From bba3fd12d01122e3809ae514b5b3931a588b9d6a Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 1 Jun 2022 14:43:08 -0800 Subject: [PATCH 001/195] fixed failing seisflows and config tests. updated test parameter files --- seisflows/config.py | 2 +- .../tests/test_data/test_conf_parameters.yaml | 15 +++++++++------ .../tests/test_data/test_filled_parameters.yaml | 15 +++++++++------ .../tests/test_data/test_setup_parameters.yaml | 2 +- seisflows/tests/test_seisflows.py | 7 +++++-- 5 files changed, 25 insertions(+), 16 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 4119df7a..5347d534 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -210,7 +210,7 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): """ # Make sure that we don't already have handlers described, which may happen # if this function gets run multiple times, and leads to duplicate logs - while logger.hasHandlers(): + while logger.hasHandlers() and logger.handlers: logger.removeHandler(logger.handlers[0]) # Two levels of verbosity on log level, triggered with PAR.VERBOSE diff --git a/seisflows/tests/test_data/test_conf_parameters.yaml b/seisflows/tests/test_data/test_conf_parameters.yaml index f387edaf..0b08e2d0 100644 --- a/seisflows/tests/test_data/test_conf_parameters.yaml +++ b/seisflows/tests/test_data/test_conf_parameters.yaml @@ -9,7 +9,7 @@ # # .. rubric:: # - To determine available options for modules listed below, run: -# > seisflows print module +# > seisflows print modules # - To auto-fill with docstrings and default values (recommended), run: # > seisflows configure # - To set values as NoneType, use: null @@ -78,10 +78,10 @@ NPROC: 1 # seisflows.plugins.adjoint # NORMALIZE (list): # Data normalization parameters used to normalize the amplitudes of -# waveforms. Choose from two sets:ENORML1: normalize per event by L1 of -# traces; ORENORML2: normalize per event by L2 of traces; ANDTNORML1: -# normalize per trace by L1 of itself; ORTNORML2: normalize per trace by L2 -# of itself +# waveforms. Choose from two sets: ENORML1: normalize per event by L1 of +# traces; OR ENORML2: normalize per event by L2 of traces; AND TNORML1: +# normalize per trace by L1 of itself; OR TNORML2: normalize per trace by +# L2 of itself # FILTER (str): # Data filtering type, available options are:BANDPASS (req. MIN/MAX # PERIOD/FREQ);LOWPASS (req. MAX_FREQ or MIN_PERIOD); HIGHPASS (req. @@ -260,6 +260,8 @@ END: !!! REQUIRED PARAMETER !!! # path to local data to be used during workflow # LOGFILE: # the main output log file where all processes will track their status +# PREPROCESS: +# scratch path to store any preprocessing outputs # SOLVER: # scratch path to hold solver working directories # SPECFEM_BIN: @@ -290,6 +292,7 @@ PATHS: SYSTEM: scratch/system LOCAL: LOGFILE: output_sf.txt + PREPROCESS: scratch/preprocess SOLVER: scratch/solver SPECFEM_BIN: !!! REQUIRED PATH !!! SPECFEM_DATA: !!! REQUIRED PATH !!! @@ -298,6 +301,6 @@ PATHS: OPTIMIZE: scratch/optimize MODEL_INIT: !!! REQUIRED PATH !!! MODEL_TRUE: - FUNC: scratch/scratch + FUNC: scratch/evalfunc GRAD: scratch/evalgrad HESS: scratch/evalhess diff --git a/seisflows/tests/test_data/test_filled_parameters.yaml b/seisflows/tests/test_data/test_filled_parameters.yaml index 56e7717b..a33448c0 100644 --- a/seisflows/tests/test_data/test_filled_parameters.yaml +++ b/seisflows/tests/test_data/test_filled_parameters.yaml @@ -9,7 +9,7 @@ # # .. rubric:: # - To determine available options for modules listed below, run: -# > seisflows print module +# > seisflows print modules # - To auto-fill with docstrings and default values (recommended), run: # > seisflows configure # - To set values as NoneType, use: null @@ -78,10 +78,10 @@ NPROC: 1 # seisflows.plugins.adjoint # NORMALIZE (list): # Data normalization parameters used to normalize the amplitudes of -# waveforms. Choose from two sets:ENORML1: normalize per event by L1 of -# traces; ORENORML2: normalize per event by L2 of traces; ANDTNORML1: -# normalize per trace by L1 of itself; ORTNORML2: normalize per trace by L2 -# of itself +# waveforms. Choose from two sets: ENORML1: normalize per event by L1 of +# traces; OR ENORML2: normalize per event by L2 of traces; AND TNORML1: +# normalize per trace by L1 of itself; OR TNORML2: normalize per trace by +# L2 of itself # FILTER (str): # Data filtering type, available options are:BANDPASS (req. MIN/MAX # PERIOD/FREQ);LOWPASS (req. MAX_FREQ or MIN_PERIOD); HIGHPASS (req. @@ -260,6 +260,8 @@ END: 1 # path to local data to be used during workflow # LOGFILE: # the main output log file where all processes will track their status +# PREPROCESS: +# scratch path to store any preprocessing outputs # SOLVER: # scratch path to hold solver working directories # SPECFEM_BIN: @@ -290,6 +292,7 @@ PATHS: SYSTEM: scratch/system LOCAL: LOGFILE: output_sf.txt + PREPROCESS: scratch/preprocess SOLVER: scratch/solver SPECFEM_BIN: ./bin SPECFEM_DATA: ./DATA @@ -298,6 +301,6 @@ PATHS: OPTIMIZE: scratch/optimize MODEL_INIT: ./MODEL_INIT MODEL_TRUE: ./MODEL_TRUE - FUNC: scratch/scratch + FUNC: scratch/evalfunc GRAD: scratch/evalgrad HESS: scratch/evalhess diff --git a/seisflows/tests/test_data/test_setup_parameters.yaml b/seisflows/tests/test_data/test_setup_parameters.yaml index 08fbbae8..303931d1 100644 --- a/seisflows/tests/test_data/test_setup_parameters.yaml +++ b/seisflows/tests/test_data/test_setup_parameters.yaml @@ -9,7 +9,7 @@ # # .. rubric:: # - To determine available options for modules listed below, run: -# > seisflows print module +# > seisflows print modules # - To auto-fill with docstrings and default values (recommended), run: # > seisflows configure # - To set values as NoneType, use: null diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 098c9ac6..196a7a8b 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -15,7 +15,8 @@ from seisflows import logger from seisflows.seisflows import sfparser, SeisFlows -from seisflows.config import save, Dict, ROOT_DIR, NAMES, CFGPATHS +from seisflows.config import (save, Dict, ROOT_DIR, NAMES, CFGPATHS, + config_logger) from seisflows.tools.wrappers import loadyaml TEST_DIR = os.path.join(ROOT_DIR, "tests") @@ -239,6 +240,8 @@ def test_cmd_clean(tmpdir): def test_config_logging(tmpdir, copy_par_file): """ Test logging configuration to make sure we can print to file + + TODO move this to test_config.py? :param tmpdir: :return: """ @@ -250,7 +253,7 @@ def test_config_logging(tmpdir, copy_par_file): with patch.object(sys, "argv", ["seisflows"]): sf = SeisFlows() sf._register(force=True) - sf._config_logging() + config_logger(filename=CFGPATHS.LOGFILE) logger.debug(msg) # Check that we created the log file and wrote the message in From 16adfd9a45b2c65a0650717717dd9103fd06d2f5 Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 1 Jun 2022 16:34:27 -0800 Subject: [PATCH 002/195] working on solver tests, making solver definitions more explicit by adding arguments and not just *args --- seisflows/config.py | 2 +- seisflows/solver/base.py | 38 ++++++++++++++-------------------- seisflows/solver/specfem2d.py | 38 +++++++--------------------------- seisflows/tests/test_solver.py | 1 + 4 files changed, 26 insertions(+), 53 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 5347d534..ac67f5f0 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -32,7 +32,7 @@ !!! WARNING !!! The following constants are (some of the only) hardwired components -of the pacakge. The naming, order, case, etc., of each constant may be +of the package. The naming, order, case, etc., of each constant may be important, and any changes to these will more-than-likely break the underlying mechanics of the package. Do not touch unless you know what you're doing! """ diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index f1db5e62..3edf36e3 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -172,10 +172,6 @@ def check(self, validate=True): assert (required_parameter in PAR), \ f"Solver requires {required_parameter}" - # Important to reset parameters to a blank list and let the check - # statements fill it. If not, each time workflow is resumed, parameters - # list will append redundant parameters and things stop working - available_materials = ["ELASTIC", "ACOUSTIC", # specfem2d, specfem3d "ISOTROPIC", "ANISOTROPIC"] # specfem3d_globe assert(PAR.MATERIALS.upper() in available_materials), \ @@ -186,6 +182,9 @@ def check(self, validate=True): f"DENSITY must be in {acceptable_densities}" # Internal parameter list based on user-input material choices + # Important to reset parameters to a blank list and let the check + # statements fill it. If not, each time workflow is resumed, parameters + # list will append redundant parameters and things stop working self.parameters = [] if PAR.MATERIALS.upper() == "ELASTIC": assert(PAR.SOLVER.lower() in ["specfem2d", "specfem3d"]) @@ -225,15 +224,20 @@ def setup(self): # Clean up for new inversion unix.rm(self.cwd) self.initialize_solver_directories() + self.check_solver_parameter_files() # Determine where observation data will come from if PAR.CASE.upper() == "SYNTHETIC" and PATH.MODEL_TRUE is not None: if self.taskid == 0: self.logger.info("generating 'data' with MODEL_TRUE synthetics") # Generate synthetic data on the fly using the true model - self.generate_data(model_path=PATH.MODEL_TRUE, + self.generate_mesh(model_path=PATH.MODEL_TRUE, model_name="model_true", model_type="gll") + self.forward(path=os.path.join("traces", "obs")) + if PAR.SAVETRACES: + self.export_traces(os.path.join(PATH.OUTPUT, "traces", "obs")) + elif PATH.DATA is not None and os.path.exists(PATH.DATA): # If Data provided by user, copy directly into the solver directory unix.cp(src=glob(os.path.join(PATH.DATA, self.source_name, "*")), @@ -259,26 +263,18 @@ def clean(self): unix.rm("OUTPUT_FILES") unix.mkdir("OUTPUT_FILES") - def generate_data(self, *args, **kwargs): - """ - Generates data based on a given model - - !!! Must be implemented by subclass !!! - """ - raise NotImplementedError - - def generate_mesh(self, *args, **kwargs): + def generate_mesh(self, model_path, model_name, model_type): """ - Performs meshing and database generation + Performs meshing and database generation. - !!! Must be implemented by subclass !!! + This function is Solver specific and is responsible for generating + the mesh using the external numerical solver. """ - raise NotImplementedError + raise NotImplementedError("function 'solver.generate_mesh()' must be" + "implemented by a Solver sub class") def eval_func(self, path, write_residuals=True): """ - High level solver interface - Performs forward simulations and evaluates the misfit function :type path: str @@ -359,7 +355,7 @@ def apply_hess(self, path): self.adjoint() self.export_kernels(path) - def forward(self): + def forward(self, path): """ Low level solver interface @@ -794,8 +790,6 @@ def initialize_solver_directories(self): dst = os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") unix.cp(src, dst) - self.check_solver_parameter_files() - def initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM. diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index c41a0dc1..994aa727 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -140,33 +140,6 @@ def check_solver_parameter_files(self): else: setpar(key="absorbtop", val=".true.", file="DATA/Par_file") - def generate_data(self, **model_kwargs): - """ - Generates data using the True model, exports traces to `traces/obs` - - :param model_kwargs: keyword arguments to pass to `generate_mesh` - """ - self.generate_mesh(**model_kwargs) - - unix.cd(self.cwd) - setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") - setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - - call_solver(PAR.MPIEXEC, "bin/xmeshfem2D", output="mesher.log") - call_solver(PAR.MPIEXEC, "bin/xspecfem2D", output="solver.log") - - if PAR.FORMAT.upper() == "SU": - # Work around SPECFEM2D's version dependent file names - for tag in ["d", "v", "a", "p"]: - unix.rename(old=f"single_{tag}.su", new="single.su", - names=glob(os.path.join("OUTPUT_FILES", "*.su"))) - - unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), - dst=os.path.join("traces", "obs")) - - if PAR.SAVETRACES: - self.export_traces(os.path.join(PATH.OUTPUT, "traces", "obs")) - def initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM. @@ -247,18 +220,23 @@ def generate_mesh(self, model_path, model_name, model_type='gll'): if self.taskid == 0: self.export_model(os.path.join(PATH.OUTPUT, model_name)) - def forward(self, path='traces/syn'): + def forward(self, path="traces/syn"): """ Calls SPECFEM2D forward solver, exports solver outputs to traces dir :type path: str :param path: path to export traces to after completion of simulation + relatiev to the solver cwd """ + unix.cd(self.cwd) + setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem2D") - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem2D") + call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem2D", + output="mesher.log") + call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem2D", + output="solver.log") if PAR.FORMAT.upper() == "SU": # Work around SPECFEM2D's version dependent file names diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index c2facb2d..a7bbc198 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -130,3 +130,4 @@ def test_required_functions_exist(sfinit, modules): # MODULE AND FUNCTION SPECIFIC TESTS TO FOLLOW # ============================================================================== +def test \ No newline at end of file From 1237df34996181bc51e7e1dc267513aa9db072e5 Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 1 Jun 2022 18:02:11 -0800 Subject: [PATCH 003/195] cleaning up some solver calls to remove redundant code --- seisflows/solver/base.py | 29 ++++------------------------ seisflows/solver/specfem2d.py | 36 ++++++++++++++++++++++++++++++++++- seisflows/solver/specfem3d.py | 1 - 3 files changed, 39 insertions(+), 27 deletions(-) diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index 3edf36e3..25cfec73 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -225,31 +225,8 @@ def setup(self): unix.rm(self.cwd) self.initialize_solver_directories() self.check_solver_parameter_files() - - # Determine where observation data will come from - if PAR.CASE.upper() == "SYNTHETIC" and PATH.MODEL_TRUE is not None: - if self.taskid == 0: - self.logger.info("generating 'data' with MODEL_TRUE synthetics") - # Generate synthetic data on the fly using the true model - self.generate_mesh(model_path=PATH.MODEL_TRUE, - model_name="model_true", - model_type="gll") - self.forward(path=os.path.join("traces", "obs")) - if PAR.SAVETRACES: - self.export_traces(os.path.join(PATH.OUTPUT, "traces", "obs")) - - elif PATH.DATA is not None and os.path.exists(PATH.DATA): - # If Data provided by user, copy directly into the solver directory - unix.cp(src=glob(os.path.join(PATH.DATA, self.source_name, "*")), - dst=os.path.join("traces", "obs") - ) - - # Prepare initial model - if self.taskid == 0: - self.logger.info("running mesh generation for MODEL_INIT") - self.generate_mesh(model_path=PATH.MODEL_INIT, - model_name="model_init", - model_type="gll") + self.generate_data() + self.generate_mesh(model_name="init", model_type="gll") # Create blank adjoint traces to be overwritten self.initialize_adjoint_traces() @@ -823,6 +800,8 @@ def check_mesh_properties(self, path=None): """ Determine if Mesh properties are okay for workflow + TODO fix or rewrite this function + :type path: str :param path: path to the mesh file """ diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 994aa727..69dfa4f7 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -187,7 +187,31 @@ def initialize_adjoint_traces(self): if not exists(fid_check): unix.cp(fid, fid_check) - def generate_mesh(self, model_path, model_name, model_type='gll'): + def generate_data(self): + """ + Generates observation data to be compared to synthetics. This must + only be run once. If `PAR.CASE`=='data', then real data will be copied + over. If `PAR.CASE`=='synthetic' then the external solver will use the + True model to generate 'observed' synthetics. Finally exports traces to + 'cwd/traces/obs' + """ + # If synthetic inversion, generate 'data' with solver + if PAR.CASE.upper() == "SYNTHETIC": + if PATH.MODEL_TRUE is not None: + if self.taskid == 0: + self.logger.info("generating 'data' with MODEL_TRUE") + # Generate synthetic data on the fly using the true model + self.generate_mesh(model_name="true", model_type="gll") + self.forward(path=os.path.join("traces", "obs")) + # If Data provided by user, copy directly into the solver directory + elif PATH.DATA is not None and os.path.exists(PATH.DATA): + unix.cp(src=glob(os.path.join(PATH.DATA, self.source_name, "*")), + dst=os.path.join("traces", "obs") + ) + if PAR.SAVETRACES: + self.export_traces(path=os.path.join(PATH.OUTPUT, "traces", "obs")) + + def generate_mesh(self, model_name, model_type="gll"): """ Performs meshing with internal mesher Meshfem2D and database generation @@ -199,8 +223,18 @@ def generate_mesh(self, model_path, model_name, model_type='gll'): :param model_type: available model types to be passed to the Specfem3D Par_file. See Specfem3D Par_file for available options. """ + if model_name.upper() == "INIT": + model_path = PATH.MODEL_INIT + elif model_name.upper() == "TRUE": + model_path = PATH.MODEL_TRUE + else: + raise ValueError(f"model name must be 'INIT' or 'TRUE'") assert(exists(model_path)), f"model {model_path} does not exist" + if self.taskid == 0: + self.logger.info(f"running mesh generation for " + f"MODEL_{model_name.upper()}") + available_model_types = ["gll"] assert(model_type in available_model_types), \ f"{model_type} not in available types {available_model_types}" diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 5f247f71..0512035c 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -123,7 +123,6 @@ def generate_mesh(self, model_path, model_name, model_type=None): Par_file. See Specfem3D Par_file for available options. """ available_model_types = ["gll"] - assert(exists(model_path)), f"model {model_path} does not exist" model_type = model_type or getpar(key="MODEL", file="DATA/Par_file") From a0a9e161db3543d6b4e68fd84ad1858e06558521 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 14 Jun 2022 10:09:10 -0800 Subject: [PATCH 004/195] fixing typos and docstrings in optimization module --- seisflows/optimize/LBFGS.py | 1 - seisflows/optimize/NLCG.py | 6 ++++-- seisflows/optimize/base.py | 5 ++--- seisflows/solver/specfem2d.py | 4 ++-- 4 files changed, 8 insertions(+), 8 deletions(-) diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 29f04b2f..0ac5db07 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -10,7 +10,6 @@ from seisflows.tools import unix from seisflows.tools.msg import DEG -from seisflows.tools.wrappers import exists from seisflows.tools.math import angle from seisflows.config import custom_import, SeisFlowsPathsParameters diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index e060947c..c08e9862 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -7,6 +7,7 @@ import logging from seisflows.config import custom_import, SeisFlowsPathsParameters +from seisflows.tools import unix PAR = sys.modules['seisflows_parameters'] PATH = sys.modules['seisflows_paths'] @@ -113,8 +114,9 @@ def compute_direction(self): # CASE 2: Force restart if the iterations have surpassed the maximum # number of allowable iter elif self.NLCG_iter > PAR.NLCGMAX: - logger.info("restarting NLCG due to periodic restart condition. " - "setting search direction as inverse gradient") + self.logger.info("restarting NLCG due to periodic restart " + "condition. setting search direction as inverse " + "gradient") self.restart() p_new = -g_new restarted = 1 diff --git a/seisflows/optimize/base.py b/seisflows/optimize/base.py index 1cf59f44..94c9436a 100644 --- a/seisflows/optimize/base.py +++ b/seisflows/optimize/base.py @@ -54,8 +54,7 @@ class Base: def __init__(self): """ - These parameters should not be set by __init__! - Attributes are just initialized as NoneTypes for clarity and docstrings + Initialize internally used variables for optimization workflow :type iter: int :param iter: the current iteration of the workflow @@ -174,7 +173,7 @@ def setup(self): """ Sets up nonlinear optimization machinery """ - # All ptimization statistics text files will be written to path_stats + # All optimization statistics text files will be written to path_stats path_stats = os.path.join(PATH.WORKDIR, CFGPATHS.STATSDIR) unix.mkdir(path_stats) diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 69dfa4f7..18602c26 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -223,6 +223,8 @@ def generate_mesh(self, model_name, model_type="gll"): :param model_type: available model types to be passed to the Specfem3D Par_file. See Specfem3D Par_file for available options. """ + unix.cd(self.cwd) + if model_name.upper() == "INIT": model_path = PATH.MODEL_INIT elif model_name.upper() == "TRUE": @@ -239,8 +241,6 @@ def generate_mesh(self, model_name, model_type="gll"): assert(model_type in available_model_types), \ f"{model_type} not in available types {available_model_types}" - unix.cd(self.cwd) - # Run mesh generation if model_type == "gll": self.check_mesh_properties(model_path) From 7f351f450eab35bb59fc811bc94de11efd23bbd3 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 14 Jun 2022 15:25:33 -0800 Subject: [PATCH 005/195] cleaning up more docstrings --- seisflows/plugins/solver_io/fortran_binary.py | 5 + seisflows/preprocess/base.py | 1 + seisflows/solver/base.py | 35 ++--- seisflows/solver/specfem2d.py | 9 -- seisflows/solver/specfem3d.py | 33 +---- seisflows/system/cluster.py | 2 +- seisflows/tests/test_modules.py | 42 +++--- seisflows/tests/test_preprocess.py | 44 ++---- seisflows/tests/test_solver.py | 133 ------------------ 9 files changed, 60 insertions(+), 244 deletions(-) delete mode 100644 seisflows/tests/test_solver.py diff --git a/seisflows/plugins/solver_io/fortran_binary.py b/seisflows/plugins/solver_io/fortran_binary.py index 1543ab89..3428525b 100644 --- a/seisflows/plugins/solver_io/fortran_binary.py +++ b/seisflows/plugins/solver_io/fortran_binary.py @@ -85,6 +85,11 @@ def _write(v, filename): """ Writes Fortran style binary files Data are written as single precision floating point numbers + + .. note:: + FORTRAN unformatted binaries are bounded by an INT*4 byte count. This + function mimics that behavior by tacking on the boundary data. + https://docs.oracle.com/cd/E19957-01/805-4939/6j4m0vnc4/index.html """ n = np.array([4 * len(v)], dtype='int32') v = np.array(v, dtype='float32') diff --git a/seisflows/preprocess/base.py b/seisflows/preprocess/base.py index 80a7f8b3..92ac58df 100644 --- a/seisflows/preprocess/base.py +++ b/seisflows/preprocess/base.py @@ -447,4 +447,5 @@ def _apply_normalize(self, st): w = np.linalg.norm(tr.data, ord=2) if w > 0: tr.data /= w + return st_out diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index 25cfec73..db5d7510 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -221,14 +221,11 @@ def setup(self): In the former case, a value for PATH.DATA must be supplied; in the latter case, a value for PATH.MODEL_TRUE must be provided. """ - # Clean up for new inversion unix.rm(self.cwd) self.initialize_solver_directories() self.check_solver_parameter_files() self.generate_data() self.generate_mesh(model_name="init", model_type="gll") - - # Create blank adjoint traces to be overwritten self.initialize_adjoint_traces() def clean(self): @@ -247,8 +244,13 @@ def generate_mesh(self, model_path, model_name, model_type): This function is Solver specific and is responsible for generating the mesh using the external numerical solver. """ - raise NotImplementedError("function 'solver.generate_mesh()' must be" - "implemented by a Solver sub class") + raise NotImplementedError("must be implemented by solver subclass") + + def generate_data(self): + """ + Performs meshing and data generation for "true" data. + """ + raise NotImplementedError("must be implemented by solver subclass") def eval_func(self, path, write_residuals=True): """ @@ -321,7 +323,7 @@ def apply_hess(self, path): :type path: str :param path: directory to which output files are exported """ - raise NotImplementedError + raise NotImplementedError("must be implemented by solver subclass") unix.cd(self.cwd) self.import_model(path) @@ -340,7 +342,7 @@ def forward(self, path): !!! Must be implemented by subclass !!! """ - raise NotImplementedError + raise NotImplementedError("must be implemented by solver subclass") def adjoint(self): """ @@ -350,7 +352,7 @@ def adjoint(self): !!! Must be implemented by subclass !!! """ - raise NotImplementedError + raise NotImplementedError("must be implemented by solver subclass") @property def io(self): @@ -574,14 +576,6 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., files = glob(os.path.join(output_path, "*")) unix.rename(old="_smooth", new="", names=files) - def combine_vol_data_vtk(self): - """ - Postprocessing wrapper for xcombine_vol_data_vtk - - !!! must be implemented by subclass !!! - """ - pass - def import_model(self, path): """ File transfer utility. Import the model into the workflow. @@ -709,7 +703,7 @@ def rename_data(self, path): !!! Can be implemented by subclass !!! """ - pass + raise NotImplementedError("must be implemented by solver subclass") def initialize_solver_directories(self): """ @@ -962,10 +956,11 @@ def kernel_databases(self): @property def source_prefix(self): """ - Template filenames for accessing sources + Preferred source prefix - !!! Must be implemented by subclass !!! + :rtype: str + :return: source prefix """ - return NotImplementedError + return PAR.SOURCE_PREFIX.upper() diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 18602c26..37cdca33 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -433,13 +433,4 @@ def data_wildcard(self, comp="?"): elif PAR.FORMAT.upper() == "ASCII": return f"*.?X{comp}.sem?" - @property - def source_prefix(self): - """ - Specfem2D's preferred source prefix - - :rtype: str - :return: source prefix - """ - return PAR.SOURCE_PREFIX.upper() diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 0512035c..1c88ed48 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -236,7 +236,7 @@ def initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM - Note: + .. note:: Adjoint traces are initialized by writing zeros for all channels. Channels actually in use during an inversion or migration will be overwritten with nonzero values later on. @@ -271,37 +271,6 @@ def rename_data(self): files = glob(os.path.join(self.cwd, "traces", "adj", "*SU")) unix.rename(old='_SU', new='_SU.adj', names=files) - def write_parameters(self): - """ - Write a set of parameters - - !!! This calls on plugins.solver.specfem3d.write_parameters() - but that function doesn't exist !!! - """ - unix.cd(self.cwd) - solvertools.write_parameters(vars(PAR)) - - def write_receivers(self): - """ - Write a list of receivers into a text file - - !!! This calls on plugins.solver.specfem3d.write_receivers() - but incorrect number of parameters is forwarded !!! - """ - unix.cd(self.cwd) - setpar(key="use_existing_STATIONS", val=".true", file="DATA/Par_file") - - _, h = preprocess.load("traces/obs") - solvertools.write_receivers(h.nr, h.rx, h.rz) - - def write_sources(self): - """ - Write sources to text file - """ - unix.cd(self.cwd) - _, h = preprocess.load(dir="traces/obs") - solvertools.write_sources(PAR=vars(PAR), h=h) - @property def data_wildcard(self): """ diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index 27ce1f44..c3e51eff 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -22,7 +22,7 @@ class Cluster(custom_import("system", "base")): compute systems such as HPC clusters. """ # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(_nrpo_qualname__) + logger = logging.getLogger(__name__).getChild(__qualname__) @property def required(self): diff --git a/seisflows/tests/test_modules.py b/seisflows/tests/test_modules.py index 9b8dad04..957e9384 100644 --- a/seisflows/tests/test_modules.py +++ b/seisflows/tests/test_modules.py @@ -140,9 +140,10 @@ def test_required_functions_exist(sfinit): f"{name}.{module}" -def test_setup(sfinit, modules): +@pytest.mark.skip("test not working as expected") +def test_setup(sfinit): """ - Test the expected behavior of each of the rqeuired functions. + Test the expected behavior of each of the required functions. Setup: make sure that setup creates the necessary directory structure @@ -150,28 +151,29 @@ def test_setup(sfinit, modules): :param modules: :return: """ - return - sf = sfinit + sfinit PATH = sys.modules["seisflows_paths"] SETUP_CREATES = [PATH.SCRATCH, PATH.SYSTEM, PATH.OUTPUT] - for package, module_list in modules.items(): - for module in module_list: - loaded_module = config.custom_import(MODULE, module)() + for name in config.NAMES: + for package, module_list in return_modules()[name].items(): + for module in module_list: + loaded_module = config.custom_import(name, module)() - # Make sure these don't already exist - for path_ in SETUP_CREATES: - assert(not os.path.exists(path_)) + # Make sure these don't already exist + for path_ in SETUP_CREATES: + assert(not os.path.exists(path_)) - loaded_module.setup() + loaded_module.setup() - # Check that the minimum required directories were created - for path_ in SETUP_CREATES: - assert(os.path.exists(path_)) + # Check that the minimum required directories were created + for path_ in SETUP_CREATES: + pytest.set_trace() + assert(os.path.exists(path_)) - # Remove created paths so we can check the next module - for path_ in SETUP_CREATES: - if os.path.isdir(path_): - shutil.rmtree(path_) - else: - os.remove(path_) \ No newline at end of file + # Remove created paths so we can check the next module + for path_ in SETUP_CREATES: + if os.path.isdir(path_): + shutil.rmtree(path_) + else: + os.remove(path_) \ No newline at end of file diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index 7fb418d1..cb0a36da 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -11,14 +11,6 @@ from seisflows.seisflows import SeisFlows, return_modules -# The module that we're testing, allows for copy-pasting these test suites -MODULE = "preprocess" - -# Ensures that these parameters are always defined, even when using subclasses -REQUIRED_PARAMETERS = [] -REQUIRED_FUNCTIONS = ["required", "check", "setup", "prepare_eval_grad", - "sum_residuals", "finalize"] - # Define some re-used paths TEST_DIR = os.path.join(config.ROOT_DIR, "tests") REPO_DIR = os.path.abspath(os.path.join(config.ROOT_DIR, "..")) @@ -36,14 +28,6 @@ def copy_par_file(tmpdir): shutil.copy(src, dst) -@pytest.fixture -def modules(): - """ - Return a list of subclasses that falls under the System module - """ - return return_modules()[MODULE] - - @pytest.fixture def sfinit(tmpdir, copy_par_file): """ @@ -138,16 +122,18 @@ def test_default_setup(sfinit): assert(preprocess.writer.__name__ == io_name) -# def test_default_prepare_eval_grad(tmpdir, sfinit): -# """ -# Ensure that prepare_eval_grad writes out adjoint traces and auxiliary files -# """ -# sfinit -# PAR = sys.modules["seisflows_parameters"] -# preprocess = sys.modules["seisflows_preprocess"] -# -# cwd = tmpdir -# taskid = 0 -# filenames = [] -# preprocess.prepare_eval_grad(cwd=cwd, taskid=taskid, filenames=filenames) -# pytest.set_trace() +def test_default_prepare_eval_grad(tmpdir, sfinit): + """ + Ensure that prepare_eval_grad writes out adjoint traces and auxiliary files + """ + sfinit + PAR = sys.modules["seisflows_parameters"] + preprocess = sys.modules["seisflows_preprocess"] + + cwd = tmpdir + taskid = 0 + filenames = [] + preprocess.prepare_eval_grad(cwd=cwd, taskid=taskid, filenames=filenames) + pytest.set_trace() + + diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py deleted file mode 100644 index a7bbc198..00000000 --- a/seisflows/tests/test_solver.py +++ /dev/null @@ -1,133 +0,0 @@ -""" -Test suite for the SeisFlows system module, which controls interaction with -various compute systems -""" -import os -import sys -import shutil -import pytest -from unittest.mock import patch -from seisflows import config -from seisflows.seisflows import SeisFlows, return_modules - - -# The module that we're testing, allows for copy-pasting these test suites -MODULE = "solver" - -# Ensures that these parameters are always defined, even when using subclasses -REQUIRED_PARAMETERS = ["MATERIALS", "DENSITY", "ATTENUATION"] -# !!! TODO Figure out what solver functions are called from other modules -REQUIRED_FUNCTIONS = [] - -# Define some re-used paths -TEST_DIR = os.path.join(config.ROOT_DIR, "tests") -REPO_DIR = os.path.abspath(os.path.join(config.ROOT_DIR, "..")) - - -@pytest.fixture -def copy_par_file(tmpdir): - """ - Copy the template parameter file into the temporary test directory - :rtype: str - :return: location of the parameter file - """ - src = os.path.join(TEST_DIR, "test_data", "test_filled_parameters.yaml") - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) - - -@pytest.fixture -def modules(): - """ - Return a list of subclasses that falls under the System module - """ - return return_modules()[MODULE] - - -@pytest.fixture -def sfinit(tmpdir, copy_par_file): - """ - Re-used function that will initate a SeisFlows working environment in - sys modules - :return: - """ - copy_par_file - os.chdir(tmpdir) - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf._register(force=True) - config.init_seisflows(check=False) - - return sf - - -def test_import(sfinit, modules): - """ - Test code by importing all available classes for this module. - If any of these fails then the module itself has some code error - (e.g., syntax errors, inheritance errors). - """ - sfinit - for package, module_list in modules.items(): - for module in module_list: - config.custom_import(MODULE, module)() - - -def test_validate(sfinit, modules): - """ - Test out path and parameter validation, essentially checking that all - the paths and parameters are set properly - - .. note:: - This doesn't work because we have required parameters that are not - set in the default parameter file. We can run configure beforehand - but does that make sense? - :return: - """ - return - sfinit - for package, module_list in modules.items(): - for module in module_list: - loaded_module = config.custom_import(MODULE, module)() - from IPython import embed;embed() - loaded_module.required.validate() - - -def test_required_parameters_exist(sfinit, modules): - """ - Ensure that the required parameters are set in all the classes/subclasses - That is, that the parameters defined above in REQUIRED_PARAMETERS have been - defined by each SYSTEM class - """ - sfinit - for package, module_list in modules.items(): - for module in module_list: - loaded_module = config.custom_import(MODULE, module)() - sf_pp = loaded_module.required - # Check that required parameters are set - for req_par in REQUIRED_PARAMETERS: - assert(req_par in sf_pp.parameters.keys()), \ - f"{req_par} is a required parameter for module {MODULE}" - - -def test_required_functions_exist(sfinit, modules): - """ - Make sure that the named, required functions exist within the class - Do not execute just make sure they're defined, because they will be - expected by other modules - """ - sfinit - for package, module_list in modules.items(): - for module in module_list: - loaded_module = config.custom_import(MODULE, module)() - for func in REQUIRED_FUNCTIONS: - assert(func in dir(loaded_module)), \ - f"'{func}' is a required function in module: " \ - f"{MODULE}.{module}" - - -# ============================================================================== -# MODULE AND FUNCTION SPECIFIC TESTS TO FOLLOW -# ============================================================================== - -def test \ No newline at end of file From 1054492fc5d49bfbf507351152c4739d67b821ae Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 15 Jun 2022 12:59:41 -0800 Subject: [PATCH 006/195] moved 'call_solver' into solver.base and OUT of the specfem tool as it makes more sense to have it be a solver function --- seisflows/solver/base.py | 67 ++++++++++++++++++++++++++++------- seisflows/solver/specfem2d.py | 16 ++++----- seisflows/solver/specfem3d.py | 18 +++++----- seisflows/tools/specfem.py | 40 --------------------- 4 files changed, 71 insertions(+), 70 deletions(-) diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index db5d7510..79804f42 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -8,13 +8,14 @@ import os import sys import logging +import subprocess import numpy as np from glob import glob from functools import partial from seisflows.plugins import solver_io from seisflows.tools import msg, unix -from seisflows.tools.specfem import Container, call_solver +from seisflows.tools.specfem import Container from seisflows.tools.wrappers import Struct, diff, exists from seisflows.config import SeisFlowsPathsParameters @@ -354,6 +355,45 @@ def adjoint(self): """ raise NotImplementedError("must be implemented by solver subclass") + def call_solver(self, executable, output="solver.log"): + """ + Calls MPI solver executable to run solver binaries, used by individual + processes to run the solver on system. If the external solver returns a + non-zero exit code (failure), this function will return a negative boolean. + + :type mpiexec: str + :param mpiexec: call to mpi. If None (e.g., serial run, defaults to ./) + :type executable: str + :param executable: executable function to call + :type output: str + :param output: where to redirect stdout + """ + # mpiexec is None when running in serial mode, so e.g., ./xmeshfem2D + if PAR.SYSTEM in ["workstation"]: + exc_cmd = f"./{executable}" + # Otherwise mpiexec is system dependent (e.g., srun, mpirun) + else: + exc_cmd = f"{PAR.MPIEXEC} {executable}" + + try: + # Write solver stdout (log files) to text file + f = open(output, "w") + subprocess.run(exc_cmd, shell=True, check=True, stdout=f) + except (subprocess.CalledProcessError, OSError) as e: + print(msg.cli("The external numerical solver has returned a nonzero " + "exit code (failure). Consider stopping any currently " + "running jobs to avoid wasted computational resources. " + f"Check 'scratch/solver/mainsolver/{output}' for the " + f"solvers stdout log message. " + f"The failing command and error message are: ", + items=[f"exc: {exc_cmd}", f"err: {e}"], + header="external solver error", + border="=") + ) + sys.exit(-1) + finally: + f.close() + @property def io(self): """ @@ -517,10 +557,11 @@ def combine(self, input_path, output_path, parameters=None): # Call on xcombine_sem to combine kernels into a single file for name in self.parameters: # e.g.: mpiexec ./bin/xcombine_sem alpha_kernel kernel_paths output - call_solver(mpiexec=PAR.MPIEXEC, - executable=" ".join([f"bin/xcombine_sem", - f"{name}_kernel", "kernel_paths", - output_path]) + self.call_solver(mpiexec=PAR.MPIEXEC, + executable=" ".join([ + f"bin/xcombine_sem", f"{name}_kernel", + "kernel_paths", output_path] + ) ) def smooth(self, input_path, output_path, parameters=None, span_h=0., @@ -562,14 +603,14 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., # mpiexec ./bin/xsmooth_sem SMOOTH_H SMOOTH_V name input output use_gpu for name in parameters: - call_solver(mpiexec=PAR.MPIEXEC, - executable=" ".join(["bin/xsmooth_sem", - str(span_h), str(span_v), - f"{name}_kernel", - os.path.join(input_path, ""), - os.path.join(output_path, ""), - ".false"]), - output=output + self.call_solver(mpiexec=PAR.MPIEXEC, + executable=" ".join(["bin/xsmooth_sem", + str(span_h), str(span_v), + f"{name}_kernel", + os.path.join(input_path, ""), + os.path.join(output_path, ""), + ".false"]), + output=output ) # Rename output files diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 37cdca33..825c1c81 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -13,7 +13,7 @@ from seisflows.tools import unix, msg from seisflows.tools.wrappers import exists from seisflows.config import custom_import, SeisFlowsPathsParameters -from seisflows.tools.specfem import call_solver, getpar, setpar +from seisflows.tools.specfem import getpar, setpar PAR = sys.modules['seisflows_parameters'] @@ -62,7 +62,7 @@ def required(self): sf.par("F0", required=True, par_type=float, docstr="Dominant source frequency") - sf.par("FORMAT", required=True, par_type=float, + sf.par("FORMAT", required=False, par_type=float, default="ASCII", docstr="Format of synthetic waveforms used during workflow, " "available options: ['ascii', 'su']") @@ -267,10 +267,10 @@ def forward(self, path="traces/syn"): setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem2D", - output="mesher.log") - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem2D", - output="solver.log") + self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem2D", + output="mesher.log") + self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem2D", + output="solver.log") if PAR.FORMAT.upper() == "SU": # Work around SPECFEM2D's version dependent file names @@ -298,8 +298,8 @@ def adjoint(self): unix.rename(old=".su", new=".su.adj", names=glob(os.path.join("traces", "adj", "*.su"))) - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem2D") - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem2D") + self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem2D") + self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem2D") def smooth(self, input_path, **kwargs): """ diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 1c88ed48..37c9dcc3 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -14,7 +14,7 @@ from seisflows.tools import unix, msg from seisflows.tools.wrappers import exists from seisflows.config import custom_import, SeisFlowsPathsParameters -from seisflows.tools.specfem import call_solver, getpar, setpar +from seisflows.tools.specfem import getpar, setpar # Seisflows configuration @@ -101,7 +101,7 @@ def generate_data(self, **model_kwargs): else: setpar(key="ATTENUATION", val=".false.", file="DATA/Par_file") - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") + self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), dst=os.path.join("traces", "obs")) @@ -139,9 +139,9 @@ def generate_mesh(self, model_path, model_name, model_type=None): dst = self.model_databases unix.cp(src, dst) - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem3D") - call_solver(mpiexec=PAR.MPIEXEC, - executable="bin/xgenerate_databases") + self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem3D") + self.call_solver(mpiexec=PAR.MPIEXEC, + executable="bin/xgenerate_databases") # Export the model for future use in the workflow if self.taskid == 0: @@ -171,9 +171,9 @@ def forward(self, path="traces/syn"): else: setpar(key="ATTENUATION", val=".false`.", file="DATA/Par_file") - call_solver(mpiexec=PAR.MPIEXEC, - executable="bin/xgenerate_databases") - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") + self.call_solver(mpiexec=PAR.MPIEXEC, + executable="bin/xgenerate_databases") + self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") # Find and move output traces, by default to synthetic traces dir unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), @@ -191,7 +191,7 @@ def adjoint(self): unix.rm("SEM") unix.ln("traces/adj", "SEM") - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") + self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") def check_solver_parameter_files(self): """ diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index df518bbc..5800c6f2 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -40,46 +40,6 @@ def __init__(self): self.minmax = Minmax() -def call_solver(mpiexec, executable, output="solver.log"): - """ - Calls MPI solver executable to run solver binaries, used by individual - processes to run the solver on system. If the external solver returns a - non-zero exit code (failure), this function will return a negative boolean. - - :type mpiexec: str - :param mpiexec: call to mpi. If None (e.g., serial run, defaults to ./) - :type executable: str - :param executable: executable function to call - :type output: str - :param output: where to redirect stdout - """ - # mpiexec is None when running in serial mode, so e.g., ./xmeshfem2D - if mpiexec is None: - exc_cmd = f"./{executable}" - # Otherwise mpiexec is system dependent (e.g., srun, mpirun) - else: - exc_cmd = f"{mpiexec} {executable}" - - try: - # Write solver stdout (log files) to text file - f = open(output, "w") - subprocess.run(exc_cmd, shell=True, check=True, stdout=f) - except (subprocess.CalledProcessError, OSError) as e: - print(msg.cli("The external numerical solver has returned a nonzero " - "exit code (failure). Consider stopping any currently " - "running jobs to avoid wasted computational resources. " - f"Check 'scratch/solver/mainsolver/{output}' for the " - f"solvers stdout log message. " - f"The failing command and error message are: ", - items=[f"exc: {exc_cmd}", f"err: {e}"], - header="external solver error", - border="=") - ) - sys.exit(-1) - finally: - f.close() - - def getpar(key, file, delim="=", match_partial=False): """ Reads and returns parameters from a SPECFEM or SeisFlows parameter file From 9bcb66d559481c83b5d8f08b981945bf7e2d35c2 Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 15 Jun 2022 13:00:11 -0800 Subject: [PATCH 007/195] working on test framework which runs some simple functions to test out module capabilities --- seisflows/config.py | 6 +- seisflows/preprocess/base.py | 2 +- seisflows/preprocess/pyatoa.py | 2 +- seisflows/system/slurm.py | 47 +- .../work/traces/obs/AA.S0001.BXY.semd | 5000 +++++++++++++++++ .../work/traces/syn/AA.S0001.BXY.semd | 5000 +++++++++++++++++ .../tests/test_data/workdir/error_sf3.txt | 0 .../tests/test_data/workdir/output_sf3.txt | 0 .../tests/test_data/workdir/parameters.yaml | 0 seisflows/workflow/base.py | 2 +- seisflows/workflow/test.py | 63 +- 11 files changed, 10088 insertions(+), 34 deletions(-) create mode 100644 seisflows/tests/test_data/work/traces/obs/AA.S0001.BXY.semd create mode 100644 seisflows/tests/test_data/work/traces/syn/AA.S0001.BXY.semd delete mode 100644 seisflows/tests/test_data/workdir/error_sf3.txt delete mode 100644 seisflows/tests/test_data/workdir/output_sf3.txt delete mode 100644 seisflows/tests/test_data/workdir/parameters.yaml diff --git a/seisflows/config.py b/seisflows/config.py index ac67f5f0..8a6f6d70 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -60,8 +60,8 @@ SCRATCHDIR="scratch", # SeisFlows internal working directory STATSDIR="stats", # Optimization module log file output OUTPUTDIR="output", # Permanent disk storage for state and outputs - LOGFILE="output_sf.txt", # Log files for all system log - ERRLOGFILE="error_sf.txt", # StdErr dump site for crash messages + LOGFILE="sfoutput.txt", # Log files for all system log + ERRLOGFILE="sferror.txt", # StdErr dump site for crash messages LOGDIR="logs", # Dump site for previously created log files ) """ @@ -279,7 +279,7 @@ def __getattr__(self, key): try: return self.__dict__[key] except KeyError: - raise AttributeError(key) + raise AttributeError(f"{key} not found in Dict") def __getitem__(self, key): """.get() like access of the internal dictionary attributes """ diff --git a/seisflows/preprocess/base.py b/seisflows/preprocess/base.py index 92ac58df..d553b79f 100644 --- a/seisflows/preprocess/base.py +++ b/seisflows/preprocess/base.py @@ -269,7 +269,7 @@ def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): raise NotImplementedError self._write_adjoint_traces(path=os.path.join(cwd, "traces", "adj"), - syn=syn, obs=obs, filename=filename_out) + syn=syn, obs=obs, filename=filename_out) # Copy over the STATIONS file to STATIONS_ADJOINT required by Specfem # ASSUMING that all stations are used in adjoint simulation diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyatoa.py index 3bc08553..2af5d6ab 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyatoa.py @@ -187,7 +187,7 @@ def setup(self): """ unix.mkdir(PATH.PREPROCESS) - def prepare_eval_grad(self, cwd, source_name, taskid, **kwargs): + def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): """ Prepare the gradient evaluation by gathering, preprocessing waveforms, and measuring misfit between observations and synthetics using Pyatoa. diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index e8da4afc..4c83116c 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -150,26 +150,15 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): if single: self.logger.info("replacing parts of sbatch run call for single " "process job") - for part in run_call.split(" "): - if "--array" in part: - run_call.replace(part, "--array=0-0") - elif "--ntasks" in part: - run_call.replace(part, "--ntasks=1") - # Append taskid to environment variable, deal with the case where - # PAR.ENVIRONS is an empty string - task_id_str = "SEISFLOWS_TASKID=0" - if not run_call.strip().endswith("--environment"): - task_id_str = f",{task_id_str}" # appending to the list of vars - run_call += task_id_str - self.logger.debug(run_call) + run_call = _modify_run_call_single_proc(run_call) # The standard response from SLURM when submitting jobs # is something like 'Submitted batch job 441636', we want job number stdout = subprocess.run(run_call, stdout=subprocess.PIPE, text=True, shell=True).stdout - job_ids = job_id_list(stdout, single) - # Contiously check for job completion on ALL running array jobs + # Continuously check for job completion on ALL running array jobs + job_ids = job_id_list(stdout, single) is_done = False count = 0 bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", @@ -191,8 +180,8 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): f"LOG: logs/{job_ids[i]}", f"SBATCH: {run_call}"], header="slurm run error", border="=")) - sys.exit(-1) - # WAIT CONDITION: if sacct is not working, we'll get stuck in a loop + sys.exit(-1) + # WAIT CONDITION: if sacct is not working, we'll get stuck in a loop if "UNDEFINED" in states: count += 1 # Every 10 counts, warn the user this is unexpected behavior @@ -321,7 +310,6 @@ def check_job_state(job_id): # Undefined status will be retured if we cannot match the job id with # the sacct output - # TODO should undefined state throw an error? state = "UNDEFINED" lines = stdout.strip().split("\n") for line in lines: @@ -338,3 +326,28 @@ def check_job_state(job_id): return state +def _modify_run_call_single_proc(run_call): + """ + Modifies a SLURM SBATCH command to use only 1 processor as a single run + + :type run_call: str + :param run_call: The SBATCH command to modify + :rtype: str + :return: a modified SBATCH command that should only run on 1 processor + """ + for part in run_call.split(" "): + if "--array" in part: + run_call.replace(part, "--array=0-0") + elif "--ntasks" in part: + run_call.replace(part, "--ntasks=1") + + # Append taskid to environment variable, deal with the case where + # PAR.ENVIRONS is an empty string + task_id_str = "SEISFLOWS_TASKID=0" + if not run_call.strip().endswith("--environment"): + task_id_str = f",{task_id_str}" # appending to the list of vars + + run_call += task_id_str + + return run_call + diff --git a/seisflows/tests/test_data/work/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/work/traces/obs/AA.S0001.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/work/traces/obs/AA.S0001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/work/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/work/traces/syn/AA.S0001.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/work/traces/syn/AA.S0001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/workdir/error_sf3.txt b/seisflows/tests/test_data/workdir/error_sf3.txt deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows/tests/test_data/workdir/output_sf3.txt b/seisflows/tests/test_data/workdir/output_sf3.txt deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows/tests/test_data/workdir/parameters.yaml b/seisflows/tests/test_data/workdir/parameters.yaml deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows/workflow/base.py b/seisflows/workflow/base.py index ede9639f..3548835e 100644 --- a/seisflows/workflow/base.py +++ b/seisflows/workflow/base.py @@ -37,7 +37,7 @@ def required(self): """ sf = SeisFlowsPathsParameters() - sf.par("CASE", required=True, par_type=str, + sf.par("CASE", required=False, default="data", par_type=str, docstr="Type of inversion, available: " "['data': real data inversion, " "'synthetic': synthetic-synthetic inversion]") diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 3f96fc96..e479bb89 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -9,7 +9,8 @@ import time import logging from seisflows.tools import msg -from seisflows.config import SeisFlowsPathsParameters, custom_import +from seisflows.config import SeisFlowsPathsParameters, custom_import, ROOT_DIR +from seisflows.tools.specfem import call_solver # Required SeisFlows configuration PAR = sys.modules['seisflows_parameters'] @@ -45,6 +46,12 @@ def required(self): """ sf = SeisFlowsPathsParameters(super().required) + sf.path("TEST_DATA", required=False, + default=os.path.join(ROOT_DIR, "tests", "test_data", + "work"), + docstr="Example data for test system" + ) + return sf def check(self, validate=True): @@ -56,9 +63,6 @@ def check(self, validate=True): :type validate: bool :param validate: set required paths and parameters into sys.modules """ - # The validate statement is used internally to set required paths - # and parameters into sys.modules. Default values are stored for - # optional terms if validate: self.required.validate() @@ -66,7 +70,9 @@ def main(self, return_flow=False): """ This controls the main testing workflow """ - FLOW = [self.test_system] + FLOW = [self.test_system, + self.test_preprocess + ] if return_flow: return FLOW @@ -77,17 +83,52 @@ def test_function(self): """ A simple function that can be called by system.run() """ - print(f"Hello world, from taskid {system.taskid()}") + check_value = 1234.5 + print(f"Hello world, from taskid {system.taskid()}. " + f"Check: {check_value}") def test_system(self): """ - This is an example test function which can take any number of args - or kwargs. The base class is responsible for setting all of the - necessary functions + Test the system by submitting a simple print statement using the + run() and run(single) functions. """ system.run(classname="workflow", method="test_function") - # Wait a bit for system to catch up - time.sleep(3) + time.sleep(3) # wait a bit for system to catch up system.run(classname="workflow", method="test_function", single=True) + def test_preprocess(self): + """ + Test the exposed 'prepare_eval_grad()' preprocessing function + """ + cwd = PATH.TEST_DATA + taskid = 0 + filenames = ["AA.S0001.BXY.semd"] + source_name = "001" + preprocess.prepare_eval_grad(cwd=cwd, taskid=taskid, + filenames=filenames, + source_name=source_name + ) + + def test_solver(self): + """ + Simply test that the solver binaries can be called, which is what the + solver directory is responsible for + """ + assert(os.path.exists(PATH.SPECFEM_BIN)), ( + f"SPECFEM_BIN {PATH.SPECFEM_BIN} directory does not exist" + ) + + + + def test_postprocess(self): + """ + + """ + pass + + def test_workflow(self): + """ + + """ + pass From d1288e2251d63ba33fa46de795ed4635c5031ede Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 15 Jun 2022 15:08:28 -0800 Subject: [PATCH 008/195] workstation now writes function run outputs to log files rather than to stdout --- seisflows/config.py | 1 - seisflows/preprocess/base.py | 10 +++--- seisflows/solver/base.py | 7 +++- seisflows/system/base.py | 2 -- seisflows/system/workstation.py | 19 ++++++++-- seisflows/workflow/test.py | 61 +++++++++++++++++++++------------ 6 files changed, 69 insertions(+), 31 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 8a6f6d70..e6cd94aa 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -131,7 +131,6 @@ def save(): """ Export the current session to disk """ - logger.info("exporting current working environment to disk") output = sys.modules[PATH]["OUTPUT"] unix.mkdir(output) diff --git a/seisflows/preprocess/base.py b/seisflows/preprocess/base.py index d553b79f..365939dd 100644 --- a/seisflows/preprocess/base.py +++ b/seisflows/preprocess/base.py @@ -182,8 +182,10 @@ def check(self, validate=True): # Assert that readers and writers available # TODO | This is a bit vague as dir contains imported modules and hidden # TODO | variables (e.g., np, __name__) - assert(PAR.FORMAT in dir(readers)), f"Reader {PAR.FORMAT} not found" - assert(PAR.FORMAT in dir(writers)), f"Writer {PAR.FORMAT} not found" + assert(PAR.FORMAT.lower() in dir(readers)), ( + f"Reader {PAR.FORMAT} not found") + assert(PAR.FORMAT.lower() in dir(writers)), ( + f"Writer {PAR.FORMAT} not found") # Assert that either misfit or backproject exists if PAR.WORKFLOW.upper() == "INVERSION": @@ -207,8 +209,8 @@ def setup(self): self.adjoint = getattr(adjoint, PAR.BACKPROJECT.lower()) # Define seismic data reader and writer - self.reader = getattr(readers, PAR.FORMAT) - self.writer = getattr(writers, PAR.FORMAT) + self.reader = getattr(readers, PAR.FORMAT.lower()) + self.writer = getattr(writers, PAR.FORMAT.lower()) def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): """ diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index 79804f42..4a08daeb 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -129,7 +129,7 @@ def required(self): "['CONSTANT': Do not update density, " "'VARIABLE': Update density]") - sf.par("ATTENUATION", required=True, par_type=str, + sf.par("ATTENUATION", required=True, par_type=bool, docstr="If True, turn on attenuation during forward " "simulations, otherwise set attenuation off. Attenuation " "is always off for adjoint simulations.") @@ -368,6 +368,11 @@ def call_solver(self, executable, output="solver.log"): :type output: str :param output: where to redirect stdout """ + if not os.path.exists(executable): + print(msg.cli(f"solver executable {executable} does not exist", + header="external solver error", border="=")) + sys.exit(-1) + # mpiexec is None when running in serial mode, so e.g., ./xmeshfem2D if PAR.SYSTEM in ["workstation"]: exc_cmd = f"./{executable}" diff --git a/seisflows/system/base.py b/seisflows/system/base.py index 2a252898..f55290a5 100644 --- a/seisflows/system/base.py +++ b/seisflows/system/base.py @@ -203,8 +203,6 @@ def checkpoint(self, path, classname, method, kwargs): :type kwargs: dict :param kwargs: dictionary to pass to object saving """ - self.logger.debug("checkpointing working environment to disk") - argspath = os.path.join(path, "kwargs") argsfile = os.path.join(argspath, f"{classname}_{method}.p") unix.mkdir(argspath) diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 91baa5d7..73f89896 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -6,9 +6,10 @@ import os import sys import logging +from contextlib import redirect_stdout from seisflows.tools import unix, msg -from seisflows.config import custom_import, SeisFlowsPathsParameters +from seisflows.config import custom_import, SeisFlowsPathsParameters, CFGPATHS PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] @@ -84,6 +85,7 @@ def run(self, classname, method, single=False, **kwargs): # 4}_{taskid:0>2}.log") + if os.path.exists(log_file): + idx += 1 + else: + break + if taskid == 0: self.logger.info(f"running task {classname}.{method} " f"{PAR.NTASK} times") - function(**kwargs) + # Redirect output to a log file to mimic cluster runs + with open(log_file, "w") as f: + with redirect_stdout(f): + function(**kwargs) def taskid(self): """ diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index e479bb89..18cac91e 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -8,15 +8,14 @@ import sys import time import logging +from glob import glob from seisflows.tools import msg -from seisflows.config import SeisFlowsPathsParameters, custom_import, ROOT_DIR -from seisflows.tools.specfem import call_solver +from seisflows.config import (SeisFlowsPathsParameters, custom_import, ROOT_DIR, + CFGPATHS) -# Required SeisFlows configuration -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] +PAR = sys.modules["seisflows_parameters"] +PATH = sys.modules["seisflows_paths"] -# The number of loaded modules depends on the module this Base class belongs to system = sys.modules["seisflows_system"] solver = sys.modules["seisflows_solver"] optimize = sys.modules["seisflows_optimize"] @@ -70,8 +69,9 @@ def main(self, return_flow=False): """ This controls the main testing workflow """ - FLOW = [self.test_system, - self.test_preprocess + FLOW = [#self.test_system, + # self.test_preprocess, + self.test_solver, ] if return_flow: return FLOW @@ -79,11 +79,10 @@ def main(self, return_flow=False): for func in FLOW: func() - def test_function(self): + def test_function(self, check_value): """ A simple function that can be called by system.run() """ - check_value = 1234.5 print(f"Hello world, from taskid {system.taskid()}. " f"Check: {check_value}") @@ -91,10 +90,27 @@ def test_system(self): """ Test the system by submitting a simple print statement using the run() and run(single) functions. + + Check that these functions perform as expected by passing in a random + value and checking that this value gets logged back """ - system.run(classname="workflow", method="test_function") + check_value_1 = 1234.5 + system.run(classname="workflow", method="test_function", + check_value=check_value_1) + time.sleep(3) # wait a bit for system to catch up - system.run(classname="workflow", method="test_function", single=True) + + check_value_2 = 5432.1 + system.run(classname="workflow", method="test_function", single=True, + check_value=check_value_2) + + for fid, check in zip( + sorted(glob(os.path.join(CFGPATHS.LOGDIR, "*.log"))), + [check_value_1, check_value_2] + ): + with open(fid, "r") as f: + line = f.readlines()[0] + assert(float(line.strip().split(" ")[-1]) == check) def test_preprocess(self): """ @@ -112,12 +128,21 @@ def test_preprocess(self): def test_solver(self): """ Simply test that the solver binaries can be called, which is what the - solver directory is responsible for + solver module is ultimately responsible for """ - assert(os.path.exists(PATH.SPECFEM_BIN)), ( + assert(PATH.SPECFEM_BIN is not None and + os.path.exists(PATH.SPECFEM_BIN)), ( f"SPECFEM_BIN {PATH.SPECFEM_BIN} directory does not exist" ) - + # SPECFEM2D won't have this executable + try: + solver.call_solver( + executable=f"{PATH.SPECFEM_BIN}/xcombine_sem", + output=os.path.join(PATH.TEST_DATA, "test_solver.log") + ) + # We expect this to throw a system exit because + except SystemExit: + pass def test_postprocess(self): @@ -126,9 +151,3 @@ def test_postprocess(self): """ pass - def test_workflow(self): - """ - - """ - pass - From 2010f3cbf4fd80200a218c00a94317d026a18d43 Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 15 Jun 2022 15:21:50 -0800 Subject: [PATCH 009/195] removing unused tool functions --- seisflows/tools/specfem.py | 37 +------------------------------------ seisflows/workflow/test.py | 12 +++--------- 2 files changed, 4 insertions(+), 45 deletions(-) diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 5800c6f2..95609907 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -21,7 +21,7 @@ def __init__(self): super(Minmax, self).__init__(lambda: [+np.inf, -np.inf]) def update(self, keys, vals): - for key, val in _zip(keys, vals): + for key, val in zip(iterable(keys), iterable(vals)): if min(val) < self.dict[key][0]: self.dict[key][0] = min(val) if max(val) > self.dict[key][1]: @@ -258,38 +258,3 @@ def check_poissons_ratio(vp, vs, min_val=-1., max_val=0.5): ) sys.exit(-1) return poissons - - -def _split(string, sep): - """ - Utility function to split a string by a given separation character or str - - :type string: str - :param string: string to split - :type sep: str - :param sep: substring to split by - """ - n = string.find(sep) - if n >= 0: - return string[:n], string[n + len(sep):] - else: - return string, '' - - -def _merge(*parts): - """ - Utility function to merge various strings together with no breaks - """ - return ' '.join(parts) - - -def _zip(keys, vals): - """ - Zip together keys and vals - - :type keys: dict_keys - :param keys: keys - :type vals: dict_values - :param vals: values - """ - return zip(iterable(keys), iterable(vals)) diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 18cac91e..cfd280fd 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -70,8 +70,8 @@ def main(self, return_flow=False): This controls the main testing workflow """ FLOW = [#self.test_system, - # self.test_preprocess, - self.test_solver, + self.test_preprocess, + # self.test_solver, ] if return_flow: return FLOW @@ -120,6 +120,7 @@ def test_preprocess(self): taskid = 0 filenames = ["AA.S0001.BXY.semd"] source_name = "001" + import pdb;pdb.set_trace() preprocess.prepare_eval_grad(cwd=cwd, taskid=taskid, filenames=filenames, source_name=source_name @@ -144,10 +145,3 @@ def test_solver(self): except SystemExit: pass - - def test_postprocess(self): - """ - - """ - pass - From cceea64c13b101d9d937ff0c8b5e736544567968 Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 16 Jun 2022 11:58:50 -0800 Subject: [PATCH 010/195] working on adding rosenbrock optimization test --- .../{work => test_solver}/traces/obs/AA.S0001.BXY.semd | 0 .../{work => test_solver}/traces/syn/AA.S0001.BXY.semd | 0 seisflows/workflow/test.py | 5 +++++ 3 files changed, 5 insertions(+) rename seisflows/tests/test_data/{work => test_solver}/traces/obs/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{work => test_solver}/traces/syn/AA.S0001.BXY.semd (100%) diff --git a/seisflows/tests/test_data/work/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/test_solver/traces/obs/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/work/traces/obs/AA.S0001.BXY.semd rename to seisflows/tests/test_data/test_solver/traces/obs/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/work/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/test_solver/traces/syn/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/work/traces/syn/AA.S0001.BXY.semd rename to seisflows/tests/test_data/test_solver/traces/syn/AA.S0001.BXY.semd diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index cfd280fd..2da41968 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -145,3 +145,8 @@ def test_solver(self): except SystemExit: pass + def test_optimize(self): + """ + Test optimization module with a simple rosenbrock function + """ + optimize.setup() From adbd6642e19526c6bea3a71f9817b734fa72509f Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 16 Jun 2022 12:31:43 -0800 Subject: [PATCH 011/195] removed seisflows-super, moved all super modules back into main package. all future development will just take place in seisflows directory to avoid confusion removed 'edit' command from CLI tool --- seisflows-super/__init__.py | 0 seisflows-super/optimize/__init__.py | 0 seisflows-super/postprocess/__init__.py | 0 seisflows-super/preprocess/__init__.py | 0 seisflows-super/solver/__init__.py | 0 seisflows-super/solver/specfem3d_maui.py | 293 ------------------ seisflows-super/system/__init__.py | 0 seisflows-super/workflow/__init__.py | 0 seisflows-super/workflow/thrifty_maui.py | 84 ----- seisflows/config.py | 13 +- seisflows/seisflows.py | 78 +---- .../system/chinook.py | 0 {seisflows-super => seisflows}/system/maui.py | 0 .../workflow/thrifty_inversion.py | 0 14 files changed, 5 insertions(+), 463 deletions(-) delete mode 100644 seisflows-super/__init__.py delete mode 100644 seisflows-super/optimize/__init__.py delete mode 100644 seisflows-super/postprocess/__init__.py delete mode 100644 seisflows-super/preprocess/__init__.py delete mode 100644 seisflows-super/solver/__init__.py delete mode 100644 seisflows-super/solver/specfem3d_maui.py delete mode 100644 seisflows-super/system/__init__.py delete mode 100644 seisflows-super/workflow/__init__.py delete mode 100644 seisflows-super/workflow/thrifty_maui.py rename {seisflows-super => seisflows}/system/chinook.py (100%) rename {seisflows-super => seisflows}/system/maui.py (100%) rename {seisflows-super => seisflows}/workflow/thrifty_inversion.py (100%) diff --git a/seisflows-super/__init__.py b/seisflows-super/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows-super/optimize/__init__.py b/seisflows-super/optimize/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows-super/postprocess/__init__.py b/seisflows-super/postprocess/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows-super/preprocess/__init__.py b/seisflows-super/preprocess/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows-super/solver/__init__.py b/seisflows-super/solver/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows-super/solver/specfem3d_maui.py b/seisflows-super/solver/specfem3d_maui.py deleted file mode 100644 index 882f2c53..00000000 --- a/seisflows-super/solver/specfem3d_maui.py +++ /dev/null @@ -1,293 +0,0 @@ -#!/usr/bin/env python3 -""" -This is the subclass seisflows.solver.Specfem3DMaui - -This class is almost the same as Specfem3D, except the setup step is run as -a serial task. This is useful as HPC job queues are long on Maui, so it saves -on job queue time by replacing it with a long-winded serial task. - -Additionally, misfit quantification is split off from the forward simulation, -because Anaconda is not available on the main cluster, so jobs need to be -submitted to an auxiliary cluster. This is paired with a new evaluate_function() -function defined by the InversionMaui workflow class. -""" -import os -import sys -import warnings - -from glob import glob -from seisflows.tools import unix -from seisflows.tools.wrappers import exists -from seisflows.config import custom_import, SeisFlowsPathsParameters -from seisflows.tools.specfem import call_solver, getpar, setpar - - -# Seisflows configuration -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] - -system = sys.modules['seisflows_system'] -preprocess = sys.modules['seisflows_preprocess'] - - -class Specfem3DMaui(custom_import("solver", "specfem3d")): - """ - Python interface to Specfem3D Cartesian. This subclass inherits functions - from seisflows.solver.specfem3d - - !!! See base class for method descriptions !!! - """ - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters(super().required) - - return sf - - def check(self, validate=True): - """ - Checks parameters and paths - """ - if validate: - self.required.validate() - super().check(validate=False) - - def setup(self, model): - """ - Overload of solver.base.setup(), should be run as a single instance - - :type model: str - :param model: "init", "true", generates the mesh to be used for workflow - "true" used for synthetic-synthetic cases - "init" for initial model, default - :type model: str - :param model: model to setup, either 'true' or 'init' - """ - # Choice of model will determine which mesh to generate - self.generate_mesh(model_path=getattr(PATH, f"MODEL_{model.upper()}"), - model_name=f"model_{model.lower()}", - model_type="gll") - - self.distribute_databases() - - def generate_data(self): - """ - Overload seisflows.solver.base.generate_data. To be run in parallel - - Not used if PAR.CASE == "Data" - - Generates data in the synthetic-synthetic comparison case. - Automatically calls generate mesh for the true model, rather than - passing them in as kwargs. - - Also turns on attenuation for the forward model - !!! attenuation could be moved into parameters.yaml? !!! - """ - unix.cd(self.cwd) - - setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") - setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - if PAR.ATTENUATION: - setpar(key="ATTENUATION ", val=".true.", file="DATA/Par_file") - else: - setpar(key="ATTENUATION ", val=".false.", file="DATA/Par_file") - - call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") - - # move ASCII .sem? files into appropriate directory - unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), - dst=os.path.join("traces", "obs")) - - # Export traces to permanent storage on disk - if PAR.SAVETRACES: - self.export_traces(os.path.join(PATH.OUTPUT, "traces", "obs")) - - def generate_mesh(self, model_path, model_name, model_type='gll'): - """ - Performs meshing and database generation as a serial task. Differs - slightly from specfem3d class as it only creates database files for - the main solver, which are then copied in serial by the function - distribute_databases() - - :type model_path: str - :param model_path: path to the model to be used for mesh generation - :type model_name: str - :param model_name: name of the model to be used as identification - :type model_type: str - :param model_type: available model types to be passed to the Specfem3D - Par_file. See Specfem3D Par_file for available options. - """ - available_model_types = ["gll"] - - assert(exists(model_path)), f"model {model_path} does not exist" - - model_type = model_type or getpar(key="MODEL", file="DATA/Par_file") - assert(model_type in available_model_types), \ - f"{model_type} not in available types {available_model_types}" - - # Ensure that we're running on the main solver only - assert(self.taskid == 0) - - unix.cd(self.cwd) - - # Check that the model parameter falls into the acceptable types - par = getpar("MODEL").strip() - assert(par in available_model_types), \ - f"Par_file {par} not in available types {available_model_types}" - - if par == "gll": - self.check_mesh_properties(model_path) - - # Copy model files and then run xgenerate databases - src = glob(os.path.join(model_path, "*")) - dst = self.model_databases - unix.cp(src, dst) - - call_solver(mpiexec=PAR.MPIEXEC, - executable="bin/xgenerate_databases") - - self.export_model(os.path.join(PATH.OUTPUT, model_name)) - - def eval_misfit(self, path='', export_traces=False): - """ - Performs function evaluation only, that is, the misfit quantification. - Forward simulations are performed in a separate function - - :type path: str - :param path: path in the scratch directory to use for I/O - :type export_traces: bool - :param export_traces: option to save the observation traces to disk - :return: - """ - preprocess.prepare_eval_grad(cwd=self.cwd, taskid=self.taskid, - source_name=self.source_name, - filenames=self.data_filenames - ) - if export_traces: - self.export_residuals(path) - - def eval_fwd(self, path=''): - """ - High level solver interface - - Performans forward simulations only, function evaluation is split off - into its own function - - :type path: str - :param path: path in the scratch directory to use for I/O - """ - unix.cd(self.cwd) - self.import_model(path) - self.forward() - - def distribute_databases(self): - """ - A serial task to distrubute the database files outputted by - xgenerate_databases from main solver to all other solver directories - """ - # Copy the database files but ignore any vt? files - src_db = glob(os.path.join(PATH.SOLVER, self.mainsolver, - "OUTPUT_FILES", "DATABASES_MPI", "*")) - for extension in [".vtu", ".vtk"]: - src_db = [_ for _ in src_db if extension not in _] - - # Copy the .h files from the mesher, Specfem needs these as well - src_h = glob(os.path.join(PATH.SOLVER, self.mainsolver, - "OUTPUT_FILES", "*.h")) - - for source_name in self.source_names: - # Ensure main solver is skipped - if source_name == self.mainsolver: - continue - # Copy database files to each of the other source directories - dst_db = os.path.join(PATH.SOLVER, source_name, - "OUTPUT_FILES", "DATABASES_MPI", "") - unix.cp(src_db, dst_db) - - # Copy mesher h files into the overlying directory - dst_h = os.path.join(PATH.SOLVER, source_name, "OUTPUT_FILES", "") - unix.cp(src_h, dst_h) - - def initialize_solver_directories(self): - """ - Creates solver directories in serial using a single node. - Should only be run by master job. - - Differs from Base initialize_solver_directories() as this serial task - will create directory structures for each source, rather than having - each source create its own. However the internal dir structure is the - same. - """ - for source_name in self.source_names: - cwd = os.path.join(PATH.SOLVER, source_name) - # Remove any existing scratch directory - unix.rm(cwd) - - # Create internal directory structure, change into directory to make - # all actions RELATIVE path actions - unix.mkdir(cwd) - unix.cd(cwd) - for cwd_dir in ["bin", "DATA", "OUTPUT_FILES/DATABASES_MPI", - "traces/obs", "traces/syn", "traces/adj"]: - unix.mkdir(cwd_dir) - - # Copy exectuables - src = glob(os.path.join(PATH.SPECFEM_BIN, "*")) - dst = os.path.join("bin", "") - unix.cp(src, dst) - - # Copy all input files except source files - src = glob(os.path.join(PATH.SPECFEM_DATA, "*")) - src = [_ for _ in src if self.source_prefix not in _] - dst = os.path.join("DATA", "") - unix.cp(src, dst) - - # symlink event source specifically - src = os.path.join(PATH.SPECFEM_DATA, - f"{self.source_prefix}_{source_name}") - dst = os.path.join("DATA", self.source_prefix) - unix.ln(src, dst) - - if source_name == self.mainsolver: - # Symlink taskid_0 as mainsolver in solver directory - unix.ln(source_name, os.path.join(PATH.SOLVER, "mainsolver")) - # Only check the solver parameters once - self.check_solver_parameter_files() - - def check_solver_parameter_files(self): - """ - Checks solver parameters. Only slightly different to Specfem3D as it - is run by the main task, not be an array process, so no need to check - task_id - """ - nt = getpar(key="NSTEP", cast=int) - dt = getpar(key="DT", cast=float) - - if nt != PAR.NT: - warnings.warn("Specfem3D NSTEP != PAR.NT\n" - "overwriting Specfem3D with Seisflows parameter" - ) - setpar(key="NSTEP", val=PAR.NT) - - if dt != PAR.DT: - warnings.warn("Specfem3D DT != PAR.DT\n" - "overwriting Specfem3D with Seisflows parameter" - ) - setpar(key="DT", val=PAR.DT) - - if self.mesh_properties.nproc != PAR.NPROC: - warnings.warn("Specfem3D mesh nproc != PAR.NPROC") - - if "MULTIPLES" in PAR: - raise NotImplementedError - - @property - def mainsolver(self): - """ - Ensure that the main solver has a consistent reference inside Solver - """ - return self.source_names[0] - diff --git a/seisflows-super/system/__init__.py b/seisflows-super/system/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows-super/workflow/__init__.py b/seisflows-super/workflow/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows-super/workflow/thrifty_maui.py b/seisflows-super/workflow/thrifty_maui.py deleted file mode 100644 index c76c2c0c..00000000 --- a/seisflows-super/workflow/thrifty_maui.py +++ /dev/null @@ -1,84 +0,0 @@ -#!/usr/bin/env python3 -""" -This is a subclass seisflows.workflow.InversionMaui -""" -import sys - -from seisflows.config import custom_import -from seisflows.tools.err import ParameterError - -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - -system = sys.modules["seisflows_system"] -solver = sys.modules["seisflows_solver"] -optimize = sys.modules["seisflows_optimize"] -preprocess = sys.modules["seisflows_preprocess"] -postprocess = sys.modules["seisflows_postprocess"] - - -class ThriftyMaui(custom_import("workflow", "thrifty_inversion")): - """ - Waveform thrify inversion class specifically for running jobs on the - New Zealand HPC cluster Maui. - - On Maui, Anaconda is only available on an ancillary cluster, Maui_ancil, - so jobs involving the preprocessing module must be called through a - separate system run call. - """ - def check(self): - """ - Ensure that the correct submodules are specified, otherwise - this workflow won't function properly. - """ - super().check() - - if "MAUI" not in PAR.SYSTEM.upper(): - raise ParameterError() - - if "MAUI" not in PAR.SOLVER.upper(): - raise ParameterError() - - def setup(self): - """ - Lays groundwork for inversion by running setup() functions for the - involved sub-modules, and generating synthetic true data if necessary, - and generating the pre-requisite database files. Should only be run once - at the iteration 1 - """ - # Set up all the requisite modules - print("SETUP") - preprocess.setup() - postprocess.setup() - optimize.setup() - - # Run the setup in serial to reduce unnecessary job submissions - # Needs to be split up into multiple system calls - solver.initialize_solver_directories() - - if PAR.CASE.upper() == "SYNTHETIC": - system.run("solver", "setup", single=True, model="true") - system.run("solver", "generate_data") - - system.run("solver", "setup", single=True, model="init") - - def evaluate_function(self, path, suffix): - """ - Performs forward simulation, and evaluates the objective function. - - Differs from Inversion.evaluate_function() as it splits the forward - problem and misfit quantification into two separate system calls, - rather than a single system call. - - :type path: str - :param path: path in the scratch directory to use for I/O - :type suffix: str - :param suffix: suffix to use for I/O - """ - print("EVALUATE FUNCTION\n\tRunning forward simulation") - self.write_model(path=path, suffix=suffix) - system.run("solver", "eval_fwd", path=path) - print("\tEvaluating misfit") - system.run_ancil("solver", "eval_misfit", path=path) - self.write_misfit(path=path, suffix=suffix) - diff --git a/seisflows/config.py b/seisflows/config.py index e6cd94aa..ec166ed2 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -42,9 +42,6 @@ NAMES = ["system", "preprocess", "solver", "postprocess", "optimize", "workflow"] -# Packages that define the source code, used to search for base- and subclasses -PACKAGES = ["seisflows", "seisflows-super"] - # These define the sys.modules names where parameter values and paths are stored PAR = "seisflows_parameters" PATH = "seisflows_paths" @@ -72,7 +69,7 @@ def init_seisflows(check=True): """ Instantiates SeisFlows objects and makes them globally accessible by - registering them in sys.modules + registering them in sys.modules. This must be run anytime seisflows is run. :type check: bool :param check: Run parameter and path checking, defined in the module.check() @@ -496,12 +493,8 @@ class 'Inversion'. # Check if modules exist, otherwise raise custom exception _exists = False - for package in PACKAGES: - full_dotted_name = ".".join([package, name, module]) - if module_exists(full_dotted_name): - _exists = True - break - if not _exists: + full_dotted_name = ".".join(["seisflows", name, module]) + if not module_exists(full_dotted_name): print(msg.cli(f"The following module was not found within the package: " f"seisflows.{name}.{module}", header="custom import error", border="=") diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 3ead0c87..e77143bd 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -33,7 +33,7 @@ from seisflows.tools.wrappers import loadyaml from seisflows.config import (init_seisflows, format_paths, config_logger, Dict, custom_import, SeisFlowsPathsParameters, - NAMES, PACKAGES, ROOT_DIR, CFGPATHS) + NAMES, ROOT_DIR, CFGPATHS) def sfparser(): @@ -280,24 +280,6 @@ def _format_action(self, action): made during debugging. """) # ========================================================================= - edit = subparser.add_parser( - "edit", help="Open source code file in text editor", - description="""Directly edit source code files in your favorite - terminal text editor. Simply a shortcut to avoid having to root around - in the repository. Any saved edits will directly affect the SeisFlows - source code and any code errors may lead to failure of the package; - e.g. 'seisflows edit solver base'""" - ) - edit.add_argument("name", type=str, nargs="?", default=None, - help="Name of module to search for source file in") - edit.add_argument("module", type=str, nargs="?", default=None, - help="Name of specific module file to open, extension " - "not required") - edit.add_argument("-e", "--editor", type=str, nargs="?", default=None, - help="Chosen text editor, defaults to $EDITOR env var") - edit.add_argument("-d", "--dont_open", action="store_true", - help="Dont open the text editor, just list full pathname") - # ========================================================================= examples = subparser.add_parser( "examples", help="Look at and run pre-configured example problems", description="""Lists out available example problems and allows the @@ -313,7 +295,7 @@ def _format_action(self, action): # ========================================================================= # Defines all arguments/functions that expect a sub-argument subparser_dict = {"check": check, "par": par, "inspect": inspect, - "edit": edit, "sempar": sempar, "clean": clean, + "sempar": sempar, "clean": clean, "restart": restart, "print": print_, "reset": reset, "examples": examples} if parser.parse_args().command in subparser_dict: @@ -999,62 +981,6 @@ def _par_required(self): if check in line: print(f"\t{line.split(':')[0].strip()}") - def edit(self, name, module, editor=None, **kwargs): - """ - Directly edit the SeisFlows source code matching the given name - and module using the chosen text editor. - - USAGE - - seisflows edit [name] [module] [editor] - - To edit the base Solver class using vim, one would run: - - seisflows edit solver base vim - - To simply find the location of the inversion workflow source code: - - seisflows edit workflow inversion q - - :type name: str - :param name: name of module, must match seisflows.config.NAMES - :type module: str - :param module: the module name contained under the SeisFlows namespace - :type editor: str - :param editor: optional chosen text editor to open the file. - * If NoneType: defaults to system environment $EDITOR - * If 'q': For quit, does not open an editor, simply prints fid - """ - if name is None: - self._subparser.print_help() - sys.exit(0) - - editor = editor or os.environ.get("EDITOR") - if editor is None: - print(msg.cli("$EDITOR environment variable is not set, please " - "set manually with the following call structure: " - "seisflows edit [name] [module] [editor]")) - sys.exit(-1) - - REPO_DIR = os.path.abspath(os.path.join(ROOT_DIR, "..")) - if name not in NAMES: - print(msg.cli(f"{name} not in SeisFlows names: {NAMES}")) - sys.exit(-1) - - for package in PACKAGES: - fid_try = os.path.join(REPO_DIR, package, name, f"{module}.py") - if os.path.exists(fid_try): - if self._args.dont_open: - print(msg.cli(text=fid_try)) - sys.exit(0) - else: - subprocess.call([editor, fid_try]) - print(msg.cli(f"Edited file: {fid_try}")) - sys.exit(0) - else: - print(msg.cli(f"seisflows.{name}.{module} not found")) - sys.exit(-1) - def examples(self, run=None, choice=None, **kwargs): """ List or run a SeisFlows example problem diff --git a/seisflows-super/system/chinook.py b/seisflows/system/chinook.py similarity index 100% rename from seisflows-super/system/chinook.py rename to seisflows/system/chinook.py diff --git a/seisflows-super/system/maui.py b/seisflows/system/maui.py similarity index 100% rename from seisflows-super/system/maui.py rename to seisflows/system/maui.py diff --git a/seisflows-super/workflow/thrifty_inversion.py b/seisflows/workflow/thrifty_inversion.py similarity index 100% rename from seisflows-super/workflow/thrifty_inversion.py rename to seisflows/workflow/thrifty_inversion.py From fc8c19b9e0eeeae2dad706549197358bd0a3c9d9 Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 16 Jun 2022 13:54:52 -0800 Subject: [PATCH 012/195] cleaning up unused functions and docstrings --- seisflows/seisflows.py | 36 ++++++++------------ seisflows/solver/base.py | 30 ++++++----------- seisflows/solver/specfem2d.py | 9 ++--- seisflows/solver/specfem3d.py | 18 +++++----- seisflows/system/slurm.py | 43 ++++++++++++++++------- seisflows/workflow/migration.py | 1 - seisflows/workflow/test.py | 45 +++++++++++++++++++++++-- seisflows/workflow/thrifty_inversion.py | 3 -- 8 files changed, 111 insertions(+), 74 deletions(-) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index e77143bd..3448c543 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -26,7 +26,6 @@ from copy import copy from IPython import embed -from seisflows import logger from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) @@ -1272,17 +1271,14 @@ def _print_modules(self, name=None, package=None, **kwargs): :param package: specify an indivdual package to search """ items = [] - module_list = return_modules() - for name_, package_dict in module_list.items(): - if name is not None and name != name_: + module_dict = return_modules() + + for module_, module_list in module_dict.items(): + if package is not None and module_ != package: continue - items.append(f"+ {name_.upper()}") - for package_, module_list in package_dict.items(): - if package is not None and package_ != package: - continue - items.append(f"\t- {package_}".expandtabs(tabsize=4)) - for module_ in module_list: - items.append(f"\t\t* {module_}".expandtabs(tabsize=4)) + items.append(f"- {module_}".expandtabs(tabsize=4)) + for module_ in module_list: + items.append(f"\t* {module_}".expandtabs(tabsize=4)) print(msg.cli("'+': package, '-': module, '*': class", items=items, header="seisflows modules")) @@ -1429,19 +1425,15 @@ def return_modules(): :return: a dict with keys matching names and values as dicts for each package. nested list contains all the avaialble modules """ - REPO_DIR = os.path.abspath(os.path.join(ROOT_DIR, "..")) - module_dict = {} for NAME in NAMES: - module_dict[NAME] = {} - for PACKAGE in PACKAGES: - module_dict[NAME][PACKAGE] = [] - mod_dir = os.path.join(REPO_DIR, PACKAGE, NAME) - for pyfile in sorted(glob(os.path.join(mod_dir, "*.py"))): - stripped_pyfile = os.path.basename(pyfile) - stripped_pyfile = os.path.splitext(stripped_pyfile)[0] - if not stripped_pyfile.startswith("_"): - module_dict[NAME][PACKAGE].append(stripped_pyfile) + module_dict[NAME] = [] + mod_dir = os.path.join(ROOT_DIR, NAME) + for pyfile in sorted(glob(os.path.join(mod_dir, "*.py"))): + stripped_pyfile = os.path.basename(pyfile) + stripped_pyfile = os.path.splitext(stripped_pyfile)[0] + if not stripped_pyfile.startswith("_"): + module_dict[NAME].append(stripped_pyfile) return module_dict diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index 4a08daeb..9c5ee54f 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -229,15 +229,6 @@ def setup(self): self.generate_mesh(model_name="init", model_type="gll") self.initialize_adjoint_traces() - def clean(self): - """ - Clean up solver-dependent run directory by removing the OUTPUT_FILES/ - directory - """ - unix.cd(self.cwd) - unix.rm("OUTPUT_FILES") - unix.mkdir("OUTPUT_FILES") - def generate_mesh(self, model_path, model_name, model_type): """ Performs meshing and database generation. @@ -380,10 +371,10 @@ def call_solver(self, executable, output="solver.log"): else: exc_cmd = f"{PAR.MPIEXEC} {executable}" + # Run solver. Write solver stdout (log files) to text file try: - # Write solver stdout (log files) to text file - f = open(output, "w") - subprocess.run(exc_cmd, shell=True, check=True, stdout=f) + with open(output, "w") as f: + subprocess.run(exc_cmd, shell=True, check=True, stdout=f) except (subprocess.CalledProcessError, OSError) as e: print(msg.cli("The external numerical solver has returned a nonzero " "exit code (failure). Consider stopping any currently " @@ -396,8 +387,7 @@ def call_solver(self, executable, output="solver.log"): border="=") ) sys.exit(-1) - finally: - f.close() + @property def io(self): @@ -560,14 +550,14 @@ def combine(self, input_path, output_path, parameters=None): ) # Call on xcombine_sem to combine kernels into a single file - for name in self.parameters: + for name in parameters: # e.g.: mpiexec ./bin/xcombine_sem alpha_kernel kernel_paths output - self.call_solver(mpiexec=PAR.MPIEXEC, - executable=" ".join([ - f"bin/xcombine_sem", f"{name}_kernel", - "kernel_paths", output_path] + self.call_solver(executable=" ".join([f"bin/xcombine_sem", + f"{name}_kernel", + "kernel_paths", + output_path] + ) ) - ) def smooth(self, input_path, output_path, parameters=None, span_h=0., span_v=0., output="solver.log"): diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 825c1c81..1e846211 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -267,10 +267,8 @@ def forward(self, path="traces/syn"): setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem2D", - output="mesher.log") - self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem2D", - output="solver.log") + self.call_solver(executable="bin/xmeshfem2D", output="fwd_mesher.log") + self.call_solver(executable="bin/xspecfem2D", output="fwd_solver.log") if PAR.FORMAT.upper() == "SU": # Work around SPECFEM2D's version dependent file names @@ -298,8 +296,7 @@ def adjoint(self): unix.rename(old=".su", new=".su.adj", names=glob(os.path.join("traces", "adj", "*.su"))) - self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem2D") - self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem2D") + self.call_solver(executable="bin/xspecfem2D", output="adj_solver.log") def smooth(self, input_path, **kwargs): """ diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 37c9dcc3..906a03db 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -101,7 +101,7 @@ def generate_data(self, **model_kwargs): else: setpar(key="ATTENUATION", val=".false.", file="DATA/Par_file") - self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") + self.call_solver(executable="bin/xspecfem3D", output="true_solver.log") unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), dst=os.path.join("traces", "obs")) @@ -139,9 +139,10 @@ def generate_mesh(self, model_path, model_name, model_type=None): dst = self.model_databases unix.cp(src, dst) - self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xmeshfem3D") - self.call_solver(mpiexec=PAR.MPIEXEC, - executable="bin/xgenerate_databases") + self.call_solver(executable="bin/xmeshfem3D", + output="true_mesher.log") + self.call_solver(executable="bin/xgenerate_databases", + output="true_solver.log") # Export the model for future use in the workflow if self.taskid == 0: @@ -171,9 +172,10 @@ def forward(self, path="traces/syn"): else: setpar(key="ATTENUATION", val=".false`.", file="DATA/Par_file") - self.call_solver(mpiexec=PAR.MPIEXEC, - executable="bin/xgenerate_databases") - self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") + self.call_solver(executable="bin/xgenerate_databases", + output="fwd_mesher.log") + self.call_solver(executable="bin/xmeshfem3D", output="fwd_solver.log") + # Find and move output traces, by default to synthetic traces dir unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), @@ -191,7 +193,7 @@ def adjoint(self): unix.rm("SEM") unix.ln("traces/adj", "SEM") - self.call_solver(mpiexec=PAR.MPIEXEC, executable="bin/xspecfem3D") + self.call_solver(executable="bin/xmeshfem3D", output="adj_solver.log") def check_solver_parameter_files(self): """ diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 4c83116c..cc3efab0 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -159,13 +159,37 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): # Continuously check for job completion on ALL running array jobs job_ids = job_id_list(stdout, single) + job_id, status = self.check_job_status(job_ids) + if status is not "OKAY": + print(msg.cli((f"Stopping workflow for {status} job. " + f"Please check log file for details."), + items=[f"TASK: {classname}.{method}", + f"TASK ID: {job_id}", + f"LOG: logs/{job_id}", + f"SBATCH: {run_call}"], + header="slurm run error", border="=")) + sys.exit(-1) + + self.logger.info(f"Task {classname}.{method} finished successfully") + + def check_job_status(self, job_ids): + """ + Repeatedly check the status of a currently running job using 'sacct'. + If the job goes into a bad state like 'FAILED', return the failing + job's id and the state. If all jobs complete nominally, + return state=="OKAY" + + :type job_ids: list + :param job_ids: list of running jobs to check using SACCT + :rtype: tuple (int, str) + :return: (job_id, state) state=="OKAY" if all jobs complete, else it + will be a bad state. + """ is_done = False count = 0 bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", "CANCELLED"] while not is_done: - # Wait a bit to avoid rapidly querying sacct - time.sleep(5) is_done, states = job_array_status(job_ids) # EXIT CONDITION: if any of the jobs provide job failure codes if not is_done: @@ -173,15 +197,8 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): # Sometimes states can be something like 'CANCELLED+', so # we can't do exact string matching, check partial matches if any([check in state for check in bad_states]): - print(msg.cli((f"Stopping workflow for {state} job. " - f"Please check log file for details."), - items=[f"TASK: {classname}.{method}", - f"TASK ID: {job_ids[i]}", - f"LOG: logs/{job_ids[i]}", - f"SBATCH: {run_call}"], - header="slurm run error", border="=")) - sys.exit(-1) - # WAIT CONDITION: if sacct is not working, we'll get stuck in a loop + return job_id, state + # WAIT CONDITION: if sacct is not working, we'll get stuck in a loop if "UNDEFINED" in states: count += 1 # Every 10 counts, warn the user this is unexpected behavior @@ -192,8 +209,10 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): f"times. This job may have failed " f"unexpectedly. Consider checking " f"manually") + # Wait a bit to avoid rapidly querying sacct + time.sleep(5) - self.logger.info(f"Task {classname}.{method} finished successfully") + return None, "OKAY" def taskid(self): """ diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 04798159..49fabc7b 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -9,7 +9,6 @@ import logging from seisflows.tools import unix, msg -from seisflows.tools.wrappers import exists from seisflows.config import custom_import, SeisFlowsPathsParameters diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 2da41968..36c1719f 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -8,6 +8,9 @@ import sys import time import logging +import subprocess +import numpy as np + from glob import glob from seisflows.tools import msg from seisflows.config import (SeisFlowsPathsParameters, custom_import, ROOT_DIR, @@ -94,6 +97,7 @@ def test_system(self): Check that these functions perform as expected by passing in a random value and checking that this value gets logged back """ + # Run a very simple test function using system.run() check_value_1 = 1234.5 system.run(classname="workflow", method="test_function", check_value=check_value_1) @@ -104,6 +108,7 @@ def test_system(self): system.run(classname="workflow", method="test_function", single=True, check_value=check_value_2) + # Check the output log files to match the check values for fid, check in zip( sorted(glob(os.path.join(CFGPATHS.LOGDIR, "*.log"))), [check_value_1, check_value_2] @@ -112,6 +117,11 @@ def test_system(self): line = f.readlines()[0] assert(float(line.strip().split(" ")[-1]) == check) + # Check that MPI Exec works + assert("MPIEXEC" in PAR), f"MPIEXEC is not defined for this system" + stdout = subprocess.run(PAR.MPIEXEC, shell=True, check=True, + stdout=subprocess.PIPE) + def test_preprocess(self): """ Test the exposed 'prepare_eval_grad()' preprocessing function @@ -135,13 +145,13 @@ def test_solver(self): os.path.exists(PATH.SPECFEM_BIN)), ( f"SPECFEM_BIN {PATH.SPECFEM_BIN} directory does not exist" ) - # SPECFEM2D won't have this executable try: solver.call_solver( executable=f"{PATH.SPECFEM_BIN}/xcombine_sem", output=os.path.join(PATH.TEST_DATA, "test_solver.log") ) - # We expect this to throw a system exit because + # We expect this to throw a system exit because we are not running with + # MPI except SystemExit: pass @@ -150,3 +160,34 @@ def test_optimize(self): Test optimization module with a simple rosenbrock function """ optimize.setup() + + def rosenbrock(self, n=1E8): + """ + Rosenbrock test for optimization library + """ + model_init = 0.1 * np.ones(n) + model_true = np.ones(n) + + def func(x): + """ + Rosenbrock function + """ + return sum(100 * (x[:-1]**2. - x[1:])**2. + (x[:-1] - 1.)**2) + + def grad(x): + """ + Gradient for Rosenbrock function + """ + g = np.zeros(n) + g[1:-1] = -200 * (x[:-2] ** 2. - x[1:-1]) + \ + 400. * x[1:-1] * (x[1:-1] ** 2. - x[2:]) + \ + 2. * (x[1:-1] - 1.) + + g[0] = 400. * x[0] * (x[0] ** 2. - x[1]) + \ + 2. * (x[0] - 1) + + g[-1] = -200. * (x[-2] ** 2. - x[-1]) + + return g + + return model_init, model_true, func, grad \ No newline at end of file diff --git a/seisflows/workflow/thrifty_inversion.py b/seisflows/workflow/thrifty_inversion.py index 202a8755..11f9336d 100644 --- a/seisflows/workflow/thrifty_inversion.py +++ b/seisflows/workflow/thrifty_inversion.py @@ -100,6 +100,3 @@ def update_status(self): self.thrifty = thrifty - - - From f1ae1c8ec8727710f082bf03e9bdfd4a7ff8add1 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 17 Jun 2022 09:42:22 -0800 Subject: [PATCH 013/195] removed 'base' line search, bracketing line search is now the base. avoids confusion about having incomplete 'base' modules which aren't useful on their own --- seisflows/optimize/base.py | 30 +-- seisflows/plugins/line_search/backtrack.py | 25 +- seisflows/plugins/line_search/base.py | 239 ------------------- seisflows/plugins/line_search/bracket.py | 252 ++++++++++++++++----- 4 files changed, 205 insertions(+), 341 deletions(-) delete mode 100644 seisflows/plugins/line_search/base.py diff --git a/seisflows/optimize/base.py b/seisflows/optimize/base.py index 94c9436a..524efb89 100644 --- a/seisflows/optimize/base.py +++ b/seisflows/optimize/base.py @@ -173,35 +173,17 @@ def setup(self): """ Sets up nonlinear optimization machinery """ - # All optimization statistics text files will be written to path_stats - path_stats = os.path.join(PATH.WORKDIR, CFGPATHS.STATSDIR) - unix.mkdir(path_stats) + unix.mkdir(PATH.OPTIMIZE) # Line search machinery is defined externally as a plugin class - self.line_search = getattr(line_search, PAR.LINESEARCH)( - step_count_max=PAR.STEPCOUNTMAX, step_len_max=PAR.STEPLENMAX, - log_file=os.path.join(path_stats, f"{self.line_search_log}.txt"), - ) - + if PAR.LINESEARCH: + self.line_search = getattr(line_search, PAR.LINESEARCH)() if PAR.PRECOND: self.precond = getattr(preconds, PAR.PRECOND)() - else: - self.precond = None - - # Instantiate all log files in stats/ directory as empty text files - # OVERWRITES any existing stats/ log files that may already be there - for key, val in vars(self).items(): - if "log_" in key: - self.write_stats(val) - # Ensure that line search step count starts at 0 (workflow.intialize) - self.write_stats(self.log_step_count, 0) - - unix.mkdir(PATH.OPTIMIZE) - if "MODEL_INIT" in PATH: - m_new = solver.merge(solver.load(PATH.MODEL_INIT)) - self.save(self.m_new, m_new) - self.check_model(m_new, self.m_new) + m_new = solver.merge(solver.load(PATH.MODEL_INIT)) + self.save(self.m_new, m_new) + self.check_model(m_new, self.m_new) @property def eval_str(self): diff --git a/seisflows/plugins/line_search/backtrack.py b/seisflows/plugins/line_search/backtrack.py index 3be1c19e..94a2df14 100644 --- a/seisflows/plugins/line_search/backtrack.py +++ b/seisflows/plugins/line_search/backtrack.py @@ -35,16 +35,11 @@ class Backtrack(Bracket): # Class-specific logger accessed using self.logger logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self, **kwargs): - """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - """ - super().__init__(**kwargs) def calculate_step(self): """ - Determines step length and search status + Determines step length and search status. Overloads the bracketing + line search """ # Determine the line search history x, f, gtg, gtp, step_count, update_count = self.search_history() @@ -69,7 +64,7 @@ def calculate_step(self): alpha = min(1., self.step_len_max) status = 0 # Pass if misfit is reduced - elif self._check_decrease(x, f): + elif f.min() < f[0]: self.logger.info("misfit decrease, pass") alpha = x[f.argmin()] status = 1 @@ -88,17 +83,3 @@ def calculate_step(self): return alpha, status - @staticmethod - def _check_decrease(step_lens, func_vals, c=1.e-4): - """ - Checks for sufficient decrease by comparing the current functional value - with the smallest functional value in the list. - - !!! What's with the unused value of 'c'?, also 'x' isn't used - """ - x, f = step_lens, func_vals - if f.min() < f[0]: - return 1 - else: - return 0 - diff --git a/seisflows/plugins/line_search/base.py b/seisflows/plugins/line_search/base.py deleted file mode 100644 index 0f77772d..00000000 --- a/seisflows/plugins/line_search/base.py +++ /dev/null @@ -1,239 +0,0 @@ -#!/usr/bin/env python3 -""" -This is the Base class for seisflows.plugins.line_search - -Line search is called on by the optimization procedure and should not really -have any agency (i.e. it should not be able to iterate its own step count etc., -this should be completely left to the optimization algorithm to keep everything -in one place) -""" -import os -import logging -import numpy as np - -from seisflows.tools.array import count_zeros - - -class Base: - """ - Abstract base class for line search - - Variables Descriptions: - x: list of step lenths from current line search - f: correpsonding list of function values - m: number of step lengths in current line search - n: number of model updates in optimization problem - gtg: dot product of gradient with itself - gtp: dot product of gradient and search direction - - Status codes - status > 0 : finished - status == 0 : not finished - status < 0 : failed - """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - - def __init__(self, step_count_max, step_len_max, log_file): - """ - - :type step_count_max: int - :param step_count_max: maximum number of step counts before changing - line search behavior. set by PAR.STEP_COUNT_MAX - :type step_len_max: int - :param step_len_max: maximum length of the step, defaults to infinity, - that is unbounded step length. set by PAR.STEP_LEN_MAX - :type log_file: str - :param log_file: path to write line search stats to. set by optimize.setup() - """ - # Set maximum number of trial steps - self.step_count_max = step_count_max - - # Optional maximum step length safeguard - if step_len_max is None: - self.step_len_max = np.inf - else: - self.step_len_max = step_len_max - - # Write header information to line search file - self.log = log_file - self.write_log() - - # Prepare lists for line search history - self.func_vals = [] - self.step_lens = [] - self.gtg = [] - self.gtp = [] - self.step_count = 0 - - def initialize(self, iter, step_len, func_val, gtg, gtp): - """ - Initialize a new search from step count 0 and calculate the step - direction and length - - :type iter: int - :param iter: current iteration defined by OPTIMIZE.iter - :type step_len: float - :param step_len: initial step length determined by optimization - :type func_val: float - :param func_val: current evaluation of the objective function - :type gtg: float - :param gtg: dot product of the gradient with itself - :type gtp: float - :param gtp: dot product of gradient `g` with search direction `p` - :rtype alpha: float - :return alpha: the calculated trial step length - :rtype status: int - :return status: current status of the line search - """ - self.step_count = 0 - self.step_lens += [step_len] - self.func_vals += [func_val] - self.gtg += [gtg] - self.gtp += [gtp] - - # Write the current misfit evaluation to disk - self.write_log(iter=iter, step_len=step_len, func_val=func_val) - - # Call calculate step, must be implemented by subclass - alpha, status = self.calculate_step() - - return alpha, status - - def update(self, iter, step_len, func_val): - """ - Update search history by appending internal attributes, writing the - current list of step lengths and function evaluations, and calculating a - new step length - - :type iter: int - :param iter: current iteration defined by OPTIMIZE.iter - :type step_len: float - :param step_len: step length determined by optimization - :type func_val: float - :param func_val: current evaluation of the objective function - :rtype alpha: float - :return alpha: the calculated rial step length - :rtype status: int - :return status: current status of the line search - """ - # This has been moved into workflow.line_search() - # self.step_count += 1 - self.step_lens += [step_len] - self.func_vals += [func_val] - - # Write the current misfit evaluation to disk - self.write_log(iter=iter, step_len=step_len, func_val=func_val) - - # Call calcuate step, must be implemented by subclass - alpha, status = self.calculate_step() - - return alpha, status - - def clear_history(self): - """ - Clears internal line search history - """ - self.func_vals = [] - self.step_lens = [] - self.gtg = [] - self.gtp = [] - self.step_count = 0 - - def reset(self): - """ - If a line search fails mid-search, and the User wants to resume from - the line search function. Initialize will be called again. This function - undos the progress made by the previous line search so that a new line - search can be called without problem. - - output.optim needs to have its lines cleared manually - """ - # First step treated differently - if len(self.step_lens) <= 1: - self.clear_history() - else: - # Wind back dot products by one - self.gtg = self.gtg[:-1] - self.gtp = self.gtp[:-1] - - # Move step lens and function evaluations by number of step count - original_idx = -1 * self.step_count - 1 - self.step_lens = self.step_lens[:original_idx] - self.func_vals = self.func_vals[:original_idx] - - def write_log(self, iter=None, step_len=None, func_val=None): - """ - Write the line search history into a formatted text file (self.log) - that looks something like this: - - ITER STEPLEN MISFIT - ======== ========== ========== - 1 0 1 - - :type iter: int - :param iter: the current iteration defined by OPTIMIZATION.iter. - :type step_len: float - :param step_len: Current step length of the line search, also known - as 'alpha' in the optimization algorithm - :type func_val: float - :param func_val: the function evaluation, i.e., the misfit, associated - with the given step length (alpha) - """ - if (iter is None) or (not os.path.exists(self.log)): - # Write out the header of the file to a NEW FILE - self.logger.info(f"writing line search history file:\n{self.log}") - with open(self.log, "w") as f: - f.write(f"{'ITER':>10} {'STEPLEN':>10} {'MISFIT':>10}\n") - f.write(f"{'='*10} {'='*10} {'='*10}\n") - else: - with open(self.log, "a") as f: - # Aesthetic choice, don't repeat iteration numbers in the file - if (step_len is not None) and (step_len > 0): - iter = "" - f.write(f"{iter:>10} {step_len:10.3e} {func_val:10.3e}\n") - - def search_history(self, sort=True): - """ - A convenience function, collects information based on the current - evaluation of the line search, needed to determine search status and - calculate step length. From the full collection of the search history, - only returns values relevant to the current line search. - - :type sort: bool - :param sort: sort the search history by step length - :rtype x: np.array - :return x: list of step lenths from current line search - :rtype f: np.array - :return f: correpsonding list of function values - :rtype gtg: list - :return gtg: dot product dot product of gradient with itself - :rtype gtp: list - :return gtp: dot product of gradient and search direction - :rtype i: int - :return i: step_count - :rtype j: int - :return j: number of iterations corresponding to 0 step length - """ - i = self.step_count - j = count_zeros(self.step_lens) - 1 - k = len(self.step_lens) - x = np.array(self.step_lens[k - i - 1:k]) - f = np.array(self.func_vals[k - i - 1:k]) - - # Sort by step length - if sort: - f = f[abs(x).argsort()] - x = x[abs(x).argsort()] - - return x, f, self.gtg, self.gtp, i, j - - def calculate_step(self): - """ - Determines step length and search status - - !!! Must be implemented by subclass !!! - """ - raise NotImplementedError("Must be implemented by subclass") - - diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 943c791b..68511a4f 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -1,25 +1,28 @@ #!/usr/bin/env python3 """ -This is the subclass class for seisflows.plugins.line_search.bracket +This is the Bracketing line search class for seisflows + +Line search is called on by the optimization procedure and should not really +have any agency (i.e. it should not be able to iterate its own step count etc., +this should be completely left to the optimization algorithm to keep everything +in one place) """ import logging import numpy as np -from seisflows.tools import msg -from seisflows.plugins.line_search.base import Base +from seisflows.tools.array import count_zeros from seisflows.tools.math import parabolic_backtrack, polynomial_fit -class Bracket(Base): +class Bracket: """ - Implements bracketing line search, which attempts to find a step length - corresponding to misfit reduction, and a misfit corresponding to misfit - increase, so that the optimization procedure can scale the step length - in future iterations. + Abstract base class for line search Variables Descriptions: x: list of step lenths from current line search f: correpsonding list of function values + m: number of step lengths in current line search + n: number of model updates in optimization problem gtg: dot product of gradient with itself gtp: dot product of gradient and search direction @@ -31,12 +34,149 @@ class Bracket(Base): # Class-specific logger accessed using self.logger logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self, **kwargs): + def __init__(self): + """ + + :type step_count_max: int + :param step_count_max: maximum number of step counts before changing + line search behavior. set by PAR.STEP_COUNT_MAX + :type step_len_max: int + :param step_len_max: maximum length of the step, defaults to infinity, + that is unbounded step length. set by PAR.STEP_LEN_MAX + :type log_file: str + :param log_file: path to write line search stats to. set by optimize.setup() + """ + # Prepare lists for line search history + self.func_vals = [] + self.step_lens = [] + self.gtg = [] + self.gtp = [] + self.step_count = 0 + + def initialize(self, step_len, func_val, gtg, gtp): + """ + Initialize a new search from step count 0 and calculate the step + direction and length + + :type iter: int + :param iter: current iteration defined by OPTIMIZE.iter + :type step_len: float + :param step_len: initial step length determined by optimization + :type func_val: float + :param func_val: current evaluation of the objective function + :type gtg: float + :param gtg: dot product of the gradient with itself + :type gtp: float + :param gtp: dot product of gradient `g` with search direction `p` + :rtype alpha: float + :return alpha: the calculated trial step length + :rtype status: int + :return status: current status of the line search """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. + self.step_count = 0 + self.step_lens += [step_len] + self.func_vals += [func_val] + self.gtg += [gtg] + self.gtp += [gtp] + + # Call calculate step, must be implemented by subclass + alpha, status = self.calculate_step() + + return alpha, status + + def update(self, step_len, func_val): """ - super().__init__(**kwargs) + Update search history by appending internal attributes, writing the + current list of step lengths and function evaluations, and calculating a + new step length + + :type iter: int + :param iter: current iteration defined by OPTIMIZE.iter + :type step_len: float + :param step_len: step length determined by optimization + :type func_val: float + :param func_val: current evaluation of the objective function + :rtype alpha: float + :return alpha: the calculated rial step length + :rtype status: int + :return status: current status of the line search + """ + # This has been moved into workflow.line_search() + # self.step_count += 1 + self.step_lens += [step_len] + self.func_vals += [func_val] + + # Call calcuate step, must be implemented by subclass + alpha, status = self.calculate_step() + + return alpha, status + + def clear_history(self): + """ + Clears internal line search history + """ + self.func_vals = [] + self.step_lens = [] + self.gtg = [] + self.gtp = [] + self.step_count = 0 + + def reset(self): + """ + If a line search fails mid-search, and the User wants to resume from + the line search function. Initialize will be called again. This function + undos the progress made by the previous line search so that a new line + search can be called without problem. + + output.optim needs to have its lines cleared manually + """ + # First step treated differently + if len(self.step_lens) <= 1: + self.clear_history() + else: + # Wind back dot products by one + self.gtg = self.gtg[:-1] + self.gtp = self.gtp[:-1] + + # Move step lens and function evaluations by number of step count + original_idx = -1 * self.step_count - 1 + self.step_lens = self.step_lens[:original_idx] + self.func_vals = self.func_vals[:original_idx] + + def search_history(self, sort=True): + """ + A convenience function, collects information based on the current + evaluation of the line search, needed to determine search status and + calculate step length. From the full collection of the search history, + only returns values relevant to the current line search. + + :type sort: bool + :param sort: sort the search history by step length + :rtype x: np.array + :return x: list of step lenths from current line search + :rtype f: np.array + :return f: correpsonding list of function values + :rtype gtg: list + :return gtg: dot product dot product of gradient with itself + :rtype gtp: list + :return gtp: dot product of gradient and search direction + :rtype i: int + :return i: step_count + :rtype j: int + :return j: number of iterations corresponding to 0 step length + """ + i = self.step_count + j = count_zeros(self.step_lens) - 1 + k = len(self.step_lens) + x = np.array(self.step_lens[k - i - 1:k]) + f = np.array(self.func_vals[k - i - 1:k]) + + # Sort by step length + if sort: + f = f[abs(x).argsort()] + x = x[abs(x).argsort()] + + return x, f, self.gtg, self.gtp, i, j def calculate_step(self): """ @@ -51,7 +191,7 @@ def calculate_step(self): f_str = ", ".join([f"{_:.2E}" for _ in f]) self.logger.debug(f"step length(s) = {x_str}") self.logger.debug(f"misfit val(s) = {f_str}") - + # For the first inversion and initial step, set alpha manually if step_count == 0 and update_count == 0: # Based on idea from Dennis and Schnabel @@ -66,12 +206,12 @@ def calculate_step(self): self.logger.info(f"first step, setting scaled step length") status = 0 # If misfit is reduced and then increased, we've bracketed. Pass - elif self._check_bracket(x, f) and self._good_enough(x,f): + elif _check_bracket(x, f) and _good_enough(x, f): alpha = x[f.argmin()] self.logger.info(f"bracket okay, step length reasonable, pass") status = 1 # If misfit is reduced but not close, set to quadratic fit - elif self._check_bracket(x, f): + elif _check_bracket(x, f): alpha = polynomial_fit(x, f) self.logger.info(f"bracket okay, step length unreasonable, " f"manual step") @@ -111,52 +251,52 @@ def calculate_step(self): return alpha, status - @staticmethod - def _check_bracket(step_lens, func_vals): - """ - Checks if minimum has been bracketed - Looks at the minimum of the misfit values calculated through eval func - to see if the misfit has been reduced w.r.t the initial misfit +def _check_bracket(step_lens, func_vals): + """ + Checks if minimum has been bracketed - :type step_lens: numpy.array - :param step_lens: an array of the step lengths taken during iteration - :type func_vals: numpy.array - :param func_vals: array of misfit values from eval func function - :rtype: bool - :return: status of function as a bool - """ - x, f = step_lens, func_vals - imin, fmin = f.argmin(), f.min() - if (fmin < f[0]) and any(f[imin:] > fmin): + Looks at the minimum of the misfit values calculated through eval func + to see if the misfit has been reduced w.r.t the initial misfit + + :type step_lens: numpy.array + :param step_lens: an array of the step lengths taken during iteration + :type func_vals: numpy.array + :param func_vals: array of misfit values from eval func function + :rtype: bool + :return: status of function as a bool + """ + x, f = step_lens, func_vals + imin, fmin = f.argmin(), f.min() + if (fmin < f[0]) and any(f[imin:] > fmin): + okay = True + else: + okay = False + return okay + +def _good_enough(step_lens, func_vals, thresh=np.log10(1.2)): + """ + Checks if step length is reasonably close to quadratic estimate + + :type step_lens: np.array + :param step_lens: an array of the step lengths taken during iteration + :type func_vals: np.array + :param func_vals: array of misfit values from eval func function + :type thresh: numpy.float64 + :param thresh: threshold value for comparison against quadratic estimate + :rtype: bool + :return: status of function as a bool + """ + x, f = step_lens, func_vals + if not _check_bracket(x, f): + okay = False + else: + x0 = polynomial_fit(x, f) + if any(np.abs(np.log10(x[1:] / x0)) < thresh): okay = True else: okay = False - return okay - - def _good_enough(self, step_lens, func_vals, thresh=np.log10(1.2)): - """ - Checks if step length is reasonably close to quadratic estimate - - :type step_lens: np.array - :param step_lens: an array of the step lengths taken during iteration - :type func_vals: np.array - :param func_vals: array of misfit values from eval func function - :type thresh: numpy.float64 - :param thresh: threshold value for comparison against quadratic estimate - :rtype: bool - :return: status of function as a bool - """ - x, f = step_lens, func_vals - if not self._check_bracket(x, f): - okay = False - else: - x0 = polynomial_fit(x, f) - if any(np.abs(np.log10(x[1:] / x0)) < thresh): - okay = True - else: - okay = False - return okay + return okay From b14fc3b8ba8d27d7383ac330877071b518180150 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 17 Jun 2022 11:08:38 -0800 Subject: [PATCH 014/195] rearranging config and seisflows cli functions for better organization. no api changes, just more concise source code and functions residing in more logical locations. Also replaced the Dict object defined in config with a simpler dictionary replacement --- seisflows/config.py | 152 +++++-------------------------- seisflows/seisflows.py | 199 +++++++++++++++++++++++++++-------------- 2 files changed, 154 insertions(+), 197 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index ec166ed2..c62763b4 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -66,87 +66,36 @@ """ -def init_seisflows(check=True): - """ - Instantiates SeisFlows objects and makes them globally accessible by - registering them in sys.modules. This must be run anytime seisflows is run. - - :type check: bool - :param check: Run parameter and path checking, defined in the module.check() - functions. By default should be True, to ensure that paths and - parameters are set correctly. It should only be set False for debug - and testing purposes when we need to force our way past this safeguard. - """ - logger.info("initializing SeisFlows in sys.modules") - - # Parameters and paths must already be loaded (normally done by submit) - assert(PAR in sys.modules) - assert(PATH in sys.modules) - - # Check if objects already exist on disk, exit so as to not overwrite - if "OUTPUT" in sys.modules[PATH] and \ - os.path.exists(sys.modules[PATH]["OUTPUT"]): - print(msg.cli("Data from previous workflow found in working directory.", - items=["> seisflows restart: delete data and start new " - "workflow", - "> seisflows resume: resume existing workflow"], - header="warning", border="=") - ) - sys.exit(-1) - # Instantiate and register objects - for name in NAMES: - sys.modules[f"seisflows_{name}"] = custom_import(name)() - - # Parameter import error checking, missing or improperly set parameters will - # throw assertion errors - if check: - errors = [] - for name in NAMES: - try: - sys.modules[f"seisflows_{name}"].check() - except AssertionError as e: - errors.append(f"{name}: {e}") - if errors: - print(msg.cli("seisflows.config module check failed with:", - items=errors, header="module check error", - border="=")) - sys.exit(-1) - - # Bare minimum module requirements for SeisFlows - req_modules = ["WORKFLOW", "SYSTEM"] - for req in req_modules: - if not hasattr(sys.modules[PAR], req): - print(msg.cli(f"SeisFlows requires defining: {req_modules}." - "Please specify these in the parameter file. Use " - "'seisflows print module' to determine suitable " - "choices.", header="error", border="=")) - sys.exit(-1) - - -def save(): +def save(path): """ - Export the current session to disk + Export the current Python environment to disk as Pickle and JSON files, + which allows us to checkpoint a current workflow and resume without + loss of information. + + :type path: str + :param path: path to save the current session """ - output = sys.modules[PATH]["OUTPUT"] - unix.mkdir(output) + if not os.path.exists(path): + unix.mkdir(path) # Save the paths and parameters into a JSON file for name in [PAR, PATH]: - fullfile = os.path.join(output, f"{name}.json") + fullfile = os.path.join(path, f"{name}.json") with open(fullfile, "w") as f: json.dump(sys.modules[name].__dict__, f, sort_keys=True, indent=4) # Save the current workflow as pickle objects for name in NAMES: - fullfile = os.path.join(output, f"seisflows_{name}.p") + fullfile = os.path.join(path, f"seisflows_{name}.p") with open(fullfile, "wb") as f: pickle.dump(sys.modules[f"seisflows_{name}"], f) def load(path): """ - Imports a previously saved session from disk + Imports a previously saved session from disk by reading in JSON and + Pickle files which define a saved Python environment :type path: str :param path: path to the previously saved session @@ -235,30 +184,17 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): file_handler.setFormatter(formatter) logger.addHandler(file_handler) - -class Dict(object): +class Dict(dict): """ - A barebones dictionary-like object for holding parameters or paths. - - Allows for easier access of dictionary items, does not allow resets of - attributes once defined, nor does it allow deleting attributes once defined. - This helps keep a workflow on rails by preventing the User from editing - paths and parameters during a workflow. - - TODO | Does it make sense to have this inherit dict() rather than defining - TODO | an entirely new object? + A dictionary replacement which allows for easier parameter access through + getting and setting attributes. Also has some functionality to make string + printing prettier """ - def __init__(self, newdict): - """Internal dictionary can ONLY be updated by updating the ENTIRE set - at once, usually done by reading in a new parameter file at the start - of a workflow""" - super(Dict, self).__setattr__('__dict__', newdict) - def __str__(self): """Pretty print dictionaries and first level nested dictionaries""" str_ = "" - longest_key = max([len(_) for _ in self.__dict__.keys()]) - for key, val in self.__dict__.items(): + longest_key = max([len(_) for _ in self.keys()]) + for key, val in self.items(): str_ += f"{key:<{longest_key}}: {val}\n" return str_ @@ -266,44 +202,17 @@ def __repr__(self): """Pretty print when calling an instance of this object""" return(self.__str__()) - def __iter__(self): - """Return an iterable list of sorted keys""" - return iter(sorted(self.__dict__.keys())) - def __getattr__(self, key): """Attribute-like access of the internal dictionary attributes""" try: - return self.__dict__[key] + return self[key] except KeyError: raise AttributeError(f"{key} not found in Dict") - def __getitem__(self, key): - """.get() like access of the internal dictionary attributes """ - return self.__dict__[key] - def __setattr__(self, key, val): """Setting attributes can only be performed one time""" - if key in self.__dict__: - raise TypeError("Once defined, parameters cannot be changed.") - self.__dict__[key] = val - - def __delattr__(self, key): - """Attributes cannot be deleted once set to avoid editing a parameter - set during an active workflow""" - if key in self.__dict__: - raise TypeError("Once defined, parameters cannot be deleted.") - raise KeyError - - def force_set(self, key, val): - """Force-set variables even though the intended behavior of this class - is to not allow deleting or replacing already set variables. - This should be used for check() functions and testing purposes only""" self.__dict__[key] = val - def values(self): - """Return values from the internal dictionary""" - return self.__dict__.values() - class Null(object): """ @@ -502,7 +411,7 @@ class 'Inversion'. sys.exit(-1) # If importing the module doesn't work, throw an error. Usually this happens - # when am external dependency isn't available, e.g., Pyatoa + # when an external dependency isn't available, e.g., Pyatoa try: module = import_module(full_dotted_name) except Exception as e: @@ -520,25 +429,6 @@ class 'Inversion'. sys.exit(-1) -def format_paths(mydict): - """ - Ensure that paths have a standardized format before being allowed into - an active working environment. - Expands tilde character (~) in path strings and expands absolute paths - - :type mydict: dict - :param mydict: dictionary of paths to be expanded - :rtype: dict - :return: formatted path dictionary - """ - for key, val in mydict.items(): - try: - mydict[key] = os.path.expanduser(os.path.abspath(val)) - except TypeError: - continue - return mydict - - def _pickle_method(method): """ The following code changes how instance methods are handled by pickle. diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 3448c543..5453e07b 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -28,11 +28,11 @@ from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, - setpar_vel_model) -from seisflows.tools.wrappers import loadyaml -from seisflows.config import (init_seisflows, format_paths, config_logger, - Dict, custom_import, SeisFlowsPathsParameters, - NAMES, ROOT_DIR, CFGPATHS) + setpar_vel_model) +from seisflows.tools.wrappers import loadyaml, format_paths +from seisflows.config import (config_logger, Dict, custom_import, + SeisFlowsPathsParameters, NAMES, ROOT_DIR, + CFGPATHS) def sfparser(): @@ -98,8 +98,6 @@ def _format_action(self, action): directory, a prompt will appear asking the user if they want to overwrite.""" ) - setup.add_argument("-s", "--symlink", action="store_true", - help="symlink source code into the working directory") setup.add_argument("-f", "--force", action="store_true", help="automatically overwrites existing parameter file") # ========================================================================= @@ -387,7 +385,7 @@ def _public_methods(self): """ return [_ for _ in dir(self) if not _.startswith("_")] - def _register(self, force=True): + def _register_parameters(self, force=True): """ Load the paths and parameters from file into sys.modules, set the default parameters if they are missing from the file, and expand all @@ -443,28 +441,100 @@ def _register(self, force=True): # For submit() and resume(), provide a dialogue to stdout requiring a # visual pre-check of parameters before submitting workflow if not force and parameters["PRECHECK"]: - items = [] - for p in parameters["PRECHECK"]: - try: - items.append(f"{p.upper()}: {parameters[p.upper()]}") - except KeyError: - items.append(f"{p.upper()}: !!! PARAMETER NOT FOUND !!!") - print(msg.cli("Please ensure that the parameters listed below " - "are set correctly. You can edit this list with " - "the PRECHECK parameter.", items=items, - header="seisflows precheck", border="=")) - check = input("Continue? (y/[n])\n") - if check != "y": - sys.exit(-1) + self._precheck_parameters(parameters) # Expand all paths to be absolute on the filesystem - paths = format_paths(paths) + for key, val in paths.items(): + paths[key] = os.path.expanduser(os.path.abspath(val)) - # Register parameters to sys, ensure they meet standards of the package + # Register parameters to sys and internally sys.modules["seisflows_parameters"] = Dict(parameters) sys.modules["seisflows_paths"] = Dict(paths) - self._paths = paths - self._parameters = parameters + self._paths = Dict(paths) + self._parameters = Dict(parameters) + + def _precheck_parameters(self, parameters): + """ + Visually display a list of user-chosen parameters to the User before + proceeding with the _register_parameters command. Allows the User to quickly + determine if workflow parameters have been set correctly + + :type parameters: dict + :param parameters: parameters read in from the YAML parameter file + """ + items = [] + for p in parameters["PRECHECK"]: + try: + items.append(f"{p.upper()}: {parameters[p.upper()]}") + except KeyError: + items.append(f"{p.upper()}: !!! PARAMETER NOT FOUND !!!") + print(msg.cli("Please ensure that the parameters listed below " + "are set correctly. You can edit this list with " + "the PRECHECK parameter.", items=items, + header="seisflows precheck", border="=")) + check = input("Continue? (y/[n])\n") + if check != "y": + sys.exit(-1) + + def _register_modules(self, check=True): + """ + First time setup procedure which loads in the user-chosen modules + and registers them into sys.modules so that they are globally accessible + to the program. + + :type check: bool + :param check: run the check() function for each of the instantiated + modules, which essentially checks the validity of all the + user-defined parameters. This is typically wanted, but sometimes + you don't want to check, e.g., during testing when you know + some parameters are set incorrectly + """ + assert(self._paths is not None), ( + f"seisflows._register_parameters() must be run before " + f"_register_modules()" + ) + assert(self._parameters is not None), ( + f"seisflows._register_parameters() must be run before " + f"_register_modules()" + ) + # Check if current workflow exists on disk, exit so as to not overwrite + if "OUTPUT" in self._paths and os.path.exists(self._paths.OUTPUT): + print(msg.cli( + "Data from previous workflow found in working directory.", + items=["> seisflows restart: delete data, start new workflow", + "> seisflows resume: resume existing workflow"], + header="warning", border="=") + ) + sys.exit(-1) + + # Instantiate and register objects + for name in NAMES: + sys.modules[f"seisflows_{name}"] = custom_import(name)() + + # Parameter import error checking, missing or improperly set parameters + # will throw assertion errors + if check: + errors = [] + for name in NAMES: + try: + sys.modules[f"seisflows_{name}"].check() + except AssertionError as e: + errors.append(f"{name}: {e}") + if errors: + print(msg.cli("seisflows.config module check failed with:", + items=errors, header="module check error", + border="=")) + sys.exit(-1) + + # Bare minimum Module requirements for SeisFlows + req_modules = ["WORKFLOW", "SYSTEM"] + for req in req_modules: + if not hasattr(self._parameters, req): + print(msg.cli(f"SeisFlows requires modules: {req_modules}." + "Please specify these in the parameter file. Use " + "'seisflows print module' to determine suitable " + "choices.", header="error", border="=")) + sys.exit(-1) def _load_modules(self): """ @@ -495,10 +565,13 @@ def _load_modules(self): for NAME in NAMES: sys.modules[f"seisflows_{NAME}"].check() - def setup(self, symlink=False, force=False, **kwargs): + def setup(self, force=False, **kwargs): """ - Initiate a SeisFlows working directory from scratch; establish a - template parameter file and symlink the source code for easy access + Initiate a SeisFlows working directory from scratch by establishing a + template parameter file. + + .. note:: + Future working directory setup functions can be placed here :type symlink: bool :param symlink: flag to turn on source code symlinking @@ -506,7 +579,6 @@ def setup(self, symlink=False, force=False, **kwargs): :param force: flag to force parameter file overwriting """ PAR_FILE = os.path.join(ROOT_DIR, "templates", "parameters.yaml") - REPO_DIR = os.path.abspath(os.path.join(ROOT_DIR, "..")) if os.path.exists(self._args.parameter_file): if force: @@ -517,7 +589,6 @@ def setup(self, symlink=False, force=False, **kwargs): f"({self._args.parameter_file}) found. Do you " f"wish to overwrite with a blank file? (y/[n])" )) - if check == "y": unix.rm(self._args.parameter_file) else: @@ -525,13 +596,6 @@ def setup(self, symlink=False, force=False, **kwargs): unix.cp(PAR_FILE, self._args.workdir) print(msg.cli(f"creating parameter file: {self._args.parameter_file}")) - # Symlink the source code for easy access to repo - if symlink: - src_code = os.path.join(self._args.workdir, "source_code") - if not os.path.exists(src_code): - unix.mkdir(src_code) - for package in PACKAGES: - unix.ln(os.path.join(REPO_DIR, package), src_code) def configure(self, relative_paths=False, **kwargs): """ @@ -544,7 +608,7 @@ def configure(self, relative_paths=False, **kwargs): else if False, use path names relative to the working directory. """ print(msg.cli(f"filling {self._args.parameter_file} w/ default values")) - self._register(force=True) + self._register_parameters(force=True) # Check if the User set turn off any modules (if None, dont instantiate) names = copy(NAMES) @@ -606,12 +670,11 @@ def init(self, **kwargs): pickle files to the OUTPUT directory for User inspection and debug purposes. """ - self._register(force=True) - unix.mkdir(self._args.workdir) unix.cd(self._args.workdir) - init_seisflows() + self._register_parameters(force=True) + self._register_modules(check=True) workflow = sys.modules["seisflows_workflow"] workflow.checkpoint() @@ -640,17 +703,35 @@ def submit(self, stop_after=None, force=False, **kwargs): :param force: if True, turns off the parameter precheck and simply submits the workflow """ - # Ensure that the 'RESUME_FROM' parameter is not set, incase of restart - self.par(parameter="resume_from", value="", skip_print=True) + unix.mkdir(self._args.workdir) + unix.cd(self._args.workdir) + # Ensure that the 'RESUME_FROM' parameter is not set, in case of restart + self.par(parameter="resume_from", value="", skip_print=True) if stop_after is not None: self.par(parameter="stop_after", value=stop_after, skip_print=True) - self._register(force=force) + # Read in the Parameter file and set parameters into sys.modules. + self._register_parameters(force=force) + self._check_required_paths() + self._register_modules(check=True) + + # Set logger to print to stdout and write to a file + config_logger(level=self._parameters.LOG_LEVEL, + verbose=self._parameters.VERBOSE, + filename=self._paths.LOGFILE) + + # Submit workflow.main() to the system + system = sys.modules["seisflows_system"] + system.submit() + def _check_required_paths(self): + """ + If the User provides certain paths to the program, they MUST exist. + This function simply checks these required paths and throws a sys exit + if any of them does not exist + """ # A list of paths that need to exist if provided by user - # !!! TODO Move this required paths somewhere more visible? config? - # !!! TODO or is it even necessary? REQ_PATHS = ["SPECFEM_BIN", "SPECFEM_DATA", "MODEL_INIT", "MODEL_TRUE", "DATA", "LOCAL", "MASK"] @@ -667,20 +748,6 @@ def submit(self, stop_after=None, force=False, **kwargs): border="=")) sys.exit(-1) - unix.mkdir(self._args.workdir) - unix.cd(self._args.workdir) - - # Set logger to print to stdout and write to a file - PATH = sys.modules["seisflows_paths"] - PAR = sys.modules["seisflows_parameters"] - config_logger(level=PAR.LOG_LEVEL, verbose=PAR.VERBOSE, - filename=PATH.LOGFILE) - - # Submit workflow.main() to the system - init_seisflows() - system = sys.modules["seisflows_system"] - system.submit() - def clean(self, force=False, **kwargs): """ Clean the SeisFlows working directory except for the parameter file. @@ -747,7 +814,7 @@ def resume(self, stop_after=None, resume_from=None, force=False, self.par(parameter="RESUME_FROM", value=resume_from, skip_print=True) - self._register(force=force) + self._register_parameters(force=force) self._load_modules() # Set logger to print to stdout and write to a file @@ -777,7 +844,7 @@ def debug(self, **kwargs): interactive environment allowing exploration of the package space. Does not allow stepping through of code (not a breakpoint). """ - self._register(force=True) + self._register_parameters(force=True) self._load_modules() # Distribute modules to common names for easy access during debug mode @@ -1067,7 +1134,7 @@ def check(self, choice=None, **kwargs): self._subparser.print_help() sys.exit(0) - self._register(force=True) + self._register_parameters(force=True) self._load_modules() acceptable_args[choice](*self._args.args, **kwargs) @@ -1101,7 +1168,7 @@ def reset(self, choice=None, **kwargs): self._subparser.print_help() sys.exit(0) - self._register(force=True) + self._register_parameters(force=True) self._load_modules() acceptable_args[choice](*self._args.args, **kwargs) @@ -1291,7 +1358,7 @@ def _print_flow(self, **kwargs): .. rubric:: $ seisflows print flow """ - self._register(force=True) + self._register_parameters(force=True) self._load_modules() workflow = custom_import("workflow")() @@ -1324,7 +1391,7 @@ def _print_inheritance(self, name=None, func=None, **kwargs): seisflows inspect solver eval_func """ - self._register(force=True) + self._register_parameters(force=True) self._load_modules() if func is None: self._inspect_module_hierarchy(name, **kwargs) From b1a43437d498e3b8ac0e346fc16a9c45f3d9d481 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 17 Jun 2022 15:00:18 -0800 Subject: [PATCH 015/195] removing some agency from line search and giving it to optimize to keep things simpler cleaning up docstrings and code formatting around --- seisflows/config.py | 18 +- seisflows/optimize/LBFGS.py | 11 +- seisflows/optimize/NLCG.py | 12 +- seisflows/optimize/{base.py => gradient.py} | 273 ++++++++------------ seisflows/plugins/line_search/__init__.py | 1 - seisflows/plugins/line_search/backtrack.py | 1 + seisflows/plugins/line_search/bracket.py | 21 +- seisflows/seisflows.py | 57 ++-- seisflows/solver/base.py | 19 +- seisflows/solver/specfem2d.py | 1 + seisflows/solver/specfem3d.py | 1 - seisflows/system/base.py | 4 +- seisflows/tools/specfem.py | 2 - seisflows/tools/wrappers.py | 4 - seisflows/workflow/base.py | 2 +- seisflows/workflow/inversion.py | 18 +- 16 files changed, 176 insertions(+), 269 deletions(-) rename seisflows/optimize/{base.py => gradient.py} (64%) diff --git a/seisflows/config.py b/seisflows/config.py index c62763b4..9441284b 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -55,7 +55,6 @@ CFGPATHS = dict( PAR_FILE="parameters.yaml", # Default SeisFlows parameter file SCRATCHDIR="scratch", # SeisFlows internal working directory - STATSDIR="stats", # Optimization module log file output OUTPUTDIR="output", # Permanent disk storage for state and outputs LOGFILE="sfoutput.txt", # Log files for all system log ERRLOGFILE="sferror.txt", # StdErr dump site for crash messages @@ -66,7 +65,6 @@ """ - def save(path): """ Export the current Python environment to disk as Pickle and JSON files, @@ -83,7 +81,7 @@ def save(path): for name in [PAR, PATH]: fullfile = os.path.join(path, f"{name}.json") with open(fullfile, "w") as f: - json.dump(sys.modules[name].__dict__, f, sort_keys=True, indent=4) + json.dump(sys.modules[name], f, sort_keys=True, indent=4) # Save the current workflow as pickle objects for name in NAMES: @@ -100,8 +98,6 @@ def load(path): :type path: str :param path: path to the previously saved session """ - logger.info("loading current working environment from disk") - # Load parameters and paths from a JSON file for name in [PAR, PATH]: fullfile = os.path.join(os.path.abspath(path), f"{name}.json") @@ -184,6 +180,7 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): file_handler.setFormatter(formatter) logger.addHandler(file_handler) + class Dict(dict): """ A dictionary replacement which allows for easier parameter access through @@ -193,9 +190,12 @@ class Dict(dict): def __str__(self): """Pretty print dictionaries and first level nested dictionaries""" str_ = "" - longest_key = max([len(_) for _ in self.keys()]) - for key, val in self.items(): - str_ += f"{key:<{longest_key}}: {val}\n" + try: + longest_key = max([len(_) for _ in self.keys()]) + for key, val in self.items(): + str_ += f"{key:<{longest_key}}: {val}\n" + except ValueError: + pass return str_ def __repr__(self): @@ -214,7 +214,7 @@ def __setattr__(self, key, val): self.__dict__[key] = val -class Null(object): +class Null: """ A null object that always and reliably does nothing """ diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 0ac5db07..7bd3ed01 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -17,7 +17,7 @@ PATH = sys.modules["seisflows_paths"] -class LBFGS(custom_import("optimize", "base")): +class LBFGS(custom_import("optimize", "gradient")): """ The Limited memory BFGS algorithm Calls upon seisflows.plugin.optimize.LBFGS to accomplish LBFGS algorithm @@ -80,6 +80,7 @@ def __init__(self): i.e., `m_new - m_old` """ super().__init__() + self.LBFGS_iter = 0 self.memory_used = 0 self.LBFGS_dir = "LBFGS" @@ -155,7 +156,7 @@ def compute_direction(self): # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration - g = self.load(self.g_new) + g = np.load(self.g_new) if self.LBFGS_iter == 1: self.logger.info("first L-BFGS iteration, setting search direction " "as inverse gradient") @@ -192,7 +193,7 @@ def compute_direction(self): restarted = 1 # Save values to disk and memory - self.save(self.p_new, p_new) + np.save(self.p_new, p_new) self.restarted = restarted def restart(self): @@ -235,8 +236,8 @@ def update(self): unix.cd(PATH.OPTIMIZE) # Determine the iterates for model m and gradient g - s_k = self.load(self.m_new) - self.load(self.m_old) - y_k = self.load(self.g_new) - self.load(self.g_old) + s_k = np.load(self.m_new) - np.load(self.m_old) + y_k = np.load(self.g_new) - np.load(self.g_old) # Determine the shape of the memory map (length of model, length of mem) m = len(s_k) diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index c08e9862..019f64d4 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -5,15 +5,17 @@ """ import sys import logging +import numpy as np from seisflows.config import custom_import, SeisFlowsPathsParameters from seisflows.tools import unix +from seisflows.tools.math import dot PAR = sys.modules['seisflows_parameters'] PATH = sys.modules['seisflows_paths'] -class NLCG(custom_import("optimize", "base")): +class NLCG(custom_import("optimize", "gradient")): """ Nonlinear conjugate gradient method @@ -103,7 +105,7 @@ def compute_direction(self): unix.cd(PATH.OPTIMIZE) # Load the current gradient direction - g_new = self.load(self.g_new) + g_new = np.load(self.g_new) # CASE 1: If first iteration, search direction is the current gradient if self.NLCG_iter == 1: @@ -123,8 +125,8 @@ def compute_direction(self): # Normal NLCG direction compuitation else: # Compute search direction - g_old = self.load(self.g_old) - p_old = self.load(self.p_old) + g_old = np.load(self.g_old) + p_old = np.load(self.p_old) # Apply preconditioner and calc. scale factor for search dir. (beta) if self.precond: @@ -150,7 +152,7 @@ def compute_direction(self): restarted = 0 # Save values to disk and memory - self.save(self.p_new, p_new) + np.save(self.p_new, p_new) self.restarted = restarted def restart(self): diff --git a/seisflows/optimize/base.py b/seisflows/optimize/gradient.py similarity index 64% rename from seisflows/optimize/base.py rename to seisflows/optimize/gradient.py index 524efb89..56b2ac06 100644 --- a/seisflows/optimize/base.py +++ b/seisflows/optimize/gradient.py @@ -16,18 +16,17 @@ from seisflows.tools.math import angle, dot from seisflows.plugins import line_search, preconds from seisflows.tools.specfem import check_poissons_ratio -from seisflows.config import SeisFlowsPathsParameters, CFGPATHS +from seisflows.config import SeisFlowsPathsParameters, CFGPATHS, Dict PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] solver = sys.modules["seisflows_solver"] -class Base: +class Gradient: """ - Nonlinear optimization abstract base class. - - This base class provides a steepest descent optimization algorithm. + Nonlinear optimization abstract base class poviding a gradient/steepest + descent optimization algorithm. Nonlinear conjugate, quasi-Newton and Newton methods can be implemented on top of this base class. @@ -35,7 +34,7 @@ class Base: .. note:: To reduce memory overhead, vectors are read from disk rather than passed from calling routines. For example, at the beginning of - compute_direction the current gradient is read from 'g_new' and the + compute_direction the current gradient is read from 'g_new' and the resulting search direction is written to 'p_new'. As the inversion progresses, other information is stored as well. @@ -84,34 +83,29 @@ def __init__(self): self.precond = None self.restarted = False - # Define the names of output stats logs to keep all paths in one place - # Line search log is named differently so that optimize doesn't - # overwrite this log file when intiating the stats directory - self.line_search_log = "line_search" - self.log_factor = "factor" - self.log_gradient_norm_L1 = "gradient_norm_L1" - self.log_gradient_norm_L2 = "gradient_norm_L2" - self.log_misfit = "misfit" - self.log_restarted = "restarted" - self.log_slope = "slope" - self.log_step_count = "step_count" - self.log_step_length = "step_length" - self.log_theta = "theta" - - # Define the names of variables used to keep track of models etc. so - # that we don't have multiple strings floating around defining the same - # thing - self.m_new = "m_new.npy" - self.m_old = "m_old.npy" - self.m_try = "m_try.npy" - self.f_new = "f_new.txt" - self.f_old = "f_old.txt" - self.f_try = "f_try.txt" - self.g_new = "g_new.npy" - self.g_old = "g_old.npy" - self.p_new = "p_new.npy" - self.p_old = "p_old.npy" - self.alpha = "alpha.npy" + # Models + self.m_new = os.path.join(PATH.OPTIMIZE, "m_new.npy") + self.m_old = os.path.join(PATH.OPTIMIZE, "m_old.npy") + self.m_try = os.path.join(PATH.OPTIMIZE, "m_try.npy") + + # Gradients + self.g_new = os.path.join(PATH.OPTIMIZE, "g_new.npy") + self.g_old = os.path.join(PATH.OPTIMIZE, "g_old.npy") + self.g_try = os.path.join(PATH.OPTIMIZE, "g_try.npy") + + # Search directions + self.p_new = os.path.join(PATH.OPTIMIZE, "p_new.npy") + self.p_old = os.path.join(PATH.OPTIMIZE, "p_old.npy") + self.p_try = os.path.join(PATH.OPTIMIZE, "p_try.npy") + + # Misfits + self.f_new = os.path.join(PATH.OPTIMIZE, "f_new.npy") + self.f_old = os.path.join(PATH.OPTIMIZE, "f_old.npy") + self.f_try = os.path.join(PATH.OPTIMIZE, "f_try.npy") + + # Current search direction + self.alpha = os.path.join(PATH.OPTIMIZE, "alpha.npy") + @property def required(self): @@ -177,13 +171,17 @@ def setup(self): # Line search machinery is defined externally as a plugin class if PAR.LINESEARCH: - self.line_search = getattr(line_search, PAR.LINESEARCH)() + self.line_search = getattr(line_search, PAR.LINESEARCH)( + step_count_max=PAR.STEPCOUNTMAX, + step_len_max=PAR.STEPLENMAX, + ) if PAR.PRECOND: self.precond = getattr(preconds, PAR.PRECOND)() + # Read in initial model as a vector and ensure it is a valid model m_new = solver.merge(solver.load(PATH.MODEL_INIT)) - self.save(self.m_new, m_new) - self.check_model(m_new, self.m_new) + np.save(self.m_new, m_new) + self.check_model(m_new) @property def eval_str(self): @@ -208,24 +206,26 @@ def compute_direction(self): """ self.logger.info(f"computing search direction with {PAR.OPTIMIZE}") - g_new = self.load(self.g_new) + g_new = np.load(self.g_new) if self.precond is not None: p_new = -1 * self.precond(g_new) else: p_new = -1 * g_new - self.save(self.p_new, p_new) + np.save(self.p_new, p_new) def initialize_search(self): """ Initialize the plugin line search machinery. Should only be run at the beginning of line search, by the main workflow module. """ - m = self.load(self.m_new) - g = self.load(self.g_new) - p = self.load(self.p_new) - f = self.loadtxt(self.f_new) + m = np.load(self.m_new) + g = np.load(self.g_new) + p = np.load(self.p_new) + f = np.load(self.f_new) + norm_m = max(abs(m)) norm_p = max(abs(p)) + gtg = dot(g, g) gtp = dot(g, p) @@ -239,23 +239,21 @@ def initialize_search(self): self.logger.debug(f"max step length safeguard is: " f"{self.line_search.step_len_max:.2E}") - # Alpha defines the trial step length - alpha, _ = self.line_search.initialize(iter=self.iter, step_len=0., - func_val=f, gtg=gtg, gtp=gtp - ) + self.line_search.initialize(step_len=0., func_val=f, gtg=gtg, gtp=gtp) + alpha, _ = self.line_search.calculate_step() - # Optional initial step length override + # Alpha defines the trial step length. Optional step length override if PAR.STEPLENINIT and len(self.line_search.step_lens) <= 1: alpha = PAR.STEPLENINIT * norm_m / norm_p - self.logger.debug(f"manually set initial step length: {alpha:.2E}") + self.logger.debug(f"overwrite initial step length: {alpha:.2E}") # The new model is the old model, scaled by the step direction and # gradient threshold to remove any outlier values m_try = m + alpha * p - self.save(self.m_try, m_try) - self.savetxt(self.alpha, alpha) - self.check_model(m_try, self.m_try) + np.save(self.m_try, m_try) + np.save(self.alpha, alpha) + self.check_model(m_try) def update_search(self): """ @@ -267,19 +265,19 @@ def update_search(self): status == 0 : not finished status == -1 : failed """ - alpha, status = self.line_search.update( - iter=self.iter, step_len=self.loadtxt(self.alpha), - func_val=self.loadtxt(self.f_try) - ) + self.line_search.update(step_len=np.load(self.alpha), + func_val=np.load(self.f_try)) + alpha, status = self.line_search.calculate_step() # New search direction needs to be searchable on disk if status in [0, 1]: - m = self.load(self.m_new) - p = self.load(self.p_new) - self.savetxt(self.alpha, alpha) + m = np.load(self.m_new) + p = np.load(self.p_new) + np.save(self.alpha, alpha) + m_try = m + alpha * p - self.save(self.m_try, m_try) - self.check_model(m_try, self.m_try) + np.save(self.m_try, m_try) + self.check_model(m_try) return status @@ -290,15 +288,8 @@ def finalize_search(self): Removes old model/search parameters, moves current parameters to old, sets up new current parameters and writes statistic outputs """ - self.logger.info(msg.sub("FINALIZING LINE SEARCH")) - - g = self.load(self.g_new) - p = self.load(self.p_new) - x = self.line_search.search_history()[0] - f = self.line_search.search_history()[1] - - # Clean scratch directory unix.cd(PATH.OPTIMIZE) + self.logger.info(msg.sub("FINALIZING LINE SEARCH")) # Remove the old model parameters if self.iter > 1: @@ -314,23 +305,12 @@ def finalize_search(self): self.logger.info("setting accepted line search model as current model") unix.mv(self.m_try, self.m_new) - self.savetxt(self.f_new, f.min()) + + f = self.line_search.search_history()[1] + np.save(self.f_new, f.min()) self.logger.info(f"current misfit is {self.f_new}={f.min():.3E}") - # !!! TODO Describe what stats are being written here - self.logger.info(f"writing optimization stats to: {CFGPATHS.STATSDIR}") - self.write_stats(self.log_factor, value= - -dot(g, g) ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) - ) - self.write_stats(self.log_gradient_norm_L1, value=np.linalg.norm(g, 1)) - self.write_stats(self.log_gradient_norm_L2, value=np.linalg.norm(g, 2)) - self.write_stats(self.log_misfit, value=f[0]) - self.write_stats(self.log_restarted, value=self.restarted) - self.write_stats(self.log_slope, value=(f[1] - f[0]) / (x[1] - x[0])) - self.write_stats(self.log_step_count, value=self.line_search.step_count) - self.write_stats(self.log_step_length, value=x[f.argmin()]) - self.write_stats(self.log_theta, - value=180. * np.pi ** -1 * angle(p, -g)) + self.write_stats() self.logger.info("resetting line search step count to 0") self.line_search.step_count = 0 @@ -341,8 +321,8 @@ def retry_status(self): by checking, in effect, if the search direction was the same as gradient direction """ - g = self.load(self.g_new) - p = self.load(self.p_new) + g = np.load(self.g_new) + p = np.load(self.p_new) theta = angle(p, -g) self.logger.debug(f"theta: {theta:6.3f}") @@ -363,25 +343,20 @@ def restart(self): numerical stagnation. """ # Steepest descent (base) does not need to be restarted - if PAR.OPTIMIZE != "base": - g = self.load(self.g_new) - self.save(self.p_new, -g) + if PAR.OPTIMIZE.capitalize() != "Gradient": + g = np.load(self.g_new) + np.save(self.p_new, -g) + self.line_search.clear_history() self.restarted = 1 - def write_stats(self, log, value=None, format="18.6E"): + def write_stats(self): """ - Simplified write function to append values to text files in the - STATSDIR. Used because stats line search information can be overwritten + Simplified write function to append values to text files. + Used because stats line search information can be overwritten by subsequent iterations so we need to append values to text files if they should be retained. - Log files will look something like: - - ITER FACTOR - ==== ====== - 1 0.0 - :type log: str :param log: name of the file to write to. Will append .txt to it :type value: float @@ -389,20 +364,42 @@ def write_stats(self, log, value=None, format="18.6E"): :type format: str :param format: string formatter for value """ - fid = os.path.join(PATH.WORKDIR, CFGPATHS.STATSDIR, f"{log}.txt") + self.logger.info(f"writing optimization stats") + fid = os.path.join(PATH.OUTPUT, f"optim_stats.txt") - # If no value is given, assuming we are being run from setup() and - # writing to new files. Will OVERWRITE any existing files - if value is None: + # First time, write header information + if not os.path.exists(fid): with open(fid, "w") as f: - f.write(f"{'ITER':>4} {log.upper():>18}\n") - f.write(f"{'='*4} {'='*18}\n") + f.write(f"{'ITER':>4}") + for log in ["FACTOR", "GRAD_NORM_L1", "GRAD_NORM_L2", + "MISFIT", "RESTART", "SLOPE", "STEP", "LENGTH", + "THETA"]: + f.write(f"{log.upper()},") + f.write("\n") + + g = np.load(self.g_new) + p = np.load(self.p_new) + x = self.line_search.search_history()[0] + f = self.line_search.search_history()[1] - else: - with open(fid, "a") as f: - f.write(f"{self.iter:>4} {value:{format}}\n") + # Calculated stats factors + factor = (g, g) ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) + grad_norm_L1 = np.linalg.norm(g, 1) + grad_norm_L2 = np.linalg.norm(g, 2) + misfit = f[0] + restarted = self.restarted + slope = (f[1] - f[0]) / (x[1] - x[0]) + step_count = self.line_search.step_count + step_length = x[f.argmin()] + theta = 180. * np.pi ** -1 * angle(p, -g) - def check_model(self, m, tag): + with open(fid, "a") as f: + f.write(f"{self.iter},{factor},{grad_norm_L1},{grad_norm_L2}," + f"{misfit},{restarted},{slope},{step_count},{step_length}," + f"{theta}\n") + + + def check_model(self, m): """ Check to ensure that the model parameters fall within the guidelines of the solver. Print off min/max model parameters for the User. @@ -419,77 +416,21 @@ def check_model(self, m, tag): # Check Poisson's ratio, which will error our SPECFEM if outside limits if (pars["vp"] is not None) and (pars["vs"] is not None): - self.logger.debug(f"checking poissons ratio for: '{tag}'") + self.logger.debug(f"checking poissons ratio") pars["pr"] = check_poissons_ratio(vp=pars["vp"], vs=pars["vs"]) if pars["pr"].min() < 0: self.logger.warning("minimum poisson's ratio is negative") # Tell the User min and max values of the updated model - self.logger.info(f"model parameters ({tag} {self.eval_str}):") + self.logger.info(f"model parameters") parts = "{minval:.2f} <= {key} <= {maxval:.2f}" for key, vals in pars.items(): self.logger.info(parts.format(minval=vals.min(), key=key, maxval=vals.max()) ) - @staticmethod - def load(filename): - """ - Convenience function to reads vectors from disk as Numpy files, - reads directly from PATH.OPTIMIZE. Works around Numpy's behavior of - appending '.npy' to files that it saves. - - :type filename: str - :param filename: filename to read from - :rtype: np.array - :return: vector read from disk - """ - fid = os.path.join(PATH.OPTIMIZE, filename) - if not os.path.exists(fid): - fid += ".npy" - return np.load(fid) - @staticmethod - def save(filename, array): - """ - Convenience function to write vectors to disk as numpy files. - Reads directly from PATH.OPTIMIZE - :type filename: str - :param filename: filename to read from - :type array: np.array - :param array: array to be saved - """ - np.save(os.path.join(PATH.OPTIMIZE, filename), array) - @staticmethod - def loadtxt(filename): - """ - Reads scalars from optimize directory on disk, - accounts for savetxt() appending file extension - - :type filename: str - :param filename: filename to read from - :rtype: float - :return: scalar read from disk - """ - if not os.path.splitext(filename)[1]: - filename += ".txt" - return float(np.loadtxt(os.path.join(PATH.OPTIMIZE, filename))) - - @staticmethod - def savetxt(filename, scalar): - """ - Writes scalars to disk with a specific format, appends .txt to the - filename to make it clear that these are text files. - - :type filename: str - :param filename: filename to read from - :type scalar: float - :param scalar: value to write to disk - """ - if not os.path.splitext(filename)[1]: - filename += ".txt" - np.savetxt(os.path.join(PATH.OPTIMIZE, filename), [scalar], "%11.6e") diff --git a/seisflows/plugins/line_search/__init__.py b/seisflows/plugins/line_search/__init__.py index c3c93388..056d49ea 100644 --- a/seisflows/plugins/line_search/__init__.py +++ b/seisflows/plugins/line_search/__init__.py @@ -1,4 +1,3 @@ -from .base import Base from .bracket import Bracket from .backtrack import Backtrack diff --git a/seisflows/plugins/line_search/backtrack.py b/seisflows/plugins/line_search/backtrack.py index 94a2df14..a844232f 100644 --- a/seisflows/plugins/line_search/backtrack.py +++ b/seisflows/plugins/line_search/backtrack.py @@ -70,6 +70,7 @@ def calculate_step(self): status = 1 # If misfit continually increases, decrease step length elif step_count <= self.step_count_max: + import pdb;pdb.set_trace() self.logger.info("misfit increase, decreasing step length") slope = gtp[-1] / gtg[-1] alpha = parabolic_backtrack(f0=f[0], g0=slope, x1=x[1], diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 68511a4f..a81fb344 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -10,6 +10,7 @@ import logging import numpy as np +from seisflows.tools import msg from seisflows.tools.array import count_zeros from seisflows.tools.math import parabolic_backtrack, polynomial_fit @@ -34,8 +35,9 @@ class Bracket: # Class-specific logger accessed using self.logger logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): + def __init__(self, step_count_max, step_len_max): """ + Initiate the line search machinery :type step_count_max: int :param step_count_max: maximum number of step counts before changing @@ -43,10 +45,9 @@ def __init__(self): :type step_len_max: int :param step_len_max: maximum length of the step, defaults to infinity, that is unbounded step length. set by PAR.STEP_LEN_MAX - :type log_file: str - :param log_file: path to write line search stats to. set by optimize.setup() """ - # Prepare lists for line search history + self.step_count_max = step_count_max + self.step_len_max = step_len_max self.func_vals = [] self.step_lens = [] self.gtg = [] @@ -79,11 +80,6 @@ def initialize(self, step_len, func_val, gtg, gtp): self.gtg += [gtg] self.gtp += [gtp] - # Call calculate step, must be implemented by subclass - alpha, status = self.calculate_step() - - return alpha, status - def update(self, step_len, func_val): """ Update search history by appending internal attributes, writing the @@ -101,16 +97,9 @@ def update(self, step_len, func_val): :rtype status: int :return status: current status of the line search """ - # This has been moved into workflow.line_search() - # self.step_count += 1 self.step_lens += [step_len] self.func_vals += [func_val] - # Call calcuate step, must be implemented by subclass - alpha, status = self.calculate_step() - - return alpha, status - def clear_history(self): """ Clears internal line search history diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 5453e07b..dc5cff97 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -29,8 +29,8 @@ from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) -from seisflows.tools.wrappers import loadyaml, format_paths -from seisflows.config import (config_logger, Dict, custom_import, +from seisflows.tools.wrappers import loadyaml +from seisflows.config import (config_logger, Dict, custom_import, load, SeisFlowsPathsParameters, NAMES, ROOT_DIR, CFGPATHS) @@ -445,7 +445,10 @@ def _register_parameters(self, force=True): # Expand all paths to be absolute on the filesystem for key, val in paths.items(): - paths[key] = os.path.expanduser(os.path.abspath(val)) + try: + paths[key] = os.path.expanduser(os.path.abspath(val)) + except TypeError: + continue # Register parameters to sys and internally sys.modules["seisflows_parameters"] = Dict(parameters) @@ -541,24 +544,25 @@ def _load_modules(self): A function to load and check each of the SeisFlows modules, re-initiating the SeisFlows environment. All modules are reliant on one another so any access to SeisFlows requires loading everything - simultaneously and in correct order - """ - # Working directory should already have been created by submit() - unix.cd(self._args.workdir) + simultaneously and in correct order. - # Reload objects from Pickle files + .. note:: + This is similar to config.load() except it doesn't load paths + and parameters. This allows the User to OVERLOAD the currently + defined paths and parameters anytime they call 'seisflows resume' + """ for NAME in NAMES: - fullfile = os.path.join(self._args.workdir, CFGPATHS.OUTPUTDIR, - f"seisflows_{NAME}.p") + fid = os.path.join(self._paths.OUTPUT, f"seisflows_{NAME}.p") - if not os.path.exists(fullfile): + if not os.path.exists(fid): print(msg.cli("Not a SeisFlows working directory (no state " "files found). Run 'seisflows init' or " "'seisflows submit' to instantiate a working " "directory.") ) sys.exit(-1) - with open(fullfile, "rb") as f: + + with open(fid, "rb") as f: sys.modules[f"seisflows_{NAME}"] = pickle.load(f) # Check parameters so that default values are present @@ -794,6 +798,7 @@ def resume(self, stop_after=None, resume_from=None, force=False, """ Resume a previously started workflow by loading the module pickle files and submitting the workflow from where it left off. + :type stop_after: str :param stop_after: allow the function to overwrite the 'STOP_AFTER' parameter in the parameter file, which dictates how far the workflow @@ -818,10 +823,9 @@ def resume(self, stop_after=None, resume_from=None, force=False, self._load_modules() # Set logger to print to stdout and write to a file - PATH = sys.modules["seisflows_paths"] - PAR = sys.modules["seisflows_parameters"] - config_logger(level=PAR.LOG_LEVEL, verbose=PAR.VERBOSE, - filename=PATH.LOGFILE) + config_logger(level=self._parameters.LOG_LEVEL, + verbose=self._parameters.VERBOSE, + filename=self._paths.LOGFILE) system = sys.modules["seisflows_system"] system.submit() @@ -1009,7 +1013,7 @@ def par(self, parameter, value=None, skip_print=False, required=False, # SeisFlows parameter file dictates upper-case parameters parameter = parameter.upper() if isinstance(value, str) and value.lower() == "none": - warnings.warn("to set values to nonetype, use 'null' not 'none'", + warnings.warn("to set values to NoneType, use 'null' not 'none'", UserWarning) # Use the specfem tool to grab related information @@ -1208,25 +1212,6 @@ def convert(self, name, path=None, **kwargs): solver.save(solver.split(optimize.load(name)), path=path, **kwargs ) - def validate(self, module=None, name=None): - """ - Ensure that all the modules (and their respective subclasses) meet some - necessary requirements such as having specific functions and parameters. - Not a full replacement for running the test suite, but useful for - checking newly written subclasses. - - USAGE - - To validate a specific subclass: - - seisflows validate workflow inversion - - To validate the entire codebase - - seisflows validate - """ - raise NotImplementedError - @staticmethod def _inspect_class_that_defined_method(name, func, **kwargs): """ diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index 9c5ee54f..d6ea3746 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -350,7 +350,8 @@ def call_solver(self, executable, output="solver.log"): """ Calls MPI solver executable to run solver binaries, used by individual processes to run the solver on system. If the external solver returns a - non-zero exit code (failure), this function will return a negative boolean. + non-zero exit code (failure), this function will return a negative + boolean. :type mpiexec: str :param mpiexec: call to mpi. If None (e.g., serial run, defaults to ./) @@ -359,7 +360,9 @@ def call_solver(self, executable, output="solver.log"): :type output: str :param output: where to redirect stdout """ - if not os.path.exists(executable): + # Executable may come with additional sub arguments, we only need to + # check that the actually executable exists + if not os.path.exists(executable.split(" ")[0]): print(msg.cli(f"solver executable {executable} does not exist", header="external solver error", border="=")) sys.exit(-1) @@ -534,14 +537,14 @@ def combine(self, input_path, output_path, parameters=None): :param parameters: optional list of parameters, defaults to `self.parameters` """ + unix.cd(self.cwd) + if parameters is None: parameters = self.parameters if not exists(output_path): unix.mkdir(output_path) - unix.cd(self.cwd) - # Write the source names into the kernel paths file for SEM/ directory with open("kernel_paths", "w") as f: f.writelines( @@ -587,19 +590,17 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., :type output: str :param output: file to output stdout to """ + unix.cd(self.cwd) + if parameters is None: parameters = self.parameters if not exists(output_path): unix.mkdir(output_path) - # Apply smoothing operator inside scratch/solver/* - unix.cd(self.cwd) - # mpiexec ./bin/xsmooth_sem SMOOTH_H SMOOTH_V name input output use_gpu for name in parameters: - self.call_solver(mpiexec=PAR.MPIEXEC, - executable=" ".join(["bin/xsmooth_sem", + self.call_solver(executable=" ".join(["bin/xsmooth_sem", str(span_h), str(span_v), f"{name}_kernel", os.path.join(input_path, ""), diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 1e846211..02ec78e9 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -203,6 +203,7 @@ def generate_data(self): # Generate synthetic data on the fly using the true model self.generate_mesh(model_name="true", model_type="gll") self.forward(path=os.path.join("traces", "obs")) + # If Data provided by user, copy directly into the solver directory elif PATH.DATA is not None and os.path.exists(PATH.DATA): unix.cp(src=glob(os.path.join(PATH.DATA, self.source_name, "*")), diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 906a03db..43e868c4 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -10,7 +10,6 @@ import logging from glob import glob -import seisflows.plugins.solver.specfem3d as solvertools from seisflows.tools import unix, msg from seisflows.tools.wrappers import exists from seisflows.config import custom_import, SeisFlowsPathsParameters diff --git a/seisflows/system/base.py b/seisflows/system/base.py index f55290a5..04b740c9 100644 --- a/seisflows/system/base.py +++ b/seisflows/system/base.py @@ -14,7 +14,6 @@ from seisflows.config import save, SeisFlowsPathsParameters, CFGPATHS - PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] @@ -205,8 +204,9 @@ def checkpoint(self, path, classname, method, kwargs): """ argspath = os.path.join(path, "kwargs") argsfile = os.path.join(argspath, f"{classname}_{method}.p") + unix.mkdir(argspath) with open(argsfile, "wb") as f: pickle.dump(kwargs, f) - save() + save(path=PATH.OUTPUT) diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 95609907..2d39f544 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -2,10 +2,8 @@ Utilities to interact with, manipulate or call on the external solver, i.e., SPECFEM2D/3D/3D_GLOBE """ -import os import sys import numpy as np -import subprocess from collections import defaultdict from seisflows.tools import msg diff --git a/seisflows/tools/wrappers.py b/seisflows/tools/wrappers.py index ded1c204..6b8051d2 100644 --- a/seisflows/tools/wrappers.py +++ b/seisflows/tools/wrappers.py @@ -7,15 +7,11 @@ import re import time import yaml -import json -import pickle import subprocess import numpy as np from importlib import import_module from pkgutil import find_loader -from seisflows.tools import msg - class Struct(dict): """ diff --git a/seisflows/workflow/base.py b/seisflows/workflow/base.py index 3548835e..ecf52309 100644 --- a/seisflows/workflow/base.py +++ b/seisflows/workflow/base.py @@ -222,6 +222,6 @@ def checkpoint(): """ Writes information to disk so workflow can be resumed following a break """ - save() + save(path=PATH.OUTPUT) diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 441fbcb5..fcbceca9 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -308,12 +308,6 @@ def clean(self): unix.mkdir(PATH.GRAD) unix.mkdir(PATH.FUNC) - def checkpoint(self): - """ - Writes information to disk so workflow can be resumed following a break - """ - save() - def write_model(self, path, tag): """ Writes model in format expected by solver @@ -328,7 +322,7 @@ def write_model(self, path, tag): src = tag dst = os.path.join(path, "model") self.logger.debug(f"saving model '{src}' to:\n{dst}") - solver.save(solver.split(optimize.load(src)), dst) + solver.save(solver.split(np.load(src)), dst) def write_gradient(self): """ @@ -337,12 +331,12 @@ def write_gradient(self): """ self.logger.info(msg.mnr("POSTPROCESSING KERNELS")) src = os.path.join(PATH.GRAD, "gradient") - dst = f"g_new" + dst = optimize.g_new postprocess.write_gradient(PATH.GRAD) parts = solver.load(src, suffix="_kernel") - optimize.save(dst, solver.merge(parts)) + np.save(dst, solver.merge(parts)) def write_misfit(self, path, tag): """ @@ -363,7 +357,7 @@ def write_misfit(self, path, tag): total_misfit = preprocess.sum_residuals(src) self.logger.debug(f"saving misfit {total_misfit:.3E} to tag '{dst}'") - optimize.savetxt(dst, total_misfit) + np.save(dst, total_misfit) def save_gradient(self): """ @@ -398,9 +392,9 @@ def save_model(self): self.logger.debug(f"saving model '{src}' to path:\n{dst}") if PAR.SAVEAS in ["binary", "both"]: - solver.save(solver.split(optimize.load(src)), dst) + solver.save(solver.split(np.load(src)), dst) if PAR.SAVEAS in ["vector", "both"]: - np.save(file=dst, arr=optimize.load(src)) + np.save(file=dst, arr=np.load(src)) def save_kernels(self): """ From 36a6c399a169647aee79ac3559331c2fd9f56439 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 17 Jun 2022 16:44:49 -0800 Subject: [PATCH 016/195] fixing tests after refactor, specfem2d example also works --- seisflows/optimize/gradient.py | 34 +++++---- seisflows/plugins/line_search/bracket.py | 14 ++-- seisflows/preprocess/base.py | 8 +-- seisflows/seisflows.py | 5 +- seisflows/solver/base.py | 42 ++++-------- seisflows/tests/test_config.py | 21 +++--- seisflows/tests/test_modules.py | 87 ++++++++++++------------ seisflows/tests/test_preprocess.py | 20 +++--- seisflows/tests/test_seisflows.py | 57 ++-------------- 9 files changed, 115 insertions(+), 173 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 56b2ac06..a067b5ac 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -1,5 +1,8 @@ #!/usr/bin/env python3 """ +Gradient descent nonlinear optimization algorithm. Acts as the Base class for +optimization. + The Optimization library contains classes and methods used to solve nonlinear optimization problems, i.e., misfit minimization. Various subclasses implement different optimization algorithms. @@ -297,6 +300,9 @@ def finalize_search(self): for fid in [self.m_old, self.f_old, self.g_old, self.p_old]: unix.rm(fid) + # Needs to be run before shifting model in next step + self.write_stats() + self.logger.info("shifting current model (new) to previous model (old)") unix.mv(self.m_new, self.m_old) unix.mv(self.f_new, self.f_old) @@ -310,8 +316,6 @@ def finalize_search(self): np.save(self.f_new, f.min()) self.logger.info(f"current misfit is {self.f_new}={f.min():.3E}") - self.write_stats() - self.logger.info("resetting line search step count to 0") self.line_search.step_count = 0 @@ -370,11 +374,10 @@ def write_stats(self): # First time, write header information if not os.path.exists(fid): with open(fid, "w") as f: - f.write(f"{'ITER':>4}") - for log in ["FACTOR", "GRAD_NORM_L1", "GRAD_NORM_L2", - "MISFIT", "RESTART", "SLOPE", "STEP", "LENGTH", - "THETA"]: - f.write(f"{log.upper()},") + for header in ["ITER", "FACTOR", "GRAD_NORM_L1", "GRAD_NORM_L2", + "MISFIT", "RESTART", "SLOPE", "STEP", "LENGTH", + "THETA"]: + f.write(f"{header.upper()},") f.write("\n") g = np.load(self.g_new) @@ -383,7 +386,7 @@ def write_stats(self): f = self.line_search.search_history()[1] # Calculated stats factors - factor = (g, g) ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) + factor = -dot(g, g) ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) grad_norm_L1 = np.linalg.norm(g, 1) grad_norm_L2 = np.linalg.norm(g, 2) misfit = f[0] @@ -394,10 +397,17 @@ def write_stats(self): theta = 180. * np.pi ** -1 * angle(p, -g) with open(fid, "a") as f: - f.write(f"{self.iter},{factor},{grad_norm_L1},{grad_norm_L2}," - f"{misfit},{restarted},{slope},{step_count},{step_length}," - f"{theta}\n") - + f.write(f"{self.iter:0>2}," + f"{factor:6.3E}," + f"{grad_norm_L1:6.3E}," + f"{grad_norm_L2:6.3E}," + f"{misfit:6.3E}," + f"{restarted:6.3E}," + f"{slope:6.3E}," + f"{step_count:0>2}," + f"{step_length:6.3E}," + f"{theta:6.3E}\n" + ) def check_model(self, m): """ diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index a81fb344..8ea85fd5 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -75,10 +75,10 @@ def initialize(self, step_len, func_val, gtg, gtp): :return status: current status of the line search """ self.step_count = 0 - self.step_lens += [step_len] - self.func_vals += [func_val] - self.gtg += [gtg] - self.gtp += [gtp] + self.step_lens.append(step_len) + self.func_vals.append(func_val) + self.gtg.append(gtg) + self.gtp.append(gtp) def update(self, step_len, func_val): """ @@ -97,12 +97,12 @@ def update(self, step_len, func_val): :rtype status: int :return status: current status of the line search """ - self.step_lens += [step_len] - self.func_vals += [func_val] + self.step_lens.append(step_len) + self.func_vals.append(func_val) def clear_history(self): """ - Clears internal line search history + Clears internal line search history for a new line search attempt """ self.func_vals = [] self.step_lens = [] diff --git a/seisflows/preprocess/base.py b/seisflows/preprocess/base.py index 365939dd..ac704470 100644 --- a/seisflows/preprocess/base.py +++ b/seisflows/preprocess/base.py @@ -152,14 +152,14 @@ def check(self, validate=True): # Set the min/max frequencies and periods, frequency takes priority if PAR.MIN_FREQ is not None: - PAR.force_set("MAX_PERIOD", 1 / PAR.MIN_FREQ) + PAR.MAX_PERIOD = 1 / PAR.MIN_FREQ elif PAR.MAX_PERIOD is not None: - PAR.force_set("MIN_FREQ", 1 / PAR.MAX_PERIOD) + PAR.MIN_FREQ = 1 / PAR.MAX_PERIOD if PAR.MAX_FREQ is not None: - PAR.force_set("MIN_PERIOD", 1 / PAR.MAX_FREQ) + PAR.MIN_PERIOD = 1 / PAR.MAX_FREQ elif PAR.MIN_PERIOD is not None: - PAR.force_set("MAX_FREQ", 1 / PAR.MIN_PERIOD) + PAR.MAX_FREQ = 1 / PAR.MIN_PERIOD # Check that the correct filter bounds have been set if PAR.FILTER.upper() == "BANDPASS": diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index dc5cff97..642551ec 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -30,7 +30,7 @@ from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) from seisflows.tools.wrappers import loadyaml -from seisflows.config import (config_logger, Dict, custom_import, load, +from seisflows.config import (config_logger, Dict, custom_import, save, SeisFlowsPathsParameters, NAMES, ROOT_DIR, CFGPATHS) @@ -680,8 +680,7 @@ def init(self, **kwargs): self._register_parameters(force=True) self._register_modules(check=True) - workflow = sys.modules["seisflows_workflow"] - workflow.checkpoint() + save(path=self._paths.OUTPUT) # Ensure that all parameters and paths that need to be instantiated # are present in sys modules diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index d6ea3746..53e2f63d 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -11,13 +11,12 @@ import subprocess import numpy as np from glob import glob -from functools import partial from seisflows.plugins import solver_io from seisflows.tools import msg, unix from seisflows.tools.specfem import Container -from seisflows.tools.wrappers import Struct, diff, exists -from seisflows.config import SeisFlowsPathsParameters +from seisflows.tools.wrappers import diff, exists +from seisflows.config import SeisFlowsPathsParameters, Dict PAR = sys.modules['seisflows_parameters'] @@ -97,7 +96,7 @@ def __init__(self): :type parameters: list of str :param parameters: a list detailing the parameters to be used to define the model, available: ['vp', 'vs', 'rho'] - :type _mesh_properties: seisflows.tools.wrappers.Struct + :type _mesh_properties: Dict :param _mesh_properties: hidden attribute, a dictionary of mesh properties, including the ngll points, nprocs, and mesh coordinates :type _source_names: hidden attribute, @@ -829,9 +828,7 @@ def initialize_adjoint_traces(self): def check_mesh_properties(self, path=None): """ - Determine if Mesh properties are okay for workflow - - TODO fix or rewrite this function + Determine if Mesh properties are okay for workflow. :type path: str :param path: path to the mesh file @@ -845,33 +842,18 @@ def check_mesh_properties(self, path=None): items=[path], header="solver error", border="=")) sys.exit(-1) - # Count slices and grid points + # Count the number of .bin files and the number of grid points key = self.parameters[0] - iproc = 0 + bin_files = glob(os.path.join(path, f"proc*_{key}.bin")) + nproc = len(bin_files) ngll = [] - while True: - dummy = self.io.read_slice(path=path, parameters=key, - iproc=iproc)[0] - ngll += [len(dummy)] - iproc += 1 - if not exists(os.path.join(path, - f"proc{int(iproc):06d}_{key}.bin")): - break - nproc = iproc - - # Create coordinate pointers - # !!! This partial is incorrectly defined and does not execute when - # !!! called. What is the point of that? - coords = Struct() - for key in ['x', 'y', 'z']: - coords[key] = partial(self.io.read_slice, self, path, key) + for i in range(0, len(bin_files)): + ngll.append( + len(self.io.read_slice(path=path, parameters=key, iproc=i)[0]) + ) # Define internal mesh properties - self._mesh_properties = Struct([["nproc", nproc], - ["ngll", ngll], - ["path", path], - ["coords", coords]] - ) + self._mesh_properties = Dict(nproc=nproc, ngll=ngll, path=path) def check_source_names(self): """ diff --git a/seisflows/tests/test_config.py b/seisflows/tests/test_config.py index 32fbb3dc..b3eb7d60 100644 --- a/seisflows/tests/test_config.py +++ b/seisflows/tests/test_config.py @@ -38,8 +38,8 @@ def sfinit(tmpdir, copy_par_file): os.chdir(tmpdir) with patch.object(sys, "argv", ["seisflows"]): sf = SeisFlows() - sf._register(force=True) - config.init_seisflows() + sf._register_parameters(force=True) + sf._register_modules(check=True) return sf @@ -54,18 +54,15 @@ def test_seisflows_constants(): names_check = ["system", "preprocess", "solver", "postprocess", "optimize", "workflow"] - packages_check = ["seisflows", "seisflows-super"] - root_dir_check = os.path.join( os.path.dirname(os.path.abspath(__file__)), ".." ) assert(config.NAMES == names_check) - assert(config.PACKAGES == packages_check) assert(os.path.samefile(config.ROOT_DIR, root_dir_check)) -def test_init_seisflows(sfinit): +def test_register_modules(sfinit): """ Make sure that initiation of the modular approach of seisflows works as expected. That is, that system-wide accessible modules are @@ -88,8 +85,8 @@ def test_save_and_load(sfinit): :return: """ # Instantiate sys modules and save to disk - sf = sfinit - config.save() + sfinit + config.save(path="./output") # Now remove seisflows sys modules so we can try load them back for name in config.NAMES: sys.modules.pop(f"seisflows_{name}") @@ -103,7 +100,7 @@ def test_seisflows_paths_parameters(sfinit): Test the class that makes inputting and checking paths and parameters easier Recreates the required() function at the top of each class. """ - sf = sfinit + sfinit sfpp = config.SeisFlowsPathsParameters() # All of these parameters are defined in the test parameter file @@ -138,8 +135,8 @@ def test_custom_import(sfinit): assert(module.__module__ == "seisflows.optimize.LBFGS") # Check one more to be safe - module = config.custom_import(name="optimize", module="base") - assert(module.__name__ == "Base") - assert(module.__module__ == "seisflows.optimize.base") + module = config.custom_import(name="preprocess", module="pyatoa") + assert(module.__name__ == "Pyatoa") + assert(module.__module__ == "seisflows.preprocess.pyatoa") diff --git a/seisflows/tests/test_modules.py b/seisflows/tests/test_modules.py index 957e9384..16a0dc2b 100644 --- a/seisflows/tests/test_modules.py +++ b/seisflows/tests/test_modules.py @@ -44,7 +44,7 @@ "functions": ["setup", "check", "compute_direction", "initialize_search", "update_search", "finalize_search", "retry_status", - "restart", "save", "load"] + "restart"] }, "workflow": { "parameters": ["CASE"], @@ -83,8 +83,8 @@ def sfinit(tmpdir, copy_par_file): os.chdir(tmpdir) with patch.object(sys, "argv", ["seisflows"]): sf = SeisFlows() - sf._register(force=True) - config.init_seisflows(check=False) + sf._register_parameters(force=True) + sf._register_modules(check=True) return sf @@ -98,9 +98,8 @@ def test_import(sfinit): sfinit for name in config.NAMES: modules = return_modules()[name] - for package, module_list in modules.items(): - for module in module_list: - config.custom_import(name, module)() + for module in modules: + config.custom_import(name, module)() def test_required_parameters_exist(sfinit): @@ -111,15 +110,15 @@ def test_required_parameters_exist(sfinit): """ sfinit for name in config.NAMES: - for package, module_list in return_modules()[name].items(): - for module in module_list: - loaded_module = config.custom_import(name, module)() - sf_pp = loaded_module.required - # Check that required parameters are set - for req_par in required_structure[name]["parameters"]: - assert(req_par in sf_pp.parameters.keys()), \ - f"{req_par} is a required parameter for module: " \ - f"{name}.{module}" + modules = return_modules()[name] + for module in modules: + loaded_module = config.custom_import(name, module)() + sf_pp = loaded_module.required + # Check that required parameters are set + for req_par in required_structure[name]["parameters"]: + assert(req_par in sf_pp.parameters.keys()), \ + f"{req_par} is a required parameter for module: " \ + f"{name}.{module}" def test_required_functions_exist(sfinit): @@ -130,14 +129,14 @@ def test_required_functions_exist(sfinit): """ sfinit for name in config.NAMES: - for package, module_list in return_modules()[name].items(): - for module in module_list: - loaded_module = config.custom_import(name, module)() - # Check that required parameters are set - for func in required_structure[name]["functions"]: - assert(func in dir(loaded_module)), \ - f"{func} is a required function for module: " \ - f"{name}.{module}" + modules = return_modules()[name] + for module in modules: + loaded_module = config.custom_import(name, module)() + # Check that required parameters are set + for func in required_structure[name]["functions"]: + assert(func in dir(loaded_module)), \ + f"{func} is a required function for module: " \ + f"{name}.{module}" @pytest.mark.skip("test not working as expected") @@ -156,24 +155,24 @@ def test_setup(sfinit): SETUP_CREATES = [PATH.SCRATCH, PATH.SYSTEM, PATH.OUTPUT] for name in config.NAMES: - for package, module_list in return_modules()[name].items(): - for module in module_list: - loaded_module = config.custom_import(name, module)() - - # Make sure these don't already exist - for path_ in SETUP_CREATES: - assert(not os.path.exists(path_)) - - loaded_module.setup() - - # Check that the minimum required directories were created - for path_ in SETUP_CREATES: - pytest.set_trace() - assert(os.path.exists(path_)) - - # Remove created paths so we can check the next module - for path_ in SETUP_CREATES: - if os.path.isdir(path_): - shutil.rmtree(path_) - else: - os.remove(path_) \ No newline at end of file + modules = return_modules()[name] + for module in modules: + loaded_module = config.custom_import(name, module)() + + # Make sure these don't already exist + for path_ in SETUP_CREATES: + assert(not os.path.exists(path_)) + + loaded_module.setup() + + # Check that the minimum required directories were created + for path_ in SETUP_CREATES: + pytest.set_trace() + assert(os.path.exists(path_)) + + # Remove created paths so we can check the next module + for path_ in SETUP_CREATES: + if os.path.isdir(path_): + shutil.rmtree(path_) + else: + os.remove(path_) \ No newline at end of file diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index cb0a36da..e4a4507c 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -42,8 +42,8 @@ def sfinit(tmpdir, copy_par_file): os.chdir(tmpdir) with patch.object(sys, "argv", ["seisflows"]): sf = SeisFlows() - sf._register(force=True) - config.init_seisflows(check=False) + sf._register_parameters(force=True) + sf._register_modules(check=False) return sf @@ -71,9 +71,10 @@ def test_default_check(sfinit): og_val = PAR[key] print(key) with pytest.raises(AssertionError): - PAR.force_set(key, val) + PAR[key] = val preprocess.check() - PAR.force_set(key, og_val) + + PAR[key] = og_val # Make sure that parameters set to inappropriate values throw assertions correct_parameters = { @@ -82,7 +83,7 @@ def test_default_check(sfinit): "MIN_FREQ": 1, } for key, val in correct_parameters.items(): - PAR.force_set(key, val) + PAR[key] = val incorrect_values = { "MAX_FREQ": -1, @@ -90,9 +91,9 @@ def test_default_check(sfinit): for key, val in incorrect_values.items(): og_val = PAR[key] with pytest.raises(AssertionError): - PAR.force_set(key, val) + PAR[key] = val preprocess.check() - PAR.force_set(key, og_val) + PAR[key] = og_val def test_default_setup(sfinit): @@ -112,8 +113,8 @@ def test_default_setup(sfinit): # Set some default parameters to run setup misfit_name = "waveform" io_name = "ascii" - PAR.force_set("MISFIT", misfit_name) - PAR.force_set("FORMAT", io_name) + PAR["MISFIT"] = misfit_name + PAR["FORMAT"] = io_name preprocess.setup() assert(preprocess.misfit.__name__ == misfit_name) @@ -134,6 +135,5 @@ def test_default_prepare_eval_grad(tmpdir, sfinit): taskid = 0 filenames = [] preprocess.prepare_eval_grad(cwd=cwd, taskid=taskid, filenames=filenames) - pytest.set_trace() diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 196a7a8b..5ff8b91f 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -14,9 +14,9 @@ from unittest.mock import patch from seisflows import logger -from seisflows.seisflows import sfparser, SeisFlows -from seisflows.config import (save, Dict, ROOT_DIR, NAMES, CFGPATHS, - config_logger) +from seisflows.seisflows import SeisFlows +from seisflows.config import (Dict, ROOT_DIR, NAMES, CFGPATHS, + config_logger, flush) from seisflows.tools.wrappers import loadyaml TEST_DIR = os.path.join(ROOT_DIR, "tests") @@ -126,7 +126,7 @@ def test_register(tmpdir, par_file_dict, copy_par_file): sf = SeisFlows() assert(sf._paths is None) assert(sf._parameters is None) - sf._register(force=True) + sf._register_parameters(force=True) # Check that paths and parameters have been set in sys.modules paths = sys.modules["seisflows_paths"] @@ -156,9 +156,7 @@ def test_cmd_setup(tmpdir): # With symlinking sf.setup(symlink=True, overwrite=False) assert(os.path.exists(par_file)) - assert(os.path.exists( - os.path.join(tmpdir, "source_code", "seisflows")) - ) + # Edit the current par file in a noticeable way so we can check # if overwriting works in the next step test_phrase = "well this is rather unexpected...\n" @@ -252,7 +250,7 @@ def test_config_logging(tmpdir, copy_par_file): msg = "This is an example log that will be checked for test purposes" with patch.object(sys, "argv", ["seisflows"]): sf = SeisFlows() - sf._register(force=True) + sf._register_parameters(force=True) config_logger(filename=CFGPATHS.LOGFILE) logger.debug(msg) @@ -393,46 +391,3 @@ def test_cmd_par(tmpdir, copy_par_file): assert(par.upper() == parameter.upper()) assert(int(val) == int(new_val)) -# def test_cmd_sempar(tmpdir): -# """ -# -# :param tmpdir: -# :return: -# """ -# pass -# -# -# def test_cmd_check(tmpdir): -# """ -# Very simple -# :param tmpdir: -# :return: -# """ -# pass -# -# -# def test_cmd_print(tmpdir): -# """ -# -# :param tmpdir: -# :return: -# """ -# pass -# -# -# def test_cmd_convert(tmpdir): -# """ -# -# :param tmpdir: -# :return: -# """ -# pass -# -# -# def test_cmd_validate(tmpdir): -# """ -# -# :param tmpdir: -# :return: -# """ -# pass From e84121802e86cb9b22a948781e7b57bd6488313b Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 20 Jun 2022 13:36:42 -0800 Subject: [PATCH 017/195] bug fix optimize was trying to load PATH.OPTIMIZE before it was instantiated. reworked init statement to avoid this --- seisflows/optimize/LBFGS.py | 6 +- seisflows/optimize/NLCG.py | 6 +- seisflows/optimize/gradient.py | 125 ++++++++++++++-------------- seisflows/templates/parameters.yaml | 2 +- seisflows/workflow/inversion.py | 11 ++- 5 files changed, 74 insertions(+), 76 deletions(-) diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 7bd3ed01..82defde6 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -156,7 +156,7 @@ def compute_direction(self): # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration - g = np.load(self.g_new) + g = np.load(self.vectors("g_new")) if self.LBFGS_iter == 1: self.logger.info("first L-BFGS iteration, setting search direction " "as inverse gradient") @@ -236,8 +236,8 @@ def update(self): unix.cd(PATH.OPTIMIZE) # Determine the iterates for model m and gradient g - s_k = np.load(self.m_new) - np.load(self.m_old) - y_k = np.load(self.g_new) - np.load(self.g_old) + s_k = np.load(self.vectors("m_new")) - np.load(self.vectors("m_old")) + y_k = np.load(self.vectors("g_new")) - np.load(self.vectors("g_old")) # Determine the shape of the memory map (length of model, length of mem) m = len(s_k) diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 019f64d4..35a72460 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -105,7 +105,7 @@ def compute_direction(self): unix.cd(PATH.OPTIMIZE) # Load the current gradient direction - g_new = np.load(self.g_new) + g_new = np.load(self.vectors("g_new")) # CASE 1: If first iteration, search direction is the current gradient if self.NLCG_iter == 1: @@ -125,8 +125,8 @@ def compute_direction(self): # Normal NLCG direction compuitation else: # Compute search direction - g_old = np.load(self.g_old) - p_old = np.load(self.p_old) + g_old = np.load(self.vectors("g_old")) + p_old = np.load(self.vectors("p_old")) # Apply preconditioner and calc. scale factor for search dir. (beta) if self.precond: diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index a067b5ac..0866897d 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -70,46 +70,12 @@ def __init__(self): :param restarted: a flag signalling if the optimization algorithm has been restarted recently - :param m_new: current model - :param m_old: previous model - :param m_try: line search model - :param f_new: current objective function value - :param f_old: previous objective function value - :param f_try: line search function value - :param g_new: current gradient direction - :param g_old: previous gradient direction - :param p_new: current search direction - :param p_old: previous search direction """ self.iter = 1 self.line_search = None self.precond = None self.restarted = False - # Models - self.m_new = os.path.join(PATH.OPTIMIZE, "m_new.npy") - self.m_old = os.path.join(PATH.OPTIMIZE, "m_old.npy") - self.m_try = os.path.join(PATH.OPTIMIZE, "m_try.npy") - - # Gradients - self.g_new = os.path.join(PATH.OPTIMIZE, "g_new.npy") - self.g_old = os.path.join(PATH.OPTIMIZE, "g_old.npy") - self.g_try = os.path.join(PATH.OPTIMIZE, "g_try.npy") - - # Search directions - self.p_new = os.path.join(PATH.OPTIMIZE, "p_new.npy") - self.p_old = os.path.join(PATH.OPTIMIZE, "p_old.npy") - self.p_try = os.path.join(PATH.OPTIMIZE, "p_try.npy") - - # Misfits - self.f_new = os.path.join(PATH.OPTIMIZE, "f_new.npy") - self.f_old = os.path.join(PATH.OPTIMIZE, "f_old.npy") - self.f_try = os.path.join(PATH.OPTIMIZE, "f_try.npy") - - # Current search direction - self.alpha = os.path.join(PATH.OPTIMIZE, "alpha.npy") - - @property def required(self): """ @@ -146,6 +112,38 @@ def required(self): return sf + + def vectors(self, name): + """ + Convenience function to access the full paths of model and gradient + vectors that are saved to disk + + .. note:: the available options that can be created + m_new: current model + m_old: previous model + m_try: line search model + f_new: current objective function value + f_old: previous objective function value + f_try: line search function value + g_new: current gradient direction + g_old: previous gradient direction + p_new: current search direction + p_old: previous search direction + alpha: trial search direction (aka p_try) + + :type name: str + :param name: name of the vector, acceptable: m, g, p, f, alpha + + """ + # Set model and gradient filenames as attributes + acceptable_names = ["m_new", "m_old", "m_try", + "g_new", "g_old", "g_try", + "p_new", "p_old", "alpha", + "f_new", "f_old", "f_try"] + assert(name in acceptable_names) + return os.path.join(PATH.OPTIMIZE, f"{name}.npy") + + def check(self, validate=True): """ Checks parameters, paths, and dependencies @@ -183,7 +181,7 @@ def setup(self): # Read in initial model as a vector and ensure it is a valid model m_new = solver.merge(solver.load(PATH.MODEL_INIT)) - np.save(self.m_new, m_new) + np.save(self.vectors("m_new"), m_new) self.check_model(m_new) @property @@ -209,22 +207,22 @@ def compute_direction(self): """ self.logger.info(f"computing search direction with {PAR.OPTIMIZE}") - g_new = np.load(self.g_new) + g_new = np.load(self.vectors("g_new")) if self.precond is not None: p_new = -1 * self.precond(g_new) else: p_new = -1 * g_new - np.save(self.p_new, p_new) + np.save(self.vectors("p_new"), p_new) def initialize_search(self): """ Initialize the plugin line search machinery. Should only be run at the beginning of line search, by the main workflow module. """ - m = np.load(self.m_new) - g = np.load(self.g_new) - p = np.load(self.p_new) - f = np.load(self.f_new) + m = np.load(self.vectors("m_new")) + g = np.load(self.vectors("g_new")) + p = np.load(self.vectors("p_new")) + f = np.load(self.vectors("f_new")) norm_m = max(abs(m)) norm_p = max(abs(p)) @@ -254,8 +252,8 @@ def initialize_search(self): # gradient threshold to remove any outlier values m_try = m + alpha * p - np.save(self.m_try, m_try) - np.save(self.alpha, alpha) + np.save(self.vectors("m_try"), m_try) + np.save(self.vectors("alpha"), alpha) self.check_model(m_try) def update_search(self): @@ -268,18 +266,18 @@ def update_search(self): status == 0 : not finished status == -1 : failed """ - self.line_search.update(step_len=np.load(self.alpha), - func_val=np.load(self.f_try)) + self.line_search.update(step_len=np.load(self.vectors("alpha")), + func_val=np.load(self.vectors("f_try"))) alpha, status = self.line_search.calculate_step() # New search direction needs to be searchable on disk if status in [0, 1]: - m = np.load(self.m_new) - p = np.load(self.p_new) - np.save(self.alpha, alpha) + m = np.load(self.vectors("m_new")) + p = np.load(self.vectors("p_new")) + np.save(self.vectors("alpha"), alpha) m_try = m + alpha * p - np.save(self.m_try, m_try) + np.save(self.vectors("m_try"), m_try) self.check_model(m_try) return status @@ -297,24 +295,25 @@ def finalize_search(self): # Remove the old model parameters if self.iter > 1: self.logger.info("removing previously accepted model files (old)") - for fid in [self.m_old, self.f_old, self.g_old, self.p_old]: + for fid in [self.vectors("m_old"), self.vectors("f_old"), + self.vectors("g_old"), self.vectors("p_old")]: unix.rm(fid) # Needs to be run before shifting model in next step self.write_stats() self.logger.info("shifting current model (new) to previous model (old)") - unix.mv(self.m_new, self.m_old) - unix.mv(self.f_new, self.f_old) - unix.mv(self.g_new, self.g_old) - unix.mv(self.p_new, self.p_old) + unix.mv(self.vectors("m_new"), self.vectors("m_old")) + unix.mv(self.vectors("f_new"), self.vectors("f_old")) + unix.mv(self.vectors("g_new"), self.vectors("g_old")) + unix.mv(self.vectors("p_new"), self.vectors("p_old")) self.logger.info("setting accepted line search model as current model") - unix.mv(self.m_try, self.m_new) + unix.mv(self.vectors("m_try"), self.vectors("m_new")) f = self.line_search.search_history()[1] - np.save(self.f_new, f.min()) - self.logger.info(f"current misfit is {self.f_new}={f.min():.3E}") + np.save(self.vectors("f_new"), f.min()) + self.logger.info(f"current misfit is {f.min():.3E}") self.logger.info("resetting line search step count to 0") self.line_search.step_count = 0 @@ -325,8 +324,8 @@ def retry_status(self): by checking, in effect, if the search direction was the same as gradient direction """ - g = np.load(self.g_new) - p = np.load(self.p_new) + g = np.load(self.vectors("g_new")) + p = np.load(self.vectors("p_new")) theta = angle(p, -g) self.logger.debug(f"theta: {theta:6.3f}") @@ -348,8 +347,8 @@ def restart(self): """ # Steepest descent (base) does not need to be restarted if PAR.OPTIMIZE.capitalize() != "Gradient": - g = np.load(self.g_new) - np.save(self.p_new, -g) + g = np.load(self.vectors("g_new")) + np.save(self.vectors("p_new"), -g) self.line_search.clear_history() self.restarted = 1 @@ -380,8 +379,8 @@ def write_stats(self): f.write(f"{header.upper()},") f.write("\n") - g = np.load(self.g_new) - p = np.load(self.p_new) + g = np.load(self.vectors("g_new")) + p = np.load(self.vectors("p_new")) x = self.line_search.search_history()[0] f = self.line_search.search_history()[1] diff --git a/seisflows/templates/parameters.yaml b/seisflows/templates/parameters.yaml index 303931d1..ed38b460 100644 --- a/seisflows/templates/parameters.yaml +++ b/seisflows/templates/parameters.yaml @@ -27,6 +27,6 @@ WORKFLOW: inversion SOLVER: specfem2d SYSTEM: workstation -OPTIMIZE: LBFGS +OPTIMIZE: gradient PREPROCESS: base POSTPROCESS: base diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index fcbceca9..23e6c717 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -247,9 +247,8 @@ def evaluate_function(self, path, suffix): """ self.logger.info(msg.sub("EVALUATE OBJECTIVE FUNCTION")) - # Ensure that we are referencing the same tags as defined in OPTIMIZE - model_tag = getattr(optimize, f"m_{suffix}") - misfit_tag = getattr(optimize, f"f_{suffix}") + model_tag = optimize.vectors(f"m_{suffix}") + misfit_tag = optimize.vectors(f"f_{suffix}") self.write_model(path=path, tag=model_tag) @@ -331,7 +330,7 @@ def write_gradient(self): """ self.logger.info(msg.mnr("POSTPROCESSING KERNELS")) src = os.path.join(PATH.GRAD, "gradient") - dst = optimize.g_new + dst = optimize.vectors("g_new") postprocess.write_gradient(PATH.GRAD) parts = solver.load(src, suffix="_kernel") @@ -373,7 +372,7 @@ def save_gradient(self): src = os.path.join(PATH.GRAD, "gradient") unix.mv(src, dst) if PAR.SAVEAS in ["vector", "both"]: - src = os.path.join(PATH.OPTIMIZE, optimize.g_old) + src = optimize.vectors("g_old") unix.cp(src, dst + ".npy") self.logger.debug(f"saving gradient to path:\n{dst}") @@ -386,7 +385,7 @@ def save_model(self): Saving as a vector saves on file count, but requires numpy and seisflows functions to read """ - src = optimize.m_new + src = optimize.vectors("m_new") dst = os.path.join(PATH.OUTPUT, f"model_{optimize.iter:04d}") self.logger.debug(f"saving model '{src}' to path:\n{dst}") From 9e9c64507f06fc3616f08fae3034ec9d23a68d0b Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 20 Jun 2022 16:22:23 -0800 Subject: [PATCH 018/195] bug fix syntax comparison in slurm system --- seisflows/system/slurm.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index cc3efab0..1c3beb3a 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -160,7 +160,7 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): # Continuously check for job completion on ALL running array jobs job_ids = job_id_list(stdout, single) job_id, status = self.check_job_status(job_ids) - if status is not "OKAY": + if status != "OKAY": print(msg.cli((f"Stopping workflow for {status} job. " f"Please check log file for details."), items=[f"TASK: {classname}.{method}", From 1afa661ddcca463cf03659eadc13e219a05517c3 Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 20 Jun 2022 21:43:28 -0800 Subject: [PATCH 019/195] working on rosenbrock optimization test problem --- seisflows/optimize/gradient.py | 73 ++++++++++++++-------------- seisflows/workflow/test.py | 88 +++++++++++++++++++++++++--------- 2 files changed, 104 insertions(+), 57 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 0866897d..89c8949a 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -112,38 +112,6 @@ def required(self): return sf - - def vectors(self, name): - """ - Convenience function to access the full paths of model and gradient - vectors that are saved to disk - - .. note:: the available options that can be created - m_new: current model - m_old: previous model - m_try: line search model - f_new: current objective function value - f_old: previous objective function value - f_try: line search function value - g_new: current gradient direction - g_old: previous gradient direction - p_new: current search direction - p_old: previous search direction - alpha: trial search direction (aka p_try) - - :type name: str - :param name: name of the vector, acceptable: m, g, p, f, alpha - - """ - # Set model and gradient filenames as attributes - acceptable_names = ["m_new", "m_old", "m_try", - "g_new", "g_old", "g_try", - "p_new", "p_old", "alpha", - "f_new", "f_old", "f_try"] - assert(name in acceptable_names) - return os.path.join(PATH.OPTIMIZE, f"{name}.npy") - - def check(self, validate=True): """ Checks parameters, paths, and dependencies @@ -180,9 +148,14 @@ def setup(self): self.precond = getattr(preconds, PAR.PRECOND)() # Read in initial model as a vector and ensure it is a valid model - m_new = solver.merge(solver.load(PATH.MODEL_INIT)) - np.save(self.vectors("m_new"), m_new) - self.check_model(m_new) + if PATH.MODEL_INIT is not None: + m_new = solver.merge(solver.load(PATH.MODEL_INIT)) + np.save(self.vectors("m_new"), m_new) + self.check_model(m_new) + else: + self.logger.warning("PATH.MODEL_INIT not found. Optimization " + "library expects a model vector " + f"{self.vectors('m_new')}") @property def eval_str(self): @@ -197,6 +170,36 @@ def eval_str(self): step = self.line_search.step_count return f"i{iter_:0>2}s{step:0>2}" + def vectors(self, name): + """ + Convenience function to access the full paths of model and gradient + vectors that are saved to disk + + .. note:: the available options that can be created + m_new: current model + m_old: previous model + m_try: line search model + f_new: current objective function value + f_old: previous objective function value + f_try: line search function value + g_new: current gradient direction + g_old: previous gradient direction + p_new: current search direction + p_old: previous search direction + alpha: trial search direction (aka p_try) + + :type name: str + :param name: name of the vector, acceptable: m, g, p, f, alpha + + """ + # Set model and gradient filenames as attributes + acceptable_names = ["m_new", "m_old", "m_try", + "g_new", "g_old", "g_try", + "p_new", "p_old", "alpha", + "f_new", "f_old", "f_try"] + assert(name in acceptable_names) + return os.path.join(PATH.OPTIMIZE, f"{name}.npy") + def compute_direction(self): """ Computes a steepest descent search direction (inverse gradient) diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 36c1719f..9b4de68c 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -73,8 +73,9 @@ def main(self, return_flow=False): This controls the main testing workflow """ FLOW = [#self.test_system, - self.test_preprocess, + # self.test_preprocess, # self.test_solver, + self.test_optimize ] if return_flow: return FLOW @@ -130,7 +131,6 @@ def test_preprocess(self): taskid = 0 filenames = ["AA.S0001.BXY.semd"] source_name = "001" - import pdb;pdb.set_trace() preprocess.prepare_eval_grad(cwd=cwd, taskid=taskid, filenames=filenames, source_name=source_name @@ -161,33 +161,77 @@ def test_optimize(self): """ optimize.setup() - def rosenbrock(self, n=1E8): - """ - Rosenbrock test for optimization library - """ - model_init = 0.1 * np.ones(n) - model_true = np.ones(n) + m_new, objective_function, gradient = rosenbrock() - def func(x): + def evaluate_function(): """ - Rosenbrock function + Evalaute the misfit function of a given model """ - return sum(100 * (x[:-1]**2. - x[1:])**2. + (x[:-1] - 1.)**2) + m_new = np.load(optimize.vectors("m_new")) + f_try = objective_function(m_new) + np.save(optimize.vectors("f_try"), f_try) - def grad(x): + def evaluate_gradient(): """ - Gradient for Rosenbrock function + Evaluate the gradient of a given model """ - g = np.zeros(n) - g[1:-1] = -200 * (x[:-2] ** 2. - x[1:-1]) + \ - 400. * x[1:-1] * (x[1:-1] ** 2. - x[2:]) + \ - 2. * (x[1:-1] - 1.) + m_new = np.load(optimize.vectors("m_new")) + f_new = objective_function(m_new) + g_new = gradient(m_new) + np.save(optimize.vectors("f_new"), f_new) + np.save(optimize.vectors("g_new"), g_new) + + + # Set up the initial model on disk + np.save(optimize.vectors("m_new"), m_new) + + import pdb;pdb.set_trace() + for iteration in range(1, 200): + evaluate_gradient() + optimize.compute_direction() + # Perform line search + while True: + optimize.initialize_search() + evaluate_function() + status = optimize.update_search() + if status > 0: + optimize.finalize_search() + break + elif status == 0: + continue + elif status < 0: + if optimize.retry_status(): + optimize.restart() + else: + sys.exit() + + +def rosenbrock(n=1E8): + """ + Rosenbrock test for optimization library testing + """ + model_init = 0.1 * np.ones(int(n)) + + def objective_function(x): + """ + Rosenbrock function + """ + return sum(100 * (x[:-1]**2. - x[1:])**2. + (x[:-1] - 1.)**2) + + def gradient(x): + """ + Gradient for Rosenbrock function + """ + g = np.zeros(int(n)) + g[1:-1] = -200 * (x[:-2] ** 2. - x[1:-1]) + \ + 400. * x[1:-1] * (x[1:-1] ** 2. - x[2:]) + \ + 2. * (x[1:-1] - 1.) - g[0] = 400. * x[0] * (x[0] ** 2. - x[1]) + \ - 2. * (x[0] - 1) + g[0] = 400. * x[0] * (x[0] ** 2. - x[1]) + \ + 2. * (x[0] - 1) - g[-1] = -200. * (x[-2] ** 2. - x[-1]) + g[-1] = -200. * (x[-2] ** 2. - x[-1]) - return g + return g - return model_init, model_true, func, grad \ No newline at end of file + return model_init, objective_function, gradient From 9e21c5bc63eb927f4647a0799add98798c88a567 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 21 Jun 2022 09:57:58 -0800 Subject: [PATCH 020/195] setting default solver values to reduce the number of required parameters for a freshly created parameter file --- docs/index.rst | 5 ++--- docs/start_here.rst | 35 +++++++++++++++++++++++++++++++++++ seisflows/seisflows.py | 2 +- seisflows/solver/base.py | 6 +++--- 4 files changed, 41 insertions(+), 7 deletions(-) diff --git a/docs/index.rst b/docs/index.rst index aec6e479..4301aba4 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -51,7 +51,7 @@ installed in development mode, allowing source code changes to be immediately acccessible to Python. The `devel` branch houses the most up-to-date codebase. We recommend installing -SeisFlows within a virtual environment (e.g., Conda) to preserve your root +SeisFlows within a virtual environment (e.g., Conda) to not affect your root environment. .. code:: bash @@ -70,8 +70,7 @@ Requirements In most production-scale workflows, SeisFlows must be run on a cluster, or high performance computing system. However, serially run example problems -making use of 2D solvers like SPECFEM2D are available for small problems and -workflow tutorials. +making use of 2D solvers like SPECFEM2D are available. SeisFlows + Pyatoa -------------------- diff --git a/docs/start_here.rst b/docs/start_here.rst index 196ff578..9c3d8ca5 100644 --- a/docs/start_here.rst +++ b/docs/start_here.rst @@ -19,6 +19,41 @@ Each sub-argument has it's own help message to further explain what it does. For more information on the SeisFlows command line tool, see the `command line tool `__ docs page. +Running tests +~~~~~~~~~~~~~ + +SeisFlows has some unit tests that ensure the capabilities of the command line +tool and package organization are working as intended. To run the tests: + +.. parsed-literal:: + + cd seisflows + cd tests + pytest + +If developing SeisFlows, please ensure that you run these tests before and after +any changes are made to ensure that your changes do not break intended package +functionality. + +Running the test problem +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +SeisFlows comes with a small test problem that is intended to not only test +the workflow capabilities of the package, but also for users to rapidly develop +new modules without needing to run large, potentially expensive, workflows. + +In order to set up the test problem: + +.. parsed-literal:: + + cd path/to/working/directory # ideally this directory is empty + seisflows setup # this will create a template parameters.yaml file + seisflows par workflow test + seisflows configure + +At this stage, you will have a full SeisFlows parameter file. Certain system or +module specific + Running an example problem ~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 642551ec..e0fd198c 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -601,7 +601,7 @@ def setup(self, force=False, **kwargs): unix.cp(PAR_FILE, self._args.workdir) print(msg.cli(f"creating parameter file: {self._args.parameter_file}")) - def configure(self, relative_paths=False, **kwargs): + def configure(self, relative_paths=True, **kwargs): """ Dynamically generate the parameter file by writing out docstrings and default values for each of the SeisFlows module parameters. diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index 53e2f63d..74ed8dbf 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -118,17 +118,17 @@ def required(self): """ sf = SeisFlowsPathsParameters() - sf.par("MATERIALS", required=True, par_type=str, + sf.par("MATERIALS", required=False, par_type=str, default="ELASTIC", docstr="Material parameters used to define model. Available: " "['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', " "'ANISOTROPIC']") - sf.par("DENSITY", required=True, par_type=str, + sf.par("DENSITY", required=False, par_type=str, default="CONSTANT", docstr="How to treat density during inversion. Available: " "['CONSTANT': Do not update density, " "'VARIABLE': Update density]") - sf.par("ATTENUATION", required=True, par_type=bool, + sf.par("ATTENUATION", required=False, par_type=bool, default=False, docstr="If True, turn on attenuation during forward " "simulations, otherwise set attenuation off. Attenuation " "is always off for adjoint simulations.") From 351566cf18cda8efe8ea122aedc7a3557db71377 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 21 Jun 2022 13:27:56 -0800 Subject: [PATCH 021/195] removed PAR.NT, PAR.DT and PAR.F0 from the list of required solver parameters, these can just be read from the SPECFEM Par_file which is assumed to be correct. Also removed the checks related to these and adjusted the way misfit is calculated so that it doesnt explicitely need to be passed this information combined some of the solver parameters which were redundant optimization rosenbrock test running but not working as intended --- seisflows/optimize/gradient.py | 43 ++++-- seisflows/preprocess/base.py | 18 ++- seisflows/preprocess/pyatoa.py | 14 +- ...pecfem2d_workstation_inversion_w_pyatoa.py | 3 - seisflows/scripts/examples/sfexample2d.py | 3 - seisflows/seisflows.py | 144 +++++++++--------- seisflows/solver/base.py | 73 +++++---- seisflows/solver/specfem2d.py | 80 ++-------- seisflows/solver/specfem3d.py | 56 +------ seisflows/tools/specfem.py | 30 ---- seisflows/workflow/base.py | 11 +- seisflows/workflow/test.py | 52 ++++--- 12 files changed, 216 insertions(+), 311 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 89c8949a..2ae776d9 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -18,8 +18,8 @@ from seisflows.tools import msg, unix from seisflows.tools.math import angle, dot from seisflows.plugins import line_search, preconds -from seisflows.tools.specfem import check_poissons_ratio -from seisflows.config import SeisFlowsPathsParameters, CFGPATHS, Dict +from seisflows.tools.math import poissons_ratio +from seisflows.config import SeisFlowsPathsParameters PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] @@ -69,7 +69,6 @@ def __init__(self): :type restarted: bool :param restarted: a flag signalling if the optimization algorithm has been restarted recently - """ self.iter = 1 self.line_search = None @@ -132,9 +131,13 @@ def check(self, validate=True): assert PAR.STEPLENINIT < PAR.STEPLENMAX, \ f"STEPLENINIT must be < STEPLENMAX" - def setup(self): + def setup(self, m_new=None): """ Sets up nonlinear optimization machinery + + :type m_new: np.array + :param m_new: Initial model vector which can be user-provided. Otherwise + the initial model will be read from PATH.MODEL_INIT """ unix.mkdir(PATH.OPTIMIZE) @@ -148,14 +151,14 @@ def setup(self): self.precond = getattr(preconds, PAR.PRECOND)() # Read in initial model as a vector and ensure it is a valid model - if PATH.MODEL_INIT is not None: + if m_new is None: + assert(os.path.exists(PATH.MODEL_INIT)), ( + "optimization library requires that PATH.MODEL_INIT exists" + ) m_new = solver.merge(solver.load(PATH.MODEL_INIT)) - np.save(self.vectors("m_new"), m_new) - self.check_model(m_new) - else: - self.logger.warning("PATH.MODEL_INIT not found. Optimization " - "library expects a model vector " - f"{self.vectors('m_new')}") + + np.save(self.vectors("m_new"), m_new) + self.check_model(m_new) @property def eval_str(self): @@ -411,15 +414,19 @@ def write_stats(self): f"{theta:6.3E}\n" ) - def check_model(self, m): + def check_model(self, m, min_pr=-1., max_pr=0.5): """ Check to ensure that the model parameters fall within the guidelines of the solver. Print off min/max model parameters for the User. :type m: np.array :param m: model to check parameters of - :type tag: str - :param tag: tag of the model to be used for more specific error msgs + :type min_pr: float + :param min_pr: minimum allowable Poisson's ratio value dictated by + SPECFEM + :type max_pr: float + :param max_pr: maximum allowable Poisson's ratio value dictated by + SPECFEM """ # Dynamic way to split up the model based on number of params pars = {} @@ -429,9 +436,15 @@ def check_model(self, m): # Check Poisson's ratio, which will error our SPECFEM if outside limits if (pars["vp"] is not None) and (pars["vs"] is not None): self.logger.debug(f"checking poissons ratio") - pars["pr"] = check_poissons_ratio(vp=pars["vp"], vs=pars["vs"]) + pars["pr"] = poissons_ratio(vp=pars["vp"], vs=pars["vs"]) if pars["pr"].min() < 0: self.logger.warning("minimum poisson's ratio is negative") + if pars["pr"].min() < min_pr: + self.logger.warning(f"minimum poisson's ratio out of bounds: " + f"{pars['pr'].max()} > {max_pr}") + if pars["pr"].max() > max_pr: + self.logger.warning(f"maximum poisson's ratio out of bounds: " + f"{pars['pr'].min()} < {min_pr}") # Tell the User min and max values of the updated model self.logger.info(f"model parameters") diff --git a/seisflows/preprocess/base.py b/seisflows/preprocess/base.py index ac704470..2e6b603c 100644 --- a/seisflows/preprocess/base.py +++ b/seisflows/preprocess/base.py @@ -13,7 +13,6 @@ from seisflows.tools import msg from seisflows.tools import signal, unix -from seisflows.tools.wrappers import exists from seisflows.plugins.preprocess import adjoint, misfit, readers, writers from seisflows.config import SeisFlowsPathsParameters @@ -320,11 +319,15 @@ def _write_residuals(self, path, syn, obs): :param syn: observed data """ residuals = [] - for obs_, syn_ in zip(obs, syn): - residuals.append(self.misfit(syn_.data, obs_.data, PAR.NT, PAR.DT)) + for tr_obs, tr_syn in zip(obs, syn): + residual = self.misfit(syn=tr_syn.data, obs=tr_obs.data, + nt=tr_syn.stats.npts, + dt=tr_syn.stats.delta + ) + residuals.append(residual) filename = os.path.join(path, "residuals") - if exists(filename): + if os.path.exists(filename): residuals = np.append(residuals, np.loadtxt(filename)) np.savetxt(filename, residuals) @@ -344,8 +347,11 @@ def _write_adjoint_traces(self, path, syn, obs, filename): """ # Use the synthetics as a template for the adjoint sources adj = syn.copy() - for adj_, obs_, syn_ in zip(adj, obs, syn): - adj.data = self.adjoint(syn_.data, obs_.data, PAR.NT, PAR.DT) + for tr_adj, tr_obs, tr_syn in zip(adj, obs, syn): + tr_adj.data = self.adjoint(syn=tr_syn.data, obs=tr_obs.data, + nt=tr_syn.stats.npts, + dt=tr_syn.stats.delta + ) self.writer(adj, path, filename) diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyatoa.py index 2af5d6ab..565d980e 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyatoa.py @@ -171,11 +171,11 @@ def check(self, validate=True): assert(PAR.FORMAT.upper() == "ASCII"), \ "Pyatoa preprocess requires PAR.FORMAT=='ASCII'" - assert((PAR.DT * PAR.NT) <= (PAR.START_PAD + PAR.END_PAD)), \ - ("Pyatoa preprocess must have (PAR.START_PAD + PAR.END_PAD) >= " - "(PAR.DT * PAR.NT), current values will not provide sufficiently " - f"long data traces (DT*NT={PAR.DT * PAR.NT}; " - f"START+END={PAR.START_PAD + PAR.END_PAD}") + # assert((PAR.DT * PAR.NT) <= (PAR.START_PAD + PAR.END_PAD)), \ + # ("Pyatoa preprocess must have (PAR.START_PAD + PAR.END_PAD) >= " + # "(PAR.DT * PAR.NT), current values will not provide sufficiently " + # f"long data traces (DT*NT={PAR.DT * PAR.NT}; " + # f"START+END={PAR.START_PAD + PAR.END_PAD}") def setup(self): """ @@ -219,7 +219,7 @@ def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): "Pyaflowa") # Process all the stations for a given event using Pyaflowa - pyaflowa = self.setup_event_pyaflowa(source_name) + pyaflowa = self._setup_event_pyaflowa(source_name) scaled_misfit = pyaflowa.process(nproc=PAR.NPROC) if scaled_misfit is None: @@ -234,7 +234,7 @@ def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): # Event misfit defined by Tape et al. (2010) written to solver dir. self.write_residuals(path=cwd, scaled_misfit=scaled_misfit) - def setup_event_pyaflowa(self, source_name=None): + def _setup_event_pyaflowa(self, source_name=None): """ A convenience function to set up a Pyaflowa processing instance for a specific event. diff --git a/seisflows/scripts/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/scripts/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py index 7741a0dd..812fcfbe 100644 --- a/seisflows/scripts/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/scripts/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py @@ -96,9 +96,6 @@ def setup_seisflows_working_directory(self): self.sf.par("ntask", self.ntask) # 3 sources for this example self.sf.par("materials", "elastic") # how velocity model parameterized self.sf.par("density", "constant") # update density or keep constant - self.sf.par("nt", 5000) # set by SPECFEM2D Par_file - self.sf.par("dt", .06) # set by SPECFEM2D Par_file - self.sf.par("f0", 0.084) # set by SOURCE file self.sf.par("format", "ascii") # how to output synthetic seismograms self.sf.par("case", "synthetic") # synthetic-synthetic inversion self.sf.par("attenuation", False) diff --git a/seisflows/scripts/examples/sfexample2d.py b/seisflows/scripts/examples/sfexample2d.py index 145b7da8..e2057537 100644 --- a/seisflows/scripts/examples/sfexample2d.py +++ b/seisflows/scripts/examples/sfexample2d.py @@ -293,9 +293,6 @@ def setup_seisflows_working_directory(self): self.sf.par("ntask", self.ntask) # default 3 sources for this example self.sf.par("materials", "elastic") # how velocity model parameterized self.sf.par("density", "constant") # update density or keep constant - self.sf.par("nt", 5000) # set by SPECFEM2D Par_file - self.sf.par("dt", .06) # set by SPECFEM2D Par_file - self.sf.par("f0", 0.084) # set by SOURCE file self.sf.par("format", "ascii") # how to output synthetic seismograms self.sf.par("begin", 1) # first iteration self.sf.par("end", self.niter) # final iteration -- we will run 2 diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index e0fd198c..d2478711 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -112,7 +112,7 @@ def _format_action(self, action): marked appropriately. Required parameters must be set before a workflow can be submitted.""" ) - configure.add_argument("-r", "--relative_paths", action="store_true", + configure.add_argument("-a", "--absolute_paths", action="store_true", help="Set default paths relative to cwd") # ========================================================================= init = subparser.add_parser( @@ -440,8 +440,8 @@ def _register_parameters(self, force=True): # For submit() and resume(), provide a dialogue to stdout requiring a # visual pre-check of parameters before submitting workflow - if not force and parameters["PRECHECK"]: - self._precheck_parameters(parameters) + # if not force and parameters["PRECHECK"]: + # self._precheck_parameters(parameters) # Expand all paths to be absolute on the filesystem for key, val in paths.items(): @@ -456,28 +456,28 @@ def _register_parameters(self, force=True): self._paths = Dict(paths) self._parameters = Dict(parameters) - def _precheck_parameters(self, parameters): - """ - Visually display a list of user-chosen parameters to the User before - proceeding with the _register_parameters command. Allows the User to quickly - determine if workflow parameters have been set correctly - - :type parameters: dict - :param parameters: parameters read in from the YAML parameter file - """ - items = [] - for p in parameters["PRECHECK"]: - try: - items.append(f"{p.upper()}: {parameters[p.upper()]}") - except KeyError: - items.append(f"{p.upper()}: !!! PARAMETER NOT FOUND !!!") - print(msg.cli("Please ensure that the parameters listed below " - "are set correctly. You can edit this list with " - "the PRECHECK parameter.", items=items, - header="seisflows precheck", border="=")) - check = input("Continue? (y/[n])\n") - if check != "y": - sys.exit(-1) + # def _precheck_parameters(self, parameters): + # """ + # Visually display a list of user-chosen parameters to the User before + # proceeding with the _register_parameters command. Allows the User to quickly + # determine if workflow parameters have been set correctly + # + # :type parameters: dict + # :param parameters: parameters read in from the YAML parameter file + # """ + # items = [] + # for p in parameters["PRECHECK"]: + # try: + # items.append(f"{p.upper()}: {parameters[p.upper()]}") + # except KeyError: + # items.append(f"{p.upper()}: !!! PARAMETER NOT FOUND !!!") + # print(msg.cli("Please ensure that the parameters listed below " + # "are set correctly. You can edit this list with " + # "the PRECHECK parameter.", items=items, + # header="seisflows precheck", border="=")) + # check = input("Continue? (y/[n])\n") + # if check != "y": + # sys.exit(-1) def _register_modules(self, check=True): """ @@ -514,20 +514,8 @@ def _register_modules(self, check=True): for name in NAMES: sys.modules[f"seisflows_{name}"] = custom_import(name)() - # Parameter import error checking, missing or improperly set parameters - # will throw assertion errors if check: - errors = [] - for name in NAMES: - try: - sys.modules[f"seisflows_{name}"].check() - except AssertionError as e: - errors.append(f"{name}: {e}") - if errors: - print(msg.cli("seisflows.config module check failed with:", - items=errors, header="module check error", - border="=")) - sys.exit(-1) + self._check_modules() # Bare minimum Module requirements for SeisFlows req_modules = ["WORKFLOW", "SYSTEM"] @@ -539,6 +527,24 @@ def _register_modules(self, check=True): "choices.", header="error", border="=")) sys.exit(-1) + def _check_modules(self): + """ + Runs the .check() function on each of the modules, which validates the + given parameters in a parameter file to ensure that a workflow will not + break unexpectedly + """ + errors = [] + for name in NAMES: + try: + sys.modules[f"seisflows_{name}"].check() + except AssertionError as e: + errors.append(f"{name}: {e}") + if errors: + print(msg.cli("seisflows.config module check failed with:", + items=errors, header="module check error", + border="=")) + sys.exit(-1) + def _load_modules(self): """ A function to load and check each of the SeisFlows modules, @@ -564,10 +570,7 @@ def _load_modules(self): with open(fid, "rb") as f: sys.modules[f"seisflows_{NAME}"] = pickle.load(f) - - # Check parameters so that default values are present - for NAME in NAMES: - sys.modules[f"seisflows_{NAME}"].check() + self._check_modules() def setup(self, force=False, **kwargs): """ @@ -601,15 +604,16 @@ def setup(self, force=False, **kwargs): unix.cp(PAR_FILE, self._args.workdir) print(msg.cli(f"creating parameter file: {self._args.parameter_file}")) - def configure(self, relative_paths=True, **kwargs): + def configure(self, absolute_paths=False, **kwargs): """ Dynamically generate the parameter file by writing out docstrings and default values for each of the SeisFlows module parameters. This function writes files manually, consistent with the .yaml format. - :type relative_paths: bool - :param relative_paths: if True, expand pathnames to absolute paths, + :type absolute_paths: bool + :param absolute_paths: if True, expand pathnames to absolute paths, else if False, use path names relative to the working directory. + Defaults to False, uses relative paths. """ print(msg.cli(f"filling {self._args.parameter_file} w/ default values")) self._register_parameters(force=True) @@ -650,8 +654,8 @@ def configure(self, relative_paths=True, **kwargs): msg.write_par_file_header(f, seisflows_paths, name="PATHS") f.write("PATHS:\n") - if relative_paths: - # If requested, set the paths relative to the current dir + # If requested, set the paths relative to the current dir + if not absolute_paths: for key, attrs in seisflows_paths.items(): if attrs["default"] is not None: seisflows_paths[key]["default"] = os.path.relpath( @@ -716,7 +720,7 @@ def submit(self, stop_after=None, force=False, **kwargs): # Read in the Parameter file and set parameters into sys.modules. self._register_parameters(force=force) - self._check_required_paths() + # self._check_required_paths() self._register_modules(check=True) # Set logger to print to stdout and write to a file @@ -728,28 +732,28 @@ def submit(self, stop_after=None, force=False, **kwargs): system = sys.modules["seisflows_system"] system.submit() - def _check_required_paths(self): - """ - If the User provides certain paths to the program, they MUST exist. - This function simply checks these required paths and throws a sys exit - if any of them does not exist - """ - # A list of paths that need to exist if provided by user - REQ_PATHS = ["SPECFEM_BIN", "SPECFEM_DATA", "MODEL_INIT", "MODEL_TRUE", - "DATA", "LOCAL", "MASK"] - - # Check that all required paths exist before submitting workflow - paths_dont_exist = [] - for key in REQ_PATHS: - if key in self._paths: - # If a required path is given (not None) and doesnt exist, exit - if self._paths[key] and not os.path.exists(self._paths[key]): - paths_dont_exist.append(f"{key}: {self._paths[key]}") - if paths_dont_exist: - print(msg.cli("The following paths do not exist but need to:", - items=paths_dont_exist, header="path error", - border="=")) - sys.exit(-1) + # def _check_required_paths(self): + # """ + # If the User provides certain paths to the program, they MUST exist. + # This function simply checks these required paths and throws a sys exit + # if any of them does not exist + # """ + # # A list of paths that need to exist if provided by user + # REQ_PATHS = ["SPECFEM_BIN", "SPECFEM_DATA", "MODEL_INIT", "MODEL_TRUE", + # "DATA", "LOCAL", "MASK"] + # + # # Check that all required paths exist before submitting workflow + # paths_dont_exist = [] + # for key in REQ_PATHS: + # if key in self._paths: + # # If a required path is given (not None) and doesnt exist, exit + # if self._paths[key] and not os.path.exists(self._paths[key]): + # paths_dont_exist.append(f"{key}: {self._paths[key]}") + # if paths_dont_exist: + # print(msg.cli("The following paths do not exist but need to:", + # items=paths_dont_exist, header="path error", + # border="=")) + # sys.exit(-1) def clean(self, force=False, **kwargs): """ diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index 74ed8dbf..da1bf9ac 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -14,8 +14,8 @@ from seisflows.plugins import solver_io from seisflows.tools import msg, unix -from seisflows.tools.specfem import Container -from seisflows.tools.wrappers import diff, exists +from seisflows.tools.specfem import Container, getpar +from seisflows.tools.wrappers import diff from seisflows.config import SeisFlowsPathsParameters, Dict @@ -107,6 +107,8 @@ def __init__(self): from this logger will be tagged by its specific module/classname """ self.parameters = [] + self.nt = None + self.dt = None self._mesh_properties = None self._source_names = None @@ -133,6 +135,10 @@ def required(self): "simulations, otherwise set attenuation off. Attenuation " "is always off for adjoint simulations.") + sf.par("FORMAT", required=False, par_type=float, default="ASCII", + docstr="Format of synthetic waveforms used during workflow, " + "available options: ['ascii', 'su']") + sf.par("COMPONENTS", required=False, default="ZNE", par_type=str, docstr="Components used to generate data, formatted as a single " "string, e.g. ZNE or NZ or E") @@ -146,18 +152,20 @@ def required(self): default=os.path.join(PATH.SCRATCH, "solver"), docstr="scratch path to hold solver working directories") - sf.path("SPECFEM_BIN", required=True, + sf.path("DATA", required=False, + docstr="path to a directory containing any external data " + "required by the workflow. Catch all directory that " + "can be accessed by all modules") + + sf.path("SPECFEM_BIN", required=False, + default=os.path.join(PATH.WORKDIR, "specfem", "bin"), docstr="path to the SPECFEM binary executables") - sf.path("SPECFEM_DATA", required=True, + sf.path("SPECFEM_DATA", required=False, + default=os.path.join(PATH.WORKDIR, "specfem", "DATA"), docstr="path to the SPECFEM DATA/ directory containing the " "'Par_file', 'STATIONS' file and 'CMTSOLUTION' files") - sf.path("DATA", required=False, - docstr="path to a directory containing any external data " - "required by the workflow. Catch all directory that " - "can be accessed by all modules") - return sf def check(self, validate=True): @@ -181,6 +189,10 @@ def check(self, validate=True): assert(PAR.DENSITY.upper() in acceptable_densities), \ f"DENSITY must be in {acceptable_densities}" + acceptable_formats = ["SU", "ASCII"] + if PAR.FORMAT.upper() not in acceptable_formats: + raise Exception(f"'FORMAT' must be {acceptable_formats}") + # Internal parameter list based on user-input material choices # Important to reset parameters to a blank list and let the check # statements fill it. If not, each time workflow is resumed, parameters @@ -221,13 +233,16 @@ def setup(self): In the former case, a value for PATH.DATA must be supplied; in the latter case, a value for PATH.MODEL_TRUE must be provided. """ - unix.rm(self.cwd) self.initialize_solver_directories() - self.check_solver_parameter_files() self.generate_data() self.generate_mesh(model_name="init", model_type="gll") self.initialize_adjoint_traces() + # Assuming that NT and DT are set correctly in the Par_file + unix.cd(self.cwd) + self.nt = getpar(key="NSTEP", file="DATA/Par_file")[1] + self.dt = getpar(key="DT", file="DATA/Par_file")[1] + def generate_mesh(self, model_path, model_name, model_type): """ Performs meshing and database generation. @@ -390,7 +405,6 @@ def call_solver(self, executable, output="solver.log"): ) sys.exit(-1) - @property def io(self): """ @@ -541,7 +555,7 @@ def combine(self, input_path, output_path, parameters=None): if parameters is None: parameters = self.parameters - if not exists(output_path): + if not os.path.exists(output_path): unix.mkdir(output_path) # Write the source names into the kernel paths file for SEM/ directory @@ -755,6 +769,7 @@ def initialize_solver_directories(self): if self.taskid == 0: self.logger.info(f"initializing {PAR.NTASK} solver directories") + unix.rm(self.cwd) unix.mkdir(self.cwd) unix.cd(self.cwd) @@ -837,23 +852,23 @@ def check_mesh_properties(self, path=None): if path is None: path = PATH.MODEL_INIT - if not exists(path): - print(msg.cli(f"The following mesh path does not exist but should", - items=[path], header="solver error", border="=")) - sys.exit(-1) - - # Count the number of .bin files and the number of grid points - key = self.parameters[0] - bin_files = glob(os.path.join(path, f"proc*_{key}.bin")) - nproc = len(bin_files) - ngll = [] - for i in range(0, len(bin_files)): - ngll.append( - len(self.io.read_slice(path=path, parameters=key, iproc=i)[0]) - ) + if os.path.exists(path): + # Count the number of .bin files and the number of grid points + key = self.parameters[0] + bin_files = glob(os.path.join(path, f"proc*_{key}.bin")) + nproc = len(bin_files) + ngll = [] + for i in range(0, len(bin_files)): + ngll.append( + len(self.io.read_slice(path=path, + parameters=key, iproc=i)[0]) + ) - # Define internal mesh properties - self._mesh_properties = Dict(nproc=nproc, ngll=ngll, path=path) + # Define internal mesh properties + self._mesh_properties = Dict(nproc=nproc, ngll=ngll, path=path) + else: + self.logger.warning("solver cannot find mesh and will not have " + "access to mesh properties") def check_source_names(self): """ diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 02ec78e9..5bbc1b54 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -37,13 +37,11 @@ def __init__(self): """ These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. - - :type logger: Logger - :param logger: Class-specific logging module, log statements pushed - from this logger will be tagged by its specific module/classname """ super().__init__() + self.f0 = None + @property def required(self): """ @@ -52,20 +50,6 @@ def required(self): """ sf = SeisFlowsPathsParameters(super().required) - # Define the Parameters required by this module - sf.par("NT", required=True, par_type=float, - docstr="Number of time steps set in the SPECFEM Par_file") - - sf.par("DT", required=True, par_type=float, - docstr="Time step or delta set in the SPECFEM Par_file") - - sf.par("F0", required=True, par_type=float, - docstr="Dominant source frequency") - - sf.par("FORMAT", required=False, par_type=float, default="ASCII", - docstr="Format of synthetic waveforms used during workflow, " - "available options: ['ascii', 'su']") - sf.par("SOURCE_PREFIX", required=False, default="SOURCE", par_type=str, docstr="Prefix of SOURCE files in path SPECFEM_DATA. By " @@ -82,57 +66,13 @@ def check(self, validate=True): super().check(validate=False) - acceptable_formats = ["SU", "ASCII"] - assert(PAR.FORMAT.upper() in acceptable_formats), \ - f"FORMAT must be {acceptable_formats}" - - def check_solver_parameter_files(self): - """ - Checks SPECFEM2D Par_file for acceptable parameters and matches with - the internally set parameters - """ - # Check the number of steps in the SPECFEM2D Par_file - nt_str, nt, nt_i = getpar(key="NSTEP", file="DATA/Par_file") - if int(nt) != PAR.NT: - if self.taskid == 0: - print(msg.cli(f"SPECFEM2D {nt_str}=={nt} is not equal " - f"SeisFlows PAR.NT=={PAR.NT}. Please ensure " - f"that these values match in both files.", - header="parameter match error", border="=") - ) - sys.exit(-1) - - dt_str, dt, dt_i = getpar(key="DT", file="DATA/Par_file") - if float(dt) != PAR.DT: - if self.taskid == 0: - print(msg.cli(f"SPECFEM2D {dt_str}=={dt} is not equal " - f"SeisFlows PAR.DT=={PAR.DT}. Please ensure " - f"that these values match in both files.", - header="parameter match error", border="=") - ) - sys.exit(-1) - - # Check the central frequency in the SPECFEM2D SOURCE file - f0_str, f0, f0_i = getpar(key="f0", file="DATA/SOURCE") - if float(f0) != PAR.F0: - if self.taskid == 0: - print(msg.cli(f"SPECFEM2D {f0_str}=={f0} is not equal " - f"SeisFlows PAR.F0=={PAR.F0}. Please ensure " - f"that these values match the DATA/SOURCE file.", - header="parameter match error", border="=") - ) - sys.exit(-1) - - # Ensure that NPROC matches the MESH values - nproc = self.mesh_properties.nproc - if nproc != PAR.NPROC: - if self.taskid == 0: - print(msg.cli(f"SPECFEM2D mesh NPROC=={nproc} is not equal" - f"SeisFlows PAR.NPROC=={PAR.NPROC}. " - f"Please check that your mesh matches this val.", - header="parameter match error", border="=") - ) - sys.exit(-1) + def setup(self): + """ + Additional SPECFEM2D setup steps + """ + super().setup() + self.f0 = getpar(key="f0", file=os.path.join(self.cwd, + "DATA/SOURCE"))[1] if "MULTIPLES" in PAR: if PAR.MULTIPLES: @@ -285,6 +225,8 @@ def adjoint(self): Calls SPECFEM2D adjoint solver, creates the `SEM` folder with adjoint traces which is required by the adjoint solver """ + unix.cd(self.cwd) + setpar(key="SIMULATION_TYPE", val="3", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".false.", file="DATA/Par_file") diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 43e868c4..8ef68ad5 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -52,17 +52,6 @@ def required(self): """ sf = SeisFlowsPathsParameters(super().required) - # Define the Parameters required by this module - sf.par("NT", required=True, par_type=float, - docstr="Number of time steps set in the SPECFEM Par_file") - - sf.par("DT", required=True, par_type=float, - docstr="Time step or delta set in the SPECFEM Par_file") - - sf.par("FORMAT", required=True, par_type=float, - docstr="Format of synthetic waveforms used during workflow, " - "available options: ['ascii', 'su']") - sf.par("SOURCE_PREFIX", required=False, default="CMTSOLUTION", par_type=str, docstr="Prefix of SOURCE files in path SPECFEM_DATA. Available " @@ -76,11 +65,8 @@ def check(self, validate=True): """ if validate: self.required.validate() - super().check(validate=False) - acceptable_formats = ["SU", "ASCII"] - if PAR.FORMAT.upper() not in acceptable_formats: - raise Exception(f"'FORMAT' must be {acceptable_formats}") + super().check(validate=False) def generate_data(self, **model_kwargs): """ @@ -175,7 +161,6 @@ def forward(self, path="traces/syn"): output="fwd_mesher.log") self.call_solver(executable="bin/xmeshfem3D", output="fwd_solver.log") - # Find and move output traces, by default to synthetic traces dir unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), dst=path) @@ -194,45 +179,6 @@ def adjoint(self): self.call_solver(executable="bin/xmeshfem3D", output="adj_solver.log") - def check_solver_parameter_files(self): - """ - Checks solver parameters - """ - # Check the number of steps in the SPECFEM2D Par_file - nt_str, nt, nt_i = getpar(key="NSTEP", file="DATA/Par_file") - if int(nt) != PAR.NT: - if self.taskid == 0: - print(msg.cli(f"SPECFEM3D {nt_str}=={nt} is not equal " - f"SeisFlows PAR.NT=={PAR.NT}. Please ensure " - f"that these values match in both files.", - header="parameter match error", border="=") - ) - sys.exit(-1) - - dt_str, dt, dt_i = getpar(key="DT", file="DATA/Par_file") - if float(dt) != PAR.DT: - if self.taskid == 0: - print(msg.cli(f"SPECFEM3D {dt_str}=={dt} is not equal " - f"SeisFlows PAR.DT=={PAR.DT}. Please ensure " - f"that these values match in both files.", - header="parameter match error", border="=") - ) - sys.exit(-1) - - # Ensure that NPROC matches the MESH values - nproc = self.mesh_properties.nproc - if nproc != PAR.NPROC: - if self.taskid == 0: - print(msg.cli(f"SPECFEM3D mesh NPROC=={nproc} is not equal " - f"SeisFlows PAR.NPROC=={PAR.NPROC}. " - f"Please check that your mesh matches this val.", - header="parameter match error", border="=") - ) - sys.exit(-1) - - if "MULTIPLES" in PAR: - raise NotImplementedError - def initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 2d39f544..bfc17db3 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -226,33 +226,3 @@ def setpar_vel_model(file, model): # Set nbmodels to the correct value setpar(key="nbmodels", val=len(model), file=file) - -def check_poissons_ratio(vp, vs, min_val=-1., max_val=0.5): - """ - Check Poisson's ratio based on Vp and Vs model vectors. Exit SeisFlows if - Poisson's ratio is outside `min_val` or `max_val` which by default are - set internally by SPECFEM. Otherwise return the value - - :type vp: np.array - :param vp: P-wave velocity model vector - :type vs: np.array - :param vp: S-wave velocity model vector - :type min_val: float - :param min_val: minimum model-wide acceptable value for poissons ratio - :type max_val: float - :param max_val: maximum model-wide acceptable value for poissons ratio - :return: - """ - poissons = poissons_ratio(vp=vp, vs=vs) - pmin = poissons.min() - pmax = poissons.max() - if (pmin < min_val) or (pmax > max_val): - print(msg.cli(f"The Poisson's ratio of the given model is out of " - f"bounds with respect to the defined range " - f"({min_val}, {max_val}). " - f"The model bounds were found to be:", - items=[f"{pmin:.2f} < PR < {pmax:.2f}"], border="=", - header="Poisson's Ratio Error") - ) - sys.exit(-1) - return poissons diff --git a/seisflows/workflow/base.py b/seisflows/workflow/base.py index ecf52309..d16bb406 100644 --- a/seisflows/workflow/base.py +++ b/seisflows/workflow/base.py @@ -3,6 +3,7 @@ This is the Base class for seisflows.workflow. It contains mandatory functions that must be called by subclasses """ +import os import sys import logging @@ -70,15 +71,17 @@ def required(self): "'vector': save files as NumPy .npy files, " "'both': save as both binary and vectors]") - sf.path("MODEL_INIT", required=True, + sf.path("DATA", required=False, default=None, + docstr="path to data available to workflow") + + sf.path("MODEL_INIT", required=False, + default=os.path.join(PATH.WORKDIR, "specfem", "MODEL_INIT"), docstr="location of the initial model to be used for workflow") sf.path("MODEL_TRUE", required=False, + default=os.path.join(PATH.WORKDIR, "specfem", "MODEL_TRUE"), docstr="Target model to be used for PAR.CASE == 'synthetic'") - sf.path("DATA", required=False, default=None, - docstr="path to data available to workflow") - return sf def check(self, validate=True): diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 9b4de68c..4341fd4c 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -159,14 +159,14 @@ def test_optimize(self): """ Test optimization module with a simple rosenbrock function """ - optimize.setup() - m_new, objective_function, gradient = rosenbrock() + optimize.setup(m_new=m_new) def evaluate_function(): """ Evalaute the misfit function of a given model """ + self.logger.info("evaluating objective function") m_new = np.load(optimize.vectors("m_new")) f_try = objective_function(m_new) np.save(optimize.vectors("f_try"), f_try) @@ -175,52 +175,64 @@ def evaluate_gradient(): """ Evaluate the gradient of a given model """ + self.logger.info("evaluating gradient") m_new = np.load(optimize.vectors("m_new")) f_new = objective_function(m_new) g_new = gradient(m_new) np.save(optimize.vectors("f_new"), f_new) np.save(optimize.vectors("g_new"), g_new) - - # Set up the initial model on disk - np.save(optimize.vectors("m_new"), m_new) - - import pdb;pdb.set_trace() - for iteration in range(1, 200): - evaluate_gradient() - optimize.compute_direction() - # Perform line search + def line_search(): + """ + Run a line search until a suitable model has been found + """ while True: - optimize.initialize_search() evaluate_function() status = optimize.update_search() - if status > 0: + if status == 1: + self.logger.info("finalizing line search") optimize.finalize_search() - break + return elif status == 0: + self.logger.info("continuing line search") continue - elif status < 0: + elif status == -1: if optimize.retry_status(): + self.logger.info("restarting line search") optimize.restart() + # Recursively run the line search after restart + line_search() else: - sys.exit() + sys.exit(-1) -def rosenbrock(n=1E8): + self.logger.info("testing optimization library with Rosenbrock problem") + for iteration in range(1, 200): + self.logger.info("iteration {iteration}") + evaluate_gradient() + optimize.compute_direction() + optimize.initialize_search() + line_search() + optimize.iter += 1 + + +def rosenbrock(n=1E5): """ - Rosenbrock test for optimization library testing + Rosenbrock test problem for optimization library testing + + https://en.wikipedia.org/wiki/Rosenbrock_function """ model_init = 0.1 * np.ones(int(n)) def objective_function(x): """ - Rosenbrock function + Rosenbrock objective function """ return sum(100 * (x[:-1]**2. - x[1:])**2. + (x[:-1] - 1.)**2) def gradient(x): """ - Gradient for Rosenbrock function + Gradient of the objective function for Rosenbrock test """ g = np.zeros(int(n)) g[1:-1] = -200 * (x[:-2] ** 2. - x[1:-1]) + \ From 285b5e72ad367c0440b381d8be8ca9ae96ed2608 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 22 Jun 2022 15:58:12 -0800 Subject: [PATCH 022/195] optimization rosenbrock test now working on test workflow --- seisflows/config.py | 4 +- seisflows/optimize/LBFGS.py | 8 +- seisflows/optimize/NLCG.py | 8 +- seisflows/optimize/base.py | 1 + seisflows/optimize/gradient.py | 103 ++++++++++++--------- seisflows/plugins/line_search/backtrack.py | 3 +- seisflows/plugins/line_search/bracket.py | 7 +- seisflows/solver/base.py | 2 +- seisflows/workflow/inversion.py | 11 +-- seisflows/workflow/test.py | 75 ++++++++++++--- 10 files changed, 143 insertions(+), 79 deletions(-) create mode 120000 seisflows/optimize/base.py diff --git a/seisflows/config.py b/seisflows/config.py index 9441284b..7ba3126b 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -246,8 +246,8 @@ class SeisFlowsPathsParameters: .. note:: if a path or parameter is optional it requires a default value. """ - default_par = "!!! REQUIRED PARAMETER !!!" - default_path = "!!! REQUIRED PATH !!!" + default_par = "REQUIRED PARAMETER" + default_path = "REQUIRED PATH" def __init__(self, base=None): """ diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 82defde6..10a9407c 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -156,7 +156,7 @@ def compute_direction(self): # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration - g = np.load(self.vectors("g_new")) + g = self.load("g_new") if self.LBFGS_iter == 1: self.logger.info("first L-BFGS iteration, setting search direction " "as inverse gradient") @@ -193,7 +193,7 @@ def compute_direction(self): restarted = 1 # Save values to disk and memory - np.save(self.p_new, p_new) + self.save("p_new", p_new) self.restarted = restarted def restart(self): @@ -236,8 +236,8 @@ def update(self): unix.cd(PATH.OPTIMIZE) # Determine the iterates for model m and gradient g - s_k = np.load(self.vectors("m_new")) - np.load(self.vectors("m_old")) - y_k = np.load(self.vectors("g_new")) - np.load(self.vectors("g_old")) + s_k = self.load("m_new") - self.load("m_old") + y_k = self.load("g_new") - self.load("g_old") # Determine the shape of the memory map (length of model, length of mem) m = len(s_k) diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 35a72460..f05152da 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -105,7 +105,7 @@ def compute_direction(self): unix.cd(PATH.OPTIMIZE) # Load the current gradient direction - g_new = np.load(self.vectors("g_new")) + g_new = self.load("g_new") # CASE 1: If first iteration, search direction is the current gradient if self.NLCG_iter == 1: @@ -125,8 +125,8 @@ def compute_direction(self): # Normal NLCG direction compuitation else: # Compute search direction - g_old = np.load(self.vectors("g_old")) - p_old = np.load(self.vectors("p_old")) + g_old = self.load("g_old") + p_old = self.load("p_old") # Apply preconditioner and calc. scale factor for search dir. (beta) if self.precond: @@ -152,7 +152,7 @@ def compute_direction(self): restarted = 0 # Save values to disk and memory - np.save(self.p_new, p_new) + self.save("p_new", p_new) self.restarted = restarted def restart(self): diff --git a/seisflows/optimize/base.py b/seisflows/optimize/base.py new file mode 120000 index 00000000..03ddb0e5 --- /dev/null +++ b/seisflows/optimize/base.py @@ -0,0 +1 @@ +gradient.py \ No newline at end of file diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 2ae776d9..7ad4c4c4 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -74,6 +74,10 @@ def __init__(self): self.line_search = None self.precond = None self.restarted = False + self.acceptable_vectors = ["m_new", "m_old", "m_try", + "g_new", "g_old", "g_try", + "p_new", "p_old", "alpha", + "f_new", "f_old", "f_try"] @property def required(self): @@ -157,7 +161,7 @@ def setup(self, m_new=None): ) m_new = solver.merge(solver.load(PATH.MODEL_INIT)) - np.save(self.vectors("m_new"), m_new) + self.save("m_new", m_new) self.check_model(m_new) @property @@ -173,12 +177,12 @@ def eval_str(self): step = self.line_search.step_count return f"i{iter_:0>2}s{step:0>2}" - def vectors(self, name): + def load(self, name): """ Convenience function to access the full paths of model and gradient vectors that are saved to disk - .. note:: the available options that can be created + .. note:: the available options that can be loaded m_new: current model m_old: previous model m_try: line search model @@ -193,15 +197,26 @@ def vectors(self, name): :type name: str :param name: name of the vector, acceptable: m, g, p, f, alpha + """ + assert(name in self.acceptable_vectors) + vector = np.load(os.path.join(PATH.OPTIMIZE, f"{name}.npy")) + # Allow single length vectors, which alpha and misfit (f) are + if vector.size == 1: + vector = float(vector) + return vector + + def save(self, name, vector): + """ + Convenience function to save/overwrite vectors on disk + :type name: str + :param name: name of the vector to overwrite + :type vector: np.array + :param vector: vector to save to name """ - # Set model and gradient filenames as attributes - acceptable_names = ["m_new", "m_old", "m_try", - "g_new", "g_old", "g_try", - "p_new", "p_old", "alpha", - "f_new", "f_old", "f_try"] - assert(name in acceptable_names) - return os.path.join(PATH.OPTIMIZE, f"{name}.npy") + assert(name in self.acceptable_vectors) + vector_path = os.path.join(PATH.OPTIMIZE, f"{name}.npy") + np.save(vector_path, vector) def compute_direction(self): """ @@ -213,22 +228,22 @@ def compute_direction(self): """ self.logger.info(f"computing search direction with {PAR.OPTIMIZE}") - g_new = np.load(self.vectors("g_new")) + g_new = self.load("g_new") if self.precond is not None: p_new = -1 * self.precond(g_new) else: p_new = -1 * g_new - np.save(self.vectors("p_new"), p_new) + self.save("p_new", p_new) def initialize_search(self): """ Initialize the plugin line search machinery. Should only be run at the beginning of line search, by the main workflow module. """ - m = np.load(self.vectors("m_new")) - g = np.load(self.vectors("g_new")) - p = np.load(self.vectors("p_new")) - f = np.load(self.vectors("f_new")) + m = self.load("m_new") + g = self.load("g_new") + p = self.load("p_new") + f = self.load("f_new") norm_m = max(abs(m)) norm_p = max(abs(p)) @@ -258,8 +273,8 @@ def initialize_search(self): # gradient threshold to remove any outlier values m_try = m + alpha * p - np.save(self.vectors("m_try"), m_try) - np.save(self.vectors("alpha"), alpha) + self.save("m_try", m_try) + self.save("alpha", alpha) self.check_model(m_try) def update_search(self): @@ -272,18 +287,18 @@ def update_search(self): status == 0 : not finished status == -1 : failed """ - self.line_search.update(step_len=np.load(self.vectors("alpha")), - func_val=np.load(self.vectors("f_try"))) + self.line_search.update(step_len=self.load("alpha"), + func_val=self.load("f_try")) alpha, status = self.line_search.calculate_step() # New search direction needs to be searchable on disk if status in [0, 1]: - m = np.load(self.vectors("m_new")) - p = np.load(self.vectors("p_new")) - np.save(self.vectors("alpha"), alpha) + m = self.load("m_new") + p = self.load("p_new") + self.save("alpha", alpha) m_try = m + alpha * p - np.save(self.vectors("m_try"), m_try) + self.save("m_try", m_try) self.check_model(m_try) return status @@ -301,24 +316,23 @@ def finalize_search(self): # Remove the old model parameters if self.iter > 1: self.logger.info("removing previously accepted model files (old)") - for fid in [self.vectors("m_old"), self.vectors("f_old"), - self.vectors("g_old"), self.vectors("p_old")]: + for fid in ["m_old", "f_old", "g_old", "p_old"]: unix.rm(fid) # Needs to be run before shifting model in next step self.write_stats() self.logger.info("shifting current model (new) to previous model (old)") - unix.mv(self.vectors("m_new"), self.vectors("m_old")) - unix.mv(self.vectors("f_new"), self.vectors("f_old")) - unix.mv(self.vectors("g_new"), self.vectors("g_old")) - unix.mv(self.vectors("p_new"), self.vectors("p_old")) + unix.mv("m_new.npy", "m_old.npy") + unix.mv("f_new.npy", "f_old.npy") + unix.mv("g_new.npy", "g_old.npy") + unix.mv("p_new.npy", "p_old.npy") self.logger.info("setting accepted line search model as current model") - unix.mv(self.vectors("m_try"), self.vectors("m_new")) + unix.mv("m_try.npy", "m_new.npy") f = self.line_search.search_history()[1] - np.save(self.vectors("f_new"), f.min()) + self.save("f_new", f.min()) self.logger.info(f"current misfit is {f.min():.3E}") self.logger.info("resetting line search step count to 0") @@ -330,8 +344,8 @@ def retry_status(self): by checking, in effect, if the search direction was the same as gradient direction """ - g = np.load(self.vectors("g_new")) - p = np.load(self.vectors("p_new")) + g = self.load("g_new") + p = self.load("p_new") theta = angle(p, -g) self.logger.debug(f"theta: {theta:6.3f}") @@ -353,8 +367,8 @@ def restart(self): """ # Steepest descent (base) does not need to be restarted if PAR.OPTIMIZE.capitalize() != "Gradient": - g = np.load(self.vectors("g_new")) - np.save(self.vectors("p_new"), -g) + g = self.load("g_new") + self.save("p_new", -g) self.line_search.clear_history() self.restarted = 1 @@ -385,8 +399,8 @@ def write_stats(self): f.write(f"{header.upper()},") f.write("\n") - g = np.load(self.vectors("g_new")) - p = np.load(self.vectors("p_new")) + g = self.load("g_new") + p = self.load("p_new") x = self.line_search.search_history()[0] f = self.line_search.search_history()[1] @@ -435,16 +449,15 @@ def check_model(self, m, min_pr=-1., max_pr=0.5): # Check Poisson's ratio, which will error our SPECFEM if outside limits if (pars["vp"] is not None) and (pars["vs"] is not None): - self.logger.debug(f"checking poissons ratio") pars["pr"] = poissons_ratio(vp=pars["vp"], vs=pars["vs"]) if pars["pr"].min() < 0: self.logger.warning("minimum poisson's ratio is negative") - if pars["pr"].min() < min_pr: - self.logger.warning(f"minimum poisson's ratio out of bounds: " - f"{pars['pr'].max()} > {max_pr}") - if pars["pr"].max() > max_pr: - self.logger.warning(f"maximum poisson's ratio out of bounds: " - f"{pars['pr'].min()} < {min_pr}") + if pars["pr"].max() < min_pr: + self.logger.warning(f"maximum poisson's ratio out of bounds: " + f"{pars['pr'].max():.2f} > {max_pr}") + if pars["pr"].min() > max_pr: + self.logger.warning(f"minimum poisson's ratio out of bounds: " + f"{pars['pr'].min():.2f} < {min_pr}") # Tell the User min and max values of the updated model self.logger.info(f"model parameters") diff --git a/seisflows/plugins/line_search/backtrack.py b/seisflows/plugins/line_search/backtrack.py index a844232f..d31d96fc 100644 --- a/seisflows/plugins/line_search/backtrack.py +++ b/seisflows/plugins/line_search/backtrack.py @@ -52,7 +52,8 @@ def calculate_step(self): # Assumed well scaled search direction, attempt backtracking line search # with unit step length else: - self.logger.info(msg.sub("EVALUATE BACKTRACKING LINE SEARCH")) + self.logger.debug(msg.sub(f"BACKTRACKING LINE SEARCH STEP" + f"{self.step_count:0>2}")) x_str = ", ".join([f"{_:.2E}" for _ in x]) f_str = ", ".join([f"{_:.2E}" for _ in f]) self.logger.debug(f"step length(s) = {x_str}") diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 8ea85fd5..4aed9a8c 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -175,7 +175,8 @@ def calculate_step(self): x, f, gtg, gtp, step_count, update_count = self.search_history() # Print out the current line search parameters for convenience - self.logger.debug(msg.sub("EVALUATE BRACKETING LINE SEARCH")) + self.logger.debug(msg.sub(f"BRACKETING LINE SEARCH STEP " + f"{self.step_count:0>2}")) x_str = ", ".join([f"{_:.2E}" for _ in x]) f_str = ", ".join([f"{_:.2E}" for _ in f]) self.logger.debug(f"step length(s) = {x_str}") @@ -233,8 +234,8 @@ def calculate_step(self): status = 0 # Stop because safeguard prevents us from going further elif alpha > self.step_len_max: - self.logger.info(f"step_len_max={self.step_len_max} exceeded, " - f"manual set alpha") + self.logger.info(f"step_len_max={self.step_len_max:.2f} " + f"exceeded, manual set alpha") alpha = self.step_len_max status = 1 diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index da1bf9ac..6de725de 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -608,7 +608,7 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., if parameters is None: parameters = self.parameters - if not exists(output_path): + if not os.path.exists(output_path): unix.mkdir(output_path) # mpiexec ./bin/xsmooth_sem SMOOTH_H SMOOTH_V name input output use_gpu diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 23e6c717..e88fe0a1 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -247,8 +247,8 @@ def evaluate_function(self, path, suffix): """ self.logger.info(msg.sub("EVALUATE OBJECTIVE FUNCTION")) - model_tag = optimize.vectors(f"m_{suffix}") - misfit_tag = optimize.vectors(f"f_{suffix}") + model_tag = f"m_{suffix}" + misfit_tag = f"f_{suffix}" self.write_model(path=path, tag=model_tag) @@ -330,12 +330,11 @@ def write_gradient(self): """ self.logger.info(msg.mnr("POSTPROCESSING KERNELS")) src = os.path.join(PATH.GRAD, "gradient") - dst = optimize.vectors("g_new") postprocess.write_gradient(PATH.GRAD) parts = solver.load(src, suffix="_kernel") - np.save(dst, solver.merge(parts)) + optimize.save("g_new", solver.merge(parts)) def write_misfit(self, path, tag): """ @@ -372,7 +371,7 @@ def save_gradient(self): src = os.path.join(PATH.GRAD, "gradient") unix.mv(src, dst) if PAR.SAVEAS in ["vector", "both"]: - src = optimize.vectors("g_old") + src = "g_old" unix.cp(src, dst + ".npy") self.logger.debug(f"saving gradient to path:\n{dst}") @@ -385,7 +384,7 @@ def save_model(self): Saving as a vector saves on file count, but requires numpy and seisflows functions to read """ - src = optimize.vectors("m_new") + src = optimize.load("m_new") dst = os.path.join(PATH.OUTPUT, f"model_{optimize.iter:04d}") self.logger.debug(f"saving model '{src}' to path:\n{dst}") diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 4341fd4c..ec761720 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -157,9 +157,9 @@ def test_solver(self): def test_optimize(self): """ - Test optimization module with a simple rosenbrock function + Test optimization module with a simple Rosenbrock function """ - m_new, objective_function, gradient = rosenbrock() + m_new, m_true, objective_function, gradient = rosenbrock() optimize.setup(m_new=m_new) def evaluate_function(): @@ -167,27 +167,30 @@ def evaluate_function(): Evalaute the misfit function of a given model """ self.logger.info("evaluating objective function") - m_new = np.load(optimize.vectors("m_new")) - f_try = objective_function(m_new) - np.save(optimize.vectors("f_try"), f_try) + m_try = optimize.load("m_try") + f_try = objective_function(m_try) + optimize.save("f_try", f_try) def evaluate_gradient(): """ Evaluate the gradient of a given model """ self.logger.info("evaluating gradient") - m_new = np.load(optimize.vectors("m_new")) + m_new = optimize.load("m_new") f_new = objective_function(m_new) g_new = gradient(m_new) - np.save(optimize.vectors("f_new"), f_new) - np.save(optimize.vectors("g_new"), g_new) + optimize.save("f_new", f_new) + optimize.save("g_new", g_new) def line_search(): """ Run a line search until a suitable model has been found + Note this is almost the same as workflow.inversion.line_search """ + optimize.initialize_search() while True: evaluate_function() + optimize.line_search.step_count += 1 status = optimize.update_search() if status == 1: self.logger.info("finalizing line search") @@ -205,24 +208,69 @@ def line_search(): else: sys.exit(-1) + def finalize(thresh=5e-3): + """ + Finish off one iteration, check the distance between old and new + vectors to see if model stops changing + """ + m_new = optimize.load("m_new") + m_diff = np.linalg.norm(m_new - m_true) / np.linalg.norm(m_new) + if m_diff < thresh: + self.logger.info(f"successful inversion after {optimize.iter} " + f"iterations") + sys.exit(0) + else: + self.logger.info(f"model difference: {m_diff:.2E}") + return self.logger.info("testing optimization library with Rosenbrock problem") for iteration in range(1, 200): - self.logger.info("iteration {iteration}") + self.logger.info(f"iteration {iteration}") evaluate_gradient() optimize.compute_direction() - optimize.initialize_search() line_search() optimize.iter += 1 + finalize() -def rosenbrock(n=1E5): +def rosenbrock(): """ Rosenbrock test problem for optimization library testing https://en.wikipedia.org/wiki/Rosenbrock_function """ - model_init = 0.1 * np.ones(int(n)) + model_init = np.array([-1.2, 1]) # This is the guess for the global min + model_true = np.array([1, 1]) # This is the actual minimum + + def objective_function(x): + """ + Rosenbrock objective function which is defined mathematically as: + + f(x,y) = (a-x)^2 + b(y-x^2)^2 + + where the global minimum is at (x,y) == (a, a^2) + and typical constant values are: a==1, b==100 + """ + return np.array([((1 - x[0]) ** 2 + 100 * (-x[0] ** 2 + x[1]) ** 2)]) + + def gradient(x): + """ + Gradient of the objective function for Rosenbrock test + """ + return np.array([-2*(1-x[0]) - 400*x[0]*(-x[0]**2+x[1]), + 200*(- x[0]**2+x[1])]) + + return model_init, model_true, objective_function, gradient + + +def rosenbrock_n(n=1E5): + """ + N dimensional Rosenbrock test problem for optimization library testing + + https://en.wikipedia.org/wiki/Rosenbrock_function + """ + model_init = 0.1 * np.ones(int(n)) # This is a guess for the global min + model_true = np.ones(int(n)) def objective_function(x): """ @@ -246,4 +294,5 @@ def gradient(x): return g - return model_init, objective_function, gradient + return model_init, model_true, objective_function, gradient + From 78f0c85ea874356be7327ce7c6a13ceb1fcbbb3b Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 24 Jun 2022 12:28:03 -0800 Subject: [PATCH 023/195] created a new core.py file which contains all the core SeisFlows class definitions, which avoids some funky late type conversions in config defined a seisflows Base object which dictates the structure that all seisflows modules must have. This is intended to replace the individual Base objects defined in each of the sub-modules old Base modules (preprocess, postprocess) will now be named Default to better signify their role in the workflow (Base felt too abstract) removed Solver plugins. they weren't being used Removed error tools as they seemed overly abstract and were only used in one location. Replaced ParameterError with ValueError in the one instance of it Postprocess.default is now redefined with the new Base class definition, which no longer calls sys modules at the top of the script, removes the required property and defines required in __init__, inherits some properties from Base and explicitely defines super() where functions are being inherited. --- seisflows/config.py | 169 +----------- seisflows/core.py | 243 ++++++++++++++++++ seisflows/plugins/solver/__init__.py | 0 seisflows/plugins/solver/specfem2d.py | 133 ---------- seisflows/plugins/solver/specfem3d.py | 63 ----- seisflows/plugins/solver/specfem3d_globe.py | 55 ---- seisflows/postprocess/{base.py => default.py} | 107 ++++---- seisflows/preprocess/base.py | 2 +- seisflows/solver/specfem3d_globe.py | 5 +- seisflows/templates/parameters.yaml | 4 +- seisflows/tests/test_config.py | 3 +- seisflows/tools/err.py | 37 --- seisflows/workflow/test.py | 2 + 13 files changed, 303 insertions(+), 520 deletions(-) create mode 100644 seisflows/core.py delete mode 100644 seisflows/plugins/solver/__init__.py delete mode 100644 seisflows/plugins/solver/specfem2d.py delete mode 100644 seisflows/plugins/solver/specfem3d.py delete mode 100644 seisflows/plugins/solver/specfem3d_globe.py rename seisflows/postprocess/{base.py => default.py} (68%) delete mode 100644 seisflows/tools/err.py diff --git a/seisflows/config.py b/seisflows/config.py index 7ba3126b..deeddbaf 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -23,9 +23,9 @@ from importlib import import_module from seisflows import logger +from seisflows.core import Dict, Null from seisflows.tools import msg, unix from seisflows.tools.wrappers import module_exists -from seisflows.tools.err import ParameterError """ @@ -52,7 +52,7 @@ # Define a package-wide default directory and file naming schema. This will # be returned as a Dict() object, defined below. All of these files and # directories will be created relative to the user-defined working directory -CFGPATHS = dict( +CFGPATHS = Dict( PAR_FILE="parameters.yaml", # Default SeisFlows parameter file SCRATCHDIR="scratch", # SeisFlows internal working directory OUTPUTDIR="output", # Permanent disk storage for state and outputs @@ -181,167 +181,6 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): logger.addHandler(file_handler) -class Dict(dict): - """ - A dictionary replacement which allows for easier parameter access through - getting and setting attributes. Also has some functionality to make string - printing prettier - """ - def __str__(self): - """Pretty print dictionaries and first level nested dictionaries""" - str_ = "" - try: - longest_key = max([len(_) for _ in self.keys()]) - for key, val in self.items(): - str_ += f"{key:<{longest_key}}: {val}\n" - except ValueError: - pass - return str_ - - def __repr__(self): - """Pretty print when calling an instance of this object""" - return(self.__str__()) - - def __getattr__(self, key): - """Attribute-like access of the internal dictionary attributes""" - try: - return self[key] - except KeyError: - raise AttributeError(f"{key} not found in Dict") - - def __setattr__(self, key, val): - """Setting attributes can only be performed one time""" - self.__dict__[key] = val - - -class Null: - """ - A null object that always and reliably does nothing - """ - def __init__(self, *args, **kwargs): - pass - - def __call__(self, *args, **kwargs): - return self - - def __nonzero__(self): - return False - - def __getattr__(self, key): - return self - - def __setattr__(self, key, val): - return self - - def __delattr__(self, key): - return self - - -class SeisFlowsPathsParameters: - """ - A class used to simplify defining required or optional paths and parameters - by enforcing a specific structure to their entry into the environment. - Replaces the functionalities of the old check() functions. - - .. note:: - if a path or parameter is optional it requires a default value. - """ - default_par = "REQUIRED PARAMETER" - default_path = "REQUIRED PATH" - - def __init__(self, base=None): - """ - We simply store paths and parameters as nested dictioanries. Due to the - use of inheritance, the class can be passed to itself on initialization - which means paths and parameters can be adopted from base class - - :type base: seisflows.config.DefinePathsParameters - :param base: paths and parameters from abstract Base class that need to - be inherited by the current child class. - """ - self.parameters, self.paths = {}, {} - if base: - self.parameters.update(base.parameters) - self.paths.update(base.paths) - - def par(self, parameter, required, docstr, par_type, default=None): - """ - Add a parameter to the internal list of parameters - - :type parameter: str - :param parameter: name of the parameter - :type required: bool - :param required: whether or not the parameter is required. If it is not - required, then a default value should be given - :type docstr: str - :param docstr: Short explanatory doc string that defines what the - parameter is used for. - :type par_type: class or str - :param par_type: the parameter type, used for doc strings and also - parameter validation - :param default: default value for the parameter, can be any type - """ - if required: - default = self.default_par - if type(par_type) == type: - par_type = par_type.__name__ - self.parameters[parameter] = {"docstr": docstr, "required": required, - "default": default, "type": par_type} - - def path(self, path, required, docstr, default=None): - """ - Add a path to the internal list of paths - - :type path: str - :param path: name of the parameter - :type required: bool - :param required: whether or not the path is required. If it is not - required, then a default value should be given - :type docstr: str - :param docstr: Short explanatory doc string that defines what the - path is used for. - :type default: str - :param default: default value for the path - - """ - if required: - default = self.default_path - self.paths[path] = {"docstr": docstr, "required": required, - "default": default} - - def validate(self, paths=True, parameters=True): - """ - Set internal paths and parameter values into sys.modules. Should be - called by each modules check() function. - - Ensures that required paths and parameters are set by the User in the - parameter file and that default values are stored for any optional - paths and parameters which are not explicitely set. - - :type paths: bool - :param paths: validate the internal path values - :type parameters: bool - :param parameters: validate the internal parameter values - :raises ParameterError: if a required path or parameter is not set by - the user. - """ - if paths: - sys_path = sys.modules[PATH] - for key, attrs in self.paths.items(): - if attrs["required"] and (key not in sys_path): - raise ParameterError(sys_path, key) - elif key not in sys_path: - setattr(sys_path, key, attrs["default"]) - - if parameters: - sys_par = sys.modules[PAR] - for key, attrs in self.parameters.items(): - if attrs["required"] and (key not in sys_par): - raise ParameterError(sys_par, key) - elif key not in sys_par: - setattr(sys_par, key, attrs["default"]) - - def custom_import(name=None, module=None, classname=None): """ Imports SeisFlows module and extracts class that is the camelcase version @@ -468,7 +307,3 @@ def _unpickle_method(func_name, obj, cls): copyreg.pickle(types.MethodType, _pickle_method, _unpickle_method) -# Because we defined Dict inside this file, we need to convert our CFGPATHS -# to a Dict at the end of the file to allow direct variable access -# !!! TODO I don't really like this implementation, can it be changed? -CFGPATHS = Dict(CFGPATHS) diff --git a/seisflows/core.py b/seisflows/core.py new file mode 100644 index 00000000..2f5057a7 --- /dev/null +++ b/seisflows/core.py @@ -0,0 +1,243 @@ +#!/usr/bin/env python3 +""" +Core class definitions for SeisFlows. Defines some unique class objects that +are used heavily during a Seisflows workflow. +""" +import sys +import logging + + +class Base(object): + """ + Defines the core Base object for all SeisFlows modules. All modules MUST + inherit from the Base object to work properly. This Base class essentially + dictates the required structure of a SeisFlows class. + """ + # Class-specific logger accessed using self.logger. We instantiate loggers + # like this because then inheritance information gets imprinted into the + # logger, making it easier to debug functions which may be multiply + # inherited + + def __init__(self): + """ + Sets the required paths and parameters + """ + self.required = SeisFlowsPathsParameters() + + def module(self, name): + """ + Access globally stored SeisFlows modules located in sys.modules + """ + try: + mod = sys.modules[f"seisflows_{name}"] + except KeyError: + self.logger.warning(f"seisflows_{name} has not been instantiated") + mod = None + return mod + + @property + def logger(self): + """ + An instance specific logger which imprints inheritance information into + the log statements, making it easier to debug functions with + multiple inheritance + """ + return logging.getLogger( + self.__class__.__name__).getChild(self.__class__.__qualname__) + + @property + def par(self): + """ + Access SeisFlows parameters from sys.modules + """ + return self.module("parameters") + + @property + def path(self): + """ + Access SeisFlows paths from sys.modules + """ + return self.module("paths") + + def check(self, validate=True): + """ + General check() function for each module to check the validity of the + user-input parameters and paths + """ + if validate: + self.required.validate() + + def setup(self): + """ + A placeholder function for any initialization or setup tasks that + need to be run once at the beginning of any workflow + """ + return + + def finalize(self): + """ + A placeholder function for any finalization or tear-down tasks that + need to be run at the end of any iteration or workflow + """ + return + + +class Dict(dict): + """ + A dictionary replacement which allows for easier parameter access through + getting and setting attributes. Also has some functionality to make string + printing prettier + """ + def __str__(self): + """Pretty print dictionaries and first level nested dictionaries""" + str_ = "" + try: + longest_key = max([len(_) for _ in self.keys()]) + for key, val in self.items(): + str_ += f"{key:<{longest_key}}: {val}\n" + except ValueError: + pass + return str_ + + def __repr__(self): + """Pretty print when calling an instance of this object""" + return(self.__str__()) + + def __getattr__(self, key): + """Attribute-like access of the internal dictionary attributes""" + try: + return self[key] + except KeyError: + raise AttributeError(f"{key} not found in Dict") + + def __setattr__(self, key, val): + """Setting attributes can only be performed one time""" + self.__dict__[key] = val + + +class Null: + """ + A null object that always and reliably does nothing + """ + def __init__(self, *args, **kwargs): + pass + + def __call__(self, *args, **kwargs): + return self + + def __nonzero__(self): + return False + + def __getattr__(self, key): + return self + + def __setattr__(self, key, val): + return self + + def __delattr__(self, key): + return self + + +class SeisFlowsPathsParameters: + """ + A class used to simplify defining required or optional paths and parameters + by enforcing a specific structure to their entry into the environment. + + .. note:: + if a path or parameter is optional it requires a default value. + """ + default_par = "REQUIRED PARAMETER" + default_path = "REQUIRED PATH" + + def __init__(self, base=None): + """ + We simply store paths and parameters as nested dictioanries. Due to the + use of inheritance, the class can be passed to itself on initialization + which means paths and parameters can be adopted from base class + + :type base: seisflows.config.DefinePathsParameters + :param base: paths and parameters from abstract Base class that need to + be inherited by the current child class. + """ + self.parameters, self.paths = {}, {} + if base: + self.parameters.update(base.parameters) + self.paths.update(base.paths) + + def par(self, parameter, required, docstr, par_type, default=None): + """ + Add a parameter to the internal list of parameters + + :type parameter: str + :param parameter: name of the parameter + :type required: bool + :param required: whether or not the parameter is required. If it is not + required, then a default value should be given + :type docstr: str + :param docstr: Short explanatory doc string that defines what the + parameter is used for. + :type par_type: class or str + :param par_type: the parameter type, used for doc strings and also + parameter validation + :param default: default value for the parameter, can be any type + """ + if required: + default = self.default_par + if type(par_type) == type: + par_type = par_type.__name__ + self.parameters[parameter] = {"docstr": docstr, "required": required, + "default": default, "type": par_type} + + def path(self, path, required, docstr, default=None): + """ + Add a path to the internal list of paths + + :type path: str + :param path: name of the parameter + :type required: bool + :param required: whether or not the path is required. If it is not + required, then a default value should be given + :type docstr: str + :param docstr: Short explanatory doc string that defines what the + path is used for. + :type default: str + :param default: default value for the path + + """ + if required: + default = self.default_path + self.paths[path] = {"docstr": docstr, "required": required, + "default": default} + + def validate(self, paths=True, parameters=True): + """ + Set internal paths and parameter values into sys.modules. Should be + called by each modules check() function. + + Ensures that required paths and parameters are set by the User in the + parameter file and that default values are stored for any optional + paths and parameters which are not explicitely set. + + :type paths: bool + :param paths: validate the internal path values + :type parameters: bool + :param parameters: validate the internal parameter values + :raises ParameterError: if a required path or parameter is not set by + the user. + """ + if paths: + sys_path = sys.modules["seisflows_parameters"] + for key, attrs in self.paths.items(): + if attrs["required"] and (key not in sys_path): + raise KeyError(f"{sys_path} has no key {key}") + elif key not in sys_path: + setattr(sys_path, key, attrs["default"]) + + if parameters: + sys_par = sys.modules["seisflows_paths"] + for key, attrs in self.parameters.items(): + if attrs["required"] and (key not in sys_par): + raise ValueError(sys_par, key) + elif key not in sys_par: + setattr(sys_par, key, attrs["default"]) + diff --git a/seisflows/plugins/solver/__init__.py b/seisflows/plugins/solver/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows/plugins/solver/specfem2d.py b/seisflows/plugins/solver/specfem2d.py deleted file mode 100644 index ffb7b8aa..00000000 --- a/seisflows/plugins/solver/specfem2d.py +++ /dev/null @@ -1,133 +0,0 @@ -#!/usr/bin/env python3 -""" -Plugins used for the numerical solver SPECFEM2D -""" -import sys -from seisflows.tools import array, unix -from seisflows.tools.wrappers import exists, findpath -from seisflows.tools.specfem import getpar, setpar - - -def write_sources(coords, path='.', ws=1., suffix=''): - """ - Writes source information to text file - TODO this has to be adapted for new versions of specfem because the - source file format has changed - """ - sx, sy, sz = coords - - filename = findpath('seisflows.plugins') + '/' + 'solver/specfem2d/SOURCE' - with open(filename, 'r') as f: - lines = f.readlines() - - filename = 'DATA/SOURCE' + suffix - with open(filename, 'w') as f: - f.writelines(lines) - - # adjust source coordinates - setpar('xs', sx, filename) - setpar('zs', sy, filename) - # setpar('ts', ts[0], filename) - - # adjust source amplitude - try: - fs = float(getpar('factor', filename)) - fs *= ws - setpar('factor', str(fs), filename) - except: - pass - - # adjust source wavelet - if 1: - # Ricker wavelet - setpar('time_function_type', 1, filename) - elif 0: - # first derivative of Gaussian - setpar('time_function_type', 2, filename) - elif 0: - # Gaussian - setpar('time_function_type', 3, filename) - elif 0: - # Dirac - setpar('time_function_type', 4, filename) - elif 0: - # Heaviside - setpar('time_function_type', 5, filename) - - # setpar('f0', par['F0'], filename) - - -def write_receivers(coords, path='.'): - """ Writes receiver information to text file - """ - rx, ry, rz = coords - nr = len(coords[0]) - - filename = path + '/' + 'DATA/STATIONS' - - lines = [] - for ir in range(nr): - line = '' - line += 'S%06d' % ir + ' ' - line += 'AA' + ' ' - line += '%11.5e' % rx[ir] + ' ' - line += '%11.5e' % ry[ir] + ' ' - line += '%3.1f' % 0. + ' ' - line += '%3.1f' % 0. + '\n' - lines.extend(line) - - with open(filename, 'w') as f: - f.writelines(lines) - - -def smooth_legacy(input_path='', output_path='', parameters=[], span=0.): - """ - - :param input_path: - :param output_path: - :param parameters: - :param span: - :return: - """ - solver = sys.modules['seisflows_solver'] - PATH = sys.modules['seisflows_paths'] - - if not exists(input_path): - raise Exception - - if not exists(output_path): - unix.mkdir(output_path) - - if solver.mesh_properties.nproc != 1: - raise NotImplementedError - - # intialize arrays - kernels = {} - for key in parameters or solver.parameters: - kernels[key] = [] - - coords = {} - for key in ['x', 'z']: - coords[key] = [] - - # read kernels - for key in parameters or solver.parameters: - kernels[key] += solver.io.read_slice(input_path, key+'_kernel', 0) - - if not span: - return kernels - - # read coordinates - for key in ['x', 'z']: - coords[key] += solver.io.read_slice(PATH.MODEL_INIT, key, 0) - - mesh = array.stack(coords['x'][0], coords['z'][0]) - - # apply smoother - for key in parameters or solver.parameters: - kernels[key] = [array.meshsmooth(kernels[key][0], mesh, span)] - - # write smooth kernels - for key in parameters or solver.parameters: - solver.io.write_slice(kernels[key][0], output_path, key+'_kernel', - 0) diff --git a/seisflows/plugins/solver/specfem3d.py b/seisflows/plugins/solver/specfem3d.py deleted file mode 100644 index 04ba7496..00000000 --- a/seisflows/plugins/solver/specfem3d.py +++ /dev/null @@ -1,63 +0,0 @@ -#!/usr/bin/env python3 -""" -Plugins used for the numerical solver SPECFEM3D_CARTESIAN -""" -import os -from seisflows.tools.wrappers import findpath -from seisflows.tools.specfem import setpar - - -def write_sources(par, h, path="."): - """ - Writes FORCESOLUTION source information to text file - - :type par: dict - :param par: seisflows.PAR - :type h: - :param h: - :type path: str - :param path: path to write sources to - """ - file = os.path.join(findpath("seisflows.plugins"), "specfem3d", - "FORCESOLUTION") - with open(file, "r") as f: - lines = f.readlines() - - file = "DATA/FORCESOURCE" - with open(file, "w") as f: - f.writelines(lines) - - # adjust coordinates - setpar("xs", h.sx[0], file) - setpar("zs", h.sz[0], file) - setpar("ts", h.ts, file) - - # adjust wavelet - setpar("f0", par["F0"], file) - - -def write_receivers(h): - """ - Writes receiver information to text file - - :type h: - :param h: - """ - file = "DATA/STATIONS" - lines = [] - - # loop over receivers - for ir in range(h.nr): - line = "" - line += "S%06d" % ir + " " - line += "AA" + " " - line += "%11.5e" % h.rx[ir] + " " - line += "%11.5e" % h.rz[ir] + " " - line += "%3.1f" % 0. + " " - line += "%3.1f" % 0. + "\n" - lines.extend(line) - - with open(file, "w") as f: - f.writelines(lines) - - diff --git a/seisflows/plugins/solver/specfem3d_globe.py b/seisflows/plugins/solver/specfem3d_globe.py deleted file mode 100644 index 805cc113..00000000 --- a/seisflows/plugins/solver/specfem3d_globe.py +++ /dev/null @@ -1,55 +0,0 @@ -#!/usr/bin/env python3 -""" -Plugins used for the numerical solver SPECFEM3D_GLOBE -""" - -# Local imports -from seisflows.tools.wrappers import findpath -from seisflows.tools.specfem import setpar - - -def write_sources(PAR, h, path='.'): - """ Writes source information to text file - """ - filename = findpath('seisflows.plugins') + '/' + 'specfem3d/SOURCE' - with open(filename, 'r') as f: - lines = f.readlines() - - filename = 'DATA/SOURCE' - with open(filename, 'w') as f: - f.writelines(lines) - - # adjust coordinates - setpar('xs', h.sx[0], filename) - setpar('zs', h.sz[0], filename) - setpar('ts', h.ts, filename) - - # adjust wavelet - setpar('f0', PAR['F0'], filename) - - -def write_receivers(h): - """ Writes receiver information to text file - """ - filename = 'DATA/STATIONS' - lines = [] - - # loop over receivers - for ir in range(h.nr): - line = '' - line += 'S%06d' % ir + ' ' - line += 'AA' + ' ' - line += '%11.5e' % h.rx[ir] + ' ' - line += '%11.5e' % h.rz[ir] + ' ' - line += '%3.1f' % 0. + ' ' - line += '%3.1f' % 0. + '\n' - lines.extend(line) - - with open(filename, 'w') as f: - f.writelines(lines) - - -def write_parameters(par, version): - """ Writes parameters to text file - """ - raise NotImplementedError diff --git a/seisflows/postprocess/base.py b/seisflows/postprocess/default.py similarity index 68% rename from seisflows/postprocess/base.py rename to seisflows/postprocess/default.py index 1bf03469..4b5c1060 100644 --- a/seisflows/postprocess/base.py +++ b/seisflows/postprocess/default.py @@ -6,79 +6,70 @@ """ import os import sys -import logging +from seisflows.core import Base from seisflows.tools import msg -from seisflows.config import SeisFlowsPathsParameters -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] -system = sys.modules['seisflows_system'] -solver = sys.modules['seisflows_solver'] - - -class Base: +class Default(Base): """ Postprocessing in a Seisflows workflow includes tasks such as regularization, smoothing, sharpening, masking and related operations on models or gradients """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by __init__! Attributes are just initialized as NoneTypes for clarity and docstrings """ - pass - - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters() - - # Define the Parameters required by this module - sf.par("SMOOTH_H", required=False, default=0., par_type=float, - docstr="Gaussian half-width for horizontal smoothing in units " - "of meters. If 0., no smoothing applied") - - sf.par("SMOOTH_V", required=False, default=0., par_type=float, - docstr="Gaussian half-width for vertical smoothing in units " - "of meters") - - sf.par("TASKTIME_SMOOTH", required=False, default=1, par_type=int, - docstr="Large radii smoothing may take longer than normal " - "tasks. Allocate additional smoothing task time " - "as a multiple of TASKTIME") + super().__init__() + + self.required.par( + "SMOOTH_H", required=False, default=0., par_type=float, + docstr="Gaussian half-width for horizontal smoothing in units of " + "meters. If 0., no smoothing applied" + ) + + self.required.par( + "SMOOTH_V", required=False, default=0., par_type=float, + docstr="Gaussian half-width for vertical smoothing in units of " + "meters" + ) + + self.required.par( + "TASKTIME_SMOOTH", required=False, default=1, par_type=int, + docstr="Large radii smoothing may take longer than normal tasks. " + "Allocate additional smoothing task time as a multiple of " + "TASKTIME" + ) # Define the Paths required by this module - sf.path("MASK", required=False, - docstr="Directory to mask files for gradient masking") - - return sf + self.required.path( + "MASK", required=False, docstr="Directory to mask files for " + "gradient masking" + ) def check(self, validate=True): """ Checks parameters and paths """ - if validate: - self.required.validate() + super().check(validate=validate) - if PATH.MASK: - assert os.path.exists(PATH.MASK), \ + if self.path.MASK: + assert os.path.exists(self.path.MASK), \ f"PATH.MASK provided but does not exist" def setup(self): """ - A placeholder function for initialization or setup tasks. Base - postprocessing does not require any setup + Setup tasks """ - pass + super().setup() + + def finalize(self): + """ + Finalization tasks + """ + super().finalize() def write_gradient(self, path): """ @@ -94,6 +85,9 @@ def write_gradient(self, path): :param path: directory from which kernels are read and to which gradient is written """ + system = self.module("system") + solver = self.module("solver") + if not os.path.exists(path): print(msg.cli("Gradient path does in postprocess.write_gradient " "does not exist but should", @@ -109,7 +103,7 @@ def write_gradient(self, path): # Run postprocessing as job on system as it's computationally intensive self.logger.info("processing kernels into gradient on system...") - system.run("postprocess", "process_kernels", single=True, + system.run("postprocess", "_process_kernels", single=True, path=path_kernels, logger=self.logger) # Access the gradient information stored in the kernel summation @@ -122,11 +116,11 @@ def write_gradient(self, path): # log dm --> dm (see Eq.13 Tromp et al 2005) gradient *= solver.merge(solver.load(path_model)) - if PATH.MASK: + if self.path.MASK: self.logger.info(f"masking gradient") # to scale the gradient, users can supply "masks" by exactly # mimicking the file format in which models are stored - mask = solver.merge(solver.load(PATH.MASK)) + mask = solver.merge(solver.load(self.path.MASK)) # While both masking and preconditioning involve scaling the # gradient, they are fundamentally different operations: @@ -141,8 +135,7 @@ def write_gradient(self, path): solver.save(solver.split(gradient), path=path_grad, suffix="_kernel") - @staticmethod - def process_kernels(path, logger): + def _process_kernels(self, path, logger): """ Sums kernels from individual sources, with optional smoothing @@ -157,6 +150,8 @@ def process_kernels(path, logger): :param logger: Class-specific logging module, log statements pushed from this logger will be tagged by its specific module/classname """ + solver = self.module("solver") + if not os.path.exists(path): print(msg.cli("Gradient path in postprocess.process_kernels " "does not exist but should", @@ -167,16 +162,16 @@ def process_kernels(path, logger): path_sum_nosmooth = os.path.join(path, "sum_nosmooth") path_sum = os.path.join(path, "sum") - if (PAR.SMOOTH_H > 0) or (PAR.SMOOTH_V > 0): - logger.debug(f"saving unsmoothed and summed kernels to:\n" + if (self.par.SMOOTH_H > 0) or (self.par.SMOOTH_V > 0): + logger.debug(f"saving un-smoothed and summed kernels to:\n" f"{path_sum_nosmooth}") solver.combine(input_path=path, output_path=path_sum_nosmooth) - logger.info(f"smoothing gradient: H={PAR.SMOOTH_H}m, " - f"V={PAR.SMOOTH_V}m") + logger.info(f"smoothing gradient: H={self.par.SMOOTH_H}m, " + f"V={self.par.SMOOTH_V}m") logger.debug(f"saving smoothed kernels to:\n{path_sum}") solver.smooth(input_path=path_sum_nosmooth, output_path=path_sum, - span_h=PAR.SMOOTH_H, span_v=PAR.SMOOTH_V) + span_h=self.par.SMOOTH_H, span_v=self.par.SMOOTH_V) # Combine all the input kernels, generating the unscaled gradient else: diff --git a/seisflows/preprocess/base.py b/seisflows/preprocess/base.py index 2e6b603c..41a2dacb 100644 --- a/seisflows/preprocess/base.py +++ b/seisflows/preprocess/base.py @@ -20,7 +20,7 @@ PATH = sys.modules["seisflows_paths"] -class Base: +class Default: """ Default SeisFlows preprocessing class diff --git a/seisflows/solver/specfem3d_globe.py b/seisflows/solver/specfem3d_globe.py index ca35a90a..66f7dd5c 100644 --- a/seisflows/solver/specfem3d_globe.py +++ b/seisflows/solver/specfem3d_globe.py @@ -10,9 +10,7 @@ import logging from glob import glob -import seisflows.plugins.solver.specfem3d_globe as solvertools -from seisflows.tools.specfem import Minmax # Model, Minmax, -# from seisflows.plugins.io import loadbypar, copybin, loadbin, savebin +from seisflows.tools.specfem import Minmax from seisflows.tools import unix, msg from seisflows.tools.wrappers import Struct, exists from seisflows.config import custom_import, SeisFlowsPathsParameters @@ -29,7 +27,6 @@ class Specfem3DGlobe(custom_import("solver", "specfem3d")): !!! See base class for method descriptions !!! """ - # Class-specific logger accessed using self.logger logger = logging.getLogger(__name__).getChild(__qualname__) def __init__(self): diff --git a/seisflows/templates/parameters.yaml b/seisflows/templates/parameters.yaml index ed38b460..f32a3cb2 100644 --- a/seisflows/templates/parameters.yaml +++ b/seisflows/templates/parameters.yaml @@ -28,5 +28,5 @@ WORKFLOW: inversion SOLVER: specfem2d SYSTEM: workstation OPTIMIZE: gradient -PREPROCESS: base -POSTPROCESS: base +PREPROCESS: default +POSTPROCESS: default diff --git a/seisflows/tests/test_config.py b/seisflows/tests/test_config.py index b3eb7d60..9fe53aae 100644 --- a/seisflows/tests/test_config.py +++ b/seisflows/tests/test_config.py @@ -9,7 +9,6 @@ from unittest.mock import patch from seisflows import config from seisflows.seisflows import SeisFlows -from seisflows.tools.err import ParameterError TEST_DIR = os.path.join(config.ROOT_DIR, "tests") @@ -115,7 +114,7 @@ def test_seisflows_paths_parameters(sfinit): # These parameters are not defined and are expected to throw parameter error sfpp.path("UNDEFINED", required=True, docstr="This path is not in the test parameter file") - with pytest.raises(ParameterError): + with pytest.raises(ValueError): sfpp.validate() diff --git a/seisflows/tools/err.py b/seisflows/tools/err.py deleted file mode 100644 index 2e984051..00000000 --- a/seisflows/tools/err.py +++ /dev/null @@ -1,37 +0,0 @@ -#!/usr/bin/env python3 -""" -Custom errors for Seisflows -""" - - -class ParameterError(ValueError): - """ - A new ValueError class which explains the Parameter's that threw the error - """ - def __init__(self, *args): - if len(args) == 0: - msg = "Bad parameter." - super(ParameterError, self).__init__(msg) - elif len(args) == 1: - msg = f"Bad parameter: {args[0]}" - super(ParameterError, self).__init__(msg) - elif args[1] not in args[0]: - msg = f"{args[1]} is not defined." - super(ParameterError, self).__init__(msg) - elif key in obj: - msg = f"{args[0]} has bad value: {args[1].__getattr__(args[0])}" - super(ParameterError, self).__init__(msg) - -class CheckError(ValueError): - """ - An error called by the Check functions within each module, that returns the - name of the class that raised the error, as well as the parameter in - question. - """ - def __init__(self, cls, par): - """ - CheckError simply returns a print message - """ - msg = f"{cls.__class__.__name__} requires parameter {par}" - super(CheckError, self).__init__(msg) - diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index ec761720..b838406c 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -159,6 +159,8 @@ def test_optimize(self): """ Test optimization module with a simple Rosenbrock function """ + PAR.log_level = "CRITICAL" + m_new, m_true, objective_function, gradient = rosenbrock() optimize.setup(m_new=m_new) From 156f820b3ae5dda503bbdcbc49ccf213c312d275 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 24 Jun 2022 12:34:46 -0800 Subject: [PATCH 024/195] added some additional comments to the Base class to explain how things work --- seisflows/core.py | 35 +++++++++++++++++++++++++---------- 1 file changed, 25 insertions(+), 10 deletions(-) diff --git a/seisflows/core.py b/seisflows/core.py index 2f5057a7..53cdb92c 100644 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -13,20 +13,22 @@ class Base(object): inherit from the Base object to work properly. This Base class essentially dictates the required structure of a SeisFlows class. """ - # Class-specific logger accessed using self.logger. We instantiate loggers - # like this because then inheritance information gets imprinted into the - # logger, making it easier to debug functions which may be multiply - # inherited - def __init__(self): """ - Sets the required paths and parameters + SeisFlows instantiates its required parameters through the + SeisFlowsPathsParameters class, which scaffolds a rigid framework of + how parameters and paths should be defined by the program. This is + then used to build the parameter file dynamically. """ self.required = SeisFlowsPathsParameters() def module(self, name): """ Access globally stored SeisFlows modules located in sys.modules + + :rtype: Class or Dict or None + :return: Returns a SeisFlows module or Dictionary containing paths or + parameters. Else None if the chosen module has not been instantiated """ try: mod = sys.modules[f"seisflows_{name}"] @@ -48,14 +50,24 @@ def logger(self): @property def par(self): """ - Access SeisFlows parameters from sys.modules + Quick access SeisFlows parameters from sys.modules. Throws a warning + if parameters have not been instantiated + + :rtype: Dict or None + :return: Returns a Dictionary with instantiated parameters, or None if + parameters have not been instantiated """ return self.module("parameters") @property def path(self): """ - Access SeisFlows paths from sys.modules + Quick access SeisFlows paths from sys.modules. Throws a warning + if paths have not been instantiated + + :rtype: Dict or None + :return: Returns a Dictionary with instantiated paths, or None if + parameters have not been instantiated """ return self.module("paths") @@ -67,17 +79,20 @@ def check(self, validate=True): if validate: self.required.validate() + # Example of a check statement + # assert(self.par.PARAMETER == example_value), f"Parameter != example" + def setup(self): """ A placeholder function for any initialization or setup tasks that - need to be run once at the beginning of any workflow + need to be run once at the beginning of any workflow. """ return def finalize(self): """ A placeholder function for any finalization or tear-down tasks that - need to be run at the end of any iteration or workflow + need to be run at the end of any iteration or workflow. """ return From de08f5315dfd5a3d33577fe7834051903fd789a4 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 27 Jun 2022 12:41:15 -0800 Subject: [PATCH 025/195] getting rid of PAR and PATH indirection in config which were just variables housing strings for seisflows_parameters and seisflows_paths --- seisflows/config.py | 10 +++------- 1 file changed, 3 insertions(+), 7 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index deeddbaf..9f9c5255 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -42,10 +42,6 @@ NAMES = ["system", "preprocess", "solver", "postprocess", "optimize", "workflow"] -# These define the sys.modules names where parameter values and paths are stored -PAR = "seisflows_parameters" -PATH = "seisflows_paths" - # The location of this config file, which is the main repository ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) @@ -78,7 +74,7 @@ def save(path): unix.mkdir(path) # Save the paths and parameters into a JSON file - for name in [PAR, PATH]: + for name in ["seisflows_parameters", "seisflows_paths"]: fullfile = os.path.join(path, f"{name}.json") with open(fullfile, "w") as f: json.dump(sys.modules[name], f, sort_keys=True, indent=4) @@ -99,7 +95,7 @@ def load(path): :param path: path to the previously saved session """ # Load parameters and paths from a JSON file - for name in [PAR, PATH]: + for name in ["seisflows_parameters", "seisflows_paths"]: fullfile = os.path.join(os.path.abspath(path), f"{name}.json") with open(fullfile, "r") as f: sys.modules[name] = Dict(json.load(f)) @@ -223,7 +219,7 @@ class 'Inversion'. # Attempt to retrieve currently assigned classname from parameters if module is None: try: - module = sys.modules[PAR][name.upper()] + module = sys.modules["seisflows_parameters"][name.upper()] except KeyError: return Null # If this still returns nothing, then no module has been assigned From 0294257a76675ccb33617874e0613ae3180f6c02 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 27 Jun 2022 13:31:20 -0800 Subject: [PATCH 026/195] updatiedclass structure for optimization module, key points are that: 1) not explicitely importing opther modules with sys modules during import, but are doing this at run time with the self.par attribute required paths and parameters are defined in __init__ and the required() attribute is now removed. We explicitely call inherited functions, even if they are just calling the underlying functions. This will make it easier for new users to track down where functions are coming from. Child classes which define new methods will make these methods private (leading underscore) so as to not confuse them with inherited or overwritten methods of the base class also going back to the old method of explicitely stating things (e.g., naming 'scratch' instead of hiding it behind PATH.SCRATCH). This leads to repeated strings, but makes it easier to follow structure --- seisflows/optimize/LBFGS.py | 119 +++++------ seisflows/optimize/NLCG.py | 76 +++---- seisflows/optimize/gradient.py | 196 +++++++++---------- seisflows/preprocess/{base.py => default.py} | 4 +- seisflows/seisflows.py | 6 +- seisflows/solver/base.py | 4 +- seisflows/solver/specfem2d.py | 3 +- seisflows/system/base.py | 3 +- seisflows/system/workstation.py | 5 +- seisflows/templates/base_class.py | 92 --------- seisflows/templates/sub_class.py | 77 -------- seisflows/workflow/base.py | 3 +- seisflows/workflow/inversion.py | 9 +- seisflows/workflow/test.py | 5 +- 14 files changed, 215 insertions(+), 387 deletions(-) rename seisflows/preprocess/{base.py => default.py} (99%) delete mode 100644 seisflows/templates/base_class.py delete mode 100644 seisflows/templates/sub_class.py diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 10a9407c..b6176bb8 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -4,20 +4,16 @@ It supercedes the `seisflows.optimize.base` class """ import os -import sys import logging import numpy as np +from seisflows.optimize.gradient import Gradient from seisflows.tools import unix from seisflows.tools.msg import DEG from seisflows.tools.math import angle -from seisflows.config import custom_import, SeisFlowsPathsParameters -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - -class LBFGS(custom_import("optimize", "gradient")): +class LBFGS(Gradient): """ The Limited memory BFGS algorithm Calls upon seisflows.plugin.optimize.LBFGS to accomplish LBFGS algorithm @@ -50,9 +46,6 @@ class LBFGS(custom_import("optimize", "gradient")): status == 0 : not finished status < 0 : failed """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. @@ -81,46 +74,41 @@ def __init__(self): """ super().__init__() + # Define the Parameters required by this module + self.required.par( + "LINESEARCH", required=False, default="Backtrack", par_type=str, + docstr="Algorithm to use for line search, see " + "seisflows.plugins.line_search for available choices" + ) + + self.required.par( + "LBFGSMEM", required=False, default=3, par_type=int, + docstr="Max number of previous gradients to retain in local memory" + ) + + self.required.par( + "LBFGSMAX", required=False, par_type=int, default="inf", + docstr="LBFGS periodic restart interval, between 1 and 'inf'" + ) + + self.required.par( + "LBFGSTHRESH", required=False, default=0., par_type=float, + docstr="LBFGS angle restart threshold" + ) + self.LBFGS_iter = 0 self.memory_used = 0 self.LBFGS_dir = "LBFGS" self.y_file = os.path.join(self.LBFGS_dir, "Y") self.s_file = os.path.join(self.LBFGS_dir, "S") - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters(super().required) - - # Define the Parameters required by this module - sf.par("LINESEARCH", required=False, default="Backtrack", par_type=str, - docstr="Algorithm to use for line search, see " - "seisflows.plugins.line_search for available choices") - - sf.par("LBFGSMEM", required=False, default=3, par_type=int, - docstr="Max number of previous gradients to retain " - "in local memory") - - sf.par("LBFGSMAX", required=False, par_type=int, default="inf", - docstr="LBFGS periodic restart interval, between 1 and 'inf'") - - sf.par("LBFGSTHRESH", required=False, default=0., par_type=float, - docstr="LBFGS angle restart threshold") - - return sf - def check(self, validate=True): """ Checks parameters, paths, and dependencies """ - super().check(validate=False) - if validate: - self.required.validate() + super().check(validate=validate) - assert(PAR.LINESEARCH.upper() == "BACKTRACK"), \ + assert(self.par.LINESEARCH.upper() == "BACKTRACK"), \ "LBFGS requires a Backtracking line search" def setup(self): @@ -130,9 +118,21 @@ def setup(self): super().setup() # Create a separate directory for LBFGS matters - unix.cd(PATH.OPTIMIZE) + unix.cd(self.path.OPTIMIZE) unix.mkdir(self.LBFGS_dir) + def finalize(self): + """Inherit from optimize.gradient.Gradient""" + self.finalize() + + def load(self, name): + """Inherit from optimize.gradient.Gradient""" + return self.load(name=name) + + def save(self, name, vector): + """Inherit from optimize.gradient.Gradient""" + self.save(name=name, vector=vector) + def compute_direction(self): """ Call on the L-BFGS optimization machinery to compute a search @@ -152,7 +152,7 @@ def compute_direction(self): self.logger.info(f"computing search direction with L-BFGS") self.LBFGS_iter += 1 - unix.cd(PATH.OPTIMIZE) + unix.cd(self.path.OPTIMIZE) # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration @@ -164,7 +164,7 @@ def compute_direction(self): restarted = 0 # Restart condition or first iteration lead to setting search direction # as the inverse gradient (i.e., default to steepest descent) - elif self.LBFGS_iter > PAR.LBFGSMAX: + elif self.LBFGS_iter > self.par.LBFGSMAX: self.logger.info("restarting L-BFGS due to periodic restart " "condition. setting search direction as" "inverse gradient") @@ -176,12 +176,12 @@ def compute_direction(self): # Update the search direction, apply the inverse Hessian such that # 'q' becomes the new search direction 'g' self.logger.info("applying inverse Hessian to gradient") - s, y = self.update() - q = self.apply(g, s, y) + s, y = self._update() + q = self._apply(g, s, y) # Determine if the new search direction is appropriate by checking # its angle to the previous search direction - if self.check_status(g, q): + if self._check_status(g, q): self.logger.info("new L-BFGS search direction found") p_new = -q restarted = 0 @@ -198,8 +198,7 @@ def compute_direction(self): def restart(self): """ - On top of base restart class, include a restart of the LBFGS internal - memory and memmaps + Overwrite the optimization restart to restart the L-BFGS schema """ super().restart() @@ -208,13 +207,21 @@ def restart(self): self.LBFGS_iter = 1 self.memory_used = 0 - unix.cd(PATH.OPTIMIZE) + unix.cd(self.path.OPTIMIZE) s = np.memmap(filename=self.s_file, mode="r+") y = np.memmap(filename=self.y_file, mode="r+") s[:] = 0. y[:] = 0. - def update(self): + def write_stats(self): + """Inherit from optimize.gradient.Gradient""" + self.write_stats() + + def check_model(self, m, min_pr=-1, max_pr=0.5): + """Inherit from optimize.gradient.Gradient""" + self.check_model(m=m, min_pr=min_pr, max_pr=max_pr) + + def _update(self): """ Updates L-BFGS algorithm history @@ -233,7 +240,7 @@ def update(self): :rtype y: np.memmap :return y: memory of the gradient differences `g_new - g_old` """ - unix.cd(PATH.OPTIMIZE) + unix.cd(self.path.OPTIMIZE) # Determine the iterates for model m and gradient g s_k = self.load("m_new") - self.load("m_old") @@ -241,7 +248,7 @@ def update(self): # Determine the shape of the memory map (length of model, length of mem) m = len(s_k) - n = PAR.LBFGSMEM + n = self.par.LBFGSMEM # Initial iteration, need to create the memory map if self.memory_used == 0: @@ -267,12 +274,12 @@ def update(self): y[:, 0] = y_k # Keep track of the memory used - if self.memory_used < PAR.LBFGSMEM: + if self.memory_used < self.par.LBFGSMEM: self.memory_used += 1 return s, y - def apply(self, q, s=None, y=None): + def _apply(self, q, s=None, y=None): """ Applies L-BFGS inverse Hessian to given vector @@ -286,12 +293,12 @@ def apply(self, q, s=None, y=None): :rtype r: np.array :return r: new search direction from application of L-BFGS """ - unix.cd(PATH.OPTIMIZE) + unix.cd(self.path.OPTIMIZE) # If no memmaps are given as arguments, instantiate them if s is None or y is None: m = len(q) - n = PAR.LBFGSMEM + n = self.par.LBFGSMEM s = np.memmap(filename=self.s_file, mode="w+", dtype="float32", shape=(m, n)) y = np.memmap(filename=self.y_file, mode="w+", dtype="float32", @@ -326,7 +333,7 @@ def apply(self, q, s=None, y=None): return r - def check_status(self, g, r): + def _check_status(self, g, r): """ Check the status of the apply() function, determine if restart necessary Return of False means restart, return of True means good to go. @@ -344,7 +351,7 @@ def check_status(self, g, r): if not 0. < theta < 90.: self.logger.info("restarting L-BFGS, theta not a descent direction") okay = False - elif theta > 90. - PAR.LBFGSTHRESH: + elif theta > 90. - self.par.LBFGSTHRESH: self.logger.info("restarting L-BFGS due to practical safeguard") okay = False else: diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index f05152da..dec2cda7 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -1,21 +1,14 @@ #!/usr/bin/env python3 """ This is the custom class for an NLCG optimization schema. -It supercedes the `seisflows.optimize.base` class +It inherits from the `seisflows.optimize.gradient.Gradient` class """ -import sys -import logging -import numpy as np - -from seisflows.config import custom_import, SeisFlowsPathsParameters +from seisflows.optimize.gradient import Gradient from seisflows.tools import unix from seisflows.tools.math import dot -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] - -class NLCG(custom_import("optimize", "gradient")): +class NLCG(Gradient): """ Nonlinear conjugate gradient method @@ -38,9 +31,6 @@ class NLCG(custom_import("optimize", "gradient")): status == 0 : not finished status < 0 : failed """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. @@ -51,36 +41,42 @@ def __init__(self): optimization iter. Keeps track of internal NLCG memory. """ super().__init__() + + self.required.par( + "NLCGMAX", required=False, default="null", par_type=float, + docstr="NLCG periodic restart interval, between 1 and inf" + ) + self.required.par( + "NLCGTHRESH", required=False, default="null", par_type=float, + docstr="NLCG conjugacy restart threshold, between 1 and inf" + ) self.NLCG_iter = 0 self.calc_beta = pollak_ribere # !!! Allow the user to choose this fx? - @property - def required(self): + def check(self, validate=True): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. + Checks parameters, paths, and dependencies """ - sf = SeisFlowsPathsParameters(super().required) + super().check(validate=validate) - # Define the Parameters required by this module - sf.par("NLCGMAX", required=False, default="null", par_type=float, - docstr="NLCG periodic restart interval, between 1 and inf") + assert(self.par.LINESEARCH.upper() == "BRACKET"), \ + f"NLCG requires a bracketing line search algorithm" - sf.par("NLCGTHRESH", required=False, default="null", par_type=float, - docstr="NLCG conjugacy restart threshold, between 1 and inf") + def setup(self): + """Inherit from optimize.gradient.Gradient""" + self.setup() - return sf + def finalize(self): + """Inherit from optimize.gradient.Gradient""" + self.finalize() - def check(self, validate=True): - """ - Checks parameters, paths, and dependencies - """ - if validate: - self.required.validate() - super().check(validate=False) + def load(self, name): + """Inherit from optimize.gradient.Gradient""" + return self.load(name=name) - assert(PAR.LINESEARCH.upper() == "BRACKET"), \ - f"NLCG requires a bracketing line search algorithm" + def save(self, name, vector): + """Inherit from optimize.gradient.Gradient""" + self.save(name=name, vector=vector) def compute_direction(self): """ @@ -102,7 +98,7 @@ def compute_direction(self): self.logger.debug(f"computing search direction with NLCG") self.NLCG_iter += 1 - unix.cd(PATH.OPTIMIZE) + unix.cd(self.path.OPTIMIZE) # Load the current gradient direction g_new = self.load("g_new") @@ -115,7 +111,7 @@ def compute_direction(self): restarted = 0 # CASE 2: Force restart if the iterations have surpassed the maximum # number of allowable iter - elif self.NLCG_iter > PAR.NLCGMAX: + elif self.NLCG_iter > self.par.NLCGMAX: self.logger.info("restarting NLCG due to periodic restart " "condition. setting search direction as inverse " "gradient") @@ -137,7 +133,7 @@ def compute_direction(self): p_new = -g_new + beta * p_old # Check restart conditions, return search direction and status - if check_conjugacy(g_new, g_old) > PAR.NLCGTHRESH: + if check_conjugacy(g_new, g_old) > self.par.NLCGTHRESH: self.logger.info("restarting NLCG due to loss of conjugacy") self.restart() p_new = -g_new @@ -162,6 +158,14 @@ def restart(self): super().restart() self.NLCG_iter = 1 + def write_stats(self): + """Inherit from optimize.gradient.Gradient""" + self.write_stats() + + def check_model(self, m, min_pr=-1, max_pr=0.5): + """Inherit from optimize.gradient.Gradient""" + self.check_model(m=m, min_pr=min_pr, max_pr=max_pr) + def fletcher_reeves(g_new, g_old, precond=lambda x: x): """ diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 7ad4c4c4..ce860415 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -11,22 +11,16 @@ By default the base class implements a steepest descent optimization """ import os -import sys -import logging import numpy as np +from seisflows.core import Base from seisflows.tools import msg, unix from seisflows.tools.math import angle, dot from seisflows.plugins import line_search, preconds from seisflows.tools.math import poissons_ratio -from seisflows.config import SeisFlowsPathsParameters -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] -solver = sys.modules["seisflows_solver"] - -class Gradient: +class Gradient(Base): """ Nonlinear optimization abstract base class poviding a gradient/steepest descent optimization algorithm. @@ -51,9 +45,6 @@ class Gradient: algorithm. """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ Initialize internally used variables for optimization workflow @@ -70,6 +61,41 @@ def __init__(self): :param restarted: a flag signalling if the optimization algorithm has been restarted recently """ + super().__init__() + + # Define the Parameters required by this module + self.required.par( + "LINESEARCH", required=False, default="Bracket", par_type=str, + docstr="Algorithm to use for line search, see " + "seisflows.plugins.line_search for available choices" + ) + self.required.par( + "PRECOND", required=False, par_type=str, + docstr="Algorithm to use for preconditioning gradients, see " + "seisflows.plugins.preconds for available choices" + ) + self.required.par( + "STEPCOUNTMAX", required=False, default=10, par_type=int, + docstr="Max number of trial steps in line search before a " + "change in line search behavior" + ) + self.required.par( + "STEPLENINIT", required=False, default=0.05, par_type=float, + docstr="Initial line search step length, as a fraction of current " + "model parameters" + ) + self.required.par( + "STEPLENMAX", required=False, default=0.5, par_type=float, + docstr="Max allowable step length, as a fraction of current model " + "parameters" + ) + self.required.path( + "OPTIMIZE", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "optimize"), + docstr="scratch path for nonlinear optimization data" + ) + + # Internally used parameters self.iter = 1 self.line_search = None self.precond = None @@ -79,103 +105,59 @@ def __init__(self): "p_new", "p_old", "alpha", "f_new", "f_old", "f_try"] - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters() - - # Define the Parameters required by this module - sf.par("LINESEARCH", required=False, default="Bracket", par_type=str, - docstr="Algorithm to use for line search, see " - "seisflows.plugins.line_search for available choices") - - sf.par("PRECOND", required=False, par_type=str, - docstr="Algorithm to use for preconditioning gradients, see " - "seisflows.plugins.preconds for available choices") - - sf.par("STEPCOUNTMAX", required=False, default=10, par_type=int, - docstr="Max number of trial steps in line search before a " - "change in line search behavior") - - sf.par("STEPLENINIT", required=False, default=0.05, par_type=float, - docstr="Initial line search step length, as a fraction " - "of current model parameters") - - sf.par("STEPLENMAX", required=False, default=0.5, par_type=float, - docstr="Max allowable step length, as a fraction of " - "current model parameters") - - # Define the Paths required by this module - sf.path("OPTIMIZE", required=False, - default=os.path.join(PATH.SCRATCH, "optimize"), - docstr="scratch path for nonlinear optimization data") - - return sf - def check(self, validate=True): """ Checks parameters, paths, and dependencies """ - if validate: - self.required.validate() + super().check(validate=validate) - if PAR.LINESEARCH: - assert PAR.LINESEARCH in dir(line_search), \ + if self.par.LINESEARCH: + assert self.par.LINESEARCH in dir(line_search), \ f"LINESEARCH parameter must be in {dir(line_search)}" - if PAR.PRECOND: - assert PAR.PRECOND in dir(preconds), \ + if self.par.PRECOND: + assert self.par.PRECOND in dir(preconds), \ f"PRECOND must be in {dir(preconds)}" - assert 0. < PAR.STEPLENINIT, f"STEPLENINIT must be >= 0." - assert 0. < PAR.STEPLENMAX, f"STEPLENMAX must be >= 0." - assert PAR.STEPLENINIT < PAR.STEPLENMAX, \ + assert 0. < self.par.STEPLENINIT, f"STEPLENINIT must be >= 0." + assert 0. < self.par.STEPLENMAX, f"STEPLENMAX must be >= 0." + assert self.par.STEPLENINIT < self.par.STEPLENMAX, \ f"STEPLENINIT must be < STEPLENMAX" - def setup(self, m_new=None): + def setup(self): """ Sets up nonlinear optimization machinery - - :type m_new: np.array - :param m_new: Initial model vector which can be user-provided. Otherwise - the initial model will be read from PATH.MODEL_INIT """ - unix.mkdir(PATH.OPTIMIZE) + super().setup() + solver = self.module("solver") + unix.mkdir(self.path.OPTIMIZE) # Line search machinery is defined externally as a plugin class - if PAR.LINESEARCH: - self.line_search = getattr(line_search, PAR.LINESEARCH)( - step_count_max=PAR.STEPCOUNTMAX, - step_len_max=PAR.STEPLENMAX, + if self.par.LINESEARCH: + self.line_search = getattr(line_search, self.par.LINESEARCH)( + step_count_max=self.par.STEPCOUNTMAX, + step_len_max=self.par.STEPLENMAX, ) - if PAR.PRECOND: - self.precond = getattr(preconds, PAR.PRECOND)() + if self.par.PRECOND: + self.precond = getattr(preconds, self.par.PRECOND)() # Read in initial model as a vector and ensure it is a valid model - if m_new is None: - assert(os.path.exists(PATH.MODEL_INIT)), ( - "optimization library requires that PATH.MODEL_INIT exists" + if os.path.exists(self.path.MODEL_INIT): + m_new = solver.merge(solver.load(self.path.MODEL_INIT)) + self.save("m_new", m_new) + self.check_model(m_new) + else: + self.logger.warning( + "PATH.MODEL_INIT not found, cannot save 'm_new'. Either ensure " + "that 'm_new' is present in PATH.OPTIMIZE or restart with a " + "valid PATH.MODEL_INIT" ) - m_new = solver.merge(solver.load(PATH.MODEL_INIT)) - - self.save("m_new", m_new) - self.check_model(m_new) - @property - def eval_str(self): + def finalize(self): """ - Print out the evaluation string, which states what iteration and line - search step count we are at. Useful for log statements - - For example, an inversion at iteration 1 and step count 2 will return - 'i01s02' + Finalization tasks """ - iter_ = self.iter - step = self.line_search.step_count - return f"i{iter_:0>2}s{step:0>2}" + super().finalize() def load(self, name): """ @@ -199,7 +181,7 @@ def load(self, name): :param name: name of the vector, acceptable: m, g, p, f, alpha """ assert(name in self.acceptable_vectors) - vector = np.load(os.path.join(PATH.OPTIMIZE, f"{name}.npy")) + vector = np.load(os.path.join(self.path.OPTIMIZE, f"{name}.npy")) # Allow single length vectors, which alpha and misfit (f) are if vector.size == 1: vector = float(vector) @@ -215,7 +197,7 @@ def save(self, name, vector): :param vector: vector to save to name """ assert(name in self.acceptable_vectors) - vector_path = os.path.join(PATH.OPTIMIZE, f"{name}.npy") + vector_path = os.path.join(self.path.OPTIMIZE, f"{name}.npy") np.save(vector_path, vector) def compute_direction(self): @@ -226,7 +208,7 @@ def compute_direction(self): .. note:: Other optimization algorithms must overload this method """ - self.logger.info(f"computing search direction with {PAR.OPTIMIZE}") + self.logger.info(f"computing search direction with {self.par.OPTIMIZE}") g_new = self.load("g_new") if self.precond is not None: @@ -256,8 +238,9 @@ def initialize_search(self): self.line_search.clear_history() # Optional safeguard to prevent step length from getting too large - if PAR.STEPLENMAX: - self.line_search.step_len_max = PAR.STEPLENMAX * norm_m / norm_p + if self.par.STEPLENMAX: + self.line_search.step_len_max = \ + self.par.STEPLENMAX * norm_m / norm_p self.logger.debug(f"max step length safeguard is: " f"{self.line_search.step_len_max:.2E}") @@ -265,8 +248,8 @@ def initialize_search(self): alpha, _ = self.line_search.calculate_step() # Alpha defines the trial step length. Optional step length override - if PAR.STEPLENINIT and len(self.line_search.step_lens) <= 1: - alpha = PAR.STEPLENINIT * norm_m / norm_p + if self.par.STEPLENINIT and len(self.line_search.step_lens) <= 1: + alpha = self.par.STEPLENINIT * norm_m / norm_p self.logger.debug(f"overwrite initial step length: {alpha:.2E}") # The new model is the old model, scaled by the step direction and @@ -310,7 +293,7 @@ def finalize_search(self): Removes old model/search parameters, moves current parameters to old, sets up new current parameters and writes statistic outputs """ - unix.cd(PATH.OPTIMIZE) + unix.cd(self.path.OPTIMIZE) self.logger.info(msg.sub("FINALIZING LINE SEARCH")) # Remove the old model parameters @@ -366,12 +349,14 @@ def restart(self): numerical stagnation. """ # Steepest descent (base) does not need to be restarted - if PAR.OPTIMIZE.capitalize() != "Gradient": - g = self.load("g_new") - self.save("p_new", -g) + if self.par.OPTIMIZE.capitalize() == "Gradient": + return - self.line_search.clear_history() - self.restarted = 1 + g = self.load("g_new") + self.save("p_new", -g) + + self.line_search.clear_history() + self.restarted = 1 def write_stats(self): """ @@ -379,23 +364,16 @@ def write_stats(self): Used because stats line search information can be overwritten by subsequent iterations so we need to append values to text files if they should be retained. - - :type log: str - :param log: name of the file to write to. Will append .txt to it - :type value: float - :param value: value to write to file - :type format: str - :param format: string formatter for value """ self.logger.info(f"writing optimization stats") - fid = os.path.join(PATH.OUTPUT, f"optim_stats.txt") + fid = os.path.join(self.path.OUTPUT, f"optim_stats.txt") # First time, write header information if not os.path.exists(fid): with open(fid, "w") as f: for header in ["ITER", "FACTOR", "GRAD_NORM_L1", "GRAD_NORM_L2", - "MISFIT", "RESTART", "SLOPE", "STEP", "LENGTH", - "THETA"]: + "MISFIT", "RESTART", "SLOPE", "STEP", "LENGTH", + "THETA"]: f.write(f"{header.upper()},") f.write("\n") @@ -442,6 +420,8 @@ def check_model(self, m, min_pr=-1., max_pr=0.5): :param max_pr: maximum allowable Poisson's ratio value dictated by SPECFEM """ + solver = self.module("solver") + # Dynamic way to split up the model based on number of params pars = {} for i, par in enumerate(solver.parameters): diff --git a/seisflows/preprocess/base.py b/seisflows/preprocess/default.py similarity index 99% rename from seisflows/preprocess/base.py rename to seisflows/preprocess/default.py index 41a2dacb..d2b158e9 100644 --- a/seisflows/preprocess/base.py +++ b/seisflows/preprocess/default.py @@ -14,7 +14,7 @@ from seisflows.tools import msg from seisflows.tools import signal, unix from seisflows.plugins.preprocess import adjoint, misfit, readers, writers -from seisflows.config import SeisFlowsPathsParameters +from seisflows.core import SeisFlowsPathsParameters PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] @@ -105,7 +105,7 @@ def required(self): # Define the Paths required by this module sf.path("PREPROCESS", required=False, - default=os.path.join(PATH.SCRATCH, "preprocess"), + default=os.path.join(PATH.WORKDIR, "scratch", "preprocess"), docstr="scratch path to store any preprocessing outputs") return sf diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index d2478711..de747646 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -26,13 +26,13 @@ from copy import copy from IPython import embed +from seisflows.core import Dict, SeisFlowsPathsParameters +from seisflows.config import (config_logger, custom_import, save, + NAMES, ROOT_DIR, CFGPATHS) from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) from seisflows.tools.wrappers import loadyaml -from seisflows.config import (config_logger, Dict, custom_import, save, - SeisFlowsPathsParameters, NAMES, ROOT_DIR, - CFGPATHS) def sfparser(): diff --git a/seisflows/solver/base.py b/seisflows/solver/base.py index 6de725de..f91e9d80 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/base.py @@ -16,7 +16,7 @@ from seisflows.tools import msg, unix from seisflows.tools.specfem import Container, getpar from seisflows.tools.wrappers import diff -from seisflows.config import SeisFlowsPathsParameters, Dict +from seisflows.core import SeisFlowsPathsParameters, Dict PAR = sys.modules['seisflows_parameters'] @@ -149,7 +149,7 @@ def required(self): "['fortran_binary', 'adios']") sf.path("SOLVER", required=False, - default=os.path.join(PATH.SCRATCH, "solver"), + default=os.path.join(PATH.WORKDIR, "scratch", "solver"), docstr="scratch path to hold solver working directories") sf.path("DATA", required=False, diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 5bbc1b54..6284e73c 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -12,7 +12,8 @@ from seisflows.tools import unix, msg from seisflows.tools.wrappers import exists -from seisflows.config import custom_import, SeisFlowsPathsParameters +from seisflows.core import SeisFlowsPathsParameters +from seisflows.config import custom_import from seisflows.tools.specfem import getpar, setpar diff --git a/seisflows/system/base.py b/seisflows/system/base.py index 04b740c9..632398e4 100644 --- a/seisflows/system/base.py +++ b/seisflows/system/base.py @@ -11,7 +11,8 @@ from seisflows.tools import unix, msg from seisflows.tools.wrappers import number_fid -from seisflows.config import save, SeisFlowsPathsParameters, CFGPATHS +from seisflows.core import SeisFlowsPathsParameters +from seisflows.config import save, CFGPATHS PAR = sys.modules["seisflows_parameters"] diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 73f89896..1119ece6 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -8,8 +8,9 @@ import logging from contextlib import redirect_stdout -from seisflows.tools import unix, msg -from seisflows.config import custom_import, SeisFlowsPathsParameters, CFGPATHS +from seisflows.tools import msg +from seisflows.core import SeisFlowsPathsParameters +from seisflows.config import custom_import, CFGPATHS PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] diff --git a/seisflows/templates/base_class.py b/seisflows/templates/base_class.py deleted file mode 100644 index 4a4012e8..00000000 --- a/seisflows/templates/base_class.py +++ /dev/null @@ -1,92 +0,0 @@ -#!/usr/bin/env python3 -""" -This is a SeisFlows Base class -""" -import os -import sys -import logging -from seisflows.tools import msg -from seisflows.config import SeisFlowsPathsParameters - -# Required SeisFlows configuration -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] - -# The number of loaded modules depends on the module this Base class belongs to -system = sys.modules["seisflows_system"] -solver = sys.modules["seisflows_solver"] -optimize = sys.modules["seisflows_optimize"] -preprocess = sys.modules["seisflows_preprocess"] -postprocess = sys.modules["seisflows_postprocess"] - - -class Base: - """ - This is a template Base class - """ - # Class-specific logger accessed using self.logger - # When this logger is called, e.g., self.logger.info("text"), the logging - # package will know exactly which module, class and function the log - # statement has been sent from, extraordinarily helpful for debugging. - logger = logging.getLogger(__name__).getChild(__qualname__) - - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - - :rtype: seisflows.config.SeisFlowsPathsParameters - :return: Paths and parameters that define the given class - - """ - sf = SeisFlowsPathsParameters() - - # Define the Parameters required by this module - sf.par("EXAMPLE_REQUIRED_PARAMETER", required=True, par_type=str, - docstr="Required parameters do not need default values and will " - "need to be set by the user in the parameter file" - ) - - sf.par("EXAMPLE_OPTIONAL_PARAMETER", required=False, default=0, - par_type=int, docstr="Optional parameters require a default " - "value, if no default value is given, the " - "parameter is set to None" - ) - - # Define the Paths required by this module - sf.path("EXAMPLE_REQUIRED_PATH", required=True, - docstr="Required paths to be set by user in parameter file") - - sf.path("EXAMPLE_OPTIONAL_PATH", required=False, - default=os.path.join(PATH.SCRATCH, "example"), - docstr="Optional paths require default values") - - return sf - - def check(self, validate=True): - """ - Checks parameters and paths. The validate function ensures that all - required paths and parameters are accounted for, and that all - optional paths and parameters are set to user-defined or default values. - - :type validate: bool - :param validate: set required paths and parameters into sys.modules - """ - # The validate statement is used internally to set required paths - # and parameters into sys.modules. Default values are stored for - # optional terms - if validate: - self.required.validate() - - def test(self, *args, **kwargs): - """ - This is an example test function which can take any number of args - or kwargs. The base class is responsible for setting all of the - necessary functions - """ - super.test() - # Multiple logging levels determine how verbose the module will be - self.logger.info("important log statement goes here") - self.logger.debug("debugging log statement goes here") - self.logger.warning("warnings can be passed here") diff --git a/seisflows/templates/sub_class.py b/seisflows/templates/sub_class.py deleted file mode 100644 index 7bf936e4..00000000 --- a/seisflows/templates/sub_class.py +++ /dev/null @@ -1,77 +0,0 @@ -#!/usr/bin/env python3 -""" -This is a SeisFlows subclass which inherits attributes from a parent class -""" -import sys -import logging -from seisflows.tools import msg -from seisflows.config import SeisFlowsPathsParameters, custom_import - -# Required SeisFlows configuration -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] - -# The number of loaded modules depends on the module this Base class belongs to -system = sys.modules["seisflows_system"] -solver = sys.modules["seisflows_solver"] -optimize = sys.modules["seisflows_optimize"] -preprocess = sys.modules["seisflows_preprocess"] -postprocess = sys.modules["seisflows_postprocess"] - - -class Subclass(custom_import("MODULE NAME HERE", "PARENT CLASS NAME HERE")): - """ - This is a template subclass - """ - # Class-specific logger accessed using self.logger - # When this logger is called, e.g., self.logger.info("text"), the logging - # package will know exactly which module, class and function the log - # statement has been sent from, extraordinarily helpful for debugging. - logger = logging.getLogger(__name__).getChild(__qualname__) - - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - - :rtype: seisflows.config.SeisFlowsPathsParameters - :return: Paths and parameters that define the given class - - """ - # The super().required argument ensures that the sublcass inherits the - # paths and parameters defined by its parent class - sf = SeisFlowsPathsParameters(super().required) - - # > Additional or overloading paths and parameters can be set here - - return sf - - def check(self, validate=True): - """ - Checks parameters and paths. The validate function ensures that all - required paths and parameters are accounted for, and that all - optional paths and parameters are set to user-defined or default values. - """ - if validate: - self.required.validate() - - # Validation only required by the lowest subclass, which will validate - # all the paths and parameters from each of its parent classes - super.check(validate=False) - - def test(self, *args, **kwargs): - """ - This is an example OVERWRITE of the base_class.test() function. - If a super() statement is used, all the code within the base class - will be run. - """ - # The super statements calls the code chunk in base_class.test() - # Here it will be executed before the remainder of sub_class.test() is - # executed - super.test() - - # Multiple logging levels determine how verbose the module will be - self.logger.info("important log statement goes here") - self.logger.debug("debugging log statement goes here") - self.logger.warning("warnings can be passed here") \ No newline at end of file diff --git a/seisflows/workflow/base.py b/seisflows/workflow/base.py index d16bb406..97fc5b87 100644 --- a/seisflows/workflow/base.py +++ b/seisflows/workflow/base.py @@ -9,7 +9,8 @@ from seisflows.tools import msg from seisflows.tools.wrappers import exists -from seisflows.config import save, SeisFlowsPathsParameters +from seisflows.core import SeisFlowsPathsParameters +from seisflows.config import save PAR = sys.modules["seisflows_parameters"] diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index e88fe0a1..91c46e34 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -203,14 +203,17 @@ def line_search(self): """ # Calculate the initial step length based on optimization algorithm if optimize.line_search.step_count == 0: - self.logger.info(msg.mjr(f"CONDUCTING LINE SEARCH " - f"({optimize.eval_str})") + self.logger.info(msg.mjr(f"CONDUCTING LINE SEARCH: " + f"i{optimize.iter:0>2}" + f"s{optimize.line_search.step_count:0>2}") ) optimize.initialize_search() # Attempt a new trial step with the given step length optimize.line_search.step_count += 1 - self.logger.info(msg.mnr(f"TRIAL STEP COUNT: {optimize.eval_str}")) + self.logger.info(msg.mnr(f"TRIAL STEP COUNT: " + f"i{optimize.iter:0>2}" + f"s{optimize.line_search.step_count:0>2}")) self.evaluate_function(path=PATH.FUNC, suffix="try") # Check the function evaluation against line search history diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index b838406c..5efeefac 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -12,9 +12,8 @@ import numpy as np from glob import glob -from seisflows.tools import msg -from seisflows.config import (SeisFlowsPathsParameters, custom_import, ROOT_DIR, - CFGPATHS) +from seisflows.core import SeisFlowsPathsParameters +from seisflows.config import (custom_import, ROOT_DIR, CFGPATHS) PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] From c6e08c2fea30f6db1781b94571833ca313ca033a Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 27 Jun 2022 16:04:05 -0800 Subject: [PATCH 027/195] finished updating optimize classes to new architecture --- seisflows/optimize/LBFGS.py | 6 +- seisflows/optimize/NLCG.py | 89 +++++++++++----------- seisflows/optimize/gradient.py | 56 ++++++++------ seisflows/plugins/line_search/backtrack.py | 34 ++++++--- seisflows/plugins/line_search/bracket.py | 9 ++- seisflows/plugins/preconds/__init__.py | 5 -- seisflows/plugins/preconds/diagonal.py | 44 ----------- 7 files changed, 109 insertions(+), 134 deletions(-) delete mode 100644 seisflows/plugins/preconds/__init__.py delete mode 100644 seisflows/plugins/preconds/diagonal.py diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index b6176bb8..67bc3a71 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -4,7 +4,6 @@ It supercedes the `seisflows.optimize.base` class """ import os -import logging import numpy as np from seisflows.optimize.gradient import Gradient @@ -80,17 +79,14 @@ def __init__(self): docstr="Algorithm to use for line search, see " "seisflows.plugins.line_search for available choices" ) - self.required.par( "LBFGSMEM", required=False, default=3, par_type=int, docstr="Max number of previous gradients to retain in local memory" ) - self.required.par( "LBFGSMAX", required=False, par_type=int, default="inf", docstr="LBFGS periodic restart interval, between 1 and 'inf'" ) - self.required.par( "LBFGSTHRESH", required=False, default=0., par_type=float, docstr="LBFGS angle restart threshold" @@ -139,6 +135,8 @@ def compute_direction(self): direction using internally stored memory of previous gradients. The potential outcomes when computing direction with L-BFGS + TODO do we need to precondition L-BFGS? + 1. First iteration of L-BFGS optimization, search direction is defined as the inverse gradient 2. L-BFGS internal iteration ticks over the maximum allowable number of diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index dec2cda7..05957b1f 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -36,6 +36,8 @@ def __init__(self): These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. + TODO allow user to choose the calc_beta function + :type NLCG_iter: Class :param NLCG_iter: an internally used iteration that differs from optimization iter. Keeps track of internal NLCG memory. @@ -51,7 +53,7 @@ def __init__(self): docstr="NLCG conjugacy restart threshold, between 1 and inf" ) self.NLCG_iter = 0 - self.calc_beta = pollak_ribere # !!! Allow the user to choose this fx? + self.calc_beta = self._pollak_ribere def check(self, validate=True): """ @@ -78,6 +80,10 @@ def save(self, name, vector): """Inherit from optimize.gradient.Gradient""" self.save(name=name, vector=vector) + def _precondition(self, q): + """Inherit from optimize.gradient.Gradient""" + return self._precondition(q=q) + def compute_direction(self): """ Compute search direction using the Nonlinear Conjugate Gradient method @@ -125,9 +131,9 @@ def compute_direction(self): p_old = self.load("p_old") # Apply preconditioner and calc. scale factor for search dir. (beta) - if self.precond: - beta = self.calc_beta(g_new, g_old, self.precond) - p_new = -self.precond(g_new) + beta * p_old + if self.precond is not None: + beta = self.calc_beta(g_new, g_old) + p_new = -1 * self._precondition(g_new) + beta * p_old else: beta = self.calc_beta(g_new, g_old) p_new = -g_new + beta * p_old @@ -166,48 +172,41 @@ def check_model(self, m, min_pr=-1, max_pr=0.5): """Inherit from optimize.gradient.Gradient""" self.check_model(m=m, min_pr=min_pr, max_pr=max_pr) + def _fletcher_reeves(self, g_new, g_old): + """ + One method for calculating beta in the NLCG Algorithm from + Fletcher & Reeves, 1964 + + :type g_new: np.array + :param g_new: new search direction + :type g_old: np.array + :param g_old: old search direction + :rtype: float + :return: beta, the scale factor to apply to the old search direction to + determine the new search direction + """ + num = dot(self._precondition(g_new), g_new) + den = dot(g_old, g_old) + beta = num / den + return beta -def fletcher_reeves(g_new, g_old, precond=lambda x: x): - """ - One method for calculating beta in the NLCG Algorithm from - Fletcher & Reeves, 1964 - - :type g_new: np.array - :param g_new: new search direction - :type g_old: np.array - :param g_old: old search direction - :type precond: function - :param precond: preconditioner, defaults to simple return - :rtype: float - :return: beta, the scale factor to apply to the old search direction to - determine the new search direction - """ - num = dot(precond(g_new), g_new) - den = dot(g_old, g_old) - beta = num / den - - return beta - - -def pollak_ribere(g_new, g_old, precond=lambda x: x): - """ - One method for calculating beta in the NLCG Algorithm from - Polak & Ribiere, 1969 - - :type g_new: np.array - :param g_new: new search direction - :type g_old: np.array - :param g_old: old search direction - :type precond: function - :param precond: preconditioner, defaults to simple return - :rtype: float - :return: beta, the scale factor to apply to the old search direction to - determine the new search direction - """ - num = dot(precond(g_new), g_new - g_old) - den = dot(g_old, g_old) - beta = num / den - return beta + def _pollak_ribere(self, g_new, g_old): + """ + One method for calculating beta in the NLCG Algorithm from + Polak & Ribiere, 1969 + + :type g_new: np.array + :param g_new: new search direction + :type g_old: np.array + :param g_old: old search direction + :rtype: float + :return: beta, the scale factor to apply to the old search direction to + determine the new search direction + """ + num = dot(self._precondition(g_new), g_new - g_old) + den = dot(g_old, g_old) + beta = num / den + return beta def check_conjugacy(g_new, g_old): diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index ce860415..7df3507a 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -16,7 +16,7 @@ from seisflows.core import Base from seisflows.tools import msg, unix from seisflows.tools.math import angle, dot -from seisflows.plugins import line_search, preconds +from seisflows.plugins import line_search from seisflows.tools.math import poissons_ratio @@ -54,9 +54,6 @@ def __init__(self): :type line_search: Class :param line_search: a class controlling the line search functionality for determining step length - :type precond: Class - :param precond: a class controlling the preconditioner functionality - for preconditiong gradient information :type restarted: bool :param restarted: a flag signalling if the optimization algorithm has been restarted recently @@ -71,8 +68,8 @@ def __init__(self): ) self.required.par( "PRECOND", required=False, par_type=str, - docstr="Algorithm to use for preconditioning gradients, see " - "seisflows.plugins.preconds for available choices" + docstr="Algorithm to use for preconditioning gradients, see " + "seisflows.plugins.preconds for available choices" ) self.required.par( "STEPCOUNTMAX", required=False, default=10, par_type=int, @@ -116,8 +113,14 @@ def check(self, validate=True): f"LINESEARCH parameter must be in {dir(line_search)}" if self.par.PRECOND: - assert self.par.PRECOND in dir(preconds), \ - f"PRECOND must be in {dir(preconds)}" + # This list should match the logic in self.precondition() + acceptable_preconditioners = ["diagonal"] + assert self.par.PRECOND in acceptable_preconditioners, \ + f"PRECOND must be in {acceptable_preconditioners}" + assert(os.path.exists(self.path.PRECOND)), ( + f"preconditioner requires PATH.PRECOND pointing to a array-like" + f"weight file" + ) assert 0. < self.par.STEPLENINIT, f"STEPLENINIT must be >= 0." assert 0. < self.par.STEPLENMAX, f"STEPLENMAX must be >= 0." @@ -138,9 +141,6 @@ def setup(self): step_count_max=self.par.STEPCOUNTMAX, step_len_max=self.par.STEPLENMAX, ) - if self.par.PRECOND: - self.precond = getattr(preconds, self.par.PRECOND)() - # Read in initial model as a vector and ensure it is a valid model if os.path.exists(self.path.MODEL_INIT): m_new = solver.merge(solver.load(self.path.MODEL_INIT)) @@ -200,6 +200,25 @@ def save(self, name, vector): vector_path = os.path.join(self.path.OPTIMIZE, f"{name}.npy") np.save(vector_path, vector) + def _precondition(self, q): + """ + Apply available preconditioner to a given gradient + + :type q: np.array + :param q: Vector to precondition, typically gradient contained in: g_new + :rtype: np.array + :return: preconditioned vector + """ + solver = self.module("solver") + + if self.par.PRECOND is not None: + p = solver.merge(solver.load(self.path.PRECOND)) + if self.par.PRECOND == "DIAGONAL": + self.logger.info("applying diagonal preconditioner") + return p * q + else: + return q + def compute_direction(self): """ Computes a steepest descent search direction (inverse gradient) @@ -211,10 +230,7 @@ def compute_direction(self): self.logger.info(f"computing search direction with {self.par.OPTIMIZE}") g_new = self.load("g_new") - if self.precond is not None: - p_new = -1 * self.precond(g_new) - else: - p_new = -1 * g_new + p_new = -1 * self._precondition(g_new) self.save("p_new", p_new) def initialize_search(self): @@ -303,7 +319,7 @@ def finalize_search(self): unix.rm(fid) # Needs to be run before shifting model in next step - self.write_stats() + self._write_stats() self.logger.info("shifting current model (new) to previous model (old)") unix.mv("m_new.npy", "m_old.npy") @@ -358,7 +374,7 @@ def restart(self): self.line_search.clear_history() self.restarted = 1 - def write_stats(self): + def _write_stats(self): """ Simplified write function to append values to text files. Used because stats line search information can be overwritten @@ -446,9 +462,3 @@ def check_model(self, m, min_pr=-1., max_pr=0.5): self.logger.info(parts.format(minval=vals.min(), key=key, maxval=vals.max()) ) - - - - - - diff --git a/seisflows/plugins/line_search/backtrack.py b/seisflows/plugins/line_search/backtrack.py index d31d96fc..d5448010 100644 --- a/seisflows/plugins/line_search/backtrack.py +++ b/seisflows/plugins/line_search/backtrack.py @@ -2,17 +2,13 @@ """ This is the subclass class for seisflows.plugins.line_search.backtrack """ -import logging - -from seisflows.tools import msg from seisflows.plugins.line_search.bracket import Bracket +from seisflows.tools import msg from seisflows.tools.math import parabolic_backtrack class Backtrack(Bracket): """ - Overwrites seisflows.plugins.line_search.Bracket - Implements backtracking linesearch. A backtracking line search is used for L-BFGS optimization, where a unit step length is attempted, if this does not satisfy the misfit reduction criteria, the step length is @@ -32,14 +28,34 @@ class Backtrack(Bracket): status == 0 : not finished status < 0 : failed """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) + def __init__(self): + """Inherits from seisflows.plugins.line_search.bracket.Bracket""" + super().__init__() + + def initialize(self, step_len, func_val, gtg, gtp): + """Inherits from seisflows.plugins.line_search.bracket.Bracket""" + self.initialize(step_len, func_val, gtg, gtp) + + def update(self, step_len, func_val): + """Inherits from seisflows.plugins.line_search.bracket.Bracket""" + self.update(step_len, func_val) + + def clear_history(self): + """Inherits from seisflows.plugins.line_search.bracket.Bracket""" + self.clear_history() + + def reset(self): + """Inherits from seisflows.plugins.line_search.bracket.Bracket""" + self.reset() + def search_history(self, sort=True): + """Inherits from seisflows.plugins.line_search.bracket.Bracket""" + return self.search_history(sort=sort) def calculate_step(self): """ - Determines step length and search status. Overloads the bracketing - line search + Determines step length and search status. Overwrites the Bracketing + line search step calculation """ # Determine the line search history x, f, gtg, gtp, step_count, update_count = self.search_history() diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 4aed9a8c..978ddaf3 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -10,12 +10,13 @@ import logging import numpy as np +from seisflows.core import Base from seisflows.tools import msg from seisflows.tools.array import count_zeros from seisflows.tools.math import parabolic_backtrack, polynomial_fit -class Bracket: +class Bracket(Base): """ Abstract base class for line search @@ -32,9 +33,6 @@ class Bracket: status == 0 : not finished status < 0 : failed """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self, step_count_max, step_len_max): """ Initiate the line search machinery @@ -46,6 +44,8 @@ def __init__(self, step_count_max, step_len_max): :param step_len_max: maximum length of the step, defaults to infinity, that is unbounded step length. set by PAR.STEP_LEN_MAX """ + super().__init__() + self.step_count_max = step_count_max self.step_len_max = step_len_max self.func_vals = [] @@ -264,6 +264,7 @@ def _check_bracket(step_lens, func_vals): okay = False return okay + def _good_enough(step_lens, func_vals, thresh=np.log10(1.2)): """ Checks if step length is reasonably close to quadratic estimate diff --git a/seisflows/plugins/preconds/__init__.py b/seisflows/plugins/preconds/__init__.py deleted file mode 100644 index 07ec545c..00000000 --- a/seisflows/plugins/preconds/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -""" -used by the OPTIMIZE class and specified by the PRECOND parameter -""" -from .diagonal import Diagonal - diff --git a/seisflows/plugins/preconds/diagonal.py b/seisflows/plugins/preconds/diagonal.py deleted file mode 100644 index 03ea4bea..00000000 --- a/seisflows/plugins/preconds/diagonal.py +++ /dev/null @@ -1,44 +0,0 @@ -#!/usr/bin/env python3 -""" -This is the main class for seisflows.line_search.preconds.diagonal -This class provides the utilities for a diagonal preconditioner -""" -import os -import sys - - -class Diagonal(object): - """ - User supplied diagonal preconditioner - Rescales model parameters based on user supplied weights - """ - def __init__(self): - """ - Loads any required dependencies - """ - PATH = sys.modules["seisflows_paths"] - solver = sys.modules["seisflows_solver"] - - if "PRECOND" not in PATH: - raise Exception - - if not os.path.exists(PATH.PRECOND): - raise Exception - - self.path = PATH.PRECOND - self.load = solver.load - self.merge = solver.merge - - def __call__(self, q): - """ - Applies preconditioner to given vector - - :type q: np.array - :param q: search direction - :rtype: np.array - :return: preconditioned search direction - """ - p = self.merge(self.load(self.path)) - return p * q - - From f7133a2d119036b78a2923c4436d1ce298eaa072 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 27 Jun 2022 16:21:19 -0800 Subject: [PATCH 028/195] updated preprocessing classes to new code style --- seisflows/postprocess/default.py | 3 - seisflows/preprocess/default.py | 332 +++++++++++++-------------- seisflows/preprocess/pyatoa.py | 376 ++++++++++++++++--------------- 3 files changed, 358 insertions(+), 353 deletions(-) diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py index 4b5c1060..9debb2a5 100644 --- a/seisflows/postprocess/default.py +++ b/seisflows/postprocess/default.py @@ -29,20 +29,17 @@ def __init__(self): docstr="Gaussian half-width for horizontal smoothing in units of " "meters. If 0., no smoothing applied" ) - self.required.par( "SMOOTH_V", required=False, default=0., par_type=float, docstr="Gaussian half-width for vertical smoothing in units of " "meters" ) - self.required.par( "TASKTIME_SMOOTH", required=False, default=1, par_type=int, docstr="Large radii smoothing may take longer than normal tasks. " "Allocate additional smoothing task time as a multiple of " "TASKTIME" ) - # Define the Paths required by this module self.required.path( "MASK", required=False, docstr="Directory to mask files for " diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index d2b158e9..fe8cde68 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -6,189 +6,189 @@ and write adjoint sources that are expected by the solver. """ import os -import sys import obspy -import logging import numpy as np -from seisflows.tools import msg +from seisflows.core import Base from seisflows.tools import signal, unix from seisflows.plugins.preprocess import adjoint, misfit, readers, writers -from seisflows.core import SeisFlowsPathsParameters -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - -class Default: +class Default(Base): """ Default SeisFlows preprocessing class Provides data processing functions for seismic traces, with options for data misfit, filtering, normalization and muting """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by __init__! Attributes are just initialized as NoneTypes for clarity and docstrings """ - self.misfit = None - self.adjoint = None - self.reader = None - self.writer = None - - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters() + super().__init__() # Define the Parameters required by this module - sf.par("MISFIT", required=False, default="waveform", par_type=str, - docstr="Misfit function for waveform comparisons, for available " - "see seisflows.plugins.misfit") - - sf.par("BACKPROJECT", required=False, default="null", par_type=str, - docstr="Backprojection function for migration, for available " - "see seisflows.plugins.adjoint") - - sf.par("NORMALIZE", required=False, default="null", par_type=str, - docstr="Data normalization option") - - sf.par("FILTER", required=False, default="null", par_type=str, - docstr="Data filtering type, available options are:" - "BANDPASS (req. MIN/MAX PERIOD/FREQ);" - "LOWPASS (req. MAX_FREQ or MIN_PERIOD); " - "HIGHPASS (req. MIN_FREQ or MAX_PERIOD) ") - - sf.par("MIN_PERIOD", required=False, par_type=float, - docstr="Minimum filter period applied to time series." - "See also MIN_FREQ, MAX_FREQ, if User defines FREQ " - "parameters, they will overwrite PERIOD parameters.") - - sf.par("MAX_PERIOD", required=False, par_type=float, - docstr="Maximum filter period applied to time series." - "See also MIN_FREQ, MAX_FREQ, if User defines FREQ " - "parameters, they will overwrite PERIOD parameters.") - - sf.par("MIN_FREQ", required=False, par_type=float, - docstr="Maximum filter frequency applied to time series." - "See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ " - "parameters, they will overwrite PERIOD parameters.") - - sf.par("MAX_FREQ", required=False, par_type=float, - docstr="Maximum filter frequency applied to time series," - "See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ " - "parameters, they will overwrite PERIOD parameters.") - - sf.par("MUTE", required=False, par_type=list, default=[], - docstr="Data mute parameters used to zero out early / late " - "arrivals or offsets. Choose any number of: " - "EARLY: mute early arrivals; " - "LATE: mute late arrivals; " - "SHORT: mute short source-receiver distances; " - "LONG: mute long source-receiver distances") - sf.par("NORMALIZE", required=False, par_type=list, default=[], - docstr="Data normalization parameters used to normalize the " - "amplitudes of waveforms. Choose from two sets: " - "ENORML1: normalize per event by L1 of traces; OR " - "ENORML2: normalize per event by L2 of traces; AND " - "TNORML1: normalize per trace by L1 of itself; OR " - "TNORML2: normalize per trace by L2 of itself") - + self.required.par( + "MISFIT", required=False, default="waveform", par_type=str, + docstr="Misfit function for waveform comparisons, for available " + "see seisflows.plugins.misfit" + ) + self.required.par( + "BACKPROJECT", required=False, default="null", par_type=str, + docstr="Backprojection function for migration, for available see " + "seisflows.plugins.adjoint" + ) + self.required.par( + "NORMALIZE", required=False, default="null", par_type=str, + docstr="Data normalization option" + ) + self.required.par( + "FILTER", required=False, default="null", par_type=str, + docstr="Data filtering type, available options are:" + "BANDPASS (req. MIN/MAX PERIOD/FREQ);" + "LOWPASS (req. MAX_FREQ or MIN_PERIOD); " + "HIGHPASS (req. MIN_FREQ or MAX_PERIOD) " + ) + self.required.par( + "MIN_PERIOD", required=False, par_type=float, + docstr="Minimum filter period applied to time series." + "See also MIN_FREQ, MAX_FREQ, if User defines FREQ " + "parameters, they will overwrite PERIOD parameters." + ) + self.required.par( + "MAX_PERIOD", required=False, par_type=float, + docstr="Maximum filter period applied to time series." + "See also MIN_FREQ, MAX_FREQ, if User defines FREQ " + "parameters, they will overwrite PERIOD parameters." + ) + self.required.par( + "MIN_FREQ", required=False, par_type=float, + docstr="Maximum filter frequency applied to time series." + "See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ " + "parameters, they will overwrite PERIOD parameters." + ) + self.required.par( + "MAX_FREQ", required=False, par_type=float, + docstr="Maximum filter frequency applied to time series," + "See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ " + "parameters, they will overwrite PERIOD parameters." + ) + self.required.par( + "MUTE", required=False, par_type=list, default=[], + docstr="Data mute parameters used to zero out early / late " + "arrivals or offsets. Choose any number of: " + "EARLY: mute early arrivals; " + "LATE: mute late arrivals; " + "SHORT: mute short source-receiver distances; " + "LONG: mute long source-receiver distances" + ) + self.required.par( + "NORMALIZE", required=False, par_type=list, default=[], + docstr="Data normalization parameters used to normalize the " + "amplitudes of waveforms. Choose from two sets: " + "ENORML1: normalize per event by L1 of traces; OR " + "ENORML2: normalize per event by L2 of traces; AND " + "TNORML1: normalize per trace by L1 of itself; OR " + "TNORML2: normalize per trace by L2 of itself" + ) # TODO: Add the mute parameters here, const, slope and dist # Define the Paths required by this module - sf.path("PREPROCESS", required=False, - default=os.path.join(PATH.WORKDIR, "scratch", "preprocess"), - docstr="scratch path to store any preprocessing outputs") + self.required.path( + "PREPROCESS", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "preprocess"), + docstr="scratch path to store any preprocessing outputs" + ) - return sf + self.misfit = None + self.adjoint = None + self.reader = None + self.writer = None def check(self, validate=True): """ Checks parameters and paths """ - if validate: - self.required.validate() + super().check(validate=validate) # Data normalization option - if PAR.NORMALIZE: + if self.par.NORMALIZE: acceptable_norms = {"TNORML1", "TNORML2", "ENORML1", "ENORML2"} - chosen_norms = [_.upper() for _ in PAR.NORMALIZE] + chosen_norms = [_.upper() for _ in self.par.NORMALIZE] assert(set(chosen_norms).issubset(acceptable_norms)) # Data muting options - if PAR.MUTE: + if self.par.MUTE: acceptable_mutes = {"EARLY", "LATE", "LONG", "SHORT"} - chosen_mutes = [_.upper() for _ in PAR.MUTE] + chosen_mutes = [_.upper() for _ in self.par.MUTE] assert(set(chosen_mutes).issubset(acceptable_mutes)) if "EARLY" in chosen_mutes: - assert(PAR.EARLY_SLOPE is not None) - assert(PAR.EARLY_SLOPE >= 0.) - assert(PAR.EARLY_CONST is not None) + assert(self.par.EARLY_SLOPE is not None) + assert(self.par.EARLY_SLOPE >= 0.) + assert(self.par.EARLY_CONST is not None) if "LATE" in chosen_mutes: - assert(PAR.LATE_SLOPE is not None) - assert(PAR.LATE_SLOPE >= 0.) - assert(PAR.LATE_CONST is not None) + assert(self.par.LATE_SLOPE is not None) + assert(self.par.LATE_SLOPE >= 0.) + assert(self.par.LATE_CONST is not None) if "SHORT" in chosen_mutes: - assert(PAR.SHORT_DIST is not None) - assert (PAR.SHORT_DIST > 0) + assert(self.par.SHORT_DIST is not None) + assert (self.par.SHORT_DIST > 0) if "LONG" in chosen_mutes: - assert(PAR.LONG_DIST is not None) - assert (PAR.LONG_DIST > 0) + assert(self.par.LONG_DIST is not None) + assert (self.par.LONG_DIST > 0) # Data filtering options that will be passed to ObsPy filters - if PAR.FILTER: + if self.par.FILTER: acceptable_filters = ["BANDPASS", "LOWPASS", "HIGHPASS"] - assert PAR.FILTER.upper() in acceptable_filters, \ - f"PAR.FILTER must be in {acceptable_filters}" + assert self.par.FILTER.upper() in acceptable_filters, \ + f"self.par.FILTER must be in {acceptable_filters}" # Set the min/max frequencies and periods, frequency takes priority - if PAR.MIN_FREQ is not None: - PAR.MAX_PERIOD = 1 / PAR.MIN_FREQ - elif PAR.MAX_PERIOD is not None: - PAR.MIN_FREQ = 1 / PAR.MAX_PERIOD + if self.par.MIN_FREQ is not None: + self.par.MAX_PERIOD = 1 / self.par.MIN_FREQ + elif self.par.MAX_PERIOD is not None: + self.par.MIN_FREQ = 1 / self.par.MAX_PERIOD - if PAR.MAX_FREQ is not None: - PAR.MIN_PERIOD = 1 / PAR.MAX_FREQ - elif PAR.MIN_PERIOD is not None: - PAR.MAX_FREQ = 1 / PAR.MIN_PERIOD + if self.par.MAX_FREQ is not None: + self.par.MIN_PERIOD = 1 / self.par.MAX_FREQ + elif self.par.MIN_PERIOD is not None: + self.par.MAX_FREQ = 1 / self.par.MIN_PERIOD # Check that the correct filter bounds have been set - if PAR.FILTER.upper() == "BANDPASS": - assert(PAR.MIN_FREQ is not None and PAR.MAX_FREQ is not None), \ + if self.par.FILTER.upper() == "BANDPASS": + assert(self.par.MIN_FREQ is not None and + self.par.MAX_FREQ is not None), \ ("BANDPASS filter PAR.MIN_PERIOD and PAR.MAX_PERIOD or " "PAR.MIN_FREQ and PAR.MAX_FREQ") - elif PAR.FILTER.upper() == "LOWPASS": - assert(PAR.MAX_FREQ is not None or PAR.MIN_PERIOD is not None),\ + elif self.par.FILTER.upper() == "LOWPASS": + assert(self.par.MAX_FREQ is not None or + self.par.MIN_PERIOD is not None),\ "LOWPASS requires PAR.MAX_FREQ or PAR.MIN_PERIOD" - elif PAR.FILTER.upper() == "HIGHPASS": - assert(PAR.MIN_FREQ is not None or PAR.MAX_PERIOD is not None),\ + elif self.par.FILTER.upper() == "HIGHPASS": + assert(self.par.MIN_FREQ is not None or + self.par.MAX_PERIOD is not None),\ "HIGHPASS requires PAR.MIN_FREQ or PAR.MAX_PERIOD" # Check that filter bounds make sense, by this point, MIN and MAX # FREQ and PERIOD should be set, so we just check the FREQ - assert(0 < PAR.MIN_FREQ < np.inf), "0 < PAR.MIN_FREQ < inf" - assert(0 < PAR.MAX_FREQ < np.inf), "0 < PAR.MAX_FREQ < inf" - assert(PAR.MIN_FREQ < PAR.MAX_FREQ), "PAR.MIN_FREQ < PAR.MAX_FREQ" + assert(0 < self.par.MIN_FREQ < np.inf), "0 < PAR.MIN_FREQ < inf" + assert(0 < self.par.MAX_FREQ < np.inf), "0 < PAR.MAX_FREQ < inf" + assert(self.par.MIN_FREQ < self.par.MAX_FREQ), ( + "PAR.MIN_FREQ < PAR.MAX_FREQ" + ) # Assert that readers and writers available # TODO | This is a bit vague as dir contains imported modules and hidden # TODO | variables (e.g., np, __name__) - assert(PAR.FORMAT.lower() in dir(readers)), ( - f"Reader {PAR.FORMAT} not found") - assert(PAR.FORMAT.lower() in dir(writers)), ( - f"Writer {PAR.FORMAT} not found") + assert(self.par.FORMAT.lower() in dir(readers)), ( + f"Reader {self.par.FORMAT} not found") + assert(self.par.FORMAT.lower() in dir(writers)), ( + f"Writer {self.par.FORMAT} not found") - # Assert that either misfit or backproject exists - if PAR.WORKFLOW.upper() == "INVERSION": - assert(PAR.MISFIT is not None) + # Assert that either misfit or backproject exists + if self.par.WORKFLOW.upper() == "INVERSION": + assert(self.par.MISFIT is not None) def setup(self): """ @@ -196,20 +196,29 @@ def setup(self): misfit, adjoint source type, and specifying the expected file type for input and output seismic data. """ - unix.mkdir(PATH.PREPROCESS) + unix.mkdir(self.path.PREPROCESS) # Define misfit function and adjoint trace generator - if PAR.MISFIT: - self.logger.debug(f"misfit function is: '{PAR.MISFIT}'") - self.misfit = getattr(misfit, PAR.MISFIT.lower()) - self.adjoint = getattr(adjoint, PAR.MISFIT.lower()) - elif PAR.BACKPROJECT: - self.logger.debug(f"backproject function is: '{PAR.BACKPROJECT}'") - self.adjoint = getattr(adjoint, PAR.BACKPROJECT.lower()) + if self.par.MISFIT: + self.logger.debug(f"misfit function is: '{self.par.MISFIT}'") + self.misfit = getattr(misfit, self.par.MISFIT.lower()) + self.adjoint = getattr(adjoint, self.par.MISFIT.lower()) + elif self.par.BACKPROJECT: + self.logger.debug( + f"backproject function is: '{self.par.BACKPROJECT}'" + ) + self.adjoint = getattr(adjoint, self.par.BACKPROJECT.lower()) # Define seismic data reader and writer - self.reader = getattr(readers, PAR.FORMAT.lower()) - self.writer = getattr(writers, PAR.FORMAT.lower()) + self.reader = getattr(readers, self.par.FORMAT.lower()) + self.writer = getattr(writers, self.par.FORMAT.lower()) + + def finalize(self): + """ + Any finalization processes that need to take place at the end of an + iteration + """ + super().finalize() def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): """ @@ -241,31 +250,33 @@ def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): filename=filename) # Process observations and synthetics identically - if PAR.FILTER: + if self.par.FILTER: if taskid == 0: - self.logger.debug(f"applying {PAR.FILTER} filter to data") + self.logger.debug(f"applying {self.par.FILTER} filter to data") obs = self._apply_filter(obs) syn = self._apply_filter(syn) - if PAR.MUTE: + if self.par.MUTE: if taskid == 0: - self.logger.debug(f"applying {PAR.MUTE} mutes to data") + self.logger.debug(f"applying {self.par.MUTE} mutes to data") obs = self._apply_mute(obs) syn = self._apply_mute(syn) - if PAR.NORMALIZE: + if self.par.NORMALIZE: if taskid == 0: - self.logger.debug(f"normalizing data with: {PAR.NORMALIZE}") + self.logger.debug( + f"normalizing data with: {self.par.NORMALIZE}" + ) obs = self._apply_normalize(obs) syn = self._apply_normalize(syn) - if PAR.MISFIT is not None: + if self.par.MISFIT is not None: self._write_residuals(cwd, syn, obs) # Write the adjoint traces. Rename file extension for Specfem - if PAR.FORMAT.upper() == "ASCII": + if self.par.FORMAT.upper() == "ASCII": # Change the extension to '.adj' from whatever it is ext = os.path.splitext(filename)[-1] filename_out = filename.replace(ext, ".adj") - elif PAR.FORMAT.upper() == "SU": + elif self.par.FORMAT.upper() == "SU": # TODO implement this raise NotImplementedError @@ -293,17 +304,10 @@ def sum_residuals(self, files): return total_misfit - def finalize(self): - """ - Any finalization processes that need to take place at the end of an - iteration - """ - pass - def _write_residuals(self, path, syn, obs): """ Computes residuals between observed and synthetic seismogram based on - the misfit function PAR.MISFIT. Saves the residuals for each + the misfit function self.par.MISFIT. Saves the residuals for each data-synthetic pair into a text file located at: ./scratch/solver/*/residuals @@ -369,13 +373,13 @@ def _apply_filter(self, st): st.detrend("linear") st.taper(0.05, type="hann") - if PAR.FILTER.upper() == "BANDPASS": - st.filter("bandpass", zerophase=True, freqmin=PAR.MIN_FREQ, - freqmax=PAR.FREQMAX) - elif PAR.FILTER.upper() == "LOWPASS": - st.filter("lowpass", zerophase=True, freq=PAR.MAX_FREQ) - elif PAR.FILTER.upper() == "HIGHPASS": - st.filter("highpass", zerophase=True, freq=PAR.MIN_FREQ) + if self.par.FILTER.upper() == "BANDPASS": + st.filter("bandpass", zerophase=True, freqmin=self.par.MIN_FREQ, + freqmax=self.par.FREQMAX) + elif self.par.FILTER.upper() == "LOWPASS": + st.filter("lowpass", zerophase=True, freq=self.par.MAX_FREQ) + elif self.par.FILTER.upper() == "HIGHPASS": + st.filter("highpass", zerophase=True, freq=self.par.MIN_FREQ) return st @@ -394,20 +398,20 @@ def _apply_mute(self, st): :rtype: obspy.core.stream.Stream :return: muted stream object """ - mute_choices = [_.upper() for _ in PAR.MUTE] + mute_choices = [_.upper() for _ in self.par.MUTE] if "EARLY" in mute_choices: - st = signal.mute_arrivals(st, slope=PAR.EARLY_SLOPE, - const=PAR.EARLY_CONST, + st = signal.mute_arrivals(st, slope=self.par.EARLY_SLOPE, + const=self.par.EARLY_CONST, choice="EARLY") if "LATE" in mute_choices: - st = signal.mute_arrivals(st, slope=PAR.LATE_SLOPE, - const=PAR.LATE_CONST, + st = signal.mute_arrivals(st, slope=self.par.LATE_SLOPE, + const=self.par.LATE_CONST, choice="LATE") if "SHORT" in mute_choices: - st = signal.mute_offsets(st, dist=PAR.SHORT_DIST, + st = signal.mute_offsets(st, dist=self.par.SHORT_DIST, choice="SHORT") if "LONG" in mute_choices: - st = signal.mute_arrivals(st, dist=PAR.LONG_DIST, + st = signal.mute_arrivals(st, dist=self.par.LONG_DIST, choice="LONG") return st @@ -427,7 +431,7 @@ def _apply_normalize(self, st): :return: stream with normalized traces """ st_out = st.copy() - norm_choices = [_.upper() for _ in PAR.NORMALIZE] + norm_choices = [_.upper() for _ in self.par.NORMALIZE] # Normalize an event by the L1 norm of all traces if 'ENORML1' in norm_choices: diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyatoa.py index 565d980e..8b4537b0 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyatoa.py @@ -1,7 +1,7 @@ #!/usr/bin/env python3 """ The Pyatoa preprocessing module abstracts all preprocessing functionality -onto Pyatoa (https://github.com/bch0w/pyatoa/). The module defined below is +onto Pyatoa (https://github.com/adjtomo/pyatoa/). The module defined below is meant to set up and execute Pyatoa within a running SeisFlows workflow. Pyatoa itself aggregates all of its connection with SeisFlows in the Pyaflowa @@ -10,28 +10,22 @@ """ import os import sys -import logging import numpy as np from glob import glob - from pyatoa import Pyaflowa, Inspector +from seisflows.core import Base from seisflows.tools import unix, msg -from seisflows.config import custom_import, SeisFlowsPathsParameters, CFGPATHS - -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] +from seisflows.config import CFGPATHS -class Pyatoa(custom_import("preprocess", "base")): +class Pyatoa(Base): """ Data preprocessing class using the Pyaflowa class within the Pyatoa package. In charge of data discovery, preprocessing, filtering, misfiti quantification and data storage. The User does not need to implement Pyatoa, but rather interacts with it via the parameters and paths of SeisFlows. """ - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by __init__! @@ -40,142 +34,149 @@ def __init__(self): :param logger: Class-specific logging module, log statements pushed from this logger will be tagged by its specific module/classname """ - pass - - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters() + super().__init__() # Define the Parameters required by this module - sf.par("UNIT_OUTPUT", required=True, par_type=str, - docstr="Data units. Must match the synthetic output of external " - "solver. Available: ['DISP': displacement, " - "'VEL': velocity, 'ACC': acceleration]") - + self.required.par( + "UNIT_OUTPUT", required=True, par_type=str, + docstr="Data units. Must match the synthetic output of external " + "solver. Available: ['DISP': displacement, " + "'VEL': velocity, 'ACC': acceleration]" + ) # TODO Check this against T0 in check() - sf.par("START_PAD", required=False, default=0, par_type=float, - docstr="For data gathering; time before origin time to gather. " - "START_PAD >= T_0 in SPECFEM constants.h.in. " - "Positive values only") - + self.required.par( + "START_PAD", required=False, default=0, par_type=float, + docstr="For data gathering; time before origin time to gather. " + "START_PAD >= T_0 in SPECFEM constants.h.in. " + "Positive values only" + ) # TODO set this automatically by setting equal NT * DT - sf.par("END_PAD", required=True, par_type=float, - docstr="For data gathering; time after origin time to gather. " - "END_PAD >= NT * DT (of Par_file). Positive values only") - - sf.par("MIN_PERIOD", required=False, default="", par_type=float, - docstr="Minimum filter corner in unit seconds. Bandpass filter " - "if set with `MAX_PERIOD`, highpass filter if set " - "without `MAX_PERIOD`, no filtering if not set and " - "`MAX_PERIOD also not set") - - sf.par("MAX_PERIOD", required=False, default="", par_type=float, - docstr="Maximum filter corner in unit seconds. Bandpass filter " - "if set with `MIN_PERIOD`, lowpass filter if set " - "without `MIN_PERIOD`, no filtering if not set and " - "`MIN_PERIOD also not set") - - sf.par("CORNERS", required=False, default=4, par_type=int, - docstr="Number of filter corners applied to filtering") - - sf.par("CLIENT", required=False, par_type=str, - docstr="Client name for ObsPy FDSN data gathering. Pyatoa will " - "attempt to collect waveform and metadata based on " - "network and station codes provided in the SPECFEM " - "STATIONS file. If set None, no FDSN gathering will be " - "attempted") - - sf.par("ROTATE", required=False, default=False, par_type=bool, - docstr="Attempt to rotate waveform components from NEZ -> RTZ") - - sf.par("PYFLEX_PRESET", required=False, default="default", - par_type=str, - docstr="Parameter map for misfit window configuration defined " - "by Pyflex. IF None, misfit and adjoint sources will be " - "calculated on whole traces. For available choices, " - "see Pyatoa docs page (pyatoa.rtfd.io)") - - sf.par("FIX_WINDOWS", required=False, default=False, - par_type="bool or str", - docstr="How to address misfit window evaluation at each " - "evaluation. Options to re-use misfit windows collected " - "during an inversion, available options: " - "[True, False, 'ITER', 'ONCE'] " - "True: Re-use windows after first evaluation (i01s00); " - "False: Calculate new windows each evaluation; " - "'ITER': Calculate new windows at first evaluation of " - "each iteration (e.g., i01s00... i02s00..." - "'ONCE': Calculate new windows at first evaluation of " - "the workflow, i.e., at PAR.BEGIN") - - sf.par("ADJ_SRC_TYPE", required=False, default="cc", par_type=str, - docstr="Adjoint source type to evaluate misfit, defined by " - "Pyadjoint. Currently available options: " - "['cc': cross-correlation, 'mt': multitaper, " - "wav: waveform']") - - sf.par("PLOT", required=False, default=True, par_type=bool, - docstr="Attempt to plot waveforms and maps as PDF files at each " - "function evaluation") - - sf.par("PYATOA_LOG_LEVEL", required=False, default="DEBUG", - par_type=str, - docstr="Log level to set Pyatoa, Pyflex, Pyadjoint. Available: " - "['null': no logging, 'warning': warnings only, " - "'info': task tracking, " - "'debug': log all small details (recommended)]") - + self.required.par( + "END_PAD", required=True, par_type=float, + docstr="For data gathering; time after origin time to gather. " + "END_PAD >= NT * DT (of Par_file). Positive values only" + ) + self.required.par( + "MIN_PERIOD", required=False, default="", par_type=float, + docstr="Minimum filter corner in unit seconds. Bandpass filter " + "if set with `MAX_PERIOD`, highpass filter if set " + "without `MAX_PERIOD`, no filtering if not set and " + "`MAX_PERIOD also not set" + ) + self.required.par( + "MAX_PERIOD", required=False, default="", par_type=float, + docstr="Maximum filter corner in unit seconds. Bandpass filter " + "if set with `MIN_PERIOD`, lowpass filter if set " + "without `MIN_PERIOD`, no filtering if not set and " + "`MIN_PERIOD also not set" + ) + self.required.par( + "CORNERS", required=False, default=4, par_type=int, + docstr="Number of filter corners applied to filtering" + ) + self.required.par( + "CLIENT", required=False, par_type=str, + docstr="Client name for ObsPy FDSN data gathering. Pyatoa will " + "attempt to collect waveform and metadata based on " + "network and station codes provided in the SPECFEM " + "STATIONS file. If set None, no FDSN gathering will be " + "attempted" + ) + self.required.par( + "ROTATE", required=False, default=False, par_type=bool, + docstr="Attempt to rotate waveform components from NEZ -> RTZ" + ) + self.required.par( + "PYFLEX_PRESET", required=False, default="default", par_type=str, + docstr="Parameter map for misfit window configuration defined " + "by Pyflex. IF None, misfit and adjoint sources will be " + "calculated on whole traces. For available choices, " + "see Pyatoa docs page (pyatoa.rtfd.io)" + ) + self.required.par( + "FIX_WINDOWS", required=False, default=False, \ + par_type="bool or str", + docstr="How to address misfit window evaluation at each " + "evaluation. Options to re-use misfit windows collected " + "during an inversion, available options: " + "[True, False, 'ITER', 'ONCE'] " + "True: Re-use windows after first evaluation (i01s00); " + "False: Calculate new windows each evaluation; " + "'ITER': Calculate new windows at first evaluation of " + "each iteration (e.g., i01s00... i02s00..." + "'ONCE': Calculate new windows at first evaluation of " + "the workflow, i.e., at self.par.BEGIN" + ) + self.required.par( + "ADJ_SRC_TYPE", required=False, default="cc", par_type=str, + docstr="Adjoint source type to evaluate misfit, defined by " + "Pyadjoint. Currently available options: " + "['cc': cross-correlation, 'mt': multitaper, " + "wav: waveform']" + ) + self.required.par( + "PLOT", required=False, default=True, par_type=bool, + docstr="Attempt to plot waveforms and maps as PDF files at each " + "function evaluation" + ) + + self.required.par( + "PYATOA_LOG_LEVEL", required=False, default="DEBUG", par_type=str, + docstr="Log level to set Pyatoa, Pyflex, Pyadjoint. Available: " + "['null': no logging, 'warning': warnings only, " + "'info': task tracking, " + "'debug': log all small details (recommended)]" + ) # Parameters to control saving scratch/preprocess files to work dir. - sf.par("SAVE_DATASETS", required=False, default=True, par_type=bool, - docstr="Save PyASDF HDF5 datasets to disk. These datasets store " - "waveform data, metadata, misfit windows, adjoint " - "sources and configuration parameters") - - sf.par("SAVE_FIGURES", required=False, default=True, par_type=bool, - docstr="Save output waveform figures to disk as PDFs") - - sf.par("SAVE_LOGS", required=False, default=True, par_type=bool, - docstr="Save event-specific Pyatoa logs to disk as .txt files") - + self.required.par( + "SAVE_DATASETS", required=False, default=True, par_type=bool, + docstr="Save PyASDF HDF5 datasets to disk. These datasets store " + "waveform data, metadata, misfit windows, adjoint " + "sources and configuration parameters" + ) + self.required.par( + "SAVE_FIGURES", required=False, default=True, par_type=bool, + docstr="Save output waveform figures to disk as PDFs" + ) + self.required.par( + "SAVE_LOGS", required=False, default=True, par_type=bool, + docstr="Save event-specific Pyatoa logs to disk as .txt files" + ) # Define the Paths required by this module - sf.path("PREPROCESS", required=False, - default=os.path.join(PATH.SCRATCH, "preprocess"), - docstr="scratch/ path to store waveform data and figures. " - "Pyatoa will generate an internal directory structure " - "here") - - sf.path("DATA", required=False, - docstr="Directory to locally stored data. Pyatoa looks for " - "waveform and metadata in the 'PATH.DATA/mseed' and " - "'PATH.DATA/seed', directories respectively.") - - return sf + self.required.path( + "PREPROCESS", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "preprocess"), + docstr="scratch/ path to store waveform data and figures. " + "Pyatoa will generate an internal directory structure " + "here" + ) + self.required.path( + "DATA", required=False, + docstr="Directory to locally stored data. Pyatoa looks for " + "waveform and metadata in the 'self.path.DATA/mseed' and " + "'self.path.DATA/seed', directories respectively." + ) def check(self, validate=True): """ Checks Parameter and Path files, will be run at the start of a Seisflows workflow to ensure that things are set appropriately. """ - if validate: - self.required.validate() + super().check(validate=validate) # Check that other modules have set parameters that will be used here for required_parameter in ["COMPONENTS", "FORMAT"]: - assert(required_parameter in PAR), \ + assert(required_parameter in self.par), \ f"Pyatoa requires {required_parameter}" - assert(PAR.FORMAT.upper() == "ASCII"), \ - "Pyatoa preprocess requires PAR.FORMAT=='ASCII'" + assert(self.par.FORMAT.upper() == "ASCII"), \ + "Pyatoa preprocess requires self.par.FORMAT=='ASCII'" - # assert((PAR.DT * PAR.NT) <= (PAR.START_PAD + PAR.END_PAD)), \ - # ("Pyatoa preprocess must have (PAR.START_PAD + PAR.END_PAD) >= " - # "(PAR.DT * PAR.NT), current values will not provide sufficiently " - # f"long data traces (DT*NT={PAR.DT * PAR.NT}; " - # f"START+END={PAR.START_PAD + PAR.END_PAD}") + # assert((self.par.DT * self.par.NT) <= (self.par.START_PAD + self.par.END_PAD)), \ + # ("Pyatoa preprocess must have (self.par.START_PAD + self.par.END_PAD) >= " + # "(self.par.DT * self.par.NT), current values will not provide sufficiently " + # f"long data traces (DT*NT={self.par.DT * self.par.NT}; " + # f"START+END={self.par.START_PAD + self.par.END_PAD}") def setup(self): """ @@ -185,7 +186,54 @@ def setup(self): Akin to an __init__ class, but to be called externally by the workflow. """ - unix.mkdir(PATH.PREPROCESS) + super().setup() + + unix.mkdir(self.path.PREPROCESS) + + def finalize(self): + """ + Run some serial finalization tasks specific to Pyatoa, which will help + aggregate the collection of output information. + + .. note:: + This finalize function performs the following tasks: + * Generate .csv files using the Inspector + * Aggregate event-specific PDFs into a single evaluation PDF + * Save scratch/ data into output/ if requested + """ + super().finalize() + + # Initiate Pyaflowa to get access to path structure + pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) + unix.cd(pyaflowa.paths.datasets) + + # Generate the Inspector from existing datasets and save to disk + # Allow this is fail, which might happen if we don't have enough data + # or the Dataset is not formatted as expected + insp = Inspector(self.par.TITLE, verbose=False) + try: + insp.discover() + insp.save() + except Exception as e: + self.logger.warning(f"Uncontrolled exception in Inspector creation " + f"will not create inspector:\n{e}") + + # Make the final PDF for easier User ingestion of waveform/map figures + pyaflowa.make_evaluation_composite_pdf() + + # Move scratch/ directory results into more permanent storage + if self.par.SAVE_DATASETS: + datasets = glob(os.path.join(pyaflowa.paths.datasets, "*.h5")) + self._save_quantity(datasets, tag="datasets") + + if self.par.SAVE_FIGURES: + figures = glob(os.path.join(pyaflowa.paths.figures, "*.pdf")) + self._save_quantity(figures, tag="figures") + + if self.par.SAVE_LOGS: + logs = glob(os.path.join(pyaflowa.paths.logs, "*.txt")) + path_out = os.path.join(self.path.WORKDIR, CFGPATHS.LOGDIR) + self._save_quantity(logs, path_out=path_out) def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): """ @@ -220,7 +268,7 @@ def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): # Process all the stations for a given event using Pyaflowa pyaflowa = self._setup_event_pyaflowa(source_name) - scaled_misfit = pyaflowa.process(nproc=PAR.NPROC) + scaled_misfit = pyaflowa.process(nproc=self.par.NPROC) if scaled_misfit is None: print(msg.cli(f"Event {source_name} returned no misfit, you may " @@ -232,7 +280,7 @@ def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): sys.exit(-1) # Event misfit defined by Tape et al. (2010) written to solver dir. - self.write_residuals(path=cwd, scaled_misfit=scaled_misfit) + self._write_residuals(path=cwd, scaled_misfit=scaled_misfit) def _setup_event_pyaflowa(self, source_name=None): """ @@ -248,10 +296,8 @@ def _setup_event_pyaflowa(self, source_name=None): :param source_name: solver source name to evaluate setup for. Must match from list defined by: solver.source_names """ - # Late import because preprocess is loaded before optimize, - # Optimize required to know which iteration/step_count we are at - solver = sys.modules["seisflows_solver"] - optimize = sys.modules["seisflows_optimize"] + solver = self.module("solver") + optimize = self.module("optimize") iteration = optimize.iter if source_name is None: @@ -264,54 +310,11 @@ def _setup_event_pyaflowa(self, source_name=None): step_count = "" # Outsource data processing to an event-specfic Pyaflowa instance - pyaflowa = Pyaflowa(sfpar=PAR, sfpath=PATH) + pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) pyaflowa.setup(source_name=source_name, iteration=iteration, step_count=step_count, loc="*", cha="*") return pyaflowa - - def finalize(self): - """ - Run some serial finalization tasks specific to Pyatoa, which will help - aggregate the collection of output information. - - .. note:: - This finalize function performs the following tasks: - * Generate .csv files using the Inspector - * Aggregate event-specific PDFs into a single evaluation PDF - * Save scratch/ data into output/ if requested - """ - # Initiate Pyaflowa to get access to path structure - pyaflowa = Pyaflowa(sfpar=PAR, sfpath=PATH) - unix.cd(pyaflowa.paths.datasets) - - # Generate the Inspector from existing datasets and save to disk - # Allow this is fail, which might happen if we don't have enough data - # or the Dataset is not formatted as expected - insp = Inspector(PAR.TITLE, verbose=False) - try: - insp.discover() - insp.save() - except Exception as e: - self.logger.warning(f"Uncontrolled exception in Inspector creation " - f"will not create inspector:\n{e}") - - # Make the final PDF for easier User ingestion of waveform/map figures - pyaflowa.make_evaluation_composite_pdf() - - # Move scratch/ directory results into more permanent storage - if PAR.SAVE_DATASETS: - datasets = glob(os.path.join(pyaflowa.paths.datasets, "*.h5")) - self._save_quantity(datasets, tag="datasets") - - if PAR.SAVE_FIGURES: - figures = glob(os.path.join(pyaflowa.paths.figures, "*.pdf")) - self._save_quantity(figures, tag="figures") - - if PAR.SAVE_LOGS: - logs = glob(os.path.join(pyaflowa.paths.logs, "*.txt")) - path_out = os.path.join(PATH.WORKDIR, CFGPATHS.LOGDIR) - self._save_quantity(logs, path_out=path_out) def _save_quantity(self, filepaths, tag="", path_out=""): """ @@ -321,13 +324,13 @@ def _save_quantity(self, filepaths, tag="", path_out=""): :type filepaths: list :param filepaths: full path to files that should be saved to output/ :type tag: str - :param tag: tag for saving the files in PATH.OUTPUT. If not given, will + :param tag: tag for saving the files in self.path.OUTPUT. If not given, will save directly into the output/ directory :type path_out: str :param path_out: overwrite the default output path file naming """ if not path_out: - path_out = os.path.join(PATH.OUTPUT, tag) + path_out = os.path.join(self.path.OUTPUT, tag) if not os.path.exists(path_out): unix.mkdir(path_out) @@ -336,12 +339,13 @@ def _save_quantity(self, filepaths, tag="", path_out=""): dst = os.path.join(path_out, os.path.basename(src)) unix.cp(src, dst) - def write_residuals(self, path, scaled_misfit): + @staticmethod + def _write_residuals(path, scaled_misfit): """ Computes residuals and saves them to a text file in the appropriate path :type path: str - :param path: scratch directory path, e.g. PATH.GRAD or PATH.FUNC + :param path: scratch directory path, e.g. self.path.GRAD or self.path.FUNC :type scaled_misfit: float :param scaled_misfit: the summation of misfit from each source-receiver pair calculated by prepare_eval_grad() @@ -363,10 +367,10 @@ def sum_residuals(self, files): :rtype: float :return: average misfit """ - if len(files) != PAR.NTASK: + if len(files) != self.par.NTASK: print(msg.cli(f"Pyatoa preprocessing module did not recover the " f"correct number of residual files " - f"({len(files)}/{PAR.NTASK}). Please check that " + f"({len(files)}/{self.par.NTASK}). Please check that " f"the preprocessing logs", header="error") ) sys.exit(-1) @@ -375,7 +379,7 @@ def sum_residuals(self, files): for filename in files: total_misfit += np.sum(np.loadtxt(filename)) - total_misfit /= PAR.NTASK + total_misfit /= self.par.NTASK return total_misfit From 4a2781ea6aadaf53703253fc8b4fd33da91846b6 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 27 Jun 2022 16:32:41 -0800 Subject: [PATCH 029/195] renamed solver.base to solver.specfem to signify that this is really only a specfem dependent base class, and to remove confusion from core base class --- seisflows/solver/{base.py => specfem.py} | 242 +++++++++++------------ 1 file changed, 119 insertions(+), 123 deletions(-) rename seisflows/solver/{base.py => specfem.py} (85%) diff --git a/seisflows/solver/base.py b/seisflows/solver/specfem.py similarity index 85% rename from seisflows/solver/base.py rename to seisflows/solver/specfem.py index f91e9d80..d2541390 100644 --- a/seisflows/solver/base.py +++ b/seisflows/solver/specfem.py @@ -1,34 +1,29 @@ #!/usr/bin/env python3 """ This Solver module is in charge of interacting with external numerical solvers -such as SPECFEM (2D/3D/3D_GLOBE). The Base class provides general functions -that work with SPECFEM, while subclasses provide details to differentiate the -various types of SPECFEM. +such as SPECFEM (2D/3D/3D_GLOBE). This SPECFEM base class provides general +functions that work with all versions of SPECFEM. Subclasses will provide +additional capabilities unique to each version of SPECFEM. """ import os import sys -import logging import subprocess import numpy as np from glob import glob +from seisflows.core import Base from seisflows.plugins import solver_io from seisflows.tools import msg, unix from seisflows.tools.specfem import Container, getpar from seisflows.tools.wrappers import diff -from seisflows.core import SeisFlowsPathsParameters, Dict +from seisflows.core import Dict -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] -system = sys.modules['seisflows_system'] -preprocess = sys.modules['seisflows_preprocess'] - - -class Base: +class Specfem(Base): """ This base class provides an interface through which solver simulations can - be set up and run and a parent class for the following subclasses: + be set up and run. It should not be used by itself, but rather it is meant + to provide the foundation for the following child classes: SPECFEM2D SPECFEM3D @@ -85,9 +80,6 @@ class Base: !!! Required functions which must be implemented by subclass !!! """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the User_! @@ -106,91 +98,92 @@ def __init__(self): :param logger: Class-specific logging module, log statements pushed from this logger will be tagged by its specific module/classname """ + super().__init__() + + self.required.par( + "MATERIALS", required=False, par_type=str, default="ELASTIC", + docstr="Material parameters used to define model. Available: " + "['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', " + "'ANISOTROPIC']" + ) + self.required.par( + "DENSITY", required=False, par_type=str, default="CONSTANT", + docstr="How to treat density during inversion. Available: " + "['CONSTANT': Do not update density, " + "'VARIABLE': Update density]" + ) + self.required.par( + "ATTENUATION", required=False, par_type=bool, default=False, + docstr="If True, turn on attenuation during forward " + "simulations, otherwise set attenuation off. Attenuation " + "is always off for adjoint simulations." + ) + self.required.par( + "FORMAT", required=False, par_type=float, default="ASCII", + docstr="Format of synthetic waveforms used during workflow, " + "available options: ['ASCII', 'SU']" + ) + self.required.par( + "COMPONENTS", required=False, default="ZNE", par_type=str, + docstr="Components used to generate data, formatted as a single " + "string, e.g. ZNE or NZ or E" + ) + self.required.par( + "SOLVERIO", required=False, default="fortran_binary", par_type=str, + docstr="The format external solver files. Available: " + "['fortran_binary']" + ) + self.required.path( + "SOLVER", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "solver"), + docstr="scratch path to hold solver working directories" + ) + self.required.path( + "DATA", required=False, + docstr="path to a directory containing any external data " + "required by the workflow. Catch all directory that " + "can be accessed by all modules" + ) + self.required.path( + "SPECFEM_BIN", required=False, + default=os.path.join(self.path.WORKDIR, "specfem", "bin"), + docstr="path to the SPECFEM binary executables" + ) + self.required.path( + "SPECFEM_DATA", required=False, + default=os.path.join(self.path.WORKDIR, "specfem", "DATA"), + docstr="path to the SPECFEM DATA/ directory containing the " + "'Par_file', 'STATIONS' file and 'CMTSOLUTION' files" + ) + self.parameters = [] self.nt = None self.dt = None self._mesh_properties = None self._source_names = None - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters() - - sf.par("MATERIALS", required=False, par_type=str, default="ELASTIC", - docstr="Material parameters used to define model. Available: " - "['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', " - "'ANISOTROPIC']") - - sf.par("DENSITY", required=False, par_type=str, default="CONSTANT", - docstr="How to treat density during inversion. Available: " - "['CONSTANT': Do not update density, " - "'VARIABLE': Update density]") - - sf.par("ATTENUATION", required=False, par_type=bool, default=False, - docstr="If True, turn on attenuation during forward " - "simulations, otherwise set attenuation off. Attenuation " - "is always off for adjoint simulations.") - - sf.par("FORMAT", required=False, par_type=float, default="ASCII", - docstr="Format of synthetic waveforms used during workflow, " - "available options: ['ascii', 'su']") - - sf.par("COMPONENTS", required=False, default="ZNE", par_type=str, - docstr="Components used to generate data, formatted as a single " - "string, e.g. ZNE or NZ or E") - - sf.par("SOLVERIO", required=False, default="fortran_binary", - par_type=int, - docstr="The format external solver files. Available: " - "['fortran_binary', 'adios']") - - sf.path("SOLVER", required=False, - default=os.path.join(PATH.WORKDIR, "scratch", "solver"), - docstr="scratch path to hold solver working directories") - - sf.path("DATA", required=False, - docstr="path to a directory containing any external data " - "required by the workflow. Catch all directory that " - "can be accessed by all modules") - - sf.path("SPECFEM_BIN", required=False, - default=os.path.join(PATH.WORKDIR, "specfem", "bin"), - docstr="path to the SPECFEM binary executables") - - sf.path("SPECFEM_DATA", required=False, - default=os.path.join(PATH.WORKDIR, "specfem", "DATA"), - docstr="path to the SPECFEM DATA/ directory containing the " - "'Par_file', 'STATIONS' file and 'CMTSOLUTION' files") - - return sf - def check(self, validate=True): """ Checks parameters and paths """ - if validate: - self.required.validate() + super().check(validate=validate) # Check that other modules have set parameters that will be used here for required_parameter in ["NPROC"]: - assert (required_parameter in PAR), \ + assert (required_parameter in self.par), \ f"Solver requires {required_parameter}" available_materials = ["ELASTIC", "ACOUSTIC", # specfem2d, specfem3d "ISOTROPIC", "ANISOTROPIC"] # specfem3d_globe - assert(PAR.MATERIALS.upper() in available_materials), \ + assert(self.par.MATERIALS.upper() in available_materials), \ f"MATERIALS must be in {available_materials}" acceptable_densities = ["CONSTANT", "VARIABLE"] - assert(PAR.DENSITY.upper() in acceptable_densities), \ + assert(self.par.DENSITY.upper() in acceptable_densities), \ f"DENSITY must be in {acceptable_densities}" acceptable_formats = ["SU", "ASCII"] - if PAR.FORMAT.upper() not in acceptable_formats: + if self.par.FORMAT.upper() not in acceptable_formats: raise Exception(f"'FORMAT' must be {acceptable_formats}") # Internal parameter list based on user-input material choices @@ -198,30 +191,30 @@ def check(self, validate=True): # statements fill it. If not, each time workflow is resumed, parameters # list will append redundant parameters and things stop working self.parameters = [] - if PAR.MATERIALS.upper() == "ELASTIC": - assert(PAR.SOLVER.lower() in ["specfem2d", "specfem3d"]) + if self.par.MATERIALS.upper() == "ELASTIC": + assert(self.par.SOLVER.lower() in ["specfem2d", "specfem3d"]) self.parameters += ["vp", "vs"] - elif PAR.MATERIALS.upper() == "ACOUSTIC": - assert(PAR.SOLVER.lower() in ["specfem2d", "specfem3d"]) + elif self.par.MATERIALS.upper() == "ACOUSTIC": + assert(self.par.SOLVER.lower() in ["specfem2d", "specfem3d"]) self.parameters += ["vp"] - elif PAR.MATERIALS.upper() == "ISOTROPIC": - assert(PAR.SOLVER.lower() in ["specfem3d_globe"]) + elif self.par.MATERIALS.upper() == "ISOTROPIC": + assert(self.par.SOLVER.lower() in ["specfem3d_globe"]) self.parameters += ["vp", "vs"] - elif PAR.MATERIALS.upper() == "ANISOTROPIC": - assert(PAR.SOLVER.lower() in ["specfem3d_globe"]) + elif self.par.MATERIALS.upper() == "ANISOTROPIC": + assert(self.par.SOLVER.lower() in ["specfem3d_globe"]) self.parameters += ["vpv", "vph", "vsv", "vsh", "eta"] - if PAR.DENSITY.upper() == "VARIABLE": + if self.par.DENSITY.upper() == "VARIABLE": self.parameters.append("rho") - assert hasattr(solver_io, PAR.SOLVERIO) + assert hasattr(solver_io, self.par.SOLVERIO) assert hasattr(self.io, "read_slice"), \ "IO method has no attribute 'read_slice'" assert hasattr(self.io, "write_slice"), \ "IO method has no attribute 'write_slice'" def setup(self): - """ + """ Prepares solver for inversion or migration. Sets up directory structure expected by SPECFEM and copies or generates seismic data to be inverted or migrated @@ -268,6 +261,8 @@ def eval_func(self, path, write_residuals=True): :type write_residuals: bool :param write_residuals: calculate and export residuals """ + preprocess = self.module("preprocess") + if self.taskid == 0: self.logger.info("running forward simulations") @@ -367,8 +362,6 @@ def call_solver(self, executable, output="solver.log"): non-zero exit code (failure), this function will return a negative boolean. - :type mpiexec: str - :param mpiexec: call to mpi. If None (e.g., serial run, defaults to ./) :type executable: str :param executable: executable function to call :type output: str @@ -382,11 +375,11 @@ def call_solver(self, executable, output="solver.log"): sys.exit(-1) # mpiexec is None when running in serial mode, so e.g., ./xmeshfem2D - if PAR.SYSTEM in ["workstation"]: + if self.par.SYSTEM in ["workstation"]: exc_cmd = f"./{executable}" # Otherwise mpiexec is system dependent (e.g., srun, mpirun) else: - exc_cmd = f"{PAR.MPIEXEC} {executable}" + exc_cmd = f"{self.par.MPIEXEC} {executable}" # Run solver. Write solver stdout (log files) to text file try: @@ -405,17 +398,8 @@ def call_solver(self, executable, output="solver.log"): ) sys.exit(-1) - @property - def io(self): - """ - Solver IO module set by User. - - Located in seisflows.plugins.solver_io - """ - return getattr(solver_io, PAR.SOLVERIO) - def load(self, path, prefix="", suffix="", parameters=None,): - """ + """ Solver I/O: Loads SPECFEM2D/3D models or kernels :type path: str @@ -444,7 +428,7 @@ def load(self, path, prefix="", suffix="", parameters=None,): return load_dict def save(self, save_dict, path, parameters=None, prefix="", suffix=""): - """ + """ Solver I/O: Saves SPECFEM2D/3D models or kernels :type save_dict: dict or Container @@ -468,7 +452,7 @@ def save(self, save_dict, path, parameters=None, prefix="", suffix=""): for iproc in range(self.mesh_properties.nproc): for key in missing_keys: save_dict[key] += self.io.read_slice( - path=PATH.MODEL_INIT, parameters=f"{prefix}{key}{suffix}", + path=self.path.MODEL_INIT, parameters=f"{prefix}{key}{suffix}", iproc=iproc ) @@ -531,11 +515,11 @@ def split(self, m, parameters=None): def combine(self, input_path, output_path, parameters=None): """ - Postprocessing wrapper: xcombine_sem + Postprocessing wrapper: xcombine_sem Sums kernels from individual source contributions to create gradient. .. note:: - The binary xcombine_sem simply sums matching databases (.bin) + The binary xcombine_sem simply sums matching databases (.bin) .. note:: It is ASSUMED that this function is being called by @@ -731,7 +715,8 @@ def export_traces(self, path, prefix="traces/obs"): dst = os.path.join(path, self.source_name) unix.cp(src, dst) - def rename_kernels(self): + @staticmethod + def rename_kernels(): """ Works around conflicting kernel filename conventions by renaming `alpha` to `vp` and `beta` to `vs` @@ -767,7 +752,7 @@ def initialize_solver_directories(self): extra files. """ if self.taskid == 0: - self.logger.info(f"initializing {PAR.NTASK} solver directories") + self.logger.info(f"initializing {self.par.NTASK} solver directories") unix.rm(self.cwd) unix.mkdir(self.cwd) @@ -780,25 +765,25 @@ def initialize_solver_directories(self): unix.mkdir(cwd_dir) # Copy exectuables into the bin/ directory - src = glob(os.path.join(PATH.SPECFEM_BIN, "*")) + src = glob(os.path.join(self.path.SPECFEM_BIN, "*")) dst = os.path.join("bin", "") unix.cp(src, dst) # Copy all input files except source files - src = glob(os.path.join(PATH.SPECFEM_DATA, "*")) + src = glob(os.path.join(self.path.SPECFEM_DATA, "*")) src = [_ for _ in src if self.source_prefix not in _] dst = os.path.join("DATA", "") unix.cp(src, dst) # Symlink event source specifically, strip the source name as SPECFEM # just expects `source_name` - src = os.path.join(PATH.SPECFEM_DATA, + src = os.path.join(self.path.SPECFEM_DATA, f"{self.source_prefix}_{self.source_name}") dst = os.path.join("DATA", self.source_prefix) unix.ln(src, dst) - if self.taskid == 0: - mainsolver = os.path.join(PATH.SOLVER, "mainsolver") + if self.taskid == 0: + mainsolver = os.path.join(self.path.SOLVER, "mainsolver") # Symlink taskid_0 as mainsolver in solver directory for convenience if not os.path.exists(mainsolver): unix.ln(self.cwd, mainsolver) @@ -807,7 +792,7 @@ def initialize_solver_directories(self): else: # Copy the initial model from mainsolver into current directory # Avoids the need to run multiple instances of xgenerate_databases - src = os.path.join(PATH.SOLVER, "mainsolver", "OUTPUT_FILES", + src = os.path.join(self.path.SOLVER, "mainsolver", "OUTPUT_FILES", "DATABASES_MPI") dst = os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") unix.cp(src, dst) @@ -822,7 +807,9 @@ def initialize_adjoint_traces(self): Channels actually in use during an inversion or migration will be overwritten with nonzero values later on. """ - if PAR.PREPROCESS.lower() == "default": + preprocess = self.module("preprocess") + + if self.par.PREPROCESS.upper() == "DEFAULT": if self.taskid == 0: self.logger.debug(f"intializing {len(self.data_filenames)} " f"empty adjoint traces per event") @@ -850,7 +837,7 @@ def check_mesh_properties(self, path=None): """ # Check the given model path or the initial model if path is None: - path = PATH.MODEL_INIT + path = self.path.MODEL_INIT if os.path.exists(path): # Count the number of .bin files and the number of grid points @@ -881,11 +868,11 @@ def check_source_names(self): # Apply wildcard rule and check for available sources, exit if no # sources found because then we can't proceed wildcard = f"{self.source_prefix}_*" - fids = sorted(glob(os.path.join(PATH.SPECFEM_DATA, wildcard))) + fids = sorted(glob(os.path.join(self.path.SPECFEM_DATA, wildcard))) if not fids: print(msg.cli("No matching source files when searching PATH for" "the given WILDCARD", - items=[f"PATH: {PATH.SPECFEM_DATA}", + items=[f"PATH: {self.path.SPECFEM_DATA}", f"WILDCARD: {wildcard}"], header="error" ) ) @@ -893,7 +880,7 @@ def check_source_names(self): # Create internal definition of sources names by stripping prefixes names = [os.path.basename(fid).split("_")[-1] for fid in fids] - self._source_names = names[:PAR.NTASK] + self._source_names = names[:self.par.NTASK] def check_solver_parameter_files(self): """ @@ -903,6 +890,15 @@ def check_solver_parameter_files(self): """ pass + @property + def io(self): + """ + Solver IO module set by User. + + Located in seisflows.plugins.solver_io + """ + return getattr(solver_io, self.par.SOLVERIO) + @property def taskid(self): """ @@ -912,7 +908,7 @@ def taskid(self): :rtype: int :return: task id for given solver """ - return system.taskid() + return self.module("system").taskid() @property def source_name(self): @@ -932,7 +928,7 @@ def cwd(self): :rtype: str :return: current solver working directory """ - return os.path.join(PATH.SOLVER, self.source_name) + return os.path.join(self.path.SOLVER, self.source_name) @property def source_names(self): @@ -995,6 +991,6 @@ def source_prefix(self): :rtype: str :return: source prefix """ - return PAR.SOURCE_PREFIX.upper() + return self.par.SOURCE_PREFIX.upper() From f9ffb1f7ae480a36cf886825d9e3b30f80b36213 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 27 Jun 2022 17:30:51 -0800 Subject: [PATCH 030/195] specefem2d and specfem3d now have the new code styling. Trying to condense functions into the base Specfem classas there was redundant code between 2D and 3D versions. Also optimizing code by not running mesher for models that should have already been generated --- seisflows/solver/specfem.py | 331 ++++++++++++----------- seisflows/solver/specfem2d.py | 482 +++++++++++++++++++--------------- seisflows/solver/specfem3d.py | 250 ++++++++---------- 3 files changed, 551 insertions(+), 512 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index d2541390..60261b3d 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -162,6 +162,124 @@ def __init__(self): self._mesh_properties = None self._source_names = None + @property + def io(self): + """ + Solver IO module set by User. Located in seisflows.plugins.solver_io + + :rtype: module + :return: module containing solver input/output options + """ + return getattr(solver_io, self.par.SOLVERIO) + + @property + def taskid(self): + """ + Returns the currently running process for embarassingly parallelized + tasks. + + :rtype: int + :return: task id for given solver + """ + return self.module("system").taskid() + + @property + def source_names(self): + """ + Returns list of source names + + :rtype: list + :return: list of source names + """ + if self._source_names is None: + self.check_source_names() + + return self._source_names + + @property + def source_name(self): + """ + Returns name of source currently under consideration + + :rtype: str + :return: given source name for given task id + """ + return self.source_names[self.taskid] + + @property + def source_prefix(self): + """ + Preferred source prefix + + TODO remove this and replace all instances with the self.par parameter + + :rtype: str + :return: source prefix + """ + return self.par.SOURCE_PREFIX.upper() + + @property + def cwd(self): + """ + Returns working directory currently in use + + :rtype: str + :return: current solver working directory + """ + return os.path.join(self.path.SOLVER, self.source_name) + + @property + def mesh_properties(self): + """ + Returns mesh properties + + :rtype: Struct + :return: Structure of mesh properties + """ + if self._mesh_properties is None: + self.check_mesh_properties() + + return self._mesh_properties + + @property + def data_wildcard(self, comp="?"): + """ + Provide a wildcard string that will match the name of the output + synthetic seismograms + + :type comp: str + :param comp: single letter defining the component that can be inserted + into the wildcard. Defaults to '?' + """ + return NotImplementedError + + @property + def data_filenames(self): + """ + Template filenames for accessing data + + !!! Must be implemented by subclass !!! + """ + return NotImplementedError + + @property + def model_databases(self): + """ + Template filenames for accessing models + + !!! Must be implemented by subclass !!! + """ + return NotImplementedError + + @property + def kernel_databases(self): + """ + Template filenames for accessing kernels + + !!! Must be implemented by subclass !!! + """ + return NotImplementedError + def check(self, validate=True): """ Checks parameters and paths @@ -219,6 +337,8 @@ def setup(self): Sets up directory structure expected by SPECFEM and copies or generates seismic data to be inverted or migrated + TODO !!! what are the arguments of generate data? + .. note:; As input for an inversion or migration, users can choose between providing data, or providing a target model from which data are @@ -227,8 +347,10 @@ def setup(self): in the latter case, a value for PATH.MODEL_TRUE must be provided. """ self.initialize_solver_directories() + self.set_model(model_name="true", model_type="gll") self.generate_data() - self.generate_mesh(model_name="init", model_type="gll") + + self.set_model(model_name="init", model_type="gll") self.initialize_adjoint_traces() # Assuming that NT and DT are set correctly in the Par_file @@ -236,14 +358,45 @@ def setup(self): self.nt = getpar(key="NSTEP", file="DATA/Par_file")[1] self.dt = getpar(key="DT", file="DATA/Par_file")[1] - def generate_mesh(self, model_path, model_name, model_type): + def set_model(self, model_name, model_type=None): """ - Performs meshing and database generation. + Mesh and database files should have been created during the manual set + up phase. This function simply checks the mesh properties of that mesh + and ensures that it is locatable by future SeisFlows processes. - This function is Solver specific and is responsible for generating - the mesh using the external numerical solver. + :type model_name: str + :param model_name: name of the model to be used as identification + :type model_type: str + :param model_type: available model types to be passed to the Specfem3D + Par_file. See Specfem3D Par_file for available options. """ - raise NotImplementedError("must be implemented by solver subclass") + unix.cd(self.cwd) + + # Check the type of model. So far SeisFlows only accepts GLL models + available_model_types = ["gll"] + model_type = model_type or getpar(key="MODEL", file="DATA/Par_file") + assert(model_type in available_model_types), \ + f"{model_type} not in available types {available_model_types}" + + # Determine which model will be set as the starting model + if model_name.upper() == "INIT": + model_path = self.path.MODEL_INIT + elif model_name.upper() == "TRUE": + model_path = self.path.MODEL_TRUE + else: + raise ValueError(f"model name must be 'INIT' or 'TRUE'") + assert(os.path.exists(model_path)), f"model {model_path} does not exist" + + if model_type == "gll": + self.check_mesh_properties(model_path) + # Copy the model files (ex: proc000023_vp.bin ...) into database dir + src = glob(os.path.join(model_path, "*")) + dst = self.model_databases + unix.cp(src, dst) + + # Export the model into output folder, ready to be used by SeisFlows + if self.taskid == 0: + self.export_model(os.path.join(self.path.OUTPUT, model_name)) def generate_data(self): """ @@ -314,26 +467,26 @@ def eval_grad(self, path, export_traces=False): self.export_traces(path=os.path.join(path, "traces", "adj"), prefix="traces/adj") - def apply_hess(self, path): - """ - High level solver interface that computes action of Hessian on a given - model vector. A gradient evaluation must have already been carried out. - - TODO preprocess has no function prepare_apply_hess() - - :type path: str - :param path: directory to which output files are exported - """ - raise NotImplementedError("must be implemented by solver subclass") - - unix.cd(self.cwd) - self.import_model(path) - unix.mkdir("traces/lcg") - - self.forward("traces/lcg") - preprocess.prepare_apply_hess(self.cwd) - self.adjoint() - self.export_kernels(path) + # def apply_hess(self, path): + # """ + # High level solver interface that computes action of Hessian on a given + # model vector. A gradient evaluation must have already been carried out. + # + # TODO preprocess has no function prepare_apply_hess() + # + # :type path: str + # :param path: directory to which output files are exported + # """ + # raise NotImplementedError("must be implemented by solver subclass") + # + # unix.cd(self.cwd) + # self.import_model(path) + # unix.mkdir("traces/lcg") + # + # self.forward("traces/lcg") + # preprocess.prepare_apply_hess(self.cwd) + # self.adjoint() + # self.export_kernels(path) def forward(self, path): """ @@ -398,7 +551,7 @@ def call_solver(self, executable, output="solver.log"): ) sys.exit(-1) - def load(self, path, prefix="", suffix="", parameters=None,): + def load(self, path, prefix="", suffix="", parameters=None): """ Solver I/O: Loads SPECFEM2D/3D models or kernels @@ -560,7 +713,7 @@ def combine(self, input_path, output_path, parameters=None): ) def smooth(self, input_path, output_path, parameters=None, span_h=0., - span_v=0., output="solver.log"): + span_v=0., output="smooth.log"): """ Postprocessing wrapper: xsmooth_sem Smooths kernels by convolving them with a Gaussian. @@ -715,8 +868,7 @@ def export_traces(self, path, prefix="traces/obs"): dst = os.path.join(path, self.source_name) unix.cp(src, dst) - @staticmethod - def rename_kernels(): + def rename_kernels(self): """ Works around conflicting kernel filename conventions by renaming `alpha` to `vp` and `beta` to `vs` @@ -731,15 +883,6 @@ def rename_kernels(): names = glob(f"*proc??????_{tag}_kernel.bin") unix.rename(old="beta", new="vs", names=names) - def rename_data(self, path): - """ - Optional method to rename data to work around conflicting naming schemes - for data outputted by the solver - - !!! Can be implemented by subclass !!! - """ - raise NotImplementedError("must be implemented by solver subclass") - def initialize_solver_directories(self): """ Creates directory structure expected by SPECFEM3D (bin/, DATA/) copies @@ -882,115 +1025,5 @@ def check_source_names(self): names = [os.path.basename(fid).split("_")[-1] for fid in fids] self._source_names = names[:self.par.NTASK] - def check_solver_parameter_files(self): - """ - Optional method - - !!! Can be implemented by subclass !!! - """ - pass - - @property - def io(self): - """ - Solver IO module set by User. - - Located in seisflows.plugins.solver_io - """ - return getattr(solver_io, self.par.SOLVERIO) - - @property - def taskid(self): - """ - Returns the currently running process for embarassingly parallelized - tasks. - - :rtype: int - :return: task id for given solver - """ - return self.module("system").taskid() - - @property - def source_name(self): - """ - Returns name of source currently under consideration - - :rtype: str - :return: given source name for given task id - """ - return self.source_names[self.taskid] - - @property - def cwd(self): - """ - Returns working directory currently in use - - :rtype: str - :return: current solver working directory - """ - return os.path.join(self.path.SOLVER, self.source_name) - - @property - def source_names(self): - """ - Returns list of source names - - :rtype: list - :return: list of source names - """ - if self._source_names is None: - self.check_source_names() - - return self._source_names - - @property - def mesh_properties(self): - """ - Returns mesh properties - - :rtype: Struct - :return: Structure of mesh properties - """ - if self._mesh_properties is None: - self.check_mesh_properties() - - return self._mesh_properties - - @property - def data_filenames(self): - """ - Template filenames for accessing data - - !!! Must be implemented by subclass !!! - """ - return NotImplementedError - - @property - def model_databases(self): - """ - Template filenames for accessing models - - !!! Must be implemented by subclass !!! - """ - return NotImplementedError - - @property - def kernel_databases(self): - """ - Template filenames for accessing kernels - - !!! Must be implemented by subclass !!! - """ - return NotImplementedError - - @property - def source_prefix(self): - """ - Preferred source prefix - - :rtype: str - :return: source prefix - """ - return self.par.SOURCE_PREFIX.upper() diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 6284e73c..aba62d18 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -7,33 +7,17 @@ """ import os import sys -import logging from glob import glob +from seisflows.solver.specfem import Specfem from seisflows.tools import unix, msg -from seisflows.tools.wrappers import exists -from seisflows.core import SeisFlowsPathsParameters -from seisflows.config import custom_import from seisflows.tools.specfem import getpar, setpar -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] - -system = sys.modules['seisflows_system'] -preprocess = sys.modules['seisflows_preprocess'] - - -class Specfem2D(custom_import("solver", "base")): +class Specfem2D(Specfem): """ - Python interface to Specfem2D. This subclass inherits functions from - seisflows.solver.Base - - !!! See base class for method descriptions !!! + Python interface to Specfem2D. """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. @@ -41,92 +25,147 @@ def __init__(self): """ super().__init__() + self.required.par( + "SOURCE_PREFIX", required=False, default="SOURCE", par_type=str, + docstr="Prefix of SOURCE files in path SPECFEM_DATA. By " + "default, 'SOURCE' for SPECFEM2D" + ) + self.f0 = None @property - def required(self): + def io(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.io + + @property + def taskid(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.taskid + + @property + def source_names(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.source_names + + @property + def source_name(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.source_name + + @property + def source_prefix(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.source_prefix + + @property + def cwd(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.cwd + + @property + def mesh_properties(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.mesh_properties + + @property + def data_wildcard(self, comp="?"): + """ + Returns a wildcard identifier for synthetic data based on SPECFEM2D + file naming schema. Allows formatting dcomponent e.g., + when called by solver.data_filenames + + :type comp: str + :param comp: component formatter, defaults to wildcard '?' + :rtype: str + :return: wildcard identifier for channels """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. + if self.par.FORMAT.upper() == "SU": + # return f"*.su" # too vague but maybe for a reason? -bryant + return f"U{comp}_file_single.su" + elif self.par.FORMAT.upper() == "ASCII": + return f"*.?X{comp}.sem?" + + @property + def data_filenames(self): """ - sf = SeisFlowsPathsParameters(super().required) + Returns the filenames of all data, either by the requested components + or by all available files in the directory. - sf.par("SOURCE_PREFIX", required=False, default="SOURCE", - par_type=str, - docstr="Prefix of SOURCE files in path SPECFEM_DATA. By " - "default, 'SOURCE' for SPECFEM2D") + .. note:: + If the glob returns an empty list, this function exits the + workflow because filenames should not be empty is they're being + queried - return sf + :rtype: list + :return: list of data filenames + """ + unix.cd(self.cwd) + unix.cd(os.path.join("traces", "obs")) + + if self.par.COMPONENTS: + filenames = [] + if self.par.FORMAT.upper() == "SU": + for comp in self.par.COMPONENTS: + filenames += [self.data_wildcard.format(comp=comp.lower())] + # filenames += [f"U{comp.lower()}_file_single.su"] + elif self.par.FORMAT.upper() == "ASCII": + for comp in self.par.COMPONENTS: + filenames += glob( + self.data_wildcard.format(comp=comp.upper()) + ) + # filenames += glob(f"*.?X{comp.upper()}.sem?") + else: + filenames = glob(self.data_wildcard) + + if not filenames: + print(msg.cli("The property solver.data_filenames, used to search " + "for traces in 'scratch/solver/*/traces' is empty " + "and should not be. Please check solver parameters: ", + items=[f"data_wildcard: {self.data_wildcard}"], + header="data filenames error", border="=") + ) + sys.exit(-1) + + return filenames + + @property + def model_databases(self): + """ + The location of model inputs and outputs as defined by SPECFEM2D + """ + return os.path.join(self.cwd, "DATA") + + @property + def kernel_databases(self): + """ + The location of kernel inputs and outputs as defined by SPECFEM2D + """ + return os.path.join(self.cwd, "OUTPUT_FILES") def check(self, validate=True): """ Checks parameters and paths """ - if validate: - self.required.validate() - - super().check(validate=False) + super().check(validate=validate) def setup(self): """ Additional SPECFEM2D setup steps """ super().setup() - self.f0 = getpar(key="f0", file=os.path.join(self.cwd, - "DATA/SOURCE"))[1] + self.f0 = getpar(key="f0", + file=os.path.join(self.cwd, "DATA/SOURCE"))[1] - if "MULTIPLES" in PAR: - if PAR.MULTIPLES: + if "MULTIPLES" in self.par: + if self.par.MULTIPLES: setpar(key="absorbtop", val=".false.", file="DATA/Par_file") else: setpar(key="absorbtop", val=".true.", file="DATA/Par_file") - def initialize_adjoint_traces(self): - """ - Setup utility: Creates the "adjoint traces" expected by SPECFEM. - This is only done for the 'base' the Preprocess class. - - Note: - Adjoint traces are initialized by writing zeros for all channels. - Channels actually in use during an inversion or migration will be - overwritten with nonzero values later on. - """ - super().initialize_adjoint_traces() - - unix.cd(self.cwd) - unix.cd(os.path.join("traces", "adj")) - - # work around SPECFEM2D's use of different name conventions for - # regular traces and 'adjoint' traces - if PAR.FORMAT.upper() == "SU": - files = glob("*SU") - unix.rename(old="_SU", new="_SU.adj", names=files) - elif PAR.FORMAT.upper() == "ASCII": - files = glob("*sem?") - - # Get the available extensions, which are named based on unit - extensions = set([os.path.splitext(_)[-1] for _ in files]) - for extension in extensions: - unix.rename(old=extension, new=".adj", names=files) - - # SPECFEM2D requires that all components exist even if ununsed - components = ["x", "y", "z", "p"] - - if PAR.FORMAT.upper() == "SU": - for comp in components: - src = f"U{PAR.COMPONENTS[0]}_file_single.su.adj" - dst = f"U{comp.lower()}s_file_single.su.adj" - if not exists(dst): - unix.cp(src, dst) - elif PAR.FORMAT.upper() == "ASCII": - for fid in glob("*.adj"): - net, sta, cha, ext = fid.split(".") - for comp in components: - # Replace the last value in the channel with new component - cha_check = cha[:-1] + comp.upper() - fid_check = ".".join([net, sta, cha_check, ext]) - if not exists(fid_check): - unix.cp(fid, fid_check) + def set_model(self, model_name, model_type="gll"): + """Inherits from seisflows.solver.specfem.Specfem""" + self.set_model(model_name=model_name, model_type=model_type) def generate_data(self): """ @@ -137,64 +176,32 @@ def generate_data(self): 'cwd/traces/obs' """ # If synthetic inversion, generate 'data' with solver - if PAR.CASE.upper() == "SYNTHETIC": - if PATH.MODEL_TRUE is not None: + if self.par.CASE.upper() == "SYNTHETIC": + if self.path.MODEL_TRUE is not None: if self.taskid == 0: self.logger.info("generating 'data' with MODEL_TRUE") # Generate synthetic data on the fly using the true model - self.generate_mesh(model_name="true", model_type="gll") + self.set_model(model_name="true", model_type="gll") self.forward(path=os.path.join("traces", "obs")) # If Data provided by user, copy directly into the solver directory - elif PATH.DATA is not None and os.path.exists(PATH.DATA): - unix.cp(src=glob(os.path.join(PATH.DATA, self.source_name, "*")), - dst=os.path.join("traces", "obs") - ) - if PAR.SAVETRACES: - self.export_traces(path=os.path.join(PATH.OUTPUT, "traces", "obs")) - - def generate_mesh(self, model_name, model_type="gll"): - """ - Performs meshing with internal mesher Meshfem2D and database generation - - :type model_path: str - :param model_path: path to the model to be used for mesh generation - :type model_name: str - :param model_name: name of the model to be used as identification - :type model_type: str - :param model_type: available model types to be passed to the Specfem3D - Par_file. See Specfem3D Par_file for available options. - """ - unix.cd(self.cwd) - - if model_name.upper() == "INIT": - model_path = PATH.MODEL_INIT - elif model_name.upper() == "TRUE": - model_path = PATH.MODEL_TRUE - else: - raise ValueError(f"model name must be 'INIT' or 'TRUE'") - assert(exists(model_path)), f"model {model_path} does not exist" - - if self.taskid == 0: - self.logger.info(f"running mesh generation for " - f"MODEL_{model_name.upper()}") - - available_model_types = ["gll"] - assert(model_type in available_model_types), \ - f"{model_type} not in available types {available_model_types}" - - # Run mesh generation - if model_type == "gll": - self.check_mesh_properties(model_path) - - # Copy the model files (ex: proc000023_vp.bin ...) into DATA - src = glob(os.path.join(model_path, "*")) - dst = self.model_databases - unix.cp(src, dst) - - # Export the model into output folder - if self.taskid == 0: - self.export_model(os.path.join(PATH.OUTPUT, model_name)) + elif self.path.DATA is not None and os.path.exists(self.path.DATA): + unix.cp( + src=glob(os.path.join(self.path.DATA, self.source_name, "*")), + dst=os.path.join("traces", "obs") + ) + if self.par.SAVETRACES: + self.export_traces( + path=os.path.join(self.path.OUTPUT, "traces", "obs") + ) + + def eval_func(self, path, write_residuals=True): + """Inherits from seisflows.solver.specfem.Specfem""" + self.eval_func(path=path, write_residuals=write_residuals) + + def eval_grad(self, path, export_traces=True): + """Inherits from seisflows.solver.specfem.Specfem""" + self.eval_func(path=path, export_traces=export_traces) def forward(self, path="traces/syn"): """ @@ -212,7 +219,7 @@ def forward(self, path="traces/syn"): self.call_solver(executable="bin/xmeshfem2D", output="fwd_mesher.log") self.call_solver(executable="bin/xspecfem2D", output="fwd_solver.log") - if PAR.FORMAT.upper() == "SU": + if self.par.FORMAT.upper() == "SU": # Work around SPECFEM2D's version dependent file names for tag in ["d", "v", "a", "p"]: unix.rename(old=f"single_{tag}.su", new="single.su", @@ -236,29 +243,72 @@ def adjoint(self): # Deal with different SPECFEM2D name conventions for regular traces and # "adjoint" traces - if PAR.FORMAT.upper == "SU": + if self.par.FORMAT.upper == "SU": unix.rename(old=".su", new=".su.adj", names=glob(os.path.join("traces", "adj", "*.su"))) self.call_solver(executable="bin/xspecfem2D", output="adj_solver.log") - def smooth(self, input_path, **kwargs): + def call_solver(self, executable, output="solver.log"): + """Inherits from seisflows.solver.specfem.Specfem""" + self.call_solver(executable=executable, output=output) + + def load(self, path, prefix="", suffix="", parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.load(path=path, prefix=prefix, suffix=suffix, + parameters=parameters) + + def save(self, save_dict, path, parameters=None, prefix="", suffix=""): + """Inherits from seisflows.solver.specfem.Specfem""" + self.save(save_dict=save_dict, path=path, parameters=parameters, + prefix=prefix, suffix=suffix) + + def merge(self, model, parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.merge(model=model, parameters=parameters) + + def split(self, m, parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.split(m=m, parameters=parameters) + + def combine(self, input_path, output_path, parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.combine(input_path=input_path, output_path=output_path, + parmameters=parameters) + + def export_traces(self, path, prefix="traces/obs"): + """Inherits from seisflows.solver.specfem.Specfem""" + self.export_traces(path=path, prefix=prefix) + + def smooth(self, input_path, output_path, parameters=None, span_h=0., + span_v=0., output="smooth.log"): """ Specfem2D requires additional model parameters in directory to perform - the xsmooth_sem task. This function will copy these files into the - directory before performing the base smooth operations. + the xsmooth_sem task. This function will copy these files into the + directory before performing the base smooth operations. Kwargs should match arguments of solver.base.smooth() - + .. note:: This operation is usually run with run(single=True) so only one task will be performing these operations. :type input_path: str :param input_path: path to data + :type output_path: str + :param output_path: path to export the outputs of xcombine_sem + :type parameters: list + :param parameters: optional list of parameters, + defaults to `self.parameters` + :type span_h: float + :param span_h: horizontal smoothing length in meters + :type span_v: float + :param span_v: vertical smoothing length in meters + :type output: str + :param output: file to output stdout to """ # Redundant to 'base' class but necessary - if not exists(input_path): + if not os.path.exists(input_path): unix.mkdir(input_path) unix.cd(self.cwd) @@ -269,9 +319,11 @@ def smooth(self, input_path, **kwargs): for tag in ["jacobian", "NSPEC_ibool", "x", "y", "z"]: files += glob(f"*_{tag}.bin") for src in files: - unix.cp(src=src, dst=input_path) + unix.cp(src=src, dst=input_path) - super().smooth(input_path=input_path, **kwargs) + super().smooth(input_path=input_path, output_path=output_path, + parameters=parameters, span_h=span_h, span_v=span_v, + output=output) def import_model(self, path): """ @@ -286,92 +338,88 @@ def import_model(self, path): dst=os.path.join(self.cwd, "DATA") ) - def export_model(self, path): - """ - File transfer utility to move a SPEFEM2D model from the DATA directory - to an external path location + def import_traces(self, path): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.import_traces(path=path) - :type path: str - :param path: path to export the SPECFEM2D model - :return: - """ - unix.mkdir(path) - unix.cp(src=glob(os.path.join(self.cwd, "DATA", "*.bin")), - dst=path) + def export_model(self, path, parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.export_model(path=path, parameters=parameters) - @property - def data_filenames(self): - """ - Returns the filenames of all data, either by the requested components - or by all available files in the directory. + def export_kernels(self, path): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.export_kernels(path=path) - .. note:: - If the glob returns an empty list, this function exits the - workflow because filenames should not be empty is they're being - queried + def export_residuals(self, path): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.export_residuals(path=path) - :rtype: list - :return: list of data filenames + def export_traces(self, path, prefix="traces/obs"): + """Inherits from seisflows.solver.specfem.Specfem""" + self.export_traces(path=path, prefix=prefix) + + def rename_kernels(self): + """Inherits from seisflows.solver.specfem.Specfem""" + self.rename_kernels() + + def initialize_solver_directories(self): + """Inherits from seisflows.solver.specfem.Specfem""" + self.initialize_solver_directories() + + def initialize_adjoint_traces(self): + """ + Setup utility: Creates the "adjoint traces" expected by SPECFEM. + This is only done for the 'base' the Preprocess class. + + .. note:: + Adjoint traces are initialized by writing zeros for all channels. + Channels actually in use during an inversion or migration will be + overwritten with nonzero values later on. """ + super().initialize_adjoint_traces() + unix.cd(self.cwd) - unix.cd(os.path.join("traces", "obs")) + unix.cd(os.path.join("traces", "adj")) - if PAR.COMPONENTS: - filenames = [] - if PAR.FORMAT.upper() == "SU": - for comp in PAR.COMPONENTS: - filenames += [self.data_wildcard.format(comp=comp.lower())] - # filenames += [f"U{comp.lower()}_file_single.su"] - elif PAR.FORMAT.upper() == "ASCII": - for comp in PAR.COMPONENTS: - filenames += glob( - self.data_wildcard.format(comp=comp.upper()) - ) - # filenames += glob(f"*.?X{comp.upper()}.sem?") - else: - filenames = glob(self.data_wildcard) + # work around SPECFEM2D's use of different name conventions for + # regular traces and 'adjoint' traces + if self.par.FORMAT.upper() == "SU": + files = glob("*SU") + unix.rename(old="_SU", new="_SU.adj", names=files) + elif self.par.FORMAT.upper() == "ASCII": + files = glob("*sem?") - if not filenames: - print(msg.cli("The property solver.data_filenames, used to search " - "for traces in 'scratch/solver/*/traces' is empty " - "and should not be. Please check solver parameters: ", - items=[f"data_wildcard: {self.data_wildcard}"], - header="data filenames error", border="=") - ) - sys.exit(-1) + # Get the available extensions, which are named based on unit + extensions = set([os.path.splitext(_)[-1] for _ in files]) + for extension in extensions: + unix.rename(old=extension, new=".adj", names=files) - return filenames + # SPECFEM2D requires that all components exist even if ununsed + components = ["x", "y", "z", "p"] - @property - def model_databases(self): - """ - The location of model inputs and outputs as defined by SPECFEM2D - """ - return os.path.join(self.cwd, "DATA") + if self.par.FORMAT.upper() == "SU": + for comp in components: + src = f"U{self.par.COMPONENTS[0]}_file_single.su.adj" + dst = f"U{comp.lower()}s_file_single.su.adj" + if not os.path.exists(dst): + unix.cp(src, dst) + elif self.par.FORMAT.upper() == "ASCII": + for fid in glob("*.adj"): + net, sta, cha, ext = fid.split(".") + for comp in components: + # Replace the last value in the channel with new component + cha_check = cha[:-1] + comp.upper() + fid_check = ".".join([net, sta, cha_check, ext]) + if not os.path.exists(fid_check): + unix.cp(fid, fid_check) - @property - def kernel_databases(self): - """ - The location of kernel inputs and outputs as defined by SPECFEM2D - """ - return os.path.join(self.cwd, "OUTPUT_FILES") + def check_mesh_properties(self, path=None): + """Inherits from seisflows.solver.specfem.Specfem""" + self.check_mesh_properties(path=path) - @property - def data_wildcard(self, comp="?"): - """ - Returns a wildcard identifier for synthetic data based on SPECFEM2D - file naming schema. Allows formatting dcomponent e.g., - when called by solver.data_filenames + def check_source_names(self): + """Inherits from seisflows.solver.specfem.Specfem""" + self.check_source_names() - :type comp: str - :param comp: component formatter, defaults to wildcard '?' - :rtype: str - :return: wildcard identifier for channels - """ - if PAR.FORMAT.upper() == "SU": - # return f"*.su" # too vague but maybe for a reason? -bryant - return f"U{comp}_file_single.su" - elif PAR.FORMAT.upper() == "ASCII": - return f"*.?X{comp}.sem?" diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 8ef68ad5..72536bca 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -6,82 +6,139 @@ and overwrites these functions to provide specified interaction with Specfem3D """ import os -import sys -import logging from glob import glob -from seisflows.tools import unix, msg +from seisflows.solver.specfem import Specfem +from seisflows.tools import unix from seisflows.tools.wrappers import exists -from seisflows.config import custom_import, SeisFlowsPathsParameters from seisflows.tools.specfem import getpar, setpar -# Seisflows configuration -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] +class Specfem3D(Specfem): + """ + Python interface to Specfem3D Cartesian. + """ + def __init__(self): + """ + Initiate parameters required for Specfem3D Cartesian + """ + super().__init__() + + self.required.par( + "SOURCE_PREFIX", required=False, default="CMTSOLUTION", + par_type=str, + docstr="Prefix of SOURCE files in path SPECFEM_DATA. Available " + "['CMTSOLUTION', FORCESOLUTION']") -system = sys.modules["seisflows_system"] -preprocess = sys.modules["seisflows_preprocess"] + @property + def io(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.io + @property + def taskid(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.taskid -class Specfem3D(custom_import("solver", "base")): - """ - Python interface to Specfem3D Cartesian. This subclass inherits functions - from seisflows.solver.Base + @property + def source_names(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.source_names - !!! See base class for method descriptions !!! - """ - logger = logging.getLogger(__name__).getChild(__qualname__) + @property + def source_name(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.source_name - def __init__(self): + @property + def source_prefix(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.source_prefix + + @property + def cwd(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.cwd + + @property + def mesh_properties(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.mesh_properties + + @property + def data_wildcard(self, comp="?"): """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. + Returns a wildcard identifier for synthetic data - :type logger: Logger - :param logger: Class-specific logging module, log statements pushed - from this logger will be tagged by its specific module/classname + :rtype: str + :return: wildcard identifier for channels """ - super().__init__() + if self.par.FORMAT.upper() == "SU": + return f"*_d?_SU" + elif self.par.FORMAT.upper() == "ASCII": + return f"*.?X{comp}.sem?" @property - def required(self): + def data_filenames(self): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. + Returns the filenames of all data, either by the requested components + or by all available files in the directory. + + :rtype: list + :return: list of data filenames """ - sf = SeisFlowsPathsParameters(super().required) + unix.cd(os.path.join(self.cwd, "traces", "obs")) - sf.par("SOURCE_PREFIX", required=False, default="CMTSOLUTION", - par_type=str, - docstr="Prefix of SOURCE files in path SPECFEM_DATA. Available " - "['CMTSOLUTION', FORCESOLUTION']") + if self.par.COMPONENTS: + components = self.par.COMPONENTS - return sf + if self.par.FORMAT.upper() == "SU": + return sorted(glob(f"*_d[{components.lower()}]_SU")) + elif self.par.FORMAT.upper() == "ASCII": + return sorted(glob(f"*.?X[{components.upper()}].sem?")) + else: + if self.par.FORMAT.upper() == "SU": + return sorted(glob("*_d?_SU")) + elif self.par.FORMAT.upper() == "ASCII": + return sorted(glob("*.???.sem?")) + + @property + def model_databases(self): + """ + The location of databases for model outputs + """ + return os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") + + @property + def kernel_databases(self): + """ + The location of databases for kernel outputs + """ + return self.model_databases def check(self, validate=True): """ Checks parameters and paths """ - if validate: - self.required.validate() + super().check(validate=validate) - super().check(validate=False) + def set_model(self, model_name, model_type="gll"): + """Inherits from seisflows.solver.specfem.Specfem""" + self.set_model(model_name=model_name, model_type=model_type) - def generate_data(self, **model_kwargs): + def generate_data(self, model_name, model_type="gll"): """ Generates data using the True model, exports traces to `traces/obs` :param model_kwargs: keyword arguments to pass to `generate_mesh` """ # Create the mesh - self.generate_mesh(**model_kwargs) # Run the Forward simulation unix.cd(self.cwd) setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - if PAR.ATTENUATION: + if self.par.ATTENUATION: setpar(key="ATTENUATION", val=".true.", file="DATA/Par_file") else: setpar(key="ATTENUATION", val=".false.", file="DATA/Par_file") @@ -92,46 +149,8 @@ def generate_data(self, **model_kwargs): dst=os.path.join("traces", "obs")) # Export traces to disk for permanent storage - if PAR.SAVETRACES: - self.export_traces(os.path.join(PATH.OUTPUT, "traces", "obs")) - - def generate_mesh(self, model_path, model_name, model_type=None): - """ - Performs meshing with internal mesher Meshfem3D and database generation - - :type model_path: str - :param model_path: path to the model to be used for mesh generation - :type model_name: str - :param model_name: name of the model to be used as identification - :type model_type: str - :param model_type: available model types to be passed to the Specfem3D - Par_file. See Specfem3D Par_file for available options. - """ - available_model_types = ["gll"] - assert(exists(model_path)), f"model {model_path} does not exist" - - model_type = model_type or getpar(key="MODEL", file="DATA/Par_file") - assert(model_type in available_model_types), \ - f"{model_type} not in available types {available_model_types}" - - unix.cd(self.cwd) - - # Run mesh generation - if model_type == "gll": - self.check_mesh_properties(model_path) - - src = glob(os.path.join(model_path, "*")) - dst = self.model_databases - unix.cp(src, dst) - - self.call_solver(executable="bin/xmeshfem3D", - output="true_mesher.log") - self.call_solver(executable="bin/xgenerate_databases", - output="true_solver.log") - - # Export the model for future use in the workflow - if self.taskid == 0: - self.export_model(os.path.join(PATH.OUTPUT, model_name)) + if self.par.SAVETRACES: + self.export_traces(os.path.join(self.path.OUTPUT, "traces", "obs")) def eval_func(self, *args, **kwargs): """ @@ -140,7 +159,7 @@ def eval_func(self, *args, **kwargs): super().eval_func(*args, **kwargs) # Work around SPECFEM3D conflicting name conventions of SU data - self.rename_data() + self._rename_data() def forward(self, path="traces/syn"): """ @@ -152,7 +171,7 @@ def forward(self, path="traces/syn"): # Set parameters and run forward simulation setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - if PAR.ATTENUATION: + if self.par.ATTENUATION: setpar(key="ATTENUATION", val=".true.", file="DATA/Par_file") else: setpar(key="ATTENUATION", val=".false`.", file="DATA/Par_file") @@ -197,86 +216,25 @@ def initialize_adjoint_traces(self): # Workaround for Specfem3D's requirement that all components exist, # even ones not in use as adjoint traces - if PAR.FORMAT.upper() == "SU": + if self.par.FORMAT.upper() == "SU": unix.cd(os.path.join(self.cwd, "traces", "adj")) - for iproc in range(PAR.NPROC): + for iproc in range(self.par.NPROC): for channel in ["x", "y", "z"]: dst = f"{iproc:d}_d{channel}_SU.adj" if not exists(dst): - src = f"{iproc:d}_d{PAR.COMPONENTS[0]}_SU.adj" + src = f"{iproc:d}_d{self.par.COMPONENTS[0]}_SU.adj" unix.cp(src, dst) - def rename_data(self): + def _rename_data(self): """ Works around conflicting data filename conventions Specfem3D's uses different name conventions for regular traces and 'adjoint' traces """ - if PAR.FORMAT.upper() == "SU": + if self.par.FORMAT.upper() == "SU": files = glob(os.path.join(self.cwd, "traces", "adj", "*SU")) unix.rename(old='_SU', new='_SU.adj', names=files) - @property - def data_wildcard(self): - """ - Returns a wildcard identifier for synthetic data - - :rtype: str - :return: wildcard identifier for channels - """ - if PAR.FORMAT.upper() == "SU": - return f"*_d?_SU" - elif PAR.FORMAT.upper() == "ASCII": - return f"*.?X?.sem?" - - @property - def data_filenames(self): - """ - Returns the filenames of all data, either by the requested components - or by all available files in the directory. - - :rtype: list - :return: list of data filenames - """ - unix.cd(os.path.join(self.cwd, "traces", "obs")) - - if PAR.COMPONENTS: - components = PAR.COMPONENTS - - if PAR.FORMAT.upper() == "SU": - return sorted(glob(f"*_d[{components.lower()}]_SU")) - elif PAR.FORMAT.upper() == "ASCII": - return sorted(glob(f"*.?X[{components.upper()}].sem?")) - else: - if PAR.FORMAT.upper() == "SU": - return sorted(glob("*_d?_SU")) - elif PAR.FORMAT.upper() == "ASCII": - return sorted(glob("*.???.sem?")) - - @property - def kernel_databases(self): - """ - The location of databases for kernel outputs, relative to the current - working directory. - """ - return os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") - - @property - def model_databases(self): - """ - The location of databases for model outputs - """ - return os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") - - @property - def source_prefix(self): - """ - Specfem3D's preferred source prefix - - :rtype: str - :return: source prefix - """ - return PAR.SOURCE_PREFIX.upper() From 3f7c34f5e94cd7ff58040e215030823b2f4dd6b8 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 28 Jun 2022 13:45:08 -0800 Subject: [PATCH 031/195] finished condensing and rewiriting SOLVER and SYSTEM modules. Removed old system.base class which did not serve much. Workstation system class now serves as the base class for all System --- seisflows/solver/specfem.py | 241 +++++++++++---------- seisflows/solver/specfem2d.py | 111 ++++------ seisflows/solver/specfem3d.py | 187 +++++++++++------ seisflows/solver/specfem3d_globe.py | 74 ++----- seisflows/system/base.py | 213 ------------------- seisflows/system/chinook.py | 54 ++--- seisflows/system/cluster.py | 103 ++++----- seisflows/system/lsf.py | 312 +++++++++++++--------------- seisflows/system/maui.py | 237 +++++++++++---------- seisflows/system/slurm.py | 232 +++++++++++---------- seisflows/system/workstation.py | 199 ++++++++++++++---- 11 files changed, 950 insertions(+), 1013 deletions(-) delete mode 100644 seisflows/system/base.py diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 60261b3d..aa295fd9 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -157,13 +157,11 @@ def __init__(self): ) self.parameters = [] - self.nt = None - self.dt = None self._mesh_properties = None self._source_names = None @property - def io(self): + def _io(self): """ Solver IO module set by User. Located in seisflows.plugins.solver_io @@ -186,14 +184,15 @@ def taskid(self): @property def source_names(self): """ - Returns list of source names + Returns list of source names which should be stored in PAR.SPECFEM_DATA + Source names are expected to match the following wildcard, + 'PREFIX_*' where PREFIX is something like 'CMTSOLUTION' or 'FORCE' :rtype: list :return: list of source names """ if self._source_names is None: - self.check_source_names() - + self._check_source_names() return self._source_names @property @@ -221,7 +220,7 @@ def source_prefix(self): @property def cwd(self): """ - Returns working directory currently in use + Returns working directory currently in use by a running solver instance :rtype: str :return: current solver working directory @@ -231,17 +230,22 @@ def cwd(self): @property def mesh_properties(self): """ - Returns mesh properties + Returns mesh properties including number of GLL points and number of + processors (NPROC). + + .. note:: + We assume that there are only two available models MODEL_INIT and + MODEL_TRUE, and that both models have the SAME underlying mesh + structure. That way we can only check MODEL_INIT and be sure that + MODEL_TRUE has the same structure. - :rtype: Struct - :return: Structure of mesh properties + :rtype: Dict + :return: Dictionary containing information on mesh properties """ if self._mesh_properties is None: - self.check_mesh_properties() - + self._check_mesh_properties(model_path=self.path.MODEL_INIT) return self._mesh_properties - @property def data_wildcard(self, comp="?"): """ Provide a wildcard string that will match the name of the output @@ -250,33 +254,35 @@ def data_wildcard(self, comp="?"): :type comp: str :param comp: single letter defining the component that can be inserted into the wildcard. Defaults to '?' + :rtype: str + :return: a wildcard string that can be used to search for data """ return NotImplementedError @property def data_filenames(self): """ - Template filenames for accessing data + A list of waveform files matching the `data_wildcard` which is used + to keep track of data - !!! Must be implemented by subclass !!! + :rtype: list + :return: list of data filenames """ return NotImplementedError @property def model_databases(self): """ - Template filenames for accessing models - - !!! Must be implemented by subclass !!! + SPECFEM directory where model database files are saved. This directory + is SPECFEM version dep. """ return NotImplementedError @property def kernel_databases(self): """ - Template filenames for accessing kernels - - !!! Must be implemented by subclass !!! + SPECFEM directory where kernel database files are saved. This directory + is SPECFEM version dep. """ return NotImplementedError @@ -337,8 +343,6 @@ def setup(self): Sets up directory structure expected by SPECFEM and copies or generates seismic data to be inverted or migrated - TODO !!! what are the arguments of generate data? - .. note:; As input for an inversion or migration, users can choose between providing data, or providing a target model from which data are @@ -346,19 +350,12 @@ def setup(self): In the former case, a value for PATH.DATA must be supplied; in the latter case, a value for PATH.MODEL_TRUE must be provided. """ - self.initialize_solver_directories() - self.set_model(model_name="true", model_type="gll") + self._initialize_solver_directories() self.generate_data() + self._set_model(model_name="init", model_type="gll") + self._initialize_adjoint_traces() - self.set_model(model_name="init", model_type="gll") - self.initialize_adjoint_traces() - - # Assuming that NT and DT are set correctly in the Par_file - unix.cd(self.cwd) - self.nt = getpar(key="NSTEP", file="DATA/Par_file")[1] - self.dt = getpar(key="DT", file="DATA/Par_file")[1] - - def set_model(self, model_name, model_type=None): + def _set_model(self, model_name, model_type=None): """ Mesh and database files should have been created during the manual set up phase. This function simply checks the mesh properties of that mesh @@ -371,10 +368,10 @@ def set_model(self, model_name, model_type=None): Par_file. See Specfem3D Par_file for available options. """ unix.cd(self.cwd) + available_model_types = ["gll"] # Check the type of model. So far SeisFlows only accepts GLL models - available_model_types = ["gll"] - model_type = model_type or getpar(key="MODEL", file="DATA/Par_file") + model_type = model_type or getpar(key="MODEL", file="DATA/Par_file")[1] assert(model_type in available_model_types), \ f"{model_type} not in available types {available_model_types}" @@ -388,25 +385,59 @@ def set_model(self, model_name, model_type=None): assert(os.path.exists(model_path)), f"model {model_path} does not exist" if model_type == "gll": - self.check_mesh_properties(model_path) + self._check_mesh_properties(model_path=model_path) # Copy the model files (ex: proc000023_vp.bin ...) into database dir src = glob(os.path.join(model_path, "*")) dst = self.model_databases unix.cp(src, dst) - # Export the model into output folder, ready to be used by SeisFlows + # Export the model into output folder, ready to be used by other tasks if self.taskid == 0: - self.export_model(os.path.join(self.path.OUTPUT, model_name)) + self._export_model(os.path.join(self.path.OUTPUT, model_name)) def generate_data(self): """ - Performs meshing and data generation for "true" data. - """ - raise NotImplementedError("must be implemented by solver subclass") + Generates observation data to be compared to synthetics. This must + only be run once. If `PAR.CASE`=='data', then real data will be copied + over. + + If `PAR.CASE`=='synthetic' then the external solver will use the + True model to generate 'observed' synthetics. Finally exports traces to + 'cwd/traces/obs' + + Elif `PAR.CASE`=='DATA', will look in PATH.DATA for directories matching + the given source name and copy ANY files that exist there. e.g., if + source name is '001', you must store waveform data in PATH.DATA/001/* + + Also exports observed data to OUTPUT if desired + """ + # If synthetic inversion, generate 'data' with solver + if self.par.CASE.upper() == "SYNTHETIC": + if self.path.MODEL_TRUE is not None: + if self.taskid == 0: + self.logger.info("generating 'data' with MODEL_TRUE") + # Generate synthetic data on the fly using the true model + self._set_model(model_name="true", model_type="gll") + self._forward(output_path=os.path.join("traces", "obs")) + # If Data provided by user, copy directly into the solver directory + elif self.path.DATA is not None and os.path.exists(self.path.DATA): + unix.cp( + src=glob(os.path.join(self.path.DATA, self.source_name, "*")), + dst=os.path.join("traces", "obs") + ) + # Save observation data to disk + if self.par.SAVETRACES: + self._export_traces( + path=os.path.join(self.path.OUTPUT, "traces", "obs") + ) def eval_func(self, path, write_residuals=True): """ - Performs forward simulations and evaluates the misfit function + Performs forward simulations and evaluates the misfit function using + the preprocess module. + + .. note:: + This task should be run in parallel by system.run() :type path: str :param path: directory from which model is imported and where residuals @@ -420,8 +451,8 @@ def eval_func(self, path, write_residuals=True): self.logger.info("running forward simulations") unix.cd(self.cwd) - self.import_model(path) - self.forward() + self._import_model(path) + self._forward(output_path=os.path.join("traces", "syn")) if write_residuals: if self.taskid == 0: @@ -430,13 +461,15 @@ def eval_func(self, path, write_residuals=True): source_name=self.source_name, filenames=self.data_filenames ) - self.export_residuals(path) + self._export_residuals(path) def eval_grad(self, path, export_traces=False): """ - High level solver interface that evaluates gradient by carrying out - adjoint simulations. A function evaluation must already have been - carried out. + Evaluates gradient by carrying out adjoint simulations. + + .. note:: + It is expected that eval_func() has already been run as this + function looks for adjoint sources in 'cwd/traces/adj' :type path: str :param path: directory from which model is imported @@ -458,13 +491,13 @@ def eval_grad(self, path, export_traces=False): ) sys.exit(-1) - self.adjoint() - self.export_kernels(path) + self._adjoint() + self._export_kernels(path) if export_traces: - self.export_traces(path=os.path.join(path, "traces", "syn"), + self._export_traces(path=os.path.join(path, "traces", "syn"), prefix="traces/syn") - self.export_traces(path=os.path.join(path, "traces", "adj"), + self._export_traces(path=os.path.join(path, "traces", "adj"), prefix="traces/adj") # def apply_hess(self, path): @@ -488,27 +521,28 @@ def eval_grad(self, path, export_traces=False): # self.adjoint() # self.export_kernels(path) - def forward(self, path): + def _forward(self, output_path): """ - Low level solver interface - - Calls forward solver + Calls forward solver with the appropriate parameters in the Par_file set + Also exports data to the correct output_path - !!! Must be implemented by subclass !!! + :type output_path: str + :param output_path: path to export traces to after completion of + simulation expected values are either 'traces/obs' for 'observation' + data (i.e., synthetics generated by the TRUE model), or + 'traces/syn', for synthetics generated during function evaluations """ raise NotImplementedError("must be implemented by solver subclass") - def adjoint(self): + def _adjoint(self): """ - Low level solver interface - - Calls adjoint solver - - !!! Must be implemented by subclass !!! + Calls adjoint solver with the appropriate parameters in the Par_file set + Also takes care of setting up the SEM/ directory where SPECFEM expects + adjoint sources to be """ raise NotImplementedError("must be implemented by solver subclass") - def call_solver(self, executable, output="solver.log"): + def _call_solver(self, executable, output="solver.log"): """ Calls MPI solver executable to run solver binaries, used by individual processes to run the solver on system. If the external solver returns a @@ -705,12 +739,12 @@ def combine(self, input_path, output_path, parameters=None): # Call on xcombine_sem to combine kernels into a single file for name in parameters: # e.g.: mpiexec ./bin/xcombine_sem alpha_kernel kernel_paths output - self.call_solver(executable=" ".join([f"bin/xcombine_sem", - f"{name}_kernel", - "kernel_paths", - output_path] - ) - ) + self._call_solver(executable=" ".join([f"bin/xcombine_sem", + f"{name}_kernel", + "kernel_paths", + output_path] + ) + ) def smooth(self, input_path, output_path, parameters=None, span_h=0., span_v=0., output="smooth.log"): @@ -750,20 +784,20 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., # mpiexec ./bin/xsmooth_sem SMOOTH_H SMOOTH_V name input output use_gpu for name in parameters: - self.call_solver(executable=" ".join(["bin/xsmooth_sem", - str(span_h), str(span_v), - f"{name}_kernel", - os.path.join(input_path, ""), - os.path.join(output_path, ""), - ".false"]), - output=output - ) + self._call_solver(executable=" ".join(["bin/xsmooth_sem", + str(span_h), str(span_v), + f"{name}_kernel", + os.path.join(input_path, ""), + os.path.join(output_path, ""), + ".false"]), + output=output + ) # Rename output files files = glob(os.path.join(output_path, "*")) unix.rename(old="_smooth", new="", names=files) - def import_model(self, path): + def _import_model(self, path): """ File transfer utility. Import the model into the workflow. @@ -771,9 +805,9 @@ def import_model(self, path): :param path: path to model """ model = self.load(path=os.path.join(path, "model")) - self.save(model, self.model_databases) + self.save(model, self._model_databases) - def import_traces(self, path): + def _import_traces(self, path): """ File transfer utility. Import traces into the workflow. @@ -784,7 +818,7 @@ def import_traces(self, path): dst = os.path.join(self.cwd, 'traces', 'obs') unix.cp(src, dst) - def export_model(self, path, parameters=None): + def _export_model(self, path, parameters=None): """ File transfer utility. Export the model to disk. @@ -801,10 +835,10 @@ def export_model(self, path, parameters=None): if self.taskid == 0: unix.mkdir(path) for key in parameters: - files = glob(os.path.join(self.model_databases, f"*{key}.bin")) + files = glob(os.path.join(self._model_databases, f"*{key}.bin")) unix.cp(files, path) - def export_kernels(self, path): + def _export_kernels(self, path): """ File transfer utility. Export kernels to disk @@ -814,17 +848,17 @@ def export_kernels(self, path): if self.taskid == 0: self.logger.debug(f"exporting kernels to:\n{path}") - unix.cd(self.kernel_databases) + unix.cd(self._kernel_databases) # Work around conflicting name conventions - self.rename_kernels() + self._rename_kernels() src = glob("*_kernel.bin") dst = os.path.join(path, "kernels", self.source_name) unix.mkdir(dst) unix.mv(src, dst) - def export_residuals(self, path): + def _export_residuals(self, path): """ File transfer utility. Export residuals to disk. @@ -850,7 +884,7 @@ def export_residuals(self, path): dst = os.path.join(path, "residuals", self.source_name) unix.mv(src, dst) - def export_traces(self, path, prefix="traces/obs"): + def _export_traces(self, path, prefix="traces/obs"): """ File transfer utility. Export traces to disk. @@ -868,7 +902,7 @@ def export_traces(self, path, prefix="traces/obs"): dst = os.path.join(path, self.source_name) unix.cp(src, dst) - def rename_kernels(self): + def _rename_kernels(self): """ Works around conflicting kernel filename conventions by renaming `alpha` to `vp` and `beta` to `vs` @@ -883,7 +917,7 @@ def rename_kernels(self): names = glob(f"*proc??????_{tag}_kernel.bin") unix.rename(old="beta", new="vs", names=names) - def initialize_solver_directories(self): + def _initialize_solver_directories(self): """ Creates directory structure expected by SPECFEM3D (bin/, DATA/) copies executables, and prepares input files. Executables must be supplied @@ -940,7 +974,7 @@ def initialize_solver_directories(self): dst = os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") unix.cp(src, dst) - def initialize_adjoint_traces(self): + def _initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM. This is only done for the 'base' the Preprocess class. @@ -971,36 +1005,33 @@ def initialize_adjoint_traces(self): path=os.path.join(self.cwd, "traces", "adj") ) - def check_mesh_properties(self, path=None): + def _check_mesh_properties(self, model_path): """ Determine if Mesh properties are okay for workflow. - :type path: str - :param path: path to the mesh file + :type model_path: str + :param model_path: path to the mesh file """ - # Check the given model path or the initial model - if path is None: - path = self.path.MODEL_INIT - - if os.path.exists(path): + if os.path.exists(model_path): # Count the number of .bin files and the number of grid points key = self.parameters[0] - bin_files = glob(os.path.join(path, f"proc*_{key}.bin")) + bin_files = glob(os.path.join(model_path, f"proc*_{key}.bin")) nproc = len(bin_files) ngll = [] for i in range(0, len(bin_files)): ngll.append( - len(self.io.read_slice(path=path, - parameters=key, iproc=i)[0]) + len(self._io.read_slice(path=model_path, + parameters=key, iproc=i)[0]) ) # Define internal mesh properties - self._mesh_properties = Dict(nproc=nproc, ngll=ngll, path=path) + self._mesh_properties = Dict(nproc=nproc, ngll=ngll, + path=model_path) else: self.logger.warning("solver cannot find mesh and will not have " "access to mesh properties") - def check_source_names(self): + def _check_source_names(self): """ Determines names of sources by applying wildcard rule to user-supplied input files diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index aba62d18..a36afc02 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -34,9 +34,9 @@ def __init__(self): self.f0 = None @property - def io(self): + def _io(self): """Inherits from seisflows.solver.specfem.Specfem""" - return self.io + return self._io @property def taskid(self): @@ -68,7 +68,6 @@ def mesh_properties(self): """Inherits from seisflows.solver.specfem.Specfem""" return self.mesh_properties - @property def data_wildcard(self, comp="?"): """ Returns a wildcard identifier for synthetic data based on SPECFEM2D @@ -163,37 +162,13 @@ def setup(self): else: setpar(key="absorbtop", val=".true.", file="DATA/Par_file") - def set_model(self, model_name, model_type="gll"): + def _set_model(self, model_name, model_type="gll"): """Inherits from seisflows.solver.specfem.Specfem""" - self.set_model(model_name=model_name, model_type=model_type) + self._set_model(model_name=model_name, model_type=model_type) def generate_data(self): - """ - Generates observation data to be compared to synthetics. This must - only be run once. If `PAR.CASE`=='data', then real data will be copied - over. If `PAR.CASE`=='synthetic' then the external solver will use the - True model to generate 'observed' synthetics. Finally exports traces to - 'cwd/traces/obs' - """ - # If synthetic inversion, generate 'data' with solver - if self.par.CASE.upper() == "SYNTHETIC": - if self.path.MODEL_TRUE is not None: - if self.taskid == 0: - self.logger.info("generating 'data' with MODEL_TRUE") - # Generate synthetic data on the fly using the true model - self.set_model(model_name="true", model_type="gll") - self.forward(path=os.path.join("traces", "obs")) - - # If Data provided by user, copy directly into the solver directory - elif self.path.DATA is not None and os.path.exists(self.path.DATA): - unix.cp( - src=glob(os.path.join(self.path.DATA, self.source_name, "*")), - dst=os.path.join("traces", "obs") - ) - if self.par.SAVETRACES: - self.export_traces( - path=os.path.join(self.path.OUTPUT, "traces", "obs") - ) + """Inherits from seisflows.solver.specfem.Specfem""" + self.generate_data() def eval_func(self, path, write_residuals=True): """Inherits from seisflows.solver.specfem.Specfem""" @@ -201,23 +176,25 @@ def eval_func(self, path, write_residuals=True): def eval_grad(self, path, export_traces=True): """Inherits from seisflows.solver.specfem.Specfem""" - self.eval_func(path=path, export_traces=export_traces) + self.eval_grad(path=path, export_traces=export_traces) - def forward(self, path="traces/syn"): + def _forward(self, output_path): """ Calls SPECFEM2D forward solver, exports solver outputs to traces dir - :type path: str - :param path: path to export traces to after completion of simulation - relatiev to the solver cwd + :type output_path: str + :param output_path: path to export traces to after completion of + simulation expected values are either 'traces/obs' for 'observation' + data (i.e., synthetics generated by the TRUE model), or + 'traces/syn', for synthetics generated during function evaluations """ unix.cd(self.cwd) setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - self.call_solver(executable="bin/xmeshfem2D", output="fwd_mesher.log") - self.call_solver(executable="bin/xspecfem2D", output="fwd_solver.log") + self._call_solver(executable="bin/xmeshfem2D", output="fwd_mesher.log") + self._call_solver(executable="bin/xspecfem2D", output="fwd_solver.log") if self.par.FORMAT.upper() == "SU": # Work around SPECFEM2D's version dependent file names @@ -226,9 +203,9 @@ def forward(self, path="traces/syn"): names=glob(os.path.join("OUTPUT_FILES", "*.su"))) unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), - dst=path) + dst=output_path) - def adjoint(self): + def _adjoint(self): """ Calls SPECFEM2D adjoint solver, creates the `SEM` folder with adjoint traces which is required by the adjoint solver @@ -247,11 +224,11 @@ def adjoint(self): unix.rename(old=".su", new=".su.adj", names=glob(os.path.join("traces", "adj", "*.su"))) - self.call_solver(executable="bin/xspecfem2D", output="adj_solver.log") + self._call_solver(executable="bin/xspecfem2D", output="adj_solver.log") - def call_solver(self, executable, output="solver.log"): + def _call_solver(self, executable, output="solver.log"): """Inherits from seisflows.solver.specfem.Specfem""" - self.call_solver(executable=executable, output=output) + self._call_solver(executable=executable, output=output) def load(self, path, prefix="", suffix="", parameters=None): """Inherits from seisflows.solver.specfem.Specfem""" @@ -274,11 +251,7 @@ def split(self, m, parameters=None): def combine(self, input_path, output_path, parameters=None): """Inherits from seisflows.solver.specfem.Specfem""" return self.combine(input_path=input_path, output_path=output_path, - parmameters=parameters) - - def export_traces(self, path, prefix="traces/obs"): - """Inherits from seisflows.solver.specfem.Specfem""" - self.export_traces(path=path, prefix=prefix) + parameters=parameters) def smooth(self, input_path, output_path, parameters=None, span_h=0., span_v=0., output="smooth.log"): @@ -325,7 +298,7 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., parameters=parameters, span_h=span_h, span_v=span_v, output=output) - def import_model(self, path): + def _import_model(self, path): """ File transfer utility to move a SPEFEM2D model into the correct location for a workflow. @@ -338,35 +311,35 @@ def import_model(self, path): dst=os.path.join(self.cwd, "DATA") ) - def import_traces(self, path): + def _import_traces(self, path): """Inherits from seisflows.solver.specfem.Specfem""" - return self.import_traces(path=path) + return self._import_traces(path=path) - def export_model(self, path, parameters=None): + def _export_model(self, path, parameters=None): """Inherits from seisflows.solver.specfem.Specfem""" - return self.export_model(path=path, parameters=parameters) + return self._export_model(path=path, parameters=parameters) - def export_kernels(self, path): + def _export_kernels(self, path): """Inherits from seisflows.solver.specfem.Specfem""" - return self.export_kernels(path=path) + return self._export_kernels(path=path) - def export_residuals(self, path): + def _export_residuals(self, path): """Inherits from seisflows.solver.specfem.Specfem""" - return self.export_residuals(path=path) + return self._export_residuals(path=path) - def export_traces(self, path, prefix="traces/obs"): + def _export_traces(self, path, prefix="traces/obs"): """Inherits from seisflows.solver.specfem.Specfem""" - self.export_traces(path=path, prefix=prefix) + self._export_traces(path=path, prefix=prefix) - def rename_kernels(self): + def _rename_kernels(self): """Inherits from seisflows.solver.specfem.Specfem""" - self.rename_kernels() + self._rename_kernels() - def initialize_solver_directories(self): + def _initialize_solver_directories(self): """Inherits from seisflows.solver.specfem.Specfem""" - self.initialize_solver_directories() + self._initialize_solver_directories() - def initialize_adjoint_traces(self): + def _initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM. This is only done for the 'base' the Preprocess class. @@ -376,7 +349,7 @@ def initialize_adjoint_traces(self): Channels actually in use during an inversion or migration will be overwritten with nonzero values later on. """ - super().initialize_adjoint_traces() + super()._initialize_adjoint_traces() unix.cd(self.cwd) unix.cd(os.path.join("traces", "adj")) @@ -413,13 +386,13 @@ def initialize_adjoint_traces(self): if not os.path.exists(fid_check): unix.cp(fid, fid_check) - def check_mesh_properties(self, path=None): + def _check_mesh_properties(self, path=None): """Inherits from seisflows.solver.specfem.Specfem""" - self.check_mesh_properties(path=path) + self._check_mesh_properties(path=path) - def check_source_names(self): + def _check_source_names(self): """Inherits from seisflows.solver.specfem.Specfem""" - self.check_source_names() + self._check_source_names() diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 72536bca..d286a301 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -11,7 +11,7 @@ from seisflows.solver.specfem import Specfem from seisflows.tools import unix from seisflows.tools.wrappers import exists -from seisflows.tools.specfem import getpar, setpar +from seisflows.tools.specfem import setpar, getpar class Specfem3D(Specfem): @@ -31,9 +31,9 @@ def __init__(self): "['CMTSOLUTION', FORCESOLUTION']") @property - def io(self): + def _io(self): """Inherits from seisflows.solver.specfem.Specfem""" - return self.io + return self._io @property def taskid(self): @@ -65,7 +65,6 @@ def mesh_properties(self): """Inherits from seisflows.solver.specfem.Specfem""" return self.mesh_properties - @property def data_wildcard(self, comp="?"): """ Returns a wildcard identifier for synthetic data @@ -90,29 +89,26 @@ def data_filenames(self): unix.cd(os.path.join(self.cwd, "traces", "obs")) if self.par.COMPONENTS: - components = self.par.COMPONENTS - - if self.par.FORMAT.upper() == "SU": - return sorted(glob(f"*_d[{components.lower()}]_SU")) - elif self.par.FORMAT.upper() == "ASCII": - return sorted(glob(f"*.?X[{components.upper()}].sem?")) + files = glob(self.data_wildcard(comp=self.par.COMPONENTS.lower())) else: - if self.par.FORMAT.upper() == "SU": - return sorted(glob("*_d?_SU")) - elif self.par.FORMAT.upper() == "ASCII": - return sorted(glob("*.???.sem?")) + files = glob(self.data_wildcard(comp="?")) + return sorted(files) @property def model_databases(self): """ - The location of databases for model outputs + The location of databases for model outputs, usually + OUTPUT_FILES/DATABASES_MPI. Value is grabbed from the Par_file """ - return os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") + local_path = getpar(key="LOCAL_PATH", + file=os.path.join(self.cwd, "DATA", "Par_file"))[1] + return os.path.join(self.cwd, local_path) @property def kernel_databases(self): """ - The location of databases for kernel outputs + The location of databases for kernel outputs, usually the same as + 'model_databases' """ return self.model_databases @@ -122,51 +118,49 @@ def check(self, validate=True): """ super().check(validate=validate) - def set_model(self, model_name, model_type="gll"): + def setup(self): """Inherits from seisflows.solver.specfem.Specfem""" - self.set_model(model_name=model_name, model_type=model_type) - - def generate_data(self, model_name, model_type="gll"): - """ - Generates data using the True model, exports traces to `traces/obs` + self.setup() - :param model_kwargs: keyword arguments to pass to `generate_mesh` - """ - # Create the mesh - - # Run the Forward simulation - unix.cd(self.cwd) - setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") - setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - if self.par.ATTENUATION: - setpar(key="ATTENUATION", val=".true.", file="DATA/Par_file") - else: - setpar(key="ATTENUATION", val=".false.", file="DATA/Par_file") + def _set_model(self, model_name, model_type="gll"): + """Inherits from seisflows.solver.specfem.Specfem""" + self._set_model(model_name=model_name, model_type=model_type) - self.call_solver(executable="bin/xspecfem3D", output="true_solver.log") + def generate_data(self): + """Inherits from seisflows.solver.specfem.Specfem""" + self.generate_data() - unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), - dst=os.path.join("traces", "obs")) + def eval_func(self, path, write_residuals=True): + """ + Performs forward simulations and evaluates the misfit function using + the preprocess module. Overrides to add a data renaming call - # Export traces to disk for permanent storage - if self.par.SAVETRACES: - self.export_traces(os.path.join(self.path.OUTPUT, "traces", "obs")) + .. note:: + This task should be run in parallel by system.run() - def eval_func(self, *args, **kwargs): - """ - Call eval_func from Base class - """ - super().eval_func(*args, **kwargs) + :type path: str + :param path: directory from which model is imported and where residuals + will be exported + :type write_residuals: bool + :param write_residuals: calculate and export residuals """ + super().eval_func(path=path, write_residuals=write_residuals) # Work around SPECFEM3D conflicting name conventions of SU data self._rename_data() - def forward(self, path="traces/syn"): + def eval_grad(self, path, export_traces=False): + """Inherits from seisflows.solver.specfem.Specfem""" + self.eval_grad(path=path, export_traces=export_traces) + + def _forward(self, output_path): """ Calls SPECFEM3D forward solver, exports solver outputs to traces dir - :type path: str - :param path: path to export traces to after completion of simulation + :type output_path: str + :param output_path: path to export traces to after completion of + simulation expected values are either 'traces/obs' for 'observation' + data (i.e., synthetics generated by the TRUE model), or + 'traces/syn', for synthetics generated during function evaluations """ # Set parameters and run forward simulation setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") @@ -176,29 +170,98 @@ def forward(self, path="traces/syn"): else: setpar(key="ATTENUATION", val=".false`.", file="DATA/Par_file") - self.call_solver(executable="bin/xgenerate_databases", - output="fwd_mesher.log") - self.call_solver(executable="bin/xmeshfem3D", output="fwd_solver.log") + self._call_solver(executable="bin/xgenerate_databases", + output="fwd_mesher.log") + self._call_solver(executable="bin/xmeshfem3D", output="fwd_solver.log") # Find and move output traces, by default to synthetic traces dir unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), - dst=path) + dst=output_path) - def adjoint(self): + def _adjoint(self): """ Calls SPECFEM3D adjoint solver, creates the `SEM` folder with adjoint traces which is required by the adjoint solver """ setpar(key="SIMULATION_TYPE", val="3", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".false.", file="DATA/Par_file") + + # Attenuation should always be OFF during adjoint simulations, else + # you will get a floating point error setpar(key="ATTENUATION", val=".false.", file="DATA/Par_file") unix.rm("SEM") unix.ln("traces/adj", "SEM") - self.call_solver(executable="bin/xmeshfem3D", output="adj_solver.log") + self._call_solver(executable="bin/xspecfem3D", output="adj_solver.log") + + def _call_solver(self, executable, output="solver.log"): + """Inherits from seisflows.solver.specfem.Specfem""" + self._call_solver(executable=executable, output=output) + + def load(self, path, prefix="", suffix="", parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.load(path=path, prefix=prefix, suffix=suffix, + parameters=parameters) + + def save(self, save_dict, path, parameters=None, prefix="", suffix=""): + """Inherits from seisflows.solver.specfem.Specfem""" + self.save(save_dict=save_dict, path=path, parameters=parameters, + prefix=prefix, suffix=suffix) + + def merge(self, model, parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.merge(model=model, parameters=parameters) + + def split(self, m, parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.split(m=m, parameters=parameters) + + def combine(self, input_path, output_path, parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.combine(input_path=input_path, output_path=output_path, + parameters=parameters) + + def smooth(self, input_path, output_path, parameters=None, span_h=0., + span_v=0., output="smooth.log"): + """Inherits from seisflows.solver.specfem.Specfem""" + return self.smooth(input_path=input_path, output_path=output_path, + parameters=parameters, span_h=span_h, + span_v=span_v, output=output) - def initialize_adjoint_traces(self): + def _import_model(self, path): + """Inherits from seisflows.solver.specfem.Specfem""" + return self._import_model(path=path) + + def _import_traces(self, path): + """Inherits from seisflows.solver.specfem.Specfem""" + return self._import_traces(path=path) + + def _export_model(self, path, parameters=None): + """Inherits from seisflows.solver.specfem.Specfem""" + return self._export_model(path=path, parameters=parameters) + + def _export_kernels(self, path): + """Inherits from seisflows.solver.specfem.Specfem""" + return self._export_kernels(path=path) + + def _export_residuals(self, path): + """Inherits from seisflows.solver.specfem.Specfem""" + return self._export_residuals(path=path) + + def _export_traces(self, path, prefix="traces/obs"): + """Inherits from seisflows.solver.specfem.Specfem""" + self._export_traces(path=path, prefix=prefix) + + def _rename_kernels(self): + """Inherits from seisflows.solver.specfem.Specfem""" + self._rename_kernels() + + def _initialize_solver_directories(self): + """Inherits from seisflows.solver.specfem.Specfem""" + self._initialize_solver_directories() + + def _initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM @@ -209,10 +272,10 @@ def initialize_adjoint_traces(self): """ # Initialize adjoint traces as zeroes for all data_filenames # write to `traces/adj` - super().initialize_adjoint_traces() + super()._initialize_adjoint_traces() # Rename data to work around Specfem naming convetions - self.rename_data() + self._rename_data() # Workaround for Specfem3D's requirement that all components exist, # even ones not in use as adjoint traces @@ -226,6 +289,14 @@ def initialize_adjoint_traces(self): src = f"{iproc:d}_d{self.par.COMPONENTS[0]}_SU.adj" unix.cp(src, dst) + def _check_mesh_properties(self, path=None): + """Inherits from seisflows.solver.specfem.Specfem""" + self._check_mesh_properties(path=path) + + def _check_source_names(self): + """Inherits from seisflows.solver.specfem.Specfem""" + self._check_source_names() + def _rename_data(self): """ Works around conflicting data filename conventions diff --git a/seisflows/solver/specfem3d_globe.py b/seisflows/solver/specfem3d_globe.py index 66f7dd5c..1e6fb021 100644 --- a/seisflows/solver/specfem3d_globe.py +++ b/seisflows/solver/specfem3d_globe.py @@ -6,49 +6,39 @@ and overwrites these functions to provide specified interaction with Specfem3D. """ import os -import sys -import logging from glob import glob +from seisflows.solver.specfem3d import Specfem3D from seisflows.tools.specfem import Minmax -from seisflows.tools import unix, msg +from seisflows.tools import unix from seisflows.tools.wrappers import Struct, exists -from seisflows.config import custom_import, SeisFlowsPathsParameters -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] -system = sys.modules["seisflows_system"] - -class Specfem3DGlobe(custom_import("solver", "specfem3d")): +class Specfem3DGlobe(Specfem3D): """ - Python interface to Specfem3D Globe. This subclass inherits functions - from seisflows.solver.specfem3d.Specfem3D + Python interface to Specfem3D Globe. A very simple overload of Specfem3D - !!! See base class for method descriptions !!! + See class `seisflows.solver.specfem3d.Specfem3D` for a more detailed + explanation of methods and attributes of this class """ - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. - - :type logger: Logger - :param logger: Class-specific logging module, log statements pushed - from this logger will be tagged by its specific module/classname """ super().__init__() - @property - def required(self): + def data_wildcard(self, comp="?"): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters(super().required) + Returns a wildcard identifier for synthetic data - return sf + :rtype: str + :return: wildcard identifier for channels + """ + if self.par.FORMAT.upper() == "SU": + raise NotImplementedError("SU file access is still a WIP") + elif self.par.FORMAT.upper() == "ASCII": + return f"*.?X{comp}.sem.ascii" def load(self, path, prefix="reg1_", suffix="", parameters=None): """ @@ -108,7 +98,7 @@ def save(self, path, model, prefix="reg1_", suffix=""): elif 'kernel' in suffix: pass else: - src = PATH.OUTPUT + '/' + 'model_init' + src = self.path.OUTPUT + '/' + 'model_init' dst = path copybin(src, dst, iproc, prefix+key+suffix) @@ -117,7 +107,7 @@ def save(self, path, model, prefix="reg1_", suffix=""): elif 'kernel' in suffix: pass else: - src = PATH.OUTPUT + '/' + 'model_init' + src = self.path.OUTPUT + '/' + 'model_init' dst = path copybin(src, dst, iproc, prefix+'rho'+suffix) @@ -130,7 +120,7 @@ def check_mesh_properties(self, path=None, parameters=None): """ if not hasattr(self, '_mesh_properties'): if path is None: - path = PATH.MODEL_INIT + path = self.path.MODEL_INIT if parameters is None: parameters = self.parameters @@ -166,7 +156,7 @@ def initialize_adjoint_traces(self): !!! This probably doesnt work - Note: + .. note:: Adjoint traces are initialized by writing zeros for all channels. Channels actually in use during an inversion or migration will be overwritten with nonzero values later on. @@ -175,34 +165,10 @@ def initialize_adjoint_traces(self): # workaround for SPECFEM's use of different name conventions for # regular traces and 'adjoint' traces - if PAR.FORMAT.upper() in ['ASCII', 'ascii']: + if self.par.FORMAT.upper() in ['ASCII', 'ascii']: files = glob(os.path.join(self.cwd, "traces", "adj", "*sem.ascii")) unix.rename("sem.ascii", "adj", files) - @property - def data_wildcard(self): - """ - Returns a wildcard identifier for synthetic data - - :rtype: str - :return: wildcard identifier for channels - """ - if PAR.FORMAT.upper() == "ASCII": - return f"*.?X?.sem.ascii" - - @property - def data_filenames(self): - """ - Returns the filenames of all data, either by the requested components - or by all available files in the directory. - - :rtype: list - :return: list of data filenames - """ - unix.cd(os.path.join(self.cwd, "traces", "obs")) - - if PAR.FORMAT.upper() == "ASCII": - return sorted(glob("*.???.sem.ascii")) diff --git a/seisflows/system/base.py b/seisflows/system/base.py deleted file mode 100644 index 632398e4..00000000 --- a/seisflows/system/base.py +++ /dev/null @@ -1,213 +0,0 @@ -#!/usr/bin/env python3 -""" -The System module provides the basic core utilities for interaction with compute -systems. The Base class must be overloaded by subclasses related to specific -compute system types (cluster vs. workstation) and even specific HPCs. -""" -import os -import sys -import pickle -import logging - -from seisflows.tools import unix, msg -from seisflows.tools.wrappers import number_fid -from seisflows.core import SeisFlowsPathsParameters -from seisflows.config import save, CFGPATHS - - -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - - -class Base: - """ - Abstract base class for the Systems module which controls interaction with - compute systems such as HPC clusters. - """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - - def __init__(self): - """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - """ - self.output_log = os.path.join(PATH.WORKDIR, CFGPATHS.LOGFILE) - self.error_log = os.path.join(PATH.WORKDIR, CFGPATHS.ERRLOGFILE) - - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters() - - sf.par("TITLE", required=False, - default=os.path.basename(os.path.abspath(".")), par_type=str, - docstr="The name used to submit jobs to the system, defaults " - "to the name of the working directory") - - sf.par("PRECHECK", required=False, par_type=list, default=["TITLE"], - docstr="A list of parameters that will be displayed to stdout " - "before 'submit' or 'resume' is run. Useful for " - "manually reviewing important parameters prior to " - "system submission") - - sf.par("LOG_LEVEL", required=False, par_type=str, default="DEBUG", - docstr="Verbosity output of SF logger. Available from least to " - "most verbosity: 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; " - "defaults to 'DEBUG'") - - sf.par("VERBOSE", required=False, default=False, par_type=bool, - docstr="Level of verbosity provided to the output log. If True, " - "log statements will declare what module/class/function " - "they are being called from. Useful for debugging but " - "also very noisy.") - - # Define the Paths required by this module - # note: PATH.WORKDIR has been set by the entry point seisflows.setup() - sf.path("SCRATCH", required=False, - default=os.path.join(PATH.WORKDIR, CFGPATHS.SCRATCHDIR), - docstr="scratch path to hold temporary data during workflow") - - sf.path("OUTPUT", required=False, - default=os.path.join(PATH.WORKDIR, CFGPATHS.OUTPUTDIR), - docstr="directory to save workflow outputs to disk") - - sf.path("SYSTEM", required=False, - default=os.path.join(PATH.WORKDIR, CFGPATHS.SCRATCHDIR, - "system"), - docstr="scratch path to hold any system related data") - - sf.path("LOCAL", required=False, - docstr="path to local data to be used during workflow") - - sf.path("LOGFILE", required=False, default=self.output_log, - docstr="the main output log file where all processes will " - "track their status") - - return sf - - def check(self, validate=True): - """ - Checks parameters and paths - """ - if validate: - self.required.validate() - - # !!! This system could be better, currently defining log file twice - if self.output_log != PATH.LOGFILE: - self.output_log = PATH.LOGFILE - - def setup(self): - """ - Create the SeisFlows directory structure in preparation for a - SeisFlows workflow. Ensure that if any config information is left over - from a previous workflow, that these files are not overwritten by - the new workflow. Should be called by submit() - - .. note:: - This function is expected to create dirs: SCRATCH, SYSTEM, OUTPUT - and the following log files: output, error - - .. note:: - Logger is configured here as all workflows, independent of system, - will be calling setup() - - :rtype: tuple of str - :return: (path to output log, path to error log) - """ - # Create scratch directories - unix.mkdir(PATH.SCRATCH) - unix.mkdir(PATH.SYSTEM) - - # Create output directories - unix.mkdir(PATH.OUTPUT) - log_files = os.path.join(PATH.WORKDIR, CFGPATHS.LOGDIR) - unix.mkdir(log_files) - - # If resuming, move old log files to keep them out of the way. Number - # in ascending order, so we don't end up overwriting things - for src in [self.output_log, self.error_log, PATH.PAR_FILE]: - i = 1 - if os.path.exists(src): - dst = os.path.join(log_files, number_fid(src, i)) - while os.path.exists(dst): - i += 1 - dst = os.path.join(log_files, number_fid(src, i)) - self.logger.debug(f"copying par/log file to: {dst}") - unix.cp(src=src, dst=dst) - - def submit(self): - """ - Main insertion point of SeisFlows onto the compute system. - - .. rubric:: - $ seisflows submit - - .. note:: - The expected behavior of the submit() function is to: - 1) run system setup, creating directory structure, - 2) execute workflow by submitting workflow.main() - """ - raise NotImplementedError("Must be implemented by subclass") - - def run(self, classname, method, single=False, **kwargs): - """ - Runs a task multiple times in am embarassingly parallel fashion - - .. note:: - The expected behavior of the run() function is to: submit N jobs to - the system in parallel. For example, in a simulation step, run() - submits N jobs to the compute system where N is the number of - events requiring an adjoint simulation. - - :type classname: str - :param classname: the class to run - :type method: str - :param method: the method from the given `classname` to run - :type single: bool - :param single: run a single-process, non-parallel task, such as - smoothing the gradient, which only needs to be run by once. - This will change how the job array and the number of tasks is - defined, such that the job is submitted as a single-core job to - the system. - :rtype: None - :return: This function is not expected to return anything - """ - raise NotImplementedError("Must be implemented by subclass") - - def taskid(self): - """ - Provides a unique identifier for each running task. This is - compute system specific. - - :rtype: int - :return: this function is expected to return a unique numerical - identifier. - """ - raise NotImplementedError("Must be implemented by subclass") - - def checkpoint(self, path, classname, method, kwargs): - """ - Writes the SeisFlows working environment to disk so that new tasks can - be executed in a separate/new/restarted working environment. - - :type path: str - :param path: path to save the checkpointed pickle files to - :type classname: str - :param classname: name of the class to save - :type method: str - :param method: the specific function to be checkpointed - :type kwargs: dict - :param kwargs: dictionary to pass to object saving - """ - argspath = os.path.join(path, "kwargs") - argsfile = os.path.join(argspath, f"{classname}_{method}.p") - - unix.mkdir(argspath) - with open(argsfile, "wb") as f: - pickle.dump(kwargs, f) - save(path=PATH.OUTPUT) - diff --git a/seisflows/system/chinook.py b/seisflows/system/chinook.py index f3c2792a..f988f0e5 100644 --- a/seisflows/system/chinook.py +++ b/seisflows/system/chinook.py @@ -8,24 +8,14 @@ Information on Chinook can be found here: https://uaf-rcs.gitbook.io/uaf-rcs-hpc-docs/hpc """ -import os -import sys -import logging +from seisflows.system.slurm import Slurm -from seisflows.config import custom_import, SeisFlowsPathsParameters -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - - -class Chinook(custom_import("system", "slurm")): +class Chinook(Slurm): """ System interface for the University of Alaska HPC Chinook, which operates on a SLURM system. """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. @@ -36,39 +26,31 @@ def __init__(self): own number of cores per compute node, defined here """ super().__init__() - self.partitions = {"debug": 24, "t1small": 28, "t2small": 28, - "t1standard": 40, "t2standard": 40, "analysis": 28 - } - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters(super().required) - - sf.par("PARTITION", required=False, default="t1small", par_type=int, - docstr="Name of partition on main cluster, available: " - "analysis, t1small, t2small, t1standard, t2standard, gpu") + self.required.par( + "PARTITION", required=False, default="t1small", par_type=int, + docstr="Name of partition on main cluster, available: " + "analysis, t1small, t2small, t1standard, t2standard, gpu") - sf.par("MPIEXEC", required=False, default="srun", par_type=str, - docstr="Function used to invoke parallel executables") + self.required.par( + "MPIEXEC", required=False, default="srun", par_type=str, + docstr="Function used to invoke parallel executables") - return sf + self.partitions = {"debug": 24, "t1small": 28, "t2small": 28, + "t1standard": 40, "t2standard": 40, "analysis": 28 + } def check(self, validate=True): """ Checks parameters and paths """ - if validate: - self.required.validate() - super().check(validate=False) + super().check(validate=validate) - assert(PAR.PARTITION in self.partitions.keys()), \ + assert(self.par.PARTITION in self.partitions.keys()), \ f"Chinook partition must be in {self.partitions.keys()}" - assert(PAR.NODESIZE == self.partitions[PAR.PARTITION]), \ - (f"PARTITION {PAR.PARTITION} is expected to have NODESIZE=" - f"{self.partitions[PAR.PARTITION]}, not current {PAR.NODESIZE}") + assert(self.par.NODESIZE == self.partitions[self.par.PARTITION]), \ + (f"PARTITION {self.par.PARTITION} is expected to have NODESIZE=" + f"{self.partitions[self.par.PARTITION]}, not current " + f"{self.par.NODESIZE}") diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index c3e51eff..f5e6f049 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -5,64 +5,58 @@ specific clusters. """ import sys -import logging import subprocess +from seisflows.system.workstation import Workstation -from seisflows.tools import msg -from seisflows.config import custom_import, save, SeisFlowsPathsParameters - -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - - -class Cluster(custom_import("system", "base")): +class Cluster(Workstation): """ Abstract base class for the Systems module which controls interaction with compute systems such as HPC clusters. """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - - @property - def required(self): + def __init__(self): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. + Instantiate the Cluster System class """ - sf = SeisFlowsPathsParameters(super().required) - - # Define the Parameters required by this module - sf.par("WALLTIME", required=True, par_type=float, - docstr="Maximum job time in minutes for main SeisFlows job") - - sf.par("TASKTIME", required=True, par_type=float, - docstr="Maximum job time in minutes for each SeisFlows task") - - sf.par("NTASK", required=True, par_type=int, - docstr="Number of separate, individual tasks. Also equal to " - "the number of desired sources in workflow") - - sf.par("NPROC", required=True, par_type=int, - docstr="Number of processor to use for each simulation") - - sf.par("ENVIRONS", required=False, default="", par_type=str, - docstr="Optional environment variables to be provided in the" - "following format VAR1=var1,VAR2=var2... Will be set" - "using os.environs") - - return sf + super().__init__() + + self.required.par( + "WALLTIME", required=True, par_type=float, + docstr="Maximum job time in minutes for main SeisFlows job" + ) + self.required.par( + "TASKTIME", required=True, par_type=float, + docstr="Maximum job time in minutes for each SeisFlows task" + ) + # note: OVERLOADS the Workstation `NTASK` parameter + self.required.par( + "NTASK", required=True, par_type=int, + docstr="Number of separate, individual tasks. Also equal to " + "the number of desired sources in workflow" + ) + # note: OVERLOADS the Workstation `NPROC` parameter + self.required.par( + "NPROC", required=True, par_type=int, + docstr="Number of processor to use for each simulation" + ) + self.required.par( + "ENVIRONS", required=False, default="", par_type=str, + docstr="Optional environment variables to be provided in the" + "following format VAR1=var1,VAR2=var2... Will be set" + "using os.environs" + ) def check(self, validate=True): """ Checks parameters and paths """ - if validate: - self.required.validate() + super().check(validate=validate) - super().check(validate=False) + def setup(self): + """Inherits from workflow.system.workstation.Workstation""" + self.setup() - def submit(self, submit_call): + def submit(self, submit_call=None): """ Main insertion point of SeisFlows onto the compute system. @@ -74,21 +68,18 @@ def submit(self, submit_call): 1) run system setup, creating directory structure, 2) execute workflow by submitting workflow.main() - :type workflow: seisflows.workflow - :param workflow: an active seisflows workflow instance :type submit_call: str :param submit_call: the command line workload manager call to be run by subprocess. These need to be passed in by specific workload manager subclasses. """ self.setup() - workflow = sys.modules["seisflows_workflow"] + workflow = self.module("workflow") workflow.checkpoint() - # check==True: subprocess will wait for workflow.main() to finish subprocess.run(submit_call, shell=True, check=True) - def run(self, classname, method, **kwargs): + def run(self, classname, method, single=False, **kwargs): """ Runs a task multiple times in parallel @@ -98,8 +89,16 @@ def run(self, classname, method, **kwargs): submits N jobs to the compute system where N is the number of events requiring an adjoint simulation. - :rtype: None - :return: This function is not expected to return anything + :type classname: str + :param classname: the class to run + :type method: str + :param method: the method from the given `classname` to run + :type single: bool + :param single: run a single-process, non-parallel task, such as + smoothing the gradient, which only needs to be run by once. + This will change how the job array and the number of tasks is + defined, such that the job is submitted as a single-core job to + the system. """ raise NotImplementedError('Must be implemented by subclass.') @@ -113,3 +112,9 @@ def taskid(self): identifier. """ raise NotImplementedError('Must be implemented by subclass.') + + def checkpoint(self, path, classname, method, kwargs): + """Inherits from workflow.system.workstation.Workstation""" + self.checkpoint(path=path, classname=classname, method=method, + kwargs=kwargs) + diff --git a/seisflows/system/lsf.py b/seisflows/system/lsf.py index f7f9d29c..01a55244 100644 --- a/seisflows/system/lsf.py +++ b/seisflows/system/lsf.py @@ -1,26 +1,20 @@ #!/usr/bin/env python3 """ -This is the subclass seisflows.system.lsf_lg +This is the subclass seisflows.system.lsf.Lsf This class provides the core utilities interaction with HPC systems which run using the Platform Load Sharing Facility (LSF) workload management platform. """ import os -import sys import time -import logging import subprocess -from seisflows.tools import msg, unix -from seisflows.tools.wrappers import findpath -from seisflows.config import custom_import, SeisFlowsPathsParameters +from seisflows.system.cluster import Cluster +from seisflows.tools import unix +from seisflows.config import ROOT_DIR -PAR = sys.modules['seisflows_parameters'] -PATH = sys.modules['seisflows_paths'] - - -class Lsf(custom_import("system", "cluster")): +class Lsf(Cluster): """ An interface through which to submit workflows, run tasks in serial or parallel, and perform other system functions. @@ -29,17 +23,16 @@ class Lsf(custom_import("system", "cluster")): classes provide a consistent command set across different computing environments. - Intermediate files are written to a global scratch path PATH.SCRATCH, + Intermediate files are written to a global scratch path self.path.SCRATCH, which must be accessible to all compute nodes. - Optionally, users can provide a local scratch path PATH.LOCAL if each + Optionally, users can provide a local scratch path self.path.LOCAL if each compute node has its own local filesystem. For important additional information, please see - http://seisflows.readthedocs.org/en/latest/manual/manual.html#system-configuration + http://seisflows.readthedocs.org/en/latest/manual/ + manual.html#system-configuration """ - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. @@ -47,51 +40,57 @@ def __init__(self): """ super().__init__() - @property - def required(self): - """ - Checks parameters and paths - """ - sf = SeisFlowsPathsParameters(super().required) - - sf.par("MPIEXEC", required=False, default="mpiexec", par_type=str, - docstr="Function used to invoke executables on the system. " - "For example 'srun' on SLURM systems, or './' on a " - "workstation. If left blank, will guess based on the " - "system.") - + self.logger.warning("system.LSF is underdeveloped and " + "will likely not work without significant testing " + "and source code edits") + + self.required.par( + "MPIEXEC", required=False, default="mpiexec", par_type=str, + docstr="Function used to invoke executables on the system. " + "For example 'srun' on SLURM systems, or './' on a " + "workstation. If left blank, will guess based on the " + "system." + ) # Define the Parameters required by this module - sf.par("NTASKMAX", required=False, default=100, par_type=int, - docstr="Limit on the number of concurrent tasks in array") - - sf.par("NODESIZE", required=True, par_type=int, - docstr="The number of cores per node defined by the system") - - sf.par("LSFARGS", required=False, default="", par_type=str, - docstr="Any optional, additional LSG arguments that will be " - "passed to the LSF submit scripts") - - def submit(self, workflow): - """ - Submits workflow - """ - # Prepare 'bsub' arguments - submit_call = " ".join([ - f"bsub", - f"{PAR.LSFARGS}", - f"-J {PAR.TITLE}", - f"-o {self.output_log}.log", - f"-e {self.error_log}.log", - f"-n {PAR.NODESIZE}", - f'-R "span[ptile={PAR.NODESIZE}"', - f"-W {PAR.WALLTIME:d}:00", - os.path.join(findpath("seisflows.system"), "wrappers", "submit"), - PATH.OUTPUT - ]) - - super().submit(workflow, submit_call) - - def run(self, classname, method, *args, **kwargs): + self.required.par( + "NTASKMAX", required=False, default=100, par_type=int, + docstr="Limit on the number of concurrent tasks in array" + ) + self.required.par( + "NODESIZE", required=True, par_type=int, + docstr="The number of cores per node defined by the system" + ) + self.required.par( + "LSFARGS", required=False, default="", par_type=str, + docstr="Any optional, additional LSG arguments that will be " + "passed to the LSF submit scripts" + ) + self.required.path( + "LOCAL", required=False, + docstr="path to local data to be used during workflow" + ) + + def submit(self, submit_call=None): + """ + Submits workflow using 'bsub' arguments + """ + if submit_call is None: + submit_call = " ".join([ + f"bsub", + f"{self.par.LSFARGS}", + f"-J {self.par.TITLE}", + f"-o {self.output_log}.log", + f"-e {self.error_log}.log", + f"-n {self.par.NODESIZE}", + f'-R "span[ptile={self.par.NODESIZE}"', + f"-W {self.par.WALLTIME:d}:00", + f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", + f"--output {self.path.OUTPUT}" + ]) + + super().submit(submit_call=submit_call) + + def run(self, classname, method, single=False, run_call=None, **kwargs): """ Runs task multiple times in embarrassingly parallel fasion on the maui cluster @@ -105,117 +104,103 @@ def run(self, classname, method, *args, **kwargs): :param method: the method from the given `classname` to run """ # Checkpoint this individual method before proceeding - self.checkpoint(PATH.OUTPUT, classname, method, args, kwargs) + self.checkpoint(self.path.OUTPUT, classname, method, kwargs) # Submit job array run_call = " ".join([ f"bsub", - f"{PAR.LSFARGS}", - f"-J {PAR.TITLE}", - f"-n {PAR.NPROC}", - f'-R "span[ptile={PAR.NODESIZE}"', - f"-W {PAR.TASKTIME:d}:00", - f"-o {os.path.join(PATH.WORKDIR, 'output.logs', '%J_%I')}", - f"[1-{PAR.NTASK}] % {PAR.NTASKMAX}", - f"{os.path.join(findpath('seisflows.system'), 'wrappers', 'run')}", - f"{PATH.OUTPUT}", - f"{classname}", - f"{method}", - f"{PAR.ENVIRONS}" + f"{self.par.LSFARGS}", + f"-J {self.par.TITLE}", + f"-n {self.par.NPROC}", + f'-R "span[ptile={self.par.NODESIZE}"', + f"-W {self.par.TASKTIME:d}:00", + f"-o {os.path.join(self.path.WORKDIR, 'output.logs', '%J_%I')}", + f"[1-{self.par.NTASK}] % {self.par.NTASKMAX}", + f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", + f"--output {self.path.OUTPUT}" + f"--classname {classname}", + f"--funcname {method}", + f"--environment {self.par.ENVIRONS or ''}" ]) + self.logger.debug(run_call) - stdout = subprocess.check_output(run_call, shell=True) - - # keep track of job ids - jobs = self.job_id_list(stdout, PAR.NTASK) - - while True: - # Wait seconds before checking status again - time.sleep(30) - self.timestamp() - isdone, jobs = self.job_status(classname, method, jobs) - if isdone: - return - - def run_single(self, classname, method, *args, **kwargs): - """ Runs task multiple times in embarrassingly parallel fasion - - Executes classname.method(*args, **kwargs) NTASK times, each time on - NPROC cpu cores - """ - # Checkpoint this individual method before proceeding - self.checkpoint(PATH.OUTPUT, classname, method, args, kwargs) - - # Submit job array - run_call = " ".join([ - f"bsub", - f"{PAR.LSFARGS}", - f"-J {PAR.TITLE}", - f"-n {PAR.NPROC}", - f'-R "span[ptile={PAR.NODESIZE}"', - f"-W {PAR.TASKTIME:d}:00", - f"-o {os.path.join(PATH.WORKDIR, 'output.logs', '%J')}", - f"[1-1]", - f"{os.path.join(findpath('seisflows.system'), 'wrappers', 'run')}", - f"{PATH.OUTPUT}", - f"{classname}", - f"{method}", - f"{PAR.ENVIRONS}" - ]) + # Single-process jobs simply need to replace a few sbatch arguments. + # Do it AFTER `run_call` has been defined so that subclasses submitting + # custom run calls can still benefit from this + if single: + self.logger.info("replacing parts of sbatch run call for single " + "process job") + run_call = _modify_run_call_single_proc(run_call) - stdout = check_output(run_call, shell=True) + # The standard response from SLURM when submitting jobs + # is something like 'Submitted batch job 441636', we want job number + stdout = subprocess.run(run_call, stdout=subprocess.PIPE, + text=True, shell=True).stdout # keep track of job ids - jobs = self.job_id_list(stdout, ntask=1) + jobs = self._job_id_list(stdout, single) while True: # Wait seconds before checking status again - time.sleep(30) - self.timestamp() - isdone, jobs = self.job_status(classname, method, jobs) + time.sleep(5) + isdone, jobs = self._job_status(classname, method, jobs) if isdone: return - def job_id_list(self, stdout, ntask): + def taskid(self): """ - Parses job id list from sbatch standard output - - :type stdout: str - :param stdout: the output of subprocess.check_output() - :type ntask: int - :param ntask: number of tasks currently running + Provides a unique identifier for each running task """ - job = stdout.split()[1].strip()[1:-1] - if ntask == 1: - return [job] - else: - number_jobs = range(1, PAR.NSRC + 1) - return ["{job}[{}]".format(_) for _ in number_jobs] + return int(os.getenv('LSB_JOBINDEX')) - 1 + + def checkpoint(self, path, classname, method, kwargs): + """Inherits from workflow.system.workstation.Workstation""" + self.checkpoint(path=path, classname=classname, method=method, + kwargs=kwargs) - def job_status(self, classname, method, jobs): + def _check_job_status(self, job_ids): """ Queries completion status of a single job + TODO this function is mangled, needs to be rewritten + :type job: str :param job: job id to query """ job_finished = [] - for job in jobs: - state = self._query(job) + for job_id in job_ids: + state = self._query(job_id) if state == "DONE": job_finished.append(True) else: job_finished.append(False) if state == "EXIT": - print(msg.cli(f"LSF job {job} failed to execute " - f"{classname}.{method}.", header="error", - border="=")) - sys.exit(-1) + return job_id, "FAILED" isdone = all(job_finished) - return isdone, jobs + return None, "OKAY" + + def _job_id_list(self, stdout, single): + """ + Parses job id list from LSF standard output + + :type stdout: str + :param stdout: the output of subprocess.check_output() + :type single: bool + :param single: if running a single process job, returns a list of length + 1 with a single job id, else returns a list of length self.par.NTASK + for all arrayed jobs + :rtype: list + :return: a list of array jobs that should be currently running + """ + job = stdout.split()[1].strip()[1:-1] + if single: + return [job] + else: + number_jobs = range(1, self.par.NSRC + 1) + return ["{job}[{}]".format(_) for _ in number_jobs] def _query(self, jobid): """ @@ -225,41 +210,34 @@ def _query(self, jobid): :param jobid: job id to query LSF system about """ # Write the job status output to a temporary file - with open(os.path.join(PATH.SYSTEM, "job_status", "w")) as f: - call('bjobs -a -d "{jobid}"', stdout=f) + with open(os.path.join(self.path.SYSTEM, "job_status", "w")) as f: + subprocess.call('bjobs -a -d "{jobid}"', stdout=f) # Read the job status back from the text file - with open(os.path.join(PATH.SYSTEM, "job_status", "r")) as f: + with open(os.path.join(self.path.SYSTEM, "job_status", "r")) as f: lines = f.readlines() state = lines[1].split()[2].strip() return state - def taskid(self): - """ - Provides a unique identifier for each running task - """ - return int(os.getenv('LSB_JOBINDEX')) - 1 - - def timestamp(self): - """ - Timestamp the current running job - """ - with open(os.path.join(PATH.SYSTEM, "timestamps", "a")) as f: - f.write(time.strftime("%H:%M:%S")) - f.write("\n") - - def save_kwargs(self, classname, method, kwargs): - """ - Save key word arguments as a pickle object. - - :type classname: str - :param classname: the class to run - :type method: str - :param method: the method from the given `classname` to run - """ - kwargspath = os.path.join(PATH.OUTPUT, "kwargs") - kwargsfile = os.path.join(kwargspath, f"{classname}_{method}.p") + # def save_kwargs(self, classname, method, kwargs): + # """ + # Save key word arguments as a pickle object. + # + # :type classname: str + # :param classname: the class to run + # :type method: str + # :param method: the method from the given `classname` to run + # """ + # kwargspath = os.path.join(self.path.OUTPUT, "kwargs") + # kwargsfile = os.path.join(kwargspath, f"{classname}_{method}.p") + # + # unix.mkdir(kwargspath) + # saveobj(kwargsfile, kwargs) + + +def _modify_run_call_single_proc(run_call): + """ - unix.mkdir(kwargspath) - saveobj(kwargsfile, kwargs) + """ + raise NotImplementedError("This function needs to be written") diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index 57bd43e4..1fbe6481 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -21,19 +21,18 @@ import sys import math import logging + +from seisflows.system.slurm import Slurm from seisflows.config import custom_import, SeisFlowsPathsParameters, ROOT_DIR PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] -class Maui(custom_import("system", "slurm")): +class Maui(Slurm): """ System interface for Maui, which operates on a SLURM system """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. @@ -44,97 +43,109 @@ def __init__(self): own number of cores per compute node, defined here """ super().__init__() - self.partitions = {"nesi_research": 40} - - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters(super().required) - - sf.par("ACCOUNT", required=True, par_type=str, - docstr="The account name to submit jobs under") - - sf.par("CPUS_PER_TASK", required=False, default=1, par_type=int, - docstr="Multiple CPUS per task allows for multithreading jobs") - - sf.par("CLUSTER", required=False, default="maui", par_type=str, - docstr="Name of main cluster for parallel job submission") - - sf.par("PARTITION", required=False, default="nesi_research", - par_type=str, docstr="Name of partition on main cluster") - - sf.par("ANCIL_CLUSTER", required=False, default="maui_ancil", - par_type=str, - docstr="Name of ancillary cluster for prepost tasks") - - sf.par("ANCIL_PARTITION", required=False, default="nesi_prepost", - par_type=str, - docstr="Name of ancillary partition for prepost tasks") - sf.par("ANCIL_TASKTIME", required=False, default="null", par_type=float, - docstr="Tasktime for prepost jobs on ancillary nodes") + self.required.par( + "ACCOUNT", required=True, par_type=str, + docstr="Maui account name to submit jobs under" + ) + self.required.par( + "NODESIZE", required=False, default=40, par_type=int, + docstr="The number of cores per node defined by the Maui cluster. " + "Assumed to be 40 cores per node." + ) + self.required.par( + "MPIEXEC", required=False, default="srun", par_type=str, + docstr="MPI call function used to invoke parallel executables, " + "defaults to 'srun'" + ) + self.required.par( + "CPUS_PER_TASK", required=False, default=1, par_type=int, + docstr="Multiple CPUS per task allows for multithreading jobs" + ) + self.required.par( + "CLUSTER", required=False, default="maui", par_type=str, + docstr="Name of main cluster for job submission. Available options: " + "'maui', 'maui_ancil', 'mahuika'. Note Mahuika untested" + ) + self.required.par( + "PARTITION", required=False, default="nesi_research", + par_type=str, docstr="Name of cluster partition to submit job to" + ) + self.required.par( + "ANCIL_CLUSTER", required=False, default="maui_ancil", par_type=str, + docstr="Ancillary cluster for pre- and post-processing tasks." + "Defaults to 'maui_ancil'") + + self.required.par( + "ANCIL_PARTITION", required=False, default="nesi_prepost", + par_type=str, + docstr="Name of ancillary partition for prepost tasks. Defaults to" + "'nesi_prepost'" + ) + self.required.par( + "ANCIL_TASKTIME", required=False, default="null", par_type=float, + docstr="Tasktime for prepost jobs submitted to ancillary nodes " + "matching 'ANCIL_CLUSTER' and 'ANCIL_PARTITION'" + ) - sf.par("NODESIZE", required=False, default=40, par_type=int, - docstr="The number of cores per node defined by the system") - - sf.par("MPIEXEC", required=False, default="srun", par_type=str, - docstr="Function used to invoke parallel executables") - - return sf + self.partitions = {"nesi_research": 40} def check(self, validate=True): """ Checks parameters and paths """ - if validate: - self.required.validate() - super().check(validate=False) + super().check(validate=validate) - assert(PAR.NODESIZE == self.partitions[PAR.PARTITION]), \ - (f"PARTITION {PAR.PARTITION} is expected to have NODESIZE=" - f"{self.partitions[PAR.PARTITION]}, not current {PAR.NODESIZE}") + assert(self.par.NODESIZE == self.partitions[self.par.PARTITION]), \ + (f"PARTITION {self.par.PARTITION} is expected to have NODESIZE=" + f"{self.partitions[self.par.PARTITION]}, not current " + f"{self.par.NODESIZE}") - assert("SLURM_MEM_PER_CPU" in (PAR.ENVIRONS or "")), \ + assert("SLURM_MEM_PER_CPU" in (self.par.ENVIRONS or "")), \ ("Maui runs Slurm>=21 which enforces mutually exclusivity of Slurm " "memory environment variables SLURM_MEM_PER_CPU and " "SLURM_MEM_PER_NODE. Due to the cross-cluster nature of " "running SeisFlows3 on Maui, we must remove one env. variable. " - "Please add 'SLURM_MEM_PER_CPU' to PAR.ENVIRONS.") + "Please add 'SLURM_MEM_PER_CPU' to self.par.ENVIRONS.") - def submit(self): + def setup(self): + """Inherits from workflow.system.workstation.Workstation""" + self.setup() + + def submit(self, submit_call=None): """ Submits master job workflow to maui_ancil cluster as a single-core process .. note:: The master job must be run on maui_ancil because Maui does - not have the ability to run the command "sacct" + not have the ability to run the command "sacct", nor can it + use the Conda environment that has been set by Ancil .. note:: We do not place SLURMARGS into the sbatch command to avoid the export=None which will not propagate the conda environment """ - maui_submit_call = " ".join([ - f"sbatch", - f"--account={PAR.ACCOUNT}", - f"--cluster={PAR.ANCIL_CLUSTER}", - f"--partition={PAR.ANCIL_PARTITION}", - f"--job-name={PAR.TITLE}", - f"--output={self.output_log}", - f"--error={self.error_log}", - f"--ntasks=1", - f"--cpus-per-task=1", - f"--time={PAR.WALLTIME:d}", - f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", - f"--output {PATH.OUTPUT}" - ]) - self.logger.debug(maui_submit_call) - super().submit(maui_submit_call) - - def run(self, classname, method, single=False, **kwargs): + if submit_call is None: + submit_call = " ".join([ + f"sbatch", + f"--account={self.par.ACCOUNT}", + f"--cluster={self.par.ANCIL_CLUSTER}", + f"--partition={self.par.ANCIL_PARTITION}", + f"--job-name={self.par.TITLE}", + f"--output={self.output_log}", + f"--error={self.error_log}", + f"--ntasks=1", + f"--cpus-per-task=1", + f"--time={self.par.WALLTIME:d}", + f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", + f"--output {self.path.OUTPUT}" + ]) + self.logger.debug(submit_call) + + super().submit(submit_call=submit_call) + + def run(self, classname, method, single=False, run_call=None, **kwargs): """ Runs task multiple times in embarrassingly parallel fasion on a SLURM cluster. Executes classname.method(*args, **kwargs) `NTASK` times, @@ -144,33 +155,38 @@ def run(self, classname, method, single=False, **kwargs): :param classname: the class to run :type method: str :param method: the method from the given `classname` to run - :type scale_tasktime: int - :param scale_tasktime: a way to get over the hard-set tasktime, because - some tasks take longer (e.g. smoothing), but you don't want these - to set the tasktimes for all other tasks. This lets you scale the - time of specific tasks by PAR.TASKTIME * scale_tasktime + :type single: bool + :param single: run a single-process, non-parallel task, such as + smoothing the gradient, which only needs to be run by once. + This will change how the job array and the number of tasks is + defined, such that the job is submitted as a single-core job to + the system. """ - maui_run_call = " ".join([ - "sbatch", - f"{PAR.SLURMARGS or ''}", - f"--account={PAR.ACCOUNT}", - f"--job-name={PAR.TITLE}", - f"--clusters={PAR.CLUSTER}", - f"--partition={PAR.PARTITION}", - f"--cpus-per-task={PAR.CPUS_PER_TASK}", - f"--nodes={math.ceil(PAR.NPROC / float(PAR.NODESIZE)):d}", - f"--ntasks={PAR.NPROC:d}", - f"--time={PAR.TASKTIME:d}", - f"--output={os.path.join(PATH.WORKDIR, 'logs', '%A_%a')}", - f"--array=0-{PAR.NTASK-1 % PAR.NTASKMAX}", - f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", - f"--output {PATH.OUTPUT}", - f"--classname {classname}", - f"--funcname {method}", - f"--environment {PAR.ENVIRONS or ''}" - ]) - self.logger.debug(maui_run_call) - super().run(classname, method, single, run_call=maui_run_call, **kwargs) + if run_call is None: + _nodes = math.ceil(self.par.NPROC / float(self.par.NODESIZE)) + + run_call = " ".join([ + "sbatch", + f"{self.par.SLURMARGS or ''}", + f"--account={self.par.ACCOUNT}", + f"--job-name={self.par.TITLE}", + f"--clusters={self.par.CLUSTER}", + f"--partition={self.par.PARTITION}", + f"--cpus-per-task={self.par.CPUS_PER_TASK}", + f"--nodes={_nodes:d}", + f"--ntasks={self.par.NPROC:d}", + f"--time={self.par.TASKTIME:d}", + f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", + f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", + f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", + f"--output {self.path.OUTPUT}", + f"--classname {classname}", + f"--funcname {method}", + f"--environment {self.par.ENVIRONS or ''}" + ]) + self.logger.debug(run_call) + + super().run(classname, method, single, run_call=run_call, **kwargs) def run_ancil(self, classname, method, **kwargs): """ @@ -184,26 +200,33 @@ def run_ancil(self, classname, method, **kwargs): """ ancil_run_call = " ".join([ "sbatch", - f"{PAR.SLURMARGS or ''}", - f"--account={PAR.ACCOUNT}", - f"--job-name={PAR.TITLE}", - f"--clusters={PAR.ANCIL_CLUSTER}", - f"--partition={PAR.ANCIL_PARTITION}", - f"--cpus-per-task={PAR.CPUS_PER_TASK}", - f"--time={PAR.ANCIL_TASKTIME:d}", - f"--output={os.path.join(PATH.WORKDIR, 'logs', '%A_%a')}", - f"--array=0-{PAR.NTASK-1 % PAR.NTASKMAX}", + f"{self.par.SLURMARGS or ''}", + f"--account={self.par.ACCOUNT}", + f"--job-name={self.par.TITLE}", + f"--clusters={self.par.ANCIL_CLUSTER}", + f"--partition={self.par.ANCIL_PARTITION}", + f"--cpus-per-task={self.par.CPUS_PER_TASK}", + f"--time={self.par.ANCIL_TASKTIME:d}", + f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", + f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", - f"--output {PATH.OUTPUT}", + f"--output {self.path.OUTPUT}", f"--classname {classname}", f"--funcname {method}", - f"--environment {PAR.ENVIRONS or ''}" + f"--environment {self.par.ENVIRONS or ''}" ]) self.logger.debug(ancil_run_call) super().run(classname, method, single=False, run_call=ancil_run_call, **kwargs) + def taskid(self): + """Inherits from seisflows.system.slurm.Slurm""" + return self.taskid() + def checkpoint(self, path, classname, method, kwargs): + """Inherits from workflow.system.workstation.Workstation""" + self.checkpoint(path=path, classname=classname, method=method, + kwargs=kwargs) diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 1c3beb3a..235ee280 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -17,63 +17,61 @@ import sys import math import time -import logging import subprocess +from seisflows.system.cluster import Cluster from seisflows.tools import msg -from seisflows.config import ROOT_DIR, custom_import, SeisFlowsPathsParameters +from seisflows.config import ROOT_DIR -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - -class Slurm(custom_import("system", "cluster")): +class Slurm(Cluster): """ Generalized interface for submitting jobs to and interfacing with a SLURM workload management system. """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. """ super().__init__() - - @property - def required(self): + + self.required.par( + "MPIEXEC", required=False, default="srun -u", par_type=str, + docstr="Function used to invoke executables on the system. " + "For example 'srun' on SLURM systems, or './' on a " + "workstation. If left blank, will guess based on the " + "system." + ) + self.required.par( + "NTASKMAX", required=False, default=100, par_type=int, + docstr="Limit on the number of concurrent tasks in array" + ) + self.required.par( + "NODESIZE", required=True, par_type=int, + docstr="The number of cores per node defined by the system" + ) + + self.required.par( + "SLURMARGS", required=False, default="", par_type=str, + docstr="Any optional, additional SLURM arguments that will be " + "passed to the SBATCH scripts" + ) + + def check(self, validate=True): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. + Checks parameters and paths """ - sf = SeisFlowsPathsParameters(super().required) - - sf.par("MPIEXEC", required=False, default="srun -u", par_type=str, - docstr="Function used to invoke executables on the system. " - "For example 'srun' on SLURM systems, or './' on a " - "workstation. If left blank, will guess based on the " - "system.") + super().check(validate=validate) - sf.par("NTASKMAX", required=False, default=100, par_type=int, - docstr="Limit on the number of concurrent tasks in array") - - sf.par("NODESIZE", required=True, par_type=int, - docstr="The number of cores per node defined by the system") - - sf.par("SLURMARGS", required=False, default="", par_type=str, - docstr="Any optional, additional SLURM arguments that will be " - "passed to the SBATCH scripts") - - return sf + def setup(self): + """Inherits from workflow.system.workstation.Workstation""" + self.setup() def submit(self, submit_call=None): """ - Submits workflow as a single process master job + Submits workflow as a single process master job on a SLURM system - :type workflow: module - :param workflow: :type submit_call: str :param submit_call: subclasses (e.g., specific SLURM cluster subclasses) can overload the sbatch command line input by setting @@ -82,19 +80,19 @@ def submit(self, submit_call=None): if submit_call is None: submit_call = " ".join([ f"sbatch", - f"{PAR.SLURMARGS or ''}", - f"--job-name={PAR.TITLE}", + f"{self.par.SLURMARGS or ''}", + f"--job-name={self.par.TITLE}", f"--output={self.output_log}", f"--error={self.error_log}", - f"--ntasks-per-node={PAR.NODESIZE}", + f"--ntasks-per-node={self.par.NODESIZE}", f"--nodes=1", - f"--time={PAR.WALLTIME:d}", + f"--time={self.par.WALLTIME:d}", f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", - "--output {PATH.OUTPUT}" + f"--output {self.path.OUTPUT}" ]) self.logger.debug(submit_call) - super().submit(submit_call) + super().submit(submit_call=submit_call) def run(self, classname, method, single=False, run_call=None, **kwargs): """ @@ -121,26 +119,26 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): can overload the sbatch command line input by setting run_call. If set to None, default run_call will be set here. """ - self.checkpoint(PATH.OUTPUT, classname, method, kwargs) + self.checkpoint(self.path.OUTPUT, classname, method, kwargs) # Default sbatch command line input, can be overloaded by subclasses # Copy-paste this default run_call and adjust accordingly for subclass if run_call is None: run_call = " ".join([ "sbatch", - f"{PAR.SLURMARGS or ''}", - f"--job-name={PAR.TITLE}", - f"--nodes={math.ceil(PAR.NPROC/float(PAR.NODESIZE)):d}", - f"--ntasks-per-node={PAR.NODESIZE:d}", - f"--ntasks={PAR.NPROC:d}", - f"--time={PAR.TASKTIME:d}", - f"--output={os.path.join(PATH.WORKDIR, 'logs', '%A_%a')}", - f"--array=0-{PAR.NTASK-1 % PAR.NTASKMAX}", + f"{self.par.SLURMARGS or ''}", + f"--job-name={self.par.TITLE}", + f"--nodes={math.ceil(self.par.NPROC/float(self.par.NODESIZE)):d}", + f"--ntasks-per-node={self.par.NODESIZE:d}", + f"--ntasks={self.par.NPROC:d}", + f"--time={self.par.TASKTIME:d}", + f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", + f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", - f"--output {PATH.OUTPUT}", + f"--output {self.path.OUTPUT}", f"--classname {classname}", f"--funcname {method}", - f"--environment {PAR.ENVIRONS or ''}" + f"--environment {self.par.ENVIRONS or ''}" ]) self.logger.debug(run_call) @@ -158,8 +156,8 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): text=True, shell=True).stdout # Continuously check for job completion on ALL running array jobs - job_ids = job_id_list(stdout, single) - job_id, status = self.check_job_status(job_ids) + job_ids = self._job_id_list(stdout, single) + job_id, status = self._check_job_status(job_ids) if status != "OKAY": print(msg.cli((f"Stopping workflow for {status} job. " f"Please check log file for details."), @@ -172,7 +170,33 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): self.logger.info(f"Task {classname}.{method} finished successfully") - def check_job_status(self, job_ids): + def taskid(self): + """ + Provides a unique identifier for each running task + + :rtype: int + :return: identifier for a given task + """ + # If not set, this environment variable will return None + sftaskid = os.getenv("SEISFLOWS_TASKID") + + if sftaskid is None: + sftaskid = os.getenv("SLURM_ARRAY_TASK_ID") + if sftaskid is None: + print(msg.cli("system.taskid() environment variable not found. " + "Assuming DEBUG mode and returning taskid==0. " + "If not DEBUG mode, please check SYSTEM.run()", + header="warning", border="=")) + sftaskid = 0 + + return int(sftaskid) + + def checkpoint(self, path, classname, method, kwargs): + """Inherits from workflow.system.workstation.Workstation""" + self.checkpoint(path=path, classname=classname, method=method, + kwargs=kwargs) + + def _check_job_status(self, job_ids): """ Repeatedly check the status of a currently running job using 'sacct'. If the job goes into a bad state like 'FAILED', return the failing @@ -214,69 +238,47 @@ def check_job_status(self, job_ids): return None, "OKAY" - def taskid(self): - """ - Provides a unique identifier for each running task - - :rtype: int - :return: identifier for a given task + def _job_id_list(self, stdout, single): """ - # If not set, this environment variable will return None - sftaskid = os.getenv("SEISFLOWS_TASKID") + Parses job id list from sbatch standard output. Stdout typically looks + like: 'Submitted batch job 441636', but if submitting jobs cross-cluster + (e.g., like on Maui), stdout might be: + 'Submitted batch job 441636 on cluster Maui' - if sftaskid is None: - sftaskid = os.getenv("SLURM_ARRAY_TASK_ID") - if sftaskid is None: - print(msg.cli("system.taskid() environment variable not found. " - "Assuming DEBUG mode and returning taskid==0. " - "If not DEBUG mode, please check SYSTEM.run()", - header="warning", border="=")) - sftaskid = 0 + .. note:: + In order to find the job number, we just scan each word in stdout + until we find the number, ASSUMING that there is only one number in + the string - return int(sftaskid) + TODO Should failing to return job_id break in reasonable way? + The output job arrays will look something like: + [44163_0, 44163_1, ..., 44163_self.par.NTASK] -def job_id_list(stdout, single): - """ - Parses job id list from sbatch standard output. Stdout typically looks - like: 'Submitted batch job 441636', but if submitting jobs cross-cluster - (e.g., like on Maui), stdout might be: - 'Submitted batch job 441636 on cluster Maui' - - .. note:: - In order to find the job number, we just scan each word in stdout - until we find the number, ASSUMING that there is only one number in - the string - - TODO Should failing to return job_id break in reasonable way? - - The output job arrays will look something like: - [44163_0, 44163_1, ..., 44163_PAR.NTASK] - - :type stdout: str - :param stdout: the text response from running 'sbatch' on SLURM, which - should be returned by subprocess.run(stdout=PIPE) - :type single: bool - :param single: if running a single process job, returns a list of length - 1 with a single job id, else returns a list of length PAR.NTASK - for all arrayed jobs - :rtype: list - :return: a list of array jobs that should be currently running - """ - if single: - ntask = 1 - else: - ntask = PAR.NTASK + :type stdout: str + :param stdout: the text response from running 'sbatch' on SLURM, which + should be returned by subprocess.run(stdout=PIPE) + :type single: bool + :param single: if running a single process job, returns a list of length + 1 with a single job id, else returns a list of length self.par.NTASK + for all arrayed jobs + :rtype: list + :return: a list of array jobs that should be currently running + """ + if single: + ntask = 1 + else: + ntask = self.par.NTASK - # Splitting e.g.,: 'Submitted batch job 441636\n' - for part in stdout.strip().split(): - try: - # The int will keep throwing ValueError until we find the num - job_id = int(part) - break - except ValueError: - continue - return [f"{job_id}_{i}" for i in range(ntask)] + # Splitting e.g.,: 'Submitted batch job 441636\n' + for part in stdout.strip().split(): + try: + # The int will keep throwing ValueError until we find the num + job_id = int(part) + break + except ValueError: + continue + return [f"{job_id}_{i}" for i in range(ntask)] def job_array_status(job_ids): @@ -320,8 +322,8 @@ def check_job_state(job_id): cluster that ran the `sacct` call -X supress the .batch and .extern jobname - :type job: str - :param job: job id to query + :type job_id: str + :param job_id: job id to query """ cmd = f"sacct -nLX -o jobid,state -j {job_id}" stdout = subprocess.run(cmd, stdout=subprocess.PIPE, @@ -361,7 +363,7 @@ def _modify_run_call_single_proc(run_call): run_call.replace(part, "--ntasks=1") # Append taskid to environment variable, deal with the case where - # PAR.ENVIRONS is an empty string + # self.par.ENVIRONS is an empty string task_id_str = "SEISFLOWS_TASKID=0" if not run_call.strip().endswith("--environment"): task_id_str = f",{task_id_str}" # appending to the list of vars diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 1119ece6..bf2e9e29 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -5,60 +5,157 @@ """ import os import sys -import logging +import pickle from contextlib import redirect_stdout -from seisflows.tools import msg -from seisflows.core import SeisFlowsPathsParameters -from seisflows.config import custom_import, CFGPATHS +from seisflows.core import Base +from seisflows.config import CFGPATHS, save +from seisflows.tools import msg, unix +from seisflows.tools.wrappers import number_fid -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - -class Workstation(custom_import("system", "base")): +class Workstation(Base): """ - Run tasks in a serial fashion on a single local machine + Run tasks in a serial fashion on a single local machine. Also serves as the + Base System module, upon which all other System classes should be built. """ - logger = logging.getLogger(__name__).getChild(__qualname__) + def __init__(self): + """ + Instantiate the Workstation base class + """ + super().__init__() + + self.output_log = os.path.join(self.path.WORKDIR, CFGPATHS.LOGFILE) + self.error_log = os.path.join(self.path.WORKDIR, CFGPATHS.ERRLOGFILE) + + self.required.par( + "TITLE", required=False, + default=os.path.basename(os.path.abspath(".")), par_type=str, + docstr="The name used to submit jobs to the system, defaults " + "to the name of the working directory" + ) + self.required.par( + "MPIEXEC", required=False, default=None, par_type=str, + docstr="Function used to invoke executables on the system. " + "For example 'srun' on SLURM systems, or './' on a " + "workstation. If left blank, will guess based on the " + "system." + ) + self.required.par( + "NTASK", required=False, default=1, par_type=int, + docstr="Number of separate, individual tasks. Also equal to " + "the number of desired sources in workflow" + ) + self.required.par( + "NPROC", required=False, default=1, par_type=int, + docstr="Number of processor to use for each simulation" + ) + self.required.par( + "PRECHECK", required=False, par_type=list, default=["TITLE"], + docstr="A list of parameters that will be displayed to stdout " + "before 'submit' or 'resume' is run. Useful for " + "manually reviewing important parameters prior to " + "system submission" + ) + self.required.par( + "LOG_LEVEL", required=False, par_type=str, default="DEBUG", + docstr="Verbosity output of SF logger. Available from least to " + "most verbosity: 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; " + "defaults to 'DEBUG'" + ) + self.required.par( + "VERBOSE", required=False, default=False, par_type=bool, + docstr="Level of verbosity provided to the output log. If True, " + "log statements will declare what module/class/function " + "they are being called from. Useful for debugging but " + "also very noisy." + ) + # note: self.path.WORKDIR has been set by the entry point seisflows.setup() + self.required.path( + "SCRATCH", required=False, + default=os.path.join(self.path.WORKDIR, "scratch"), + docstr="scratch path to hold temporary data during workflow" + ) + self.required.path( + "OUTPUT", required=False, + default=os.path.join(self.path.WORKDIR, "output"), + docstr="directory to save workflow outputs to disk" + ) + self.required.path( + "SYSTEM", required=False, + default=os.path.join(self.required.SCRATCH, "system"), + docstr="scratch path to hold any system related data" + ) + self.required.path( + "LOGFILE", required=False, default=self.output_log, + docstr="the main output log file where all processes will track " + "their status" + ) - @property - def required(self): + def check(self, validate=True): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. + Checks parameters and paths """ - sf = SeisFlowsPathsParameters(super().required) + super().check(validate=validate) - sf.par("MPIEXEC", required=False, default=None, par_type=str, - docstr="Function used to invoke executables on the system. " - "For example 'srun' on SLURM systems, or './' on a " - "workstation. If left blank, will guess based on the " - "system.") + if self.output_log != self.path.LOGFILE: + self.output_log = self.path.LOGFILE - sf.par("NTASK", required=False, default=1, par_type=int, - docstr="Number of separate, individual tasks. Also equal to " - "the number of desired sources in workflow") + def setup(self): + """ + Create the SeisFlows directory structure in preparation for a + SeisFlows workflow. Ensure that if any config information is left over + from a previous workflow, that these files are not overwritten by + the new workflow. Should be called by submit() - sf.par("NPROC", required=False, default=1, par_type=int, - docstr="Number of processor to use for each simulation") + .. note:: + This function is expected to create dirs: SCRATCH, SYSTEM, OUTPUT + and the following log files: output, error - return sf + .. note:: + Logger is configured here as all workflows, independent of system, + will be calling setup() - def check(self, validate=True): + :rtype: tuple of str + :return: (path to output log, path to error log) """ - Checks parameters and paths + # Create scratch directories + unix.mkdir(self.path.SCRATCH) + unix.mkdir(self.path.SYSTEM) + + # Create output directories + unix.mkdir(self.path.OUTPUT) + log_files = os.path.join(self.path.WORKDIR, CFGPATHS.LOGDIR) + unix.mkdir(log_files) + + # If resuming, move old log files to keep them out of the way. Number + # in ascending order, so we don't end up overwriting things + for src in [self.output_log, self.error_log, self.path.PAR_FILE]: + i = 1 + if os.path.exists(src): + dst = os.path.join(log_files, number_fid(src, i)) + while os.path.exists(dst): + i += 1 + dst = os.path.join(log_files, number_fid(src, i)) + self.logger.debug(f"copying par/log file to: {dst}") + unix.cp(src=src, dst=dst) + + def finalize(self): + """Inherits from seisflows.core.Base""" + super().finalize() + + def submit(self, submit_call=None): """ - super().check(validate=False) - if validate: - self.required.validate() + Submits the main workflow job as a serial job submitted directly to + the compute node that is running the master job - def submit(self): - """ - Submits the main workflow job + :type submit_call: str or None + :param submit_call: the command line workload manager call to be run by + subprocess. This is only needed for overriding classes, it has no + effect on the Workstation class """ self.setup() - workflow = sys.modules["seisflows_workflow"] + workflow = self.module("workflow") workflow.checkpoint() workflow.main() @@ -80,18 +177,18 @@ def run(self, classname, method, single=False, **kwargs): defined, such that the job is submitted as a single-core job to the system. """ - self.checkpoint(PATH.OUTPUT, classname, method, kwargs) + self.checkpoint(self.path.OUTPUT, classname, method, kwargs) # Allows dynamic retrieval of any function from within package, e.g., # Date: Tue, 28 Jun 2022 14:23:18 -0800 Subject: [PATCH 032/195] making Forward workflow class the base workflow class, building everything else on top of that. Migration class will define adjoint simulations, and then inversion will build on top of Migration --- seisflows/system/cluster.py | 1 - seisflows/system/lsf.py | 1 - seisflows/workflow/base.py | 231 -------------------------- seisflows/workflow/forward.py | 285 ++++++++++++++++++++++++++++++++ seisflows/workflow/inversion.py | 42 ++++- seisflows/workflow/migration.py | 125 +++++--------- 6 files changed, 368 insertions(+), 317 deletions(-) delete mode 100644 seisflows/workflow/base.py create mode 100644 seisflows/workflow/forward.py diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index f5e6f049..07f2fadb 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -4,7 +4,6 @@ which must be overloaded by subclasses for specific workload managers, or specific clusters. """ -import sys import subprocess from seisflows.system.workstation import Workstation diff --git a/seisflows/system/lsf.py b/seisflows/system/lsf.py index 01a55244..4bcc277f 100644 --- a/seisflows/system/lsf.py +++ b/seisflows/system/lsf.py @@ -10,7 +10,6 @@ import subprocess from seisflows.system.cluster import Cluster -from seisflows.tools import unix from seisflows.config import ROOT_DIR diff --git a/seisflows/workflow/base.py b/seisflows/workflow/base.py deleted file mode 100644 index 97fc5b87..00000000 --- a/seisflows/workflow/base.py +++ /dev/null @@ -1,231 +0,0 @@ -#!/usr/bin/env python3 -""" -This is the Base class for seisflows.workflow. -It contains mandatory functions that must be called by subclasses -""" -import os -import sys -import logging - -from seisflows.tools import msg -from seisflows.tools.wrappers import exists -from seisflows.core import SeisFlowsPathsParameters -from seisflows.config import save - - -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - - -class Base: - """ - Workflow abstract base class - """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - - def __init__(self): - """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - """ - pass - - @property - def required(self): - """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - """ - sf = SeisFlowsPathsParameters() - - sf.par("CASE", required=False, default="data", par_type=str, - docstr="Type of inversion, available: " - "['data': real data inversion, " - "'synthetic': synthetic-synthetic inversion]") - - sf.par("RESUME_FROM", required=False, par_type=str, - docstr="Name of task to resume inversion from") - - sf.par("STOP_AFTER", required=False, par_type=str, - docstr="Name of task to stop inversion after finishing") - - sf.par("SAVEMODEL", required=False, default=True, par_type=bool, - docstr="Save final model files after each iteration") - - sf.par("SAVEGRADIENT", required=False, default=True, par_type=bool, - docstr="Save gradient files after each iteration") - - sf.par("SAVEKERNELS", required=False, default=False, par_type=bool, - docstr="Save event kernel files after each iteration") - - sf.par("SAVETRACES", required=False, default=False, par_type=bool, - docstr="Save waveform traces after each iteration") - - sf.par("SAVERESIDUALS", required=False, default=False, par_type=bool, - docstr="Save waveform residuals after each iteration") - - sf.par("SAVEAS", required=False, default="binary", par_type=str, - docstr="Format to save models, gradients, kernels. " - "Available: " - "['binary': save files in native SPECFEM .bin format, " - "'vector': save files as NumPy .npy files, " - "'both': save as both binary and vectors]") - - sf.path("DATA", required=False, default=None, - docstr="path to data available to workflow") - - sf.path("MODEL_INIT", required=False, - default=os.path.join(PATH.WORKDIR, "specfem", "MODEL_INIT"), - docstr="location of the initial model to be used for workflow") - - sf.path("MODEL_TRUE", required=False, - default=os.path.join(PATH.WORKDIR, "specfem", "MODEL_TRUE"), - docstr="Target model to be used for PAR.CASE == 'synthetic'") - - return sf - - def check(self, validate=True): - """ - Checks parameters and paths. Must be implemented by sub-class - """ - if validate: - self.required.validate() - - if PAR.CASE.upper() == "SYNTHETIC": - assert exists(PATH.MODEL_TRUE), \ - "CASE == SYNTHETIC requires PATH.MODEL_TRUE" - - if not exists(PATH.DATA): - assert "MODEL_TRUE" in PATH, f"DATA or MODEL_TRUE must exist" - - def main(self, return_flow=False): - """ - Execution of a workflow is equal to stepping through workflow.main() - - An example main() script is provided below which details the requisite - parts. This function will NOT execute as it is written in pseudocode. - - :type return_flow: bool - :param return_flow: for CLI tool, simply returns the flow function - rather than running the workflow. Used for print statements etc. - """ - self.logger.warning("The current definition of workflow.main() will " - "NOT execute, it must be overwritten by a " - "subclass") - - # The FLOW function defines a list of functions to execute IN ORDER - flow = (self.func1, - self.func2, - # ... - self.funcN - ) - - # REQUIRED: CLI command `seisflows print flow` needs this for output - if return_flow: - return flow - - # Allow User to start the workflow mid-FLOW, in the event that a - # previous workflow errored, or if the User had previously stopped - # a workflow to look at results and they want to pick up where - # they left off - start, stop = self.check_stop_resume_cond(flow) - - self.logger.info(msg.mjr("BEGINNING EXAMPLE WORKFLOW")) - - # Iterate through the `FLOW` to step through workflow.main() - for func in flow[start:stop]: - func() - - # If an multi-iteration workflow is run, `FLOW` will be executed - # repeatedly, so reset start and stop for subsequent iterations - start, stop = 0, -1 - - self.logger.info(msg.mjr("FINISHED EXAMPLE WORKFLOW")) - - def check_stop_resume_cond(self, flow): - """ - Chek the stop after and resume from conditions - - Allow the main() function to resume a workflow from a given flow - argument, or stop the workflow after a given argument. In the event - that a previous workflow errored, or if the User had previously - stopped a workflow to look at results and they want to pick up where - they left off. - - Late check: Exits the workflow if RESUME_FROM or STOP_AFTER arguments - do not match any of the given flow arguments. - - :type flow: tuple of functions - :param flow: an ordered list of functions that will be - :rtype: tuple of int - :return: (start, stop) indices of the `flow` input dictating where the - list should be begun and ended. If RESUME_FROM and STOP_AFTER - conditions are NOT given by the user, start and stop will be 0 and - -1 respectively, meaning we should execute the ENTIRE list - """ - fxnames = [func.__name__ for func in flow] - - # Default values which dictate that flow will execute in its entirety - start_idx = None - stop_idx = None - - # Overwrite start_idx if RESUME_FROM given, exit condition if no match - if PAR.RESUME_FROM: - try: - start_idx = fxnames.index(PAR.RESUME_FROM) - fx_name = flow[start_idx].__name__ - self.logger.info( - msg.mnr(f"WORKFLOW WILL RESUME FROM FUNC: '{fx_name}'") - ) - except ValueError: - self.logger.info( - msg.cli(f"{PAR.RESUME_FROM} does not correspond to any FLOW " - f"functions. Please check that PAR.RESUME_FROM " - f"matches one of the functions listed out in " - f"`seisflows print flow`.", header="error", - border="=") - ) - sys.exit(-1) - - # Overwrite stop_idx if STOP_AFTER provided, exit condition if no match - if PAR.STOP_AFTER: - try: - stop_idx = fxnames.index(PAR.STOP_AFTER) - fx_name = flow[stop_idx].__name__ - stop_idx += 1 # increment to stop AFTER, due to python indexing - self.logger.info( - msg.mnr(f"WORKFLOW WILL STOP AFTER FUNC: '{fx_name}'") - ) - except ValueError: - self.logger.info( - msg.cli(f"{PAR.STOP_AFTER} does not correspond to any FLOW " - f"functions. Please check that PAR.STOP_AFTER " - f"matches one of the functions listed out in " - f"`seisflows print flow`.", header="error", - border="=") - ) - sys.exit(-1) - - # Make sure stop after doesn't come before resume_from, otherwise none - # of the flow will execute - if PAR.STOP_AFTER and PAR.RESUME_FROM: - if stop_idx <= start_idx: - self.logger.info( - msg.cli(f"PAR.STOP_AFTER=='{PAR.STOP_AFTER}' is called " - f"before PAR.RESUME_FROM=='{PAR.RESUME_FROM}' in " - f"the FLOW functions. Please adjust accordingly " - f"and rerun.", header="error", border="=") - ) - sys.exit(-1) - - return start_idx, stop_idx - - @staticmethod - def checkpoint(): - """ - Writes information to disk so workflow can be resumed following a break - """ - save(path=PATH.OUTPUT) - - diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py new file mode 100644 index 00000000..2d7c9cdd --- /dev/null +++ b/seisflows/workflow/forward.py @@ -0,0 +1,285 @@ +#!/usr/bin/env python3 +""" +The simplest simulation workflow you can run is a large number of forward +simulations to generate synthetics from a velocity model. Therefore the +Forward class represents the BASE workflow. All other workflows will build off +of the scaffolding defined by the Forward class. +""" +import os +import sys +import numpy as np +from glob import glob + +from seisflows.core import Base +from seisflows.tools import msg +from seisflows.config import save + + +class Forward(Base): + """ + Workflow abstract base class + """ + def __init__(self): + """ + These parameters should not be set by the user. + Attributes are initialized as NoneTypes for clarity and docstrings. + """ + super().__init__() + + self.required.par( + "SAVETRACES", required=False, default=False, par_type=bool, + docstr="Save waveform traces to disk after they have been " + "generated by the external solver" + ) + self.required.par( + "SAVERESIDUALS", required=False, default=False, par_type=bool, + docstr="Save data-synthetic residuals each time they are " + "caluclated" + ) + self.required.path( + "DATA", required=False, default=None, + docstr="path to observed waveform data available to workflow" + ) + self.required.path( + "MODEL_INIT", required=False, + default=os.path.join(self.path.WORKDIR, "specfem", "MODEL_INIT"), + docstr="Path location of the initial model to be used to generate " + "the the first evaluation of synthetic seismograms." + ) + self.required.path( + "GRAD", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "evalgrad"), + docstr="scratch path to store data related to gradient evaluations" + ) + + # For keeping track of what functions to start and stop a workflow with + self.start = None + self.stop = None + + def check(self, validate=True): + """ + Checks parameters and paths. Must be implemented by sub-class + """ + super().check(validate=validate) + + def setup(self, flow=None, return_flow=False): + """ + Setup workflow by intaking functions to be run and checking start and + stop criteria + """ + # The FLOW function defines a list of functions to execute IN ORDER + if flow is None: + flow = (self.evaluate_initial_misfit) + + # REQUIRED: CLI command `seisflows print flow` needs this for output + if return_flow: + return flow + + # Allow User to start the workflow mid-FLOW, in the event that a + # previous workflow errored, or if the User had previously stopped + # a workflow to look at results and they want to pick up where + # they left off + self.start, self.stop = self._check_stop_resume_cond(flow) + + self.logger.info( + msg.mjr(f"BEGINNING {self.__class__.__name__.upper()} WORKFLOW") + ) + + # Required modules that need to be set up + system = self.module("system") + preprocess = self.module("preprocess") + + system.setup() + preprocess.setup() + system.run("solver", "setup") + + def finalize(self): + """ + Tasks related to tearing down a workflow + """ + super().finalize() + + self.logger.info( + msg.mjr(f"FINISHED {self.__class__.__name__} WORKFLOW") + ) + + def main(self, flow=None, return_flow=False): + """ + Execution of a workflow is equal to stsepping through workflow.main() + + An example main() script is provided below which details the requisite + parts. This function will NOT execute as it is written in pseudocode. + + :type flow: list or tuple + :param flow: list of Class methods that will be run in the order they + are provided. If None, defaults to the evaluate_function() as + defined by Forward class + :type return_flow: bool + :param return_flow: for CLI tool, simply returns the flow function + rather than running the workflow. Used for print statements etc. + """ + self.setup(flow, return_flow) + # Iterate through the `FLOW` to step through workflow.main() + for func in flow[self.start: self.stop]: + func() + self.finalize() + + def evaluate_initial_misfit(self): + """ + Wrapper for evaluate_function that sends residuals to PATH.GRAD and + sets up the 'm_new' model for future evaluations + """ + self._evaluate_function(path=self.path.GRAD, suffix="new") + + def _evaluate_function(self, path, suffix): + """ + Performs forward simulation, and evaluates the objective function + + :type path: str + :param path: path in the scratch directory to use for I/O + :type suffix: str + :param suffix: suffix to use for I/O + """ + system = self.module("system") + + self.logger.info(msg.sub("EVALUATING OBJECTIVE FUNCTION")) + + model_tag = f"m_{suffix}" + misfit_tag = f"f_{suffix}" + + self._write_model(path=path, tag=model_tag) + + self.logger.debug(f"evaluating objective function {self.par.NTASK} times " + f"on system...") + system.run("solver", "eval_func", path=path) + + self._write_misfit(path=path, tag=misfit_tag) + + def _write_model(self, path, tag): + """ + Writes model in format expected by solver + + :type path: str + :param path: path to write the model to + :type tag: str + :param tag: name of the model to be saved, usually tagged as 'm' with + a suffix depending on where in the inversion we are. e.g., 'm_try'. + Expected that these tags are defined in OPTIMIZE module + """ + solver = self.module("solver") + + src = tag + dst = os.path.join(path, "model") + self.logger.debug(f"saving model '{src}' to:\n{dst}") + solver.save(solver.split(np.load(src)), dst) + + def _write_misfit(self, path, tag): + """ + Writes misfit in format expected by nonlinear optimization library. + Collects all misfit values within the given residuals directory and sums + them in a manner chosen by the preprocess class. + + :type path: str + :param path: path to write the misfit to + :type tag: str + :param tag: name of the model to be saved, usually tagged as 'f' with + a suffix depending on where in the inversion we are. e.g., 'f_try'. + Expected that these tags are defined in OPTIMIZE module + """ + preprocess = self.module("preprocess") + + self.logger.info("summing residuals with preprocess module") + src = glob(os.path.join(path, "residuals", "*")) + dst = tag + total_misfit = preprocess.sum_residuals(src) + + self.logger.debug(f"saving misfit {total_misfit:.3E} to tag '{dst}'") + np.save(dst, total_misfit) + + def _check_stop_resume_cond(self, flow): + """ + Chek the stop after and resume from conditions + + Allow the main() function to resume a workflow from a given flow + argument, or stop the workflow after a given argument. In the event + that a previous workflow errored, or if the User had previously + stopped a workflow to look at results and they want to pick up where + they left off. + + Late check: Exits the workflow if RESUME_FROM or STOP_AFTER arguments + do not match any of the given flow arguments. + + :type flow: tuple of functions + :param flow: an ordered list of functions that will be + :rtype: tuple of int + :return: (start, stop) indices of the `flow` input dictating where the + list should be begun and ended. If RESUME_FROM and STOP_AFTER + conditions are NOT given by the user, start and stop will be 0 and + -1 respectively, meaning we should execute the ENTIRE list + """ + fxnames = [func.__name__ for func in flow] + + # Default values which dictate that flow will execute in its entirety + start_idx = None + stop_idx = None + + # Overwrite start_idx if RESUME_FROM given, exit condition if no match + if self.par.RESUME_FROM: + try: + start_idx = fxnames.index(self.par.RESUME_FROM) + fx_name = flow[start_idx].__name__ + self.logger.info( + msg.mnr(f"WORKFLOW WILL RESUME FROM FUNC: '{fx_name}'") + ) + except ValueError: + self.logger.info( + msg.cli(f"{self.par.RESUME_FROM} does not correspond to any FLOW " + f"functions. Please check that self.par.RESUME_FROM " + f"matches one of the functions listed out in " + f"`seisflows print flow`.", header="error", + border="=") + ) + sys.exit(-1) + + # Overwrite stop_idx if STOP_AFTER provided, exit condition if no match + if self.par.STOP_AFTER: + try: + stop_idx = fxnames.index(self.par.STOP_AFTER) + fx_name = flow[stop_idx].__name__ + stop_idx += 1 # increment to stop AFTER, due to python indexing + self.logger.info( + msg.mnr(f"WORKFLOW WILL STOP AFTER FUNC: '{fx_name}'") + ) + except ValueError: + self.logger.info( + msg.cli( + f"{self.par.STOP_AFTER} does not correspond to any " + f"FLOW functions. Please check that PAR.STOP_AFTER " + f"matches one of the functions listed out in " + f"`seisflows print flow`.", header="error", + border="=") + ) + sys.exit(-1) + + # Make sure stop after doesn't come before resume_from, otherwise none + # of the flow will execute + if self.par.STOP_AFTER and self.par.RESUME_FROM: + if stop_idx <= start_idx: + self.logger.info( + msg.cli( + f"PAR.STOP_AFTER=='{self.par.STOP_AFTER}' is called " + f"before PAR.RESUME_FROM=='{self.par.RESUME_FROM}' in " + f"the FLOW functions. Please adjust accordingly " + f"and rerun.", header="error", border="=") + ) + sys.exit(-1) + + return start_idx, stop_idx + + def checkpoint(self): + """ + Writes information to disk so workflow can be resumed following a break + """ + save(path=self.PATH.OUTPUT) + + diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 91c46e34..740922d1 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -10,7 +10,8 @@ import numpy as np from glob import glob -from seisflows.config import custom_import, CFGPATHS +from seisflows.core import Base +from seisflows.config import custom_import from seisflows.tools import msg, unix from seisflows.config import save, SeisFlowsPathsParameters @@ -24,7 +25,7 @@ postprocess = sys.modules["seisflows_postprocess"] -class Inversion(custom_import("workflow", "base")): +class Inversion(Base): """ Waveform inversion base class @@ -52,6 +53,36 @@ def __init__(self): """ super().__init__() + self.required.par("SAVEMODEL", required=False, default=True, par_type=bool, + docstr="Save final model files after each iteration") + + self.required.par("SAVEGRADIENT", required=False, default=True, par_type=bool, + docstr="Save gradient files after each iteration") + + self.required.par("SAVEKERNELS", required=False, default=False, par_type=bool, + docstr="Save event kernel files after each iteration") + + self.required.par("RESUME_FROM", required=False, par_type=str, + docstr="Name of task to resume inversion from") + + self.required.par("STOP_AFTER", required=False, par_type=str, + docstr="Name of task to stop inversion after finishing") + + self.required.par("CASE", required=False, default="data", par_type=str, + docstr="Type of inversion, available: " + "['data': real data inversion, " + "'synthetic': synthetic-synthetic inversion]") + + self.required.par("SAVEAS", required=False, default="binary", par_type=str, + docstr="Format to save models, gradients, kernels. " + "Available: " + "['binary': save files in native SPECFEM .bin format, " + "'vector': save files as NumPy .npy files, " + "'both': save as both binary and vectors]") + + self.required.path("MODEL_TRUE", required=False, + default=os.path.join(PATH.WORKDIR, "specfem", "MODEL_TRUE"), + docstr="Target model to be used for PAR.CASE == 'synthetic'") @property def required(self): """ @@ -98,6 +129,13 @@ def check(self, validate=True): if validate: self.required.validate() + if PAR.CASE.upper() == "SYNTHETIC": + assert os.path.exists(PATH.MODEL_TRUE), \ + "CASE == SYNTHETIC requires PATH.MODEL_TRUE" + + if not os.path.exists(PATH.DATA): + assert "MODEL_TRUE" in PATH, f"DATA or MODEL_TRUE must exist" + for required_path in ["SCRATCH", "OUTPUT", "LOCAL"]: assert(required_path in PATH), \ f"Inversion requires path {required_path}" diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 49fabc7b..141d4440 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -5,32 +5,18 @@ This is a main Seisflows class, it controls the main workflow. """ import os -import sys -import logging +from seisflows.workflow.forward import Forward from seisflows.tools import unix, msg -from seisflows.config import custom_import, SeisFlowsPathsParameters -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] - -system = sys.modules["seisflows_system"] -solver = sys.modules["seisflows_solver"] -preprocess = sys.modules["seisflows_preprocess"] -postprocess = sys.modules["seisflows_postprocess"] - - -class Migration(custom_import("workflow", "base")): +class Migration(Forward): """ Migration base class. Performs the workflow of an inversion up to the postprocessing. In the terminology of seismic exploration, implements a 'reverse time migration'. """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ These parameters should not be set by the user. @@ -39,87 +25,62 @@ def __init__(self): """ super().__init__() - @property - def required(self): + def check(self, validate=True): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. + Checks parameters and paths. Must be implemented by sub-class """ - sf = SeisFlowsPathsParameters(super().required) + super().check(validate=validate) - return sf - - def main(self, return_flow=False): - """s - Migrates seismic data to generate sensitivity kernels - - :type return_flow: bool - :param return_flow: for CLI tool, simply returns the flow function - rather than running the workflow. Used for print statements etc. + def setup(self, flow=None, return_flow=False): """ - flow = (self.setup, - self.generate_synthetics, - self.backproject, - self.process_kernels, - self.finalize, - ) - if return_flow: - return flow - - # Allow workflow resume from and stop after given flow functions - start, stop = self.check_stop_resume_cond(flow) + Override the Forward.setup() method to include new flow functions + AND run setup for a the Postprocess module which will be used to deal + with the gradient + """ + if flow is None: + flow = (self.evaluate_initial_misfit, + self.evaluate_gradient) - # Run each argument in flow - self.logger.info(msg.mjr("STARTING MIGRATION WORKFLOW")) - for func in flow[start:stop]: - func() - self.logger.info(msg.mjr("FINISHED MIGRATION WORKFLOW")) + super().setup(flow=flow, return_flow=return_flow) - def setup(self): - """ - Sets up the SeisFlows modules for the Migration - """ - # Set up all the requisite modules from the master job - self.logger.info(msg.mnr("PERFORMING MODULE SETUP")) - preprocess.setup() + postprocess = self.module("postprocess") postprocess.setup() - system.run("solver", "setup") - - def generate_synthetics(self): - """ - Performs forward simulation, and evaluates the objective function - """ - self.logger.info(msg.sub("PREPARING VELOCITY MODEL")) - src = os.path.join(PATH.OUTPUT, "model_init") - dst = os.path.join(PATH.SCRATCH, "model") - assert os.path.exists(src) - unix.cp(src, dst) + def main(self, flow=None, return_flow=False): + """Inherits from seisflows.workflow.forward.Forward""" + self.main(flow=flow, return_flow=return_flow) - self.logger.info(msg.sub("EVALUATE OBJECTIVE FUNCTION")) - system.run("solver", "eval_func", path=PATH.SCRATCH, - write_residuals=True) + def evaluate_initial_misfit(self): + """Inherits from seisflows.workflow.forward.Forward""" + self.evaluate_initial_misfit() - def backproject(self): + def evaluate_gradient(self, path=None): """ - Backproject or create kernels by running adjoint simulations + Performs adjoint simulation to retrieve the gradient of the objective """ - self.logger.info(msg.sub("BACKPROJECT / EVALUATE GRADIENT")) - system.run("solver", "eval_grad", path=PATH.SCRATCH, - export_traces=PAR.SAVETRACES) + system = self.module("system") + + self.logger.info(msg.mnr("EVALUATING GRADIENT")) + + self.logger.debug(f"evaluating gradient {self.par.NTASK} times on system...") + system.run("solver", "eval_grad", path=path or self.path.GRAD, + export_traces=self.par.SAVETRACES) def process_kernels(self): """ Backproject to create kernels from synthetics """ + system = self.module("system") + solver = self.module("solver") + system.run("postprocess", "process_kernels", single=True, - path=os.path.join(PATH.SCRATCH, "kernels"), + path=os.path.join(self.path.SCRATCH, "kernels"), parameters=solver.parameters) try: # TODO Figure out a better method for running this try except system.run("postprocess", "process_kernels", single=True, - path=os.path.join(PATH.SCRATCH, "kernels"), + path=os.path.join(self.path.SCRATCH, "kernels"), parameters=["rhop"]) except: pass @@ -130,9 +91,9 @@ def finalize(self): """ self.logger.info(msg.mnr("FINALIZING MIGRATION WORKFLOW")) - if PAR.SAVETRACES: + if self.par.SAVETRACES: self.save_traces() - if PAR.SAVEKERNELS: + if self.par.SAVEKERNELS: self.save_kernels() else: self.save_kernels_sum() @@ -141,8 +102,8 @@ def save_kernels_sum(self): """ Same summed kernels into the output directory """ - src = os.path.join(PATH.SCRATCH, "kernels", "sum") - dst = os.path.join(PATH.OUTPUT, "kernels") + src = os.path.join(self.path.SCRATCH, "kernels", "sum") + dst = os.path.join(self.path.OUTPUT, "kernels") unix.mkdir(dst) unix.cp(src, dst) @@ -150,8 +111,8 @@ def save_kernels(self): """ Save individual kernels into the output directory """ - src = os.path.join(PATH.SCRATCH, "kernels") - dst = PATH.OUTPUT + src = os.path.join(self.path.SCRATCH, "kernels") + dst = self.path.OUTPUT unix.mkdir(dst) unix.cp(src, dst) @@ -159,7 +120,7 @@ def save_traces(self): """ Save waveform traces into the output directory """ - src = os.path.join(PATH.SCRATCH, "traces") - dst = PATH.OUTPUT + src = os.path.join(self.path.SCRATCH, "traces") + dst = self.path.OUTPUT unix.cp(src, dst) From 88cedb12f42bb143d1d71f336714c1410e1a87a9 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 29 Jun 2022 14:10:07 -0800 Subject: [PATCH 033/195] added frontera work in progress system with new submit and run calls --- seisflows/system/frontera.py | 143 +++++++++++++++++++++++++++++++++++ seisflows/system/maui.py | 25 +++--- seisflows/system/slurm.py | 5 +- 3 files changed, 159 insertions(+), 14 deletions(-) create mode 100644 seisflows/system/frontera.py diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py new file mode 100644 index 00000000..0de37b32 --- /dev/null +++ b/seisflows/system/frontera.py @@ -0,0 +1,143 @@ +#!/usr/bin/env python3 +""" +Frontera is one of the Texas Advanced Computing Center (TACC) HPCs. +https://frontera-portal.tacc.utexas.edu/ + +TODO we may need to include or create a "singularity" class or run script which +runs jobs through singularity +""" +import os +import numpy as np +from seisflows.config import ROOT_DIR +from seisflows.system.slurm import Slurm + + +class Frontera(Slurm): + """ + System interface for TACC Frontera based on SLURM workload manager + """ + def __init__(self): + """ + These parameters should not be set by the user. + Attributes are initialized as NoneTypes for clarity and docstrings. + + :type partitions: dict + :param partitions: Chinook has various partitions which each have their + own number of cores per compute node, defined here + """ + super().__init__() + + self.required.par( + "PARTITION", required=False, default="small", par_type=str, + docstr="Name of partition on main cluster" + ) + self.required.par( + "ALLOCATION", required=False, default="", par_type=str, + docstr="Name of allocation/project on the Frontera system. " + "Required if you have more than one active allocation." + ) + self.required.par( + "MPIEXEC", required=False, default="ibrun", par_type=str, + docstr="Function used to invoke parallel executables. Defaults to" + "'ibrun' based on TACC user manual.") + + # TODO find out the cores-per-node values for these partitions + # self.partitions = {"small":, "normal":, "large":, "development:" + # "flex":} + + def check(self, validate=True): + """ + Checks parameters and paths + """ + super().check(validate=validate) + + assert(self.par.PARTITION in self.partitions.keys()), \ + f"Chinook partition must be in {self.partitions.keys()}" + + assert(self.par.NODESIZE == self.partitions[self.par.PARTITION]), \ + (f"PARTITION {self.par.PARTITION} is expected to have NODESIZE=" + f"{self.partitions[self.par.PARTITION]}, not current " + f"{self.par.NODESIZE}") + + def submit(self, submit_call=None): + """ + Submits workflow as a serial job on the TACC partition 'small'. + + .. note:: + The SBATCH commands can either be short or full length. TACC's + start up guide uses short length keys so that's what we do here, but + their long names can be substituted + + :type submit_call: str + :param submit_call: SBATCH command line call to submit workflow.main() + to the system. If None, will generate one on the fly with + user-defined parameters + """ + if submit_call is None: + submit_call = " ".join([ + "sbatch", + f"{self.par.SLURMARGS or ''}", + f"-J {self.par.TITLE}", # job name + f"-O {self.output_log}", # stdout output file + f"-E {self.error_log}", # stderr error file + f"-P {self.par.PARTITION}", # queue/partition name + f"-A {self.par.ALLOCATION}", # project/allocation name + f"-N 1", # total number of nodes requested + f"-n 1", # number of mpi tasks + f"-t {self.par.WALLTIME}", # job walltime + f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", + f"--output {self.path.OUTPUT}" + ]) + super().submit(submit_call=submit_call) + + def run(self, classname, method, single=False, run_call=None, **kwargs): + """ + Runs task multiple times in embarrassingly parallel fasion on a SLURM + cluster. + + :type classname: str + :param classname: the class to run + :type method: str + :param method: the method from the given `classname` to run + :type single: bool + :param single: run a single-process, non-parallel task, such as + smoothing the gradient, which only needs to be run by once. + This will change how the job array and the number of tasks is + defined, such that the job is submitted as a single-core job to + the system. + :type run_call: str + :param run_call: SBATCH command line run call to be submitted to the + system. If None, will generate one on the fly with user-defined + parameters + """ + if run_call is None: + _nodes = np.ceil(self.par.NPROC / float(self.par.NODESIZE)) + + run_call = " ".join([ + "sbatch", + f"{self.par.SLURMARGS or ''}", + f"-J {self.par.TITLE}", # job name + f"-O {self.output_log}", # stdout output file + f"-E {self.error_log}", # stderr error file + f"-P {self.par.PARTITION}", # queue/partition name + f"-A {self.par.ALLOCATION}", # project/allocation name + f"-N {_nodes}", # total number of nodes requested + f"-n {self.par.NPROC}", # number of mpi tasks + f"-t {self.par.WALLTIME}", # job walltime + f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", + f"--output {self.path.OUTPUT}" + f"--classname {classname}", + f"--funcname {method}", + f"--environment {self.par.ENVIRONS or ''}" + ]) + + super().run(classname, method, single, run_call=run_call, **kwargs) + + def taskid(self): + """Inherits from seisflows.system.slurm.Slurm""" + return self.taskid() + + def checkpoint(self, path, classname, method, kwargs): + """Inherits from workflow.system.workstation.Workstation""" + self.checkpoint(path=path, classname=classname, method=method, + kwargs=kwargs) diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index 1fbe6481..1f64f7d1 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -18,15 +18,9 @@ """ import os -import sys -import math -import logging - +import numpy as np from seisflows.system.slurm import Slurm -from seisflows.config import custom_import, SeisFlowsPathsParameters, ROOT_DIR - -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] +from seisflows.config import ROOT_DIR class Maui(Slurm): @@ -125,6 +119,11 @@ def submit(self, submit_call=None): .. note:: We do not place SLURMARGS into the sbatch command to avoid the export=None which will not propagate the conda environment + + :type submit_call: str + :param submit_call: SBATCH command line call to submit workflow.main() + to the system. If None, will generate one on the fly with + user-defined parameters """ if submit_call is None: submit_call = " ".join([ @@ -141,7 +140,6 @@ def submit(self, submit_call=None): f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", f"--output {self.path.OUTPUT}" ]) - self.logger.debug(submit_call) super().submit(submit_call=submit_call) @@ -161,9 +159,13 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): This will change how the job array and the number of tasks is defined, such that the job is submitted as a single-core job to the system. + :type run_call: str + :param run_call: SBATCH command line run call to be submitted to the + system. If None, will generate one on the fly with user-defined + parameters """ if run_call is None: - _nodes = math.ceil(self.par.NPROC / float(self.par.NODESIZE)) + _nodes = np.ceil(self.par.NPROC / float(self.par.NODESIZE)) run_call = " ".join([ "sbatch", @@ -184,7 +186,6 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): f"--funcname {method}", f"--environment {self.par.ENVIRONS or ''}" ]) - self.logger.debug(run_call) super().run(classname, method, single, run_call=run_call, **kwargs) @@ -228,5 +229,5 @@ def checkpoint(self, path, classname, method, kwargs): self.checkpoint(path=path, classname=classname, method=method, kwargs=kwargs) - + diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 235ee280..be9da7f2 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -90,8 +90,8 @@ def submit(self, submit_call=None): f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", f"--output {self.path.OUTPUT}" ]) - self.logger.debug(submit_call) + self.logger.debug(submit_call) super().submit(submit_call=submit_call) def run(self, classname, method, single=False, run_call=None, **kwargs): @@ -140,7 +140,8 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): f"--funcname {method}", f"--environment {self.par.ENVIRONS or ''}" ]) - self.logger.debug(run_call) + + self.logger.debug(run_call) # Single-process jobs simply need to replace a few sbatch arguments. # Do it AFTER `run_call` has been defined so that subclasses submitting From ba7118f4b1b7f70eda9a0cb801435649b6b44025 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 29 Jun 2022 14:10:58 -0800 Subject: [PATCH 034/195] updated workflow classes to new code structure. inversion workflow now builds on top of migration and forward classes for less code redundancy, added more docstring explanations of workflow styles --- seisflows/postprocess/default.py | 91 ++---- seisflows/solver/specfem.py | 3 +- seisflows/workflow/forward.py | 26 +- seisflows/workflow/inversion.py | 517 +++++++++++-------------------- seisflows/workflow/migration.py | 148 +++++---- 5 files changed, 323 insertions(+), 462 deletions(-) diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py index 9debb2a5..cc20cf14 100644 --- a/seisflows/postprocess/default.py +++ b/seisflows/postprocess/default.py @@ -68,7 +68,7 @@ def finalize(self): """ super().finalize() - def write_gradient(self, path): + def scale_gradient(self, input_path): """ Combines contributions from individual sources and material parameters to get the gradient, and optionally applies user-supplied scaling @@ -78,39 +78,25 @@ def write_gradient(self, path): run through the HPC system interface; processing does not involve embarassingly parallel tasks, we use run(single=True) - :type path: str - :param path: directory from which kernels are read and to which - gradient is written + :type input_path: str + :param input_path: directory from which kernels are read and to which + gradient is written. Should probably point to PATH.GRAD + :rtype: np.array + :return: scaled gradient as a vector """ - system = self.module("system") solver = self.module("solver") - if not os.path.exists(path): - print(msg.cli("Gradient path does in postprocess.write_gradient " - "does not exist but should", - items=[path], header="error")) - sys.exit(-1) - # Postprocess file structure defined here once-and-for-all - path_grad = os.path.join(path, "gradient") - path_grad_nomask = os.path.join(path, "gradient_nomask") - path_kernels = os.path.join(path, "kernels") - path_kernels_sum = os.path.join(path_kernels, "sum") - path_model = os.path.join(path, "model") - - # Run postprocessing as job on system as it's computationally intensive - self.logger.info("processing kernels into gradient on system...") - system.run("postprocess", "_process_kernels", single=True, - path=path_kernels, logger=self.logger) - - # Access the gradient information stored in the kernel summation - gradient = solver.load(path_kernels_sum, suffix="_kernel") + path_grad_nomask = os.path.join(input_path, "gradient_nomask") + path_model = os.path.join(input_path, "model") + path_kernels_sum = os.path.join(input_path, "kernels", "sum") - # Merge the gradients into a single vector - gradient = solver.merge(gradient) + # Access the gradient information stored in as kernel files + gradient = solver.load(path_kernels_sum, suffix="_kernel") - # Convert to absolute perturbations: + # Merge to vector and convert to absolute perturbations: # log dm --> dm (see Eq.13 Tromp et al 2005) + gradient = solver.merge(gradient) gradient *= solver.merge(solver.load(path_model)) if self.path.MASK: @@ -125,14 +111,11 @@ def write_gradient(self, path): # For more info, see Modrak & Tromp 2016 GJI solver.save(solver.split(gradient), path=path_grad_nomask, suffix="_kernel") + gradient *= mask - solver.save(solver.split(gradient * mask), path=path_grad, - suffix="_kernel") - else: - solver.save(solver.split(gradient), path=path_grad, - suffix="_kernel") + return gradient - def _process_kernels(self, path, logger): + def sum_smooth_kernels(self, kernel_path): """ Sums kernels from individual sources, with optional smoothing @@ -140,37 +123,31 @@ def _process_kernels(self, path, logger): This function needs to be run on system, i.e., called by system.run(single=True) - :type path: str - :param path: directory containing sensitivity kernels in the scratch - directory - :type logger: Logger - :param logger: Class-specific logging module, log statements pushed - from this logger will be tagged by its specific module/classname + :type kernel_path: str + :param kernel_path: directory containing sensitivity kernels in the + scratch directory to be summed and smoothed. Output summed and + summed + smoothed kernels will be saved here as well. """ solver = self.module("solver") - if not os.path.exists(path): - print(msg.cli("Gradient path in postprocess.process_kernels " - "does not exist but should", - items=[path], header="error")) - sys.exit(-1) - - # If specified, smooth the kernels in the vertical and horizontal - path_sum_nosmooth = os.path.join(path, "sum_nosmooth") - path_sum = os.path.join(path, "sum") + # If specified, smooth the kernels in the vertical and horizontal and + # save both (summed, summed+smoothed) to separate output directories + path_sum_nosmooth = os.path.join(kernel_path, "sum_nosmooth") + path_sum = os.path.join(kernel_path, "sum") if (self.par.SMOOTH_H > 0) or (self.par.SMOOTH_V > 0): - logger.debug(f"saving un-smoothed and summed kernels to:\n" - f"{path_sum_nosmooth}") - solver.combine(input_path=path, output_path=path_sum_nosmooth) - - logger.info(f"smoothing gradient: H={self.par.SMOOTH_H}m, " - f"V={self.par.SMOOTH_V}m") - logger.debug(f"saving smoothed kernels to:\n{path_sum}") + self.logger.debug(f"saving un-smoothed and summed kernels to:\n" + f"{path_sum_nosmooth}") + solver.combine(input_path=kernel_path, + output_path=path_sum_nosmooth) + + self.logger.info(f"smoothing gradient: H={self.par.SMOOTH_H}m, " + f"V={self.par.SMOOTH_V}m") + self.logger.debug(f"saving smoothed kernels to:\n{path_sum}") solver.smooth(input_path=path_sum_nosmooth, output_path=path_sum, span_h=self.par.SMOOTH_H, span_v=self.par.SMOOTH_V) # Combine all the input kernels, generating the unscaled gradient else: - logger.debug(f"saving summed kernels to:\n{path_sum}") - solver.combine(input_path=path, output_path=path_sum) + self.logger.debug(f"saving summed kernels to:\n{path_sum}") + solver.combine(input_path=kernel_path, output_path=path_sum) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index aa295fd9..7108565d 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -790,8 +790,7 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., os.path.join(input_path, ""), os.path.join(output_path, ""), ".false"]), - output=output - ) + output=output) # Rename output files files = glob(os.path.join(output_path, "*")) diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 2d7c9cdd..c91fa1c2 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -17,7 +17,8 @@ class Forward(Base): """ - Workflow abstract base class + Workflow abstract base class representing an en-masse forward solver and + misfit calculator. """ def __init__(self): """ @@ -67,10 +68,6 @@ def setup(self, flow=None, return_flow=False): Setup workflow by intaking functions to be run and checking start and stop criteria """ - # The FLOW function defines a list of functions to execute IN ORDER - if flow is None: - flow = (self.evaluate_initial_misfit) - # REQUIRED: CLI command `seisflows print flow` needs this for output if return_flow: return flow @@ -86,12 +83,11 @@ def setup(self, flow=None, return_flow=False): ) # Required modules that need to be set up - system = self.module("system") - preprocess = self.module("preprocess") - - system.setup() - preprocess.setup() - system.run("solver", "setup") + self.logger.info(msg.mnr("PERFORMING MODULE SETUP")) + self.module("system").setup() + self.module("preprocess").setup() + self.logger.info("setting up solver on system...") + self.module("system").run("solver", "setup") def finalize(self): """ @@ -118,6 +114,10 @@ def main(self, flow=None, return_flow=False): :param return_flow: for CLI tool, simply returns the flow function rather than running the workflow. Used for print statements etc. """ + # The FLOW function defines a list of functions to execute IN ORDER + if flow is None: + flow = (self.evaluate_initial_misfit) + self.setup(flow, return_flow) # Iterate through the `FLOW` to step through workflow.main() for func in flow[self.start: self.stop]: @@ -126,9 +126,11 @@ def main(self, flow=None, return_flow=False): def evaluate_initial_misfit(self): """ - Wrapper for evaluate_function that sends residuals to PATH.GRAD and + Wrapper for evaluate_function that generates synthetics via forward + simulations, calculates misfits and sends residuals to PATH.GRAD and sets up the 'm_new' model for future evaluations """ + self.logger.info(msg.mjr("EVALUATING INITIAL MISFIT")) self._evaluate_function(path=self.path.GRAD, suffix="new") def _evaluate_function(self, path, suffix): diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 740922d1..4516988c 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -1,33 +1,35 @@ #!/usr/bin/env python3 """ -This is the base class seisflows.workflow.Inversion - -This is a main Seisflows class, it controls the main workflow. +A seismic inversion (a.k.a full waveform inversion, adjoint tomography, full +waveform tomography) perturbs seismic velocity models by minimizing objective +functions defining differences between observed and synthetic waveforms. + +This seismic inversion workflow performs a linear set of tasks involving: + +1) Generating synthetic seismograms using an external numerical solver +2) Calculating time-dependent misfit (adjoint sources) between data + (or other synthetics) and synthetics +3) Using adjoint sources to generate misfit kernels defining volumetric + perturbations sensitive to data-synthetic misfit +4) Smoothing and summing misfit kernels into a single gradient +5) Perturbing the starting model with the gradient to reduce misfit defined by + the objective function during a line search + +The Inversion workflow runs the above tasks in a loop (iterations) while +exporting updated models, kernels and/or gradients to disk. """ import os import sys -import logging import numpy as np -from glob import glob -from seisflows.core import Base -from seisflows.config import custom_import +from seisflows.workflow.migration import Migration from seisflows.tools import msg, unix -from seisflows.config import save, SeisFlowsPathsParameters - -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] -system = sys.modules["seisflows_system"] -solver = sys.modules["seisflows_solver"] -optimize = sys.modules["seisflows_optimize"] -preprocess = sys.modules["seisflows_preprocess"] -postprocess = sys.modules["seisflows_postprocess"] - -class Inversion(Base): +class Inversion(Migration): """ - Waveform inversion base class + Waveform inversion base class, built on top of the Migration child class, + which in-turn is built on top of the Forward child class. Peforms iterative nonlinear inversion and provides a base class on top of which specialized strategies can be implemented. @@ -43,190 +45,175 @@ class Inversion(Base): Commands for running in serial or parallel on a workstation or cluster are abstracted through the "system" interface. """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. + Init is used to instantiate global parameters defined by the input + parameter file. """ super().__init__() - self.required.par("SAVEMODEL", required=False, default=True, par_type=bool, - docstr="Save final model files after each iteration") - - self.required.par("SAVEGRADIENT", required=False, default=True, par_type=bool, - docstr="Save gradient files after each iteration") - - self.required.par("SAVEKERNELS", required=False, default=False, par_type=bool, - docstr="Save event kernel files after each iteration") - - self.required.par("RESUME_FROM", required=False, par_type=str, - docstr="Name of task to resume inversion from") - - self.required.par("STOP_AFTER", required=False, par_type=str, - docstr="Name of task to stop inversion after finishing") + self.required.par( + "BEGIN", required=False, default=1, par_type=int, + docstr="First iteration of an inversion workflow, 1 <= BEGIN <= inf" + ) + + self.required.par( + "END", required=True, par_type=int, + docstr="Last iteration of the inverison workflow," + "BEGIN <= END <= inf" + ) + self.required.par( + "RESUME_FROM", required=False, par_type=str, + docstr="Name of flow task to resume workflow from. Useful for " + "restarting failed workflows or re-trying sections of " + "workflows with new parameters. To determine available " + "options for your given workflow: > seisflows print flow" + ) + self.required.par( + "STOP_AFTER", required=False, par_type=str, + docstr="Name of flow task to stop workflow after. Useful for " + "stopping mid-workflow to look at results before " + "proceeding (e.g., to look at waveform misfits before " + "evaluating the gradient). To determine available options " + "for your given workflow: > seisflows print flow" + ) + self.required.par( + "SAVEMODEL", required=False, default=True, par_type=bool, + docstr="Save updated model files after each iteration" + ) - self.required.par("CASE", required=False, default="data", par_type=str, - docstr="Type of inversion, available: " - "['data': real data inversion, " - "'synthetic': synthetic-synthetic inversion]") - - self.required.par("SAVEAS", required=False, default="binary", par_type=str, - docstr="Format to save models, gradients, kernels. " - "Available: " - "['binary': save files in native SPECFEM .bin format, " - "'vector': save files as NumPy .npy files, " - "'both': save as both binary and vectors]") + # Define the Paths required by this module + self.required.path( + "FUNC", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "evalfunc"), + docstr="scratch path to store data related to misfit function " + "evaluations that take place during the line search. Data " + "stored here include residuals from data-synthetic misfit, " + "and a given 'try' model being used to generate synthetics." + ) + # !!! Currently not used + self.required.path( + "HESS", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "evalhess"), + docstr="scratch path to store data related to Hessian evaluations" + ) + self.required.path( + "OPTIMIZE", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "optimize"), + docstr="scratch path to store data related to nonlinear " + "optimization library. Data stored here include model, " + "gradient, and search direction vectors (numpy arrays), and" + "additional arrays related to specific optimization " + "algorithms" + ) - self.required.path("MODEL_TRUE", required=False, - default=os.path.join(PATH.WORKDIR, "specfem", "MODEL_TRUE"), - docstr="Target model to be used for PAR.CASE == 'synthetic'") - @property - def required(self): + def check(self, validate=True): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. + Checks parameters and paths """ - sf = SeisFlowsPathsParameters(super().required) - - # Define the Parameters required by this module - sf.par("BEGIN", required=False, default=1, par_type=int, - docstr="First iteration of workflow, 1 <= BEGIN <= inf") - - sf.par("END", required=True, par_type=int, - docstr="Last iteration of workflow, BEGIN <= END <= inf") - - # Define the Paths required by this module - sf.path("FUNC", required=False, - default=os.path.join(PATH.SCRATCH, "evalfunc"), - docstr="scratch path to store data related to function " - "evaluations") - - sf.path("GRAD", required=False, - default=os.path.join(PATH.SCRATCH, "evalgrad"), - docstr="scratch path to store data related to gradient " - "evaluations") + super().check(validate=validate) + assert(1 <= self.par.BEGIN <= self.par.END), \ + f"Incorrect BEGIN or END parameter. Values must be in order: " \ + f"1 <= {self.par.BEGIN} <= {self.par.END}" - sf.path("HESS", required=False, - default=os.path.join(PATH.SCRATCH, "evalhess"), - docstr="scratch path to store data related to Hessian " - "evaluations") + def setup(self, flow=None, return_flow=False): + """ + Lays groundwork for inversion by running setup() functions for the + involved sub-modules, generating True model synthetic data if necessary, + and generating the pre-requisite database files. - sf.path("OPTIMIZE", required=False, - default=os.path.join(PATH.SCRATCH, "optimize"), - docstr="scratch path to store data related to nonlinear " - "optimization") + .. note:: + This function should only be run one time, at the start of iter 1 + """ + super().setup(flow=flow, return_flow=return_flow) - return sf + self.module("optimize").setup() - def check(self, validate=True): + def finalize(self): """ - Checks parameters and paths + Saves results from current model update iteration and increment the + iteration number to set up for the next iteration. Finalization is + expected to the be LAST function in workflow.main()'s flow list. """ - super().check(validate=False) - if validate: - self.required.validate() + self.logger.info(msg.mjr(f"FINALIZING ITERATION {optimize.iter}")) - if PAR.CASE.upper() == "SYNTHETIC": - assert os.path.exists(PATH.MODEL_TRUE), \ - "CASE == SYNTHETIC requires PATH.MODEL_TRUE" + self.checkpoint() + preprocess.finalize() + + # Save files from scratch before discarding + if self.par.SAVEMODEL: + self.save_model() - if not os.path.exists(PATH.DATA): - assert "MODEL_TRUE" in PATH, f"DATA or MODEL_TRUE must exist" + if self.par.SAVEGRADIENT: + self.save_gradient() - for required_path in ["SCRATCH", "OUTPUT", "LOCAL"]: - assert(required_path in PATH), \ - f"Inversion requires path {required_path}" + if self.par.SAVEKERNELS: + self.save_kernels() - assert(1 <= PAR.BEGIN <= PAR.END), \ - f"Incorrect BEGIN or END parameter: 1 <= {PAR.BEGIN} <= {PAR.END}" + if self.par.SAVETRACES: + self.save_traces() - def main(self, return_flow=False): + if self.par.SAVERESIDUALS: + self.save_residuals() + + def main(self, flow=None, return_flow=False): """ - This function controls the main SeisFlows workflow, and is submitted - to system by the call `seisflows submit` or `seisflows resume`. It - proceeds to evaluate a list of functions in order until a User defined - stop criteria is met. + Overwrites the forward() main function to provide the ability to run + multiple iterations in a single workflow. + :type flow: list or tuple + :param flow: list of Class methods that will be run in the order they + are provided. :type return_flow: bool :param return_flow: for CLI tool, simply returns the flow function rather than running the workflow. Used for print statements etc. """ - # The workFLOW is a tuple of functions that can be called dynamic ally - flow = (self.setup, - self.initialize, - self.evaluate_gradient, - self.write_gradient, - self.compute_direction, - self.line_search, - self.finalize, - self.clean - ) - if return_flow: - return flow - - # Allow workflow resume from and stop after given flow functions - start, stop = self.check_stop_resume_cond(flow) + if flow is None: + flow = (self.evaluate_initial_misfit, + self.evaluate_gradient, + self.process_kernels, + self.write_gradient, + self.compute_direction, + self.line_search, + self.export, + self.clean + ) + + self.setup(flow, return_flow) + optimize = self.module("optimize") # Run the workflow until from the current iteration until PAR.END - optimize.iter = PAR.BEGIN + optimize.iter = self.par.BEGIN self.logger.info(msg.mjr("STARTING INVERSION WORKFLOW")) while True: - self.logger.info(msg.mnr(f"ITERATION {optimize.iter} / {PAR.END}")) + self.logger.info( + msg.mnr(f"ITERATION {optimize.iter} / {self.par.END}") + ) # Execute the functions within the flow - for func in flow[start:stop]: + for func in flow[self.start:self.stop]: func() - - # Finish. Assuming completion of all arguments in flow() self.logger.info(msg.mjr(f"FINISHED FLOW EXECUTION")) # Reset flow for subsequent iterations - start, stop = None, None - - if optimize.iter >= PAR.END: + self.start, self.stop = None, None + if optimize.iter >= self.par.END: break - optimize.iter += 1 + self.logger.info(msg.sub(f"INCREMENT ITERATION TO {optimize.iter}")) self.logger.info(msg.mjr("FINISHED INVERSION WORKFLOW")) - def setup(self): - """ - Lays groundwork for inversion by running setup() functions for the - involved sub-modules, generating True model synthetic data if necessary, - and generating the pre-requisite database files. - - .. note:: - This function should only be run one time, at the start of iter 1 - """ - # Iter check is done inside setup() so that we can include fx in FLOW - if optimize.iter == 1: - # Set up all the requisite modules from the master job - self.logger.info(msg.mnr("PERFORMING MODULE SETUP")) - preprocess.setup() - postprocess.setup() - optimize.setup() - - # Run solver.setup() in parallel - self.logger.info("setting up solver on system...") - system.run("solver", "setup") - - def initialize(self): - """ - Generates synthetics via a forward simulation, calculates misfits - for the forward simulation. Writes misfit for use in optimization. - """ - self.logger.info(msg.mjr("INITIALIZING INVERSION")) - self.evaluate_function(path=PATH.GRAD, suffix="new") + def evaluate_initial_misfit(self): + """Inherits from seisflows.workflow.forward.Forward""" + self.evaluate_initial_misfit() def compute_direction(self): """ - Computes search direction + Computes search direction using the optimization library """ + optimize = self.module("optimize") self.logger.info(msg.mnr("COMPUTING SEARCH DIRECTION")) optimize.compute_direction() @@ -239,6 +226,8 @@ def line_search(self): status == 0 : not finished status < 0 : failed """ + optimize = self.module("optimize") + # Calculate the initial step length based on optimization algorithm if optimize.line_search.step_count == 0: self.logger.info(msg.mjr(f"CONDUCTING LINE SEARCH: " @@ -252,7 +241,7 @@ def line_search(self): self.logger.info(msg.mnr(f"TRIAL STEP COUNT: " f"i{optimize.iter:0>2}" f"s{optimize.line_search.step_count:0>2}")) - self.evaluate_function(path=PATH.FUNC, suffix="try") + self._evaluate_function(path=self.path.FUNC, suffix="try") # Check the function evaluation against line search history status = optimize.update_search() @@ -277,65 +266,6 @@ def line_search(self): self.logger.info("line search failed. aborting inversion.") sys.exit(-1) - def evaluate_function(self, path, suffix): - """ - Performs forward simulation, and evaluates the objective function - - :type path: str - :param path: path in the scratch directory to use for I/O - :type suffix: str - :param suffix: suffix to use for I/O - """ - self.logger.info(msg.sub("EVALUATE OBJECTIVE FUNCTION")) - - model_tag = f"m_{suffix}" - misfit_tag = f"f_{suffix}" - - self.write_model(path=path, tag=model_tag) - - self.logger.debug(f"evaluating objective function {PAR.NTASK} times " - f"on system...") - system.run("solver", "eval_func", path=path) - - self.write_misfit(path=path, tag=misfit_tag) - - def evaluate_gradient(self, path=None): - """ - Performs adjoint simulation to retrieve the gradient of the objective - """ - self.logger.info(msg.mnr("EVALUATING GRADIENT")) - - self.logger.debug(f"evaluating gradient {PAR.NTASK} times on system...") - system.run("solver", "eval_grad", path=path or PATH.GRAD, - export_traces=PAR.SAVETRACES) - - def finalize(self): - """ - Saves results from current model update iteration and increment the - iteration number to set up for the next iteration. Finalization is - expected to the be LAST function in workflow.main()'s flow list. - """ - self.logger.info(msg.mjr(f"FINALIZING ITERATION {optimize.iter}")) - - self.checkpoint() - preprocess.finalize() - - # Save files from scratch before discarding - if PAR.SAVEMODEL: - self.save_model() - - if PAR.SAVEGRADIENT: - self.save_gradient() - - if PAR.SAVEKERNELS: - self.save_kernels() - - if PAR.SAVETRACES: - self.save_traces() - - if PAR.SAVERESIDUALS: - self.save_residuals() - def clean(self): """ Cleans directories in which function and gradient evaluations were @@ -343,131 +273,54 @@ def clean(self): """ self.logger.info(msg.mnr("CLEANING WORKDIR FOR NEXT ITERATION")) - unix.rm(PATH.GRAD) - unix.rm(PATH.FUNC) - unix.mkdir(PATH.GRAD) - unix.mkdir(PATH.FUNC) - - def write_model(self, path, tag): - """ - Writes model in format expected by solver - - :type path: str - :param path: path to write the model to - :type src: str - :param src: name of the model to be saved, usually tagged as 'm' with - a suffix depending on where in the inversion we are. e.g., 'm_try'. - Expected that these tags are defined in OPTIMIZE module - """ - src = tag - dst = os.path.join(path, "model") - self.logger.debug(f"saving model '{src}' to:\n{dst}") - solver.save(solver.split(np.load(src)), dst) - - def write_gradient(self): - """ - Writes gradient in format expected by non-linear optimization library. - Calls the postprocess module, which will smooth/precondition gradient. - """ - self.logger.info(msg.mnr("POSTPROCESSING KERNELS")) - src = os.path.join(PATH.GRAD, "gradient") - - postprocess.write_gradient(PATH.GRAD) - parts = solver.load(src, suffix="_kernel") + unix.rm(self.path.GRAD) + unix.rm(self.path.FUNC) + unix.mkdir(self.path.GRAD) + unix.mkdir(self.path.FUNC) - optimize.save("g_new", solver.merge(parts)) - - def write_misfit(self, path, tag): + def export(self): """ - Writes misfit in format expected by nonlinear optimization library. - Collects all misfit values within the given residuals directory and sums - them in a manner chosen by the preprocess class. - - :type path: str - :param path: path to write the misfit to - :type tag: str - :param tag: name of the model to be saved, usually tagged as 'f' with - a suffix depending on where in the inversion we are. e.g., 'f_try'. - Expected that these tags are defined in OPTIMIZE module + Exports various quantities to PATH.OUTPUT (to disk) from the SCRATCH + directory as SCRATCH is liable to be overwritten at any point of the + workflow. This takes place at the end of each iteration, before + the clean() function is called. """ - self.logger.info("summing residuals with preprocess module") - src = glob(os.path.join(path, "residuals", "*")) - dst = tag - total_misfit = preprocess.sum_residuals(src) + optimize = self.module("optimize") - self.logger.debug(f"saving misfit {total_misfit:.3E} to tag '{dst}'") - np.save(dst, total_misfit) + if self.par.SAVEMODEL: + src = optimize.load("m_new") + dst = os.path.join(self.path.OUTPUT, f"model_{optimize.iter:04d}") + self.logger.debug(f"exporting model 'm_new' to disk") + self._write_vector(src, dst) - def save_gradient(self): - """ - Save the gradient vector. Allows saving numpy array or standard - Fortran .bin files + if self.par.SAVEGRADIENT: + src = optimize.load("g_old") + dst = os.path.join(self.path.OUTPUT, f"grad_{optimize.iter:04d}") + self._write_vector(src, dst) - Saving as a vector saves on file count, but requires numpy and seisflows - functions to read - """ - dst = os.path.join(PATH.OUTPUT, f"gradient_{optimize.iter:04d}") - - if PAR.SAVEAS in ["binary", "both"]: - src = os.path.join(PATH.GRAD, "gradient") + if self.par.SAVEKERNELS: + src = os.path.join(self.path.GRAD, "kernels") + dst = os.path.join(self.path.OUTPUT, f"kernels_{optimize.iter:04d}") + self.logger.debug(f"saving kernels to path:\n{dst}") unix.mv(src, dst) - if PAR.SAVEAS in ["vector", "both"]: - src = "g_old" - unix.cp(src, dst + ".npy") - - self.logger.debug(f"saving gradient to path:\n{dst}") - - def save_model(self): - """ - Save the model vector. Allows saving numpy array or standard - Fortran .bin files - - Saving as a vector saves on file count, but requires numpy and seisflows - functions to read - """ - src = optimize.load("m_new") - dst = os.path.join(PATH.OUTPUT, f"model_{optimize.iter:04d}") - self.logger.debug(f"saving model '{src}' to path:\n{dst}") - - if PAR.SAVEAS in ["binary", "both"]: - solver.save(solver.split(np.load(src)), dst) - if PAR.SAVEAS in ["vector", "both"]: - np.save(file=dst, arr=np.load(src)) - - def save_kernels(self): - """ - Save the kernel vector as a Fortran binary file on disk - """ - src = os.path.join(PATH.GRAD, "kernels") - dst = os.path.join(PATH.OUTPUT, f"kernels_{optimize.iter:04d}") - - self.logger.debug(f"saving kernels to path:\n{dst}") - - unix.mv(src, dst) - - def save_traces(self): - """ - Save the waveform traces to disk. - - !!! This doesn't work? Traces are not saved to PATH.GRAD so src does - !!! not exist - """ - src = os.path.join(PATH.GRAD, "traces") - dst = os.path.join(PATH.OUTPUT, f"traces_{optimize.iter:04d}") - - self.logger.debug(f"saving traces to path:\n{dst}") + if self.par.SAVETRACES: + self.save_traces() - unix.mv(src, dst) + if self.par.SAVERESIDUALS: + src = os.path.join(self.path.GRAD, "residuals") + dst = os.path.join(self.path.OUTPUT, + f"residuals_{optimize.iter:04d}") + unix.mv(src, dst) - def save_residuals(self): + def _write_vector(self, vector, path): """ - Save the residuals to disk + Convenience function to write vectors as numpy arrays or as model files + to a given path """ - src = os.path.join(PATH.GRAD, "residuals") - dst = os.path.join(PATH.OUTPUT, f"residuals_{optimize.iter:04d}") - - self.logger.debug(f"saving residuals to path:\n{dst}") - - unix.mv(src, dst) + solver = self.module("solver") + if self.par.SAVEAS in ["binary", "both"]: + solver.save(solver.split(vector), path) + if self.par.SAVEAS in ["vector", "both"]: + np.save(file=path, arr=vector) diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 141d4440..c7445a74 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -1,13 +1,15 @@ #!/usr/bin/env python3 """ -This is the base class seisflows.workflow.migration - -This is a main Seisflows class, it controls the main workflow. +Seismic migration performs a 'time-reverse migration', or backprojection. +In the terminology of seismic imaging, we are running a forward and adjoint +simulation to derive the gradient of the objective function. This workflow +sets up the machinery to derive a scaled, smoothed gradient from an initial +model """ import os from seisflows.workflow.forward import Forward -from seisflows.tools import unix, msg +from seisflows.tools import msg class Migration(Forward): @@ -19,28 +21,71 @@ class Migration(Forward): """ def __init__(self): """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - + Init is used to instantiate global parameters defined by the input + parameter file. """ super().__init__() + self.required.par( + "CASE", required=False, default="data", par_type=str, + docstr="How to address 'data' in your workflow, available options: " + "1) 'data': Real data inversion. Observed waveforms must be " + "provided by the user in PATH.DATA/{SOURCE_NAME}. OR if " + "PAR.PREPROCESS=='pyatoa' data should be discoverable " + "via IRIS webservices based on event ID and station codes" + "2) 'synthetic': A synthetic-synthetic workflow. 'Data' " + "will be generated as synthetics using PATH.MODEL_TRUE. " + ) + self.required.par( + "SAVEGRADIENT", required=False, default=True, par_type=bool, + docstr="Save gradient files each time the gradient is evaluated" + ) + self.required.par( + "SAVEKERNELS", required=False, default=False, par_type=bool, + docstr="Save event kernel files each time they are evaluated" + ) + self.required.par( + "SAVEAS", required=False, default="binary", par_type=str, + docstr="Format to save models, gradients, kernels. Available: " + "['binary': save files in native SPECFEM .bin format, " + "'vector': save files as NumPy .npy files, " + "'both': save as both binary and vectors]" + ) + self.required.path( + "GRAD", required=False, + default=os.path.join(self.path.WORKDIR, "scratch", "evalgrad"), + docstr="scratch path to store any models or kernels related to " + "gradient evaluations. Sub-directories will be generated " + "inside PATH.GRAD to save various stages of gradient " + "manipulation" + ) + self.required.path( + "MODEL_TRUE", required=False, + default=os.path.join(self.path.WORKDIR, "specfem", "MODEL_TRUE"), + docstr="Target model to be used for PAR.CASE == 'synthetic'. The " + "TRUE model will be used to evaluate forward simulations " + "ONCE at the beginning of the workflow, to generate 'data'." + ) + def check(self, validate=True): """ Checks parameters and paths. Must be implemented by sub-class """ super().check(validate=validate) + if self.par.CASE.upper() == "SYNTHETIC": + assert os.path.exists(self.path.MODEL_TRUE), \ + "CASE == SYNTHETIC requires PATH.MODEL_TRUE" + + if not os.path.exists(self.path.DATA): + assert "MODEL_TRUE" in self.path, f"DATA or MODEL_TRUE must exist" + def setup(self, flow=None, return_flow=False): """ Override the Forward.setup() method to include new flow functions AND run setup for a the Postprocess module which will be used to deal with the gradient """ - if flow is None: - flow = (self.evaluate_initial_misfit, - self.evaluate_gradient) - super().setup(flow=flow, return_flow=return_flow) postprocess = self.module("postprocess") @@ -48,6 +93,12 @@ def setup(self, flow=None, return_flow=False): def main(self, flow=None, return_flow=False): """Inherits from seisflows.workflow.forward.Forward""" + flow = (self.evaluate_initial_misfit, + self.evaluate_gradient, + self.process_kernels, + self.write_gradient + ) + self.main(flow=flow, return_flow=return_flow) def evaluate_initial_misfit(self): @@ -56,71 +107,50 @@ def evaluate_initial_misfit(self): def evaluate_gradient(self, path=None): """ - Performs adjoint simulation to retrieve the gradient of the objective + Performs adjoint simulation to retrieve the gradient of the objective. + + .. note:: + In the terminology of seismic exploration, we are 'backprojecting' """ system = self.module("system") - - self.logger.info(msg.mnr("EVALUATING GRADIENT")) + self.logger.info(msg.mnr("EVALUATING GRADIENT")) self.logger.debug(f"evaluating gradient {self.par.NTASK} times on system...") system.run("solver", "eval_grad", path=path or self.path.GRAD, export_traces=self.par.SAVETRACES) def process_kernels(self): """ - Backproject to create kernels from synthetics + System-run wrapper for postprocess.process_kernels which is meant to + sum and smooth all individual event kernels """ system = self.module("system") - solver = self.module("solver") - - system.run("postprocess", "process_kernels", single=True, - path=os.path.join(self.path.SCRATCH, "kernels"), - parameters=solver.parameters) + self.logger.info(msg.mnr("PROCESSING KERNELS")) - try: - # TODO Figure out a better method for running this try except - system.run("postprocess", "process_kernels", single=True, - path=os.path.join(self.path.SCRATCH, "kernels"), - parameters=["rhop"]) - except: - pass + # Runs kernel processing as a single parallel process + system.run("postprocess", "sum_smooth_kernels", single=True, + input_path=self.path.GRAD) - def finalize(self): - """ - Saves results from current model update iteration + def write_gradient(self): """ - self.logger.info(msg.mnr("FINALIZING MIGRATION WORKFLOW")) + Uses the optimization and postprocess modules to scale the gradient + to the given model, write the gradient in vector form and model form, + and apply an optional mask to the gradient - if self.par.SAVETRACES: - self.save_traces() - if self.par.SAVEKERNELS: - self.save_kernels() - else: - self.save_kernels_sum() + .. note:: - def save_kernels_sum(self): """ - Same summed kernels into the output directory - """ - src = os.path.join(self.path.SCRATCH, "kernels", "sum") - dst = os.path.join(self.path.OUTPUT, "kernels") - unix.mkdir(dst) - unix.cp(src, dst) + postprocess = self.module("postprocess") + optimize = self.module("optimize") + solver = self.module("solver") - def save_kernels(self): - """ - Save individual kernels into the output directory - """ - src = os.path.join(self.path.SCRATCH, "kernels") - dst = self.path.OUTPUT - unix.mkdir(dst) - unix.cp(src, dst) + # Scale the gradient by a mask and by the model + gradient = postprocess.scale_gradient(input_path=self.path.GRAD) + # Save the new gradient as a vector in PATH.OPTIMIZE + optimize.save("g_new", gradient) + # Save the new gradient as a set of model files (i.e., proc*_kernel.bin) + solver.save(solver.split(gradient), + path=os.path.join(self.path.GRAD, "gradient"), + suffix="_kernel") - def save_traces(self): - """ - Save waveform traces into the output directory - """ - src = os.path.join(self.path.SCRATCH, "traces") - dst = self.path.OUTPUT - unix.cp(src, dst) From a2694c6e6c4758cc344fe5a6af4581fa31f252ca Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 29 Jun 2022 17:01:01 -0800 Subject: [PATCH 035/195] rearranging main directory structure to be more easily navigable. moved examples into the main directory. Moved system run scripts into the system module directory. Also ran PyCharm code refactor on directory --- environment.yml | 8 + seisflows/config.py | 2 +- seisflows/core.py | 16 +- seisflows/{scripts => examples}/__init__.py | 0 .../ex1_specfem2d_workstation_inversion.py | 0 ...pecfem2d_workstation_inversion_w_pyatoa.py | 10 +- .../{templates => examples}/parameters.yaml | 0 .../{scripts => }/examples/sfexample2d.py | 1 - seisflows/optimize/base.py | 1 - seisflows/scripts/dsh | 19 --- seisflows/seisflows.py | 159 +++--------------- seisflows/solver/specfem.py | 7 +- seisflows/solver/specfem2d.py | 8 +- seisflows/system/frontera.py | 4 +- seisflows/system/maui.py | 6 +- .../runscripts}/__init__.py | 0 seisflows/{scripts => system/runscripts}/run | 0 .../runscripts}/run_function.py | 0 .../{scripts => system/runscripts}/submit | 0 .../runscripts}/submit_workflow.py | 0 seisflows/system/slurm.py | 4 +- seisflows/system/workstation.py | 9 +- seisflows/templates/__init__.py | 0 seisflows/tests/test_seisflows.py | 2 +- seisflows/workflow/forward.py | 15 +- seisflows/workflow/inversion.py | 20 +-- seisflows/workflow/migration.py | 6 +- seisflows/workflow/test.py | 102 +++++------ seisflows/workflow/thrifty_inversion.py | 59 ++++--- 29 files changed, 158 insertions(+), 300 deletions(-) create mode 100644 environment.yml rename seisflows/{scripts => examples}/__init__.py (100%) rename seisflows/{scripts => }/examples/ex1_specfem2d_workstation_inversion.py (100%) rename seisflows/{scripts => }/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py (96%) rename seisflows/{templates => examples}/parameters.yaml (100%) rename seisflows/{scripts => }/examples/sfexample2d.py (99%) delete mode 120000 seisflows/optimize/base.py delete mode 100644 seisflows/scripts/dsh rename seisflows/{scripts/examples => system/runscripts}/__init__.py (100%) rename seisflows/{scripts => system/runscripts}/run (100%) rename seisflows/{scripts => system/runscripts}/run_function.py (100%) rename seisflows/{scripts => system/runscripts}/submit (100%) rename seisflows/{scripts => system/runscripts}/submit_workflow.py (100%) delete mode 100644 seisflows/templates/__init__.py diff --git a/environment.yml b/environment.yml new file mode 100644 index 00000000..423f2e00 --- /dev/null +++ b/environment.yml @@ -0,0 +1,8 @@ +name: seisflows +channels: + - conda-forge +dependencies: + - python=3.10 + - obspy>=1.2.2 + - pyyaml>=5.3.1 + - IPython>=7.31.1 diff --git a/seisflows/config.py b/seisflows/config.py index 9f9c5255..9aa0480f 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -48,7 +48,7 @@ # Define a package-wide default directory and file naming schema. This will # be returned as a Dict() object, defined below. All of these files and # directories will be created relative to the user-defined working directory -CFGPATHS = Dict( +DIR = Dict( PAR_FILE="parameters.yaml", # Default SeisFlows parameter file SCRATCHDIR="scratch", # SeisFlows internal working directory OUTPUTDIR="output", # Permanent disk storage for state and outputs diff --git a/seisflows/core.py b/seisflows/core.py index 53cdb92c..2625e77f 100644 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -240,19 +240,23 @@ def validate(self, paths=True, parameters=True): :raises ParameterError: if a required path or parameter is not set by the user. """ - if paths: + if parameters: sys_path = sys.modules["seisflows_parameters"] - for key, attrs in self.paths.items(): + for key, attrs in self.parameters.items(): if attrs["required"] and (key not in sys_path): - raise KeyError(f"{sys_path} has no key {key}") + raise KeyError( + f"Required parameter '{key}' not found in parameter file" + ) elif key not in sys_path: setattr(sys_path, key, attrs["default"]) - if parameters: + if paths: sys_par = sys.modules["seisflows_paths"] - for key, attrs in self.parameters.items(): + for key, attrs in self.paths.items(): if attrs["required"] and (key not in sys_par): - raise ValueError(sys_par, key) + raise KeyError( + f"Required path '{key}' not found in parameter file" + ) elif key not in sys_par: setattr(sys_par, key, attrs["default"]) diff --git a/seisflows/scripts/__init__.py b/seisflows/examples/__init__.py similarity index 100% rename from seisflows/scripts/__init__.py rename to seisflows/examples/__init__.py diff --git a/seisflows/scripts/examples/ex1_specfem2d_workstation_inversion.py b/seisflows/examples/ex1_specfem2d_workstation_inversion.py similarity index 100% rename from seisflows/scripts/examples/ex1_specfem2d_workstation_inversion.py rename to seisflows/examples/ex1_specfem2d_workstation_inversion.py diff --git a/seisflows/scripts/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py similarity index 96% rename from seisflows/scripts/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py rename to seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py index 812fcfbe..9d0ab43c 100644 --- a/seisflows/scripts/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py @@ -14,16 +14,10 @@ """ import os import sys -import glob -import shutil -import subprocess -import numpy as np from seisflows.tools import msg -from seisflows.config import Dict -from seisflows.seisflows import SeisFlows -from seisflows.tools.unix import cd, cp, rm, ln, mv, mkdir -from seisflows.scripts.examples.sfexample2d import SFExample2D +from seisflows.tools.unix import cd, rm, ln +from seisflows.examples.sfexample2d import SFExample2D class SFPyatoaEx2D(SFExample2D): diff --git a/seisflows/templates/parameters.yaml b/seisflows/examples/parameters.yaml similarity index 100% rename from seisflows/templates/parameters.yaml rename to seisflows/examples/parameters.yaml diff --git a/seisflows/scripts/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py similarity index 99% rename from seisflows/scripts/examples/sfexample2d.py rename to seisflows/examples/sfexample2d.py index e2057537..72166c0e 100644 --- a/seisflows/scripts/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -30,7 +30,6 @@ import os import sys import glob -import shutil import subprocess import numpy as np diff --git a/seisflows/optimize/base.py b/seisflows/optimize/base.py deleted file mode 120000 index 03ddb0e5..00000000 --- a/seisflows/optimize/base.py +++ /dev/null @@ -1 +0,0 @@ -gradient.py \ No newline at end of file diff --git a/seisflows/scripts/dsh b/seisflows/scripts/dsh deleted file mode 100644 index e5228915..00000000 --- a/seisflows/scripts/dsh +++ /dev/null @@ -1,19 +0,0 @@ -#!/bin/bash - -hosts=$( echo $1 | tr ',' ' ' ) -exe=$2 -path=$3 -class=$4 -func=$5 -env=$6 - - -k=0; -for host in $hosts; -do - ssh $host "export SEISFLOWS_TASK_ID=$k; $exe $path $class $func $env" & - k=$((k+1)); - sleep 0.5 -done -wait - diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index de747646..07f99103 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -136,8 +136,6 @@ def _format_action(self, action): error checking, and establish the active working environment before executing the workflow.""" ) - submit.add_argument("-f", "--force", action="store_true", - help="Turn off the default parameter precheck") submit.add_argument("-s", "--stop_after", default=None, type=str, help="Optional override of the 'STOP_AFTER' parameter") # ========================================================================= @@ -147,8 +145,6 @@ def _format_action(self, action): an active environment exists in the working directory, and must be submitted to the system again.""" ) - resume.add_argument("-f", "--force", action="store_true", - help="Turn off the default parameter precheck") resume.add_argument("-r", "--resume_from", default=None, type=str, help="Optional override of the 'RESUME_FROM' parameter") resume.add_argument("-s", "--stop_after", default=None, type=str, @@ -161,14 +157,14 @@ def _format_action(self, action): fresh workflow.""" ) restart.add_argument("-f", "--force", action="store_true", - help="Skip the clean and submit precheck statements") + help="Skip the clean warning check statement") # ========================================================================= clean = subparser.add_parser( "clean", help="Remove files relating to an active working environment", description="""Delete all SeisFlows related files in the working directory, except for the parameter file.""" ) - clean.add_argument("-f", "--force", action="store_true", + clean.add_argument("-f", "--force", action="store_true", help="Skip the warning check that precedes the clean " "function") # ========================================================================= @@ -385,7 +381,7 @@ def _public_methods(self): """ return [_ for _ in dir(self) if not _.startswith("_")] - def _register_parameters(self, force=True): + def _register_parameters(self): """ Load the paths and parameters from file into sys.modules, set the default parameters if they are missing from the file, and expand all @@ -395,12 +391,6 @@ def _register_parameters(self, force=True): This is ideally the FIRST thing that happens everytime SeisFlows is initiated. The package cannot do anything without the resulting PATH and PARAMETER variables. - - :type force: bool - :param force: if False, print out a few key parameters and require - user-input before allowing workflow to be submitted. This is - usually run before submit and resume, to prevent job submission - without user evaluation. """ # Check if the filepaths exist if not os.path.exists(self._args.parameter_file): @@ -415,10 +405,7 @@ def _register_parameters(self, force=True): parameters = loadyaml(self._args.parameter_file) except Exception as e: print(msg.cli(f"Please check that your parameter file is properly " - f"formatted in the YAML format. If you have just run " - f"'seisflows configure', you may have some required " - f"parameters that will need to be filled out before " - f"you can proceed. The error message is:", + f"formatted in the YAML format. The read error is:", items=[str(e)], header="parameter file read error", border="=")) sys.exit(-1) @@ -438,11 +425,6 @@ def _register_parameters(self, force=True): if "PAR_FILE" not in paths: paths["PAR_FILE"] = self._args.parameter_file - # For submit() and resume(), provide a dialogue to stdout requiring a - # visual pre-check of parameters before submitting workflow - # if not force and parameters["PRECHECK"]: - # self._precheck_parameters(parameters) - # Expand all paths to be absolute on the filesystem for key, val in paths.items(): try: @@ -456,30 +438,7 @@ def _register_parameters(self, force=True): self._paths = Dict(paths) self._parameters = Dict(parameters) - # def _precheck_parameters(self, parameters): - # """ - # Visually display a list of user-chosen parameters to the User before - # proceeding with the _register_parameters command. Allows the User to quickly - # determine if workflow parameters have been set correctly - # - # :type parameters: dict - # :param parameters: parameters read in from the YAML parameter file - # """ - # items = [] - # for p in parameters["PRECHECK"]: - # try: - # items.append(f"{p.upper()}: {parameters[p.upper()]}") - # except KeyError: - # items.append(f"{p.upper()}: !!! PARAMETER NOT FOUND !!!") - # print(msg.cli("Please ensure that the parameters listed below " - # "are set correctly. You can edit this list with " - # "the PRECHECK parameter.", items=items, - # header="seisflows precheck", border="=")) - # check = input("Continue? (y/[n])\n") - # if check != "y": - # sys.exit(-1) - - def _register_modules(self, check=True): + def _register_modules(self): """ First time setup procedure which loads in the user-chosen modules and registers them into sys.modules so that they are globally accessible @@ -514,9 +473,6 @@ def _register_modules(self, check=True): for name in NAMES: sys.modules[f"seisflows_{name}"] = custom_import(name)() - if check: - self._check_modules() - # Bare minimum Module requirements for SeisFlows req_modules = ["WORKFLOW", "SYSTEM"] for req in req_modules: @@ -527,7 +483,7 @@ def _register_modules(self, check=True): "choices.", header="error", border="=")) sys.exit(-1) - def _check_modules(self): + def _check_parameters(self): """ Runs the .check() function on each of the modules, which validates the given parameters in a parameter file to ensure that a workflow will not @@ -570,7 +526,7 @@ def _load_modules(self): with open(fid, "rb") as f: sys.modules[f"seisflows_{NAME}"] = pickle.load(f) - self._check_modules() + self._check_parameters() def setup(self, force=False, **kwargs): """ @@ -585,7 +541,7 @@ def setup(self, force=False, **kwargs): :type force: bool :param force: flag to force parameter file overwriting """ - PAR_FILE = os.path.join(ROOT_DIR, "templates", "parameters.yaml") + PAR_FILE = os.path.join(ROOT_DIR, "examples", "parameters.yaml") if os.path.exists(self._args.parameter_file): if force: @@ -616,7 +572,7 @@ def configure(self, absolute_paths=False, **kwargs): Defaults to False, uses relative paths. """ print(msg.cli(f"filling {self._args.parameter_file} w/ default values")) - self._register_parameters(force=True) + self._register_parameters() # Check if the User set turn off any modules (if None, dont instantiate) names = copy(NAMES) @@ -657,7 +613,7 @@ def configure(self, absolute_paths=False, **kwargs): # If requested, set the paths relative to the current dir if not absolute_paths: for key, attrs in seisflows_paths.items(): - if attrs["default"] is not None: + if attrs["default"]: seisflows_paths[key]["default"] = os.path.relpath( attrs["default"]) msg.write_par_file_paths_pars(f, seisflows_paths, indent=4) @@ -681,8 +637,9 @@ def init(self, **kwargs): unix.mkdir(self._args.workdir) unix.cd(self._args.workdir) - self._register_parameters(force=True) - self._register_modules(check=True) + self._register_parameters() + self._register_modules() + self._check_parameters() save(path=self._paths.OUTPUT) @@ -694,34 +651,20 @@ def init(self, **kwargs): print(msg.cli(f"instantiating SeisFlows working state in directory: " f"{CFGPATHS.OUTPUTDIR}")) - def submit(self, stop_after=None, force=False, **kwargs): + def submit(self, **kwargs): """ Main SeisFlows execution command. Submit the SeisFlows workflow to the chosen system, and execute seisflows.workflow.main(). Will create the working directory and any required paths and ensure that all required paths exist. - - :type stop_after: str - :param stop_after: allow the function to overwrite the 'STOP_AFTER' - parameter in the parameter file, which dictates how far the workflow - will proceed until stopping. Must match flow function names in - workflow.main() - :type force: bool - :param force: if True, turns off the parameter precheck and - simply submits the workflow """ unix.mkdir(self._args.workdir) unix.cd(self._args.workdir) - # Ensure that the 'RESUME_FROM' parameter is not set, in case of restart - self.par(parameter="resume_from", value="", skip_print=True) - if stop_after is not None: - self.par(parameter="stop_after", value=stop_after, skip_print=True) - # Read in the Parameter file and set parameters into sys.modules. - self._register_parameters(force=force) - # self._check_required_paths() - self._register_modules(check=True) + self._register_parameters() + self._register_modules() + self._check_parameters() # Set logger to print to stdout and write to a file config_logger(level=self._parameters.LOG_LEVEL, @@ -732,29 +675,6 @@ def submit(self, stop_after=None, force=False, **kwargs): system = sys.modules["seisflows_system"] system.submit() - # def _check_required_paths(self): - # """ - # If the User provides certain paths to the program, they MUST exist. - # This function simply checks these required paths and throws a sys exit - # if any of them does not exist - # """ - # # A list of paths that need to exist if provided by user - # REQ_PATHS = ["SPECFEM_BIN", "SPECFEM_DATA", "MODEL_INIT", "MODEL_TRUE", - # "DATA", "LOCAL", "MASK"] - # - # # Check that all required paths exist before submitting workflow - # paths_dont_exist = [] - # for key in REQ_PATHS: - # if key in self._paths: - # # If a required path is given (not None) and doesnt exist, exit - # if self._paths[key] and not os.path.exists(self._paths[key]): - # paths_dont_exist.append(f"{key}: {self._paths[key]}") - # if paths_dont_exist: - # print(msg.cli("The following paths do not exist but need to:", - # items=paths_dont_exist, header="path error", - # border="=")) - # sys.exit(-1) - def clean(self, force=False, **kwargs): """ Clean the SeisFlows working directory except for the parameter file. @@ -796,33 +716,12 @@ def clean(self, force=False, **kwargs): continue print(msg.cli(items=items, header="clean", border="=")) - def resume(self, stop_after=None, resume_from=None, force=False, - **kwargs): + def resume(self, **kwargs): """ Resume a previously started workflow by loading the module pickle files and submitting the workflow from where it left off. - - :type stop_after: str - :param stop_after: allow the function to overwrite the 'STOP_AFTER' - parameter in the parameter file, which dictates how far the workflow - will proceed until stopping. Must match flow function names in - workflow.main() - :type resume_from: str - :param resume_from: allow the function to overwrite the 'RESUME_FROM' - parameter in the parameter file, which dictates which function the - workflow starts from, must match the flow functions given in - workflow.main() - :type force: bool - :param force: if True, turns off the parameter precheck and - simply submits the workflow """ - if stop_after is not None: - self.par(parameter="STOP_AFTER", value=stop_after, skip_print=True) - if resume_from is not None: - self.par(parameter="RESUME_FROM", value=resume_from, - skip_print=True) - - self._register_parameters(force=force) + self._register_parameters() self._load_modules() # Set logger to print to stdout and write to a file @@ -836,13 +735,9 @@ def resume(self, stop_after=None, resume_from=None, force=False, def restart(self, force=False, **kwargs): """ Restart simply means clean the workding dir and submit a new workflow. - - :type force: bool - :param force: ignore the warning check that precedes the clean() - function, useful if you don't want any input messages popping up """ self.clean(force=force) - self.submit(force=force) + self.submit() def debug(self, **kwargs): """ @@ -851,7 +746,7 @@ def debug(self, **kwargs): interactive environment allowing exploration of the package space. Does not allow stepping through of code (not a breakpoint). """ - self._register_parameters(force=True) + self._register_parameters() self._load_modules() # Distribute modules to common names for easy access during debug mode @@ -1076,7 +971,7 @@ def examples(self, run=None, choice=None, **kwargs): :param choice: The choice of example, must match the given tag or file name that is assigned to it """ - examples_dir = os.path.join(ROOT_DIR, "scripts", "examples") + examples_dir = os.path.join(ROOT_DIR, "examples") examples_list = [] example_names = sorted(glob(os.path.join(examples_dir, "ex*.py"))) @@ -1141,7 +1036,7 @@ def check(self, choice=None, **kwargs): self._subparser.print_help() sys.exit(0) - self._register_parameters(force=True) + self._register_parameters() self._load_modules() acceptable_args[choice](*self._args.args, **kwargs) @@ -1175,7 +1070,7 @@ def reset(self, choice=None, **kwargs): self._subparser.print_help() sys.exit(0) - self._register_parameters(force=True) + self._register_parameters() self._load_modules() acceptable_args[choice](*self._args.args, **kwargs) @@ -1200,7 +1095,7 @@ def convert(self, name, path=None, **kwargs): default to saving in the output directory under the name of the model """ - self._load_modules(force=True) + self._load_modules() solver = sys.modules["seisflows_solver"] optimize = sys.modules["seisflows_optimize"] @@ -1346,7 +1241,7 @@ def _print_flow(self, **kwargs): .. rubric:: $ seisflows print flow """ - self._register_parameters(force=True) + self._register_parameters() self._load_modules() workflow = custom_import("workflow")() @@ -1379,7 +1274,7 @@ def _print_inheritance(self, name=None, func=None, **kwargs): seisflows inspect solver eval_func """ - self._register_parameters(force=True) + self._register_parameters() self._load_modules() if func is None: self._inspect_module_hierarchy(name, **kwargs) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 7108565d..08115fd6 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -11,12 +11,11 @@ import numpy as np from glob import glob -from seisflows.core import Base +from seisflows.core import Base, Dict from seisflows.plugins import solver_io from seisflows.tools import msg, unix from seisflows.tools.specfem import Container, getpar from seisflows.tools.wrappers import diff -from seisflows.core import Dict class Specfem(Base): @@ -332,9 +331,9 @@ def check(self, validate=True): self.parameters.append("rho") assert hasattr(solver_io, self.par.SOLVERIO) - assert hasattr(self.io, "read_slice"), \ + assert hasattr(self._io, "read_slice"), \ "IO method has no attribute 'read_slice'" - assert hasattr(self.io, "write_slice"), \ + assert hasattr(self._io, "write_slice"), \ "IO method has no attribute 'write_slice'" def setup(self): diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index a36afc02..b23d6640 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -33,10 +33,10 @@ def __init__(self): self.f0 = None - @property - def _io(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return self._io + # @property + # def _io(self): + # """Inherits from seisflows.solver.specfem.Specfem""" + # return self._io @property def taskid(self): diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index 0de37b32..f0a43d04 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -85,7 +85,7 @@ def submit(self, submit_call=None): f"-N 1", # total number of nodes requested f"-n 1", # number of mpi tasks f"-t {self.par.WALLTIME}", # job walltime - f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", f"--output {self.path.OUTPUT}" ]) super().submit(submit_call=submit_call) @@ -124,7 +124,7 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): f"-N {_nodes}", # total number of nodes requested f"-n {self.par.NPROC}", # number of mpi tasks f"-t {self.par.WALLTIME}", # job walltime - f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", f"--output {self.path.OUTPUT}" f"--classname {classname}", f"--funcname {method}", diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index 1f64f7d1..6dad56ef 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -137,7 +137,7 @@ def submit(self, submit_call=None): f"--ntasks=1", f"--cpus-per-task=1", f"--time={self.par.WALLTIME:d}", - f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", f"--output {self.path.OUTPUT}" ]) @@ -180,7 +180,7 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): f"--time={self.par.TASKTIME:d}", f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", - f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", f"--output {self.path.OUTPUT}", f"--classname {classname}", f"--funcname {method}", @@ -210,7 +210,7 @@ def run_ancil(self, classname, method, **kwargs): f"--time={self.par.ANCIL_TASKTIME:d}", f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", - f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", f"--output {self.path.OUTPUT}", f"--classname {classname}", f"--funcname {method}", diff --git a/seisflows/scripts/examples/__init__.py b/seisflows/system/runscripts/__init__.py similarity index 100% rename from seisflows/scripts/examples/__init__.py rename to seisflows/system/runscripts/__init__.py diff --git a/seisflows/scripts/run b/seisflows/system/runscripts/run similarity index 100% rename from seisflows/scripts/run rename to seisflows/system/runscripts/run diff --git a/seisflows/scripts/run_function.py b/seisflows/system/runscripts/run_function.py similarity index 100% rename from seisflows/scripts/run_function.py rename to seisflows/system/runscripts/run_function.py diff --git a/seisflows/scripts/submit b/seisflows/system/runscripts/submit similarity index 100% rename from seisflows/scripts/submit rename to seisflows/system/runscripts/submit diff --git a/seisflows/scripts/submit_workflow.py b/seisflows/system/runscripts/submit_workflow.py similarity index 100% rename from seisflows/scripts/submit_workflow.py rename to seisflows/system/runscripts/submit_workflow.py diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index be9da7f2..8e9a42af 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -87,7 +87,7 @@ def submit(self, submit_call=None): f"--ntasks-per-node={self.par.NODESIZE}", f"--nodes=1", f"--time={self.par.WALLTIME:d}", - f"{os.path.join(ROOT_DIR, 'scripts', 'submit')}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", f"--output {self.path.OUTPUT}" ]) @@ -134,7 +134,7 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): f"--time={self.par.TASKTIME:d}", f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", - f"{os.path.join(ROOT_DIR, 'scripts', 'run')}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", f"--output {self.path.OUTPUT}", f"--classname {classname}", f"--funcname {method}", diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index bf2e9e29..293570e5 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -50,13 +50,6 @@ def __init__(self): "NPROC", required=False, default=1, par_type=int, docstr="Number of processor to use for each simulation" ) - self.required.par( - "PRECHECK", required=False, par_type=list, default=["TITLE"], - docstr="A list of parameters that will be displayed to stdout " - "before 'submit' or 'resume' is run. Useful for " - "manually reviewing important parameters prior to " - "system submission" - ) self.required.par( "LOG_LEVEL", required=False, par_type=str, default="DEBUG", docstr="Verbosity output of SF logger. Available from least to " @@ -83,7 +76,7 @@ def __init__(self): ) self.required.path( "SYSTEM", required=False, - default=os.path.join(self.required.SCRATCH, "system"), + default=os.path.join(self.path.WORKDIR, "scratch", "system"), docstr="scratch path to hold any system related data" ) self.required.path( diff --git a/seisflows/templates/__init__.py b/seisflows/templates/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 5ff8b91f..9ea85647 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -231,7 +231,7 @@ def test_cmd_clean(tmpdir): sf = SeisFlows() sf.clean(force=True) - for fid in [path, CFGPATHS.PAR_FILE]: + for fid in [path, "parameters.yaml"]: assert(os.path.exists(fid)) diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index c91fa1c2..c383e277 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -99,6 +99,14 @@ def finalize(self): msg.mjr(f"FINISHED {self.__class__.__name__} WORKFLOW") ) + def checkpoint(self): + """ + Saves active SeisFlows working state to disk as Pickle files such that + the workflow can be resumed following a crash, pause or termination of + workflow. + """ + save(path=self.path.OUTPUT) + def main(self, flow=None, return_flow=False): """ Execution of a workflow is equal to stsepping through workflow.main() @@ -278,10 +286,3 @@ def _check_stop_resume_cond(self, flow): return start_idx, stop_idx - def checkpoint(self): - """ - Writes information to disk so workflow can be resumed following a break - """ - save(path=self.PATH.OUTPUT) - - diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 4516988c..fb4a9c24 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -58,7 +58,7 @@ def __init__(self): ) self.required.par( - "END", required=True, par_type=int, + "END", required=False, default=1, par_type=int, docstr="Last iteration of the inverison workflow," "BEGIN <= END <= inf" ) @@ -81,7 +81,6 @@ def __init__(self): "SAVEMODEL", required=False, default=True, par_type=bool, docstr="Save updated model files after each iteration" ) - # Define the Paths required by this module self.required.path( "FUNC", required=False, @@ -112,6 +111,7 @@ def check(self, validate=True): Checks parameters and paths """ super().check(validate=validate) + import pdb;pdb.set_trace() assert(1 <= self.par.BEGIN <= self.par.END), \ f"Incorrect BEGIN or END parameter. Values must be in order: " \ f"1 <= {self.par.BEGIN} <= {self.par.END}" @@ -140,22 +140,6 @@ def finalize(self): self.checkpoint() preprocess.finalize() - # Save files from scratch before discarding - if self.par.SAVEMODEL: - self.save_model() - - if self.par.SAVEGRADIENT: - self.save_gradient() - - if self.par.SAVEKERNELS: - self.save_kernels() - - if self.par.SAVETRACES: - self.save_traces() - - if self.par.SAVERESIDUALS: - self.save_residuals() - def main(self, flow=None, return_flow=False): """ Overwrites the forward() main function to provide the ability to run diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index c7445a74..06d0d12e 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -77,7 +77,7 @@ def check(self, validate=True): assert os.path.exists(self.path.MODEL_TRUE), \ "CASE == SYNTHETIC requires PATH.MODEL_TRUE" - if not os.path.exists(self.path.DATA): + if not self.path.DATA or not os.path.exists(self.path.DATA): assert "MODEL_TRUE" in self.path, f"DATA or MODEL_TRUE must exist" def setup(self, flow=None, return_flow=False): @@ -115,7 +115,9 @@ def evaluate_gradient(self, path=None): system = self.module("system") self.logger.info(msg.mnr("EVALUATING GRADIENT")) - self.logger.debug(f"evaluating gradient {self.par.NTASK} times on system...") + self.logger.debug( + f"evaluating gradient {self.par.NTASK} times on system..." + ) system.run("solver", "eval_grad", path=path or self.path.GRAD, export_traces=self.par.SAVETRACES) diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 5efeefac..9e80aba4 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -1,59 +1,39 @@ #!/usr/bin/env python3 """ -This is a SeisFlows Test class which is used to test out the underlying +This is the SeisFlows Test class which is used to test out the underlying machinery before running an actual workflow. Contains simple functions used to -make sure that all parts of the package are working as expected. +make sure that all parts of the package are working as expected. Creates +its own directory structure and acts as a standalone workflow tool """ import os import sys import time -import logging import subprocess import numpy as np - from glob import glob -from seisflows.core import SeisFlowsPathsParameters -from seisflows.config import (custom_import, ROOT_DIR, CFGPATHS) - -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] -system = sys.modules["seisflows_system"] -solver = sys.modules["seisflows_solver"] -optimize = sys.modules["seisflows_optimize"] -preprocess = sys.modules["seisflows_preprocess"] -postprocess = sys.modules["seisflows_postprocess"] +from seisflows.core import Base +from seisflows.config import ROOT_DIR, CFGPATHS, save -class Test(custom_import("workflow", "base")): +class Test(Base): """ - This is a template Base class + The Test workflow class provides a base parameter and directory structure + as well as test functions which can be run to ensure that the chosen + modules are working as expected """ - # Class-specific logger accessed using self.logger - # When this logger is called, e.g., self.logger.info("text"), the logging - # package will know exactly which module, class and function the log - # statement has been sent from, extraordinarily helpful for debugging. - logger = logging.getLogger(__name__).getChild(__qualname__) - - @property - def required(self): + def __init__(self): """ - A hard definition of paths and parameters required by this class, - alongside their necessity for the class and their string explanations. - - :rtype: seisflows.config.SeisFlowsPathsParameters - :return: Paths and parameters that define the given class - + Initiate the TEST workflow """ - sf = SeisFlowsPathsParameters(super().required) + super().__init__() - sf.path("TEST_DATA", required=False, - default=os.path.join(ROOT_DIR, "tests", "test_data", - "work"), - docstr="Example data for test system" - ) - - return sf + self.required.path( + "TEST_DATA", required=False, + default=os.path.join(ROOT_DIR, "tests", "test_data"), + docstr="Example data for test system which is shipped with the " + "SeisFlows repository" + ) def check(self, validate=True): """ @@ -64,8 +44,15 @@ def check(self, validate=True): :type validate: bool :param validate: set required paths and parameters into sys.modules """ - if validate: - self.required.validate() + self.required.validate() + + def checkpoint(self): + """ + Saves active SeisFlows working state to disk as Pickle files such that + the workflow can be resumed following a crash, pause or termination of + workflow. + """ + save(path=self.path.OUTPUT) def main(self, return_flow=False): """ @@ -82,10 +69,12 @@ def main(self, return_flow=False): for func in FLOW: func() - def test_function(self, check_value): + def _test_function_print(self, check_value): """ A simple function that can be called by system.run() """ + system = self.module("system") + print(f"Hello world, from taskid {system.taskid()}. " f"Check: {check_value}") @@ -97,6 +86,9 @@ def test_system(self): Check that these functions perform as expected by passing in a random value and checking that this value gets logged back """ + system = self.module("system") + system.setup() + # Run a very simple test function using system.run() check_value_1 = 1234.5 system.run(classname="workflow", method="test_function", @@ -118,15 +110,18 @@ def test_system(self): assert(float(line.strip().split(" ")[-1]) == check) # Check that MPI Exec works - assert("MPIEXEC" in PAR), f"MPIEXEC is not defined for this system" - stdout = subprocess.run(PAR.MPIEXEC, shell=True, check=True, + assert("MPIEXEC" in self.par), f"MPIEXEC is not defined for this system" + stdout = subprocess.run(self.par.MPIEXEC, shell=True, check=True, stdout=subprocess.PIPE) def test_preprocess(self): """ Test the exposed 'prepare_eval_grad()' preprocessing function """ - cwd = PATH.TEST_DATA + preprocess = self.module("preprocess") + preprocess.setup() + + cwd = os.path.join(self.path.TEST_DATA, "test_solver") taskid = 0 filenames = ["AA.S0001.BXY.semd"] source_name = "001" @@ -140,14 +135,16 @@ def test_solver(self): Simply test that the solver binaries can be called, which is what the solver module is ultimately responsible for """ - assert(PATH.SPECFEM_BIN is not None and - os.path.exists(PATH.SPECFEM_BIN)), ( - f"SPECFEM_BIN {PATH.SPECFEM_BIN} directory does not exist" + solver = self.module("solver") + + assert(self.path.SPECFEM_BIN is not None and + os.path.exists(self.path.SPECFEM_BIN)), ( + f"SPECFEM_BIN {self.path.SPECFEM_BIN} directory does not exist" ) try: solver.call_solver( - executable=f"{PATH.SPECFEM_BIN}/xcombine_sem", - output=os.path.join(PATH.TEST_DATA, "test_solver.log") + executable=f"{self.path.SPECFEM_BIN}/xcombine_sem", + output=os.path.join(self.path.TEST_DATA, "test_solver.log") ) # We expect this to throw a system exit because we are not running with # MPI @@ -158,10 +155,13 @@ def test_optimize(self): """ Test optimization module with a simple Rosenbrock function """ - PAR.log_level = "CRITICAL" + optimize = self.module("optimize") + self.par.log_level = "CRITICAL" m_new, m_true, objective_function, gradient = rosenbrock() - optimize.setup(m_new=m_new) + + optimize.setup() + optimize.save("m_new", m_new) def evaluate_function(): """ diff --git a/seisflows/workflow/thrifty_inversion.py b/seisflows/workflow/thrifty_inversion.py index 11f9336d..aa5e4f13 100644 --- a/seisflows/workflow/thrifty_inversion.py +++ b/seisflows/workflow/thrifty_inversion.py @@ -4,28 +4,21 @@ A thrifty inversion skips the costly intialization step (i.e., forward simulations and misfit quantification) if the final forward simulations from -the previous iteration's line search can be used in the current one. +the previous iteration's line search can be used in the current one. Otherwise +it performs the same as the Inversion workflow """ import sys import logging +from seisflows.workflow.inversion import Inversion from seisflows.tools import unix, msg -from seisflows.config import custom_import -PAR = sys.modules["seisflows_parameters"] -PATH = sys.modules["seisflows_paths"] -optimize = sys.modules["seisflows_optimize"] - - -class ThriftyInversion(custom_import("workflow", "inversion")): +class ThriftyInversion(Inversion): """ Thrifty inversion which attempts to save resources by re-using previous line search results for the current iteration. """ - # Class-specific logger accessed using self.logger - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ :type thrifty: bool @@ -38,28 +31,30 @@ def __init__(self): previous iteration """ super().__init__() + self.thrifty = False def check(self, validate=True): """ Checks parameters and paths """ - super().check(validate=False) - if validate: - self.required.validate() + super().check(validate=validate) - assert PAR.LINESEARCH == "Backtrack", \ - "Thrifty inversion requires backtracking line search" + assert self.par.LINESEARCH.upper() == "BACKTRACK", ( + "Thrifty inversion requires PAR.LINESEARCH == 'backtrack'" + ) - def initialize(self): + def evaluate_initial_misfit(self): """ If line search can be carried over, skip initialization step Or if manually starting a new run, start with normal inversion init """ - if not self.thrifty or optimize.iter == PAR.BEGIN: - super().initialize() + optimize = self.module("optimize") + + if not self.thrifty or optimize.iter == self.par.BEGIN: + super().evaluate_initial_misfit() else: - self.logger.info(msg.mjr("INITIALIZING THRIFTY INVERSION")) + self.logger.info(msg.mjr("SKIPPING INITIAL MISFIT EVALUATION")) def clean(self): """ @@ -67,31 +62,35 @@ def clean(self): We assume clean() is the final flow() argument so that we can update the thrifty status here. """ - self.update_status() + self._update_status() if self.thrifty: - self.logger.info(msg.mnr("THRIFTY CLEANING WORKDIR FOR NEXT " - "ITERATION")) - unix.rm(PATH.GRAD) - unix.mv(PATH.FUNC, PATH.GRAD) - unix.mkdir(PATH.FUNC) + self.logger.info( + msg.mnr("THRIFTY CLEANING WORKDIR FOR NEXT ITERATION") + ) + unix.rm(self.path.GRAD) + # Last line search evaluation becomes the new gradient evaluation + unix.mv(self.path.FUNC, self.path.GRAD) + unix.mkdir(self.path.FUNC) else: super().clean() - def update_status(self): + def _update_status(self): """ Determine if line search forward simulation can be carried over based - on a number of criteria + on a variety of criteria relating to location in the inversion. """ + optimize = self.module("optimize") + self.logger.info("updating thrifty inversion status") - if optimize.iter == PAR.BEGIN: + if optimize.iter == self.par.BEGIN: self.logger.info("1st iteration, defaulting to inversion workflow") thrifty = False elif optimize.restarted: self.logger.info("optimization has been restarted, defaulting to " "inversion workflow") thrifty = False - elif optimize.iter == PAR.END: + elif optimize.iter == self.par.END: self.logger.info("final iteration, defaulting to inversion workflow") thrifty = False else: From 5bfc552b8755e28e1b703d3a6c7d4d5433dda347 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 29 Jun 2022 17:33:42 -0800 Subject: [PATCH 036/195] moved logging establishment into the core.base class, rather than as a config object run at startup. bug fixing specfem2d pyatoa example --- seisflows/config.py | 57 +------------------------------ seisflows/core.py | 45 ++++++++++++++++++++++++- seisflows/seisflows.py | 14 +------- seisflows/solver/specfem.py | 6 ++-- seisflows/solver/specfem2d.py | 60 ++++++++++++++++----------------- seisflows/workflow/inversion.py | 2 +- 6 files changed, 80 insertions(+), 104 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 9aa0480f..2adc66e8 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -48,7 +48,7 @@ # Define a package-wide default directory and file naming schema. This will # be returned as a Dict() object, defined below. All of these files and # directories will be created relative to the user-defined working directory -DIR = Dict( +CFGPATHS = Dict( PAR_FILE="parameters.yaml", # Default SeisFlows parameter file SCRATCHDIR="scratch", # SeisFlows internal working directory OUTPUTDIR="output", # Permanent disk storage for state and outputs @@ -122,61 +122,6 @@ def flush(): del sys.modules[mod_name] -def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): - """ - Explicitely configure the logging module with some parameters defined - by the user in the System module. Instantiates a stream logger to write - to stdout, and a file logger which writes to `filename`. Two levels of - verbosity and three levels of log messages allow the user to determine - how much output they want to see. - - :type level: str - :param level: log level to be passed to logger, available are - 'CRITICAL', 'WARNING', 'INFO', 'DEBUG' - :type filename: str or None - :param filename: name of the log file to write log statements to. If None, - logs will be written to STDOUT ONLY, and `filemode` will not be used. - :type filemode: str - :param filemode: method for opening the log file. defaults to append 'a' - :type verbose: bool - :param verbose: if True, writes a more detailed log message stating the - type of log (warning, info, debug), and the class and method which - called the logger (e.g., seisflows.solver.specfem2d.save()). This - is much more useful for debugging but clutters up the log file. - if False, only write the time and message in the log statement. - """ - # Make sure that we don't already have handlers described, which may happen - # if this function gets run multiple times, and leads to duplicate logs - while logger.hasHandlers() and logger.handlers: - logger.removeHandler(logger.handlers[0]) - - # Two levels of verbosity on log level, triggered with PAR.VERBOSE - if verbose: - # More verbose logging statement with levelname and func name - fmt_str = ( - "%(asctime)s | %(levelname)-5s | %(name)s.%(funcName)s()\n" - "> %(message)s" - ) - else: - # Clean logging statement with only time and message - fmt_str = "%(asctime)s | %(message)s" - - # Instantiate logger during _register() as we now have user-defined pars - logger.setLevel(level) - formatter = logging.Formatter(fmt_str, datefmt="%Y-%m-%d %H:%M:%S") - - # Stream handler to print log statements to stdout - st_handler = logging.StreamHandler(sys.stdout) - st_handler.setFormatter(formatter) - logger.addHandler(st_handler) - - # File handler to print log statements to text file `filename` - if filename is not None: - file_handler = logging.FileHandler(filename, filemode) - file_handler.setFormatter(formatter) - logger.addHandler(file_handler) - - def custom_import(name=None, module=None, classname=None): """ Imports SeisFlows module and extracts class that is the camelcase version diff --git a/seisflows/core.py b/seisflows/core.py index 2625e77f..b94b67f0 100644 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -21,6 +21,7 @@ def __init__(self): then used to build the parameter file dynamically. """ self.required = SeisFlowsPathsParameters() + self._logger = None def module(self, name): """ @@ -44,9 +45,51 @@ def logger(self): the log statements, making it easier to debug functions with multiple inheritance """ - return logging.getLogger( + if self._logger is None: + self._logger = self._get_logger() + return self._logger + + def _get_logger(self): + """ + Define an instance specific logger at run time which will imprint + inheritance information onto log statements, making it easier to debug + functions that might have multiple points of inheritance. + + All loggers will write to the same main log file and also print to + stdout. PAR.VERBOSE and PAR.LOG_LEVEL both control the amount of + information that gets printed to the log file. + """ + logger = logging.getLogger( self.__class__.__name__).getChild(self.__class__.__qualname__) + # Two levels of verbosity on log level, triggered with PAR.VERBOSE + if self.par.VERBOSE: + # More verbose logging statement with levelname and func name + fmt_str = ( + "%(asctime)s | %(levelname)-5s | %(name)s.%(funcName)s()\n" + "> %(message)s" + ) + else: + # Clean logging statement with only time and message + fmt_str = "%(asctime)s | %(message)s" + + # Instantiate logger during _register() as we now have user-defined pars + logger.setLevel(self.par.LOG_LEVEL) + formatter = logging.Formatter(fmt_str, datefmt="%Y-%m-%d %H:%M:%S") + + # Stream handler to print log statements to stdout + st_handler = logging.StreamHandler(sys.stdout) + st_handler.setFormatter(formatter) + logger.addHandler(st_handler) + + # File handler to print log statements to text file `filename` + if self.path.LOGFILE is not None: + file_handler = logging.FileHandler(self.path.LOGFILE, "a") + file_handler.setFormatter(formatter) + logger.addHandler(file_handler) + + return logger + @property def par(self): """ diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 07f99103..df2ed5aa 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -27,8 +27,7 @@ from IPython import embed from seisflows.core import Dict, SeisFlowsPathsParameters -from seisflows.config import (config_logger, custom_import, save, - NAMES, ROOT_DIR, CFGPATHS) +from seisflows.config import custom_import, save, NAMES, ROOT_DIR, CFGPATHS from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) @@ -666,11 +665,6 @@ def submit(self, **kwargs): self._register_modules() self._check_parameters() - # Set logger to print to stdout and write to a file - config_logger(level=self._parameters.LOG_LEVEL, - verbose=self._parameters.VERBOSE, - filename=self._paths.LOGFILE) - # Submit workflow.main() to the system system = sys.modules["seisflows_system"] system.submit() @@ -723,12 +717,6 @@ def resume(self, **kwargs): """ self._register_parameters() self._load_modules() - - # Set logger to print to stdout and write to a file - config_logger(level=self._parameters.LOG_LEVEL, - verbose=self._parameters.VERBOSE, - filename=self._paths.LOGFILE) - system = sys.modules["seisflows_system"] system.submit() diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 08115fd6..4b92f389 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -803,7 +803,7 @@ def _import_model(self, path): :param path: path to model """ model = self.load(path=os.path.join(path, "model")) - self.save(model, self._model_databases) + self.save(model, self.model_databases) def _import_traces(self, path): """ @@ -833,7 +833,7 @@ def _export_model(self, path, parameters=None): if self.taskid == 0: unix.mkdir(path) for key in parameters: - files = glob(os.path.join(self._model_databases, f"*{key}.bin")) + files = glob(os.path.join(self.model_databases, f"*{key}.bin")) unix.cp(files, path) def _export_kernels(self, path): @@ -846,7 +846,7 @@ def _export_kernels(self, path): if self.taskid == 0: self.logger.debug(f"exporting kernels to:\n{path}") - unix.cd(self._kernel_databases) + unix.cd(self.kernel_databases) # Work around conflicting name conventions self._rename_kernels() diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index b23d6640..900b4ad6 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -33,40 +33,40 @@ def __init__(self): self.f0 = None - # @property - # def _io(self): - # """Inherits from seisflows.solver.specfem.Specfem""" - # return self._io + @property + def _io(self): + """Inherits from seisflows.solver.specfem.Specfem""" + return super()._io @property def taskid(self): """Inherits from seisflows.solver.specfem.Specfem""" - return self.taskid + return super().taskid @property def source_names(self): """Inherits from seisflows.solver.specfem.Specfem""" - return self.source_names + return super().source_names @property def source_name(self): """Inherits from seisflows.solver.specfem.Specfem""" - return self.source_name + return super().source_name @property def source_prefix(self): """Inherits from seisflows.solver.specfem.Specfem""" - return self.source_prefix + return super().source_prefix @property def cwd(self): """Inherits from seisflows.solver.specfem.Specfem""" - return self.cwd + return super().cwd @property def mesh_properties(self): """Inherits from seisflows.solver.specfem.Specfem""" - return self.mesh_properties + return super().mesh_properties def data_wildcard(self, comp="?"): """ @@ -164,19 +164,19 @@ def setup(self): def _set_model(self, model_name, model_type="gll"): """Inherits from seisflows.solver.specfem.Specfem""" - self._set_model(model_name=model_name, model_type=model_type) + super()._set_model(model_name=model_name, model_type=model_type) def generate_data(self): """Inherits from seisflows.solver.specfem.Specfem""" - self.generate_data() + super().generate_data() def eval_func(self, path, write_residuals=True): """Inherits from seisflows.solver.specfem.Specfem""" - self.eval_func(path=path, write_residuals=write_residuals) + super().eval_func(path=path, write_residuals=write_residuals) def eval_grad(self, path, export_traces=True): """Inherits from seisflows.solver.specfem.Specfem""" - self.eval_grad(path=path, export_traces=export_traces) + super().eval_grad(path=path, export_traces=export_traces) def _forward(self, output_path): """ @@ -228,29 +228,29 @@ def _adjoint(self): def _call_solver(self, executable, output="solver.log"): """Inherits from seisflows.solver.specfem.Specfem""" - self._call_solver(executable=executable, output=output) + super()._call_solver(executable=executable, output=output) def load(self, path, prefix="", suffix="", parameters=None): """Inherits from seisflows.solver.specfem.Specfem""" - return self.load(path=path, prefix=prefix, suffix=suffix, + super().load(path=path, prefix=prefix, suffix=suffix, parameters=parameters) def save(self, save_dict, path, parameters=None, prefix="", suffix=""): """Inherits from seisflows.solver.specfem.Specfem""" - self.save(save_dict=save_dict, path=path, parameters=parameters, + super().save(save_dict=save_dict, path=path, parameters=parameters, prefix=prefix, suffix=suffix) def merge(self, model, parameters=None): """Inherits from seisflows.solver.specfem.Specfem""" - return self.merge(model=model, parameters=parameters) + super().merge(model=model, parameters=parameters) def split(self, m, parameters=None): """Inherits from seisflows.solver.specfem.Specfem""" - return self.split(m=m, parameters=parameters) + super().split(m=m, parameters=parameters) def combine(self, input_path, output_path, parameters=None): """Inherits from seisflows.solver.specfem.Specfem""" - return self.combine(input_path=input_path, output_path=output_path, + super().combine(input_path=input_path, output_path=output_path, parameters=parameters) def smooth(self, input_path, output_path, parameters=None, span_h=0., @@ -313,31 +313,31 @@ def _import_model(self, path): def _import_traces(self, path): """Inherits from seisflows.solver.specfem.Specfem""" - return self._import_traces(path=path) + super()._import_traces(path=path) def _export_model(self, path, parameters=None): """Inherits from seisflows.solver.specfem.Specfem""" - return self._export_model(path=path, parameters=parameters) + super()._export_model(path=path, parameters=parameters) def _export_kernels(self, path): """Inherits from seisflows.solver.specfem.Specfem""" - return self._export_kernels(path=path) + super()._export_kernels(path=path) def _export_residuals(self, path): """Inherits from seisflows.solver.specfem.Specfem""" - return self._export_residuals(path=path) + super()._export_residuals(path=path) def _export_traces(self, path, prefix="traces/obs"): """Inherits from seisflows.solver.specfem.Specfem""" - self._export_traces(path=path, prefix=prefix) + super()._export_traces(path=path, prefix=prefix) def _rename_kernels(self): """Inherits from seisflows.solver.specfem.Specfem""" - self._rename_kernels() + super()._rename_kernels() def _initialize_solver_directories(self): """Inherits from seisflows.solver.specfem.Specfem""" - self._initialize_solver_directories() + super()._initialize_solver_directories() def _initialize_adjoint_traces(self): """ @@ -386,13 +386,13 @@ def _initialize_adjoint_traces(self): if not os.path.exists(fid_check): unix.cp(fid, fid_check) - def _check_mesh_properties(self, path=None): + def _check_mesh_properties(self, model_path=None): """Inherits from seisflows.solver.specfem.Specfem""" - self._check_mesh_properties(path=path) + super()._check_mesh_properties(model_path=model_path) def _check_source_names(self): """Inherits from seisflows.solver.specfem.Specfem""" - self._check_source_names() + super()._check_source_names() diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index fb4a9c24..1e88a3e6 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -111,7 +111,7 @@ def check(self, validate=True): Checks parameters and paths """ super().check(validate=validate) - import pdb;pdb.set_trace() + assert(1 <= self.par.BEGIN <= self.par.END), \ f"Incorrect BEGIN or END parameter. Values must be in order: " \ f"1 <= {self.par.BEGIN} <= {self.par.END}" From 6a1ac53dea6aa1f8ce2fc8f5bfaadfebff7ce3ae Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 29 Jun 2022 18:31:49 -0800 Subject: [PATCH 037/195] removed the explicit calls to parent functions that did not change anything. Although this slightly obscures where methods are being called from, it reduces code length and also makes it easier to edit parent functions. further bug fixing for specfem2d pyatoa example. working up to line search --- seisflows/core.py | 5 +- seisflows/optimize/LBFGS.py | 20 ----- seisflows/optimize/NLCG.py | 28 ------- seisflows/postprocess/default.py | 8 +- seisflows/solver/specfem.py | 13 +-- seisflows/solver/specfem2d.py | 138 ++----------------------------- seisflows/solver/specfem3d.py | 133 +---------------------------- seisflows/system/cluster.py | 4 - seisflows/system/frontera.py | 9 -- seisflows/system/maui.py | 16 ---- seisflows/system/slurm.py | 4 - seisflows/system/workstation.py | 13 ++- seisflows/workflow/forward.py | 37 +++++---- seisflows/workflow/inversion.py | 6 +- seisflows/workflow/migration.py | 4 +- 15 files changed, 51 insertions(+), 387 deletions(-) diff --git a/seisflows/core.py b/seisflows/core.py index b94b67f0..71f30e77 100644 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -59,8 +59,9 @@ def _get_logger(self): stdout. PAR.VERBOSE and PAR.LOG_LEVEL both control the amount of information that gets printed to the log file. """ - logger = logging.getLogger( - self.__class__.__name__).getChild(self.__class__.__qualname__) + # logger = logging.getLogger( + # self.__class__.__name__).getChild(self.__class__.__qualname__) + logger = logging.getLogger(self.__class__.__name__) # Two levels of verbosity on log level, triggered with PAR.VERBOSE if self.par.VERBOSE: diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 67bc3a71..5e9ed721 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -117,18 +117,6 @@ def setup(self): unix.cd(self.path.OPTIMIZE) unix.mkdir(self.LBFGS_dir) - def finalize(self): - """Inherit from optimize.gradient.Gradient""" - self.finalize() - - def load(self, name): - """Inherit from optimize.gradient.Gradient""" - return self.load(name=name) - - def save(self, name, vector): - """Inherit from optimize.gradient.Gradient""" - self.save(name=name, vector=vector) - def compute_direction(self): """ Call on the L-BFGS optimization machinery to compute a search @@ -211,14 +199,6 @@ def restart(self): s[:] = 0. y[:] = 0. - def write_stats(self): - """Inherit from optimize.gradient.Gradient""" - self.write_stats() - - def check_model(self, m, min_pr=-1, max_pr=0.5): - """Inherit from optimize.gradient.Gradient""" - self.check_model(m=m, min_pr=min_pr, max_pr=max_pr) - def _update(self): """ Updates L-BFGS algorithm history diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 05957b1f..891c12bf 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -64,26 +64,6 @@ def check(self, validate=True): assert(self.par.LINESEARCH.upper() == "BRACKET"), \ f"NLCG requires a bracketing line search algorithm" - def setup(self): - """Inherit from optimize.gradient.Gradient""" - self.setup() - - def finalize(self): - """Inherit from optimize.gradient.Gradient""" - self.finalize() - - def load(self, name): - """Inherit from optimize.gradient.Gradient""" - return self.load(name=name) - - def save(self, name, vector): - """Inherit from optimize.gradient.Gradient""" - self.save(name=name, vector=vector) - - def _precondition(self, q): - """Inherit from optimize.gradient.Gradient""" - return self._precondition(q=q) - def compute_direction(self): """ Compute search direction using the Nonlinear Conjugate Gradient method @@ -164,14 +144,6 @@ def restart(self): super().restart() self.NLCG_iter = 1 - def write_stats(self): - """Inherit from optimize.gradient.Gradient""" - self.write_stats() - - def check_model(self, m, min_pr=-1, max_pr=0.5): - """Inherit from optimize.gradient.Gradient""" - self.check_model(m=m, min_pr=min_pr, max_pr=max_pr) - def _fletcher_reeves(self, g_new, g_old): """ One method for calculating beta in the NLCG Algorithm from diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py index cc20cf14..4cfc2e6a 100644 --- a/seisflows/postprocess/default.py +++ b/seisflows/postprocess/default.py @@ -115,7 +115,7 @@ def scale_gradient(self, input_path): return gradient - def sum_smooth_kernels(self, kernel_path): + def sum_smooth_kernels(self, path_grad): """ Sums kernels from individual sources, with optional smoothing @@ -123,8 +123,8 @@ def sum_smooth_kernels(self, kernel_path): This function needs to be run on system, i.e., called by system.run(single=True) - :type kernel_path: str - :param kernel_path: directory containing sensitivity kernels in the + :type path_grad: str + :param path_grad: directory containing sensitivity kernels in the scratch directory to be summed and smoothed. Output summed and summed + smoothed kernels will be saved here as well. """ @@ -132,6 +132,8 @@ def sum_smooth_kernels(self, kernel_path): # If specified, smooth the kernels in the vertical and horizontal and # save both (summed, summed+smoothed) to separate output directories + kernel_path = os.path.join(path_grad, "kernels") + path_sum_nosmooth = os.path.join(kernel_path, "sum_nosmooth") path_sum = os.path.join(kernel_path, "sum") diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 4b92f389..f0448ad0 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -607,7 +607,7 @@ def load(self, path, prefix="", suffix="", parameters=None): load_dict = Container() for iproc in range(self.mesh_properties.nproc): for key in parameters: - load_dict[key] += self.io.read_slice( + load_dict[key] += self._io.read_slice( path=path, parameters=f"{prefix}{key}{suffix}", iproc=iproc ) @@ -637,17 +637,18 @@ def save(self, save_dict, path, parameters=None, prefix="", suffix=""): missing_keys = diff(parameters, save_dict.keys()) for iproc in range(self.mesh_properties.nproc): for key in missing_keys: - save_dict[key] += self.io.read_slice( - path=self.path.MODEL_INIT, parameters=f"{prefix}{key}{suffix}", + save_dict[key] += self._io.read_slice( + path=self.path.MODEL_INIT, + parameters=f"{prefix}{key}{suffix}", iproc=iproc ) # Write slices to disk for iproc in range(self.mesh_properties.nproc): for key in parameters: - self.io.write_slice(data=save_dict[key][iproc], path=path, - parameters=f"{prefix}{key}{suffix}", - iproc=iproc) + self._io.write_slice(data=save_dict[key][iproc], path=path, + parameters=f"{prefix}{key}{suffix}", + iproc=iproc) def merge(self, model, parameters=None): """ diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 900b4ad6..7cb7b29d 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -33,41 +33,6 @@ def __init__(self): self.f0 = None - @property - def _io(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return super()._io - - @property - def taskid(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return super().taskid - - @property - def source_names(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return super().source_names - - @property - def source_name(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return super().source_name - - @property - def source_prefix(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return super().source_prefix - - @property - def cwd(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return super().cwd - - @property - def mesh_properties(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return super().mesh_properties - def data_wildcard(self, comp="?"): """ Returns a wildcard identifier for synthetic data based on SPECFEM2D @@ -106,22 +71,18 @@ def data_filenames(self): filenames = [] if self.par.FORMAT.upper() == "SU": for comp in self.par.COMPONENTS: - filenames += [self.data_wildcard.format(comp=comp.lower())] - # filenames += [f"U{comp.lower()}_file_single.su"] + filenames += [self.data_wildcard(comp=comp.lower())] elif self.par.FORMAT.upper() == "ASCII": for comp in self.par.COMPONENTS: - filenames += glob( - self.data_wildcard.format(comp=comp.upper()) - ) - # filenames += glob(f"*.?X{comp.upper()}.sem?") + filenames += glob(self.data_wildcard(comp=comp.upper())) else: - filenames = glob(self.data_wildcard) + filenames = glob(self.data_wildcard()) if not filenames: print(msg.cli("The property solver.data_filenames, used to search " "for traces in 'scratch/solver/*/traces' is empty " "and should not be. Please check solver parameters: ", - items=[f"data_wildcard: {self.data_wildcard}"], + items=[f"data_wildcard: {self.data_wildcard()}"], header="data filenames error", border="=") ) sys.exit(-1) @@ -142,17 +103,12 @@ def kernel_databases(self): """ return os.path.join(self.cwd, "OUTPUT_FILES") - def check(self, validate=True): - """ - Checks parameters and paths - """ - super().check(validate=validate) - def setup(self): """ Additional SPECFEM2D setup steps """ super().setup() + self.f0 = getpar(key="f0", file=os.path.join(self.cwd, "DATA/SOURCE"))[1] @@ -162,22 +118,6 @@ def setup(self): else: setpar(key="absorbtop", val=".true.", file="DATA/Par_file") - def _set_model(self, model_name, model_type="gll"): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._set_model(model_name=model_name, model_type=model_type) - - def generate_data(self): - """Inherits from seisflows.solver.specfem.Specfem""" - super().generate_data() - - def eval_func(self, path, write_residuals=True): - """Inherits from seisflows.solver.specfem.Specfem""" - super().eval_func(path=path, write_residuals=write_residuals) - - def eval_grad(self, path, export_traces=True): - """Inherits from seisflows.solver.specfem.Specfem""" - super().eval_grad(path=path, export_traces=export_traces) - def _forward(self, output_path): """ Calls SPECFEM2D forward solver, exports solver outputs to traces dir @@ -202,7 +142,7 @@ def _forward(self, output_path): unix.rename(old=f"single_{tag}.su", new="single.su", names=glob(os.path.join("OUTPUT_FILES", "*.su"))) - unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), + unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), dst=output_path) def _adjoint(self): @@ -226,33 +166,6 @@ def _adjoint(self): self._call_solver(executable="bin/xspecfem2D", output="adj_solver.log") - def _call_solver(self, executable, output="solver.log"): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._call_solver(executable=executable, output=output) - - def load(self, path, prefix="", suffix="", parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - super().load(path=path, prefix=prefix, suffix=suffix, - parameters=parameters) - - def save(self, save_dict, path, parameters=None, prefix="", suffix=""): - """Inherits from seisflows.solver.specfem.Specfem""" - super().save(save_dict=save_dict, path=path, parameters=parameters, - prefix=prefix, suffix=suffix) - - def merge(self, model, parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - super().merge(model=model, parameters=parameters) - - def split(self, m, parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - super().split(m=m, parameters=parameters) - - def combine(self, input_path, output_path, parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - super().combine(input_path=input_path, output_path=output_path, - parameters=parameters) - def smooth(self, input_path, output_path, parameters=None, span_h=0., span_v=0., output="smooth.log"): """ @@ -311,34 +224,6 @@ def _import_model(self, path): dst=os.path.join(self.cwd, "DATA") ) - def _import_traces(self, path): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._import_traces(path=path) - - def _export_model(self, path, parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._export_model(path=path, parameters=parameters) - - def _export_kernels(self, path): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._export_kernels(path=path) - - def _export_residuals(self, path): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._export_residuals(path=path) - - def _export_traces(self, path, prefix="traces/obs"): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._export_traces(path=path, prefix=prefix) - - def _rename_kernels(self): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._rename_kernels() - - def _initialize_solver_directories(self): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._initialize_solver_directories() - def _initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM. @@ -385,14 +270,3 @@ def _initialize_adjoint_traces(self): fid_check = ".".join([net, sta, cha_check, ext]) if not os.path.exists(fid_check): unix.cp(fid, fid_check) - - def _check_mesh_properties(self, model_path=None): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._check_mesh_properties(model_path=model_path) - - def _check_source_names(self): - """Inherits from seisflows.solver.specfem.Specfem""" - super()._check_source_names() - - - diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index d286a301..0be10ffc 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -30,41 +30,6 @@ def __init__(self): docstr="Prefix of SOURCE files in path SPECFEM_DATA. Available " "['CMTSOLUTION', FORCESOLUTION']") - @property - def _io(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return self._io - - @property - def taskid(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.taskid - - @property - def source_names(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.source_names - - @property - def source_name(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.source_name - - @property - def source_prefix(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.source_prefix - - @property - def cwd(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.cwd - - @property - def mesh_properties(self): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.mesh_properties - def data_wildcard(self, comp="?"): """ Returns a wildcard identifier for synthetic data @@ -112,24 +77,6 @@ def kernel_databases(self): """ return self.model_databases - def check(self, validate=True): - """ - Checks parameters and paths - """ - super().check(validate=validate) - - def setup(self): - """Inherits from seisflows.solver.specfem.Specfem""" - self.setup() - - def _set_model(self, model_name, model_type="gll"): - """Inherits from seisflows.solver.specfem.Specfem""" - self._set_model(model_name=model_name, model_type=model_type) - - def generate_data(self): - """Inherits from seisflows.solver.specfem.Specfem""" - self.generate_data() - def eval_func(self, path, write_residuals=True): """ Performs forward simulations and evaluates the misfit function using @@ -148,10 +95,6 @@ def eval_func(self, path, write_residuals=True): # Work around SPECFEM3D conflicting name conventions of SU data self._rename_data() - def eval_grad(self, path, export_traces=False): - """Inherits from seisflows.solver.specfem.Specfem""" - self.eval_grad(path=path, export_traces=export_traces) - def _forward(self, output_path): """ Calls SPECFEM3D forward solver, exports solver outputs to traces dir @@ -175,7 +118,7 @@ def _forward(self, output_path): self._call_solver(executable="bin/xmeshfem3D", output="fwd_solver.log") # Find and move output traces, by default to synthetic traces dir - unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard)), + unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), dst=output_path) def _adjoint(self): @@ -195,72 +138,6 @@ def _adjoint(self): self._call_solver(executable="bin/xspecfem3D", output="adj_solver.log") - def _call_solver(self, executable, output="solver.log"): - """Inherits from seisflows.solver.specfem.Specfem""" - self._call_solver(executable=executable, output=output) - - def load(self, path, prefix="", suffix="", parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.load(path=path, prefix=prefix, suffix=suffix, - parameters=parameters) - - def save(self, save_dict, path, parameters=None, prefix="", suffix=""): - """Inherits from seisflows.solver.specfem.Specfem""" - self.save(save_dict=save_dict, path=path, parameters=parameters, - prefix=prefix, suffix=suffix) - - def merge(self, model, parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.merge(model=model, parameters=parameters) - - def split(self, m, parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.split(m=m, parameters=parameters) - - def combine(self, input_path, output_path, parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.combine(input_path=input_path, output_path=output_path, - parameters=parameters) - - def smooth(self, input_path, output_path, parameters=None, span_h=0., - span_v=0., output="smooth.log"): - """Inherits from seisflows.solver.specfem.Specfem""" - return self.smooth(input_path=input_path, output_path=output_path, - parameters=parameters, span_h=span_h, - span_v=span_v, output=output) - - def _import_model(self, path): - """Inherits from seisflows.solver.specfem.Specfem""" - return self._import_model(path=path) - - def _import_traces(self, path): - """Inherits from seisflows.solver.specfem.Specfem""" - return self._import_traces(path=path) - - def _export_model(self, path, parameters=None): - """Inherits from seisflows.solver.specfem.Specfem""" - return self._export_model(path=path, parameters=parameters) - - def _export_kernels(self, path): - """Inherits from seisflows.solver.specfem.Specfem""" - return self._export_kernels(path=path) - - def _export_residuals(self, path): - """Inherits from seisflows.solver.specfem.Specfem""" - return self._export_residuals(path=path) - - def _export_traces(self, path, prefix="traces/obs"): - """Inherits from seisflows.solver.specfem.Specfem""" - self._export_traces(path=path, prefix=prefix) - - def _rename_kernels(self): - """Inherits from seisflows.solver.specfem.Specfem""" - self._rename_kernels() - - def _initialize_solver_directories(self): - """Inherits from seisflows.solver.specfem.Specfem""" - self._initialize_solver_directories() - def _initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM @@ -289,14 +166,6 @@ def _initialize_adjoint_traces(self): src = f"{iproc:d}_d{self.par.COMPONENTS[0]}_SU.adj" unix.cp(src, dst) - def _check_mesh_properties(self, path=None): - """Inherits from seisflows.solver.specfem.Specfem""" - self._check_mesh_properties(path=path) - - def _check_source_names(self): - """Inherits from seisflows.solver.specfem.Specfem""" - self._check_source_names() - def _rename_data(self): """ Works around conflicting data filename conventions diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index 07f2fadb..ef9d87d0 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -51,10 +51,6 @@ def check(self, validate=True): """ super().check(validate=validate) - def setup(self): - """Inherits from workflow.system.workstation.Workstation""" - self.setup() - def submit(self, submit_call=None): """ Main insertion point of SeisFlows onto the compute system. diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index f0a43d04..40e5d903 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -132,12 +132,3 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): ]) super().run(classname, method, single, run_call=run_call, **kwargs) - - def taskid(self): - """Inherits from seisflows.system.slurm.Slurm""" - return self.taskid() - - def checkpoint(self, path, classname, method, kwargs): - """Inherits from workflow.system.workstation.Workstation""" - self.checkpoint(path=path, classname=classname, method=method, - kwargs=kwargs) diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index 6dad56ef..1f7ed3df 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -102,10 +102,6 @@ def check(self, validate=True): "running SeisFlows3 on Maui, we must remove one env. variable. " "Please add 'SLURM_MEM_PER_CPU' to self.par.ENVIRONS.") - def setup(self): - """Inherits from workflow.system.workstation.Workstation""" - self.setup() - def submit(self, submit_call=None): """ Submits master job workflow to maui_ancil cluster as a single-core @@ -219,15 +215,3 @@ def run_ancil(self, classname, method, **kwargs): self.logger.debug(ancil_run_call) super().run(classname, method, single=False, run_call=ancil_run_call, **kwargs) - - def taskid(self): - """Inherits from seisflows.system.slurm.Slurm""" - return self.taskid() - - def checkpoint(self, path, classname, method, kwargs): - """Inherits from workflow.system.workstation.Workstation""" - self.checkpoint(path=path, classname=classname, method=method, - kwargs=kwargs) - - - diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 8e9a42af..2b3b7946 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -64,10 +64,6 @@ def check(self, validate=True): """ super().check(validate=validate) - def setup(self): - """Inherits from workflow.system.workstation.Workstation""" - self.setup() - def submit(self, submit_call=None): """ Submits workflow as a single process master job on a SLURM system diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 293570e5..4028e3fe 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -4,7 +4,6 @@ Provides utilities for submitting jobs in serial on a single machine """ import os -import sys import pickle from contextlib import redirect_stdout @@ -133,10 +132,6 @@ def setup(self): self.logger.debug(f"copying par/log file to: {dst}") unix.cp(src=src, dst=dst) - def finalize(self): - """Inherits from seisflows.core.Base""" - super().finalize() - def submit(self, submit_call=None): """ Submits the main workflow job as a serial job submitted directly to @@ -200,10 +195,12 @@ def run(self, classname, method, single=False, **kwargs): if taskid == 0: self.logger.info(f"running task {classname}.{method} " f"{self.par.NTASK} times") + function(**kwargs) + # Redirect output to a log file to mimic cluster runs - with open(log_file, "w") as f: - with redirect_stdout(f): - function(**kwargs) + # with open(log_file, "w") as f: + # with redirect_stdout(f): + # function(**kwargs) def taskid(self): """ diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index c383e277..800c4ea4 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -157,33 +157,33 @@ def _evaluate_function(self, path, suffix): model_tag = f"m_{suffix}" misfit_tag = f"f_{suffix}" - self._write_model(path=path, tag=model_tag) + self._write_model(path=path, model_tag=model_tag) - self.logger.debug(f"evaluating objective function {self.par.NTASK} times " - f"on system...") + self.logger.debug(f"evaluating objective function {self.par.NTASK} " + f"times on system...") system.run("solver", "eval_func", path=path) - self._write_misfit(path=path, tag=misfit_tag) + self._write_misfit(path=path, misfit_tag=misfit_tag) - def _write_model(self, path, tag): + def _write_model(self, path, model_tag): """ Writes model in format expected by solver :type path: str :param path: path to write the model to - :type tag: str - :param tag: name of the model to be saved, usually tagged as 'm' with + :type model_tag: str + :param model_tag: name of the model to be saved, usually tagged as 'm' with a suffix depending on where in the inversion we are. e.g., 'm_try'. Expected that these tags are defined in OPTIMIZE module """ solver = self.module("solver") + optimize = self.module("optimize") - src = tag dst = os.path.join(path, "model") - self.logger.debug(f"saving model '{src}' to:\n{dst}") - solver.save(solver.split(np.load(src)), dst) + self.logger.debug(f"saving model '{model_tag}' to:\n{dst}") + solver.save(solver.split(optimize.load(model_tag)), dst) - def _write_misfit(self, path, tag): + def _write_misfit(self, path, misfit_tag): """ Writes misfit in format expected by nonlinear optimization library. Collects all misfit values within the given residuals directory and sums @@ -191,20 +191,21 @@ def _write_misfit(self, path, tag): :type path: str :param path: path to write the misfit to - :type tag: str - :param tag: name of the model to be saved, usually tagged as 'f' with - a suffix depending on where in the inversion we are. e.g., 'f_try'. - Expected that these tags are defined in OPTIMIZE module + :type misfit_tag: str + :param misfit_tag: name of the model to be saved, usually tagged as + 'f' with a suffix depending on where in the inversion we are. + e.g., 'f_try'. Expected that these tags are defined in OPTIMIZE + module """ preprocess = self.module("preprocess") + optimize = self.module("optimize") self.logger.info("summing residuals with preprocess module") src = glob(os.path.join(path, "residuals", "*")) - dst = tag total_misfit = preprocess.sum_residuals(src) - self.logger.debug(f"saving misfit {total_misfit:.3E} to tag '{dst}'") - np.save(dst, total_misfit) + self.logger.debug(f"saving misfit {total_misfit:.3E} to '{misfit_tag}'") + optimize.save(misfit_tag, total_misfit) def _check_stop_resume_cond(self, flow): """ diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 1e88a3e6..898e5a16 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -191,7 +191,7 @@ def main(self, flow=None, return_flow=False): def evaluate_initial_misfit(self): """Inherits from seisflows.workflow.forward.Forward""" - self.evaluate_initial_misfit() + super().evaluate_initial_misfit() def compute_direction(self): """ @@ -288,8 +288,8 @@ def export(self): self.logger.debug(f"saving kernels to path:\n{dst}") unix.mv(src, dst) - if self.par.SAVETRACES: - self.save_traces() + # if self.par.SAVETRACES: + # do some stuff if self.par.SAVERESIDUALS: src = os.path.join(self.path.GRAD, "residuals") diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 06d0d12e..b24f803c 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -103,7 +103,7 @@ def main(self, flow=None, return_flow=False): def evaluate_initial_misfit(self): """Inherits from seisflows.workflow.forward.Forward""" - self.evaluate_initial_misfit() + super().evaluate_initial_misfit() def evaluate_gradient(self, path=None): """ @@ -131,7 +131,7 @@ def process_kernels(self): # Runs kernel processing as a single parallel process system.run("postprocess", "sum_smooth_kernels", single=True, - input_path=self.path.GRAD) + path_grad=self.path.GRAD) def write_gradient(self): """ From 6f0576b87ddfc2562b2f41ef939253d84f87dfe3 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Thu, 30 Jun 2022 13:29:04 -0800 Subject: [PATCH 038/195] specfem2d example now working --- seisflows/config.py | 7 +------ seisflows/core.py | 11 +++++++---- seisflows/seisflows.py | 11 +++++++++-- 3 files changed, 17 insertions(+), 12 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 2adc66e8..6811a1a8 100644 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -18,11 +18,9 @@ import types import pickle import copyreg -import logging import traceback from importlib import import_module -from seisflows import logger from seisflows.core import Dict, Null from seisflows.tools import msg, unix from seisflows.tools.wrappers import module_exists @@ -36,7 +34,6 @@ important, and any changes to these will more-than-likely break the underlying mechanics of the package. Do not touch unless you know what you're doing! """ - # List of module names required by SeisFlows for imports. Order-sensitive # In sys.modules these will be prepended by 'seisflows_', e.g., seisflows_system NAMES = ["system", "preprocess", "solver", @@ -50,11 +47,9 @@ # directories will be created relative to the user-defined working directory CFGPATHS = Dict( PAR_FILE="parameters.yaml", # Default SeisFlows parameter file - SCRATCHDIR="scratch", # SeisFlows internal working directory - OUTPUTDIR="output", # Permanent disk storage for state and outputs LOGFILE="sfoutput.txt", # Log files for all system log ERRLOGFILE="sferror.txt", # StdErr dump site for crash messages - LOGDIR="logs", # Dump site for previously created log files + LOGDIR="logs", # Dump site for previously created log files ) """ !!! ^^^ WARNING ^^^ !!! diff --git a/seisflows/core.py b/seisflows/core.py index 71f30e77..93ca61b3 100644 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -1,7 +1,8 @@ #!/usr/bin/env python3 """ Core class definitions for SeisFlows. Defines some unique class objects that -are used heavily during a Seisflows workflow. +define how SeisFlows works internally, or are used heavily during a Seisflows +workflow. """ import sys import logging @@ -160,7 +161,7 @@ def __str__(self): def __repr__(self): """Pretty print when calling an instance of this object""" - return(self.__str__()) + return self.__str__() def __getattr__(self, key): """Attribute-like access of the internal dictionary attributes""" @@ -200,10 +201,12 @@ def __delattr__(self, key): class SeisFlowsPathsParameters: """ A class used to simplify defining required or optional paths and parameters - by enforcing a specific structure to their entry into the environment. + that will be globally accesible through sys.modules. This class enforces a + specific path/parameter structure, and entry point into the environment. .. note:: - if a path or parameter is optional it requires a default value. + if a path or parameter is optional it requires a default value, which is + set at the header of this class """ default_par = "REQUIRED PARAMETER" default_path = "REQUIRED PATH" diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index df2ed5aa..f9883efb 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -647,8 +647,8 @@ def init(self, **kwargs): for NAME in NAMES: sys.modules[f"seisflows_{NAME}"].required.validate() - print(msg.cli(f"instantiating SeisFlows working state in directory: " - f"{CFGPATHS.OUTPUTDIR}")) + print(msg.cli(f"instantiating SeisFlows working state in: " + f"{self._paths.OUTPUT}")) def submit(self, **kwargs): """ @@ -660,6 +660,13 @@ def submit(self, **kwargs): unix.mkdir(self._args.workdir) unix.cd(self._args.workdir) + # If parameter `RESUME_FROM` is set, unset it because submit and restart + # should start from a fresh workflow + try: + self.par(parameter="RESUME_FROM", value="", skip_print=True) + except SystemExit as e: + pass + # Read in the Parameter file and set parameters into sys.modules. self._register_parameters() self._register_modules() From 5076b529778d494ac4519d58ef1beab2208fc4f0 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Thu, 30 Jun 2022 13:47:59 -0800 Subject: [PATCH 039/195] updated test parameter files and fixed all tests with new code structure --- seisflows/tests/test_config.py | 10 +- .../test_data/scripts/make_parameter_files.sh | 5 +- .../tests/test_data/test_conf_parameters.yaml | 169 +++++++++--------- .../test_data/test_filled_parameters.yaml | 153 ++++++++-------- .../test_data/test_setup_parameters.yaml | 6 +- seisflows/tests/test_modules.py | 31 ++-- seisflows/tests/test_preprocess.py | 139 -------------- seisflows/tests/test_seisflows.py | 43 +---- seisflows/tests/test_system.py | 103 ----------- 9 files changed, 189 insertions(+), 470 deletions(-) delete mode 100644 seisflows/tests/test_preprocess.py delete mode 100644 seisflows/tests/test_system.py diff --git a/seisflows/tests/test_config.py b/seisflows/tests/test_config.py index 9fe53aae..51f7f2b0 100644 --- a/seisflows/tests/test_config.py +++ b/seisflows/tests/test_config.py @@ -8,6 +8,7 @@ import pytest from unittest.mock import patch from seisflows import config +from seisflows.core import SeisFlowsPathsParameters from seisflows.seisflows import SeisFlows @@ -37,8 +38,9 @@ def sfinit(tmpdir, copy_par_file): os.chdir(tmpdir) with patch.object(sys, "argv", ["seisflows"]): sf = SeisFlows() - sf._register_parameters(force=True) - sf._register_modules(check=True) + sf._register_parameters() + sf._register_modules() + sf._check_parameters() return sf @@ -100,7 +102,7 @@ def test_seisflows_paths_parameters(sfinit): Recreates the required() function at the top of each class. """ sfinit - sfpp = config.SeisFlowsPathsParameters() + sfpp = SeisFlowsPathsParameters() # All of these parameters are defined in the test parameter file sfpp.par("SOLVER", required=True, par_type=str, @@ -114,7 +116,7 @@ def test_seisflows_paths_parameters(sfinit): # These parameters are not defined and are expected to throw parameter error sfpp.path("UNDEFINED", required=True, docstr="This path is not in the test parameter file") - with pytest.raises(ValueError): + with pytest.raises(KeyError): sfpp.validate() diff --git a/seisflows/tests/test_data/scripts/make_parameter_files.sh b/seisflows/tests/test_data/scripts/make_parameter_files.sh index 28fdf931..d712e063 100644 --- a/seisflows/tests/test_data/scripts/make_parameter_files.sh +++ b/seisflows/tests/test_data/scripts/make_parameter_files.sh @@ -6,14 +6,11 @@ rm *yaml seisflows setup cp parameters.yaml test_setup_parameters.yaml -seisflows configure -r +seisflows configure cp parameters.yaml test_conf_parameters.yaml seisflows par -p materials elastic seisflows par -p density constant -seisflows par -p nt 1000 -seisflows par -p dt .01 -seisflows par -p f0 .084 seisflows par -p format ascii seisflows par -p begin 1 seisflows par -p end 1 diff --git a/seisflows/tests/test_data/test_conf_parameters.yaml b/seisflows/tests/test_data/test_conf_parameters.yaml index 0b08e2d0..36540142 100644 --- a/seisflows/tests/test_data/test_conf_parameters.yaml +++ b/seisflows/tests/test_data/test_conf_parameters.yaml @@ -27,9 +27,9 @@ WORKFLOW: inversion SOLVER: specfem2d SYSTEM: workstation -OPTIMIZE: LBFGS -PREPROCESS: base -POSTPROCESS: base +OPTIMIZE: gradient +PREPROCESS: default +POSTPROCESS: default # ============================================================================= # SYSTEM @@ -37,17 +37,6 @@ POSTPROCESS: base # TITLE (str): # The name used to submit jobs to the system, defaults to the name of the # working directory -# PRECHECK (list): -# A list of parameters that will be displayed to stdout before 'submit' or -# 'resume' is run. Useful for manually reviewing important parameters prior -# to system submission -# LOG_LEVEL (str): -# Verbosity output of SF logger. Available from least to most verbosity: -# 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG' -# VERBOSE (bool): -# Level of verbosity provided to the output log. If True, log statements -# will declare what module/class/function they are being called from. -# Useful for debugging but also very noisy. # MPIEXEC (str): # Function used to invoke executables on the system. For example 'srun' on # SLURM systems, or './' on a workstation. If left blank, will guess based @@ -57,15 +46,20 @@ POSTPROCESS: base # sources in workflow # NPROC (int): # Number of processor to use for each simulation +# LOG_LEVEL (str): +# Verbosity output of SF logger. Available from least to most verbosity: +# 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG' +# VERBOSE (bool): +# Level of verbosity provided to the output log. If True, log statements +# will declare what module/class/function they are being called from. +# Useful for debugging but also very noisy. # ============================================================================= TITLE: test_data -PRECHECK: - - TITLE -LOG_LEVEL: DEBUG -VERBOSE: False MPIEXEC: NTASK: 1 NPROC: 1 +LOG_LEVEL: DEBUG +VERBOSE: False # ============================================================================= # PREPROCESS @@ -125,36 +119,27 @@ MUTE: [] # DENSITY (str): # How to treat density during inversion. Available: ['CONSTANT': Do not # update density, 'VARIABLE': Update density] -# ATTENUATION (str): +# ATTENUATION (bool): # If True, turn on attenuation during forward simulations, otherwise set # attenuation off. Attenuation is always off for adjoint simulations. +# FORMAT (float): +# Format of synthetic waveforms used during workflow, available options: +# ['ASCII', 'SU'] # COMPONENTS (str): # Components used to generate data, formatted as a single string, e.g. ZNE # or NZ or E -# SOLVERIO (int): -# The format external solver files. Available: ['fortran_binary', 'adios'] -# NT (float): -# Number of time steps set in the SPECFEM Par_file -# DT (float): -# Time step or delta set in the SPECFEM Par_file -# F0 (float): -# Dominant source frequency -# FORMAT (float): -# Format of synthetic waveforms used during workflow, available options: -# ['ascii', 'su'] +# SOLVERIO (str): +# The format external solver files. Available: ['fortran_binary'] # SOURCE_PREFIX (str): # Prefix of SOURCE files in path SPECFEM_DATA. By default, 'SOURCE' for # SPECFEM2D # ============================================================================= -MATERIALS: !!! REQUIRED PARAMETER !!! -DENSITY: !!! REQUIRED PARAMETER !!! -ATTENUATION: !!! REQUIRED PARAMETER !!! +MATERIALS: ELASTIC +DENSITY: CONSTANT +ATTENUATION: False +FORMAT: ASCII COMPONENTS: ZNE SOLVERIO: fortran_binary -NT: !!! REQUIRED PARAMETER !!! -DT: !!! REQUIRED PARAMETER !!! -F0: !!! REQUIRED PARAMETER !!! -FORMAT: !!! REQUIRED PARAMETER !!! SOURCE_PREFIX: SOURCE # ============================================================================= @@ -190,62 +175,64 @@ TASKTIME_SMOOTH: 1 # parameters # STEPLENMAX (float): # Max allowable step length, as a fraction of current model parameters -# LBFGSMEM (int): -# Max number of previous gradients to retain in local memory -# LBFGSMAX (int): -# LBFGS periodic restart interval, between 1 and 'inf' -# LBFGSTHRESH (float): -# LBFGS angle restart threshold # ============================================================================= -LINESEARCH: Backtrack +LINESEARCH: Bracket PRECOND: STEPCOUNTMAX: 10 STEPLENINIT: 0.05 STEPLENMAX: 0.5 -LBFGSMEM: 3 -LBFGSMAX: inf -LBFGSTHRESH: 0.0 # ============================================================================= # WORKFLOW # //////// +# SAVETRACES (bool): +# Save waveform traces to disk after they have been generated by the +# external solver +# SAVERESIDUALS (bool): +# Save data-synthetic residuals each time they are caluclated # CASE (str): -# Type of inversion, available: ['data': real data inversion, 'synthetic': -# synthetic-synthetic inversion] -# RESUME_FROM (str): -# Name of task to resume inversion from -# STOP_AFTER (str): -# Name of task to stop inversion after finishing -# SAVEMODEL (bool): -# Save final model files after each iteration +# How to address 'data' in your workflow, available options: 1) 'data': +# Real data inversion. Observed waveforms must be provided by the user in +# PATH.DATA/{SOURCE_NAME}. OR if PAR.PREPROCESS=='pyatoa' data should be +# discoverable via IRIS webservices based on event ID and station codes2) +# 'synthetic': A synthetic-synthetic workflow. 'Data' will be generated as +# synthetics using PATH.MODEL_TRUE. # SAVEGRADIENT (bool): -# Save gradient files after each iteration +# Save gradient files each time the gradient is evaluated # SAVEKERNELS (bool): -# Save event kernel files after each iteration -# SAVETRACES (bool): -# Save waveform traces after each iteration -# SAVERESIDUALS (bool): -# Save waveform residuals after each iteration +# Save event kernel files each time they are evaluated # SAVEAS (str): # Format to save models, gradients, kernels. Available: ['binary': save # files in native SPECFEM .bin format, 'vector': save files as NumPy .npy # files, 'both': save as both binary and vectors] # BEGIN (int): -# First iteration of workflow, 1 <= BEGIN <= inf +# First iteration of an inversion workflow, 1 <= BEGIN <= inf # END (int): -# Last iteration of workflow, BEGIN <= END <= inf +# Last iteration of the inverison workflow,BEGIN <= END <= inf +# RESUME_FROM (str): +# Name of flow task to resume workflow from. Useful for restarting failed +# workflows or re-trying sections of workflows with new parameters. To +# determine available options for your given workflow: > seisflows print +# flow +# STOP_AFTER (str): +# Name of flow task to stop workflow after. Useful for stopping mid- +# workflow to look at results before proceeding (e.g., to look at waveform +# misfits before evaluating the gradient). To determine available options +# for your given workflow: > seisflows print flow +# SAVEMODEL (bool): +# Save updated model files after each iteration # ============================================================================= -CASE: !!! REQUIRED PARAMETER !!! -RESUME_FROM: -STOP_AFTER: -SAVEMODEL: True -SAVEGRADIENT: True -SAVEKERNELS: False SAVETRACES: False SAVERESIDUALS: False +CASE: data +SAVEGRADIENT: True +SAVEKERNELS: False SAVEAS: binary BEGIN: 1 -END: !!! REQUIRED PARAMETER !!! +END: 1 +RESUME_FROM: +STOP_AFTER: +SAVEMODEL: True # ============================================================================= # PATHS @@ -256,33 +243,42 @@ END: !!! REQUIRED PARAMETER !!! # directory to save workflow outputs to disk # SYSTEM: # scratch path to hold any system related data -# LOCAL: -# path to local data to be used during workflow # LOGFILE: # the main output log file where all processes will track their status # PREPROCESS: # scratch path to store any preprocessing outputs # SOLVER: # scratch path to hold solver working directories +# DATA: +# path to observed waveform data available to workflow # SPECFEM_BIN: # path to the SPECFEM binary executables # SPECFEM_DATA: # path to the SPECFEM DATA/ directory containing the 'Par_file', 'STATIONS' # file and 'CMTSOLUTION' files -# DATA: -# path to data available to workflow # MASK: # Directory to mask files for gradient masking # OPTIMIZE: -# scratch path to store data related to nonlinear optimization +# scratch path to store data related to nonlinear optimization library. +# Data stored here include model, gradient, and search direction vectors +# (numpy arrays), andadditional arrays related to specific optimization +# algorithms # MODEL_INIT: -# location of the initial model to be used for workflow +# Path location of the initial model to be used to generate the the first +# evaluation of synthetic seismograms. +# GRAD: +# scratch path to store any models or kernels related to gradient +# evaluations. Sub-directories will be generated inside PATH.GRAD to save +# various stages of gradient manipulation # MODEL_TRUE: -# Target model to be used for PAR.CASE == 'synthetic' +# Target model to be used for PAR.CASE == 'synthetic'. The TRUE model will +# be used to evaluate forward simulations ONCE at the beginning of the +# workflow, to generate 'data'. # FUNC: -# scratch path to store data related to function evaluations -# GRAD: -# scratch path to store data related to gradient evaluations +# scratch path to store data related to misfit function evaluations that +# take place during the line search. Data stored here include residuals +# from data-synthetic misfit, and a given 'try' model being used to +# generate synthetics. # HESS: # scratch path to store data related to Hessian evaluations # ============================================================================= @@ -290,17 +286,16 @@ PATHS: SCRATCH: scratch OUTPUT: output SYSTEM: scratch/system - LOCAL: - LOGFILE: output_sf.txt + LOGFILE: sfoutput.txt PREPROCESS: scratch/preprocess SOLVER: scratch/solver - SPECFEM_BIN: !!! REQUIRED PATH !!! - SPECFEM_DATA: !!! REQUIRED PATH !!! DATA: + SPECFEM_BIN: specfem/bin + SPECFEM_DATA: specfem/DATA MASK: OPTIMIZE: scratch/optimize - MODEL_INIT: !!! REQUIRED PATH !!! - MODEL_TRUE: - FUNC: scratch/evalfunc + MODEL_INIT: specfem/MODEL_INIT GRAD: scratch/evalgrad + MODEL_TRUE: specfem/MODEL_TRUE + FUNC: scratch/evalfunc HESS: scratch/evalhess diff --git a/seisflows/tests/test_data/test_filled_parameters.yaml b/seisflows/tests/test_data/test_filled_parameters.yaml index a33448c0..a25f1ebe 100644 --- a/seisflows/tests/test_data/test_filled_parameters.yaml +++ b/seisflows/tests/test_data/test_filled_parameters.yaml @@ -27,9 +27,9 @@ WORKFLOW: inversion SOLVER: specfem2d SYSTEM: workstation -OPTIMIZE: LBFGS -PREPROCESS: base -POSTPROCESS: base +OPTIMIZE: gradient +PREPROCESS: default +POSTPROCESS: default # ============================================================================= # SYSTEM @@ -37,17 +37,6 @@ POSTPROCESS: base # TITLE (str): # The name used to submit jobs to the system, defaults to the name of the # working directory -# PRECHECK (list): -# A list of parameters that will be displayed to stdout before 'submit' or -# 'resume' is run. Useful for manually reviewing important parameters prior -# to system submission -# LOG_LEVEL (str): -# Verbosity output of SF logger. Available from least to most verbosity: -# 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG' -# VERBOSE (bool): -# Level of verbosity provided to the output log. If True, log statements -# will declare what module/class/function they are being called from. -# Useful for debugging but also very noisy. # MPIEXEC (str): # Function used to invoke executables on the system. For example 'srun' on # SLURM systems, or './' on a workstation. If left blank, will guess based @@ -57,15 +46,20 @@ POSTPROCESS: base # sources in workflow # NPROC (int): # Number of processor to use for each simulation +# LOG_LEVEL (str): +# Verbosity output of SF logger. Available from least to most verbosity: +# 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG' +# VERBOSE (bool): +# Level of verbosity provided to the output log. If True, log statements +# will declare what module/class/function they are being called from. +# Useful for debugging but also very noisy. # ============================================================================= TITLE: test_data -PRECHECK: - - TITLE -LOG_LEVEL: DEBUG -VERBOSE: False MPIEXEC: NTASK: 1 NPROC: 1 +LOG_LEVEL: DEBUG +VERBOSE: False # ============================================================================= # PREPROCESS @@ -125,23 +119,17 @@ MUTE: [] # DENSITY (str): # How to treat density during inversion. Available: ['CONSTANT': Do not # update density, 'VARIABLE': Update density] -# ATTENUATION (str): +# ATTENUATION (bool): # If True, turn on attenuation during forward simulations, otherwise set # attenuation off. Attenuation is always off for adjoint simulations. +# FORMAT (float): +# Format of synthetic waveforms used during workflow, available options: +# ['ASCII', 'SU'] # COMPONENTS (str): # Components used to generate data, formatted as a single string, e.g. ZNE # or NZ or E -# SOLVERIO (int): -# The format external solver files. Available: ['fortran_binary', 'adios'] -# NT (float): -# Number of time steps set in the SPECFEM Par_file -# DT (float): -# Time step or delta set in the SPECFEM Par_file -# F0 (float): -# Dominant source frequency -# FORMAT (float): -# Format of synthetic waveforms used during workflow, available options: -# ['ascii', 'su'] +# SOLVERIO (str): +# The format external solver files. Available: ['fortran_binary'] # SOURCE_PREFIX (str): # Prefix of SOURCE files in path SPECFEM_DATA. By default, 'SOURCE' for # SPECFEM2D @@ -149,12 +137,9 @@ MUTE: [] MATERIALS: elastic DENSITY: constant ATTENUATION: False +FORMAT: ascii COMPONENTS: ZNE SOLVERIO: fortran_binary -NT: 1000 -DT: .01 -F0: .084 -FORMAT: ascii SOURCE_PREFIX: SOURCE # ============================================================================= @@ -190,62 +175,64 @@ TASKTIME_SMOOTH: 1 # parameters # STEPLENMAX (float): # Max allowable step length, as a fraction of current model parameters -# LBFGSMEM (int): -# Max number of previous gradients to retain in local memory -# LBFGSMAX (int): -# LBFGS periodic restart interval, between 1 and 'inf' -# LBFGSTHRESH (float): -# LBFGS angle restart threshold # ============================================================================= -LINESEARCH: Backtrack +LINESEARCH: Bracket PRECOND: STEPCOUNTMAX: 10 STEPLENINIT: 0.05 STEPLENMAX: 0.5 -LBFGSMEM: 3 -LBFGSMAX: inf -LBFGSTHRESH: 0.0 # ============================================================================= # WORKFLOW # //////// +# SAVETRACES (bool): +# Save waveform traces to disk after they have been generated by the +# external solver +# SAVERESIDUALS (bool): +# Save data-synthetic residuals each time they are caluclated # CASE (str): -# Type of inversion, available: ['data': real data inversion, 'synthetic': -# synthetic-synthetic inversion] -# RESUME_FROM (str): -# Name of task to resume inversion from -# STOP_AFTER (str): -# Name of task to stop inversion after finishing -# SAVEMODEL (bool): -# Save final model files after each iteration +# How to address 'data' in your workflow, available options: 1) 'data': +# Real data inversion. Observed waveforms must be provided by the user in +# PATH.DATA/{SOURCE_NAME}. OR if PAR.PREPROCESS=='pyatoa' data should be +# discoverable via IRIS webservices based on event ID and station codes2) +# 'synthetic': A synthetic-synthetic workflow. 'Data' will be generated as +# synthetics using PATH.MODEL_TRUE. # SAVEGRADIENT (bool): -# Save gradient files after each iteration +# Save gradient files each time the gradient is evaluated # SAVEKERNELS (bool): -# Save event kernel files after each iteration -# SAVETRACES (bool): -# Save waveform traces after each iteration -# SAVERESIDUALS (bool): -# Save waveform residuals after each iteration +# Save event kernel files each time they are evaluated # SAVEAS (str): # Format to save models, gradients, kernels. Available: ['binary': save # files in native SPECFEM .bin format, 'vector': save files as NumPy .npy # files, 'both': save as both binary and vectors] # BEGIN (int): -# First iteration of workflow, 1 <= BEGIN <= inf +# First iteration of an inversion workflow, 1 <= BEGIN <= inf # END (int): -# Last iteration of workflow, BEGIN <= END <= inf +# Last iteration of the inverison workflow,BEGIN <= END <= inf +# RESUME_FROM (str): +# Name of flow task to resume workflow from. Useful for restarting failed +# workflows or re-trying sections of workflows with new parameters. To +# determine available options for your given workflow: > seisflows print +# flow +# STOP_AFTER (str): +# Name of flow task to stop workflow after. Useful for stopping mid- +# workflow to look at results before proceeding (e.g., to look at waveform +# misfits before evaluating the gradient). To determine available options +# for your given workflow: > seisflows print flow +# SAVEMODEL (bool): +# Save updated model files after each iteration # ============================================================================= +SAVETRACES: False +SAVERESIDUALS: False CASE: data -RESUME_FROM: -STOP_AFTER: -SAVEMODEL: True SAVEGRADIENT: True SAVEKERNELS: False -SAVETRACES: False -SAVERESIDUALS: False SAVEAS: binary BEGIN: 1 END: 1 +RESUME_FROM: +STOP_AFTER: +SAVEMODEL: True # ============================================================================= # PATHS @@ -256,33 +243,42 @@ END: 1 # directory to save workflow outputs to disk # SYSTEM: # scratch path to hold any system related data -# LOCAL: -# path to local data to be used during workflow # LOGFILE: # the main output log file where all processes will track their status # PREPROCESS: # scratch path to store any preprocessing outputs # SOLVER: # scratch path to hold solver working directories +# DATA: +# path to observed waveform data available to workflow # SPECFEM_BIN: # path to the SPECFEM binary executables # SPECFEM_DATA: # path to the SPECFEM DATA/ directory containing the 'Par_file', 'STATIONS' # file and 'CMTSOLUTION' files -# DATA: -# path to data available to workflow # MASK: # Directory to mask files for gradient masking # OPTIMIZE: -# scratch path to store data related to nonlinear optimization +# scratch path to store data related to nonlinear optimization library. +# Data stored here include model, gradient, and search direction vectors +# (numpy arrays), andadditional arrays related to specific optimization +# algorithms # MODEL_INIT: -# location of the initial model to be used for workflow +# Path location of the initial model to be used to generate the the first +# evaluation of synthetic seismograms. +# GRAD: +# scratch path to store any models or kernels related to gradient +# evaluations. Sub-directories will be generated inside PATH.GRAD to save +# various stages of gradient manipulation # MODEL_TRUE: -# Target model to be used for PAR.CASE == 'synthetic' +# Target model to be used for PAR.CASE == 'synthetic'. The TRUE model will +# be used to evaluate forward simulations ONCE at the beginning of the +# workflow, to generate 'data'. # FUNC: -# scratch path to store data related to function evaluations -# GRAD: -# scratch path to store data related to gradient evaluations +# scratch path to store data related to misfit function evaluations that +# take place during the line search. Data stored here include residuals +# from data-synthetic misfit, and a given 'try' model being used to +# generate synthetics. # HESS: # scratch path to store data related to Hessian evaluations # ============================================================================= @@ -290,17 +286,16 @@ PATHS: SCRATCH: scratch OUTPUT: output SYSTEM: scratch/system - LOCAL: - LOGFILE: output_sf.txt + LOGFILE: sfoutput.txt PREPROCESS: scratch/preprocess SOLVER: scratch/solver + DATA: SPECFEM_BIN: ./bin SPECFEM_DATA: ./DATA - DATA: MASK: OPTIMIZE: scratch/optimize MODEL_INIT: ./MODEL_INIT + GRAD: scratch/evalgrad MODEL_TRUE: ./MODEL_TRUE FUNC: scratch/evalfunc - GRAD: scratch/evalgrad HESS: scratch/evalhess diff --git a/seisflows/tests/test_data/test_setup_parameters.yaml b/seisflows/tests/test_data/test_setup_parameters.yaml index 303931d1..f32a3cb2 100644 --- a/seisflows/tests/test_data/test_setup_parameters.yaml +++ b/seisflows/tests/test_data/test_setup_parameters.yaml @@ -27,6 +27,6 @@ WORKFLOW: inversion SOLVER: specfem2d SYSTEM: workstation -OPTIMIZE: LBFGS -PREPROCESS: base -POSTPROCESS: base +OPTIMIZE: gradient +PREPROCESS: default +POSTPROCESS: default diff --git a/seisflows/tests/test_modules.py b/seisflows/tests/test_modules.py index 16a0dc2b..f0118505 100644 --- a/seisflows/tests/test_modules.py +++ b/seisflows/tests/test_modules.py @@ -21,34 +21,30 @@ required_structure = { "system": { "parameters": [], - "functions": ["required", "check", "setup", "submit", "run", - "taskid", "checkpoint"] + "functions": ["submit", "run", "taskid", "checkpoint"] }, "preprocess": { "parameters": [], - "functions": ["required", "check", "setup", "prepare_eval_grad", - "sum_residuals", "finalize"] + "functions": ["prepare_eval_grad", "sum_residuals", "finalize"] }, "solver": { "parameters": ["MATERIALS", "DENSITY", "ATTENUATION"], - "functions": ["required", "check", "setup", "generate_data", - "generate_mesh", "eval_func", "eval_grad", "load", - "save", "merge", "split", "source_names", "parameters"] + "functions": ["generate_data", "eval_func", + "eval_grad", "load", "save", "merge", "split", + "source_names", "parameters"] }, "postprocess": { "parameters": [], - "functions": ["check", "setup", "write_gradient"] + "functions": ["sum_smooth_kernels", "scale_gradient"] }, "optimize": { "parameters": [], - "functions": ["setup", "check", "compute_direction", - "initialize_search", "update_search", - "finalize_search", "retry_status", - "restart"] + "functions": ["compute_direction", "initialize_search", "update_search", + "finalize_search", "retry_status", "restart"] }, "workflow": { - "parameters": ["CASE"], - "functions": ["check", "main", "checkpoint"] + "parameters": [], + "functions": ["main", "checkpoint"] }, } @@ -83,8 +79,9 @@ def sfinit(tmpdir, copy_par_file): os.chdir(tmpdir) with patch.object(sys, "argv", ["seisflows"]): sf = SeisFlows() - sf._register_parameters(force=True) - sf._register_modules(check=True) + sf._register_parameters() + sf._register_modules() + sf._check_parameters() return sf @@ -175,4 +172,4 @@ def test_setup(sfinit): if os.path.isdir(path_): shutil.rmtree(path_) else: - os.remove(path_) \ No newline at end of file + os.remove(path_) diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py deleted file mode 100644 index e4a4507c..00000000 --- a/seisflows/tests/test_preprocess.py +++ /dev/null @@ -1,139 +0,0 @@ -""" -Test suite for the SeisFlows system module, which controls interaction with -various compute systems -""" -import os -import sys -import shutil -import pytest -from unittest.mock import patch -from seisflows import config -from seisflows.seisflows import SeisFlows, return_modules - - -# Define some re-used paths -TEST_DIR = os.path.join(config.ROOT_DIR, "tests") -REPO_DIR = os.path.abspath(os.path.join(config.ROOT_DIR, "..")) - - -@pytest.fixture -def copy_par_file(tmpdir): - """ - Copy the template parameter file into the temporary test directory - :rtype: str - :return: location of the parameter file - """ - src = os.path.join(TEST_DIR, "test_data", "test_filled_parameters.yaml") - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) - - -@pytest.fixture -def sfinit(tmpdir, copy_par_file): - """ - Re-used function that will initate a SeisFlows working environment in - sys modules - :return: - """ - # Ensure that there is not a currently active working state - config.flush() - - copy_par_file - os.chdir(tmpdir) - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf._register_parameters(force=True) - sf._register_modules(check=False) - - return sf - - -def test_default_check(sfinit): - """ - Test seisflows.preprocess.default.check() - - :param sfinit: - :param modules: - :return: - """ - sfinit - PAR = sys.modules["seisflows_parameters"] - preprocess = sys.modules["seisflows_preprocess"] - - # Make sure that the check statement catches incorrectly set parameters - incorrect_parameters = { - "NORMALIZE": ["JNORML3"], - "MUTE": ["not_mute"], - "FILTER": "bondpass", - "FORMAT": "not_an_acceptable_format" - } - for key, val in incorrect_parameters.items(): - og_val = PAR[key] - print(key) - with pytest.raises(AssertionError): - PAR[key] = val - preprocess.check() - - PAR[key] = og_val - - # Make sure that parameters set to inappropriate values throw assertions - correct_parameters = { - "FILTER": "BANDPASS", - "WORKFLOW": "INVERSION", - "MIN_FREQ": 1, - } - for key, val in correct_parameters.items(): - PAR[key] = val - - incorrect_values = { - "MAX_FREQ": -1, - } - for key, val in incorrect_values.items(): - og_val = PAR[key] - with pytest.raises(AssertionError): - PAR[key] = val - preprocess.check() - PAR[key] = og_val - - -def test_default_setup(sfinit): - """ - Ensure that default setup correctly sets up the preprocessing machinery - """ - sf = sfinit - PAR = sys.modules["seisflows_parameters"] - preprocess = sys.modules["seisflows_preprocess"] - - # Make sure that preprocess machinery is set up empty - assert(preprocess.misfit is None) - assert(preprocess.adjoint is None) - assert(preprocess.reader is None) - assert(preprocess.writer is None) - - # Set some default parameters to run setup - misfit_name = "waveform" - io_name = "ascii" - PAR["MISFIT"] = misfit_name - PAR["FORMAT"] = io_name - preprocess.setup() - - assert(preprocess.misfit.__name__ == misfit_name) - assert(preprocess.adjoint.__name__ == misfit_name) - assert(preprocess.reader.__name__ == io_name) - assert(preprocess.writer.__name__ == io_name) - - -def test_default_prepare_eval_grad(tmpdir, sfinit): - """ - Ensure that prepare_eval_grad writes out adjoint traces and auxiliary files - """ - sfinit - PAR = sys.modules["seisflows_parameters"] - preprocess = sys.modules["seisflows_preprocess"] - - cwd = tmpdir - taskid = 0 - filenames = [] - preprocess.prepare_eval_grad(cwd=cwd, taskid=taskid, filenames=filenames) - - diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 9ea85647..7ed27ca0 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -1,8 +1,6 @@ """ Test suite for the SeisFlows command line interface tool and the underlying parser class, ensures that the command line tool works as expected - -!!! TO DO: Finish tests from 'edit' onwards """ import os import io @@ -14,9 +12,9 @@ from unittest.mock import patch from seisflows import logger +from seisflows.core import Dict from seisflows.seisflows import SeisFlows -from seisflows.config import (Dict, ROOT_DIR, NAMES, CFGPATHS, - config_logger, flush) +from seisflows.config import ROOT_DIR, NAMES, CFGPATHS, flush from seisflows.tools.wrappers import loadyaml TEST_DIR = os.path.join(ROOT_DIR, "tests") @@ -126,14 +124,19 @@ def test_register(tmpdir, par_file_dict, copy_par_file): sf = SeisFlows() assert(sf._paths is None) assert(sf._parameters is None) - sf._register_parameters(force=True) + sf._register_parameters() # Check that paths and parameters have been set in sys.modules paths = sys.modules["seisflows_paths"] parameters = sys.modules["seisflows_parameters"] # Check one or two parameters have been set correctly - assert(par_file_dict.LBFGSMAX == parameters.LBFGSMAX) + assert("PATHS" not in parameters) + for key, val in par_file_dict.items(): + if key == "PATHS": + continue + assert(parameters[key] == val) + path_check_full = os.path.abspath(par_file_dict.PATHS["SCRATCH"]) assert(path_check_full == paths.SCRATCH) @@ -235,34 +238,6 @@ def test_cmd_clean(tmpdir): assert(os.path.exists(fid)) -def test_config_logging(tmpdir, copy_par_file): - """ - Test logging configuration to make sure we can print to file - - TODO move this to test_config.py? - :param tmpdir: - :return: - """ - # Run init first to create a working state - os.chdir(tmpdir) - copy_par_file - - msg = "This is an example log that will be checked for test purposes" - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf._register_parameters(force=True) - config_logger(filename=CFGPATHS.LOGFILE) - logger.debug(msg) - - # Check that we created the log file and wrote the message in - assert(os.path.exists(CFGPATHS.LOGFILE)) - with open(CFGPATHS.LOGFILE, "r") as f: - lines = f.read() - assert(msg in lines) - assert("DEBUG" in lines) # levelname - assert("test_config_logging()" in lines) # funcName - - def test_load_modules(tmpdir, copy_par_file): """ Test if module loading from sys.modules works diff --git a/seisflows/tests/test_system.py b/seisflows/tests/test_system.py deleted file mode 100644 index 28091412..00000000 --- a/seisflows/tests/test_system.py +++ /dev/null @@ -1,103 +0,0 @@ -""" -Test suite for the SeisFlows SYSTEM module, which controls interaction with -various compute systems -""" -import os -import sys -import shutil -import pytest -from glob import glob -from unittest.mock import patch -from seisflows import config -from seisflows.seisflows import SeisFlows - - -TEST_DIR = os.path.join(config.ROOT_DIR, "tests") -REPO_DIR = os.path.abspath(os.path.join(config.ROOT_DIR, "..")) - - -@pytest.fixture -def copy_par_file(tmpdir): - """ - Copy the template parameter file into the temporary test directory - :rtype: str - :return: location of the parameter file - """ - src = os.path.join(TEST_DIR, "test_data", "test_filled_parameters.yaml") - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) - - -@pytest.fixture -def sfinit(tmpdir, copy_par_file): - """ - Re-used function that will initate a SeisFlows working environment in - sys modules - :return: - """ - copy_par_file - os.chdir(tmpdir) - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf._register(force=True) - config.init_seisflows(check=False) - - return sf - - -def test_setup(sfinit): - """ - Make sure that system.base.setup() creates the desired directory structure - and log files. - - :param sfinit: - :param modules: - :return: - """ - sf = sfinit - system = sys.modules["seisflows_system"] - PATH = sys.modules["seisflows_paths"] - - # Make empty text files to check that they will be copied into the logs dir - for fid in [system.output_log, system.error_log]: - open(fid, "w") - - for path in [PATH.SCRATCH, PATH.SYSTEM, PATH.OUTPUT]: - assert(not os.path.exists(path)) - - system.setup() - for path in [PATH.SCRATCH, PATH.SYSTEM, PATH.OUTPUT]: - assert(os.path.exists(path)) - - # Both log files and the parameter file should have been copied - assert(len(glob(os.path.join("logs", "*"))) == 3) - -def test_checkpoint(sfinit): - """ - Check that output pickle files are created during a checkpoint and that - kwargs are saved - """ - sf = sfinit - system = sys.modules["seisflows_system"] - PATH = sys.modules["seisflows_paths"] - classname = "solver" - method = "eval_func" - system.checkpoint(path=PATH.OUTPUT, classname=classname, method=method, - kwargs={"test": 5} - ) - assert(os.path.exists(os.path.join(PATH.OUTPUT, "kwargs", - f"{classname}_{method}.p"))) - assert(len(glob(os.path.join(PATH.OUTPUT, "*.p"))) == len(config.NAMES)) - - -# SYSTEM.WORKSTATION -def test_run_system_workstation(sfinit): - """ - Ensure that workstation.run() simply runs a function as we would expect - """ - sf = sfinit - system = sys.modules["seisflows_system"] - assert(type(system).__name__ == "Workstation") - # We don't care what the function does, just that we can call it - system.run(classname="system", method="taskid") - From 1df4c65911a15584c0efc114454e8d92a1aaee95 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Thu, 30 Jun 2022 15:22:39 -0800 Subject: [PATCH 040/195] new cli function seisflows swap to change out module parameters on an existing parameter file --- seisflows/config.py | 0 seisflows/core.py | 0 seisflows/seisflows.py | 62 +++++++++++++++++++++++++++++++++-- seisflows/tools/specfem.py | 14 ++++++-- seisflows/workflow/forward.py | 1 - 5 files changed, 71 insertions(+), 6 deletions(-) mode change 100644 => 100755 seisflows/config.py mode change 100644 => 100755 seisflows/core.py diff --git a/seisflows/config.py b/seisflows/config.py old mode 100644 new mode 100755 diff --git a/seisflows/core.py b/seisflows/core.py old mode 100644 new mode 100755 diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index f9883efb..27099fe7 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -114,6 +114,18 @@ def _format_action(self, action): configure.add_argument("-a", "--absolute_paths", action="store_true", help="Set default paths relative to cwd") # ========================================================================= + swap = subparser.add_parser( + "swap", help="Swap module parameters in an existing parameter file", + description="""During workflow development, it may be necessary to swap + between different sub-modules (e.g., system.workstation -> + system.cluster). However this would typically involving re-generating + and re-filling a parameter file. The 'swap' function makes it easier + to swap parameters between modules. + """ + ) + swap.add_argument("module", nargs="?", help="Module name to swap") + swap.add_argument("classname", nargs="?", help="Classname to swap to") + # ========================================================================= init = subparser.add_parser( "init", help="Initiate working environment", description="""Establish a SeisFlows working environment but don't @@ -289,7 +301,7 @@ def _format_action(self, action): subparser_dict = {"check": check, "par": par, "inspect": inspect, "sempar": sempar, "clean": clean, "restart": restart, "print": print_, "reset": reset, - "examples": examples} + "examples": examples, "swap": swap} if parser.parse_args().command in subparser_dict: return parser, subparser_dict[parser.parse_args().command] else: @@ -570,7 +582,6 @@ def configure(self, absolute_paths=False, **kwargs): else if False, use path names relative to the working directory. Defaults to False, uses relative paths. """ - print(msg.cli(f"filling {self._args.parameter_file} w/ default values")) self._register_parameters() # Check if the User set turn off any modules (if None, dont instantiate) @@ -626,6 +637,53 @@ def configure(self, absolute_paths=False, **kwargs): else: unix.rm(temp_par_file) + def swap(self, module, classname, **kwargs): + """ + Swap the parameters of an existing parameter file with a new module. + Useful for changing out parameters without having to re-make a + parameter file from scratch. e.g., to swap systems from a workstation + to a cluster + + .. rubric:: + $ seisflows swap system slurm + """ + PAR_FILE = os.path.join(ROOT_DIR, "examples", "parameters.yaml") + + if module not in NAMES: + print(msg.cli(text=f"{module} does not match {NAMES}", + header="error")) + sys.exit(-1) + + # Load in old parameter file and then move it to a hidden file + ogpars = loadyaml(self._args.parameter_file) + ogpaths = Dict(ogpars.pop("PATHS")) + unix.mv(self._args.parameter_file, f"_{self._args.parameter_file}") + + # Create a new parameter file with updated module + unix.cp(PAR_FILE, self._args.workdir) + for name in NAMES: + setpar(key=name, val=ogpars[name.upper()], + file=self._args.parameter_file, delim=":") + + # Overwrite with new parameters + setpar(key=module, val=classname, file=self._args.parameter_file, + delim=":") + self.configure() + for key, val in ogpars.items(): + try: + setpar(key=key, val=val, file=self._args.parameter_file, + delim=":") + except KeyError: + continue + for key, val in ogpaths.items(): + try: + setpar(key=key, val=val, file=self._args.parameter_file, + delim=":", _reverse=True) + except KeyError: + continue + + unix.rm(f"_{self._args.parameter_file}") + def init(self, **kwargs): """ Establish a SeisFlows working environment on disk. Instantiates a diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index bfc17db3..9987e3ed 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -38,7 +38,7 @@ def __init__(self): self.minmax = Minmax() -def getpar(key, file, delim="=", match_partial=False): +def getpar(key, file, delim="=", match_partial=False, _reverse=False): """ Reads and returns parameters from a SPECFEM or SeisFlows parameter file Assumes the parameter file is formatted in the following way: @@ -57,6 +57,9 @@ def getpar(key, file, delim="=", match_partial=False): :param match_partial: allow partial key matches, e.g., allow key='tit' to return value for 'title'. Defaults to False as this can have unintended consequences + :type _reverse: bool + :param _reverse: reverse search for parameters incase there are multiple + matching entries. :rtype: tuple (str, str, int) :return: a tuple of the key, value and line number (indexed from 0). The key will match exactly how it looks in the Par_file @@ -64,6 +67,8 @@ def getpar(key, file, delim="=", match_partial=False): IF no matches found, returns (None, None, None) """ lines = open(file, "r").readlines() + if _reverse: + lines = lines[::-1] for i, line in enumerate(lines): # Find the first occurence, CASE-INSENSITIVE search, strip whitespace @@ -103,7 +108,7 @@ def getpar(key, file, delim="=", match_partial=False): return key_out, val, i -def setpar(key, val, file, delim="=", match_partial=False): +def setpar(key, val, file, delim="=", match_partial=False, _reverse=False): """ Overwrites parameter value to a SPECFEM Par_file. @@ -120,8 +125,11 @@ def setpar(key, val, file, delim="=", match_partial=False): :param match_partial: allow partial key matches, e.g., allow key='tit' to return value for 'title'. Defaults to False as this can have unintended consequences + :type _reverse: bool + :param _reverse: reverse search for parameters incase there are multiple + matching entries. """ - key_out, val_out, i = getpar(key, file, delim, match_partial) + key_out, val_out, i = getpar(key, file, delim, match_partial, _reverse) if key_out is None: return diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 800c4ea4..8101c1e5 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -7,7 +7,6 @@ """ import os import sys -import numpy as np from glob import glob from seisflows.core import Base From d700407145e62c2f00599c344e11352149adcf0a Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 1 Jul 2022 12:03:14 -0800 Subject: [PATCH 041/195] removing system self call causing recursion error, removing config logger from submit script --- seisflows/seisflows.py | 3 ++- seisflows/system/runscripts/submit_workflow.py | 3 +-- seisflows/system/slurm.py | 5 ----- 3 files changed, 3 insertions(+), 8 deletions(-) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 27099fe7..f79aec50 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -675,10 +675,11 @@ def swap(self, module, classname, **kwargs): delim=":") except KeyError: continue + import pdb;pdb.set_trace() for key, val in ogpaths.items(): try: setpar(key=key, val=val, file=self._args.parameter_file, - delim=":", _reverse=True) + delim=":", match_partial=True, _reverse=True) except KeyError: continue diff --git a/seisflows/system/runscripts/submit_workflow.py b/seisflows/system/runscripts/submit_workflow.py index 802ac22e..eb72b06c 100644 --- a/seisflows/system/runscripts/submit_workflow.py +++ b/seisflows/system/runscripts/submit_workflow.py @@ -19,7 +19,7 @@ import argparse from seisflows.tools import unix -from seisflows.config import load, config_logger +from seisflows.config import load def parse_args(): @@ -52,7 +52,6 @@ def parse_args(): # Set up logging on the compute system to print to stdout only PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] - config_logger(level=PAR.LOG_LEVEL, verbose=PAR.VERBOSE) # Execute MASTER JOB as workflow.main() workflow.main() diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 2b3b7946..5f87d55f 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -188,11 +188,6 @@ def taskid(self): return int(sftaskid) - def checkpoint(self, path, classname, method, kwargs): - """Inherits from workflow.system.workstation.Workstation""" - self.checkpoint(path=path, classname=classname, method=method, - kwargs=kwargs) - def _check_job_status(self, job_ids): """ Repeatedly check the status of a currently running job using 'sacct'. From ac223a18453e9c70def7a1d32f97c81e8bbb72b7 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 1 Jul 2022 20:04:35 +0000 Subject: [PATCH 042/195] updating maui run scripts to get 2d example working on cluster --- seisflows/config.py | 2 ++ seisflows/seisflows.py | 4 +++- seisflows/system/maui.py | 2 ++ seisflows/system/runscripts/run_function.py | 2 +- seisflows/system/runscripts/submit_workflow.py | 3 +-- seisflows/tools/specfem.py | 14 +++----------- 6 files changed, 12 insertions(+), 15 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 6811a1a8..64a4f649 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -46,6 +46,8 @@ # be returned as a Dict() object, defined below. All of these files and # directories will be created relative to the user-defined working directory CFGPATHS = Dict( + SCRATCHDIR="scratch", + OUTPUTDIR="output", PAR_FILE="parameters.yaml", # Default SeisFlows parameter file LOGFILE="sfoutput.txt", # Log files for all system log ERRLOGFILE="sferror.txt", # StdErr dump site for crash messages diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 27099fe7..82588d5d 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -644,6 +644,8 @@ def swap(self, module, classname, **kwargs): parameter file from scratch. e.g., to swap systems from a workstation to a cluster + TODO figure out how to match paths too + .. rubric:: $ seisflows swap system slurm """ @@ -678,7 +680,7 @@ def swap(self, module, classname, **kwargs): for key, val in ogpaths.items(): try: setpar(key=key, val=val, file=self._args.parameter_file, - delim=":", _reverse=True) + delim=":") except KeyError: continue diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index 1f7ed3df..151b9288 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -161,7 +161,9 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): parameters """ if run_call is None: + # Calculate requested number of nodes based on requested proc count _nodes = np.ceil(self.par.NPROC / float(self.par.NODESIZE)) + _nodes = _nodes.astype(int) run_call = " ".join([ "sbatch", diff --git a/seisflows/system/runscripts/run_function.py b/seisflows/system/runscripts/run_function.py index 064d673e..1c650bc4 100644 --- a/seisflows/system/runscripts/run_function.py +++ b/seisflows/system/runscripts/run_function.py @@ -20,7 +20,7 @@ import pickle import argparse -from seisflows.config import load, config_logger +from seisflows.config import load diff --git a/seisflows/system/runscripts/submit_workflow.py b/seisflows/system/runscripts/submit_workflow.py index 802ac22e..eb72b06c 100644 --- a/seisflows/system/runscripts/submit_workflow.py +++ b/seisflows/system/runscripts/submit_workflow.py @@ -19,7 +19,7 @@ import argparse from seisflows.tools import unix -from seisflows.config import load, config_logger +from seisflows.config import load def parse_args(): @@ -52,7 +52,6 @@ def parse_args(): # Set up logging on the compute system to print to stdout only PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] - config_logger(level=PAR.LOG_LEVEL, verbose=PAR.VERBOSE) # Execute MASTER JOB as workflow.main() workflow.main() diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 9987e3ed..bfc17db3 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -38,7 +38,7 @@ def __init__(self): self.minmax = Minmax() -def getpar(key, file, delim="=", match_partial=False, _reverse=False): +def getpar(key, file, delim="=", match_partial=False): """ Reads and returns parameters from a SPECFEM or SeisFlows parameter file Assumes the parameter file is formatted in the following way: @@ -57,9 +57,6 @@ def getpar(key, file, delim="=", match_partial=False, _reverse=False): :param match_partial: allow partial key matches, e.g., allow key='tit' to return value for 'title'. Defaults to False as this can have unintended consequences - :type _reverse: bool - :param _reverse: reverse search for parameters incase there are multiple - matching entries. :rtype: tuple (str, str, int) :return: a tuple of the key, value and line number (indexed from 0). The key will match exactly how it looks in the Par_file @@ -67,8 +64,6 @@ def getpar(key, file, delim="=", match_partial=False, _reverse=False): IF no matches found, returns (None, None, None) """ lines = open(file, "r").readlines() - if _reverse: - lines = lines[::-1] for i, line in enumerate(lines): # Find the first occurence, CASE-INSENSITIVE search, strip whitespace @@ -108,7 +103,7 @@ def getpar(key, file, delim="=", match_partial=False, _reverse=False): return key_out, val, i -def setpar(key, val, file, delim="=", match_partial=False, _reverse=False): +def setpar(key, val, file, delim="=", match_partial=False): """ Overwrites parameter value to a SPECFEM Par_file. @@ -125,11 +120,8 @@ def setpar(key, val, file, delim="=", match_partial=False, _reverse=False): :param match_partial: allow partial key matches, e.g., allow key='tit' to return value for 'title'. Defaults to False as this can have unintended consequences - :type _reverse: bool - :param _reverse: reverse search for parameters incase there are multiple - matching entries. """ - key_out, val_out, i = getpar(key, file, delim, match_partial, _reverse) + key_out, val_out, i = getpar(key, file, delim, match_partial) if key_out is None: return From bf36afc4aa2a5842956eb7b836cebf9e4482bcb6 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 5 Jul 2022 20:32:45 +0000 Subject: [PATCH 043/195] fixing logging as it isnt working on cluster, trying to revert back to logging being intitated by the system run scripts rather than inside the core class --- seisflows/config.py | 56 +++++++++ seisflows/core.py | 108 +++++++++--------- seisflows/seisflows.py | 12 +- seisflows/system/cluster.py | 5 - seisflows/system/runscripts/run_function.py | 2 +- .../system/runscripts/submit_workflow.py | 3 +- seisflows/system/slurm.py | 2 +- 7 files changed, 126 insertions(+), 62 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 64a4f649..93893e59 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -17,10 +17,12 @@ import json import types import pickle +import logging import copyreg import traceback from importlib import import_module +from seisflows import logger from seisflows.core import Dict, Null from seisflows.tools import msg, unix from seisflows.tools.wrappers import module_exists @@ -119,6 +121,60 @@ def flush(): del sys.modules[mod_name] +def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): + """ + Explicitely configure the logging module with some parameters defined + by the user in the System module. Instantiates a stream logger to write + to stdout, and a file logger which writes to `filename`. Two levels of + verbosity and three levels of log messages allow the user to determine + how much output they want to see. + :type level: str + :param level: log level to be passed to logger, available are + 'CRITICAL', 'WARNING', 'INFO', 'DEBUG' + :type filename: str or None + :param filename: name of the log file to write log statements to. If None, + logs will be written to STDOUT ONLY, and `filemode` will not be used. + :type filemode: str + :param filemode: method for opening the log file. defaults to append 'a' + :type verbose: bool + :param verbose: if True, writes a more detailed log message stating the + type of log (warning, info, debug), and the class and method which + called the logger (e.g., seisflows.solver.specfem2d.save()). This + is much more useful for debugging but clutters up the log file. + if False, only write the time and message in the log statement. + """ + # Make sure that we don't already have handlers described, which may happen + # if this function gets run multiple times, and leads to duplicate logs + while logger.hasHandlers() and logger.handlers: + logger.removeHandler(logger.handlers[0]) + + # Two levels of verbosity on log level, triggered with PAR.VERBOSE + if verbose: + # More verbose logging statement with levelname and func name + fmt_str = ( + "%(asctime)s | %(levelname)-5s | %(name)s.%(funcName)s()\n" + "> %(message)s" + ) + else: + # Clean logging statement with only time and message + fmt_str = "%(asctime)s | %(message)s" + + # Instantiate logger during _register() as we now have user-defined pars + logger.setLevel(level) + formatter = logging.Formatter(fmt_str, datefmt="%Y-%m-%d %H:%M:%S") + + # Stream handler to print log statements to stdout + st_handler = logging.StreamHandler(sys.stdout) + st_handler.setFormatter(formatter) + logger.addHandler(st_handler) + + # File handler to print log statements to text file `filename` + if filename is not None: + file_handler = logging.FileHandler(filename, filemode) + file_handler.setFormatter(formatter) + logger.addHandler(file_handler) + + def custom_import(name=None, module=None, classname=None): """ Imports SeisFlows module and extracts class that is the camelcase version diff --git a/seisflows/core.py b/seisflows/core.py index 93ca61b3..961c6f16 100755 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -14,6 +14,8 @@ class Base(object): inherit from the Base object to work properly. This Base class essentially dictates the required structure of a SeisFlows class. """ + logger = logging.getLogger("seisflows") + def __init__(self): """ SeisFlows instantiates its required parameters through the @@ -22,7 +24,7 @@ def __init__(self): then used to build the parameter file dynamically. """ self.required = SeisFlowsPathsParameters() - self._logger = None + # self._logger = None def module(self, name): """ @@ -39,58 +41,58 @@ def module(self, name): mod = None return mod - @property - def logger(self): - """ - An instance specific logger which imprints inheritance information into - the log statements, making it easier to debug functions with - multiple inheritance - """ - if self._logger is None: - self._logger = self._get_logger() - return self._logger - - def _get_logger(self): - """ - Define an instance specific logger at run time which will imprint - inheritance information onto log statements, making it easier to debug - functions that might have multiple points of inheritance. - - All loggers will write to the same main log file and also print to - stdout. PAR.VERBOSE and PAR.LOG_LEVEL both control the amount of - information that gets printed to the log file. - """ - # logger = logging.getLogger( - # self.__class__.__name__).getChild(self.__class__.__qualname__) - logger = logging.getLogger(self.__class__.__name__) - - # Two levels of verbosity on log level, triggered with PAR.VERBOSE - if self.par.VERBOSE: - # More verbose logging statement with levelname and func name - fmt_str = ( - "%(asctime)s | %(levelname)-5s | %(name)s.%(funcName)s()\n" - "> %(message)s" - ) - else: - # Clean logging statement with only time and message - fmt_str = "%(asctime)s | %(message)s" - - # Instantiate logger during _register() as we now have user-defined pars - logger.setLevel(self.par.LOG_LEVEL) - formatter = logging.Formatter(fmt_str, datefmt="%Y-%m-%d %H:%M:%S") - - # Stream handler to print log statements to stdout - st_handler = logging.StreamHandler(sys.stdout) - st_handler.setFormatter(formatter) - logger.addHandler(st_handler) - - # File handler to print log statements to text file `filename` - if self.path.LOGFILE is not None: - file_handler = logging.FileHandler(self.path.LOGFILE, "a") - file_handler.setFormatter(formatter) - logger.addHandler(file_handler) - - return logger + # @property + # def logger(self): + # """ + # An instance specific logger which imprints inheritance information into + # the log statements, making it easier to debug functions with + # multiple inheritance + # """ + # if self._logger is None: + # self._logger = self._get_logger() + # return self._logger + + # def _get_logger(self): + # """ + # Define an instance specific logger at run time which will imprint + # inheritance information onto log statements, making it easier to debug + # functions that might have multiple points of inheritance. + + # All loggers will write to the same main log file and also print to + # stdout. PAR.VERBOSE and PAR.LOG_LEVEL both control the amount of + # information that gets printed to the log file. + # """ + # # logger = logging.getLogger( + # # self.__class__.__name__).getChild(self.__class__.__qualname__) + # logger = logging.getLogger(self.__class__.__name__) + + # # Two levels of verbosity on log level, triggered with PAR.VERBOSE + # if self.par.VERBOSE: + # # More verbose logging statement with levelname and func name + # fmt_str = ( + # "%(asctime)s | %(levelname)-5s | %(name)s.%(funcName)s()\n" + # "> %(message)s" + # ) + # else: + # # Clean logging statement with only time and message + # fmt_str = "%(asctime)s | %(message)s" + + # # Instantiate logger during _register() as we now have user-defined pars + # logger.setLevel(self.par.LOG_LEVEL) + # formatter = logging.Formatter(fmt_str, datefmt="%Y-%m-%d %H:%M:%S") + + # # Stream handler to print log statements to stdout + # st_handler = logging.StreamHandler(sys.stdout) + # st_handler.setFormatter(formatter) + # logger.addHandler(st_handler) + + # # File handler to print log statements to text file `filename` + # if self.path.LOGFILE is not None: + # file_handler = logging.FileHandler(self.path.LOGFILE, "a") + # file_handler.setFormatter(formatter) + # logger.addHandler(file_handler) + + # return logger @property def par(self): diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 82588d5d..5f383738 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -27,7 +27,8 @@ from IPython import embed from seisflows.core import Dict, SeisFlowsPathsParameters -from seisflows.config import custom_import, save, NAMES, ROOT_DIR, CFGPATHS +from seisflows.config import (custom_import, save, NAMES, ROOT_DIR, CFGPATHS, + config_logger) from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) @@ -732,6 +733,10 @@ def submit(self, **kwargs): self._register_modules() self._check_parameters() + config_logger(level=self._parameters.LOG_LEVEL, + verbose=self._parameters.VERBOSE, + filename=self._paths.LOGFILE) + # Submit workflow.main() to the system system = sys.modules["seisflows_system"] system.submit() @@ -784,6 +789,11 @@ def resume(self, **kwargs): """ self._register_parameters() self._load_modules() + + config_logger(level=self._parameters.LOG_LEVEL, + verbose=self._parameters.VERBOSE, + filename=self._paths.LOGFILE) + system = sys.modules["seisflows_system"] system.submit() diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index ef9d87d0..a2a8adb6 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -108,8 +108,3 @@ def taskid(self): """ raise NotImplementedError('Must be implemented by subclass.') - def checkpoint(self, path, classname, method, kwargs): - """Inherits from workflow.system.workstation.Workstation""" - self.checkpoint(path=path, classname=classname, method=method, - kwargs=kwargs) - diff --git a/seisflows/system/runscripts/run_function.py b/seisflows/system/runscripts/run_function.py index 1c650bc4..064d673e 100644 --- a/seisflows/system/runscripts/run_function.py +++ b/seisflows/system/runscripts/run_function.py @@ -20,7 +20,7 @@ import pickle import argparse -from seisflows.config import load +from seisflows.config import load, config_logger diff --git a/seisflows/system/runscripts/submit_workflow.py b/seisflows/system/runscripts/submit_workflow.py index eb72b06c..802ac22e 100644 --- a/seisflows/system/runscripts/submit_workflow.py +++ b/seisflows/system/runscripts/submit_workflow.py @@ -19,7 +19,7 @@ import argparse from seisflows.tools import unix -from seisflows.config import load +from seisflows.config import load, config_logger def parse_args(): @@ -52,6 +52,7 @@ def parse_args(): # Set up logging on the compute system to print to stdout only PAR = sys.modules["seisflows_parameters"] PATH = sys.modules["seisflows_paths"] + config_logger(level=PAR.LOG_LEVEL, verbose=PAR.VERBOSE) # Execute MASTER JOB as workflow.main() workflow.main() diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 336551d7..7337d920 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -213,7 +213,7 @@ def _check_job_status(self, job_ids): # Sometimes states can be something like 'CANCELLED+', so # we can't do exact string matching, check partial matches if any([check in state for check in bad_states]): - return job_id, state + return job_ids[i], state # WAIT CONDITION: if sacct is not working, we'll get stuck in a loop if "UNDEFINED" in states: count += 1 From 3b47faa7abe7a7603690aed6705ecc1b4ba59057 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 5 Jul 2022 21:40:43 +0000 Subject: [PATCH 044/195] logger fixed for submitted processes on system as well as main logger. --- seisflows/config.py | 5 +-- seisflows/core.py | 54 ------------------------------ seisflows/examples/parameters.yaml | 2 +- seisflows/workflow/test.py | 36 ++++++++++++++++---- 4 files changed, 34 insertions(+), 63 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 93893e59..f093cc80 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -150,9 +150,10 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): # Two levels of verbosity on log level, triggered with PAR.VERBOSE if verbose: - # More verbose logging statement with levelname and func name + # More verbose logging statement for debugging fmt_str = ( - "%(asctime)s | %(levelname)-5s | %(name)s.%(funcName)s()\n" + "%(asctime)s | %(levelname)-5s | " + "%(filename)s -> %(funcName)s():L%(lineno)s\n" "> %(message)s" ) else: diff --git a/seisflows/core.py b/seisflows/core.py index 961c6f16..99609851 100755 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -24,7 +24,6 @@ def __init__(self): then used to build the parameter file dynamically. """ self.required = SeisFlowsPathsParameters() - # self._logger = None def module(self, name): """ @@ -41,59 +40,6 @@ def module(self, name): mod = None return mod - # @property - # def logger(self): - # """ - # An instance specific logger which imprints inheritance information into - # the log statements, making it easier to debug functions with - # multiple inheritance - # """ - # if self._logger is None: - # self._logger = self._get_logger() - # return self._logger - - # def _get_logger(self): - # """ - # Define an instance specific logger at run time which will imprint - # inheritance information onto log statements, making it easier to debug - # functions that might have multiple points of inheritance. - - # All loggers will write to the same main log file and also print to - # stdout. PAR.VERBOSE and PAR.LOG_LEVEL both control the amount of - # information that gets printed to the log file. - # """ - # # logger = logging.getLogger( - # # self.__class__.__name__).getChild(self.__class__.__qualname__) - # logger = logging.getLogger(self.__class__.__name__) - - # # Two levels of verbosity on log level, triggered with PAR.VERBOSE - # if self.par.VERBOSE: - # # More verbose logging statement with levelname and func name - # fmt_str = ( - # "%(asctime)s | %(levelname)-5s | %(name)s.%(funcName)s()\n" - # "> %(message)s" - # ) - # else: - # # Clean logging statement with only time and message - # fmt_str = "%(asctime)s | %(message)s" - - # # Instantiate logger during _register() as we now have user-defined pars - # logger.setLevel(self.par.LOG_LEVEL) - # formatter = logging.Formatter(fmt_str, datefmt="%Y-%m-%d %H:%M:%S") - - # # Stream handler to print log statements to stdout - # st_handler = logging.StreamHandler(sys.stdout) - # st_handler.setFormatter(formatter) - # logger.addHandler(st_handler) - - # # File handler to print log statements to text file `filename` - # if self.path.LOGFILE is not None: - # file_handler = logging.FileHandler(self.path.LOGFILE, "a") - # file_handler.setFormatter(formatter) - # logger.addHandler(file_handler) - - # return logger - @property def par(self): """ diff --git a/seisflows/examples/parameters.yaml b/seisflows/examples/parameters.yaml index f32a3cb2..003090d1 100644 --- a/seisflows/examples/parameters.yaml +++ b/seisflows/examples/parameters.yaml @@ -24,9 +24,9 @@ # PREPROCESS (str): Preprocessing schema for waveform data # POSTPROCESS (str): Postprocessing schema for kernels and gradients # ============================================================================== +SYSTEM: workstation WORKFLOW: inversion SOLVER: specfem2d -SYSTEM: workstation OPTIMIZE: gradient PREPROCESS: default POSTPROCESS: default diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 9e80aba4..f4f931c2 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -13,7 +13,7 @@ from glob import glob from seisflows.core import Base -from seisflows.config import ROOT_DIR, CFGPATHS, save +from seisflows.config import ROOT_DIR, CFGPATHS, save, config_logger class Test(Base): @@ -58,10 +58,10 @@ def main(self, return_flow=False): """ This controls the main testing workflow """ - FLOW = [#self.test_system, + FLOW = [self.test_system, # self.test_preprocess, # self.test_solver, - self.test_optimize + # self.test_optimize ] if return_flow: return FLOW @@ -78,6 +78,29 @@ def _test_function_print(self, check_value): print(f"Hello world, from taskid {system.taskid()}. " f"Check: {check_value}") + config_logger(level="DEBUG", filemode="a", verbose=False) + + system.logger.info(f"Hello world, from taskid {system.taskid()}. " + f"Logger 'info' message. Check: {check_value}") + + system.logger.debug(f"Hello world, from taskid {system.taskid()}. " + f"Logger 'debug' message. Check: {check_value}") + + system.logger.warning(f"Hello world, from taskid {system.taskid()}. " + f"Logger 'warning' message. Check: {check_value}") + + + config_logger(level="DEBUG", filemode="a", verbose=True) + + system.logger.info(f"Hello world, from taskid {system.taskid()}. " + f"Logger 'info' message. Check: {check_value}") + + system.logger.debug(f"Hello world, from taskid {system.taskid()}. " + f"Logger 'debug' message. Check: {check_value}") + + system.logger.warning(f"Hello world, from taskid {system.taskid()}. " + f"Logger 'warning' message. Check: {check_value}") + def test_system(self): """ Test the system by submitting a simple print statement using the @@ -91,14 +114,15 @@ def test_system(self): # Run a very simple test function using system.run() check_value_1 = 1234.5 - system.run(classname="workflow", method="test_function", + system.run(classname="workflow", method="_test_function_print", check_value=check_value_1) time.sleep(3) # wait a bit for system to catch up check_value_2 = 5432.1 - system.run(classname="workflow", method="test_function", single=True, - check_value=check_value_2) + system.run(classname="workflow", method="_test_function_print", + single=True, check_value=check_value_2) + # Check the output log files to match the check values for fid, check in zip( From 317dc00dbc8ac251b411a327fc353af02d23229c Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 5 Jul 2022 13:59:43 -0800 Subject: [PATCH 045/195] removing Minmax and Container classes which served very minimal purpose for the amount of abstraction they brought in --- seisflows/solver/specfem.py | 5 +++-- seisflows/system/workstation.py | 10 +++++----- seisflows/tools/specfem.py | 35 --------------------------------- seisflows/workflow/test.py | 7 +++---- 4 files changed, 11 insertions(+), 46 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index f0448ad0..6b942802 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -14,7 +14,7 @@ from seisflows.core import Base, Dict from seisflows.plugins import solver_io from seisflows.tools import msg, unix -from seisflows.tools.specfem import Container, getpar +from seisflows.tools.specfem import getpar from seisflows.tools.wrappers import diff @@ -604,7 +604,7 @@ def load(self, path, prefix="", suffix="", parameters=None): if parameters is None: parameters = self.parameters - load_dict = Container() + load_dict = Dict() for iproc in range(self.mesh_properties.nproc): for key in parameters: load_dict[key] += self._io.read_slice( @@ -705,6 +705,7 @@ def combine(self, input_path, output_path, parameters=None): Postprocessing wrapper: xcombine_sem Sums kernels from individual source contributions to create gradient. + .. note:: The binary xcombine_sem simply sums matching databases (.bin) diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 4028e3fe..9cbd409d 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -195,12 +195,12 @@ def run(self, classname, method, single=False, **kwargs): if taskid == 0: self.logger.info(f"running task {classname}.{method} " f"{self.par.NTASK} times") - function(**kwargs) - # Redirect output to a log file to mimic cluster runs - # with open(log_file, "w") as f: - # with redirect_stdout(f): - # function(**kwargs) + # Redirect output to a log file to mimic cluster runs where 'run' + # task output logs are sent to different files + with open(log_file, "w") as f: + with redirect_stdout(f): + function(**kwargs) def taskid(self): """ diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index bfc17db3..9a1cda5c 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -2,40 +2,6 @@ Utilities to interact with, manipulate or call on the external solver, i.e., SPECFEM2D/3D/3D_GLOBE """ -import sys -import numpy as np - -from collections import defaultdict -from seisflows.tools import msg -from seisflows.tools.math import poissons_ratio -from seisflows.tools.wrappers import iterable - - -class Minmax(defaultdict): - """ - Keeps track of min, max values of model or kernel - """ - def __init__(self): - super(Minmax, self).__init__(lambda: [+np.inf, -np.inf]) - - def update(self, keys, vals): - for key, val in zip(iterable(keys), iterable(vals)): - if min(val) < self.dict[key][0]: - self.dict[key][0] = min(val) - if max(val) > self.dict[key][1]: - self.dict[key][1] = max(val) - - def __call__(self, key): - return self.dict[key] - - -class Container(defaultdict): - """ - Dictionary-like object for holding models or kernels - """ - def __init__(self): - super(Container, self).__init__(lambda: []) - self.minmax = Minmax() def getpar(key, file, delim="=", match_partial=False): @@ -225,4 +191,3 @@ def setpar_vel_model(file, model): # Set nbmodels to the correct value setpar(key="nbmodels", val=len(model), file=file) - diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index f4f931c2..ace180d8 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -89,7 +89,6 @@ def _test_function_print(self, check_value): system.logger.warning(f"Hello world, from taskid {system.taskid()}. " f"Logger 'warning' message. Check: {check_value}") - config_logger(level="DEBUG", filemode="a", verbose=True) system.logger.info(f"Hello world, from taskid {system.taskid()}. " @@ -122,7 +121,6 @@ def test_system(self): check_value_2 = 5432.1 system.run(classname="workflow", method="_test_function_print", single=True, check_value=check_value_2) - # Check the output log files to match the check values for fid, check in zip( @@ -135,8 +133,9 @@ def test_system(self): # Check that MPI Exec works assert("MPIEXEC" in self.par), f"MPIEXEC is not defined for this system" - stdout = subprocess.run(self.par.MPIEXEC, shell=True, check=True, - stdout=subprocess.PIPE) + if self.par.MPIEXEC: + stdout = subprocess.run(self.par.MPIEXEC, shell=True, check=True, + stdout=subprocess.PIPE) def test_preprocess(self): """ From 9a63fa59b1c5959e18f5a9459c6f57ea1aca61f5 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 5 Jul 2022 22:25:56 +0000 Subject: [PATCH 046/195] fix small bug in solver trying to load model values into a non-instantiated dictionary --- seisflows/solver/specfem.py | 11 +++++++---- seisflows/system/slurm.py | 2 +- 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 6b942802..5802650a 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -604,14 +604,17 @@ def load(self, path, prefix="", suffix="", parameters=None): if parameters is None: parameters = self.parameters - load_dict = Dict() + # Initiate empty dictionary to hold model values + model_dict = Dict({key: [] for key in self.parameters}) + for iproc in range(self.mesh_properties.nproc): for key in parameters: - load_dict[key] += self._io.read_slice( + _model_slice_values = self._io.read_slice( path=path, parameters=f"{prefix}{key}{suffix}", iproc=iproc - ) + ) + model_dict[key].extend(_model_slice_values) - return load_dict + return model_dict def save(self, save_dict, path, parameters=None, prefix="", suffix=""): """ diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 7337d920..e2f22a81 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -165,7 +165,7 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): header="slurm run error", border="=")) sys.exit(-1) - self.logger.info(f"Task {classname}.{method} finished successfully") + self.logger.info(f"task {classname}.{method} finished successfully") def taskid(self): """ From 7a567230b0407f57c30aab288a449a1fb43100a9 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 5 Jul 2022 23:44:33 +0000 Subject: [PATCH 047/195] starting to separate solver model manipulation functions from the class (e.g., load, save, merge) --- seisflows/solver/specfem.py | 8 ++++---- seisflows/solver/specfem3d_globe.py | 15 +++++++++++++-- 2 files changed, 17 insertions(+), 6 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 5802650a..25c3f37d 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -620,8 +620,8 @@ def save(self, save_dict, path, parameters=None, prefix="", suffix=""): """ Solver I/O: Saves SPECFEM2D/3D models or kernels - :type save_dict: dict or Container - :param save_dict: model stored as a dictionary or Container + :type save_dict: Dict + :param save_dict: model stored by parameter key :type path: str :param path: directory from which model is read :type parameters: list @@ -692,14 +692,14 @@ def split(self, m, parameters=None): nproc = self.mesh_properties.nproc ngll = self.mesh_properties.ngll - model = Container() + model = Dict() for idim, key in enumerate(parameters): model[key] = [] for iproc in range(nproc): imin = sum(ngll) * idim + sum(ngll[:iproc]) imax = sum(ngll) * idim + sum(ngll[:iproc + 1]) - model[key] += [m[imin:imax]] + model[key].extend([m[imin:imax]]) return model diff --git a/seisflows/solver/specfem3d_globe.py b/seisflows/solver/specfem3d_globe.py index 1e6fb021..b2033383 100644 --- a/seisflows/solver/specfem3d_globe.py +++ b/seisflows/solver/specfem3d_globe.py @@ -4,6 +4,9 @@ This class provides utilities for the Seisflows solver interactions with Specfem3D Globe. It inherits all attributes from seisflows.solver.specfem3d, and overwrites these functions to provide specified interaction with Specfem3D. + +SPECFEM3D_Globe specfic notes: + - does not allow SU seismogram outputs, only ASCII, SAC, ASDF, 3D_Array """ import os from glob import glob @@ -44,8 +47,16 @@ def load(self, path, prefix="reg1_", suffix="", parameters=None): """ Reads SPECFEM model or kernel - Models are stored in Fortran binary format and separated into - multiple files according to material parameter and processor rank. + .. note:: + SPECFEM3D_Globe meshes are broken into 3 regions. + Region 1 == Crust + Mantle + Region 2 == Outer core + Region 3 == Inner core + + .. warning:: + Currently SeisFlows only considers the crust + mantle in Globe + simulations + :type path: str :param path: directory from which model is read From 6fc60ca1256f48a0fa0588056e32efca24fd34cd Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 5 Jul 2022 23:49:49 +0000 Subject: [PATCH 048/195] bug fixing missing imports --- seisflows/solver/specfem3d_globe.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/seisflows/solver/specfem3d_globe.py b/seisflows/solver/specfem3d_globe.py index b2033383..9b02c757 100644 --- a/seisflows/solver/specfem3d_globe.py +++ b/seisflows/solver/specfem3d_globe.py @@ -12,9 +12,7 @@ from glob import glob from seisflows.solver.specfem3d import Specfem3D -from seisflows.tools.specfem import Minmax from seisflows.tools import unix -from seisflows.tools.wrappers import Struct, exists class Specfem3DGlobe(Specfem3D): @@ -142,7 +140,7 @@ def check_mesh_properties(self, path=None, parameters=None): dummy = loadbin(path, nproc, 'reg1_' + parameters[0]) ngll += [len(dummy)] nproc += 1 - if not exists( + if not os.path.exists( os.path.join(path, f"proc{nrpoc}_reg1_{parameters[0]}.bin")): break From 918ef00ff1f937d4e2d0dd2a41a3606f01b071d9 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 6 Jul 2022 10:41:55 -0800 Subject: [PATCH 049/195] working to separate solver from model manipulation functinoalities --- seisflows/solver/specfem.py | 67 +++++++++++++++++------------------ seisflows/workflow/forward.py | 2 +- 2 files changed, 34 insertions(+), 35 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 25c3f37d..e6496528 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -331,10 +331,8 @@ def check(self, validate=True): self.parameters.append("rho") assert hasattr(solver_io, self.par.SOLVERIO) - assert hasattr(self._io, "read_slice"), \ - "IO method has no attribute 'read_slice'" - assert hasattr(self._io, "write_slice"), \ - "IO method has no attribute 'write_slice'" + assert hasattr(self._io, "read"), "IO method has no attribute 'read'" + assert hasattr(self._io, "write"), "IO method has no attribute 'write'" def setup(self): """ @@ -584,37 +582,38 @@ def _call_solver(self, executable, output="solver.log"): ) sys.exit(-1) - def load(self, path, prefix="", suffix="", parameters=None): - """ - Solver I/O: Loads SPECFEM2D/3D models or kernels - - :type path: str - :param path: directory from which model is read - :type prefix: str - :param prefix: optional filename prefix - :type suffix: str - :param suffix: optional filename suffix, eg '_kernel' - :type parameters: list - :param parameters: material parameters to be read - (if empty, defaults to self.parameters) - :rtype: dict - :return: model or kernels indexed by material parameter and - processor rank, ie dict[parameter][iproc] - """ - if parameters is None: - parameters = self.parameters - - # Initiate empty dictionary to hold model values - model_dict = Dict({key: [] for key in self.parameters}) - - for iproc in range(self.mesh_properties.nproc): - for key in parameters: - _model_slice_values = self._io.read_slice( - path=path, parameters=f"{prefix}{key}{suffix}", iproc=iproc - ) - model_dict[key].extend(_model_slice_values) - return model_dict + # def load(self, path, prefix="", suffix="", parameters=None): + # """ + # Solver I/O: Loads SPECFEM2D/3D models or kernels + # + # :type path: str + # :param path: directory from which model is read + # :type prefix: str + # :param prefix: optional filename prefix + # :type suffix: str + # :param suffix: optional filename suffix, eg '_kernel' + # :type parameters: list + # :param parameters: material parameters to be read + # (if empty, defaults to self.parameters) + # :rtype: dict + # :return: model or kernels indexed by material parameter and + # processor rank, ie dict[parameter][iproc] + # """ + # if parameters is None: + # parameters = self.parameters + # + # # Initiate empty dictionary to hold model values + # model_dict = Dict({key: [] for key in self.parameters}) + # + # for iproc in range(self.mesh_properties.nproc): + # for key in parameters: + # _model_slice_values = self._io.read_slice( + # path=path, parameters=f"{prefix}{key}{suffix}", iproc=iproc + # ) + # model_dict[key].extend(_model_slice_values) + # + # return model_dict def save(self, save_dict, path, parameters=None, prefix="", suffix=""): """ diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 8101c1e5..4b38bb65 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -19,7 +19,7 @@ class Forward(Base): Workflow abstract base class representing an en-masse forward solver and misfit calculator. """ - def __init__(self): + def __init__(self, path_data): """ These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. From 458b1db05f0cd57fbb96008305c008159ae1b0b7 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 6 Jul 2022 16:17:28 -0800 Subject: [PATCH 050/195] created a new specfem Model class which is in charge of reading, checking, vectorizing and saving specfem models/kernels and gradients. This replaces the solver.merge, split and load functionalities which were difficult to split away from the solver moduel, making it less flexible --- seisflows/config.py | 15 - seisflows/optimize/gradient.py | 82 ++-- seisflows/solver/specfem.py | 65 ++- .../proc000000_rho_vp_vs.dat | 3 + .../test_file_formats/proc000000_vp.bin | Bin 0 -> 160008 bytes .../test_file_formats/proc000000_vs.bin | Bin 0 -> 160008 bytes seisflows/tests/test_seisflows.py | 3 +- seisflows/tests/test_tools.py | 15 + seisflows/tools/specfem.py | 424 ++++++++++++++++++ 9 files changed, 516 insertions(+), 91 deletions(-) create mode 100644 seisflows/tests/test_data/test_file_formats/proc000000_rho_vp_vs.dat create mode 100644 seisflows/tests/test_data/test_file_formats/proc000000_vp.bin create mode 100644 seisflows/tests/test_data/test_file_formats/proc000000_vs.bin create mode 100644 seisflows/tests/test_tools.py diff --git a/seisflows/config.py b/seisflows/config.py index f093cc80..c844e55f 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -106,21 +106,6 @@ def load(path): sys.modules[f"seisflows_{name}"] = pickle.load(f) -def flush(): - """ - It is sometimes necessary to flush the currently active working state to - avoid affecting subsequent working states (e.g., running tests back to back) - This command will flush sys.modules of all `seisflows_{}` modules that are - typically instantiated using load(), or init_seisflows() - - https://stackoverflow.com/questions/1668223/how-to-de-import-a-python-module - """ - for name in NAMES: - mod_name = f"seisflows_{name}" - if mod_name in sys.modules: - del sys.modules[mod_name] - - def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): """ Explicitely configure the logging module with some parameters defined diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 7df3507a..78186ebc 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -421,44 +421,44 @@ def _write_stats(self): f"{step_length:6.3E}," f"{theta:6.3E}\n" ) - - def check_model(self, m, min_pr=-1., max_pr=0.5): - """ - Check to ensure that the model parameters fall within the guidelines - of the solver. Print off min/max model parameters for the User. - - :type m: np.array - :param m: model to check parameters of - :type min_pr: float - :param min_pr: minimum allowable Poisson's ratio value dictated by - SPECFEM - :type max_pr: float - :param max_pr: maximum allowable Poisson's ratio value dictated by - SPECFEM - """ - solver = self.module("solver") - - # Dynamic way to split up the model based on number of params - pars = {} - for i, par in enumerate(solver.parameters): - pars[par] = np.split(m, len(solver.parameters))[i] - - # Check Poisson's ratio, which will error our SPECFEM if outside limits - if (pars["vp"] is not None) and (pars["vs"] is not None): - pars["pr"] = poissons_ratio(vp=pars["vp"], vs=pars["vs"]) - if pars["pr"].min() < 0: - self.logger.warning("minimum poisson's ratio is negative") - if pars["pr"].max() < min_pr: - self.logger.warning(f"maximum poisson's ratio out of bounds: " - f"{pars['pr'].max():.2f} > {max_pr}") - if pars["pr"].min() > max_pr: - self.logger.warning(f"minimum poisson's ratio out of bounds: " - f"{pars['pr'].min():.2f} < {min_pr}") - - # Tell the User min and max values of the updated model - self.logger.info(f"model parameters") - parts = "{minval:.2f} <= {key} <= {maxval:.2f}" - for key, vals in pars.items(): - self.logger.info(parts.format(minval=vals.min(), key=key, - maxval=vals.max()) - ) + # + # def check_model(self, m, min_pr=-1., max_pr=0.5): + # """ + # Check to ensure that the model parameters fall within the guidelines + # of the solver. Print off min/max model parameters for the User. + # + # :type m: np.array + # :param m: model to check parameters of + # :type min_pr: float + # :param min_pr: minimum allowable Poisson's ratio value dictated by + # SPECFEM + # :type max_pr: float + # :param max_pr: maximum allowable Poisson's ratio value dictated by + # SPECFEM + # """ + # solver = self.module("solver") + # + # # Dynamic way to split up the model based on number of params + # pars = {} + # for i, par in enumerate(solver.parameters): + # pars[par] = np.split(m, len(solver.parameters))[i] + # + # # Check Poisson's ratio, which will error our SPECFEM if outside limits + # if (pars["vp"] is not None) and (pars["vs"] is not None): + # pars["pr"] = poissons_ratio(vp=pars["vp"], vs=pars["vs"]) + # if pars["pr"].min() < 0: + # self.logger.warning("minimum poisson's ratio is negative") + # if pars["pr"].max() < min_pr: + # self.logger.warning(f"maximum poisson's ratio out of bounds: " + # f"{pars['pr'].max():.2f} > {max_pr}") + # if pars["pr"].min() > max_pr: + # self.logger.warning(f"minimum poisson's ratio out of bounds: " + # f"{pars['pr'].min():.2f} < {min_pr}") + # + # # Tell the User min and max values of the updated model + # self.logger.info(f"model parameters") + # parts = "{minval:.2f} <= {key} <= {maxval:.2f}" + # for key, vals in pars.items(): + # self.logger.info(parts.format(minval=vals.min(), key=key, + # maxval=vals.max()) + # ) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index e6496528..adca3ea4 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -331,8 +331,8 @@ def check(self, validate=True): self.parameters.append("rho") assert hasattr(solver_io, self.par.SOLVERIO) - assert hasattr(self._io, "read"), "IO method has no attribute 'read'" - assert hasattr(self._io, "write"), "IO method has no attribute 'write'" + assert hasattr(self._io, "read_slice"), "IO method has no attribute 'read'" + assert hasattr(self._io, "write_slice"), "IO method has no attribute 'write'" def setup(self): """ @@ -582,38 +582,37 @@ def _call_solver(self, executable, output="solver.log"): ) sys.exit(-1) + def load(self, path, prefix="", suffix="", parameters=None): + """ + Solver I/O: Loads SPECFEM2D/3D models or kernels - # def load(self, path, prefix="", suffix="", parameters=None): - # """ - # Solver I/O: Loads SPECFEM2D/3D models or kernels - # - # :type path: str - # :param path: directory from which model is read - # :type prefix: str - # :param prefix: optional filename prefix - # :type suffix: str - # :param suffix: optional filename suffix, eg '_kernel' - # :type parameters: list - # :param parameters: material parameters to be read - # (if empty, defaults to self.parameters) - # :rtype: dict - # :return: model or kernels indexed by material parameter and - # processor rank, ie dict[parameter][iproc] - # """ - # if parameters is None: - # parameters = self.parameters - # - # # Initiate empty dictionary to hold model values - # model_dict = Dict({key: [] for key in self.parameters}) - # - # for iproc in range(self.mesh_properties.nproc): - # for key in parameters: - # _model_slice_values = self._io.read_slice( - # path=path, parameters=f"{prefix}{key}{suffix}", iproc=iproc - # ) - # model_dict[key].extend(_model_slice_values) - # - # return model_dict + :type path: str + :param path: directory from which model is read + :type prefix: str + :param prefix: optional filename prefix + :type suffix: str + :param suffix: optional filename suffix, eg '_kernel' + :type parameters: list + :param parameters: material parameters to be read + (if empty, defaults to self.parameters) + :rtype: dict + :return: model or kernels indexed by material parameter and + processor rank, ie dict[parameter][iproc] + """ + if parameters is None: + parameters = self.parameters + + # Initiate empty dictionary to hold model values + model_dict = Dict({key: [] for key in self.parameters}) + + for iproc in range(self.mesh_properties.nproc): + for key in parameters: + _model_slice_values = self._io.read_slice( + path=path, parameters=f"{prefix}{key}{suffix}", iproc=iproc + ) + model_dict[key].extend(_model_slice_values) + + return model_dict def save(self, save_dict, path, parameters=None, prefix="", suffix=""): """ diff --git a/seisflows/tests/test_data/test_file_formats/proc000000_rho_vp_vs.dat b/seisflows/tests/test_data/test_file_formats/proc000000_rho_vp_vs.dat new file mode 100644 index 00000000..1d964709 --- /dev/null +++ b/seisflows/tests/test_data/test_file_formats/proc000000_rho_vp_vs.dat @@ -0,0 +1,3 @@ + 0.00000E+0000 0.00000E+0000 0.26000E+0004 0.58000E+0004 0.35000E+0004 + 0.20721E+0004 0.00000E+0000 0.26000E+0004 0.58000E+0004 0.35000E+0004 + 0.60000E+0004 0.00000E+0000 0.26000E+0004 0.58000E+0004 0.35000E+0004 diff --git a/seisflows/tests/test_data/test_file_formats/proc000000_vp.bin b/seisflows/tests/test_data/test_file_formats/proc000000_vp.bin new file mode 100644 index 0000000000000000000000000000000000000000..250dae68ac7396b5851759bcfa409f9e2a2022e8 GIT binary patch literal 160008 zcmeIwF%bYT2n4|&l%+us;_w#>2-xBb+-#ENp`ZB literal 0 HcmV?d00001 diff --git a/seisflows/tests/test_data/test_file_formats/proc000000_vs.bin b/seisflows/tests/test_data/test_file_formats/proc000000_vs.bin new file mode 100644 index 0000000000000000000000000000000000000000..3474f7050d3a52bfaf13a47de984d85cbc0ea357 GIT binary patch literal 160008 zcmeIwK@9*v2*kh*-p&LraEP?CfPi__Kr@+2wx2v;fB^;=V1NMz7+`<_1{h#~0R|Xg zfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_ z1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;= zV1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~ z0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz z7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|Xg zfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_ z1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;= zV1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~ z0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz z7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|Xg zfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_ z1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;= zV1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~ z0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz7+`<_1{h#~0R|XgfB^;=V1NMz f7+`<_1{h#~0R|XgfB^;=V1NMz7+`>blYyyx0&ht% literal 0 HcmV?d00001 diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 7ed27ca0..c738658e 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -11,10 +11,9 @@ import subprocess from unittest.mock import patch -from seisflows import logger from seisflows.core import Dict from seisflows.seisflows import SeisFlows -from seisflows.config import ROOT_DIR, NAMES, CFGPATHS, flush +from seisflows.config import ROOT_DIR, NAMES, CFGPATHS from seisflows.tools.wrappers import loadyaml TEST_DIR = os.path.join(ROOT_DIR, "tests") diff --git a/seisflows/tests/test_tools.py b/seisflows/tests/test_tools.py new file mode 100644 index 00000000..23eff2fe --- /dev/null +++ b/seisflows/tests/test_tools.py @@ -0,0 +1,15 @@ +""" +Test any of the utility functions defined in the Tools directory +""" +import os +import pytest +from seisflows.config import ROOT_DIR, NAMES, CFGPATHS + + +TEST_DIR = os.path.join(ROOT_DIR, "tests") + + +def test_load_specfem_model(): + """ + Make sure we can dynamically load SPECFEM models in various formats + """ diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 9a1cda5c..fbd643f6 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -2,6 +2,385 @@ Utilities to interact with, manipulate or call on the external solver, i.e., SPECFEM2D/3D/3D_GLOBE """ +import os +import numpy as np +from glob import glob +from seisflows import logger +from seisflows.core import Dict +from seisflows.tools import unix +from seisflows.tools.math import poissons_ratio + + +class Model: + """ + A container for reading, storing and manipulating model/gradient/kernel + parameters from SPECFEM2D/3D/3D_GLOBE. + Stores metadata information alongside model data allowing models to be + converted to back and forth between vector representations required by the + optimization library. + Also contains utility functions to read/write itself so that models can be + saved alongside their metadata. + """ + def __init__(self, path, fmt=None, read=True, load=False): + """ + Model only needs path to model to determine model parameters. Format + `fmt` can be provided by the user or guessed based on available file + formats + + :type path: str + :param path: path to SPECFEM model/kernel/gradient files + :type fmt: str + :param fmt: expected format of the files (e.g., '.bin'), if None, will + attempt to guess based on the file extensions found in `path` + Available formats are: .bin, .dat + :type load: bool + :param load: load the model into disk as dictionary and vector + representations. If False, will only collect some metadata as a + non-cpu intensive operation + """ + assert os.path.exists(path), f"specfem model path {path} does not exist" + self.path = path + + if read: + if fmt is None: + self.fmt = self._guess_file_format() + else: + self.fmt = fmt + self.nproc, self.available_parameters = self._get_nproc_parameters() + self.model, self.ngll = self.read() + elif load: + self.model, self.ngll = self.load(file=self.path) + _first_key = list(self.model.keys())[0] + self.nproc = len(self.model[_first_key]) + + self.parameters = self.model.keys() + self.vector = self.merge() + self.check() + + @staticmethod + def fnfmt(i="*", val="*", ext="*"): + """ + Expected SPECFEM filename format with some checks to ensure that wildcards + and numbers are accepted. An example filename is: 'proc000001_vs.bin' + + :type i: int or str + :param i: processor number or wildcard. If given as an integer, will be + converted to a 6 digit zero-leading value to match SPECFEM format + :type val: str + :param val: parameter value (e.g., 'vs') or wildcard + :type ext: str + :param ext: the file format (e.g., '.bin'). If NOT preceded by a leading '.' + will have one prepended + :rtype: str + :return: filename formatter for use in model manipulation + """ + if not ext.startswith("."): + ext = f".{ext}" + if isinstance(i, int): + filename_format = f"proc{i:0>6}_{val}{ext}" + else: + filename_format = f"proc{i}_{val}{ext}" + return filename_format + + def read(self, parameters=None): + """ + Utility function to load in SPECFEM models/kernels/gradients saved in + various formats. Will try to guess format of model. Assumes that models are + saved using the following filename format: + + proc{num}_{val}.{format} where `num` is usually a 6 digit number + representing the processor number (e.g., 000000), `val` is the parameter + value of the model/kernel/gradient and `format` is the format of the file + (e.g., bin) + + :type parameters: list of str + :param parameters: unique parameters to load model for, if None will load + all available parameters found in `path` + :rtype: Dict of np arrays + :return: Dictionary where keys correspond to model parameters and values + are vectors (np.arrays) representing the model + """ + if parameters is None: + parameters = self.available_parameters + else: + assert(set(parameters).union(set(self.available_parameters))), ( + f"user-chosen parameters not in available: " + f"{self.available_parameters}" + ) + + # Pick the correct read function based on the file format + load_fx = {".bin": self._read_model_fortran_binary, + ".dat": self._read_model_ascii, + ".adios": self._read_model_adios # TODO Check if this is right + }[self.fmt] + + # Create a dictionary object containing all parameters and respective + # models, save to internal attribute + parameter_dict = Dict({key: [] for key in parameters}) + for parameter in parameters: + parameter_dict[parameter] = load_fx(parameter=parameter) + + # Save some metadata to be able to manipulate model slices freely + ngll = [] + for array in parameter_dict[parameters[0]]: + ngll.append(len(array)) + + return parameter_dict, ngll + + def merge(self, parameter=None): + """ + Convert dictionary representation `model` to vector representation `m` + where all parameters and processors are stored as a single 1D vector. + This vector representation is used by the optimization library. + + :type parameter: str + :param parameter: single parameter to retrieve model vector from, + otherwise returns all parameters merged into single vector + :rtype: np.array + :return: vector representation of the model + """ + m = np.array([]) + if parameter is None: + parameters = self.parameters + else: + parameters = [parameter] + + for parameter in parameters: + for iproc in range(self.nproc): + m = np.append(m, self.model[parameter][iproc]) + + return m + + def write(self, path, fmt=None): + """ + Save a SPECFEM model/gradient/kernel vector loaded into memory back to + disk in the appropriate format expected by SPECFEM + """ + unix.mkdir(path) + if fmt is None: + assert(self.fmt is not None), f"must specifiy model format: `fmt`" + fmt = self.fmt + + # Pick the correct read function based on the file format + save_fx = {".bin": self._write_model_fortran_binary, + # ".dat": _write_model_ascii, + # ".adios": _write_model_adios # TODO Check if right + }[fmt] + + save_fx(path=path) + + def split(self): + """ + Converts internal vector representation `m` to dictionary representation + `model`. Does this by separating the vector based on how it was + constructed, parameter-wise and processor-wise + + :rtype: Dict of np.array + :return: dictionary of model parameters split up by number of processors + """ + model = Dict({key: [] for key in self.parameters}) + for idim, key in enumerate(self.parameters): + for iproc in range(self.nproc): + imin = sum(self.ngll) * idim + sum(self.ngll[:iproc]) + imax = sum(self.ngll) * idim + sum(self.ngll[:iproc + 1]) + model[key].extend([self.vector[imin:imax]]) + + model[key] = np.array(model[key]) + return model + + def check(self, min_pr=-1., max_pr=0.5): + """ + Checks parameters in the model. If Vs and Vp present, checks poissons + ratio. Checks for negative velocity values. And prints out model + min/max values + """ + if "vs" in self.parameters and "vp" in self.parameters: + pr = poissons_ratio(vp=self.merge(parameter="vp"), + vs=self.merge(parameter="vs")) + if pr.min() < 0: + logger.warning("minimum poisson's ratio is negative") + if pr.max() < min_pr: + logger.warning(f"maximum poisson's ratio out of bounds: " + f"{pr.max():.2f} > {max_pr}") + if pr.min() > max_pr: + logger.warning(f"minimum poisson's ratio out of bounds: " + f"{pr.min():.2f} < {min_pr}") + + if "vs" in self.model and self.model.vs.min() < 0: + logger.warning(f"Vs minimum is negative {self.model.vs.min()}") + + if "vp" in self.model and self.model.vp.min() < 0: + logger.warning(f"Vp minimum is negative {self.model.vp.min()}") + + # Tell the User min and max values of the updated model + logger.info(f"model parameters") + parts = "{minval:.2f} <= {key} <= {maxval:.2f}" + for key, vals in self.model.items(): + logger.info(parts.format(minval=vals.min(), key=key, + maxval=vals.max())) + + def save(self, file): + """ + Save instance attributes (model, vector, metadata) to disk as an + .npz array so that it can be loaded in at a later time for future use + """ + model = self.split() + np.savez(file=file, **model) + + def load(self, file): + """ + Load in a previously saved .npz file containing model information + """ + model = Dict() + ngll = [] + data = np.load(file=file) + for i, key in enumerate(data.files): + model[key] = data[key] + if i == 0: + for array in model[key]: + ngll.append(len(array)) + + return model, ngll + + def _get_nproc_parameters(self): + """ + Get the number of processors and the available parameters from a list of + output SPECFEM model files. + """ + fids = glob(os.path.join(self.path, self.fnfmt(val="*", ext=self.fmt))) + fids = [os.path.basename(_) for _ in fids] # drop full path + fids = [os.path.splitext(_)[0] for _ in fids] # drop extension + + if self.fmt == ".bin": + avail_par = list(set([_.split("_")[-1] for _ in fids])) + nproc = len(glob(os.path.join( + self.path, self.fnfmt(val=avail_par[0], ext=self.fmt))) + ) + elif self.fmt == ".dat": + # e.g., 'proc000000_rho_vp_vs' + _, *avail_par = fids[0].split("_") + nproc = len(fids) + 1 + else: + raise NotImplementedError(f"{self.fmt} is not yet supported by " + f"SeisFlows") + + return nproc, avail_par + + def _guess_file_format(self): + """ + Guess the file format of model/kernel/gradient files if none provided by + the user. Does so by checking file formats against formats expected from + SPECFEM2D/3D/3D_GLOBE + """ + acceptable_formats = {".bin", ".dat"} + + files = glob(os.path.join(self.path, "*")) + suffixes = set([os.path.splitext(_)[1] for _ in files]) + fmt = acceptable_formats.intersection(suffixes) + assert (len(fmt) == 1), ( + f"cannot guess model format, multiple matching acceptable formats " + f"found: {list(suffixes)}" + ) + return list(fmt)[0] # pulling single entry from set + + def _read_model_fortran_binary(self, parameter): + """ + Load Fortran binary models into disk. This is the preferred model format + for SeisFlows <-> SPECFEM interaction + + :type parameter: str + :param parameter: chosen parameter to load model for + :rtype: np.array + :return: vector of model values for given `parameter` + """ + def _read(filename): + """Read a single slice (e.g., proc000000_vs.bin) binary file""" + nbytes = os.path.getsize(filename) + with open(filename, 'rb') as file: + # read size of record + file.seek(0) + n = np.fromfile(file, dtype='int32', count=1)[0] + + if n == nbytes-8: + file.seek(4) + data = np.fromfile(file, dtype='float32') + return data[:-1] + else: + file.seek(0) + data = np.fromfile(file, dtype='float32') + return data + + array = [] + fids = glob(os.path.join( + self.path, self.fnfmt(val=parameter, ext=".bin")) + ) + for fid in sorted(fids): # make sure were going in numerical order + array.append(_read(fid)) + + array = np.array(array) + + return array + + def _read_model_adios(self, parameter): + """ + Load ADIOS models into disk + + :type parameter: str + :param parameter: chosen parameter to load model for + :rtype: np.array + :return: vector of model values for given `parameter` + """ + raise NotImplementedError("ADIOS file formats are not currently " + "implemented into SeisFlows") + + def _read_model_ascii(self, parameter): + """ + Load ASCII SPECFEM2D models into disk. ASCII models are generally saved + all in a single file with all parameters together as a N column ASCII file + where columns 1 and 2 are the coordinates of the mesh, and the remainder + columns are data corresponding to the filenames + e.g., proc000000_rho_vp_vs.dat, rho is column 3, vp is 4 etc. + + :type parameter: str + :param parameter: chosen parameter to load model for + :rtype: np.array + :return: vector of model values for given `parameter` + """ + fids = glob(os.path.join(self.path, self.fnfmt(val="*", ext=".dat"))) + _, *available_parameters = fids[0].split("_") + assert(parameter in available_parameters), ( + f"{parameter} not available for ASCII model" + ) + # +2 because first 2 columns are the X and Z coordinates in the mesh + array = [] + column_idx = available_parameters.index(parameter) + 2 + for fid in sorted(fids): + array.append(np.loadtxt(fid).T[:, column_idx]) + + return np.array(array) + + def _write_model_fortran_binary(self, path): + """ + Save a SPECFEM model back to Fortran binary format. + Data are written as single precision floating point numbers + + .. note:: + FORTRAN unformatted binaries are bounded by an INT*4 byte count. + This function mimics that behavior by tacking on the boundary data + as 'int32' at the top and bottom of the data array. + https://docs.oracle.com/cd/E19957-01/805-4939/6j4m0vnc4/index.html + """ + for parameter in self.parameters: + for i, data in enumerate(self.model[parameter]): + filename = self.fnfmt(i=i, val=parameter, ext=".bin") + filepath = os.path.join(path, filename) + buffer = np.array([4 * len(data)], dtype="int32") + data = data.astype("float32") + + with open(filepath, 'wb') as f: + buffer.tofile(f) + data.tofile(f) + buffer.tofile(f) def getpar(key, file, delim="=", match_partial=False): @@ -191,3 +570,48 @@ def setpar_vel_model(file, model): # Set nbmodels to the correct value setpar(key="nbmodels", val=len(model), file=file) + + +def _read(filename): + """ + Legacy code: Reads Fortran style binary data into numpy array. + + .. note:: + Has been rewritten into the Model class but left here if useful + """ + nbytes = os.path.getsize(filename) + with open(filename, 'rb') as file: + # read size of record + file.seek(0) + n = np.fromfile(file, dtype='int32', count=1)[0] + + if n == nbytes-8: + file.seek(4) + data = np.fromfile(file, dtype='float32') + return data[:-1] + else: + file.seek(0) + data = np.fromfile(file, dtype='float32') + return data + + +def _write(v, filename): + """ + Legacy code: Writes Fortran style binary files + Data are written as single precision floating point numbers + + .. note:: + Has been rewritten into the Model class but left here if useful + + .. note:: + FORTRAN unformatted binaries are bounded by an INT*4 byte count. This + function mimics that behavior by tacking on the boundary data. + https://docs.oracle.com/cd/E19957-01/805-4939/6j4m0vnc4/index.html + """ + n = np.array([4 * len(v)], dtype='int32') + v = np.array(v, dtype='float32') + + with open(filename, 'wb') as file: + n.tofile(file) + v.tofile(file) + n.tofile(file) From dc4aac328c7875b2935d8338ebe44ddd0063d517 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 6 Jul 2022 17:07:54 -0800 Subject: [PATCH 051/195] starting to replace the old model implementation with the new one throughout the package --- seisflows/optimize/gradient.py | 94 ++++----------- seisflows/postprocess/default.py | 20 ++-- seisflows/seisflows.py | 40 +------ seisflows/solver/specfem.py | 200 ++----------------------------- seisflows/solver/specfem2d.py | 11 -- seisflows/tools/specfem.py | 16 +-- seisflows/workflow/forward.py | 10 +- seisflows/workflow/migration.py | 13 +- 8 files changed, 57 insertions(+), 347 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 78186ebc..5c08c393 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -16,8 +16,8 @@ from seisflows.core import Base from seisflows.tools import msg, unix from seisflows.tools.math import angle, dot +from seisflows.tools.specfem import Model from seisflows.plugins import line_search -from seisflows.tools.math import poissons_ratio class Gradient(Base): @@ -59,7 +59,7 @@ def __init__(self): been restarted recently """ super().__init__() - + # Define the Parameters required by this module self.required.par( "LINESEARCH", required=False, default="Bracket", par_type=str, @@ -132,7 +132,6 @@ def setup(self): Sets up nonlinear optimization machinery """ super().setup() - solver = self.module("solver") unix.mkdir(self.path.OPTIMIZE) # Line search machinery is defined externally as a plugin class @@ -143,9 +142,8 @@ def setup(self): ) # Read in initial model as a vector and ensure it is a valid model if os.path.exists(self.path.MODEL_INIT): - m_new = solver.merge(solver.load(self.path.MODEL_INIT)) - self.save("m_new", m_new) - self.check_model(m_new) + m_new = Model(path=self.path.MODEL_INIT) + m_new.save(path=os.path.join(self.path.OPTIMIZE, "m_new")) else: self.logger.warning( "PATH.MODEL_INIT not found, cannot save 'm_new'. Either ensure " @@ -181,11 +179,9 @@ def load(self, name): :param name: name of the vector, acceptable: m, g, p, f, alpha """ assert(name in self.acceptable_vectors) - vector = np.load(os.path.join(self.path.OPTIMIZE, f"{name}.npy")) - # Allow single length vectors, which alpha and misfit (f) are - if vector.size == 1: - vector = float(vector) - return vector + model = Model(os.path.join(self.path.OPTIMIZE, f"{name}.npz"), + load=True) + return model def save(self, name, vector): """ @@ -209,13 +205,11 @@ def _precondition(self, q): :rtype: np.array :return: preconditioned vector """ - solver = self.module("solver") - if self.par.PRECOND is not None: - p = solver.merge(solver.load(self.path.PRECOND)) + p = Model(path=self.path.PRECOND) if self.par.PRECOND == "DIAGONAL": self.logger.info("applying diagonal preconditioner") - return p * q + return p.vector * q else: return q @@ -273,7 +267,7 @@ def initialize_search(self): m_try = m + alpha * p self.save("m_try", m_try) - self.save("alpha", alpha) + np.savetxt("alpha", alpha) self.check_model(m_try) def update_search(self): @@ -286,7 +280,7 @@ def update_search(self): status == 0 : not finished status == -1 : failed """ - self.line_search.update(step_len=self.load("alpha"), + self.line_search.update(step_len=np.loadtxt("alpha"), func_val=self.load("f_try")) alpha, status = self.line_search.calculate_step() @@ -294,7 +288,7 @@ def update_search(self): if status in [0, 1]: m = self.load("m_new") p = self.load("p_new") - self.save("alpha", alpha) + np.savetxt("alpha", alpha) m_try = m + alpha * p self.save("m_try", m_try) @@ -410,55 +404,15 @@ def _write_stats(self): theta = 180. * np.pi ** -1 * angle(p, -g) with open(fid, "a") as f: - f.write(f"{self.iter:0>2}," - f"{factor:6.3E}," - f"{grad_norm_L1:6.3E}," - f"{grad_norm_L2:6.3E}," - f"{misfit:6.3E}," - f"{restarted:6.3E}," - f"{slope:6.3E}," - f"{step_count:0>2}," - f"{step_length:6.3E}," - f"{theta:6.3E}\n" - ) - # - # def check_model(self, m, min_pr=-1., max_pr=0.5): - # """ - # Check to ensure that the model parameters fall within the guidelines - # of the solver. Print off min/max model parameters for the User. - # - # :type m: np.array - # :param m: model to check parameters of - # :type min_pr: float - # :param min_pr: minimum allowable Poisson's ratio value dictated by - # SPECFEM - # :type max_pr: float - # :param max_pr: maximum allowable Poisson's ratio value dictated by - # SPECFEM - # """ - # solver = self.module("solver") - # - # # Dynamic way to split up the model based on number of params - # pars = {} - # for i, par in enumerate(solver.parameters): - # pars[par] = np.split(m, len(solver.parameters))[i] - # - # # Check Poisson's ratio, which will error our SPECFEM if outside limits - # if (pars["vp"] is not None) and (pars["vs"] is not None): - # pars["pr"] = poissons_ratio(vp=pars["vp"], vs=pars["vs"]) - # if pars["pr"].min() < 0: - # self.logger.warning("minimum poisson's ratio is negative") - # if pars["pr"].max() < min_pr: - # self.logger.warning(f"maximum poisson's ratio out of bounds: " - # f"{pars['pr'].max():.2f} > {max_pr}") - # if pars["pr"].min() > max_pr: - # self.logger.warning(f"minimum poisson's ratio out of bounds: " - # f"{pars['pr'].min():.2f} < {min_pr}") - # - # # Tell the User min and max values of the updated model - # self.logger.info(f"model parameters") - # parts = "{minval:.2f} <= {key} <= {maxval:.2f}" - # for key, vals in pars.items(): - # self.logger.info(parts.format(minval=vals.min(), key=key, - # maxval=vals.max()) - # ) + pass + f.write(f"{self.iter:0>2}," + f"{factor:6.3E}," + f"{grad_norm_L1:6.3E}," + f"{grad_norm_L2:6.3E}," + f"{misfit:6.3E}," + f"{restarted:6.3E}," + f"{slope:6.3E}," + f"{step_count:0>2}," + f"{step_length:6.3E}," + f"{theta:6.3E}\n" + ) diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py index 4cfc2e6a..6c298d13 100644 --- a/seisflows/postprocess/default.py +++ b/seisflows/postprocess/default.py @@ -5,10 +5,9 @@ kernel summation """ import os -import sys from seisflows.core import Base -from seisflows.tools import msg +from seisflows.tools.specfem import Model class Default(Base): @@ -84,34 +83,31 @@ def scale_gradient(self, input_path): :rtype: np.array :return: scaled gradient as a vector """ - solver = self.module("solver") - # Postprocess file structure defined here once-and-for-all path_grad_nomask = os.path.join(input_path, "gradient_nomask") path_model = os.path.join(input_path, "model") path_kernels_sum = os.path.join(input_path, "kernels", "sum") # Access the gradient information stored in as kernel files - gradient = solver.load(path_kernels_sum, suffix="_kernel") - + gradient = Model(path=path_kernels_sum) + model = Model(path=path_model) # Merge to vector and convert to absolute perturbations: # log dm --> dm (see Eq.13 Tromp et al 2005) - gradient = solver.merge(gradient) - gradient *= solver.merge(solver.load(path_model)) + gradient.vector *= model.vector if self.path.MASK: self.logger.info(f"masking gradient") # to scale the gradient, users can supply "masks" by exactly # mimicking the file format in which models are stored - mask = solver.merge(solver.load(self.path.MASK)) + mask = Model(self.path.MASK) # While both masking and preconditioning involve scaling the # gradient, they are fundamentally different operations: # masking is ad hoc, preconditioning is a change of variables; # For more info, see Modrak & Tromp 2016 GJI - solver.save(solver.split(gradient), path=path_grad_nomask, - suffix="_kernel") - gradient *= mask + gradient.write(path=path_grad_nomask) + + gradient.vector *= mask.vector return gradient diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 5f383738..1bf83f98 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -259,8 +259,6 @@ def _format_action(self, action): print_.add_argument("args", type=str, nargs="*", help="Generic arguments passed to check functions") # ========================================================================= - subparser.add_parser("convert", help="Convert model file format", ) - # ========================================================================= reset = subparser.add_parser( "reset", formatter_class=argparse.RawDescriptionHelpFormatter, help="Reset modules within an active state", description=""" @@ -272,7 +270,7 @@ def _format_action(self, action): reset.add_argument("choice", type=str, nargs="?", default=None, help="Choice of module/component to reset") reset.add_argument("args", type=str, nargs="*", - help="Generic arguments passed to reset functions") + help="Generic arguments passed to reset functions") # ========================================================================= subparser.add_parser( "debug", help="Start interactive debug environment", @@ -1139,42 +1137,6 @@ def reset(self, choice=None, **kwargs): self._load_modules() acceptable_args[choice](*self._args.args, **kwargs) - def convert(self, name, path=None, **kwargs): - """ - Convert a model in the OUTPUT directory between vector to binary - representation. Kwargs are passed through to solver.save() - - USAGE - - seisflows convert [name] [path] [**kwargs] - - To convert the vector model 'm_try' to binary representation in the - output directory - - seisflows convert m_try - - :type name: str - :param name: name of the model to convert, e.g. 'm_try' - :type path: str - :param path: path and file id to save the output model. if None, will - default to saving in the output directory under the name of the - model - """ - self._load_modules() - - solver = sys.modules["seisflows_solver"] - optimize = sys.modules["seisflows_optimize"] - PATH = sys.modules["seisflows_paths"] - - if path is None: - path = os.path.join(PATH.OUTPUT, name) - if os.path.exists(path): - print(msg.cli("The following file exists and will be overwritten. " - "Please rename or move this file and re-try: {path}")) - sys.exit(-1) - - solver.save(solver.split(optimize.load(name)), path=path, **kwargs ) - @staticmethod def _inspect_class_that_defined_method(name, func, **kwargs): """ diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index adca3ea4..aa181c21 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -8,14 +8,12 @@ import os import sys import subprocess -import numpy as np from glob import glob -from seisflows.core import Base, Dict +from seisflows.core import Base from seisflows.plugins import solver_io from seisflows.tools import msg, unix -from seisflows.tools.specfem import getpar -from seisflows.tools.wrappers import diff +from seisflows.tools.specfem import getpar, Model class Specfem(Base): @@ -55,20 +53,6 @@ class Specfem(Base): and particular file formats for models, data, and parameter files. These methods help put in place all these prerequisites - load, save - - For reading and writing SPECFEM2D/3D models and kernels. On the disk, - models and kernels are stored as binary files, and in memory, as - dictionaries with different keys corresponding to different material - parameters - - split, merge - - Within the solver routines, it is natural to store models as - dictionaries. Within the optimization routines, it is natural to store - models as vectors. Two methods, 'split' and 'merge', are used to convert - back and forth between these two representations - combine, smooth Utilities for combining and smoothing kernels @@ -87,9 +71,6 @@ def __init__(self): :type parameters: list of str :param parameters: a list detailing the parameters to be used to define the model, available: ['vp', 'vs', 'rho'] - :type _mesh_properties: Dict - :param _mesh_properties: hidden attribute, a dictionary of mesh - properties, including the ngll points, nprocs, and mesh coordinates :type _source_names: hidden attribute, :param _source_names: the names of all the sources that are being used by the solver @@ -156,7 +137,6 @@ def __init__(self): ) self.parameters = [] - self._mesh_properties = None self._source_names = None @property @@ -226,25 +206,6 @@ def cwd(self): """ return os.path.join(self.path.SOLVER, self.source_name) - @property - def mesh_properties(self): - """ - Returns mesh properties including number of GLL points and number of - processors (NPROC). - - .. note:: - We assume that there are only two available models MODEL_INIT and - MODEL_TRUE, and that both models have the SAME underlying mesh - structure. That way we can only check MODEL_INIT and be sure that - MODEL_TRUE has the same structure. - - :rtype: Dict - :return: Dictionary containing information on mesh properties - """ - if self._mesh_properties is None: - self._check_mesh_properties(model_path=self.path.MODEL_INIT) - return self._mesh_properties - def data_wildcard(self, comp="?"): """ Provide a wildcard string that will match the name of the output @@ -382,7 +343,6 @@ def _set_model(self, model_name, model_type=None): assert(os.path.exists(model_path)), f"model {model_path} does not exist" if model_type == "gll": - self._check_mesh_properties(model_path=model_path) # Copy the model files (ex: proc000023_vp.bin ...) into database dir src = glob(os.path.join(model_path, "*")) dst = self.model_databases @@ -582,125 +542,6 @@ def _call_solver(self, executable, output="solver.log"): ) sys.exit(-1) - def load(self, path, prefix="", suffix="", parameters=None): - """ - Solver I/O: Loads SPECFEM2D/3D models or kernels - - :type path: str - :param path: directory from which model is read - :type prefix: str - :param prefix: optional filename prefix - :type suffix: str - :param suffix: optional filename suffix, eg '_kernel' - :type parameters: list - :param parameters: material parameters to be read - (if empty, defaults to self.parameters) - :rtype: dict - :return: model or kernels indexed by material parameter and - processor rank, ie dict[parameter][iproc] - """ - if parameters is None: - parameters = self.parameters - - # Initiate empty dictionary to hold model values - model_dict = Dict({key: [] for key in self.parameters}) - - for iproc in range(self.mesh_properties.nproc): - for key in parameters: - _model_slice_values = self._io.read_slice( - path=path, parameters=f"{prefix}{key}{suffix}", iproc=iproc - ) - model_dict[key].extend(_model_slice_values) - - return model_dict - - def save(self, save_dict, path, parameters=None, prefix="", suffix=""): - """ - Solver I/O: Saves SPECFEM2D/3D models or kernels - - :type save_dict: Dict - :param save_dict: model stored by parameter key - :type path: str - :param path: directory from which model is read - :type parameters: list - :param parameters: list of material parameters to be read - :type prefix: str - :param prefix: optional filename prefix - :type suffix: str - :param suffix: optional filename suffix, eg '_kernel' - """ - unix.mkdir(path) - - if parameters is None: - parameters = self.parameters - - # Fill in any missing parameters - missing_keys = diff(parameters, save_dict.keys()) - for iproc in range(self.mesh_properties.nproc): - for key in missing_keys: - save_dict[key] += self._io.read_slice( - path=self.path.MODEL_INIT, - parameters=f"{prefix}{key}{suffix}", - iproc=iproc - ) - - # Write slices to disk - for iproc in range(self.mesh_properties.nproc): - for key in parameters: - self._io.write_slice(data=save_dict[key][iproc], path=path, - parameters=f"{prefix}{key}{suffix}", - iproc=iproc) - - def merge(self, model, parameters=None): - """ - Convert dictionary representation `model` to vector representation `m` - - :type model: dict - :param model: model to be converted - :type parameters: list - :param parameters: optional list of parameters, - defaults to `self.parameters` - :rtype: np.ndarray - :return: model as a vector - """ - if parameters is None: - parameters = self.parameters - - m = np.array([]) - for key in parameters: - for iproc in range(self.mesh_properties.nproc): - m = np.append(m, model[key][iproc]) - - return m - - def split(self, m, parameters=None): - """ - Converts vector representation `m` to dictionary representation `model` - - :type m: np.ndarray - :param m: model to be converted - :type parameters: list - :param parameters: optional list of parameters, - defaults to `self.parameters` - :rtype: dict - :return: model as a dictionary - """ - if parameters is None: - parameters = self.parameters - - nproc = self.mesh_properties.nproc - ngll = self.mesh_properties.ngll - model = Dict() - - for idim, key in enumerate(parameters): - model[key] = [] - for iproc in range(nproc): - imin = sum(ngll) * idim + sum(ngll[:iproc]) - imax = sum(ngll) * idim + sum(ngll[:iproc + 1]) - model[key].extend([m[imin:imax]]) - - return model - def combine(self, input_path, output_path, parameters=None): """ Postprocessing wrapper: xcombine_sem @@ -800,13 +641,16 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., def _import_model(self, path): """ - File transfer utility. Import the model into the workflow. + File transfer utility to move a SPEFEM2D model into the correct location + for a workflow. :type path: str - :param path: path to model + :param path: path to the SPECFEM2D model + :return: """ - model = self.load(path=os.path.join(path, "model")) - self.save(model, self.model_databases) + unix.cp(src=glob(os.path.join(path, "model", "*")), + dst=os.path.join(self.cwd, "DATA") + ) def _import_traces(self, path): """ @@ -1006,32 +850,6 @@ def _initialize_adjoint_traces(self): path=os.path.join(self.cwd, "traces", "adj") ) - def _check_mesh_properties(self, model_path): - """ - Determine if Mesh properties are okay for workflow. - - :type model_path: str - :param model_path: path to the mesh file - """ - if os.path.exists(model_path): - # Count the number of .bin files and the number of grid points - key = self.parameters[0] - bin_files = glob(os.path.join(model_path, f"proc*_{key}.bin")) - nproc = len(bin_files) - ngll = [] - for i in range(0, len(bin_files)): - ngll.append( - len(self._io.read_slice(path=model_path, - parameters=key, iproc=i)[0]) - ) - - # Define internal mesh properties - self._mesh_properties = Dict(nproc=nproc, ngll=ngll, - path=model_path) - else: - self.logger.warning("solver cannot find mesh and will not have " - "access to mesh properties") - def _check_source_names(self): """ Determines names of sources by applying wildcard rule to diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 7cb7b29d..6f5d771f 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -211,18 +211,7 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., parameters=parameters, span_h=span_h, span_v=span_v, output=output) - def _import_model(self, path): - """ - File transfer utility to move a SPEFEM2D model into the correct location - for a workflow. - :type path: str - :param path: path to the SPECFEM2D model - :return: - """ - unix.cp(src=glob(os.path.join(path, "model", "*")), - dst=os.path.join(self.cwd, "DATA") - ) def _initialize_adjoint_traces(self): """ diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index fbd643f6..1d3d5484 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -21,7 +21,7 @@ class Model: Also contains utility functions to read/write itself so that models can be saved alongside their metadata. """ - def __init__(self, path, fmt=None, read=True, load=False): + def __init__(self, path, fmt=None, read=False, load=False): """ Model only needs path to model to determine model parameters. Format `fmt` can be provided by the user or guessed based on available file @@ -53,9 +53,10 @@ def __init__(self, path, fmt=None, read=True, load=False): _first_key = list(self.model.keys())[0] self.nproc = len(self.model[_first_key]) - self.parameters = self.model.keys() - self.vector = self.merge() - self.check() + if read or load: + self.parameters = self.model.keys() + self.vector = self.merge() + self.check() @staticmethod def fnfmt(i="*", val="*", ext="*"): @@ -219,13 +220,13 @@ def check(self, min_pr=-1., max_pr=0.5): logger.info(parts.format(minval=vals.min(), key=key, maxval=vals.max())) - def save(self, file): + def save(self, path): """ Save instance attributes (model, vector, metadata) to disk as an .npz array so that it can be loaded in at a later time for future use """ model = self.split() - np.savez(file=file, **model) + np.savez(file=path, fmt=self.fmt, **model) def load(self, file): """ @@ -236,9 +237,10 @@ def load(self, file): data = np.load(file=file) for i, key in enumerate(data.files): model[key] = data[key] - if i == 0: + if not ngll: for array in model[key]: ngll.append(len(array)) + model.fmt = str(model.fmt) return model, ngll diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 4b38bb65..651d7ef3 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -12,6 +12,7 @@ from seisflows.core import Base from seisflows.tools import msg from seisflows.config import save +from seisflows.tools.specfem import Model class Forward(Base): @@ -175,12 +176,9 @@ def _write_model(self, path, model_tag): a suffix depending on where in the inversion we are. e.g., 'm_try'. Expected that these tags are defined in OPTIMIZE module """ - solver = self.module("solver") - optimize = self.module("optimize") - - dst = os.path.join(path, "model") - self.logger.debug(f"saving model '{model_tag}' to:\n{dst}") - solver.save(solver.split(optimize.load(model_tag)), dst) + m = Model(path=os.path.join(self.path.OPTIMIZE, model_tag)) + m.save(path=os.path.join(path, "model")) + self.logger.debug(f"saving model '{model_tag}'") def _write_misfit(self, path, misfit_tag): """ diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index b24f803c..2e28467b 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -138,21 +138,12 @@ def write_gradient(self): Uses the optimization and postprocess modules to scale the gradient to the given model, write the gradient in vector form and model form, and apply an optional mask to the gradient - - .. note:: - """ postprocess = self.module("postprocess") - optimize = self.module("optimize") - solver = self.module("solver") # Scale the gradient by a mask and by the model gradient = postprocess.scale_gradient(input_path=self.path.GRAD) - # Save the new gradient as a vector in PATH.OPTIMIZE - optimize.save("g_new", gradient) - # Save the new gradient as a set of model files (i.e., proc*_kernel.bin) - solver.save(solver.split(gradient), - path=os.path.join(self.path.GRAD, "gradient"), - suffix="_kernel") + gradient.write(path=os.path.join(self.path.GRAD, "gradient")) + gradient.save(path=os.path.join(self.path.OPTIMIZE, "g_new")) From 7b97ac3b4ab084fb08a74916c9c8040b58363cfe Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Thu, 7 Jul 2022 13:11:55 -0800 Subject: [PATCH 052/195] finished new Model class which has ability to IO and manipulate SPECFEM models, working with fortran binary format. Also including unit test for class with example data --- seisflows/tests/test_tools.py | 33 ++++++++++++++++++++++++++++++++- seisflows/tools/specfem.py | 7 ++++--- 2 files changed, 36 insertions(+), 4 deletions(-) diff --git a/seisflows/tests/test_tools.py b/seisflows/tests/test_tools.py index 23eff2fe..a5188056 100644 --- a/seisflows/tests/test_tools.py +++ b/seisflows/tests/test_tools.py @@ -3,13 +3,44 @@ """ import os import pytest +from glob import glob +from seisflows.tools.specfem import Model from seisflows.config import ROOT_DIR, NAMES, CFGPATHS TEST_DIR = os.path.join(ROOT_DIR, "tests") -def test_load_specfem_model(): +def test_specfem_model(tmpdir): """ Make sure we can dynamically load SPECFEM models in various formats + + TODO eventually we want to split this into multiple tests that test each + TODO of the IO formats (binary, adios etc.). Currently only testing binary. """ + # Make sure that multiple acceptable file extensions throw error + with pytest.raises(AssertionError): + m = Model(path=os.path.join(TEST_DIR, "test_data", "test_file_formats"), + read=True) + # Check that model values are read in correctly + m = Model(path=os.path.join(TEST_DIR, "test_data", "test_file_formats"), + read=True, fmt=".bin") + assert(m.ngll[0] == 40000) + assert(m.nproc == 1) + assert("vp" in m.model.keys()) + assert("vs" in m.model.keys()) + assert(m.model.vp[0][0] == 5800.) + assert(m.model.vs[0][0] == 3500.) + + assert(len(m.merge() == len(m.model.vs[0]) + len(m.model.vp[0]))) + assert(len(m.split()) == len(m.parameters)) + + # Check that saving and loading npz file works + m.save(path=os.path.join(tmpdir, "test.npz")) + m_new = Model(path=os.path.join(tmpdir, "test.npz"), load=True) + assert(m_new.ngll[0] == m.ngll[0]) + assert(m_new.fmt == m.fmt) + + # Check that writing fortran binary works + m.write(path=tmpdir) + assert(len(glob(os.path.join(tmpdir, f"*{m.fmt}"))) == 2) diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 1d3d5484..5aa47d94 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -49,7 +49,7 @@ def __init__(self, path, fmt=None, read=False, load=False): self.nproc, self.available_parameters = self._get_nproc_parameters() self.model, self.ngll = self.read() elif load: - self.model, self.ngll = self.load(file=self.path) + self.model, self.ngll, self.fmt = self.load(file=self.path) _first_key = list(self.model.keys())[0] self.nproc = len(self.model[_first_key]) @@ -236,13 +236,14 @@ def load(self, file): ngll = [] data = np.load(file=file) for i, key in enumerate(data.files): + if key == "fmt": + continue model[key] = data[key] if not ngll: for array in model[key]: ngll.append(len(array)) - model.fmt = str(model.fmt) - return model, ngll + return model, ngll, str(data["fmt"]) def _get_nproc_parameters(self): """ From 12fda4a5fdd78cec4ee4595deafc1dcd383b92e7 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 8 Jul 2022 09:14:05 -0800 Subject: [PATCH 053/195] fixing tests, fully changed out new model implementation throughout package --- seisflows/optimize/gradient.py | 63 ++++++++++++++----------- seisflows/postprocess/default.py | 1 + seisflows/seisflows.py | 2 +- seisflows/solver/specfem.py | 4 +- seisflows/tests/test_modules.py | 3 +- seisflows/tools/specfem.py | 81 +++++++++++++++++++++----------- seisflows/workflow/forward.py | 7 +-- seisflows/workflow/inversion.py | 22 ++------- 8 files changed, 101 insertions(+), 82 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 5c08c393..f1e9b696 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -179,22 +179,27 @@ def load(self, name): :param name: name of the vector, acceptable: m, g, p, f, alpha """ assert(name in self.acceptable_vectors) - model = Model(os.path.join(self.path.OPTIMIZE, f"{name}.npz"), + model = Model(path=os.path.join(self.path.OPTIMIZE, f"{name}.npz"), load=True) return model - def save(self, name, vector): + def save(self, name, m): """ Convenience function to save/overwrite vectors on disk :type name: str :param name: name of the vector to overwrite - :type vector: np.array - :param vector: vector to save to name + :type m: seisflows.tools.cspefem.Model or float + :param m: Model to save to disk as npz array """ assert(name in self.acceptable_vectors) - vector_path = os.path.join(self.path.OPTIMIZE, f"{name}.npy") - np.save(vector_path, vector) + if isinstance(m, Model): + path = os.path.join(self.path.OPTIMIZE, f"{name}.npz") + m.model = m.split() # overwrite m representation + m.save(path=path) + elif isinstance(m, (float, int)): + path = os.path.join(self.path.OPTIMIZE, f"{name}.txt") + np.savetxt(path, [m]) def _precondition(self, q): """ @@ -213,7 +218,7 @@ def _precondition(self, q): else: return q - def compute_direction(self): + def compute_direction(self, save_to): """ Computes a steepest descent search direction (inverse gradient) with an optional user-defined preconditioner. @@ -224,7 +229,7 @@ def compute_direction(self): self.logger.info(f"computing search direction with {self.par.OPTIMIZE}") g_new = self.load("g_new") - p_new = -1 * self._precondition(g_new) + p_new = -1 * self._precondition(g_new.vector) self.save("p_new", p_new) def initialize_search(self): @@ -237,11 +242,11 @@ def initialize_search(self): p = self.load("p_new") f = self.load("f_new") - norm_m = max(abs(m)) - norm_p = max(abs(p)) + norm_m = max(abs(m.vector)) + norm_p = max(abs(p.vector)) - gtg = dot(g, g) - gtp = dot(g, p) + gtg = dot(g.vector, g.vector) + gtp = dot(g.vector, p.vector) # Restart plugin line search if the optimization library restarts if self.restarted: @@ -264,11 +269,10 @@ def initialize_search(self): # The new model is the old model, scaled by the step direction and # gradient threshold to remove any outlier values - m_try = m + alpha * p + m_try = m.vector + alpha * p.vector self.save("m_try", m_try) - np.savetxt("alpha", alpha) - self.check_model(m_try) + self.save("alpha", alpha) def update_search(self): """ @@ -288,11 +292,10 @@ def update_search(self): if status in [0, 1]: m = self.load("m_new") p = self.load("p_new") - np.savetxt("alpha", alpha) + self.save("alpha", alpha) - m_try = m + alpha * p + m_try = m.vector + alpha * p.vector self.save("m_try", m_try) - self.check_model(m_try) return status @@ -316,14 +319,15 @@ def finalize_search(self): self._write_stats() self.logger.info("shifting current model (new) to previous model (old)") - unix.mv("m_new.npy", "m_old.npy") - unix.mv("f_new.npy", "f_old.npy") - unix.mv("g_new.npy", "g_old.npy") - unix.mv("p_new.npy", "p_old.npy") + unix.mv("m_new.npz", "m_old.npz") + unix.mv("f_new.npz", "f_old.npz") + unix.mv("g_new.npz", "g_old.npz") + unix.mv("p_new.npz", "p_old.npz") self.logger.info("setting accepted line search model as current model") - unix.mv("m_try.npy", "m_new.npy") + unix.mv("m_try.npz", "m_new.npz") + # Choose minimum misfit value as final misfit/model f = self.line_search.search_history()[1] self.save("f_new", f.min()) self.logger.info(f"current misfit is {f.min():.3E}") @@ -339,7 +343,7 @@ def retry_status(self): """ g = self.load("g_new") p = self.load("p_new") - theta = angle(p, -g) + theta = angle(p.vector, -1 * g.vector) self.logger.debug(f"theta: {theta:6.3f}") @@ -363,7 +367,7 @@ def restart(self): return g = self.load("g_new") - self.save("p_new", -g) + self.save("p_new", -1 * g.vector) self.line_search.clear_history() self.restarted = 1 @@ -393,9 +397,12 @@ def _write_stats(self): f = self.line_search.search_history()[1] # Calculated stats factors - factor = -dot(g, g) ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) - grad_norm_L1 = np.linalg.norm(g, 1) - grad_norm_L2 = np.linalg.norm(g, 2) + factor = -dot(g.vector, g.vector) + factor = factor ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) + + grad_norm_L1 = np.linalg.norm(g.vector, 1) + grad_norm_L2 = np.linalg.norm(g.vector, 2) + misfit = f[0] restarted = self.restarted slope = (f[1] - f[0]) / (x[1] - x[0]) diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py index 6c298d13..52697869 100644 --- a/seisflows/postprocess/default.py +++ b/seisflows/postprocess/default.py @@ -91,6 +91,7 @@ def scale_gradient(self, input_path): # Access the gradient information stored in as kernel files gradient = Model(path=path_kernels_sum) model = Model(path=path_model) + # Merge to vector and convert to absolute perturbations: # log dm --> dm (see Eq.13 Tromp et al 2005) gradient.vector *= model.vector diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 1bf83f98..d272b348 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -1330,7 +1330,7 @@ def _check_model_parameters(self, src=None, **kwargs): srcs = [src] for tag in srcs: m = optimize.load(tag) - optimize.check_model(m, tag) + m.check() def _check_current_iteration(self, **kwargs): """ diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index aa181c21..ed12964e 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -453,9 +453,9 @@ def eval_grad(self, path, export_traces=False): if export_traces: self._export_traces(path=os.path.join(path, "traces", "syn"), - prefix="traces/syn") + prefix="traces/syn") self._export_traces(path=os.path.join(path, "traces", "adj"), - prefix="traces/adj") + prefix="traces/adj") # def apply_hess(self, path): # """ diff --git a/seisflows/tests/test_modules.py b/seisflows/tests/test_modules.py index f0118505..3b77581a 100644 --- a/seisflows/tests/test_modules.py +++ b/seisflows/tests/test_modules.py @@ -30,8 +30,7 @@ "solver": { "parameters": ["MATERIALS", "DENSITY", "ATTENUATION"], "functions": ["generate_data", "eval_func", - "eval_grad", "load", "save", "merge", "split", - "source_names", "parameters"] + "eval_grad", "source_names", "parameters"] }, "postprocess": { "parameters": [], diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 5aa47d94..26c8b0fc 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -21,7 +21,13 @@ class Model: Also contains utility functions to read/write itself so that models can be saved alongside their metadata. """ - def __init__(self, path, fmt=None, read=False, load=False): + # Dictate the parameters that Model can handle, which does not cover all + # files created by SPECFEM, which includes things like 'ibool', 'info' etc. + acceptable_parameters = ["vp", "vs", "rho", + "vpv", "vph", "vsv", "vsh", "eta"] + acceptable_parameters.extend([f"{_}_kernel" for _ in acceptable_parameters]) + + def __init__(self, path, fmt=None, parameters=None, load=False): """ Model only needs path to model to determine model parameters. Format `fmt` can be provided by the user or guessed based on available file @@ -35,34 +41,37 @@ def __init__(self, path, fmt=None, read=False, load=False): Available formats are: .bin, .dat :type load: bool :param load: load the model into disk as dictionary and vector - representations. If False, will only collect some metadata as a - non-cpu intensive operation + representations. If False, will guess how to import data based on + file extensions or lack thereof """ assert os.path.exists(path), f"specfem model path {path} does not exist" self.path = path + self.parameters = parameters - if read: + # Load an existing model + if os.path.splitext(path)[-1] == ".npz" or load: + self.model, self.ngll, self.fmt = self.load(file=self.path) + _first_key = list(self.model.keys())[0] + self.nproc = len(self.model[_first_key]) + # Read a model from files + else: if fmt is None: self.fmt = self._guess_file_format() else: self.fmt = fmt self.nproc, self.available_parameters = self._get_nproc_parameters() - self.model, self.ngll = self.read() - elif load: - self.model, self.ngll, self.fmt = self.load(file=self.path) - _first_key = list(self.model.keys())[0] - self.nproc = len(self.model[_first_key]) + self.model, self.ngll = self.read(parameters=parameters) - if read or load: - self.parameters = self.model.keys() - self.vector = self.merge() - self.check() + self.parameters = self.model.keys() + self.vector = self.merge() + self.check() @staticmethod def fnfmt(i="*", val="*", ext="*"): """ - Expected SPECFEM filename format with some checks to ensure that wildcards - and numbers are accepted. An example filename is: 'proc000001_vs.bin' + Expected SPECFEM filename format with some checks to ensure that + wildcards and numbers are accepted. An example filename is: + 'proc000001_vs.bin' :type i: int or str :param i: processor number or wildcard. If given as an integer, will be @@ -70,7 +79,7 @@ def fnfmt(i="*", val="*", ext="*"): :type val: str :param val: parameter value (e.g., 'vs') or wildcard :type ext: str - :param ext: the file format (e.g., '.bin'). If NOT preceded by a leading '.' + :param ext: the file format (e.g., '.bin'). If NOT preceded by a '.' will have one prepended :rtype: str :return: filename formatter for use in model manipulation @@ -86,13 +95,13 @@ def fnfmt(i="*", val="*", ext="*"): def read(self, parameters=None): """ Utility function to load in SPECFEM models/kernels/gradients saved in - various formats. Will try to guess format of model. Assumes that models are - saved using the following filename format: + various formats. Will try to guess format of model. Assumes that models + are saved using the following filename format: proc{num}_{val}.{format} where `num` is usually a 6 digit number representing the processor number (e.g., 000000), `val` is the parameter - value of the model/kernel/gradient and `format` is the format of the file - (e.g., bin) + value of the model/kernel/gradient and `format` is the format of the + file (e.g., bin) :type parameters: list of str :param parameters: unique parameters to load model for, if None will load @@ -112,11 +121,10 @@ def read(self, parameters=None): # Pick the correct read function based on the file format load_fx = {".bin": self._read_model_fortran_binary, ".dat": self._read_model_ascii, - ".adios": self._read_model_adios # TODO Check if this is right + ".adios": self._read_model_adios # TODO Check if this okay }[self.fmt] - # Create a dictionary object containing all parameters and respective - # models, save to internal attribute + # Create a dictionary object containing all parameters and their models parameter_dict = Dict({key: [] for key in parameters}) for parameter in parameters: parameter_dict[parameter] = load_fx(parameter=parameter) @@ -132,7 +140,8 @@ def merge(self, parameter=None): """ Convert dictionary representation `model` to vector representation `m` where all parameters and processors are stored as a single 1D vector. - This vector representation is used by the optimization library. + This vector representation is used by the optimization library during + model perturbation. :type parameter: str :param parameter: single parameter to retrieve model vector from, @@ -215,7 +224,7 @@ def check(self, min_pr=-1., max_pr=0.5): # Tell the User min and max values of the updated model logger.info(f"model parameters") - parts = "{minval:.2f} <= {key} <= {maxval:.2f}" + parts = "{minval:.2E} <= {key} <= {maxval:.2E}" for key, vals in self.model.items(): logger.info(parts.format(minval=vals.min(), key=key, maxval=vals.max())) @@ -231,6 +240,13 @@ def save(self, path): def load(self, file): """ Load in a previously saved .npz file containing model information + and re-create a Model instance matching the one that was `save`d + + :type file: str + :param file: .npz file to load data from. Must have been created by + Model.save() + :rtype: tuple (Dict, list, str) + :return: (Model Dictionary, ngll points for each slice, file format) """ model = Dict() ngll = [] @@ -249,13 +265,16 @@ def _get_nproc_parameters(self): """ Get the number of processors and the available parameters from a list of output SPECFEM model files. + + :rtype: tuple (int, list) + :return: (number of processors, list of available parameters in dir) """ fids = glob(os.path.join(self.path, self.fnfmt(val="*", ext=self.fmt))) fids = [os.path.basename(_) for _ in fids] # drop full path fids = [os.path.splitext(_)[0] for _ in fids] # drop extension - + if self.fmt == ".bin": - avail_par = list(set([_.split("_")[-1] for _ in fids])) + avail_par = list(set(["_".join(_.split("_")[1:]) for _ in fids])) nproc = len(glob(os.path.join( self.path, self.fnfmt(val=avail_par[0], ext=self.fmt))) ) @@ -267,13 +286,19 @@ def _get_nproc_parameters(self): raise NotImplementedError(f"{self.fmt} is not yet supported by " f"SeisFlows") - return nproc, avail_par + # Remove any parameters not accepted by Model + avail_par = set(avail_par).intersection(set(self.acceptable_parameters)) + + return nproc, list(avail_par) def _guess_file_format(self): """ Guess the file format of model/kernel/gradient files if none provided by the user. Does so by checking file formats against formats expected from SPECFEM2D/3D/3D_GLOBE + + :rtype: str + :return: file format suffix with a leading '.' e.g., '.bin' """ acceptable_formats = {".bin", ".dat"} diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 651d7ef3..a4d2aefa 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -20,7 +20,7 @@ class Forward(Base): Workflow abstract base class representing an en-masse forward solver and misfit calculator. """ - def __init__(self, path_data): + def __init__(self): """ These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. @@ -176,8 +176,9 @@ def _write_model(self, path, model_tag): a suffix depending on where in the inversion we are. e.g., 'm_try'. Expected that these tags are defined in OPTIMIZE module """ - m = Model(path=os.path.join(self.path.OPTIMIZE, model_tag)) - m.save(path=os.path.join(path, "model")) + m = Model(path=os.path.join(self.path.OPTIMIZE, f"{model_tag}.npz")) + m.write(path=os.path.join(path, "model")) + self.logger.debug(f"saving model '{model_tag}'") def _write_misfit(self, path, misfit_tag): diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 898e5a16..8888faeb 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -272,15 +272,15 @@ def export(self): optimize = self.module("optimize") if self.par.SAVEMODEL: - src = optimize.load("m_new") + src = os.path.join(self.path.OPTIMIZE, "m_new") dst = os.path.join(self.path.OUTPUT, f"model_{optimize.iter:04d}") self.logger.debug(f"exporting model 'm_new' to disk") - self._write_vector(src, dst) + unix.cp(src, dst) if self.par.SAVEGRADIENT: - src = optimize.load("g_old") + src = os.path.join(self.path.OPTIMIZE, "g_old") dst = os.path.join(self.path.OUTPUT, f"grad_{optimize.iter:04d}") - self._write_vector(src, dst) + unix.cp(src, dst) if self.par.SAVEKERNELS: src = os.path.join(self.path.GRAD, "kernels") @@ -288,23 +288,9 @@ def export(self): self.logger.debug(f"saving kernels to path:\n{dst}") unix.mv(src, dst) - # if self.par.SAVETRACES: - # do some stuff - if self.par.SAVERESIDUALS: src = os.path.join(self.path.GRAD, "residuals") dst = os.path.join(self.path.OUTPUT, f"residuals_{optimize.iter:04d}") unix.mv(src, dst) - def _write_vector(self, vector, path): - """ - Convenience function to write vectors as numpy arrays or as model files - to a given path - """ - solver = self.module("solver") - - if self.par.SAVEAS in ["binary", "both"]: - solver.save(solver.split(vector), path) - if self.par.SAVEAS in ["vector", "both"]: - np.save(file=path, arr=vector) From 521b0286ada51d6cd7f542e7c54236e677e791fc Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 8 Jul 2022 12:14:10 -0800 Subject: [PATCH 054/195] scrapping the 'postprocess' module as it was really not carrying its weight compared to the others. postprocessing functionality has now been moved to 'workflow' (scale_gradient) and 'solver' (postprocess_kernels) --- seisflows/solver/specfem.py | 58 +++++++++++++++++++++++++++++++++ seisflows/workflow/inversion.py | 2 +- seisflows/workflow/migration.py | 38 ++++++++++++++++----- 3 files changed, 88 insertions(+), 10 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index ed12964e..3006490a 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -113,6 +113,22 @@ def __init__(self): docstr="The format external solver files. Available: " "['fortran_binary']" ) + self.required.par( + "SMOOTH_H", required=False, default=0., par_type=float, + docstr="Gaussian half-width for horizontal smoothing in units of " + "meters. If 0., no smoothing applied" + ) + self.required.par( + "SMOOTH_V", required=False, default=0., par_type=float, + docstr="Gaussian half-width for vertical smoothing in units of " + "meters" + ) + self.required.par( + "TASKTIME_SMOOTH", required=False, default=1, par_type=int, + docstr="Large radii smoothing may take longer than normal tasks. " + "Allocate additional smoothing task time as a multiple of " + "TASKTIME" + ) self.required.path( "SOLVER", required=False, default=os.path.join(self.path.WORKDIR, "scratch", "solver"), @@ -135,6 +151,11 @@ def __init__(self): docstr="path to the SPECFEM DATA/ directory containing the " "'Par_file', 'STATIONS' file and 'CMTSOLUTION' files" ) + # Define the Paths required by this module + self.required.path( + "MASK", required=False, docstr="Directory to mask files for " + "gradient masking" + ) self.parameters = [] self._source_names = None @@ -457,6 +478,43 @@ def eval_grad(self, path, export_traces=False): self._export_traces(path=os.path.join(path, "traces", "adj"), prefix="traces/adj") + def postprocess_kernels(self, path_grad): + """ + Sums kernels from individual sources, with optional smoothing + + .. note:: + This function needs to be run on system, i.e., called by + system.run(single=True) + + :type path_grad: str + :param path_grad: directory containing sensitivity kernels in the + scratch directory to be summed and smoothed. Output summed and + summed + smoothed kernels will be saved here as well. + """ + # If specified, smooth the kernels in the vertical and horizontal and + # save both (summed, summed+smoothed) to separate output directories + kernel_path = os.path.join(path_grad, "kernels") + + path_sum_nosmooth = os.path.join(kernel_path, "sum_nosmooth") + path_sum = os.path.join(kernel_path, "sum") + + if (self.par.SMOOTH_H > 0) or (self.par.SMOOTH_V > 0): + self.logger.debug(f"saving un-smoothed and summed kernels to:\n" + f"{path_sum_nosmooth}") + self.combine(input_path=kernel_path, output_path=path_sum_nosmooth) + + self.logger.info(f"smoothing gradient: H={self.par.SMOOTH_H}m, " + f"V={self.par.SMOOTH_V}m") + self.logger.debug(f"saving smoothed kernels to:\n{path_sum}") + self.smooth(input_path=path_sum_nosmooth, output_path=path_sum, + span_h=self.par.SMOOTH_H, span_v=self.par.SMOOTH_V) + + # Combine all the input kernels, generating the unscaled gradient + else: + self.logger.debug(f"saving summed kernels to:\n{path_sum}") + self.combine(input_path=kernel_path, output_path=path_sum) + + # def apply_hess(self, path): # """ # High level solver interface that computes action of Hessian on a given diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 8888faeb..d29df7a1 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -156,7 +156,7 @@ def main(self, flow=None, return_flow=False): flow = (self.evaluate_initial_misfit, self.evaluate_gradient, self.process_kernels, - self.write_gradient, + self.scale_gradient, self.compute_direction, self.line_search, self.export, diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 2e28467b..54e23bce 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -10,6 +10,7 @@ from seisflows.workflow.forward import Forward from seisflows.tools import msg +from seisflows.tools.specfem import Model class Migration(Forward): @@ -96,7 +97,7 @@ def main(self, flow=None, return_flow=False): flow = (self.evaluate_initial_misfit, self.evaluate_gradient, self.process_kernels, - self.write_gradient + self.scale_gradient ) self.main(flow=flow, return_flow=return_flow) @@ -130,19 +131,38 @@ def process_kernels(self): self.logger.info(msg.mnr("PROCESSING KERNELS")) # Runs kernel processing as a single parallel process - system.run("postprocess", "sum_smooth_kernels", single=True, + system.run("solver", "postprocess_kernels", single=True, path_grad=self.path.GRAD) - def write_gradient(self): + def scale_gradient(self): """ - Uses the optimization and postprocess modules to scale the gradient - to the given model, write the gradient in vector form and model form, - and apply an optional mask to the gradient + Scale the gradient magnitude by the given model, write the gradient in + vector form and model form, and apply an optional mask to the gradient + + .. note:: + While both masking and preconditioning involve scaling the + gradient, they are fundamentally different operations: + masking is ad hoc, preconditioning is a change of variables; + For more info, see Modrak & Tromp 2016 GJI """ - postprocess = self.module("postprocess") + model = Model(path=os.path.join(self.path.GRAD)) + gradient = Model(path=os.path.join(self.path.GRAD, "kernels", "sum")) + + # Merge to vector and convert to absolute perturbations: + # log dm --> dm (see Eq.13 Tromp et al 2005) + gradient.vector *= model.vector + + if self.path.MASK: + mask = Model(os.path.join(self.path.MASK)) + # Write out a non-masked gradient incase masking is not wanted + gradient.write(path=os.path.join(self.path.GRAD, "gradient_nomask")) + + gradient.vector *= mask.vector + + # Update the model values based on the vector manipulation + gradient.model = gradient.split() - # Scale the gradient by a mask and by the model - gradient = postprocess.scale_gradient(input_path=self.path.GRAD) + # Write the gradient out gradient.write(path=os.path.join(self.path.GRAD, "gradient")) gradient.save(path=os.path.join(self.path.OPTIMIZE, "g_new")) From 03189f604edf2a1df3abb9d9d590f0ca6da10859 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 8 Jul 2022 13:01:47 -0800 Subject: [PATCH 055/195] testing out a new workflow schema involving functions and a script, NOT classes. Hopefully makes it clearer and easier to edit a workflow --- seisflows/seisflows.py | 6 +-- seisflows/solver/specfem.py | 1 - seisflows/tests/test_seisflows.py | 8 ++-- seisflows/tools/wrappers.py | 76 ++++++++++++++---------------- seisflows/workflow/forward_test.py | 50 ++++++++++++++++++++ 5 files changed, 92 insertions(+), 49 deletions(-) create mode 100644 seisflows/workflow/forward_test.py diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index d272b348..861dc21b 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -32,7 +32,7 @@ from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) -from seisflows.tools.wrappers import loadyaml +from seisflows.tools.wrappers import load_yaml def sfparser(): @@ -412,7 +412,7 @@ def _register_parameters(self): # Register parameters from the parameter file try: - parameters = loadyaml(self._args.parameter_file) + parameters = load_yaml(self._args.parameter_file) except Exception as e: print(msg.cli(f"Please check that your parameter file is properly " f"formatted in the YAML format. The read error is:", @@ -656,7 +656,7 @@ def swap(self, module, classname, **kwargs): sys.exit(-1) # Load in old parameter file and then move it to a hidden file - ogpars = loadyaml(self._args.parameter_file) + ogpars = load_yaml(self._args.parameter_file) ogpaths = Dict(ogpars.pop("PATHS")) unix.mv(self._args.parameter_file, f"_{self._args.parameter_file}") diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 3006490a..f4998536 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -494,7 +494,6 @@ def postprocess_kernels(self, path_grad): # If specified, smooth the kernels in the vertical and horizontal and # save both (summed, summed+smoothed) to separate output directories kernel_path = os.path.join(path_grad, "kernels") - path_sum_nosmooth = os.path.join(kernel_path, "sum_nosmooth") path_sum = os.path.join(kernel_path, "sum") diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index c738658e..cd69e5ca 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -14,7 +14,7 @@ from seisflows.core import Dict from seisflows.seisflows import SeisFlows from seisflows.config import ROOT_DIR, NAMES, CFGPATHS -from seisflows.tools.wrappers import loadyaml +from seisflows.tools.wrappers import load_yaml TEST_DIR = os.path.join(ROOT_DIR, "tests") @@ -56,7 +56,7 @@ def par_file_dict(filled_par_file): :rtype: seisflows.config.Dict :return: dictionary of parameters """ - return Dict(loadyaml(filled_par_file)) + return Dict(load_yaml(filled_par_file)) def test_call_seisflows(tmpdir, par_file_dict, copy_par_file): @@ -185,7 +185,7 @@ def test_cmd_init(tmpdir, copy_par_file): copy_par_file # Create necessary paths to get past some assertion errors - parameters = loadyaml("parameters.yaml") + parameters = load_yaml("parameters.yaml") paths = parameters.pop("PATHS") for key in ["MODEL_INIT", "MODEL_TRUE"]: @@ -249,7 +249,7 @@ def test_load_modules(tmpdir, copy_par_file): copy_par_file # Create necessary paths to get past some assertion errors - parameters = loadyaml("parameters.yaml") + parameters = load_yaml("parameters.yaml") paths = parameters.pop("PATHS") for key in ["MODEL_INIT", "MODEL_TRUE"]: diff --git a/seisflows/tools/wrappers.py b/seisflows/tools/wrappers.py index 6b8051d2..e9bdd7e9 100644 --- a/seisflows/tools/wrappers.py +++ b/seisflows/tools/wrappers.py @@ -11,15 +11,45 @@ import numpy as np from importlib import import_module from pkgutil import find_loader +from seisflows.core import Dict -class Struct(dict): +def load_yaml(filename): """ - Revised dictionary structure + Define how the PyYaml yaml loading function behaves. + Replaces None and inf strings with NoneType and numpy.inf respectively + + :type filename: str + :param filename: .yaml file to load in + :rtype: Dict + :return: Dictionary containing all parameters in a YAML file """ - def __init__(self, *args, **kwargs): - super(Struct, self).__init__(*args, **kwargs) - self.__dict__ = self + # work around PyYAML bugs + yaml.SafeLoader.add_implicit_resolver( + u'tag:yaml.org,2002:float', + re.compile(u'''^(?: + [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)? + |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) + |\\.[0-9_]+(?:[eE][-+][0-9]+)? + |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]* + |[-+]?\\.(?:inf|Inf|INF) + |\\.(?:nan|NaN|NAN))$''', re.X), + list(u'-+0123456789.')) + + with open(filename, 'r') as f: + mydict = Dict(yaml.safe_load(f)) + + if mydict is None: + mydict = Dict() + + # Replace 'None' and 'inf' values to match expectations + for key, val in mydict.items(): + if val == "None": + mydict[key] = None + if val == "inf": + mydict[key] = np.inf + + return mydict def diff(list1, list2): @@ -143,42 +173,6 @@ def timestamp(): return time.strftime('%H:%M:%S') -def loadyaml(filename): - """ - Define how the PyYaml yaml loading function behaves. - Replaces None and inf strings with NoneType and numpy.inf respectively - - :type filename: str - :param filename: .yaml file to load in - """ - # work around PyYAML bugs - yaml.SafeLoader.add_implicit_resolver( - u'tag:yaml.org,2002:float', - re.compile(u'''^(?: - [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)? - |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) - |\\.[0-9_]+(?:[eE][-+][0-9]+)? - |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]* - |[-+]?\\.(?:inf|Inf|INF) - |\\.(?:nan|NaN|NAN))$''', re.X), - list(u'-+0123456789.')) - - with open(filename, 'r') as f: - mydict = yaml.safe_load(f) - - if mydict is None: - mydict = dict() - - # Replace 'None' and 'inf' values to match expectations - for key, val in mydict.items(): - if val == "None": - mydict[key] = None - if val == "inf": - mydict[key] = np.inf - - return mydict - - def getset(arg): """ Return a set object diff --git a/seisflows/workflow/forward_test.py b/seisflows/workflow/forward_test.py new file mode 100644 index 00000000..464acf19 --- /dev/null +++ b/seisflows/workflow/forward_test.py @@ -0,0 +1,50 @@ +""" +Test workflow to see if a new form of seisflows workflow can be used +""" +import os +from seisflows.core import Dict +from seisflows.config import custom_import, config_logger, NAMES +from seisflows.tools.wrappers import load_yaml +from seisflows.tools.specfem import Model + + +def setup(instances): + """ + Run the .setup() function for each of the instances, which + """ + + + + + +if __name__ == "__main__": + # Standard SeisFlows Workflow setup block + # ========================================================================== + cwd = os.getcwd() + pars = load_yaml("parameters.yaml") + paths = Dict(pars.pop("paths")) + logger = config_logger(level=pars.log_level, filename=paths.log_file, + verbose=pars.verbose) + + # Dynamically create module instances, instantiated with parameters + classes = [custom_import(name, pars[name.upper()]) for name in NAMES] + instances = [cls(**pars) for cls in classes] + # Check that parameters have been set correctly + for instance in instances: + instance.check() + + # Distribute instances to their respective namesakes + system, preprocess, solver, postprocess, optimize, workflow = instances + # ========================================================================== + + + # Begin workflow + logger.info("Starting forward simulation workflow") + for module in modules: + module.setup() + + m = Model(paths.model_init) + m.write(path=os.path.join(paths.eval_fun, "model")) + + system.run(solver.eval_func) + From 32c0ccc5955e5f07863048439fdcb927bdc3c583 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 8 Jul 2022 14:00:22 -0800 Subject: [PATCH 056/195] gradient and LBFGS now have new implementation of parameter system. internal parameters are now prefixed by leading underscore, which will be useful for future rewrite of 'seisflows configure' --- seisflows/optimize/LBFGS.py | 167 +++++++++--------- seisflows/optimize/gradient.py | 275 ++++++++++++++--------------- seisflows/workflow/forward_test.py | 18 +- 3 files changed, 217 insertions(+), 243 deletions(-) diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 5e9ed721..1c9b4b3f 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -6,10 +6,12 @@ import os import numpy as np +from seisflows import logger from seisflows.optimize.gradient import Gradient from seisflows.tools import unix from seisflows.tools.msg import DEG from seisflows.tools.math import angle +from seisflows.plugins import line_search as line_search_dir class LBFGS(Gradient): @@ -45,14 +47,22 @@ class LBFGS(Gradient): status == 0 : not finished status < 0 : failed """ - def __init__(self): + def __init__(self, lbfgs_mem=3, lbfgs_max=np.inf, lbfgs_thresh=0., + **kwargs): """ These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. - :type LBFGS: Class - :param LBFGS: plugin LBFGS class that controls the machinery of the - L-BFGS optimization schema + :type lbfgs_mem: int + :param lbfgs_mem: L-BFGS memory. Max number of previous gradients to + retain in local memory for approximating the objective function. + :type lbfgs_max: L-BFGS periodic restart interval. Must be + 1 <= lbfgs_max <= infinity. + :type lbfgs_thresh: L-BFGS angle restart threshold. If the angle between + the current and previous search direction exceeds this value, + optimization algorithm will be restarted. + + :type LBFGS_iter: int :param LBFGS_iter: an internally used iteration that differs from optimization iter. Keeps track of internal LBFGS memory of previous @@ -71,51 +81,34 @@ def __init__(self): :param s_file: path to store memory of the model differences i.e., `m_new - m_old` """ - super().__init__() - - # Define the Parameters required by this module - self.required.par( - "LINESEARCH", required=False, default="Backtrack", par_type=str, - docstr="Algorithm to use for line search, see " - "seisflows.plugins.line_search for available choices" - ) - self.required.par( - "LBFGSMEM", required=False, default=3, par_type=int, - docstr="Max number of previous gradients to retain in local memory" - ) - self.required.par( - "LBFGSMAX", required=False, par_type=int, default="inf", - docstr="LBFGS periodic restart interval, between 1 and 'inf'" - ) - self.required.par( - "LBFGSTHRESH", required=False, default=0., par_type=float, - docstr="LBFGS angle restart threshold" - ) - - self.LBFGS_iter = 0 - self.memory_used = 0 - self.LBFGS_dir = "LBFGS" - self.y_file = os.path.join(self.LBFGS_dir, "Y") - self.s_file = os.path.join(self.LBFGS_dir, "S") - - def check(self, validate=True): - """ - Checks parameters, paths, and dependencies - """ - super().check(validate=validate) - - assert(self.par.LINESEARCH.upper() == "BACKTRACK"), \ - "LBFGS requires a Backtracking line search" + super().__init__(**kwargs) + + # Overwrite user-chosen line search. L-BFGS requires 'Backtrack'ing LS + if self._line_search.title != "Backtrack": + logger.warning(f"L-BFGS optimization requires 'backtrack'ing line " + f"search. Overwritng {self._line_search}") + self._line_search = "Backtrack" + self.line_search = getattr(line_search_dir, self._line_search)( + step_count_max=self.step_count_max, step_len_max=self.step_len_max + ) + + self.LBFGS_mem = lbfgs_mem + self.LBFGS_max = lbfgs_max + self.LBFGS_thresh = lbfgs_thresh + + # Internally used memory and path parameters + self._LBFGS_iter = 0 + self._memory_used = 0 + self._LBFGS_dir = os.path.join(self.path, "LBFGS") + self._y_file = os.path.join(self.path, "LBFGS", "Y") + self._s_file = os.path.join(self.path, "LBFGS", "S") def setup(self): """ Set up the LBFGS optimization schema """ super().setup() - - # Create a separate directory for LBFGS matters - unix.cd(self.path.OPTIMIZE) - unix.mkdir(self.LBFGS_dir) + unix.mkdir(self._LBFGS_dir) def compute_direction(self): """ @@ -135,45 +128,45 @@ def compute_direction(self): 4. New search direction is acceptably angled from previous, becomes the new search direction """ - self.logger.info(f"computing search direction with L-BFGS") - self.LBFGS_iter += 1 + unix.cd(self.path) - unix.cd(self.path.OPTIMIZE) + logger.info(f"computing search direction with L-BFGS") + self._LBFGS_iter += 1 # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration g = self.load("g_new") - if self.LBFGS_iter == 1: - self.logger.info("first L-BFGS iteration, setting search direction " + if self._LBFGS_iter == 1: + logger.info("first L-BFGS iteration, setting search direction " "as inverse gradient") - p_new = -g + p_new = -1 * g.vector restarted = 0 + # Restart condition or first iteration lead to setting search direction # as the inverse gradient (i.e., default to steepest descent) - elif self.LBFGS_iter > self.par.LBFGSMAX: - self.logger.info("restarting L-BFGS due to periodic restart " - "condition. setting search direction as" - "inverse gradient") + elif self._LBFGS_iter > self.LBFGS_max: + logger.info("restarting L-BFGS due to periodic restart condition. " + "setting search direction as inverse gradient") self.restart() - p_new = -g + p_new = -1 * g.vector restarted = 1 # Normal LBFGS direction computation else: # Update the search direction, apply the inverse Hessian such that # 'q' becomes the new search direction 'g' - self.logger.info("applying inverse Hessian to gradient") + logger.info("applying inverse Hessian to gradient") s, y = self._update() - q = self._apply(g, s, y) + q = self._apply(g.vector, s, y) # Determine if the new search direction is appropriate by checking # its angle to the previous search direction if self._check_status(g, q): - self.logger.info("new L-BFGS search direction found") + logger.info("new L-BFGS search direction found") p_new = -q restarted = 0 else: - self.logger.info("new search direction not appropriate, " - "defaulting to inverse gradient") + logger.info("new search direction not appropriate, defaulting " + "to inverse gradient") self.restart() p_new = -g restarted = 1 @@ -188,14 +181,14 @@ def restart(self): """ super().restart() - self.logger.info("restarting L-BFGS optimization algorithm by clearing " + logger.info("restarting L-BFGS optimization algorithm by clearing " "internal memory") - self.LBFGS_iter = 1 - self.memory_used = 0 + self._LBFGS_iter = 1 + self._memory_used = 0 unix.cd(self.path.OPTIMIZE) - s = np.memmap(filename=self.s_file, mode="r+") - y = np.memmap(filename=self.y_file, mode="r+") + s = np.memmap(filename=self._s_file, mode="r+") + y = np.memmap(filename=self._y_file, mode="r+") s[:] = 0. y[:] = 0. @@ -218,31 +211,31 @@ def _update(self): :rtype y: np.memmap :return y: memory of the gradient differences `g_new - g_old` """ - unix.cd(self.path.OPTIMIZE) + unix.cd(self.path) # Determine the iterates for model m and gradient g - s_k = self.load("m_new") - self.load("m_old") - y_k = self.load("g_new") - self.load("g_old") + s_k = self.load("m_new").vector - self.load("m_old").vector + y_k = self.load("g_new").vector - self.load("g_old").vector # Determine the shape of the memory map (length of model, length of mem) m = len(s_k) - n = self.par.LBFGSMEM + n = self.LBFGS_mem # Initial iteration, need to create the memory map - if self.memory_used == 0: - s = np.memmap(filename=self.s_file, mode="w+", dtype="float32", + if self._memory_used == 0: + s = np.memmap(filename=self._s_file, mode="w+", dtype="float32", shape=(m, n)) - y = np.memmap(filename=self.y_file, mode="w+", dtype="float32", + y = np.memmap(filename=self._y_file, mode="w+", dtype="float32", shape=(m, n)) # Store the model and gradient differences in memmaps s[:, 0] = s_k y[:, 0] = y_k - self.memory_used = 1 + self._memory_used = 1 # Subsequent iterations will append to memory maps else: - s = np.memmap(filename=self.s_file, mode="r+", dtype="float32", + s = np.memmap(filename=self._s_file, mode="r+", dtype="float32", shape=(m, n)) - y = np.memmap(filename=self.y_file, mode="r+", dtype="float32", + y = np.memmap(filename=self._y_file, mode="r+", dtype="float32", shape=(m, n)) # Shift all stored memory by one index to make room for latest mem s[:, 1:] = s[:, :-1] @@ -252,8 +245,8 @@ def _update(self): y[:, 0] = y_k # Keep track of the memory used - if self.memory_used < self.par.LBFGSMEM: - self.memory_used += 1 + if self._memory_used < self.LBFGS_mem: + self._memory_used += 1 return s, y @@ -271,20 +264,20 @@ def _apply(self, q, s=None, y=None): :rtype r: np.array :return r: new search direction from application of L-BFGS """ - unix.cd(self.path.OPTIMIZE) + unix.cd(self.path) # If no memmaps are given as arguments, instantiate them if s is None or y is None: m = len(q) - n = self.par.LBFGSMEM - s = np.memmap(filename=self.s_file, mode="w+", dtype="float32", + n = self.LBFGS_mem + s = np.memmap(filename=self._s_file, mode="w+", dtype="float32", shape=(m, n)) - y = np.memmap(filename=self.y_file, mode="w+", dtype="float32", + y = np.memmap(filename=self._y_file, mode="w+", dtype="float32", shape=(m, n)) # First matrix product # Recursion step 2 from appendix A of Modrak & Tromp 2016 - kk = self.memory_used + kk = self._memory_used rh = np.zeros(kk) al = np.zeros(kk) for ii in range(kk): @@ -293,8 +286,8 @@ def _apply(self, q, s=None, y=None): q = q - al[ii] * y[:, ii] # Apply a preconditioner if available - if self.precond: - r = self.precond(q) + if self.preconditioner: + r = self._precondition(q) else: r = q @@ -324,13 +317,13 @@ def _check_status(self, g, r): :return: okay status based on status check (False==bad, True==good) """ theta = 180. * np.pi ** -1 * angle(g, r) - self.logger.info(f"new search direction: {theta:.2f}{DEG} from current") + logger.info(f"new search direction: {theta:.2f}{DEG} from current") if not 0. < theta < 90.: - self.logger.info("restarting L-BFGS, theta not a descent direction") + logger.info("restarting L-BFGS, theta not a descent direction") okay = False - elif theta > 90. - self.par.LBFGSTHRESH: - self.logger.info("restarting L-BFGS due to practical safeguard") + elif theta > 90. - self.LBFGS_thresh: + logger.info("restarting L-BFGS due to practical safeguard") okay = False else: okay = True diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index f1e9b696..3b2b522d 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -13,14 +13,14 @@ import os import numpy as np -from seisflows.core import Base +from seisflows import logger from seisflows.tools import msg, unix from seisflows.tools.math import angle, dot from seisflows.tools.specfem import Model -from seisflows.plugins import line_search +from seisflows.plugins import line_search as line_search_dir -class Gradient(Base): +class Gradient: """ Nonlinear optimization abstract base class poviding a gradient/steepest descent optimization algorithm. @@ -45,117 +45,102 @@ class Gradient(Base): algorithm. """ - def __init__(self): + def __init__(self, begin=1, line_search="bracket", preconditioner=False, + step_count_max=10, step_len_init=0.05, step_len_max=0.5, + path_optimize=None, path_output=None, path_preconditioner=None, + **kwargs): """ - Initialize internally used variables for optimization workflow - - :type iter: int - :param iter: the current iteration of the workflow - :type line_search: Class - :param line_search: a class controlling the line search functionality - for determining step length - :type restarted: bool - :param restarted: a flag signalling if the optimization algorithm has - been restarted recently + Optimization algorithm variables + + :type line_search: str + :param line_search: chosen line_search algorithm. Currently available + are 'bracket' and 'backtrack'. See seisflows.plugins.line_search + for all available options + :type preconditioner: str + :param preconditioner: algorithm for preconditioning gradients + :type step_count_max: int + :param step_count_max: maximum number of trial steps to perform during + the line search before a change in line search behavior is + considered + :type step_len_init: float + :param step_len_init: initial line search step length as a fraction of + current model parameters. + :type step_len_max: float + :param step_len_max: maximum allowable step length during the line + search. Set as a fraction of the current model parameters + :type path: str + :param path: scratch path for all optimization related procedures. + if None, defaults to $PWD/scratch/optimize """ super().__init__() - # Define the Parameters required by this module - self.required.par( - "LINESEARCH", required=False, default="Bracket", par_type=str, - docstr="Algorithm to use for line search, see " - "seisflows.plugins.line_search for available choices" - ) - self.required.par( - "PRECOND", required=False, par_type=str, - docstr="Algorithm to use for preconditioning gradients, see " - "seisflows.plugins.preconds for available choices" - ) - self.required.par( - "STEPCOUNTMAX", required=False, default=10, par_type=int, - docstr="Max number of trial steps in line search before a " - "change in line search behavior" - ) - self.required.par( - "STEPLENINIT", required=False, default=0.05, par_type=float, - docstr="Initial line search step length, as a fraction of current " - "model parameters" - ) - self.required.par( - "STEPLENMAX", required=False, default=0.5, par_type=float, - docstr="Max allowable step length, as a fraction of current model " - "parameters" - ) - self.required.path( - "OPTIMIZE", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "optimize"), - docstr="scratch path for nonlinear optimization data" + self.iteration = begin # to match PAR.BEGIN + self.preconditioner = preconditioner + + self.step_count_max = step_count_max + self.step_len_init = step_len_init + self.step_len_max = step_len_max + + # Internal check to see if the chosen line search algorithm exists + if not hasattr(line_search_dir, line_search): + logger.warning(f"{line_search} is not a valid line search " + f"algorithm, defaulting to 'bracket'") + line_search = "bracket" + + self._line_search = line_search.title() + self.line_search = getattr(line_search_dir, self._line_search)( + step_count_max=step_count_max, step_len_max=step_len_max ) - # Internally used parameters - self.iter = 1 - self.line_search = None - self.precond = None - self.restarted = False - self.acceptable_vectors = ["m_new", "m_old", "m_try", - "g_new", "g_old", "g_try", - "p_new", "p_old", "alpha", - "f_new", "f_old", "f_try"] - - def check(self, validate=True): + # Set required path structure + self.path = path_optimize or \ + os.path.join(os.getcwd(), "scratch", "optimize") + self.path_output = path_output or os.path.join(os.getcwd(), "output") + self.path_preconditioner = path_preconditioner + + # Internally used parameters for checking validity + self._acceptable_vectors = ["m_new", "m_old", "m_try", + "g_new", "g_old", "g_try", + "p_new", "p_old", "alpha", + "f_new", "f_old", "f_try"] + self._acceptable_preconditioners = ["diagonal"] + + def check(self): """ Checks parameters, paths, and dependencies """ - super().check(validate=validate) + if self.preconditioner: + # This list should match the logic in self.precondition() - if self.par.LINESEARCH: - assert self.par.LINESEARCH in dir(line_search), \ - f"LINESEARCH parameter must be in {dir(line_search)}" + assert self.preconditioner in self._acceptable_preconditioners, \ + f"PRECOND must be in {self._acceptable_preconditioners}" - if self.par.PRECOND: - # This list should match the logic in self.precondition() - acceptable_preconditioners = ["diagonal"] - assert self.par.PRECOND in acceptable_preconditioners, \ - f"PRECOND must be in {acceptable_preconditioners}" - assert(os.path.exists(self.path.PRECOND)), ( + assert(os.path.exists(self.path_preconditioner)), ( f"preconditioner requires PATH.PRECOND pointing to a array-like" f"weight file" ) - assert 0. < self.par.STEPLENINIT, f"STEPLENINIT must be >= 0." - assert 0. < self.par.STEPLENMAX, f"STEPLENMAX must be >= 0." - assert self.par.STEPLENINIT < self.par.STEPLENMAX, \ - f"STEPLENINIT must be < STEPLENMAX" + assert 0. < self.step_len_init, f"optimize.step_len_init must be >= 0." + assert 0. < self.step_len_max, f"optimize.step_len_max must be >= 0." + assert self.step_len_init < self.step_len_max, \ + f"optimize.step_len_init must be < optimize.step_len_max" def setup(self): """ Sets up nonlinear optimization machinery """ - super().setup() - unix.mkdir(self.path.OPTIMIZE) - - # Line search machinery is defined externally as a plugin class - if self.par.LINESEARCH: - self.line_search = getattr(line_search, self.par.LINESEARCH)( - step_count_max=self.par.STEPCOUNTMAX, - step_len_max=self.par.STEPLENMAX, - ) - # Read in initial model as a vector and ensure it is a valid model - if os.path.exists(self.path.MODEL_INIT): - m_new = Model(path=self.path.MODEL_INIT) - m_new.save(path=os.path.join(self.path.OPTIMIZE, "m_new")) - else: - self.logger.warning( - "PATH.MODEL_INIT not found, cannot save 'm_new'. Either ensure " - "that 'm_new' is present in PATH.OPTIMIZE or restart with a " - "valid PATH.MODEL_INIT" - ) - - def finalize(self): - """ - Finalization tasks - """ - super().finalize() + unix.mkdir(self.path) + + # # Read in initial model as a vector and ensure it is a valid model + # if os.path.exists(self.path.MODEL_INIT): + # m_new = Model(path=self.path.MODEL_INIT) + # m_new.save(path=os.path.join(self.path.OPTIMIZE, "m_new")) + # else: + # logger.warning( + # "PATH.MODEL_INIT not found, cannot save 'm_new'. Either ensure " + # "that 'm_new' is present in PATH.OPTIMIZE or restart with a " + # "valid PATH.MODEL_INIT" + # ) def load(self, name): """ @@ -178,9 +163,8 @@ def load(self, name): :type name: str :param name: name of the vector, acceptable: m, g, p, f, alpha """ - assert(name in self.acceptable_vectors) - model = Model(path=os.path.join(self.path.OPTIMIZE, f"{name}.npz"), - load=True) + assert(name in self._acceptable_vectors) + model = Model(path=os.path.join(self.path, f"{name}.npz"), load=True) return model def save(self, name, m): @@ -192,13 +176,14 @@ def save(self, name, m): :type m: seisflows.tools.cspefem.Model or float :param m: Model to save to disk as npz array """ - assert(name in self.acceptable_vectors) + assert(name in self._acceptable_vectors) + if isinstance(m, Model): - path = os.path.join(self.path.OPTIMIZE, f"{name}.npz") + path = os.path.join(self.path, f"{name}.npz") m.model = m.split() # overwrite m representation m.save(path=path) elif isinstance(m, (float, int)): - path = os.path.join(self.path.OPTIMIZE, f"{name}.txt") + path = os.path.join(self.path, f"{name}.txt") np.savetxt(path, [m]) def _precondition(self, q): @@ -210,26 +195,31 @@ def _precondition(self, q): :rtype: np.array :return: preconditioned vector """ - if self.par.PRECOND is not None: - p = Model(path=self.path.PRECOND) - if self.par.PRECOND == "DIAGONAL": - self.logger.info("applying diagonal preconditioner") + if self.preconditioner is not None: + p = Model(path=self.path_preconditioner) + if self.preconditioner.upper() == "DIAGONAL": + logger.info("applying diagonal preconditioner") return p.vector * q + else: + raise NotImplementedError( + f"preconditioner {self.preconditioner} not supported" + ) else: return q - def compute_direction(self, save_to): + def compute_direction(self): """ - Computes a steepest descent search direction (inverse gradient) + Computes steepest descent search direction (inverse gradient) with an optional user-defined preconditioner. .. note:: Other optimization algorithms must overload this method """ - self.logger.info(f"computing search direction with {self.par.OPTIMIZE}") + logger.info(f"computing search direction") g_new = self.load("g_new") p_new = -1 * self._precondition(g_new.vector) + self.save("p_new", p_new) def initialize_search(self): @@ -237,6 +227,7 @@ def initialize_search(self): Initialize the plugin line search machinery. Should only be run at the beginning of line search, by the main workflow module. """ + # Vectors required to initialize a line search m = self.load("m_new") g = self.load("g_new") p = self.load("p_new") @@ -253,19 +244,18 @@ def initialize_search(self): self.line_search.clear_history() # Optional safeguard to prevent step length from getting too large - if self.par.STEPLENMAX: - self.line_search.step_len_max = \ - self.par.STEPLENMAX * norm_m / norm_p - self.logger.debug(f"max step length safeguard is: " - f"{self.line_search.step_len_max:.2E}") + if self.step_len_max: + new_step_len_max = self.step_len_max * norm_m / norm_p + self.line_search.step_len_max = new_step_len_max + logger.debug(f"max step length safeguard = {new_step_len_max:.2E}") self.line_search.initialize(step_len=0., func_val=f, gtg=gtg, gtp=gtp) alpha, _ = self.line_search.calculate_step() # Alpha defines the trial step length. Optional step length override - if self.par.STEPLENINIT and len(self.line_search.step_lens) <= 1: - alpha = self.par.STEPLENINIT * norm_m / norm_p - self.logger.debug(f"overwrite initial step length: {alpha:.2E}") + if self.step_len_init and len(self.line_search.step_lens) <= 1: + alpha = self.step_len_init * norm_m / norm_p + logger.debug(f"overwrite initial step length: {alpha:.2E}") # The new model is the old model, scaled by the step direction and # gradient threshold to remove any outlier values @@ -306,33 +296,34 @@ def finalize_search(self): Removes old model/search parameters, moves current parameters to old, sets up new current parameters and writes statistic outputs """ - unix.cd(self.path.OPTIMIZE) - self.logger.info(msg.sub("FINALIZING LINE SEARCH")) + unix.cd(self.path) + + logger.info(msg.sub("FINALIZING LINE SEARCH")) # Remove the old model parameters - if self.iter > 1: - self.logger.info("removing previously accepted model files (old)") + if self.iteration > 1: + logger.info("removing previously accepted model files (old)") for fid in ["m_old", "f_old", "g_old", "p_old"]: unix.rm(fid) # Needs to be run before shifting model in next step self._write_stats() - self.logger.info("shifting current model (new) to previous model (old)") + logger.info("shifting current model (new) to previous model (old)") unix.mv("m_new.npz", "m_old.npz") unix.mv("f_new.npz", "f_old.npz") unix.mv("g_new.npz", "g_old.npz") unix.mv("p_new.npz", "p_old.npz") - self.logger.info("setting accepted line search model as current model") + logger.info("setting accepted line search model as current model") unix.mv("m_try.npz", "m_new.npz") # Choose minimum misfit value as final misfit/model f = self.line_search.search_history()[1] self.save("f_new", f.min()) - self.logger.info(f"current misfit is {f.min():.3E}") + logger.info(f"current misfit is {f.min():.3E}") - self.logger.info("resetting line search step count to 0") + logger.info("resetting line search step count to 0") self.line_search.step_count = 0 def retry_status(self): @@ -345,7 +336,7 @@ def retry_status(self): p = self.load("p_new") theta = angle(p.vector, -1 * g.vector) - self.logger.debug(f"theta: {theta:6.3f}") + logger.debug(f"theta: {theta:6.3f}") thresh = 1.e-3 if abs(theta) < thresh: @@ -363,8 +354,9 @@ def restart(self): numerical stagnation. """ # Steepest descent (base) does not need to be restarted - if self.par.OPTIMIZE.capitalize() == "Gradient": - return + # TODO figure out how to deal with this noting inheritance from others + # if self.par.OPTIMIZE.capitalize() == "Gradient": + # return g = self.load("g_new") self.save("p_new", -1 * g.vector) @@ -379,8 +371,8 @@ def _write_stats(self): by subsequent iterations so we need to append values to text files if they should be retained. """ - self.logger.info(f"writing optimization stats") - fid = os.path.join(self.path.OUTPUT, f"optim_stats.txt") + logger.info(f"writing optimization stats") + fid = os.path.join(self.path_output, f"optim_stats.txt") # First time, write header information if not os.path.exists(fid): @@ -397,7 +389,7 @@ def _write_stats(self): f = self.line_search.search_history()[1] # Calculated stats factors - factor = -dot(g.vector, g.vector) + factor = -1 * dot(g.vector, g.vector) factor = factor ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) grad_norm_L1 = np.linalg.norm(g.vector, 1) @@ -408,18 +400,17 @@ def _write_stats(self): slope = (f[1] - f[0]) / (x[1] - x[0]) step_count = self.line_search.step_count step_length = x[f.argmin()] - theta = 180. * np.pi ** -1 * angle(p, -g) + theta = 180. * np.pi ** -1 * angle(p, -1 * g.vector) with open(fid, "a") as f: - pass - f.write(f"{self.iter:0>2}," - f"{factor:6.3E}," - f"{grad_norm_L1:6.3E}," - f"{grad_norm_L2:6.3E}," - f"{misfit:6.3E}," - f"{restarted:6.3E}," - f"{slope:6.3E}," - f"{step_count:0>2}," - f"{step_length:6.3E}," - f"{theta:6.3E}\n" - ) + f.write(f"{self.iteration:0>2}," + f"{factor:6.3E}," + f"{grad_norm_L1:6.3E}," + f"{grad_norm_L2:6.3E}," + f"{misfit:6.3E}," + f"{restarted:6.3E}," + f"{slope:6.3E}," + f"{step_count:0>2}," + f"{step_length:6.3E}," + f"{theta:6.3E}\n" + ) diff --git a/seisflows/workflow/forward_test.py b/seisflows/workflow/forward_test.py index 464acf19..ad002cd2 100644 --- a/seisflows/workflow/forward_test.py +++ b/seisflows/workflow/forward_test.py @@ -8,22 +8,13 @@ from seisflows.tools.specfem import Model -def setup(instances): - """ - Run the .setup() function for each of the instances, which - """ - - - - if __name__ == "__main__": # Standard SeisFlows Workflow setup block # ========================================================================== cwd = os.getcwd() pars = load_yaml("parameters.yaml") - paths = Dict(pars.pop("paths")) - logger = config_logger(level=pars.log_level, filename=paths.log_file, + logger = config_logger(level=pars.log_level, filename=pars.path_log_file, verbose=pars.verbose) # Dynamically create module instances, instantiated with parameters @@ -40,11 +31,10 @@ def setup(instances): # Begin workflow logger.info("Starting forward simulation workflow") - for module in modules: - module.setup() - m = Model(paths.model_init) - m.write(path=os.path.join(paths.eval_fun, "model")) + + m = Model(pars.path_model_init) + m.write(path=os.path.join(paths.eval_func, "model")) system.run(solver.eval_func) From 906a5bcc18bb05c7a49c05b995dc0595be8d2f9c Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 8 Jul 2022 14:09:50 -0800 Subject: [PATCH 057/195] finished NLCG new parameter system, will need to go back and make sure vector notation is correct --- seisflows/optimize/LBFGS.py | 3 +- seisflows/optimize/NLCG.py | 105 +++++++++++++++++++++--------------- 2 files changed, 64 insertions(+), 44 deletions(-) diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 1c9b4b3f..4ae6921c 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -89,7 +89,8 @@ def __init__(self, lbfgs_mem=3, lbfgs_max=np.inf, lbfgs_thresh=0., f"search. Overwritng {self._line_search}") self._line_search = "Backtrack" self.line_search = getattr(line_search_dir, self._line_search)( - step_count_max=self.step_count_max, step_len_max=self.step_len_max + step_count_max=self.step_count_max, + step_len_max=self.step_len_max ) self.LBFGS_mem = lbfgs_mem diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 891c12bf..19911d0a 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -3,9 +3,13 @@ This is the custom class for an NLCG optimization schema. It inherits from the `seisflows.optimize.gradient.Gradient` class """ +import numpy as np + +from seisflows import logger from seisflows.optimize.gradient import Gradient from seisflows.tools import unix from seisflows.tools.math import dot +from seisflows.plugins import line_search as line_search_dir class NLCG(Gradient): @@ -31,38 +35,54 @@ class NLCG(Gradient): status == 0 : not finished status < 0 : failed """ - def __init__(self): + def __init__(self, nlcg_max=np.inf, nlcg_thresh=np.inf, + calc_beta="pollak_ribere", **kwargs): """ These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. - TODO allow user to choose the calc_beta function - :type NLCG_iter: Class - :param NLCG_iter: an internally used iteration that differs from + :type nlcg_max: int + :param nlcg_max: NLCG periodic restart interval, should be between 1 + and infinity + :type nlcg_thresh: NLCG conjugacy restart threshold, should be + between 1 and infinity + :type calc_beta: str + :param calc_beta: method to calculate the parameter 'beta' in the + NLCG algorithm. Available: 'pollak_ribere', 'fletcher_reeves' + + + :type _NLCG_iter: Class + :param _NLCG_iter: an internally used iteration that differs from optimization iter. Keeps track of internal NLCG memory. """ - super().__init__() - - self.required.par( - "NLCGMAX", required=False, default="null", par_type=float, - docstr="NLCG periodic restart interval, between 1 and inf" + super().__init__(**kwargs) + + # Overwrite user-chosen line search. L-BFGS requires 'Backtrack'ing LS + if self._line_search.title != "Bracket": + logger.warning(f"NLCG optimization requires 'bracket'ing line " + f"search. Overwritng {self._line_search}") + self._line_search = "Bracket" + self.line_search = getattr(line_search_dir, self._line_search)( + step_count_max=self.step_count_max, + step_len_max=self.step_len_max + ) + + + self.NLCG_max = nlcg_max + self.NLCG_thresh = nlcg_thresh + + # Check paramter validity + _acceptable_calc_beta = ["pollak_ribere", "fletcher_reeves"] + assert(calc_beta in _acceptable_calc_beta), ( + f"unacceptable `calc_beta`, must be in {_acceptable_calc_beta}" ) - self.required.par( - "NLCGTHRESH", required=False, default="null", par_type=float, - docstr="NLCG conjugacy restart threshold, between 1 and inf" - ) - self.NLCG_iter = 0 - self.calc_beta = self._pollak_ribere + self.calc_beta = calc_beta - def check(self, validate=True): - """ - Checks parameters, paths, and dependencies - """ - super().check(validate=validate) + # Internally used parameters + self._NLCG_iter = 0 + self._calc_beta = getattr(self, f"_{calc_beta}") - assert(self.par.LINESEARCH.upper() == "BRACKET"), \ - f"NLCG requires a bracketing line search algorithm" def compute_direction(self): """ @@ -81,53 +101,52 @@ def compute_direction(self): 5. New NLCG search direction has conjugacy and is a descent direction and is set as the new search direction. """ - self.logger.debug(f"computing search direction with NLCG") - self.NLCG_iter += 1 - - unix.cd(self.path.OPTIMIZE) + unix.cd(self.path) + logger.debug(f"computing search direction with NLCG") + self._NLCG_iter += 1 # Load the current gradient direction g_new = self.load("g_new") # CASE 1: If first iteration, search direction is the current gradient - if self.NLCG_iter == 1: - self.logger.info("first NLCG iteration, setting search direction" + if self._NLCG_iter == 1: + logger.info("first NLCG iteration, setting search direction" "as inverse gradient") - p_new = -g_new + p_new = -1 * g_new.vector restarted = 0 # CASE 2: Force restart if the iterations have surpassed the maximum # number of allowable iter - elif self.NLCG_iter > self.par.NLCGMAX: - self.logger.info("restarting NLCG due to periodic restart " + elif self._NLCG_iter > self.NLCG_max: + logger.info("restarting NLCG due to periodic restart " "condition. setting search direction as inverse " "gradient") self.restart() - p_new = -g_new + p_new = -1 * g_new.vector restarted = 1 # Normal NLCG direction compuitation else: # Compute search direction - g_old = self.load("g_old") - p_old = self.load("p_old") + g_old = self.load("g_old").vector + p_old = self.load("p_old").vector # Apply preconditioner and calc. scale factor for search dir. (beta) - if self.precond is not None: - beta = self.calc_beta(g_new, g_old) + if self.preconditioner is not None: + beta = self._calc_beta(g_new, g_old) p_new = -1 * self._precondition(g_new) + beta * p_old else: - beta = self.calc_beta(g_new, g_old) + beta = self._calc_beta(g_new, g_old) p_new = -g_new + beta * p_old # Check restart conditions, return search direction and status - if check_conjugacy(g_new, g_old) > self.par.NLCGTHRESH: - self.logger.info("restarting NLCG due to loss of conjugacy") + if check_conjugacy(g_new, g_old) > self.NLCG_thresh: + logger.info("restarting NLCG due to loss of conjugacy") self.restart() - p_new = -g_new + p_new = -1 * g_new.vector restarted = 1 elif check_descent(p_new, g_new) > 0.: - self.logger.info("restarting NLCG, not a descent direction") + logger.info("restarting NLCG, not a descent direction") self.restart() - p_new = -g_new + p_new = -1 * g_new.vector restarted = 1 else: p_new = p_new @@ -142,7 +161,7 @@ def restart(self): Overwrite the Base restart class and include a restart of the NLCG """ super().restart() - self.NLCG_iter = 1 + self._NLCG_iter = 1 def _fletcher_reeves(self, g_new, g_old): """ From 4f5a8d6cb1f5eb4767ba030a3fabaef25478d1b1 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 8 Jul 2022 14:19:56 -0800 Subject: [PATCH 058/195] converted default postprocess module to new paramter system --- seisflows/optimize/gradient.py | 6 ++ seisflows/postprocess/default.py | 132 ++++++++++++++----------------- 2 files changed, 67 insertions(+), 71 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 3b2b522d..06d0cdae 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -142,6 +142,12 @@ def setup(self): # "valid PATH.MODEL_INIT" # ) + def finalize(self): + """ + Finalization tasks + """ + pass + def load(self, name): """ Convenience function to access the full paths of model and gradient diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py index 52697869..8184d376 100644 --- a/seisflows/postprocess/default.py +++ b/seisflows/postprocess/default.py @@ -6,68 +6,68 @@ """ import os -from seisflows.core import Base +from seisflows import logger from seisflows.tools.specfem import Model -class Default(Base): +class Default: """ Postprocessing in a Seisflows workflow includes tasks such as regularization, smoothing, sharpening, masking and related operations on models or gradients """ - def __init__(self): + def __init__(self, smooth_h=0., smooth_v=0., tasktime_smooth=1, + path_postprocess=None, path_mask=None): """ - These parameters should not be set by __init__! - Attributes are just initialized as NoneTypes for clarity and docstrings + Establish Postprocessing parameters + + :type smooth_h: float + :param smooth_h: Gaussian half-width for horizontal smoothing in units + of meters. If 0., no smoothing applied + :type smooth_h: float + :param smooth_v: Gaussian half-width for vertical smoothing in units + of meters. + :type tasktime_smooth: float + :param tasktime_smooth: Large radii smoothing may take longer than + normal tasks. Allocate additional smoothing task time as a multiple + of system.tasktime + :type path_postprocess: str + :param path_postprocess: scratch path to perform all postprocessing + tasks such as smoothing, kernel combination etc. + :type path_mask: str + :param path_mask: Directory to mask files for gradient masking. Format + of the mask files MUST match the format of the input model. """ super().__init__() - self.required.par( - "SMOOTH_H", required=False, default=0., par_type=float, - docstr="Gaussian half-width for horizontal smoothing in units of " - "meters. If 0., no smoothing applied" - ) - self.required.par( - "SMOOTH_V", required=False, default=0., par_type=float, - docstr="Gaussian half-width for vertical smoothing in units of " - "meters" - ) - self.required.par( - "TASKTIME_SMOOTH", required=False, default=1, par_type=int, - docstr="Large radii smoothing may take longer than normal tasks. " - "Allocate additional smoothing task time as a multiple of " - "TASKTIME" - ) - # Define the Paths required by this module - self.required.path( - "MASK", required=False, docstr="Directory to mask files for " - "gradient masking" - ) - - def check(self, validate=True): + self.smooth_h = smooth_h + self.smooth_v = smooth_v + self.tasktime_smooth = tasktime_smooth + self.path = path_postprocess or \ + os.path.join(os.getcwd(), "scratch", "evalgrad") + self.path_mask = path_mask + + def check(self): """ Checks parameters and paths """ - super().check(validate=validate) - - if self.path.MASK: - assert os.path.exists(self.path.MASK), \ - f"PATH.MASK provided but does not exist" + if self.path_mask: + assert os.path.exists(self.path_mask), \ + "`postprocess.path_mask` provided but does not exist" def setup(self): """ Setup tasks """ - super().setup() + pass def finalize(self): """ Finalization tasks """ - super().finalize() + pass - def scale_gradient(self, input_path): + def scale_gradient(self): """ Combines contributions from individual sources and material parameters to get the gradient, and optionally applies user-supplied scaling @@ -83,36 +83,31 @@ def scale_gradient(self, input_path): :rtype: np.array :return: scaled gradient as a vector """ - # Postprocess file structure defined here once-and-for-all - path_grad_nomask = os.path.join(input_path, "gradient_nomask") - path_model = os.path.join(input_path, "model") - path_kernels_sum = os.path.join(input_path, "kernels", "sum") - # Access the gradient information stored in as kernel files - gradient = Model(path=path_kernels_sum) - model = Model(path=path_model) + gradient = Model(path=os.path.join(self.path, "model")) + model = Model(path=os.path.join(self.path, "kernels", "sum")) # Merge to vector and convert to absolute perturbations: # log dm --> dm (see Eq.13 Tromp et al 2005) gradient.vector *= model.vector - if self.path.MASK: - self.logger.info(f"masking gradient") + if self.path_mask: + logger.info(f"masking gradient") # to scale the gradient, users can supply "masks" by exactly # mimicking the file format in which models are stored - mask = Model(self.path.MASK) + mask = Model(self.path_mask) # While both masking and preconditioning involve scaling the # gradient, they are fundamentally different operations: # masking is ad hoc, preconditioning is a change of variables; # For more info, see Modrak & Tromp 2016 GJI - gradient.write(path=path_grad_nomask) + gradient.write(path=os.path.join(self.path, "gradient_nomask")) gradient.vector *= mask.vector return gradient - def sum_smooth_kernels(self, path_grad): + def sum_smooth_kernels(self, solver): """ Sums kernels from individual sources, with optional smoothing @@ -120,33 +115,28 @@ def sum_smooth_kernels(self, path_grad): This function needs to be run on system, i.e., called by system.run(single=True) - :type path_grad: str - :param path_grad: directory containing sensitivity kernels in the - scratch directory to be summed and smoothed. Output summed and - summed + smoothed kernels will be saved here as well. + :type solver: solver instance + :param solver: SeisFlows solver which will be used for its combine and + smooth functions """ - solver = self.module("solver") - # If specified, smooth the kernels in the vertical and horizontal and # save both (summed, summed+smoothed) to separate output directories - kernel_path = os.path.join(path_grad, "kernels") - - path_sum_nosmooth = os.path.join(kernel_path, "sum_nosmooth") - path_sum = os.path.join(kernel_path, "sum") - - if (self.par.SMOOTH_H > 0) or (self.par.SMOOTH_V > 0): - self.logger.debug(f"saving un-smoothed and summed kernels to:\n" - f"{path_sum_nosmooth}") - solver.combine(input_path=kernel_path, - output_path=path_sum_nosmooth) - - self.logger.info(f"smoothing gradient: H={self.par.SMOOTH_H}m, " - f"V={self.par.SMOOTH_V}m") - self.logger.debug(f"saving smoothed kernels to:\n{path_sum}") + path_kernel = os.path.join(self.path, "kernels") + path_sum_nosmooth = os.path.join(path_kernel, "sum_nosmooth") + path_sum = os.path.join(path_kernel, "sum") + + if (self.smooth_h > 0) or (self.smooth_v > 0): + logger.debug(f"saving un-smoothed and summed kernels to:\n" + f"{path_sum_nosmooth}") + solver.combine(input_path=path_kernel, output_path=path_sum_nosmooth) + + logger.info(f"smoothing gradient: " + f"H={self.smooth_h}m; V={self.smooth_v}m") + logger.debug(f"saving smoothed kernels to:\n{path_sum}") solver.smooth(input_path=path_sum_nosmooth, output_path=path_sum, - span_h=self.par.SMOOTH_H, span_v=self.par.SMOOTH_V) + span_h=self.smooth_h, span_v=self.smooth_v) # Combine all the input kernels, generating the unscaled gradient else: - self.logger.debug(f"saving summed kernels to:\n{path_sum}") - solver.combine(input_path=kernel_path, output_path=path_sum) + logger.debug(f"saving summed kernels to:\n{path_sum}") + solver.combine(input_path=path_kernel, output_path=path_sum) From 6d903e2b8571ecd30145c8eda719fe9576f0eca3 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 8 Jul 2022 14:39:26 -0800 Subject: [PATCH 059/195] preprocess default converrted to new paramter system but will require some work --- seisflows/preprocess/default.py | 341 ++++++++++++++++---------------- 1 file changed, 166 insertions(+), 175 deletions(-) diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index fe8cde68..6b5290f4 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -9,186 +9,176 @@ import obspy import numpy as np -from seisflows.core import Base +from seisflows import logger from seisflows.tools import signal, unix from seisflows.plugins.preprocess import adjoint, misfit, readers, writers -class Default(Base): +class Default: """ Default SeisFlows preprocessing class Provides data processing functions for seismic traces, with options for data misfit, filtering, normalization and muting """ - def __init__(self): + def __init__(self, data_format="ascii", misfit="waveform", backproject=None, + normalize=None, filter=None, min_period=None, max_period=None, + min_freq=None, max_freq=None, mute=None, path_preprocess=None): """ - These parameters should not be set by __init__! - Attributes are just initialized as NoneTypes for clarity and docstrings + Preprocessing module parameters + + :type data_format: str + :param data_format: data format for reading traces into memory. For + available see: seisflows.plugins.preprocess.readers + :type misfit: str + :param misfit: misfit function for waveform comparisons. For available + see seisflows.plugins.preprocess.misfit + :type backproject: str + :param backproject: backprojection function for migration, or the + objective function in FWI. For available see + seisflows.plugins.preprocess.adjoint + :type normalize: str + :param normalize: Data normalization parameters used to normalize the + amplitudes of waveforms. Choose from two sets: + ENORML1: normalize per event by L1 of traces; OR + ENORML2: normalize per event by L2 of traces; + & + TNORML1: normalize per trace by L1 of itself; OR + TNORML2: normalize per trace by L2 of itself + :type filter: str + :param filter: Data filtering type, available options are: + BANDPASS (req. MIN/MAX PERIOD/FREQ); + LOWPASS (req. MAX_FREQ or MIN_PERIOD); + HIGHPASS (req. MIN_FREQ or MAX_PERIOD) + :type min_period: float + :param min_period: Minimum filter period applied to time series. + See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they + will overwrite PERIOD parameters. + :type max_period: float + :param max_period: Maximum filter period applied to time series. See + also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will + overwrite PERIOD parameters. + :type min_freq: float + :param min_freq: Maximum filter frequency applied to time series, + See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, + they will overwrite PERIOD parameters. + :type max_freq: float + :param max_freq: Maximum filter frequency applied to time series, + See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, + they will overwrite PERIOD parameters. + :type mute: list + :param mute: Data mute parameters used to zero out early / late + arrivals or offsets. Choose any number of: + EARLY: mute early arrivals; + LATE: mute late arrivals; + SHORT: mute short source-receiver distances; + LONG: mute long source-receiver distances + :type path_preprocess: str + :param path_preprocess: scratch path for all preprocessing processes, + including saving files """ - super().__init__() - - # Define the Parameters required by this module - self.required.par( - "MISFIT", required=False, default="waveform", par_type=str, - docstr="Misfit function for waveform comparisons, for available " - "see seisflows.plugins.misfit" - ) - self.required.par( - "BACKPROJECT", required=False, default="null", par_type=str, - docstr="Backprojection function for migration, for available see " - "seisflows.plugins.adjoint" - ) - self.required.par( - "NORMALIZE", required=False, default="null", par_type=str, - docstr="Data normalization option" - ) - self.required.par( - "FILTER", required=False, default="null", par_type=str, - docstr="Data filtering type, available options are:" - "BANDPASS (req. MIN/MAX PERIOD/FREQ);" - "LOWPASS (req. MAX_FREQ or MIN_PERIOD); " - "HIGHPASS (req. MIN_FREQ or MAX_PERIOD) " - ) - self.required.par( - "MIN_PERIOD", required=False, par_type=float, - docstr="Minimum filter period applied to time series." - "See also MIN_FREQ, MAX_FREQ, if User defines FREQ " - "parameters, they will overwrite PERIOD parameters." - ) - self.required.par( - "MAX_PERIOD", required=False, par_type=float, - docstr="Maximum filter period applied to time series." - "See also MIN_FREQ, MAX_FREQ, if User defines FREQ " - "parameters, they will overwrite PERIOD parameters." - ) - self.required.par( - "MIN_FREQ", required=False, par_type=float, - docstr="Maximum filter frequency applied to time series." - "See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ " - "parameters, they will overwrite PERIOD parameters." - ) - self.required.par( - "MAX_FREQ", required=False, par_type=float, - docstr="Maximum filter frequency applied to time series," - "See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ " - "parameters, they will overwrite PERIOD parameters." - ) - self.required.par( - "MUTE", required=False, par_type=list, default=[], - docstr="Data mute parameters used to zero out early / late " - "arrivals or offsets. Choose any number of: " - "EARLY: mute early arrivals; " - "LATE: mute late arrivals; " - "SHORT: mute short source-receiver distances; " - "LONG: mute long source-receiver distances" - ) - self.required.par( - "NORMALIZE", required=False, par_type=list, default=[], - docstr="Data normalization parameters used to normalize the " - "amplitudes of waveforms. Choose from two sets: " - "ENORML1: normalize per event by L1 of traces; OR " - "ENORML2: normalize per event by L2 of traces; AND " - "TNORML1: normalize per trace by L1 of itself; OR " - "TNORML2: normalize per trace by L2 of itself" - ) - # TODO: Add the mute parameters here, const, slope and dist + self.data_format = data_format.title() + self.misfit = misfit + self.backproject = backproject, + self.normalize = normalize + self.filter = filter + self.min_period = min_period + self.max_period = max_period + self.min_freq = min_freq + self.max_freq = max_freq + self.mute = mute or [] + self.normalize = normalize or [] + self.path = path_preprocess or \ + os.path.join(os.getcwd(), "scratch", "preprocess") - # Define the Paths required by this module - self.required.path( - "PREPROCESS", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "preprocess"), - docstr="scratch path to store any preprocessing outputs" - ) + # TODO: Add the mute parameters here, const, slope and dist - self.misfit = None - self.adjoint = None - self.reader = None - self.writer = None + self._misfit = None + self._adjoint = None + self._reader = None + self._writer = None def check(self, validate=True): """ Checks parameters and paths """ - super().check(validate=validate) - # Data normalization option - if self.par.NORMALIZE: + if self.normalize: acceptable_norms = {"TNORML1", "TNORML2", "ENORML1", "ENORML2"} - chosen_norms = [_.upper() for _ in self.par.NORMALIZE] + chosen_norms = [_.upper() for _ in self.normalize] assert(set(chosen_norms).issubset(acceptable_norms)) # Data muting options - if self.par.MUTE: + if self.mute: acceptable_mutes = {"EARLY", "LATE", "LONG", "SHORT"} - chosen_mutes = [_.upper() for _ in self.par.MUTE] + chosen_mutes = [_.upper() for _ in self.mute] assert(set(chosen_mutes).issubset(acceptable_mutes)) if "EARLY" in chosen_mutes: - assert(self.par.EARLY_SLOPE is not None) - assert(self.par.EARLY_SLOPE >= 0.) - assert(self.par.EARLY_CONST is not None) + assert(self.early_slope is not None) + assert(self.early_slope >= 0.) + assert(self.early_const is not None) if "LATE" in chosen_mutes: - assert(self.par.LATE_SLOPE is not None) - assert(self.par.LATE_SLOPE >= 0.) - assert(self.par.LATE_CONST is not None) + assert(self.late_slope is not None) + assert(self.late_slope >= 0.) + assert(self.late_const is not None) if "SHORT" in chosen_mutes: - assert(self.par.SHORT_DIST is not None) - assert (self.par.SHORT_DIST > 0) + assert(self.short_dist is not None) + assert (self.short_dist > 0) if "LONG" in chosen_mutes: - assert(self.par.LONG_DIST is not None) - assert (self.par.LONG_DIST > 0) + assert(self.long_dist is not None) + assert (self.long_dist > 0) # Data filtering options that will be passed to ObsPy filters - if self.par.FILTER: + if self.filter: acceptable_filters = ["BANDPASS", "LOWPASS", "HIGHPASS"] - assert self.par.FILTER.upper() in acceptable_filters, \ - f"self.par.FILTER must be in {acceptable_filters}" + assert self.filter.upper() in acceptable_filters, \ + f"self.filter must be in {acceptable_filters}" # Set the min/max frequencies and periods, frequency takes priority - if self.par.MIN_FREQ is not None: - self.par.MAX_PERIOD = 1 / self.par.MIN_FREQ - elif self.par.MAX_PERIOD is not None: - self.par.MIN_FREQ = 1 / self.par.MAX_PERIOD + if self.min_freq is not None: + self.max_period = 1 / self.min_freq + elif self.max_period is not None: + self.min_freq = 1 / self.max_period - if self.par.MAX_FREQ is not None: - self.par.MIN_PERIOD = 1 / self.par.MAX_FREQ - elif self.par.MIN_PERIOD is not None: - self.par.MAX_FREQ = 1 / self.par.MIN_PERIOD + if self.max_freq is not None: + self.min_period = 1 / self.max_freq + elif self.min_period is not None: + self.max_freq = 1 / self.min_period # Check that the correct filter bounds have been set - if self.par.FILTER.upper() == "BANDPASS": - assert(self.par.MIN_FREQ is not None and - self.par.MAX_FREQ is not None), \ + if self.filter.upper() == "BANDPASS": + assert(self.min_freq is not None and + self.max_freq is not None), \ ("BANDPASS filter PAR.MIN_PERIOD and PAR.MAX_PERIOD or " "PAR.MIN_FREQ and PAR.MAX_FREQ") - elif self.par.FILTER.upper() == "LOWPASS": - assert(self.par.MAX_FREQ is not None or - self.par.MIN_PERIOD is not None),\ + elif self.filter.upper() == "LOWPASS": + assert(self.max_freq is not None or + self.min_period is not None),\ "LOWPASS requires PAR.MAX_FREQ or PAR.MIN_PERIOD" - elif self.par.FILTER.upper() == "HIGHPASS": - assert(self.par.MIN_FREQ is not None or - self.par.MAX_PERIOD is not None),\ + elif self.filter.upper() == "HIGHPASS": + assert(self.min_freq is not None or + self.max_period is not None),\ "HIGHPASS requires PAR.MIN_FREQ or PAR.MAX_PERIOD" # Check that filter bounds make sense, by this point, MIN and MAX # FREQ and PERIOD should be set, so we just check the FREQ - assert(0 < self.par.MIN_FREQ < np.inf), "0 < PAR.MIN_FREQ < inf" - assert(0 < self.par.MAX_FREQ < np.inf), "0 < PAR.MAX_FREQ < inf" - assert(self.par.MIN_FREQ < self.par.MAX_FREQ), ( + assert(0 < self.min_freq < np.inf), "0 < PAR.MIN_FREQ < inf" + assert(0 < self.max_freq < np.inf), "0 < PAR.MAX_FREQ < inf" + assert(self.min_freq < self.max_freq), ( "PAR.MIN_FREQ < PAR.MAX_FREQ" ) # Assert that readers and writers available # TODO | This is a bit vague as dir contains imported modules and hidden # TODO | variables (e.g., np, __name__) - assert(self.par.FORMAT.lower() in dir(readers)), ( - f"Reader {self.par.FORMAT} not found") - assert(self.par.FORMAT.lower() in dir(writers)), ( - f"Writer {self.par.FORMAT} not found") + assert(self.data_format.lower() in dir(readers)), ( + f"Reader {self.data_format} not found") + assert(self.data_format.lower() in dir(writers)), ( + f"Writer {self.data_format} not found") # Assert that either misfit or backproject exists if self.par.WORKFLOW.upper() == "INVERSION": - assert(self.par.MISFIT is not None) + assert(self.misfit is not None) def setup(self): """ @@ -196,29 +186,29 @@ def setup(self): misfit, adjoint source type, and specifying the expected file type for input and output seismic data. """ - unix.mkdir(self.path.PREPROCESS) + unix.mkdir(self.path) # Define misfit function and adjoint trace generator - if self.par.MISFIT: - self.logger.debug(f"misfit function is: '{self.par.MISFIT}'") - self.misfit = getattr(misfit, self.par.MISFIT.lower()) - self.adjoint = getattr(adjoint, self.par.MISFIT.lower()) - elif self.par.BACKPROJECT: - self.logger.debug( - f"backproject function is: '{self.par.BACKPROJECT}'" + if self.misfit: + logger.debug(f"misfit function is: '{self.misfit}'") + self._misfit = getattr(misfit, self.misfit.lower()) + self._adjoint = getattr(adjoint, self.misfit.lower()) + elif self.backproject: + logger.debug( + f"backproject function is: '{self.backproject}'" ) - self.adjoint = getattr(adjoint, self.par.BACKPROJECT.lower()) + self._adjoint = getattr(adjoint, self.backproject.lower()) # Define seismic data reader and writer - self.reader = getattr(readers, self.par.FORMAT.lower()) - self.writer = getattr(writers, self.par.FORMAT.lower()) + self._reader = getattr(readers, self.data_format.lower()) + self._writer = getattr(writers, self.data_format.lower()) def finalize(self): """ Any finalization processes that need to take place at the end of an iteration """ - super().finalize() + pass def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): """ @@ -241,42 +231,42 @@ def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): :param filenames: list of filenames defining the files in traces """ if taskid == 0: - self.logger.debug("preparing files for gradient evaluation") + logger.debug("preparing files for gradient evaluation") for filename in filenames: - obs = self.reader(path=os.path.join(cwd, "traces", "obs"), + obs = self._reader(path=os.path.join(cwd, "traces", "obs"), filename=filename) - syn = self.reader(path=os.path.join(cwd, "traces", "syn"), + syn = self._reader(path=os.path.join(cwd, "traces", "syn"), filename=filename) # Process observations and synthetics identically - if self.par.FILTER: + if self.filter: if taskid == 0: - self.logger.debug(f"applying {self.par.FILTER} filter to data") + logger.debug(f"applying {self.filter} filter to data") obs = self._apply_filter(obs) syn = self._apply_filter(syn) - if self.par.MUTE: + if self.mute: if taskid == 0: - self.logger.debug(f"applying {self.par.MUTE} mutes to data") + logger.debug(f"applying {self.mute} mutes to data") obs = self._apply_mute(obs) syn = self._apply_mute(syn) - if self.par.NORMALIZE: + if self.normalize: if taskid == 0: - self.logger.debug( - f"normalizing data with: {self.par.NORMALIZE}" + logger.debug( + f"normalizing data with: {self.normalize}" ) obs = self._apply_normalize(obs) syn = self._apply_normalize(syn) - if self.par.MISFIT is not None: + if self.misfit is not None: self._write_residuals(cwd, syn, obs) # Write the adjoint traces. Rename file extension for Specfem - if self.par.FORMAT.upper() == "ASCII": + if self.data_format.upper() == "ASCII": # Change the extension to '.adj' from whatever it is ext = os.path.splitext(filename)[-1] filename_out = filename.replace(ext, ".adj") - elif self.par.FORMAT.upper() == "SU": + elif self.data_format.upper() == "SU": # TODO implement this raise NotImplementedError @@ -285,6 +275,7 @@ def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): # Copy over the STATIONS file to STATIONS_ADJOINT required by Specfem # ASSUMING that all stations are used in adjoint simulation + # TODO !!! This is SPECFEM dependent? Belongs in solver.specfem? src = os.path.join(cwd, "DATA", "STATIONS") dst = os.path.join(cwd, "DATA", "STATIONS_ADJOINT") unix.cp(src, dst) @@ -307,7 +298,7 @@ def sum_residuals(self, files): def _write_residuals(self, path, syn, obs): """ Computes residuals between observed and synthetic seismogram based on - the misfit function self.par.MISFIT. Saves the residuals for each + the misfit function self.misfit. Saves the residuals for each data-synthetic pair into a text file located at: ./scratch/solver/*/residuals @@ -324,9 +315,9 @@ def _write_residuals(self, path, syn, obs): """ residuals = [] for tr_obs, tr_syn in zip(obs, syn): - residual = self.misfit(syn=tr_syn.data, obs=tr_obs.data, - nt=tr_syn.stats.npts, - dt=tr_syn.stats.delta + residual = self._misfit(syn=tr_syn.data, obs=tr_obs.data, + nt=tr_syn.stats.npts, + dt=tr_syn.stats.delta ) residuals.append(residual) @@ -352,12 +343,12 @@ def _write_adjoint_traces(self, path, syn, obs, filename): # Use the synthetics as a template for the adjoint sources adj = syn.copy() for tr_adj, tr_obs, tr_syn in zip(adj, obs, syn): - tr_adj.data = self.adjoint(syn=tr_syn.data, obs=tr_obs.data, - nt=tr_syn.stats.npts, - dt=tr_syn.stats.delta - ) + tr_adj.data = self._adjoint(syn=tr_syn.data, obs=tr_obs.data, + nt=tr_syn.stats.npts, + dt=tr_syn.stats.delta + ) - self.writer(adj, path, filename) + self._writer(adj, path, filename) def _apply_filter(self, st): """ @@ -373,13 +364,13 @@ def _apply_filter(self, st): st.detrend("linear") st.taper(0.05, type="hann") - if self.par.FILTER.upper() == "BANDPASS": - st.filter("bandpass", zerophase=True, freqmin=self.par.MIN_FREQ, - freqmax=self.par.FREQMAX) - elif self.par.FILTER.upper() == "LOWPASS": - st.filter("lowpass", zerophase=True, freq=self.par.MAX_FREQ) - elif self.par.FILTER.upper() == "HIGHPASS": - st.filter("highpass", zerophase=True, freq=self.par.MIN_FREQ) + if self.filter.upper() == "BANDPASS": + st.filter("bandpass", zerophase=True, freqmin=self.min_freq, + freqmax=self.max_freq) + elif self.filter.upper() == "LOWPASS": + st.filter("lowpass", zerophase=True, freq=self.max_freq) + elif self.filter.upper() == "HIGHPASS": + st.filter("highpass", zerophase=True, freq=self.min_freq) return st @@ -398,20 +389,20 @@ def _apply_mute(self, st): :rtype: obspy.core.stream.Stream :return: muted stream object """ - mute_choices = [_.upper() for _ in self.par.MUTE] + mute_choices = [_.upper() for _ in self.mute] if "EARLY" in mute_choices: - st = signal.mute_arrivals(st, slope=self.par.EARLY_SLOPE, - const=self.par.EARLY_CONST, + st = signal.mute_arrivals(st, slope=self.early_slope, + const=self.early_const, choice="EARLY") if "LATE" in mute_choices: - st = signal.mute_arrivals(st, slope=self.par.LATE_SLOPE, - const=self.par.LATE_CONST, + st = signal.mute_arrivals(st, slope=self.late_slope, + const=self.late_const, choice="LATE") if "SHORT" in mute_choices: - st = signal.mute_offsets(st, dist=self.par.SHORT_DIST, + st = signal.mute_offsets(st, dist=self.short_dist, choice="SHORT") if "LONG" in mute_choices: - st = signal.mute_arrivals(st, dist=self.par.LONG_DIST, + st = signal.mute_arrivals(st, dist=self.long_dist, choice="LONG") return st @@ -431,7 +422,7 @@ def _apply_normalize(self, st): :return: stream with normalized traces """ st_out = st.copy() - norm_choices = [_.upper() for _ in self.par.NORMALIZE] + norm_choices = [_.upper() for _ in self.normalize] # Normalize an event by the L1 norm of all traces if 'ENORML1' in norm_choices: From d2474af4ba70996011d146b74f5011fa34b7a9c4 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 8 Jul 2022 15:59:18 -0800 Subject: [PATCH 060/195] solver up to specfem3d_globe converted to new parameter system --- seisflows/preprocess/default.py | 3 +- seisflows/preprocess/pyatoa.py | 313 ++++++++++------------- seisflows/solver/specfem.py | 373 +++++++++++----------------- seisflows/solver/specfem2d.py | 82 +++--- seisflows/solver/specfem3d.py | 52 ++-- seisflows/solver/specfem3d_globe.py | 13 + 6 files changed, 375 insertions(+), 461 deletions(-) diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 6b5290f4..0a11fa80 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -23,7 +23,8 @@ class Default: """ def __init__(self, data_format="ascii", misfit="waveform", backproject=None, normalize=None, filter=None, min_period=None, max_period=None, - min_freq=None, max_freq=None, mute=None, path_preprocess=None): + min_freq=None, max_freq=None, mute=None, path_preprocess=None, + **kwargs): """ Preprocessing module parameters diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyatoa.py index 8b4537b0..4b99ee51 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyatoa.py @@ -14,181 +14,149 @@ from glob import glob from pyatoa import Pyaflowa, Inspector -from seisflows.core import Base +from seisflows import logger from seisflows.tools import unix, msg from seisflows.config import CFGPATHS -class Pyatoa(Base): +class Pyatoa: """ Data preprocessing class using the Pyaflowa class within the Pyatoa package. In charge of data discovery, preprocessing, filtering, misfiti quantification and data storage. The User does not need to implement Pyatoa, but rather interacts with it via the parameters and paths of SeisFlows. """ - def __init__(self): + def __init__(self, data_format="ascii", components=None, ntask=1, nproc=1, + min_period=None, max_period=None, filter_corners=4, + client=None, rotate=False, pyflex_preset="default", + fix_windows=False, adj_src_type="cc", plot=True, + pyatoa_log_level="DEBUG", unit_output="VEL", + start_pad_s=0., end_pad_s=None, path_preprocess=None, + path_data=None, path_output=None, save_datasets=True, + save_figures=True, save_log_files=True, **kwargs): """ - These parameters should not be set by __init__! - Attributes are just initialized as NoneTypes for clarity and docstrings - - :param logger: Class-specific logging module, log statements pushed - from this logger will be tagged by its specific module/classname + Pyatoa preprocessing parameters that will be passed to Pyaflowa + + :type data_format: str + :param data_format: data format for reading traces into memory. Pyatoa + only works with 'ASCII' currently. + :type components: str + :param components: components to consider and tag data with. Should be + string of letters such as 'RTZ' + :type min_period: float + :param min_period: Minimum filter corner in unit seconds. Bandpass + filter if set with `max_period`, highpass filter if set without + `max_period`, no filtering if not set and `max_period also not set + :type max_period: float + :param max_period: Maximum filter corner in unit seconds. Bandpass + filter if set with `min_period`, lowpass filter if set without + `min_period`, no filtering if not set and `min_period also not set + :type filter_corners: int + :param filter_corners: number of filter corners applied to filtering + :type client: str + :param client: Client name for ObsPy FDSN data gathering. Pyatoa will + attempt to collect waveform and metadata based on network and + station codes provided in the SPECFEM STATIONS file. If set None, + no FDSN gathering will be attempted + :type rotate: bool + :param rotate: Attempt to rotate waveform components from NEZ -> RTZ + :type pyflex_preset: str + :param pyflex_preset: Parameter map for misfit window configuration + defined by Pyflex. IF None, misfit and adjoint sources will be + calculated on whole traces. For available choices, see Pyatoa docs + page (pyatoa.rtfd.io) + :type fix_windows: bool or str + :param fix_windows: How to address misfit window evaluation at each + evaluation. Options to re-use misfit windows collected during an + inversion, available options: + [True, False, 'ITER', 'ONCE'] + True: Re-use windows after first evaluation (i01s00); + False: Calculate new windows each evaluation; + 'ITER': Calculate new windows at first evaluation of + each iteration (e.g., i01s00... i02s00... + 'ONCE': Calculate new windows at first evaluation of + the workflow, i.e., at self.par.BEGIN + :type adj_src_type: str + :param adj_src_type: Adjoint source type to evaluate misfit, defined by + Pyadjoint. Currently available options: ['cc': cross-correlation, + 'mt': multitaper, 'wav': waveform'] + :type plot: bool + :param plot: plot waveform figures and source receiver maps during + the preprocessing stage + :type pyatoa_log_level: str + :param pyatoa_log_level: Log level to set Pyatoa, Pyflex, Pyadjoint. + Available: ['null': no logging, 'warning': warnings only, + 'info': task tracking, 'debug': log all small details (recommended)] + :type start_pad_s: int + :param start_pad_s: seconds BEFORE origin time to gather data. Must be + >= T_0 specificed in SPECFEM constants.h. Positive values only + :type end_pad_s: int + :param end_pad_s: seconds AFTER origin time to gather data. Must be + >= NT * DT (from SPECFEM Par_file) postive values only. + :type unit_output: str + :param unit_output: Data units. Must match the synthetic output of + external solver. Available: ['DISP': displacement, 'VEL': velocity, + 'ACC': acceleration] + :type save_datasets: bool + :param save_datasets: periodically save the output ASDFDataSets which + contain data, metadata and results collected during the + preprocessing procedure + :type save_figures: bool + :param save_figures: periodically save the output basemaps and + data-synthetic waveform comparison figures + :type save_log_files: bool + :param save_log_files: periodically save log files created by Pyatoa + :type path_preprocess: str + :param path_preprocess: scratch path for preprocessing related steps + :type path_data: str + :param path_data: optional path for preprocessing module to discover + waveform and meta-data. """ - super().__init__() - - # Define the Parameters required by this module - self.required.par( - "UNIT_OUTPUT", required=True, par_type=str, - docstr="Data units. Must match the synthetic output of external " - "solver. Available: ['DISP': displacement, " - "'VEL': velocity, 'ACC': acceleration]" - ) - # TODO Check this against T0 in check() - self.required.par( - "START_PAD", required=False, default=0, par_type=float, - docstr="For data gathering; time before origin time to gather. " - "START_PAD >= T_0 in SPECFEM constants.h.in. " - "Positive values only" - ) - # TODO set this automatically by setting equal NT * DT - self.required.par( - "END_PAD", required=True, par_type=float, - docstr="For data gathering; time after origin time to gather. " - "END_PAD >= NT * DT (of Par_file). Positive values only" - ) - self.required.par( - "MIN_PERIOD", required=False, default="", par_type=float, - docstr="Minimum filter corner in unit seconds. Bandpass filter " - "if set with `MAX_PERIOD`, highpass filter if set " - "without `MAX_PERIOD`, no filtering if not set and " - "`MAX_PERIOD also not set" - ) - self.required.par( - "MAX_PERIOD", required=False, default="", par_type=float, - docstr="Maximum filter corner in unit seconds. Bandpass filter " - "if set with `MIN_PERIOD`, lowpass filter if set " - "without `MIN_PERIOD`, no filtering if not set and " - "`MIN_PERIOD also not set" - ) - self.required.par( - "CORNERS", required=False, default=4, par_type=int, - docstr="Number of filter corners applied to filtering" - ) - self.required.par( - "CLIENT", required=False, par_type=str, - docstr="Client name for ObsPy FDSN data gathering. Pyatoa will " - "attempt to collect waveform and metadata based on " - "network and station codes provided in the SPECFEM " - "STATIONS file. If set None, no FDSN gathering will be " - "attempted" - ) - self.required.par( - "ROTATE", required=False, default=False, par_type=bool, - docstr="Attempt to rotate waveform components from NEZ -> RTZ" - ) - self.required.par( - "PYFLEX_PRESET", required=False, default="default", par_type=str, - docstr="Parameter map for misfit window configuration defined " - "by Pyflex. IF None, misfit and adjoint sources will be " - "calculated on whole traces. For available choices, " - "see Pyatoa docs page (pyatoa.rtfd.io)" - ) - self.required.par( - "FIX_WINDOWS", required=False, default=False, \ - par_type="bool or str", - docstr="How to address misfit window evaluation at each " - "evaluation. Options to re-use misfit windows collected " - "during an inversion, available options: " - "[True, False, 'ITER', 'ONCE'] " - "True: Re-use windows after first evaluation (i01s00); " - "False: Calculate new windows each evaluation; " - "'ITER': Calculate new windows at first evaluation of " - "each iteration (e.g., i01s00... i02s00..." - "'ONCE': Calculate new windows at first evaluation of " - "the workflow, i.e., at self.par.BEGIN" - ) - self.required.par( - "ADJ_SRC_TYPE", required=False, default="cc", par_type=str, - docstr="Adjoint source type to evaluate misfit, defined by " - "Pyadjoint. Currently available options: " - "['cc': cross-correlation, 'mt': multitaper, " - "wav: waveform']" - ) - self.required.par( - "PLOT", required=False, default=True, par_type=bool, - docstr="Attempt to plot waveforms and maps as PDF files at each " - "function evaluation" - ) - - self.required.par( - "PYATOA_LOG_LEVEL", required=False, default="DEBUG", par_type=str, - docstr="Log level to set Pyatoa, Pyflex, Pyadjoint. Available: " - "['null': no logging, 'warning': warnings only, " - "'info': task tracking, " - "'debug': log all small details (recommended)]" - ) - # Parameters to control saving scratch/preprocess files to work dir. - self.required.par( - "SAVE_DATASETS", required=False, default=True, par_type=bool, - docstr="Save PyASDF HDF5 datasets to disk. These datasets store " - "waveform data, metadata, misfit windows, adjoint " - "sources and configuration parameters" - ) - self.required.par( - "SAVE_FIGURES", required=False, default=True, par_type=bool, - docstr="Save output waveform figures to disk as PDFs" - ) - self.required.par( - "SAVE_LOGS", required=False, default=True, par_type=bool, - docstr="Save event-specific Pyatoa logs to disk as .txt files" - ) - # Define the Paths required by this module - self.required.path( - "PREPROCESS", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "preprocess"), - docstr="scratch/ path to store waveform data and figures. " - "Pyatoa will generate an internal directory structure " - "here" - ) - self.required.path( - "DATA", required=False, - docstr="Directory to locally stored data. Pyatoa looks for " - "waveform and metadata in the 'self.path.DATA/mseed' and " - "'self.path.DATA/seed', directories respectively." - ) - - def check(self, validate=True): + # Shared SeisFlows parameters + self.data_format = data_format + self.components = components + self.ntask = ntask + self.nproc = nproc + + # Pyatoa specific parameters + self.min_period = min_period + self.max_period = max_period + self.filter_corners = filter_corners + self.client = client + self.rotate = rotate + self.pyflex_preset = pyflex_preset + self.fix_windows = fix_windows + self.adj_src_type = adj_src_type + self.plot = plot + self.pyatoa_log_level = pyatoa_log_level + self.unit_output = unit_output + self.start_pad_s = start_pad_s + self.end_pad_s = end_pad_s + + self.path = path_preprocess or \ + os.path.join(os.getcwd(), "scratch", "preprocess") + self.path_output = path_output or os.path.join(os.getcwd(), "output") + self.path_data = path_data + + self.save_datasets = save_datasets + self.save_figures = save_figures + self.save_log_files = save_log_files + + def check(self): """ Checks Parameter and Path files, will be run at the start of a Seisflows workflow to ensure that things are set appropriately. """ - super().check(validate=validate) - - # Check that other modules have set parameters that will be used here - for required_parameter in ["COMPONENTS", "FORMAT"]: - assert(required_parameter in self.par), \ - f"Pyatoa requires {required_parameter}" - - assert(self.par.FORMAT.upper() == "ASCII"), \ - "Pyatoa preprocess requires self.par.FORMAT=='ASCII'" - - # assert((self.par.DT * self.par.NT) <= (self.par.START_PAD + self.par.END_PAD)), \ - # ("Pyatoa preprocess must have (self.par.START_PAD + self.par.END_PAD) >= " - # "(self.par.DT * self.par.NT), current values will not provide sufficiently " - # f"long data traces (DT*NT={self.par.DT * self.par.NT}; " - # f"START+END={self.par.START_PAD + self.par.END_PAD}") + assert(self.data_format.upper() == "ASCII"), \ + "Pyatoa preprocess requires `data_format`=='ASCII'" def setup(self): """ Sets up data preprocessing machinery by establishing an internally defined directory structure that will be used to store the outputs of the preprocessing workflow - - Akin to an __init__ class, but to be called externally by the workflow. """ - super().setup() - - unix.mkdir(self.path.PREPROCESS) + unix.mkdir(self.path) def finalize(self): """ @@ -201,8 +169,6 @@ def finalize(self): * Aggregate event-specific PDFs into a single evaluation PDF * Save scratch/ data into output/ if requested """ - super().finalize() - # Initiate Pyaflowa to get access to path structure pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) unix.cd(pyaflowa.paths.datasets) @@ -210,29 +176,29 @@ def finalize(self): # Generate the Inspector from existing datasets and save to disk # Allow this is fail, which might happen if we don't have enough data # or the Dataset is not formatted as expected - insp = Inspector(self.par.TITLE, verbose=False) + insp = Inspector(self.par.TITLE, verbose=False) # !!! TODO try: insp.discover() insp.save() except Exception as e: - self.logger.warning(f"Uncontrolled exception in Inspector creation " + logger.warning(f"Uncontrolled exception in Inspector creation " f"will not create inspector:\n{e}") # Make the final PDF for easier User ingestion of waveform/map figures pyaflowa.make_evaluation_composite_pdf() # Move scratch/ directory results into more permanent storage - if self.par.SAVE_DATASETS: + if self.save_datasets: datasets = glob(os.path.join(pyaflowa.paths.datasets, "*.h5")) self._save_quantity(datasets, tag="datasets") - if self.par.SAVE_FIGURES: + if self.save_figures: figures = glob(os.path.join(pyaflowa.paths.figures, "*.pdf")) self._save_quantity(figures, tag="figures") - if self.par.SAVE_LOGS: + if self.save_log_files: logs = glob(os.path.join(pyaflowa.paths.logs, "*.txt")) - path_out = os.path.join(self.path.WORKDIR, CFGPATHS.LOGDIR) + path_out = os.path.join(self.path_output, CFGPATHS.LOGDIR) self._save_quantity(logs, path_out=path_out) def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): @@ -263,12 +229,12 @@ def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): traces """ if taskid == 0: - self.logger.debug("preparing files for gradient evaluation with " + logger.debug("preparing files for gradient evaluation with " "Pyaflowa") # Process all the stations for a given event using Pyaflowa pyaflowa = self._setup_event_pyaflowa(source_name) - scaled_misfit = pyaflowa.process(nproc=self.par.NPROC) + scaled_misfit = pyaflowa.process(nproc=self.nproc) if scaled_misfit is None: print(msg.cli(f"Event {source_name} returned no misfit, you may " @@ -282,7 +248,7 @@ def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): # Event misfit defined by Tape et al. (2010) written to solver dir. self._write_residuals(path=cwd, scaled_misfit=scaled_misfit) - def _setup_event_pyaflowa(self, source_name=None): + def _setup_event_pyaflowa(self, source_name, iteration, step_count=""): """ A convenience function to set up a Pyaflowa processing instance for a specific event. @@ -296,19 +262,6 @@ def _setup_event_pyaflowa(self, source_name=None): :param source_name: solver source name to evaluate setup for. Must match from list defined by: solver.source_names """ - solver = self.module("solver") - optimize = self.module("optimize") - - iteration = optimize.iter - if source_name is None: - source_name = solver.source_names[0] - - # Deal with the migration case where no step count given - try: - step_count = optimize.line_search.step_count - except AttributeError: - step_count = "" - # Outsource data processing to an event-specfic Pyaflowa instance pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) pyaflowa.setup(source_name=source_name, iteration=iteration, @@ -330,7 +283,7 @@ def _save_quantity(self, filepaths, tag="", path_out=""): :param path_out: overwrite the default output path file naming """ if not path_out: - path_out = os.path.join(self.path.OUTPUT, tag) + path_out = os.path.join(self.path_output, tag) if not os.path.exists(path_out): unix.mkdir(path_out) @@ -367,10 +320,10 @@ def sum_residuals(self, files): :rtype: float :return: average misfit """ - if len(files) != self.par.NTASK: + if len(files) != self.ntask: print(msg.cli(f"Pyatoa preprocessing module did not recover the " f"correct number of residual files " - f"({len(files)}/{self.par.NTASK}). Please check that " + f"({len(files)}/{self.ntask}). Please check that " f"the preprocessing logs", header="error") ) sys.exit(-1) @@ -379,7 +332,7 @@ def sum_residuals(self, files): for filename in files: total_misfit += np.sum(np.loadtxt(filename)) - total_misfit /= self.par.NTASK + total_misfit /= self.ntask return total_misfit diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index f4998536..e511cb75 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -10,13 +10,13 @@ import subprocess from glob import glob -from seisflows.core import Base +from seisflows import logger from seisflows.plugins import solver_io from seisflows.tools import msg, unix from seisflows.tools.specfem import getpar, Model -class Specfem(Base): +class Specfem: """ This base class provides an interface through which solver simulations can be set up and run. It should not be used by itself, but rather it is meant @@ -63,10 +63,41 @@ class Specfem(Base): !!! Required functions which must be implemented by subclass !!! """ - def __init__(self): - """ - These parameters should not be set by the User_! - Attributes are just initialized as NoneTypes for clarity and docstrings + def __init__(self, case="data", data_format="ascii", materials="elastic", + density=False, nproc=1, ntask=1, attenuation=False, + components="ZNE", + solver_io="fortran_binary", mpiexec=None, path_solver=None, + path_data=None, path_specfem_bin=None, path_specfem_data=None, + path_model_init=None, path_model_true=None, path_output=None, + save_traces=False, **kwargs): + """ + SPECFEM Solver parameters + + :type data_format: str + :param data_format: data format for reading traces into memory. + Availalble: ['SU' seismic unix format, 'ASCII' human-readable ascii] + :type materials: str + :param materials: Material parameters used to define model. Available: + ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] + :type density: bool + :param density: How to treat density during inversion. If True, updates + density during inversion. If False, keeps it constant. + TODO Add density scaling based on Vp? + :type attenuation: bool + :param attenuation: How to treat attenuation during inversion. + if True, turns on attenuation during forward simulations only. If + False, attenuation is always set to False. Requires underlying + attenution (Q_mu, Q_kappa) model + :type components: str + :param components: components to consider and tag data with. Should be + string of letters such as 'RTZ' + :type path_specfem_bin: str + :param path_specfem_bin: path to SPECFEM bin/ directory which + contains binary executables for running SPECFEM + :type path_specfem_data: str + :param path_specfem_data: path to SPECFEM DATA/ directory which must + contain the CMTSOLUTION, STATIONS and Par_file files used for + running SPECFEM :type parameters: list of str :param parameters: a list detailing the parameters to be used to @@ -78,97 +109,47 @@ def __init__(self): :param logger: Class-specific logging module, log statements pushed from this logger will be tagged by its specific module/classname """ - super().__init__() - - self.required.par( - "MATERIALS", required=False, par_type=str, default="ELASTIC", - docstr="Material parameters used to define model. Available: " - "['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', " - "'ANISOTROPIC']" - ) - self.required.par( - "DENSITY", required=False, par_type=str, default="CONSTANT", - docstr="How to treat density during inversion. Available: " - "['CONSTANT': Do not update density, " - "'VARIABLE': Update density]" - ) - self.required.par( - "ATTENUATION", required=False, par_type=bool, default=False, - docstr="If True, turn on attenuation during forward " - "simulations, otherwise set attenuation off. Attenuation " - "is always off for adjoint simulations." - ) - self.required.par( - "FORMAT", required=False, par_type=float, default="ASCII", - docstr="Format of synthetic waveforms used during workflow, " - "available options: ['ASCII', 'SU']" - ) - self.required.par( - "COMPONENTS", required=False, default="ZNE", par_type=str, - docstr="Components used to generate data, formatted as a single " - "string, e.g. ZNE or NZ or E" - ) - self.required.par( - "SOLVERIO", required=False, default="fortran_binary", par_type=str, - docstr="The format external solver files. Available: " - "['fortran_binary']" - ) - self.required.par( - "SMOOTH_H", required=False, default=0., par_type=float, - docstr="Gaussian half-width for horizontal smoothing in units of " - "meters. If 0., no smoothing applied" - ) - self.required.par( - "SMOOTH_V", required=False, default=0., par_type=float, - docstr="Gaussian half-width for vertical smoothing in units of " - "meters" - ) - self.required.par( - "TASKTIME_SMOOTH", required=False, default=1, par_type=int, - docstr="Large radii smoothing may take longer than normal tasks. " - "Allocate additional smoothing task time as a multiple of " - "TASKTIME" - ) - self.required.path( - "SOLVER", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "solver"), - docstr="scratch path to hold solver working directories" - ) - self.required.path( - "DATA", required=False, - docstr="path to a directory containing any external data " - "required by the workflow. Catch all directory that " - "can be accessed by all modules" - ) - self.required.path( - "SPECFEM_BIN", required=False, - default=os.path.join(self.path.WORKDIR, "specfem", "bin"), - docstr="path to the SPECFEM binary executables" - ) - self.required.path( - "SPECFEM_DATA", required=False, - default=os.path.join(self.path.WORKDIR, "specfem", "DATA"), - docstr="path to the SPECFEM DATA/ directory containing the " - "'Par_file', 'STATIONS' file and 'CMTSOLUTION' files" - ) - # Define the Paths required by this module - self.required.path( - "MASK", required=False, docstr="Directory to mask files for " - "gradient masking" - ) - - self.parameters = [] + self.case = case + self.data_format = data_format + self.materials = materials + self.nproc = nproc + self.ntask = ntask + self.density = density + self.attenuation = attenuation + self.components = components + self.solver_io = solver_io + self.mpiexec = mpiexec + + # Define internally used directory structure + self.path = path_solver or \ + os.path.join(os.getcwd(), "scratch", "solver") + self.path_data = path_data + self.path_specfem_bin = path_specfem_bin + self.path_specfem_data = path_specfem_data + self.path_model_init = path_model_init + self.path_model_true = path_model_true + self.path_output = path_output + + self.save_traces = save_traces + + # Establish internally defined parameter system + self._parameters = [] + if self.density: + self._parameters.append("rho") + self._source_names = None + self._io = getattr(solver_io, self.solver_io) - @property - def _io(self): - """ - Solver IO module set by User. Located in seisflows.plugins.solver_io + # Define available choices for check parameter + self._available_model_types = ["gll"] + self._available_materials = [ + "ELASTIC", "ACOUSTIC", # specfem2d, specfem3d + "ISOTROPIC", "ANISOTROPIC" # specfem3d_globe + ] + self._available_data_formats = ["ASCII", "SU"] - :rtype: module - :return: module containing solver input/output options - """ - return getattr(solver_io, self.par.SOLVERIO) + # Parameters that NEED to be filled out by child classes + self.source_prefix = None @property def taskid(self): @@ -205,18 +186,6 @@ def source_name(self): """ return self.source_names[self.taskid] - @property - def source_prefix(self): - """ - Preferred source prefix - - TODO remove this and replace all instances with the self.par parameter - - :rtype: str - :return: source prefix - """ - return self.par.SOURCE_PREFIX.upper() - @property def cwd(self): """ @@ -225,7 +194,7 @@ def cwd(self): :rtype: str :return: current solver working directory """ - return os.path.join(self.path.SOLVER, self.source_name) + return os.path.join(self.path, self.source_name) def data_wildcard(self, comp="?"): """ @@ -238,7 +207,7 @@ def data_wildcard(self, comp="?"): :rtype: str :return: a wildcard string that can be used to search for data """ - return NotImplementedError + return NotImplementedError("must be implemented by child class") @property def data_filenames(self): @@ -249,7 +218,7 @@ def data_filenames(self): :rtype: list :return: list of data filenames """ - return NotImplementedError + return NotImplementedError("must be implemented by child class") @property def model_databases(self): @@ -257,7 +226,7 @@ def model_databases(self): SPECFEM directory where model database files are saved. This directory is SPECFEM version dep. """ - return NotImplementedError + return NotImplementedError("must be implemented by child class") @property def kernel_databases(self): @@ -265,56 +234,29 @@ def kernel_databases(self): SPECFEM directory where kernel database files are saved. This directory is SPECFEM version dep. """ - return NotImplementedError + return NotImplementedError("must be implemented by child class") - def check(self, validate=True): + def check(self): """ Checks parameters and paths """ - super().check(validate=validate) - - # Check that other modules have set parameters that will be used here - for required_parameter in ["NPROC"]: - assert (required_parameter in self.par), \ - f"Solver requires {required_parameter}" - - available_materials = ["ELASTIC", "ACOUSTIC", # specfem2d, specfem3d - "ISOTROPIC", "ANISOTROPIC"] # specfem3d_globe - assert(self.par.MATERIALS.upper() in available_materials), \ - f"MATERIALS must be in {available_materials}" - - acceptable_densities = ["CONSTANT", "VARIABLE"] - assert(self.par.DENSITY.upper() in acceptable_densities), \ - f"DENSITY must be in {acceptable_densities}" - - acceptable_formats = ["SU", "ASCII"] - if self.par.FORMAT.upper() not in acceptable_formats: - raise Exception(f"'FORMAT' must be {acceptable_formats}") - - # Internal parameter list based on user-input material choices - # Important to reset parameters to a blank list and let the check - # statements fill it. If not, each time workflow is resumed, parameters - # list will append redundant parameters and things stop working - self.parameters = [] - if self.par.MATERIALS.upper() == "ELASTIC": - assert(self.par.SOLVER.lower() in ["specfem2d", "specfem3d"]) - self.parameters += ["vp", "vs"] - elif self.par.MATERIALS.upper() == "ACOUSTIC": - assert(self.par.SOLVER.lower() in ["specfem2d", "specfem3d"]) - self.parameters += ["vp"] - elif self.par.MATERIALS.upper() == "ISOTROPIC": - assert(self.par.SOLVER.lower() in ["specfem3d_globe"]) - self.parameters += ["vp", "vs"] - elif self.par.MATERIALS.upper() == "ANISOTROPIC": - assert(self.par.SOLVER.lower() in ["specfem3d_globe"]) - self.parameters += ["vpv", "vph", "vsv", "vsh", "eta"] - - if self.par.DENSITY.upper() == "VARIABLE": - self.parameters.append("rho") - - assert hasattr(solver_io, self.par.SOLVERIO) - assert hasattr(self._io, "read_slice"), "IO method has no attribute 'read'" - assert hasattr(self._io, "write_slice"), "IO method has no attribute 'write'" + assert(self.materials.upper() in self._available_materials), \ + f"solver.materials must be in {self._available_materials}" + + if self.data_format.upper() not in self._available_data_formats: + raise NotImplementedError( + f"solver.data_format must be {self._available_data_formats}" + ) + + assert hasattr(solver_io, self.solver_io) + assert hasattr(self._io, "read_slice"), \ + "IO method has no attribute 'read'" + assert hasattr(self._io, "write_slice"), \ + "IO method has no attribute 'write'" + + # TODO Check path data, model_true and case combination + # TODO Check SPECFEM_DATA available files + # TODO Check SPECFEM_BIN available executables def setup(self): """ @@ -356,9 +298,9 @@ def _set_model(self, model_name, model_type=None): # Determine which model will be set as the starting model if model_name.upper() == "INIT": - model_path = self.path.MODEL_INIT + model_path = self.path_model_init elif model_name.upper() == "TRUE": - model_path = self.path.MODEL_TRUE + model_path = self.path_model_true else: raise ValueError(f"model name must be 'INIT' or 'TRUE'") assert(os.path.exists(model_path)), f"model {model_path} does not exist" @@ -390,29 +332,31 @@ def generate_data(self): Also exports observed data to OUTPUT if desired """ # If synthetic inversion, generate 'data' with solver - if self.par.CASE.upper() == "SYNTHETIC": - if self.path.MODEL_TRUE is not None: + if self.case.upper() == "SYNTHETIC": + if self.path_model_true is not None: if self.taskid == 0: - self.logger.info("generating 'data' with MODEL_TRUE") + logger.info("generating 'data' with MODEL_TRUE") # Generate synthetic data on the fly using the true model self._set_model(model_name="true", model_type="gll") self._forward(output_path=os.path.join("traces", "obs")) # If Data provided by user, copy directly into the solver directory - elif self.path.DATA is not None and os.path.exists(self.path.DATA): + elif self.path_data is not None and os.path.exists(self.path_data): unix.cp( - src=glob(os.path.join(self.path.DATA, self.source_name, "*")), + src=glob(os.path.join(self.path_data, self.source_name, "*")), dst=os.path.join("traces", "obs") ) # Save observation data to disk - if self.par.SAVETRACES: + if self.save_traces: self._export_traces( - path=os.path.join(self.path.OUTPUT, "traces", "obs") + path=os.path.join(self.path_output, "traces", "obs") ) - def eval_func(self, path, write_residuals=True): + def eval_func(self, path, preprocess=None): """ Performs forward simulations and evaluates the misfit function using - the preprocess module. + the preprocess module. solver.eval_func is bundled with + preprocess.prepare_eval_grad because they are meant to be run serially + so it is better to lump them together into a single allocation. .. note:: This task should be run in parallel by system.run() @@ -420,21 +364,23 @@ def eval_func(self, path, write_residuals=True): :type path: str :param path: directory from which model is imported and where residuals will be exported - :type write_residuals: bool - :param write_residuals: calculate and export residuals + :type preprocess: instance + :param preprocess: SeisFlows preprocess module which can be used to + prepare gradient evaluation by comparing misfit and creating + adjoint sources. If None, only forward simulations will be + performed """ - preprocess = self.module("preprocess") + unix.cd(self.cwd) if self.taskid == 0: - self.logger.info("running forward simulations") + logger.info("running forward simulations") - unix.cd(self.cwd) self._import_model(path) self._forward(output_path=os.path.join("traces", "syn")) - if write_residuals: + if preprocess: if self.taskid == 0: - self.logger.debug("calling preprocess.prepare_eval_grad()") + logger.debug("call preprocess to prepare gradient evaluation") preprocess.prepare_eval_grad(cwd=self.cwd, taskid=self.taskid, source_name=self.source_name, filenames=self.data_filenames @@ -456,8 +402,9 @@ def eval_grad(self, path, export_traces=False): if False, discard traces """ unix.cd(self.cwd) + if self.taskid == 0: - self.logger.debug("running adjoint simulations") + logger.debug("running adjoint simulations") # Check to make sure that preprocessing module created adjoint traces adjoint_traces_wildcard = os.path.join("traces", "adj", "*") @@ -478,42 +425,6 @@ def eval_grad(self, path, export_traces=False): self._export_traces(path=os.path.join(path, "traces", "adj"), prefix="traces/adj") - def postprocess_kernels(self, path_grad): - """ - Sums kernels from individual sources, with optional smoothing - - .. note:: - This function needs to be run on system, i.e., called by - system.run(single=True) - - :type path_grad: str - :param path_grad: directory containing sensitivity kernels in the - scratch directory to be summed and smoothed. Output summed and - summed + smoothed kernels will be saved here as well. - """ - # If specified, smooth the kernels in the vertical and horizontal and - # save both (summed, summed+smoothed) to separate output directories - kernel_path = os.path.join(path_grad, "kernels") - path_sum_nosmooth = os.path.join(kernel_path, "sum_nosmooth") - path_sum = os.path.join(kernel_path, "sum") - - if (self.par.SMOOTH_H > 0) or (self.par.SMOOTH_V > 0): - self.logger.debug(f"saving un-smoothed and summed kernels to:\n" - f"{path_sum_nosmooth}") - self.combine(input_path=kernel_path, output_path=path_sum_nosmooth) - - self.logger.info(f"smoothing gradient: H={self.par.SMOOTH_H}m, " - f"V={self.par.SMOOTH_V}m") - self.logger.debug(f"saving smoothed kernels to:\n{path_sum}") - self.smooth(input_path=path_sum_nosmooth, output_path=path_sum, - span_h=self.par.SMOOTH_H, span_v=self.par.SMOOTH_V) - - # Combine all the input kernels, generating the unscaled gradient - else: - self.logger.debug(f"saving summed kernels to:\n{path_sum}") - self.combine(input_path=kernel_path, output_path=path_sum) - - # def apply_hess(self, path): # """ # High level solver interface that computes action of Hessian on a given @@ -576,11 +487,11 @@ def _call_solver(self, executable, output="solver.log"): sys.exit(-1) # mpiexec is None when running in serial mode, so e.g., ./xmeshfem2D - if self.par.SYSTEM in ["workstation"]: + if not self.mpiexec: exc_cmd = f"./{executable}" # Otherwise mpiexec is system dependent (e.g., srun, mpirun) else: - exc_cmd = f"{self.par.MPIEXEC} {executable}" + exc_cmd = f"{self.mpiexec} {executable}" # Run solver. Write solver stdout (log files) to text file try: @@ -615,7 +526,7 @@ def combine(self, input_path, output_path, parameters=None): :type input_path: str :param input_path: path to data - :type output_path: str + :type output_path: strs :param output_path: path to export the outputs of xcombine_sem :type parameters: list :param parameters: optional list of parameters, @@ -624,7 +535,7 @@ def combine(self, input_path, output_path, parameters=None): unix.cd(self.cwd) if parameters is None: - parameters = self.parameters + parameters = self._parameters if not os.path.exists(output_path): unix.mkdir(output_path) @@ -677,7 +588,7 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., unix.cd(self.cwd) if parameters is None: - parameters = self.parameters + parameters = self._parameters if not os.path.exists(output_path): unix.mkdir(output_path) @@ -732,7 +643,7 @@ def _export_model(self, path, parameters=None): :param parameters: list of parameters that define the model """ if parameters is None: - parameters = self.parameters + parameters = self._parameters if self.taskid == 0: unix.mkdir(path) @@ -748,7 +659,7 @@ def _export_kernels(self, path): :param path: path to save kernels """ if self.taskid == 0: - self.logger.debug(f"exporting kernels to:\n{path}") + logger.debug(f"exporting kernels to:\n{path}") unix.cd(self.kernel_databases) @@ -768,7 +679,7 @@ def _export_residuals(self, path): :param path: path to save residuals """ if self.taskid == 0: - self.logger.debug(f"exporting residuals to:\n{path}") + logger.debug(f"exporting residuals to:\n{path}") unix.mkdir(os.path.join(path, "residuals")) src = os.path.join(self.cwd, "residuals") @@ -796,7 +707,7 @@ def _export_traces(self, path, prefix="traces/obs"): :param prefix: location of traces w.r.t self.cwd """ if self.taskid == 0: - self.logger.debug("exporting traces to {path} {prefix}") + logger.debug("exporting traces to {path} {prefix}") unix.mkdir(os.path.join(path)) @@ -831,7 +742,7 @@ def _initialize_solver_directories(self): extra files. """ if self.taskid == 0: - self.logger.info(f"initializing {self.par.NTASK} solver directories") + logger.info(f"initializing {self.ntask} solver directories") unix.rm(self.cwd) unix.mkdir(self.cwd) @@ -844,19 +755,19 @@ def _initialize_solver_directories(self): unix.mkdir(cwd_dir) # Copy exectuables into the bin/ directory - src = glob(os.path.join(self.path.SPECFEM_BIN, "*")) + src = glob(os.path.join(self.path_specfem_bin, "*")) dst = os.path.join("bin", "") unix.cp(src, dst) # Copy all input files except source files - src = glob(os.path.join(self.path.SPECFEM_DATA, "*")) + src = glob(os.path.join(self.path_specfem_data, "*")) src = [_ for _ in src if self.source_prefix not in _] dst = os.path.join("DATA", "") unix.cp(src, dst) # Symlink event source specifically, strip the source name as SPECFEM # just expects `source_name` - src = os.path.join(self.path.SPECFEM_DATA, + src = os.path.join(self.path_specfem_data, f"{self.source_prefix}_{self.source_name}") dst = os.path.join("DATA", self.source_prefix) unix.ln(src, dst) @@ -866,11 +777,11 @@ def _initialize_solver_directories(self): # Symlink taskid_0 as mainsolver in solver directory for convenience if not os.path.exists(mainsolver): unix.ln(self.cwd, mainsolver) - self.logger.debug(f"source {self.source_name} symlinked as " - f"mainsolver") + logger.debug(f"symlink {self.source_name} as 'mainsolver'") else: # Copy the initial model from mainsolver into current directory # Avoids the need to run multiple instances of xgenerate_databases + # TODO race condition if things havent been written? Sleep? src = os.path.join(self.path.SOLVER, "mainsolver", "OUTPUT_FILES", "DATABASES_MPI") dst = os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") @@ -881,6 +792,8 @@ def _initialize_adjoint_traces(self): Setup utility: Creates the "adjoint traces" expected by SPECFEM. This is only done for the 'base' the Preprocess class. + TODO move this into workflow setup + .. note:: Adjoint traces are initialized by writing zeros for all channels. Channels actually in use during an inversion or migration will be @@ -890,7 +803,7 @@ def _initialize_adjoint_traces(self): if self.par.PREPROCESS.upper() == "DEFAULT": if self.taskid == 0: - self.logger.debug(f"intializing {len(self.data_filenames)} " + logger.debug(f"intializing {len(self.data_filenames)} " f"empty adjoint traces per event") for filename in self.data_filenames: @@ -918,11 +831,11 @@ def _check_source_names(self): # Apply wildcard rule and check for available sources, exit if no # sources found because then we can't proceed wildcard = f"{self.source_prefix}_*" - fids = sorted(glob(os.path.join(self.path.SPECFEM_DATA, wildcard))) + fids = sorted(glob(os.path.join(self.path_specfem_data, wildcard))) if not fids: print(msg.cli("No matching source files when searching PATH for" "the given WILDCARD", - items=[f"PATH: {self.path.SPECFEM_DATA}", + items=[f"PATH: {self.path_specfem_data}", f"WILDCARD: {wildcard}"], header="error" ) ) @@ -930,7 +843,7 @@ def _check_source_names(self): # Create internal definition of sources names by stripping prefixes names = [os.path.basename(fid).split("_")[-1] for fid in fids] - self._source_names = names[:self.par.NTASK] + self._source_names = names[:self.ntask] diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 6f5d771f..eb4cc511 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -18,20 +18,31 @@ class Specfem2D(Specfem): """ Python interface to Specfem2D. """ - def __init__(self): + def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. + SPECFEM2D specific parameters + + :type source_prefix: str + :param source_prefix: Prefix of SOURCE files in path SPECFEM_DATA. + :type multiples: bool + :param multiples: set an absorbing top-boundary condition """ - super().__init__() + super().__init__(**kwargs) + + self.source_prefix = source_prefix + self.multiples = multiples + self._f0 = None + + # Define parameters based on material type + if self.materials.upper() == "ACOUSTIC": + self._parameters.append("vp") + elif self.materials.upper() == "ELASTIC": + self._parameters.append("vp") + self._parameters.append("vs") + + self._acceptable_source_prefix = ["FORCE", "FORCESOLUTION"] - self.required.par( - "SOURCE_PREFIX", required=False, default="SOURCE", par_type=str, - docstr="Prefix of SOURCE files in path SPECFEM_DATA. By " - "default, 'SOURCE' for SPECFEM2D" - ) - self.f0 = None def data_wildcard(self, comp="?"): """ @@ -44,10 +55,10 @@ def data_wildcard(self, comp="?"): :rtype: str :return: wildcard identifier for channels """ - if self.par.FORMAT.upper() == "SU": + if self.data_format.upper() == "SU": # return f"*.su" # too vague but maybe for a reason? -bryant return f"U{comp}_file_single.su" - elif self.par.FORMAT.upper() == "ASCII": + elif self.data_format.upper() == "ASCII": return f"*.?X{comp}.sem?" @property @@ -64,16 +75,15 @@ def data_filenames(self): :rtype: list :return: list of data filenames """ - unix.cd(self.cwd) - unix.cd(os.path.join("traces", "obs")) + unix.cd(os.path.join(self.cwd, "traces", "obs")) - if self.par.COMPONENTS: + if self.components: filenames = [] - if self.par.FORMAT.upper() == "SU": - for comp in self.par.COMPONENTS: + if self.data_format.upper() == "SU": + for comp in self.components: filenames += [self.data_wildcard(comp=comp.lower())] - elif self.par.FORMAT.upper() == "ASCII": - for comp in self.par.COMPONENTS: + elif self.data_format.upper() == "ASCII": + for comp in self.components: filenames += glob(self.data_wildcard(comp=comp.upper())) else: filenames = glob(self.data_wildcard()) @@ -112,11 +122,18 @@ def setup(self): self.f0 = getpar(key="f0", file=os.path.join(self.cwd, "DATA/SOURCE"))[1] - if "MULTIPLES" in self.par: - if self.par.MULTIPLES: - setpar(key="absorbtop", val=".false.", file="DATA/Par_file") - else: - setpar(key="absorbtop", val=".true.", file="DATA/Par_file") + if self.multiples: + setpar(key="absorbtop", val=".false.", file="DATA/Par_file") + else: + setpar(key="absorbtop", val=".true.", file="DATA/Par_file") + + def check(self): + """ + + """ + super().check() + assert(self.source_prefix in self._acceptable_source_prefix) + def _forward(self, output_path): """ @@ -136,7 +153,7 @@ def _forward(self, output_path): self._call_solver(executable="bin/xmeshfem2D", output="fwd_mesher.log") self._call_solver(executable="bin/xspecfem2D", output="fwd_solver.log") - if self.par.FORMAT.upper() == "SU": + if self.data_format.upper() == "SU": # Work around SPECFEM2D's version dependent file names for tag in ["d", "v", "a", "p"]: unix.rename(old=f"single_{tag}.su", new="single.su", @@ -160,7 +177,7 @@ def _adjoint(self): # Deal with different SPECFEM2D name conventions for regular traces and # "adjoint" traces - if self.par.FORMAT.upper == "SU": + if self.data_format.upper == "SU": unix.rename(old=".su", new=".su.adj", names=glob(os.path.join("traces", "adj", "*.su"))) @@ -225,15 +242,14 @@ def _initialize_adjoint_traces(self): """ super()._initialize_adjoint_traces() - unix.cd(self.cwd) - unix.cd(os.path.join("traces", "adj")) + unix.cd(os.path.join(self.cwd, "traces", "adj")) # work around SPECFEM2D's use of different name conventions for # regular traces and 'adjoint' traces - if self.par.FORMAT.upper() == "SU": + if self.data_format.upper() == "SU": files = glob("*SU") unix.rename(old="_SU", new="_SU.adj", names=files) - elif self.par.FORMAT.upper() == "ASCII": + elif self.data_format.upper() == "ASCII": files = glob("*sem?") # Get the available extensions, which are named based on unit @@ -244,13 +260,13 @@ def _initialize_adjoint_traces(self): # SPECFEM2D requires that all components exist even if ununsed components = ["x", "y", "z", "p"] - if self.par.FORMAT.upper() == "SU": + if self.data_format.upper() == "SU": for comp in components: - src = f"U{self.par.COMPONENTS[0]}_file_single.su.adj" + src = f"U{self.components[0]}_file_single.su.adj" dst = f"U{comp.lower()}s_file_single.su.adj" if not os.path.exists(dst): unix.cp(src, dst) - elif self.par.FORMAT.upper() == "ASCII": + elif self.data_format.upper() == "ASCII": for fid in glob("*.adj"): net, sta, cha, ext = fid.split(".") for comp in components: diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 0be10ffc..43f7b557 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -18,17 +18,35 @@ class Specfem3D(Specfem): """ Python interface to Specfem3D Cartesian. """ - def __init__(self): + def __init__(self, source_prefix="CMTSOLUTION", **kwargs): """ - Initiate parameters required for Specfem3D Cartesian + SPECFEM2D specific parameters + + :type source_prefix: str + :param source_prefix: Prefix of SOURCE files in path SPECFEM_DATA. + :type multiples: bool + :param multiples: set an absorbing top-boundary condition """ - super().__init__() + super().__init__(**kwargs) + + self.source_prefix = source_prefix + self._f0 = None + + # Define parameters based on material type + if self.materials.upper() == "ACOUSTIC": + self._parameters.append("vp") + elif self.materials.upper() == "ELASTIC": + self._parameters.append("vp") + self._parameters.append("vs") + + self._acceptable_source_prefix = ["CMTSOLUTION", "FORCESOLUTION"] - self.required.par( - "SOURCE_PREFIX", required=False, default="CMTSOLUTION", - par_type=str, - docstr="Prefix of SOURCE files in path SPECFEM_DATA. Available " - "['CMTSOLUTION', FORCESOLUTION']") + def check(self): + """ + Check parameter validitiy + """ + super().check() + assert(self.source_prefix in self._acceptable_source_prefix) def data_wildcard(self, comp="?"): """ @@ -53,8 +71,8 @@ def data_filenames(self): """ unix.cd(os.path.join(self.cwd, "traces", "obs")) - if self.par.COMPONENTS: - files = glob(self.data_wildcard(comp=self.par.COMPONENTS.lower())) + if self.components: + files = glob(self.data_wildcard(comp=self.components.lower())) else: files = glob(self.data_wildcard(comp="?")) return sorted(files) @@ -77,7 +95,7 @@ def kernel_databases(self): """ return self.model_databases - def eval_func(self, path, write_residuals=True): + def eval_func(self, path, preprocess=None): """ Performs forward simulations and evaluates the misfit function using the preprocess module. Overrides to add a data renaming call @@ -90,7 +108,7 @@ def eval_func(self, path, write_residuals=True): will be exported :type write_residuals: bool :param write_residuals: calculate and export residuals """ - super().eval_func(path=path, write_residuals=write_residuals) + super().eval_func(path=path, preprocess=preprocess) # Work around SPECFEM3D conflicting name conventions of SU data self._rename_data() @@ -108,7 +126,7 @@ def _forward(self, output_path): # Set parameters and run forward simulation setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - if self.par.ATTENUATION: + if self.attenuation: setpar(key="ATTENUATION", val=".true.", file="DATA/Par_file") else: setpar(key="ATTENUATION", val=".false`.", file="DATA/Par_file") @@ -156,14 +174,14 @@ def _initialize_adjoint_traces(self): # Workaround for Specfem3D's requirement that all components exist, # even ones not in use as adjoint traces - if self.par.FORMAT.upper() == "SU": + if self.data_format.upper() == "SU": unix.cd(os.path.join(self.cwd, "traces", "adj")) - for iproc in range(self.par.NPROC): + for iproc in range(self.nproc): for channel in ["x", "y", "z"]: dst = f"{iproc:d}_d{channel}_SU.adj" if not exists(dst): - src = f"{iproc:d}_d{self.par.COMPONENTS[0]}_SU.adj" + src = f"{iproc:d}_d{self.components[0]}_SU.adj" unix.cp(src, dst) def _rename_data(self): @@ -173,7 +191,7 @@ def _rename_data(self): Specfem3D's uses different name conventions for regular traces and 'adjoint' traces """ - if self.par.FORMAT.upper() == "SU": + if self.data_format.upper() == "SU": files = glob(os.path.join(self.cwd, "traces", "adj", "*SU")) unix.rename(old='_SU', new='_SU.adj', names=files) diff --git a/seisflows/solver/specfem3d_globe.py b/seisflows/solver/specfem3d_globe.py index 9b02c757..37897fcc 100644 --- a/seisflows/solver/specfem3d_globe.py +++ b/seisflows/solver/specfem3d_globe.py @@ -28,6 +28,19 @@ def __init__(self): Attributes are initialized as NoneTypes for clarity and docstrings. """ super().__init__() + if self.materials.upper() == "ELASTIC": + assert(self.par.SOLVER.lower() in ["specfem2d", "specfem3d"]) + self.parameters += ["vp", "vs"] + elif self.materials.upper() == "ACOUSTIC": + assert(self.par.SOLVER.lower() in ["specfem2d", "specfem3d"]) + self.parameters += ["vp"] + elif self.materials.upper() == "ISOTROPIC": + assert(self.par.SOLVER.lower() in ["specfem3d_globe"]) + self.parameters += ["vp", "vs"] + elif self.materials.upper() == "ANISOTROPIC": + assert(self.par.SOLVER.lower() in ["specfem3d_globe"]) + self.parameters += ["vpv", "vph", "vsv", "vsh", "eta"] + def data_wildcard(self, comp="?"): """ From b17bc736bd2556e88d89ac8cfc711d87bbcd798b Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 8 Jul 2022 16:59:30 -0800 Subject: [PATCH 061/195] finished refactoring all system modules up to maui (what it inherited from). will need to address other modules after --- seisflows/solver/specfem3d.py | 8 +- seisflows/system/cluster.py | 54 ++++------ seisflows/system/maui.py | 163 +++++++++++++----------------- seisflows/system/slurm.py | 98 +++++++++--------- seisflows/system/workstation.py | 172 ++++++++++++++------------------ 5 files changed, 219 insertions(+), 276 deletions(-) diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 43f7b557..bad6f5f6 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -55,9 +55,9 @@ def data_wildcard(self, comp="?"): :rtype: str :return: wildcard identifier for channels """ - if self.par.FORMAT.upper() == "SU": + if self.data_format.upper() == "SU": return f"*_d?_SU" - elif self.par.FORMAT.upper() == "ASCII": + elif self.data_format.upper() == "ASCII": return f"*.?X{comp}.sem?" @property @@ -123,6 +123,8 @@ def _forward(self, output_path): data (i.e., synthetics generated by the TRUE model), or 'traces/syn', for synthetics generated during function evaluations """ + unix.cd(self.cwd) + # Set parameters and run forward simulation setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") @@ -144,6 +146,8 @@ def _adjoint(self): Calls SPECFEM3D adjoint solver, creates the `SEM` folder with adjoint traces which is required by the adjoint solver """ + unix.cd(self.cwd) + setpar(key="SIMULATION_TYPE", val="3", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".false.", file="DATA/Par_file") diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index a2a8adb6..83888596 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -5,6 +5,7 @@ specific clusters. """ import subprocess +from seisflows.config import save from seisflows.system.workstation import Workstation @@ -13,45 +14,29 @@ class Cluster(Workstation): Abstract base class for the Systems module which controls interaction with compute systems such as HPC clusters. """ - def __init__(self): + def __init__(self, walltime=10, tasktime=1, environs="", **kwargs): """ Instantiate the Cluster System class - """ - super().__init__() - - self.required.par( - "WALLTIME", required=True, par_type=float, - docstr="Maximum job time in minutes for main SeisFlows job" - ) - self.required.par( - "TASKTIME", required=True, par_type=float, - docstr="Maximum job time in minutes for each SeisFlows task" - ) - # note: OVERLOADS the Workstation `NTASK` parameter - self.required.par( - "NTASK", required=True, par_type=int, - docstr="Number of separate, individual tasks. Also equal to " - "the number of desired sources in workflow" - ) - # note: OVERLOADS the Workstation `NPROC` parameter - self.required.par( - "NPROC", required=True, par_type=int, - docstr="Number of processor to use for each simulation" - ) - self.required.par( - "ENVIRONS", required=False, default="", par_type=str, - docstr="Optional environment variables to be provided in the" - "following format VAR1=var1,VAR2=var2... Will be set" - "using os.environs" - ) - def check(self, validate=True): + :type walltime: int + :param walltime: maximum job time in minutes for the master SeisFlows + job submitted to cluster + :type tasktime: int + :param tasktime: maximum job time in minutes for each job spawned by + the SeisFlows master job during a workflow. These include, e.g., + running the forward solver + :type environs: str + :param environs: Optional environment variables to be provided in the + following format VAR1=var1,VAR2=var2... Will be set using + os.environs """ - Checks parameters and paths - """ - super().check(validate=validate) + super().__init__(**kwargs) + + self.walltime = walltime + self.tasktime = tasktime + self.environs = environs - def submit(self, submit_call=None): + def submit(self, workflow, submit_call=None): """ Main insertion point of SeisFlows onto the compute system. @@ -69,7 +54,6 @@ def submit(self, submit_call=None): subclasses. """ self.setup() - workflow = self.module("workflow") workflow.checkpoint() # check==True: subprocess will wait for workflow.main() to finish subprocess.run(submit_call, shell=True, check=True) diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index 151b9288..dafaaa36 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -19,6 +19,7 @@ """ import os import numpy as np +from seisflows import logger from seisflows.system.slurm import Slurm from seisflows.config import ROOT_DIR @@ -27,62 +28,43 @@ class Maui(Slurm): """ System interface for Maui, which operates on a SLURM system """ - def __init__(self): + def __init__(self, account=None, cpus_per_task=1, cluster="maui", + partition="nesi_research", ancil_cluster="maui_ancil", + ancil_partition="nesi_prepost", ancil_tasktime=1, **kwargs): """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - - :type partitions: dict - :param partitions: Maui has various partitions which each have their - own number of cores per compute node, defined here + Maui parameters + + :type account: str + :param account: Maui account to submit jobs under, will be used for the + '--account' sbatch argument + :type cpus_per_task: int + :param cpus_per_task: allow for multiple cpus per task, i.e,. + multithreaded jobs + :type cluster: str + :param cluster: cluster to submit jobs to. Available are Maui and + Mahuika + :type partition: str + :param partition: partition of the cluster to submit jobs to. + :type ancil_cluster: str + :param ancil_cluster: name of the ancilary cluster used for pre- + post-processing tasks. + :type ancil_partition: name of the partition of the ancilary cluster + :type ancil_tasktime: int + :param ancil_tasktime: Tasktime in minutes for pre and post-processing + jobs submitted to Maui ancil. """ - super().__init__() - - self.required.par( - "ACCOUNT", required=True, par_type=str, - docstr="Maui account name to submit jobs under" - ) - self.required.par( - "NODESIZE", required=False, default=40, par_type=int, - docstr="The number of cores per node defined by the Maui cluster. " - "Assumed to be 40 cores per node." - ) - self.required.par( - "MPIEXEC", required=False, default="srun", par_type=str, - docstr="MPI call function used to invoke parallel executables, " - "defaults to 'srun'" - ) - self.required.par( - "CPUS_PER_TASK", required=False, default=1, par_type=int, - docstr="Multiple CPUS per task allows for multithreading jobs" - ) - self.required.par( - "CLUSTER", required=False, default="maui", par_type=str, - docstr="Name of main cluster for job submission. Available options: " - "'maui', 'maui_ancil', 'mahuika'. Note Mahuika untested" - ) - self.required.par( - "PARTITION", required=False, default="nesi_research", - par_type=str, docstr="Name of cluster partition to submit job to" - ) - self.required.par( - "ANCIL_CLUSTER", required=False, default="maui_ancil", par_type=str, - docstr="Ancillary cluster for pre- and post-processing tasks." - "Defaults to 'maui_ancil'") - - self.required.par( - "ANCIL_PARTITION", required=False, default="nesi_prepost", - par_type=str, - docstr="Name of ancillary partition for prepost tasks. Defaults to" - "'nesi_prepost'" - ) - self.required.par( - "ANCIL_TASKTIME", required=False, default="null", par_type=float, - docstr="Tasktime for prepost jobs submitted to ancillary nodes " - "matching 'ANCIL_CLUSTER' and 'ANCIL_PARTITION'" - ) - - self.partitions = {"nesi_research": 40} + super().__init__(**kwargs) + + self.account = account + self.cluster = cluster + self.partition = partition + self.cpus_per_task = cpus_per_task + self.ancil_cluster = ancil_cluster + self.ancil_partition = ancil_partition + self.ancil_tasktime = ancil_tasktime + + self._partitions = {"nesi_research": 40} + self.node_size = self._partitions[self.partition] def check(self, validate=True): """ @@ -90,12 +72,7 @@ def check(self, validate=True): """ super().check(validate=validate) - assert(self.par.NODESIZE == self.partitions[self.par.PARTITION]), \ - (f"PARTITION {self.par.PARTITION} is expected to have NODESIZE=" - f"{self.partitions[self.par.PARTITION]}, not current " - f"{self.par.NODESIZE}") - - assert("SLURM_MEM_PER_CPU" in (self.par.ENVIRONS or "")), \ + assert("SLURM_MEM_PER_CPU" in (self.environs or "")), \ ("Maui runs Slurm>=21 which enforces mutually exclusivity of Slurm " "memory environment variables SLURM_MEM_PER_CPU and " "SLURM_MEM_PER_NODE. Due to the cross-cluster nature of " @@ -124,17 +101,17 @@ def submit(self, submit_call=None): if submit_call is None: submit_call = " ".join([ f"sbatch", - f"--account={self.par.ACCOUNT}", - f"--cluster={self.par.ANCIL_CLUSTER}", - f"--partition={self.par.ANCIL_PARTITION}", - f"--job-name={self.par.TITLE}", - f"--output={self.output_log}", - f"--error={self.error_log}", + f"--account={self.account}", + f"--cluster={self.ancil_cluster}", + f"--partition={self.ancil_partition}", + f"--job-name={self.title}", + f"--output={self.path_output_log}", + f"--error={self.path_error_log}", f"--ntasks=1", f"--cpus-per-task=1", - f"--time={self.par.WALLTIME:d}", + f"--time={self.walltime:d}", f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", - f"--output {self.path.OUTPUT}" + f"--output {self.path_output}" ]) super().submit(submit_call=submit_call) @@ -162,27 +139,27 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): """ if run_call is None: # Calculate requested number of nodes based on requested proc count - _nodes = np.ceil(self.par.NPROC / float(self.par.NODESIZE)) + _nodes = np.ceil(self.nproc / float(self.node_size)) _nodes = _nodes.astype(int) run_call = " ".join([ "sbatch", - f"{self.par.SLURMARGS or ''}", - f"--account={self.par.ACCOUNT}", - f"--job-name={self.par.TITLE}", - f"--clusters={self.par.CLUSTER}", - f"--partition={self.par.PARTITION}", - f"--cpus-per-task={self.par.CPUS_PER_TASK}", + f"{self.slurm_args or ''}", + f"--account={self.account}", + f"--job-name={self.title}", + f"--clusters={self.cluster}", + f"--partition={self.partition}", + f"--cpus-per-task={self.cpus_per_task}", f"--nodes={_nodes:d}", - f"--ntasks={self.par.NPROC:d}", - f"--time={self.par.TASKTIME:d}", - f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", - f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", + f"--ntasks={self.nproc:d}", + f"--time={self.tasktime:d}", + f"--output={os.path.join(self.path_log_files, '%A_%a')}", + f"--array=0-{self.ntask-1 % self.ntask_max}", f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--output {self.path.OUTPUT}", + f"--output {self.path_output}", f"--classname {classname}", f"--funcname {method}", - f"--environment {self.par.ENVIRONS or ''}" + f"--environment {self.environs or ''}" ]) super().run(classname, method, single, run_call=run_call, **kwargs) @@ -199,21 +176,21 @@ def run_ancil(self, classname, method, **kwargs): """ ancil_run_call = " ".join([ "sbatch", - f"{self.par.SLURMARGS or ''}", - f"--account={self.par.ACCOUNT}", - f"--job-name={self.par.TITLE}", - f"--clusters={self.par.ANCIL_CLUSTER}", - f"--partition={self.par.ANCIL_PARTITION}", - f"--cpus-per-task={self.par.CPUS_PER_TASK}", - f"--time={self.par.ANCIL_TASKTIME:d}", - f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", - f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", + f"{self.slurm_args or ''}", + f"--account={self.account}", + f"--job-name={self.title}", + f"--clusters={self.ancil_cluster}", + f"--partition={self.ancil_partition}", + f"--cpus-per-task={self.cpus_per_task}", + f"--time={self.ancil_tasktime:d}", + f"--output={os.path.join(self.path_log_files, '%A_%a')}", + f"--array=0-{self.ntask-1 % self.ntask_max}", f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--output {self.path.OUTPUT}", + f"--output {self.path_output}", f"--classname {classname}", f"--funcname {method}", - f"--environment {self.par.ENVIRONS or ''}" + f"--environment {self.environs or ''}" ]) - self.logger.debug(ancil_run_call) + logger.debug(ancil_run_call) super().run(classname, method, single=False, run_call=ancil_run_call, **kwargs) diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index e2f22a81..0d274faa 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -19,6 +19,7 @@ import time import subprocess +from seisflows import logger from seisflows.system.cluster import Cluster from seisflows.tools import msg from seisflows.config import ROOT_DIR @@ -29,40 +30,35 @@ class Slurm(Cluster): Generalized interface for submitting jobs to and interfacing with a SLURM workload management system. """ - def __init__(self): + def __init__(self, ntask_max=100, slurm_args="", **kwargs): """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. + Slurm-specific setup parameters + + :type ntask_max: int + :param ntask_max: limit the number of concurrent tasks in a given + array job + :type slurm_args: str + :param slurm_args: Any optional, additional SLURM arguments that will + be passed to the SBATCH scripts. Should be in the form: + '--key1=value1 --key2=value2" """ - super().__init__() - - self.required.par( - "MPIEXEC", required=False, default="srun -u", par_type=str, - docstr="Function used to invoke executables on the system. " - "For example 'srun' on SLURM systems, or './' on a " - "workstation. If left blank, will guess based on the " - "system." - ) - self.required.par( - "NTASKMAX", required=False, default=100, par_type=int, - docstr="Limit on the number of concurrent tasks in array" - ) - self.required.par( - "NODESIZE", required=True, par_type=int, - docstr="The number of cores per node defined by the system" - ) - - self.required.par( - "SLURMARGS", required=False, default="", par_type=str, - docstr="Any optional, additional SLURM arguments that will be " - "passed to the SBATCH scripts" - ) + super().__init__(**kwargs) + + # Overwrite the existing 'mpiexec' + self.mpiexec = "srun -u" + self.ntask_max = ntask_max + self.slurm_args = slurm_args + + # Must be overwritten by child class + self.node_size = None def check(self, validate=True): """ Checks parameters and paths """ - super().check(validate=validate) + assert(self.node_size is not None), ( + f"Slurm system child classes require defining the `node_size` or " + f"the number of cores per node inherent to the compute system") def submit(self, submit_call=None): """ @@ -76,18 +72,18 @@ def submit(self, submit_call=None): if submit_call is None: submit_call = " ".join([ f"sbatch", - f"{self.par.SLURMARGS or ''}", - f"--job-name={self.par.TITLE}", - f"--output={self.output_log}", - f"--error={self.error_log}", - f"--ntasks-per-node={self.par.NODESIZE}", + f"{self.slurmargs or ''}", + f"--job-name={self.title}", + f"--output={self.path_output_log}", + f"--error={self.path_error_log}", + f"--ntasks-per-node={self.node_size}", f"--nodes=1", - f"--time={self.par.WALLTIME:d}", + f"--time={self.walltime:d}", f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", - f"--output {self.path.OUTPUT}" + f"--output {self.path_output}" ]) - self.logger.debug(submit_call) + logger.debug(submit_call) super().submit(submit_call=submit_call) def run(self, classname, method, single=False, run_call=None, **kwargs): @@ -115,35 +111,35 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): can overload the sbatch command line input by setting run_call. If set to None, default run_call will be set here. """ - self.checkpoint(self.path.OUTPUT, classname, method, kwargs) + self.save_kwargs_to_disk(self.path_output, classname, method, kwargs) # Default sbatch command line input, can be overloaded by subclasses # Copy-paste this default run_call and adjust accordingly for subclass if run_call is None: run_call = " ".join([ "sbatch", - f"{self.par.SLURMARGS or ''}", - f"--job-name={self.par.TITLE}", - f"--nodes={math.ceil(self.par.NPROC/float(self.par.NODESIZE)):d}", - f"--ntasks-per-node={self.par.NODESIZE:d}", - f"--ntasks={self.par.NPROC:d}", - f"--time={self.par.TASKTIME:d}", - f"--output={os.path.join(self.path.WORKDIR, 'logs', '%A_%a')}", - f"--array=0-{self.par.NTASK-1 % self.par.NTASKMAX}", + f"{self.slurm_args or ''}", + f"--job-name={self.title}", + f"--nodes={math.ceil(self.nproc/float(self.node_size)):d}", + f"--ntasks-per-node={self.node_size:d}", + f"--ntasks={self.nproc:d}", + f"--time={self.tasktime:d}", + f"--output={os.path.join(self.path_log_files, '%A_%a')}", + f"--array=0-{self.natsk-1 % self.ntaskmax}", f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--output {self.path.OUTPUT}", + f"--output {self.path_output}", f"--classname {classname}", f"--funcname {method}", - f"--environment {self.par.ENVIRONS or ''}" + f"--environment {self.environs or ''}" ]) - self.logger.debug(run_call) + logger.debug(run_call) # Single-process jobs simply need to replace a few sbatch arguments. # Do it AFTER `run_call` has been defined so that subclasses submitting # custom run calls can still benefit from this if single: - self.logger.info("replacing parts of sbatch run call for single " + logger.info("replacing parts of sbatch run call for single " "process job") run_call = _modify_run_call_single_proc(run_call) @@ -165,7 +161,7 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): header="slurm run error", border="=")) sys.exit(-1) - self.logger.info(f"task {classname}.{method} finished successfully") + logger.info(f"task {classname}.{method} finished successfully") def taskid(self): """ @@ -220,7 +216,7 @@ def _check_job_status(self, job_ids): # Every 10 counts, warn the user this is unexpected behavior if not count % 10: job_id = job_ids[states.index("UNDEFINED")] - self.logger.warning(f"SLURM command 'sacct {job_id}' has " + logger.warning(f"SLURM command 'sacct {job_id}' has " f"returned unexpected response {count} " f"times. This job may have failed " f"unexpectedly. Consider checking " @@ -260,7 +256,7 @@ def _job_id_list(self, stdout, single): if single: ntask = 1 else: - ntask = self.par.NTASK + ntask = self.ntask # Splitting e.g.,: 'Submitted batch job 441636\n' for part in stdout.strip().split(): diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 9cbd409d..e394cf78 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -4,94 +4,79 @@ Provides utilities for submitting jobs in serial on a single machine """ import os +import sys import pickle from contextlib import redirect_stdout -from seisflows.core import Base +from seisflows import logger from seisflows.config import CFGPATHS, save from seisflows.tools import msg, unix from seisflows.tools.wrappers import number_fid -class Workstation(Base): +class Workstation: """ Run tasks in a serial fashion on a single local machine. Also serves as the Base System module, upon which all other System classes should be built. """ - def __init__(self): + def __init__(self, title=None, mpiexec=None, ntask=1, nproc=1, + log_level="DEBUG", verbose=False, path_output=None, + path_system=None, path_output_log=None, path_error_log=None, + path_log_files=None, path_par_file=None): """ Instantiate the Workstation base class + + :type title: str + :param title: The name used to submit jobs to the system, defaults + to the name of the current working directory + :type mpiexec: str + :param mpiexec: Function used to invoke executables on the system. + For example 'srun' on SLURM systems. If None this will default to + './' for calling executables. + :type ntask: int + :param ntask: number of individual tasks/events to run during workflow + :type nproc: int + :param nproc: number of processors to use for each simulation + :type log_level: str + :param log_level: logger level to pass to logging module. + Available: 'debug', 'info', 'warning' + :type verbose: bool + :param verbose: if True, formats the log messages to include the file + name, line number and message type. Useful for debugging but + also very verbose + :type path_output: str + :param path_output: path to save files permanently to disk + :type path_system: str + :param path_system: scratch path to save any system related files """ - super().__init__() - - self.output_log = os.path.join(self.path.WORKDIR, CFGPATHS.LOGFILE) - self.error_log = os.path.join(self.path.WORKDIR, CFGPATHS.ERRLOGFILE) - - self.required.par( - "TITLE", required=False, - default=os.path.basename(os.path.abspath(".")), par_type=str, - docstr="The name used to submit jobs to the system, defaults " - "to the name of the working directory" - ) - self.required.par( - "MPIEXEC", required=False, default=None, par_type=str, - docstr="Function used to invoke executables on the system. " - "For example 'srun' on SLURM systems, or './' on a " - "workstation. If left blank, will guess based on the " - "system." - ) - self.required.par( - "NTASK", required=False, default=1, par_type=int, - docstr="Number of separate, individual tasks. Also equal to " - "the number of desired sources in workflow" - ) - self.required.par( - "NPROC", required=False, default=1, par_type=int, - docstr="Number of processor to use for each simulation" - ) - self.required.par( - "LOG_LEVEL", required=False, par_type=str, default="DEBUG", - docstr="Verbosity output of SF logger. Available from least to " - "most verbosity: 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; " - "defaults to 'DEBUG'" - ) - self.required.par( - "VERBOSE", required=False, default=False, par_type=bool, - docstr="Level of verbosity provided to the output log. If True, " - "log statements will declare what module/class/function " - "they are being called from. Useful for debugging but " - "also very noisy." - ) - # note: self.path.WORKDIR has been set by the entry point seisflows.setup() - self.required.path( - "SCRATCH", required=False, - default=os.path.join(self.path.WORKDIR, "scratch"), - docstr="scratch path to hold temporary data during workflow" - ) - self.required.path( - "OUTPUT", required=False, - default=os.path.join(self.path.WORKDIR, "output"), - docstr="directory to save workflow outputs to disk" - ) - self.required.path( - "SYSTEM", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "system"), - docstr="scratch path to hold any system related data" - ) - self.required.path( - "LOGFILE", required=False, default=self.output_log, - docstr="the main output log file where all processes will track " - "their status" - ) - - def check(self, validate=True): + self.title = title + self.mpiexec = mpiexec + self.ntask = ntask + self.nproc = nproc + self.log_level = log_level + self.verbose = verbose + + # Define internal path system + self.path = path_system or \ + os.path.join(os.getcwd(), "scratch", "system") + self.path_par_file = path_par_file or \ + os.path.join(os.getcwd(), "parameters.yaml") + self.path_output = path_output + + # Define where to write logs + self.path_log_files = path_log_files or \ + os.path.join(os.getcwd(), "logs") + self.path_output_log = path_output_log or \ + os.path.join(os.getcwd(), "sfoutput.log") + self.path_error_log = path_error_log or \ + os.path.join(os.getcwd(), "sferror.log") + + + def check(self): """ Checks parameters and paths """ - super().check(validate=validate) - - if self.output_log != self.path.LOGFILE: - self.output_log = self.path.LOGFILE + pass def setup(self): """ @@ -111,39 +96,36 @@ def setup(self): :rtype: tuple of str :return: (path to output log, path to error log) """ - # Create scratch directories - unix.mkdir(self.path.SCRATCH) - unix.mkdir(self.path.SYSTEM) - - # Create output directories - unix.mkdir(self.path.OUTPUT) - log_files = os.path.join(self.path.WORKDIR, CFGPATHS.LOGDIR) - unix.mkdir(log_files) + for path in [self.path, self.path_output, self.path_log_files]: + unix.mkdir(path) # If resuming, move old log files to keep them out of the way. Number # in ascending order, so we don't end up overwriting things - for src in [self.output_log, self.error_log, self.path.PAR_FILE]: + for src in [self.path_output_log, self.path_error_log, + self.path_par_file]: i = 1 if os.path.exists(src): - dst = os.path.join(log_files, number_fid(src, i)) + dst = os.path.join(self.path_log_files, number_fid(src, i)) while os.path.exists(dst): i += 1 - dst = os.path.join(log_files, number_fid(src, i)) - self.logger.debug(f"copying par/log file to: {dst}") + dst = os.path.join(self.path_log_files, number_fid(src, i)) + logger.debug(f"copying par/log file to: {dst}") unix.cp(src=src, dst=dst) - def submit(self, submit_call=None): + def submit(self, workflow, submit_call=None): """ Submits the main workflow job as a serial job submitted directly to the compute node that is running the master job + TO DO fix this + :type submit_call: str or None :param submit_call: the command line workload manager call to be run by subprocess. This is only needed for overriding classes, it has no effect on the Workstation class """ self.setup() - workflow = self.module("workflow") + workflow = sys.modules["seisflows_workflow"] workflow.checkpoint() workflow.main() @@ -165,18 +147,17 @@ def run(self, classname, method, single=False, **kwargs): defined, such that the job is submitted as a single-core job to the system. """ - self.checkpoint(self.path.OUTPUT, classname, method, kwargs) + self.save_kwargs_to_disk(self.path_output, classname, method, kwargs) # Allows dynamic retrieval of any function from within package, e.g., # 4}_{taskid:0>2}.log") + log_file = os.path.join(self.path_log_files, + f"{idx:0>4}_{taskid:0>2}.log") if os.path.exists(log_file): idx += 1 else: break if taskid == 0: - self.logger.info(f"running task {classname}.{method} " - f"{self.par.NTASK} times") + logger.info(f"running task {classname}.{method} " + f"{self.ntask} times") # Redirect output to a log file to mimic cluster runs where 'run' # task output logs are sent to different files @@ -221,10 +203,9 @@ def taskid(self): sftaskid = 0 return int(sftaskid) - def checkpoint(self, path, classname, method, kwargs): + def save_kwargs_to_disk(self, path, classname, method, kwargs): """ - Writes the SeisFlows working environment to disk so that new tasks can - be executed in a separate/new/restarted working environment. + Writes keyword arguments for a given method to disk :type path: str :param path: path to save the checkpointed pickle files to @@ -241,4 +222,5 @@ def checkpoint(self, path, classname, method, kwargs): unix.mkdir(argspath) with open(argsfile, "wb") as f: pickle.dump(kwargs, f) - save(path=self.path.OUTPUT) \ No newline at end of file + + save(path=self.path_output) \ No newline at end of file From 832a6759db8a4225e468bc87879c5f58dabe1190 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 11 Jul 2022 16:13:06 -0800 Subject: [PATCH 062/195] refactoring solver and preprocess to fit the new workflow style where less of the structure of the code is assumed and is rather stated more explicitely. working to get en-masse forward simulation workflow going --- seisflows/config.py | 42 ++++- seisflows/core.py | 2 - seisflows/plugins/preprocess/readers.py | 20 +- seisflows/plugins/preprocess/writers.py | 18 +- seisflows/postprocess/default.py | 2 +- seisflows/preprocess/default.py | 74 +++++++- seisflows/solver/specfem.py | 171 ++++++++---------- seisflows/solver/specfem2d.py | 34 ++-- seisflows/system/workstation.py | 2 +- .../test_solver/sources/CMTSOLUTION_001 | 1 + .../test_solver/sources/CMTSOLUTION_002 | 1 + .../test_data/test_solver/sources/SOURCE_001 | 1 + .../test_data/test_solver/sources/SOURCE_002 | 1 + seisflows/tests/test_solver.py | 11 ++ seisflows/workflow/base.py | 80 ++++++++ seisflows/workflow/forward.py | 15 +- seisflows/workflow/forward_test.py | 67 ++++--- 17 files changed, 355 insertions(+), 187 deletions(-) create mode 100644 seisflows/tests/test_data/test_solver/sources/CMTSOLUTION_001 create mode 100644 seisflows/tests/test_data/test_solver/sources/CMTSOLUTION_002 create mode 100644 seisflows/tests/test_data/test_solver/sources/SOURCE_001 create mode 100644 seisflows/tests/test_data/test_solver/sources/SOURCE_002 create mode 100644 seisflows/tests/test_solver.py create mode 100644 seisflows/workflow/base.py diff --git a/seisflows/config.py b/seisflows/config.py index c844e55f..702a26d2 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -25,7 +25,7 @@ from seisflows import logger from seisflows.core import Dict, Null from seisflows.tools import msg, unix -from seisflows.tools.wrappers import module_exists +from seisflows.tools.wrappers import module_exists, load_yaml """ @@ -38,8 +38,7 @@ """ # List of module names required by SeisFlows for imports. Order-sensitive # In sys.modules these will be prepended by 'seisflows_', e.g., seisflows_system -NAMES = ["system", "preprocess", "solver", - "postprocess", "optimize", "workflow"] +NAMES = ["system", "preprocess", "solver", "postprocess", "optimize"] #, "workflow"] # The location of this config file, which is the main repository ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) @@ -106,6 +105,43 @@ def load(path): sys.modules[f"seisflows_{name}"] = pickle.load(f) +def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): + """ + Standard SeisFlows workflow setup block which runs some standard setup + tasks including: setting the working directory, instantiating the logging + module and dynmically importing each of the SeisFlows modules by specific + class names. + + .. note:: + This should be called in the exact way each time: + > pars, modules = import_seisflows() + > system, preprocess, solver, postprocess, optimize = modules + + :type workdir: str + :param workdir: the current working directory in which to perform a + SeisFlows workflow. Defaults to the current working directory + :type parameter_file: str + :param parameter_file: the YAML formatted parameter file that is used to + instantiate each of the SeisFlows modules and run the workflow. This + should be created by the command line argument 'seisflows configure'. + Defaults to 'parameters.yaml' + :rtype: list + :return: instantiated modules that are returned in the following order + 'system', 'preprcess', 'solver', 'postprocess', 'optimize' + """ + parameters = load_yaml(os.path.join(workdir, parameter_file)) + config_logger(level=parameters.log_level, filename=parameters.path_log_file, + verbose=parameters.verbose) + + classes = [custom_import(name, parameters[name]) for name in NAMES] + modules = [cls(**parameters) for cls in classes] + # Check that parameters have been set correctly by running their check funcs + for module in modules: + module.check() + + return parameters, modules + + def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): """ Explicitely configure the logging module with some parameters defined diff --git a/seisflows/core.py b/seisflows/core.py index 99609851..cff4917b 100755 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -14,8 +14,6 @@ class Base(object): inherit from the Base object to work properly. This Base class essentially dictates the required structure of a SeisFlows class. """ - logger = logging.getLogger("seisflows") - def __init__(self): """ SeisFlows instantiates its required parameters through the diff --git a/seisflows/plugins/preprocess/readers.py b/seisflows/plugins/preprocess/readers.py index 2ba08930..1a54e5ea 100644 --- a/seisflows/plugins/preprocess/readers.py +++ b/seisflows/plugins/preprocess/readers.py @@ -11,35 +11,31 @@ from obspy.core import Stream, Stats, Trace -def su(path, filename): +def su(filename): """ Reads seismic unix files outputted by Specfem, using Obspy - :type path: str - :param path: path to datasets :type filename: str - :param filename: file to read + :param filename: full path to data file to read """ - st = read(os.path.join(path, filename), format='SU', byteorder='<') + st = read(os.path.join(filename), format='SU', byteorder='<') return st -def ascii(path, filename): +def ascii(filename): """ Reads SPECFEM3D-style ASCII data - :type path: str - :param path: path to datasets - :type filenames: list - :param filenames: files to read + :type filename: str + :param filename: full path to data file to read """ st = Stream() stats = Stats() - time, data = loadtxt(os.path.join(path, filename)).T + time, data = loadtxt(filename).T - stats.filename = filename + stats.filename = os.path.basename(filename) stats.starttime = time[0] stats.delta = time[1] - time[0] stats.npts = len(data) diff --git a/seisflows/plugins/preprocess/writers.py b/seisflows/plugins/preprocess/writers.py index 37858928..44cff58a 100644 --- a/seisflows/plugins/preprocess/writers.py +++ b/seisflows/plugins/preprocess/writers.py @@ -9,16 +9,14 @@ import numpy as np -def su(st, path, filename): +def su(st, filename): """ Writes seismic unix files outputted by Specfem, using Obspy :type st: obspy.core.stream.Stream :param st: stream to write - :type path: str - :param path: path to datasets :type filename: str - :param filename: file to read + :param filename: full path to filename to write data to """ for tr in st: # Work around obspy data type conversion @@ -32,29 +30,27 @@ def su(st, path, filename): tr.stats.delta = dummy_delta # Write data to file - st.write(os.path.join(path, filename), format='SU') + st.write(filename, format='SU') -def ascii(st, path, filename=None): +def ascii(st, filename=None): """ Writes seismic traces as ascii files. Kwargs are left to keep structure of inputs compatible with other input formats. :type st: obspy.core.stream.Stream :param st: stream to write - :type path: str - :param path: path to datasets + :type filename: str + :param filename: full path to filename to write data to """ for tr in st: if filename is None: filename = tr.stats.filename - fid_out = os.path.join(path, filename) - # Float provides the time difference between starttime and default time time_offset = float(tr.stats.starttime) data_out = np.vstack((tr.times() + time_offset, tr.data)).T - np.savetxt(fid_out, data_out, ["%13.7f", "%17.7f"]) + np.savetxt(filename, data_out, ["%13.7f", "%17.7f"]) diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py index 8184d376..4e53e229 100644 --- a/seisflows/postprocess/default.py +++ b/seisflows/postprocess/default.py @@ -17,7 +17,7 @@ class Default: on models or gradients """ def __init__(self, smooth_h=0., smooth_v=0., tasktime_smooth=1, - path_postprocess=None, path_mask=None): + path_postprocess=None, path_mask=None, **kwargs): """ Establish Postprocessing parameters diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 0a11fa80..4a46ffdd 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -177,10 +177,6 @@ def check(self, validate=True): assert(self.data_format.lower() in dir(writers)), ( f"Writer {self.data_format} not found") - # Assert that either misfit or backproject exists - if self.par.WORKFLOW.upper() == "INVERSION": - assert(self.misfit is not None) - def setup(self): """ Sets up data preprocessing machinery by dynamicalyl loading the @@ -211,6 +207,66 @@ def finalize(self): """ pass + def quantify_misfit(self, observed, synthetic, + write_residuals=False, write_adjsrcs=False, **kwargs): + """ + Prepares solver for gradient evaluation by writing residuals and + adjoint traces. Meant to be called by solver.eval_func(). + + Reads in observed and synthetic waveforms, applies optional + preprocessing, assesses misfit, and writes out adjoint sources and + STATIONS_ADJOINT file. + + .. note:: + Meant to be called by solver.eval_func(), may have unused arguments + to keep functions general across subclasses. + + :type cwd: str + :param cwd: current specfem working directory containing observed and + synthetic seismic data to be read and processed. Should be defined + by solver.cwd + :type filenames: list of str + :param filenames: list of filenames defining the files in traces + """ + for obs_fid, syn_fid in zip(observed, synthetic): + obs = self._reader(filename=obs_fid) + syn = self._reader(filename=syn_fid) + + # Process observations and synthetics identically + if self.filter: + obs = self._apply_filter(obs) + syn = self._apply_filter(syn) + if self.mute: + obs = self._apply_mute(obs) + syn = self._apply_mute(syn) + if self.normalize: + obs = self._apply_normalize(obs) + syn = self._apply_normalize(syn) + + # Write the residuals/misfit and adjoint sources for each component + for tr_obs, tr_syn in zip(obs, syn): + if write_residuals: + residual = self._misfit(obs=tr_obs.data, syn=tr_syn.data, + nt=tr_syn.stats.npts, + dt=tr_syn.stats.delta) + with open(write_residuals, "a") as f: + f.write(f"{residual:.2E}\n") + if write_adjsrcs: + adjsrc = syn.copy() + adjsrc.data = self._adjoint(obs=tr_obs.data, syn=tr_syn.data, + nt=tr_syn.stats.npts, + dt=tr_syn.stats.delta) + if self.data_format.upper() == "ASCII": + # Change the extension to '.adj' from whatever it is + ext = os.path.splitext(os.path.basename(obs))[-1] + filename = os.path.basename(obs).replace(ext, ".adj") + elif self.data_format.upper() == "SU": + # TODO implement this + raise NotImplementedError + self._writer(st=adjsrc, + filename=os.path.join(write_adjsrcs, filename) + ) + def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): """ Prepares solver for gradient evaluation by writing residuals and @@ -236,9 +292,9 @@ def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): for filename in filenames: obs = self._reader(path=os.path.join(cwd, "traces", "obs"), - filename=filename) + filename=filename) syn = self._reader(path=os.path.join(cwd, "traces", "syn"), - filename=filename) + filename=filename) # Process observations and synthetics identically if self.filter: @@ -296,7 +352,7 @@ def sum_residuals(self, files): return total_misfit - def _write_residuals(self, path, syn, obs): + def _write_residuals(self, obs, syn, output): """ Computes residuals between observed and synthetic seismogram based on the misfit function self.misfit. Saves the residuals for each @@ -319,10 +375,10 @@ def _write_residuals(self, path, syn, obs): residual = self._misfit(syn=tr_syn.data, obs=tr_obs.data, nt=tr_syn.stats.npts, dt=tr_syn.stats.delta - ) + ) residuals.append(residual) - filename = os.path.join(path, "residuals") + filename = os.path.join(output, "residuals") if os.path.exists(filename): residuals = np.append(residuals, np.loadtxt(filename)) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index e511cb75..67422547 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -11,7 +11,7 @@ from glob import glob from seisflows import logger -from seisflows.plugins import solver_io +from seisflows.plugins import solver_io as solver_io_dir from seisflows.tools import msg, unix from seisflows.tools.specfem import getpar, Model @@ -65,10 +65,16 @@ class Specfem: """ def __init__(self, case="data", data_format="ascii", materials="elastic", density=False, nproc=1, ntask=1, attenuation=False, - components="ZNE", - solver_io="fortran_binary", mpiexec=None, path_solver=None, - path_data=None, path_specfem_bin=None, path_specfem_data=None, - path_model_init=None, path_model_true=None, path_output=None, + components="ZNE", solver_io="fortran_binary", mpiexec=None, + path_solver=os.path.join(os.getcwd(), "scratch", "solver"), + path_data=os.path.join(os.getcwd(), "SFDATA"), + path_specfem_bin=os.path.join(os.getcwd(), "specfem", "bin"), + path_specfem_data=os.path.join(os.getcwd(), "specfem", "DATA"), + path_model_init=os.path.join(os.getcwd(), "specfem", + "MODEL_INIT"), + path_model_true=os.path.join(os.getcwd(), "specfem", + "MODEL_TRUE"), + path_output=os.path.join(os.getcwd(), "output"), save_traces=False, **kwargs): """ SPECFEM Solver parameters @@ -121,14 +127,14 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", self.mpiexec = mpiexec # Define internally used directory structure - self.path = path_solver or \ - os.path.join(os.getcwd(), "scratch", "solver") + self.path = path_solver self.path_data = path_data self.path_specfem_bin = path_specfem_bin self.path_specfem_data = path_specfem_data self.path_model_init = path_model_init self.path_model_true = path_model_true self.path_output = path_output + self.path_mainsolver = os.path.join(self.path, "mainsolver") self.save_traces = save_traces @@ -138,7 +144,7 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", self._parameters.append("rho") self._source_names = None - self._io = getattr(solver_io, self.solver_io) + self._io = getattr(solver_io_dir, self.solver_io) # Define available choices for check parameter self._available_model_types = ["gll"] @@ -155,12 +161,17 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", def taskid(self): """ Returns the currently running process for embarassingly parallelized - tasks. + tasks. Task IDs are assigned to the environment by system.run(). + Task IDs are simply integer values from 0 to the number of + simultaneously running tasks. :rtype: int :return: task id for given solver """ - return self.module("system").taskid() + _taskid = os.getenv("SEISFLOWS_TASKID") + if _taskid is None: + _taskid = 0 + return int(_taskid) @property def source_names(self): @@ -248,7 +259,7 @@ def check(self): f"solver.data_format must be {self._available_data_formats}" ) - assert hasattr(solver_io, self.solver_io) + assert hasattr(solver_io_dir, self.solver_io) assert hasattr(self._io, "read_slice"), \ "IO method has no attribute 'read'" assert hasattr(self._io, "write_slice"), \ @@ -271,50 +282,12 @@ def setup(self): In the former case, a value for PATH.DATA must be supplied; in the latter case, a value for PATH.MODEL_TRUE must be provided. """ - self._initialize_solver_directories() - self.generate_data() - self._set_model(model_name="init", model_type="gll") + self._initialize_working_directories() + self._import_starting_model(path_model=self.path_model_init, + model_type="gll") + self._export_model() self._initialize_adjoint_traces() - def _set_model(self, model_name, model_type=None): - """ - Mesh and database files should have been created during the manual set - up phase. This function simply checks the mesh properties of that mesh - and ensures that it is locatable by future SeisFlows processes. - - :type model_name: str - :param model_name: name of the model to be used as identification - :type model_type: str - :param model_type: available model types to be passed to the Specfem3D - Par_file. See Specfem3D Par_file for available options. - """ - unix.cd(self.cwd) - available_model_types = ["gll"] - - # Check the type of model. So far SeisFlows only accepts GLL models - model_type = model_type or getpar(key="MODEL", file="DATA/Par_file")[1] - assert(model_type in available_model_types), \ - f"{model_type} not in available types {available_model_types}" - - # Determine which model will be set as the starting model - if model_name.upper() == "INIT": - model_path = self.path_model_init - elif model_name.upper() == "TRUE": - model_path = self.path_model_true - else: - raise ValueError(f"model name must be 'INIT' or 'TRUE'") - assert(os.path.exists(model_path)), f"model {model_path} does not exist" - - if model_type == "gll": - # Copy the model files (ex: proc000023_vp.bin ...) into database dir - src = glob(os.path.join(model_path, "*")) - dst = self.model_databases - unix.cp(src, dst) - - # Export the model into output folder, ready to be used by other tasks - if self.taskid == 0: - self._export_model(os.path.join(self.path.OUTPUT, model_name)) - def generate_data(self): """ Generates observation data to be compared to synthetics. This must @@ -337,7 +310,8 @@ def generate_data(self): if self.taskid == 0: logger.info("generating 'data' with MODEL_TRUE") # Generate synthetic data on the fly using the true model - self._set_model(model_name="true", model_type="gll") + self._import_starting_model(path_model=self.path_model_true, + model_type="gll") self._forward(output_path=os.path.join("traces", "obs")) # If Data provided by user, copy directly into the solver directory elif self.path_data is not None and os.path.exists(self.path_data): @@ -345,6 +319,7 @@ def generate_data(self): src=glob(os.path.join(self.path_data, self.source_name, "*")), dst=os.path.join("traces", "obs") ) + # Save observation data to disk if self.save_traces: self._export_traces( @@ -446,20 +421,21 @@ def eval_grad(self, path, export_traces=False): # self.adjoint() # self.export_kernels(path) - def _forward(self, output_path): + def forward_simulation(self, output_path): """ Calls forward solver with the appropriate parameters in the Par_file set Also exports data to the correct output_path - :type output_path: str - :param output_path: path to export traces to after completion of + :type output_seismograms: str + :param output_seismograms: path to export traces to after completion of simulation expected values are either 'traces/obs' for 'observation' data (i.e., synthetics generated by the TRUE model), or - 'traces/syn', for synthetics generated during function evaluations + 'traces/syn', for synthetics generated during function evaluations. + If False, will leave seismograms in OUTPUT_FILES/ """ raise NotImplementedError("must be implemented by solver subclass") - def _adjoint(self): + def adjoint_simulation(self): """ Calls adjoint solver with the appropriate parameters in the Par_file set Also takes care of setting up the SEM/ directory where SPECFEM expects @@ -620,6 +596,31 @@ def _import_model(self, path): dst=os.path.join(self.cwd, "DATA") ) + def _import_starting_model(self, path_model, model_type=None, save_as=None): + """ + Mesh and database files should have been created during the manual set + up phase. This function simply checks the mesh properties of that mesh + and ensures that it is locatable by future SeisFlows processes. + + :type path_model: str + :param path_model: path to an existing starting model + :type model_type: str + :param model_type: available model types to be passed to the Specfem3D + Par_file. See Specfem3D Par_file for available options. + """ + unix.cd(self.cwd) + # Check type/existence of model. SeisFlows only accepts GLL models + model_type = model_type or getpar(key="MODEL", file="DATA/Par_file")[1] + assert(model_type in self._available_model_types), \ + f"{model_type} not in available types {self._available_model_types}" + assert(os.path.exists(path_model)), f"model {path_model} does not exist" + + if model_type == "gll": + # Copy the model files (ex: proc000023_vp.bin ...) into database dir + src = glob(os.path.join(path_model, "*")) + dst = self.model_databases + unix.cp(src, dst) + def _import_traces(self, path): """ File transfer utility. Import traces into the workflow. @@ -631,43 +632,26 @@ def _import_traces(self, path): dst = os.path.join(self.cwd, 'traces', 'obs') unix.cp(src, dst) - def _export_model(self, path, parameters=None): + def _export_model(self): """ - File transfer utility. Export the model to disk. - - Performed by master solver. - - :type path: str - :param path: path to save model - :type parameters: list - :param parameters: list of parameters that define the model + File transfer utility. Export the model to disk. Run from master solver. """ - if parameters is None: - parameters = self._parameters + unix.mkdir(self.path_output) + for key in self._parameters: + files = glob(os.path.join(self.model_databases, f"*{key}.bin")) + unix.cp(files, self.path_output) - if self.taskid == 0: - unix.mkdir(path) - for key in parameters: - files = glob(os.path.join(self.model_databases, f"*{key}.bin")) - unix.cp(files, path) - - def _export_kernels(self, path): + def _export_kernels(self): """ File transfer utility. Export kernels to disk - - :type path: str - :param path: path to save kernels """ - if self.taskid == 0: - logger.debug(f"exporting kernels to:\n{path}") - unix.cd(self.kernel_databases) # Work around conflicting name conventions self._rename_kernels() src = glob("*_kernel.bin") - dst = os.path.join(path, "kernels", self.source_name) + dst = os.path.join(self.path_output, "kernels", self.source_name) unix.mkdir(dst) unix.mv(src, dst) @@ -730,7 +714,7 @@ def _rename_kernels(self): names = glob(f"*proc??????_{tag}_kernel.bin") unix.rename(old="beta", new="vs", names=names) - def _initialize_solver_directories(self): + def _initialize_working_directories(self): """ Creates directory structure expected by SPECFEM3D (bin/, DATA/) copies executables, and prepares input files. Executables must be supplied @@ -773,17 +757,17 @@ def _initialize_solver_directories(self): unix.ln(src, dst) if self.taskid == 0: - mainsolver = os.path.join(self.path.SOLVER, "mainsolver") # Symlink taskid_0 as mainsolver in solver directory for convenience - if not os.path.exists(mainsolver): - unix.ln(self.cwd, mainsolver) + if not os.path.exists(self.path_mainsolver): + unix.ln(self.cwd, self.path_mainsolver) logger.debug(f"symlink {self.source_name} as 'mainsolver'") else: # Copy the initial model from mainsolver into current directory # Avoids the need to run multiple instances of xgenerate_databases # TODO race condition if things havent been written? Sleep? - src = os.path.join(self.path.SOLVER, "mainsolver", "OUTPUT_FILES", - "DATABASES_MPI") + src = os.path.join( + self.path_mainsolver, "OUTPUT_FILES", "DATABASES_MPI" + ) dst = os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") unix.cp(src, dst) @@ -804,7 +788,7 @@ def _initialize_adjoint_traces(self): if self.par.PREPROCESS.upper() == "DEFAULT": if self.taskid == 0: logger.debug(f"intializing {len(self.data_filenames)} " - f"empty adjoint traces per event") + f"empty adjoint traces per event") for filename in self.data_filenames: st = preprocess.reader( @@ -833,7 +817,7 @@ def _check_source_names(self): wildcard = f"{self.source_prefix}_*" fids = sorted(glob(os.path.join(self.path_specfem_data, wildcard))) if not fids: - print(msg.cli("No matching source files when searching PATH for" + print(msg.cli("No matching source files when searching PATH for " "the given WILDCARD", items=[f"PATH: {self.path_specfem_data}", f"WILDCARD: {wildcard}"], header="error" @@ -844,6 +828,3 @@ def _check_source_names(self): # Create internal definition of sources names by stripping prefixes names = [os.path.basename(fid).split("_")[-1] for fid in fids] self._source_names = names[:self.ntask] - - - diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index eb4cc511..c5f66abe 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -40,9 +40,7 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): self._parameters.append("vp") self._parameters.append("vs") - self._acceptable_source_prefix = ["FORCE", "FORCESOLUTION"] - - + self._acceptable_source_prefix = ["SOURCE", "FORCE", "FORCESOLUTION"] def data_wildcard(self, comp="?"): """ @@ -61,21 +59,22 @@ def data_wildcard(self, comp="?"): elif self.data_format.upper() == "ASCII": return f"*.?X{comp}.sem?" - @property - def data_filenames(self): + def data_filenames(self, choice="obs"): """ Returns the filenames of all data, either by the requested components or by all available files in the directory. .. note:: If the glob returns an empty list, this function exits the - workflow because filenames should not be empty is they're being + workflow because filenames should not be empty is they're being queried :rtype: list :return: list of data filenames """ - unix.cd(os.path.join(self.cwd, "traces", "obs")) + assert(choice in ["obs", "syn", "adj"]), \ + f"choice must be: 'obs', 'syn' or 'adj'" + unix.cd(os.path.join(self.cwd, "traces", choice)) if self.components: filenames = [] @@ -134,16 +133,16 @@ def check(self): super().check() assert(self.source_prefix in self._acceptable_source_prefix) - - def _forward(self, output_path): + def forward_simulation(self, output_seismograms=False): """ Calls SPECFEM2D forward solver, exports solver outputs to traces dir - :type output_path: str - :param output_path: path to export traces to after completion of + :type output_seismograms: str + :param output_seismograms: path to export traces to after completion of simulation expected values are either 'traces/obs' for 'observation' data (i.e., synthetics generated by the TRUE model), or - 'traces/syn', for synthetics generated during function evaluations + 'traces/syn', for synthetics generated during function evaluations. + If False, will leave seismograms in OUTPUT_FILES/ """ unix.cd(self.cwd) @@ -159,10 +158,13 @@ def _forward(self, output_path): unix.rename(old=f"single_{tag}.su", new="single.su", names=glob(os.path.join("OUTPUT_FILES", "*.su"))) - unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), - dst=output_path) + if output_seismograms: + unix.mv( + src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), + dst=output_seismograms + ) - def _adjoint(self): + def adjoint_simulation(self): """ Calls SPECFEM2D adjoint solver, creates the `SEM` folder with adjoint traces which is required by the adjoint solver @@ -228,8 +230,6 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., parameters=parameters, span_h=span_h, span_v=span_v, output=output) - - def _initialize_adjoint_traces(self): """ Setup utility: Creates the "adjoint traces" expected by SPECFEM. diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index e394cf78..8b8e93a4 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -22,7 +22,7 @@ class Workstation: def __init__(self, title=None, mpiexec=None, ntask=1, nproc=1, log_level="DEBUG", verbose=False, path_output=None, path_system=None, path_output_log=None, path_error_log=None, - path_log_files=None, path_par_file=None): + path_log_files=None, path_par_file=None, **kwargs): """ Instantiate the Workstation base class diff --git a/seisflows/tests/test_data/test_solver/sources/CMTSOLUTION_001 b/seisflows/tests/test_data/test_solver/sources/CMTSOLUTION_001 new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/sources/CMTSOLUTION_001 @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/test_solver/sources/CMTSOLUTION_002 b/seisflows/tests/test_data/test_solver/sources/CMTSOLUTION_002 new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/sources/CMTSOLUTION_002 @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/test_solver/sources/SOURCE_001 b/seisflows/tests/test_data/test_solver/sources/SOURCE_001 new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/sources/SOURCE_001 @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/test_solver/sources/SOURCE_002 b/seisflows/tests/test_data/test_solver/sources/SOURCE_002 new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/sources/SOURCE_002 @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py new file mode 100644 index 00000000..d054d47c --- /dev/null +++ b/seisflows/tests/test_solver.py @@ -0,0 +1,11 @@ +""" +Test the ability of the Solver module to interact with various versions of +SPECFEM +""" +import os +import pytest +from glob import glob +from seisflows.tools.specfem import Model +from seisflows.config import ROOT_DIR, NAMES, CFGPATHS + + diff --git a/seisflows/workflow/base.py b/seisflows/workflow/base.py new file mode 100644 index 00000000..aa2f96c3 --- /dev/null +++ b/seisflows/workflow/base.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python3 +""" +The simplest simulation workflow you can run is a large number of forward +simulations to generate synthetics from a velocity model. Therefore the +Forward class represents the BASE workflow. All other workflows will build off +of the scaffolding defined by the Forward class. +""" +from seisflows.config import import_seisflows + + +class Base(object): + """ + Defines the core Base object for all SeisFlows modules. All modules MUST + inherit from the Base object to work properly. This Base class essentially + dictates the required structure of a SeisFlows class. + """ + def __init__(self): + """ + SeisFlows instantiates its required parameters through the + SeisFlowsPathsParameters class, which scaffolds a rigid framework of + how parameters and paths should be defined by the program. This is + then used to build the parameter file dynamically. + """ + self.parameters = self.modules = import_seisflows() + (self.system, self.preprocess, self.solver, + self.postprocess, self.optimize) = self.modules + + def setup(self): + """ + + """ + + @property + def par(self): + """ + Quick access SeisFlows parameters from sys.modules. Throws a warning + if parameters have not been instantiated + + :rtype: Dict or None + :return: Returns a Dictionary with instantiated parameters, or None if + parameters have not been instantiated + """ + return self.module("parameters") + + @property + def path(self): + """ + Quick access SeisFlows paths from sys.modules. Throws a warning + if paths have not been instantiated + + :rtype: Dict or None + :return: Returns a Dictionary with instantiated paths, or None if + parameters have not been instantiated + """ + return self.module("paths") + + def check(self, validate=True): + """ + General check() function for each module to check the validity of the + user-input parameters and paths + """ + if validate: + self.required.validate() + + # Example of a check statement + # assert(self.par.PARAMETER == example_value), f"Parameter != example" + + def setup(self): + """ + A placeholder function for any initialization or setup tasks that + need to be run once at the beginning of any workflow. + """ + return + + def finalize(self): + """ + A placeholder function for any finalization or tear-down tasks that + need to be run at the end of any iteration or workflow. + """ + return \ No newline at end of file diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index a4d2aefa..373d2c11 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -9,23 +9,24 @@ import sys from glob import glob -from seisflows.core import Base from seisflows.tools import msg -from seisflows.config import save +from seisflows.config import save, import_seisflows from seisflows.tools.specfem import Model -class Forward(Base): +class Forward: """ Workflow abstract base class representing an en-masse forward solver and misfit calculator. """ - def __init__(self): + def __init__(self, save_traces=False, save_residuals=False, + path_eval_grad=None): """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. + En-masse forward simulation parameters """ - super().__init__() + self.save_traces = save_traces + self.save_residuals = save_residuals + self.path_eval_grad = self.path_eval_grad self.required.par( "SAVETRACES", required=False, default=False, par_type=bool, diff --git a/seisflows/workflow/forward_test.py b/seisflows/workflow/forward_test.py index ad002cd2..d346cf07 100644 --- a/seisflows/workflow/forward_test.py +++ b/seisflows/workflow/forward_test.py @@ -2,39 +2,48 @@ Test workflow to see if a new form of seisflows workflow can be used """ import os -from seisflows.core import Dict -from seisflows.config import custom_import, config_logger, NAMES -from seisflows.tools.wrappers import load_yaml -from seisflows.tools.specfem import Model - +from seisflows import logger +from seisflows.config import import_seisflows +from seisflows.tools import msg + +# Standard SeisFlows setup, makes modules global variables to the workflow +pars, modules = import_seisflows() +system, preprocess, solver, postprocess, optimize = modules + + +def evaluate_objective_function(path_model): + """ + Performs forward simulation for a single given event. Also evaluates the + objective function and writes residuals and adjoint sources for later tasks. + """ + if system.taskid == 0: + logger.info(msg.sub("EVALUATING OBJECTIVE FUNCTION")) + + # Run the forward simulation with the given input model + solver.import_model(path=path_model) + solver.forward_simulation( + output_seismograms=os.path.join(solver.cwd, "traces", "syn") + ) + + # Perform data-synthetic misfit quantification + if preprocess is not None: + preprocess.quantify_misfit( + observed=solver.data_filenames(choice="obs"), + synthetics=solver.data_filenames(choice="syn"), + output=os.path.join(solver.cwd, "traces", "adj") + ) if __name__ == "__main__": - # Standard SeisFlows Workflow setup block - # ========================================================================== - cwd = os.getcwd() - pars = load_yaml("parameters.yaml") - logger = config_logger(level=pars.log_level, filename=pars.path_log_file, - verbose=pars.verbose) - - # Dynamically create module instances, instantiated with parameters - classes = [custom_import(name, pars[name.upper()]) for name in NAMES] - instances = [cls(**pars) for cls in classes] - # Check that parameters have been set correctly - for instance in instances: - instance.check() - - # Distribute instances to their respective namesakes - system, preprocess, solver, postprocess, optimize, workflow = instances - # ========================================================================== - - - # Begin workflow - logger.info("Starting forward simulation workflow") + # Begin the forward simulation workflow + logger.info(msg.mjr("Starting forward simulation workflow")) + for module in modules: + module.setup() - m = Model(pars.path_model_init) - m.write(path=os.path.join(paths.eval_func, "model")) + # Run objective function evaluation NTASK times + system.run(evaluate_objective_function, path_model=pars.path_model_init, + suffix="new", system=system) - system.run(solver.eval_func) + logger.info(msg.mjr("Finished forward simulation workflow")) From 67749849bd1e1f5b7d413f4cb446191638740629 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 12 Jul 2022 16:17:25 -0800 Subject: [PATCH 063/195] refactoring solver.specfem to be more pythonic, moving a lot of the logic contained in the solver module into the workflow module to keep things more isolated. --- seisflows/preprocess/default.py | 17 + seisflows/solver/specfem.py | 666 +++++++++++++++++------------ seisflows/solver/specfem2d.py | 142 +----- seisflows/solver/specfem3d.py | 50 +-- seisflows/workflow/forward_test.py | 12 +- 5 files changed, 451 insertions(+), 436 deletions(-) diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 4a46ffdd..35fc0f0b 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -207,6 +207,23 @@ def finalize(self): """ pass + def initialize_adjoint_traces(self, filenames=None): + """ + TO DO + """ + for filename in self.data_filenames: + st = self.preprocess.reader(path=os.path.join(self.cwd, "traces", "obs"), + filename=filename + ) + # Zero out data just so we have empty adjoint traces as SPECFEM + # will expect all adjoint sources to have all components + st *= 0 + + # Write traces back to the adjoint trace directory + preprocess.writer(st=st, filename=filename, + path=os.path.join(self.cwd, "traces", "adj") + ) + def quantify_misfit(self, observed, synthetic, write_residuals=False, write_adjsrcs=False, **kwargs): """ diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 67422547..8bf71d4e 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -4,6 +4,9 @@ such as SPECFEM (2D/3D/3D_GLOBE). This SPECFEM base class provides general functions that work with all versions of SPECFEM. Subclasses will provide additional capabilities unique to each version of SPECFEM. + +TODO add in `apply_hess` functionality that was partially written in legacy code +TODO move `_initialize_adjoint_traces` to workflow.migration """ import os import sys @@ -11,71 +14,34 @@ from glob import glob from seisflows import logger +from seisflows.core import Dict from seisflows.plugins import solver_io as solver_io_dir from seisflows.tools import msg, unix -from seisflows.tools.specfem import getpar, Model +from seisflows.tools.specfem import getpar, setpar class Specfem: """ This base class provides an interface through which solver simulations can be set up and run. It should not be used by itself, but rather it is meant - to provide the foundation for the following child classes: + to provide the foundation for: SPECFEM2D/3D/3D_GLOBE - SPECFEM2D - SPECFEM3D - SPECFEM3D_GLOBE + .. note:: + This Base class implementation is almost completely SPECFEM2D related. + However, SPECFEM2D requires a few unique parameters that 3D/3D_GLOBE + do not. Because of the inheritance architecture of SeisFlows, we do not + want the 3D and 3D_GLOBE versions to inherit 2D-specific parameters, so + we need this this more generalized SPECFEM base class. .. note::: This class supports only acoustic and isotropic elastic inversions. - - Function descriptors: - - eval_func, eval_grad, apply_hess - - These methods deal with evaluation of the misfit function or its - derivatives. Together, they provide the primary interface through which - SeisFlows interacts with SPECFEM2D/3D - - forward, adjoint - - These methods allow direct access to low-level SPECFEM2D/3D components, - providing an alternative interface through which to interact with the - solver - - steup, generate_data, generate_model - - One-time operations performed at the beginning of inversion or migration - - initialize_solver_directories, initialize_adjoint_traces - - SPECFEM2D/3D requires a particular directory structure in which to run - and particular file formats for models, data, and parameter files. These - methods help put in place all these prerequisites - - combine, smooth - - Utilities for combining and smoothing kernels - - generate_data, generate_mesh, eval_fwd, forward, adjoint, - data_filenames, model_databases, kernel_databases, source_prefix - - !!! Required functions which must be implemented by subclass !!! - """ def __init__(self, case="data", data_format="ascii", materials="elastic", density=False, nproc=1, ntask=1, attenuation=False, components="ZNE", solver_io="fortran_binary", mpiexec=None, - path_solver=os.path.join(os.getcwd(), "scratch", "solver"), - path_data=os.path.join(os.getcwd(), "SFDATA"), - path_specfem_bin=os.path.join(os.getcwd(), "specfem", "bin"), - path_specfem_data=os.path.join(os.getcwd(), "specfem", "DATA"), - path_model_init=os.path.join(os.getcwd(), "specfem", - "MODEL_INIT"), - path_model_true=os.path.join(os.getcwd(), "specfem", - "MODEL_TRUE"), - path_output=os.path.join(os.getcwd(), "output"), - save_traces=False, **kwargs): + path_solver=None, path_data=None, path_specfem_bin=None, + path_specfem_data=None, path_model_init=None, + path_model_true=None, path_output=None, **kwargs): """ SPECFEM Solver parameters @@ -97,11 +63,11 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", :type components: str :param components: components to consider and tag data with. Should be string of letters such as 'RTZ' - :type path_specfem_bin: str - :param path_specfem_bin: path to SPECFEM bin/ directory which + :type path.specfem_bin: str + :param path.specfem_bin: path to SPECFEM bin/ directory which contains binary executables for running SPECFEM - :type path_specfem_data: str - :param path_specfem_data: path to SPECFEM DATA/ directory which must + :type path.specfem_data: str + :param path.specfem_data: path to SPECFEM DATA/ directory which must contain the CMTSOLUTION, STATIONS and Par_file files used for running SPECFEM @@ -127,16 +93,17 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", self.mpiexec = mpiexec # Define internally used directory structure - self.path = path_solver - self.path_data = path_data - self.path_specfem_bin = path_specfem_bin - self.path_specfem_data = path_specfem_data - self.path_model_init = path_model_init - self.path_model_true = path_model_true - self.path_output = path_output - self.path_mainsolver = os.path.join(self.path, "mainsolver") - - self.save_traces = save_traces + _cwd = os.getcwd() + self.path = Dict( + scratch=path_solver or os.path.join(_cwd, "scratch", "solver"), + data=path_data or os.path.join(_cwd, "SFDATA"), + output=path_output or os.path.join(_cwd, "output"), + mainsolver=os.path.join(_cwd, "scratch", "mainsolver"), + specfem_bin=path_specfem_bin, + specfem_data=path_specfem_data, + model_init=path_model_init, + model_true=path_model_true, + ) # Establish internally defined parameter system self._parameters = [] @@ -153,9 +120,12 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", "ISOTROPIC", "ANISOTROPIC" # specfem3d_globe ] self._available_data_formats = ["ASCII", "SU"] + self._required_binaries = ["xspecfem2d", "xmeshfem2d", "xcombine_sem", + "xsmooth_sem"] - # Parameters that NEED to be filled out by child classes + # These are parameters that need to be established by child classes self.source_prefix = None + self._acceptable_source_prefixes = [] @property def taskid(self): @@ -165,12 +135,18 @@ def taskid(self): Task IDs are simply integer values from 0 to the number of simultaneously running tasks. + .. note:: + Dependent on environment variable 'SEISFLOWS_TASKID' which is + assigned by system.run() to each individually running process. + :rtype: int :return: task id for given solver """ _taskid = os.getenv("SEISFLOWS_TASKID") if _taskid is None: _taskid = 0 + logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " + "Assigning Task ID == 0") return int(_taskid) @property @@ -180,11 +156,15 @@ def source_names(self): Source names are expected to match the following wildcard, 'PREFIX_*' where PREFIX is something like 'CMTSOLUTION' or 'FORCE' + .. note:: + Dependent on environment variable 'SEISFLOWS_TASKID' which is + assigned by system.run() to each individually running process. + :rtype: list :return: list of source names """ if self._source_names is None: - self._check_source_names() + self._source_names = self._check_source_names() return self._source_names @property @@ -192,6 +172,10 @@ def source_name(self): """ Returns name of source currently under consideration + .. note:: + Dependent on environment variable 'SEISFLOWS_TASKID' which is + assigned by system.run() to each individually running process. + :rtype: str :return: given source name for given task id """ @@ -202,6 +186,10 @@ def cwd(self): """ Returns working directory currently in use by a running solver instance + .. note:: + Dependent on environment variable 'SEISFLOWS_TASKID' which is + assigned by system.run() to each individually running process. + :rtype: str :return: current solver working directory """ @@ -209,48 +197,98 @@ def cwd(self): def data_wildcard(self, comp="?"): """ - Provide a wildcard string that will match the name of the output - synthetic seismograms + Returns a wildcard identifier for synthetic data based on SPECFEM2D + file naming schema. Allows formatting dcomponent e.g., + when called by solver.data_filenames. + + .. note:: + SPECFEM3D/3D_GLOBE versions must overwrite this function :type comp: str - :param comp: single letter defining the component that can be inserted - into the wildcard. Defaults to '?' + :param comp: component formatter, defaults to wildcard '?' :rtype: str - :return: a wildcard string that can be used to search for data + :return: wildcard identifier for channels """ - return NotImplementedError("must be implemented by child class") + if self.data_format.upper() == "SU": + return f"U{comp}_file_single.su" + elif self.data_format.upper() == "ASCII": + return f"*.?X{comp}.sem?" - @property - def data_filenames(self): + def data_filenames(self, choice="obs"): """ - A list of waveform files matching the `data_wildcard` which is used - to keep track of data + Returns the filenames of SPECFEM2D data, either by the requested + components or by all available files in the directory. + + .. note:: + SPECFEM3D/3D_GLOBE versions must overwrite this function + + .. note:: + If the glob returns an empty list, this function exits the + workflow because filenames should not be empty is they're being + queried :rtype: list :return: list of data filenames """ - return NotImplementedError("must be implemented by child class") + assert(choice in ["obs", "syn", "adj"]), \ + f"choice must be: 'obs', 'syn' or 'adj'" + unix.cd(os.path.join(self.cwd, "traces", choice)) + + filenames = [] + if self.components: + for comp in self.components: + filenames = glob(self.data_wildcard(comp=comp.lower())) + else: + filenames = glob(self.data_wildcard(comp="?")) + + if not filenames: + print(msg.cli("The property solver.data_filenames, used to search " + "for traces in 'scratch/solver/*/traces' is empty " + "and should not be. Please check solver parameters: ", + items=[f"data_wildcard: {self.data_wildcard()}"], + header="data filenames error", border="=") + ) + sys.exit(-1) + + return filenames @property def model_databases(self): """ - SPECFEM directory where model database files are saved. This directory - is SPECFEM version dep. + The location of model inputs and outputs as defined by SPECFEM2D. + This is RELATIVE to a SPECFEM2D working directory. + + .. note:: + This path is SPECFEM version dependent so SPECFEM3D/3D_GLOBE + versions must overwrite this function + + :rtype: str + :return: path where SPECFEM2D database files are stored """ - return NotImplementedError("must be implemented by child class") + return "DATA" @property def kernel_databases(self): """ - SPECFEM directory where kernel database files are saved. This directory - is SPECFEM version dep. + The location of kernel inputs and outputs as defined by SPECFEM2D + This is RELATIVE to a SPECFEM2D working directory. + + .. note:: + This path is SPECFEM version dependent so SPECFEM3D/3D_GLOBE + versions must overwrite this function + + :rtype: str + :return: path where SPECFEM2D database files are stored """ - return NotImplementedError("must be implemented by child class") + return "OUTPUT_FILES" def check(self): """ - Checks parameters and paths + Checks parameter validity for SPECFEM input files and model parameters """ + assert(self.case.upper() in ["DATA", "SYNTHETIC"]), \ + f"solver.case must be 'DATA' or 'SYNTHETIC'" + assert(self.materials.upper() in self._available_materials), \ f"solver.materials must be in {self._available_materials}" @@ -259,36 +297,113 @@ def check(self): f"solver.data_format must be {self._available_data_formats}" ) + # Make sure we can read in the model/kernel/gradient files assert hasattr(solver_io_dir, self.solver_io) assert hasattr(self._io, "read_slice"), \ "IO method has no attribute 'read'" assert hasattr(self._io, "write_slice"), \ "IO method has no attribute 'write'" - # TODO Check path data, model_true and case combination - # TODO Check SPECFEM_DATA available files - # TODO Check SPECFEM_BIN available executables + # Check that User has provided appropriate bin/ and DATA/ directories + for name, dir_ in zip(["bin/", "DATA/"], + [self.path.specfem_bin, self.path.specfem_data]): + assert(dir_ is not None), f"SPECFEM path '{name}' cannot be None" + assert(os.path.exists(dir_)), f"SPECFEM path '{name}' must exist" + + # Check that the required SPECFEM files are available + for fid in [self.source_prefix, "STATIONS", "Par_file"]: + assert(os.path.exists(os.path.join(self.path.specfem_data, fid))), ( + f"DATA/{fid} does not exist but is required by SeisFlows solver" + ) + + # Check that required binary files exist which are called upon by solver + for fid in self._required_binaries: + assert(os.path.exists(os.path.join(self.path.specfem_bin, fid))), ( + f"bin/{fid} does not exist but is required by SeisFlows solver" + ) + + # Check that the 'case' variable matches required models + if self.case.upper() == "SYNTHETIC": + assert(os.path.exists(self.path.model_true)), ( + f"solver.case == 'synthetic' requires `path.model_true`" + ) + + # Make sure source files exist and are appropriately labeled + assert(self.source_prefix in self._acceptable_source_prefixes) + assert(glob(os.path.join(self.path.specfem_data, + f"{self.source_prefix}*"))), ( + f"No source files with prefix {self.source_prefix} found in DATA/") + + # Check that model type is set correctly in the Par_file + model_type = getpar(key="MODEL", + file=os.path.join(self.path.specfem_data, + "Par_file"))[1] + assert(model_type in self._available_model_types), \ + f"{model_type} not in available types {self._available_model_types}" def setup(self): """ - Prepares solver for inversion or migration. + Prepares solver scratch directories for an impending workflow. + Sets up directory structure expected by SPECFEM and copies or generates seismic data to be inverted or migrated - .. note:; - As input for an inversion or migration, users can choose between - providing data, or providing a target model from which data are - generated on the fly. - In the former case, a value for PATH.DATA must be supplied; - in the latter case, a value for PATH.MODEL_TRUE must be provided. + TODO the .bin during model export assumes GLL file format, more general? """ self._initialize_working_directories() - self._import_starting_model(path_model=self.path_model_init, - model_type="gll") - self._export_model() - self._initialize_adjoint_traces() - def generate_data(self): + # Export the initial model to the SeisFlows output directory + unix.mkdir(self.path.output) + for key in self._parameters: + src = glob(os.path.join(self.path.model_init, f"*{key}.bin")) + dst = os.path.join(self.path.output, "MODEL_INIT", "") + unix.cp(src, dst) + + # TODO move this into workflow.migration + # self._initialize_adjoint_traces() + + # def generate_data(self, save_traces=False): + # """ + # Generates observation data to be compared to synthetics. This must + # only be run once. If `PAR.CASE`=='data', then real data will be copied + # over. + # TODO move this to workflow + # + # If `PAR.CASE`=='synthetic' then the external solver will use the + # True model to generate 'observed' synthetics. Finally exports traces to + # 'cwd/traces/obs' + # + # Elif `PAR.CASE`=='DATA', will look in PATH.DATA for directories matching + # the given source name and copy ANY files that exist there. e.g., if + # source name is '001', you must store waveform data in PATH.DATA/001/* + # + # Also exports observed data to OUTPUT if desired + # """ + # # If synthetic inversion, generate 'data' with solver + # if self.case.upper() == "SYNTHETIC": + # if self.path.model_true is not None: + # if self.taskid == 0: + # logger.info("generating 'data' with MODEL_TRUE") + # + # # Generate synthetic data on the fly using the true model + # self.import_model(path_model=self.path.model_true) + # self.forward_simulation( + # save_traces=os.path.join("traces", "obs") + # ) + # # If Data provided by user, copy directly into the solver directory + # elif self.path.data is not None and os.path.exists(self.path.data): + # unix.cp( + # src=glob(os.path.join(self.path.data, self.source_name, "*")), + # dst=os.path.join(self.cwd, "traces", "obs") + # ) + # + # # Save observation data to disk + # if save_traces: + # self._export_traces( + # path=os.path.join(self.path.output, "traces", "obs") + # ) + + def generate_data(self, export_traces=False): """ Generates observation data to be compared to synthetics. This must only be run once. If `PAR.CASE`=='data', then real data will be copied @@ -302,29 +417,40 @@ def generate_data(self): the given source name and copy ANY files that exist there. e.g., if source name is '001', you must store waveform data in PATH.DATA/001/* - Also exports observed data to OUTPUT if desired + :type export_traces: str + :param export_traces: path to copy and save traces to a more permament + storage location as waveform stored in scratch/ are liable to be + deleted or overwritten """ - # If synthetic inversion, generate 'data' with solver - if self.case.upper() == "SYNTHETIC": - if self.path_model_true is not None: - if self.taskid == 0: - logger.info("generating 'data' with MODEL_TRUE") - # Generate synthetic data on the fly using the true model - self._import_starting_model(path_model=self.path_model_true, - model_type="gll") - self._forward(output_path=os.path.join("traces", "obs")) - # If Data provided by user, copy directly into the solver directory - elif self.path_data is not None and os.path.exists(self.path_data): - unix.cp( - src=glob(os.path.join(self.path_data, self.source_name, "*")), - dst=os.path.join("traces", "obs") - ) + # Basic checks to make sure there are True model files to copy + assert(self.case.upper() == "SYNTHETIC") + assert(os.path.exists(self.path.model_true)) + assert(glob(os.path.join(self.path.model_true, "*"))) - # Save observation data to disk - if self.save_traces: - self._export_traces( - path=os.path.join(self.path_output, "traces", "obs") - ) + # Generate synthetic data on the fly using the true model + self.import_model(path_model=self.path.model_true) + self.forward_simulation( + save_traces=os.path.join(self.cwd, "traces", "obs"), + export_traces=export_traces + ) + + def import_data(self, path_data): + """ + Import data from an existing directory into the current working + directory, required if 'observed' waveform data will be provided by + the User rather than automatically collected (with Pyatoa) or generated + synthetically (with external solver) + """ + # Simple checks to make sure we can actually import data + assert(self.case.upper() == "DATA") + assert(self.path.data is not None) + assert(os.path.exists(os.path.join(self.path.data, self.source_name))) + assert(glob(os.path.join(self.path.data, self.source_name, "*"))) + + src = os.path.join(self.path.data, self.source_name, "*") + dst = os.path.join(self.cwd, "traces", "obs") + + unix.cp(src, dst) def eval_func(self, path, preprocess=None): """ @@ -400,48 +526,73 @@ def eval_grad(self, path, export_traces=False): self._export_traces(path=os.path.join(path, "traces", "adj"), prefix="traces/adj") - # def apply_hess(self, path): - # """ - # High level solver interface that computes action of Hessian on a given - # model vector. A gradient evaluation must have already been carried out. - # - # TODO preprocess has no function prepare_apply_hess() - # - # :type path: str - # :param path: directory to which output files are exported - # """ - # raise NotImplementedError("must be implemented by solver subclass") - # - # unix.cd(self.cwd) - # self.import_model(path) - # unix.mkdir("traces/lcg") - # - # self.forward("traces/lcg") - # preprocess.prepare_apply_hess(self.cwd) - # self.adjoint() - # self.export_kernels(path) - - def forward_simulation(self, output_path): + def forward_simulation(self, save_traces=False, export_traces=False): """ - Calls forward solver with the appropriate parameters in the Par_file set - Also exports data to the correct output_path + Calls SPECFEM2D forward solver, exports solver outputs to traces dir - :type output_seismograms: str - :param output_seismograms: path to export traces to after completion of - simulation expected values are either 'traces/obs' for 'observation' - data (i.e., synthetics generated by the TRUE model), or - 'traces/syn', for synthetics generated during function evaluations. - If False, will leave seismograms in OUTPUT_FILES/ + .. note:: + SPECFEM3D/3D_GLOBE versions must overwrite this function + + :type save_traces: str + :param save_traces: move files from their native SPECFEM output location + to another directory. This is used to move output waveforms to + 'traces/obs' or 'traces/syn' so that SeisFlows knows where to look + for them, and so that SPECFEM doesn't overwrite existing files + during subsequent forward simulations + :type export_traces: str + :param export_traces: export traces from the scratch directory to a more + permanent storage location. i.e., copy files from their original + location """ - raise NotImplementedError("must be implemented by solver subclass") + unix.cd(self.cwd) + + setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") + setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") + + self._call_solver(executable="bin/xmeshfem2D", output="fwd_mesher.log") + self._call_solver(executable="bin/xspecfem2D", output="fwd_solver.log") + + # Work around SPECFEM2D's version dependent file names + if self.data_format.upper() == "SU": + for tag in ["d", "v", "a", "p"]: + unix.rename(old=f"single_{tag}.su", new="single.su", + names=glob(os.path.join("OUTPUT_FILES", "*.su"))) + + if export_traces: + unix.cp( + src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), + dst=export_traces + ) + + if save_traces: + unix.mv( + src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), + dst=save_traces + ) def adjoint_simulation(self): """ - Calls adjoint solver with the appropriate parameters in the Par_file set - Also takes care of setting up the SEM/ directory where SPECFEM expects - adjoint sources to be + Calls SPECFEM2D adjoint solver, creates the `SEM` folder with adjoint + traces which is required by the adjoint solver. + + .. note:: + SPECFEM3D/3D_GLOBE versions must overwrite this function """ - raise NotImplementedError("must be implemented by solver subclass") + unix.cd(self.cwd) + + setpar(key="SIMULATION_TYPE", val="3", file="DATA/Par_file") + setpar(key="SAVE_FORWARD", val=".false.", file="DATA/Par_file") + + unix.rm("SEM") + unix.ln("traces/adj", "SEM") + + # Deal with different SPECFEM2D name conventions for regular traces and + # "adjoint" traces + if self.data_format.upper == "SU": + unix.rename(old=".su", new=".su.adj", + names=glob(os.path.join("traces", "adj", "*.su"))) + + self._call_solver(executable="bin/xspecfem2D", output="adj_solver.log") def _call_solver(self, executable, output="solver.log"): """ @@ -525,23 +676,16 @@ def combine(self, input_path, output_path, parameters=None): # Call on xcombine_sem to combine kernels into a single file for name in parameters: - # e.g.: mpiexec ./bin/xcombine_sem alpha_kernel kernel_paths output - self._call_solver(executable=" ".join([f"bin/xcombine_sem", - f"{name}_kernel", - "kernel_paths", - output_path] - ) - ) + # e.g.: mpiexec bin/xcombine_sem alpha_kernel kernel_paths output/ + exc = f"bin/xcombine_sem {name}_kernel kernel_paths {output_path}" + self._call_solver(executable=exc) def smooth(self, input_path, output_path, parameters=None, span_h=0., - span_v=0., output="smooth.log"): + span_v=0., use_gpu=False, output="smooth.log"): """ Postprocessing wrapper: xsmooth_sem Smooths kernels by convolving them with a Gaussian. - .. note:: - paths require a trailing `/` character when calling xsmooth_sem - .. note:: It is ASSUMED that this function is being called by system.run(single=True) so that we can use the main solver @@ -560,6 +704,9 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., :param span_v: vertical smoothing length in meters :type output: str :param output: file to output stdout to + :type use_gpu: bool + :param use_gpu: whether to use GPU acceleration for smoothing. Requires + GPU compiled binaries and GPU compute node. """ unix.cd(self.cwd) @@ -569,77 +716,48 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., if not os.path.exists(output_path): unix.mkdir(output_path) + # Ensure trailing '/' character, required by xsmooth_sem + input_path = os.path.join(input_path, "") + output_path = os.path.join(output_path, "") + if use_gpu: + use_gpu = ".true" + else: + use_gpu = ".false" # mpiexec ./bin/xsmooth_sem SMOOTH_H SMOOTH_V name input output use_gpu for name in parameters: - self._call_solver(executable=" ".join(["bin/xsmooth_sem", - str(span_h), str(span_v), - f"{name}_kernel", - os.path.join(input_path, ""), - os.path.join(output_path, ""), - ".false"]), - output=output) - - # Rename output files + exc = (f"bin/xsmooth_sem {str(span_h)} {str(span_v)} {name}_kernel " + f"{input_path} {output_path} {use_gpu}") + self._call_solver(executable=exc, output=output) + + # Rename output files to remove the '_smooth' suffix which SeisFlows + # will not recognize files = glob(os.path.join(output_path, "*")) unix.rename(old="_smooth", new="", names=files) - def _import_model(self, path): + def import_model(self, path_model): """ - File transfer utility to move a SPEFEM2D model into the correct location - for a workflow. - - :type path: str - :param path: path to the SPECFEM2D model - :return: - """ - unix.cp(src=glob(os.path.join(path, "model", "*")), - dst=os.path.join(self.cwd, "DATA") - ) - - def _import_starting_model(self, path_model, model_type=None, save_as=None): - """ - Mesh and database files should have been created during the manual set - up phase. This function simply checks the mesh properties of that mesh - and ensures that it is locatable by future SeisFlows processes. + Copy files from given `path_model` into the current working directory + model database :type path_model: str :param path_model: path to an existing starting model - :type model_type: str - :param model_type: available model types to be passed to the Specfem3D - Par_file. See Specfem3D Par_file for available options. """ - unix.cd(self.cwd) - # Check type/existence of model. SeisFlows only accepts GLL models - model_type = model_type or getpar(key="MODEL", file="DATA/Par_file")[1] - assert(model_type in self._available_model_types), \ - f"{model_type} not in available types {self._available_model_types}" assert(os.path.exists(path_model)), f"model {path_model} does not exist" + unix.cd(self.cwd) - if model_type == "gll": - # Copy the model files (ex: proc000023_vp.bin ...) into database dir - src = glob(os.path.join(path_model, "*")) - dst = self.model_databases - unix.cp(src, dst) - - def _import_traces(self, path): - """ - File transfer utility. Import traces into the workflow. - - :type path: str - :param path: path to traces - """ - src = glob(os.path.join(path, 'traces', self.source_name, '*')) - dst = os.path.join(self.cwd, 'traces', 'obs') + # Copy the model files (ex: proc000023_vp.bin ...) into database dir + src = glob(os.path.join(path_model, "*")) + dst = os.path.join(self.cwd, self.model_databases, "") unix.cp(src, dst) def _export_model(self): """ File transfer utility. Export the model to disk. Run from master solver. """ - unix.mkdir(self.path_output) + unix.mkdir(self.path.output) for key in self._parameters: files = glob(os.path.join(self.model_databases, f"*{key}.bin")) - unix.cp(files, self.path_output) + unix.cp(files, self.path.output) def _export_kernels(self): """ @@ -651,7 +769,7 @@ def _export_kernels(self): self._rename_kernels() src = glob("*_kernel.bin") - dst = os.path.join(self.path_output, "kernels", self.source_name) + dst = os.path.join(self.path.output, "kernels", self.source_name) unix.mkdir(dst) unix.mv(src, dst) @@ -699,7 +817,8 @@ def _export_traces(self, path, prefix="traces/obs"): dst = os.path.join(path, self.source_name) unix.cp(src, dst) - def _rename_kernels(self): + @staticmethod + def _rename_kernels(): """ Works around conflicting kernel filename conventions by renaming `alpha` to `vp` and `beta` to `vs` @@ -716,60 +835,79 @@ def _rename_kernels(self): def _initialize_working_directories(self): """ - Creates directory structure expected by SPECFEM3D (bin/, DATA/) copies - executables, and prepares input files. Executables must be supplied - by user as there is no mechanism for automatically compiling from source + Serial task used to initialize working directories for each of the a + available sources - Directories will act as completely independent Specfem run directories. - This allows for embarrassing parallelization while avoiding the need - for intra-directory communications, at the cost of redundancy and - extra files. + TODO run this with concurrent futures for speedup? """ - if self.taskid == 0: - logger.info(f"initializing {self.ntask} solver directories") + logger.info(f"initializing {self.ntask} solver directories") + for source_name in self.source_names: + cwd = os.path.join(self.path, source_name) + self._initialize_working_directory(cwd=cwd) - unix.rm(self.cwd) - unix.mkdir(self.cwd) - unix.cd(self.cwd) + def _initialize_working_directory(self, cwd=None): + """ + Creates directory structure expected by SPECFEM + (i.e., bin/, DATA/, OUTPUT_FILES/). Copies executables and prepares + input files. + + Each directory will act as completely independent Specfem working dir. + This allows for embarrassing parallelization while avoiding the need + for intra-directory communications, at the cost of temporary disk space. - # Create directory structure - for cwd_dir in ["bin", "DATA", "OUTPUT_FILES/DATABASES_MPI", - "traces/obs", "traces/syn", "traces/adj", - self.model_databases, self.kernel_databases]: - unix.mkdir(cwd_dir) + .. note:: + Path to binary executables must be supplied by user as SeisFlows has + no mechanism for automatically compiling from source code. + + :type cwd: str + :param cwd: optional scratch working directory to intialize. If None, + will set based on current running seisflows task (self.taskid) + """ + # Define a constant list of required SPECFEM dir structure, relative cwd + _required_structure = ["bin", "DATA", + "traces/obs", "traces/syn", "traces/adj", + self.model_databases, self.kernel_databases] + + # Allow this function to be called on system or in serial + if cwd is None: + cwd = self.cwd + _source_name = os.path.basename(cwd) + taskid = self.source_names.index(_source_name) + else: + cwd = self.cwd + taskid = self.taskid + + if taskid == 0: + logger.info(f"initializing {self.ntask} solver directories") - # Copy exectuables into the bin/ directory - src = glob(os.path.join(self.path_specfem_bin, "*")) - dst = os.path.join("bin", "") + # Starting from a fresh working directory + unix.rm(cwd) + unix.mkdir(cwd) + for dir_ in _required_structure: + unix.mkdir(os.path.join(cwd, dir_)) + + # Copy existing SPECFEM exectuables into the bin/ directory + src = glob(os.path.join(self.path.specfem_bin, "*")) + dst = os.path.join(cwd, "bin", "") unix.cp(src, dst) - # Copy all input files except source files - src = glob(os.path.join(self.path_specfem_data, "*")) + # Copy all input DATA/ files except the source files + src = glob(os.path.join(self.path.specfem_data, "*")) src = [_ for _ in src if self.source_prefix not in _] dst = os.path.join("DATA", "") unix.cp(src, dst) - # Symlink event source specifically, strip the source name as SPECFEM - # just expects `source_name` - src = os.path.join(self.path_specfem_data, + # Symlink event source specifically, only retain source prefix + src = os.path.join(self.path.specfem_data, f"{self.source_prefix}_{self.source_name}") dst = os.path.join("DATA", self.source_prefix) unix.ln(src, dst) - if self.taskid == 0: - # Symlink taskid_0 as mainsolver in solver directory for convenience - if not os.path.exists(self.path_mainsolver): - unix.ln(self.cwd, self.path_mainsolver) + # Symlink TaskID==0 as mainsolver in solver directory for convenience + if taskid == 0: + if not os.path.exists(self.path.mainsolver): logger.debug(f"symlink {self.source_name} as 'mainsolver'") - else: - # Copy the initial model from mainsolver into current directory - # Avoids the need to run multiple instances of xgenerate_databases - # TODO race condition if things havent been written? Sleep? - src = os.path.join( - self.path_mainsolver, "OUTPUT_FILES", "DATABASES_MPI" - ) - dst = os.path.join(self.cwd, "OUTPUT_FILES", "DATABASES_MPI") - unix.cp(src, dst) + unix.ln(cwd, self.path.mainsolver) def _initialize_adjoint_traces(self): """ @@ -806,20 +944,21 @@ def _initialize_adjoint_traces(self): def _check_source_names(self): """ - Determines names of sources by applying wildcard rule to - user-supplied input files + Determines names of sources by applying wildcard rule to user-supplied + input files. Source names are only provided up to PAR.NTASK and are + returned in alphabetical order. - .. note:: - Source list is sorted and collected from start up to PAR.NTASK + :rtype: list + :return: alphabetically ordered list of source names up to PAR.NTASK """ # Apply wildcard rule and check for available sources, exit if no # sources found because then we can't proceed wildcard = f"{self.source_prefix}_*" - fids = sorted(glob(os.path.join(self.path_specfem_data, wildcard))) + fids = sorted(glob(os.path.join(self.path.specfem_data, wildcard))) if not fids: print(msg.cli("No matching source files when searching PATH for " "the given WILDCARD", - items=[f"PATH: {self.path_specfem_data}", + items=[f"PATH: {self.path.specfem_data}", f"WILDCARD: {wildcard}"], header="error" ) ) @@ -827,4 +966,5 @@ def _check_source_names(self): # Create internal definition of sources names by stripping prefixes names = [os.path.basename(fid).split("_")[-1] for fid in fids] - self._source_names = names[:self.ntask] + + return names[:self.ntask] diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index c5f66abe..cd4871f1 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -6,11 +6,10 @@ Specfem2D. It inherits all attributes from seisflows.solver.Base, """ import os -import sys from glob import glob from seisflows.solver.specfem import Specfem -from seisflows.tools import unix, msg +from seisflows.tools import unix from seisflows.tools.specfem import getpar, setpar @@ -31,7 +30,7 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): self.source_prefix = source_prefix self.multiples = multiples - self._f0 = None + self.f0 = None # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": @@ -42,76 +41,6 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): self._acceptable_source_prefix = ["SOURCE", "FORCE", "FORCESOLUTION"] - def data_wildcard(self, comp="?"): - """ - Returns a wildcard identifier for synthetic data based on SPECFEM2D - file naming schema. Allows formatting dcomponent e.g., - when called by solver.data_filenames - - :type comp: str - :param comp: component formatter, defaults to wildcard '?' - :rtype: str - :return: wildcard identifier for channels - """ - if self.data_format.upper() == "SU": - # return f"*.su" # too vague but maybe for a reason? -bryant - return f"U{comp}_file_single.su" - elif self.data_format.upper() == "ASCII": - return f"*.?X{comp}.sem?" - - def data_filenames(self, choice="obs"): - """ - Returns the filenames of all data, either by the requested components - or by all available files in the directory. - - .. note:: - If the glob returns an empty list, this function exits the - workflow because filenames should not be empty is they're being - queried - - :rtype: list - :return: list of data filenames - """ - assert(choice in ["obs", "syn", "adj"]), \ - f"choice must be: 'obs', 'syn' or 'adj'" - unix.cd(os.path.join(self.cwd, "traces", choice)) - - if self.components: - filenames = [] - if self.data_format.upper() == "SU": - for comp in self.components: - filenames += [self.data_wildcard(comp=comp.lower())] - elif self.data_format.upper() == "ASCII": - for comp in self.components: - filenames += glob(self.data_wildcard(comp=comp.upper())) - else: - filenames = glob(self.data_wildcard()) - - if not filenames: - print(msg.cli("The property solver.data_filenames, used to search " - "for traces in 'scratch/solver/*/traces' is empty " - "and should not be. Please check solver parameters: ", - items=[f"data_wildcard: {self.data_wildcard()}"], - header="data filenames error", border="=") - ) - sys.exit(-1) - - return filenames - - @property - def model_databases(self): - """ - The location of model inputs and outputs as defined by SPECFEM2D - """ - return os.path.join(self.cwd, "DATA") - - @property - def kernel_databases(self): - """ - The location of kernel inputs and outputs as defined by SPECFEM2D - """ - return os.path.join(self.cwd, "OUTPUT_FILES") - def setup(self): """ Additional SPECFEM2D setup steps @@ -126,67 +55,8 @@ def setup(self): else: setpar(key="absorbtop", val=".true.", file="DATA/Par_file") - def check(self): - """ - - """ - super().check() - assert(self.source_prefix in self._acceptable_source_prefix) - - def forward_simulation(self, output_seismograms=False): - """ - Calls SPECFEM2D forward solver, exports solver outputs to traces dir - - :type output_seismograms: str - :param output_seismograms: path to export traces to after completion of - simulation expected values are either 'traces/obs' for 'observation' - data (i.e., synthetics generated by the TRUE model), or - 'traces/syn', for synthetics generated during function evaluations. - If False, will leave seismograms in OUTPUT_FILES/ - """ - unix.cd(self.cwd) - - setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") - setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - - self._call_solver(executable="bin/xmeshfem2D", output="fwd_mesher.log") - self._call_solver(executable="bin/xspecfem2D", output="fwd_solver.log") - - if self.data_format.upper() == "SU": - # Work around SPECFEM2D's version dependent file names - for tag in ["d", "v", "a", "p"]: - unix.rename(old=f"single_{tag}.su", new="single.su", - names=glob(os.path.join("OUTPUT_FILES", "*.su"))) - - if output_seismograms: - unix.mv( - src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), - dst=output_seismograms - ) - - def adjoint_simulation(self): - """ - Calls SPECFEM2D adjoint solver, creates the `SEM` folder with adjoint - traces which is required by the adjoint solver - """ - unix.cd(self.cwd) - - setpar(key="SIMULATION_TYPE", val="3", file="DATA/Par_file") - setpar(key="SAVE_FORWARD", val=".false.", file="DATA/Par_file") - - unix.rm("SEM") - unix.ln("traces/adj", "SEM") - - # Deal with different SPECFEM2D name conventions for regular traces and - # "adjoint" traces - if self.data_format.upper == "SU": - unix.rename(old=".su", new=".su.adj", - names=glob(os.path.join("traces", "adj", "*.su"))) - - self._call_solver(executable="bin/xspecfem2D", output="adj_solver.log") - def smooth(self, input_path, output_path, parameters=None, span_h=0., - span_v=0., output="smooth.log"): + span_v=0., use_gpu=False, output="smooth.log"): """ Specfem2D requires additional model parameters in directory to perform the xsmooth_sem task. This function will copy these files into the @@ -211,13 +81,15 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., :param span_v: vertical smoothing length in meters :type output: str :param output: file to output stdout to + :type use_gpu: bool + :param use_gpu: whether to use GPU acceleration for smoothing. Requires + GPU compiled binaries and GPU compute node. """ # Redundant to 'base' class but necessary if not os.path.exists(input_path): unix.mkdir(input_path) - unix.cd(self.cwd) - unix.cd("DATA") + unix.cd(os.path.join(self.cwd, "DATA")) # Copy over only the files that are required. Won't execute if no match files = [] diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index bad6f5f6..b9d13a98 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -30,7 +30,6 @@ def __init__(self, source_prefix="CMTSOLUTION", **kwargs): super().__init__(**kwargs) self.source_prefix = source_prefix - self._f0 = None # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": @@ -39,14 +38,7 @@ def __init__(self, source_prefix="CMTSOLUTION", **kwargs): self._parameters.append("vp") self._parameters.append("vs") - self._acceptable_source_prefix = ["CMTSOLUTION", "FORCESOLUTION"] - - def check(self): - """ - Check parameter validitiy - """ - super().check() - assert(self.source_prefix in self._acceptable_source_prefix) + self._acceptable_source_prefixes = ["CMTSOLUTION", "FORCESOLUTION"] def data_wildcard(self, comp="?"): """ @@ -60,23 +52,6 @@ def data_wildcard(self, comp="?"): elif self.data_format.upper() == "ASCII": return f"*.?X{comp}.sem?" - @property - def data_filenames(self): - """ - Returns the filenames of all data, either by the requested components - or by all available files in the directory. - - :rtype: list - :return: list of data filenames - """ - unix.cd(os.path.join(self.cwd, "traces", "obs")) - - if self.components: - files = glob(self.data_wildcard(comp=self.components.lower())) - else: - files = glob(self.data_wildcard(comp="?")) - return sorted(files) - @property def model_databases(self): """ @@ -85,7 +60,7 @@ def model_databases(self): """ local_path = getpar(key="LOCAL_PATH", file=os.path.join(self.cwd, "DATA", "Par_file"))[1] - return os.path.join(self.cwd, local_path) + return local_path @property def kernel_databases(self): @@ -113,21 +88,23 @@ def eval_func(self, path, preprocess=None): # Work around SPECFEM3D conflicting name conventions of SU data self._rename_data() - def _forward(self, output_path): + def forward_simulation(self, output_seismograms=False): """ Calls SPECFEM3D forward solver, exports solver outputs to traces dir - :type output_path: str - :param output_path: path to export traces to after completion of + :type output_seismograms: str + :param output_seismograms: path to export traces to after completion of simulation expected values are either 'traces/obs' for 'observation' data (i.e., synthetics generated by the TRUE model), or - 'traces/syn', for synthetics generated during function evaluations + 'traces/syn', for synthetics generated during function evaluations. + If False, will leave seismograms in OUTPUT_FILES/s """ unix.cd(self.cwd) # Set parameters and run forward simulation setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") + if self.attenuation: setpar(key="ATTENUATION", val=".true.", file="DATA/Par_file") else: @@ -138,10 +115,13 @@ def _forward(self, output_path): self._call_solver(executable="bin/xmeshfem3D", output="fwd_solver.log") # Find and move output traces, by default to synthetic traces dir - unix.mv(src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), - dst=output_path) + if output_seismograms: + unix.mv( + src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), + dst=output_seismograms + ) - def _adjoint(self): + def adjoint_simulation(self): """ Calls SPECFEM3D adjoint solver, creates the `SEM` folder with adjoint traces which is required by the adjoint solver @@ -198,5 +178,3 @@ def _rename_data(self): if self.data_format.upper() == "SU": files = glob(os.path.join(self.cwd, "traces", "adj", "*SU")) unix.rename(old='_SU', new='_SU.adj', names=files) - - diff --git a/seisflows/workflow/forward_test.py b/seisflows/workflow/forward_test.py index d346cf07..a14d7e2a 100644 --- a/seisflows/workflow/forward_test.py +++ b/seisflows/workflow/forward_test.py @@ -15,14 +15,22 @@ def evaluate_objective_function(path_model): """ Performs forward simulation for a single given event. Also evaluates the objective function and writes residuals and adjoint sources for later tasks. + + .. note:: + if PAR.PREPROCESS == None, will not perform misfit quantification + + .. note:: + Must be run by system.run() so that solvers are assigned individual + task ids/ working directories. """ if system.taskid == 0: logger.info(msg.sub("EVALUATING OBJECTIVE FUNCTION")) # Run the forward simulation with the given input model - solver.import_model(path=path_model) + solver.import_model(path_model=path_model) solver.forward_simulation( - output_seismograms=os.path.join(solver.cwd, "traces", "syn") + save_traces=os.path.join(solver.cwd, "traces", "syn"), + export_traces=os.path.join(pars.path_output, solver.source_name, "syn") ) # Perform data-synthetic misfit quantification From de40cfc1c050527e6416829b285df74fc7e8e520 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 12 Jul 2022 19:31:40 -0800 Subject: [PATCH 064/195] starting solver test suite --- seisflows/solver/specfem.py | 17 ++++++++++---- seisflows/solver/specfem2d.py | 4 ++-- seisflows/solver/specfem3d.py | 4 ++-- seisflows/tests/test_solver.py | 42 ++++++++++++++++++++++++++++++++++ 4 files changed, 58 insertions(+), 9 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 8bf71d4e..6b936495 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -38,8 +38,9 @@ class Specfem: """ def __init__(self, case="data", data_format="ascii", materials="elastic", density=False, nproc=1, ntask=1, attenuation=False, - components="ZNE", solver_io="fortran_binary", mpiexec=None, - path_solver=None, path_data=None, path_specfem_bin=None, + components="ZNE", solver_io="fortran_binary", + source_prefix=None,mpiexec=None, path_solver=None, + path_data=None, path_specfem_bin=None, path_specfem_data=None, path_model_init=None, path_model_true=None, path_output=None, **kwargs): """ @@ -124,7 +125,7 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", "xsmooth_sem"] # These are parameters that need to be established by child classes - self.source_prefix = None + self.source_prefix = source_prefix self._acceptable_source_prefixes = [] @property @@ -193,7 +194,7 @@ def cwd(self): :rtype: str :return: current solver working directory """ - return os.path.join(self.path, self.source_name) + return os.path.join(self.path.scratch, self.source_name) def data_wildcard(self, comp="?"): """ @@ -230,6 +231,7 @@ def data_filenames(self, choice="obs"): :rtype: list :return: list of data filenames """ + assert(choice in ["obs", "syn", "adj"]), \ f"choice must be: 'obs', 'syn' or 'adj'" unix.cd(os.path.join(self.cwd, "traces", choice)) @@ -434,7 +436,7 @@ def generate_data(self, export_traces=False): export_traces=export_traces ) - def import_data(self, path_data): + def import_data(self): """ Import data from an existing directory into the current working directory, required if 'observed' waveform data will be provided by @@ -951,6 +953,11 @@ def _check_source_names(self): :rtype: list :return: alphabetically ordered list of source names up to PAR.NTASK """ + assert(self.path.specfem_data is not None), \ + f"solver source names requires 'solver.path.specefm_data' to exist" + assert(os.path.exists(self.path.specfem_data)), \ + f"solver source names requires 'solver.path.specfem_data' to exist" + # Apply wildcard rule and check for available sources, exit if no # sources found because then we can't proceed wildcard = f"{self.source_prefix}_*" diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index cd4871f1..d8f00bbe 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -17,7 +17,7 @@ class Specfem2D(Specfem): """ Python interface to Specfem2D. """ - def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): + def __init__(self, source_prefix=None, multiples=False, **kwargs): """ SPECFEM2D specific parameters @@ -28,7 +28,7 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): """ super().__init__(**kwargs) - self.source_prefix = source_prefix + self.source_prefix = source_prefix or "SOURCE" self.multiples = multiples self.f0 = None diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index b9d13a98..77cda030 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -18,7 +18,7 @@ class Specfem3D(Specfem): """ Python interface to Specfem3D Cartesian. """ - def __init__(self, source_prefix="CMTSOLUTION", **kwargs): + def __init__(self, source_prefix=None, **kwargs): """ SPECFEM2D specific parameters @@ -29,7 +29,7 @@ def __init__(self, source_prefix="CMTSOLUTION", **kwargs): """ super().__init__(**kwargs) - self.source_prefix = source_prefix + self.source_prefix = source_prefix or "CMTSOLUTION" # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index d054d47c..4b1aab33 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -8,4 +8,46 @@ from seisflows.tools.specfem import Model from seisflows.config import ROOT_DIR, NAMES, CFGPATHS +from seisflows.solver.specfem import Specfem +from seisflows.solver.specfem2d import Specfem2D +from seisflows.solver.specfem3d import Specfem3D +from seisflows.solver.specfem3d_globe import Specfem3DGlobe + +TEST_DATA = os.path.join(ROOT_DIR, "tests", "test_data") + + +def test_taskid(): + """ + Make sure that task id returns correctly + """ + solver = Specfem() + assert(solver.taskid == 0) + os.environ["SEISFLOWS_TASKID"] = "9" + assert(solver.taskid == 9) + + +def test_source_names(): + """ + Check that source names are established correctly + """ + # Establish solver that looks for CMTSOLUTIONS with NTASK==1 + sources = os.path.join(TEST_DATA, "test_solver", "sources") + solver = Specfem(path_specfem_data=sources, source_prefix="CMTSOLUTION") + assert(len(solver.source_names) == 1) + + # Set NTASK==2 to grab both source files + solver = Specfem(path_specfem_data=sources, source_prefix="CMTSOLUTION", + ntask=2) + source_names = glob(os.path.join(sources, "CMTSOLUTION*")) + source_names = [_.split("_")[-1] for _ in source_names] + + assert(source_names == solver.source_names) + +def test_data_filenames(): + """ + Test that data filenames are returned correctly + """ + sources = os.path.join(TEST_DATA, "test_solver", "sources") + solver = Specfem(path_specfem_data=sources, source_prefix="CMTSOLUTION") + pytest.set_trace() \ No newline at end of file From 20341508528aad92982afc6f95442cea6d2840ee Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 13 Jul 2022 11:12:09 -0800 Subject: [PATCH 065/195] renamed 'wrappers' to 'utils' and cleared out a number of unnused small wrapper/utility functions that were left over from the legacy code. Reasonining behind this being that these functions provided minor abstraction at the cost of less readable code. These are being replaced by explicit calls to the underlying functions for better code readability --- seisflows/config.py | 7 +- seisflows/plugins/solver_io/ascii.py | 2 +- seisflows/plugins/solver_io/fortran_binary.py | 2 +- seisflows/seisflows.py | 2 +- seisflows/solver/specfem.py | 16 +- seisflows/solver/specfem3d.py | 4 +- seisflows/system/workstation.py | 2 +- seisflows/tests/test_seisflows.py | 2 +- seisflows/tests/test_solver.py | 5 +- seisflows/tools/unix.py | 2 +- seisflows/tools/{wrappers.py => utils.py} | 181 ++---------------- 11 files changed, 46 insertions(+), 179 deletions(-) rename seisflows/tools/{wrappers.py => utils.py} (51%) diff --git a/seisflows/config.py b/seisflows/config.py index 702a26d2..1f35b7e2 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -20,12 +20,14 @@ import logging import copyreg import traceback +from pkgutil import find_loader from importlib import import_module + from seisflows import logger from seisflows.core import Dict, Null from seisflows.tools import msg, unix -from seisflows.tools.wrappers import module_exists, load_yaml +from seisflows.tools.utils import load_yaml """ @@ -258,7 +260,8 @@ class 'Inversion'. # Check if modules exist, otherwise raise custom exception _exists = False full_dotted_name = ".".join(["seisflows", name, module]) - if not module_exists(full_dotted_name): + # find_loader() checks if the module exists or not + if not find_loader(full_dotted_name): print(msg.cli(f"The following module was not found within the package: " f"seisflows.{name}.{module}", header="custom import error", border="=") diff --git a/seisflows/plugins/solver_io/ascii.py b/seisflows/plugins/solver_io/ascii.py index 04d978be..2de06adf 100644 --- a/seisflows/plugins/solver_io/ascii.py +++ b/seisflows/plugins/solver_io/ascii.py @@ -5,7 +5,7 @@ import numpy as np from glob import glob from shutil import copyfile -from seisflows.tools.wrappers import iterable +from seisflows.tools.utils import iterable def read_slice(path, parameters, iproc): diff --git a/seisflows/plugins/solver_io/fortran_binary.py b/seisflows/plugins/solver_io/fortran_binary.py index 3428525b..21691fb6 100644 --- a/seisflows/plugins/solver_io/fortran_binary.py +++ b/seisflows/plugins/solver_io/fortran_binary.py @@ -4,7 +4,7 @@ import os import numpy as np from shutil import copyfile -from seisflows.tools.wrappers import iterable +from seisflows.tools.utils import iterable def read_slice(path, parameters, iproc): diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 861dc21b..7675c388 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -32,7 +32,7 @@ from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) -from seisflows.tools.wrappers import load_yaml +from seisflows.tools.utils import load_yaml def sfparser(): diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 6b936495..0554203d 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -17,6 +17,7 @@ from seisflows.core import Dict from seisflows.plugins import solver_io as solver_io_dir from seisflows.tools import msg, unix +from seisflows.tools.utils import get_task_id from seisflows.tools.specfem import getpar, setpar @@ -143,12 +144,7 @@ def taskid(self): :rtype: int :return: task id for given solver """ - _taskid = os.getenv("SEISFLOWS_TASKID") - if _taskid is None: - _taskid = 0 - logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " - "Assigning Task ID == 0") - return int(_taskid) + return get_task_id() @property def source_names(self): @@ -231,7 +227,6 @@ def data_filenames(self, choice="obs"): :rtype: list :return: list of data filenames """ - assert(choice in ["obs", "syn", "adj"]), \ f"choice must be: 'obs', 'syn' or 'adj'" unix.cd(os.path.join(self.cwd, "traces", choice)) @@ -752,6 +747,13 @@ def import_model(self, path_model): dst = os.path.join(self.cwd, self.model_databases, "") unix.cp(src, dst) + def export(self, model=False, kernels=False, traces=False, residuals=False): + """ + Export scratch files to output path. Must be run by system as each + process is required to export its own traces and kernels. + """ + if self. + def _export_model(self): """ File transfer utility. Export the model to disk. Run from master solver. diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 77cda030..6f5f5552 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -10,7 +10,7 @@ from seisflows.solver.specfem import Specfem from seisflows.tools import unix -from seisflows.tools.wrappers import exists +from seisflows.tools.utils import exists from seisflows.tools.specfem import setpar, getpar @@ -164,7 +164,7 @@ def _initialize_adjoint_traces(self): for iproc in range(self.nproc): for channel in ["x", "y", "z"]: dst = f"{iproc:d}_d{channel}_SU.adj" - if not exists(dst): + if not os.path.exists(dst): src = f"{iproc:d}_d{self.components[0]}_SU.adj" unix.cp(src, dst) diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 8b8e93a4..1109a72a 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -11,7 +11,7 @@ from seisflows import logger from seisflows.config import CFGPATHS, save from seisflows.tools import msg, unix -from seisflows.tools.wrappers import number_fid +from seisflows.tools.utils import number_fid class Workstation: diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index cd69e5ca..859c3305 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -14,7 +14,7 @@ from seisflows.core import Dict from seisflows.seisflows import SeisFlows from seisflows.config import ROOT_DIR, NAMES, CFGPATHS -from seisflows.tools.wrappers import load_yaml +from seisflows.tools.utils import load_yaml TEST_DIR = os.path.join(ROOT_DIR, "tests") diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index 4b1aab33..17009b1e 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -14,7 +14,7 @@ from seisflows.solver.specfem3d_globe import Specfem3DGlobe -TEST_DATA = os.path.join(ROOT_DIR, "tests", "test_data") +TEST_DATA = os.path.join(ROOT_DIR, "tests", "test_data", "test_solver") def test_taskid(): @@ -32,7 +32,7 @@ def test_source_names(): Check that source names are established correctly """ # Establish solver that looks for CMTSOLUTIONS with NTASK==1 - sources = os.path.join(TEST_DATA, "test_solver", "sources") + sources = os.path.join(TEST_DATA, "sources") solver = Specfem(path_specfem_data=sources, source_prefix="CMTSOLUTION") assert(len(solver.source_names) == 1) @@ -44,6 +44,7 @@ def test_source_names(): assert(source_names == solver.source_names) + def test_data_filenames(): """ Test that data filenames are returned correctly diff --git a/seisflows/tools/unix.py b/seisflows/tools/unix.py index 19cdb404..abb82e51 100644 --- a/seisflows/tools/unix.py +++ b/seisflows/tools/unix.py @@ -9,7 +9,7 @@ import shutil import socket -from seisflows.tools.wrappers import iterable +from seisflows.tools.utils import iterable def cat(src, dst=None): diff --git a/seisflows/tools/wrappers.py b/seisflows/tools/utils.py similarity index 51% rename from seisflows/tools/wrappers.py rename to seisflows/tools/utils.py index e9bdd7e9..6797444d 100644 --- a/seisflows/tools/wrappers.py +++ b/seisflows/tools/utils.py @@ -1,7 +1,6 @@ """ -Wrappers of commonly used functions to reduce line count and provide an -aesthetically similar look in SeisFlows. Mostly concerend with file -manipulation, but also math and calling functions as well. +General utility functions that are mostly concerend with file manipulation, +but also math and calling functions as well. """ import os import re @@ -12,6 +11,25 @@ from importlib import import_module from pkgutil import find_loader from seisflows.core import Dict +from seisflows import logger + + +def get_task_id(): + """ + Task IDs are assigned to each child process spawned by the system module + during a SeisFlows workflow. SeisFlows modules use this Task ID to keep + track of embarassingly parallel process, e.g., solver uses the Task ID to + determine which source is being considered. + + :rtype: int + :return: task id for given solver + """ + _taskid = os.getenv("SEISFLOWS_TASKID") + if _taskid is None: + _taskid = 0 + logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " + "Assigning Task ID == 0") + return int(_taskid) def load_yaml(filename): @@ -52,74 +70,6 @@ def load_yaml(filename): return mydict -def diff(list1, list2): - """ - Difference between unique elements of lists - - :type list1: list - :param list1: first list - :type list2: list - :param list2: second list - """ - c = set(list1).union(set(list2)) - d = set(list1).intersection(set(list2)) - - return list(c - d) - - -def divides(i, j): - """ - Return True if `j` divides `i`. - - Bryant: I don't think this works in python3? - - :type i: int - :type j :int - """ - if j == 0: - return False - elif i % j: - return False - else: - return True - - -def exists(names): - """ - Wrapper for os.path.exists that also works on lists - - :type names: list or str - :param names: list of names to check existnce - """ - for name in iterable(names): - if not name: - return False - elif not isinstance(name, str): - raise TypeError - elif not os.path.exists(name): - return False - else: - return True - - -def findpath(name): - """ - Resolves absolute path of module - - :type name: str - :param name: absolute path of str - """ - path = import_module(name).__file__ - - # Adjust file extension - path = re.sub('.pyc$', '.py', path) - - # Strip trailing "__init__.py" - path = re.sub('__init__.py$', '', path) - - return path - - def iterable(arg): """ Make an argument iterable @@ -134,95 +84,6 @@ def iterable(arg): return arg -def module_exists(name): - """ - Determine if a module loader exists - - :type name: str - :param name: name of module - """ - return find_loader(name) - - -def package_exists(name): - """ - Determine if a package exists - - :type name: str - :param name: name of package - """ - return find_loader(name) - - -def pkgpath(name): - """ - Path to Seisflows package - - :type name: str - :param name: name of package - """ - for path in import_module('seisflows').__path__: - if os.path.join(name, 'seisflows') in path: - return path - - -def timestamp(): - """ - Return a timestamp for current time - """ - return time.strftime('%H:%M:%S') - - -def getset(arg): - """ - Return a set object - - :type arg: None, str or list - :param arg: argument to turn into a set - :rtype: set - :return: a set of the given argument - """ - if not arg: - return set() - elif isinstance(arg, str): - return set([arg]) - else: - return set(arg) - - -def parse_null(dictionary): - """ - Remove null, None or '' values from a dictionary - - :type dictionary: dict - :param dictionary: dict of parameters to parse - :rtype: dict - :return: dictionary that has been sanitized of all null values - """ - # Copy the dictionary to get around deleting keys while iterating - parsed_dict = dict(dictionary) - for key, item in dictionary.items(): - # Search for all None and "" items, ignore bools, 0's etc. - if not item and isinstance(item, (type(None), str)): - del parsed_dict[key] - - return parsed_dict - - -def loadtxt(filename): - """ - Load scalar from text file - """ - return float(np.loadtxt(filename)) - - -def savetxt(filename, v): - """ - Save scalar to text file - """ - np.savetxt(filename, [v], '%11.6e') - - def number_fid(fid, i=0): """ Number a filename. Used to store old log files without overwriting them. From ccc7cee4541d191265182cd117c1feed57566166 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 13 Jul 2022 17:43:29 -0800 Subject: [PATCH 066/195] completed solver tests and preprocess tests after refactoring both considerably to act more as standalone modules. Moving init docstrings into class docstrings to follow google styleguide and also make it easier to inherit docstrings from parent classes, which will be used during 'seisflows configure' --- seisflows/plugins/preprocess/readers.py | 54 - seisflows/plugins/preprocess/writers.py | 56 - seisflows/preprocess/default.py | 446 +- seisflows/seisflows.py | 111 +- seisflows/solver/specfem.py | 786 +-- seisflows/solver/specfem2d.py | 102 +- seisflows/solver/specfem3d.py | 178 +- seisflows/system/workstation.py | 2 +- .../test_preprocess/AA.S0001.BXY.adj | 5000 +++++++++++++++++ .../test_preprocess/AA.S0001.BXY.semd | 5000 +++++++++++++++++ .../test_preprocess/Uy_file_single_d.su | Bin 0 -> 20240 bytes .../test_preprocess/Uy_file_single_d.su.adj | Bin 0 -> 20240 bytes .../mainsolver/DATA/CMTSOLUTION_001 | 1 + .../mainsolver/DATA/CMTSOLUTION_002 | 1 + .../mainsolver/DATA/CMTSOLUTION_003 | 1 + .../mainsolver/DATA/CMTSOLUTION_004 | 1 + .../mainsolver/DATA/CMTSOLUTION_005 | 1 + .../mainsolver/DATA/CMTSOLUTION_006 | 1 + .../test_solver/mainsolver/DATA/Par_file | 1 + .../test_solver/mainsolver/DATA/STATIONS | 1 + .../test_solver/mainsolver/bin/xcombine_sem | 3 + .../test_solver/mainsolver/bin/xmeshfem2D | 2 + .../test_solver/mainsolver/bin/xsmooth_sem | 3 + .../test_solver/mainsolver/bin/xspecfem2D | 3 + .../proc000000_rho_vp_vs.dat | 0 .../test_file_formats/proc000000_vp.bin | Bin .../test_file_formats/proc000000_vs.bin | Bin seisflows/tests/test_preprocess.py | 95 + seisflows/tests/test_solver.py | 58 +- seisflows/tests/test_tools.py | 10 +- seisflows/tools/unix.py | 31 +- seisflows/tools/utils.py | 97 +- seisflows/workflow/forward_test.py | 33 + 33 files changed, 11079 insertions(+), 999 deletions(-) delete mode 100644 seisflows/plugins/preprocess/readers.py delete mode 100644 seisflows/plugins/preprocess/writers.py create mode 100644 seisflows/tests/test_data/test_preprocess/AA.S0001.BXY.adj create mode 100644 seisflows/tests/test_data/test_preprocess/AA.S0001.BXY.semd create mode 100644 seisflows/tests/test_data/test_preprocess/Uy_file_single_d.su create mode 100644 seisflows/tests/test_data/test_preprocess/Uy_file_single_d.su.adj create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/DATA/Par_file create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS create mode 100755 seisflows/tests/test_data/test_solver/mainsolver/bin/xcombine_sem create mode 100755 seisflows/tests/test_data/test_solver/mainsolver/bin/xmeshfem2D create mode 100755 seisflows/tests/test_data/test_solver/mainsolver/bin/xsmooth_sem create mode 100755 seisflows/tests/test_data/test_solver/mainsolver/bin/xspecfem2D rename seisflows/tests/test_data/{ => test_tools}/test_file_formats/proc000000_rho_vp_vs.dat (100%) rename seisflows/tests/test_data/{ => test_tools}/test_file_formats/proc000000_vp.bin (100%) rename seisflows/tests/test_data/{ => test_tools}/test_file_formats/proc000000_vs.bin (100%) create mode 100644 seisflows/tests/test_preprocess.py diff --git a/seisflows/plugins/preprocess/readers.py b/seisflows/plugins/preprocess/readers.py deleted file mode 100644 index 1a54e5ea..00000000 --- a/seisflows/plugins/preprocess/readers.py +++ /dev/null @@ -1,54 +0,0 @@ -""" -SeisFlows uses obspy stream objects for holding and processing seismic data. -In some cases, obspy.read doesn't provide the desired behavior, so we -introduce an additonal level of indirection - -Used by the PREPROCESS class and specified by the READER parameter -""" -import os -from numpy import loadtxt -from obspy import read -from obspy.core import Stream, Stats, Trace - - -def su(filename): - """ - Reads seismic unix files outputted by Specfem, using Obspy - - :type filename: str - :param filename: full path to data file to read - """ - st = read(os.path.join(filename), format='SU', byteorder='<') - - return st - - -def ascii(filename): - """ - Reads SPECFEM3D-style ASCII data - - :type filename: str - :param filename: full path to data file to read - """ - st = Stream() - stats = Stats() - - time, data = loadtxt(filename).T - - stats.filename = os.path.basename(filename) - stats.starttime = time[0] - stats.delta = time[1] - time[0] - stats.npts = len(data) - - try: - parts = filename.split(".") - stats.network = parts[0] - stats.station = parts[1] - stats.channel = parts[2] - except: - pass - - st.append(Trace(data=data, header=stats)) - - return st - diff --git a/seisflows/plugins/preprocess/writers.py b/seisflows/plugins/preprocess/writers.py deleted file mode 100644 index 44cff58a..00000000 --- a/seisflows/plugins/preprocess/writers.py +++ /dev/null @@ -1,56 +0,0 @@ -""" -SeisFlows uses obspy stream objects for holding and processing seismic data. -In some cases, obspy.read doesn't provide the desired behavior, -so we introduce an additonal level of indirection - -Used by the PREPROCESS class and specified by the WRITER parameter -""" -import os -import numpy as np - - -def su(st, filename): - """ - Writes seismic unix files outputted by Specfem, using Obspy - - :type st: obspy.core.stream.Stream - :param st: stream to write - :type filename: str - :param filename: full path to filename to write data to - """ - for tr in st: - # Work around obspy data type conversion - tr.data = tr.data.astype(np.float32) - - max_delta = 0.065535 - dummy_delta = max_delta - - if st[0].stats.delta > max_delta: - for tr in st: - tr.stats.delta = dummy_delta - - # Write data to file - st.write(filename, format='SU') - - -def ascii(st, filename=None): - """ - Writes seismic traces as ascii files. Kwargs are left to keep structure of - inputs compatible with other input formats. - - :type st: obspy.core.stream.Stream - :param st: stream to write - :type filename: str - :param filename: full path to filename to write data to - """ - for tr in st: - if filename is None: - filename = tr.stats.filename - - # Float provides the time difference between starttime and default time - time_offset = float(tr.stats.starttime) - - data_out = np.vstack((tr.times() + time_offset, tr.data)).T - - np.savetxt(filename, data_out, ["%13.7f", "%17.7f"]) - diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 35fc0f0b..96057a24 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -6,12 +6,16 @@ and write adjoint sources that are expected by the solver. """ import os -import obspy import numpy as np +from obspy import read as obspy_read +from obspy import Stream, Trace, UTCDateTime from seisflows import logger +from seisflows.core import Dict from seisflows.tools import signal, unix -from seisflows.plugins.preprocess import adjoint, misfit, readers, writers + +from seisflows.plugins.preprocess import misfit as misfit_functions +from seisflows.plugins.preprocess import adjoint as adjoint_sources class Default: @@ -21,10 +25,12 @@ class Default: Provides data processing functions for seismic traces, with options for data misfit, filtering, normalization and muting """ - def __init__(self, data_format="ascii", misfit="waveform", backproject=None, - normalize=None, filter=None, min_period=None, max_period=None, - min_freq=None, max_freq=None, mute=None, path_preprocess=None, - **kwargs): + def __init__(self, data_format="ascii", misfit="waveform", + adjoint="waveform", normalize=None, filter=None, + min_period=None, max_period=None, min_freq=None, max_freq=None, + mute=None, early_slope=None, early_const=None, late_slope=None, + late_const=None, short_dist=None, long_dist=None, + workdir=os.getcwd(), path_preprocess=None, **kwargs): """ Preprocessing module parameters @@ -78,10 +84,11 @@ def __init__(self, data_format="ascii", misfit="waveform", backproject=None, :param path_preprocess: scratch path for all preprocessing processes, including saving files """ - self.data_format = data_format.title() + self.data_format = data_format.upper() self.misfit = misfit - self.backproject = backproject, + self.adjoint = adjoint self.normalize = normalize + self.filter = filter self.min_period = min_period self.max_period = max_period @@ -89,20 +96,40 @@ def __init__(self, data_format="ascii", misfit="waveform", backproject=None, self.max_freq = max_freq self.mute = mute or [] self.normalize = normalize or [] - self.path = path_preprocess or \ - os.path.join(os.getcwd(), "scratch", "preprocess") - - # TODO: Add the mute parameters here, const, slope and dist - self._misfit = None - self._adjoint = None - self._reader = None - self._writer = None - - def check(self, validate=True): + # Mute arrivals sub-parameters + self.early_slope = early_slope + self.early_const = early_const + self.late_slope = late_slope + self.late_const = late_const + self.short_dist = short_dist + self.long_dist = long_dist + + self.path = Dict( + scratch=path_preprocess or os.path.join(workdir, "scratch", + "preprocess") + ) + + self._acceptable_data_formats = ["SU", "ASCII"] + + # Misfits and adjoint sources are defined by the available functions + # in each of these plugin files. Drop hidden variables from dir() + self._acceptable_misfits = [_ for _ in dir(misfit_functions) + if not _.startswith("_")] + self._acceptable_adjsrcs = [_ for _ in dir(adjoint_sources) + if not _.startswith("_")] + + def check(self): """ Checks parameters and paths """ + if self.misfit: + assert(self.misfit in self._acceptable_misfits), \ + f"preprocess.misfit must be in {self._acceptable_misfits}" + if self.adjoint: + assert(self.adjoint in self._acceptable_adjsrcs), \ + f"preprocess.misfit must be in {self._acceptable_adjsrcs}" + # Data normalization option if self.normalize: acceptable_norms = {"TNORML1", "TNORML2", "ENORML1", "ENORML2"} @@ -169,13 +196,8 @@ def check(self, validate=True): "PAR.MIN_FREQ < PAR.MAX_FREQ" ) - # Assert that readers and writers available - # TODO | This is a bit vague as dir contains imported modules and hidden - # TODO | variables (e.g., np, __name__) - assert(self.data_format.lower() in dir(readers)), ( - f"Reader {self.data_format} not found") - assert(self.data_format.lower() in dir(writers)), ( - f"Writer {self.data_format} not found") + assert(self.data_format.upper() in self._acceptable_data_formats), \ + f"data format must be in {self._acceptable_data_formats}" def setup(self): """ @@ -183,22 +205,7 @@ def setup(self): misfit, adjoint source type, and specifying the expected file type for input and output seismic data. """ - unix.mkdir(self.path) - - # Define misfit function and adjoint trace generator - if self.misfit: - logger.debug(f"misfit function is: '{self.misfit}'") - self._misfit = getattr(misfit, self.misfit.lower()) - self._adjoint = getattr(adjoint, self.misfit.lower()) - elif self.backproject: - logger.debug( - f"backproject function is: '{self.backproject}'" - ) - self._adjoint = getattr(adjoint, self.backproject.lower()) - - # Define seismic data reader and writer - self._reader = getattr(readers, self.data_format.lower()) - self._writer = getattr(writers, self.data_format.lower()) + unix.mkdir(self.path.scratch) def finalize(self): """ @@ -207,25 +214,114 @@ def finalize(self): """ pass - def initialize_adjoint_traces(self, filenames=None): + def read(self, fid): + """ + Waveform reading functionality. Imports waveforms as Obspy streams + + :type fid: str + :param fid: path to file to read data from + :rtype: obspy.core.stream.Stream + :return: ObsPy stream containing data stored in `fid` + """ + st = None + if self.data_format.upper() == "SU": + st = obspy_read(os.path.join(fid), format="SU", byteorder="<") + elif self.data_format.upper() == "ASCII": + st = self._read_ascii(fid) + return st + + def write(self, st, fid): + """ + Waveform writing functionality. Writes waveforms back to format that + SPECFEM recognizes + + :type st: obspy.core.stream.Stream + :param st: stream to write + :type fid: str + :param fid: path to file to write stream to + """ + if self.data_format.upper() == "SU": + for tr in st: + # Work around for ObsPy data type conversion + tr.data = tr.data.astype(np.float32) + max_delta = 0.065535 + dummy_delta = max_delta + + if st[0].stats.delta > max_delta: + for tr in st: + tr.stats.delta = dummy_delta + + # Write data to file + st.write(fid, format="SU") + + elif self.data_format.upper() == "ASCII": + for tr in st: + # Float provides time difference between starttime and default + time_offset = float(tr.stats.starttime) + data_out = np.vstack((tr.times() + time_offset, tr.data)).T + np.savetxt(fid, data_out, ["%13.7f", "%17.7f"]) + + def _calculate_misfit(self, **kwargs): + """Wrapper for plugins.preprocess.misfit misfit/objective function""" + if self.misfit is not None: + return getattr(misfit_functions, self.misfit)(**kwargs) + else: + return None + + def _generate_adjsrc(self, **kwargs): + """Wrapper for plugins.preprocess.adjoint source/backproject function""" + if self.adjoint is not None: + return getattr(adjoint_sources, self.adjoint)(**kwargs) + else: + return None + + def initialize_adjoint_traces(self, data_filenames, output): """ - TO DO + SPECFEM requires that adjoint traces be present for every matching + synthetic seismogram. If an adjoint source does not exist, it is + simply set as zeros. This function creates all adjoint traces as + zeros, to be filled out later + + Appends '.adj. to the solver filenames as expected by SPECFEM (if they + don't already have that extension) + + TODO there are some sem2d and 3d specific tasks that are not carried + TODO over here, were they required? + + :type data_filenames: list of str + :param data_filenames: existing solver waveforms to read from. + These will be copied, zerod out, and saved to path `save`. Should + come from solver.data_filenames + :type output: str + :param output: path to save the new adjoint traces to. """ - for filename in self.data_filenames: - st = self.preprocess.reader(path=os.path.join(self.cwd, "traces", "obs"), - filename=filename - ) - # Zero out data just so we have empty adjoint traces as SPECFEM - # will expect all adjoint sources to have all components - st *= 0 + for fid in data_filenames: + st = self.read(fid=fid).copy() + fid = os.path.basename(fid) # drop any path before filename + for tr in st: + tr.data *= 0 + + adj_fid = self._rename_as_adjoint_source(fid) # Write traces back to the adjoint trace directory - preprocess.writer(st=st, filename=filename, - path=os.path.join(self.cwd, "traces", "adj") - ) + self.write(st=st, fid=os.path.join(output, adj_fid)) + + def _rename_as_adjoint_source(self, fid): + """ + Rename synthetic waveforms into filenames consistent with how SPECFEM + expects adjoint sources to be named. Usually this just means adding + a '.adj' to the end of the filename + """ + if not fid.endswith(".adj"): + if self.data_format.upper() == "SU": + fid = f"{fid}.adj" + elif self.data_format.upper() == "ASCII": + og_extension = os.path.splitext(fid)[-1] # e.g., .semd + fid = fid.replace(og_extension, ".adj") + return fid def quantify_misfit(self, observed, synthetic, - write_residuals=False, write_adjsrcs=False, **kwargs): + write_residuals=None, write_adjsrcs=None, **kwargs): """ Prepares solver for gradient evaluation by writing residuals and adjoint traces. Meant to be called by solver.eval_func(). @@ -238,16 +334,18 @@ def quantify_misfit(self, observed, synthetic, Meant to be called by solver.eval_func(), may have unused arguments to keep functions general across subclasses. - :type cwd: str - :param cwd: current specfem working directory containing observed and - synthetic seismic data to be read and processed. Should be defined - by solver.cwd - :type filenames: list of str - :param filenames: list of filenames defining the files in traces + :type observed: list + :param observed: list of observed waveforms + :type synthetic: list + :param synthetic: list of synthetic waveforms + :type write_residuals: str + :param write_residuals: if not None, path to write misfit/residuls to + :type write_adjsrcs: str + :param write_adjsrcs: if not None, path to write adjoint sources to """ for obs_fid, syn_fid in zip(observed, synthetic): - obs = self._reader(filename=obs_fid) - syn = self._reader(filename=syn_fid) + obs = self.read(fid=obs_fid) + syn = self.read(fid=syn_fid) # Process observations and synthetics identically if self.filter: @@ -262,97 +360,27 @@ def quantify_misfit(self, observed, synthetic, # Write the residuals/misfit and adjoint sources for each component for tr_obs, tr_syn in zip(obs, syn): - if write_residuals: - residual = self._misfit(obs=tr_obs.data, syn=tr_syn.data, - nt=tr_syn.stats.npts, - dt=tr_syn.stats.delta) + # Simple check to make sure zip retains ordering + assert(tr_obs.stats.component == tr_syn.stats.component) + # Calculate the misfit value and write to file + if write_residuals and self._calculate_misfit: + residual = self._calculate_misfit( + obs=tr_obs.data, syn=tr_syn.data, + nt=tr_syn.stats.npts, dt=tr_syn.stats.delta + ) with open(write_residuals, "a") as f: f.write(f"{residual:.2E}\n") - if write_adjsrcs: - adjsrc = syn.copy() - adjsrc.data = self._adjoint(obs=tr_obs.data, syn=tr_syn.data, - nt=tr_syn.stats.npts, - dt=tr_syn.stats.delta) - if self.data_format.upper() == "ASCII": - # Change the extension to '.adj' from whatever it is - ext = os.path.splitext(os.path.basename(obs))[-1] - filename = os.path.basename(obs).replace(ext, ".adj") - elif self.data_format.upper() == "SU": - # TODO implement this - raise NotImplementedError - self._writer(st=adjsrc, - filename=os.path.join(write_adjsrcs, filename) - ) - - def prepare_eval_grad(self, cwd, taskid, filenames, **kwargs): - """ - Prepares solver for gradient evaluation by writing residuals and - adjoint traces. Meant to be called by solver.eval_func(). - - Reads in observed and synthetic waveforms, applies optional - preprocessing, assesses misfit, and writes out adjoint sources and - STATIONS_ADJOINT file. - - .. note:: - Meant to be called by solver.eval_func(), may have unused arguments - to keep functions general across subclasses. - - :type cwd: str - :param cwd: current specfem working directory containing observed and - synthetic seismic data to be read and processed. Should be defined - by solver.cwd - :type filenames: list of str - :param filenames: list of filenames defining the files in traces - """ - if taskid == 0: - logger.debug("preparing files for gradient evaluation") - for filename in filenames: - obs = self._reader(path=os.path.join(cwd, "traces", "obs"), - filename=filename) - syn = self._reader(path=os.path.join(cwd, "traces", "syn"), - filename=filename) - - # Process observations and synthetics identically - if self.filter: - if taskid == 0: - logger.debug(f"applying {self.filter} filter to data") - obs = self._apply_filter(obs) - syn = self._apply_filter(syn) - if self.mute: - if taskid == 0: - logger.debug(f"applying {self.mute} mutes to data") - obs = self._apply_mute(obs) - syn = self._apply_mute(syn) - if self.normalize: - if taskid == 0: - logger.debug( - f"normalizing data with: {self.normalize}" + # Generate an adjoint source trace, write to file + if write_adjsrcs and self._generate_adjsrc: + adjsrc = syn.copy() + adjsrc.data = self._generate_adjsrc( + obs=tr_obs.data, syn=tr_syn.data, + nt=tr_syn.stats.npts, dt=tr_syn.stats.delta ) - obs = self._apply_normalize(obs) - syn = self._apply_normalize(syn) - - if self.misfit is not None: - self._write_residuals(cwd, syn, obs) - - # Write the adjoint traces. Rename file extension for Specfem - if self.data_format.upper() == "ASCII": - # Change the extension to '.adj' from whatever it is - ext = os.path.splitext(filename)[-1] - filename_out = filename.replace(ext, ".adj") - elif self.data_format.upper() == "SU": - # TODO implement this - raise NotImplementedError - - self._write_adjoint_traces(path=os.path.join(cwd, "traces", "adj"), - syn=syn, obs=obs, filename=filename_out) - - # Copy over the STATIONS file to STATIONS_ADJOINT required by Specfem - # ASSUMING that all stations are used in adjoint simulation - # TODO !!! This is SPECFEM dependent? Belongs in solver.specfem? - src = os.path.join(cwd, "DATA", "STATIONS") - dst = os.path.join(cwd, "DATA", "STATIONS_ADJOINT") - unix.cp(src, dst) + fid = os.path.basename(syn_fid) + fid = self._rename_as_adjoint_source(fid) + self.write(st=adjsrc, fid=os.path.join(write_adjsrcs, fid)) def sum_residuals(self, files): """ @@ -369,61 +397,6 @@ def sum_residuals(self, files): return total_misfit - def _write_residuals(self, obs, syn, output): - """ - Computes residuals between observed and synthetic seismogram based on - the misfit function self.misfit. Saves the residuals for each - data-synthetic pair into a text file located at: - - ./scratch/solver/*/residuals - - The resulting file will be a single-column ASCII file that needs to be - summed before use by the solver - - :type path: str - :param path: location "adjoint traces" will be written - :type syn: obspy.core.stream.Stream - :param syn: synthetic data - :type obs: obspy.core.stream.Stream - :param syn: observed data - """ - residuals = [] - for tr_obs, tr_syn in zip(obs, syn): - residual = self._misfit(syn=tr_syn.data, obs=tr_obs.data, - nt=tr_syn.stats.npts, - dt=tr_syn.stats.delta - ) - residuals.append(residual) - - filename = os.path.join(output, "residuals") - if os.path.exists(filename): - residuals = np.append(residuals, np.loadtxt(filename)) - - np.savetxt(filename, residuals) - - def _write_adjoint_traces(self, path, syn, obs, filename): - """ - Writes "adjoint traces" required for gradient computation - - :type path: str - :param path: location "adjoint traces" will be written - :type syn: obspy.core.stream.Stream - :param syn: synthetic data - :type obs: obspy.core.stream.Stream - :param syn: observed data - :type filename: str - :param filename: filename to write adjoint traces to - """ - # Use the synthetics as a template for the adjoint sources - adj = syn.copy() - for tr_adj, tr_obs, tr_syn in zip(adj, obs, syn): - tr_adj.data = self._adjoint(syn=tr_syn.data, obs=tr_obs.data, - nt=tr_syn.stats.npts, - dt=tr_syn.stats.delta - ) - - self._writer(adj, path, filename) - def _apply_filter(self, st): """ Apply a filter to waveform data using ObsPy @@ -466,18 +439,14 @@ def _apply_mute(self, st): mute_choices = [_.upper() for _ in self.mute] if "EARLY" in mute_choices: st = signal.mute_arrivals(st, slope=self.early_slope, - const=self.early_const, - choice="EARLY") + const=self.early_const, choice="EARLY") if "LATE" in mute_choices: st = signal.mute_arrivals(st, slope=self.late_slope, - const=self.late_const, - choice="LATE") + const=self.late_const, choice="LATE") if "SHORT" in mute_choices: - st = signal.mute_offsets(st, dist=self.short_dist, - choice="SHORT") + st = signal.mute_offsets(st, dist=self.short_dist, choice="SHORT") if "LONG" in mute_choices: - st = signal.mute_arrivals(st, dist=self.long_dist, - choice="LONG") + st = signal.mute_offsets(st, dist=self.long_dist, choice="LONG") return st @@ -526,3 +495,56 @@ def _apply_normalize(self, st): tr.data /= w return st_out + + @staticmethod + def _read_ascii(fid, origintime=None): + """ + Read waveforms in two-column ASCII format. This is copied directly from + pyatoa.utils.read.read_sem() + """ + try: + times = np.loadtxt(fname=fid, usecols=0) + data = np.loadtxt(fname=fid, usecols=1) + + # At some point in 2018, the Specfem developers changed how the ascii files + # were formatted from two columns to comma separated values, and repeat + # values represented as 2*value_float where value_float represents the data + # value as a float + except ValueError: + times, data = [], [] + with open(fid, 'r') as f: + lines = f.readlines() + for line in lines: + try: + time_, data_ = line.strip().split(',') + except ValueError: + if "*" in line: + time_ = data_ = line.split('*')[-1] + else: + raise ValueError + times.append(float(time_)) + data.append(float(data_)) + + times = np.array(times) + data = np.array(data) + + if origintime is None: + print("No origintime given, setting to default 1970-01-01T00:00:00") + origintime = UTCDateTime("1970-01-01T00:00:00") + + # We assume that dt is constant after 'precision' decimal points + delta = round(times[1] - times[0], 4) + + # Honor that Specfem doesn't start exactly on 0 + origintime += times[0] + + # Write out the header information + net, sta, cha, fmt = os.path.basename(fid).split('.') + stats = {"network": net, "station": sta, "location": "", + "channel": cha, "starttime": origintime, "npts": len(data), + "delta": delta, "mseed": {"dataquality": 'D'}, + "time_offset": times[0], "format": fmt + } + st = Stream([Trace(data=data, header=stats)]) + + return st diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 7675c388..3a599339 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -28,7 +28,7 @@ from seisflows.core import Dict, SeisFlowsPathsParameters from seisflows.config import (custom_import, save, NAMES, ROOT_DIR, CFGPATHS, - config_logger) + config_logger, import_seisflows) from seisflows.tools import unix, msg from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) @@ -581,22 +581,11 @@ def configure(self, absolute_paths=False, **kwargs): else if False, use path names relative to the working directory. Defaults to False, uses relative paths. """ - self._register_parameters() - - # Check if the User set turn off any modules (if None, dont instantiate) - names = copy(NAMES) - for name, choice in self._parameters.items(): - if choice is None: - names.remove(name.lower()) + # Load in a barebones parameter file and instantiate specific classes + parameters = load_yaml(os.path.join(self._args.workdir, + self._args.parameter_file)) + classes = [custom_import(name, parameters[name])() for name in NAMES] - # Need to attempt importing all modules before we access their par/paths - for NAME in NAMES: - sys.modules[f"seisflows_{NAME}"] = custom_import(NAME)() - - # System defines foundational directory structure required by other - # modules. Don't validate the parameters because they aren't yet set - sys.modules["seisflows_system"].required.validate(paths=True, - parameters=False) # If writing to parameter file fails for any reason, the file will be # mangled, create a temporary copy that can be re-instated upon failure @@ -604,29 +593,7 @@ def configure(self, absolute_paths=False, **kwargs): unix.cp(self._args.parameter_file, temp_par_file) try: - # Paths are collected for each but written at the end - seisflows_paths = {} - with open(self._args.parameter_file, "a") as f: - for name in names: - req = sys.modules[f"seisflows_{name}"].required - seisflows_paths.update(req.paths) - - # Write the docstring header and then the parameters in YAML - msg.write_par_file_header(f, req.parameters, name) - msg.write_par_file_paths_pars(f, req.parameters) - - # Write the paths in the same format as parameters - msg.write_par_file_header(f, seisflows_paths, name="PATHS") - f.write("PATHS:\n") - - # If requested, set the paths relative to the current dir - if not absolute_paths: - for key, attrs in seisflows_paths.items(): - if attrs["default"]: - seisflows_paths[key]["default"] = os.path.relpath( - attrs["default"]) - msg.write_par_file_paths_pars(f, seisflows_paths, indent=4) - # General error catch as anything can happen here + import pdb;pdb.set_trace() except Exception as e: unix.rm(self._args.parameter_file) unix.cp(temp_par_file, self._args.parameter_file) @@ -636,6 +603,72 @@ def configure(self, absolute_paths=False, **kwargs): else: unix.rm(temp_par_file) + # def configure(self, absolute_paths=False, **kwargs): + # """ + # Dynamically generate the parameter file by writing out docstrings and + # default values for each of the SeisFlows module parameters. + # This function writes files manually, consistent with the .yaml format. + # + # :type absolute_paths: bool + # :param absolute_paths: if True, expand pathnames to absolute paths, + # else if False, use path names relative to the working directory. + # Defaults to False, uses relative paths. + # """ + # self._register_parameters() + # + # # Check if the User set turn off any modules (if None, dont instantiate) + # names = copy(NAMES) + # for name, choice in self._parameters.items(): + # if choice is None: + # names.remove(name.lower()) + # + # # Need to attempt importing all modules before we access their par/paths + # for NAME in NAMES: + # sys.modules[f"seisflows_{NAME}"] = custom_import(NAME)() + # + # # System defines foundational directory structure required by other + # # modules. Don't validate the parameters because they aren't yet set + # sys.modules["seisflows_system"].required.validate(paths=True, + # parameters=False) + # + # # If writing to parameter file fails for any reason, the file will be + # # mangled, create a temporary copy that can be re-instated upon failure + # temp_par_file = f".{self._args.parameter_file}" + # unix.cp(self._args.parameter_file, temp_par_file) + # + # try: + # # Paths are collected for each but written at the end + # seisflows_paths = {} + # with open(self._args.parameter_file, "a") as f: + # for name in names: + # req = sys.modules[f"seisflows_{name}"].required + # seisflows_paths.update(req.paths) + # + # # Write the docstring header and then the parameters in YAML + # msg.write_par_file_header(f, req.parameters, name) + # msg.write_par_file_paths_pars(f, req.parameters) + # + # # Write the paths in the same format as parameters + # msg.write_par_file_header(f, seisflows_paths, name="PATHS") + # f.write("PATHS:\n") + # + # # If requested, set the paths relative to the current dir + # if not absolute_paths: + # for key, attrs in seisflows_paths.items(): + # if attrs["default"]: + # seisflows_paths[key]["default"] = os.path.relpath( + # attrs["default"]) + # msg.write_par_file_paths_pars(f, seisflows_paths, indent=4) + # # General error catch as anything can happen here + # except Exception as e: + # unix.rm(self._args.parameter_file) + # unix.cp(temp_par_file, self._args.parameter_file) + # print(msg.cli(text="seisflows configure traceback", header="error")) + # print(traceback.format_exc()) + # sys.exit(-1) + # else: + # unix.rm(temp_par_file) + def swap(self, module, classname, **kwargs): """ Swap the parameters of an existing parameter file with a new module. diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 0554203d..19a477b1 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -5,8 +5,17 @@ functions that work with all versions of SPECFEM. Subclasses will provide additional capabilities unique to each version of SPECFEM. -TODO add in `apply_hess` functionality that was partially written in legacy code -TODO move `_initialize_adjoint_traces` to workflow.migration +.. note:: + The Base class implementation is almost completely SPECFEM2D related. + However, SPECFEM2D requires a few unique parameters that 3D/3D_GLOBE + do not. Because of the inheritance architecture of SeisFlows, we do not + want the 3D and 3D_GLOBE versions to inherit 2D-specific parameters, so + we need this this more generalized SPECFEM base class. + +TODO + - add in `apply_hess` functionality that was partially written in legacy code + - move `_initialize_adjoint_traces` to workflow.migration + - Add density scaling based on Vp? """ import os import sys @@ -23,66 +32,69 @@ class Specfem: """ - This base class provides an interface through which solver simulations can - be set up and run. It should not be used by itself, but rather it is meant - to provide the foundation for: SPECFEM2D/3D/3D_GLOBE - - .. note:: - This Base class implementation is almost completely SPECFEM2D related. - However, SPECFEM2D requires a few unique parameters that 3D/3D_GLOBE - do not. Because of the inheritance architecture of SeisFlows, we do not - want the 3D and 3D_GLOBE versions to inherit 2D-specific parameters, so - we need this this more generalized SPECFEM base class. - - .. note::: - This class supports only acoustic and isotropic elastic inversions. + SPECFEM interface shared between 2D/3D/3D_GLOBE implementations. + + :type case: str + :param case: determine the type of workflow we will attempt + Available: ['DATA': data-synthetic comparisons. Data must be provided + by the user in `path_data`. 'SYNTHETIC': synthetic-synthetic + comparisons. `path_model_true` is required to generate target 'data'] + :type data_format: str + :param data_format: data format for reading traces into memory. + Available: ['SU' seismic unix format, 'ASCII' human-readable ascii] + :type materials: str + :param materials: Material parameters used to define model. Available: + ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] + :type density: bool + :param density: How to treat density during inversion. If True, updates + density during inversion. If False, keeps it constant. + :type attenuation: bool + :param attenuation: How to treat attenuation during inversion. + if True, turns on attenuation during forward simulations only. If + False, attenuation is always set to False. Requires underlying + attenution (Q_mu, Q_kappa) model + :type components: str + :param components: components to consider and tag data with. Should be + string of letters such as 'RTZ' + :type solver_io: str + :param solver_io: format of model/kernel/gradient files expected by the + numerical solver. Available: ['fortran_binary': default .bin files]. + TODO: ['adios': ADIOS formatted files] + :type source_prefix: str + :param source_prefix: prefix of source/event/earthquake files. If None, + will attempt to guess based on the specific solver chosen. + :type mpiexec: str + :param mpiexec: MPI executable used to run parallel processes. Should also + be defined for the system module + :type workdir: str + :param workdir: working directory in which to look for data and store + results. Defaults to current working directory + :type path_solver: str + :param path_solver: scratch path for all solver related tasks + :type path_data: str + :param path_data: path to any externally stored data required by the solver + :type path_specfem_bin: str + :param path_specfem_bin: path to SPECFEM bin/ directory which + contains binary executables for running SPECFEM + :type path_specfem_data: str + :param path_specfem_data: path to SPECFEM DATA/ directory which must + contain the CMTSOLUTION, STATIONS and Par_file files used for + running SPECFEM + :type path_model_true: str + :param path_model_true: path to a target model if `case`=='synthetic' and + a set of synthetic 'observations' are required for workflow. + :type path_output: str + :param path_output: shared output directory on disk for more permanent + storage of solver related files such as traces, kernels, gradients. """ def __init__(self, case="data", data_format="ascii", materials="elastic", density=False, nproc=1, ntask=1, attenuation=False, components="ZNE", solver_io="fortran_binary", - source_prefix=None,mpiexec=None, path_solver=None, - path_data=None, path_specfem_bin=None, + source_prefix=None, mpiexec=None, workdir=os.getcwd(), + path_solver=None, path_data=None, path_specfem_bin=None, path_specfem_data=None, path_model_init=None, path_model_true=None, path_output=None, **kwargs): - """ - SPECFEM Solver parameters - - :type data_format: str - :param data_format: data format for reading traces into memory. - Availalble: ['SU' seismic unix format, 'ASCII' human-readable ascii] - :type materials: str - :param materials: Material parameters used to define model. Available: - ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] - :type density: bool - :param density: How to treat density during inversion. If True, updates - density during inversion. If False, keeps it constant. - TODO Add density scaling based on Vp? - :type attenuation: bool - :param attenuation: How to treat attenuation during inversion. - if True, turns on attenuation during forward simulations only. If - False, attenuation is always set to False. Requires underlying - attenution (Q_mu, Q_kappa) model - :type components: str - :param components: components to consider and tag data with. Should be - string of letters such as 'RTZ' - :type path.specfem_bin: str - :param path.specfem_bin: path to SPECFEM bin/ directory which - contains binary executables for running SPECFEM - :type path.specfem_data: str - :param path.specfem_data: path to SPECFEM DATA/ directory which must - contain the CMTSOLUTION, STATIONS and Par_file files used for - running SPECFEM - - :type parameters: list of str - :param parameters: a list detailing the parameters to be used to - define the model, available: ['vp', 'vs', 'rho'] - :type _source_names: hidden attribute, - :param _source_names: the names of all the sources that are being used - by the solver - :type logger: Logger - :param logger: Class-specific logging module, log statements pushed - from this logger will be tagged by its specific module/classname - """ + """Set default SPECFEM interface parameters""" self.case = case self.data_format = data_format self.materials = materials @@ -93,19 +105,19 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", self.components = components self.solver_io = solver_io self.mpiexec = mpiexec + self.source_prefix = source_prefix or "SOURCE" # Define internally used directory structure - _cwd = os.getcwd() self.path = Dict( - scratch=path_solver or os.path.join(_cwd, "scratch", "solver"), - data=path_data or os.path.join(_cwd, "SFDATA"), - output=path_output or os.path.join(_cwd, "output"), - mainsolver=os.path.join(_cwd, "scratch", "mainsolver"), + scratch=path_solver or os.path.join(workdir, "scratch", "solver"), + data=path_data or os.path.join(workdir, "SFDATA"), + output=path_output or os.path.join(workdir, "output"), specfem_bin=path_specfem_bin, specfem_data=path_specfem_data, model_init=path_model_init, model_true=path_model_true, ) + self.path.mainsolver = os.path.join(self.path.scratch, "mainsolver") # Establish internally defined parameter system self._parameters = [] @@ -115,19 +127,78 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", self._source_names = None self._io = getattr(solver_io_dir, self.solver_io) - # Define available choices for check parameter + # Define available choices for check parameters self._available_model_types = ["gll"] self._available_materials = [ "ELASTIC", "ACOUSTIC", # specfem2d, specfem3d "ISOTROPIC", "ANISOTROPIC" # specfem3d_globe ] self._available_data_formats = ["ASCII", "SU"] - self._required_binaries = ["xspecfem2d", "xmeshfem2d", "xcombine_sem", + self._required_binaries = ["xspecfem2D", "xmeshfem2D", "xcombine_sem", "xsmooth_sem"] + self._acceptable_source_prefix = ["SOURCE", "FORCE", "FORCESOLUTION"] + + def check(self): + """ + Checks parameter validity for SPECFEM input files and model parameters + """ + assert(self.case.upper() in ["DATA", "SYNTHETIC"]), \ + f"solver.case must be 'DATA' or 'SYNTHETIC'" + + assert(self.materials.upper() in self._available_materials), \ + f"solver.materials must be in {self._available_materials}" + + if self.data_format.upper() not in self._available_data_formats: + raise NotImplementedError( + f"solver.data_format must be {self._available_data_formats}" + ) + + # Make sure we can read in the model/kernel/gradient files + assert hasattr(solver_io_dir, self.solver_io) + assert hasattr(self._io, "read_slice"), \ + "IO method has no attribute 'read'" + assert hasattr(self._io, "write_slice"), \ + "IO method has no attribute 'write'" + + # Check that User has provided appropriate bin/ and DATA/ directories + for name, dir_ in zip(["bin/", "DATA/"], + [self.path.specfem_bin, self.path.specfem_data]): + assert(dir_ is not None), f"SPECFEM path '{name}' cannot be None" + assert(os.path.exists(dir_)), f"SPECFEM path '{name}' must exist" + + # Check that the required SPECFEM files are available + for fid in ["STATIONS", "Par_file"]: + assert(os.path.exists(os.path.join(self.path.specfem_data, fid))), ( + f"DATA/{fid} does not exist but is required by SeisFlows solver" + ) + + # Make sure source files exist and are appropriately labeled + assert(self.source_prefix in self._acceptable_source_prefixes) + assert(glob(os.path.join(self.path.specfem_data, + f"{self.source_prefix}*"))), ( + f"No source files with prefix {self.source_prefix} found in DATA/") + + # Check that required binary files exist which are called upon by solver + for fid in self._required_binaries: + assert(os.path.exists(os.path.join(self.path.specfem_bin, fid))), ( + f"bin/{fid} does not exist but is required by SeisFlows solver" + ) + + # Check that the 'case' variable matches required models + if self.case.upper() == "SYNTHETIC": + assert(os.path.exists(self.path.model_true)), ( + f"solver.case == 'synthetic' requires `path.model_true`" + ) + + # Check that model type is set correctly in the Par_file + model_type = getpar(key="MODEL", + file=os.path.join(self.path.specfem_data, + "Par_file"))[1] + assert(model_type in self._available_model_types), \ + f"{model_type} not in available types {self._available_model_types}" - # These are parameters that need to be established by child classes - self.source_prefix = source_prefix - self._acceptable_source_prefixes = [] + # Check that the number of tasks/events matches the number of events + self._source_names = self._check_source_names() @property def taskid(self): @@ -279,65 +350,6 @@ def kernel_databases(self): """ return "OUTPUT_FILES" - def check(self): - """ - Checks parameter validity for SPECFEM input files and model parameters - """ - assert(self.case.upper() in ["DATA", "SYNTHETIC"]), \ - f"solver.case must be 'DATA' or 'SYNTHETIC'" - - assert(self.materials.upper() in self._available_materials), \ - f"solver.materials must be in {self._available_materials}" - - if self.data_format.upper() not in self._available_data_formats: - raise NotImplementedError( - f"solver.data_format must be {self._available_data_formats}" - ) - - # Make sure we can read in the model/kernel/gradient files - assert hasattr(solver_io_dir, self.solver_io) - assert hasattr(self._io, "read_slice"), \ - "IO method has no attribute 'read'" - assert hasattr(self._io, "write_slice"), \ - "IO method has no attribute 'write'" - - # Check that User has provided appropriate bin/ and DATA/ directories - for name, dir_ in zip(["bin/", "DATA/"], - [self.path.specfem_bin, self.path.specfem_data]): - assert(dir_ is not None), f"SPECFEM path '{name}' cannot be None" - assert(os.path.exists(dir_)), f"SPECFEM path '{name}' must exist" - - # Check that the required SPECFEM files are available - for fid in [self.source_prefix, "STATIONS", "Par_file"]: - assert(os.path.exists(os.path.join(self.path.specfem_data, fid))), ( - f"DATA/{fid} does not exist but is required by SeisFlows solver" - ) - - # Check that required binary files exist which are called upon by solver - for fid in self._required_binaries: - assert(os.path.exists(os.path.join(self.path.specfem_bin, fid))), ( - f"bin/{fid} does not exist but is required by SeisFlows solver" - ) - - # Check that the 'case' variable matches required models - if self.case.upper() == "SYNTHETIC": - assert(os.path.exists(self.path.model_true)), ( - f"solver.case == 'synthetic' requires `path.model_true`" - ) - - # Make sure source files exist and are appropriately labeled - assert(self.source_prefix in self._acceptable_source_prefixes) - assert(glob(os.path.join(self.path.specfem_data, - f"{self.source_prefix}*"))), ( - f"No source files with prefix {self.source_prefix} found in DATA/") - - # Check that model type is set correctly in the Par_file - model_type = getpar(key="MODEL", - file=os.path.join(self.path.specfem_data, - "Par_file"))[1] - assert(model_type in self._available_model_types), \ - f"{model_type} not in available types {self._available_model_types}" - def setup(self): """ Prepares solver scratch directories for an impending workflow. @@ -448,88 +460,98 @@ def import_data(self): dst = os.path.join(self.cwd, "traces", "obs") unix.cp(src, dst) + # + # def eval_func(self, path, preprocess=None): + # """ + # Performs forward simulations and evaluates the misfit function using + # the preprocess module. solver.eval_func is bundled with + # preprocess.prepare_eval_grad because they are meant to be run serially + # so it is better to lump them together into a single allocation. + # + # .. note:: + # This task should be run in parallel by system.run() + # + # :type path: str + # :param path: directory from which model is imported and where residuals + # will be exported + # :type preprocess: instance + # :param preprocess: SeisFlows preprocess module which can be used to + # prepare gradient evaluation by comparing misfit and creating + # adjoint sources. If None, only forward simulations will be + # performed + # """ + # unix.cd(self.cwd) + # + # if self.taskid == 0: + # logger.info("running forward simulations") + # + # self._import_model(path) + # self._forward(output_path=os.path.join("traces", "syn")) + # + # if preprocess: + # if self.taskid == 0: + # logger.debug("call preprocess to prepare gradient evaluation") + # preprocess.prepare_eval_grad(cwd=self.cwd, taskid=self.taskid, + # source_name=self.source_name, + # filenames=self.data_filenames + # ) + # self._export_residuals(path) + + # def eval_grad(self, path, export_traces=False): + # """ + # Evaluates gradient by carrying out adjoint simulations. + # + # .. note:: + # It is expected that eval_func() has already been run as this + # function looks for adjoint sources in 'cwd/traces/adj' + # + # :type path: str + # :param path: directory from which model is imported + # :type export_traces: bool + # :param export_traces: if True, save traces to OUTPUT. + # if False, discard traces + # """ + # unix.cd(self.cwd) + # + # if self.taskid == 0: + # logger.debug("running adjoint simulations") + # + # # Check to make sure that preprocessing module created adjoint traces + # adjoint_traces_wildcard = os.path.join("traces", "adj", "*") + # if not glob(adjoint_traces_wildcard): + # print(msg.cli(f"Event {self.source_name} has no adjoint traces, " + # f"which will lead to an external solver error. " + # f"Please check that solver.eval_func() executed " + # f"properly", border="=", header="solver error") + # ) + # sys.exit(-1) + # + # self._adjoint() + # self._export_kernels(path) + # + # if export_traces: + # self._export_traces(path=os.path.join(path, "traces", "syn"), + # prefix="traces/syn") + # self._export_traces(path=os.path.join(path, "traces", "adj"), + # prefix="traces/adj") - def eval_func(self, path, preprocess=None): - """ - Performs forward simulations and evaluates the misfit function using - the preprocess module. solver.eval_func is bundled with - preprocess.prepare_eval_grad because they are meant to be run serially - so it is better to lump them together into a single allocation. - - .. note:: - This task should be run in parallel by system.run() - - :type path: str - :param path: directory from which model is imported and where residuals - will be exported - :type preprocess: instance - :param preprocess: SeisFlows preprocess module which can be used to - prepare gradient evaluation by comparing misfit and creating - adjoint sources. If None, only forward simulations will be - performed - """ - unix.cd(self.cwd) - - if self.taskid == 0: - logger.info("running forward simulations") - - self._import_model(path) - self._forward(output_path=os.path.join("traces", "syn")) - - if preprocess: - if self.taskid == 0: - logger.debug("call preprocess to prepare gradient evaluation") - preprocess.prepare_eval_grad(cwd=self.cwd, taskid=self.taskid, - source_name=self.source_name, - filenames=self.data_filenames - ) - self._export_residuals(path) - - def eval_grad(self, path, export_traces=False): - """ - Evaluates gradient by carrying out adjoint simulations. - - .. note:: - It is expected that eval_func() has already been run as this - function looks for adjoint sources in 'cwd/traces/adj' - - :type path: str - :param path: directory from which model is imported - :type export_traces: bool - :param export_traces: if True, save traces to OUTPUT. - if False, discard traces + def forward_simulation(self, executables=None, save_traces=False, + export_traces=False): """ - unix.cd(self.cwd) - - if self.taskid == 0: - logger.debug("running adjoint simulations") - - # Check to make sure that preprocessing module created adjoint traces - adjoint_traces_wildcard = os.path.join("traces", "adj", "*") - if not glob(adjoint_traces_wildcard): - print(msg.cli(f"Event {self.source_name} has no adjoint traces, " - f"which will lead to an external solver error. " - f"Please check that solver.eval_func() executed " - f"properly", border="=", header="solver error") - ) - sys.exit(-1) - - self._adjoint() - self._export_kernels(path) + Wrapper for SPECFEM binaries: 'xmeshfem?D' 'xgenerate_databases', + 'xspecfem?D' - if export_traces: - self._export_traces(path=os.path.join(path, "traces", "syn"), - prefix="traces/syn") - self._export_traces(path=os.path.join(path, "traces", "adj"), - prefix="traces/adj") - - def forward_simulation(self, save_traces=False, export_traces=False): - """ Calls SPECFEM2D forward solver, exports solver outputs to traces dir .. note:: SPECFEM3D/3D_GLOBE versions must overwrite this function + :type executables: list or None + :param executables: list of SPECFEM executables to run, in order, to + complete a forward simulation. This can be left None in most cases, + which will select default values based on the specific solver + being called (2D/3D/3D_GLOBE). It is made an optional parameter + to keep the function more general for inheritance purposes. :type save_traces: str :param save_traces: move files from their native SPECFEM output location to another directory. This is used to move output waveforms to @@ -541,15 +563,20 @@ def forward_simulation(self, save_traces=False, export_traces=False): permanent storage location. i.e., copy files from their original location """ + if executables is None: + executables = ["bin/xmeshfem2D", "bin/xspecfem2D"] unix.cd(self.cwd) setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") - self._call_solver(executable="bin/xmeshfem2D", output="fwd_mesher.log") - self._call_solver(executable="bin/xspecfem2D", output="fwd_solver.log") + # Calling subprocess.run() for each of the binary executables listed + for exc in executables: + # e.g., fwd_mesher.log + stdout = f"fwd_{self._exc2log(exc)}.log" + self._run_binary(executable=exc, stdout=stdout) - # Work around SPECFEM2D's version dependent file names + # Work around SPECFEM's version dependent file names if self.data_format.upper() == "SU": for tag in ["d", "v", "a", "p"]: unix.rename(old=f"single_{tag}.su", new="single.su", @@ -567,14 +594,40 @@ def forward_simulation(self, save_traces=False, export_traces=False): dst=save_traces ) - def adjoint_simulation(self): + def adjoint_simulation(self, executables=None, save_kernels=False, + export_kernels=False): """ + Wrapper for SPECFEM binary 'xspecfem?D' + Calls SPECFEM2D adjoint solver, creates the `SEM` folder with adjoint - traces which is required by the adjoint solver. + traces which is required by the adjoint solver. Renames kernels + after they have been created from 'alpha' and 'beta' to 'vp' and 'vs', + respectively. .. note:: SPECFEM3D/3D_GLOBE versions must overwrite this function - """ + + :type executables: list or None + :param executables: list of SPECFEM executables to run, in order, to + complete an adjoint simulation. This can be left None in most cases, + which will select default values based on the specific solver + being called (2D/3D/3D_GLOBE). It is made an optional parameter + to keep the function more general for inheritance purposes. + :type save_kernels: str + :param save_kernels: move the kernels from their native SPECFEM output + location to another path. This is used to move kernels to another + SeisFlows scratch directory so that they are discoverable by + other modules. The typical location they are moved to is + path_eval_grad + :type export_kernels: str + :param export_kernels: export/copy/save kernels from the scratch + directory to a more permanent storage location. i.e., copy files + from their original location. Note that kernel file sizes are LARGE, + so exporting kernels can lead to massive storage requirements. + """ + if executables is None: + executables = ["bin/xspecfem2D"] + unix.cd(self.cwd) setpar(key="SIMULATION_TYPE", val="3", file="DATA/Par_file") @@ -583,63 +636,36 @@ def adjoint_simulation(self): unix.rm("SEM") unix.ln("traces/adj", "SEM") - # Deal with different SPECFEM2D name conventions for regular traces and - # "adjoint" traces - if self.data_format.upper == "SU": - unix.rename(old=".su", new=".su.adj", - names=glob(os.path.join("traces", "adj", "*.su"))) + # Calling subprocess.run() for each of the binary executables listed + for exc in executables: + # e.g., adj_solver.log + stdout = f"adj_{self._exc2log(exc)}.log" + logger.info(f"running SPECFEM executable {exc}, log to '{stdout}'") + self._run_binary(executable=exc, stdout=stdout) - self._call_solver(executable="bin/xspecfem2D", output="adj_solver.log") - - def _call_solver(self, executable, output="solver.log"): - """ - Calls MPI solver executable to run solver binaries, used by individual - processes to run the solver on system. If the external solver returns a - non-zero exit code (failure), this function will return a negative - boolean. + # Rename kernels to work w/ conflicting name conventions + unix.cd(self.kernel_databases) + logger.info(f"renaming event kernels for {self.source_name}") + for tag in ["alpha", "alpha[hv]", "reg1_alpha", "reg1_alpha[hv]"]: + names = glob(f"*proc??????_{tag}_kernel.bin") + unix.rename(old="alpha", new="vp", names=names) - :type executable: str - :param executable: executable function to call - :type output: str - :param output: where to redirect stdout - """ - # Executable may come with additional sub arguments, we only need to - # check that the actually executable exists - if not os.path.exists(executable.split(" ")[0]): - print(msg.cli(f"solver executable {executable} does not exist", - header="external solver error", border="=")) - sys.exit(-1) + for tag in ["beta", "beta[hv]", "reg1_beta", "reg1_beta[hv]"]: + names = glob(f"*proc??????_{tag}_kernel.bin") + unix.rename(old="beta", new="vs", names=names) - # mpiexec is None when running in serial mode, so e.g., ./xmeshfem2D - if not self.mpiexec: - exc_cmd = f"./{executable}" - # Otherwise mpiexec is system dependent (e.g., srun, mpirun) - else: - exc_cmd = f"{self.mpiexec} {executable}" + # Save and export the kernels to user-defined locations + if export_kernels: + unix.cp(src=glob("*_kernel.bin"), dst=export_kernels) - # Run solver. Write solver stdout (log files) to text file - try: - with open(output, "w") as f: - subprocess.run(exc_cmd, shell=True, check=True, stdout=f) - except (subprocess.CalledProcessError, OSError) as e: - print(msg.cli("The external numerical solver has returned a nonzero " - "exit code (failure). Consider stopping any currently " - "running jobs to avoid wasted computational resources. " - f"Check 'scratch/solver/mainsolver/{output}' for the " - f"solvers stdout log message. " - f"The failing command and error message are: ", - items=[f"exc: {exc_cmd}", f"err: {e}"], - header="external solver error", - border="=") - ) - sys.exit(-1) + if save_kernels: + unix.mv(src=glob("*_kernel.bin"), dst=save_kernels) def combine(self, input_path, output_path, parameters=None): """ - Postprocessing wrapper: xcombine_sem + Wrapper for 'xcombine_sem'. Sums kernels from individual source contributions to create gradient. - .. note:: The binary xcombine_sem simply sums matching databases (.bin) @@ -675,13 +701,15 @@ def combine(self, input_path, output_path, parameters=None): for name in parameters: # e.g.: mpiexec bin/xcombine_sem alpha_kernel kernel_paths output/ exc = f"bin/xcombine_sem {name}_kernel kernel_paths {output_path}" - self._call_solver(executable=exc) + # e.g., smooth_vp.log + stdout = f"{self._exc2log(exc)}_{name}.log" + self._run_binary(executable=exc, stdout=stdout) def smooth(self, input_path, output_path, parameters=None, span_h=0., - span_v=0., use_gpu=False, output="smooth.log"): + span_v=0., use_gpu=False): """ - Postprocessing wrapper: xsmooth_sem - Smooths kernels by convolving them with a Gaussian. + Wrapper for SPECFEM binary: xsmooth_sem + Smooths kernels by convolving them with a 3D Gaussian .. note:: It is ASSUMED that this function is being called by @@ -699,8 +727,6 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., :param span_h: horizontal smoothing length in meters :type span_v: float :param span_v: vertical smoothing length in meters - :type output: str - :param output: file to output stdout to :type use_gpu: bool :param use_gpu: whether to use GPU acceleration for smoothing. Requires GPU compiled binaries and GPU compute node. @@ -724,119 +750,104 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., for name in parameters: exc = (f"bin/xsmooth_sem {str(span_h)} {str(span_v)} {name}_kernel " f"{input_path} {output_path} {use_gpu}") - self._call_solver(executable=exc, output=output) + # e.g., combine_vs.log + stdout = f"{self._exc2log(exc)}_{name}.log" + self._run_binary(executable=exc, stdout=stdout) # Rename output files to remove the '_smooth' suffix which SeisFlows # will not recognize files = glob(os.path.join(output_path, "*")) unix.rename(old="_smooth", new="", names=files) - def import_model(self, path_model): - """ - Copy files from given `path_model` into the current working directory - model database - - :type path_model: str - :param path_model: path to an existing starting model + def _run_binary(self, executable, stdout="solver.log"): """ - assert(os.path.exists(path_model)), f"model {path_model} does not exist" - unix.cd(self.cwd) - - # Copy the model files (ex: proc000023_vp.bin ...) into database dir - src = glob(os.path.join(path_model, "*")) - dst = os.path.join(self.cwd, self.model_databases, "") - unix.cp(src, dst) + Calls MPI solver executable to run solver binaries, used by individual + processes to run the solver on system. If the external solver returns a + non-zero exit code (failure), this function will return a negative + boolean. - def export(self, model=False, kernels=False, traces=False, residuals=False): - """ - Export scratch files to output path. Must be run by system as each - process is required to export its own traces and kernels. - """ - if self. + .. note:: + This function ASSUMES it is being run from a SPECFEM working + directory, i.e., that the executables are located in ./bin/ - def _export_model(self): - """ - File transfer utility. Export the model to disk. Run from master solver. - """ - unix.mkdir(self.path.output) - for key in self._parameters: - files = glob(os.path.join(self.model_databases, f"*{key}.bin")) - unix.cp(files, self.path.output) + .. note:: + This is essentially an error-catching wrapper of subprocess.run() - def _export_kernels(self): - """ - File transfer utility. Export kernels to disk + :type executable: str + :param executable: executable function to call. May or may not start + E.g., acceptable calls for the solver would './bin/xspecfem2D'. + Also accepts additional command line arguments such as: + 'xcombine_sem alpha_kernel kernel_paths...' + :type stdout: str + :param stdout: where to redirect stdout + :raises SystemExit: If external numerical solver return any failure + code while running """ - unix.cd(self.kernel_databases) - - # Work around conflicting name conventions - self._rename_kernels() + # Executable may come with additional sub arguments, we only need to + # check that the actually executable exists + if not unix.which(executable.split(" ")[0]): + print(msg.cli(f"executable '{executable}' does not exist", + header="external solver error", border="=")) + sys.exit(-1) - src = glob("*_kernel.bin") - dst = os.path.join(self.path.output, "kernels", self.source_name) - unix.mkdir(dst) - unix.mv(src, dst) + # Append with mpiexec if we are running with MPI + if self.mpiexec: + executable = f"{self.mpiexec} {executable}" - def _export_residuals(self, path): - """ - File transfer utility. Export residuals to disk. + try: + with open(stdout, "w") as f: + subprocess.run(executable, shell=True, check=True, stdout=f) + except (subprocess.CalledProcessError, OSError) as e: + print(msg.cli("The external numerical solver has returned a " + "nonzero exit code (failure). Consider stopping any " + "currently running jobs to avoid wasted " + "computational resources. Check 'scratch/solver/" + "mainsolver/{stdout}' for the solvers stdout log " + "message. The failing command and error message are:", + items=[f"exc: {executable}", f"err: {e}"], + header="external solver error", + border="=") + ) + sys.exit(-1) - :type path: str - :param path: path to save residuals + @staticmethod + def _exc2log(exc): """ - if self.taskid == 0: - logger.debug(f"exporting residuals to:\n{path}") - - unix.mkdir(os.path.join(path, "residuals")) - src = os.path.join(self.cwd, "residuals") - - # If this residuals directory has not been created, something - # has gone wrong with the preprocessing and workflow cannot proceed - if not os.path.exists(src): - print(msg.cli("The Solver function 'export_residuals' expected " - "'residuals' directories to be created but could not " - "find them and cannot continue the workflow. Please " - "check the preprocess.prepare_eval_grad() function", - header="preprocess error", border="=")) - sys.exit(-1) + Very simple conversion utility to get log file names based on binaries. + e.g., binary 'xspecfem2D' will return 'solver'. Helps keep log file + naming consistent and generalizable - dst = os.path.join(path, "residuals", self.source_name) - unix.mv(src, dst) + :type exc: str + :param exc: specfem executable, e.g., xspecfem2D, xgenerate_databases + :rtype: str + :return: logfile name that matches executable name + """ + convert_dict = {"specfem": "solver", "meshfem": "mesher", + "generate_databases": "mesher", "smooth": "smooth", + "combine": "combine"} + for key, val in convert_dict.items(): + if key in exc: + return val + else: + return "logger" - def _export_traces(self, path, prefix="traces/obs"): + def import_model(self, path_model): """ - File transfer utility. Export traces to disk. + Copy files from given `path_model` into the current working directory + model database. Used for grabbing starting models (e.g., MODEL_INIT) + and models that have been perturbed by the optimization library. - :type path: str - :param path: path to save traces - :type prefix: str - :param prefix: location of traces w.r.t self.cwd + :type path_model: str + :param path_model: path to an existing starting model """ - if self.taskid == 0: - logger.debug("exporting traces to {path} {prefix}") - - unix.mkdir(os.path.join(path)) + assert(os.path.exists(path_model)), f"model {path_model} does not exist" + unix.cd(self.cwd) - src = os.path.join(self.cwd, prefix) - dst = os.path.join(path, self.source_name) + # Copy the model files (ex: proc000023_vp.bin ...) into database dir + src = glob(os.path.join(path_model, "*")) + dst = os.path.join(self.cwd, self.model_databases, "") unix.cp(src, dst) - @staticmethod - def _rename_kernels(): - """ - Works around conflicting kernel filename conventions by renaming - `alpha` to `vp` and `beta` to `vs` - """ - # Rename 'alpha' to 'vp' - for tag in ["alpha", "alpha[hv]", "reg1_alpha", "reg1_alpha[hv]"]: - names = glob(f"*proc??????_{tag}_kernel.bin") - unix.rename(old="alpha", new="vp", names=names) - - # Rename 'beta' to 'vs' - for tag in ["beta", "beta[hv]", "reg1_beta", "reg1_beta[hv]"]: - names = glob(f"*proc??????_{tag}_kernel.bin") - unix.rename(old="beta", new="vs", names=names) - def _initialize_working_directories(self): """ Serial task used to initialize working directories for each of the a @@ -846,7 +857,7 @@ def _initialize_working_directories(self): """ logger.info(f"initializing {self.ntask} solver directories") for source_name in self.source_names: - cwd = os.path.join(self.path, source_name) + cwd = os.path.join(self.path.scratch, source_name) self._initialize_working_directory(cwd=cwd) def _initialize_working_directory(self, cwd=None): @@ -898,13 +909,13 @@ def _initialize_working_directory(self, cwd=None): # Copy all input DATA/ files except the source files src = glob(os.path.join(self.path.specfem_data, "*")) src = [_ for _ in src if self.source_prefix not in _] - dst = os.path.join("DATA", "") + dst = os.path.join(cwd, "DATA", "") unix.cp(src, dst) # Symlink event source specifically, only retain source prefix src = os.path.join(self.path.specfem_data, f"{self.source_prefix}_{self.source_name}") - dst = os.path.join("DATA", self.source_prefix) + dst = os.path.join(cwd, "DATA", self.source_prefix) unix.ln(src, dst) # Symlink TaskID==0 as mainsolver in solver directory for convenience @@ -913,38 +924,38 @@ def _initialize_working_directory(self, cwd=None): logger.debug(f"symlink {self.source_name} as 'mainsolver'") unix.ln(cwd, self.path.mainsolver) - def _initialize_adjoint_traces(self): - """ - Setup utility: Creates the "adjoint traces" expected by SPECFEM. - This is only done for the 'base' the Preprocess class. - - TODO move this into workflow setup - - .. note:: - Adjoint traces are initialized by writing zeros for all channels. - Channels actually in use during an inversion or migration will be - overwritten with nonzero values later on. - """ - preprocess = self.module("preprocess") - - if self.par.PREPROCESS.upper() == "DEFAULT": - if self.taskid == 0: - logger.debug(f"intializing {len(self.data_filenames)} " - f"empty adjoint traces per event") - - for filename in self.data_filenames: - st = preprocess.reader( - path=os.path.join(self.cwd, "traces", "obs"), - filename=filename - ) - # Zero out data just so we have empty adjoint traces as SPECFEM - # will expect all adjoint sources to have all components - st *= 0 - - # Write traces back to the adjoint trace directory - preprocess.writer(st=st, filename=filename, - path=os.path.join(self.cwd, "traces", "adj") - ) + # def _initialize_adjoint_traces(self): + # """ + # Setup utility: Creates the "adjoint traces" expected by SPECFEM. + # This is only done for the 'base' the Preprocess class. + # + # TODO move this into workflow setup + # + # .. note:: + # Adjoint traces are initialized by writing zeros for all channels. + # Channels actually in use during an inversion or migration will be + # overwritten with nonzero values later on. + # """ + # preprocess = self.module("preprocess") + # + # if self.par.PREPROCESS.upper() == "DEFAULT": + # if self.taskid == 0: + # logger.debug(f"intializing {len(self.data_filenames)} " + # f"empty adjoint traces per event") + # + # for filename in self.data_filenames: + # st = preprocess.reader( + # path=os.path.join(self.cwd, "traces", "obs"), + # filename=filename + # ) + # # Zero out data just so we have empty adjoint traces as SPECFEM + # # will expect all adjoint sources to have all components + # st *= 0 + # + # # Write traces back to the adjoint trace directory + # preprocess.writer(st=st, filename=filename, + # path=os.path.join(self.cwd, "traces", "adj") + # ) def _check_source_names(self): """ @@ -956,7 +967,7 @@ def _check_source_names(self): :return: alphabetically ordered list of source names up to PAR.NTASK """ assert(self.path.specfem_data is not None), \ - f"solver source names requires 'solver.path.specefm_data' to exist" + f"solver source names requires 'solver.path.specfem_data' to exist" assert(os.path.exists(self.path.specfem_data)), \ f"solver source names requires 'solver.path.specfem_data' to exist" @@ -972,6 +983,11 @@ def _check_source_names(self): ) ) sys.exit(-1) + else: + assert(len(fids) >= self.ntask), ( + f"Number of requested tasks/events {self.ntask} exceeds number " + f"of available sources {len(fids)}" + ) # Create internal definition of sources names by stripping prefixes names = [os.path.basename(fid).split("_")[-1] for fid in fids] diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index d8f00bbe..e536b1be 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -15,20 +15,20 @@ class Specfem2D(Specfem): """ - Python interface to Specfem2D. + SPECFEM2D-specific parameters + + :type source_prefix: str + :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults + to 'SOURCE' + :type multiples: bool + :param multiples: set an absorbing top-boundary condition """ - def __init__(self, source_prefix=None, multiples=False, **kwargs): - """ - SPECFEM2D specific parameters + __doc__ = Specfem.__doc__ + __doc__ - :type source_prefix: str - :param source_prefix: Prefix of SOURCE files in path SPECFEM_DATA. - :type multiples: bool - :param multiples: set an absorbing top-boundary condition - """ - super().__init__(**kwargs) + def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): + """Instantiate a Specfem2D solver interface""" + super().__init__(source_prefix=source_prefix, **kwargs) - self.source_prefix = source_prefix or "SOURCE" self.multiples = multiples self.f0 = None @@ -39,24 +39,21 @@ def __init__(self, source_prefix=None, multiples=False, **kwargs): self._parameters.append("vp") self._parameters.append("vs") - self._acceptable_source_prefix = ["SOURCE", "FORCE", "FORCESOLUTION"] - def setup(self): - """ - Additional SPECFEM2D setup steps - """ - super().setup() - - self.f0 = getpar(key="f0", - file=os.path.join(self.cwd, "DATA/SOURCE"))[1] + """Setup the SPECFEM2D solver interface in a SeisFlows workflow""" + source_file = os.path.join(self.path.specfem_data, self.source_prefix) + self.f0 = getpar(key="f0", file=source_file)[1] + par_file = os.path.join(self.path.specfem_data, "Par_file") if self.multiples: - setpar(key="absorbtop", val=".false.", file="DATA/Par_file") + setpar(key="absorbtop", val=".false.", file=par_file) else: - setpar(key="absorbtop", val=".true.", file="DATA/Par_file") + setpar(key="absorbtop", val=".true.", file=par_file) + + super().setup() def smooth(self, input_path, output_path, parameters=None, span_h=0., - span_v=0., use_gpu=False, output="smooth.log"): + span_v=0., use_gpu=False): """ Specfem2D requires additional model parameters in directory to perform the xsmooth_sem task. This function will copy these files into the @@ -79,19 +76,13 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., :param span_h: horizontal smoothing length in meters :type span_v: float :param span_v: vertical smoothing length in meters - :type output: str - :param output: file to output stdout to :type use_gpu: bool :param use_gpu: whether to use GPU acceleration for smoothing. Requires GPU compiled binaries and GPU compute node. """ - # Redundant to 'base' class but necessary - if not os.path.exists(input_path): - unix.mkdir(input_path) + unix.cd(os.path.join(self.cwd, self.model_databases)) - unix.cd(os.path.join(self.cwd, "DATA")) - - # Copy over only the files that are required. Won't execute if no match + # SPECFEM2D requires these files to run the smoother files = [] for tag in ["jacobian", "NSPEC_ibool", "x", "y", "z"]: files += glob(f"*_{tag}.bin") @@ -99,51 +90,4 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., unix.cp(src=src, dst=input_path) super().smooth(input_path=input_path, output_path=output_path, - parameters=parameters, span_h=span_h, span_v=span_v, - output=output) - - def _initialize_adjoint_traces(self): - """ - Setup utility: Creates the "adjoint traces" expected by SPECFEM. - This is only done for the 'base' the Preprocess class. - - .. note:: - Adjoint traces are initialized by writing zeros for all channels. - Channels actually in use during an inversion or migration will be - overwritten with nonzero values later on. - """ - super()._initialize_adjoint_traces() - - unix.cd(os.path.join(self.cwd, "traces", "adj")) - - # work around SPECFEM2D's use of different name conventions for - # regular traces and 'adjoint' traces - if self.data_format.upper() == "SU": - files = glob("*SU") - unix.rename(old="_SU", new="_SU.adj", names=files) - elif self.data_format.upper() == "ASCII": - files = glob("*sem?") - - # Get the available extensions, which are named based on unit - extensions = set([os.path.splitext(_)[-1] for _ in files]) - for extension in extensions: - unix.rename(old=extension, new=".adj", names=files) - - # SPECFEM2D requires that all components exist even if ununsed - components = ["x", "y", "z", "p"] - - if self.data_format.upper() == "SU": - for comp in components: - src = f"U{self.components[0]}_file_single.su.adj" - dst = f"U{comp.lower()}s_file_single.su.adj" - if not os.path.exists(dst): - unix.cp(src, dst) - elif self.data_format.upper() == "ASCII": - for fid in glob("*.adj"): - net, sta, cha, ext = fid.split(".") - for comp in components: - # Replace the last value in the channel with new component - cha_check = cha[:-1] + comp.upper() - fid_check = ".".join([net, sta, cha_check, ext]) - if not os.path.exists(fid_check): - unix.cp(fid, fid_check) + parameters=parameters, span_h=span_h, span_v=span_v) diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 6f5f5552..c9a1274c 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -6,30 +6,28 @@ and overwrites these functions to provide specified interaction with Specfem3D """ import os -from glob import glob -from seisflows.solver.specfem import Specfem from seisflows.tools import unix -from seisflows.tools.utils import exists from seisflows.tools.specfem import setpar, getpar +from seisflows.solver.specfem import Specfem class Specfem3D(Specfem): """ - Python interface to Specfem3D Cartesian. + SPECFEM3D_Cartesian specific parameters + + :type source_prefix: str + :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults + to 'CMTSOLUTION' + :type multiples: bool + :param multiples: set an absorbing top-boundary condition """ - def __init__(self, source_prefix=None, **kwargs): - """ - SPECFEM2D specific parameters + __doc__ = Specfem.__doc__ + __doc__ - :type source_prefix: str - :param source_prefix: Prefix of SOURCE files in path SPECFEM_DATA. - :type multiples: bool - :param multiples: set an absorbing top-boundary condition - """ - super().__init__(**kwargs) + def __init__(self, source_prefix="CMTSOLUTION", **kwargs): + """Instantiate a Specfem3D_Cartesian solver interface""" - self.source_prefix = source_prefix or "CMTSOLUTION" + super().__init__(source_prefix=source_prefix, **kwargs) # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": @@ -38,12 +36,18 @@ def __init__(self, source_prefix=None, **kwargs): self._parameters.append("vp") self._parameters.append("vs") + # Overwriting the base class parameters self._acceptable_source_prefixes = ["CMTSOLUTION", "FORCESOLUTION"] + self._required_binaries = ["xspecfem3D", "xmeshfem3D", + "xgenerate_databases" "xcombine_sem", + "xsmooth_sem"] def data_wildcard(self, comp="?"): """ Returns a wildcard identifier for synthetic data + TODO where does SU put its component? + :rtype: str :return: wildcard identifier for channels """ @@ -70,111 +74,75 @@ def kernel_databases(self): """ return self.model_databases - def eval_func(self, path, preprocess=None): - """ - Performs forward simulations and evaluates the misfit function using - the preprocess module. Overrides to add a data renaming call - - .. note:: - This task should be run in parallel by system.run() - - :type path: str - :param path: directory from which model is imported and where residuals - will be exported - :type write_residuals: bool - :param write_residuals: calculate and export residuals """ - super().eval_func(path=path, preprocess=preprocess) - - # Work around SPECFEM3D conflicting name conventions of SU data - self._rename_data() - - def forward_simulation(self, output_seismograms=False): + def forward_simulation(self, executables=None, save_traces=False, + export_traces=False): """ Calls SPECFEM3D forward solver, exports solver outputs to traces dir - :type output_seismograms: str - :param output_seismograms: path to export traces to after completion of - simulation expected values are either 'traces/obs' for 'observation' - data (i.e., synthetics generated by the TRUE model), or - 'traces/syn', for synthetics generated during function evaluations. - If False, will leave seismograms in OUTPUT_FILES/s - """ - unix.cd(self.cwd) + :type executables: list or None + :param executables: list of SPECFEM executables to run, in order, to + complete a forward simulation. This can be left None in most cases, + which will select default values based on the specific solver + being called (2D/3D/3D_GLOBE). It is made an optional parameter + to keep the function more general for inheritance purposes. + :type save_traces: str + :param save_traces: move files from their native SPECFEM output location + to another directory. This is used to move output waveforms to + 'traces/obs' or 'traces/syn' so that SeisFlows knows where to look + for them, and so that SPECFEM doesn't overwrite existing files + during subsequent forward simulations + :type export_traces: str + :param export_traces: export traces from the scratch directory to a more + permanent storage location. i.e., copy files from their original + location + """ + if executables is None: + executables = ["bin/xgenerate_databases", "bin/xspecfem3D"] - # Set parameters and run forward simulation - setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") - setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") + unix.cd(self.cwd) + # SPECFEM3D has to deal with attenuation if self.attenuation: setpar(key="ATTENUATION", val=".true.", file="DATA/Par_file") else: setpar(key="ATTENUATION", val=".false`.", file="DATA/Par_file") - self._call_solver(executable="bin/xgenerate_databases", - output="fwd_mesher.log") - self._call_solver(executable="bin/xmeshfem3D", output="fwd_solver.log") - - # Find and move output traces, by default to synthetic traces dir - if output_seismograms: - unix.mv( - src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), - dst=output_seismograms - ) + super().forward_simulation(executables=executables, + save_traces=save_traces, + export_traces=export_traces + ) - def adjoint_simulation(self): + def adjoint_simulation(self, executables=None, save_kernels=False, + export_kernels=False): """ Calls SPECFEM3D adjoint solver, creates the `SEM` folder with adjoint traces which is required by the adjoint solver - """ - unix.cd(self.cwd) - setpar(key="SIMULATION_TYPE", val="3", file="DATA/Par_file") - setpar(key="SAVE_FORWARD", val=".false.", file="DATA/Par_file") - - # Attenuation should always be OFF during adjoint simulations, else - # you will get a floating point error + :type executables: list or None + :param executables: list of SPECFEM executables to run, in order, to + complete an adjoint simulation. This can be left None in most cases, + which will select default values based on the specific solver + being called (2D/3D/3D_GLOBE). It is made an optional parameter + to keep the function more general for inheritance purposes. + :type save_kernels: str + :param save_kernels: move the kernels from their native SPECFEM output + location to another path. This is used to move kernels to another + SeisFlows scratch directory so that they are discoverable by + other modules. The typical location they are moved to is + path_eval_grad + :type export_kernels: str + :param export_kernels: export/copy/save kernels from the scratch + directory to a more permanent storage location. i.e., copy files + from their original location. Note that kernel file sizes are LARGE, + so exporting kernels can lead to massive storage requirements. + """ + if executables is None: + executables = ["bin/xspecfem3D"] + + # Make sure attenuation is OFF, if ON you'll get a floating point error + unix.cd(self.cwd) setpar(key="ATTENUATION", val=".false.", file="DATA/Par_file") - unix.rm("SEM") - unix.ln("traces/adj", "SEM") - - self._call_solver(executable="bin/xspecfem3D", output="adj_solver.log") - - def _initialize_adjoint_traces(self): - """ - Setup utility: Creates the "adjoint traces" expected by SPECFEM - - .. note:: - Adjoint traces are initialized by writing zeros for all channels. - Channels actually in use during an inversion or migration will be - overwritten with nonzero values later on. - """ - # Initialize adjoint traces as zeroes for all data_filenames - # write to `traces/adj` - super()._initialize_adjoint_traces() - - # Rename data to work around Specfem naming convetions - self._rename_data() - - # Workaround for Specfem3D's requirement that all components exist, - # even ones not in use as adjoint traces - if self.data_format.upper() == "SU": - unix.cd(os.path.join(self.cwd, "traces", "adj")) - - for iproc in range(self.nproc): - for channel in ["x", "y", "z"]: - dst = f"{iproc:d}_d{channel}_SU.adj" - if not os.path.exists(dst): - src = f"{iproc:d}_d{self.components[0]}_SU.adj" - unix.cp(src, dst) - - def _rename_data(self): - """ - Works around conflicting data filename conventions - - Specfem3D's uses different name conventions for regular traces - and 'adjoint' traces - """ - if self.data_format.upper() == "SU": - files = glob(os.path.join(self.cwd, "traces", "adj", "*SU")) - unix.rename(old='_SU', new='_SU.adj', names=files) + super().adjoint_simulation(executables=executables, + save_kernels=save_kernels, + export_kernels=export_kernels) diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 1109a72a..9e1b301f 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -24,7 +24,7 @@ def __init__(self, title=None, mpiexec=None, ntask=1, nproc=1, path_system=None, path_output_log=None, path_error_log=None, path_log_files=None, path_par_file=None, **kwargs): """ - Instantiate the Workstation base class + Workstation System Class Parameters :type title: str :param title: The name used to submit jobs to the system, defaults diff --git a/seisflows/tests/test_data/test_preprocess/AA.S0001.BXY.adj b/seisflows/tests/test_data/test_preprocess/AA.S0001.BXY.adj new file mode 100644 index 00000000..a0de276c --- /dev/null +++ b/seisflows/tests/test_data/test_preprocess/AA.S0001.BXY.adj @@ -0,0 +1,5000 @@ + -48.0000000 0.0000000 + -47.9400000 0.0000000 + -47.8800000 0.0000000 + -47.8200000 0.0000000 + -47.7600000 0.0000000 + -47.7000000 0.0000000 + -47.6400000 0.0000000 + -47.5800000 0.0000000 + -47.5200000 0.0000000 + -47.4600000 0.0000000 + -47.4000000 0.0000000 + -47.3400000 0.0000000 + -47.2800000 0.0000000 + -47.2200000 0.0000000 + -47.1600000 0.0000000 + -47.1000000 0.0000000 + -47.0400000 0.0000000 + -46.9800000 0.0000000 + -46.9200000 0.0000000 + -46.8600000 0.0000000 + -46.8000000 0.0000000 + -46.7400000 0.0000000 + -46.6800000 0.0000000 + -46.6200000 0.0000000 + -46.5600000 0.0000000 + -46.5000000 0.0000000 + -46.4400000 0.0000000 + -46.3800000 0.0000000 + -46.3200000 0.0000000 + -46.2600000 0.0000000 + -46.2000000 0.0000000 + -46.1400000 0.0000000 + -46.0800000 0.0000000 + -46.0200000 0.0000000 + -45.9600000 0.0000000 + -45.9000000 0.0000000 + -45.8400000 0.0000000 + -45.7800000 0.0000000 + -45.7200000 0.0000000 + -45.6600000 0.0000000 + -45.6000000 0.0000000 + -45.5400000 0.0000000 + -45.4800000 0.0000000 + -45.4200000 0.0000000 + -45.3600000 0.0000000 + -45.3000000 0.0000000 + -45.2400000 0.0000000 + -45.1800000 0.0000000 + -45.1200000 0.0000000 + -45.0600000 0.0000000 + -45.0000000 0.0000000 + -44.9400000 0.0000000 + -44.8800000 0.0000000 + -44.8200000 0.0000000 + -44.7600000 0.0000000 + -44.7000000 0.0000000 + -44.6400000 0.0000000 + -44.5800000 0.0000000 + -44.5200000 0.0000000 + -44.4600000 0.0000000 + -44.4000000 0.0000000 + -44.3400000 0.0000000 + -44.2800000 0.0000000 + -44.2200000 0.0000000 + -44.1600000 0.0000000 + -44.1000000 0.0000000 + -44.0400000 0.0000000 + -43.9800000 0.0000000 + -43.9200000 0.0000000 + -43.8600000 0.0000000 + -43.8000000 0.0000000 + -43.7400000 0.0000000 + -43.6800000 0.0000000 + -43.6200000 0.0000000 + -43.5600000 0.0000000 + -43.5000000 0.0000000 + -43.4400000 0.0000000 + -43.3800000 0.0000000 + -43.3200000 0.0000000 + -43.2600000 0.0000000 + -43.2000000 0.0000000 + -43.1400000 0.0000000 + -43.0800000 0.0000000 + -43.0200000 0.0000000 + -42.9600000 0.0000000 + -42.9000000 0.0000000 + -42.8400000 0.0000000 + -42.7800000 0.0000000 + -42.7200000 0.0000000 + -42.6600000 0.0000000 + -42.6000000 0.0000000 + -42.5400000 0.0000000 + -42.4800000 0.0000000 + -42.4200000 0.0000000 + -42.3600000 0.0000000 + -42.3000000 0.0000000 + -42.2400000 0.0000000 + -42.1800000 0.0000000 + -42.1200000 0.0000000 + -42.0600000 0.0000000 + -42.0000000 0.0000000 + -41.9400000 0.0000000 + -41.8800000 0.0000000 + -41.8200000 0.0000000 + -41.7600000 0.0000000 + -41.7000000 0.0000000 + -41.6400000 0.0000000 + -41.5800000 0.0000000 + -41.5200000 0.0000000 + -41.4600000 0.0000000 + -41.4000000 0.0000000 + -41.3400000 0.0000000 + -41.2800000 0.0000000 + -41.2200000 0.0000000 + -41.1600000 0.0000000 + -41.1000000 0.0000000 + -41.0400000 0.0000000 + -40.9800000 0.0000000 + -40.9200000 0.0000000 + -40.8600000 0.0000000 + -40.8000000 0.0000000 + -40.7400000 0.0000000 + -40.6800000 0.0000000 + -40.6200000 0.0000000 + -40.5600000 0.0000000 + -40.5000000 0.0000000 + -40.4400000 0.0000000 + -40.3800000 0.0000000 + -40.3200000 0.0000000 + -40.2600000 0.0000000 + -40.2000000 0.0000000 + -40.1400000 0.0000000 + -40.0800000 0.0000000 + -40.0200000 0.0000000 + -39.9600000 0.0000000 + -39.9000000 0.0000000 + -39.8400000 0.0000000 + -39.7800000 0.0000000 + -39.7200000 0.0000000 + -39.6600000 0.0000000 + -39.6000000 0.0000000 + -39.5400000 0.0000000 + -39.4800000 0.0000000 + -39.4200000 0.0000000 + -39.3600000 0.0000000 + -39.3000000 0.0000000 + -39.2400000 0.0000000 + -39.1800000 0.0000000 + -39.1200000 0.0000000 + -39.0600000 0.0000000 + -39.0000000 0.0000000 + -38.9400000 0.0000000 + -38.8800000 0.0000000 + -38.8200000 0.0000000 + -38.7600000 0.0000000 + -38.7000000 0.0000000 + -38.6400000 0.0000000 + -38.5800000 0.0000000 + -38.5200000 0.0000000 + -38.4600000 0.0000000 + -38.4000000 0.0000000 + -38.3400000 0.0000000 + -38.2800000 0.0000000 + -38.2200000 0.0000000 + -38.1600000 0.0000000 + -38.1000000 0.0000000 + -38.0400000 0.0000000 + -37.9800000 0.0000000 + -37.9200000 0.0000000 + -37.8600000 0.0000000 + -37.8000000 0.0000000 + -37.7400000 0.0000000 + -37.6800000 0.0000000 + -37.6200000 0.0000000 + -37.5600000 0.0000000 + -37.5000000 0.0000000 + -37.4400000 0.0000000 + -37.3800000 0.0000000 + -37.3200000 0.0000000 + -37.2600000 0.0000000 + -37.2000000 0.0000000 + -37.1400000 0.0000000 + -37.0800000 0.0000000 + -37.0200000 0.0000000 + -36.9600000 0.0000000 + -36.9000000 0.0000000 + -36.8400000 0.0000000 + -36.7800000 0.0000000 + -36.7200000 0.0000000 + -36.6600000 0.0000000 + -36.6000000 0.0000000 + -36.5400000 0.0000000 + -36.4800000 0.0000000 + -36.4200000 0.0000000 + -36.3600000 0.0000000 + -36.3000000 0.0000000 + -36.2400000 0.0000000 + -36.1800000 0.0000000 + -36.1200000 0.0000000 + -36.0600000 0.0000000 + -36.0000000 0.0000000 + -35.9400000 0.0000000 + -35.8800000 0.0000000 + -35.8200000 0.0000000 + -35.7600000 0.0000000 + -35.7000000 0.0000000 + -35.6400000 0.0000000 + -35.5800000 0.0000000 + -35.5200000 0.0000000 + -35.4600000 0.0000000 + -35.4000000 0.0000000 + -35.3400000 0.0000000 + -35.2800000 0.0000000 + -35.2200000 0.0000000 + -35.1600000 0.0000000 + -35.1000000 0.0000000 + -35.0400000 0.0000000 + -34.9800000 0.0000000 + -34.9200000 0.0000000 + -34.8600000 0.0000000 + -34.8000000 0.0000000 + -34.7400000 0.0000000 + -34.6800000 0.0000000 + -34.6200000 0.0000000 + -34.5600000 0.0000000 + -34.5000000 0.0000000 + -34.4400000 0.0000000 + -34.3800000 0.0000000 + -34.3200000 0.0000000 + -34.2600000 0.0000000 + -34.2000000 0.0000000 + -34.1400000 0.0000000 + -34.0800000 0.0000000 + -34.0200000 0.0000000 + -33.9600000 0.0000000 + -33.9000000 0.0000000 + -33.8400000 0.0000000 + -33.7800000 0.0000000 + -33.7200000 0.0000000 + -33.6600000 0.0000000 + -33.6000000 0.0000000 + -33.5400000 0.0000000 + -33.4800000 0.0000000 + -33.4200000 0.0000000 + -33.3600000 0.0000000 + -33.3000000 0.0000000 + -33.2400000 0.0000000 + -33.1800000 0.0000000 + -33.1200000 0.0000000 + -33.0600000 0.0000000 + -33.0000000 0.0000000 + -32.9400000 0.0000000 + -32.8800000 0.0000000 + -32.8200000 0.0000000 + -32.7600000 0.0000000 + -32.7000000 0.0000000 + -32.6400000 0.0000000 + -32.5800000 0.0000000 + -32.5200000 0.0000000 + -32.4600000 0.0000000 + -32.4000000 0.0000000 + -32.3400000 0.0000000 + -32.2800000 0.0000000 + -32.2200000 0.0000000 + -32.1600000 0.0000000 + -32.1000000 0.0000000 + -32.0400000 0.0000000 + -31.9800000 0.0000000 + -31.9200000 0.0000000 + -31.8600000 0.0000000 + -31.8000000 0.0000000 + -31.7400000 0.0000000 + -31.6800000 0.0000000 + -31.6200000 0.0000000 + -31.5600000 0.0000000 + -31.5000000 0.0000000 + -31.4400000 0.0000000 + -31.3800000 0.0000000 + -31.3200000 0.0000000 + -31.2600000 0.0000000 + -31.2000000 0.0000000 + -31.1400000 0.0000000 + -31.0800000 0.0000000 + -31.0200000 0.0000000 + -30.9600000 0.0000000 + -30.9000000 0.0000000 + -30.8400000 0.0000000 + -30.7800000 0.0000000 + -30.7200000 0.0000000 + -30.6600000 0.0000000 + -30.6000000 0.0000000 + -30.5400000 0.0000000 + -30.4800000 0.0000000 + -30.4200000 0.0000000 + -30.3600000 0.0000000 + -30.3000000 0.0000000 + -30.2400000 0.0000000 + -30.1800000 0.0000000 + -30.1200000 0.0000000 + -30.0600000 0.0000000 + -30.0000000 0.0000000 + -29.9400000 0.0000000 + -29.8800000 0.0000000 + -29.8200000 0.0000000 + -29.7600000 0.0000000 + -29.7000000 0.0000000 + -29.6400000 0.0000000 + -29.5800000 0.0000000 + -29.5200000 0.0000000 + -29.4600000 0.0000000 + -29.4000000 0.0000000 + -29.3400000 0.0000000 + -29.2800000 0.0000000 + -29.2200000 0.0000000 + -29.1600000 0.0000000 + -29.1000000 0.0000000 + -29.0400000 0.0000000 + -28.9800000 0.0000000 + -28.9200000 0.0000000 + -28.8600000 0.0000000 + -28.8000000 0.0000000 + -28.7400000 0.0000000 + -28.6800000 0.0000000 + -28.6200000 0.0000000 + -28.5600000 0.0000000 + -28.5000000 0.0000000 + -28.4400000 0.0000000 + -28.3800000 0.0000000 + -28.3200000 0.0000000 + -28.2600000 0.0000000 + -28.2000000 0.0000000 + -28.1400000 0.0000000 + -28.0800000 0.0000000 + -28.0200000 0.0000000 + -27.9600000 0.0000000 + -27.9000000 0.0000000 + -27.8400000 0.0000000 + -27.7800000 0.0000000 + -27.7200000 0.0000000 + -27.6600000 0.0000000 + -27.6000000 0.0000000 + -27.5400000 0.0000000 + -27.4800000 0.0000000 + -27.4200000 0.0000000 + -27.3600000 0.0000000 + -27.3000000 0.0000000 + -27.2400000 0.0000000 + -27.1800000 0.0000000 + -27.1200000 0.0000000 + -27.0600000 0.0000000 + -27.0000000 0.0000000 + -26.9400000 0.0000000 + -26.8800000 0.0000000 + -26.8200000 0.0000000 + -26.7600000 0.0000000 + -26.7000000 0.0000000 + -26.6400000 0.0000000 + -26.5800000 0.0000000 + -26.5200000 0.0000000 + -26.4600000 0.0000000 + -26.4000000 0.0000000 + -26.3400000 0.0000000 + -26.2800000 0.0000000 + -26.2200000 0.0000000 + -26.1600000 0.0000000 + -26.1000000 0.0000000 + -26.0400000 0.0000000 + -25.9800000 0.0000000 + -25.9200000 0.0000000 + -25.8600000 0.0000000 + -25.8000000 0.0000000 + -25.7400000 0.0000000 + -25.6800000 0.0000000 + -25.6200000 0.0000000 + -25.5600000 0.0000000 + -25.5000000 0.0000000 + -25.4400000 0.0000000 + -25.3800000 0.0000000 + -25.3200000 0.0000000 + -25.2600000 0.0000000 + -25.2000000 0.0000000 + -25.1400000 0.0000000 + -25.0800000 0.0000000 + -25.0200000 0.0000000 + -24.9600000 0.0000000 + -24.9000000 0.0000000 + -24.8400000 0.0000000 + -24.7800000 0.0000000 + -24.7200000 0.0000000 + -24.6600000 0.0000000 + -24.6000000 0.0000000 + -24.5400000 0.0000000 + -24.4800000 0.0000000 + -24.4200000 0.0000000 + -24.3600000 0.0000000 + -24.3000000 0.0000000 + -24.2400000 0.0000000 + -24.1800000 0.0000000 + -24.1200000 0.0000000 + -24.0600000 0.0000000 + -24.0000000 0.0000000 + -23.9400000 0.0000000 + -23.8800000 0.0000000 + -23.8200000 0.0000000 + -23.7600000 0.0000000 + -23.7000000 0.0000000 + -23.6400000 0.0000000 + -23.5800000 0.0000000 + -23.5200000 0.0000000 + -23.4600000 0.0000000 + -23.4000000 0.0000000 + -23.3400000 0.0000000 + -23.2800000 0.0000000 + -23.2200000 0.0000000 + -23.1600000 0.0000000 + -23.1000000 0.0000000 + -23.0400000 0.0000000 + -22.9800000 0.0000000 + -22.9200000 0.0000000 + -22.8600000 0.0000000 + -22.8000000 0.0000000 + -22.7400000 0.0000000 + -22.6800000 0.0000000 + -22.6200000 0.0000000 + -22.5600000 0.0000000 + -22.5000000 0.0000000 + -22.4400000 0.0000000 + -22.3800000 0.0000000 + -22.3200000 0.0000000 + -22.2600000 0.0000000 + -22.2000000 0.0000000 + -22.1400000 0.0000000 + -22.0800000 0.0000000 + -22.0200000 0.0000000 + -21.9600000 0.0000000 + -21.9000000 0.0000000 + -21.8400000 0.0000000 + -21.7800000 0.0000000 + -21.7200000 0.0000000 + -21.6600000 0.0000000 + -21.6000000 0.0000000 + -21.5400000 0.0000000 + -21.4800000 0.0000000 + -21.4200000 0.0000000 + -21.3600000 0.0000000 + -21.3000000 0.0000000 + -21.2400000 0.0000000 + -21.1800000 0.0000000 + -21.1200000 0.0000000 + -21.0600000 0.0000000 + -21.0000000 0.0000000 + -20.9400000 0.0000000 + -20.8800000 0.0000000 + -20.8200000 0.0000000 + -20.7600000 0.0000000 + -20.7000000 0.0000000 + -20.6400000 0.0000000 + -20.5800000 0.0000000 + -20.5200000 0.0000000 + -20.4600000 0.0000000 + -20.4000000 0.0000000 + -20.3400000 0.0000000 + -20.2800000 0.0000000 + -20.2200000 0.0000000 + -20.1600000 0.0000000 + -20.1000000 0.0000000 + -20.0400000 0.0000000 + -19.9800000 0.0000000 + -19.9200000 0.0000000 + -19.8600000 0.0000000 + -19.8000000 0.0000000 + -19.7400000 0.0000000 + -19.6800000 0.0000000 + -19.6200000 0.0000000 + -19.5600000 0.0000000 + -19.5000000 0.0000000 + -19.4400000 0.0000000 + -19.3800000 0.0000000 + -19.3200000 0.0000000 + -19.2600000 0.0000000 + -19.2000000 0.0000000 + -19.1400000 0.0000000 + -19.0800000 0.0000000 + -19.0200000 0.0000000 + -18.9600000 0.0000000 + -18.9000000 0.0000000 + -18.8400000 0.0000000 + -18.7800000 0.0000000 + -18.7200000 0.0000000 + -18.6600000 0.0000000 + -18.6000000 0.0000000 + -18.5400000 0.0000000 + -18.4800000 0.0000000 + -18.4200000 0.0000000 + -18.3600000 0.0000000 + -18.3000000 0.0000000 + -18.2400000 0.0000000 + -18.1800000 0.0000000 + -18.1200000 0.0000000 + -18.0600000 0.0000000 + -18.0000000 0.0000000 + -17.9400000 0.0000000 + -17.8800000 0.0000000 + -17.8200000 0.0000000 + -17.7600000 0.0000000 + -17.7000000 0.0000000 + -17.6400000 0.0000000 + -17.5800000 0.0000000 + -17.5200000 0.0000000 + -17.4600000 0.0000000 + -17.4000000 0.0000000 + -17.3400000 0.0000000 + -17.2800000 0.0000000 + -17.2200000 0.0000000 + -17.1600000 0.0000000 + -17.1000000 0.0000000 + -17.0400000 0.0000000 + -16.9800000 0.0000000 + -16.9200000 0.0000000 + -16.8600000 0.0000000 + -16.8000000 0.0000000 + -16.7400000 0.0000000 + -16.6800000 0.0000000 + -16.6200000 0.0000000 + -16.5600000 0.0000000 + -16.5000000 0.0000000 + -16.4400000 0.0000000 + -16.3800000 0.0000000 + -16.3200000 0.0000000 + -16.2600000 0.0000000 + -16.2000000 0.0000000 + -16.1400000 0.0000000 + -16.0800000 0.0000000 + -16.0200000 0.0000000 + -15.9600000 0.0000000 + -15.9000000 0.0000000 + -15.8400000 0.0000000 + -15.7800000 0.0000000 + -15.7200000 0.0000000 + -15.6600000 0.0000000 + -15.6000000 0.0000000 + -15.5400000 0.0000000 + -15.4800000 0.0000000 + -15.4200000 0.0000000 + -15.3600000 0.0000000 + -15.3000000 0.0000000 + -15.2400000 0.0000000 + -15.1800000 0.0000000 + -15.1200000 0.0000000 + -15.0600000 0.0000000 + -15.0000000 0.0000000 + -14.9400000 0.0000000 + -14.8800000 0.0000000 + -14.8200000 0.0000000 + -14.7600000 0.0000000 + -14.7000000 0.0000000 + -14.6400000 0.0000000 + -14.5800000 0.0000000 + -14.5200000 0.0000000 + -14.4600000 0.0000000 + -14.4000000 0.0000000 + -14.3400000 0.0000000 + -14.2800000 0.0000000 + -14.2200000 0.0000000 + -14.1600000 0.0000000 + -14.1000000 0.0000000 + -14.0400000 0.0000000 + -13.9800000 0.0000000 + -13.9200000 0.0000000 + -13.8600000 0.0000000 + -13.8000000 0.0000000 + -13.7400000 0.0000000 + -13.6800000 0.0000000 + -13.6200000 0.0000000 + -13.5600000 0.0000000 + -13.5000000 0.0000000 + -13.4400000 0.0000000 + -13.3800000 0.0000000 + -13.3200000 0.0000000 + -13.2600000 0.0000000 + -13.2000000 0.0000000 + -13.1400000 0.0000000 + -13.0800000 0.0000000 + -13.0200000 0.0000000 + -12.9600000 0.0000000 + -12.9000000 0.0000000 + -12.8400000 0.0000000 + -12.7800000 0.0000000 + -12.7200000 0.0000000 + -12.6600000 0.0000000 + -12.6000000 0.0000000 + -12.5400000 0.0000000 + -12.4800000 0.0000000 + -12.4200000 0.0000000 + -12.3600000 0.0000000 + -12.3000000 0.0000000 + -12.2400000 0.0000000 + -12.1800000 0.0000000 + -12.1200000 0.0000000 + -12.0600000 0.0000000 + -12.0000000 0.0000000 + -11.9400000 0.0000000 + -11.8800000 0.0000000 + -11.8200000 0.0000000 + -11.7600000 0.0000000 + -11.7000000 0.0000000 + -11.6400000 0.0000000 + -11.5800000 0.0000000 + -11.5200000 0.0000000 + -11.4600000 0.0000000 + -11.4000000 0.0000000 + -11.3400000 0.0000000 + -11.2800000 0.0000000 + -11.2200000 0.0000000 + -11.1600000 0.0000000 + -11.1000000 0.0000000 + -11.0400000 0.0000000 + -10.9800000 0.0000000 + -10.9200000 0.0000000 + -10.8600000 0.0000000 + -10.8000000 0.0000000 + -10.7400000 0.0000000 + -10.6800000 0.0000000 + -10.6200000 0.0000000 + -10.5600000 0.0000000 + -10.5000000 0.0000000 + -10.4400000 0.0000000 + -10.3800000 0.0000000 + -10.3200000 0.0000000 + -10.2600000 0.0000000 + -10.2000000 0.0000000 + -10.1400000 0.0000000 + -10.0800000 0.0000000 + -10.0200000 0.0000000 + -9.9600000 0.0000000 + -9.9000000 0.0000000 + -9.8400000 0.0000000 + -9.7800000 0.0000000 + -9.7200000 0.0000000 + -9.6600000 0.0000000 + -9.6000000 0.0000000 + -9.5400000 0.0000000 + -9.4800000 0.0000000 + -9.4200000 0.0000000 + -9.3600000 0.0000000 + -9.3000000 0.0000000 + -9.2400000 0.0000000 + -9.1800000 0.0000000 + -9.1200000 0.0000000 + -9.0600000 0.0000000 + -9.0000000 0.0000000 + -8.9400000 0.0000000 + -8.8800000 0.0000000 + -8.8200000 0.0000000 + -8.7600000 0.0000000 + -8.7000000 0.0000000 + -8.6400000 0.0000000 + -8.5800000 0.0000000 + -8.5200000 0.0000000 + -8.4600000 0.0000000 + -8.4000000 0.0000000 + -8.3400000 0.0000000 + -8.2800000 0.0000000 + -8.2200000 0.0000000 + -8.1600000 0.0000000 + -8.1000000 0.0000000 + -8.0400000 0.0000000 + -7.9800000 0.0000000 + -7.9200000 0.0000000 + -7.8600000 0.0000000 + -7.8000000 0.0000000 + -7.7400000 0.0000000 + -7.6800000 0.0000000 + -7.6200000 0.0000000 + -7.5600000 0.0000000 + -7.5000000 0.0000000 + -7.4400000 0.0000000 + -7.3800000 0.0000000 + -7.3200000 0.0000000 + -7.2600000 0.0000000 + -7.2000000 0.0000000 + -7.1400000 0.0000000 + -7.0800000 0.0000000 + -7.0200000 0.0000000 + -6.9600000 0.0000000 + -6.9000000 0.0000000 + -6.8400000 0.0000000 + -6.7800000 0.0000000 + -6.7200000 0.0000000 + -6.6600000 0.0000000 + -6.6000000 0.0000000 + -6.5400000 0.0000000 + -6.4800000 0.0000000 + -6.4200000 0.0000000 + -6.3600000 0.0000000 + -6.3000000 0.0000000 + -6.2400000 0.0000000 + -6.1800000 0.0000000 + -6.1200000 0.0000000 + -6.0600000 0.0000000 + -6.0000000 0.0000000 + -5.9400000 0.0000000 + -5.8800000 0.0000000 + -5.8200000 0.0000000 + -5.7600000 0.0000000 + -5.7000000 0.0000000 + -5.6400000 0.0000000 + -5.5800000 0.0000000 + -5.5200000 0.0000000 + -5.4600000 0.0000000 + -5.4000000 0.0000000 + -5.3400000 0.0000000 + -5.2800000 0.0000000 + -5.2200000 0.0000000 + -5.1600000 0.0000000 + -5.1000000 0.0000000 + -5.0400000 0.0000000 + -4.9800000 0.0000000 + -4.9200000 0.0000000 + -4.8600000 0.0000000 + -4.8000000 0.0000000 + -4.7400000 0.0000000 + -4.6800000 0.0000000 + -4.6200000 0.0000000 + -4.5600000 0.0000000 + -4.5000000 0.0000000 + -4.4400000 0.0000000 + -4.3800000 0.0000000 + -4.3200000 0.0000000 + -4.2600000 0.0000000 + -4.2000000 0.0000000 + -4.1400000 0.0000000 + -4.0800000 0.0000000 + -4.0200000 0.0000000 + -3.9600000 0.0000000 + -3.9000000 0.0000000 + -3.8400000 0.0000000 + -3.7800000 0.0000000 + -3.7200000 0.0000000 + -3.6600000 0.0000000 + -3.6000000 0.0000000 + -3.5400000 0.0000000 + -3.4800000 0.0000000 + -3.4200000 0.0000000 + -3.3600000 0.0000000 + -3.3000000 0.0000000 + -3.2400000 0.0000000 + -3.1800000 0.0000000 + -3.1200000 0.0000000 + -3.0600000 0.0000000 + -3.0000000 0.0000000 + -2.9400000 0.0000000 + -2.8800000 0.0000000 + -2.8200000 0.0000000 + -2.7600000 0.0000000 + -2.7000000 0.0000000 + -2.6400000 0.0000000 + -2.5800000 0.0000000 + -2.5200000 0.0000000 + -2.4600000 0.0000000 + -2.4000000 0.0000000 + -2.3400000 0.0000000 + -2.2800000 0.0000000 + -2.2200000 0.0000000 + -2.1600000 0.0000000 + -2.1000000 0.0000000 + -2.0400000 0.0000000 + -1.9800000 0.0000000 + -1.9200000 0.0000000 + -1.8600000 0.0000000 + -1.8000000 0.0000000 + -1.7400000 0.0000000 + -1.6800000 0.0000000 + -1.6200000 0.0000000 + -1.5600000 0.0000000 + -1.5000000 0.0000000 + -1.4400000 0.0000000 + -1.3800000 0.0000000 + -1.3200000 0.0000000 + -1.2600000 0.0000000 + -1.2000000 0.0000000 + -1.1400000 0.0000000 + -1.0800000 0.0000000 + -1.0200000 0.0000000 + -0.9600000 0.0000000 + -0.9000000 0.0000000 + -0.8400000 0.0000000 + -0.7800000 0.0000000 + -0.7200000 0.0000000 + -0.6600000 0.0000000 + -0.6000000 0.0000000 + -0.5400000 0.0000000 + -0.4800000 0.0000000 + -0.4200000 0.0000000 + -0.3600000 0.0000000 + -0.3000000 0.0000000 + -0.2400000 0.0000000 + -0.1800000 0.0000000 + -0.1200000 0.0000000 + -0.0600000 0.0000000 + 0.0000000 0.0000000 + 0.0600000 0.0000000 + 0.1200000 0.0000000 + 0.1800000 0.0000000 + 0.2400000 0.0000000 + 0.3000000 0.0000000 + 0.3600000 0.0000000 + 0.4200000 0.0000000 + 0.4800000 0.0000000 + 0.5400000 0.0000000 + 0.6000000 0.0000000 + 0.6600000 0.0000000 + 0.7200000 0.0000000 + 0.7800000 0.0000000 + 0.8400000 0.0000000 + 0.9000000 0.0000000 + 0.9600000 0.0000000 + 1.0200000 0.0000000 + 1.0800000 0.0000000 + 1.1400000 0.0000000 + 1.2000000 0.0000000 + 1.2600000 0.0000000 + 1.3200000 0.0000000 + 1.3800000 0.0000000 + 1.4400000 0.0000000 + 1.5000000 0.0000000 + 1.5600000 0.0000000 + 1.6200000 0.0000000 + 1.6800000 0.0000000 + 1.7400000 0.0000000 + 1.8000000 0.0000000 + 1.8600000 0.0000000 + 1.9200000 0.0000000 + 1.9800000 0.0000000 + 2.0400000 0.0000000 + 2.1000000 0.0000000 + 2.1600000 0.0000000 + 2.2200000 0.0000000 + 2.2800000 0.0000000 + 2.3400000 0.0000000 + 2.4000000 0.0000000 + 2.4600000 0.0000000 + 2.5200000 0.0000000 + 2.5800000 0.0000000 + 2.6400000 0.0000000 + 2.7000000 0.0000000 + 2.7600000 0.0000000 + 2.8200000 0.0000000 + 2.8800000 0.0000000 + 2.9400000 0.0000000 + 3.0000000 0.0000000 + 3.0600000 0.0000000 + 3.1200000 0.0000000 + 3.1800000 0.0000000 + 3.2400000 0.0000000 + 3.3000000 0.0000000 + 3.3600000 0.0000000 + 3.4200000 0.0000000 + 3.4800000 0.0000000 + 3.5400000 0.0000000 + 3.6000000 0.0000000 + 3.6600000 0.0000000 + 3.7200000 0.0000000 + 3.7800000 0.0000000 + 3.8400000 0.0000000 + 3.9000000 0.0000000 + 3.9600000 0.0000000 + 4.0200000 0.0000000 + 4.0800000 0.0000000 + 4.1400000 0.0000000 + 4.2000000 0.0000000 + 4.2600000 0.0000000 + 4.3200000 0.0000000 + 4.3800000 0.0000000 + 4.4400000 0.0000000 + 4.5000000 0.0000000 + 4.5600000 0.0000000 + 4.6200000 0.0000000 + 4.6800000 0.0000000 + 4.7400000 0.0000000 + 4.8000000 0.0000000 + 4.8600000 0.0000000 + 4.9200000 0.0000000 + 4.9800000 0.0000000 + 5.0400000 0.0000000 + 5.1000000 0.0000000 + 5.1600000 0.0000000 + 5.2200000 0.0000000 + 5.2800000 0.0000000 + 5.3400000 0.0000000 + 5.4000000 0.0000000 + 5.4600000 0.0000000 + 5.5200000 0.0000000 + 5.5800000 0.0000000 + 5.6400000 0.0000000 + 5.7000000 0.0000000 + 5.7600000 0.0000000 + 5.8200000 0.0000000 + 5.8800000 0.0000000 + 5.9400000 0.0000000 + 6.0000000 0.0000000 + 6.0600000 0.0000000 + 6.1200000 0.0000000 + 6.1800000 0.0000000 + 6.2400000 0.0000000 + 6.3000000 0.0000000 + 6.3600000 0.0000000 + 6.4200000 0.0000000 + 6.4800000 0.0000000 + 6.5400000 0.0000000 + 6.6000000 0.0000000 + 6.6600000 0.0000000 + 6.7200000 0.0000000 + 6.7800000 0.0000000 + 6.8400000 0.0000000 + 6.9000000 0.0000000 + 6.9600000 0.0000000 + 7.0200000 0.0000000 + 7.0800000 0.0000000 + 7.1400000 0.0000000 + 7.2000000 0.0000000 + 7.2600000 0.0000000 + 7.3200000 0.0000000 + 7.3800000 0.0000000 + 7.4400000 0.0000000 + 7.5000000 0.0000000 + 7.5600000 0.0000000 + 7.6200000 0.0000000 + 7.6800000 0.0000000 + 7.7400000 0.0000000 + 7.8000000 0.0000000 + 7.8600000 0.0000000 + 7.9200000 0.0000000 + 7.9800000 0.0000000 + 8.0400000 0.0000000 + 8.1000000 0.0000000 + 8.1600000 0.0000000 + 8.2200000 0.0000000 + 8.2800000 0.0000000 + 8.3400000 0.0000000 + 8.4000000 0.0000000 + 8.4600000 0.0000000 + 8.5200000 0.0000000 + 8.5800000 0.0000000 + 8.6400000 0.0000000 + 8.7000000 0.0000000 + 8.7600000 0.0000000 + 8.8200000 0.0000000 + 8.8800000 0.0000000 + 8.9400000 0.0000000 + 9.0000000 0.0000000 + 9.0600000 0.0000000 + 9.1200000 0.0000000 + 9.1800000 0.0000000 + 9.2400000 0.0000000 + 9.3000000 0.0000000 + 9.3600000 0.0000000 + 9.4200000 0.0000000 + 9.4800000 0.0000000 + 9.5400000 0.0000000 + 9.6000000 0.0000000 + 9.6600000 0.0000000 + 9.7200000 0.0000000 + 9.7800000 0.0000000 + 9.8400000 0.0000000 + 9.9000000 0.0000000 + 9.9600000 0.0000000 + 10.0200000 0.0000000 + 10.0800000 0.0000000 + 10.1400000 0.0000000 + 10.2000000 0.0000000 + 10.2600000 0.0000000 + 10.3200000 0.0000000 + 10.3800000 0.0000000 + 10.4400000 0.0000000 + 10.5000000 0.0000000 + 10.5600000 0.0000000 + 10.6200000 0.0000000 + 10.6800000 0.0000000 + 10.7400000 0.0000000 + 10.8000000 0.0000000 + 10.8600000 0.0000000 + 10.9200000 0.0000000 + 10.9800000 0.0000000 + 11.0400000 0.0000000 + 11.1000000 0.0000000 + 11.1600000 0.0000000 + 11.2200000 0.0000000 + 11.2800000 0.0000000 + 11.3400000 0.0000000 + 11.4000000 0.0000000 + 11.4600000 0.0000000 + 11.5200000 0.0000000 + 11.5800000 0.0000000 + 11.6400000 0.0000000 + 11.7000000 0.0000000 + 11.7600000 0.0000000 + 11.8200000 0.0000000 + 11.8800000 0.0000000 + 11.9400000 0.0000000 + 12.0000000 0.0000000 + 12.0600000 0.0000000 + 12.1200000 0.0000000 + 12.1800000 0.0000000 + 12.2400000 0.0000000 + 12.3000000 0.0000000 + 12.3600000 0.0000000 + 12.4200000 0.0000000 + 12.4800000 0.0000000 + 12.5400000 0.0000000 + 12.6000000 0.0000000 + 12.6600000 0.0000000 + 12.7200000 0.0000000 + 12.7800000 0.0000000 + 12.8400000 0.0000000 + 12.9000000 0.0000000 + 12.9600000 0.0000000 + 13.0200000 0.0000000 + 13.0800000 0.0000000 + 13.1400000 0.0000000 + 13.2000000 0.0000000 + 13.2600000 0.0000000 + 13.3200000 0.0000000 + 13.3800000 0.0000000 + 13.4400000 0.0000000 + 13.5000000 0.0000000 + 13.5600000 0.0000000 + 13.6200000 0.0000000 + 13.6800000 0.0000000 + 13.7400000 0.0000000 + 13.8000000 0.0000000 + 13.8600000 0.0000000 + 13.9200000 0.0000000 + 13.9800000 0.0000000 + 14.0400000 0.0000000 + 14.1000000 0.0000000 + 14.1600000 0.0000000 + 14.2200000 0.0000000 + 14.2800000 0.0000000 + 14.3400000 0.0000000 + 14.4000000 0.0000000 + 14.4600000 0.0000000 + 14.5200000 0.0000000 + 14.5800000 0.0000000 + 14.6400000 0.0000000 + 14.7000000 0.0000000 + 14.7600000 0.0000000 + 14.8200000 0.0000000 + 14.8800000 0.0000000 + 14.9400000 0.0000000 + 15.0000000 0.0000000 + 15.0600000 0.0000000 + 15.1200000 0.0000000 + 15.1800000 0.0000000 + 15.2400000 0.0000000 + 15.3000000 0.0000000 + 15.3600000 0.0000000 + 15.4200000 0.0000000 + 15.4800000 0.0000000 + 15.5400000 0.0000000 + 15.6000000 0.0000000 + 15.6600000 0.0000000 + 15.7200000 0.0000000 + 15.7800000 0.0000000 + 15.8400000 0.0000000 + 15.9000000 0.0000000 + 15.9600000 0.0000000 + 16.0200000 0.0000000 + 16.0800000 0.0000000 + 16.1400000 0.0000000 + 16.2000000 0.0000000 + 16.2600000 0.0000000 + 16.3200000 0.0000000 + 16.3800000 0.0000000 + 16.4400000 0.0000000 + 16.5000000 0.0000000 + 16.5600000 0.0000000 + 16.6200000 0.0000000 + 16.6800000 0.0000000 + 16.7400000 0.0000000 + 16.8000000 0.0000000 + 16.8600000 0.0000000 + 16.9200000 0.0000000 + 16.9800000 0.0000000 + 17.0400000 0.0000000 + 17.1000000 0.0000000 + 17.1600000 0.0000000 + 17.2200000 0.0000000 + 17.2800000 0.0000000 + 17.3400000 0.0000000 + 17.4000000 0.0000000 + 17.4600000 0.0000000 + 17.5200000 0.0000000 + 17.5800000 0.0000000 + 17.6400000 0.0000000 + 17.7000000 0.0000000 + 17.7600000 0.0000000 + 17.8200000 0.0000000 + 17.8800000 0.0000000 + 17.9400000 0.0000000 + 18.0000000 0.0000000 + 18.0600000 0.0000000 + 18.1200000 0.0000000 + 18.1800000 0.0000000 + 18.2400000 0.0000000 + 18.3000000 0.0000000 + 18.3600000 0.0000000 + 18.4200000 0.0000000 + 18.4800000 0.0000000 + 18.5400000 0.0000000 + 18.6000000 0.0000000 + 18.6600000 0.0000000 + 18.7200000 0.0000000 + 18.7800000 0.0000000 + 18.8400000 0.0000000 + 18.9000000 0.0000000 + 18.9600000 0.0000000 + 19.0200000 0.0000000 + 19.0800000 0.0000000 + 19.1400000 0.0000000 + 19.2000000 0.0000000 + 19.2600000 0.0000000 + 19.3200000 0.0000000 + 19.3800000 0.0000000 + 19.4400000 0.0000000 + 19.5000000 0.0000000 + 19.5600000 0.0000000 + 19.6200000 0.0000000 + 19.6800000 0.0000000 + 19.7400000 0.0000000 + 19.8000000 0.0000000 + 19.8600000 0.0000000 + 19.9200000 0.0000000 + 19.9800000 0.0000000 + 20.0400000 0.0000000 + 20.1000000 0.0000000 + 20.1600000 0.0000000 + 20.2200000 0.0000000 + 20.2800000 0.0000000 + 20.3400000 0.0000000 + 20.4000000 0.0000000 + 20.4600000 0.0000000 + 20.5200000 0.0000000 + 20.5800000 0.0000000 + 20.6400000 0.0000000 + 20.7000000 0.0000000 + 20.7600000 0.0000000 + 20.8200000 0.0000000 + 20.8800000 0.0000000 + 20.9400000 0.0000000 + 21.0000000 0.0000000 + 21.0600000 0.0000000 + 21.1200000 0.0000000 + 21.1800000 0.0000000 + 21.2400000 0.0000000 + 21.3000000 0.0000000 + 21.3600000 0.0000000 + 21.4200000 0.0000000 + 21.4800000 0.0000000 + 21.5400000 0.0000000 + 21.6000000 0.0000000 + 21.6600000 0.0000000 + 21.7200000 0.0000000 + 21.7800000 0.0000000 + 21.8400000 0.0000000 + 21.9000000 0.0000000 + 21.9600000 0.0000000 + 22.0200000 0.0000000 + 22.0800000 0.0000000 + 22.1400000 0.0000000 + 22.2000000 0.0000000 + 22.2600000 0.0000000 + 22.3200000 0.0000000 + 22.3800000 0.0000000 + 22.4400000 0.0000000 + 22.5000000 0.0000000 + 22.5600000 0.0000000 + 22.6200000 0.0000000 + 22.6800000 0.0000000 + 22.7400000 0.0000000 + 22.8000000 0.0000000 + 22.8600000 0.0000000 + 22.9200000 0.0000000 + 22.9800000 0.0000000 + 23.0400000 0.0000000 + 23.1000000 0.0000000 + 23.1600000 0.0000000 + 23.2200000 0.0000000 + 23.2800000 0.0000000 + 23.3400000 0.0000000 + 23.4000000 0.0000000 + 23.4600000 0.0000000 + 23.5200000 0.0000000 + 23.5800000 0.0000000 + 23.6400000 0.0000000 + 23.7000000 0.0000000 + 23.7600000 0.0000000 + 23.8200000 0.0000000 + 23.8800000 0.0000000 + 23.9400000 0.0000000 + 24.0000000 0.0000000 + 24.0600000 0.0000000 + 24.1200000 0.0000000 + 24.1800000 0.0000000 + 24.2400000 0.0000000 + 24.3000000 0.0000000 + 24.3600000 0.0000000 + 24.4200000 0.0000000 + 24.4800000 0.0000000 + 24.5400000 0.0000000 + 24.6000000 0.0000000 + 24.6600000 0.0000000 + 24.7200000 0.0000000 + 24.7800000 0.0000000 + 24.8400000 0.0000000 + 24.9000000 0.0000000 + 24.9600000 0.0000000 + 25.0200000 0.0000000 + 25.0800000 0.0000000 + 25.1400000 0.0000000 + 25.2000000 0.0000000 + 25.2600000 0.0000000 + 25.3200000 0.0000000 + 25.3800000 0.0000000 + 25.4400000 0.0000000 + 25.5000000 0.0000000 + 25.5600000 0.0000000 + 25.6200000 0.0000000 + 25.6800000 0.0000000 + 25.7400000 0.0000000 + 25.8000000 0.0000000 + 25.8600000 0.0000000 + 25.9200000 0.0000000 + 25.9800000 0.0000000 + 26.0400000 0.0000000 + 26.1000000 0.0000000 + 26.1600000 0.0000000 + 26.2200000 0.0000000 + 26.2800000 0.0000000 + 26.3400000 0.0000000 + 26.4000000 0.0000000 + 26.4600000 0.0000000 + 26.5200000 0.0000000 + 26.5800000 0.0000000 + 26.6400000 0.0000000 + 26.7000000 0.0000000 + 26.7600000 0.0000000 + 26.8200000 0.0000000 + 26.8800000 0.0000000 + 26.9400000 0.0000000 + 27.0000000 0.0000000 + 27.0600000 0.0000000 + 27.1200000 0.0000000 + 27.1800000 0.0000000 + 27.2400000 0.0000000 + 27.3000000 0.0000000 + 27.3600000 0.0000000 + 27.4200000 0.0000000 + 27.4800000 0.0000000 + 27.5400000 0.0000000 + 27.6000000 0.0000000 + 27.6600000 0.0000000 + 27.7200000 0.0000000 + 27.7800000 0.0000000 + 27.8400000 0.0000000 + 27.9000000 0.0000000 + 27.9600000 0.0000000 + 28.0200000 0.0000000 + 28.0800000 0.0000000 + 28.1400000 0.0000000 + 28.2000000 0.0000000 + 28.2600000 0.0000000 + 28.3200000 0.0000000 + 28.3800000 0.0000000 + 28.4400000 0.0000000 + 28.5000000 0.0000000 + 28.5600000 0.0000000 + 28.6200000 0.0000000 + 28.6800000 0.0000000 + 28.7400000 0.0000000 + 28.8000000 0.0000000 + 28.8600000 0.0000000 + 28.9200000 0.0000000 + 28.9800000 0.0000000 + 29.0400000 0.0000000 + 29.1000000 0.0000000 + 29.1600000 0.0000000 + 29.2200000 0.0000000 + 29.2800000 0.0000000 + 29.3400000 0.0000000 + 29.4000000 0.0000000 + 29.4600000 0.0000000 + 29.5200000 0.0000000 + 29.5800000 0.0000000 + 29.6400000 0.0000000 + 29.7000000 0.0000000 + 29.7600000 0.0000000 + 29.8200000 0.0000000 + 29.8800000 0.0000000 + 29.9400000 0.0000000 + 30.0000000 0.0000000 + 30.0600000 0.0000000 + 30.1200000 0.0000000 + 30.1800000 0.0000000 + 30.2400000 0.0000000 + 30.3000000 0.0000000 + 30.3600000 0.0000000 + 30.4200000 0.0000000 + 30.4800000 0.0000000 + 30.5400000 0.0000000 + 30.6000000 0.0000000 + 30.6600000 0.0000000 + 30.7200000 0.0000000 + 30.7800000 0.0000000 + 30.8400000 0.0000000 + 30.9000000 0.0000000 + 30.9600000 0.0000000 + 31.0200000 0.0000000 + 31.0800000 0.0000000 + 31.1400000 0.0000000 + 31.2000000 0.0000000 + 31.2600000 0.0000000 + 31.3200000 0.0000000 + 31.3800000 0.0000000 + 31.4400000 0.0000000 + 31.5000000 0.0000000 + 31.5600000 0.0000000 + 31.6200000 0.0000000 + 31.6800000 0.0000000 + 31.7400000 0.0000000 + 31.8000000 0.0000000 + 31.8600000 0.0000000 + 31.9200000 0.0000000 + 31.9800000 0.0000000 + 32.0400000 0.0000000 + 32.1000000 0.0000000 + 32.1600000 0.0000000 + 32.2200000 0.0000000 + 32.2800000 0.0000000 + 32.3400000 0.0000000 + 32.4000000 0.0000000 + 32.4600000 0.0000000 + 32.5200000 0.0000000 + 32.5800000 0.0000000 + 32.6400000 0.0000000 + 32.7000000 0.0000000 + 32.7600000 0.0000000 + 32.8200000 0.0000000 + 32.8800000 0.0000000 + 32.9400000 0.0000000 + 33.0000000 0.0000000 + 33.0600000 0.0000000 + 33.1200000 0.0000000 + 33.1800000 0.0000000 + 33.2400000 0.0000000 + 33.3000000 0.0000000 + 33.3600000 0.0000000 + 33.4200000 0.0000000 + 33.4800000 0.0000000 + 33.5400000 0.0000000 + 33.6000000 0.0000000 + 33.6600000 0.0000000 + 33.7200000 0.0000000 + 33.7800000 0.0000000 + 33.8400000 0.0000000 + 33.9000000 0.0000000 + 33.9600000 0.0000000 + 34.0200000 0.0000000 + 34.0800000 0.0000000 + 34.1400000 0.0000000 + 34.2000000 0.0000000 + 34.2600000 0.0000000 + 34.3200000 0.0000000 + 34.3800000 0.0000000 + 34.4400000 0.0000000 + 34.5000000 0.0000000 + 34.5600000 0.0000000 + 34.6200000 0.0000000 + 34.6800000 0.0000000 + 34.7400000 0.0000000 + 34.8000000 0.0000000 + 34.8600000 0.0000000 + 34.9200000 0.0000000 + 34.9800000 0.0000000 + 35.0400000 0.0000000 + 35.1000000 0.0000000 + 35.1600000 0.0000000 + 35.2200000 0.0000000 + 35.2800000 0.0000000 + 35.3400000 0.0000000 + 35.4000000 0.0000000 + 35.4600000 0.0000000 + 35.5200000 0.0000000 + 35.5800000 0.0000000 + 35.6400000 0.0000000 + 35.7000000 0.0000000 + 35.7600000 0.0000000 + 35.8200000 0.0000000 + 35.8800000 0.0000000 + 35.9400000 0.0000000 + 36.0000000 0.0000000 + 36.0600000 0.0000000 + 36.1200000 0.0000000 + 36.1800000 0.0000000 + 36.2400000 0.0000000 + 36.3000000 0.0000000 + 36.3600000 0.0000000 + 36.4200000 0.0000000 + 36.4800000 0.0000000 + 36.5400000 0.0000000 + 36.6000000 0.0000000 + 36.6600000 0.0000000 + 36.7200000 0.0000000 + 36.7800000 0.0000000 + 36.8400000 0.0000000 + 36.9000000 0.0000000 + 36.9600000 0.0000000 + 37.0200000 0.0000000 + 37.0800000 0.0000000 + 37.1400000 0.0000000 + 37.2000000 0.0000000 + 37.2600000 0.0000000 + 37.3200000 0.0000000 + 37.3800000 0.0000000 + 37.4400000 0.0000000 + 37.5000000 0.0000000 + 37.5600000 0.0000000 + 37.6200000 0.0000000 + 37.6800000 0.0000000 + 37.7400000 0.0000000 + 37.8000000 0.0000000 + 37.8600000 0.0000000 + 37.9200000 0.0000000 + 37.9800000 0.0000000 + 38.0400000 0.0000000 + 38.1000000 0.0000000 + 38.1600000 0.0000000 + 38.2200000 0.0000000 + 38.2800000 0.0000000 + 38.3400000 0.0000000 + 38.4000000 0.0000000 + 38.4600000 0.0000000 + 38.5200000 0.0000000 + 38.5800000 0.0000000 + 38.6400000 0.0000000 + 38.7000000 0.0000000 + 38.7600000 0.0000000 + 38.8200000 0.0000000 + 38.8800000 0.0000000 + 38.9400000 0.0000000 + 39.0000000 0.0000000 + 39.0600000 0.0000000 + 39.1200000 0.0000000 + 39.1800000 0.0000000 + 39.2400000 0.0000000 + 39.3000000 0.0000000 + 39.3600000 0.0000000 + 39.4200000 0.0000000 + 39.4800000 0.0000000 + 39.5400000 0.0000000 + 39.6000000 0.0000000 + 39.6600000 0.0000000 + 39.7200000 0.0000000 + 39.7800000 0.0000000 + 39.8400000 0.0000000 + 39.9000000 0.0000000 + 39.9600000 0.0000000 + 40.0200000 0.0000000 + 40.0800000 0.0000000 + 40.1400000 0.0000000 + 40.2000000 0.0000000 + 40.2600000 0.0000000 + 40.3200000 0.0000000 + 40.3800000 0.0000000 + 40.4400000 0.0000000 + 40.5000000 0.0000000 + 40.5600000 0.0000000 + 40.6200000 0.0000000 + 40.6800000 0.0000000 + 40.7400000 0.0000000 + 40.8000000 0.0000000 + 40.8600000 0.0000000 + 40.9200000 0.0000000 + 40.9800000 0.0000000 + 41.0400000 0.0000000 + 41.1000000 0.0000000 + 41.1600000 0.0000000 + 41.2200000 0.0000000 + 41.2800000 0.0000000 + 41.3400000 0.0000000 + 41.4000000 0.0000000 + 41.4600000 0.0000000 + 41.5200000 0.0000000 + 41.5800000 0.0000000 + 41.6400000 0.0000000 + 41.7000000 0.0000000 + 41.7600000 0.0000000 + 41.8200000 0.0000000 + 41.8800000 0.0000000 + 41.9400000 0.0000000 + 42.0000000 0.0000000 + 42.0600000 0.0000000 + 42.1200000 0.0000000 + 42.1800000 0.0000000 + 42.2400000 0.0000000 + 42.3000000 0.0000000 + 42.3600000 0.0000000 + 42.4200000 0.0000000 + 42.4800000 0.0000000 + 42.5400000 0.0000000 + 42.6000000 0.0000000 + 42.6600000 0.0000000 + 42.7200000 0.0000000 + 42.7800000 0.0000000 + 42.8400000 0.0000000 + 42.9000000 0.0000000 + 42.9600000 0.0000000 + 43.0200000 0.0000000 + 43.0800000 0.0000000 + 43.1400000 0.0000000 + 43.2000000 0.0000000 + 43.2600000 0.0000000 + 43.3200000 0.0000000 + 43.3800000 0.0000000 + 43.4400000 0.0000000 + 43.5000000 0.0000000 + 43.5600000 0.0000000 + 43.6200000 0.0000000 + 43.6800000 0.0000000 + 43.7400000 0.0000000 + 43.8000000 0.0000000 + 43.8600000 0.0000000 + 43.9200000 0.0000000 + 43.9800000 0.0000000 + 44.0400000 0.0000000 + 44.1000000 0.0000000 + 44.1600000 0.0000000 + 44.2200000 0.0000000 + 44.2800000 0.0000000 + 44.3400000 0.0000000 + 44.4000000 0.0000000 + 44.4600000 0.0000000 + 44.5200000 0.0000000 + 44.5800000 0.0000000 + 44.6400000 0.0000000 + 44.7000000 0.0000000 + 44.7600000 0.0000000 + 44.8200000 0.0000000 + 44.8800000 0.0000000 + 44.9400000 0.0000000 + 45.0000000 0.0000000 + 45.0600000 0.0000000 + 45.1200000 0.0000000 + 45.1800000 0.0000000 + 45.2400000 0.0000000 + 45.3000000 0.0000000 + 45.3600000 0.0000000 + 45.4200000 0.0000000 + 45.4800000 0.0000000 + 45.5400000 -0.0000000 + 45.6000000 -0.0000000 + 45.6600000 -0.0000000 + 45.7200000 -0.0000000 + 45.7800000 -0.0000000 + 45.8400000 -0.0000000 + 45.9000000 -0.0000000 + 45.9600000 -0.0000000 + 46.0200000 -0.0000000 + 46.0800000 -0.0000000 + 46.1400000 -0.0000000 + 46.2000000 0.0000000 + 46.2600000 0.0000000 + 46.3200000 0.0000000 + 46.3800000 0.0000000 + 46.4400000 -0.0000000 + 46.5000000 -0.0000000 + 46.5600000 -0.0000000 + 46.6200000 -0.0000000 + 46.6800000 -0.0000000 + 46.7400000 -0.0000000 + 46.8000000 -0.0000000 + 46.8600000 -0.0000000 + 46.9200000 -0.0000000 + 46.9800000 -0.0000000 + 47.0400000 -0.0000000 + 47.1000000 -0.0000000 + 47.1600000 -0.0000000 + 47.2200000 -0.0000000 + 47.2800000 -0.0000000 + 47.3400000 -0.0000000 + 47.4000000 -0.0000000 + 47.4600000 -0.0000000 + 47.5200000 0.0000000 + 47.5800000 0.0000000 + 47.6400000 0.0000000 + 47.7000000 0.0000000 + 47.7600000 0.0000000 + 47.8200000 0.0000000 + 47.8800000 0.0000000 + 47.9400000 0.0000000 + 48.0000000 -0.0000000 + 48.0600000 -0.0000000 + 48.1200000 -0.0000000 + 48.1800000 -0.0000000 + 48.2400000 -0.0000000 + 48.3000000 -0.0000000 + 48.3600000 -0.0000000 + 48.4200000 -0.0000000 + 48.4800000 -0.0000000 + 48.5400000 -0.0000000 + 48.6000000 -0.0000000 + 48.6600000 -0.0000000 + 48.7200000 0.0000000 + 48.7800000 0.0000000 + 48.8400000 0.0000000 + 48.9000000 0.0000000 + 48.9600000 0.0000000 + 49.0200000 0.0000000 + 49.0800000 0.0000000 + 49.1400000 0.0000000 + 49.2000000 0.0000000 + 49.2600000 -0.0000000 + 49.3200000 -0.0000000 + 49.3800000 -0.0000000 + 49.4400000 -0.0000000 + 49.5000000 -0.0000000 + 49.5600000 -0.0000000 + 49.6200000 -0.0000000 + 49.6800000 -0.0000000 + 49.7400000 -0.0000000 + 49.8000000 -0.0000000 + 49.8600000 -0.0000000 + 49.9200000 0.0000000 + 49.9800000 0.0000000 + 50.0400000 0.0000000 + 50.1000000 0.0000000 + 50.1600000 0.0000000 + 50.2200000 0.0000000 + 50.2800000 0.0000000 + 50.3400000 0.0000000 + 50.4000000 0.0000000 + 50.4600000 0.0000000 + 50.5200000 0.0000000 + 50.5800000 -0.0000000 + 50.6400000 -0.0000000 + 50.7000000 -0.0000000 + 50.7600000 -0.0000000 + 50.8200000 -0.0000000 + 50.8800000 -0.0000000 + 50.9400000 -0.0000000 + 51.0000000 -0.0000000 + 51.0600000 -0.0000000 + 51.1200000 -0.0000000 + 51.1800000 0.0000000 + 51.2400000 0.0000000 + 51.3000000 0.0000000 + 51.3600000 0.0000000 + 51.4200000 0.0000000 + 51.4800000 0.0000000 + 51.5400000 0.0000000 + 51.6000000 0.0000000 + 51.6600000 0.0000000 + 51.7200000 0.0000000 + 51.7800000 0.0000000 + 51.8400000 0.0000000 + 51.9000000 0.0000000 + 51.9600000 0.0000000 + 52.0200000 -0.0000000 + 52.0800000 -0.0000000 + 52.1400000 -0.0000000 + 52.2000000 -0.0000000 + 52.2600000 -0.0000000 + 52.3200000 -0.0000000 + 52.3800000 -0.0000000 + 52.4400000 -0.0000000 + 52.5000000 -0.0000000 + 52.5600000 -0.0000000 + 52.6200000 -0.0000000 + 52.6800000 -0.0000000 + 52.7400000 -0.0000000 + 52.8000000 -0.0000000 + 52.8600000 -0.0000000 + 52.9200000 -0.0000000 + 52.9800000 -0.0000000 + 53.0400000 0.0000000 + 53.1000000 0.0000000 + 53.1600000 0.0000000 + 53.2200000 0.0000000 + 53.2800000 0.0000000 + 53.3400000 0.0000000 + 53.4000000 0.0000000 + 53.4600000 0.0000000 + 53.5200000 0.0000000 + 53.5800000 0.0000000 + 53.6400000 0.0000000 + 53.7000000 0.0000000 + 53.7600000 0.0000000 + 53.8200000 0.0000000 + 53.8800000 0.0000000 + 53.9400000 -0.0000000 + 54.0000000 -0.0000000 + 54.0600000 -0.0000000 + 54.1200000 -0.0000000 + 54.1800000 -0.0000000 + 54.2400000 -0.0000000 + 54.3000000 -0.0000000 + 54.3600000 -0.0000000 + 54.4200000 -0.0000000 + 54.4800000 -0.0000000 + 54.5400000 -0.0000000 + 54.6000000 -0.0000000 + 54.6600000 -0.0000000 + 54.7200000 -0.0000000 + 54.7800000 -0.0000000 + 54.8400000 0.0000000 + 54.9000000 0.0000000 + 54.9600000 0.0000000 + 55.0200000 0.0000000 + 55.0800000 0.0000000 + 55.1400000 0.0000000 + 55.2000000 0.0000000 + 55.2600000 0.0000000 + 55.3200000 0.0000000 + 55.3800000 0.0000000 + 55.4400000 0.0000000 + 55.5000000 0.0000000 + 55.5600000 0.0000000 + 55.6200000 0.0000000 + 55.6800000 0.0000000 + 55.7400000 -0.0000000 + 55.8000000 -0.0000000 + 55.8600000 -0.0000000 + 55.9200000 -0.0000000 + 55.9800000 -0.0000000 + 56.0400000 -0.0000000 + 56.1000000 -0.0000000 + 56.1600000 -0.0000000 + 56.2200000 -0.0000000 + 56.2800000 -0.0000000 + 56.3400000 -0.0000000 + 56.4000000 -0.0000000 + 56.4600000 -0.0000000 + 56.5200000 -0.0000000 + 56.5800000 -0.0000000 + 56.6400000 -0.0000000 + 56.7000000 0.0000000 + 56.7600000 0.0000000 + 56.8200000 0.0000000 + 56.8800000 0.0000000 + 56.9400000 0.0000000 + 57.0000000 0.0000000 + 57.0600000 0.0000000 + 57.1200000 0.0000000 + 57.1800000 0.0000000 + 57.2400000 0.0000000 + 57.3000000 0.0000000 + 57.3600000 0.0000000 + 57.4200000 0.0000000 + 57.4800000 0.0000000 + 57.5400000 0.0000000 + 57.6000000 0.0000000 + 57.6600000 -0.0000000 + 57.7200000 -0.0000000 + 57.7800000 -0.0000000 + 57.8400000 -0.0000000 + 57.9000000 -0.0000000 + 57.9600000 -0.0000000 + 58.0200000 -0.0000000 + 58.0800000 -0.0000000 + 58.1400000 -0.0000000 + 58.2000000 -0.0000000 + 58.2600000 -0.0000000 + 58.3200000 -0.0000000 + 58.3800000 -0.0000000 + 58.4400000 -0.0000000 + 58.5000000 -0.0000000 + 58.5600000 0.0000000 + 58.6200000 0.0000000 + 58.6800000 0.0000000 + 58.7400000 0.0000000 + 58.8000000 0.0000000 + 58.8600000 0.0000000 + 58.9200000 0.0000000 + 58.9800000 0.0000000 + 59.0400000 0.0000000 + 59.1000000 0.0000000 + 59.1600000 0.0000000 + 59.2200000 0.0000000 + 59.2800000 0.0000000 + 59.3400000 0.0000000 + 59.4000000 0.0000000 + 59.4600000 0.0000000 + 59.5200000 -0.0000000 + 59.5800000 -0.0000000 + 59.6400000 -0.0000000 + 59.7000000 -0.0000000 + 59.7600000 -0.0000000 + 59.8200000 -0.0000000 + 59.8800000 -0.0000000 + 59.9400000 -0.0000000 + 60.0000000 -0.0000000 + 60.0600000 -0.0000000 + 60.1200000 -0.0000000 + 60.1800000 -0.0000000 + 60.2400000 -0.0000000 + 60.3000000 -0.0000000 + 60.3600000 -0.0000000 + 60.4200000 -0.0000000 + 60.4800000 -0.0000000 + 60.5400000 0.0000000 + 60.6000000 0.0000000 + 60.6600000 0.0000000 + 60.7200000 0.0000000 + 60.7800000 0.0000000 + 60.8400000 0.0000000 + 60.9000000 0.0000000 + 60.9600000 0.0000000 + 61.0200000 0.0000000 + 61.0800000 0.0000000 + 61.1400000 0.0000000 + 61.2000000 0.0000000 + 61.2600000 0.0000000 + 61.3200000 0.0000000 + 61.3800000 0.0000000 + 61.4400000 0.0000000 + 61.5000000 -0.0000000 + 61.5600000 -0.0000000 + 61.6200000 -0.0000000 + 61.6800000 -0.0000000 + 61.7400000 -0.0000000 + 61.8000000 -0.0000000 + 61.8600000 -0.0000000 + 61.9200000 -0.0000000 + 61.9800000 -0.0000000 + 62.0400000 -0.0000000 + 62.1000000 -0.0000000 + 62.1600000 -0.0000000 + 62.2200000 -0.0000000 + 62.2800000 -0.0000000 + 62.3400000 -0.0000000 + 62.4000000 -0.0000000 + 62.4600000 0.0000000 + 62.5200000 0.0000000 + 62.5800000 0.0000000 + 62.6400000 0.0000000 + 62.7000000 0.0000000 + 62.7600000 0.0000000 + 62.8200000 0.0000000 + 62.8800000 0.0000000 + 62.9400000 0.0000000 + 63.0000000 0.0000000 + 63.0600000 0.0000000 + 63.1200000 0.0000000 + 63.1800000 0.0000000 + 63.2400000 0.0000000 + 63.3000000 0.0000000 + 63.3600000 0.0000000 + 63.4200000 0.0000000 + 63.4800000 -0.0000000 + 63.5400000 -0.0000000 + 63.6000000 -0.0000000 + 63.6600000 -0.0000000 + 63.7200000 -0.0000000 + 63.7800000 -0.0000000 + 63.8400000 -0.0000000 + 63.9000000 -0.0000000 + 63.9600000 -0.0000000 + 64.0200000 -0.0000000 + 64.0800000 -0.0000000 + 64.1400000 -0.0000000 + 64.2000000 -0.0000000 + 64.2600000 -0.0000000 + 64.3200000 -0.0000000 + 64.3800000 -0.0000000 + 64.4400000 -0.0000000 + 64.5000000 0.0000000 + 64.5600000 0.0000000 + 64.6200000 0.0000000 + 64.6800000 0.0000000 + 64.7400000 0.0000000 + 64.8000000 0.0000000 + 64.8600000 0.0000000 + 64.9200000 0.0000000 + 64.9800000 0.0000000 + 65.0400000 0.0000000 + 65.1000000 0.0000000 + 65.1600000 0.0000000 + 65.2200000 0.0000000 + 65.2800000 0.0000000 + 65.3400000 0.0000000 + 65.4000000 0.0000000 + 65.4600000 0.0000000 + 65.5200000 -0.0000000 + 65.5800000 -0.0000000 + 65.6400000 -0.0000000 + 65.7000000 -0.0000000 + 65.7600000 -0.0000000 + 65.8200000 -0.0000000 + 65.8800000 -0.0000000 + 65.9400000 -0.0000000 + 66.0000000 -0.0000000 + 66.0600000 -0.0000000 + 66.1200000 -0.0000000 + 66.1800000 -0.0000000 + 66.2400000 -0.0000000 + 66.3000000 -0.0000000 + 66.3600000 -0.0000000 + 66.4200000 -0.0000000 + 66.4800000 -0.0000000 + 66.5400000 -0.0000000 + 66.6000000 0.0000000 + 66.6600000 0.0000000 + 66.7200000 0.0000000 + 66.7800000 0.0000000 + 66.8400000 0.0000000 + 66.9000000 0.0000000 + 66.9600000 0.0000000 + 67.0200000 0.0000000 + 67.0800000 0.0000000 + 67.1400000 0.0000000 + 67.2000000 0.0000000 + 67.2600000 0.0000000 + 67.3200000 0.0000000 + 67.3800000 0.0000000 + 67.4400000 0.0000000 + 67.5000000 0.0000000 + 67.5600000 0.0000000 + 67.6200000 0.0000000 + 67.6800000 -0.0000000 + 67.7400000 -0.0000000 + 67.8000000 -0.0000000 + 67.8600000 -0.0000000 + 67.9200000 -0.0000000 + 67.9800000 -0.0000000 + 68.0400000 -0.0000000 + 68.1000000 -0.0000000 + 68.1600000 -0.0000000 + 68.2200000 -0.0000000 + 68.2800000 -0.0000000 + 68.3400000 -0.0000000 + 68.4000000 -0.0000000 + 68.4600000 -0.0000000 + 68.5200000 -0.0000000 + 68.5800000 -0.0000000 + 68.6400000 -0.0000000 + 68.7000000 -0.0000000 + 68.7600000 0.0000000 + 68.8200000 0.0000000 + 68.8800000 0.0000000 + 68.9400000 0.0000000 + 69.0000000 0.0000000 + 69.0600000 0.0000000 + 69.1200000 0.0000000 + 69.1800000 0.0000000 + 69.2400000 0.0000000 + 69.3000000 0.0000000 + 69.3600000 0.0000000 + 69.4200000 0.0000000 + 69.4800000 0.0000000 + 69.5400000 0.0000000 + 69.6000000 0.0000000 + 69.6600000 0.0000000 + 69.7200000 0.0000000 + 69.7800000 0.0000000 + 69.8400000 0.0000000 + 69.9000000 -0.0000000 + 69.9600000 -0.0000000 + 70.0200000 -0.0000000 + 70.0800000 -0.0000000 + 70.1400000 -0.0000000 + 70.2000000 -0.0000000 + 70.2600000 -0.0000000 + 70.3200000 -0.0000000 + 70.3800000 -0.0000000 + 70.4400000 -0.0000000 + 70.5000000 -0.0000000 + 70.5600000 -0.0000000 + 70.6200000 -0.0000000 + 70.6800000 -0.0000000 + 70.7400000 -0.0000000 + 70.8000000 -0.0000000 + 70.8600000 -0.0000000 + 70.9200000 -0.0000000 + 70.9800000 -0.0000000 + 71.0400000 0.0000000 + 71.1000000 0.0000000 + 71.1600000 0.0000000 + 71.2200000 0.0000000 + 71.2800000 0.0000000 + 71.3400000 0.0000000 + 71.4000000 0.0000000 + 71.4600000 0.0000000 + 71.5200000 0.0000000 + 71.5800000 0.0000000 + 71.6400000 0.0000000 + 71.7000000 0.0000000 + 71.7600000 0.0000000 + 71.8200000 0.0000000 + 71.8800000 0.0000000 + 71.9400000 0.0000000 + 72.0000000 0.0000000 + 72.0600000 0.0000000 + 72.1200000 0.0000000 + 72.1800000 0.0000000 + 72.2400000 -0.0000000 + 72.3000000 -0.0000000 + 72.3600000 -0.0000000 + 72.4200000 -0.0000000 + 72.4800000 -0.0000000 + 72.5400000 -0.0000000 + 72.6000000 -0.0000000 + 72.6600000 -0.0000000 + 72.7200000 -0.0000000 + 72.7800000 -0.0000000 + 72.8400000 -0.0000000 + 72.9000000 -0.0000000 + 72.9600000 -0.0000000 + 73.0200000 -0.0000000 + 73.0800000 -0.0000000 + 73.1400000 -0.0000000 + 73.2000000 -0.0000000 + 73.2600000 -0.0000000 + 73.3200000 -0.0000000 + 73.3800000 0.0000000 + 73.4400000 0.0000000 + 73.5000000 0.0000000 + 73.5600000 0.0000000 + 73.6200000 0.0000000 + 73.6800000 0.0000000 + 73.7400000 0.0000000 + 73.8000000 0.0000000 + 73.8600000 0.0000000 + 73.9200000 0.0000000 + 73.9800000 0.0000000 + 74.0400000 0.0000000 + 74.1000000 0.0000000 + 74.1600000 0.0000000 + 74.2200000 0.0000000 + 74.2800000 0.0000000 + 74.3400000 0.0000000 + 74.4000000 0.0000000 + 74.4600000 0.0000000 + 74.5200000 0.0000000 + 74.5800000 -0.0000000 + 74.6400000 -0.0000000 + 74.7000000 -0.0000000 + 74.7600000 -0.0000000 + 74.8200000 -0.0000000 + 74.8800000 -0.0000000 + 74.9400000 -0.0000000 + 75.0000000 -0.0000000 + 75.0600000 -0.0000000 + 75.1200000 -0.0000000 + 75.1800000 -0.0000000 + 75.2400000 -0.0000000 + 75.3000000 -0.0000000 + 75.3600000 -0.0000000 + 75.4200000 -0.0000000 + 75.4800000 -0.0000000 + 75.5400000 -0.0000000 + 75.6000000 -0.0000000 + 75.6600000 -0.0000000 + 75.7200000 0.0000000 + 75.7800000 0.0000000 + 75.8400000 0.0000000 + 75.9000000 0.0000000 + 75.9600000 0.0000000 + 76.0200000 0.0000000 + 76.0800000 0.0000000 + 76.1400000 0.0000000 + 76.2000000 0.0000000 + 76.2600000 0.0000000 + 76.3200000 0.0000000 + 76.3800000 0.0000000 + 76.4400000 0.0000000 + 76.5000000 0.0000000 + 76.5600000 0.0000000 + 76.6200000 0.0000000 + 76.6800000 0.0000000 + 76.7400000 0.0000000 + 76.8000000 0.0000000 + 76.8600000 -0.0000000 + 76.9200000 -0.0000000 + 76.9800000 -0.0000000 + 77.0400000 -0.0000000 + 77.1000000 -0.0000000 + 77.1600000 -0.0000000 + 77.2200000 -0.0000000 + 77.2800000 -0.0000000 + 77.3400000 -0.0000000 + 77.4000000 -0.0000000 + 77.4600000 -0.0000000 + 77.5200000 -0.0000000 + 77.5800000 -0.0000000 + 77.6400000 -0.0000000 + 77.7000000 -0.0000000 + 77.7600000 -0.0000000 + 77.8200000 -0.0000000 + 77.8800000 -0.0000000 + 77.9400000 -0.0000000 + 78.0000000 -0.0000000 + 78.0600000 -0.0000000 + 78.1200000 0.0000000 + 78.1800000 0.0000000 + 78.2400000 0.0000000 + 78.3000000 0.0000000 + 78.3600000 0.0000000 + 78.4200000 0.0000000 + 78.4800000 0.0000000 + 78.5400000 0.0000000 + 78.6000000 0.0000000 + 78.6600000 0.0000000 + 78.7200000 0.0000000 + 78.7800000 0.0000000 + 78.8400000 0.0000000 + 78.9000000 0.0000000 + 78.9600000 0.0000000 + 79.0200000 0.0000000 + 79.0800000 -0.0000000 + 79.1400000 -0.0000000 + 79.2000000 -0.0000000 + 79.2600000 -0.0000000 + 79.3200000 -0.0000000 + 79.3800000 -0.0000000 + 79.4400000 -0.0000000 + 79.5000000 -0.0000000 + 79.5600000 -0.0000000 + 79.6200000 -0.0000000 + 79.6800000 -0.0000000 + 79.7400000 -0.0000000 + 79.8000000 -0.0000000 + 79.8600000 -0.0000000 + 79.9200000 -0.0000000 + 79.9800000 -0.0000000 + 80.0400000 -0.0000000 + 80.1000000 -0.0000000 + 80.1600000 -0.0000000 + 80.2200000 -0.0000000 + 80.2800000 -0.0000000 + 80.3400000 -0.0000000 + 80.4000000 -0.0000000 + 80.4600000 -0.0000000 + 80.5200000 -0.0000000 + 80.5800000 0.0000000 + 80.6400000 0.0000000 + 80.7000000 0.0000000 + 80.7600000 0.0000000 + 80.8200000 0.0000000 + 80.8800000 0.0000000 + 80.9400000 0.0000000 + 81.0000000 0.0000000 + 81.0600000 0.0000000 + 81.1200000 0.0000000 + 81.1800000 0.0000000 + 81.2400000 0.0000000 + 81.3000000 0.0000000 + 81.3600000 0.0000000 + 81.4200000 0.0000000 + 81.4800000 0.0000000 + 81.5400000 0.0000000 + 81.6000000 0.0000000 + 81.6600000 0.0000000 + 81.7200000 0.0000000 + 81.7800000 0.0000000 + 81.8400000 0.0000000 + 81.9000000 0.0000000 + 81.9600000 0.0000000 + 82.0200000 0.0000000 + 82.0800000 0.0000000 + 82.1400000 0.0000000 + 82.2000000 0.0000000 + 82.2600000 0.0000000 + 82.3200000 0.0000000 + 82.3800000 0.0000000 + 82.4400000 0.0000000 + 82.5000000 0.0000000 + 82.5600000 0.0000000 + 82.6200000 0.0000000 + 82.6800000 0.0000000 + 82.7400000 0.0000000 + 82.8000000 0.0000000 + 82.8600000 0.0000000 + 82.9200000 0.0000000 + 82.9800000 0.0000000 + 83.0400000 0.0000000 + 83.1000000 0.0000000 + 83.1600000 0.0000000 + 83.2200000 0.0000000 + 83.2800000 0.0000000 + 83.3400000 0.0000000 + 83.4000000 0.0000000 + 83.4600000 0.0000000 + 83.5200000 0.0000000 + 83.5800000 0.0000000 + 83.6400000 0.0000000 + 83.7000000 0.0000000 + 83.7600000 0.0000000 + 83.8200000 0.0000000 + 83.8800000 0.0000000 + 83.9400000 0.0000000 + 84.0000000 0.0000000 + 84.0600000 0.0000000 + 84.1200000 0.0000000 + 84.1800000 0.0000000 + 84.2400000 0.0000000 + 84.3000000 0.0000000 + 84.3600000 0.0000000 + 84.4200000 0.0000000 + 84.4800000 0.0000000 + 84.5400000 0.0000000 + 84.6000000 0.0000000 + 84.6600000 0.0000000 + 84.7200000 0.0000000 + 84.7800000 0.0000000 + 84.8400000 0.0000000 + 84.9000000 0.0000000 + 84.9600000 0.0000000 + 85.0200000 0.0000000 + 85.0800000 0.0000000 + 85.1400000 0.0000000 + 85.2000000 0.0000000 + 85.2600000 0.0000000 + 85.3200000 0.0000000 + 85.3800000 0.0000000 + 85.4400000 0.0000000 + 85.5000000 0.0000000 + 85.5600000 0.0000000 + 85.6200000 0.0000000 + 85.6800000 0.0000000 + 85.7400000 0.0000000 + 85.8000000 0.0000000 + 85.8600000 0.0000000 + 85.9200000 0.0000000 + 85.9800000 0.0000000 + 86.0400000 0.0000000 + 86.1000000 -0.0000000 + 86.1600000 -0.0000000 + 86.2200000 -0.0000000 + 86.2800000 -0.0000000 + 86.3400000 -0.0000000 + 86.4000000 -0.0000000 + 86.4600000 -0.0000000 + 86.5200000 -0.0000000 + 86.5800000 -0.0000000 + 86.6400000 -0.0000000 + 86.7000000 -0.0000000 + 86.7600000 -0.0000000 + 86.8200000 -0.0000000 + 86.8800000 -0.0000000 + 86.9400000 -0.0000000 + 87.0000000 -0.0000000 + 87.0600000 -0.0000000 + 87.1200000 -0.0000000 + 87.1800000 -0.0000000 + 87.2400000 -0.0000000 + 87.3000000 -0.0000000 + 87.3600000 -0.0000000 + 87.4200000 -0.0000000 + 87.4800000 -0.0000000 + 87.5400000 -0.0000000 + 87.6000000 -0.0000000 + 87.6600000 -0.0000000 + 87.7200000 -0.0000000 + 87.7800000 -0.0000000 + 87.8400000 -0.0000000 + 87.9000000 -0.0000000 + 87.9600000 -0.0000000 + 88.0200000 -0.0000000 + 88.0800000 -0.0000000 + 88.1400000 -0.0000000 + 88.2000000 -0.0000000 + 88.2600000 -0.0000000 + 88.3200000 -0.0000000 + 88.3800000 -0.0000000 + 88.4400000 -0.0000000 + 88.5000000 -0.0000000 + 88.5600000 -0.0000000 + 88.6200000 -0.0000000 + 88.6800000 -0.0000000 + 88.7400000 -0.0000000 + 88.8000000 -0.0000000 + 88.8600000 -0.0000000 + 88.9200000 -0.0000000 + 88.9800000 -0.0000000 + 89.0400000 -0.0000000 + 89.1000000 -0.0000000 + 89.1600000 -0.0000000 + 89.2200000 -0.0000000 + 89.2800000 -0.0000000 + 89.3400000 -0.0000000 + 89.4000000 -0.0000000 + 89.4600000 -0.0000000 + 89.5200000 -0.0000000 + 89.5800000 -0.0000000 + 89.6400000 -0.0000000 + 89.7000000 -0.0000000 + 89.7600000 -0.0000000 + 89.8200000 -0.0000000 + 89.8800000 -0.0000000 + 89.9400000 -0.0000000 + 90.0000000 -0.0000000 + 90.0600000 -0.0000000 + 90.1200000 -0.0000000 + 90.1800000 -0.0000000 + 90.2400000 -0.0000000 + 90.3000000 -0.0000000 + 90.3600000 -0.0000000 + 90.4200000 -0.0000000 + 90.4800000 -0.0000000 + 90.5400000 -0.0000000 + 90.6000000 -0.0000000 + 90.6600000 -0.0000000 + 90.7200000 -0.0000000 + 90.7800000 -0.0000000 + 90.8400000 -0.0000000 + 90.9000000 -0.0000000 + 90.9600000 -0.0000000 + 91.0200000 -0.0000000 + 91.0800000 -0.0000000 + 91.1400000 -0.0000000 + 91.2000000 -0.0000000 + 91.2600000 -0.0000000 + 91.3200000 -0.0000000 + 91.3800000 -0.0000000 + 91.4400000 -0.0000000 + 91.5000000 -0.0000000 + 91.5600000 -0.0000000 + 91.6200000 -0.0000000 + 91.6800000 -0.0000000 + 91.7400000 -0.0000000 + 91.8000000 -0.0000000 + 91.8600000 -0.0000000 + 91.9200000 0.0000000 + 91.9800000 0.0000000 + 92.0400000 0.0000000 + 92.1000000 0.0000000 + 92.1600000 0.0000000 + 92.2200000 0.0000000 + 92.2800000 0.0000000 + 92.3400000 0.0000000 + 92.4000000 0.0000000 + 92.4600000 0.0000000 + 92.5200000 0.0000000 + 92.5800000 0.0000000 + 92.6400000 0.0000000 + 92.7000000 0.0000000 + 92.7600000 0.0000000 + 92.8200000 0.0000000 + 92.8800000 0.0000000 + 92.9400000 0.0000000 + 93.0000000 0.0000000 + 93.0600000 0.0000000 + 93.1200000 0.0000000 + 93.1800000 0.0000001 + 93.2400000 0.0000001 + 93.3000000 0.0000001 + 93.3600000 0.0000001 + 93.4200000 0.0000001 + 93.4800000 0.0000001 + 93.5400000 0.0000001 + 93.6000000 0.0000001 + 93.6600000 0.0000002 + 93.7200000 0.0000002 + 93.7800000 0.0000002 + 93.8400000 0.0000002 + 93.9000000 0.0000003 + 93.9600000 0.0000003 + 94.0200000 0.0000003 + 94.0800000 0.0000004 + 94.1400000 0.0000004 + 94.2000000 0.0000005 + 94.2600000 0.0000005 + 94.3200000 0.0000006 + 94.3800000 0.0000006 + 94.4400000 0.0000007 + 94.5000000 0.0000008 + 94.5600000 0.0000009 + 94.6200000 0.0000010 + 94.6800000 0.0000011 + 94.7400000 0.0000012 + 94.8000000 0.0000014 + 94.8600000 0.0000015 + 94.9200000 0.0000017 + 94.9800000 0.0000019 + 95.0400000 0.0000021 + 95.1000000 0.0000023 + 95.1600000 0.0000026 + 95.2200000 0.0000029 + 95.2800000 0.0000032 + 95.3400000 0.0000035 + 95.4000000 0.0000039 + 95.4600000 0.0000043 + 95.5200000 0.0000047 + 95.5800000 0.0000052 + 95.6400000 0.0000057 + 95.7000000 0.0000063 + 95.7600000 0.0000069 + 95.8200000 0.0000076 + 95.8800000 0.0000084 + 95.9400000 0.0000092 + 96.0000000 0.0000101 + 96.0600000 0.0000110 + 96.1200000 0.0000121 + 96.1800000 0.0000132 + 96.2400000 0.0000145 + 96.3000000 0.0000159 + 96.3600000 0.0000173 + 96.4200000 0.0000189 + 96.4800000 0.0000207 + 96.5400000 0.0000225 + 96.6000000 0.0000246 + 96.6600000 0.0000268 + 96.7200000 0.0000292 + 96.7800000 0.0000318 + 96.8400000 0.0000346 + 96.9000000 0.0000376 + 96.9600000 0.0000409 + 97.0200000 0.0000444 + 97.0800000 0.0000482 + 97.1400000 0.0000523 + 97.2000000 0.0000567 + 97.2600000 0.0000614 + 97.3200000 0.0000665 + 97.3800000 0.0000720 + 97.4400000 0.0000779 + 97.5000000 0.0000843 + 97.5600000 0.0000911 + 97.6200000 0.0000984 + 97.6800000 0.0001062 + 97.7400000 0.0001146 + 97.8000000 0.0001236 + 97.8600000 0.0001332 + 97.9200000 0.0001435 + 97.9800000 0.0001545 + 98.0400000 0.0001662 + 98.1000000 0.0001788 + 98.1600000 0.0001922 + 98.2200000 0.0002064 + 98.2800000 0.0002216 + 98.3400000 0.0002378 + 98.4000000 0.0002551 + 98.4600000 0.0002735 + 98.5200000 0.0002930 + 98.5800000 0.0003137 + 98.6400000 0.0003357 + 98.7000000 0.0003591 + 98.7600000 0.0003839 + 98.8200000 0.0004102 + 98.8800000 0.0004381 + 98.9400000 0.0004675 + 99.0000000 0.0004987 + 99.0600000 0.0005317 + 99.1200000 0.0005666 + 99.1800000 0.0006035 + 99.2400000 0.0006424 + 99.3000000 0.0006834 + 99.3600000 0.0007266 + 99.4200000 0.0007722 + 99.4800000 0.0008202 + 99.5400000 0.0008707 + 99.6000000 0.0009238 + 99.6600000 0.0009796 + 99.7200000 0.0010382 + 99.7800000 0.0010997 + 99.8400000 0.0011643 + 99.9000000 0.0012320 + 99.9600000 0.0013029 + 100.0200000 0.0013771 + 100.0800000 0.0014547 + 100.1400000 0.0015360 + 100.2000000 0.0016208 + 100.2600000 0.0017094 + 100.3200000 0.0018019 + 100.3800000 0.0018984 + 100.4400000 0.0019989 + 100.5000000 0.0021036 + 100.5600000 0.0022126 + 100.6200000 0.0023260 + 100.6800000 0.0024438 + 100.7400000 0.0025662 + 100.8000000 0.0026933 + 100.8600000 0.0028251 + 100.9200000 0.0029617 + 100.9800000 0.0031032 + 101.0400000 0.0032497 + 101.1000000 0.0034013 + 101.1600000 0.0035580 + 101.2200000 0.0037198 + 101.2800000 0.0038869 + 101.3400000 0.0040592 + 101.4000000 0.0042368 + 101.4600000 0.0044198 + 101.5200000 0.0046081 + 101.5800000 0.0048018 + 101.6400000 0.0050008 + 101.7000000 0.0052052 + 101.7600000 0.0054150 + 101.8200000 0.0056300 + 101.8800000 0.0058504 + 101.9400000 0.0060759 + 102.0000000 0.0063067 + 102.0600000 0.0065425 + 102.1200000 0.0067833 + 102.1800000 0.0070291 + 102.2400000 0.0072797 + 102.3000000 0.0075349 + 102.3600000 0.0077948 + 102.4200000 0.0080590 + 102.4800000 0.0083274 + 102.5400000 0.0085999 + 102.6000000 0.0088763 + 102.6600000 0.0091563 + 102.7200000 0.0094398 + 102.7800000 0.0097265 + 102.8400000 0.0100161 + 102.9000000 0.0103085 + 102.9600000 0.0106032 + 103.0200000 0.0109001 + 103.0800000 0.0111988 + 103.1400000 0.0114990 + 103.2000000 0.0118004 + 103.2600000 0.0121026 + 103.3200000 0.0124052 + 103.3800000 0.0127080 + 103.4400000 0.0130105 + 103.5000000 0.0133123 + 103.5600000 0.0136130 + 103.6200000 0.0139122 + 103.6800000 0.0142094 + 103.7400000 0.0145044 + 103.8000000 0.0147965 + 103.8600000 0.0150854 + 103.9200000 0.0153705 + 103.9800000 0.0156516 + 104.0400000 0.0159279 + 104.1000000 0.0161992 + 104.1600000 0.0164649 + 104.2200000 0.0167246 + 104.2800000 0.0169777 + 104.3400000 0.0172239 + 104.4000000 0.0174625 + 104.4600000 0.0176932 + 104.5200000 0.0179156 + 104.5800000 0.0181290 + 104.6400000 0.0183331 + 104.7000000 0.0185274 + 104.7600000 0.0187115 + 104.8200000 0.0188849 + 104.8800000 0.0190472 + 104.9400000 0.0191981 + 105.0000000 0.0193370 + 105.0600000 0.0194636 + 105.1200000 0.0195776 + 105.1800000 0.0196786 + 105.2400000 0.0197663 + 105.3000000 0.0198403 + 105.3600000 0.0199003 + 105.4200000 0.0199461 + 105.4800000 0.0199774 + 105.5400000 0.0199939 + 105.6000000 0.0199955 + 105.6600000 0.0199820 + 105.7200000 0.0199532 + 105.7800000 0.0199089 + 105.8400000 0.0198490 + 105.9000000 0.0197735 + 105.9600000 0.0196823 + 106.0200000 0.0195753 + 106.0800000 0.0194526 + 106.1400000 0.0193142 + 106.2000000 0.0191600 + 106.2600000 0.0189903 + 106.3200000 0.0188050 + 106.3800000 0.0186044 + 106.4400000 0.0183886 + 106.5000000 0.0181577 + 106.5600000 0.0179120 + 106.6200000 0.0176517 + 106.6800000 0.0173772 + 106.7400000 0.0170886 + 106.8000000 0.0167863 + 106.8600000 0.0164707 + 106.9200000 0.0161421 + 106.9800000 0.0158010 + 107.0400000 0.0154477 + 107.1000000 0.0150826 + 107.1600000 0.0147063 + 107.2200000 0.0143191 + 107.2800000 0.0139217 + 107.3400000 0.0135145 + 107.4000000 0.0130981 + 107.4600000 0.0126729 + 107.5200000 0.0122396 + 107.5800000 0.0117987 + 107.6400000 0.0113509 + 107.7000000 0.0108966 + 107.7600000 0.0104365 + 107.8200000 0.0099712 + 107.8800000 0.0095014 + 107.9400000 0.0090276 + 108.0000000 0.0085504 + 108.0600000 0.0080706 + 108.1200000 0.0075886 + 108.1800000 0.0071052 + 108.2400000 0.0066209 + 108.3000000 0.0061364 + 108.3600000 0.0056522 + 108.4200000 0.0051690 + 108.4800000 0.0046873 + 108.5400000 0.0042078 + 108.6000000 0.0037311 + 108.6600000 0.0032576 + 108.7200000 0.0027879 + 108.7800000 0.0023225 + 108.8400000 0.0018621 + 108.9000000 0.0014070 + 108.9600000 0.0009578 + 109.0200000 0.0005150 + 109.0800000 0.0000789 + 109.1400000 -0.0003499 + 109.2000000 -0.0007712 + 109.2600000 -0.0011844 + 109.3200000 -0.0015892 + 109.3800000 -0.0019852 + 109.4400000 -0.0023722 + 109.5000000 -0.0027498 + 109.5600000 -0.0031178 + 109.6200000 -0.0034759 + 109.6800000 -0.0038238 + 109.7400000 -0.0041613 + 109.8000000 -0.0044883 + 109.8600000 -0.0048046 + 109.9200000 -0.0051100 + 109.9800000 -0.0054044 + 110.0400000 -0.0056877 + 110.1000000 -0.0059599 + 110.1600000 -0.0062208 + 110.2200000 -0.0064704 + 110.2800000 -0.0067088 + 110.3400000 -0.0069359 + 110.4000000 -0.0071517 + 110.4600000 -0.0073563 + 110.5200000 -0.0075497 + 110.5800000 -0.0077321 + 110.6400000 -0.0079035 + 110.7000000 -0.0080640 + 110.7600000 -0.0082137 + 110.8200000 -0.0083529 + 110.8800000 -0.0084816 + 110.9400000 -0.0086000 + 111.0000000 -0.0087083 + 111.0600000 -0.0088067 + 111.1200000 -0.0088954 + 111.1800000 -0.0089747 + 111.2400000 -0.0090446 + 111.3000000 -0.0091056 + 111.3600000 -0.0091577 + 111.4200000 -0.0092013 + 111.4800000 -0.0092366 + 111.5400000 -0.0092638 + 111.6000000 -0.0092833 + 111.6600000 -0.0092952 + 111.7200000 -0.0092999 + 111.7800000 -0.0092977 + 111.8400000 -0.0092887 + 111.9000000 -0.0092733 + 111.9600000 -0.0092517 + 112.0200000 -0.0092243 + 112.0800000 -0.0091912 + 112.1400000 -0.0091528 + 112.2000000 -0.0091094 + 112.2600000 -0.0090611 + 112.3200000 -0.0090083 + 112.3800000 -0.0089512 + 112.4400000 -0.0088900 + 112.5000000 -0.0088251 + 112.5600000 -0.0087566 + 112.6200000 -0.0086849 + 112.6800000 -0.0086101 + 112.7400000 -0.0085325 + 112.8000000 -0.0084522 + 112.8600000 -0.0083696 + 112.9200000 -0.0082848 + 112.9800000 -0.0081981 + 113.0400000 -0.0081096 + 113.1000000 -0.0080195 + 113.1600000 -0.0079280 + 113.2200000 -0.0078354 + 113.2800000 -0.0077417 + 113.3400000 -0.0076471 + 113.4000000 -0.0075518 + 113.4600000 -0.0074560 + 113.5200000 -0.0073598 + 113.5800000 -0.0072632 + 113.6400000 -0.0071666 + 113.7000000 -0.0070699 + 113.7600000 -0.0069733 + 113.8200000 -0.0068769 + 113.8800000 -0.0067809 + 113.9400000 -0.0066852 + 114.0000000 -0.0065901 + 114.0600000 -0.0064955 + 114.1200000 -0.0064016 + 114.1800000 -0.0063085 + 114.2400000 -0.0062162 + 114.3000000 -0.0061248 + 114.3600000 -0.0060343 + 114.4200000 -0.0059448 + 114.4800000 -0.0058563 + 114.5400000 -0.0057689 + 114.6000000 -0.0056827 + 114.6600000 -0.0055976 + 114.7200000 -0.0055137 + 114.7800000 -0.0054311 + 114.8400000 -0.0053497 + 114.9000000 -0.0052695 + 114.9600000 -0.0051906 + 115.0200000 -0.0051131 + 115.0800000 -0.0050368 + 115.1400000 -0.0049618 + 115.2000000 -0.0048882 + 115.2600000 -0.0048159 + 115.3200000 -0.0047449 + 115.3800000 -0.0046752 + 115.4400000 -0.0046068 + 115.5000000 -0.0045398 + 115.5600000 -0.0044740 + 115.6200000 -0.0044096 + 115.6800000 -0.0043464 + 115.7400000 -0.0042844 + 115.8000000 -0.0042238 + 115.8600000 -0.0041643 + 115.9200000 -0.0041061 + 115.9800000 -0.0040491 + 116.0400000 -0.0039933 + 116.1000000 -0.0039386 + 116.1600000 -0.0038851 + 116.2200000 -0.0038328 + 116.2800000 -0.0037815 + 116.3400000 -0.0037313 + 116.4000000 -0.0036822 + 116.4600000 -0.0036342 + 116.5200000 -0.0035871 + 116.5800000 -0.0035411 + 116.6400000 -0.0034960 + 116.7000000 -0.0034520 + 116.7600000 -0.0034088 + 116.8200000 -0.0033666 + 116.8800000 -0.0033253 + 116.9400000 -0.0032848 + 117.0000000 -0.0032452 + 117.0600000 -0.0032065 + 117.1200000 -0.0031685 + 117.1800000 -0.0031314 + 117.2400000 -0.0030950 + 117.3000000 -0.0030594 + 117.3600000 -0.0030246 + 117.4200000 -0.0029904 + 117.4800000 -0.0029569 + 117.5400000 -0.0029242 + 117.6000000 -0.0028920 + 117.6600000 -0.0028606 + 117.7200000 -0.0028297 + 117.7800000 -0.0027995 + 117.8400000 -0.0027699 + 117.9000000 -0.0027409 + 117.9600000 -0.0027124 + 118.0200000 -0.0026844 + 118.0800000 -0.0026571 + 118.1400000 -0.0026302 + 118.2000000 -0.0026038 + 118.2600000 -0.0025780 + 118.3200000 -0.0025526 + 118.3800000 -0.0025277 + 118.4400000 -0.0025032 + 118.5000000 -0.0024792 + 118.5600000 -0.0024556 + 118.6200000 -0.0024324 + 118.6800000 -0.0024097 + 118.7400000 -0.0023873 + 118.8000000 -0.0023654 + 118.8600000 -0.0023438 + 118.9200000 -0.0023225 + 118.9800000 -0.0023017 + 119.0400000 -0.0022812 + 119.1000000 -0.0022610 + 119.1600000 -0.0022411 + 119.2200000 -0.0022216 + 119.2800000 -0.0022024 + 119.3400000 -0.0021835 + 119.4000000 -0.0021649 + 119.4600000 -0.0021466 + 119.5200000 -0.0021286 + 119.5800000 -0.0021109 + 119.6400000 -0.0020934 + 119.7000000 -0.0020762 + 119.7600000 -0.0020593 + 119.8200000 -0.0020426 + 119.8800000 -0.0020262 + 119.9400000 -0.0020100 + 120.0000000 -0.0019940 + 120.0600000 -0.0019783 + 120.1200000 -0.0019628 + 120.1800000 -0.0019475 + 120.2400000 -0.0019325 + 120.3000000 -0.0019176 + 120.3600000 -0.0019030 + 120.4200000 -0.0018886 + 120.4800000 -0.0018743 + 120.5400000 -0.0018603 + 120.6000000 -0.0018464 + 120.6600000 -0.0018328 + 120.7200000 -0.0018193 + 120.7800000 -0.0018060 + 120.8400000 -0.0017929 + 120.9000000 -0.0017799 + 120.9600000 -0.0017671 + 121.0200000 -0.0017545 + 121.0800000 -0.0017421 + 121.1400000 -0.0017298 + 121.2000000 -0.0017176 + 121.2600000 -0.0017057 + 121.3200000 -0.0016938 + 121.3800000 -0.0016822 + 121.4400000 -0.0016706 + 121.5000000 -0.0016592 + 121.5600000 -0.0016480 + 121.6200000 -0.0016369 + 121.6800000 -0.0016259 + 121.7400000 -0.0016150 + 121.8000000 -0.0016043 + 121.8600000 -0.0015937 + 121.9200000 -0.0015833 + 121.9800000 -0.0015729 + 122.0400000 -0.0015627 + 122.1000000 -0.0015526 + 122.1600000 -0.0015426 + 122.2200000 -0.0015327 + 122.2800000 -0.0015229 + 122.3400000 -0.0015133 + 122.4000000 -0.0015037 + 122.4600000 -0.0014943 + 122.5200000 -0.0014849 + 122.5800000 -0.0014757 + 122.6400000 -0.0014666 + 122.7000000 -0.0014575 + 122.7600000 -0.0014486 + 122.8200000 -0.0014397 + 122.8800000 -0.0014310 + 122.9400000 -0.0014223 + 123.0000000 -0.0014137 + 123.0600000 -0.0014052 + 123.1200000 -0.0013968 + 123.1800000 -0.0013885 + 123.2400000 -0.0013803 + 123.3000000 -0.0013721 + 123.3600000 -0.0013641 + 123.4200000 -0.0013561 + 123.4800000 -0.0013482 + 123.5400000 -0.0013403 + 123.6000000 -0.0013326 + 123.6600000 -0.0013249 + 123.7200000 -0.0013173 + 123.7800000 -0.0013098 + 123.8400000 -0.0013023 + 123.9000000 -0.0012949 + 123.9600000 -0.0012876 + 124.0200000 -0.0012804 + 124.0800000 -0.0012732 + 124.1400000 -0.0012661 + 124.2000000 -0.0012591 + 124.2600000 -0.0012522 + 124.3200000 -0.0012453 + 124.3800000 -0.0012385 + 124.4400000 -0.0012317 + 124.5000000 -0.0012250 + 124.5600000 -0.0012184 + 124.6200000 -0.0012118 + 124.6800000 -0.0012053 + 124.7400000 -0.0011989 + 124.8000000 -0.0011925 + 124.8600000 -0.0011862 + 124.9200000 -0.0011799 + 124.9800000 -0.0011737 + 125.0400000 -0.0011676 + 125.1000000 -0.0011615 + 125.1600000 -0.0011555 + 125.2200000 -0.0011495 + 125.2800000 -0.0011436 + 125.3400000 -0.0011378 + 125.4000000 -0.0011320 + 125.4600000 -0.0011262 + 125.5200000 -0.0011205 + 125.5800000 -0.0011149 + 125.6400000 -0.0011093 + 125.7000000 -0.0011038 + 125.7600000 -0.0010983 + 125.8200000 -0.0010928 + 125.8800000 -0.0010874 + 125.9400000 -0.0010821 + 126.0000000 -0.0010768 + 126.0600000 -0.0010715 + 126.1200000 -0.0010663 + 126.1800000 -0.0010612 + 126.2400000 -0.0010560 + 126.3000000 -0.0010509 + 126.3600000 -0.0010459 + 126.4200000 -0.0010409 + 126.4800000 -0.0010359 + 126.5400000 -0.0010310 + 126.6000000 -0.0010261 + 126.6600000 -0.0010213 + 126.7200000 -0.0010165 + 126.7800000 -0.0010117 + 126.8400000 -0.0010070 + 126.9000000 -0.0010023 + 126.9600000 -0.0009976 + 127.0200000 -0.0009930 + 127.0800000 -0.0009884 + 127.1400000 -0.0009839 + 127.2000000 -0.0009794 + 127.2600000 -0.0009749 + 127.3200000 -0.0009705 + 127.3800000 -0.0009661 + 127.4400000 -0.0009617 + 127.5000000 -0.0009574 + 127.5600000 -0.0009530 + 127.6200000 -0.0009488 + 127.6800000 -0.0009445 + 127.7400000 -0.0009403 + 127.8000000 -0.0009362 + 127.8600000 -0.0009320 + 127.9200000 -0.0009279 + 127.9800000 -0.0009239 + 128.0400000 -0.0009198 + 128.1000000 -0.0009158 + 128.1600000 -0.0009119 + 128.2200000 -0.0009079 + 128.2800000 -0.0009041 + 128.3400000 -0.0009002 + 128.4000000 -0.0008964 + 128.4600000 -0.0008926 + 128.5200000 -0.0008889 + 128.5800000 -0.0008851 + 128.6400000 -0.0008815 + 128.7000000 -0.0008778 + 128.7600000 -0.0008742 + 128.8200000 -0.0008707 + 128.8800000 -0.0008672 + 128.9400000 -0.0008637 + 129.0000000 -0.0008602 + 129.0600000 -0.0008568 + 129.1200000 -0.0008535 + 129.1800000 -0.0008501 + 129.2400000 -0.0008469 + 129.3000000 -0.0008436 + 129.3600000 -0.0008404 + 129.4200000 -0.0008373 + 129.4800000 -0.0008342 + 129.5400000 -0.0008311 + 129.6000000 -0.0008281 + 129.6600000 -0.0008252 + 129.7200000 -0.0008223 + 129.7800000 -0.0008194 + 129.8400000 -0.0008166 + 129.9000000 -0.0008139 + 129.9600000 -0.0008112 + 130.0200000 -0.0008085 + 130.0800000 -0.0008060 + 130.1400000 -0.0008035 + 130.2000000 -0.0008010 + 130.2600000 -0.0007986 + 130.3200000 -0.0007963 + 130.3800000 -0.0007940 + 130.4400000 -0.0007918 + 130.5000000 -0.0007897 + 130.5600000 -0.0007876 + 130.6200000 -0.0007857 + 130.6800000 -0.0007838 + 130.7400000 -0.0007819 + 130.8000000 -0.0007802 + 130.8600000 -0.0007785 + 130.9200000 -0.0007770 + 130.9800000 -0.0007755 + 131.0400000 -0.0007741 + 131.1000000 -0.0007728 + 131.1600000 -0.0007716 + 131.2200000 -0.0007705 + 131.2800000 -0.0007695 + 131.3400000 -0.0007686 + 131.4000000 -0.0007678 + 131.4600000 -0.0007671 + 131.5200000 -0.0007665 + 131.5800000 -0.0007661 + 131.6400000 -0.0007657 + 131.7000000 -0.0007655 + 131.7600000 -0.0007654 + 131.8200000 -0.0007654 + 131.8800000 -0.0007656 + 131.9400000 -0.0007659 + 132.0000000 -0.0007663 + 132.0600000 -0.0007669 + 132.1200000 -0.0007676 + 132.1800000 -0.0007685 + 132.2400000 -0.0007695 + 132.3000000 -0.0007706 + 132.3600000 -0.0007719 + 132.4200000 -0.0007733 + 132.4800000 -0.0007750 + 132.5400000 -0.0007767 + 132.6000000 -0.0007786 + 132.6600000 -0.0007807 + 132.7200000 -0.0007830 + 132.7800000 -0.0007854 + 132.8400000 -0.0007880 + 132.9000000 -0.0007907 + 132.9600000 -0.0007936 + 133.0200000 -0.0007967 + 133.0800000 -0.0008000 + 133.1400000 -0.0008034 + 133.2000000 -0.0008070 + 133.2600000 -0.0008108 + 133.3200000 -0.0008147 + 133.3800000 -0.0008188 + 133.4400000 -0.0008231 + 133.5000000 -0.0008275 + 133.5600000 -0.0008321 + 133.6200000 -0.0008369 + 133.6800000 -0.0008418 + 133.7400000 -0.0008469 + 133.8000000 -0.0008521 + 133.8600000 -0.0008574 + 133.9200000 -0.0008630 + 133.9800000 -0.0008686 + 134.0400000 -0.0008744 + 134.1000000 -0.0008803 + 134.1600000 -0.0008864 + 134.2200000 -0.0008925 + 134.2800000 -0.0008988 + 134.3400000 -0.0009051 + 134.4000000 -0.0009116 + 134.4600000 -0.0009181 + 134.5200000 -0.0009247 + 134.5800000 -0.0009314 + 134.6400000 -0.0009381 + 134.7000000 -0.0009449 + 134.7600000 -0.0009517 + 134.8200000 -0.0009586 + 134.8800000 -0.0009654 + 134.9400000 -0.0009722 + 135.0000000 -0.0009791 + 135.0600000 -0.0009859 + 135.1200000 -0.0009926 + 135.1800000 -0.0009994 + 135.2400000 -0.0010060 + 135.3000000 -0.0010126 + 135.3600000 -0.0010190 + 135.4200000 -0.0010254 + 135.4800000 -0.0010316 + 135.5400000 -0.0010377 + 135.6000000 -0.0010436 + 135.6600000 -0.0010494 + 135.7200000 -0.0010549 + 135.7800000 -0.0010603 + 135.8400000 -0.0010654 + 135.9000000 -0.0010703 + 135.9600000 -0.0010750 + 136.0200000 -0.0010794 + 136.0800000 -0.0010835 + 136.1400000 -0.0010873 + 136.2000000 -0.0010908 + 136.2600000 -0.0010940 + 136.3200000 -0.0010968 + 136.3800000 -0.0010993 + 136.4400000 -0.0011014 + 136.5000000 -0.0011032 + 136.5600000 -0.0011045 + 136.6200000 -0.0011054 + 136.6800000 -0.0011059 + 136.7400000 -0.0011060 + 136.8000000 -0.0011057 + 136.8600000 -0.0011048 + 136.9200000 -0.0011036 + 136.9800000 -0.0011018 + 137.0400000 -0.0010996 + 137.1000000 -0.0010969 + 137.1600000 -0.0010937 + 137.2200000 -0.0010900 + 137.2800000 -0.0010858 + 137.3400000 -0.0010811 + 137.4000000 -0.0010759 + 137.4600000 -0.0010702 + 137.5200000 -0.0010640 + 137.5800000 -0.0010573 + 137.6400000 -0.0010500 + 137.7000000 -0.0010423 + 137.7600000 -0.0010340 + 137.8200000 -0.0010252 + 137.8800000 -0.0010160 + 137.9400000 -0.0010062 + 138.0000000 -0.0009960 + 138.0600000 -0.0009853 + 138.1200000 -0.0009741 + 138.1800000 -0.0009625 + 138.2400000 -0.0009504 + 138.3000000 -0.0009378 + 138.3600000 -0.0009249 + 138.4200000 -0.0009115 + 138.4800000 -0.0008977 + 138.5400000 -0.0008835 + 138.6000000 -0.0008690 + 138.6600000 -0.0008541 + 138.7200000 -0.0008389 + 138.7800000 -0.0008233 + 138.8400000 -0.0008074 + 138.9000000 -0.0007913 + 138.9600000 -0.0007748 + 139.0200000 -0.0007582 + 139.0800000 -0.0007413 + 139.1400000 -0.0007242 + 139.2000000 -0.0007069 + 139.2600000 -0.0006894 + 139.3200000 -0.0006718 + 139.3800000 -0.0006540 + 139.4400000 -0.0006362 + 139.5000000 -0.0006182 + 139.5600000 -0.0006002 + 139.6200000 -0.0005822 + 139.6800000 -0.0005641 + 139.7400000 -0.0005461 + 139.8000000 -0.0005280 + 139.8600000 -0.0005100 + 139.9200000 -0.0004921 + 139.9800000 -0.0004742 + 140.0400000 -0.0004565 + 140.1000000 -0.0004389 + 140.1600000 -0.0004214 + 140.2200000 -0.0004041 + 140.2800000 -0.0003869 + 140.3400000 -0.0003700 + 140.4000000 -0.0003533 + 140.4600000 -0.0003368 + 140.5200000 -0.0003205 + 140.5800000 -0.0003046 + 140.6400000 -0.0002889 + 140.7000000 -0.0002735 + 140.7600000 -0.0002584 + 140.8200000 -0.0002436 + 140.8800000 -0.0002292 + 140.9400000 -0.0002151 + 141.0000000 -0.0002014 + 141.0600000 -0.0001880 + 141.1200000 -0.0001750 + 141.1800000 -0.0001624 + 141.2400000 -0.0001502 + 141.3000000 -0.0001384 + 141.3600000 -0.0001269 + 141.4200000 -0.0001159 + 141.4800000 -0.0001053 + 141.5400000 -0.0000951 + 141.6000000 -0.0000854 + 141.6600000 -0.0000761 + 141.7200000 -0.0000671 + 141.7800000 -0.0000587 + 141.8400000 -0.0000506 + 141.9000000 -0.0000430 + 141.9600000 -0.0000358 + 142.0200000 -0.0000291 + 142.0800000 -0.0000228 + 142.1400000 -0.0000169 + 142.2000000 -0.0000114 + 142.2600000 -0.0000064 + 142.3200000 -0.0000018 + 142.3800000 0.0000024 + 142.4400000 0.0000062 + 142.5000000 0.0000096 + 142.5600000 0.0000125 + 142.6200000 0.0000150 + 142.6800000 0.0000172 + 142.7400000 0.0000189 + 142.8000000 0.0000203 + 142.8600000 0.0000212 + 142.9200000 0.0000218 + 142.9800000 0.0000219 + 143.0400000 0.0000217 + 143.1000000 0.0000211 + 143.1600000 0.0000202 + 143.2200000 0.0000188 + 143.2800000 0.0000171 + 143.3400000 0.0000150 + 143.4000000 0.0000126 + 143.4600000 0.0000097 + 143.5200000 0.0000066 + 143.5800000 0.0000030 + 143.6400000 -0.0000009 + 143.7000000 -0.0000052 + 143.7600000 -0.0000098 + 143.8200000 -0.0000148 + 143.8800000 -0.0000201 + 143.9400000 -0.0000258 + 144.0000000 -0.0000319 + 144.0600000 -0.0000383 + 144.1200000 -0.0000451 + 144.1800000 -0.0000522 + 144.2400000 -0.0000598 + 144.3000000 -0.0000677 + 144.3600000 -0.0000759 + 144.4200000 -0.0000846 + 144.4800000 -0.0000936 + 144.5400000 -0.0001030 + 144.6000000 -0.0001128 + 144.6600000 -0.0001230 + 144.7200000 -0.0001336 + 144.7800000 -0.0001446 + 144.8400000 -0.0001560 + 144.9000000 -0.0001678 + 144.9600000 -0.0001800 + 145.0200000 -0.0001927 + 145.0800000 -0.0002058 + 145.1400000 -0.0002194 + 145.2000000 -0.0002333 + 145.2600000 -0.0002478 + 145.3200000 -0.0002627 + 145.3800000 -0.0002780 + 145.4400000 -0.0002938 + 145.5000000 -0.0003101 + 145.5600000 -0.0003269 + 145.6200000 -0.0003442 + 145.6800000 -0.0003619 + 145.7400000 -0.0003801 + 145.8000000 -0.0003988 + 145.8600000 -0.0004181 + 145.9200000 -0.0004378 + 145.9800000 -0.0004580 + 146.0400000 -0.0004787 + 146.1000000 -0.0005000 + 146.1600000 -0.0005217 + 146.2200000 -0.0005440 + 146.2800000 -0.0005667 + 146.3400000 -0.0005900 + 146.4000000 -0.0006138 + 146.4600000 -0.0006381 + 146.5200000 -0.0006628 + 146.5800000 -0.0006881 + 146.6400000 -0.0007139 + 146.7000000 -0.0007401 + 146.7600000 -0.0007668 + 146.8200000 -0.0007939 + 146.8800000 -0.0008215 + 146.9400000 -0.0008496 + 147.0000000 -0.0008781 + 147.0600000 -0.0009069 + 147.1200000 -0.0009362 + 147.1800000 -0.0009659 + 147.2400000 -0.0009959 + 147.3000000 -0.0010262 + 147.3600000 -0.0010569 + 147.4200000 -0.0010879 + 147.4800000 -0.0011191 + 147.5400000 -0.0011506 + 147.6000000 -0.0011823 + 147.6600000 -0.0012143 + 147.7200000 -0.0012463 + 147.7800000 -0.0012786 + 147.8400000 -0.0013109 + 147.9000000 -0.0013433 + 147.9600000 -0.0013758 + 148.0200000 -0.0014083 + 148.0800000 -0.0014407 + 148.1400000 -0.0014731 + 148.2000000 -0.0015054 + 148.2600000 -0.0015375 + 148.3200000 -0.0015694 + 148.3800000 -0.0016012 + 148.4400000 -0.0016326 + 148.5000000 -0.0016638 + 148.5600000 -0.0016946 + 148.6200000 -0.0017250 + 148.6800000 -0.0017550 + 148.7400000 -0.0017845 + 148.8000000 -0.0018135 + 148.8600000 -0.0018419 + 148.9200000 -0.0018696 + 148.9800000 -0.0018967 + 149.0400000 -0.0019232 + 149.1000000 -0.0019488 + 149.1600000 -0.0019737 + 149.2200000 -0.0019977 + 149.2800000 -0.0020208 + 149.3400000 -0.0020430 + 149.4000000 -0.0020643 + 149.4600000 -0.0020845 + 149.5200000 -0.0021036 + 149.5800000 -0.0021217 + 149.6400000 -0.0021386 + 149.7000000 -0.0021544 + 149.7600000 -0.0021689 + 149.8200000 -0.0021822 + 149.8800000 -0.0021942 + 149.9400000 -0.0022050 + 150.0000000 -0.0022143 + 150.0600000 -0.0022223 + 150.1200000 -0.0022289 + 150.1800000 -0.0022341 + 150.2400000 -0.0022379 + 150.3000000 -0.0022401 + 150.3600000 -0.0022409 + 150.4200000 -0.0022402 + 150.4800000 -0.0022380 + 150.5400000 -0.0022342 + 150.6000000 -0.0022289 + 150.6600000 -0.0022221 + 150.7200000 -0.0022137 + 150.7800000 -0.0022038 + 150.8400000 -0.0021923 + 150.9000000 -0.0021793 + 150.9600000 -0.0021647 + 151.0200000 -0.0021486 + 151.0800000 -0.0021309 + 151.1400000 -0.0021118 + 151.2000000 -0.0020911 + 151.2600000 -0.0020690 + 151.3200000 -0.0020454 + 151.3800000 -0.0020204 + 151.4400000 -0.0019939 + 151.5000000 -0.0019661 + 151.5600000 -0.0019369 + 151.6200000 -0.0019064 + 151.6800000 -0.0018746 + 151.7400000 -0.0018415 + 151.8000000 -0.0018072 + 151.8600000 -0.0017717 + 151.9200000 -0.0017351 + 151.9800000 -0.0016973 + 152.0400000 -0.0016585 + 152.1000000 -0.0016187 + 152.1600000 -0.0015779 + 152.2200000 -0.0015362 + 152.2800000 -0.0014936 + 152.3400000 -0.0014502 + 152.4000000 -0.0014060 + 152.4600000 -0.0013611 + 152.5200000 -0.0013156 + 152.5800000 -0.0012694 + 152.6400000 -0.0012226 + 152.7000000 -0.0011753 + 152.7600000 -0.0011276 + 152.8200000 -0.0010795 + 152.8800000 -0.0010310 + 152.9400000 -0.0009822 + 153.0000000 -0.0009332 + 153.0600000 -0.0008840 + 153.1200000 -0.0008346 + 153.1800000 -0.0007852 + 153.2400000 -0.0007357 + 153.3000000 -0.0006863 + 153.3600000 -0.0006369 + 153.4200000 -0.0005876 + 153.4800000 -0.0005385 + 153.5400000 -0.0004897 + 153.6000000 -0.0004410 + 153.6600000 -0.0003927 + 153.7200000 -0.0003448 + 153.7800000 -0.0002972 + 153.8400000 -0.0002501 + 153.9000000 -0.0002034 + 153.9600000 -0.0001573 + 154.0200000 -0.0001117 + 154.0800000 -0.0000667 + 154.1400000 -0.0000223 + 154.2000000 0.0000214 + 154.2600000 0.0000645 + 154.3200000 0.0001068 + 154.3800000 0.0001483 + 154.4400000 0.0001891 + 154.5000000 0.0002291 + 154.5600000 0.0002683 + 154.6200000 0.0003067 + 154.6800000 0.0003441 + 154.7400000 0.0003807 + 154.8000000 0.0004164 + 154.8600000 0.0004512 + 154.9200000 0.0004851 + 154.9800000 0.0005180 + 155.0400000 0.0005500 + 155.1000000 0.0005810 + 155.1600000 0.0006111 + 155.2200000 0.0006402 + 155.2800000 0.0006683 + 155.3400000 0.0006955 + 155.4000000 0.0007217 + 155.4600000 0.0007468 + 155.5200000 0.0007711 + 155.5800000 0.0007943 + 155.6400000 0.0008166 + 155.7000000 0.0008379 + 155.7600000 0.0008582 + 155.8200000 0.0008776 + 155.8800000 0.0008960 + 155.9400000 0.0009135 + 156.0000000 0.0009301 + 156.0600000 0.0009457 + 156.1200000 0.0009605 + 156.1800000 0.0009743 + 156.2400000 0.0009872 + 156.3000000 0.0009993 + 156.3600000 0.0010105 + 156.4200000 0.0010209 + 156.4800000 0.0010305 + 156.5400000 0.0010392 + 156.6000000 0.0010472 + 156.6600000 0.0010543 + 156.7200000 0.0010607 + 156.7800000 0.0010664 + 156.8400000 0.0010713 + 156.9000000 0.0010755 + 156.9600000 0.0010791 + 157.0200000 0.0010819 + 157.0800000 0.0010841 + 157.1400000 0.0010857 + 157.2000000 0.0010867 + 157.2600000 0.0010870 + 157.3200000 0.0010868 + 157.3800000 0.0010860 + 157.4400000 0.0010847 + 157.5000000 0.0010828 + 157.5600000 0.0010805 + 157.6200000 0.0010776 + 157.6800000 0.0010743 + 157.7400000 0.0010706 + 157.8000000 0.0010664 + 157.8600000 0.0010618 + 157.9200000 0.0010569 + 157.9800000 0.0010515 + 158.0400000 0.0010458 + 158.1000000 0.0010397 + 158.1600000 0.0010334 + 158.2200000 0.0010267 + 158.2800000 0.0010197 + 158.3400000 0.0010125 + 158.4000000 0.0010050 + 158.4600000 0.0009973 + 158.5200000 0.0009893 + 158.5800000 0.0009812 + 158.6400000 0.0009728 + 158.7000000 0.0009643 + 158.7600000 0.0009556 + 158.8200000 0.0009467 + 158.8800000 0.0009377 + 158.9400000 0.0009286 + 159.0000000 0.0009193 + 159.0600000 0.0009100 + 159.1200000 0.0009006 + 159.1800000 0.0008911 + 159.2400000 0.0008815 + 159.3000000 0.0008719 + 159.3600000 0.0008622 + 159.4200000 0.0008525 + 159.4800000 0.0008427 + 159.5400000 0.0008330 + 159.6000000 0.0008232 + 159.6600000 0.0008134 + 159.7200000 0.0008037 + 159.7800000 0.0007939 + 159.8400000 0.0007842 + 159.9000000 0.0007745 + 159.9600000 0.0007648 + 160.0200000 0.0007552 + 160.0800000 0.0007456 + 160.1400000 0.0007361 + 160.2000000 0.0007266 + 160.2600000 0.0007172 + 160.3200000 0.0007079 + 160.3800000 0.0006986 + 160.4400000 0.0006894 + 160.5000000 0.0006803 + 160.5600000 0.0006713 + 160.6200000 0.0006624 + 160.6800000 0.0006535 + 160.7400000 0.0006447 + 160.8000000 0.0006361 + 160.8600000 0.0006275 + 160.9200000 0.0006190 + 160.9800000 0.0006106 + 161.0400000 0.0006023 + 161.1000000 0.0005942 + 161.1600000 0.0005861 + 161.2200000 0.0005781 + 161.2800000 0.0005702 + 161.3400000 0.0005625 + 161.4000000 0.0005548 + 161.4600000 0.0005473 + 161.5200000 0.0005398 + 161.5800000 0.0005325 + 161.6400000 0.0005253 + 161.7000000 0.0005181 + 161.7600000 0.0005111 + 161.8200000 0.0005042 + 161.8800000 0.0004974 + 161.9400000 0.0004907 + 162.0000000 0.0004841 + 162.0600000 0.0004776 + 162.1200000 0.0004712 + 162.1800000 0.0004649 + 162.2400000 0.0004587 + 162.3000000 0.0004526 + 162.3600000 0.0004466 + 162.4200000 0.0004408 + 162.4800000 0.0004350 + 162.5400000 0.0004293 + 162.6000000 0.0004237 + 162.6600000 0.0004182 + 162.7200000 0.0004128 + 162.7800000 0.0004075 + 162.8400000 0.0004022 + 162.9000000 0.0003971 + 162.9600000 0.0003921 + 163.0200000 0.0003871 + 163.0800000 0.0003823 + 163.1400000 0.0003775 + 163.2000000 0.0003728 + 163.2600000 0.0003682 + 163.3200000 0.0003637 + 163.3800000 0.0003593 + 163.4400000 0.0003549 + 163.5000000 0.0003506 + 163.5600000 0.0003465 + 163.6200000 0.0003423 + 163.6800000 0.0003383 + 163.7400000 0.0003343 + 163.8000000 0.0003304 + 163.8600000 0.0003266 + 163.9200000 0.0003229 + 163.9800000 0.0003192 + 164.0400000 0.0003156 + 164.1000000 0.0003121 + 164.1600000 0.0003086 + 164.2200000 0.0003052 + 164.2800000 0.0003018 + 164.3400000 0.0002985 + 164.4000000 0.0002953 + 164.4600000 0.0002921 + 164.5200000 0.0002890 + 164.5800000 0.0002860 + 164.6400000 0.0002830 + 164.7000000 0.0002801 + 164.7600000 0.0002772 + 164.8200000 0.0002743 + 164.8800000 0.0002716 + 164.9400000 0.0002689 + 165.0000000 0.0002662 + 165.0600000 0.0002636 + 165.1200000 0.0002610 + 165.1800000 0.0002584 + 165.2400000 0.0002560 + 165.3000000 0.0002535 + 165.3600000 0.0002511 + 165.4200000 0.0002488 + 165.4800000 0.0002465 + 165.5400000 0.0002442 + 165.6000000 0.0002420 + 165.6600000 0.0002398 + 165.7200000 0.0002377 + 165.7800000 0.0002356 + 165.8400000 0.0002336 + 165.9000000 0.0002316 + 165.9600000 0.0002296 + 166.0200000 0.0002277 + 166.0800000 0.0002258 + 166.1400000 0.0002240 + 166.2000000 0.0002222 + 166.2600000 0.0002204 + 166.3200000 0.0002187 + 166.3800000 0.0002170 + 166.4400000 0.0002154 + 166.5000000 0.0002138 + 166.5600000 0.0002123 + 166.6200000 0.0002108 + 166.6800000 0.0002093 + 166.7400000 0.0002079 + 166.8000000 0.0002065 + 166.8600000 0.0002052 + 166.9200000 0.0002040 + 166.9800000 0.0002027 + 167.0400000 0.0002016 + 167.1000000 0.0002004 + 167.1600000 0.0001994 + 167.2200000 0.0001984 + 167.2800000 0.0001974 + 167.3400000 0.0001965 + 167.4000000 0.0001956 + 167.4600000 0.0001948 + 167.5200000 0.0001941 + 167.5800000 0.0001934 + 167.6400000 0.0001928 + 167.7000000 0.0001923 + 167.7600000 0.0001918 + 167.8200000 0.0001914 + 167.8800000 0.0001910 + 167.9400000 0.0001908 + 168.0000000 0.0001906 + 168.0600000 0.0001905 + 168.1200000 0.0001904 + 168.1800000 0.0001905 + 168.2400000 0.0001906 + 168.3000000 0.0001908 + 168.3600000 0.0001911 + 168.4200000 0.0001915 + 168.4800000 0.0001920 + 168.5400000 0.0001926 + 168.6000000 0.0001933 + 168.6600000 0.0001940 + 168.7200000 0.0001949 + 168.7800000 0.0001959 + 168.8400000 0.0001970 + 168.9000000 0.0001982 + 168.9600000 0.0001996 + 169.0200000 0.0002010 + 169.0800000 0.0002026 + 169.1400000 0.0002043 + 169.2000000 0.0002061 + 169.2600000 0.0002080 + 169.3200000 0.0002101 + 169.3800000 0.0002123 + 169.4400000 0.0002146 + 169.5000000 0.0002170 + 169.5600000 0.0002196 + 169.6200000 0.0002224 + 169.6800000 0.0002252 + 169.7400000 0.0002282 + 169.8000000 0.0002314 + 169.8600000 0.0002347 + 169.9200000 0.0002381 + 169.9800000 0.0002417 + 170.0400000 0.0002454 + 170.1000000 0.0002492 + 170.1600000 0.0002532 + 170.2200000 0.0002574 + 170.2800000 0.0002616 + 170.3400000 0.0002660 + 170.4000000 0.0002706 + 170.4600000 0.0002753 + 170.5200000 0.0002801 + 170.5800000 0.0002850 + 170.6400000 0.0002900 + 170.7000000 0.0002952 + 170.7600000 0.0003005 + 170.8200000 0.0003059 + 170.8800000 0.0003114 + 170.9400000 0.0003170 + 171.0000000 0.0003226 + 171.0600000 0.0003284 + 171.1200000 0.0003343 + 171.1800000 0.0003402 + 171.2400000 0.0003462 + 171.3000000 0.0003523 + 171.3600000 0.0003584 + 171.4200000 0.0003646 + 171.4800000 0.0003707 + 171.5400000 0.0003770 + 171.6000000 0.0003832 + 171.6600000 0.0003894 + 171.7200000 0.0003956 + 171.7800000 0.0004018 + 171.8400000 0.0004080 + 171.9000000 0.0004141 + 171.9600000 0.0004202 + 172.0200000 0.0004262 + 172.0800000 0.0004322 + 172.1400000 0.0004380 + 172.2000000 0.0004437 + 172.2600000 0.0004493 + 172.3200000 0.0004548 + 172.3800000 0.0004601 + 172.4400000 0.0004653 + 172.5000000 0.0004703 + 172.5600000 0.0004751 + 172.6200000 0.0004796 + 172.6800000 0.0004840 + 172.7400000 0.0004881 + 172.8000000 0.0004920 + 172.8600000 0.0004956 + 172.9200000 0.0004989 + 172.9800000 0.0005019 + 173.0400000 0.0005046 + 173.1000000 0.0005069 + 173.1600000 0.0005089 + 173.2200000 0.0005106 + 173.2800000 0.0005118 + 173.3400000 0.0005127 + 173.4000000 0.0005132 + 173.4600000 0.0005132 + 173.5200000 0.0005128 + 173.5800000 0.0005119 + 173.6400000 0.0005106 + 173.7000000 0.0005088 + 173.7600000 0.0005064 + 173.8200000 0.0005036 + 173.8800000 0.0005003 + 173.9400000 0.0004964 + 174.0000000 0.0004920 + 174.0600000 0.0004870 + 174.1200000 0.0004814 + 174.1800000 0.0004753 + 174.2400000 0.0004686 + 174.3000000 0.0004613 + 174.3600000 0.0004534 + 174.4200000 0.0004449 + 174.4800000 0.0004357 + 174.5400000 0.0004260 + 174.6000000 0.0004156 + 174.6600000 0.0004046 + 174.7200000 0.0003929 + 174.7800000 0.0003807 + 174.8400000 0.0003677 + 174.9000000 0.0003542 + 174.9600000 0.0003400 + 175.0200000 0.0003251 + 175.0800000 0.0003096 + 175.1400000 0.0002935 + 175.2000000 0.0002768 + 175.2600000 0.0002594 + 175.3200000 0.0002414 + 175.3800000 0.0002228 + 175.4400000 0.0002036 + 175.5000000 0.0001838 + 175.5600000 0.0001634 + 175.6200000 0.0001425 + 175.6800000 0.0001210 + 175.7400000 0.0000989 + 175.8000000 0.0000763 + 175.8600000 0.0000532 + 175.9200000 0.0000296 + 175.9800000 0.0000055 + 176.0400000 -0.0000190 + 176.1000000 -0.0000440 + 176.1600000 -0.0000694 + 176.2200000 -0.0000952 + 176.2800000 -0.0001214 + 176.3400000 -0.0001480 + 176.4000000 -0.0001749 + 176.4600000 -0.0002020 + 176.5200000 -0.0002295 + 176.5800000 -0.0002572 + 176.6400000 -0.0002852 + 176.7000000 -0.0003133 + 176.7600000 -0.0003416 + 176.8200000 -0.0003700 + 176.8800000 -0.0003986 + 176.9400000 -0.0004272 + 177.0000000 -0.0004558 + 177.0600000 -0.0004845 + 177.1200000 -0.0005131 + 177.1800000 -0.0005417 + 177.2400000 -0.0005702 + 177.3000000 -0.0005985 + 177.3600000 -0.0006267 + 177.4200000 -0.0006547 + 177.4800000 -0.0006825 + 177.5400000 -0.0007100 + 177.6000000 -0.0007372 + 177.6600000 -0.0007640 + 177.7200000 -0.0007905 + 177.7800000 -0.0008166 + 177.8400000 -0.0008422 + 177.9000000 -0.0008673 + 177.9600000 -0.0008919 + 178.0200000 -0.0009160 + 178.0800000 -0.0009395 + 178.1400000 -0.0009623 + 178.2000000 -0.0009846 + 178.2600000 -0.0010061 + 178.3200000 -0.0010269 + 178.3800000 -0.0010469 + 178.4400000 -0.0010662 + 178.5000000 -0.0010846 + 178.5600000 -0.0011022 + 178.6200000 -0.0011190 + 178.6800000 -0.0011348 + 178.7400000 -0.0011497 + 178.8000000 -0.0011637 + 178.8600000 -0.0011767 + 178.9200000 -0.0011887 + 178.9800000 -0.0011996 + 179.0400000 -0.0012095 + 179.1000000 -0.0012184 + 179.1600000 -0.0012262 + 179.2200000 -0.0012329 + 179.2800000 -0.0012385 + 179.3400000 -0.0012429 + 179.4000000 -0.0012463 + 179.4600000 -0.0012484 + 179.5200000 -0.0012495 + 179.5800000 -0.0012493 + 179.6400000 -0.0012480 + 179.7000000 -0.0012456 + 179.7600000 -0.0012419 + 179.8200000 -0.0012371 + 179.8800000 -0.0012312 + 179.9400000 -0.0012240 + 180.0000000 -0.0012157 + 180.0600000 -0.0012063 + 180.1200000 -0.0011957 + 180.1800000 -0.0011839 + 180.2400000 -0.0011711 + 180.3000000 -0.0011571 + 180.3600000 -0.0011420 + 180.4200000 -0.0011259 + 180.4800000 -0.0011087 + 180.5400000 -0.0010905 + 180.6000000 -0.0010712 + 180.6600000 -0.0010510 + 180.7200000 -0.0010298 + 180.7800000 -0.0010076 + 180.8400000 -0.0009846 + 180.9000000 -0.0009606 + 180.9600000 -0.0009358 + 181.0200000 -0.0009102 + 181.0800000 -0.0008838 + 181.1400000 -0.0008566 + 181.2000000 -0.0008287 + 181.2600000 -0.0008001 + 181.3200000 -0.0007709 + 181.3800000 -0.0007410 + 181.4400000 -0.0007106 + 181.5000000 -0.0006796 + 181.5600000 -0.0006481 + 181.6200000 -0.0006161 + 181.6800000 -0.0005838 + 181.7400000 -0.0005510 + 181.8000000 -0.0005179 + 181.8600000 -0.0004844 + 181.9200000 -0.0004507 + 181.9800000 -0.0004168 + 182.0400000 -0.0003827 + 182.1000000 -0.0003484 + 182.1600000 -0.0003140 + 182.2200000 -0.0002796 + 182.2800000 -0.0002451 + 182.3400000 -0.0002105 + 182.4000000 -0.0001761 + 182.4600000 -0.0001417 + 182.5200000 -0.0001074 + 182.5800000 -0.0000732 + 182.6400000 -0.0000392 + 182.7000000 -0.0000054 + 182.7600000 0.0000282 + 182.8200000 0.0000614 + 182.8800000 0.0000944 + 182.9400000 0.0001271 + 183.0000000 0.0001594 + 183.0600000 0.0001914 + 183.1200000 0.0002229 + 183.1800000 0.0002541 + 183.2400000 0.0002847 + 183.3000000 0.0003149 + 183.3600000 0.0003447 + 183.4200000 0.0003739 + 183.4800000 0.0004025 + 183.5400000 0.0004307 + 183.6000000 0.0004582 + 183.6600000 0.0004852 + 183.7200000 0.0005116 + 183.7800000 0.0005374 + 183.8400000 0.0005626 + 183.9000000 0.0005872 + 183.9600000 0.0006111 + 184.0200000 0.0006344 + 184.0800000 0.0006571 + 184.1400000 0.0006791 + 184.2000000 0.0007005 + 184.2600000 0.0007211 + 184.3200000 0.0007412 + 184.3800000 0.0007605 + 184.4400000 0.0007792 + 184.5000000 0.0007972 + 184.5600000 0.0008145 + 184.6200000 0.0008312 + 184.6800000 0.0008472 + 184.7400000 0.0008625 + 184.8000000 0.0008772 + 184.8600000 0.0008912 + 184.9200000 0.0009045 + 184.9800000 0.0009172 + 185.0400000 0.0009292 + 185.1000000 0.0009406 + 185.1600000 0.0009514 + 185.2200000 0.0009614 + 185.2800000 0.0009709 + 185.3400000 0.0009797 + 185.4000000 0.0009879 + 185.4600000 0.0009955 + 185.5200000 0.0010025 + 185.5800000 0.0010089 + 185.6400000 0.0010147 + 185.7000000 0.0010198 + 185.7600000 0.0010244 + 185.8200000 0.0010285 + 185.8800000 0.0010319 + 185.9400000 0.0010348 + 186.0000000 0.0010371 + 186.0600000 0.0010389 + 186.1200000 0.0010401 + 186.1800000 0.0010408 + 186.2400000 0.0010410 + 186.3000000 0.0010406 + 186.3600000 0.0010398 + 186.4200000 0.0010384 + 186.4800000 0.0010365 + 186.5400000 0.0010341 + 186.6000000 0.0010312 + 186.6600000 0.0010279 + 186.7200000 0.0010241 + 186.7800000 0.0010198 + 186.8400000 0.0010151 + 186.9000000 0.0010099 + 186.9600000 0.0010043 + 187.0200000 0.0009983 + 187.0800000 0.0009918 + 187.1400000 0.0009849 + 187.2000000 0.0009776 + 187.2600000 0.0009699 + 187.3200000 0.0009619 + 187.3800000 0.0009534 + 187.4400000 0.0009446 + 187.5000000 0.0009354 + 187.5600000 0.0009259 + 187.6200000 0.0009160 + 187.6800000 0.0009058 + 187.7400000 0.0008953 + 187.8000000 0.0008844 + 187.8600000 0.0008733 + 187.9200000 0.0008619 + 187.9800000 0.0008501 + 188.0400000 0.0008382 + 188.1000000 0.0008259 + 188.1600000 0.0008135 + 188.2200000 0.0008008 + 188.2800000 0.0007878 + 188.3400000 0.0007747 + 188.4000000 0.0007614 + 188.4600000 0.0007479 + 188.5200000 0.0007342 + 188.5800000 0.0007204 + 188.6400000 0.0007064 + 188.7000000 0.0006923 + 188.7600000 0.0006781 + 188.8200000 0.0006637 + 188.8800000 0.0006493 + 188.9400000 0.0006348 + 189.0000000 0.0006202 + 189.0600000 0.0006056 + 189.1200000 0.0005910 + 189.1800000 0.0005763 + 189.2400000 0.0005616 + 189.3000000 0.0005469 + 189.3600000 0.0005322 + 189.4200000 0.0005176 + 189.4800000 0.0005030 + 189.5400000 0.0004885 + 189.6000000 0.0004740 + 189.6600000 0.0004596 + 189.7200000 0.0004453 + 189.7800000 0.0004311 + 189.8400000 0.0004170 + 189.9000000 0.0004031 + 189.9600000 0.0003893 + 190.0200000 0.0003756 + 190.0800000 0.0003621 + 190.1400000 0.0003488 + 190.2000000 0.0003357 + 190.2600000 0.0003227 + 190.3200000 0.0003100 + 190.3800000 0.0002974 + 190.4400000 0.0002851 + 190.5000000 0.0002730 + 190.5600000 0.0002611 + 190.6200000 0.0002495 + 190.6800000 0.0002381 + 190.7400000 0.0002270 + 190.8000000 0.0002161 + 190.8600000 0.0002055 + 190.9200000 0.0001952 + 190.9800000 0.0001851 + 191.0400000 0.0001753 + 191.1000000 0.0001658 + 191.1600000 0.0001566 + 191.2200000 0.0001476 + 191.2800000 0.0001390 + 191.3400000 0.0001306 + 191.4000000 0.0001225 + 191.4600000 0.0001147 + 191.5200000 0.0001072 + 191.5800000 0.0001000 + 191.6400000 0.0000931 + 191.7000000 0.0000864 + 191.7600000 0.0000801 + 191.8200000 0.0000740 + 191.8800000 0.0000682 + 191.9400000 0.0000627 + 192.0000000 0.0000575 + 192.0600000 0.0000526 + 192.1200000 0.0000479 + 192.1800000 0.0000435 + 192.2400000 0.0000393 + 192.3000000 0.0000354 + 192.3600000 0.0000318 + 192.4200000 0.0000284 + 192.4800000 0.0000253 + 192.5400000 0.0000224 + 192.6000000 0.0000198 + 192.6600000 0.0000174 + 192.7200000 0.0000152 + 192.7800000 0.0000133 + 192.8400000 0.0000116 + 192.9000000 0.0000101 + 192.9600000 0.0000088 + 193.0200000 0.0000077 + 193.0800000 0.0000068 + 193.1400000 0.0000061 + 193.2000000 0.0000056 + 193.2600000 0.0000053 + 193.3200000 0.0000052 + 193.3800000 0.0000053 + 193.4400000 0.0000055 + 193.5000000 0.0000059 + 193.5600000 0.0000065 + 193.6200000 0.0000072 + 193.6800000 0.0000081 + 193.7400000 0.0000091 + 193.8000000 0.0000103 + 193.8600000 0.0000117 + 193.9200000 0.0000132 + 193.9800000 0.0000148 + 194.0400000 0.0000166 + 194.1000000 0.0000185 + 194.1600000 0.0000206 + 194.2200000 0.0000228 + 194.2800000 0.0000251 + 194.3400000 0.0000275 + 194.4000000 0.0000301 + 194.4600000 0.0000328 + 194.5200000 0.0000356 + 194.5800000 0.0000386 + 194.6400000 0.0000416 + 194.7000000 0.0000448 + 194.7600000 0.0000481 + 194.8200000 0.0000515 + 194.8800000 0.0000550 + 194.9400000 0.0000587 + 195.0000000 0.0000624 + 195.0600000 0.0000663 + 195.1200000 0.0000703 + 195.1800000 0.0000744 + 195.2400000 0.0000786 + 195.3000000 0.0000829 + 195.3600000 0.0000873 + 195.4200000 0.0000918 + 195.4800000 0.0000965 + 195.5400000 0.0001012 + 195.6000000 0.0001061 + 195.6600000 0.0001110 + 195.7200000 0.0001161 + 195.7800000 0.0001213 + 195.8400000 0.0001266 + 195.9000000 0.0001319 + 195.9600000 0.0001374 + 196.0200000 0.0001430 + 196.0800000 0.0001487 + 196.1400000 0.0001545 + 196.2000000 0.0001603 + 196.2600000 0.0001663 + 196.3200000 0.0001723 + 196.3800000 0.0001785 + 196.4400000 0.0001847 + 196.5000000 0.0001910 + 196.5600000 0.0001974 + 196.6200000 0.0002039 + 196.6800000 0.0002105 + 196.7400000 0.0002171 + 196.8000000 0.0002238 + 196.8600000 0.0002305 + 196.9200000 0.0002373 + 196.9800000 0.0002442 + 197.0400000 0.0002511 + 197.1000000 0.0002581 + 197.1600000 0.0002651 + 197.2200000 0.0002721 + 197.2800000 0.0002792 + 197.3400000 0.0002863 + 197.4000000 0.0002934 + 197.4600000 0.0003005 + 197.5200000 0.0003076 + 197.5800000 0.0003147 + 197.6400000 0.0003218 + 197.7000000 0.0003289 + 197.7600000 0.0003359 + 197.8200000 0.0003429 + 197.8800000 0.0003499 + 197.9400000 0.0003568 + 198.0000000 0.0003636 + 198.0600000 0.0003704 + 198.1200000 0.0003771 + 198.1800000 0.0003837 + 198.2400000 0.0003902 + 198.3000000 0.0003966 + 198.3600000 0.0004028 + 198.4200000 0.0004090 + 198.4800000 0.0004150 + 198.5400000 0.0004208 + 198.6000000 0.0004265 + 198.6600000 0.0004320 + 198.7200000 0.0004373 + 198.7800000 0.0004425 + 198.8400000 0.0004474 + 198.9000000 0.0004522 + 198.9600000 0.0004567 + 199.0200000 0.0004610 + 199.0800000 0.0004651 + 199.1400000 0.0004689 + 199.2000000 0.0004725 + 199.2600000 0.0004758 + 199.3200000 0.0004788 + 199.3800000 0.0004816 + 199.4400000 0.0004840 + 199.5000000 0.0004862 + 199.5600000 0.0004881 + 199.6200000 0.0004897 + 199.6800000 0.0004910 + 199.7400000 0.0004919 + 199.8000000 0.0004926 + 199.8600000 0.0004929 + 199.9200000 0.0004929 + 199.9800000 0.0004926 + 200.0400000 0.0004919 + 200.1000000 0.0004909 + 200.1600000 0.0004895 + 200.2200000 0.0004879 + 200.2800000 0.0004859 + 200.3400000 0.0004835 + 200.4000000 0.0004808 + 200.4600000 0.0004778 + 200.5200000 0.0004744 + 200.5800000 0.0004707 + 200.6400000 0.0004667 + 200.7000000 0.0004624 + 200.7600000 0.0004577 + 200.8200000 0.0004527 + 200.8800000 0.0004475 + 200.9400000 0.0004419 + 201.0000000 0.0004360 + 201.0600000 0.0004298 + 201.1200000 0.0004234 + 201.1800000 0.0004166 + 201.2400000 0.0004096 + 201.3000000 0.0004024 + 201.3600000 0.0003949 + 201.4200000 0.0003872 + 201.4800000 0.0003792 + 201.5400000 0.0003710 + 201.6000000 0.0003626 + 201.6600000 0.0003541 + 201.7200000 0.0003453 + 201.7800000 0.0003364 + 201.8400000 0.0003273 + 201.9000000 0.0003181 + 201.9600000 0.0003087 + 202.0200000 0.0002992 + 202.0800000 0.0002897 + 202.1400000 0.0002800 + 202.2000000 0.0002702 + 202.2600000 0.0002604 + 202.3200000 0.0002505 + 202.3800000 0.0002406 + 202.4400000 0.0002306 + 202.5000000 0.0002206 + 202.5600000 0.0002106 + 202.6200000 0.0002007 + 202.6800000 0.0001907 + 202.7400000 0.0001808 + 202.8000000 0.0001710 + 202.8600000 0.0001611 + 202.9200000 0.0001514 + 202.9800000 0.0001418 + 203.0400000 0.0001322 + 203.1000000 0.0001227 + 203.1600000 0.0001134 + 203.2200000 0.0001042 + 203.2800000 0.0000951 + 203.3400000 0.0000862 + 203.4000000 0.0000774 + 203.4600000 0.0000688 + 203.5200000 0.0000604 + 203.5800000 0.0000521 + 203.6400000 0.0000441 + 203.7000000 0.0000362 + 203.7600000 0.0000286 + 203.8200000 0.0000211 + 203.8800000 0.0000139 + 203.9400000 0.0000069 + 204.0000000 0.0000002 + 204.0600000 -0.0000064 + 204.1200000 -0.0000127 + 204.1800000 -0.0000187 + 204.2400000 -0.0000245 + 204.3000000 -0.0000300 + 204.3600000 -0.0000353 + 204.4200000 -0.0000403 + 204.4800000 -0.0000451 + 204.5400000 -0.0000496 + 204.6000000 -0.0000538 + 204.6600000 -0.0000578 + 204.7200000 -0.0000615 + 204.7800000 -0.0000649 + 204.8400000 -0.0000681 + 204.9000000 -0.0000710 + 204.9600000 -0.0000736 + 205.0200000 -0.0000760 + 205.0800000 -0.0000781 + 205.1400000 -0.0000799 + 205.2000000 -0.0000814 + 205.2600000 -0.0000827 + 205.3200000 -0.0000838 + 205.3800000 -0.0000845 + 205.4400000 -0.0000850 + 205.5000000 -0.0000853 + 205.5600000 -0.0000853 + 205.6200000 -0.0000850 + 205.6800000 -0.0000845 + 205.7400000 -0.0000838 + 205.8000000 -0.0000828 + 205.8600000 -0.0000815 + 205.9200000 -0.0000801 + 205.9800000 -0.0000783 + 206.0400000 -0.0000764 + 206.1000000 -0.0000742 + 206.1600000 -0.0000718 + 206.2200000 -0.0000692 + 206.2800000 -0.0000664 + 206.3400000 -0.0000633 + 206.4000000 -0.0000601 + 206.4600000 -0.0000566 + 206.5200000 -0.0000529 + 206.5800000 -0.0000490 + 206.6400000 -0.0000450 + 206.7000000 -0.0000407 + 206.7600000 -0.0000362 + 206.8200000 -0.0000316 + 206.8800000 -0.0000268 + 206.9400000 -0.0000217 + 207.0000000 -0.0000166 + 207.0600000 -0.0000112 + 207.1200000 -0.0000057 + 207.1800000 0.0000000 + 207.2400000 0.0000059 + 207.3000000 0.0000119 + 207.3600000 0.0000181 + 207.4200000 0.0000244 + 207.4800000 0.0000309 + 207.5400000 0.0000375 + 207.6000000 0.0000442 + 207.6600000 0.0000511 + 207.7200000 0.0000581 + 207.7800000 0.0000652 + 207.8400000 0.0000725 + 207.9000000 0.0000798 + 207.9600000 0.0000873 + 208.0200000 0.0000949 + 208.0800000 0.0001025 + 208.1400000 0.0001103 + 208.2000000 0.0001181 + 208.2600000 0.0001260 + 208.3200000 0.0001340 + 208.3800000 0.0001421 + 208.4400000 0.0001502 + 208.5000000 0.0001584 + 208.5600000 0.0001666 + 208.6200000 0.0001748 + 208.6800000 0.0001831 + 208.7400000 0.0001914 + 208.8000000 0.0001997 + 208.8600000 0.0002080 + 208.9200000 0.0002163 + 208.9800000 0.0002246 + 209.0400000 0.0002329 + 209.1000000 0.0002411 + 209.1600000 0.0002494 + 209.2200000 0.0002575 + 209.2800000 0.0002656 + 209.3400000 0.0002736 + 209.4000000 0.0002816 + 209.4600000 0.0002894 + 209.5200000 0.0002972 + 209.5800000 0.0003049 + 209.6400000 0.0003124 + 209.7000000 0.0003198 + 209.7600000 0.0003270 + 209.8200000 0.0003341 + 209.8800000 0.0003411 + 209.9400000 0.0003479 + 210.0000000 0.0003544 + 210.0600000 0.0003608 + 210.1200000 0.0003670 + 210.1800000 0.0003730 + 210.2400000 0.0003788 + 210.3000000 0.0003843 + 210.3600000 0.0003895 + 210.4200000 0.0003946 + 210.4800000 0.0003993 + 210.5400000 0.0004038 + 210.6000000 0.0004080 + 210.6600000 0.0004119 + 210.7200000 0.0004156 + 210.7800000 0.0004189 + 210.8400000 0.0004219 + 210.9000000 0.0004246 + 210.9600000 0.0004270 + 211.0200000 0.0004290 + 211.0800000 0.0004307 + 211.1400000 0.0004320 + 211.2000000 0.0004330 + 211.2600000 0.0004337 + 211.3200000 0.0004340 + 211.3800000 0.0004339 + 211.4400000 0.0004335 + 211.5000000 0.0004328 + 211.5600000 0.0004316 + 211.6200000 0.0004301 + 211.6800000 0.0004282 + 211.7400000 0.0004260 + 211.8000000 0.0004234 + 211.8600000 0.0004205 + 211.9200000 0.0004171 + 211.9800000 0.0004135 + 212.0400000 0.0004094 + 212.1000000 0.0004051 + 212.1600000 0.0004003 + 212.2200000 0.0003953 + 212.2800000 0.0003899 + 212.3400000 0.0003842 + 212.4000000 0.0003781 + 212.4600000 0.0003718 + 212.5200000 0.0003651 + 212.5800000 0.0003582 + 212.6400000 0.0003509 + 212.7000000 0.0003434 + 212.7600000 0.0003356 + 212.8200000 0.0003275 + 212.8800000 0.0003192 + 212.9400000 0.0003107 + 213.0000000 0.0003019 + 213.0600000 0.0002930 + 213.1200000 0.0002838 + 213.1800000 0.0002744 + 213.2400000 0.0002649 + 213.3000000 0.0002552 + 213.3600000 0.0002454 + 213.4200000 0.0002354 + 213.4800000 0.0002253 + 213.5400000 0.0002151 + 213.6000000 0.0002048 + 213.6600000 0.0001944 + 213.7200000 0.0001839 + 213.7800000 0.0001734 + 213.8400000 0.0001629 + 213.9000000 0.0001524 + 213.9600000 0.0001418 + 214.0200000 0.0001312 + 214.0800000 0.0001207 + 214.1400000 0.0001102 + 214.2000000 0.0000997 + 214.2600000 0.0000893 + 214.3200000 0.0000790 + 214.3800000 0.0000687 + 214.4400000 0.0000586 + 214.5000000 0.0000485 + 214.5600000 0.0000386 + 214.6200000 0.0000288 + 214.6800000 0.0000192 + 214.7400000 0.0000097 + 214.8000000 0.0000004 + 214.8600000 -0.0000088 + 214.9200000 -0.0000178 + 214.9800000 -0.0000266 + 215.0400000 -0.0000351 + 215.1000000 -0.0000435 + 215.1600000 -0.0000517 + 215.2200000 -0.0000596 + 215.2800000 -0.0000673 + 215.3400000 -0.0000748 + 215.4000000 -0.0000821 + 215.4600000 -0.0000891 + 215.5200000 -0.0000958 + 215.5800000 -0.0001023 + 215.6400000 -0.0001086 + 215.7000000 -0.0001146 + 215.7600000 -0.0001203 + 215.8200000 -0.0001258 + 215.8800000 -0.0001310 + 215.9400000 -0.0001360 + 216.0000000 -0.0001406 + 216.0600000 -0.0001451 + 216.1200000 -0.0001492 + 216.1800000 -0.0001532 + 216.2400000 -0.0001568 + 216.3000000 -0.0001602 + 216.3600000 -0.0001633 + 216.4200000 -0.0001662 + 216.4800000 -0.0001689 + 216.5400000 -0.0001713 + 216.6000000 -0.0001734 + 216.6600000 -0.0001754 + 216.7200000 -0.0001771 + 216.7800000 -0.0001785 + 216.8400000 -0.0001798 + 216.9000000 -0.0001808 + 216.9600000 -0.0001816 + 217.0200000 -0.0001822 + 217.0800000 -0.0001826 + 217.1400000 -0.0001828 + 217.2000000 -0.0001829 + 217.2600000 -0.0001827 + 217.3200000 -0.0001824 + 217.3800000 -0.0001819 + 217.4400000 -0.0001812 + 217.5000000 -0.0001804 + 217.5600000 -0.0001794 + 217.6200000 -0.0001783 + 217.6800000 -0.0001770 + 217.7400000 -0.0001757 + 217.8000000 -0.0001741 + 217.8600000 -0.0001725 + 217.9200000 -0.0001708 + 217.9800000 -0.0001690 + 218.0400000 -0.0001670 + 218.1000000 -0.0001650 + 218.1600000 -0.0001629 + 218.2200000 -0.0001607 + 218.2800000 -0.0001584 + 218.3400000 -0.0001561 + 218.4000000 -0.0001537 + 218.4600000 -0.0001513 + 218.5200000 -0.0001488 + 218.5800000 -0.0001462 + 218.6400000 -0.0001436 + 218.7000000 -0.0001410 + 218.7600000 -0.0001384 + 218.8200000 -0.0001357 + 218.8800000 -0.0001330 + 218.9400000 -0.0001303 + 219.0000000 -0.0001275 + 219.0600000 -0.0001248 + 219.1200000 -0.0001221 + 219.1800000 -0.0001193 + 219.2400000 -0.0001166 + 219.3000000 -0.0001139 + 219.3600000 -0.0001112 + 219.4200000 -0.0001085 + 219.4800000 -0.0001058 + 219.5400000 -0.0001031 + 219.6000000 -0.0001005 + 219.6600000 -0.0000978 + 219.7200000 -0.0000952 + 219.7800000 -0.0000927 + 219.8400000 -0.0000901 + 219.9000000 -0.0000876 + 219.9600000 -0.0000851 + 220.0200000 -0.0000827 + 220.0800000 -0.0000803 + 220.1400000 -0.0000779 + 220.2000000 -0.0000756 + 220.2600000 -0.0000733 + 220.3200000 -0.0000710 + 220.3800000 -0.0000688 + 220.4400000 -0.0000667 + 220.5000000 -0.0000645 + 220.5600000 -0.0000625 + 220.6200000 -0.0000604 + 220.6800000 -0.0000584 + 220.7400000 -0.0000565 + 220.8000000 -0.0000545 + 220.8600000 -0.0000527 + 220.9200000 -0.0000508 + 220.9800000 -0.0000491 + 221.0400000 -0.0000473 + 221.1000000 -0.0000456 + 221.1600000 -0.0000440 + 221.2200000 -0.0000423 + 221.2800000 -0.0000408 + 221.3400000 -0.0000392 + 221.4000000 -0.0000377 + 221.4600000 -0.0000363 + 221.5200000 -0.0000348 + 221.5800000 -0.0000335 + 221.6400000 -0.0000321 + 221.7000000 -0.0000308 + 221.7600000 -0.0000295 + 221.8200000 -0.0000283 + 221.8800000 -0.0000270 + 221.9400000 -0.0000259 + 222.0000000 -0.0000247 + 222.0600000 -0.0000236 + 222.1200000 -0.0000225 + 222.1800000 -0.0000214 + 222.2400000 -0.0000204 + 222.3000000 -0.0000194 + 222.3600000 -0.0000184 + 222.4200000 -0.0000175 + 222.4800000 -0.0000166 + 222.5400000 -0.0000157 + 222.6000000 -0.0000148 + 222.6600000 -0.0000140 + 222.7200000 -0.0000131 + 222.7800000 -0.0000123 + 222.8400000 -0.0000116 + 222.9000000 -0.0000108 + 222.9600000 -0.0000101 + 223.0200000 -0.0000094 + 223.0800000 -0.0000087 + 223.1400000 -0.0000080 + 223.2000000 -0.0000073 + 223.2600000 -0.0000067 + 223.3200000 -0.0000061 + 223.3800000 -0.0000055 + 223.4400000 -0.0000049 + 223.5000000 -0.0000044 + 223.5600000 -0.0000038 + 223.6200000 -0.0000033 + 223.6800000 -0.0000028 + 223.7400000 -0.0000023 + 223.8000000 -0.0000018 + 223.8600000 -0.0000013 + 223.9200000 -0.0000009 + 223.9800000 -0.0000005 + 224.0400000 -0.0000001 + 224.1000000 0.0000003 + 224.1600000 0.0000007 + 224.2200000 0.0000011 + 224.2800000 0.0000014 + 224.3400000 0.0000017 + 224.4000000 0.0000021 + 224.4600000 0.0000024 + 224.5200000 0.0000027 + 224.5800000 0.0000029 + 224.6400000 0.0000032 + 224.7000000 0.0000034 + 224.7600000 0.0000037 + 224.8200000 0.0000039 + 224.8800000 0.0000041 + 224.9400000 0.0000043 + 225.0000000 0.0000045 + 225.0600000 0.0000046 + 225.1200000 0.0000048 + 225.1800000 0.0000049 + 225.2400000 0.0000051 + 225.3000000 0.0000052 + 225.3600000 0.0000053 + 225.4200000 0.0000054 + 225.4800000 0.0000055 + 225.5400000 0.0000056 + 225.6000000 0.0000056 + 225.6600000 0.0000057 + 225.7200000 0.0000057 + 225.7800000 0.0000058 + 225.8400000 0.0000058 + 225.9000000 0.0000058 + 225.9600000 0.0000058 + 226.0200000 0.0000058 + 226.0800000 0.0000058 + 226.1400000 0.0000058 + 226.2000000 0.0000058 + 226.2600000 0.0000058 + 226.3200000 0.0000057 + 226.3800000 0.0000057 + 226.4400000 0.0000057 + 226.5000000 0.0000056 + 226.5600000 0.0000056 + 226.6200000 0.0000055 + 226.6800000 0.0000054 + 226.7400000 0.0000054 + 226.8000000 0.0000053 + 226.8600000 0.0000052 + 226.9200000 0.0000052 + 226.9800000 0.0000051 + 227.0400000 0.0000050 + 227.1000000 0.0000049 + 227.1600000 0.0000048 + 227.2200000 0.0000047 + 227.2800000 0.0000046 + 227.3400000 0.0000045 + 227.4000000 0.0000044 + 227.4600000 0.0000043 + 227.5200000 0.0000043 + 227.5800000 0.0000042 + 227.6400000 0.0000041 + 227.7000000 0.0000040 + 227.7600000 0.0000039 + 227.8200000 0.0000038 + 227.8800000 0.0000037 + 227.9400000 0.0000036 + 228.0000000 0.0000035 + 228.0600000 0.0000034 + 228.1200000 0.0000034 + 228.1800000 0.0000033 + 228.2400000 0.0000032 + 228.3000000 0.0000031 + 228.3600000 0.0000031 + 228.4200000 0.0000030 + 228.4800000 0.0000029 + 228.5400000 0.0000029 + 228.6000000 0.0000028 + 228.6600000 0.0000028 + 228.7200000 0.0000027 + 228.7800000 0.0000027 + 228.8400000 0.0000026 + 228.9000000 0.0000026 + 228.9600000 0.0000026 + 229.0200000 0.0000025 + 229.0800000 0.0000025 + 229.1400000 0.0000025 + 229.2000000 0.0000024 + 229.2600000 0.0000024 + 229.3200000 0.0000024 + 229.3800000 0.0000024 + 229.4400000 0.0000024 + 229.5000000 0.0000024 + 229.5600000 0.0000023 + 229.6200000 0.0000023 + 229.6800000 0.0000023 + 229.7400000 0.0000023 + 229.8000000 0.0000023 + 229.8600000 0.0000023 + 229.9200000 0.0000023 + 229.9800000 0.0000023 + 230.0400000 0.0000023 + 230.1000000 0.0000023 + 230.1600000 0.0000023 + 230.2200000 0.0000023 + 230.2800000 0.0000023 + 230.3400000 0.0000023 + 230.4000000 0.0000023 + 230.4600000 0.0000022 + 230.5200000 0.0000022 + 230.5800000 0.0000022 + 230.6400000 0.0000021 + 230.7000000 0.0000021 + 230.7600000 0.0000020 + 230.8200000 0.0000020 + 230.8800000 0.0000019 + 230.9400000 0.0000019 + 231.0000000 0.0000018 + 231.0600000 0.0000017 + 231.1200000 0.0000016 + 231.1800000 0.0000015 + 231.2400000 0.0000014 + 231.3000000 0.0000012 + 231.3600000 0.0000011 + 231.4200000 0.0000009 + 231.4800000 0.0000008 + 231.5400000 0.0000006 + 231.6000000 0.0000004 + 231.6600000 0.0000002 + 231.7200000 -0.0000000 + 231.7800000 -0.0000002 + 231.8400000 -0.0000005 + 231.9000000 -0.0000008 + 231.9600000 -0.0000010 + 232.0200000 -0.0000013 + 232.0800000 -0.0000016 + 232.1400000 -0.0000019 + 232.2000000 -0.0000023 + 232.2600000 -0.0000026 + 232.3200000 -0.0000030 + 232.3800000 -0.0000034 + 232.4400000 -0.0000037 + 232.5000000 -0.0000041 + 232.5600000 -0.0000046 + 232.6200000 -0.0000050 + 232.6800000 -0.0000054 + 232.7400000 -0.0000059 + 232.8000000 -0.0000064 + 232.8600000 -0.0000069 + 232.9200000 -0.0000074 + 232.9800000 -0.0000079 + 233.0400000 -0.0000084 + 233.1000000 -0.0000089 + 233.1600000 -0.0000095 + 233.2200000 -0.0000101 + 233.2800000 -0.0000106 + 233.3400000 -0.0000112 + 233.4000000 -0.0000118 + 233.4600000 -0.0000124 + 233.5200000 -0.0000130 + 233.5800000 -0.0000136 + 233.6400000 -0.0000143 + 233.7000000 -0.0000149 + 233.7600000 -0.0000155 + 233.8200000 -0.0000162 + 233.8800000 -0.0000168 + 233.9400000 -0.0000175 + 234.0000000 -0.0000181 + 234.0600000 -0.0000188 + 234.1200000 -0.0000194 + 234.1800000 -0.0000201 + 234.2400000 -0.0000207 + 234.3000000 -0.0000214 + 234.3600000 -0.0000220 + 234.4200000 -0.0000227 + 234.4800000 -0.0000233 + 234.5400000 -0.0000240 + 234.6000000 -0.0000246 + 234.6600000 -0.0000252 + 234.7200000 -0.0000258 + 234.7800000 -0.0000264 + 234.8400000 -0.0000270 + 234.9000000 -0.0000276 + 234.9600000 -0.0000281 + 235.0200000 -0.0000287 + 235.0800000 -0.0000292 + 235.1400000 -0.0000297 + 235.2000000 -0.0000302 + 235.2600000 -0.0000306 + 235.3200000 -0.0000311 + 235.3800000 -0.0000315 + 235.4400000 -0.0000319 + 235.5000000 -0.0000323 + 235.5600000 -0.0000326 + 235.6200000 -0.0000329 + 235.6800000 -0.0000332 + 235.7400000 -0.0000334 + 235.8000000 -0.0000337 + 235.8600000 -0.0000339 + 235.9200000 -0.0000340 + 235.9800000 -0.0000341 + 236.0400000 -0.0000342 + 236.1000000 -0.0000343 + 236.1600000 -0.0000343 + 236.2200000 -0.0000342 + 236.2800000 -0.0000342 + 236.3400000 -0.0000341 + 236.4000000 -0.0000339 + 236.4600000 -0.0000338 + 236.5200000 -0.0000335 + 236.5800000 -0.0000333 + 236.6400000 -0.0000330 + 236.7000000 -0.0000326 + 236.7600000 -0.0000322 + 236.8200000 -0.0000318 + 236.8800000 -0.0000313 + 236.9400000 -0.0000308 + 237.0000000 -0.0000303 + 237.0600000 -0.0000297 + 237.1200000 -0.0000290 + 237.1800000 -0.0000284 + 237.2400000 -0.0000277 + 237.3000000 -0.0000269 + 237.3600000 -0.0000261 + 237.4200000 -0.0000253 + 237.4800000 -0.0000245 + 237.5400000 -0.0000236 + 237.6000000 -0.0000227 + 237.6600000 -0.0000217 + 237.7200000 -0.0000208 + 237.7800000 -0.0000197 + 237.8400000 -0.0000187 + 237.9000000 -0.0000176 + 237.9600000 -0.0000166 + 238.0200000 -0.0000155 + 238.0800000 -0.0000143 + 238.1400000 -0.0000132 + 238.2000000 -0.0000120 + 238.2600000 -0.0000108 + 238.3200000 -0.0000096 + 238.3800000 -0.0000084 + 238.4400000 -0.0000072 + 238.5000000 -0.0000060 + 238.5600000 -0.0000048 + 238.6200000 -0.0000035 + 238.6800000 -0.0000023 + 238.7400000 -0.0000010 + 238.8000000 0.0000002 + 238.8600000 0.0000014 + 238.9200000 0.0000027 + 238.9800000 0.0000039 + 239.0400000 0.0000051 + 239.1000000 0.0000063 + 239.1600000 0.0000075 + 239.2200000 0.0000087 + 239.2800000 0.0000098 + 239.3400000 0.0000110 + 239.4000000 0.0000121 + 239.4600000 0.0000132 + 239.5200000 0.0000143 + 239.5800000 0.0000154 + 239.6400000 0.0000164 + 239.7000000 0.0000174 + 239.7600000 0.0000184 + 239.8200000 0.0000194 + 239.8800000 0.0000203 + 239.9400000 0.0000212 + 240.0000000 0.0000220 + 240.0600000 0.0000229 + 240.1200000 0.0000237 + 240.1800000 0.0000244 + 240.2400000 0.0000251 + 240.3000000 0.0000258 + 240.3600000 0.0000265 + 240.4200000 0.0000271 + 240.4800000 0.0000277 + 240.5400000 0.0000282 + 240.6000000 0.0000287 + 240.6600000 0.0000291 + 240.7200000 0.0000296 + 240.7800000 0.0000300 + 240.8400000 0.0000303 + 240.9000000 0.0000306 + 240.9600000 0.0000309 + 241.0200000 0.0000311 + 241.0800000 0.0000313 + 241.1400000 0.0000314 + 241.2000000 0.0000315 + 241.2600000 0.0000316 + 241.3200000 0.0000317 + 241.3800000 0.0000317 + 241.4400000 0.0000316 + 241.5000000 0.0000316 + 241.5600000 0.0000315 + 241.6200000 0.0000313 + 241.6800000 0.0000312 + 241.7400000 0.0000310 + 241.8000000 0.0000307 + 241.8600000 0.0000305 + 241.9200000 0.0000302 + 241.9800000 0.0000299 + 242.0400000 0.0000296 + 242.1000000 0.0000292 + 242.1600000 0.0000289 + 242.2200000 0.0000285 + 242.2800000 0.0000281 + 242.3400000 0.0000276 + 242.4000000 0.0000272 + 242.4600000 0.0000267 + 242.5200000 0.0000262 + 242.5800000 0.0000258 + 242.6400000 0.0000253 + 242.7000000 0.0000247 + 242.7600000 0.0000242 + 242.8200000 0.0000237 + 242.8800000 0.0000231 + 242.9400000 0.0000226 + 243.0000000 0.0000220 + 243.0600000 0.0000215 + 243.1200000 0.0000209 + 243.1800000 0.0000204 + 243.2400000 0.0000198 + 243.3000000 0.0000193 + 243.3600000 0.0000187 + 243.4200000 0.0000182 + 243.4800000 0.0000176 + 243.5400000 0.0000171 + 243.6000000 0.0000166 + 243.6600000 0.0000161 + 243.7200000 0.0000156 + 243.7800000 0.0000150 + 243.8400000 0.0000146 + 243.9000000 0.0000141 + 243.9600000 0.0000136 + 244.0200000 0.0000131 + 244.0800000 0.0000127 + 244.1400000 0.0000122 + 244.2000000 0.0000118 + 244.2600000 0.0000114 + 244.3200000 0.0000110 + 244.3800000 0.0000106 + 244.4400000 0.0000102 + 244.5000000 0.0000098 + 244.5600000 0.0000094 + 244.6200000 0.0000091 + 244.6800000 0.0000088 + 244.7400000 0.0000084 + 244.8000000 0.0000081 + 244.8600000 0.0000078 + 244.9200000 0.0000076 + 244.9800000 0.0000073 + 245.0400000 0.0000070 + 245.1000000 0.0000068 + 245.1600000 0.0000066 + 245.2200000 0.0000064 + 245.2800000 0.0000062 + 245.3400000 0.0000060 + 245.4000000 0.0000058 + 245.4600000 0.0000056 + 245.5200000 0.0000055 + 245.5800000 0.0000053 + 245.6400000 0.0000052 + 245.7000000 0.0000050 + 245.7600000 0.0000049 + 245.8200000 0.0000048 + 245.8800000 0.0000047 + 245.9400000 0.0000046 + 246.0000000 0.0000045 + 246.0600000 0.0000045 + 246.1200000 0.0000044 + 246.1800000 0.0000043 + 246.2400000 0.0000043 + 246.3000000 0.0000042 + 246.3600000 0.0000042 + 246.4200000 0.0000042 + 246.4800000 0.0000042 + 246.5400000 0.0000041 + 246.6000000 0.0000041 + 246.6600000 0.0000041 + 246.7200000 0.0000041 + 246.7800000 0.0000041 + 246.8400000 0.0000042 + 246.9000000 0.0000042 + 246.9600000 0.0000042 + 247.0200000 0.0000042 + 247.0800000 0.0000043 + 247.1400000 0.0000043 + 247.2000000 0.0000043 + 247.2600000 0.0000044 + 247.3200000 0.0000044 + 247.3800000 0.0000045 + 247.4400000 0.0000045 + 247.5000000 0.0000046 + 247.5600000 0.0000046 + 247.6200000 0.0000047 + 247.6800000 0.0000047 + 247.7400000 0.0000048 + 247.8000000 0.0000048 + 247.8600000 0.0000049 + 247.9200000 0.0000049 + 247.9800000 0.0000050 + 248.0400000 0.0000050 + 248.1000000 0.0000051 + 248.1600000 0.0000052 + 248.2200000 0.0000052 + 248.2800000 0.0000053 + 248.3400000 0.0000053 + 248.4000000 0.0000054 + 248.4600000 0.0000054 + 248.5200000 0.0000055 + 248.5800000 0.0000055 + 248.6400000 0.0000055 + 248.7000000 0.0000056 + 248.7600000 0.0000056 + 248.8200000 0.0000056 + 248.8800000 0.0000056 + 248.9400000 0.0000057 + 249.0000000 0.0000057 + 249.0600000 0.0000057 + 249.1200000 0.0000057 + 249.1800000 0.0000057 + 249.2400000 0.0000057 + 249.3000000 0.0000057 + 249.3600000 0.0000056 + 249.4200000 0.0000056 + 249.4800000 0.0000056 + 249.5400000 0.0000056 + 249.6000000 0.0000055 + 249.6600000 0.0000055 + 249.7200000 0.0000055 + 249.7800000 0.0000054 + 249.8400000 0.0000054 + 249.9000000 0.0000053 + 249.9600000 0.0000052 + 250.0200000 0.0000052 + 250.0800000 0.0000051 + 250.1400000 0.0000050 + 250.2000000 0.0000049 + 250.2600000 0.0000048 + 250.3200000 0.0000047 + 250.3800000 0.0000046 + 250.4400000 0.0000045 + 250.5000000 0.0000044 + 250.5600000 0.0000042 + 250.6200000 0.0000041 + 250.6800000 0.0000040 + 250.7400000 0.0000038 + 250.8000000 0.0000037 + 250.8600000 0.0000035 + 250.9200000 0.0000034 + 250.9800000 0.0000032 + 251.0400000 0.0000030 + 251.1000000 0.0000029 + 251.1600000 0.0000027 + 251.2200000 0.0000025 + 251.2800000 0.0000023 + 251.3400000 0.0000021 + 251.4000000 0.0000019 + 251.4600000 0.0000017 + 251.5200000 0.0000015 + 251.5800000 0.0000013 + 251.6400000 0.0000010 + 251.7000000 0.0000008 + 251.7600000 0.0000006 + 251.8200000 0.0000003 + 251.8800000 0.0000001 + 251.9400000 -0.0000002 diff --git a/seisflows/tests/test_data/test_preprocess/AA.S0001.BXY.semd b/seisflows/tests/test_data/test_preprocess/AA.S0001.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/test_preprocess/AA.S0001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/test_preprocess/Uy_file_single_d.su b/seisflows/tests/test_data/test_preprocess/Uy_file_single_d.su new file mode 100644 index 0000000000000000000000000000000000000000..40625ca0d2036ce2020202f2a28867cad9ff5e8a GIT binary patch literal 20240 zcmeI%S5(zb7$9(Z?;YtKL6Dl<30J^^QUwJ>5m3YmC`BxYApO#N@4feyWO4xo#f}1E zMHEo5qW(n@6b$)fg&g(YZ^ zjiqvt^Z(F1L7e`7i2e)x6Zj|aPvD=xKY@P&{{;RC{1f;m@K4~Mz(0Y10{;a53H%fI zC-6_;pTIwXe**sm{y!6l{5zii*YkfJ`v2B1=<;}^(X?#T|R zo!jn58J9neN2>iesqD7McPQT~$NQL~cw{^vDVo@_=~vynR19|dn&1J4Pu{p^!x z^K|84a}-HrU46h7m8BsXEj$|=%{n$5UERSNGf|@)Bdlv06Z3{1Ba>|!Ga@e?Q;S`W z{(Lnq>U&c?8}kQX|NbqFz48#wzV638_Tfik?14!n`)PXyd*mHf_Jg-pB)+CV(w7%0NxOpvl5SglN=kPVO7?rClHABJNR}O&L z5)hmma2GV>%M%PQ7!cgd@mlae47<>K2~nZLpJau&?#c@-hRO&z&GQRsgnSTG9B&mo zB996h)|DiGs*X(Etihf(?{Al8wlg_R>1Ico$?gYf0nfgs73FcITdxYGzyB?oUKJ^n z9-hsfZZP*UEz`I$&E%p*+EbchN*rk?)a5ZPbg0lkIOb=FFn*^*xU8yQc%ShzVfoar z!lzu=M8Yk&L^{$rM1t@95ayM6Dtw8xMOaD8L%4t~T4-4KQ(EztnslHqkkN(OWUMvE zWH@}S%*a{n-3nGs_BCL>zuYlisXQU-tO`;30=hZ!GZx--`Qj?TC|&y&G0JS}wh zkA=va$sv(2TuQW5XQ$}!gJ{u_gQcQF?!BV6);C2J%O8n8otPF~^nET`$v-ZdltYQW zGbj{QnsO1%vFI0xnWbk~9Ne9$S23J<3lqz_yM0^M7Ll`AdOcZLIiKsZI0MKm=Lgra z6tCURN?p2{)nqc5C7IBab=o93YpQW`)~1fu%zy*xqKTSxG0mcOG52tGae1bJ`0iOx zaV#cQ9AhsKziHbbuBg=`{@4eK7d#@x<%2uL`um$*N}E1qxGo1=8VCU;#cJ2hK{WGUTPY-bP97%_XD;Zhw{by}}Qq)>{^o*x;l=Ug;Q+A=!%~s*k z{|Sal`{emabFMf`SH&7iKfK8Y{L<^)`O_V5^2Zj1 z3W(d<1=1^)1-DM@DG2{_tY9uVq`-9cLcy2G(1M#bfd$RLv*7xOMS;mS=>pG$k^IqI zp?s$Z1?h`>e@ZKMc*taKtdd!jcp{@P%_F z9g<}oWs+pK3&qL;r6AcUg`KiIMvAhEXRgQ`JkczT>oW=tkn0Q6-=-F3i{2?56y`3n z+Ooc=zsas>gT~3C-3IYRHea%fc(}@oZe`RJr8YGd1)iuc3V2gibkr%msOxG#Q4^;@ z(UMGmAuXpu+UV1g?ADOTbs2kZuj_UclGC;Ya{UoURRHX7{1QKk9x-gk?j? ztHvWG<0XT|i&vuLvNwjwL+^R{eUTd!*1}IHgxlsQjKA+zphb-M;fd>r!b9sM1vmL$^7^=U$#awV(if_KO227sF5{Pp zEt}ibShj!ny|Svcr81)wf%2pB3gs|Rw;a8Uly5LMFJ~%mF86LQFL%~P%Ik!+%2~dO zl<(AADBJp_w5-ZkuuR|DPrBQhb!tO%PKOPMk~(c zvR3Xps8H#sk5x{%yH&2Khg2p$W>lVv%c*S5DX**wZKyn2)mEt()>%0a)KR(qXHz93 ztD>^udPXHP_-y5Sx()@?@p>1 zJyi8}N~UU(WxeYBwSLtHTPIZ`*%wuh(>c`c*NUk<>QGe+S~5|SGPG6OxyMIs-PK67 z9IIPyn>RUH( zY9wnbXgqpF)9AamSEK$wxW=8tY>igXtf9>_q9L~RmBvR!c1_;(Qkoorx|;o3TQzA3 zo|>$q7c}>krfPO4m21|xc54c1-_&&7IHOrx@=G&qw}949OL;9TLQhNgiKUkNh^v-E zjlb5VJJDKKj$~*J7?x}4Z)?{w>$t47z?jh5^=v`w0lunrE}Ks~LP}bD(nno;-B}~; zk}aFHH3%o|=x4s&_7P~XE_BC9i7`UmP- zj^z)uG+%nsvVDBHrD{c>)lXZwRiw+bRs4xVtNZ-%)~TGBR>Sa|)~oyLTTdKjwuaxE zXx;GiW2=V`XWQXZl5JxqT5V=8u{OI>r?v;h$J@>_qT0fxGTNR?SF|ZKb+#S*c(v^u z`_r~q;V*3ha-8iUqhjqldR5xx=M3Ac{I<3qIJBqz@KfLRAHk9BKW$UmM}HTz-%qP+ zzroqte){m$c7f&x?F|oKw=4%%?x1$db}TW~I)e7;JTkcXThcIUn}o3wKx)NdQzWZ`k*$?^m%{1 z>9aCu+7oimR4ZWKRDNj9^vAd$@(uBe_yKYouzyWBF- z*iS1T zIZ2~Ej-X*c$Lrnwie0-IKT@coPw&|Xym z+B@~Z)etkVJKP5JhU^7C$B%=9M?*p7Kpar zK%(h2&{h5hwhXXg?+){0DTxx;sG%Yj?xT${)QvIrFmp`%q%F3S)eZZw=`fbRJ{XHS z5{X@qNWj)>WMDkS1z1sNCFXav3FE)ig9)_`V7$9;Vwph?Ff-woSdRV&Onu@9X2Qa5 z_I8Tb%!gIf%qBp_4AWLNyRN5gb~ehuj8X??zh$QVnCwj@UZ#DH4j+Wk+tEn6eONRd?TMua&BW7JSrh5cB$DZZvZ?e; z!F0O+mkfIKa2A~&lSALUF^_(EB%glUx{!XMr-=TRr-V+oDy0`4FQcQu<#apm3c8GG zCH>upO1fl16@7)Xn!a|VnqFF8O?SRkP4Bo{O}Fo?rr!^#rY}lY(|wDo=n}sx>9^^X z^e~SKy2}1?`VCqcJ>gpkJvpKQ{|lr)F7l;+l|D@8@%N-V7Ve>oR5{Y?60GT` z9XHcI`~dW1h7tYIst(=5OO4*vEJr{5Mw~7qEkHkpanPSO{xC}ze`ChE^w=y^{HEEe zDQQ-6u+hw+pwR5cOrqIDY=~LgMOU-#9>naasf<~#=n`hE{q;gOB+6i zlfhcH(3xHg-R$neq;+hR-8ngG95JB|yVz6pw|%Ipf(z8k{Rz~9ST^-5pp=>ms;Ba# zJ1OiSq%`b?sV9$aQyg3msJO{z)S>Nj)UCbmC>g;o)LoxtD&2FH$_-~_-caOVE@W{r zlb-T0_kHJM@+=52_qPf$Rc%F>v;k3O6rVVAaiawD+(t>JBA*oV?PV$Ef{Qd$|GG5u zfs71u*;a;$d&w|OU1ga08)cX*pQM?2InvAs6=~+PJSpbbH%Vr=g(Pz=M1mQZFV38= z7h|5T7iDVZi!iy*3p1tdgqUukg3SKg{7fv2j|r7|nJWFNZ2I7*10q!q2F% zFOR5Qj~`HXu8vVD_$Z~-d7IMexX%;{6?Zs=$~=}t{Rv5+np5Jb(`~Vo{?lj*7mlKCmPSxg8^b8}iF1@mVhH8DD~Mv( zJw?5j^rJdNk5fwuM<_4s5S4ZG0A*a|LB08~k8;`WMk%$qP@mOyQ-Sr4)DD^hrSj00 zYK*j|Qqk>H_|L7B_RY=I)@lnXDq#~uZwl!E{w+ch{{eqUKR^U|PGE{B(2LF5T z6>4+*2kXIS=x}BcuJ(O^g@4{bF8jAovwQ)*Sbhzq_Pl~!%RFW@-)G+Yjw zf-Eaf;rN9o(1rCeJeBeg^2kp@fsP62V?7R+U)_h@ara=X&M0)7xC7Tk-iDOHEvWPQ z2HabE9h&SLfgLi}Ao*+lF4>cCy#WC? zOX1LPtrsr7>w$hxx?$z5E*Lk^3B`Ilpm|$6TGhZRxWL^NZL-OJ8<~-Q>Iu~wJ$%QRmIdHZ#8@`y%f+Z?hQ1oaf zG;PU%>`Un|a8o)wmyia9CR3rlS}MF3oB}@#C&PvvAvqGqB$|1V&n(hM60K;Wyla31Mhya zhT3D+Fc4b9N6pqSz1A9DueXMsUDhys#2UKKS;KR@Hjo|IzzxARQ1NenPBvR8u+J8H zKwBuMX$ON#>|m^dJq&8JhwhdRaPO=Gj8ESQzwK~@IKLBo^3)0X^zMRg#k*m5iZcvO zbb$$(u5hkq4?H>S2Khhkg~clF@Y})t@MDt)v|satk3A1S$B~2Z80`=o?e>8iXh)#Z zwWH9&{Wx5=d;*#j`$2*2C!x&pDLC932v45~hH>jdpyS6gP`>9JGzt%e_jiOrUGZ=j zJRJd#yF|iHS`@67i~c)TqG8js7KJaN}2) zlAv;3GQ4k_0%aFc;F$}l@DN8DJP?}(->#&=*u&|tYd9VLlFEP!o`2_ZK?ZzzH3N#j z%7CWdGT_{D1{`{y0YmR+K&mza()}_Zp_~DiuBAi5Jsm!oPJ?>8(_mgtD*VNn3hlS2 zz)NS6VOI9vdsigFizNy09D@N1z2hOTZXEnR7X!0XqM@=z6uhzj65PA6QW+RBBM!G{2*Vg(K3Ltw2|3nSplH<( zQpV*IIU+Srk{_nX=*JUe(bO$6;MWz>9VN+%tPV0zxPhE$FDIAJ15Fb26-U# z68UXUAo)APo3zt$CX+O*NZmM;47AfB{VphwtKy>MQ&~<@RPHNr`Q;R`j&Yq(73n5o z!^?@{`zgc&iL=CRHy0xGgb8uUPKuEH`4#v1Ie@F=rsDFc7Pzza!@i)pkG=7yRgvyz z_mJ0i%4qPlU8v`Yi|7Hh4Ai@?47K>yi25#cqWU>~XeAqgmVrK$Y0-&pmup1P@lw>l zHywR>KMXCZ-i5`sDW$Kk6!B5lswTELgH_tNKZVGTo}$I#f6K=g2F0N^KdhHB%p^}qWa0> zw%183xiOM^<1=bn4>uUp=LJ7+I0}CaoP-R&Gcd$39F8!e;g;xl7|uw7 z%)B&6YtMp;_w!)Jk0RKh^|zGdQ4Qba)LffN{uJsdOvB5vv#^GH9(uff3y*ewgciPE;6b5p(7NOY3=;bd z_XMm#=3Z8+_Wb^8b(b&#KzQYql34hV2jVaGYBsTMZs%M%tV z@Z~Bz_HqS2@A(E-y}m&9mmi=hcmo&x=3sW{G%WIY0%LU_z~|$m(0u<*XfrYl8zl#z zh#djJ@h&)bss)Z8tb_L~DqyW(5mdgD4TZu}p}8sphV@56<;oD429Lp;x7?x2qyubt zZV8PSjG^l{P3XhF4wi2agccqwa2Q)4H_qQByD#^UviFNgmUS^?^A19snkZ}5)T zGL}pn;h^vU*o|`OF=z(wUeIEb5E|Jon$aOBV|l$LJMOWZNwfpA()fiCQR$bR_u_9Ev62fuqxp_n0oDg zjQi(7j1)SGG3R`-%FqBzXzVoB_3j+za6Js`I(7;3I2wi3{))!*LSnI?`*GM;5e7y_ z60k|jM9jf32{YwM##Bd=u|~fX?C?qowiu9#&E8AJW@OW_q@8J4#Hlpw;Dt17EI182 zw>J&@Pd5#F`!N;!RhEj4TBKs^V<{MLPQiq(Cu1sl$(V3_5*9F?h&>Za#NO;kz;uEc zm{C?dmfjGD-R+IV&chf?5|74oTB0ye6p2N!U&2C0E@E3EE?^II&tro3&tSLxPGj?H zftY^kDeR<#KXxqd1ol|`7g#T?kzWA6Q$*!6IAtY@1lW+|qO#mp;Uc~|7H zLH5p%Kt}f+Sd>@*%lxl^h{z0Br!oz`nm+?!Cmw^0ib){)Y8*@%-v{^8?}D4lw?M7m z4Pf#98VEi+3}gha0G{>%AmhOViV_gKdx(QwHN8OfVmHwD>IBV9Ps2p7Es=u z35p)31EoW0AbBYTP^rlvMK1|VPb7ehNCt>Ajt4a#V!>E*3|J0~2JG}GFe?xV1h0pK z;Y(p)d}}Ds7C#62K8ApxiD2MzH4yB(dU^|s(xs2wOgW)Iwg9e`8OPC$F<2*_=_ zK=h5>0P}YNu?Bkpi_~6VrQi-;Z}$Kvvc13_c5k4T?*leF9tC0>PJmB({y@_;0DP?s z2C))n!H^2IYF-WO^y&cn`bLmy&;t0kwu6iVT|ham7j$+JVEqCGJXHpP_`xB- zS#=FOdVK?E=-dJ4PTm7{ZR0@r{Up#-eFEO>ngSK)Ux2inS@5CyHJGn?1FCc11B;MF zFlPP*9Q*ne@ML@kxY!Et5B&uchgJde-5MzT!GiU^WyPwlvthe4*|9z=4s39a13Tc$ zi6uVf#0>Sgu${-au%~fc*aYKm9mAgslQ-hRBLBw1y*M$QVGgW`lLOP#V8`w$vtcim zSuhjlHIVQ78|0a+fUoV}K-{x0z^v~hkh6FTHlKL~7TjKd{qs)%zw!eR$uSBJWM2oq zcP;})I|*?5-)9eL0$h8lz~pQpke15?m)02Iib^=}tvCTp!d*cfv;?X9b-~&pNzl`< zN{c;ukG7q=g4U&ZfL6Qn2a2yFk;Ie+pZl*9yPE$H4Z3pV$-fDf{xfHC zt}c*Ne-=-Ej?5*0Sk{nM(%t0swJW6S_xohq_ZMW;??uvw{SSF6h6@_A3c=phG81~i(W-4OP!eTR2wXuc|fg@ZN+5^=`Jm4=6AE-8V0&Y3paQn-ErM`--^oZzCN7MSg{1{X(806&vB zaMUIjY*(rU_T4>ThV3fI<(~jrw`V|@#b;1@^bhb>;=ZkiYKw1L4lZe!D;Me_E}8va3~hYdl55;jrjYnL}CNsQP_!#(OAyW80-u^7TfwK z7DHO%u=wrq*r~hmnAT)gwBlss}LR3#QnefBNr z;hY6sHBZ5JmkF>YeFtp$bQNe!^#ksgeE|F24mgY&K}mEKF#J>uX3pn=0p)aXdm#b* z8I1;K+d@G%+bOWA8(06kki0KstC5t?N*BKU| zo&A{x9=)U`_l?o68Vu9+S@qH~zt+>@v0|F8Y&y+8ErzCM7)1Ny??L-=$C?)HfY4Uo zsnbF#C1_XuIcXa*7t!knAE4jOnJBMn9V*C@g;thcLYKG?pt3q!(8Wb<)NZplDkZ>* zUJZGL2nXCn;-;BMd~p{NeW?wRKGK2cY7@wZ+H1%==3|80;S17N%#B)Ylto#b^-$ZD zt*Ef1CpuVo98$njEdc9S%qEd(;(pwt9fIG9U1|$``EQK|uQXc@V=B2{tvx03Ig> z*zh|EylP1UKHgd2o=hIF9WMk6DW#xiMd4Z0wT(%KuOUHAarRKMA^Lt4SyDZ zY5qGfBmNN_JN*eH^?U*155I!(hu=VD?=m4!nf<5@gg8iq=ig_cf*sLilMpt6Rto~!cCfiuB2^SXZ;EgqKo%{o4!dJl^iQfQ^ z_z7N9KS0Nw?;yT&2`u>j2YgpPfj-ZVAhF;b=xka5!nv}nlQovH*)b0y&JR6ek} znFYq1Qh{Mi0#J8}0TbpILFC;aaNX?~P@eGsOa8k-^Pe4{s&Ernzu6eX{m=#$HN)Jv1?oDq5mb2F=eZoTlIAPWv%OqkUhLrrm4( zgj#IxMA!MAKzrriAkRJ2P4quZ_644H!TaBq;6BlJ@w>l%;h|a*#5lH|ur%F7giAOP z^$)#?O&5X*;k8I&*dT%67*8Xv&gKvbK1GC+b2%~CT}^z7ttXGI3!dmY^+%5mm=d5^sNb5<|EH@u`eX829QB?ti2SqX-USeb7sM@K7KA^KlX$ ziJRf(cl!JIR}GCRmJww0(hk&qARk>CzJp3cvC^KS3be8)KnvZshvpAY(`xS}&^%cS zXhi|_v{-4Jw*LDFEu7~O&D(B)mQO9y=5;v0j${F#w<-ZfA{2nJkS2(4)Ca>mQSjoI z1sH0x2Ifb00lB~Vq~L=?;BRpN^qGc$pla~RRJ`5VOM}YbHn?Q$t z2WU@^f}b8^-~>JatUpYGke`ph!Dj>SE3^e}zr@QY~4tO+^4xY~>0h2p%prI-ftQ$QG&Le;G>}YQ=-?Il?7`Fp0 z)0SZKb5p=Ft^*n`D}j|32~b_c3mVt0(mX^LXvxZBw5^U5Eu^NFwxF3oi-c!rUyJQ% z6j*>uT*EFmn&&jS{uYmNmOg;|h>-R9(a7ISig+9r}ikxrid4~cW&#DmoI6Pf0Q&y={7YoUsr`>DN-ayf69>|j`c(B%NQdkuxkTicdy!KN8so~y#|kVQD-W)@y6nvBWcK7K8k1ypGCGGiAJ1U6OpG+(vh*HTx7bw z81Y@IKpLLaB9&fE$c~6MB;D+9Zjs-MxMvecfdPex2lXTDZi9%x>&pnDIE1|897d+g zhY|MA!-)USVZ?ZN81ddYj7*jfA%@fyXEmy1B|=$uFFJ%f=8eg23XIEI8Qcq6-pJrLeeHzbG08Oc4p z6FDbri=3OXLWZAiMiThU5dnV;8C*kAB!l;l(64T_7 z&Bx@CQ5AXQZm%2?BqxW&+pR;6TgW2wpQRBMcPV7=83_c^#gL6n!pH_(07>=WMWV7e zkqb_&NZ7g+(}nOw)0)0n)57*i(_H84rlYC2sf%r$>7}#TripA3roZ}jnaX}vF>T%W z+yoEwG7+@f*5&g(x<|H&y?43VrZ=xIu{SQZqgQ;>lir%otbN=-rcdbn#=hUJJNo9H z9_-8ibD_^pAh~Ze9|8O#j}+d$ zO$l%7)W-KX7~y`BbUcB3JFceUgeM+w$L9wR@iL1AJmvj+d?n;FF8yQ)my%q;X_~9}Y%B|rWQ<**x=e-rubBy3jXuBAl}XLUtiAK8+{rj<$aGF{rm3HWc&QpQ+j(GoJ@kA z4w_aojF5xw(MX<7Gjg+L0`Vk&A*WhI(N&;YT5o7@TO`&VtkI|vA3A8ol9_p`r8@25^MO}N)nznXyfvXwqJ6MO-4pgEFYNhC&i~@8&PY(JgB^{kpN=Czn;!)|d z(P-nji)iTj5Hy_KANA)xjJ`oU(1>gov_sJWU4CMP4v(0lXXjDW2Qx%RhIP=(G3uy& zm?BDVmO+gr#Ll zB4dfw$Q$2UM8c^aNktkFRIV9m{@H@;9&1BliaU@(*DgfjcQ?|W+>3;;;>d_Qfdu9L zt#!3SWWJt4G{TukntngRp!$&twE-mR=m7F0W&m*s8$dGc2N2oie&o=Fe&pKZ-#sc1 z6L}~~ArC*3NI?yOXl=lel=xocdRI3x*WQV|zu1nf$h0DcF-^#QSdZuq)*xhhB_g|_ z43W(#LWt{mh}QKiHnm}bTyiPs_#kaZ5J04I^@=tGEEfE$v(W{23BSR#so zCdlSQEo687IwbUnAo4SM&Gd87oGE+ui0RFl2Ge%;B-5hruBORxlBVCT*O@4t4>eBT I=hpK-06h&}WB>pF literal 0 HcmV?d00001 diff --git a/seisflows/tests/test_data/test_preprocess/Uy_file_single_d.su.adj b/seisflows/tests/test_data/test_preprocess/Uy_file_single_d.su.adj new file mode 100644 index 0000000000000000000000000000000000000000..40625ca0d2036ce2020202f2a28867cad9ff5e8a GIT binary patch literal 20240 zcmeI%S5(zb7$9(Z?;YtKL6Dl<30J^^QUwJ>5m3YmC`BxYApO#N@4feyWO4xo#f}1E zMHEo5qW(n@6b$)fg&g(YZ^ zjiqvt^Z(F1L7e`7i2e)x6Zj|aPvD=xKY@P&{{;RC{1f;m@K4~Mz(0Y10{;a53H%fI zC-6_;pTIwXe**sm{y!6l{5zii*YkfJ`v2B1=<;}^(X?#T|R zo!jn58J9neN2>iesqD7McPQT~$NQL~cw{^vDVo@_=~vynR19|dn&1J4Pu{p^!x z^K|84a}-HrU46h7m8BsXEj$|=%{n$5UERSNGf|@)Bdlv06Z3{1Ba>|!Ga@e?Q;S`W z{(Lnq>U&c?8}kQX|NbqFz48#wzV638_Tfik?14!n`)PXyd*mHf_Jg-pB)+CV(w7%0NxOpvl5SglN=kPVO7?rClHABJNR}O&L z5)hmma2GV>%M%PQ7!cgd@mlae47<>K2~nZLpJau&?#c@-hRO&z&GQRsgnSTG9B&mo zB996h)|DiGs*X(Etihf(?{Al8wlg_R>1Ico$?gYf0nfgs73FcITdxYGzyB?oUKJ^n z9-hsfZZP*UEz`I$&E%p*+EbchN*rk?)a5ZPbg0lkIOb=FFn*^*xU8yQc%ShzVfoar z!lzu=M8Yk&L^{$rM1t@95ayM6Dtw8xMOaD8L%4t~T4-4KQ(EztnslHqkkN(OWUMvE zWH@}S%*a{n-3nGs_BCL>zuYlisXQU-tO`;30=hZ!GZx--`Qj?TC|&y&G0JS}wh zkA=va$sv(2TuQW5XQ$}!gJ{u_gQcQF?!BV6);C2J%O8n8otPF~^nET`$v-ZdltYQW zGbj{QnsO1%vFI0xnWbk~9Ne9$S23J<3lqz_yM0^M7Ll`AdOcZLIiKsZI0MKm=Lgra z6tCURN?p2{)nqc5C7IBab=o93YpQW`)~1fu%zy*xqKTSxG0mcOG52tGae1bJ`0iOx zaV#cQ9AhsKziHbbuBg=`{@4eK7d#@x<%2uL`um$*N}E1qxGo1=8VCU;#cJ2hK{WGUTPY-bP97%_XD;Zhw{by}}Qq)>{^o*x;l=Ug;Q+A=!%~s*k z{|Sal`{emabFMf`SH&7iKfK8Y{L<^)`O_V5^2Zj1 z3W(d<1=1^)1-DM@DG2{_tY9uVq`-9cLcy2G(1M#bfd$RLv*7xOMS;mS=>pG$k^IqI zp?s$Z1?h`>e@ZKMc*taKtdd!jcp{@P%_F z9g<}oWs+pK3&qL;r6AcUg`KiIMvAhEXRgQ`JkczT>oW=tkn0Q6-=-F3i{2?56y`3n z+Ooc=zsas>gT~3C-3IYRHea%fc(}@oZe`RJr8YGd1)iuc3V2gibkr%msOxG#Q4^;@ z(UMGmAuXpu+UV1g?ADOTbs2kZuj_UclGC;Ya{UoURRHX7{1QKk9x-gk?j? ztHvWG<0XT|i&vuLvNwjwL+^R{eUTd!*1}IHgxlsQjKA+zphb-M;fd>r!b9sM1vmL$^7^=U$#awV(if_KO227sF5{Pp zEt}ibShj!ny|Svcr81)wf%2pB3gs|Rw;a8Uly5LMFJ~%mF86LQFL%~P%Ik!+%2~dO zl<(AADBJp_w5-ZkuuR|DPrBQhb!tO%PKOPMk~(c zvR3Xps8H#sk5x{%yH&2Khg2p$W>lVv%c*S5DX**wZKyn2)mEt()>%0a)KR(qXHz93 ztD>^udPXHP_-y5Sx()@?@p>1 zJyi8}N~UU(WxeYBwSLtHTPIZ`*%wuh(>c`c*NUk<>QGe+S~5|SGPG6OxyMIs-PK67 z9IIPyn>RUH( zY9wnbXgqpF)9AamSEK$wxW=8tY>igXtf9>_q9L~RmBvR!c1_;(Qkoorx|;o3TQzA3 zo|>$q7c}>krfPO4m21|xc54c1-_&&7IHOrx@=G&qw}949OL;9TLQhNgiKUkNh^v-E zjlb5VJJDKKj$~*J7?x}4Z)?{w>$t47z?jh5^=v`w0lunrE}Ks~LP}bD(nno;-B}~; zk}aFHH3%o|=x4s&_7P~XE_BC9i7`UmP- zj^z)uG+%nsvVDBHrD{c>)lXZwRiw+bRs4xVtNZ-%)~TGBR>Sa|)~oyLTTdKjwuaxE zXx;GiW2=V`XWQXZl5JxqT5V=8u{OI>r?v;h$J@>_qT0fxGTNR?SF|ZKb+#S*c(v^u z`_r~q;V*3ha-8iUqhjqldR5xx=M3Ac{I<3qIJBqz@KfLRAHk9BKW$UmM}HTz-%qP+ zzroqte){m$c7f&x?F|oKw=4%%?x1$db}TW~I)e7;JTkcXThcIUn}o3wKx)NdQzWZ`k*$?^m%{1 z>9aCu+7oimR4ZWKRDNj9^vAd$@(uBe_yKYouzyWBF- z*iS1T zIZ2~Ej-X*c$Lrnwie0-IKT@coPw&|Xym z+B@~Z)etkVJKP5JhU^7C$B%=9M?*p7Kpar zK%(h2&{h5hwhXXg?+){0DTxx;sG%Yj?xT${)QvIrFmp`%q%F3S)eZZw=`fbRJ{XHS z5{X@qNWj)>WMDkS1z1sNCFXav3FE)ig9)_`V7$9;Vwph?Ff-woSdRV&Onu@9X2Qa5 z_I8Tb%!gIf%qBp_4AWLNyRN5gb~ehuj8X??zh$QVnCwj@UZ#DH4j+Wk+tEn6eONRd?TMua&BW7JSrh5cB$DZZvZ?e; z!F0O+mkfIKa2A~&lSALUF^_(EB%glUx{!XMr-=TRr-V+oDy0`4FQcQu<#apm3c8GG zCH>upO1fl16@7)Xn!a|VnqFF8O?SRkP4Bo{O}Fo?rr!^#rY}lY(|wDo=n}sx>9^^X z^e~SKy2}1?`VCqcJ>gpkJvpKQ{|lr)F7l;+l|D@8@%N-V7Ve>oR5{Y?60GT` z9XHcI`~dW1h7tYIst(=5OO4*vEJr{5Mw~7qEkHkpanPSO{xC}ze`ChE^w=y^{HEEe zDQQ-6u+hw+pwR5cOrqIDY=~LgMOU-#9>naasf<~#=n`hE{q;gOB+6i zlfhcH(3xHg-R$neq;+hR-8ngG95JB|yVz6pw|%Ipf(z8k{Rz~9ST^-5pp=>ms;Ba# zJ1OiSq%`b?sV9$aQyg3msJO{z)S>Nj)UCbmC>g;o)LoxtD&2FH$_-~_-caOVE@W{r zlb-T0_kHJM@+=52_qPf$Rc%F>v;k3O6rVVAaiawD+(t>JBA*oV?PV$Ef{Qd$|GG5u zfs71u*;a;$d&w|OU1ga08)cX*pQM?2InvAs6=~+PJSpbbH%Vr=g(Pz=M1mQZFV38= z7h|5T7iDVZi!iy*3p1tdgqUukg3SKg{7fv2j|r7|nJWFNZ2I7*10q!q2F% zFOR5Qj~`HXu8vVD_$Z~-d7IMexX%;{6?Zs=$~=}t{Rv5+np5Jb(`~Vo{?lj*7mlKCmPSxg8^b8}iF1@mVhH8DD~Mv( zJw?5j^rJdNk5fwuM<_4s5S4ZG0A*a|LB08~k8;`WMk%$qP@mOyQ-Sr4)DD^hrSj00 zYK*j|Qqk>H_|L7B_RY=I)@lnXDq#~uZwl!E{w+ch{{eqUKR^U|PGE{B(2LF5T z6>4+*2kXIS=x}BcuJ(O^g@4{bF8jAovwQ)*Sbhzq_Pl~!%RFW@-)G+Yjw zf-Eaf;rN9o(1rCeJeBeg^2kp@fsP62V?7R+U)_h@ara=X&M0)7xC7Tk-iDOHEvWPQ z2HabE9h&SLfgLi}Ao*+lF4>cCy#WC? zOX1LPtrsr7>w$hxx?$z5E*Lk^3B`Ilpm|$6TGhZRxWL^NZL-OJ8<~-Q>Iu~wJ$%QRmIdHZ#8@`y%f+Z?hQ1oaf zG;PU%>`Un|a8o)wmyia9CR3rlS}MF3oB}@#C&PvvAvqGqB$|1V&n(hM60K;Wyla31Mhya zhT3D+Fc4b9N6pqSz1A9DueXMsUDhys#2UKKS;KR@Hjo|IzzxARQ1NenPBvR8u+J8H zKwBuMX$ON#>|m^dJq&8JhwhdRaPO=Gj8ESQzwK~@IKLBo^3)0X^zMRg#k*m5iZcvO zbb$$(u5hkq4?H>S2Khhkg~clF@Y})t@MDt)v|satk3A1S$B~2Z80`=o?e>8iXh)#Z zwWH9&{Wx5=d;*#j`$2*2C!x&pDLC932v45~hH>jdpyS6gP`>9JGzt%e_jiOrUGZ=j zJRJd#yF|iHS`@67i~c)TqG8js7KJaN}2) zlAv;3GQ4k_0%aFc;F$}l@DN8DJP?}(->#&=*u&|tYd9VLlFEP!o`2_ZK?ZzzH3N#j z%7CWdGT_{D1{`{y0YmR+K&mza()}_Zp_~DiuBAi5Jsm!oPJ?>8(_mgtD*VNn3hlS2 zz)NS6VOI9vdsigFizNy09D@N1z2hOTZXEnR7X!0XqM@=z6uhzj65PA6QW+RBBM!G{2*Vg(K3Ltw2|3nSplH<( zQpV*IIU+Srk{_nX=*JUe(bO$6;MWz>9VN+%tPV0zxPhE$FDIAJ15Fb26-U# z68UXUAo)APo3zt$CX+O*NZmM;47AfB{VphwtKy>MQ&~<@RPHNr`Q;R`j&Yq(73n5o z!^?@{`zgc&iL=CRHy0xGgb8uUPKuEH`4#v1Ie@F=rsDFc7Pzza!@i)pkG=7yRgvyz z_mJ0i%4qPlU8v`Yi|7Hh4Ai@?47K>yi25#cqWU>~XeAqgmVrK$Y0-&pmup1P@lw>l zHywR>KMXCZ-i5`sDW$Kk6!B5lswTELgH_tNKZVGTo}$I#f6K=g2F0N^KdhHB%p^}qWa0> zw%183xiOM^<1=bn4>uUp=LJ7+I0}CaoP-R&Gcd$39F8!e;g;xl7|uw7 z%)B&6YtMp;_w!)Jk0RKh^|zGdQ4Qba)LffN{uJsdOvB5vv#^GH9(uff3y*ewgciPE;6b5p(7NOY3=;bd z_XMm#=3Z8+_Wb^8b(b&#KzQYql34hV2jVaGYBsTMZs%M%tV z@Z~Bz_HqS2@A(E-y}m&9mmi=hcmo&x=3sW{G%WIY0%LU_z~|$m(0u<*XfrYl8zl#z zh#djJ@h&)bss)Z8tb_L~DqyW(5mdgD4TZu}p}8sphV@56<;oD429Lp;x7?x2qyubt zZV8PSjG^l{P3XhF4wi2agccqwa2Q)4H_qQByD#^UviFNgmUS^?^A19snkZ}5)T zGL}pn;h^vU*o|`OF=z(wUeIEb5E|Jon$aOBV|l$LJMOWZNwfpA()fiCQR$bR_u_9Ev62fuqxp_n0oDg zjQi(7j1)SGG3R`-%FqBzXzVoB_3j+za6Js`I(7;3I2wi3{))!*LSnI?`*GM;5e7y_ z60k|jM9jf32{YwM##Bd=u|~fX?C?qowiu9#&E8AJW@OW_q@8J4#Hlpw;Dt17EI182 zw>J&@Pd5#F`!N;!RhEj4TBKs^V<{MLPQiq(Cu1sl$(V3_5*9F?h&>Za#NO;kz;uEc zm{C?dmfjGD-R+IV&chf?5|74oTB0ye6p2N!U&2C0E@E3EE?^II&tro3&tSLxPGj?H zftY^kDeR<#KXxqd1ol|`7g#T?kzWA6Q$*!6IAtY@1lW+|qO#mp;Uc~|7H zLH5p%Kt}f+Sd>@*%lxl^h{z0Br!oz`nm+?!Cmw^0ib){)Y8*@%-v{^8?}D4lw?M7m z4Pf#98VEi+3}gha0G{>%AmhOViV_gKdx(QwHN8OfVmHwD>IBV9Ps2p7Es=u z35p)31EoW0AbBYTP^rlvMK1|VPb7ehNCt>Ajt4a#V!>E*3|J0~2JG}GFe?xV1h0pK z;Y(p)d}}Ds7C#62K8ApxiD2MzH4yB(dU^|s(xs2wOgW)Iwg9e`8OPC$F<2*_=_ zK=h5>0P}YNu?Bkpi_~6VrQi-;Z}$Kvvc13_c5k4T?*leF9tC0>PJmB({y@_;0DP?s z2C))n!H^2IYF-WO^y&cn`bLmy&;t0kwu6iVT|ham7j$+JVEqCGJXHpP_`xB- zS#=FOdVK?E=-dJ4PTm7{ZR0@r{Up#-eFEO>ngSK)Ux2inS@5CyHJGn?1FCc11B;MF zFlPP*9Q*ne@ML@kxY!Et5B&uchgJde-5MzT!GiU^WyPwlvthe4*|9z=4s39a13Tc$ zi6uVf#0>Sgu${-au%~fc*aYKm9mAgslQ-hRBLBw1y*M$QVGgW`lLOP#V8`w$vtcim zSuhjlHIVQ78|0a+fUoV}K-{x0z^v~hkh6FTHlKL~7TjKd{qs)%zw!eR$uSBJWM2oq zcP;})I|*?5-)9eL0$h8lz~pQpke15?m)02Iib^=}tvCTp!d*cfv;?X9b-~&pNzl`< zN{c;ukG7q=g4U&ZfL6Qn2a2yFk;Ie+pZl*9yPE$H4Z3pV$-fDf{xfHC zt}c*Ne-=-Ej?5*0Sk{nM(%t0swJW6S_xohq_ZMW;??uvw{SSF6h6@_A3c=phG81~i(W-4OP!eTR2wXuc|fg@ZN+5^=`Jm4=6AE-8V0&Y3paQn-ErM`--^oZzCN7MSg{1{X(806&vB zaMUIjY*(rU_T4>ThV3fI<(~jrw`V|@#b;1@^bhb>;=ZkiYKw1L4lZe!D;Me_E}8va3~hYdl55;jrjYnL}CNsQP_!#(OAyW80-u^7TfwK z7DHO%u=wrq*r~hmnAT)gwBlss}LR3#QnefBNr z;hY6sHBZ5JmkF>YeFtp$bQNe!^#ksgeE|F24mgY&K}mEKF#J>uX3pn=0p)aXdm#b* z8I1;K+d@G%+bOWA8(06kki0KstC5t?N*BKU| zo&A{x9=)U`_l?o68Vu9+S@qH~zt+>@v0|F8Y&y+8ErzCM7)1Ny??L-=$C?)HfY4Uo zsnbF#C1_XuIcXa*7t!knAE4jOnJBMn9V*C@g;thcLYKG?pt3q!(8Wb<)NZplDkZ>* zUJZGL2nXCn;-;BMd~p{NeW?wRKGK2cY7@wZ+H1%==3|80;S17N%#B)Ylto#b^-$ZD zt*Ef1CpuVo98$njEdc9S%qEd(;(pwt9fIG9U1|$``EQK|uQXc@V=B2{tvx03Ig> z*zh|EylP1UKHgd2o=hIF9WMk6DW#xiMd4Z0wT(%KuOUHAarRKMA^Lt4SyDZ zY5qGfBmNN_JN*eH^?U*155I!(hu=VD?=m4!nf<5@gg8iq=ig_cf*sLilMpt6Rto~!cCfiuB2^SXZ;EgqKo%{o4!dJl^iQfQ^ z_z7N9KS0Nw?;yT&2`u>j2YgpPfj-ZVAhF;b=xka5!nv}nlQovH*)b0y&JR6ek} znFYq1Qh{Mi0#J8}0TbpILFC;aaNX?~P@eGsOa8k-^Pe4{s&Ernzu6eX{m=#$HN)Jv1?oDq5mb2F=eZoTlIAPWv%OqkUhLrrm4( zgj#IxMA!MAKzrriAkRJ2P4quZ_644H!TaBq;6BlJ@w>l%;h|a*#5lH|ur%F7giAOP z^$)#?O&5X*;k8I&*dT%67*8Xv&gKvbK1GC+b2%~CT}^z7ttXGI3!dmY^+%5mm=d5^sNb5<|EH@u`eX829QB?ti2SqX-USeb7sM@K7KA^KlX$ ziJRf(cl!JIR}GCRmJww0(hk&qARk>CzJp3cvC^KS3be8)KnvZshvpAY(`xS}&^%cS zXhi|_v{-4Jw*LDFEu7~O&D(B)mQO9y=5;v0j${F#w<-ZfA{2nJkS2(4)Ca>mQSjoI z1sH0x2Ifb00lB~Vq~L=?;BRpN^qGc$pla~RRJ`5VOM}YbHn?Q$t z2WU@^f}b8^-~>JatUpYGke`ph!Dj>SE3^e}zr@QY~4tO+^4xY~>0h2p%prI-ftQ$QG&Le;G>}YQ=-?Il?7`Fp0 z)0SZKb5p=Ft^*n`D}j|32~b_c3mVt0(mX^LXvxZBw5^U5Eu^NFwxF3oi-c!rUyJQ% z6j*>uT*EFmn&&jS{uYmNmOg;|h>-R9(a7ISig+9r}ikxrid4~cW&#DmoI6Pf0Q&y={7YoUsr`>DN-ayf69>|j`c(B%NQdkuxkTicdy!KN8so~y#|kVQD-W)@y6nvBWcK7K8k1ypGCGGiAJ1U6OpG+(vh*HTx7bw z81Y@IKpLLaB9&fE$c~6MB;D+9Zjs-MxMvecfdPex2lXTDZi9%x>&pnDIE1|897d+g zhY|MA!-)USVZ?ZN81ddYj7*jfA%@fyXEmy1B|=$uFFJ%f=8eg23XIEI8Qcq6-pJrLeeHzbG08Oc4p z6FDbri=3OXLWZAiMiThU5dnV;8C*kAB!l;l(64T_7 z&Bx@CQ5AXQZm%2?BqxW&+pR;6TgW2wpQRBMcPV7=83_c^#gL6n!pH_(07>=WMWV7e zkqb_&NZ7g+(}nOw)0)0n)57*i(_H84rlYC2sf%r$>7}#TripA3roZ}jnaX}vF>T%W z+yoEwG7+@f*5&g(x<|H&y?43VrZ=xIu{SQZqgQ;>lir%otbN=-rcdbn#=hUJJNo9H z9_-8ibD_^pAh~Ze9|8O#j}+d$ zO$l%7)W-KX7~y`BbUcB3JFceUgeM+w$L9wR@iL1AJmvj+d?n;FF8yQ)my%q;X_~9}Y%B|rWQ<**x=e-rubBy3jXuBAl}XLUtiAK8+{rj<$aGF{rm3HWc&QpQ+j(GoJ@kA z4w_aojF5xw(MX<7Gjg+L0`Vk&A*WhI(N&;YT5o7@TO`&VtkI|vA3A8ol9_p`r8@25^MO}N)nznXyfvXwqJ6MO-4pgEFYNhC&i~@8&PY(JgB^{kpN=Czn;!)|d z(P-nji)iTj5Hy_KANA)xjJ`oU(1>gov_sJWU4CMP4v(0lXXjDW2Qx%RhIP=(G3uy& zm?BDVmO+gr#Ll zB4dfw$Q$2UM8c^aNktkFRIV9m{@H@;9&1BliaU@(*DgfjcQ?|W+>3;;;>d_Qfdu9L zt#!3SWWJt4G{TukntngRp!$&twE-mR=m7F0W&m*s8$dGc2N2oie&o=Fe&pKZ-#sc1 z6L}~~ArC*3NI?yOXl=lel=xocdRI3x*WQV|zu1nf$h0DcF-^#QSdZuq)*xhhB_g|_ z43W(#LWt{mh}QKiHnm}bTyiPs_#kaZ5J04I^@=tGEEfE$v(W{23BSR#so zCdlSQEo687IwbUnAo4SM&Gd87oGE+ui0RFl2Ge%;B-5hruBORxlBVCT*O@4t4>eBT I=hpK-06h&}WB>pF literal 0 HcmV?d00001 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 new file mode 100644 index 00000000..2850366a --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 @@ -0,0 +1 @@ +EVENT 1 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 new file mode 100644 index 00000000..528a18ac --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 @@ -0,0 +1 @@ +EVENT 2 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 new file mode 100644 index 00000000..e41bec6c --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 @@ -0,0 +1 @@ +EVENT 3 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 new file mode 100644 index 00000000..ccb69325 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 @@ -0,0 +1 @@ +EVENT 4 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 new file mode 100644 index 00000000..0cea6274 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 @@ -0,0 +1 @@ +EVENT 5 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 new file mode 100644 index 00000000..52c713f0 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 @@ -0,0 +1 @@ +EVENT 6 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/Par_file b/seisflows/tests/test_data/test_solver/mainsolver/DATA/Par_file new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/Par_file @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS b/seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS new file mode 100644 index 00000000..7cffad4d --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS @@ -0,0 +1 @@ + ABC XX -99.999 -66.666 0.0 0.0 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/bin/xcombine_sem b/seisflows/tests/test_data/test_solver/mainsolver/bin/xcombine_sem new file mode 100755 index 00000000..969a4d93 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/bin/xcombine_sem @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xcombine_sem" + diff --git a/seisflows/tests/test_data/test_solver/mainsolver/bin/xmeshfem2D b/seisflows/tests/test_data/test_solver/mainsolver/bin/xmeshfem2D new file mode 100755 index 00000000..149ca704 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/bin/xmeshfem2D @@ -0,0 +1,2 @@ +#!/bin/bash -e +echo "xmeshfem2D" diff --git a/seisflows/tests/test_data/test_solver/mainsolver/bin/xsmooth_sem b/seisflows/tests/test_data/test_solver/mainsolver/bin/xsmooth_sem new file mode 100755 index 00000000..376b4aa5 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/bin/xsmooth_sem @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xsmooth_sem" + diff --git a/seisflows/tests/test_data/test_solver/mainsolver/bin/xspecfem2D b/seisflows/tests/test_data/test_solver/mainsolver/bin/xspecfem2D new file mode 100755 index 00000000..e50c2b0b --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/bin/xspecfem2D @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xspecfem2D" + diff --git a/seisflows/tests/test_data/test_file_formats/proc000000_rho_vp_vs.dat b/seisflows/tests/test_data/test_tools/test_file_formats/proc000000_rho_vp_vs.dat similarity index 100% rename from seisflows/tests/test_data/test_file_formats/proc000000_rho_vp_vs.dat rename to seisflows/tests/test_data/test_tools/test_file_formats/proc000000_rho_vp_vs.dat diff --git a/seisflows/tests/test_data/test_file_formats/proc000000_vp.bin b/seisflows/tests/test_data/test_tools/test_file_formats/proc000000_vp.bin similarity index 100% rename from seisflows/tests/test_data/test_file_formats/proc000000_vp.bin rename to seisflows/tests/test_data/test_tools/test_file_formats/proc000000_vp.bin diff --git a/seisflows/tests/test_data/test_file_formats/proc000000_vs.bin b/seisflows/tests/test_data/test_tools/test_file_formats/proc000000_vs.bin similarity index 100% rename from seisflows/tests/test_data/test_file_formats/proc000000_vs.bin rename to seisflows/tests/test_data/test_tools/test_file_formats/proc000000_vs.bin diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py new file mode 100644 index 00000000..aace73ae --- /dev/null +++ b/seisflows/tests/test_preprocess.py @@ -0,0 +1,95 @@ +""" +Test the ability of the Solver module to interact with various versions of +SPECFEM +""" +import os +import pytest +from glob import glob +from seisflows.config import ROOT_DIR +from seisflows.preprocess.default import Default + + +TEST_DATA = os.path.join(ROOT_DIR, "tests", "test_data", "test_preprocess") + + +def test_read(): + """ + Test that we can read SPECFEM generated synthetics with the preprocess mod. + """ + # If new data formats are added to preprocess, they need to be tested + tested_data_formats = ["ASCII", "SU"] + preprocess = Default() + assert(set(tested_data_formats) == set(preprocess._acceptable_data_formats)) + + preprocess = Default(data_format="ascii") + st1 = preprocess.read(os.path.join(TEST_DATA, "AA.S0001.BXY.semd")) + + preprocess = Default(data_format="su") + st2 = preprocess.read(os.path.join(TEST_DATA, "Uy_file_single_d.su")) + + assert(st1[0].stats.npts == st2[0].stats.npts) + + +def test_write(tmpdir): + """ + Make sure we can write both data formats + """ + # If new data formats are added to preprocess, they need to be tested + tested_data_formats = ["ASCII", "SU"] + preprocess = Default() + assert(set(tested_data_formats) == set(preprocess._acceptable_data_formats)) + + preprocess = Default(data_format="ascii") + st1 = preprocess.read(os.path.join(TEST_DATA, "AA.S0001.BXY.semd")) + preprocess.write(st1, fid=os.path.join(tmpdir, "test_stream_ascii")) + + preprocess.data_format = "SU" + preprocess.write(st1, fid=os.path.join(tmpdir, "test_stream_su")) + + +def test_initialize_adjoint_traces(tmpdir): + """ + Make sure we can write empty adjoint sources expected by SPECFEM + """ + preprocess = Default(data_format="ascii") + data_filenames = glob(os.path.join(TEST_DATA, "*semd")) + preprocess.initialize_adjoint_traces(data_filenames=data_filenames, + output=tmpdir) + + preprocess.data_format = "SU" + data_filenames = glob(os.path.join(TEST_DATA, "*su")) + preprocess.initialize_adjoint_traces(data_filenames=data_filenames, + output=tmpdir) + + assert(len(glob(os.path.join(tmpdir, "*"))) == 2) + for fid in glob(os.path.join(tmpdir, "*")): + assert(fid.endswith(".adj")) + + +def test_quantify_misfit(tmpdir): + """ + Quantify misfit with some example data + """ + preprocess = Default(data_format="ascii", misfit="waveform", + adjoint="waveform", path_preprocess=tmpdir) + preprocess.setup() + + data_filenames = glob(os.path.join(TEST_DATA, "*semd")) + preprocess.quantify_misfit( + observed=data_filenames, synthetic=data_filenames, + write_residuals=os.path.join(tmpdir, "residuals_ascii"), + write_adjsrcs=tmpdir + ) + + preprocess.data_format = "SU" + data_filenames = glob(os.path.join(TEST_DATA, "*su")) + preprocess.quantify_misfit( + observed=data_filenames, synthetic=data_filenames, + write_residuals=os.path.join(tmpdir, "residuals_su"), + write_adjsrcs=tmpdir + ) + + assert(len(glob(os.path.join(tmpdir, "*"))) == 4) + residuals = open(os.path.join(tmpdir, "residuals_ascii")).readlines() + assert(len(residuals) == 1) + assert(float(residuals[0]) == 0) diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index 17009b1e..7fefb361 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -5,13 +5,9 @@ import os import pytest from glob import glob -from seisflows.tools.specfem import Model -from seisflows.config import ROOT_DIR, NAMES, CFGPATHS - +from seisflows.config import ROOT_DIR +from seisflows.tools.utils import set_task_id from seisflows.solver.specfem import Specfem -from seisflows.solver.specfem2d import Specfem2D -from seisflows.solver.specfem3d import Specfem3D -from seisflows.solver.specfem3d_globe import Specfem3DGlobe TEST_DATA = os.path.join(ROOT_DIR, "tests", "test_data", "test_solver") @@ -20,6 +16,8 @@ def test_taskid(): """ Make sure that task id returns correctly + + TODO move this into test_utils """ solver = Specfem() assert(solver.taskid == 0) @@ -45,10 +43,50 @@ def test_source_names(): assert(source_names == solver.source_names) -def test_data_filenames(): +def test_initialize_working_directory(tmpdir): """ Test that data filenames are returned correctly """ - sources = os.path.join(TEST_DATA, "test_solver", "sources") - solver = Specfem(path_specfem_data=sources, source_prefix="CMTSOLUTION") - pytest.set_trace() \ No newline at end of file + specfem_data = os.path.join(TEST_DATA, "mainsolver", "DATA") + specfem_bin = os.path.join(TEST_DATA, "mainsolver", "bin") + + solver = Specfem(path_specfem_data=specfem_data, + path_specfem_bin=specfem_bin, + source_prefix="CMTSOLUTION", workdir=tmpdir + ) + + assert(not os.path.exists(solver.path.mainsolver)) + + # Set the environment task id so that the logger doesn't throw warnings + # about not finding the task id + set_task_id(0) + + # Generate the required directory structure + solver._initialize_working_directory(cwd=tmpdir) + + # Simple checks to make sure the directory structure was set up properly + assert(os.path.islink(solver.path.mainsolver)) + assert(os.path.exists(solver.cwd)) + assert(glob(os.path.join(solver.cwd, "*"))) + event_fid = os.path.join(solver.cwd, "DATA", "CMTSOLUTION") + assert(os.path.islink(event_fid)) + event_line = open(event_fid).readlines()[0].strip() + assert(event_line == "EVENT 1") + + +def test_run_binary(): + """ + Just run a known and intentially incorrect binary with the run binary + function to check that we can, and that error catching is working + """ + solver = Specfem() + solver._run_binary(executable="echo hello world") + + # Executables that don't exist will not run + with pytest.raises(SystemExit): + solver._run_binary(executable="gobbledigook") + + # Executables that do exist but error out (e.g., with invalid options) will + # also throw an error + with pytest.raises(SystemExit): + solver._run_binary(executable="ls -//daflkjeaf") diff --git a/seisflows/tests/test_tools.py b/seisflows/tests/test_tools.py index a5188056..cccd1fc9 100644 --- a/seisflows/tests/test_tools.py +++ b/seisflows/tests/test_tools.py @@ -18,13 +18,15 @@ def test_specfem_model(tmpdir): TODO eventually we want to split this into multiple tests that test each TODO of the IO formats (binary, adios etc.). Currently only testing binary. """ + model_data = os.path.join(TEST_DIR, "test_data", "test_tools", + "test_file_formats") + # Make sure that multiple acceptable file extensions throw error with pytest.raises(AssertionError): - m = Model(path=os.path.join(TEST_DIR, "test_data", "test_file_formats"), - read=True) + Model(path=model_data) + # Check that model values are read in correctly - m = Model(path=os.path.join(TEST_DIR, "test_data", "test_file_formats"), - read=True, fmt=".bin") + m = Model(path=model_data, fmt=".bin") assert(m.ngll[0] == 40000) assert(m.nproc == 1) assert("vp" in m.model.keys()) diff --git a/seisflows/tools/unix.py b/seisflows/tools/unix.py index abb82e51..5575c863 100644 --- a/seisflows/tools/unix.py +++ b/seisflows/tools/unix.py @@ -8,7 +8,7 @@ import random import shutil import socket - +import subprocess from seisflows.tools.utils import iterable @@ -224,7 +224,7 @@ def touch(filename, times=None): def which(name): """ - Shows the full path of shell commands + Shows the full path of shell commands and executables :type name: str :param name: name of shell command to check @@ -245,3 +245,30 @@ def isexe(file): else: return None + +def nproc(): + """ + Get the number of processors available. Same as calling 'nproc' from + Linux command line. + + :rtype: int + :return: number of processors + :raises EnvironmentError: if nproc cannot be determined + """ + # Method 1 calls 'nproc'. May fail and return '' if 'nproc' not avail. + _nproc = subprocess.run("nproc", shell=True, text=True, + stdout=subprocess.PIPE).stdout.strip() + # Method 2 checks /proc/cpuinfo + if not _nproc: + if os.path.exists("/proc/cpuinfo"): + processors = 0 + lines = open("/proc/cpuinfo", "r").readlines() + for line in lines: + if line.startswith("processor"): + processors += 1 + if processors: + _nproc = processors + if not _nproc: + raise EnvironmentError("Could not access 'nproc' information on system") + + return int(_nproc) diff --git a/seisflows/tools/utils.py b/seisflows/tools/utils.py index 6797444d..fe602433 100644 --- a/seisflows/tools/utils.py +++ b/seisflows/tools/utils.py @@ -4,16 +4,57 @@ """ import os import re -import time import yaml -import subprocess import numpy as np -from importlib import import_module -from pkgutil import find_loader from seisflows.core import Dict from seisflows import logger +def log_status(func): + """ + Decorator function that logs the completion status of a function to a + state file. This is used for checkpointing a workflow and resuming + failed workflows without repeating computational intense tasks + """ + STATE_FILE = os.path.join(os.getcwd(), "sfstatefile") + + def logged_func(): + """Log the completion status of the function""" + try: + func() + with open(STATE_FILE, "a") as f: + f.write(f"{func.__name__}\tCOMPLETED") + except Exception as e: + f.write(f"{func.__name__}\tFAILED") + logger.error(e) + raise + + lines = open(STATE_FILE, "r").readlines() + for line in lines: + function, status = line.split(" ") + if func.__name__ == function: + if status == "COMPLETE": + return + elif status == "FAILED": + return logged_func() + else: + return logged_func() + + +def set_task_id(task_id): + """ + Set the SEISFLOWS_TASKID in os environs + + .. note:: + Mostly used for debugging/testing purposes as a way of mimicing + system.run() assigning task ids to child processes + + :type task_id: int + :param task_id: integer task id to assign to the current working environment + """ + os.environ["SEISFLOWS_TASKID"] = str(task_id) + + def get_task_id(): """ Task IDs are assigned to each child process spawned by the system module @@ -109,51 +150,3 @@ def number_fid(fid, i=0): new_fid = fid_only.replace(ext, new_ext) return new_fid - -def nproc(): - """ - Get the number of processors available - - :rtype: int - :return: number of processors - """ - try: - return _nproc_method1() - except EnvironmentError: - return _nproc_method2() - - -def _nproc_method1(): - """ - Used subprocess to determine the number of processeors available - - :rtype: int - :return: number of processors - """ - # Check if the command `nproc` works - if not subprocess.getstatusoutput('nproc')[0] == 0: - raise EnvironmentError - - num_proc = int(subprocess.getstatusoutput('nproc')[1]) - - return num_proc - - -def _nproc_method2(): - """ - Get number of processors using /proc/cpuinfo - - Bryant: This doesnt work? - - :rtype: int - :return: number of processors - """ - if not os.path.exists('/proc/cpuinfo'): - raise EnvironmentError - - stdout = subprocess.check_output( - "cat /proc/cpuinfo | awk '/^processor/{print $3}'", shell=True) - num_proc = len(stdout.split('\n')) - - return num_proc - diff --git a/seisflows/workflow/forward_test.py b/seisflows/workflow/forward_test.py index a14d7e2a..bfdf17d7 100644 --- a/seisflows/workflow/forward_test.py +++ b/seisflows/workflow/forward_test.py @@ -2,12 +2,16 @@ Test workflow to see if a new form of seisflows workflow can be used """ import os +from glob import glob from seisflows import logger from seisflows.config import import_seisflows from seisflows.tools import msg +from seisflows.tools.utils import log_status +from seisflows.config import config_logger # Standard SeisFlows setup, makes modules global variables to the workflow pars, modules = import_seisflows() +# config_logger(level=pars.log_level, filename=pars.path_log_ system, preprocess, solver, postprocess, optimize = modules @@ -42,6 +46,35 @@ def evaluate_objective_function(path_model): ) +@log_status +def run_forward_simulation(path_model): + """ + + """ + # Run the forward simulation with the given input model + solver.import_model(path_model=path_model) + solver.forward_simulation( + save_traces=os.path.join(solver.cwd, "traces", "syn"), + export_traces=os.path.join(pars.path_output, solver.source_name, "syn") + ) + + +@log_status +def quantify_misfit(): + """ + Quantify the data-synthetic misfit, write residuals to scratch for use in + potential optimization, generate adjoint sources required for adjoint + simulations + """ + preprocess.quantify_misfit( + observed=solver.data_filenames(choice="obs"), + synthetics=solver.data_filenames(choice="syn"), + write_adjsrcs=os.path.join(solver.cwd, "traces", "adj"), + write_residuals=os.path.join(pars.path_eval_grad, solver.source_name) + ) + preprocess.sum_residuals(files=glob(os.path.join(pars.path_eval_grad, "*"))) + + if __name__ == "__main__": # Begin the forward simulation workflow logger.info(msg.mjr("Starting forward simulation workflow")) From 64d87984090a33a1568cf47463e551ce8d944279 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 13 Jul 2022 19:25:43 -0800 Subject: [PATCH 067/195] workin g on new forward workflow which is given in script form rather than class definition. --- seisflows/preprocess/default.py | 110 +++---- seisflows/solver/specfem.py | 119 ++------ seisflows/solver/specfem2d.py | 7 +- seisflows/solver/specfem3d.py | 7 +- seisflows/solver/specfem3d_globe.py | 305 +++++++++----------- seisflows/system/runscripts/run_function.py | 1 - seisflows/system/slurm.py | 2 +- seisflows/system/workstation.py | 89 +++--- seisflows/tools/utils.py | 27 +- seisflows/workflow/forward_test.py | 42 +-- 10 files changed, 294 insertions(+), 415 deletions(-) diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 96057a24..e103f9e8 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -20,10 +20,59 @@ class Default: """ - Default SeisFlows preprocessing class - - Provides data processing functions for seismic traces, with options for - data misfit, filtering, normalization and muting + [preprocess.default] SeisFlows preprocessing module provides data processing + functions for seismic traces, with options for data misfit, filtering, + normalization and muting. + + :type data_format: str + :param data_format: data format for reading traces into memory. For + available see: seisflows.plugins.preprocess.readers + :type misfit: str + :param misfit: misfit function for waveform comparisons. For available + see seisflows.plugins.preprocess.misfit + :type backproject: str + :param backproject: backprojection function for migration, or the + objective function in FWI. For available see + seisflows.plugins.preprocess.adjoint + :type normalize: str + :param normalize: Data normalization parameters used to normalize the + amplitudes of waveforms. Choose from two sets: + ENORML1: normalize per event by L1 of traces; OR + ENORML2: normalize per event by L2 of traces; + & + TNORML1: normalize per trace by L1 of itself; OR + TNORML2: normalize per trace by L2 of itself + :type filter: str + :param filter: Data filtering type, available options are: + BANDPASS (req. MIN/MAX PERIOD/FREQ); + LOWPASS (req. MAX_FREQ or MIN_PERIOD); + HIGHPASS (req. MIN_FREQ or MAX_PERIOD) + :type min_period: float + :param min_period: Minimum filter period applied to time series. + See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they + will overwrite PERIOD parameters. + :type max_period: float + :param max_period: Maximum filter period applied to time series. See + also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will + overwrite PERIOD parameters. + :type min_freq: float + :param min_freq: Maximum filter frequency applied to time series, + See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, + they will overwrite PERIOD parameters. + :type max_freq: float + :param max_freq: Maximum filter frequency applied to time series, + See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, + they will overwrite PERIOD parameters. + :type mute: list + :param mute: Data mute parameters used to zero out early / late + arrivals or offsets. Choose any number of: + EARLY: mute early arrivals; + LATE: mute late arrivals; + SHORT: mute short source-receiver distances; + LONG: mute long source-receiver distances + :type path_preprocess: str + :param path_preprocess: scratch path for all preprocessing processes, + including saving files """ def __init__(self, data_format="ascii", misfit="waveform", adjoint="waveform", normalize=None, filter=None, @@ -34,55 +83,7 @@ def __init__(self, data_format="ascii", misfit="waveform", """ Preprocessing module parameters - :type data_format: str - :param data_format: data format for reading traces into memory. For - available see: seisflows.plugins.preprocess.readers - :type misfit: str - :param misfit: misfit function for waveform comparisons. For available - see seisflows.plugins.preprocess.misfit - :type backproject: str - :param backproject: backprojection function for migration, or the - objective function in FWI. For available see - seisflows.plugins.preprocess.adjoint - :type normalize: str - :param normalize: Data normalization parameters used to normalize the - amplitudes of waveforms. Choose from two sets: - ENORML1: normalize per event by L1 of traces; OR - ENORML2: normalize per event by L2 of traces; - & - TNORML1: normalize per trace by L1 of itself; OR - TNORML2: normalize per trace by L2 of itself - :type filter: str - :param filter: Data filtering type, available options are: - BANDPASS (req. MIN/MAX PERIOD/FREQ); - LOWPASS (req. MAX_FREQ or MIN_PERIOD); - HIGHPASS (req. MIN_FREQ or MAX_PERIOD) - :type min_period: float - :param min_period: Minimum filter period applied to time series. - See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they - will overwrite PERIOD parameters. - :type max_period: float - :param max_period: Maximum filter period applied to time series. See - also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will - overwrite PERIOD parameters. - :type min_freq: float - :param min_freq: Maximum filter frequency applied to time series, - See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, - they will overwrite PERIOD parameters. - :type max_freq: float - :param max_freq: Maximum filter frequency applied to time series, - See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, - they will overwrite PERIOD parameters. - :type mute: list - :param mute: Data mute parameters used to zero out early / late - arrivals or offsets. Choose any number of: - EARLY: mute early arrivals; - LATE: mute late arrivals; - SHORT: mute short source-receiver distances; - LONG: mute long source-receiver distances - :type path_preprocess: str - :param path_preprocess: scratch path for all preprocessing processes, - including saving files + """ self.data_format = data_format.upper() self.misfit = misfit @@ -311,6 +312,9 @@ def _rename_as_adjoint_source(self, fid): Rename synthetic waveforms into filenames consistent with how SPECFEM expects adjoint sources to be named. Usually this just means adding a '.adj' to the end of the filename + + TODO how does SPECFEM3D_GLOBE expect this? filenames end with .sem.ascii + so the .ascii will get replaced. Is that okay? """ if not fid.endswith(".adj"): if self.data_format.upper() == "SU": diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 19a477b1..134f57f4 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -32,7 +32,10 @@ class Specfem: """ - SPECFEM interface shared between 2D/3D/3D_GLOBE implementations. + [solver.specfem] SPECFEM interface shared between 2D/3D/3D_GLOBE + implementations providing generalized interface to establish SPECFEM + working directories, call SPECFEM binaries, and keep track of a number of + parallel processes. :type case: str :param case: determine the type of workflow we will attempt @@ -87,13 +90,14 @@ class Specfem: :param path_output: shared output directory on disk for more permanent storage of solver related files such as traces, kernels, gradients. """ - def __init__(self, case="data", data_format="ascii", materials="elastic", + def __init__(self, case="data", data_format="ascii", materials="acoustic", density=False, nproc=1, ntask=1, attenuation=False, components="ZNE", solver_io="fortran_binary", source_prefix=None, mpiexec=None, workdir=os.getcwd(), - path_solver=None, path_data=None, path_specfem_bin=None, - path_specfem_data=None, path_model_init=None, - path_model_true=None, path_output=None, **kwargs): + path_solver=None, path_eval_grad=None, path_data=None, + path_specfem_bin=None, path_specfem_data=None, + path_model_init=None, path_model_true=None, path_output=None, + **kwargs): """Set default SPECFEM interface parameters""" self.case = case self.data_format = data_format @@ -110,6 +114,8 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", # Define internally used directory structure self.path = Dict( scratch=path_solver or os.path.join(workdir, "scratch", "solver"), + eval_grad=path_eval_grad or + os.path.join(workdir, "scratch", "evalgrad"), data=path_data or os.path.join(workdir, "SFDATA"), output=path_output or os.path.join(workdir, "output"), specfem_bin=path_specfem_bin, @@ -136,7 +142,7 @@ def __init__(self, case="data", data_format="ascii", materials="elastic", self._available_data_formats = ["ASCII", "SU"] self._required_binaries = ["xspecfem2D", "xmeshfem2D", "xcombine_sem", "xsmooth_sem"] - self._acceptable_source_prefix = ["SOURCE", "FORCE", "FORCESOLUTION"] + self._acceptable_source_prefixes = ["SOURCE", "FORCE", "FORCESOLUTION"] def check(self): """ @@ -184,12 +190,6 @@ def check(self): f"bin/{fid} does not exist but is required by SeisFlows solver" ) - # Check that the 'case' variable matches required models - if self.case.upper() == "SYNTHETIC": - assert(os.path.exists(self.path.model_true)), ( - f"solver.case == 'synthetic' requires `path.model_true`" - ) - # Check that model type is set correctly in the Par_file model_type = getpar(key="MODEL", file=os.path.join(self.path.specfem_data, @@ -197,6 +197,16 @@ def check(self): assert(model_type in self._available_model_types), \ f"{model_type} not in available types {self._available_model_types}" + # Check that the 'case' variable matches required models + if self.case.upper() == "SYNTHETIC": + assert(os.path.exists(self.path.model_true)), ( + f"solver.case == 'synthetic' requires `path_model_true`" + ) + + assert(self.path.model_init is not None and + os.path.exists(self.path.model_init)), \ + f"`path_model_init` is required for the solver, but does not exist" + # Check that the number of tasks/events matches the number of events self._source_names = self._check_source_names() @@ -365,12 +375,9 @@ def setup(self): unix.mkdir(self.path.output) for key in self._parameters: src = glob(os.path.join(self.path.model_init, f"*{key}.bin")) - dst = os.path.join(self.path.output, "MODEL_INIT", "") + dst = os.path.join(self.path.output, "MODEL_INIT") unix.cp(src, dst) - # TODO move this into workflow.migration - # self._initialize_adjoint_traces() - # def generate_data(self, save_traces=False): # """ # Generates observation data to be compared to synthetics. This must @@ -460,80 +467,6 @@ def import_data(self): dst = os.path.join(self.cwd, "traces", "obs") unix.cp(src, dst) - # - # def eval_func(self, path, preprocess=None): - # """ - # Performs forward simulations and evaluates the misfit function using - # the preprocess module. solver.eval_func is bundled with - # preprocess.prepare_eval_grad because they are meant to be run serially - # so it is better to lump them together into a single allocation. - # - # .. note:: - # This task should be run in parallel by system.run() - # - # :type path: str - # :param path: directory from which model is imported and where residuals - # will be exported - # :type preprocess: instance - # :param preprocess: SeisFlows preprocess module which can be used to - # prepare gradient evaluation by comparing misfit and creating - # adjoint sources. If None, only forward simulations will be - # performed - # """ - # unix.cd(self.cwd) - # - # if self.taskid == 0: - # logger.info("running forward simulations") - # - # self._import_model(path) - # self._forward(output_path=os.path.join("traces", "syn")) - # - # if preprocess: - # if self.taskid == 0: - # logger.debug("call preprocess to prepare gradient evaluation") - # preprocess.prepare_eval_grad(cwd=self.cwd, taskid=self.taskid, - # source_name=self.source_name, - # filenames=self.data_filenames - # ) - # self._export_residuals(path) - - # def eval_grad(self, path, export_traces=False): - # """ - # Evaluates gradient by carrying out adjoint simulations. - # - # .. note:: - # It is expected that eval_func() has already been run as this - # function looks for adjoint sources in 'cwd/traces/adj' - # - # :type path: str - # :param path: directory from which model is imported - # :type export_traces: bool - # :param export_traces: if True, save traces to OUTPUT. - # if False, discard traces - # """ - # unix.cd(self.cwd) - # - # if self.taskid == 0: - # logger.debug("running adjoint simulations") - # - # # Check to make sure that preprocessing module created adjoint traces - # adjoint_traces_wildcard = os.path.join("traces", "adj", "*") - # if not glob(adjoint_traces_wildcard): - # print(msg.cli(f"Event {self.source_name} has no adjoint traces, " - # f"which will lead to an external solver error. " - # f"Please check that solver.eval_func() executed " - # f"properly", border="=", header="solver error") - # ) - # sys.exit(-1) - # - # self._adjoint() - # self._export_kernels(path) - # - # if export_traces: - # self._export_traces(path=os.path.join(path, "traces", "syn"), - # prefix="traces/syn") - # self._export_traces(path=os.path.join(path, "traces", "adj"), - # prefix="traces/adj") def forward_simulation(self, executables=None, save_traces=False, export_traces=False): @@ -886,11 +819,11 @@ def _initialize_working_directory(self, cwd=None): # Allow this function to be called on system or in serial if cwd is None: cwd = self.cwd - _source_name = os.path.basename(cwd) - taskid = self.source_names.index(_source_name) + taskid = self.taskid else: cwd = self.cwd - taskid = self.taskid + _source_name = os.path.basename(cwd) + taskid = self.source_names.index(_source_name) if taskid == 0: logger.info(f"initializing {self.ntask} solver directories") diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index e536b1be..18176407 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -15,7 +15,7 @@ class Specfem2D(Specfem): """ - SPECFEM2D-specific parameters + [solver.specfem2d] SPECFEM2D-specific alterations to the base SPECFEM module :type source_prefix: str :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults @@ -34,10 +34,9 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": - self._parameters.append("vp") + self._parameters += ["vp"] elif self.materials.upper() == "ELASTIC": - self._parameters.append("vp") - self._parameters.append("vs") + self._parameters += ["vp", "vs"] def setup(self): """Setup the SPECFEM2D solver interface in a SeisFlows workflow""" diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index c9a1274c..93dcc500 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -14,7 +14,7 @@ class Specfem3D(Specfem): """ - SPECFEM3D_Cartesian specific parameters + [solver.specfem3d] SPECFEM3D-specific alterations to the base SPECFEM module :type source_prefix: str :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults @@ -31,10 +31,9 @@ def __init__(self, source_prefix="CMTSOLUTION", **kwargs): # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": - self._parameters.append("vp") + self._parameters += ["vp"] elif self.materials.upper() == "ELASTIC": - self._parameters.append("vp") - self._parameters.append("vs") + self._parameters += ["vp", "vs"] # Overwriting the base class parameters self._acceptable_source_prefixes = ["CMTSOLUTION", "FORCESOLUTION"] diff --git a/seisflows/solver/specfem3d_globe.py b/seisflows/solver/specfem3d_globe.py index 37897fcc..8fcbf027 100644 --- a/seisflows/solver/specfem3d_globe.py +++ b/seisflows/solver/specfem3d_globe.py @@ -8,39 +8,28 @@ SPECFEM3D_Globe specfic notes: - does not allow SU seismogram outputs, only ASCII, SAC, ASDF, 3D_Array """ -import os -from glob import glob - from seisflows.solver.specfem3d import Specfem3D -from seisflows.tools import unix class Specfem3DGlobe(Specfem3D): """ - Python interface to Specfem3D Globe. A very simple overload of Specfem3D - - See class `seisflows.solver.specfem3d.Specfem3D` for a more detailed - explanation of methods and attributes of this class + [solver.specfem3d_globe] SPECFEM3D_Globe-specific alterations to the + solver.specfem3d (cartesian) module """ - def __init__(self): - """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - """ - super().__init__() - if self.materials.upper() == "ELASTIC": - assert(self.par.SOLVER.lower() in ["specfem2d", "specfem3d"]) - self.parameters += ["vp", "vs"] - elif self.materials.upper() == "ACOUSTIC": - assert(self.par.SOLVER.lower() in ["specfem2d", "specfem3d"]) - self.parameters += ["vp"] + __doc__ = Specfem3D.__doc__ + __doc__ + + def __init__(self, **kwargs): + """Instantiate a Specfem3D_Globe solver interface""" + super().__init__(**kwargs) + + if self.materials.upper() == "ACOUSTIC": + self._parameters += ["vp"] + elif self.materials.upper() == "ELASTIC": + self._parameters += ["vp", "vs"] elif self.materials.upper() == "ISOTROPIC": - assert(self.par.SOLVER.lower() in ["specfem3d_globe"]) - self.parameters += ["vp", "vs"] + self._parameters += ["vp", "vs"] elif self.materials.upper() == "ANISOTROPIC": - assert(self.par.SOLVER.lower() in ["specfem3d_globe"]) - self.parameters += ["vpv", "vph", "vsv", "vsh", "eta"] - + self._parameters += ["vpv", "vph", "vsv", "vsh", "eta"] def data_wildcard(self, comp="?"): """ @@ -49,147 +38,137 @@ def data_wildcard(self, comp="?"): :rtype: str :return: wildcard identifier for channels """ - if self.par.FORMAT.upper() == "SU": + if self.data_format.upper() == "SU": raise NotImplementedError("SU file access is still a WIP") - elif self.par.FORMAT.upper() == "ASCII": + elif self.data_format.upper() == "ASCII": return f"*.?X{comp}.sem.ascii" - def load(self, path, prefix="reg1_", suffix="", parameters=None): - """ - Reads SPECFEM model or kernel - - .. note:: - SPECFEM3D_Globe meshes are broken into 3 regions. - Region 1 == Crust + Mantle - Region 2 == Outer core - Region 3 == Inner core - - .. warning:: - Currently SeisFlows only considers the crust + mantle in Globe - simulations - - - :type path: str - :param path: directory from which model is read - :type prefix: str - :param prefix: optional filename prefix - :type suffix: str - :param suffix: optional filename suffix, eg '_kernel' - :type parameters: list - :param parameters: material parameters to be read - (if empty, defaults to self.parameters) - :rtype: dict - :return: model or kernels indexed by material parameter and - processor rank, ie dict[parameter][iproc] - """ - parameters = parameters or self.parameters - - model = Model(parameters) - minmax = Minmax(parameters) - - for iproc in range(self.mesh_properties.nproc): - # read database files based on parameters - keys, vals = loadbypar(path, self.parameters, iproc, prefix, - suffix) - for key, val in zip(keys, vals): - model[key] += [val] - - minmax.update(keys, vals) - - return model - - def save(self, path, model, prefix="reg1_", suffix=""): - """ - Writes SPECFEM3D_GLOBE transerverly isotropic model - - :type path: str - :param path: - :type model - :param model: - :type prefix: str - :param prefix: prefix that begins the name of the model parameters - :type suffix: str - :param suffix: that follow the name of model parameters - """ - unix.mkdir(path) - - for iproc in range(self.mesh_properties.nproc): - for check_key in ["vpv", "vph", "vsv", "vsh", "eta"]: - if check_key in self.parameters: - savebin(model[key][iproc], path, iproc, prefix+key+suffix) - elif 'kernel' in suffix: - pass - else: - src = self.path.OUTPUT + '/' + 'model_init' - dst = path - copybin(src, dst, iproc, prefix+key+suffix) - - if 'rho' in self.parameters: - savebin(model['rho'][iproc], path, iproc, prefix+'rho'+suffix) - elif 'kernel' in suffix: - pass - else: - src = self.path.OUTPUT + '/' + 'model_init' - dst = path - copybin(src, dst, iproc, prefix+'rho'+suffix) - - def check_mesh_properties(self, path=None, parameters=None): - """ - Determine if Mesh properties are okay for workflow - - :type path: str - :param path: path to the mesh file - """ - if not hasattr(self, '_mesh_properties'): - if path is None: - path = self.path.MODEL_INIT - - if parameters is None: - parameters = self.parameters - - nproc = 0 - ngll = [] - while True: - dummy = loadbin(path, nproc, 'reg1_' + parameters[0]) - ngll += [len(dummy)] - nproc += 1 - if not os.path.exists( - os.path.join(path, - f"proc{nrpoc}_reg1_{parameters[0]}.bin")): - break - - self._mesh_properties = Struct([['nproc', nproc], - ['ngll', ngll]] - ) - - def rename_data(self): - """ - Works around conflicting data filename conventions - - Specfem3D's uses different name conventions for regular traces - and 'adjoint' traces - """ - files = glob(os.path.join(self.cwd, "traces", "adj", "*sem.ascii")) - unix.rename("sem.ascii", "sem.ascii.adj", files) - - def initialize_adjoint_traces(self): - """ - Setup utility: Creates the "adjoint traces" expected by SPECFEM - - !!! This probably doesnt work - - .. note:: - Adjoint traces are initialized by writing zeros for all channels. - Channels actually in use during an inversion or migration will be - overwritten with nonzero values later on. - """ - super().initialize_adjoint_traces() - - # workaround for SPECFEM's use of different name conventions for - # regular traces and 'adjoint' traces - if self.par.FORMAT.upper() in ['ASCII', 'ascii']: - files = glob(os.path.join(self.cwd, "traces", "adj", "*sem.ascii")) - unix.rename("sem.ascii", "adj", files) + # def load(self, path, prefix="reg1_", suffix="", parameters=None): + # """ + # Reads SPECFEM model or kernel + # + # .. note:: + # SPECFEM3D_Globe meshes are broken into 3 regions. + # Region 1 == Crust + Mantle + # Region 2 == Outer core + # Region 3 == Inner core + # + # .. warning:: + # Currently SeisFlows only considers the crust + mantle in Globe + # simulations + # + # + # :type path: str + # :param path: directory from which model is read + # :type prefix: str + # :param prefix: optional filename prefix + # :type suffix: str + # :param suffix: optional filename suffix, eg '_kernel' + # :type parameters: list + # :param parameters: material parameters to be read + # (if empty, defaults to self.parameters) + # :rtype: dict + # :return: model or kernels indexed by material parameter and + # processor rank, ie dict[parameter][iproc] + # """ + # parameters = parameters or self.parameters + # + # model = Model(parameters) + # minmax = Minmax(parameters) + # + # for iproc in range(self.mesh_properties.nproc): + # # read database files based on parameters + # keys, vals = loadbypar(path, self.parameters, iproc, prefix, + # suffix) + # for key, val in zip(keys, vals): + # model[key] += [val] + # + # minmax.update(keys, vals) + # + # return model + # + # def save(self, path, model, prefix="reg1_", suffix=""): + # """ + # Writes SPECFEM3D_GLOBE transerverly isotropic model + # + # :type path: str + # :param path: + # :type model + # :param model: + # :type prefix: str + # :param prefix: prefix that begins the name of the model parameters + # :type suffix: str + # :param suffix: that follow the name of model parameters + # """ + # unix.mkdir(path) + # + # for iproc in range(self.mesh_properties.nproc): + # for check_key in ["vpv", "vph", "vsv", "vsh", "eta"]: + # if check_key in self.parameters: + # savebin(model[key][iproc], path, iproc, prefix+key+suffix) + # elif 'kernel' in suffix: + # pass + # else: + # src = self.path.OUTPUT + '/' + 'model_init' + # dst = path + # copybin(src, dst, iproc, prefix+key+suffix) + # + # if 'rho' in self.parameters: + # savebin(model['rho'][iproc], path, iproc, prefix+'rho'+suffix) + # elif 'kernel' in suffix: + # pass + # else: + # src = self.path.OUTPUT + '/' + 'model_init' + # dst = path + # copybin(src, dst, iproc, prefix+'rho'+suffix) + # + # def check_mesh_properties(self, path=None, parameters=None): + # """ + # Determine if Mesh properties are okay for workflow + # + # :type path: str + # :param path: path to the mesh file + # """ + # if not hasattr(self, '_mesh_properties'): + # if path is None: + # path = self.path.MODEL_INIT + # + # if parameters is None: + # parameters = self.parameters + # + # nproc = 0 + # ngll = [] + # while True: + # dummy = loadbin(path, nproc, 'reg1_' + parameters[0]) + # ngll += [len(dummy)] + # nproc += 1 + # if not os.path.exists( + # os.path.join(path, + # f"proc{nrpoc}_reg1_{parameters[0]}.bin")): + # break + # + # self._mesh_properties = Struct([['nproc', nproc], + # ['ngll', ngll]] + # ) + # + # def initialize_adjoint_traces(self): + # """ + # Setup utility: Creates the "adjoint traces" expected by SPECFEM + # + # !!! This probably doesnt work + # + # .. note:: + # Adjoint traces are initialized by writing zeros for all channels. + # Channels actually in use during an inversion or migration will be + # overwritten with nonzero values later on. + # """ + # super().initialize_adjoint_traces() + # + # # workaround for SPECFEM's use of different name conventions for + # # regular traces and 'adjoint' traces + # if self.par.FORMAT.upper() in ['ASCII', 'ascii']: + # files = glob(os.path.join(self.cwd, "traces", "adj", "*sem.ascii")) + # unix.rename("sem.ascii", "adj", files) diff --git a/seisflows/system/runscripts/run_function.py b/seisflows/system/runscripts/run_function.py index 064d673e..164dc289 100644 --- a/seisflows/system/runscripts/run_function.py +++ b/seisflows/system/runscripts/run_function.py @@ -23,7 +23,6 @@ from seisflows.config import load, config_logger - def parse_args(): """ Get command line arguments diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 0d274faa..6ebe6574 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -140,7 +140,7 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): # custom run calls can still benefit from this if single: logger.info("replacing parts of sbatch run call for single " - "process job") + "process job") run_call = _modify_run_call_single_proc(run_call) # The standard response from SLURM when submitting jobs diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 9e1b301f..5b86302c 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -9,9 +9,10 @@ from contextlib import redirect_stdout from seisflows import logger +from seisflows.core import Dict from seisflows.config import CFGPATHS, save from seisflows.tools import msg, unix -from seisflows.tools.utils import number_fid +from seisflows.tools.utils import number_fid, get_task_id class Workstation: @@ -20,7 +21,8 @@ class Workstation: Base System module, upon which all other System classes should be built. """ def __init__(self, title=None, mpiexec=None, ntask=1, nproc=1, - log_level="DEBUG", verbose=False, path_output=None, + log_level="DEBUG", verbose=False, workdir=os.getcwd(), + path_output=None, path_system=None, path_output_log=None, path_error_log=None, path_log_files=None, path_par_file=None, **kwargs): """ @@ -57,26 +59,34 @@ def __init__(self, title=None, mpiexec=None, ntask=1, nproc=1, self.verbose = verbose # Define internal path system - self.path = path_system or \ - os.path.join(os.getcwd(), "scratch", "system") - self.path_par_file = path_par_file or \ - os.path.join(os.getcwd(), "parameters.yaml") - self.path_output = path_output - - # Define where to write logs - self.path_log_files = path_log_files or \ - os.path.join(os.getcwd(), "logs") - self.path_output_log = path_output_log or \ - os.path.join(os.getcwd(), "sfoutput.log") - self.path_error_log = path_error_log or \ - os.path.join(os.getcwd(), "sferror.log") + self.path = Dict( + scratch=path_system or os.path.join(workdir, "scratch", "system"), + par_file=path_par_file or os.path.join(workdir, "parameters.yaml"), + output=path_output or os.path.join(workdir, "output"), + log_files=path_log_files or os.path.join(workdir, "logs"), + output_log=path_output_log or os.path.join(workdir, "sfoutput.log"), + error_log=path_error_log or os.path.join(workdir, "sferror.log"), + ) def check(self): """ Checks parameters and paths """ - pass + assert(os.path.exists(self.path.par_file)), \ + f"parameter file does not exist but should" + + def taskid(self): + """ + Provides a unique identifier for each running task, which should be set + by the 'run'' command. + + :rtype: int + :return: returns the os environment variable SEISFLOWS_TASKID which is + set by run() to label each of the currently + running processes on the SYSTEM. + """ + return get_task_id() def setup(self): """ @@ -96,19 +106,19 @@ def setup(self): :rtype: tuple of str :return: (path to output log, path to error log) """ - for path in [self.path, self.path_output, self.path_log_files]: + for path in [self.path.scratch, self.path.output, self.path.log_files]: unix.mkdir(path) # If resuming, move old log files to keep them out of the way. Number # in ascending order, so we don't end up overwriting things - for src in [self.path_output_log, self.path_error_log, - self.path_par_file]: + for src in [self.path.output_log, self.path.error_log, + self.path.par_file]: i = 1 if os.path.exists(src): - dst = os.path.join(self.path_log_files, number_fid(src, i)) + dst = os.path.join(self.path.log_files, number_fid(src, i)) while os.path.exists(dst): i += 1 - dst = os.path.join(self.path_log_files, number_fid(src, i)) + dst = os.path.join(self.path.log_files, number_fid(src, i)) logger.debug(f"copying par/log file to: {dst}") unix.cp(src=src, dst=dst) @@ -129,7 +139,7 @@ def submit(self, workflow, submit_call=None): workflow.checkpoint() workflow.main() - def run(self, classname, method, single=False, **kwargs): + def run(self, func, single=False, **kwargs): """ Executes task multiple times in serial. @@ -147,13 +157,6 @@ def run(self, classname, method, single=False, **kwargs): defined, such that the job is submitted as a single-core job to the system. """ - self.save_kwargs_to_disk(self.path_output, classname, method, kwargs) - - # Allows dynamic retrieval of any function from within package, e.g., - # 4}_{taskid:0>2}.log") if os.path.exists(log_file): idx += 1 @@ -175,33 +178,13 @@ def run(self, classname, method, single=False, **kwargs): break if taskid == 0: - logger.info(f"running task {classname}.{method} " - f"{self.ntask} times") + logger.info(f"running task {func.__name__} {self.ntask} times") # Redirect output to a log file to mimic cluster runs where 'run' # task output logs are sent to different files with open(log_file, "w") as f: with redirect_stdout(f): - function(**kwargs) - - def taskid(self): - """ - Provides a unique identifier for each running task, which should be set - by the 'run'' command. - - :rtype: int - :return: returns the os environment variable SEISFLOWS_TASKID which is - set by run() to label each of the currently - running processes on the SYSTEM. - """ - sftaskid = os.getenv("SEISFLOWS_TASKID") - if sftaskid is None: - print(msg.cli("system.taskid() environment variable not found. " - "Assuming DEBUG mode and returning taskid==0. " - "If not DEBUG mode, please check SYSTEM.run()", - header="warning", border="=")) - sftaskid = 0 - return int(sftaskid) + func(**kwargs) def save_kwargs_to_disk(self, path, classname, method, kwargs): """ @@ -223,4 +206,4 @@ def save_kwargs_to_disk(self, path, classname, method, kwargs): with open(argsfile, "wb") as f: pickle.dump(kwargs, f) - save(path=self.path_output) \ No newline at end of file + save(path=self.path.output) \ No newline at end of file diff --git a/seisflows/tools/utils.py b/seisflows/tools/utils.py index fe602433..dbbc8625 100644 --- a/seisflows/tools/utils.py +++ b/seisflows/tools/utils.py @@ -4,6 +4,7 @@ """ import os import re +import time import yaml import numpy as np from seisflows.core import Dict @@ -15,30 +16,46 @@ def log_status(func): Decorator function that logs the completion status of a function to a state file. This is used for checkpointing a workflow and resuming failed workflows without repeating computational intense tasks + + :type func: function """ + raise NotImplementedError("This is not working as expected") + STATE_FILE = os.path.join(os.getcwd(), "sfstatefile") + if not os.path.exists(STATE_FILE): + with open(STATE_FILE, "w") as f: + f.write(f"# SeisFlows State File\n") + f.write(f"# {time.asctime()}\n") + f.write(f"# =========================\n") + def logged_func(): """Log the completion status of the function""" try: - func() + output = func() with open(STATE_FILE, "a") as f: - f.write(f"{func.__name__}\tCOMPLETED") + f.write(f"{func.__name__}\tCOMPLETED\n") except Exception as e: - f.write(f"{func.__name__}\tFAILED") + with open(STATE_FILE, "a") as f: + f.write(f"{func.__name__}\tFAILED\n") logger.error(e) raise + return output lines = open(STATE_FILE, "r").readlines() for line in lines: - function, status = line.split(" ") + if line.startswith("#"): + continue + function, status = line.strip().split("\t") if func.__name__ == function: - if status == "COMPLETE": + if status == "COMPLETED": return elif status == "FAILED": return logged_func() else: return logged_func() + else: + return logged_func() def set_task_id(task_id): diff --git a/seisflows/workflow/forward_test.py b/seisflows/workflow/forward_test.py index bfdf17d7..aadbf92c 100644 --- a/seisflows/workflow/forward_test.py +++ b/seisflows/workflow/forward_test.py @@ -6,12 +6,9 @@ from seisflows import logger from seisflows.config import import_seisflows from seisflows.tools import msg -from seisflows.tools.utils import log_status -from seisflows.config import config_logger # Standard SeisFlows setup, makes modules global variables to the workflow pars, modules = import_seisflows() -# config_logger(level=pars.log_level, filename=pars.path_log_ system, preprocess, solver, postprocess, optimize = modules @@ -27,14 +24,12 @@ def evaluate_objective_function(path_model): Must be run by system.run() so that solvers are assigned individual task ids/ working directories. """ - if system.taskid == 0: - logger.info(msg.sub("EVALUATING OBJECTIVE FUNCTION")) - # Run the forward simulation with the given input model solver.import_model(path_model=path_model) solver.forward_simulation( save_traces=os.path.join(solver.cwd, "traces", "syn"), - export_traces=os.path.join(pars.path_output, solver.source_name, "syn") + export_traces=os.path.join(solver.path.output, + solver.source_name, "syn") ) # Perform data-synthetic misfit quantification @@ -46,35 +41,6 @@ def evaluate_objective_function(path_model): ) -@log_status -def run_forward_simulation(path_model): - """ - - """ - # Run the forward simulation with the given input model - solver.import_model(path_model=path_model) - solver.forward_simulation( - save_traces=os.path.join(solver.cwd, "traces", "syn"), - export_traces=os.path.join(pars.path_output, solver.source_name, "syn") - ) - - -@log_status -def quantify_misfit(): - """ - Quantify the data-synthetic misfit, write residuals to scratch for use in - potential optimization, generate adjoint sources required for adjoint - simulations - """ - preprocess.quantify_misfit( - observed=solver.data_filenames(choice="obs"), - synthetics=solver.data_filenames(choice="syn"), - write_adjsrcs=os.path.join(solver.cwd, "traces", "adj"), - write_residuals=os.path.join(pars.path_eval_grad, solver.source_name) - ) - preprocess.sum_residuals(files=glob(os.path.join(pars.path_eval_grad, "*"))) - - if __name__ == "__main__": # Begin the forward simulation workflow logger.info(msg.mjr("Starting forward simulation workflow")) @@ -83,8 +49,8 @@ def quantify_misfit(): module.setup() # Run objective function evaluation NTASK times - system.run(evaluate_objective_function, path_model=pars.path_model_init, - suffix="new", system=system) + logger.info(msg.sub("EVALUATING OBJECTIVE FUNCTION")) + system.run(evaluate_objective_function, path_model=pars.path_model_init) logger.info(msg.mjr("Finished forward simulation workflow")) From 0800eeb05278cd1853911eac3911d6a23d897a8d Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 15 Jul 2022 16:27:07 -0800 Subject: [PATCH 068/195] reworking workflows as classes but with a bookkeeping mechanic to more easily resume failed workflows. removed agency from the other modules and have moved most of the logic and path choices into the workflows --- seisflows/config.py | 23 +- seisflows/core.py | 3 + seisflows/preprocess/default.py | 18 +- seisflows/solver/specfem.py | 160 ++------ seisflows/system/workstation.py | 15 +- seisflows/tools/unix.py | 9 +- seisflows/tools/utils.py | 82 ++-- seisflows/workflow/forward.py | 584 +++++++++++++++++------------ seisflows/workflow/forward_test.py | 56 --- seisflows/workflow/migration.py | 222 +++++------ 10 files changed, 565 insertions(+), 607 deletions(-) delete mode 100644 seisflows/workflow/forward_test.py diff --git a/seisflows/config.py b/seisflows/config.py index 1f35b7e2..c3398945 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -40,7 +40,8 @@ """ # List of module names required by SeisFlows for imports. Order-sensitive # In sys.modules these will be prepended by 'seisflows_', e.g., seisflows_system -NAMES = ["system", "preprocess", "solver", "postprocess", "optimize"] #, "workflow"] +NAMES = ["system", "preprocess", "solver", + "postprocess", "optimize", "workflow"] # The location of this config file, which is the main repository ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) @@ -49,8 +50,6 @@ # be returned as a Dict() object, defined below. All of these files and # directories will be created relative to the user-defined working directory CFGPATHS = Dict( - SCRATCHDIR="scratch", - OUTPUTDIR="output", PAR_FILE="parameters.yaml", # Default SeisFlows parameter file LOGFILE="sfoutput.txt", # Log files for all system log ERRLOGFILE="sferror.txt", # StdErr dump site for crash messages @@ -135,11 +134,16 @@ class names. config_logger(level=parameters.log_level, filename=parameters.path_log_file, verbose=parameters.verbose) - classes = [custom_import(name, parameters[name]) for name in NAMES] - modules = [cls(**parameters) for cls in classes] - # Check that parameters have been set correctly by running their check funcs - for module in modules: - module.check() + # Instantiate SeisFlows modules dynamically based on choices and parameters + # provided in the input parameter file + modules = {name: custom_import(name, parameters[name])(**parameters) for + name in NAMES} + modules = Dict(modules) + + # Drop NAMES from parameters, we don't need them anymore and they get + # muddled with the actual modules upon instantiation + for name in NAMES: + parameters.pop(name) return parameters, modules @@ -181,7 +185,7 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): ) else: # Clean logging statement with only time and message - fmt_str = "%(asctime)s | %(message)s" + fmt_str = "%(asctime)s (%(levelname).1s) | %(message)s" # Instantiate logger during _register() as we now have user-defined pars logger.setLevel(level) @@ -238,6 +242,7 @@ class 'Inversion'. "is implemented correctly, where name must be in the following:", items=NAMES, header="custom import error", border="=")) sys.exit(-1) + sys.exit(-1) # Attempt to retrieve currently assigned classname from parameters if module is None: try: diff --git a/seisflows/core.py b/seisflows/core.py index cff4917b..b0667248 100755 --- a/seisflows/core.py +++ b/seisflows/core.py @@ -131,6 +131,9 @@ def __init__(self, *args, **kwargs): def __call__(self, *args, **kwargs): return self + def __bool__(self): + return False + def __nonzero__(self): return False diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index e103f9e8..c9a46843 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -325,7 +325,7 @@ def _rename_as_adjoint_source(self, fid): return fid def quantify_misfit(self, observed, synthetic, - write_residuals=None, write_adjsrcs=None, **kwargs): + save_residuals=None, save_adjsrcs=None, **kwargs): """ Prepares solver for gradient evaluation by writing residuals and adjoint traces. Meant to be called by solver.eval_func(). @@ -342,10 +342,10 @@ def quantify_misfit(self, observed, synthetic, :param observed: list of observed waveforms :type synthetic: list :param synthetic: list of synthetic waveforms - :type write_residuals: str - :param write_residuals: if not None, path to write misfit/residuls to - :type write_adjsrcs: str - :param write_adjsrcs: if not None, path to write adjoint sources to + :type save_residuals: str + :param save_residuals: if not None, path to write misfit/residuls to + :type save_adjsrcs: str + :param save_adjsrcs: if not None, path to write adjoint sources to """ for obs_fid, syn_fid in zip(observed, synthetic): obs = self.read(fid=obs_fid) @@ -367,16 +367,16 @@ def quantify_misfit(self, observed, synthetic, # Simple check to make sure zip retains ordering assert(tr_obs.stats.component == tr_syn.stats.component) # Calculate the misfit value and write to file - if write_residuals and self._calculate_misfit: + if save_residuals and self._calculate_misfit: residual = self._calculate_misfit( obs=tr_obs.data, syn=tr_syn.data, nt=tr_syn.stats.npts, dt=tr_syn.stats.delta ) - with open(write_residuals, "a") as f: + with open(save_residuals, "a") as f: f.write(f"{residual:.2E}\n") # Generate an adjoint source trace, write to file - if write_adjsrcs and self._generate_adjsrc: + if save_adjsrcs and self._generate_adjsrc: adjsrc = syn.copy() adjsrc.data = self._generate_adjsrc( obs=tr_obs.data, syn=tr_syn.data, @@ -384,7 +384,7 @@ def quantify_misfit(self, observed, synthetic, ) fid = os.path.basename(syn_fid) fid = self._rename_as_adjoint_source(fid) - self.write(st=adjsrc, fid=os.path.join(write_adjsrcs, fid)) + self.write(st=adjsrc, fid=os.path.join(save_adjsrcs, fid)) def sum_residuals(self, files): """ diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 134f57f4..46380695 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -37,11 +37,6 @@ class Specfem: working directories, call SPECFEM binaries, and keep track of a number of parallel processes. - :type case: str - :param case: determine the type of workflow we will attempt - Available: ['DATA': data-synthetic comparisons. Data must be provided - by the user in `path_data`. 'SYNTHETIC': synthetic-synthetic - comparisons. `path_model_true` is required to generate target 'data'] :type data_format: str :param data_format: data format for reading traces into memory. Available: ['SU' seismic unix format, 'ASCII' human-readable ascii] @@ -56,6 +51,12 @@ class Specfem: if True, turns on attenuation during forward simulations only. If False, attenuation is always set to False. Requires underlying attenution (Q_mu, Q_kappa) model + :type smooth_h: float + :param smooth_h: Gaussian half-width for horizontal smoothing in units + of meters. If 0., no smoothing applied + :type smooth_h: float + :param smooth_v: Gaussian half-width for vertical smoothing in units + of meters. :type components: str :param components: components to consider and tag data with. Should be string of letters such as 'RTZ' @@ -90,22 +91,23 @@ class Specfem: :param path_output: shared output directory on disk for more permanent storage of solver related files such as traces, kernels, gradients. """ - def __init__(self, case="data", data_format="ascii", materials="acoustic", + def __init__(self, data_format="ascii", materials="acoustic", density=False, nproc=1, ntask=1, attenuation=False, - components="ZNE", solver_io="fortran_binary", - source_prefix=None, mpiexec=None, workdir=os.getcwd(), - path_solver=None, path_eval_grad=None, path_data=None, - path_specfem_bin=None, path_specfem_data=None, + smooth_h=0., smooth_v=0., components="ZNE", + solver_io="fortran_binary", source_prefix=None, mpiexec=None, + workdir=os.getcwd(), path_solver=None, path_eval_grad=None, + path_data=None, path_specfem_bin=None, path_specfem_data=None, path_model_init=None, path_model_true=None, path_output=None, **kwargs): """Set default SPECFEM interface parameters""" - self.case = case self.data_format = data_format self.materials = materials self.nproc = nproc self.ntask = ntask self.density = density self.attenuation = attenuation + self.smooth_h = smooth_h + self.smooth_v = smooth_v self.components = components self.solver_io = solver_io self.mpiexec = mpiexec @@ -148,9 +150,6 @@ def check(self): """ Checks parameter validity for SPECFEM input files and model parameters """ - assert(self.case.upper() in ["DATA", "SYNTHETIC"]), \ - f"solver.case must be 'DATA' or 'SYNTHETIC'" - assert(self.materials.upper() in self._available_materials), \ f"solver.materials must be in {self._available_materials}" @@ -197,12 +196,6 @@ def check(self): assert(model_type in self._available_model_types), \ f"{model_type} not in available types {self._available_model_types}" - # Check that the 'case' variable matches required models - if self.case.upper() == "SYNTHETIC": - assert(os.path.exists(self.path.model_true)), ( - f"solver.case == 'synthetic' requires `path_model_true`" - ) - assert(self.path.model_init is not None and os.path.exists(self.path.model_init)), \ f"`path_model_init` is required for the solver, but does not exist" @@ -419,55 +412,6 @@ def setup(self): # path=os.path.join(self.path.output, "traces", "obs") # ) - def generate_data(self, export_traces=False): - """ - Generates observation data to be compared to synthetics. This must - only be run once. If `PAR.CASE`=='data', then real data will be copied - over. - - If `PAR.CASE`=='synthetic' then the external solver will use the - True model to generate 'observed' synthetics. Finally exports traces to - 'cwd/traces/obs' - - Elif `PAR.CASE`=='DATA', will look in PATH.DATA for directories matching - the given source name and copy ANY files that exist there. e.g., if - source name is '001', you must store waveform data in PATH.DATA/001/* - - :type export_traces: str - :param export_traces: path to copy and save traces to a more permament - storage location as waveform stored in scratch/ are liable to be - deleted or overwritten - """ - # Basic checks to make sure there are True model files to copy - assert(self.case.upper() == "SYNTHETIC") - assert(os.path.exists(self.path.model_true)) - assert(glob(os.path.join(self.path.model_true, "*"))) - - # Generate synthetic data on the fly using the true model - self.import_model(path_model=self.path.model_true) - self.forward_simulation( - save_traces=os.path.join(self.cwd, "traces", "obs"), - export_traces=export_traces - ) - - def import_data(self): - """ - Import data from an existing directory into the current working - directory, required if 'observed' waveform data will be provided by - the User rather than automatically collected (with Pyatoa) or generated - synthetically (with external solver) - """ - # Simple checks to make sure we can actually import data - assert(self.case.upper() == "DATA") - assert(self.path.data is not None) - assert(os.path.exists(os.path.join(self.path.data, self.source_name))) - assert(glob(os.path.join(self.path.data, self.source_name, "*"))) - - src = os.path.join(self.path.data, self.source_name, "*") - dst = os.path.join(self.cwd, "traces", "obs") - - unix.cp(src, dst) - def forward_simulation(self, executables=None, save_traces=False, export_traces=False): """ @@ -638,8 +582,8 @@ def combine(self, input_path, output_path, parameters=None): stdout = f"{self._exc2log(exc)}_{name}.log" self._run_binary(executable=exc, stdout=stdout) - def smooth(self, input_path, output_path, parameters=None, span_h=0., - span_v=0., use_gpu=False): + def smooth(self, input_path, output_path, parameters=None, span_h=None, + span_v=None, use_gpu=False): """ Wrapper for SPECFEM binary: xsmooth_sem Smooths kernels by convolving them with a 3D Gaussian @@ -666,8 +610,16 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., """ unix.cd(self.cwd) + # Assign some default parameters from class attributes if not given if parameters is None: parameters = self._parameters + if span_h is None: + span_h = self.smooth_h + if span_v is None: + span_v = self.smooth_v + + logger.info(f"smoothing {parameters} with horizontal Gaussian " + f"{span_h}m and vertical Gaussian {span_v}m") if not os.path.exists(output_path): unix.mkdir(output_path) @@ -785,26 +737,28 @@ def _initialize_working_directories(self): """ Serial task used to initialize working directories for each of the a available sources - - TODO run this with concurrent futures for speedup? """ logger.info(f"initializing {self.ntask} solver directories") for source_name in self.source_names: cwd = os.path.join(self.path.scratch, source_name) + if os.path.exists(cwd): + logger.warning(f"solver scratch path for source {source_name} " + f"already exists") + continue self._initialize_working_directory(cwd=cwd) def _initialize_working_directory(self, cwd=None): """ - Creates directory structure expected by SPECFEM - (i.e., bin/, DATA/, OUTPUT_FILES/). Copies executables and prepares - input files. + Creates scratch directory structure expected by SPECFEM + (i.e., bin, DATA, OUTPUT_FILES). Copies executables (bin) and + input data (DATA) directories, prepares simulation input files. Each directory will act as completely independent Specfem working dir. This allows for embarrassing parallelization while avoiding the need for intra-directory communications, at the cost of temporary disk space. .. note:: - Path to binary executables must be supplied by user as SeisFlows has + path to binary executables must be supplied by user as SeisFlows has no mechanism for automatically compiling from source code. :type cwd: str @@ -812,21 +766,20 @@ def _initialize_working_directory(self, cwd=None): will set based on current running seisflows task (self.taskid) """ # Define a constant list of required SPECFEM dir structure, relative cwd - _required_structure = ["bin", "DATA", - "traces/obs", "traces/syn", "traces/adj", - self.model_databases, self.kernel_databases] + _required_structure = {"bin", "DATA", "traces/obs", "traces/syn", + "traces/adj", self.model_databases, + self.kernel_databases} # Allow this function to be called on system or in serial if cwd is None: cwd = self.cwd + source_name = self.source_name taskid = self.taskid else: - cwd = self.cwd - _source_name = os.path.basename(cwd) - taskid = self.source_names.index(_source_name) + source_name = os.path.basename(cwd) + taskid = self.source_names.index(source_name) - if taskid == 0: - logger.info(f"initializing {self.ntask} solver directories") + logger.debug(f"initializing solver directory source: {source_name}") # Starting from a fresh working directory unix.rm(cwd) @@ -847,49 +800,16 @@ def _initialize_working_directory(self, cwd=None): # Symlink event source specifically, only retain source prefix src = os.path.join(self.path.specfem_data, - f"{self.source_prefix}_{self.source_name}") + f"{self.source_prefix}_{source_name}") dst = os.path.join(cwd, "DATA", self.source_prefix) unix.ln(src, dst) # Symlink TaskID==0 as mainsolver in solver directory for convenience if taskid == 0: if not os.path.exists(self.path.mainsolver): - logger.debug(f"symlink {self.source_name} as 'mainsolver'") + logger.debug(f"linking source '{source_name}' as 'mainsolver'") unix.ln(cwd, self.path.mainsolver) - # def _initialize_adjoint_traces(self): - # """ - # Setup utility: Creates the "adjoint traces" expected by SPECFEM. - # This is only done for the 'base' the Preprocess class. - # - # TODO move this into workflow setup - # - # .. note:: - # Adjoint traces are initialized by writing zeros for all channels. - # Channels actually in use during an inversion or migration will be - # overwritten with nonzero values later on. - # """ - # preprocess = self.module("preprocess") - # - # if self.par.PREPROCESS.upper() == "DEFAULT": - # if self.taskid == 0: - # logger.debug(f"intializing {len(self.data_filenames)} " - # f"empty adjoint traces per event") - # - # for filename in self.data_filenames: - # st = preprocess.reader( - # path=os.path.join(self.cwd, "traces", "obs"), - # filename=filename - # ) - # # Zero out data just so we have empty adjoint traces as SPECFEM - # # will expect all adjoint sources to have all components - # st *= 0 - # - # # Write traces back to the adjoint trace directory - # preprocess.writer(st=st, filename=filename, - # path=os.path.join(self.cwd, "traces", "adj") - # ) - def _check_source_names(self): """ Determines names of sources by applying wildcard rule to user-supplied diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 5b86302c..2b32bc29 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -12,7 +12,7 @@ from seisflows.core import Dict from seisflows.config import CFGPATHS, save from seisflows.tools import msg, unix -from seisflows.tools.utils import number_fid, get_task_id +from seisflows.tools.utils import number_fid, get_task_id, set_task_id, iterable class Workstation: @@ -139,7 +139,7 @@ def submit(self, workflow, submit_call=None): workflow.checkpoint() workflow.main() - def run(self, func, single=False, **kwargs): + def run(self, funcs, single=False, **kwargs): """ Executes task multiple times in serial. @@ -163,9 +163,8 @@ def run(self, func, single=False, **kwargs): ntasks = self.ntask for taskid in range(ntasks): - # os environment variables can only be strings, these need to be - # converted back to integers by system.taskid() - os.environ["SEISFLOWS_TASKID"] = str(taskid) + # Set Task ID for currently running process + set_task_id(taskid) # Make sure that we're creating new log files EACH time we run() idx = 0 @@ -177,14 +176,12 @@ def run(self, func, single=False, **kwargs): else: break - if taskid == 0: - logger.info(f"running task {func.__name__} {self.ntask} times") - # Redirect output to a log file to mimic cluster runs where 'run' # task output logs are sent to different files with open(log_file, "w") as f: with redirect_stdout(f): - func(**kwargs) + for func in funcs: + func(**kwargs) def save_kwargs_to_disk(self, path, classname, method, kwargs): """ diff --git a/seisflows/tools/unix.py b/seisflows/tools/unix.py index 5575c863..1c039d89 100644 --- a/seisflows/tools/unix.py +++ b/seisflows/tools/unix.py @@ -41,7 +41,7 @@ def cd(path): os.chdir(path) -def cp(src='', dst=''): +def cp(src, dst): """ Copy files @@ -52,7 +52,7 @@ def cp(src='', dst=''): """ if isinstance(src, (list, tuple)): if len(src) > 1: - assert os.path.isdir(dst), "unexpected type for unix.cp 'dst'" + assert os.path.isdir(dst), f"unix.cp 'dst' must be directory: {dst}" for sub in src: cp(sub, dst) return @@ -89,7 +89,7 @@ def ln(src, dst): >>> from seisflows.tools.unix import ln >>> ln("example_file", "path/to/sylink/new_filename") >>> # OR - >>> sln("example_file", "path/to/sylink/") + >>> ln("example_file", "path/to/sylink/") :type src: str :param src: path to file or directory to symlink @@ -251,10 +251,13 @@ def nproc(): Get the number of processors available. Same as calling 'nproc' from Linux command line. + TODO probably replace this with multiprocessing.cpu_count() + :rtype: int :return: number of processors :raises EnvironmentError: if nproc cannot be determined """ + # Method 1 calls 'nproc'. May fail and return '' if 'nproc' not avail. _nproc = subprocess.run("nproc", shell=True, text=True, stdout=subprocess.PIPE).stdout.strip() diff --git a/seisflows/tools/utils.py b/seisflows/tools/utils.py index dbbc8625..a1a9a794 100644 --- a/seisflows/tools/utils.py +++ b/seisflows/tools/utils.py @@ -11,6 +11,56 @@ from seisflows import logger +class TaskIDError(Exception): + """ + A specific error that gets called when tasks are not run on system, + i.e., when we can't find 'SEISFLOWS_TASKID' in the environment variables. + This means we are attempting to access child process variables inside + the parent process. + """ + pass + + +def set_task_id(task_id): + """ + Set the SEISFLOWS_TASKID in os environs + + .. note:: + Mostly used for debugging/testing purposes as a way of mimicing + system.run() assigning task ids to child processes + + :type task_id: int + :param task_id: integer task id to assign to the current working environment + """ + os.environ["SEISFLOWS_TASKID"] = str(task_id) + + +def get_task_id(force=False): + """ + Task IDs are assigned to each child process spawned by the system module + during a SeisFlows workflow. SeisFlows modules use this Task ID to keep + track of embarassingly parallel process, e.g., solver uses the Task ID to + determine which source is being considered. + + :type force: bool + :param force: If no task id is found, force set it to 0 + :rtype: int + :return: task id for given solver + :raises TaskIDError: if no environment variable is found + """ + _taskid = os.getenv("SEISFLOWS_TASKID") + if _taskid is None: + if force: + _taskid = 0 + logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " + "Assigning Task ID == 0") + else: + raise TaskIDError("Environment variable 'SEISFLOWS_TASKID' not " + "found. Please make sure the process asking " + "for task id is called by system.") + return int(_taskid) + + def log_status(func): """ Decorator function that logs the completion status of a function to a @@ -58,38 +108,6 @@ def logged_func(): return logged_func() -def set_task_id(task_id): - """ - Set the SEISFLOWS_TASKID in os environs - - .. note:: - Mostly used for debugging/testing purposes as a way of mimicing - system.run() assigning task ids to child processes - - :type task_id: int - :param task_id: integer task id to assign to the current working environment - """ - os.environ["SEISFLOWS_TASKID"] = str(task_id) - - -def get_task_id(): - """ - Task IDs are assigned to each child process spawned by the system module - during a SeisFlows workflow. SeisFlows modules use this Task ID to keep - track of embarassingly parallel process, e.g., solver uses the Task ID to - determine which source is being considered. - - :rtype: int - :return: task id for given solver - """ - _taskid = os.getenv("SEISFLOWS_TASKID") - if _taskid is None: - _taskid = 0 - logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " - "Assigning Task ID == 0") - return int(_taskid) - - def load_yaml(filename): """ Define how the PyYaml yaml loading function behaves. diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 373d2c11..40d7718b 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -6,99 +6,200 @@ of the scaffolding defined by the Forward class. """ import os -import sys -from glob import glob +from time import asctime -from seisflows.tools import msg -from seisflows.config import save, import_seisflows -from seisflows.tools.specfem import Model +from seisflows import logger +from seisflows.tools import msg, unix +from seisflows.core import Dict +from seisflows.config import import_seisflows class Forward: """ - Workflow abstract base class representing an en-masse forward solver and - misfit calculator. + [workflow.forward] Run forward solver in parallel and optionally calculate + data-synthetic misfit and adjoint sources. + + :type modules: list of module + :param modules: instantiated SeisFlows modules which should have been + generated by the function `seisflows.config.import_seisflows` with a + parameter file generated by seisflows.configure + :type data_case: str + :param data_case: How to address 'data' in the workflow, available options: + 'data': real data will be provided by the user in + `path_data/{source_name}` in the same format that the solver will + produce synthetics (controlled by `solver.format`) OR + synthetic': 'data' will be generated as synthetic seismograms using + a target model provided in `path_model_true`. If None, workflow will + not attempt to generate data. + :type export_traces: bool + :param export_traces: export all waveforms that are generated by the + external solver to `path_output`. If False, solver traces stored in + scratch may be discarded at any time in the workflow + :type export_residuals: bool + :param export_residuals: export all residuals (data-synthetic misfit) that + are generated by the external solver to `path_output`. If False, + residuals stored in scratch may be discarded at any time in the workflow + :type workdir: str + :param workdir: working directory in which to look for data and store + results. Defaults to current working directory + :type path_eval_grad: str + :param path_eval_grad: scratch path to store files for gradient evaluation, + including models, kernels, gradient and residuals. """ - def __init__(self, save_traces=False, save_residuals=False, - path_eval_grad=None): - """ - En-masse forward simulation parameters - """ - self.save_traces = save_traces - self.save_residuals = save_residuals - self.path_eval_grad = self.path_eval_grad - - self.required.par( - "SAVETRACES", required=False, default=False, par_type=bool, - docstr="Save waveform traces to disk after they have been " - "generated by the external solver" - ) - self.required.par( - "SAVERESIDUALS", required=False, default=False, par_type=bool, - docstr="Save data-synthetic residuals each time they are " - "caluclated" - ) - self.required.path( - "DATA", required=False, default=None, - docstr="path to observed waveform data available to workflow" - ) - self.required.path( - "MODEL_INIT", required=False, - default=os.path.join(self.path.WORKDIR, "specfem", "MODEL_INIT"), - docstr="Path location of the initial model to be used to generate " - "the the first evaluation of synthetic seismograms." + def __init__(self, modules=None, data_case=None, export_traces=False, + export_residuals=False, workdir=os.getcwd(), + path_eval_grad=None, path_output=None, path_data=None, + path_state_file=None, path_model_init=None, + path_model_true=None, **kwargs): + """Set default forward workflow parameters""" + # Keep modules hidden so that seisflows configure doesnt count them + # as 'parameters' + self._modules = modules + + self.data_case = data_case + self.export_traces = export_traces + self.export_residuals = export_residuals + + self.path = Dict( + workdir=workdir, + scratch=os.path.join(workdir, "scratch"), + eval_grad=path_eval_grad or + os.path.join(workdir, "scratch", "evalgrad"), + output=path_output or os.path.join(workdir, "output"), + state_file=path_state_file or + os.path.join(workdir, "statefile.txt"), + data=path_data, + model_init=path_model_init, + model_true=path_model_true ) - self.required.path( - "GRAD", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "evalgrad"), - docstr="scratch path to store data related to gradient evaluations" - ) - - # For keeping track of what functions to start and stop a workflow with - self.start = None - self.stop = None - def check(self, validate=True): + self._required_modules = ["system", "solver"] + self._acceptable_data_cases = ["data", "synthetic"] + self._optional_modules = ["preprocess"] + + # Empty module variables that should be filled in by setup + self.system = None + self.solver = None + self.preprocess = None + + # Read in any existing state file which keeps track of workflow tasks + self._states = {} + if os.path.exists(self.path.state_file): + for line in open(self.path.state_file, "r").readlines(): + if line.startswith("#"): + continue + key, val = line.strip().split(":") + self._states[key] = val.strip() + + @property + def task_list(self): """ - Checks parameters and paths. Must be implemented by sub-class + USER-DEFINED TASK LIST. This property defines a list of class methods + that take NO INPUT and have NO RETURN STATEMENTS. This defines your + linear workflow, i.e., these tasks are to be run in order from start to + finish to complete a workflow. + + This excludes 'check' (which is run during 'import_seisflows') and + 'setup' which should be run separately + + .. note:: + For workflows that require an iterative approach (e.g. inversion), + this task list will be looped over, so ensure that any setup and + teardown tasks (run once per workflow, not once per iteration) are + not included. + + :rtype: list + :return: list of methods to call in order during a workflow """ - super().check(validate=validate) + return [self.evaluate_initial_misfit] - def setup(self, flow=None, return_flow=False): + def check(self): """ - Setup workflow by intaking functions to be run and checking start and - stop criteria + Check that workflow has required modules. Run their respective checks """ - # REQUIRED: CLI command `seisflows print flow` needs this for output - if return_flow: - return flow - - # Allow User to start the workflow mid-FLOW, in the event that a - # previous workflow errored, or if the User had previously stopped - # a workflow to look at results and they want to pick up where - # they left off - self.start, self.stop = self._check_stop_resume_cond(flow) - - self.logger.info( - msg.mjr(f"BEGINNING {self.__class__.__name__.upper()} WORKFLOW") - ) - - # Required modules that need to be set up - self.logger.info(msg.mnr("PERFORMING MODULE SETUP")) - self.module("system").setup() - self.module("preprocess").setup() - self.logger.info("setting up solver on system...") - self.module("system").run("solver", "setup") - - def finalize(self): + # Check that required modules have been instantiated + for req_mod in self._required_modules: + assert(self._modules[req_mod]), ( + f"'{req_mod}' is a required module for workflow " + f"'{self.__class__.__name__}'" + ) + # Make sure that the modules are actually instances (not e.g., str) + assert(hasattr(self._modules[req_mod], "__class__")), \ + f"workflow attribute {req_mod} must be an instance" + + # Run check function of these modules + self._modules[req_mod].check() + + # Tell the user whether optional modules are instantiated + for opt_mod in self._optional_modules: + if self._modules[opt_mod]: + self._modules[opt_mod].check() + else: + logger.warning(f"optional module '{opt_mod}' has not been " + f"instantiated, some functionality of the " + f"'{self.__class__.__name__}' workflow may be " + f"skipped") + + if self.data_case is not None: + assert(self.data_case.lower() in self._acceptable_data_cases), \ + f"`data_case` must be in {self._acceptable_data_cases}" + if self.data_case.lower() == "data": + assert(self.path.data is not None and + os.path.exists(self.path.data)), \ + f"importing data with `data_case`=='import' requires " \ + f"'path_data' to exist" + elif self.data_case.lower() == "synthetic": + assert(self.path.model_true is not None and + os.path.exists(self.path.model_true)), \ + f"creating data with `data_case`=='create' requires " \ + f"'path_model_true' to exist and point to a target model" + else: + logger.warning(f"`workflow.data_case` is None, SeisFlows will not " + f"be able to find data for data-synthetic comparison" + ) + + def setup(self): """ - Tasks related to tearing down a workflow + Makes required path structure for the workflow, runs setup functions + for all the required modules of this workflow. """ - super().finalize() - - self.logger.info( - msg.mjr(f"FINISHED {self.__class__.__name__} WORKFLOW") - ) + # Create the desired directory structure + for path in self.path.values(): + if path is not None and not os.path.splitext(path)[-1]: + unix.mkdir(path) + + # Run setup() for each of the required modules + for req_mod in self._required_modules: + logger.info( + f"setup for module " + f"'{req_mod}.{self._modules[req_mod].__class__.__name__}'" + ) + self._modules[req_mod].setup() + + # Run setup() for each of the instantiated modules + for opt_mod in self._optional_modules: + if self._modules[opt_mod]: + logger.info( + f"setup for module " + f"'{opt_mod}.{self._modules[opt_mod].__class__.__name__}'" + ) + self._modules[opt_mod].setup() + + # Generate the state file to keep track of task completion + if not os.path.exists(self.path.state_file): + logger.info(f"generating SeisFlows state file") + logger.debug(self.path.state_file) + with open(self.path.state_file, "w") as f: + f.write(f"# SeisFlows State File\n") + f.write(f"# {asctime()}\n") + f.write(f"# Acceptable states: 'completed', 'failed'\n") + f.write(f"# =======================================\n") + + # Distribute modules to the class namespace. We don't do this at init + # incase _modules was set as NoneType + self.solver = self._modules.solver + self.system = self._modules.system + self.preprocess = self._modules.preprocess def checkpoint(self): """ @@ -106,183 +207,182 @@ def checkpoint(self): the workflow can be resumed following a crash, pause or termination of workflow. """ - save(path=self.path.OUTPUT) - - def main(self, flow=None, return_flow=False): + # Grab State file header values + with open(self.path.state_file, "r") as f: + lines = f.readlines() + + with open(self.path.state_file, "w") as f: + # Rewrite header values + for line in lines: + if line.startswith("#"): + f.write(line) + for key, val in self._states.items(): + f.write(f"{key}: {val}\n") + + def run(self): """ - Execution of a workflow is equal to stsepping through workflow.main() - - An example main() script is provided below which details the requisite - parts. This function will NOT execute as it is written in pseudocode. - - :type flow: list or tuple - :param flow: list of Class methods that will be run in the order they - are provided. If None, defaults to the evaluate_function() as - defined by Forward class - :type return_flow: bool - :param return_flow: for CLI tool, simply returns the flow function - rather than running the workflow. Used for print statements etc. + Call the Task List in order to 'run' the workflow. Contains logic for + to keep track of completed tasks and avoids re-running tasks that have + previously been completed (e.g., if you are restarting your workflow) """ - # The FLOW function defines a list of functions to execute IN ORDER - if flow is None: - flow = (self.evaluate_initial_misfit) - - self.setup(flow, return_flow) - # Iterate through the `FLOW` to step through workflow.main() - for func in flow[self.start: self.stop]: - func() - self.finalize() + for func in self.task_list: + # Skip over functions which have already been completed + if (func.__name__ in self._states.keys()) and ( + self._states[func.__name__] == "completed"): + logger.info(f"'{func.__name__}' has already been run, skipping") + continue + # Otherwise attempt to run functions that have failed or are + # encountered for the first time + else: + try: + func() + self._states[func.__name__] = "completed" + except Exception as e: + self._states[func.__name__] = "failed" + self.checkpoint() + raise + + self.checkpoint() def evaluate_initial_misfit(self): """ - Wrapper for evaluate_function that generates synthetics via forward - simulations, calculates misfits and sends residuals to PATH.GRAD and - sets up the 'm_new' model for future evaluations - """ - self.logger.info(msg.mjr("EVALUATING INITIAL MISFIT")) - self._evaluate_function(path=self.path.GRAD, suffix="new") - - def _evaluate_function(self, path, suffix): - """ - Performs forward simulation, and evaluates the objective function - - :type path: str - :param path: path in the scratch directory to use for I/O - :type suffix: str - :param suffix: suffix to use for I/O + System wrapper for 'evaluate_objective function' that passes in """ - system = self.module("system") - - self.logger.info(msg.sub("EVALUATING OBJECTIVE FUNCTION")) - - model_tag = f"m_{suffix}" - misfit_tag = f"f_{suffix}" - - self._write_model(path=path, model_tag=model_tag) + logger.info(msg.mnr("EVALUATING MISFIT FOR INITIAL MODEL")) + self.system.run([self.prepare_data_for_solver, + self.evaluate_objective_function], + path_model=self.path.model_init + ) - self.logger.debug(f"evaluating objective function {self.par.NTASK} " - f"times on system...") - system.run("solver", "eval_func", path=path) - - self._write_misfit(path=path, misfit_tag=misfit_tag) - - def _write_model(self, path, model_tag): + def prepare_data_for_solver(self, **kwargs): """ - Writes model in format expected by solver - - :type path: str - :param path: path to write the model to - :type model_tag: str - :param model_tag: name of the model to be saved, usually tagged as 'm' with - a suffix depending on where in the inversion we are. e.g., 'm_try'. - Expected that these tags are defined in OPTIMIZE module - """ - m = Model(path=os.path.join(self.path.OPTIMIZE, f"{model_tag}.npz")) - m.write(path=os.path.join(path, "model")) - - self.logger.debug(f"saving model '{model_tag}'") + Determines how to provide data to each of the solvers. Either by copying + data in from a user-provided path, or generating synthetic 'data' using + a target model. - def _write_misfit(self, path, misfit_tag): + .. note :: + Must be run by system.run() so that solvers are assigned individual + task ids and working directories """ - Writes misfit in format expected by nonlinear optimization library. - Collects all misfit values within the given residuals directory and sums - them in a manner chosen by the preprocess class. - - :type path: str - :param path: path to write the misfit to - :type misfit_tag: str - :param misfit_tag: name of the model to be saved, usually tagged as - 'f' with a suffix depending on where in the inversion we are. - e.g., 'f_try'. Expected that these tags are defined in OPTIMIZE - module + logger.info(msg.sub("preparing data for solver")) + + if self.data_case == "data": + logger.info(f"copying data from `path_data`") + src = os.path.join(self.path.data, self.solver.source_name, "*") + dst = os.path.join(self.solver.cwd, "traces", "obs", "") + unix.cp(src, dst) + elif self.data_case == "synthetic": + # Figure out where to export waveform files to, if requested + if self.export_traces: + export_traces = os.path.join(self.path.output, + self.solver.source_name, "obs") + else: + export_traces = False + + # Run the forward solver with target model and save traces the 'obs' + logger.info(f"running forward simulation for " + f"{self.solver.source_name}") + self.solver.import_model(path_model=self.path.model_true) + self.solver.forward_simulation( + save_traces=os.path.join(self.solver.cwd, "traces", "obs"), + export_traces=export_traces + ) + + def evaluate_objective_function(self, path_model, **kwargs): """ - preprocess = self.module("preprocess") - optimize = self.module("optimize") + Performs forward simulation for a single given event. Also evaluates the + objective function and writes residuals and adjoint sources for later + tasks. - self.logger.info("summing residuals with preprocess module") - src = glob(os.path.join(path, "residuals", "*")) - total_misfit = preprocess.sum_residuals(src) + .. note:: + if PAR.PREPROCESS == None, will not perform misfit quantification - self.logger.debug(f"saving misfit {total_misfit:.3E} to '{misfit_tag}'") - optimize.save(misfit_tag, total_misfit) - - def _check_stop_resume_cond(self, flow): - """ - Chek the stop after and resume from conditions - - Allow the main() function to resume a workflow from a given flow - argument, or stop the workflow after a given argument. In the event - that a previous workflow errored, or if the User had previously - stopped a workflow to look at results and they want to pick up where - they left off. - - Late check: Exits the workflow if RESUME_FROM or STOP_AFTER arguments - do not match any of the given flow arguments. - - :type flow: tuple of functions - :param flow: an ordered list of functions that will be - :rtype: tuple of int - :return: (start, stop) indices of the `flow` input dictating where the - list should be begun and ended. If RESUME_FROM and STOP_AFTER - conditions are NOT given by the user, start and stop will be 0 and - -1 respectively, meaning we should execute the ENTIRE list + .. note:: + Must be run by system.run() so that solvers are assigned individual + task ids/ working directories. """ - fxnames = [func.__name__ for func in flow] - - # Default values which dictate that flow will execute in its entirety - start_idx = None - stop_idx = None - - # Overwrite start_idx if RESUME_FROM given, exit condition if no match - if self.par.RESUME_FROM: - try: - start_idx = fxnames.index(self.par.RESUME_FROM) - fx_name = flow[start_idx].__name__ - self.logger.info( - msg.mnr(f"WORKFLOW WILL RESUME FROM FUNC: '{fx_name}'") - ) - except ValueError: - self.logger.info( - msg.cli(f"{self.par.RESUME_FROM} does not correspond to any FLOW " - f"functions. Please check that self.par.RESUME_FROM " - f"matches one of the functions listed out in " - f"`seisflows print flow`.", header="error", - border="=") - ) - sys.exit(-1) - - # Overwrite stop_idx if STOP_AFTER provided, exit condition if no match - if self.par.STOP_AFTER: - try: - stop_idx = fxnames.index(self.par.STOP_AFTER) - fx_name = flow[stop_idx].__name__ - stop_idx += 1 # increment to stop AFTER, due to python indexing - self.logger.info( - msg.mnr(f"WORKFLOW WILL STOP AFTER FUNC: '{fx_name}'") - ) - except ValueError: - self.logger.info( - msg.cli( - f"{self.par.STOP_AFTER} does not correspond to any " - f"FLOW functions. Please check that PAR.STOP_AFTER " - f"matches one of the functions listed out in " - f"`seisflows print flow`.", header="error", - border="=") - ) - sys.exit(-1) - - # Make sure stop after doesn't come before resume_from, otherwise none - # of the flow will execute - if self.par.STOP_AFTER and self.par.RESUME_FROM: - if stop_idx <= start_idx: - self.logger.info( - msg.cli( - f"PAR.STOP_AFTER=='{self.par.STOP_AFTER}' is called " - f"before PAR.RESUME_FROM=='{self.par.RESUME_FROM}' in " - f"the FLOW functions. Please adjust accordingly " - f"and rerun.", header="error", border="=") - ) - sys.exit(-1) + logger.info(f"running forward simulation with " + f"'{self.solver.__class__.__name__}'") + + # Figure out where to export waveform files to, if requested + if self.export_traces: + export_traces = os.path.join(self.path.output, + self.solver.source_name, "syn") + else: + export_traces = False + + # Run the forward simulation with the given input model + self.solver.import_model(path_model=path_model) + self.solver.forward_simulation( + save_traces=os.path.join(self.solver.cwd, "traces", "syn"), + export_traces=export_traces + ) - return start_idx, stop_idx + # (optional) Perform data-synthetic misfit quantification + if self.preprocess: + logger.info(f"quantifying misfit with " + f"'{self.preprocess.__class__.__name__}'") + self.preprocess.quantify_misfit( + observed=self.solver.data_filenames(choice="obs"), + synthetics=self.solver.data_filenames(choice="syn"), + save_adjsrcs=os.path.join(self.solver.cwd, "traces", "adj"), + save_residuals=os.path.join(self.path.evalgrad, "residuals") + ) + + # def alsdkjfla: + # self._write_misfit(path=path, misfit_tag=misfit_tag) + # + # def _write_model(self, path, model_tag): + # """ + # Writes model in format expected by solver + # + # :type path: str + # :param path: path to write the model to + # :type model_tag: str + # :param model_tag: name of the model to be saved, usually tagged as 'm' with + # a suffix depending on where in the inversion we are. e.g., 'm_try'. + # Expected that these tags are defined in OPTIMIZE module + # """ + # m = Model(path=os.path.join(self.path.OPTIMIZE, f"{model_tag}.npz")) + # m.write(path=os.path.join(path, "model")) + # + # self.logger.debug(f"saving model '{model_tag}'") + # + # def _write_misfit(self, path, misfit_tag): + # """ + # Writes misfit in format expected by nonlinear optimization library. + # Collects all misfit values within the given residuals directory and sums + # them in a manner chosen by the preprocess class. + # + # :type path: str + # :param path: path to write the misfit to + # :type misfit_tag: str + # :param misfit_tag: name of the model to be saved, usually tagged as + # 'f' with a suffix depending on where in the inversion we are. + # e.g., 'f_try'. Expected that these tags are defined in OPTIMIZE + # module + # """ + # preprocess = self.module("preprocess") + # optimize = self.module("optimize") + # + # self.logger.info("summing residuals with preprocess module") + # src = glob(os.path.join(path, "residuals", "*")) + # total_misfit = preprocess.sum_residuals(src) + # + # self.logger.debug(f"saving misfit {total_misfit:.3E} to '{misfit_tag}'") + # optimize.save(misfit_tag, total_misfit) + + +if __name__ == "__main__": + # Standard SeisFlows setup, makes modules global variables to the workflow + pars, modules = import_seisflows() + + logger.info(msg.mjr("Starting forward simulation workflow")) + + workflow = Forward(modules, **pars) + workflow.check() + workflow.setup() + workflow.run() + + logger.info(msg.mjr("Finished forward simulation workflow")) diff --git a/seisflows/workflow/forward_test.py b/seisflows/workflow/forward_test.py deleted file mode 100644 index aadbf92c..00000000 --- a/seisflows/workflow/forward_test.py +++ /dev/null @@ -1,56 +0,0 @@ -""" -Test workflow to see if a new form of seisflows workflow can be used -""" -import os -from glob import glob -from seisflows import logger -from seisflows.config import import_seisflows -from seisflows.tools import msg - -# Standard SeisFlows setup, makes modules global variables to the workflow -pars, modules = import_seisflows() -system, preprocess, solver, postprocess, optimize = modules - - -def evaluate_objective_function(path_model): - """ - Performs forward simulation for a single given event. Also evaluates the - objective function and writes residuals and adjoint sources for later tasks. - - .. note:: - if PAR.PREPROCESS == None, will not perform misfit quantification - - .. note:: - Must be run by system.run() so that solvers are assigned individual - task ids/ working directories. - """ - # Run the forward simulation with the given input model - solver.import_model(path_model=path_model) - solver.forward_simulation( - save_traces=os.path.join(solver.cwd, "traces", "syn"), - export_traces=os.path.join(solver.path.output, - solver.source_name, "syn") - ) - - # Perform data-synthetic misfit quantification - if preprocess is not None: - preprocess.quantify_misfit( - observed=solver.data_filenames(choice="obs"), - synthetics=solver.data_filenames(choice="syn"), - output=os.path.join(solver.cwd, "traces", "adj") - ) - - -if __name__ == "__main__": - # Begin the forward simulation workflow - logger.info(msg.mjr("Starting forward simulation workflow")) - - for module in modules: - module.setup() - - # Run objective function evaluation NTASK times - logger.info(msg.sub("EVALUATING OBJECTIVE FUNCTION")) - system.run(evaluate_objective_function, path_model=pars.path_model_init) - - logger.info(msg.mjr("Finished forward simulation workflow")) - diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 54e23bce..f2201d6b 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -8,162 +8,130 @@ """ import os +from seisflows import logger from seisflows.workflow.forward import Forward -from seisflows.tools import msg +from seisflows.tools import msg, unix from seisflows.tools.specfem import Model class Migration(Forward): """ - Migration base class. - - Performs the workflow of an inversion up to the postprocessing. In the - terminology of seismic exploration, implements a 'reverse time migration'. + [workflow.migration] Run forward and adjoint solver to produce + event-dependent misfit kernels. Sum and postprocess kernels to produce + gradient. In seismic exploration this is 'reverse time migration'. + + .. warning:: + Misfit kernels require large amounts of disk space for storage. + Setting `export_kernel`==True when PAR.NTASK is large and model files + are large may lead to large file overhead. + + :type export_gradient: bool + :param export_gradient: export the gradient after it has been generated + in the scratch directory. If False, gradient can be discarded from + scratch at any time in the workflow + :type export_kernels: bool + :param export_kernels: export each sources event kernels after they have + been generated in the scratch directory. If False, gradient can be + discarded from scratch at any time in the workflow """ - def __init__(self): + __doc__ = Forward.__doc__ + __doc__ + + def __init__(self, _modules=None, export_gradient=False, + export_kernels=False, **kwargs): """ Init is used to instantiate global parameters defined by the input parameter file. """ - super().__init__() - - self.required.par( - "CASE", required=False, default="data", par_type=str, - docstr="How to address 'data' in your workflow, available options: " - "1) 'data': Real data inversion. Observed waveforms must be " - "provided by the user in PATH.DATA/{SOURCE_NAME}. OR if " - "PAR.PREPROCESS=='pyatoa' data should be discoverable " - "via IRIS webservices based on event ID and station codes" - "2) 'synthetic': A synthetic-synthetic workflow. 'Data' " - "will be generated as synthetics using PATH.MODEL_TRUE. " - ) - self.required.par( - "SAVEGRADIENT", required=False, default=True, par_type=bool, - docstr="Save gradient files each time the gradient is evaluated" - ) - self.required.par( - "SAVEKERNELS", required=False, default=False, par_type=bool, - docstr="Save event kernel files each time they are evaluated" - ) - self.required.par( - "SAVEAS", required=False, default="binary", par_type=str, - docstr="Format to save models, gradients, kernels. Available: " - "['binary': save files in native SPECFEM .bin format, " - "'vector': save files as NumPy .npy files, " - "'both': save as both binary and vectors]" - ) - self.required.path( - "GRAD", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "evalgrad"), - docstr="scratch path to store any models or kernels related to " - "gradient evaluations. Sub-directories will be generated " - "inside PATH.GRAD to save various stages of gradient " - "manipulation" - ) - self.required.path( - "MODEL_TRUE", required=False, - default=os.path.join(self.path.WORKDIR, "specfem", "MODEL_TRUE"), - docstr="Target model to be used for PAR.CASE == 'synthetic'. The " - "TRUE model will be used to evaluate forward simulations " - "ONCE at the beginning of the workflow, to generate 'data'." - ) + super().__init__(**kwargs) - def check(self, validate=True): - """ - Checks parameters and paths. Must be implemented by sub-class - """ - super().check(validate=validate) + self._modules = _modules + self.export_gradient = export_gradient + self.export_kernels = export_kernels - if self.par.CASE.upper() == "SYNTHETIC": - assert os.path.exists(self.path.MODEL_TRUE), \ - "CASE == SYNTHETIC requires PATH.MODEL_TRUE" + # Overwriting base class required modules list + self._required_modules = ["system", "solver", "preprocess", + "postprocess"] - if not self.path.DATA or not os.path.exists(self.path.DATA): - assert "MODEL_TRUE" in self.path, f"DATA or MODEL_TRUE must exist" + # Empty module variables that should be filled in by setup + self.postprocess = None - def setup(self, flow=None, return_flow=False): + @property + def task_list(self): """ - Override the Forward.setup() method to include new flow functions - AND run setup for a the Postprocess module which will be used to deal - with the gradient - """ - super().setup(flow=flow, return_flow=return_flow) - - postprocess = self.module("postprocess") - postprocess.setup() + USER-DEFINED TASK LIST. This property defines a list of class methods + that take NO INPUT and have NO RETURN STATEMENTS. This defines your + linear workflow, i.e., these tasks are to be run in order from start to + finish to complete a workflow. - def main(self, flow=None, return_flow=False): - """Inherits from seisflows.workflow.forward.Forward""" - flow = (self.evaluate_initial_misfit, - self.evaluate_gradient, - self.process_kernels, - self.scale_gradient - ) + This excludes 'check' (which is run during 'import_seisflows') and + 'setup' which should be run separately - self.main(flow=flow, return_flow=return_flow) - - def evaluate_initial_misfit(self): - """Inherits from seisflows.workflow.forward.Forward""" - super().evaluate_initial_misfit() + .. note:: + For workflows that require an iterative approach (e.g. inversion), + this task list will be looped over, so ensure that any setup and + teardown tasks (run once per workflow, not once per iteration) are + not included. - def evaluate_gradient(self, path=None): + :rtype: list + :return: list of methods to call in order during a workflow """ - Performs adjoint simulation to retrieve the gradient of the objective. + return [self.evaluate_initial_misfit, + self.generate_misfit_kernels, + self.postprocess_kernels + ] - .. note:: - In the terminology of seismic exploration, we are 'backprojecting' + def setup(self): """ - system = self.module("system") + Override the Forward.setup() method to include the postprocessing + module used for kernel/gradient manipulation + """ + super().setup() + self.postprocess = self._modules.postprocess - self.logger.info(msg.mnr("EVALUATING GRADIENT")) - self.logger.debug( - f"evaluating gradient {self.par.NTASK} times on system..." - ) - system.run("solver", "eval_grad", path=path or self.path.GRAD, - export_traces=self.par.SAVETRACES) + def generate_misfit_kernels(self): + """System wrapper for running adjoint simulations""" + logger.msg.mnr("GENERATING MISFIT KERNELS") + self.system.run(self.generate_misfit_kernel) - def process_kernels(self): + def generate_misfit_kernel(self): """ - System-run wrapper for postprocess.process_kernels which is meant to - sum and smooth all individual event kernels + Performs adjoint simulations for a single given event. File manipulation + to ensure kernels are discoverable by other modules """ - system = self.module("system") - self.logger.info(msg.mnr("PROCESSING KERNELS")) + if self.export_kernels: + export_kernels = os.path.join(self.path.output, "kernels", + self.solver.source_name) + else: + export_kernels = False + + # Run adjoint simulations on system. Make kernels discoverable in + # path `eval_grad`. Optionally export those kernels + self.solver.adjoint_simulation( + save_kernels=os.path.join(self.path.eval_grad, "kernels", + self.solver.source_name), + export_kernels=export_kernels + ) - # Runs kernel processing as a single parallel process - system.run("solver", "postprocess_kernels", single=True, - path_grad=self.path.GRAD) + def postprocess_kernels(self): + """System wrapper for postprocess kernels. Run with single""" + self.system.run(self._postprocess_kernels, single=True) - def scale_gradient(self): + def _postprocess_kernels(self): """ - Scale the gradient magnitude by the given model, write the gradient in - vector form and model form, and apply an optional mask to the gradient - - .. note:: - While both masking and preconditioning involve scaling the - gradient, they are fundamentally different operations: - masking is ad hoc, preconditioning is a change of variables; - For more info, see Modrak & Tromp 2016 GJI + System-run wrapper for postprocess.process_kernels which is meant to + sum and smooth all individual event kernels """ - model = Model(path=os.path.join(self.path.GRAD)) - gradient = Model(path=os.path.join(self.path.GRAD, "kernels", "sum")) - - # Merge to vector and convert to absolute perturbations: - # log dm --> dm (see Eq.13 Tromp et al 2005) - gradient.vector *= model.vector - - if self.path.MASK: - mask = Model(os.path.join(self.path.MASK)) - # Write out a non-masked gradient incase masking is not wanted - gradient.write(path=os.path.join(self.path.GRAD, "gradient_nomask")) - - gradient.vector *= mask.vector - - # Update the model values based on the vector manipulation - gradient.model = gradient.split() - - # Write the gradient out - gradient.write(path=os.path.join(self.path.GRAD, "gradient")) - gradient.save(path=os.path.join(self.path.OPTIMIZE, "g_new")) + # Combine kernels into a single volumentric quantity + self.solver.combine( + input_path=os.path.join(self.path.eval_grad, "kernels"), + output_path=os.path.join(self.path.eval_grad, "sum") + ) + if self.solver.smooth_h > 0. or self.solver.smooth_v > 0.: + # Make a distinction that we have a pre- and post-smoothed sum + unix.mv(src=os.path.join(self.path.eval_grad, "sum_nosmooth")) + self.solver.smooth( + input_path=os.path.join(self.path.eval_grad, "sum_nosmooth"), + output_path=os.path.join(self.path.eval_grad, "sum") + ) From 29835840d85141c8d3298a15551ab081f2935a4d Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 18 Jul 2022 10:28:43 -0800 Subject: [PATCH 069/195] added inversion workflow supered on top of migration workflow. Need to fix up preprocess/postprocess/optimize modules to get things working. removed core script as most of the classes there are now defunct. renamed tools.utils to tools.core as the remainder classes have been moved there --- seisflows/core.py | 258 ------------------- seisflows/tools/{utils.py => core.py} | 108 ++++---- seisflows/workflow/forward.py | 45 +--- seisflows/workflow/inversion.py | 358 ++++++++++---------------- seisflows/workflow/migration.py | 108 ++++---- 5 files changed, 264 insertions(+), 613 deletions(-) delete mode 100755 seisflows/core.py rename seisflows/tools/{utils.py => core.py} (74%) diff --git a/seisflows/core.py b/seisflows/core.py deleted file mode 100755 index b0667248..00000000 --- a/seisflows/core.py +++ /dev/null @@ -1,258 +0,0 @@ -#!/usr/bin/env python3 -""" -Core class definitions for SeisFlows. Defines some unique class objects that -define how SeisFlows works internally, or are used heavily during a Seisflows -workflow. -""" -import sys -import logging - - -class Base(object): - """ - Defines the core Base object for all SeisFlows modules. All modules MUST - inherit from the Base object to work properly. This Base class essentially - dictates the required structure of a SeisFlows class. - """ - def __init__(self): - """ - SeisFlows instantiates its required parameters through the - SeisFlowsPathsParameters class, which scaffolds a rigid framework of - how parameters and paths should be defined by the program. This is - then used to build the parameter file dynamically. - """ - self.required = SeisFlowsPathsParameters() - - def module(self, name): - """ - Access globally stored SeisFlows modules located in sys.modules - - :rtype: Class or Dict or None - :return: Returns a SeisFlows module or Dictionary containing paths or - parameters. Else None if the chosen module has not been instantiated - """ - try: - mod = sys.modules[f"seisflows_{name}"] - except KeyError: - self.logger.warning(f"seisflows_{name} has not been instantiated") - mod = None - return mod - - @property - def par(self): - """ - Quick access SeisFlows parameters from sys.modules. Throws a warning - if parameters have not been instantiated - - :rtype: Dict or None - :return: Returns a Dictionary with instantiated parameters, or None if - parameters have not been instantiated - """ - return self.module("parameters") - - @property - def path(self): - """ - Quick access SeisFlows paths from sys.modules. Throws a warning - if paths have not been instantiated - - :rtype: Dict or None - :return: Returns a Dictionary with instantiated paths, or None if - parameters have not been instantiated - """ - return self.module("paths") - - def check(self, validate=True): - """ - General check() function for each module to check the validity of the - user-input parameters and paths - """ - if validate: - self.required.validate() - - # Example of a check statement - # assert(self.par.PARAMETER == example_value), f"Parameter != example" - - def setup(self): - """ - A placeholder function for any initialization or setup tasks that - need to be run once at the beginning of any workflow. - """ - return - - def finalize(self): - """ - A placeholder function for any finalization or tear-down tasks that - need to be run at the end of any iteration or workflow. - """ - return - - -class Dict(dict): - """ - A dictionary replacement which allows for easier parameter access through - getting and setting attributes. Also has some functionality to make string - printing prettier - """ - def __str__(self): - """Pretty print dictionaries and first level nested dictionaries""" - str_ = "" - try: - longest_key = max([len(_) for _ in self.keys()]) - for key, val in self.items(): - str_ += f"{key:<{longest_key}}: {val}\n" - except ValueError: - pass - return str_ - - def __repr__(self): - """Pretty print when calling an instance of this object""" - return self.__str__() - - def __getattr__(self, key): - """Attribute-like access of the internal dictionary attributes""" - try: - return self[key] - except KeyError: - raise AttributeError(f"{key} not found in Dict") - - def __setattr__(self, key, val): - """Setting attributes can only be performed one time""" - self.__dict__[key] = val - - -class Null: - """ - A null object that always and reliably does nothing - """ - def __init__(self, *args, **kwargs): - pass - - def __call__(self, *args, **kwargs): - return self - - def __bool__(self): - return False - - def __nonzero__(self): - return False - - def __getattr__(self, key): - return self - - def __setattr__(self, key, val): - return self - - def __delattr__(self, key): - return self - - -class SeisFlowsPathsParameters: - """ - A class used to simplify defining required or optional paths and parameters - that will be globally accesible through sys.modules. This class enforces a - specific path/parameter structure, and entry point into the environment. - - .. note:: - if a path or parameter is optional it requires a default value, which is - set at the header of this class - """ - default_par = "REQUIRED PARAMETER" - default_path = "REQUIRED PATH" - - def __init__(self, base=None): - """ - We simply store paths and parameters as nested dictioanries. Due to the - use of inheritance, the class can be passed to itself on initialization - which means paths and parameters can be adopted from base class - - :type base: seisflows.config.DefinePathsParameters - :param base: paths and parameters from abstract Base class that need to - be inherited by the current child class. - """ - self.parameters, self.paths = {}, {} - if base: - self.parameters.update(base.parameters) - self.paths.update(base.paths) - - def par(self, parameter, required, docstr, par_type, default=None): - """ - Add a parameter to the internal list of parameters - - :type parameter: str - :param parameter: name of the parameter - :type required: bool - :param required: whether or not the parameter is required. If it is not - required, then a default value should be given - :type docstr: str - :param docstr: Short explanatory doc string that defines what the - parameter is used for. - :type par_type: class or str - :param par_type: the parameter type, used for doc strings and also - parameter validation - :param default: default value for the parameter, can be any type - """ - if required: - default = self.default_par - if type(par_type) == type: - par_type = par_type.__name__ - self.parameters[parameter] = {"docstr": docstr, "required": required, - "default": default, "type": par_type} - - def path(self, path, required, docstr, default=None): - """ - Add a path to the internal list of paths - - :type path: str - :param path: name of the parameter - :type required: bool - :param required: whether or not the path is required. If it is not - required, then a default value should be given - :type docstr: str - :param docstr: Short explanatory doc string that defines what the - path is used for. - :type default: str - :param default: default value for the path - - """ - if required: - default = self.default_path - self.paths[path] = {"docstr": docstr, "required": required, - "default": default} - - def validate(self, paths=True, parameters=True): - """ - Set internal paths and parameter values into sys.modules. Should be - called by each modules check() function. - - Ensures that required paths and parameters are set by the User in the - parameter file and that default values are stored for any optional - paths and parameters which are not explicitely set. - - :type paths: bool - :param paths: validate the internal path values - :type parameters: bool - :param parameters: validate the internal parameter values - :raises ParameterError: if a required path or parameter is not set by - the user. - """ - if parameters: - sys_path = sys.modules["seisflows_parameters"] - for key, attrs in self.parameters.items(): - if attrs["required"] and (key not in sys_path): - raise KeyError( - f"Required parameter '{key}' not found in parameter file" - ) - elif key not in sys_path: - setattr(sys_path, key, attrs["default"]) - - if paths: - sys_par = sys.modules["seisflows_paths"] - for key, attrs in self.paths.items(): - if attrs["required"] and (key not in sys_par): - raise KeyError( - f"Required path '{key}' not found in parameter file" - ) - elif key not in sys_par: - setattr(sys_par, key, attrs["default"]) - diff --git a/seisflows/tools/utils.py b/seisflows/tools/core.py similarity index 74% rename from seisflows/tools/utils.py rename to seisflows/tools/core.py index a1a9a794..f7d8a7ec 100644 --- a/seisflows/tools/utils.py +++ b/seisflows/tools/core.py @@ -4,13 +4,70 @@ """ import os import re -import time import yaml import numpy as np -from seisflows.core import Dict from seisflows import logger +class Dict(dict): + """ + A dictionary replacement which allows for easier parameter access through + getting and setting attributes. Also has some functionality to make string + printing prettier + """ + def __str__(self): + """Pretty print dictionaries and first level nested dictionaries""" + str_ = "" + try: + longest_key = max([len(_) for _ in self.keys()]) + for key, val in self.items(): + str_ += f"{key:<{longest_key}}: {val}\n" + except ValueError: + pass + return str_ + + def __repr__(self): + """Pretty print when calling an instance of this object""" + return self.__str__() + + def __getattr__(self, key): + """Attribute-like access of the internal dictionary attributes""" + try: + return self[key] + except KeyError: + raise AttributeError(f"{key} not found in Dict") + + def __setattr__(self, key, val): + """Setting attributes can only be performed one time""" + self.__dict__[key] = val + + +class Null: + """ + A null object that always and reliably does nothing + """ + def __init__(self, *args, **kwargs): + pass + + def __call__(self, *args, **kwargs): + return self + + def __bool__(self): + return False + + def __nonzero__(self): + return False + + def __getattr__(self, key): + return self + + def __setattr__(self, key, val): + return self + + def __delattr__(self, key): + return self + + class TaskIDError(Exception): """ A specific error that gets called when tasks are not run on system, @@ -61,53 +118,6 @@ def get_task_id(force=False): return int(_taskid) -def log_status(func): - """ - Decorator function that logs the completion status of a function to a - state file. This is used for checkpointing a workflow and resuming - failed workflows without repeating computational intense tasks - - :type func: function - """ - raise NotImplementedError("This is not working as expected") - - STATE_FILE = os.path.join(os.getcwd(), "sfstatefile") - - if not os.path.exists(STATE_FILE): - with open(STATE_FILE, "w") as f: - f.write(f"# SeisFlows State File\n") - f.write(f"# {time.asctime()}\n") - f.write(f"# =========================\n") - - def logged_func(): - """Log the completion status of the function""" - try: - output = func() - with open(STATE_FILE, "a") as f: - f.write(f"{func.__name__}\tCOMPLETED\n") - except Exception as e: - with open(STATE_FILE, "a") as f: - f.write(f"{func.__name__}\tFAILED\n") - logger.error(e) - raise - return output - - lines = open(STATE_FILE, "r").readlines() - for line in lines: - if line.startswith("#"): - continue - function, status = line.strip().split("\t") - if func.__name__ == function: - if status == "COMPLETED": - return - elif status == "FAILED": - return logged_func() - else: - return logged_func() - else: - return logged_func() - - def load_yaml(filename): """ Define how the PyYaml yaml loading function behaves. diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 40d7718b..c3f90484 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -326,52 +326,9 @@ def evaluate_objective_function(self, path_model, **kwargs): observed=self.solver.data_filenames(choice="obs"), synthetics=self.solver.data_filenames(choice="syn"), save_adjsrcs=os.path.join(self.solver.cwd, "traces", "adj"), - save_residuals=os.path.join(self.path.evalgrad, "residuals") + save_residuals=os.path.join(self.path.eval_grad, "residuals") ) - # def alsdkjfla: - # self._write_misfit(path=path, misfit_tag=misfit_tag) - # - # def _write_model(self, path, model_tag): - # """ - # Writes model in format expected by solver - # - # :type path: str - # :param path: path to write the model to - # :type model_tag: str - # :param model_tag: name of the model to be saved, usually tagged as 'm' with - # a suffix depending on where in the inversion we are. e.g., 'm_try'. - # Expected that these tags are defined in OPTIMIZE module - # """ - # m = Model(path=os.path.join(self.path.OPTIMIZE, f"{model_tag}.npz")) - # m.write(path=os.path.join(path, "model")) - # - # self.logger.debug(f"saving model '{model_tag}'") - # - # def _write_misfit(self, path, misfit_tag): - # """ - # Writes misfit in format expected by nonlinear optimization library. - # Collects all misfit values within the given residuals directory and sums - # them in a manner chosen by the preprocess class. - # - # :type path: str - # :param path: path to write the misfit to - # :type misfit_tag: str - # :param misfit_tag: name of the model to be saved, usually tagged as - # 'f' with a suffix depending on where in the inversion we are. - # e.g., 'f_try'. Expected that these tags are defined in OPTIMIZE - # module - # """ - # preprocess = self.module("preprocess") - # optimize = self.module("optimize") - # - # self.logger.info("summing residuals with preprocess module") - # src = glob(os.path.join(path, "residuals", "*")) - # total_misfit = preprocess.sum_residuals(src) - # - # self.logger.debug(f"saving misfit {total_misfit:.3E} to '{misfit_tag}'") - # optimize.save(misfit_tag, total_misfit) - if __name__ == "__main__": # Standard SeisFlows setup, makes modules global variables to the workflow diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index d29df7a1..e360c33f 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -20,188 +20,113 @@ """ import os import sys -import numpy as np +from seisflows import logger from seisflows.workflow.migration import Migration from seisflows.tools import msg, unix class Inversion(Migration): """ - Waveform inversion base class, built on top of the Migration child class, - which in-turn is built on top of the Forward child class. + [workflow.inversion] Peforms iterative nonlinear inversion using a built-in + optimization library which stores model vectors on disk. + + :type start: int + :param start: start inversion workflow at this iteration. 1 <= start <= inf + :type end: int + :param end: end inversion workflow at this iteration. start <= end <= inf + :type export_model: bool + :param export_model: export best-fitting model from the line search to disk. + If False, new models can be discarded from scratch at any time. + :type path_eval_func: str + :param path_eval_func: scratch path to store files for line search objective + function evaluations, including models, misfit and residuals + """ + __doc__ = Migration.__doc__ + __doc__ - Peforms iterative nonlinear inversion and provides a base class on top - of which specialized strategies can be implemented. + def __init__(self, _modules=None, start=1, end=1, export_model=True, + path_eval_func=None, **kwargs): + """Instantiate Inversion-specific parameters""" - To allow customization, the inversion workflow is divided into generic - methods such as "initialize", "finalize", "evaluate_function", - "evaluate_gradient", which can be easily overloaded. + super().__init__(**kwargs) - Calls to forward and adjoint solvers are abstracted through the "solver" - interface so that various forward modeling packages canf be used - interchangeably. + self.start = start + self.end = end + self.export_model = export_model - Commands for running in serial or parallel on a workstation or cluster - are abstracted through the "system" interface. - """ - def __init__(self): - """ - Init is used to instantiate global parameters defined by the input - parameter file. - """ - super().__init__() - - self.required.par( - "BEGIN", required=False, default=1, par_type=int, - docstr="First iteration of an inversion workflow, 1 <= BEGIN <= inf" - ) - - self.required.par( - "END", required=False, default=1, par_type=int, - docstr="Last iteration of the inverison workflow," - "BEGIN <= END <= inf" - ) - self.required.par( - "RESUME_FROM", required=False, par_type=str, - docstr="Name of flow task to resume workflow from. Useful for " - "restarting failed workflows or re-trying sections of " - "workflows with new parameters. To determine available " - "options for your given workflow: > seisflows print flow" - ) - self.required.par( - "STOP_AFTER", required=False, par_type=str, - docstr="Name of flow task to stop workflow after. Useful for " - "stopping mid-workflow to look at results before " - "proceeding (e.g., to look at waveform misfits before " - "evaluating the gradient). To determine available options " - "for your given workflow: > seisflows print flow" - ) - self.required.par( - "SAVEMODEL", required=False, default=True, par_type=bool, - docstr="Save updated model files after each iteration" - ) - # Define the Paths required by this module - self.required.path( - "FUNC", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "evalfunc"), - docstr="scratch path to store data related to misfit function " - "evaluations that take place during the line search. Data " - "stored here include residuals from data-synthetic misfit, " - "and a given 'try' model being used to generate synthetics." - ) - # !!! Currently not used - self.required.path( - "HESS", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "evalhess"), - docstr="scratch path to store data related to Hessian evaluations" - ) - self.required.path( - "OPTIMIZE", required=False, - default=os.path.join(self.path.WORKDIR, "scratch", "optimize"), - docstr="scratch path to store data related to nonlinear " - "optimization library. Data stored here include model, " - "gradient, and search direction vectors (numpy arrays), and" - "additional arrays related to specific optimization " - "algorithms" - ) - - def check(self, validate=True): - """ - Checks parameters and paths - """ - super().check(validate=validate) + self.path.eval_func = path_eval_func or \ + os.path.join(self.path.workdir, "scratch", + "eval_func") - assert(1 <= self.par.BEGIN <= self.par.END), \ - f"Incorrect BEGIN or END parameter. Values must be in order: " \ - f"1 <= {self.par.BEGIN} <= {self.par.END}" + # Overwriting base class required modules list + self._required_modules = ["system", "solver", "preprocess", + "postprocess", "optimize"] - def setup(self, flow=None, return_flow=False): + # Empty module variables that should be filled in by setup + self.optimize = None + + @property + def task_list(self): """ - Lays groundwork for inversion by running setup() functions for the - involved sub-modules, generating True model synthetic data if necessary, - and generating the pre-requisite database files. + USER-DEFINED TASK LIST. This property defines a list of class methods + that take NO INPUT and have NO RETURN STATEMENTS. This defines your + linear workflow, i.e., these tasks are to be run in order from start to + finish to complete a workflow. + + This excludes 'check' (which is run during 'import_seisflows') and + 'setup' which should be run separately .. note:: - This function should only be run one time, at the start of iter 1 - """ - super().setup(flow=flow, return_flow=return_flow) + For workflows that require an iterative approach (e.g. inversion), + this task list will be looped over, so ensure that any setup and + teardown tasks (run once per workflow, not once per iteration) are + not included. - self.module("optimize").setup() + :rtype: list + :return: list of methods to call in order during a workflow + """ + return [self.evaluate_initial_misfit, + self.run_adjoint_simulations, + self.generate_misfit_kernel, + self.compute_search_direction, + self.evaluate_line_search, + self.clean_scratch_directory + ] - def finalize(self): + def check(self): """ - Saves results from current model update iteration and increment the - iteration number to set up for the next iteration. Finalization is - expected to the be LAST function in workflow.main()'s flow list. + Checks inversion-specific parameters """ - self.logger.info(msg.mjr(f"FINALIZING ITERATION {optimize.iter}")) + super().check() - self.checkpoint() - preprocess.finalize() + assert(1 <= self.start <= self.end), \ + f"Incorrect START or END parameter. Values must be in order: " \ + f"1 <= {self.start} <= {self.end}" - def main(self, flow=None, return_flow=False): + def setup(self): """ - Overwrites the forward() main function to provide the ability to run - multiple iterations in a single workflow. - - :type flow: list or tuple - :param flow: list of Class methods that will be run in the order they - are provided. - :type return_flow: bool - :param return_flow: for CLI tool, simply returns the flow function - rather than running the workflow. Used for print statements etc. + Lays groundwork for inversion by running setup() functions for the + involved sub-modules, generating True model synthetic data if necessary, + and generating the pre-requisite database files. """ - if flow is None: - flow = (self.evaluate_initial_misfit, - self.evaluate_gradient, - self.process_kernels, - self.scale_gradient, - self.compute_direction, - self.line_search, - self.export, - self.clean - ) - - self.setup(flow, return_flow) - optimize = self.module("optimize") - - # Run the workflow until from the current iteration until PAR.END - optimize.iter = self.par.BEGIN - self.logger.info(msg.mjr("STARTING INVERSION WORKFLOW")) - while True: - self.logger.info( - msg.mnr(f"ITERATION {optimize.iter} / {self.par.END}") - ) - - # Execute the functions within the flow - for func in flow[self.start:self.stop]: - func() - self.logger.info(msg.mjr(f"FINISHED FLOW EXECUTION")) - - # Reset flow for subsequent iterations - self.start, self.stop = None, None - if optimize.iter >= self.par.END: - break - optimize.iter += 1 - - self.logger.info(msg.sub(f"INCREMENT ITERATION TO {optimize.iter}")) - - self.logger.info(msg.mjr("FINISHED INVERSION WORKFLOW")) - - def evaluate_initial_misfit(self): - """Inherits from seisflows.workflow.forward.Forward""" - super().evaluate_initial_misfit() - - def compute_direction(self): + super().setup() + self.optimize = self._modules.optimize + + def run(self): + """Call the forward.run() function iteratively, from `start` to `end`""" + for i in range(self.start, self.end): + logger.info(msg.mjr(f"Running inversion iteration {i:0>2}")) + super().run() + logger.info(msg.mjr(f"Completed inversion iteration {i:0>2}")) + + def compute_search_direction(self): """ Computes search direction using the optimization library """ - optimize = self.module("optimize") - self.logger.info(msg.mnr("COMPUTING SEARCH DIRECTION")) - optimize.compute_direction() + logger.info(msg.mnr("COMPUTING SEARCH DIRECTION")) + self.optimize.compute_direction() - def line_search(self): + def evaluate_line_search(self): """ Conducts line search in given search direction @@ -210,87 +135,88 @@ def line_search(self): status == 0 : not finished status < 0 : failed """ - optimize = self.module("optimize") - # Calculate the initial step length based on optimization algorithm - if optimize.line_search.step_count == 0: - self.logger.info(msg.mjr(f"CONDUCTING LINE SEARCH: " - f"i{optimize.iter:0>2}" - f"s{optimize.line_search.step_count:0>2}") - ) - optimize.initialize_search() + if self.optimize.line_search.step_count == 0: + logger.info(msg.mjr(f"CONDUCTING LINE SEARCH: " + f"i{self.optimize.iter:0>2}" + f"s{self.optimize.line_search.step_count:0>2}") + ) + self.optimize.initialize_search() # Attempt a new trial step with the given step length - optimize.line_search.step_count += 1 - self.logger.info(msg.mnr(f"TRIAL STEP COUNT: " - f"i{optimize.iter:0>2}" - f"s{optimize.line_search.step_count:0>2}")) - self._evaluate_function(path=self.path.FUNC, suffix="try") + self.optimize.line_search.step_count += 1 + logger.info(msg.mnr(f"TRIAL STEP COUNT: " + f"i{self.optimize.iter:0>2}" + f"s{self.optimize.line_search.step_count:0>2}")) + + self.system.run(self.evaluate_objective_function, + path=self.path.eval_func, suffix="try") # Check the function evaluation against line search history - status = optimize.update_search() + status = self.optimize.update_search() # Proceed based on the outcome of the line search if status > 0: - self.logger.info("trial step successful") + logger.info("trial step successful") # Save outcome of line search to disk; reset step to 0 for next iter - optimize.finalize_search() + self.optimize.finalize_search() return elif status == 0: - self.logger.info("retrying with new trial step") + logger.info("retrying with new trial step") # Recursively call this function to attempt another trial step - self.line_search() + self.evaluate_line_search() elif status < 0: - if optimize.retry_status(): - self.logger.info("line search failed. restarting line search") + if self.optimize.retry_status(): + logger.info("line search failed. restarting line search") # Reset the line search machinery; set step count to 0 - optimize.restart() - self.line_search() + self.optimize.restart() + self.evaluate_line_search() else: - self.logger.info("line search failed. aborting inversion.") + logger.info("line search failed. aborting inversion.") sys.exit(-1) - def clean(self): + def clean_scratch_directory(self): """ Cleans directories in which function and gradient evaluations were carried out """ - self.logger.info(msg.mnr("CLEANING WORKDIR FOR NEXT ITERATION")) - - unix.rm(self.path.GRAD) - unix.rm(self.path.FUNC) - unix.mkdir(self.path.GRAD) - unix.mkdir(self.path.FUNC) - - def export(self): - """ - Exports various quantities to PATH.OUTPUT (to disk) from the SCRATCH - directory as SCRATCH is liable to be overwritten at any point of the - workflow. This takes place at the end of each iteration, before - the clean() function is called. - """ - optimize = self.module("optimize") - - if self.par.SAVEMODEL: - src = os.path.join(self.path.OPTIMIZE, "m_new") - dst = os.path.join(self.path.OUTPUT, f"model_{optimize.iter:04d}") - self.logger.debug(f"exporting model 'm_new' to disk") - unix.cp(src, dst) - - if self.par.SAVEGRADIENT: - src = os.path.join(self.path.OPTIMIZE, "g_old") - dst = os.path.join(self.path.OUTPUT, f"grad_{optimize.iter:04d}") - unix.cp(src, dst) - - if self.par.SAVEKERNELS: - src = os.path.join(self.path.GRAD, "kernels") - dst = os.path.join(self.path.OUTPUT, f"kernels_{optimize.iter:04d}") - self.logger.debug(f"saving kernels to path:\n{dst}") - unix.mv(src, dst) - - if self.par.SAVERESIDUALS: - src = os.path.join(self.path.GRAD, "residuals") - dst = os.path.join(self.path.OUTPUT, - f"residuals_{optimize.iter:04d}") - unix.mv(src, dst) + logger.info(msg.mnr("CLEANING WORKDIR FOR NEXT ITERATION")) + + unix.rm(self.path.eval_grad) + unix.rm(self.path.eval_func) + + unix.mkdir(self.path.eval_grad) + unix.mkdir(self.path.eval_func) + + # def export(self): + # """ + # Exports various quantities to PATH.OUTPUT (to disk) from the SCRATCH + # directory as SCRATCH is liable to be overwritten at any point of the + # workflow. This takes place at the end of each iteration, before + # the clean() function is called. + # """ + # optimize = self.module("optimize") + # + # if self.par.SAVEMODEL: + # src = os.path.join(self.path.OPTIMIZE, "m_new") + # dst = os.path.join(self.path.OUTPUT, f"model_{optimize.iter:04d}") + # logger.debug(f"exporting model 'm_new' to disk") + # unix.cp(src, dst) + # + # if self.par.SAVEGRADIENT: + # src = os.path.join(self.path.OPTIMIZE, "g_old") + # dst = os.path.join(self.path.OUTPUT, f"grad_{optimize.iter:04d}") + # unix.cp(src, dst) + # + # if self.par.SAVEKERNELS: + # src = os.path.join(self.path.GRAD, "kernels") + # dst = os.path.join(self.path.OUTPUT, f"kernels_{optimize.iter:04d}") + # logger.debug(f"saving kernels to path:\n{dst}") + # unix.mv(src, dst) + # + # if self.par.SAVERESIDUALS: + # src = os.path.join(self.path.GRAD, "residuals") + # dst = os.path.join(self.path.OUTPUT, + # f"residuals_{optimize.iter:04d}") + # unix.mv(src, dst) diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index f2201d6b..5f07c245 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -9,9 +9,9 @@ import os from seisflows import logger +from seisflows.config import import_seisflows from seisflows.workflow.forward import Forward from seisflows.tools import msg, unix -from seisflows.tools.specfem import Model class Migration(Forward): @@ -38,10 +38,7 @@ class Migration(Forward): def __init__(self, _modules=None, export_gradient=False, export_kernels=False, **kwargs): - """ - Init is used to instantiate global parameters defined by the input - parameter file. - """ + """Instantiate Migration-specific parameters""" super().__init__(**kwargs) self._modules = _modules @@ -76,8 +73,8 @@ def task_list(self): :return: list of methods to call in order during a workflow """ return [self.evaluate_initial_misfit, - self.generate_misfit_kernels, - self.postprocess_kernels + self.run_adjoint_simulations, + self.generate_misfit_kernel ] def setup(self): @@ -88,50 +85,69 @@ def setup(self): super().setup() self.postprocess = self._modules.postprocess - def generate_misfit_kernels(self): - """System wrapper for running adjoint simulations""" - logger.msg.mnr("GENERATING MISFIT KERNELS") - self.system.run(self.generate_misfit_kernel) - - def generate_misfit_kernel(self): + def run_adjoint_simulations(self): """ Performs adjoint simulations for a single given event. File manipulation to ensure kernels are discoverable by other modules """ - if self.export_kernels: - export_kernels = os.path.join(self.path.output, "kernels", - self.solver.source_name) - else: - export_kernels = False - - # Run adjoint simulations on system. Make kernels discoverable in - # path `eval_grad`. Optionally export those kernels - self.solver.adjoint_simulation( - save_kernels=os.path.join(self.path.eval_grad, "kernels", - self.solver.source_name), - export_kernels=export_kernels - ) - - def postprocess_kernels(self): - """System wrapper for postprocess kernels. Run with single""" - self.system.run(self._postprocess_kernels, single=True) - - def _postprocess_kernels(self): + def run_adjoint_simulation(): + """Adjoint simulation function to be run by system.run()""" + if self.export_kernels: + export_kernels = os.path.join(self.path.output, "kernels", + self.solver.source_name) + else: + export_kernels = False + + # Run adjoint simulations on system. Make kernels discoverable in + # path `eval_grad`. Optionally export those kernels + self.solver.adjoint_simulation( + save_kernels=os.path.join(self.path.eval_grad, "kernels", + self.solver.source_name), + export_kernels=export_kernels + ) + + logger.msg.mnr("running adjoint simulations to generate event kernels") + self.system.run(run_adjoint_simulation) + + def generate_misfit_kernel(self): """ - System-run wrapper for postprocess.process_kernels which is meant to - sum and smooth all individual event kernels + Combine/sum NTASK event kernels into a single volumetric kernel and + then (optionally) smooth the output misfit kernel by convolving with + a 3D Gaussian function with user-defined horizontal and vertical + half-widths. """ - # Combine kernels into a single volumentric quantity - self.solver.combine( - input_path=os.path.join(self.path.eval_grad, "kernels"), - output_path=os.path.join(self.path.eval_grad, "sum") - ) - - if self.solver.smooth_h > 0. or self.solver.smooth_v > 0.: - # Make a distinction that we have a pre- and post-smoothed sum - unix.mv(src=os.path.join(self.path.eval_grad, "sum_nosmooth")) - - self.solver.smooth( - input_path=os.path.join(self.path.eval_grad, "sum_nosmooth"), + def combine_event_kernels(): + """Combine event kernels into a misfit kernel""" + self.solver.combine( + input_path=os.path.join(self.path.eval_grad, "kernels"), output_path=os.path.join(self.path.eval_grad, "sum") ) + + def smooth_misfit_kernel(): + """Smooth the output misfit kernel """ + if self.solver.smooth_h > 0. or self.solver.smooth_v > 0.: + # Make a distinction that we have a pre- and post-smoothed sum + unix.mv(src=os.path.join(self.path.eval_grad, "sum_nosmooth")) + + self.solver.smooth( + input_path=os.path.join(self.path.eval_grad, "sum_nosmooth"), + output_path=os.path.join(self.path.eval_grad, "sum") + ) + + logger.msg.mnr("postprocessing (summing/smoothing) event kernels") + self.system.run([combine_event_kernels, smooth_misfit_kernel], + single=True) + + +if __name__ == "__main__": + # Standard SeisFlows setup, makes modules global variables to the workflow + pars, modules = import_seisflows() + + logger.info(msg.mjr("Starting migration workflow")) + + workflow = Migration(modules, **pars) + workflow.check() + workflow.setup() + workflow.run() + + logger.info(msg.mjr("Finished migration workflow")) \ No newline at end of file From d1e94ff038e94666063097426498aa6a01554466 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 18 Jul 2022 17:33:37 -0800 Subject: [PATCH 070/195] removed CFGPATHS and postprocessing module, rolled postprocessing functionality into solver and workflow up to line search in inversion workflow working. optimization library now piggybacks on supered functions during an inversion workflow, keeping forward and migration simpler removing some agency from optimization module and giving it to the workflow, i.e., controlling the line search. line search currently not working, will need to fix --- seisflows/config.py | 46 ++-- seisflows/optimize/LBFGS.py | 76 +++--- seisflows/optimize/NLCG.py | 26 +- seisflows/optimize/gradient.py | 224 +++++++++--------- seisflows/plugins/line_search/backtrack.py | 41 +--- seisflows/plugins/line_search/bracket.py | 91 ++----- seisflows/plugins/solver_io/ascii.py | 2 +- seisflows/plugins/solver_io/fortran_binary.py | 2 +- seisflows/postprocess/default.py | 8 +- seisflows/preprocess/default.py | 25 +- seisflows/seisflows.py | 12 +- seisflows/solver/specfem.py | 116 ++++----- seisflows/solver/specfem2d.py | 2 +- seisflows/solver/specfem3d.py | 4 +- seisflows/system/workstation.py | 8 +- seisflows/tests/test_config.py | 2 +- seisflows/tests/test_seisflows.py | 4 +- seisflows/tests/test_solver.py | 2 +- seisflows/tools/core.py | 51 ++-- seisflows/tools/specfem.py | 23 +- seisflows/tools/unix.py | 2 +- seisflows/workflow/base.py | 80 ------- seisflows/workflow/forward.py | 76 +++--- seisflows/workflow/inversion.py | 168 ++++++++----- seisflows/workflow/migration.py | 119 ++++++---- seisflows/workflow/test.py | 2 +- 26 files changed, 576 insertions(+), 636 deletions(-) delete mode 100644 seisflows/workflow/base.py diff --git a/seisflows/config.py b/seisflows/config.py index c3398945..710b9cd7 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -25,9 +25,9 @@ from seisflows import logger -from seisflows.core import Dict, Null +from seisflows.tools.core import Dict, Null from seisflows.tools import msg, unix -from seisflows.tools.utils import load_yaml +from seisflows.tools.core import load_yaml """ @@ -40,21 +40,10 @@ """ # List of module names required by SeisFlows for imports. Order-sensitive # In sys.modules these will be prepended by 'seisflows_', e.g., seisflows_system -NAMES = ["system", "preprocess", "solver", - "postprocess", "optimize", "workflow"] +NAMES = ["system", "preprocess", "solver", "optimize", "workflow"] # The location of this config file, which is the main repository ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) - -# Define a package-wide default directory and file naming schema. This will -# be returned as a Dict() object, defined below. All of these files and -# directories will be created relative to the user-defined working directory -CFGPATHS = Dict( - PAR_FILE="parameters.yaml", # Default SeisFlows parameter file - LOGFILE="sfoutput.txt", # Log files for all system log - ERRLOGFILE="sferror.txt", # StdErr dump site for crash messages - LOGDIR="logs", # Dump site for previously created log files -) """ !!! ^^^ WARNING ^^^ !!! """ @@ -126,26 +115,31 @@ class names. instantiate each of the SeisFlows modules and run the workflow. This should be created by the command line argument 'seisflows configure'. Defaults to 'parameters.yaml' - :rtype: list - :return: instantiated modules that are returned in the following order + :rtype: module + :return: instantiated workflow module which contains all instantiated + sub-modules containing set parameters 'system', 'preprcess', 'solver', 'postprocess', 'optimize' """ + # Read in parameters from file. Set up the logger parameters = load_yaml(os.path.join(workdir, parameter_file)) config_logger(level=parameters.log_level, filename=parameters.path_log_file, verbose=parameters.verbose) # Instantiate SeisFlows modules dynamically based on choices and parameters # provided in the input parameter file - modules = {name: custom_import(name, parameters[name])(**parameters) for - name in NAMES} - modules = Dict(modules) - - # Drop NAMES from parameters, we don't need them anymore and they get - # muddled with the actual modules upon instantiation - for name in NAMES: - parameters.pop(name) - - return parameters, modules + modules = Dict() + for name in NAMES[:]: + # Workflow is instantiated differently + if name == "workflow": + continue + modules[name] = custom_import(name, parameters[name])(**parameters) + parameters.pop(name) # drop name so workflow doesnt instantiate it + + # Import workflow separately by providing all the instantiated modules to it + workflow = \ + custom_import("workflow", parameters["workflow"])(modules, **parameters) + + return workflow def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 4ae6921c..820550d8 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -97,19 +97,21 @@ def __init__(self, lbfgs_mem=3, lbfgs_max=np.inf, lbfgs_thresh=0., self.LBFGS_max = lbfgs_max self.LBFGS_thresh = lbfgs_thresh - # Internally used memory and path parameters + # Set new L-BFGS dependent paths for storing previous gradients + self.path["LBFGS"] = os.path.join(self.path.scratch, "LBFGS") + self.path["y_file"] = os.path.join(self.path.scratch, "LBFGS", "Y") + self.path["s_file"] = os.path.join(self.path.scratch, "LBFGS", "S") + + # Internally used memory parameters for the L-BFGS optimization algo. self._LBFGS_iter = 0 self._memory_used = 0 - self._LBFGS_dir = os.path.join(self.path, "LBFGS") - self._y_file = os.path.join(self.path, "LBFGS", "Y") - self._s_file = os.path.join(self.path, "LBFGS", "S") def setup(self): """ Set up the LBFGS optimization schema """ super().setup() - unix.mkdir(self._LBFGS_dir) + unix.mkdir(self.path.LBFGS) def compute_direction(self): """ @@ -128,20 +130,19 @@ def compute_direction(self): force a restart, search direction is inverse gradient 4. New search direction is acceptably angled from previous, becomes the new search direction - """ - unix.cd(self.path) - logger.info(f"computing search direction with L-BFGS") + :rtype: seisflows.tools.specfem.Model + :return: search direction as a Model instance + """ self._LBFGS_iter += 1 # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration g = self.load("g_new") if self._LBFGS_iter == 1: - logger.info("first L-BFGS iteration, setting search direction " - "as inverse gradient") + logger.info("first L-BFGS iteration, default to gradient descent") p_new = -1 * g.vector - restarted = 0 + restarted = False # Restart condition or first iteration lead to setting search direction # as the inverse gradient (i.e., default to steepest descent) @@ -150,50 +151,57 @@ def compute_direction(self): "setting search direction as inverse gradient") self.restart() p_new = -1 * g.vector - restarted = 1 + restarted = True # Normal LBFGS direction computation else: # Update the search direction, apply the inverse Hessian such that # 'q' becomes the new search direction 'g' logger.info("applying inverse Hessian to gradient") - s, y = self._update() - q = self._apply(g.vector, s, y) + s, y = self._update_search_history() + q = self._apply_inverse_hessian(g.vector, s, y) # Determine if the new search direction is appropriate by checking # its angle to the previous search direction if self._check_status(g, q): logger.info("new L-BFGS search direction found") p_new = -q - restarted = 0 + restarted = False else: logger.info("new search direction not appropriate, defaulting " - "to inverse gradient") + "to gradient desceitn") self.restart() p_new = -g - restarted = 1 + restarted = True # Save values to disk and memory - self.save("p_new", p_new) self.restarted = restarted + return p_new + def restart(self): """ - Overwrite the optimization restart to restart the L-BFGS schema + Restart the L-BFGS optimization algorithm by clearing out stored + gradient memory. """ - super().restart() + logger.info("restarting L-BFGS optimization algorithm") - logger.info("restarting L-BFGS optimization algorithm by clearing " - "internal memory") + # Fall back to gradient descent for search direction + g = self.load("g_new") + self.save("p_new", -1 * g.vector) + + # Clear internal memory + self.line_search.clear_history() + self.restarted = True self._LBFGS_iter = 1 self._memory_used = 0 - unix.cd(self.path.OPTIMIZE) - s = np.memmap(filename=self._s_file, mode="r+") - y = np.memmap(filename=self._y_file, mode="r+") + # Clear out previous gradient information + s = np.memmap(filename=self.path.s_file, mode="r+") + y = np.memmap(filename=self.path.y_file, mode="r+") s[:] = 0. y[:] = 0. - def _update(self): + def _update_search_history(self): """ Updates L-BFGS algorithm history @@ -224,9 +232,9 @@ def _update(self): # Initial iteration, need to create the memory map if self._memory_used == 0: - s = np.memmap(filename=self._s_file, mode="w+", dtype="float32", + s = np.memmap(filename=self.path.s_file, mode="w+", dtype="float32", shape=(m, n)) - y = np.memmap(filename=self._y_file, mode="w+", dtype="float32", + y = np.memmap(filename=self.path.y_file, mode="w+", dtype="float32", shape=(m, n)) # Store the model and gradient differences in memmaps s[:, 0] = s_k @@ -234,9 +242,9 @@ def _update(self): self._memory_used = 1 # Subsequent iterations will append to memory maps else: - s = np.memmap(filename=self._s_file, mode="r+", dtype="float32", + s = np.memmap(filename=self.path.s_file, mode="r+", dtype="float32", shape=(m, n)) - y = np.memmap(filename=self._y_file, mode="r+", dtype="float32", + y = np.memmap(filename=self.path.y_file, mode="r+", dtype="float32", shape=(m, n)) # Shift all stored memory by one index to make room for latest mem s[:, 1:] = s[:, :-1] @@ -251,7 +259,7 @@ def _update(self): return s, y - def _apply(self, q, s=None, y=None): + def _apply_inverse_hessian(self, q, s=None, y=None): """ Applies L-BFGS inverse Hessian to given vector @@ -265,15 +273,13 @@ def _apply(self, q, s=None, y=None): :rtype r: np.array :return r: new search direction from application of L-BFGS """ - unix.cd(self.path) - # If no memmaps are given as arguments, instantiate them if s is None or y is None: m = len(q) n = self.LBFGS_mem - s = np.memmap(filename=self._s_file, mode="w+", dtype="float32", + s = np.memmap(filename=self.path.s_file, mode="w+", dtype="float32", shape=(m, n)) - y = np.memmap(filename=self._y_file, mode="w+", dtype="float32", + y = np.memmap(filename=self.path.y_file, mode="w+", dtype="float32", shape=(m, n)) # First matrix product diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 19911d0a..645f19b5 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -68,7 +68,6 @@ def __init__(self, nlcg_max=np.inf, nlcg_thresh=np.inf, step_len_max=self.step_len_max ) - self.NLCG_max = nlcg_max self.NLCG_thresh = nlcg_thresh @@ -83,7 +82,6 @@ def __init__(self, nlcg_max=np.inf, nlcg_thresh=np.inf, self._NLCG_iter = 0 self._calc_beta = getattr(self, f"_{calc_beta}") - def compute_direction(self): """ Compute search direction using the Nonlinear Conjugate Gradient method @@ -100,9 +98,10 @@ def compute_direction(self): force restart, inverse gradient search direction 5. New NLCG search direction has conjugacy and is a descent direction and is set as the new search direction. + + :rtype: seisflows.tools.specfem.Model + :return: search direction as a Model instance """ - unix.cd(self.path) - logger.debug(f"computing search direction with NLCG") self._NLCG_iter += 1 # Load the current gradient direction @@ -110,16 +109,16 @@ def compute_direction(self): # CASE 1: If first iteration, search direction is the current gradient if self._NLCG_iter == 1: - logger.info("first NLCG iteration, setting search direction" - "as inverse gradient") + logger.info("first NLCG iteration, setting search direction " + "as inverse gradient") p_new = -1 * g_new.vector restarted = 0 # CASE 2: Force restart if the iterations have surpassed the maximum # number of allowable iter elif self._NLCG_iter > self.NLCG_max: logger.info("restarting NLCG due to periodic restart " - "condition. setting search direction as inverse " - "gradient") + "condition. setting search direction as inverse " + "gradient") self.restart() p_new = -1 * g_new.vector restarted = 1 @@ -153,14 +152,21 @@ def compute_direction(self): restarted = 0 # Save values to disk and memory - self.save("p_new", p_new) self.restarted = restarted + return p_new + def restart(self): """ Overwrite the Base restart class and include a restart of the NLCG """ - super().restart() + logger.info("restarting NLCG optimization algorithm") + + g = self.load("g_new") + self.save("p_new", -1 * g.vector) + + self.line_search.clear_history() + self.restarted = 1 self._NLCG_iter = 1 def _fletcher_reeves(self, g_new, g_old): diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 06d0cdae..50fc0f77 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -8,13 +8,33 @@ different optimization algorithms. .. note:: - By default the base class implements a steepest descent optimization + To reduce memory overhead, vectors are read from disk rather than passed + from calling routines. For example, at the beginning of + `compute_direction` the current gradient is read from 'g_new' and the + resulting search direction is written to 'p_new'. As the inversion + progresses, other information is stored as well. + +.. note:: + The default numerical parameters for each algorithm should work well for a + range of applications without manual tuning. If the nonlinear + optimization procedure stagnates, it may be due to issues involving + data quality or the choice of data misfit, data processing, or + regularization parameters. Problems in any of these areas usually + manifest themselves through stagnation of the nonlinear optimization + algorithm. + +TODO fix line search, currently broken. Store line search variables in .npz + arrays rather than as internal attributes, that way it's easier to restart + from a broken workflow. Need to figure out how to reset and restart + line searches efficiently """ import os +import sys import numpy as np from seisflows import logger from seisflows.tools import msg, unix +from seisflows.tools.core import Dict from seisflows.tools.math import angle, dot from seisflows.tools.specfem import Model from seisflows.plugins import line_search as line_search_dir @@ -22,59 +42,34 @@ class Gradient: """ - Nonlinear optimization abstract base class poviding a gradient/steepest - descent optimization algorithm. - - Nonlinear conjugate, quasi-Newton and Newton methods can be implemented on - top of this base class. - - .. note:: - To reduce memory overhead, vectors are read from disk rather than passed - from calling routines. For example, at the beginning of - compute_direction the current gradient is read from 'g_new' and the - resulting search direction is written to 'p_new'. As the inversion - progresses, other information is stored as well. - - .. note:: - The default numerical parameters defined below should work well for a - range of applications without manual tuning. If the nonlinear - optimization procedure stagnates, it may be due to issues involving - data quality or the choice of data misfit, data processing, or - regularization parameters. Problems in any of these areas usually - manifest themselves through stagnation of the nonlinear optimization - algorithm. - + [optimization.gradient] gradient/steepest descent optimization algorithm. + + :type line_search_method: str + :param line_search_method: chosen line_search algorithm. Currently available + are 'bracket' and 'backtrack'. See seisflows.plugins.line_search + for all available options + :type preconditioner: str + :param preconditioner: algorithm for preconditioning gradients + :type step_count_max: int + :param step_count_max: maximum number of trial steps to perform during + the line search before a change in line search behavior is + considered + :type step_len_init: float + :param step_len_init: initial line search step length as a fraction of + current model parameters. + :type step_len_max: float + :param step_len_max: maximum allowable step length during the line + search. Set as a fraction of the current model parameters """ - def __init__(self, begin=1, line_search="bracket", preconditioner=False, + def __init__(self, start=1, line_search_method="bracket", preconditioner=None, step_count_max=10, step_len_init=0.05, step_len_max=0.5, - path_optimize=None, path_output=None, path_preconditioner=None, + workdir=os.getcwd(), path_optimize=None, path_output=None, + path_preconditioner=None, **kwargs): - """ - Optimization algorithm variables - - :type line_search: str - :param line_search: chosen line_search algorithm. Currently available - are 'bracket' and 'backtrack'. See seisflows.plugins.line_search - for all available options - :type preconditioner: str - :param preconditioner: algorithm for preconditioning gradients - :type step_count_max: int - :param step_count_max: maximum number of trial steps to perform during - the line search before a change in line search behavior is - considered - :type step_len_init: float - :param step_len_init: initial line search step length as a fraction of - current model parameters. - :type step_len_max: float - :param step_len_max: maximum allowable step length during the line - search. Set as a fraction of the current model parameters - :type path: str - :param path: scratch path for all optimization related procedures. - if None, defaults to $PWD/scratch/optimize - """ + """Gradient-descent input parameters""" super().__init__() - self.iteration = begin # to match PAR.BEGIN + self.iteration = start # to match PAR.BEGIN self.preconditioner = preconditioner self.step_count_max = step_count_max @@ -82,21 +77,24 @@ def __init__(self, begin=1, line_search="bracket", preconditioner=False, self.step_len_max = step_len_max # Internal check to see if the chosen line search algorithm exists - if not hasattr(line_search_dir, line_search): - logger.warning(f"{line_search} is not a valid line search " + if not hasattr(line_search_dir, line_search_method): + logger.warning(f"{line_search_method} is not a valid line search " f"algorithm, defaulting to 'bracket'") - line_search = "bracket" + line_search_method = "bracket" - self._line_search = line_search.title() - self.line_search = getattr(line_search_dir, self._line_search)( + # .title() ensures we grab the class and not the module + self.line_search = getattr(line_search_dir, line_search_method.title())( step_count_max=step_count_max, step_len_max=step_len_max ) # Set required path structure - self.path = path_optimize or \ - os.path.join(os.getcwd(), "scratch", "optimize") - self.path_output = path_output or os.path.join(os.getcwd(), "output") - self.path_preconditioner = path_preconditioner + self.path = Dict( + scratch=path_optimize or + os.path.join(os.getcwd(), "scratch", "optimize"), + output=path_output or os.path.join(workdir, "output"), + preconditioner=path_preconditioner, + + ) # Internally used parameters for checking validity self._acceptable_vectors = ["m_new", "m_old", "m_try", @@ -105,17 +103,23 @@ def __init__(self, begin=1, line_search="bracket", preconditioner=False, "f_new", "f_old", "f_try"] self._acceptable_preconditioners = ["diagonal"] + self.restarted = False + + @property + def step_count(self): + """Convenience property to access `step_count` from line search""" + return self.line_search.step_count + def check(self): """ Checks parameters, paths, and dependencies """ if self.preconditioner: # This list should match the logic in self.precondition() - assert self.preconditioner in self._acceptable_preconditioners, \ f"PRECOND must be in {self._acceptable_preconditioners}" - assert(os.path.exists(self.path_preconditioner)), ( + assert(os.path.exists(self.path.preconditioner)), ( f"preconditioner requires PATH.PRECOND pointing to a array-like" f"weight file" ) @@ -129,24 +133,7 @@ def setup(self): """ Sets up nonlinear optimization machinery """ - unix.mkdir(self.path) - - # # Read in initial model as a vector and ensure it is a valid model - # if os.path.exists(self.path.MODEL_INIT): - # m_new = Model(path=self.path.MODEL_INIT) - # m_new.save(path=os.path.join(self.path.OPTIMIZE, "m_new")) - # else: - # logger.warning( - # "PATH.MODEL_INIT not found, cannot save 'm_new'. Either ensure " - # "that 'm_new' is present in PATH.OPTIMIZE or restart with a " - # "valid PATH.MODEL_INIT" - # ) - - def finalize(self): - """ - Finalization tasks - """ - pass + unix.mkdir(self.path.scratch) def load(self, name): """ @@ -170,7 +157,16 @@ def load(self, name): :param name: name of the vector, acceptable: m, g, p, f, alpha """ assert(name in self._acceptable_vectors) - model = Model(path=os.path.join(self.path, f"{name}.npz"), load=True) + model_npz = os.path.join(self.path.scratch, f"{name}.npz") + model_txt = model_npz.replace(".npz", ".txt") + if os.path.exists(model_npz): + model = Model(path=os.path.join(self.path.scratch, + f"{name}.npz"), load=True) + elif os.path.exists(model_txt): + model = float(np.loadtxt(model_txt)) + else: + raise FileNotFoundError(f"no optimization file found for {name}") + return model def save(self, name, m): @@ -179,18 +175,20 @@ def save(self, name, m): :type name: str :param name: name of the vector to overwrite - :type m: seisflows.tools.cspefem.Model or float + :type m: seisflows.tools.specfem.Model or float :param m: Model to save to disk as npz array """ assert(name in self._acceptable_vectors) if isinstance(m, Model): - path = os.path.join(self.path, f"{name}.npz") + path = os.path.join(self.path.scratch, f"{name}.npz") m.model = m.split() # overwrite m representation m.save(path=path) elif isinstance(m, (float, int)): - path = os.path.join(self.path, f"{name}.txt") + path = os.path.join(self.path.scratch, f"{name}.txt") np.savetxt(path, [m]) + else: + raise TypeError(f"optimize.save unrecognized type error {type(m)}") def _precondition(self, q): """ @@ -202,7 +200,7 @@ def _precondition(self, q): :return: preconditioned vector """ if self.preconditioner is not None: - p = Model(path=self.path_preconditioner) + p = Model(path=self.path.preconditioner) if self.preconditioner.upper() == "DIAGONAL": logger.info("applying diagonal preconditioner") return p.vector * q @@ -220,13 +218,14 @@ def compute_direction(self): .. note:: Other optimization algorithms must overload this method - """ - logger.info(f"computing search direction") + :rtype: seisflows.tools.specfem.Model + :return: search direction as a Model instance + """ g_new = self.load("g_new") - p_new = -1 * self._precondition(g_new.vector) + p_new = g_new.update(vector=-1 * self._precondition(g_new.vector)) - self.save("p_new", p_new) + return p_new def initialize_search(self): """ @@ -241,7 +240,6 @@ def initialize_search(self): norm_m = max(abs(m.vector)) norm_p = max(abs(p.vector)) - gtg = dot(g.vector, g.vector) gtp = dot(g.vector, p.vector) @@ -255,7 +253,13 @@ def initialize_search(self): self.line_search.step_len_max = new_step_len_max logger.debug(f"max step length safeguard = {new_step_len_max:.2E}") - self.line_search.initialize(step_len=0., func_val=f, gtg=gtg, gtp=gtp) + # Initialize the line search by setting vector variables + self.line_search.step_count = 0 + self.line_search.step_lens.append(0.) + self.line_search.func_vals.append(f) + self.line_search.gtg.append(gtg) + self.line_search.gtp.append(gtp) + alpha, _ = self.line_search.calculate_step() # Alpha defines the trial step length. Optional step length override @@ -265,23 +269,24 @@ def initialize_search(self): # The new model is the old model, scaled by the step direction and # gradient threshold to remove any outlier values - m_try = m.vector + alpha * p.vector + m_try = m.update(vector=m.vector + alpha * p.vector) - self.save("m_try", m_try) - self.save("alpha", alpha) + return m_try, alpha def update_search(self): """ Updates line search status and step length and checks if the line search has been completed. - Available status codes from line_search.update(): + Available status codes from line_search.calculate_step(): status == 1 : finished status == 0 : not finished status == -1 : failed """ - self.line_search.update(step_len=np.loadtxt("alpha"), - func_val=self.load("f_try")) + # Update the line search variables for a new step calculation + self.line_search.step_lens.append(self.load("alpha")) + self.line_search.func_vals.append(self.load("f_try")) + alpha, status = self.line_search.calculate_step() # New search direction needs to be searchable on disk @@ -290,7 +295,7 @@ def update_search(self): p = self.load("p_new") self.save("alpha", alpha) - m_try = m.vector + alpha * p.vector + m_try = m.update(vector=m.vector + alpha * p.vector) self.save("m_try", m_try) return status @@ -302,7 +307,7 @@ def finalize_search(self): Removes old model/search parameters, moves current parameters to old, sets up new current parameters and writes statistic outputs """ - unix.cd(self.path) + unix.cd(self.path.scratch) logger.info(msg.sub("FINALIZING LINE SEARCH")) @@ -325,7 +330,7 @@ def finalize_search(self): unix.mv("m_try.npz", "m_new.npz") # Choose minimum misfit value as final misfit/model - f = self.line_search.search_history()[1] + f = self.line_search.get_search_history()[1] self.save("f_new", f.min()) logger.info(f"current misfit is {f.min():.3E}") @@ -358,17 +363,13 @@ def restart(self): Keeps current position in model space, but discards history of nonlinear optimization algorithm in an attempt to recover from numerical stagnation. - """ - # Steepest descent (base) does not need to be restarted - # TODO figure out how to deal with this noting inheritance from others - # if self.par.OPTIMIZE.capitalize() == "Gradient": - # return - - g = self.load("g_new") - self.save("p_new", -1 * g.vector) - self.line_search.clear_history() - self.restarted = 1 + .. note:: + steepest descent optimization algorithm does not have any restart + capabilities. This function is instantiated here to be overwritten + by child classes + """ + pass def _write_stats(self): """ @@ -378,7 +379,7 @@ def _write_stats(self): if they should be retained. """ logger.info(f"writing optimization stats") - fid = os.path.join(self.path_output, f"optim_stats.txt") + fid = os.path.join(self.path.output, f"optim_stats.txt") # First time, write header information if not os.path.exists(fid): @@ -391,8 +392,9 @@ def _write_stats(self): g = self.load("g_new") p = self.load("p_new") - x = self.line_search.search_history()[0] - f = self.line_search.search_history()[1] + x, f, *_ = self.line_search.get_search_history() + + import pdb;pdb.set_trace() # Calculated stats factors factor = -1 * dot(g.vector, g.vector) diff --git a/seisflows/plugins/line_search/backtrack.py b/seisflows/plugins/line_search/backtrack.py index d5448010..e7bb1dd1 100644 --- a/seisflows/plugins/line_search/backtrack.py +++ b/seisflows/plugins/line_search/backtrack.py @@ -2,6 +2,7 @@ """ This is the subclass class for seisflows.plugins.line_search.backtrack """ +from seisflows import logger from seisflows.plugins.line_search.bracket import Bracket from seisflows.tools import msg from seisflows.tools.math import parabolic_backtrack @@ -28,30 +29,6 @@ class Backtrack(Bracket): status == 0 : not finished status < 0 : failed """ - def __init__(self): - """Inherits from seisflows.plugins.line_search.bracket.Bracket""" - super().__init__() - - def initialize(self, step_len, func_val, gtg, gtp): - """Inherits from seisflows.plugins.line_search.bracket.Bracket""" - self.initialize(step_len, func_val, gtg, gtp) - - def update(self, step_len, func_val): - """Inherits from seisflows.plugins.line_search.bracket.Bracket""" - self.update(step_len, func_val) - - def clear_history(self): - """Inherits from seisflows.plugins.line_search.bracket.Bracket""" - self.clear_history() - - def reset(self): - """Inherits from seisflows.plugins.line_search.bracket.Bracket""" - self.reset() - - def search_history(self, sort=True): - """Inherits from seisflows.plugins.line_search.bracket.Bracket""" - return self.search_history(sort=sort) - def calculate_step(self): """ Determines step length and search status. Overwrites the Bracketing @@ -68,34 +45,34 @@ def calculate_step(self): # Assumed well scaled search direction, attempt backtracking line search # with unit step length else: - self.logger.debug(msg.sub(f"BACKTRACKING LINE SEARCH STEP" - f"{self.step_count:0>2}")) + logger.debug(msg.sub(f"BACKTRACKING LINE SEARCH STEP" + f"{self.step_count:0>2}")) x_str = ", ".join([f"{_:.2E}" for _ in x]) f_str = ", ".join([f"{_:.2E}" for _ in f]) - self.logger.debug(f"step length(s) = {x_str}") - self.logger.debug(f"misfit val(s) = {f_str}") + logger.debug(f"step length(s) = {x_str}") + logger.debug(f"misfit val(s) = {f_str}") # Initial unit step length if step_count == 0: - self.logger.info("attempting unit step length") + logger.info("attempting unit step length") alpha = min(1., self.step_len_max) status = 0 # Pass if misfit is reduced elif f.min() < f[0]: - self.logger.info("misfit decrease, pass") + logger.info("misfit decrease, pass") alpha = x[f.argmin()] status = 1 # If misfit continually increases, decrease step length elif step_count <= self.step_count_max: import pdb;pdb.set_trace() - self.logger.info("misfit increase, decreasing step length") + logger.info("misfit increase, decreasing step length") slope = gtp[-1] / gtg[-1] alpha = parabolic_backtrack(f0=f[0], g0=slope, x1=x[1], f1=f[1], b1=0.1, b2=0.5) status = 0 # Failed because step_count_max exceeded else: - self.logger.info("backtracking failed, step_count_max exceeded") + logger.info("backtracking failed, step_count_max exceeded") alpha = None status = -1 diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 978ddaf3..eb97b56a 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -7,16 +7,15 @@ this should be completely left to the optimization algorithm to keep everything in one place) """ -import logging import numpy as np -from seisflows.core import Base +from seisflows import logger from seisflows.tools import msg from seisflows.tools.array import count_zeros from seisflows.tools.math import parabolic_backtrack, polynomial_fit -class Bracket(Base): +class Bracket: """ Abstract base class for line search @@ -44,62 +43,15 @@ def __init__(self, step_count_max, step_len_max): :param step_len_max: maximum length of the step, defaults to infinity, that is unbounded step length. set by PAR.STEP_LEN_MAX """ - super().__init__() - self.step_count_max = step_count_max self.step_len_max = step_len_max + self.func_vals = [] self.step_lens = [] self.gtg = [] self.gtp = [] self.step_count = 0 - def initialize(self, step_len, func_val, gtg, gtp): - """ - Initialize a new search from step count 0 and calculate the step - direction and length - - :type iter: int - :param iter: current iteration defined by OPTIMIZE.iter - :type step_len: float - :param step_len: initial step length determined by optimization - :type func_val: float - :param func_val: current evaluation of the objective function - :type gtg: float - :param gtg: dot product of the gradient with itself - :type gtp: float - :param gtp: dot product of gradient `g` with search direction `p` - :rtype alpha: float - :return alpha: the calculated trial step length - :rtype status: int - :return status: current status of the line search - """ - self.step_count = 0 - self.step_lens.append(step_len) - self.func_vals.append(func_val) - self.gtg.append(gtg) - self.gtp.append(gtp) - - def update(self, step_len, func_val): - """ - Update search history by appending internal attributes, writing the - current list of step lengths and function evaluations, and calculating a - new step length - - :type iter: int - :param iter: current iteration defined by OPTIMIZE.iter - :type step_len: float - :param step_len: step length determined by optimization - :type func_val: float - :param func_val: current evaluation of the objective function - :rtype alpha: float - :return alpha: the calculated rial step length - :rtype status: int - :return status: current status of the line search - """ - self.step_lens.append(step_len) - self.func_vals.append(func_val) - def clear_history(self): """ Clears internal line search history for a new line search attempt @@ -132,7 +84,7 @@ def reset(self): self.step_lens = self.step_lens[:original_idx] self.func_vals = self.func_vals[:original_idx] - def search_history(self, sort=True): + def get_search_history(self, sort=True): """ A convenience function, collects information based on the current evaluation of the line search, needed to determine search status and @@ -172,56 +124,55 @@ def calculate_step(self): Determines step length (alpha) and search status (status) """ # Determine the line search history - x, f, gtg, gtp, step_count, update_count = self.search_history() + x, f, gtg, gtp, step_count, update_count = self.get_search_history() # Print out the current line search parameters for convenience - self.logger.debug(msg.sub(f"BRACKETING LINE SEARCH STEP " - f"{self.step_count:0>2}")) + logger.debug(msg.sub(f"BRACKETING LINE SEARCH STEP " + f"{self.step_count:0>2}")) x_str = ", ".join([f"{_:.2E}" for _ in x]) f_str = ", ".join([f"{_:.2E}" for _ in f]) - self.logger.debug(f"step length(s) = {x_str}") - self.logger.debug(f"misfit val(s) = {f_str}") + logger.debug(f"step length(s) = {x_str}") + logger.debug(f"misfit val(s) = {f_str}") # For the first inversion and initial step, set alpha manually if step_count == 0 and update_count == 0: # Based on idea from Dennis and Schnabel alpha = gtg[-1] ** -1 - self.logger.info(f"first iteration, guessing trial step") + logger.info(f"first iteration, guessing trial step") status = 0 # For every i'th inversions initial step, set alpha manually elif step_count == 0: # Based on the first equation in sec 3.5 of Nocedal and Wright 2ed idx = np.argmin(self.func_vals[:-1]) alpha = self.step_lens[idx] * gtp[-2] / gtp[-1] - self.logger.info(f"first step, setting scaled step length") + logger.info(f"first step, setting scaled step length") status = 0 # If misfit is reduced and then increased, we've bracketed. Pass elif _check_bracket(x, f) and _good_enough(x, f): alpha = x[f.argmin()] - self.logger.info(f"bracket okay, step length reasonable, pass") + logger.info(f"bracket okay, step length reasonable, pass") status = 1 # If misfit is reduced but not close, set to quadratic fit elif _check_bracket(x, f): alpha = polynomial_fit(x, f) - self.logger.info(f"bracket okay, step length unreasonable, " - f"manual step") + logger.info(f"bracket okay, step length unreasonable, manual step") status = 0 # If misfit continues to step down, increase step length elif step_count <= self.step_count_max and all(f <= f[0]): alpha = 1.618034 * x[-1] # 1.618034 is the 'golden ratio' - self.logger.info(f"misfit not bracketed, increasing step length") + logger.info(f"misfit not bracketed, increasing step length") status = 0 # If misfit increases, reduce step length by backtracking elif step_count <= self.step_count_max: slope = gtp[-1] / gtg[-1] alpha = parabolic_backtrack(f0=f[0], g0=slope, x1=x[1], f1=f[1], b1=0.1, b2=0.5) - self.logger.info(f"misfit increasing, reducing step length to") + logger.info(f"misfit increasing, reducing step length to") status = 0 # step_count_max exceeded, fail else: - self.logger.info(f"bracketing failed, " - f"step_count_max={self.step_count_max} exceeded") + logger.info(f"bracketing failed, step_count_max=" + f"{self.step_count_max} exceeded") alpha = None status = -1 @@ -229,13 +180,13 @@ def calculate_step(self): if alpha is not None: if alpha > self.step_len_max and step_count == 0: alpha = 0.618034 * self.step_len_max - self.logger.info(f"initial step length safegaurd, setting " - f"manual step length") + logger.info(f"initial step length safegaurd, setting " + f"manual step length") status = 0 # Stop because safeguard prevents us from going further elif alpha > self.step_len_max: - self.logger.info(f"step_len_max={self.step_len_max:.2f} " - f"exceeded, manual set alpha") + logger.info(f"step_len_max={self.step_len_max:.2f} " + f"exceeded, manual set alpha") alpha = self.step_len_max status = 1 diff --git a/seisflows/plugins/solver_io/ascii.py b/seisflows/plugins/solver_io/ascii.py index 2de06adf..ccc2bd6a 100644 --- a/seisflows/plugins/solver_io/ascii.py +++ b/seisflows/plugins/solver_io/ascii.py @@ -5,7 +5,7 @@ import numpy as np from glob import glob from shutil import copyfile -from seisflows.tools.utils import iterable +from seisflows.tools.core import iterable def read_slice(path, parameters, iproc): diff --git a/seisflows/plugins/solver_io/fortran_binary.py b/seisflows/plugins/solver_io/fortran_binary.py index 21691fb6..9991b306 100644 --- a/seisflows/plugins/solver_io/fortran_binary.py +++ b/seisflows/plugins/solver_io/fortran_binary.py @@ -4,7 +4,7 @@ import os import numpy as np from shutil import copyfile -from seisflows.tools.utils import iterable +from seisflows.tools.core import iterable def read_slice(path, parameters, iproc): diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py index 4e53e229..8ae37de9 100644 --- a/seisflows/postprocess/default.py +++ b/seisflows/postprocess/default.py @@ -84,8 +84,8 @@ def scale_gradient(self): :return: scaled gradient as a vector """ # Access the gradient information stored in as kernel files - gradient = Model(path=os.path.join(self.path, "model")) - model = Model(path=os.path.join(self.path, "kernels", "sum")) + model = Model(path=os.path.join(self.path, "model")) + gradient = Model(path=os.path.join(self.path, "kernels", "sum")) # Merge to vector and convert to absolute perturbations: # log dm --> dm (see Eq.13 Tromp et al 2005) @@ -97,10 +97,6 @@ def scale_gradient(self): # mimicking the file format in which models are stored mask = Model(self.path_mask) - # While both masking and preconditioning involve scaling the - # gradient, they are fundamentally different operations: - # masking is ad hoc, preconditioning is a change of variables; - # For more info, see Modrak & Tromp 2016 GJI gradient.write(path=os.path.join(self.path, "gradient_nomask")) gradient.vector *= mask.vector diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index c9a46843..f05521ff 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -11,8 +11,8 @@ from obspy import Stream, Trace, UTCDateTime from seisflows import logger -from seisflows.core import Dict from seisflows.tools import signal, unix +from seisflows.tools.core import Dict from seisflows.plugins.preprocess import misfit as misfit_functions from seisflows.plugins.preprocess import adjoint as adjoint_sources @@ -208,13 +208,6 @@ def setup(self): """ unix.mkdir(self.path.scratch) - def finalize(self): - """ - Any finalization processes that need to take place at the end of an - iteration - """ - pass - def read(self, fid): """ Waveform reading functionality. Imports waveforms as Obspy streams @@ -386,20 +379,18 @@ def quantify_misfit(self, observed, synthetic, fid = self._rename_as_adjoint_source(fid) self.write(st=adjsrc, fid=os.path.join(save_adjsrcs, fid)) - def sum_residuals(self, files): + @staticmethod + def sum_residuals(residuals): """ - Sums squares of residuals + Returns the summed square of residuals for each event. Following + Tape et al. 2007 - :type files: str - :param files: list of single-column text files containing residuals + :type residuals: np.array + :param residuals: list of residuals from each NTASK event :rtype: float :return: sum of squares of residuals """ - total_misfit = 0. - for filename in files: - total_misfit += np.sum(np.loadtxt(filename) ** 2.) - - return total_misfit + return np.sum(residuals ** 2.) def _apply_filter(self, st): """ diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 3a599339..0fddd568 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -23,16 +23,14 @@ import traceback import subprocess from glob import glob -from copy import copy from IPython import embed -from seisflows.core import Dict, SeisFlowsPathsParameters -from seisflows.config import (custom_import, save, NAMES, ROOT_DIR, CFGPATHS, - config_logger, import_seisflows) +from seisflows.config import (custom_import, save, NAMES, ROOT_DIR, + config_logger) from seisflows.tools import unix, msg +from seisflows.tools.core import load_yaml, Dict from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) -from seisflows.tools.utils import load_yaml def sfparser(): @@ -77,8 +75,8 @@ def _format_action(self, action): parser.add_argument("-w", "--workdir", nargs="?", default=os.getcwd(), help="The SeisFlows working directory, default: cwd") parser.add_argument("-p", "--parameter_file", nargs="?", - default=CFGPATHS.PAR_FILE, - help=f"Parameters file, default: '{CFGPATHS.PAR_FILE}'") + default="parameters.yaml", + help=f"Parameters file, default: 'parameters.yaml'") # Initiate a sub parser to provide nested help functions and sub commands subparser = parser.add_subparsers( diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 46380695..2f25566b 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -23,10 +23,9 @@ from glob import glob from seisflows import logger -from seisflows.core import Dict from seisflows.plugins import solver_io as solver_io_dir from seisflows.tools import msg, unix -from seisflows.tools.utils import get_task_id +from seisflows.tools.core import get_task_id, Dict from seisflows.tools.specfem import getpar, setpar @@ -303,22 +302,23 @@ def data_filenames(self, choice="obs"): """ assert(choice in ["obs", "syn", "adj"]), \ f"choice must be: 'obs', 'syn' or 'adj'" - unix.cd(os.path.join(self.cwd, "traces", choice)) - filenames = [] if self.components: - for comp in self.components: - filenames = glob(self.data_wildcard(comp=comp.lower())) + comp_glob = f"[{self.components}]" # e.g., [NEZ] else: - filenames = glob(self.data_wildcard(comp="?")) + comp_glob = "?" + data_wildcard = self.data_wildcard(comp=comp_glob) + file_glob = os.path.join(self.cwd, "traces", choice, data_wildcard) + filenames = glob(file_glob) if not filenames: - print(msg.cli("The property solver.data_filenames, used to search " - "for traces in 'scratch/solver/*/traces' is empty " - "and should not be. Please check solver parameters: ", - items=[f"data_wildcard: {self.data_wildcard()}"], - header="data filenames error", border="=") - ) + logger.critical( + msg.cli("The property `solver.data_filenames`, used to search " + "for waveform files, is empty and should not be. " + "Please check solver parameters: ", + items=[f"failed wildcard: {file_glob}"], + header="data filenames error", border="=") + ) sys.exit(-1) return filenames @@ -338,6 +338,19 @@ def model_databases(self): """ return "DATA" + @property + def model_files(self): + """ + Return a list of paths to model files that match the internal parameter + list. Used to generate model vectors of the same length as gradients. + """ + _model_files = [] + for parameter in self._parameters: + _model_files += glob(os.path.join(self.path.mainsolver, + self.model_databases, + f"*{parameter}*.bin")) + return _model_files + @property def kernel_databases(self): """ @@ -371,49 +384,8 @@ def setup(self): dst = os.path.join(self.path.output, "MODEL_INIT") unix.cp(src, dst) - # def generate_data(self, save_traces=False): - # """ - # Generates observation data to be compared to synthetics. This must - # only be run once. If `PAR.CASE`=='data', then real data will be copied - # over. - # TODO move this to workflow - # - # If `PAR.CASE`=='synthetic' then the external solver will use the - # True model to generate 'observed' synthetics. Finally exports traces to - # 'cwd/traces/obs' - # - # Elif `PAR.CASE`=='DATA', will look in PATH.DATA for directories matching - # the given source name and copy ANY files that exist there. e.g., if - # source name is '001', you must store waveform data in PATH.DATA/001/* - # - # Also exports observed data to OUTPUT if desired - # """ - # # If synthetic inversion, generate 'data' with solver - # if self.case.upper() == "SYNTHETIC": - # if self.path.model_true is not None: - # if self.taskid == 0: - # logger.info("generating 'data' with MODEL_TRUE") - # - # # Generate synthetic data on the fly using the true model - # self.import_model(path_model=self.path.model_true) - # self.forward_simulation( - # save_traces=os.path.join("traces", "obs") - # ) - # # If Data provided by user, copy directly into the solver directory - # elif self.path.data is not None and os.path.exists(self.path.data): - # unix.cp( - # src=glob(os.path.join(self.path.data, self.source_name, "*")), - # dst=os.path.join(self.cwd, "traces", "obs") - # ) - # - # # Save observation data to disk - # if save_traces: - # self._export_traces( - # path=os.path.join(self.path.output, "traces", "obs") - # ) - def forward_simulation(self, executables=None, save_traces=False, - export_traces=False): + export_traces=False, **kwargs): """ Wrapper for SPECFEM binaries: 'xmeshfem?D' 'xgenerate_databases', 'xspecfem?D' @@ -533,9 +505,11 @@ def adjoint_simulation(self, executables=None, save_kernels=False, # Save and export the kernels to user-defined locations if export_kernels: + unix.mkdir(export_kernels) unix.cp(src=glob("*_kernel.bin"), dst=export_kernels) if save_kernels: + unix.mkdir(save_kernels) unix.mv(src=glob("*_kernel.bin"), dst=save_kernels) def combine(self, input_path, output_path, parameters=None): @@ -557,7 +531,7 @@ def combine(self, input_path, output_path, parameters=None): :param output_path: path to export the outputs of xcombine_sem :type parameters: list :param parameters: optional list of parameters, - defaults to `self.parameters` + defaults to `self._parameters` """ unix.cd(self.cwd) @@ -599,7 +573,7 @@ def smooth(self, input_path, output_path, parameters=None, span_h=None, :param output_path: path to export the outputs of xcombine_sem :type parameters: list :param parameters: optional list of parameters, - defaults to `self.parameters` + defaults to `self._parameters` :type span_h: float :param span_h: horizontal smoothing length in meters :type span_v: float @@ -671,8 +645,8 @@ def _run_binary(self, executable, stdout="solver.log"): # Executable may come with additional sub arguments, we only need to # check that the actually executable exists if not unix.which(executable.split(" ")[0]): - print(msg.cli(f"executable '{executable}' does not exist", - header="external solver error", border="=")) + logger.critical(msg.cli(f"executable '{executable}' does not exist", + header="external solver error", border="=")) sys.exit(-1) # Append with mpiexec if we are running with MPI @@ -683,16 +657,17 @@ def _run_binary(self, executable, stdout="solver.log"): with open(stdout, "w") as f: subprocess.run(executable, shell=True, check=True, stdout=f) except (subprocess.CalledProcessError, OSError) as e: - print(msg.cli("The external numerical solver has returned a " - "nonzero exit code (failure). Consider stopping any " - "currently running jobs to avoid wasted " - "computational resources. Check 'scratch/solver/" - "mainsolver/{stdout}' for the solvers stdout log " - "message. The failing command and error message are:", - items=[f"exc: {executable}", f"err: {e}"], - header="external solver error", - border="=") - ) + logger.critical( + msg.cli("The external numerical solver has returned a " + "nonzero exit code (failure). Consider stopping any " + "currently running jobs to avoid wasted " + "computational resources. Check 'scratch/solver/" + "mainsolver/{stdout}' for the solvers stdout log " + "message. The failing command and error message are:", + items=[f"exc: {executable}", f"err: {e}"], + header="external solver error", + border="=") + ) sys.exit(-1) @staticmethod @@ -702,6 +677,9 @@ def _exc2log(exc): e.g., binary 'xspecfem2D' will return 'solver'. Helps keep log file naming consistent and generalizable + TODO add a check here to see if the log file exists, and then use + `number_fid` to increment so that we keep all the output logs + :type exc: str :param exc: specfem executable, e.g., xspecfem2D, xgenerate_databases :rtype: str diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 18176407..888a8436 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -70,7 +70,7 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., :param output_path: path to export the outputs of xcombine_sem :type parameters: list :param parameters: optional list of parameters, - defaults to `self.parameters` + defaults to `self._parameters` :type span_h: float :param span_h: horizontal smoothing length in meters :type span_v: float diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 93dcc500..21357b2b 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -31,9 +31,9 @@ def __init__(self, source_prefix="CMTSOLUTION", **kwargs): # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": - self._parameters += ["vp"] + self.parameters += ["vp"] elif self.materials.upper() == "ELASTIC": - self._parameters += ["vp", "vs"] + self.parameters += ["vp", "vs"] # Overwriting the base class parameters self._acceptable_source_prefixes = ["CMTSOLUTION", "FORCESOLUTION"] diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 2b32bc29..fc557f61 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -9,10 +9,10 @@ from contextlib import redirect_stdout from seisflows import logger -from seisflows.core import Dict -from seisflows.config import CFGPATHS, save -from seisflows.tools import msg, unix -from seisflows.tools.utils import number_fid, get_task_id, set_task_id, iterable +from seisflows.tools.core import Dict +from seisflows.config import save +from seisflows.tools import unix +from seisflows.tools.core import number_fid, get_task_id, set_task_id class Workstation: diff --git a/seisflows/tests/test_config.py b/seisflows/tests/test_config.py index 51f7f2b0..03a2fa8a 100644 --- a/seisflows/tests/test_config.py +++ b/seisflows/tests/test_config.py @@ -8,7 +8,7 @@ import pytest from unittest.mock import patch from seisflows import config -from seisflows.core import SeisFlowsPathsParameters +from seisflows.tools.core import SeisFlowsPathsParameters from seisflows.seisflows import SeisFlows diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 859c3305..797fb48e 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -11,10 +11,10 @@ import subprocess from unittest.mock import patch -from seisflows.core import Dict +from seisflows.tools.core import Dict from seisflows.seisflows import SeisFlows from seisflows.config import ROOT_DIR, NAMES, CFGPATHS -from seisflows.tools.utils import load_yaml +from seisflows.tools.core import load_yaml TEST_DIR = os.path.join(ROOT_DIR, "tests") diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index 7fefb361..a73b387b 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -6,7 +6,7 @@ import pytest from glob import glob from seisflows.config import ROOT_DIR -from seisflows.tools.utils import set_task_id +from seisflows.tools.core import set_task_id from seisflows.solver.specfem import Specfem diff --git a/seisflows/tools/core.py b/seisflows/tools/core.py index f7d8a7ec..5ccd0781 100644 --- a/seisflows/tools/core.py +++ b/seisflows/tools/core.py @@ -1,6 +1,6 @@ """ -General utility functions that are mostly concerend with file manipulation, -but also math and calling functions as well. +Core utility functions and classes which help define the working structure of +SeisFlows pacakge. """ import os import re @@ -78,20 +78,6 @@ class TaskIDError(Exception): pass -def set_task_id(task_id): - """ - Set the SEISFLOWS_TASKID in os environs - - .. note:: - Mostly used for debugging/testing purposes as a way of mimicing - system.run() assigning task ids to child processes - - :type task_id: int - :param task_id: integer task id to assign to the current working environment - """ - os.environ["SEISFLOWS_TASKID"] = str(task_id) - - def get_task_id(force=False): """ Task IDs are assigned to each child process spawned by the system module @@ -107,17 +93,34 @@ def get_task_id(force=False): """ _taskid = os.getenv("SEISFLOWS_TASKID") if _taskid is None: - if force: - _taskid = 0 - logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " - "Assigning Task ID == 0") - else: - raise TaskIDError("Environment variable 'SEISFLOWS_TASKID' not " - "found. Please make sure the process asking " - "for task id is called by system.") + logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " + "Assigning Task ID == 0") + _taskid = 0 + # if force: + # _taskid = 0 + # logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " + # "Assigning Task ID == 0") + # else: + # raise TaskIDError("Environment variable 'SEISFLOWS_TASKID' not " + # "found. Please make sure the process asking " + # "for task id is called by system.") return int(_taskid) +def set_task_id(task_id): + """ + Set the SEISFLOWS_TASKID in os environs + + .. note:: + Mostly used for debugging/testing purposes as a way of mimicing + system.run() assigning task ids to child processes + + :type task_id: int + :param task_id: integer task id to assign to the current working environment + """ + os.environ["SEISFLOWS_TASKID"] = str(task_id) + + def load_yaml(filename): """ Define how the PyYaml yaml loading function behaves. diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 26c8b0fc..386ac123 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -6,7 +6,7 @@ import numpy as np from glob import glob from seisflows import logger -from seisflows.core import Dict +from seisflows.tools.core import Dict from seisflows.tools import unix from seisflows.tools.math import poissons_ratio @@ -224,8 +224,12 @@ def check(self, min_pr=-1., max_pr=0.5): # Tell the User min and max values of the updated model logger.info(f"model parameters") - parts = "{minval:.2E} <= {key} <= {maxval:.2E}" for key, vals in self.model.items(): + # Choose formatter based on the size of the value + if vals.min() < 1 or vals.max() > 1E4: + parts = "{minval:.2E} <= {key} <= {maxval:.2E}" + else: + parts = "{minval:.2f} <= {key} <= {maxval:.2f}" logger.info(parts.format(minval=vals.min(), key=key, maxval=vals.max())) @@ -261,6 +265,21 @@ def load(self, file): return model, ngll, str(data["fmt"]) + def update(self, model=None, vector=None): + """ + Update internal model/vector defitions. Because these two quantities + are tied to one another, updating one will update the other. This + function simply makes that easier. + """ + if model is not None: + self.model = model + self.vector = self.merge() + elif vector is not None: + self.vector = vector + self.model = self.split() + + return self + def _get_nproc_parameters(self): """ Get the number of processors and the available parameters from a list of diff --git a/seisflows/tools/unix.py b/seisflows/tools/unix.py index 1c039d89..dc1bccbf 100644 --- a/seisflows/tools/unix.py +++ b/seisflows/tools/unix.py @@ -9,7 +9,7 @@ import shutil import socket import subprocess -from seisflows.tools.utils import iterable +from seisflows.tools.core import iterable def cat(src, dst=None): diff --git a/seisflows/workflow/base.py b/seisflows/workflow/base.py deleted file mode 100644 index aa2f96c3..00000000 --- a/seisflows/workflow/base.py +++ /dev/null @@ -1,80 +0,0 @@ -#!/usr/bin/env python3 -""" -The simplest simulation workflow you can run is a large number of forward -simulations to generate synthetics from a velocity model. Therefore the -Forward class represents the BASE workflow. All other workflows will build off -of the scaffolding defined by the Forward class. -""" -from seisflows.config import import_seisflows - - -class Base(object): - """ - Defines the core Base object for all SeisFlows modules. All modules MUST - inherit from the Base object to work properly. This Base class essentially - dictates the required structure of a SeisFlows class. - """ - def __init__(self): - """ - SeisFlows instantiates its required parameters through the - SeisFlowsPathsParameters class, which scaffolds a rigid framework of - how parameters and paths should be defined by the program. This is - then used to build the parameter file dynamically. - """ - self.parameters = self.modules = import_seisflows() - (self.system, self.preprocess, self.solver, - self.postprocess, self.optimize) = self.modules - - def setup(self): - """ - - """ - - @property - def par(self): - """ - Quick access SeisFlows parameters from sys.modules. Throws a warning - if parameters have not been instantiated - - :rtype: Dict or None - :return: Returns a Dictionary with instantiated parameters, or None if - parameters have not been instantiated - """ - return self.module("parameters") - - @property - def path(self): - """ - Quick access SeisFlows paths from sys.modules. Throws a warning - if paths have not been instantiated - - :rtype: Dict or None - :return: Returns a Dictionary with instantiated paths, or None if - parameters have not been instantiated - """ - return self.module("paths") - - def check(self, validate=True): - """ - General check() function for each module to check the validity of the - user-input parameters and paths - """ - if validate: - self.required.validate() - - # Example of a check statement - # assert(self.par.PARAMETER == example_value), f"Parameter != example" - - def setup(self): - """ - A placeholder function for any initialization or setup tasks that - need to be run once at the beginning of any workflow. - """ - return - - def finalize(self): - """ - A placeholder function for any finalization or tear-down tasks that - need to be run at the end of any iteration or workflow. - """ - return \ No newline at end of file diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index c3f90484..65af4643 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -10,7 +10,7 @@ from seisflows import logger from seisflows.tools import msg, unix -from seisflows.core import Dict +from seisflows.tools.core import Dict from seisflows.config import import_seisflows @@ -64,7 +64,7 @@ def __init__(self, modules=None, data_case=None, export_traces=False, workdir=workdir, scratch=os.path.join(workdir, "scratch"), eval_grad=path_eval_grad or - os.path.join(workdir, "scratch", "evalgrad"), + os.path.join(workdir, "scratch", "eval_grad"), output=path_output or os.path.join(workdir, "output"), state_file=path_state_file or os.path.join(workdir, "statefile.txt"), @@ -163,6 +163,9 @@ def setup(self): Makes required path structure for the workflow, runs setup functions for all the required modules of this workflow. """ + logger.info(msg.mjr(f"SETTING UP {self.__class__.__name__.upper()} " + f"WORKFLOW")) + # Create the desired directory structure for path in self.path.values(): if path is not None and not os.path.splitext(path)[-1]: @@ -171,24 +174,22 @@ def setup(self): # Run setup() for each of the required modules for req_mod in self._required_modules: logger.info( - f"setup for module " + f"running setup for module " f"'{req_mod}.{self._modules[req_mod].__class__.__name__}'" ) self._modules[req_mod].setup() # Run setup() for each of the instantiated modules for opt_mod in self._optional_modules: - if self._modules[opt_mod]: + if self._modules[opt_mod] and opt_mod not in self._required_modules: logger.info( - f"setup for module " + f"running setup for module " f"'{opt_mod}.{self._modules[opt_mod].__class__.__name__}'" ) self._modules[opt_mod].setup() # Generate the state file to keep track of task completion if not os.path.exists(self.path.state_file): - logger.info(f"generating SeisFlows state file") - logger.debug(self.path.state_file) with open(self.path.state_file, "w") as f: f.write(f"# SeisFlows State File\n") f.write(f"# {asctime()}\n") @@ -225,6 +226,9 @@ def run(self): to keep track of completed tasks and avoids re-running tasks that have previously been completed (e.g., if you are restarting your workflow) """ + logger.info(msg.mjr(f"RUNNING {self.__class__.__name__.upper()} " + f"WORKFLOW")) + for func in self.task_list: # Skip over functions which have already been completed if (func.__name__ in self._states.keys()) and ( @@ -246,13 +250,22 @@ def run(self): def evaluate_initial_misfit(self): """ - System wrapper for 'evaluate_objective function' that passes in + Evaluate the initial model misfit. This requires setting up 'data' + before generating synthetics, which is either copied from user-supplied + directory or running forward simulations with a target model. Forward + simulations are then run and prepocessing compares data-synthetic misfit + + .. note:: + This is run altogether on system to save on queue time waits, + because we are potentially running two simulations back to back. """ logger.info(msg.mnr("EVALUATING MISFIT FOR INITIAL MODEL")) - self.system.run([self.prepare_data_for_solver, - self.evaluate_objective_function], - path_model=self.path.model_init - ) + self.system.run( + [self.prepare_data_for_solver, + self.evaluate_objective_function], + path_model=self.path.model_init, + save_residuals=os.path.join(self.path.eval_grad, "residuals") + ) def prepare_data_for_solver(self, **kwargs): """ @@ -264,7 +277,8 @@ def prepare_data_for_solver(self, **kwargs): Must be run by system.run() so that solvers are assigned individual task ids and working directories """ - logger.info(msg.sub("preparing data for solver")) + logger.info(f"PREPARING OBSERVATION DATA FOR SOURCE " + f"{self.solver.source_name}") if self.data_case == "data": logger.info(f"copying data from `path_data`") @@ -280,7 +294,7 @@ def prepare_data_for_solver(self, **kwargs): export_traces = False # Run the forward solver with target model and save traces the 'obs' - logger.info(f"running forward simulation for " + logger.info(f"running forward simulation w/ `MODEL_TRUE` for " f"{self.solver.source_name}") self.solver.import_model(path_model=self.path.model_true) self.solver.forward_simulation( @@ -288,7 +302,8 @@ def prepare_data_for_solver(self, **kwargs): export_traces=export_traces ) - def evaluate_objective_function(self, path_model, **kwargs): + def evaluate_objective_function(self, path_model, save_residuals=False, + **kwargs): """ Performs forward simulation for a single given event. Also evaluates the objective function and writes residuals and adjoint sources for later @@ -301,8 +316,12 @@ def evaluate_objective_function(self, path_model, **kwargs): Must be run by system.run() so that solvers are assigned individual task ids/ working directories. """ - logger.info(f"running forward simulation with " - f"'{self.solver.__class__.__name__}'") + assert(os.path.exists(path_model)), \ + f"Model path for objective function does not exist" + + logger.info("EVALUATING OBJECTIVE FUNCTION") + logger.debug(f"running forward simulation with " + f"'{self.solver.__class__.__name__}'") # Figure out where to export waveform files to, if requested if self.export_traces: @@ -320,26 +339,11 @@ def evaluate_objective_function(self, path_model, **kwargs): # (optional) Perform data-synthetic misfit quantification if self.preprocess: - logger.info(f"quantifying misfit with " - f"'{self.preprocess.__class__.__name__}'") + logger.debug(f"quantifying misfit with " + f"'{self.preprocess.__class__.__name__}'") self.preprocess.quantify_misfit( observed=self.solver.data_filenames(choice="obs"), - synthetics=self.solver.data_filenames(choice="syn"), + synthetic=self.solver.data_filenames(choice="syn"), save_adjsrcs=os.path.join(self.solver.cwd, "traces", "adj"), - save_residuals=os.path.join(self.path.eval_grad, "residuals") + save_residuals=save_residuals ) - - -if __name__ == "__main__": - # Standard SeisFlows setup, makes modules global variables to the workflow - pars, modules = import_seisflows() - - logger.info(msg.mjr("Starting forward simulation workflow")) - - workflow = Forward(modules, **pars) - workflow.check() - workflow.setup() - workflow.run() - - logger.info(msg.mjr("Finished forward simulation workflow")) - diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index e360c33f..ffc477b1 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -20,10 +20,12 @@ """ import os import sys +import numpy as np from seisflows import logger from seisflows.workflow.migration import Migration from seisflows.tools import msg, unix +from seisflows.tools.specfem import Model class Inversion(Migration): @@ -44,12 +46,13 @@ class Inversion(Migration): """ __doc__ = Migration.__doc__ + __doc__ - def __init__(self, _modules=None, start=1, end=1, export_model=True, + def __init__(self, modules=None, start=1, end=1, export_model=True, path_eval_func=None, **kwargs): """Instantiate Inversion-specific parameters""" super().__init__(**kwargs) + self._modules = modules self.start = start self.end = end self.export_model = export_model @@ -59,8 +62,7 @@ def __init__(self, _modules=None, start=1, end=1, export_model=True, "eval_func") # Overwriting base class required modules list - self._required_modules = ["system", "solver", "preprocess", - "postprocess", "optimize"] + self._required_modules = ["system", "solver", "preprocess", "optimize"] # Empty module variables that should be filled in by setup self.optimize = None @@ -87,9 +89,10 @@ def task_list(self): """ return [self.evaluate_initial_misfit, self.run_adjoint_simulations, - self.generate_misfit_kernel, + self.postprocess_event_kernels, + self.evaluate_gradient_from_kernels, self.compute_search_direction, - self.evaluate_line_search, + self.perform_line_search, self.clean_scratch_directory ] @@ -110,70 +113,129 @@ def setup(self): and generating the pre-requisite database files. """ super().setup() + + unix.mkdir(self.path.eval_func) self.optimize = self._modules.optimize def run(self): """Call the forward.run() function iteratively, from `start` to `end`""" - for i in range(self.start, self.end): - logger.info(msg.mjr(f"Running inversion iteration {i:0>2}")) + for i in range(self.start, self.end + 1): + logger.info(msg.mnr(f"RUNNING ITERATION {i:0>2}")) super().run() - logger.info(msg.mjr(f"Completed inversion iteration {i:0>2}")) + logger.info(msg.mnr(f"COMPLETED ITERATION {i:0>2}")) - def compute_search_direction(self): + def evaluate_initial_misfit(self): + """ + Overwrite `workflow.forward` just to sum residuals output by preprocess + module and save them to disk, to be discoverable by the optimization + library + """ + super().evaluate_initial_misfit() + + # Override function to sum residuals into the optimization library + residuals = np.loadtxt(os.path.join(self.path.eval_grad, "residuals")) + total_misfit = self.preprocess.sum_residuals(residuals) + self.optimize.save(name="f_new", m=total_misfit) + + def evaluate_gradient_from_kernels(self): """ - Computes search direction using the optimization library + Overwrite `workflow.migration` to convert the current model and the + gradient calculated by migration from their native SPECFEM model format + into optimization vectors that can be used for model updates. """ - logger.info(msg.mnr("COMPUTING SEARCH DIRECTION")) - self.optimize.compute_direction() + super().evaluate_gradient_from_kernels() + + model = Model(os.path.join(self.path.eval_grad, "model")) + self.optimize.save(name="m_new", m=model) + + gradient = Model(path=os.path.join(self.path.eval_grad, "gradient")) + self.optimize.save(name="g_new", m=gradient) - def evaluate_line_search(self): + def compute_search_direction(self): + """ + Computes search direction using the optimization library and performs + a sets up line search machinery to 'perform line search' + """ + logger.info(f"computing search direction with " + f"'{self.optimize.__class__.__name__}'") + p_new = self.optimize.compute_direction() + self.optimize.save(name="p_new", m=p_new) + + # Check that our search direction will actually perturb the model + if sum(p_new.vector) == 0: + logger.critical(msg.cli( + "Search direction vector 'p' is 0, meaning no model update can " + "take place. Please check your gradient and waveform misfits. " + "SeisFlows exiting prior to start of line search.", border="=", + header="line search error") + ) + sys.exit(-1) + + logger.info( + msg.mnr(f"INITALIZING LINE SEARCH: i{self.optimize.iteration:0>2}" + f"s{self.optimize.step_count:0>2}") + ) + m_try, alpha = self.optimize.initialize_search() + self.optimize.save(name="m_try", m=m_try) + self.optimize.save(name="alpha", m=alpha) + + # Expose model `m_try` to the solver by placing it in eval_func dir. + m_try.write(path=os.path.join(self.path.eval_func, "model")) + + def perform_line_search(self): """ - Conducts line search in given search direction + Conducts line search in given search direction until the objective + function is reduced acceptably, or the line search fails due to + user-defined limit criteria. Status codes: status > 0 : finished status == 0 : not finished status < 0 : failed """ - # Calculate the initial step length based on optimization algorithm - if self.optimize.line_search.step_count == 0: - logger.info(msg.mjr(f"CONDUCTING LINE SEARCH: " - f"i{self.optimize.iter:0>2}" - f"s{self.optimize.line_search.step_count:0>2}") - ) - self.optimize.initialize_search() - - # Attempt a new trial step with the given step length - self.optimize.line_search.step_count += 1 - logger.info(msg.mnr(f"TRIAL STEP COUNT: " - f"i{self.optimize.iter:0>2}" - f"s{self.optimize.line_search.step_count:0>2}")) - - self.system.run(self.evaluate_objective_function, - path=self.path.eval_func, suffix="try") - - # Check the function evaluation against line search history - status = self.optimize.update_search() - - # Proceed based on the outcome of the line search - if status > 0: - logger.info("trial step successful") - # Save outcome of line search to disk; reset step to 0 for next iter - self.optimize.finalize_search() - return - elif status == 0: - logger.info("retrying with new trial step") - # Recursively call this function to attempt another trial step - self.evaluate_line_search() - elif status < 0: - if self.optimize.retry_status(): - logger.info("line search failed. restarting line search") - # Reset the line search machinery; set step count to 0 - self.optimize.restart() - self.evaluate_line_search() - else: - logger.info("line search failed. aborting inversion.") - sys.exit(-1) + while True: + # Attempt a new trial step with the given step length + self.optimize.line_search.step_count += 1 + logger.info( + msg.sub(f"TRIAL STEP COUNT: i{self.optimize.iteration:0>2}" + f"s{self.optimize.step_count:0>2}") + ) + + # Run the forward simulation on system and calculate misfit as f_try + self.system.run( + [self.evaluate_objective_function], + path_model=os.path.join(self.path.eval_func, "model"), + save_residuals=os.path.join(self.path.eval_func, "residuals") + ) + residuals = np.loadtxt(os.path.join(self.path.eval_func, + "residuals")) + total_misfit = self.preprocess.sum_residuals(residuals) + self.optimize.save(name="f_try", m=total_misfit) + + # Check the function evaluation against line search history + status = self.optimize.update_search() + + # Proceed based on the outcome of the line search + if status > 0: + # Save outcome of line search to disk; reset step to 0 for next iter + logger.info("trial step successful. finalizing line search") + self.optimize.finalize_search() + return + elif status == 0: + logger.info("trial step unsuccessful. retrying with new trial " + "step") + # Recursively call this function to attempt another trial step + continue + elif status < 0: + if self.optimize.retry_status(): + logger.info("line search has failed. restarting " + "optimization algorithm and line search.") + # Reset the line search machinery; set step count to 0 + self.optimize.restart() + continue + else: + logger.info("line search has failed. aborting inversion.") + sys.exit(-1) def clean_scratch_directory(self): """ diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 5f07c245..51bf5796 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -7,11 +7,12 @@ model """ import os +from glob import glob from seisflows import logger -from seisflows.config import import_seisflows -from seisflows.workflow.forward import Forward from seisflows.tools import msg, unix +from seisflows.tools.specfem import Model +from seisflows.workflow.forward import Forward class Migration(Forward): @@ -25,6 +26,16 @@ class Migration(Forward): Setting `export_kernel`==True when PAR.NTASK is large and model files are large may lead to large file overhead. + .. note:: + Migration workflow includes an option to mask the gradient. While both + masking and preconditioning involve scaling the gradient, they are + fundamentally different operations: masking is ad hoc, preconditioning + is a change of variables; For more info, see Modrak & Tromp 2016 GJI + + :type path_mask: str + :param path_mask: optional path to a masking function which is used to + mask out or scale parts of the gradient. The user-defined mask must + match the file format of the input model (e.g., .bin files). :type export_gradient: bool :param export_gradient: export the gradient after it has been generated in the scratch directory. If False, gradient can be discarded from @@ -36,21 +47,19 @@ class Migration(Forward): """ __doc__ = Forward.__doc__ + __doc__ - def __init__(self, _modules=None, export_gradient=False, + def __init__(self, modules=None, path_mask=None, export_gradient=False, export_kernels=False, **kwargs): """Instantiate Migration-specific parameters""" super().__init__(**kwargs) - self._modules = _modules + self._modules = modules self.export_gradient = export_gradient self.export_kernels = export_kernels - # Overwriting base class required modules list - self._required_modules = ["system", "solver", "preprocess", - "postprocess"] + self.path["mask"] = path_mask - # Empty module variables that should be filled in by setup - self.postprocess = None + # Overwriting base class required modules list + self._required_modules = ["system", "solver", "preprocess"] @property def task_list(self): @@ -74,17 +83,10 @@ def task_list(self): """ return [self.evaluate_initial_misfit, self.run_adjoint_simulations, - self.generate_misfit_kernel + self.postprocess_event_kernels, + self.evaluate_gradient_from_kernels ] - def setup(self): - """ - Override the Forward.setup() method to include the postprocessing - module used for kernel/gradient manipulation - """ - super().setup() - self.postprocess = self._modules.postprocess - def run_adjoint_simulations(self): """ Performs adjoint simulations for a single given event. File manipulation @@ -102,14 +104,14 @@ def run_adjoint_simulation(): # path `eval_grad`. Optionally export those kernels self.solver.adjoint_simulation( save_kernels=os.path.join(self.path.eval_grad, "kernels", - self.solver.source_name), + self.solver.source_name, ""), export_kernels=export_kernels ) - logger.msg.mnr("running adjoint simulations to generate event kernels") - self.system.run(run_adjoint_simulation) + logger.info(msg.mnr("EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS")) + self.system.run([run_adjoint_simulation]) - def generate_misfit_kernel(self): + def postprocess_event_kernels(self): """ Combine/sum NTASK event kernels into a single volumetric kernel and then (optionally) smooth the output misfit kernel by convolving with @@ -118,36 +120,67 @@ def generate_misfit_kernel(self): """ def combine_event_kernels(): """Combine event kernels into a misfit kernel""" + logger.info("combining event kernels into single misfit kernel") self.solver.combine( input_path=os.path.join(self.path.eval_grad, "kernels"), - output_path=os.path.join(self.path.eval_grad, "sum") + output_path=os.path.join(self.path.eval_grad, "misfit_kernel") ) def smooth_misfit_kernel(): - """Smooth the output misfit kernel """ + """Smooth the output misfit kernel""" if self.solver.smooth_h > 0. or self.solver.smooth_v > 0.: - # Make a distinction that we have a pre- and post-smoothed sum - unix.mv(src=os.path.join(self.path.eval_grad, "sum_nosmooth")) - + logger.info( + f"smoothing misfit kernel: " + f"H={self.solver.smooth_h}; V={self.solver.smooth_v}" + ) + # Make a distinction that we have a pre- and post-smoothed kern. + unix.mv( + src=os.path.join(self.path.eval_grad, "misfit_kernel"), + dst=os.path.join(self.path.eval_grad, "mk_nosmooth") + ) self.solver.smooth( - input_path=os.path.join(self.path.eval_grad, "sum_nosmooth"), - output_path=os.path.join(self.path.eval_grad, "sum") + input_path=os.path.join(self.path.eval_grad, "mk_nosmooth"), + output_path=os.path.join(self.path.eval_grad, + "misfit_kernel") ) - logger.msg.mnr("postprocessing (summing/smoothing) event kernels") + logger.info(msg.mnr("GENERATING/PROCESSING MISFIT KERNEL")) self.system.run([combine_event_kernels, smooth_misfit_kernel], single=True) - -if __name__ == "__main__": - # Standard SeisFlows setup, makes modules global variables to the workflow - pars, modules = import_seisflows() - - logger.info(msg.mjr("Starting migration workflow")) - - workflow = Migration(modules, **pars) - workflow.check() - workflow.setup() - workflow.run() - - logger.info(msg.mjr("Finished migration workflow")) \ No newline at end of file + def evaluate_gradient_from_kernels(self): + """ + Generates the 'gradient' from the 'misfit kernel'. This involves + scaling the gradient by the model vector (log dm --> dm) and applying + an optional mask function to the gradient. + """ + logger.info("scaling gradient to absolute model perturbations") + gradient = Model(path=os.path.join(self.path.eval_grad, + "misfit_kernel")) + + # Set model: we only need to access parameters which will be updated + # Assuming that the model in the solver also generated the kernels + dst = os.path.join(self.path.eval_grad, "model") + unix.rm(dst) + unix.mkdir(dst) + for src in self.solver.model_files: + unix.ln(src, dst=os.path.join(dst, os.path.basename(src))) + + # Read in new model that will have been generated by `setup` or by + # optimization library + model = Model(path=dst) + + # Merge to vector and convert to absolute perturbations: + # log dm --> dm (see Eq.13 Tromp et al 2005) + gradient.update(vector=gradient.vector * model.vector) + gradient.write(path=os.path.join(self.path.eval_grad, "gradient")) + + # Apply an optional mask to the gradient + if self.path.mask: + logger.info("applying mask function to gradient") + mask = Model(path=self.path.mask) + unix.mv(src=os.path.join(self.path.eval_grad, "gradient"), + dst=os.path.join(self.path.eval_grad, "gradient_nomask")) + + gradient.update(vector=gradient.vector * mask.vector) + gradient.write(path=os.path.join(self.path.eval_grad, "gradient")) diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index ace180d8..e5d61635 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -12,7 +12,7 @@ import numpy as np from glob import glob -from seisflows.core import Base +from seisflows.tools.core import Base from seisflows.config import ROOT_DIR, CFGPATHS, save, config_logger From 2ddd9dc3b2a4e441dc631399ba17586b8d12dc77 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 19 Jul 2022 16:44:39 -0800 Subject: [PATCH 071/195] line search currently working, improved log messages for line search and optimization algo added a line_search disk file to help with restarting broken line searches need to work on restart procedure for line search and write tests to make sure its working --- seisflows/optimize/gradient.py | 206 +++++++++++++-------- seisflows/plugins/line_search/backtrack.py | 65 ++++--- seisflows/plugins/line_search/bracket.py | 197 ++++++++++++-------- seisflows/preprocess/default.py | 1 - seisflows/seisflows.py | 2 + seisflows/solver/specfem.py | 2 +- seisflows/tools/specfem.py | 32 +++- seisflows/workflow/forward.py | 25 ++- seisflows/workflow/inversion.py | 166 ++++++++--------- 9 files changed, 411 insertions(+), 285 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 50fc0f77..906005f8 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -8,29 +8,32 @@ different optimization algorithms. .. note:: - To reduce memory overhead, vectors are read from disk rather than passed - from calling routines. For example, at the beginning of - `compute_direction` the current gradient is read from 'g_new' and the - resulting search direction is written to 'p_new'. As the inversion - progresses, other information is stored as well. + To reduce memory overhead, and to enable optimization restarts due to + failed line searches, model/gradient vectors and line search history are + passed on disk rather than in memory. .. note:: The default numerical parameters for each algorithm should work well for a range of applications without manual tuning. If the nonlinear - optimization procedure stagnates, it may be due to issues involving - data quality or the choice of data misfit, data processing, or - regularization parameters. Problems in any of these areas usually - manifest themselves through stagnation of the nonlinear optimization - algorithm. + optimization procedure stagnates, it may be due to issues involving: + + 1) poor data quality + 2) choice of objective function + 3) data processing parameters (i.e., filter bandpass) + 4) regularization methods + + Problems in any of these areas usually manifest themselves through + stagnation of the nonlinear optimizationalgorithm. TODO fix line search, currently broken. Store line search variables in .npz arrays rather than as internal attributes, that way it's easier to restart from a broken workflow. Need to figure out how to reset and restart line searches efficiently + Change line search to words not numbers """ import os -import sys import numpy as np +from glob import glob from seisflows import logger from seisflows.tools import msg, unix @@ -60,10 +63,14 @@ class Gradient: :type step_len_max: float :param step_len_max: maximum allowable step length during the line search. Set as a fraction of the current model parameters + :type path_line_search: str + :param path_line_search: full path to a file used to periodically + save the line search history as a NumPy .npz file """ - def __init__(self, start=1, line_search_method="bracket", preconditioner=None, - step_count_max=10, step_len_init=0.05, step_len_max=0.5, - workdir=os.getcwd(), path_optimize=None, path_output=None, + def __init__(self, start=1, line_search_method="bracket", + preconditioner=None, step_count_max=10, step_len_init=0.05, + step_len_max=0.5, workdir=os.getcwd(), path_optimize=None, + path_line_search=None, path_output=None, path_preconditioner=None, **kwargs): """Gradient-descent input parameters""" @@ -76,6 +83,18 @@ def __init__(self, start=1, line_search_method="bracket", preconditioner=None, self.step_len_init = step_len_init self.step_len_max = step_len_max + # Set required path structure + self.path = Dict( + scratch=path_optimize or + os.path.join(os.getcwd(), "scratch", "optimize"), + output=path_output or os.path.join(workdir, "output"), + preconditioner=path_preconditioner, + ) + self.path["line_search"] = ( + path_line_search or + os.path.join(self.path.scratch, "line_search") + ) + # Internal check to see if the chosen line search algorithm exists if not hasattr(line_search_dir, line_search_method): logger.warning(f"{line_search_method} is not a valid line search " @@ -84,16 +103,8 @@ def __init__(self, start=1, line_search_method="bracket", preconditioner=None, # .title() ensures we grab the class and not the module self.line_search = getattr(line_search_dir, line_search_method.title())( - step_count_max=step_count_max, step_len_max=step_len_max - ) - - # Set required path structure - self.path = Dict( - scratch=path_optimize or - os.path.join(os.getcwd(), "scratch", "optimize"), - output=path_output or os.path.join(workdir, "output"), - preconditioner=path_preconditioner, - + step_count_max=step_count_max, step_len_max=step_len_max, + path=self.path.line_search ) # Internally used parameters for checking validity @@ -134,13 +145,15 @@ def setup(self): Sets up nonlinear optimization machinery """ unix.mkdir(self.path.scratch) + self.line_search.save_search_history() # will be empty def load(self, name): """ Convenience function to access the full paths of model and gradient vectors that are saved to disk - .. note:: the available options that can be loaded + .. note:: + Model, gradient and misfit vectors are named as follows: m_new: current model m_old: previous model m_try: line search model @@ -155,6 +168,10 @@ def load(self, name): :type name: str :param name: name of the vector, acceptable: m, g, p, f, alpha + :type check: bool + :param check: if the model is a vector, check poissons ratio and list + out min and max for all parameters. This is really only useful for + elastic models, and not for kernels, gradients etc. """ assert(name in self._acceptable_vectors) model_npz = os.path.join(self.path.scratch, f"{name}.npz") @@ -229,14 +246,14 @@ def compute_direction(self): def initialize_search(self): """ - Initialize the plugin line search machinery. Should only be run at - the beginning of line search, by the main workflow module. + Generate a trial model by perturbing the current model in the search + direction with a given step length, calculated by the chosen line + search algorithm. """ - # Vectors required to initialize a line search - m = self.load("m_new") - g = self.load("g_new") - p = self.load("p_new") - f = self.load("f_new") + m = self.load("m_new") # current model from external solver + g = self.load("g_new") # current gradient from scaled kernels + p = self.load("p_new") # current search direction from optimization + f = self.load("f_new") # current misfit value from preprocess norm_m = max(abs(m.vector)) norm_p = max(abs(p.vector)) @@ -251,51 +268,66 @@ def initialize_search(self): if self.step_len_max: new_step_len_max = self.step_len_max * norm_m / norm_p self.line_search.step_len_max = new_step_len_max - logger.debug(f"max step length safeguard = {new_step_len_max:.2E}") + logger.info(f"enforcing max step length safeguard") - # Initialize the line search by setting vector variables - self.line_search.step_count = 0 - self.line_search.step_lens.append(0.) - self.line_search.func_vals.append(f) - self.line_search.gtg.append(gtg) - self.line_search.gtp.append(gtp) + # Initialize the line search and save it to disk. + self.line_search.update_search_history(func_val=f, step_len=0., + gtg=gtg, gtp=gtp) + self.line_search.check_search_history(iteration=self.iteration) - alpha, _ = self.line_search.calculate_step() + alpha, _ = self.line_search.calculate_step_length() # Alpha defines the trial step length. Optional step length override if self.step_len_init and len(self.line_search.step_lens) <= 1: alpha = self.step_len_init * norm_m / norm_p - logger.debug(f"overwrite initial step length: {alpha:.2E}") + logger.debug(f"overwriting initial step length, " + f"alpha_new={alpha:.2E}") # The new model is the old model, scaled by the step direction and # gradient threshold to remove any outlier values m_try = m.update(vector=m.vector + alpha * p.vector) + logger.info("trial model 'm_try' parameters: ") + m_try.check() return m_try, alpha - def update_search(self): + def update_line_search(self): """ - Updates line search status and step length and checks if the line search - has been completed. + Updates line search status and step length after a forward simulation + has been run and misfit calculated. Checks misfit against line search + history to see if the line search has been completed. - Available status codes from line_search.calculate_step(): + Available status codes from line_search.calculate_step_length(): status == 1 : finished status == 0 : not finished status == -1 : failed """ - # Update the line search variables for a new step calculation - self.line_search.step_lens.append(self.load("alpha")) - self.line_search.func_vals.append(self.load("f_try")) + # Collect information on a forward evaluation that just took place + alpha = self.load("alpha") # step length + f_try = self.load("f_try") # misfit for the trial model + + # Update the line search with a new step length and misfit value + self.line_search.step_count += 1 + self.line_search.update_search_history(step_len=alpha, func_val=f_try) + self.line_search.check_search_history(iteration=self.iteration) - alpha, status = self.line_search.calculate_step() + # Calculate a new step length based on line search algorithm + alpha_try, status = self.line_search.calculate_step_length() - # New search direction needs to be searchable on disk + # Status == 0: Retry line search // Status == 1: Line search passed if status in [0, 1]: + # Save new step length to disk + self.save("alpha", alpha_try) + + # Create a new trial model based on search direction, step length + # and the initial model vector m = self.load("m_new") p = self.load("p_new") - self.save("alpha", alpha) + # Sets the latest trial model m_try = m.update(vector=m.vector + alpha * p.vector) + logger.info("trial model 'm_try' parameters: ") + m_try.check() self.save("m_try", m_try) return status @@ -306,6 +338,10 @@ def finalize_search(self): Removes old model/search parameters, moves current parameters to old, sets up new current parameters and writes statistic outputs + + TODO does moving 'm_try' to 'm_new' actually make sense with bracketing + line search where our last trial model will potentially have a + higher misfit due to the 'bracket'ing nature? """ unix.cd(self.path.scratch) @@ -313,47 +349,60 @@ def finalize_search(self): # Remove the old model parameters if self.iteration > 1: - logger.info("removing previously accepted model files (old)") + logger.info("removing previously accepted model files (?_old)") for fid in ["m_old", "f_old", "g_old", "p_old"]: - unix.rm(fid) + unix.rm(os.path.join(self.path.scratch, fid)) # Needs to be run before shifting model in next step self._write_stats() - logger.info("shifting current model (new) to previous model (old)") - unix.mv("m_new.npz", "m_old.npz") - unix.mv("f_new.npz", "f_old.npz") - unix.mv("g_new.npz", "g_old.npz") - unix.mv("p_new.npz", "p_old.npz") + logger.info("renaming current (new) optimization vectors as " + "previous model (old)") + # e.g., m_new.npz -> m_old.npz + for src in glob(os.path.join(self.path.scratch, "*_new.*")): + dst = src.replace("_new.", "_old.") + unix.mv(src, dst) - logger.info("setting accepted line search model as current model") - unix.mv("m_try.npz", "m_new.npz") + logger.info("setting accepted trial model (try) as current model (new)") + unix.mv(src=os.path.join(self.path.scratch, "m_try.npz"), + dst=os.path.join(self.path.scratch, "m_new.npz")) - # Choose minimum misfit value as final misfit/model + # Choose minimum misfit value as final misfit/model. index 0 is initial f = self.line_search.get_search_history()[1] self.save("f_new", f.min()) - logger.info(f"current misfit is {f.min():.3E}") + logger.info(f"misfit of accepted trial model is f={f.min():.3E}") logger.info("resetting line search step count to 0") self.line_search.step_count = 0 - def retry_status(self): + def attempt_line_search_restart(self, threshold=1E-3): """ After a failed line search, this determines if restart is worthwhile - by checking, in effect, if the search direction was the same as gradient - direction + by checking, in effect, if the search direction was the same as the + negative gradientdirection. + + Essentially checking if this is a steepest-descent optimization, which + cannot and should not be restarted. If the search direction is calc'ed + by another optimization schema, the search direction and gradient should + differ + + :type threshold: float + :param threshold: angle threshold for the angle between the search + direction and the gradient. + :rtype: int + :return: pass (1) fail (0) status for retrying line search """ g = self.load("g_new") p = self.load("p_new") - theta = angle(p.vector, -1 * g.vector) - logger.debug(f"theta: {theta:6.3f}") + theta = angle(p.vector, -1 * g.vector) + logger.debug(f"checking gradient/search direction angle, " + f"theta: {theta:6.3f}") - thresh = 1.e-3 - if abs(theta) < thresh: - return 0 + if abs(theta) < threshold: + return 0 # Do not restart else: - return 1 + return 1 # Go for restart def restart(self): """ @@ -384,7 +433,8 @@ def _write_stats(self): # First time, write header information if not os.path.exists(fid): with open(fid, "w") as f: - for header in ["ITER", "FACTOR", "GRAD_NORM_L1", "GRAD_NORM_L2", + for header in ["ITER", # "FACTOR", + "GRAD_NORM_L1", "GRAD_NORM_L2", "MISFIT", "RESTART", "SLOPE", "STEP", "LENGTH", "THETA"]: f.write(f"{header.upper()},") @@ -394,11 +444,11 @@ def _write_stats(self): p = self.load("p_new") x, f, *_ = self.line_search.get_search_history() - import pdb;pdb.set_trace() - # Calculated stats factors - factor = -1 * dot(g.vector, g.vector) - factor = factor ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) + # TODO What is this? It was returning a RuntimeError for value too small + # for double precision. Do we need to keep it? + # factor = -1 * dot(g.vector, g.vector) + # factor = factor ** -0.5 * (f[1] - f[0]) / (x[1] - x[0]) grad_norm_L1 = np.linalg.norm(g.vector, 1) grad_norm_L2 = np.linalg.norm(g.vector, 2) @@ -408,11 +458,11 @@ def _write_stats(self): slope = (f[1] - f[0]) / (x[1] - x[0]) step_count = self.line_search.step_count step_length = x[f.argmin()] - theta = 180. * np.pi ** -1 * angle(p, -1 * g.vector) + theta = 180. * np.pi ** -1 * angle(p.vector, -1 * g.vector) with open(fid, "a") as f: f.write(f"{self.iteration:0>2}," - f"{factor:6.3E}," + # f"{factor:6.3E}," f"{grad_norm_L1:6.3E}," f"{grad_norm_L2:6.3E}," f"{misfit:6.3E}," diff --git a/seisflows/plugins/line_search/backtrack.py b/seisflows/plugins/line_search/backtrack.py index e7bb1dd1..a4a8cc71 100644 --- a/seisflows/plugins/line_search/backtrack.py +++ b/seisflows/plugins/line_search/backtrack.py @@ -1,20 +1,23 @@ #!/usr/bin/env python3 """ -This is the subclass class for seisflows.plugins.line_search.backtrack +Backtracking line search class plugin to be used with an L-BFGS optimization + +https://en.wikipedia.org/wiki/Backtracking_line_search """ from seisflows import logger from seisflows.plugins.line_search.bracket import Bracket -from seisflows.tools import msg from seisflows.tools.math import parabolic_backtrack class Backtrack(Bracket): """ - Implements backtracking linesearch. A backtracking line search is used - for L-BFGS optimization, where a unit step length is attempted, if this - does not satisfy the misfit reduction criteria, the step length is - `backtracked` to a smaller value. If the backtracked value becomes too small - the backtracking line search defaults to a Bracketing line search. + [line_search.backtrack] Backtracking line search assumes the + gradient is well scaled from the L-BFGS optimization algorithm, such + that a unit step length (1) will provide a decrease in misfit. If + misfit does not decrease, the backtracking step count follows a + parabolic backtrack from 1 -> 0 in search of a decreased misfit. If the + backtracked value becomes too small the backtracking line search defaults to + a Bracketing line search. Variables Descriptions: x: list of step lenths from current line search @@ -25,54 +28,62 @@ class Backtrack(Bracket): gtp: dot product of gradient and search direction Status codes - status > 0 : finished - status == 0 : not finished - status < 0 : failed + status == 1 : PASS, line search finished + status == 0 : TRY/RETRY, attempt line search w/ new step length + status == -1 : FAIL, line search exceeds internal criteria """ - def calculate_step(self): + def calculate_step_length(self): """ - Determines step length and search status. Overwrites the Bracketing - line search step calculation + Determines step length and search status. Defaults to 'Bracket'ing + line search during the first evaluation (waiting for the L-BFGS to scale + properly). + + .. note:: + Search history variable descriptions: + x: list of step lenths from current line search + f: correpsonding list of function values + m: number of step lengths in current line search + n: number of model updates in optimization problem + gtg: dot product of gradient with itself + gtp: dot product of gradient and search direction """ # Determine the line search history - x, f, gtg, gtp, step_count, update_count = self.search_history() - + x, f, gtg, gtp, step_count, update_count = self.get_search_history() + # quasi-Newton direction is not yet scaled properly, so instead # of a bactracking line perform a bracketing line search if update_count == 0: - alpha, status = super().calculate_step() + alpha, status = super().calculate_step_length() # Assumed well scaled search direction, attempt backtracking line search # with unit step length else: - logger.debug(msg.sub(f"BACKTRACKING LINE SEARCH STEP" - f"{self.step_count:0>2}")) - x_str = ", ".join([f"{_:.2E}" for _ in x]) - f_str = ", ".join([f"{_:.2E}" for _ in f]) - logger.debug(f"step length(s) = {x_str}") - logger.debug(f"misfit val(s) = {f_str}") + self._print_stats(x, f) # Initial unit step length if step_count == 0: - logger.info("attempting unit step length") alpha = min(1., self.step_len_max) + logger.info(f"try: attempt unit step length w/ alpha={alpha}") status = 0 # Pass if misfit is reduced elif f.min() < f[0]: - logger.info("misfit decrease, pass") alpha = x[f.argmin()] + logger.info(f"pass: misfit decreased, line search " + f"successful w/ alpha={alpha}") status = 1 # If misfit continually increases, decrease step length elif step_count <= self.step_count_max: - import pdb;pdb.set_trace() - logger.info("misfit increase, decreasing step length") slope = gtp[-1] / gtg[-1] alpha = parabolic_backtrack(f0=f[0], g0=slope, x1=x[1], f1=f[1], b1=0.1, b2=0.5) + logger.info(f"try: misfit increasing, attempting " + f"to decrease step length to alpha={alpha}") status = 0 # Failed because step_count_max exceeded else: - logger.info("backtracking failed, step_count_max exceeded") + logger.info(f"fail: backtracking line search has " + f"failed because the maximum allowable step counts " + f"({self.step_count_max}) has been exceeded") alpha = None status = -1 diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index eb97b56a..7a3fea45 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -1,58 +1,70 @@ #!/usr/bin/env python3 """ -This is the Bracketing line search class for seisflows +A bracketing line search (a.k.a direct line search) attempts to find an +appropriate step length by identifying two points between which the minimum +misfit lies. Contains some functionality for saving line search history to disk +so that a line search may be resumed in the case of a failure/reset. -Line search is called on by the optimization procedure and should not really -have any agency (i.e. it should not be able to iterate its own step count etc., -this should be completely left to the optimization algorithm to keep everything -in one place) +https://en.wikipedia.org/wiki/Line_search + +.. note:: + Line search is called on by the optimization procedure and should not + really have any agency (i.e. it should not be able to iterate its own step + count etc., this should be completely left to the optimization algorithm to + keep everything in one place) """ +import os import numpy as np from seisflows import logger -from seisflows.tools import msg from seisflows.tools.array import count_zeros from seisflows.tools.math import parabolic_backtrack, polynomial_fit class Bracket: """ - Abstract base class for line search - - Variables Descriptions: - x: list of step lenths from current line search - f: correpsonding list of function values - m: number of step lengths in current line search - n: number of model updates in optimization problem - gtg: dot product of gradient with itself - gtp: dot product of gradient and search direction - - Status codes - status > 0 : finished - status == 0 : not finished - status < 0 : failed + [line_search.bracket] The bracketing line search identifies two points + between which the minimum misfit lies between. + + :type step_count_max: int + :param step_count_max: maximum number of step counts before changing + line search behavior. set by PAR.STEP_COUNT_MAX + :type step_len_max: int + :param step_len_max: maximum length of the step, defaults to infinity, + that is unbounded step length. set by PAR.STEP_LEN_MAX """ - def __init__(self, step_count_max, step_len_max): + def __init__(self, step_count_max, step_len_max, path=None): """ - Initiate the line search machinery - - :type step_count_max: int - :param step_count_max: maximum number of step counts before changing - line search behavior. set by PAR.STEP_COUNT_MAX - :type step_len_max: int - :param step_len_max: maximum length of the step, defaults to infinity, - that is unbounded step length. set by PAR.STEP_LEN_MAX + Instantiate max criteria for line search """ self.step_count_max = step_count_max self.step_len_max = step_len_max + if path is None: + self.path = os.path.join(os.getcwd(), "line_search") + else: + self.path = path + self.func_vals = [] self.step_lens = [] self.gtg = [] self.gtp = [] self.step_count = 0 - def clear_history(self): + def update_search_history(self, func_val, step_len, gtg=None, gtp=None): + """ + Update the internal list of search history attributes. Lists like + `func_vals` get appended to, while values like step_count are + overwritten. Allowed to increment func_val and step_len by themselves + """ + self.func_vals.append(func_val) + self.step_lens.append(step_len) + if gtg: + self.gtg.append(gtg) + if gtp: + self.gtp.append(gtp) + + def clear_search_history(self): """ Clears internal line search history for a new line search attempt """ @@ -62,27 +74,51 @@ def clear_history(self): self.gtp = [] self.step_count = 0 - def reset(self): + def check_search_history(self, iteration): """ - If a line search fails mid-search, and the User wants to resume from - the line search function. Initialize will be called again. This function - undos the progress made by the previous line search so that a new line - search can be called without problem. + Since the line search is just a wrapper for list of numbers, check that + search history hasn't been muddled up by ensuring that internal lists + are the correct length for the given evaluation - output.optim needs to have its lines cleared manually + :type iteration: int + :param iteration: current iteration of the workflow """ - # First step treated differently - if len(self.step_lens) <= 1: - self.clear_history() - else: - # Wind back dot products by one - self.gtg = self.gtg[:-1] - self.gtp = self.gtp[:-1] - - # Move step lens and function evaluations by number of step count - original_idx = -1 * self.step_count - 1 - self.step_lens = self.step_lens[:original_idx] - self.func_vals = self.func_vals[:original_idx] + assert(len(self.gtg) == iteration), f"too many entries for 'gtg'" + assert(len(self.gtp) == iteration), f"too many entries for 'gtp'" + assert(len(self.func_vals) == len(self.step_lens)), \ + f"number of function evaluations does not match step lengths" + assert(self.step_count + 1 == len(self.func_vals)), \ + f"current step coutn doesn't match the number of function evals" + + def save_search_history(self, file=None): + """ + Save the current line search history to disk. Used to re-load a line + search from disk in the case of a failed search + """ + if file is None: + file = self.path + + dict_out = dict(func_vals=self.func_vals, step_lens=self.step_lens, + gtg=self.gtg, gtp=self.gtp, step_count=self.step_count) + np.savez(file=file, **dict_out) + + def load_search_history(self, file=None): + """ + Load line search history from disk. Used to re-load line search in the + case of failed line searches. + """ + if file is None: + file = self.path + + # Numpy will append .npz to saved files, just ensure we honor that + if not file.endswith(".npz"): + file = f"{file}.npz" + + dict_in = np.load(file=file) + self.step_count = int(dict_in["step_count"]) # only var thats not list + for key in ["func_vals", "step_lens", "gtg", "gtp"]: + assert(key in dict_in), f"line search .npz file has no key {key}" + setattr(self, key, list(dict_in[key])) def get_search_history(self, sort=True): """ @@ -104,13 +140,14 @@ def get_search_history(self, sort=True): :rtype i: int :return i: step_count :rtype j: int - :return j: number of iterations corresponding to 0 step length + :return j: number of iterations corresponding to 0 step length, + i.e., the update count """ i = self.step_count - j = count_zeros(self.step_lens) - 1 k = len(self.step_lens) x = np.array(self.step_lens[k - i - 1:k]) f = np.array(self.func_vals[k - i - 1:k]) + j = count_zeros(self.step_lens) - 1 # update count # Sort by step length if sort: @@ -119,60 +156,70 @@ def get_search_history(self, sort=True): return x, f, self.gtg, self.gtp, i, j - def calculate_step(self): - """ - Determines step length (alpha) and search status (status) - """ - # Determine the line search history - x, f, gtg, gtp, step_count, update_count = self.get_search_history() - - # Print out the current line search parameters for convenience - logger.debug(msg.sub(f"BRACKETING LINE SEARCH STEP " - f"{self.step_count:0>2}")) + def _print_stats(self, x, f): + """Print out misfit values and step lengths to the logger""" x_str = ", ".join([f"{_:.2E}" for _ in x]) f_str = ", ".join([f"{_:.2E}" for _ in f]) logger.debug(f"step length(s) = {x_str}") logger.debug(f"misfit val(s) = {f_str}") + def calculate_step_length(self): + """ + Determines step length (alpha) and search status (status) using a + bracketing line search. + """ + # Determine the line search history + x, f, gtg, gtp, step_count, update_count = self.get_search_history() + self._print_stats(x, f) + # For the first inversion and initial step, set alpha manually if step_count == 0 and update_count == 0: # Based on idea from Dennis and Schnabel alpha = gtg[-1] ** -1 - logger.info(f"first iteration, guessing trial step") + logger.info(f"try: first evaluation, attempt guess step length, " + f"alpha={alpha:.2E}") status = 0 - # For every i'th inversions initial step, set alpha manually + # For every iteration's initial step, set alpha manually elif step_count == 0: # Based on the first equation in sec 3.5 of Nocedal and Wright 2ed idx = np.argmin(self.func_vals[:-1]) alpha = self.step_lens[idx] * gtp[-2] / gtp[-1] - logger.info(f"first step, setting scaled step length") + logger.info(f"try: first step count of iteration, " + f"setting scaled step length, alpha={alpha:.2E}") status = 0 # If misfit is reduced and then increased, we've bracketed. Pass elif _check_bracket(x, f) and _good_enough(x, f): alpha = x[f.argmin()] - logger.info(f"bracket okay, step length reasonable, pass") + logger.info(f"pass: bracket acceptable and step length " + f"reasonable.") status = 1 # If misfit is reduced but not close, set to quadratic fit elif _check_bracket(x, f): alpha = polynomial_fit(x, f) - logger.info(f"bracket okay, step length unreasonable, manual step") + logger.info(f"try: bracket acceptable but step length unreasonable " + f"attempting to re-adjust step length " + f"alpha={alpha:.2E}") status = 0 # If misfit continues to step down, increase step length elif step_count <= self.step_count_max and all(f <= f[0]): alpha = 1.618034 * x[-1] # 1.618034 is the 'golden ratio' - logger.info(f"misfit not bracketed, increasing step length") + logger.info(f"try: misfit not bracketed, increasing step length " + f"using golden ratio, alpha={alpha:.2E}") status = 0 # If misfit increases, reduce step length by backtracking elif step_count <= self.step_count_max: slope = gtp[-1] / gtg[-1] alpha = parabolic_backtrack(f0=f[0], g0=slope, x1=x[1], f1=f[1], b1=0.1, b2=0.5) - logger.info(f"misfit increasing, reducing step length to") + logger.info(f"try: misfit increasing, attempting " + f"to reduce step length using parabloic backtrack, " + f"alpha={alpha:.2E}") status = 0 # step_count_max exceeded, fail else: - logger.info(f"bracketing failed, step_count_max=" - f"{self.step_count_max} exceeded") + logger.info(f"fail: bracketing line search has failed " + f"to reduce the misfit before exceeding " + f"`step_count_max`={self.step_count_max}") alpha = None status = -1 @@ -180,15 +227,17 @@ def calculate_step(self): if alpha is not None: if alpha > self.step_len_max and step_count == 0: alpha = 0.618034 * self.step_len_max - logger.info(f"initial step length safegaurd, setting " - f"manual step length") + logger.info(f"try: applying initial step length " + f"safegaurd as alpha has exceeded maximum step " + f"length, alpha_new={alpha:.2E}") status = 0 # Stop because safeguard prevents us from going further elif alpha > self.step_len_max: - logger.info(f"step_len_max={self.step_len_max:.2f} " - f"exceeded, manual set alpha") alpha = self.step_len_max - status = 1 + logger.info(f"try: applying initial step length " + f"safegaurd as alpha has exceeded maximum step " + f"length, alpha_new={alpha:.2E}") + status = 1 # TODO shouldn't this be 0 or -1? return alpha, status diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index f05521ff..000d59b6 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -524,7 +524,6 @@ def _read_ascii(fid, origintime=None): data = np.array(data) if origintime is None: - print("No origintime given, setting to default 1970-01-01T00:00:00") origintime = UTCDateTime("1970-01-01T00:00:00") # We assume that dt is constant after 'precision' decimal points diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 0fddd568..199cfd38 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -1239,6 +1239,8 @@ def _inspect_module_hierarchy(name=None, **kwargs): def _reset_line_search(self, **kwargs): """ + TODO Delete me + Reset the machinery of the line search. This is useful for if a line search fails or stagnates but the User does not want to re-run the entire iteration. They can reset the line search and resume the workflow diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 2f25566b..751e18a4 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -494,7 +494,7 @@ def adjoint_simulation(self, executables=None, save_kernels=False, # Rename kernels to work w/ conflicting name conventions unix.cd(self.kernel_databases) - logger.info(f"renaming event kernels for {self.source_name}") + logger.debug(f"renaming event kernels for {self.source_name}") for tag in ["alpha", "alpha[hv]", "reg1_alpha", "reg1_alpha[hv]"]: names = glob(f"*proc??????_{tag}_kernel.bin") unix.rename(old="alpha", new="vp", names=names) diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 386ac123..222fd516 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -33,6 +33,11 @@ def __init__(self, path, fmt=None, parameters=None, load=False): `fmt` can be provided by the user or guessed based on available file formats + .. note:: + The `vector` representation is based completely on the `model` + attribute. In order to update the model based on vector manipulation + you must use the update() function. + :type path: str :param path: path to SPECFEM model/kernel/gradient files :type fmt: str @@ -63,8 +68,6 @@ def __init__(self, path, fmt=None, parameters=None, load=False): self.model, self.ngll = self.read(parameters=parameters) self.parameters = self.model.keys() - self.vector = self.merge() - self.check() @staticmethod def fnfmt(i="*", val="*", ext="*"): @@ -92,6 +95,12 @@ def fnfmt(i="*", val="*", ext="*"): filename_format = f"proc{i}_{val}{ext}" return filename_format + @property + def vector(self): + """conveience property to access the merge() property which creates a + linear vector defining all model parameters""" + return self.merge() + def read(self, parameters=None): """ Utility function to load in SPECFEM models/kernels/gradients saved in @@ -179,21 +188,27 @@ def write(self, path, fmt=None): save_fx(path=path) - def split(self): + def split(self, vector=None): """ Converts internal vector representation `m` to dictionary representation `model`. Does this by separating the vector based on how it was constructed, parameter-wise and processor-wise + :type vector: np.array + :param vector: allow Model to split an input vector. If none given, + will split the internal vector representation :rtype: Dict of np.array :return: dictionary of model parameters split up by number of processors """ + if vector is None: + vector = self.vector + model = Dict({key: [] for key in self.parameters}) for idim, key in enumerate(self.parameters): for iproc in range(self.nproc): imin = sum(self.ngll) * idim + sum(self.ngll[:iproc]) imax = sum(self.ngll) * idim + sum(self.ngll[:iproc + 1]) - model[key].extend([self.vector[imin:imax]]) + model[key].extend([vector[imin:imax]]) model[key] = np.array(model[key]) return model @@ -223,10 +238,9 @@ def check(self, min_pr=-1., max_pr=0.5): logger.warning(f"Vp minimum is negative {self.model.vp.min()}") # Tell the User min and max values of the updated model - logger.info(f"model parameters") for key, vals in self.model.items(): - # Choose formatter based on the size of the value - if vals.min() < 1 or vals.max() > 1E4: + # Choose formatter based on the magnitude of the value + if vals.min() < 1 or (vals.max() > 1E4): parts = "{minval:.2E} <= {key} <= {maxval:.2E}" else: parts = "{minval:.2f} <= {key} <= {maxval:.2f}" @@ -273,10 +287,8 @@ def update(self, model=None, vector=None): """ if model is not None: self.model = model - self.vector = self.merge() elif vector is not None: - self.vector = vector - self.model = self.split() + self.model = self.split(vector=vector) return self diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 65af4643..4f3c7e25 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -11,7 +11,7 @@ from seisflows import logger from seisflows.tools import msg, unix from seisflows.tools.core import Dict -from seisflows.config import import_seisflows +from seisflows.tools.specfem import Model class Forward: @@ -67,7 +67,7 @@ def __init__(self, modules=None, data_case=None, export_traces=False, os.path.join(workdir, "scratch", "eval_grad"), output=path_output or os.path.join(workdir, "output"), state_file=path_state_file or - os.path.join(workdir, "statefile.txt"), + os.path.join(workdir, ".statefile.txt"), data=path_data, model_init=path_model_init, model_true=path_model_true @@ -173,7 +173,7 @@ def setup(self): # Run setup() for each of the required modules for req_mod in self._required_modules: - logger.info( + logger.debug( f"running setup for module " f"'{req_mod}.{self._modules[req_mod].__class__.__name__}'" ) @@ -182,7 +182,7 @@ def setup(self): # Run setup() for each of the instantiated modules for opt_mod in self._optional_modules: if self._modules[opt_mod] and opt_mod not in self._required_modules: - logger.info( + logger.debug( f"running setup for module " f"'{opt_mod}.{self._modules[opt_mod].__class__.__name__}'" ) @@ -196,6 +196,16 @@ def setup(self): f.write(f"# Acceptable states: 'completed', 'failed'\n") f.write(f"# =======================================\n") + # Load in the initial model and check its poissons ratio + if self.path.model_init: + logger.info("checking initial model parameters") + _model = Model(os.path.join(self.path.model_init)) + _model.check() + if self.path.model_true: + logger.info("checking true/target model parameters") + _model = Model(os.path.join(self.path.model_true)) + _model.check() + # Distribute modules to the class namespace. We don't do this at init # incase _modules was set as NoneType self.solver = self._modules.solver @@ -277,7 +287,7 @@ def prepare_data_for_solver(self, **kwargs): Must be run by system.run() so that solvers are assigned individual task ids and working directories """ - logger.info(f"PREPARING OBSERVATION DATA FOR SOURCE " + logger.info(f"preparing observation data for source " f"{self.solver.source_name}") if self.data_case == "data": @@ -294,7 +304,7 @@ def prepare_data_for_solver(self, **kwargs): export_traces = False # Run the forward solver with target model and save traces the 'obs' - logger.info(f"running forward simulation w/ `MODEL_TRUE` for " + logger.info(f"running forward simulation w/ target model for " f"{self.solver.source_name}") self.solver.import_model(path_model=self.path.model_true) self.solver.forward_simulation( @@ -319,7 +329,8 @@ def evaluate_objective_function(self, path_model, save_residuals=False, assert(os.path.exists(path_model)), \ f"Model path for objective function does not exist" - logger.info("EVALUATING OBJECTIVE FUNCTION") + logger.info(f"evaluating objective function for source " + f"{self.solver.source_name}") logger.debug(f"running forward simulation with " f"'{self.solver.__class__.__name__}'") diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index ffc477b1..a2cd11fa 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -91,7 +91,7 @@ def task_list(self): self.run_adjoint_simulations, self.postprocess_event_kernels, self.evaluate_gradient_from_kernels, - self.compute_search_direction, + self.initialize_line_search, self.perform_line_search, self.clean_scratch_directory ] @@ -117,6 +117,14 @@ def setup(self): unix.mkdir(self.path.eval_func) self.optimize = self._modules.optimize + def checkpoint(self): + """ + Override checkpoint and add the optimization iteration parameter + """ + super().checkpoint() + with open(self.path.state_file, "a") as f: + f.write(f"iteration: {self.optimize.iteration}") + def run(self): """Call the forward.run() function iteratively, from `start` to `end`""" for i in range(self.start, self.end + 1): @@ -151,17 +159,22 @@ def evaluate_gradient_from_kernels(self): gradient = Model(path=os.path.join(self.path.eval_grad, "gradient")) self.optimize.save(name="g_new", m=gradient) - def compute_search_direction(self): + def initialize_line_search(self): """ - Computes search direction using the optimization library and performs - a sets up line search machinery to 'perform line search' + Computes search direction using the optimization library and sets up + line search machinery to 'perform line search' by placing correct files + on disk for each of the modules to find. + + Optimization module perturbs the current model (m_new) by the search + direction (p_new) to recover the trial model (m_try). This model is + then exposed on disk to the solver. """ - logger.info(f"computing search direction with " - f"'{self.optimize.__class__.__name__}'") - p_new = self.optimize.compute_direction() - self.optimize.save(name="p_new", m=p_new) + logger.info(f"initializing " + f"'{self.optimize.line_search.__class__.__name__}'ing " + f"line search") - # Check that our search direction will actually perturb the model + # 'p' is the search direction used to perturb the initial model + p_new = self.optimize.compute_direction() if sum(p_new.vector) == 0: logger.critical(msg.cli( "Search direction vector 'p' is 0, meaning no model update can " @@ -170,14 +183,13 @@ def compute_search_direction(self): header="line search error") ) sys.exit(-1) + self.optimize.save(name="p_new", m=p_new) - logger.info( - msg.mnr(f"INITALIZING LINE SEARCH: i{self.optimize.iteration:0>2}" - f"s{self.optimize.step_count:0>2}") - ) + # Scale search direction with step length alpha generate a model update m_try, alpha = self.optimize.initialize_search() self.optimize.save(name="m_try", m=m_try) self.optimize.save(name="alpha", m=alpha) + self.optimize.line_search.save_search_history() # Expose model `m_try` to the solver by placing it in eval_func dir. m_try.write(path=os.path.join(self.path.eval_func, "model")) @@ -188,54 +200,65 @@ def perform_line_search(self): function is reduced acceptably, or the line search fails due to user-defined limit criteria. + .. note:: + Starts on step_count == 1 because step_count == 0 will be the + misfit of the starting model + Status codes: status > 0 : finished status == 0 : not finished status < 0 : failed """ - while True: - # Attempt a new trial step with the given step length - self.optimize.line_search.step_count += 1 - logger.info( - msg.sub(f"TRIAL STEP COUNT: i{self.optimize.iteration:0>2}" - f"s{self.optimize.step_count:0>2}") - ) - - # Run the forward simulation on system and calculate misfit as f_try - self.system.run( - [self.evaluate_objective_function], - path_model=os.path.join(self.path.eval_func, "model"), - save_residuals=os.path.join(self.path.eval_func, "residuals") - ) - residuals = np.loadtxt(os.path.join(self.path.eval_func, - "residuals")) - total_misfit = self.preprocess.sum_residuals(residuals) - self.optimize.save(name="f_try", m=total_misfit) - - # Check the function evaluation against line search history - status = self.optimize.update_search() - - # Proceed based on the outcome of the line search - if status > 0: - # Save outcome of line search to disk; reset step to 0 for next iter - logger.info("trial step successful. finalizing line search") - self.optimize.finalize_search() - return - elif status == 0: - logger.info("trial step unsuccessful. retrying with new trial " - "step") - # Recursively call this function to attempt another trial step - continue - elif status < 0: - if self.optimize.retry_status(): - logger.info("line search has failed. restarting " - "optimization algorithm and line search.") - # Reset the line search machinery; set step count to 0 - self.optimize.restart() - continue - else: - logger.info("line search has failed. aborting inversion.") - sys.exit(-1) + # self.optimize.line_search.load_search_history() + + logger.info(msg.sub(f"LINE SEARCH STEP COUNT " + f"{self.optimize.step_count + 1:0>2}")) + + # Run fwd solver with the model 'm_try'. Corresponding misfit is 'f_try' + self._evaluate_line_search_misfit() + + # Increment step count, calculate new step length/model, check misfit + status = self.optimize.update_line_search() + self.optimize.line_search.save_search_history() + + # Proceed based on the outcome of the line search + if status == 1: + # Save outcome of line search to disk; reset step to 0 for next iter + logger.info("trial step successful. finalizing line search") + self.optimize.finalize_search() + self.optimize.line_search.save_search_history() + return + elif status == 0: + logger.info("trial step unsuccessful. re-attempting line search") + self.perform_line_search() # RECURSIVE CALL + elif status == -1: + if self.optimize.attempt_line_search_restart(): + logger.info("line search has failed. restarting " + "optimization algorithm and line search.") + # Reset the line search machinery; set step count to 0 + self.optimize.restart() + self.perform_line_search() # RECURSIVE CALL + else: + logger.critical( + msg.cli("Line search has failed to reduce the misfit and " + "has run out of fallback options. Aborting " + "inversion.", border="=", + header="line search failed") + ) + sys.exit(-1) + + def _evaluate_line_search_misfit(self): + """Convenience fuinction to wrap forward solver and misfit calc""" + self.system.run( + [self.evaluate_objective_function], + path_model=os.path.join(self.path.eval_func, "model"), + save_residuals=os.path.join(self.path.eval_func, "residuals") + ) + residuals = np.loadtxt(os.path.join(self.path.eval_func, + "residuals")) + total_misfit = self.preprocess.sum_residuals(residuals) + logger.debug(f"misfit for trial model (f_try) == {total_misfit:.2E}") + self.optimize.save(name="f_try", m=total_misfit) def clean_scratch_directory(self): """ @@ -250,35 +273,4 @@ def clean_scratch_directory(self): unix.mkdir(self.path.eval_grad) unix.mkdir(self.path.eval_func) - # def export(self): - # """ - # Exports various quantities to PATH.OUTPUT (to disk) from the SCRATCH - # directory as SCRATCH is liable to be overwritten at any point of the - # workflow. This takes place at the end of each iteration, before - # the clean() function is called. - # """ - # optimize = self.module("optimize") - # - # if self.par.SAVEMODEL: - # src = os.path.join(self.path.OPTIMIZE, "m_new") - # dst = os.path.join(self.path.OUTPUT, f"model_{optimize.iter:04d}") - # logger.debug(f"exporting model 'm_new' to disk") - # unix.cp(src, dst) - # - # if self.par.SAVEGRADIENT: - # src = os.path.join(self.path.OPTIMIZE, "g_old") - # dst = os.path.join(self.path.OUTPUT, f"grad_{optimize.iter:04d}") - # unix.cp(src, dst) - # - # if self.par.SAVEKERNELS: - # src = os.path.join(self.path.GRAD, "kernels") - # dst = os.path.join(self.path.OUTPUT, f"kernels_{optimize.iter:04d}") - # logger.debug(f"saving kernels to path:\n{dst}") - # unix.mv(src, dst) - # - # if self.par.SAVERESIDUALS: - # src = os.path.join(self.path.GRAD, "residuals") - # dst = os.path.join(self.path.OUTPUT, - # f"residuals_{optimize.iter:04d}") - # unix.mv(src, dst) From a3cc003699ac3a1a14e59e17f1c984ff90e33180 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 19 Jul 2022 17:26:41 -0800 Subject: [PATCH 072/195] adding doc inheritance for future seisflows configure command, udpating docstring to class definition for all modules missed before --- seisflows/optimize/LBFGS.py | 104 +++++++----------- seisflows/optimize/NLCG.py | 56 +++------- seisflows/optimize/gradient.py | 4 - seisflows/postprocess/__init__.py | 5 - seisflows/postprocess/default.py | 138 ------------------------ seisflows/solver/specfem.py | 3 +- seisflows/system/cluster.py | 39 +++---- seisflows/system/slurm.py | 26 ++--- seisflows/system/workstation.py | 60 +++++------ seisflows/tests/test_config.py | 92 ++-------------- seisflows/tests/test_optimize.py | 2 + seisflows/tests/test_preprocess.py | 8 +- seisflows/tests/test_solver.py | 17 +-- seisflows/tools/specfem.py | 4 +- seisflows/workflow/migration.py | 1 - seisflows/workflow/thrifty_inversion.py | 86 +++++++-------- 16 files changed, 184 insertions(+), 461 deletions(-) delete mode 100644 seisflows/postprocess/__init__.py delete mode 100644 seisflows/postprocess/default.py create mode 100644 seisflows/tests/test_optimize.py diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 820550d8..80e12b6f 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -1,7 +1,30 @@ #!/usr/bin/env python3 """ -This is the custom class for an LBFGS optimization schema. -It supercedes the `seisflows.optimize.base` class +L-BFGS (Limited memory Broyden–Fletcher–Goldfarb–Shanno) algorithm for solving +nonlinear optimization problems. + +L-BFGS Variables: + s: memory of model differences + y: memory of gradient differences + +Optimization Variables: + m: model + f: objective function value + g: gradient direction + p: search direction + +Line Search Variables: + x: list of step lenths from current line search + f: correpsonding list of function values + m: number of step lengths in current line search + n: number of model updates in optimization problem + gtg: dot product of gradient with itself + gtp: dot product of gradient and search direction + +Status codes + status > 0 : finished + status == 0 : not finished + status < 0 : failed """ import os import numpy as np @@ -16,75 +39,26 @@ class LBFGS(Gradient): """ - The Limited memory BFGS algorithm - Calls upon seisflows.plugin.optimize.LBFGS to accomplish LBFGS algorithm - - Includes optional safeguards: periodic restarting and descent conditions. - - To conserve memory, most vectors are read from disk rather than passed - from a calling routine. - - L-BFGS Variables: - s: memory of model differences - y: memory of gradient differences - - Optimization Variables: - m: model - f: objective function value - g: gradient direction - p: search direction - - Line Search Variables: - x: list of step lenths from current line search - f: correpsonding list of function values - m: number of step lengths in current line search - n: number of model updates in optimization problem - gtg: dot product of gradient with itself - gtp: dot product of gradient and search direction - - Status codes - status > 0 : finished - status == 0 : not finished - status < 0 : failed + [optimize.lbfgs] Limited memory BFGS nonlienar optimization algorithm + + :type lbfgs_mem: int + :param lbfgs_mem: L-BFGS memory. Max number of previous gradients to + retain in local memory for approximating the objective function. + :type lbfgs_max: L-BFGS periodic restart interval. Must be + 1 <= lbfgs_max <= infinity. + :type lbfgs_thresh: L-BFGS angle restart threshold. If the angle between + the current and previous search direction exceeds this value, + optimization algorithm will be restarted. """ + __doc__ = Gradient.__doc__ + __doc__ + def __init__(self, lbfgs_mem=3, lbfgs_max=np.inf, lbfgs_thresh=0., **kwargs): - """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - - :type lbfgs_mem: int - :param lbfgs_mem: L-BFGS memory. Max number of previous gradients to - retain in local memory for approximating the objective function. - :type lbfgs_max: L-BFGS periodic restart interval. Must be - 1 <= lbfgs_max <= infinity. - :type lbfgs_thresh: L-BFGS angle restart threshold. If the angle between - the current and previous search direction exceeds this value, - optimization algorithm will be restarted. - - - :type LBFGS_iter: int - :param LBFGS_iter: an internally used iteration that differs from - optimization iter. Keeps track of internal LBFGS memory of previous - gradients. If LBFGS is restarted, the LBFGS_iter iteration is reset, - but the optization iteration. - :type memory_used: int - :param memory_used: bookkeeping to see how many previous - gradients have been stored to internal memory. Should not exceed - PAR.LBFGSMEM - :type LBFGS_dir: str - :param LBFGS_dir: location to store LBFGS internal memory - :type y_file: str - :param y_file: path to store memory of the gradient differences - i.e., `g_new - g_old` - :type s_file: str - :param s_file: path to store memory of the model differences - i.e., `m_new - m_old` - """ + """Instantiate L-BFGS specific parameters""" super().__init__(**kwargs) # Overwrite user-chosen line search. L-BFGS requires 'Backtrack'ing LS - if self._line_search.title != "Backtrack": + if self._line_search.title() != "Backtrack": logger.warning(f"L-BFGS optimization requires 'backtrack'ing line " f"search. Overwritng {self._line_search}") self._line_search = "Backtrack" diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 645f19b5..d49704ec 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -1,61 +1,33 @@ #!/usr/bin/env python3 """ -This is the custom class for an NLCG optimization schema. -It inherits from the `seisflows.optimize.gradient.Gradient` class +Nonlinear conjugate gradient method for optimization """ import numpy as np from seisflows import logger from seisflows.optimize.gradient import Gradient -from seisflows.tools import unix from seisflows.tools.math import dot from seisflows.plugins import line_search as line_search_dir class NLCG(Gradient): """ - Nonlinear conjugate gradient method - - Optimization Variables: - m: model - f: objective function value - g: gradient direction - p: search direction - - Line Search Variables: - x: list of step lenths from current line search - f: correpsonding list of function values - m: number of step lengths in current line search - n: number of model updates in optimization problem - gtg: dot product of gradient with itself - gtp: dot product of gradient and search direction - - Status codes - status > 0 : finished - status == 0 : not finished - status < 0 : failed + [optimize.NLCG] Nonlinear conjugate gradient method + + :type nlcg_max: int + :param nlcg_max: NLCG periodic restart interval, should be between 1 + and infinity + :type nlcg_thresh: NLCG conjugacy restart threshold, should be + between 1 and infinity + :type calc_beta: str + :param calc_beta: method to calculate the parameter 'beta' in the + NLCG algorithm. Available: 'pollak_ribere', 'fletcher_reeves' """ + __doc__ = Gradient.__doc__ + __doc__ + def __init__(self, nlcg_max=np.inf, nlcg_thresh=np.inf, calc_beta="pollak_ribere", **kwargs): - """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - - - :type nlcg_max: int - :param nlcg_max: NLCG periodic restart interval, should be between 1 - and infinity - :type nlcg_thresh: NLCG conjugacy restart threshold, should be - between 1 and infinity - :type calc_beta: str - :param calc_beta: method to calculate the parameter 'beta' in the - NLCG algorithm. Available: 'pollak_ribere', 'fletcher_reeves' - - - :type _NLCG_iter: Class - :param _NLCG_iter: an internally used iteration that differs from - optimization iter. Keeps track of internal NLCG memory. - """ + """NLCG-specific input parameters""" super().__init__(**kwargs) # Overwrite user-chosen line search. L-BFGS requires 'Backtrack'ing LS diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 906005f8..95b208e2 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -168,10 +168,6 @@ def load(self, name): :type name: str :param name: name of the vector, acceptable: m, g, p, f, alpha - :type check: bool - :param check: if the model is a vector, check poissons ratio and list - out min and max for all parameters. This is really only useful for - elastic models, and not for kernels, gradients etc. """ assert(name in self._acceptable_vectors) model_npz = os.path.join(self.path.scratch, f"{name}.npz") diff --git a/seisflows/postprocess/__init__.py b/seisflows/postprocess/__init__.py deleted file mode 100644 index 5f49d2b7..00000000 --- a/seisflows/postprocess/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -import logging -from pkgutil import extend_path -__path__ = extend_path(__path__, __name__) -logger = logging.getLogger(__name__) - diff --git a/seisflows/postprocess/default.py b/seisflows/postprocess/default.py deleted file mode 100644 index 8ae37de9..00000000 --- a/seisflows/postprocess/default.py +++ /dev/null @@ -1,138 +0,0 @@ -#!/usr/bin/env python3 -""" -This class provides the core utilities for the SeisFlows postprocessing -functionalities, including kernel/gradient smoothing and masking as well as -kernel summation -""" -import os - -from seisflows import logger -from seisflows.tools.specfem import Model - - -class Default: - """ - Postprocessing in a Seisflows workflow includes tasks such as - regularization, smoothing, sharpening, masking and related operations - on models or gradients - """ - def __init__(self, smooth_h=0., smooth_v=0., tasktime_smooth=1, - path_postprocess=None, path_mask=None, **kwargs): - """ - Establish Postprocessing parameters - - :type smooth_h: float - :param smooth_h: Gaussian half-width for horizontal smoothing in units - of meters. If 0., no smoothing applied - :type smooth_h: float - :param smooth_v: Gaussian half-width for vertical smoothing in units - of meters. - :type tasktime_smooth: float - :param tasktime_smooth: Large radii smoothing may take longer than - normal tasks. Allocate additional smoothing task time as a multiple - of system.tasktime - :type path_postprocess: str - :param path_postprocess: scratch path to perform all postprocessing - tasks such as smoothing, kernel combination etc. - :type path_mask: str - :param path_mask: Directory to mask files for gradient masking. Format - of the mask files MUST match the format of the input model. - """ - super().__init__() - - self.smooth_h = smooth_h - self.smooth_v = smooth_v - self.tasktime_smooth = tasktime_smooth - self.path = path_postprocess or \ - os.path.join(os.getcwd(), "scratch", "evalgrad") - self.path_mask = path_mask - - def check(self): - """ - Checks parameters and paths - """ - if self.path_mask: - assert os.path.exists(self.path_mask), \ - "`postprocess.path_mask` provided but does not exist" - - def setup(self): - """ - Setup tasks - """ - pass - - def finalize(self): - """ - Finalization tasks - """ - pass - - def scale_gradient(self): - """ - Combines contributions from individual sources and material parameters - to get the gradient, and optionally applies user-supplied scaling - - .. note:: - Because processing operations can be quite expensive, they must be - run through the HPC system interface; processing does not involve - embarassingly parallel tasks, we use run(single=True) - - :type input_path: str - :param input_path: directory from which kernels are read and to which - gradient is written. Should probably point to PATH.GRAD - :rtype: np.array - :return: scaled gradient as a vector - """ - # Access the gradient information stored in as kernel files - model = Model(path=os.path.join(self.path, "model")) - gradient = Model(path=os.path.join(self.path, "kernels", "sum")) - - # Merge to vector and convert to absolute perturbations: - # log dm --> dm (see Eq.13 Tromp et al 2005) - gradient.vector *= model.vector - - if self.path_mask: - logger.info(f"masking gradient") - # to scale the gradient, users can supply "masks" by exactly - # mimicking the file format in which models are stored - mask = Model(self.path_mask) - - gradient.write(path=os.path.join(self.path, "gradient_nomask")) - - gradient.vector *= mask.vector - - return gradient - - def sum_smooth_kernels(self, solver): - """ - Sums kernels from individual sources, with optional smoothing - - .. note:: - This function needs to be run on system, i.e., called by - system.run(single=True) - - :type solver: solver instance - :param solver: SeisFlows solver which will be used for its combine and - smooth functions - """ - # If specified, smooth the kernels in the vertical and horizontal and - # save both (summed, summed+smoothed) to separate output directories - path_kernel = os.path.join(self.path, "kernels") - path_sum_nosmooth = os.path.join(path_kernel, "sum_nosmooth") - path_sum = os.path.join(path_kernel, "sum") - - if (self.smooth_h > 0) or (self.smooth_v > 0): - logger.debug(f"saving un-smoothed and summed kernels to:\n" - f"{path_sum_nosmooth}") - solver.combine(input_path=path_kernel, output_path=path_sum_nosmooth) - - logger.info(f"smoothing gradient: " - f"H={self.smooth_h}m; V={self.smooth_v}m") - logger.debug(f"saving smoothed kernels to:\n{path_sum}") - solver.smooth(input_path=path_sum_nosmooth, output_path=path_sum, - span_h=self.smooth_h, span_v=self.smooth_v) - - # Combine all the input kernels, generating the unscaled gradient - else: - logger.debug(f"saving summed kernels to:\n{path_sum}") - solver.combine(input_path=path_kernel, output_path=path_sum) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 751e18a4..87db83c8 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -655,7 +655,8 @@ def _run_binary(self, executable, stdout="solver.log"): try: with open(stdout, "w") as f: - subprocess.run(executable, shell=True, check=True, stdout=f) + subprocess.run(executable, shell=True, check=True, stdout=f, + stderr=f) except (subprocess.CalledProcessError, OSError) as e: logger.critical( msg.cli("The external numerical solver has returned a " diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index 83888596..c9eaf145 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -3,33 +3,36 @@ The Cluster class provides the core utilities interaction with HPC systems which must be overloaded by subclasses for specific workload managers, or specific clusters. + +.. warning:: + The Cluster class is an abstract base class for the Systems module which and + MUST be overwritten by system-specific child classes, it cannot be used to + run jobs by itself. """ import subprocess -from seisflows.config import save from seisflows.system.workstation import Workstation class Cluster(Workstation): """ - Abstract base class for the Systems module which controls interaction with - compute systems such as HPC clusters. + [system.cluster] Generic or common HPC/cluster interfacing commands + + :type walltime: int + :param walltime: maximum job time in minutes for the master SeisFlows + job submitted to cluster + :type tasktime: int + :param tasktime: maximum job time in minutes for each job spawned by + the SeisFlows master job during a workflow. These include, e.g., + running the forward solver + :type environs: str + :param environs: Optional environment variables to be provided in the + following format VAR1=var1,VAR2=var2... Will be set using + os.environs """ + __doc__ = Workstation.__doc__ + __doc__ + def __init__(self, walltime=10, tasktime=1, environs="", **kwargs): - """ - Instantiate the Cluster System class - - :type walltime: int - :param walltime: maximum job time in minutes for the master SeisFlows - job submitted to cluster - :type tasktime: int - :param tasktime: maximum job time in minutes for each job spawned by - the SeisFlows master job during a workflow. These include, e.g., - running the forward solver - :type environs: str - :param environs: Optional environment variables to be provided in the - following format VAR1=var1,VAR2=var2... Will be set using - os.environs - """ + """Instantiate the Cluster System class""" super().__init__(**kwargs) self.walltime = walltime diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 6ebe6574..d700a440 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -27,21 +27,21 @@ class Slurm(Cluster): """ - Generalized interface for submitting jobs to and interfacing with a SLURM - workload management system. + [system.slurm] Interface for submitting jobs to Simple Linux Utility for + Resource Management (SLURM) system. + + :type ntask_max: int + :param ntask_max: limit the number of concurrent tasks in a given + array job + :type slurm_args: str + :param slurm_args: Any optional, additional SLURM arguments that will + be passed to the SBATCH scripts. Should be in the form: + '--key1=value1 --key2=value2" """ + __doc__ = Cluster.__doc__ + __doc__ + def __init__(self, ntask_max=100, slurm_args="", **kwargs): - """ - Slurm-specific setup parameters - - :type ntask_max: int - :param ntask_max: limit the number of concurrent tasks in a given - array job - :type slurm_args: str - :param slurm_args: Any optional, additional SLURM arguments that will - be passed to the SBATCH scripts. Should be in the form: - '--key1=value1 --key2=value2" - """ + """Slurm-specific setup parameters""" super().__init__(**kwargs) # Overwrite the existing 'mpiexec' diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index fc557f61..6d4f22b8 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -17,40 +17,37 @@ class Workstation: """ - Run tasks in a serial fashion on a single local machine. Also serves as the - Base System module, upon which all other System classes should be built. + [system.workstation] runs tasks in serial on a local machine. + + :type title: str + :param title: The name used to submit jobs to the system, defaults + to the name of the current working directory + :type mpiexec: str + :param mpiexec: Function used to invoke executables on the system. + For example 'srun' on SLURM systems. If None this will default to + './' for calling executables. + :type ntask: int + :param ntask: number of individual tasks/events to run during workflow + :type nproc: int + :param nproc: number of processors to use for each simulation + :type log_level: str + :param log_level: logger level to pass to logging module. + Available: 'debug', 'info', 'warning' + :type verbose: bool + :param verbose: if True, formats the log messages to include the file + name, line number and message type. Useful for debugging but + also very verbose + :type path_output: str + :param path_output: path to save files permanently to disk + :type path_system: str + :param path_system: scratch path to save any system related files """ def __init__(self, title=None, mpiexec=None, ntask=1, nproc=1, log_level="DEBUG", verbose=False, workdir=os.getcwd(), - path_output=None, - path_system=None, path_output_log=None, path_error_log=None, - path_log_files=None, path_par_file=None, **kwargs): - """ - Workstation System Class Parameters - - :type title: str - :param title: The name used to submit jobs to the system, defaults - to the name of the current working directory - :type mpiexec: str - :param mpiexec: Function used to invoke executables on the system. - For example 'srun' on SLURM systems. If None this will default to - './' for calling executables. - :type ntask: int - :param ntask: number of individual tasks/events to run during workflow - :type nproc: int - :param nproc: number of processors to use for each simulation - :type log_level: str - :param log_level: logger level to pass to logging module. - Available: 'debug', 'info', 'warning' - :type verbose: bool - :param verbose: if True, formats the log messages to include the file - name, line number and message type. Useful for debugging but - also very verbose - :type path_output: str - :param path_output: path to save files permanently to disk - :type path_system: str - :param path_system: scratch path to save any system related files - """ + path_output=None, path_system=None, path_output_log=None, + path_error_log=None, path_log_files=None, path_par_file=None, + **kwargs): + """Workstation System Class Parameters""" self.title = title self.mpiexec = mpiexec self.ntask = ntask @@ -66,7 +63,6 @@ def __init__(self, title=None, mpiexec=None, ntask=1, nproc=1, log_files=path_log_files or os.path.join(workdir, "logs"), output_log=path_output_log or os.path.join(workdir, "sfoutput.log"), error_log=path_error_log or os.path.join(workdir, "sferror.log"), - ) def check(self): diff --git a/seisflows/tests/test_config.py b/seisflows/tests/test_config.py index 03a2fa8a..cc725546 100644 --- a/seisflows/tests/test_config.py +++ b/seisflows/tests/test_config.py @@ -3,13 +3,10 @@ system and the working environment required for SF to run properly """ import os -import sys import shutil import pytest -from unittest.mock import patch + from seisflows import config -from seisflows.tools.core import SeisFlowsPathsParameters -from seisflows.seisflows import SeisFlows TEST_DIR = os.path.join(config.ROOT_DIR, "tests") @@ -27,24 +24,6 @@ def copy_par_file(tmpdir): shutil.copy(src, dst) -@pytest.fixture -def sfinit(tmpdir, copy_par_file): - """ - Re-used function that will initate a SeisFlows working environment in - sys modules - :return: - """ - copy_par_file - os.chdir(tmpdir) - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf._register_parameters() - sf._register_modules() - sf._check_parameters() - - return sf - - def test_seisflows_constants(): """ Ensure that the constants set in the Config file have not changed @@ -52,8 +31,7 @@ def test_seisflows_constants(): because the rest of the package depends on these being accesible and the same """ - names_check = ["system", "preprocess", "solver", - "postprocess", "optimize", "workflow"] + names_check = ["system", "preprocess", "solver", "optimize", "workflow"] root_dir_check = os.path.join( os.path.dirname(os.path.abspath(__file__)), ".." @@ -63,69 +41,11 @@ def test_seisflows_constants(): assert(os.path.samefile(config.ROOT_DIR, root_dir_check)) -def test_register_modules(sfinit): - """ - Make sure that initiation of the modular approach of seisflows works - as expected. That is, that system-wide accessible modules are - instantiated with the accepted naming schema - - .. note:: - This assumes that the parameter file is set up correctly, which it - should be if it's coming from the test data directory - :return: - """ - sf = sfinit - # Ensure that all the modules in NAMES have been instantiated in sys.modules - for name in config.NAMES: - assert(f"seisflows_{name}" in sys.modules) - - -def test_save_and_load(sfinit): - """ - Test saving the current session to disk - :return: - """ - # Instantiate sys modules and save to disk - sfinit - config.save(path="./output") - # Now remove seisflows sys modules so we can try load them back - for name in config.NAMES: - sys.modules.pop(f"seisflows_{name}") - config.load(path="./output") - for name in config.NAMES: - assert(f"seisflows_{name}" in sys.modules) - - -def test_seisflows_paths_parameters(sfinit): - """ - Test the class that makes inputting and checking paths and parameters easier - Recreates the required() function at the top of each class. - """ - sfinit - sfpp = SeisFlowsPathsParameters() - - # All of these parameters are defined in the test parameter file - sfpp.par("SOLVER", required=True, par_type=str, - docstr="This is a required parameter") - sfpp.par("MIN_PERIOD", required=False, default=10., par_type=float, - docstr="This is an optional parameter") - sfpp.path("SPECFEM_BIN", required=True, docstr="This is a required path") - sfpp.path("LOCAL", required=False, docstr="This is an optional path") - sfpp.validate() - - # These parameters are not defined and are expected to throw parameter error - sfpp.path("UNDEFINED", required=True, - docstr="This path is not in the test parameter file") - with pytest.raises(KeyError): - sfpp.validate() - - -def test_custom_import(sfinit): +def test_custom_import(): """ Test that importing based on internal modules works for various inputs :return: """ - sfinit with pytest.raises(SystemExit): config.custom_import() with pytest.raises(SystemExit): @@ -136,8 +56,8 @@ def test_custom_import(sfinit): assert(module.__module__ == "seisflows.optimize.LBFGS") # Check one more to be safe - module = config.custom_import(name="preprocess", module="pyatoa") - assert(module.__name__ == "Pyatoa") - assert(module.__module__ == "seisflows.preprocess.pyatoa") + module = config.custom_import(name="preprocess", module="default") + assert(module.__name__ == "Default") + assert(module.__module__ == "seisflows.preprocess.default") diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py new file mode 100644 index 00000000..139597f9 --- /dev/null +++ b/seisflows/tests/test_optimize.py @@ -0,0 +1,2 @@ + + diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index aace73ae..6702e12e 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -77,16 +77,16 @@ def test_quantify_misfit(tmpdir): data_filenames = glob(os.path.join(TEST_DATA, "*semd")) preprocess.quantify_misfit( observed=data_filenames, synthetic=data_filenames, - write_residuals=os.path.join(tmpdir, "residuals_ascii"), - write_adjsrcs=tmpdir + save_residuals=os.path.join(tmpdir, "residuals_ascii"), + save_adjsrcs=tmpdir ) preprocess.data_format = "SU" data_filenames = glob(os.path.join(TEST_DATA, "*su")) preprocess.quantify_misfit( observed=data_filenames, synthetic=data_filenames, - write_residuals=os.path.join(tmpdir, "residuals_su"), - write_adjsrcs=tmpdir + save_residuals=os.path.join(tmpdir, "residuals_su"), + save_adjsrcs=tmpdir ) assert(len(glob(os.path.join(tmpdir, "*"))) == 4) diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index a73b387b..075b2ed6 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -6,6 +6,7 @@ import pytest from glob import glob from seisflows.config import ROOT_DIR +from seisflows.tools import unix from seisflows.tools.core import set_task_id from seisflows.solver.specfem import Specfem @@ -54,7 +55,6 @@ def test_initialize_working_directory(tmpdir): path_specfem_bin=specfem_bin, source_prefix="CMTSOLUTION", workdir=tmpdir ) - assert(not os.path.exists(solver.path.mainsolver)) # Set the environment task id so that the logger doesn't throw warnings @@ -62,7 +62,9 @@ def test_initialize_working_directory(tmpdir): set_task_id(0) # Generate the required directory structure - solver._initialize_working_directory(cwd=tmpdir) + solver._initialize_working_directory( + cwd=os.path.join(solver.path.scratch, "001") + ) # Simple checks to make sure the directory structure was set up properly assert(os.path.islink(solver.path.mainsolver)) @@ -74,19 +76,22 @@ def test_initialize_working_directory(tmpdir): assert(event_line == "EVENT 1") -def test_run_binary(): +def test_run_binary(tmpdir): """ Just run a known and intentially incorrect binary with the run binary function to check that we can, and that error catching is working """ solver = Specfem() - solver._run_binary(executable="echo hello world") + solver._run_binary(executable="echo hello world", + stdout=os.path.join(tmpdir, "log.txt")) # Executables that don't exist will not run with pytest.raises(SystemExit): - solver._run_binary(executable="gobbledigook") + solver._run_binary(executable="gobbledigook", + stdout=os.path.join(tmpdir, "log.txt")) # Executables that do exist but error out (e.g., with invalid options) will # also throw an error with pytest.raises(SystemExit): - solver._run_binary(executable="ls -//daflkjeaf") + solver._run_binary(executable="ls -//daflkjeaf", + stdout=os.path.join(tmpdir, "log.txt")) diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 222fd516..532a58f4 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -67,7 +67,9 @@ def __init__(self, path, fmt=None, parameters=None, load=False): self.nproc, self.available_parameters = self._get_nproc_parameters() self.model, self.ngll = self.read(parameters=parameters) - self.parameters = self.model.keys() + # .sorted() enforces parameter order every time, otherwise things can + # get screwy if keys returns different each time + self.parameters = sorted(self.model.keys()) @staticmethod def fnfmt(i="*", val="*", ext="*"): diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 51bf5796..b7c73681 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -7,7 +7,6 @@ model """ import os -from glob import glob from seisflows import logger from seisflows.tools import msg, unix diff --git a/seisflows/workflow/thrifty_inversion.py b/seisflows/workflow/thrifty_inversion.py index aa5e4f13..b8322075 100644 --- a/seisflows/workflow/thrifty_inversion.py +++ b/seisflows/workflow/thrifty_inversion.py @@ -7,41 +7,40 @@ the previous iteration's line search can be used in the current one. Otherwise it performs the same as the Inversion workflow """ -import sys -import logging - +from seisflows import logger from seisflows.workflow.inversion import Inversion from seisflows.tools import unix, msg class ThriftyInversion(Inversion): """ - Thrifty inversion which attempts to save resources by re-using previous - line search results for the current iteration. + [workflow.thrifty_inversion] an inversion that attempts to save resources + by re-using previous line search results for the current iteration. + + :type line_search_method: str + :param line_search_method: chosen line_search algorithm. Currently available + are 'bracket' and 'backtrack'. See seisflows.plugins.line_search + for all available options """ - def __init__(self): - """ - :type thrifty: bool - :param thrifty: the current status of the inversion. - if False: assumed to be first iteration, a restart, or some other - condition has been met which means inversion is defaulting to normal - behavior - if True: A well-scaled inversion can skip the function evaluation - of the next iteration by using the line search results of the - previous iteration + __doc__ = Inversion.__doc__ + __doc__ + + def __init__(self, line_search_method): + """Thrifty does not require input parameters + """ super().__init__() - self.thrifty = False + self.line_search_method = line_search_method + self._thrifty_status = False - def check(self, validate=True): + def check(self): """ - Checks parameters and paths + Checks that we have the correct line search """ - super().check(validate=validate) + super().check() - assert self.par.LINESEARCH.upper() == "BACKTRACK", ( - "Thrifty inversion requires PAR.LINESEARCH == 'backtrack'" + assert(self.line_search_method.title() == "Backtrack"), ( + "Thrifty inversion requires `line_search_method` == 'backtrack'" ) def evaluate_initial_misfit(self): @@ -49,53 +48,50 @@ def evaluate_initial_misfit(self): If line search can be carried over, skip initialization step Or if manually starting a new run, start with normal inversion init """ - optimize = self.module("optimize") - - if not self.thrifty or optimize.iter == self.par.BEGIN: + if not self._thrifty_status or (self.optimize.iteration == self.start): super().evaluate_initial_misfit() else: - self.logger.info(msg.mjr("SKIPPING INITIAL MISFIT EVALUATION")) + logger.info(msg.mnr("THRIFTY INVERSION, SKIPPING INITIAL MISFIT " + "EVALUATION")) - def clean(self): + def clean_scratch_directory(self): """ Determine if forward simulation from line search can be carried over. We assume clean() is the final flow() argument so that we can update the thrifty status here. """ - self._update_status() + self._thrifty_status = self._update_status() - if self.thrifty: - self.logger.info( + if self._thrifty_status: + logger.info( msg.mnr("THRIFTY CLEANING WORKDIR FOR NEXT ITERATION") ) - unix.rm(self.path.GRAD) + unix.rm(self.path.eval_grad) # Last line search evaluation becomes the new gradient evaluation - unix.mv(self.path.FUNC, self.path.GRAD) - unix.mkdir(self.path.FUNC) + unix.mv(self.path.eval_func, self.path.eval_grad) + unix.mkdir(self.path.eval_func) else: - super().clean() + super().clean_scratch_directory() def _update_status(self): """ Determine if line search forward simulation can be carried over based on a variety of criteria relating to location in the inversion. """ - optimize = self.module("optimize") - - self.logger.info("updating thrifty inversion status") - if optimize.iter == self.par.BEGIN: - self.logger.info("1st iteration, defaulting to inversion workflow") + logger.info("updating thrifty inversion status") + if self.optimize.iter == self.start: + logger.info("1st iteration, defaulting to inversion workflow") thrifty = False - elif optimize.restarted: - self.logger.info("optimization has been restarted, defaulting to " - "inversion workflow") + elif self.optimize.restarted: + logger.info("optimization has been restarted, defaulting to " + "inversion workflow") thrifty = False - elif optimize.iter == self.par.END: - self.logger.info("final iteration, defaulting to inversion workflow") + elif self.optimize.iter == self.end: + logger.info("final iteration, defaulting to inversion workflow") thrifty = False else: - self.logger.info("continuing with thrifty inversion workflow") + logger.info("continuing with thrifty inversion workflow") thrifty = True - self.thrifty = thrifty + return thrifty From 9513931a2691dc2318e79670dff6ba1308876c7b Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 20 Jul 2022 16:46:29 -0800 Subject: [PATCH 073/195] implementing a new cluster run system which saves individual methods to be 'run' as pickle files, and then loads and runs those from system. this is opposed to the old system of saving all modules as pickle files, and reloading to sys modules, finally detaching seisflows from the old sys modules implementation rewrote the slurm job status checker to be simpler to call and use. makes use of some additional sbatch parameters to keep stdout output of submitted jobs cleaner removed remnants of the old sys modules approach, including all the register() functions in the seisflows CLI tool working on seisflows CLI tool, getting 'configure' to work again but this time calling the __doc__ attributes of instances rather than trying to build from the old seisflowspathsparameters class --- seisflows/__init__.py | 45 +++- seisflows/config.py | 172 +++++++------ seisflows/examples/parameters.yaml | 2 +- seisflows/seisflows.py | 184 ++------------ seisflows/solver/specfem.py | 81 +++--- seisflows/solver/specfem2d.py | 7 +- seisflows/solver/specfem3d.py | 8 +- seisflows/solver/specfem3d_globe.py | 4 +- seisflows/system/cluster.py | 122 +++++---- seisflows/system/runscripts/run | 2 +- seisflows/system/runscripts/run_funcs.py | 97 ++++++++ seisflows/system/runscripts/run_function.py | 121 --------- seisflows/system/slurm.py | 260 ++++++-------------- seisflows/system/workstation.py | 82 ++---- seisflows/tests/test_solver.py | 13 - seisflows/tests/test_system.py | 0 seisflows/tools/core.py | 43 ++-- seisflows/workflow/forward.py | 3 + 18 files changed, 492 insertions(+), 754 deletions(-) create mode 100755 seisflows/system/runscripts/run_funcs.py delete mode 100644 seisflows/system/runscripts/run_function.py create mode 100644 seisflows/tests/test_system.py diff --git a/seisflows/__init__.py b/seisflows/__init__.py index 0ebf0e99..681646e4 100644 --- a/seisflows/__init__.py +++ b/seisflows/__init__.py @@ -1,4 +1,7 @@ +import copyreg import logging +import types + from pkgutil import extend_path # Extend the search path for the modules which comprise a package. @@ -7,6 +10,46 @@ # different parts of a single logical package as multiple directories. __path__ = extend_path(__path__, __name__) - # Set up the SeisFlows Logging environment logger = logging.getLogger(__name__) + + +def _pickle_method(method): + """ + The following code changes how instance methods are handled by pickle. + Placing it in this module ensures that pickle changes will be in + effect for all SeisFlows workflows + + Note: For relevant discussion, see stackoverflow thread: + "Can't pickle when using python's + multiprocessing Pool.map()" + + Relevant Links (last accessed 01.20.2020): + https://stackoverflow.com/questions/7016567/ + picklingerror-when-using-multiprocessing + + https://bytes.com/topic/python/answers/ + 552476-why-cant-you-pickle-instancemethods + """ + func_name = method.im_func.__name__ + obj = method.im_self + cls = method.im_class + return _unpickle_method, (func_name, obj, cls) + + +def _unpickle_method(func_name, obj, cls): + """ + The unpickling counterpart to the above function + """ + for cls in cls.mro(): + try: + func = cls.__dict__[func_name] + except KeyError: + pass + else: + break + return func.__get__(obj, cls) + + +copyreg.pickle(types.MethodType, _pickle_method, _unpickle_method) + diff --git a/seisflows/config.py b/seisflows/config.py index 710b9cd7..bfe0b642 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -40,7 +40,8 @@ """ # List of module names required by SeisFlows for imports. Order-sensitive # In sys.modules these will be prepended by 'seisflows_', e.g., seisflows_system -NAMES = ["system", "preprocess", "solver", "optimize", "workflow"] +# NAMES = ["system", "preprocess", "solver", "optimize", "workflow"] +NAMES = ["workflow", "system", "solver", "preprocess", "optimize"] # The location of this config file, which is the main repository ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) @@ -49,52 +50,6 @@ """ -def save(path): - """ - Export the current Python environment to disk as Pickle and JSON files, - which allows us to checkpoint a current workflow and resume without - loss of information. - - :type path: str - :param path: path to save the current session - """ - if not os.path.exists(path): - unix.mkdir(path) - - # Save the paths and parameters into a JSON file - for name in ["seisflows_parameters", "seisflows_paths"]: - fullfile = os.path.join(path, f"{name}.json") - with open(fullfile, "w") as f: - json.dump(sys.modules[name], f, sort_keys=True, indent=4) - - # Save the current workflow as pickle objects - for name in NAMES: - fullfile = os.path.join(path, f"seisflows_{name}.p") - with open(fullfile, "wb") as f: - pickle.dump(sys.modules[f"seisflows_{name}"], f) - - -def load(path): - """ - Imports a previously saved session from disk by reading in JSON and - Pickle files which define a saved Python environment - - :type path: str - :param path: path to the previously saved session - """ - # Load parameters and paths from a JSON file - for name in ["seisflows_parameters", "seisflows_paths"]: - fullfile = os.path.join(os.path.abspath(path), f"{name}.json") - with open(fullfile, "r") as f: - sys.modules[name] = Dict(json.load(f)) - - # Load the saved workflow from pickle objects - for name in NAMES: - fullfile = os.path.join(os.path.abspath(path), f"seisflows_{name}.p") - with open(fullfile, "rb") as f: - sys.modules[f"seisflows_{name}"] = pickle.load(f) - - def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): """ Standard SeisFlows workflow setup block which runs some standard setup @@ -236,7 +191,6 @@ class 'Inversion'. "is implemented correctly, where name must be in the following:", items=NAMES, header="custom import error", border="=")) sys.exit(-1) - sys.exit(-1) # Attempt to retrieve currently assigned classname from parameters if module is None: try: @@ -285,43 +239,87 @@ class 'Inversion'. f"class: seisflows.{name}.{module}.{classname}")) sys.exit(-1) - -def _pickle_method(method): - """ - The following code changes how instance methods are handled by pickle. - Placing it in this module ensures that pickle changes will be in - effect for all SeisFlows workflows - - Note: For relevant discussion, see stackoverflow thread: - "Can't pickle when using python's - multiprocessing Pool.map()" - - Relevant Links (last accessed 01.20.2020): - https://stackoverflow.com/questions/7016567/ - picklingerror-when-using-multiprocessing - - https://bytes.com/topic/python/answers/ - 552476-why-cant-you-pickle-instancemethods - """ - func_name = method.im_func.__name__ - obj = method.im_self - cls = method.im_class - return _unpickle_method, (func_name, obj, cls) - - -def _unpickle_method(func_name, obj, cls): - """ - The unpickling counterpart to the above function - """ - for cls in cls.mro(): - try: - func = cls.__dict__[func_name] - except KeyError: - pass - else: - break - return func.__get__(obj, cls) - - -copyreg.pickle(types.MethodType, _pickle_method, _unpickle_method) +# def save(path): +# """ +# Export the current Python environment to disk as Pickle and JSON files, +# which allows us to checkpoint a current workflow and resume without +# loss of information. +# +# :type path: str +# :param path: path to save the current session +# """ +# if not os.path.exists(path): +# unix.mkdir(path) +# +# # Save the paths and parameters into a JSON file +# for name in ["seisflows_parameters", "seisflows_paths"]: +# fullfile = os.path.join(path, f"{name}.json") +# with open(fullfile, "w") as f: +# json.dump(sys.modules[name], f, sort_keys=True, indent=4) +# +# # Save the current workflow as pickle objects +# for name in NAMES: +# fullfile = os.path.join(path, f"seisflows_{name}.p") +# with open(fullfile, "wb") as f: +# pickle.dump(sys.modules[f"seisflows_{name}"], f) +# +# +# def load(path): +# """ +# Imports a previously saved session from disk by reading in JSON and +# Pickle files which define a saved Python environment +# +# :type path: str +# :param path: path to the previously saved session +# """ +# # Load parameters and paths from a JSON file +# for name in ["seisflows_parameters", "seisflows_paths"]: +# fullfile = os.path.join(os.path.abspath(path), f"{name}.json") +# with open(fullfile, "r") as f: +# sys.modules[name] = Dict(json.load(f)) +# +# # Load the saved workflow from pickle objects +# for name in NAMES: +# fullfile = os.path.join(os.path.abspath(path), f"seisflows_{name}.p") +# with open(fullfile, "rb") as f: +# sys.modules[f"seisflows_{name}"] = pickle.load(f) + +# def _pickle_method(method): +# """ +# The following code changes how instance methods are handled by pickle. +# Placing it in this module ensures that pickle changes will be in +# effect for all SeisFlows workflows +# +# Note: For relevant discussion, see stackoverflow thread: +# "Can't pickle when using python's +# multiprocessing Pool.map()" +# +# Relevant Links (last accessed 01.20.2020): +# https://stackoverflow.com/questions/7016567/ +# picklingerror-when-using-multiprocessing +# +# https://bytes.com/topic/python/answers/ +# 552476-why-cant-you-pickle-instancemethods +# """ +# func_name = method.im_func.__name__ +# obj = method.im_self +# cls = method.im_class +# return _unpickle_method, (func_name, obj, cls) +# +# +# def _unpickle_method(func_name, obj, cls): +# """ +# The unpickling counterpart to the above function +# """ +# for cls in cls.mro(): +# try: +# func = cls.__dict__[func_name] +# except KeyError: +# pass +# else: +# break +# return func.__get__(obj, cls) + + +# copyreg.pickle(types.MethodType, _pickle_method, _unpickle_method) diff --git a/seisflows/examples/parameters.yaml b/seisflows/examples/parameters.yaml index 003090d1..2caee39d 100644 --- a/seisflows/examples/parameters.yaml +++ b/seisflows/examples/parameters.yaml @@ -25,7 +25,7 @@ # POSTPROCESS (str): Postprocessing schema for kernels and gradients # ============================================================================== SYSTEM: workstation -WORKFLOW: inversion +WORKFLOW: forward SOLVER: specfem2d OPTIMIZE: gradient PREPROCESS: default diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 199cfd38..8e740cb6 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -15,7 +15,6 @@ """ import os import sys -import pickle import inspect import logging import warnings @@ -25,8 +24,8 @@ from glob import glob from IPython import embed -from seisflows.config import (custom_import, save, NAMES, ROOT_DIR, - config_logger) +from seisflows import logger +from seisflows.config import custom_import, NAMES, ROOT_DIR, config_logger from seisflows.tools import unix, msg from seisflows.tools.core import load_yaml, Dict from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, @@ -389,153 +388,6 @@ def _public_methods(self): """ return [_ for _ in dir(self) if not _.startswith("_")] - def _register_parameters(self): - """ - Load the paths and parameters from file into sys.modules, set the - default parameters if they are missing from the file, and expand all - paths to absolute pathnames. Also configure the logger. - - .. note:: - This is ideally the FIRST thing that happens everytime SeisFlows - is initiated. The package cannot do anything without the resulting - PATH and PARAMETER variables. - """ - # Check if the filepaths exist - if not os.path.exists(self._args.parameter_file): - print(msg.cli(f"SeisFlows parameter file not found: " - f"'{self._args.parameter_file}'. Run 'seisflows " - f"setup' to create a new parameter file.") - ) - sys.exit(-1) - - # Register parameters from the parameter file - try: - parameters = load_yaml(self._args.parameter_file) - except Exception as e: - print(msg.cli(f"Please check that your parameter file is properly " - f"formatted in the YAML format. The read error is:", - items=[str(e)], header="parameter file read error", - border="=")) - sys.exit(-1) - - # Distribute the paths and parameters internally and separately - # If we are running seisflows configure, paths will be empty - try: - paths = parameters.pop("PATHS") - except KeyError: - paths = {} - - # WORKDIR needs to be set here as it's expected by most modules - if "WORKDIR" not in paths: - paths["WORKDIR"] = self._args.workdir - - # Parameter file is set here as well so that it can be user-defined - if "PAR_FILE" not in paths: - paths["PAR_FILE"] = self._args.parameter_file - - # Expand all paths to be absolute on the filesystem - for key, val in paths.items(): - try: - paths[key] = os.path.expanduser(os.path.abspath(val)) - except TypeError: - continue - - # Register parameters to sys and internally - sys.modules["seisflows_parameters"] = Dict(parameters) - sys.modules["seisflows_paths"] = Dict(paths) - self._paths = Dict(paths) - self._parameters = Dict(parameters) - - def _register_modules(self): - """ - First time setup procedure which loads in the user-chosen modules - and registers them into sys.modules so that they are globally accessible - to the program. - - :type check: bool - :param check: run the check() function for each of the instantiated - modules, which essentially checks the validity of all the - user-defined parameters. This is typically wanted, but sometimes - you don't want to check, e.g., during testing when you know - some parameters are set incorrectly - """ - assert(self._paths is not None), ( - f"seisflows._register_parameters() must be run before " - f"_register_modules()" - ) - assert(self._parameters is not None), ( - f"seisflows._register_parameters() must be run before " - f"_register_modules()" - ) - # Check if current workflow exists on disk, exit so as to not overwrite - if "OUTPUT" in self._paths and os.path.exists(self._paths.OUTPUT): - print(msg.cli( - "Data from previous workflow found in working directory.", - items=["> seisflows restart: delete data, start new workflow", - "> seisflows resume: resume existing workflow"], - header="warning", border="=") - ) - sys.exit(-1) - - # Instantiate and register objects - for name in NAMES: - sys.modules[f"seisflows_{name}"] = custom_import(name)() - - # Bare minimum Module requirements for SeisFlows - req_modules = ["WORKFLOW", "SYSTEM"] - for req in req_modules: - if not hasattr(self._parameters, req): - print(msg.cli(f"SeisFlows requires modules: {req_modules}." - "Please specify these in the parameter file. Use " - "'seisflows print module' to determine suitable " - "choices.", header="error", border="=")) - sys.exit(-1) - - def _check_parameters(self): - """ - Runs the .check() function on each of the modules, which validates the - given parameters in a parameter file to ensure that a workflow will not - break unexpectedly - """ - errors = [] - for name in NAMES: - try: - sys.modules[f"seisflows_{name}"].check() - except AssertionError as e: - errors.append(f"{name}: {e}") - if errors: - print(msg.cli("seisflows.config module check failed with:", - items=errors, header="module check error", - border="=")) - sys.exit(-1) - - def _load_modules(self): - """ - A function to load and check each of the SeisFlows modules, - re-initiating the SeisFlows environment. All modules are reliant on one - another so any access to SeisFlows requires loading everything - simultaneously and in correct order. - - .. note:: - This is similar to config.load() except it doesn't load paths - and parameters. This allows the User to OVERLOAD the currently - defined paths and parameters anytime they call 'seisflows resume' - """ - for NAME in NAMES: - fid = os.path.join(self._paths.OUTPUT, f"seisflows_{NAME}.p") - - if not os.path.exists(fid): - print(msg.cli("Not a SeisFlows working directory (no state " - "files found). Run 'seisflows init' or " - "'seisflows submit' to instantiate a working " - "directory.") - ) - sys.exit(-1) - - with open(fid, "rb") as f: - sys.modules[f"seisflows_{NAME}"] = pickle.load(f) - self._check_parameters() - def setup(self, force=False, **kwargs): """ Initiate a SeisFlows working directory from scratch by establishing a @@ -549,7 +401,7 @@ def setup(self, force=False, **kwargs): :type force: bool :param force: flag to force parameter file overwriting """ - PAR_FILE = os.path.join(ROOT_DIR, "examples", "parameters.yaml") + par_file = os.path.join(ROOT_DIR, "examples", "parameters.yaml") if os.path.exists(self._args.parameter_file): if force: @@ -565,7 +417,7 @@ def setup(self, force=False, **kwargs): else: sys.exit(0) - unix.cp(PAR_FILE, self._args.workdir) + unix.cp(par_file, self._args.workdir) print(msg.cli(f"creating parameter file: {self._args.parameter_file}")) def configure(self, absolute_paths=False, **kwargs): @@ -582,8 +434,7 @@ def configure(self, absolute_paths=False, **kwargs): # Load in a barebones parameter file and instantiate specific classes parameters = load_yaml(os.path.join(self._args.workdir, self._args.parameter_file)) - classes = [custom_import(name, parameters[name])() for name in NAMES] - + modules = [custom_import(name, parameters[name])() for name in NAMES] # If writing to parameter file fails for any reason, the file will be # mangled, create a temporary copy that can be re-instated upon failure @@ -591,13 +442,30 @@ def configure(self, absolute_paths=False, **kwargs): unix.cp(self._args.parameter_file, temp_par_file) try: - import pdb;pdb.set_trace() - except Exception as e: + written = [] + f = open(self._args.parameter_file, "a") + for module in modules: + # Write the docstring + f.write(f"# {'=' * 77}\n#") + f.write(module.__doc__.replace("\n", "\n#")) + f.write(f"\n# {'=' * 77}\n") + # Write the parameters, make sure to not have the same one twice + for key, val in vars(module).items(): + # Skip already written, hidden vars, and paths + if (key in written) or key.startswith("_"): + continue + if val is None: + val = "null" # required by YAML + f.write(f"{key}: {val}\n") + written.append(key) + except Exception: unix.rm(self._args.parameter_file) unix.cp(temp_par_file, self._args.parameter_file) - print(msg.cli(text="seisflows configure traceback", header="error")) + logger.critical( + msg.cli(text="seisflows configure traceback", header="error") + ) print(traceback.format_exc()) - sys.exit(-1) + raise else: unix.rm(temp_par_file) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 87db83c8..d388b86a 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -131,8 +131,9 @@ def __init__(self, data_format="ascii", materials="acoustic", if self.density: self._parameters.append("rho") - self._source_names = None - self._io = getattr(solver_io_dir, self.solver_io) + self._source_names = None # for property source_names + self._ext = None # for database file extensions + self._io = getattr(solver_io_dir, self.solver_io) # for database IO # Define available choices for check parameters self._available_model_types = ["gll"] @@ -158,6 +159,7 @@ def check(self): ) # Make sure we can read in the model/kernel/gradient files + # TODO is this even used? Can we remove? assert hasattr(solver_io_dir, self.solver_io) assert hasattr(self._io, "read_slice"), \ "IO method has no attribute 'read'" @@ -170,7 +172,7 @@ def check(self): assert(dir_ is not None), f"SPECFEM path '{name}' cannot be None" assert(os.path.exists(dir_)), f"SPECFEM path '{name}' must exist" - # Check that the required SPECFEM files are available + # Check that the required SPECFEM files are available in DATA/ for fid in ["STATIONS", "Par_file"]: assert(os.path.exists(os.path.join(self.path.specfem_data, fid))), ( f"DATA/{fid} does not exist but is required by SeisFlows solver" @@ -195,29 +197,26 @@ def check(self): assert(model_type in self._available_model_types), \ f"{model_type} not in available types {self._available_model_types}" + # Assign file extensions to be used for database file searching + if model_type == "gll": + self._ext = ".bin" + + # Make sure the initial model is set and actually contains files assert(self.path.model_init is not None and os.path.exists(self.path.model_init)), \ f"`path_model_init` is required for the solver, but does not exist" - # Check that the number of tasks/events matches the number of events - self._source_names = self._check_source_names() + assert(len(glob(os.path.join(self.path.model_init, "*")))), \ + f"`path_model_init` is empty but should have model files" - @property - def taskid(self): - """ - Returns the currently running process for embarassingly parallelized - tasks. Task IDs are assigned to the environment by system.run(). - Task IDs are simply integer values from 0 to the number of - simultaneously running tasks. + if self.path.model_true is not None: + assert(os.path.exists(self.path.model_true)), \ + f"`path_model_true` is provided but does not exist" + assert(len(glob(os.path.join(self.path.model_true, "*")))), \ + f"`path_model_true` is empty but should have model files" - .. note:: - Dependent on environment variable 'SEISFLOWS_TASKID' which is - assigned by system.run() to each individually running process. - - :rtype: int - :return: task id for given solver - """ - return get_task_id() + # Check that the number of tasks/events matches the number of events + self._source_names = self._check_source_names() @property def source_names(self): @@ -249,7 +248,7 @@ def source_name(self): :rtype: str :return: given source name for given task id """ - return self.source_names[self.taskid] + return self.source_names[get_task_id()] @property def cwd(self): @@ -334,7 +333,8 @@ def model_databases(self): versions must overwrite this function :rtype: str - :return: path where SPECFEM2D database files are stored + :return: path where SPECFEM2D database files are stored, relative to + `solver.cwd` """ return "DATA" @@ -343,12 +343,16 @@ def model_files(self): """ Return a list of paths to model files that match the internal parameter list. Used to generate model vectors of the same length as gradients. + + :rtype: list + :return: a list of full paths to model files that matches the internal + list of solver parameters """ _model_files = [] for parameter in self._parameters: _model_files += glob(os.path.join(self.path.mainsolver, self.model_databases, - f"*{parameter}*.bin")) + f"*{parameter}{self._ext}")) return _model_files @property @@ -362,7 +366,8 @@ def kernel_databases(self): versions must overwrite this function :rtype: str - :return: path where SPECFEM2D database files are stored + :return: path where SPECFEM2D database files are stored, relative to + `solver.cwd` """ return "OUTPUT_FILES" @@ -372,16 +377,14 @@ def setup(self): Sets up directory structure expected by SPECFEM and copies or generates seismic data to be inverted or migrated - - TODO the .bin during model export assumes GLL file format, more general? """ self._initialize_working_directories() # Export the initial model to the SeisFlows output directory - unix.mkdir(self.path.output) + dst = os.path.join(self.path.output, "MODEL_INIT", "") + unix.mkdir(dst) for key in self._parameters: - src = glob(os.path.join(self.path.model_init, f"*{key}.bin")) - dst = os.path.join(self.path.output, "MODEL_INIT") + src = glob(os.path.join(self.path.model_init, f"*{key}{self._ext}")) unix.cp(src, dst) def forward_simulation(self, executables=None, save_traces=False, @@ -493,24 +496,26 @@ def adjoint_simulation(self, executables=None, save_kernels=False, self._run_binary(executable=exc, stdout=stdout) # Rename kernels to work w/ conflicting name conventions + # Change directory so that the rename doesn't affect the full path unix.cd(self.kernel_databases) - logger.debug(f"renaming event kernels for {self.source_name}") + logger.debug(f"renaming output event kernels: 'alpha' -> 'vp'") for tag in ["alpha", "alpha[hv]", "reg1_alpha", "reg1_alpha[hv]"]: - names = glob(f"*proc??????_{tag}_kernel.bin") + names = glob(f"*proc??????_{tag}_kernel{self._ext}") unix.rename(old="alpha", new="vp", names=names) + logger.debug(f"renaming output event kernels: 'alpha' -> 'vp'") for tag in ["beta", "beta[hv]", "reg1_beta", "reg1_beta[hv]"]: - names = glob(f"*proc??????_{tag}_kernel.bin") + names = glob(f"*proc??????_{tag}_kernel{self._ext}") unix.rename(old="beta", new="vs", names=names) # Save and export the kernels to user-defined locations if export_kernels: unix.mkdir(export_kernels) - unix.cp(src=glob("*_kernel.bin"), dst=export_kernels) + unix.cp(src=glob(f"*_kernel{self._ext}"), dst=export_kernels) if save_kernels: unix.mkdir(save_kernels) - unix.mv(src=glob("*_kernel.bin"), dst=save_kernels) + unix.mv(src=glob(f"*_kernel{self._ext}"), dst=save_kernels) def combine(self, input_path, output_path, parameters=None): """ @@ -518,7 +523,7 @@ def combine(self, input_path, output_path, parameters=None): Sums kernels from individual source contributions to create gradient. .. note:: - The binary xcombine_sem simply sums matching databases (.bin) + The binary xcombine_sem simply sums matching databases .. note:: It is ASSUMED that this function is being called by @@ -708,7 +713,7 @@ def import_model(self, path_model): unix.cd(self.cwd) # Copy the model files (ex: proc000023_vp.bin ...) into database dir - src = glob(os.path.join(path_model, "*")) + src = glob(os.path.join(path_model, f"*{self._ext}")) dst = os.path.join(self.cwd, self.model_databases, "") unix.cp(src, dst) @@ -753,10 +758,8 @@ def _initialize_working_directory(self, cwd=None): if cwd is None: cwd = self.cwd source_name = self.source_name - taskid = self.taskid else: source_name = os.path.basename(cwd) - taskid = self.source_names.index(source_name) logger.debug(f"initializing solver directory source: {source_name}") @@ -784,7 +787,7 @@ def _initialize_working_directory(self, cwd=None): unix.ln(src, dst) # Symlink TaskID==0 as mainsolver in solver directory for convenience - if taskid == 0: + if self.source_names.index(source_name) == 0: if not os.path.exists(self.path.mainsolver): logger.debug(f"linking source '{source_name}' as 'mainsolver'") unix.ln(cwd, self.path.mainsolver) diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 888a8436..e60e902e 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -1,9 +1,7 @@ #!/usr/bin/env python3 """ -This is the subclass seisflows.solver.specfem2d - This class provides utilities for the Seisflows solver interactions with -Specfem2D. It inherits all attributes from seisflows.solver.Base, +Specfem2D. """ import os from glob import glob @@ -89,4 +87,5 @@ def smooth(self, input_path, output_path, parameters=None, span_h=0., unix.cp(src=src, dst=input_path) super().smooth(input_path=input_path, output_path=output_path, - parameters=parameters, span_h=span_h, span_v=span_v) + parameters=parameters, span_h=span_h, span_v=span_v, + use_gpu=use_gpu) diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 21357b2b..1715e03f 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -1,9 +1,7 @@ #!/usr/bin/env python3 """ -This is the subclass seisflows.solver.Specfem3D This class provides utilities for the Seisflows solver interactions with -Specfem3D Cartesian. It inherits all attributes from seisflows.solver.Base, -and overwrites these functions to provide specified interaction with Specfem3D +Specfem3D Cartesian. """ import os @@ -31,9 +29,9 @@ def __init__(self, source_prefix="CMTSOLUTION", **kwargs): # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": - self.parameters += ["vp"] + self._parameters += ["vp"] elif self.materials.upper() == "ELASTIC": - self.parameters += ["vp", "vs"] + self._parameters += ["vp", "vs"] # Overwriting the base class parameters self._acceptable_source_prefixes = ["CMTSOLUTION", "FORCESOLUTION"] diff --git a/seisflows/solver/specfem3d_globe.py b/seisflows/solver/specfem3d_globe.py index 8fcbf027..7e8a5561 100644 --- a/seisflows/solver/specfem3d_globe.py +++ b/seisflows/solver/specfem3d_globe.py @@ -1,9 +1,7 @@ #!/usr/bin/env python3 """ -This is the subclass seisflows.solver.specfem3d_globe This class provides utilities for the Seisflows solver interactions with -Specfem3D Globe. It inherits all attributes from seisflows.solver.specfem3d, -and overwrites these functions to provide specified interaction with Specfem3D. +Specfem3D Globe. SPECFEM3D_Globe specfic notes: - does not allow SU seismogram outputs, only ASCII, SAC, ASDF, 3D_Array diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index c9eaf145..f74973e0 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -9,14 +9,24 @@ MUST be overwritten by system-specific child classes, it cannot be used to run jobs by itself. """ +import os +import dill import subprocess +from seisflows import logger +from seisflows.config import ROOT_DIR from seisflows.system.workstation import Workstation class Cluster(Workstation): """ - [system.cluster] Generic or common HPC/cluster interfacing commands - + [system.cluster] generic or common HPC/cluster interfacing commands + + :type title: str + :param title: The name used to submit jobs to the system, defaults + to the name of the current working directory + :type mpiexec: str + :param mpiexec: Function used to invoke executables on the system. + For example 'srun' on SLURM systems. :type walltime: int :param walltime: maximum job time in minutes for the master SeisFlows job submitted to cluster @@ -31,67 +41,87 @@ class Cluster(Workstation): """ __doc__ = Workstation.__doc__ + __doc__ - def __init__(self, walltime=10, tasktime=1, environs="", **kwargs): + def __init__(self, title=None, mpiexec="", walltime=10, tasktime=1, + environs="", **kwargs): """Instantiate the Cluster System class""" super().__init__(**kwargs) + if title is None: + self.title = os.path.basename(os.getcwd()) + else: + self.title = title + self.mpiexec = mpiexec self.walltime = walltime self.tasktime = tasktime self.environs = environs - def submit(self, workflow, submit_call=None): + def _pickle_func_list(self, funcs, **kwargs): """ - Main insertion point of SeisFlows onto the compute system. - - .. rubric:: - $ seisflows submit + Save a list of functions and their keyword arguments as pickle files. + Return the names of the files for the run() function. .. note:: - The expected behavior of the submit() function is to: - 1) run system setup, creating directory structure, - 2) execute workflow by submitting workflow.main() - - :type submit_call: str - :param submit_call: the command line workload manager call to be run by - subprocess. These need to be passed in by specific workload manager - subclasses. + The idea here is that we need this list of functions to be + discoverable by a system separate to the one that defined them. To + do this we can pickle Python objects on disk, and have the new + system read in the pickle files and evaluate the objects. We use + 'dill' because Pickle can't serialize methods/functions + + :type funcs: list of methods + :param funcs: a list of functions that should be run in order. All + kwargs passed to run() will be passed into the functions. """ - self.setup() - workflow.checkpoint() - # check==True: subprocess will wait for workflow.main() to finish - subprocess.run(submit_call, shell=True, check=True) + # Save the instances that define the functions as a pickle object + func_names = "_".join([_.__name__ for _ in funcs]) # unique identifier + fid_funcs_pickle = os.path.join(self.path.scratch, f"{func_names}.p") - def run(self, classname, method, single=False, **kwargs): - """ - Runs a task multiple times in parallel + with open(fid_funcs_pickle, "wb") as f: + dill.dump(obj=funcs, file=f) - .. note:: - The expected behavior of the run() function is to: submit N jobs to - the system in parallel. For example, in a simulation step, run() - submits N jobs to the compute system where N is the number of - events requiring an adjoint simulation. - - :type classname: str - :param classname: the class to run - :type method: str - :param method: the method from the given `classname` to run + # Save the kwargs as a separate pickle object + fid_kwargs_pickle = os.path.join(self.path.scratch, + f"{func_names}_kwargs.p") + with open(fid_kwargs_pickle, "wb") as f: + dill.dump(obj=kwargs, file=f) + + return fid_funcs_pickle, fid_kwargs_pickle + + def run(self, funcs, single=False, run_call=None, **kwargs): + """ + Runs tasks multiple times in parallel by submitting NTASK new jobs to + system. The list of functions and its kwargs are saved as pickles files, + and then re-loaded by each submitted process with specific environment + variables. Each spawned process will run the list of functions. + + :type funcs: list of methods + :param funcs: a list of functions that should be run in order. All + kwargs passed to run() will be passed into the functions. :type single: bool :param single: run a single-process, non-parallel task, such as smoothing the gradient, which only needs to be run by once. This will change how the job array and the number of tasks is defined, such that the job is submitted as a single-core job to the system. + :type run_call: str + :param run_call: the call used to submit the run script. If None, + attempts default run call which should be suited for the given + system """ - raise NotImplementedError('Must be implemented by subclass.') - - def taskid(self): - """ - Provides a unique identifier for each running task. This is - compute system specific. - - :rtype: int - :return: this function is expected to return a unique numerical - identifier. - """ - raise NotImplementedError('Must be implemented by subclass.') - + funcs_fid, kwargs_fid = self._pickle_func_list(funcs, **kwargs) + logger.info(f"running functions {[_.__name__ for _ in funcs]} on " + f"system {self.ntask} times") + + if run_call is None: + run_call = " ".join([ + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", + f"--funcs {funcs_fid}", + f"--kwargs {kwargs_fid}", + f"--environment SEISFLOWS_TASKID={{task_id}},{self.environs}" + ]) + logger.debug(run_call) + + for task_id in range(self.ntask): + logger.debug(f"running task id {task_id} " + f"(job {task_id + 1}/{self.ntask})") + # Subprocess waits for the process to end before running the next + subprocess.run(run_call.format(task_id=task_id), shell=True) diff --git a/seisflows/system/runscripts/run b/seisflows/system/runscripts/run index e862dedf..e017cbf0 120000 --- a/seisflows/system/runscripts/run +++ b/seisflows/system/runscripts/run @@ -1 +1 @@ -run_function.py \ No newline at end of file +run_funcs.py \ No newline at end of file diff --git a/seisflows/system/runscripts/run_funcs.py b/seisflows/system/runscripts/run_funcs.py new file mode 100755 index 00000000..f3cb61d1 --- /dev/null +++ b/seisflows/system/runscripts/run_funcs.py @@ -0,0 +1,97 @@ +#!/usr/bin/env python3 +""" +Only required when system==cluster (or any subclass of cluster) + +This script is a wrapper for running tasks on systems during an active workflow. +Loads in functions/methods and their keyword arguments from pickle files which +have been written by system.run(). Runs functions in order of list. + +.. note:: + Not to be called by the user, this script is to be called by system.run() + +.. rubric:: + >> python run --funcs function_list.p --kwargs kwarg_dict.p +""" +import argparse +import dill +import os + + +def parse_args(): + """ + Get command line arguments + """ + parser = argparse.ArgumentParser("Run arguments for system submitted tasks") + + parser.add_argument("-f", "--funcs", type=str, nargs="?", required=True, + help="path to pickle file containing a list of " + "functions/methods that should be run by the " + "submitted process" + ) + parser.add_argument("-k", "--kwargs", type=str, nargs="?", required=False, + default=None, + help="path to pickle file containing a dictionary of " + "keyword argumnets that should be passed to the " + "functions") + parser.add_argument("-e", "--environment", type=str, nargs="?", + required=False, + help="Optional comma-separated environment variables, " + "which should be given as " + "VARNAME1=value1,VARNAME2=value2 and so on. These " + "will be separated and instantiated into Python's " + "os.environ") + + return parser.parse_args() + + +def export(myenv): + """ + Exports comma delimited list of environment variables also allows deleting + environment variables by providing VARNAME with no corresponding value + + e.g. VARNAME1=value1,VARNAME2=value2,VARNAME3 + will add VARNAME1 and VARNAME2 to the environment with corresponding values, + and remove VARNAME3 from the environment + + .. note:: + The ability to delete environment variables came from the Maui upgrade + to Slurm 21.08, which enforced mutually exclusivity of --mem-per-cpu + and --mem-per-node, which are both defined on cross-cluster submissions. + We needed a mechanism to remove one of these + + :type myenv: str + :param myenv: the system environment to take variables from + """ + for item in myenv.split(","): + if item: + try: + key, val = item.split("=") + os.environ[key] = val + # Variables to be deleted will not split on '=', throwing ValueError + except ValueError: + del os.environ[item] + + +if __name__ == '__main__': + """Runs task within a currently executing workflow """ + args = parse_args() + + if args.environment: + export(args.environment) + + # Load the functions + with open(args.funcs, "rb") as f: + funcs = dill.load(f) + + # Load the kwargs. Optional, if No kwargs then funcs will be run bare + if args.kwargs is not None: + with open(args.kwargs, "rb") as f: + kwargs = dill.load(f) + else: + kwargs = {} + + # Evaluate the function with given keyword arguments + for func in funcs: + func(**kwargs) + + diff --git a/seisflows/system/runscripts/run_function.py b/seisflows/system/runscripts/run_function.py deleted file mode 100644 index 164dc289..00000000 --- a/seisflows/system/runscripts/run_function.py +++ /dev/null @@ -1,121 +0,0 @@ -#!/usr/bin/env python3 -""" -Only required when system==cluster (or any subclass of cluster) - -This script is a wrapper for running tasks on systems during an active workflow. -Acts as a Python script to submit certain SeisFlows functions or tasks to a -compute system. - -.. note:: - Not to be called by the user, this script is to be called by system.run() - -.. rubric:: - >> python run --output ./OUTPUT --classname solver \ - --funcname eval_func - OR - >> sbatch run --output ./OUTPUT --classname solver --funcname eval_func -""" -import os -import sys -import pickle -import argparse - -from seisflows.config import load, config_logger - - -def parse_args(): - """ - Get command line arguments - """ - parser = argparse.ArgumentParser("Run arguments for system submitted tasks") - parser.add_argument("-o", "--output", type=str, nargs="?", required=True, - help="the SeisFlows output directory used to load the " - "active working state from inside the compute node" - ) - parser.add_argument("-c", "--classname", type=str, nargs="?", required=True, - help="the SeisFlows class from within which the " - "desired function is defined. Available options " - "are defined in seisflows.config.NAMES" - ) - parser.add_argument("-f", "--funcname", type=str, nargs="?", required=True, - help="the function name from the chosen `classname`. " - "This function will be executed on the compute " - "node") - parser.add_argument("-e", "--environment", type=str, nargs="?", - required=False, - help="Optional comma-separated environment variables, " - "which should be given as " - "VARNAME1=value1,VARNAME2=value2 and so on. These " - "will be separated and instantiated into Python's " - "os.environ") - - return parser.parse_args() - - -def export(myenv): - """ - Exports comma delimited list of environment variables also allows deleting - environment variables by providing VARNAME with no corresponding value - - e.g. VARNAME1=value1,VARNAME2=value2,VARNAME3 - will add VARNAME1 and VARNAME2 to the environment with corresponding values, - and remove VARNAME3 from the environment - - .. note:: - The ability to delete environment variables came from the Maui upgrade - to Slurm 21.08, which enforced mutually exclusivity of --mem-per-cpu - and --mem-per-node, which are both defined on cross-cluster submissions. - We needed a mechanism to remove one of these - - :type myenv: str - :param myenv: the system environment to take variables from - """ - for item in myenv.split(","): - try: - key, val = item.split("=") - os.environ[key] = val - # Variables to be deleted will not split on '=', throwing the ValueError - except ValueError: - del os.environ[item] - - -if __name__ == '__main__': - """ - Runs task within a currently executing workflow - """ - args = parse_args() - - if args.environment: - export(args.environment) - - # Load the last checkpointed working state from the 'seisflows_?.p` files - # Allowing access through sys.modules - load(args.output) - - # Load keyword arguments required by this function - # Files will be something like: 'solver_eval_func.p' - kwargs_fid = f"{args.classname}_{args.funcname}.p" - kwargs_path = os.path.join(args.output, "kwargs", kwargs_fid) - with open(kwargs_path, "rb") as f: - kwargs = pickle.load(f) - - # Load in some of the working state from sys.modules - PAR = sys.modules["seisflows_parameters"] - PATH = sys.modules["seisflows_paths"] - system = sys.modules["seisflows_system"] - - # Configure the CPU-dependent logger which will log to stdout only - # But mainsolver will log to the main log file as well - if system.taskid == 0: - filename = PATH.LOGFILE - else: - filename = None - config_logger(level=PAR.LOG_LEVEL, verbose=PAR.VERBOSE, filename=filename) - - # Get the actual function so we can evaluate it - func = getattr(sys.modules[f"seisflows_{args.classname}"], args.funcname) - - # Evaluate the function with given keyword arguments - func(**kwargs) - - diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index d700a440..f18e4b43 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -72,34 +72,29 @@ def submit(self, submit_call=None): if submit_call is None: submit_call = " ".join([ f"sbatch", - f"{self.slurmargs or ''}", + f"{self.slurm_args or ''}", f"--job-name={self.title}", - f"--output={self.path_output_log}", - f"--error={self.path_error_log}", + f"--output={self.path.output_log}", + f"--error={self.path.error_log}", f"--ntasks-per-node={self.node_size}", f"--nodes=1", f"--time={self.walltime:d}", f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", - f"--output {self.path_output}" + f"--output {self.path.output}" ]) logger.debug(submit_call) super().submit(submit_call=submit_call) - def run(self, classname, method, single=False, run_call=None, **kwargs): + def run(self, funcs, single=False, run_call=None, **kwargs): """ Runs task multiple times in embarrassingly parallel fasion on a SLURM cluster. Executes classname.method(*args, **kwargs) `NTASK` times, each time on `NPROC` CPU cores - .. note:: - The actual CLI call structure looks something like this - $ sbatch --args scripts/run OUTPUT class method environs - - :type classname: str - :param classname: the class to run - :type method: str - :param method: the method from the given `classname` to run + :type funcs: list of methods + :param funcs: a list of functions that should be run in order. All + kwargs passed to run() will be passed into the functions. :type single: bool :param single: run a single-process, non-parallel task, such as smoothing the gradient, which only needs to be run by once. @@ -111,7 +106,9 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): can overload the sbatch command line input by setting run_call. If set to None, default run_call will be set here. """ - self.save_kwargs_to_disk(self.path_output, classname, method, kwargs) + funcs_fid, kwargs_fid = self._pickle_func_list(funcs, **kwargs) + logger.info(f"running functions {[_.__name__ for _ in funcs]} on " + f"system {self.ntask} times") # Default sbatch command line input, can be overloaded by subclasses # Copy-paste this default run_call and adjust accordingly for subclass @@ -124,15 +121,14 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): f"--ntasks-per-node={self.node_size:d}", f"--ntasks={self.nproc:d}", f"--time={self.tasktime:d}", - f"--output={os.path.join(self.path_log_files, '%A_%a')}", - f"--array=0-{self.natsk-1 % self.ntaskmax}", + f"--output={os.path.join(self.path.log_files, '%A_%a')}", + f"--array=0-{self.ntask-1}%{self.ntask_max}", + f"--parsable", # keeps stdout cleaner f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--output {self.path_output}", - f"--classname {classname}", - f"--funcname {method}", + f"--funcs {funcs_fid}", + f"--kwargs {kwargs_fid}", f"--environment {self.environs or ''}" ]) - logger.debug(run_call) # Single-process jobs simply need to replace a few sbatch arguments. @@ -143,196 +139,86 @@ def run(self, classname, method, single=False, run_call=None, **kwargs): "process job") run_call = _modify_run_call_single_proc(run_call) - # The standard response from SLURM when submitting jobs - # is something like 'Submitted batch job 441636', we want job number - stdout = subprocess.run(run_call, stdout=subprocess.PIPE, + # Stdout will be job number. Federated clusters will return job # and + # cluster name (e.g., 1234;Cluster1), so split that off, only want job # + job_id = subprocess.run(run_call, stdout=subprocess.PIPE, text=True, shell=True).stdout - - # Continuously check for job completion on ALL running array jobs - job_ids = self._job_id_list(stdout, single) - job_id, status = self._check_job_status(job_ids) - if status != "OKAY": - print(msg.cli((f"Stopping workflow for {status} job. " - f"Please check log file for details."), - items=[f"TASK: {classname}.{method}", - f"TASK ID: {job_id}", - f"LOG: logs/{job_id}", - f"SBATCH: {run_call}"], - header="slurm run error", border="=")) + job_id = str(job_id).split(";")[0] + + # Monitor the job queue until all jobs have completed, or any one fails + status = check_job_status(job_id) + if status == -1: # Failed job + logger.critical( + msg.cli(f"Stopping workflow. Please check logs for details.", + items=[f"TASKS: {[_.__name_ for _ in funcs]}", + f"SBATCH: {run_call}"], + header="slurm run error", border="=") + ) sys.exit(-1) - - logger.info(f"task {classname}.{method} finished successfully") - - def taskid(self): - """ - Provides a unique identifier for each running task - - :rtype: int - :return: identifier for a given task - """ - # If not set, this environment variable will return None - sftaskid = os.getenv("SEISFLOWS_TASKID") - - if sftaskid is None: - sftaskid = os.getenv("SLURM_ARRAY_TASK_ID") - if sftaskid is None: - print(msg.cli("system.taskid() environment variable not found. " - "Assuming DEBUG mode and returning taskid==0. " - "If not DEBUG mode, please check SYSTEM.run()", - header="warning", border="=")) - sftaskid = 0 - - return int(sftaskid) - - def _check_job_status(self, job_ids): - """ - Repeatedly check the status of a currently running job using 'sacct'. - If the job goes into a bad state like 'FAILED', return the failing - job's id and the state. If all jobs complete nominally, - return state=="OKAY" - - :type job_ids: list - :param job_ids: list of running jobs to check using SACCT - :rtype: tuple (int, str) - :return: (job_id, state) state=="OKAY" if all jobs complete, else it - will be a bad state. - """ - is_done = False - count = 0 - bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", - "CANCELLED"] - while not is_done: - is_done, states = job_array_status(job_ids) - # EXIT CONDITION: if any of the jobs provide job failure codes - if not is_done: - for i, state in enumerate(states): - # Sometimes states can be something like 'CANCELLED+', so - # we can't do exact string matching, check partial matches - if any([check in state for check in bad_states]): - return job_ids[i], state - # WAIT CONDITION: if sacct is not working, we'll get stuck in a loop - if "UNDEFINED" in states: - count += 1 - # Every 10 counts, warn the user this is unexpected behavior - if not count % 10: - job_id = job_ids[states.index("UNDEFINED")] - logger.warning(f"SLURM command 'sacct {job_id}' has " - f"returned unexpected response {count} " - f"times. This job may have failed " - f"unexpectedly. Consider checking " - f"manually") - # Wait a bit to avoid rapidly querying sacct - time.sleep(5) - - return None, "OKAY" - - def _job_id_list(self, stdout, single): - """ - Parses job id list from sbatch standard output. Stdout typically looks - like: 'Submitted batch job 441636', but if submitting jobs cross-cluster - (e.g., like on Maui), stdout might be: - 'Submitted batch job 441636 on cluster Maui' - - .. note:: - In order to find the job number, we just scan each word in stdout - until we find the number, ASSUMING that there is only one number in - the string - - TODO Should failing to return job_id break in reasonable way? - - The output job arrays will look something like: - [44163_0, 44163_1, ..., 44163_self.par.NTASK] - - :type stdout: str - :param stdout: the text response from running 'sbatch' on SLURM, which - should be returned by subprocess.run(stdout=PIPE) - :type single: bool - :param single: if running a single process job, returns a list of length - 1 with a single job id, else returns a list of length self.par.NTASK - for all arrayed jobs - :rtype: list - :return: a list of array jobs that should be currently running - """ - if single: - ntask = 1 else: - ntask = self.ntask - - # Splitting e.g.,: 'Submitted batch job 441636\n' - for part in stdout.strip().split(): - try: - # The int will keep throwing ValueError until we find the num - job_id = int(part) - break - except ValueError: - continue - return [f"{job_id}_{i}" for i in range(ntask)] + logger.info(f"tasks finished successfully") -def job_array_status(job_ids): +def check_job_status(job_id): """ - Determines current status of job or job array - - :type job_ids: list - :param job_ids: list of SLURM job id numbers to check completion of - Will not return unless all jobs have completed - :rtype is_done: bool - :return is_done: True if all jobs in the array have been completed - :rtype states: list - :return states: list of states returned from sacct - """ - states = [] - for job_id in job_ids: - state = check_job_state(job_id) - states.append(state.upper()) - - # All array jobs must be completed to return is_done == True - is_done = all([state.upper() == "COMPLETED" for state in states]) + Repeatedly check the status of a currently running job using 'sacct'. + If the job goes into a bad state like 'FAILED', log the failing + job's id and their states. If all jobs complete nominally, return - return is_done, states + :type job_id: str + :param job_id: main job id to query, returned from the subprocess.run that + ran the jobs + :rtype: int + :return: status of all running jobs. 1 for pass (all jobs COMPLETED). -1 for + fail (one or more jobs returned failing status) + """ + bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", + "OUT_OF_MEMORY", "CANCELLED"] + while True: + job_ids, states = query_job_states(job_id) + if [_ == "COMPLETED" for _ in states]: + return 1 # Pass + elif any([check in states for check in bad_states]): + logger.info("atleast 1 system job returned a failing exit code") + for job_id, state in zip(job_ids, states): + if state in bad_states: + logger.debug(f"{job_id}: {state}") + return -1 # Fail + else: + time.sleep(5) # Don't overload 'sacct' command -def check_job_state(job_id): +def query_job_states(job_id): """ - Queries completion status of a single job by running: - $ sacct -nL -o jobid,state -j {job_id} + Queries completion status of an array job by running: + $ sacct -nLX -o jobid,state -j {job_id} # Example outputs from this sacct command - # JOB_ID STATUS - 441630_0 PENDING # array job will have the array number - 441630 COMPLETED # if --array=0-0, jobs will not have suffix - 441628.batch COMPLETED # we don't want to check these + 441630_0 PENDING + 441630_1 COMPLETED Available job states: https://slurm.schedmd.com/sacct.html .. note:: - -L flag in sacct queries all available clusters, not just the - cluster that ran the `sacct` call - -X supress the .batch and .extern jobname + -L: queries all available clusters, not just the cluster that ran the + `sacct` call + -X: supress the .batch and .extern jobnames that are normally returned + but don't represent that actual running job :type job_id: str - :param job_id: job id to query + :param job_id: main job id to query, returned from the subprocess.run that + ran the jobs """ + job_ids, job_states = [], [] cmd = f"sacct -nLX -o jobid,state -j {job_id}" stdout = subprocess.run(cmd, stdout=subprocess.PIPE, text=True, shell=True).stdout + for job_line in str(stdout).strip().split("\n"): + job_id, job_state = job_line.split() + job_ids.append(job_id) + job_states.append(job_state) - # Undefined status will be retured if we cannot match the job id with - # the sacct output - state = "UNDEFINED" - lines = stdout.strip().split("\n") - for line in lines: - # expecting e.g., 441628 COMPLETED - try: - job_id_check, state = line.split() - # str.split() will throw ValueError on non-matching strings - except ValueError: - continue - # Use in to allow for array jobs to match job ids - if job_id in job_id_check: - break - - return state + return job_ids, job_states def _modify_run_call_single_proc(run_call): diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 6d4f22b8..04f9eb94 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -4,13 +4,10 @@ Provides utilities for submitting jobs in serial on a single machine """ import os -import sys -import pickle from contextlib import redirect_stdout from seisflows import logger from seisflows.tools.core import Dict -from seisflows.config import save from seisflows.tools import unix from seisflows.tools.core import number_fid, get_task_id, set_task_id @@ -19,13 +16,6 @@ class Workstation: """ [system.workstation] runs tasks in serial on a local machine. - :type title: str - :param title: The name used to submit jobs to the system, defaults - to the name of the current working directory - :type mpiexec: str - :param mpiexec: Function used to invoke executables on the system. - For example 'srun' on SLURM systems. If None this will default to - './' for calling executables. :type ntask: int :param ntask: number of individual tasks/events to run during workflow :type nproc: int @@ -42,14 +32,11 @@ class Workstation: :type path_system: str :param path_system: scratch path to save any system related files """ - def __init__(self, title=None, mpiexec=None, ntask=1, nproc=1, - log_level="DEBUG", verbose=False, workdir=os.getcwd(), - path_output=None, path_system=None, path_output_log=None, - path_error_log=None, path_log_files=None, path_par_file=None, - **kwargs): + def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, + workdir=os.getcwd(), path_output=None, path_system=None, + path_output_log=None, path_error_log=None, path_log_files=None, + path_par_file=None, **kwargs): """Workstation System Class Parameters""" - self.title = title - self.mpiexec = mpiexec self.ntask = ntask self.nproc = nproc self.log_level = log_level @@ -118,22 +105,22 @@ def setup(self): logger.debug(f"copying par/log file to: {dst}") unix.cp(src=src, dst=dst) - def submit(self, workflow, submit_call=None): - """ - Submits the main workflow job as a serial job submitted directly to - the compute node that is running the master job - - TO DO fix this - - :type submit_call: str or None - :param submit_call: the command line workload manager call to be run by - subprocess. This is only needed for overriding classes, it has no - effect on the Workstation class - """ - self.setup() - workflow = sys.modules["seisflows_workflow"] - workflow.checkpoint() - workflow.main() + # def submit(self, workflow, submit_call=None): + # """ + # Submits the main workflow job as a serial job submitted directly to + # the compute node that is running the master job + # + # TO DO fix this + # + # :type submit_call: str or None + # :param submit_call: the command line workload manager call to be run by + # subprocess. This is only needed for overriding classes, it has no + # effect on the Workstation class + # """ + # self.setup() + # workflow = sys.modules["seisflows_workflow"] + # workflow.checkpoint() + # workflow.main() def run(self, funcs, single=False, **kwargs): """ @@ -142,10 +129,9 @@ def run(self, funcs, single=False, **kwargs): .. note:: kwargs will be passed to the underlying `method` that is called - :type classname: str - :param classname: the class to run - :type method: str - :param method: the method from the given `classname` to run + :type funcs: list of methods + :param funcs: a list of functions that should be run in order. All + kwargs passed to run() will be passed into the functions. :type single: bool :param single: run a single-process, non-parallel task, such as smoothing the gradient, which only needs to be run by once. @@ -178,25 +164,3 @@ def run(self, funcs, single=False, **kwargs): with redirect_stdout(f): for func in funcs: func(**kwargs) - - def save_kwargs_to_disk(self, path, classname, method, kwargs): - """ - Writes keyword arguments for a given method to disk - - :type path: str - :param path: path to save the checkpointed pickle files to - :type classname: str - :param classname: name of the class to save - :type method: str - :param method: the specific function to be checkpointed - :type kwargs: dict - :param kwargs: dictionary to pass to object saving - """ - argspath = os.path.join(path, "kwargs") - argsfile = os.path.join(argspath, f"{classname}_{method}.p") - - unix.mkdir(argspath) - with open(argsfile, "wb") as f: - pickle.dump(kwargs, f) - - save(path=self.path.output) \ No newline at end of file diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index 075b2ed6..377d418f 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -6,7 +6,6 @@ import pytest from glob import glob from seisflows.config import ROOT_DIR -from seisflows.tools import unix from seisflows.tools.core import set_task_id from seisflows.solver.specfem import Specfem @@ -14,18 +13,6 @@ TEST_DATA = os.path.join(ROOT_DIR, "tests", "test_data", "test_solver") -def test_taskid(): - """ - Make sure that task id returns correctly - - TODO move this into test_utils - """ - solver = Specfem() - assert(solver.taskid == 0) - os.environ["SEISFLOWS_TASKID"] = "9" - assert(solver.taskid == 9) - - def test_source_names(): """ Check that source names are established correctly diff --git a/seisflows/tests/test_system.py b/seisflows/tests/test_system.py new file mode 100644 index 00000000..e69de29b diff --git a/seisflows/tools/core.py b/seisflows/tools/core.py index 5ccd0781..c895e19d 100644 --- a/seisflows/tools/core.py +++ b/seisflows/tools/core.py @@ -8,6 +8,10 @@ import numpy as np from seisflows import logger +# Acceptable environment variables assigned to individually running tasks when +# running SeisFlows on a system +ENV_VARIABLES = ["SEISFLOWS_TASKID", "SLURM_ARRAY_TASK_ID"] + class Dict(dict): """ @@ -68,48 +72,29 @@ def __delattr__(self, key): return self -class TaskIDError(Exception): - """ - A specific error that gets called when tasks are not run on system, - i.e., when we can't find 'SEISFLOWS_TASKID' in the environment variables. - This means we are attempting to access child process variables inside - the parent process. - """ - pass - - -def get_task_id(force=False): +def get_task_id(): """ Task IDs are assigned to each child process spawned by the system module during a SeisFlows workflow. SeisFlows modules use this Task ID to keep track of embarassingly parallel process, e.g., solver uses the Task ID to determine which source is being considered. - :type force: bool - :param force: If no task id is found, force set it to 0 :rtype: int :return: task id for given solver - :raises TaskIDError: if no environment variable is found """ - _taskid = os.getenv("SEISFLOWS_TASKID") - if _taskid is None: - logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " - "Assigning Task ID == 0") - _taskid = 0 - # if force: - # _taskid = 0 - # logger.warning("Environment variable 'SEISFLOWS_TASKID' not found. " - # "Assigning Task ID == 0") - # else: - # raise TaskIDError("Environment variable 'SEISFLOWS_TASKID' not " - # "found. Please make sure the process asking " - # "for task id is called by system.") - return int(_taskid) + for env_var in ENV_VARIABLES: + _taskid = os.getenv(env_var) + if _taskid is not None: + return int(_taskid) + else: + logger.warning("Environment Task ID variable not found. Assigning 0") + return 0 def set_task_id(task_id): """ - Set the SEISFLOWS_TASKID in os environs + Set the SEISFLOWS_TASKID in os environs for local workflows. If running + on HPC systems, running array jobs will assign the Task ID .. note:: Mostly used for debugging/testing purposes as a way of mimicing diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 4f3c7e25..3d255497 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -230,6 +230,9 @@ def checkpoint(self): for key, val in self._states.items(): f.write(f"{key}: {val}\n") + # Pickle the current working state so that system can load it during run + + def run(self): """ Call the Task List in order to 'run' the workflow. Contains logic for From b7c17eb6700031b937ae483313b0589a1b3fac4d Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 21 Jul 2022 11:37:15 -0800 Subject: [PATCH 074/195] removing agency from optimization module. optimization no longer keeps track of iteration count, this respossibility has been moved to the workflow. lowercasing default parameter file keys optimization line search attribute now stored as hidden variable to keep it from being exposed to the parameter file --- seisflows/config.py | 42 ++---- seisflows/examples/parameters.yaml | 22 ++- seisflows/optimize/gradient.py | 81 ++++++----- seisflows/plugins/line_search/bracket.py | 8 +- seisflows/seisflows.py | 174 ++++------------------- seisflows/tools/core.py | 2 +- seisflows/tools/msg.py | 100 +------------ seisflows/workflow/inversion.py | 8 +- seisflows/workflow/thrifty_inversion.py | 4 +- 9 files changed, 101 insertions(+), 340 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index bfe0b642..0ebd7df5 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -4,8 +4,6 @@ throughout the Seisflows workflow. It also (re)defines some important functions that are used extensively by the machinery of Seisflows. -SeisFlows consists of interacting objects: -'system', 'preprocess', 'solver', 'postprocess', 'optimize', 'workflow' Each corresponds simultaneously to a module in the SeisFlows source code, a class that is instantiated and made accessible via sys.modules, and a @@ -23,44 +21,27 @@ from pkgutil import find_loader from importlib import import_module - from seisflows import logger from seisflows.tools.core import Dict, Null -from seisflows.tools import msg, unix +from seisflows.tools import msg from seisflows.tools.core import load_yaml -""" -!!! WARNING !!! - -The following constants are (some of the only) hardwired components -of the package. The naming, order, case, etc., of each constant may be -important, and any changes to these will more-than-likely break the underlying -mechanics of the package. Do not touch unless you know what you're doing! -""" # List of module names required by SeisFlows for imports. Order-sensitive -# In sys.modules these will be prepended by 'seisflows_', e.g., seisflows_system -# NAMES = ["system", "preprocess", "solver", "optimize", "workflow"] NAMES = ["workflow", "system", "solver", "preprocess", "optimize"] # The location of this config file, which is the main repository ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) -""" -!!! ^^^ WARNING ^^^ !!! -""" def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): """ - Standard SeisFlows workflow setup block which runs some standard setup - tasks including: setting the working directory, instantiating the logging - module and dynmically importing each of the SeisFlows modules by specific - class names. - - .. note:: - This should be called in the exact way each time: - > pars, modules = import_seisflows() - > system, preprocess, solver, postprocess, optimize = modules + Standard SeisFlows workflow setup block which runs a number of setup + tasks including: loading a user-defiend parameter file, configuring the + package-wide logger based on user-input path to log file and desired + verbosity, and instantiating all modules in a generic fashion based on user + choice. Returns the 'workflow' module, which contains all other submodules + as attributes. :type workdir: str :param workdir: the current working directory in which to perform a @@ -71,9 +52,8 @@ class names. should be created by the command line argument 'seisflows configure'. Defaults to 'parameters.yaml' :rtype: module - :return: instantiated workflow module which contains all instantiated - sub-modules containing set parameters - 'system', 'preprcess', 'solver', 'postprocess', 'optimize' + :return: instantiated 'workflow' module which contains all sub-modules which + have been instantiated with user-defined parameters """ # Read in parameters from file. Set up the logger parameters = load_yaml(os.path.join(workdir, parameter_file)) @@ -104,6 +84,7 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): to stdout, and a file logger which writes to `filename`. Two levels of verbosity and three levels of log messages allow the user to determine how much output they want to see. + :type level: str :param level: log level to be passed to logger, available are 'CRITICAL', 'WARNING', 'INFO', 'DEBUG' @@ -155,7 +136,8 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): def custom_import(name=None, module=None, classname=None): """ Imports SeisFlows module and extracts class that is the camelcase version - of the module name + of the module name. Used to dynamically import sub-modules by name only, + avoiding the need to hardcode import statements. For example: custom_import('workflow', 'inversion') diff --git a/seisflows/examples/parameters.yaml b/seisflows/examples/parameters.yaml index 2caee39d..d637bf70 100644 --- a/seisflows/examples/parameters.yaml +++ b/seisflows/examples/parameters.yaml @@ -17,16 +17,14 @@ # # MODULES # /////// -# WORKFLOW (str): The method for running SeisFlows; equivalent to main() -# SOLVER (str): External numerical solver to use for waveform simulations -# SYSTEM (str): Computer architecture of the system being used -# OPTIMIZE (str): Optimization algorithm for the inverse problem -# PREPROCESS (str): Preprocessing schema for waveform data -# POSTPROCESS (str): Postprocessing schema for kernels and gradients +# workflow (str): The types and order of functions for running SeisFlows +# system (str): Computer architecture of the system being used +# solver (str): External numerical solver to use for waveform simulations +# preprocess (str): Preprocessing schema for waveform data +# optimize (str): Optimization algorithm for the inverse problem # ============================================================================== -SYSTEM: workstation -WORKFLOW: forward -SOLVER: specfem2d -OPTIMIZE: gradient -PREPROCESS: default -POSTPROCESS: default +workflow: forward +system: workstation +solver: specfem2d +preprocess: default +optimize: gradient diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 95b208e2..d7526f57 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -24,12 +24,6 @@ Problems in any of these areas usually manifest themselves through stagnation of the nonlinear optimizationalgorithm. - -TODO fix line search, currently broken. Store line search variables in .npz - arrays rather than as internal attributes, that way it's easier to restart - from a broken workflow. Need to figure out how to reset and restart - line searches efficiently - Change line search to words not numbers """ import os import numpy as np @@ -67,18 +61,15 @@ class Gradient: :param path_line_search: full path to a file used to periodically save the line search history as a NumPy .npz file """ - def __init__(self, start=1, line_search_method="bracket", - preconditioner=None, step_count_max=10, step_len_init=0.05, - step_len_max=0.5, workdir=os.getcwd(), path_optimize=None, - path_line_search=None, path_output=None, - path_preconditioner=None, + def __init__(self, line_search_method="bracket", preconditioner=None, + step_count_max=10, step_len_init=0.05, step_len_max=0.5, + workdir=os.getcwd(), path_optimize=None, path_line_search=None, + path_output=None, path_preconditioner=None, **kwargs): """Gradient-descent input parameters""" super().__init__() - self.iteration = start # to match PAR.BEGIN self.preconditioner = preconditioner - self.step_count_max = step_count_max self.step_len_init = step_len_init self.step_len_max = step_len_max @@ -101,25 +92,27 @@ def __init__(self, start=1, line_search_method="bracket", f"algorithm, defaulting to 'bracket'") line_search_method = "bracket" - # .title() ensures we grab the class and not the module - self.line_search = getattr(line_search_dir, line_search_method.title())( - step_count_max=step_count_max, step_len_max=step_len_max, - path=self.path.line_search - ) + self.line_search_method = line_search_method - # Internally used parameters for checking validity + # Internally used parameters for keeping track of optimization + self._restarted = False self._acceptable_vectors = ["m_new", "m_old", "m_try", "g_new", "g_old", "g_try", "p_new", "p_old", "alpha", "f_new", "f_old", "f_try"] self._acceptable_preconditioners = ["diagonal"] - self.restarted = False + # .title() ensures we grab the class and not the module + self._line_search = getattr( + line_search_dir, line_search_method.title())( + step_count_max=step_count_max, step_len_max=step_len_max, + path=self.path.line_search + ) @property def step_count(self): """Convenience property to access `step_count` from line search""" - return self.line_search.step_count + return self._line_search.step_count def check(self): """ @@ -145,7 +138,7 @@ def setup(self): Sets up nonlinear optimization machinery """ unix.mkdir(self.path.scratch) - self.line_search.save_search_history() # will be empty + self.checkpoint_line_search() # will be empty def load(self, name): """ @@ -203,6 +196,14 @@ def save(self, name, m): else: raise TypeError(f"optimize.save unrecognized type error {type(m)}") + def checkpoint_line_search(self): + """ + Convenience wrapper of the underlying _line_search.save_search_history + to avoid accessing the private attr. _line_search from outside the class + """ + self._line_search.check_search_history() + self._line_search.save_search_history() + def _precondition(self, q): """ Apply available preconditioner to a given gradient @@ -258,23 +259,23 @@ def initialize_search(self): # Restart plugin line search if the optimization library restarts if self.restarted: - self.line_search.clear_history() + self._line_search.clear_history() # Optional safeguard to prevent step length from getting too large if self.step_len_max: new_step_len_max = self.step_len_max * norm_m / norm_p - self.line_search.step_len_max = new_step_len_max + self._line_search.step_len_max = new_step_len_max logger.info(f"enforcing max step length safeguard") # Initialize the line search and save it to disk. - self.line_search.update_search_history(func_val=f, step_len=0., + self._line_search.update_search_history(func_val=f, step_len=0., gtg=gtg, gtp=gtp) - self.line_search.check_search_history(iteration=self.iteration) + self._line_search.check_search_history() - alpha, _ = self.line_search.calculate_step_length() + alpha, _ = self._line_search.calculate_step_length() # Alpha defines the trial step length. Optional step length override - if self.step_len_init and len(self.line_search.step_lens) <= 1: + if self.step_len_init and len(self._line_search.step_lens) <= 1: alpha = self.step_len_init * norm_m / norm_p logger.debug(f"overwriting initial step length, " f"alpha_new={alpha:.2E}") @@ -303,12 +304,12 @@ def update_line_search(self): f_try = self.load("f_try") # misfit for the trial model # Update the line search with a new step length and misfit value - self.line_search.step_count += 1 - self.line_search.update_search_history(step_len=alpha, func_val=f_try) - self.line_search.check_search_history(iteration=self.iteration) + self._line_search.step_count += 1 + self._line_search.update_search_history(step_len=alpha, func_val=f_try) + self._line_search.check_search_history() # Calculate a new step length based on line search algorithm - alpha_try, status = self.line_search.calculate_step_length() + alpha_try, status = self._line_search.calculate_step_length() # Status == 0: Retry line search // Status == 1: Line search passed if status in [0, 1]: @@ -344,7 +345,7 @@ def finalize_search(self): logger.info(msg.sub("FINALIZING LINE SEARCH")) # Remove the old model parameters - if self.iteration > 1: + if glob("?_old"): logger.info("removing previously accepted model files (?_old)") for fid in ["m_old", "f_old", "g_old", "p_old"]: unix.rm(os.path.join(self.path.scratch, fid)) @@ -364,12 +365,12 @@ def finalize_search(self): dst=os.path.join(self.path.scratch, "m_new.npz")) # Choose minimum misfit value as final misfit/model. index 0 is initial - f = self.line_search.get_search_history()[1] + f = self._line_search.get_search_history()[1] self.save("f_new", f.min()) logger.info(f"misfit of accepted trial model is f={f.min():.3E}") logger.info("resetting line search step count to 0") - self.line_search.step_count = 0 + self._line_search.step_count = 0 def attempt_line_search_restart(self, threshold=1E-3): """ @@ -438,7 +439,7 @@ def _write_stats(self): g = self.load("g_new") p = self.load("p_new") - x, f, *_ = self.line_search.get_search_history() + x, f, *_ = self._line_search.get_search_history() # Calculated stats factors # TODO What is this? It was returning a RuntimeError for value too small @@ -450,19 +451,17 @@ def _write_stats(self): grad_norm_L2 = np.linalg.norm(g.vector, 2) misfit = f[0] - restarted = self.restarted slope = (f[1] - f[0]) / (x[1] - x[0]) - step_count = self.line_search.step_count + step_count = self._line_search.step_count step_length = x[f.argmin()] theta = 180. * np.pi ** -1 * angle(p.vector, -1 * g.vector) with open(fid, "a") as f: - f.write(f"{self.iteration:0>2}," - # f"{factor:6.3E}," + f.write(# f"{factor:6.3E}," f"{grad_norm_L1:6.3E}," f"{grad_norm_L2:6.3E}," f"{misfit:6.3E}," - f"{restarted:6.3E}," + f"{self._restarted:6.3E}," f"{slope:6.3E}," f"{step_count:0>2}," f"{step_length:6.3E}," diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 7a3fea45..917f52f7 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -74,17 +74,13 @@ def clear_search_history(self): self.gtp = [] self.step_count = 0 - def check_search_history(self, iteration): + def check_search_history(self): """ Since the line search is just a wrapper for list of numbers, check that search history hasn't been muddled up by ensuring that internal lists are the correct length for the given evaluation - - :type iteration: int - :param iteration: current iteration of the workflow """ - assert(len(self.gtg) == iteration), f"too many entries for 'gtg'" - assert(len(self.gtp) == iteration), f"too many entries for 'gtp'" + assert(len(self.gtg) == len(self.gtp)), f"too many entries for 'gtg'" assert(len(self.func_vals) == len(self.step_lens)), \ f"number of function evaluations does not match step lengths" assert(self.step_count + 1 == len(self.func_vals)), \ diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 8e740cb6..801a545f 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -25,7 +25,7 @@ from IPython import embed from seisflows import logger -from seisflows.config import custom_import, NAMES, ROOT_DIR, config_logger +from seisflows.config import custom_import, NAMES, ROOT_DIR, config_logger, import_seisflows from seisflows.tools import unix, msg from seisflows.tools.core import load_yaml, Dict from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, @@ -444,18 +444,22 @@ def configure(self, absolute_paths=False, **kwargs): try: written = [] f = open(self._args.parameter_file, "a") + print(f"writing parameters for modules: ") for module in modules: + print(f"{module.__class__.__name__}") # Write the docstring f.write(f"# {'=' * 77}\n#") f.write(module.__doc__.replace("\n", "\n#")) f.write(f"\n# {'=' * 77}\n") # Write the parameters, make sure to not have the same one twice for key, val in vars(module).items(): + print(key) # Skip already written, hidden vars, and paths - if (key in written) or key.startswith("_"): + if (key in written) or key.startswith("_") or key == "path": continue + # YAML wants NoneType to be 'null' if val is None: - val = "null" # required by YAML + val = "null" f.write(f"{key}: {val}\n") written.append(key) except Exception: @@ -469,71 +473,7 @@ def configure(self, absolute_paths=False, **kwargs): else: unix.rm(temp_par_file) - # def configure(self, absolute_paths=False, **kwargs): - # """ - # Dynamically generate the parameter file by writing out docstrings and - # default values for each of the SeisFlows module parameters. - # This function writes files manually, consistent with the .yaml format. - # - # :type absolute_paths: bool - # :param absolute_paths: if True, expand pathnames to absolute paths, - # else if False, use path names relative to the working directory. - # Defaults to False, uses relative paths. - # """ - # self._register_parameters() - # - # # Check if the User set turn off any modules (if None, dont instantiate) - # names = copy(NAMES) - # for name, choice in self._parameters.items(): - # if choice is None: - # names.remove(name.lower()) - # - # # Need to attempt importing all modules before we access their par/paths - # for NAME in NAMES: - # sys.modules[f"seisflows_{NAME}"] = custom_import(NAME)() - # - # # System defines foundational directory structure required by other - # # modules. Don't validate the parameters because they aren't yet set - # sys.modules["seisflows_system"].required.validate(paths=True, - # parameters=False) - # - # # If writing to parameter file fails for any reason, the file will be - # # mangled, create a temporary copy that can be re-instated upon failure - # temp_par_file = f".{self._args.parameter_file}" - # unix.cp(self._args.parameter_file, temp_par_file) - # - # try: - # # Paths are collected for each but written at the end - # seisflows_paths = {} - # with open(self._args.parameter_file, "a") as f: - # for name in names: - # req = sys.modules[f"seisflows_{name}"].required - # seisflows_paths.update(req.paths) - # - # # Write the docstring header and then the parameters in YAML - # msg.write_par_file_header(f, req.parameters, name) - # msg.write_par_file_paths_pars(f, req.parameters) - # - # # Write the paths in the same format as parameters - # msg.write_par_file_header(f, seisflows_paths, name="PATHS") - # f.write("PATHS:\n") - # - # # If requested, set the paths relative to the current dir - # if not absolute_paths: - # for key, attrs in seisflows_paths.items(): - # if attrs["default"]: - # seisflows_paths[key]["default"] = os.path.relpath( - # attrs["default"]) - # msg.write_par_file_paths_pars(f, seisflows_paths, indent=4) - # # General error catch as anything can happen here - # except Exception as e: - # unix.rm(self._args.parameter_file) - # unix.cp(temp_par_file, self._args.parameter_file) - # print(msg.cli(text="seisflows configure traceback", header="error")) - # print(traceback.format_exc()) - # sys.exit(-1) - # else: - # unix.rm(temp_par_file) + f.close() def swap(self, module, classname, **kwargs): """ @@ -584,29 +524,18 @@ def swap(self, module, classname, **kwargs): unix.rm(f"_{self._args.parameter_file}") - def init(self, **kwargs): + def validate(self, **kwargs): """ - Establish a SeisFlows working environment on disk. Instantiates a - working state in memory (sys.modules) and then writes this state as \ - pickle files to the OUTPUT directory for User inspection and debug - purposes. + Run check() functions for a given parameter file and each of the + SeisFlows modules, ensuring that parameters are acceptable for the + given set of user-defined parameters """ unix.mkdir(self._args.workdir) unix.cd(self._args.workdir) - self._register_parameters() - self._register_modules() - self._check_parameters() - - save(path=self._paths.OUTPUT) - - # Ensure that all parameters and paths that need to be instantiated - # are present in sys modules - for NAME in NAMES: - sys.modules[f"seisflows_{NAME}"].required.validate() - - print(msg.cli(f"instantiating SeisFlows working state in: " - f"{self._paths.OUTPUT}")) + workflow = import_seisflows(workdir=self._args.workdir, + parameter_file=self._args.parameter_file) + workflow.check() def submit(self, **kwargs): """ @@ -618,25 +547,9 @@ def submit(self, **kwargs): unix.mkdir(self._args.workdir) unix.cd(self._args.workdir) - # If parameter `RESUME_FROM` is set, unset it because submit and restart - # should start from a fresh workflow - try: - self.par(parameter="RESUME_FROM", value="", skip_print=True) - except SystemExit as e: - pass - - # Read in the Parameter file and set parameters into sys.modules. - self._register_parameters() - self._register_modules() - self._check_parameters() - - config_logger(level=self._parameters.LOG_LEVEL, - verbose=self._parameters.VERBOSE, - filename=self._paths.LOGFILE) - - # Submit workflow.main() to the system - system = sys.modules["seisflows_system"] - system.submit() + workflow = import_seisflows(workdir=self._args.workdir, + parameter_file=self._args.parameter_file) + workflow.system.submit() def clean(self, force=False, **kwargs): """ @@ -679,21 +592,6 @@ def clean(self, force=False, **kwargs): continue print(msg.cli(items=items, header="clean", border="=")) - def resume(self, **kwargs): - """ - Resume a previously started workflow by loading the module pickle files - and submitting the workflow from where it left off. - """ - self._register_parameters() - self._load_modules() - - config_logger(level=self._parameters.LOG_LEVEL, - verbose=self._parameters.VERBOSE, - filename=self._paths.LOGFILE) - - system = sys.modules["seisflows_system"] - system.submit() - def restart(self, force=False, **kwargs): """ Restart simply means clean the workding dir and submit a new workflow. @@ -708,18 +606,18 @@ def debug(self, **kwargs): interactive environment allowing exploration of the package space. Does not allow stepping through of code (not a breakpoint). """ - self._register_parameters() - self._load_modules() + workflow = import_seisflows(workdir=self._args.workdir, + parameter_file=self._args.parameter_file) - # Distribute modules to common names for easy access during debug mode - PATH = sys.modules["seisflows_paths"] - PAR = sys.modules["seisflows_parameters"] - system = sys.modules["seisflows_system"] - preprocess = sys.modules["seisflows_preprocess"] - solver = sys.modules["seisflows_solver"] - postprocess = sys.modules["seisflows_postprocess"] - optimize = sys.modules["seisflows_optimize"] - workflow = sys.modules["seisflows_workflow"] + # Break out sub-modules and parameters so they're more easily accesible + parameters = load_yaml(self._args.parameter_file) + system = workflow.system + solver = workflow.solver + preprocess = workflow.preprocess + optimize = workflow.optimize + + for module in [workflow, system, solver, preprocess, optimize]: + print(module) print(msg.cli("SeisFlows's debug mode is an embedded IPython " "environment. All modules are loaded by default. " @@ -897,20 +795,6 @@ def par(self, parameter, value=None, skip_print=False, required=False, if not skip_print: print(msg.cli(f"{key}: {cur_val} -> {value}")) - def _par_required(self): - """ - Only list parameters which have not been set as a default value. - Filled in with default values defined in SeisFlowsPathParameters - """ - sf = SeisFlowsPathsParameters - with open(self._args.parameter_file, "r") as f: - lines = f.readlines() - for check in [sf.default_par, sf.default_path]: - print(f"{check}\n{'='*len(check)}") - for line in lines: - if check in line: - print(f"\t{line.split(':')[0].strip()}") - def examples(self, run=None, choice=None, **kwargs): """ List or run a SeisFlows example problem diff --git a/seisflows/tools/core.py b/seisflows/tools/core.py index c895e19d..7927200d 100644 --- a/seisflows/tools/core.py +++ b/seisflows/tools/core.py @@ -166,7 +166,7 @@ def number_fid(fid, i=0): output_000.txt, output_001.txt, output_002.txt, ouput_003.txt ... .. note:: - Replace statement is catch all so we assume that there is only one \ + Replace statement is catch-all, so we assume that there is only one instance of the file extension in the entire path. :type fid: str diff --git a/seisflows/tools/msg.py b/seisflows/tools/msg.py index f0b770e9..f5ccb4aa 100644 --- a/seisflows/tools/msg.py +++ b/seisflows/tools/msg.py @@ -155,105 +155,7 @@ def cli(text="", items=None, wraplen=80, header=None, border=None, hchar="/"): return output_str -def write_par_file_header(f, paths_or_parameters, name="", tabsize=4, - border="=", uline="/"): - """ - Re-usable function to write docstring comments inside the SeisFlows - parameter file. Used by seisflows.SeisFlows.configure() - - Headers look something like this - - # =========================== - # MODULE NAME - # /////////// - # PAR (type): - # description of par - # =========================== - PAR: val - - :type f: _io.TextIO - :param f: open text file to write to - :type paths_or_parameters: dict - :param paths_or_parameters: the paths or parameters that should be written - to the header - :type name: str - :param name: the name of the module that is being written, will be used as - the header of the docstring - :type tabsize: int - :param tabsize: how large to expand tab character '\t' as spaces - :type border: str - :param border: character to use as the header and footer border - :type uline: str - :param uline: how to underline the header - """ - # Some aesthetically pleasing dividers to separate sections - # Length 77 ensure that total line width is no more than 80 characters - # including the '#' and spaces - top = (f"\n# {border * 77}" - f"\n# {name.upper():^77}" - f"\n# {uline * len(name):^77}" - f"\n" - ) - bot = f"# {border * 77}\n" - - # Write top header, all parameters, types and descriptions, and then footer - f.write(top) - for key, attrs in paths_or_parameters.items(): - if "type" in attrs: - f.write(f"# {key} ({attrs['type']}):\n") - else: - f.write(f"# {key}:\n") - docstrs = wrap(attrs["docstr"], width=77 - tabsize, - break_long_words=False) - for line, docstr in enumerate(docstrs): - f.write(f"#\t{docstr}\n".expandtabs(tabsize=tabsize)) - f.write(bot) - - -def write_par_file_paths_pars(f, paths_or_parameters, indent=0, tabsize=4): - """ - Re-usable function to write paths or parameters in yaml format to the - SeisFlows parameter file. Used by seisflows.SeisFlows.configure() - - Parameters are written something like: - - PAR1: val1 - PAR2: val2 - Par3: - - val3a - - val3b - - val3c - - :type f: _io.TextIO - :param f: open text file to write to - :type paths_or_parameters: dict - :param paths_or_parameters: the paths or parameters that should be written - to the header - :type indent: int - :param indent: level of indentation to match yaml style. passed to - str.expandtabs(tabsize=`indent`) - :type tabsize: int - :param tabsize: how large to expand tab character '\t' as spaces - """ - for key, attrs in paths_or_parameters.items(): - # Lists need to be treated differently in yaml format - if isinstance(attrs["default"], list): - if len(attrs["default"]) == 0: - f.write(f"{key}: []\n") - else: - f.write(f"{key}:\n") - for val in attrs["default"]: - f.write(f"\t- {val}\n".expandtabs(tabsize=tabsize)) - else: - # Yaml saves NoneType values as 'null' or blank lines - if attrs["default"] is None: - f.write(f"\t{key}:\n".expandtabs(tabsize=indent)) - else: - f.write( - f"\t{key}: {attrs['default']}\n".expandtabs(tabsize=indent) - ) - - +# SeisFlows 'Globe' logo in ASCII. Used for CLI print statements ascii_logo = """ @@@@@@@@@@@@@@@@@@@@@@@ diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index a2cd11fa..70d39c8a 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -170,7 +170,7 @@ def initialize_line_search(self): then exposed on disk to the solver. """ logger.info(f"initializing " - f"'{self.optimize.line_search.__class__.__name__}'ing " + f"'{self.optimize.line_search_method}'ing " f"line search") # 'p' is the search direction used to perturb the initial model @@ -189,7 +189,7 @@ def initialize_line_search(self): m_try, alpha = self.optimize.initialize_search() self.optimize.save(name="m_try", m=m_try) self.optimize.save(name="alpha", m=alpha) - self.optimize.line_search.save_search_history() + self.optimize.checkpoint_line_search() # Expose model `m_try` to the solver by placing it in eval_func dir. m_try.write(path=os.path.join(self.path.eval_func, "model")) @@ -219,14 +219,14 @@ def perform_line_search(self): # Increment step count, calculate new step length/model, check misfit status = self.optimize.update_line_search() - self.optimize.line_search.save_search_history() + self.optimize.checkpoint_line_search() # Proceed based on the outcome of the line search if status == 1: # Save outcome of line search to disk; reset step to 0 for next iter logger.info("trial step successful. finalizing line search") self.optimize.finalize_search() - self.optimize.line_search.save_search_history() + self.optimize.checkpoint_line_search() return elif status == 0: logger.info("trial step unsuccessful. re-attempting line search") diff --git a/seisflows/workflow/thrifty_inversion.py b/seisflows/workflow/thrifty_inversion.py index b8322075..7f7183b8 100644 --- a/seisflows/workflow/thrifty_inversion.py +++ b/seisflows/workflow/thrifty_inversion.py @@ -30,7 +30,7 @@ def __init__(self, line_search_method): """ super().__init__() - self.line_search_method = line_search_method + self._line_search_method = line_search_method self._thrifty_status = False def check(self): @@ -39,7 +39,7 @@ def check(self): """ super().check() - assert(self.line_search_method.title() == "Backtrack"), ( + assert(self._line_search_method.title() == "Backtrack"), ( "Thrifty inversion requires `line_search_method` == 'backtrack'" ) From 006340840fab6ccba54ab0984827f23da8a6b61c Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 21 Jul 2022 14:35:32 -0800 Subject: [PATCH 075/195] adjusting docstrings to fit the new seisflows configure command which builds a parameter file based on the class docstrings of each of the sub moduels used --- seisflows/config.py | 3 +- seisflows/optimize/LBFGS.py | 10 ++-- seisflows/optimize/NLCG.py | 10 ++-- seisflows/optimize/gradient.py | 46 ++++++++++------ seisflows/preprocess/default.py | 19 ++++--- seisflows/seisflows.py | 98 +++++++++++++++++++++------------ seisflows/solver/specfem.py | 69 ++++++++++++++--------- seisflows/system/cluster.py | 10 +--- seisflows/system/slurm.py | 36 ++++++------ seisflows/system/workstation.py | 94 +++++++++++++++++-------------- seisflows/workflow/forward.py | 51 ++++++++++++----- seisflows/workflow/inversion.py | 24 ++++---- seisflows/workflow/migration.py | 42 ++++++++------ 13 files changed, 307 insertions(+), 205 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 0ebd7df5..ba8d9295 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -57,7 +57,8 @@ def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): """ # Read in parameters from file. Set up the logger parameters = load_yaml(os.path.join(workdir, parameter_file)) - config_logger(level=parameters.log_level, filename=parameters.path_log_file, + config_logger(level=parameters.log_level, + filename=parameters.path_output_log, verbose=parameters.verbose) # Instantiate SeisFlows modules dynamically based on choices and parameters diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 80e12b6f..0a45e581 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -61,8 +61,8 @@ def __init__(self, lbfgs_mem=3, lbfgs_max=np.inf, lbfgs_thresh=0., if self._line_search.title() != "Backtrack": logger.warning(f"L-BFGS optimization requires 'backtrack'ing line " f"search. Overwritng {self._line_search}") - self._line_search = "Backtrack" - self.line_search = getattr(line_search_dir, self._line_search)( + self.line_search_method = "Backtrack" + self._line_search = getattr(line_search_dir, self._line_search)( step_count_max=self.step_count_max, step_len_max=self.step_len_max ) @@ -148,7 +148,7 @@ def compute_direction(self): restarted = True # Save values to disk and memory - self.restarted = restarted + self._restarted = restarted return p_new @@ -164,8 +164,8 @@ def restart(self): self.save("p_new", -1 * g.vector) # Clear internal memory - self.line_search.clear_history() - self.restarted = True + self._line_search.clear_history() + self._restarted = True self._LBFGS_iter = 1 self._memory_used = 0 diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index d49704ec..8c801521 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -34,8 +34,8 @@ def __init__(self, nlcg_max=np.inf, nlcg_thresh=np.inf, if self._line_search.title != "Bracket": logger.warning(f"NLCG optimization requires 'bracket'ing line " f"search. Overwritng {self._line_search}") - self._line_search = "Bracket" - self.line_search = getattr(line_search_dir, self._line_search)( + self.line_search_method = "Bracket" + self._line_search = getattr(line_search_dir, self._line_search)( step_count_max=self.step_count_max, step_len_max=self.step_len_max ) @@ -124,7 +124,7 @@ def compute_direction(self): restarted = 0 # Save values to disk and memory - self.restarted = restarted + self._restarted = restarted return p_new @@ -137,8 +137,8 @@ def restart(self): g = self.load("g_new") self.save("p_new", -1 * g.vector) - self.line_search.clear_history() - self.restarted = 1 + self._line_search.clear_history() + self._restarted = 1 self._NLCG_iter = 1 def _fletcher_reeves(self, g_new, g_old): diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index d7526f57..9cc6b7f0 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -46,27 +46,45 @@ class Gradient: are 'bracket' and 'backtrack'. See seisflows.plugins.line_search for all available options :type preconditioner: str - :param preconditioner: algorithm for preconditioning gradients + :param preconditioner: algorithm for preconditioning gradients. Currently + available: 'diagonal'. Requires `path_preconditioner` to point to a + set of files that define the preconditioner, formatted the same as the + input model :type step_count_max: int :param step_count_max: maximum number of trial steps to perform during the line search before a change in line search behavior is - considered + considered, or a line search is considered to have failed. :type step_len_init: float - :param step_len_init: initial line search step length as a fraction of - current model parameters. + :param step_len_init: initial line search step length guess, provided + as a fraction of current model parameters. :type step_len_max: float :param step_len_max: maximum allowable step length during the line search. Set as a fraction of the current model parameters - :type path_line_search: str - :param path_line_search: full path to a file used to periodically - save the line search history as a NumPy .npz file + + [path structure] + :type path_preconditioner: str + :param path_preconditioner: optional path to a set of preconditioner files + formatted the same as the input model (or output model of solver). + Required to exist and contain files if `preconditioner`==True """ def __init__(self, line_search_method="bracket", preconditioner=None, step_count_max=10, step_len_init=0.05, step_len_max=0.5, - workdir=os.getcwd(), path_optimize=None, path_line_search=None, - path_output=None, path_preconditioner=None, - **kwargs): - """Gradient-descent input parameters""" + workdir=os.getcwd(), path_optimize=None, path_output=None, + path_preconditioner=None, **kwargs): + """ + Gradient-descent input parameters. + + .. note:: + Paths listed here are shared with `workflow.forward` and so are not + included in the class docstring. + + :type workdir: str + :param workdir: working directory in which to look for data and store + results. Defaults to current working directory + :type path_output: str + :param path_output: path to directory used for permanent storage on disk. + Results and exported scratch files are saved here. + """ super().__init__() self.preconditioner = preconditioner @@ -81,10 +99,6 @@ def __init__(self, line_search_method="bracket", preconditioner=None, output=path_output or os.path.join(workdir, "output"), preconditioner=path_preconditioner, ) - self.path["line_search"] = ( - path_line_search or - os.path.join(self.path.scratch, "line_search") - ) # Internal check to see if the chosen line search algorithm exists if not hasattr(line_search_dir, line_search_method): @@ -106,7 +120,7 @@ def __init__(self, line_search_method="bracket", preconditioner=None, self._line_search = getattr( line_search_dir, line_search_method.title())( step_count_max=step_count_max, step_len_max=step_len_max, - path=self.path.line_search + path=os.path.join(self.path.scratch, "line_search") ) @property diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 000d59b6..f78f2eef 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -20,9 +20,8 @@ class Default: """ - [preprocess.default] SeisFlows preprocessing module provides data processing - functions for seismic traces, with options for data misfit, filtering, - normalization and muting. + [preprocess.default] Data processing for seismic traces, with options for + data misfit, filtering, normalization and muting. :type data_format: str :param data_format: data format for reading traces into memory. For @@ -70,9 +69,6 @@ class Default: LATE: mute late arrivals; SHORT: mute short source-receiver distances; LONG: mute long source-receiver distances - :type path_preprocess: str - :param path_preprocess: scratch path for all preprocessing processes, - including saving files """ def __init__(self, data_format="ascii", misfit="waveform", adjoint="waveform", normalize=None, filter=None, @@ -83,7 +79,16 @@ def __init__(self, data_format="ascii", misfit="waveform", """ Preprocessing module parameters - + .. note:: + Paths listed here are shared with `workflow.forward` and so are not + included in the class docstring. + + :type workdir: str + :param workdir: working directory in which to look for data and store + results. Defaults to current working directory + :type path_preprocess: str + :param path_preprocess: scratch path for all preprocessing processes, + including saving files """ self.data_format = data_format.upper() self.misfit = misfit diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 801a545f..273b2d70 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -232,10 +232,10 @@ def _format_action(self, action): """, help="Check state of an active environment") - check.add_argument("choice", type=str, nargs="?", - help="Parameter, state, or value to check") - check.add_argument("args", type=str, nargs="*", - help="Generic arguments passed to check functions") + # check.add_argument("choice", type=str, nargs="?", + # help="Parameter, state, or value to check") + # check.add_argument("args", type=str, nargs="*", + # help="Generic arguments passed to check functions") # ========================================================================= print_ = subparser.add_parser( "print", formatter_class=argparse.RawDescriptionHelpFormatter, @@ -442,18 +442,16 @@ def configure(self, absolute_paths=False, **kwargs): unix.cp(self._args.parameter_file, temp_par_file) try: - written = [] + written, path_docstrings = [], [] f = open(self._args.parameter_file, "a") - print(f"writing parameters for modules: ") + # Write all module parameters and corresponding docstrings for module in modules: - print(f"{module.__class__.__name__}") - # Write the docstring - f.write(f"# {'=' * 77}\n#") - f.write(module.__doc__.replace("\n", "\n#")) - f.write(f"\n# {'=' * 77}\n") + docstring = module.__doc__.replace("\n", "\n#") + docstring = docstring.split("[path structure]")[0] + f.write(f"# {'=' * 77}\n#{docstring}\n# {'=' * 77}\n") + # Write the parameters, make sure to not have the same one twice for key, val in vars(module).items(): - print(key) # Skip already written, hidden vars, and paths if (key in written) or key.startswith("_") or key == "path": continue @@ -462,6 +460,31 @@ def configure(self, absolute_paths=False, **kwargs): val = "null" f.write(f"{key}: {val}\n") written.append(key) + # Write docstrings for publically accesible path structure + f.write(f"# {'=' * 77}\n") + f.write("#\n") + f.write("#\t [path structure] SeisFlows internal/external paths") + for module in modules: + docstring = module.__doc__.strip().replace("\n", "\n#") + docstring = docstring.split("[path structure]") + try: + # The extra split is to catch any inherited docstrings + f.write(docstring[1].split("[")[0]) + # IndexError means no path docstring to write out + except IndexError as e: + continue + f.write(f"\n# {'=' * 77}\n") + + # Write values for publically accessible path structure + written = [] + for module in modules: + for key, val in module.path.items(): + if key in written: + continue + if val is None: + val = "null" + f.write(f"path_{key}: {val}\n") + written.append(key) except Exception: unix.rm(self._args.parameter_file) unix.cp(temp_par_file, self._args.parameter_file) @@ -524,7 +547,7 @@ def swap(self, module, classname, **kwargs): unix.rm(f"_{self._args.parameter_file}") - def validate(self, **kwargs): + def check(self, **kwargs): """ Run check() functions for a given parameter file and each of the SeisFlows modules, ensuring that parameters are acceptable for the @@ -535,7 +558,10 @@ def validate(self, **kwargs): workflow = import_seisflows(workdir=self._args.workdir, parameter_file=self._args.parameter_file) - workflow.check() + try: + workflow.check() + except AssertionError as e: + print(msg.cli(str(e), border="=", header="parameter errror")) def submit(self, **kwargs): """ @@ -549,7 +575,7 @@ def submit(self, **kwargs): workflow = import_seisflows(workdir=self._args.workdir, parameter_file=self._args.parameter_file) - workflow.system.submit() + workflow.system.submit(workflow) def clean(self, force=False, **kwargs): """ @@ -864,27 +890,27 @@ def examples(self, run=None, choice=None, **kwargs): )) print(msg.cli(items=items)) - def check(self, choice=None, **kwargs): - """ - Check parameters, state or values of an active SeisFlows environment. - Type 'seisflows check --help' for a detailed help message. - - :type choice: str - :param choice: underlying sub-function to choose - """ - acceptable_args = {"model": self._check_model_parameters, - "iter": self._check_current_iteration, - "src": self._check_source_names, - "isrc": self._check_source_index} - - # Ensure that help message is thrown for empty commands - if choice not in acceptable_args.keys(): - self._subparser.print_help() - sys.exit(0) - - self._register_parameters() - self._load_modules() - acceptable_args[choice](*self._args.args, **kwargs) + # def check(self, choice=None, **kwargs): + # """ + # Check parameters, state or values of an active SeisFlows environment. + # Type 'seisflows check --help' for a detailed help message. + # + # :type choice: str + # :param choice: underlying sub-function to choose + # """ + # acceptable_args = {"model": self._check_model_parameters, + # "iter": self._check_current_iteration, + # "src": self._check_source_names, + # "isrc": self._check_source_index} + # + # # Ensure that help message is thrown for empty commands + # if choice not in acceptable_args.keys(): + # self._subparser.print_help() + # sys.exit(0) + # + # self._register_parameters() + # self._load_modules() + # acceptable_args[choice](*self._args.args, **kwargs) def print(self, choice=None, **kwargs): """ diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index d388b86a..f41b3ae9 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -31,14 +31,12 @@ class Specfem: """ - [solver.specfem] SPECFEM interface shared between 2D/3D/3D_GLOBE - implementations providing generalized interface to establish SPECFEM - working directories, call SPECFEM binaries, and keep track of a number of - parallel processes. + [solver.specfem] Generalized SPECFEM interface to manipulate + SPECFEM2D/3D/3D_GLOBE via Python. :type data_format: str :param data_format: data format for reading traces into memory. - Available: ['SU' seismic unix format, 'ASCII' human-readable ascii] + Available: ['SU': seismic unix format, 'ASCII': human-readable ascii] :type materials: str :param materials: Material parameters used to define model. Available: ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] @@ -69,11 +67,8 @@ class Specfem: :type mpiexec: str :param mpiexec: MPI executable used to run parallel processes. Should also be defined for the system module - :type workdir: str - :param workdir: working directory in which to look for data and store - results. Defaults to current working directory - :type path_solver: str - :param path_solver: scratch path for all solver related tasks + + [path structure] :type path_data: str :param path_data: path to any externally stored data required by the solver :type path_specfem_bin: str @@ -83,12 +78,6 @@ class Specfem: :param path_specfem_data: path to SPECFEM DATA/ directory which must contain the CMTSOLUTION, STATIONS and Par_file files used for running SPECFEM - :type path_model_true: str - :param path_model_true: path to a target model if `case`=='synthetic' and - a set of synthetic 'observations' are required for workflow. - :type path_output: str - :param path_output: shared output directory on disk for more permanent - storage of solver related files such as traces, kernels, gradients. """ def __init__(self, data_format="ascii", materials="acoustic", density=False, nproc=1, ntask=1, attenuation=False, @@ -98,7 +87,29 @@ def __init__(self, data_format="ascii", materials="acoustic", path_data=None, path_specfem_bin=None, path_specfem_data=None, path_model_init=None, path_model_true=None, path_output=None, **kwargs): - """Set default SPECFEM interface parameters""" + """ + Set default SPECFEM interface parameters + + .. note:: + Paths listed here are shared with `workflow.forward` and so are not + included in the class docstring. + + :type workdir: str + :param workdir: working directory in which to look for data and store + results. Defaults to current working directory + :type path_solver: str + :param path_solver: scratch path for all solver related tasks + :type path_model_init: str + :param path_model_init: path to the starting model used to calculate the + initial misfit. Must match the expected `solver_io` format. + :type path_model_true: str + :param path_model_true: path to a target model if `case`=='synthetic' and + a set of synthetic 'observations' are required for workflow. + :type path_output: str + :param path_output: shared output directory on disk for more permanent + storage of solver related files such as traces, kernels, gradients. + """ + # Publically accessible parameters self.data_format = data_format self.materials = materials self.nproc = nproc @@ -109,7 +120,6 @@ def __init__(self, data_format="ascii", materials="acoustic", self.smooth_v = smooth_v self.components = components self.solver_io = solver_io - self.mpiexec = mpiexec self.source_prefix = source_prefix or "SOURCE" # Define internally used directory structure @@ -126,11 +136,12 @@ def __init__(self, data_format="ascii", materials="acoustic", ) self.path.mainsolver = os.path.join(self.path.scratch, "mainsolver") - # Establish internally defined parameter system + # Private internal parameters for keeping track of solver requirements self._parameters = [] if self.density: self._parameters.append("rho") + self._mpiexec = mpiexec self._source_names = None # for property source_names self._ext = None # for database file extensions self._io = getattr(solver_io_dir, self.solver_io) # for database IO @@ -167,10 +178,18 @@ def check(self): "IO method has no attribute 'write'" # Check that User has provided appropriate bin/ and DATA/ directories - for name, dir_ in zip(["bin/", "DATA/"], - [self.path.specfem_bin, self.path.specfem_data]): - assert(dir_ is not None), f"SPECFEM path '{name}' cannot be None" - assert(os.path.exists(dir_)), f"SPECFEM path '{name}' must exist" + assert(self.path.specfem_bin is not None), ( + f"`path_specfem_bin` cannot be NoneType. Must point to directory " + f"containing SPECFEM executables" + ) + assert(os.path.exists(self.path.specfem_bin)), ( + f"`path_specfem_bin` must exist and point to directory " + f"containing SPECFEM executables" + ) + assert(glob(os.path.join(self.path.specfem_bin, "*"))), ( + f"`path_specfem_bin` is empty but is expected to contain " + f"executable " \ + f"binary files") # Check that the required SPECFEM files are available in DATA/ for fid in ["STATIONS", "Par_file"]: @@ -655,8 +674,8 @@ def _run_binary(self, executable, stdout="solver.log"): sys.exit(-1) # Append with mpiexec if we are running with MPI - if self.mpiexec: - executable = f"{self.mpiexec} {executable}" + if self._mpiexec: + executable = f"{self._mpiexec} {executable}" try: with open(stdout, "w") as f: diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index f74973e0..fd40f89d 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -3,11 +3,6 @@ The Cluster class provides the core utilities interaction with HPC systems which must be overloaded by subclasses for specific workload managers, or specific clusters. - -.. warning:: - The Cluster class is an abstract base class for the Systems module which and - MUST be overwritten by system-specific child classes, it cannot be used to - run jobs by itself. """ import os import dill @@ -26,14 +21,15 @@ class Cluster(Workstation): to the name of the current working directory :type mpiexec: str :param mpiexec: Function used to invoke executables on the system. - For example 'srun' on SLURM systems. + For example 'mpirun', 'mpiexec', 'srun', 'ibrun' :type walltime: int :param walltime: maximum job time in minutes for the master SeisFlows job submitted to cluster :type tasktime: int :param tasktime: maximum job time in minutes for each job spawned by the SeisFlows master job during a workflow. These include, e.g., - running the forward solver + running the forward solver, adjoint solver, smoother, kernel combiner. + All spawned tasks receive the same task time. :type environs: str :param environs: Optional environment variables to be provided in the following format VAR1=var1,VAR2=var2... Will be set using diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index f18e4b43..98f391f3 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -31,21 +31,21 @@ class Slurm(Cluster): Resource Management (SLURM) system. :type ntask_max: int - :param ntask_max: limit the number of concurrent tasks in a given - array job + :param ntask_max: limit the number of concurrent tasks in a given array job :type slurm_args: str - :param slurm_args: Any optional, additional SLURM arguments that will + :param slurm_args: Any (optional) additional SLURM arguments that will be passed to the SBATCH scripts. Should be in the form: '--key1=value1 --key2=value2" """ __doc__ = Cluster.__doc__ + __doc__ - def __init__(self, ntask_max=100, slurm_args="", **kwargs): + def __init__(self, ntask_max=100, slurm_args="", **kwargs): """Slurm-specific setup parameters""" super().__init__(**kwargs) # Overwrite the existing 'mpiexec' - self.mpiexec = "srun -u" + if self.mpiexec is None: + self.mpiexec = "srun -u" self.ntask_max = ntask_max self.slurm_args = slurm_args @@ -75,7 +75,7 @@ def submit(self, submit_call=None): f"{self.slurm_args or ''}", f"--job-name={self.title}", f"--output={self.path.output_log}", - f"--error={self.path.error_log}", + f"--error={self.path.output_log}", f"--ntasks-per-node={self.node_size}", f"--nodes=1", f"--time={self.walltime:d}", @@ -139,8 +139,8 @@ def run(self, funcs, single=False, run_call=None, **kwargs): "process job") run_call = _modify_run_call_single_proc(run_call) - # Stdout will be job number. Federated clusters will return job # and - # cluster name (e.g., 1234;Cluster1), so split that off, only want job # + # Stdout will be job number (e.g., 1234). Federated clusters will return + # job # and cluster name (e.g., 1234;Cluster1). We only want job # job_id = subprocess.run(run_call, stdout=subprocess.PIPE, text=True, shell=True).stdout job_id = str(job_id).split(";")[0] @@ -176,32 +176,33 @@ def check_job_status(job_id): "OUT_OF_MEMORY", "CANCELLED"] while True: job_ids, states = query_job_states(job_id) - if [_ == "COMPLETED" for _ in states]: + if [state == "COMPLETED" for state in states]: return 1 # Pass - elif any([check in states for check in bad_states]): + elif any([check in states for check in bad_states]): # Any bad states? logger.info("atleast 1 system job returned a failing exit code") for job_id, state in zip(job_ids, states): if state in bad_states: logger.debug(f"{job_id}: {state}") return -1 # Fail else: - time.sleep(5) # Don't overload 'sacct' command + time.sleep(5) # Don't query 'sacct' command too often def query_job_states(job_id): """ - Queries completion status of an array job by running: - $ sacct -nLX -o jobid,state -j {job_id} + Queries completion status of an array job by running the SLURM cmd `sacct` + Available job states are listed here: https://slurm.schedmd.com/sacct.html - # Example outputs from this sacct command + .. note:: + The actual command line call wil look something like this + $ sacct -nLX -o jobid,state -j 441630 441630_0 PENDING 441630_1 COMPLETED - Available job states: https://slurm.schedmd.com/sacct.html - .. note:: + SACCT flag options are described as follows: -L: queries all available clusters, not just the cluster that ran the - `sacct` call + `sacct` call. Used for federated clusters -X: supress the .batch and .extern jobnames that are normally returned but don't represent that actual running job @@ -224,6 +225,7 @@ def query_job_states(job_id): def _modify_run_call_single_proc(run_call): """ Modifies a SLURM SBATCH command to use only 1 processor as a single run + by replacing the --array and --ntasks options :type run_call: str :param run_call: The SBATCH command to modify diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 04f9eb94..aa75fac4 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -17,29 +17,52 @@ class Workstation: [system.workstation] runs tasks in serial on a local machine. :type ntask: int - :param ntask: number of individual tasks/events to run during workflow + :param ntask: number of individual tasks/events to run during workflow. + Must be <= the number of source files in `path_specfem_data` :type nproc: int :param nproc: number of processors to use for each simulation :type log_level: str :param log_level: logger level to pass to logging module. - Available: 'debug', 'info', 'warning' + Available: 'debug', 'info', 'warning', 'critical' :type verbose: bool :param verbose: if True, formats the log messages to include the file name, line number and message type. Useful for debugging but - also very verbose - :type path_output: str - :param path_output: path to save files permanently to disk - :type path_system: str - :param path_system: scratch path to save any system related files + also very verbose. + + [path structure] + :type path_output_log: str + :param path_output_log: path to a text file used to store the outputs of + the package wide logger, which are also written to stdout + :type path_par_file: str + :param path_par_file: path to parameter file which is used to instantiate + the package + :type path_log_files: str + :param path_log_files: path to a directory where individual log files are + saved whenever a number of parallel tasks are run on the system. """ def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, workdir=os.getcwd(), path_output=None, path_system=None, - path_output_log=None, path_error_log=None, path_log_files=None, - path_par_file=None, **kwargs): - """Workstation System Class Parameters""" + path_par_file=None, path_output_log=None, path_log_files=None, + **kwargs): + """ + Workstation System Class Parameters + + .. note:: + Paths listed here are shared with `workflow.forward` and so are not + included in the class docstring. + + :type workdir: str + :param workdir: working directory in which to look for data and store + results. Defaults to current working directory + :type path_output: str + :param path_output: path to directory used for permanent storage on disk. + Results and exported scratch files are saved here. + :type path_system: str + :param path_system: scratch path to save any system related files + """ self.ntask = ntask self.nproc = nproc - self.log_level = log_level + self.log_level = log_level.upper() self.verbose = verbose # Define internal path system @@ -49,8 +72,8 @@ def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, output=path_output or os.path.join(workdir, "output"), log_files=path_log_files or os.path.join(workdir, "logs"), output_log=path_output_log or os.path.join(workdir, "sfoutput.log"), - error_log=path_error_log or os.path.join(workdir, "sferror.log"), ) + self._acceptable_log_levels = ["CRITICAL", "WARNING", "INFO", "DEBUG"] def check(self): """ @@ -59,17 +82,10 @@ def check(self): assert(os.path.exists(self.path.par_file)), \ f"parameter file does not exist but should" - def taskid(self): - """ - Provides a unique identifier for each running task, which should be set - by the 'run'' command. - - :rtype: int - :return: returns the os environment variable SEISFLOWS_TASKID which is - set by run() to label each of the currently - running processes on the SYSTEM. - """ - return get_task_id() + assert(self.ntask > 0), f"number of events/tasks `ntask` cannot be neg'" + assert(self.nproc == 1), f"system.workstation rqeuires `nproc`==1" + assert(self.log_level) in self._acceptable_log_levels, \ + f"`system.log_level` must be in {self._acceptable_log_levels}" def setup(self): """ @@ -94,8 +110,7 @@ def setup(self): # If resuming, move old log files to keep them out of the way. Number # in ascending order, so we don't end up overwriting things - for src in [self.path.output_log, self.path.error_log, - self.path.par_file]: + for src in [self.path.output_log, self.path.par_file]: i = 1 if os.path.exists(src): dst = os.path.join(self.path.log_files, number_fid(src, i)) @@ -105,22 +120,19 @@ def setup(self): logger.debug(f"copying par/log file to: {dst}") unix.cp(src=src, dst=dst) - # def submit(self, workflow, submit_call=None): - # """ - # Submits the main workflow job as a serial job submitted directly to - # the compute node that is running the master job - # - # TO DO fix this - # - # :type submit_call: str or None - # :param submit_call: the command line workload manager call to be run by - # subprocess. This is only needed for overriding classes, it has no - # effect on the Workstation class - # """ - # self.setup() - # workflow = sys.modules["seisflows_workflow"] - # workflow.checkpoint() - # workflow.main() + def submit(self, workflow, submit_call=None): + """ + Submits the main workflow job as a serial job submitted directly to + the system that is running the master job + + :type submit_call: str or None + :param submit_call: the command line workload manager call to be run by + subprocess. This is only needed for overriding classes, it has no + effect on the Workstation class + """ + workflow.setup() + workflow.check() + workflow.run() def run(self, funcs, single=False, **kwargs): """ diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 3d255497..80049c47 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -16,7 +16,7 @@ class Forward: """ - [workflow.forward] Run forward solver in parallel and optionally calculate + [workflow.forward] Run forward solver in parallel and (optionally) calculate data-synthetic misfit and adjoint sources. :type modules: list of module @@ -39,19 +39,43 @@ class Forward: :param export_residuals: export all residuals (data-synthetic misfit) that are generated by the external solver to `path_output`. If False, residuals stored in scratch may be discarded at any time in the workflow + + [path structure] + :type workdir: str :param workdir: working directory in which to look for data and store results. Defaults to current working directory + :type path_output: str + :param path_output: path to directory used for permanent storage on disk. + Results and exported scratch files are saved here. + :type path_data: str + :param path_data: path to any externally stored data required by the solver + :type path_state_file: str + :param path_state_file: path to a text file used to track the current + status of a workflow (i.e., what functions have already been completed), + used for checkpointing and resuming workflows + :type path_model_init: str + :param path_model_init: path to the starting model used to calculate the + initial misfit. Must match the expected `solver_io` format. + :type path_model_true: str + :param path_model_true: path to a target model if `case`=='synthetic' and + a set of synthetic 'observations' are required for workflow. :type path_eval_grad: str :param path_eval_grad: scratch path to store files for gradient evaluation, including models, kernels, gradient and residuals. """ - def __init__(self, modules=None, data_case=None, export_traces=False, - export_residuals=False, workdir=os.getcwd(), - path_eval_grad=None, path_output=None, path_data=None, - path_state_file=None, path_model_init=None, - path_model_true=None, **kwargs): - """Set default forward workflow parameters""" + def __init__(self, modules=None, data_case="data", export_traces=False, + export_residuals=False, workdir=os.getcwd(), path_output=None, + path_data=None, path_state_file=None, path_model_init=None, + path_model_true=None, path_eval_grad=None, **kwargs): + """ + Set default forward workflow parameters + + :type modules: list + :param modules: list of sub-modules that will be established as class + attributes by the setup() function. Should not need to be set by the + user + """ # Keep modules hidden so that seisflows configure doesnt count them # as 'parameters' self._modules = modules @@ -66,22 +90,17 @@ def __init__(self, modules=None, data_case=None, export_traces=False, eval_grad=path_eval_grad or os.path.join(workdir, "scratch", "eval_grad"), output=path_output or os.path.join(workdir, "output"), + model_init=path_model_init, + model_true=path_model_true, state_file=path_state_file or os.path.join(workdir, ".statefile.txt"), data=path_data, - model_init=path_model_init, - model_true=path_model_true ) self._required_modules = ["system", "solver"] self._acceptable_data_cases = ["data", "synthetic"] self._optional_modules = ["preprocess"] - # Empty module variables that should be filled in by setup - self.system = None - self.solver = None - self.preprocess = None - # Read in any existing state file which keeps track of workflow tasks self._states = {} if os.path.exists(self.path.state_file): @@ -160,6 +179,9 @@ def check(self): def setup(self): """ + Assigns modules as attributes of the workflow. I.e., `self.solver` to + access the solver module (or `workflow.solver` from outside class) + Makes required path structure for the workflow, runs setup functions for all the required modules of this workflow. """ @@ -232,7 +254,6 @@ def checkpoint(self): # Pickle the current working state so that system can load it during run - def run(self): """ Call the Task List in order to 'run' the workflow. Contains logic for diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 70d39c8a..9d5cc7f7 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -30,8 +30,8 @@ class Inversion(Migration): """ - [workflow.inversion] Peforms iterative nonlinear inversion using a built-in - optimization library which stores model vectors on disk. + [workflow.inversion] Peforms iterative nonlinear inversion using the + built-in optimization library. :type start: int :param start: start inversion workflow at this iteration. 1 <= start <= inf @@ -40,6 +40,9 @@ class Inversion(Migration): :type export_model: bool :param export_model: export best-fitting model from the line search to disk. If False, new models can be discarded from scratch at any time. + + [path structure] + :type path_eval_func: str :param path_eval_func: scratch path to store files for line search objective function evaluations, including models, misfit and residuals @@ -61,12 +64,10 @@ def __init__(self, modules=None, start=1, end=1, export_model=True, os.path.join(self.path.workdir, "scratch", "eval_func") - # Overwriting base class required modules list + # Internal attribute for keeping track of inversion + self._iteration = start self._required_modules = ["system", "solver", "preprocess", "optimize"] - # Empty module variables that should be filled in by setup - self.optimize = None - @property def task_list(self): """ @@ -108,6 +109,9 @@ def check(self): def setup(self): """ + Assigns modules as attributes of the workflow. I.e., `self.solver` to + access the solver module (or `workflow.solver` from outside class) + Lays groundwork for inversion by running setup() functions for the involved sub-modules, generating True model synthetic data if necessary, and generating the pre-requisite database files. @@ -117,14 +121,6 @@ def setup(self): unix.mkdir(self.path.eval_func) self.optimize = self._modules.optimize - def checkpoint(self): - """ - Override checkpoint and add the optimization iteration parameter - """ - super().checkpoint() - with open(self.path.state_file, "a") as f: - f.write(f"iteration: {self.optimize.iteration}") - def run(self): """Call the forward.run() function iteratively, from `start` to `end`""" for i in range(self.start, self.end + 1): diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index b7c73681..9508c064 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -5,6 +5,17 @@ simulation to derive the gradient of the objective function. This workflow sets up the machinery to derive a scaled, smoothed gradient from an initial model + +.. warning:: + Misfit kernels require large amounts of disk space for storage. + Setting `export_kernel`==True when PAR.NTASK is large and model files + are large may lead to large file overhead. + +.. note:: + Migration workflow includes an option to mask the gradient. While both + masking and preconditioning involve scaling the gradient, they are + fundamentally different operations: masking is ad hoc, preconditioning + is a change of variables; For more info, see Modrak & Tromp 2016 GJI """ import os @@ -20,21 +31,6 @@ class Migration(Forward): event-dependent misfit kernels. Sum and postprocess kernels to produce gradient. In seismic exploration this is 'reverse time migration'. - .. warning:: - Misfit kernels require large amounts of disk space for storage. - Setting `export_kernel`==True when PAR.NTASK is large and model files - are large may lead to large file overhead. - - .. note:: - Migration workflow includes an option to mask the gradient. While both - masking and preconditioning involve scaling the gradient, they are - fundamentally different operations: masking is ad hoc, preconditioning - is a change of variables; For more info, see Modrak & Tromp 2016 GJI - - :type path_mask: str - :param path_mask: optional path to a masking function which is used to - mask out or scale parts of the gradient. The user-defined mask must - match the file format of the input model (e.g., .bin files). :type export_gradient: bool :param export_gradient: export the gradient after it has been generated in the scratch directory. If False, gradient can be discarded from @@ -43,12 +39,26 @@ class Migration(Forward): :param export_kernels: export each sources event kernels after they have been generated in the scratch directory. If False, gradient can be discarded from scratch at any time in the workflow + + [path structure] + + :type path_mask: str + :param path_mask: optional path to a masking function which is used to + mask out or scale parts of the gradient. The user-defined mask must + match the file format of the input model (e.g., .bin files). """ __doc__ = Forward.__doc__ + __doc__ def __init__(self, modules=None, path_mask=None, export_gradient=False, export_kernels=False, **kwargs): - """Instantiate Migration-specific parameters""" + """ + Instantiate Migration-specific parameters + + :type modules: list + :param modules: list of sub-modules that will be established as class + attributes by the setup() function. Should not need to be set by the + user + """ super().__init__(**kwargs) self._modules = modules From ed7c34bfadbc6c4d34b7a7fa6d8905f47bf964c0 Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 21 Jul 2022 14:40:10 -0800 Subject: [PATCH 076/195] fixed some check statements in solver --- seisflows/solver/specfem.py | 33 +++++++++++++++------------------ 1 file changed, 15 insertions(+), 18 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index f41b3ae9..33bcf9d1 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -177,21 +177,24 @@ def check(self): assert hasattr(self._io, "write_slice"), \ "IO method has no attribute 'write'" - # Check that User has provided appropriate bin/ and DATA/ directories - assert(self.path.specfem_bin is not None), ( - f"`path_specfem_bin` cannot be NoneType. Must point to directory " + # Check that User has provided appropriate binary files to run SPECFEM + assert(self.path.specfem_bin is not None and + os.path.exists(self.path.specfem_bin)), ( + f"`path_specfem_bin` must exist and must point to directory " f"containing SPECFEM executables" ) - assert(os.path.exists(self.path.specfem_bin)), ( - f"`path_specfem_bin` must exist and point to directory " - f"containing SPECFEM executables" - ) - assert(glob(os.path.join(self.path.specfem_bin, "*"))), ( - f"`path_specfem_bin` is empty but is expected to contain " - f"executable " \ - f"binary files") + for fid in self._required_binaries: + assert(os.path.exists(os.path.join(self.path.specfem_bin, fid))), ( + f"`path_specfem_bin`/{fid} does not exist but is required by " + f"SeisFlows solver module" + ) - # Check that the required SPECFEM files are available in DATA/ + # Check that SPECFEM/DATA directory exists + assert(self.path.specfem_data is not None and + os.path.exists(self.path.specfem_data)), ( + f"`path_specfem_data` must exist and must point to directory " + f"containing SPECFEM input files" + ) for fid in ["STATIONS", "Par_file"]: assert(os.path.exists(os.path.join(self.path.specfem_data, fid))), ( f"DATA/{fid} does not exist but is required by SeisFlows solver" @@ -203,12 +206,6 @@ def check(self): f"{self.source_prefix}*"))), ( f"No source files with prefix {self.source_prefix} found in DATA/") - # Check that required binary files exist which are called upon by solver - for fid in self._required_binaries: - assert(os.path.exists(os.path.join(self.path.specfem_bin, fid))), ( - f"bin/{fid} does not exist but is required by SeisFlows solver" - ) - # Check that model type is set correctly in the Par_file model_type = getpar(key="MODEL", file=os.path.join(self.path.specfem_data, From 147e15b6d62ed8d7175b33461472d251ac13a0e2 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 22 Jul 2022 16:08:17 -0800 Subject: [PATCH 077/195] fixed up seisflows CLI tools based on the new workflow/parameter system seisflows configure still doesn't work as advertised, need to rethink system line search check failing, working to implement optimization checkpointing back in --- seisflows/__init__.py | 42 --------- seisflows/config.py | 6 +- seisflows/optimize/LBFGS.py | 19 ++-- seisflows/optimize/NLCG.py | 7 +- seisflows/optimize/gradient.py | 9 +- seisflows/plugins/line_search/bracket.py | 5 +- seisflows/seisflows.py | 36 +++----- seisflows/system/cluster.py | 25 ++++- seisflows/system/runscripts/run_funcs.py | 6 +- seisflows/system/workstation.py | 4 +- seisflows/workflow/forward.py | 8 +- seisflows/workflow/inversion.py | 113 +++++++++++++++++++---- 12 files changed, 165 insertions(+), 115 deletions(-) diff --git a/seisflows/__init__.py b/seisflows/__init__.py index 681646e4..45c157f4 100644 --- a/seisflows/__init__.py +++ b/seisflows/__init__.py @@ -1,6 +1,4 @@ -import copyreg import logging -import types from pkgutil import extend_path @@ -13,43 +11,3 @@ # Set up the SeisFlows Logging environment logger = logging.getLogger(__name__) - -def _pickle_method(method): - """ - The following code changes how instance methods are handled by pickle. - Placing it in this module ensures that pickle changes will be in - effect for all SeisFlows workflows - - Note: For relevant discussion, see stackoverflow thread: - "Can't pickle when using python's - multiprocessing Pool.map()" - - Relevant Links (last accessed 01.20.2020): - https://stackoverflow.com/questions/7016567/ - picklingerror-when-using-multiprocessing - - https://bytes.com/topic/python/answers/ - 552476-why-cant-you-pickle-instancemethods - """ - func_name = method.im_func.__name__ - obj = method.im_self - cls = method.im_class - return _unpickle_method, (func_name, obj, cls) - - -def _unpickle_method(func_name, obj, cls): - """ - The unpickling counterpart to the above function - """ - for cls in cls.mro(): - try: - func = cls.__dict__[func_name] - except KeyError: - pass - else: - break - return func.__get__(obj, cls) - - -copyreg.pickle(types.MethodType, _pickle_method, _unpickle_method) - diff --git a/seisflows/config.py b/seisflows/config.py index ba8d9295..8711dc24 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -12,11 +12,7 @@ """ import os import sys -import json -import types -import pickle import logging -import copyreg import traceback from pkgutil import find_loader from importlib import import_module @@ -69,7 +65,7 @@ def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): if name == "workflow": continue modules[name] = custom_import(name, parameters[name])(**parameters) - parameters.pop(name) # drop name so workflow doesnt instantiate it + # parameters.pop(name) # drop name so workflow doesnt instantiate it # Import workflow separately by providing all the instantiated modules to it workflow = \ diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 0a45e581..e5fbd6ed 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -58,11 +58,12 @@ def __init__(self, lbfgs_mem=3, lbfgs_max=np.inf, lbfgs_thresh=0., super().__init__(**kwargs) # Overwrite user-chosen line search. L-BFGS requires 'Backtrack'ing LS - if self._line_search.title() != "Backtrack": + if self.line_search_method.title() != "Backtrack": logger.warning(f"L-BFGS optimization requires 'backtrack'ing line " - f"search. Overwritng {self._line_search}") + f"search. Overwriting '{self.line_search_method}'") self.line_search_method = "Backtrack" - self._line_search = getattr(line_search_dir, self._line_search)( + self._line_search = getattr( + line_search_dir, self.line_search_method)( step_count_max=self.step_count_max, step_len_max=self.step_len_max ) @@ -113,8 +114,9 @@ def compute_direction(self): # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration g = self.load("g_new") + if self._LBFGS_iter == 1: - logger.info("first L-BFGS iteration, default to gradient descent") + logger.info("first L-BFGS iteration, default to 'Gradient' descent") p_new = -1 * g.vector restarted = False @@ -138,16 +140,19 @@ def compute_direction(self): # its angle to the previous search direction if self._check_status(g, q): logger.info("new L-BFGS search direction found") - p_new = -q + p_new = q.update(vector=-1 * q.vector) restarted = False else: logger.info("new search direction not appropriate, defaulting " "to gradient desceitn") self.restart() - p_new = -g + p_new = g.update(vector=-1 * g.vector) restarted = True - # Save values to disk and memory + # Assign newly computed 'p_new' vector to a Model instance + p_new = g.update(vector=p_new) + + # Assign restart condition to internal memory self._restarted = restarted return p_new diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 8c801521..4d25e11f 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -31,11 +31,12 @@ def __init__(self, nlcg_max=np.inf, nlcg_thresh=np.inf, super().__init__(**kwargs) # Overwrite user-chosen line search. L-BFGS requires 'Backtrack'ing LS - if self._line_search.title != "Bracket": + if self.line_search_method.title != "Bracket": logger.warning(f"NLCG optimization requires 'bracket'ing line " - f"search. Overwritng {self._line_search}") + f"search. Overwritng {self.line_search_method}") self.line_search_method = "Bracket" - self._line_search = getattr(line_search_dir, self._line_search)( + self._line_search = getattr( + line_search_dir, self.line_search_method)( step_count_max=self.step_count_max, step_len_max=self.step_len_max ) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 9cc6b7f0..1ccba9da 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -152,7 +152,7 @@ def setup(self): Sets up nonlinear optimization machinery """ unix.mkdir(self.path.scratch) - self.checkpoint_line_search() # will be empty + self.checkpoint() # will be empty def load(self, name): """ @@ -210,7 +210,7 @@ def save(self, name, m): else: raise TypeError(f"optimize.save unrecognized type error {type(m)}") - def checkpoint_line_search(self): + def checkpoint(self): """ Convenience wrapper of the underlying _line_search.save_search_history to avoid accessing the private attr. _line_search from outside the class @@ -218,6 +218,9 @@ def checkpoint_line_search(self): self._line_search.check_search_history() self._line_search.save_search_history() + # TODO add in checkpointing for optimization, saving iteration, + # restarted condition, etc? + def _precondition(self, q): """ Apply available preconditioner to a given gradient @@ -272,7 +275,7 @@ def initialize_search(self): gtp = dot(g.vector, p.vector) # Restart plugin line search if the optimization library restarts - if self.restarted: + if self._restarted: self._line_search.clear_history() # Optional safeguard to prevent step length from getting too large diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 917f52f7..9ade581d 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -83,8 +83,9 @@ def check_search_history(self): assert(len(self.gtg) == len(self.gtp)), f"too many entries for 'gtg'" assert(len(self.func_vals) == len(self.step_lens)), \ f"number of function evaluations does not match step lengths" - assert(self.step_count + 1 == len(self.func_vals)), \ - f"current step coutn doesn't match the number of function evals" + if self.func_vals: + assert(self.step_count + 1 == len(self.func_vals)), \ + f"current step count doesn't match the number of function evals" def save_search_history(self, file=None): """ diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 273b2d70..4dd0ea1e 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -16,7 +16,6 @@ import os import sys import inspect -import logging import warnings import argparse import traceback @@ -25,7 +24,7 @@ from IPython import embed from seisflows import logger -from seisflows.config import custom_import, NAMES, ROOT_DIR, config_logger, import_seisflows +from seisflows.config import custom_import, NAMES, ROOT_DIR, import_seisflows from seisflows.tools import unix, msg from seisflows.tools.core import load_yaml, Dict from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, @@ -321,8 +320,6 @@ class SeisFlows: any checks we must load the entire SeisFlows environment, which is slow but provides the most flexibility when accessing internal information """ - logger = logging.getLogger(__name__).getChild(__qualname__) - def __init__(self): """ Parse user-defined arguments and establish internal parameters used to @@ -575,7 +572,8 @@ def submit(self, **kwargs): workflow = import_seisflows(workdir=self._args.workdir, parameter_file=self._args.parameter_file) - workflow.system.submit(workflow) + system = workflow._modules.system + system.submit(workflow) def clean(self, force=False, **kwargs): """ @@ -602,21 +600,11 @@ def clean(self, force=False, **kwargs): "(y/[n])", header="clean", border="=")) if check == "y": - # CFGPATHS defines the outermost directory structure of SeisFlows - # We safeguard below against deleting the parameter file - items = [] - for fid_ in CFGPATHS.values(): - for fid in glob(os.path.join(self._args.workdir, fid_)): - # Safeguards against deleting files that should not be dltd - try: - assert("yaml" not in fid) - assert(not os.path.islink(fid)) - unix.rm(fid) - items.append(f"- deleting file/folder: {fid}") - except AssertionError: - items.append(f"+ skipping over: {fid}") - continue - print(msg.cli(items=items, header="clean", border="=")) + pars = load_yaml(self._args.parameter_file) + unix.rm(pars.path_scratch) + unix.rm(pars.path_output) + unix.rm(pars.path_log_files) + unix.rm(pars.path_state_file) def restart(self, force=False, **kwargs): """ @@ -637,13 +625,11 @@ def debug(self, **kwargs): # Break out sub-modules and parameters so they're more easily accesible parameters = load_yaml(self._args.parameter_file) - system = workflow.system - solver = workflow.solver - preprocess = workflow.preprocess - optimize = workflow.optimize + system, solver, preprocess, optimize = workflow._modules.values() + print("Loaded SeisFlows Modules:") for module in [workflow, system, solver, preprocess, optimize]: - print(module) + print(f"{module.__class__}") print(msg.cli("SeisFlows's debug mode is an embedded IPython " "environment. All modules are loaded by default. " diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index fd40f89d..fe42f3b8 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -3,8 +3,15 @@ The Cluster class provides the core utilities interaction with HPC systems which must be overloaded by subclasses for specific workload managers, or specific clusters. + +The `Cluster` class acts as a base class for more specific cluster +implementations (like SLURM). However it can be used standalone. When running +jobs on the `Cluster` system, jobs will be submitted to the master system +using `subprocess.run`, mimicing how jobs would be run on a cluster but not +actually submitting to any job scheduler. """ import os +import sys import dill import subprocess from seisflows import logger @@ -49,7 +56,7 @@ def __init__(self, title=None, mpiexec="", walltime=10, tasktime=1, self.mpiexec = mpiexec self.walltime = walltime self.tasktime = tasktime - self.environs = environs + self.environs = environs or "" def _pickle_func_list(self, funcs, **kwargs): """ @@ -103,11 +110,18 @@ def run(self, funcs, single=False, run_call=None, **kwargs): attempts default run call which should be suited for the given system """ + # Single tasks only need to be run one time, as `TASK_ID` === 0 + if single: + ntasks = 1 + else: + ntasks = self.ntask + funcs_fid, kwargs_fid = self._pickle_func_list(funcs, **kwargs) logger.info(f"running functions {[_.__name__ for _ in funcs]} on " f"system {self.ntask} times") if run_call is None: + # e.g., run --funcs func.p --kwargs kwargs.p --environment ... run_call = " ".join([ f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", f"--funcs {funcs_fid}", @@ -116,8 +130,13 @@ def run(self, funcs, single=False, run_call=None, **kwargs): ]) logger.debug(run_call) - for task_id in range(self.ntask): + for task_id in range(ntasks): logger.debug(f"running task id {task_id} " f"(job {task_id + 1}/{self.ntask})") # Subprocess waits for the process to end before running the next - subprocess.run(run_call.format(task_id=task_id), shell=True) + try: + subprocess.run(run_call.format(task_id=task_id), shell=True) + except subprocess.CalledProcessError as e: + logger.critical(f"run task_id {task_id} has failed with error " + f"message {e}") + sys.exit(-1) diff --git a/seisflows/system/runscripts/run_funcs.py b/seisflows/system/runscripts/run_funcs.py index f3cb61d1..6369a3a8 100755 --- a/seisflows/system/runscripts/run_funcs.py +++ b/seisflows/system/runscripts/run_funcs.py @@ -69,7 +69,11 @@ def export(myenv): os.environ[key] = val # Variables to be deleted will not split on '=', throwing ValueError except ValueError: - del os.environ[item] + try: + del os.environ[item] + # If a NoneType sneaks through, it will throw TypeEror on 'del' + except TypeError: + continue if __name__ == '__main__': diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index aa75fac4..299aabd2 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -71,7 +71,7 @@ def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, par_file=path_par_file or os.path.join(workdir, "parameters.yaml"), output=path_output or os.path.join(workdir, "output"), log_files=path_log_files or os.path.join(workdir, "logs"), - output_log=path_output_log or os.path.join(workdir, "sfoutput.log"), + output_log=path_output_log or os.path.join(workdir, "sflog.txt"), ) self._acceptable_log_levels = ["CRITICAL", "WARNING", "INFO", "DEBUG"] @@ -130,8 +130,8 @@ def submit(self, workflow, submit_call=None): subprocess. This is only needed for overriding classes, it has no effect on the Workstation class """ - workflow.setup() workflow.check() + workflow.setup() workflow.run() def run(self, funcs, single=False, **kwargs): diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 80049c47..baae46f9 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -93,7 +93,7 @@ def __init__(self, modules=None, data_case="data", export_traces=False, model_init=path_model_init, model_true=path_model_true, state_file=path_state_file or - os.path.join(workdir, ".statefile.txt"), + os.path.join(workdir, "sfstate.txt"), data=path_data, ) @@ -230,9 +230,9 @@ def setup(self): # Distribute modules to the class namespace. We don't do this at init # incase _modules was set as NoneType - self.solver = self._modules.solver - self.system = self._modules.system - self.preprocess = self._modules.preprocess + self.solver = self._modules.solver # NOQA + self.system = self._modules.system # NOQA + self.preprocess = self._modules.preprocess # NOQA def checkpoint(self): """ diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 9d5cc7f7..e7abf157 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -37,6 +37,11 @@ class Inversion(Migration): :param start: start inversion workflow at this iteration. 1 <= start <= inf :type end: int :param end: end inversion workflow at this iteration. start <= end <= inf + :type thrifty: bool + :param thrifty: a thrifty inversion skips the costly intialization step + (i.e., forward simulations and misfit quantification) if the final + forward simulations from the previous iterations line search can be + used in the current one. Requires L-BFGS optimization. :type export_model: bool :param export_model: export best-fitting model from the line search to disk. If False, new models can be discarded from scratch at any time. @@ -49,23 +54,36 @@ class Inversion(Migration): """ __doc__ = Migration.__doc__ + __doc__ - def __init__(self, modules=None, start=1, end=1, export_model=True, - path_eval_func=None, **kwargs): - """Instantiate Inversion-specific parameters""" - + def __init__(self, modules=None, start=1, end=1, thrifty=False, + optimize="LBFGS", export_model=True, path_eval_func=None, + **kwargs): + """ + Instantiate Inversion-specific parameters. Non-essential parameters are + listed here, rather than in the class docstring. + + :type optimize: str + :param optimize: Name of the optimization module chosen by the user. + This should be instantiated by default when using `import_seisflows` + Used to check that the correct module is set when performing a + `thrifty` inversion. + """ super().__init__(**kwargs) self._modules = modules self.start = start self.end = end self.export_model = export_model + self.thrifty = thrifty - self.path.eval_func = path_eval_func or \ - os.path.join(self.path.workdir, "scratch", + # Append an additional path for line search function evaluations + self.path["eval_func"] = path_eval_func or \ + os.path.join(self.path.workdir, "scratch", "eval_func") # Internal attribute for keeping track of inversion self._iteration = start + self._optimize_name = optimize + self._thrifty_status = False self._required_modules = ["system", "solver", "preprocess", "optimize"] @property @@ -107,6 +125,12 @@ def check(self): f"Incorrect START or END parameter. Values must be in order: " \ f"1 <= {self.start} <= {self.end}" + if self.thrifty: + assert(self._optimize_name == "LBFGS"), ( + f"a `thrifty` inversion requires the optimization module to be " + f"set as 'LBFGS'" + ) + def setup(self): """ Assigns modules as attributes of the workflow. I.e., `self.solver` to @@ -130,11 +154,32 @@ def run(self): def evaluate_initial_misfit(self): """ - Overwrite `workflow.forward` just to sum residuals output by preprocess - module and save them to disk, to be discoverable by the optimization - library + Overwrite `workflow.forward` to skip over initial misfit evaluation + (using `MODEL_INIT`) if we are past iteration 1. Additionally, sum + residuals output by preprocess module and save float to disk, to be + discoverable by the optimization library """ - super().evaluate_initial_misfit() + if self._iteration == 1: + super().evaluate_initial_misfit() + else: + # Thrifty inversion SKIPS initial misfit evaluation, re-using final + # model from previous line search. Can only happen mid-workflow + if self.thrifty and ( + self._thrifty_status or self._iteration == self.start): + logger.info(msg.mnr("THRIFTY INVERSION; SKIP MISFIT EVAL")) + else: + logger.info(msg.mnr("EVALUATING MISFIT FOR MODEL `m_new`")) + # Previous line search will have saved `m_new` as the initial model, + # export in SPECFEM format to a path discoverable by all solvers + path_model = os.path.join(self.path.eval_grad, "model") + m_new = self.optimize.load("m_new") + m_new.write(path=path_model) + # Run forward simulation/misfit quantification with previous model + self.system.run( + [self.evaluate_objective_function], + path_model=path_model, + save_residuals=os.path.join(self.path.eval_grad, "residuals") + ) # Override function to sum residuals into the optimization library residuals = np.loadtxt(os.path.join(self.path.eval_grad, "residuals")) @@ -185,7 +230,7 @@ def initialize_line_search(self): m_try, alpha = self.optimize.initialize_search() self.optimize.save(name="m_try", m=m_try) self.optimize.save(name="alpha", m=alpha) - self.optimize.checkpoint_line_search() + self.optimize.checkpoint() # Expose model `m_try` to the solver by placing it in eval_func dir. m_try.write(path=os.path.join(self.path.eval_func, "model")) @@ -215,14 +260,14 @@ def perform_line_search(self): # Increment step count, calculate new step length/model, check misfit status = self.optimize.update_line_search() - self.optimize.checkpoint_line_search() + self.optimize.checkpoint() # Proceed based on the outcome of the line search if status == 1: # Save outcome of line search to disk; reset step to 0 for next iter logger.info("trial step successful. finalizing line search") self.optimize.finalize_search() - self.optimize.checkpoint_line_search() + self.optimize.checkpoint() return elif status == 0: logger.info("trial step unsuccessful. re-attempting line search") @@ -259,14 +304,46 @@ def _evaluate_line_search_misfit(self): def clean_scratch_directory(self): """ Cleans directories in which function and gradient evaluations were - carried out + carried out. Contains some logic to consider whether or not to continue + with a thrifty inversion. """ logger.info(msg.mnr("CLEANING WORKDIR FOR NEXT ITERATION")) - unix.rm(self.path.eval_grad) - unix.rm(self.path.eval_func) + self._thrifty_status = self._update_thrifty_status() + if self._thrifty_status: + unix.rm(self.path.eval_grad) + # Eval func model now defines the current model 'm_new' + unix.mv(self.path.eval_func, self.path.eval_grad) + unix.mkdir(self.path.eval_func) + else: + unix.rm(self.path.eval_grad) + unix.rm(self.path.eval_func) - unix.mkdir(self.path.eval_grad) - unix.mkdir(self.path.eval_func) + unix.mkdir(self.path.eval_grad) + unix.mkdir(self.path.eval_func) + def _update_thrifty_status(self): + """ + Determine if line search forward simulation can be carried over to the + next iteration. Checks criteria related to the current iteration and + its position relative to the start and end of the workflow. + """ + if self._iteration == self.start: + logger.info("thrifty inversion encountering first iteration, " + "defaulting to standard inversion workflow") + _thrifty_status = False + elif self.optimize._restarted: # NOQA + logger.info("optimization has been restarted, defaulting to " + "standard inversion workflow") + _thrifty_status = False + elif self.optimize.iter == self.end: + logger.info("thrifty inversion encountering final iteration, " + "defaulting to inversion workflow") + _thrifty_status = False + else: + logger.info("acceptable conditions for thrifty inverison, " + "continuing with thrifty inversion") + _thrifty_status = True + + return _thrifty_status From 487675a3d5bb52dce098bbf55787170bb960033a Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 25 Jul 2022 15:09:15 -0800 Subject: [PATCH 078/195] inversion workflow now working with checkpointing of optimization module, has ability to resume failed workflow mid-iteratidue to state file starting to remove old tests, starting to write new tests --- seisflows/config.py | 85 ------------------- seisflows/optimize/gradient.py | 103 ++++++++++++++++------- seisflows/plugins/line_search/bracket.py | 30 ------- seisflows/seisflows.py | 4 +- seisflows/solver/specfem.py | 8 +- seisflows/tests/test_config.py | 33 -------- seisflows/tools/specfem.py | 8 +- seisflows/workflow/forward.py | 7 +- seisflows/workflow/inversion.py | 96 ++++++++++++++++----- 9 files changed, 159 insertions(+), 215 deletions(-) diff --git a/seisflows/config.py b/seisflows/config.py index 8711dc24..fa49286b 100755 --- a/seisflows/config.py +++ b/seisflows/config.py @@ -217,88 +217,3 @@ class 'Inversion'. print(msg.cli(f"The following method was not found in the imported " f"class: seisflows.{name}.{module}.{classname}")) sys.exit(-1) - -# def save(path): -# """ -# Export the current Python environment to disk as Pickle and JSON files, -# which allows us to checkpoint a current workflow and resume without -# loss of information. -# -# :type path: str -# :param path: path to save the current session -# """ -# if not os.path.exists(path): -# unix.mkdir(path) -# -# # Save the paths and parameters into a JSON file -# for name in ["seisflows_parameters", "seisflows_paths"]: -# fullfile = os.path.join(path, f"{name}.json") -# with open(fullfile, "w") as f: -# json.dump(sys.modules[name], f, sort_keys=True, indent=4) -# -# # Save the current workflow as pickle objects -# for name in NAMES: -# fullfile = os.path.join(path, f"seisflows_{name}.p") -# with open(fullfile, "wb") as f: -# pickle.dump(sys.modules[f"seisflows_{name}"], f) -# -# -# def load(path): -# """ -# Imports a previously saved session from disk by reading in JSON and -# Pickle files which define a saved Python environment -# -# :type path: str -# :param path: path to the previously saved session -# """ -# # Load parameters and paths from a JSON file -# for name in ["seisflows_parameters", "seisflows_paths"]: -# fullfile = os.path.join(os.path.abspath(path), f"{name}.json") -# with open(fullfile, "r") as f: -# sys.modules[name] = Dict(json.load(f)) -# -# # Load the saved workflow from pickle objects -# for name in NAMES: -# fullfile = os.path.join(os.path.abspath(path), f"seisflows_{name}.p") -# with open(fullfile, "rb") as f: -# sys.modules[f"seisflows_{name}"] = pickle.load(f) - -# def _pickle_method(method): -# """ -# The following code changes how instance methods are handled by pickle. -# Placing it in this module ensures that pickle changes will be in -# effect for all SeisFlows workflows -# -# Note: For relevant discussion, see stackoverflow thread: -# "Can't pickle when using python's -# multiprocessing Pool.map()" -# -# Relevant Links (last accessed 01.20.2020): -# https://stackoverflow.com/questions/7016567/ -# picklingerror-when-using-multiprocessing -# -# https://bytes.com/topic/python/answers/ -# 552476-why-cant-you-pickle-instancemethods -# """ -# func_name = method.im_func.__name__ -# obj = method.im_self -# cls = method.im_class -# return _unpickle_method, (func_name, obj, cls) -# -# -# def _unpickle_method(func_name, obj, cls): -# """ -# The unpickling counterpart to the above function -# """ -# for cls in cls.mro(): -# try: -# func = cls.__dict__[func_name] -# except KeyError: -# pass -# else: -# break -# return func.__get__(obj, cls) - - -# copyreg.pickle(types.MethodType, _pickle_method, _unpickle_method) - diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 1ccba9da..87f76c30 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -67,10 +67,10 @@ class Gradient: formatted the same as the input model (or output model of solver). Required to exist and contain files if `preconditioner`==True """ - def __init__(self, line_search_method="bracket", preconditioner=None, - step_count_max=10, step_len_init=0.05, step_len_max=0.5, - workdir=os.getcwd(), path_optimize=None, path_output=None, - path_preconditioner=None, **kwargs): + def __init__(self, line_search_method="bracket", + preconditioner=None, step_count_max=10, step_len_init=0.05, + step_len_max=0.5, workdir=os.getcwd(), path_optimize=None, + path_output=None, path_preconditioner=None, **kwargs): """ Gradient-descent input parameters. @@ -100,6 +100,10 @@ def __init__(self, line_search_method="bracket", preconditioner=None, preconditioner=path_preconditioner, ) + # Hidden paths to store checkpoint file in scratch directory + self.path["_checkpoint"] = os.path.join(self.path.scratch, + "checkpoint") + # Internal check to see if the chosen line search algorithm exists if not hasattr(line_search_dir, line_search_method): logger.warning(f"{line_search_method} is not a valid line search " @@ -120,7 +124,6 @@ def __init__(self, line_search_method="bracket", preconditioner=None, self._line_search = getattr( line_search_dir, line_search_method.title())( step_count_max=step_count_max, step_len_max=step_len_max, - path=os.path.join(self.path.scratch, "line_search") ) @property @@ -152,9 +155,12 @@ def setup(self): Sets up nonlinear optimization machinery """ unix.mkdir(self.path.scratch) + + # Load checkpoint (if resuming) or save current checkpoint + self.load_checkpoint() self.checkpoint() # will be empty - def load(self, name): + def load_vector(self, name): """ Convenience function to access the full paths of model and gradient vectors that are saved to disk @@ -189,7 +195,7 @@ def load(self, name): return model - def save(self, name, m): + def save_vector(self, name, m): """ Convenience function to save/overwrite vectors on disk @@ -212,14 +218,47 @@ def save(self, name, m): def checkpoint(self): """ - Convenience wrapper of the underlying _line_search.save_search_history - to avoid accessing the private attr. _line_search from outside the class + The optimization module (and its underlying `line_search` attribute) + requires continuity across runs of the same workflow (e.g., in the + event of a failed job). This function saves internal attributes of + the optimization module to disk so that a resumed workflow does not + lose information from its previous version. + + User can checkpoint other variables by adding kwargs """ - self._line_search.check_search_history() - self._line_search.save_search_history() + dict_out = dict(restarted=self._restarted, + func_vals=self._line_search.func_vals, + step_lens=self._line_search.step_lens, + gtg=self._line_search.gtg, + gtp=self._line_search.gtp, + step_count=self._line_search.step_count) + + np.savez(file=self.path._checkpoint, **dict_out) - # TODO add in checkpointing for optimization, saving iteration, - # restarted condition, etc? + def load_checkpoint(self): + """ + Counterpart to `optimize.checkpoint`. Loads a checkpointed optimization + module from disk and sets internal tracking attributes. + """ + # NumPy appends '.npz' when saving. Make sure we honor that. + if not self.path._checkpoint.endswith(".npz"): + fid = f"{self.path._checkpoint}.npz" + else: + fid = self.path._checkpoint + + if os.path.exists(fid): + logger.info("re-loading optimization module from checkpoint") + dict_in = np.load(file=fid) + + self._restarted = bool(dict_in["restarted"]) + self._line_search.func_vals = list(dict_in["func_vals"]) + self._line_search.step_lens = list(dict_in["step_lens"]) + self._line_search.gtg = list(dict_in["gtg"]) + self._line_search.gtp = list(dict_in["gtp"]) + self._line_search.step_count = int(dict_in["step_count"]) + else: + logger.info("no optimization checkpoint found, assuming first run") + self.checkpoint() def _precondition(self, q): """ @@ -253,7 +292,7 @@ def compute_direction(self): :rtype: seisflows.tools.specfem.Model :return: search direction as a Model instance """ - g_new = self.load("g_new") + g_new = self.load_vector("g_new") p_new = g_new.update(vector=-1 * self._precondition(g_new.vector)) return p_new @@ -264,10 +303,10 @@ def initialize_search(self): direction with a given step length, calculated by the chosen line search algorithm. """ - m = self.load("m_new") # current model from external solver - g = self.load("g_new") # current gradient from scaled kernels - p = self.load("p_new") # current search direction from optimization - f = self.load("f_new") # current misfit value from preprocess + m = self.load_vector("m_new") # current model from external solver + g = self.load_vector("g_new") # current gradient from scaled kernels + p = self.load_vector("p_new") # current search direction + f = self.load_vector("f_new") # current misfit value from preprocess norm_m = max(abs(m.vector)) norm_p = max(abs(p.vector)) @@ -287,7 +326,7 @@ def initialize_search(self): # Initialize the line search and save it to disk. self._line_search.update_search_history(func_val=f, step_len=0., gtg=gtg, gtp=gtp) - self._line_search.check_search_history() + # self._line_search.check_search_history() alpha, _ = self._line_search.calculate_step_length() @@ -317,13 +356,13 @@ def update_line_search(self): status == -1 : failed """ # Collect information on a forward evaluation that just took place - alpha = self.load("alpha") # step length - f_try = self.load("f_try") # misfit for the trial model + alpha = self.load_vector("alpha") # step length + f_try = self.load_vector("f_try") # misfit for the trial model # Update the line search with a new step length and misfit value self._line_search.step_count += 1 self._line_search.update_search_history(step_len=alpha, func_val=f_try) - self._line_search.check_search_history() + # self._line_search.check_search_history() # Calculate a new step length based on line search algorithm alpha_try, status = self._line_search.calculate_step_length() @@ -331,18 +370,18 @@ def update_line_search(self): # Status == 0: Retry line search // Status == 1: Line search passed if status in [0, 1]: # Save new step length to disk - self.save("alpha", alpha_try) + self.save_vector("alpha", alpha_try) # Create a new trial model based on search direction, step length # and the initial model vector - m = self.load("m_new") - p = self.load("p_new") + m = self.load_vector("m_new") + p = self.load_vector("p_new") # Sets the latest trial model m_try = m.update(vector=m.vector + alpha * p.vector) logger.info("trial model 'm_try' parameters: ") m_try.check() - self.save("m_try", m_try) + self.save_vector("m_try", m_try) return status @@ -383,7 +422,7 @@ def finalize_search(self): # Choose minimum misfit value as final misfit/model. index 0 is initial f = self._line_search.get_search_history()[1] - self.save("f_new", f.min()) + self.save_vector("f_new", f.min()) logger.info(f"misfit of accepted trial model is f={f.min():.3E}") logger.info("resetting line search step count to 0") @@ -406,8 +445,8 @@ def attempt_line_search_restart(self, threshold=1E-3): :rtype: int :return: pass (1) fail (0) status for retrying line search """ - g = self.load("g_new") - p = self.load("p_new") + g = self.load_vector("g_new") + p = self.load_vector("p_new") theta = angle(p.vector, -1 * g.vector) logger.debug(f"checking gradient/search direction angle, " @@ -447,15 +486,15 @@ def _write_stats(self): # First time, write header information if not os.path.exists(fid): with open(fid, "w") as f: - for header in ["ITER", # "FACTOR", + for header in [# "ITER", "FACTOR", "GRAD_NORM_L1", "GRAD_NORM_L2", "MISFIT", "RESTART", "SLOPE", "STEP", "LENGTH", "THETA"]: f.write(f"{header.upper()},") f.write("\n") - g = self.load("g_new") - p = self.load("p_new") + g = self.load_vector("g_new") + p = self.load_vector("p_new") x, f, *_ = self._line_search.get_search_history() # Calculated stats factors diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 9ade581d..64f7744f 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -87,36 +87,6 @@ def check_search_history(self): assert(self.step_count + 1 == len(self.func_vals)), \ f"current step count doesn't match the number of function evals" - def save_search_history(self, file=None): - """ - Save the current line search history to disk. Used to re-load a line - search from disk in the case of a failed search - """ - if file is None: - file = self.path - - dict_out = dict(func_vals=self.func_vals, step_lens=self.step_lens, - gtg=self.gtg, gtp=self.gtp, step_count=self.step_count) - np.savez(file=file, **dict_out) - - def load_search_history(self, file=None): - """ - Load line search history from disk. Used to re-load line search in the - case of failed line searches. - """ - if file is None: - file = self.path - - # Numpy will append .npz to saved files, just ensure we honor that - if not file.endswith(".npz"): - file = f"{file}.npz" - - dict_in = np.load(file=file) - self.step_count = int(dict_in["step_count"]) # only var thats not list - for key in ["func_vals", "step_lens", "gtg", "gtp"]: - assert(key in dict_in), f"line search .npz file has no key {key}" - setattr(self, key, list(dict_in[key])) - def get_search_history(self, sort=True): """ A convenience function, collects information based on the current diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 4dd0ea1e..59c2e86f 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -476,7 +476,8 @@ def configure(self, absolute_paths=False, **kwargs): written = [] for module in modules: for key, val in module.path.items(): - if key in written: + # '_key' means hidden path so don't include in par file + if key in written or key.startswith("_"): continue if val is None: val = "null" @@ -605,6 +606,7 @@ def clean(self, force=False, **kwargs): unix.rm(pars.path_output) unix.rm(pars.path_log_files) unix.rm(pars.path_state_file) + unix.rm(pars.path_output_log) def restart(self, force=False, **kwargs): """ diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 33bcf9d1..bcac58d0 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -519,7 +519,7 @@ def adjoint_simulation(self, executables=None, save_kernels=False, names = glob(f"*proc??????_{tag}_kernel{self._ext}") unix.rename(old="alpha", new="vp", names=names) - logger.debug(f"renaming output event kernels: 'alpha' -> 'vp'") + logger.debug(f"renaming output event kernels: 'beta' -> 'vs'") for tag in ["beta", "beta[hv]", "reg1_beta", "reg1_beta[hv]"]: names = glob(f"*proc??????_{tag}_kernel{self._ext}") unix.rename(old="beta", new="vs", names=names) @@ -670,7 +670,7 @@ def _run_binary(self, executable, stdout="solver.log"): header="external solver error", border="=")) sys.exit(-1) - # Append with mpiexec if we are running with MPI + # Prepend with `mpiexec` if we are running with MPI if self._mpiexec: executable = f"{self._mpiexec} {executable}" @@ -684,7 +684,7 @@ def _run_binary(self, executable, stdout="solver.log"): "nonzero exit code (failure). Consider stopping any " "currently running jobs to avoid wasted " "computational resources. Check 'scratch/solver/" - "mainsolver/{stdout}' for the solvers stdout log " + f"mainsolver/{stdout}' for the solvers stdout log " "message. The failing command and error message are:", items=[f"exc: {executable}", f"err: {e}"], header="external solver error", @@ -742,8 +742,6 @@ def _initialize_working_directories(self): for source_name in self.source_names: cwd = os.path.join(self.path.scratch, source_name) if os.path.exists(cwd): - logger.warning(f"solver scratch path for source {source_name} " - f"already exists") continue self._initialize_working_directory(cwd=cwd) diff --git a/seisflows/tests/test_config.py b/seisflows/tests/test_config.py index cc725546..c200878f 100644 --- a/seisflows/tests/test_config.py +++ b/seisflows/tests/test_config.py @@ -2,44 +2,11 @@ Test the SeisFlows configuration script, which configures the compute system and the working environment required for SF to run properly """ -import os -import shutil import pytest from seisflows import config -TEST_DIR = os.path.join(config.ROOT_DIR, "tests") - - -@pytest.fixture -def copy_par_file(tmpdir): - """ - Copy the template parameter file into the temporary test directory - :rtype: str - :return: location of the parameter file - """ - src = os.path.join(TEST_DIR, "test_data", "test_filled_parameters.yaml") - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) - - -def test_seisflows_constants(): - """ - Ensure that the constants set in the Config file have not changed - Essentially a double check to make sure these things haven't been edited - because the rest of the package depends on these being accesible and - the same - """ - names_check = ["system", "preprocess", "solver", "optimize", "workflow"] - - root_dir_check = os.path.join( - os.path.dirname(os.path.abspath(__file__)), ".." - ) - - assert(config.NAMES == names_check) - assert(os.path.samefile(config.ROOT_DIR, root_dir_check)) - def test_custom_import(): """ diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 532a58f4..6fec3297 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -533,9 +533,13 @@ def setpar(key, val, file, delim="=", match_partial=False): lines = open(file, "r").readlines() - # Replace value in place + # Replace value in place. We only want to replace the 'LAST' occurrence + # otherwise we risk replacing the actual key (e.g., 'data_case' == 'data') + # will replace 'data' twice with a normal .replace() if val_out != "": - lines[i] = lines[i].replace(val_out, str(val)) + line_reverse = lines[i][::-1].replace(val_out[::-1], str(val)[::-1], 1) + lines[i] = line_reverse[::-1] + # lines[i] = lines[i].replace(val_out, str(val)) else: # Special case where the initial parameter is empty so we just replace # the newline formatter at the end diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index baae46f9..f3e6aba4 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -165,12 +165,12 @@ def check(self): if self.data_case.lower() == "data": assert(self.path.data is not None and os.path.exists(self.path.data)), \ - f"importing data with `data_case`=='import' requires " \ + f"importing data with `data_case`=='data' requires " \ f"'path_data' to exist" elif self.data_case.lower() == "synthetic": assert(self.path.model_true is not None and os.path.exists(self.path.model_true)), \ - f"creating data with `data_case`=='create' requires " \ + f"creating data with `data_case`=='synthetic' requires " \ f"'path_model_true' to exist and point to a target model" else: logger.warning(f"`workflow.data_case` is None, SeisFlows will not " @@ -252,8 +252,6 @@ def checkpoint(self): for key, val in self._states.items(): f.write(f"{key}: {val}\n") - # Pickle the current working state so that system can load it during run - def run(self): """ Call the Task List in order to 'run' the workflow. Contains logic for @@ -275,6 +273,7 @@ def run(self): try: func() self._states[func.__name__] = "completed" + self.checkpoint() except Exception as e: self._states[func.__name__] = "failed" self.checkpoint() diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index e7abf157..1a2f5269 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -37,6 +37,10 @@ class Inversion(Migration): :param start: start inversion workflow at this iteration. 1 <= start <= inf :type end: int :param end: end inversion workflow at this iteration. start <= end <= inf + :type iteration: int + :param iteration: The current iteration of the workflow. If NoneType, takes + the value of `start` (i.e., first iteration of the workflow). User can + also set between `start` and `end` to resume a failed workflow. :type thrifty: bool :param thrifty: a thrifty inversion skips the costly intialization step (i.e., forward simulations and misfit quantification) if the final @@ -54,8 +58,9 @@ class Inversion(Migration): """ __doc__ = Migration.__doc__ + __doc__ - def __init__(self, modules=None, start=1, end=1, thrifty=False, - optimize="LBFGS", export_model=True, path_eval_func=None, + def __init__(self, modules=None, start=1, end=1, + thrifty=False, optimize="LBFGS", export_model=True, + path_eval_func=None, **kwargs): """ Instantiate Inversion-specific parameters. Non-essential parameters are @@ -81,11 +86,17 @@ def __init__(self, modules=None, start=1, end=1, thrifty=False, "eval_func") # Internal attribute for keeping track of inversion - self._iteration = start self._optimize_name = optimize self._thrifty_status = False self._required_modules = ["system", "solver", "preprocess", "optimize"] + # Grab iteration from state file + if "iteration" in self._states: + self.iteration = int(self._states["iteration"]) + logger.debug(f"setting iteration=={self.iteration} from state file") + else: + self.iteration = start + @property def task_list(self): """ @@ -112,7 +123,7 @@ def task_list(self): self.evaluate_gradient_from_kernels, self.initialize_line_search, self.perform_line_search, - self.clean_scratch_directory + self.finalize_iteration ] def check(self): @@ -125,6 +136,18 @@ def check(self): f"Incorrect START or END parameter. Values must be in order: " \ f"1 <= {self.start} <= {self.end}" + assert(self.start <= self.iteration <= self.end), \ + f"`workflow.iteration` must be between `start` and `end`" + + if self.iteration > 1: + assert(os.path.exists(self.path.eval_grad)), \ + f"scratch path `eval_grad` does not exist but should for a " \ + f"workflow with `iteration` >= 1" + + if self.iteration >= self.end: + logger.warning(f"current `iteration` is >= chosen `end` point. " + f"Inversion workflow will not `run`") + if self.thrifty: assert(self._optimize_name == "LBFGS"), ( f"a `thrifty` inversion requires the optimization module to be " @@ -143,14 +166,28 @@ def setup(self): super().setup() unix.mkdir(self.path.eval_func) + self.optimize = self._modules.optimize + # If optimization has been run before, re-load from checkpoint + self.optimize.load_checkpoint() def run(self): """Call the forward.run() function iteratively, from `start` to `end`""" - for i in range(self.start, self.end + 1): - logger.info(msg.mnr(f"RUNNING ITERATION {i:0>2}")) - super().run() - logger.info(msg.mnr(f"COMPLETED ITERATION {i:0>2}")) + while self.iteration < self.end: + logger.info(msg.mnr(f"RUNNING ITERATION {self.iteration:0>2}")) + super().run() # Runs task list + logger.info(msg.mnr(f"COMPLETED ITERATION {self.iteration:0>2}")) + # Clear the state file for new iteration + self._states = {} + self.checkpoint() + + def checkpoint(self): + """ + Add an additional line in the state file to keep track of iteration, + """ + super().checkpoint() + with open(self.path.state_file, "a") as f: + f.write(f"iteration: {self.iteration}") def evaluate_initial_misfit(self): """ @@ -159,20 +196,20 @@ def evaluate_initial_misfit(self): residuals output by preprocess module and save float to disk, to be discoverable by the optimization library """ - if self._iteration == 1: + if self.iteration == 1: super().evaluate_initial_misfit() else: # Thrifty inversion SKIPS initial misfit evaluation, re-using final # model from previous line search. Can only happen mid-workflow if self.thrifty and ( - self._thrifty_status or self._iteration == self.start): + self._thrifty_status or self.iteration == self.start): logger.info(msg.mnr("THRIFTY INVERSION; SKIP MISFIT EVAL")) else: logger.info(msg.mnr("EVALUATING MISFIT FOR MODEL `m_new`")) # Previous line search will have saved `m_new` as the initial model, # export in SPECFEM format to a path discoverable by all solvers path_model = os.path.join(self.path.eval_grad, "model") - m_new = self.optimize.load("m_new") + m_new = self.optimize.load_vector("m_new") m_new.write(path=path_model) # Run forward simulation/misfit quantification with previous model self.system.run( @@ -184,7 +221,7 @@ def evaluate_initial_misfit(self): # Override function to sum residuals into the optimization library residuals = np.loadtxt(os.path.join(self.path.eval_grad, "residuals")) total_misfit = self.preprocess.sum_residuals(residuals) - self.optimize.save(name="f_new", m=total_misfit) + self.optimize.save_vector(name="f_new", m=total_misfit) def evaluate_gradient_from_kernels(self): """ @@ -195,10 +232,10 @@ def evaluate_gradient_from_kernels(self): super().evaluate_gradient_from_kernels() model = Model(os.path.join(self.path.eval_grad, "model")) - self.optimize.save(name="m_new", m=model) + self.optimize.save_vector(name="m_new", m=model) gradient = Model(path=os.path.join(self.path.eval_grad, "gradient")) - self.optimize.save(name="g_new", m=gradient) + self.optimize.save_vector(name="g_new", m=gradient) def initialize_line_search(self): """ @@ -224,12 +261,12 @@ def initialize_line_search(self): header="line search error") ) sys.exit(-1) - self.optimize.save(name="p_new", m=p_new) + self.optimize.save_vector(name="p_new", m=p_new) # Scale search direction with step length alpha generate a model update m_try, alpha = self.optimize.initialize_search() - self.optimize.save(name="m_try", m=m_try) - self.optimize.save(name="alpha", m=alpha) + self.optimize.save_vector(name="m_try", m=m_try) + self.optimize.save_vector(name="alpha", m=alpha) self.optimize.checkpoint() # Expose model `m_try` to the solver by placing it in eval_func dir. @@ -250,8 +287,6 @@ def perform_line_search(self): status == 0 : not finished status < 0 : failed """ - # self.optimize.line_search.load_search_history() - logger.info(msg.sub(f"LINE SEARCH STEP COUNT " f"{self.optimize.step_count + 1:0>2}")) @@ -271,6 +306,7 @@ def perform_line_search(self): return elif status == 0: logger.info("trial step unsuccessful. re-attempting line search") + self.optimize.checkpoint() self.perform_line_search() # RECURSIVE CALL elif status == -1: if self.optimize.attempt_line_search_restart(): @@ -278,6 +314,7 @@ def perform_line_search(self): "optimization algorithm and line search.") # Reset the line search machinery; set step count to 0 self.optimize.restart() + self.optimize.checkpoint() self.perform_line_search() # RECURSIVE CALL else: logger.critical( @@ -299,9 +336,9 @@ def _evaluate_line_search_misfit(self): "residuals")) total_misfit = self.preprocess.sum_residuals(residuals) logger.debug(f"misfit for trial model (f_try) == {total_misfit:.2E}") - self.optimize.save(name="f_try", m=total_misfit) + self.optimize.save_vector(name="f_try", m=total_misfit) - def clean_scratch_directory(self): + def finalize_iteration(self): """ Cleans directories in which function and gradient evaluations were carried out. Contains some logic to consider whether or not to continue @@ -309,6 +346,7 @@ def clean_scratch_directory(self): """ logger.info(msg.mnr("CLEANING WORKDIR FOR NEXT ITERATION")) + # Clear out the scratch directory self._thrifty_status = self._update_thrifty_status() if self._thrifty_status: unix.rm(self.path.eval_grad) @@ -322,13 +360,25 @@ def clean_scratch_directory(self): unix.mkdir(self.path.eval_grad) unix.mkdir(self.path.eval_func) + # Export scratch files to output if requested + if self.export_model: + model = self.optimize.load_vector("m_new") + model.write(path=os.path.join(self.path.output, + f"M{self.iteration:0>2}") + ) + + # Update optimization + self.iteration += 1 + logger.info(f"setting current iteration to: {self.iteration}") + self.optimize.checkpoint() + def _update_thrifty_status(self): """ Determine if line search forward simulation can be carried over to the next iteration. Checks criteria related to the current iteration and its position relative to the start and end of the workflow. """ - if self._iteration == self.start: + if self.iteration == self.start: logger.info("thrifty inversion encountering first iteration, " "defaulting to standard inversion workflow") _thrifty_status = False @@ -336,7 +386,7 @@ def _update_thrifty_status(self): logger.info("optimization has been restarted, defaulting to " "standard inversion workflow") _thrifty_status = False - elif self.optimize.iter == self.end: + elif self.iteration == self.end: logger.info("thrifty inversion encountering final iteration, " "defaulting to inversion workflow") _thrifty_status = False From 55d054b1add048a263ec54b8a6fa7f63c90d9add Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 25 Jul 2022 15:15:13 -0800 Subject: [PATCH 079/195] moved config.py to tools/ rather than main directory. Moved some of the constants (ROOT_DIR and NAMES) into __init__ rather than config --- seisflows/__init__.py | 6 + seisflows/examples/sfexample2d.py | 2 +- seisflows/preprocess/pyatoa.py | 2 +- seisflows/seisflows.py | 4 +- seisflows/system/cluster.py | 2 +- seisflows/system/frontera.py | 2 +- seisflows/system/lsf.py | 2 +- seisflows/system/maui.py | 2 +- .../system/runscripts/submit_workflow.py | 2 +- seisflows/system/slurm.py | 2 +- seisflows/tests/test_config.py | 30 --- .../scripts/make_test_directory_structure.py | 2 +- seisflows/tests/test_modules.py | 174 ------------------ seisflows/tests/test_preprocess.py | 2 +- seisflows/tests/test_seisflows.py | 4 +- seisflows/tests/test_solver.py | 2 +- seisflows/tests/test_tools.py | 23 ++- seisflows/{ => tools}/config.py | 9 +- seisflows/workflow/inversion.py | 28 +-- seisflows/workflow/test.py | 2 +- 20 files changed, 61 insertions(+), 241 deletions(-) delete mode 100644 seisflows/tests/test_config.py delete mode 100644 seisflows/tests/test_modules.py rename seisflows/{ => tools}/config.py (96%) diff --git a/seisflows/__init__.py b/seisflows/__init__.py index 45c157f4..eadb0c3d 100644 --- a/seisflows/__init__.py +++ b/seisflows/__init__.py @@ -1,3 +1,4 @@ +import os import logging from pkgutil import extend_path @@ -11,3 +12,8 @@ # Set up the SeisFlows Logging environment logger = logging.getLogger(__name__) +# The location of this config file, which is the main repository +ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) + +# List of module names required by SeisFlows for imports. Order-sensitive +NAMES = ["workflow", "system", "solver", "preprocess", "optimize"] \ No newline at end of file diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 72166c0e..c4ed3e0e 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -34,7 +34,7 @@ import numpy as np from seisflows.tools import msg -from seisflows.config import Dict +from seisflows.tools.config import Dict from seisflows.seisflows import SeisFlows from seisflows.tools.unix import cd, cp, rm, ln, mv, mkdir diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyatoa.py index 4b99ee51..f938be87 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyatoa.py @@ -16,7 +16,7 @@ from seisflows import logger from seisflows.tools import unix, msg -from seisflows.config import CFGPATHS +from seisflows.tools.config import CFGPATHS class Pyatoa: diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 59c2e86f..78862bfa 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -23,10 +23,10 @@ from glob import glob from IPython import embed -from seisflows import logger -from seisflows.config import custom_import, NAMES, ROOT_DIR, import_seisflows +from seisflows import logger, ROOT_DIR, NAMES from seisflows.tools import unix, msg from seisflows.tools.core import load_yaml, Dict +from seisflows.tools.config import custom_import, import_seisflows from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index fe42f3b8..4d25be83 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -15,7 +15,7 @@ import dill import subprocess from seisflows import logger -from seisflows.config import ROOT_DIR +from seisflows.tools.config import ROOT_DIR from seisflows.system.workstation import Workstation diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index 40e5d903..303f613c 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -8,7 +8,7 @@ """ import os import numpy as np -from seisflows.config import ROOT_DIR +from seisflows.tools.config import ROOT_DIR from seisflows.system.slurm import Slurm diff --git a/seisflows/system/lsf.py b/seisflows/system/lsf.py index 4bcc277f..3a5fddf9 100644 --- a/seisflows/system/lsf.py +++ b/seisflows/system/lsf.py @@ -10,7 +10,7 @@ import subprocess from seisflows.system.cluster import Cluster -from seisflows.config import ROOT_DIR +from seisflows.tools.config import ROOT_DIR class Lsf(Cluster): diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index dafaaa36..3ff3fddc 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -21,7 +21,7 @@ import numpy as np from seisflows import logger from seisflows.system.slurm import Slurm -from seisflows.config import ROOT_DIR +from seisflows.tools.config import ROOT_DIR class Maui(Slurm): diff --git a/seisflows/system/runscripts/submit_workflow.py b/seisflows/system/runscripts/submit_workflow.py index 802ac22e..023a79e8 100644 --- a/seisflows/system/runscripts/submit_workflow.py +++ b/seisflows/system/runscripts/submit_workflow.py @@ -19,7 +19,7 @@ import argparse from seisflows.tools import unix -from seisflows.config import load, config_logger +from seisflows.tools.config import load, config_logger def parse_args(): diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 98f391f3..ab9acaa6 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -22,7 +22,7 @@ from seisflows import logger from seisflows.system.cluster import Cluster from seisflows.tools import msg -from seisflows.config import ROOT_DIR +from seisflows.tools.config import ROOT_DIR class Slurm(Cluster): diff --git a/seisflows/tests/test_config.py b/seisflows/tests/test_config.py deleted file mode 100644 index c200878f..00000000 --- a/seisflows/tests/test_config.py +++ /dev/null @@ -1,30 +0,0 @@ -""" -Test the SeisFlows configuration script, which configures the compute -system and the working environment required for SF to run properly -""" -import pytest - -from seisflows import config - - - -def test_custom_import(): - """ - Test that importing based on internal modules works for various inputs - :return: - """ - with pytest.raises(SystemExit): - config.custom_import() - with pytest.raises(SystemExit): - config.custom_import(name="NOT A VALID NAME") - - module = config.custom_import(name="optimize", module="LBFGS") - assert(module.__name__ == "LBFGS") - assert(module.__module__ == "seisflows.optimize.LBFGS") - - # Check one more to be safe - module = config.custom_import(name="preprocess", module="default") - assert(module.__name__ == "Default") - assert(module.__module__ == "seisflows.preprocess.default") - - diff --git a/seisflows/tests/test_data/scripts/make_test_directory_structure.py b/seisflows/tests/test_data/scripts/make_test_directory_structure.py index 41c9df08..2527d830 100644 --- a/seisflows/tests/test_data/scripts/make_test_directory_structure.py +++ b/seisflows/tests/test_data/scripts/make_test_directory_structure.py @@ -3,7 +3,7 @@ """ import os from seisflows.tools import unix -from seisflows.config import CFGPATHS, ROOT_DIR +from seisflows.tools.config import CFGPATHS, ROOT_DIR testdir = os.path.join(ROOT_DIR, "tests", "test_data") diff --git a/seisflows/tests/test_modules.py b/seisflows/tests/test_modules.py deleted file mode 100644 index 3b77581a..00000000 --- a/seisflows/tests/test_modules.py +++ /dev/null @@ -1,174 +0,0 @@ -""" -General test suite for all SeisFlows modules. Defines required parameters and -functions for each of the modules, tests importing each of the modules and that -each of the required parameters and functions exist. A sort of first-pass test -which makes sure the package is set up correctly. -""" -import os -import sys -import shutil -import pytest -from unittest.mock import patch -from seisflows import config -from seisflows.seisflows import SeisFlows, return_modules - - -# Define dictionary dictating the bare-minimum SeisFlows structure. -# Each subclass will be checked to see if it meets these requirements which -# ensure that the package will work as intended. The required functions are -# determined by whether or not other submodules call for these functions, e.g., -# an inversion workflow will call solver.eval_func() -required_structure = { - "system": { - "parameters": [], - "functions": ["submit", "run", "taskid", "checkpoint"] - }, - "preprocess": { - "parameters": [], - "functions": ["prepare_eval_grad", "sum_residuals", "finalize"] - }, - "solver": { - "parameters": ["MATERIALS", "DENSITY", "ATTENUATION"], - "functions": ["generate_data", "eval_func", - "eval_grad", "source_names", "parameters"] - }, - "postprocess": { - "parameters": [], - "functions": ["sum_smooth_kernels", "scale_gradient"] - }, - "optimize": { - "parameters": [], - "functions": ["compute_direction", "initialize_search", "update_search", - "finalize_search", "retry_status", "restart"] - }, - "workflow": { - "parameters": [], - "functions": ["main", "checkpoint"] - }, -} - -# Just make sure that the structure here is dictated by the Config -assert(set(required_structure.keys()) == set(config.NAMES)) - -# Define some re-used paths -TEST_DIR = os.path.join(config.ROOT_DIR, "tests") -REPO_DIR = os.path.abspath(os.path.join(config.ROOT_DIR, "..")) - - -@pytest.fixture -def copy_par_file(tmpdir): - """ - Copy the template parameter file into the temporary test directory - :rtype: str - :return: location of the parameter file - """ - src = os.path.join(TEST_DIR, "test_data", "test_filled_parameters.yaml") - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) - - -@pytest.fixture -def sfinit(tmpdir, copy_par_file): - """ - Re-used function that will initate a SeisFlows working environment in - sys modules - :return: - """ - copy_par_file - os.chdir(tmpdir) - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf._register_parameters() - sf._register_modules() - sf._check_parameters() - - return sf - - -def test_import(sfinit): - """ - Test code by importing all available classes for this module. - If any of these fails then the module itself has some code error - (e.g., syntax errors, inheritance errors). - """ - sfinit - for name in config.NAMES: - modules = return_modules()[name] - for module in modules: - config.custom_import(name, module)() - - -def test_required_parameters_exist(sfinit): - """ - Ensure that the required parameters are set in all the classes/subclasses - That is, that the parameters defined above in REQUIRED_PARAMETERS have been - defined by each SYSTEM class - """ - sfinit - for name in config.NAMES: - modules = return_modules()[name] - for module in modules: - loaded_module = config.custom_import(name, module)() - sf_pp = loaded_module.required - # Check that required parameters are set - for req_par in required_structure[name]["parameters"]: - assert(req_par in sf_pp.parameters.keys()), \ - f"{req_par} is a required parameter for module: " \ - f"{name}.{module}" - - -def test_required_functions_exist(sfinit): - """ - Make sure that the named, required functions exist within the class - Do not execute just make sure they're defined, because they will be - expected by other modules - """ - sfinit - for name in config.NAMES: - modules = return_modules()[name] - for module in modules: - loaded_module = config.custom_import(name, module)() - # Check that required parameters are set - for func in required_structure[name]["functions"]: - assert(func in dir(loaded_module)), \ - f"{func} is a required function for module: " \ - f"{name}.{module}" - - -@pytest.mark.skip("test not working as expected") -def test_setup(sfinit): - """ - Test the expected behavior of each of the required functions. - - Setup: make sure that setup creates the necessary directory structure - - :param sfinit: - :param modules: - :return: - """ - sfinit - PATH = sys.modules["seisflows_paths"] - SETUP_CREATES = [PATH.SCRATCH, PATH.SYSTEM, PATH.OUTPUT] - - for name in config.NAMES: - modules = return_modules()[name] - for module in modules: - loaded_module = config.custom_import(name, module)() - - # Make sure these don't already exist - for path_ in SETUP_CREATES: - assert(not os.path.exists(path_)) - - loaded_module.setup() - - # Check that the minimum required directories were created - for path_ in SETUP_CREATES: - pytest.set_trace() - assert(os.path.exists(path_)) - - # Remove created paths so we can check the next module - for path_ in SETUP_CREATES: - if os.path.isdir(path_): - shutil.rmtree(path_) - else: - os.remove(path_) diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index 6702e12e..9e09471e 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -5,7 +5,7 @@ import os import pytest from glob import glob -from seisflows.config import ROOT_DIR +from seisflows.tools.config import ROOT_DIR from seisflows.preprocess.default import Default diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 797fb48e..43c94079 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -13,7 +13,7 @@ from seisflows.tools.core import Dict from seisflows.seisflows import SeisFlows -from seisflows.config import ROOT_DIR, NAMES, CFGPATHS +from seisflows.tools.config import ROOT_DIR, NAMES, CFGPATHS from seisflows.tools.core import load_yaml TEST_DIR = os.path.join(ROOT_DIR, "tests") @@ -306,7 +306,7 @@ def test_cmd_configure(tmpdir, setup_par_file, conf_par_file): assert (len(lines_conf) == len(lines_fill)) # My attempt to flush sys.modules which did NOT work - # from seisflows.config import NAMES, PAR, PATH + # from seisflows.tools.config import NAMES, PAR, PATH # for name in NAMES: # del sys.modules[f"seisflows_{name}"] # del sys.modules[PAR] diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index 377d418f..c7bb6d8c 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -5,7 +5,7 @@ import os import pytest from glob import glob -from seisflows.config import ROOT_DIR +from seisflows.tools.config import ROOT_DIR from seisflows.tools.core import set_task_id from seisflows.solver.specfem import Specfem diff --git a/seisflows/tests/test_tools.py b/seisflows/tests/test_tools.py index cccd1fc9..88d0c5cd 100644 --- a/seisflows/tests/test_tools.py +++ b/seisflows/tests/test_tools.py @@ -4,8 +4,9 @@ import os import pytest from glob import glob +from seisflows import ROOT_DIR from seisflows.tools.specfem import Model -from seisflows.config import ROOT_DIR, NAMES, CFGPATHS +from seisflows.tools.config import custom_import TEST_DIR = os.path.join(ROOT_DIR, "tests") @@ -46,3 +47,23 @@ def test_specfem_model(tmpdir): # Check that writing fortran binary works m.write(path=tmpdir) assert(len(glob(os.path.join(tmpdir, f"*{m.fmt}"))) == 2) + + +def test_custom_import(): + """ + Test that importing based on internal modules works for various inputs + :return: + """ + with pytest.raises(SystemExit): + custom_import() + with pytest.raises(SystemExit): + custom_import(name="NOT A VALID NAME") + + module = custom_import(name="optimize", module="LBFGS") + assert(module.__name__ == "LBFGS") + assert(module.__module__ == "seisflows.optimize.LBFGS") + + # Check one more to be safe + module = custom_import(name="preprocess", module="default") + assert(module.__name__ == "Default") + assert(module.__module__ == "seisflows.preprocess.default") \ No newline at end of file diff --git a/seisflows/config.py b/seisflows/tools/config.py similarity index 96% rename from seisflows/config.py rename to seisflows/tools/config.py index fa49286b..08f346b2 100755 --- a/seisflows/config.py +++ b/seisflows/tools/config.py @@ -17,19 +17,12 @@ from pkgutil import find_loader from importlib import import_module -from seisflows import logger +from seisflows import logger, NAMES from seisflows.tools.core import Dict, Null from seisflows.tools import msg from seisflows.tools.core import load_yaml -# List of module names required by SeisFlows for imports. Order-sensitive -NAMES = ["workflow", "system", "solver", "preprocess", "optimize"] - -# The location of this config file, which is the main repository -ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__))) - - def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): """ Standard SeisFlows workflow setup block which runs a number of setup diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 1a2f5269..0a2371fa 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -346,6 +346,18 @@ def finalize_iteration(self): """ logger.info(msg.mnr("CLEANING WORKDIR FOR NEXT ITERATION")) + # Export scratch files to output if requested + if self.export_model: + model = self.optimize.load_vector("m_new") + model.write(path=os.path.join(self.path.output, + f"M{self.iteration:0>2}") + ) + + # Update optimization + self.iteration += 1 + logger.info(f"setting current iteration to: {self.iteration}") + self.optimize.checkpoint() + # Clear out the scratch directory self._thrifty_status = self._update_thrifty_status() if self._thrifty_status: @@ -360,23 +372,15 @@ def finalize_iteration(self): unix.mkdir(self.path.eval_grad) unix.mkdir(self.path.eval_func) - # Export scratch files to output if requested - if self.export_model: - model = self.optimize.load_vector("m_new") - model.write(path=os.path.join(self.path.output, - f"M{self.iteration:0>2}") - ) - - # Update optimization - self.iteration += 1 - logger.info(f"setting current iteration to: {self.iteration}") - self.optimize.checkpoint() - def _update_thrifty_status(self): """ Determine if line search forward simulation can be carried over to the next iteration. Checks criteria related to the current iteration and its position relative to the start and end of the workflow. + + .. note:: + Resumed, failed workflows will not re-load `_thrifty_status` so + initial misfit will always be evaluated in that case. """ if self.iteration == self.start: logger.info("thrifty inversion encountering first iteration, " diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index e5d61635..42f18b61 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -13,7 +13,7 @@ from glob import glob from seisflows.tools.core import Base -from seisflows.config import ROOT_DIR, CFGPATHS, save, config_logger +from seisflows.tools.config import ROOT_DIR, CFGPATHS, save, config_logger class Test(Base): From eda9b84f288354492e4d4661a3edd2265b600562 Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 25 Jul 2022 15:48:00 -0800 Subject: [PATCH 080/195] working on optimization test problem --- seisflows/optimize/gradient.py | 6 ++ seisflows/tests/test_optimize.py | 98 ++++++++++++++++++++++++++++++++ seisflows/tests/test_solver.py | 2 +- seisflows/tests/test_system.py | 0 4 files changed, 105 insertions(+), 1 deletion(-) delete mode 100644 seisflows/tests/test_system.py diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 87f76c30..22001523 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -184,10 +184,13 @@ def load_vector(self, name): """ assert(name in self._acceptable_vectors) model_npz = os.path.join(self.path.scratch, f"{name}.npz") + model_npy = model_npz.replace(".npz", ".npy") model_txt = model_npz.replace(".npz", ".txt") if os.path.exists(model_npz): model = Model(path=os.path.join(self.path.scratch, f"{name}.npz"), load=True) + elif os.path.exists(model_npy): + model = np.load(model_npy) elif os.path.exists(model_txt): model = float(np.loadtxt(model_txt)) else: @@ -210,6 +213,9 @@ def save_vector(self, name, m): path = os.path.join(self.path.scratch, f"{name}.npz") m.model = m.split() # overwrite m representation m.save(path=path) + elif isinstance(m, np.array): + path = os.path.join(self.path.scratch, f"{name}.npy") + np.save(path=path) elif isinstance(m, (float, int)): path = os.path.join(self.path.scratch, f"{name}.txt") np.savetxt(path, [m]) diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index 139597f9..3a5c4387 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -1,2 +1,100 @@ +""" +Test the optimization module by setting up a Rosenbrock optimization problem +and running line search +""" +import os +import pytest +import numpy as np +from seisflows.tools.specfem import Model +from seisflows.optimize.gradient import Gradient +from seisflows.optimize.LBFGS import LBFGS +from seisflows.optimize.NLCG import NLCG +@pytest.fixture +def rosenbrock(): + """ + Rosenbrock test problem for optimization library testing + + https://en.wikipedia.org/wiki/Rosenbrock_function + """ + model_init = np.array([-1.2, 1]) # This is the guess for the global min + model_true = np.array([1, 1]) # This is the actual minimum + + def objective_function(x): + """ + Rosenbrock objective function which is defined mathematically as: + + f(x,y) = (a-x)^2 + b(y-x^2)^2 + + where the global minimum is at (x,y) == (a, a^2) + and typical constant values are: a==1, b==100 + """ + return np.array([((1 - x[0]) ** 2 + 100 * (-x[0] ** 2 + x[1]) ** 2)]) + + def gradient(x): + """ + Gradient of the objective function for Rosenbrock test + """ + return np.array([-2*(1-x[0]) - 400*x[0]*(-x[0]**2+x[1]), + 200*(- x[0]**2+x[1])]) + + return model_init, model_true, objective_function, gradient + + +def rosenbrock_n(n=1E5): + """ + N dimensional Rosenbrock test problem for optimization library testing + + https://en.wikipedia.org/wiki/Rosenbrock_function + """ + model_init = 0.1 * np.ones(int(n)) # This is a guess for the global min + model_true = np.ones(int(n)) + + def objective_function(x): + """ + Rosenbrock objective function + """ + return sum(100 * (x[:-1]**2. - x[1:])**2. + (x[:-1] - 1.)**2) + + def gradient(x): + """ + Gradient of the objective function for Rosenbrock test + """ + g = np.zeros(int(n)) + g[1:-1] = -200 * (x[:-2] ** 2. - x[1:-1]) + \ + 400. * x[1:-1] * (x[1:-1] ** 2. - x[2:]) + \ + 2. * (x[1:-1] - 1.) + + g[0] = 400. * x[0] * (x[0] ** 2. - x[1]) + \ + 2. * (x[0] - 1) + + g[-1] = -200. * (x[-2] ** 2. - x[-1]) + + return g + + return model_init, model_true, objective_function, gradient + + +def test_gradient_descent_w_bracket(tmpdir, rosenbrock): + """ + Test Gradient class with Rosenbrock problem + """ + m_new, m_true, evaluate_objective_function, evaluate_gradient = rosenbrock() + + optimize = Gradient(workdir=tmpdir, line_search_method="bracket") + optimize.setup() + optimize.check() + + # Set up the optimization problem + optimize.save_vector(name="m_new", m=m_new) + optimize.initialize_search() + + while True: + f_try = evaluate_objective_function(x=m_new) + optimize.save_vector(name="f_try", m=f_try) + + g_new = evaluate_gradient(x=m_new) + optimize.save_vector(name="g_new", m=g_new) + + optimize. diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index c7bb6d8c..0ad93992 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -5,7 +5,7 @@ import os import pytest from glob import glob -from seisflows.tools.config import ROOT_DIR +from seisflows import ROOT_DIR from seisflows.tools.core import set_task_id from seisflows.solver.specfem import Specfem diff --git a/seisflows/tests/test_system.py b/seisflows/tests/test_system.py deleted file mode 100644 index e69de29b..00000000 From 19637c44037390a2daef732ca3018d792b37695a Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 26 Jul 2022 13:10:31 -0800 Subject: [PATCH 081/195] Model class can now set a model attribute and derive internal attributes from the model dictionary. This is opposed to old behavior where all of the internal attributes were set in __init__ and would not adjust if model vector was changed --- seisflows/tests/test_tools.py | 11 +++- seisflows/tools/specfem.py | 121 +++++++++++++++++++++++----------- 2 files changed, 94 insertions(+), 38 deletions(-) diff --git a/seisflows/tests/test_tools.py b/seisflows/tests/test_tools.py index 88d0c5cd..3e8c5ff0 100644 --- a/seisflows/tests/test_tools.py +++ b/seisflows/tests/test_tools.py @@ -3,8 +3,10 @@ """ import os import pytest +import numpy as np from glob import glob from seisflows import ROOT_DIR +from seisflows.tools.core import Dict from seisflows.tools.specfem import Model from seisflows.tools.config import custom_import @@ -40,7 +42,7 @@ def test_specfem_model(tmpdir): # Check that saving and loading npz file works m.save(path=os.path.join(tmpdir, "test.npz")) - m_new = Model(path=os.path.join(tmpdir, "test.npz"), load=True) + m_new = Model(path=os.path.join(tmpdir, "test.npz")) assert(m_new.ngll[0] == m.ngll[0]) assert(m_new.fmt == m.fmt) @@ -48,6 +50,13 @@ def test_specfem_model(tmpdir): m.write(path=tmpdir) assert(len(glob(os.path.join(tmpdir, f"*{m.fmt}"))) == 2) + # Check that we can instantiate a model from an input vector + m = Model() + m.model = Dict(x=[np.array([-1.2, 1.])]) + assert(m.nproc == 1) + assert(m.ngll == [2]) + assert(m.parameters == ["x"]) + def test_custom_import(): """ diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 6fec3297..8f038fb1 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -27,7 +27,7 @@ class Model: "vpv", "vph", "vsv", "vsh", "eta"] acceptable_parameters.extend([f"{_}_kernel" for _ in acceptable_parameters]) - def __init__(self, path, fmt=None, parameters=None, load=False): + def __init__(self, path=None, fmt=None, parameters=None): """ Model only needs path to model to determine model parameters. Format `fmt` can be provided by the user or guessed based on available file @@ -44,38 +44,38 @@ def __init__(self, path, fmt=None, parameters=None, load=False): :param fmt: expected format of the files (e.g., '.bin'), if None, will attempt to guess based on the file extensions found in `path` Available formats are: .bin, .dat - :type load: bool - :param load: load the model into disk as dictionary and vector - representations. If False, will guess how to import data based on - file extensions or lack thereof """ - assert os.path.exists(path), f"specfem model path {path} does not exist" self.path = path - self.parameters = parameters - - # Load an existing model - if os.path.splitext(path)[-1] == ".npz" or load: - self.model, self.ngll, self.fmt = self.load(file=self.path) - _first_key = list(self.model.keys())[0] - self.nproc = len(self.model[_first_key]) - # Read a model from files - else: - if fmt is None: - self.fmt = self._guess_file_format() + self.fmt = fmt + self.model = None + self._parameters = None + self._ngll = None + self._nproc = None + + # Load an existing model if a valid path is given + if self.path and os.path.exists(path): + # Read existing model from a previously saved .npz file + if os.path.splitext(path)[-1] == ".npz": + self.model, self._ngll, self.fmt = self.load(file=self.path) + _first_key = list(self.model.keys())[0] + self._nproc = len(self.model[_first_key]) + # Read a SPECFEM model from its native output files else: - self.fmt = fmt - self.nproc, self.available_parameters = self._get_nproc_parameters() - self.model, self.ngll = self.read(parameters=parameters) + if self.fmt is None: + self.fmt = self._guess_file_format() + self._nproc, self.available_parameters = \ + self._get_nproc_parameters() + self.model = self.read(parameters=parameters) - # .sorted() enforces parameter order every time, otherwise things can - # get screwy if keys returns different each time - self.parameters = sorted(self.model.keys()) + # .sorted() enforces parameter order every time, otherwise things + # can get screwy if keys returns different each time + self._parameters = sorted(self.model.keys()) @staticmethod def fnfmt(i="*", val="*", ext="*"): """ - Expected SPECFEM filename format with some checks to ensure that - wildcards and numbers are accepted. An example filename is: + Expected SPECFEM filename format with some checks to ensure that + wildcards and numbers are accepted. An example filename is: 'proc000001_vs.bin' :type i: int or str @@ -97,21 +97,73 @@ def fnfmt(i="*", val="*", ext="*"): filename_format = f"proc{i}_{val}{ext}" return filename_format + @property + def parameters(self): + """ + Returns a list of parameters which defines the model. + """ + if not self._parameters: + self._parameters = list(self.model.keys()) + return self._parameters + + @property + def ngll(self): + """ + Provide the number of GLL (Gauss Lobatto Legendre) points per processor + chunk. Access hidden attribute `_ngll` in the case that the model + is very large, we only want to count the GLL points once. + + :rtype: list of float + :return: each float represents the number of GLL points for the chunk + number that corresponds to its index + """ + if not self._ngll: + self._update_ngll_from_model() + return self._ngll + + def _update_ngll_from_model(self): + """Convenience function to count NGLL points as length of data arrays + for each parameter processor chunk""" + self._ngll = [] + for proc in self.model[self.parameters[0]]: + self._ngll.append(len(proc)) + + @property + def nproc(self): + """ + Returns the number of processors that define the model/gradient/kernel. + + :rtype: int + :return: number of processors that define the model + """ + if not self._nproc: + self._nproc = len(self.model[self.parameters[0]]) + return self._nproc + @property def vector(self): - """conveience property to access the merge() property which creates a - linear vector defining all model parameters""" - return self.merge() + """ + Conveience property to access the merge() function which creates a + linear vector defining all model parameters + + :rtype: np.array + :return: a linear vector of all model parameters + """ + try: + return self.merge() + except TypeError as e: + raise TypeError("Model cannot merge files into continous " + "vector") from e def read(self, parameters=None): """ Utility function to load in SPECFEM models/kernels/gradients saved in - various formats. Will try to guess format of model. Assumes that models + various formats. Will try to guess format of model. Assumes that models are saved using the following filename format: proc{num}_{val}.{format} where `num` is usually a 6 digit number representing the processor number (e.g., 000000), `val` is the parameter - value of the model/kernel/gradient and `format` is the format of the + value of the model/kernel/gradient and `format` is the format of the file (e.g., bin) :type parameters: list of str @@ -140,12 +192,7 @@ def read(self, parameters=None): for parameter in parameters: parameter_dict[parameter] = load_fx(parameter=parameter) - # Save some metadata to be able to manipulate model slices freely - ngll = [] - for array in parameter_dict[parameters[0]]: - ngll.append(len(array)) - - return parameter_dict, ngll + return parameter_dict def merge(self, parameter=None): """ @@ -305,7 +352,7 @@ def _get_nproc_parameters(self): fids = glob(os.path.join(self.path, self.fnfmt(val="*", ext=self.fmt))) fids = [os.path.basename(_) for _ in fids] # drop full path fids = [os.path.splitext(_)[0] for _ in fids] # drop extension - + if self.fmt == ".bin": avail_par = list(set(["_".join(_.split("_")[1:]) for _ in fids])) nproc = len(glob(os.path.join( From a47928d0f7633cdab06f04bc653a4dbd3a4f75e1 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 26 Jul 2022 18:07:53 -0800 Subject: [PATCH 082/195] created a relatively mature optimization test module which runs both line searches and full inversion workflows with the Rosenbrock test function. Made edites to the optimization module along the way, the most significant being that the optimization module will pass vectors as outputs, rather than saving to disk. It is then the workflows responsibility to save these to disk. This makes the optimization module more transparent (i.e., we know what it takes and returns), and shifts more of the agency into workflow and out of the individual sub-modules --- seisflows/optimize/LBFGS.py | 100 +++-- seisflows/optimize/NLCG.py | 2 +- seisflows/optimize/gradient.py | 107 +++-- seisflows/plugins/line_search/backtrack.py | 18 +- seisflows/plugins/line_search/bracket.py | 28 +- .../tests/test_data/test_optimize/g_new.npz | 1 + .../test_optimize/gradient_rosenbrock.npz | Bin 0 -> 526 bytes .../test_optimize/m_init_rosenbrock.npz | Bin 0 -> 526 bytes .../test_optimize/m_true_rosenbrock.npz | Bin 0 -> 526 bytes .../tests/test_data/test_optimize/m_try.npz | 1 + seisflows/tests/test_optimize.py | 382 +++++++++++++++--- seisflows/tools/math.py | 9 +- seisflows/tools/specfem.py | 2 +- seisflows/workflow/inversion.py | 23 +- seisflows/workflow/test.py | 1 - 15 files changed, 517 insertions(+), 157 deletions(-) create mode 120000 seisflows/tests/test_data/test_optimize/g_new.npz create mode 100644 seisflows/tests/test_data/test_optimize/gradient_rosenbrock.npz create mode 100644 seisflows/tests/test_data/test_optimize/m_init_rosenbrock.npz create mode 100644 seisflows/tests/test_data/test_optimize/m_true_rosenbrock.npz create mode 120000 seisflows/tests/test_data/test_optimize/m_try.npz diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index e5fbd6ed..1f2e158a 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -25,6 +25,8 @@ status > 0 : finished status == 0 : not finished status < 0 : failed + +TODO store LBFGS_iter during checkpointing """ import os import numpy as np @@ -73,9 +75,9 @@ def __init__(self, lbfgs_mem=3, lbfgs_max=np.inf, lbfgs_thresh=0., self.LBFGS_thresh = lbfgs_thresh # Set new L-BFGS dependent paths for storing previous gradients - self.path["LBFGS"] = os.path.join(self.path.scratch, "LBFGS") - self.path["y_file"] = os.path.join(self.path.scratch, "LBFGS", "Y") - self.path["s_file"] = os.path.join(self.path.scratch, "LBFGS", "S") + self.path["_LBFGS"] = os.path.join(self.path.scratch, "LBFGS") + self.path["_y_file"] = os.path.join(self.path["_LBFGS"], "Y.dat") + self.path["_s_file"] = os.path.join(self.path["_LBFGS"], "S.dat") # Internally used memory parameters for the L-BFGS optimization algo. self._LBFGS_iter = 0 @@ -86,16 +88,44 @@ def setup(self): Set up the LBFGS optimization schema """ super().setup() - unix.mkdir(self.path.LBFGS) + unix.mkdir(self.path._LBFGS) + + def checkpoint(self): + """ + Overwrite default checkpointing to store internal L-BFGS Attributes + """ + super().checkpoint() + checkpoint_dict = np.load(self.path._checkpoint) + checkpoint_dict["LBFGS_iter"] = self._LBFGS_iter + checkpoint_dict["memory_used"] = self._memory_used + + np.savez(file=self.path._checkpoint, **dict_out) # NOQA + + def load_checkpoint(self): + """ + Counterpart to `optimize.checkpoint`. Loads a checkpointed optimization + module from disk and sets internal tracking attributes. Adds additional + functionality to restore internal L-BFGS attributes + """ + super().load_checkpoint() + + # NumPy appends '.npz' when saving. Make sure we honor that. + if not self.path._checkpoint.endswith(".npz"): + fid = f"{self.path._checkpoint}.npz" + else: + fid = self.path._checkpoint + + if os.path.exists(fid): + dict_in = np.load(file=fid) + self._LBFGS_iter = int(dict_in["LBFGS_iter"]) + self._memory_used = int(dict_in["memory_used"]) def compute_direction(self): """ Call on the L-BFGS optimization machinery to compute a search direction using internally stored memory of previous gradients. - The potential outcomes when computing direction with L-BFGS - - TODO do we need to precondition L-BFGS? + The potential outcomes when computing direction with L-BFGS: 1. First iteration of L-BFGS optimization, search direction is defined as the inverse gradient 2. L-BFGS internal iteration ticks over the maximum allowable number of @@ -106,6 +136,8 @@ def compute_direction(self): 4. New search direction is acceptably angled from previous, becomes the new search direction + TODO do we need to precondition L-BFGS? + :rtype: seisflows.tools.specfem.Model :return: search direction as a Model instance """ @@ -113,20 +145,19 @@ def compute_direction(self): # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration - g = self.load("g_new") + g = self.load_vector("g_new") if self._LBFGS_iter == 1: logger.info("first L-BFGS iteration, default to 'Gradient' descent") - p_new = -1 * g.vector + p_new = g.update(vector=-1 * g.vector) restarted = False - # Restart condition or first iteration lead to setting search direction # as the inverse gradient (i.e., default to steepest descent) elif self._LBFGS_iter > self.LBFGS_max: logger.info("restarting L-BFGS due to periodic restart condition. " "setting search direction as inverse gradient") self.restart() - p_new = -1 * g.vector + p_new = g.update(vector=-1 * g.vector) restarted = True # Normal LBFGS direction computation else: @@ -134,11 +165,12 @@ def compute_direction(self): # 'q' becomes the new search direction 'g' logger.info("applying inverse Hessian to gradient") s, y = self._update_search_history() - q = self._apply_inverse_hessian(g.vector, s, y) + _q_vector = self._apply_inverse_hessian(g.vector, s, y) + q = g.update(vector=_q_vector) # Determine if the new search direction is appropriate by checking # its angle to the previous search direction - if self._check_status(g, q): + if self._check_status(g.vector, q.vector): logger.info("new L-BFGS search direction found") p_new = q.update(vector=-1 * q.vector) restarted = False @@ -149,9 +181,6 @@ def compute_direction(self): p_new = g.update(vector=-1 * g.vector) restarted = True - # Assign newly computed 'p_new' vector to a Model instance - p_new = g.update(vector=p_new) - # Assign restart condition to internal memory self._restarted = restarted @@ -165,18 +194,19 @@ def restart(self): logger.info("restarting L-BFGS optimization algorithm") # Fall back to gradient descent for search direction - g = self.load("g_new") - self.save("p_new", -1 * g.vector) + g = self.load_vector("g_new") + p_new = g.update(vector=-1 * g.vector) + self.save_vector("p_new", p_new) # Clear internal memory - self._line_search.clear_history() + self._line_search.clear_search_history() self._restarted = True self._LBFGS_iter = 1 self._memory_used = 0 # Clear out previous gradient information - s = np.memmap(filename=self.path.s_file, mode="r+") - y = np.memmap(filename=self.path.y_file, mode="r+") + s = np.memmap(filename=self.path._s_file, mode="r+") + y = np.memmap(filename=self.path._y_file, mode="r+") s[:] = 0. y[:] = 0. @@ -199,11 +229,11 @@ def _update_search_history(self): :rtype y: np.memmap :return y: memory of the gradient differences `g_new - g_old` """ - unix.cd(self.path) - # Determine the iterates for model m and gradient g - s_k = self.load("m_new").vector - self.load("m_old").vector - y_k = self.load("g_new").vector - self.load("g_old").vector + s_k = \ + self.load_vector("m_new").vector - self.load_vector("m_old").vector + y_k = \ + self.load_vector("g_new").vector - self.load_vector("g_old").vector # Determine the shape of the memory map (length of model, length of mem) m = len(s_k) @@ -211,20 +241,20 @@ def _update_search_history(self): # Initial iteration, need to create the memory map if self._memory_used == 0: - s = np.memmap(filename=self.path.s_file, mode="w+", dtype="float32", - shape=(m, n)) - y = np.memmap(filename=self.path.y_file, mode="w+", dtype="float32", - shape=(m, n)) + s = np.memmap(filename=self.path._s_file, mode="w+", + dtype="float32", shape=(m, n)) + y = np.memmap(filename=self.path._y_file, mode="w+", + dtype="float32", shape=(m, n)) # Store the model and gradient differences in memmaps s[:, 0] = s_k y[:, 0] = y_k self._memory_used = 1 # Subsequent iterations will append to memory maps else: - s = np.memmap(filename=self.path.s_file, mode="r+", dtype="float32", - shape=(m, n)) - y = np.memmap(filename=self.path.y_file, mode="r+", dtype="float32", - shape=(m, n)) + s = np.memmap(filename=self.path._s_file, mode="r+", + dtype="float32", shape=(m, n)) + y = np.memmap(filename=self.path._y_file, mode="r+", + dtype="float32", shape=(m, n)) # Shift all stored memory by one index to make room for latest mem s[:, 1:] = s[:, :-1] y[:, 1:] = y[:, :-1] @@ -256,9 +286,9 @@ def _apply_inverse_hessian(self, q, s=None, y=None): if s is None or y is None: m = len(q) n = self.LBFGS_mem - s = np.memmap(filename=self.path.s_file, mode="w+", dtype="float32", + s = np.memmap(filename=self.path._s_file, mode="w+", dtype="float32", shape=(m, n)) - y = np.memmap(filename=self.path.y_file, mode="w+", dtype="float32", + y = np.memmap(filename=self.path._y_file, mode="w+", dtype="float32", shape=(m, n)) # First matrix product diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 4d25e11f..762f7c5d 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -138,7 +138,7 @@ def restart(self): g = self.load("g_new") self.save("p_new", -1 * g.vector) - self._line_search.clear_history() + self._line_search.clear_search_history() self._restarted = 1 self._NLCG_iter = 1 diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 22001523..08e356ae 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -95,7 +95,7 @@ def __init__(self, line_search_method="bracket", # Set required path structure self.path = Dict( scratch=path_optimize or - os.path.join(os.getcwd(), "scratch", "optimize"), + os.path.join(workdir, "scratch", "optimize"), output=path_output or os.path.join(workdir, "output"), preconditioner=path_preconditioner, ) @@ -103,6 +103,8 @@ def __init__(self, line_search_method="bracket", # Hidden paths to store checkpoint file in scratch directory self.path["_checkpoint"] = os.path.join(self.path.scratch, "checkpoint") + self.path["_stats_file"] = os.path.join(self.path.scratch, + "output_optim.txt") # Internal check to see if the chosen line search algorithm exists if not hasattr(line_search_dir, line_search_method): @@ -183,18 +185,19 @@ def load_vector(self, name): :param name: name of the vector, acceptable: m, g, p, f, alpha """ assert(name in self._acceptable_vectors) + model_npz = os.path.join(self.path.scratch, f"{name}.npz") model_npy = model_npz.replace(".npz", ".npy") model_txt = model_npz.replace(".npz", ".txt") + if os.path.exists(model_npz): - model = Model(path=os.path.join(self.path.scratch, - f"{name}.npz"), load=True) + model = Model(path=model_npz) elif os.path.exists(model_npy): model = np.load(model_npy) elif os.path.exists(model_txt): model = float(np.loadtxt(model_txt)) else: - raise FileNotFoundError(f"no optimization file found for {name}") + raise FileNotFoundError(f"no optimization file found for '{name}'") return model @@ -213,7 +216,7 @@ def save_vector(self, name, m): path = os.path.join(self.path.scratch, f"{name}.npz") m.model = m.split() # overwrite m representation m.save(path=path) - elif isinstance(m, np.array): + elif isinstance(m, np.ndarray): path = os.path.join(self.path.scratch, f"{name}.npy") np.save(path=path) elif isinstance(m, (float, int)): @@ -239,7 +242,7 @@ def checkpoint(self): gtp=self._line_search.gtp, step_count=self._line_search.step_count) - np.savez(file=self.path._checkpoint, **dict_out) + np.savez(file=self.path._checkpoint, **dict_out) # NOQA def load_checkpoint(self): """ @@ -308,6 +311,9 @@ def initialize_search(self): Generate a trial model by perturbing the current model in the search direction with a given step length, calculated by the chosen line search algorithm. + + :rtype: tuple + :return: (Model, float) or (m_try==trial model, alpha=step length) """ m = self.load_vector("m_new") # current model from external solver g = self.load_vector("g_new") # current gradient from scaled kernels @@ -321,7 +327,7 @@ def initialize_search(self): # Restart plugin line search if the optimization library restarts if self._restarted: - self._line_search.clear_history() + self._line_search.clear_search_history() # Optional safeguard to prevent step length from getting too large if self.step_len_max: @@ -331,8 +337,7 @@ def initialize_search(self): # Initialize the line search and save it to disk. self._line_search.update_search_history(func_val=f, step_len=0., - gtg=gtg, gtp=gtp) - # self._line_search.check_search_history() + gtg=gtg, gtp=gtp) alpha, _ = self._line_search.calculate_step_length() @@ -356,10 +361,24 @@ def update_line_search(self): has been run and misfit calculated. Checks misfit against line search history to see if the line search has been completed. - Available status codes from line_search.calculate_step_length(): - status == 1 : finished - status == 0 : not finished - status == -1 : failed + .. note:: + This is a bit confusing as it calculates the step length `alpha` for + the NEXT line search step, while working with the `alpha` value that + was calculated from the LAST line search step. + + If line search returns a passing exit code (0 or 1), sets up for a + subsequent line search evaluation by saving a new step length (alpha), + and creating a new trial model (m_try). + + .. note: + Available status returns are: + 'TRY': try/re-try the line search as conditions have not been met + 'PASS': line search was successful, you can terminate the search + 'FAIL': line search has failed for one or more reasons. + + :rtype: tuple + :return: (Model, float, bool) or (m_try==trial model, alpha=step length, + status==how to proceed with line search) """ # Collect information on a forward evaluation that just took place alpha = self.load_vector("alpha") # step length @@ -368,28 +387,30 @@ def update_line_search(self): # Update the line search with a new step length and misfit value self._line_search.step_count += 1 self._line_search.update_search_history(step_len=alpha, func_val=f_try) - # self._line_search.check_search_history() - # Calculate a new step length based on line search algorithm + # Calculate a new step length based on the step length and corresponding + # misfit that we should have just calculated alpha_try, status = self._line_search.calculate_step_length() + # Vectors are saved to disk immediately to avoid passing them in memory # Status == 0: Retry line search // Status == 1: Line search passed - if status in [0, 1]: - # Save new step length to disk - self.save_vector("alpha", alpha_try) - + if status.upper() in ["TRY", "PASS"]: # Create a new trial model based on search direction, step length # and the initial model vector - m = self.load_vector("m_new") - p = self.load_vector("p_new") + _m = self.load_vector("m_new") + _p = self.load_vector("p_new") - # Sets the latest trial model - m_try = m.update(vector=m.vector + alpha * p.vector) + # Sets the latest trial model using the current `alpha` value + m_try = _m.update(vector=_m.vector + alpha * _p.vector) logger.info("trial model 'm_try' parameters: ") m_try.check() - self.save_vector("m_try", m_try) - return status + # Newly calculated `alpha` value overwrites original `alpha` + alpha = alpha_try + else: + m_try = None + + return m_try, alpha, status def finalize_search(self): """ @@ -448,8 +469,8 @@ def attempt_line_search_restart(self, threshold=1E-3): :type threshold: float :param threshold: angle threshold for the angle between the search direction and the gradient. - :rtype: int - :return: pass (1) fail (0) status for retrying line search + :rtype: bool + :return: pass (True) fail (False) status for retrying line search """ g = self.load_vector("g_new") p = self.load_vector("p_new") @@ -459,9 +480,9 @@ def attempt_line_search_restart(self, threshold=1E-3): f"theta: {theta:6.3f}") if abs(theta) < threshold: - return 0 # Do not restart + return False # Do not restart else: - return 1 # Go for restart + return True # Go for restart def restart(self): """ @@ -485,19 +506,19 @@ def _write_stats(self): Used because stats line search information can be overwritten by subsequent iterations so we need to append values to text files if they should be retained. + + .. note:: + This CSV file can be easily read and plotted using np.genfromtxt + >>> np.genfromtxt("optim_stats.txt", delimiter=",", names=True, \ + dtype=None) """ logger.info(f"writing optimization stats") - fid = os.path.join(self.path.output, f"optim_stats.txt") - # First time, write header information - if not os.path.exists(fid): - with open(fid, "w") as f: - for header in [# "ITER", "FACTOR", - "GRAD_NORM_L1", "GRAD_NORM_L2", - "MISFIT", "RESTART", "SLOPE", "STEP", "LENGTH", - "THETA"]: - f.write(f"{header.upper()},") - f.write("\n") + if not os.path.exists(self.path._stats_file): + _head = ("step_count,step_length,gradient_norm_L1,gradient_norm_L2," + "misfit,if_restarted,slope,theta\n") + with open(self.path._stats_file, "w") as f: + f.write(_head) g = self.load_vector("g_new") p = self.load_vector("p_new") @@ -518,14 +539,14 @@ def _write_stats(self): step_length = x[f.argmin()] theta = 180. * np.pi ** -1 * angle(p.vector, -1 * g.vector) - with open(fid, "a") as f: + with open(self.path._stats_file, "a") as f: f.write(# f"{factor:6.3E}," + f"{step_count:0>2}," + f"{step_length:6.3E}," f"{grad_norm_L1:6.3E}," f"{grad_norm_L2:6.3E}," f"{misfit:6.3E}," - f"{self._restarted:6.3E}," + f"{int(self._restarted)}," f"{slope:6.3E}," - f"{step_count:0>2}," - f"{step_length:6.3E}," f"{theta:6.3E}\n" ) diff --git a/seisflows/plugins/line_search/backtrack.py b/seisflows/plugins/line_search/backtrack.py index a4a8cc71..b637b1fa 100644 --- a/seisflows/plugins/line_search/backtrack.py +++ b/seisflows/plugins/line_search/backtrack.py @@ -46,6 +46,16 @@ def calculate_step_length(self): n: number of model updates in optimization problem gtg: dot product of gradient with itself gtp: dot product of gradient and search direction + + .. note: + Available status returns are: + 'TRY': try/re-try the line search as conditions have not been met + 'PASS': line search was successful, you can terminate the search + 'FAIL': line search has failed for one or more reasons. + + :rtype: tuple (float, str) + :return: (alpha==calculated step length, + status==how to treat the next step count evaluation) """ # Determine the line search history x, f, gtg, gtp, step_count, update_count = self.get_search_history() @@ -64,13 +74,13 @@ def calculate_step_length(self): if step_count == 0: alpha = min(1., self.step_len_max) logger.info(f"try: attempt unit step length w/ alpha={alpha}") - status = 0 + status = "TRY" # Pass if misfit is reduced elif f.min() < f[0]: alpha = x[f.argmin()] logger.info(f"pass: misfit decreased, line search " f"successful w/ alpha={alpha}") - status = 1 + status = "PASS" # If misfit continually increases, decrease step length elif step_count <= self.step_count_max: slope = gtp[-1] / gtg[-1] @@ -78,14 +88,14 @@ def calculate_step_length(self): f1=f[1], b1=0.1, b2=0.5) logger.info(f"try: misfit increasing, attempting " f"to decrease step length to alpha={alpha}") - status = 0 + status = "TRY" # Failed because step_count_max exceeded else: logger.info(f"fail: backtracking line search has " f"failed because the maximum allowable step counts " f"({self.step_count_max}) has been exceeded") alpha = None - status = -1 + status = "FAIL" return alpha, status diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 64f7744f..12262893 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -134,6 +134,16 @@ def calculate_step_length(self): """ Determines step length (alpha) and search status (status) using a bracketing line search. + + .. note: + Available status returns are: + 'TRY': try/re-try the line search as conditions have not been met + 'PASS': line search was successful, you can terminate the search + 'FAIL': line search has failed for one or more reasons. + + :rtype: tuple (float, str) + :return: (alpha==calculated step length, + status==how to treat the next step count evaluation) """ # Determine the line search history x, f, gtg, gtp, step_count, update_count = self.get_search_history() @@ -145,7 +155,7 @@ def calculate_step_length(self): alpha = gtg[-1] ** -1 logger.info(f"try: first evaluation, attempt guess step length, " f"alpha={alpha:.2E}") - status = 0 + status = "TRY" # For every iteration's initial step, set alpha manually elif step_count == 0: # Based on the first equation in sec 3.5 of Nocedal and Wright 2ed @@ -153,26 +163,26 @@ def calculate_step_length(self): alpha = self.step_lens[idx] * gtp[-2] / gtp[-1] logger.info(f"try: first step count of iteration, " f"setting scaled step length, alpha={alpha:.2E}") - status = 0 + status = "TRY" # If misfit is reduced and then increased, we've bracketed. Pass elif _check_bracket(x, f) and _good_enough(x, f): alpha = x[f.argmin()] logger.info(f"pass: bracket acceptable and step length " f"reasonable.") - status = 1 + status = "PASS" # If misfit is reduced but not close, set to quadratic fit elif _check_bracket(x, f): alpha = polynomial_fit(x, f) logger.info(f"try: bracket acceptable but step length unreasonable " f"attempting to re-adjust step length " f"alpha={alpha:.2E}") - status = 0 + status = "TRY" # If misfit continues to step down, increase step length elif step_count <= self.step_count_max and all(f <= f[0]): alpha = 1.618034 * x[-1] # 1.618034 is the 'golden ratio' logger.info(f"try: misfit not bracketed, increasing step length " f"using golden ratio, alpha={alpha:.2E}") - status = 0 + status = "TRY" # If misfit increases, reduce step length by backtracking elif step_count <= self.step_count_max: slope = gtp[-1] / gtg[-1] @@ -181,14 +191,14 @@ def calculate_step_length(self): logger.info(f"try: misfit increasing, attempting " f"to reduce step length using parabloic backtrack, " f"alpha={alpha:.2E}") - status = 0 + status = "TRY" # step_count_max exceeded, fail else: logger.info(f"fail: bracketing line search has failed " f"to reduce the misfit before exceeding " f"`step_count_max`={self.step_count_max}") alpha = None - status = -1 + status = "FAIL" # Apply optional step length safeguard if alpha is not None: @@ -197,14 +207,14 @@ def calculate_step_length(self): logger.info(f"try: applying initial step length " f"safegaurd as alpha has exceeded maximum step " f"length, alpha_new={alpha:.2E}") - status = 0 + status = "TRY" # Stop because safeguard prevents us from going further elif alpha > self.step_len_max: alpha = self.step_len_max logger.info(f"try: applying initial step length " f"safegaurd as alpha has exceeded maximum step " f"length, alpha_new={alpha:.2E}") - status = 1 # TODO shouldn't this be 0 or -1? + status = "PASS" # TODO shouldn't this be 0 or -1? return alpha, status diff --git a/seisflows/tests/test_data/test_optimize/g_new.npz b/seisflows/tests/test_data/test_optimize/g_new.npz new file mode 120000 index 00000000..397dba1f --- /dev/null +++ b/seisflows/tests/test_data/test_optimize/g_new.npz @@ -0,0 +1 @@ +gradient_rosenbrock.npz \ No newline at end of file diff --git a/seisflows/tests/test_data/test_optimize/gradient_rosenbrock.npz b/seisflows/tests/test_data/test_optimize/gradient_rosenbrock.npz new file mode 100644 index 0000000000000000000000000000000000000000..8d53d2f174c2f9a24cae47769bffc867f64a0e30 GIT binary patch literal 526 zcmWIWW@Zs#fB;1X7OyF1@*N2qLQM-y!ia0lvI$oTVhUeDp0&QBe5VA$k))+QK(g* z2yp2E-H-&tnLwNe!~rNCaXqp35zHg3K#x?A=8ZH9qP$_KqhLgtSGblL8}BgwoOM8f zfgyo`A?!eaHzSh>Gp-l``V$Ho7(onZ{Ge+>^*u}r149GjNgxLt76IO@Y#<3HAj|;L I6Ts#H0I$kkJOBUy literal 0 HcmV?d00001 diff --git a/seisflows/tests/test_data/test_optimize/m_init_rosenbrock.npz b/seisflows/tests/test_data/test_optimize/m_init_rosenbrock.npz new file mode 100644 index 0000000000000000000000000000000000000000..e46904d0122532177d723e22cbf71c62a3ae94f1 GIT binary patch literal 526 zcmWIWW@Zs#fB;1X7OyF1@*N2qLQM-y!ia0lvI$oTVhUeDp0&QBe5VA$k))+QK(g* z2yp2E-H-&tnLwNe!~rNC*Gp-ncr~;71@*N2qLQM-y!ia0lvI$oTVhUeDp0&QBe5VA$k))+QK(g* z2yp2E-H-&tnLwNe!~rNC**NV+2+Sj_K#x?A=8ZH9qP$_KqhLgtSGa&K2Z9gwFgn1S ykx7IZSByYZfyf3%5DASRbWNzf2PuSr2F8;>1~@DNyjj^mf=ob|0i-8@%>w|L(pr81 literal 0 HcmV?d00001 diff --git a/seisflows/tests/test_data/test_optimize/m_try.npz b/seisflows/tests/test_data/test_optimize/m_try.npz new file mode 120000 index 00000000..444a5bf5 --- /dev/null +++ b/seisflows/tests/test_data/test_optimize/m_try.npz @@ -0,0 +1 @@ +m_init_rosenbrock.npz \ No newline at end of file diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index 3a5c4387..8050d700 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -5,96 +5,364 @@ import os import pytest import numpy as np +from seisflows.tools.core import Dict from seisflows.tools.specfem import Model +from seisflows.tools.math import angle from seisflows.optimize.gradient import Gradient from seisflows.optimize.LBFGS import LBFGS from seisflows.optimize.NLCG import NLCG -@pytest.fixture -def rosenbrock(): +def rosenbrock_objective_function(x): """ - Rosenbrock test problem for optimization library testing + Rosenbrock objective function used to test the optimization module. + The Rosenbrock is defined mathematically as: + + f(x,y) = (a-x)^2 + b(y-x^2)^2 + + where the global minimum is at (x,y) == (a, a^2) + and typical constant values are: a==1, b==100 https://en.wikipedia.org/wiki/Rosenbrock_function + + :type x: np.array + :param x: input model [x, y] to feed into the objective function + :rtype: float + :return: misfit value for the given input model + """ + return (1 - x[0]) ** 2 + 100 * (-x[0] ** 2 + x[1]) ** 2 + + +def rosenbrock_gradient(x): """ - model_init = np.array([-1.2, 1]) # This is the guess for the global min - model_true = np.array([1, 1]) # This is the actual minimum + Define the gradient of the Rosenbrock function, i.e., the gradient of the + `rosenbrock_objective_function` - def objective_function(x): - """ - Rosenbrock objective function which is defined mathematically as: + :type x: np.array + :param x: input model [x, y] to feed into the gradient of the obj function + :rtype: np.array + :return: gradient vector of the Rosenbrock function + """ + return np.array([-2 * (1 - x[0]) - 400 * x[0] * (-x[0] ** 2 + x[1]), + 200 * (- x[0] ** 2 + x[1])]) - f(x,y) = (a-x)^2 + b(y-x^2)^2 - where the global minimum is at (x,y) == (a, a^2) - and typical constant values are: a==1, b==100 - """ - return np.array([((1 - x[0]) ** 2 + 100 * (-x[0] ** 2 + x[1]) ** 2)]) +@pytest.fixture +def setup_optimization_vectors(tmpdir): + """ + Create vectors required for a Rosenbrock optimization problem to be used + to test the line search and optimization algorithms. - def gradient(x): - """ - Gradient of the objective function for Rosenbrock test - """ - return np.array([-2*(1-x[0]) - 400*x[0]*(-x[0]**2+x[1]), - 200*(- x[0]**2+x[1])]) + .. note:: + The optimization module requires a model (m_new), corresponding + misfit of that model (f_new), the gradient of that misfit + function (g_new) and a search direction (p_new; calculated by each + individual optimization sub-class) + """ + m_init = Model() + m_init.model = Dict(x=[np.array([-1.2, 1])]) # Starting guess for Rosenbrock + m_init.save(path=os.path.join(tmpdir, "m_new.npz")) - return model_init, model_true, objective_function, gradient + # Calculate the misfit and save as a text file + misfit = rosenbrock_objective_function(x=m_init.vector) + np.savetxt(os.path.join(tmpdir, "f_new.txt"), [misfit]) + # Calcualte the gradient and save as a Model + gradient = rosenbrock_gradient(x=m_init.vector) + g_new = m_init.update(vector=gradient) + g_new.save(path=os.path.join(tmpdir, "g_new.npz")) -def rosenbrock_n(n=1E5): + +def test_gradient_compute_direction(tmpdir, setup_optimization_vectors): + """ + Ensure that gradient computes the correct search direction. The gradient + vector created by the Rosenbrock function is expected to be [-215.6, -88.] """ - N dimensional Rosenbrock test problem for optimization library testing + optimize = Gradient(path_optimize=tmpdir) - https://en.wikipedia.org/wiki/Rosenbrock_function + # Check that setup created the correct gradient vector + g_new = optimize.load_vector("g_new") + assert(g_new.vector.sum() == pytest.approx(-303.59, 3)) + + # Gradient descent search direction is just the negative gradient + p_new = optimize.compute_direction() + assert(p_new.vector.sum() == pytest.approx(303.59, 3)) + + +def test_gradient_initialize_search(tmpdir, setup_optimization_vectors): """ - model_init = 0.1 * np.ones(int(n)) # This is a guess for the global min - model_true = np.ones(int(n)) + Test that the optimization module properly initializes the line search by + providing a new model and misfit value. - def objective_function(x): - """ - Rosenbrock objective function - """ - return sum(100 * (x[:-1]**2. - x[1:])**2. + (x[:-1] - 1.)**2) + Initialize search requres 4 vectors to properly intialize the search, + they are 'm_new' (model), 'g_new' (gradient), 'p_new' (search direciton_ + and 'f_new' (misfit) + """ + optimize = Gradient(path_optimize=tmpdir) + p_new = optimize.compute_direction() + p_new.save(path=os.path.join(tmpdir, "p_new")) - def gradient(x): - """ - Gradient of the objective function for Rosenbrock test - """ - g = np.zeros(int(n)) - g[1:-1] = -200 * (x[:-2] ** 2. - x[1:-1]) + \ - 400. * x[1:-1] * (x[1:-1] ** 2. - x[2:]) + \ - 2. * (x[1:-1] - 1.) + m_try, alpha = optimize.initialize_search() - g[0] = 400. * x[0] * (x[0] ** 2. - x[1]) + \ - 2. * (x[0] - 1) + assert(m_try.vector[0] == pytest.approx(-1.14, 3)) + assert(m_try.vector[1] == pytest.approx(1.02, 3)) + assert(alpha == pytest.approx(2.789e-4, 4)) + + +def test_gradient_update_line_search(tmpdir, setup_optimization_vectors): + """ + Ensure that updating the line search works as advertised, i.e., we get a + status on how the line search should proceed + """ + optimize = Gradient(path_optimize=tmpdir) + p_new = optimize.compute_direction() + p_new.save(path=os.path.join(tmpdir, "p_new")) - g[-1] = -200. * (x[-2] ** 2. - x[-1]) + m_try, alpha = optimize.initialize_search() + optimize.save_vector("m_try", m_try) + optimize.save_vector("alpha", alpha) - return g + f_try = rosenbrock_objective_function(m_try.vector) + np.savetxt(os.path.join(tmpdir, "f_try.txt"), [f_try]) - return model_init, model_true, objective_function, gradient + m_try, status, status = optimize.update_line_search() + assert(status == "TRY") + assert(optimize._line_search.step_count == 1) + assert(optimize._line_search.func_vals[1] == f_try) -def test_gradient_descent_w_bracket(tmpdir, rosenbrock): +def test_bracket_line_search(tmpdir, setup_optimization_vectors): """ - Test Gradient class with Rosenbrock problem + Run a small optimization problem to try to reduce the Rosenbrock + objective function using the Bracket'ing line search method. Checks that the + line search only takes a few steps and that the reduced misfit value is + as expected. """ - m_new, m_true, evaluate_objective_function, evaluate_gradient = rosenbrock() + optimize = Gradient(path_optimize=tmpdir, path_output=tmpdir, + line_search_method="bracket", step_count_max=100) + + # Make sure the initial misfit is high + assert(optimize.load_vector("f_new") == pytest.approx(24.2, 1)) + + # Calculate the initial search direction which is just the inverse gradient + p_new = optimize.compute_direction() + p_new.save(path=os.path.join(tmpdir, "p_new")) + + # Saves trial model 'm_try' and corresponding step length 'alpha' + m_try, alpha = optimize.initialize_search() + optimize.save_vector("m_try", m_try) + optimize.save_vector("alpha", alpha) - optimize = Gradient(workdir=tmpdir, line_search_method="bracket") - optimize.setup() - optimize.check() + def line_search(): + """Each line search evaluation requires calculating a new model and + corresponding misfit value""" + m_try = optimize.load_vector("m_try") + f_try = rosenbrock_objective_function(m_try.vector) + np.savetxt(os.path.join(tmpdir, "f_try.txt"), [f_try]) - # Set up the optimization problem - optimize.save_vector(name="m_new", m=m_new) - optimize.initialize_search() + m_try, alpha, status = optimize.update_line_search() + optimize.save_vector("m_try", m_try) + optimize.save_vector("alpha", alpha) + return status + # Run a line search until acceptable misfit reduction while True: - f_try = evaluate_objective_function(x=m_new) - optimize.save_vector(name="f_try", m=f_try) + status = line_search() + if status == "PASS": + break + + assert(status == "PASS") # pass + assert(optimize.step_count == 5) # Took 5 steps to reduce misfit + # Make sure we have reduced the final misfit + assert(min(optimize._line_search.func_vals) == pytest.approx(4.22, 3)) + + # Change model names and reset line search + optimize.finalize_search() + + # Check that the final model + m_new = optimize.load_vector("m_new") + m_old = optimize.load_vector("m_old") + m_angle = angle(m_new.vector, m_old.vector) + assert(m_angle == pytest.approx(0.3, 2)) - g_new = evaluate_gradient(x=m_new) - optimize.save_vector(name="g_new", m=g_new) - optimize. +def test_optimize_checkpoint_reload(tmpdir): + """ + Checkpointing is used to store the status of the optimization module + in the case of a failed or re-started workflow. Test that this works as + advertised + """ + rand_val = 123 + optimize = Gradient(path_optimize=tmpdir) + optimize._line_search.step_count = rand_val + optimize.checkpoint() + + new_optimize = Gradient(path_optimize=tmpdir) + new_optimize.load_checkpoint() + assert(new_optimize.step_count == rand_val) + + +def test_optimize_attempt_line_search_restart(tmpdir, + setup_optimization_vectors): + """ + Make sure we can tell when we're supposed to attempt a line search restart, + i.e., when the gradient and search direction are the same + """ + optimize = Gradient(path_optimize=tmpdir) + p_new = optimize.compute_direction() + p_new.save(path=os.path.join(tmpdir, "p_new")) + + # this query requires 'g_new' and 'p_new' + assert(optimize.attempt_line_search_restart() == False) + + p_new.update(vector=np.array([-99.99, -99.99])) + p_new.save(path=os.path.join(tmpdir, "p_new")) + assert(optimize.attempt_line_search_restart() == True) + + +# def test_inversion_optimization_problem_with_gradient( +# tmpdir, setup_optimization_vectors): +# """ +# Rather than run a single line search evaluation, which all the previous +# tests have done, we want to run a inversion workflow to find a best fitting +# model. To do this we essentially have to mimic the inversion workflow, but +# with barebones functions. +# +# This takes bits and pieces from the previous tests +# +# .. note:: +# We do not save `m_try` to disk each time it is evaluated because it is +# small. However in real workflows, `m_try` must be saved to disk rather +# than passed in memory because it is likely to be a large vector. +# """ +# optimize = Gradient(path_optimize=tmpdir, path_output=tmpdir) +# +# m_init = Model() +# m_init.model = Dict(x=[np.array([-1.2, 1])]) # Starting guess for Rosenbrock +# m_init.save(path=os.path.join(tmpdir, "m_new.npz")) +# +# for iteration in range(100): +# # Step 1: Evaluate the objective function for given model 'm_new' +# m_new = optimize.load_vector("m_new") +# f_new = rosenbrock_objective_function(x=m_new.vector) +# optimize.save_vector("f_new", f_new) +# # Step 2: Evaluate the gradient of the objective function +# gradient = rosenbrock_gradient(x=m_new.vector) +# g_new = m_new.update(vector=gradient) +# optimize.save_vector("g_new", g_new) +# # Step 3: Compute the search direction using the gradient +# p_new = optimize.compute_direction() +# optimize.save_vector("p_new", p_new) +# # Step 4a: Set up the line search with a trial model `m_try` +# m_try, alpha = optimize.initialize_search() +# optimize.save_vector("alpha", alpha) +# # Step 4b: Run the line search w/ various trial models 'til lower misfit +# while True: +# f_try = rosenbrock_objective_function(m_try.vector) +# np.savetxt(os.path.join(tmpdir, "f_try.txt"), [f_try]) +# # Will look for the previously saved 'alpha' value +# m_try, alpha, status = optimize.update_line_search() +# if status == "PASS": +# break +# else: +# optimize.save_vector("alpha", alpha) +# optimize.save_vector("m_try", m_try) +# # Set up for the next iteration, most importantly `m_try` -> `m_new` +# optimize.finalize_search() +# +# # Just check a few of the stats file outputs to make sure this runs right +# assert(os.path.exists(optimize.path._stats_file)) +# stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) +# assert(len(stats) == 100.) +# assert(stats["misfit"].min() == pytest.approx(0.9992, 3)) +# assert(stats["if_restarted"].sum() == 0.) + + +def _test_inversion_optimization_problem_general(optimize): + """ + Rather than run a single line search evaluation, which all the previous + tests have done, we want to run a inversion workflow to find a best fitting + model. To do this we essentially have to mimic the inversion workflow, but + with barebones functions. + + This function is written to be general, other tests should populate the + `optimize` input parameter with instantiated Optimization modules. + + .. note:: + We do not save `m_try` to disk each time it is evaluated because it is + small. However in real workflows, `m_try` must be saved to disk rather + than passed in memory because it is likely to be a large vector. + """ + m_init = Model() + m_init.model = Dict(x=[np.array([-1.2, 1])]) # Starting guess for Rosenbrock + optimize.save_vector("m_new", m_init) + + for iteration in range(100): + print(iteration) + # Step 1: Evaluate the objective function for given model 'm_new' + m_new = optimize.load_vector("m_new") + f_new = rosenbrock_objective_function(x=m_new.vector) + optimize.save_vector("f_new", f_new) + # Step 2: Evaluate the gradient of the objective function + gradient = rosenbrock_gradient(x=m_new.vector) + g_new = m_new.update(vector=gradient) + optimize.save_vector("g_new", g_new) + # Step 3: Compute the search direction using the gradient + p_new = optimize.compute_direction() + optimize.save_vector("p_new", p_new) + # Step 4a: Set up the line search with a trial model `m_try` + m_try, alpha = optimize.initialize_search() + optimize.save_vector("alpha", alpha) + # Step 4b: Run the line search w/ various trial models 'til lower misfit + while True: + f_try = rosenbrock_objective_function(m_try.vector) + optimize.save_vector("f_try", f_try) + # Will look for the previously saved 'alpha' value + m_try, alpha, status = optimize.update_line_search() + if status == "PASS": + break + else: + optimize.save_vector("alpha", alpha) + optimize.save_vector("m_try", m_try) + # Set up for the next iteration, most importantly `m_try` -> `m_new` + optimize.finalize_search() + + return optimize + + +def test_inversion_optimization_problem_with_gradient( + tmpdir, setup_optimization_vectors): + """Wrapper function to test the Gradient descent optimization problem""" + gradient = Gradient(path_optimize=tmpdir, path_output=tmpdir) + optimize = _test_inversion_optimization_problem_general(gradient) + # Just check a few of the stats file outputs to make sure this runs right + assert(os.path.exists(optimize.path._stats_file)) + stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) + assert(len(stats) == 100.) + assert(stats["misfit"].min() == pytest.approx(0.9992, 3)) + assert(stats["if_restarted"].sum() == 0.) + + +def test_inversion_optimization_problem_with_LBFGS( # NOQA + tmpdir, setup_optimization_vectors): + """Wrapper function to test the L-BFGS descent optimization problem""" + lbfgs = LBFGS(path_optimize=tmpdir, path_output=tmpdir, + line_search_method="backtrack") + os.mkdir(lbfgs.path._LBFGS) + optimize = _test_inversion_optimization_problem_general(lbfgs) + + # Just check a few of the stats file outputs to make sure this runs right + assert(os.path.exists(optimize.path._stats_file)) + stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) + assert(len(stats) == 100.) + assert(stats["misfit"].min() == pytest.approx(0.1468, 3)) + # assert(stats["if_restarted"].sum() == 0.) + + +def test_optimize_recover_from_failure(): + """ + We need to make sure we can recover an optimization from a job failure. + That means that checkpointing and re-loading from checkpoint works as + expected + """ + pass \ No newline at end of file diff --git a/seisflows/tools/math.py b/seisflows/tools/math.py index dabe8c53..d7aaf33a 100644 --- a/seisflows/tools/math.py +++ b/seisflows/tools/math.py @@ -2,9 +2,13 @@ """ Mathematical tools for Seisflows """ +import sys import numpy as np from scipy.signal import hilbert as analytic +from seisflows import logger +from seisflows.tools import msg + def angle(x, y): """ @@ -148,8 +152,9 @@ def polynomial_fit(x, f): p = np.polyfit(x[i-1:i+2], f[i-1:i+2], 2) if p[0] <= 0: - # TODO Figure out why this exit condition is here - print(msg.cli("Polynomial line fitting returned a negative p[0] value")) + logger.critical(msg.cli("Polynomial line fitting returned a negative " + "p[0] value which signifies a negative misfit " + "and is not allowed.")) sys.exit(-1) return -p[1] / (2 * p[0]) diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 8f038fb1..81bec698 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -27,7 +27,7 @@ class Model: "vpv", "vph", "vsv", "vsh", "eta"] acceptable_parameters.extend([f"{_}_kernel" for _ in acceptable_parameters]) - def __init__(self, path=None, fmt=None, parameters=None): + def __init__(self, path=None, fmt="", parameters=None): """ Model only needs path to model to determine model parameters. Format `fmt` can be provided by the user or guessed based on available file diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 0a2371fa..189d54b9 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -294,21 +294,35 @@ def perform_line_search(self): self._evaluate_line_search_misfit() # Increment step count, calculate new step length/model, check misfit - status = self.optimize.update_line_search() + m_try, alpha, status = self.optimize.update_line_search() self.optimize.checkpoint() # Proceed based on the outcome of the line search - if status == 1: + if status.upper() == "PASS": # Save outcome of line search to disk; reset step to 0 for next iter logger.info("trial step successful. finalizing line search") + + # Save new model (m_try) and step length (alpha) for records + self.optimize.save_vector("alpha", alpha) + self.optimize.save_vector("m_try", m_try) + del m_try # clear potentially large model vector from memory + self.optimize.finalize_search() self.optimize.checkpoint() return - elif status == 0: + elif status.upper() == "TRY": logger.info("trial step unsuccessful. re-attempting line search") + + # Save new model (m_try) and step length (alpha) for new trial step + self.optimize.save_vector("alpha", alpha) + self.optimize.save_vector("m_try", m_try) + del m_try # clear potentially large model vector from memory + + # Checkpoint and re-run line search evaluation self.optimize.checkpoint() self.perform_line_search() # RECURSIVE CALL - elif status == -1: + elif status.upper() == "FAIL": + # Check if we are able to restart line search w/ new parameters if self.optimize.attempt_line_search_restart(): logger.info("line search has failed. restarting " "optimization algorithm and line search.") @@ -316,6 +330,7 @@ def perform_line_search(self): self.optimize.restart() self.optimize.checkpoint() self.perform_line_search() # RECURSIVE CALL + # If we can't then line search has failed. Abort workflow else: logger.critical( msg.cli("Line search has failed to reduce the misfit and " diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 42f18b61..6f354d83 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -261,7 +261,6 @@ def rosenbrock(): """ Rosenbrock test problem for optimization library testing - https://en.wikipedia.org/wiki/Rosenbrock_function """ model_init = np.array([-1.2, 1]) # This is the guess for the global min model_true = np.array([1, 1]) # This is the actual minimum From 7a4aecd3a2d5be1710a50c9f620c668a63a2f88c Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 26 Jul 2022 18:19:18 -0800 Subject: [PATCH 083/195] adding to-do tests and updated NLCG formatting for new Model approach rather than old nparray vector approach to defining models/gradients/kernels --- seisflows/optimize/NLCG.py | 52 ++++++++++++--------- seisflows/tests/test_optimize.py | 78 ++++++++------------------------ 2 files changed, 49 insertions(+), 81 deletions(-) diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 762f7c5d..c9f18147 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -55,6 +55,17 @@ def __init__(self, nlcg_max=np.inf, nlcg_thresh=np.inf, self._NLCG_iter = 0 self._calc_beta = getattr(self, f"_{calc_beta}") + def checkpoint(self): + """ + Overwrite default checkpointing to store internal L-BFGS Attributes + """ + super().checkpoint() + + checkpoint_dict = np.load(self.path._checkpoint) + checkpoint_dict["NLCG_iter"] = self._NLCG_iter + + np.savez(file=self.path._checkpoint, **dict_out) # NOQA + def compute_direction(self): """ Compute search direction using the Nonlinear Conjugate Gradient method @@ -78,14 +89,14 @@ def compute_direction(self): self._NLCG_iter += 1 # Load the current gradient direction - g_new = self.load("g_new") + g_new = self.load_vector("g_new") # CASE 1: If first iteration, search direction is the current gradient if self._NLCG_iter == 1: logger.info("first NLCG iteration, setting search direction " "as inverse gradient") - p_new = -1 * g_new.vector - restarted = 0 + p_new = g_new.update(vector=-1 * g_new.vector) + restarted = False # CASE 2: Force restart if the iterations have surpassed the maximum # number of allowable iter elif self._NLCG_iter > self.NLCG_max: @@ -93,36 +104,34 @@ def compute_direction(self): "condition. setting search direction as inverse " "gradient") self.restart() - p_new = -1 * g_new.vector - restarted = 1 + p_new = g_new.update(vector=-1 * g_new.vector) + restarted = True # Normal NLCG direction compuitation else: # Compute search direction - g_old = self.load("g_old").vector - p_old = self.load("p_old").vector + g_old = self.load_vector("g_old") + p_old = self.load_vector("p_old") + beta = self._calc_beta(g_new.vector, g_old.vector) # Apply preconditioner and calc. scale factor for search dir. (beta) - if self.preconditioner is not None: - beta = self._calc_beta(g_new, g_old) - p_new = -1 * self._precondition(g_new) + beta * p_old - else: - beta = self._calc_beta(g_new, g_old) - p_new = -g_new + beta * p_old + _p_new_vec = (-1 * self._precondition(g_new.vector) + + beta * p_old.vector) + p_new = g_new.update(vector=_p_new_vec) # Check restart conditions, return search direction and status - if check_conjugacy(g_new, g_old) > self.NLCG_thresh: + if check_conjugacy(g_new.vector, g_old.vector) > self.NLCG_thresh: logger.info("restarting NLCG due to loss of conjugacy") self.restart() - p_new = -1 * g_new.vector - restarted = 1 + p_new = g_new.update(vector=-1 * g_new.vector) + restarted = True elif check_descent(p_new, g_new) > 0.: logger.info("restarting NLCG, not a descent direction") self.restart() - p_new = -1 * g_new.vector - restarted = 1 + p_new = g_new.update(vector=-1 * g_new.vector) + restarted = True else: p_new = p_new - restarted = 0 + restarted = False # Save values to disk and memory self._restarted = restarted @@ -135,8 +144,9 @@ def restart(self): """ logger.info("restarting NLCG optimization algorithm") - g = self.load("g_new") - self.save("p_new", -1 * g.vector) + g = self.load_vector("g_new") + p_new = g.update(vector=-1 * g.vector) + self.save_vector("p_new", p_new) self._line_search.clear_search_history() self._restarted = 1 diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index 8050d700..53206403 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -220,64 +220,6 @@ def test_optimize_attempt_line_search_restart(tmpdir, assert(optimize.attempt_line_search_restart() == True) -# def test_inversion_optimization_problem_with_gradient( -# tmpdir, setup_optimization_vectors): -# """ -# Rather than run a single line search evaluation, which all the previous -# tests have done, we want to run a inversion workflow to find a best fitting -# model. To do this we essentially have to mimic the inversion workflow, but -# with barebones functions. -# -# This takes bits and pieces from the previous tests -# -# .. note:: -# We do not save `m_try` to disk each time it is evaluated because it is -# small. However in real workflows, `m_try` must be saved to disk rather -# than passed in memory because it is likely to be a large vector. -# """ -# optimize = Gradient(path_optimize=tmpdir, path_output=tmpdir) -# -# m_init = Model() -# m_init.model = Dict(x=[np.array([-1.2, 1])]) # Starting guess for Rosenbrock -# m_init.save(path=os.path.join(tmpdir, "m_new.npz")) -# -# for iteration in range(100): -# # Step 1: Evaluate the objective function for given model 'm_new' -# m_new = optimize.load_vector("m_new") -# f_new = rosenbrock_objective_function(x=m_new.vector) -# optimize.save_vector("f_new", f_new) -# # Step 2: Evaluate the gradient of the objective function -# gradient = rosenbrock_gradient(x=m_new.vector) -# g_new = m_new.update(vector=gradient) -# optimize.save_vector("g_new", g_new) -# # Step 3: Compute the search direction using the gradient -# p_new = optimize.compute_direction() -# optimize.save_vector("p_new", p_new) -# # Step 4a: Set up the line search with a trial model `m_try` -# m_try, alpha = optimize.initialize_search() -# optimize.save_vector("alpha", alpha) -# # Step 4b: Run the line search w/ various trial models 'til lower misfit -# while True: -# f_try = rosenbrock_objective_function(m_try.vector) -# np.savetxt(os.path.join(tmpdir, "f_try.txt"), [f_try]) -# # Will look for the previously saved 'alpha' value -# m_try, alpha, status = optimize.update_line_search() -# if status == "PASS": -# break -# else: -# optimize.save_vector("alpha", alpha) -# optimize.save_vector("m_try", m_try) -# # Set up for the next iteration, most importantly `m_try` -> `m_new` -# optimize.finalize_search() -# -# # Just check a few of the stats file outputs to make sure this runs right -# assert(os.path.exists(optimize.path._stats_file)) -# stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) -# assert(len(stats) == 100.) -# assert(stats["misfit"].min() == pytest.approx(0.9992, 3)) -# assert(stats["if_restarted"].sum() == 0.) - - def _test_inversion_optimization_problem_general(optimize): """ Rather than run a single line search evaluation, which all the previous @@ -356,7 +298,19 @@ def test_inversion_optimization_problem_with_LBFGS( # NOQA stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) assert(len(stats) == 100.) assert(stats["misfit"].min() == pytest.approx(0.1468, 3)) - # assert(stats["if_restarted"].sum() == 0.) + # TODO finish assertion tests here, figure out why LBFGS is restarting + # at each iteration? + + +def test_inversion_optimization_problem_with_NLCG( # NOQA + tmpdir, setup_optimization_vectors): + nlcg = NLCG(path_optimize=tmpdir, path_output=tmpdir) + os.mkdir(nlcg.path._LBFGS) + optimize = _test_inversion_optimization_problem_general(nlcg) + + # Just check a few of the stats file outputs to make sure this runs right + assert(os.path.exists(optimize.path._stats_file)) + # TODO finish assertion tests here def test_optimize_recover_from_failure(): @@ -364,5 +318,9 @@ def test_optimize_recover_from_failure(): We need to make sure we can recover an optimization from a job failure. That means that checkpointing and re-loading from checkpoint works as expected + + TODO """ - pass \ No newline at end of file + pass + + From 640208430618840a9cabf1343ab16d627a13ba52 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 27 Jul 2022 11:54:34 -0800 Subject: [PATCH 084/195] rolled in 'core' utilities to the 'config' tool script. changed import statements throughout package to match --- seisflows/optimize/gradient.py | 2 +- seisflows/plugins/solver_io/ascii.py | 5 +- seisflows/plugins/solver_io/fortran_binary.py | 5 +- seisflows/preprocess/default.py | 2 +- seisflows/seisflows.py | 2 +- seisflows/solver/specfem.py | 2 +- seisflows/system/workstation.py | 4 +- seisflows/tests/test_optimize.py | 5 +- seisflows/tests/test_seisflows.py | 4 +- seisflows/tests/test_solver.py | 2 +- seisflows/tests/test_tools.py | 2 +- seisflows/tools/config.py | 175 +++++++++++++++-- seisflows/tools/core.py | 185 ------------------ seisflows/tools/specfem.py | 2 +- seisflows/tools/unix.py | 23 ++- seisflows/workflow/forward.py | 2 +- seisflows/workflow/test.py | 2 +- 17 files changed, 202 insertions(+), 222 deletions(-) delete mode 100644 seisflows/tools/core.py diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 08e356ae..e2d6f952 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -31,7 +31,7 @@ from seisflows import logger from seisflows.tools import msg, unix -from seisflows.tools.core import Dict +from seisflows.tools.config import Dict from seisflows.tools.math import angle, dot from seisflows.tools.specfem import Model from seisflows.plugins import line_search as line_search_dir diff --git a/seisflows/plugins/solver_io/ascii.py b/seisflows/plugins/solver_io/ascii.py index ccc2bd6a..3ca6a0e7 100644 --- a/seisflows/plugins/solver_io/ascii.py +++ b/seisflows/plugins/solver_io/ascii.py @@ -5,7 +5,6 @@ import numpy as np from glob import glob from shutil import copyfile -from seisflows.tools.core import iterable def read_slice(path, parameters, iproc): @@ -26,7 +25,7 @@ def read_slice(path, parameters, iproc): model = np.loadtxt(filename).T vals = [] - for key in iterable(parameters): + for key in parameters: vals += [model[available_parameters.index(key)]] return vals @@ -48,7 +47,7 @@ def write_slice(data, path, parameters, iproc): :type iproc: int :param iproc: processor/slice number to write """ - for key in iterable(parameters): + for key in parameters: filename = os.path.join(path, f"proc{int(iproc):06d}_{key}.bin") _write(data, filename) diff --git a/seisflows/plugins/solver_io/fortran_binary.py b/seisflows/plugins/solver_io/fortran_binary.py index 9991b306..738dc66c 100644 --- a/seisflows/plugins/solver_io/fortran_binary.py +++ b/seisflows/plugins/solver_io/fortran_binary.py @@ -4,7 +4,6 @@ import os import numpy as np from shutil import copyfile -from seisflows.tools.core import iterable def read_slice(path, parameters, iproc): @@ -19,7 +18,7 @@ def read_slice(path, parameters, iproc): :param iproc: processor/slice number to read """ vals = [] - for key in iterable(parameters): + for key in parameters: filename = os.path.join(path, f"proc{int(iproc):06d}_{key}.bin") vals += [_read(filename)] return vals @@ -38,7 +37,7 @@ def write_slice(data, path, parameters, iproc): :type iproc: int :param iproc: processor/slice number to write """ - for key in iterable(parameters): + for key in parameters: filename = os.path.join(path, f"proc{int(iproc):06d}_{key}.bin") _write(data, filename) diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index f78f2eef..66ad82a3 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -12,7 +12,7 @@ from seisflows import logger from seisflows.tools import signal, unix -from seisflows.tools.core import Dict +from seisflows.tools.config import Dict from seisflows.plugins.preprocess import misfit as misfit_functions from seisflows.plugins.preprocess import adjoint as adjoint_sources diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 78862bfa..4125eb11 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -25,7 +25,7 @@ from seisflows import logger, ROOT_DIR, NAMES from seisflows.tools import unix, msg -from seisflows.tools.core import load_yaml, Dict +from seisflows.tools.config import load_yaml, Dict from seisflows.tools.config import custom_import, import_seisflows from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index bcac58d0..0a4d26cc 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -25,7 +25,7 @@ from seisflows import logger from seisflows.plugins import solver_io as solver_io_dir from seisflows.tools import msg, unix -from seisflows.tools.core import get_task_id, Dict +from seisflows.tools.config import get_task_id, Dict from seisflows.tools.specfem import getpar, setpar diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 299aabd2..b70fadff 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -7,9 +7,9 @@ from contextlib import redirect_stdout from seisflows import logger -from seisflows.tools.core import Dict +from seisflows.tools.config import Dict from seisflows.tools import unix -from seisflows.tools.core import number_fid, get_task_id, set_task_id +from seisflows.tools.config import number_fid, get_task_id, set_task_id class Workstation: diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index 53206403..94dde895 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -5,7 +5,7 @@ import os import pytest import numpy as np -from seisflows.tools.core import Dict +from seisflows.tools.config import Dict from seisflows.tools.specfem import Model from seisflows.tools.math import angle from seisflows.optimize.gradient import Gradient @@ -298,8 +298,7 @@ def test_inversion_optimization_problem_with_LBFGS( # NOQA stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) assert(len(stats) == 100.) assert(stats["misfit"].min() == pytest.approx(0.1468, 3)) - # TODO finish assertion tests here, figure out why LBFGS is restarting - # at each iteration? + pytest.set_trace() def test_inversion_optimization_problem_with_NLCG( # NOQA diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 43c94079..cf39831d 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -11,10 +11,10 @@ import subprocess from unittest.mock import patch -from seisflows.tools.core import Dict +from seisflows.tools.config import Dict from seisflows.seisflows import SeisFlows from seisflows.tools.config import ROOT_DIR, NAMES, CFGPATHS -from seisflows.tools.core import load_yaml +from seisflows.tools.config import load_yaml TEST_DIR = os.path.join(ROOT_DIR, "tests") diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index 0ad93992..591fa0e2 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -6,7 +6,7 @@ import pytest from glob import glob from seisflows import ROOT_DIR -from seisflows.tools.core import set_task_id +from seisflows.tools.config import set_task_id from seisflows.solver.specfem import Specfem diff --git a/seisflows/tests/test_tools.py b/seisflows/tests/test_tools.py index 3e8c5ff0..f651b8e9 100644 --- a/seisflows/tests/test_tools.py +++ b/seisflows/tests/test_tools.py @@ -6,7 +6,7 @@ import numpy as np from glob import glob from seisflows import ROOT_DIR -from seisflows.tools.core import Dict +from seisflows.tools.config import Dict from seisflows.tools.specfem import Model from seisflows.tools.config import custom_import diff --git a/seisflows/tools/config.py b/seisflows/tools/config.py index 08f346b2..17605aef 100755 --- a/seisflows/tools/config.py +++ b/seisflows/tools/config.py @@ -1,26 +1,153 @@ #!/usr/bin/env python3 """ -This is the Seisflows Config script, it contains utilities that are called upon -throughout the Seisflows workflow. It also (re)defines some important functions -that are used extensively by the machinery of Seisflows. - - -Each corresponds simultaneously to a module in the SeisFlows source code, -a class that is instantiated and made accessible via sys.modules, and a -parameter in a global dictionary. Once in memory, these objects can be thought -of as comprising the complete 'state' of a SeisFlows session +Seisflows configuration tools, containing core utilities that are called upon +throughout the Seisflows workflow. """ import os import sys +import re +import yaml import logging +import numpy as np import traceback from pkgutil import find_loader from importlib import import_module from seisflows import logger, NAMES -from seisflows.tools.core import Dict, Null from seisflows.tools import msg -from seisflows.tools.core import load_yaml + +ENV_VARIABLES = ["SEISFLOWS_TASKID", "SLURM_ARRAY_TASK_ID"] + + +class Dict(dict): + """ + A dictionary replacement which allows for easier parameter access through + getting and setting attributes. Also has some functionality to make string + printing prettier + """ + def __str__(self): + """Pretty print dictionaries and first level nested dictionaries""" + str_ = "" + try: + longest_key = max([len(_) for _ in self.keys()]) + for key, val in self.items(): + str_ += f"{key:<{longest_key}}: {val}\n" + except ValueError: + pass + return str_ + + def __repr__(self): + """Pretty print when calling an instance of this object""" + return self.__str__() + + def __getattr__(self, key): + """Attribute-like access of the internal dictionary attributes""" + try: + return self[key] + except KeyError: + raise AttributeError(f"{key} not found in Dict") + + def __setattr__(self, key, val): + """Setting attributes can only be performed one time""" + self.__dict__[key] = val + + +class Null: + """ + A null object that always and reliably does nothing + """ + def __init__(self, *args, **kwargs): + pass + + def __call__(self, *args, **kwargs): + return self + + def __bool__(self): + return False + + def __nonzero__(self): + return False + + def __getattr__(self, key): + return self + + def __setattr__(self, key, val): + return self + + def __delattr__(self, key): + return self + + +def load_yaml(filename): + """ + Define how the PyYaml yaml loading function behaves. + Replaces None and inf strings with NoneType and numpy.inf respectively + + :type filename: str + :param filename: .yaml file to load in + :rtype: Dict + :return: Dictionary containing all parameters in a YAML file + """ + # work around PyYAML bugs + yaml.SafeLoader.add_implicit_resolver( + u'tag:yaml.org,2002:float', + re.compile(u'''^(?: + [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)? + |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) + |\\.[0-9_]+(?:[eE][-+][0-9]+)? + |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]* + |[-+]?\\.(?:inf|Inf|INF) + |\\.(?:nan|NaN|NAN))$''', re.X), + list(u'-+0123456789.')) + + with open(filename, 'r') as f: + mydict = Dict(yaml.safe_load(f)) + + if mydict is None: + mydict = Dict() + + # Replace 'None' and 'inf' values to match expectations + for key, val in mydict.items(): + if val == "None": + mydict[key] = None + if val == "inf": + mydict[key] = np.inf + + return mydict + + +def get_task_id(): + """ + Task IDs are assigned to each child process spawned by the system module + during a SeisFlows workflow. SeisFlows modules use this Task ID to keep + track of embarassingly parallel process, e.g., solver uses the Task ID to + determine which source is being considered. + + :rtype: int + :return: task id for given solver + """ + for env_var in ENV_VARIABLES: + _taskid = os.getenv(env_var) + if _taskid is not None: + return int(_taskid) + else: + logger.warning("Environment Task ID variable not found. Assigning 0") + return 0 + + +def set_task_id(task_id): + """ + Set the SEISFLOWS_TASKID in os environs for local workflows. If running + on HPC systems, running array jobs will assign the Task ID + + .. note:: + Mostly used for debugging/testing purposes as a way of mimicing + system.run() assigning task ids to child processes + + :type task_id: int + :param task_id: integer task id to assign to the current working environment + """ + os.environ["SEISFLOWS_TASKID"] = str(task_id) def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): @@ -210,3 +337,29 @@ class 'Inversion'. print(msg.cli(f"The following method was not found in the imported " f"class: seisflows.{name}.{module}.{classname}")) sys.exit(-1) + + +def number_fid(fid, i=0): + """ + Number a filename. Used to store old log files without overwriting them. + Premise is, if you have a file e.g., called: output.txt + This function would return incrementing filenames: + output_000.txt, output_001.txt, output_002.txt, ouput_003.txt ... + + .. note:: + Replace statement is catch-all, so we assume that there is only one + instance of the file extension in the entire path. + + :type fid: str + :param fid: path to the file that you want to increment + :type i: int + :param i: number to append to file id + :rtype: str + :return: filename with appended number. filename ONLY, will strip away + the original path location + """ + fid_only = os.path.basename(fid) + ext = os.path.splitext(fid_only)[-1] # e.g., .txt + new_ext = f"_{i:0>3}{ext}" # e.g., _000.txt + new_fid = fid_only.replace(ext, new_ext) + return new_fid \ No newline at end of file diff --git a/seisflows/tools/core.py b/seisflows/tools/core.py deleted file mode 100644 index 7927200d..00000000 --- a/seisflows/tools/core.py +++ /dev/null @@ -1,185 +0,0 @@ -""" -Core utility functions and classes which help define the working structure of -SeisFlows pacakge. -""" -import os -import re -import yaml -import numpy as np -from seisflows import logger - -# Acceptable environment variables assigned to individually running tasks when -# running SeisFlows on a system -ENV_VARIABLES = ["SEISFLOWS_TASKID", "SLURM_ARRAY_TASK_ID"] - - -class Dict(dict): - """ - A dictionary replacement which allows for easier parameter access through - getting and setting attributes. Also has some functionality to make string - printing prettier - """ - def __str__(self): - """Pretty print dictionaries and first level nested dictionaries""" - str_ = "" - try: - longest_key = max([len(_) for _ in self.keys()]) - for key, val in self.items(): - str_ += f"{key:<{longest_key}}: {val}\n" - except ValueError: - pass - return str_ - - def __repr__(self): - """Pretty print when calling an instance of this object""" - return self.__str__() - - def __getattr__(self, key): - """Attribute-like access of the internal dictionary attributes""" - try: - return self[key] - except KeyError: - raise AttributeError(f"{key} not found in Dict") - - def __setattr__(self, key, val): - """Setting attributes can only be performed one time""" - self.__dict__[key] = val - - -class Null: - """ - A null object that always and reliably does nothing - """ - def __init__(self, *args, **kwargs): - pass - - def __call__(self, *args, **kwargs): - return self - - def __bool__(self): - return False - - def __nonzero__(self): - return False - - def __getattr__(self, key): - return self - - def __setattr__(self, key, val): - return self - - def __delattr__(self, key): - return self - - -def get_task_id(): - """ - Task IDs are assigned to each child process spawned by the system module - during a SeisFlows workflow. SeisFlows modules use this Task ID to keep - track of embarassingly parallel process, e.g., solver uses the Task ID to - determine which source is being considered. - - :rtype: int - :return: task id for given solver - """ - for env_var in ENV_VARIABLES: - _taskid = os.getenv(env_var) - if _taskid is not None: - return int(_taskid) - else: - logger.warning("Environment Task ID variable not found. Assigning 0") - return 0 - - -def set_task_id(task_id): - """ - Set the SEISFLOWS_TASKID in os environs for local workflows. If running - on HPC systems, running array jobs will assign the Task ID - - .. note:: - Mostly used for debugging/testing purposes as a way of mimicing - system.run() assigning task ids to child processes - - :type task_id: int - :param task_id: integer task id to assign to the current working environment - """ - os.environ["SEISFLOWS_TASKID"] = str(task_id) - - -def load_yaml(filename): - """ - Define how the PyYaml yaml loading function behaves. - Replaces None and inf strings with NoneType and numpy.inf respectively - - :type filename: str - :param filename: .yaml file to load in - :rtype: Dict - :return: Dictionary containing all parameters in a YAML file - """ - # work around PyYAML bugs - yaml.SafeLoader.add_implicit_resolver( - u'tag:yaml.org,2002:float', - re.compile(u'''^(?: - [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)? - |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) - |\\.[0-9_]+(?:[eE][-+][0-9]+)? - |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]* - |[-+]?\\.(?:inf|Inf|INF) - |\\.(?:nan|NaN|NAN))$''', re.X), - list(u'-+0123456789.')) - - with open(filename, 'r') as f: - mydict = Dict(yaml.safe_load(f)) - - if mydict is None: - mydict = Dict() - - # Replace 'None' and 'inf' values to match expectations - for key, val in mydict.items(): - if val == "None": - mydict[key] = None - if val == "inf": - mydict[key] = np.inf - - return mydict - - -def iterable(arg): - """ - Make an argument iterable - - :param arg: an argument to make iterable - :type: list - :return: iterable argument - """ - if not isinstance(arg, (list, tuple)): - return [arg] - else: - return arg - - -def number_fid(fid, i=0): - """ - Number a filename. Used to store old log files without overwriting them. - Premise is, if you have a file e.g., called: output.txt - This function would return incrementing filenames: - output_000.txt, output_001.txt, output_002.txt, ouput_003.txt ... - - .. note:: - Replace statement is catch-all, so we assume that there is only one - instance of the file extension in the entire path. - - :type fid: str - :param fid: path to the file that you want to increment - :type i: int - :param i: number to append to file id - :rtype: str - :return: filename with appended number. filename ONLY, will strip away - the original path location - """ - fid_only = os.path.basename(fid) - ext = os.path.splitext(fid_only)[-1] # e.g., .txt - new_ext = f"_{i:0>3}{ext}" # e.g., _000.txt - new_fid = fid_only.replace(ext, new_ext) - return new_fid - diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 81bec698..4454ad7b 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -6,7 +6,7 @@ import numpy as np from glob import glob from seisflows import logger -from seisflows.tools.core import Dict +from seisflows.tools.config import Dict from seisflows.tools import unix from seisflows.tools.math import poissons_ratio diff --git a/seisflows/tools/unix.py b/seisflows/tools/unix.py index dc1bccbf..0b07e3af 100644 --- a/seisflows/tools/unix.py +++ b/seisflows/tools/unix.py @@ -9,7 +9,22 @@ import shutil import socket import subprocess -from seisflows.tools.core import iterable + + +def _iterable(arg): + """ + Make an argument iterable. Allows for more generalized inputs to these + unix-style functions. + + :type arg: anything + :param arg: an argument to make iterable + :rtype: list + :return: iterable argument + """ + if not isinstance(arg, (list, tuple)): + return [arg] + else: + return arg def cat(src, dst=None): @@ -136,7 +151,7 @@ def mkdir(dirs): """ time.sleep(2 * random.random()) # interval [0, 2]s - for dir_ in iterable(dirs): + for dir_ in _iterable(dirs): if not os.path.isdir(dir_): os.makedirs(dir_) @@ -174,7 +189,7 @@ def rename(old, new, names): :type names: list :param names: files to replace expressions in """ - for name in iterable(names): + for name in _iterable(names): if name.find(old) >= 0: os.rename(name, name.replace(old, new)) @@ -183,7 +198,7 @@ def rm(path): """ Remove files or directories """ - for name in iterable(path): + for name in _iterable(path): if os.path.isfile(name) or os.path.islink(name): os.remove(name) elif os.path.isdir(name): diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index f3e6aba4..392e05fd 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -10,7 +10,7 @@ from seisflows import logger from seisflows.tools import msg, unix -from seisflows.tools.core import Dict +from seisflows.tools.config import Dict from seisflows.tools.specfem import Model diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py index 6f354d83..e7fd0c43 100644 --- a/seisflows/workflow/test.py +++ b/seisflows/workflow/test.py @@ -12,7 +12,7 @@ import numpy as np from glob import glob -from seisflows.tools.core import Base +from seisflows.tools.config import Base from seisflows.tools.config import ROOT_DIR, CFGPATHS, save, config_logger From ad92c210ae6a7da899da8772e260dc22cd49f0d5 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 27 Jul 2022 11:57:56 -0800 Subject: [PATCH 085/195] removing solver_io plugin, this has been completely replaced by the Model class, detaching model interaction from the solver module --- seisflows/plugins/solver_io/__init__.py | 9 -- seisflows/plugins/solver_io/adios.py | 30 ----- seisflows/plugins/solver_io/ascii.py | 122 ------------------ seisflows/plugins/solver_io/fortran_binary.py | 100 -------------- seisflows/solver/specfem.py | 12 +- 5 files changed, 1 insertion(+), 272 deletions(-) delete mode 100644 seisflows/plugins/solver_io/__init__.py delete mode 100644 seisflows/plugins/solver_io/adios.py delete mode 100644 seisflows/plugins/solver_io/ascii.py delete mode 100644 seisflows/plugins/solver_io/fortran_binary.py diff --git a/seisflows/plugins/solver_io/__init__.py b/seisflows/plugins/solver_io/__init__.py deleted file mode 100644 index 01ef1e41..00000000 --- a/seisflows/plugins/solver_io/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -""" -Used by the SOLVER class and specified by the SOLVERIO parameter - -Note: - ADIOS IO format is currently implemented in SPECFEM3D, but not SeisFlows - import adios -""" -from . import fortran_binary - diff --git a/seisflows/plugins/solver_io/adios.py b/seisflows/plugins/solver_io/adios.py deleted file mode 100644 index 43278a8e..00000000 --- a/seisflows/plugins/solver_io/adios.py +++ /dev/null @@ -1,30 +0,0 @@ - -from os.path import abspath, join -from shutil import copyfile - -import numpy as np - - -def mread(path, parameters, iproc, prefix='', suffix=''): - """ Multiparameter read, callable by a single mpi process - """ - keys = [] - vals = [] - for key in sorted(parameters): - val = _read1(path, iproc, prefix+key+suffix) - keys += [key] - vals += [val] - return keys, vals - - -def read(path, parameter, iproc): - """ Reads from ADIOS container - """ - raise NotImplementedError - - -def write(v, path, parameter, iproc): - """ Writes to ADIOS container - """ - raise NotImplementedError - diff --git a/seisflows/plugins/solver_io/ascii.py b/seisflows/plugins/solver_io/ascii.py deleted file mode 100644 index 3ca6a0e7..00000000 --- a/seisflows/plugins/solver_io/ascii.py +++ /dev/null @@ -1,122 +0,0 @@ -""" -Functions to read and write ASCII model (.dat) files used by SPECFEM2D -""" -import os -import numpy as np -from glob import glob -from shutil import copyfile - - -def read_slice(path, parameters, iproc): - """ - Reads SPECFEM model slice(s) based on .dat ASCII files - - :type path: str - :param path: path to the database files - :type parameters: str - :param parameters: parameters to read, e.g. 'vs', 'vp' - :type iproc: int - :param iproc: processor/slice number to read - :rtype: list of np.array - :return: list of arrays corresponding to model parameters in given order - """ - filename = _get_filename(path, iproc) - available_parameters = _get_available_parameters(filename) - model = np.loadtxt(filename).T - - vals = [] - for key in parameters: - vals += [model[available_parameters.index(key)]] - - return vals - - -def write_slice(data, path, parameters, iproc): - """ - Writes SPECFEM model slice - - !!! This won't work because we need access to the spatial components that - !!! are only the model - - :type data: seisflows.Container - :param data: data to be written to a slice - :type path: str - :param path: path to the database files - :type parameters: str - :param parameters: parameters to write, e.g. 'vs', 'vp' - :type iproc: int - :param iproc: processor/slice number to write - """ - for key in parameters: - filename = os.path.join(path, f"proc{int(iproc):06d}_{key}.bin") - _write(data, filename) - - -def copy_slice(src, dst, iproc, parameter): - """ - Copies SPECFEM model slice - - :type src: str - :param src: source location to copy slice from - :type dst: str - :param dst: destination location to copy slice to - :type parameter: str - :param parameter: parameters to copy, e.g. 'vs', 'vp' - :type iproc: int - :param iproc: processor/slice number to copy - """ - filename = os.path.basename(_get_filename(src, iproc)) - copyfile(os.path.join(src, filename), - os.path.join(dst, filename)) - - -def _get_filename(path, iproc): - """ - ASCII .dat files list the available parameters in the fileid, meaning - there is no standard format for retrieving files. Use glob to search for - the file based on file extension. - - :type path: str - :param path: path to the database files - :type iproc: int - :param iproc: processor/slice number to read - :rtype: str - :return: filename of the model - """ - filename_glob = os.path.join(path, f"proc{int(iproc):06d}_*.dat") - filename = glob(filename_glob) - assert(len(filename) == 1), \ - f"Expected only one .dat file, found {len(filename)}" - - return filename[0] - - -def _get_available_parameters(filename): - """ - The available parameters are listed in the file name. Split off the - uncessary text and return the listend parameters. - - :type filename: str - :param filename: filename to check parameters from - :rtype: list - :return: list of parameters from the file id - """ - fid = os.path.splitext(os.path.basename(filename))[0] - _, *available_parameters = fid.split("_") - - return available_parameters - - -def _write(v, filename): - """ - Writes Fortran style binary files - Data are written as single precision floating point numbers - """ - n = np.array([4 * len(v)], dtype='int32') - v = np.array(v, dtype='float32') - - with open(filename, 'wb') as file: - n.tofile(file) - v.tofile(file) - n.tofile(file) - diff --git a/seisflows/plugins/solver_io/fortran_binary.py b/seisflows/plugins/solver_io/fortran_binary.py deleted file mode 100644 index 738dc66c..00000000 --- a/seisflows/plugins/solver_io/fortran_binary.py +++ /dev/null @@ -1,100 +0,0 @@ -""" -Functions to read and write FORTRAN binary files that are outputted by Specfem -""" -import os -import numpy as np -from shutil import copyfile - - -def read_slice(path, parameters, iproc): - """ - Reads SPECFEM model slice(s) - - :type path: str - :param path: path to the database files - :type parameters: str - :param parameters: parameters to read, e.g. 'vs', 'vp' - :type iproc: int - :param iproc: processor/slice number to read - """ - vals = [] - for key in parameters: - filename = os.path.join(path, f"proc{int(iproc):06d}_{key}.bin") - vals += [_read(filename)] - return vals - - -def write_slice(data, path, parameters, iproc): - """ - Writes SPECFEM model slice - - :type data: seisflows.Container - :param data: data to be written to a slice - :type path: str - :param path: path to the database files - :type parameters: str - :param parameters: parameters to write, e.g. 'vs', 'vp' - :type iproc: int - :param iproc: processor/slice number to write - """ - for key in parameters: - filename = os.path.join(path, f"proc{int(iproc):06d}_{key}.bin") - _write(data, filename) - - -def copy_slice(src, dst, iproc, parameter): - """ - Copies SPECFEM model slice - - :type src: str - :param src: source location to copy slice from - :type dst: str - :param dst: destination location to copy slice to - :type parameter: str - :param parameter: parameters to copy, e.g. 'vs', 'vp' - :type iproc: int - :param iproc: processor/slice number to copy - """ - filename = f"proc{int(iproc):06d}_{parameter}.bin" - copyfile(os.path.join(src, filename), - os.path.join(dst, filename)) - - -def _read(filename): - """ - Reads Fortran style binary data into numpy array - """ - nbytes = os.path.getsize(filename) - with open(filename, 'rb') as file: - # read size of record - file.seek(0) - n = np.fromfile(file, dtype='int32', count=1)[0] - - if n == nbytes-8: - file.seek(4) - data = np.fromfile(file, dtype='float32') - return data[:-1] - else: - file.seek(0) - data = np.fromfile(file, dtype='float32') - return data - - -def _write(v, filename): - """ - Writes Fortran style binary files - Data are written as single precision floating point numbers - - .. note:: - FORTRAN unformatted binaries are bounded by an INT*4 byte count. This - function mimics that behavior by tacking on the boundary data. - https://docs.oracle.com/cd/E19957-01/805-4939/6j4m0vnc4/index.html - """ - n = np.array([4 * len(v)], dtype='int32') - v = np.array(v, dtype='float32') - - with open(filename, 'wb') as file: - n.tofile(file) - v.tofile(file) - n.tofile(file) - diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 0a4d26cc..0ef010c9 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -23,7 +23,6 @@ from glob import glob from seisflows import logger -from seisflows.plugins import solver_io as solver_io_dir from seisflows.tools import msg, unix from seisflows.tools.config import get_task_id, Dict from seisflows.tools.specfem import getpar, setpar @@ -119,7 +118,7 @@ def __init__(self, data_format="ascii", materials="acoustic", self.smooth_h = smooth_h self.smooth_v = smooth_v self.components = components - self.solver_io = solver_io + # self.solver_io = solver_io # currently not used self.source_prefix = source_prefix or "SOURCE" # Define internally used directory structure @@ -144,7 +143,6 @@ def __init__(self, data_format="ascii", materials="acoustic", self._mpiexec = mpiexec self._source_names = None # for property source_names self._ext = None # for database file extensions - self._io = getattr(solver_io_dir, self.solver_io) # for database IO # Define available choices for check parameters self._available_model_types = ["gll"] @@ -169,14 +167,6 @@ def check(self): f"solver.data_format must be {self._available_data_formats}" ) - # Make sure we can read in the model/kernel/gradient files - # TODO is this even used? Can we remove? - assert hasattr(solver_io_dir, self.solver_io) - assert hasattr(self._io, "read_slice"), \ - "IO method has no attribute 'read'" - assert hasattr(self._io, "write_slice"), \ - "IO method has no attribute 'write'" - # Check that User has provided appropriate binary files to run SPECFEM assert(self.path.specfem_bin is not None and os.path.exists(self.path.specfem_bin)), ( From 43eb704dd28035ec98c5f42862e809d44d7fb741 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 27 Jul 2022 12:41:54 -0800 Subject: [PATCH 086/195] added a copy() function to Model class for specfem models, whenever new vectors are instantiated, they deepcopy off of old model files. This fixes a bug where two different vectors were pointing to the same part of memory --- seisflows/optimize/LBFGS.py | 31 +++++++++++++++--------------- seisflows/optimize/gradient.py | 9 ++++++--- seisflows/tests/test_optimize.py | 10 +++++++--- seisflows/tests/test_preprocess.py | 2 +- seisflows/tools/array.py | 9 +-------- seisflows/tools/specfem.py | 9 ++++++--- 6 files changed, 36 insertions(+), 34 deletions(-) diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 1f2e158a..c6936f82 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -146,10 +146,11 @@ def compute_direction(self): # Load the current gradient direction, which is the L-BFGS search # direction if this is the first iteration g = self.load_vector("g_new") + p_new = g.copy() if self._LBFGS_iter == 1: logger.info("first L-BFGS iteration, default to 'Gradient' descent") - p_new = g.update(vector=-1 * g.vector) + p_new.update(vector=-1 * g.vector) restarted = False # Restart condition or first iteration lead to setting search direction # as the inverse gradient (i.e., default to steepest descent) @@ -157,7 +158,7 @@ def compute_direction(self): logger.info("restarting L-BFGS due to periodic restart condition. " "setting search direction as inverse gradient") self.restart() - p_new = g.update(vector=-1 * g.vector) + p_new.update(vector=-1 * g.vector) restarted = True # Normal LBFGS direction computation else: @@ -165,20 +166,20 @@ def compute_direction(self): # 'q' becomes the new search direction 'g' logger.info("applying inverse Hessian to gradient") s, y = self._update_search_history() - _q_vector = self._apply_inverse_hessian(g.vector, s, y) - q = g.update(vector=_q_vector) + q = g.copy() + q.update(vector=self._apply_inverse_hessian(g.vector, s, y)) # Determine if the new search direction is appropriate by checking # its angle to the previous search direction if self._check_status(g.vector, q.vector): logger.info("new L-BFGS search direction found") - p_new = q.update(vector=-1 * q.vector) + p_new.update(vector=-1 * q.vector) restarted = False else: logger.info("new search direction not appropriate, defaulting " "to gradient desceitn") self.restart() - p_new = g.update(vector=-1 * g.vector) + p_new.update(vector=-1 * g.vector) restarted = True # Assign restart condition to internal memory @@ -195,7 +196,8 @@ def restart(self): # Fall back to gradient descent for search direction g = self.load_vector("g_new") - p_new = g.update(vector=-1 * g.vector) + p_new = g.copy() + p_new.update(vector=-1 * g.vector) self.save_vector("p_new", p_new) # Clear internal memory @@ -286,10 +288,10 @@ def _apply_inverse_hessian(self, q, s=None, y=None): if s is None or y is None: m = len(q) n = self.LBFGS_mem - s = np.memmap(filename=self.path._s_file, mode="w+", dtype="float32", - shape=(m, n)) - y = np.memmap(filename=self.path._y_file, mode="w+", dtype="float32", - shape=(m, n)) + s = np.memmap(filename=self.path._s_file, mode="w+", + dtype="float32", shape=(m, n)) + y = np.memmap(filename=self.path._y_file, mode="w+", + dtype="float32", shape=(m, n)) # First matrix product # Recursion step 2 from appendix A of Modrak & Tromp 2016 @@ -301,11 +303,8 @@ def _apply_inverse_hessian(self, q, s=None, y=None): al[ii] = rh[ii] * np.dot(s[:, ii], q) q = q - al[ii] * y[:, ii] - # Apply a preconditioner if available - if self.preconditioner: - r = self._precondition(q) - else: - r = q + # Apply an optional preconditioner. Otherwise r==q + r = self._precondition(q) # Use scaling M3 proposed by Liu and Nocedal 1989 sty = np.dot(y[:, 0], s[:, 0]) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index e2d6f952..59d81b72 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -302,7 +302,8 @@ def compute_direction(self): :return: search direction as a Model instance """ g_new = self.load_vector("g_new") - p_new = g_new.update(vector=-1 * self._precondition(g_new.vector)) + p_new = g_new.copy() + p_new.update(vector=-1 * self._precondition(g_new.vector)) return p_new @@ -349,7 +350,8 @@ def initialize_search(self): # The new model is the old model, scaled by the step direction and # gradient threshold to remove any outlier values - m_try = m.update(vector=m.vector + alpha * p.vector) + m_try = m.copy() + m_try.update(vector=m.vector + alpha * p.vector) logger.info("trial model 'm_try' parameters: ") m_try.check() @@ -401,7 +403,8 @@ def update_line_search(self): _p = self.load_vector("p_new") # Sets the latest trial model using the current `alpha` value - m_try = _m.update(vector=_m.vector + alpha * _p.vector) + m_try = _m.copy() + m_try.update(vector=_m.vector + alpha * _p.vector) logger.info("trial model 'm_try' parameters: ") m_try.check() diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index 94dde895..7364ab82 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -69,7 +69,8 @@ def setup_optimization_vectors(tmpdir): # Calcualte the gradient and save as a Model gradient = rosenbrock_gradient(x=m_init.vector) - g_new = m_init.update(vector=gradient) + g_new = m_init.copy() + g_new.update(vector=gradient) g_new.save(path=os.path.join(tmpdir, "g_new.npz")) @@ -240,14 +241,14 @@ def _test_inversion_optimization_problem_general(optimize): optimize.save_vector("m_new", m_init) for iteration in range(100): - print(iteration) # Step 1: Evaluate the objective function for given model 'm_new' m_new = optimize.load_vector("m_new") f_new = rosenbrock_objective_function(x=m_new.vector) optimize.save_vector("f_new", f_new) # Step 2: Evaluate the gradient of the objective function gradient = rosenbrock_gradient(x=m_new.vector) - g_new = m_new.update(vector=gradient) + g_new = m_new.copy() + g_new.update(vector=gradient) optimize.save_vector("g_new", g_new) # Step 3: Compute the search direction using the gradient p_new = optimize.compute_direction() @@ -288,6 +289,9 @@ def test_inversion_optimization_problem_with_gradient( def test_inversion_optimization_problem_with_LBFGS( # NOQA tmpdir, setup_optimization_vectors): """Wrapper function to test the L-BFGS descent optimization problem""" + # from seisflows.tools.config import config_logger + # config_logger(level="DEBUG", filename=os.path.join(tmpdir, "log.txt"), verbose=False) + lbfgs = LBFGS(path_optimize=tmpdir, path_output=tmpdir, line_search_method="backtrack") os.mkdir(lbfgs.path._LBFGS) diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index 9e09471e..364d7bc5 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -5,7 +5,7 @@ import os import pytest from glob import glob -from seisflows.tools.config import ROOT_DIR +from seisflows import ROOT_DIR from seisflows.preprocess.default import Default diff --git a/seisflows/tools/array.py b/seisflows/tools/array.py index 16291019..69352ac3 100644 --- a/seisflows/tools/array.py +++ b/seisflows/tools/array.py @@ -86,13 +86,6 @@ def uniquerows(a, sort_array=False, return_index=False): return ua -def stack(*args): - """ - Column-wise stack arrays - """ - return np.column_stack(args) - - def gridsmooth(Z, span): """ Smooths values on 2D rectangular grid @@ -178,7 +171,7 @@ def mesh2grid(v, mesh): x = np.linspace(x.min(), x.max(), nx) z = np.linspace(z.min(), z.max(), nz) X, Z = np.meshgrid(x, z) - grid = stack(X.flatten(), Z.flatten()) + grid = np.column_stack(X.flatten(), Z.flatten()) # Interpolate to structured grid V = _interp.griddata(mesh, v, grid, 'linear') diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 4454ad7b..18a8fc36 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -4,6 +4,7 @@ """ import os import numpy as np +from copy import deepcopy from glob import glob from seisflows import logger from seisflows.tools.config import Dict @@ -61,7 +62,7 @@ def __init__(self, path=None, fmt="", parameters=None): self._nproc = len(self.model[_first_key]) # Read a SPECFEM model from its native output files else: - if self.fmt is None: + if not self.fmt: self.fmt = self._guess_file_format() self._nproc, self.available_parameters = \ self._get_nproc_parameters() @@ -155,6 +156,10 @@ def vector(self): raise TypeError("Model cannot merge files into continous " "vector") from e + def copy(self): + """Returns a deep copy of self so that models can be transferred""" + return deepcopy(self) + def read(self, parameters=None): """ Utility function to load in SPECFEM models/kernels/gradients saved in @@ -339,8 +344,6 @@ def update(self, model=None, vector=None): elif vector is not None: self.model = self.split(vector=vector) - return self - def _get_nproc_parameters(self): """ Get the number of processors and the available parameters from a list of From a4651b7701942572120ab717b279d085d7a29a4f Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 27 Jul 2022 17:21:46 -0800 Subject: [PATCH 087/195] finished optimization test suite, working on system test suite. Fixing up cluster system which now can run tasks in parallel on the login/direct compute node. Also cleaned up the 'seisflows submit' call which now just imports system to submit and doesnt import the whole workflow. Also moving test data around in preparation for removing some old tests. --- seisflows/optimize/NLCG.py | 31 ++-- seisflows/seisflows.py | 12 +- seisflows/system/cluster.py | 127 +++++++++------- .../system/runscripts/submit_workflow.py | 47 +++--- seisflows/system/slurm.py | 2 - seisflows/system/workstation.py | 56 ++++--- .../{ => specfem}/DATA/CMTSOLUTION_c46e1d99 | 0 .../{ => specfem}/DATA/FORCESOLUTION_c46e1d99 | 0 .../DATA/Par_file_SPECFEM2D_cf893667 | 0 .../DATA/Par_file_SPECFEM3D_c46e1d99 | 0 .../{ => specfem}/DATA/SOURCE_cf893667 | 0 .../OUTPUT_FILES/AA.S0001.BXY.semd | 0 .../OUTPUT_FILES/Uy_file_single_d.su | Bin .../tests/test_data/test_optimize/g_new.npz | 1 - .../test_optimize/gradient_rosenbrock.npz | Bin 526 -> 0 bytes .../test_optimize/m_init_rosenbrock.npz | Bin 526 -> 0 bytes .../test_optimize/m_true_rosenbrock.npz | Bin 526 -> 0 bytes .../tests/test_data/test_optimize/m_try.npz | 1 - seisflows/tests/test_optimize.py | 140 ++++++++++++++---- seisflows/tests/test_system.py | 82 ++++++++++ seisflows/tools/config.py | 42 +++++- 21 files changed, 389 insertions(+), 152 deletions(-) rename seisflows/tests/test_data/{ => specfem}/DATA/CMTSOLUTION_c46e1d99 (100%) rename seisflows/tests/test_data/{ => specfem}/DATA/FORCESOLUTION_c46e1d99 (100%) rename seisflows/tests/test_data/{ => specfem}/DATA/Par_file_SPECFEM2D_cf893667 (100%) rename seisflows/tests/test_data/{ => specfem}/DATA/Par_file_SPECFEM3D_c46e1d99 (100%) rename seisflows/tests/test_data/{ => specfem}/DATA/SOURCE_cf893667 (100%) rename seisflows/tests/test_data/{ => specfem}/OUTPUT_FILES/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{ => specfem}/OUTPUT_FILES/Uy_file_single_d.su (100%) delete mode 120000 seisflows/tests/test_data/test_optimize/g_new.npz delete mode 100644 seisflows/tests/test_data/test_optimize/gradient_rosenbrock.npz delete mode 100644 seisflows/tests/test_data/test_optimize/m_init_rosenbrock.npz delete mode 100644 seisflows/tests/test_data/test_optimize/m_true_rosenbrock.npz delete mode 120000 seisflows/tests/test_data/test_optimize/m_try.npz create mode 100644 seisflows/tests/test_system.py diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index c9f18147..8bc88fed 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -31,9 +31,9 @@ def __init__(self, nlcg_max=np.inf, nlcg_thresh=np.inf, super().__init__(**kwargs) # Overwrite user-chosen line search. L-BFGS requires 'Backtrack'ing LS - if self.line_search_method.title != "Bracket": + if self.line_search_method.title() != "Bracket": logger.warning(f"NLCG optimization requires 'bracket'ing line " - f"search. Overwritng {self.line_search_method}") + f"search. Overwritng '{self.line_search_method}'") self.line_search_method = "Bracket" self._line_search = getattr( line_search_dir, self.line_search_method)( @@ -90,12 +90,13 @@ def compute_direction(self): # Load the current gradient direction g_new = self.load_vector("g_new") + p_new = g_new.copy() # CASE 1: If first iteration, search direction is the current gradient if self._NLCG_iter == 1: logger.info("first NLCG iteration, setting search direction " "as inverse gradient") - p_new = g_new.update(vector=-1 * g_new.vector) + p_new.update(vector=-1 * g_new.vector) restarted = False # CASE 2: Force restart if the iterations have surpassed the maximum # number of allowable iter @@ -104,7 +105,7 @@ def compute_direction(self): "condition. setting search direction as inverse " "gradient") self.restart() - p_new = g_new.update(vector=-1 * g_new.vector) + p_new.update(vector=-1 * g_new.vector) restarted = True # Normal NLCG direction compuitation else: @@ -114,23 +115,24 @@ def compute_direction(self): beta = self._calc_beta(g_new.vector, g_old.vector) # Apply preconditioner and calc. scale factor for search dir. (beta) - _p_new_vec = (-1 * self._precondition(g_new.vector) + - beta * p_old.vector) - p_new = g_new.update(vector=_p_new_vec) + _p_new_vec = ( + -1 * self._precondition(g_new.vector) + beta * p_old.vector + ) + p_new.update(vector=_p_new_vec) - # Check restart conditions, return search direction and status + # Check restart conditions, return search direction and statusa if check_conjugacy(g_new.vector, g_old.vector) > self.NLCG_thresh: logger.info("restarting NLCG due to loss of conjugacy") self.restart() - p_new = g_new.update(vector=-1 * g_new.vector) + p_new.update(vector=-1 * g_new.vector) restarted = True - elif check_descent(p_new, g_new) > 0.: + elif check_descent(p_new.vector, g_new.vector) > 0.: logger.info("restarting NLCG, not a descent direction") self.restart() - p_new = g_new.update(vector=-1 * g_new.vector) + p_new.update(vector=-1 * g_new.vector) restarted = True else: - p_new = p_new + # p_new = p_new restarted = False # Save values to disk and memory @@ -144,8 +146,9 @@ def restart(self): """ logger.info("restarting NLCG optimization algorithm") - g = self.load_vector("g_new") - p_new = g.update(vector=-1 * g.vector) + g_new = self.load_vector("g_new") + p_new = g_new.copy() + p_new.update(vector=-1 * g_new.vector) self.save_vector("p_new", p_new) self._line_search.clear_search_history() diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 4125eb11..f6ac7ed6 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -25,8 +25,8 @@ from seisflows import logger, ROOT_DIR, NAMES from seisflows.tools import unix, msg -from seisflows.tools.config import load_yaml, Dict -from seisflows.tools.config import custom_import, import_seisflows +from seisflows.tools.config import (Dict, load_yaml, custom_import, + import_seisflows, config_logger) from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) @@ -571,10 +571,10 @@ def submit(self, **kwargs): unix.mkdir(self._args.workdir) unix.cd(self._args.workdir) - workflow = import_seisflows(workdir=self._args.workdir, - parameter_file=self._args.parameter_file) - system = workflow._modules.system - system.submit(workflow) + parameters = load_yaml(self._args.parameter_file) + system = custom_import("system", parameters.system)(**parameters) + system.submit(workdir=self._args.workdir, + par_file=self._args.parameter_file) def clean(self, force=False, **kwargs): """ diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index 4d25be83..5f28e6d3 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -12,10 +12,11 @@ """ import os import sys -import dill import subprocess -from seisflows import logger -from seisflows.tools.config import ROOT_DIR +from concurrent.futures import ProcessPoolExecutor, wait +from seisflows import logger, ROOT_DIR +from seisflows.tools.unix import nproc +from seisflows.tools.config import pickle_function_list from seisflows.system.workstation import Workstation @@ -29,6 +30,8 @@ class Cluster(Workstation): :type mpiexec: str :param mpiexec: Function used to invoke executables on the system. For example 'mpirun', 'mpiexec', 'srun', 'ibrun' + :type ntask_max: int + :param ntask_max: limit the number of concurrent tasks in a given array job :type walltime: int :param walltime: maximum job time in minutes for the master SeisFlows job submitted to cluster @@ -44,8 +47,8 @@ class Cluster(Workstation): """ __doc__ = Workstation.__doc__ + __doc__ - def __init__(self, title=None, mpiexec="", walltime=10, tasktime=1, - environs="", **kwargs): + def __init__(self, title=None, mpiexec="", ntask_max=None, walltime=10, + tasktime=1, environs="", **kwargs): """Instantiate the Cluster System class""" super().__init__(**kwargs) @@ -54,40 +57,41 @@ def __init__(self, title=None, mpiexec="", walltime=10, tasktime=1, else: self.title = title self.mpiexec = mpiexec + self.ntask_max = ntask_max or nproc() - 1 # -1 because master job self.walltime = walltime self.tasktime = tasktime self.environs = environs or "" - def _pickle_func_list(self, funcs, **kwargs): + def submit(self, workdir=None, parameter_file="parameters.yaml", + submit_call=None): """ - Save a list of functions and their keyword arguments as pickle files. - Return the names of the files for the run() function. - - .. note:: - The idea here is that we need this list of functions to be - discoverable by a system separate to the one that defined them. To - do this we can pickle Python objects on disk, and have the new - system read in the pickle files and evaluate the objects. We use - 'dill' because Pickle can't serialize methods/functions - - :type funcs: list of methods - :param funcs: a list of functions that should be run in order. All - kwargs passed to run() will be passed into the functions. + Submits the main workflow job as a separate job submitted directly to + the system that is running the master job + + :type workdir: str + :param workdir: path to the current working directory + :type parameter_file: str + :param parameter_file: paramter file file name used to instantiate + the SeisFlows package + :type submit_call: str + :param submit_call: child classes may require a specific submit call + if the job should be submitted to another system (e.g., on cluster + submitting jobs on compute nodes and not running directly on the + login node) """ - # Save the instances that define the functions as a pickle object - func_names = "_".join([_.__name__ for _ in funcs]) # unique identifier - fid_funcs_pickle = os.path.join(self.path.scratch, f"{func_names}.p") - - with open(fid_funcs_pickle, "wb") as f: - dill.dump(obj=funcs, file=f) - - # Save the kwargs as a separate pickle object - fid_kwargs_pickle = os.path.join(self.path.scratch, - f"{func_names}_kwargs.p") - with open(fid_kwargs_pickle, "wb") as f: - dill.dump(obj=kwargs, file=f) - - return fid_funcs_pickle, fid_kwargs_pickle + if submit_call is None: + # e.g., submit -w ./ -p parameters.yaml + submit_call = " ".join([ + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", + f"--workdir {workdir}", + f"--parameter_file {parameter_file}", + ]) + logger.debug(submit_call) + try: + subprocess.run(submit_call, shell=True) + except subprocess.CalledProcessError as e: + logger.critical(f"SeisFlows master job has failed with: {e}") + sys.exit(-1) def run(self, funcs, single=False, run_call=None, **kwargs): """ @@ -108,18 +112,18 @@ def run(self, funcs, single=False, run_call=None, **kwargs): :type run_call: str :param run_call: the call used to submit the run script. If None, attempts default run call which should be suited for the given - system + system. Can be overwritten by child classes to involve other + arguments """ # Single tasks only need to be run one time, as `TASK_ID` === 0 - if single: - ntasks = 1 - else: - ntasks = self.ntask - - funcs_fid, kwargs_fid = self._pickle_func_list(funcs, **kwargs) + ntasks = {True: 1, False: self.ntask}[single] + funcs_fid, kwargs_fid = pickle_function_list(functions=funcs, + path=self.path.scratch, + **kwargs) logger.info(f"running functions {[_.__name__ for _ in funcs]} on " f"system {self.ntask} times") + # Create the run call which will simply call an external Python script if run_call is None: # e.g., run --funcs func.p --kwargs kwargs.p --environment ... run_call = " ".join([ @@ -130,13 +134,36 @@ def run(self, funcs, single=False, run_call=None, **kwargs): ]) logger.debug(run_call) - for task_id in range(ntasks): - logger.debug(f"running task id {task_id} " - f"(job {task_id + 1}/{self.ntask})") - # Subprocess waits for the process to end before running the next - try: - subprocess.run(run_call.format(task_id=task_id), shell=True) - except subprocess.CalledProcessError as e: - logger.critical(f"run task_id {task_id} has failed with error " - f"message {e}") - sys.exit(-1) + # Don't need to spin up concurrent.futures for a single run + if single: + self._run_task(run_call=run_call, task_id=0) + # Run tasks in parallel and wait for all of them to finish + else: + with ProcessPoolExecutor(max_workers=nproc() - 1) as executor: + futures = [executor.submit(self._run_task, run_call, task_id) + for task_id in range(ntasks)] + wait(futures) + + def _run_task(self, run_call, task_id): + """ + Convenience function to run a single Python job with subprocess.run + with some error catching and redirect of stdout to a log file. + + :type run_call: str + :param run_call: python call to run a task involving loading the + pickled function list and its kwargs, and then running them + :type task_id: int + :param task_id: given task id, used for log messages and to format + the run call + """ + logger.debug(f"running task id {task_id} ({task_id + 1}/{self.ntask})") + try: + f = open(self._get_log_file(task_id), "w") + subprocess.run(run_call.format(task_id=task_id), shell=True, + stdout=f) + except subprocess.CalledProcessError as e: + logger.critical(f"run task_id {task_id} has failed with error " + f"message {e}") + sys.exit(-1) + finally: + f.close() diff --git a/seisflows/system/runscripts/submit_workflow.py b/seisflows/system/runscripts/submit_workflow.py index 023a79e8..3bb85c47 100644 --- a/seisflows/system/runscripts/submit_workflow.py +++ b/seisflows/system/runscripts/submit_workflow.py @@ -1,9 +1,9 @@ #!/usr/bin/env python3 """ Only required when system==cluster (or any subclass of cluster) - -This script is executes a MASTER job through job scheduler -(e.g., PBS, LSF, or SLURM) by running workflow.main() on the compute system. +This script is used to execute a MASTER job on system. It is essentially the +same as `system.workstation.Workstation.submit()`, except it can be called as +a script using subprocess, allowing it to be submitted to e.g., a job scheduler .. note:: Not to be called by the user. This is called when the user runs @@ -11,15 +11,13 @@ be called by system.submit(). .. rubric:: - >> python submit --output ./OUTPUT + >> python submit -w ./ -p parameters.yaml OR - >> sbatch submit --output ./OUTPUT + >> sbatch submit -w ./ -p parameters.yaml """ -import sys +import os import argparse - -from seisflows.tools import unix -from seisflows.tools.config import load, config_logger +from seisflows.tools.config import import_seisflows def parse_args(): @@ -27,10 +25,11 @@ def parse_args(): Get command line arguments required for the submit script """ parser = argparse.ArgumentParser("Run arguments for system submitted tasks") - parser.add_argument("-o", "--output", type=str, nargs="?", required=True, - help="the SeisFlows output directory used to load the " - "active working state from inside the compute node" - ) + parser.add_argument("-w", "--workdir", type=str, nargs="?", required=True, + default=os.getcwd(), help="SeisFlows working directory") + parser.add_argument("-p", "--parameter_file", type=str, nargs="?", + required=True, default="parameters.yaml", + help="SeisFlows parameter file") return parser.parse_args() @@ -40,20 +39,8 @@ def parse_args(): Submit workflow.main() as a MASTER JOB on the compute system """ args = parse_args() - - # Load the currently active working state - unix.cd(args.output) - load(args.output) - - # Ensure that the two main modules are loaded - workflow = sys.modules["seisflows_workflow"] - system = sys.modules["seisflows_system"] - - # Set up logging on the compute system to print to stdout only - PAR = sys.modules["seisflows_parameters"] - PATH = sys.modules["seisflows_paths"] - config_logger(level=PAR.LOG_LEVEL, verbose=PAR.VERBOSE) - - # Execute MASTER JOB as workflow.main() - workflow.main() - + workflow = import_seisflows(workdir=args.workdir, + parameter_file=args.parameter_file) + workflow.check() + workflow.setup() + workflow.run() diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index ab9acaa6..be1cf4fe 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -30,8 +30,6 @@ class Slurm(Cluster): [system.slurm] Interface for submitting jobs to Simple Linux Utility for Resource Management (SLURM) system. - :type ntask_max: int - :param ntask_max: limit the number of concurrent tasks in a given array job :type slurm_args: str :param slurm_args: Any (optional) additional SLURM arguments that will be passed to the SBATCH scripts. Should be in the form: diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index b70fadff..74fd1441 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -7,9 +7,9 @@ from contextlib import redirect_stdout from seisflows import logger -from seisflows.tools.config import Dict from seisflows.tools import unix -from seisflows.tools.config import number_fid, get_task_id, set_task_id +from seisflows.tools.config import Dict, import_seisflows +from seisflows.tools.config import number_fid, set_task_id class Workstation: @@ -67,6 +67,7 @@ def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, # Define internal path system self.path = Dict( + workdir=workdir or os.getcwd(), scratch=path_system or os.path.join(workdir, "scratch", "system"), par_file=path_par_file or os.path.join(workdir, "parameters.yaml"), output=path_output or os.path.join(workdir, "output"), @@ -84,7 +85,7 @@ def check(self): assert(self.ntask > 0), f"number of events/tasks `ntask` cannot be neg'" assert(self.nproc == 1), f"system.workstation rqeuires `nproc`==1" - assert(self.log_level) in self._acceptable_log_levels, \ + assert(self.log_level in self._acceptable_log_levels), \ f"`system.log_level` must be in {self._acceptable_log_levels}" def setup(self): @@ -120,16 +121,25 @@ def setup(self): logger.debug(f"copying par/log file to: {dst}") unix.cp(src=src, dst=dst) - def submit(self, workflow, submit_call=None): + def submit(self, workdir=None, parameter_file="parameters.yaml", + submit_call=None): """ Submits the main workflow job as a serial job submitted directly to the system that is running the master job - :type submit_call: str or None - :param submit_call: the command line workload manager call to be run by - subprocess. This is only needed for overriding classes, it has no - effect on the Workstation class + :type workdir: str + :param workdir: path to the current working directory + :type parameter_file: str + :param parameter_file: paramter file file name used to instantiate + the SeisFlows package + :type submit_call: str + :param submit_call: child classes may require a specific submit call + if the job should be submitted to another system (e.g., on cluster + submitting jobs on compute nodes and not running directly on the + login node) """ + workflow = import_seisflows(workdir=workdir or self.path.workdir, + parameter_file=parameter_file) workflow.check() workflow.setup() workflow.run() @@ -156,19 +166,10 @@ def run(self, funcs, single=False, **kwargs): else: ntasks = self.ntask - for taskid in range(ntasks): + for task_id in range(ntasks): # Set Task ID for currently running process - set_task_id(taskid) - - # Make sure that we're creating new log files EACH time we run() - idx = 0 - while True: - log_file = os.path.join(self.path.log_files, - f"{idx:0>4}_{taskid:0>2}.log") - if os.path.exists(log_file): - idx += 1 - else: - break + set_task_id(task_id) + log_file = self._get_log_file(task_id) # Redirect output to a log file to mimic cluster runs where 'run' # task output logs are sent to different files @@ -176,3 +177,18 @@ def run(self, funcs, single=False, **kwargs): with redirect_stdout(f): for func in funcs: func(**kwargs) + + def _get_log_file(self, task_id): + """ + To mimic clusters which assign job numbers to spawned processes, our + on-system runs will also assign job numbers simply be incrementing the + number on the log files on system. + """ + idx = 1 + while True: + log_file = os.path.join(self.path.log_files, + f"{idx:0>4}_{task_id:0>2}.log") + if os.path.exists(log_file): + idx += 1 + else: + return log_file diff --git a/seisflows/tests/test_data/DATA/CMTSOLUTION_c46e1d99 b/seisflows/tests/test_data/specfem/DATA/CMTSOLUTION_c46e1d99 similarity index 100% rename from seisflows/tests/test_data/DATA/CMTSOLUTION_c46e1d99 rename to seisflows/tests/test_data/specfem/DATA/CMTSOLUTION_c46e1d99 diff --git a/seisflows/tests/test_data/DATA/FORCESOLUTION_c46e1d99 b/seisflows/tests/test_data/specfem/DATA/FORCESOLUTION_c46e1d99 similarity index 100% rename from seisflows/tests/test_data/DATA/FORCESOLUTION_c46e1d99 rename to seisflows/tests/test_data/specfem/DATA/FORCESOLUTION_c46e1d99 diff --git a/seisflows/tests/test_data/DATA/Par_file_SPECFEM2D_cf893667 b/seisflows/tests/test_data/specfem/DATA/Par_file_SPECFEM2D_cf893667 similarity index 100% rename from seisflows/tests/test_data/DATA/Par_file_SPECFEM2D_cf893667 rename to seisflows/tests/test_data/specfem/DATA/Par_file_SPECFEM2D_cf893667 diff --git a/seisflows/tests/test_data/DATA/Par_file_SPECFEM3D_c46e1d99 b/seisflows/tests/test_data/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 similarity index 100% rename from seisflows/tests/test_data/DATA/Par_file_SPECFEM3D_c46e1d99 rename to seisflows/tests/test_data/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 diff --git a/seisflows/tests/test_data/DATA/SOURCE_cf893667 b/seisflows/tests/test_data/specfem/DATA/SOURCE_cf893667 similarity index 100% rename from seisflows/tests/test_data/DATA/SOURCE_cf893667 rename to seisflows/tests/test_data/specfem/DATA/SOURCE_cf893667 diff --git a/seisflows/tests/test_data/OUTPUT_FILES/AA.S0001.BXY.semd b/seisflows/tests/test_data/specfem/OUTPUT_FILES/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/OUTPUT_FILES/AA.S0001.BXY.semd rename to seisflows/tests/test_data/specfem/OUTPUT_FILES/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/OUTPUT_FILES/Uy_file_single_d.su b/seisflows/tests/test_data/specfem/OUTPUT_FILES/Uy_file_single_d.su similarity index 100% rename from seisflows/tests/test_data/OUTPUT_FILES/Uy_file_single_d.su rename to seisflows/tests/test_data/specfem/OUTPUT_FILES/Uy_file_single_d.su diff --git a/seisflows/tests/test_data/test_optimize/g_new.npz b/seisflows/tests/test_data/test_optimize/g_new.npz deleted file mode 120000 index 397dba1f..00000000 --- a/seisflows/tests/test_data/test_optimize/g_new.npz +++ /dev/null @@ -1 +0,0 @@ -gradient_rosenbrock.npz \ No newline at end of file diff --git a/seisflows/tests/test_data/test_optimize/gradient_rosenbrock.npz b/seisflows/tests/test_data/test_optimize/gradient_rosenbrock.npz deleted file mode 100644 index 8d53d2f174c2f9a24cae47769bffc867f64a0e30..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 526 zcmWIWW@Zs#fB;1X7OyF1@*N2qLQM-y!ia0lvI$oTVhUeDp0&QBe5VA$k))+QK(g* z2yp2E-H-&tnLwNe!~rNCaXqp35zHg3K#x?A=8ZH9qP$_KqhLgtSGblL8}BgwoOM8f zfgyo`A?!eaHzSh>Gp-l``V$Ho7(onZ{Ge+>^*u}r149GjNgxLt76IO@Y#<3HAj|;L I6Ts#H0I$kkJOBUy diff --git a/seisflows/tests/test_data/test_optimize/m_init_rosenbrock.npz b/seisflows/tests/test_data/test_optimize/m_init_rosenbrock.npz deleted file mode 100644 index e46904d0122532177d723e22cbf71c62a3ae94f1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 526 zcmWIWW@Zs#fB;1X7OyF1@*N2qLQM-y!ia0lvI$oTVhUeDp0&QBe5VA$k))+QK(g* z2yp2E-H-&tnLwNe!~rNC*Gp-ncr~;71@*N2qLQM-y!ia0lvI$oTVhUeDp0&QBe5VA$k))+QK(g* z2yp2E-H-&tnLwNe!~rNC**NV+2+Sj_K#x?A=8ZH9qP$_KqhLgtSGa&K2Z9gwFgn1S ykx7IZSByYZfyf3%5DASRbWNzf2PuSr2F8;>1~@DNyjj^mf=ob|0i-8@%>w|L(pr81 diff --git a/seisflows/tests/test_data/test_optimize/m_try.npz b/seisflows/tests/test_data/test_optimize/m_try.npz deleted file mode 120000 index 444a5bf5..00000000 --- a/seisflows/tests/test_data/test_optimize/m_try.npz +++ /dev/null @@ -1 +0,0 @@ -m_init_rosenbrock.npz \ No newline at end of file diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index 7364ab82..cc234cb3 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -221,7 +221,89 @@ def test_optimize_attempt_line_search_restart(tmpdir, assert(optimize.attempt_line_search_restart() == True) -def _test_inversion_optimization_problem_general(optimize): +def test_line_search_recover_from_failure(tmpdir, setup_optimization_vectors): + """ + Run a small optimization problem to try to reduce the Rosenbrock + objective function using the Bracket'ing line search method. Simulate a job + failure during the line search, and attempts to recover the line search + from a checkpointed state, mimicing a real life inversion where a line + search might fail a job (forward simulation), and we do not want to have to + run the line search from the beginning. + """ + optimize = Gradient(path_optimize=tmpdir, path_output=tmpdir, + line_search_method="bracket", step_count_max=100) + + # Make sure the initial misfit is high + assert(optimize.load_vector("f_new") == pytest.approx(24.2, 1)) + + # Calculate the initial search direction which is just the inverse gradient + p_new = optimize.compute_direction() + p_new.save(path=os.path.join(tmpdir, "p_new")) + + # Saves trial model 'm_try' and corresponding step length 'alpha' + m_try, alpha = optimize.initialize_search() + optimize.save_vector("m_try", m_try) + optimize.save_vector("alpha", alpha) + + def line_search(_optimize, allow_break=True): + """Each line search evaluation requires calculating a new model and + corresponding misfit value. Simulate a break at a given step count""" + m_try = _optimize.load_vector("m_try") + f_try = rosenbrock_objective_function(m_try.vector) + + # Line search is most likely to break at the function evaluation + # break mimics a job failure on cluster, before `f_try` has been saved + if allow_break and _optimize.step_count == 3: + return "BREAK" + + np.savetxt(os.path.join(tmpdir, "f_try.txt"), [f_try]) + + m_try, alpha, status = _optimize.update_line_search() + _optimize.save_vector("m_try", m_try) + _optimize.save_vector("alpha", alpha) + return status + + # Run a line search until the line search breaks + while True: + status = line_search(optimize, allow_break=True) + if status == "PASS": + break + elif status == "BREAK": + optimize.checkpoint() + break + + # Try to restart the line search by re-instantiating from a checkpoint with + # a newly instantiated optimization module + optimize_restarted = Gradient(path_optimize=tmpdir, path_output=tmpdir, + line_search_method="bracket", + step_count_max=100) + optimize_restarted.load_checkpoint() + assert(optimize_restarted.step_count == 3) + while True: + status = line_search(optimize_restarted, allow_break=False) + if status == "PASS": + break + + # The rest of this is copied from `test_bracket_line_search` which completes + # a successful line search. So if these values are the same then we know + # we have successfully restarted a line search + assert(status == "PASS") # pass + assert(optimize_restarted.step_count == 5) # Took 5 steps to reduce misfit + # Make sure we have reduced the final misfit + assert(min(optimize_restarted._line_search.func_vals) == + pytest.approx(4.22, 3)) + + # Change model names and reset line search + optimize_restarted.finalize_search() + + # Check that the final model + m_new = optimize_restarted.load_vector("m_new") + m_old = optimize_restarted.load_vector("m_old") + m_angle = angle(m_new.vector, m_old.vector) + assert(m_angle == pytest.approx(0.3, 2)) + + +def _test_inversion_optimization_problem_general(optimize, iterations=200): """ Rather than run a single line search evaluation, which all the previous tests have done, we want to run a inversion workflow to find a best fitting @@ -235,12 +317,21 @@ def _test_inversion_optimization_problem_general(optimize): We do not save `m_try` to disk each time it is evaluated because it is small. However in real workflows, `m_try` must be saved to disk rather than passed in memory because it is likely to be a large vector. + + :type optimize: module + :param optimize: specific SeisFlows optimization module to test + :type iterations: int + :param iterations: number of iterations to run. defaults to 200 """ m_init = Model() - m_init.model = Dict(x=[np.array([-1.2, 1])]) # Starting guess for Rosenbrock + m_init.model = Dict(x=[np.array([-1.2, 1])]) # Initial guess for Rosenbrock optimize.save_vector("m_new", m_init) - for iteration in range(100): + m_true = m_init.copy() + m_true.update(vector=np.array([1., 1.])) # Rosenbrock global minimum + + # 200 allowable iterations, but reaching global min. will stop inversion + for iteration in range(iterations): # Step 1: Evaluate the objective function for given model 'm_new' m_new = optimize.load_vector("m_new") f_new = rosenbrock_objective_function(x=m_new.vector) @@ -264,12 +355,20 @@ def _test_inversion_optimization_problem_general(optimize): m_try, alpha, status = optimize.update_line_search() if status == "PASS": break + elif status == "FAIL": + return optimize else: optimize.save_vector("alpha", alpha) optimize.save_vector("m_try", m_try) # Set up for the next iteration, most importantly `m_try` -> `m_new` optimize.finalize_search() + # Figure out how far the updated model is from global minimum + m_diff = np.linalg.norm(m_new.vector - m_true.vector) + m_diff /= np.linalg.norm(m_new.vector) + if m_diff < 1e-3: + break + return optimize @@ -281,17 +380,14 @@ def test_inversion_optimization_problem_with_gradient( # Just check a few of the stats file outputs to make sure this runs right assert(os.path.exists(optimize.path._stats_file)) stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) - assert(len(stats) == 100.) - assert(stats["misfit"].min() == pytest.approx(0.9992, 3)) + assert(len(stats) == 200.) # Fails to reach global minimum + assert(stats["misfit"].min() == pytest.approx(0.2669, 3)) assert(stats["if_restarted"].sum() == 0.) def test_inversion_optimization_problem_with_LBFGS( # NOQA tmpdir, setup_optimization_vectors): """Wrapper function to test the L-BFGS descent optimization problem""" - # from seisflows.tools.config import config_logger - # config_logger(level="DEBUG", filename=os.path.join(tmpdir, "log.txt"), verbose=False) - lbfgs = LBFGS(path_optimize=tmpdir, path_output=tmpdir, line_search_method="backtrack") os.mkdir(lbfgs.path._LBFGS) @@ -300,30 +396,22 @@ def test_inversion_optimization_problem_with_LBFGS( # NOQA # Just check a few of the stats file outputs to make sure this runs right assert(os.path.exists(optimize.path._stats_file)) stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) - assert(len(stats) == 100.) - assert(stats["misfit"].min() == pytest.approx(0.1468, 3)) - pytest.set_trace() + assert(len(stats) == 95.) # reaches global min. in 95 iterations + assert(stats["misfit"].min() == pytest.approx(1.07e-7, 3)) + assert(stats["if_restarted"].sum() == 0.) def test_inversion_optimization_problem_with_NLCG( # NOQA tmpdir, setup_optimization_vectors): - nlcg = NLCG(path_optimize=tmpdir, path_output=tmpdir) - os.mkdir(nlcg.path._LBFGS) + # NLCG will need more step counts + nlcg = NLCG(path_optimize=tmpdir, path_output=tmpdir, + step_count_max=20) optimize = _test_inversion_optimization_problem_general(nlcg) # Just check a few of the stats file outputs to make sure this runs right assert(os.path.exists(optimize.path._stats_file)) - # TODO finish assertion tests here - - -def test_optimize_recover_from_failure(): - """ - We need to make sure we can recover an optimization from a job failure. - That means that checkpointing and re-loading from checkpoint works as - expected - - TODO - """ - pass - + stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) + assert(len(stats) == 200.) # Fails to reach global minimum + assert(stats["misfit"].min()) == pytest.approx(0.1013, 3) + assert(stats["if_restarted"].sum() == 91.) diff --git a/seisflows/tests/test_system.py b/seisflows/tests/test_system.py new file mode 100644 index 00000000..30d2b182 --- /dev/null +++ b/seisflows/tests/test_system.py @@ -0,0 +1,82 @@ +""" +Test the system modules ability to run jobs +""" +import os +import pytest +from glob import glob +from seisflows.tools import unix +from seisflows.tools.config import get_task_id +from seisflows.system.workstation import Workstation +from seisflows.system.cluster import Cluster + + +def _test_function_a(tmpdir): + """ + A test function that simply prints, used to check run + """ + test_dir = os.path.join(tmpdir, "test_dir") + if not os.path.exists(test_dir): + unix.mkdir(test_dir) + + +def _test_function_b(tmpdir): + """ + A test function that simply prints + """ + idx = get_task_id() + test_fid = f"test_file_{idx:0>2}.txt" + test_file = os.path.join(tmpdir, "test_dir", test_fid) + print(f"making test file {test_file}") + open(test_file, "w").close() + + +def test_workstation_run(tmpdir, ntask=26): + """ + Make sure that Workstation run simply calls the functions in question + """ + system = Workstation(workdir=tmpdir, path_system=tmpdir, ntask=ntask) + system.setup() # make required dir. structure + system.run(funcs=[_test_function_a, _test_function_b], tmpdir=tmpdir) + + assert(len(glob(os.path.join(system.path.log_files, "*"))) == ntask) + assert(len(glob(os.path.join(tmpdir, "test_dir", "*"))) == ntask) + + +def test_workstation_run_single(tmpdir, ntask=26): + """ + Make sure that Workstation run simply calls the functions only once + """ + system = Workstation(workdir=tmpdir, path_system=tmpdir, ntask=ntask) + system.setup() # make required dir. structure + system.run(funcs=[_test_function_a, _test_function_b], tmpdir=tmpdir, + single=True) + + assert(len(glob(os.path.join(system.path.log_files, "*"))) == 1) + assert(len(glob(os.path.join(tmpdir, "test_dir", "*"))) == 1) + + +def test_cluster_run(tmpdir, ntask=26): + """ + Make sure that Cluster run can pickle the tasks and run them with subprocess + """ + system = Cluster(workdir=tmpdir, path_system=tmpdir, ntask=ntask) + system.setup() # make required dir. structure + system.run(funcs=[_test_function_a, _test_function_b], tmpdir=tmpdir) + + assert(len(glob(os.path.join(system.path.log_files, "*"))) == ntask) + assert(len(glob(os.path.join(tmpdir, "test_dir", "*"))) == ntask) + + +def test_cluster_run_single(tmpdir, ntask=26): + """ + Make sure that Cluster runs single tasks accetpably + """ + system = Cluster(workdir=tmpdir, path_system=tmpdir, ntask=ntask) + system.setup() # make required dir. structure + system.run(funcs=[_test_function_a, _test_function_b], tmpdir=tmpdir, + single=True) + + assert(len(glob(os.path.join(system.path.log_files, "*"))) == 1) + assert(len(glob(os.path.join(tmpdir, "test_dir", "*"))) == 1) + + diff --git a/seisflows/tools/config.py b/seisflows/tools/config.py index 17605aef..36a91012 100755 --- a/seisflows/tools/config.py +++ b/seisflows/tools/config.py @@ -3,11 +3,12 @@ Seisflows configuration tools, containing core utilities that are called upon throughout the Seisflows workflow. """ +import dill +import logging import os import sys import re import yaml -import logging import numpy as np import traceback from pkgutil import find_loader @@ -185,7 +186,6 @@ def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): if name == "workflow": continue modules[name] = custom_import(name, parameters[name])(**parameters) - # parameters.pop(name) # drop name so workflow doesnt instantiate it # Import workflow separately by providing all the instantiated modules to it workflow = \ @@ -339,6 +339,44 @@ class 'Inversion'. sys.exit(-1) +def pickle_function_list(functions, path=os.getcwd(), **kwargs): + """ + Save a list of functions and their keyword arguments as pickle files. + Return the names of the files. Used for running functions from spawned + processes during cluster runs. + + .. note:: + The idea here is that we need this list of functions to be + discoverable by a system separate to the one that defined them. To + do this we can pickle Python objects on disk, and have the new + system read in the pickle files and evaluate the objects. We use + 'dill' because Pickle can't serialize methods/functions + + :type functions: list of methods + :param functions: a list of functions that should be run in order. All + kwargs passed to run() will be passed into the functions. + :type path: str + :param path: path to save the pickle files. Defaults to current working + directory + :rtype: tuple of str + :return: (name of the pickle file containing the function, + name of the pickle file containing keyword arguments) + """ + # Save the instances that define the functions as a pickle object + func_names = "_".join([_.__name__ for _ in functions]) # unique identifier + fid_funcs_pickle = os.path.join(path, f"{func_names}.p") + + with open(fid_funcs_pickle, "wb") as f: + dill.dump(obj=functions, file=f) + + # Save the kwargs as a separate pickle object + fid_kwargs_pickle = os.path.join(path, f"{func_names}_kwargs.p") + with open(fid_kwargs_pickle, "wb") as f: + dill.dump(obj=kwargs, file=f) + + return fid_funcs_pickle, fid_kwargs_pickle + + def number_fid(fid, i=0): """ Number a filename. Used to store old log files without overwriting them. From b95ade6385fb67ad55e41515fcf42724c2937339 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 27 Jul 2022 17:22:13 -0800 Subject: [PATCH 088/195] removing old test workflow, this is now replaced by unit tests --- seisflows/workflow/test.py | 321 ------------------------------------- 1 file changed, 321 deletions(-) delete mode 100644 seisflows/workflow/test.py diff --git a/seisflows/workflow/test.py b/seisflows/workflow/test.py deleted file mode 100644 index e7fd0c43..00000000 --- a/seisflows/workflow/test.py +++ /dev/null @@ -1,321 +0,0 @@ -#!/usr/bin/env python3 -""" -This is the SeisFlows Test class which is used to test out the underlying -machinery before running an actual workflow. Contains simple functions used to -make sure that all parts of the package are working as expected. Creates -its own directory structure and acts as a standalone workflow tool -""" -import os -import sys -import time -import subprocess -import numpy as np -from glob import glob - -from seisflows.tools.config import Base -from seisflows.tools.config import ROOT_DIR, CFGPATHS, save, config_logger - - -class Test(Base): - """ - The Test workflow class provides a base parameter and directory structure - as well as test functions which can be run to ensure that the chosen - modules are working as expected - """ - def __init__(self): - """ - Initiate the TEST workflow - """ - super().__init__() - - self.required.path( - "TEST_DATA", required=False, - default=os.path.join(ROOT_DIR, "tests", "test_data"), - docstr="Example data for test system which is shipped with the " - "SeisFlows repository" - ) - - def check(self, validate=True): - """ - Checks parameters and paths. The validate function ensures that all - required paths and parameters are accounted for, and that all - optional paths and parameters are set to user-defined or default values. - - :type validate: bool - :param validate: set required paths and parameters into sys.modules - """ - self.required.validate() - - def checkpoint(self): - """ - Saves active SeisFlows working state to disk as Pickle files such that - the workflow can be resumed following a crash, pause or termination of - workflow. - """ - save(path=self.path.OUTPUT) - - def main(self, return_flow=False): - """ - This controls the main testing workflow - """ - FLOW = [self.test_system, - # self.test_preprocess, - # self.test_solver, - # self.test_optimize - ] - if return_flow: - return FLOW - - for func in FLOW: - func() - - def _test_function_print(self, check_value): - """ - A simple function that can be called by system.run() - """ - system = self.module("system") - - print(f"Hello world, from taskid {system.taskid()}. " - f"Check: {check_value}") - - config_logger(level="DEBUG", filemode="a", verbose=False) - - system.logger.info(f"Hello world, from taskid {system.taskid()}. " - f"Logger 'info' message. Check: {check_value}") - - system.logger.debug(f"Hello world, from taskid {system.taskid()}. " - f"Logger 'debug' message. Check: {check_value}") - - system.logger.warning(f"Hello world, from taskid {system.taskid()}. " - f"Logger 'warning' message. Check: {check_value}") - - config_logger(level="DEBUG", filemode="a", verbose=True) - - system.logger.info(f"Hello world, from taskid {system.taskid()}. " - f"Logger 'info' message. Check: {check_value}") - - system.logger.debug(f"Hello world, from taskid {system.taskid()}. " - f"Logger 'debug' message. Check: {check_value}") - - system.logger.warning(f"Hello world, from taskid {system.taskid()}. " - f"Logger 'warning' message. Check: {check_value}") - - def test_system(self): - """ - Test the system by submitting a simple print statement using the - run() and run(single) functions. - - Check that these functions perform as expected by passing in a random - value and checking that this value gets logged back - """ - system = self.module("system") - system.setup() - - # Run a very simple test function using system.run() - check_value_1 = 1234.5 - system.run(classname="workflow", method="_test_function_print", - check_value=check_value_1) - - time.sleep(3) # wait a bit for system to catch up - - check_value_2 = 5432.1 - system.run(classname="workflow", method="_test_function_print", - single=True, check_value=check_value_2) - - # Check the output log files to match the check values - for fid, check in zip( - sorted(glob(os.path.join(CFGPATHS.LOGDIR, "*.log"))), - [check_value_1, check_value_2] - ): - with open(fid, "r") as f: - line = f.readlines()[0] - assert(float(line.strip().split(" ")[-1]) == check) - - # Check that MPI Exec works - assert("MPIEXEC" in self.par), f"MPIEXEC is not defined for this system" - if self.par.MPIEXEC: - stdout = subprocess.run(self.par.MPIEXEC, shell=True, check=True, - stdout=subprocess.PIPE) - - def test_preprocess(self): - """ - Test the exposed 'prepare_eval_grad()' preprocessing function - """ - preprocess = self.module("preprocess") - preprocess.setup() - - cwd = os.path.join(self.path.TEST_DATA, "test_solver") - taskid = 0 - filenames = ["AA.S0001.BXY.semd"] - source_name = "001" - preprocess.prepare_eval_grad(cwd=cwd, taskid=taskid, - filenames=filenames, - source_name=source_name - ) - - def test_solver(self): - """ - Simply test that the solver binaries can be called, which is what the - solver module is ultimately responsible for - """ - solver = self.module("solver") - - assert(self.path.SPECFEM_BIN is not None and - os.path.exists(self.path.SPECFEM_BIN)), ( - f"SPECFEM_BIN {self.path.SPECFEM_BIN} directory does not exist" - ) - try: - solver.call_solver( - executable=f"{self.path.SPECFEM_BIN}/xcombine_sem", - output=os.path.join(self.path.TEST_DATA, "test_solver.log") - ) - # We expect this to throw a system exit because we are not running with - # MPI - except SystemExit: - pass - - def test_optimize(self): - """ - Test optimization module with a simple Rosenbrock function - """ - optimize = self.module("optimize") - - self.par.log_level = "CRITICAL" - m_new, m_true, objective_function, gradient = rosenbrock() - - optimize.setup() - optimize.save("m_new", m_new) - - def evaluate_function(): - """ - Evalaute the misfit function of a given model - """ - self.logger.info("evaluating objective function") - m_try = optimize.load("m_try") - f_try = objective_function(m_try) - optimize.save("f_try", f_try) - - def evaluate_gradient(): - """ - Evaluate the gradient of a given model - """ - self.logger.info("evaluating gradient") - m_new = optimize.load("m_new") - f_new = objective_function(m_new) - g_new = gradient(m_new) - optimize.save("f_new", f_new) - optimize.save("g_new", g_new) - - def line_search(): - """ - Run a line search until a suitable model has been found - Note this is almost the same as workflow.inversion.line_search - """ - optimize.initialize_search() - while True: - evaluate_function() - optimize.line_search.step_count += 1 - status = optimize.update_search() - if status == 1: - self.logger.info("finalizing line search") - optimize.finalize_search() - return - elif status == 0: - self.logger.info("continuing line search") - continue - elif status == -1: - if optimize.retry_status(): - self.logger.info("restarting line search") - optimize.restart() - # Recursively run the line search after restart - line_search() - else: - sys.exit(-1) - - def finalize(thresh=5e-3): - """ - Finish off one iteration, check the distance between old and new - vectors to see if model stops changing - """ - m_new = optimize.load("m_new") - m_diff = np.linalg.norm(m_new - m_true) / np.linalg.norm(m_new) - if m_diff < thresh: - self.logger.info(f"successful inversion after {optimize.iter} " - f"iterations") - sys.exit(0) - else: - self.logger.info(f"model difference: {m_diff:.2E}") - return - - self.logger.info("testing optimization library with Rosenbrock problem") - for iteration in range(1, 200): - self.logger.info(f"iteration {iteration}") - evaluate_gradient() - optimize.compute_direction() - line_search() - optimize.iter += 1 - finalize() - - -def rosenbrock(): - """ - Rosenbrock test problem for optimization library testing - - """ - model_init = np.array([-1.2, 1]) # This is the guess for the global min - model_true = np.array([1, 1]) # This is the actual minimum - - def objective_function(x): - """ - Rosenbrock objective function which is defined mathematically as: - - f(x,y) = (a-x)^2 + b(y-x^2)^2 - - where the global minimum is at (x,y) == (a, a^2) - and typical constant values are: a==1, b==100 - """ - return np.array([((1 - x[0]) ** 2 + 100 * (-x[0] ** 2 + x[1]) ** 2)]) - - def gradient(x): - """ - Gradient of the objective function for Rosenbrock test - """ - return np.array([-2*(1-x[0]) - 400*x[0]*(-x[0]**2+x[1]), - 200*(- x[0]**2+x[1])]) - - return model_init, model_true, objective_function, gradient - - -def rosenbrock_n(n=1E5): - """ - N dimensional Rosenbrock test problem for optimization library testing - - https://en.wikipedia.org/wiki/Rosenbrock_function - """ - model_init = 0.1 * np.ones(int(n)) # This is a guess for the global min - model_true = np.ones(int(n)) - - def objective_function(x): - """ - Rosenbrock objective function - """ - return sum(100 * (x[:-1]**2. - x[1:])**2. + (x[:-1] - 1.)**2) - - def gradient(x): - """ - Gradient of the objective function for Rosenbrock test - """ - g = np.zeros(int(n)) - g[1:-1] = -200 * (x[:-2] ** 2. - x[1:-1]) + \ - 400. * x[1:-1] * (x[1:-1] ** 2. - x[2:]) + \ - 2. * (x[1:-1] - 1.) - - g[0] = 400. * x[0] * (x[0] ** 2. - x[1]) + \ - 2. * (x[0] - 1) - - g[-1] = -200. * (x[-2] ** 2. - x[-1]) - - return g - - return model_init, model_true, objective_function, gradient - From ca7c33a39e279063a2f3d15a96d55f5ff85acf6e Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 27 Jul 2022 17:25:45 -0800 Subject: [PATCH 089/195] removing out of date seisflows cmd line tool tests --- seisflows/tests/test_seisflows.py | 222 ++++++++---------------------- 1 file changed, 59 insertions(+), 163 deletions(-) diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index cf39831d..539d96cb 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -12,8 +12,9 @@ from unittest.mock import patch from seisflows.tools.config import Dict +from seisflows import ROOT_DIR from seisflows.seisflows import SeisFlows -from seisflows.tools.config import ROOT_DIR, NAMES, CFGPATHS +from seisflows.tools.config import NAMES from seisflows.tools.config import load_yaml TEST_DIR = os.path.join(ROOT_DIR, "tests") @@ -111,35 +112,6 @@ def test_edited_parameter_file_name(tmpdir, par_file_dict, filled_par_file): assert(out.stdout.strip() == f"{par_name.upper()}: {check_val}") -def test_register(tmpdir, par_file_dict, copy_par_file): - """ - Test that the register function, which reads in PATHS and PARAMETERS - works as expected, returning paths and parameters that we can read - """ - copy_par_file - os.chdir(tmpdir) - - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - assert(sf._paths is None) - assert(sf._parameters is None) - sf._register_parameters() - - # Check that paths and parameters have been set in sys.modules - paths = sys.modules["seisflows_paths"] - parameters = sys.modules["seisflows_parameters"] - - # Check one or two parameters have been set correctly - assert("PATHS" not in parameters) - for key, val in par_file_dict.items(): - if key == "PATHS": - continue - assert(parameters[key] == val) - - path_check_full = os.path.abspath(par_file_dict.PATHS["SCRATCH"]) - assert(path_check_full == paths.SCRATCH) - - def test_cmd_setup(tmpdir): """ Test setting up the SeisFlows working directory @@ -175,142 +147,66 @@ def test_cmd_setup(tmpdir): assert(test_phrase not in text) -def test_cmd_init(tmpdir, copy_par_file): - """ - Test 'seisflows init' command which instantiates a working directory and - saves the active working state as pickle files - :return: - """ - os.chdir(tmpdir) - copy_par_file - - # Create necessary paths to get past some assertion errors - parameters = load_yaml("parameters.yaml") - paths = parameters.pop("PATHS") - - for key in ["MODEL_INIT", "MODEL_TRUE"]: - os.mkdir(paths[key]) - - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf.init() - - for name in NAMES: - assert(os.path.exists(os.path.join(paths["OUTPUT"], - f"seisflows_{name}.p")) - ) - - -def test_cmd_submit(tmpdir): - """ - Test submit, also test the functionality of resume and restart which - are essentially wrappers for this call - :param tmpdir: - :return: - """ +# def test_cmd_submit(tmpdir): +# """ +# Test submit, also test the functionality of resume and restart which +# are essentially wrappers for this call +# :param tmpdir: +# :return: +# """ +# pass +# +# +# def test_cmd_clean(tmpdir): +# """ +# +# :param tmpdir: +# :return: +# """ pass -def test_cmd_clean(tmpdir): - """ - - :param tmpdir: - :return: - """ - os.chdir(tmpdir) - - # Create a bunch of files that match what should be deleted. Make them as - # directories even though some should be files because we just want to see - # if they get deleted or not - for path in CFGPATHS.values(): - os.mkdir(path) - - # Symlink the last file to make sure it still exists even if it matches - shutil.rmtree(path) - os.symlink(src=CFGPATHS.PAR_FILE, dst=path) - - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf.clean(force=True) - - for fid in [path, "parameters.yaml"]: - assert(os.path.exists(fid)) - - -def test_load_modules(tmpdir, copy_par_file): - """ - Test if module loading from sys.modules works - - :param tmpdir: - :return: - """ - # Run init first to create a working state - os.chdir(tmpdir) - copy_par_file - - # Create necessary paths to get past some assertion errors - parameters = load_yaml("parameters.yaml") - paths = parameters.pop("PATHS") - - for key in ["MODEL_INIT", "MODEL_TRUE"]: - os.mkdir(paths[key]) - - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf.init() - - # Check a random parameter and then set it to something different - preprocess = sys.modules["seisflows_preprocess"] - assert(preprocess.misfit is None) - preprocess.misfit = 1 - - # See if we can load modules and restore previous working state which - # overwrites the previous operation - sf._load_modules() - assert(sys.modules["seisflows_preprocess"].misfit != 1) - - -def test_cmd_configure(tmpdir, setup_par_file, conf_par_file): - """ - Test configuring a parameter file from a template par file - - .. note:: - I don't know exactly why, but this test needs to be run AFTER any other - test which runs seisflows.init(), otherwise the parameters are not - instantiated properly (you will hit a KeyError when trying to access - PAR). I think this is because of how seisflows.configure() registers - a relatively empty parameter file (only modules are defined), and this - gets saved into sys modules, affecting subsequent tests which end up - accessing sys.modules. I tried flushing sys.modules but it didn't work. - This behavior shouldn't get encountered in a real run because we - won't need to run init() and configure() in the same python - runtime environment, but I leave this warning here - wondering if I'll have to fix it at some point... -B - """ - os.chdir(tmpdir) - - # Copy in the setup par file so we can configure it - src = setup_par_file - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) - - # run seisflows init - with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() - sf.configure(relative_paths=False) - - # Simple check that the configuration parameter file has the same number - # of lines as the one that has been created by configure - lines_conf = open(conf_par_file, "r").readlines() - lines_fill = open("parameters.yaml", "r").readlines() - assert (len(lines_conf) == len(lines_fill)) - - # My attempt to flush sys.modules which did NOT work - # from seisflows.tools.config import NAMES, PAR, PATH - # for name in NAMES: - # del sys.modules[f"seisflows_{name}"] - # del sys.modules[PAR] - # del sys.modules[PATH] +# def test_cmd_configure(tmpdir, setup_par_file, conf_par_file): +# """ +# Test configuring a parameter file from a template par file +# +# .. note:: +# I don't know exactly why, but this test needs to be run AFTER any other +# test which runs seisflows.init(), otherwise the parameters are not +# instantiated properly (you will hit a KeyError when trying to access +# PAR). I think this is because of how seisflows.configure() registers +# a relatively empty parameter file (only modules are defined), and this +# gets saved into sys modules, affecting subsequent tests which end up +# accessing sys.modules. I tried flushing sys.modules but it didn't work. +# This behavior shouldn't get encountered in a real run because we +# won't need to run init() and configure() in the same python +# runtime environment, but I leave this warning here +# wondering if I'll have to fix it at some point... -B +# """ +# os.chdir(tmpdir) +# +# # Copy in the setup par file so we can configure it +# src = setup_par_file +# dst = os.path.join(tmpdir, "parameters.yaml") +# shutil.copy(src, dst) +# +# # run seisflows init +# with patch.object(sys, "argv", ["seisflows"]): +# sf = SeisFlows() +# sf.configure(relative_paths=False) +# +# # Simple check that the configuration parameter file has the same number +# # of lines as the one that has been created by configure +# lines_conf = open(conf_par_file, "r").readlines() +# lines_fill = open("parameters.yaml", "r").readlines() +# assert (len(lines_conf) == len(lines_fill)) +# +# # My attempt to flush sys.modules which did NOT work +# # from seisflows.tools.config import NAMES, PAR, PATH +# # for name in NAMES: +# # del sys.modules[f"seisflows_{name}"] +# # del sys.modules[PAR] +# # del sys.modules[PATH] def test_cmd_par(tmpdir, copy_par_file): From eeb4b56de6384ce9aa43b12e105e5265ebf45696 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Thu, 28 Jul 2022 14:36:54 -0800 Subject: [PATCH 090/195] trying to incorporate pyatoa preprocessing. shifting workload from pyaflowa back into pyatoa class to make things more explicit. having trouble with data gathering and implicitely crafted paths which are making things confusing --- seisflows/preprocess/default.py | 7 + seisflows/preprocess/pyatoa.py | 752 ++++++++++++++++++++------------ seisflows/seisflows.py | 2 +- seisflows/workflow/forward.py | 42 +- seisflows/workflow/inversion.py | 35 +- 5 files changed, 541 insertions(+), 297 deletions(-) diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 66ad82a3..1d34c52c 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -125,6 +125,11 @@ def __init__(self, data_format="ascii", misfit="waveform", self._acceptable_adjsrcs = [_ for _ in dir(adjoint_sources) if not _.startswith("_")] + # Internal attributes used to keep track of inversion workflows + self._iteration = None + self._step_count = None + self._source_names = None + def check(self): """ Checks parameters and paths @@ -332,6 +337,8 @@ def quantify_misfit(self, observed, synthetic, preprocessing, assesses misfit, and writes out adjoint sources and STATIONS_ADJOINT file. + TODO use concurrent futures to parallelize this + .. note:: Meant to be called by solver.eval_func(), may have unused arguments to keep functions general across subclasses. diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyatoa.py index f938be87..7410b17d 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyatoa.py @@ -1,124 +1,120 @@ #!/usr/bin/env python3 """ -The Pyatoa preprocessing module abstracts all preprocessing functionality -onto Pyatoa (https://github.com/adjtomo/pyatoa/). The module defined below is -meant to set up and execute Pyatoa within a running SeisFlows workflow. - -Pyatoa itself aggregates all of its connection with SeisFlows in the Pyaflowa -class, a purpose built object used to simplify calling Pyatoa from within -a SeisFlows workflow. +The Pyatoa preprocessing module for waveform gathering, preprocessing and +misfit quantification. """ import os -import sys import numpy as np -from glob import glob -from pyatoa import Pyaflowa, Inspector +from pyasdf import ASDFDataSet +from pyatoa import Config, Manager, ManagerError +from pyatoa.utils.read import read_station_codes from seisflows import logger -from seisflows.tools import unix, msg -from seisflows.tools.config import CFGPATHS +from seisflows.tools import unix +from seisflows.tools.config import Dict class Pyatoa: """ - Data preprocessing class using the Pyaflowa class within the Pyatoa package. - In charge of data discovery, preprocessing, filtering, misfiti - quantification and data storage. The User does not need to implement Pyatoa, - but rather interacts with it via the parameters and paths of SeisFlows. + [preprocess.pyatoa] preprocessing and misfit quantification using Pyatoa + + :type data_format: str + :param data_format: data format for reading traces into memory. Pyatoa + only works with 'ASCII' currently. + :type components: str + :param components: components to consider and tag data with. Should be + string of letters such as 'RTZ' + :type min_period: float + :param min_period: Minimum filter corner in unit seconds. Bandpass + filter if set with `max_period`, highpass filter if set without + `max_period`, no filtering if not set and `max_period also not set + :type max_period: float + :param max_period: Maximum filter corner in unit seconds. Bandpass + filter if set with `min_period`, lowpass filter if set without + `min_period`, no filtering if not set and `min_period also not set + :type filter_corners: int + :param filter_corners: number of filter corners applied to filtering + :type client: str + :param client: Client name for ObsPy FDSN data gathering. Pyatoa will + attempt to collect waveform and metadata based on network and + station codes provided in the SPECFEM STATIONS file. If set None, + no FDSN gathering will be attempted + :type rotate: bool + :param rotate: Attempt to rotate waveform components from NEZ -> RTZ + :type pyflex_preset: str + :param pyflex_preset: Parameter map for misfit window configuration + defined by Pyflex. IF None, misfit and adjoint sources will be + calculated on whole traces. For available choices, see Pyatoa docs + page (pyatoa.rtfd.io) + :type fix_windows: bool or str + :param fix_windows: How to address misfit window evaluation at each + evaluation. Options to re-use misfit windows collected during an + inversion, available options: + [True, False, 'ITER', 'ONCE'] + True: Re-use windows after first evaluation (i01s00); + False: Calculate new windows each evaluation; + 'ITER': Calculate new windows at first evaluation of + each iteration (e.g., i01s00... i02s00... + 'ONCE': Calculate new windows at first evaluation of + the workflow, i.e., at self.par.BEGIN + :type adj_src_type: str + :param adj_src_type: Adjoint source type to evaluate misfit, defined by + Pyadjoint. Currently available options: ['cc': cross-correlation, + 'mt': multitaper, 'wav': waveform'] + :type plot: bool + :param plot: plot waveform figures and source receiver maps during + the preprocessing stage + :type pyatoa_log_level: str + :param pyatoa_log_level: Log level to set Pyatoa, Pyflex, Pyadjoint. + Available: ['null': no logging, 'warning': warnings only, + 'info': task tracking, 'debug': log all small details (recommended)] + :type start_pad_s: int + :param start_pad_s: seconds BEFORE origin time to gather data. Must be + >= T_0 specificed in SPECFEM constants.h. Positive values only + :type end_pad_s: int + :param end_pad_s: seconds AFTER origin time to gather data. Must be + >= NT * DT (from SPECFEM Par_file) postive values only. + :type unit_output: str + :param unit_output: Data units. Must match the synthetic output of + external solver. Available: ['DISP': displacement, 'VEL': velocity, + 'ACC': acceleration] + :type export_datasets: bool + :param export_datasets: periodically save the output ASDFDataSets which + contain data, metadata and results collected during the + preprocessing procedure + :type export_figures: bool + :param export_figures: periodically save the output basemaps and + data-synthetic waveform comparison figures + :type export_log_files: bool + :param export_log_files: periodically save log files created by Pyatoa + :type path_preprocess: str + :param path_preprocess: scratch path for preprocessing related steps + :type path_data: str + :param path_data: optional path for preprocessing module to discover + waveform and meta-data. """ - def __init__(self, data_format="ascii", components=None, ntask=1, nproc=1, - min_period=None, max_period=None, filter_corners=4, - client=None, rotate=False, pyflex_preset="default", - fix_windows=False, adj_src_type="cc", plot=True, - pyatoa_log_level="DEBUG", unit_output="VEL", - start_pad_s=0., end_pad_s=None, path_preprocess=None, - path_data=None, path_output=None, save_datasets=True, - save_figures=True, save_log_files=True, **kwargs): + def __init__(self, data_format="ascii", components=None, start=None, + ntask=1, nproc=1, source_prefix=None, min_period=None, + max_period=None, filter_corners=4, client=None, rotate=False, + pyflex_preset="default", fix_windows=False, adj_src_type="cc", + plot=True, pyatoa_log_level="DEBUG", unit_output="VEL", + start_pad_s=0., end_pad_s=None, workdir=os.getcwd(), + path_preprocess=None, path_specfem_data=None, path_data=None, + path_output=None, export_datasets=True, export_figures=True, + export_log_files=True, + **kwargs): """ Pyatoa preprocessing parameters that will be passed to Pyaflowa - - :type data_format: str - :param data_format: data format for reading traces into memory. Pyatoa - only works with 'ASCII' currently. - :type components: str - :param components: components to consider and tag data with. Should be - string of letters such as 'RTZ' - :type min_period: float - :param min_period: Minimum filter corner in unit seconds. Bandpass - filter if set with `max_period`, highpass filter if set without - `max_period`, no filtering if not set and `max_period also not set - :type max_period: float - :param max_period: Maximum filter corner in unit seconds. Bandpass - filter if set with `min_period`, lowpass filter if set without - `min_period`, no filtering if not set and `min_period also not set - :type filter_corners: int - :param filter_corners: number of filter corners applied to filtering - :type client: str - :param client: Client name for ObsPy FDSN data gathering. Pyatoa will - attempt to collect waveform and metadata based on network and - station codes provided in the SPECFEM STATIONS file. If set None, - no FDSN gathering will be attempted - :type rotate: bool - :param rotate: Attempt to rotate waveform components from NEZ -> RTZ - :type pyflex_preset: str - :param pyflex_preset: Parameter map for misfit window configuration - defined by Pyflex. IF None, misfit and adjoint sources will be - calculated on whole traces. For available choices, see Pyatoa docs - page (pyatoa.rtfd.io) - :type fix_windows: bool or str - :param fix_windows: How to address misfit window evaluation at each - evaluation. Options to re-use misfit windows collected during an - inversion, available options: - [True, False, 'ITER', 'ONCE'] - True: Re-use windows after first evaluation (i01s00); - False: Calculate new windows each evaluation; - 'ITER': Calculate new windows at first evaluation of - each iteration (e.g., i01s00... i02s00... - 'ONCE': Calculate new windows at first evaluation of - the workflow, i.e., at self.par.BEGIN - :type adj_src_type: str - :param adj_src_type: Adjoint source type to evaluate misfit, defined by - Pyadjoint. Currently available options: ['cc': cross-correlation, - 'mt': multitaper, 'wav': waveform'] - :type plot: bool - :param plot: plot waveform figures and source receiver maps during - the preprocessing stage - :type pyatoa_log_level: str - :param pyatoa_log_level: Log level to set Pyatoa, Pyflex, Pyadjoint. - Available: ['null': no logging, 'warning': warnings only, - 'info': task tracking, 'debug': log all small details (recommended)] - :type start_pad_s: int - :param start_pad_s: seconds BEFORE origin time to gather data. Must be - >= T_0 specificed in SPECFEM constants.h. Positive values only - :type end_pad_s: int - :param end_pad_s: seconds AFTER origin time to gather data. Must be - >= NT * DT (from SPECFEM Par_file) postive values only. - :type unit_output: str - :param unit_output: Data units. Must match the synthetic output of - external solver. Available: ['DISP': displacement, 'VEL': velocity, - 'ACC': acceleration] - :type save_datasets: bool - :param save_datasets: periodically save the output ASDFDataSets which - contain data, metadata and results collected during the - preprocessing procedure - :type save_figures: bool - :param save_figures: periodically save the output basemaps and - data-synthetic waveform comparison figures - :type save_log_files: bool - :param save_log_files: periodically save log files created by Pyatoa - :type path_preprocess: str - :param path_preprocess: scratch path for preprocessing related steps - :type path_data: str - :param path_data: optional path for preprocessing module to discover - waveform and meta-data. """ # Shared SeisFlows parameters - self.data_format = data_format + self.data_format = data_format.upper() self.components = components + self.start = start self.ntask = ntask self.nproc = nproc + self.source_prefix = source_prefix - # Pyatoa specific parameters + # Pyatoa-specific parameters that are provided to the Config class self.min_period = min_period self.max_period = max_period self.filter_corners = filter_corners @@ -133,14 +129,40 @@ def __init__(self, data_format="ascii", components=None, ntask=1, nproc=1, self.start_pad_s = start_pad_s self.end_pad_s = end_pad_s - self.path = path_preprocess or \ - os.path.join(os.getcwd(), "scratch", "preprocess") - self.path_output = path_output or os.path.join(os.getcwd(), "output") - self.path_data = path_data - - self.save_datasets = save_datasets - self.save_figures = save_figures - self.save_log_files = save_log_files + self.path = Dict( + scratch=path_preprocess or os.path.join(workdir, "scratch", + "preprocess"), + output=path_output or os.path.join(workdir, "output"), + specfem_data=path_specfem_data, + data=path_data, + ) + + # How to handle saving output data to disk + self.export_datasets = export_datasets + self.export_figures = export_figures + self.export_log_files = export_log_files + + # Pyatoa-specific internal path structure for storing data etc. + self.path["_logs"] = os.path.join(self.path.scratch, "logs") + self.path["_datasets"] = os.path.join(self.path.scratch, "datasets") + self.path["_figures"] = os.path.join(self.path.scratch, "figures") + + # Where to look for externally stored waveform data and response files + if self.path.data: + self.path["_waveforms"] = os.path.join(self.path.data, "mseed") + self.path["_responses"] = os.path.join(self.path.data, "seed") + else: + self.path["_waveforms"] = None + self.path["_responses"] = None + + # Internal parameters for workflow + self._acceptable_data_formats = ["ASCII"] + self._acceptable_source_prefixes = ["SOURCE", "FORCESOLUTION", + "CMTSOLUTION"] + self._config = None # to be created by setup() + self._fix_windows = False + self._station_codes = [] + self._source_names = [] def check(self): """ @@ -150,61 +172,58 @@ def check(self): assert(self.data_format.upper() == "ASCII"), \ "Pyatoa preprocess requires `data_format`=='ASCII'" + assert(self.path.specfem_data is not None and + os.path.exists(self.path.specfem_data)), ( + f"Pyatoa requires `path_specfem_data` to exist" + ) + + assert(os.path.exists(os.path.join(self.path.specfem_data, + "STATIONS"))), \ + f"Pyatoa preprocessing requires that the `STATIONS` file exists " \ + f"within `path_specfem_data`" + + assert(self.source_prefix in self._acceptable_source_prefixes), ( + f"Pyatoa can only accept `source_prefix` in " + f"{self._acceptable_source_prefixes}, not '{self.source_prefix}'" + ) + def setup(self): """ Sets up data preprocessing machinery by establishing an internally defined directory structure that will be used to store the outputs of the preprocessing workflow """ - unix.mkdir(self.path) - - def finalize(self): - """ - Run some serial finalization tasks specific to Pyatoa, which will help - aggregate the collection of output information. - - .. note:: - This finalize function performs the following tasks: - * Generate .csv files using the Inspector - * Aggregate event-specific PDFs into a single evaluation PDF - * Save scratch/ data into output/ if requested - """ - # Initiate Pyaflowa to get access to path structure - pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) - unix.cd(pyaflowa.paths.datasets) - - # Generate the Inspector from existing datasets and save to disk - # Allow this is fail, which might happen if we don't have enough data - # or the Dataset is not formatted as expected - insp = Inspector(self.par.TITLE, verbose=False) # !!! TODO - try: - insp.discover() - insp.save() - except Exception as e: - logger.warning(f"Uncontrolled exception in Inspector creation " - f"will not create inspector:\n{e}") - - # Make the final PDF for easier User ingestion of waveform/map figures - pyaflowa.make_evaluation_composite_pdf() - - # Move scratch/ directory results into more permanent storage - if self.save_datasets: - datasets = glob(os.path.join(pyaflowa.paths.datasets, "*.h5")) - self._save_quantity(datasets, tag="datasets") - - if self.save_figures: - figures = glob(os.path.join(pyaflowa.paths.figures, "*.pdf")) - self._save_quantity(figures, tag="figures") - - if self.save_log_files: - logs = glob(os.path.join(pyaflowa.paths.logs, "*.txt")) - path_out = os.path.join(self.path_output, CFGPATHS.LOGDIR) - self._save_quantity(logs, path_out=path_out) - - def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): + for pathname in ["scratch", "_logs", "_datasets", "_figures"]: + unix.mkdir(self.path[pathname]) + + # These values should be constant for a given workflow. The Config class + # will run its own internal checks when instantiated + self._config = Config( + min_period=self.min_period, max_period=self.max_period, + filter_corners=self.filter_corners, client=self.client, + rotate=self.rotate, pyflex_preset=self.pyflex_preset, + fix_windows=self.fix_windows, adj_src_type=self.adj_src_type, + log_level=self.pyatoa_log_level, unit_output=self.unit_output, + start_pad_s=self.start_pad_s, end_pad_s=self.end_pad_s, + paths={"waveforms": self.path["_waveforms"] or [], + "responses": self.path["_responses"] or [], + "events": [self.path.specfem_data] + } + ) + + # Generate a list of station codes that will be used to search for data + self._station_codes = read_station_codes( + path_to_stations=os.path.join(self.path.specfem_data, "STATIONS"), + loc="*", cha="*" + ) + + def quantify_misfit(self, source_name=None, save_residuals=None, + save_adjsrcs=None, iteration=1, step_count=0, + **kwargs): """ - Prepare the gradient evaluation by gathering, preprocessing waveforms, - and measuring misfit between observations and synthetics using Pyatoa. + Prepares solver for gradient evaluation by writing residuals and + adjoint traces. Meant to be called by + `workflow.evaluate_objective_function` Reads in observed and synthetic waveforms, applies optional preprocessing, assesses misfit, and writes out adjoint sources and @@ -212,127 +231,306 @@ def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): .. note:: Meant to be called by solver.eval_func(), may have unused arguments - to keep functions general across preprocessing subclasses. - - :type cwd: str - :param cwd: current specfem working directory containing observed and - synthetic seismic data to be read and processed. Should be defined - by solver.cwd - :type source_name: str - :param source_name: the event id to be used for tagging and data lookup. - Should be defined by solver.source_name - :type taskid: int - :param taskid: identifier of the currently running solver instance. - Should be defined by solver.taskid - :type filenames: list of str - :param filenames: [not used] list of filenames defining the files in - traces - """ - if taskid == 0: - logger.debug("preparing files for gradient evaluation with " - "Pyaflowa") - - # Process all the stations for a given event using Pyaflowa - pyaflowa = self._setup_event_pyaflowa(source_name) - scaled_misfit = pyaflowa.process(nproc=self.nproc) - - if scaled_misfit is None: - print(msg.cli(f"Event {source_name} returned no misfit, you may " - f"want to check logs and waveform figures, " - f"or consider discarding this event from your " - f"workflow", - items=[pyaflowa.paths.logs, pyaflowa.paths.figures], - header="pyatoa preprocessing error", border="=")) - sys.exit(-1) - - # Event misfit defined by Tape et al. (2010) written to solver dir. - self._write_residuals(path=cwd, scaled_misfit=scaled_misfit) - - def _setup_event_pyaflowa(self, source_name, iteration, step_count=""): - """ - A convenience function to set up a Pyaflowa processing instance for - a specific event. - - .. note:: - This is meant to be called by preprocess.prepare_eval_grad() but its - also useful for debugging and manual processing where you can simply - return a formatted Pyaflowa object and debug it directly. + to keep functions general across subclasses. - :type source_name: str - :param source_name: solver source name to evaluate setup for. Must - match from list defined by: solver.source_names + :type save_residuals: str + :param save_residuals: if not None, path to write misfit/residuls to + :type save_adjsrcs: str + :param save_adjsrcs: if not None, path to write adjoint sources to """ - # Outsource data processing to an event-specfic Pyaflowa instance - pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) - pyaflowa.setup(source_name=source_name, iteration=iteration, - step_count=step_count, loc="*", cha="*") - - return pyaflowa - - def _save_quantity(self, filepaths, tag="", path_out=""): + config = self._config.copy() + config.event_id = source_name + config.iteration = iteration + config.step_count = step_count + + ds = ASDFDataSet(os.path.join(self.path["_datasets"], source_name)) + mgmt = Manager(config=config, ds=ds) + + # Will look for events in `path_specfem_data` matching {prefix}_{name} + # e.g., 'CMTSOLUTION_2018p130600' + import pdb;pdb.set_trace() + mgmt.gather(choice=["event"], source_name=source_name, + prefix=self.source_prefix) + misfit, nwin = 0, 0 + for station_code in self._station_codes: + net, sta, loc, cha = station_code.split(".") + _processed = False + + try: + # Will gather data and metadata based on the station codes and + # input paths from the Configuration object + mgmt.gather(choice=["inv", "st_obs", "st_syn"], + code=station_code) + except ManagerError as e: + continue + # If any part of the processing fails, move on to plotting + try: + mgmt.standardize() + mgmt.preprocess() + mgmt.window( + fix_windows=self._check_fixed_windows(iteration, step_count) + ) + mgmt.measure() + _processed = True + except ManagerError as e: + pass + + if self.plot: + plot_fid = ( + f"{source_name}_{config.iter_tag}_{config.step_tag}_" + f"{net}_{sta}.png" + ) + save = os.path.join(self.path["_figures"], plot_fid) + mgmt.plot(choice="both", show=False, save=save) + + # Write out the .adj adjoint source files + if _processed and save_adjsrcs: + mgmt.write_adjsrcs(path=save_adjsrcs, write_blanks=True) + + misfit += mgmt.stats.misfit + nwin += mgmt.stats.nwin + + if save_residuals: + try: + residuals = 0.5 * misfit / nwin + except ZeroDivisionError: + # Dealing with the case where nwin==0 (signifying either no + # windows found, or calc'ing misfit on whole trace) + residuals = misfit + np.savetxt(save_residuals, [residuals], fmt="%11.6e") + + def _check_fixed_windows(self, iteration, step_count): """ - Repeatable convenience function to save quantities from the scratch/ - directory to the output/ directory - - :type filepaths: list - :param filepaths: full path to files that should be saved to output/ - :type tag: str - :param tag: tag for saving the files in self.path.OUTPUT. If not given, will - save directly into the output/ directory - :type path_out: str - :param path_out: overwrite the default output path file naming - """ - if not path_out: - path_out = os.path.join(self.path_output, tag) - - if not os.path.exists(path_out): - unix.mkdir(path_out) - - for src in filepaths: - dst = os.path.join(path_out, os.path.basename(src)) - unix.cp(src, dst) - - @staticmethod - def _write_residuals(path, scaled_misfit): - """ - Computes residuals and saves them to a text file in the appropriate path - - :type path: str - :param path: scratch directory path, e.g. self.path.GRAD or self.path.FUNC - :type scaled_misfit: float - :param scaled_misfit: the summation of misfit from each - source-receiver pair calculated by prepare_eval_grad() - :type source_name: str - :param source_name: name of the source related to the misfit, used - for file naming - """ - residuals_file = os.path.join(path, "residuals") - np.savetxt(residuals_file, [scaled_misfit], fmt="%11.6e") - - def sum_residuals(self, files): + Determine how to address re-using misfit windows during an inversion + workflow. Throw some log messages out to let the User know whether or + not misfit windows will be re used throughout an inversion. + + True: Always fix windows except for i01s00 because we don't have any + windows for the first function evaluation + False: Don't fix windows, always choose a new set of windows + Iter: Pick windows only on the initial step count (0th) for each + iteration. WARNING - does not work well with Thrifty Inversion + because the 0th step count is usually skipped + Once: Pick new windows on the first function evaluation and then fix + windows. Useful for when parameters have changed, e.g. filter + bounds + + :type iteration: int + :param iteration: The current iteration of the SeisFlows3 workflow, + within SeisFlows3 this is defined by `optimize.iter` + :type step_count: int + :param step_count: Current line search step count within the SeisFlows3 + workflow. Within SeisFlows3 this is defined by + `optimize.line_search.step_count` + :rtype: bool + :return: bool on whether to use windows from the previous step """ - Averages the event misfits and returns the total misfit. - Total misfit defined by Tape et al. (2010) - - :type files: str - :param files: list of single-column text files containing residuals - that will have been generated using prepare_eval_grad() - :rtype: float - :return: average misfit - """ - if len(files) != self.ntask: - print(msg.cli(f"Pyatoa preprocessing module did not recover the " - f"correct number of residual files " - f"({len(files)}/{self.ntask}). Please check that " - f"the preprocessing logs", header="error") - ) - sys.exit(-1) - - total_misfit = 0 - for filename in files: - total_misfit += np.sum(np.loadtxt(filename)) - - total_misfit /= self.ntask - - return total_misfit - + fix_windows = False + # First function evaluation never fixes windows + if iteration == 1 and step_count == 0: + fix_windows = False + logger.info("new windows; first evaluation") + elif isinstance(self.fix_windows, str): + # By 'iter'ation only pick new windows on the first step count + if self.fix_windows.upper() == "ITER": + if step_count == 0: + fix_windows = False + logger.info("new windows; first step count") + else: + fix_windows = True + logger.info("fix windows; mid line search") + # 'Once' picks windows only for the first function evaluation of + # the current set of iterations. + elif self.fix_windows.upper() == "ONCE": + if iteration == self.start and step_count == 0: + fix_windows = False + logger.info("new windows; first workflow evaluation") + else: + fix_windows = True + logger.info("fix windows; mid workflow") + # Bool fix windows simply sets the parameter + elif isinstance(self.fix_windows, bool): + fix_windows = self.fix_windows + logger.info(f"fixed windows flag set: {self.fix_windows}") + + return fix_windows + + # + # def finalize(self): + # """ + # Run some serial finalization tasks specific to Pyatoa, which will help + # aggregate the collection of output information. + # + # .. note:: + # This finalize function performs the following tasks: + # * Generate .csv files using the Inspector + # * Aggregate event-specific PDFs into a single evaluation PDF + # * Save scratch/ data into output/ if requested + # """ + # # Initiate Pyaflowa to get access to path structure + # pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) + # unix.cd(pyaflowa.paths.datasets) + # + # # Generate the Inspector from existing datasets and save to disk + # # Allow this is fail, which might happen if we don't have enough data + # # or the Dataset is not formatted as expected + # insp = Inspector(self.par.TITLE, verbose=False) # !!! TODO + # try: + # insp.discover() + # insp.save() + # except Exception as e: + # logger.warning(f"Uncontrolled exception in Inspector creation " + # f"will not create inspector:\n{e}") + # + # # Make the final PDF for easier User ingestion of waveform/map figures + # pyaflowa.make_evaluation_composite_pdf() + # + # # Move scratch/ directory results into more permanent storage + # if self.export_datasets: + # datasets = glob(os.path.join(pyaflowa.paths.datasets, "*.h5")) + # self._save_quantity(datasets, tag="datasets") + # + # if self.export_figures: + # figures = glob(os.path.join(pyaflowa.paths.figures, "*.pdf")) + # self._save_quantity(figures, tag="figures") + # + # if self.export_log_files: + # logs = glob(os.path.join(pyaflowa.paths.logs, "*.txt")) + # path_out = os.path.join(self.path_output, CFGPATHS.LOGDIR) + # self._save_quantity(logs, path_out=path_out) + # + # def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): + # """ + # Prepare the gradient evaluation by gathering, preprocessing waveforms, + # and measuring misfit between observations and synthetics using Pyatoa. + # + # Reads in observed and synthetic waveforms, applies optional + # preprocessing, assesses misfit, and writes out adjoint sources and + # STATIONS_ADJOINT file. + # + # .. note:: + # Meant to be called by solver.eval_func(), may have unused arguments + # to keep functions general across preprocessing subclasses. + # + # :type cwd: str + # :param cwd: current specfem working directory containing observed and + # synthetic seismic data to be read and processed. Should be defined + # by solver.cwd + # :type source_name: str + # :param source_name: the event id to be used for tagging and data lookup. + # Should be defined by solver.source_name + # :type taskid: int + # :param taskid: identifier of the currently running solver instance. + # Should be defined by solver.taskid + # :type filenames: list of str + # :param filenames: [not used] list of filenames defining the files in + # traces + # """ + # if taskid == 0: + # logger.debug("preparing files for gradient evaluation with " + # "Pyaflowa") + # + # # Process all the stations for a given event using Pyaflowa + # pyaflowa = self._setup_event_pyaflowa(source_name) + # scaled_misfit = pyaflowa.process(nproc=self.nproc) + # + # if scaled_misfit is None: + # print(msg.cli(f"Event {source_name} returned no misfit, you may " + # f"want to check logs and waveform figures, " + # f"or consider discarding this event from your " + # f"workflow", + # items=[pyaflowa.paths.logs, pyaflowa.paths.figures], + # header="pyatoa preprocessing error", border="=")) + # sys.exit(-1) + # + # # Event misfit defined by Tape et al. (2010) written to solver dir. + # self._write_residuals(path=cwd, scaled_misfit=scaled_misfit) + # + # def _setup_event_pyaflowa(self, source_name, iteration, step_count=""): + # """ + # A convenience function to set up a Pyaflowa processing instance for + # a specific event. + # + # .. note:: + # This is meant to be called by preprocess.prepare_eval_grad() but its + # also useful for debugging and manual processing where you can simply + # return a formatted Pyaflowa object and debug it directly. + # + # :type source_name: str + # :param source_name: solver source name to evaluate setup for. Must + # match from list defined by: solver.source_names + # """ + # # Outsource data processing to an event-specfic Pyaflowa instance + # pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) + # pyaflowa.setup(source_name=source_name, iteration=iteration, + # step_count=step_count, loc="*", cha="*") + # + # return pyaflowa + # + # def _save_quantity(self, filepaths, tag="", path_out=""): + # """ + # Repeatable convenience function to save quantities from the scratch/ + # directory to the output/ directory + # + # :type filepaths: list + # :param filepaths: full path to files that should be saved to output/ + # :type tag: str + # :param tag: tag for saving the files in self.path.OUTPUT. If not given, will + # save directly into the output/ directory + # :type path_out: str + # :param path_out: overwrite the default output path file naming + # """ + # if not path_out: + # path_out = os.path.join(self.path_output, tag) + # + # if not os.path.exists(path_out): + # unix.mkdir(path_out) + # + # for src in filepaths: + # dst = os.path.join(path_out, os.path.basename(src)) + # unix.cp(src, dst) + # + # @staticmethod + # def _write_residuals(path, scaled_misfit): + # """ + # Computes residuals and saves them to a text file in the appropriate path + # + # :type path: str + # :param path: scratch directory path, e.g. self.path.GRAD or self.path.FUNC + # :type scaled_misfit: float + # :param scaled_misfit: the summation of misfit from each + # source-receiver pair calculated by prepare_eval_grad() + # :type source_name: str + # :param source_name: name of the source related to the misfit, used + # for file naming + # """ + # residuals_file = os.path.join(path, "residuals") + # np.savetxt(residuals_file, [scaled_misfit], fmt="%11.6e") + # + # def sum_residuals(self, files): + # """ + # Averages the event misfits and returns the total misfit. + # Total misfit defined by Tape et al. (2010) + # + # :type files: str + # :param files: list of single-column text files containing residuals + # that will have been generated using prepare_eval_grad() + # :rtype: float + # :return: average misfit + # """ + # if len(files) != self.ntask: + # print(msg.cli(f"Pyatoa preprocessing module did not recover the " + # f"correct number of residual files " + # f"({len(files)}/{self.ntask}). Please check that " + # f"the preprocessing logs", header="error") + # ) + # sys.exit(-1) + # + # total_misfit = 0 + # for filename in files: + # total_misfit += np.sum(np.loadtxt(filename)) + # + # total_misfit /= self.ntask + # + # return total_misfit + # diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index f6ac7ed6..a8fb0030 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -574,7 +574,7 @@ def submit(self, **kwargs): parameters = load_yaml(self._args.parameter_file) system = custom_import("system", parameters.system)(**parameters) system.submit(workdir=self._args.workdir, - par_file=self._args.parameter_file) + parameter_file=self._args.parameter_file) def clean(self, force=False, **kwargs): """ diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 392e05fd..1d4228e5 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -293,8 +293,10 @@ def evaluate_initial_misfit(self): because we are potentially running two simulations back to back. """ logger.info(msg.mnr("EVALUATING MISFIT FOR INITIAL MODEL")) + self.system.run( [self.prepare_data_for_solver, + self.run_forward_simulations, self.evaluate_objective_function], path_model=self.path.model_init, save_residuals=os.path.join(self.path.eval_grad, "residuals") @@ -335,12 +337,9 @@ def prepare_data_for_solver(self, **kwargs): export_traces=export_traces ) - def evaluate_objective_function(self, path_model, save_residuals=False, - **kwargs): + def run_forward_simulations(self, path_model, **kwargs): """ - Performs forward simulation for a single given event. Also evaluates the - objective function and writes residuals and adjoint sources for later - tasks. + Performs forward simulation for a single given event. .. note:: if PAR.PREPROCESS == None, will not perform misfit quantification @@ -371,13 +370,26 @@ def evaluate_objective_function(self, path_model, save_residuals=False, export_traces=export_traces ) - # (optional) Perform data-synthetic misfit quantification - if self.preprocess: - logger.debug(f"quantifying misfit with " - f"'{self.preprocess.__class__.__name__}'") - self.preprocess.quantify_misfit( - observed=self.solver.data_filenames(choice="obs"), - synthetic=self.solver.data_filenames(choice="syn"), - save_adjsrcs=os.path.join(self.solver.cwd, "traces", "adj"), - save_residuals=save_residuals - ) + def evaluate_objective_function(self, save_residuals=False, **kwargs): + """ + Uses the preprocess module to evaluate the misfit/objective function + given synthetics generated during forward simulations + + .. note:: + Must be run by system.run() so that solvers are assigned individual + task ids/ working directories. + """ + if self.preprocess is None: + logger.debug("no preprocessing module selected, will not evaluate " + "objective function") + return + + logger.debug(f"quantifying misfit with " + f"'{self.preprocess.__class__.__name__}'") + self.preprocess.quantify_misfit( + # observed=self.solver.data_filenames(choice="obs"), + # synthetic=self.solver.data_filenames(choice="syn"), + source_name=self.solver.source_name, + save_adjsrcs=os.path.join(self.solver.cwd, "traces", "adj"), + save_residuals=save_residuals + ) diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 189d54b9..95a207f3 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -167,7 +167,7 @@ def setup(self): unix.mkdir(self.path.eval_func) - self.optimize = self._modules.optimize + self.optimize = self._modules.optimize # NOQA # If optimization has been run before, re-load from checkpoint self.optimize.load_checkpoint() @@ -189,6 +189,29 @@ def checkpoint(self): with open(self.path.state_file, "a") as f: f.write(f"iteration: {self.iteration}") + def evaluate_objective_function(self, save_residuals=False, **kwargs): + """ + Overwrite evaluate objective function to include MORE input parameters + specifying which evaluation in the inversion we are at. Also removes + the check for a preprocessing module because it is assumed we have a + preprocsesing module for an inversion workflow. + + .. note:: + Must be run by system.run() so that solvers are assigned individual + task ids/ working directories. + """ + logger.debug(f"quantifying misfit with " + f"'{self.preprocess.__class__.__name__}'") + + self.preprocess.quantify_misfit( + observed=self.solver.data_filenames(choice="obs"), + synthetic=self.solver.data_filenames(choice="syn"), + save_adjsrcs=os.path.join(self.solver.cwd, "traces", "adj"), + save_residuals=save_residuals, + iteration=self.iteration, + step_count=self.optimize.step_count, + ) + def evaluate_initial_misfit(self): """ Overwrite `workflow.forward` to skip over initial misfit evaluation @@ -211,11 +234,14 @@ def evaluate_initial_misfit(self): path_model = os.path.join(self.path.eval_grad, "model") m_new = self.optimize.load_vector("m_new") m_new.write(path=path_model) + # Run forward simulation/misfit quantification with previous model self.system.run( - [self.evaluate_objective_function], + [self.run_forward_simulations, + self.evaluate_objective_function], path_model=path_model, - save_residuals=os.path.join(self.path.eval_grad, "residuals") + save_residuals=os.path.join(self.path.eval_grad, + "residuals") ) # Override function to sum residuals into the optimization library @@ -343,7 +369,8 @@ def perform_line_search(self): def _evaluate_line_search_misfit(self): """Convenience fuinction to wrap forward solver and misfit calc""" self.system.run( - [self.evaluate_objective_function], + [self.run_forward_simulations, + self.evaluate_objective_function], path_model=os.path.join(self.path.eval_func, "model"), save_residuals=os.path.join(self.path.eval_func, "residuals") ) From 3d4189c88a0c11068ffa574e7853e2f0aa803cf5 Mon Sep 17 00:00:00 2001 From: bch0w Date: Fri, 29 Jul 2022 16:27:40 -0800 Subject: [PATCH 091/195] working on preprocessing pyatoa tests and fixing up pyatoa class --- seisflows/preprocess/pyatoa.py | 114 +- seisflows/solver/specfem.py | 48 +- seisflows/tests/test_data/test_solver/001 | 1 + .../mainsolver/DATA/CMTSOLUTION_001 | 14 +- .../mainsolver/DATA/CMTSOLUTION_002 | 14 +- .../mainsolver/DATA/CMTSOLUTION_003 | 14 +- .../mainsolver/DATA/CMTSOLUTION_004 | 14 +- .../mainsolver/DATA/CMTSOLUTION_005 | 14 +- .../mainsolver/DATA/CMTSOLUTION_006 | 14 +- .../test_solver/mainsolver/DATA/STATIONS | 3 +- .../traces/obs/AA.S0001.BXY.semd | 0 .../traces/obs/AA.S0002.BXY.semd} | 0 .../mainsolver/traces/syn/AA.S0001.BXY.semd | 5000 +++++++++++++++++ .../mainsolver/traces/syn/AA.S0002.BXY.semd | 5000 +++++++++++++++++ seisflows/tests/test_preprocess.py | 43 + seisflows/tests/test_solver.py | 4 +- seisflows/tools/specfem.py | 47 +- 17 files changed, 10250 insertions(+), 94 deletions(-) create mode 120000 seisflows/tests/test_data/test_solver/001 mode change 100644 => 100755 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 mode change 100644 => 100755 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 mode change 100644 => 100755 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 mode change 100644 => 100755 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 mode change 100644 => 100755 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 mode change 100644 => 100755 seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 rename seisflows/tests/test_data/test_solver/{ => mainsolver}/traces/obs/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/test_solver/{traces/syn/AA.S0001.BXY.semd => mainsolver/traces/obs/AA.S0002.BXY.semd} (100%) create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0001.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0002.BXY.semd diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyatoa.py index 7410b17d..d545b71f 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyatoa.py @@ -1,7 +1,8 @@ #!/usr/bin/env python3 """ -The Pyatoa preprocessing module for waveform gathering, preprocessing and -misfit quantification. +The Pyaflowa preprocessing module for waveform gathering, preprocessing and +misfit quantification. We use the name 'Pyaflowa' to avoid any potential +name overlaps with the actual pyatoa package. """ import os import numpy as np @@ -11,12 +12,13 @@ from seisflows import logger from seisflows.tools import unix -from seisflows.tools.config import Dict +from seisflows.tools.config import Dict, get_task_id +from seisflows.tools.specfem import check_source_names -class Pyatoa: +class Pyaflowa: """ - [preprocess.pyatoa] preprocessing and misfit quantification using Pyatoa + [preprocess.pyaflowa] preprocessing and misfit quantification using Pyatoa :type data_format: str :param data_format: data format for reading traces into memory. Pyatoa @@ -93,28 +95,18 @@ class Pyatoa: :param path_data: optional path for preprocessing module to discover waveform and meta-data. """ - def __init__(self, data_format="ascii", components=None, start=None, - ntask=1, nproc=1, source_prefix=None, min_period=None, - max_period=None, filter_corners=4, client=None, rotate=False, - pyflex_preset="default", fix_windows=False, adj_src_type="cc", - plot=True, pyatoa_log_level="DEBUG", unit_output="VEL", - start_pad_s=0., end_pad_s=None, workdir=os.getcwd(), - path_preprocess=None, path_specfem_data=None, path_data=None, + def __init__(self, min_period=1., max_period=10., filter_corners=4, + client=None, rotate=False, pyflex_preset="default", + fix_windows=False, adj_src_type="cc", plot=True, + pyatoa_log_level="DEBUG", unit_output="VEL", start_pad_s=0., + end_pad_s=None, workdir=os.getcwd(), path_preprocess=None, + path_solver=None, path_specfem_data=None, path_data=None, path_output=None, export_datasets=True, export_figures=True, - export_log_files=True, + export_log_files=True, data_format="ascii", + data_case="data", components=None, + start=None, ntask=1, nproc=1, source_prefix=None, **kwargs): - """ - Pyatoa preprocessing parameters that will be passed to Pyaflowa - """ - # Shared SeisFlows parameters - self.data_format = data_format.upper() - self.components = components - self.start = start - self.ntask = ntask - self.nproc = nproc - self.source_prefix = source_prefix - - # Pyatoa-specific parameters that are provided to the Config class + """Pyatoa preprocessing parameters""" self.min_period = min_period self.max_period = max_period self.filter_corners = filter_corners @@ -132,6 +124,7 @@ def __init__(self, data_format="ascii", components=None, start=None, self.path = Dict( scratch=path_preprocess or os.path.join(workdir, "scratch", "preprocess"), + solver=path_solver or os.path.join(workdir, "scratch", "solver"), output=path_output or os.path.join(workdir, "output"), specfem_data=path_specfem_data, data=path_data, @@ -155,11 +148,23 @@ def __init__(self, data_format="ascii", components=None, start=None, self.path["_waveforms"] = None self.path["_responses"] = None - # Internal parameters for workflow + # SeisFlows parameters that should be set by other modules. Keep hidden + # so `seisflows configure` doesn't attribute these to preprocess. + self._data_format = data_format.upper() + self._data_case = data_case.lower() + self._components = components + self._start = start + self._ntask = ntask + self._nproc = nproc + self._source_prefix = source_prefix + + # Internal parameters to check against user-set parameters self._acceptable_data_formats = ["ASCII"] self._acceptable_source_prefixes = ["SOURCE", "FORCESOLUTION", "CMTSOLUTION"] - self._config = None # to be created by setup() + + # Internal attributes to be filled in by setup() + self._config = None self._fix_windows = False self._station_codes = [] self._source_names = [] @@ -169,7 +174,7 @@ def check(self): Checks Parameter and Path files, will be run at the start of a Seisflows workflow to ensure that things are set appropriately. """ - assert(self.data_format.upper() == "ASCII"), \ + assert(self._data_format.upper() == "ASCII"), \ "Pyatoa preprocess requires `data_format`=='ASCII'" assert(self.path.specfem_data is not None and @@ -182,9 +187,9 @@ def check(self): f"Pyatoa preprocessing requires that the `STATIONS` file exists " \ f"within `path_specfem_data`" - assert(self.source_prefix in self._acceptable_source_prefixes), ( + assert(self._source_prefix in self._acceptable_source_prefixes), ( f"Pyatoa can only accept `source_prefix` in " - f"{self._acceptable_source_prefixes}, not '{self.source_prefix}'" + f"{self._acceptable_source_prefixes}, not '{self._source_prefix}'" ) def setup(self): @@ -196,8 +201,7 @@ def setup(self): for pathname in ["scratch", "_logs", "_datasets", "_figures"]: unix.mkdir(self.path[pathname]) - # These values should be constant for a given workflow. The Config class - # will run its own internal checks when instantiated + # Generalized Config object that can be shared among all child processes self._config = Config( min_period=self.min_period, max_period=self.max_period, filter_corners=self.filter_corners, client=self.client, @@ -205,19 +209,26 @@ def setup(self): fix_windows=self.fix_windows, adj_src_type=self.adj_src_type, log_level=self.pyatoa_log_level, unit_output=self.unit_output, start_pad_s=self.start_pad_s, end_pad_s=self.end_pad_s, + component_list=list(self._components), + synthetics_only=bool(self._data_case == "synthetic"), paths={"waveforms": self.path["_waveforms"] or [], "responses": self.path["_responses"] or [], "events": [self.path.specfem_data] } ) - # Generate a list of station codes that will be used to search for data self._station_codes = read_station_codes( path_to_stations=os.path.join(self.path.specfem_data, "STATIONS"), loc="*", cha="*" ) - def quantify_misfit(self, source_name=None, save_residuals=None, + # Get an internal list of source names. Will be the same as solver + self._source_names = check_source_names( + path_specfem_data=self.path.specfem_data, + source_prefix=self._source_prefix, ntask=self._ntask + ) + + def quantify_misfit(self, source_name, save_residuals=None, save_adjsrcs=None, iteration=1, step_count=0, **kwargs): """ @@ -238,27 +249,37 @@ def quantify_misfit(self, source_name=None, save_residuals=None, :type save_adjsrcs: str :param save_adjsrcs: if not None, path to write adjoint sources to """ + # Set the individual Config class for our given event and evaluation config = self._config.copy() config.event_id = source_name config.iteration = iteration config.step_count = step_count - ds = ASDFDataSet(os.path.join(self.path["_datasets"], source_name)) + # Force the Manager to look in the solver directory for data + # Note: we are assuming the SeisFlows solver directory structure here + config.paths["waveforms"].append( + os.path.join(self.path.solver, source_name, "traces", "obs") + ) + config.paths["synthetics"].append( + os.path.join(self.path.solver, source_name, "traces", "syn") + ) + + # Set up the Pyatoa workflow, attempt to gather event metadata + ds = ASDFDataSet( + os.path.join(self.path["_datasets"], f"{source_name}.h5") + ) mgmt = Manager(config=config, ds=ds) + mgmt.gather(choice=["event"], event_id=source_name, + prefix=f"{self._source_prefix}_") - # Will look for events in `path_specfem_data` matching {prefix}_{name} - # e.g., 'CMTSOLUTION_2018p130600' - import pdb;pdb.set_trace() - mgmt.gather(choice=["event"], source_name=source_name, - prefix=self.source_prefix) + # Run data/metadata gathering, processing and misfit quantification misfit, nwin = 0, 0 for station_code in self._station_codes: net, sta, loc, cha = station_code.split(".") _processed = False - + # Will gather data and metadata based on the station codes and + # input paths from the Configuration object try: - # Will gather data and metadata based on the station codes and - # input paths from the Configuration object mgmt.gather(choice=["inv", "st_obs", "st_syn"], code=station_code) except ManagerError as e: @@ -281,7 +302,10 @@ def quantify_misfit(self, source_name=None, save_residuals=None, f"{net}_{sta}.png" ) save = os.path.join(self.path["_figures"], plot_fid) - mgmt.plot(choice="both", show=False, save=save) + try: + mgmt.plot(choice="both", show=False, save=save) + except ManagerError: + mgmt.plot(choice="wav", show=False, save=save) # Write out the .adj adjoint source files if _processed and save_adjsrcs: @@ -342,7 +366,7 @@ def _check_fixed_windows(self, iteration, step_count): # 'Once' picks windows only for the first function evaluation of # the current set of iterations. elif self.fix_windows.upper() == "ONCE": - if iteration == self.start and step_count == 0: + if iteration == self._start and step_count == 0: fix_windows = False logger.info("new windows; first workflow evaluation") else: diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 0ef010c9..030749e2 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -25,7 +25,7 @@ from seisflows import logger from seisflows.tools import msg, unix from seisflows.tools.config import get_task_id, Dict -from seisflows.tools.specfem import getpar, setpar +from seisflows.tools.specfem import getpar, setpar, check_source_names class Specfem: @@ -222,7 +222,10 @@ def check(self): f"`path_model_true` is empty but should have model files" # Check that the number of tasks/events matches the number of events - self._source_names = self._check_source_names() + self._source_names = check_source_names( + path_specfem_data=self.path.specfem_data, + source_prefix=self.source_prefix, ntask=self.ntask + ) @property def source_names(self): @@ -239,7 +242,10 @@ def source_names(self): :return: list of source names """ if self._source_names is None: - self._source_names = self._check_source_names() + self._source_names = check_source_names( + path_specfem_data=self.path.specfem_data, + source_prefix=self.source_prefix, ntask=self.ntask + ) return self._source_names @property @@ -796,39 +802,3 @@ def _initialize_working_directory(self, cwd=None): logger.debug(f"linking source '{source_name}' as 'mainsolver'") unix.ln(cwd, self.path.mainsolver) - def _check_source_names(self): - """ - Determines names of sources by applying wildcard rule to user-supplied - input files. Source names are only provided up to PAR.NTASK and are - returned in alphabetical order. - - :rtype: list - :return: alphabetically ordered list of source names up to PAR.NTASK - """ - assert(self.path.specfem_data is not None), \ - f"solver source names requires 'solver.path.specfem_data' to exist" - assert(os.path.exists(self.path.specfem_data)), \ - f"solver source names requires 'solver.path.specfem_data' to exist" - - # Apply wildcard rule and check for available sources, exit if no - # sources found because then we can't proceed - wildcard = f"{self.source_prefix}_*" - fids = sorted(glob(os.path.join(self.path.specfem_data, wildcard))) - if not fids: - print(msg.cli("No matching source files when searching PATH for " - "the given WILDCARD", - items=[f"PATH: {self.path.specfem_data}", - f"WILDCARD: {wildcard}"], header="error" - ) - ) - sys.exit(-1) - else: - assert(len(fids) >= self.ntask), ( - f"Number of requested tasks/events {self.ntask} exceeds number " - f"of available sources {len(fids)}" - ) - - # Create internal definition of sources names by stripping prefixes - names = [os.path.basename(fid).split("_")[-1] for fid in fids] - - return names[:self.ntask] diff --git a/seisflows/tests/test_data/test_solver/001 b/seisflows/tests/test_data/test_solver/001 new file mode 120000 index 00000000..cbb9ee10 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001 @@ -0,0 +1 @@ +mainsolver/ \ No newline at end of file diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 old mode 100644 new mode 100755 index 2850366a..cacf1f81 --- a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 @@ -1 +1,13 @@ -EVENT 1 +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 001 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 old mode 100644 new mode 100755 index 528a18ac..53709cf7 --- a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 @@ -1 +1,13 @@ -EVENT 2 +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 002 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 old mode 100644 new mode 100755 index e41bec6c..7d46df94 --- a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 @@ -1 +1,13 @@ -EVENT 3 +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 003 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 old mode 100644 new mode 100755 index ccb69325..51d51497 --- a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 @@ -1 +1,13 @@ -EVENT 4 +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 004 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 old mode 100644 new mode 100755 index 0cea6274..50b4aeb0 --- a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 @@ -1 +1,13 @@ -EVENT 5 +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 005 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 old mode 100644 new mode 100755 index 52c713f0..8d034437 --- a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 @@ -1 +1,13 @@ -EVENT 6 +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 006 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS b/seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS index 7cffad4d..d2383d2e 100644 --- a/seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS +++ b/seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS @@ -1 +1,2 @@ - ABC XX -99.999 -66.666 0.0 0.0 + S0001 AA -99.999 -66.666 0.0 0.0 + S0002 AA -88.888 -55.555 0.0 0.0 diff --git a/seisflows/tests/test_data/test_solver/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/test_solver/mainsolver/traces/obs/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/test_solver/traces/obs/AA.S0001.BXY.semd rename to seisflows/tests/test_data/test_solver/mainsolver/traces/obs/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/test_solver/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/test_solver/mainsolver/traces/obs/AA.S0002.BXY.semd similarity index 100% rename from seisflows/tests/test_data/test_solver/traces/syn/AA.S0001.BXY.semd rename to seisflows/tests/test_data/test_solver/mainsolver/traces/obs/AA.S0002.BXY.semd diff --git a/seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0001.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0002.BXY.semd b/seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0002.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0002.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index 364d7bc5..614f1906 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -7,9 +7,11 @@ from glob import glob from seisflows import ROOT_DIR from seisflows.preprocess.default import Default +from seisflows.preprocess.pyatoa import Pyaflowa TEST_DATA = os.path.join(ROOT_DIR, "tests", "test_data", "test_preprocess") +TEST_SOLVER = os.path.join(ROOT_DIR, "tests", "test_data", "test_solver") def test_read(): @@ -93,3 +95,44 @@ def test_quantify_misfit(tmpdir): residuals = open(os.path.join(tmpdir, "residuals_ascii")).readlines() assert(len(residuals) == 1) assert(float(residuals[0]) == 0) + + +def test_pyaflowa_setup(tmpdir): + """ + Test setup procedure for SeisFlows which internalizes some workflow + information that is crucial for later tasks + """ + pyaflowa = Pyaflowa( + workdir=tmpdir, + path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), + path_solver=os.path.join(TEST_SOLVER, "mainsolver"), + source_prefix="CMTSOLUTION", + ntask=2, + ) + + assert(pyaflowa._station_codes == []) + assert(pyaflowa._source_names == []) + + pyaflowa.setup() + + assert(len(pyaflowa._station_codes) == 2) + assert(pyaflowa._station_codes[0] == "AA.S0001.*.*") + assert(len(pyaflowa._source_names) == pyaflowa._ntask) + assert(pyaflowa._source_names[0] == "001") + + +def test_pyaflowa_quantify_misfit(tmpdir): + """ + Test misfit quantification for Pyatoa including data gathering + """ + pyaflowa = Pyaflowa( + workdir=tmpdir, + path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), + path_solver=TEST_SOLVER, source_prefix="CMTSOLUTION", ntask=1, + data_case="synthetic", components="Y", + ) + pyaflowa.setup() + save_residuals = os.path.join(tmpdir, "residuals.txt") + pyaflowa.quantify_misfit(source_name=pyaflowa._source_names[0], + save_residuals=save_residuals) + pytest.set_trace() diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index 591fa0e2..76b5f48e 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -59,8 +59,8 @@ def test_initialize_working_directory(tmpdir): assert(glob(os.path.join(solver.cwd, "*"))) event_fid = os.path.join(solver.cwd, "DATA", "CMTSOLUTION") assert(os.path.islink(event_fid)) - event_line = open(event_fid).readlines()[0].strip() - assert(event_line == "EVENT 1") + event_line = open(event_fid).readlines()[1].strip() + assert(event_line.split(":")[1].strip() == "001") def test_run_binary(tmpdir): diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 18a8fc36..992571ff 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -8,7 +8,7 @@ from glob import glob from seisflows import logger from seisflows.tools.config import Dict -from seisflows.tools import unix +from seisflows.tools import unix, msg from seisflows.tools.math import poissons_ratio @@ -494,6 +494,51 @@ def _write_model_fortran_binary(self, path): buffer.tofile(f) +def check_source_names(path_specfem_data, source_prefix, ntask=None): + """ + Determines names of sources by applying wildcard rule to user-supplied + input files. Source names are only provided up to PAR.NTASK and are + returned in alphabetical order. + + .. note:: + SeisFlows expects sources to be stored in the DATA/ directory with a + prefix and a source name, e.g., {source_prefix}_{source_name} which + would evaluate to something like CMTSOLUTION_001 + + :type path_specfem_data: str + :param path_specfem_data: path to a + :type source_prefix: str + :param source_prefix: type of SPECFEM input source, e.g., CMTSOLUTION + :type ntask: int + :parma ntask: if provided, curtails the list of sources up to `ntask`. If + None, returns all files found matching the wildcard + :rtype: list + :return: alphabetically ordered list of source names up to PAR.NTASK + """ + wildcard = f"{source_prefix}_*" + fids = sorted(glob(os.path.join(path_specfem_data, wildcard))) + if not fids: + logger.warning( + msg.cli("No matching source files when searching PATH for the " + "given WILDCARD", + items=[f"PATH: {path_specfem_data}", + f"WILDCARD: {wildcard}"], + header="error") + ) + return + if ntask is not None: + assert(len(fids) >= ntask), ( + f"Number of requested tasks/events {ntask} exceeds number " + f"of available sources {len(fids)}" + ) + fids = fids[:ntask] + + # Create internal definition of sources names by stripping prefixes + names = [os.path.basename(fid).split("_")[-1] for fid in fids] + + return names + + def getpar(key, file, delim="=", match_partial=False): """ Reads and returns parameters from a SPECFEM or SeisFlows parameter file From a6d46325ea91b28f0fdd7d6cf952ca34edb40244 Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 1 Aug 2022 14:01:19 -0800 Subject: [PATCH 092/195] pyatoa preprocessing splitting off sion misfit quantification as a separate function so that it can be run in parallel using concurrent.futures --- seisflows/preprocess/pyatoa.py | 109 ++++++++++++++++++++------------- 1 file changed, 67 insertions(+), 42 deletions(-) diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyatoa.py index d545b71f..48ccf006 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyatoa.py @@ -6,13 +6,14 @@ """ import os import numpy as np +from concurrent.futures import ProcessPoolExecutor from pyasdf import ASDFDataSet from pyatoa import Config, Manager, ManagerError from pyatoa.utils.read import read_station_codes from seisflows import logger from seisflows.tools import unix -from seisflows.tools.config import Dict, get_task_id +from seisflows.tools.config import Dict from seisflows.tools.specfem import check_source_names @@ -268,51 +269,24 @@ def quantify_misfit(self, source_name, save_residuals=None, ds = ASDFDataSet( os.path.join(self.path["_datasets"], f"{source_name}.h5") ) - mgmt = Manager(config=config, ds=ds) + mgmt = Manager(config=config) mgmt.gather(choice=["event"], event_id=source_name, prefix=f"{self._source_prefix}_") - # Run data/metadata gathering, processing and misfit quantification + # Run misfit quantification for each station concurrently misfit, nwin = 0, 0 - for station_code in self._station_codes: - net, sta, loc, cha = station_code.split(".") - _processed = False - # Will gather data and metadata based on the station codes and - # input paths from the Configuration object - try: - mgmt.gather(choice=["inv", "st_obs", "st_syn"], - code=station_code) - except ManagerError as e: - continue - # If any part of the processing fails, move on to plotting - try: - mgmt.standardize() - mgmt.preprocess() - mgmt.window( - fix_windows=self._check_fixed_windows(iteration, step_count) - ) - mgmt.measure() - _processed = True - except ManagerError as e: - pass - - if self.plot: - plot_fid = ( - f"{source_name}_{config.iter_tag}_{config.step_tag}_" - f"{net}_{sta}.png" - ) - save = os.path.join(self.path["_figures"], plot_fid) - try: - mgmt.plot(choice="both", show=False, save=save) - except ManagerError: - mgmt.plot(choice="wav", show=False, save=save) - - # Write out the .adj adjoint source files - if _processed and save_adjsrcs: - mgmt.write_adjsrcs(path=save_adjsrcs, write_blanks=True) - - misfit += mgmt.stats.misfit - nwin += mgmt.stats.nwin + with ProcessPoolExecutor(max_workers=unix.nproc() - 1) as executor: + futures = [ + executor.submit( + self._quantify_misfit_station, mgmt, code, save_adjsrcs) + for code in self._station_codes + ] + # Collect misfit values from function as they complete + for future in futures: + _misfit, _nwin = future.result() + if _misfit is not None: + misfit += _misfit + nwin += _nwin if save_residuals: try: @@ -323,6 +297,57 @@ def quantify_misfit(self, source_name, save_residuals=None, residuals = misfit np.savetxt(save_residuals, [residuals], fmt="%11.6e") + def _quantify_misfit_station(self, mgmt, station_code, save_adjsrcs): + """ + Run misfit quantification for a single event-station pair. Gathers, + preprocesses, windows and measures data, saves adjoint source if + requested, and then returns the total misfit and the collected + windows for the station. + """ + _processed = False + net, sta, loc, cha = station_code.split(".") + try: + mgmt.gather(choice=["inv", "st_obs", "st_syn"], code=station_code) + except ManagerError as e: + return None, None + + # If any part of the processing fails, move on to plotting because we + # will have gathered waveform data so a figure is still useful. + try: + _fix_windows = self._check_fixed_windows( + iteration=mgmt.config.iteration, + step_count=mgmt.config.step_count + ) + mgmt.standardize() + mgmt.preprocess() + mgmt.window(fix_windows=_fix_windows) + mgmt.measure() + _processed = True + except ManagerError as e: + pass + + # Plot waveform + map figure. Map may fail if we don't have appropriate + # metdata, in which case we fall back to plotting waveform only + if self.plot: + # e.g., 001_i01_s00_XX_ABC.png + plot_fid = ( + f"{mgmt.config.event_id}_" + f"{mgmt.config.iter_tag}_{mgmt.config.step_tag}_" + f"{net}_{sta}.png" + ) + save = os.path.join(self.path["_figures"], plot_fid) + try: + mgmt.plot(choice="both", show=False, save=save) + except ManagerError: + mgmt.plot(choice="wav", show=False, save=save) + + # Write out the .adj adjoint source files for solver to discover. + # Write empty adjoint sources for components with no adjoint sources + if _processed and save_adjsrcs: + mgmt.write_adjsrcs(path=save_adjsrcs, write_blanks=True) + + return mgmt.stats.misfit, mgmt.stats.nwin + def _check_fixed_windows(self, iteration, step_count): """ Determine how to address re-using misfit windows during an inversion From 082496d497d6bdaa36873be11d2239821ecfd043 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 1 Aug 2022 13:09:43 -0800 Subject: [PATCH 093/195] bug fix: during line search wrong alpha was being used to calculate the trial model causing the wrong model to be used for the next line search evaluation. fixed this and confirmed with updated Rosenbrock test suite. Test inversions now available for LBFGS, NLCG and gradient descent --- seisflows/optimize/gradient.py | 34 ++++++----- seisflows/plugins/line_search/bracket.py | 8 ++- seisflows/tests/test_optimize.py | 74 ++++++++++++++++++------ 3 files changed, 79 insertions(+), 37 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 59d81b72..8365e652 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -365,8 +365,10 @@ def update_line_search(self): .. note:: This is a bit confusing as it calculates the step length `alpha` for - the NEXT line search step, while working with the `alpha` value that - was calculated from the LAST line search step. + the NEXT line search step, while storing the `alpha` value that + was calculated from the LAST line search step. This is because we + need a corresponding misfit `f_try` from the value of `alpha`, which + happens externally with the solver module If line search returns a passing exit code (0 or 1), sets up for a subsequent line search evaluation by saving a new step length (alpha), @@ -383,20 +385,21 @@ def update_line_search(self): status==how to proceed with line search) """ # Collect information on a forward evaluation that just took place - alpha = self.load_vector("alpha") # step length + alpha_try = self.load_vector("alpha") # step length f_try = self.load_vector("f_try") # misfit for the trial model # Update the line search with a new step length and misfit value self._line_search.step_count += 1 - self._line_search.update_search_history(step_len=alpha, func_val=f_try) + self._line_search.update_search_history(step_len=alpha_try, + func_val=f_try) - # Calculate a new step length based on the step length and corresponding - # misfit that we should have just calculated - alpha_try, status = self._line_search.calculate_step_length() + # Calculate a new step length based on the current step length and its + # corresponding misfit. + alpha, status = self._line_search.calculate_step_length() - # Vectors are saved to disk immediately to avoid passing them in memory - # Status == 0: Retry line search // Status == 1: Line search passed - if status.upper() in ["TRY", "PASS"]: + # Note: if status is 'PASS' then `alpha` represents the step length of + # the lowest misfit in the line search and we reconstruct `m_try` w/ it + if status.upper() in ["PASS", "TRY"]: # Create a new trial model based on search direction, step length # and the initial model vector _m = self.load_vector("m_new") @@ -405,12 +408,10 @@ def update_line_search(self): # Sets the latest trial model using the current `alpha` value m_try = _m.copy() m_try.update(vector=_m.vector + alpha * _p.vector) - logger.info("trial model 'm_try' parameters: ") + logger.info("line search model 'm_try' parameters: ") m_try.check() - - # Newly calculated `alpha` value overwrites original `alpha` - alpha = alpha_try - else: + elif status.upper() == "FAIL": + # Failed line search skips over costly vector manipulations m_try = None return m_try, alpha, status @@ -446,6 +447,9 @@ def finalize_search(self): dst = src.replace("_new.", "_old.") unix.mv(src, dst) + # Reconstruct + x, f, *_ = self._line_search.get_search_history() + logger.info("setting accepted trial model (try) as current model (new)") unix.mv(src=os.path.join(self.path.scratch, "m_try.npz"), dst=os.path.join(self.path.scratch, "m_new.npz")) diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index 12262893..c4fc6f02 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -133,7 +133,8 @@ def _print_stats(self, x, f): def calculate_step_length(self): """ Determines step length (alpha) and search status (status) using a - bracketing line search. + bracketing line search. Evaluates Wolfe conditions to determine if + a step length is acceptable. .. note: Available status returns are: @@ -168,7 +169,7 @@ def calculate_step_length(self): elif _check_bracket(x, f) and _good_enough(x, f): alpha = x[f.argmin()] logger.info(f"pass: bracket acceptable and step length " - f"reasonable.") + f"reasonable. returning minimum line search misfit.") status = "PASS" # If misfit is reduced but not close, set to quadratic fit elif _check_bracket(x, f): @@ -209,12 +210,13 @@ def calculate_step_length(self): f"length, alpha_new={alpha:.2E}") status = "TRY" # Stop because safeguard prevents us from going further + # TODO Why is this passing? should status not be carried over? elif alpha > self.step_len_max: alpha = self.step_len_max logger.info(f"try: applying initial step length " f"safegaurd as alpha has exceeded maximum step " f"length, alpha_new={alpha:.2E}") - status = "PASS" # TODO shouldn't this be 0 or -1? + status = "PASS" return alpha, status diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index cc234cb3..17a94826 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -5,6 +5,7 @@ import os import pytest import numpy as np +import matplotlib.pyplot as plt from seisflows.tools.config import Dict from seisflows.tools.specfem import Model from seisflows.tools.math import angle @@ -303,7 +304,7 @@ def line_search(_optimize, allow_break=True): assert(m_angle == pytest.approx(0.3, 2)) -def _test_inversion_optimization_problem_general(optimize, iterations=200): +def _test_inversion_optimization_problem_general(optimize, iterations=250): """ Rather than run a single line search evaluation, which all the previous tests have done, we want to run a inversion workflow to find a best fitting @@ -318,10 +319,13 @@ def _test_inversion_optimization_problem_general(optimize, iterations=200): small. However in real workflows, `m_try` must be saved to disk rather than passed in memory because it is likely to be a large vector. + .. note:: + This replaces `workflow.test_optimize` from original code + :type optimize: module :param optimize: specific SeisFlows optimization module to test :type iterations: int - :param iterations: number of iterations to run. defaults to 200 + :param iterations: number of iterations to run. defaults to 250 """ m_init = Model() m_init.model = Dict(x=[np.array([-1.2, 1])]) # Initial guess for Rosenbrock @@ -330,7 +334,8 @@ def _test_inversion_optimization_problem_general(optimize, iterations=200): m_true = m_init.copy() m_true.update(vector=np.array([1., 1.])) # Rosenbrock global minimum - # 200 allowable iterations, but reaching global min. will stop inversion + # N allowable iterations, but reaching global min. will stop inversion + inversion_status = "DNF" # finished for iteration in range(iterations): # Step 1: Evaluate the objective function for given model 'm_new' m_new = optimize.load_vector("m_new") @@ -356,7 +361,7 @@ def _test_inversion_optimization_problem_general(optimize, iterations=200): if status == "PASS": break elif status == "FAIL": - return optimize + return optimize, status else: optimize.save_vector("alpha", alpha) optimize.save_vector("m_try", m_try) @@ -367,23 +372,36 @@ def _test_inversion_optimization_problem_general(optimize, iterations=200): m_diff = np.linalg.norm(m_new.vector - m_true.vector) m_diff /= np.linalg.norm(m_new.vector) if m_diff < 1e-3: + inversion_status = "FIN" # finished break - return optimize + return optimize, inversion_status def test_inversion_optimization_problem_with_gradient( tmpdir, setup_optimization_vectors): """Wrapper function to test the Gradient descent optimization problem""" - gradient = Gradient(path_optimize=tmpdir, path_output=tmpdir) - optimize = _test_inversion_optimization_problem_general(gradient) + gradient = Gradient(path_optimize=tmpdir, path_output=tmpdir, + step_count_max=40) + optimize, status = _test_inversion_optimization_problem_general(gradient) + # Just check a few of the stats file outputs to make sure this runs right assert(os.path.exists(optimize.path._stats_file)) stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) - assert(len(stats) == 200.) # Fails to reach global minimum - assert(stats["misfit"].min() == pytest.approx(0.2669, 3)) + assert(status == "DNF") # Did Not Finish + assert(len(stats) == 250.) # Fails to reach global minimum + assert(stats["misfit"].min() == pytest.approx(0.1638, 3)) assert(stats["if_restarted"].sum() == 0.) + # Make plot in the tmpdir incase we need to debug the misfit reduction + if True: + plt.plot(stats["misfit"], "go-", markersize=2) + plt.title("Gradient descent misfit; Rosenbrock problem") + plt.xlabel("Iteration") + plt.ylabel("Misfit") + plt.axhline(1e-3, c="k") + plt.savefig(os.path.join(tmpdir, "gradient_misfit.png")) + def test_inversion_optimization_problem_with_LBFGS( # NOQA tmpdir, setup_optimization_vectors): @@ -391,27 +409,45 @@ def test_inversion_optimization_problem_with_LBFGS( # NOQA lbfgs = LBFGS(path_optimize=tmpdir, path_output=tmpdir, line_search_method="backtrack") os.mkdir(lbfgs.path._LBFGS) - optimize = _test_inversion_optimization_problem_general(lbfgs) + optimize, status = _test_inversion_optimization_problem_general(lbfgs) # Just check a few of the stats file outputs to make sure this runs right assert(os.path.exists(optimize.path._stats_file)) stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) - assert(len(stats) == 95.) # reaches global min. in 95 iterations - assert(stats["misfit"].min() == pytest.approx(1.07e-7, 3)) - assert(stats["if_restarted"].sum() == 0.) + assert(status == "FIN") + assert(len(stats) == 53.) # reaches global min. in 95 iterations + assert(stats["misfit"].min() == pytest.approx(1.043e-7, 3)) + assert(stats["if_restarted"].sum() == 1.) # 1 restart + + if True: + plt.plot(stats["misfit"], "ro-", markersize=2) + plt.title("L-BFGS misfit; Rosenbrock problem") + plt.xlabel("Iteration") + plt.ylabel("Misfit") + plt.axhline(1e-3, c="k") + plt.savefig(os.path.join(tmpdir, "lbfgs_misfit.png")) def test_inversion_optimization_problem_with_NLCG( # NOQA tmpdir, setup_optimization_vectors): # NLCG will need more step counts nlcg = NLCG(path_optimize=tmpdir, path_output=tmpdir, - step_count_max=20) - optimize = _test_inversion_optimization_problem_general(nlcg) + step_count_max=40) + optimize, status = _test_inversion_optimization_problem_general(nlcg) # Just check a few of the stats file outputs to make sure this runs right assert(os.path.exists(optimize.path._stats_file)) stats = np.genfromtxt(optimize.path._stats_file, delimiter=",", names=True) - assert(len(stats) == 200.) # Fails to reach global minimum - assert(stats["misfit"].min()) == pytest.approx(0.1013, 3) - assert(stats["if_restarted"].sum() == 91.) - + assert(status == "FIN") + assert(len(stats) == 46.) # Fails to reach global minimum + assert(stats["misfit"].min()) == pytest.approx(3.693E-5, 3) + assert(stats["if_restarted"].sum() == 1.) + + if True: + plt.plot(stats["misfit"], "bo-", markersize=2) + plt.title("NLCG misfit; Rosenbrock problem") + plt.xlabel("Iteration") + plt.ylabel("Misfit") + plt.axhline(1e-3, c="k") + plt.savefig(os.path.join(tmpdir, "nlcg_misfit.png")) + \ No newline at end of file From c557275a843224224022bb5472c45a1106784f42 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 1 Aug 2022 14:12:32 -0800 Subject: [PATCH 094/195] small optimize test update --- seisflows/tests/test_optimize.py | 1 - 1 file changed, 1 deletion(-) diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index 17a94826..8524594d 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -450,4 +450,3 @@ def test_inversion_optimization_problem_with_NLCG( # NOQA plt.ylabel("Misfit") plt.axhline(1e-3, c="k") plt.savefig(os.path.join(tmpdir, "nlcg_misfit.png")) - \ No newline at end of file From 43078f18a3dba246b7523c620bd7a7d5dd7d21c8 Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 1 Aug 2022 14:18:53 -0800 Subject: [PATCH 095/195] fixing some test assertions that were coming up False --- seisflows/tests/test_optimize.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/seisflows/tests/test_optimize.py b/seisflows/tests/test_optimize.py index 8524594d..9f1c7078 100644 --- a/seisflows/tests/test_optimize.py +++ b/seisflows/tests/test_optimize.py @@ -174,7 +174,7 @@ def line_search(): break assert(status == "PASS") # pass - assert(optimize.step_count == 5) # Took 5 steps to reduce misfit + assert(optimize.step_count == 4) # Took 4 steps to reduce misfit # Make sure we have reduced the final misfit assert(min(optimize._line_search.func_vals) == pytest.approx(4.22, 3)) @@ -289,7 +289,7 @@ def line_search(_optimize, allow_break=True): # a successful line search. So if these values are the same then we know # we have successfully restarted a line search assert(status == "PASS") # pass - assert(optimize_restarted.step_count == 5) # Took 5 steps to reduce misfit + assert(optimize_restarted.step_count == 4) # Took 4 steps to reduce misfit # Make sure we have reduced the final misfit assert(min(optimize_restarted._line_search.func_vals) == pytest.approx(4.22, 3)) From 0990b8faf4a9da7a7cc43c7922b05b8326bf9699 Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 1 Aug 2022 18:33:14 -0800 Subject: [PATCH 096/195] pyaflowa preprocessing module now working with example data and problem, replaces the 'pyaflowa' class within Pyatoa so that seisflows users are more exposed to what's happening under the hood. Some basic tests so far but need to cover more test cases --- seisflows/preprocess/default.py | 4 + .../preprocess/{pyatoa.py => pyaflowa.py} | 524 ++++++++++-------- seisflows/tests/test_data/test_solver/002 | 1 + seisflows/tests/test_preprocess.py | 37 +- seisflows/workflow/inversion.py | 5 +- 5 files changed, 346 insertions(+), 225 deletions(-) rename seisflows/preprocess/{pyatoa.py => pyaflowa.py} (53%) create mode 120000 seisflows/tests/test_data/test_solver/002 diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 1d34c52c..e0380a5c 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -391,6 +391,10 @@ def quantify_misfit(self, observed, synthetic, fid = self._rename_as_adjoint_source(fid) self.write(st=adjsrc, fid=os.path.join(save_adjsrcs, fid)) + def finalize(self): + """Teardown procedures for the default preprocessing class""" + pass + @staticmethod def sum_residuals(residuals): """ diff --git a/seisflows/preprocess/pyatoa.py b/seisflows/preprocess/pyaflowa.py similarity index 53% rename from seisflows/preprocess/pyatoa.py rename to seisflows/preprocess/pyaflowa.py index 48ccf006..158fc786 100644 --- a/seisflows/preprocess/pyatoa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -5,15 +5,20 @@ name overlaps with the actual pyatoa package. """ import os +import logging +import time +import random import numpy as np from concurrent.futures import ProcessPoolExecutor +from glob import glob from pyasdf import ASDFDataSet -from pyatoa import Config, Manager, ManagerError +from pyatoa import Config, Manager, Inspector, ManagerError from pyatoa.utils.read import read_station_codes +from pyatoa.utils.images import imgs_to_pdf, merge_pdfs from seisflows import logger from seisflows.tools import unix -from seisflows.tools.config import Dict +from seisflows.tools.config import Null, Dict, get_task_id from seisflows.tools.specfem import check_source_names @@ -71,7 +76,7 @@ class Pyaflowa: :param pyatoa_log_level: Log level to set Pyatoa, Pyflex, Pyadjoint. Available: ['null': no logging, 'warning': warnings only, 'info': task tracking, 'debug': log all small details (recommended)] - :type start_pad_s: int + :type start_pad_s: float :param start_pad_s: seconds BEFORE origin time to gather data. Must be >= T_0 specificed in SPECFEM constants.h. Positive values only :type end_pad_s: int @@ -138,6 +143,7 @@ def __init__(self, min_period=1., max_period=10., filter_corners=4, # Pyatoa-specific internal path structure for storing data etc. self.path["_logs"] = os.path.join(self.path.scratch, "logs") + self.path["_tmplogs"] = os.path.join(self.path._logs, "tmp") self.path["_datasets"] = os.path.join(self.path.scratch, "datasets") self.path["_figures"] = os.path.join(self.path.scratch, "figures") @@ -199,10 +205,12 @@ def setup(self): defined directory structure that will be used to store the outputs of the preprocessing workflow """ - for pathname in ["scratch", "_logs", "_datasets", "_figures"]: + for pathname in ["scratch", "_logs", "_tmplogs", "_datasets", + "_figures"]: unix.mkdir(self.path[pathname]) # Generalized Config object that can be shared among all child processes + # Contains paths to look for data and metadata self._config = Config( min_period=self.min_period, max_period=self.max_period, filter_corners=self.filter_corners, client=self.client, @@ -222,42 +230,50 @@ def setup(self): path_to_stations=os.path.join(self.path.specfem_data, "STATIONS"), loc="*", cha="*" ) - # Get an internal list of source names. Will be the same as solver self._source_names = check_source_names( path_specfem_data=self.path.specfem_data, source_prefix=self._source_prefix, ntask=self._ntask ) - def quantify_misfit(self, source_name, save_residuals=None, + def quantify_misfit(self, source_name=None, save_residuals=None, save_adjsrcs=None, iteration=1, step_count=0, **kwargs): """ - Prepares solver for gradient evaluation by writing residuals and - adjoint traces. Meant to be called by - `workflow.evaluate_objective_function` - - Reads in observed and synthetic waveforms, applies optional - preprocessing, assesses misfit, and writes out adjoint sources and - STATIONS_ADJOINT file. + Prepares solver for gradient evaluation by evaluating data-synthetic + misfit and writing residuals and adjoint traces. Meant to be called by + `workflow.evaluate_objective_function`. .. note:: - Meant to be called by solver.eval_func(), may have unused arguments - to keep functions general across subclasses. + meant to be run on system using system.run() with access to solver + :type source_name: str + :param source_name: name of the event to quantify misfit for. If not + given, will attempt to gather event id from the given task id which + is assigned by system.run() :type save_residuals: str :param save_residuals: if not None, path to write misfit/residuls to :type save_adjsrcs: str :param save_adjsrcs: if not None, path to write adjoint sources to + :type iteration: int + :param iteration: current iteration of the workflow, information should + be provided by `workflow` module if we are running an inversion. + Defaults to 1 if not given (1st iteration) + :type step_count: int + :param step_count: current step count of the line search. Information + should be provided by the `optimize` module if we are running an + inversion. Defaults to 0 if not given (1st evaluation) """ # Set the individual Config class for our given event and evaluation config = self._config.copy() - config.event_id = source_name + config.event_id = source_name or self._source_names[get_task_id()] config.iteration = iteration config.step_count = step_count # Force the Manager to look in the solver directory for data - # Note: we are assuming the SeisFlows solver directory structure here + # note: we are assuming the SeisFlows `solver` directory structure here. + # If we change how the default `solver` directory is named (defined by + # `solver.initialize_solver_directories()`), then this will break config.paths["waveforms"].append( os.path.join(self.path.solver, source_name, "traces", "obs") ) @@ -265,50 +281,109 @@ def quantify_misfit(self, source_name, save_residuals=None, os.path.join(self.path.solver, source_name, "traces", "syn") ) - # Set up the Pyatoa workflow, attempt to gather event metadata - ds = ASDFDataSet( - os.path.join(self.path["_datasets"], f"{source_name}.h5") - ) - mgmt = Manager(config=config) - mgmt.gather(choice=["event"], event_id=source_name, - prefix=f"{self._source_prefix}_") - # Run misfit quantification for each station concurrently misfit, nwin = 0, 0 with ProcessPoolExecutor(max_workers=unix.nproc() - 1) as executor: futures = [ executor.submit( - self._quantify_misfit_station, mgmt, code, save_adjsrcs) + self._quantify_misfit_station, config, code, save_adjsrcs) for code in self._station_codes ] - # Collect misfit values from function as they complete + # We only need to return misfit information. All data/results are + # saved to the ASDFDataSet and status is logged to separate log file for future in futures: _misfit, _nwin = future.result() if _misfit is not None: misfit += _misfit nwin += _nwin + # Calculate misfit based on the raw misfit and total number of windows if save_residuals: + # Calculate the misfit based on the number of windows. Equation from + # Tape et al. (2010). If no windows, misfit is simply raw misfit try: residuals = 0.5 * misfit / nwin except ZeroDivisionError: # Dealing with the case where nwin==0 (signifying either no # windows found, or calc'ing misfit on whole trace) residuals = misfit - np.savetxt(save_residuals, [residuals], fmt="%11.6e") + with open(save_residuals, "a") as f: + f.write(f"{residuals:.2E}\n") + + # Combine all the individual .png files created into a single PDF + if self.plot: + output_fid = os.path.join(self.path._figures, self._ftag(config)) + self._make_event_figure_pdf(source_name, output_fid) + + # Finally, collect all the temporary log files and write a main log file + pyatoa_logger = self._config_pyatoa_logger( + fid=os.path.join(self.path._logs, f"{self._ftag(config)}.log") + ) + pyatoa_logger.info( + f"\n{'=' * 80}\n{'SUMMARY':^80}\n{'=' * 80}\n" + f"SOURCE NAME: {config.event_id}\n" + f"WINDOWS: {nwin}\n" + f"RAW MISFIT: {misfit:.4f}\n" + f"\n{'=' * 80}\n{'RAW LOGS':^80}\n{'=' * 80}" + ) + self._collect_tmp_log_files(pyatoa_logger, config.event_id) - def _quantify_misfit_station(self, mgmt, station_code, save_adjsrcs): + @staticmethod + def _ftag(config): + """ + Create a re-usable file tag from the Config object as multiple functions + will use this tag for file naming and file discovery. + + :type config: pyatoa.core.config.Config + :param config: Configuration object that must contain the 'event_id', + iteration and step count + """ + return f"{config.event_id}_{config.iter_tag}_{config.step_tag}" + + def _quantify_misfit_station(self, config, station_code, + save_adjsrcs=False): """ Run misfit quantification for a single event-station pair. Gathers, preprocesses, windows and measures data, saves adjoint source if requested, and then returns the total misfit and the collected windows for the station. + + :type config: pyatoa.core.config.Config + :param config: Config object that defines all the processing parameters + required by the Pyatoa workflow + :type station_code: str + :param station_code: chosen station to quantify misfit for. Should be + in the format 'NN.SSS.LL.CCC' + :type save_adjsrcs: str + :param save_adjsrcs: path to directory where adjoint sources should be + saved. Filenames will be generated automatically by Pyatoa to fit + the naming schema required by SPECFEM. If False, no adjoint sources + will be saved. They of course can be saved manually later using + Pyatoa + PyASDF """ - _processed = False + # Unique identifier for the given source-receiver pair for file naming + # Something like 001_i01_s00_XX_XYZ net, sta, loc, cha = station_code.split(".") + tag = f"{self._ftag(config)}_{net}_{sta}" + + # Configure a single source-receiver pair logger which will be collected + # later by the main function + log_file = os.path.join(self.path._tmplogs, f"{tag}.log") + station_logger = self._config_pyatoa_logger(fid=log_file) + station_logger.info(f"\n{'/' * 80}\n{station_code:^80}\n{'/' * 80}") + + # Begin data gathering/processing and misfit quantification + mgmt = Manager(config=config) + mgmt.gather(choice=["event"], event_id=config.event_id, + prefix=f"{self._source_prefix}_") + + # Attempt to gather data. If fail, return because theres nothing else + # we can do without data + _processed = False try: mgmt.gather(choice=["inv", "st_obs", "st_syn"], code=station_code) except ManagerError as e: + station_logger.critical(e) return None, None # If any part of the processing fails, move on to plotting because we @@ -316,7 +391,8 @@ def _quantify_misfit_station(self, mgmt, station_code, save_adjsrcs): try: _fix_windows = self._check_fixed_windows( iteration=mgmt.config.iteration, - step_count=mgmt.config.step_count + step_count=mgmt.config.step_count, + logger=station_logger, ) mgmt.standardize() mgmt.preprocess() @@ -324,21 +400,18 @@ def _quantify_misfit_station(self, mgmt, station_code, save_adjsrcs): mgmt.measure() _processed = True except ManagerError as e: + station_logger.warning(e) pass # Plot waveform + map figure. Map may fail if we don't have appropriate # metdata, in which case we fall back to plotting waveform only if self.plot: # e.g., 001_i01_s00_XX_ABC.png - plot_fid = ( - f"{mgmt.config.event_id}_" - f"{mgmt.config.iter_tag}_{mgmt.config.step_tag}_" - f"{net}_{sta}.png" - ) - save = os.path.join(self.path["_figures"], plot_fid) + save = os.path.join(self.path["_figures"], f"{tag}.png") try: mgmt.plot(choice="both", show=False, save=save) - except ManagerError: + except ManagerError as e: + station_logger.warning(e) mgmt.plot(choice="wav", show=False, save=save) # Write out the .adj adjoint source files for solver to discover. @@ -346,9 +419,82 @@ def _quantify_misfit_station(self, mgmt, station_code, save_adjsrcs): if _processed and save_adjsrcs: mgmt.write_adjsrcs(path=save_adjsrcs, write_blanks=True) + # Wait until the very end to write to the HDF5 file, then do it + # pseudo-serially to get around trying to parallel write to HDF5 file + while True: + try: + with ASDFDataSet(os.path.join(self.path["_datasets"], + f"{config.event_id}.h5")) as ds: + mgmt.write(ds=ds) + break + except (BlockingIOError, FileExistsError): + # Random sleep time [0,1]s to decrease chances of two processes + # attempting to access at exactly the same time + time.sleep(random.random()) + return mgmt.stats.misfit, mgmt.stats.nwin - def _check_fixed_windows(self, iteration, step_count): + def sum_residuals(self, residuals): + """ + Return summed residuals devided by number of events following equation + in Tape et al. 2010 + + :type residuals: np.array + :param residuals: list of residuals from each NTASK event + :rtype: float + :return: sum of squares of residuals + """ + assert(len(residuals) == self._ntask), \ + f"recovered an incorrect number of residual values" + summed_residuals = np.sum(residuals) + return summed_residuals / self._ntask + + def finalize(self): + """ + Run some serial finalization tasks specific to Pyatoa, which will help + aggregate the collection of output information. + + .. note:: + This finalize function performs the following tasks: + * Generate .csv files using the Inspector + * Aggregate event-specific PDFs into a single evaluation PDF + * Save scratch/ data into output/ if requested + """ + # Generate the Inspector from existing datasets and save to disk + # Allow this is fail, which might happen if we don't have enough data + # or the Dataset is not formatted as expected + unix.cd(self.path._datasets) + insp = Inspector("inspector", verbose=False) + try: + insp.discover() + insp.save() + except Exception as e: + logger.warning(f"Uncontrolled exception in Pyatoa Inspector " + f"creation -- will not create inspector:\n{e}") + + # Make the final PDF for easier User ingestion of waveform/map figures + self._make_evaluation_composite_pdf() + + # Move scratch/ directory results into more permanent storage + if self.export_datasets: + src = glob(os.path.join(self.path._datasets, "*.h5")) + dst = os.path.join(self.path.output, "datasets", "") + unix.mkdir(dst) + unix.cp(src, dst) + + if self.export_figures: + src = glob(os.path.join(self.path._figures, "*.pdf")) + dst = os.path.join(self.path.output, "figures", "") + unix.mkdir(dst) + unix.cp(src, dst) + + if self.export_log_files: + src = glob(os.path.join(self.path._logs, "*.txt")) + dst = os.path.join(self.path.output, "logs", "") + unix.mkdir(dst) + unix.cp(src, dst) + + def _check_fixed_windows(self, iteration, step_count, logger=Null()): """ Determine how to address re-using misfit windows during an inversion workflow. Throw some log messages out to let the User know whether or @@ -371,6 +517,10 @@ def _check_fixed_windows(self, iteration, step_count): :param step_count: Current line search step count within the SeisFlows3 workflow. Within SeisFlows3 this is defined by `optimize.line_search.step_count` + :type logger: logging.Logger + :param logger: The main logger for a given event, should be + defined by `pyaflowa.quantify_misfit()`. If not provided, logs will + get sent to DevNull :rtype: bool :return: bool on whether to use windows from the previous step """ @@ -404,182 +554,120 @@ def _check_fixed_windows(self, iteration, step_count): return fix_windows - # - # def finalize(self): - # """ - # Run some serial finalization tasks specific to Pyatoa, which will help - # aggregate the collection of output information. - # - # .. note:: - # This finalize function performs the following tasks: - # * Generate .csv files using the Inspector - # * Aggregate event-specific PDFs into a single evaluation PDF - # * Save scratch/ data into output/ if requested - # """ - # # Initiate Pyaflowa to get access to path structure - # pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) - # unix.cd(pyaflowa.paths.datasets) - # - # # Generate the Inspector from existing datasets and save to disk - # # Allow this is fail, which might happen if we don't have enough data - # # or the Dataset is not formatted as expected - # insp = Inspector(self.par.TITLE, verbose=False) # !!! TODO - # try: - # insp.discover() - # insp.save() - # except Exception as e: - # logger.warning(f"Uncontrolled exception in Inspector creation " - # f"will not create inspector:\n{e}") - # - # # Make the final PDF for easier User ingestion of waveform/map figures - # pyaflowa.make_evaluation_composite_pdf() - # - # # Move scratch/ directory results into more permanent storage - # if self.export_datasets: - # datasets = glob(os.path.join(pyaflowa.paths.datasets, "*.h5")) - # self._save_quantity(datasets, tag="datasets") - # - # if self.export_figures: - # figures = glob(os.path.join(pyaflowa.paths.figures, "*.pdf")) - # self._save_quantity(figures, tag="figures") - # - # if self.export_log_files: - # logs = glob(os.path.join(pyaflowa.paths.logs, "*.txt")) - # path_out = os.path.join(self.path_output, CFGPATHS.LOGDIR) - # self._save_quantity(logs, path_out=path_out) - # - # def prepare_eval_grad(self, cwd, taskid, source_name, **kwargs): - # """ - # Prepare the gradient evaluation by gathering, preprocessing waveforms, - # and measuring misfit between observations and synthetics using Pyatoa. - # - # Reads in observed and synthetic waveforms, applies optional - # preprocessing, assesses misfit, and writes out adjoint sources and - # STATIONS_ADJOINT file. - # - # .. note:: - # Meant to be called by solver.eval_func(), may have unused arguments - # to keep functions general across preprocessing subclasses. - # - # :type cwd: str - # :param cwd: current specfem working directory containing observed and - # synthetic seismic data to be read and processed. Should be defined - # by solver.cwd - # :type source_name: str - # :param source_name: the event id to be used for tagging and data lookup. - # Should be defined by solver.source_name - # :type taskid: int - # :param taskid: identifier of the currently running solver instance. - # Should be defined by solver.taskid - # :type filenames: list of str - # :param filenames: [not used] list of filenames defining the files in - # traces - # """ - # if taskid == 0: - # logger.debug("preparing files for gradient evaluation with " - # "Pyaflowa") - # - # # Process all the stations for a given event using Pyaflowa - # pyaflowa = self._setup_event_pyaflowa(source_name) - # scaled_misfit = pyaflowa.process(nproc=self.nproc) - # - # if scaled_misfit is None: - # print(msg.cli(f"Event {source_name} returned no misfit, you may " - # f"want to check logs and waveform figures, " - # f"or consider discarding this event from your " - # f"workflow", - # items=[pyaflowa.paths.logs, pyaflowa.paths.figures], - # header="pyatoa preprocessing error", border="=")) - # sys.exit(-1) - # - # # Event misfit defined by Tape et al. (2010) written to solver dir. - # self._write_residuals(path=cwd, scaled_misfit=scaled_misfit) - # - # def _setup_event_pyaflowa(self, source_name, iteration, step_count=""): - # """ - # A convenience function to set up a Pyaflowa processing instance for - # a specific event. - # - # .. note:: - # This is meant to be called by preprocess.prepare_eval_grad() but its - # also useful for debugging and manual processing where you can simply - # return a formatted Pyaflowa object and debug it directly. - # - # :type source_name: str - # :param source_name: solver source name to evaluate setup for. Must - # match from list defined by: solver.source_names - # """ - # # Outsource data processing to an event-specfic Pyaflowa instance - # pyaflowa = Pyaflowa(sfpar=self.par, sfpath=self.path) - # pyaflowa.setup(source_name=source_name, iteration=iteration, - # step_count=step_count, loc="*", cha="*") - # - # return pyaflowa - # - # def _save_quantity(self, filepaths, tag="", path_out=""): - # """ - # Repeatable convenience function to save quantities from the scratch/ - # directory to the output/ directory - # - # :type filepaths: list - # :param filepaths: full path to files that should be saved to output/ - # :type tag: str - # :param tag: tag for saving the files in self.path.OUTPUT. If not given, will - # save directly into the output/ directory - # :type path_out: str - # :param path_out: overwrite the default output path file naming - # """ - # if not path_out: - # path_out = os.path.join(self.path_output, tag) - # - # if not os.path.exists(path_out): - # unix.mkdir(path_out) - # - # for src in filepaths: - # dst = os.path.join(path_out, os.path.basename(src)) - # unix.cp(src, dst) - # - # @staticmethod - # def _write_residuals(path, scaled_misfit): - # """ - # Computes residuals and saves them to a text file in the appropriate path - # - # :type path: str - # :param path: scratch directory path, e.g. self.path.GRAD or self.path.FUNC - # :type scaled_misfit: float - # :param scaled_misfit: the summation of misfit from each - # source-receiver pair calculated by prepare_eval_grad() - # :type source_name: str - # :param source_name: name of the source related to the misfit, used - # for file naming - # """ - # residuals_file = os.path.join(path, "residuals") - # np.savetxt(residuals_file, [scaled_misfit], fmt="%11.6e") - # - # def sum_residuals(self, files): - # """ - # Averages the event misfits and returns the total misfit. - # Total misfit defined by Tape et al. (2010) - # - # :type files: str - # :param files: list of single-column text files containing residuals - # that will have been generated using prepare_eval_grad() - # :rtype: float - # :return: average misfit - # """ - # if len(files) != self.ntask: - # print(msg.cli(f"Pyatoa preprocessing module did not recover the " - # f"correct number of residual files " - # f"({len(files)}/{self.ntask}). Please check that " - # f"the preprocessing logs", header="error") - # ) - # sys.exit(-1) - # - # total_misfit = 0 - # for filename in files: - # total_misfit += np.sum(np.loadtxt(filename)) - # - # total_misfit /= self.ntask - # - # return total_misfit - # + def _config_pyatoa_logger(self, fid): + """ + Create a log file to track processing of a given source-receiver pair. + Because each station is processed asynchronously, we don't want them to + log to the main file at the same time, otherwise we get a random mixing + of log messages. Instead we have them log to temporary files, which + are combined at the end of the processing script in serial. + + :type fid: str + :param fid: full path and filename for logger that will be configured + :rtype: logging.Logger + :return: a logger which does NOT log to stdout and only logs to + the given file defined by `fid` + """ + handler = logging.FileHandler(fid, mode="w") + logfmt = "[%(asctime)s] - %(name)s - %(levelname)s: %(message)s" + formatter = logging.Formatter(logfmt, datefmt="%Y-%m-%d %H:%M:%S") + handler.setFormatter(formatter) + for log in ["pyflex", "pyadjoint", "pyatoa"]: + # Set the overall log level + logger = logging.getLogger(log) + # Turn off any existing handlers (stream and file) + while logger.hasHandlers(): + logger.removeHandler(logger.handlers[0]) + # Log to new temporary file + logger.setLevel(self.pyatoa_log_level) + logger.addHandler(handler) + + return logger + + def _collect_tmp_log_files(self, pyatoa_logger, event_id): + """ + Each source-receiver pair has made its own log file. This function + collects these files and writes their content back into the main log. + This is a lot of IO but should be okay since the files are small. + + .. note:: + This was the most foolproof method for having multiple parallel + processes write to the same file. I played around with StringIO + buffers and file locks, but they became overly complicated and + ultimately did not work how I wanted them to. This function trades + filecount and IO overhead for simplicity. + + .. warning:: + The assumption here is that the number of source-receiver pairs + is manageable (in the thousands). If we start reaching file count + limits on the cluster then this method for logging may have to be + re-thought. See link for example: + https://stackless.readthedocs.io/en/3.7-slp/howto/ + logging-cookbook.html#using-concurrent-futures-processpoolexecutor + + :type pyatoa_logger: logging.Logger + :param pyatoa_logger: The main logger for a given event, should be + defined by `pyaflowa.quantify_misfit()` + :type event_id: str + :param event_id: given event id that we are concerned with. Used to + search for matching log files in the temporary log file directory + """ + tmp_logs = sorted(glob(os.path.join(self.path._tmplogs, + f"*{event_id}_*.log"))) + with open(pyatoa_logger.handlers[0].baseFilename, "a") as fw: + for tmp_log in tmp_logs: + with open(tmp_log, "r") as fr: + fw.writelines(fr.readlines()) + unix.rm(tmp_log) # delete after writing + + def _make_event_figure_pdf(self, source_name, output_fid): + """ + Combine a list of single source-receiver PNGs into a single PDF file + for the given event. Mostly a convenience function to make it easier + to ingest waveform figures during a workflow. + + """ + # Sorrted by network and station name + input_fids = sorted(glob(os.path.join(self.path._figures, + f"{source_name}*.png"))) + if not input_fids: + logger.warning(f"Pyatoa found no event figures for {source_name} " + f"to combine") + return + + # Assuming the file naming format defined by `_quantify_misfit_station` + source_name, iteration, step_count, *_ = input_fids[0].split("_") + + # e.g. i01s00_2018p130600.pdf + output_fid = (f"{source_name}_{iteration}_{step_count}.pdf") + + # Merge all output pdfs into a single pdf, delete originals + save = os.path.join(self.path._figures, output_fid) + imgs_to_pdf(fids=sorted(input_fids), fid_out=save) + for fid in input_fids: + os.remove(fid) + + def _make_evaluation_composite_pdf(self): + """ + Utility function to combine all PDFs generated by + make_event_figure_pdf() into a single PDF tagged by the current + evaluation (iteration, step count). This is meant to make it easier + for the User to scroll through figures. Option to delete the original + event-specific PDFs which are now redundant + .. note:: + This can be run without running Pyaflowa.format() + :type delete_originals: bool + :param delete_originals: delete original pdf files after mergin + """ + event_figures = glob(os.path.join(self.path._figures, "*", "*.pdf")) + if not event_figures: + logger.warning("Pyatoa could not find event PDFs to merge") + return + # Collecting evaluation tags, e.g., ['i01s00', 'i01s01'] + tags = set([os.path.basename(_).split("_")[0] for _ in event_figures]) + for tag in tags: + fids = [fid for fid in event_figures if tag in fid] + fid_out = os.path.join(self.path._figures, f"{tag}.pdf") + merge_pdfs(fids=sorted(fids), fid_out=fid_out) + for fid in fids: + os.remove(fid) diff --git a/seisflows/tests/test_data/test_solver/002 b/seisflows/tests/test_data/test_solver/002 new file mode 120000 index 00000000..cbb9ee10 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002 @@ -0,0 +1 @@ +mainsolver/ \ No newline at end of file diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index 614f1906..09ba5f66 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -4,7 +4,9 @@ """ import os import pytest +import numpy as np from glob import glob +from pyasdf import ASDFDataSet from seisflows import ROOT_DIR from seisflows.preprocess.default import Default from seisflows.preprocess.pyatoa import Pyaflowa @@ -108,6 +110,7 @@ def test_pyaflowa_setup(tmpdir): path_solver=os.path.join(TEST_SOLVER, "mainsolver"), source_prefix="CMTSOLUTION", ntask=2, + components="Y", ) assert(pyaflowa._station_codes == []) @@ -119,20 +122,44 @@ def test_pyaflowa_setup(tmpdir): assert(pyaflowa._station_codes[0] == "AA.S0001.*.*") assert(len(pyaflowa._source_names) == pyaflowa._ntask) assert(pyaflowa._source_names[0] == "001") + assert(pyaflowa._config.component_list == ["Y"]) def test_pyaflowa_quantify_misfit(tmpdir): """ - Test misfit quantification for Pyatoa including data gathering + Test misfit quantification for Pyatoa including data gathering. Waveform + data and source and receiver metadata is exposed from the test data + directory. Data and synthetics are the same so residuals will be 0. Want + to check that we can process in parallel and that Pyatoa outputs figures, + and data """ pyaflowa = Pyaflowa( workdir=tmpdir, path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), - path_solver=TEST_SOLVER, source_prefix="CMTSOLUTION", ntask=1, + path_solver=TEST_SOLVER, source_prefix="CMTSOLUTION", ntask=2, data_case="synthetic", components="Y", ) pyaflowa.setup() save_residuals = os.path.join(tmpdir, "residuals.txt") - pyaflowa.quantify_misfit(source_name=pyaflowa._source_names[0], - save_residuals=save_residuals) - pytest.set_trace() + for source_name in pyaflowa._source_names: + save_residuals = os.path.join(tmpdir, f"residuals_{source_name}.txt") + pyaflowa.quantify_misfit(source_name=source_name, + save_residuals=save_residuals, + save_adjsrcs=tmpdir) + + residuals = np.loadtxt(save_residuals) # just check one of the file + assert(residuals == 0.) # data and synthetics are the same + + # Check that windows and adjoint sources were saved to dataset + for source_name in pyaflowa._source_names: + with ASDFDataSet(os.path.join(pyaflowa.path._datasets, + f"{source_name}.h5")) as ds: + # Pyatoa selects 18 windows for 2 events and 2 stations + assert(len(ds.auxiliary_data.MisfitWindows.i01.s00.list()) == 18) + assert(len(ds.auxiliary_data.AdjointSources.i01.s00.list()) == 2) + + # Check that adjoint sources are all zero + adjsrcs = glob(os.path.join(tmpdir, "*.adj")) + for adjsrc in adjsrcs: + data = np.loadtxt(adjsrc) + assert(not data[:,1].any()) # assert all zeros diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 95a207f3..897c435d 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -204,8 +204,7 @@ def evaluate_objective_function(self, save_residuals=False, **kwargs): f"'{self.preprocess.__class__.__name__}'") self.preprocess.quantify_misfit( - observed=self.solver.data_filenames(choice="obs"), - synthetic=self.solver.data_filenames(choice="syn"), + source_name=self.solver.source_name, save_adjsrcs=os.path.join(self.solver.cwd, "traces", "adj"), save_residuals=save_residuals, iteration=self.iteration, @@ -414,6 +413,8 @@ def finalize_iteration(self): unix.mkdir(self.path.eval_grad) unix.mkdir(self.path.eval_func) + self.preprocess.finalize() + def _update_thrifty_status(self): """ Determine if line search forward simulation can be carried over to the From 021abacb0fd8942d8f3fb0bae43c11aa8af36f16 Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 1 Aug 2022 20:56:06 -0800 Subject: [PATCH 097/195] fixed a small nuisance where user had to input T0 for Pyatoa themselves, and if not properly set, this would cause the adjoint sources to be incorrect length. As a replacement, Pyatoa now just reads T0 and length of seismogram from a synthetic before quantifying misfit. --- seisflows/preprocess/pyaflowa.py | 106 ++++++++++++++++++++++--------- seisflows/workflow/forward.py | 2 +- seisflows/workflow/inversion.py | 7 +- 3 files changed, 82 insertions(+), 33 deletions(-) diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index 158fc786..1eecbdfb 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -13,7 +13,7 @@ from glob import glob from pyasdf import ASDFDataSet from pyatoa import Config, Manager, Inspector, ManagerError -from pyatoa.utils.read import read_station_codes +from pyatoa.utils.read import read_station_codes, read_sem from pyatoa.utils.images import imgs_to_pdf, merge_pdfs from seisflows import logger @@ -76,11 +76,11 @@ class Pyaflowa: :param pyatoa_log_level: Log level to set Pyatoa, Pyflex, Pyadjoint. Available: ['null': no logging, 'warning': warnings only, 'info': task tracking, 'debug': log all small details (recommended)] - :type start_pad_s: float - :param start_pad_s: seconds BEFORE origin time to gather data. Must be + :type start_pad: float + :param start_pad: seconds BEFORE origin time to gather data. Must be >= T_0 specificed in SPECFEM constants.h. Positive values only - :type end_pad_s: int - :param end_pad_s: seconds AFTER origin time to gather data. Must be + :type end_pad: int + :param end_pad: seconds AFTER origin time to gather data. Must be >= NT * DT (from SPECFEM Par_file) postive values only. :type unit_output: str :param unit_output: Data units. Must match the synthetic output of @@ -104,8 +104,8 @@ class Pyaflowa: def __init__(self, min_period=1., max_period=10., filter_corners=4, client=None, rotate=False, pyflex_preset="default", fix_windows=False, adj_src_type="cc", plot=True, - pyatoa_log_level="DEBUG", unit_output="VEL", start_pad_s=0., - end_pad_s=None, workdir=os.getcwd(), path_preprocess=None, + pyatoa_log_level="DEBUG", unit_output="VEL", start_pad=None, + end_pad=None, workdir=os.getcwd(), path_preprocess=None, path_solver=None, path_specfem_data=None, path_data=None, path_output=None, export_datasets=True, export_figures=True, export_log_files=True, data_format="ascii", @@ -124,8 +124,8 @@ def __init__(self, min_period=1., max_period=10., filter_corners=4, self.plot = plot self.pyatoa_log_level = pyatoa_log_level self.unit_output = unit_output - self.start_pad_s = start_pad_s - self.end_pad_s = end_pad_s + self.start_pad = start_pad + self.end_pad = end_pad self.path = Dict( scratch=path_preprocess or os.path.join(workdir, "scratch", @@ -180,6 +180,8 @@ def check(self): """ Checks Parameter and Path files, will be run at the start of a Seisflows workflow to ensure that things are set appropriately. + + TODO some type of check for the time offset value """ assert(self._data_format.upper() == "ASCII"), \ "Pyatoa preprocess requires `data_format`=='ASCII'" @@ -199,6 +201,21 @@ def check(self): f"{self._acceptable_source_prefixes}, not '{self._source_prefix}'" ) + if self.start_pad is None: + logger.warning("Pyatoa `start_pad` is not set, setting to T0=0. " + "This value should be set to the T0 value of " + "SPECFEM, otherwise its output adjoint sources will " + "be incorrect length.") + self.start_pad = 0. + + if self.end_pad is None: + logger.warning("Pyatoa `end_pad` is not set, setting to T=0. " + "This value should be set to the total length of " + "your synthetic seismograms (i.e., DT * NT) from " + "SPECFEM, IFF you want Pyatoa to gather observed " + "data from disk/webservice.") + self.end_pad = 0. + def setup(self): """ Sets up data preprocessing machinery by establishing an internally @@ -209,7 +226,7 @@ def setup(self): "_figures"]: unix.mkdir(self.path[pathname]) - # Generalized Config object that can be shared among all child processes + # Convert SeisFlows user parameters into Pyatoa config parameters # Contains paths to look for data and metadata self._config = Config( min_period=self.min_period, max_period=self.max_period, @@ -217,7 +234,6 @@ def setup(self): rotate=self.rotate, pyflex_preset=self.pyflex_preset, fix_windows=self.fix_windows, adj_src_type=self.adj_src_type, log_level=self.pyatoa_log_level, unit_output=self.unit_output, - start_pad_s=self.start_pad_s, end_pad_s=self.end_pad_s, component_list=list(self._components), synthetics_only=bool(self._data_case == "synthetic"), paths={"waveforms": self.path["_waveforms"] or [], @@ -236,6 +252,55 @@ def setup(self): source_prefix=self._source_prefix, ntask=self._ntask ) + def _setup_quantify_misfit(self, source_name, iteration, step_count): + """ + Create an event-specific Config object which contains information about + the current event, and position in the workflow evaluation. Also + provides specific information on event paths and timing to be used by + the Manager + + :type source_name: str + :param source_name: name of the event to quantify misfit for. If not + given, will attempt to gather event id from the given task id which + is assigned by system.run() + :type iteration: int + :param iteration: current iteration of the workflow, information should + be provided by `workflow` module if we are running an inversion. + Defaults to 1 if not given (1st iteration) + :type step_count: int + :param step_count: current step count of the line search. Information + should be provided by the `optimize` module if we are running an + inversion. Defaults to 0 if not given (1st evaluation) + :rtype: pyatoa.core.config.Config + :return: Config object that is specifically crafted for a given event + that can be directly fed to the Manager for misfit quantification + """ + config = self._config.copy() + config.event_id = source_name or self._source_names[get_task_id()] + config.iteration = iteration + config.step_count = step_count + + # Force the Manager to look in the solver directory for data + # note: we are assuming the SeisFlows `solver` directory structure here. + # If we change how the default `solver` directory is named (defined by + # `solver.initialize_solver_directories()`), then this will break + obs_path = os.path.join(self.path.solver, source_name, "traces", "obs") + config.paths["waveforms"].append(obs_path) + + syn_path = os.path.join(self.path.solver, source_name, "traces", "syn") + config.paths["synthetics"].append(syn_path) + + # Extract start and end times from one of the synthetic traces so that + # Pyatoa knows how long seismograms are and when to start them + # NOTE: assuming all synthetic time axes are the same for this source + synthetics = glob(os.path.join(syn_path, "*")) + assert(synthetics), f"Pyatoa found no synthetics in: {syn_path}" + tr_syn = read_sem(synthetics[0])[0] + config.start_pad = abs(tr_syn.stats.time_offset) # needs to be positive + config.end_pad = tr_syn.stats.endtime - tr_syn.stats.starttime + + return config + def quantify_misfit(self, source_name=None, save_residuals=None, save_adjsrcs=None, iteration=1, step_count=0, **kwargs): @@ -264,22 +329,7 @@ def quantify_misfit(self, source_name=None, save_residuals=None, should be provided by the `optimize` module if we are running an inversion. Defaults to 0 if not given (1st evaluation) """ - # Set the individual Config class for our given event and evaluation - config = self._config.copy() - config.event_id = source_name or self._source_names[get_task_id()] - config.iteration = iteration - config.step_count = step_count - - # Force the Manager to look in the solver directory for data - # note: we are assuming the SeisFlows `solver` directory structure here. - # If we change how the default `solver` directory is named (defined by - # `solver.initialize_solver_directories()`), then this will break - config.paths["waveforms"].append( - os.path.join(self.path.solver, source_name, "traces", "obs") - ) - config.paths["synthetics"].append( - os.path.join(self.path.solver, source_name, "traces", "syn") - ) + config = self._setup_quantify_misfit(source_name, iteration, step_count) # Run misfit quantification for each station concurrently misfit, nwin = 0, 0 @@ -444,8 +494,6 @@ def sum_residuals(self, residuals): :rtype: float :return: sum of squares of residuals """ - assert(len(residuals) == self._ntask), \ - f"recovered an incorrect number of residual values" summed_residuals = np.sum(residuals) return summed_residuals / self._ntask diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 1d4228e5..bee3527e 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -299,7 +299,7 @@ def evaluate_initial_misfit(self): self.run_forward_simulations, self.evaluate_objective_function], path_model=self.path.model_init, - save_residuals=os.path.join(self.path.eval_grad, "residuals") + save_residuals=os.path.join(self.path.eval_grad, "residuals.txt") ) def prepare_data_for_solver(self, **kwargs): diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 897c435d..6072847c 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -144,7 +144,7 @@ def check(self): f"scratch path `eval_grad` does not exist but should for a " \ f"workflow with `iteration` >= 1" - if self.iteration >= self.end: + if self.iteration >= self.end + 1: logger.warning(f"current `iteration` is >= chosen `end` point. " f"Inversion workflow will not `run`") @@ -173,7 +173,7 @@ def setup(self): def run(self): """Call the forward.run() function iteratively, from `start` to `end`""" - while self.iteration < self.end: + while self.iteration < self.end + 1: logger.info(msg.mnr(f"RUNNING ITERATION {self.iteration:0>2}")) super().run() # Runs task list logger.info(msg.mnr(f"COMPLETED ITERATION {self.iteration:0>2}")) @@ -244,7 +244,8 @@ def evaluate_initial_misfit(self): ) # Override function to sum residuals into the optimization library - residuals = np.loadtxt(os.path.join(self.path.eval_grad, "residuals")) + residuals = np.loadtxt(os.path.join(self.path.eval_grad, + "residuals.txt")) total_misfit = self.preprocess.sum_residuals(residuals) self.optimize.save_vector(name="f_new", m=total_misfit) From 3f4870627034a52076d0378796426fc6e22405e0 Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 1 Aug 2022 23:35:48 -0800 Subject: [PATCH 098/195] small typo fix pyaflowa --- seisflows/preprocess/pyaflowa.py | 41 ++++++++++++++++---------------- 1 file changed, 20 insertions(+), 21 deletions(-) diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index 1eecbdfb..6905a3d1 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -104,8 +104,9 @@ class Pyaflowa: def __init__(self, min_period=1., max_period=10., filter_corners=4, client=None, rotate=False, pyflex_preset="default", fix_windows=False, adj_src_type="cc", plot=True, - pyatoa_log_level="DEBUG", unit_output="VEL", start_pad=None, - end_pad=None, workdir=os.getcwd(), path_preprocess=None, + pyatoa_log_level="DEBUG", unit_output="VEL", + # start_pad=None, end_pad=None, + workdir=os.getcwd(), path_preprocess=None, path_solver=None, path_specfem_data=None, path_data=None, path_output=None, export_datasets=True, export_figures=True, export_log_files=True, data_format="ascii", @@ -124,8 +125,8 @@ def __init__(self, min_period=1., max_period=10., filter_corners=4, self.plot = plot self.pyatoa_log_level = pyatoa_log_level self.unit_output = unit_output - self.start_pad = start_pad - self.end_pad = end_pad + # self.start_pad = start_pad + # self.end_pad = end_pad self.path = Dict( scratch=path_preprocess or os.path.join(workdir, "scratch", @@ -180,8 +181,6 @@ def check(self): """ Checks Parameter and Path files, will be run at the start of a Seisflows workflow to ensure that things are set appropriately. - - TODO some type of check for the time offset value """ assert(self._data_format.upper() == "ASCII"), \ "Pyatoa preprocess requires `data_format`=='ASCII'" @@ -200,21 +199,21 @@ def check(self): f"Pyatoa can only accept `source_prefix` in " f"{self._acceptable_source_prefixes}, not '{self._source_prefix}'" ) - - if self.start_pad is None: - logger.warning("Pyatoa `start_pad` is not set, setting to T0=0. " - "This value should be set to the T0 value of " - "SPECFEM, otherwise its output adjoint sources will " - "be incorrect length.") - self.start_pad = 0. - - if self.end_pad is None: - logger.warning("Pyatoa `end_pad` is not set, setting to T=0. " - "This value should be set to the total length of " - "your synthetic seismograms (i.e., DT * NT) from " - "SPECFEM, IFF you want Pyatoa to gather observed " - "data from disk/webservice.") - self.end_pad = 0. + # + # if self.start_pad is None: + # logger.warning("Pyatoa `start_pad` is not set, setting to T0=0. " + # "This value should be set to the T0 value of " + # "SPECFEM, otherwise its output adjoint sources will " + # "be incorrect length.") + # self.start_pad = 0. + # + # if self.end_pad is None: + # logger.warning("Pyatoa `end_pad` is not set, setting to T=0. " + # "This value should be set to the total length of " + # "your synthetic seismograms (i.e., DT * NT) from " + # "SPECFEM, IFF you want Pyatoa to gather observed " + # "data from disk/webservice.") + # self.end_pad = 0. def setup(self): """ From ad4c7c2ba5cf84bd603b0bd8d4c5537508550203 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 2 Aug 2022 17:01:25 -0800 Subject: [PATCH 099/195] new test data for testing Pyaflowa preprocessing workflow, matches Tape2007 specfem2d example bug: pyaflowa and pytest hangs computer, probably because the parallel processes are memory intensive? trying to optimize --- seisflows/preprocess/pyaflowa.py | 318 +- .../scripts/make_parameter_files.sh | 0 .../scripts/make_test_directory_structure.py | 0 .../specfem/DATA/CMTSOLUTION_c46e1d99 | 0 .../specfem/DATA/FORCESOLUTION_c46e1d99 | 0 .../specfem/DATA/Par_file_SPECFEM2D_cf893667 | 0 .../specfem/DATA/Par_file_SPECFEM3D_c46e1d99 | 0 .../{ => hold}/specfem/DATA/SOURCE_cf893667 | 0 .../specfem/OUTPUT_FILES/AA.S0001.BXY.semd | 0 .../specfem/OUTPUT_FILES/Uy_file_single_d.su | Bin .../{ => hold}/test_conf_parameters.yaml | 0 .../{ => hold}/test_filled_parameters.yaml | 0 .../{ => hold}/test_setup_parameters.yaml | 0 .../001}/DATA/CMTSOLUTION_001 | 0 .../001}/DATA/CMTSOLUTION_002 | 0 .../001}/DATA/CMTSOLUTION_003 | 0 .../001}/DATA/CMTSOLUTION_004 | 0 .../001}/DATA/CMTSOLUTION_005 | 0 .../001}/DATA/CMTSOLUTION_006 | 0 .../001}/DATA/Par_file | 0 .../001}/DATA/STATIONS | 0 .../001}/bin/xcombine_sem | 0 .../001}/bin/xmeshfem2D | 0 .../001}/bin/xsmooth_sem | 0 .../001}/bin/xspecfem2D | 0 .../001}/traces/obs/AA.S0001.BXY.semd | 0 .../001}/traces/obs/AA.S0002.BXY.semd | 0 .../001}/traces/syn/AA.S0001.BXY.semd | 0 .../001}/traces/syn/AA.S0002.BXY.semd | 0 .../old_test_solver/002/DATA/CMTSOLUTION_001 | 13 + .../old_test_solver/002/DATA/CMTSOLUTION_002 | 13 + .../old_test_solver/002/DATA/CMTSOLUTION_003 | 13 + .../old_test_solver/002/DATA/CMTSOLUTION_004 | 13 + .../old_test_solver/002/DATA/CMTSOLUTION_005 | 13 + .../old_test_solver/002/DATA/CMTSOLUTION_006 | 13 + .../old_test_solver/002/DATA/Par_file | 1 + .../old_test_solver/002/DATA/STATIONS | 2 + .../old_test_solver/002/bin/xcombine_sem | 3 + .../old_test_solver/002/bin/xmeshfem2D | 2 + .../old_test_solver/002/bin/xsmooth_sem | 3 + .../old_test_solver/002/bin/xspecfem2D | 3 + .../002/traces/obs/AA.S0001.BXY.semd | 5000 +++++++++++++++++ .../002/traces/obs/AA.S0002.BXY.semd | 5000 +++++++++++++++++ .../002/traces/syn/AA.S0001.BXY.semd | 5000 +++++++++++++++++ .../002/traces/syn/AA.S0002.BXY.semd | 5000 +++++++++++++++++ .../old_test_solver/sources/CMTSOLUTION_001 | 1 + .../old_test_solver/sources/CMTSOLUTION_002 | 1 + .../old_test_solver/sources/SOURCE_001 | 1 + .../old_test_solver/sources/SOURCE_002 | 1 + seisflows/tests/test_data/test_solver/001 | 1 - .../test_data/test_solver/001/DATA/Par_file | 1 + .../test_data/test_solver/001/DATA/SOURCE | 1 + .../test_data/test_solver/001/DATA/SOURCE_001 | 57 + .../test_data/test_solver/001/DATA/SOURCE_002 | 57 + .../test_data/test_solver/001/DATA/SOURCE_003 | 57 + .../test_data/test_solver/001/DATA/SOURCE_004 | 57 + .../test_data/test_solver/001/DATA/SOURCE_005 | 57 + .../test_data/test_solver/001/DATA/SOURCE_006 | 57 + .../test_data/test_solver/001/DATA/SOURCE_007 | 57 + .../test_data/test_solver/001/DATA/SOURCE_008 | 57 + .../test_data/test_solver/001/DATA/SOURCE_009 | 57 + .../test_data/test_solver/001/DATA/SOURCE_010 | 57 + .../test_data/test_solver/001/DATA/SOURCE_011 | 57 + .../test_data/test_solver/001/DATA/SOURCE_012 | 57 + .../test_data/test_solver/001/DATA/SOURCE_013 | 57 + .../test_data/test_solver/001/DATA/SOURCE_014 | 57 + .../test_data/test_solver/001/DATA/SOURCE_015 | 57 + .../test_data/test_solver/001/DATA/SOURCE_016 | 57 + .../test_data/test_solver/001/DATA/SOURCE_017 | 57 + .../test_data/test_solver/001/DATA/SOURCE_018 | 57 + .../test_data/test_solver/001/DATA/SOURCE_019 | 57 + .../test_data/test_solver/001/DATA/SOURCE_020 | 57 + .../test_data/test_solver/001/DATA/SOURCE_021 | 57 + .../test_data/test_solver/001/DATA/SOURCE_022 | 57 + .../test_data/test_solver/001/DATA/SOURCE_023 | 57 + .../test_data/test_solver/001/DATA/SOURCE_024 | 57 + .../test_data/test_solver/001/DATA/SOURCE_025 | 57 + .../test_data/test_solver/001/DATA/STATIONS | 5 + .../test_solver/001/bin/xcombine_sem | 3 + .../test_data/test_solver/001/bin/xmeshfem2D | 2 + .../test_data/test_solver/001/bin/xsmooth_sem | 3 + .../test_data/test_solver/001/bin/xspecfem2D | 3 + .../001/traces/obs/AA.S000000.BXY.semd | 5000 +++++++++++++++++ .../001/traces/obs/AA.S000001.BXY.semd | 5000 +++++++++++++++++ .../001/traces/obs/AA.S000002.BXY.semd | 5000 +++++++++++++++++ .../001/traces/obs/AA.S000003.BXY.semd | 5000 +++++++++++++++++ .../001/traces/obs/AA.S000004.BXY.semd | 5000 +++++++++++++++++ .../001/traces/syn/AA.S000000.BXY.semd | 5000 +++++++++++++++++ .../001/traces/syn/AA.S000001.BXY.semd | 5000 +++++++++++++++++ .../001/traces/syn/AA.S000002.BXY.semd | 5000 +++++++++++++++++ .../001/traces/syn/AA.S000003.BXY.semd | 5000 +++++++++++++++++ .../001/traces/syn/AA.S000004.BXY.semd | 5000 +++++++++++++++++ seisflows/tests/test_data/test_solver/002 | 1 - .../test_data/test_solver/002/DATA/Par_file | 1 + .../test_data/test_solver/002/DATA/SOURCE | 1 + .../test_data/test_solver/002/DATA/SOURCE_002 | 57 + .../test_data/test_solver/002/DATA/STATIONS | 5 + .../test_solver/002/bin/xcombine_sem | 3 + .../test_data/test_solver/002/bin/xmeshfem2D | 2 + .../test_data/test_solver/002/bin/xsmooth_sem | 3 + .../test_data/test_solver/002/bin/xspecfem2D | 3 + .../002/traces/obs/AA.S000000.BXY.semd | 5000 +++++++++++++++++ .../002/traces/obs/AA.S000001.BXY.semd | 5000 +++++++++++++++++ .../002/traces/obs/AA.S000002.BXY.semd | 5000 +++++++++++++++++ .../002/traces/obs/AA.S000003.BXY.semd | 5000 +++++++++++++++++ .../002/traces/obs/AA.S000004.BXY.semd | 5000 +++++++++++++++++ .../002/traces/syn/AA.S000000.BXY.semd | 5000 +++++++++++++++++ .../002/traces/syn/AA.S000001.BXY.semd | 5000 +++++++++++++++++ .../002/traces/syn/AA.S000002.BXY.semd | 5000 +++++++++++++++++ .../002/traces/syn/AA.S000003.BXY.semd | 5000 +++++++++++++++++ .../002/traces/syn/AA.S000004.BXY.semd | 5000 +++++++++++++++++ .../tests/test_data/test_solver/mainsolver | 1 + seisflows/tests/test_preprocess.py | 160 +- seisflows/tests/test_solver.py | 8 +- 114 files changed, 121939 insertions(+), 164 deletions(-) rename seisflows/tests/test_data/{ => hold}/scripts/make_parameter_files.sh (100%) rename seisflows/tests/test_data/{ => hold}/scripts/make_test_directory_structure.py (100%) rename seisflows/tests/test_data/{ => hold}/specfem/DATA/CMTSOLUTION_c46e1d99 (100%) rename seisflows/tests/test_data/{ => hold}/specfem/DATA/FORCESOLUTION_c46e1d99 (100%) rename seisflows/tests/test_data/{ => hold}/specfem/DATA/Par_file_SPECFEM2D_cf893667 (100%) rename seisflows/tests/test_data/{ => hold}/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 (100%) rename seisflows/tests/test_data/{ => hold}/specfem/DATA/SOURCE_cf893667 (100%) rename seisflows/tests/test_data/{ => hold}/specfem/OUTPUT_FILES/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/specfem/OUTPUT_FILES/Uy_file_single_d.su (100%) rename seisflows/tests/test_data/{ => hold}/test_conf_parameters.yaml (100%) rename seisflows/tests/test_data/{ => hold}/test_filled_parameters.yaml (100%) rename seisflows/tests/test_data/{ => hold}/test_setup_parameters.yaml (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/DATA/CMTSOLUTION_001 (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/DATA/CMTSOLUTION_002 (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/DATA/CMTSOLUTION_003 (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/DATA/CMTSOLUTION_004 (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/DATA/CMTSOLUTION_005 (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/DATA/CMTSOLUTION_006 (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/DATA/Par_file (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/DATA/STATIONS (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/bin/xcombine_sem (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/bin/xmeshfem2D (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/bin/xsmooth_sem (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/bin/xspecfem2D (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/traces/obs/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/traces/obs/AA.S0002.BXY.semd (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/traces/syn/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{test_solver/mainsolver => old_test_solver/001}/traces/syn/AA.S0002.BXY.semd (100%) create mode 100755 seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_001 create mode 100755 seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_002 create mode 100755 seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_003 create mode 100755 seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_004 create mode 100755 seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_005 create mode 100755 seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_006 create mode 100644 seisflows/tests/test_data/old_test_solver/002/DATA/Par_file create mode 100644 seisflows/tests/test_data/old_test_solver/002/DATA/STATIONS create mode 100755 seisflows/tests/test_data/old_test_solver/002/bin/xcombine_sem create mode 100755 seisflows/tests/test_data/old_test_solver/002/bin/xmeshfem2D create mode 100755 seisflows/tests/test_data/old_test_solver/002/bin/xsmooth_sem create mode 100755 seisflows/tests/test_data/old_test_solver/002/bin/xspecfem2D create mode 100644 seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0001.BXY.semd create mode 100644 seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0002.BXY.semd create mode 100644 seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0001.BXY.semd create mode 100644 seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0002.BXY.semd create mode 100644 seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_001 create mode 100644 seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_002 create mode 100644 seisflows/tests/test_data/old_test_solver/sources/SOURCE_001 create mode 100644 seisflows/tests/test_data/old_test_solver/sources/SOURCE_002 delete mode 120000 seisflows/tests/test_data/test_solver/001 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/Par_file create mode 120000 seisflows/tests/test_data/test_solver/001/DATA/SOURCE create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_001 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_002 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_003 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_004 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_005 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_006 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_007 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_008 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_009 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_010 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_011 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_012 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_013 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_014 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_015 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_016 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_017 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_018 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_019 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_020 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_021 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_022 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_023 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_024 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/SOURCE_025 create mode 100644 seisflows/tests/test_data/test_solver/001/DATA/STATIONS create mode 100755 seisflows/tests/test_data/test_solver/001/bin/xcombine_sem create mode 100755 seisflows/tests/test_data/test_solver/001/bin/xmeshfem2D create mode 100755 seisflows/tests/test_data/test_solver/001/bin/xsmooth_sem create mode 100755 seisflows/tests/test_data/test_solver/001/bin/xspecfem2D create mode 100644 seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000000.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000001.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000002.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000003.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000004.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000000.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000001.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000002.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000003.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000004.BXY.semd delete mode 120000 seisflows/tests/test_data/test_solver/002 create mode 100644 seisflows/tests/test_data/test_solver/002/DATA/Par_file create mode 120000 seisflows/tests/test_data/test_solver/002/DATA/SOURCE create mode 100644 seisflows/tests/test_data/test_solver/002/DATA/SOURCE_002 create mode 100644 seisflows/tests/test_data/test_solver/002/DATA/STATIONS create mode 100755 seisflows/tests/test_data/test_solver/002/bin/xcombine_sem create mode 100755 seisflows/tests/test_data/test_solver/002/bin/xmeshfem2D create mode 100755 seisflows/tests/test_data/test_solver/002/bin/xsmooth_sem create mode 100755 seisflows/tests/test_data/test_solver/002/bin/xspecfem2D create mode 100644 seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000000.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000001.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000002.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000003.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000004.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000000.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000001.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000002.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000003.BXY.semd create mode 100644 seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000004.BXY.semd create mode 120000 seisflows/tests/test_data/test_solver/mainsolver diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index 6905a3d1..a0807397 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -9,7 +9,7 @@ import time import random import numpy as np -from concurrent.futures import ProcessPoolExecutor +from concurrent.futures import ProcessPoolExecutor, as_completed from glob import glob from pyasdf import ASDFDataSet from pyatoa import Config, Manager, Inspector, ManagerError @@ -26,12 +26,6 @@ class Pyaflowa: """ [preprocess.pyaflowa] preprocessing and misfit quantification using Pyatoa - :type data_format: str - :param data_format: data format for reading traces into memory. Pyatoa - only works with 'ASCII' currently. - :type components: str - :param components: components to consider and tag data with. Should be - string of letters such as 'RTZ' :type min_period: float :param min_period: Minimum filter corner in unit seconds. Bandpass filter if set with `max_period`, highpass filter if set without @@ -40,7 +34,7 @@ class Pyaflowa: :param max_period: Maximum filter corner in unit seconds. Bandpass filter if set with `min_period`, lowpass filter if set without `min_period`, no filtering if not set and `min_period also not set - :type filter_corners: int + :type filter_corners: int :param filter_corners: number of filter corners applied to filtering :type client: str :param client: Client name for ObsPy FDSN data gathering. Pyatoa will @@ -76,12 +70,6 @@ class Pyaflowa: :param pyatoa_log_level: Log level to set Pyatoa, Pyflex, Pyadjoint. Available: ['null': no logging, 'warning': warnings only, 'info': task tracking, 'debug': log all small details (recommended)] - :type start_pad: float - :param start_pad: seconds BEFORE origin time to gather data. Must be - >= T_0 specificed in SPECFEM constants.h. Positive values only - :type end_pad: int - :param end_pad: seconds AFTER origin time to gather data. Must be - >= NT * DT (from SPECFEM Par_file) postive values only. :type unit_output: str :param unit_output: Data units. Must match the synthetic output of external solver. Available: ['DISP': displacement, 'VEL': velocity, @@ -95,25 +83,53 @@ class Pyaflowa: data-synthetic waveform comparison figures :type export_log_files: bool :param export_log_files: periodically save log files created by Pyatoa + + [path structure] :type path_preprocess: str :param path_preprocess: scratch path for preprocessing related steps - :type path_data: str - :param path_data: optional path for preprocessing module to discover - waveform and meta-data. """ def __init__(self, min_period=1., max_period=10., filter_corners=4, client=None, rotate=False, pyflex_preset="default", fix_windows=False, adj_src_type="cc", plot=True, - pyatoa_log_level="DEBUG", unit_output="VEL", - # start_pad=None, end_pad=None, + pyatoa_log_level="DEBUG", unit_output="VEL", max_workers=None, + export_datasets=True, export_figures=True, + export_log_files=True, workdir=os.getcwd(), path_preprocess=None, path_solver=None, path_specfem_data=None, path_data=None, - path_output=None, export_datasets=True, export_figures=True, - export_log_files=True, data_format="ascii", + path_output=None, data_format="ascii", data_case="data", components=None, start=None, ntask=1, nproc=1, source_prefix=None, **kwargs): - """Pyatoa preprocessing parameters""" + """ + Pyatoa preprocessing parameters + + .. note:: + Paths and parameters listed here are shared with other modules and + so are not included in the main class docstring. + + :type data_format: str + :param data_format: data format for reading traces into memory. Pyatoa + only works with 'ASCII' currently. + :type data_case: str + :param data_case: How to address 'data' in the workflow, options: + 'data': real data will be provided by the user in + `path_data/{source_name}` in the same format that the solver will + produce synthetics (controlled by `solver.format`) OR + synthetic': 'data' will be generated as synthetic seismograms using + a target model provided in `path_model_true`. If None, workflow will + not attempt to generate data. + :type components: str + :param components: components to consider and tag data with. Should be + string of letters such as 'RTZ' + :type workdir: str + :param workdir: working directory in which to look for data and store + results. Defaults to current working directory + :type path_solver: str + :param path_solver: scratch path for all solver related tasks + :type path_data: str + :param path_data: path to any externally stored data required by the + solver + """ self.min_period = min_period self.max_period = max_period self.filter_corners = filter_corners @@ -125,8 +141,8 @@ def __init__(self, min_period=1., max_period=10., filter_corners=4, self.plot = plot self.pyatoa_log_level = pyatoa_log_level self.unit_output = unit_output - # self.start_pad = start_pad - # self.end_pad = end_pad + + self.max_workers = max_workers self.path = Dict( scratch=path_preprocess or os.path.join(workdir, "scratch", @@ -142,7 +158,7 @@ def __init__(self, min_period=1., max_period=10., filter_corners=4, self.export_figures = export_figures self.export_log_files = export_log_files - # Pyatoa-specific internal path structure for storing data etc. + # Pyatoa-specific internal directory structure for storing data etc. self.path["_logs"] = os.path.join(self.path.scratch, "logs") self.path["_tmplogs"] = os.path.join(self.path._logs, "tmp") self.path["_datasets"] = os.path.join(self.path.scratch, "datasets") @@ -170,6 +186,8 @@ def __init__(self, min_period=1., max_period=10., filter_corners=4, self._acceptable_data_formats = ["ASCII"] self._acceptable_source_prefixes = ["SOURCE", "FORCESOLUTION", "CMTSOLUTION"] + self._acceptable_fix_windows = ["ITER", "ONCE", True, False] + self._acceptable_unit_outputs = ["VEL", "DISP", "ACC"] # Internal attributes to be filled in by setup() self._config = None @@ -199,27 +217,21 @@ def check(self): f"Pyatoa can only accept `source_prefix` in " f"{self._acceptable_source_prefixes}, not '{self._source_prefix}'" ) - # - # if self.start_pad is None: - # logger.warning("Pyatoa `start_pad` is not set, setting to T0=0. " - # "This value should be set to the T0 value of " - # "SPECFEM, otherwise its output adjoint sources will " - # "be incorrect length.") - # self.start_pad = 0. - # - # if self.end_pad is None: - # logger.warning("Pyatoa `end_pad` is not set, setting to T=0. " - # "This value should be set to the total length of " - # "your synthetic seismograms (i.e., DT * NT) from " - # "SPECFEM, IFF you want Pyatoa to gather observed " - # "data from disk/webservice.") - # self.end_pad = 0. + assert(self._fix_windows in self._acceptable_fix_windows), \ + f"Pyatoa `fix_windows` must be in {self._acceptable_fix_windows}" + + assert(self.unit_output in self._acceptable_unit_outputs), \ + f"Pyatoa `unit_output` must be in {self._acceptable_unit_outputs}" def setup(self): """ Sets up data preprocessing machinery by establishing an internally defined directory structure that will be used to store the outputs of the preprocessing workflow + + .. note:: + `config.save_to_ds` must be set False, otherwise Pyatoa will try to + write to a read-only ASDFDataSet causing preprocessing to fail. """ for pathname in ["scratch", "_logs", "_tmplogs", "_datasets", "_figures"]: @@ -233,7 +245,7 @@ def setup(self): rotate=self.rotate, pyflex_preset=self.pyflex_preset, fix_windows=self.fix_windows, adj_src_type=self.adj_src_type, log_level=self.pyatoa_log_level, unit_output=self.unit_output, - component_list=list(self._components), + component_list=list(self._components), save_to_ds=False, synthetics_only=bool(self._data_case == "synthetic"), paths={"waveforms": self.path["_waveforms"] or [], "responses": self.path["_responses"] or [], @@ -293,13 +305,25 @@ def _setup_quantify_misfit(self, source_name, iteration, step_count): # Pyatoa knows how long seismograms are and when to start them # NOTE: assuming all synthetic time axes are the same for this source synthetics = glob(os.path.join(syn_path, "*")) - assert(synthetics), f"Pyatoa found no synthetics in: {syn_path}" + assert synthetics, f"Pyatoa found no synthetics in: {syn_path}" tr_syn = read_sem(synthetics[0])[0] - config.start_pad = abs(tr_syn.stats.time_offset) # needs to be positive - config.end_pad = tr_syn.stats.endtime - tr_syn.stats.starttime + config.start_pad = abs(tr_syn.stats.time_offset) # [s] must be positive + config.end_pad = tr_syn.stats.endtime - tr_syn.stats.starttime # [s] return config + @staticmethod + def _ftag(config): + """ + Create a re-usable file tag from the Config object as multiple functions + will use this tag for file naming and file discovery. + + :type config: pyatoa.core.config.Config + :param config: Configuration object that must contain the 'event_id', + iteration and step count + """ + return f"{config.event_id}_{config.iter_tag}_{config.step_tag}" + def quantify_misfit(self, source_name=None, save_residuals=None, save_adjsrcs=None, iteration=1, step_count=0, **kwargs): @@ -329,22 +353,7 @@ def quantify_misfit(self, source_name=None, save_residuals=None, inversion. Defaults to 0 if not given (1st evaluation) """ config = self._setup_quantify_misfit(source_name, iteration, step_count) - - # Run misfit quantification for each station concurrently - misfit, nwin = 0, 0 - with ProcessPoolExecutor(max_workers=unix.nproc() - 1) as executor: - futures = [ - executor.submit( - self._quantify_misfit_station, config, code, save_adjsrcs) - for code in self._station_codes - ] - # We only need to return misfit information. All data/results are - # saved to the ASDFDataSet and status is logged to separate log file - for future in futures: - _misfit, _nwin = future.result() - if _misfit is not None: - misfit += _misfit - nwin += _nwin + misfit, nwin = self._run_quantify_misfit(config, save_adjsrcs, False) # Calculate misfit based on the raw misfit and total number of windows if save_residuals: @@ -361,8 +370,8 @@ def quantify_misfit(self, source_name=None, save_residuals=None, # Combine all the individual .png files created into a single PDF if self.plot: - output_fid = os.path.join(self.path._figures, self._ftag(config)) - self._make_event_figure_pdf(source_name, output_fid) + fid = os.path.join(self.path._figures, f"{self._ftag(config)}.pdf") + self._make_event_figure_pdf(source_name=source_name, output_fid=fid) # Finally, collect all the temporary log files and write a main log file pyatoa_logger = self._config_pyatoa_logger( @@ -377,17 +386,40 @@ def quantify_misfit(self, source_name=None, save_residuals=None, ) self._collect_tmp_log_files(pyatoa_logger, config.event_id) - @staticmethod - def _ftag(config): + def _run_quantify_misfit(self, config, save_adjsrcs, parallel=False): """ - Create a re-usable file tag from the Config object as multiple functions - will use this tag for file naming and file discovery. - - :type config: pyatoa.core.config.Config - :param config: Configuration object that must contain the 'event_id', - iteration and step count + Run misfit quantification for each station concurrently or in serial. + If concurrent, play it safe and cap the max parallel workers at + half the processors otherwise you may run out of memory and crash the + CPU """ - return f"{config.event_id}_{config.iter_tag}_{config.step_tag}" + misfit, nwin = 0, 0 + # Run processing in parallel + if parallel: + with ProcessPoolExecutor(max_workers=2) as executor: + futures = ( + executor.submit(self._quantify_misfit_station, config, + code, save_adjsrcs) + for code in self._station_codes + ) + # We only need to return misfit information. All data/results are + # saved to the ASDFDataSet and status is logged to separate log file + for future in as_completed(futures): + _misfit, _nwin = future.result() + del future # Free up memory otherwise ram lock + if _misfit is not None: + misfit += _misfit + nwin += _nwin + # Run processing in serial + else: + for code in self._station_codes: + _misfit, _nwin = self._quantify_misfit_station(config, code, + save_adjsrcs) + if _misfit is not None: + misfit += _misfit + nwin += _nwin + + return misfit, nwin def _quantify_misfit_station(self, config, station_code, save_adjsrcs=False): @@ -411,43 +443,45 @@ def _quantify_misfit_station(self, config, station_code, Pyatoa + PyASDF """ # Unique identifier for the given source-receiver pair for file naming - # Something like 001_i01_s00_XX_XYZ + # Something like: 001_i01_s00_XX_XYZ net, sta, loc, cha = station_code.split(".") tag = f"{self._ftag(config)}_{net}_{sta}" - # Configure a single source-receiver pair logger which will be collected - # later by the main function + # Configure a single source-receiver pair temporary logger log_file = os.path.join(self.path._tmplogs, f"{tag}.log") station_logger = self._config_pyatoa_logger(fid=log_file) station_logger.info(f"\n{'/' * 80}\n{station_code:^80}\n{'/' * 80}") - # Begin data gathering/processing and misfit quantification - mgmt = Manager(config=config) - mgmt.gather(choice=["event"], event_id=config.event_id, - prefix=f"{self._source_prefix}_") + # Check whether or not we want to use misfit windows from last eval. + _fix_win, _msg = self._check_fixed_windows(iteration=config.iteration, + step_count=config.step_count) + station_logger.info(_msg) - # Attempt to gather data. If fail, return because theres nothing else - # we can do without data - _processed = False + # Setup ASDFDataSet in read only so we can pull data/windows in parallel + ds_fid = os.path.join(self.path["_datasets"], f"{config.event_id}.h5") + if os.path.exists(ds_fid): + ds = ASDFDataSet(ds_fid, mode="r") # NOTE: read only mode + else: + ds = None + mgmt = Manager(config=config, ds=ds) + # If data gather fails, return because theres nothing else we can do try: - mgmt.gather(choice=["inv", "st_obs", "st_syn"], code=station_code) + # `gather` function uses Config path structure and Client attribute + # to search for data on disk or via webservices (if requested). + mgmt.gather(event_id=config.event_id, + prefix=f"{self._source_prefix}_", + code=station_code) except ManagerError as e: - station_logger.critical(e) + station_logger.warning(e) return None, None - # If any part of the processing fails, move on to plotting because we + # If any part of this processing fails, move on to plotting because we # will have gathered waveform data so a figure is still useful. try: - _fix_windows = self._check_fixed_windows( - iteration=mgmt.config.iteration, - step_count=mgmt.config.step_count, - logger=station_logger, - ) mgmt.standardize() mgmt.preprocess() - mgmt.window(fix_windows=_fix_windows) + mgmt.window(fix_windows=_fix_win) mgmt.measure() - _processed = True except ManagerError as e: station_logger.warning(e) pass @@ -465,15 +499,17 @@ def _quantify_misfit_station(self, config, station_code, # Write out the .adj adjoint source files for solver to discover. # Write empty adjoint sources for components with no adjoint sources - if _processed and save_adjsrcs: + if mgmt.stats.misfit and save_adjsrcs: mgmt.write_adjsrcs(path=save_adjsrcs, write_blanks=True) # Wait until the very end to write to the HDF5 file, then do it # pseudo-serially to get around trying to parallel write to HDF5 file + # WARNING: This is the biggest potential bottleneck of preprocessing + if ds is not None: + ds._close() # close the read-only version so we can open in write while True: try: - with ASDFDataSet(os.path.join(self.path["_datasets"], - f"{config.event_id}.h5")) as ds: + with ASDFDataSet(ds_fid, mode="a") as ds: mgmt.write(ds=ds) break except (BlockingIOError, FileExistsError): @@ -525,6 +561,7 @@ def finalize(self): # Move scratch/ directory results into more permanent storage if self.export_datasets: src = glob(os.path.join(self.path._datasets, "*.h5")) + src += glob(os.path.join(self.path._datasets, "*.csv")) # inspector dst = os.path.join(self.path.output, "datasets", "") unix.mkdir(dst) unix.cp(src, dst) @@ -536,12 +573,12 @@ def finalize(self): unix.cp(src, dst) if self.export_log_files: - src = glob(os.path.join(self.path._logs, "*.txt")) + src = glob(os.path.join(self.path._logs, "*.log")) dst = os.path.join(self.path.output, "logs", "") unix.mkdir(dst) unix.cp(src, dst) - def _check_fixed_windows(self, iteration, step_count, logger=Null()): + def _check_fixed_windows(self, iteration, step_count): """ Determine how to address re-using misfit windows during an inversion workflow. Throw some log messages out to let the User know whether or @@ -564,42 +601,41 @@ def _check_fixed_windows(self, iteration, step_count, logger=Null()): :param step_count: Current line search step count within the SeisFlows3 workflow. Within SeisFlows3 this is defined by `optimize.line_search.step_count` - :type logger: logging.Logger - :param logger: The main logger for a given event, should be - defined by `pyaflowa.quantify_misfit()`. If not provided, logs will - get sent to DevNull - :rtype: bool - :return: bool on whether to use windows from the previous step + :rtype: tuple (bool, str) + :return: (bool on whether to use windows from the previous step, + and a message that can be sent to the logger) """ fix_windows = False + msg = "" + # First function evaluation never fixes windows if iteration == 1 and step_count == 0: fix_windows = False - logger.info("new windows; first evaluation") + msg = "first evaluation of workflow, selecting new windows" elif isinstance(self.fix_windows, str): # By 'iter'ation only pick new windows on the first step count if self.fix_windows.upper() == "ITER": if step_count == 0: fix_windows = False - logger.info("new windows; first step count") + msg = "first step of line search, will select new windows" else: fix_windows = True - logger.info("fix windows; mid line search") + msg = "mid line search, fix windows from last evaluation" # 'Once' picks windows only for the first function evaluation of # the current set of iterations. elif self.fix_windows.upper() == "ONCE": if iteration == self._start and step_count == 0: fix_windows = False - logger.info("new windows; first workflow evaluation") + msg = "first evaluation of workflow, selecting new windows" else: fix_windows = True - logger.info("fix windows; mid workflow") + msg = "mid workflow, fix windows from last evaluation" # Bool fix windows simply sets the parameter elif isinstance(self.fix_windows, bool): fix_windows = self.fix_windows - logger.info(f"fixed windows flag set: {self.fix_windows}") + msg = f"fixed windows flag set constant: {self.fix_windows}" - return fix_windows + return fix_windows, msg def _config_pyatoa_logger(self, fid): """ @@ -669,10 +705,15 @@ def _collect_tmp_log_files(self, pyatoa_logger, event_id): def _make_event_figure_pdf(self, source_name, output_fid): """ - Combine a list of single source-receiver PNGs into a single PDF file - for the given event. Mostly a convenience function to make it easier - to ingest waveform figures during a workflow. + Combines source-receiver output PNGS into a single event-specific PDF. + Mostly a convenience function to make it easier to ingest waveform + figures during a workflow. + :type source_name: str + :param source_name: name of event to search for input files + :type output_fid: str + :param output_fid: full path and filename for output PDF which will be + a combination of all the PNG files created for each station """ # Sorrted by network and station name input_fids = sorted(glob(os.path.join(self.path._figures, @@ -681,40 +722,31 @@ def _make_event_figure_pdf(self, source_name, output_fid): logger.warning(f"Pyatoa found no event figures for {source_name} " f"to combine") return - - # Assuming the file naming format defined by `_quantify_misfit_station` - source_name, iteration, step_count, *_ = input_fids[0].split("_") - - # e.g. i01s00_2018p130600.pdf - output_fid = (f"{source_name}_{iteration}_{step_count}.pdf") - - # Merge all output pdfs into a single pdf, delete originals - save = os.path.join(self.path._figures, output_fid) - imgs_to_pdf(fids=sorted(input_fids), fid_out=save) - for fid in input_fids: - os.remove(fid) + # Merge all output pdfs into a single pdf, delete originals if okay + imgs_to_pdf(fids=sorted(input_fids), fid_out=output_fid) + if os.path.exists(output_fid): + for fid in input_fids: + os.remove(fid) def _make_evaluation_composite_pdf(self): """ - Utility function to combine all PDFs generated by - make_event_figure_pdf() into a single PDF tagged by the current - evaluation (iteration, step count). This is meant to make it easier - for the User to scroll through figures. Option to delete the original - event-specific PDFs which are now redundant - .. note:: - This can be run without running Pyaflowa.format() - :type delete_originals: bool - :param delete_originals: delete original pdf files after mergin + Combines event-specific PDFs to make an evaluation-specific PDF. + By evaluation we mean any given set of foward simulations, e.g., i01s00 + + This is meant to make it easier for the User to scroll through figures. + Deletes the original event-specific PDFs to keep filecount down """ - event_figures = glob(os.path.join(self.path._figures, "*", "*.pdf")) - if not event_figures: + # Event PDFs named like: 001_i01_s00.pdf + event_pdfs = sorted(glob(os.path.join(self.path._figures, "*_*_*.pdf"))) + if not event_pdfs: logger.warning("Pyatoa could not find event PDFs to merge") return - # Collecting evaluation tags, e.g., ['i01s00', 'i01s01'] - tags = set([os.path.basename(_).split("_")[0] for _ in event_figures]) - for tag in tags: - fids = [fid for fid in event_figures if tag in fid] - fid_out = os.path.join(self.path._figures, f"{tag}.pdf") - merge_pdfs(fids=sorted(fids), fid_out=fid_out) - for fid in fids: - os.remove(fid) + # Strip off event name to get evaluation tag for fid, i.e.: i01_s00.pdf + fid_out = "_".join(os.path.basename(event_pdfs[0]).split("_")[1:]) + path_out = os.path.join(self.path._figures, f"{fid_out}.pdf") + # Merge PDFs into a single PDF, delete originals + merge_pdfs(fids=event_pdfs, fid_out=path_out) + if os.path.exists(path_out): + for event_pdf in event_pdfs: + os.remove(event_pdf) + diff --git a/seisflows/tests/test_data/scripts/make_parameter_files.sh b/seisflows/tests/test_data/hold/scripts/make_parameter_files.sh similarity index 100% rename from seisflows/tests/test_data/scripts/make_parameter_files.sh rename to seisflows/tests/test_data/hold/scripts/make_parameter_files.sh diff --git a/seisflows/tests/test_data/scripts/make_test_directory_structure.py b/seisflows/tests/test_data/hold/scripts/make_test_directory_structure.py similarity index 100% rename from seisflows/tests/test_data/scripts/make_test_directory_structure.py rename to seisflows/tests/test_data/hold/scripts/make_test_directory_structure.py diff --git a/seisflows/tests/test_data/specfem/DATA/CMTSOLUTION_c46e1d99 b/seisflows/tests/test_data/hold/specfem/DATA/CMTSOLUTION_c46e1d99 similarity index 100% rename from seisflows/tests/test_data/specfem/DATA/CMTSOLUTION_c46e1d99 rename to seisflows/tests/test_data/hold/specfem/DATA/CMTSOLUTION_c46e1d99 diff --git a/seisflows/tests/test_data/specfem/DATA/FORCESOLUTION_c46e1d99 b/seisflows/tests/test_data/hold/specfem/DATA/FORCESOLUTION_c46e1d99 similarity index 100% rename from seisflows/tests/test_data/specfem/DATA/FORCESOLUTION_c46e1d99 rename to seisflows/tests/test_data/hold/specfem/DATA/FORCESOLUTION_c46e1d99 diff --git a/seisflows/tests/test_data/specfem/DATA/Par_file_SPECFEM2D_cf893667 b/seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM2D_cf893667 similarity index 100% rename from seisflows/tests/test_data/specfem/DATA/Par_file_SPECFEM2D_cf893667 rename to seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM2D_cf893667 diff --git a/seisflows/tests/test_data/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 b/seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 similarity index 100% rename from seisflows/tests/test_data/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 rename to seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 diff --git a/seisflows/tests/test_data/specfem/DATA/SOURCE_cf893667 b/seisflows/tests/test_data/hold/specfem/DATA/SOURCE_cf893667 similarity index 100% rename from seisflows/tests/test_data/specfem/DATA/SOURCE_cf893667 rename to seisflows/tests/test_data/hold/specfem/DATA/SOURCE_cf893667 diff --git a/seisflows/tests/test_data/specfem/OUTPUT_FILES/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/specfem/OUTPUT_FILES/AA.S0001.BXY.semd rename to seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/specfem/OUTPUT_FILES/Uy_file_single_d.su b/seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/Uy_file_single_d.su similarity index 100% rename from seisflows/tests/test_data/specfem/OUTPUT_FILES/Uy_file_single_d.su rename to seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/Uy_file_single_d.su diff --git a/seisflows/tests/test_data/test_conf_parameters.yaml b/seisflows/tests/test_data/hold/test_conf_parameters.yaml similarity index 100% rename from seisflows/tests/test_data/test_conf_parameters.yaml rename to seisflows/tests/test_data/hold/test_conf_parameters.yaml diff --git a/seisflows/tests/test_data/test_filled_parameters.yaml b/seisflows/tests/test_data/hold/test_filled_parameters.yaml similarity index 100% rename from seisflows/tests/test_data/test_filled_parameters.yaml rename to seisflows/tests/test_data/hold/test_filled_parameters.yaml diff --git a/seisflows/tests/test_data/test_setup_parameters.yaml b/seisflows/tests/test_data/hold/test_setup_parameters.yaml similarity index 100% rename from seisflows/tests/test_data/test_setup_parameters.yaml rename to seisflows/tests/test_data/hold/test_setup_parameters.yaml diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 b/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_001 similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_001 rename to seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_001 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 b/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_002 similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_002 rename to seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_002 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 b/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_003 similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_003 rename to seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_003 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 b/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_004 similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_004 rename to seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_004 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 b/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_005 similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_005 rename to seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_005 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 b/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_006 similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/DATA/CMTSOLUTION_006 rename to seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_006 diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/Par_file b/seisflows/tests/test_data/old_test_solver/001/DATA/Par_file similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/DATA/Par_file rename to seisflows/tests/test_data/old_test_solver/001/DATA/Par_file diff --git a/seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS b/seisflows/tests/test_data/old_test_solver/001/DATA/STATIONS similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/DATA/STATIONS rename to seisflows/tests/test_data/old_test_solver/001/DATA/STATIONS diff --git a/seisflows/tests/test_data/test_solver/mainsolver/bin/xcombine_sem b/seisflows/tests/test_data/old_test_solver/001/bin/xcombine_sem similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/bin/xcombine_sem rename to seisflows/tests/test_data/old_test_solver/001/bin/xcombine_sem diff --git a/seisflows/tests/test_data/test_solver/mainsolver/bin/xmeshfem2D b/seisflows/tests/test_data/old_test_solver/001/bin/xmeshfem2D similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/bin/xmeshfem2D rename to seisflows/tests/test_data/old_test_solver/001/bin/xmeshfem2D diff --git a/seisflows/tests/test_data/test_solver/mainsolver/bin/xsmooth_sem b/seisflows/tests/test_data/old_test_solver/001/bin/xsmooth_sem similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/bin/xsmooth_sem rename to seisflows/tests/test_data/old_test_solver/001/bin/xsmooth_sem diff --git a/seisflows/tests/test_data/test_solver/mainsolver/bin/xspecfem2D b/seisflows/tests/test_data/old_test_solver/001/bin/xspecfem2D similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/bin/xspecfem2D rename to seisflows/tests/test_data/old_test_solver/001/bin/xspecfem2D diff --git a/seisflows/tests/test_data/test_solver/mainsolver/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/old_test_solver/001/traces/obs/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/traces/obs/AA.S0001.BXY.semd rename to seisflows/tests/test_data/old_test_solver/001/traces/obs/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/test_solver/mainsolver/traces/obs/AA.S0002.BXY.semd b/seisflows/tests/test_data/old_test_solver/001/traces/obs/AA.S0002.BXY.semd similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/traces/obs/AA.S0002.BXY.semd rename to seisflows/tests/test_data/old_test_solver/001/traces/obs/AA.S0002.BXY.semd diff --git a/seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/old_test_solver/001/traces/syn/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0001.BXY.semd rename to seisflows/tests/test_data/old_test_solver/001/traces/syn/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0002.BXY.semd b/seisflows/tests/test_data/old_test_solver/001/traces/syn/AA.S0002.BXY.semd similarity index 100% rename from seisflows/tests/test_data/test_solver/mainsolver/traces/syn/AA.S0002.BXY.semd rename to seisflows/tests/test_data/old_test_solver/001/traces/syn/AA.S0002.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_001 b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_001 new file mode 100755 index 00000000..cacf1f81 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_001 @@ -0,0 +1,13 @@ +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 001 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_002 b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_002 new file mode 100755 index 00000000..53709cf7 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_002 @@ -0,0 +1,13 @@ +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 002 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_003 b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_003 new file mode 100755 index 00000000..7d46df94 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_003 @@ -0,0 +1,13 @@ +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 003 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_004 b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_004 new file mode 100755 index 00000000..51d51497 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_004 @@ -0,0 +1,13 @@ +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 004 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_005 b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_005 new file mode 100755 index 00000000..50b4aeb0 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_005 @@ -0,0 +1,13 @@ +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 005 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_006 b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_006 new file mode 100755 index 00000000..8d034437 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_006 @@ -0,0 +1,13 @@ +XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND +event name: 006 +time shift: 0.0000 +half duration: 0.0000 +latitude: -40.9316 +longitude: 175.4123 +depth: 17.5977 +Mrr: -1.451500E+22 +Mtt: 2.777100E+22 +Mpp: -1.325600E+22 +Mrt: 1.085300E+22 +Mrp: -2.075000E+21 +Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/Par_file b/seisflows/tests/test_data/old_test_solver/002/DATA/Par_file new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/DATA/Par_file @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/STATIONS b/seisflows/tests/test_data/old_test_solver/002/DATA/STATIONS new file mode 100644 index 00000000..d2383d2e --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/DATA/STATIONS @@ -0,0 +1,2 @@ + S0001 AA -99.999 -66.666 0.0 0.0 + S0002 AA -88.888 -55.555 0.0 0.0 diff --git a/seisflows/tests/test_data/old_test_solver/002/bin/xcombine_sem b/seisflows/tests/test_data/old_test_solver/002/bin/xcombine_sem new file mode 100755 index 00000000..969a4d93 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/bin/xcombine_sem @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xcombine_sem" + diff --git a/seisflows/tests/test_data/old_test_solver/002/bin/xmeshfem2D b/seisflows/tests/test_data/old_test_solver/002/bin/xmeshfem2D new file mode 100755 index 00000000..149ca704 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/bin/xmeshfem2D @@ -0,0 +1,2 @@ +#!/bin/bash -e +echo "xmeshfem2D" diff --git a/seisflows/tests/test_data/old_test_solver/002/bin/xsmooth_sem b/seisflows/tests/test_data/old_test_solver/002/bin/xsmooth_sem new file mode 100755 index 00000000..376b4aa5 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/bin/xsmooth_sem @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xsmooth_sem" + diff --git a/seisflows/tests/test_data/old_test_solver/002/bin/xspecfem2D b/seisflows/tests/test_data/old_test_solver/002/bin/xspecfem2D new file mode 100755 index 00000000..e50c2b0b --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/bin/xspecfem2D @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xspecfem2D" + diff --git a/seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0001.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0002.BXY.semd b/seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0002.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0002.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0001.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0002.BXY.semd b/seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0002.BXY.semd new file mode 100644 index 00000000..082a0be7 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0002.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 2.6269363017434720E-041 + 44.700000000000003 6.6629391554670594E-041 + 44.759999999999991 1.1319196242927816E-040 + 44.819999999999993 1.6595708460886197E-040 + 44.879999999999995 2.1872221874525186E-040 + 44.939999999999998 2.7148734092483567E-040 + 45.000000000000000 3.3025372755744854E-040 + 45.060000000000002 3.9319115033648461E-040 + 45.119999999999990 4.4863830368778567E-040 + 45.179999999999993 4.6970758298956318E-040 + 45.239999999999995 4.5353016784552422E-040 + 45.299999999999997 4.0893434211093646E-040 + 45.359999999999999 3.3319601057029457E-040 + 45.420000000000002 2.3179167737140571E-040 + 45.479999999999990 9.9142607674482055E-041 + 45.539999999999992 -5.2076673199132044E-041 + 45.599999999999994 -2.2502046634768626E-040 + 45.659999999999997 -3.9850791155506817E-040 + 45.719999999999999 -5.5831909022775604E-040 + 45.780000000000001 -6.8816675200106362E-040 + 45.840000000000003 -7.6212409336253549E-040 + 45.899999999999991 -7.7557918289836891E-040 + 45.959999999999994 -7.2884423672891465E-040 + 46.019999999999996 -6.0978285754724729E-040 + 46.079999999999998 -4.1978806108886568E-040 + 46.140000000000001 -1.6751311943845021E-040 + 46.200000000000003 1.2775116735211490E-040 + 46.259999999999991 3.3687177620616859E-040 + 46.319999999999993 4.1835767985494871E-040 + 46.379999999999995 2.5358670705691326E-040 + 46.439999999999998 -2.0417332880688487E-040 + 46.500000000000000 -9.2637703533248289E-040 + 46.560000000000002 -2.0177407324509126E-039 + 46.619999999999990 -5.4064302193241178E-039 + 46.679999999999993 -1.1266895958371392E-038 + 46.739999999999995 -1.9354489281848441E-038 + 46.799999999999997 -2.8261080188341996E-038 + 46.859999999999999 -3.7650939429719580E-038 + 46.920000000000002 -4.6433147749242086E-038 + 46.979999999999990 -5.6763367066405364E-038 + 47.039999999999992 -6.7552472389130400E-038 + 47.099999999999994 -7.6505147999287440E-038 + 47.159999999999997 -8.0308994744526340E-038 + 47.219999999999999 -7.8756912238619946E-038 + 47.280000000000001 -7.1592889815119077E-038 + 47.340000000000003 -5.9119114004307120E-038 + 47.399999999999991 -4.1341343210263354E-038 + 47.459999999999994 -1.9017798111583996E-038 + 47.519999999999996 6.6575700763890982E-039 + 47.579999999999998 3.3475365198057364E-038 + 47.640000000000001 6.1057078487017021E-038 + 47.700000000000003 8.5810182592369452E-038 + 47.759999999999991 1.0466789238651661E-037 + 47.819999999999993 1.1513581431230335E-037 + 47.879999999999995 9.7223259687777017E-038 + 47.939999999999998 5.0349251638370074E-038 + 48.000000000000000 -2.4030040785709353E-038 + 48.060000000000002 -1.0663699734852356E-037 + 48.119999999999990 -1.9525408326851592E-037 + 48.179999999999993 -2.8772637139865308E-037 + 48.239999999999995 -3.8112461733931124E-037 + 48.299999999999997 -4.7208983506603163E-037 + 48.359999999999999 -5.3240548279379720E-037 + 48.420000000000002 -5.5515144712048157E-037 + 48.479999999999990 -5.3359974310729287E-037 + 48.539999999999992 -4.4407943297499729E-037 + 48.599999999999994 -2.8245524054929142E-037 + 48.659999999999997 -4.9139077022268343E-038 + 48.719999999999999 2.4636570745264548E-037 + 48.780000000000001 5.4652147928217140E-037 + 48.840000000000003 8.4024794722277791E-037 + 48.899999999999991 1.0778417295129884E-036 + 48.959999999999994 1.2223327547718167E-036 + 49.019999999999996 1.2333452493613038E-036 + 49.079999999999998 1.0905106111129808E-036 + 49.140000000000001 7.9521390768622137E-037 + 49.200000000000003 3.8144447836792425E-037 + 49.259999999999991 -1.4825226013208182E-037 + 49.319999999999993 -7.5308154883147653E-037 + 49.379999999999995 -1.4062900146071558E-036 + 49.439999999999998 -2.0219183734094904E-036 + 49.500000000000000 -2.5390409979837882E-036 + 49.560000000000002 -2.9231388197593155E-036 + 49.619999999999990 -3.0932523987854724E-036 + 49.679999999999993 -2.9988904095184150E-036 + 49.739999999999995 -2.5658595554527661E-036 + 49.799999999999997 -1.7927014366141519E-036 + 49.859999999999999 -6.7795271979225354E-037 + 49.920000000000002 7.1703477531004136E-037 + 49.979999999999990 2.2881993329242288E-036 + 50.039999999999992 3.8963659808734265E-036 + 50.099999999999994 5.2285559566340565E-036 + 50.159999999999997 6.1938712190340352E-036 + 50.219999999999999 6.7904046085851862E-036 + 50.280000000000001 6.9323337573943099E-036 + 50.340000000000003 6.5263661001748757E-036 + 50.399999999999991 5.4777930681975194E-036 + 50.459999999999994 3.7527097422927016E-036 + 50.519999999999996 1.5511797787314090E-036 + 50.579999999999998 -9.8513330738658116E-037 + 50.640000000000001 -3.6867448968548031E-036 + 50.700000000000003 -6.3311492481169453E-036 + 50.759999999999991 -8.5879434880171085E-036 + 50.819999999999993 -1.0183237821032235E-035 + 50.879999999999995 -1.0859731615144243E-035 + 50.939999999999998 -1.0395913159057949E-035 + 51.000000000000000 -8.6498126273722098E-036 + 51.060000000000002 -5.5978109428030934E-036 + 51.119999999999990 -1.4992635936452791E-036 + 51.179999999999993 3.6245328263340948E-036 + 51.239999999999995 9.3447630146754052E-036 + 51.299999999999997 1.5421465763690989E-035 + 51.359999999999999 2.1894632276121844E-035 + 51.420000000000002 2.8238806703185911E-035 + 51.479999999999990 3.3958220152828880E-035 + 51.539999999999992 3.8663644145933220E-035 + 51.599999999999994 4.1935619734614566E-035 + 51.659999999999997 4.3393282020538484E-035 + 51.719999999999999 4.2627509979920855E-035 + 51.780000000000001 3.9344087641714770E-035 + 51.840000000000003 3.3344774832557462E-035 + 51.899999999999991 2.4425136528173579E-035 + 51.959999999999994 1.2517438536861868E-035 + 52.019999999999996 -2.3016491553918460E-036 + 52.079999999999998 -1.9942536765577704E-035 + 52.140000000000001 -4.0107095931218589E-035 + 52.200000000000003 -6.2225729562324987E-035 + 52.259999999999991 -8.5583250689494440E-035 + 52.319999999999993 -1.0946875588419299E-034 + 52.379999999999995 -1.3295539670528645E-034 + 52.439999999999998 -1.5471125772360649E-034 + 52.500000000000000 -1.7330260440956153E-034 + 52.560000000000002 -1.8724798088340433E-034 + 52.619999999999990 -1.9501710466567110E-034 + 52.679999999999993 -1.9487655710599789E-034 + 52.739999999999995 -1.8525170094642224E-034 + 52.799999999999997 -1.6451455374189131E-034 + 52.859999999999999 -1.3163125261898524E-034 + 52.920000000000002 -8.6048211349168413E-035 + 52.979999999999990 -2.7756264783363934E-035 + 53.039999999999992 4.2494410160067891E-035 + 53.099999999999994 1.2306525822947302E-034 + 53.159999999999997 2.1142545861654679E-034 + 53.219999999999999 3.0400493920405630E-034 + 53.280000000000001 3.9644520511682764E-034 + 53.339999999999989 4.8330534377265470E-034 + 53.399999999999991 5.5847076069294236E-034 + 53.459999999999994 6.1538147562888770E-034 + 53.519999999999996 6.4734068249906411E-034 + 53.579999999999998 6.4781913704380998E-034 + 53.640000000000001 6.1107813397603038E-034 + 53.700000000000003 5.3193039059461600E-034 + 53.759999999999991 4.0688244832900701E-034 + 53.819999999999993 2.3426096314359375E-034 + 53.879999999999995 1.4707185244707836E-035 + 53.939999999999998 -2.4838502844157089E-034 + 54.000000000000000 -5.4857720124604046E-034 + 54.060000000000002 -8.7630676338938017E-034 + 54.119999999999990 -1.2186753785046123E-033 + 54.179999999999993 -1.5596585467053671E-033 + 54.239999999999995 -1.8804076436411006E-033 + 54.299999999999997 -2.1596966937208327E-033 + 54.359999999999999 -2.3746333977582841E-033 + 54.420000000000002 -2.5015841197410842E-033 + 54.479999999999990 -2.5172933480576706E-033 + 54.539999999999992 -2.4002205955843815E-033 + 54.599999999999994 -2.1319067337478369E-033 + 54.659999999999997 -1.6986694487585722E-033 + 54.719999999999999 -1.0930852225887547E-033 + 54.780000000000001 -3.1553951034886255E-034 + 54.839999999999989 6.2435172758872588E-034 + 54.899999999999991 1.7065659067663260E-033 + 54.959999999999994 2.8998279312023268E-033 + 55.019999999999996 4.1612031309052675E-033 + 55.079999999999998 5.4362312981926316E-033 + 55.140000000000001 6.6596911637164733E-033 + 55.200000000000003 7.7570735721217764E-033 + 55.259999999999991 8.6467954010057425E-033 + 55.319999999999993 9.2432037601128359E-033 + 55.379999999999995 9.4603501835610920E-033 + 55.439999999999998 9.2164342312541091E-033 + 55.500000000000000 8.4388590590405305E-033 + 55.560000000000002 7.0697054714240719E-033 + 55.619999999999990 5.0714560307339946E-033 + 55.679999999999993 2.4326678653545327E-033 + 55.739999999999995 -8.2666453799830078E-034 + 55.799999999999997 -4.6504304937744151E-033 + 55.859999999999999 -8.9427647612487286E-033 + 55.920000000000002 -1.3565746386161388E-032 + 55.979999999999990 -1.8338961437820925E-032 + 56.039999999999992 -2.3041115870458641E-032 + 56.099999999999994 -2.7414075907694050E-032 + 56.159999999999997 -3.1169533341634391E-032 + 56.219999999999999 -3.3998427304353574E-032 + 56.280000000000001 -3.5583132916422917E-032 + 56.339999999999989 -3.5612295793561331E-032 + 56.399999999999991 -3.3798004659063331E-032 + 56.459999999999994 -2.9894866921320681E-032 + 56.519999999999996 -2.3720323865787467E-032 + 56.579999999999998 -1.5175423496328638E-032 + 56.640000000000001 -4.2650447507666871E-033 + 56.700000000000003 8.8835462364392074E-033 + 56.759999999999991 2.4005024158588289E-032 + 56.819999999999993 4.0684616423885706E-032 + 56.879999999999995 5.8352214698016321E-032 + 56.939999999999998 7.6283387681504330E-032 + 57.000000000000000 9.3608406538003226E-032 + 57.060000000000002 1.0933029818624234E-031 + 57.119999999999990 1.2235257618587678E-031 + 57.179999999999993 1.3151703673508312E-031 + 57.239999999999995 1.3565144543401151E-031 + 57.299999999999997 1.3362651044120018E-031 + 57.359999999999999 1.2442087660956862E-031 + 57.420000000000002 1.0719232636184946E-031 + 57.479999999999990 8.1352676808145661E-032 + 57.539999999999992 4.6643235074148303E-032 + 57.599999999999994 3.2071578981703283E-033 + 57.659999999999997 -4.8345579036961193E-032 + 57.719999999999999 -1.0688504067781461E-031 + 57.780000000000001 -1.7072495624048207E-031 + 57.839999999999989 -2.3760783960548924E-031 + 57.899999999999991 -3.0471613412318252E-031 + 57.959999999999994 -3.6871345222234341E-031 + 58.019999999999996 -4.2581920381755186E-031 + 58.079999999999998 -4.7191886235689773E-031 + 58.140000000000001 -5.0271026792876772E-031 + 58.200000000000003 -5.1388560814664449E-031 + 58.259999999999991 -5.0134561017521573E-031 + 58.319999999999993 -4.6144153520174271E-031 + 58.379999999999995 -3.9123716495025418E-031 + 58.439999999999998 -2.8878191493143779E-031 + 58.500000000000000 -1.5338261163241064E-031 + 58.560000000000002 1.4138813236979430E-032 + 58.619999999999990 2.1121835627063905E-031 + 58.679999999999993 4.3336853728730155E-031 + 58.739999999999995 6.7406141171556082E-031 + 58.799999999999997 9.2469175745011870E-031 + 58.859999999999999 1.1746364067354588E-030 + 58.920000000000002 1.4114239153792631E-030 + 58.979999999999990 1.6210249663038214E-030 + 59.039999999999992 1.7882701977666652E-030 + 59.099999999999994 1.8973968973887249E-030 + 59.159999999999997 1.9327200487517241E-030 + 59.219999999999999 1.8794153630179142E-030 + 59.280000000000001 1.7243964885828151E-030 + 59.339999999999989 1.4572583984934211E-030 + 59.399999999999991 1.0712532032651209E-030 + 59.459999999999994 5.6425409313359893E-031 + 59.519999999999996 -6.0339073654491810E-032 + 59.579999999999998 -7.9280742991834122E-031 + 59.640000000000001 -1.6164934546606585E-030 + 59.700000000000003 -2.5074115212564373E-030 + 59.759999999999991 -3.4341477101426089E-030 + 59.819999999999993 -4.3581022366879754E-030 + 59.879999999999995 -5.2341195520017703E-030 + 59.939999999999998 -6.0115430196049410E-030 + 60.000000000000000 -6.6357151341495946E-030 + 60.060000000000002 -7.0499210125874610E-030 + 60.119999999999990 -7.1977623443508645E-030 + 60.179999999999993 -7.0259144235905272E-030 + 60.239999999999995 -6.4872037319704003E-030 + 60.299999999999997 -5.5439036035713894E-030 + 60.359999999999999 -4.1711372331056938E-030 + 60.420000000000002 -2.3602368521775851E-030 + 60.479999999999990 -1.2188985727655320E-031 + 60.539999999999992 2.5111005546649276E-030 + 60.599999999999994 5.4816488731581791E-030 + 60.659999999999997 8.7070101972939439E-030 + 60.719999999999999 1.2078375615990695E-029 + 60.780000000000001 1.5461640378390317E-029 + 60.839999999999989 1.8699477033591097E-029 + 60.899999999999991 2.1614846213121711E-029 + 60.959999999999994 2.4016003178116619E-029 + 61.019999999999996 2.5703020609791828E-029 + 61.079999999999998 2.6475749226432694E-029 + 61.140000000000001 2.6143102017743069E-029 + 61.200000000000003 2.4533437923648642E-029 + 61.259999999999991 2.1505717189666761E-029 + 61.319999999999993 1.6961085183307926E-029 + 61.379999999999995 1.0854371646386981E-029 + 61.439999999999998 3.2049971756068649E-030 + 61.500000000000000 -5.8933227711349829E-030 + 61.560000000000002 -1.6264712009123581E-029 + 61.619999999999990 -2.7645741554814927E-029 + 61.679999999999993 -3.9683166395847022E-029 + 61.739999999999995 -5.1935393038094829E-029 + 61.799999999999997 -6.3878165680606543E-029 + 61.859999999999999 -7.4914940502313305E-029 + 61.920000000000002 -8.4392147356225908E-029 + 61.979999999999990 -9.1619499180933686E-029 + 62.039999999999992 -9.5895147762840594E-029 + 62.099999999999994 -9.6535424521888899E-029 + 62.159999999999997 -9.2908466259173945E-029 + 62.219999999999999 -8.4470884223298088E-029 + 62.280000000000001 -7.0806314976832149E-029 + 62.339999999999989 -5.1664475644801192E-029 + 62.399999999999991 -2.6999032824604360E-029 + 62.459999999999994 2.9975908317351437E-030 + 62.519999999999996 3.7864398673528708E-029 + 62.579999999999998 7.6849083441498718E-029 + 62.640000000000001 1.1889453186788677E-028 + 62.700000000000003 1.6263665571010672E-028 + 62.759999999999991 2.0641509003635078E-028 + 62.819999999999993 2.4829872717208228E-028 + 62.879999999999995 2.8612698571489904E-028 + 62.939999999999998 3.1756759425185637E-028 + 63.000000000000000 3.4019082994007301E-028 + 63.060000000000002 3.5155988537535248E-028 + 63.119999999999990 3.4933553012060205E-028 + 63.179999999999993 3.3139324465612367E-028 + 63.239999999999995 2.9594943104890662E-028 + 63.299999999999997 2.4169290380364903E-028 + 63.359999999999999 1.6791680977678004E-028 + 63.420000000000002 7.4645313302833479E-029 + 63.479999999999990 -3.7250960928887040E-029 + 63.539999999999992 -1.6595737104168407E-028 + 63.599999999999994 -3.0864290785399811E-028 + 63.659999999999997 -4.6141942263629724E-028 + 63.719999999999999 -6.1933962251497386E-028 + 63.780000000000001 -7.7643951724538148E-028 + 63.839999999999989 -9.2583124435325072E-028 + 63.899999999999991 -1.0598488796899069E-027 + 63.959999999999994 -1.1702509984068593E-027 + 64.019999999999996 -1.2484789451341659E-027 + 64.079999999999998 -1.2859694646543945E-027 + 64.140000000000001 -1.2745169764213374E-027 + 64.200000000000003 -1.2066777048875014E-027 + 64.259999999999991 -1.0762055541741091E-027 + 64.319999999999993 -8.7850631620592144E-028 + 64.379999999999995 -6.1109428507658613E-028 + 64.439999999999998 -2.7403203500152759E-028 + 64.500000000000000 1.2966727098688268E-028 + 64.560000000000002 5.9369838469214619E-028 + 64.619999999999990 1.1082052978745261E-027 + 64.679999999999993 1.6596326844146074E-027 + 64.739999999999995 2.2307068569613265E-027 + 64.799999999999997 2.8005705233483264E-027 + 64.859999999999999 3.3450884486197433E-027 + 64.920000000000002 3.8373374332958652E-027 + 64.979999999999990 4.2482905344189078E-027 + 65.039999999999992 4.5476960217154605E-027 + 65.099999999999994 4.7051454350823512E-027 + 65.159999999999997 4.6913157122597334E-027 + 65.219999999999999 4.4793602782804612E-027 + 65.280000000000001 4.0464144471145301E-027 + 65.339999999999989 3.3751698051019391E-027 + 65.399999999999991 2.4554657122836084E-027 + 65.459999999999994 1.2858275124534413E-027 + 65.519999999999996 -1.2511237344569276E-028 + 65.579999999999998 -1.7573939026195574E-027 + 65.640000000000001 -3.5787870566797588E-027 + 65.700000000000003 -5.5442125061198479E-027 + 65.759999999999991 -7.5956037084069734E-027 + 65.819999999999993 -9.6622785068827390E-027 + 65.879999999999995 -1.1661893068336069E-026 + 65.939999999999998 -1.3502015063806983E-026 + 66.000000000000000 -1.5082355608946624E-026 + 66.060000000000002 -1.6297659978498734E-026 + 66.119999999999990 -1.7041237185032890E-026 + 66.179999999999993 -1.7209083173525120E-026 + 66.239999999999995 -1.6704520750000151E-026 + 66.299999999999997 -1.5443226635995114E-026 + 66.359999999999999 -1.3358518584281349E-026 + 66.420000000000002 -1.0406711755668398E-026 + 66.479999999999990 -6.5723423504346708E-027 + 66.539999999999992 -1.8730245553335728E-027 + 66.599999999999994 3.6363006103813941E-027 + 66.659999999999997 9.8599987395240180E-027 + 66.719999999999999 1.6659502905703747E-026 + 66.780000000000001 2.3852470060286705E-026 + 66.839999999999989 3.1213546248666884E-026 + 66.899999999999991 3.8476947340155634E-026 + 66.959999999999994 4.5341020243591605E-026 + 67.019999999999996 5.1474857698755037E-026 + 67.079999999999998 5.6527011222929878E-026 + 67.140000000000001 6.0136245050660036E-026 + 67.199999999999989 6.1944175983663077E-026 + 67.259999999999991 6.1609605731496259E-026 + 67.319999999999993 5.8824165019322091E-026 + 67.379999999999995 5.3328906298669781E-026 + 67.439999999999998 4.4931271227769007E-026 + 67.500000000000000 3.3521878386404723E-026 + 67.560000000000002 1.9090480304184334E-026 + 67.619999999999990 1.7403165490621053E-027 + 67.679999999999993 -1.8299833073227204E-026 + 67.739999999999995 -4.0666663094264494E-026 + 67.799999999999997 -6.4857148706178229E-026 + 67.859999999999999 -9.0227867592568371E-026 + 67.920000000000002 -1.1599935944588509E-025 + 67.979999999999990 -1.4126610232500003E-025 + 68.039999999999992 -1.6501236976485087E-025 + 68.099999999999994 -1.8613424192586668E-025 + 68.159999999999997 -2.0346762656241987E-025 + 68.219999999999999 -2.1582213415254566E-025 + 68.280000000000001 -2.2202038868335413E-025 + 68.339999999999989 -2.2094195487029378E-025 + 68.399999999999991 -2.1157094965738947E-025 + 68.459999999999994 -1.9304625634650307E-025 + 68.519999999999996 -1.6471280804671976E-025 + 68.579999999999998 -1.2617242554316604E-025 + 68.640000000000001 -7.7332410865185281E-026 + 68.699999999999989 -1.8449932804267757E-026 + 68.759999999999991 4.9829539187281625E-026 + 68.819999999999993 1.2644219636572564E-025 + 68.879999999999995 2.0988556988218644E-025 + 68.939999999999998 2.9821052084585741E-025 + 69.000000000000000 3.8902671803240327E-025 + 69.060000000000002 4.7952325276849932E-025 + 69.119999999999990 5.6650573083063038E-025 + 69.179999999999993 6.4645047247232112E-025 + 69.239999999999995 7.1557641374042718E-025 + 69.299999999999997 7.6993458890697409E-025 + 69.359999999999999 8.0551444536325224E-025 + 69.420000000000002 8.1836643012694631E-025 + 69.479999999999990 8.0473838348293581E-025 + 69.539999999999992 7.6122409429136680E-025 + 69.599999999999994 6.8492081831195406E-025 + 69.659999999999997 5.7359190954357031E-025 + 69.719999999999999 4.2583137907698049E-025 + 69.780000000000001 2.4122450561254146E-025 + 69.839999999999989 2.0500552936541496E-026 + 69.899999999999991 -2.3432908359079851E-025 + 69.959999999999994 -5.1985182479872380E-025 + 70.019999999999996 -8.3116173141732499E-025 + 70.079999999999998 -1.1617993652502905E-024 + 70.140000000000001 -1.5037296275080654E-024 + 70.199999999999989 -1.8473642033337176E-024 + 70.259999999999991 -2.1816342026937017E-024 + 70.319999999999993 -2.4941176430039259E-024 + 70.379999999999995 -2.7712261983206947E-024 + 70.439999999999998 -2.9984533500012424E-024 + 70.500000000000000 -3.1606885344451374E-024 + 70.560000000000002 -3.2425948556054652E-024 + 70.619999999999990 -3.2290509059691006E-024 + 70.679999999999993 -3.1056524005565205E-024 + 70.739999999999995 -2.8592696004550542E-024 + 70.799999999999997 -2.4786528672685763E-024 + 70.859999999999999 -1.9550726494478618E-024 + 70.920000000000002 -1.2829873477402376E-024 + 70.979999999999990 -4.6071756620350040E-025 + 71.039999999999992 5.0888862366321428E-025 + 71.099999999999994 1.6178207604768113E-024 + 71.159999999999997 2.8523249764272276E-024 + 71.219999999999999 4.1924048733258686E-024 + 71.280000000000001 5.6114317693141345E-024 + 71.339999999999989 7.0758905056431583E-024 + 71.399999999999991 8.5452998560158909E-024 + 71.459999999999994 9.9723326922506888E-024 + 71.519999999999996 1.1303165488088931E-023 + 71.579999999999998 1.2478098144972753E-023 + 71.640000000000001 1.3432456761811415E-023 + 71.699999999999989 1.4097812903173410E-023 + 71.759999999999991 1.4403535675331236E-023 + 71.819999999999993 1.4278683417096451E-023 + 71.879999999999995 1.3654245354828097E-023 + 71.939999999999998 1.2465713253918438E-023 + 72.000000000000000 1.0655980278618322E-023 + 72.060000000000002 8.1785122248203820E-024 + 72.119999999999990 5.0007587975899848E-024 + 72.179999999999993 1.1077216598255437E-024 + 72.239999999999995 -3.4943850177277110E-024 + 72.299999999999997 -8.7745302716719534E-024 + 72.359999999999999 -1.4673391983882197E-023 + 72.420000000000002 -2.1100203713933621E-023 + 72.479999999999990 -2.7930064847186724E-023 + 72.539999999999992 -3.5001912149776603E-023 + 72.599999999999994 -4.2117337163368942E-023 + 72.659999999999997 -4.9040477552815511E-023 + 72.719999999999999 -5.5499169420225508E-023 + 72.780000000000001 -6.1187593044224490E-023 + 72.839999999999989 -6.5770601757011091E-023 + 72.899999999999991 -6.8889910844433106E-023 + 72.959999999999994 -7.0172299263840168E-023 + 73.019999999999996 -6.9239925638168265E-023 + 73.079999999999998 -6.5722788051593542E-023 + 73.140000000000001 -5.9273307230525873E-023 + 73.199999999999989 -4.9582930541906730E-023 + 73.259999999999991 -3.6400521152641327E-023 + 73.319999999999993 -1.9552220365350414E-023 + 73.379999999999995 1.0377173419970620E-024 + 73.439999999999998 2.5325618251849278E-023 + 73.500000000000000 5.3127390985749165E-023 + 73.560000000000002 8.4098680899654383E-023 + 73.619999999999990 1.1771716695497989E-022 + 73.679999999999993 1.5326802059537560E-022 + 73.739999999999995 1.8983387382325911E-022 + 73.799999999999997 2.2629039601007314E-022 + 73.859999999999999 2.6130874054727534E-022 + 73.920000000000002 2.9336634491967218E-022 + 73.979999999999990 3.2076696913063505E-022 + 74.039999999999992 3.4167112239444556E-022 + 74.099999999999994 3.5413785681078569E-022 + 74.159999999999997 3.5617809033429982E-022 + 74.219999999999999 3.4582002288881821E-022 + 74.280000000000001 3.2118613246540977E-022 + 74.339999999999989 2.8058088045412051E-022 + 74.399999999999991 2.2258805305221447E-022 + 74.459999999999994 1.4617543714464290E-022 + 74.519999999999996 5.0804142728555851E-023 + 74.579999999999998 -6.3460530673031386E-023 + 74.640000000000001 -1.9584113919825051E-022 + 74.699999999999989 -3.4474739474279207E-022 + 74.759999999999991 -5.0768857207377942E-022 + 74.819999999999993 -6.8120367837432353E-022 + 74.879999999999995 -8.6081674259174779E-022 + 74.939999999999998 -1.0410223128903934E-021 + 75.000000000000000 -1.2153076478816711E-021 + 75.060000000000002 -1.3762172958915594E-021 + 75.119999999999990 -1.5154647425362179E-021 + 75.179999999999993 -1.6240957503290413E-021 + 75.239999999999995 -1.6927050499204496E-021 + 75.299999999999997 -1.7117089217631453E-021 + 75.359999999999999 -1.6716710694259350E-021 + 75.420000000000002 -1.5636804076566700E-021 + 75.479999999999990 -1.3797740287837292E-021 + 75.539999999999992 -1.1133978458536459E-021 + 75.599999999999994 -7.5989323403817040E-022 + 75.659999999999997 -3.1699641582525759E-022 + 75.719999999999999 2.1466584686927396E-022 + 75.780000000000001 8.3110419232554091E-022 + 75.839999999999989 1.5245384834949134E-021 + 75.899999999999991 2.2830364047075859E-021 + 75.959999999999994 3.0902431906554275E-021 + 76.019999999999996 3.9252291179426562E-021 + 76.079999999999998 4.7624736676707421E-021 + 76.140000000000001 5.5720147870580706E-021 + 76.199999999999989 6.3197795852231721E-021 + 76.259999999999991 6.9681152028043103E-021 + 76.319999999999993 7.4765309194813657E-021 + 76.379999999999995 7.8026586224497923E-021 + 76.439999999999998 7.9034299321098172E-021 + 76.500000000000000 7.7364630947637763E-021 + 76.560000000000002 7.2616421524608424E-021 + 76.619999999999990 6.4428595246015047E-021 + 76.679999999999993 5.2498926487921404E-021 + 76.739999999999995 3.6603607799126392E-021 + 76.799999999999997 1.6617112881619811E-021 + 76.859999999999999 -7.4683006971469639E-022 + 76.920000000000002 -3.5524164695978638E-021 + 76.979999999999990 -6.7269294562292764E-021 + 77.039999999999992 -1.0225597760905380E-020 + 77.099999999999994 -1.3985987850337997E-020 + 77.159999999999997 -1.7927438913704005E-020 + 77.219999999999999 -2.1951039719624991E-020 + 77.280000000000001 -2.5940232684846361E-020 + 77.339999999999989 -2.9762120429661025E-020 + 77.399999999999991 -3.3269532883504603E-020 + 77.459999999999994 -3.6303902595357218E-020 + 77.519999999999996 -3.8698995175393814E-020 + 77.579999999999998 -4.0285491904409670E-020 + 77.640000000000001 -4.0896416688063523E-020 + 77.699999999999989 -4.0373343491142846E-020 + 77.759999999999991 -3.8573353610268452E-020 + 77.819999999999993 -3.5376568471565309E-020 + 77.879999999999995 -3.0694190911953432E-020 + 77.939999999999998 -2.4476813777775043E-020 + 78.000000000000000 -1.6722805204448319E-020 + 78.060000000000002 -7.4865288314376336E-021 + 78.119999999999990 3.1139307830988448E-021 + 78.179999999999993 1.4889809973385642E-020 + 78.239999999999995 2.7575831033336041E-020 + 78.299999999999997 4.0825894881696664E-020 + 78.359999999999999 5.4210614601667853E-020 + 78.420000000000002 6.7217138121368135E-020 + 78.479999999999990 7.9251593469543035E-020 + 78.539999999999992 8.9644489006363771E-020 + 78.599999999999994 9.7659468274909835E-020 + 78.659999999999997 1.0250558540002469E-019 + 78.719999999999999 1.0335329677019285E-019 + 78.780000000000001 9.9354380954346531E-020 + 78.839999999999989 8.9665591058946957E-020 + 78.899999999999991 7.3476065772282418E-020 + 78.959999999999994 5.0038173412034004E-020 + 79.019999999999996 1.8701223079112255E-020 + 79.079999999999998 -2.1052329546611065E-020 + 79.140000000000001 -6.9569267840553787E-020 + 79.199999999999989 -1.2698716527091415E-019 + 79.259999999999991 -1.9319671170681420E-019 + 79.319999999999993 -2.6780570224824044E-019 + 79.379999999999995 -3.5010629558660612E-019 + 79.439999999999998 -4.3904715084238524E-019 + 79.500000000000000 -5.3321185572114578E-019 + 79.560000000000002 -6.3080540529020728E-019 + 79.619999999999990 -7.2965035872233046E-019 + 79.679999999999993 -8.2719381961042103E-019 + 79.739999999999995 -9.2052718887520792E-019 + 79.799999999999997 -1.0064188710488899E-018 + 79.859999999999999 -1.0813612743172396E-018 + 79.920000000000002 -1.1416318909736094E-018 + 79.979999999999990 -1.1833685345735729E-018 + 80.039999999999992 -1.2026574931131446E-018 + 80.099999999999994 -1.1956331262604141E-018 + 80.159999999999997 -1.1585865071712966E-018 + 80.219999999999999 -1.0880806786728969E-018 + 80.280000000000001 -9.8106678746056017E-019 + 80.340000000000003 -8.3499891754129344E-019 + 80.400000000000006 -6.4793941748601503E-019 + 80.460000000000008 -4.1864943312556976E-019 + 80.519999999999982 -1.4665979113389043E-019 + 80.579999999999984 1.6768987783733167E-019 + 80.639999999999986 5.2324730844413921E-019 + 80.699999999999989 9.1808933443459782E-019 + 80.759999999999991 1.3496182220149120E-018 + 80.819999999999993 1.8147169216509580E-018 + 80.879999999999995 2.3099761802587781E-018 + 80.939999999999998 2.8319964457994620E-018 + 81.000000000000000 3.3777677155185357E-018 + 81.060000000000002 3.9451400854055340E-018 + 81.120000000000005 4.5333772223736890E-018 + 81.180000000000007 5.1438084480962581E-018 + 81.240000000000009 5.7805579781355633E-018 + 81.299999999999983 6.4513733249650317E-018 + 81.359999999999985 7.1685260393011362E-018 + 81.419999999999987 7.9497879802862353E-018 + 81.479999999999990 8.8194849793392009E-018 + 81.539999999999992 9.8095821998828535E-018 + 81.599999999999994 1.0960836240570170E-017 + 81.659999999999997 1.2323970106568304E-017 + 81.719999999999999 1.3960840494181608E-017 + 81.780000000000001 1.5945639551627400E-017 + 81.840000000000003 1.8366067309819847E-017 + 81.900000000000006 2.1324462391975102E-017 + 81.960000000000008 2.4938903990094089E-017 + 82.019999999999982 2.9344264622173290E-017 + 82.079999999999984 3.4693184722821058E-017 + 82.139999999999986 4.1157009064801824E-017 + 82.199999999999989 4.8926631057767013E-017 + 82.259999999999991 5.8213313375632359E-017 + 82.319999999999993 6.9249413030039610E-017 + 82.379999999999995 8.2289094645015371E-017 + 82.439999999999998 9.7609009051581688E-017 + 82.500000000000000 1.1550907721203009E-016 + 82.560000000000002 1.3631316041092875E-016 + 82.620000000000005 1.6036990008216615E-016 + 82.680000000000007 1.8805388430746649E-016 + 82.740000000000009 2.1976660482381197E-016 + 82.799999999999983 2.5593809731657152E-016 + 82.859999999999985 2.9702853144759613E-016 + 82.919999999999987 3.4353051063380920E-016 + 82.979999999999990 3.9597142655607152E-016 + 83.039999999999992 4.5491665567740986E-016 + 83.099999999999994 5.2097316364371094E-016 + 83.159999999999997 5.9479350612639349E-016 + 83.219999999999999 6.7708071812353195E-016 + 83.280000000000001 7.6859387563492725E-016 + 83.340000000000003 8.7015363768287264E-016 + 83.400000000000006 9.8264894206696634E-016 + 83.460000000000008 1.1070435327354177E-015 + 83.519999999999982 1.2443832579990915E-015 + 83.579999999999984 1.3958032333093298E-015 + 83.639999999999986 1.5625340446957391E-015 + 83.699999999999989 1.7459081881541060E-015 + 83.759999999999991 1.9473656210919964E-015 + 83.819999999999993 2.1684572942496720E-015 + 83.879999999999995 2.4108465453470222E-015 + 83.939999999999998 2.6763079332307387E-015 + 84.000000000000000 2.9667214801976625E-015 + 84.060000000000002 3.2840646990773498E-015 + 84.120000000000005 3.6303964692032061E-015 + 84.180000000000007 4.0078352599108226E-015 + 84.240000000000009 4.4185296483365319E-015 + 84.299999999999983 4.8646176880379650E-015 + 84.359999999999985 5.3481776084290550E-015 + 84.419999999999987 5.8711611330649695E-015 + 84.479999999999990 6.4353164222244360E-015 + 84.539999999999992 7.0420911145772595E-015 + 84.599999999999994 7.6925148744830413E-015 + 84.659999999999997 8.3870607045421634E-015 + 84.719999999999999 9.1254766424858206E-015 + 84.780000000000001 9.9065938548242805E-015 + 84.840000000000003 1.0728095789320841E-014 + 84.900000000000006 1.1586249497501265E-014 + 84.960000000000008 1.2475598221502510E-014 + 85.019999999999982 1.3388605011606121E-014 + 85.079999999999984 1.4315233669830522E-014 + 85.139999999999986 1.5242476412254792E-014 + 85.199999999999989 1.6153811168559407E-014 + 85.259999999999991 1.7028575093222175E-014 + 85.319999999999993 1.7841251586294616E-014 + 85.379999999999995 1.8560660623186458E-014 + 85.439999999999998 1.9149027929119419E-014 + 85.500000000000000 1.9560935507198507E-014 + 85.560000000000002 1.9742127431579732E-014 + 85.620000000000005 1.9628138326433815E-014 + 85.680000000000007 1.9142773752287708E-014 + 85.740000000000009 1.8196342102023516E-014 + 85.799999999999983 1.6683695031951784E-014 + 85.859999999999985 1.4482018310224841E-014 + 85.919999999999987 1.1448264284821759E-014 + 85.979999999999990 7.4163308710390160E-015 + 86.039999999999992 2.1938927172631529E-015 + 86.099999999999994 -4.4412674140783968E-015 + 86.159999999999997 -1.2745306157925268E-014 + 86.219999999999999 -2.3012831430730332E-014 + 86.280000000000001 -3.5582059717060729E-014 + 86.340000000000003 -5.0840612068487166E-014 + 86.400000000000006 -6.9231820882338284E-014 + 86.460000000000008 -9.1262023545552084E-014 + 86.519999999999982 -1.1750864393624912E-013 + 86.579999999999984 -1.4862902578137651E-013 + 86.639999999999986 -1.8537063534575783E-013 + 86.699999999999989 -2.2858210797813052E-013 + 86.759999999999991 -2.7922558496842736E-013 + 86.819999999999993 -3.3839072145282648E-013 + 86.879999999999995 -4.0730959584481761E-013 + 86.939999999999998 -4.8737397142479387E-013 + 87.000000000000000 -5.8015366296124467E-013 + 87.060000000000002 -6.8741723776602554E-013 + 87.120000000000005 -8.1115485748767526E-013 + 87.180000000000007 -9.5360348770045810E-013 + 87.240000000000009 -1.1172741210011051E-012 + 87.299999999999983 -1.3049812638248120E-012 + 87.359999999999985 -1.5198774024458518E-012 + 87.419999999999987 -1.7654878256691624E-012 + 87.479999999999990 -2.0457511453037375E-012 + 87.539999999999992 -2.3650604744538955E-012 + 87.599999999999994 -2.7283119653561606E-012 + 87.659999999999997 -3.1409536870227067E-012 + 87.719999999999999 -3.6090424519449524E-012 + 87.780000000000001 -4.1393002102857353E-012 + 87.840000000000003 -4.7391799813826439E-012 + 87.900000000000006 -5.4169337325969145E-012 + 87.960000000000008 -6.1816849278316371E-012 + 88.019999999999982 -7.0435071794844152E-012 + 88.079999999999984 -8.0135085479805688E-012 + 88.139999999999986 -9.1039213561343906E-012 + 88.199999999999989 -1.0328196816941271E-011 + 88.259999999999991 -1.1701100691610362E-011 + 88.319999999999993 -1.3238821401425422E-011 + 88.379999999999995 -1.4959082024783742E-011 + 88.439999999999998 -1.6881248838889161E-011 + 88.500000000000000 -1.9026453944345630E-011 + 88.560000000000002 -2.1417716942046882E-011 + 88.620000000000005 -2.4080065525877707E-011 + 88.680000000000007 -2.7040667806880940E-011 + 88.740000000000009 -3.0328947676697382E-011 + 88.799999999999983 -3.3976722760154642E-011 + 88.859999999999985 -3.8018314918431912E-011 + 88.919999999999987 -4.2490660482713732E-011 + 88.979999999999990 -4.7433429204982762E-011 + 89.039999999999992 -5.2889096231538975E-011 + 89.099999999999994 -5.8903032045184951E-011 + 89.159999999999997 -6.5523564865012906E-011 + 89.219999999999999 -7.2801966175842799E-011 + 89.280000000000001 -8.0792464808516368E-011 + 89.340000000000003 -8.9552193816796558E-011 + 89.400000000000006 -9.9141076514645560E-011 + 89.460000000000008 -1.0962167129569612E-010 + 89.519999999999982 -1.2105889012226398E-010 + 89.579999999999984 -1.3351970159404709E-010 + 89.639999999999986 -1.4707267449569687E-010 + 89.699999999999989 -1.6178741916451227E-010 + 89.759999999999991 -1.7773385214574180E-010 + 89.819999999999993 -1.9498135012008574E-010 + 89.879999999999995 -2.1359764562070379E-010 + 89.939999999999998 -2.3364754189902322E-010 + 90.000000000000000 -2.5519126431825974E-010 + 90.060000000000002 -2.7828267622796411E-010 + 90.120000000000005 -3.0296699583911300E-010 + 90.180000000000007 -3.2927815790846705E-010 + 90.240000000000009 -3.5723566972573834E-010 + 90.299999999999983 -3.8684111206064325E-010 + 90.359999999999985 -4.1807379386815350E-010 + 90.419999999999987 -4.5088582954181847E-010 + 90.479999999999990 -4.8519653348333944E-010 + 90.539999999999992 -5.2088574251788256E-010 + 90.599999999999994 -5.5778640847625745E-010 + 90.659999999999997 -5.9567570784813200E-010 + 90.719999999999999 -6.3426511417270769E-010 + 90.780000000000001 -6.7318913521824096E-010 + 90.840000000000003 -7.1199219867653234E-010 + 90.900000000000006 -7.5011380006056800E-010 + 90.960000000000008 -7.8687158917264128E-010 + 91.019999999999982 -8.2144240231893948E-010 + 91.079999999999984 -8.5284059882265234E-010 + 91.139999999999986 -8.7989318092218132E-010 + 91.199999999999989 -9.0121236862363261E-010 + 91.259999999999991 -9.1516417281394161E-010 + 91.319999999999993 -9.1983339460748154E-010 + 91.379999999999995 -9.1298362857855952E-010 + 91.439999999999998 -8.9201283068130958E-010 + 91.500000000000000 -8.5390340486955784E-010 + 91.560000000000002 -7.9516655103852277E-010 + 91.620000000000005 -7.1177781010078106E-010 + 91.680000000000007 -5.9910924155978815E-010 + 91.739999999999981 -4.5184888636963298E-010 + 91.799999999999983 -2.6391442526843364E-010 + 91.859999999999985 -2.8355594745932731E-011 + 91.919999999999987 2.6275487619557992E-010 + 91.979999999999990 6.1844168189587741E-010 + 92.039999999999992 1.0489621879645235E-009 + 92.099999999999994 1.5659548638906352E-009 + 92.159999999999997 2.1826045158268947E-009 + 92.219999999999999 2.9138250354298510E-009 + 92.280000000000001 3.7764657394643434E-009 + 92.340000000000003 4.7895293782104752E-009 + 92.400000000000006 5.9744312469497008E-009 + 92.460000000000008 7.3552588188027088E-009 + 92.519999999999982 8.9590863853864255E-009 + 92.579999999999984 1.0816311776935469E-008 + 92.639999999999986 1.2961006550330760E-008 + 92.699999999999989 1.5431338082922904E-008 + 92.759999999999991 1.8270004769137927E-008 + 92.819999999999993 2.1524734922385171E-008 + 92.879999999999995 2.5248808187648322E-008 + 92.939999999999998 2.9501666345543290E-008 + 93.000000000000000 3.4349529025845740E-008 + 93.060000000000002 3.9866155582508298E-008 + 93.120000000000005 4.6133549942959660E-008 + 93.180000000000007 5.3242865554624246E-008 + 93.239999999999981 6.1295327870471529E-008 + 93.299999999999983 7.0403188404550763E-008 + 93.359999999999985 8.0690913961612993E-008 + 93.419999999999987 9.2296344398775646E-008 + 93.479999999999990 1.0537199591523075E-007 + 93.539999999999992 1.2008653008231781E-007 + 93.599999999999994 1.3662628199380307E-007 + 93.659999999999997 1.5519697961640863E-007 + 93.719999999999999 1.7602557600115481E-007 + 93.780000000000001 1.9936219694366774E-007 + 93.840000000000003 2.2548241132244240E-007 + 93.900000000000006 2.5468947038270727E-007 + 93.960000000000008 2.8731689180209563E-007 + 94.019999999999982 3.2373130374848555E-007 + 94.079999999999984 3.6433529901233967E-007 + 94.139999999999986 4.0957070959150747E-007 + 94.199999999999989 4.5992207704773192E-007 + 94.259999999999991 5.1592039536435808E-007 + 94.319999999999993 5.7814735099133109E-007 + 94.379999999999995 6.4723920860284135E-007 + 94.439999999999998 7.2389214132476222E-007 + 94.500000000000000 8.0886669522172283E-007 + 94.560000000000002 9.0299355257667844E-007 + 94.620000000000005 1.0071795427723812E-006 + 94.680000000000007 1.1224133786137555E-006 + 94.739999999999981 1.2497727386518891E-006 + 94.799999999999983 1.3904313197549377E-006 + 94.859999999999985 1.5456667043444843E-006 + 94.919999999999987 1.7168685058362020E-006 + 94.979999999999990 1.9055473919324487E-006 + 95.039999999999992 2.1133438279727398E-006 + 95.099999999999994 2.3420388089477006E-006 + 95.159999999999997 2.5935645634658244E-006 + 95.219999999999999 2.8700155483248144E-006 + 95.280000000000001 3.1736601879330270E-006 + 95.340000000000003 3.5069549887047380E-006 + 95.400000000000006 3.8725572871571337E-006 + 95.460000000000008 4.2733398888918817E-006 + 95.519999999999982 4.7124073242281838E-006 + 95.579999999999984 5.1931112608389337E-006 + 95.639999999999986 5.7190680193054097E-006 + 95.699999999999989 6.2941754215635847E-006 + 95.759999999999991 6.9226359515894562E-006 + 95.819999999999993 7.6089731827486999E-006 + 95.879999999999995 8.3580549996033928E-006 + 95.939999999999998 9.1751154456772381E-006 + 96.000000000000000 1.0065779319429874E-005 + 96.060000000000002 1.1036088206496653E-005 + 96.120000000000005 1.2092523356123421E-005 + 96.180000000000007 1.3242035127844033E-005 + 96.239999999999981 1.4492070995574836E-005 + 96.299999999999983 1.5850609642336189E-005 + 96.359999999999985 1.7326183290223744E-005 + 96.419999999999987 1.8927923514897751E-005 + 96.479999999999990 2.0665580321579002E-005 + 96.539999999999992 2.2549569525568132E-005 + 96.599999999999994 2.4591005267814023E-005 + 96.659999999999997 2.6801739077722047E-005 + 96.719999999999999 2.9194394908101885E-005 + 96.780000000000001 3.1782416924837660E-005 + 96.840000000000003 3.4580112768682316E-005 + 96.900000000000006 3.7602690698893577E-005 + 96.960000000000008 4.0866307740984285E-005 + 97.019999999999982 4.4388118633163490E-005 + 97.079999999999984 4.8186319333807955E-005 + 97.139999999999986 5.2280197390859565E-005 + 97.199999999999989 5.6690181768593389E-005 + 97.259999999999991 6.1437895505690097E-005 + 97.319999999999993 6.6546213961208651E-005 + 97.379999999999995 7.2039288348357296E-005 + 97.439999999999998 7.7942651740052097E-005 + 97.500000000000000 8.4283211692916132E-005 + 97.560000000000002 9.1089351413904305E-005 + 97.620000000000005 9.8390971330923420E-005 + 97.680000000000007 1.0621953708250802E-004 + 97.739999999999981 1.1460814654624203E-004 + 97.799999999999983 1.2359154309566744E-004 + 97.859999999999985 1.3320626095943616E-004 + 97.919999999999987 1.4349058346639935E-004 + 97.979999999999990 1.5448464902006217E-004 + 98.039999999999992 1.6623048363748435E-004 + 98.099999999999994 1.7877208058988256E-004 + 98.159999999999997 1.9215538542552362E-004 + 98.219999999999999 2.0642842232194026E-004 + 98.280000000000001 2.2164130743314791E-004 + 98.340000000000003 2.3784627610440185E-004 + 98.400000000000006 2.5509767471944918E-004 + 98.460000000000008 2.7345215707324843E-004 + 98.519999999999982 2.9296851979157047E-004 + 98.579999999999984 3.1370789119864161E-004 + 98.639999999999986 3.3573367992736718E-004 + 98.699999999999989 3.5911157686900359E-004 + 98.759999999999991 3.8390962111400028E-004 + 98.819999999999993 4.1019821112655267E-004 + 98.879999999999995 4.3805000643477751E-004 + 98.939999999999998 4.6754007298153787E-004 + 99.000000000000000 4.9874572853436964E-004 + 99.060000000000002 5.3174668346582358E-004 + 99.120000000000005 5.6662481341142725E-004 + 99.180000000000007 6.0346432175625148E-004 + 99.239999999999981 6.4235160350825866E-004 + 99.299999999999983 6.8337510934300444E-004 + 99.359999999999985 7.2662550804406022E-004 + 99.419999999999987 7.7219540806479304E-004 + 99.479999999999990 8.2017936106614571E-004 + 99.539999999999992 8.7067368960838058E-004 + 99.599999999999994 9.2377650056281349E-004 + 99.659999999999997 9.7958749973904623E-004 + 99.719999999999999 1.0382078654630330E-003 + 99.780000000000001 1.0997402496397935E-003 + 99.840000000000003 1.1642882264825394E-003 + 99.900000000000006 1.2319565822651386E-003 + 99.960000000000008 1.3028508012788399E-003 + 100.01999999999998 1.3770772005273833E-003 + 100.07999999999998 1.4547424092523013E-003 + 100.13999999999999 1.5359531643045910E-003 + 100.19999999999999 1.6208161899261635E-003 + 100.25999999999999 1.7094382693741987E-003 + 100.31999999999999 1.8019252150040636E-003 + 100.38000000000000 1.8983823275232391E-003 + 100.44000000000000 1.9989135314442030E-003 + 100.50000000000000 2.1036214655137625E-003 + 100.56000000000000 2.2126069824336052E-003 + 100.62000000000000 2.3259690597115181E-003 + 100.68000000000001 2.4438038634709146E-003 + 100.73999999999998 2.5662051514159334E-003 + 100.79999999999998 2.6932633460110362E-003 + 100.85999999999999 2.8250652923802297E-003 + 100.91999999999999 2.9616942064671940E-003 + 100.97999999999999 3.1032287161087638E-003 + 101.03999999999999 3.2497430268369873E-003 + 101.09999999999999 3.4013058286304731E-003 + 101.16000000000000 3.5579807260512205E-003 + 101.22000000000000 3.7198248399369924E-003 + 101.28000000000000 3.8868888607346283E-003 + 101.34000000000000 4.0592171851120597E-003 + 101.40000000000001 4.2368464402263795E-003 + 101.46000000000001 4.4198053287846841E-003 + 101.51999999999998 4.6081145623591566E-003 + 101.57999999999998 4.8017868131305704E-003 + 101.63999999999999 5.0008246835853342E-003 + 101.69999999999999 5.2052219026807898E-003 + 101.75999999999999 5.4149626415286780E-003 + 101.81999999999999 5.6300194514976058E-003 + 101.88000000000000 5.8503552734603653E-003 + 101.94000000000000 6.0759219733541167E-003 + 102.00000000000000 6.3066589467264175E-003 + 102.06000000000000 6.5424946109632681E-003 + 102.12000000000000 6.7833444947738427E-003 + 102.18000000000001 7.0291123958877971E-003 + 102.23999999999998 7.2796884531605823E-003 + 102.29999999999998 7.5349497859545601E-003 + 102.35999999999999 7.7947613037867335E-003 + 102.41999999999999 8.0589728185852388E-003 + 102.47999999999999 8.3274206654766064E-003 + 102.53999999999999 8.5999269826285592E-003 + 102.59999999999999 8.8763006431165671E-003 + 102.66000000000000 9.1563359298712042E-003 + 102.72000000000000 9.4398123139349394E-003 + 102.78000000000000 9.7264958578436294E-003 + 102.84000000000000 1.0016137112793278E-002 + 102.90000000000001 1.0308473086391021E-002 + 102.96000000000001 1.0603227128405612E-002 + 103.01999999999998 1.0900106159500506E-002 + 103.07999999999998 1.1198806560065241E-002 + 103.13999999999999 1.1499008021171403E-002 + 103.19999999999999 1.1800379339032781E-002 + 103.25999999999999 1.2102574257850458E-002 + 103.31999999999999 1.2405235644466354E-002 + 103.38000000000000 1.2707992916716929E-002 + 103.44000000000000 1.3010463003355781E-002 + 103.50000000000000 1.3312252000187572E-002 + 103.56000000000000 1.3612955977549451E-002 + 103.62000000000000 1.3912161377225936E-002 + 103.68000000000001 1.4209442225764266E-002 + 103.73999999999998 1.4504365279470318E-002 + 103.79999999999998 1.4796490620485879E-002 + 103.85999999999999 1.5085367696666583E-002 + 103.91999999999999 1.5370542206428195E-002 + 103.97999999999999 1.5651552425582943E-002 + 104.03999999999999 1.5927933063801396E-002 + 104.09999999999999 1.6199213792244989E-002 + 104.16000000000000 1.6464921081182679E-002 + 104.22000000000000 1.6724581133969567E-002 + 104.28000000000000 1.6977718907855308E-002 + 104.34000000000000 1.7223858362408757E-002 + 104.40000000000001 1.7462523483467031E-002 + 104.46000000000001 1.7693244462951965E-002 + 104.51999999999998 1.7915552479382701E-002 + 104.57999999999998 1.8128984119674677E-002 + 104.63999999999999 1.8333079015235294E-002 + 104.69999999999999 1.8527388192558898E-002 + 104.75999999999999 1.8711468821029729E-002 + 104.81999999999999 1.8884886342008050E-002 + 104.88000000000000 1.9047217616045539E-002 + 104.94000000000000 1.9198051732875036E-002 + 105.00000000000000 1.9336987895010559E-002 + 105.06000000000000 1.9463641580981184E-002 + 105.12000000000000 1.9577643708902560E-002 + 105.18000000000001 1.9678638286485139E-002 + 105.23999999999998 1.9766290617310545E-002 + 105.29999999999998 1.9840279400604035E-002 + 105.35999999999999 1.9900308073278042E-002 + 105.41999999999999 1.9946095747812843E-002 + 105.47999999999999 1.9977384616096130E-002 + 105.53999999999999 1.9993936349267823E-002 + 105.59999999999999 1.9995539491641370E-002 + 105.66000000000000 1.9982002965041309E-002 + 105.72000000000000 1.9953160900748054E-002 + 105.78000000000000 1.9908871389688519E-002 + 105.84000000000000 1.9849021598264387E-002 + 105.90000000000001 1.9773520917274121E-002 + 105.96000000000001 1.9682309496540158E-002 + 106.01999999999998 1.9575348872578672E-002 + 106.07999999999998 1.9452634164157122E-002 + 106.13999999999999 1.9314184810716343E-002 + 106.19999999999999 1.9160048012197745E-002 + 106.25999999999999 1.8990299456341234E-002 + 106.31999999999999 1.8805043613987597E-002 + 106.38000000000000 1.8604412916257775E-002 + 106.44000000000000 1.8388565429871082E-002 + 106.50000000000000 1.8157688520904644E-002 + 106.56000000000000 1.7911998020509266E-002 + 106.62000000000000 1.7651735015278683E-002 + 106.68000000000001 1.7377169522808263E-002 + 106.73999999999998 1.7088594801020464E-002 + 106.79999999999998 1.6786331733174616E-002 + 106.85999999999999 1.6470724823905439E-002 + 106.91999999999999 1.6142143670927152E-002 + 106.97999999999999 1.5800980013576958E-002 + 107.03999999999999 1.5447651062134806E-002 + 107.09999999999999 1.5082592791635561E-002 + 107.16000000000000 1.4706264142942172E-002 + 107.22000000000000 1.4319144079418148E-002 + 107.28000000000000 1.3921725641388369E-002 + 107.34000000000000 1.3514526451790443E-002 + 107.40000000000001 1.3098074918877217E-002 + 107.46000000000001 1.2672916401873088E-002 + 107.51999999999998 1.2239610418764075E-002 + 107.57999999999998 1.1798727581013004E-002 + 107.63999999999999 1.1350851333921145E-002 + 107.69999999999999 1.0896573705145287E-002 + 107.75999999999999 1.0436496726058758E-002 + 107.81999999999999 9.9712276794132956E-003 + 107.88000000000000 9.5013806599532520E-003 + 107.94000000000000 9.0275739231527857E-003 + 108.00000000000000 8.5504280316926716E-003 + 108.06000000000000 8.0705651879143837E-003 + 108.12000000000000 7.5886071875129009E-003 + 108.18000000000001 7.1051752549384619E-003 + 108.23999999999998 6.6208864164592580E-003 + 108.29999999999998 6.1363543260233126E-003 + 108.35999999999999 5.6521880519054424E-003 + 108.41999999999999 5.1689872484425789E-003 + 108.47999999999999 4.6873452417418755E-003 + 108.53999999999999 4.2078457118858957E-003 + 108.59999999999999 3.7310614637627998E-003 + 108.66000000000000 3.2575536182322786E-003 + 108.72000000000000 2.7878701655713839E-003 + 108.78000000000000 2.3225457549278091E-003 + 108.84000000000000 1.8620999187729977E-003 + 108.90000000000001 1.4070360045932155E-003 + 108.96000000000001 9.5784061493394540E-004 + 109.01999999999998 5.1498280856951753E-004 + 109.07999999999998 7.8913258597823800E-005 + 109.13999999999999 -3.4993710801300201E-004 + 109.19999999999999 -7.7115665104633474E-004 + 109.25999999999999 -1.1843539604033224E-003 + 109.31999999999999 -1.5891593939452210E-003 + 109.38000000000000 -1.9852245286912261E-003 + 109.44000000000000 -2.3722226691687814E-003 + 109.50000000000000 -2.7498494739792898E-003 + 109.56000000000000 -3.1178230668899480E-003 + 109.62000000000000 -3.4758837274572610E-003 + 109.68000000000001 -3.8237950043173187E-003 + 109.73999999999998 -4.1613431641066420E-003 + 109.79999999999998 -4.4883372637064441E-003 + 109.85999999999999 -4.8046088102887581E-003 + 109.91999999999999 -5.1100118576619894E-003 + 109.97999999999999 -5.4044229055243481E-003 + 110.03999999999999 -5.6877408379600132E-003 + 110.09999999999999 -5.9598856748639519E-003 + 110.16000000000000 -6.2207991846110564E-003 + 110.22000000000000 -6.4704438853765631E-003 + 110.28000000000000 -6.7088030660395967E-003 + 110.34000000000000 -6.9358803362134600E-003 + 110.40000000000001 -7.1516978432928603E-003 + 110.46000000000001 -7.3562972354616818E-003 + 110.51999999999998 -7.5497388017693734E-003 + 110.57999999999998 -7.7321003269131697E-003 + 110.63999999999999 -7.9034767019717025E-003 + 110.69999999999999 -8.0639795622792308E-003 + 110.75999999999999 -8.2137350780347018E-003 + 110.81999999999999 -8.3528850554774516E-003 + 110.88000000000000 -8.4815850326277822E-003 + 110.94000000000000 -8.6000038776278005E-003 + 111.00000000000000 -8.7083235332683223E-003 + 111.06000000000000 -8.8067370629263952E-003 + 111.12000000000000 -8.8954488855728688E-003 + 111.18000000000001 -8.9746719531284738E-003 + 111.23999999999998 -9.0446304931235920E-003 + 111.29999999999998 -9.1055548102105081E-003 + 111.35999999999999 -9.1576853635861738E-003 + 111.41999999999999 -9.2012667231280466E-003 + 111.47999999999999 -9.2365512124723236E-003 + 111.53999999999999 -9.2637963008926349E-003 + 111.59999999999999 -9.2832632441509078E-003 + 111.66000000000000 -9.2952168080970739E-003 + 111.72000000000000 -9.2999251309640769E-003 + 111.78000000000000 -9.2976587014728020E-003 + 111.84000000000000 -9.2886896077594479E-003 + 111.90000000000001 -9.2732903038765142E-003 + 111.96000000000001 -9.2517343659796105E-003 + 112.01999999999998 -9.2242937213318880E-003 + 112.07999999999998 -9.1912405433983643E-003 + 112.13999999999999 -9.1528451799353788E-003 + 112.19999999999999 -9.1093748489329066E-003 + 112.25999999999999 -9.0610969549530379E-003 + 112.31999999999999 -9.0082731223260215E-003 + 112.38000000000000 -8.9511627151060754E-003 + 112.44000000000000 -8.8900211072337459E-003 + 112.50000000000000 -8.8250995155743119E-003 + 112.56000000000000 -8.7566436845951875E-003 + 112.62000000000000 -8.6848953369582319E-003 + 112.68000000000001 -8.6100911598243016E-003 + 112.73999999999998 -8.5324615924050155E-003 + 112.79999999999998 -8.4522311484166394E-003 + 112.85999999999999 -8.3696191341119230E-003 + 112.91999999999999 -8.2848377947255698E-003 + 112.97999999999999 -8.1980934892071800E-003 + 113.03999999999999 -8.1095853069736157E-003 + 113.09999999999999 -8.0195064561874620E-003 + 113.16000000000000 -7.9280435787781288E-003 + 113.22000000000000 -7.8353758531338816E-003 + 113.28000000000000 -7.7416753476308000E-003 + 113.34000000000000 -7.6471077228754489E-003 + 113.40000000000001 -7.5518316820439553E-003 + 113.46000000000001 -7.4559990471378245E-003 + 113.51999999999998 -7.3597533206116120E-003 + 113.57999999999998 -7.2632330286573924E-003 + 113.63999999999999 -7.1665688794559004E-003 + 113.69999999999999 -7.0698847828348536E-003 + 113.75999999999999 -6.9732988175379967E-003 + 113.81999999999999 -6.8769222794090971E-003 + 113.88000000000000 -6.7808596899141963E-003 + 113.94000000000000 -6.6852102540023491E-003 + 114.00000000000000 -6.5900662094826364E-003 + 114.06000000000000 -6.4955136729547957E-003 + 114.12000000000000 -6.4016340574745648E-003 + 114.18000000000001 -6.3085017876162606E-003 + 114.23999999999998 -6.2161866741809579E-003 + 114.29999999999998 -6.1247532410012269E-003 + 114.35999999999999 -6.0342598909946827E-003 + 114.41999999999999 -5.9447610603838340E-003 + 114.47999999999999 -5.8563056716177753E-003 + 114.53999999999999 -5.7689380858148504E-003 + 114.59999999999999 -5.6826979323364168E-003 + 114.66000000000000 -5.5976208909567903E-003 + 114.72000000000000 -5.5137382150605889E-003 + 114.78000000000000 -5.4310771631702962E-003 + 114.84000000000000 -5.3496613657587353E-003 + 114.90000000000001 -5.2695108646695051E-003 + 114.96000000000001 -5.1906421139817560E-003 + 115.01999999999998 -5.1130686245595336E-003 + 115.07999999999998 -5.0368004166330095E-003 + 115.13999999999999 -4.9618452365463792E-003 + 115.19999999999999 -4.8882072836783997E-003 + 115.25999999999999 -4.8158895402488910E-003 + 115.31999999999999 -4.7448920857698362E-003 + 115.38000000000000 -4.6752125116253573E-003 + 115.44000000000000 -4.6068462391549783E-003 + 115.50000000000000 -4.5397872731288390E-003 + 115.56000000000000 -4.4740279644578168E-003 + 115.62000000000000 -4.4095588755923435E-003 + 115.68000000000001 -4.3463682254275739E-003 + 115.73999999999998 -4.2844437791680449E-003 + 115.79999999999998 -4.2237716779712558E-003 + 115.85999999999999 -4.1643371292422590E-003 + 115.91999999999999 -4.1061244356735997E-003 + 115.97999999999999 -4.0491160731245977E-003 + 116.03999999999999 -3.9932942029231432E-003 + 116.09999999999999 -3.9386409323510707E-003 + 116.16000000000000 -3.8851370762630691E-003 + 116.22000000000000 -3.8327626632688066E-003 + 116.28000000000000 -3.7814981718316725E-003 + 116.34000000000000 -3.7313223763336774E-003 + 116.40000000000001 -3.6822153565651277E-003 + 116.46000000000001 -3.6341554255830103E-003 + 116.51999999999998 -3.5871218130564143E-003 + 116.57999999999998 -3.5410932043652543E-003 + 116.63999999999999 -3.4960479986695151E-003 + 116.69999999999999 -3.4519653694886172E-003 + 116.75999999999999 -3.4088235631759838E-003 + 116.81999999999999 -3.3666015350373299E-003 + 116.88000000000000 -3.3252779042257713E-003 + 116.94000000000000 -3.2848315561401571E-003 + 117.00000000000000 -3.2452416628416737E-003 + 117.06000000000000 -3.2064877561358042E-003 + 117.12000000000000 -3.1685492809558845E-003 + 117.18000000000001 -3.1314062573721720E-003 + 117.23999999999998 -3.0950385498446972E-003 + 117.29999999999998 -3.0594266349220213E-003 + 117.35999999999999 -3.0245513601070513E-003 + 117.41999999999999 -2.9903940258848177E-003 + 117.47999999999999 -2.9569362134357997E-003 + 117.53999999999999 -2.9241599227902175E-003 + 117.59999999999999 -2.8920473605281924E-003 + 117.66000000000000 -2.8605814242520272E-003 + 117.72000000000000 -2.8297453396017064E-003 + 117.78000000000000 -2.7995225441198057E-003 + 117.84000000000000 -2.7698970801188902E-003 + 117.90000000000001 -2.7408531330402074E-003 + 117.96000000000001 -2.7123751266600296E-003 + 118.01999999999998 -2.6844483589582150E-003 + 118.07999999999998 -2.6570582034850907E-003 + 118.13999999999999 -2.6301901209610269E-003 + 118.19999999999999 -2.6038301519632229E-003 + 118.25999999999999 -2.5779649027219860E-003 + 118.31999999999999 -2.5525806436647097E-003 + 118.38000000000000 -2.5276646228548460E-003 + 118.44000000000000 -2.5032043211777816E-003 + 118.50000000000000 -2.4791872424626648E-003 + 118.56000000000000 -2.4556018367938785E-003 + 118.62000000000000 -2.4324366367995563E-003 + 118.68000000000001 -2.4096804690865257E-003 + 118.73999999999998 -2.3873225032467801E-003 + 118.79999999999998 -2.3653523371725484E-003 + 118.85999999999999 -2.3437598806380325E-003 + 118.91999999999999 -2.3225356503412623E-003 + 118.97999999999999 -2.3016701534074751E-003 + 119.03999999999999 -2.2811541791236700E-003 + 119.09999999999999 -2.2609792200714162E-003 + 119.16000000000000 -2.2411365830402128E-003 + 119.22000000000000 -2.2216181862747052E-003 + 119.28000000000000 -2.2024161214487252E-003 + 119.34000000000000 -2.1835226863417346E-003 + 119.40000000000001 -2.1649300235942769E-003 + 119.46000000000001 -2.1466309349796242E-003 + 119.51999999999998 -2.1286182088365037E-003 + 119.57999999999998 -2.1108849891260605E-003 + 119.63999999999999 -2.0934245350885889E-003 + 119.69999999999999 -2.0762304997695943E-003 + 119.75999999999999 -2.0592965032224532E-003 + 119.81999999999999 -2.0426163845106106E-003 + 119.88000000000000 -2.0261841469029766E-003 + 119.94000000000000 -2.0099941090900857E-003 + 120.00000000000000 -1.9940406975969562E-003 + 120.06000000000000 -1.9783187122590549E-003 + 120.12000000000000 -1.9628229676102540E-003 + 120.18000000000001 -1.9475483174761555E-003 + 120.23999999999998 -1.9324901798702099E-003 + 120.29999999999998 -1.9176439347411416E-003 + 120.35999999999999 -1.9030049447973302E-003 + 120.41999999999999 -1.8885689521782945E-003 + 120.47999999999999 -1.8743316328638656E-003 + 120.53999999999999 -1.8602890928633615E-003 + 120.59999999999999 -1.8464373755801811E-003 + 120.66000000000000 -1.8327728132769327E-003 + 120.72000000000000 -1.8192917613371136E-003 + 120.78000000000000 -1.8059906035950101E-003 + 120.84000000000000 -1.7928658961920590E-003 + 120.90000000000001 -1.7799145536783062E-003 + 120.95999999999998 -1.7671331047740093E-003 + 121.01999999999998 -1.7545184469202543E-003 + 121.07999999999998 -1.7420675631710091E-003 + 121.13999999999999 -1.7297772806100749E-003 + 121.19999999999999 -1.7176444356412463E-003 + 121.25999999999999 -1.7056661793710742E-003 + 121.31999999999999 -1.6938394017251639E-003 + 121.38000000000000 -1.6821612915979380E-003 + 121.44000000000000 -1.6706287585959753E-003 + 121.50000000000000 -1.6592388870050512E-003 + 121.56000000000000 -1.6479887965199674E-003 + 121.62000000000000 -1.6368755101361264E-003 + 121.68000000000001 -1.6258964310537731E-003 + 121.73999999999998 -1.6150488723823474E-003 + 121.79999999999998 -1.6043300934712615E-003 + 121.85999999999999 -1.5937377549041616E-003 + 121.91999999999999 -1.5832692383234235E-003 + 121.97999999999999 -1.5729223595853025E-003 + 122.03999999999999 -1.5626949071953875E-003 + 122.09999999999999 -1.5525847698736597E-003 + 122.16000000000000 -1.5425899391508160E-003 + 122.22000000000000 -1.5327085767766094E-003 + 122.28000000000000 -1.5229387495453524E-003 + 122.34000000000000 -1.5132786242448956E-003 + 122.40000000000001 -1.5037264115806033E-003 + 122.45999999999998 -1.4942802338005542E-003 + 122.51999999999998 -1.4849382884325288E-003 + 122.57999999999998 -1.4756988418171469E-003 + 122.63999999999999 -1.4665597922978132E-003 + 122.69999999999999 -1.4575194116692341E-003 + 122.75999999999999 -1.4485757534002356E-003 + 122.81999999999999 -1.4397270460882290E-003 + 122.88000000000000 -1.4309712453906970E-003 + 122.94000000000000 -1.4223066122986878E-003 + 123.00000000000000 -1.4137314199787671E-003 + 123.06000000000000 -1.4052438333203351E-003 + 123.12000000000000 -1.3968424585323041E-003 + 123.18000000000001 -1.3885257522460814E-003 + 123.23999999999998 -1.3802924351547497E-003 + 123.29999999999998 -1.3721412262176847E-003 + 123.35999999999999 -1.3640710435247551E-003 + 123.41999999999999 -1.3560808008192342E-003 + 123.47999999999999 -1.3481696980467983E-003 + 123.53999999999999 -1.3403368454935846E-003 + 123.59999999999999 -1.3325814903501225E-003 + 123.66000000000000 -1.3249029051797044E-003 + 123.72000000000000 -1.3173002749200594E-003 + 123.78000000000000 -1.3097730178591011E-003 + 123.84000000000000 -1.3023203332792354E-003 + 123.90000000000001 -1.2949413126276989E-003 + 123.95999999999998 -1.2876353212202757E-003 + 124.01999999999998 -1.2804014610437204E-003 + 124.07999999999998 -1.2732388194916418E-003 + 124.13999999999999 -1.2661464071046266E-003 + 124.19999999999999 -1.2591232921902835E-003 + 124.25999999999999 -1.2521686559546147E-003 + 124.31999999999999 -1.2452815135864472E-003 + 124.38000000000000 -1.2384609776677131E-003 + 124.44000000000000 -1.2317060222294812E-003 + 124.50000000000000 -1.2250159411432047E-003 + 124.56000000000000 -1.2183898303304477E-003 + 124.62000000000000 -1.2118269934883906E-003 + 124.68000000000001 -1.2053267140809956E-003 + 124.73999999999998 -1.1988883219463053E-003 + 124.79999999999998 -1.1925111932993028E-003 + 124.85999999999999 -1.1861946963581723E-003 + 124.91999999999999 -1.1799382363055786E-003 + 124.97999999999999 -1.1737412290888196E-003 + 125.03999999999999 -1.1676029361926946E-003 + 125.09999999999999 -1.1615228289275248E-003 + 125.16000000000000 -1.1555002919682730E-003 + 125.22000000000000 -1.1495346979804918E-003 + 125.28000000000000 -1.1436251596167583E-003 + 125.34000000000000 -1.1377711863325001E-003 + 125.40000000000001 -1.1319717908615996E-003 + 125.45999999999998 -1.1262262296991327E-003 + 125.51999999999998 -1.1205336264551240E-003 + 125.57999999999998 -1.1148931809959028E-003 + 125.63999999999999 -1.1093039742767462E-003 + 125.69999999999999 -1.1037650327557534E-003 + 125.75999999999999 -1.0982755064191134E-003 + 125.81999999999999 -1.0928344384655683E-003 + 125.88000000000000 -1.0874409407403236E-003 + 125.94000000000000 -1.0820941456591436E-003 + 126.00000000000000 -1.0767930699000219E-003 + 126.06000000000000 -1.0715368306737770E-003 + 126.12000000000000 -1.0663247348588470E-003 + 126.18000000000001 -1.0611558737603588E-003 + 126.23999999999998 -1.0560296133435565E-003 + 126.29999999999998 -1.0509451887941910E-003 + 126.35999999999999 -1.0459020954465040E-003 + 126.41999999999999 -1.0408997585412490E-003 + 126.47999999999999 -1.0359375430826054E-003 + 126.53999999999999 -1.0310150039153159E-003 + 126.59999999999999 -1.0261317444357162E-003 + 126.66000000000000 -1.0212873765132289E-003 + 126.72000000000000 -1.0164815562017156E-003 + 126.78000000000000 -1.0117139785883727E-003 + 126.84000000000000 -1.0069842272038452E-003 + 126.90000000000001 -1.0022920165928234E-003 + 126.95999999999998 -9.9763694195901869E-004 + 127.01999999999998 -9.9301868382255113E-004 + 127.07999999999998 -9.8843685942288104E-004 + 127.13999999999999 -9.8389108776999849E-004 + 127.19999999999999 -9.7938090045517328E-004 + 127.25999999999999 -9.7490597107841839E-004 + 127.31999999999999 -9.7046595640514399E-004 + 127.38000000000000 -9.6606046988244895E-004 + 127.44000000000000 -9.6168913105873683E-004 + 127.50000000000000 -9.5735181067273288E-004 + 127.56000000000000 -9.5304814494304548E-004 + 127.62000000000000 -9.4877811093602670E-004 + 127.68000000000001 -9.4454158884919349E-004 + 127.73999999999998 -9.4033868268743575E-004 + 127.79999999999998 -9.3616940893791612E-004 + 127.85999999999999 -9.3203394382436965E-004 + 127.91999999999999 -9.2793255193673191E-004 + 127.97999999999999 -9.2386555457566952E-004 + 128.03999999999999 -9.1983315110834600E-004 + 128.09999999999999 -9.1583566124917330E-004 + 128.16000000000000 -9.1187341068130971E-004 + 128.22000000000000 -9.0794669391587395E-004 + 128.28000000000000 -9.0405584738239360E-004 + 128.34000000000000 -9.0020105169906993E-004 + 128.40000000000001 -8.9638250734997663E-004 + 128.45999999999998 -8.9260045994571998E-004 + 128.51999999999998 -8.8885505308505374E-004 + 128.57999999999998 -8.8514645429297884E-004 + 128.63999999999999 -8.8147483626294966E-004 + 128.69999999999999 -8.7784042215476098E-004 + 128.75999999999999 -8.7424349880024885E-004 + 128.81999999999999 -8.7068435235238321E-004 + 128.88000000000000 -8.6716338319691301E-004 + 128.94000000000000 -8.6368106498027966E-004 + 129.00000000000000 -8.6023785375327361E-004 + 129.06000000000000 -8.5683443679590273E-004 + 129.12000000000000 -8.5347154450532599E-004 + 129.18000000000001 -8.5014998400996132E-004 + 129.23999999999998 -8.4687060593604310E-004 + 129.29999999999998 -8.4363427776246657E-004 + 129.35999999999999 -8.4044206882270464E-004 + 129.41999999999999 -8.3729498942786867E-004 + 129.47999999999999 -8.3419405491182066E-004 + 129.53999999999999 -8.3114033155851368E-004 + 129.59999999999999 -8.2813491144026453E-004 + 129.66000000000000 -8.2517891011507508E-004 + 129.72000000000000 -8.2227341783730793E-004 + 129.78000000000000 -8.1941960135709525E-004 + 129.84000000000000 -8.1661856602148941E-004 + 129.90000000000001 -8.1387156993943958E-004 + 129.95999999999998 -8.1117990697408761E-004 + 130.01999999999998 -8.0854483911973031E-004 + 130.07999999999998 -8.0596770317335504E-004 + 130.13999999999999 -8.0345005783192755E-004 + 130.19999999999999 -8.0099348024136215E-004 + 130.25999999999999 -7.9859960352512093E-004 + 130.31999999999999 -7.9627010646443272E-004 + 130.38000000000000 -7.9400688932056195E-004 + 130.44000000000000 -7.9181181427059465E-004 + 130.50000000000000 -7.8968685703822126E-004 + 130.56000000000000 -7.8763415729316282E-004 + 130.62000000000000 -7.8565580496330176E-004 + 130.68000000000001 -7.8375393516017520E-004 + 130.73999999999998 -7.8193084711797366E-004 + 130.79999999999998 -7.8018884833034696E-004 + 130.85999999999999 -7.7853027270620781E-004 + 130.91999999999999 -7.7695750075484590E-004 + 130.97999999999999 -7.7547297415178022E-004 + 131.03999999999999 -7.7407922072941912E-004 + 131.09999999999999 -7.7277880329980309E-004 + 131.16000000000000 -7.7157431036198147E-004 + 131.22000000000000 -7.7046832509444828E-004 + 131.28000000000000 -7.6946361274759275E-004 + 131.34000000000000 -7.6856291464764189E-004 + 131.40000000000001 -7.6776900792200763E-004 + 131.45999999999998 -7.6708466278859941E-004 + 131.51999999999998 -7.6651275238906285E-004 + 131.57999999999998 -7.6605610632909525E-004 + 131.63999999999999 -7.6571759705874615E-004 + 131.69999999999999 -7.6550007979903556E-004 + 131.75999999999999 -7.6540644658235264E-004 + 131.81999999999999 -7.6543954674899452E-004 + 131.88000000000000 -7.6560219148687301E-004 + 131.94000000000000 -7.6589714486176785E-004 + 132.00000000000000 -7.6632723282877679E-004 + 132.06000000000000 -7.6689519020436546E-004 + 132.12000000000000 -7.6760371149851337E-004 + 132.18000000000001 -7.6845544172337091E-004 + 132.23999999999998 -7.6945301908437971E-004 + 132.29999999999998 -7.7059893851758065E-004 + 132.35999999999999 -7.7189575087228339E-004 + 132.41999999999999 -7.7334579611725539E-004 + 132.47999999999999 -7.7495137541086154E-004 + 132.53999999999999 -7.7671476657396627E-004 + 132.59999999999999 -7.7863804187183251E-004 + 132.66000000000000 -7.8072314217439247E-004 + 132.72000000000000 -7.8297183109881827E-004 + 132.78000000000000 -7.8538575170221771E-004 + 132.84000000000000 -7.8796627535965389E-004 + 132.90000000000001 -7.9071456584906604E-004 + 132.95999999999998 -7.9363161803363332E-004 + 133.01999999999998 -7.9671812998376558E-004 + 133.07999999999998 -7.9997461292265377E-004 + 133.13999999999999 -8.0340115735790614E-004 + 133.19999999999999 -8.0699769910687737E-004 + 133.25999999999999 -8.1076391289803596E-004 + 133.31999999999999 -8.1469908380233877E-004 + 133.38000000000000 -8.1880221801212158E-004 + 133.44000000000000 -8.2307197533880937E-004 + 133.50000000000000 -8.2750680134647387E-004 + 133.56000000000000 -8.3210474689472940E-004 + 133.62000000000000 -8.3686349465663865E-004 + 133.68000000000001 -8.4178037627578091E-004 + 133.73999999999998 -8.4685231091355851E-004 + 133.79999999999998 -8.5207587418060181E-004 + 133.85999999999999 -8.5744719086998150E-004 + 133.91999999999999 -8.6296202762075106E-004 + 133.97999999999999 -8.6861559210383893E-004 + 134.03999999999999 -8.7440271499618241E-004 + 134.09999999999999 -8.8031771622091106E-004 + 134.16000000000000 -8.8635452859324199E-004 + 134.22000000000000 -8.9250654147563185E-004 + 134.28000000000000 -8.9876658349858545E-004 + 134.34000000000000 -9.0512704887802471E-004 + 134.40000000000001 -9.1157990567244137E-004 + 134.45999999999998 -9.1811661319249121E-004 + 134.51999999999998 -9.2472806217665704E-004 + 134.57999999999998 -9.3140484588154877E-004 + 134.63999999999999 -9.3813698958019351E-004 + 134.69999999999999 -9.4491406419357920E-004 + 134.75999999999999 -9.5172519294213812E-004 + 134.81999999999999 -9.5855909730163853E-004 + 134.88000000000000 -9.6540402567469512E-004 + 134.94000000000000 -9.7224782542346447E-004 + 135.00000000000000 -9.7907794570963698E-004 + 135.06000000000000 -9.8588141387841296E-004 + 135.12000000000000 -9.9264495624910680E-004 + 135.18000000000001 -9.9935487288449238E-004 + 135.23999999999998 -1.0059971354981253E-003 + 135.29999999999998 -1.0125574329103114E-003 + 135.35999999999999 -1.0190211753932274E-003 + 135.41999999999999 -1.0253734971944230E-003 + 135.47999999999999 -1.0315993946963945E-003 + 135.53999999999999 -1.0376835019185323E-003 + 135.59999999999999 -1.0436105208590431E-003 + 135.66000000000000 -1.0493649391823141E-003 + 135.72000000000000 -1.0549311996768079E-003 + 135.78000000000000 -1.0602936522144393E-003 + 135.84000000000000 -1.0654367863227520E-003 + 135.90000000000001 -1.0703448240592811E-003 + 135.95999999999998 -1.0750024448687963E-003 + 136.01999999999998 -1.0793941373741605E-003 + 136.07999999999998 -1.0835046960918067E-003 + 136.13999999999999 -1.0873189911383330E-003 + 136.19999999999999 -1.0908219732756500E-003 + 136.25999999999999 -1.0939990405318279E-003 + 136.31999999999999 -1.0968356270562320E-003 + 136.38000000000000 -1.0993176818473586E-003 + 136.44000000000000 -1.1014313163955718E-003 + 136.50000000000000 -1.1031631513227648E-003 + 136.56000000000000 -1.1045001481579076E-003 + 136.62000000000000 -1.1054300045467791E-003 + 136.68000000000001 -1.1059405339389268E-003 + 136.73999999999998 -1.1060204048791884E-003 + 136.79999999999998 -1.1056588998320143E-003 + 136.85999999999999 -1.1048458385141298E-003 + 136.91999999999999 -1.1035719542811190E-003 + 136.97999999999999 -1.1018286499151187E-003 + 137.03999999999999 -1.0996079351736276E-003 + 137.09999999999999 -1.0969028794324891E-003 + 137.16000000000000 -1.0937071016939592E-003 + 137.22000000000000 -1.0900153591886514E-003 + 137.28000000000000 -1.0858230874101068E-003 + 137.34000000000000 -1.0811265662369089E-003 + 137.40000000000001 -1.0759228747791014E-003 + 137.45999999999998 -1.0702101883144359E-003 + 137.51999999999998 -1.0639874505748760E-003 + 137.57999999999998 -1.0572543945649175E-003 + 137.63999999999999 -1.0500118444359112E-003 + 137.69999999999999 -1.0422612975102032E-003 + 137.75999999999999 -1.0340053729424247E-003 + 137.81999999999999 -1.0252475168982757E-003 + 137.88000000000000 -1.0159920676411857E-003 + 137.94000000000000 -1.0062444006584666E-003 + 138.00000000000000 -9.9601071964698618E-004 + 138.06000000000000 -9.8529831679799703E-004 + 138.12000000000000 -9.7411544274254175E-004 + 138.18000000000001 -9.6247113079763553E-004 + 138.23999999999998 -9.5037539710424277E-004 + 138.29999999999998 -9.3783933537723303E-004 + 138.35999999999999 -9.2487475699369148E-004 + 138.41999999999999 -9.1149441498767768E-004 + 138.47999999999999 -8.9771196497199579E-004 + 138.53999999999999 -8.8354168665332388E-004 + 138.59999999999999 -8.6899879357807441E-004 + 138.66000000000000 -8.5409908888920186E-004 + 138.72000000000000 -8.3885909677694525E-004 + 138.78000000000000 -8.2329590304009099E-004 + 138.84000000000000 -8.0742727880829383E-004 + 138.90000000000001 -7.9127150111483167E-004 + 138.95999999999998 -7.7484727765799127E-004 + 139.01999999999998 -7.5817372965896271E-004 + 139.07999999999998 -7.4127055337343099E-004 + 139.13999999999999 -7.2415764800210099E-004 + 139.19999999999999 -7.0685522287133699E-004 + 139.25999999999999 -6.8938385058059522E-004 + 139.31999999999999 -6.7176432907801293E-004 + 139.38000000000000 -6.5401765516776044E-004 + 139.44000000000000 -6.3616500864039727E-004 + 139.50000000000000 -6.1822756882424894E-004 + 139.56000000000000 -6.0022670395510128E-004 + 139.62000000000000 -5.8218375208708120E-004 + 139.68000000000001 -5.6412003762365071E-004 + 139.73999999999998 -5.4605687906222693E-004 + 139.79999999999998 -5.2801539994142411E-004 + 139.85999999999999 -5.1001660504781097E-004 + 139.91999999999999 -4.9208129599849937E-004 + 139.97999999999999 -4.7422995000261819E-004 + 140.03999999999999 -4.5648286079567413E-004 + 140.09999999999999 -4.3885986674756483E-004 + 140.16000000000000 -4.2138043386215547E-004 + 140.22000000000000 -4.0406366817842597E-004 + 140.28000000000000 -3.8692802454479440E-004 + 140.34000000000000 -3.6999161142578263E-004 + 140.40000000000001 -3.5327190739296784E-004 + 140.45999999999998 -3.3678580558728984E-004 + 140.51999999999998 -3.2054957945614371E-004 + 140.57999999999998 -3.0457884226039013E-004 + 140.63999999999999 -2.8888853845580116E-004 + 140.69999999999999 -2.7349291775176094E-004 + 140.75999999999999 -2.5840550385594066E-004 + 140.81999999999999 -2.4363909550370201E-004 + 140.88000000000000 -2.2920577129585608E-004 + 140.94000000000000 -2.1511682525551153E-004 + 141.00000000000000 -2.0138283830672707E-004 + 141.06000000000000 -1.8801368996411522E-004 + 141.12000000000000 -1.7501848583725691E-004 + 141.18000000000001 -1.6240566280698688E-004 + 141.23999999999998 -1.5018290427919133E-004 + 141.29999999999998 -1.3835724341310437E-004 + 141.35999999999999 -1.2693499469391766E-004 + 141.41999999999999 -1.1592184397144704E-004 + 141.47999999999999 -1.0532280274975208E-004 + 141.53999999999999 -9.5142237280074974E-005 + 141.59999999999999 -8.5383898559893503E-005 + 141.66000000000000 -7.6050901899507245E-005 + 141.72000000000000 -6.7145759823514391E-005 + 141.78000000000000 -5.8670369647786947E-005 + 141.84000000000000 -5.0626061549461917E-005 + 141.90000000000001 -4.3013574574605549E-005 + 141.95999999999998 -3.5833099661564023E-005 + 142.01999999999998 -2.9084311191614318E-005 + 142.07999999999998 -2.2766360118269252E-005 + 142.13999999999999 -1.6877952511221374E-005 + 142.19999999999999 -1.1417341460925086E-005 + 142.25999999999999 -6.3823911959055490E-006 + 142.31999999999999 -1.7706317005277094E-006 + 142.38000000000000 2.4207125263347028E-006 + 142.44000000000000 6.1946571142225361E-006 + 142.50000000000000 9.5544140647846775E-006 + 142.56000000000000 1.2503342406216054E-005 + 142.62000000000000 1.5044902207981189E-005 + 142.68000000000001 1.7182609104515787E-005 + 142.73999999999998 1.8919994889081813E-005 + 142.79999999999998 2.0260570709193861E-005 + 142.85999999999999 2.1207805122718026E-005 + 142.91999999999999 2.1765093002691420E-005 + 142.97999999999999 2.1935733615535117E-005 + 143.03999999999999 2.1722920798265283E-005 + 143.09999999999999 2.1129722631982794E-005 + 143.16000000000000 2.0159070606699921E-005 + 143.22000000000000 1.8813747938344814E-005 + 143.28000000000000 1.7096375781043371E-005 + 143.34000000000000 1.5009397976425701E-005 + 143.40000000000001 1.2555066950186122E-005 + 143.45999999999998 9.7354204302502633E-006 + 143.51999999999998 6.5522621213888534E-006 + 143.57999999999998 3.0071424361314690E-006 + 143.63999999999999 -8.9866987907904350E-007 + 143.69999999999999 -5.1642109797269852E-006 + 143.75999999999999 -9.7888439271275233E-006 + 143.81999999999999 -1.4772287973177829E-005 + 143.88000000000000 -2.0114627806709374E-005 + 143.94000000000000 -2.5816340059833636E-005 + 144.00000000000000 -3.1878292401120076E-005 + 144.06000000000000 -3.8301764795946243E-005 + 144.12000000000000 -4.5088441518048372E-005 + 144.18000000000001 -5.2240409585717503E-005 + 144.23999999999998 -5.9760144941377772E-005 + 144.29999999999998 -6.7650511971388736E-005 + 144.35999999999999 -7.5914732267477508E-005 + 144.41999999999999 -8.4556377749873490E-005 + 144.47999999999999 -9.3579342944203356E-005 + 144.53999999999999 -1.0298781896246525E-004 + 144.59999999999999 -1.1278626139798148E-004 + 144.66000000000000 -1.2297939152363960E-004 + 144.72000000000000 -1.3357214199804978E-004 + 144.78000000000000 -1.4456965412597516E-004 + 144.84000000000000 -1.5597721983463185E-004 + 144.90000000000001 -1.6780030389756053E-004 + 144.95999999999998 -1.8004447455743951E-004 + 145.01999999999998 -1.9271540789881218E-004 + 145.07999999999998 -2.0581882093380656E-004 + 145.13999999999999 -2.1936051304933052E-004 + 145.19999999999999 -2.3334626513257377E-004 + 145.25999999999999 -2.4778183286686660E-004 + 145.31999999999999 -2.6267292257720943E-004 + 145.38000000000000 -2.7802514352368181E-004 + 145.44000000000000 -2.9384400116024115E-004 + 145.50000000000000 -3.1013484209946334E-004 + 145.56000000000000 -3.2690278091091461E-004 + 145.62000000000000 -3.4415271147281547E-004 + 145.68000000000001 -3.6188925782732210E-004 + 145.73999999999998 -3.8011673843601438E-004 + 145.79999999999998 -3.9883904248299857E-004 + 145.85999999999999 -4.1805971925471176E-004 + 145.91999999999999 -4.3778185311281063E-004 + 145.97999999999999 -4.5800799960307671E-004 + 146.03999999999999 -4.7874021095546020E-004 + 146.09999999999999 -4.9997990408302058E-004 + 146.16000000000000 -5.2172787869375549E-004 + 146.22000000000000 -5.4398422947079942E-004 + 146.28000000000000 -5.6674829985564645E-004 + 146.34000000000000 -5.9001871162638931E-004 + 146.40000000000001 -6.1379301193947118E-004 + 146.45999999999998 -6.3806808869177809E-004 + 146.51999999999998 -6.6283983847726009E-004 + 146.57999999999998 -6.8810304089881799E-004 + 146.63999999999999 -7.1385155544063516E-004 + 146.69999999999999 -7.4007821491887645E-004 + 146.75999999999999 -7.6677459678070299E-004 + 146.81999999999999 -7.9393121232235935E-004 + 146.88000000000000 -8.2153744490666978E-004 + 146.94000000000000 -8.4958137825555521E-004 + 147.00000000000000 -8.7805001622517562E-004 + 147.06000000000000 -9.0692908894053484E-004 + 147.12000000000000 -9.3620309791012644E-004 + 147.18000000000001 -9.6585529377456311E-004 + 147.23999999999998 -9.9586762250933542E-004 + 147.29999999999998 -1.0262208611783903E-003 + 147.35999999999999 -1.0568943444850833E-003 + 147.41999999999999 -1.0878663156551102E-003 + 147.47999999999999 -1.1191135170692840E-003 + 147.53999999999999 -1.1506115160897046E-003 + 147.59999999999999 -1.1823345357067929E-003 + 147.66000000000000 -1.2142555488215132E-003 + 147.72000000000000 -1.2463461774892151E-003 + 147.78000000000000 -1.2785766931225932E-003 + 147.84000000000000 -1.3109162117649550E-003 + 147.90000000000001 -1.3433324252267891E-003 + 147.95999999999998 -1.3757918047980343E-003 + 148.01999999999998 -1.4082598438408794E-003 + 148.07999999999998 -1.4407005833235319E-003 + 148.13999999999999 -1.4730768865484462E-003 + 148.19999999999999 -1.5053508655357801E-003 + 148.25999999999999 -1.5374835233141488E-003 + 148.31999999999999 -1.5694346932994586E-003 + 148.38000000000000 -1.6011635590259499E-003 + 148.44000000000000 -1.6326282900172955E-003 + 148.50000000000000 -1.6637865199427366E-003 + 148.56000000000000 -1.6945951045420286E-003 + 148.62000000000000 -1.7250105472613299E-003 + 148.68000000000001 -1.7549884846401185E-003 + 148.73999999999998 -1.7844843481068075E-003 + 148.79999999999998 -1.8134533312606635E-003 + 148.85999999999999 -1.8418504316943770E-003 + 148.91999999999999 -1.8696301231464353E-003 + 148.97999999999999 -1.8967473799453407E-003 + 149.03999999999999 -1.9231569731813715E-003 + 149.09999999999999 -1.9488136750465811E-003 + 149.16000000000000 -1.9736727103340638E-003 + 149.22000000000000 -1.9976896993270190E-003 + 149.28000000000000 -2.0208204334737378E-003 + 149.34000000000000 -2.0430216855667634E-003 + 149.40000000000001 -2.0642503170484128E-003 + 149.45999999999998 -2.0844644935884638E-003 + 149.51999999999998 -2.1036232183577483E-003 + 149.57999999999998 -2.1216861767390151E-003 + 149.63999999999999 -2.1386141780625071E-003 + 149.69999999999999 -2.1543694932641831E-003 + 149.75999999999999 -2.1689154319813483E-003 + 149.81999999999999 -2.1822170468562556E-003 + 149.88000000000000 -2.1942402760305761E-003 + 149.94000000000000 -2.2049530349343700E-003 + 150.00000000000000 -2.2143248926409708E-003 + 150.06000000000000 -2.2223270633442444E-003 + 150.12000000000000 -2.2289325212220021E-003 + 150.18000000000001 -2.2341162895581474E-003 + 150.23999999999998 -2.2378555379096291E-003 + 150.29999999999998 -2.2401288513273225E-003 + 150.35999999999999 -2.2409179562467465E-003 + 150.41999999999999 -2.2402060080147219E-003 + 150.47999999999999 -2.2379787811056123E-003 + 150.53999999999999 -2.2342242334572738E-003 + 150.59999999999999 -2.2289329074581640E-003 + 150.66000000000000 -2.2220975914890116E-003 + 150.72000000000000 -2.2137133251888155E-003 + 150.78000000000000 -2.2037780537855732E-003 + 150.84000000000000 -2.1922920640806642E-003 + 150.90000000000001 -2.1792576530567471E-003 + 150.95999999999998 -2.1646804481518962E-003 + 151.01999999999998 -2.1485680076066978E-003 + 151.07999999999998 -2.1309304535020086E-003 + 151.13999999999999 -2.1117801293635704E-003 + 151.19999999999999 -2.0911321857515256E-003 + 151.25999999999999 -2.0690040126323437E-003 + 151.31999999999999 -2.0454151829111256E-003 + 151.38000000000000 -2.0203877065255648E-003 + 151.44000000000000 -1.9939456981623782E-003 + 151.50000000000000 -1.9661154164636119E-003 + 151.56000000000000 -1.9369255906690811E-003 + 151.62000000000000 -1.9064069359287772E-003 + 151.68000000000001 -1.8745917852001166E-003 + 151.73999999999998 -1.8415149947909814E-003 + 151.79999999999998 -1.8072131753703641E-003 + 151.85999999999999 -1.7717244127470960E-003 + 151.91999999999999 -1.7350890861220544E-003 + 151.97999999999999 -1.6973487345926146E-003 + 152.03999999999999 -1.6585469449057720E-003 + 152.09999999999999 -1.6187284823991424E-003 + 152.16000000000000 -1.5779394496806050E-003 + 152.22000000000000 -1.5362274797875962E-003 + 152.28000000000000 -1.4936412638278714E-003 + 152.34000000000000 -1.4502304612577473E-003 + 152.40000000000001 -1.4060456868214060E-003 + 152.45999999999998 -1.3611383337808110E-003 + 152.51999999999998 -1.3155605380295468E-003 + 152.57999999999998 -1.2693649740569415E-003 + 152.63999999999999 -1.2226048071637251E-003 + 152.69999999999999 -1.1753333744979656E-003 + 152.75999999999999 -1.1276043824321898E-003 + 152.81999999999999 -1.0794715738461657E-003 + 152.88000000000000 -1.0309887600100311E-003 + 152.94000000000000 -9.8220945848637923E-004 + 153.00000000000000 -9.3318711062682989E-004 + 153.06000000000000 -8.8397493957948501E-004 + 153.12000000000000 -8.3462574416643016E-004 + 153.17999999999998 -7.8519180213785426E-004 + 153.23999999999998 -7.3572481806774331E-004 + 153.29999999999998 -6.8627591958529818E-004 + 153.35999999999999 -6.3689547508960216E-004 + 153.41999999999999 -5.8763305755541264E-004 + 153.47999999999999 -5.3853724713214522E-004 + 153.53999999999999 -4.8965581442124971E-004 + 153.59999999999999 -4.4103535653144764E-004 + 153.66000000000000 -3.9272147301301088E-004 + 153.72000000000000 -3.4475847127074196E-004 + 153.78000000000000 -2.9718948181598533E-004 + 153.84000000000000 -2.5005638973980788E-004 + 153.90000000000001 -2.0339960778859847E-004 + 153.95999999999998 -1.5725815309243892E-004 + 154.01999999999998 -1.1166963418927888E-004 + 154.07999999999998 -6.6670137859722834E-005 + 154.13999999999999 -2.2294184044906943E-005 + 154.19999999999999 2.1425277482467592E-005 + 154.25999999999999 6.4456877482866744E-005 + 154.31999999999999 1.0677089641171936E-004 + 154.38000000000000 1.4833925213656598E-004 + 154.44000000000000 1.8913550817613073E-004 + 154.50000000000000 2.2913491090429473E-004 + 154.56000000000000 2.6831434973365075E-004 + 154.62000000000000 3.0665240131796327E-004 + 154.67999999999998 3.4412927338445254E-004 + 154.73999999999998 3.8072685997761995E-004 + 154.79999999999998 4.1642862823450868E-004 + 154.85999999999999 4.5121967654828061E-004 + 154.91999999999999 4.8508666670901793E-004 + 154.97999999999999 5.1801785517830107E-004 + 155.03999999999999 5.5000288919905918E-004 + 155.09999999999999 5.8103305816243917E-004 + 155.16000000000000 6.1110097602915968E-004 + 155.22000000000000 6.4020083840218291E-004 + 155.28000000000000 6.6832799756844942E-004 + 155.34000000000000 6.9547935451505472E-004 + 155.40000000000001 7.2165300916916624E-004 + 155.45999999999998 7.4684846624306427E-004 + 155.51999999999998 7.7106631231087599E-004 + 155.57999999999998 7.9430851846522699E-004 + 155.63999999999999 8.1657818620942959E-004 + 155.69999999999999 8.3787948078032726E-004 + 155.75999999999999 8.5821785997198326E-004 + 155.81999999999999 8.7759972889286508E-004 + 155.88000000000000 8.9603266251512832E-004 + 155.94000000000000 9.1352508091571173E-004 + 156.00000000000000 9.3008658627836234E-004 + 156.06000000000000 9.4572744312454427E-004 + 156.12000000000000 9.6045885076701052E-004 + 156.17999999999998 9.7429298924211908E-004 + 156.23999999999998 9.8724248431035022E-004 + 156.29999999999998 9.9932092053995432E-004 + 156.35999999999999 1.0105423529982135E-003 + 156.41999999999999 1.0209214688086219E-003 + 156.47999999999999 1.0304733695723199E-003 + 156.53999999999999 1.0392139541599737E-003 + 156.59999999999999 1.0471592375306986E-003 + 156.66000000000000 1.0543257363646538E-003 + 156.72000000000000 1.0607304730557733E-003 + 156.78000000000000 1.0663906376514915E-003 + 156.84000000000000 1.0713237690079208E-003 + 156.90000000000001 1.0755476803073741E-003 + 156.95999999999998 1.0790803797621478E-003 + 157.01999999999998 1.0819400158149839E-003 + 157.07999999999998 1.0841452735285645E-003 + 157.13999999999999 1.0857146534132311E-003 + 157.19999999999999 1.0866669440355728E-003 + 157.25999999999999 1.0870210292481773E-003 + 157.31999999999999 1.0867958234178816E-003 + 157.38000000000000 1.0860104416009471E-003 + 157.44000000000000 1.0846837133330319E-003 + 157.50000000000000 1.0828348584190886E-003 + 157.56000000000000 1.0804826728167691E-003 + 157.62000000000000 1.0776461965182095E-003 + 157.67999999999998 1.0743442526060085E-003 + 157.73999999999998 1.0705954202904447E-003 + 157.79999999999998 1.0664181236183642E-003 + 157.85999999999999 1.0618308201176126E-003 + 157.91999999999999 1.0568517195714052E-003 + 157.97999999999999 1.0514984576375332E-003 + 158.03999999999999 1.0457889716597988E-003 + 158.09999999999999 1.0397406181761439E-003 + 158.16000000000000 1.0333705920438541E-003 + 158.22000000000000 1.0266958397597136E-003 + 158.28000000000000 1.0197329176566412E-003 + 158.34000000000000 1.0124982064980475E-003 + 158.40000000000001 1.0050078718105452E-003 + 158.45999999999998 9.9727758747749241E-004 + 158.51999999999998 9.8932283496974086E-004 + 158.57999999999998 9.8115870695750403E-004 + 158.63999999999999 9.7279986858236434E-004 + 158.69999999999999 9.6426089859975752E-004 + 158.75999999999999 9.5555572167559685E-004 + 158.81999999999999 9.4669800066120638E-004 + 158.88000000000000 9.3770101330266397E-004 + 158.94000000000000 9.2857767778143057E-004 + 159.00000000000000 9.1934053746088563E-004 + 159.06000000000000 9.1000167787274450E-004 + 159.12000000000000 9.0057294549157835E-004 + 159.17999999999998 8.9106563259724273E-004 + 159.23999999999998 8.8149077955696029E-004 + 159.29999999999998 8.7185894285332676E-004 + 159.35999999999999 8.6218038547864590E-004 + 159.41999999999999 8.5246497359565293E-004 + 159.47999999999999 8.4272213051354665E-004 + 159.53999999999999 8.3296105048797633E-004 + 159.59999999999999 8.2319048492268340E-004 + 159.66000000000000 8.1341879435429545E-004 + 159.72000000000000 8.0365395766133325E-004 + 159.78000000000000 7.9390368457623846E-004 + 159.84000000000000 7.8417519316105434E-004 + 159.90000000000001 7.7447544368467629E-004 + 159.95999999999998 7.6481094202651852E-004 + 160.01999999999998 7.5518795485142128E-004 + 160.07999999999998 7.4561223324916650E-004 + 160.13999999999999 7.3608926578527182E-004 + 160.19999999999999 7.2662415365312325E-004 + 160.25999999999999 7.1722168505103997E-004 + 160.31999999999999 7.0788636421505744E-004 + 160.38000000000000 6.9862234127333162E-004 + 160.44000000000000 6.8943349401156487E-004 + 160.50000000000000 6.8032343593920285E-004 + 160.56000000000000 6.7129545442868688E-004 + 160.62000000000000 6.6235257001289035E-004 + 160.67999999999998 6.5349755225340789E-004 + 160.73999999999998 6.4473299824083046E-004 + 160.79999999999998 6.3606133095373376E-004 + 160.85999999999999 6.2748459488186825E-004 + 160.91999999999999 6.1900472578468456E-004 + 160.97999999999999 6.1062348719093378E-004 + 161.03999999999999 6.0234237881347003E-004 + 161.09999999999999 5.9416271278006953E-004 + 161.16000000000000 5.8608566157410200E-004 + 161.22000000000000 5.7811223876767727E-004 + 161.28000000000000 5.7024328190544279E-004 + 161.34000000000000 5.6247945620309056E-004 + 161.40000000000001 5.5482125171553843E-004 + 161.45999999999998 5.4726914648564780E-004 + 161.51999999999998 5.3982332669002826E-004 + 161.57999999999998 5.3248394908344285E-004 + 161.63999999999999 5.2525104281467901E-004 + 161.69999999999999 5.1812448390007367E-004 + 161.75999999999999 5.1110408019251416E-004 + 161.81999999999999 5.0418960818156429E-004 + 161.88000000000000 4.9738069077775538E-004 + 161.94000000000000 4.9067689058302779E-004 + 162.00000000000000 4.8407763954909388E-004 + 162.06000000000000 4.7758237262534643E-004 + 162.12000000000000 4.7119041816700712E-004 + 162.17999999999998 4.6490108651085999E-004 + 162.23999999999998 4.5871356068336521E-004 + 162.29999999999998 4.5262704579367819E-004 + 162.35999999999999 4.4664065020299262E-004 + 162.41999999999999 4.4075348004433376E-004 + 162.47999999999999 4.3496462048010906E-004 + 162.53999999999999 4.2927311283315242E-004 + 162.59999999999999 4.2367802147911046E-004 + 162.66000000000000 4.1817836054181809E-004 + 162.72000000000000 4.1277320699772041E-004 + 162.78000000000000 4.0746154421447456E-004 + 162.84000000000000 4.0224244316003436E-004 + 162.90000000000001 3.9711490892033251E-004 + 162.95999999999998 3.9207796282806110E-004 + 163.01999999999998 3.8713057948659078E-004 + 163.07999999999998 3.8227173012625790E-004 + 163.13999999999999 3.7750039818281968E-004 + 163.19999999999999 3.7281547606780668E-004 + 163.25999999999999 3.6821585295079319E-004 + 163.31999999999999 3.6370033039673959E-004 + 163.38000000000000 3.5926770599933595E-004 + 163.44000000000000 3.5491671856752123E-004 + 163.50000000000000 3.5064604576078311E-004 + 163.56000000000000 3.4645434548234808E-004 + 163.62000000000000 3.4234026712413093E-004 + 163.67999999999998 3.3830241533392395E-004 + 163.73999999999998 3.3433940513851162E-004 + 163.79999999999998 3.3044984724568677E-004 + 163.85999999999999 3.2663235878248044E-004 + 163.91999999999999 3.2288560853576179E-004 + 163.97999999999999 3.1920824193919423E-004 + 164.03999999999999 3.1559900280919907E-004 + 164.09999999999999 3.1205661663228799E-004 + 164.16000000000000 3.0857989838720357E-004 + 164.22000000000000 3.0516766110424580E-004 + 164.28000000000000 3.0181878361100522E-004 + 164.34000000000000 2.9853215912003882E-004 + 164.40000000000001 2.9530666843790134E-004 + 164.45999999999998 2.9214125682580590E-004 + 164.51999999999998 2.8903484157436236E-004 + 164.57999999999998 2.8598633856771055E-004 + 164.63999999999999 2.8299466240536717E-004 + 164.69999999999999 2.8005873107296147E-004 + 164.75999999999999 2.7717743338430433E-004 + 164.81999999999999 2.7434974973609944E-004 + 164.88000000000000 2.7157455339741021E-004 + 164.94000000000000 2.6885079601201179E-004 + 165.00000000000000 2.6617743963887357E-004 + 165.06000000000000 2.6355346848569932E-004 + 165.12000000000000 2.6097793973456774E-004 + 165.17999999999998 2.5844992239227921E-004 + 165.23999999999998 2.5596857887619402E-004 + 165.29999999999998 2.5353312758996530E-004 + 165.35999999999999 2.5114278839964720E-004 + 165.41999999999999 2.4879697264856214E-004 + 165.47999999999999 2.4649508362246394E-004 + 165.53999999999999 2.4423662161840134E-004 + 165.59999999999999 2.4202112000279826E-004 + 165.66000000000000 2.3984820439321717E-004 + 165.72000000000000 2.3771756003655126E-004 + 165.78000000000000 2.3562891351307030E-004 + 165.84000000000000 2.3358207590434084E-004 + 165.90000000000001 2.3157687113659284E-004 + 165.95999999999998 2.2961321522695590E-004 + 166.01999999999998 2.2769103927419991E-004 + 166.07999999999998 2.2581035229652497E-004 + 166.13999999999999 2.2397118127551874E-004 + 166.19999999999999 2.2217364899320370E-004 + 166.25999999999999 2.2041789453993975E-004 + 166.31999999999999 2.1870412509457596E-004 + 166.38000000000000 2.1703261494856788E-004 + 166.44000000000000 2.1540367348635967E-004 + 166.50000000000000 2.1381768743976035E-004 + 166.56000000000000 2.1227510299360683E-004 + 166.62000000000000 2.1077640920693727E-004 + 166.67999999999998 2.0932219641957108E-004 + 166.73999999999998 2.0791307552895053E-004 + 166.79999999999998 2.0654972476440655E-004 + 166.85999999999999 2.0523290486381855E-004 + 166.91999999999999 2.0396343238220137E-004 + 166.97999999999999 2.0274216736674436E-004 + 167.03999999999999 2.0157007788111918E-004 + 167.09999999999999 2.0044817340312770E-004 + 167.16000000000000 1.9937756327679376E-004 + 167.22000000000000 1.9835941168497984E-004 + 167.28000000000000 1.9739497136196619E-004 + 167.34000000000000 1.9648557509621554E-004 + 167.40000000000001 1.9563264928929830E-004 + 167.45999999999998 1.9483768295762278E-004 + 167.51999999999998 1.9410227572467639E-004 + 167.57999999999998 1.9342808944209635E-004 + 167.63999999999999 1.9281685117797875E-004 + 167.69999999999999 1.9227038717036497E-004 + 167.75999999999999 1.9179059327834922E-004 + 167.81999999999999 1.9137940188209107E-004 + 167.88000000000000 1.9103884482311984E-004 + 167.94000000000000 1.9077098728443096E-004 + 168.00000000000000 1.9057794459364689E-004 + 168.06000000000000 1.9046189793410831E-004 + 168.12000000000000 1.9042507387257161E-004 + 168.17999999999998 1.9046974412022184E-004 + 168.23999999999998 1.9059823147647044E-004 + 168.29999999999998 1.9081288540973926E-004 + 168.35999999999999 1.9111613365112401E-004 + 168.41999999999999 1.9151043077711500E-004 + 168.47999999999999 1.9199823092256663E-004 + 168.53999999999999 1.9258208466217704E-004 + 168.59999999999999 1.9326453368277637E-004 + 168.66000000000000 1.9404814198884898E-004 + 168.72000000000000 1.9493549171764379E-004 + 168.78000000000000 1.9592917874639707E-004 + 168.84000000000000 1.9703177272638233E-004 + 168.90000000000001 1.9824585945641882E-004 + 168.95999999999998 1.9957394918896057E-004 + 169.01999999999998 2.0101856071472754E-004 + 169.07999999999998 2.0258213594979841E-004 + 169.13999999999999 2.0426703958656493E-004 + 169.19999999999999 2.0607560841609773E-004 + 169.25999999999999 2.0801003960127266E-004 + 169.31999999999999 2.1007245846416426E-004 + 169.38000000000000 2.1226485105277709E-004 + 169.44000000000000 2.1458915033949639E-004 + 169.50000000000000 2.1704710194384179E-004 + 169.56000000000000 2.1964033415585035E-004 + 169.62000000000000 2.2237029172575068E-004 + 169.67999999999998 2.2523826166688131E-004 + 169.73999999999998 2.2824536537388525E-004 + 169.79999999999998 2.3139248919468462E-004 + 169.85999999999999 2.3468031102778179E-004 + 169.91999999999999 2.3810925832030093E-004 + 169.97999999999999 2.4167951288248744E-004 + 170.03999999999999 2.4539096184743753E-004 + 170.09999999999999 2.4924322275684618E-004 + 170.16000000000000 2.5323561322381676E-004 + 170.22000000000000 2.5736708876928418E-004 + 170.28000000000000 2.6163631332773191E-004 + 170.34000000000000 2.6604160660239289E-004 + 170.40000000000001 2.7058094783144666E-004 + 170.45999999999998 2.7525192730132797E-004 + 170.51999999999998 2.8005182485871737E-004 + 170.57999999999998 2.8497759589658355E-004 + 170.63999999999999 2.9002577256735033E-004 + 170.69999999999999 2.9519255665085540E-004 + 170.75999999999999 3.0047381962815468E-004 + 170.81999999999999 3.0586504104436815E-004 + 170.88000000000000 3.1136129726194354E-004 + 170.94000000000000 3.1695733898634424E-004 + 171.00000000000000 3.2264748356377704E-004 + 171.06000000000000 3.2842570076961234E-004 + 171.12000000000000 3.3428552110856404E-004 + 171.17999999999998 3.4022005737485819E-004 + 171.23999999999998 3.4622197424521550E-004 + 171.29999999999998 3.5228351688894284E-004 + 171.35999999999999 3.5839647186858530E-004 + 171.41999999999999 3.6455216132377549E-004 + 171.47999999999999 3.7074145758490747E-004 + 171.53999999999999 3.7695480790571486E-004 + 171.59999999999999 3.8318216617212514E-004 + 171.66000000000000 3.8941311221986439E-004 + 171.72000000000000 3.9563673677173633E-004 + 171.78000000000000 4.0184179189787069E-004 + 171.84000000000000 4.0801657394899432E-004 + 171.90000000000001 4.1414908295564517E-004 + 171.95999999999998 4.2022693657555040E-004 + 172.01999999999998 4.2623745723015331E-004 + 172.07999999999998 4.3216762202770241E-004 + 172.13999999999999 4.3800413785085489E-004 + 172.19999999999999 4.4373347825567034E-004 + 172.25999999999999 4.4934180382911240E-004 + 172.31999999999999 4.5481506366064822E-004 + 172.38000000000000 4.6013903769665773E-004 + 172.44000000000000 4.6529921465127214E-004 + 172.50000000000000 4.7028089218841419E-004 + 172.56000000000000 4.7506924381982251E-004 + 172.62000000000000 4.7964916679549881E-004 + 172.67999999999998 4.8400549830177763E-004 + 172.73999999999998 4.8812281994353046E-004 + 172.79999999999998 4.9198566726529956E-004 + 172.85999999999999 4.9557843820787265E-004 + 172.91999999999999 4.9888537811778417E-004 + 172.97999999999999 5.0189075813246290E-004 + 173.03999999999999 5.0457881473042223E-004 + 173.09999999999999 5.0693374384755245E-004 + 173.16000000000000 5.0893981769798335E-004 + 173.22000000000000 5.1058136508711144E-004 + 173.28000000000000 5.1184284262481864E-004 + 173.34000000000000 5.1270878841897329E-004 + 173.40000000000001 5.1316396980191701E-004 + 173.45999999999998 5.1319337684637399E-004 + 173.51999999999998 5.1278223682915192E-004 + 173.57999999999998 5.1191613588777679E-004 + 173.63999999999999 5.1058085876447420E-004 + 173.69999999999999 5.0876269333144754E-004 + 173.75999999999999 5.0644818135519708E-004 + 173.81999999999999 5.0362442519648115E-004 + 173.88000000000000 5.0027886974266260E-004 + 173.94000000000000 4.9639951488286119E-004 + 174.00000000000000 4.9197482783719783E-004 + 174.06000000000000 4.8699382712308245E-004 + 174.12000000000000 4.8144602600992464E-004 + 174.17999999999998 4.7532161394351442E-004 + 174.23999999999998 4.6861133824817498E-004 + 174.29999999999998 4.6130655996059013E-004 + 174.35999999999999 4.5339935995521559E-004 + 174.41999999999999 4.4488240913237946E-004 + 174.47999999999999 4.3574911102968954E-004 + 174.53999999999999 4.2599365953543142E-004 + 174.59999999999999 4.1561092821181450E-004 + 174.66000000000000 4.0459665327128994E-004 + 174.72000000000000 3.9294735606154618E-004 + 174.78000000000000 3.8066037177735148E-004 + 174.84000000000000 3.6773394658775547E-004 + 174.90000000000001 3.5416727142431142E-004 + 174.95999999999998 3.3996042545393873E-004 + 175.01999999999998 3.2511445233156336E-004 + 175.07999999999998 3.0963140310147878E-004 + 175.13999999999999 2.9351436461538295E-004 + 175.19999999999999 2.7676738832797424E-004 + 175.25999999999999 2.5939566715871444E-004 + 175.31999999999999 2.4140534768091583E-004 + 175.38000000000000 2.2280370204536551E-004 + 175.44000000000000 2.0359904415979970E-004 + 175.50000000000000 1.8380079051409678E-004 + 175.56000000000000 1.6341935782372249E-004 + 175.62000000000000 1.4246626060624706E-004 + 175.67999999999998 1.2095403469093646E-004 + 175.73999999999998 9.8896245232899183E-005 + 175.79999999999998 7.6307491832393863E-005 + 175.85999999999999 5.3203379355527303E-005 + 175.91999999999999 2.9600526067024846E-005 + 175.97999999999999 5.5165394806189267E-006 + 176.03999999999999 -1.9030007713932546E-005 + 176.09999999999999 -4.4019525575930338E-005 + 176.16000000000000 -6.9431490614289747E-005 + 176.22000000000000 -9.5244380602617305E-005 + 176.28000000000000 -1.2143573936388398E-004 + 176.34000000000000 -1.4798214689376897E-004 + 176.40000000000001 -1.7485925611432563E-004 + 176.45999999999998 -2.0204178253192164E-004 + 176.51999999999998 -2.2950353199317107E-004 + 176.57999999999998 -2.5721744840079210E-004 + 176.63999999999999 -2.8515560120443209E-004 + 176.69999999999999 -3.1328922513895404E-004 + 176.75999999999999 -3.4158878369556546E-004 + 176.81999999999999 -3.7002398349933853E-004 + 176.88000000000000 -3.9856382006293027E-004 + 176.94000000000000 -4.2717666435556262E-004 + 177.00000000000000 -4.5583026598648610E-004 + 177.06000000000000 -4.8449177883176268E-004 + 177.12000000000000 -5.1312789855041750E-004 + 177.17999999999998 -5.4170488148734682E-004 + 177.23999999999998 -5.7018855074688973E-004 + 177.29999999999998 -5.9854435324202548E-004 + 177.35999999999999 -6.2673749474232148E-004 + 177.41999999999999 -6.5473289170687229E-004 + 177.47999999999999 -6.8249525368721173E-004 + 177.53999999999999 -7.0998915351774188E-004 + 177.59999999999999 -7.3717903231828089E-004 + 177.66000000000000 -7.6402924188968704E-004 + 177.72000000000000 -7.9050417616064351E-004 + 177.78000000000000 -8.1656820332749649E-004 + 177.84000000000000 -8.4218590333760000E-004 + 177.90000000000001 -8.6732181657744694E-004 + 177.95999999999998 -8.9194081833857814E-004 + 178.01999999999998 -9.1600802101489453E-004 + 178.07999999999998 -9.3948887349351031E-004 + 178.13999999999999 -9.6234920617150883E-004 + 178.19999999999999 -9.8455529735533569E-004 + 178.25999999999999 -1.0060739622605392E-003 + 178.31999999999999 -1.0268726992158591E-003 + 178.38000000000000 -1.0469196300478807E-003 + 178.44000000000000 -1.0661835021827542E-003 + 178.50000000000000 -1.0846340570457057E-003 + 178.56000000000000 -1.1022417006797667E-003 + 178.62000000000000 -1.1189778772083632E-003 + 178.67999999999998 -1.1348149290015240E-003 + 178.73999999999998 -1.1497264605122633E-003 + 178.79999999999998 -1.1636868426608161E-003 + 178.85999999999999 -1.1766717742782099E-003 + 178.91999999999999 -1.1886582176748033E-003 + 178.97999999999999 -1.1996241878960126E-003 + 179.03999999999999 -1.2095493171804723E-003 + 179.09999999999999 -1.2184142938327907E-003 + 179.16000000000000 -1.2262013516221634E-003 + 179.22000000000000 -1.2328941571778879E-003 + 179.28000000000000 -1.2384777693901256E-003 + 179.34000000000000 -1.2429388988119028E-003 + 179.40000000000001 -1.2462656091517261E-003 + 179.45999999999998 -1.2484477329962357E-003 + 179.51999999999998 -1.2494766556598162E-003 + 179.57999999999998 -1.2493454921886674E-003 + 179.63999999999999 -1.2480488475467119E-003 + 179.69999999999999 -1.2455832144270494E-003 + 179.75999999999999 -1.2419468030313839E-003 + 179.81999999999999 -1.2371393803405353E-003 + 179.88000000000000 -1.2311626304775899E-003 + 179.94000000000000 -1.2240199913406691E-003 + 180.00000000000000 -1.2157166356155540E-003 + 180.06000000000000 -1.2062593660705596E-003 + 180.12000000000000 -1.1956569727671305E-003 + 180.17999999999998 -1.1839197898591072E-003 + 180.23999999999998 -1.1710599981015358E-003 + 180.29999999999998 -1.1570913903640233E-003 + 180.35999999999999 -1.1420294998950194E-003 + 180.41999999999999 -1.1258914400734071E-003 + 180.47999999999999 -1.1086960704826678E-003 + 180.53999999999999 -1.0904635944511941E-003 + 180.59999999999999 -1.0712160446675943E-003 + 180.66000000000000 -1.0509766712127916E-003 + 180.72000000000000 -1.0297702413470330E-003 + 180.78000000000000 -1.0076228523120093E-003 + 180.84000000000000 -9.8456194531490373E-004 + 180.90000000000001 -9.6061628416124745E-004 + 180.95999999999998 -9.3581565666804513E-004 + 181.01999999999998 -9.1019121626912975E-004 + 181.07999999999998 -8.8377493474001460E-004 + 181.13999999999999 -8.5659999047647361E-004 + 181.19999999999999 -8.2870042932168197E-004 + 181.25999999999999 -8.0011116861212843E-004 + 181.31999999999999 -7.7086794690645749E-004 + 181.38000000000000 -7.4100710457039652E-004 + 181.44000000000000 -7.1056585004562267E-004 + 181.50000000000000 -6.7958182823564810E-004 + 181.56000000000000 -6.4809318817941994E-004 + 181.62000000000000 -6.1613847471526603E-004 + 181.67999999999998 -5.8375662898909480E-004 + 181.73999999999998 -5.5098676946176617E-004 + 181.79999999999998 -5.1786813793605786E-004 + 181.85999999999999 -4.8444008040090158E-004 + 181.91999999999999 -4.5074189679052698E-004 + 181.97999999999999 -4.1681274571699333E-004 + 182.03999999999999 -3.8269157027456477E-004 + 182.09999999999999 -3.4841705218852955E-004 + 182.16000000000000 -3.1402752806663234E-004 + 182.22000000000000 -2.7956087145311593E-004 + 182.28000000000000 -2.4505448747091268E-004 + 182.34000000000000 -2.1054516011555701E-004 + 182.39999999999998 -1.7606912901853050E-004 + 182.45999999999998 -1.4166186834657711E-004 + 182.51999999999998 -1.0735816608772902E-004 + 182.57999999999998 -7.3192017506303075E-005 + 182.63999999999999 -3.9196581793772645E-005 + 182.69999999999999 -5.4041655159933259E-006 + 182.75999999999999 2.8153845047267929E-005 + 182.81999999999999 6.1447006886827070E-005 + 182.88000000000000 9.4445857613561989E-005 + 182.94000000000000 1.2712196372191266E-004 + 183.00000000000000 1.5944795595290387E-004 + 183.06000000000000 1.9139753316441610E-004 + 183.12000000000000 2.2294552440589913E-004 + 183.17999999999998 2.5406790022354758E-004 + 183.23999999999998 2.8474180342074516E-004 + 183.29999999999998 3.1494553797062959E-004 + 183.35999999999999 3.4465861722111256E-004 + 183.41999999999999 3.7386177600441352E-004 + 183.47999999999999 4.0253686385991562E-004 + 183.53999999999999 4.3066705871729971E-004 + 183.59999999999999 4.5823663605648146E-004 + 183.66000000000000 4.8523107327201425E-004 + 183.72000000000000 5.1163700623050397E-004 + 183.78000000000000 5.3744219940069936E-004 + 183.84000000000000 5.6263551612048459E-004 + 183.89999999999998 5.8720686808883058E-004 + 183.95999999999998 6.1114724519898875E-004 + 184.01999999999998 6.3444866454506830E-004 + 184.07999999999998 6.5710406119243755E-004 + 184.13999999999999 6.7910734326558499E-004 + 184.19999999999999 7.0045329688579749E-004 + 184.25999999999999 7.2113760077336189E-004 + 184.31999999999999 7.4115683555531296E-004 + 184.38000000000000 7.6050826162689107E-004 + 184.44000000000000 7.7918998556264388E-004 + 184.50000000000000 7.9720084059107122E-004 + 184.56000000000000 8.1454042014171828E-004 + 184.62000000000000 8.3120894121541675E-004 + 184.67999999999998 8.4720725331322911E-004 + 184.73999999999998 8.6253679704469371E-004 + 184.79999999999998 8.7719959743639251E-004 + 184.85999999999999 8.9119824576957315E-004 + 184.91999999999999 9.0453578521277516E-004 + 184.97999999999999 9.1721571578511996E-004 + 185.03999999999999 9.2924203249583647E-004 + 185.09999999999999 9.4061904766548903E-004 + 185.16000000000000 9.5135149520378013E-004 + 185.22000000000000 9.6144434373570916E-004 + 185.28000000000000 9.7090282429721127E-004 + 185.34000000000000 9.7973257790922555E-004 + 185.39999999999998 9.8793933207802953E-004 + 185.45999999999998 9.9552897671583047E-004 + 185.51999999999998 1.0025077193941017E-003 + 185.57999999999998 1.0088818687069069E-003 + 185.63999999999999 1.0146577129868915E-003 + 185.69999999999999 1.0198417846279796E-003 + 185.75999999999999 1.0244406766458519E-003 + 185.81999999999999 1.0284611352098794E-003 + 185.88000000000000 1.0319099448713506E-003 + 185.94000000000000 1.0347938445262770E-003 + 186.00000000000000 1.0371197032493947E-003 + 186.06000000000000 1.0388945559687281E-003 + 186.12000000000000 1.0401253679504852E-003 + 186.17999999999998 1.0408192327949679E-003 + 186.23999999999998 1.0409833232871712E-003 + 186.29999999999998 1.0406246761319785E-003 + 186.35999999999999 1.0397506287471009E-003 + 186.41999999999999 1.0383684219170146E-003 + 186.47999999999999 1.0364855835413836E-003 + 186.53999999999999 1.0341094427290067E-003 + 186.59999999999999 1.0312474384099411E-003 + 186.66000000000000 1.0279073501291256E-003 + 186.72000000000000 1.0240965787561443E-003 + 186.78000000000000 1.0198230749232293E-003 + 186.84000000000000 1.0150946376241774E-003 + 186.89999999999998 1.0099193156972001E-003 + 186.95999999999998 1.0043050082449423E-003 + 187.01999999999998 9.9825979042929064E-004 + 187.07999999999998 9.9179200104109150E-004 + 187.13999999999999 9.8490999720737414E-004 + 187.19999999999999 9.7762231667521192E-004 + 187.25999999999999 9.6993758441506629E-004 + 187.31999999999999 9.6186463294091040E-004 + 187.38000000000000 9.5341248558600256E-004 + 187.44000000000000 9.4459020563791569E-004 + 187.50000000000000 9.3540721993947416E-004 + 187.56000000000000 9.2587302501051917E-004 + 187.62000000000000 9.1599744245641698E-004 + 187.67999999999998 9.0579043010616180E-004 + 187.73999999999998 8.9526226253092860E-004 + 187.79999999999998 8.8442332602538059E-004 + 187.85999999999999 8.7328424411887138E-004 + 187.91999999999999 8.6185598745198619E-004 + 187.97999999999999 8.5014961578152562E-004 + 188.03999999999999 8.3817643444535116E-004 + 188.09999999999999 8.2594801769839479E-004 + 188.16000000000000 8.1347597838272664E-004 + 188.22000000000000 8.0077229086422186E-004 + 188.28000000000000 7.8784894767471047E-004 + 188.34000000000000 7.7471816568183639E-004 + 188.39999999999998 7.6139240182897326E-004 + 188.45999999999998 7.4788410317099517E-004 + 188.51999999999998 7.3420600006065607E-004 + 188.57999999999998 7.2037082850787192E-004 + 188.63999999999999 7.0639151824017203E-004 + 188.69999999999999 6.9228109817099075E-004 + 188.75999999999999 6.7805269903040860E-004 + 188.81999999999999 6.6371961607492340E-004 + 188.88000000000000 6.4929517848139908E-004 + 188.94000000000000 6.3479285746424828E-004 + 189.00000000000000 6.2022606765240525E-004 + 189.06000000000000 6.0560842635188012E-004 + 189.12000000000000 5.9095341594421328E-004 + 189.17999999999998 5.7627458200152813E-004 + 189.23999999999998 5.6158547184634018E-004 + 189.29999999999998 5.4689955684201618E-004 + 189.35999999999999 5.3223026308971176E-004 + 189.41999999999999 5.1759084855643937E-004 + 189.47999999999999 5.0299444451914013E-004 + 189.53999999999999 4.8845400517638551E-004 + 189.59999999999999 4.7398224914237016E-004 + 189.66000000000000 4.5959172782833609E-004 + 189.72000000000000 4.4529474586730937E-004 + 189.78000000000000 4.3110328730220146E-004 + 189.84000000000000 4.1702907044439497E-004 + 189.89999999999998 4.0308357948812365E-004 + 189.95999999999998 3.8927791392940220E-004 + 190.01999999999998 3.7562292859997858E-004 + 190.07999999999998 3.6212909055174160E-004 + 190.13999999999999 3.4880659587431555E-004 + 190.19999999999999 3.3566524337281850E-004 + 190.25999999999999 3.2271455481758596E-004 + 190.31999999999999 3.0996359742373859E-004 + 190.38000000000000 2.9742114452807502E-004 + 190.44000000000000 2.8509555132468216E-004 + 190.50000000000000 2.7299479308661980E-004 + 190.56000000000000 2.6112641043291582E-004 + 190.62000000000000 2.4949752451296111E-004 + 190.67999999999998 2.3811482484745850E-004 + 190.73999999999998 2.2698453812047223E-004 + 190.79999999999998 2.1611242263614176E-004 + 190.85999999999999 2.0550374033815713E-004 + 190.91999999999999 1.9516329055353535E-004 + 190.97999999999999 1.8509537335287837E-004 + 191.03999999999999 1.7530375798269671E-004 + 191.09999999999999 1.6579174788453649E-004 + 191.16000000000000 1.5656214912550679E-004 + 191.22000000000000 1.4761727586084275E-004 + 191.28000000000000 1.3895896254645330E-004 + 191.34000000000000 1.3058859514221573E-004 + 191.39999999999998 1.2250711233040721E-004 + 191.45999999999998 1.1471501724839992E-004 + 191.51999999999998 1.0721240330389271E-004 + 191.57999999999998 9.9998977740381226E-005 + 191.63999999999999 9.3074080778137065E-005 + 191.69999999999999 8.6436695145261880E-005 + 191.75999999999999 8.0085483509986650E-005 + 191.81999999999999 7.4018766833064856E-005 + 191.88000000000000 6.8234589425785440E-005 + 191.94000000000000 6.2730718796364461E-005 + 192.00000000000000 5.7504640556291918E-005 + 192.06000000000000 5.2553593680719002E-005 + 192.12000000000000 4.7874581251248199E-005 + 192.17999999999998 4.3464364670224942E-005 + 192.23999999999998 3.9319495077360734E-005 + 192.29999999999998 3.5436313673602335E-005 + 192.35999999999999 3.1810967586449367E-005 + 192.41999999999999 2.8439411283793867E-005 + 192.47999999999999 2.5317434935367854E-005 + 192.53999999999999 2.2440665208452363E-005 + 192.59999999999999 1.9804590842270575E-005 + 192.66000000000000 1.7404579474731845E-005 + 192.72000000000000 1.5235885399583500E-005 + 192.78000000000000 1.3293687654244929E-005 + 192.84000000000000 1.1573102492359468E-005 + 192.89999999999998 1.0069210660669813E-005 + 192.95999999999998 8.7770852368952982E-006 + 193.01999999999998 7.6918134072563637E-006 + 193.07999999999998 6.8085225971434084E-006 + 193.13999999999999 6.1224051843676837E-006 + 193.19999999999999 5.6287412180863341E-006 + 193.25999999999999 5.3229186040512493E-006 + 193.31999999999999 5.2004481333658371E-006 + 193.38000000000000 5.2569771738386879E-006 + 193.44000000000000 5.4883033701259959E-006 + 193.50000000000000 5.8903735544838879E-006 + 193.56000000000000 6.4592940656316495E-006 + 193.62000000000000 7.1913267114390622E-006 + 193.67999999999998 8.0828811418092072E-006 + 193.73999999999998 9.1305161304602353E-006 + 193.79999999999998 1.0330928634099098E-005 + 193.85999999999999 1.1680947803195510E-005 + 193.91999999999999 1.3177529362316358E-005 + 193.97999999999999 1.4817749020017953E-005 + 194.03999999999999 1.6598794927446364E-005 + 194.09999999999999 1.8517969092265791E-005 + 194.16000000000000 2.0572687340001808E-005 + 194.22000000000000 2.2760480161963550E-005 + 194.28000000000000 2.5078995366665670E-005 + 194.34000000000000 2.7526012003399773E-005 + 194.39999999999998 3.0099434153555254E-005 + 194.45999999999998 3.2797303621358102E-005 + 194.51999999999998 3.5617817138570873E-005 + 194.57999999999998 3.8559310399513717E-005 + 194.63999999999999 4.1620272462457420E-005 + 194.69999999999999 4.4799347132777773E-005 + 194.75999999999999 4.8095323090291398E-005 + 194.81999999999999 5.1507126793028937E-005 + 194.88000000000000 5.5033817800021495E-005 + 194.94000000000000 5.8674570975874519E-005 + 195.00000000000000 6.2428666287236761E-005 + 195.06000000000000 6.6295454776970898E-005 + 195.12000000000000 7.0274358141200261E-005 + 195.17999999999998 7.4364830340477428E-005 + 195.23999999999998 7.8566352171454657E-005 + 195.29999999999998 8.2878411432476265E-005 + 195.35999999999999 8.7300463159424029E-005 + 195.41999999999999 9.1831936445149854E-005 + 195.47999999999999 9.6472226556568083E-005 + 195.53999999999999 1.0122066493127533E-004 + 195.59999999999999 1.0607651276459803E-004 + 195.66000000000000 1.1103895738319195E-004 + 195.72000000000000 1.1610711572367082E-004 + 195.78000000000000 1.2128001523199346E-004 + 195.84000000000000 1.2655658596412000E-004 + 195.89999999999998 1.3193567860225259E-004 + 195.95999999999998 1.3741603793812718E-004 + 196.01999999999998 1.4299630001627709E-004 + 196.07999999999998 1.4867501189585593E-004 + 196.13999999999999 1.5445059506207011E-004 + 196.19999999999999 1.6032133330089749E-004 + 196.25999999999999 1.6628535168464125E-004 + 196.31999999999999 1.7234066493894860E-004 + 196.38000000000000 1.7848509224033037E-004 + 196.44000000000000 1.8471626629061087E-004 + 196.50000000000000 1.9103164115771777E-004 + 196.56000000000000 1.9742845041696759E-004 + 196.62000000000000 2.0390370381369774E-004 + 196.67999999999998 2.1045417558903845E-004 + 196.73999999999998 2.1707638185485638E-004 + 196.79999999999998 2.2376661681518622E-004 + 196.85999999999999 2.3052085929308122E-004 + 196.91999999999999 2.3733485174541000E-004 + 196.97999999999999 2.4420404933571166E-004 + 197.03999999999999 2.5112358613881729E-004 + 197.09999999999999 2.5808835907644361E-004 + 197.16000000000000 2.6509294494782537E-004 + 197.22000000000000 2.7213163833231404E-004 + 197.28000000000000 2.7919847591702013E-004 + 197.34000000000000 2.8628714631025182E-004 + 197.39999999999998 2.9339110449272187E-004 + 197.45999999999998 3.0050354666461438E-004 + 197.51999999999998 3.0761735549025506E-004 + 197.57999999999998 3.1472519899556099E-004 + 197.63999999999999 3.2181944698100255E-004 + 197.69999999999999 3.2889227931679382E-004 + 197.75999999999999 3.3593562589532378E-004 + 197.81999999999999 3.4294118518332189E-004 + 197.88000000000000 3.4990044469835859E-004 + 197.94000000000000 3.5680474554775115E-004 + 198.00000000000000 3.6364523328038015E-004 + 198.06000000000000 3.7041285902815539E-004 + 198.12000000000000 3.7709846678826470E-004 + 198.17999999999998 3.8369274370785429E-004 + 198.23999999999998 3.9018625962897776E-004 + 198.29999999999998 3.9656943429977891E-004 + 198.35999999999999 4.0283266167683972E-004 + 198.41999999999999 4.0896618135246525E-004 + 198.47999999999999 4.1496023220643520E-004 + 198.53999999999999 4.2080500310799174E-004 + 198.59999999999999 4.2649068738768043E-004 + 198.66000000000000 4.3200742061629812E-004 + 198.72000000000000 4.3734538657325557E-004 + 198.78000000000000 4.4249486597618598E-004 + 198.84000000000000 4.4744616147756266E-004 + 198.89999999999998 4.5218972624558486E-004 + 198.95999999999998 4.5671614896602996E-004 + 199.01999999999998 4.6101614098462254E-004 + 199.07999999999998 4.6508068639570892E-004 + 199.13999999999999 4.6890096413422906E-004 + 199.19999999999999 4.7246836452761261E-004 + 199.25999999999999 4.7577464214522148E-004 + 199.31999999999999 4.7881181252217513E-004 + 199.38000000000000 4.8157225386253358E-004 + 199.44000000000000 4.8404870028545701E-004 + 199.50000000000000 4.8623425272658499E-004 + 199.56000000000000 4.8812243359573566E-004 + 199.62000000000000 4.8970718296059831E-004 + 199.67999999999998 4.9098291166995735E-004 + 199.73999999999998 4.9194435794677630E-004 + 199.79999999999998 4.9258686129689886E-004 + 199.85999999999999 4.9290625782546431E-004 + 199.91999999999999 4.9289883481148087E-004 + 199.97999999999999 4.9256138641659629E-004 + 200.03999999999999 4.9189132272926036E-004 + 200.09999999999999 4.9088646038556816E-004 + 200.16000000000000 4.8954525758309990E-004 + 200.22000000000000 4.8786680150374932E-004 + 200.28000000000000 4.8585070141070335E-004 + 200.34000000000000 4.8349708294394831E-004 + 200.39999999999998 4.8080679196876928E-004 + 200.45999999999998 4.7778125245736831E-004 + 200.51999999999998 4.7442237654733612E-004 + 200.57999999999998 4.7073280626546587E-004 + 200.63999999999999 4.6671570959029378E-004 + 200.69999999999999 4.6237486350307844E-004 + 200.75999999999999 4.5771458952523875E-004 + 200.81999999999999 4.5273983177947463E-004 + 200.88000000000000 4.4745604995045430E-004 + 200.94000000000000 4.4186927196550058E-004 + 201.00000000000000 4.3598606874610454E-004 + 201.06000000000000 4.2981348878790428E-004 + 201.12000000000000 4.2335913108272253E-004 + 201.17999999999998 4.1663112296104813E-004 + 201.23999999999998 4.0963796493408253E-004 + 201.29999999999998 4.0238871044195163E-004 + 201.35999999999999 3.9489282055641414E-004 + 201.41999999999999 3.8716020239913608E-004 + 201.47999999999999 3.7920111456301258E-004 + 201.53999999999999 3.7102623204346224E-004 + 201.59999999999999 3.6264659340613396E-004 + 201.66000000000000 3.5407350742996946E-004 + 201.72000000000000 3.4531863888806995E-004 + 201.78000000000000 3.3639392836772248E-004 + 201.84000000000000 3.2731151315373234E-004 + 201.89999999999998 3.1808376769653111E-004 + 201.95999999999998 3.0872323337847096E-004 + 202.01999999999998 2.9924260953563460E-004 + 202.07999999999998 2.8965472938630545E-004 + 202.13999999999999 2.7997248646315727E-004 + 202.19999999999999 2.7020885407628092E-004 + 202.25999999999999 2.6037686905115091E-004 + 202.31999999999999 2.5048957342877734E-004 + 202.38000000000000 2.4055996910851967E-004 + 202.44000000000000 2.3060105377885475E-004 + 202.50000000000000 2.2062576802245611E-004 + 202.56000000000000 2.1064700798641698E-004 + 202.62000000000000 2.0067749145673305E-004 + 202.67999999999998 1.9072990382188850E-004 + 202.73999999999998 1.8081676655700628E-004 + 202.79999999999998 1.7095044053535931E-004 + 202.85999999999999 1.6114309542221374E-004 + 202.91999999999999 1.5140669334332983E-004 + 202.97999999999999 1.4175296709104061E-004 + 203.03999999999999 1.3219339888888109E-004 + 203.09999999999999 1.2273920567881382E-004 + 203.16000000000000 1.1340128079399219E-004 + 203.22000000000000 1.0419023090949678E-004 + 203.28000000000000 9.5116305966900066E-005 + 203.34000000000000 8.6189421216037890E-005 + 203.39999999999998 7.7419115192626812E-005 + 203.45999999999998 6.8814561404916826E-005 + 203.51999999999998 6.0384549630742859E-005 + 203.57999999999998 5.2137466936212852E-005 + 203.63999999999999 4.4081331934202110E-005 + 203.69999999999999 3.6223755946756244E-005 + 203.75999999999999 2.8571956690456278E-005 + 203.81999999999999 2.1132755817530819E-005 + 203.88000000000000 1.3912585552688639E-005 + 203.94000000000000 6.9174805752417074E-006 + 204.00000000000000 1.5307473010638214E-007 + 204.06000000000000 -6.3753896040593981E-006 + 204.12000000000000 -1.2663061838735252E-005 + 204.17999999999998 -1.8705491379956233E-005 + 204.23999999999998 -2.4498619880149304E-005 + 204.29999999999998 -3.0038784796442862E-005 + 204.35999999999999 -3.5322711951370821E-005 + 204.41999999999999 -4.0347519458777532E-005 + 204.47999999999999 -4.5110704662298916E-005 + 204.53999999999999 -4.9610146412560144E-005 + 204.59999999999999 -5.3844091070021826E-005 + 204.66000000000000 -5.7811138691403135E-005 + 204.72000000000000 -6.1510238170775418E-005 + 204.78000000000000 -6.4940680507247597E-005 + 204.84000000000000 -6.8102061399617493E-005 + 204.89999999999998 -7.0994280103369960E-005 + 204.95999999999998 -7.3617536778408177E-005 + 205.01999999999998 -7.5972290886015982E-005 + 205.07999999999998 -7.8059262866503839E-005 + 205.13999999999999 -7.9879411978673519E-005 + 205.19999999999999 -8.1433928962412451E-005 + 205.25999999999999 -8.2724212056726877E-005 + 205.31999999999999 -8.3751861510081662E-005 + 205.38000000000000 -8.4518667816994432E-005 + 205.44000000000000 -8.5026602664880059E-005 + 205.50000000000000 -8.5277793960776861E-005 + 205.56000000000000 -8.5274530493728668E-005 + 205.62000000000000 -8.5019245790117379E-005 + 205.67999999999998 -8.4514508908174022E-005 + 205.73999999999998 -8.3763022465819641E-005 + 205.79999999999998 -8.2767589419933057E-005 + 205.85999999999999 -8.1531110063082498E-005 + 205.91999999999999 -8.0056595918050807E-005 + 205.97999999999999 -7.8347123171430507E-005 + 206.03999999999999 -7.6405837458066582E-005 + 206.09999999999999 -7.4235961622544705E-005 + 206.16000000000000 -7.1840754049582028E-005 + 206.22000000000000 -6.9223524788163620E-005 + 206.28000000000000 -6.6387620008683689E-005 + 206.34000000000000 -6.3336413017085421E-005 + 206.39999999999998 -6.0073304768227188E-005 + 206.45999999999998 -5.6601720504292441E-005 + 206.51999999999998 -5.2925113973599383E-005 + 206.57999999999998 -4.9046947789155472E-005 + 206.63999999999999 -4.4970711007394208E-005 + 206.69999999999999 -4.0699914416607481E-005 + 206.75999999999999 -3.6238087251751771E-005 + 206.81999999999999 -3.1588781097032340E-005 + 206.88000000000000 -2.6755574586218618E-005 + 206.94000000000000 -2.1742072845675289E-005 + 207.00000000000000 -1.6551920139333011E-005 + 207.06000000000000 -1.1188793016884241E-005 + 207.12000000000000 -5.6564159316187195E-006 + 207.17999999999998 4.1441166491827749E-008 + 207.23999999999998 5.9009450380913472E-006 + 207.29999999999998 1.1918194229657152E-005 + 207.35999999999999 1.8089216732863135E-005 + 207.41999999999999 2.4409942695643619E-005 + 207.47999999999999 3.0876209411796830E-005 + 207.53999999999999 3.7483744546878435E-005 + 207.59999999999999 4.4228150924863763E-005 + 207.66000000000000 5.1104902966719311E-005 + 207.72000000000000 5.8109332083519912E-005 + 207.78000000000000 6.5236618453998771E-005 + 207.84000000000000 7.2481785079020415E-005 + 207.89999999999998 7.9839681760877142E-005 + 207.95999999999998 8.7305004394623193E-005 + 208.01999999999998 9.4872265878915221E-005 + 208.07999999999998 1.0253580192204952E-004 + 208.13999999999999 1.1028978625698182E-004 + 208.19999999999999 1.1812819453000539E-004 + 208.25999999999999 1.2604481459892148E-004 + 208.31999999999999 1.3403325534201113E-004 + 208.38000000000000 1.4208695826388931E-004 + 208.44000000000000 1.5019914053209256E-004 + 208.50000000000000 1.5836283931499779E-004 + 208.56000000000000 1.6657084976949693E-004 + 208.62000000000000 1.7481580405770246E-004 + 208.68000000000001 1.8309008712300668E-004 + 208.74000000000001 1.9138588071188043E-004 + 208.80000000000001 1.9969509576563265E-004 + 208.86000000000001 2.0800942787782380E-004 + 208.92000000000002 2.1632034598180472E-004 + 208.98000000000002 2.2461907992499727E-004 + 209.03999999999996 2.3289662780346472E-004 + 209.09999999999997 2.4114378290185766E-004 + 209.15999999999997 2.4935109052766694E-004 + 209.21999999999997 2.5750894215675240E-004 + 209.27999999999997 2.6560751478089207E-004 + 209.33999999999997 2.7363685023420732E-004 + 209.39999999999998 2.8158685519102196E-004 + 209.45999999999998 2.8944729832171468E-004 + 209.51999999999998 2.9720790542609485E-004 + 209.57999999999998 3.0485828755592804E-004 + 209.63999999999999 3.1238800427992855E-004 + 209.69999999999999 3.1978659273959359E-004 + 209.75999999999999 3.2704356884087843E-004 + 209.81999999999999 3.3414850253544722E-004 + 209.88000000000000 3.4109095489393942E-004 + 209.94000000000000 3.4786050549734859E-004 + 210.00000000000000 3.5444679596677764E-004 + 210.06000000000000 3.6083955080879469E-004 + 210.12000000000000 3.6702859187918833E-004 + 210.18000000000001 3.7300379850485518E-004 + 210.24000000000001 3.7875519237186203E-004 + 210.30000000000001 3.8427293880130553E-004 + 210.36000000000001 3.8954737698938076E-004 + 210.42000000000002 3.9456901433960095E-004 + 210.48000000000002 3.9932858823417666E-004 + 210.53999999999996 4.0381708085968803E-004 + 210.59999999999997 4.0802569394492844E-004 + 210.65999999999997 4.1194597235333385E-004 + 210.71999999999997 4.1556980443384383E-004 + 210.77999999999997 4.1888938318605258E-004 + 210.83999999999997 4.2189733428268494E-004 + 210.89999999999998 4.2458664168586294E-004 + 210.95999999999998 4.2695079401621649E-004 + 211.01999999999998 4.2898366102461788E-004 + 211.07999999999998 4.3067959949778838E-004 + 211.13999999999999 4.3203350137049581E-004 + 211.19999999999999 4.3304073029565532E-004 + 211.25999999999999 4.3369718664109340E-004 + 211.31999999999999 4.3399924597767092E-004 + 211.38000000000000 4.3394384481658930E-004 + 211.44000000000000 4.3352853522238424E-004 + 211.50000000000000 4.3275136026441752E-004 + 211.56000000000000 4.3161091644147378E-004 + 211.62000000000000 4.3010641612107979E-004 + 211.68000000000001 4.2823765644425105E-004 + 211.74000000000001 4.2600497307850071E-004 + 211.80000000000001 4.2340933463577750E-004 + 211.86000000000001 4.2045230638449214E-004 + 211.92000000000002 4.1713604157828967E-004 + 211.98000000000002 4.1346327409791476E-004 + 212.03999999999996 4.0943737890934278E-004 + 212.09999999999997 4.0506230107607356E-004 + 212.15999999999997 4.0034255737854006E-004 + 212.21999999999997 3.9528324443989803E-004 + 212.27999999999997 3.8989006992064550E-004 + 212.33999999999997 3.8416927939501750E-004 + 212.39999999999998 3.7812772789147525E-004 + 212.45999999999998 3.7177272374185402E-004 + 212.51999999999998 3.6511218940947466E-004 + 212.57999999999998 3.5815455671018778E-004 + 212.63999999999999 3.5090876376207960E-004 + 212.69999999999999 3.4338421663304681E-004 + 212.75999999999999 3.3559082347427366E-004 + 212.81999999999999 3.2753895714472659E-004 + 212.88000000000000 3.1923943180392234E-004 + 212.94000000000000 3.1070347787721979E-004 + 213.00000000000000 3.0194272288804318E-004 + 213.06000000000000 2.9296918590185464E-004 + 213.12000000000000 2.8379521883844757E-004 + 213.18000000000001 2.7443348190148706E-004 + 213.24000000000001 2.6489693726765339E-004 + 213.30000000000001 2.5519880981133268E-004 + 213.36000000000001 2.4535250738520628E-004 + 213.42000000000002 2.3537166364742700E-004 + 213.48000000000002 2.2527004456158019E-004 + 213.53999999999996 2.1506156313540192E-004 + 213.59999999999997 2.0476020102793070E-004 + 213.65999999999997 1.9437997550429459E-004 + 213.71999999999997 1.8393498049183043E-004 + 213.77999999999997 1.7343928912221562E-004 + 213.83999999999997 1.6290694466089526E-004 + 213.89999999999998 1.5235193274518592E-004 + 213.95999999999998 1.4178816953943331E-004 + 214.01999999999998 1.3122944976496853E-004 + 214.07999999999998 1.2068946296672248E-004 + 214.13999999999999 1.1018172004997220E-004 + 214.19999999999999 9.9719582478307258E-005 + 214.25999999999999 8.9316187227562308E-005 + 214.31999999999999 7.8984446049339555E-005 + 214.38000000000000 6.8737010006298283E-005 + 214.44000000000000 5.8586245123127780E-005 + 214.50000000000000 4.8544211041741450E-005 + 214.56000000000000 3.8622619406313340E-005 + 214.62000000000000 2.8832821649536309E-005 + 214.68000000000001 1.9185780625744943E-005 + 214.74000000000001 9.6920438848784224E-006 + 214.80000000000001 3.6172648711075719E-007 + 214.86000000000001 -8.7955057211901748E-006 + 214.92000000000002 -1.7770451165962894E-005 + 214.98000000000002 -2.6554383500092543E-005 + 215.03999999999996 -3.5139076680682112E-005 + 215.09999999999997 -4.3516791132043558E-005 + 215.15999999999997 -5.1680281447007450E-005 + 215.21999999999997 -5.9622831720385373E-005 + 215.27999999999997 -6.7338218305605687E-005 + 215.33999999999997 -7.4820740211790346E-005 + 215.39999999999998 -8.2065209375416508E-005 + 215.45999999999998 -8.9066950875605716E-005 + 215.51999999999998 -9.5821819362514797E-005 + 215.57999999999998 -1.0232616950072839E-004 + 215.63999999999999 -1.0857687208362295E-004 + 215.69999999999999 -1.1457133615071452E-004 + 215.75999999999999 -1.2030743394999761E-004 + 215.81999999999999 -1.2578360983721059E-004 + 215.88000000000000 -1.3099874242552948E-004 + 215.94000000000000 -1.3595225210309242E-004 + 216.00000000000000 -1.4064400525200626E-004 + 216.06000000000000 -1.4507432998716205E-004 + 216.12000000000000 -1.4924400462774663E-004 + 216.18000000000001 -1.5315426870797711E-004 + 216.24000000000001 -1.5680673928341110E-004 + 216.30000000000001 -1.6020345466120532E-004 + 216.36000000000001 -1.6334682949656337E-004 + 216.42000000000002 -1.6623961968202200E-004 + 216.48000000000002 -1.6888493653095547E-004 + 216.53999999999996 -1.7128621241418730E-004 + 216.59999999999997 -1.7344720532638816E-004 + 216.65999999999997 -1.7537196158845037E-004 + 216.71999999999997 -1.7706481461488290E-004 + 216.77999999999997 -1.7853037045205541E-004 + 216.83999999999997 -1.7977350032196061E-004 + 216.89999999999998 -1.8079930611389973E-004 + 216.95999999999998 -1.8161314034352140E-004 + 217.01999999999998 -1.8222058086108528E-004 + 217.07999999999998 -1.8262738160641198E-004 + 217.13999999999999 -1.8283951788630975E-004 + 217.19999999999999 -1.8286309354616988E-004 + 217.25999999999999 -1.8270436812498246E-004 + 217.31999999999999 -1.8236973564855037E-004 + 217.38000000000000 -1.8186565949321925E-004 + 217.44000000000000 -1.8119871033787211E-004 + 217.50000000000000 -1.8037547431168862E-004 + 217.56000000000000 -1.7940258133095665E-004 + 217.62000000000000 -1.7828666648810038E-004 + 217.68000000000001 -1.7703434059310912E-004 + 217.74000000000001 -1.7565217815307423E-004 + 217.80000000000001 -1.7414673267435713E-004 + 217.86000000000001 -1.7252450079540608E-004 + 217.92000000000002 -1.7079189867808586E-004 + 217.98000000000002 -1.6895529139601621E-004 + 218.03999999999996 -1.6702095952627623E-004 + 218.09999999999997 -1.6499510073360096E-004 + 218.15999999999997 -1.6288383499384626E-004 + 218.21999999999997 -1.6069319015588347E-004 + 218.27999999999997 -1.5842911554019771E-004 + 218.33999999999997 -1.5609745573669180E-004 + 218.39999999999998 -1.5370394359404303E-004 + 218.45999999999998 -1.5125423381681506E-004 + 218.51999999999998 -1.4875384460474059E-004 + 218.57999999999998 -1.4620815102506235E-004 + 218.63999999999999 -1.4362241458137510E-004 + 218.69999999999999 -1.4100173123042487E-004 + 218.75999999999999 -1.3835106007508352E-004 + 218.81999999999999 -1.3567520124523871E-004 + 218.88000000000000 -1.3297876867828494E-004 + 218.94000000000000 -1.3026620952231047E-004 + 219.00000000000000 -1.2754179710266426E-004 + 219.06000000000000 -1.2480961590096080E-004 + 219.12000000000000 -1.2207358177489082E-004 + 219.18000000000001 -1.1933741717724120E-004 + 219.24000000000001 -1.1660467228755296E-004 + 219.30000000000001 -1.1387872894788568E-004 + 219.36000000000001 -1.1116278468882247E-004 + 219.42000000000002 -1.0845987065133708E-004 + 219.48000000000002 -1.0577284589115582E-004 + 219.53999999999996 -1.0310440440114399E-004 + 219.59999999999997 -1.0045708582819716E-004 + 219.65999999999997 -9.7833264695147009E-005 + 219.71999999999997 -9.5235152791413763E-005 + 219.77999999999997 -9.2664812304125635E-005 + 219.83999999999997 -9.0124136549340553E-005 + 219.89999999999998 -8.7614891800025067E-005 + 219.95999999999998 -8.5138677960434561E-005 + 220.01999999999998 -8.2696964595948834E-005 + 220.07999999999998 -8.0291082959547158E-005 + 220.13999999999999 -7.7922224869060591E-005 + 220.19999999999999 -7.5591475206701749E-005 + 220.25999999999999 -7.3299787315310038E-005 + 220.31999999999999 -7.1048019409948910E-005 + 220.38000000000000 -6.8836910245305660E-005 + 220.44000000000000 -6.6667103438935820E-005 + 220.50000000000000 -6.4539139062324793E-005 + 220.56000000000000 -6.2453471611201216E-005 + 220.62000000000000 -6.0410451908213649E-005 + 220.68000000000001 -5.8410340810000689E-005 + 220.74000000000001 -5.6453301582238223E-005 + 220.80000000000001 -5.4539402487028563E-005 + 220.86000000000001 -5.2668606315355478E-005 + 220.92000000000002 -5.0840792923018471E-005 + 220.98000000000002 -4.9055737941455735E-005 + 221.03999999999996 -4.7313125691320788E-005 + 221.09999999999997 -4.5612555322158974E-005 + 221.15999999999997 -4.3953537310231529E-005 + 221.21999999999997 -4.2335521292484955E-005 + 221.27999999999997 -4.0757886607835972E-005 + 221.33999999999997 -3.9219961310824893E-005 + 221.39999999999998 -3.7721038332308221E-005 + 221.45999999999998 -3.6260376379101485E-005 + 221.51999999999998 -3.4837226942671698E-005 + 221.57999999999998 -3.3450829703339907E-005 + 221.63999999999999 -3.2100432853659641E-005 + 221.69999999999999 -3.0785288781785659E-005 + 221.75999999999999 -2.9504666494391216E-005 + 221.81999999999999 -2.8257849572949003E-005 + 221.88000000000000 -2.7044139976112221E-005 + 221.94000000000000 -2.5862847650364759E-005 + 222.00000000000000 -2.4713295077593536E-005 + 222.06000000000000 -2.3594809533061426E-005 + 222.12000000000000 -2.2506720185710375E-005 + 222.18000000000001 -2.1448354246471369E-005 + 222.24000000000001 -2.0419029571534988E-005 + 222.30000000000001 -1.9418060120471602E-005 + 222.36000000000001 -1.8444749652612052E-005 + 222.42000000000002 -1.7498399760314838E-005 + 222.48000000000002 -1.6578308034243332E-005 + 222.53999999999996 -1.5683773511159200E-005 + 222.59999999999997 -1.4814104193999617E-005 + 222.65999999999997 -1.3968619686245883E-005 + 222.71999999999997 -1.3146660763428909E-005 + 222.77999999999997 -1.2347591057034778E-005 + 222.83999999999997 -1.1570804928702809E-005 + 222.89999999999998 -1.0815728555612167E-005 + 222.95999999999998 -1.0081826904642646E-005 + 223.01999999999998 -9.3685987404430428E-006 + 223.07999999999998 -8.6755795063430293E-006 + 223.13999999999999 -8.0023407392221862E-006 + 223.19999999999999 -7.3484852447178201E-006 + 223.25999999999999 -6.7136476714772033E-006 + 223.31999999999999 -6.0974912446964572E-006 + 223.38000000000000 -5.4997040159726868E-006 + 223.44000000000000 -4.9199978783551970E-006 + 223.50000000000000 -4.3581067947294382E-006 + 223.56000000000000 -3.8137849560809195E-006 + 223.62000000000000 -3.2868062067827473E-006 + 223.68000000000001 -2.7769627735574987E-006 + 223.74000000000001 -2.2840641565552410E-006 + 223.80000000000001 -1.8079349437455037E-006 + 223.86000000000001 -1.3484135497748496E-006 + 223.92000000000002 -9.0534854750421813E-007 + 223.98000000000002 -4.7859479524777654E-007 + 224.03999999999996 -6.8008952276389387E-008 + 224.09999999999997 3.2655526993536871E-007 + 224.15999999999997 7.0525274658695460E-007 + 224.21999999999997 1.0682520056084421E-006 + 224.27999999999997 1.4157392867834081E-006 + 224.33999999999997 1.7479223806435982E-006 + 224.39999999999998 2.0650319618780555E-006 + 224.45999999999998 2.3673217932353972E-006 + 224.51999999999998 2.6550664433571351E-006 + 224.57999999999998 2.9285579925795801E-006 + 224.63999999999999 3.1881004133951956E-006 + 224.69999999999999 3.4340019804602574E-006 + 224.75999999999999 3.6665678550559263E-006 + 224.81999999999999 3.8860916756273900E-006 + 224.88000000000000 4.0928496641433050E-006 + 224.94000000000000 4.2870932643227502E-006 + 225.00000000000000 4.4690462524787231E-006 + 225.06000000000000 4.6389021201701357E-006 + 225.12000000000000 4.7968250819367297E-006 + 225.18000000000001 4.9429544331799548E-006 + 225.24000000000001 5.0774110345308388E-006 + 225.30000000000001 5.2003049161329118E-006 + 225.36000000000001 5.3117467007837104E-006 + 225.42000000000002 5.4118580341608802E-006 + 225.48000000000002 5.5007813644632267E-006 + 225.53999999999996 5.5786912835364873E-006 + 225.59999999999997 5.6458022770643143E-006 + 225.65999999999997 5.7023731801493035E-006 + 225.71999999999997 5.7487103019179742E-006 + 225.77999999999997 5.7851675652715538E-006 + 225.83999999999997 5.8121414841319838E-006 + 225.89999999999998 5.8300639189294146E-006 + 225.95999999999998 5.8393939445841770E-006 + 226.01999999999998 5.8406055901570295E-006 + 226.07999999999998 5.8341769816466794E-006 + 226.13999999999999 5.8205773395541712E-006 + 226.19999999999999 5.8002576274063377E-006 + 226.25999999999999 5.7736399870045854E-006 + 226.31999999999999 5.7411118741541368E-006 + 226.38000000000000 5.7030219556597315E-006 + 226.44000000000000 5.6596790709709961E-006 + 226.50000000000000 5.6113551156111860E-006 + 226.56000000000000 5.5582902089456520E-006 + 226.62000000000000 5.5006977393833680E-006 + 226.68000000000001 5.4387748259617728E-006 + 226.74000000000001 5.3727120496736548E-006 + 226.80000000000001 5.3027001574981288E-006 + 226.86000000000001 5.2289412913445086E-006 + 226.92000000000002 5.1516561135513029E-006 + 226.98000000000002 5.0710879366605255E-006 + 227.03999999999996 4.9875076234186608E-006 + 227.09999999999997 4.9012148876695932E-006 + 227.15999999999997 4.8125358705714067E-006 + 227.21999999999997 4.7218216736062287E-006 + 227.27999999999997 4.6294439812219085E-006 + 227.33999999999997 4.5357884774229764E-006 + 227.39999999999998 4.4412489223591523E-006 + 227.45999999999998 4.3462205610225619E-006 + 227.51999999999998 4.2510927238164574E-006 + 227.57999999999998 4.1562432346329098E-006 + 227.63999999999999 4.0620334758904669E-006 + 227.69999999999999 3.9688022989676679E-006 + 227.75999999999999 3.8768643395357649E-006 + 227.81999999999999 3.7865046320787223E-006 + 227.88000000000000 3.6979789853565593E-006 + 227.94000000000000 3.6115115107915634E-006 + 228.00000000000000 3.5272954894415042E-006 + 228.06000000000000 3.4454922071751826E-006 + 228.12000000000000 3.3662336689536484E-006 + 228.18000000000001 3.2896244016041269E-006 + 228.24000000000001 3.2157424167774972E-006 + 228.30000000000001 3.1446442223157722E-006 + 228.36000000000001 3.0763670010032483E-006 + 228.42000000000002 3.0109346721805284E-006 + 228.48000000000002 2.9483615579609438E-006 + 228.53999999999996 2.8886577392299556E-006 + 228.59999999999997 2.8318335399073831E-006 + 228.65999999999997 2.7779052127657940E-006 + 228.71999999999997 2.7268977623112882E-006 + 228.77999999999997 2.6788479819933151E-006 + 228.83999999999997 2.6338041891450924E-006 + 228.89999999999998 2.5918274369630742E-006 + 228.95999999999998 2.5529872510887309E-006 + 229.01999999999998 2.5173569158188923E-006 + 229.07999999999998 2.4850062347865127E-006 + 229.13999999999999 2.4559936220464231E-006 + 229.19999999999999 2.4303551842943280E-006 + 229.25999999999999 2.4080958841233765E-006 + 229.31999999999999 2.3891777606962176E-006 + 229.38000000000000 2.3735118347414267E-006 + 229.44000000000000 2.3609504298959919E-006 + 229.50000000000000 2.3512816264160731E-006 + 229.56000000000000 2.3442280279799037E-006 + 229.62000000000000 2.3394471266096499E-006 + 229.68000000000001 2.3365362045045352E-006 + 229.74000000000001 2.3350398943538922E-006 + 229.80000000000001 2.3344605262493487E-006 + 229.86000000000001 2.3342702742191408E-006 + 229.92000000000002 2.3339250486774350E-006 + 229.97999999999996 2.3328778835840462E-006 + 230.03999999999996 2.3305913255198186E-006 + 230.09999999999997 2.3265487359945581E-006 + 230.15999999999997 2.3202620709179100E-006 + 230.21999999999997 2.3112772381060896E-006 + 230.27999999999997 2.2991749446619915E-006 + 230.33999999999997 2.2835684106999825E-006 + 230.39999999999998 2.2640974504427614E-006 + 230.45999999999998 2.2404203213002191E-006 + 230.51999999999998 2.2122022478867634E-006 + 230.57999999999998 2.1791043336441363E-006 + 230.63999999999999 2.1407720415884160E-006 + 230.69999999999999 2.0968245327904237E-006 + 230.75999999999999 2.0468463194049292E-006 + 230.81999999999999 1.9903820179987708E-006 + 230.88000000000000 1.9269342104066804E-006 + 230.94000000000000 1.8559652674521913E-006 + 231.00000000000000 1.7769024363629168E-006 + 231.06000000000000 1.6891467971247594E-006 + 231.12000000000000 1.5920842013980906E-006 + 231.18000000000001 1.4850980776876596E-006 + 231.24000000000001 1.3675832725493315E-006 + 231.30000000000001 1.2389595890315354E-006 + 231.36000000000001 1.0986840405666846E-006 + 231.42000000000002 9.4626061812203291E-007 + 231.47999999999996 7.8124838370666349E-007 + 231.53999999999996 6.0326562242153106E-007 + 231.59999999999997 4.1199146137399859E-007 + 231.65999999999997 2.0716366673139037E-007 + 231.71999999999997 -1.1425766412635701E-008 + 231.77999999999997 -2.4393656669461443E-007 + 231.83999999999997 -4.9048829985601490E-007 + 231.89999999999998 -7.5116936057623845E-007 + 231.95999999999998 -1.0260434740519330E-006 + 232.01999999999998 -1.3151590446333831E-006 + 232.07999999999998 -1.6185534611938819E-006 + 232.13999999999999 -1.9362569786816637E-006 + 232.19999999999999 -2.2682960249349574E-006 + 232.25999999999999 -2.6146913758954111E-006 + 232.31999999999999 -2.9754582143676534E-006 + 232.38000000000000 -3.3506009817108176E-006 + 232.44000000000000 -3.7401093760870472E-006 + 232.50000000000000 -4.1439541184346832E-006 + 232.56000000000000 -4.5620822895163084E-006 + 232.62000000000000 -4.9944112693538176E-006 + 232.68000000000001 -5.4408267052832049E-006 + 232.74000000000001 -5.9011774937384483E-006 + 232.80000000000001 -6.3752763393822579E-006 + 232.86000000000001 -6.8628954521741195E-006 + 232.92000000000002 -7.3637684947074249E-006 + 232.97999999999996 -7.8775907871317732E-006 + 233.03999999999996 -8.4040187811062931E-006 + 233.09999999999997 -8.9426725387415181E-006 + 233.15999999999997 -9.4931336090884777E-006 + 233.21999999999997 -1.0054949747857498E-005 + 233.27999999999997 -1.0627632941629850E-005 + 233.33999999999997 -1.1210659943546592E-005 + 233.39999999999998 -1.1803473268338699E-005 + 233.45999999999998 -1.2405481357790677E-005 + 233.51999999999998 -1.3016056106797246E-005 + 233.57999999999998 -1.3634538903144371E-005 + 233.63999999999999 -1.4260237271723842E-005 + 233.69999999999999 -1.4892425367828404E-005 + 233.75999999999999 -1.5530353791858120E-005 + 233.81999999999999 -1.6173242691397604E-005 + 233.88000000000000 -1.6820286449085875E-005 + 233.94000000000000 -1.7470659067370076E-005 + 234.00000000000000 -1.8123513195600686E-005 + 234.06000000000000 -1.8777983210394970E-005 + 234.12000000000000 -1.9433181795358242E-005 + 234.18000000000001 -2.0088205853887154E-005 + 234.24000000000001 -2.0742126136466231E-005 + 234.30000000000001 -2.1393990358834867E-005 + 234.36000000000001 -2.2042821416083579E-005 + 234.42000000000002 -2.2687608804585359E-005 + 234.47999999999996 -2.3327308364474667E-005 + 234.53999999999996 -2.3960835150904105E-005 + 234.59999999999997 -2.4587070845782200E-005 + 234.65999999999997 -2.5204853670947738E-005 + 234.71999999999997 -2.5812984946887735E-005 + 234.77999999999997 -2.6410229094580562E-005 + 234.83999999999997 -2.6995321534804192E-005 + 234.89999999999998 -2.7566970218140288E-005 + 234.95999999999998 -2.8123867889530762E-005 + 235.01999999999998 -2.8664698834101276E-005 + 235.07999999999998 -2.9188156104488964E-005 + 235.13999999999999 -2.9692932279703499E-005 + 235.19999999999999 -3.0177746517552865E-005 + 235.25999999999999 -3.0641333256075554E-005 + 235.31999999999999 -3.1082461068996925E-005 + 235.38000000000000 -3.1499927210700896E-005 + 235.44000000000000 -3.1892565621125016E-005 + 235.50000000000000 -3.2259234500311744E-005 + 235.56000000000000 -3.2598819792964966E-005 + 235.62000000000000 -3.2910232013688164E-005 + 235.68000000000001 -3.3192406891341533E-005 + 235.74000000000001 -3.3444293283497952E-005 + 235.80000000000001 -3.3664852293537749E-005 + 235.86000000000001 -3.3853064518355457E-005 + 235.92000000000002 -3.4007929610682934E-005 + 235.97999999999996 -3.4128473573250543E-005 + 236.03999999999996 -3.4213738583145624E-005 + 236.09999999999997 -3.4262813706602097E-005 + 236.15999999999997 -3.4274834141273907E-005 + 236.21999999999997 -3.4248999035659261E-005 + 236.27999999999997 -3.4184577298043987E-005 + 236.33999999999997 -3.4080916834421323E-005 + 236.39999999999998 -3.3937459344578627E-005 + 236.45999999999998 -3.3753744038102228E-005 + 236.51999999999998 -3.3529415719830864E-005 + 236.57999999999998 -3.3264226635301040E-005 + 236.63999999999999 -3.2958027704826618E-005 + 236.69999999999999 -3.2610772573731363E-005 + 236.75999999999999 -3.2222505041939724E-005 + 236.81999999999999 -3.1793362324571386E-005 + 236.88000000000000 -3.1323558936874260E-005 + 236.94000000000000 -3.0813381739270156E-005 + 237.00000000000000 -3.0263183141490503E-005 + 237.06000000000000 -2.9673378169126068E-005 + 237.12000000000000 -2.9044437698544819E-005 + 237.18000000000001 -2.8376891013797240E-005 + 237.24000000000001 -2.7671330259543247E-005 + 237.30000000000001 -2.6928415720721631E-005 + 237.36000000000001 -2.6148876515822157E-005 + 237.42000000000002 -2.5333519321617427E-005 + 237.47999999999996 -2.4483238050692923E-005 + 237.53999999999996 -2.3599021636063386E-005 + 237.59999999999997 -2.2681953894551372E-005 + 237.65999999999997 -2.1733221864258543E-005 + 237.71999999999997 -2.0754112239291918E-005 + 237.77999999999997 -1.9746012624006689E-005 + 237.83999999999997 -1.8710398956088250E-005 + 237.89999999999998 -1.7648836431435152E-005 + 237.95999999999998 -1.6562963400087006E-005 + 238.01999999999998 -1.5454479911604375E-005 + 238.07999999999998 -1.4325135190762167E-005 + 238.13999999999999 -1.3176717358877946E-005 + 238.19999999999999 -1.2011037444212194E-005 + 238.25999999999999 -1.0829920753277788E-005 + 238.31999999999999 -9.6351974015358236E-006 + 238.38000000000000 -8.4286964662223995E-006 + 238.44000000000000 -7.2122434064599222E-006 + 238.50000000000000 -5.9876566984773172E-006 + 238.56000000000000 -4.7567468882146250E-006 + 238.62000000000000 -3.5213213924697130E-006 + 238.68000000000001 -2.2831839037312526E-006 + 238.74000000000001 -1.0441413258488750E-006 + 238.80000000000001 1.9399777433956427E-007 + 238.86000000000001 1.4294183216506813E-006 + 238.92000000000002 2.6603019010641329E-006 + 238.97999999999996 3.8848230631176156E-006 + 239.03999999999996 5.1011545902495488E-006 + 239.09999999999997 6.3074737128954711E-006 + 239.15999999999997 7.5019622122050329E-006 + 239.21999999999997 8.6828203414514687E-006 + 239.27999999999997 9.8482677289320023E-006 + 239.33999999999997 1.0996557433541325E-005 + 239.39999999999998 1.2125979473537994E-005 + 239.45999999999998 1.3234872331706777E-005 + 239.51999999999998 1.4321625602914403E-005 + 239.57999999999998 1.5384690079368869E-005 + 239.63999999999999 1.6422580413632717E-005 + 239.69999999999999 1.7433881994878964E-005 + 239.75999999999999 1.8417252798023281E-005 + 239.81999999999999 1.9371430063288551E-005 + 239.88000000000000 2.0295226261444986E-005 + 239.94000000000000 2.1187537851203088E-005 + 240.00000000000000 2.2047344522775828E-005 + 240.06000000000000 2.2873706431334592E-005 + 240.12000000000000 2.3665768374202855E-005 + 240.18000000000001 2.4422760157021846E-005 + 240.24000000000001 2.5143993215728788E-005 + 240.30000000000001 2.5828861626355893E-005 + 240.36000000000001 2.6476838121185211E-005 + 240.42000000000002 2.7087470380687651E-005 + 240.47999999999996 2.7660377689728474E-005 + 240.53999999999996 2.8195247141310580E-005 + 240.59999999999997 2.8691836186824948E-005 + 240.65999999999997 2.9149949577712344E-005 + 240.71999999999997 2.9569459283644022E-005 + 240.77999999999997 2.9950286324938202E-005 + 240.83999999999997 3.0292404144965788E-005 + 240.89999999999998 3.0595836921263101E-005 + 240.95999999999998 3.0860671917716595E-005 + 241.01999999999998 3.1087050346901380E-005 + 241.07999999999998 3.1275182007331747E-005 + 241.13999999999999 3.1425344909159852E-005 + 241.19999999999999 3.1537895777976128E-005 + 241.25999999999999 3.1613278391622442E-005 + 241.31999999999999 3.1652030527465499E-005 + 241.38000000000000 3.1654784552718607E-005 + 241.44000000000000 3.1622275137104692E-005 + 241.50000000000000 3.1555331584860039E-005 + 241.56000000000000 3.1454879660988495E-005 + 241.62000000000000 3.1321932997155588E-005 + 241.68000000000001 3.1157583868366890E-005 + 241.74000000000001 3.0962990768938442E-005 + 241.80000000000001 3.0739367976129709E-005 + 241.86000000000001 3.0487954312734391E-005 + 241.92000000000002 3.0210018514997258E-005 + 241.97999999999996 2.9906831258089944E-005 + 242.03999999999996 2.9579652344244625E-005 + 242.09999999999997 2.9229724681278847E-005 + 242.15999999999997 2.8858271362942944E-005 + 242.21999999999997 2.8466479491591195E-005 + 242.27999999999997 2.8055518121779779E-005 + 242.33999999999997 2.7626530974573005E-005 + 242.39999999999998 2.7180649448315419E-005 + 242.45999999999998 2.6718996840427695E-005 + 242.51999999999998 2.6242707581565342E-005 + 242.57999999999998 2.5752929159091901E-005 + 242.63999999999999 2.5250835921870932E-005 + 242.69999999999999 2.4737639093693525E-005 + 242.75999999999999 2.4214583478274606E-005 + 242.81999999999999 2.3682952670622068E-005 + 242.88000000000000 2.3144064337358904E-005 + 242.94000000000000 2.2599263533744220E-005 + 243.00000000000000 2.2049905811286186E-005 + 243.06000000000000 2.1497353779140858E-005 + 243.12000000000000 2.0942949135875377E-005 + 243.18000000000001 2.0388002589021095E-005 + 243.24000000000001 1.9833776684444713E-005 + 243.30000000000001 1.9281470969126556E-005 + 243.36000000000001 1.8732208508374113E-005 + 243.42000000000002 1.8187024137273815E-005 + 243.47999999999996 1.7646865337839270E-005 + 243.53999999999996 1.7112583734471653E-005 + 243.59999999999997 1.6584939733301228E-005 + 243.65999999999997 1.6064611255895920E-005 + 243.71999999999997 1.5552197220325997E-005 + 243.77999999999997 1.5048231047188593E-005 + 243.83999999999997 1.4553189737862286E-005 + 243.89999999999998 1.4067508161013112E-005 + 243.95999999999998 1.3591587371266885E-005 + 244.01999999999998 1.3125805466071708E-005 + 244.07999999999998 1.2670525400240139E-005 + 244.13999999999999 1.2226097251823718E-005 + 244.19999999999999 1.1792864044995239E-005 + 244.25999999999999 1.1371160470916056E-005 + 244.31999999999999 1.0961308536704610E-005 + 244.38000000000000 1.0563616300464620E-005 + 244.44000000000000 1.0178372006389545E-005 + 244.50000000000000 9.8058367547165445E-006 + 244.56000000000000 9.4462408317051514E-006 + 244.62000000000000 9.0997746536114027E-006 + 244.68000000000001 8.7665857523171563E-006 + 244.74000000000001 8.4467752352047323E-006 + 244.80000000000001 8.1403935494040705E-006 + 244.86000000000001 7.8474387212366701E-006 + 244.92000000000002 7.5678577368206021E-006 + 244.97999999999996 7.3015460574449328E-006 + 245.03999999999996 7.0483499744777665E-006 + 245.09999999999997 6.8080700903555436E-006 + 245.15999999999997 6.5804656122173429E-006 + 245.21999999999997 6.3652590212693194E-006 + 245.27999999999997 6.1621425867439278E-006 + 245.33999999999997 5.9707832008076202E-006 + 245.39999999999998 5.7908306729643910E-006 + 245.45999999999998 5.6219240361171496E-006 + 245.51999999999998 5.4637001896141248E-006 + 245.57999999999998 5.3157995357859920E-006 + 245.63999999999999 5.1778752124696064E-006 + 245.69999999999999 5.0495985984756989E-006 + 245.75999999999999 4.9306656891120400E-006 + 245.81999999999999 4.8208008295677018E-006 + 245.88000000000000 4.7197601345824882E-006 + 245.94000000000000 4.6273314924729654E-006 + 246.00000000000000 4.5433336788429085E-006 + 246.06000000000000 4.4676121033173008E-006 + 246.12000000000000 4.4000327702367181E-006 + 246.18000000000001 4.3404748801878996E-006 + 246.24000000000001 4.2888208951974692E-006 + 246.30000000000001 4.2449468444963722E-006 + 246.36000000000001 4.2087115177759459E-006 + 246.42000000000002 4.1799469370342980E-006 + 246.47999999999996 4.1584492029869724E-006 + 246.53999999999996 4.1439740279571527E-006 + 246.59999999999997 4.1362314159179605E-006 + 246.65999999999997 4.1348865911506933E-006 + 246.71999999999997 4.1395627887812467E-006 + 246.77999999999997 4.1498477174295497E-006 + 246.83999999999997 4.1653030986473667E-006 + 246.89999999999998 4.1854747303054024E-006 + 246.95999999999998 4.2099073768110457E-006 + 247.01999999999998 4.2381570777166614E-006 + 247.07999999999998 4.2698041296802219E-006 + 247.13999999999999 4.3044643760158484E-006 + 247.19999999999999 4.3417970799588182E-006 + 247.25999999999999 4.3815114039380427E-006 + 247.31999999999999 4.4233679039539209E-006 + 247.38000000000000 4.4671750708959633E-006 + 247.44000000000000 4.5127843886011689E-006 + 247.50000000000000 4.5600805325030104E-006 + 247.56000000000000 4.6089693378650793E-006 + 247.62000000000000 4.6593652438617011E-006 + 247.68000000000001 4.7111762321769215E-006 + 247.74000000000001 4.7642910374435249E-006 + 247.80000000000001 4.8185669972044928E-006 + 247.86000000000001 4.8738225184107038E-006 + 247.92000000000002 4.9298289245169994E-006 + 247.97999999999996 4.9863100943103270E-006 + 248.03999999999996 5.0429431446546449E-006 + 248.09999999999997 5.0993655591419025E-006 + 248.15999999999997 5.1551811811549871E-006 + 248.21999999999997 5.2099722966154181E-006 + 248.27999999999997 5.2633125244697562E-006 + 248.33999999999997 5.3147781337620244E-006 + 248.39999999999998 5.3639614016077587E-006 + 248.45999999999998 5.4104817328359312E-006 + 248.51999999999998 5.4539940028977455E-006 + 248.57999999999998 5.4941949220138158E-006 + 248.63999999999999 5.5308267416083763E-006 + 248.69999999999999 5.5636778536330138E-006 + 248.75999999999999 5.5925800522782822E-006 + 248.81999999999999 5.6174053549631564E-006 + 248.88000000000000 5.6380585810862456E-006 + 248.94000000000000 5.6544699336352052E-006 + 249.00000000000000 5.6665884641132065E-006 + 249.06000000000000 5.6743743368207693E-006 + 249.12000000000000 5.6777902982883260E-006 + 249.18000000000001 5.6767987026080301E-006 + 249.24000000000001 5.6713546528985646E-006 + 249.30000000000001 5.6614050340170262E-006 + 249.36000000000001 5.6468861190868990E-006 + 249.42000000000002 5.6277225244792820E-006 + 249.47999999999996 5.6038286812498745E-006 + 249.53999999999996 5.5751107460482563E-006 + 249.59999999999997 5.5414664943348982E-006 + 249.65999999999997 5.5027884590525023E-006 + 249.71999999999997 5.4589651863052710E-006 + 249.77999999999997 5.4098834586128059E-006 + 249.83999999999997 5.3554282270823685E-006 + 249.89999999999998 5.2954868644089976E-006 + 249.95999999999998 5.2299489999624684E-006 + 250.01999999999998 5.1587089132648552E-006 + 250.07999999999998 5.0816675381173562E-006 + 250.13999999999999 4.9987356157574459E-006 + 250.19999999999999 4.9098356446038550E-006 + 250.25999999999999 4.8149052537300049E-006 + 250.31999999999999 4.7139003874016297E-006 + 250.38000000000000 4.6067983582234319E-006 + 250.44000000000000 4.4935986939985484E-006 + 250.50000000000000 4.3743235471794284E-006 + 250.56000000000000 4.2490195201283763E-006 + 250.62000000000000 4.1177544359241229E-006 + 250.68000000000001 3.9806133081552849E-006 + 250.74000000000001 3.8376935009256125E-006 + 250.80000000000001 3.6890980596949598E-006 + 250.86000000000001 3.5349293608726676E-006 + 250.92000000000002 3.3752797998307629E-006 + 250.97999999999996 3.2102241839782057E-006 + 251.03999999999996 3.0398129790170697E-006 + 251.09999999999997 2.8640667866992128E-006 + 251.15999999999997 2.6829725968778837E-006 + 251.21999999999997 2.4964831152677420E-006 + 251.27999999999997 2.3045182451789918E-006 + 251.33999999999997 2.1069701554149193E-006 + 251.39999999999998 1.9037100176215501E-006 + 251.45999999999998 1.6945978579145355E-006 + 251.51999999999998 1.4794935371542859E-006 + 251.57999999999998 1.2582687932793105E-006 + 251.63999999999999 1.0308193721441524E-006 + 251.69999999999999 7.9707533310012337E-007 + 251.75999999999999 5.5701156701066452E-007 + 251.81999999999999 3.1065398409177109E-007 + 251.88000000000000 5.8084079838092886E-008 + 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_001 b/seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_001 new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_001 @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_002 b/seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_002 new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_002 @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/old_test_solver/sources/SOURCE_001 b/seisflows/tests/test_data/old_test_solver/sources/SOURCE_001 new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/sources/SOURCE_001 @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/old_test_solver/sources/SOURCE_002 b/seisflows/tests/test_data/old_test_solver/sources/SOURCE_002 new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/old_test_solver/sources/SOURCE_002 @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/test_solver/001 b/seisflows/tests/test_data/test_solver/001 deleted file mode 120000 index cbb9ee10..00000000 --- a/seisflows/tests/test_data/test_solver/001 +++ /dev/null @@ -1 +0,0 @@ -mainsolver/ \ No newline at end of file diff --git a/seisflows/tests/test_data/test_solver/001/DATA/Par_file b/seisflows/tests/test_data/test_solver/001/DATA/Par_file new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/Par_file @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE new file mode 120000 index 00000000..93be0227 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE @@ -0,0 +1 @@ +SOURCE_001 \ No newline at end of file diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_001 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_001 new file mode 100644 index 00000000..29f9b7f3 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_001 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 362079.06 # source location x in meters +zs = 61219.23 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_002 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_002 new file mode 100644 index 00000000..8371bd1f --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_002 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 116059.49 # source location x in meters +zs = 105566.07 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_003 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_003 new file mode 100644 index 00000000..1e470574 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_003 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 326286.97 # source location x in meters +zs = 411609.09 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_004 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_004 new file mode 100644 index 00000000..88c63c31 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_004 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 84727.42 # source location x in meters +zs = 333825.53 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_005 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_005 new file mode 100644 index 00000000..9cc4bdb0 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_005 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 192015.27 # source location x in meters +zs = 248162.11 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_006 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_006 new file mode 100644 index 00000000..9c75ff61 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_006 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 335300.42 # source location x in meters +zs = 240097.73 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_007 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_007 new file mode 100644 index 00000000..ce16fcf6 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_007 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 204670.83 # source location x in meters +zs = 441693.44 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_008 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_008 new file mode 100644 index 00000000..3c42bd9b --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_008 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 223849.60 # source location x in meters +zs = 259437.84 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_009 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_009 new file mode 100644 index 00000000..e307422a --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_009 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 197026.87 # source location x in meters +zs = 32902.82 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_010 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_010 new file mode 100644 index 00000000..6d975236 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_010 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 67392.40 # source location x in meters +zs = 183183.89 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_011 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_011 new file mode 100644 index 00000000..9c225ebe --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_011 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 20482.04 # source location x in meters +zs = 443390.92 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_012 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_012 new file mode 100644 index 00000000..7779d01f --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_012 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 350280.81 # source location x in meters +zs = 283883.49 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_013 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_013 new file mode 100644 index 00000000..7b415bab --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_013 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 449852.28 # source location x in meters +zs = 27585.00 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_014 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_014 new file mode 100644 index 00000000..313e804d --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_014 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 141836.41 # source location x in meters +zs = 242463.91 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_015 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_015 new file mode 100644 index 00000000..8bf6ea62 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_015 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 206999.46 # source location x in meters +zs = 105547.63 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_016 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_016 new file mode 100644 index 00000000..fe50abde --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_016 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 423539.80 # source location x in meters +zs = 96379.35 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_017 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_017 new file mode 100644 index 00000000..e00db1f3 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_017 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 135933.15 # source location x in meters +zs = 373123.66 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_018 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_018 new file mode 100644 index 00000000..a2a56c91 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_018 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 299952.04 # source location x in meters +zs = 325462.20 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_019 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_019 new file mode 100644 index 00000000..bcc9bb15 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_019 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 328568.63 # source location x in meters +zs = 163336.65 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_020 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_020 new file mode 100644 index 00000000..7924ad90 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_020 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 140568.70 # source location x in meters +zs = 273985.02 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_021 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_021 new file mode 100644 index 00000000..bd6a9361 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_021 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 186309.01 # source location x in meters +zs = 352472.55 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_022 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_022 new file mode 100644 index 00000000..6b29767f --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_022 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 309676.50 # source location x in meters +zs = 177014.37 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_023 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_023 new file mode 100644 index 00000000..6a3d7b27 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_023 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 301818.07 # source location x in meters +zs = 114690.70 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_024 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_024 new file mode 100644 index 00000000..c22c7771 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_024 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 404440.55 # source location x in meters +zs = 142810.05 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_025 b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_025 new file mode 100644 index 00000000..fbfa72e2 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/SOURCE_025 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 299367.72 # source location x in meters +zs = 240300.65 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/001/DATA/STATIONS b/seisflows/tests/test_data/test_solver/001/DATA/STATIONS new file mode 100644 index 00000000..8f979fe1 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/DATA/STATIONS @@ -0,0 +1,5 @@ +S000000 AA 2.43610e+05 2.78904e+05 0.0 0.0 +S000001 AA 3.38981e+05 1.77849e+05 0.0 0.0 +S000002 AA 1.64438e+05 2.94733e+05 0.0 0.0 +S000003 AA 9.22250e+04 3.68887e+05 0.0 0.0 +S000004 AA 2.90702e+05 2.46865e+05 0.0 0.0 diff --git a/seisflows/tests/test_data/test_solver/001/bin/xcombine_sem b/seisflows/tests/test_data/test_solver/001/bin/xcombine_sem new file mode 100755 index 00000000..969a4d93 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/bin/xcombine_sem @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xcombine_sem" + diff --git a/seisflows/tests/test_data/test_solver/001/bin/xmeshfem2D b/seisflows/tests/test_data/test_solver/001/bin/xmeshfem2D new file mode 100755 index 00000000..149ca704 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/bin/xmeshfem2D @@ -0,0 +1,2 @@ +#!/bin/bash -e +echo "xmeshfem2D" diff --git a/seisflows/tests/test_data/test_solver/001/bin/xsmooth_sem b/seisflows/tests/test_data/test_solver/001/bin/xsmooth_sem new file mode 100755 index 00000000..376b4aa5 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/bin/xsmooth_sem @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xsmooth_sem" + diff --git a/seisflows/tests/test_data/test_solver/001/bin/xspecfem2D b/seisflows/tests/test_data/test_solver/001/bin/xspecfem2D new file mode 100755 index 00000000..e50c2b0b --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/bin/xspecfem2D @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xspecfem2D" + diff --git a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000000.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000000.BXY.semd new file mode 100644 index 00000000..32de22fb --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000000.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 -1.6181395570366952E-040 + 15.599999999999994 -5.2342064428317742E-040 + 15.659999999999997 -1.1014530232203039E-039 + 15.719999999999999 -1.8866303396574425E-039 + 15.780000000000001 -2.8429598880172197E-039 + 15.839999999999996 -3.7992897183542585E-039 + 15.899999999999999 -4.9036302592274776E-039 + 15.960000000000001 -6.1589501672468121E-039 + 16.019999999999996 -7.1840615830925036E-039 + 16.079999999999998 -7.1867272624710444E-039 + 16.140000000000001 -6.2966594980236854E-039 + 16.200000000000003 -4.7079327175220709E-039 + 16.259999999999991 -2.5459556422345408E-039 + 16.319999999999993 3.5205765568813153E-040 + 16.379999999999995 3.9682368672931863E-039 + 16.439999999999998 8.2001169756250162E-039 + 16.500000000000000 1.2858391185381855E-038 + 16.560000000000002 1.7089880482242040E-038 + 16.620000000000005 2.0578857551593770E-038 + 16.679999999999993 2.1902568679003029E-038 + 16.739999999999995 2.0164462392665438E-038 + 16.799999999999997 1.5316398067962193E-038 + 16.859999999999999 5.7491150622311640E-039 + 16.920000000000002 -8.5782105875163376E-039 + 16.980000000000004 -2.5940724677126329E-038 + 17.039999999999992 -4.5169286085267820E-038 + 17.099999999999994 -6.3584741136486372E-038 + 17.159999999999997 -8.1630339708083018E-038 + 17.219999999999999 -9.6357544214987664E-038 + 17.280000000000001 -9.1741203603943593E-038 + 17.340000000000003 -7.1745179912174126E-038 + 17.399999999999991 -4.2336385174254231E-038 + 17.459999999999994 -3.3505258840012657E-040 + 17.519999999999996 5.1654893161832599E-038 + 17.579999999999998 1.0966792447302352E-037 + 17.640000000000001 1.6552576125836149E-037 + 17.700000000000003 2.0562359613803489E-037 + 17.759999999999991 2.1642559725064617E-037 + 17.819999999999993 1.9412206585945005E-037 + 17.879999999999995 1.3566140989016925E-037 + 17.939999999999998 2.6870467596717909E-038 + 18.000000000000000 -1.2753501309302122E-037 + 18.060000000000002 -3.1483361122764023E-037 + 18.120000000000005 -5.3288168814064291E-037 + 18.179999999999993 -7.4909785834885196E-037 + 18.239999999999995 -9.2266589875239869E-037 + 18.299999999999997 -1.0366954744082223E-036 + 18.359999999999999 -1.0722171184059878E-036 + 18.420000000000002 -9.9697147150664522E-037 + 18.480000000000004 -7.9006767861038063E-037 + 18.539999999999992 -4.6876823968855020E-037 + 18.599999999999994 -5.6660213976286636E-038 + 18.659999999999997 4.2623725508706905E-037 + 18.719999999999999 9.6105030334594478E-037 + 18.780000000000001 1.4780894839670441E-036 + 18.840000000000003 1.9264824462753508E-036 + 18.899999999999991 2.1700228756813097E-036 + 18.959999999999994 2.2137138467405901E-036 + 19.019999999999996 1.9946108023758264E-036 + 19.079999999999998 1.5087566850777861E-036 + 19.140000000000001 6.7767350931482024E-037 + 19.200000000000003 -4.0626414681969865E-037 + 19.259999999999991 -1.6562635923247469E-036 + 19.319999999999993 -3.0442067158840631E-036 + 19.379999999999995 -4.4299979526371178E-036 + 19.439999999999998 -5.4337306106198389E-036 + 19.500000000000000 -5.8822036552828685E-036 + 19.560000000000002 -5.6630006815932210E-036 + 19.620000000000005 -4.6519187106054387E-036 + 19.679999999999993 -2.8293429552302597E-036 + 19.739999999999995 -1.5395068217752023E-037 + 19.799999999999997 3.4726653211456253E-036 + 19.859999999999999 7.7103291780030360E-036 + 19.920000000000002 1.2261621435742382E-035 + 19.980000000000004 1.6506531830947334E-035 + 20.039999999999992 1.9895819199855972E-035 + 20.099999999999994 2.1880881190972826E-035 + 20.159999999999997 2.1840664236338652E-035 + 20.219999999999999 1.9578632562000918E-035 + 20.280000000000001 1.4628042031564578E-035 + 20.340000000000003 6.7746246184373628E-036 + 20.399999999999991 -4.0671467822400800E-036 + 20.459999999999994 -1.7156951498503278E-035 + 20.519999999999996 -3.1724123049964817E-035 + 20.579999999999998 -4.6787462172434862E-035 + 20.640000000000001 -6.0899812797910842E-035 + 20.700000000000003 -7.2537908636155519E-035 + 20.759999999999991 -8.0052435816176873E-035 + 20.819999999999993 -8.1714120035368542E-035 + 20.879999999999995 -7.6005249090346779E-035 + 20.939999999999998 -6.1678409657218802E-035 + 21.000000000000000 -3.7918786585717916E-035 + 21.060000000000002 -4.3494112486830667E-036 + 21.120000000000005 3.8720871607350625E-035 + 21.179999999999993 8.9862153436835541E-035 + 21.239999999999995 1.4686227725687522E-034 + 21.299999999999997 2.0653079279069115E-034 + 21.359999999999999 2.6465941301116153E-034 + 21.420000000000002 3.1616842798494404E-034 + 21.480000000000004 3.5559048173350323E-034 + 21.539999999999992 3.7720842549050610E-034 + 21.599999999999994 3.7533806107760708E-034 + 21.659999999999997 3.4471147454067261E-034 + 21.719999999999999 2.8106713639453693E-034 + 21.780000000000001 1.8194087158511990E-034 + 21.840000000000003 4.7055482817651473E-035 + 21.899999999999991 -1.2131472678990359E-034 + 21.959999999999994 -3.1774389982905288E-034 + 22.019999999999996 -5.3345690364318323E-034 + 22.079999999999998 -7.5622815030527607E-034 + 22.140000000000001 -9.7051763945871747E-034 + 22.200000000000003 -1.1579071423172107E-033 + 22.259999999999991 -1.2980230891662098E-033 + 22.319999999999993 -1.3693584651271989E-033 + 22.379999999999995 -1.3509009959851411E-033 + 22.439999999999998 -1.2238276578711500E-033 + 22.500000000000000 -9.7339960449944708E-034 + 22.560000000000002 -5.9100439741057089E-034 + 22.619999999999990 -7.6270008524134055E-035 + 22.679999999999993 5.6108030060053288E-034 + 22.739999999999995 1.2997012819634179E-033 + 22.799999999999997 2.1056483950145797E-033 + 22.859999999999999 2.9321758417024694E-033 + 22.920000000000002 3.7204401819249598E-033 + 22.980000000000004 4.4013439555153331E-033 + 23.039999999999992 4.8985255518412256E-033 + 23.099999999999994 5.1326182181591718E-033 + 23.159999999999997 5.0266601590370435E-033 + 23.219999999999999 4.5126048347669096E-033 + 23.280000000000001 3.5384352552272711E-033 + 23.340000000000003 2.0757237016240619E-033 + 23.399999999999991 1.2703259603630101E-034 + 23.459999999999994 -2.2674421120815756E-033 + 23.519999999999996 -5.0246231716229049E-033 + 23.579999999999998 -8.0154559941142113E-033 + 23.640000000000001 -1.1064606726915964E-032 + 23.700000000000003 -1.3953652890469628E-032 + 23.759999999999991 -1.6428216572363067E-032 + 23.819999999999993 -1.8209382038647716E-032 + 23.879999999999995 -1.9009466971265256E-032 + 23.939999999999998 -1.8551896709638077E-032 + 24.000000000000000 -1.6594435125087495E-032 + 24.060000000000002 -1.2955016045839015E-032 + 24.119999999999990 -7.5385187559984896E-033 + 24.179999999999993 -3.6277849656114483E-034 + 24.239999999999995 8.4182662377160561E-033 + 24.299999999999997 1.8496665575257454E-032 + 24.359999999999999 2.9400250072948326E-032 + 24.420000000000002 4.0492491677125239E-032 + 24.480000000000004 5.0984646168199022E-032 + 24.539999999999992 5.9961821937713939E-032 + 24.599999999999994 6.6424025519249791E-032 + 24.659999999999997 6.9342299433956610E-032 + 24.719999999999999 6.7728943426238611E-032 + 24.780000000000001 6.0719748648930025E-032 + 24.840000000000003 4.7664402594420679E-032 + 24.899999999999991 2.8220416788582653E-032 + 24.959999999999994 2.4442268484209670E-033 + 25.019999999999996 -2.9127815271344959E-032 + 25.079999999999998 -6.5416582574693722E-032 + 25.140000000000001 -1.0476391433405426E-031 + 25.200000000000003 -1.4493114407179487E-031 + 25.259999999999991 -1.8313987705721770E-031 + 25.319999999999993 -2.1616076800346035E-031 + 25.379999999999995 -2.4045390756540601E-031 + 25.439999999999998 -2.5236131282316244E-031 + 25.500000000000000 -2.4834848113706233E-031 + 25.560000000000002 -2.2528757922210118E-031 + 25.619999999999990 -1.8077044297634325E-031 + 25.679999999999993 -1.1343496349320018E-031 + 25.739999999999995 -2.3284113374101541E-032 + 25.799999999999997 8.8026903167130146E-032 + 25.859999999999999 2.1696258209026136E-031 + 25.920000000000002 3.5796687920821577E-031 + 25.980000000000004 5.0343833578469432E-031 + 26.039999999999992 6.4384689936644432E-031 + 26.099999999999994 7.6801240809755321E-031 + 26.159999999999997 8.6355874676325553E-031 + 26.219999999999999 9.1754675265128283E-031 + 26.280000000000001 9.1727783924532922E-031 + 26.340000000000003 8.5124649527024642E-031 + 26.399999999999991 7.1020406561780688E-031 + 26.459999999999994 4.8828240323828859E-031 + 26.519999999999996 1.8410962628206977E-031 + 26.579999999999998 -1.9816158111872103E-031 + 26.640000000000001 -6.4800297525817160E-031 + 26.700000000000003 -1.1479318993742840E-030 + 26.759999999999991 -1.6733010667388766E-030 + 26.819999999999993 -2.1925448824057466E-030 + 26.879999999999995 -2.6679575475210395E-030 + 26.939999999999998 -3.0570557981299687E-030 + 27.000000000000000 -3.3145495212123083E-030 + 27.060000000000002 -3.3949054634520067E-030 + 27.119999999999990 -3.2554467240036379E-030 + 27.179999999999993 -2.8598808732795536E-030 + 27.239999999999995 -2.1821024903072687E-030 + 27.299999999999997 -1.2100606143729331E-030 + 27.359999999999999 5.0556092715550638E-032 + 27.420000000000002 1.5731039031741508E-030 + 27.480000000000004 3.3075559234035302E-030 + 27.539999999999992 5.1791713927042341E-030 + 27.599999999999994 7.0885770541329157E-030 + 27.659999999999997 8.9135303516924483E-030 + 27.719999999999999 1.0512574789258215E-029 + 27.780000000000001 1.1730716273703015E-029 + 27.840000000000003 1.2407131550559221E-029 + 27.899999999999991 1.2384794714380082E-029 + 27.959999999999994 1.1521751768705366E-029 + 28.019999999999996 9.7036113629716037E-030 + 28.079999999999998 6.8566677226518827E-030 + 28.140000000000001 2.9608914500675790E-030 + 28.200000000000003 -1.9380701018108627E-030 + 28.259999999999991 -7.7188914207224322E-030 + 28.319999999999993 -1.4177586632775430E-029 + 28.379999999999995 -2.1024601765123193E-029 + 28.439999999999998 -2.7886953823238823E-029 + 28.500000000000000 -3.4316216707699232E-029 + 28.560000000000002 -3.9803009582631598E-029 + 28.619999999999990 -4.3798211717611283E-029 + 28.679999999999993 -4.5740890943180381E-029 + 28.739999999999995 -4.5092339811832006E-029 + 28.799999999999997 -4.1375262503221029E-029 + 28.859999999999999 -3.4216494332496176E-029 + 28.920000000000002 -2.3391243045024541E-029 + 28.980000000000004 -8.8662562259849391E-030 + 29.039999999999992 9.1609953359705870E-030 + 29.099999999999994 3.0230382713799501E-029 + 29.159999999999997 5.3597809173198263E-029 + 29.219999999999999 7.8227896414530085E-029 + 29.280000000000001 1.0280362628633351E-028 + 29.340000000000003 1.2575567252396375E-028 + 29.399999999999991 1.4531298241591806E-028 + 29.459999999999994 1.5957567879535720E-028 + 29.519999999999996 1.6660951869636433E-028 + 29.579999999999998 1.6456031767885181E-028 + 29.640000000000001 1.5178459191932114E-028 + 29.700000000000003 1.2699161536475595E-028 + 29.759999999999991 8.9389861937745869E-029 + 29.819999999999993 3.8829919369192331E-029 + 29.879999999999995 -2.4065758648896208E-029 + 29.939999999999998 -9.7796561177631208E-029 + 30.000000000000000 -1.7991154232127032E-028 + 30.060000000000002 -2.6698208201999085E-028 + 30.119999999999990 -3.5462898002775533E-028 + 30.179999999999993 -4.3761227874983646E-028 + 30.239999999999995 -5.0998941727954367E-028 + 30.299999999999997 -5.6534484769480173E-028 + 30.359999999999999 -5.9708939813509278E-028 + 30.420000000000002 -5.9882459848257461E-028 + 30.480000000000004 -5.6476124372365445E-028 + 30.539999999999992 -4.9017693629725121E-028 + 30.599999999999994 -3.7189265755456672E-028 + 30.659999999999997 -2.0874309132162230E-028 + 30.719999999999999 -2.0120575290467326E-030 + 30.780000000000001 2.4419881546231917E-028 + 30.840000000000003 5.2270130495459897E-028 + 30.899999999999991 8.2308477590193882E-028 + 30.959999999999994 1.1317452388934976E-027 + 31.019999999999996 1.4321047782407032E-027 + 31.079999999999998 1.7050428323894062E-027 + 31.140000000000001 1.9295506871160110E-027 + 31.200000000000003 2.0836099129577600E-027 + 31.259999999999991 2.1452825428043721E-027 + 31.319999999999993 2.0939881570352102E-027 + 31.379999999999995 1.9119256026717964E-027 + 31.439999999999998 1.5855844144509473E-027 + 31.500000000000000 1.1072746681309882E-027 + 31.560000000000002 4.7659341372520723E-028 + 31.619999999999990 -2.9826665969931001E-028 + 31.679999999999993 -1.1994658713195978E-027 + 31.739999999999995 -2.1988273549485761E-027 + 31.799999999999997 -3.2576041238627592E-027 + 31.859999999999999 -4.3267972402325626E-027 + 31.920000000000002 -5.3480989959772848E-027 + 31.980000000000004 -6.2555118901161438E-027 + 32.039999999999992 -6.9776728982014581E-027 + 32.099999999999994 -7.4408682910317497E-027 + 32.159999999999997 -7.5726968366883974E-027 + 32.219999999999999 -7.3062836372453435E-027 + 32.280000000000001 -6.5849137430472079E-027 + 32.340000000000003 -5.3669033345429201E-027 + 32.399999999999991 -3.6304821595284392E-027 + 32.459999999999994 -1.3784354025082710E-027 + 32.519999999999996 1.3577952954867557E-027 + 32.579999999999998 4.5148535429276294E-027 + 32.640000000000001 7.9953680553712216E-027 + 32.700000000000003 1.1667320099844325E-026 + 32.759999999999991 1.5365153875320375E-026 + 32.819999999999993 1.8892864011247370E-026 + 32.879999999999995 2.2029228856311860E-026 + 32.939999999999998 2.4535278287491007E-026 + 33.000000000000000 2.6163969468460486E-026 + 33.060000000000002 2.6671941440465249E-026 + 33.119999999999990 2.5833086516584879E-026 + 33.179999999999993 2.3453532446845302E-026 + 33.239999999999995 1.9387481401098540E-026 + 33.299999999999997 1.3553250945663173E-026 + 33.359999999999999 5.9486927117576160E-027 + 33.420000000000002 -3.3349044149765560E-027 + 33.480000000000004 -1.4101412670203551E-026 + 33.539999999999992 -2.6041973556202507E-026 + 33.599999999999994 -3.8731635344801338E-026 + 33.659999999999997 -5.1631461621239382E-026 + 33.719999999999999 -6.4096928231010223E-026 + 33.780000000000001 -7.5393302089605126E-026 + 33.840000000000003 -8.4718333656335275E-026 + 33.899999999999991 -9.1232427286699035E-026 + 33.959999999999994 -9.4095957860162698E-026 + 34.019999999999996 -9.2513090714558283E-026 + 34.079999999999998 -8.5780935525053296E-026 + 34.140000000000001 -7.3342435736358471E-026 + 34.200000000000003 -5.4840881802454010E-026 + 34.259999999999991 -3.0173579353605766E-026 + 34.319999999999993 4.5838694920662630E-028 + 34.379999999999995 3.6507393679230362E-026 + 34.439999999999998 7.7047105677916276E-026 + 34.500000000000000 1.2075430910818314E-025 + 34.560000000000002 1.6590821840443044E-025 + 34.619999999999990 2.1041034163646434E-025 + 34.679999999999993 2.5182739464566152E-025 + 34.739999999999995 2.8745924993784303E-025 + 34.799999999999997 3.1443258160188300E-025 + 34.859999999999999 3.2982008826947833E-025 + 34.920000000000002 3.3078319103982379E-025 + 34.980000000000004 3.1473531754406230E-025 + 35.039999999999992 2.7952053319099247E-025 + 35.099999999999994 2.2360109048644109E-025 + 35.159999999999997 1.4624551732303659E-025 + 35.219999999999999 4.7707492941425616E-026 + 35.280000000000001 -7.0615196367793213E-026 + 35.340000000000003 -2.0605391352120251E-025 + 35.399999999999991 -3.5458642041760844E-025 + 35.459999999999994 -5.1081016864894323E-025 + 35.519999999999996 -6.6798356483738170E-025 + 35.579999999999998 -8.1814344550073797E-025 + 35.640000000000001 -9.5230725264130238E-025 + 35.700000000000003 -1.0607631100093744E-024 + 35.759999999999991 -1.1334482072389001E-024 + 35.819999999999993 -1.1604104428281901E-024 + 35.879999999999995 -1.1323444792577519E-024 + 35.939999999999998 -1.0411852130108958E-024 + 36.000000000000000 -8.8073922738182345E-025 + 36.060000000000002 -6.4732671683478603E-025 + 36.119999999999990 -3.4040177227694506E-025 + 36.179999999999993 3.6884413741960994E-026 + 36.239999999999995 4.7721654170152315E-025 + 36.299999999999997 9.6878628050975176E-025 + 36.359999999999999 1.4951403015130987E-024 + 36.420000000000002 2.0352435580082628E-024 + 36.479999999999990 2.5637912239258643E-024 + 36.539999999999992 3.0517944588406984E-024 + 36.599999999999994 3.4674528509830019E-024 + 36.659999999999997 3.7773207172424094E-024 + 36.719999999999999 3.9477496662110232E-024 + 36.780000000000001 3.9465828913933157E-024 + 36.840000000000003 3.7450510264815477E-024 + 36.899999999999991 3.3198081361690742E-024 + 36.959999999999994 2.6550220339472648E-024 + 37.019999999999996 1.7444228167952536E-024 + 37.079999999999998 5.9319620691165114E-025 + 37.140000000000001 -7.8040144089563920E-025 + 37.200000000000003 -2.3438327381290518E-024 + 37.259999999999991 -4.0496002630155580E-024 + 37.319999999999993 -5.8352219590093861E-024 + 37.379999999999995 -7.6239571473788128E-024 + 37.439999999999998 -9.3263809668810741E-024 + 37.500000000000000 -1.0842838987700641E-023 + 37.560000000000002 -1.2066821555135158E-023 + 37.619999999999990 -1.2889207355651188E-023 + 37.679999999999993 -1.3203314689268502E-023 + 37.739999999999995 -1.2910621151233592E-023 + 37.799999999999997 -1.1926973063993913E-023 + 37.859999999999999 -1.0189048865771505E-023 + 37.920000000000002 -7.6607900537852916E-024 + 37.979999999999990 -4.3394774458361870E-024 + 38.039999999999992 -2.6109331183213448E-025 + 38.099999999999994 4.4954043310119360E-024 + 38.159999999999997 9.8052606087018549E-024 + 38.219999999999999 1.5496934265079955E-023 + 38.280000000000001 2.1353238834219035E-023 + 38.340000000000003 2.7114893764074831E-023 + 38.399999999999991 3.2486672107165048E-023 + 38.459999999999994 3.7146208413422193E-023 + 38.519999999999996 4.0755463019940024E-023 + 38.579999999999998 4.2974662333678938E-023 + 38.640000000000001 4.3478399329913310E-023 + 38.700000000000003 4.1973463257156244E-023 + 38.759999999999991 3.8217778397455418E-023 + 38.819999999999993 3.2039703469874971E-023 + 38.879999999999995 2.3356863682689316E-023 + 38.939999999999998 1.2193511859894135E-023 + 39.000000000000000 -1.3045803748484268E-024 + 39.060000000000002 -1.6858779315626584E-023 + 39.119999999999990 -3.4050804177285034E-023 + 39.179999999999993 -5.2321516766776680E-023 + 39.239999999999995 -7.0976056146230063E-023 + 39.299999999999997 -8.9196111275457014E-023 + 39.359999999999999 -1.0605963971306737E-022 + 39.420000000000002 -1.2056831603261310E-022 + 39.479999999999990 -1.3168247931228287E-022 + 39.539999999999992 -1.3836300218475243E-022 + 39.599999999999994 -1.3961935836645911E-022 + 39.659999999999997 -1.3456230693202629E-022 + 39.719999999999999 -1.2245972872577510E-022 + 39.780000000000001 -1.0279337409808619E-022 + 39.840000000000003 -7.5314234693009018E-023 + 39.899999999999991 -4.0093756742421861E-023 + 39.959999999999994 2.4318711409046100E-024 + 40.019999999999996 5.1427353172715351E-023 + 40.079999999999998 1.0563669606451498E-022 + 40.140000000000001 1.6337727329054286E-022 + 40.200000000000003 2.2255187833610596E-022 + 40.259999999999991 2.8068071785294450E-022 + 40.319999999999993 3.3495503174059601E-022 + 40.379999999999995 3.8231257358189263E-022 + 40.439999999999998 4.1953517756784347E-022 + 40.500000000000000 4.4336679084731331E-022 + 40.560000000000002 4.5065011876488254E-022 + 40.619999999999990 4.3847816406307108E-022 + 40.679999999999993 4.0435605373417980E-022 + 40.739999999999995 3.4636805754912264E-022 + 40.799999999999997 2.6334245538790456E-022 + 40.859999999999999 1.5500724227090521E-022 + 40.920000000000002 2.2128005302427972E-023 + 40.979999999999990 -1.3338026175611731E-022 + 41.039999999999992 -3.0837609024153906E-022 + 41.099999999999994 -4.9845849039888546E-022 + 41.159999999999997 -6.9798431673506679E-022 + 41.219999999999999 -9.0014401596409175E-022 + 41.280000000000001 -1.0971004158757616E-021 + 41.340000000000003 -1.2801934424380675E-021 + 41.399999999999991 -1.4402116632913831E-021 + 41.459999999999994 -1.5677290587599181E-021 + 41.519999999999996 -1.6535010483734241E-021 + 41.579999999999998 -1.6889111986307630E-021 + 41.640000000000001 -1.6664579356624630E-021 + 41.700000000000003 -1.5802642225238984E-021 + 41.759999999999991 -1.4265925039272656E-021 + 41.819999999999993 -1.2043431929863894E-021 + 41.879999999999995 -9.1551410270178627E-022 + 41.939999999999998 -5.6559345030220068E-022 + 42.000000000000000 -1.6386206549166665E-022 + 42.060000000000002 2.7642080685507985E-022 + 42.119999999999990 7.3797230352987775E-022 + 42.179999999999993 1.1996039178536991E-021 + 42.239999999999995 1.6365170404443651E-021 + 42.299999999999997 2.0207886500445199E-021 + 42.359999999999999 2.3220515162226740E-021 + 42.420000000000002 2.5083672799861665E-021 + 42.479999999999990 2.5472754141109190E-021 + 42.539999999999992 2.4070006456084800E-021 + 42.599999999999994 2.0577821923840538E-021 + 42.659999999999997 1.4732874599826009E-021 + 42.719999999999999 6.3205295460597373E-022 + 42.780000000000001 -4.8110736338909296E-022 + 42.840000000000003 -1.8737859881711517E-021 + 42.899999999999991 -3.5448476918187025E-021 + 42.959999999999994 -5.4835294098183245E-021 + 43.019999999999996 -7.6688718317138098E-021 + 43.079999999999998 -1.0069528458194391E-020 + 43.140000000000001 -1.2644035576844841E-020 + 43.200000000000003 -1.5341574801370405E-020 + 43.259999999999991 -1.8103265164310338E-020 + 43.319999999999993 -2.0863994765881180E-020 + 43.379999999999995 -2.3554776392924582E-020 + 43.439999999999998 -2.6105584279251874E-020 + 43.500000000000000 -2.8448602767821772E-020 + 43.560000000000002 -3.0521754616600303E-020 + 43.619999999999990 -3.2272424365915879E-020 + 43.679999999999993 -3.3661142266531378E-020 + 43.739999999999995 -3.4665061580035075E-020 + 43.799999999999997 -3.5281036517403203E-020 + 43.859999999999999 -3.5527998186042669E-020 + 43.920000000000002 -3.5448448462207393E-020 + 43.979999999999990 -3.5108756968340598E-020 + 44.039999999999992 -3.4598113793934374E-020 + 44.099999999999994 -3.4025842472220968E-020 + 44.159999999999997 -3.3516970658416352E-020 + 44.219999999999999 -3.3205916601060570E-020 + 44.280000000000001 -3.3228219868941459E-020 + 44.340000000000003 -3.3710356292677647E-020 + 44.399999999999991 -3.4757741400868977E-020 + 44.459999999999994 -3.6441062707142733E-020 + 44.519999999999996 -3.8781270160092502E-020 + 44.579999999999998 -4.1733484497529432E-020 + 44.640000000000001 -4.5170405967997115E-020 + 44.700000000000003 -4.8865459432135933E-020 + 44.759999999999991 -5.2476448058045846E-020 + 44.819999999999993 -5.5529903504578356E-020 + 44.879999999999995 -5.7407144890398295E-020 + 44.939999999999998 -5.7331884952108224E-020 + 45.000000000000000 -5.4359899071142765E-020 + 45.060000000000002 -4.7371428149435470E-020 + 45.119999999999990 -3.5065325107820142E-020 + 45.179999999999993 -1.5955606711710747E-020 + 45.239999999999995 1.1630438924253162E-020 + 45.299999999999997 4.9554218121311954E-020 + 45.359999999999999 9.9866964363965231E-020 + 45.420000000000002 1.6481470082995242E-019 + 45.479999999999990 2.4684507728431943E-019 + 45.539999999999992 3.4862278588546110E-019 + 45.599999999999994 4.7305113783855792E-019 + 45.659999999999997 6.2330690231701661E-019 + 45.719999999999999 8.0288932349098608E-019 + 45.780000000000001 1.0156869144701350E-018 + 45.840000000000003 1.2660631899292137E-018 + 45.899999999999991 1.5589686247133666E-018 + 45.959999999999994 1.9000780220586806E-018 + 46.019999999999996 2.2959555082642691E-018 + 46.079999999999998 2.7542540948363020E-018 + 46.140000000000001 3.2839434562260081E-018 + 46.200000000000003 3.8955681320640004E-018 + 46.259999999999991 4.6015497764894582E-018 + 46.319999999999993 5.4165051823067516E-018 + 46.379999999999995 6.3576052245693879E-018 + 46.439999999999998 7.4449546233049452E-018 + 46.500000000000000 8.7019972572774612E-018 + 46.560000000000002 1.0155934925576038E-017 + 46.619999999999990 1.1838160507156280E-017 + 46.679999999999993 1.3784704899297877E-017 + 46.739999999999995 1.6036683370785417E-017 + 46.799999999999997 1.8640751608786746E-017 + 46.859999999999999 2.1649521160716835E-017 + 46.920000000000002 2.5122035603985866E-017 + 46.979999999999990 2.9124159581538116E-017 + 47.039999999999992 3.3729038261976602E-017 + 47.099999999999994 3.9017521270887477E-017 + 47.159999999999997 4.5078566803820233E-017 + 47.219999999999999 5.2009716281954920E-017 + 47.280000000000001 5.9917572473733410E-017 + 47.340000000000003 6.8918298603265972E-017 + 47.399999999999991 7.9138239428692374E-017 + 47.459999999999994 9.0714516101554052E-017 + 47.519999999999996 1.0379587717040770E-016 + 47.579999999999998 1.1854347394570800E-016 + 47.640000000000001 1.3513192049982154E-016 + 47.700000000000003 1.5375033090495448E-016 + 47.759999999999991 1.7460380529382556E-016 + 47.819999999999993 1.9791466645420581E-016 + 47.879999999999995 2.2392406928463673E-016 + 47.939999999999998 2.5289370308903926E-016 + 48.000000000000000 2.8510747515630532E-016 + 48.060000000000002 3.2087321049915824E-016 + 48.119999999999990 3.6052448548895529E-016 + 48.179999999999993 4.0442177709354178E-016 + 48.239999999999995 4.5295422092214549E-016 + 48.299999999999997 5.0653988797934853E-016 + 48.359999999999999 5.6562620081770736E-016 + 48.420000000000002 6.3068938101573889E-016 + 48.479999999999990 7.0223303292050519E-016 + 48.539999999999992 7.8078485935920942E-016 + 48.599999999999994 8.6689308989766128E-016 + 48.659999999999997 9.6111927005762832E-016 + 48.719999999999999 1.0640307474683893E-015 + 48.780000000000001 1.1761892862581827E-015 + 48.840000000000003 1.2981375042641816E-015 + 48.899999999999991 1.4303811430762566E-015 + 48.959999999999994 1.5733680591800827E-015 + 49.019999999999996 1.7274621865484056E-015 + 49.079999999999998 1.8929125530056044E-015 + 49.140000000000001 2.0698161184999740E-015 + 49.200000000000003 2.2580737363191330E-015 + 49.259999999999991 2.4573377926477247E-015 + 49.319999999999993 2.6669517041108194E-015 + 49.379999999999995 2.8858787054637584E-015 + 49.439999999999998 3.1126182972433492E-015 + 49.500000000000000 3.3451110314191863E-015 + 49.560000000000002 3.5806244714877840E-015 + 49.619999999999990 3.8156250812259097E-015 + 49.679999999999993 4.0456276550636183E-015 + 49.739999999999995 4.2650232483934842E-015 + 49.799999999999997 4.4668816082352758E-015 + 49.859999999999999 4.6427202597361755E-015 + 49.920000000000002 4.7822434338563003E-015 + 49.979999999999990 4.8730423887717550E-015 + 50.039999999999992 4.9002476705920097E-015 + 50.099999999999994 4.8461410643337440E-015 + 50.159999999999997 4.6897044001964426E-015 + 50.219999999999999 4.4061057097543212E-015 + 50.280000000000001 3.9661132682919997E-015 + 50.340000000000003 3.3354391891909961E-015 + 50.399999999999991 2.4739879851941538E-015 + 50.459999999999994 1.3349855689364915E-015 + 50.519999999999996 -1.3597757025340940E-016 + 50.579999999999998 -2.0020370794328779E-015 + 50.640000000000001 -4.3363173352169816E-015 + 50.700000000000003 -7.2233218865961327E-015 + 50.759999999999991 -1.0760507683385728E-014 + 50.819999999999993 -1.5060089394018927E-014 + 50.879999999999995 -2.0251015703007260E-014 + 50.939999999999998 -2.6481259482832161E-014 + 51.000000000000000 -3.3920336886206333E-014 + 51.060000000000002 -4.2762153482309926E-014 + 51.119999999999990 -5.3228181842304323E-014 + 51.179999999999993 -6.5571086326452111E-014 + 51.239999999999995 -8.0078573489079331E-014 + 51.299999999999997 -9.7078003186398102E-014 + 51.359999999999999 -1.1694120144277824E-013 + 51.420000000000002 -1.4009005457700678E-013 + 51.479999999999990 -1.6700259110697950E-013 + 51.539999999999992 -1.9821984338249719E-013 + 51.599999999999994 -2.3435339512054618E-013 + 51.659999999999997 -2.7609366549015849E-013 + 51.719999999999999 -3.2421913224097596E-013 + 51.780000000000001 -3.7960663216342324E-013 + 51.840000000000003 -4.4324255236350199E-013 + 51.899999999999991 -5.1623496284746952E-013 + 51.959999999999994 -5.9982778778334744E-013 + 52.019999999999996 -6.9541476521206127E-013 + 52.079999999999998 -8.0455647008583655E-013 + 52.140000000000001 -9.2899796048231950E-013 + 52.200000000000003 -1.0706881056749254E-012 + 52.259999999999991 -1.2318004548873392E-012 + 52.319999999999993 -1.4147563205300927E-012 + 52.379999999999995 -1.6222501080281796E-012 + 52.439999999999998 -1.8572755712896622E-012 + 52.500000000000000 -2.1231556350808311E-012 + 52.560000000000002 -2.4235725702688874E-012 + 52.619999999999990 -2.7626027461343587E-012 + 52.679999999999993 -3.1447518205062417E-012 + 52.739999999999995 -3.5749944009411797E-012 + 52.799999999999997 -4.0588140794757423E-012 + 52.859999999999999 -4.6022468954263790E-012 + 52.920000000000002 -5.2119291238610598E-012 + 52.979999999999990 -5.8951414857425295E-012 + 53.039999999999992 -6.6598679127303371E-012 + 53.099999999999994 -7.5148411002710403E-012 + 53.159999999999997 -8.4696023780282435E-012 + 53.219999999999999 -9.5345571538647305E-012 + 53.280000000000001 -1.0721032473976073E-011 + 53.339999999999989 -1.2041336599136375E-011 + 53.399999999999991 -1.3508820644217602E-011 + 53.459999999999994 -1.5137926785123597E-011 + 53.519999999999996 -1.6944260211161832E-011 + 53.579999999999998 -1.8944632193776451E-011 + 53.640000000000001 -2.1157105595319390E-011 + 53.700000000000003 -2.3601051663747689E-011 + 53.759999999999991 -2.6297165565034075E-011 + 53.819999999999993 -2.9267507023319755E-011 + 53.879999999999995 -3.2535493083030898E-011 + 53.939999999999998 -3.6125900127128342E-011 + 54.000000000000000 -4.0064832278486328E-011 + 54.060000000000002 -4.4379666659442059E-011 + 54.119999999999990 -4.9098948031920871E-011 + 54.179999999999993 -5.4252293220507849E-011 + 54.239999999999995 -5.9870185879467093E-011 + 54.299999999999997 -6.5983767852642160E-011 + 54.359999999999999 -7.2624545561201136E-011 + 54.420000000000002 -7.9824035559994669E-011 + 54.479999999999990 -8.7613283979114340E-011 + 54.539999999999992 -9.6022320009248361E-011 + 54.599999999999994 -1.0507948164828877E-010 + 54.659999999999997 -1.1481060635659020E-010 + 54.719999999999999 -1.2523805301014750E-010 + 54.780000000000001 -1.3637955594743557E-010 + 54.839999999999989 -1.4824681086080926E-010 + 54.899999999999991 -1.6084389447688634E-010 + 54.959999999999994 -1.7416538865865725E-010 + 55.019999999999996 -1.8819411385989663E-010 + 55.079999999999998 -2.0289860607888731E-010 + 55.140000000000001 -2.1823007908872557E-010 + 55.200000000000003 -2.3411904767885797E-010 + 55.259999999999991 -2.5047122575490404E-010 + 55.319999999999993 -2.6716303838906160E-010 + 55.379999999999995 -2.8403619411378391E-010 + 55.439999999999998 -3.0089177108400929E-010 + 55.500000000000000 -3.1748315230200182E-010 + 55.560000000000002 -3.3350820683791734E-010 + 55.619999999999990 -3.4860015319273427E-010 + 55.679999999999993 -3.6231727504850453E-010 + 55.739999999999995 -3.7413133516396905E-010 + 55.799999999999997 -3.8341413532871272E-010 + 55.859999999999999 -3.8942268353655465E-010 + 55.920000000000002 -3.9128202122722699E-010 + 55.979999999999990 -3.8796594008089714E-010 + 56.039999999999992 -3.7827555916157504E-010 + 56.099999999999994 -3.6081462577222149E-010 + 56.159999999999997 -3.3396203325480754E-010 + 56.219999999999999 -2.9584104312663178E-010 + 56.280000000000001 -2.4428439280993137E-010 + 56.339999999999989 -1.7679519015868876E-010 + 56.399999999999991 -9.0503706715020432E-011 + 56.459999999999994 1.7881577717909010E-011 + 56.519999999999996 1.5212949631359553E-010 + 56.579999999999998 3.1654555594572816E-010 + 56.640000000000001 5.1604267359000006E-010 + 56.700000000000003 7.5621463476784999E-010 + 56.759999999999991 1.0434223914573138E-009 + 56.819999999999993 1.3848876981737660E-009 + 56.879999999999995 1.7887988175757722E-009 + 56.939999999999998 2.2644252068788583E-009 + 57.000000000000000 2.8222485197460538E-009 + 57.060000000000002 3.4741069786449602E-009 + 57.119999999999990 4.2333505728337135E-009 + 57.179999999999993 5.1150214399206082E-009 + 57.239999999999995 6.1360460946092384E-009 + 57.299999999999997 7.3154538559810704E-009 + 57.359999999999999 8.6746108593795887E-009 + 57.420000000000002 1.0237484459221231E-008 + 57.479999999999990 1.2030934490414065E-008 + 57.539999999999992 1.4085030395362714E-008 + 57.599999999999994 1.6433405402655170E-008 + 57.659999999999997 1.9113641566174940E-008 + 57.719999999999999 2.2167699093675144E-008 + 57.780000000000001 2.5642381323559387E-008 + 57.839999999999989 2.9589843913633072E-008 + 57.899999999999991 3.4068169985305473E-008 + 57.959999999999994 3.9141981242826821E-008 + 58.019999999999996 4.4883108151457452E-008 + 58.079999999999998 5.1371351016186932E-008 + 58.140000000000001 5.8695276233895290E-008 + 58.200000000000003 6.6953104116350878E-008 + 58.259999999999991 7.6253681657777686E-008 + 58.319999999999993 8.6717540914651318E-008 + 58.379999999999995 9.8478041328195998E-008 + 58.439999999999998 1.1168267444365502E-007 + 58.500000000000000 1.2649438110687123E-007 + 58.560000000000002 1.4309305280365867E-007 + 58.619999999999990 1.6167719625551106E-007 + 58.679999999999993 1.8246563123433765E-007 + 58.739999999999995 2.0569947249958484E-007 + 58.799999999999997 2.3164417531316238E-007 + 58.859999999999999 2.6059179587017598E-007 + 58.920000000000002 2.9286348114195983E-007 + 58.979999999999990 3.2881210066385661E-007 + 59.039999999999992 3.6882499153481119E-007 + 59.099999999999994 4.1332737335414872E-007 + 59.159999999999997 4.6278526393900516E-007 + 59.219999999999999 5.1770947487901733E-007 + 59.280000000000001 5.7865940029684351E-007 + 59.339999999999989 6.4624723606651791E-007 + 59.399999999999991 7.2114246938953231E-007 + 59.459999999999994 8.0407677933606498E-007 + 59.519999999999996 8.9584939373994161E-007 + 59.579999999999998 9.9733250782658053E-007 + 59.640000000000001 1.1094778533488265E-006 + 59.700000000000003 1.2333224900535227E-006 + 59.759999999999991 1.3699965914622642E-006 + 59.819999999999993 1.5207304816664180E-006 + 59.879999999999995 1.6868624829088542E-006 + 59.939999999999998 1.8698481024698954E-006 + 60.000000000000000 2.0712689282883227E-006 + 60.060000000000002 2.2928421649573289E-006 + 60.119999999999990 2.5364310037119535E-006 + 60.179999999999993 2.8040567974718739E-006 + 60.239999999999995 3.0979101407504373E-006 + 60.299999999999997 3.4203636793764460E-006 + 60.359999999999999 3.7739850837524905E-006 + 60.420000000000002 4.1615523094107871E-006 + 60.479999999999990 4.5860675820215455E-006 + 60.539999999999992 5.0507757429711939E-006 + 60.599999999999994 5.5591784055893261E-006 + 60.659999999999997 6.1150543641462997E-006 + 60.719999999999999 6.7224764245151058E-006 + 60.780000000000001 7.3858341612655747E-006 + 60.839999999999989 8.1098538922130526E-006 + 60.899999999999991 8.8996208526595923E-006 + 60.959999999999994 9.7606035679234473E-006 + 61.019999999999996 1.0698679225310668E-005 + 61.079999999999998 1.1720159142788081E-005 + 61.140000000000001 1.2831813709017806E-005 + 61.200000000000003 1.4040906597545677E-005 + 61.259999999999991 1.5355220614791583E-005 + 61.319999999999993 1.6783096226409428E-005 + 61.379999999999995 1.8333451055978408E-005 + 61.439999999999998 2.0015829719889055E-005 + 61.500000000000000 2.1840427837214584E-005 + 61.560000000000002 2.3818137260623987E-005 + 61.619999999999990 2.5960578848448925E-005 + 61.679999999999993 2.8280157026338842E-005 + 61.739999999999995 3.0790082203414799E-005 + 61.799999999999997 3.3504423846279020E-005 + 61.859999999999999 3.6438162921878495E-005 + 61.920000000000002 3.9607214981759718E-005 + 61.979999999999990 4.3028512782302679E-005 + 62.039999999999992 4.6720025942040230E-005 + 62.099999999999994 5.0700822939293281E-005 + 62.159999999999997 5.4991129311310780E-005 + 62.219999999999999 5.9612368619957974E-005 + 62.280000000000001 6.4587223559319301E-005 + 62.339999999999989 6.9939706228544404E-005 + 62.399999999999991 7.5695164438400857E-005 + 62.459999999999994 8.1880403074609506E-005 + 62.519999999999996 8.8523714191351369E-005 + 62.579999999999998 9.5654930788490990E-005 + 62.640000000000001 1.0330549377809139E-004 + 62.700000000000003 1.1150849959117848E-004 + 62.759999999999991 1.2029879505531186E-004 + 62.819999999999993 1.2971298219014557E-004 + 62.879999999999995 1.3978954310236682E-004 + 62.939999999999998 1.5056882029497454E-004 + 63.000000000000000 1.6209317217237540E-004 + 63.060000000000002 1.7440697107103112E-004 + 63.119999999999990 1.8755664715461870E-004 + 63.179999999999993 2.0159077498460877E-004 + 63.239999999999995 2.1656010852128091E-004 + 63.299999999999997 2.3251767000281339E-004 + 63.359999999999999 2.4951874182294905E-004 + 63.420000000000002 2.6762097745449732E-004 + 63.479999999999990 2.8688435189548183E-004 + 63.539999999999992 3.0737132646174514E-004 + 63.599999999999994 3.2914678977996012E-004 + 63.659999999999997 3.5227805374602584E-004 + 63.719999999999999 3.7683506181210834E-004 + 63.780000000000001 4.0289022887213607E-004 + 63.839999999999989 4.3051854622928290E-004 + 63.899999999999991 4.5979747605265695E-004 + 63.959999999999994 4.9080717301989507E-004 + 64.019999999999996 5.2363025094943720E-004 + 64.079999999999998 5.5835199017327812E-004 + 64.140000000000001 5.9506009179332827E-004 + 64.200000000000003 6.3384470328076994E-004 + 64.259999999999991 6.7479859982058014E-004 + 64.319999999999993 7.1801688058644917E-004 + 64.379999999999995 7.6359702393501594E-004 + 64.439999999999998 8.1163879461686390E-004 + 64.500000000000000 8.6224414487762711E-004 + 64.560000000000002 9.1551742318576987E-004 + 64.619999999999990 9.7156454334235338E-004 + 64.679999999999993 1.0304936692684999E-003 + 64.739999999999995 1.0924145401332852E-003 + 64.799999999999997 1.1574387070632330E-003 + 64.859999999999999 1.2256792130652860E-003 + 64.920000000000002 1.2972503595741753E-003 + 64.979999999999990 1.3722675650159853E-003 + 65.039999999999992 1.4508475019417576E-003 + 65.099999999999994 1.5331071439980287E-003 + 65.159999999999997 1.6191640426347306E-003 + 65.219999999999999 1.7091364099397813E-003 + 65.280000000000001 1.8031423049689097E-003 + 65.339999999999989 1.9012995753550585E-003 + 65.399999999999991 2.0037254962725769E-003 + 65.459999999999994 2.1105364077413109E-003 + 65.519999999999996 2.2218479283492008E-003 + 65.579999999999998 2.3377734851139846E-003 + 65.640000000000001 2.4584255350965254E-003 + 65.700000000000003 2.5839140446292028E-003 + 65.759999999999991 2.7143461759015172E-003 + 65.819999999999993 2.8498266647101127E-003 + 65.879999999999995 2.9904564462495072E-003 + 65.939999999999998 3.1363328605287428E-003 + 66.000000000000000 3.2875500663839749E-003 + 66.060000000000002 3.4441962336435880E-003 + 66.119999999999990 3.6063552789495981E-003 + 66.179999999999993 3.7741060517395100E-003 + 66.239999999999995 3.9475206487368276E-003 + 66.299999999999997 4.1266651919601317E-003 + 66.359999999999999 4.3115991178544226E-003 + 66.420000000000002 4.5023747375026266E-003 + 66.479999999999990 4.6990361504391717E-003 + 66.539999999999992 4.9016197085455359E-003 + 66.599999999999994 5.1101528453756321E-003 + 66.659999999999997 5.3246535848849690E-003 + 66.719999999999999 5.5451304923921424E-003 + 66.780000000000001 5.7715824279102965E-003 + 66.839999999999989 6.0039971766884612E-003 + 66.899999999999991 6.2423513917456569E-003 + 66.959999999999994 6.4866105044981267E-003 + 67.019999999999996 6.7367287888912995E-003 + 67.079999999999998 6.9926473560641966E-003 + 67.140000000000001 7.2542950222043122E-003 + 67.199999999999989 7.5215878178509386E-003 + 67.259999999999991 7.7944271873045586E-003 + 67.319999999999993 8.0727026116641978E-003 + 67.379999999999995 8.3562889144758092E-003 + 67.439999999999998 8.6450458483802572E-003 + 67.500000000000000 8.9388195784547986E-003 + 67.560000000000002 9.2374404632632277E-003 + 67.619999999999990 9.5407258311092733E-003 + 67.679999999999993 9.8484753991107538E-003 + 67.739999999999995 1.0160475721880509E-002 + 67.799999999999997 1.0476496961721931E-002 + 67.859999999999999 1.0796293892562684E-002 + 67.920000000000002 1.1119607145656742E-002 + 67.979999999999990 1.1446159724247611E-002 + 68.039999999999992 1.1775662345138110E-002 + 68.099999999999994 1.2107807859979013E-002 + 68.159999999999997 1.2442275711373204E-002 + 68.219999999999999 1.2778731182969322E-002 + 68.280000000000001 1.3116823018972320E-002 + 68.339999999999989 1.3456187193906817E-002 + 68.399999999999991 1.3796447454469531E-002 + 68.459999999999994 1.4137210963054203E-002 + 68.519999999999996 1.4478075135892955E-002 + 68.579999999999998 1.4818622169978059E-002 + 68.640000000000001 1.5158424335546341E-002 + 68.699999999999989 1.5497041156979127E-002 + 68.759999999999991 1.5834022693355730E-002 + 68.819999999999993 1.6168910933025006E-002 + 68.879999999999995 1.6501236914348766E-002 + 68.939999999999998 1.6830520425076219E-002 + 69.000000000000000 1.7156278969416315E-002 + 69.060000000000002 1.7478021092308820E-002 + 69.119999999999990 1.7795250888976925E-002 + 69.179999999999993 1.8107466780909152E-002 + 69.239999999999995 1.8414160994771896E-002 + 69.299999999999997 1.8714829976111895E-002 + 69.359999999999999 1.9008962411278689E-002 + 69.420000000000002 1.9296049312027580E-002 + 69.479999999999990 1.9575581301473351E-002 + 69.539999999999992 1.9847051125949717E-002 + 69.599999999999994 2.0109954938347920E-002 + 69.659999999999997 2.0363793594608368E-002 + 69.719999999999999 2.0608071558266952E-002 + 69.780000000000001 2.0842300832799514E-002 + 69.839999999999989 2.1066000913651795E-002 + 69.899999999999991 2.1278701287295931E-002 + 69.959999999999994 2.1479940189984906E-002 + 70.019999999999996 2.1669268573230000E-002 + 70.079999999999998 2.1846250235843689E-002 + 70.140000000000001 2.2010459550318936E-002 + 70.199999999999989 2.2161490747932628E-002 + 70.259999999999991 2.2298950065853401E-002 + 70.319999999999993 2.2422463333149879E-002 + 70.379999999999995 2.2531673720654743E-002 + 70.439999999999998 2.2626245946877722E-002 + 70.500000000000000 2.2705862152728393E-002 + 70.560000000000002 2.2770226785398456E-002 + 70.619999999999990 2.2819066516354687E-002 + 70.679999999999993 2.2852133288491984E-002 + 70.739999999999995 2.2869199043201963E-002 + 70.799999999999997 2.2870064636133721E-002 + 70.859999999999999 2.2854554454536203E-002 + 70.920000000000002 2.2822519416256678E-002 + 70.979999999999990 2.2773836706077740E-002 + 71.039999999999992 2.2708410084872590E-002 + 71.099999999999994 2.2626173199392162E-002 + 71.159999999999997 2.2527086057311217E-002 + 71.219999999999999 2.2411138045740100E-002 + 71.280000000000001 2.2278346226123673E-002 + 71.339999999999989 2.2128758051649357E-002 + 71.399999999999991 2.1962447850556718E-002 + 71.459999999999994 2.1779519764051271E-002 + 71.519999999999996 2.1580109842117119E-002 + 71.579999999999998 2.1364376731289554E-002 + 71.640000000000001 2.1132510905769671E-002 + 71.699999999999989 2.0884731182411787E-002 + 71.759999999999991 2.0621283535195468E-002 + 71.819999999999993 2.0342442372343547E-002 + 71.879999999999995 2.0048507095284177E-002 + 71.939999999999998 1.9739803323641492E-002 + 72.000000000000000 1.9416684342934441E-002 + 72.060000000000002 1.9079525617517048E-002 + 72.119999999999990 1.8728726756984667E-002 + 72.179999999999993 1.8364711230393092E-002 + 72.239999999999995 1.7987925083081748E-002 + 72.299999999999997 1.7598832394509305E-002 + 72.359999999999999 1.7197921445190823E-002 + 72.420000000000002 1.6785695438153891E-002 + 72.479999999999990 1.6362677482559242E-002 + 72.539999999999992 1.5929406551753116E-002 + 72.599999999999994 1.5486435869217784E-002 + 72.659999999999997 1.5034334807904726E-002 + 72.719999999999999 1.4573682994199590E-002 + 72.780000000000001 1.4105072341884019E-002 + 72.839999999999989 1.3629104271630575E-002 + 72.899999999999991 1.3146389489204555E-002 + 72.959999999999994 1.2657544353257378E-002 + 73.019999999999996 1.2163192399451486E-002 + 73.079999999999998 1.1663960217891635E-002 + 73.140000000000001 1.1160476478577333E-002 + 73.199999999999989 1.0653373707882838E-002 + 73.259999999999991 1.0143282115193443E-002 + 73.319999999999993 9.6308313705936576E-003 + 73.379999999999995 9.1166478338369928E-003 + 73.439999999999998 8.6013550945448630E-003 + 73.500000000000000 8.0855704292717139E-003 + 73.560000000000002 7.5699048903886748E-003 + 73.619999999999990 7.0549599843667595E-003 + 73.679999999999993 6.5413291010854076E-003 + 73.739999999999995 6.0295957065837989E-003 + 73.799999999999997 5.5203307017954581E-003 + 73.859999999999999 5.0140930156003733E-003 + 73.920000000000002 4.5114275344996903E-003 + 73.979999999999990 4.0128648287207167E-003 + 74.039999999999992 3.5189196472484446E-003 + 74.099999999999994 3.0300908051256788E-003 + 74.159999999999997 2.5468587311218366E-003 + 74.219999999999999 2.0696867259783272E-003 + 74.280000000000001 1.5990192144739112E-003 + 74.339999999999989 1.1352812580136273E-003 + 74.399999999999991 6.7887781458058466E-004 + 74.459999999999994 2.3019408001159107E-004 + 74.519999999999996 -2.1040600452107471E-004 + 74.579999999999998 -6.4257964722257361E-004 + 74.640000000000001 -1.0660049605003825E-003 + 74.699999999999989 -1.4803823027440188E-003 + 74.759999999999991 -1.8854337895869550E-003 + 74.819999999999993 -2.2809030669492482E-003 + 74.879999999999995 -2.6665564324666845E-003 + 74.939999999999998 -3.0421815772576416E-003 + 75.000000000000000 -3.4075880124546307E-003 + 75.060000000000002 -3.7626074735534511E-003 + 75.119999999999990 -4.1070926299388612E-003 + 75.179999999999993 -4.4409176643093124E-003 + 75.239999999999995 -4.7639774450718066E-003 + 75.299999999999997 -5.0761886397035320E-003 + 75.359999999999999 -5.3774865511813019E-003 + 75.420000000000002 -5.6678272267462956E-003 + 75.479999999999990 -5.9471856046555980E-003 + 75.539999999999992 -6.2155550430365580E-003 + 75.599999999999994 -6.4729491747015939E-003 + 75.659999999999997 -6.7193965116050117E-003 + 75.719999999999999 -6.9549443803403688E-003 + 75.780000000000001 -7.1796560040206609E-003 + 75.839999999999989 -7.3936097212173243E-003 + 75.899999999999991 -7.5968995616342502E-003 + 75.959999999999994 -7.7896342282540252E-003 + 76.019999999999996 -7.9719345791131341E-003 + 76.079999999999998 -8.1439363971603958E-003 + 76.140000000000001 -8.3057853063110629E-003 + 76.199999999999989 -8.4576400142972984E-003 + 76.259999999999991 -8.5996693144709448E-003 + 76.319999999999993 -8.7320510417058309E-003 + 76.379999999999995 -8.8549726886098072E-003 + 76.439999999999998 -8.9686311444180274E-003 + 76.500000000000000 -9.0732297720657312E-003 + 76.560000000000002 -9.1689792621470045E-003 + 76.619999999999990 -9.2560964086347754E-003 + 76.679999999999993 -9.3348035167654438E-003 + 76.739999999999995 -9.4053264447371415E-003 + 76.799999999999997 -9.4678987581497485E-003 + 76.859999999999999 -9.5227530443258365E-003 + 76.920000000000002 -9.5701274838238225E-003 + 76.979999999999990 -9.6102621710447943E-003 + 77.039999999999992 -9.6433975443128584E-003 + 77.099999999999994 -9.6697769139583757E-003 + 77.159999999999997 -9.6896440987405477E-003 + 77.219999999999999 -9.7032402277396467E-003 + 77.280000000000001 -9.7108093607103148E-003 + 77.339999999999989 -9.7125921205123943E-003 + 77.399999999999991 -9.7088295146464838E-003 + 77.459999999999994 -9.6997589053170411E-003 + 77.519999999999996 -9.6856164789388965E-003 + 77.579999999999998 -9.6666361966644462E-003 + 77.640000000000001 -9.6430488211283975E-003 + 77.699999999999989 -9.6150825713602773E-003 + 77.759999999999991 -9.5829604901184889E-003 + 77.819999999999993 -9.5469027908387395E-003 + 77.879999999999995 -9.5071262095063492E-003 + 77.939999999999998 -9.4638419127128139E-003 + 78.000000000000000 -9.4172589377867297E-003 + 78.060000000000002 -9.3675784619844365E-003 + 78.119999999999990 -9.3149997786266953E-003 + 78.179999999999993 -9.2597170263775865E-003 + 78.239999999999995 -9.2019177962821014E-003 + 78.299999999999997 -9.1417860990041303E-003 + 78.359999999999999 -9.0795003732202853E-003 + 78.420000000000002 -9.0152337697863467E-003 + 78.479999999999990 -8.9491549372122652E-003 + 78.539999999999992 -8.8814253295009873E-003 + 78.599999999999994 -8.8122032984105647E-003 + 78.659999999999997 -8.7416406399786813E-003 + 78.719999999999999 -8.6698843379526443E-003 + 78.780000000000001 -8.5970763232335948E-003 + 78.839999999999989 -8.5233530051727919E-003 + 78.899999999999991 -8.4488467871098785E-003 + 78.959999999999994 -8.3736839694025442E-003 + 79.019999999999996 -8.2979843159558947E-003 + 79.079999999999998 -8.2218654713419100E-003 + 79.140000000000001 -8.1454395049039546E-003 + 79.199999999999989 -8.0688122527172949E-003 + 79.259999999999991 -7.9920862110315419E-003 + 79.319999999999993 -7.9153590374944505E-003 + 79.379999999999995 -7.8387229322251784E-003 + 79.439999999999998 -7.7622670259404163E-003 + 79.500000000000000 -7.6860749584811748E-003 + 79.560000000000002 -7.6102265334340681E-003 + 79.619999999999990 -7.5347970314295076E-003 + 79.679999999999993 -7.4598573108388671E-003 + 79.739999999999995 -7.3854753347134122E-003 + 79.799999999999997 -7.3117142179998278E-003 + 79.859999999999999 -7.2386340743741274E-003 + 79.920000000000002 -7.1662901754359024E-003 + 79.979999999999990 -7.0947339276704151E-003 + 80.039999999999992 -7.0240145373470795E-003 + 80.099999999999994 -6.9541768892012286E-003 + 80.159999999999997 -6.8852623150423720E-003 + 80.219999999999999 -6.8173090619528809E-003 + 80.280000000000001 -6.7503520898509342E-003 + 80.340000000000003 -6.6844227899069270E-003 + 80.400000000000006 -6.6195504657613853E-003 + 80.460000000000008 -6.5557601418739899E-003 + 80.519999999999982 -6.4930748352557983E-003 + 80.579999999999984 -6.4315137008535235E-003 + 80.639999999999986 -6.3710938475833572E-003 + 80.699999999999989 -6.3118299336440030E-003 + 80.759999999999991 -6.2537332407854550E-003 + 80.819999999999993 -6.1968126194196791E-003 + 80.879999999999995 -6.1410743057134544E-003 + 80.939999999999998 -6.0865223158765060E-003 + 81.000000000000000 -6.0331582201510452E-003 + 81.060000000000002 -5.9809809315654969E-003 + 81.120000000000005 -5.9299876844468250E-003 + 81.180000000000007 -5.8801728669652456E-003 + 81.240000000000009 -5.8315293383689112E-003 + 81.299999999999983 -5.7840474103120643E-003 + 81.359999999999985 -5.7377163562313434E-003 + 81.419999999999987 -5.6925220399050161E-003 + 81.479999999999990 -5.6484494962007002E-003 + 81.539999999999992 -5.6054816975329930E-003 + 81.599999999999994 -5.5636000816696868E-003 + 81.659999999999997 -5.5227838378334509E-003 + 81.719999999999999 -5.4830114395203232E-003 + 81.780000000000001 -5.4442597437276931E-003 + 81.840000000000003 -5.4065031478115581E-003 + 81.900000000000006 -5.3697165444200551E-003 + 81.960000000000008 -5.3338722893976481E-003 + 82.019999999999982 -5.2989415501242254E-003 + 82.079999999999984 -5.2648949154045499E-003 + 82.139999999999986 -5.2317021053867700E-003 + 82.199999999999989 -5.1993312841408061E-003 + 82.259999999999991 -5.1677509859984396E-003 + 82.319999999999993 -5.1369272495554435E-003 + 82.379999999999995 -5.1068266418371547E-003 + 82.439999999999998 -5.0774149142383696E-003 + 82.500000000000000 -5.0486572559690565E-003 + 82.560000000000002 -5.0205192012039799E-003 + 82.620000000000005 -4.9929652422463456E-003 + 82.680000000000007 -4.9659590731636356E-003 + 82.740000000000009 -4.9394650450225348E-003 + 82.799999999999983 -4.9134478974469159E-003 + 82.859999999999985 -4.8878712850078578E-003 + 82.919999999999987 -4.8626997407959921E-003 + 82.979999999999990 -4.8378979374700979E-003 + 83.039999999999992 -4.8134301640552785E-003 + 83.099999999999994 -4.7892619873714758E-003 + 83.159999999999997 -4.7653584677289397E-003 + 83.219999999999999 -4.7416860235270850E-003 + 83.280000000000001 -4.7182109653909482E-003 + 83.340000000000003 -4.6949009105218785E-003 + 83.400000000000006 -4.6717235994067473E-003 + 83.460000000000008 -4.6486482205770957E-003 + 83.519999999999982 -4.6256439245001332E-003 + 83.579999999999984 -4.6026819672992927E-003 + 83.639999999999986 -4.5797329854336136E-003 + 83.699999999999989 -4.5567700200646018E-003 + 83.759999999999991 -4.5337667522892889E-003 + 83.819999999999993 -4.5106973906345023E-003 + 83.879999999999995 -4.4875378118418279E-003 + 83.939999999999998 -4.4642652657838084E-003 + 84.000000000000000 -4.4408572623529149E-003 + 84.060000000000002 -4.4172930625361716E-003 + 84.120000000000005 -4.3935534300022653E-003 + 84.180000000000007 -4.3696194600300886E-003 + 84.240000000000009 -4.3454743011926917E-003 + 84.299999999999983 -4.3211024791765563E-003 + 84.359999999999985 -4.2964888922483067E-003 + 84.419999999999987 -4.2716202046102344E-003 + 84.479999999999990 -4.2464841313544907E-003 + 84.539999999999992 -4.2210698254781112E-003 + 84.599999999999994 -4.1953674423940573E-003 + 84.659999999999997 -4.1693688552459840E-003 + 84.719999999999999 -4.1430664778596121E-003 + 84.780000000000001 -4.1164542210105305E-003 + 84.840000000000003 -4.0895265091006093E-003 + 84.900000000000006 -4.0622796509678597E-003 + 84.960000000000008 -4.0347100656584521E-003 + 85.019999999999982 -4.0068160486079222E-003 + 85.079999999999984 -3.9785961572740697E-003 + 85.139999999999986 -3.9500503033820383E-003 + 85.199999999999989 -3.9211785087101859E-003 + 85.259999999999991 -3.8919825971502711E-003 + 85.319999999999993 -3.8624644148744667E-003 + 85.379999999999995 -3.8326267980378225E-003 + 85.439999999999998 -3.8024729469408039E-003 + 85.500000000000000 -3.7720069873672852E-003 + 85.560000000000002 -3.7412334444961916E-003 + 85.620000000000005 -3.7101570871372995E-003 + 85.680000000000007 -3.6787832002753151E-003 + 85.740000000000009 -3.6471177551803129E-003 + 85.799999999999983 -3.6151668980834275E-003 + 85.859999999999985 -3.5829366598825051E-003 + 85.919999999999987 -3.5504336064642152E-003 + 85.979999999999990 -3.5176644477269152E-003 + 86.039999999999992 -3.4846357945185463E-003 + 86.099999999999994 -3.4513543677565589E-003 + 86.159999999999997 -3.4178275207263640E-003 + 86.219999999999999 -3.3840617267558771E-003 + 86.280000000000001 -3.3500637892914806E-003 + 86.340000000000003 -3.3158405364143010E-003 + 86.400000000000006 -3.2813989535418610E-003 + 86.460000000000008 -3.2467450430413666E-003 + 86.519999999999982 -3.2118857075450441E-003 + 86.579999999999984 -3.1768271672627129E-003 + 86.639999999999986 -3.1415753324098030E-003 + 86.699999999999989 -3.1061367319076419E-003 + 86.759999999999991 -3.0705166882663390E-003 + 86.819999999999993 -3.0347208840802663E-003 + 86.879999999999995 -2.9987550610565857E-003 + 86.939999999999998 -2.9626242197454983E-003 + 87.000000000000000 -2.9263336350549467E-003 + 87.060000000000002 -2.8898881269059759E-003 + 87.120000000000005 -2.8532926293008561E-003 + 87.180000000000007 -2.8165517558184001E-003 + 87.240000000000009 -2.7796702504956799E-003 + 87.299999999999983 -2.7426522733546180E-003 + 87.359999999999985 -2.7055023232348237E-003 + 87.419999999999987 -2.6682250745402787E-003 + 87.479999999999990 -2.6308247348858040E-003 + 87.539999999999992 -2.5933059077756946E-003 + 87.599999999999994 -2.5556731102517401E-003 + 87.659999999999997 -2.5179308537410807E-003 + 87.719999999999999 -2.4800842344956048E-003 + 87.780000000000001 -2.4421379889591390E-003 + 87.840000000000003 -2.4040975164192806E-003 + 87.900000000000006 -2.3659682660911508E-003 + 87.960000000000008 -2.3277560239186165E-003 + 88.019999999999982 -2.2894669702746462E-003 + 88.079999999999984 -2.2511077529767435E-003 + 88.139999999999986 -2.2126851447945794E-003 + 88.199999999999989 -2.1742065221206012E-003 + 88.259999999999991 -2.1356799767891454E-003 + 88.319999999999993 -2.0971137380936403E-003 + 88.379999999999995 -2.0585164156070260E-003 + 88.439999999999998 -2.0198976952404153E-003 + 88.500000000000000 -1.9812672174527755E-003 + 88.560000000000002 -1.9426358590742155E-003 + 88.620000000000005 -1.9040147787318560E-003 + 88.680000000000007 -1.8654158838589999E-003 + 88.740000000000009 -1.8268516291684938E-003 + 88.799999999999983 -1.7883352319428033E-003 + 88.859999999999985 -1.7498803955119709E-003 + 88.919999999999987 -1.7115015520109550E-003 + 88.979999999999990 -1.6732138532608485E-003 + 89.039999999999992 -1.6350329898124055E-003 + 89.099999999999994 -1.5969753300311485E-003 + 89.159999999999997 -1.5590577092114309E-003 + 89.219999999999999 -1.5212977382620507E-003 + 89.280000000000001 -1.4837133700777078E-003 + 89.340000000000003 -1.4463231990216028E-003 + 89.400000000000006 -1.4091464085427018E-003 + 89.460000000000008 -1.3722024449421366E-003 + 89.519999999999982 -1.3355112652182453E-003 + 89.579999999999984 -1.2990931681618344E-003 + 89.639999999999986 -1.2629688970996525E-003 + 89.699999999999989 -1.2271593815798979E-003 + 89.759999999999991 -1.1916860990569390E-003 + 89.819999999999993 -1.1565702495288409E-003 + 89.879999999999995 -1.1218335583794547E-003 + 89.939999999999998 -1.0874977392605109E-003 + 90.000000000000000 -1.0535846853230227E-003 + 90.060000000000002 -1.0201159994519305E-003 + 90.120000000000005 -9.8711337957575187E-004 + 90.180000000000007 -9.5459833409998907E-004 + 90.240000000000009 -9.2259220397448083E-004 + 90.299999999999983 -8.9111589580479422E-004 + 90.359999999999985 -8.6019007381832660E-004 + 90.419999999999987 -8.2983503616273786E-004 + 90.479999999999990 -8.0007044712402916E-004 + 90.539999999999992 -7.7091555269276401E-004 + 90.599999999999994 -7.4238904966682185E-004 + 90.659999999999997 -7.1450887600323109E-004 + 90.719999999999999 -6.8729231027020953E-004 + 90.780000000000001 -6.6075603702357938E-004 + 90.840000000000003 -6.3491574740328271E-004 + 90.900000000000006 -6.0978643723098673E-004 + 90.960000000000008 -5.8538221602857726E-004 + 91.019999999999982 -5.6171623838187357E-004 + 91.079999999999984 -5.3880071962261657E-004 + 91.139999999999986 -5.1664697623625682E-004 + 91.199999999999989 -4.9526521980475865E-004 + 91.259999999999991 -4.7466465438769672E-004 + 91.319999999999993 -4.5485337554191784E-004 + 91.379999999999995 -4.3583834156430627E-004 + 91.439999999999998 -4.1762543715346401E-004 + 91.500000000000000 -4.0021927672830417E-004 + 91.560000000000002 -3.8362346173456658E-004 + 91.620000000000005 -3.6784024781497067E-004 + 91.680000000000007 -3.5287080642493803E-004 + 91.739999999999981 -3.3871512916427938E-004 + 91.799999999999983 -3.2537187580188043E-004 + 91.859999999999985 -3.1283865127549357E-004 + 91.919999999999987 -3.0111182072125150E-004 + 91.979999999999990 -2.9018668968356135E-004 + 92.039999999999992 -2.8005732657956776E-004 + 92.099999999999994 -2.7071683310448205E-004 + 92.159999999999997 -2.6215710127037550E-004 + 92.219999999999999 -2.5436903193621079E-004 + 92.280000000000001 -2.4734255192050171E-004 + 92.340000000000003 -2.4106652875588273E-004 + 92.400000000000006 -2.3552894668566780E-004 + 92.460000000000008 -2.3071688526206242E-004 + 92.519999999999982 -2.2661653664165758E-004 + 92.579999999999984 -2.2321324735018492E-004 + 92.639999999999986 -2.2049162241775396E-004 + 92.699999999999989 -2.1843549842215146E-004 + 92.759999999999991 -2.1702797135107489E-004 + 92.819999999999993 -2.1625156231162715E-004 + 92.879999999999995 -2.1608815627773722E-004 + 92.939999999999998 -2.1651912492778863E-004 + 93.000000000000000 -2.1752531274084520E-004 + 93.060000000000002 -2.1908709339217206E-004 + 93.120000000000005 -2.2118452491417639E-004 + 93.180000000000007 -2.2379725428003282E-004 + 93.239999999999981 -2.2690471028266916E-004 + 93.299999999999983 -2.3048602684526398E-004 + 93.359999999999985 -2.3452016799033407E-004 + 93.419999999999987 -2.3898600670982351E-004 + 93.479999999999990 -2.4386229644940034E-004 + 93.539999999999992 -2.4912779301333276E-004 + 93.599999999999994 -2.5476122967487460E-004 + 93.659999999999997 -2.6074143091432570E-004 + 93.719999999999999 -2.6704735296389424E-004 + 93.780000000000001 -2.7365810438184971E-004 + 93.840000000000003 -2.8055301347361535E-004 + 93.900000000000006 -2.8771163627677569E-004 + 93.960000000000008 -2.9511386577883475E-004 + 94.019999999999982 -3.0273994866922369E-004 + 94.079999999999984 -3.1057047406470229E-004 + 94.139999999999986 -3.1858654516003554E-004 + 94.199999999999989 -3.2676967876267397E-004 + 94.259999999999991 -3.3510188944824366E-004 + 94.319999999999993 -3.4356575276938079E-004 + 94.379999999999995 -3.5214436842622880E-004 + 94.439999999999998 -3.6082144257662031E-004 + 94.500000000000000 -3.6958128072233862E-004 + 94.560000000000002 -3.7840877768766774E-004 + 94.620000000000005 -3.8728944653254057E-004 + 94.680000000000007 -3.9620948218457240E-004 + 94.739999999999981 -4.0515573025762410E-004 + 94.799999999999983 -4.1411569067723502E-004 + 94.859999999999985 -4.2307751391210558E-004 + 94.919999999999987 -4.3203010769762433E-004 + 94.979999999999990 -4.4096300187688195E-004 + 95.039999999999992 -4.4986643961526421E-004 + 95.099999999999994 -4.5873144484375524E-004 + 95.159999999999997 -4.6754966643050620E-004 + 95.219999999999999 -4.7631358436330202E-004 + 95.280000000000001 -4.8501634706533416E-004 + 95.340000000000003 -4.9365185207533716E-004 + 95.400000000000006 -5.0221473015347811E-004 + 95.460000000000008 -5.1070030813423427E-004 + 95.519999999999982 -5.1910469776495025E-004 + 95.579999999999984 -5.2742464984583803E-004 + 95.639999999999986 -5.3565767740001817E-004 + 95.699999999999989 -5.4380179768822321E-004 + 95.759999999999991 -5.5185585503815624E-004 + 95.819999999999993 -5.5981921765835101E-004 + 95.879999999999995 -5.6769184420526000E-004 + 95.939999999999998 -5.7547434127681396E-004 + 96.000000000000000 -5.8316781426059276E-004 + 96.060000000000002 -5.9077384928925129E-004 + 96.120000000000005 -5.9829457338314736E-004 + 96.180000000000007 -6.0573247563023799E-004 + 96.239999999999981 -6.1309060079123550E-004 + 96.299999999999983 -6.2037234189327032E-004 + 96.359999999999985 -6.2758153372435767E-004 + 96.419999999999987 -6.3472221993509683E-004 + 96.479999999999990 -6.4179897761142309E-004 + 96.539999999999992 -6.4881652692002126E-004 + 96.599999999999994 -6.5577990262106285E-004 + 96.659999999999997 -6.6269440062035050E-004 + 96.719999999999999 -6.6956552737729277E-004 + 96.780000000000001 -6.7639885715621258E-004 + 96.840000000000003 -6.8320021231174947E-004 + 96.900000000000006 -6.8997537149772441E-004 + 96.960000000000008 -6.9673031964411771E-004 + 97.019999999999982 -7.0347090908654117E-004 + 97.079999999999984 -7.1020299934407044E-004 + 97.139999999999986 -7.1693243063096848E-004 + 97.199999999999989 -7.2366489793428265E-004 + 97.259999999999991 -7.3040596861586368E-004 + 97.319999999999993 -7.3716103379301468E-004 + 97.379999999999995 -7.4393530571437551E-004 + 97.439999999999998 -7.5073363077569899E-004 + 97.500000000000000 -7.5756078361233778E-004 + 97.560000000000002 -7.6442109076341712E-004 + 97.620000000000005 -7.7131868196166087E-004 + 97.680000000000007 -7.7825721673308880E-004 + 97.739999999999981 -7.8524001235661691E-004 + 97.799999999999983 -7.9227001418835240E-004 + 97.859999999999985 -7.9934968023126756E-004 + 97.919999999999987 -8.0648103958480880E-004 + 97.979999999999990 -8.1366570108245564E-004 + 98.039999999999992 -8.2090466504565647E-004 + 98.099999999999994 -8.2819845181345832E-004 + 98.159999999999997 -8.3554706592009356E-004 + 98.219999999999999 -8.4294996327908384E-004 + 98.280000000000001 -8.5040602173773309E-004 + 98.340000000000003 -8.5791350979265359E-004 + 98.400000000000006 -8.6547016629702337E-004 + 98.460000000000008 -8.7307317259603591E-004 + 98.519999999999982 -8.8071909698264486E-004 + 98.579999999999984 -8.8840389967963847E-004 + 98.639999999999986 -8.9612302567941159E-004 + 98.699999999999989 -9.0387122470564395E-004 + 98.759999999999991 -9.1164268670479063E-004 + 98.819999999999993 -9.1943118449928246E-004 + 98.879999999999995 -9.2722959162233739E-004 + 98.939999999999998 -9.3503055145970537E-004 + 99.000000000000000 -9.4282591980491800E-004 + 99.060000000000002 -9.5060696301875404E-004 + 99.120000000000005 -9.5836454810814900E-004 + 99.180000000000007 -9.6608886195946966E-004 + 99.239999999999981 -9.7376963107563444E-004 + 99.299999999999983 -9.8139606730881287E-004 + 99.359999999999985 -9.8895685526085545E-004 + 99.419999999999987 -9.9644024777665241E-004 + 99.479999999999990 -1.0038340993197992E-003 + 99.539999999999992 -1.0111257084140105E-003 + 99.599999999999994 -1.0183022543578584E-003 + 99.659999999999997 -1.0253504370824190E-003 + 99.719999999999999 -1.0322566379815288E-003 + 99.780000000000001 -1.0390069734942551E-003 + 99.840000000000003 -1.0455874452492287E-003 + 99.900000000000006 -1.0519837730538220E-003 + 99.960000000000008 -1.0581817069595871E-003 + 100.01999999999998 -1.0641667284337140E-003 + 100.07999999999998 -1.0699241552215371E-003 + 100.13999999999999 -1.0754393942990325E-003 + 100.19999999999999 -1.0806978542722031E-003 + 100.25999999999999 -1.0856850037587553E-003 + 100.31999999999999 -1.0903863212406201E-003 + 100.38000000000000 -1.0947873648695203E-003 + 100.44000000000000 -1.0988737878930592E-003 + 100.50000000000000 -1.1026314285271003E-003 + 100.56000000000000 -1.1060464717321020E-003 + 100.62000000000000 -1.1091051007390633E-003 + 100.68000000000001 -1.1117939291608464E-003 + 100.73999999999998 -1.1140999409147447E-003 + 100.79999999999998 -1.1160103868237752E-003 + 100.85999999999999 -1.1175129724521481E-003 + 100.91999999999999 -1.1185958462588419E-003 + 100.97999999999999 -1.1192476024295395E-003 + 101.03999999999999 -1.1194574971121266E-003 + 101.09999999999999 -1.1192152798522794E-003 + 101.16000000000000 -1.1185111788820513E-003 + 101.22000000000000 -1.1173362995481036E-003 + 101.28000000000000 -1.1156822074101771E-003 + 101.34000000000000 -1.1135410145806169E-003 + 101.40000000000001 -1.1109059230562900E-003 + 101.46000000000001 -1.1077705548380500E-003 + 101.51999999999998 -1.1041295342974202E-003 + 101.57999999999998 -1.0999780988798012E-003 + 101.63999999999999 -1.0953123088972517E-003 + 101.69999999999999 -1.0901290078311004E-003 + 101.75999999999999 -1.0844259017769378E-003 + 101.81999999999999 -1.0782016424449557E-003 + 101.88000000000000 -1.0714557431027588E-003 + 101.94000000000000 -1.0641885553067992E-003 + 102.00000000000000 -1.0564012417700252E-003 + 102.06000000000000 -1.0480960674524487E-003 + 102.12000000000000 -1.0392760764808165E-003 + 102.18000000000001 -1.0299452867558847E-003 + 102.23999999999998 -1.0201086482751370E-003 + 102.29999999999998 -1.0097719629072772E-003 + 102.35999999999999 -9.9894200460521189E-004 + 102.41999999999999 -9.8762635331159604E-004 + 102.47999999999999 -9.7583364876913342E-004 + 102.53999999999999 -9.6357337188274152E-004 + 102.59999999999999 -9.5085590888786798E-004 + 102.66000000000000 -9.3769247349207688E-004 + 102.72000000000000 -9.2409510881435498E-004 + 102.78000000000000 -9.1007681032780432E-004 + 102.84000000000000 -8.9565129309032243E-004 + 102.90000000000001 -8.8083319583968488E-004 + 102.96000000000001 -8.6563785283043674E-004 + 103.01999999999998 -8.5008135364800707E-004 + 103.07999999999998 -8.3418064865883055E-004 + 103.13999999999999 -8.1795327453425748E-004 + 103.19999999999999 -8.0141749781400401E-004 + 103.25999999999999 -7.8459228030318959E-004 + 103.31999999999999 -7.6749714164428984E-004 + 103.38000000000000 -7.5015218140078960E-004 + 103.44000000000000 -7.3257809786970161E-004 + 103.50000000000000 -7.1479604367439946E-004 + 103.56000000000000 -6.9682760832479322E-004 + 103.62000000000000 -6.7869485288790882E-004 + 103.68000000000001 -6.6042010850106056E-004 + 103.73999999999998 -6.4202614840365316E-004 + 103.79999999999998 -6.2353597489549727E-004 + 103.85999999999999 -6.0497281107328141E-004 + 103.91999999999999 -5.8636007629500825E-004 + 103.97999999999999 -5.6772139780661098E-004 + 104.03999999999999 -5.4908046414010175E-004 + 104.09999999999999 -5.3046101752720351E-004 + 104.16000000000000 -5.1188683516613875E-004 + 104.22000000000000 -4.9338165836534541E-004 + 104.28000000000000 -4.7496918069114694E-004 + 104.34000000000000 -4.5667295751109009E-004 + 104.40000000000001 -4.3851638127948120E-004 + 104.46000000000001 -4.2052256770396435E-004 + 104.51999999999998 -4.0271442151837379E-004 + 104.57999999999998 -3.8511450015926539E-004 + 104.63999999999999 -3.6774495308488053E-004 + 104.69999999999999 -3.5062755805079877E-004 + 104.75999999999999 -3.3378353514529997E-004 + 104.81999999999999 -3.1723362316090790E-004 + 104.88000000000000 -3.0099800181197079E-004 + 104.94000000000000 -2.8509622484423105E-004 + 105.00000000000000 -2.6954715042168859E-004 + 105.06000000000000 -2.5436899774094936E-004 + 105.12000000000000 -2.3957923977314491E-004 + 105.18000000000001 -2.2519457483851220E-004 + 105.23999999999998 -2.1123090843309093E-004 + 105.29999999999998 -1.9770333346406100E-004 + 105.35999999999999 -1.8462610102423159E-004 + 105.41999999999999 -1.7201257231194093E-004 + 105.47999999999999 -1.5987517164060811E-004 + 105.53999999999999 -1.4822545130557417E-004 + 105.59999999999999 -1.3707396909979800E-004 + 105.66000000000000 -1.2643030718090869E-004 + 105.72000000000000 -1.1630304362945327E-004 + 105.78000000000000 -1.0669977295292019E-004 + 105.84000000000000 -9.7627026631785053E-005 + 105.90000000000001 -8.9090289108398099E-005 + 105.96000000000001 -8.1093994079088717E-005 + 106.01999999999998 -7.3641507643890935E-005 + 106.07999999999998 -6.6735127637642497E-005 + 106.13999999999999 -6.0376107614759327E-005 + 106.19999999999999 -5.4564605664067552E-005 + 106.25999999999999 -4.9299752690122541E-005 + 106.31999999999999 -4.4579609809660296E-005 + 106.38000000000000 -4.0401211114145244E-005 + 106.44000000000000 -3.6760566803152326E-005 + 106.50000000000000 -3.3652692870963358E-005 + 106.56000000000000 -3.1071606413266195E-005 + 106.62000000000000 -2.9010340784500542E-005 + 106.68000000000001 -2.7460986662542776E-005 + 106.73999999999998 -2.6414697424722515E-005 + 106.79999999999998 -2.5861722502775979E-005 + 106.85999999999999 -2.5791411467252249E-005 + 106.91999999999999 -2.6192235684370006E-005 + 106.97999999999999 -2.7051846739738928E-005 + 107.03999999999999 -2.8357075898406497E-005 + 107.09999999999999 -3.0093975497453741E-005 + 107.16000000000000 -3.2247851010542165E-005 + 107.22000000000000 -3.4803305984928691E-005 + 107.28000000000000 -3.7744265702112408E-005 + 107.34000000000000 -4.1054040826897273E-005 + 107.40000000000001 -4.4715347494337654E-005 + 107.46000000000001 -4.8710366301169890E-005 + 107.51999999999998 -5.3020793651054453E-005 + 107.57999999999998 -5.7627878648161494E-005 + 107.63999999999999 -6.2512477011954839E-005 + 107.69999999999999 -6.7655106161348499E-005 + 107.75999999999999 -7.3035966521063915E-005 + 107.81999999999999 -7.8635015840780343E-005 + 107.88000000000000 -8.4432006863769407E-005 + 107.94000000000000 -9.0406536652385685E-005 + 108.00000000000000 -9.6538063221975198E-005 + 108.06000000000000 -1.0280598721745304E-004 + 108.12000000000000 -1.0918968455806544E-004 + 108.18000000000001 -1.1566854405272687E-004 + 108.23999999999998 -1.2222200491332735E-004 + 108.29999999999998 -1.2882962784840649E-004 + 108.35999999999999 -1.3547111280276620E-004 + 108.41999999999999 -1.4212635404817515E-004 + 108.47999999999999 -1.4877546387277380E-004 + 108.53999999999999 -1.5539887770703217E-004 + 108.59999999999999 -1.6197732305982260E-004 + 108.66000000000000 -1.6849187050214950E-004 + 108.72000000000000 -1.7492403592812248E-004 + 108.78000000000000 -1.8125578820683087E-004 + 108.84000000000000 -1.8746954074389243E-004 + 108.90000000000001 -1.9354825791058914E-004 + 108.96000000000001 -1.9947546696655577E-004 + 109.01999999999998 -2.0523529697534976E-004 + 109.07999999999998 -2.1081247227646685E-004 + 109.13999999999999 -2.1619241100328336E-004 + 109.19999999999999 -2.2136118410585352E-004 + 109.25999999999999 -2.2630559731567711E-004 + 109.31999999999999 -2.3101320133865345E-004 + 109.38000000000000 -2.3547229711706755E-004 + 109.44000000000000 -2.3967198886416024E-004 + 109.50000000000000 -2.4360214771711327E-004 + 109.56000000000000 -2.4725349239686451E-004 + 109.62000000000000 -2.5061758443371016E-004 + 109.68000000000001 -2.5368679757728577E-004 + 109.73999999999998 -2.5645438335746381E-004 + 109.79999999999998 -2.5891446216212189E-004 + 109.85999999999999 -2.6106202684394113E-004 + 109.91999999999999 -2.6289294379346745E-004 + 109.97999999999999 -2.6440389001472178E-004 + 110.03999999999999 -2.6559248997932690E-004 + 110.09999999999999 -2.6645717886068310E-004 + 110.16000000000000 -2.6699723208690974E-004 + 110.22000000000000 -2.6721283753718833E-004 + 110.28000000000000 -2.6710496732298614E-004 + 110.34000000000000 -2.6667546776578142E-004 + 110.40000000000001 -2.6592694142278043E-004 + 110.46000000000001 -2.6486287808315283E-004 + 110.51999999999998 -2.6348748543612502E-004 + 110.57999999999998 -2.6180576222364525E-004 + 110.63999999999999 -2.5982352016685545E-004 + 110.69999999999999 -2.5754726232007024E-004 + 110.75999999999999 -2.5498422727601613E-004 + 110.81999999999999 -2.5214235527049316E-004 + 110.88000000000000 -2.4903026386993899E-004 + 110.94000000000000 -2.4565718330358751E-004 + 111.00000000000000 -2.4203297554445429E-004 + 111.06000000000000 -2.3816808326428357E-004 + 111.12000000000000 -2.3407348994450281E-004 + 111.18000000000001 -2.2976066225133162E-004 + 111.23999999999998 -2.2524152132651849E-004 + 111.29999999999998 -2.2052843283426767E-004 + 111.35999999999999 -2.1563412806602299E-004 + 111.41999999999999 -2.1057168201503822E-004 + 111.47999999999999 -2.0535445928043474E-004 + 111.53999999999999 -1.9999611162040224E-004 + 111.59999999999999 -1.9451049246676559E-004 + 111.66000000000000 -1.8891166532863853E-004 + 111.72000000000000 -1.8321384794959701E-004 + 111.78000000000000 -1.7743138037513582E-004 + 111.84000000000000 -1.7157870919634347E-004 + 111.90000000000001 -1.6567034602124541E-004 + 111.96000000000001 -1.5972083911252821E-004 + 112.01999999999998 -1.5374473637871236E-004 + 112.07999999999998 -1.4775658398416606E-004 + 112.13999999999999 -1.4177085975721924E-004 + 112.19999999999999 -1.3580197952013981E-004 + 112.25999999999999 -1.2986424930879143E-004 + 112.31999999999999 -1.2397182008905017E-004 + 112.38000000000000 -1.1813869209609150E-004 + 112.44000000000000 -1.1237867405851178E-004 + 112.50000000000000 -1.0670530650703736E-004 + 112.56000000000000 -1.0113191390807044E-004 + 112.62000000000000 -9.5671557590124517E-005 + 112.68000000000001 -9.0336973426346186E-005 + 112.73999999999998 -8.5140582808829139E-005 + 112.79999999999998 -8.0094489011606689E-005 + 112.85999999999999 -7.5210437619245115E-005 + 112.91999999999999 -7.0499830966652926E-005 + 112.97999999999999 -6.5973717075121083E-005 + 113.03999999999999 -6.1642765884192740E-005 + 113.09999999999999 -5.7517307929932649E-005 + 113.16000000000000 -5.3607300692244694E-005 + 113.22000000000000 -4.9922360390338199E-005 + 113.28000000000000 -4.6471746966681362E-005 + 113.34000000000000 -4.3264394274220265E-005 + 113.40000000000001 -4.0308905023823347E-005 + 113.46000000000001 -3.7613567970254569E-005 + 113.51999999999998 -3.5186352842966038E-005 + 113.57999999999998 -3.3034954137606688E-005 + 113.63999999999999 -3.1166785249847472E-005 + 113.69999999999999 -2.9588982558816280E-005 + 113.75999999999999 -2.8308447820684199E-005 + 113.81999999999999 -2.7331838765600117E-005 + 113.88000000000000 -2.6665606916336089E-005 + 113.94000000000000 -2.6315996625953773E-005 + 114.00000000000000 -2.6289078826301452E-005 + 114.06000000000000 -2.6590754480468151E-005 + 114.12000000000000 -2.7226795273556288E-005 + 114.18000000000001 -2.8202845231235272E-005 + 114.23999999999998 -2.9524456631186450E-005 + 114.29999999999998 -3.1197104258451732E-005 + 114.35999999999999 -3.3226184909695422E-005 + 114.41999999999999 -3.5617087954050376E-005 + 114.47999999999999 -3.8375168445731401E-005 + 114.53999999999999 -4.1505790147670610E-005 + 114.59999999999999 -4.5014297725641327E-005 + 114.66000000000000 -4.8906136662619964E-005 + 114.72000000000000 -5.3186739516862659E-005 + 114.78000000000000 -5.7861633054906287E-005 + 114.84000000000000 -6.2936412748492565E-005 + 114.90000000000001 -6.8416737853969076E-005 + 114.96000000000001 -7.4308393517552495E-005 + 115.01999999999998 -8.0617220109031185E-005 + 115.07999999999998 -8.7349181725384517E-005 + 115.13999999999999 -9.4510326265223864E-005 + 115.19999999999999 -1.0210678145119683E-004 + 115.25999999999999 -1.1014477492361088E-004 + 115.31999999999999 -1.1863060994716422E-004 + 115.38000000000000 -1.2757064229872311E-004 + 115.44000000000000 -1.3697126723443367E-004 + 115.50000000000000 -1.4683891762796867E-004 + 115.56000000000000 -1.5717998576978218E-004 + 115.62000000000000 -1.6800082508347300E-004 + 115.68000000000001 -1.7930777393556486E-004 + 115.73999999999998 -1.9110703102256368E-004 + 115.79999999999998 -2.0340468598156378E-004 + 115.85999999999999 -2.1620667236532432E-004 + 115.91999999999999 -2.2951867203421168E-004 + 115.97999999999999 -2.4334617108624193E-004 + 116.03999999999999 -2.5769435581524260E-004 + 116.09999999999999 -2.7256810464356914E-004 + 116.16000000000000 -2.8797188870084380E-004 + 116.22000000000000 -3.0390979471001198E-004 + 116.28000000000000 -3.2038548210524539E-004 + 116.34000000000000 -3.3740208649006846E-004 + 116.40000000000001 -3.5496216854157719E-004 + 116.46000000000001 -3.7306775283653783E-004 + 116.51999999999998 -3.9172012221014242E-004 + 116.57999999999998 -4.1091997708660015E-004 + 116.63999999999999 -4.3066718879968804E-004 + 116.69999999999999 -4.5096074597033545E-004 + 116.75999999999999 -4.7179892366950660E-004 + 116.81999999999999 -4.9317890461372544E-004 + 116.88000000000000 -5.1509697011200358E-004 + 116.94000000000000 -5.3754836152806421E-004 + 117.00000000000000 -5.6052720431285755E-004 + 117.06000000000000 -5.8402649088913627E-004 + 117.12000000000000 -6.0803792779537695E-004 + 117.18000000000001 -6.3255210272635020E-004 + 117.23999999999998 -6.5755816705374858E-004 + 117.29999999999998 -6.8304408893995528E-004 + 117.35999999999999 -7.0899636494455888E-004 + 117.41999999999999 -7.3540011068496422E-004 + 117.47999999999999 -7.6223904923379570E-004 + 117.53999999999999 -7.8949541400204605E-004 + 117.59999999999999 -8.1714984918406723E-004 + 117.66000000000000 -8.4518163392376588E-004 + 117.72000000000000 -8.7356850737992044E-004 + 117.78000000000000 -9.0228676847615681E-004 + 117.84000000000000 -9.3131094471133713E-004 + 117.90000000000001 -9.6061428262170093E-004 + 117.96000000000001 -9.9016844828768110E-004 + 118.01999999999998 -1.0199435044660780E-003 + 118.07999999999998 -1.0499080327138661E-003 + 118.13999999999999 -1.0800291432516457E-003 + 118.19999999999999 -1.1102725258022562E-003 + 118.25999999999999 -1.1406023962991741E-003 + 118.31999999999999 -1.1709815179944615E-003 + 118.38000000000000 -1.2013714523823331E-003 + 118.44000000000000 -1.2317321943252279E-003 + 118.50000000000000 -1.2620226443274115E-003 + 118.56000000000000 -1.2922004176362527E-003 + 118.62000000000000 -1.3222221091756235E-003 + 118.68000000000001 -1.3520429940425383E-003 + 118.73999999999998 -1.3816176343103758E-003 + 118.79999999999998 -1.4108994094807585E-003 + 118.85999999999999 -1.4398410526679064E-003 + 118.91999999999999 -1.4683943506602435E-003 + 118.97999999999999 -1.4965105661293918E-003 + 119.03999999999999 -1.5241403851604931E-003 + 119.09999999999999 -1.5512338865304714E-003 + 119.16000000000000 -1.5777407609808432E-003 + 119.22000000000000 -1.6036106934406151E-003 + 119.28000000000000 -1.6287929222624264E-003 + 119.34000000000000 -1.6532368458377427E-003 + 119.40000000000001 -1.6768917848395354E-003 + 119.46000000000001 -1.6997073459360202E-003 + 119.51999999999998 -1.7216333953041080E-003 + 119.57999999999998 -1.7426202798044420E-003 + 119.63999999999999 -1.7626189797514170E-003 + 119.69999999999999 -1.7815809170068705E-003 + 119.75999999999999 -1.7994585874808729E-003 + 119.81999999999999 -1.8162052527753423E-003 + 119.88000000000000 -1.8317753040852720E-003 + 119.94000000000000 -1.8461242572566110E-003 + 120.00000000000000 -1.8592089035931634E-003 + 120.06000000000000 -1.8709874297062493E-003 + 120.12000000000000 -1.8814196749689558E-003 + 120.18000000000001 -1.8904669558079997E-003 + 120.23999999999998 -1.8980924827057099E-003 + 120.29999999999998 -1.9042612583057791E-003 + 120.35999999999999 -1.9089402649634481E-003 + 120.41999999999999 -1.9120984128284946E-003 + 120.47999999999999 -1.9137068905574540E-003 + 120.53999999999999 -1.9137391043660362E-003 + 120.59999999999999 -1.9121710097034046E-003 + 120.66000000000000 -1.9089808598900496E-003 + 120.72000000000000 -1.9041491285785627E-003 + 120.78000000000000 -1.8976594719861358E-003 + 120.84000000000000 -1.8894976398647495E-003 + 120.90000000000001 -1.8796524564735442E-003 + 120.95999999999998 -1.8681152432031148E-003 + 121.01999999999998 -1.8548804663483503E-003 + 121.07999999999998 -1.8399453138988379E-003 + 121.13999999999999 -1.8233100513478993E-003 + 121.19999999999999 -1.8049776902430703E-003 + 121.25999999999999 -1.7849541443078665E-003 + 121.31999999999999 -1.7632483932174543E-003 + 121.38000000000000 -1.7398722821996100E-003 + 121.44000000000000 -1.7148407877058836E-003 + 121.50000000000000 -1.6881716441534817E-003 + 121.56000000000000 -1.6598855691851246E-003 + 121.62000000000000 -1.6300061640734617E-003 + 121.68000000000001 -1.5985597796682181E-003 + 121.73999999999998 -1.5655756724079438E-003 + 121.79999999999998 -1.5310858926631194E-003 + 121.85999999999999 -1.4951251119561277E-003 + 121.91999999999999 -1.4577306279991683E-003 + 121.97999999999999 -1.4189424268825292E-003 + 122.03999999999999 -1.3788028418315927E-003 + 122.09999999999999 -1.3373567780955331E-003 + 122.16000000000000 -1.2946511805338610E-003 + 122.22000000000000 -1.2507356996312429E-003 + 122.28000000000000 -1.2056617264744720E-003 + 122.34000000000000 -1.1594828721684346E-003 + 122.40000000000001 -1.1122544737011155E-003 + 122.45999999999998 -1.0640339029938538E-003 + 122.51999999999998 -1.0148799591866290E-003 + 122.57999999999998 -9.6485319176444514E-004 + 122.63999999999999 -9.1401535831700574E-004 + 122.69999999999999 -8.6242961226862909E-004 + 122.75999999999999 -8.1016023623887697E-004 + 122.81999999999999 -7.5727259295882378E-004 + 122.88000000000000 -7.0383260113960960E-004 + 122.94000000000000 -6.4990728923598772E-004 + 123.00000000000000 -5.9556409354343367E-004 + 123.06000000000000 -5.4087082162384507E-004 + 123.12000000000000 -4.8589559590283692E-004 + 123.18000000000001 -4.3070676866277031E-004 + 123.23999999999998 -3.7537256830082205E-004 + 123.29999999999998 -3.1996122302908962E-004 + 123.35999999999999 -2.6454055412381022E-004 + 123.41999999999999 -2.0917812817346210E-004 + 123.47999999999999 -1.5394080637939260E-004 + 123.53999999999999 -9.8894806523098014E-005 + 123.59999999999999 -4.4105599970056504E-005 + 123.66000000000000 1.0362355242814745E-005 + 123.72000000000000 6.4445743070391077E-005 + 123.78000000000000 1.1808226595442673E-004 + 123.84000000000000 1.7121103412469726E-004 + 123.90000000000001 2.2377256870605576E-004 + 123.95999999999998 2.7570891677410482E-004 + 124.01999999999998 3.2696369467954446E-004 + 124.07999999999998 3.7748228904888243E-004 + 124.13999999999999 4.2721184761169544E-004 + 124.19999999999999 4.7610145357548472E-004 + 124.25999999999999 5.2410209524841726E-004 + 124.31999999999999 5.7116686203260135E-004 + 124.38000000000000 6.1725087517912444E-004 + 124.44000000000000 6.6231158097041810E-004 + 124.50000000000000 7.0630844454480516E-004 + 124.56000000000000 7.4920335932972303E-004 + 124.62000000000000 7.9096048793771947E-004 + 124.68000000000001 8.3154632343653044E-004 + 124.73999999999998 8.7092980127171521E-004 + 124.79999999999998 9.0908224571324876E-004 + 124.85999999999999 9.4597748211000998E-004 + 124.91999999999999 9.8159153232350296E-004 + 124.97999999999999 1.0159031596399296E-003 + 125.03999999999999 1.0488932027459554E-003 + 125.09999999999999 1.0805453731593416E-003 + 125.16000000000000 1.1108453339181243E-003 + 125.22000000000000 1.1397812896672588E-003 + 125.28000000000000 1.1673437767552525E-003 + 125.34000000000000 1.1935256947834894E-003 + 125.40000000000001 1.2183221628203672E-003 + 125.45999999999998 1.2417305183304965E-003 + 125.51999999999998 1.2637501716408427E-003 + 125.57999999999998 1.2843827537939642E-003 + 125.63999999999999 1.3036319656911475E-003 + 125.69999999999999 1.3215035581786866E-003 + 125.75999999999999 1.3380051879778975E-003 + 125.81999999999999 1.3531462760913166E-003 + 125.88000000000000 1.3669380569717091E-003 + 125.94000000000000 1.3793937469588379E-003 + 126.00000000000000 1.3905280220620250E-003 + 126.06000000000000 1.4003572098556700E-003 + 126.12000000000000 1.4088990684052673E-003 + 126.18000000000001 1.4161728760132772E-003 + 126.23999999999998 1.4221992599544155E-003 + 126.29999999999998 1.4269999763432482E-003 + 126.35999999999999 1.4305980698482183E-003 + 126.41999999999999 1.4330176326067929E-003 + 126.47999999999999 1.4342837839655693E-003 + 126.53999999999999 1.4344223814680495E-003 + 126.59999999999999 1.4334603329286648E-003 + 126.66000000000000 1.4314251972220927E-003 + 126.72000000000000 1.4283451688843676E-003 + 126.78000000000000 1.4242489141574584E-003 + 126.84000000000000 1.4191657902379415E-003 + 126.90000000000001 1.4131255506513321E-003 + 126.95999999999998 1.4061580859387102E-003 + 127.01999999999998 1.3982938422714792E-003 + 127.07999999999998 1.3895632470430515E-003 + 127.13999999999999 1.3799968000425536E-003 + 127.19999999999999 1.3696253266445354E-003 + 127.25999999999999 1.3584793314529641E-003 + 127.31999999999999 1.3465895316696203E-003 + 127.38000000000000 1.3339862696222756E-003 + 127.44000000000000 1.3206996191478071E-003 + 127.50000000000000 1.3067596020524617E-003 + 127.56000000000000 1.2921957792315023E-003 + 127.62000000000000 1.2770372018882569E-003 + 127.68000000000001 1.2613126982231593E-003 + 127.73999999999998 1.2450504657598111E-003 + 127.79999999999998 1.2282782019169751E-003 + 127.85999999999999 1.2110230573855276E-003 + 127.91999999999999 1.1933115378522155E-003 + 127.97999999999999 1.1751695817503606E-003 + 128.03999999999999 1.1566224344334612E-003 + 128.09999999999999 1.1376946010387594E-003 + 128.16000000000000 1.1184097946318563E-003 + 128.22000000000000 1.0987911137883904E-003 + 128.28000000000000 1.0788609630237001E-003 + 128.34000000000000 1.0586409473583049E-003 + 128.40000000000001 1.0381518963867241E-003 + 128.45999999999998 1.0174137997897631E-003 + 128.51999999999998 9.9644593374087660E-004 + 128.57999999999998 9.7526687145807684E-004 + 128.63999999999999 9.5389430511343219E-004 + 128.69999999999999 9.3234513483714146E-004 + 128.75999999999999 9.1063548766553341E-004 + 128.81999999999999 8.8878079380633451E-004 + 128.88000000000000 8.6679587593002140E-004 + 128.94000000000000 8.4469458837625115E-004 + 129.00000000000000 8.2249028260923793E-004 + 129.06000000000000 8.0019552536746748E-004 + 129.12000000000000 7.7782228030579274E-004 + 129.18000000000001 7.5538188530699271E-004 + 129.23999999999998 7.3288509003880168E-004 + 129.29999999999998 7.1034209746439288E-004 + 129.35999999999999 6.8776249250631488E-004 + 129.41999999999999 6.6515547024032016E-004 + 129.47999999999999 6.4252969083953974E-004 + 129.53999999999999 6.1989342850994719E-004 + 129.59999999999999 5.9725443166803842E-004 + 129.66000000000000 5.7462014541211223E-004 + 129.72000000000000 5.5199774895732816E-004 + 129.78000000000000 5.2939399602872994E-004 + 129.84000000000000 5.0681545475455853E-004 + 129.90000000000001 4.8426848738776919E-004 + 129.95999999999998 4.6175918898802711E-004 + 130.01999999999998 4.3929355325893123E-004 + 130.07999999999998 4.1687747915312046E-004 + 130.13999999999999 3.9451677396010637E-004 + 130.19999999999999 3.7221723786977048E-004 + 130.25999999999999 3.4998474718688909E-004 + 130.31999999999999 3.2782513606716449E-004 + 130.38000000000000 3.0574439078948556E-004 + 130.44000000000000 2.8374860690838835E-004 + 130.50000000000000 2.6184400880704711E-004 + 130.56000000000000 2.4003705039271712E-004 + 130.62000000000000 2.1833435016996652E-004 + 130.68000000000001 1.9674280430005290E-004 + 130.73999999999998 1.7526952074491985E-004 + 130.79999999999998 1.5392193791193278E-004 + 130.85999999999999 1.3270771200002009E-004 + 130.91999999999999 1.1163487391578950E-004 + 130.97999999999999 9.0711750387203268E-005 + 131.03999999999999 6.9947004702089656E-005 + 131.09999999999999 4.9349661537753584E-005 + 131.16000000000000 2.8929083807861611E-005 + 131.22000000000000 8.6950102577515241E-006 + 131.28000000000000 -1.1342444468411902E-005 + 131.34000000000000 -3.1172787062777012E-005 + 131.40000000000001 -5.0785172215311099E-005 + 131.45999999999998 -7.0168347322624610E-005 + 131.51999999999998 -8.9310712340627915E-005 + 131.57999999999998 -1.0820031393382963E-004 + 131.63999999999999 -1.2682483724909559E-004 + 131.69999999999999 -1.4517164523367867E-004 + 131.75999999999999 -1.6322778805515911E-004 + 131.81999999999999 -1.8098003180210724E-004 + 131.88000000000000 -1.9841485756678928E-004 + 131.94000000000000 -2.1551854660989623E-004 + 132.00000000000000 -2.3227711210398072E-004 + 132.06000000000000 -2.4867641858572416E-004 + 132.12000000000000 -2.6470216827713627E-004 + 132.18000000000001 -2.8033996796637248E-004 + 132.23999999999998 -2.9557528628317638E-004 + 132.29999999999998 -3.1039358034747473E-004 + 132.35999999999999 -3.2478024054127325E-004 + 132.41999999999999 -3.3872071120487162E-004 + 132.47999999999999 -3.5220049466898535E-004 + 132.53999999999999 -3.6520513038237391E-004 + 132.59999999999999 -3.7772029962041193E-004 + 132.66000000000000 -3.8973187870018698E-004 + 132.72000000000000 -4.0122591680734386E-004 + 132.78000000000000 -4.1218869686545246E-004 + 132.84000000000000 -4.2260677832904267E-004 + 132.90000000000001 -4.3246704968228207E-004 + 132.95999999999998 -4.4175678928915564E-004 + 133.01999999999998 -4.5046363696627938E-004 + 133.07999999999998 -4.5857568918411117E-004 + 133.13999999999999 -4.6608147832869244E-004 + 133.19999999999999 -4.7297011403590693E-004 + 133.25999999999999 -4.7923115507636629E-004 + 133.31999999999999 -4.8485482969801120E-004 + 133.38000000000000 -4.8983193431131129E-004 + 133.44000000000000 -4.9415385104533630E-004 + 133.50000000000000 -4.9781267561413564E-004 + 133.56000000000000 -5.0080119995118510E-004 + 133.62000000000000 -5.0311292477185740E-004 + 133.68000000000001 -5.0474199467092046E-004 + 133.73999999999998 -5.0568343228363710E-004 + 133.79999999999998 -5.0593306874397359E-004 + 133.85999999999999 -5.0548745378523182E-004 + 133.91999999999999 -5.0434400143663184E-004 + 133.97999999999999 -5.0250094432234831E-004 + 134.03999999999999 -4.9995739350999898E-004 + 134.09999999999999 -4.9671341611933221E-004 + 134.16000000000000 -4.9276983078844010E-004 + 134.22000000000000 -4.8812842753889350E-004 + 134.28000000000000 -4.8279191185636276E-004 + 134.34000000000000 -4.7676384566584849E-004 + 134.40000000000001 -4.7004865530680533E-004 + 134.45999999999998 -4.6265169396922634E-004 + 134.51999999999998 -4.5457918452685591E-004 + 134.57999999999998 -4.4583818769021927E-004 + 134.63999999999999 -4.3643663920682946E-004 + 134.69999999999999 -4.2638333645079454E-004 + 134.75999999999999 -4.1568781177023619E-004 + 134.81999999999999 -4.0436046527193571E-004 + 134.88000000000000 -3.9241247811700684E-004 + 134.94000000000000 -3.7985577528355661E-004 + 135.00000000000000 -3.6670307260526069E-004 + 135.06000000000000 -3.5296784562209219E-004 + 135.12000000000000 -3.3866428244051506E-004 + 135.18000000000001 -3.2380726883927074E-004 + 135.23999999999998 -3.0841244672986679E-004 + 135.29999999999998 -2.9249613066315738E-004 + 135.35999999999999 -2.7607525403405229E-004 + 135.41999999999999 -2.5916745270065949E-004 + 135.47999999999999 -2.4179098831518848E-004 + 135.53999999999999 -2.2396468551817109E-004 + 135.59999999999999 -2.0570800908682301E-004 + 135.66000000000000 -1.8704088848411950E-004 + 135.72000000000000 -1.6798380734426069E-004 + 135.78000000000000 -1.4855775649840386E-004 + 135.84000000000000 -1.2878414888416414E-004 + 135.90000000000001 -1.0868482201988161E-004 + 135.95999999999998 -8.8282007148125021E-005 + 136.01999999999998 -6.7598291378088851E-005 + 136.07999999999998 -4.6656587731718398E-005 + 136.13999999999999 -2.5480110932390118E-005 + 136.19999999999999 -4.0923501926523328E-006 + 136.25999999999999 1.7482971124430684E-005 + 136.31999999999999 3.9221913122475604E-005 + 136.38000000000000 6.1100312126461309E-005 + 136.44000000000000 8.3093873878166158E-005 + 136.50000000000000 1.0517814747559628E-004 + 136.56000000000000 1.2732854193976873E-004 + 136.62000000000000 1.4952039966467098E-004 + 136.68000000000001 1.7172898852040107E-004 + 136.73999999999998 1.9392951712661919E-004 + 136.79999999999998 2.1609723723592508E-004 + 136.85999999999999 2.3820735130055672E-004 + 136.91999999999999 2.6023515508412869E-004 + 136.97999999999999 2.8215599837962135E-004 + 137.03999999999999 3.0394531003546298E-004 + 137.09999999999999 3.2557868292549912E-004 + 137.16000000000000 3.4703187328718077E-004 + 137.22000000000000 3.6828082161251068E-004 + 137.28000000000000 3.8930170476988405E-004 + 137.34000000000000 4.1007090060019306E-004 + 137.40000000000001 4.3056516459915418E-004 + 137.45999999999998 4.5076149862525951E-004 + 137.51999999999998 4.7063721307732368E-004 + 137.57999999999998 4.9017009359373016E-004 + 137.63999999999999 5.0933824790022533E-004 + 137.69999999999999 5.2812024537453686E-004 + 137.75999999999999 5.4649516307325090E-004 + 137.81999999999999 5.6444249983811736E-004 + 137.88000000000000 5.8194243991354798E-004 + 137.94000000000000 5.9897553529742289E-004 + 138.00000000000000 6.1552309186789782E-004 + 138.06000000000000 6.3156685714423066E-004 + 138.12000000000000 6.4708942714347640E-004 + 138.18000000000001 6.6207396718548372E-004 + 138.23999999999998 6.7650436084255926E-004 + 138.29999999999998 6.9036525111654105E-004 + 138.35999999999999 7.0364203729273442E-004 + 138.41999999999999 7.1632082781567029E-004 + 138.47999999999999 7.2838863211068493E-004 + 138.53999999999999 7.3983314720541329E-004 + 138.59999999999999 7.5064311348560454E-004 + 138.66000000000000 7.6080794404995210E-004 + 138.72000000000000 7.7031808279632208E-004 + 138.78000000000000 7.7916482700774239E-004 + 138.84000000000000 7.8734047443996375E-004 + 138.90000000000001 7.9483824325075837E-004 + 138.95999999999998 8.0165236130805837E-004 + 139.01999999999998 8.0777808019841810E-004 + 139.07999999999998 8.1321173153639189E-004 + 139.13999999999999 8.1795054799340186E-004 + 139.19999999999999 8.2199286679703488E-004 + 139.25999999999999 8.2533821851461201E-004 + 139.31999999999999 8.2798703773090680E-004 + 139.38000000000000 8.2994097045885362E-004 + 139.44000000000000 8.3120260032431875E-004 + 139.50000000000000 8.3177560765459774E-004 + 139.56000000000000 8.3166475754738211E-004 + 139.62000000000000 8.3087587438292817E-004 + 139.68000000000001 8.2941581135692675E-004 + 139.73999999999998 8.2729226484123247E-004 + 139.79999999999998 8.2451414419496894E-004 + 139.85999999999999 8.2109123611327816E-004 + 139.91999999999999 8.1703427397855524E-004 + 139.97999999999999 8.1235498825162566E-004 + 140.03999999999999 8.0706593059570297E-004 + 140.09999999999999 8.0118063459570527E-004 + 140.16000000000000 7.9471340089927293E-004 + 140.22000000000000 7.8767948323976277E-004 + 140.28000000000000 7.8009488605491027E-004 + 140.34000000000000 7.7197642518166078E-004 + 140.40000000000001 7.6334156113786183E-004 + 140.45999999999998 7.5420862655033215E-004 + 140.51999999999998 7.4459655311194365E-004 + 140.57999999999998 7.3452489748887279E-004 + 140.63999999999999 7.2401373695486564E-004 + 140.69999999999999 7.1308376898757608E-004 + 140.75999999999999 7.0175616928273116E-004 + 140.81999999999999 6.9005248373563773E-004 + 140.88000000000000 6.7799463428292860E-004 + 140.94000000000000 6.6560490822673653E-004 + 141.00000000000000 6.5290577155802804E-004 + 141.06000000000000 6.3991998454892847E-004 + 141.12000000000000 6.2667038115964146E-004 + 141.18000000000001 6.1317986177209676E-004 + 141.23999999999998 5.9947146127285321E-004 + 141.29999999999998 5.8556808647120201E-004 + 141.35999999999999 5.7149264278887339E-004 + 141.41999999999999 5.5726784212380013E-004 + 141.47999999999999 5.4291621512718869E-004 + 141.53999999999999 5.2846000323927963E-004 + 141.59999999999999 5.1392127170644616E-004 + 141.66000000000000 4.9932163201566349E-004 + 141.72000000000000 4.8468232424332772E-004 + 141.78000000000000 4.7002409315341449E-004 + 141.84000000000000 4.5536718698975401E-004 + 141.90000000000001 4.4073128103578924E-004 + 141.95999999999998 4.2613543587373279E-004 + 142.01999999999998 4.1159812335039565E-004 + 142.07999999999998 3.9713709017294207E-004 + 142.13999999999999 3.8276934070540652E-004 + 142.19999999999999 3.6851112252730701E-004 + 142.25999999999999 3.5437787032845656E-004 + 142.31999999999999 3.4038424541902126E-004 + 142.38000000000000 3.2654399480893959E-004 + 142.44000000000000 3.1287002471893364E-004 + 142.50000000000000 2.9937431874720543E-004 + 142.56000000000000 2.8606793916259316E-004 + 142.62000000000000 2.7296105571301179E-004 + 142.68000000000001 2.6006285421973670E-004 + 142.73999999999998 2.4738154646582975E-004 + 142.79999999999998 2.3492440672743408E-004 + 142.85999999999999 2.2269769029768690E-004 + 142.91999999999999 2.1070667377429153E-004 + 142.97999999999999 1.9895568853130682E-004 + 143.03999999999999 1.8744803409010568E-004 + 143.09999999999999 1.7618604395890292E-004 + 143.16000000000000 1.6517107400455916E-004 + 143.22000000000000 1.5440353101224804E-004 + 143.28000000000000 1.4388286034670470E-004 + 143.34000000000000 1.3360761690112979E-004 + 143.40000000000001 1.2357544004575166E-004 + 143.45999999999998 1.1378312874219391E-004 + 143.51999999999998 1.0422663133307793E-004 + 143.57999999999998 9.4901106284705028E-005 + 143.63999999999999 8.5800953496609710E-005 + 143.69999999999999 7.6919855008696588E-005 + 143.75999999999999 6.8250804221238451E-005 + 143.81999999999999 5.9786154949010931E-005 + 143.88000000000000 5.1517667896830807E-005 + 143.94000000000000 4.3436521467966825E-005 + 144.00000000000000 3.5533401020747988E-005 + 144.06000000000000 2.7798496022606172E-005 + 144.12000000000000 2.0221565436981676E-005 + 144.18000000000001 1.2791977683505738E-005 + 144.23999999999998 5.4987529862605026E-006 + 144.29999999999998 -1.6693930527793917E-006 + 144.35999999999999 -8.7239991141403498E-006 + 144.41999999999999 -1.5676815017321393E-005 + 144.47999999999999 -2.2539748569832791E-005 + 144.53999999999999 -2.9324815240870941E-005 + 144.59999999999999 -3.6044091950456664E-005 + 144.66000000000000 -4.2709659378677677E-005 + 144.72000000000000 -4.9333555038515091E-005 + 144.78000000000000 -5.5927721224532389E-005 + 144.84000000000000 -6.2503949860460436E-005 + 144.90000000000001 -6.9073843554819564E-005 + 144.95999999999998 -7.5648748690678943E-005 + 145.01999999999998 -8.2239727034650998E-005 + 145.07999999999998 -8.8857522339688206E-005 + 145.13999999999999 -9.5512478666942295E-005 + 145.19999999999999 -1.0221454333773861E-004 + 145.25999999999999 -1.0897322167141045E-004 + 145.31999999999999 -1.1579752243265020E-004 + 145.38000000000000 -1.2269593764616978E-004 + 145.44000000000000 -1.2967643121447457E-004 + 145.50000000000000 -1.3674640478517248E-004 + 145.56000000000000 -1.4391263786195851E-004 + 145.62000000000000 -1.5118131514636735E-004 + 145.68000000000001 -1.5855801160078736E-004 + 145.73999999999998 -1.6604759912533848E-004 + 145.79999999999998 -1.7365430669437099E-004 + 145.85999999999999 -1.8138169151292222E-004 + 145.91999999999999 -1.8923259953283696E-004 + 145.97999999999999 -1.9720919954405964E-004 + 146.03999999999999 -2.0531292965456492E-004 + 146.09999999999999 -2.1354453765118505E-004 + 146.16000000000000 -2.2190406761052369E-004 + 146.22000000000000 -2.3039082120139342E-004 + 146.28000000000000 -2.3900343481570902E-004 + 146.34000000000000 -2.4773982384586069E-004 + 146.40000000000001 -2.5659722666877930E-004 + 146.45999999999998 -2.6557220126007582E-004 + 146.51999999999998 -2.7466060729042262E-004 + 146.57999999999998 -2.8385768428452194E-004 + 146.63999999999999 -2.9315801855876186E-004 + 146.69999999999999 -3.0255557878312942E-004 + 146.75999999999999 -3.1204372766345501E-004 + 146.81999999999999 -3.2161520227123934E-004 + 146.88000000000000 -3.3126226323438945E-004 + 146.94000000000000 -3.4097659360987257E-004 + 147.00000000000000 -3.5074938101027761E-004 + 147.06000000000000 -3.6057138003822329E-004 + 147.12000000000000 -3.7043284886266448E-004 + 147.18000000000001 -3.8032366076172269E-004 + 147.23999999999998 -3.9023331290523430E-004 + 147.29999999999998 -4.0015102711785821E-004 + 147.35999999999999 -4.1006568589422817E-004 + 147.41999999999999 -4.1996591014501888E-004 + 147.47999999999999 -4.2984010908444413E-004 + 147.53999999999999 -4.3967656222928397E-004 + 147.59999999999999 -4.4946338931101001E-004 + 147.66000000000000 -4.5918859269007402E-004 + 147.72000000000000 -4.6884015266828458E-004 + 147.78000000000000 -4.7840596008031212E-004 + 147.84000000000000 -4.8787391914728925E-004 + 147.90000000000001 -4.9723193212192250E-004 + 147.95999999999998 -5.0646801803399979E-004 + 148.01999999999998 -5.1557022788378056E-004 + 148.07999999999998 -5.2452673202151988E-004 + 148.13999999999999 -5.3332585268548295E-004 + 148.19999999999999 -5.4195607383145398E-004 + 148.25999999999999 -5.5040601209026968E-004 + 148.31999999999999 -5.5866456230976565E-004 + 148.38000000000000 -5.6672085860633788E-004 + 148.44000000000000 -5.7456424059191841E-004 + 148.50000000000000 -5.8218446108224923E-004 + 148.56000000000000 -5.8957147745351715E-004 + 148.62000000000000 -5.9671560509794836E-004 + 148.68000000000001 -6.0360765253605962E-004 + 148.73999999999998 -6.1023869212617054E-004 + 148.79999999999998 -6.1660023229209325E-004 + 148.85999999999999 -6.2268417671747505E-004 + 148.91999999999999 -6.2848281201973886E-004 + 148.97999999999999 -6.3398896639155222E-004 + 149.03999999999999 -6.3919584458519156E-004 + 149.09999999999999 -6.4409705075716317E-004 + 149.16000000000000 -6.4868675083286712E-004 + 149.22000000000000 -6.5295934930233331E-004 + 149.28000000000000 -6.5690984495607658E-004 + 149.34000000000000 -6.6053362351575046E-004 + 149.40000000000001 -6.6382640107810862E-004 + 149.45999999999998 -6.6678438905230352E-004 + 149.51999999999998 -6.6940422499730135E-004 + 149.57999999999998 -6.7168291744195416E-004 + 149.63999999999999 -6.7361780927000837E-004 + 149.69999999999999 -6.7520678296561078E-004 + 149.75999999999999 -6.7644795905352317E-004 + 149.81999999999999 -6.7734002756149499E-004 + 149.88000000000000 -6.7788184011035549E-004 + 149.94000000000000 -6.7807270755213033E-004 + 150.00000000000000 -6.7791236416444006E-004 + 150.06000000000000 -6.7740074713456893E-004 + 150.12000000000000 -6.7653825982382963E-004 + 150.18000000000001 -6.7532564030540164E-004 + 150.23999999999998 -6.7376381037854798E-004 + 150.29999999999998 -6.7185403777399286E-004 + 150.35999999999999 -6.6959790073165177E-004 + 150.41999999999999 -6.6699718606331711E-004 + 150.47999999999999 -6.6405396314407768E-004 + 150.53999999999999 -6.6077044180153218E-004 + 150.59999999999999 -6.5714914546726822E-004 + 150.66000000000000 -6.5319273224507288E-004 + 150.72000000000000 -6.4890402074586375E-004 + 150.78000000000000 -6.4428606033582845E-004 + 150.84000000000000 -6.3934209658820845E-004 + 150.90000000000001 -6.3407548973202403E-004 + 150.95999999999998 -6.2848972211832063E-004 + 151.01999999999998 -6.2258853638017366E-004 + 151.07999999999998 -6.1637570013299168E-004 + 151.13999999999999 -6.0985531196175045E-004 + 151.19999999999999 -6.0303146058501291E-004 + 151.25999999999999 -5.9590843844522135E-004 + 151.31999999999999 -5.8849072839057550E-004 + 151.38000000000000 -5.8078292554588501E-004 + 151.44000000000000 -5.7278975965930831E-004 + 151.50000000000000 -5.6451622221764071E-004 + 151.56000000000000 -5.5596739364429033E-004 + 151.62000000000000 -5.4714853757475317E-004 + 151.68000000000001 -5.3806503395088215E-004 + 151.73999999999998 -5.2872249653193246E-004 + 151.79999999999998 -5.1912670207739380E-004 + 151.85999999999999 -5.0928350620760168E-004 + 151.91999999999999 -4.9919911116671828E-004 + 151.97999999999999 -4.8887982859778631E-004 + 152.03999999999999 -4.7833216037046039E-004 + 152.09999999999999 -4.6756291907144539E-004 + 152.16000000000000 -4.5657903634174166E-004 + 152.22000000000000 -4.4538773008785340E-004 + 152.28000000000000 -4.3399652358170308E-004 + 152.34000000000000 -4.2241310461987207E-004 + 152.40000000000001 -4.1064543836048984E-004 + 152.45999999999998 -3.9870179938666933E-004 + 152.51999999999998 -3.8659073797530817E-004 + 152.57999999999998 -3.7432113446008418E-004 + 152.63999999999999 -3.6190212390012014E-004 + 152.69999999999999 -3.4934318933032302E-004 + 152.75999999999999 -3.3665410005902794E-004 + 152.81999999999999 -3.2384493692507279E-004 + 152.88000000000000 -3.1092614450011782E-004 + 152.94000000000000 -2.9790843435050711E-004 + 153.00000000000000 -2.8480290314460556E-004 + 153.06000000000000 -2.7162093185342096E-004 + 153.12000000000000 -2.5837420145344774E-004 + 153.17999999999998 -2.4507475418318223E-004 + 153.23999999999998 -2.3173487798801193E-004 + 153.29999999999998 -2.1836719436380694E-004 + 153.35999999999999 -2.0498460139584313E-004 + 153.41999999999999 -1.9160026434991478E-004 + 153.47999999999999 -1.7822758310498599E-004 + 153.53999999999999 -1.6488022779096329E-004 + 153.59999999999999 -1.5157208041594597E-004 + 153.66000000000000 -1.3831724130043292E-004 + 153.72000000000000 -1.2512995718083023E-004 + 153.78000000000000 -1.1202467017164334E-004 + 153.84000000000000 -9.9015957610119795E-005 + 153.90000000000001 -8.6118536828627847E-005 + 153.95999999999998 -7.3347220504491119E-005 + 154.01999999999998 -6.0716922931385077E-005 + 154.07999999999998 -4.8242610039240270E-005 + 154.13999999999999 -3.5939302522995142E-005 + 154.19999999999999 -2.3822018525022936E-005 + 154.25999999999999 -1.1905792971356805E-005 + 154.31999999999999 -2.0561272729860473E-007 + 154.38000000000000 1.1263604604306392E-005 + 154.44000000000000 2.2487028416303087E-005 + 154.50000000000000 3.3449975582537855E-005 + 154.56000000000000 4.4137926974042936E-005 + 154.62000000000000 5.4536571092377213E-005 + 154.67999999999998 6.4631849397610717E-005 + 154.73999999999998 7.4409991219667000E-005 + 154.79999999999998 8.3857555573851593E-005 + 154.85999999999999 9.2961468605537681E-005 + 154.91999999999999 1.0170906796305773E-004 + 154.97999999999999 1.1008811470186970E-004 + 155.03999999999999 1.1808686651345864E-004 + 155.09999999999999 1.2569408353269054E-004 + 155.16000000000000 1.3289904144386604E-004 + 155.22000000000000 1.3969159338579894E-004 + 155.28000000000000 1.4606216652090739E-004 + 155.34000000000000 1.5200179145023645E-004 + 155.40000000000001 1.5750213111943010E-004 + 155.45999999999998 1.6255547314189184E-004 + 155.51999999999998 1.6715478252808208E-004 + 155.57999999999998 1.7129371093031924E-004 + 155.63999999999999 1.7496659051013252E-004 + 155.69999999999999 1.7816849238576872E-004 + 155.75999999999999 1.8089520690755460E-004 + 155.81999999999999 1.8314331059567871E-004 + 155.88000000000000 1.8491013373327504E-004 + 155.94000000000000 1.8619382010075908E-004 + 156.00000000000000 1.8699331384702545E-004 + 156.06000000000000 1.8730841120501762E-004 + 156.12000000000000 1.8713974366135728E-004 + 156.17999999999998 1.8648878967151086E-004 + 156.23999999999998 1.8535790271928315E-004 + 156.29999999999998 1.8375030434599875E-004 + 156.35999999999999 1.8167008414703297E-004 + 156.41999999999999 1.7912219230984053E-004 + 156.47999999999999 1.7611242925161770E-004 + 156.53999999999999 1.7264744795528260E-004 + 156.59999999999999 1.6873474255940746E-004 + 156.66000000000000 1.6438260525691639E-004 + 156.72000000000000 1.5960013939300986E-004 + 156.78000000000000 1.5439726400171130E-004 + 156.84000000000000 1.4878462192299927E-004 + 156.90000000000001 1.4277360967744195E-004 + 156.95999999999998 1.3637636778887239E-004 + 157.01999999999998 1.2960572335079981E-004 + 157.07999999999998 1.2247520965321553E-004 + 157.13999999999999 1.1499899845908250E-004 + 157.19999999999999 1.0719192204391542E-004 + 157.25999999999999 9.9069427040705176E-005 + 157.31999999999999 9.0647545751958465E-005 + 157.38000000000000 8.1942887525706108E-005 + 157.44000000000000 7.2972592618690860E-005 + 157.50000000000000 6.3754315243472832E-005 + 157.56000000000000 5.4306204408173308E-005 + 157.62000000000000 4.4646856859943594E-005 + 157.67999999999998 3.4795285156236001E-005 + 157.73999999999998 2.4770896768732821E-005 + 157.79999999999998 1.4593451378697644E-005 + 157.85999999999999 4.2830316038885832E-006 + 157.91999999999999 -6.1399854942305223E-006 + 157.97999999999999 -1.6654979487802844E-005 + 158.03999999999999 -2.7241105210457031E-005 + 158.09999999999999 -3.7877345051450855E-005 + 158.16000000000000 -4.8542532087905946E-005 + 158.22000000000000 -5.9215399463461280E-005 + 158.28000000000000 -6.9874608905535750E-005 + 158.34000000000000 -8.0498803476901495E-005 + 158.40000000000001 -9.1066637689360449E-005 + 158.45999999999998 -1.0155682133582946E-004 + 158.51999999999998 -1.1194816552538683E-004 + 158.57999999999998 -1.2221961489635024E-004 + 158.63999999999999 -1.3235030693729038E-004 + 158.69999999999999 -1.4231959072956280E-004 + 158.75999999999999 -1.5210708196356315E-004 + 158.81999999999999 -1.6169270020872928E-004 + 158.88000000000000 -1.7105668427698858E-004 + 158.94000000000000 -1.8017963985185982E-004 + 159.00000000000000 -1.8904259564646119E-004 + 159.06000000000000 -1.9762699848837646E-004 + 159.12000000000000 -2.0591477008248830E-004 + 159.17999999999998 -2.1388828611855788E-004 + 159.23999999999998 -2.2153043560545094E-004 + 159.29999999999998 -2.2882465891465483E-004 + 159.35999999999999 -2.3575494807442565E-004 + 159.41999999999999 -2.4230587650956594E-004 + 159.47999999999999 -2.4846261352474568E-004 + 159.53999999999999 -2.5421099346451686E-004 + 159.59999999999999 -2.5953745159176963E-004 + 159.66000000000000 -2.6442915101621787E-004 + 159.72000000000000 -2.6887396414345722E-004 + 159.78000000000000 -2.7286049981628850E-004 + 159.84000000000000 -2.7637809307603768E-004 + 159.90000000000001 -2.7941692983870776E-004 + 159.95999999999998 -2.8196794425450721E-004 + 160.01999999999998 -2.8402294500546118E-004 + 160.07999999999998 -2.8557456637407153E-004 + 160.13999999999999 -2.8661632359742192E-004 + 160.19999999999999 -2.8714259778305537E-004 + 160.25999999999999 -2.8714863247485643E-004 + 160.31999999999999 -2.8663060581312917E-004 + 160.38000000000000 -2.8558551228999524E-004 + 160.44000000000000 -2.8401128913251061E-004 + 160.50000000000000 -2.8190672292983319E-004 + 160.56000000000000 -2.7927151120409819E-004 + 160.62000000000000 -2.7610622424607020E-004 + 160.67999999999998 -2.7241226389541640E-004 + 160.73999999999998 -2.6819192914516812E-004 + 160.79999999999998 -2.6344837622310362E-004 + 160.85999999999999 -2.5818554785892567E-004 + 160.91999999999999 -2.5240829495173651E-004 + 160.97999999999999 -2.4612223967576143E-004 + 161.03999999999999 -2.3933384454741610E-004 + 161.09999999999999 -2.3205039540494249E-004 + 161.16000000000000 -2.2427995426724628E-004 + 161.22000000000000 -2.1603134524236320E-004 + 161.28000000000000 -2.0731421115449366E-004 + 161.34000000000000 -1.9813887982344976E-004 + 161.40000000000001 -1.8851644441311889E-004 + 161.45999999999998 -1.7845867985135782E-004 + 161.51999999999998 -1.6797806421045141E-004 + 161.57999999999998 -1.5708775384952131E-004 + 161.63999999999999 -1.4580150121636904E-004 + 161.69999999999999 -1.3413370937144883E-004 + 161.75999999999999 -1.2209934644499430E-004 + 161.81999999999999 -1.0971394766477432E-004 + 161.88000000000000 -9.6993573779898497E-005 + 161.94000000000000 -8.3954813022949694E-005 + 162.00000000000000 -7.0614670328820133E-005 + 162.06000000000000 -5.6990642960409626E-005 + 162.12000000000000 -4.3100616605732487E-005 + 162.17999999999998 -2.8962838458886276E-005 + 162.23999999999998 -1.4595911116599883E-005 + 162.29999999999998 -1.8752419949166505E-008 + 162.35999999999999 1.4749466664951071E-005 + 162.41999999999999 2.9689352163410053E-005 + 162.47999999999999 4.4781303144538067E-005 + 162.53999999999999 6.0005579202930035E-005 + 162.59999999999999 7.5342306858611083E-005 + 162.66000000000000 9.0771524210462272E-005 + 162.72000000000000 1.0627323917825953E-004 + 162.78000000000000 1.2182742943121677E-004 + 162.84000000000000 1.3741407337479337E-004 + 162.90000000000001 1.5301318417003452E-004 + 162.95999999999998 1.6860485472290241E-004 + 163.01999999999998 1.8416926780805772E-004 + 163.07999999999998 1.9968670648521492E-004 + 163.13999999999999 2.1513757725960157E-004 + 163.19999999999999 2.3050247245959388E-004 + 163.25999999999999 2.4576215305650341E-004 + 163.31999999999999 2.6089756520003977E-004 + 163.38000000000000 2.7588993090839299E-004 + 163.44000000000000 2.9072067815283419E-004 + 163.50000000000000 3.0537154441884218E-004 + 163.56000000000000 3.1982457724567088E-004 + 163.62000000000000 3.3406215896310233E-004 + 163.67999999999998 3.4806707476081036E-004 + 163.73999999999998 3.6182252065909579E-004 + 163.79999999999998 3.7531203533894449E-004 + 163.85999999999999 3.8851970505020451E-004 + 163.91999999999999 4.0143008758941053E-004 + 163.97999999999999 4.1402816418731391E-004 + 164.03999999999999 4.2629948055895070E-004 + 164.09999999999999 4.3823009646648119E-004 + 164.16000000000000 4.4980661723483889E-004 + 164.22000000000000 4.6101615026359260E-004 + 164.28000000000000 4.7184635579132484E-004 + 164.34000000000000 4.8228545699677164E-004 + 164.40000000000001 4.9232220151462466E-004 + 164.45999999999998 5.0194588733376154E-004 + 164.51999999999998 5.1114635958751002E-004 + 164.57999999999998 5.1991402653372651E-004 + 164.63999999999999 5.2823983369251542E-004 + 164.69999999999999 5.3611527616182115E-004 + 164.75999999999999 5.4353238527898092E-004 + 164.81999999999999 5.5048380122790287E-004 + 164.88000000000000 5.5696277280449849E-004 + 164.94000000000000 5.6296299695610889E-004 + 165.00000000000000 5.6847880540399250E-004 + 165.06000000000000 5.7350512109071176E-004 + 165.12000000000000 5.7803753192354340E-004 + 165.17999999999998 5.8207219187264429E-004 + 165.23999999999998 5.8560575968036430E-004 + 165.29999999999998 5.8863552185275004E-004 + 165.35999999999999 5.9115945585640401E-004 + 165.41999999999999 5.9317608637701085E-004 + 165.47999999999999 5.9468444593230698E-004 + 165.53999999999999 5.9568422912815891E-004 + 165.59999999999999 5.9617575150048489E-004 + 165.66000000000000 5.9615983285035278E-004 + 165.72000000000000 5.9563784272040940E-004 + 165.78000000000000 5.9461172444780816E-004 + 165.84000000000000 5.9308400684763380E-004 + 165.90000000000001 5.9105772961254310E-004 + 165.95999999999998 5.8853645930558149E-004 + 166.01999999999998 5.8552427025017817E-004 + 166.07999999999998 5.8202577962827146E-004 + 166.13999999999999 5.7804613711788121E-004 + 166.19999999999999 5.7359098541159305E-004 + 166.25999999999999 5.6866636261330799E-004 + 166.31999999999999 5.6327891821753321E-004 + 166.38000000000000 5.5743564831322266E-004 + 166.44000000000000 5.5114400417999505E-004 + 166.50000000000000 5.4441194106755230E-004 + 166.56000000000000 5.3724788781585797E-004 + 166.62000000000000 5.2966054470980769E-004 + 166.67999999999998 5.2165916190794175E-004 + 166.73999999999998 5.1325331326622576E-004 + 166.79999999999998 5.0445300588906861E-004 + 166.85999999999999 4.9526868296719646E-004 + 166.91999999999999 4.8571110198205973E-004 + 166.97999999999999 4.7579143422593167E-004 + 167.03999999999999 4.6552119004302785E-004 + 167.09999999999999 4.5491224260906979E-004 + 167.16000000000000 4.4397671846900863E-004 + 167.22000000000000 4.3272716565983171E-004 + 167.28000000000000 4.2117634127871806E-004 + 167.34000000000000 4.0933736617659752E-004 + 167.40000000000001 3.9722351933465583E-004 + 167.45999999999998 3.8484839048338415E-004 + 167.51999999999998 3.7222568024525163E-004 + 167.57999999999998 3.5936933203471630E-004 + 167.63999999999999 3.4629337563099578E-004 + 167.69999999999999 3.3301198863651545E-004 + 167.75999999999999 3.1953942850450752E-004 + 167.81999999999999 3.0589005095259909E-004 + 167.88000000000000 2.9207821020212250E-004 + 167.94000000000000 2.7811831237801202E-004 + 168.00000000000000 2.6402478836219358E-004 + 168.06000000000000 2.4981202987855425E-004 + 168.12000000000000 2.3549442002195091E-004 + 168.17999999999998 2.2108630704735209E-004 + 168.23999999999998 2.0660196383694260E-004 + 168.29999999999998 1.9205558883644928E-004 + 168.35999999999999 1.7746129854091293E-004 + 168.41999999999999 1.6283306306794312E-004 + 168.47999999999999 1.4818475881890386E-004 + 168.53999999999999 1.3353010527534278E-004 + 168.59999999999999 1.1888263976597530E-004 + 168.66000000000000 1.0425567742247078E-004 + 168.72000000000000 8.9662340827532981E-005 + 168.78000000000000 7.5115488902921526E-005 + 168.84000000000000 6.0627690558091416E-005 + 168.90000000000001 4.6211257478805890E-005 + 168.95999999999998 3.1878166207470268E-005 + 169.01999999999998 1.7640074606637370E-005 + 169.07999999999998 3.5082815884214519E-006 + 169.13999999999999 -1.0506270082487093E-005 + 169.19999999999999 -2.4393008093122006E-005 + 169.25999999999999 -3.8141745667386886E-005 + 169.31999999999999 -5.1742676273519952E-005 + 169.38000000000000 -6.5186398158384364E-005 + 169.44000000000000 -7.8463910240188952E-005 + 169.50000000000000 -9.1566612263442810E-005 + 169.56000000000000 -1.0448631831777032E-004 + 169.62000000000000 -1.1721525994639128E-004 + 169.67999999999998 -1.2974608383065268E-004 + 169.73999999999998 -1.4207183301348319E-004 + 169.79999999999998 -1.5418601009097973E-004 + 169.85999999999999 -1.6608249972891934E-004 + 169.91999999999999 -1.7775562585593021E-004 + 169.97999999999999 -1.8920013130185889E-004 + 170.03999999999999 -2.0041116308114988E-004 + 170.09999999999999 -2.1138428899732819E-004 + 170.16000000000000 -2.2211546099270760E-004 + 170.22000000000000 -2.3260105813837116E-004 + 170.28000000000000 -2.4283781797658423E-004 + 170.34000000000000 -2.5282289586956688E-004 + 170.40000000000001 -2.6255376065193673E-004 + 170.45999999999998 -2.7202824998214653E-004 + 170.51999999999998 -2.8124459590635003E-004 + 170.57999999999998 -2.9020130582269488E-004 + 170.63999999999999 -2.9889729298913990E-004 + 170.69999999999999 -3.0733173468630294E-004 + 170.75999999999999 -3.1550414013560557E-004 + 170.81999999999999 -3.2341429441207876E-004 + 170.88000000000000 -3.3106230593467557E-004 + 170.94000000000000 -3.3844857337676321E-004 + 171.00000000000000 -3.4557368234756957E-004 + 171.06000000000000 -3.5243856544440143E-004 + 171.12000000000000 -3.5904437374015258E-004 + 171.17999999999998 -3.6539248321229242E-004 + 171.23999999999998 -3.7148443991469408E-004 + 171.29999999999998 -3.7732204138298382E-004 + 171.35999999999999 -3.8290726458015969E-004 + 171.41999999999999 -3.8824219293267809E-004 + 171.47999999999999 -3.9332912670942365E-004 + 171.53999999999999 -3.9817041608877551E-004 + 171.59999999999999 -4.0276860150573326E-004 + 171.66000000000000 -4.0712630022730147E-004 + 171.72000000000000 -4.1124625745759521E-004 + 171.78000000000000 -4.1513122226791328E-004 + 171.84000000000000 -4.1878415727599551E-004 + 171.90000000000001 -4.2220803149336053E-004 + 171.95999999999998 -4.2540590551545641E-004 + 172.01999999999998 -4.2838095319952958E-004 + 172.07999999999998 -4.3113639635484411E-004 + 172.13999999999999 -4.3367555423891373E-004 + 172.19999999999999 -4.3600183696764546E-004 + 172.25999999999999 -4.3811870762544932E-004 + 172.31999999999999 -4.4002976361181726E-004 + 172.38000000000000 -4.4173860524715595E-004 + 172.44000000000000 -4.4324892562453685E-004 + 172.50000000000000 -4.4456445155797953E-004 + 172.56000000000000 -4.4568903842684665E-004 + 172.62000000000000 -4.4662649938973973E-004 + 172.67999999999998 -4.4738068774052110E-004 + 172.73999999999998 -4.4795552472015534E-004 + 172.79999999999998 -4.4835494269962288E-004 + 172.85999999999999 -4.4858286451148865E-004 + 172.91999999999999 -4.4864331355256318E-004 + 172.97999999999999 -4.4854024527736156E-004 + 173.03999999999999 -4.4827765575145700E-004 + 173.09999999999999 -4.4785957372071281E-004 + 173.16000000000000 -4.4729010021950016E-004 + 173.22000000000000 -4.4657326186813316E-004 + 173.28000000000000 -4.4571315565923911E-004 + 173.34000000000000 -4.4471393078872410E-004 + 173.40000000000001 -4.4357977888313967E-004 + 173.45999999999998 -4.4231491138232933E-004 + 173.51999999999998 -4.4092352977866361E-004 + 173.57999999999998 -4.3940989815911168E-004 + 173.63999999999999 -4.3777837778505356E-004 + 173.69999999999999 -4.3603323871160349E-004 + 173.75999999999999 -4.3417886079615388E-004 + 173.81999999999999 -4.3221962077635932E-004 + 173.88000000000000 -4.3015988784307521E-004 + 173.94000000000000 -4.2800405708573453E-004 + 174.00000000000000 -4.2575655112126983E-004 + 174.06000000000000 -4.2342176007514724E-004 + 174.12000000000000 -4.2100414078100512E-004 + 174.17999999999998 -4.1850809055321060E-004 + 174.23999999999998 -4.1593804513085850E-004 + 174.29999999999998 -4.1329842861622572E-004 + 174.35999999999999 -4.1059361504952542E-004 + 174.41999999999999 -4.0782803493325225E-004 + 174.47999999999999 -4.0500601592559745E-004 + 174.53999999999999 -4.0213188958202817E-004 + 174.59999999999999 -3.9920997358674619E-004 + 174.66000000000000 -3.9624448919327651E-004 + 174.72000000000000 -3.9323962455146673E-004 + 174.78000000000000 -3.9019950127970257E-004 + 174.84000000000000 -3.8712813383511648E-004 + 174.90000000000001 -3.8402946981248100E-004 + 174.95999999999998 -3.8090734409203106E-004 + 175.01999999999998 -3.7776547149307089E-004 + 175.07999999999998 -3.7460749357224942E-004 + 175.13999999999999 -3.7143691052958906E-004 + 175.19999999999999 -3.6825703445321717E-004 + 175.25999999999999 -3.6507115776247053E-004 + 175.31999999999999 -3.6188236409054325E-004 + 175.38000000000000 -3.5869355342759210E-004 + 175.44000000000000 -3.5550755856702073E-004 + 175.50000000000000 -3.5232700633061484E-004 + 175.56000000000000 -3.4915434120763638E-004 + 175.62000000000000 -3.4599184769358159E-004 + 175.67999999999998 -3.4284164813707020E-004 + 175.73999999999998 -3.3970560895477207E-004 + 175.79999999999998 -3.3658545461783126E-004 + 175.85999999999999 -3.3348267215998345E-004 + 175.91999999999999 -3.3039855912158809E-004 + 175.97999999999999 -3.2733409757147069E-004 + 176.03999999999999 -3.2429012450337715E-004 + 176.09999999999999 -3.2126720818830424E-004 + 176.16000000000000 -3.1826566606028064E-004 + 176.22000000000000 -3.1528560759497856E-004 + 176.28000000000000 -3.1232683549589310E-004 + 176.34000000000000 -3.0938902128609385E-004 + 176.40000000000001 -3.0647153343643592E-004 + 176.45999999999998 -3.0357351126055843E-004 + 176.51999999999998 -3.0069390853053503E-004 + 176.57999999999998 -2.9783145770292279E-004 + 176.63999999999999 -2.9498470638564511E-004 + 176.69999999999999 -2.9215190728162850E-004 + 176.75999999999999 -2.8933114023613172E-004 + 176.81999999999999 -2.8652032637360714E-004 + 176.88000000000000 -2.8371714202133171E-004 + 176.94000000000000 -2.8091909189095727E-004 + 177.00000000000000 -2.7812343391561147E-004 + 177.06000000000000 -2.7532731488016059E-004 + 177.12000000000000 -2.7252761731574426E-004 + 177.17999999999998 -2.6972111526474447E-004 + 177.23999999999998 -2.6690441089181292E-004 + 177.29999999999998 -2.6407392529673152E-004 + 177.35999999999999 -2.6122599117696686E-004 + 177.41999999999999 -2.5835681308574560E-004 + 177.47999999999999 -2.5546251034060298E-004 + 177.53999999999999 -2.5253911596219078E-004 + 177.59999999999999 -2.4958259661245566E-004 + 177.66000000000000 -2.4658890855758307E-004 + 177.72000000000000 -2.4355399619184086E-004 + 177.78000000000000 -2.4047378619516813E-004 + 177.84000000000000 -2.3734423589912159E-004 + 177.90000000000001 -2.3416133241765686E-004 + 177.95999999999998 -2.3092111608443900E-004 + 178.01999999999998 -2.2761970228931902E-004 + 178.07999999999998 -2.2425331960581888E-004 + 178.13999999999999 -2.2081827653943253E-004 + 178.19999999999999 -2.1731100090435716E-004 + 178.25999999999999 -2.1372806839720990E-004 + 178.31999999999999 -2.1006624525971243E-004 + 178.38000000000000 -2.0632245865728733E-004 + 178.44000000000000 -2.0249384516188990E-004 + 178.50000000000000 -1.9857777134728164E-004 + 178.56000000000000 -1.9457189624683580E-004 + 178.62000000000000 -1.9047413439189504E-004 + 178.67999999999998 -1.8628272105458812E-004 + 178.73999999999998 -1.8199621161909001E-004 + 178.79999999999998 -1.7761352760854287E-004 + 178.85999999999999 -1.7313395404688873E-004 + 178.91999999999999 -1.6855716041005181E-004 + 178.97999999999999 -1.6388323145841323E-004 + 179.03999999999999 -1.5911264960800296E-004 + 179.09999999999999 -1.5424635815687598E-004 + 179.16000000000000 -1.4928569627830292E-004 + 179.22000000000000 -1.4423246236355583E-004 + 179.28000000000000 -1.3908892688711575E-004 + 179.34000000000000 -1.3385780389379458E-004 + 179.40000000000001 -1.2854226525364567E-004 + 179.45999999999998 -1.2314598573289390E-004 + 179.51999999999998 -1.1767307852713106E-004 + 179.57999999999998 -1.1212819053798267E-004 + 179.63999999999999 -1.0651642936997456E-004 + 179.69999999999999 -1.0084341906236392E-004 + 179.75999999999999 -9.5115291473054798E-005 + 179.81999999999999 -8.9338680859114738E-005 + 179.88000000000000 -8.3520747352401820E-005 + 179.94000000000000 -7.7669157349375409E-005 + 180.00000000000000 -7.1792080578198092E-005 + 180.06000000000000 -6.5898209273743081E-005 + 180.12000000000000 -5.9996707625660677E-005 + 180.17999999999998 -5.4097238147206918E-005 + 180.23999999999998 -4.8209919915220962E-005 + 180.29999999999998 -4.2345343850070475E-005 + 180.35999999999999 -3.6514521045316949E-005 + 180.41999999999999 -3.0728875524759924E-005 + 180.47999999999999 -2.5000227694357582E-005 + 180.53999999999999 -1.9340762569605512E-005 + 180.59999999999999 -1.3763014059639368E-005 + 180.66000000000000 -8.2798346266203254E-006 + 180.72000000000000 -2.9043646552375494E-006 + 180.78000000000000 2.3499792848957528E-006 + 180.84000000000000 7.4695528266791851E-006 + 180.90000000000001 1.2440502496362889E-005 + 180.95999999999998 1.7248798967684555E-005 + 181.01999999999998 2.1880275888205409E-005 + 181.07999999999998 2.6320652732221367E-005 + 181.13999999999999 3.0555590011138052E-005 + 181.19999999999999 3.4570712058483333E-005 + 181.25999999999999 3.8351662067630021E-005 + 181.31999999999999 4.1884128393243805E-005 + 181.38000000000000 4.5153891502415868E-005 + 181.44000000000000 4.8146880029358084E-005 + 181.50000000000000 5.0849198240655507E-005 + 181.56000000000000 5.3247177069131405E-005 + 181.62000000000000 5.5327419325942256E-005 + 181.67999999999998 5.7076832690915928E-005 + 181.73999999999998 5.8482694502106628E-005 + 181.79999999999998 5.9532666107210038E-005 + 181.85999999999999 6.0214858973014872E-005 + 181.91999999999999 6.0517851750234799E-005 + 181.97999999999999 6.0430758201885698E-005 + 182.03999999999999 5.9943269145169292E-005 + 182.09999999999999 5.9045675218624497E-005 + 182.16000000000000 5.7728927388571800E-005 + 182.22000000000000 5.5984665531102381E-005 + 182.28000000000000 5.3805267537234876E-005 + 182.34000000000000 5.1183896552077778E-005 + 182.39999999999998 4.8114524396339185E-005 + 182.45999999999998 4.4591994494859754E-005 + 182.51999999999998 4.0612017605639233E-005 + 182.57999999999998 3.6171240728638205E-005 + 182.63999999999999 3.1267256993504640E-005 + 182.69999999999999 2.5898638232473722E-005 + 182.75999999999999 2.0064953405064162E-005 + 182.81999999999999 1.3766790724616863E-005 + 182.88000000000000 7.0057663951888427E-006 + 182.94000000000000 -2.1543230863041229E-007 + 183.00000000000000 -7.8930826255254813E-006 + 183.06000000000000 -1.6022379758445692E-005 + 183.12000000000000 -2.4597429058225132E-005 + 183.17999999999998 -3.3611259007646413E-005 + 183.23999999999998 -4.3055806277221908E-005 + 183.29999999999998 -5.2921938314682223E-005 + 183.35999999999999 -6.3199378785189659E-005 + 183.41999999999999 -7.3876790615264821E-005 + 183.47999999999999 -8.4941731451369321E-005 + 183.53999999999999 -9.6380667185072999E-005 + 183.59999999999999 -1.0817897211921971E-004 + 183.66000000000000 -1.2032098076867594E-004 + 183.72000000000000 -1.3278993700457833E-004 + 183.78000000000000 -1.4556808915352086E-004 + 183.84000000000000 -1.5863668835760085E-004 + 183.89999999999998 -1.7197599070153767E-004 + 183.95999999999998 -1.8556532710239078E-004 + 184.01999999999998 -1.9938314773219242E-004 + 184.07999999999998 -2.1340701266006070E-004 + 184.13999999999999 -2.2761372937713775E-004 + 184.19999999999999 -2.4197934636360853E-004 + 184.25999999999999 -2.5647917156300718E-004 + 184.31999999999999 -2.7108787796864477E-004 + 184.38000000000000 -2.8577958366536279E-004 + 184.44000000000000 -3.0052779131854143E-004 + 184.50000000000000 -3.1530553426282988E-004 + 184.56000000000000 -3.3008541562587593E-004 + 184.62000000000000 -3.4483961322213621E-004 + 184.67999999999998 -3.5954002949679231E-004 + 184.73999999999998 -3.7415821109239186E-004 + 184.79999999999998 -3.8866549432383101E-004 + 184.85999999999999 -4.0303308093089064E-004 + 184.91999999999999 -4.1723205029632799E-004 + 184.97999999999999 -4.3123342051901853E-004 + 185.03999999999999 -4.4500825092074565E-004 + 185.09999999999999 -4.5852762609942954E-004 + 185.16000000000000 -4.7176284805546968E-004 + 185.22000000000000 -4.8468541920553638E-004 + 185.28000000000000 -4.9726714302110583E-004 + 185.34000000000000 -5.0948019762903128E-004 + 185.39999999999998 -5.2129712747854789E-004 + 185.45999999999998 -5.3269099217507511E-004 + 185.51999999999998 -5.4363549318410835E-004 + 185.57999999999998 -5.5410488320692375E-004 + 185.63999999999999 -5.6407408434712501E-004 + 185.69999999999999 -5.7351884486604352E-004 + 185.75999999999999 -5.8241563179507532E-004 + 185.81999999999999 -5.9074181955083040E-004 + 185.88000000000000 -5.9847570676211498E-004 + 185.94000000000000 -6.0559649512074390E-004 + 186.00000000000000 -6.1208441973009632E-004 + 186.06000000000000 -6.1792079492986184E-004 + 186.12000000000000 -6.2308795122087424E-004 + 186.17999999999998 -6.2756938654354101E-004 + 186.23999999999998 -6.3134984130087317E-004 + 186.29999999999998 -6.3441517066690448E-004 + 186.35999999999999 -6.3675250528967824E-004 + 186.41999999999999 -6.3835033365883709E-004 + 186.47999999999999 -6.3919833972754406E-004 + 186.53999999999999 -6.3928764402936379E-004 + 186.59999999999999 -6.3861066981960198E-004 + 186.66000000000000 -6.3716121369011196E-004 + 186.72000000000000 -6.3493450718345667E-004 + 186.78000000000000 -6.3192715367787794E-004 + 186.84000000000000 -6.2813719999622322E-004 + 186.89999999999998 -6.2356413319270411E-004 + 186.95999999999998 -6.1820884145811822E-004 + 187.01999999999998 -6.1207362018962034E-004 + 187.07999999999998 -6.0516218521912044E-004 + 187.13999999999999 -5.9747968234146593E-004 + 187.19999999999999 -5.8903268724160983E-004 + 187.25999999999999 -5.7982911451611829E-004 + 187.31999999999999 -5.6987820068172266E-004 + 187.38000000000000 -5.5919065704310156E-004 + 187.44000000000000 -5.4777840880304096E-004 + 187.50000000000000 -5.3565467657848789E-004 + 187.56000000000000 -5.2283402900621205E-004 + 187.62000000000000 -5.0933211160637880E-004 + 187.67999999999998 -4.9516588063371113E-004 + 187.73999999999998 -4.8035331029046144E-004 + 187.79999999999998 -4.6491360292342127E-004 + 187.85999999999999 -4.4886691972299326E-004 + 187.91999999999999 -4.3223439945691268E-004 + 187.97999999999999 -4.1503816560436394E-004 + 188.03999999999999 -3.9730120320818224E-004 + 188.09999999999999 -3.7904736029695810E-004 + 188.16000000000000 -3.6030125095742936E-004 + 188.22000000000000 -3.4108822756641571E-004 + 188.28000000000000 -3.2143420866214724E-004 + 188.34000000000000 -3.0136584440135542E-004 + 188.39999999999998 -2.8091020033042216E-004 + 188.45999999999998 -2.6009493862405917E-004 + 188.51999999999998 -2.3894812585294889E-004 + 188.57999999999998 -2.1749809611063098E-004 + 188.63999999999999 -1.9577354163555812E-004 + 188.69999999999999 -1.7380339653326018E-004 + 188.75999999999999 -1.5161670571977519E-004 + 188.81999999999999 -1.2924262479784888E-004 + 188.88000000000000 -1.0671030142879223E-004 + 188.94000000000000 -8.4048872524332833E-005 + 189.00000000000000 -6.1287291248343772E-005 + 189.06000000000000 -3.8454392907061888E-005 + 189.12000000000000 -1.5578698569888905E-005 + 189.17999999999998 7.3115841371646013E-006 + 189.23999999999998 3.0188597820664984E-005 + 189.29999999999998 5.3024966185251264E-005 + 189.35999999999999 7.5793821579240591E-005 + 189.41999999999999 9.8468816241787695E-005 + 189.47999999999999 1.2102423131611788E-004 + 189.53999999999999 1.4343496535029147E-004 + 189.59999999999999 1.6567662664630111E-004 + 189.66000000000000 1.8772558107552230E-004 + 189.72000000000000 2.0955890966443583E-004 + 189.78000000000000 2.3115454752562810E-004 + 189.84000000000000 2.5249126384093649E-004 + 189.89999999999998 2.7354870360951373E-004 + 189.95999999999998 2.9430742296027607E-004 + 190.01999999999998 3.1474893796983245E-004 + 190.07999999999998 3.3485569751943252E-004 + 190.13999999999999 3.5461117601523067E-004 + 190.19999999999999 3.7399985835948795E-004 + 190.25999999999999 3.9300734626444904E-004 + 190.31999999999999 4.1162014696153920E-004 + 190.38000000000000 4.2982593141255499E-004 + 190.44000000000000 4.4761345933732900E-004 + 190.50000000000000 4.6497259070288425E-004 + 190.56000000000000 4.8189422300613956E-004 + 190.62000000000000 4.9837030422238636E-004 + 190.67999999999998 5.1439387455893529E-004 + 190.73999999999998 5.2995907227253603E-004 + 190.79999999999998 5.4506101868938121E-004 + 190.85999999999999 5.5969582763165573E-004 + 190.91999999999999 5.7386067662145302E-004 + 190.97999999999999 5.8755372085204818E-004 + 191.03999999999999 6.0077394530602983E-004 + 191.09999999999999 6.1352136589055517E-004 + 191.16000000000000 6.2579689340851250E-004 + 191.22000000000000 6.3760218704523252E-004 + 191.28000000000000 6.4893988148765757E-004 + 191.34000000000000 6.5981329733594827E-004 + 191.39999999999998 6.7022655302978560E-004 + 191.45999999999998 6.8018464830558534E-004 + 191.51999999999998 6.8969300276260710E-004 + 191.57999999999998 6.9875793148434532E-004 + 191.63999999999999 7.0738627064437199E-004 + 191.69999999999999 7.1558541126330903E-004 + 191.75999999999999 7.2336329129447084E-004 + 191.81999999999999 7.3072840365052949E-004 + 191.88000000000000 7.3768957722003688E-004 + 191.94000000000000 7.4425614496264030E-004 + 192.00000000000000 7.5043764417456749E-004 + 192.06000000000000 7.5624395823209076E-004 + 192.12000000000000 7.6168521374241896E-004 + 192.17999999999998 7.6677176914924979E-004 + 192.23999999999998 7.7151407200971910E-004 + 192.29999999999998 7.7592263267641458E-004 + 192.35999999999999 7.8000817126525101E-004 + 192.41999999999999 7.8378123937790822E-004 + 192.47999999999999 7.8725252341528692E-004 + 192.53999999999999 7.9043251815232160E-004 + 192.59999999999999 7.9333161612940356E-004 + 192.66000000000000 7.9596014687712024E-004 + 192.72000000000000 7.9832821519067816E-004 + 192.78000000000000 8.0044578268504644E-004 + 192.84000000000000 8.0232249236107992E-004 + 192.89999999999998 8.0396770098947105E-004 + 192.95999999999998 8.0539060834074281E-004 + 193.01999999999998 8.0659995797387630E-004 + 193.07999999999998 8.0760426361336298E-004 + 193.13999999999999 8.0841153781121124E-004 + 193.19999999999999 8.0902953123451835E-004 + 193.25999999999999 8.0946553437887296E-004 + 193.31999999999999 8.0972641574565132E-004 + 193.38000000000000 8.0981863557563055E-004 + 193.44000000000000 8.0974810138159583E-004 + 193.50000000000000 8.0952040762139355E-004 + 193.56000000000000 8.0914061071926256E-004 + 193.62000000000000 8.0861328243848180E-004 + 193.67999999999998 8.0794257382481121E-004 + 193.73999999999998 8.0713219769911295E-004 + 193.79999999999998 8.0618521334030902E-004 + 193.85999999999999 8.0510436322905085E-004 + 193.91999999999999 8.0389186357124353E-004 + 193.97999999999999 8.0254947746791899E-004 + 194.03999999999999 8.0107854892479526E-004 + 194.09999999999999 7.9947999425675827E-004 + 194.16000000000000 7.9775421964576937E-004 + 194.22000000000000 7.9590126420407367E-004 + 194.28000000000000 7.9392082425287379E-004 + 194.34000000000000 7.9181223082388022E-004 + 194.39999999999998 7.8957440559803283E-004 + 194.45999999999998 7.8720602991799141E-004 + 194.51999999999998 7.8470541363172600E-004 + 194.57999999999998 7.8207071060997500E-004 + 194.63999999999999 7.7929977128100294E-004 + 194.69999999999999 7.7639027709540680E-004 + 194.75999999999999 7.7333970527513479E-004 + 194.81999999999999 7.7014536590072592E-004 + 194.88000000000000 7.6680448480252934E-004 + 194.94000000000000 7.6331414024523520E-004 + 195.00000000000000 7.5967135030671794E-004 + 195.06000000000000 7.5587318792390648E-004 + 195.12000000000000 7.5191654692289124E-004 + 195.17999999999998 7.4779837216796424E-004 + 195.23999999999998 7.4351560036748656E-004 + 195.29999999999998 7.3906529610034489E-004 + 195.35999999999999 7.3444459973907481E-004 + 195.41999999999999 7.2965064082789117E-004 + 195.47999999999999 7.2468084494240056E-004 + 195.53999999999999 7.1953272688732826E-004 + 195.59999999999999 7.1420401526442608E-004 + 195.66000000000000 7.0869262968547805E-004 + 195.72000000000000 7.0299682798300876E-004 + 195.78000000000000 6.9711505297752688E-004 + 195.84000000000000 6.9104617273349413E-004 + 195.89999999999998 6.8478938425821617E-004 + 195.95999999999998 6.7834415632165006E-004 + 196.01999999999998 6.7171041924314124E-004 + 196.07999999999998 6.6488847958853727E-004 + 196.13999999999999 6.5787904772038569E-004 + 196.19999999999999 6.5068334694004927E-004 + 196.25999999999999 6.4330293134964563E-004 + 196.31999999999999 6.3573991779948308E-004 + 196.38000000000000 6.2799684727368396E-004 + 196.44000000000000 6.2007672487495596E-004 + 196.50000000000000 6.1198295606957047E-004 + 196.56000000000000 6.0371957313857627E-004 + 196.62000000000000 5.9529086787886421E-004 + 196.67999999999998 5.8670186727936250E-004 + 196.73999999999998 5.7795788607786563E-004 + 196.79999999999998 5.6906484995461622E-004 + 196.85999999999999 5.6002906433010881E-004 + 196.91999999999999 5.5085741081826707E-004 + 196.97999999999999 5.4155716867886289E-004 + 197.03999999999999 5.3213614904109891E-004 + 197.09999999999999 5.2260254650825049E-004 + 197.16000000000000 5.1296514822327013E-004 + 197.22000000000000 5.0323312776812080E-004 + 197.28000000000000 4.9341604510598480E-004 + 197.34000000000000 4.8352390123264019E-004 + 197.39999999999998 4.7356714760302425E-004 + 197.45999999999998 4.6355656833414364E-004 + 197.51999999999998 4.5350332947567435E-004 + 197.57999999999998 4.4341887555011885E-004 + 197.63999999999999 4.3331498617966697E-004 + 197.69999999999999 4.2320371237191372E-004 + 197.75999999999999 4.1309734448091885E-004 + 197.81999999999999 4.0300843891581694E-004 + 197.88000000000000 3.9294966937493837E-004 + 197.94000000000000 3.8293391730104872E-004 + 198.00000000000000 3.7297414248651801E-004 + 198.06000000000000 3.6308345186156839E-004 + 198.12000000000000 3.5327490178331002E-004 + 198.17999999999998 3.4356172674932303E-004 + 198.23999999999998 3.3395708542376492E-004 + 198.29999999999998 3.2447406477390575E-004 + 198.35999999999999 3.1512571744198812E-004 + 198.41999999999999 3.0592498315240222E-004 + 198.47999999999999 2.9688465329935675E-004 + 198.53999999999999 2.8801739152356769E-004 + 198.59999999999999 2.7933559871713069E-004 + 198.66000000000000 2.7085147381226195E-004 + 198.72000000000000 2.6257695551763440E-004 + 198.78000000000000 2.5452361907573299E-004 + 198.84000000000000 2.4670279454062677E-004 + 198.89999999999998 2.3912536211353618E-004 + 198.95999999999998 2.3180186644995620E-004 + 199.01999999999998 2.2474237368784878E-004 + 199.07999999999998 2.1795654816593476E-004 + 199.13999999999999 2.1145354935870009E-004 + 199.19999999999999 2.0524202561003572E-004 + 199.25999999999999 1.9933006701256138E-004 + 199.31999999999999 1.9372525544111241E-004 + 199.38000000000000 1.8843453730194192E-004 + 199.44000000000000 1.8346428257117001E-004 + 199.50000000000000 1.7882026651096100E-004 + 199.56000000000000 1.7450756773629544E-004 + 199.62000000000000 1.7053063320965619E-004 + 199.67999999999998 1.6689324616162685E-004 + 199.73999999999998 1.6359848624877829E-004 + 199.79999999999998 1.6064875792634790E-004 + 199.85999999999999 1.5804574240031128E-004 + 199.91999999999999 1.5579043280440988E-004 + 199.97999999999999 1.5388309770005294E-004 + 200.03999999999999 1.5232329092848668E-004 + 200.09999999999999 1.5110987555862898E-004 + 200.16000000000000 1.5024096956517025E-004 + 200.22000000000000 1.4971401576215339E-004 + 200.28000000000000 1.4952572467378687E-004 + 200.34000000000000 1.4967213569628003E-004 + 200.39999999999998 1.5014860888256404E-004 + 200.45999999999998 1.5094983828099325E-004 + 200.51999999999998 1.5206987292558363E-004 + 200.57999999999998 1.5350209814028422E-004 + 200.63999999999999 1.5523926643812229E-004 + 200.69999999999999 1.5727357349087554E-004 + 200.75999999999999 1.5959659761611894E-004 + 200.81999999999999 1.6219935799486414E-004 + 200.88000000000000 1.6507233864170473E-004 + 200.94000000000000 1.6820548293315619E-004 + 201.00000000000000 1.7158828273270321E-004 + 201.06000000000000 1.7520970734755738E-004 + 201.12000000000000 1.7905831605642748E-004 + 201.17999999999998 1.8312224441157553E-004 + 201.23999999999998 1.8738921826872318E-004 + 201.29999999999998 1.9184661128233998E-004 + 201.35999999999999 1.9648144284854075E-004 + 201.41999999999999 2.0128048057737555E-004 + 201.47999999999999 2.0623016637172511E-004 + 201.53999999999999 2.1131672297097906E-004 + 201.59999999999999 2.1652615148882572E-004 + 201.66000000000000 2.2184429427553746E-004 + 201.72000000000000 2.2725679617733509E-004 + 201.78000000000000 2.3274922689704367E-004 + 201.84000000000000 2.3830706329555819E-004 + 201.89999999999998 2.4391570405352318E-004 + 201.95999999999998 2.4956055388119109E-004 + 202.01999999999998 2.5522701372243878E-004 + 202.07999999999998 2.6090050544163229E-004 + 202.13999999999999 2.6656656878557868E-004 + 202.19999999999999 2.7221077384890357E-004 + 202.25999999999999 2.7781885829346998E-004 + 202.31999999999999 2.8337668647544019E-004 + 202.38000000000000 2.8887035961105018E-004 + 202.44000000000000 2.9428610625393381E-004 + 202.50000000000000 2.9961042968609358E-004 + 202.56000000000000 3.0483006664757143E-004 + 202.62000000000000 3.0993204762007006E-004 + 202.67999999999998 3.1490366046458011E-004 + 202.73999999999998 3.1973257520008887E-004 + 202.79999999999998 3.2440676510390694E-004 + 202.85999999999999 3.2891449999901341E-004 + 202.91999999999999 3.3324451026094711E-004 + 202.97999999999999 3.3738586733123054E-004 + 203.03999999999999 3.4132808555749388E-004 + 203.09999999999999 3.4506106947332967E-004 + 203.16000000000000 3.4857518524752311E-004 + 203.22000000000000 3.5186124227037105E-004 + 203.28000000000000 3.5491047687384039E-004 + 203.34000000000000 3.5771468107960366E-004 + 203.39999999999998 3.6026609837315813E-004 + 203.45999999999998 3.6255739675921750E-004 + 203.51999999999998 3.6458186638274826E-004 + 203.57999999999998 3.6633323866752215E-004 + 203.63999999999999 3.6780583005352295E-004 + 203.69999999999999 3.6899442992244837E-004 + 203.75999999999999 3.6989434662415278E-004 + 203.81999999999999 3.7050150037897856E-004 + 203.88000000000000 3.7081229306683923E-004 + 203.94000000000000 3.7082371417149798E-004 + 204.00000000000000 3.7053327557568650E-004 + 204.06000000000000 3.6993906022099779E-004 + 204.12000000000000 3.6903969811758012E-004 + 204.17999999999998 3.6783433816646921E-004 + 204.23999999999998 3.6632268803904033E-004 + 204.29999999999998 3.6450498679978000E-004 + 204.35999999999999 3.6238201723167964E-004 + 204.41999999999999 3.5995508124373371E-004 + 204.47999999999999 3.5722598345256821E-004 + 204.53999999999999 3.5419705415406822E-004 + 204.59999999999999 3.5087111268210030E-004 + 204.66000000000000 3.4725149513898187E-004 + 204.72000000000000 3.4334198107239530E-004 + 204.78000000000000 3.3914685171859633E-004 + 204.84000000000000 3.3467081200732820E-004 + 204.89999999999998 3.2991904520915171E-004 + 204.95999999999998 3.2489717958534290E-004 + 205.01999999999998 3.1961123583911503E-004 + 205.07999999999998 3.1406768799103915E-004 + 205.13999999999999 3.0827338288463868E-004 + 205.19999999999999 3.0223551967938360E-004 + 205.25999999999999 2.9596172899844621E-004 + 205.31999999999999 2.8945994075760061E-004 + 205.38000000000000 2.8273844271763858E-004 + 205.44000000000000 2.7580579634662591E-004 + 205.50000000000000 2.6867088343358680E-004 + 205.56000000000000 2.6134283864870362E-004 + 205.62000000000000 2.5383106121563140E-004 + 205.67999999999998 2.4614514279797258E-004 + 205.73999999999998 2.3829487388996804E-004 + 205.79999999999998 2.3029022906289920E-004 + 205.85999999999999 2.2214134738279197E-004 + 205.91999999999999 2.1385849916266171E-004 + 205.97999999999999 2.0545202607869211E-004 + 206.03999999999999 1.9693242015197333E-004 + 206.09999999999999 1.8831020549471962E-004 + 206.16000000000000 1.7959595200393454E-004 + 206.22000000000000 1.7080026992253100E-004 + 206.28000000000000 1.6193376816354239E-004 + 206.34000000000000 1.5300706830616485E-004 + 206.39999999999998 1.4403073436927870E-004 + 206.45999999999998 1.3501528081110112E-004 + 206.51999999999998 1.2597117959851038E-004 + 206.57999999999998 1.1690878137809684E-004 + 206.63999999999999 1.0783831615946645E-004 + 206.69999999999999 9.8769913784664258E-005 + 206.75999999999999 8.9713495602109725E-005 + 206.81999999999999 8.0678844903144141E-005 + 206.88000000000000 7.1675521692243245E-005 + 206.94000000000000 6.2712864782050703E-005 + 207.00000000000000 5.3799989814710329E-005 + 207.06000000000000 4.4945745337629164E-005 + 207.12000000000000 3.6158717856212829E-005 + 207.17999999999998 2.7447199156451459E-005 + 207.23999999999998 1.8819187285854167E-005 + 207.29999999999998 1.0282382965842040E-005 + 207.35999999999999 1.8441486678252476E-006 + 207.41999999999999 -6.4884773058283380E-006 + 207.47999999999999 -1.4708778751905859E-005 + 207.53999999999999 -2.2810401194458941E-005 + 207.59999999999999 -3.0787318197740125E-005 + 207.66000000000000 -3.8633879538628541E-005 + 207.72000000000000 -4.6344780333436352E-005 + 207.78000000000000 -5.3915091921974930E-005 + 207.84000000000000 -6.1340250908367331E-005 + 207.89999999999998 -6.8616074879743704E-005 + 207.95999999999998 -7.5738751511343646E-005 + 208.01999999999998 -8.2704859582427535E-005 + 208.07999999999998 -8.9511340371183404E-005 + 208.13999999999999 -9.6155527068664812E-005 + 208.19999999999999 -1.0263512694948584E-004 + 208.25999999999999 -1.0894820342612516E-004 + 208.31999999999999 -1.1509320557382858E-004 + 208.38000000000000 -1.2106892541743741E-004 + 208.44000000000000 -1.2687450432286219E-004 + 208.50000000000000 -1.3250941971417059E-004 + 208.56000000000000 -1.3797346815101017E-004 + 208.62000000000000 -1.4326676119067984E-004 + 208.68000000000001 -1.4838972362392556E-004 + 208.74000000000001 -1.5334304506954037E-004 + 208.80000000000001 -1.5812771421783688E-004 + 208.86000000000001 -1.6274496035398661E-004 + 208.92000000000002 -1.6719626616230302E-004 + 208.98000000000002 -1.7148336010879101E-004 + 209.03999999999996 -1.7560818696278402E-004 + 209.09999999999997 -1.7957293489397698E-004 + 209.15999999999997 -1.8337993471573798E-004 + 209.21999999999997 -1.8703176108528623E-004 + 209.27999999999997 -1.9053115621320228E-004 + 209.33999999999997 -1.9388100676333720E-004 + 209.39999999999998 -1.9708436808717330E-004 + 209.45999999999998 -2.0014443402020086E-004 + 209.51999999999998 -2.0306451394691918E-004 + 209.57999999999998 -2.0584803853841867E-004 + 209.63999999999999 -2.0849852122504654E-004 + 209.69999999999999 -2.1101955645629107E-004 + 209.75999999999999 -2.1341479622520742E-004 + 209.81999999999999 -2.1568795680441309E-004 + 209.88000000000000 -2.1784277240852635E-004 + 209.94000000000000 -2.1988301847338822E-004 + 210.00000000000000 -2.2181243601403607E-004 + 210.06000000000000 -2.2363479605888166E-004 + 210.12000000000000 -2.2535382289626070E-004 + 210.18000000000001 -2.2697319620650872E-004 + 210.24000000000001 -2.2849658665786190E-004 + 210.30000000000001 -2.2992756981132185E-004 + 210.36000000000001 -2.3126968077685089E-004 + 210.42000000000002 -2.3252635338441054E-004 + 210.48000000000002 -2.3370092852714982E-004 + 210.53999999999996 -2.3479664931690342E-004 + 210.59999999999997 -2.3581668229287871E-004 + 210.65999999999997 -2.3676402733753885E-004 + 210.71999999999997 -2.3764158157908182E-004 + 210.77999999999997 -2.3845215568169404E-004 + 210.83999999999997 -2.3919839483338700E-004 + 210.89999999999998 -2.3988283257765552E-004 + 210.95999999999998 -2.4050783362594968E-004 + 211.01999999999998 -2.4107567276517939E-004 + 211.07999999999998 -2.4158842849475573E-004 + 211.13999999999999 -2.4204811770905108E-004 + 211.19999999999999 -2.4245657025179337E-004 + 211.25999999999999 -2.4281547307151996E-004 + 211.31999999999999 -2.4312640043739773E-004 + 211.38000000000000 -2.4339080285499398E-004 + 211.44000000000000 -2.4360998154602286E-004 + 211.50000000000000 -2.4378505014706391E-004 + 211.56000000000000 -2.4391701577319608E-004 + 211.62000000000000 -2.4400679382021112E-004 + 211.68000000000001 -2.4405509973822741E-004 + 211.74000000000001 -2.4406251573258305E-004 + 211.80000000000001 -2.4402949533639331E-004 + 211.86000000000001 -2.4395636415269910E-004 + 211.92000000000002 -2.4384328896819057E-004 + 211.98000000000002 -2.4369031754638282E-004 + 212.03999999999996 -2.4349737860912530E-004 + 212.09999999999997 -2.4326427192650544E-004 + 212.15999999999997 -2.4299070281712468E-004 + 212.21999999999997 -2.4267626937082791E-004 + 212.27999999999997 -2.4232051699633672E-004 + 212.33999999999997 -2.4192286728283720E-004 + 212.39999999999998 -2.4148271275672539E-004 + 212.45999999999998 -2.4099942494734770E-004 + 212.51999999999998 -2.4047226393999829E-004 + 212.57999999999998 -2.3990048373901963E-004 + 212.63999999999999 -2.3928336693828295E-004 + 212.69999999999999 -2.3862008123863240E-004 + 212.75999999999999 -2.3790986865863969E-004 + 212.81999999999999 -2.3715191479448407E-004 + 212.88000000000000 -2.3634542245668910E-004 + 212.94000000000000 -2.3548955443642382E-004 + 213.00000000000000 -2.3458349928733154E-004 + 213.06000000000000 -2.3362644928573488E-004 + 213.12000000000000 -2.3261759658249479E-004 + 213.18000000000001 -2.3155615114443901E-004 + 213.24000000000001 -2.3044133860195348E-004 + 213.30000000000001 -2.2927241304548292E-004 + 213.36000000000001 -2.2804863933958844E-004 + 213.42000000000002 -2.2676934305299794E-004 + 213.48000000000002 -2.2543393322561883E-004 + 213.53999999999996 -2.2404183503836668E-004 + 213.59999999999997 -2.2259257378052860E-004 + 213.65999999999997 -2.2108574894782402E-004 + 213.71999999999997 -2.1952105029086530E-004 + 213.77999999999997 -2.1789826607432865E-004 + 213.83999999999997 -2.1621729280712064E-004 + 213.89999999999998 -2.1447813530181911E-004 + 213.95999999999998 -2.1268089531850827E-004 + 214.01999999999998 -2.1082579154214172E-004 + 214.07999999999998 -2.0891315729840374E-004 + 214.13999999999999 -2.0694342738424818E-004 + 214.19999999999999 -2.0491715954774691E-004 + 214.25999999999999 -2.0283497156529286E-004 + 214.31999999999999 -2.0069762330728801E-004 + 214.38000000000000 -1.9850595045147880E-004 + 214.44000000000000 -1.9626088445115058E-004 + 214.50000000000000 -1.9396343375471600E-004 + 214.56000000000000 -1.9161468664236869E-004 + 214.62000000000000 -1.8921582875241582E-004 + 214.68000000000001 -1.8676813662380133E-004 + 214.74000000000001 -1.8427294381792217E-004 + 214.80000000000001 -1.8173167010527010E-004 + 214.86000000000001 -1.7914581175118010E-004 + 214.92000000000002 -1.7651692741995156E-004 + 214.98000000000002 -1.7384667494086775E-004 + 215.03999999999996 -1.7113676830993408E-004 + 215.09999999999997 -1.6838897261234770E-004 + 215.15999999999997 -1.6560514540604214E-004 + 215.21999999999997 -1.6278719443507751E-004 + 215.27999999999997 -1.5993706382504705E-004 + 215.33999999999997 -1.5705677552789752E-004 + 215.39999999999998 -1.5414839835814392E-004 + 215.45999999999998 -1.5121400890384865E-004 + 215.51999999999998 -1.4825576365655829E-004 + 215.57999999999998 -1.4527581090392920E-004 + 215.63999999999999 -1.4227633887576915E-004 + 215.69999999999999 -1.3925956363005179E-004 + 215.75999999999999 -1.3622768133245399E-004 + 215.81999999999999 -1.3318293066082537E-004 + 215.88000000000000 -1.3012751492699103E-004 + 215.94000000000000 -1.2706363970181936E-004 + 216.00000000000000 -1.2399347490724640E-004 + 216.06000000000000 -1.2091918431864209E-004 + 216.12000000000000 -1.1784288339251683E-004 + 216.18000000000001 -1.1476665051659689E-004 + 216.24000000000001 -1.1169251842362632E-004 + 216.30000000000001 -1.0862244998014935E-004 + 216.36000000000001 -1.0555836462169396E-004 + 216.42000000000002 -1.0250210210170180E-004 + 216.48000000000002 -9.9455437186491669E-005 + 216.53999999999996 -9.6420069580515695E-005 + 216.59999999999997 -9.3397632152495051E-005 + 216.65999999999997 -9.0389668682103305E-005 + 216.71999999999997 -8.7397657215534087E-005 + 216.77999999999997 -8.4422998608652894E-005 + 216.83999999999997 -8.1467008773679629E-005 + 216.89999999999998 -7.8530925657185161E-005 + 216.95999999999998 -7.5615913624105474E-005 + 217.01999999999998 -7.2723043461290029E-005 + 217.07999999999998 -6.9853324082150422E-005 + 217.13999999999999 -6.7007660016208249E-005 + 217.19999999999999 -6.4186879511147734E-005 + 217.25999999999999 -6.1391716897830063E-005 + 217.31999999999999 -5.8622819819434922E-005 + 217.38000000000000 -5.5880725526135379E-005 + 217.44000000000000 -5.3165886914124212E-005 + 217.50000000000000 -5.0478656272034390E-005 + 217.56000000000000 -4.7819283304497724E-005 + 217.62000000000000 -4.5187924967578889E-005 + 217.68000000000001 -4.2584644874258083E-005 + 217.74000000000001 -4.0009414472036501E-005 + 217.80000000000001 -3.7462119402941210E-005 + 217.86000000000001 -3.4942569440554984E-005 + 217.92000000000002 -3.2450491865564679E-005 + 217.98000000000002 -2.9985553396607007E-005 + 218.03999999999996 -2.7547360320612698E-005 + 218.09999999999997 -2.5135469233668952E-005 + 218.15999999999997 -2.2749388594979686E-005 + 218.21999999999997 -2.0388587970047042E-005 + 218.27999999999997 -1.8052501368361120E-005 + 218.33999999999997 -1.5740535085342359E-005 + 218.39999999999998 -1.3452067313192369E-005 + 218.45999999999998 -1.1186455154130488E-005 + 218.51999999999998 -8.9430358044941544E-006 + 218.57999999999998 -6.7211298576106778E-006 + 218.63999999999999 -4.5200441797291329E-006 + 218.69999999999999 -2.3390741362462312E-006 + 218.75999999999999 -1.7750900308767716E-007 + 218.81999999999999 1.9653647940599503E-006 + 218.88000000000000 4.0902592355591697E-006 + 218.94000000000000 6.1978805782525531E-006 + 219.00000000000000 8.2889207054212299E-006 + 219.06000000000000 1.0364052880541034E-005 + 219.12000000000000 1.2423927185384821E-005 + 219.18000000000001 1.4469160963412297E-005 + 219.24000000000001 1.6500332710951307E-005 + 219.30000000000001 1.8517978732236806E-005 + 219.36000000000001 2.0522587348411536E-005 + 219.42000000000002 2.2514589684292591E-005 + 219.48000000000002 2.4494362010106251E-005 + 219.53999999999996 2.6462215545513443E-005 + 219.59999999999997 2.8418398557818094E-005 + 219.65999999999997 3.0363088979222770E-005 + 219.71999999999997 3.2296395377337251E-005 + 219.77999999999997 3.4218348068214255E-005 + 219.83999999999997 3.6128905633782800E-005 + 219.89999999999998 3.8027947116669130E-005 + 219.95999999999998 3.9915272280030404E-005 + 220.01999999999998 4.1790599043210468E-005 + 220.07999999999998 4.3653560740215461E-005 + 220.13999999999999 4.5503709252333067E-005 + 220.19999999999999 4.7340508397598513E-005 + 220.25999999999999 4.9163336580680458E-005 + 220.31999999999999 5.0971492281206796E-005 + 220.38000000000000 5.2764190468757843E-005 + 220.44000000000000 5.4540564196039954E-005 + 220.50000000000000 5.6299674869599939E-005 + 220.56000000000000 5.8040511335268927E-005 + 220.62000000000000 5.9761983940859547E-005 + 220.68000000000001 6.1462949148776666E-005 + 220.74000000000001 6.3142204832630051E-005 + 220.80000000000001 6.4798492277168911E-005 + 220.86000000000001 6.6430498447910170E-005 + 220.92000000000002 6.8036878747425233E-005 + 220.98000000000002 6.9616226561334979E-005 + 221.03999999999996 7.1167109442257901E-005 + 221.09999999999997 7.2688065994628036E-005 + 221.15999999999997 7.4177581917806129E-005 + 221.21999999999997 7.5634124307688967E-005 + 221.27999999999997 7.7056135725666101E-005 + 221.33999999999997 7.8442020868290540E-005 + 221.39999999999998 7.9790171895930182E-005 + 221.45999999999998 8.1098953654517214E-005 + 221.51999999999998 8.2366731097219674E-005 + 221.57999999999998 8.3591847795947777E-005 + 221.63999999999999 8.4772661424220401E-005 + 221.69999999999999 8.5907528489411890E-005 + 221.75999999999999 8.6994836749109902E-005 + 221.81999999999999 8.8032991875283161E-005 + 221.88000000000000 8.9020431302397292E-005 + 221.94000000000000 8.9955652389108923E-005 + 222.00000000000000 9.0837184851038134E-005 + 222.06000000000000 9.1663633707565935E-005 + 222.12000000000000 9.2433663110683470E-005 + 222.18000000000001 9.3146027885457702E-005 + 222.24000000000001 9.3799542790476249E-005 + 222.30000000000001 9.4393106655466836E-005 + 222.36000000000001 9.4925695055411965E-005 + 222.42000000000002 9.5396387908116320E-005 + 222.48000000000002 9.5804322724861110E-005 + 222.53999999999996 9.6148736451340410E-005 + 222.59999999999997 9.6428946868730767E-005 + 222.65999999999997 9.6644359568609471E-005 + 222.71999999999997 9.6794451966209936E-005 + 222.77999999999997 9.6878793099443192E-005 + 222.83999999999997 9.6897048743549945E-005 + 222.89999999999998 9.6848971586416645E-005 + 222.95999999999998 9.6734404846562442E-005 + 223.01999999999998 9.6553284335106900E-005 + 223.07999999999998 9.6305653580621217E-005 + 223.13999999999999 9.5991639060884421E-005 + 223.19999999999999 9.5611483071532486E-005 + 223.25999999999999 9.5165529976298064E-005 + 223.31999999999999 9.4654232689451873E-005 + 223.38000000000000 9.4078136959427865E-005 + 223.44000000000000 9.3437907359582753E-005 + 223.50000000000000 9.2734289843499635E-005 + 223.56000000000000 9.1968143938685865E-005 + 223.62000000000000 9.1140418672910466E-005 + 223.68000000000001 9.0252144839309860E-005 + 223.74000000000001 8.9304436857016989E-005 + 223.80000000000001 8.8298493548716789E-005 + 223.86000000000001 8.7235585690774553E-005 + 223.92000000000002 8.6117040524791844E-005 + 223.98000000000002 8.4944248961420197E-005 + 224.03999999999996 8.3718653562239986E-005 + 224.09999999999997 8.2441739102174610E-005 + 224.15999999999997 8.1115035686989671E-005 + 224.21999999999997 7.9740106974007349E-005 + 224.27999999999997 7.8318544327443624E-005 + 224.33999999999997 7.6851966151906281E-005 + 224.39999999999998 7.5342005293299718E-005 + 224.45999999999998 7.3790313624191839E-005 + 224.51999999999998 7.2198543014276924E-005 + 224.57999999999998 7.0568358895604905E-005 + 224.63999999999999 6.8901432721113997E-005 + 224.69999999999999 6.7199422776637380E-005 + 224.75999999999999 6.5463989658769031E-005 + 224.81999999999999 6.3696786333194001E-005 + 224.88000000000000 6.1899457420451043E-005 + 224.94000000000000 6.0073634304331050E-005 + 225.00000000000000 5.8220935251642266E-005 + 225.06000000000000 5.6342960730644511E-005 + 225.12000000000000 5.4441295378625689E-005 + 225.18000000000001 5.2517488176246245E-005 + 225.24000000000001 5.0573080999647323E-005 + 225.30000000000001 4.8609572189944875E-005 + 225.36000000000001 4.6628431914018217E-005 + 225.42000000000002 4.4631092153822537E-005 + 225.48000000000002 4.2618946313223743E-005 + 225.53999999999996 4.0593336523226287E-005 + 225.59999999999997 3.8555558046949578E-005 + 225.65999999999997 3.6506854912346379E-005 + 225.71999999999997 3.4448415184750986E-005 + 225.77999999999997 3.2381369780216349E-005 + 225.83999999999997 3.0306802391683679E-005 + 225.89999999999998 2.8225738036311903E-005 + 225.95999999999998 2.6139150715798513E-005 + 226.01999999999998 2.4047974690624275E-005 + 226.07999999999998 2.1953103946594914E-005 + 226.13999999999999 1.9855401703543851E-005 + 226.19999999999999 1.7755705614541259E-005 + 226.25999999999999 1.5654834596783715E-005 + 226.31999999999999 1.3553599576357375E-005 + 226.38000000000000 1.1452805137943764E-005 + 226.44000000000000 9.3532571654972408E-006 + 226.50000000000000 7.2557667446369287E-006 + 226.56000000000000 5.1611528042136540E-006 + 226.62000000000000 3.0702415013845923E-006 + 226.68000000000001 9.8386742002236675E-007 + 226.74000000000001 -1.0971268853870895E-006 + 226.80000000000001 -3.1718934969418132E-006 + 226.86000000000001 -5.2395828249841957E-006 + 226.92000000000002 -7.2993426308956878E-006 + 226.98000000000002 -9.3503259502229251E-006 + 227.03999999999996 -1.1391684149495912E-005 + 227.09999999999997 -1.3422573650665748E-005 + 227.15999999999997 -1.5442153305880559E-005 + 227.21999999999997 -1.7449577295597148E-005 + 227.27999999999997 -1.9443999101606958E-005 + 227.33999999999997 -2.1424557270779164E-005 + 227.39999999999998 -2.3390381576346263E-005 + 227.45999999999998 -2.5340574016666395E-005 + 227.51999999999998 -2.7274211206144974E-005 + 227.57999999999998 -2.9190332082233907E-005 + 227.63999999999999 -3.1087939103385092E-005 + 227.69999999999999 -3.2965987864992648E-005 + 227.75999999999999 -3.4823385542733144E-005 + 227.81999999999999 -3.6658988242548829E-005 + 227.88000000000000 -3.8471607359702528E-005 + 227.94000000000000 -4.0259996255667340E-005 + 228.00000000000000 -4.2022863659797005E-005 + 228.06000000000000 -4.3758882940018208E-005 + 228.12000000000000 -4.5466684106162481E-005 + 228.18000000000001 -4.7144861536716399E-005 + 228.24000000000001 -4.8791983168775546E-005 + 228.30000000000001 -5.0406598843467678E-005 + 228.36000000000001 -5.1987232819480358E-005 + 228.42000000000002 -5.3532406112249483E-005 + 228.48000000000002 -5.5040632385848990E-005 + 228.53999999999996 -5.6510422305355127E-005 + 228.59999999999997 -5.7940286890044454E-005 + 228.65999999999997 -5.9328738084968535E-005 + 228.71999999999997 -6.0674297248756637E-005 + 228.77999999999997 -6.1975490945526449E-005 + 228.83999999999997 -6.3230859339230420E-005 + 228.89999999999998 -6.4438947884844721E-005 + 228.95999999999998 -6.5598324607196311E-005 + 229.01999999999998 -6.6707558628407364E-005 + 229.07999999999998 -6.7765240184913922E-005 + 229.13999999999999 -6.8769982348367830E-005 + 229.19999999999999 -6.9720420392845728E-005 + 229.25999999999999 -7.0615207687965283E-005 + 229.31999999999999 -7.1453024783008662E-005 + 229.38000000000000 -7.2232591877714994E-005 + 229.44000000000000 -7.2952654974470563E-005 + 229.50000000000000 -7.3612006751310285E-005 + 229.56000000000000 -7.4209477757239878E-005 + 229.62000000000000 -7.4743966898925670E-005 + 229.68000000000001 -7.5214417512697553E-005 + 229.74000000000001 -7.5619846977663618E-005 + 229.80000000000001 -7.5959343510302880E-005 + 229.86000000000001 -7.6232064250561019E-005 + 229.92000000000002 -7.6437259145272136E-005 + 229.97999999999996 -7.6574262054640224E-005 + 230.03999999999996 -7.6642505777359626E-005 + 230.09999999999997 -7.6641523214579112E-005 + 230.15999999999997 -7.6570950417855209E-005 + 230.21999999999997 -7.6430521068377816E-005 + 230.27999999999997 -7.6220073754312592E-005 + 230.33999999999997 -7.5939548546679941E-005 + 230.39999999999998 -7.5588990032190894E-005 + 230.45999999999998 -7.5168545980392498E-005 + 230.51999999999998 -7.4678456822440599E-005 + 230.57999999999998 -7.4119045540496680E-005 + 230.63999999999999 -7.3490728726723444E-005 + 230.69999999999999 -7.2794011296795254E-005 + 230.75999999999999 -7.2029471984767700E-005 + 230.81999999999999 -7.1197784741163073E-005 + 230.88000000000000 -7.0299682874889596E-005 + 230.94000000000000 -6.9335986984353146E-005 + 231.00000000000000 -6.8307602084801634E-005 + 231.06000000000000 -6.7215509689981043E-005 + 231.12000000000000 -6.6060780048788733E-005 + 231.18000000000001 -6.4844575881022954E-005 + 231.24000000000001 -6.3568143894658733E-005 + 231.30000000000001 -6.2232829927879970E-005 + 231.36000000000001 -6.0840081953218836E-005 + 231.42000000000002 -5.9391434416197257E-005 + 231.47999999999996 -5.7888533793275368E-005 + 231.53999999999996 -5.6333117319930454E-005 + 231.59999999999997 -5.4727012292203361E-005 + 231.65999999999997 -5.3072131503556833E-005 + 231.71999999999997 -5.1370474876091389E-005 + 231.77999999999997 -4.9624117529938199E-005 + 231.83999999999997 -4.7835194322520754E-005 + 231.89999999999998 -4.6005900329111595E-005 + 231.95999999999998 -4.4138481472156316E-005 + 232.01999999999998 -4.2235214868402623E-005 + 232.07999999999998 -4.0298417698560723E-005 + 232.13999999999999 -3.8330426986824960E-005 + 232.19999999999999 -3.6333605497736354E-005 + 232.25999999999999 -3.4310323263188274E-005 + 232.31999999999999 -3.2262965509950321E-005 + 232.38000000000000 -3.0193924993948699E-005 + 232.44000000000000 -2.8105597474397894E-005 + 232.50000000000000 -2.6000386905183288E-005 + 232.56000000000000 -2.3880700031296150E-005 + 232.62000000000000 -2.1748947494183344E-005 + 232.68000000000001 -1.9607538872645457E-005 + 232.74000000000001 -1.7458887797645828E-005 + 232.80000000000001 -1.5305405656184523E-005 + 232.86000000000001 -1.3149502421002535E-005 + 232.92000000000002 -1.0993583203214594E-005 + 232.97999999999996 -8.8400427292396107E-006 + 233.03999999999996 -6.6912666089862062E-006 + 233.09999999999997 -4.5496234174082726E-006 + 233.15999999999997 -2.4174606462181079E-006 + 233.21999999999997 -2.9710270437067125E-007 + 233.27999999999997 1.8091568302648618E-006 + 233.33999999999997 3.8990579555698182E-006 + 233.39999999999998 5.9703798144343402E-006 + 233.45999999999998 8.0209477510161434E-006 + 233.51999999999998 1.0048635193600774E-005 + 233.57999999999998 1.2051369201819091E-005 + 233.63999999999999 1.4027137166804531E-005 + 233.69999999999999 1.5973987672115925E-005 + 233.75999999999999 1.7890039088937677E-005 + 233.81999999999999 1.9773476445191668E-005 + 233.88000000000000 2.1622561964667194E-005 + 233.94000000000000 2.3435631098233265E-005 + 234.00000000000000 2.5211096349868638E-005 + 234.06000000000000 2.6947446774037513E-005 + 234.12000000000000 2.8643249621129377E-005 + 234.18000000000001 3.0297144265580237E-005 + 234.24000000000001 3.1907847694998443E-005 + 234.30000000000001 3.3474142310220139E-005 + 234.36000000000001 3.4994879223326886E-005 + 234.42000000000002 3.6468977772410771E-005 + 234.47999999999996 3.7895419007077572E-005 + 234.53999999999996 3.9273239244313462E-005 + 234.59999999999997 4.0601533641675052E-005 + 234.65999999999997 4.1879457724379277E-005 + 234.71999999999997 4.3106220097615166E-005 + 234.77999999999997 4.4281087885556625E-005 + 234.83999999999997 4.5403390803420751E-005 + 234.89999999999998 4.6472527989837647E-005 + 234.95999999999998 4.7487951235729841E-005 + 235.01999999999998 4.8449195470060781E-005 + 235.07999999999998 4.9355859547417865E-005 + 235.13999999999999 5.0207626993443549E-005 + 235.19999999999999 5.1004253591863290E-005 + 235.25999999999999 5.1745582606454271E-005 + 235.31999999999999 5.2431535318852634E-005 + 235.38000000000000 5.3062109929046688E-005 + 235.44000000000000 5.3637386747193097E-005 + 235.50000000000000 5.4157520742053079E-005 + 235.56000000000000 5.4622733643273065E-005 + 235.62000000000000 5.5033321666711672E-005 + 235.68000000000001 5.5389630026759185E-005 + 235.74000000000001 5.5692067822482549E-005 + 235.80000000000001 5.5941090681645866E-005 + 235.86000000000001 5.6137210094369495E-005 + 235.92000000000002 5.6280972690977998E-005 + 235.97999999999996 5.6372972921579288E-005 + 236.03999999999996 5.6413845407931740E-005 + 236.09999999999997 5.6404276368409322E-005 + 236.15999999999997 5.6344978325257091E-005 + 236.21999999999997 5.6236715194332375E-005 + 236.27999999999997 5.6080307103261067E-005 + 236.33999999999997 5.5876609890525688E-005 + 236.39999999999998 5.5626538724812440E-005 + 236.45999999999998 5.5331058754348313E-005 + 236.51999999999998 5.4991184868066414E-005 + 236.57999999999998 5.4607995693268464E-005 + 236.63999999999999 5.4182610542348724E-005 + 236.69999999999999 5.3716218455958305E-005 + 236.75999999999999 5.3210046285336614E-005 + 236.81999999999999 5.2665383234740964E-005 + 236.88000000000000 5.2083560363244328E-005 + 236.94000000000000 5.1465956164488077E-005 + 237.00000000000000 5.0814004217725553E-005 + 237.06000000000000 5.0129172534207150E-005 + 237.12000000000000 4.9412978940739981E-005 + 237.18000000000001 4.8666973308355981E-005 + 237.24000000000001 4.7892751136983377E-005 + 237.30000000000001 4.7091945294238868E-005 + 237.36000000000001 4.6266229133253157E-005 + 237.42000000000002 4.5417306037758011E-005 + 237.47999999999996 4.4546915977023726E-005 + 237.53999999999996 4.3656828293969840E-005 + 237.59999999999997 4.2748853462513564E-005 + 237.65999999999997 4.1824824034472993E-005 + 237.71999999999997 4.0886611376410789E-005 + 237.77999999999997 3.9936111598304997E-005 + 237.83999999999997 3.8975254446251834E-005 + 237.89999999999998 3.8005995843125138E-005 + 237.95999999999998 3.7030329019159495E-005 + 238.01999999999998 3.6050281435667680E-005 + 238.07999999999998 3.5067910115635716E-005 + 238.13999999999999 3.4085316865593771E-005 + 238.19999999999999 3.3104645818436896E-005 + 238.25999999999999 3.2128079984977437E-005 + 238.31999999999999 3.1157850055179553E-005 + 238.38000000000000 3.0196228614931707E-005 + 238.44000000000000 2.9245541924152941E-005 + 238.50000000000000 2.8308160424181766E-005 + 238.56000000000000 2.7386498502276932E-005 + 238.62000000000000 2.6483012869890307E-005 + 238.68000000000001 2.5600195317693062E-005 + 238.74000000000001 2.4740575792709390E-005 + 238.80000000000001 2.3906706796997152E-005 + 238.86000000000001 2.3101164872741552E-005 + 238.92000000000002 2.2326544969497487E-005 + 238.97999999999996 2.1585451526006977E-005 + 239.03999999999996 2.0880495271668969E-005 + 239.09999999999997 2.0214293370611072E-005 + 239.15999999999997 1.9589460642544581E-005 + 239.21999999999997 1.9008618404644080E-005 + 239.27999999999997 1.8474390216642378E-005 + 239.33999999999997 1.7989401304343258E-005 + 239.39999999999998 1.7556285955364564E-005 + 239.45999999999998 1.7177684631982967E-005 + 239.51999999999998 1.6856253019670322E-005 + 239.57999999999998 1.6594661789718231E-005 + 239.63999999999999 1.6395599842853544E-005 + 239.69999999999999 1.6261773887770923E-005 + 239.75999999999999 1.6195906527435593E-005 + 239.81999999999999 1.6200739589616598E-005 + 239.88000000000000 1.6279031099390293E-005 + 239.94000000000000 1.6433548439288636E-005 + 240.00000000000000 1.6667062008921037E-005 + 240.06000000000000 1.6982345730058298E-005 + 240.12000000000000 1.7382167596445230E-005 + 240.18000000000001 1.7869282923339919E-005 + 240.24000000000001 1.8446427846438622E-005 + 240.30000000000001 1.9116315583540065E-005 + 240.36000000000001 1.9881629395993384E-005 + 240.42000000000002 2.0745017990757801E-005 + 240.47999999999996 2.1709087288544650E-005 + 240.53999999999996 2.2776399493894213E-005 + 240.59999999999997 2.3949469386508825E-005 + 240.65999999999997 2.5230751872241043E-005 + 240.71999999999997 2.6622644217032632E-005 + 240.77999999999997 2.8127475711103925E-005 + 240.83999999999997 2.9747508101340768E-005 + 240.89999999999998 3.1484919720551446E-005 + 240.95999999999998 3.3341813530493539E-005 + 241.01999999999998 3.5320194283159724E-005 + 241.07999999999998 3.7421968030772986E-005 + 241.13999999999999 3.9648940279215434E-005 + 241.19999999999999 4.2002803772765510E-005 + 241.25999999999999 4.4485125663964062E-005 + 241.31999999999999 4.7097358593377289E-005 + 241.38000000000000 4.9840812209519364E-005 + 241.44000000000000 5.2716669287087226E-005 + 241.50000000000000 5.5725965297188278E-005 + 241.56000000000000 5.8869589519804814E-005 + 241.62000000000000 6.2148279305759512E-005 + 241.68000000000001 6.5562611763601698E-005 + 241.74000000000001 6.9113011161069994E-005 + 241.80000000000001 7.2799712550384926E-005 + 241.86000000000001 7.6622792060583339E-005 + 241.92000000000002 8.0582133020017915E-005 + 241.97999999999996 8.4677419619691902E-005 + 242.03999999999996 8.8908143891179282E-005 + 242.09999999999997 9.3273569243318077E-005 + 242.15999999999997 9.7772754149748670E-005 + 242.21999999999997 1.0240452253668455E-004 + 242.27999999999997 1.0716746084393009E-004 + 242.33999999999997 1.1205991844263411E-004 + 242.39999999999998 1.1707997653028030E-004 + 242.45999999999998 1.2222548841910865E-004 + 242.51999999999998 1.2749403338039661E-004 + 242.57999999999998 1.3288294721176567E-004 + 242.63999999999999 1.3838929307920773E-004 + 242.69999999999999 1.4400990314053933E-004 + 242.75999999999999 1.4974134636861646E-004 + 242.81999999999999 1.5557991798536005E-004 + 242.88000000000000 1.6152169820456274E-004 + 242.94000000000000 1.6756249182908379E-004 + 243.00000000000000 1.7369785588809656E-004 + 243.06000000000000 1.7992310626034532E-004 + 243.12000000000000 1.8623331925575975E-004 + 243.18000000000001 1.9262330281139402E-004 + 243.24000000000001 1.9908760802622198E-004 + 243.30000000000001 2.0562053672762496E-004 + 243.36000000000001 2.1221615030492819E-004 + 243.42000000000002 2.1886823449035641E-004 + 243.47999999999996 2.2557032719015366E-004 + 243.53999999999996 2.3231571517032896E-004 + 243.59999999999997 2.3909742833099382E-004 + 243.65999999999997 2.4590827516048845E-004 + 243.71999999999997 2.5274081668917033E-004 + 243.77999999999997 2.5958739098178989E-004 + 243.83999999999997 2.6644014966150926E-004 + 243.89999999999998 2.7329102587570359E-004 + 243.95999999999998 2.8013176517539866E-004 + 244.01999999999998 2.8695395037635482E-004 + 244.07999999999998 2.9374901886482647E-004 + 244.13999999999999 3.0050824609500636E-004 + 244.19999999999999 3.0722278092602416E-004 + 244.25999999999999 3.1388366629727326E-004 + 244.31999999999999 3.2048186997368875E-004 + 244.38000000000000 3.2700823880494782E-004 + 244.44000000000000 3.3345356161333314E-004 + 244.50000000000000 3.3980858396344215E-004 + 244.56000000000000 3.4606399556235236E-004 + 244.62000000000000 3.5221042470367136E-004 + 244.68000000000001 3.5823856370847262E-004 + 244.74000000000001 3.6413905991497031E-004 + 244.80000000000001 3.6990260409745080E-004 + 244.86000000000001 3.7551996269106152E-004 + 244.92000000000002 3.8098187658933071E-004 + 244.97999999999996 3.8627925753396969E-004 + 245.03999999999996 3.9140301364362938E-004 + 245.09999999999997 3.9634423382698823E-004 + 245.15999999999997 4.0109413624751084E-004 + 245.21999999999997 4.0564405598692233E-004 + 245.27999999999997 4.0998549528712628E-004 + 245.33999999999997 4.1411014451334788E-004 + 245.39999999999998 4.1800989021132984E-004 + 245.45999999999998 4.2167684324350622E-004 + 245.51999999999998 4.2510329580009966E-004 + 245.57999999999998 4.2828184631585906E-004 + 245.63999999999999 4.3120530246456147E-004 + 245.69999999999999 4.3386681738799879E-004 + 245.75999999999999 4.3625980566782188E-004 + 245.81999999999999 4.3837804099564135E-004 + 245.88000000000000 4.4021559664046597E-004 + 245.94000000000000 4.4176693534238228E-004 + 246.00000000000000 4.4302693074936810E-004 + 246.06000000000000 4.4399080264518763E-004 + 246.12000000000000 4.4465419703958441E-004 + 246.18000000000001 4.4501323957612095E-004 + 246.24000000000001 4.4506450513058819E-004 + 246.30000000000001 4.4480493794660627E-004 + 246.36000000000001 4.4423201514193504E-004 + 246.42000000000002 4.4334364443336275E-004 + 246.47999999999996 4.4213821924981911E-004 + 246.53999999999996 4.4061458166333277E-004 + 246.59999999999997 4.3877208742820295E-004 + 246.65999999999997 4.3661049569770427E-004 + 246.71999999999997 4.3413007957264651E-004 + 246.77999999999997 4.3133155203024998E-004 + 246.83999999999997 4.2821609676843358E-004 + 246.89999999999998 4.2478538239858069E-004 + 246.95999999999998 4.2104148406651212E-004 + 247.01999999999998 4.1698702640632739E-004 + 247.07999999999998 4.1262499536327845E-004 + 247.13999999999999 4.0795895766129650E-004 + 247.19999999999999 4.0299290330600245E-004 + 247.25999999999999 3.9773127498729321E-004 + 247.31999999999999 3.9217897958615956E-004 + 247.38000000000000 3.8634144558928531E-004 + 247.44000000000000 3.8022448429530880E-004 + 247.50000000000000 3.7383441485575129E-004 + 247.56000000000000 3.6717794797810958E-004 + 247.62000000000000 3.6026220892314026E-004 + 247.68000000000001 3.5309471202579177E-004 + 247.74000000000001 3.4568341475147498E-004 + 247.80000000000001 3.3803659935434486E-004 + 247.86000000000001 3.3016283854643504E-004 + 247.92000000000002 3.2207108730039543E-004 + 247.97999999999996 3.1377057602318060E-004 + 248.03999999999996 3.0527083188028662E-004 + 248.09999999999997 2.9658161621251290E-004 + 248.15999999999997 2.8771295089714680E-004 + 248.21999999999997 2.7867498950172938E-004 + 248.27999999999997 2.6947818817307030E-004 + 248.33999999999997 2.6013314215326996E-004 + 248.39999999999998 2.5065057959603717E-004 + 248.45999999999998 2.4104139669926819E-004 + 248.51999999999998 2.3131662126993130E-004 + 248.57999999999998 2.2148737569844694E-004 + 248.63999999999999 2.1156482219120140E-004 + 248.69999999999999 2.0156021788588340E-004 + 248.75999999999999 1.9148486713048510E-004 + 248.81999999999999 1.8135003675318279E-004 + 248.88000000000000 1.7116704302194547E-004 + 248.94000000000000 1.6094715814550994E-004 + 249.00000000000000 1.5070159926392380E-004 + 249.06000000000000 1.4044153202562393E-004 + 249.12000000000000 1.3017803375441503E-004 + 249.18000000000001 1.1992206518734842E-004 + 249.24000000000001 1.0968444680335153E-004 + 249.30000000000001 9.9475906245708975E-005 + 249.36000000000001 8.9306971975511526E-005 + 249.42000000000002 7.9188001867466117E-005 + 249.47999999999996 6.9129165945132061E-005 + 249.53999999999996 5.9140420031494300E-005 + 249.59999999999997 4.9231491966887100E-005 + 249.65999999999997 3.9411860681601692E-005 + 249.71999999999997 2.9690754496089963E-005 + 249.77999999999997 2.0077119436541784E-005 + 249.83999999999997 1.0579616381710149E-005 + 249.89999999999998 1.2066045107428867E-006 + 249.95999999999998 -8.0338644343620556E-006 + 250.01999999999998 -1.7134052069795018E-005 + 250.07999999999998 -2.6086540586127891E-005 + 250.13999999999999 -3.4884249291449659E-005 + 250.19999999999999 -4.3520415159395445E-005 + 250.25999999999999 -5.1988608030547777E-005 + 250.31999999999999 -6.0282719915823302E-005 + 250.38000000000000 -6.8396973309356519E-005 + 250.44000000000000 -7.6325911004040121E-005 + 250.50000000000000 -8.4064401770357001E-005 + 250.56000000000000 -9.1607625999496210E-005 + 250.62000000000000 -9.8951084458349773E-005 + 250.68000000000001 -1.0609060581923265E-004 + 250.74000000000001 -1.1302233729780712E-004 + 250.80000000000001 -1.1974275078034663E-004 + 250.86000000000001 -1.2624865541374316E-004 + 250.92000000000002 -1.3253719155530716E-004 + 250.97999999999996 -1.3860584223909729E-004 + 251.03999999999996 -1.4445241444611991E-004 + 251.09999999999997 -1.5007506065061249E-004 + 251.15999999999997 -1.5547228207483439E-004 + 251.21999999999997 -1.6064291889739276E-004 + 251.27999999999997 -1.6558613284295209E-004 + 251.33999999999997 -1.7030140728758173E-004 + 251.39999999999998 -1.7478854532114899E-004 + 251.45999999999998 -1.7904767126483229E-004 + 251.51999999999998 -1.8307917615270337E-004 + 251.57999999999998 -1.8688373419059663E-004 + 251.63999999999999 -1.9046229233293823E-004 + 251.69999999999999 -1.9381604773335433E-004 + 251.75999999999999 -1.9694642440640968E-004 + 251.81999999999999 -1.9985508193044559E-004 + 251.88000000000000 -2.0254392172400877E-004 + 251.94000000000000 -2.0501503533319353E-004 diff --git a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000001.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000001.BXY.semd new file mode 100644 index 00000000..6e7a57fa --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 -6.9725324661856352E-042 + -17.940000000000001 -1.8747784136691519E-041 + -17.880000000000003 -3.6323508611036401E-041 + -17.820000000000000 -6.0817321513631915E-041 + -17.760000000000002 -8.5879017464412533E-041 + -17.700000000000003 -1.1219941371097092E-040 + -17.640000000000001 -1.4004017334760973E-040 + -17.580000000000002 -1.6970081715804012E-040 + -17.520000000000000 -2.0151063739235560E-040 + -17.460000000000001 -2.2817446950849153E-040 + -17.400000000000002 -2.4600889439045130E-040 + -17.340000000000000 -2.5890085307681133E-040 + -17.280000000000001 -2.6647114378368475E-040 + -17.220000000000002 -2.6867014964212001E-040 + -17.160000000000000 -2.5270127351805851E-040 + -17.100000000000001 -2.1392655806570985E-040 + -17.040000000000003 -1.5196003019768625E-040 + -16.980000000000000 -5.7506217427392974E-041 + -16.920000000000002 4.9014920111878777E-041 + -16.859999999999999 1.6575039374706603E-040 + -16.800000000000001 3.4317336517499882E-040 + -16.740000000000002 5.6250871980998259E-040 + -16.680000000000000 8.2528212199111092E-040 + -16.620000000000001 1.1323833793202360E-039 + -16.560000000000002 1.4964713459883731E-039 + -16.500000000000000 1.9143692723534327E-039 + -16.440000000000001 2.3418855140671270E-039 + -16.380000000000003 2.6353757618245855E-039 + -16.320000000000000 2.8365760832121341E-039 + -16.260000000000002 2.8039781630071801E-039 + -16.200000000000003 2.5359024336452897E-039 + -16.140000000000001 2.0047514486134100E-039 + -16.080000000000002 1.1798246159756321E-039 + -16.020000000000000 3.1554588440050686E-041 + -15.960000000000001 -1.2934374055775686E-039 + -15.899999999999999 -2.7790612992177203E-039 + -15.840000000000003 -4.4226758644861976E-039 + -15.780000000000001 -6.2071685144352837E-039 + -15.719999999999999 -8.0388116944738870E-039 + -15.660000000000004 -9.8737620964193889E-039 + -15.600000000000001 -1.1595688194795709E-038 + -15.539999999999999 -1.4425910825541963E-038 + -15.480000000000004 -1.8549935625951453E-038 + -15.420000000000002 -2.3597132655177723E-038 + -15.359999999999999 -2.9792284937211482E-038 + -15.300000000000004 -3.7242100215770614E-038 + -15.240000000000002 -4.6327864294242612E-038 + -15.180000000000000 -5.6433903025855629E-038 + -15.120000000000005 -6.7569875636323586E-038 + -15.060000000000002 -8.0175845043190344E-038 + -15.000000000000000 -9.1469269620026871E-038 + -14.939999999999998 -1.0109540764818529E-037 + -14.880000000000003 -1.0971625290417896E-037 + -14.820000000000000 -1.1837710330668345E-037 + -14.759999999999998 -1.2722008488207495E-037 + -14.700000000000003 -1.3669526668485240E-037 + -14.640000000000001 -1.4771609476733504E-037 + -14.579999999999998 -1.6024861143672125E-037 + -14.520000000000003 -1.7520043071698515E-037 + -14.460000000000001 -1.9510050148025590E-037 + -14.399999999999999 -2.2116198597885978E-037 + -14.340000000000003 -2.5451470831159657E-037 + -14.280000000000001 -2.9634684170983123E-037 + -14.219999999999999 -3.4769859383591946E-037 + -14.160000000000004 -4.1016549769743632E-037 + -14.100000000000001 -4.7975199376380936E-037 + -14.039999999999999 -5.5023982419725646E-037 + -13.980000000000004 -6.2184503730785291E-037 + -13.920000000000002 -6.9414163700563266E-037 + -13.859999999999999 -7.6740611372369046E-037 + -13.800000000000004 -8.3780344000176871E-037 + -13.740000000000002 -9.0487104471044591E-037 + -13.680000000000000 -9.4839539246355612E-037 + -13.620000000000005 -9.9689666918800893E-037 + -13.560000000000002 -1.0434116812882768E-036 + -13.500000000000000 -1.1125714979434910E-036 + -13.439999999999998 -1.2078233244053369E-036 + -13.380000000000003 -1.3236772929341292E-036 + -13.320000000000000 -1.4607742462865373E-036 + -13.259999999999998 -1.6119206481334546E-036 + -13.200000000000003 -1.7797115892054329E-036 + -13.140000000000001 -1.9579248298960865E-036 + -13.079999999999998 -2.1499652584698600E-036 + -13.020000000000003 -2.3723518440709335E-036 + -12.960000000000001 -2.6362587668856962E-036 + -12.899999999999999 -2.9534234549646099E-036 + -12.840000000000003 -3.3051515276780366E-036 + -12.780000000000001 -3.7405688965026735E-036 + -12.719999999999999 -4.2753617976912543E-036 + -12.660000000000004 -4.8673426091263623E-036 + -12.600000000000001 -5.5327744564008426E-036 + -12.539999999999999 -6.2606495698463711E-036 + -12.480000000000004 -7.0093308740481592E-036 + -12.420000000000002 -7.8010525400499188E-036 + -12.359999999999999 -8.6270446491555643E-036 + -12.300000000000004 -9.4666584392155469E-036 + -12.240000000000002 -1.0292123215544382E-035 + -12.180000000000000 -1.1072866779305415E-035 + -12.120000000000005 -1.1751949619645122E-035 + -12.060000000000002 -1.2148210357253628E-035 + -12.000000000000000 -1.2178526679846659E-035 + -11.940000000000005 -1.1784041948560586E-035 + -11.880000000000003 -1.0960252057485255E-035 + -11.820000000000000 -9.6274798506685171E-036 + -11.759999999999998 -7.8624514149045030E-036 + -11.700000000000003 -5.7935678671176900E-036 + -11.640000000000001 -3.5871056342194050E-036 + -11.579999999999998 -1.5184293512490425E-036 + -11.520000000000003 6.5374456572106327E-038 + -11.460000000000001 8.5716399001564312E-037 + -11.399999999999999 4.9383531886224469E-037 + -11.340000000000003 -1.3834556288777505E-036 + -11.280000000000001 -5.1061262205642739E-036 + -11.219999999999999 -1.1031500984694666E-035 + -11.160000000000004 -1.9336488426974165E-035 + -11.100000000000001 -3.0130756907086802E-035 + -11.039999999999999 -4.2943470064740507E-035 + -10.980000000000004 -5.7114249105296638E-035 + -10.920000000000002 -7.1582331253824868E-035 + -10.859999999999999 -8.4895411576914717E-035 + -10.800000000000004 -9.5263454597166830E-035 + -10.740000000000002 -1.0056769760981038E-034 + -10.680000000000000 -9.8473137709096577E-035 + -10.620000000000005 -8.6599684463242415E-035 + -10.560000000000002 -6.2762558495934821E-035 + -10.500000000000000 -2.5276808922145671E-035 + -10.440000000000005 2.6710349573141617E-035 + -10.380000000000003 9.2736600579937163E-035 + -10.320000000000000 1.7068757138117970E-034 + -10.259999999999998 2.5634278807900417E-034 + -10.200000000000003 3.4304127288424615E-034 + -10.140000000000001 4.2153623915427296E-034 + -10.079999999999998 4.8000941816995805E-034 + -10.020000000000003 5.0440677169997523E-034 + -9.9600000000000009 4.7911442321990332E-034 + -9.8999999999999986 3.8806445285734016E-034 + -9.8400000000000034 2.1628654354270954E-034 + -9.7800000000000011 -4.8088975445072683E-035 + -9.7199999999999989 -4.1145065698061918E-034 + -9.6600000000000037 -8.7211894746613294E-034 + -9.6000000000000014 -1.4176204939284673E-033 + -9.5399999999999991 -2.0222116610678512E-033 + -9.4800000000000040 -2.6449480464772948E-033 + -9.4200000000000017 -3.2286985405911210E-033 + -9.3599999999999994 -3.7005694597897360E-033 + -9.3000000000000043 -3.9741284877929810E-033 + -9.2400000000000020 -3.9538327850607876E-033 + -9.1799999999999997 -3.5419132443727209E-033 + -9.1200000000000045 -2.6478038330565233E-033 + -9.0600000000000023 -1.2000061804231845E-033 + -9.0000000000000000 8.4012577491633537E-034 + -8.9400000000000048 3.4634449772442465E-033 + -8.8800000000000026 6.5981138606286767E-033 + -8.8200000000000003 1.0096299971743152E-032 + -8.7599999999999980 1.3724336289932879E-032 + -8.7000000000000028 1.7158445855159857E-032 + -8.6400000000000006 1.9988231835839675E-032 + -8.5799999999999983 2.1729963141783179E-032 + -8.5200000000000031 2.1851383622849639E-032 + -8.4600000000000009 1.9809059284601601E-032 + -8.3999999999999986 1.5098414985265847E-032 + -8.3400000000000034 7.3153076920118875E-033 + -8.2800000000000011 -3.7733946339268710E-033 + -8.2199999999999989 -1.8154482737628789E-032 + -8.1600000000000037 -3.5494163664897198E-032 + -8.1000000000000014 -5.5072448015407812E-032 + -8.0399999999999991 -7.5734909535855400E-032 + -7.9800000000000040 -9.5871447120941910E-032 + -7.9200000000000017 -1.1343184224861109E-031 + -7.8599999999999994 -1.2598716256876549E-031 + -7.8000000000000043 -1.3084428845258977E-031 + -7.7400000000000020 -1.2521786411012683E-031 + -7.6799999999999997 -1.0646008065299138E-031 + -7.6200000000000045 -7.2343110178384583E-032 + -7.5600000000000023 -2.1383325134207391E-032 + -7.5000000000000000 4.6810631331770745E-032 + -7.4400000000000048 1.3119056944609258E-031 + -7.3800000000000026 2.2895338334393531E-031 + -7.3200000000000003 3.3529392911249130E-031 + -7.2599999999999980 4.4326634911883036E-031 + -7.2000000000000028 5.4379403396758986E-031 + -7.1400000000000006 6.2586746842447341E-031 + -7.0799999999999983 6.7696127795043651E-031 + -7.0200000000000031 6.8369226356646847E-031 + -6.9600000000000009 6.3272533580814957E-031 + -6.8999999999999986 5.1191453721692662E-031 + -6.8400000000000034 3.1164391959704897E-031 + -6.7800000000000011 2.6308906260559199E-032 + -6.7199999999999989 -3.4414855540655806E-031 + -6.6600000000000037 -7.9276255733724139E-031 + -6.6000000000000014 -1.3042560030446727E-030 + -6.5399999999999991 -1.8540942687566373E-030 + -6.4800000000000040 -2.4080396512662633E-030 + -6.4200000000000017 -2.9223614448648701E-030 + -6.3599999999999994 -3.3448487917140881E-030 + -6.3000000000000043 -3.6167384628860453E-030 + -6.2400000000000020 -3.6756345450551371E-030 + -6.1799999999999997 -3.4594370150357253E-030 + -6.1200000000000045 -2.9112221752124066E-030 + -6.0600000000000023 -1.9849461570068138E-030 + -6.0000000000000000 -6.5174095808250975E-031 + -5.9400000000000048 1.0935086616854582E-030 + -5.8800000000000026 3.2257195245700628E-030 + -5.8200000000000003 5.6837883638333671E-030 + -5.7600000000000051 8.3659493842057930E-030 + -5.7000000000000028 1.1126921534948954E-029 + -5.6400000000000006 1.3777474562746220E-029 + -5.5799999999999983 1.6087009379335553E-029 + -5.5200000000000031 1.7789720456577632E-029 + -5.4600000000000009 1.8594766008084739E-029 + -5.3999999999999986 1.8200750433909158E-029 + -5.3400000000000034 1.6314594655242007E-029 + -5.2800000000000011 1.2674626241631005E-029 + -5.2199999999999989 7.0773929925163757E-030 + -5.1600000000000037 -5.9261177421554108E-031 + -5.1000000000000014 -1.0331579373157107E-029 + -5.0399999999999991 -2.1984972544506269E-029 + -4.9800000000000040 -3.5218162917288533E-029 + -4.9200000000000017 -4.9491607034577950E-029 + -4.8599999999999994 -6.4043357941824073E-029 + -4.8000000000000043 -7.7882114961262491E-029 + -4.7400000000000020 -8.9794043280334150E-029 + -4.6799999999999997 -9.8366750650911032E-029 + -4.6200000000000045 -1.0203342349681234E-028 + -4.5600000000000023 -9.9139821467541879E-029 + -4.5000000000000000 -8.8035814011635821E-029 + -4.4400000000000048 -6.7192103589516956E-029 + -4.3800000000000026 -3.5341076335417106E-029 + -4.3200000000000003 8.3613139675833687E-030 + -4.2600000000000051 6.4158008997449065E-029 + -4.2000000000000028 1.3150621758014011E-028 + -4.1400000000000006 2.0889668777484673E-028 + -4.0799999999999983 2.9369167690750360E-028 + -4.0200000000000031 3.8199869428841907E-028 + -3.9600000000000009 4.6860026681127411E-028 + -3.8999999999999986 5.4696110518810017E-028 + -3.8400000000000034 6.0933542522313099E-028 + -3.7800000000000011 6.4699499056292610E-028 + -3.7199999999999989 6.5059676322193349E-028 + -3.6600000000000037 6.1070263897989240E-028 + -3.6000000000000014 5.1845625929578396E-028 + -3.5399999999999991 3.6641041777624516E-028 + -3.4800000000000040 1.4948606632466653E-028 + -3.4200000000000017 -1.3397333523111821E-028 + -3.3599999999999994 -4.8110555695903370E-028 + -3.3000000000000043 -8.8346411836676031E-028 + -3.2400000000000020 -1.3260740239129720E-027 + -3.1799999999999997 -1.7867160297229210E-027 + -3.1200000000000045 -2.2355596339893090E-027 + -3.0600000000000023 -2.6352699338984965E-027 + -3.0000000000000000 -2.9417125795978292E-027 + -2.9400000000000048 -3.1053679354776458E-027 + -2.8800000000000026 -3.0735406825728054E-027 + -2.8200000000000003 -2.7934107515740436E-027 + -2.7600000000000051 -2.2159185659453739E-027 + -2.7000000000000028 -1.3004094722804165E-027 + -2.6400000000000006 -1.9884022312648553E-029 + -2.5799999999999983 1.6333966213030092E-027 + -2.5200000000000031 3.6422868816381582E-027 + -2.4600000000000009 5.9595508762007961E-027 + -2.3999999999999986 8.5035882639030563E-027 + -2.3400000000000034 1.1155675308047904E-026 + -2.2800000000000011 1.3759339652177753E-026 + -2.2199999999999989 1.6122469734588306E-026 + -2.1600000000000037 1.8022728101593032E-026 + -2.1000000000000014 1.9216697740388146E-026 + -2.0399999999999991 1.9453029989804859E-026 + -1.9800000000000040 1.8489611049584274E-026 + -1.9200000000000017 1.6114441703060109E-026 + -1.8599999999999994 1.2169574310465722E-026 + -1.8000000000000043 6.5770347816860928E-027 + -1.7400000000000020 -6.3478780435595751E-028 + -1.6799999999999997 -9.3062034373722586E-027 + -1.6200000000000045 -1.9125041871780269E-026 + -1.5600000000000023 -2.9611824826474605E-026 + -1.5000000000000000 -4.0114006562996337E-026 + -1.4400000000000048 -4.9812040442147757E-026 + -1.3800000000000026 -5.7739716661780682E-026 + -1.3200000000000003 -6.2820722770475919E-026 + -1.2600000000000051 -6.3922613085441086E-026 + -1.2000000000000028 -5.9928282002918086E-026 + -1.1400000000000006 -4.9823625638131479E-026 + -1.0799999999999983 -3.2798590581017208E-026 + -1.0200000000000031 -8.3568869947143625E-027 + -0.96000000000000085 2.3572072462717284E-026 + -0.89999999999999858 6.2527196905304350E-026 + -0.84000000000000341 1.0742555402653033E-025 + -0.78000000000000114 1.5649907105094730E-025 + -0.71999999999999886 2.0726931861570740E-025 + -0.66000000000000369 2.5657200304053408E-025 + -0.60000000000000142 3.0064099977789883E-025 + -0.53999999999999915 3.3525997491216605E-025 + -0.48000000000000398 3.5598569395782395E-025 + -0.42000000000000171 3.5844294677258965E-025 + -0.35999999999999943 3.3868509235376336E-025 + -0.30000000000000426 2.9360709908166979E-025 + -0.24000000000000199 2.2139110046561499E-025 + -0.17999999999999972 1.2195708092915033E-025 + -0.12000000000000455 -2.6161660137231650E-027 + -6.0000000000002274E-002 -1.4774110038243653E-025 + 0.0000000000000000 -3.0608699418155126E-025 + 5.9999999999995168E-002 -4.6750879183771792E-025 + 0.11999999999999744 -6.1918434547650827E-025 + 0.17999999999999972 -7.4600076961273505E-025 + 0.23999999999999488 -8.3121994270501082E-025 + 0.29999999999999716 -8.5743909201910803E-025 + 0.35999999999999943 -8.0784330078038567E-025 + 0.42000000000000171 -6.6772127902150013E-025 + 0.47999999999999687 -4.2619212072047643E-025 + 0.53999999999999915 -7.8057775575456307E-026 + 0.60000000000000142 3.7433402154005038E-025 + 0.65999999999999659 9.1935664776408709E-025 + 0.71999999999999886 1.5346688596353239E-024 + 0.78000000000000114 2.1862601140032686E-024 + 0.83999999999999631 2.8281664127195810E-024 + 0.89999999999999858 3.4030416897564030E-024 + 0.96000000000000085 3.8437472376444400E-024 + 1.0199999999999960 4.0760812066398697E-024 + 1.0799999999999983 4.0227152965680486E-024 + 1.1400000000000006 3.6083265974734737E-024 + 1.1999999999999957 2.7658185274146276E-024 + 1.2599999999999980 1.4434228673472634E-024 + 1.3200000000000003 -3.8765259557650398E-025 + 1.3799999999999955 -2.7254780988427472E-024 + 1.4399999999999977 -5.5301146062952290E-024 + 1.5000000000000000 -8.7174636507548526E-024 + 1.5599999999999952 -1.2154980911723151E-023 + 1.6199999999999974 -1.5660027911304866E-023 + 1.6799999999999997 -1.9001624061951243E-023 + 1.7399999999999949 -2.1906297139791809E-023 + 1.7999999999999972 -2.4068586517148837E-023 + 1.8599999999999994 -2.5166546457401367E-023 + 1.9200000000000017 -2.4882327283740021E-023 + 1.9799999999999969 -2.2927557879398214E-023 + 2.0399999999999991 -1.9072847660543509E-023 + 2.1000000000000014 -1.3180289560286456E-023 + 2.1599999999999966 -5.2373746403535042E-024 + 2.2199999999999989 4.6097414734046614E-024 + 2.2800000000000011 1.6026071323981098E-023 + 2.3399999999999963 2.8463542195641549E-023 + 2.3999999999999986 4.1145612321388870E-023 + 2.4600000000000009 5.3063881411725457E-023 + 2.5199999999999960 6.2989498690941980E-023 + 2.5799999999999983 6.9501889201016067E-023 + 2.6400000000000006 7.1036676021752090E-023 + 2.6999999999999957 6.5953731511033492E-023 + 2.7599999999999980 5.2624917842305995E-023 + 2.8200000000000003 2.9540049417463026E-023 + 2.8799999999999955 -4.5723629205677444E-024 + 2.9399999999999977 -5.0614721127140654E-023 + 3.0000000000000000 -1.0898678149709177E-022 + 3.0599999999999952 -1.7945786186689359E-022 + 3.1199999999999974 -2.6105434593964610E-022 + 3.1799999999999997 -3.5197385756880962E-022 + 3.2399999999999949 -4.4953751552272001E-022 + 3.2999999999999972 -5.5019198191479480E-022 + 3.3599999999999994 -6.4957191334037201E-022 + 3.4199999999999946 -7.4263177631156659E-022 + 3.4799999999999969 -8.2385375770783137E-022 + 3.5399999999999991 -8.8753388400049295E-022 + 3.6000000000000014 -9.2814447773034427E-022 + 3.6599999999999966 -9.4076626412763269E-022 + 3.7199999999999989 -9.2157698080102492E-022 + 3.7800000000000011 -8.6837541397228649E-022 + 3.8399999999999963 -7.8111784569751798E-022 + 3.8999999999999986 -6.6243216645147319E-022 + 3.9600000000000009 -5.1807588522953168E-022 + 4.0199999999999960 -3.5729552266869637E-022 + 4.0799999999999983 -1.9304612988096636E-022 + 4.1400000000000006 -4.2031804135583243E-023 + 4.1999999999999957 7.5475094308195655E-023 + 4.2599999999999980 1.3606277131201826E-022 + 4.3200000000000003 1.1388235619782739E-022 + 4.3799999999999955 -1.8370949521386483E-023 + 4.4399999999999977 -2.8820120330099958E-022 + 4.5000000000000000 -7.2181012771904475E-022 + 4.5599999999999952 -1.3423927217732842E-021 + 4.6199999999999974 -2.1682962748115746E-021 + 4.6799999999999997 -3.2111407988574542E-021 + 4.7399999999999949 -4.4739952272836107E-021 + 4.7999999999999972 -5.9497424362085857E-021 + 4.8599999999999994 -7.6197672874244525E-021 + 4.9199999999999946 -9.4531094758508636E-021 + 4.9799999999999969 -1.1406206127164183E-020 + 5.0399999999999991 -1.3423377570384387E-020 + 5.1000000000000014 -1.5438132556983160E-020 + 5.1599999999999966 -1.7375382925172982E-020 + 5.2199999999999989 -1.9154583775698398E-020 + 5.2800000000000011 -2.0693803561749791E-020 + 5.3399999999999963 -2.1914615523439335E-020 + 5.3999999999999986 -2.2747665263981859E-020 + 5.4600000000000009 -2.3138738300028974E-020 + 5.5199999999999960 -2.3054998806085147E-020 + 5.5799999999999983 -2.2491080181952579E-020 + 5.6400000000000006 -2.1474654047729841E-020 + 5.6999999999999957 -2.0071010424797706E-020 + 5.7599999999999980 -1.8386242033776710E-020 + 5.8200000000000003 -1.6568565938964719E-020 + 5.8799999999999955 -1.4807383740618874E-020 + 5.9399999999999977 -1.3329720137111630E-020 + 6.0000000000000000 -1.2393847576368014E-020 + 6.0599999999999952 -1.2279930331442566E-020 + 6.1199999999999974 -1.3277653046850828E-020 + 6.1799999999999997 -1.5671132551728500E-020 + 6.2399999999999949 -1.9721425008974790E-020 + 6.2999999999999972 -2.5647179369892577E-020 + 6.3599999999999994 -3.3604259937379380E-020 + 6.4199999999999946 -4.3665132851069319E-020 + 6.4799999999999969 -5.5799297452286805E-020 + 6.5399999999999991 -6.9855528425366605E-020 + 6.6000000000000014 -8.5547589757688932E-020 + 6.6599999999999966 -1.0244417437658035E-019 + 6.7199999999999989 -1.1996434880286317E-019 + 6.7800000000000011 -1.3737922212271902E-019 + 6.8399999999999963 -1.5382055702158409E-019 + 6.8999999999999986 -1.6829642725838186E-019 + 6.9600000000000009 -1.7971367220536612E-019 + 7.0199999999999960 -1.8690675598733503E-019 + 7.0799999999999983 -1.8867146436077183E-019 + 7.1400000000000006 -1.8380205915011222E-019 + 7.1999999999999957 -1.7112895000052879E-019 + 7.2599999999999980 -1.4955525632971609E-019 + 7.3200000000000003 -1.1808794341649681E-019 + 7.3799999999999955 -7.5860811155862950E-020 + 7.4399999999999977 -2.2145869398077132E-020 + 7.5000000000000000 4.3650531110871553E-020 + 7.5599999999999952 1.2201093678743114E-019 + 7.6199999999999974 2.1335033243959553E-019 + 7.6799999999999997 3.1808322326395519E-019 + 7.7399999999999949 4.3671600481041683E-019 + 7.7999999999999972 5.6996354795598828E-019 + 7.8599999999999994 7.1889156379448903E-019 + 7.9199999999999946 8.8507734859771844E-019 + 7.9799999999999969 1.0707919086506897E-018 + 8.0399999999999991 1.2791949676430772E-018 + 8.1000000000000014 1.5145374714733010E-018 + 8.1599999999999966 1.7823656186179811E-018 + 8.2199999999999989 2.0897215112418973E-018 + 8.2800000000000011 2.4453281413638517E-018 + 8.3399999999999963 2.8597566299867459E-018 + 8.3999999999999986 3.3455740180290879E-018 + 8.4600000000000009 3.9174475136577087E-018 + 8.5199999999999960 4.5922393199466554E-018 + 8.5799999999999983 5.3890437976947855E-018 + 8.6400000000000006 6.3292214521138401E-018 + 8.6999999999999957 7.4363954141555383E-018 + 8.7599999999999980 8.7364414530521833E-018 + 8.8200000000000003 1.0257474448027128E-017 + 8.8799999999999955 1.2029857662518364E-017 + 8.9399999999999977 1.4086255121965779E-017 + 9.0000000000000000 1.6461728920020788E-017 + 9.0599999999999952 1.9193941696418564E-017 + 9.1199999999999974 2.2323436052990807E-017 + 9.1799999999999997 2.5894081700157767E-017 + 9.2399999999999949 2.9953648918598435E-017 + 9.2999999999999972 3.4554578396947567E-017 + 9.3599999999999994 3.9754947916349910E-017 + 9.4199999999999946 4.5619577470634546E-017 + 9.4799999999999969 5.2221422693457559E-017 + 9.5399999999999991 5.9643107227929345E-017 + 9.5999999999999943 6.7978673786777092E-017 + 9.6599999999999966 7.7335466008902912E-017 + 9.7199999999999989 8.7836188762359500E-017 + 9.7800000000000011 9.9621029977011969E-017 + 9.8399999999999963 1.1284985704756572E-016 + 9.8999999999999986 1.2770447752449173E-016 + 9.9600000000000009 1.4439078863114989E-016 + 10.019999999999996 1.6314092519784455E-016 + 10.079999999999998 1.8421526633893460E-016 + 10.140000000000001 2.0790428929442664E-016 + 10.199999999999996 2.3453034823734008E-016 + 10.259999999999998 2.6444918178822292E-016 + 10.320000000000000 2.9805125139974833E-016 + 10.379999999999995 3.3576304514486306E-016 + 10.439999999999998 3.7804815478368836E-016 + 10.500000000000000 4.2540815415016669E-016 + 10.559999999999995 4.7838406895701924E-016 + 10.619999999999997 5.3755724728171213E-016 + 10.680000000000000 6.0355105036072176E-016 + 10.739999999999995 6.7703239639330491E-016 + 10.799999999999997 7.5871339285959400E-016 + 10.859999999999999 8.4935408695316235E-016 + 10.919999999999995 9.4976570270374821E-016 + 10.979999999999997 1.0608137696421323E-015 + 11.039999999999999 1.1834217128917500E-015 + 11.099999999999994 1.3185753853470034E-015 + 11.159999999999997 1.4673277412591973E-015 + 11.219999999999999 1.6308030142826419E-015 + 11.280000000000001 1.8102009076766614E-015 + 11.339999999999996 2.0068001389503994E-015 + 11.399999999999999 2.2219622787902608E-015 + 11.460000000000001 2.4571303925540386E-015 + 11.519999999999996 2.7138286915125820E-015 + 11.579999999999998 2.9936583929569671E-015 + 11.640000000000001 3.2982882695259590E-015 + 11.699999999999996 3.6294417783248410E-015 + 11.759999999999998 3.9888794498290873E-015 + 11.820000000000000 4.3783707303186573E-015 + 11.879999999999995 4.7996628473526986E-015 + 11.939999999999998 5.2544372011387057E-015 + 12.000000000000000 5.7442543689382471E-015 + 12.059999999999995 6.2704923336927070E-015 + 12.119999999999997 6.8342661718279954E-015 + 12.180000000000000 7.4363374860542023E-015 + 12.239999999999995 8.0770050427057045E-015 + 12.299999999999997 8.7559739689993783E-015 + 12.359999999999999 9.4722145745040220E-015 + 12.419999999999995 1.0223789208360318E-014 + 12.479999999999997 1.1007661159308257E-014 + 12.539999999999999 1.1819472546734129E-014 + 12.599999999999994 1.2653294479210849E-014 + 12.659999999999997 1.3501334984509390E-014 + 12.719999999999999 1.4353620286271001E-014 + 12.780000000000001 1.5197628529722138E-014 + 12.839999999999996 1.6017859385864690E-014 + 12.899999999999999 1.6795368861895465E-014 + 12.960000000000001 1.7507235703270568E-014 + 13.019999999999996 1.8125937032492436E-014 + 13.079999999999998 1.8618663546622501E-014 + 13.140000000000001 1.8946544261099768E-014 + 13.199999999999996 1.9063729544342923E-014 + 13.259999999999998 1.8916402108528837E-014 + 13.320000000000000 1.8441601438562983E-014 + 13.379999999999995 1.7565932816567914E-014 + 13.439999999999998 1.6204067788152157E-014 + 13.500000000000000 1.4257086403254169E-014 + 13.559999999999995 1.1610542314796365E-014 + 13.619999999999997 8.1323070524319686E-015 + 13.680000000000000 3.6701299852975547E-015 + 13.739999999999995 -1.9511528141208122E-015 + 13.799999999999997 -8.9326751914617110E-015 + 13.859999999999999 -1.7505117404815221E-014 + 13.919999999999995 -2.7932654551898511E-014 + 13.979999999999997 -4.0517461159745958E-014 + 14.039999999999999 -5.5604595702177332E-014 + 14.099999999999994 -7.3587719779675717E-014 + 14.159999999999997 -9.4915389575505236E-014 + 14.219999999999999 -1.2009806015448389E-013 + 14.280000000000001 -1.4971593857878616E-013 + 14.339999999999996 -1.8442771890603906E-013 + 14.399999999999999 -2.2498041913441402E-013 + 14.460000000000001 -2.7222038165235061E-013 + 14.519999999999996 -3.2710513606845937E-013 + 14.579999999999998 -3.9071684834024658E-013 + 14.640000000000001 -4.6427739029854217E-013 + 14.699999999999996 -5.4916493488194355E-013 + 14.759999999999998 -6.4693164103099421E-013 + 14.820000000000000 -7.5932438605565101E-013 + 14.879999999999995 -8.8830713270306870E-013 + 14.939999999999998 -1.0360846899617192E-012 + 15.000000000000000 -1.2051307839123789E-012 + 15.059999999999995 -1.3982173072880112E-012 + 15.119999999999997 -1.6184468104442621E-012 + 15.180000000000000 -1.8692894563773748E-012 + 15.239999999999995 -2.1546207876698948E-012 + 15.299999999999997 -2.4787674854270899E-012 + 15.359999999999999 -2.8465519353174348E-012 + 15.419999999999995 -3.2633458991767064E-012 + 15.479999999999997 -3.7351257544725999E-012 + 15.539999999999999 -4.2685350824993845E-012 + 15.599999999999994 -4.8709509328277908E-012 + 15.659999999999997 -5.5505557539550192E-012 + 15.719999999999999 -6.3164190192511801E-012 + 15.780000000000001 -7.1785798413919738E-012 + 15.839999999999996 -8.1481427448668883E-012 + 15.899999999999999 -9.2373757249996477E-012 + 15.960000000000001 -1.0459819364491785E-011 + 16.019999999999996 -1.1830402866358420E-011 + 16.079999999999998 -1.3365569332790738E-011 + 16.140000000000001 -1.5083409699897654E-011 + 16.200000000000003 -1.7003805631770578E-011 + 16.259999999999991 -1.9148585416018431E-011 + 16.319999999999993 -2.1541686204271388E-011 + 16.379999999999995 -2.4209329313252897E-011 + 16.439999999999998 -2.7180202974406668E-011 + 16.500000000000000 -3.0485660293631900E-011 + 16.560000000000002 -3.4159917416530790E-011 + 16.620000000000005 -3.8240278486131061E-011 + 16.679999999999993 -4.2767359081991621E-011 + 16.739999999999995 -4.7785312813897254E-011 + 16.799999999999997 -5.3342097086539929E-011 + 16.859999999999999 -5.9489697127087234E-011 + 16.920000000000002 -6.6284405853106708E-011 + 16.980000000000004 -7.3787083969487331E-011 + 17.039999999999992 -8.2063406622773349E-011 + 17.099999999999994 -9.1184142817469075E-011 + 17.159999999999997 -1.0122541392690148E-010 + 17.219999999999999 -1.1226895592473957E-010 + 17.280000000000001 -1.2440234105964037E-010 + 17.340000000000003 -1.3771922606356560E-010 + 17.399999999999991 -1.5231949267216483E-010 + 17.459999999999994 -1.6830948642598795E-010 + 17.519999999999996 -1.8580209096352632E-010 + 17.579999999999998 -2.0491681042657803E-010 + 17.640000000000001 -2.2577972903109275E-010 + 17.700000000000003 -2.4852351835036436E-010 + 17.759999999999991 -2.7328712742893073E-010 + 17.819999999999993 -3.0021562337114533E-010 + 17.879999999999995 -3.2945967379369167E-010 + 17.939999999999998 -3.6117490601115741E-010 + 18.000000000000000 -3.9552120088085105E-010 + 18.060000000000002 -4.3266156830129522E-010 + 18.120000000000005 -4.7276092956059963E-010 + 18.179999999999993 -5.1598439261036904E-010 + 18.239999999999995 -5.6249543148220714E-010 + 18.299999999999997 -6.1245332747965547E-010 + 18.359999999999999 -6.6601043012224169E-010 + 18.420000000000002 -7.2330860702486829E-010 + 18.480000000000004 -7.8447538923186272E-010 + 18.539999999999992 -8.4961895916340372E-010 + 18.599999999999994 -9.1882262620027634E-010 + 18.659999999999997 -9.9213845158377043E-010 + 18.719999999999999 -1.0695793435193875E-009 + 18.780000000000001 -1.1511105352537031E-009 + 18.840000000000003 -1.2366391470107586E-009 + 18.899999999999991 -1.3260027110349885E-009 + 18.959999999999994 -1.4189555823117764E-009 + 19.019999999999996 -1.5151535427065312E-009 + 19.079999999999998 -1.6141359057472996E-009 + 19.140000000000001 -1.7153061682719625E-009 + 19.200000000000003 -1.8179077429573488E-009 + 19.259999999999991 -1.9209993946532035E-009 + 19.319999999999993 -2.0234247931261604E-009 + 19.379999999999995 -2.1237791440718749E-009 + 19.439999999999998 -2.2203717909054565E-009 + 19.500000000000000 -2.3111827881160888E-009 + 19.560000000000002 -2.3938151194545270E-009 + 19.620000000000005 -2.4654414448512442E-009 + 19.679999999999993 -2.5227410732879779E-009 + 19.739999999999995 -2.5618332724606972E-009 + 19.799999999999997 -2.5782001945335932E-009 + 19.859999999999999 -2.5665997777492470E-009 + 19.920000000000002 -2.5209708756731477E-009 + 19.980000000000004 -2.4343259282487644E-009 + 20.039999999999992 -2.2986305676223709E-009 + 20.099999999999994 -2.1046677051038827E-009 + 20.159999999999997 -1.8418932209398749E-009 + 20.219999999999999 -1.4982654372921353E-009 + 20.280000000000001 -1.0600633716833106E-009 + 20.340000000000003 -5.1168182295183483E-010 + 20.399999999999991 1.6459986276174402E-010 + 20.459999999999994 9.8886141813117251E-010 + 20.519999999999996 1.9838262073748584E-009 + 20.579999999999998 3.1751693621012546E-009 + 20.640000000000001 4.5918596559399515E-009 + 20.700000000000003 6.2665366182773318E-009 + 20.759999999999991 8.2359287385378936E-009 + 20.819999999999993 1.0541299384828604E-008 + 20.879999999999995 1.3228974553203675E-008 + 20.939999999999998 1.6350887090312760E-008 + 21.000000000000000 1.9965185195852089E-008 + 21.060000000000002 2.4136916021997233E-008 + 21.120000000000005 2.8938766731286269E-008 + 21.179999999999993 3.4451874166578508E-008 + 21.239999999999995 4.0766709689602828E-008 + 21.299999999999997 4.7984069051730513E-008 + 21.359999999999999 5.6216130932539653E-008 + 21.420000000000002 6.5587655695394843E-008 + 21.480000000000004 7.6237228231147221E-008 + 21.539999999999992 8.8318695856866090E-008 + 21.599999999999994 1.0200268127748239E-007 + 21.659999999999997 1.1747826224597170E-007 + 21.719999999999999 1.3495476956066801E-007 + 21.780000000000001 1.5466381292465928E-007 + 21.840000000000003 1.7686141018722619E-007 + 21.899999999999991 2.0183040425057742E-007 + 21.959999999999994 2.2988296642756863E-007 + 22.019999999999996 2.6136341441725944E-007 + 22.079999999999998 2.9665120425204659E-007 + 22.140000000000001 3.3616426106559700E-007 + 22.200000000000003 3.8036253632667815E-007 + 22.259999999999991 4.2975180327637803E-007 + 22.319999999999993 4.8488803956146249E-007 + 22.379999999999995 5.4638175384011984E-007 + 22.439999999999998 6.1490293697763599E-007 + 22.500000000000000 6.9118649572162641E-007 + 22.560000000000002 7.7603783703148548E-007 + 22.619999999999990 8.7033894531028255E-007 + 22.679999999999993 9.7505552113395879E-007 + 22.739999999999995 1.0912436118925219E-006 + 22.799999999999997 1.2200577411890066E-006 + 22.859999999999999 1.3627588720142818E-006 + 22.920000000000002 1.5207240413752692E-006 + 22.980000000000004 1.6954552345932474E-006 + 23.039999999999992 1.8885901844270492E-006 + 23.099999999999994 2.1019134356925886E-006 + 23.159999999999997 2.3373682432558407E-006 + 23.219999999999999 2.5970690803194442E-006 + 23.280000000000001 2.8833159267866234E-006 + 23.340000000000003 3.1986082194617278E-006 + 23.399999999999991 3.5456609686266118E-006 + 23.459999999999994 3.9274212064151748E-006 + 23.519999999999996 4.3470859700133145E-006 + 23.579999999999998 4.8081210624600458E-006 + 23.640000000000001 5.3142815908732855E-006 + 23.700000000000003 5.8696332160330689E-006 + 23.759999999999991 6.4785760305648284E-006 + 23.819999999999993 7.1458680101168493E-006 + 23.879999999999995 7.8766500085544282E-006 + 23.939999999999998 8.6764761472831257E-006 + 24.000000000000000 9.5513393042269970E-006 + 24.060000000000002 1.0507705626614559E-005 + 24.119999999999990 1.1552542294079787E-005 + 24.179999999999993 1.2693357480649303E-005 + 24.239999999999995 1.3938232902045710E-005 + 24.299999999999997 1.5295865471545998E-005 + 24.359999999999999 1.6775602427893982E-005 + 24.420000000000002 1.8387491516597024E-005 + 24.480000000000004 2.0142315552938737E-005 + 24.539999999999992 2.2051648992417925E-005 + 24.599999999999994 2.4127902071072063E-005 + 24.659999999999997 2.6384375866952061E-005 + 24.719999999999999 2.8835311032188395E-005 + 24.780000000000001 3.1495952074814788E-005 + 24.840000000000003 3.4382600538068063E-005 + 24.899999999999991 3.7512672882480532E-005 + 24.959999999999994 4.0904773853750279E-005 + 25.019999999999996 4.4578758595245803E-005 + 25.079999999999998 4.8555808183648482E-005 + 25.140000000000001 5.2858487922288165E-005 + 25.200000000000003 5.7510833264451420E-005 + 25.259999999999991 6.2538421503985066E-005 + 25.319999999999993 6.7968458366906358E-005 + 25.379999999999995 7.3829851824839764E-005 + 25.439999999999998 8.0153303385975227E-005 + 25.500000000000000 8.6971392817255996E-005 + 25.560000000000002 9.4318656264068859E-005 + 25.619999999999990 1.0223168997176991E-004 + 25.679999999999993 1.1074926115034030E-004 + 25.739999999999995 1.1991236352693299E-004 + 25.799999999999997 1.2976433327215739E-004 + 25.859999999999999 1.4035098458403859E-004 + 25.920000000000002 1.5172061657005997E-004 + 25.980000000000004 1.6392422526736636E-004 + 26.039999999999992 1.7701553649450357E-004 + 26.099999999999994 1.9105111100394936E-004 + 26.159999999999997 2.0609047010577888E-004 + 26.219999999999999 2.2219618463733328E-004 + 26.280000000000001 2.3943399152445097E-004 + 26.340000000000003 2.5787288938199912E-004 + 26.399999999999991 2.7758524689312287E-004 + 26.459999999999994 2.9864683222637892E-004 + 26.519999999999996 3.2113703803370735E-004 + 26.579999999999998 3.4513886713917339E-004 + 26.640000000000001 3.7073904622592205E-004 + 26.700000000000003 3.9802820075839562E-004 + 26.759999999999991 4.2710079099327086E-004 + 26.819999999999993 4.5805525969476484E-004 + 26.879999999999995 4.9099415116421322E-004 + 26.939999999999998 5.2602415663220616E-004 + 27.000000000000000 5.6325608580586788E-004 + 27.060000000000002 6.0280503219673702E-004 + 27.119999999999990 6.4479034266579430E-004 + 27.179999999999993 6.8933565059600015E-004 + 27.239999999999995 7.3656905981500230E-004 + 27.299999999999997 7.8662288099150247E-004 + 27.359999999999999 8.3963375726478213E-004 + 27.420000000000002 8.9574276773768402E-004 + 27.480000000000004 9.5509534322776879E-004 + 27.539999999999992 1.0178410059254633E-003 + 27.599999999999994 1.0841337108322569E-003 + 27.659999999999997 1.1541314519446860E-003 + 27.719999999999999 1.2279962675269796E-003 + 27.780000000000001 1.3058941949316452E-003 + 27.840000000000003 1.3879950872791177E-003 + 27.899999999999991 1.4744726429868913E-003 + 27.959999999999994 1.5655039204459430E-003 + 28.019999999999996 1.6612694462591390E-003 + 28.079999999999998 1.7619528005644387E-003 + 28.140000000000001 1.8677406297147299E-003 + 28.200000000000003 1.9788221803129723E-003 + 28.259999999999991 2.0953890209348099E-003 + 28.319999999999993 2.2176351297080771E-003 + 28.379999999999995 2.3457558832665733E-003 + 28.439999999999998 2.4799480689935453E-003 + 28.500000000000000 2.6204102580378178E-003 + 28.560000000000002 2.7673410209758265E-003 + 28.619999999999990 2.9209390860511280E-003 + 28.679999999999993 3.0814035687257353E-003 + 28.739999999999995 3.2489325241471505E-003 + 28.799999999999997 3.4237227871942756E-003 + 28.859999999999999 3.6059697587796425E-003 + 28.920000000000002 3.7958663974629564E-003 + 28.980000000000004 3.9936031187424005E-003 + 29.039999999999992 4.1993664605526988E-003 + 29.099999999999994 4.4133390205171137E-003 + 29.159999999999997 4.6356988300700055E-003 + 29.219999999999999 4.8666187239170908E-003 + 29.280000000000001 5.1062647946989084E-003 + 29.340000000000003 5.3547965406527485E-003 + 29.399999999999991 5.6123671530430609E-003 + 29.459999999999994 5.8791197202205363E-003 + 29.519999999999996 6.1551892885206459E-003 + 29.579999999999998 6.4407009349105974E-003 + 29.640000000000001 6.7357692228156999E-003 + 29.700000000000003 7.0404970425198129E-003 + 29.759999999999991 7.3549752383308452E-003 + 29.819999999999993 7.6792809486405092E-003 + 29.879999999999995 8.0134783519292419E-003 + 29.939999999999998 8.3576166142059847E-003 + 30.000000000000000 8.7117293962956435E-003 + 30.060000000000002 9.0758332682864280E-003 + 30.119999999999990 9.4499288091979897E-003 + 30.179999999999993 9.8339990182590310E-003 + 30.239999999999995 1.0228007112981932E-002 + 30.299999999999997 1.0631895449635947E-002 + 30.359999999999999 1.1045588485306750E-002 + 30.420000000000002 1.1468988770594922E-002 + 30.480000000000004 1.1901977480424743E-002 + 30.539999999999992 1.2344413594412408E-002 + 30.599999999999994 1.2796131070881305E-002 + 30.659999999999997 1.3256944037424853E-002 + 30.719999999999999 1.3726639537358852E-002 + 30.780000000000001 1.4204980832654750E-002 + 30.840000000000003 1.4691704814238100E-002 + 30.899999999999991 1.5186525255443832E-002 + 30.959999999999994 1.5689127504580090E-002 + 31.019999999999996 1.6199172363888226E-002 + 31.079999999999998 1.6716294622995693E-002 + 31.140000000000001 1.7240101781291511E-002 + 31.200000000000003 1.7770172975110902E-002 + 31.259999999999991 1.8306061489399467E-002 + 31.319999999999993 1.8847295132499307E-002 + 31.379999999999995 1.9393374575055938E-002 + 31.439999999999998 1.9943772401323147E-002 + 31.500000000000000 2.0497937022755260E-002 + 31.560000000000002 2.1055290116640799E-002 + 31.619999999999990 2.1615229457858740E-002 + 31.679999999999993 2.2177121717194603E-002 + 31.739999999999995 2.2740318014855643E-002 + 31.799999999999997 2.3304142180588006E-002 + 31.859999999999999 2.3867893462275705E-002 + 31.920000000000002 2.4430846706687874E-002 + 31.980000000000004 2.4992263812433548E-002 + 32.039999999999992 2.5551381085960487E-002 + 32.099999999999994 2.6107416361741881E-002 + 32.159999999999997 2.6659572905176447E-002 + 32.219999999999999 2.7207033239577818E-002 + 32.280000000000001 2.7748965844695470E-002 + 32.340000000000003 2.8284527825603825E-002 + 32.399999999999991 2.8812863027743892E-002 + 32.459999999999994 2.9333103684681498E-002 + 32.519999999999996 2.9844374782438093E-002 + 32.579999999999998 3.0345792477994099E-002 + 32.640000000000001 3.0836470062860600E-002 + 32.700000000000003 3.1315518023552980E-002 + 32.759999999999991 3.1782041186151917E-002 + 32.819999999999993 3.2235150227853025E-002 + 32.879999999999995 3.2673953440613586E-002 + 32.939999999999998 3.3097564418186010E-002 + 33.000000000000000 3.3505106755139472E-002 + 33.060000000000002 3.3895713028870310E-002 + 33.119999999999990 3.4268524438117155E-002 + 33.179999999999993 3.4622688937367016E-002 + 33.239999999999995 3.4957384432854073E-002 + 33.299999999999997 3.5271794236614813E-002 + 33.359999999999999 3.5565127196192640E-002 + 33.420000000000002 3.5836612044674004E-002 + 33.480000000000004 3.6085499558826048E-002 + 33.539999999999992 3.6311070562902212E-002 + 33.599999999999994 3.6512631473188610E-002 + 33.659999999999997 3.6689523184475575E-002 + 33.719999999999999 3.6841107707431896E-002 + 33.780000000000001 3.6966795546120756E-002 + 33.840000000000003 3.7066020160549606E-002 + 33.899999999999991 3.7138259826946983E-002 + 33.959999999999994 3.7183027061936810E-002 + 34.019999999999996 3.7199885841649127E-002 + 34.079999999999998 3.7188430681785838E-002 + 34.140000000000001 3.7148305007834254E-002 + 34.200000000000003 3.7079203201098351E-002 + 34.259999999999991 3.6980861964777643E-002 + 34.319999999999993 3.6853058200988997E-002 + 34.379999999999995 3.6695631855399979E-002 + 34.439999999999998 3.6508460233406231E-002 + 34.500000000000000 3.6291477491810609E-002 + 34.560000000000002 3.6044671991898800E-002 + 34.619999999999990 3.5768075709671637E-002 + 34.679999999999993 3.5461777740846370E-002 + 34.739999999999995 3.5125918941050445E-002 + 34.799999999999997 3.4760695427444852E-002 + 34.859999999999999 3.4366342433131906E-002 + 34.920000000000002 3.3943165541826734E-002 + 34.980000000000004 3.3491508735700504E-002 + 35.039999999999992 3.3011773568324909E-002 + 35.099999999999994 3.2504414188096603E-002 + 35.159999999999997 3.1969927524602364E-002 + 35.219999999999999 3.1408863259093651E-002 + 35.280000000000001 3.0821823067549242E-002 + 35.340000000000003 3.0209449395079527E-002 + 35.399999999999991 2.9572431662065100E-002 + 35.459999999999994 2.8911505444493099E-002 + 35.519999999999996 2.8227447562819270E-002 + 35.579999999999998 2.7521076650221427E-002 + 35.640000000000001 2.6793247915600140E-002 + 35.700000000000003 2.6044856344539805E-002 + 35.759999999999991 2.5276832502613093E-002 + 35.819999999999993 2.4490139310972794E-002 + 35.879999999999995 2.3685769097133207E-002 + 35.939999999999998 2.2864744113137318E-002 + 36.000000000000000 2.2028113574453681E-002 + 36.060000000000002 2.1176951000190708E-002 + 36.119999999999990 2.0312349192861616E-002 + 36.179999999999993 1.9435423456852785E-002 + 36.239999999999995 1.8547301634932390E-002 + 36.299999999999997 1.7649127994583139E-002 + 36.359999999999999 1.6742058401679371E-002 + 36.420000000000002 1.5827254735139774E-002 + 36.479999999999990 1.4905886630163812E-002 + 36.539999999999992 1.3979128472745786E-002 + 36.599999999999994 1.3048154223330409E-002 + 36.659999999999997 1.2114134969113148E-002 + 36.719999999999999 1.1178239083767564E-002 + 36.780000000000001 1.0241626339784260E-002 + 36.840000000000003 9.3054469193326848E-003 + 36.899999999999991 8.3708404897847033E-003 + 36.959999999999994 7.4389318685466159E-003 + 37.019999999999996 6.5108293360463532E-003 + 37.079999999999998 5.5876211265465251E-003 + 37.140000000000001 4.6703749642150374E-003 + 37.200000000000003 3.7601356189648368E-003 + 37.259999999999991 2.8579223652254039E-003 + 37.319999999999993 1.9647269231965921E-003 + 37.379999999999995 1.0815120737560590E-003 + 37.439999999999998 2.0921022745060895E-004 + 37.500000000000000 -6.5127914505981230E-004 + 37.560000000000002 -1.4990901552814791E-003 + 37.619999999999990 -2.3333924973219372E-003 + 37.679999999999993 -3.1533919680601674E-003 + 37.739999999999995 -3.9583325645309716E-003 + 37.799999999999997 -4.7474965212904617E-003 + 37.859999999999999 -5.5202063625758337E-003 + 37.920000000000002 -6.2758245125713414E-003 + 37.979999999999990 -7.0137555260445985E-003 + 38.039999999999992 -7.7334437213506680E-003 + 38.099999999999994 -8.4343770290436666E-003 + 38.159999999999997 -9.1160856841863043E-003 + 38.219999999999999 -9.7781417559962124E-003 + 38.280000000000001 -1.0420160207973383E-002 + 38.340000000000003 -1.1041796697129732E-002 + 38.399999999999991 -1.1642751687354257E-002 + 38.459999999999994 -1.2222767165936925E-002 + 38.519999999999996 -1.2781624198720731E-002 + 38.579999999999998 -1.3319147048988216E-002 + 38.640000000000001 -1.3835199380792159E-002 + 38.700000000000003 -1.4329685041621165E-002 + 38.759999999999991 -1.4802545607388903E-002 + 38.819999999999993 -1.5253761372250577E-002 + 38.879999999999995 -1.5683349224603387E-002 + 38.939999999999998 -1.6091362803026268E-002 + 39.000000000000000 -1.6477889742184337E-002 + 39.060000000000002 -1.6843049488706935E-002 + 39.119999999999990 -1.7186996039711348E-002 + 39.179999999999993 -1.7509914880052470E-002 + 39.239999999999995 -1.7812017712864486E-002 + 39.299999999999997 -1.8093549118841420E-002 + 39.359999999999999 -1.8354775928152368E-002 + 39.420000000000002 -1.8595993271397434E-002 + 39.479999999999990 -1.8817520705707576E-002 + 39.539999999999992 -1.9019697296136520E-002 + 39.599999999999994 -1.9202885283883371E-002 + 39.659999999999997 -1.9367465532219769E-002 + 39.719999999999999 -1.9513834923576594E-002 + 39.780000000000001 -1.9642410296362611E-002 + 39.840000000000003 -1.9753622116281358E-002 + 39.899999999999991 -1.9847913562559820E-002 + 39.959999999999994 -1.9925738653946777E-002 + 40.019999999999996 -1.9987562282074014E-002 + 40.079999999999998 -2.0033858850126079E-002 + 40.140000000000001 -2.0065110895671510E-002 + 40.200000000000003 -2.0081806502658565E-002 + 40.259999999999991 -2.0084436892349334E-002 + 40.319999999999993 -2.0073498866575158E-002 + 40.379999999999995 -2.0049491168074127E-002 + 40.439999999999998 -2.0012914338897906E-002 + 40.500000000000000 -1.9964267113124524E-002 + 40.560000000000002 -1.9904048508818530E-002 + 40.619999999999990 -1.9832755076282217E-002 + 40.679999999999993 -1.9750878621295407E-002 + 40.739999999999995 -1.9658908343602035E-002 + 40.799999999999997 -1.9557329056912924E-002 + 40.859999999999999 -1.9446617518970779E-002 + 40.920000000000002 -1.9327246250787460E-002 + 40.979999999999990 -1.9199679982804273E-002 + 41.039999999999992 -1.9064374912703443E-002 + 41.099999999999994 -1.8921778274662411E-002 + 41.159999999999997 -1.8772329963741136E-002 + 41.219999999999999 -1.8616459444570445E-002 + 41.280000000000001 -1.8454583999061466E-002 + 41.340000000000003 -1.8287115690218379E-002 + 41.399999999999991 -1.8114451915846375E-002 + 41.459999999999994 -1.7936979597854716E-002 + 41.519999999999996 -1.7755075051093340E-002 + 41.579999999999998 -1.7569104891002687E-002 + 41.640000000000001 -1.7379420152694815E-002 + 41.700000000000003 -1.7186363418499641E-002 + 41.759999999999991 -1.6990263553225075E-002 + 41.819999999999993 -1.6791439850929742E-002 + 41.879999999999995 -1.6590197645082464E-002 + 41.939999999999998 -1.6386832988698870E-002 + 42.000000000000000 -1.6181628358844187E-002 + 42.060000000000002 -1.5974857497724371E-002 + 42.119999999999990 -1.5766777807325116E-002 + 42.179999999999993 -1.5557640522007195E-002 + 42.239999999999995 -1.5347684593912912E-002 + 42.299999999999997 -1.5137136750601811E-002 + 42.359999999999999 -1.4926214206816474E-002 + 42.420000000000002 -1.4715124948057309E-002 + 42.479999999999990 -1.4504064658617652E-002 + 42.539999999999992 -1.4293221371629819E-002 + 42.599999999999994 -1.4082772351885703E-002 + 42.659999999999997 -1.3872886294612634E-002 + 42.719999999999999 -1.3663723461247099E-002 + 42.780000000000001 -1.3455434328340536E-002 + 42.840000000000003 -1.3248162173105213E-002 + 42.899999999999991 -1.3042040929880086E-002 + 42.959999999999994 -1.2837198347858975E-002 + 43.019999999999996 -1.2633754134832717E-002 + 43.079999999999998 -1.2431821131593633E-002 + 43.140000000000001 -1.2231504332337322E-002 + 43.200000000000003 -1.2032902945806539E-002 + 43.259999999999991 -1.1836110707620293E-002 + 43.319999999999993 -1.1641214043559861E-002 + 43.379999999999995 -1.1448294062146400E-002 + 43.439999999999998 -1.1257425548592943E-002 + 43.500000000000000 -1.1068679896570044E-002 + 43.560000000000002 -1.0882121869944939E-002 + 43.619999999999990 -1.0697811727330345E-002 + 43.679999999999993 -1.0515805411695320E-002 + 43.739999999999995 -1.0336154847413717E-002 + 43.799999999999997 -1.0158907342675536E-002 + 43.859999999999999 -9.9841057703823708E-003 + 43.920000000000002 -9.8117901619483583E-003 + 43.979999999999990 -9.6419972160735681E-003 + 44.039999999999992 -9.4747580626613308E-003 + 44.099999999999994 -9.3101025663773988E-003 + 44.159999999999997 -9.1480555961650604E-003 + 44.219999999999999 -8.9886416973068498E-003 + 44.280000000000001 -8.8318791748170696E-003 + 44.340000000000003 -8.6777864215614644E-003 + 44.399999999999991 -8.5263780059486715E-003 + 44.459999999999994 -8.3776653254706238E-003 + 44.519999999999996 -8.2316576297328733E-003 + 44.579999999999998 -8.0883623011564591E-003 + 44.640000000000001 -7.9477832956684584E-003 + 44.700000000000003 -7.8099226099675040E-003 + 44.759999999999991 -7.6747807305811138E-003 + 44.819999999999993 -7.5423551612921660E-003 + 44.879999999999995 -7.4126414619205879E-003 + 44.939999999999998 -7.2856339859409883E-003 + 45.000000000000000 -7.1613235404578094E-003 + 45.060000000000002 -7.0396994958033567E-003 + 45.119999999999990 -6.9207494681214413E-003 + 45.179999999999993 -6.8044595236444729E-003 + 45.239999999999995 -6.6908130594050697E-003 + 45.299999999999997 -6.5797916961151965E-003 + 45.359999999999999 -6.4713760840491566E-003 + 45.420000000000002 -6.3655443906211031E-003 + 45.479999999999990 -6.2622733872448625E-003 + 45.539999999999992 -6.1615378991521971E-003 + 45.599999999999994 -6.0633114632937342E-003 + 45.659999999999997 -5.9675660549205912E-003 + 45.719999999999999 -5.8742713269231911E-003 + 45.780000000000001 -5.7833957798174617E-003 + 45.840000000000003 -5.6949066895083033E-003 + 45.899999999999991 -5.6087699091848598E-003 + 45.959999999999994 -5.5249493523102230E-003 + 46.019999999999996 -5.4434081512570827E-003 + 46.079999999999998 -5.3641075298422845E-003 + 46.140000000000001 -5.2870075056977717E-003 + 46.200000000000003 -5.2120673400785668E-003 + 46.259999999999991 -5.1392441105256332E-003 + 46.319999999999993 -5.0684938803780824E-003 + 46.379999999999995 -4.9997725771851820E-003 + 46.439999999999998 -4.9330340553549006E-003 + 46.500000000000000 -4.8682313325525634E-003 + 46.560000000000002 -4.8053164171818581E-003 + 46.619999999999990 -4.7442411524564031E-003 + 46.679999999999993 -4.6849549773857833E-003 + 46.739999999999995 -4.6274084075802191E-003 + 46.799999999999997 -4.5715496563032264E-003 + 46.859999999999999 -4.5173269110872945E-003 + 46.920000000000002 -4.4646880444783078E-003 + 46.979999999999990 -4.4135793996357359E-003 + 47.039999999999992 -4.3639478843116725E-003 + 47.099999999999994 -4.3157397568903706E-003 + 47.159999999999997 -4.2689004008200290E-003 + 47.219999999999999 -4.2233753382099363E-003 + 47.280000000000001 -4.1791103685703893E-003 + 47.340000000000003 -4.1360496666938834E-003 + 47.399999999999991 -4.0941392126369689E-003 + 47.459999999999994 -4.0533238611829220E-003 + 47.519999999999996 -4.0135492538138258E-003 + 47.579999999999998 -3.9747601118087878E-003 + 47.640000000000001 -3.9369026100304245E-003 + 47.700000000000003 -3.8999222502813331E-003 + 47.759999999999991 -3.8637657307381773E-003 + 47.819999999999993 -3.8283800277823759E-003 + 47.879999999999995 -3.7937123898329770E-003 + 47.939999999999998 -3.7597109054332352E-003 + 48.000000000000000 -3.7263245215451903E-003 + 48.060000000000002 -3.6935025501113740E-003 + 48.119999999999990 -3.6611956567927369E-003 + 48.179999999999993 -3.6293552180118511E-003 + 48.239999999999995 -3.5979339777764728E-003 + 48.299999999999997 -3.5668851286865099E-003 + 48.359999999999999 -3.5361636841819721E-003 + 48.420000000000002 -3.5057256503629604E-003 + 48.479999999999990 -3.4755283627831411E-003 + 48.539999999999992 -3.4455303037915271E-003 + 48.599999999999994 -3.4156918380222091E-003 + 48.659999999999997 -3.3859746571374208E-003 + 48.719999999999999 -3.3563416181024803E-003 + 48.780000000000001 -3.3267577709807650E-003 + 48.840000000000003 -3.2971893957914633E-003 + 48.899999999999991 -3.2676047074847486E-003 + 48.959999999999994 -3.2379738899821291E-003 + 49.019999999999996 -3.2082682567923216E-003 + 49.079999999999998 -3.1784612759968370E-003 + 49.140000000000001 -3.1485283625778430E-003 + 49.200000000000003 -3.1184470729558465E-003 + 49.259999999999991 -3.0881964284890039E-003 + 49.319999999999993 -3.0577572709712037E-003 + 49.379999999999995 -3.0271129783063029E-003 + 49.439999999999998 -2.9962484411562942E-003 + 49.500000000000000 -2.9651506035412714E-003 + 49.560000000000002 -2.9338084706112479E-003 + 49.619999999999990 -2.9022130765027840E-003 + 49.679999999999993 -2.8703571234289177E-003 + 49.739999999999995 -2.8382352546689328E-003 + 49.799999999999997 -2.8058444410441110E-003 + 49.859999999999999 -2.7731832381782538E-003 + 49.920000000000002 -2.7402520600929353E-003 + 49.979999999999990 -2.7070533129715333E-003 + 50.039999999999992 -2.6735913920314992E-003 + 50.099999999999994 -2.6398723466622216E-003 + 50.159999999999997 -2.6059036995790740E-003 + 50.219999999999999 -2.5716950362949667E-003 + 50.280000000000001 -2.5372575344821324E-003 + 50.340000000000003 -2.5026038426263762E-003 + 50.399999999999991 -2.4677486310120075E-003 + 50.459999999999994 -2.4327075907274393E-003 + 50.519999999999996 -2.3974980528818236E-003 + 50.579999999999998 -2.3621386813329399E-003 + 50.640000000000001 -2.3266495558447895E-003 + 50.700000000000003 -2.2910520772989476E-003 + 50.759999999999991 -2.2553685538432046E-003 + 50.819999999999993 -2.2196225412633749E-003 + 50.879999999999995 -2.1838387503854968E-003 + 50.939999999999998 -2.1480430319900812E-003 + 51.000000000000000 -2.1122616117055064E-003 + 51.060000000000002 -2.0765216427008418E-003 + 51.119999999999990 -2.0408513579423769E-003 + 51.179999999999993 -2.0052793485126714E-003 + 51.239999999999995 -1.9698350424201434E-003 + 51.299999999999997 -1.9345476710391717E-003 + 51.359999999999999 -1.8994476123559802E-003 + 51.420000000000002 -1.8645653791929768E-003 + 51.479999999999990 -1.8299317130511053E-003 + 51.539999999999992 -1.7955774027658960E-003 + 51.599999999999994 -1.7615333763120735E-003 + 51.659999999999997 -1.7278307524757480E-003 + 51.719999999999999 -1.6945003614493254E-003 + 51.780000000000001 -1.6615732433820176E-003 + 51.840000000000003 -1.6290799557938758E-003 + 51.899999999999991 -1.5970507847964336E-003 + 51.959999999999994 -1.5655156450388209E-003 + 52.019999999999996 -1.5345042422170204E-003 + 52.079999999999998 -1.5040454202544494E-003 + 52.140000000000001 -1.4741677016993351E-003 + 52.200000000000003 -1.4448989430936670E-003 + 52.259999999999991 -1.4162659925160889E-003 + 52.319999999999993 -1.3882953770308789E-003 + 52.379999999999995 -1.3610122839982576E-003 + 52.439999999999998 -1.3344413301352401E-003 + 52.500000000000000 -1.3086060287100017E-003 + 52.560000000000002 -1.2835287660844948E-003 + 52.619999999999990 -1.2592309765113239E-003 + 52.679999999999993 -1.2357329128739501E-003 + 52.739999999999995 -1.2130536643718678E-003 + 52.799999999999997 -1.1912111442411370E-003 + 52.859999999999999 -1.1702217736651766E-003 + 52.920000000000002 -1.1501008025762767E-003 + 52.979999999999990 -1.1308622892944910E-003 + 53.039999999999992 -1.1125186323077769E-003 + 53.099999999999994 -1.0950810528313234E-003 + 53.159999999999997 -1.0785593155167950E-003 + 53.219999999999999 -1.0629616546242303E-003 + 53.280000000000001 -1.0482946888129853E-003 + 53.339999999999989 -1.0345636455226846E-003 + 53.399999999999991 -1.0217722949539378E-003 + 53.459999999999994 -1.0099227117284400E-003 + 53.519999999999996 -9.9901558596631325E-004 + 53.579999999999998 -9.8904985553427936E-004 + 53.640000000000001 -9.8002304410155900E-004 + 53.700000000000003 -9.7193093286220000E-004 + 53.759999999999991 -9.6476767889810305E-004 + 53.819999999999993 -9.5852605166772480E-004 + 53.879999999999995 -9.5319712387733127E-004 + 53.939999999999998 -9.4877042835838081E-004 + 54.000000000000000 -9.4523391286862430E-004 + 54.060000000000002 -9.4257414175228640E-004 + 54.119999999999990 -9.4077599968320723E-004 + 54.179999999999993 -9.3982290228379205E-004 + 54.239999999999995 -9.3969686431682119E-004 + 54.299999999999997 -9.4037846562248237E-004 + 54.359999999999999 -9.4184692997093011E-004 + 54.420000000000002 -9.4408001294565835E-004 + 54.479999999999990 -9.4705422965780006E-004 + 54.539999999999992 -9.5074473149396024E-004 + 54.599999999999994 -9.5512556041395149E-004 + 54.659999999999997 -9.6016951581134793E-004 + 54.719999999999999 -9.6584830344809960E-004 + 54.780000000000001 -9.7213248218991073E-004 + 54.839999999999989 -9.7899165437416837E-004 + 54.899999999999991 -9.8639442305612488E-004 + 54.959999999999994 -9.9430859470660596E-004 + 55.019999999999996 -1.0027011872291336E-003 + 55.079999999999998 -1.0115381502827493E-003 + 55.140000000000001 -1.0207850837000659E-003 + 55.200000000000003 -1.0304069511586644E-003 + 55.259999999999991 -1.0403682200550162E-003 + 55.319999999999993 -1.0506328611786478E-003 + 55.379999999999995 -1.0611643475301590E-003 + 55.439999999999998 -1.0719261161540200E-003 + 55.500000000000000 -1.0828811677943298E-003 + 55.560000000000002 -1.0939925326824867E-003 + 55.619999999999990 -1.1052230270516491E-003 + 55.679999999999993 -1.1165355905729678E-003 + 55.739999999999995 -1.1278932389025384E-003 + 55.799999999999997 -1.1392591121749886E-003 + 55.859999999999999 -1.1505964840052311E-003 + 55.920000000000002 -1.1618690182509618E-003 + 55.979999999999990 -1.1730407834552004E-003 + 56.039999999999992 -1.1840760890296366E-003 + 56.099999999999994 -1.1949400418805524E-003 + 56.159999999999997 -1.2055982468558765E-003 + 56.219999999999999 -1.2160167432932333E-003 + 56.280000000000001 -1.2261626078848434E-003 + 56.339999999999989 -1.2360034969786569E-003 + 56.399999999999991 -1.2455080405455422E-003 + 56.459999999999994 -1.2546455953085620E-003 + 56.519999999999996 -1.2633867669716321E-003 + 56.579999999999998 -1.2717030198011701E-003 + 56.640000000000001 -1.2795669592065148E-003 + 56.700000000000003 -1.2869522039348727E-003 + 56.759999999999991 -1.2938337888803377E-003 + 56.819999999999993 -1.3001878263446300E-003 + 56.879999999999995 -1.3059918677476919E-003 + 56.939999999999998 -1.3112243680347415E-003 + 57.000000000000000 -1.3158655368965913E-003 + 57.060000000000002 -1.3198965696314792E-003 + 57.119999999999990 -1.3233002648331174E-003 + 57.179999999999993 -1.3260606349319221E-003 + 57.239999999999995 -1.3281631082174142E-003 + 57.299999999999997 -1.3295945366651066E-003 + 57.359999999999999 -1.3303429160408896E-003 + 57.420000000000002 -1.3303979095712017E-003 + 57.479999999999990 -1.3297503562687660E-003 + 57.539999999999992 -1.3283925593983975E-003 + 57.599999999999994 -1.3263180020220533E-003 + 57.659999999999997 -1.3235217570446935E-003 + 57.719999999999999 -1.3200000595017874E-003 + 57.780000000000001 -1.3157506203323255E-003 + 57.839999999999989 -1.3107721730763759E-003 + 57.899999999999991 -1.3050649857798875E-003 + 57.959999999999994 -1.2986304824350802E-003 + 58.019999999999996 -1.2914712630917491E-003 + 58.079999999999998 -1.2835913210489894E-003 + 58.140000000000001 -1.2749955294021071E-003 + 58.200000000000003 -1.2656902909352838E-003 + 58.259999999999991 -1.2556828916903918E-003 + 58.319999999999993 -1.2449816976592303E-003 + 58.379999999999995 -1.2335962616237045E-003 + 58.439999999999998 -1.2215368004556424E-003 + 58.500000000000000 -1.2088149700121018E-003 + 58.560000000000002 -1.1954431124259828E-003 + 58.619999999999990 -1.1814345019592865E-003 + 58.679999999999993 -1.1668033937035985E-003 + 58.739999999999995 -1.1515649310239059E-003 + 58.799999999999997 -1.1357348681279062E-003 + 58.859999999999999 -1.1193298980610100E-003 + 58.920000000000002 -1.1023674593566403E-003 + 58.979999999999990 -1.0848656103497718E-003 + 59.039999999999992 -1.0668432286973649E-003 + 59.099999999999994 -1.0483197794009425E-003 + 59.159999999999997 -1.0293153248685143E-003 + 59.219999999999999 -1.0098507039086174E-003 + 59.280000000000001 -9.8994726881260209E-004 + 59.339999999999989 -9.6962666805241397E-004 + 59.399999999999991 -9.4891140116994328E-004 + 59.459999999999994 -9.2782433638567685E-004 + 59.519999999999996 -9.0638881662579351E-004 + 59.579999999999998 -8.8462866699636150E-004 + 59.640000000000001 -8.6256801519405985E-004 + 59.700000000000003 -8.4023144793513298E-004 + 59.759999999999991 -8.1764406112998635E-004 + 59.819999999999993 -7.9483115820172447E-004 + 59.879999999999995 -7.7181849342024451E-004 + 59.939999999999998 -7.4863206432296313E-004 + 60.000000000000000 -7.2529823197126824E-004 + 60.060000000000002 -7.0184370079474792E-004 + 60.119999999999990 -6.7829536363018747E-004 + 60.179999999999993 -6.5468052751706696E-004 + 60.239999999999995 -6.3102660561027289E-004 + 60.299999999999997 -6.0736138011358162E-004 + 60.359999999999999 -5.8371273768541081E-004 + 60.420000000000002 -5.6010882009947577E-004 + 60.479999999999990 -5.3657796005875233E-004 + 60.539999999999992 -5.1314852169933429E-004 + 60.599999999999994 -4.8984915320836688E-004 + 60.659999999999997 -4.6670843698430755E-004 + 60.719999999999999 -4.4375512024275206E-004 + 60.780000000000001 -4.2101784922196861E-004 + 60.839999999999989 -3.9852538192794348E-004 + 60.899999999999991 -3.7630634727538388E-004 + 60.959999999999994 -3.5438935370988520E-004 + 61.019999999999996 -3.3280281973550505E-004 + 61.079999999999998 -3.1157510575536738E-004 + 61.140000000000001 -2.9073436608414939E-004 + 61.200000000000003 -2.7030847850479577E-004 + 61.259999999999991 -2.5032513784732549E-004 + 61.319999999999993 -2.3081172063721666E-004 + 61.379999999999995 -2.1179524762715075E-004 + 61.439999999999998 -1.9330241864040906E-004 + 61.500000000000000 -1.7535948566986870E-004 + 61.560000000000002 -1.5799225636856096E-004 + 61.619999999999990 -1.4122603430242900E-004 + 61.679999999999993 -1.2508558390116845E-004 + 61.739999999999995 -1.0959506280965441E-004 + 61.799999999999997 -9.4778000489399665E-005 + 61.859999999999999 -8.0657206397815177E-005 + 61.920000000000002 -6.7254743886527169E-005 + 61.979999999999990 -5.4591894548314268E-005 + 62.039999999999992 -4.2689072967750776E-005 + 62.099999999999994 -3.1565809954813688E-005 + 62.159999999999997 -2.1240674375685767E-005 + 62.219999999999999 -1.1731245286816822E-005 + 62.280000000000001 -3.0540617604391124E-006 + 62.339999999999989 4.7754216288485967E-006 + 62.399999999999991 1.1742885562664322E-005 + 62.459999999999994 1.7835150258471201E-005 + 62.519999999999996 2.3040265424112481E-005 + 62.579999999999998 2.7347498346055795E-005 + 62.640000000000001 3.0747391979785431E-005 + 62.700000000000003 3.3231803826089100E-005 + 62.759999999999991 3.4793900010479450E-005 + 62.819999999999993 3.5428221379373451E-005 + 62.879999999999995 3.5130687238000161E-005 + 62.939999999999998 3.3898613327598730E-005 + 63.000000000000000 3.1730747077870686E-005 + 63.060000000000002 2.8627267893320573E-005 + 63.119999999999990 2.4589812076059655E-005 + 63.179999999999993 1.9621464019840605E-005 + 63.239999999999995 1.3726777813273959E-005 + 63.299999999999997 6.9117595410330014E-006 + 63.359999999999999 -8.1613305612909477E-007 + 63.420000000000002 -9.4480011532911314E-006 + 63.479999999999990 -1.8973527748482457E-005 + 63.539999999999992 -2.9381000628995840E-005 + 63.599999999999994 -4.0657337583218372E-005 + 63.659999999999997 -5.2788113321059700E-005 + 63.719999999999999 -6.5757611861083312E-005 + 63.780000000000001 -7.9548843691245859E-005 + 63.839999999999989 -9.4143618308885249E-005 + 63.899999999999991 -1.0952255210666590E-004 + 63.959999999999994 -1.2566516206642502E-004 + 64.019999999999996 -1.4254988732985993E-004 + 64.079999999999998 -1.6015410557594813E-004 + 64.140000000000001 -1.7845430220022484E-004 + 64.200000000000003 -1.9742597500815791E-004 + 64.259999999999991 -2.1704380889997946E-004 + 64.319999999999993 -2.3728167304683546E-004 + 64.379999999999995 -2.5811274420157397E-004 + 64.439999999999998 -2.7950941852101054E-004 + 64.500000000000000 -3.0144356655079053E-004 + 64.560000000000002 -3.2388652596419815E-004 + 64.619999999999990 -3.4680912382888124E-004 + 64.679999999999993 -3.7018178415255308E-004 + 64.739999999999995 -3.9397463006044919E-004 + 64.799999999999997 -4.1815756679007272E-004 + 64.859999999999999 -4.4270031189625110E-004 + 64.920000000000002 -4.6757247023530347E-004 + 64.979999999999990 -4.9274367716154084E-004 + 65.039999999999992 -5.1818358479067343E-004 + 65.099999999999994 -5.4386209713473905E-004 + 65.159999999999997 -5.6974924098026312E-004 + 65.219999999999999 -5.9581546683719659E-004 + 65.280000000000001 -6.2203147283069701E-004 + 65.339999999999989 -6.4836843393206343E-004 + 65.399999999999991 -6.7479797903785945E-004 + 65.459999999999994 -7.0129243162143527E-004 + 65.519999999999996 -7.2782457213811528E-004 + 65.579999999999998 -7.5436782734602864E-004 + 65.640000000000001 -7.8089636158231942E-004 + 65.700000000000003 -8.0738504849784754E-004 + 65.759999999999991 -8.3380945169057267E-004 + 65.819999999999993 -8.6014596555310067E-004 + 65.879999999999995 -8.8637180429780723E-004 + 65.939999999999998 -9.1246487240668605E-004 + 66.000000000000000 -9.3840394959421032E-004 + 66.060000000000002 -9.6416872715602165E-004 + 66.119999999999990 -9.8973962939288666E-004 + 66.179999999999993 -1.0150979899213441E-003 + 66.239999999999995 -1.0402258927486286E-003 + 66.299999999999997 -1.0651063507573777E-003 + 66.359999999999999 -1.0897233263151699E-003 + 66.420000000000002 -1.1140614077964624E-003 + 66.479999999999990 -1.1381059775589335E-003 + 66.539999999999992 -1.1618433104553963E-003 + 66.599999999999994 -1.1852605365359991E-003 + 66.659999999999997 -1.2083453895085684E-003 + 66.719999999999999 -1.2310862909499509E-003 + 66.780000000000001 -1.2534723891032898E-003 + 66.839999999999989 -1.2754935855783991E-003 + 66.899999999999991 -1.2971402812257085E-003 + 66.959999999999994 -1.3184035150894380E-003 + 67.019999999999996 -1.3392748774346170E-003 + 67.079999999999998 -1.3597462958960650E-003 + 67.140000000000001 -1.3798102885711047E-003 + 67.199999999999989 -1.3994598521889030E-003 + 67.259999999999991 -1.4186881114079881E-003 + 67.319999999999993 -1.4374886400724323E-003 + 67.379999999999995 -1.4558550122882475E-003 + 67.439999999999998 -1.4737813218372523E-003 + 67.500000000000000 -1.4912617114669819E-003 + 67.560000000000002 -1.5082903889089858E-003 + 67.619999999999990 -1.5248617092255055E-003 + 67.679999999999993 -1.5409697300247203E-003 + 67.739999999999995 -1.5566088155848988E-003 + 67.799999999999997 -1.5717732008430584E-003 + 67.859999999999999 -1.5864569656240731E-003 + 67.920000000000002 -1.6006539878104737E-003 + 67.979999999999990 -1.6143579840341643E-003 + 68.039999999999992 -1.6275625389962690E-003 + 68.099999999999994 -1.6402610791136903E-003 + 68.159999999999997 -1.6524466751237051E-003 + 68.219999999999999 -1.6641122687776810E-003 + 68.280000000000001 -1.6752505563694333E-003 + 68.339999999999989 -1.6858540490586960E-003 + 68.399999999999991 -1.6959148551079525E-003 + 68.459999999999994 -1.7054250562367050E-003 + 68.519999999999996 -1.7143765764648250E-003 + 68.579999999999998 -1.7227609243938987E-003 + 68.640000000000001 -1.7305696694378421E-003 + 68.699999999999989 -1.7377941184565041E-003 + 68.759999999999991 -1.7444256915440256E-003 + 68.819999999999993 -1.7504555120261801E-003 + 68.879999999999995 -1.7558749506040063E-003 + 68.939999999999998 -1.7606751290451695E-003 + 69.000000000000000 -1.7648473174014774E-003 + 69.060000000000002 -1.7683828282707456E-003 + 69.119999999999990 -1.7712731553956352E-003 + 69.179999999999993 -1.7735099436572187E-003 + 69.239999999999995 -1.7750849937402747E-003 + 69.299999999999997 -1.7759904103114487E-003 + 69.359999999999999 -1.7762186251353285E-003 + 69.420000000000002 -1.7757623434139923E-003 + 69.479999999999990 -1.7746148755243365E-003 + 69.539999999999992 -1.7727698773163153E-003 + 69.599999999999994 -1.7702216467925165E-003 + 69.659999999999997 -1.7669649200057081E-003 + 69.719999999999999 -1.7629953915046449E-003 + 69.780000000000001 -1.7583092724872773E-003 + 69.839999999999989 -1.7529038048060888E-003 + 69.899999999999991 -1.7467768082510390E-003 + 69.959999999999994 -1.7399272818833804E-003 + 70.019999999999996 -1.7323552374782834E-003 + 70.079999999999998 -1.7240614854448946E-003 + 70.140000000000001 -1.7150481812426592E-003 + 70.199999999999989 -1.7053185130026286E-003 + 70.259999999999991 -1.6948767315788384E-003 + 70.319999999999993 -1.6837285384345452E-003 + 70.379999999999995 -1.6718807290739518E-003 + 70.439999999999998 -1.6593411941589491E-003 + 70.500000000000000 -1.6461192820706040E-003 + 70.560000000000002 -1.6322255036369956E-003 + 70.619999999999990 -1.6176716827945989E-003 + 70.679999999999993 -1.6024707500668202E-003 + 70.739999999999995 -1.5866370082038863E-003 + 70.799999999999997 -1.5701861367172980E-003 + 70.859999999999999 -1.5531348580363222E-003 + 70.920000000000002 -1.5355011247595652E-003 + 70.979999999999990 -1.5173042950063485E-003 + 71.039999999999992 -1.4985647388512844E-003 + 71.099999999999994 -1.4793039272412494E-003 + 71.159999999999997 -1.4595447161217876E-003 + 71.219999999999999 -1.4393108534247062E-003 + 71.280000000000001 -1.4186272526887386E-003 + 71.339999999999989 -1.3975198223021468E-003 + 71.399999999999991 -1.3760153644188896E-003 + 71.459999999999994 -1.3541415921602927E-003 + 71.519999999999996 -1.3319272177195610E-003 + 71.579999999999998 -1.3094015967916770E-003 + 71.640000000000001 -1.2865948189036865E-003 + 71.699999999999989 -1.2635377745204926E-003 + 71.759999999999991 -1.2402615895043788E-003 + 71.819999999999993 -1.2167982489440748E-003 + 71.879999999999995 -1.1931798869685294E-003 + 71.939999999999998 -1.1694390186144043E-003 + 72.000000000000000 -1.1456084871441714E-003 + 72.060000000000002 -1.1217210170625411E-003 + 72.119999999999990 -1.0978096693030994E-003 + 72.179999999999993 -1.0739074852823282E-003 + 72.239999999999995 -1.0500473380376009E-003 + 72.299999999999997 -1.0262618759424936E-003 + 72.359999999999999 -1.0025836359161273E-003 + 72.420000000000002 -9.7904451970206360E-004 + 72.479999999999990 -9.5567628656055776E-004 + 72.539999999999992 -9.3251009603180371E-004 + 72.599999999999994 -9.0957645403625526E-004 + 72.659999999999997 -8.8690533320915548E-004 + 72.719999999999999 -8.6452589013430588E-004 + 72.780000000000001 -8.4246650579443460E-004 + 72.839999999999989 -8.2075459636428232E-004 + 72.899999999999991 -7.9941676202919566E-004 + 72.959999999999994 -7.7847849340214096E-004 + 73.019999999999996 -7.5796432139004692E-004 + 73.079999999999998 -7.3789747718088752E-004 + 73.140000000000001 -7.1830018614834202E-004 + 73.199999999999989 -6.9919326466162906E-004 + 73.259999999999991 -6.8059636724035781E-004 + 73.319999999999993 -6.6252784174802371E-004 + 73.379999999999995 -6.4500465451097246E-004 + 73.439999999999998 -6.2804239144034790E-004 + 73.500000000000000 -6.1165523964564936E-004 + 73.560000000000002 -5.9585594374577896E-004 + 73.619999999999990 -5.8065575702115780E-004 + 73.679999999999993 -5.6606454844049150E-004 + 73.739999999999995 -5.5209065149403470E-004 + 73.799999999999997 -5.3874103228996229E-004 + 73.859999999999999 -5.2602106344909623E-004 + 73.920000000000002 -5.1393471485065476E-004 + 73.979999999999990 -5.0248437941902721E-004 + 74.039999999999992 -4.9167106462288718E-004 + 74.099999999999994 -4.8149441891675362E-004 + 74.159999999999997 -4.7195248125905787E-004 + 74.219999999999999 -4.6304198228469724E-004 + 74.280000000000001 -4.5475827384961815E-004 + 74.339999999999989 -4.4709535000400614E-004 + 74.399999999999991 -4.4004584828936341E-004 + 74.459999999999994 -4.3360118302168422E-004 + 74.519999999999996 -4.2775155212095570E-004 + 74.579999999999998 -4.2248590485432629E-004 + 74.640000000000001 -4.1779205610762582E-004 + 74.699999999999989 -4.1365680414470735E-004 + 74.759999999999991 -4.1006581244324775E-004 + 74.819999999999993 -4.0700380605749903E-004 + 74.879999999999995 -4.0445460726748950E-004 + 74.939999999999998 -4.0240114759134484E-004 + 75.000000000000000 -4.0082555914112663E-004 + 75.060000000000002 -3.9970916951564001E-004 + 75.119999999999990 -3.9903267786109908E-004 + 75.179999999999993 -3.9877610578961653E-004 + 75.239999999999995 -3.9891895377413802E-004 + 75.299999999999997 -3.9944021377132533E-004 + 75.359999999999999 -4.0031848157640808E-004 + 75.420000000000002 -4.0153191031980391E-004 + 75.479999999999990 -4.0305841911133567E-004 + 75.539999999999992 -4.0487571813118545E-004 + 75.599999999999994 -4.0696134553216821E-004 + 75.659999999999997 -4.0929276303591230E-004 + 75.719999999999999 -4.1184744024834219E-004 + 75.780000000000001 -4.1460291304042720E-004 + 75.839999999999989 -4.1753683551422474E-004 + 75.899999999999991 -4.2062710403789383E-004 + 75.959999999999994 -4.2385186216917204E-004 + 76.019999999999996 -4.2718959566679184E-004 + 76.079999999999998 -4.3061923424823743E-004 + 76.140000000000001 -4.3412011594299769E-004 + 76.199999999999989 -4.3767212840265212E-004 + 76.259999999999991 -4.4125573143750452E-004 + 76.319999999999993 -4.4485199474394288E-004 + 76.379999999999995 -4.4844262365577173E-004 + 76.439999999999998 -4.5201008654869131E-004 + 76.500000000000000 -4.5553757605448932E-004 + 76.560000000000002 -4.5900913450583417E-004 + 76.619999999999990 -4.6240953900384139E-004 + 76.679999999999993 -4.6572457461725416E-004 + 76.739999999999995 -4.6894087814998019E-004 + 76.799999999999997 -4.7204598079096872E-004 + 76.859999999999999 -4.7502851654483876E-004 + 76.920000000000002 -4.7787805500232376E-004 + 76.979999999999990 -4.8058524753977482E-004 + 77.039999999999992 -4.8314187571779600E-004 + 77.099999999999994 -4.8554078096303102E-004 + 77.159999999999997 -4.8777599264857713E-004 + 77.219999999999999 -4.8984258166378831E-004 + 77.280000000000001 -4.9173695430598243E-004 + 77.339999999999989 -4.9345654440552270E-004 + 77.399999999999991 -4.9500006358122210E-004 + 77.459999999999994 -4.9636738877912841E-004 + 77.519999999999996 -4.9755951638721842E-004 + 77.579999999999998 -4.9857870128350735E-004 + 77.640000000000001 -4.9942827232629476E-004 + 77.699999999999989 -5.0011269500619402E-004 + 77.759999999999991 -5.0063751881117182E-004 + 77.819999999999993 -5.0100942643210703E-004 + 77.879999999999995 -5.0123605941888416E-004 + 77.939999999999998 -5.0132610644896929E-004 + 78.000000000000000 -5.0128926066966026E-004 + 78.060000000000002 -5.0113606739814469E-004 + 78.119999999999990 -5.0087804227368993E-004 + 78.179999999999993 -5.0052758320631588E-004 + 78.239999999999995 -5.0009784858547773E-004 + 78.299999999999997 -4.9960285459199562E-004 + 78.359999999999999 -4.9905730615832028E-004 + 78.420000000000002 -4.9847666258357446E-004 + 78.479999999999990 -4.9787705675089660E-004 + 78.539999999999992 -4.9727517780506672E-004 + 78.599999999999994 -4.9668835969931798E-004 + 78.659999999999997 -4.9613433285953937E-004 + 78.719999999999999 -4.9563133902421675E-004 + 78.780000000000001 -4.9519801375467706E-004 + 78.839999999999989 -4.9485335439559876E-004 + 78.899999999999991 -4.9461651804874021E-004 + 78.959999999999994 -4.9450692471182970E-004 + 79.019999999999996 -4.9454403306289755E-004 + 79.079999999999998 -4.9474740956358197E-004 + 79.140000000000001 -4.9513655546751679E-004 + 79.199999999999989 -4.9573084430617272E-004 + 79.259999999999991 -4.9654943909641471E-004 + 79.319999999999993 -4.9761126687530139E-004 + 79.379999999999995 -4.9893492143807247E-004 + 79.439999999999998 -5.0053856888987393E-004 + 79.500000000000000 -5.0243992421619514E-004 + 79.560000000000002 -5.0465610332965649E-004 + 79.619999999999990 -5.0720362492808510E-004 + 79.679999999999993 -5.1009835120372101E-004 + 79.739999999999995 -5.1335535521673673E-004 + 79.799999999999997 -5.1698897098986145E-004 + 79.859999999999999 -5.2101260059053255E-004 + 79.920000000000002 -5.2543877509038460E-004 + 79.979999999999990 -5.3027905403079322E-004 + 80.039999999999992 -5.3554384042730607E-004 + 80.099999999999994 -5.4124266977493803E-004 + 80.159999999999997 -5.4738377366144299E-004 + 80.219999999999999 -5.5397423085914944E-004 + 80.280000000000001 -5.6101992988779378E-004 + 80.340000000000003 -5.6852550438877495E-004 + 80.400000000000006 -5.7649415094146320E-004 + 80.460000000000008 -5.8492778732662225E-004 + 80.519999999999982 -5.9382691884332715E-004 + 80.579999999999984 -6.0319067150279616E-004 + 80.639999999999986 -6.1301662767841497E-004 + 80.699999999999989 -6.2330087371802536E-004 + 80.759999999999991 -6.3403810022200058E-004 + 80.819999999999993 -6.4522127436081051E-004 + 80.879999999999995 -6.5684195365709537E-004 + 80.939999999999998 -6.6889018279945645E-004 + 81.000000000000000 -6.8135433579032004E-004 + 81.060000000000002 -6.9422125296099630E-004 + 81.120000000000005 -7.0747622006785832E-004 + 81.180000000000007 -7.2110303517584364E-004 + 81.240000000000009 -7.3508376701410174E-004 + 81.299999999999983 -7.4939915572405473E-004 + 81.359999999999985 -7.6402832704200820E-004 + 81.419999999999987 -7.7894903543470131E-004 + 81.479999999999990 -7.9413748488165587E-004 + 81.539999999999992 -8.0956862367942526E-004 + 81.599999999999994 -8.2521590600887580E-004 + 81.659999999999997 -8.4105173866190887E-004 + 81.719999999999999 -8.5704700994074256E-004 + 81.780000000000001 -8.7317161080060991E-004 + 81.840000000000003 -8.8939433618838058E-004 + 81.900000000000006 -9.0568278257676055E-004 + 81.960000000000008 -9.2200371962766964E-004 + 82.019999999999982 -9.3832304845556890E-004 + 82.079999999999984 -9.5460569937857423E-004 + 82.139999999999986 -9.7081594976406783E-004 + 82.199999999999989 -9.8691735836998486E-004 + 82.259999999999991 -1.0028729219926733E-003 + 82.319999999999993 -1.0186451889489469E-003 + 82.379999999999995 -1.0341960828664032E-003 + 82.439999999999998 -1.0494874356119701E-003 + 82.500000000000000 -1.0644805980486432E-003 + 82.560000000000002 -1.0791367701609208E-003 + 82.620000000000005 -1.0934170344176434E-003 + 82.680000000000007 -1.1072826231077718E-003 + 82.740000000000009 -1.1206947139188778E-003 + 82.799999999999983 -1.1336147576059374E-003 + 82.859999999999985 -1.1460042406236846E-003 + 82.919999999999987 -1.1578254734125599E-003 + 82.979999999999990 -1.1690408542053587E-003 + 83.039999999999992 -1.1796135601684641E-003 + 83.099999999999994 -1.1895074826155231E-003 + 83.159999999999997 -1.1986870330564733E-003 + 83.219999999999999 -1.2071179801828797E-003 + 83.280000000000001 -1.2147668619838642E-003 + 83.340000000000003 -1.2216010749156376E-003 + 83.400000000000006 -1.2275895359812219E-003 + 83.460000000000008 -1.2327024030858542E-003 + 83.519999999999982 -1.2369110282432773E-003 + 83.579999999999984 -1.2401882147217034E-003 + 83.639999999999986 -1.2425083760575879E-003 + 83.699999999999989 -1.2438473653186960E-003 + 83.759999999999991 -1.2441828411821885E-003 + 83.819999999999993 -1.2434938072012152E-003 + 83.879999999999995 -1.2417614448472717E-003 + 83.939999999999998 -1.2389683957643081E-003 + 84.000000000000000 -1.2350991533432003E-003 + 84.060000000000002 -1.2301402943940914E-003 + 84.120000000000005 -1.2240800482694969E-003 + 84.180000000000007 -1.2169088432430833E-003 + 84.240000000000009 -1.2086189807339665E-003 + 84.299999999999983 -1.1992047877159879E-003 + 84.359999999999985 -1.1886626770795873E-003 + 84.419999999999987 -1.1769911992608115E-003 + 84.479999999999990 -1.1641908373073821E-003 + 84.539999999999992 -1.1502643521049761E-003 + 84.599999999999994 -1.1352166307477608E-003 + 84.659999999999997 -1.1190548067622299E-003 + 84.719999999999999 -1.1017881847414195E-003 + 84.780000000000001 -1.0834279739461107E-003 + 84.840000000000003 -1.0639877997354694E-003 + 84.900000000000006 -1.0434833757465688E-003 + 84.960000000000008 -1.0219323224668155E-003 + 85.019999999999982 -9.9935468510785981E-004 + 85.079999999999984 -9.7577221399651373E-004 + 85.139999999999986 -9.5120880313044370E-004 + 85.199999999999989 -9.2569038004518169E-004 + 85.259999999999991 -8.9924457481367767E-004 + 85.319999999999993 -8.7190084455805728E-004 + 85.379999999999995 -8.4369062165870132E-004 + 85.439999999999998 -8.1464676862962743E-004 + 85.500000000000000 -7.8480395762405637E-004 + 85.560000000000002 -7.5419828422390253E-004 + 85.620000000000005 -7.2286736529981197E-004 + 85.680000000000007 -6.9085024426533107E-004 + 85.740000000000009 -6.5818722075312397E-004 + 85.799999999999983 -6.2491984724381410E-004 + 85.859999999999985 -5.9109090409615022E-004 + 85.919999999999987 -5.5674411082479972E-004 + 85.979999999999990 -5.2192425147454453E-004 + 86.039999999999992 -4.8667700534736261E-004 + 86.099999999999994 -4.5104878275038990E-004 + 86.159999999999997 -4.1508676381669832E-004 + 86.219999999999999 -3.7883864302292505E-004 + 86.280000000000001 -3.4235268770336445E-004 + 86.340000000000003 -3.0567752429635126E-004 + 86.400000000000006 -2.6886207631729496E-004 + 86.460000000000008 -2.3195547810579876E-004 + 86.519999999999982 -1.9500692152200604E-004 + 86.579999999999984 -1.5806558951245869E-004 + 86.639999999999986 -1.2118053110942940E-004 + 86.699999999999989 -8.4400567903412954E-005 + 86.759999999999991 -4.7774172338537782E-005 + 86.819999999999993 -1.1349376141923211E-005 + 86.879999999999995 2.4826330208637746E-005 + 86.939999999999998 6.0706120304416099E-005 + 87.000000000000000 9.6243935169239552E-005 + 87.060000000000002 1.3139454249367396E-004 + 87.120000000000005 1.6611368839808090E-004 + 87.180000000000007 2.0035816257513140E-004 + 87.240000000000009 2.3408589350957477E-004 + 87.299999999999983 2.6725605610626899E-004 + 87.359999999999985 2.9982910915641843E-004 + 87.419999999999987 3.3176695481902305E-004 + 87.479999999999990 3.6303293122520161E-004 + 87.539999999999992 3.9359193115119396E-004 + 87.599999999999994 4.2341048793383303E-004 + 87.659999999999997 4.5245675964002412E-004 + 87.719999999999999 4.8070067478213292E-004 + 87.780000000000001 5.0811388708646172E-004 + 87.840000000000003 5.3466991257498204E-004 + 87.900000000000006 5.6034407425972765E-004 + 87.960000000000008 5.8511363992819697E-004 + 88.019999999999982 6.0895776660578453E-004 + 88.079999999999984 6.3185755120728098E-004 + 88.139999999999986 6.5379610745317277E-004 + 88.199999999999989 6.7475838336546960E-004 + 88.259999999999991 6.9473145825816479E-004 + 88.319999999999993 7.1370440372237032E-004 + 88.379999999999995 7.3166817996041429E-004 + 88.439999999999998 7.4861585877842348E-004 + 88.500000000000000 7.6454250654301088E-004 + 88.560000000000002 7.7944519416921546E-004 + 88.620000000000005 7.9332290772993956E-004 + 88.680000000000007 8.0617671213918868E-004 + 88.740000000000009 8.1800956504925464E-004 + 88.799999999999983 8.2882637091197459E-004 + 88.859999999999985 8.3863391161735222E-004 + 88.919999999999987 8.4744086213099418E-004 + 88.979999999999990 8.5525760943791734E-004 + 89.039999999999992 8.6209640990462144E-004 + 89.099999999999994 8.6797109968036979E-004 + 89.159999999999997 8.7289726167734112E-004 + 89.219999999999999 8.7689200404428974E-004 + 89.280000000000001 8.7997390538310587E-004 + 89.340000000000003 8.8216295058506967E-004 + 89.400000000000006 8.8348052389538689E-004 + 89.460000000000008 8.8394937013664906E-004 + 89.519999999999982 8.8359324527798554E-004 + 89.579999999999984 8.8243723562377496E-004 + 89.639999999999986 8.8050729207355294E-004 + 89.699999999999989 8.7783049735481859E-004 + 89.759999999999991 8.7443476068878897E-004 + 89.819999999999993 8.7034887708094071E-004 + 89.879999999999995 8.6560245375608125E-004 + 89.939999999999998 8.6022564889923258E-004 + 90.000000000000000 8.5424943586436366E-004 + 90.060000000000002 8.4770530307148428E-004 + 90.120000000000005 8.4062518890518090E-004 + 90.180000000000007 8.3304153275949610E-004 + 90.240000000000009 8.2498700579423381E-004 + 90.299999999999983 8.1649477849974651E-004 + 90.359999999999985 8.0759809830625254E-004 + 90.419999999999987 7.9833049959193443E-004 + 90.479999999999990 7.8872543412370660E-004 + 90.539999999999992 7.7881644586097866E-004 + 90.599999999999994 7.6863704316481229E-004 + 90.659999999999997 7.5822063403956736E-004 + 90.719999999999999 7.4760038388650154E-004 + 90.780000000000001 7.3680921504816325E-004 + 90.840000000000003 7.2587977054400948E-004 + 90.900000000000006 7.1484433022626004E-004 + 90.960000000000008 7.0373478209012196E-004 + 91.019999999999982 6.9258244032394209E-004 + 91.079999999999984 6.8141826340793429E-004 + 91.139999999999986 6.7027258588743413E-004 + 91.199999999999989 6.5917514398708204E-004 + 91.259999999999991 6.4815512165758546E-004 + 91.319999999999993 6.3724095692330954E-004 + 91.379999999999995 6.2646047706140971E-004 + 91.439999999999998 6.1584085261372776E-004 + 91.500000000000000 6.0540843747484594E-004 + 91.560000000000002 5.9518884701281716E-004 + 91.620000000000005 5.8520695304138258E-004 + 91.680000000000007 5.7548680654516057E-004 + 91.739999999999981 5.6605163365481463E-004 + 91.799999999999983 5.5692382539110168E-004 + 91.859999999999985 5.4812497663380680E-004 + 91.919999999999987 5.3967569799689909E-004 + 91.979999999999990 5.3159576684760315E-004 + 92.039999999999992 5.2390404781280911E-004 + 92.099999999999994 5.1661852137368201E-004 + 92.159999999999997 5.0975620796565619E-004 + 92.219999999999999 5.0333320365481850E-004 + 92.280000000000001 4.9736456848973026E-004 + 92.340000000000003 4.9186456487894381E-004 + 92.400000000000006 4.8684632653378242E-004 + 92.460000000000008 4.8232215506851573E-004 + 92.519999999999982 4.7830332295941308E-004 + 92.579999999999984 4.7480018880884193E-004 + 92.639999999999986 4.7182208061577989E-004 + 92.699999999999989 4.6937734322723888E-004 + 92.759999999999991 4.6747337820462397E-004 + 92.819999999999993 4.6611663947433631E-004 + 92.879999999999995 4.6531254180784420E-004 + 92.939999999999998 4.6506553993186752E-004 + 93.000000000000000 4.6537916712895990E-004 + 93.060000000000002 4.6625587577194401E-004 + 93.120000000000005 4.6769718902427642E-004 + 93.180000000000007 4.6970377282571388E-004 + 93.239999999999981 4.7227520050107768E-004 + 93.299999999999983 4.7541013237112291E-004 + 93.359999999999985 4.7910634145321664E-004 + 93.419999999999987 4.8336060126877393E-004 + 93.479999999999990 4.8816883099637119E-004 + 93.539999999999992 4.9352596225097408E-004 + 93.599999999999994 4.9942608728304361E-004 + 93.659999999999997 5.0586243396049627E-004 + 93.719999999999999 5.1282732976877065E-004 + 93.780000000000001 5.2031231398310459E-004 + 93.840000000000003 5.2830803436947191E-004 + 93.900000000000006 5.3680429224229882E-004 + 93.960000000000008 5.4579022787425244E-004 + 94.019999999999982 5.5525402884397065E-004 + 94.079999999999984 5.6518323039279276E-004 + 94.139999999999986 5.7556455838209944E-004 + 94.199999999999989 5.8638400073126901E-004 + 94.259999999999991 5.9762688246760114E-004 + 94.319999999999993 6.0927781781117227E-004 + 94.379999999999995 6.2132070206703251E-004 + 94.439999999999998 6.3373885755221902E-004 + 94.500000000000000 6.4651496327049554E-004 + 94.560000000000002 6.5963117882153477E-004 + 94.620000000000005 6.7306892500582430E-004 + 94.680000000000007 6.8680933618646954E-004 + 94.739999999999981 7.0083295253872691E-004 + 94.799999999999983 7.1511982624084675E-004 + 94.859999999999985 7.2964972871919563E-004 + 94.919999999999987 7.4440188711599189E-004 + 94.979999999999990 7.5935528748769009E-004 + 95.039999999999992 7.7448870779180459E-004 + 95.099999999999994 7.8978049383689967E-004 + 95.159999999999997 8.0520880787757546E-004 + 95.219999999999999 8.2075171753247429E-004 + 95.280000000000001 8.3638698645734978E-004 + 95.340000000000003 8.5209233172880853E-004 + 95.400000000000006 8.6784533581336801E-004 + 95.460000000000008 8.8362343132910822E-004 + 95.519999999999982 8.9940421342314550E-004 + 95.579999999999984 9.1516503412545573E-004 + 95.639999999999986 9.3088339261464281E-004 + 95.699999999999989 9.4653680764828787E-004 + 95.759999999999991 9.6210289960101981E-004 + 95.819999999999993 9.7755932857012274E-004 + 95.879999999999995 9.9288412052684922E-004 + 95.939999999999998 1.0080551763242537E-003 + 96.000000000000000 1.0230507901999863E-003 + 96.060000000000002 1.0378496265944699E-003 + 96.120000000000005 1.0524304277757860E-003 + 96.180000000000007 1.0667723933135208E-003 + 96.239999999999981 1.0808549337518246E-003 + 96.299999999999983 1.0946581333839606E-003 + 96.359999999999985 1.1081621898720510E-003 + 96.419999999999987 1.1213478363275063E-003 + 96.479999999999990 1.1341964293220524E-003 + 96.539999999999992 1.1466896683028892E-003 + 96.599999999999994 1.1588098405441801E-003 + 96.659999999999997 1.1705396675126137E-003 + 96.719999999999999 1.1818625368041214E-003 + 96.780000000000001 1.1927623666597026E-003 + 96.840000000000003 1.2032233659613270E-003 + 96.900000000000006 1.2132308304891959E-003 + 96.960000000000008 1.2227704428529054E-003 + 97.019999999999982 1.2318283874990846E-003 + 97.079999999999984 1.2403916250723099E-003 + 97.139999999999986 1.2484477036611462E-003 + 97.199999999999989 1.2559847137034942E-003 + 97.259999999999991 1.2629917461564036E-003 + 97.319999999999993 1.2694582621856161E-003 + 97.379999999999995 1.2753746182407337E-003 + 97.439999999999998 1.2807318894676740E-003 + 97.500000000000000 1.2855215993925024E-003 + 97.560000000000002 1.2897361814013391E-003 + 97.620000000000005 1.2933688603186874E-003 + 97.680000000000007 1.2964136819591946E-003 + 97.739999999999981 1.2988652346119570E-003 + 97.799999999999983 1.3007187903863425E-003 + 97.859999999999985 1.3019706761924074E-003 + 97.919999999999987 1.3026177490491851E-003 + 97.979999999999990 1.3026576021636922E-003 + 98.039999999999992 1.3020885762159626E-003 + 98.099999999999994 1.3009098164918791E-003 + 98.159999999999997 1.2991210040723396E-003 + 98.219999999999999 1.2967226489643295E-003 + 98.280000000000001 1.2937159614950162E-003 + 98.340000000000003 1.2901028778278005E-003 + 98.400000000000006 1.2858858935820183E-003 + 98.460000000000008 1.2810682963522208E-003 + 98.519999999999982 1.2756540057490026E-003 + 98.579999999999984 1.2696475643966293E-003 + 98.639999999999986 1.2630539191468147E-003 + 98.699999999999989 1.2558790435624274E-003 + 98.759999999999991 1.2481292313710024E-003 + 98.819999999999993 1.2398114207247798E-003 + 98.879999999999995 1.2309331841397078E-003 + 98.939999999999998 1.2215025859457647E-003 + 99.000000000000000 1.2115280832290427E-003 + 99.060000000000002 1.2010188408288079E-003 + 99.120000000000005 1.1899842661143320E-003 + 99.180000000000007 1.1784344258141063E-003 + 99.239999999999981 1.1663797412799879E-003 + 99.299999999999983 1.1538309424038765E-003 + 99.359999999999985 1.1407992765698519E-003 + 99.419999999999987 1.1272961809538787E-003 + 99.479999999999990 1.1133334307985056E-003 + 99.539999999999992 1.0989232538919445E-003 + 99.599999999999994 1.0840778437128441E-003 + 99.659999999999997 1.0688100983885411E-003 + 99.719999999999999 1.0531325746150253E-003 + 99.780000000000001 1.0370583167227223E-003 + 99.840000000000003 1.0206004519209019E-003 + 99.900000000000006 1.0037723291217860E-003 + 99.960000000000008 9.8658720611659334E-004 + 100.01999999999998 9.6905849763775638E-004 + 100.07999999999998 9.5119967747111177E-004 + 100.13999999999999 9.3302418447883094E-004 + 100.19999999999999 9.1454550349886598E-004 + 100.25999999999999 8.9577687668545192E-004 + 100.31999999999999 8.7673162224187983E-004 + 100.38000000000000 8.5742287568554940E-004 + 100.44000000000000 8.3786366272654313E-004 + 100.50000000000000 8.1806674293607225E-004 + 100.56000000000000 7.9804486278574869E-004 + 100.62000000000000 7.7781036396326728E-004 + 100.68000000000001 7.5737545040932498E-004 + 100.73999999999998 7.3675204760316926E-004 + 100.79999999999998 7.1595180382567208E-004 + 100.85999999999999 6.9498614194969958E-004 + 100.91999999999999 6.7386615415333893E-004 + 100.97999999999999 6.5260261186256068E-004 + 101.03999999999999 6.3120602020258845E-004 + 101.09999999999999 6.0968662915322411E-004 + 101.16000000000000 5.8805425039031771E-004 + 101.22000000000000 5.6631841812814984E-004 + 101.28000000000000 5.4448831324876675E-004 + 101.34000000000000 5.2257288688306591E-004 + 101.40000000000001 5.0058052764761379E-004 + 101.46000000000001 4.7851951374481953E-004 + 101.51999999999998 4.5639759566992174E-004 + 101.57999999999998 4.3422226258229711E-004 + 101.63999999999999 4.1200060124069535E-004 + 101.69999999999999 3.8973935704441373E-004 + 101.75999999999999 3.6744495912666045E-004 + 101.81999999999999 3.4512341520682218E-004 + 101.88000000000000 3.2278048047712103E-004 + 101.94000000000000 3.0042153508040651E-004 + 102.00000000000000 2.7805166859462961E-004 + 102.06000000000000 2.5567567603212256E-004 + 102.12000000000000 2.3329811293770251E-004 + 102.18000000000001 2.1092325976372153E-004 + 102.23999999999998 1.8855517151291487E-004 + 102.29999999999998 1.6619773408113299E-004 + 102.35999999999999 1.4385464452342761E-004 + 102.41999999999999 1.2152945793723706E-004 + 102.47999999999999 9.9225591854111415E-005 + 102.53999999999999 7.6946398947703166E-005 + 102.59999999999999 5.4695107692272001E-005 + 102.66000000000000 3.2474902105500910E-005 + 102.72000000000000 1.0288935428342703E-005 + 102.78000000000000 -1.1859690650700793E-005 + 102.84000000000000 -3.3967864563886135E-005 + 102.90000000000001 -5.6032480809228337E-005 + 102.96000000000001 -7.8050422585157920E-005 + 103.01999999999998 -1.0001851984442989E-004 + 103.07999999999998 -1.2193359983342785E-004 + 103.13999999999999 -1.4379242524412145E-004 + 103.19999999999999 -1.6559166489700408E-004 + 103.25999999999999 -1.8732791309106325E-004 + 103.31999999999999 -2.0899766006689631E-004 + 103.38000000000000 -2.3059727955153565E-004 + 103.44000000000000 -2.5212299460026919E-004 + 103.50000000000000 -2.7357089543761571E-004 + 103.56000000000000 -2.9493684666768842E-004 + 103.62000000000000 -3.1621661922042658E-004 + 103.68000000000001 -3.3740571196703723E-004 + 103.73999999999998 -3.5849938229159375E-004 + 103.79999999999998 -3.7949275542772172E-004 + 103.85999999999999 -4.0038060469255388E-004 + 103.91999999999999 -4.2115753139965786E-004 + 103.97999999999999 -4.4181783579549466E-004 + 104.03999999999999 -4.6235559057274122E-004 + 104.09999999999999 -4.8276461347165342E-004 + 104.16000000000000 -5.0303842589361674E-004 + 104.22000000000000 -5.2317030065275475E-004 + 104.28000000000000 -5.4315333386486685E-004 + 104.34000000000000 -5.6298032541297969E-004 + 104.40000000000001 -5.8264386220758949E-004 + 104.46000000000001 -6.0213622176076640E-004 + 104.51999999999998 -6.2144958463882535E-004 + 104.57999999999998 -6.4057577698329107E-004 + 104.63999999999999 -6.5950654424805659E-004 + 104.69999999999999 -6.7823339077084991E-004 + 104.75999999999999 -6.9674757294343114E-004 + 104.81999999999999 -7.1504025841240694E-004 + 104.88000000000000 -7.3310238218598535E-004 + 104.94000000000000 -7.5092472178002283E-004 + 105.00000000000000 -7.6849800275180990E-004 + 105.06000000000000 -7.8581269176748183E-004 + 105.12000000000000 -8.0285922516487107E-004 + 105.18000000000001 -8.1962787276732138E-004 + 105.23999999999998 -8.3610888007508758E-004 + 105.29999999999998 -8.5229240106686943E-004 + 105.35999999999999 -8.6816845218582708E-004 + 105.41999999999999 -8.8372708074362853E-004 + 105.47999999999999 -8.9895833659405216E-004 + 105.53999999999999 -9.1385213375860515E-004 + 105.59999999999999 -9.2839848002768664E-004 + 105.66000000000000 -9.4258733164026792E-004 + 105.72000000000000 -9.5640880825067327E-004 + 105.78000000000000 -9.6985305507597537E-004 + 105.84000000000000 -9.8291010684310536E-004 + 105.90000000000001 -9.9557032796108698E-004 + 105.96000000000001 -1.0078240974316205E-003 + 106.01999999999998 -1.0196617640865721E-003 + 106.07999999999998 -1.0310740055197939E-003 + 106.13999999999999 -1.0420515810120551E-003 + 106.19999999999999 -1.0525855571861715E-003 + 106.25999999999999 -1.0626671463248873E-003 + 106.31999999999999 -1.0722876107045079E-003 + 106.38000000000000 -1.0814385714131853E-003 + 106.44000000000000 -1.0901118499092809E-003 + 106.50000000000000 -1.0982998529155883E-003 + 106.56000000000000 -1.1059949671959530E-003 + 106.62000000000000 -1.1131898519703754E-003 + 106.68000000000001 -1.1198777171143842E-003 + 106.73999999999998 -1.1260519268888488E-003 + 106.79999999999998 -1.1317062461220415E-003 + 106.85999999999999 -1.1368348568518462E-003 + 106.91999999999999 -1.1414320261494641E-003 + 106.97999999999999 -1.1454927451331786E-003 + 107.03999999999999 -1.1490121875264900E-003 + 107.09999999999999 -1.1519857085612369E-003 + 107.16000000000000 -1.1544092825071168E-003 + 107.22000000000000 -1.1562793180859927E-003 + 107.28000000000000 -1.1575922302838723E-003 + 107.34000000000000 -1.1583450676584928E-003 + 107.40000000000001 -1.1585350635847269E-003 + 107.46000000000001 -1.1581600792688312E-003 + 107.51999999999998 -1.1572182978396828E-003 + 107.57999999999998 -1.1557081033364311E-003 + 107.63999999999999 -1.1536284332742464E-003 + 107.69999999999999 -1.1509786222989504E-003 + 107.75999999999999 -1.1477584512730255E-003 + 107.81999999999999 -1.1439680143799753E-003 + 107.88000000000000 -1.1396078430403055E-003 + 107.94000000000000 -1.1346791382090945E-003 + 108.00000000000000 -1.1291830716950273E-003 + 108.06000000000000 -1.1231217318577638E-003 + 108.12000000000000 -1.1164974865817449E-003 + 108.18000000000001 -1.1093131448742170E-003 + 108.23999999999998 -1.1015718587202741E-003 + 108.29999999999998 -1.0932771513508539E-003 + 108.35999999999999 -1.0844331777861943E-003 + 108.41999999999999 -1.0750443902629758E-003 + 108.47999999999999 -1.0651156505275753E-003 + 108.53999999999999 -1.0546523537547071E-003 + 108.59999999999999 -1.0436600978199805E-003 + 108.66000000000000 -1.0321449762682553E-003 + 108.72000000000000 -1.0201135261817833E-003 + 108.78000000000000 -1.0075727055956429E-003 + 108.84000000000000 -9.9452969886818887E-004 + 108.90000000000001 -9.8099235804379619E-004 + 108.96000000000001 -9.6696888909105925E-004 + 109.01999999999998 -9.5246781849462432E-004 + 109.07999999999998 -9.3749818782944800E-004 + 109.13999999999999 -9.2206936462372853E-004 + 109.19999999999999 -9.0619135793168666E-004 + 109.25999999999999 -8.8987454391866176E-004 + 109.31999999999999 -8.7312976969225486E-004 + 109.38000000000000 -8.5596832265844339E-004 + 109.44000000000000 -8.3840206192143524E-004 + 109.50000000000000 -8.2044315374072763E-004 + 109.56000000000000 -8.0210433447615618E-004 + 109.62000000000000 -7.8339881003486821E-004 + 109.68000000000001 -7.6434028677406843E-004 + 109.73999999999998 -7.4494289652553346E-004 + 109.79999999999998 -7.2522125260968888E-004 + 109.85999999999999 -7.0519039590717040E-004 + 109.91999999999999 -6.8486585029417393E-004 + 109.97999999999999 -6.6426375734282702E-004 + 110.03999999999999 -6.4340047524794649E-004 + 110.09999999999999 -6.2229296323096004E-004 + 110.16000000000000 -6.0095866766835546E-004 + 110.22000000000000 -5.7941548896006700E-004 + 110.28000000000000 -5.5768174820203622E-004 + 110.34000000000000 -5.3577625997033732E-004 + 110.40000000000001 -5.1371832284186026E-004 + 110.46000000000001 -4.9152754506690791E-004 + 110.51999999999998 -4.6922413074620956E-004 + 110.57999999999998 -4.4682863262282270E-004 + 110.63999999999999 -4.2436203631900711E-004 + 110.69999999999999 -4.0184574108586174E-004 + 110.75999999999999 -3.7930143487892906E-004 + 110.81999999999999 -3.5675129265034898E-004 + 110.88000000000000 -3.3421773512920061E-004 + 110.94000000000000 -3.1172349549847799E-004 + 111.00000000000000 -2.8929164426420086E-004 + 111.06000000000000 -2.6694545217412159E-004 + 111.12000000000000 -2.4470844826508640E-004 + 111.18000000000001 -2.2260435271682292E-004 + 111.23999999999998 -2.0065708481635899E-004 + 111.29999999999998 -1.7889066732189291E-004 + 111.35999999999999 -1.5732924144442071E-004 + 111.41999999999999 -1.3599700467388807E-004 + 111.47999999999999 -1.1491821442473430E-004 + 111.53999999999999 -9.4117119425906495E-005 + 111.59999999999999 -7.3617921048241321E-005 + 111.66000000000000 -5.3444725752499986E-005 + 111.72000000000000 -3.3621517102833923E-005 + 111.78000000000000 -1.4172102502364016E-005 + 111.84000000000000 4.8799490880684274E-006 + 111.90000000000001 2.3511336361910902E-005 + 111.96000000000001 4.1699097264293247E-005 + 112.01999999999998 5.9420649284221505E-005 + 112.07999999999998 7.6653839206469127E-005 + 112.13999999999999 9.3377016876056444E-005 + 112.19999999999999 1.0956906810203694E-004 + 112.25999999999999 1.2520945212530089E-004 + 112.31999999999999 1.4027829157393527E-004 + 112.38000000000000 1.5475637337272700E-004 + 112.44000000000000 1.6862525439179243E-004 + 112.50000000000000 1.8186725630605190E-004 + 112.56000000000000 1.9446551940089832E-004 + 112.62000000000000 2.0640403638569647E-004 + 112.68000000000001 2.1766772553743769E-004 + 112.73999999999998 2.2824243321855833E-004 + 112.79999999999998 2.3811502435723905E-004 + 112.85999999999999 2.4727333417671571E-004 + 112.91999999999999 2.5570628796850404E-004 + 112.97999999999999 2.6340387456212178E-004 + 113.03999999999999 2.7035725518362330E-004 + 113.09999999999999 2.7655866419290287E-004 + 113.16000000000000 2.8200160874717597E-004 + 113.22000000000000 2.8668073626475195E-004 + 113.28000000000000 2.9059197956212221E-004 + 113.34000000000000 2.9373250958499562E-004 + 113.40000000000001 2.9610078148245328E-004 + 113.46000000000001 2.9769654979584472E-004 + 113.51999999999998 2.9852087625568534E-004 + 113.57999999999998 2.9857611884946949E-004 + 113.63999999999999 2.9786595338508081E-004 + 113.69999999999999 2.9639540763029234E-004 + 113.75999999999999 2.9417082678182726E-004 + 113.81999999999999 2.9119980163783111E-004 + 113.88000000000000 2.8749125768118321E-004 + 113.94000000000000 2.8305543358432024E-004 + 114.00000000000000 2.7790378177646656E-004 + 114.06000000000000 2.7204902085914943E-004 + 114.12000000000000 2.6550508283381801E-004 + 114.18000000000001 2.5828712082332395E-004 + 114.23999999999998 2.5041145432034705E-004 + 114.29999999999998 2.4189550643002457E-004 + 114.35999999999999 2.3275781723029818E-004 + 114.41999999999999 2.2301800975088208E-004 + 114.47999999999999 2.1269675619905507E-004 + 114.53999999999999 2.0181569017527074E-004 + 114.59999999999999 1.9039741906950574E-004 + 114.66000000000000 1.7846542934942363E-004 + 114.72000000000000 1.6604404663613187E-004 + 114.78000000000000 1.5315842167480391E-004 + 114.84000000000000 1.3983441744999664E-004 + 114.90000000000001 1.2609858074619907E-004 + 114.96000000000001 1.1197807921365228E-004 + 115.01999999999998 9.7500635420584407E-005 + 115.07999999999998 8.2694474422191112E-005 + 115.13999999999999 6.7588236073999627E-005 + 115.19999999999999 5.2210942418783287E-005 + 115.25999999999999 3.6591909010648711E-005 + 115.31999999999999 2.0760694321223049E-005 + 115.38000000000000 4.7470247899544338E-006 + 115.44000000000000 -1.1419236553677454E-005 + 115.50000000000000 -2.7708187833212115E-005 + 115.56000000000000 -4.4089923951158269E-005 + 115.62000000000000 -6.0534613819072251E-005 + 115.68000000000001 -7.7012534262109163E-005 + 115.73999999999998 -9.3494170987506214E-005 + 115.79999999999998 -1.0995024753452630E-004 + 115.85999999999999 -1.2635177505112915E-004 + 115.91999999999999 -1.4267015720581696E-004 + 115.97999999999999 -1.5887722429129512E-004 + 116.03999999999999 -1.7494527080614354E-004 + 116.09999999999999 -1.9084716931101124E-004 + 116.16000000000000 -2.0655641292902200E-004 + 116.22000000000000 -2.2204712413418973E-004 + 116.28000000000000 -2.3729419130847656E-004 + 116.34000000000000 -2.5227328375524561E-004 + 116.40000000000001 -2.6696088531290719E-004 + 116.46000000000001 -2.8133440738448422E-004 + 116.51999999999998 -2.9537215250785922E-004 + 116.57999999999998 -3.0905340623056784E-004 + 116.63999999999999 -3.2235849249165582E-004 + 116.69999999999999 -3.3526872543952112E-004 + 116.75999999999999 -3.4776652007030410E-004 + 116.81999999999999 -3.5983539322249019E-004 + 116.88000000000000 -3.7146000806868347E-004 + 116.94000000000000 -3.8262615977593571E-004 + 117.00000000000000 -3.9332078325184918E-004 + 117.06000000000000 -4.0353193884993160E-004 + 117.12000000000000 -4.1324893742842808E-004 + 117.18000000000001 -4.2246229869235066E-004 + 117.23999999999998 -4.3116367637326570E-004 + 117.29999999999998 -4.3934597325880748E-004 + 117.35999999999999 -4.4700330305590764E-004 + 117.41999999999999 -4.5413098222812248E-004 + 117.47999999999999 -4.6072555640446318E-004 + 117.53999999999999 -4.6678479888364894E-004 + 117.59999999999999 -4.7230765312084082E-004 + 117.66000000000000 -4.7729424685772341E-004 + 117.72000000000000 -4.8174597274457847E-004 + 117.78000000000000 -4.8566526783696206E-004 + 117.84000000000000 -4.8905580286106936E-004 + 117.90000000000001 -4.9192237163385552E-004 + 117.96000000000001 -4.9427085409159822E-004 + 118.01999999999998 -4.9610814900083347E-004 + 118.07999999999998 -4.9744221551363478E-004 + 118.13999999999999 -4.9828190355852568E-004 + 118.19999999999999 -4.9863714809052770E-004 + 118.25999999999999 -4.9851871546069914E-004 + 118.31999999999999 -4.9793814857311861E-004 + 118.38000000000000 -4.9690788738174002E-004 + 118.44000000000000 -4.9544102549519743E-004 + 118.50000000000000 -4.9355152662169791E-004 + 118.56000000000000 -4.9125380319653574E-004 + 118.62000000000000 -4.8856295749730985E-004 + 118.68000000000001 -4.8549467891635179E-004 + 118.73999999999998 -4.8206503512258203E-004 + 118.79999999999998 -4.7829067636535850E-004 + 118.85999999999999 -4.7418860357583927E-004 + 118.91999999999999 -4.6977605981189506E-004 + 118.97999999999999 -4.6507061785143629E-004 + 119.03999999999999 -4.6009014368047623E-004 + 119.09999999999999 -4.5485258090950025E-004 + 119.16000000000000 -4.4937606665956288E-004 + 119.22000000000000 -4.4367873695124371E-004 + 119.28000000000000 -4.3777878592231767E-004 + 119.34000000000000 -4.3169435412666738E-004 + 119.40000000000001 -4.2544344842438564E-004 + 119.46000000000001 -4.1904392895171332E-004 + 119.51999999999998 -4.1251348338743456E-004 + 119.57999999999998 -4.0586956608594515E-004 + 119.63999999999999 -3.9912928410779043E-004 + 119.69999999999999 -3.9230947616262103E-004 + 119.75999999999999 -3.8542654651360880E-004 + 119.81999999999999 -3.7849647701909629E-004 + 119.88000000000000 -3.7153483821077810E-004 + 119.94000000000000 -3.6455663454031752E-004 + 120.00000000000000 -3.5757642956500072E-004 + 120.06000000000000 -3.5060813606873340E-004 + 120.12000000000000 -3.4366518053834333E-004 + 120.18000000000001 -3.3676027370723349E-004 + 120.23999999999998 -3.2990556100733528E-004 + 120.29999999999998 -3.2311244832005417E-004 + 120.35999999999999 -3.1639169780397944E-004 + 120.41999999999999 -3.0975335914331233E-004 + 120.47999999999999 -3.0320672374271039E-004 + 120.53999999999999 -2.9676038518306808E-004 + 120.59999999999999 -2.9042217712202417E-004 + 120.66000000000000 -2.8419918493407175E-004 + 120.72000000000000 -2.7809766466134207E-004 + 120.78000000000000 -2.7212324802370079E-004 + 120.84000000000000 -2.6628068212220966E-004 + 120.90000000000001 -2.6057404516679258E-004 + 120.95999999999998 -2.5500666545201316E-004 + 121.01999999999998 -2.4958113426571185E-004 + 121.07999999999998 -2.4429935284692053E-004 + 121.13999999999999 -2.3916251343498933E-004 + 121.19999999999999 -2.3417114127861828E-004 + 121.25999999999999 -2.2932515633443986E-004 + 121.31999999999999 -2.2462380686989056E-004 + 121.38000000000000 -2.2006577861368874E-004 + 121.44000000000000 -2.1564912082047780E-004 + 121.50000000000000 -2.1137134953380169E-004 + 121.56000000000000 -2.0722948210808619E-004 + 121.62000000000000 -2.0321999861792295E-004 + 121.68000000000001 -1.9933888546822063E-004 + 121.73999999999998 -1.9558168786537960E-004 + 121.79999999999998 -1.9194349767061078E-004 + 121.85999999999999 -1.8841899159513262E-004 + 121.91999999999999 -1.8500247478327078E-004 + 121.97999999999999 -1.8168790294826511E-004 + 122.03999999999999 -1.7846888557289939E-004 + 122.09999999999999 -1.7533875623633869E-004 + 122.16000000000000 -1.7229057154392375E-004 + 122.22000000000000 -1.6931714201293238E-004 + 122.28000000000000 -1.6641108306692502E-004 + 122.34000000000000 -1.6356483872586336E-004 + 122.40000000000001 -1.6077071860014840E-004 + 122.45999999999998 -1.5802092208924880E-004 + 122.51999999999998 -1.5530755080185360E-004 + 122.57999999999998 -1.5262266851013800E-004 + 122.63999999999999 -1.4995831412100867E-004 + 122.69999999999999 -1.4730653276358470E-004 + 122.75999999999999 -1.4465937015774674E-004 + 122.81999999999999 -1.4200892539388340E-004 + 122.88000000000000 -1.3934736640666158E-004 + 122.94000000000000 -1.3666692551582532E-004 + 123.00000000000000 -1.3395993908678160E-004 + 123.06000000000000 -1.3121883771205378E-004 + 123.12000000000000 -1.2843617179440997E-004 + 123.18000000000001 -1.2560462645457964E-004 + 123.23999999999998 -1.2271701979941409E-004 + 123.29999999999998 -1.1976634775596875E-004 + 123.35999999999999 -1.1674572377623509E-004 + 123.41999999999999 -1.1364846810102069E-004 + 123.47999999999999 -1.1046805908668364E-004 + 123.53999999999999 -1.0719816174791731E-004 + 123.59999999999999 -1.0383264781908976E-004 + 123.66000000000000 -1.0036557910523415E-004 + 123.72000000000000 -9.6791225328708277E-005 + 123.78000000000000 -9.3104071055272609E-005 + 123.84000000000000 -8.9298807770489316E-005 + 123.90000000000001 -8.5370353893147552E-005 + 123.95999999999998 -8.1313844363315905E-005 + 124.01999999999998 -7.7124619753914694E-005 + 124.07999999999998 -7.2798259360712991E-005 + 124.13999999999999 -6.8330547183967954E-005 + 124.19999999999999 -6.3717493138086274E-005 + 124.25999999999999 -5.8955315741415314E-005 + 124.31999999999999 -5.4040451460935453E-005 + 124.38000000000000 -4.8969548275691915E-005 + 124.44000000000000 -4.3739465564361567E-005 + 124.50000000000000 -3.8347275328123267E-005 + 124.56000000000000 -3.2790264526730696E-005 + 124.62000000000000 -2.7065931551516910E-005 + 124.68000000000001 -2.1171991325467164E-005 + 124.73999999999998 -1.5106377310356730E-005 + 124.79999999999998 -8.8672461995999729E-006 + 124.85999999999999 -2.4529751377478195E-006 + 124.91999999999999 4.1378299315780117E-006 + 124.97999999999999 1.0906330066425475E-005 + 125.03999999999999 1.7853452927790806E-005 + 125.09999999999999 2.4979889995634542E-005 + 125.16000000000000 3.2286096725590823E-005 + 125.22000000000000 3.9772278377923297E-005 + 125.28000000000000 4.7438396196276066E-005 + 125.34000000000000 5.5284166954453864E-005 + 125.40000000000001 6.3309059262036088E-005 + 125.45999999999998 7.1512276928550677E-005 + 125.51999999999998 7.9892762091399644E-005 + 125.57999999999998 8.8449214333806664E-005 + 125.63999999999999 9.7180031629115574E-005 + 125.69999999999999 1.0608335742540943E-004 + 125.75999999999999 1.1515700548051893E-004 + 125.81999999999999 1.2439854865017730E-004 + 125.88000000000000 1.3380520229770189E-004 + 125.94000000000000 1.4337388394935490E-004 + 126.00000000000000 1.5310116300937607E-004 + 126.06000000000000 1.6298328540431662E-004 + 126.12000000000000 1.7301612344509314E-004 + 126.18000000000001 1.8319516356139388E-004 + 126.23999999999998 1.9351553146648384E-004 + 126.29999999999998 2.0397196772472954E-004 + 126.35999999999999 2.1455880618427746E-004 + 126.41999999999999 2.2526999548019472E-004 + 126.47999999999999 2.3609903622047958E-004 + 126.53999999999999 2.4703902963082492E-004 + 126.59999999999999 2.5808272048262519E-004 + 126.66000000000000 2.6922235402341053E-004 + 126.72000000000000 2.8044982860039869E-004 + 126.78000000000000 2.9175660338149082E-004 + 126.84000000000000 3.0313375687800854E-004 + 126.90000000000001 3.1457192981000046E-004 + 126.95999999999998 3.2606136716786479E-004 + 127.01999999999998 3.3759197015043561E-004 + 127.07999999999998 3.4915319076378768E-004 + 127.13999999999999 3.6073410791384315E-004 + 127.19999999999999 3.7232347967422296E-004 + 127.25999999999999 3.8390959515646945E-004 + 127.31999999999999 3.9548045310931962E-004 + 127.38000000000000 4.0702370815507902E-004 + 127.44000000000000 4.1852658564296019E-004 + 127.50000000000000 4.2997607482411499E-004 + 127.56000000000000 4.4135877839353169E-004 + 127.62000000000000 4.5266101812218163E-004 + 127.68000000000001 4.6386880604155309E-004 + 127.73999999999998 4.7496790624405720E-004 + 127.79999999999998 4.8594385028992800E-004 + 127.85999999999999 4.9678186057114241E-004 + 127.91999999999999 5.0746701433372512E-004 + 127.97999999999999 5.1798426579109224E-004 + 128.03999999999999 5.2831840547012412E-004 + 128.09999999999999 5.3845403107295308E-004 + 128.16000000000000 5.4837569016272258E-004 + 128.22000000000000 5.5806792935298019E-004 + 128.28000000000000 5.6751519158526934E-004 + 128.34000000000000 5.7670205490879410E-004 + 128.40000000000001 5.8561299931012814E-004 + 128.45999999999998 5.9423266524278879E-004 + 128.51999999999998 6.0254581006651204E-004 + 128.57999999999998 6.1053724615108029E-004 + 128.63999999999999 6.1819194692435536E-004 + 128.69999999999999 6.2549522558806700E-004 + 128.75999999999999 6.3243257504224932E-004 + 128.81999999999999 6.3898978154101611E-004 + 128.88000000000000 6.4515285968470089E-004 + 128.94000000000000 6.5090836081918709E-004 + 129.00000000000000 6.5624302706430646E-004 + 129.06000000000000 6.6114415052705860E-004 + 129.12000000000000 6.6559938213930664E-004 + 129.18000000000001 6.6959707139229525E-004 + 129.23999999999998 6.7312584942678672E-004 + 129.29999999999998 6.7617504056467672E-004 + 129.35999999999999 6.7873457620460081E-004 + 129.41999999999999 6.8079499176090514E-004 + 129.47999999999999 6.8234757407132024E-004 + 129.53999999999999 6.8338430985774730E-004 + 129.59999999999999 6.8389780895146532E-004 + 129.66000000000000 6.8388158336509127E-004 + 129.72000000000000 6.8332978636748555E-004 + 129.78000000000000 6.8223752409355104E-004 + 129.84000000000000 6.8060069472284821E-004 + 129.90000000000001 6.7841601564423357E-004 + 129.95999999999998 6.7568119384822916E-004 + 130.01999999999998 6.7239481663944225E-004 + 130.07999999999998 6.6855630379939965E-004 + 130.13999999999999 6.6416615198793081E-004 + 130.19999999999999 6.5922567992342457E-004 + 130.25999999999999 6.5373735731666664E-004 + 130.31999999999999 6.4770450051577133E-004 + 130.38000000000000 6.4113144458666997E-004 + 130.44000000000000 6.3402356398511344E-004 + 130.50000000000000 6.2638718789535916E-004 + 130.56000000000000 6.1822970540901395E-004 + 130.62000000000000 6.0955952256090565E-004 + 130.68000000000001 6.0038597980208283E-004 + 130.73999999999998 5.9071936677063249E-004 + 130.79999999999998 5.8057120508537121E-004 + 130.85999999999999 5.6995369927157001E-004 + 130.91999999999999 5.5888016269421735E-004 + 130.97999999999999 5.4736478223633056E-004 + 131.03999999999999 5.3542264214338591E-004 + 131.09999999999999 5.2306990140460648E-004 + 131.16000000000000 5.1032331587182850E-004 + 131.22000000000000 4.9720060998357976E-004 + 131.28000000000000 4.8372034549458908E-004 + 131.34000000000000 4.6990184986622709E-004 + 131.40000000000001 4.5576518483644222E-004 + 131.45999999999998 4.4133114544194792E-004 + 131.51999999999998 4.2662113822884262E-004 + 131.57999999999998 4.1165731528199729E-004 + 131.63999999999999 3.9646230961528956E-004 + 131.69999999999999 3.8105942886431976E-004 + 131.75999999999999 3.6547246304146437E-004 + 131.81999999999999 3.4972562421689118E-004 + 131.88000000000000 3.3384357153843752E-004 + 131.94000000000000 3.1785126958588060E-004 + 132.00000000000000 3.0177404276770782E-004 + 132.06000000000000 2.8563746779469820E-004 + 132.12000000000000 2.6946722042199171E-004 + 132.18000000000001 2.5328915734498873E-004 + 132.23999999999998 2.3712916042743339E-004 + 132.29999999999998 2.2101311109388224E-004 + 132.35999999999999 2.0496680103771457E-004 + 132.41999999999999 1.8901590449868123E-004 + 132.47999999999999 1.7318586908964903E-004 + 132.53999999999999 1.5750189811061086E-004 + 132.59999999999999 1.4198885564985160E-004 + 132.66000000000000 1.2667124463195846E-004 + 132.72000000000000 1.1157312551761790E-004 + 132.78000000000000 9.6718060279528010E-005 + 132.84000000000000 8.2129078079856029E-005 + 132.90000000000001 6.7828602567881701E-005 + 132.95999999999998 5.3838419184298209E-005 + 133.01999999999998 4.0179613336730006E-005 + 133.07999999999998 2.6872530194432960E-005 + 133.13999999999999 1.3936713277984389E-005 + 133.19999999999999 1.3908656945084730E-006 + 133.25999999999999 -1.0747194485927194E-005 + 133.31999999999999 -2.2460591459922792E-005 + 133.38000000000000 -3.3733422222227196E-005 + 133.44000000000000 -4.4550809317084363E-005 + 133.50000000000000 -5.4898941338370753E-005 + 133.56000000000000 -6.4765104157262141E-005 + 133.62000000000000 -7.4137711720302009E-005 + 133.68000000000001 -8.3006343155803263E-005 + 133.73999999999998 -9.1361778045094831E-005 + 133.79999999999998 -9.9195998046613549E-005 + 133.85999999999999 -1.0650220010059804E-004 + 133.91999999999999 -1.1327486686859313E-004 + 133.97999999999999 -1.1950965891462743E-004 + 134.03999999999999 -1.2520354184170760E-004 + 134.09999999999999 -1.3035469201409076E-004 + 134.16000000000000 -1.3496254542673925E-004 + 134.22000000000000 -1.3902775494431039E-004 + 134.28000000000000 -1.4255220822668543E-004 + 134.34000000000000 -1.4553896923359580E-004 + 134.40000000000001 -1.4799229731240517E-004 + 134.45999999999998 -1.4991762605874053E-004 + 134.51999999999998 -1.5132150547067402E-004 + 134.57999999999998 -1.5221162966932560E-004 + 134.63999999999999 -1.5259678798778322E-004 + 134.69999999999999 -1.5248679285762771E-004 + 134.75999999999999 -1.5189253909020730E-004 + 134.81999999999999 -1.5082591315067741E-004 + 134.88000000000000 -1.4929976819360829E-004 + 134.94000000000000 -1.4732789145737349E-004 + 135.00000000000000 -1.4492497537952538E-004 + 135.06000000000000 -1.4210657904577587E-004 + 135.12000000000000 -1.3888907700763053E-004 + 135.18000000000001 -1.3528958829972314E-004 + 135.23999999999998 -1.3132599899986976E-004 + 135.29999999999998 -1.2701683919553989E-004 + 135.35999999999999 -1.2238126442235133E-004 + 135.41999999999999 -1.1743901258543177E-004 + 135.47999999999999 -1.1221034717190544E-004 + 135.53999999999999 -1.0671595707429983E-004 + 135.59999999999999 -1.0097695400120509E-004 + 135.66000000000000 -9.5014816912970058E-005 + 135.72000000000000 -8.8851271255703737E-005 + 135.78000000000000 -8.2508320331058381E-005 + 135.84000000000000 -7.6008116796247541E-005 + 135.90000000000001 -6.9372957611542498E-005 + 135.95999999999998 -6.2625192690527072E-005 + 136.01999999999998 -5.5787201687107228E-005 + 136.07999999999998 -4.8881318304450474E-005 + 136.13999999999999 -4.1929794118795907E-005 + 136.19999999999999 -3.4954747232504853E-005 + 136.25999999999999 -2.7978097393510244E-005 + 136.31999999999999 -2.1021554532293085E-005 + 136.38000000000000 -1.4106528337871220E-005 + 136.44000000000000 -7.2541323531630179E-006 + 136.50000000000000 -4.8510076872397394E-007 + 136.56000000000000 6.1802156450205808E-006 + 136.62000000000000 1.2721901105158241E-005 + 136.68000000000001 1.9120507314354662E-005 + 136.73999999999998 2.5357083499946257E-005 + 136.79999999999998 3.1413203692820673E-005 + 136.85999999999999 3.7270991681380975E-005 + 136.91999999999999 4.2913146434258125E-005 + 136.97999999999999 4.8322961965732253E-005 + 137.03999999999999 5.3484346478483374E-005 + 137.09999999999999 5.8381852476362201E-005 + 137.16000000000000 6.3000681724208687E-005 + 137.22000000000000 6.7326713956193088E-005 + 137.28000000000000 7.1346513053827508E-005 + 137.34000000000000 7.5047350274310331E-005 + 137.40000000000001 7.8417213406356000E-005 + 137.45999999999998 8.1444834074398566E-005 + 137.51999999999998 8.4119673550609817E-005 + 137.57999999999998 8.6431978129152760E-005 + 137.63999999999999 8.8372741469688870E-005 + 137.69999999999999 8.9933749423960722E-005 + 137.75999999999999 9.1107562569648045E-005 + 137.81999999999999 9.1887538330977353E-005 + 137.88000000000000 9.2267807020217298E-005 + 137.94000000000000 9.2243300896169747E-005 + 138.00000000000000 9.1809711056840254E-005 + 138.06000000000000 9.0963498088583904E-005 + 138.12000000000000 8.9701870251527037E-005 + 138.18000000000001 8.8022767260428794E-005 + 138.23999999999998 8.5924859160802153E-005 + 138.29999999999998 8.3407496824832410E-005 + 138.35999999999999 8.0470710993353080E-005 + 138.41999999999999 7.7115170009795436E-005 + 138.47999999999999 7.3342186048263686E-005 + 138.53999999999999 6.9153674894715438E-005 + 138.59999999999999 6.4552136135826124E-005 + 138.66000000000000 5.9540641917464153E-005 + 138.72000000000000 5.4122805912784750E-005 + 138.78000000000000 4.8302780736596954E-005 + 138.84000000000000 4.2085238398852730E-005 + 138.90000000000001 3.5475369971258174E-005 + 138.95999999999998 2.8478838806845069E-005 + 139.01999999999998 2.1101808908308026E-005 + 139.07999999999998 1.3350906951584346E-005 + 139.13999999999999 5.2332311328838755E-006 + 139.19999999999999 -3.2437014439621873E-006 + 139.25999999999999 -1.2071920077100790E-005 + 139.31999999999999 -2.1243046199353716E-005 + 139.38000000000000 -3.0748311576516457E-005 + 139.44000000000000 -4.0578574479301176E-005 + 139.50000000000000 -5.0724331506555270E-005 + 139.56000000000000 -6.1175755380174084E-005 + 139.62000000000000 -7.1922707065529668E-005 + 139.68000000000001 -8.2954776306744818E-005 + 139.73999999999998 -9.4261282215976578E-005 + 139.79999999999998 -1.0583131241836759E-004 + 139.85999999999999 -1.1765375717719224E-004 + 139.91999999999999 -1.2971729009940238E-004 + 139.97999999999999 -1.4201041412027277E-004 + 140.03999999999999 -1.5452149892408279E-004 + 140.09999999999999 -1.6723874789070496E-004 + 140.16000000000000 -1.8015023439164283E-004 + 140.22000000000000 -1.9324393088062663E-004 + 140.28000000000000 -2.0650767458797815E-004 + 140.34000000000000 -2.1992921718254035E-004 + 140.40000000000001 -2.3349619037917857E-004 + 140.45999999999998 -2.4719614570789880E-004 + 140.51999999999998 -2.6101655028678113E-004 + 140.57999999999998 -2.7494476591456376E-004 + 140.63999999999999 -2.8896808710378221E-004 + 140.69999999999999 -3.0307373890154472E-004 + 140.75999999999999 -3.1724882555781163E-004 + 140.81999999999999 -3.3148045440616492E-004 + 140.88000000000000 -3.4575563257157276E-004 + 140.94000000000000 -3.6006130895079513E-004 + 141.00000000000000 -3.7438436568734869E-004 + 141.06000000000000 -3.8871164615667626E-004 + 141.12000000000000 -4.0303004134527331E-004 + 141.18000000000001 -4.1732629311026510E-004 + 141.23999999999998 -4.3158721805484907E-004 + 141.29999999999998 -4.4579951915802574E-004 + 141.35999999999999 -4.5994995034967891E-004 + 141.41999999999999 -4.7402528198771859E-004 + 141.47999999999999 -4.8801220960909865E-004 + 141.53999999999999 -5.0189751642964976E-004 + 141.59999999999999 -5.1566800204383520E-004 + 141.66000000000000 -5.2931036148239205E-004 + 141.72000000000000 -5.4281152830397124E-004 + 141.78000000000000 -5.5615826297187047E-004 + 141.84000000000000 -5.6933755247163891E-004 + 141.90000000000001 -5.8233626635026013E-004 + 141.95999999999998 -5.9514148001509233E-004 + 142.01999999999998 -6.0774018392011433E-004 + 142.07999999999998 -6.2011953317910398E-004 + 142.13999999999999 -6.3226666922607227E-004 + 142.19999999999999 -6.4416890051571579E-004 + 142.25999999999999 -6.5581352812057916E-004 + 142.31999999999999 -6.6718796942091016E-004 + 142.38000000000000 -6.7827974595626491E-004 + 142.44000000000000 -6.8907642148939661E-004 + 142.50000000000000 -6.9956568898508684E-004 + 142.56000000000000 -7.0973530057344804E-004 + 142.62000000000000 -7.1957321382327716E-004 + 142.68000000000001 -7.2906746048927206E-004 + 142.73999999999998 -7.3820611386675417E-004 + 142.79999999999998 -7.4697751361700094E-004 + 142.85999999999999 -7.5537021293245075E-004 + 142.91999999999999 -7.6337284442643222E-004 + 142.97999999999999 -7.7097423948067521E-004 + 143.03999999999999 -7.7816356306937542E-004 + 143.09999999999999 -7.8493015193364045E-004 + 143.16000000000000 -7.9126365199895131E-004 + 143.22000000000000 -7.9715409637859792E-004 + 143.28000000000000 -8.0259179465259564E-004 + 143.34000000000000 -8.0756728732055800E-004 + 143.40000000000001 -8.1207175689021016E-004 + 143.45999999999998 -8.1609664118460041E-004 + 143.51999999999998 -8.1963373886412261E-004 + 143.57999999999998 -8.2267550375509399E-004 + 143.63999999999999 -8.2521471438984720E-004 + 143.69999999999999 -8.2724470531325733E-004 + 143.75999999999999 -8.2875926885985407E-004 + 143.81999999999999 -8.2975278388148772E-004 + 143.88000000000000 -8.3022014653923507E-004 + 143.94000000000000 -8.3015687140650682E-004 + 144.00000000000000 -8.2955888627952328E-004 + 144.06000000000000 -8.2842287438268430E-004 + 144.12000000000000 -8.2674611655226041E-004 + 144.18000000000001 -8.2452647608070515E-004 + 144.23999999999998 -8.2176254242460737E-004 + 144.29999999999998 -8.1845350140189973E-004 + 144.35999999999999 -8.1459930542226262E-004 + 144.41999999999999 -8.1020062617802107E-004 + 144.47999999999999 -8.0525879096903798E-004 + 144.53999999999999 -7.9977594631202892E-004 + 144.59999999999999 -7.9375498984381155E-004 + 144.66000000000000 -7.8719962857475554E-004 + 144.72000000000000 -7.8011444132427611E-004 + 144.78000000000000 -7.7250466374936876E-004 + 144.84000000000000 -7.6437647901672449E-004 + 144.90000000000001 -7.5573676983089523E-004 + 144.95999999999998 -7.4659327973560982E-004 + 145.01999999999998 -7.3695456198116197E-004 + 145.07999999999998 -7.2682995159344165E-004 + 145.13999999999999 -7.1622948750890995E-004 + 145.19999999999999 -7.0516399485017161E-004 + 145.25999999999999 -6.9364503191964889E-004 + 145.31999999999999 -6.8168488646921965E-004 + 145.38000000000000 -6.6929652938215974E-004 + 145.44000000000000 -6.5649359726640709E-004 + 145.50000000000000 -6.4329027603238047E-004 + 145.56000000000000 -6.2970148552894949E-004 + 145.62000000000000 -6.1574253136214945E-004 + 145.68000000000001 -6.0142949686622124E-004 + 145.73999999999998 -5.8677881339946891E-004 + 145.79999999999998 -5.7180742752973462E-004 + 145.85999999999999 -5.5653280304212085E-004 + 145.91999999999999 -5.4097273419761451E-004 + 145.97999999999999 -5.2514545290010639E-004 + 146.03999999999999 -5.0906954547505240E-004 + 146.09999999999999 -4.9276377571017959E-004 + 146.16000000000000 -4.7624723404796716E-004 + 146.22000000000000 -4.5953926467058598E-004 + 146.28000000000000 -4.4265929416424914E-004 + 146.34000000000000 -4.2562687535406833E-004 + 146.40000000000001 -4.0846166692560712E-004 + 146.45999999999998 -3.9118331550113864E-004 + 146.51999999999998 -3.7381139159103454E-004 + 146.57999999999998 -3.5636544485380173E-004 + 146.63999999999999 -3.3886480730911282E-004 + 146.69999999999999 -3.2132872230742542E-004 + 146.75999999999999 -3.0377615549897504E-004 + 146.81999999999999 -2.8622581716513464E-004 + 146.88000000000000 -2.6869606173894676E-004 + 146.94000000000000 -2.5120491444732021E-004 + 147.00000000000000 -2.3377005486548011E-004 + 147.06000000000000 -2.1640866840054245E-004 + 147.12000000000000 -1.9913752153034604E-004 + 147.18000000000001 -1.8197288786486623E-004 + 147.23999999999998 -1.6493051315978407E-004 + 147.29999999999998 -1.4802560665753441E-004 + 147.35999999999999 -1.3127281867721411E-004 + 147.41999999999999 -1.1468619637988739E-004 + 147.47999999999999 -9.8279204620191788E-005 + 147.53999999999999 -8.2064685429526985E-005 + 147.59999999999999 -6.6054841025300443E-005 + 147.66000000000000 -5.0261252292361711E-005 + 147.72000000000000 -3.4694835991542299E-005 + 147.78000000000000 -1.9365869717554060E-005 + 147.84000000000000 -4.2839732664821407E-006 + 147.90000000000001 1.0541876504700671E-005 + 147.95999999999998 2.5103347937984915E-005 + 148.01999999999998 3.9392748657589534E-005 + 148.07999999999998 5.3403011117597325E-005 + 148.13999999999999 6.7127689109340564E-005 + 148.19999999999999 8.0560932402180788E-005 + 148.25999999999999 9.3697482986923169E-005 + 148.31999999999999 1.0653263954208826E-004 + 148.38000000000000 1.1906225223183440E-004 + 148.44000000000000 1.3128270880511807E-004 + 148.50000000000000 1.4319087340079243E-004 + 148.56000000000000 1.5478411952039278E-004 + 148.62000000000000 1.6606024786819946E-004 + 148.68000000000001 1.7701752251603542E-004 + 148.73999999999998 1.8765457775995226E-004 + 148.79999999999998 1.9797044367211270E-004 + 148.85999999999999 2.0796445762491777E-004 + 148.91999999999999 2.1763632106775423E-004 + 148.97999999999999 2.2698599770590812E-004 + 149.03999999999999 2.3601370486056619E-004 + 149.09999999999999 2.4471984379604471E-004 + 149.16000000000000 2.5310508685649590E-004 + 149.22000000000000 2.6117021639534318E-004 + 149.28000000000000 2.6891616113121277E-004 + 149.34000000000000 2.7634393708936636E-004 + 149.40000000000001 2.8345469924044196E-004 + 149.45999999999998 2.9024959180272533E-004 + 149.51999999999998 2.9672987381265144E-004 + 149.57999999999998 3.0289675938671083E-004 + 149.63999999999999 3.0875155341440253E-004 + 149.69999999999999 3.1429547400753621E-004 + 149.75999999999999 3.1952977308457740E-004 + 149.81999999999999 3.2445568922314635E-004 + 149.88000000000000 3.2907445593378964E-004 + 149.94000000000000 3.3338721763853966E-004 + 150.00000000000000 3.3739515322627384E-004 + 150.06000000000000 3.4109938257190686E-004 + 150.12000000000000 3.4450099812821422E-004 + 150.18000000000001 3.4760112577527459E-004 + 150.23999999999998 3.5040076832508520E-004 + 150.29999999999998 3.5290099728682746E-004 + 150.35999999999999 3.5510281597927421E-004 + 150.41999999999999 3.5700720288350070E-004 + 150.47999999999999 3.5861517506348330E-004 + 150.53999999999999 3.5992770408816810E-004 + 150.59999999999999 3.6094577041546514E-004 + 150.66000000000000 3.6167037171804477E-004 + 150.72000000000000 3.6210250395379509E-004 + 150.78000000000000 3.6224318383976334E-004 + 150.84000000000000 3.6209344926938148E-004 + 150.90000000000001 3.6165446215848048E-004 + 150.95999999999998 3.6092737422398398E-004 + 151.01999999999998 3.5991344265104874E-004 + 151.07999999999998 3.5861402332546227E-004 + 151.13999999999999 3.5703068128465710E-004 + 151.19999999999999 3.5516499992620113E-004 + 151.25999999999999 3.5301879972401946E-004 + 151.31999999999999 3.5059407613307909E-004 + 151.38000000000000 3.4789303234136445E-004 + 151.44000000000000 3.4491804149718497E-004 + 151.50000000000000 3.4167177886043729E-004 + 151.56000000000000 3.3815710281166175E-004 + 151.62000000000000 3.3437715594893076E-004 + 151.68000000000001 3.3033530933546313E-004 + 151.73999999999998 3.2603525332988508E-004 + 151.79999999999998 3.2148092289598882E-004 + 151.85999999999999 3.1667652217093469E-004 + 151.91999999999999 3.1162648141252238E-004 + 151.97999999999999 3.0633553823804802E-004 + 152.03999999999999 3.0080867293869138E-004 + 152.09999999999999 2.9505111317348621E-004 + 152.16000000000000 2.8906835815249954E-004 + 152.22000000000000 2.8286610709759056E-004 + 152.28000000000000 2.7645035174613219E-004 + 152.34000000000000 2.6982724717387565E-004 + 152.40000000000001 2.6300322553467762E-004 + 152.45999999999998 2.5598494363144946E-004 + 152.51999999999998 2.4877919188484441E-004 + 152.57999999999998 2.4139302358695827E-004 + 152.63999999999999 2.3383368077668963E-004 + 152.69999999999999 2.2610856954176573E-004 + 152.75999999999999 2.1822527034899404E-004 + 152.81999999999999 2.1019153461717533E-004 + 152.88000000000000 2.0201523049143179E-004 + 152.94000000000000 1.9370437439870057E-004 + 153.00000000000000 1.8526709409950003E-004 + 153.06000000000000 1.7671159884893355E-004 + 153.12000000000000 1.6804618633956995E-004 + 153.17999999999998 1.5927920905307264E-004 + 153.23999999999998 1.5041904979124635E-004 + 153.29999999999998 1.4147411571317691E-004 + 153.35999999999999 1.3245282003905481E-004 + 153.41999999999999 1.2336351888160845E-004 + 153.47999999999999 1.1421455623537350E-004 + 153.53999999999999 1.0501422310555918E-004 + 153.59999999999999 9.5770736447088519E-005 + 153.66000000000000 8.6492205033146532E-005 + 153.72000000000000 7.7186658467442073E-005 + 153.78000000000000 6.7862002456033107E-005 + 153.84000000000000 5.8526015451964247E-005 + 153.90000000000001 4.9186332364011441E-005 + 153.95999999999998 3.9850448973964106E-005 + 154.01999999999998 3.0525690774305815E-005 + 154.07999999999998 2.1219221631435628E-005 + 154.13999999999999 1.1938020721147374E-005 + 154.19999999999999 2.6888906742610535E-006 + 154.25999999999999 -6.5215592425757585E-006 + 154.31999999999999 -1.5686919651560551E-005 + 154.38000000000000 -2.4800980513523181E-005 + 154.44000000000000 -3.3857742861194119E-005 + 154.50000000000000 -4.2851413693653932E-005 + 154.56000000000000 -5.1776408300523505E-005 + 154.62000000000000 -6.0627357293574759E-005 + 154.67999999999998 -6.9399101803301199E-005 + 154.73999999999998 -7.8086698255826962E-005 + 154.79999999999998 -8.6685400869896008E-005 + 154.85999999999999 -9.5190684056001596E-005 + 154.91999999999999 -1.0359821309400454E-004 + 154.97999999999999 -1.1190385636723365E-004 + 155.03999999999999 -1.2010367224820164E-004 + 155.09999999999999 -1.2819389798753906E-004 + 155.16000000000000 -1.3617096731871348E-004 + 155.22000000000000 -1.4403146924181994E-004 + 155.28000000000000 -1.5177217689891581E-004 + 155.34000000000000 -1.5939000806901391E-004 + 155.40000000000001 -1.6688204539091339E-004 + 155.45999999999998 -1.7424551500024732E-004 + 155.51999999999998 -1.8147779618515178E-004 + 155.57999999999998 -1.8857637396483325E-004 + 155.63999999999999 -1.9553890005134821E-004 + 155.69999999999999 -2.0236310307560686E-004 + 155.75999999999999 -2.0904683830265370E-004 + 155.81999999999999 -2.1558808561771269E-004 + 155.88000000000000 -2.2198490428806364E-004 + 155.94000000000000 -2.2823541150689925E-004 + 156.00000000000000 -2.3433784461677210E-004 + 156.06000000000000 -2.4029051230645585E-004 + 156.12000000000000 -2.4609177266584085E-004 + 156.17999999999998 -2.5174006694213101E-004 + 156.23999999999998 -2.5723384030136906E-004 + 156.29999999999998 -2.6257162133063561E-004 + 156.35999999999999 -2.6775200195166713E-004 + 156.41999999999999 -2.7277358091561669E-004 + 156.47999999999999 -2.7763501507080586E-004 + 156.53999999999999 -2.8233498596142673E-004 + 156.59999999999999 -2.8687228548994893E-004 + 156.66000000000000 -2.9124563056924036E-004 + 156.72000000000000 -2.9545386874325983E-004 + 156.78000000000000 -2.9949582844744237E-004 + 156.84000000000000 -3.0337047521268373E-004 + 156.90000000000001 -3.0707668741981832E-004 + 156.95999999999998 -3.1061347202264271E-004 + 157.01999999999998 -3.1397986179193218E-004 + 157.07999999999998 -3.1717491976035900E-004 + 157.13999999999999 -3.2019781943182056E-004 + 157.19999999999999 -3.2304774327940317E-004 + 157.25999999999999 -3.2572392894196755E-004 + 157.31999999999999 -3.2822571474554560E-004 + 157.38000000000000 -3.3055250920024167E-004 + 157.44000000000000 -3.3270376659177666E-004 + 157.50000000000000 -3.3467903374956700E-004 + 157.56000000000000 -3.3647793609849354E-004 + 157.62000000000000 -3.3810023680270378E-004 + 157.67999999999998 -3.3954577521177375E-004 + 157.73999999999998 -3.4081455054581260E-004 + 157.79999999999998 -3.4190664987738368E-004 + 157.85999999999999 -3.4282230295915728E-004 + 157.91999999999999 -3.4356193143166366E-004 + 157.97999999999999 -3.4412604246081670E-004 + 158.03999999999999 -3.4451538890144652E-004 + 158.09999999999999 -3.4473083166198680E-004 + 158.16000000000000 -3.4477346327877330E-004 + 158.22000000000000 -3.4464450184120760E-004 + 158.28000000000000 -3.4434538938426661E-004 + 158.34000000000000 -3.4387774050092412E-004 + 158.40000000000001 -3.4324337038691951E-004 + 158.45999999999998 -3.4244419782953651E-004 + 158.51999999999998 -3.4148239685927336E-004 + 158.57999999999998 -3.4036031352738385E-004 + 158.63999999999999 -3.3908044791408653E-004 + 158.69999999999999 -3.3764542916644400E-004 + 158.75999999999999 -3.3605811523082708E-004 + 158.81999999999999 -3.3432148205022222E-004 + 158.88000000000000 -3.3243862354682681E-004 + 158.94000000000000 -3.3041288119517155E-004 + 159.00000000000000 -3.2824770097110353E-004 + 159.06000000000000 -3.2594666021869533E-004 + 159.12000000000000 -3.2351351637301514E-004 + 159.17999999999998 -3.2095212712477598E-004 + 159.23999999999998 -3.1826653833834427E-004 + 159.29999999999998 -3.1546092991409271E-004 + 159.35999999999999 -3.1253963437418965E-004 + 159.41999999999999 -3.0950701532640301E-004 + 159.47999999999999 -3.0636766365082764E-004 + 159.53999999999999 -3.0312622472640835E-004 + 159.59999999999999 -2.9978738003289760E-004 + 159.66000000000000 -2.9635598075485650E-004 + 159.72000000000000 -2.9283685455039099E-004 + 159.78000000000000 -2.8923488532492327E-004 + 159.84000000000000 -2.8555501648829039E-004 + 159.90000000000001 -2.8180215711104265E-004 + 159.95999999999998 -2.7798115630820131E-004 + 160.01999999999998 -2.7409687069086309E-004 + 160.07999999999998 -2.7015403134972424E-004 + 160.13999999999999 -2.6615731946128099E-004 + 160.19999999999999 -2.6211134419892385E-004 + 160.25999999999999 -2.5802055056868231E-004 + 160.31999999999999 -2.5388927849524665E-004 + 160.38000000000000 -2.4972171758039512E-004 + 160.44000000000000 -2.4552194598034360E-004 + 160.50000000000000 -2.4129387324614508E-004 + 160.56000000000000 -2.3704121683960512E-004 + 160.62000000000000 -2.3276757883525977E-004 + 160.67999999999998 -2.2847635055849524E-004 + 160.73999999999998 -2.2417080341087991E-004 + 160.79999999999998 -2.1985399322368082E-004 + 160.85999999999999 -2.1552881957577982E-004 + 160.91999999999999 -2.1119802422056621E-004 + 160.97999999999999 -2.0686412597637995E-004 + 161.03999999999999 -2.0252950449600989E-004 + 161.09999999999999 -1.9819633940502699E-004 + 161.16000000000000 -1.9386665779906698E-004 + 161.22000000000000 -1.8954225321480249E-004 + 161.28000000000000 -1.8522477796565094E-004 + 161.34000000000000 -1.8091568080797325E-004 + 161.40000000000001 -1.7661621468943598E-004 + 161.45999999999998 -1.7232746311789476E-004 + 161.51999999999998 -1.6805034929061314E-004 + 161.57999999999998 -1.6378559070902036E-004 + 161.63999999999999 -1.5953376420343711E-004 + 161.69999999999999 -1.5529529736716879E-004 + 161.75999999999999 -1.5107046083195298E-004 + 161.81999999999999 -1.4685939883479933E-004 + 161.88000000000000 -1.4266215316057878E-004 + 161.94000000000000 -1.3847867677576391E-004 + 162.00000000000000 -1.3430881793974822E-004 + 162.06000000000000 -1.3015238818043994E-004 + 162.12000000000000 -1.2600916031631047E-004 + 162.17999999999998 -1.2187890775549842E-004 + 162.23999999999998 -1.1776139446576756E-004 + 162.29999999999998 -1.1365642872405021E-004 + 162.35999999999999 -1.0956385878934868E-004 + 162.41999999999999 -1.0548363292884259E-004 + 162.47999999999999 -1.0141577564736200E-004 + 162.53999999999999 -9.7360461059433270E-005 + 162.59999999999999 -9.3317976267929943E-005 + 162.66000000000000 -8.9288775077486042E-005 + 162.72000000000000 -8.5273499477811645E-005 + 162.78000000000000 -8.1272968084363843E-005 + 162.84000000000000 -7.7288218013087410E-005 + 162.90000000000001 -7.3320488235321580E-005 + 162.95999999999998 -6.9371261141395885E-005 + 163.01999999999998 -6.5442248757315908E-005 + 163.07999999999998 -6.1535409082625521E-005 + 163.13999999999999 -5.7652952375439684E-005 + 163.19999999999999 -5.3797353356829176E-005 + 163.25999999999999 -4.9971337978066608E-005 + 163.31999999999999 -4.6177904790489698E-005 + 163.38000000000000 -4.2420315969987917E-005 + 163.44000000000000 -3.8702103362406196E-005 + 163.50000000000000 -3.5027078863023081E-005 + 163.56000000000000 -3.1399324383043262E-005 + 163.62000000000000 -2.7823213772254958E-005 + 163.67999999999998 -2.4303395974431109E-005 + 163.73999999999998 -2.0844803206739860E-005 + 163.79999999999998 -1.7452649521743429E-005 + 163.85999999999999 -1.4132441047011221E-005 + 163.91999999999999 -1.0889954857711624E-005 + 163.97999999999999 -7.7312544926792642E-006 + 164.03999999999999 -4.6626670966167869E-006 + 164.09999999999999 -1.6907841272899382E-006 + 164.16000000000000 1.1775544191637487E-006 + 164.22000000000000 3.9352744656256772E-006 + 164.28000000000000 6.5750843146024153E-006 + 164.34000000000000 9.0895021240902611E-006 + 164.40000000000001 1.1470870890275160E-005 + 164.45999999999998 1.3711389526865712E-005 + 164.51999999999998 1.5803145221248612E-005 + 164.57999999999998 1.7738127499387189E-005 + 164.63999999999999 1.9508279811014887E-005 + 164.69999999999999 2.1105505658253840E-005 + 164.75999999999999 2.2521722509908832E-005 + 164.81999999999999 2.3748865872350000E-005 + 164.88000000000000 2.4778944863314311E-005 + 164.94000000000000 2.5604041769225852E-005 + 165.00000000000000 2.6216351574970990E-005 + 165.06000000000000 2.6608203888609534E-005 + 165.12000000000000 2.6772070975662288E-005 + 165.17999999999998 2.6700604180370110E-005 + 165.23999999999998 2.6386639511071321E-005 + 165.29999999999998 2.5823217147832732E-005 + 165.35999999999999 2.5003597346682776E-005 + 165.41999999999999 2.3921277883534854E-005 + 165.47999999999999 2.2570017459456372E-005 + 165.53999999999999 2.0943830912021045E-005 + 165.59999999999999 1.9037033511361896E-005 + 165.66000000000000 1.6844248163288554E-005 + 165.72000000000000 1.4360424112114092E-005 + 165.78000000000000 1.1580858937411308E-005 + 165.84000000000000 8.5012235608671965E-006 + 165.90000000000001 5.1175707099720816E-006 + 165.95999999999998 1.4263705788047319E-006 + 166.01999999999998 -2.5754676963058465E-006 + 166.07999999999998 -6.8905920053842932E-006 + 166.13999999999999 -1.1521181953867130E-005 + 166.19999999999999 -1.6468937660779135E-005 + 166.25999999999999 -2.1735056823510870E-005 + 166.31999999999999 -2.7320242793488483E-005 + 166.38000000000000 -3.3224691526249633E-005 + 166.44000000000000 -3.9448076213108929E-005 + 166.50000000000000 -4.5989571180912107E-005 + 166.56000000000000 -5.2847833327207807E-005 + 166.62000000000000 -6.0021022979076717E-005 + 166.67999999999998 -6.7506791859230761E-005 + 166.73999999999998 -7.5302314290994629E-005 + 166.79999999999998 -8.3404270476407740E-005 + 166.85999999999999 -9.1808870683291374E-005 + 166.91999999999999 -1.0051187797542447E-004 + 166.97999999999999 -1.0950857312396962E-004 + 167.03999999999999 -1.1879381647453708E-004 + 167.09999999999999 -1.2836203298216830E-004 + 167.16000000000000 -1.3820722187077333E-004 + 167.22000000000000 -1.4832292972016093E-004 + 167.28000000000000 -1.5870232652477498E-004 + 167.34000000000000 -1.6933814638452342E-004 + 167.40000000000001 -1.8022273013045367E-004 + 167.45999999999998 -1.9134802984587524E-004 + 167.51999999999998 -2.0270561064102217E-004 + 167.57999999999998 -2.1428666053181477E-004 + 167.63999999999999 -2.2608196086315824E-004 + 167.69999999999999 -2.3808197168928279E-004 + 167.75999999999999 -2.5027676488611149E-004 + 167.81999999999999 -2.6265606480696719E-004 + 167.88000000000000 -2.7520928200947139E-004 + 167.94000000000000 -2.8792543623639387E-004 + 168.00000000000000 -3.0079332428423043E-004 + 168.06000000000000 -3.1380140967912867E-004 + 168.12000000000000 -3.2693785667754289E-004 + 168.17999999999998 -3.4019058094436367E-004 + 168.23999999999998 -3.5354718952249162E-004 + 168.29999999999998 -3.6699505082164063E-004 + 168.35999999999999 -3.8052134254831056E-004 + 168.41999999999999 -3.9411295333469315E-004 + 168.47999999999999 -4.0775660677297578E-004 + 168.53999999999999 -4.2143885630790230E-004 + 168.59999999999999 -4.3514596627349471E-004 + 168.66000000000000 -4.4886407051287602E-004 + 168.72000000000000 -4.6257909267263873E-004 + 168.78000000000000 -4.7627679145557770E-004 + 168.84000000000000 -4.8994281154832750E-004 + 168.90000000000001 -5.0356257766220273E-004 + 168.95999999999998 -5.1712135144827136E-004 + 169.01999999999998 -5.3060429534785029E-004 + 169.07999999999998 -5.4399638836007255E-004 + 169.13999999999999 -5.5728249138175569E-004 + 169.19999999999999 -5.7044727211641639E-004 + 169.25999999999999 -5.8347525227578682E-004 + 169.31999999999999 -5.9635092872499171E-004 + 169.38000000000000 -6.0905860611564942E-004 + 169.44000000000000 -6.2158245257092830E-004 + 169.50000000000000 -6.3390648160684929E-004 + 169.56000000000000 -6.4601469815637330E-004 + 169.62000000000000 -6.5789097051361148E-004 + 169.67999999999998 -6.6951906379396093E-004 + 169.73999999999998 -6.8088277128582303E-004 + 169.79999999999998 -6.9196573782544831E-004 + 169.85999999999999 -7.0275157308492570E-004 + 169.91999999999999 -7.1322399783890799E-004 + 169.97999999999999 -7.2336661565617526E-004 + 170.03999999999999 -7.3316311377897398E-004 + 170.09999999999999 -7.4259721205893303E-004 + 170.16000000000000 -7.5165272862984147E-004 + 170.22000000000000 -7.6031354523488457E-004 + 170.28000000000000 -7.6856366260435029E-004 + 170.34000000000000 -7.7638721942935827E-004 + 170.40000000000001 -7.8376850326695449E-004 + 170.45999999999998 -7.9069195300574186E-004 + 170.51999999999998 -7.9714221203590742E-004 + 170.57999999999998 -8.0310414903490184E-004 + 170.63999999999999 -8.0856283833126582E-004 + 170.69999999999999 -8.1350359070166578E-004 + 170.75999999999999 -8.1791208451705466E-004 + 170.81999999999999 -8.2177423462998314E-004 + 170.88000000000000 -8.2507632221114069E-004 + 170.94000000000000 -8.2780500216558621E-004 + 171.00000000000000 -8.2994733093524572E-004 + 171.06000000000000 -8.3149073790718007E-004 + 171.12000000000000 -8.3242318155529673E-004 + 171.17999999999998 -8.3273319716839099E-004 + 171.23999999999998 -8.3240978920145732E-004 + 171.29999999999998 -8.3144266497594860E-004 + 171.35999999999999 -8.2982198008828539E-004 + 171.41999999999999 -8.2753876438323461E-004 + 171.47999999999999 -8.2458468700855189E-004 + 171.53999999999999 -8.2095222074949562E-004 + 171.59999999999999 -8.1663462774674337E-004 + 171.66000000000000 -8.1162594928543179E-004 + 171.72000000000000 -8.0592114051569372E-004 + 171.78000000000000 -7.9951597821232981E-004 + 171.84000000000000 -7.9240718076130162E-004 + 171.90000000000001 -7.8459240169286427E-004 + 171.95999999999998 -7.7607030368508241E-004 + 172.01999999999998 -7.6684045329705156E-004 + 172.07999999999998 -7.5690339898654212E-004 + 172.13999999999999 -7.4626076849123246E-004 + 172.19999999999999 -7.3491508602937887E-004 + 172.25999999999999 -7.2287000534633473E-004 + 172.31999999999999 -7.1013013990117008E-004 + 172.38000000000000 -6.9670121066200150E-004 + 172.44000000000000 -6.8258992800595132E-004 + 172.50000000000000 -6.6780416637210710E-004 + 172.56000000000000 -6.5235283915374511E-004 + 172.62000000000000 -6.3624590945539046E-004 + 172.67999999999998 -6.1949455411585406E-004 + 172.73999999999998 -6.0211092403324087E-004 + 172.79999999999998 -5.8410826528362749E-004 + 172.85999999999999 -5.6550100735993096E-004 + 172.91999999999999 -5.4630463979040572E-004 + 172.97999999999999 -5.2653568741900980E-004 + 173.03999999999999 -5.0621175403633577E-004 + 173.09999999999999 -4.8535141198080209E-004 + 173.16000000000000 -4.6397437447655775E-004 + 173.22000000000000 -4.4210122431255960E-004 + 173.28000000000000 -4.1975353765837656E-004 + 173.34000000000000 -3.9695377486308441E-004 + 173.40000000000001 -3.7372528373828205E-004 + 173.45999999999998 -3.5009219743406159E-004 + 173.51999999999998 -3.2607948330196475E-004 + 173.57999999999998 -3.0171278359260230E-004 + 173.63999999999999 -2.7701842721048338E-004 + 173.69999999999999 -2.5202339228135116E-004 + 173.75999999999999 -2.2675524310850106E-004 + 173.81999999999999 -2.0124205282970838E-004 + 173.88000000000000 -1.7551236375618393E-004 + 173.94000000000000 -1.4959518128827075E-004 + 174.00000000000000 -1.2351987660313548E-004 + 174.06000000000000 -9.7316140893873487E-005 + 174.12000000000000 -7.1013939465570800E-005 + 174.17999999999998 -4.4643465428718521E-005 + 174.23999999999998 -1.8235082742154620E-005 + 174.29999999999998 8.1807298850667667E-006 + 174.35999999999999 3.4573431385324742E-005 + 174.41999999999999 6.0912463213724331E-005 + 174.47999999999999 8.7167319238348038E-005 + 174.53999999999999 1.1330760456654437E-004 + 174.59999999999999 1.3930306931244030E-004 + 174.66000000000000 1.6512366247639458E-004 + 174.72000000000000 1.9073962066400681E-004 + 174.78000000000000 2.1612148931634395E-004 + 174.84000000000000 2.4124017846448566E-004 + 174.90000000000001 2.6606706101145743E-004 + 174.95999999999998 2.9057390549338348E-004 + 175.01999999999998 3.1473307913828543E-004 + 175.07999999999998 3.3851753145110327E-004 + 175.13999999999999 3.6190079987213778E-004 + 175.19999999999999 3.8485704705500990E-004 + 175.25999999999999 4.0736120619151348E-004 + 175.31999999999999 4.2938889117163427E-004 + 175.38000000000000 4.5091655386520288E-004 + 175.44000000000000 4.7192144382461078E-004 + 175.50000000000000 4.9238159088631011E-004 + 175.56000000000000 5.1227594603674251E-004 + 175.62000000000000 5.3158434832782197E-004 + 175.67999999999998 5.5028746987737485E-004 + 175.73999999999998 5.6836699846296568E-004 + 175.79999999999998 5.8580549881325503E-004 + 175.85999999999999 6.0258650597427681E-004 + 175.91999999999999 6.1869450429660852E-004 + 175.97999999999999 6.3411485843198768E-004 + 176.03999999999999 6.4883397720158227E-004 + 176.09999999999999 6.6283923359890782E-004 + 176.16000000000000 6.7611896871517044E-004 + 176.22000000000000 6.8866240227512092E-004 + 176.28000000000000 7.0045976485396679E-004 + 176.34000000000000 7.1150222758841820E-004 + 176.40000000000001 7.2178191374129368E-004 + 176.45999999999998 7.3129190120987237E-004 + 176.51999999999998 7.4002624434567875E-004 + 176.57999999999998 7.4797991092757574E-004 + 176.63999999999999 7.5514891264032743E-004 + 176.69999999999999 7.6153002888027584E-004 + 176.75999999999999 7.6712112122052499E-004 + 176.81999999999999 7.7192094524440504E-004 + 176.88000000000000 7.7592911767554245E-004 + 176.94000000000000 7.7914628119768394E-004 + 177.00000000000000 7.8157386143013364E-004 + 177.06000000000000 7.8321425797400767E-004 + 177.12000000000000 7.8407066435508494E-004 + 177.17999999999998 7.8414719847134105E-004 + 177.23999999999998 7.8344879263704146E-004 + 177.29999999999998 7.8198106684752270E-004 + 177.35999999999999 7.7975046843505079E-004 + 177.41999999999999 7.7676427901744835E-004 + 177.47999999999999 7.7303040131162051E-004 + 177.53999999999999 7.6855755661817918E-004 + 177.59999999999999 7.6335502080728446E-004 + 177.66000000000000 7.5743275572576229E-004 + 177.72000000000000 7.5080135685741465E-004 + 177.78000000000000 7.4347204583175279E-004 + 177.84000000000000 7.3545662723862931E-004 + 177.90000000000001 7.2676755960360045E-004 + 177.95999999999998 7.1741781178662515E-004 + 178.01999999999998 7.0742089534510638E-004 + 178.07999999999998 6.9679088007166461E-004 + 178.13999999999999 6.8554246032337689E-004 + 178.19999999999999 6.7369068322905960E-004 + 178.25999999999999 6.6125133166411866E-004 + 178.31999999999999 6.4824055492330502E-004 + 178.38000000000000 6.3467497706466420E-004 + 178.44000000000000 6.2057178723483048E-004 + 178.50000000000000 6.0594859446745902E-004 + 178.56000000000000 5.9082338695214749E-004 + 178.62000000000000 5.7521459200019821E-004 + 178.67999999999998 5.5914106995085542E-004 + 178.73999999999998 5.4262199391229521E-004 + 178.79999999999998 5.2567686298096380E-004 + 178.85999999999999 5.0832545864814887E-004 + 178.91999999999999 4.9058798317658573E-004 + 178.97999999999999 4.7248473552580022E-004 + 179.03999999999999 4.5403626788528221E-004 + 179.09999999999999 4.3526339847254416E-004 + 179.16000000000000 4.1618704245087923E-004 + 179.22000000000000 3.9682832454393746E-004 + 179.28000000000000 3.7720848728436870E-004 + 179.34000000000000 3.5734887189471605E-004 + 179.40000000000001 3.3727089611299151E-004 + 179.45999999999998 3.1699606120706334E-004 + 179.51999999999998 2.9654592854043850E-004 + 179.57999999999998 2.7594207691326861E-004 + 179.63999999999999 2.5520610441491547E-004 + 179.69999999999999 2.3435956675893523E-004 + 179.75999999999999 2.1342397277086689E-004 + 179.81999999999999 1.9242074534735223E-004 + 179.88000000000000 1.7137124759305779E-004 + 179.94000000000000 1.5029668527494103E-004 + 180.00000000000000 1.2921810894914231E-004 + 180.06000000000000 1.0815638922293990E-004 + 180.12000000000000 8.7132187434393735E-005 + 180.17999999999998 6.6165910435753576E-005 + 180.23999999999998 4.5277702359859482E-005 + 180.29999999999998 2.4487396452788426E-005 + 180.35999999999999 3.8144994896817970E-006 + 180.41999999999999 -1.6721841366934238E-005 + 180.47999999999999 -3.7102862491010129E-005 + 180.53999999999999 -5.7310202750671651E-005 + 180.59999999999999 -7.7325940001620293E-005 + 180.66000000000000 -9.7132607064219739E-005 + 180.72000000000000 -1.1671321061322259E-004 + 180.78000000000000 -1.3605125664436138E-004 + 180.84000000000000 -1.5513076879290506E-004 + 180.90000000000001 -1.7393631510478246E-004 + 180.95999999999998 -1.9245298617079953E-004 + 181.01999999999998 -2.1066648180399154E-004 + 181.07999999999998 -2.2856304541070364E-004 + 181.13999999999999 -2.4612953117443385E-004 + 181.19999999999999 -2.6335345628684134E-004 + 181.25999999999999 -2.8022284893729042E-004 + 181.31999999999999 -2.9672644425726111E-004 + 181.38000000000000 -3.1285355355235368E-004 + 181.44000000000000 -3.2859414415759822E-004 + 181.50000000000000 -3.4393881467807962E-004 + 181.56000000000000 -3.5887879471460698E-004 + 181.62000000000000 -3.7340597508360576E-004 + 181.67999999999998 -3.8751279037075502E-004 + 181.73999999999998 -4.0119239243579271E-004 + 181.79999999999998 -4.1443851031914002E-004 + 181.85999999999999 -4.2724546458239142E-004 + 181.91999999999999 -4.3960819547235344E-004 + 181.97999999999999 -4.5152225579031795E-004 + 182.03999999999999 -4.6298373238483061E-004 + 182.09999999999999 -4.7398934083888605E-004 + 182.16000000000000 -4.8453631316703835E-004 + 182.22000000000000 -4.9462247933992399E-004 + 182.28000000000000 -5.0424601677644164E-004 + 182.34000000000000 -5.1340587725317525E-004 + 182.39999999999998 -5.2210135217996051E-004 + 182.45999999999998 -5.3033219080349128E-004 + 182.51999999999998 -5.3809862080590200E-004 + 182.57999999999998 -5.4540136776812730E-004 + 182.63999999999999 -5.5224149726899180E-004 + 182.69999999999999 -5.5862032709853252E-004 + 182.75999999999999 -5.6453974329870326E-004 + 182.81999999999999 -5.7000176119870367E-004 + 182.88000000000000 -5.7500878054595242E-004 + 182.94000000000000 -5.7956343373340212E-004 + 183.00000000000000 -5.8366858533999899E-004 + 183.06000000000000 -5.8732731732753524E-004 + 183.12000000000000 -5.9054275463890226E-004 + 183.17999999999998 -5.9331834847160423E-004 + 183.23999999999998 -5.9565753488067391E-004 + 183.29999999999998 -5.9756396751944559E-004 + 183.35999999999999 -5.9904127863876920E-004 + 183.41999999999999 -6.0009325645521590E-004 + 183.47999999999999 -6.0072375777330022E-004 + 183.53999999999999 -6.0093663195159017E-004 + 183.59999999999999 -6.0073569177360002E-004 + 183.66000000000000 -6.0012486575215915E-004 + 183.72000000000000 -5.9910805117479508E-004 + 183.78000000000000 -5.9768917745292897E-004 + 183.84000000000000 -5.9587207825199820E-004 + 183.89999999999998 -5.9366060204878938E-004 + 183.95999999999998 -5.9105852739914139E-004 + 184.01999999999998 -5.8806959341583371E-004 + 184.07999999999998 -5.8469738201484967E-004 + 184.13999999999999 -5.8094561599081492E-004 + 184.19999999999999 -5.7681778801927850E-004 + 184.25999999999999 -5.7231729462333303E-004 + 184.31999999999999 -5.6744754939650030E-004 + 184.38000000000000 -5.6221182651053369E-004 + 184.44000000000000 -5.5661341885490255E-004 + 184.50000000000000 -5.5065542348963761E-004 + 184.56000000000000 -5.4434098819103696E-004 + 184.62000000000000 -5.3767317544039129E-004 + 184.67999999999998 -5.3065512076961327E-004 + 184.73999999999998 -5.2328992300451041E-004 + 184.79999999999998 -5.1558065294673972E-004 + 184.85999999999999 -5.0753049653037060E-004 + 184.91999999999999 -4.9914266473087229E-004 + 184.97999999999999 -4.9042056408938196E-004 + 185.03999999999999 -4.8136760913200321E-004 + 185.09999999999999 -4.7198745568512201E-004 + 185.16000000000000 -4.6228384673379166E-004 + 185.22000000000000 -4.5226077803479990E-004 + 185.28000000000000 -4.4192240903871281E-004 + 185.34000000000000 -4.3127316754902178E-004 + 185.39999999999998 -4.2031773192354962E-004 + 185.45999999999998 -4.0906101345755951E-004 + 185.51999999999998 -3.9750824015856521E-004 + 185.57999999999998 -3.8566493308293039E-004 + 185.63999999999999 -3.7353694614473975E-004 + 185.69999999999999 -3.6113043050583896E-004 + 185.75999999999999 -3.4845193729465498E-004 + 185.81999999999999 -3.3550836308927798E-004 + 185.88000000000000 -3.2230707203772293E-004 + 185.94000000000000 -3.0885577636515714E-004 + 186.00000000000000 -2.9516266259526806E-004 + 186.06000000000000 -2.8123634225027053E-004 + 186.12000000000000 -2.6708591462847628E-004 + 186.17999999999998 -2.5272092918692034E-004 + 186.23999999999998 -2.3815146881455025E-004 + 186.29999999999998 -2.2338807813357267E-004 + 186.35999999999999 -2.0844183194241095E-004 + 186.41999999999999 -1.9332430184187138E-004 + 186.47999999999999 -1.7804754909268966E-004 + 186.53999999999999 -1.6262414739704872E-004 + 186.59999999999999 -1.4706715691761756E-004 + 186.66000000000000 -1.3139011449984537E-004 + 186.72000000000000 -1.1560701648827835E-004 + 186.78000000000000 -9.9732302248275507E-005 + 186.84000000000000 -8.3780821969341334E-005 + 186.89999999999998 -6.7767832842883163E-005 + 186.95999999999998 -5.1708968793991522E-005 + 187.01999999999998 -3.5620197116175522E-005 + 187.07999999999998 -1.9517806419188394E-005 + 187.13999999999999 -3.4183707138250831E-006 + 187.19999999999999 1.2661280723398990E-005 + 187.25999999999999 2.8704103849120199E-005 + 187.31999999999999 4.4692859281476497E-005 + 187.38000000000000 6.0610159596765759E-005 + 187.44000000000000 7.6438510778627594E-005 + 187.50000000000000 9.2160321450828465E-005 + 187.56000000000000 1.0775797435687500E-004 + 187.62000000000000 1.2321384072275051E-004 + 187.67999999999998 1.3851034369172330E-004 + 187.73999999999998 1.5362998633091160E-004 + 187.79999999999998 1.6855536419556937E-004 + 187.85999999999999 1.8326923128300610E-004 + 187.91999999999999 1.9775458813617029E-004 + 187.97999999999999 2.1199461626029758E-004 + 188.03999999999999 2.2597280296799443E-004 + 188.09999999999999 2.3967295563251053E-004 + 188.16000000000000 2.5307922490142948E-004 + 188.22000000000000 2.6617613732580580E-004 + 188.28000000000000 2.7894865146425196E-004 + 188.34000000000000 2.9138218677689698E-004 + 188.39999999999998 3.0346267268598922E-004 + 188.45999999999998 3.1517654424872412E-004 + 188.51999999999998 3.2651078212329686E-004 + 188.57999999999998 3.3745294482502884E-004 + 188.63999999999999 3.4799119800413644E-004 + 188.69999999999999 3.5811433136694471E-004 + 188.75999999999999 3.6781182171852000E-004 + 188.81999999999999 3.7707381607207852E-004 + 188.88000000000000 3.8589114638869475E-004 + 188.94000000000000 3.9425535150377491E-004 + 189.00000000000000 4.0215866610745501E-004 + 189.06000000000000 4.0959414655201780E-004 + 189.12000000000000 4.1655549240417721E-004 + 189.17999999999998 4.2303721344687261E-004 + 189.23999999999998 4.2903456659730370E-004 + 189.29999999999998 4.3454351077212324E-004 + 189.35999999999999 4.3956076845826851E-004 + 189.41999999999999 4.4408379504127886E-004 + 189.47999999999999 4.4811072877690887E-004 + 189.53999999999999 4.5164044638387177E-004 + 189.59999999999999 4.5467249624177861E-004 + 189.66000000000000 4.5720708985785168E-004 + 189.72000000000000 4.5924506601758625E-004 + 189.78000000000000 4.6078791383594956E-004 + 189.84000000000000 4.6183771794703645E-004 + 189.89999999999998 4.6239715205681411E-004 + 189.95999999999998 4.6246950217898770E-004 + 190.01999999999998 4.6205854693717605E-004 + 190.07999999999998 4.6116861368829357E-004 + 190.13999999999999 4.5980457686808842E-004 + 190.19999999999999 4.5797175981571539E-004 + 190.25999999999999 4.5567595298990856E-004 + 190.31999999999999 4.5292341921603714E-004 + 190.38000000000000 4.4972087979115066E-004 + 190.44000000000000 4.4607543103197822E-004 + 190.50000000000000 4.4199456055943852E-004 + 190.56000000000000 4.3748610299567140E-004 + 190.62000000000000 4.3255826190701451E-004 + 190.67999999999998 4.2721951663402560E-004 + 190.73999999999998 4.2147867291806223E-004 + 190.79999999999998 4.1534473429637414E-004 + 190.85999999999999 4.0882697893450756E-004 + 190.91999999999999 4.0193483390106089E-004 + 190.97999999999999 3.9467797114473631E-004 + 191.03999999999999 3.8706615431014955E-004 + 191.09999999999999 3.7910934016480385E-004 + 191.16000000000000 3.7081755959441774E-004 + 191.22000000000000 3.6220090417461330E-004 + 191.28000000000000 3.5326962237543458E-004 + 191.34000000000000 3.4403396310397303E-004 + 191.39999999999998 3.3450430099941171E-004 + 191.45999999999998 3.2469101742988745E-004 + 191.51999999999998 3.1460463122826151E-004 + 191.57999999999998 3.0425559960148442E-004 + 191.63999999999999 2.9365446273046144E-004 + 191.69999999999999 2.8281181100712821E-004 + 191.75999999999999 2.7173833623250461E-004 + 191.81999999999999 2.6044468392321974E-004 + 191.88000000000000 2.4894158325026132E-004 + 191.94000000000000 2.3723981925481789E-004 + 192.00000000000000 2.2535019350192732E-004 + 192.06000000000000 2.1328352313520734E-004 + 192.12000000000000 2.0105068078610022E-004 + 192.17999999999998 1.8866256241677608E-004 + 192.23999999999998 1.7613007926874867E-004 + 192.29999999999998 1.6346414719901195E-004 + 192.35999999999999 1.5067569699641072E-004 + 192.41999999999999 1.3777568739442632E-004 + 192.47999999999999 1.2477508143093527E-004 + 192.53999999999999 1.1168483412306840E-004 + 192.59999999999999 9.8515926250126120E-005 + 192.66000000000000 8.5279330937960976E-005 + 192.72000000000000 7.1986034591023566E-005 + 192.78000000000000 5.8647020399274761E-005 + 192.84000000000000 4.5273296675943440E-005 + 192.89999999999998 3.1875862025170052E-005 + 192.95999999999998 1.8465726588992084E-005 + 193.01999999999998 5.0539149870334318E-006 + 193.07999999999998 -8.3485543241726828E-006 + 193.13999999999999 -2.1730658170742791E-005 + 193.19999999999999 -3.5081374804400832E-005 + 193.25999999999999 -4.8389703545894279E-005 + 193.31999999999999 -6.1644657929278666E-005 + 193.38000000000000 -7.4835277952984533E-005 + 193.44000000000000 -8.7950657152617150E-005 + 193.50000000000000 -1.0097993189922746E-004 + 193.56000000000000 -1.1391230583619288E-004 + 193.62000000000000 -1.2673707083236306E-004 + 193.67999999999998 -1.3944361295783163E-004 + 193.73999999999998 -1.5202143348508375E-004 + 193.79999999999998 -1.6446014220303982E-004 + 193.85999999999999 -1.7674952082878247E-004 + 193.91999999999999 -1.8887947982763838E-004 + 193.97999999999999 -2.0084012170737577E-004 + 194.03999999999999 -2.1262175618892240E-004 + 194.09999999999999 -2.2421488694921335E-004 + 194.16000000000000 -2.3561023484247425E-004 + 194.22000000000000 -2.4679875118397798E-004 + 194.28000000000000 -2.5777168238061415E-004 + 194.34000000000000 -2.6852049702784668E-004 + 194.39999999999998 -2.7903699133913570E-004 + 194.45999999999998 -2.8931326231557201E-004 + 194.51999999999998 -2.9934172840318971E-004 + 194.57999999999998 -3.0911507478161444E-004 + 194.63999999999999 -3.1862640896324469E-004 + 194.69999999999999 -3.2786920588669533E-004 + 194.75999999999999 -3.3683723798573408E-004 + 194.81999999999999 -3.4552473125252673E-004 + 194.88000000000000 -3.5392623813050258E-004 + 194.94000000000000 -3.6203677865763082E-004 + 195.00000000000000 -3.6985175098073049E-004 + 195.06000000000000 -3.7736696392629991E-004 + 195.12000000000000 -3.8457867079490107E-004 + 195.17999999999998 -3.9148351540982873E-004 + 195.23999999999998 -3.9807860030310703E-004 + 195.29999999999998 -4.0436148798876409E-004 + 195.35999999999999 -4.1033011690347977E-004 + 195.41999999999999 -4.1598295957461623E-004 + 195.47999999999999 -4.2131885073494051E-004 + 195.53999999999999 -4.2633706381903371E-004 + 195.59999999999999 -4.3103731590487008E-004 + 195.66000000000000 -4.3541981453078921E-004 + 195.72000000000000 -4.3948513210916078E-004 + 195.78000000000000 -4.4323427619877504E-004 + 195.84000000000000 -4.4666869789052434E-004 + 195.89999999999998 -4.4979018863391859E-004 + 195.95999999999998 -4.5260098771671039E-004 + 196.01999999999998 -4.5510364175478462E-004 + 196.07999999999998 -4.5730107884926850E-004 + 196.13999999999999 -4.5919656531935360E-004 + 196.19999999999999 -4.6079365448190669E-004 + 196.25999999999999 -4.6209618951427027E-004 + 196.31999999999999 -4.6310831632791856E-004 + 196.38000000000000 -4.6383442579560021E-004 + 196.44000000000000 -4.6427901995768953E-004 + 196.50000000000000 -4.6444689896496305E-004 + 196.56000000000000 -4.6434302840685579E-004 + 196.62000000000000 -4.6397247609716001E-004 + 196.67999999999998 -4.6334047489381250E-004 + 196.73999999999998 -4.6245230810194687E-004 + 196.79999999999998 -4.6131341310316857E-004 + 196.85999999999999 -4.5992928401860007E-004 + 196.91999999999999 -4.5830542232341690E-004 + 196.97999999999999 -4.5644743232818764E-004 + 197.03999999999999 -4.5436085678856811E-004 + 197.09999999999999 -4.5205129685004593E-004 + 197.16000000000000 -4.4952434172193767E-004 + 197.22000000000000 -4.4678550697834797E-004 + 197.28000000000000 -4.4384032800287500E-004 + 197.34000000000000 -4.4069424747144757E-004 + 197.39999999999998 -4.3735262282006094E-004 + 197.45999999999998 -4.3382071104916325E-004 + 197.51999999999998 -4.3010369862864716E-004 + 197.57999999999998 -4.2620660267458791E-004 + 197.63999999999999 -4.2213426624591562E-004 + 197.69999999999999 -4.1789147814327946E-004 + 197.75999999999999 -4.1348275354145505E-004 + 197.81999999999999 -4.0891245089968553E-004 + 197.88000000000000 -4.0418479310286510E-004 + 197.94000000000000 -3.9930372366564005E-004 + 198.00000000000000 -3.9427305492698391E-004 + 198.06000000000000 -3.8909635797474529E-004 + 198.12000000000000 -3.8377703657168104E-004 + 198.17999999999998 -3.7831831433033920E-004 + 198.23999999999998 -3.7272317284004489E-004 + 198.29999999999998 -3.6699449455948602E-004 + 198.35999999999999 -3.6113496249528968E-004 + 198.41999999999999 -3.5514714828790360E-004 + 198.47999999999999 -3.4903349550602088E-004 + 198.53999999999999 -3.4279633338950635E-004 + 198.59999999999999 -3.3643783206840320E-004 + 198.66000000000000 -3.2996015631396255E-004 + 198.72000000000000 -3.2336539971299772E-004 + 198.78000000000000 -3.1665556799793872E-004 + 198.84000000000000 -3.0983261016654827E-004 + 198.89999999999998 -3.0289856209660289E-004 + 198.95999999999998 -2.9585529382729066E-004 + 199.01999999999998 -2.8870476713212766E-004 + 199.07999999999998 -2.8144895274121747E-004 + 199.13999999999999 -2.7408976986696400E-004 + 199.19999999999999 -2.6662922215973505E-004 + 199.25999999999999 -2.5906937180689908E-004 + 199.31999999999999 -2.5141230114753216E-004 + 199.38000000000000 -2.4366018051031609E-004 + 199.44000000000000 -2.3581524544340107E-004 + 199.50000000000000 -2.2787982604520728E-004 + 199.56000000000000 -2.1985636224888485E-004 + 199.62000000000000 -2.1174743066544309E-004 + 199.67999999999998 -2.0355570866348205E-004 + 199.73999999999998 -1.9528405471155890E-004 + 199.79999999999998 -1.8693548285398848E-004 + 199.85999999999999 -1.7851317891439067E-004 + 199.91999999999999 -1.7002050844560195E-004 + 199.97999999999999 -1.6146100010980805E-004 + 200.03999999999999 -1.5283839895280680E-004 + 200.09999999999999 -1.4415667245534200E-004 + 200.16000000000000 -1.3541995542552254E-004 + 200.22000000000000 -1.2663258732629733E-004 + 200.28000000000000 -1.1779913438011602E-004 + 200.34000000000000 -1.0892432798362839E-004 + 200.39999999999998 -1.0001310618828197E-004 + 200.45999999999998 -9.1070577564065063E-005 + 200.51999999999998 -8.2102029669994659E-005 + 200.57999999999998 -7.3112910534139610E-005 + 200.63999999999999 -6.4108815930221598E-005 + 200.69999999999999 -5.5095470597650800E-005 + 200.75999999999999 -4.6078730840208666E-005 + 200.81999999999999 -3.7064557611003754E-005 + 200.88000000000000 -2.8058996040918467E-005 + 200.94000000000000 -1.9068169153347478E-005 + 201.00000000000000 -1.0098256244334285E-005 + 201.06000000000000 -1.1554735057113994E-006 + 201.12000000000000 7.7539402018870366E-006 + 201.17999999999998 1.6623742878984270E-005 + 201.23999999999998 2.5447707821050174E-005 + 201.29999999999998 3.4219647148264778E-005 + 201.35999999999999 4.2933417294182157E-005 + 201.41999999999999 5.1582945001344770E-005 + 201.47999999999999 6.0162240316266199E-005 + 201.53999999999999 6.8665422494348501E-005 + 201.59999999999999 7.7086723146185457E-005 + 201.66000000000000 8.5420500389869750E-005 + 201.72000000000000 9.3661285190462564E-005 + 201.78000000000000 1.0180373262227787E-004 + 201.84000000000000 1.0984270246117366E-004 + 201.89999999999998 1.1777322352411339E-004 + 201.95999999999998 1.2559052252765772E-004 + 202.01999999999998 1.3329003272260625E-004 + 202.07999999999998 1.4086741842921844E-004 + 202.13999999999999 1.4831854178925450E-004 + 202.19999999999999 1.5563954158468270E-004 + 202.25999999999999 1.6282677483533647E-004 + 202.31999999999999 1.6987687650180496E-004 + 202.38000000000000 1.7678669530374924E-004 + 202.44000000000000 1.8355338826610363E-004 + 202.50000000000000 1.9017435281717208E-004 + 202.56000000000000 1.9664728896403056E-004 + 202.62000000000000 2.0297013560769696E-004 + 202.67999999999998 2.0914114216848340E-004 + 202.73999999999998 2.1515880634408559E-004 + 202.79999999999998 2.2102191774548826E-004 + 202.85999999999999 2.2672948604533232E-004 + 202.91999999999999 2.3228082392776767E-004 + 202.97999999999999 2.3767545690455392E-004 + 203.03999999999999 2.4291315911858911E-004 + 203.09999999999999 2.4799389010778209E-004 + 203.16000000000000 2.5291788944712339E-004 + 203.22000000000000 2.5768548745792110E-004 + 203.28000000000000 2.6229725842051625E-004 + 203.34000000000000 2.6675388598808655E-004 + 203.39999999999998 2.7105621132291272E-004 + 203.45999999999998 2.7520520763320717E-004 + 203.51999999999998 2.7920193034337674E-004 + 203.57999999999998 2.8304757562210058E-004 + 203.63999999999999 2.8674332438231821E-004 + 203.69999999999999 2.9029052341603817E-004 + 203.75999999999999 2.9369048671319822E-004 + 203.81999999999999 2.9694460725977035E-004 + 203.88000000000000 3.0005429273268663E-004 + 203.94000000000000 3.0302094739670463E-004 + 204.00000000000000 3.0584600569682433E-004 + 204.06000000000000 3.0853084832082461E-004 + 204.12000000000000 3.1107684650548824E-004 + 204.17999999999998 3.1348531519996358E-004 + 204.23999999999998 3.1575757689600444E-004 + 204.29999999999998 3.1789483562871628E-004 + 204.35999999999999 3.1989819502468151E-004 + 204.41999999999999 3.2176867154256922E-004 + 204.47999999999999 3.2350717854292909E-004 + 204.53999999999999 3.2511452619585776E-004 + 204.59999999999999 3.2659132451891314E-004 + 204.66000000000000 3.2793807716681656E-004 + 204.72000000000000 3.2915513671540010E-004 + 204.78000000000000 3.3024263359639617E-004 + 204.84000000000000 3.3120058712910410E-004 + 204.89999999999998 3.3202881703941269E-004 + 204.95999999999998 3.3272697707470699E-004 + 205.01999999999998 3.3329451665615307E-004 + 205.07999999999998 3.3373075396665258E-004 + 205.13999999999999 3.3403478330485070E-004 + 205.19999999999999 3.3420560046146567E-004 + 205.25999999999999 3.3424197483991120E-004 + 205.31999999999999 3.3414259188356934E-004 + 205.38000000000000 3.3390595516417752E-004 + 205.44000000000000 3.3353041366962212E-004 + 205.50000000000000 3.3301421872125537E-004 + 205.56000000000000 3.3235552610412218E-004 + 205.62000000000000 3.3155231819338943E-004 + 205.67999999999998 3.3060256025864936E-004 + 205.73999999999998 3.2950402087605321E-004 + 205.79999999999998 3.2825444636489984E-004 + 205.85999999999999 3.2685151447339701E-004 + 205.91999999999999 3.2529282629297304E-004 + 205.97999999999999 3.2357596114222087E-004 + 206.03999999999999 3.2169838884568556E-004 + 206.09999999999999 3.1965762233459471E-004 + 206.16000000000000 3.1745117221651975E-004 + 206.22000000000000 3.1507647986921594E-004 + 206.28000000000000 3.1253114626462271E-004 + 206.34000000000000 3.0981271039699499E-004 + 206.39999999999998 3.0691885881597726E-004 + 206.45999999999998 3.0384734052000081E-004 + 206.51999999999998 3.0059603652804218E-004 + 206.57999999999998 2.9716297594521560E-004 + 206.63999999999999 2.9354631933152509E-004 + 206.69999999999999 2.8974439527606815E-004 + 206.75999999999999 2.8575577725534202E-004 + 206.81999999999999 2.8157925376731002E-004 + 206.88000000000000 2.7721380016024585E-004 + 206.94000000000000 2.7265869330340785E-004 + 207.00000000000000 2.6791343706873179E-004 + 207.06000000000000 2.6297786845107387E-004 + 207.12000000000000 2.5785208599380109E-004 + 207.17999999999998 2.5253653485219599E-004 + 207.23999999999998 2.4703196355030789E-004 + 207.29999999999998 2.4133950054716058E-004 + 207.35999999999999 2.3546060432618125E-004 + 207.41999999999999 2.2939713671110839E-004 + 207.47999999999999 2.2315133440013358E-004 + 207.53999999999999 2.1672583340615639E-004 + 207.59999999999999 2.1012371659475613E-004 + 207.66000000000000 2.0334845780921724E-004 + 207.72000000000000 1.9640401709889130E-004 + 207.78000000000000 1.8929477669078759E-004 + 207.84000000000000 1.8202560810465565E-004 + 207.89999999999998 1.7460181505167619E-004 + 207.95999999999998 1.6702922841182010E-004 + 208.01999999999998 1.5931410698216556E-004 + 208.07999999999998 1.5146324776092206E-004 + 208.13999999999999 1.4348389878357103E-004 + 208.19999999999999 1.3538378997484648E-004 + 208.25999999999999 1.2717113041771355E-004 + 208.31999999999999 1.1885460628762228E-004 + 208.38000000000000 1.1044335898961211E-004 + 208.44000000000000 1.0194699713969876E-004 + 208.50000000000000 9.3375559945771871E-005 + 208.56000000000000 8.4739519724107639E-005 + 208.62000000000000 7.6049782951252446E-005 + 208.68000000000001 6.7317631018537288E-005 + 208.74000000000001 5.8554752774527251E-005 + 208.80000000000001 4.9773204102205419E-005 + 208.86000000000001 4.0985376493614762E-005 + 208.92000000000002 3.2203991797314784E-005 + 208.98000000000002 2.3442072011774948E-005 + 209.03999999999996 1.4712912117493636E-005 + 209.09999999999997 6.0300536376624386E-006 + 209.15999999999997 -2.5927506498727599E-006 + 209.21999999999997 -1.1141568128095809E-005 + 209.27999999999997 -1.9602308283483119E-005 + 209.33999999999997 -2.7960780378727330E-005 + 209.39999999999998 -3.6202718392645769E-005 + 209.45999999999998 -4.4313812174717793E-005 + 209.51999999999998 -5.2279758007957765E-005 + 209.57999999999998 -6.0086283311929994E-005 + 209.63999999999999 -6.7719216946883370E-005 + 209.69999999999999 -7.5164484656787739E-005 + 209.75999999999999 -8.2408176426755923E-005 + 209.81999999999999 -8.9436573786091667E-005 + 209.88000000000000 -9.6236200546315575E-005 + 209.94000000000000 -1.0279384812821821E-004 + 210.00000000000000 -1.0909661435040940E-004 + 210.06000000000000 -1.1513193885643006E-004 + 210.12000000000000 -1.2088765127667217E-004 + 210.18000000000001 -1.2635200173417776E-004 + 210.24000000000001 -1.3151369858110387E-004 + 210.30000000000001 -1.3636193195855798E-004 + 210.36000000000001 -1.4088643333685466E-004 + 210.42000000000002 -1.4507750458935594E-004 + 210.48000000000002 -1.4892604471806409E-004 + 210.53999999999996 -1.5242360781606601E-004 + 210.59999999999997 -1.5556241050178891E-004 + 210.65999999999997 -1.5833539280081440E-004 + 210.71999999999997 -1.6073622163729744E-004 + 210.77999999999997 -1.6275935602493783E-004 + 210.83999999999997 -1.6440001665768113E-004 + 210.89999999999998 -1.6565428294924918E-004 + 210.95999999999998 -1.6651902585343293E-004 + 211.01999999999998 -1.6699201845779801E-004 + 211.07999999999998 -1.6707189422726835E-004 + 211.13999999999999 -1.6675816933209666E-004 + 211.19999999999999 -1.6605120376438803E-004 + 211.25999999999999 -1.6495229887175737E-004 + 211.31999999999999 -1.6346362227684903E-004 + 211.38000000000000 -1.6158821835960533E-004 + 211.44000000000000 -1.5933003805177083E-004 + 211.50000000000000 -1.5669387609482981E-004 + 211.56000000000000 -1.5368541770999634E-004 + 211.62000000000000 -1.5031117533020354E-004 + 211.68000000000001 -1.4657852291927818E-004 + 211.74000000000001 -1.4249565739223526E-004 + 211.80000000000001 -1.3807156325609958E-004 + 211.86000000000001 -1.3331603235300062E-004 + 211.92000000000002 -1.2823962643160149E-004 + 211.98000000000002 -1.2285362801224626E-004 + 212.03999999999996 -1.1717005441096005E-004 + 212.09999999999997 -1.1120160072266529E-004 + 212.15999999999997 -1.0496162637780414E-004 + 212.21999999999997 -9.8464096507011852E-005 + 212.27999999999997 -9.1723556961697319E-005 + 212.33999999999997 -8.4755095590840444E-005 + 212.39999999999998 -7.7574291843944708E-005 + 212.45999999999998 -7.0197172405388162E-005 + 212.51999999999998 -6.2640169615363553E-005 + 212.57999999999998 -5.4920046881346986E-005 + 212.63999999999999 -4.7053884347620515E-005 + 212.69999999999999 -3.9058989494988507E-005 + 212.75999999999999 -3.0952869651206894E-005 + 212.81999999999999 -2.2753169747883502E-005 + 212.88000000000000 -1.4477617704429145E-005 + 212.94000000000000 -6.1439815155753005E-006 + 213.00000000000000 2.2300037652539191E-006 + 213.06000000000000 1.0626665805055179E-005 + 213.12000000000000 1.9028456712340948E-005 + 213.18000000000001 2.7417999293932381E-005 + 213.24000000000001 3.5778129041110637E-005 + 213.30000000000001 4.4091958857781778E-005 + 213.36000000000001 5.2342925296661267E-005 + 213.42000000000002 6.0514816824011590E-005 + 213.48000000000002 6.8591841203565892E-005 + 213.53999999999996 7.6558661714005809E-005 + 213.59999999999997 8.4400431747792335E-005 + 213.65999999999997 9.2102846277365669E-005 + 213.71999999999997 9.9652185589107762E-005 + 213.77999999999997 1.0703535026371870E-004 + 213.83999999999997 1.1423990599685838E-004 + 213.89999999999998 1.2125408353922429E-004 + 213.95999999999998 1.2806686456644746E-004 + 214.01999999999998 1.3466794434795212E-004 + 214.07999999999998 1.4104781491097122E-004 + 214.13999999999999 1.4719775097181661E-004 + 214.19999999999999 1.5310983679766039E-004 + 214.25999999999999 1.5877697339966145E-004 + 214.31999999999999 1.6419291796746841E-004 + 214.38000000000000 1.6935225454386193E-004 + 214.44000000000000 1.7425041815937673E-004 + 214.50000000000000 1.7888370342290880E-004 + 214.56000000000000 1.8324926720672722E-004 + 214.62000000000000 1.8734510392875203E-004 + 214.68000000000001 1.9117007004310427E-004 + 214.74000000000001 1.9472385675860059E-004 + 214.80000000000001 1.9800697153967198E-004 + 214.86000000000001 2.0102077433728239E-004 + 214.92000000000002 2.0376741057279260E-004 + 214.98000000000002 2.0624980613827959E-004 + 215.03999999999996 2.0847169107666264E-004 + 215.09999999999997 2.1043751379105037E-004 + 215.15999999999997 2.1215245721084585E-004 + 215.21999999999997 2.1362239872916352E-004 + 215.27999999999997 2.1485387269524629E-004 + 215.33999999999997 2.1585404016424224E-004 + 215.39999999999998 2.1663062948343924E-004 + 215.45999999999998 2.1719194993690904E-004 + 215.51999999999998 2.1754680802372168E-004 + 215.57999999999998 2.1770445737356373E-004 + 215.63999999999999 2.1767460230114272E-004 + 215.69999999999999 2.1746730077565262E-004 + 215.75999999999999 2.1709293768831301E-004 + 215.81999999999999 2.1656218346394497E-004 + 215.88000000000000 2.1588596379991677E-004 + 215.94000000000000 2.1507540010582172E-004 + 216.00000000000000 2.1414172662352857E-004 + 216.06000000000000 2.1309633563817578E-004 + 216.12000000000000 2.1195064519493977E-004 + 216.18000000000001 2.1071609833754325E-004 + 216.24000000000001 2.0940415152004025E-004 + 216.30000000000001 2.0802613547126752E-004 + 216.36000000000001 2.0659333043074188E-004 + 216.42000000000002 2.0511681007210123E-004 + 216.48000000000002 2.0360753634841909E-004 + 216.53999999999996 2.0207619814604643E-004 + 216.59999999999997 2.0053318663647510E-004 + 216.65999999999997 1.9898862843973557E-004 + 216.71999999999997 1.9745229035006217E-004 + 216.77999999999997 1.9593354726481216E-004 + 216.83999999999997 1.9444136554072020E-004 + 216.89999999999998 1.9298427327086500E-004 + 216.95999999999998 1.9157028232965804E-004 + 217.01999999999998 1.9020695658020014E-004 + 217.07999999999998 1.8890128024898122E-004 + 217.13999999999999 1.8765972451670901E-004 + 217.19999999999999 1.8648817390627117E-004 + 217.25999999999999 1.8539199073031108E-004 + 217.31999999999999 1.8437588784139607E-004 + 217.38000000000000 1.8344403321317695E-004 + 217.44000000000000 1.8259996377738782E-004 + 217.50000000000000 1.8184661588098721E-004 + 217.56000000000000 1.8118637120980254E-004 + 217.62000000000000 1.8062099126916822E-004 + 217.68000000000001 1.8015163251111041E-004 + 217.74000000000001 1.7977886308073818E-004 + 217.80000000000001 1.7950268060875431E-004 + 217.86000000000001 1.7932252575071075E-004 + 217.92000000000002 1.7923723097987125E-004 + 217.98000000000002 1.7924508517505806E-004 + 218.03999999999996 1.7934385883823132E-004 + 218.09999999999997 1.7953075321197788E-004 + 218.15999999999997 1.7980248731292524E-004 + 218.21999999999997 1.8015530571644872E-004 + 218.27999999999997 1.8058491013482909E-004 + 218.33999999999997 1.8108660983816942E-004 + 218.39999999999998 1.8165528754636277E-004 + 218.45999999999998 1.8228542135502964E-004 + 218.51999999999998 1.8297110574193244E-004 + 218.57999999999998 1.8370611970083023E-004 + 218.63999999999999 1.8448395930470082E-004 + 218.69999999999999 1.8529782268159327E-004 + 218.75999999999999 1.8614069487654967E-004 + 218.81999999999999 1.8700537049607473E-004 + 218.88000000000000 1.8788447002333767E-004 + 218.94000000000000 1.8877048848372070E-004 + 219.00000000000000 1.8965583357046396E-004 + 219.06000000000000 1.9053288771803733E-004 + 219.12000000000000 1.9139395937347445E-004 + 219.18000000000001 1.9223141090688313E-004 + 219.24000000000001 1.9303761002535514E-004 + 219.30000000000001 1.9380498814929563E-004 + 219.36000000000001 1.9452610358662359E-004 + 219.42000000000002 1.9519359781248861E-004 + 219.48000000000002 1.9580030486454538E-004 + 219.53999999999996 1.9633921660729608E-004 + 219.59999999999997 1.9680353097200923E-004 + 219.65999999999997 1.9718668156382287E-004 + 219.71999999999997 1.9748234288061164E-004 + 219.77999999999997 1.9768449191357183E-004 + 219.83999999999997 1.9778737973497328E-004 + 219.89999999999998 1.9778560284226945E-004 + 219.95999999999998 1.9767409469289050E-004 + 220.01999999999998 1.9744813904044796E-004 + 220.07999999999998 1.9710341066301411E-004 + 220.13999999999999 1.9663599749797221E-004 + 220.19999999999999 1.9604236972091231E-004 + 220.25999999999999 1.9531943652521388E-004 + 220.31999999999999 1.9446452371602184E-004 + 220.38000000000000 1.9347542693022688E-004 + 220.44000000000000 1.9235036946427128E-004 + 220.50000000000000 1.9108800124511858E-004 + 220.56000000000000 1.8968746913951157E-004 + 220.62000000000000 1.8814834524315854E-004 + 220.68000000000001 1.8647066810957092E-004 + 220.74000000000001 1.8465493091258849E-004 + 220.80000000000001 1.8270205081084316E-004 + 220.86000000000001 1.8061341886746549E-004 + 220.92000000000002 1.7839082196826730E-004 + 220.98000000000002 1.7603652623195468E-004 + 221.03999999999996 1.7355318583153051E-004 + 221.09999999999997 1.7094387098938235E-004 + 221.15999999999997 1.6821204630567343E-004 + 221.21999999999997 1.6536154514032380E-004 + 221.27999999999997 1.6239658752498028E-004 + 221.33999999999997 1.5932172522639513E-004 + 221.39999999999998 1.5614184710557191E-004 + 221.45999999999998 1.5286213783403911E-004 + 221.51999999999998 1.4948806076096506E-004 + 221.57999999999998 1.4602536054936639E-004 + 221.63999999999999 1.4248003549700123E-004 + 221.69999999999999 1.3885826441138315E-004 + 221.75999999999999 1.3516642876662812E-004 + 221.81999999999999 1.3141110936086813E-004 + 221.88000000000000 1.2759901349428162E-004 + 221.94000000000000 1.2373697068777833E-004 + 222.00000000000000 1.1983193236463644E-004 + 222.06000000000000 1.1589091177676907E-004 + 222.12000000000000 1.1192099318155372E-004 + 222.18000000000001 1.0792930989333615E-004 + 222.24000000000001 1.0392299466741137E-004 + 222.30000000000001 9.9909204299489105E-005 + 222.36000000000001 9.5895052611344049E-005 + 222.42000000000002 9.1887618062055131E-005 + 222.48000000000002 8.7893907860226049E-005 + 222.53999999999996 8.3920860529959000E-005 + 222.59999999999997 7.9975280087465935E-005 + 222.65999999999997 7.6063865160986465E-005 + 222.71999999999997 7.2193129391736479E-005 + 222.77999999999997 6.8369423374267307E-005 + 222.83999999999997 6.4598896473481800E-005 + 222.89999999999998 6.0887464476507754E-005 + 222.95999999999998 5.7240801193890143E-005 + 223.01999999999998 5.3664321150739757E-005 + 223.07999999999998 5.0163163783508383E-005 + 223.13999999999999 4.6742151365555338E-005 + 223.19999999999999 4.3405809566934495E-005 + 223.25999999999999 4.0158333187696797E-005 + 223.31999999999999 3.7003585056967328E-005 + 223.38000000000000 3.3945083121213804E-005 + 223.44000000000000 3.0986007886318021E-005 + 223.50000000000000 2.8129183136620440E-005 + 223.56000000000000 2.5377079870552518E-005 + 223.62000000000000 2.2731819659202825E-005 + 223.68000000000001 2.0195171393646260E-005 + 223.74000000000001 1.7768552957197310E-005 + 223.80000000000001 1.5453032300499029E-005 + 223.86000000000001 1.3249332740292965E-005 + 223.92000000000002 1.1157833457991581E-005 + 223.98000000000002 9.1785744930095700E-006 + 224.03999999999996 7.3112600058632361E-006 + 224.09999999999997 5.5552613424657442E-006 + 224.15999999999997 3.9096235500659694E-006 + 224.21999999999997 2.3730703463432194E-006 + 224.27999999999997 9.4400858439307961E-007 + 224.33999999999997 -3.7946133867287765E-007 + 224.39999999999998 -1.5995405213207881E-006 + 224.45999999999998 -2.7187189940955487E-006 + 224.51999999999998 -3.7397680050745474E-006 + 224.57999999999998 -4.6657266787018537E-006 + 224.63999999999999 -5.4998906310297368E-006 + 224.69999999999999 -6.2457963093068780E-006 + 224.75999999999999 -6.9072077515531841E-006 + 224.81999999999999 -7.4881021044703755E-006 + 224.88000000000000 -7.9926494990242815E-006 + 224.94000000000000 -8.4252026246200735E-006 + 225.00000000000000 -8.7902771141139388E-006 + 225.06000000000000 -9.0925339957322544E-006 + 225.12000000000000 -9.3367655363555883E-006 + 225.18000000000001 -9.5278788429930868E-006 + 225.24000000000001 -9.6708763894920904E-006 + 225.30000000000001 -9.7708448416461803E-006 + 225.36000000000001 -9.8329348690537642E-006 + 225.42000000000002 -9.8623489696249558E-006 + 225.48000000000002 -9.8643241341160209E-006 + 225.53999999999996 -9.8441167686793384E-006 + 225.59999999999997 -9.8069897889468762E-006 + 225.65999999999997 -9.7581959564340088E-006 + 225.71999999999997 -9.7029621128639108E-006 + 225.77999999999997 -9.6464771417813420E-006 + 225.83999999999997 -9.5938792674580195E-006 + 225.89999999999998 -9.5502379095737147E-006 + 225.95999999999998 -9.5205452842409530E-006 + 226.01999999999998 -9.5097029725038516E-006 + 226.07999999999998 -9.5225089558091378E-006 + 226.13999999999999 -9.5636485037565542E-006 + 226.19999999999999 -9.6376831138432756E-006 + 226.25999999999999 -9.7490437007246264E-006 + 226.31999999999999 -9.9020194862644555E-006 + 226.38000000000000 -1.0100752981673458E-005 + 226.44000000000000 -1.0349227961098478E-005 + 226.50000000000000 -1.0651273395290361E-005 + 226.56000000000000 -1.1010546575566906E-005 + 226.62000000000000 -1.1430533597940646E-005 + 226.68000000000001 -1.1914541925929043E-005 + 226.74000000000001 -1.2465694259247527E-005 + 226.80000000000001 -1.3086924150500852E-005 + 226.86000000000001 -1.3780969128185830E-005 + 226.92000000000002 -1.4550365632208190E-005 + 226.98000000000002 -1.5397442251511022E-005 + 227.03999999999996 -1.6324312745608946E-005 + 227.09999999999997 -1.7332874367647136E-005 + 227.15999999999997 -1.8424796674317419E-005 + 227.21999999999997 -1.9601520285983249E-005 + 227.27999999999997 -2.0864249304171422E-005 + 227.33999999999997 -2.2213949197692735E-005 + 227.39999999999998 -2.3651347422169465E-005 + 227.45999999999998 -2.5176923551458018E-005 + 227.51999999999998 -2.6790911328441763E-005 + 227.57999999999998 -2.8493304506532910E-005 + 227.63999999999999 -3.0283851685626183E-005 + 227.69999999999999 -3.2162058939220300E-005 + 227.75999999999999 -3.4127191270467808E-005 + 227.81999999999999 -3.6178283492584745E-005 + 227.88000000000000 -3.8314134842444556E-005 + 227.94000000000000 -4.0533319614431533E-005 + 228.00000000000000 -4.2834190776324809E-005 + 228.06000000000000 -4.5214884523554666E-005 + 228.12000000000000 -4.7673329354842968E-005 + 228.18000000000001 -5.0207240656877878E-005 + 228.24000000000001 -5.2814135810270093E-005 + 228.30000000000001 -5.5491330938813477E-005 + 228.36000000000001 -5.8235964834228084E-005 + 228.42000000000002 -6.1044977863741702E-005 + 228.48000000000002 -6.3915144682036195E-005 + 228.53999999999996 -6.6843042847344566E-005 + 228.59999999999997 -6.9825101851979734E-005 + 228.65999999999997 -7.2857588954369456E-005 + 228.71999999999997 -7.5936605213357578E-005 + 228.77999999999997 -7.9058118267230035E-005 + 228.83999999999997 -8.2217966413955211E-005 + 228.89999999999998 -8.5411840544853229E-005 + 228.95999999999998 -8.8635339600960316E-005 + 229.01999999999998 -9.1883952712904404E-005 + 229.07999999999998 -9.5153056077555700E-005 + 229.13999999999999 -9.8437958621374846E-005 + 229.19999999999999 -1.0173390276054901E-004 + 229.25999999999999 -1.0503607000468119E-004 + 229.31999999999999 -1.0833960144302515E-004 + 229.38000000000000 -1.1163959134683767E-004 + 229.44000000000000 -1.1493112251196740E-004 + 229.50000000000000 -1.1820929734756201E-004 + 229.56000000000000 -1.2146919339446927E-004 + 229.62000000000000 -1.2470592290480742E-004 + 229.68000000000001 -1.2791463615351278E-004 + 229.74000000000001 -1.3109052432776441E-004 + 229.80000000000001 -1.3422883749352339E-004 + 229.86000000000001 -1.3732491748958724E-004 + 229.92000000000002 -1.4037417046224748E-004 + 229.97999999999996 -1.4337212428672499E-004 + 230.03999999999996 -1.4631439401859917E-004 + 230.09999999999997 -1.4919674421506581E-004 + 230.15999999999997 -1.5201506631506886E-004 + 230.21999999999997 -1.5476541661280072E-004 + 230.27999999999997 -1.5744398587855130E-004 + 230.33999999999997 -1.6004712423070333E-004 + 230.39999999999998 -1.6257139663739532E-004 + 230.45999999999998 -1.6501352790029573E-004 + 230.51999999999998 -1.6737042134928789E-004 + 230.57999999999998 -1.6963917596399421E-004 + 230.63999999999999 -1.7181709486664064E-004 + 230.69999999999999 -1.7390165773296785E-004 + 230.75999999999999 -1.7589055447982962E-004 + 230.81999999999999 -1.7778167613383453E-004 + 230.88000000000000 -1.7957311225792887E-004 + 230.94000000000000 -1.8126312606251698E-004 + 231.00000000000000 -1.8285019154303726E-004 + 231.06000000000000 -1.8433296276802939E-004 + 231.12000000000000 -1.8571030292642741E-004 + 231.18000000000001 -1.8698124767607438E-004 + 231.24000000000001 -1.8814500799409963E-004 + 231.30000000000001 -1.8920098980861023E-004 + 231.36000000000001 -1.9014877398313790E-004 + 231.42000000000002 -1.9098811237558652E-004 + 231.47999999999996 -1.9171894437201235E-004 + 231.53999999999996 -1.9234135291292938E-004 + 231.59999999999997 -1.9285561170746983E-004 + 231.65999999999997 -1.9326213507970229E-004 + 231.71999999999997 -1.9356148607676185E-004 + 231.77999999999997 -1.9375439249510567E-004 + 231.83999999999997 -1.9384170832069275E-004 + 231.89999999999998 -1.9382440019054901E-004 + 231.95999999999998 -1.9370357913403512E-004 + 232.01999999999998 -1.9348045527491393E-004 + 232.07999999999998 -1.9315631519304486E-004 + 232.13999999999999 -1.9273256276929426E-004 + 232.19999999999999 -1.9221065303994125E-004 + 232.25999999999999 -1.9159213522232287E-004 + 232.31999999999999 -1.9087858528488651E-004 + 232.38000000000000 -1.9007162824746055E-004 + 232.44000000000000 -1.8917292140589121E-004 + 232.50000000000000 -1.8818417059643757E-004 + 232.56000000000000 -1.8710708121869583E-004 + 232.62000000000000 -1.8594339443672936E-004 + 232.68000000000001 -1.8469484363566469E-004 + 232.74000000000001 -1.8336319138097809E-004 + 232.80000000000001 -1.8195018174538285E-004 + 232.86000000000001 -1.8045757892488578E-004 + 232.92000000000002 -1.7888715805269980E-004 + 232.97999999999996 -1.7724069100785118E-004 + 233.03999999999996 -1.7551994397070782E-004 + 233.09999999999997 -1.7372669390633836E-004 + 233.15999999999997 -1.7186273496563542E-004 + 233.21999999999997 -1.6992985535393564E-004 + 233.27999999999997 -1.6792985049057731E-004 + 233.33999999999997 -1.6586452940045186E-004 + 233.39999999999998 -1.6373568112205592E-004 + 233.45999999999998 -1.6154511686865942E-004 + 233.51999999999998 -1.5929465570121263E-004 + 233.57999999999998 -1.5698610443473264E-004 + 233.63999999999999 -1.5462130042708094E-004 + 233.69999999999999 -1.5220205984239018E-004 + 233.75999999999999 -1.4973020202929498E-004 + 233.81999999999999 -1.4720754919216180E-004 + 233.88000000000000 -1.4463594058341679E-004 + 233.94000000000000 -1.4201721000831101E-004 + 234.00000000000000 -1.3935319075667431E-004 + 234.06000000000000 -1.3664571736303615E-004 + 234.12000000000000 -1.3389663398718539E-004 + 234.18000000000001 -1.3110781017440913E-004 + 234.24000000000001 -1.2828110524615337E-004 + 234.30000000000001 -1.2541838233320792E-004 + 234.36000000000001 -1.2252153465385358E-004 + 234.42000000000002 -1.1959246330299532E-004 + 234.47999999999996 -1.1663307834640331E-004 + 234.53999999999996 -1.1364531142547209E-004 + 234.59999999999997 -1.1063110824715629E-004 + 234.65999999999997 -1.0759243251595890E-004 + 234.71999999999997 -1.0453126929705929E-004 + 234.77999999999997 -1.0144962253847162E-004 + 234.83999999999997 -9.8349496938790386E-005 + 234.89999999999998 -9.5232918838825269E-005 + 234.95999999999998 -9.2101938820656067E-005 + 235.01999999999998 -8.8958602562224886E-005 + 235.07999999999998 -8.5804973135758696E-005 + 235.13999999999999 -8.2643103089467655E-005 + 235.19999999999999 -7.9475051018784067E-005 + 235.25999999999999 -7.6302857870019246E-005 + 235.31999999999999 -7.3128565495220456E-005 + 235.38000000000000 -6.9954179190948675E-005 + 235.44000000000000 -6.6781688400372686E-005 + 235.50000000000000 -6.3613039169614115E-005 + 235.56000000000000 -6.0450148291715305E-005 + 235.62000000000000 -5.7294891318911450E-005 + 235.68000000000001 -5.4149078027591434E-005 + 235.74000000000001 -5.1014475480372560E-005 + 235.80000000000001 -4.7892781217053038E-005 + 235.86000000000001 -4.4785639192628757E-005 + 235.92000000000002 -4.1694620607061087E-005 + 235.97999999999996 -3.8621234317163534E-005 + 236.03999999999996 -3.5566918947680650E-005 + 236.09999999999997 -3.2533040978747788E-005 + 236.15999999999997 -2.9520900473949453E-005 + 236.21999999999997 -2.6531736549387955E-005 + 236.27999999999997 -2.3566715929344170E-005 + 236.33999999999997 -2.0626950760886313E-005 + 236.39999999999998 -1.7713484100422917E-005 + 236.45999999999998 -1.4827304008478417E-005 + 236.51999999999998 -1.1969341947934459E-005 + 236.57999999999998 -9.1404724148236541E-006 + 236.63999999999999 -6.3415153163049482E-006 + 236.69999999999999 -3.5732361609199238E-006 + 236.75999999999999 -8.3634595816635557E-007 + 236.81999999999999 1.8684976305735803E-006 + 236.88000000000000 4.5406903680417903E-006 + 236.94000000000000 7.1796834612959051E-006 + 237.00000000000000 9.7849827820009740E-006 + 237.06000000000000 1.2356145450356141E-005 + 237.12000000000000 1.4892780325038735E-005 + 237.18000000000001 1.7394552207369989E-005 + 237.24000000000001 1.9861166636217701E-005 + 237.30000000000001 2.2292378169038730E-005 + 237.36000000000001 2.4687977964204348E-005 + 237.42000000000002 2.7047791209941471E-005 + 237.47999999999996 2.9371671902185376E-005 + 237.53999999999996 3.1659500559500726E-005 + 237.59999999999997 3.3911167494006364E-005 + 237.65999999999997 3.6126573760489138E-005 + 237.71999999999997 3.8305612995842840E-005 + 237.77999999999997 4.0448185310749631E-005 + 237.83999999999997 4.2554170748224580E-005 + 237.89999999999998 4.4623432749892855E-005 + 237.95999999999998 4.6655820111840268E-005 + 238.01999999999998 4.8651151420472473E-005 + 238.07999999999998 5.0609219470539374E-005 + 238.13999999999999 5.2529786514282798E-005 + 238.19999999999999 5.4412588487589693E-005 + 238.25999999999999 5.6257338407297675E-005 + 238.31999999999999 5.8063710472972137E-005 + 238.38000000000000 5.9831354913765854E-005 + 238.44000000000000 6.1559915814050122E-005 + 238.50000000000000 6.3248983775847205E-005 + 238.56000000000000 6.4898132470355839E-005 + 238.62000000000000 6.6506927682916288E-005 + 238.68000000000001 6.8074898764402731E-005 + 238.74000000000001 6.9601553888909578E-005 + 238.80000000000001 7.1086388162703819E-005 + 238.86000000000001 7.2528861416801653E-005 + 238.92000000000002 7.3928402837946636E-005 + 238.97999999999996 7.5284422506644938E-005 + 239.03999999999996 7.6596304730212672E-005 + 239.09999999999997 7.7863391789418314E-005 + 239.15999999999997 7.9085000056356157E-005 + 239.21999999999997 8.0260426730475155E-005 + 239.27999999999997 8.1388913330066417E-005 + 239.33999999999997 8.2469700941509438E-005 + 239.39999999999998 8.3501985684011231E-005 + 239.45999999999998 8.4484957095797052E-005 + 239.51999999999998 8.5417767633584016E-005 + 239.57999999999998 8.6299557676373175E-005 + 239.63999999999999 8.7129456384305034E-005 + 239.69999999999999 8.7906590513177048E-005 + 239.75999999999999 8.8630075473885087E-005 + 239.81999999999999 8.9299040200472508E-005 + 239.88000000000000 8.9912614489054925E-005 + 239.94000000000000 9.0469941905234585E-005 + 240.00000000000000 9.0970178473139646E-005 + 240.06000000000000 9.1412506820293766E-005 + 240.12000000000000 9.1796129175136123E-005 + 240.18000000000001 9.2120278936714905E-005 + 240.24000000000001 9.2384220426407692E-005 + 240.30000000000001 9.2587230560609368E-005 + 240.36000000000001 9.2728638151338302E-005 + 240.42000000000002 9.2807807119741939E-005 + 240.47999999999996 9.2824125285219676E-005 + 240.53999999999996 9.2777014589333196E-005 + 240.59999999999997 9.2665942468249813E-005 + 240.65999999999997 9.2490418733980829E-005 + 240.71999999999997 9.2249986528408095E-005 + 240.77999999999997 9.1944220527280925E-005 + 240.83999999999997 9.1572740410924652E-005 + 240.89999999999998 9.1135210207186402E-005 + 240.95999999999998 9.0631322795041490E-005 + 241.01999999999998 9.0060820917442857E-005 + 241.07999999999998 8.9423484896308816E-005 + 241.13999999999999 8.8719130231461929E-005 + 241.19999999999999 8.7947614203977544E-005 + 241.25999999999999 8.7108854845294683E-005 + 241.31999999999999 8.6202802487642607E-005 + 241.38000000000000 8.5229450737269333E-005 + 241.44000000000000 8.4188844966468201E-005 + 241.50000000000000 8.3081082244002379E-005 + 241.56000000000000 8.1906337580484601E-005 + 241.62000000000000 8.0664818737731934E-005 + 241.68000000000001 7.9356812290649705E-005 + 241.74000000000001 7.7982674596877233E-005 + 241.80000000000001 7.6542835037323739E-005 + 241.86000000000001 7.5037795122257390E-005 + 241.92000000000002 7.3468142155379436E-005 + 241.97999999999996 7.1834551472048586E-005 + 242.03999999999996 7.0137787538824392E-005 + 242.09999999999997 6.8378712112912124E-005 + 242.15999999999997 6.6558270723831843E-005 + 242.21999999999997 6.4677514440727733E-005 + 242.27999999999997 6.2737588467026768E-005 + 242.33999999999997 6.0739726761505789E-005 + 242.39999999999998 5.8685264698533848E-005 + 242.45999999999998 5.6575631820414780E-005 + 242.51999999999998 5.4412346898053164E-005 + 242.57999999999998 5.2197021953455664E-005 + 242.63999999999999 4.9931356122614640E-005 + 242.69999999999999 4.7617133873762385E-005 + 242.75999999999999 4.5256224899230812E-005 + 242.81999999999999 4.2850591841389914E-005 + 242.88000000000000 4.0402269430524519E-005 + 242.94000000000000 3.7913374647153051E-005 + 243.00000000000000 3.5386113957140175E-005 + 243.06000000000000 3.2822769155430582E-005 + 243.12000000000000 3.0225707323877759E-005 + 243.18000000000001 2.7597376504091376E-005 + 243.24000000000001 2.4940302352817135E-005 + 243.30000000000001 2.2257087679896998E-005 + 243.36000000000001 1.9550413790913908E-005 + 243.42000000000002 1.6823035368451635E-005 + 243.47999999999996 1.4077778206127518E-005 + 243.53999999999996 1.1317532957257184E-005 + 243.59999999999997 8.5452510376586497E-006 + 243.65999999999997 5.7639406199094687E-006 + 243.71999999999997 2.9766566754163416E-006 + 243.77999999999997 1.8649579529874855E-007 + 243.83999999999997 -2.6034116359205879E-006 + 243.89999999999998 -5.3899096526033184E-006 + 243.95999999999998 -8.1698234198005677E-006 + 244.01999999999998 -1.0939969961251454E-005 + 244.07999999999998 -1.3697165409443041E-005 + 244.13999999999999 -1.6438230299389098E-005 + 244.19999999999999 -1.9160003090644941E-005 + 244.25999999999999 -2.1859339056760971E-005 + 244.31999999999999 -2.4533129515054565E-005 + 244.38000000000000 -2.7178300454822124E-005 + 244.44000000000000 -2.9791824144585841E-005 + 244.50000000000000 -3.2370718943416834E-005 + 244.56000000000000 -3.4912071415119404E-005 + 244.62000000000000 -3.7413026158567915E-005 + 244.68000000000001 -3.9870805185052221E-005 + 244.74000000000001 -4.2282709879160940E-005 + 244.80000000000001 -4.4646134373096376E-005 + 244.86000000000001 -4.6958557464995904E-005 + 244.92000000000002 -4.9217563788788292E-005 + 244.97999999999996 -5.1420842217284743E-005 + 245.03999999999996 -5.3566186194571292E-005 + 245.09999999999997 -5.5651512335879572E-005 + 245.15999999999997 -5.7674851395006034E-005 + 245.21999999999997 -5.9634349359960461E-005 + 245.27999999999997 -6.1528280196193448E-005 + 245.33999999999997 -6.3355044575056583E-005 + 245.39999999999998 -6.5113174638152990E-005 + 245.45999999999998 -6.6801310444531830E-005 + 245.51999999999998 -6.8418235082846088E-005 + 245.57999999999998 -6.9962858144683858E-005 + 245.63999999999999 -7.1434208581643271E-005 + 245.69999999999999 -7.2831458537979404E-005 + 245.75999999999999 -7.4153890539946981E-005 + 245.81999999999999 -7.5400925593335934E-005 + 245.88000000000000 -7.6572136658231143E-005 + 245.94000000000000 -7.7667198656067277E-005 + 246.00000000000000 -7.8685934876448671E-005 + 246.06000000000000 -7.9628314227542279E-005 + 246.12000000000000 -8.0494426606166942E-005 + 246.18000000000001 -8.1284515776520238E-005 + 246.24000000000001 -8.1998952582756961E-005 + 246.30000000000001 -8.2638252354237378E-005 + 246.36000000000001 -8.3203057410916552E-005 + 246.42000000000002 -8.3694140008061231E-005 + 246.47999999999996 -8.4112411123878170E-005 + 246.53999999999996 -8.4458887336168244E-005 + 246.59999999999997 -8.4734704827017367E-005 + 246.65999999999997 -8.4941092823152632E-005 + 246.71999999999997 -8.5079386538537929E-005 + 246.77999999999997 -8.5151009937258941E-005 + 246.83999999999997 -8.5157456488967921E-005 + 246.89999999999998 -8.5100290991640799E-005 + 246.95999999999998 -8.4981132694425318E-005 + 247.01999999999998 -8.4801663922348945E-005 + 247.07999999999998 -8.4563603585645925E-005 + 247.13999999999999 -8.4268718256578508E-005 + 247.19999999999999 -8.3918815583825863E-005 + 247.25999999999999 -8.3515724013730793E-005 + 247.31999999999999 -8.3061310794299635E-005 + 247.38000000000000 -8.2557485302758147E-005 + 247.44000000000000 -8.2006165890730827E-005 + 247.50000000000000 -8.1409323023836879E-005 + 247.56000000000000 -8.0768957434206064E-005 + 247.62000000000000 -8.0087096021528112E-005 + 247.68000000000001 -7.9365787100748778E-005 + 247.74000000000001 -7.8607112328715626E-005 + 247.80000000000001 -7.7813189537308884E-005 + 247.86000000000001 -7.6986133519293411E-005 + 247.92000000000002 -7.6128105804792133E-005 + 247.97999999999996 -7.5241252828875139E-005 + 248.03999999999996 -7.4327743338489268E-005 + 248.09999999999997 -7.3389748656570451E-005 + 248.15999999999997 -7.2429426321253765E-005 + 248.21999999999997 -7.1448916443089735E-005 + 248.27999999999997 -7.0450343555330985E-005 + 248.33999999999997 -6.9435793829298169E-005 + 248.39999999999998 -6.8407342032272741E-005 + 248.45999999999998 -6.7366999063030484E-005 + 248.51999999999998 -6.6316753703559925E-005 + 248.57999999999998 -6.5258542109455448E-005 + 248.63999999999999 -6.4194238906346802E-005 + 248.69999999999999 -6.3125676841126091E-005 + 248.75999999999999 -6.2054644994949105E-005 + 248.81999999999999 -6.0982854751212117E-005 + 248.88000000000000 -5.9911981477710597E-005 + 248.94000000000000 -5.8843625974516544E-005 + 249.00000000000000 -5.7779344525936592E-005 + 249.06000000000000 -5.6720627628531645E-005 + 249.12000000000000 -5.5668908173446510E-005 + 249.18000000000001 -5.4625565498994643E-005 + 249.24000000000001 -5.3591913277217980E-005 + 249.30000000000001 -5.2569207359429097E-005 + 249.36000000000001 -5.1558638424445190E-005 + 249.42000000000002 -5.0561345132732621E-005 + 249.47999999999996 -4.9578398856490687E-005 + 249.53999999999996 -4.8610804042300944E-005 + 249.59999999999997 -4.7659511627389596E-005 + 249.65999999999997 -4.6725407504281910E-005 + 249.71999999999997 -4.5809312565207842E-005 + 249.77999999999997 -4.4911984664677395E-005 + 249.83999999999997 -4.4034118720725991E-005 + 249.89999999999998 -4.3176342176167956E-005 + 249.95999999999998 -4.2339221978109866E-005 + 250.01999999999998 -4.1523252291169003E-005 + 250.07999999999998 -4.0728853988997438E-005 + 250.13999999999999 -3.9956384608907746E-005 + 250.19999999999999 -3.9206119379670995E-005 + 250.25999999999999 -3.8478270712292325E-005 + 250.31999999999999 -3.7772961974755730E-005 + 250.38000000000000 -3.7090250480377724E-005 + 250.44000000000000 -3.6430106457876506E-005 + 250.50000000000000 -3.5792433292810952E-005 + 250.56000000000000 -3.5177055475479617E-005 + 250.62000000000000 -3.4583721833017245E-005 + 250.68000000000001 -3.4012116801742566E-005 + 250.74000000000001 -3.3461864840060383E-005 + 250.80000000000001 -3.2932527142031722E-005 + 250.86000000000001 -3.2423617806277238E-005 + 250.92000000000002 -3.1934604372431803E-005 + 250.97999999999996 -3.1464924555535669E-005 + 251.03999999999996 -3.1013982918567091E-005 + 251.09999999999997 -3.0581167099720512E-005 + 251.15999999999997 -3.0165842063633716E-005 + 251.21999999999997 -2.9767372710505936E-005 + 251.27999999999997 -2.9385119263816116E-005 + 251.33999999999997 -2.9018444381323967E-005 + 251.39999999999998 -2.8666717091115959E-005 + 251.45999999999998 -2.8329304967914731E-005 + 251.51999999999998 -2.8005593340393921E-005 + 251.57999999999998 -2.7694966789003718E-005 + 251.63999999999999 -2.7396824334098916E-005 + 251.69999999999999 -2.7110573652348164E-005 + 251.75999999999999 -2.6835629505606852E-005 + 251.81999999999999 -2.6571418437286069E-005 + 251.88000000000000 -2.6317371261236789E-005 + 251.94000000000000 -2.6072938280192810E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000002.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000002.BXY.semd new file mode 100644 index 00000000..5a4841c6 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000002.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 2.8448777843012920E-040 + 31.259999999999991 9.5316967818705756E-040 + 31.319999999999993 2.0663673842513078E-039 + 31.379999999999995 3.6291838206566906E-039 + 31.439999999999998 5.5789939459864446E-039 + 31.500000000000000 7.6626765861820477E-039 + 31.560000000000002 9.7463596849566712E-039 + 31.619999999999990 1.1830042783731295E-038 + 31.679999999999993 1.3559381873391231E-038 + 31.739999999999995 1.4719958244178783E-038 + 31.799999999999997 1.5131694334862930E-038 + 31.859999999999999 1.4700353991053828E-038 + 31.920000000000002 1.3360271448494756E-038 + 31.980000000000004 1.1199874499702326E-038 + 32.039999999999992 8.3917814595606444E-039 + 32.099999999999994 5.2087491679160920E-039 + 32.159999999999997 2.0257168762715396E-039 + 32.219999999999999 -8.0482607178422592E-040 + 32.280000000000001 -2.8978513996861764E-039 + 32.340000000000003 -2.6196656662483760E-039 + 32.399999999999991 4.6125482532678730E-040 + 32.459999999999994 6.1360156629706423E-039 + 32.519999999999996 1.3879496535753793E-038 + 32.579999999999998 2.2989292921823866E-038 + 32.640000000000001 3.3140799655343529E-038 + 32.700000000000003 4.3869111666596522E-038 + 32.759999999999991 5.4597422254484706E-038 + 32.819999999999993 6.1953337693930118E-038 + 32.879999999999995 6.2364254899092391E-038 + 32.939999999999998 5.4687115834290767E-038 + 33.000000000000000 3.8031469785863744E-038 + 33.060000000000002 1.3247376807711185E-038 + 33.119999999999990 -1.6800743270752921E-038 + 33.179999999999993 -4.9255192587028865E-038 + 33.239999999999995 -8.2390917043380973E-038 + 33.299999999999997 -1.0053557147549709E-037 + 33.359999999999999 -9.5000202410706020E-038 + 33.420000000000002 -6.0450841856089031E-038 + 33.480000000000004 6.3377484234901449E-039 + 33.539999999999992 1.0100279138419661E-037 + 33.599999999999994 2.0722199642341719E-037 + 33.659999999999997 3.2172780024025206E-037 + 33.719999999999999 4.4132138654302044E-037 + 33.780000000000001 5.4494882517353924E-037 + 33.840000000000003 6.1781120468664394E-037 + 33.899999999999991 6.4292049499483181E-037 + 33.959999999999994 6.0068673697663256E-037 + 34.019999999999996 4.8321313513251063E-037 + 34.079999999999998 2.8906668843643898E-037 + 34.140000000000001 2.5188205373461687E-038 + 34.200000000000003 -2.8688494531364457E-037 + 34.259999999999991 -6.2445083322573236E-037 + 34.319999999999993 -9.4645190322322267E-037 + 34.379999999999995 -1.2146925344185146E-036 + 34.439999999999998 -1.3558889715930813E-036 + 34.500000000000000 -1.3244792706328302E-036 + 34.560000000000002 -1.0932762556402084E-036 + 34.619999999999990 -6.5794665612495475E-037 + 34.679999999999993 -6.6242616081561760E-038 + 34.739999999999995 6.2150868821539330E-037 + 34.799999999999997 1.3813240571025760E-036 + 34.859999999999999 2.1606235481972667E-036 + 34.920000000000002 2.8549168716078529E-036 + 34.980000000000004 3.3900451455752201E-036 + 35.039999999999992 3.7081405923860407E-036 + 35.099999999999994 3.7342075638661305E-036 + 35.159999999999997 3.4345374690291243E-036 + 35.219999999999999 2.8208339423394814E-036 + 35.280000000000001 1.9082130519186246E-036 + 35.340000000000003 8.3277956068323689E-037 + 35.399999999999991 -3.6993035514028577E-037 + 35.459999999999994 -1.5973732384510871E-036 + 35.519999999999996 -2.7422958352060105E-036 + 35.579999999999998 -3.6900782333701003E-036 + 35.640000000000001 -4.3232646973596571E-036 + 35.700000000000003 -4.4667323683904684E-036 + 35.759999999999991 -4.0794132142946892E-036 + 35.819999999999993 -3.1192422983605502E-036 + 35.879999999999995 -1.6277612266895632E-036 + 35.939999999999998 2.8461983903631589E-037 + 36.000000000000000 2.5265233225668940E-036 + 36.060000000000002 4.9242987257405629E-036 + 36.119999999999990 7.1608706756867734E-036 + 36.179999999999993 9.0628772596433507E-036 + 36.239999999999995 1.0387256753834043E-035 + 36.299999999999997 1.0902438668398107E-035 + 36.359999999999999 1.0417529174616098E-035 + 36.420000000000002 8.7799145970908255E-036 + 36.479999999999990 5.9787580322823684E-036 + 36.539999999999992 1.9850957021817252E-036 + 36.599999999999994 -2.9713516355319243E-036 + 36.659999999999997 -8.7008600903500066E-036 + 36.719999999999999 -1.4860587421393252E-035 + 36.780000000000001 -2.0752442819539347E-035 + 36.840000000000003 -2.5621149096442752E-035 + 36.899999999999991 -2.8785236864993997E-035 + 36.959999999999994 -2.9589449954395555E-035 + 37.019999999999996 -2.7438296433610774E-035 + 37.079999999999998 -2.1828789695023644E-035 + 37.140000000000001 -1.2460776210926349E-035 + 37.200000000000003 8.1810160050744365E-037 + 37.259999999999991 1.7787994183928752E-035 + 37.319999999999993 3.7966475861014476E-035 + 37.379999999999995 6.0435486620764774E-035 + 37.439999999999998 8.4204866308755323E-035 + 37.500000000000000 1.0784687090266801E-034 + 37.560000000000002 1.2963403072412095E-034 + 37.619999999999990 1.4773602920652093E-034 + 37.679999999999993 1.6012267709206189E-034 + 37.739999999999995 1.6474516491320752E-034 + 37.799999999999997 1.5982213632938111E-034 + 37.859999999999999 1.4389256729586375E-034 + 37.920000000000002 1.1589772299919239E-034 + 37.979999999999990 7.5333279616860663E-035 + 38.039999999999992 2.2514893298176665E-035 + 38.099999999999994 -4.1426133931994103E-035 + 38.159999999999997 -1.1433829920211197E-034 + 38.219999999999999 -1.9301252008096431E-034 + 38.280000000000001 -2.7332100955399099E-034 + 38.340000000000003 -3.5008775366644436E-034 + 38.399999999999991 -4.1741564597197955E-034 + 38.459999999999994 -4.6893595961162365E-034 + 38.519999999999996 -4.9813538555100250E-034 + 38.579999999999998 -4.9867382185669278E-034 + 38.640000000000001 -4.6495618341468193E-034 + 38.700000000000003 -3.9252546355517129E-034 + 38.759999999999991 -2.7857524125662715E-034 + 38.819999999999993 -1.2257466718064690E-034 + 38.879999999999995 7.3264127968929192E-035 + 38.939999999999998 3.0377751429930613E-034 + 39.000000000000000 5.6046584844913894E-034 + 39.060000000000002 8.3145799988476621E-034 + 39.119999999999990 1.1016379476706897E-033 + 39.179999999999993 1.3530220935391525E-033 + 39.239999999999995 1.5653659426111713E-033 + 39.299999999999997 1.7170348969990251E-033 + 39.359999999999999 1.7862384052468735E-033 + 39.420000000000002 1.7522539122327846E-033 + 39.479999999999990 1.5971487690758671E-033 + 39.539999999999992 1.3073371636517943E-033 + 39.599999999999994 8.7539466465510781E-034 + 39.659999999999997 3.0165731031579416E-034 + 39.719999999999999 -4.0429515305780799E-034 + 39.780000000000001 -1.2224676725052624E-033 + 39.840000000000003 -2.1217566898437952E-033 + 39.899999999999991 -3.0598166308375091E-033 + 39.959999999999994 -3.9836313824310583E-033 + 40.019999999999996 -4.8308544533517174E-033 + 40.079999999999998 -5.5320250744084228E-033 + 40.140000000000001 -6.0136395183845252E-033 + 40.200000000000003 -6.2020611903649861E-033 + 40.259999999999991 -6.0281751200995495E-033 + 40.319999999999993 -5.4326595345820493E-033 + 40.379999999999995 -4.3715879359238452E-033 + 40.439999999999998 -2.8221436444721200E-033 + 40.500000000000000 -7.8807866919567122E-034 + 40.560000000000002 1.6954793919959040E-033 + 40.619999999999990 4.5582845012737220E-033 + 40.679999999999993 7.6927201465621338E-033 + 40.739999999999995 1.0953464512956325E-032 + 40.799999999999997 1.4159434290095609E-032 + 40.859999999999999 1.7098323738661153E-032 + 40.920000000000002 1.9533932511633078E-032 + 40.979999999999990 2.1216302460668247E-032 + 41.039999999999992 2.1894655263028109E-032 + 41.099999999999994 2.1332725924834627E-032 + 41.159999999999997 1.9326069895310355E-032 + 41.219999999999999 1.5720708209086966E-032 + 41.280000000000001 1.0432028605470623E-032 + 41.340000000000003 3.4630433029316202E-033 + 41.399999999999991 -5.0793269406737954E-033 + 41.459999999999994 -1.4971251382078509E-032 + 41.519999999999996 -2.5863664468419782E-032 + 41.579999999999998 -3.7279992516171747E-032 + 41.640000000000001 -4.8621114740321098E-032 + 41.700000000000003 -5.9178643801290739E-032 + 41.759999999999991 -6.8157241536272673E-032 + 41.819999999999993 -7.4706260013979860E-032 + 41.879999999999995 -7.7960532898477984E-032 + 41.939999999999998 -7.7089627927694634E-032 + 42.000000000000000 -7.1354128151353891E-032 + 42.060000000000002 -6.0166937367726967E-032 + 42.119999999999990 -4.3156912032648045E-032 + 42.179999999999993 -2.0231513991049416E-032 + 42.239999999999995 8.3654254930301390E-033 + 42.299999999999997 4.2004996427954972E-032 + 42.359999999999999 7.9638196558765078E-032 + 42.420000000000002 1.1977911393642069E-031 + 42.479999999999990 1.6051058136044132E-031 + 42.539999999999992 1.9951614793509164E-031 + 42.599999999999994 2.3414150590702500E-031 + 42.659999999999997 2.6148690537036006E-031 + 42.719999999999999 2.7853126581652801E-031 + 42.780000000000001 2.8228641219003088E-031 + 42.840000000000003 2.6997828838956946E-031 + 42.899999999999991 2.3924953158357822E-031 + 42.959999999999994 1.8837567026486372E-031 + 43.019999999999996 1.1648524876496732E-031 + 43.079999999999998 2.3771557578730711E-032 + 43.140000000000001 -8.8317293546095654E-032 + 43.200000000000003 -2.1692560929555823E-031 + 43.259999999999991 -3.5768940805788403E-031 + 43.319999999999993 -5.0470447708420179E-031 + 43.379999999999995 -6.5057667171160976E-031 + 43.439999999999998 -7.8656786956408458E-031 + 43.500000000000000 -9.0284670012511217E-031 + 43.560000000000002 -9.8884937647988259E-031 + 43.619999999999990 -1.0337505764615131E-030 + 43.679999999999993 -1.0270383134968220E-030 + 43.739999999999995 -9.5917921268422934E-031 + 43.799999999999997 -8.2235307211555083E-031 + 43.859999999999999 -6.1122810893745702E-031 + 43.920000000000002 -3.2373987470397667E-031 + 43.979999999999990 3.8169650908395083E-032 + 44.039999999999992 4.6790302507539244E-031 + 44.099999999999994 9.5370137178529124E-031 + 44.159999999999997 1.4783384269495122E-030 + 44.219999999999999 2.0190693650430422E-030 + 44.280000000000001 2.5478843379700591E-030 + 44.340000000000003 3.0321112511200485E-030 + 44.399999999999991 3.4353979251751474E-030 + 44.459999999999994 3.7190906954191741E-030 + 44.519999999999996 3.8440024573186421E-030 + 44.579999999999998 3.7725471797035991E-030 + 44.640000000000001 3.4711850331051498E-030 + 44.700000000000003 2.9130988476046753E-030 + 44.759999999999991 2.0809921421018854E-030 + 44.819999999999993 9.6987621139331035E-031 + 44.879999999999995 -4.1031945523803932E-031 + 44.939999999999998 -2.0324907238192315E-030 + 45.000000000000000 -3.8506504465880245E-030 + 45.060000000000002 -5.7989687702795211E-030 + 45.119999999999990 -7.7917581809243923E-030 + 45.179999999999993 -9.7245763566882189E-030 + 45.239999999999995 -1.1476596954679068E-029 + 45.299999999999997 -1.2914347707769528E-029 + 45.359999999999999 -1.3896865193540614E-029 + 45.420000000000002 -1.4282228250666310E-029 + 45.479999999999990 -1.3935371378788740E-029 + 45.539999999999992 -1.2736968152972472E-029 + 45.599999999999994 -1.0593084446523269E-029 + 45.659999999999997 -7.4452036084649510E-030 + 45.719999999999999 -3.2801290784402456E-030 + 45.780000000000001 1.8608188892378566E-030 + 45.840000000000003 7.8739390524830703E-030 + 45.899999999999991 1.4587325927466023E-029 + 45.959999999999994 2.1757781589699083E-029 + 46.019999999999996 2.9071121935074251E-029 + 46.079999999999998 3.6146500871525616E-029 + 46.140000000000001 4.2545244426227117E-029 + 46.200000000000003 4.7784519296771127E-029 + 46.259999999999991 5.1355980718742777E-029 + 46.319999999999993 5.2749240642936744E-029 + 46.379999999999995 5.1479774219815822E-029 + 46.439999999999998 4.7120489007861428E-029 + 46.500000000000000 3.9335913698670954E-029 + 46.560000000000002 2.7917572698434689E-029 + 46.619999999999990 1.2818814591021923E-029 + 46.679999999999993 -5.8129263998630493E-030 + 46.739999999999995 -2.7608639846898412E-029 + 46.799999999999997 -5.1957430695030554E-029 + 46.859999999999999 -7.7995839544377122E-029 + 46.920000000000002 -1.0460892803295586E-028 + 46.979999999999990 -1.3044547848358083E-028 + 47.039999999999992 -1.5394872819241055E-028 + 47.099999999999994 -1.7340396946597784E-028 + 47.159999999999997 -1.8700325489534772E-028 + 47.219999999999999 -1.9292695092416855E-028 + 47.280000000000001 -1.8944058363675065E-028 + 47.340000000000003 -1.7500445439812372E-028 + 47.399999999999991 -1.4839248489527292E-028 + 47.459999999999994 -1.0881540579112997E-028 + 47.519999999999996 -5.6042406026882811E-029 + 47.579999999999998 9.4855373418949955E-030 + 47.640000000000001 8.6558286857076114E-029 + 47.700000000000003 1.7312306201868261E-028 + 47.759999999999991 2.6624341397887488E-028 + 47.819999999999993 3.6209809090209871E-028 + 47.879999999999995 4.5602727817508376E-028 + 47.939999999999998 5.4263212167581293E-028 + 48.000000000000000 6.1593150585530332E-028 + 48.060000000000002 6.6957785248644472E-028 + 48.119999999999990 6.9713103879184594E-028 + 48.179999999999993 6.9238574363878430E-028 + 48.239999999999995 6.4974481005582307E-028 + 48.299999999999997 5.6462626046525695E-028 + 48.359999999999999 4.3388881011345093E-028 + 48.420000000000002 2.5625615157329634E-028 + 48.479999999999990 3.2717974967762817E-029 + 48.539999999999992 -2.3311892689046295E-028 + 48.599999999999994 -5.3475490155826463E-028 + 48.659999999999997 -8.6262618821256838E-028 + 48.719999999999999 -1.2040660249300289E-027 + 48.780000000000001 -1.5434219064149288E-027 + 48.840000000000003 -1.8623514573281424E-027 + 48.899999999999991 -2.1403124228287129E-027 + 48.959999999999994 -2.3552557548126590E-027 + 49.019999999999996 -2.4845197038025897E-027 + 49.079999999999998 -2.5059152842732684E-027 + 49.140000000000001 -2.3989779172139601E-027 + 49.200000000000003 -2.1463508290394144E-027 + 49.259999999999991 -1.7352487644867060E-027 + 49.319999999999993 -1.1589418147614648E-027 + 49.379999999999995 -4.1818321938671864E-028 + 49.439999999999998 4.7750237387942655E-028 + 49.500000000000000 1.5087613897811086E-027 + 49.560000000000002 2.6456830563072847E-027 + 49.619999999999990 3.8474932330961917E-027 + 49.679999999999993 5.0627646722229765E-027 + 49.739999999999995 6.2302187835666498E-027 + 49.799999999999997 7.2801844984088294E-027 + 49.859999999999999 8.1367569773873950E-027 + 49.920000000000002 8.7206596168681897E-027 + 49.979999999999990 8.9527909056529637E-027 + 50.039999999999992 8.7583876071406817E-027 + 50.099999999999994 8.0717004225815041E-027 + 50.159999999999997 6.8410229200423158E-027 + 50.219999999999999 5.0338810202139819E-027 + 50.280000000000001 2.6421357634235848E-027 + 50.340000000000003 -3.1328377020409416E-028 + 50.399999999999991 -3.7783231610872543E-027 + 50.459999999999994 -7.6627508458876582E-027 + 50.519999999999996 -1.1838464694362104E-026 + 50.579999999999998 -1.6139459540584789E-026 + 50.640000000000001 -2.0363780147915798E-026 + 50.700000000000003 -2.4277682314867050E-026 + 50.759999999999991 -2.7622189357656294E-026 + 50.819999999999993 -3.0122132735871016E-026 + 50.879999999999995 -3.1497622422696690E-026 + 50.939999999999998 -3.1477805423163263E-026 + 51.000000000000000 -2.9816574809361761E-026 + 51.060000000000002 -2.6309778606832316E-026 + 51.119999999999990 -2.0813275746338522E-026 + 51.179999999999993 -1.3261066074431319E-026 + 51.239999999999995 -3.6825380217069466E-027 + 51.299999999999997 7.7821882893022889E-027 + 51.359999999999999 2.0869990336518717E-026 + 51.420000000000002 3.5186705889708584E-026 + 51.479999999999990 5.0204520348727912E-026 + 51.539999999999992 6.5265812618019460E-026 + 51.599999999999994 7.9594521058758950E-026 + 51.659999999999997 9.2315607044038246E-026 + 51.719999999999999 1.0248318231396994E-025 + 51.780000000000001 1.0911723486901387E-025 + 51.840000000000003 1.1124866590190286E-025 + 51.899999999999991 1.0797167633055923E-025 + 51.959999999999994 9.8502123097621082E-026 + 52.019999999999996 8.2239817306288011E-026 + 52.079999999999998 5.8832273482379051E-026 + 52.140000000000001 2.8236755450894449E-026 + 52.200000000000003 -9.2228353647813999E-027 + 52.259999999999991 -5.2808124958837304E-026 + 52.319999999999993 -1.0133158445234671E-025 + 52.379999999999995 -1.5313910372662314E-025 + 52.439999999999998 -2.0611380053022774E-025 + 52.500000000000000 -2.5770456519038901E-025 + 52.560000000000002 -3.0498224347507484E-025 + 52.619999999999990 -3.4472548127417023E-025 + 52.679999999999993 -3.7353673343874914E-025 + 52.739999999999995 -3.8798800173302220E-025 + 52.799999999999997 -3.8479397813758695E-025 + 52.859999999999999 -3.6100793617390048E-025 + 52.920000000000002 -3.1423488032550181E-025 + 52.979999999999990 -2.4285339994374323E-025 + 53.039999999999992 -1.4623642083004172E-025 + 53.099999999999994 -2.4959095949610604E-026 + 53.159999999999997 1.1901908584536593E-025 + 53.219999999999999 2.8221205549613533E-025 + 53.280000000000001 4.5951916796501594E-025 + 53.339999999999989 6.4420588941656807E-025 + 53.399999999999991 8.2796567371876207E-025 + 53.459999999999994 1.0010742396011504E-024 + 53.519999999999996 1.1526451858183404E-024 + 53.579999999999998 1.2709907046587180E-024 + 53.640000000000001 1.3440871641343187E-024 + 53.700000000000003 1.3601403784390051E-024 + 53.759999999999991 1.3082384384775180E-024 + 53.819999999999993 1.1790734028893930E-024 + 53.879999999999995 9.6570706291104494E-025 + 53.939999999999998 6.6434848800301571E-025 + 54.000000000000000 2.7510484015981253E-025 + 54.060000000000002 -1.9733767991117632E-025 + 54.119999999999990 -7.4314972131135746E-025 + 54.179999999999993 -1.3469634887490251E-024 + 54.239999999999995 -1.9876930579756688E-024 + 54.299999999999997 -2.6386198603062680E-024 + 54.359999999999999 -3.2677832167909341E-024 + 54.420000000000002 -3.8387131430245607E-024 + 54.479999999999990 -4.3115204566417298E-024 + 54.539999999999992 -4.6443575698113555E-024 + 54.599999999999994 -4.7952336159912043E-024 + 54.659999999999997 -4.7241559797599034E-024 + 54.719999999999999 -4.3955419948987595E-024 + 54.780000000000001 -3.7808256572438696E-024 + 54.839999999999989 -2.8611570466325635E-024 + 54.899999999999991 -1.6300737689284829E-024 + 54.959999999999994 -9.6000817657417441E-026 + 55.019999999999996 1.7155766397078702E-024 + 55.079999999999998 3.7604413218986080E-024 + 55.140000000000001 5.9746365401965816E-024 + 55.200000000000003 8.2742947187688349E-024 + 55.259999999999991 1.0556455727395630E-023 + 55.319999999999993 1.2701005723074830E-023 + 55.379999999999995 1.4573813197854390E-023 + 55.439999999999998 1.6031138123828298E-023 + 55.500000000000000 1.6925279857612827E-023 + 55.560000000000002 1.7111405389624021E-023 + 55.619999999999990 1.6455407574207343E-023 + 55.679999999999993 1.4842572044930014E-023 + 55.739999999999995 1.2186756772789033E-023 + 55.799999999999997 8.4396981078316894E-024 + 55.859999999999999 3.6000022014821024E-024 + 55.920000000000002 -2.2786807757326972E-024 + 55.979999999999990 -9.0808681825164905E-024 + 56.039999999999992 -1.6624388261454599E-023 + 56.099999999999994 -2.4658052733088475E-023 + 56.159999999999997 -3.2862406973385848E-023 + 56.219999999999999 -4.0854008462890999E-023 + 56.280000000000001 -4.8193647499810826E-023 + 56.339999999999989 -5.4398751881551926E-023 + 56.399999999999991 -5.8960065405364567E-023 + 56.459999999999994 -6.1362507287617916E-023 + 56.519999999999996 -6.1109833130371417E-023 + 56.579999999999998 -5.7752586005352385E-023 + 56.640000000000001 -5.0918429975563339E-023 + 56.700000000000003 -4.0343849778589311E-023 + 56.759999999999991 -2.5905801633983337E-023 + 56.819999999999993 -7.6517876944962317E-024 + 56.879999999999995 1.4173330949128878E-023 + 56.939999999999998 3.9105788374248489E-023 + 57.000000000000000 6.6448374581367887E-023 + 57.060000000000002 9.5264977084114439E-023 + 57.119999999999990 1.2438578481906030E-022 + 57.179999999999993 1.5242484003366119E-022 + 57.239999999999995 1.7781097446715231E-022 + 57.299999999999997 1.9883299256489242E-022 + 57.359999999999999 2.1369914467355882E-022 + 57.420000000000002 2.2061030097316918E-022 + 57.479999999999990 2.1784586529610855E-022 + 57.539999999999992 2.0385989581829010E-022 + 57.599999999999994 1.7738490630986630E-022 + 57.659999999999997 1.3753929438983855E-022 + 57.719999999999999 8.3933994427878511E-023 + 57.780000000000001 1.6772996568660191E-023 + 57.839999999999989 -6.3058027439931087E-023 + 57.899999999999991 -1.5392128669707517E-022 + 57.959999999999994 -2.5338088646129492E-022 + 58.019999999999996 -3.5818765909146460E-022 + 58.079999999999998 -4.6430043917161054E-022 + 58.140000000000001 -5.6694875955873708E-022 + 58.200000000000003 -6.6074088863040186E-022 + 58.259999999999991 -7.3981955720950999E-022 + 58.319999999999993 -7.9806523562841889E-022 + 58.379999999999995 -8.2934617818323223E-022 + 58.439999999999998 -8.2780972837302189E-022 + 58.500000000000000 -7.8820901659629156E-022 + 58.560000000000002 -7.0625475720305966E-022 + 58.619999999999990 -5.7897960545681948E-022 + 58.679999999999993 -4.0510043818254900E-022 + 58.739999999999995 -1.8536073924211675E-022 + 58.799999999999997 7.7166275585313347E-023 + 58.859999999999999 3.7683410387297745E-022 + 58.920000000000002 7.0526054570363138E-022 + 58.979999999999990 1.0512666496595331E-021 + 59.039999999999992 1.4009370237812325E-021 + 59.099999999999994 1.7378187151002594E-021 + 59.159999999999997 2.0432705960828947E-021 + 59.219999999999999 2.2969724654554513E-021 + 59.280000000000001 2.4775967073752570E-021 + 59.339999999999989 2.5636352540961869E-021 + 59.399999999999991 2.5343714194130046E-021 + 59.459999999999994 2.3709730942823715E-021 + 59.519999999999996 2.0576769660540355E-021 + 59.579999999999998 1.5830233622997737E-021 + 59.640000000000001 9.4109349287475568E-022 + 59.700000000000003 1.3269199493492044E-022 + 59.759999999999991 -8.3358706915905134E-022 + 59.819999999999993 -1.9404807180922964E-021 + 59.879999999999995 -3.1614277763314481E-021 + 59.939999999999998 -4.4602648255246620E-021 + 60.000000000000000 -5.7913031709319079E-021 + 60.060000000000002 -7.0998468044324868E-021 + 60.119999999999990 -8.3231955792187989E-021 + 60.179999999999993 -9.3921508704483325E-021 + 60.239999999999995 -1.0233041268611651E-020 + 60.299999999999997 -1.0770239589823338E-020 + 60.359999999999999 -1.0929136742817456E-020 + 60.420000000000002 -1.0639487555220321E-020 + 60.479999999999990 -9.8390281311452026E-021 + 60.539999999999992 -8.4772301890241391E-021 + 60.599999999999994 -6.5190256289597168E-021 + 60.659999999999997 -3.9483086596574976E-021 + 60.719999999999999 -7.7100434693922276E-022 + 60.780000000000001 2.9825317774875502E-021 + 60.839999999999989 7.2560145519243288E-021 + 60.899999999999991 1.1966859807881067E-020 + 60.959999999999994 1.7007184703708609E-020 + 61.019999999999996 2.2246367562772622E-020 + 61.079999999999998 2.7535315600546194E-020 + 61.140000000000001 3.2712568931600031E-020 + 61.200000000000003 3.7612291532769744E-020 + 61.259999999999991 4.2074143458609718E-020 + 61.319999999999993 4.5954838316432056E-020 + 61.379999999999995 4.9141361689330226E-020 + 61.439999999999998 5.1565435842002590E-020 + 61.500000000000000 5.3218902126489762E-020 + 61.560000000000002 5.4169600039263727E-020 + 61.619999999999990 5.4577131914187485E-020 + 61.679999999999993 5.4708100449000230E-020 + 61.739999999999995 5.4949961607637605E-020 + 61.799999999999997 5.5823040825842331E-020 + 61.859999999999999 5.7989974938473965E-020 + 61.920000000000002 6.2262104406669477E-020 + 61.979999999999990 6.9602206739304430E-020 + 62.039999999999992 8.1123293192090448E-020 + 62.099999999999994 9.8083120926897452E-020 + 62.159999999999997 1.2187448683227958E-019 + 62.219999999999999 1.5401157704514277E-019 + 62.280000000000001 1.9611232143037785E-019 + 62.339999999999989 2.4987815128687925E-019 + 62.399999999999991 3.1707142397683109E-019 + 62.459999999999994 3.9949225448753945E-019 + 62.519999999999996 4.9895536286949358E-019 + 62.579999999999998 6.1726995759398065E-019 + 62.640000000000001 7.5622295989885081E-019 + 62.700000000000003 9.1756878550591971E-019 + 62.759999999999991 1.1030269255553194E-018 + 62.819999999999993 1.3142890362185713E-018 + 62.879999999999995 1.5530391324764309E-018 + 62.939999999999998 1.8209849235043847E-018 + 63.000000000000000 2.1199059800755536E-018 + 63.060000000000002 2.4517150962914072E-018 + 63.119999999999990 2.8185367333055110E-018 + 63.179999999999993 3.2227996853673014E-018 + 63.239999999999995 3.6673420876453555E-018 + 63.299999999999997 4.1555300490380944E-018 + 63.359999999999999 4.6913806725383782E-018 + 63.420000000000002 5.2796909744250411E-018 + 63.479999999999990 5.9261628128404758E-018 + 63.539999999999992 6.6375192087857592E-018 + 63.599999999999994 7.4216034422860915E-018 + 63.659999999999997 8.2874465252597121E-018 + 63.719999999999999 9.2453063266367123E-018 + 63.780000000000001 1.0306645797052206E-017 + 63.839999999999989 1.1484057062860252E-017 + 63.899999999999991 1.2791099295724409E-017 + 63.959999999999994 1.4242053992380852E-017 + 64.019999999999996 1.5851556802950004E-017 + 64.079999999999998 1.7634121944910909E-017 + 64.140000000000001 1.9603502864739418E-017 + 64.200000000000003 2.1771883750000450E-017 + 64.259999999999991 2.4148910637032169E-017 + 64.319999999999993 2.6740477895364860E-017 + 64.379999999999995 2.9547307930834983E-017 + 64.439999999999998 3.2563247138803888E-017 + 64.500000000000000 3.5773289344442967E-017 + 64.560000000000002 3.9151243086155599E-017 + 64.619999999999990 4.2657084559710253E-017 + 64.679999999999993 4.6233825060729813E-017 + 64.739999999999995 4.9803997739905086E-017 + 64.799999999999997 5.3265544030877489E-017 + 64.859999999999999 5.6487164692260985E-017 + 64.920000000000002 5.9302959801272509E-017 + 64.979999999999990 6.1506226621291007E-017 + 65.039999999999992 6.2842451922307129E-017 + 65.099999999999994 6.3001228573089401E-017 + 65.159999999999997 6.1606846091112597E-017 + 65.219999999999999 5.8207601711185293E-017 + 65.280000000000001 5.2263318501875171E-017 + 65.339999999999989 4.3131056130810481E-017 + 65.399999999999991 3.0048354885878898E-017 + 65.459999999999994 1.2114023860265397E-017 + 65.519999999999996 -1.1734172462374292E-017 + 65.579999999999998 -4.2745543693771196E-017 + 65.640000000000001 -8.2386520177195691E-017 + 65.700000000000003 -1.3237566280209893E-016 + 65.759999999999991 -1.9472427971643047E-016 + 65.819999999999993 -2.7178298366921227E-016 + 65.879999999999995 -3.6629614789047605E-016 + 65.939999999999998 -4.8146463560080080E-016 + 66.000000000000000 -6.2101785770887900E-016 + 66.060000000000002 -7.8929626531300069E-016 + 66.119999999999990 -9.9134676736156005E-016 + 66.179999999999993 -1.2330327570614010E-015 + 66.239999999999995 -1.5211552525385293E-015 + 66.299999999999997 -1.8635959998871464E-015 + 66.359999999999999 -2.2694786229248152E-015 + 66.420000000000002 -2.7493475602452451E-015 + 66.479999999999990 -3.3153734531096000E-015 + 66.539999999999992 -3.9815849294068510E-015 + 66.599999999999994 -4.7641269330208728E-015 + 66.659999999999997 -5.6815490908094261E-015 + 66.719999999999999 -6.7551337748817047E-015 + 66.780000000000001 -8.0092563600716335E-015 + 66.839999999999989 -9.4717891131451342E-015 + 66.899999999999991 -1.1174548567522708E-014 + 66.959999999999994 -1.3153797886579367E-014 + 67.019999999999996 -1.5450799486184333E-014 + 67.079999999999998 -1.8112427713295177E-014 + 67.140000000000001 -2.1191843430829386E-014 + 67.199999999999989 -2.4749246383097663E-014 + 67.259999999999991 -2.8852690818728145E-014 + 67.319999999999993 -3.3579018179328967E-014 + 67.379999999999995 -3.9014819452449606E-014 + 67.439999999999998 -4.5257582230669354E-014 + 67.500000000000000 -5.2416848302524805E-014 + 67.560000000000002 -6.0615537550800481E-014 + 67.619999999999990 -6.9991371020918849E-014 + 67.679999999999993 -8.0698464711388729E-014 + 67.739999999999995 -9.2908965014865846E-014 + 67.799999999999997 -1.0681491267540011E-013 + 67.859999999999999 -1.2263018208815328E-013 + 67.920000000000002 -1.4059261167249223E-013 + 67.979999999999990 -1.6096617610097937E-013 + 68.039999999999992 -1.8404347921639167E-013 + 68.099999999999994 -2.1014814858583431E-013 + 68.159999999999997 -2.3963757812479294E-013 + 68.219999999999999 -2.7290560242639951E-013 + 68.280000000000001 -3.1038524805783499E-013 + 68.339999999999989 -3.5255166560503548E-013 + 68.399999999999991 -3.9992501285823816E-013 + 68.459999999999994 -4.5307292023444798E-013 + 68.519999999999996 -5.1261370472314313E-013 + 68.579999999999998 -5.7921822188177952E-013 + 68.640000000000001 -6.5361238661402115E-013 + 68.699999999999989 -7.3657848957555399E-013 + 68.759999999999991 -8.2895660173001300E-013 + 68.819999999999993 -9.3164428998564433E-013 + 68.879999999999995 -1.0455962104188026E-012 + 68.939999999999998 -1.1718214171827306E-012 + 69.000000000000000 -1.3113806635261194E-012 + 69.060000000000002 -1.4653789361908065E-012 + 69.119999999999990 -1.6349586937584915E-012 + 69.179999999999993 -1.8212870987116490E-012 + 69.239999999999995 -2.0255415967666095E-012 + 69.299999999999997 -2.2488919472504804E-012 + 69.359999999999999 -2.4924730009051100E-012 + 69.420000000000002 -2.7573554041865554E-012 + 69.479999999999990 -3.0445081139526722E-012 + 69.539999999999992 -3.3547496453619957E-012 + 69.599999999999994 -3.6886923364421497E-012 + 69.659999999999997 -4.0466724539786789E-012 + 69.719999999999999 -4.4286669014417110E-012 + 69.780000000000001 -4.8341931256045452E-012 + 69.839999999999989 -5.2621902535806605E-012 + 69.899999999999991 -5.7108777467396473E-012 + 69.959999999999994 -6.1775880883792064E-012 + 70.019999999999996 -6.6585669323033289E-012 + 70.079999999999998 -7.1487456095138127E-012 + 70.140000000000001 -7.6414613284961257E-012 + 70.199999999999989 -8.1281468416037000E-012 + 70.259999999999991 -8.5979518885788911E-012 + 70.319999999999993 -9.0373139727130620E-012 + 70.379999999999995 -9.4294509451302808E-012 + 70.439999999999998 -9.7537803865976351E-012 + 70.500000000000000 -9.9852456846491770E-012 + 70.560000000000002 -1.0093529675401277E-011 + 70.619999999999990 -1.0042157013365458E-011 + 70.679999999999993 -9.7874529670969209E-012 + 70.739999999999995 -9.2773568118000725E-012 + 70.799999999999997 -8.4500421471857157E-012 + 70.859999999999999 -7.2323523088222840E-012 + 70.920000000000002 -5.5379813005966950E-012 + 70.979999999999990 -3.2654431462333621E-012 + 71.039999999999992 -2.9569419916905782E-013 + 71.099999999999994 3.5105603503131555E-012 + 71.159999999999997 8.3158951047701476E-012 + 71.219999999999999 1.4309688528886047E-011 + 71.280000000000001 2.1712073480632736E-011 + 71.339999999999989 3.0778423929603644E-011 + 71.399999999999991 4.1804492574761081E-011 + 71.459999999999994 5.5132189710588366E-011 + 71.519999999999996 7.1156194919460575E-011 + 71.579999999999998 9.0331277400768316E-011 + 71.640000000000001 1.1318077491970421E-010 + 71.699999999999989 1.4030608273391052E-010 + 71.759999999999991 1.7239726870925513E-010 + 71.819999999999993 2.1024507940640227E-010 + 71.879999999999995 2.5475470677731422E-010 + 71.939999999999998 3.0696097277057185E-010 + 72.000000000000000 3.6804546649291795E-010 + 72.060000000000002 4.3935570324156195E-010 + 72.119999999999990 5.2242714691327643E-010 + 72.179999999999993 6.1900702800451985E-010 + 72.239999999999995 7.3108187184512828E-010 + 72.299999999999997 8.6090780068699945E-010 + 72.359999999999999 1.0110448526448411E-009 + 72.420000000000002 1.1843947845868516E-009 + 72.479999999999990 1.3842434849366424E-009 + 72.539999999999992 1.6143090673297545E-009 + 72.599999999999994 1.8787940963201662E-009 + 72.659999999999997 2.1824456453286426E-009 + 72.719999999999999 2.5306189930000082E-009 + 72.780000000000001 2.9293527258608941E-009 + 72.839999999999989 3.3854505302217938E-009 + 72.899999999999991 3.9065696040116903E-009 + 72.959999999999994 4.5013211791125281E-009 + 73.019999999999996 5.1793842629250996E-009 + 73.079999999999998 5.9516249491248608E-009 + 73.140000000000001 6.8302360481870324E-009 + 73.199999999999989 7.8288918528621951E-009 + 73.259999999999991 8.9629084714124242E-009 + 73.319999999999993 1.0249429325179088E-008 + 73.379999999999995 1.1707640260185118E-008 + 73.439999999999998 1.3358980517519509E-008 + 73.500000000000000 1.5227402950954431E-008 + 73.560000000000002 1.7339644658997401E-008 + 73.619999999999990 1.9725527966389252E-008 + 73.679999999999993 2.2418300798916740E-008 + 73.739999999999995 2.5454991266810888E-008 + 73.799999999999997 2.8876809693191988E-008 + 73.859999999999999 3.2729622296675104E-008 + 73.920000000000002 3.7064392100534995E-008 + 73.979999999999990 4.1937741481511451E-008 + 74.039999999999992 4.7412525682061945E-008 + 74.099999999999994 5.3558462062294195E-008 + 74.159999999999997 6.0452868993616819E-008 + 74.219999999999999 6.8181380088374265E-008 + 74.280000000000001 7.6838816678827859E-008 + 74.339999999999989 8.6530099016463961E-008 + 74.399999999999991 9.7371237700762340E-008 + 74.459999999999994 1.0949042825193075E-007 + 74.519999999999996 1.2302922364559448E-007 + 74.579999999999998 1.3814381764963453E-007 + 74.640000000000001 1.5500650330574512E-007 + 74.699999999999989 1.7380716345254829E-007 + 74.759999999999991 1.9475495691064798E-007 + 74.819999999999993 2.1808011349281300E-007 + 74.879999999999995 2.4403588846966941E-007 + 74.939999999999998 2.7290067554088742E-007 + 75.000000000000000 3.0498038186390757E-007 + 75.060000000000002 3.4061082333819140E-007 + 75.119999999999990 3.8016051065873030E-007 + 75.179999999999993 4.2403349039446364E-007 + 75.239999999999995 4.7267264696327872E-007 + 75.299999999999997 5.2656280134463062E-007 + 75.359999999999999 5.8623480159860340E-007 + 75.420000000000002 6.5226918445856956E-007 + 75.479999999999990 7.2530050078860396E-007 + 75.539999999999992 8.0602193778699912E-007 + 75.599999999999994 8.9519023116844780E-007 + 75.659999999999997 9.9363102570004255E-007 + 75.719999999999999 1.1022444993965628E-006 + 75.780000000000001 1.2220116490823485E-006 + 75.839999999999989 1.3540003531118539E-006 + 75.899999999999991 1.4993730625449197E-006 + 75.959999999999994 1.6593937433378160E-006 + 76.019999999999996 1.8354364898636820E-006 + 76.079999999999998 2.0289932124280400E-006 + 76.140000000000001 2.2416835372400554E-006 + 76.199999999999989 2.4752649195832298E-006 + 76.259999999999991 2.7316416450710601E-006 + 76.319999999999993 3.0128770093090848E-006 + 76.379999999999995 3.3212049509470002E-006 + 76.439999999999998 3.6590426134853329E-006 + 76.500000000000000 4.0290031565283206E-006 + 76.560000000000002 4.4339103673910641E-006 + 76.619999999999990 4.8768138889192451E-006 + 76.679999999999993 5.3610034211819745E-006 + 76.739999999999995 5.8900277612222663E-006 + 76.799999999999997 6.4677103314853196E-006 + 76.859999999999999 7.0981706603284785E-006 + 76.920000000000002 7.7858407755049979E-006 + 76.979999999999990 8.5354890482655549E-006 + 77.039999999999992 9.3522376959843836E-006 + 77.099999999999994 1.0241590869971287E-005 + 77.159999999999997 1.1209456939566666E-005 + 77.219999999999999 1.2262172861897838E-005 + 77.280000000000001 1.3406529841592643E-005 + 77.339999999999989 1.4649800760605864E-005 + 77.399999999999991 1.5999776261246177E-005 + 77.459999999999994 1.7464785427983934E-005 + 77.519999999999996 1.9053735573993851E-005 + 77.579999999999998 2.0776137141121795E-005 + 77.640000000000001 2.2642142670837114E-005 + 77.699999999999989 2.4662584248284601E-005 + 77.759999999999991 2.6849008618800453E-005 + 77.819999999999993 2.9213713264647486E-005 + 77.879999999999995 3.1769783938202927E-005 + 77.939999999999998 3.4531144771442141E-005 + 78.000000000000000 3.7512594483910025E-005 + 78.060000000000002 4.0729846198509290E-005 + 78.119999999999990 4.4199579064136940E-005 + 78.179999999999993 4.7939484409079678E-005 + 78.239999999999995 5.1968301026220153E-005 + 78.299999999999997 5.6305888665528491E-005 + 78.359999999999999 6.0973242312383070E-005 + 78.420000000000002 6.5992573261689218E-005 + 78.479999999999990 7.1387337502016893E-005 + 78.539999999999992 7.7182313055783208E-005 + 78.599999999999994 8.3403623231023024E-005 + 78.659999999999997 9.0078801199084589E-005 + 78.719999999999999 9.7236843838141644E-005 + 78.780000000000001 1.0490826907106051E-004 + 78.839999999999989 1.1312518113635234E-004 + 78.899999999999991 1.2192129351636205E-004 + 78.959999999999994 1.3133199411159046E-004 + 79.019999999999996 1.4139440633151464E-004 + 79.079999999999998 1.5214742548002978E-004 + 79.140000000000001 1.6363183707091607E-004 + 79.199999999999989 1.7589020872030260E-004 + 79.259999999999991 1.8896710716187419E-004 + 79.319999999999993 2.0290903784135028E-004 + 79.379999999999995 2.1776457551635355E-004 + 79.439999999999998 2.3358431432064089E-004 + 79.500000000000000 2.5042096528046011E-004 + 79.560000000000002 2.6832937195484993E-004 + 79.619999999999990 2.8736654888384668E-004 + 79.679999999999993 3.0759170594803084E-004 + 79.739999999999995 3.2906632801459209E-004 + 79.799999999999997 3.5185405021584003E-004 + 79.859999999999999 3.7602080751530096E-004 + 79.920000000000002 4.0163480388858455E-004 + 79.979999999999990 4.2876658249912930E-004 + 80.039999999999992 4.5748887812716309E-004 + 80.099999999999994 4.8787674146050735E-004 + 80.159999999999997 5.2000742435643634E-004 + 80.219999999999999 5.5396039024692325E-004 + 80.280000000000001 5.8981745761996446E-004 + 80.340000000000003 6.2766240503688052E-004 + 80.400000000000006 6.6758121755758533E-004 + 80.460000000000008 7.0966201940897834E-004 + 80.519999999999982 7.5399473099374635E-004 + 80.579999999999984 8.0067122218845175E-004 + 80.639999999999986 8.4978534367764237E-004 + 80.699999999999989 9.0143253848585809E-004 + 80.759999999999991 9.5570992681048644E-004 + 80.819999999999993 1.0127162130166660E-003 + 80.879999999999995 1.0725512302598925E-003 + 80.939999999999998 1.1353161351097384E-003 + 81.000000000000000 1.2011132920859006E-003 + 81.060000000000002 1.2700457833632283E-003 + 81.120000000000005 1.3422175447831168E-003 + 81.180000000000007 1.4177329767029049E-003 + 81.240000000000009 1.4966968339444992E-003 + 81.299999999999983 1.5792138331510034E-003 + 81.359999999999985 1.6653885753935920E-003 + 81.419999999999987 1.7553254287905407E-003 + 81.479999999999990 1.8491278653083281E-003 + 81.539999999999992 1.9468986231400028E-003 + 81.599999999999994 2.0487392268431475E-003 + 81.659999999999997 2.1547496609474795E-003 + 81.719999999999999 2.2650277276775859E-003 + 81.780000000000001 2.3796696604128451E-003 + 81.840000000000003 2.4987686323159697E-003 + 81.900000000000006 2.6224153862105283E-003 + 81.960000000000008 2.7506973951371312E-003 + 82.019999999999982 2.8836984180944450E-003 + 82.079999999999984 3.0214982433725435E-003 + 82.139999999999986 3.1641722529940071E-003 + 82.199999999999989 3.3117912084963085E-003 + 82.259999999999991 3.4644208591584312E-003 + 82.319999999999993 3.6221215944900096E-003 + 82.379999999999995 3.7849467678222407E-003 + 82.439999999999998 3.9529443675346762E-003 + 82.500000000000000 4.1261553415112735E-003 + 82.560000000000002 4.3046137511768764E-003 + 82.620000000000005 4.4883448147486609E-003 + 82.680000000000007 4.6773673642600119E-003 + 82.740000000000009 4.8716902608130202E-003 + 82.799999999999983 5.0713144403865072E-003 + 82.859999999999985 5.2762309294853305E-003 + 82.919999999999987 5.4864213460536129E-003 + 82.979999999999990 5.7018571182132147E-003 + 83.039999999999992 5.9224993382107757E-003 + 83.099999999999994 6.1482979206619361E-003 + 83.159999999999997 6.3791918535016784E-003 + 83.219999999999999 6.6151079569155636E-003 + 83.280000000000001 6.8559630970001333E-003 + 83.340000000000003 7.1016595947059839E-003 + 83.400000000000006 7.3520883505168791E-003 + 83.460000000000008 7.6071273177764388E-003 + 83.519999999999982 7.8666423470450178E-003 + 83.579999999999984 8.1304856556679208E-003 + 83.639999999999986 8.3984959711684536E-003 + 83.699999999999989 8.6704980709568051E-003 + 83.759999999999991 8.9463043783490209E-003 + 83.819999999999993 9.2257125458334432E-003 + 83.879999999999995 9.5085081118341692E-003 + 83.939999999999998 9.7944605537089134E-003 + 84.000000000000000 1.0083328585399762E-002 + 84.060000000000002 1.0374854403156338E-002 + 84.120000000000005 1.0668768244908811E-002 + 84.180000000000007 1.0964788142468714E-002 + 84.240000000000009 1.1262615142228328E-002 + 84.299999999999983 1.1561942089072363E-002 + 84.359999999999985 1.1862446009495181E-002 + 84.419999999999987 1.2163793371404294E-002 + 84.479999999999990 1.2465637130113998E-002 + 84.539999999999992 1.2767619789159395E-002 + 84.599999999999994 1.3069372851119013E-002 + 84.659999999999997 1.3370516591168679E-002 + 84.719999999999999 1.3670661175110659E-002 + 84.780000000000001 1.3969409099483878E-002 + 84.840000000000003 1.4266351730235006E-002 + 84.900000000000006 1.4561072645537580E-002 + 84.960000000000008 1.4853149266329892E-002 + 85.019999999999982 1.5142150365874161E-002 + 85.079999999999984 1.5427640144326998E-002 + 85.139999999999986 1.5709178493940171E-002 + 85.199999999999989 1.5986319158527187E-002 + 85.259999999999991 1.6258613063489347E-002 + 85.319999999999993 1.6525610447391665E-002 + 85.379999999999995 1.6786857605279235E-002 + 85.439999999999998 1.7041902151116041E-002 + 85.500000000000000 1.7290292474504199E-002 + 85.560000000000002 1.7531575828075227E-002 + 85.620000000000005 1.7765305880740091E-002 + 85.680000000000007 1.7991036622811596E-002 + 85.740000000000009 1.8208328027902745E-002 + 85.799999999999983 1.8416747374531302E-002 + 85.859999999999985 1.8615866678572610E-002 + 85.919999999999987 1.8805266007453490E-002 + 85.979999999999990 1.8984537348678675E-002 + 86.039999999999992 1.9153277281908541E-002 + 86.099999999999994 1.9311098495235629E-002 + 86.159999999999997 1.9457625688671119E-002 + 86.219999999999999 1.9592492941892803E-002 + 86.280000000000001 1.9715354243022960E-002 + 86.340000000000003 1.9825875679734466E-002 + 86.400000000000006 1.9923737216839078E-002 + 86.460000000000008 2.0008640891025734E-002 + 86.519999999999982 2.0080302876205929E-002 + 86.579999999999984 2.0138463091596111E-002 + 86.639999999999986 2.0182876456569143E-002 + 86.699999999999989 2.0213319364666742E-002 + 86.759999999999991 2.0229591620744072E-002 + 86.819999999999993 2.0231513904593355E-002 + 86.879999999999995 2.0218929771474284E-002 + 86.939999999999998 2.0191706120590909E-002 + 87.000000000000000 2.0149733763239652E-002 + 87.060000000000002 2.0092926338981576E-002 + 87.120000000000005 2.0021222795240851E-002 + 87.180000000000007 1.9934588794058399E-002 + 87.240000000000009 1.9833013625195579E-002 + 87.299999999999983 1.9716511288547359E-002 + 87.359999999999985 1.9585124690006298E-002 + 87.419999999999987 1.9438919529107146E-002 + 87.479999999999990 1.9277985409185898E-002 + 87.539999999999992 1.9102442743602892E-002 + 87.599999999999994 1.8912432784299701E-002 + 87.659999999999997 1.8708122987282035E-002 + 87.719999999999999 1.8489707677701202E-002 + 87.780000000000001 1.8257402008256558E-002 + 87.840000000000003 1.8011447110571625E-002 + 87.900000000000006 1.7752109508388528E-002 + 87.960000000000008 1.7479677487451630E-002 + 88.019999999999982 1.7194462178007529E-002 + 88.079999999999984 1.6896794291777220E-002 + 88.139999999999986 1.6587027668930301E-002 + 88.199999999999989 1.6265535749214400E-002 + 88.259999999999991 1.5932711942898907E-002 + 88.319999999999993 1.5588966420823467E-002 + 88.379999999999995 1.5234729226245032E-002 + 88.439999999999998 1.4870446423818417E-002 + 88.500000000000000 1.4496578426083092E-002 + 88.560000000000002 1.4113601969652809E-002 + 88.620000000000005 1.3722004093203892E-002 + 88.680000000000007 1.3322287335230335E-002 + 88.740000000000009 1.2914962036656175E-002 + 88.799999999999983 1.2500551685984575E-002 + 88.859999999999985 1.2079585860881660E-002 + 88.919999999999987 1.1652602859063083E-002 + 88.979999999999990 1.1220146080798193E-002 + 89.039999999999992 1.0782764461221981E-002 + 89.099999999999994 1.0341010679534872E-002 + 89.159999999999997 9.8954393639682815E-003 + 89.219999999999999 9.4466066170040552E-003 + 89.280000000000001 8.9950676758757050E-003 + 89.340000000000003 8.5413790017827250E-003 + 89.400000000000006 8.0860911028972776E-003 + 89.460000000000008 7.6297540137092550E-003 + 89.519999999999982 7.1729103101489822E-003 + 89.579999999999984 6.7160984315716415E-003 + 89.639999999999986 6.2598495029910113E-003 + 89.699999999999989 5.8046858383831636E-003 + 89.759999999999991 5.3511216751349622E-003 + 89.819999999999993 4.8996605649465385E-003 + 89.879999999999995 4.4507955526418624E-003 + 89.939999999999998 4.0050075450778766E-003 + 90.000000000000000 3.5627643984329975E-003 + 90.060000000000002 3.1245206838599374E-003 + 90.120000000000005 2.6907171790637977E-003 + 90.180000000000007 2.2617791738807850E-003 + 90.240000000000009 1.8381163364078975E-003 + 90.299999999999983 1.4201222475202033E-003 + 90.359999999999985 1.0081739575687103E-003 + 90.419999999999987 6.0263103413160136E-004 + 90.479999999999990 2.0383558286310834E-004 + 90.539999999999992 -1.8788802988896109E-004 + 90.599999999999994 -5.7223412846862357E-004 + 90.659999999999997 -9.4891508579356902E-004 + 90.719999999999999 -1.3176623012565519E-003 + 90.780000000000001 -1.6782258953884702E-003 + 90.840000000000003 -2.0303750286479734E-003 + 90.900000000000006 -2.3738974369625762E-003 + 90.960000000000008 -2.7085997817702487E-003 + 91.019999999999982 -3.0343080921885262E-003 + 91.079999999999984 -3.3508663586277435E-003 + 91.139999999999986 -3.6581379240478345E-003 + 91.199999999999989 -3.9560039850173772E-003 + 91.259999999999991 -4.2443633932613429E-003 + 91.319999999999993 -4.5231330147720806E-003 + 91.379999999999995 -4.7922477440317818E-003 + 91.439999999999998 -5.0516585253984172E-003 + 91.500000000000000 -5.3013341767187416E-003 + 91.560000000000002 -5.5412582720662396E-003 + 91.620000000000005 -5.7714316965487115E-003 + 91.680000000000007 -5.9918688338075846E-003 + 91.739999999999981 -6.2026006091396042E-003 + 91.799999999999983 -6.4036711667827782E-003 + 91.859999999999985 -6.5951378876066159E-003 + 91.919999999999987 -6.7770721903290055E-003 + 91.979999999999990 -6.9495572489355981E-003 + 92.039999999999992 -7.1126876929892592E-003 + 92.099999999999994 -7.2665708605948931E-003 + 92.159999999999997 -7.4113237201138393E-003 + 92.219999999999999 -7.5470732180596559E-003 + 92.280000000000001 -7.6739561536124795E-003 + 92.340000000000003 -7.7921175337056017E-003 + 92.400000000000006 -7.9017099343738992E-003 + 92.460000000000008 -8.0028954103014312E-003 + 92.519999999999982 -8.0958420239532237E-003 + 92.579999999999984 -8.1807234766046108E-003 + 92.639999999999986 -8.2577194305886118E-003 + 92.699999999999989 -8.3270150360512940E-003 + 92.759999999999991 -8.3888002997554063E-003 + 92.819999999999993 -8.4432694192088931E-003 + 92.879999999999995 -8.4906184485167343E-003 + 92.939999999999998 -8.5310501516005638E-003 + 93.000000000000000 -8.5647665291195378E-003 + 93.060000000000002 -8.5919717815815186E-003 + 93.120000000000005 -8.6128727044404475E-003 + 93.180000000000007 -8.6276775835768937E-003 + 93.239999999999981 -8.6365945293214244E-003 + 93.299999999999983 -8.6398317844767706E-003 + 93.359999999999985 -8.6375985920345601E-003 + 93.419999999999987 -8.6301021587781475E-003 + 93.479999999999990 -8.6175497059586340E-003 + 93.539999999999992 -8.6001475517518550E-003 + 93.599999999999994 -8.5781006854331321E-003 + 93.659999999999997 -8.5516111335436056E-003 + 93.719999999999999 -8.5208801821215624E-003 + 93.780000000000001 -8.4861063322152243E-003 + 93.840000000000003 -8.4474860928041434E-003 + 93.900000000000006 -8.4052131349354325E-003 + 93.960000000000008 -8.3594763418766496E-003 + 94.019999999999982 -8.3104647912404447E-003 + 94.079999999999984 -8.2583617189631135E-003 + 94.139999999999986 -8.2033482093562104E-003 + 94.199999999999989 -8.1456024252893923E-003 + 94.259999999999991 -8.0852972048313584E-003 + 94.319999999999993 -8.0226030101631998E-003 + 94.379999999999995 -7.9576863648702437E-003 + 94.439999999999998 -7.8907089079548048E-003 + 94.500000000000000 -7.8218296860816106E-003 + 94.560000000000002 -7.7512036795010161E-003 + 94.620000000000005 -7.6789804330448371E-003 + 94.680000000000007 -7.6053067445921753E-003 + 94.739999999999981 -7.5303245889138956E-003 + 94.799999999999983 -7.4541722212783891E-003 + 94.859999999999985 -7.3769837047263521E-003 + 94.919999999999987 -7.2988877373382013E-003 + 94.979999999999990 -7.2200113048807475E-003 + 95.039999999999992 -7.1404752896507342E-003 + 95.099999999999994 -7.0603977368141023E-003 + 95.159999999999997 -6.9798919423267134E-003 + 95.219999999999999 -6.8990671793155989E-003 + 95.280000000000001 -6.8180286100790284E-003 + 95.340000000000003 -6.7368775156392991E-003 + 95.400000000000006 -6.6557115171961660E-003 + 95.460000000000008 -6.5746237987347545E-003 + 95.519999999999982 -6.4937043889252482E-003 + 95.579999999999984 -6.4130382201870962E-003 + 95.639999999999986 -6.3327068055951006E-003 + 95.699999999999989 -6.2527883978730041E-003 + 95.759999999999991 -6.1733568457872463E-003 + 95.819999999999993 -6.0944821975157321E-003 + 95.879999999999995 -6.0162307953259457E-003 + 95.939999999999998 -5.9386655178747649E-003 + 96.000000000000000 -5.8618458062162501E-003 + 96.060000000000002 -5.7858268076248671E-003 + 96.120000000000005 -5.7106604100137879E-003 + 96.180000000000007 -5.6363951636791698E-003 + 96.239999999999981 -5.5630758287250233E-003 + 96.299999999999983 -5.4907437082558101E-003 + 96.359999999999985 -5.4194368645002775E-003 + 96.419999999999987 -5.3491897300953850E-003 + 96.479999999999990 -5.2800336249785628E-003 + 96.539999999999992 -5.2119969363345793E-003 + 96.599999999999994 -5.1451043169496100E-003 + 96.659999999999997 -5.0793773934574805E-003 + 96.719999999999999 -5.0148351648699845E-003 + 96.780000000000001 -4.9514924289611696E-003 + 96.840000000000003 -4.8893624625640517E-003 + 96.900000000000006 -4.8284551305960589E-003 + 96.960000000000008 -4.7687766210851423E-003 + 97.019999999999982 -4.7103318758221994E-003 + 97.079999999999984 -4.6531219572365397E-003 + 97.139999999999986 -4.5971449230788365E-003 + 97.199999999999989 -4.5423978002737068E-003 + 97.259999999999991 -4.4888735578588433E-003 + 97.319999999999993 -4.4365635454558525E-003 + 97.379999999999995 -4.3854568527271105E-003 + 97.439999999999998 -4.3355396817791143E-003 + 97.500000000000000 -4.2867968033310569E-003 + 97.560000000000002 -4.2392105486262471E-003 + 97.620000000000005 -4.1927611740821581E-003 + 97.680000000000007 -4.1474272430426168E-003 + 97.739999999999981 -4.1031857240569633E-003 + 97.799999999999983 -4.0600117169652689E-003 + 97.859999999999985 -4.0178786645084300E-003 + 97.919999999999987 -3.9767586457916237E-003 + 97.979999999999990 -3.9366225531195752E-003 + 98.039999999999992 -3.8974398846515048E-003 + 98.099999999999994 -3.8591793391084079E-003 + 98.159999999999997 -3.8218083427375123E-003 + 98.219999999999999 -3.7852932518570512E-003 + 98.280000000000001 -3.7496002846310753E-003 + 98.340000000000003 -3.7146944160001043E-003 + 98.400000000000006 -3.6805405173859912E-003 + 98.460000000000008 -3.6471028596115345E-003 + 98.519999999999982 -3.6143455012731611E-003 + 98.579999999999984 -3.5822322378180850E-003 + 98.639999999999986 -3.5507268078804714E-003 + 98.699999999999989 -3.5197929054666625E-003 + 98.759999999999991 -3.4893944242660496E-003 + 98.819999999999993 -3.4594956242643650E-003 + 98.879999999999995 -3.4300609882057550E-003 + 98.939999999999998 -3.4010555758705570E-003 + 99.000000000000000 -3.3724453929181468E-003 + 99.060000000000002 -3.3441964221468745E-003 + 99.120000000000005 -3.3162758263191577E-003 + 99.180000000000007 -3.2886514413738889E-003 + 99.239999999999981 -3.2612923093829336E-003 + 99.299999999999983 -3.2341685725320837E-003 + 99.359999999999985 -3.2072512333665886E-003 + 99.419999999999987 -3.1805128146831603E-003 + 99.479999999999990 -3.1539266878256307E-003 + 99.539999999999992 -3.1274679143394601E-003 + 99.599999999999994 -3.1011127335389692E-003 + 99.659999999999997 -3.0748390579614926E-003 + 99.719999999999999 -3.0486258897665592E-003 + 99.780000000000001 -3.0224542979943991E-003 + 99.840000000000003 -2.9963064754354291E-003 + 99.900000000000006 -2.9701663739915372E-003 + 99.960000000000008 -2.9440194886808245E-003 + 100.01999999999998 -2.9178530327768331E-003 + 100.07999999999998 -2.8916557518228279E-003 + 100.13999999999999 -2.8654181574065932E-003 + 100.19999999999999 -2.8391323756968251E-003 + 100.25999999999999 -2.8127924042478016E-003 + 100.31999999999999 -2.7863936475378249E-003 + 100.38000000000000 -2.7599332035308259E-003 + 100.44000000000000 -2.7334099141318518E-003 + 100.50000000000000 -2.7068241647804948E-003 + 100.56000000000000 -2.6801779087796871E-003 + 100.62000000000000 -2.6534747391820492E-003 + 100.68000000000001 -2.6267199311845596E-003 + 100.73999999999998 -2.5999198722751449E-003 + 100.79999999999998 -2.5730825001969181E-003 + 100.85999999999999 -2.5462172357662623E-003 + 100.91999999999999 -2.5193346944179427E-003 + 100.97999999999999 -2.4924467665284056E-003 + 101.03999999999999 -2.4655666583471322E-003 + 101.09999999999999 -2.4387086330872085E-003 + 101.16000000000000 -2.4118876402455833E-003 + 101.22000000000000 -2.3851200923537047E-003 + 101.28000000000000 -2.3584232474767840E-003 + 101.34000000000000 -2.3318151135648399E-003 + 101.40000000000001 -2.3053143960338196E-003 + 101.46000000000001 -2.2789405946622753E-003 + 101.51999999999998 -2.2527140225105540E-003 + 101.57999999999998 -2.2266554344498655E-003 + 101.63999999999999 -2.2007857534406062E-003 + 101.69999999999999 -2.1751266437889261E-003 + 101.75999999999999 -2.1497001604078229E-003 + 101.81999999999999 -2.1245282307507558E-003 + 101.88000000000000 -2.0996332776958898E-003 + 101.94000000000000 -2.0750377202189653E-003 + 102.00000000000000 -2.0507640511947217E-003 + 102.06000000000000 -2.0268347728906125E-003 + 102.12000000000000 -2.0032720996110915E-003 + 102.18000000000001 -1.9800981225932246E-003 + 102.23999999999998 -1.9573346044010121E-003 + 102.29999999999998 -1.9350031955132733E-003 + 102.35999999999999 -1.9131248233097361E-003 + 102.41999999999999 -1.8917201675763514E-003 + 102.47999999999999 -1.8708093214047854E-003 + 102.53999999999999 -1.8504117119106228E-003 + 102.59999999999999 -1.8305462352814854E-003 + 102.66000000000000 -1.8112310889070466E-003 + 102.72000000000000 -1.7924837470649074E-003 + 102.78000000000000 -1.7743206468706914E-003 + 102.84000000000000 -1.7567578097236261E-003 + 102.90000000000001 -1.7398099248764262E-003 + 102.96000000000001 -1.7234912678151023E-003 + 103.01999999999998 -1.7078147901298571E-003 + 103.07999999999998 -1.6927928483868762E-003 + 103.13999999999999 -1.6784364407591648E-003 + 103.19999999999999 -1.6647558568990482E-003 + 103.25999999999999 -1.6517602159076762E-003 + 103.31999999999999 -1.6394575300408402E-003 + 103.38000000000000 -1.6278547534392413E-003 + 103.44000000000000 -1.6169578635431290E-003 + 103.50000000000000 -1.6067715619674636E-003 + 103.56000000000000 -1.5972996481759180E-003 + 103.62000000000000 -1.5885444193464197E-003 + 103.68000000000001 -1.5805074158520083E-003 + 103.73999999999998 -1.5731887995537738E-003 + 103.79999999999998 -1.5665876661640921E-003 + 103.85999999999999 -1.5607019810747040E-003 + 103.91999999999999 -1.5555285521342960E-003 + 103.97999999999999 -1.5510630844242188E-003 + 104.03999999999999 -1.5473001589888097E-003 + 104.09999999999999 -1.5442332680794834E-003 + 104.16000000000000 -1.5418548635970930E-003 + 104.22000000000000 -1.5401561917383969E-003 + 104.28000000000000 -1.5391277011180498E-003 + 104.34000000000000 -1.5387588931400605E-003 + 104.40000000000001 -1.5390380497496928E-003 + 104.46000000000001 -1.5399527891138283E-003 + 104.51999999999998 -1.5414894368579117E-003 + 104.57999999999998 -1.5436338541871242E-003 + 104.63999999999999 -1.5463709108712968E-003 + 104.69999999999999 -1.5496844907242021E-003 + 104.75999999999999 -1.5535577904107450E-003 + 104.81999999999999 -1.5579732203763290E-003 + 104.88000000000000 -1.5629124442329704E-003 + 104.94000000000000 -1.5683565022646391E-003 + 105.00000000000000 -1.5742855138152615E-003 + 105.06000000000000 -1.5806791145360701E-003 + 105.12000000000000 -1.5875164144427587E-003 + 105.18000000000001 -1.5947758313560852E-003 + 105.23999999999998 -1.6024350957107032E-003 + 105.29999999999998 -1.6104716852234390E-003 + 105.35999999999999 -1.6188624731116978E-003 + 105.41999999999999 -1.6275839211936202E-003 + 105.47999999999999 -1.6366121253856365E-003 + 105.53999999999999 -1.6459231072001831E-003 + 105.59999999999999 -1.6554921474197651E-003 + 105.66000000000000 -1.6652945849345931E-003 + 105.72000000000000 -1.6753055847566042E-003 + 105.78000000000000 -1.6855001054948875E-003 + 105.84000000000000 -1.6958530410056492E-003 + 105.90000000000001 -1.7063392419810900E-003 + 105.96000000000001 -1.7169335552196432E-003 + 106.01999999999998 -1.7276107206637289E-003 + 106.07999999999998 -1.7383458204861661E-003 + 106.13999999999999 -1.7491136561365262E-003 + 106.19999999999999 -1.7598896696168565E-003 + 106.25999999999999 -1.7706489803743538E-003 + 106.31999999999999 -1.7813671873453771E-003 + 106.38000000000000 -1.7920200345069961E-003 + 106.44000000000000 -1.8025837501514056E-003 + 106.50000000000000 -1.8130347790924330E-003 + 106.56000000000000 -1.8233499110391154E-003 + 106.62000000000000 -1.8335062363112086E-003 + 106.68000000000001 -1.8434815099307783E-003 + 106.73999999999998 -1.8532538633859812E-003 + 106.79999999999998 -1.8628020848335475E-003 + 106.85999999999999 -1.8721052289213398E-003 + 106.91999999999999 -1.8811431803046688E-003 + 106.97999999999999 -1.8898964002305608E-003 + 107.03999999999999 -1.8983461256155743E-003 + 107.09999999999999 -1.9064743138427036E-003 + 107.16000000000000 -1.9142633969031300E-003 + 107.22000000000000 -1.9216968717591554E-003 + 107.28000000000000 -1.9287590121204977E-003 + 107.34000000000000 -1.9354347394743522E-003 + 107.40000000000001 -1.9417101649705723E-003 + 107.46000000000001 -1.9475719501235570E-003 + 107.51999999999998 -1.9530079793500551E-003 + 107.57999999999998 -1.9580067932779867E-003 + 107.63999999999999 -1.9625580313996612E-003 + 107.69999999999999 -1.9666524236489490E-003 + 107.75999999999999 -1.9702813419737787E-003 + 107.81999999999999 -1.9734374496459439E-003 + 107.88000000000000 -1.9761143696740095E-003 + 107.94000000000000 -1.9783068540447559E-003 + 108.00000000000000 -1.9800103222903449E-003 + 108.06000000000000 -1.9812218693565785E-003 + 108.12000000000000 -1.9819390251141367E-003 + 108.18000000000001 -1.9821608898177006E-003 + 108.23999999999998 -1.9818870792395879E-003 + 108.29999999999998 -1.9811188265136353E-003 + 108.35999999999999 -1.9798580055425969E-003 + 108.41999999999999 -1.9781079050334265E-003 + 108.47999999999999 -1.9758726359923972E-003 + 108.53999999999999 -1.9731576829356543E-003 + 108.59999999999999 -1.9699692618251911E-003 + 108.66000000000000 -1.9663145250531726E-003 + 108.72000000000000 -1.9622018646534107E-003 + 108.78000000000000 -1.9576406145690585E-003 + 108.84000000000000 -1.9526410021398644E-003 + 108.90000000000001 -1.9472142246717951E-003 + 108.96000000000001 -1.9413725324627844E-003 + 109.01999999999998 -1.9351288606291428E-003 + 109.07999999999998 -1.9284969769910350E-003 + 109.13999999999999 -1.9214915293598320E-003 + 109.19999999999999 -1.9141279234437690E-003 + 109.25999999999999 -1.9064221804990194E-003 + 109.31999999999999 -1.8983911358609533E-003 + 109.38000000000000 -1.8900521265935893E-003 + 109.44000000000000 -1.8814231933265164E-003 + 109.50000000000000 -1.8725226457959457E-003 + 109.56000000000000 -1.8633693132948334E-003 + 109.62000000000000 -1.8539827086203596E-003 + 109.68000000000001 -1.8443823789449376E-003 + 109.73999999999998 -1.8345883480478291E-003 + 109.79999999999998 -1.8246207263580279E-003 + 109.85999999999999 -1.8144999056483846E-003 + 109.91999999999999 -1.8042463519061447E-003 + 109.97999999999999 -1.7938803832064335E-003 + 110.03999999999999 -1.7834226022142162E-003 + 110.09999999999999 -1.7728932512273460E-003 + 110.16000000000000 -1.7623126075705837E-003 + 110.22000000000000 -1.7517004862135802E-003 + 110.28000000000000 -1.7410765063547605E-003 + 110.34000000000000 -1.7304599053611282E-003 + 110.40000000000001 -1.7198693405221827E-003 + 110.46000000000001 -1.7093230344327366E-003 + 110.51999999999998 -1.6988387948464513E-003 + 110.57999999999998 -1.6884333253352622E-003 + 110.63999999999999 -1.6781230527709036E-003 + 110.69999999999999 -1.6679233232909220E-003 + 110.75999999999999 -1.6578487227235739E-003 + 110.81999999999999 -1.6479129501739572E-003 + 110.88000000000000 -1.6381287252647061E-003 + 110.94000000000000 -1.6285078176688592E-003 + 111.00000000000000 -1.6190606714293599E-003 + 111.06000000000000 -1.6097967825784180E-003 + 111.12000000000000 -1.6007246419224865E-003 + 111.18000000000001 -1.5918512296616573E-003 + 111.23999999999998 -1.5831823583015397E-003 + 111.29999999999998 -1.5747226638125203E-003 + 111.35999999999999 -1.5664753406008463E-003 + 111.41999999999999 -1.5584422377012855E-003 + 111.47999999999999 -1.5506239346603575E-003 + 111.53999999999999 -1.5430194995579044E-003 + 111.59999999999999 -1.5356266197825690E-003 + 111.66000000000000 -1.5284415472867669E-003 + 111.72000000000000 -1.5214590806340404E-003 + 111.78000000000000 -1.5146727291675960E-003 + 111.84000000000000 -1.5080745704028635E-003 + 111.90000000000001 -1.5016552730001103E-003 + 111.96000000000001 -1.4954041887205089E-003 + 112.01999999999998 -1.4893092835450061E-003 + 112.07999999999998 -1.4833571831837080E-003 + 112.13999999999999 -1.4775333325775519E-003 + 112.19999999999999 -1.4718219801791899E-003 + 112.25999999999999 -1.4662060510836218E-003 + 112.31999999999999 -1.4606673098773466E-003 + 112.38000000000000 -1.4551865291985014E-003 + 112.44000000000000 -1.4497435356952974E-003 + 112.50000000000000 -1.4443169609389508E-003 + 112.56000000000000 -1.4388847795931935E-003 + 112.62000000000000 -1.4334237602886776E-003 + 112.68000000000001 -1.4279102997883611E-003 + 112.73999999999998 -1.4223198950687411E-003 + 112.79999999999998 -1.4166274752303427E-003 + 112.85999999999999 -1.4108074352754197E-003 + 112.91999999999999 -1.4048338669654622E-003 + 112.97999999999999 -1.3986803305721855E-003 + 113.03999999999999 -1.3923202323415564E-003 + 113.09999999999999 -1.3857270630711755E-003 + 113.16000000000000 -1.3788738679404052E-003 + 113.22000000000000 -1.3717342577992766E-003 + 113.28000000000000 -1.3642816900704539E-003 + 113.34000000000000 -1.3564900623814239E-003 + 113.40000000000001 -1.3483336070736649E-003 + 113.46000000000001 -1.3397871182100024E-003 + 113.51999999999998 -1.3308259999692579E-003 + 113.57999999999998 -1.3214263559750620E-003 + 113.63999999999999 -1.3115649963922201E-003 + 113.69999999999999 -1.3012198595925748E-003 + 113.75999999999999 -1.2903695925977840E-003 + 113.81999999999999 -1.2789941340739274E-003 + 113.88000000000000 -1.2670744379569738E-003 + 113.94000000000000 -1.2545928241938630E-003 + 114.00000000000000 -1.2415328757455625E-003 + 114.06000000000000 -1.2278796696092587E-003 + 114.12000000000000 -1.2136196598709953E-003 + 114.18000000000001 -1.1987409089927866E-003 + 114.23999999999998 -1.1832331135762236E-003 + 114.29999999999998 -1.1670876654984238E-003 + 114.35999999999999 -1.1502977634375361E-003 + 114.41999999999999 -1.1328583032084692E-003 + 114.47999999999999 -1.1147661309757421E-003 + 114.53999999999999 -1.0960200191606350E-003 + 114.59999999999999 -1.0766205608364022E-003 + 114.66000000000000 -1.0565703863438770E-003 + 114.72000000000000 -1.0358740745161623E-003 + 114.78000000000000 -1.0145382070480100E-003 + 114.84000000000000 -9.9257134959512762E-004 + 114.90000000000001 -9.6998414739786986E-004 + 114.96000000000001 -9.4678913208739947E-004 + 115.01999999999998 -9.2300094839991740E-004 + 115.07999999999998 -8.9863602901473004E-004 + 115.13999999999999 -8.7371288556705416E-004 + 115.19999999999999 -8.4825172262146457E-004 + 115.25999999999999 -8.2227482593534248E-004 + 115.31999999999999 -7.9580603358482787E-004 + 115.38000000000000 -7.6887111607249641E-004 + 115.44000000000000 -7.4149736920125966E-004 + 115.50000000000000 -7.1371374784715827E-004 + 115.56000000000000 -6.8555072338417141E-004 + 115.62000000000000 -6.5704022362029710E-004 + 115.68000000000001 -6.2821554289477525E-004 + 115.73999999999998 -5.9911136503878787E-004 + 115.79999999999998 -5.6976344671757812E-004 + 115.85999999999999 -5.4020871819788325E-004 + 115.91999999999999 -5.1048507135936869E-004 + 115.97999999999999 -4.8063145769332169E-004 + 116.03999999999999 -4.5068753180445937E-004 + 116.09999999999999 -4.2069369347156487E-004 + 116.16000000000000 -3.9069091172266992E-004 + 116.22000000000000 -3.6072073931297415E-004 + 116.28000000000000 -3.3082505583691688E-004 + 116.34000000000000 -3.0104599077059778E-004 + 116.40000000000001 -2.7142588737158658E-004 + 116.46000000000001 -2.4200704082389486E-004 + 116.51999999999998 -2.1283172703454029E-004 + 116.57999999999998 -1.8394198476228346E-004 + 116.63999999999999 -1.5537955044709717E-004 + 116.69999999999999 -1.2718568602946144E-004 + 116.75999999999999 -9.9401121184561076E-005 + 116.81999999999999 -7.2065906675246555E-005 + 116.88000000000000 -4.5219305222419240E-005 + 116.94000000000000 -1.8899711945149857E-005 + 117.00000000000000 6.8554584372768296E-006 + 117.06000000000000 3.2009854059194404E-005 + 117.12000000000000 5.6528359622750143E-005 + 117.18000000000001 8.0377026255166545E-005 + 117.23999999999998 1.0352327279337947E-004 + 117.29999999999998 1.2593587750961137E-004 + 117.35999999999999 1.4758511298303164E-004 + 117.41999999999999 1.6844280213122178E-004 + 117.47999999999999 1.8848234116479175E-004 + 117.53999999999999 2.0767882560026972E-004 + 117.59999999999999 2.2600897169491234E-004 + 117.66000000000000 2.4345131712937156E-004 + 117.72000000000000 2.5998619015693585E-004 + 117.78000000000000 2.7559577349385372E-004 + 117.84000000000000 2.9026410410217147E-004 + 117.90000000000001 3.0397708681271997E-004 + 117.96000000000001 3.1672264537453471E-004 + 118.01999999999998 3.2849059781859559E-004 + 118.07999999999998 3.3927277066534475E-004 + 118.13999999999999 3.4906291752611620E-004 + 118.19999999999999 3.5785678056997870E-004 + 118.25999999999999 3.6565207700644804E-004 + 118.31999999999999 3.7244840254726358E-004 + 118.38000000000000 3.7824734473045334E-004 + 118.44000000000000 3.8305234449878165E-004 + 118.50000000000000 3.8686872950862615E-004 + 118.56000000000000 3.8970356828398642E-004 + 118.62000000000000 3.9156574480659451E-004 + 118.68000000000001 3.9246581955081051E-004 + 118.73999999999998 3.9241612327730479E-004 + 118.79999999999998 3.9143052720560644E-004 + 118.85999999999999 3.8952449221498002E-004 + 118.91999999999999 3.8671495391784616E-004 + 118.97999999999999 3.8302035682590669E-004 + 119.03999999999999 3.7846054378504944E-004 + 119.09999999999999 3.7305663815554520E-004 + 119.16000000000000 3.6683102273804026E-004 + 119.22000000000000 3.5980734089742435E-004 + 119.28000000000000 3.5201035625101272E-004 + 119.34000000000000 3.4346593558003677E-004 + 119.40000000000001 3.3420089682220281E-004 + 119.46000000000001 3.2424302341072355E-004 + 119.51999999999998 3.1362091472496669E-004 + 119.57999999999998 3.0236397954097138E-004 + 119.63999999999999 2.9050233092331663E-004 + 119.69999999999999 2.7806667879793127E-004 + 119.75999999999999 2.6508828833240566E-004 + 119.81999999999999 2.5159890640798958E-004 + 119.88000000000000 2.3763062365655323E-004 + 119.94000000000000 2.2321589106557633E-004 + 120.00000000000000 2.0838735540307447E-004 + 120.06000000000000 1.9317788246267563E-004 + 120.12000000000000 1.7762042469346006E-004 + 120.18000000000001 1.6174797006785689E-004 + 120.23999999999998 1.4559346366383995E-004 + 120.29999999999998 1.2918977120159289E-004 + 120.35999999999999 1.1256964243269469E-004 + 120.41999999999999 9.5765574679922846E-005 + 120.47999999999999 7.8809833346549614E-005 + 120.53999999999999 6.1734401633027158E-005 + 120.59999999999999 4.4570892139150493E-005 + 120.66000000000000 2.7350516755299712E-005 + 120.72000000000000 1.0104042741036559E-005 + 120.78000000000000 -7.1382462298017035E-006 + 120.84000000000000 -2.4346618319758967E-005 + 120.90000000000001 -4.1491866350988737E-005 + 120.95999999999998 -5.8545434564161914E-005 + 121.01999999999998 -7.5479390428071749E-005 + 121.07999999999998 -9.2266491578589196E-005 + 121.13999999999999 -1.0888021821347434E-004 + 121.19999999999999 -1.2529477210563011E-004 + 121.25999999999999 -1.4148516263505156E-004 + 121.31999999999999 -1.5742719441947514E-004 + 121.38000000000000 -1.7309751607289409E-004 + 121.44000000000000 -1.8847359352812125E-004 + 121.50000000000000 -2.0353381466317667E-004 + 121.56000000000000 -2.1825744694713590E-004 + 121.62000000000000 -2.3262466093872347E-004 + 121.68000000000001 -2.4661657553591614E-004 + 121.73999999999998 -2.6021521627029833E-004 + 121.79999999999998 -2.7340355474605765E-004 + 121.85999999999999 -2.8616552454221544E-004 + 121.91999999999999 -2.9848599507976969E-004 + 121.97999999999999 -3.1035079948961300E-004 + 122.03999999999999 -3.2174673194592914E-004 + 122.09999999999999 -3.3266151545681085E-004 + 122.16000000000000 -3.4308382790013218E-004 + 122.22000000000000 -3.5300328910419112E-004 + 122.28000000000000 -3.6241048950747825E-004 + 122.34000000000000 -3.7129693305868025E-004 + 122.40000000000001 -3.7965509587260435E-004 + 122.45999999999998 -3.8747839076870241E-004 + 122.51999999999998 -3.9476114554804626E-004 + 122.57999999999998 -4.0149863197287607E-004 + 122.63999999999999 -4.0768707245715372E-004 + 122.69999999999999 -4.1332360350801342E-004 + 122.75999999999999 -4.1840631925494547E-004 + 122.81999999999999 -4.2293421096731466E-004 + 122.88000000000000 -4.2690718634231877E-004 + 122.94000000000000 -4.3032603223858677E-004 + 123.00000000000000 -4.3319242693973264E-004 + 123.06000000000000 -4.3550892745091216E-004 + 123.12000000000000 -4.3727891845033010E-004 + 123.18000000000001 -4.3850660416701597E-004 + 123.23999999999998 -4.3919701075035157E-004 + 123.29999999999998 -4.3935595483752111E-004 + 123.35999999999999 -4.3898994491727087E-004 + 123.41999999999999 -4.3810626281888792E-004 + 123.47999999999999 -4.3671284580086773E-004 + 123.53999999999999 -4.3481837661204728E-004 + 123.59999999999999 -4.3243218280915812E-004 + 123.66000000000000 -4.2956420723056876E-004 + 123.72000000000000 -4.2622500426717198E-004 + 123.78000000000000 -4.2242575071409379E-004 + 123.84000000000000 -4.1817818874381052E-004 + 123.90000000000001 -4.1349465135464739E-004 + 123.95999999999998 -4.0838797520929246E-004 + 124.01999999999998 -4.0287154345201994E-004 + 124.07999999999998 -3.9695923601863249E-004 + 124.13999999999999 -3.9066539009505099E-004 + 124.19999999999999 -3.8400483157267722E-004 + 124.25999999999999 -3.7699275020057466E-004 + 124.31999999999999 -3.6964469070315496E-004 + 124.38000000000000 -3.6197662593396126E-004 + 124.44000000000000 -3.5400476972135631E-004 + 124.50000000000000 -3.4574564615282418E-004 + 124.56000000000000 -3.3721594045847122E-004 + 124.62000000000000 -3.2843262658628858E-004 + 124.68000000000001 -3.1941275148838247E-004 + 124.73999999999998 -3.1017350519285100E-004 + 124.79999999999998 -3.0073214889185447E-004 + 124.85999999999999 -2.9110601136469110E-004 + 124.91999999999999 -2.8131240901238123E-004 + 124.97999999999999 -2.7136866623219438E-004 + 125.03999999999999 -2.6129203895023767E-004 + 125.09999999999999 -2.5109972037428655E-004 + 125.16000000000000 -2.4080883309118985E-004 + 125.22000000000000 -2.3043636455195138E-004 + 125.28000000000000 -2.1999916825667435E-004 + 125.34000000000000 -2.0951389970586386E-004 + 125.40000000000001 -1.9899705919134916E-004 + 125.45999999999998 -1.8846493113600283E-004 + 125.51999999999998 -1.7793353962592025E-004 + 125.57999999999998 -1.6741868639022847E-004 + 125.63999999999999 -1.5693583203713309E-004 + 125.69999999999999 -1.4650017017659844E-004 + 125.75999999999999 -1.3612651264325061E-004 + 125.81999999999999 -1.2582934351878258E-004 + 125.88000000000000 -1.1562275724519817E-004 + 125.94000000000000 -1.0552038207497927E-004 + 126.00000000000000 -9.5535472179349276E-005 + 126.06000000000000 -8.5680805075392859E-005 + 126.12000000000000 -7.5968680539570947E-005 + 126.18000000000001 -6.6410909842190395E-005 + 126.23999999999998 -5.7018794340341179E-005 + 126.29999999999998 -4.7803127403435569E-005 + 126.35999999999999 -3.8774175656010101E-005 + 126.41999999999999 -2.9941672713917059E-005 + 126.47999999999999 -2.1314806107657624E-005 + 126.53999999999999 -1.2902243618581652E-005 + 126.59999999999999 -4.7120874038861967E-006 + 126.66000000000000 3.2480868792435048E-006 + 126.72000000000000 1.0971236206177966E-005 + 126.78000000000000 1.8450866296212887E-005 + 126.84000000000000 2.5681001111614971E-005 + 126.90000000000001 3.2656188604195799E-005 + 126.95999999999998 3.9371523928774016E-005 + 127.01999999999998 4.5822596987125623E-005 + 127.07999999999998 5.2005539333614133E-005 + 127.13999999999999 5.7916976530480982E-005 + 127.19999999999999 6.3554071606841830E-005 + 127.25999999999999 6.8914472737219648E-005 + 127.31999999999999 7.3996356590692522E-005 + 127.38000000000000 7.8798411196217836E-005 + 127.44000000000000 8.3319815663989564E-005 + 127.50000000000000 8.7560261589739719E-005 + 127.56000000000000 9.1519928608338827E-005 + 127.62000000000000 9.5199482010398928E-005 + 127.68000000000001 9.8600067132625208E-005 + 127.73999999999998 1.0172330523035452E-004 + 127.79999999999998 1.0457125673416356E-004 + 127.85999999999999 1.0714642068708951E-004 + 127.91999999999999 1.0945170263984173E-004 + 127.97999999999999 1.1149041088326576E-004 + 128.03999999999999 1.1326622444090200E-004 + 128.09999999999999 1.1478316777447726E-004 + 128.16000000000000 1.1604559532967995E-004 + 128.22000000000000 1.1705817866568841E-004 + 128.28000000000000 1.1782587054248962E-004 + 128.34000000000000 1.1835389286511451E-004 + 128.40000000000001 1.1864771554157345E-004 + 128.45999999999998 1.1871304720063245E-004 + 128.51999999999998 1.1855583512536476E-004 + 128.57999999999998 1.1818221133376929E-004 + 128.63999999999999 1.1759851683175912E-004 + 128.69999999999999 1.1681129952488228E-004 + 128.75999999999999 1.1582727574659037E-004 + 128.81999999999999 1.1465332929396651E-004 + 128.88000000000000 1.1329649786730663E-004 + 128.94000000000000 1.1176396168720649E-004 + 129.00000000000000 1.1006304249060601E-004 + 129.06000000000000 1.0820115536001193E-004 + 129.12000000000000 1.0618581277359776E-004 + 129.18000000000001 1.0402458955053322E-004 + 129.23999999999998 1.0172511989062434E-004 + 129.29999999999998 9.9295037451806376E-005 + 129.35999999999999 9.6741996534989986E-005 + 129.41999999999999 9.4073613988421105E-005 + 129.47999999999999 9.1297457202969633E-005 + 129.53999999999999 8.8421019844254264E-005 + 129.59999999999999 8.5451720401216619E-005 + 129.66000000000000 8.2396846190284267E-005 + 129.72000000000000 7.9263553341977358E-005 + 129.78000000000000 7.6058857552094273E-005 + 129.84000000000000 7.2789620168072343E-005 + 129.90000000000001 6.9462513489540757E-005 + 129.95999999999998 6.6084039164463948E-005 + 130.01999999999998 6.2660497256075427E-005 + 130.07999999999998 5.9197979510283046E-005 + 130.13999999999999 5.5702358277647130E-005 + 130.19999999999999 5.2179280097865769E-005 + 130.25999999999999 4.8634144676074610E-005 + 130.31999999999999 4.5072104854079803E-005 + 130.38000000000000 4.1498049111732342E-005 + 130.44000000000000 3.7916599506365979E-005 + 130.50000000000000 3.4332077993628607E-005 + 130.56000000000000 3.0748499379758233E-005 + 130.62000000000000 2.7169568453157569E-005 + 130.68000000000001 2.3598663767977384E-005 + 130.73999999999998 2.0038828042576533E-005 + 130.79999999999998 1.6492752324395456E-005 + 130.85999999999999 1.2962775484763734E-005 + 130.91999999999999 9.4508663999678582E-006 + 130.97999999999999 5.9586344688816784E-006 + 131.03999999999999 2.4873139263453461E-006 + 131.09999999999999 -9.6223127025088693E-007 + 131.16000000000000 -4.3895165348354169E-006 + 131.22000000000000 -7.7944204596292685E-006 + 131.28000000000000 -1.1177188274655247E-005 + 131.34000000000000 -1.4538432298919740E-005 + 131.40000000000001 -1.7879108887080683E-005 + 131.45999999999998 -2.1200520737237239E-005 + 131.51999999999998 -2.4504320420030496E-005 + 131.57999999999998 -2.7792467857671585E-005 + 131.63999999999999 -3.1067250292169524E-005 + 131.69999999999999 -3.4331254282162940E-005 + 131.75999999999999 -3.7587348109053252E-005 + 131.81999999999999 -4.0838688948524645E-005 + 131.88000000000000 -4.4088694512021720E-005 + 131.94000000000000 -4.7341031842906668E-005 + 132.00000000000000 -5.0599608058554267E-005 + 132.06000000000000 -5.3868545943536371E-005 + 132.12000000000000 -5.7152171883368931E-005 + 132.18000000000001 -6.0455006525284873E-005 + 132.23999999999998 -6.3781740125369403E-005 + 132.29999999999998 -6.7137223304950788E-005 + 132.35999999999999 -7.0526446218474153E-005 + 132.41999999999999 -7.3954507996549222E-005 + 132.47999999999999 -7.7426613187380172E-005 + 132.53999999999999 -8.0948038050653081E-005 + 132.59999999999999 -8.4524129358046944E-005 + 132.66000000000000 -8.8160247714317560E-005 + 132.72000000000000 -9.1861768590243120E-005 + 132.78000000000000 -9.5634044408479240E-005 + 132.84000000000000 -9.9482406951605966E-005 + 132.90000000000001 -1.0341210514807389E-004 + 132.95999999999998 -1.0742830148599278E-004 + 133.01999999999998 -1.1153605625481568E-004 + 133.07999999999998 -1.1574029984799809E-004 + 133.13999999999999 -1.2004579301186079E-004 + 133.19999999999999 -1.2445714372008693E-004 + 133.25999999999999 -1.2897876244792380E-004 + 133.31999999999999 -1.3361484045851265E-004 + 133.38000000000000 -1.3836938261384903E-004 + 133.44000000000000 -1.4324612921920332E-004 + 133.50000000000000 -1.4824859214109272E-004 + 133.56000000000000 -1.5338003589640808E-004 + 133.62000000000000 -1.5864345277737620E-004 + 133.68000000000001 -1.6404155620821357E-004 + 133.73999999999998 -1.6957682704700597E-004 + 133.79999999999998 -1.7525140658423296E-004 + 133.85999999999999 -1.8106718549618941E-004 + 133.91999999999999 -1.8702574432758948E-004 + 133.97999999999999 -1.9312836326098665E-004 + 134.03999999999999 -1.9937603506054780E-004 + 134.09999999999999 -2.0576946455560808E-004 + 134.16000000000000 -2.1230901354681335E-004 + 134.22000000000000 -2.1899477874047754E-004 + 134.28000000000000 -2.2582654590610969E-004 + 134.34000000000000 -2.3280381183454895E-004 + 134.40000000000001 -2.3992580334852631E-004 + 134.45999999999998 -2.4719144719568924E-004 + 134.51999999999998 -2.5459942290789484E-004 + 134.57999999999998 -2.6214818437150702E-004 + 134.63999999999999 -2.6983588903567706E-004 + 134.69999999999999 -2.7766053350189142E-004 + 134.75999999999999 -2.8561986480196179E-004 + 134.81999999999999 -2.9371147027272006E-004 + 134.88000000000000 -3.0193276744219192E-004 + 134.94000000000000 -3.1028099429541490E-004 + 135.00000000000000 -3.1875330552850627E-004 + 135.06000000000000 -3.2734670692183629E-004 + 135.12000000000000 -3.3605811226363044E-004 + 135.18000000000001 -3.4488436237769968E-004 + 135.23999999999998 -3.5382227339100867E-004 + 135.29999999999998 -3.6286861879197499E-004 + 135.35999999999999 -3.7202013588733771E-004 + 135.41999999999999 -3.8127360946158272E-004 + 135.47999999999999 -3.9062580186908006E-004 + 135.53999999999999 -4.0007358742691118E-004 + 135.59999999999999 -4.0961387852469187E-004 + 135.66000000000000 -4.1924371470217935E-004 + 135.72000000000000 -4.2896010292271840E-004 + 135.78000000000000 -4.3876045348488859E-004 + 135.84000000000000 -4.4864214275954785E-004 + 135.90000000000001 -4.5860276170665902E-004 + 135.95999999999998 -4.6864002427868912E-004 + 136.01999999999998 -4.7875189722728988E-004 + 136.07999999999998 -4.8893658134281865E-004 + 136.13999999999999 -4.9919243906759465E-004 + 136.19999999999999 -5.0951804873724019E-004 + 136.25999999999999 -5.1991225680063119E-004 + 136.31999999999999 -5.3037415189138805E-004 + 136.38000000000000 -5.4090302726874479E-004 + 136.44000000000000 -5.5149832950720178E-004 + 136.50000000000000 -5.6215986045608237E-004 + 136.56000000000000 -5.7288759175689165E-004 + 136.62000000000000 -5.8368167640041795E-004 + 136.68000000000001 -5.9454257375161793E-004 + 136.73999999999998 -6.0547082595693445E-004 + 136.79999999999998 -6.1646721011122344E-004 + 136.85999999999999 -6.2753275568612076E-004 + 136.91999999999999 -6.3866860633772884E-004 + 136.97999999999999 -6.4987602631881580E-004 + 137.03999999999999 -6.6115653241185872E-004 + 137.09999999999999 -6.7251163626102139E-004 + 137.16000000000000 -6.8394293336380258E-004 + 137.22000000000000 -6.9545224876888965E-004 + 137.28000000000000 -7.0704132080663185E-004 + 137.34000000000000 -7.1871193887554873E-004 + 137.40000000000001 -7.3046589152342021E-004 + 137.45999999999998 -7.4230491021225621E-004 + 137.51999999999998 -7.5423072729631057E-004 + 137.57999999999998 -7.6624494638104722E-004 + 137.63999999999999 -7.7834896853768082E-004 + 137.69999999999999 -7.9054408264957134E-004 + 137.75999999999999 -8.0283139737596953E-004 + 137.81999999999999 -8.1521168043799538E-004 + 137.88000000000000 -8.2768549313866921E-004 + 137.94000000000000 -8.4025314070768856E-004 + 138.00000000000000 -8.5291449986193383E-004 + 138.06000000000000 -8.6566903030471393E-004 + 138.12000000000000 -8.7851585221751570E-004 + 138.18000000000001 -8.9145376202865714E-004 + 138.23999999999998 -9.0448083813954056E-004 + 138.29999999999998 -9.1759486636085522E-004 + 138.35999999999999 -9.3079284168311107E-004 + 138.41999999999999 -9.4407160870654708E-004 + 138.47999999999999 -9.5742708892816611E-004 + 138.53999999999999 -9.7085465922137958E-004 + 138.59999999999999 -9.8434925947989593E-004 + 138.66000000000000 -9.9790489528590312E-004 + 138.72000000000000 -1.0115150042424468E-003 + 138.78000000000000 -1.0251723142655391E-003 + 138.84000000000000 -1.0388689597743898E-003 + 138.90000000000001 -1.0525961355609121E-003 + 138.95999999999998 -1.0663442735314309E-003 + 139.01999999999998 -1.0801032354336043E-003 + 139.07999999999998 -1.0938619387203942E-003 + 139.13999999999999 -1.1076086461749256E-003 + 139.19999999999999 -1.1213306430086127E-003 + 139.25999999999999 -1.1350146595916866E-003 + 139.31999999999999 -1.1486466626625157E-003 + 139.38000000000000 -1.1622115313807636E-003 + 139.44000000000000 -1.1756937513452133E-003 + 139.50000000000000 -1.1890767184873376E-003 + 139.56000000000000 -1.2023433492119255E-003 + 139.62000000000000 -1.2154757266085183E-003 + 139.68000000000001 -1.2284552186594881E-003 + 139.73999999999998 -1.2412627735669804E-003 + 139.79999999999998 -1.2538784188551655E-003 + 139.85999999999999 -1.2662816942479675E-003 + 139.91999999999999 -1.2784515551771411E-003 + 139.97999999999999 -1.2903663925452565E-003 + 140.03999999999999 -1.3020041339971923E-003 + 140.09999999999999 -1.3133423130842299E-003 + 140.16000000000000 -1.3243579280444941E-003 + 140.22000000000000 -1.3350275559855641E-003 + 140.28000000000000 -1.3453277005120614E-003 + 140.34000000000000 -1.3552343094082482E-003 + 140.40000000000001 -1.3647233836961269E-003 + 140.45999999999998 -1.3737704699124088E-003 + 140.51999999999998 -1.3823511169943114E-003 + 140.57999999999998 -1.3904407108052774E-003 + 140.63999999999999 -1.3980147844166384E-003 + 140.69999999999999 -1.4050487460675245E-003 + 140.75999999999999 -1.4115182879137498E-003 + 140.81999999999999 -1.4173992286586009E-003 + 140.88000000000000 -1.4226675763802316E-003 + 140.94000000000000 -1.4272996327292392E-003 + 141.00000000000000 -1.4312720981139954E-003 + 141.06000000000000 -1.4345620803515901E-003 + 141.12000000000000 -1.4371474342015401E-003 + 141.18000000000001 -1.4390062195373111E-003 + 141.23999999999998 -1.4401174666804554E-003 + 141.29999999999998 -1.4404607130972422E-003 + 141.35999999999999 -1.4400163512710824E-003 + 141.41999999999999 -1.4387654828939998E-003 + 141.47999999999999 -1.4366901934153658E-003 + 141.53999999999999 -1.4337736236681698E-003 + 141.59999999999999 -1.4299995770593152E-003 + 141.66000000000000 -1.4253531892044172E-003 + 141.72000000000000 -1.4198207377261263E-003 + 141.78000000000000 -1.4133893630974672E-003 + 141.84000000000000 -1.4060475425380027E-003 + 141.90000000000001 -1.3977849670164363E-003 + 141.95999999999998 -1.3885926028878470E-003 + 142.01999999999998 -1.3784628258452572E-003 + 142.07999999999998 -1.3673892545396486E-003 + 142.13999999999999 -1.3553668829912029E-003 + 142.19999999999999 -1.3423922791828296E-003 + 142.25999999999999 -1.3284633049287574E-003 + 142.31999999999999 -1.3135794542727328E-003 + 142.38000000000000 -1.2977416436429294E-003 + 142.44000000000000 -1.2809524544094035E-003 + 142.50000000000000 -1.2632157271953662E-003 + 142.56000000000000 -1.2445372630097101E-003 + 142.62000000000000 -1.2249242172602413E-003 + 142.68000000000001 -1.2043854068674209E-003 + 142.73999999999998 -1.1829312328372531E-003 + 142.79999999999998 -1.1605735714664475E-003 + 142.85999999999999 -1.1373259003878194E-003 + 142.91999999999999 -1.1132033171980422E-003 + 142.97999999999999 -1.0882223533426820E-003 + 143.03999999999999 -1.0624010536321854E-003 + 143.09999999999999 -1.0357589735627665E-003 + 143.16000000000000 -1.0083170098000131E-003 + 143.22000000000000 -9.8009774582343348E-004 + 143.28000000000000 -9.5112483901748767E-004 + 143.34000000000000 -9.2142337658176424E-004 + 143.40000000000001 -8.9101983463848154E-004 + 143.45999999999998 -8.5994183588161384E-004 + 143.51999999999998 -8.2821832279733165E-004 + 143.57999999999998 -7.9587933691792801E-004 + 143.63999999999999 -7.6295598134875611E-004 + 143.69999999999999 -7.2948037815702220E-004 + 143.75999999999999 -6.9548580246620419E-004 + 143.81999999999999 -6.6100638722792833E-004 + 143.88000000000000 -6.2607714455560615E-004 + 143.94000000000000 -5.9073376524671406E-004 + 144.00000000000000 -5.5501281385440587E-004 + 144.06000000000000 -5.1895144342179237E-004 + 144.12000000000000 -4.8258738998929209E-004 + 144.18000000000001 -4.4595888617551029E-004 + 144.23999999999998 -4.0910454115653438E-004 + 144.29999999999998 -3.7206335760422656E-004 + 144.35999999999999 -3.3487456622087301E-004 + 144.41999999999999 -2.9757758238045201E-004 + 144.47999999999999 -2.6021186738707205E-004 + 144.53999999999999 -2.2281698354009496E-004 + 144.59999999999999 -1.8543235544790356E-004 + 144.66000000000000 -1.4809734021376859E-004 + 144.72000000000000 -1.1085105041990806E-004 + 144.78000000000000 -7.3732308980867454E-005 + 144.84000000000000 -3.6779604468344703E-005 + 144.90000000000001 -3.0938778722181825E-008 + 144.95999999999998 3.6476149328294733E-005 + 145.01999999999998 7.2704660699750864E-005 + 145.07999999999998 1.0861829648701812E-004 + 145.13999999999999 1.4418141265885935E-004 + 145.19999999999999 1.7935919367557569E-004 + 145.25999999999999 2.1411758936856160E-004 + 145.31999999999999 2.4842346160916789E-004 + 145.38000000000000 2.8224461173832288E-004 + 145.44000000000000 3.1554991569413563E-004 + 145.50000000000000 3.4830927884467938E-004 + 145.56000000000000 3.8049362831224791E-004 + 145.62000000000000 4.1207518698839821E-004 + 145.68000000000001 4.4302723861736071E-004 + 145.73999999999998 4.7332442230125398E-004 + 145.79999999999998 5.0294263767960610E-004 + 145.85999999999999 5.3185903849982559E-004 + 145.91999999999999 5.6005213626987853E-004 + 145.97999999999999 5.8750183019535282E-004 + 146.03999999999999 6.1418934410165658E-004 + 146.09999999999999 6.4009735728062572E-004 + 146.16000000000000 6.6520993570758438E-004 + 146.22000000000000 6.8951257894715832E-004 + 146.28000000000000 7.1299212983846677E-004 + 146.34000000000000 7.3563681456663269E-004 + 146.40000000000001 7.5743641650059118E-004 + 146.45999999999998 7.7838207968486959E-004 + 146.51999999999998 7.9846631728092718E-004 + 146.57999999999998 8.1768291114447760E-004 + 146.63999999999999 8.3602725215176739E-004 + 146.69999999999999 8.5349585311253148E-004 + 146.75999999999999 8.7008660513159517E-004 + 146.81999999999999 8.8579874069867788E-004 + 146.88000000000000 9.0063278386252822E-004 + 146.94000000000000 9.1459042509539818E-004 + 147.00000000000000 9.2767467813689589E-004 + 147.06000000000000 9.3988975356860374E-004 + 147.12000000000000 9.5124087312289138E-004 + 147.18000000000001 9.6173457119727883E-004 + 147.23999999999998 9.7137818692949723E-004 + 147.29999999999998 9.8018022770129487E-004 + 147.35999999999999 9.8815014938798064E-004 + 147.41999999999999 9.9529845262456449E-004 + 147.47999999999999 1.0016362113536383E-003 + 147.53999999999999 1.0071757573821671E-003 + 147.59999999999999 1.0119298739914991E-003 + 147.66000000000000 1.0159122504218568E-003 + 147.72000000000000 1.0191371831406338E-003 + 147.78000000000000 1.0216195365533442E-003 + 147.84000000000000 1.0233749656182235E-003 + 147.90000000000001 1.0244193445655670E-003 + 147.95999999999998 1.0247693583098464E-003 + 148.01999999999998 1.0244418830094584E-003 + 148.07999999999998 1.0234543663137376E-003 + 148.13999999999999 1.0218245021501682E-003 + 148.19999999999999 1.0195703207102847E-003 + 148.25999999999999 1.0167101631047464E-003 + 148.31999999999999 1.0132624954931660E-003 + 148.38000000000000 1.0092461704881079E-003 + 148.44000000000000 1.0046801010873006E-003 + 148.50000000000000 9.9958315546599561E-004 + 148.56000000000000 9.9397452937109612E-004 + 148.62000000000000 9.8787332552257873E-004 + 148.68000000000001 9.8129868624478238E-004 + 148.73999999999998 9.7426973533024292E-004 + 148.79999999999998 9.6680547829119153E-004 + 148.85999999999999 9.5892490491872263E-004 + 148.91999999999999 9.5064684715458669E-004 + 148.97999999999999 9.4198998044543541E-004 + 149.03999999999999 9.3297284642795898E-004 + 149.09999999999999 9.2361376201124360E-004 + 149.16000000000000 9.1393081753634404E-004 + 149.22000000000000 9.0394200469890937E-004 + 149.28000000000000 8.9366490264024452E-004 + 149.34000000000000 8.8311702847477234E-004 + 149.40000000000001 8.7231551534132194E-004 + 149.45999999999998 8.6127731021470551E-004 + 149.51999999999998 8.5001917405619657E-004 + 149.57999999999998 8.3855751748012253E-004 + 149.63999999999999 8.2690851363081681E-004 + 149.69999999999999 8.1508806430196940E-004 + 149.75999999999999 8.0311183148997324E-004 + 149.81999999999999 7.9099523464925701E-004 + 149.88000000000000 7.7875331512290821E-004 + 149.94000000000000 7.6640097788062086E-004 + 150.00000000000000 7.5395278200704127E-004 + 150.06000000000000 7.4142308208149119E-004 + 150.12000000000000 7.2882587697635059E-004 + 150.18000000000001 7.1617498464040662E-004 + 150.23999999999998 7.0348389460948325E-004 + 150.29999999999998 6.9076582921750963E-004 + 150.35999999999999 6.7803386492836968E-004 + 150.41999999999999 6.6530077727135184E-004 + 150.47999999999999 6.5257904714418854E-004 + 150.53999999999999 6.3988097893586077E-004 + 150.59999999999999 6.2721874007946193E-004 + 150.66000000000000 6.1460417054109138E-004 + 150.72000000000000 6.0204898971784196E-004 + 150.78000000000000 5.8956469042866031E-004 + 150.84000000000000 5.7716257434304989E-004 + 150.90000000000001 5.6485381561987246E-004 + 150.95999999999998 5.5264938417477446E-004 + 151.01999999999998 5.4056005047170477E-004 + 151.07999999999998 5.2859650024768572E-004 + 151.13999999999999 5.1676913956383123E-004 + 151.19999999999999 5.0508825998997866E-004 + 151.25999999999999 4.9356399989864438E-004 + 151.31999999999999 4.8220631575681864E-004 + 151.38000000000000 4.7102487399960973E-004 + 151.44000000000000 4.6002928847869773E-004 + 151.50000000000000 4.4922889450580615E-004 + 151.56000000000000 4.3863284950213985E-004 + 151.62000000000000 4.2825005757334542E-004 + 151.68000000000001 4.1808931964572386E-004 + 151.73999999999998 4.0815909457993406E-004 + 151.79999999999998 3.9846770859166929E-004 + 151.85999999999999 3.8902322505396218E-004 + 151.91999999999999 3.7983343793515379E-004 + 151.97999999999999 3.7090592233238710E-004 + 152.03999999999999 3.6224800894742669E-004 + 152.09999999999999 3.5386675167888314E-004 + 152.16000000000000 3.4576896023508279E-004 + 152.22000000000000 3.3796107776115517E-004 + 152.28000000000000 3.3044934473167769E-004 + 152.34000000000000 3.2323961194810966E-004 + 152.40000000000001 3.1633744913830785E-004 + 152.45999999999998 3.0974804326215361E-004 + 152.51999999999998 3.0347622449611962E-004 + 152.57999999999998 2.9752645168343398E-004 + 152.63999999999999 2.9190277441232872E-004 + 152.69999999999999 2.8660879856435407E-004 + 152.75999999999999 2.8164769765568463E-004 + 152.81999999999999 2.7702223093374563E-004 + 152.88000000000000 2.7273460441235026E-004 + 152.94000000000000 2.6878658011192754E-004 + 153.00000000000000 2.6517940932284454E-004 + 153.06000000000000 2.6191382665499420E-004 + 153.12000000000000 2.5898999970813246E-004 + 153.17999999999998 2.5640760577304224E-004 + 153.23999999999998 2.5416571969650074E-004 + 153.29999999999998 2.5226290606004476E-004 + 153.35999999999999 2.5069715769212919E-004 + 153.41999999999999 2.4946588616672814E-004 + 153.47999999999999 2.4856593090972118E-004 + 153.53999999999999 2.4799357563551566E-004 + 153.59999999999999 2.4774450505395611E-004 + 153.66000000000000 2.4781385541997340E-004 + 153.72000000000000 2.4819615871996827E-004 + 153.78000000000000 2.4888537311274612E-004 + 153.84000000000000 2.4987488679455128E-004 + 153.90000000000001 2.5115748143230825E-004 + 153.95999999999998 2.5272535182003093E-004 + 154.01999999999998 2.5457011129657934E-004 + 154.07999999999998 2.5668278687408363E-004 + 154.13999999999999 2.5905385990013078E-004 + 154.19999999999999 2.6167322034193938E-004 + 154.25999999999999 2.6453016722001872E-004 + 154.31999999999999 2.6761349692254455E-004 + 154.38000000000000 2.7091141238680372E-004 + 154.44000000000000 2.7441164108362500E-004 + 154.50000000000000 2.7810141080511166E-004 + 154.56000000000000 2.8196745035031102E-004 + 154.62000000000000 2.8599604809819861E-004 + 154.67999999999998 2.9017300536415738E-004 + 154.73999999999998 2.9448375240035546E-004 + 154.79999999999998 2.9891332093601256E-004 + 154.85999999999999 3.0344636134282510E-004 + 154.91999999999999 3.0806720226350426E-004 + 154.97999999999999 3.1275982969113710E-004 + 155.03999999999999 3.1750792394212389E-004 + 155.09999999999999 3.2229487226959069E-004 + 155.16000000000000 3.2710383014011710E-004 + 155.22000000000000 3.3191768978773088E-004 + 155.28000000000000 3.3671911383639883E-004 + 155.34000000000000 3.4149057104729415E-004 + 155.40000000000001 3.4621435916545857E-004 + 155.45999999999998 3.5087263639358920E-004 + 155.51999999999998 3.5544740184740984E-004 + 155.57999999999998 3.5992057526999783E-004 + 155.63999999999999 3.6427401645241445E-004 + 155.69999999999999 3.6848950582679950E-004 + 155.75999999999999 3.7254890318107214E-004 + 155.81999999999999 3.7643402025964030E-004 + 155.88000000000000 3.8012678039207702E-004 + 155.94000000000000 3.8360916155568423E-004 + 156.00000000000000 3.8686329702316934E-004 + 156.06000000000000 3.8987146489959437E-004 + 156.12000000000000 3.9261619320460556E-004 + 156.17999999999998 3.9508015941131408E-004 + 156.23999999999998 3.9724634162552634E-004 + 156.29999999999998 3.9909797335128933E-004 + 156.35999999999999 4.0061862400830514E-004 + 156.41999999999999 4.0179219698733388E-004 + 156.47999999999999 4.0260290750447961E-004 + 156.53999999999999 4.0303538609507051E-004 + 156.59999999999999 4.0307465430245863E-004 + 156.66000000000000 4.0270612727628892E-004 + 156.72000000000000 4.0191569343679895E-004 + 156.78000000000000 4.0068971326574142E-004 + 156.84000000000000 3.9901504071652083E-004 + 156.90000000000001 3.9687904785651394E-004 + 156.95999999999998 3.9426956481368133E-004 + 157.01999999999998 3.9117514666747326E-004 + 157.07999999999998 3.8758481370432544E-004 + 157.13999999999999 3.8348828626735544E-004 + 157.19999999999999 3.7887588575449789E-004 + 157.25999999999999 3.7373863514949797E-004 + 157.31999999999999 3.6806820776272249E-004 + 157.38000000000000 3.6185707101432684E-004 + 157.44000000000000 3.5509836421490388E-004 + 157.50000000000000 3.4778602822283774E-004 + 157.56000000000000 3.3991483435326624E-004 + 157.62000000000000 3.3148030455207094E-004 + 157.67999999999998 3.2247879810402049E-004 + 157.73999999999998 3.1290747988399947E-004 + 157.79999999999998 3.0276444723014085E-004 + 157.85999999999999 2.9204862186838577E-004 + 157.91999999999999 2.8075982310957323E-004 + 157.97999999999999 2.6889870785481215E-004 + 158.03999999999999 2.5646690498395958E-004 + 158.09999999999999 2.4346693346821304E-004 + 158.16000000000000 2.2990222113528170E-004 + 158.22000000000000 2.1577716094487557E-004 + 158.28000000000000 2.0109704462666070E-004 + 158.34000000000000 1.8586814984095266E-004 + 158.40000000000001 1.7009771869468677E-004 + 158.45999999999998 1.5379393885068176E-004 + 158.51999999999998 1.3696597860940845E-004 + 158.57999999999998 1.1962397238578447E-004 + 158.63999999999999 1.0177902816920575E-004 + 158.69999999999999 8.3443249891663765E-005 + 158.75999999999999 6.4629727502028164E-005 + 158.81999999999999 4.5352494434132616E-005 + 158.88000000000000 2.5626582477169198E-005 + 158.94000000000000 5.4679642962669383E-006 + 159.00000000000000 -1.5106438733430957E-005 + 159.06000000000000 -3.6078771710031248E-005 + 159.12000000000000 -5.7430275094532173E-005 + 159.17999999999998 -7.9141311118984789E-005 + 159.23999999999998 -1.0119134972902313E-004 + 159.29999999999998 -1.2355905438997682E-004 + 159.35999999999999 -1.4622227548551336E-004 + 159.41999999999999 -1.6915807563524788E-004 + 159.47999999999999 -1.9234277618428337E-004 + 159.53999999999999 -2.1575201428254936E-004 + 159.59999999999999 -2.3936073514282982E-004 + 159.66000000000000 -2.6314324410170936E-004 + 159.72000000000000 -2.8707328316383954E-004 + 159.78000000000000 -3.1112399342976007E-004 + 159.84000000000000 -3.3526801167880566E-004 + 159.90000000000001 -3.5947752962360200E-004 + 159.95999999999998 -3.8372428423315378E-004 + 160.01999999999998 -4.0797963787951195E-004 + 160.07999999999998 -4.3221461998660659E-004 + 160.13999999999999 -4.5639995720947847E-004 + 160.19999999999999 -4.8050624088969942E-004 + 160.25999999999999 -5.0450383590238085E-004 + 160.31999999999999 -5.2836291936132415E-004 + 160.38000000000000 -5.5205374384524088E-004 + 160.44000000000000 -5.7554654336775251E-004 + 160.50000000000000 -5.9881166064872278E-004 + 160.56000000000000 -6.2181949259850096E-004 + 160.62000000000000 -6.4454072985345760E-004 + 160.67999999999998 -6.6694630597433015E-004 + 160.73999999999998 -6.8900751341781981E-004 + 160.79999999999998 -7.1069609985252428E-004 + 160.85999999999999 -7.3198414644068594E-004 + 160.91999999999999 -7.5284434628748829E-004 + 160.97999999999999 -7.7324997274161615E-004 + 161.03999999999999 -7.9317485411268748E-004 + 161.09999999999999 -8.1259353366285047E-004 + 161.16000000000000 -8.3148132156393956E-004 + 161.22000000000000 -8.4981427715271739E-004 + 161.28000000000000 -8.6756928082908471E-004 + 161.34000000000000 -8.8472410743651577E-004 + 161.40000000000001 -9.0125751322527633E-004 + 161.45999999999998 -9.1714915259809597E-004 + 161.51999999999998 -9.3237969987295050E-004 + 161.57999999999998 -9.4693093163702731E-004 + 161.63999999999999 -9.6078567142993446E-004 + 161.69999999999999 -9.7392777832964767E-004 + 161.75999999999999 -9.8634244467116607E-004 + 161.81999999999999 -9.9801600085013811E-004 + 161.88000000000000 -1.0089360495932919E-003 + 161.94000000000000 -1.0190911938192204E-003 + 162.00000000000000 -1.0284715467307898E-003 + 162.06000000000000 -1.0370684437081212E-003 + 162.12000000000000 -1.0448742179529655E-003 + 162.17999999999998 -1.0518827512147855E-003 + 162.23999999999998 -1.0580891833943729E-003 + 162.29999999999998 -1.0634898657388273E-003 + 162.35999999999999 -1.0680823404349881E-003 + 162.41999999999999 -1.0718654081411732E-003 + 162.47999999999999 -1.0748392452776311E-003 + 162.53999999999999 -1.0770052186821655E-003 + 162.59999999999999 -1.0783657597734548E-003 + 162.66000000000000 -1.0789245958374256E-003 + 162.72000000000000 -1.0786864669255218E-003 + 162.78000000000000 -1.0776572800528861E-003 + 162.84000000000000 -1.0758441083018771E-003 + 162.90000000000001 -1.0732551807391244E-003 + 162.95999999999998 -1.0698995259563250E-003 + 163.01999999999998 -1.0657873677345684E-003 + 163.07999999999998 -1.0609298628906673E-003 + 163.13999999999999 -1.0553390398880982E-003 + 163.19999999999999 -1.0490278387800080E-003 + 163.25999999999999 -1.0420099487219374E-003 + 163.31999999999999 -1.0343000220509803E-003 + 163.38000000000000 -1.0259132752292817E-003 + 163.44000000000000 -1.0168656696604695E-003 + 163.50000000000000 -1.0071737759902921E-003 + 163.56000000000000 -9.9685486088589874E-004 + 163.62000000000000 -9.8592652900380238E-004 + 163.67999999999998 -9.7440704612985736E-004 + 163.73999999999998 -9.6231501948560458E-004 + 163.79999999999998 -9.4966937907677625E-004 + 163.85999999999999 -9.3648947328687550E-004 + 163.91999999999999 -9.2279499483431833E-004 + 163.97999999999999 -9.0860572379260034E-004 + 164.03999999999999 -8.9394162914065384E-004 + 164.09999999999999 -8.7882293963602906E-004 + 164.16000000000000 -8.6327002987207472E-004 + 164.22000000000000 -8.4730311108458705E-004 + 164.28000000000000 -8.3094262467131445E-004 + 164.34000000000000 -8.1420896832221990E-004 + 164.40000000000001 -7.9712250513975927E-004 + 164.45999999999998 -7.7970349971244490E-004 + 164.51999999999998 -7.6197209167604780E-004 + 164.57999999999998 -7.4394824625094121E-004 + 164.63999999999999 -7.2565188511717856E-004 + 164.69999999999999 -7.0710265799172256E-004 + 164.75999999999999 -6.8832008027605108E-004 + 164.81999999999999 -6.6932333910189391E-004 + 164.88000000000000 -6.5013143349238595E-004 + 164.94000000000000 -6.3076300613261721E-004 + 165.00000000000000 -6.1123637632642860E-004 + 165.06000000000000 -5.9156959369299907E-004 + 165.12000000000000 -5.7178028104946932E-004 + 165.17999999999998 -5.5188577658119291E-004 + 165.23999999999998 -5.3190296866427629E-004 + 165.29999999999998 -5.1184837066442523E-004 + 165.35999999999999 -4.9173811659632301E-004 + 165.41999999999999 -4.7158795730611229E-004 + 165.47999999999999 -4.5141317324496922E-004 + 165.53999999999999 -4.3122870404966023E-004 + 165.59999999999999 -4.1104908034391634E-004 + 165.66000000000000 -3.9088835341493820E-004 + 165.72000000000000 -3.7076035247977240E-004 + 165.78000000000000 -3.5067838992496487E-004 + 165.84000000000000 -3.3065550336984191E-004 + 165.90000000000001 -3.1070427646474088E-004 + 165.95999999999998 -2.9083704720592874E-004 + 166.01999999999998 -2.7106571483625325E-004 + 166.07999999999998 -2.5140189915964908E-004 + 166.13999999999999 -2.3185684819450580E-004 + 166.19999999999999 -2.1244146877149941E-004 + 166.25999999999999 -1.9316636256817954E-004 + 166.31999999999999 -1.7404178589007879E-004 + 166.38000000000000 -1.5507762576660224E-004 + 166.44000000000000 -1.3628347309188368E-004 + 166.50000000000000 -1.1766856628719391E-004 + 166.56000000000000 -9.9241802547374145E-005 + 166.62000000000000 -8.1011771696597209E-005 + 166.67999999999998 -6.2986713674979272E-005 + 166.73999999999998 -4.5174576660628182E-005 + 166.79999999999998 -2.7582998872263909E-005 + 166.85999999999999 -1.0219326807659339E-005 + 166.91999999999999 6.9093725977792507E-006 + 166.97999999999999 2.3796300348390758E-005 + 167.03999999999999 4.0434913612584972E-005 + 167.09999999999999 5.6818913348948011E-005 + 167.16000000000000 7.2942229494742377E-005 + 167.22000000000000 8.8799049020888763E-005 + 167.28000000000000 1.0438376260377166E-004 + 167.34000000000000 1.1969099941235158E-004 + 167.40000000000001 1.3471560502228692E-004 + 167.45999999999998 1.4945269679337967E-004 + 167.51999999999998 1.6389761380299894E-004 + 167.57999999999998 1.7804595381835063E-004 + 167.63999999999999 1.9189354779290216E-004 + 167.69999999999999 2.0543655159274373E-004 + 167.75999999999999 2.1867138501768183E-004 + 167.81999999999999 2.3159474843582450E-004 + 167.88000000000000 2.4420363552883064E-004 + 167.94000000000000 2.5649537880228102E-004 + 168.00000000000000 2.6846760812999860E-004 + 168.06000000000000 2.8011822670566280E-004 + 168.12000000000000 2.9144545756618707E-004 + 168.17999999999998 3.0244783068607891E-004 + 168.23999999999998 3.1312417819683789E-004 + 168.29999999999998 3.2347358789351085E-004 + 168.35999999999999 3.3349548432073809E-004 + 168.41999999999999 3.4318956401780467E-004 + 168.47999999999999 3.5255581578728598E-004 + 168.53999999999999 3.6159443028606337E-004 + 168.59999999999999 3.7030594543528683E-004 + 168.66000000000000 3.7869110589063042E-004 + 168.72000000000000 3.8675100458194784E-004 + 168.78000000000000 3.9448694306456436E-004 + 168.84000000000000 4.0190049395776332E-004 + 168.90000000000001 4.0899352615696583E-004 + 168.95999999999998 4.1576816890822796E-004 + 169.01999999999998 4.2222685403936559E-004 + 169.07999999999998 4.2837226394961086E-004 + 169.13999999999999 4.3420732670042717E-004 + 169.19999999999999 4.3973528958035266E-004 + 169.25999999999999 4.4495961537110952E-004 + 169.31999999999999 4.4988409157267675E-004 + 169.38000000000000 4.5451273226517668E-004 + 169.44000000000000 4.5884970480370249E-004 + 169.50000000000000 4.6289957888345329E-004 + 169.56000000000000 4.6666706385164645E-004 + 169.62000000000000 4.7015706264131793E-004 + 169.67999999999998 4.7337470431047858E-004 + 169.73999999999998 4.7632524710957297E-004 + 169.79999999999998 4.7901417306534660E-004 + 169.85999999999999 4.8144703833366315E-004 + 169.91999999999999 4.8362951557309112E-004 + 169.97999999999999 4.8556740837965259E-004 + 170.03999999999999 4.8726659985804933E-004 + 170.09999999999999 4.8873305052144714E-004 + 170.16000000000000 4.8997274727627285E-004 + 170.22000000000000 4.9099163003971710E-004 + 170.28000000000000 4.9179578807008039E-004 + 170.34000000000000 4.9239124544289833E-004 + 170.40000000000001 4.9278405747579497E-004 + 170.45999999999998 4.9298024413616838E-004 + 170.51999999999998 4.9298583460935692E-004 + 170.57999999999998 4.9280679262148173E-004 + 170.63999999999999 4.9244913034768171E-004 + 170.69999999999999 4.9191882110070472E-004 + 170.75999999999999 4.9122175820510267E-004 + 170.81999999999999 4.9036387836996894E-004 + 170.88000000000000 4.8935100402148764E-004 + 170.94000000000000 4.8818898785975566E-004 + 171.00000000000000 4.8688353231979129E-004 + 171.06000000000000 4.8544030432452566E-004 + 171.12000000000000 4.8386495937889715E-004 + 171.17999999999998 4.8216295531496267E-004 + 171.23999999999998 4.8033964654230302E-004 + 171.29999999999998 4.7840036211424167E-004 + 171.35999999999999 4.7635024615986225E-004 + 171.41999999999999 4.7419430071261241E-004 + 171.47999999999999 4.7193747428934279E-004 + 171.53999999999999 4.6958448898345832E-004 + 171.59999999999999 4.6713999201909126E-004 + 171.66000000000000 4.6460840714707428E-004 + 171.72000000000000 4.6199421688413822E-004 + 171.78000000000000 4.5930168637328163E-004 + 171.84000000000000 4.5653499636109571E-004 + 171.90000000000001 4.5369819284661340E-004 + 171.95999999999998 4.5079534918365956E-004 + 172.01999999999998 4.4783045626839690E-004 + 172.07999999999998 4.4480739239257609E-004 + 172.13999999999999 4.4173001975292406E-004 + 172.19999999999999 4.3860226962908117E-004 + 172.25999999999999 4.3542793056495420E-004 + 172.31999999999999 4.3221080628590391E-004 + 172.38000000000000 4.2895477096832190E-004 + 172.44000000000000 4.2566365141129844E-004 + 172.50000000000000 4.2234120555920943E-004 + 172.56000000000000 4.1899130330304144E-004 + 172.62000000000000 4.1561774220036585E-004 + 172.67999999999998 4.1222441500445896E-004 + 172.73999999999998 4.0881514263915860E-004 + 172.79999999999998 4.0539380982620196E-004 + 172.85999999999999 4.0196432945629421E-004 + 172.91999999999999 3.9853062539760048E-004 + 172.97999999999999 3.9509668478938931E-004 + 173.03999999999999 3.9166645680625194E-004 + 173.09999999999999 3.8824400337802685E-004 + 173.16000000000000 3.8483341794110361E-004 + 173.22000000000000 3.8143878983771520E-004 + 173.28000000000000 3.7806426609181970E-004 + 173.34000000000000 3.7471405665696000E-004 + 173.40000000000001 3.7139243200847198E-004 + 173.45999999999998 3.6810362978245670E-004 + 173.51999999999998 3.6485198692331740E-004 + 173.57999999999998 3.6164183701020399E-004 + 173.63999999999999 3.5847758350972465E-004 + 173.69999999999999 3.5536365310796737E-004 + 173.75999999999999 3.5230443865607837E-004 + 173.81999999999999 3.4930437642709489E-004 + 173.88000000000000 3.4636792612596898E-004 + 173.94000000000000 3.4349951636705061E-004 + 174.00000000000000 3.4070351886579341E-004 + 174.06000000000000 3.3798435247005899E-004 + 174.12000000000000 3.3534634426558407E-004 + 174.17999999999998 3.3279378510304324E-004 + 174.23999999999998 3.3033081277320582E-004 + 174.29999999999998 3.2796155474446389E-004 + 174.35999999999999 3.2568991351266720E-004 + 174.41999999999999 3.2351972074760762E-004 + 174.47999999999999 3.2145465696086580E-004 + 174.53999999999999 3.1949817886116805E-004 + 174.59999999999999 3.1765357469735783E-004 + 174.66000000000000 3.1592393632771314E-004 + 174.72000000000000 3.1431206961663849E-004 + 174.78000000000000 3.1282058778629772E-004 + 174.84000000000000 3.1145182751252771E-004 + 174.90000000000001 3.1020790602512619E-004 + 174.95999999999998 3.0909064520652193E-004 + 175.01999999999998 3.0810163821025832E-004 + 175.07999999999998 3.0724216025572275E-004 + 175.13999999999999 3.0651326334807930E-004 + 175.19999999999999 3.0591567989450444E-004 + 175.25999999999999 3.0544988672901271E-004 + 175.31999999999999 3.0511603922931372E-004 + 175.38000000000000 3.0491401531894445E-004 + 175.44000000000000 3.0484336592962938E-004 + 175.50000000000000 3.0490337725001837E-004 + 175.56000000000000 3.0509297167945193E-004 + 175.62000000000000 3.0541077975547578E-004 + 175.67999999999998 3.0585509307166101E-004 + 175.73999999999998 3.0642384858084167E-004 + 175.79999999999998 3.0711465802025985E-004 + 175.85999999999999 3.0792480310573697E-004 + 175.91999999999999 3.0885125036215203E-004 + 175.97999999999999 3.0989061287751735E-004 + 176.03999999999999 3.1103916799972561E-004 + 176.09999999999999 3.1229291087254317E-004 + 176.16000000000000 3.1364756191427543E-004 + 176.22000000000000 3.1509848677210942E-004 + 176.28000000000000 3.1664082285357150E-004 + 176.34000000000000 3.1826948402469851E-004 + 176.40000000000001 3.1997913803016582E-004 + 176.45999999999998 3.2176422468632135E-004 + 176.51999999999998 3.2361901251008859E-004 + 176.57999999999998 3.2553756069278553E-004 + 176.63999999999999 3.2751382300808066E-004 + 176.69999999999999 3.2954161799518089E-004 + 176.75999999999999 3.3161461728153268E-004 + 176.81999999999999 3.3372638324993028E-004 + 176.88000000000000 3.3587046408939554E-004 + 176.94000000000000 3.3804027578648659E-004 + 177.00000000000000 3.4022922360853934E-004 + 177.06000000000000 3.4243067403605929E-004 + 177.12000000000000 3.4463797431636876E-004 + 177.17999999999998 3.4684444169663073E-004 + 177.23999999999998 3.4904340864980464E-004 + 177.29999999999998 3.5122826154001787E-004 + 177.35999999999999 3.5339237657502941E-004 + 177.41999999999999 3.5552918253401941E-004 + 177.47999999999999 3.5763216415691292E-004 + 177.53999999999999 3.5969485379958548E-004 + 177.59999999999999 3.6171091982108237E-004 + 177.66000000000000 3.6367406101010569E-004 + 177.72000000000000 3.6557806521855162E-004 + 177.78000000000000 3.6741690349137408E-004 + 177.84000000000000 3.6918461714737476E-004 + 177.90000000000001 3.7087536719319989E-004 + 177.95999999999998 3.7248355688531640E-004 + 178.01999999999998 3.7400367663562310E-004 + 178.07999999999998 3.7543040541142638E-004 + 178.13999999999999 3.7675869774880436E-004 + 178.19999999999999 3.7798364673830584E-004 + 178.25999999999999 3.7910055556119606E-004 + 178.31999999999999 3.8010502468573218E-004 + 178.38000000000000 3.8099278811195317E-004 + 178.44000000000000 3.8175989143470325E-004 + 178.50000000000000 3.8240253533528511E-004 + 178.56000000000000 3.8291718615357116E-004 + 178.62000000000000 3.8330050820191826E-004 + 178.67999999999998 3.8354938199108949E-004 + 178.73999999999998 3.8366093340321575E-004 + 178.79999999999998 3.8363242731128587E-004 + 178.85999999999999 3.8346133980408069E-004 + 178.91999999999999 3.8314531519646804E-004 + 178.97999999999999 3.8268213351677128E-004 + 179.03999999999999 3.8206981729822028E-004 + 179.09999999999999 3.8130649445654996E-004 + 179.16000000000000 3.8039048854742309E-004 + 179.22000000000000 3.7932025794439571E-004 + 179.28000000000000 3.7809448147964179E-004 + 179.34000000000000 3.7671196096076756E-004 + 179.40000000000001 3.7517169526752952E-004 + 179.45999999999998 3.7347285732153485E-004 + 179.51999999999998 3.7161479358676773E-004 + 179.57999999999998 3.6959705665019164E-004 + 179.63999999999999 3.6741930069482935E-004 + 179.69999999999999 3.6508143868694740E-004 + 179.75999999999999 3.6258350212553319E-004 + 179.81999999999999 3.5992571918484913E-004 + 179.88000000000000 3.5710842437544578E-004 + 179.94000000000000 3.5413214903763261E-004 + 180.00000000000000 3.5099751711482305E-004 + 180.06000000000000 3.4770528444898923E-004 + 180.12000000000000 3.4425635975188131E-004 + 180.17999999999998 3.4065170185731855E-004 + 180.23999999999998 3.3689245622470020E-004 + 180.29999999999998 3.3297979934594280E-004 + 180.35999999999999 3.2891500829322114E-004 + 180.41999999999999 3.2469948168079390E-004 + 180.47999999999999 3.2033470044226346E-004 + 180.53999999999999 3.1582223791766463E-004 + 180.59999999999999 3.1116374665831915E-004 + 180.66000000000000 3.0636101425898674E-004 + 180.72000000000000 3.0141593493168798E-004 + 180.78000000000000 2.9633045833268190E-004 + 180.84000000000000 2.9110669381924491E-004 + 180.90000000000001 2.8574679927839680E-004 + 180.95999999999998 2.8025311966437027E-004 + 181.01999999999998 2.7462808173411314E-004 + 181.07999999999998 2.6887418454379138E-004 + 181.13999999999999 2.6299407957342696E-004 + 181.19999999999999 2.5699054647350514E-004 + 181.25999999999999 2.5086647488939894E-004 + 181.31999999999999 2.4462487383271000E-004 + 181.38000000000000 2.3826884884556621E-004 + 181.44000000000000 2.3180164554660143E-004 + 181.50000000000000 2.2522661581237977E-004 + 181.56000000000000 2.1854723871918267E-004 + 181.62000000000000 2.1176709315144578E-004 + 181.67999999999998 2.0488989116253166E-004 + 181.73999999999998 1.9791946893974320E-004 + 181.79999999999998 1.9085971949526291E-004 + 181.85999999999999 1.8371471541424404E-004 + 181.91999999999999 1.7648857583920361E-004 + 181.97999999999999 1.6918558015785413E-004 + 182.03999999999999 1.6181008364205400E-004 + 182.09999999999999 1.5436656006745866E-004 + 182.16000000000000 1.4685958209346712E-004 + 182.22000000000000 1.3929386454562202E-004 + 182.28000000000000 1.3167421660752594E-004 + 182.34000000000000 1.2400558028164213E-004 + 182.39999999999998 1.1629299940952488E-004 + 182.45999999999998 1.0854164686452690E-004 + 182.51999999999998 1.0075681503752362E-004 + 182.57999999999998 9.2943947332725958E-005 + 182.63999999999999 8.5108593684758512E-005 + 182.69999999999999 7.7256419266747683E-005 + 182.75999999999999 6.9393257060112499E-005 + 182.81999999999999 6.1524995971053761E-005 + 182.88000000000000 5.3657666957052607E-005 + 182.94000000000000 4.5797403121557303E-005 + 183.00000000000000 3.7950409582989169E-005 + 183.06000000000000 3.0122992505154106E-005 + 183.12000000000000 2.2321523763130847E-005 + 183.17999999999998 1.4552447710887792E-005 + 183.23999999999998 6.8222355302756622E-006 + 183.29999999999998 -8.6255241099464618E-007 + 183.35999999999999 -8.4953438450554446E-006 + 183.41999999999999 -1.6069525237543120E-005 + 183.47999999999999 -2.3578457739408416E-005 + 183.53999999999999 -3.1015507715751345E-005 + 183.59999999999999 -3.8373982291268189E-005 + 183.66000000000000 -4.5647204313224893E-005 + 183.72000000000000 -5.2828477125205647E-005 + 183.78000000000000 -5.9911102363185775E-005 + 183.84000000000000 -6.6888386767069069E-005 + 183.89999999999998 -7.3753651951004328E-005 + 183.95999999999998 -8.0500252760052829E-005 + 184.01999999999998 -8.7121550128618463E-005 + 184.07999999999998 -9.3610970756326960E-005 + 184.13999999999999 -9.9961964637563852E-005 + 184.19999999999999 -1.0616809785830409E-004 + 184.25999999999999 -1.1222296110406811E-004 + 184.31999999999999 -1.1812029844194175E-004 + 184.38000000000000 -1.2385393257365181E-004 + 184.44000000000000 -1.2941784219335607E-004 + 184.50000000000000 -1.3480612990569656E-004 + 184.56000000000000 -1.4001306157298478E-004 + 184.62000000000000 -1.4503305778652592E-004 + 184.67999999999998 -1.4986074681975822E-004 + 184.73999999999998 -1.5449093468726288E-004 + 184.79999999999998 -1.5891864343059643E-004 + 184.85999999999999 -1.6313913202691845E-004 + 184.91999999999999 -1.6714786720672351E-004 + 184.97999999999999 -1.7094058638641310E-004 + 185.03999999999999 -1.7451324699379822E-004 + 185.09999999999999 -1.7786209008231350E-004 + 185.16000000000000 -1.8098362422709735E-004 + 185.22000000000000 -1.8387462537284874E-004 + 185.28000000000000 -1.8653220338386853E-004 + 185.34000000000000 -1.8895372426162765E-004 + 185.39999999999998 -1.9113688635147400E-004 + 185.45999999999998 -1.9307966487509438E-004 + 185.51999999999998 -1.9478038540298489E-004 + 185.57999999999998 -1.9623766618166795E-004 + 185.63999999999999 -1.9745045467119902E-004 + 185.69999999999999 -1.9841803542698463E-004 + 185.75999999999999 -1.9913999537314684E-004 + 185.81999999999999 -1.9961624005776106E-004 + 185.88000000000000 -1.9984702815736111E-004 + 185.94000000000000 -1.9983293036493976E-004 + 186.00000000000000 -1.9957480557428100E-004 + 186.06000000000000 -1.9907387305973163E-004 + 186.12000000000000 -1.9833168033206236E-004 + 186.17999999999998 -1.9735009343669227E-004 + 186.23999999999998 -1.9613126987593724E-004 + 186.29999999999998 -1.9467773031311549E-004 + 186.35999999999999 -1.9299227876480037E-004 + 186.41999999999999 -1.9107806521184676E-004 + 186.47999999999999 -1.8893851724667514E-004 + 186.53999999999999 -1.8657739186035292E-004 + 186.59999999999999 -1.8399872353015993E-004 + 186.66000000000000 -1.8120684182126612E-004 + 186.72000000000000 -1.7820632222579019E-004 + 186.78000000000000 -1.7500203372351568E-004 + 186.84000000000000 -1.7159908652384902E-004 + 186.89999999999998 -1.6800278653576777E-004 + 186.95999999999998 -1.6421872485165018E-004 + 187.01999999999998 -1.6025266504879457E-004 + 187.07999999999998 -1.5611055107558902E-004 + 187.13999999999999 -1.5179851535330980E-004 + 187.19999999999999 -1.4732286995517663E-004 + 187.25999999999999 -1.4269007496994286E-004 + 187.31999999999999 -1.3790674453483822E-004 + 187.38000000000000 -1.3297959673359307E-004 + 187.44000000000000 -1.2791548480470320E-004 + 187.50000000000000 -1.2272135580930439E-004 + 187.56000000000000 -1.1740426661130962E-004 + 187.62000000000000 -1.1197132929488643E-004 + 187.67999999999998 -1.0642974111580472E-004 + 187.73999999999998 -1.0078674154073144E-004 + 187.79999999999998 -9.5049609414318343E-005 + 187.85999999999999 -8.9225637684059813E-005 + 187.91999999999999 -8.3322141953714340E-005 + 187.97999999999999 -7.7346411205786084E-005 + 188.03999999999999 -7.1305718029340733E-005 + 188.09999999999999 -6.5207294819110356E-005 + 188.16000000000000 -5.9058331024619922E-005 + 188.22000000000000 -5.2865931102304256E-005 + 188.28000000000000 -4.6637134430998540E-005 + 188.34000000000000 -4.0378891895508022E-005 + 188.39999999999998 -3.4098045885801463E-005 + 188.45999999999998 -2.7801345528444720E-005 + 188.51999999999998 -2.1495408778831788E-005 + 188.57999999999998 -1.5186743129192198E-005 + 188.63999999999999 -8.8817141408741491E-006 + 188.69999999999999 -2.5865557054880668E-006 + 188.75999999999999 3.6926399947674983E-006 + 188.81999999999999 9.9499391300926795E-006 + 188.88000000000000 1.6179551585490724E-005 + 188.94000000000000 2.2375849758140415E-005 + 189.00000000000000 2.8533373821592028E-005 + 189.06000000000000 3.4646813607745825E-005 + 189.12000000000000 4.0711047522093896E-005 + 189.17999999999998 4.6721120519891947E-005 + 189.23999999999998 5.2672245255072903E-005 + 189.29999999999998 5.8559804696864880E-005 + 189.35999999999999 6.4379363185190460E-005 + 189.41999999999999 7.0126656154399260E-005 + 189.47999999999999 7.5797604136328860E-005 + 189.53999999999999 8.1388280259857179E-005 + 189.59999999999999 8.6894943943333978E-005 + 189.66000000000000 9.2314018075879061E-005 + 189.72000000000000 9.7642108250025681E-005 + 189.78000000000000 1.0287597244889842E-004 + 189.84000000000000 1.0801255100798476E-004 + 189.89999999999998 1.1304894408199111E-004 + 189.95999999999998 1.1798241841510536E-004 + 190.01999999999998 1.2281041296084304E-004 + 190.07999999999998 1.2753052182473088E-004 + 190.13999999999999 1.3214052101250472E-004 + 190.19999999999999 1.3663833823056916E-004 + 190.25999999999999 1.4102203870869164E-004 + 190.31999999999999 1.4528987329124292E-004 + 190.38000000000000 1.4944021744399039E-004 + 190.44000000000000 1.5347159617698307E-004 + 190.50000000000000 1.5738267473419738E-004 + 190.56000000000000 1.6117225609316976E-004 + 190.62000000000000 1.6483926301380549E-004 + 190.67999999999998 1.6838272398231650E-004 + 190.73999999999998 1.7180182220134313E-004 + 190.79999999999998 1.7509584903250416E-004 + 190.85999999999999 1.7826417053690586E-004 + 190.91999999999999 1.8130625518420328E-004 + 190.97999999999999 1.8422171145399512E-004 + 191.03999999999999 1.8701020837706919E-004 + 191.09999999999999 1.8967152882186134E-004 + 191.16000000000000 1.9220551235117544E-004 + 191.22000000000000 1.9461213108289352E-004 + 191.28000000000000 1.9689141052681646E-004 + 191.34000000000000 1.9904349846407892E-004 + 191.39999999999998 2.0106858060696235E-004 + 191.45999999999998 2.0296695123463575E-004 + 191.51999999999998 2.0473894932616389E-004 + 191.57999999999998 2.0638501069435378E-004 + 191.63999999999999 2.0790561710866032E-004 + 191.69999999999999 2.0930132125430648E-004 + 191.75999999999999 2.1057275109811062E-004 + 191.81999999999999 2.1172056519539736E-004 + 191.88000000000000 2.1274549859386134E-004 + 191.94000000000000 2.1364833514797696E-004 + 192.00000000000000 2.1442990079400910E-004 + 192.06000000000000 2.1509109873817607E-004 + 192.12000000000000 2.1563285973690376E-004 + 192.17999999999998 2.1605617663719920E-004 + 192.23999999999998 2.1636209469179401E-004 + 192.29999999999998 2.1655173279181474E-004 + 192.35999999999999 2.1662624382969361E-004 + 192.41999999999999 2.1658685651171038E-004 + 192.47999999999999 2.1643482225492834E-004 + 192.53999999999999 2.1617147081707210E-004 + 192.59999999999999 2.1579820638637249E-004 + 192.66000000000000 2.1531643259103261E-004 + 192.72000000000000 2.1472765346350277E-004 + 192.78000000000000 2.1403340462202656E-004 + 192.84000000000000 2.1323528333984027E-004 + 192.89999999999998 2.1233491167400802E-004 + 192.95999999999998 2.1133398125185231E-004 + 193.01999999999998 2.1023419618911978E-004 + 193.07999999999998 2.0903734927012427E-004 + 193.13999999999999 2.0774524126367059E-004 + 193.19999999999999 2.0635970110511746E-004 + 193.25999999999999 2.0488264696169137E-004 + 193.31999999999999 2.0331598882188386E-004 + 193.38000000000000 2.0166170546972209E-004 + 193.44000000000000 1.9992179626624184E-004 + 193.50000000000000 1.9809829567736043E-004 + 193.56000000000000 1.9619327112996109E-004 + 193.62000000000000 1.9420883183730229E-004 + 193.67999999999998 1.9214713960722814E-004 + 193.73999999999998 1.9001034249107877E-004 + 193.79999999999998 1.8780064695457521E-004 + 193.85999999999999 1.8552028067347006E-004 + 193.91999999999999 1.8317150595315067E-004 + 193.97999999999999 1.8075661954404220E-004 + 194.03999999999999 1.7827791343625352E-004 + 194.09999999999999 1.7573772954893412E-004 + 194.16000000000000 1.7313843209271153E-004 + 194.22000000000000 1.7048241873313089E-004 + 194.28000000000000 1.6777209189176290E-004 + 194.34000000000000 1.6500986352992853E-004 + 194.39999999999998 1.6219818625078734E-004 + 194.45999999999998 1.5933953732044569E-004 + 194.51999999999998 1.5643637907238972E-004 + 194.57999999999998 1.5349119750438799E-004 + 194.63999999999999 1.5050646857811233E-004 + 194.69999999999999 1.4748469952646410E-004 + 194.75999999999999 1.4442835903560197E-004 + 194.81999999999999 1.4133993670765175E-004 + 194.88000000000000 1.3822186905513754E-004 + 194.94000000000000 1.3507661495331947E-004 + 195.00000000000000 1.3190657597366410E-004 + 195.06000000000000 1.2871415318195439E-004 + 195.12000000000000 1.2550170448529348E-004 + 195.17999999999998 1.2227155072187253E-004 + 195.23999999999998 1.1902598044256845E-004 + 195.29999999999998 1.1576725894976239E-004 + 195.35999999999999 1.1249759330797197E-004 + 195.41999999999999 1.0921915494424199E-004 + 195.47999999999999 1.0593406952930746E-004 + 195.53999999999999 1.0264441581318490E-004 + 195.59999999999999 9.9352230657759270E-005 + 195.66000000000000 9.6059491882041103E-005 + 195.72000000000000 9.2768137320430367E-005 + 195.78000000000000 8.9480028381817828E-005 + 195.84000000000000 8.6196986049807302E-005 + 195.89999999999998 8.2920765272365292E-005 + 195.95999999999998 7.9653047275256861E-005 + 196.01999999999998 7.6395462598529513E-005 + 196.07999999999998 7.3149563593085138E-005 + 196.13999999999999 6.9916830746923617E-005 + 196.19999999999999 6.6698678851202821E-005 + 196.25999999999999 6.3496448300019573E-005 + 196.31999999999999 6.0311416897966675E-005 + 196.38000000000000 5.7144788613946586E-005 + 196.44000000000000 5.3997699741606067E-005 + 196.50000000000000 5.0871229146916585E-005 + 196.56000000000000 4.7766388114448698E-005 + 196.62000000000000 4.4684135112354066E-005 + 196.67999999999998 4.1625370485566070E-005 + 196.73999999999998 3.8590942891903933E-005 + 196.79999999999998 3.5581651499584184E-005 + 196.85999999999999 3.2598259829842594E-005 + 196.91999999999999 2.9641481906350175E-005 + 196.97999999999999 2.6711996963405849E-005 + 197.03999999999999 2.3810445915265769E-005 + 197.09999999999999 2.0937444293473112E-005 + 197.16000000000000 1.8093576293953453E-005 + 197.22000000000000 1.5279399061361071E-005 + 197.28000000000000 1.2495447721764958E-005 + 197.34000000000000 9.7422368643138303E-006 + 197.39999999999998 7.0202664602059072E-006 + 197.45999999999998 4.3300235285082188E-006 + 197.51999999999998 1.6719849732932689E-006 + 197.57999999999998 -9.5338635788519645E-007 + 197.63999999999999 -3.5456244945515816E-006 + 197.69999999999999 -6.1042702630801949E-006 + 197.75999999999999 -8.6288620228723044E-006 + 197.81999999999999 -1.1118930751421257E-005 + 197.88000000000000 -1.3574002246370545E-005 + 197.94000000000000 -1.5993586104671565E-005 + 198.00000000000000 -1.8377182601330182E-005 + 198.06000000000000 -2.0724264753614133E-005 + 198.12000000000000 -2.3034291145515001E-005 + 198.17999999999998 -2.5306689804898197E-005 + 198.23999999999998 -2.7540853369136027E-005 + 198.29999999999998 -2.9736145007545408E-005 + 198.35999999999999 -3.1891892091043394E-005 + 198.41999999999999 -3.4007375443850205E-005 + 198.47999999999999 -3.6081837323140263E-005 + 198.53999999999999 -3.8114471858146307E-005 + 198.59999999999999 -4.0104434018015599E-005 + 198.66000000000000 -4.2050828471416706E-005 + 198.72000000000000 -4.3952718168201173E-005 + 198.78000000000000 -4.5809114162075702E-005 + 198.84000000000000 -4.7618997267655138E-005 + 198.89999999999998 -4.9381300484122251E-005 + 198.95999999999998 -5.1094927001882424E-005 + 199.01999999999998 -5.2758749323601098E-005 + 199.07999999999998 -5.4371598288079857E-005 + 199.13999999999999 -5.5932291352165598E-005 + 199.19999999999999 -5.7439613063486699E-005 + 199.25999999999999 -5.8892331506304671E-005 + 199.31999999999999 -6.0289186732352107E-005 + 199.38000000000000 -6.1628911415016931E-005 + 199.44000000000000 -6.2910212804460488E-005 + 199.50000000000000 -6.4131785875885309E-005 + 199.56000000000000 -6.5292309002600957E-005 + 199.62000000000000 -6.6390456905524096E-005 + 199.67999999999998 -6.7424891137204132E-005 + 199.73999999999998 -6.8394256737402953E-005 + 199.79999999999998 -6.9297216059011594E-005 + 199.85999999999999 -7.0132407347852727E-005 + 199.91999999999999 -7.0898494064641776E-005 + 199.97999999999999 -7.1594144932928634E-005 + 200.03999999999999 -7.2218050658323408E-005 + 200.09999999999999 -7.2768921960490230E-005 + 200.16000000000000 -7.3245499885648901E-005 + 200.22000000000000 -7.3646557472032274E-005 + 200.28000000000000 -7.3970928487627262E-005 + 200.34000000000000 -7.4217476362949477E-005 + 200.39999999999998 -7.4385132876594981E-005 + 200.45999999999998 -7.4472877135716803E-005 + 200.51999999999998 -7.4479772927714700E-005 + 200.57999999999998 -7.4404930099475941E-005 + 200.63999999999999 -7.4247538487763571E-005 + 200.69999999999999 -7.4006867663358448E-005 + 200.75999999999999 -7.3682258624124643E-005 + 200.81999999999999 -7.3273130731148090E-005 + 200.88000000000000 -7.2778986127320793E-005 + 200.94000000000000 -7.2199418131083053E-005 + 201.00000000000000 -7.1534101197603069E-005 + 201.06000000000000 -7.0782805097306437E-005 + 201.12000000000000 -6.9945390340125723E-005 + 201.17999999999998 -6.9021808006646497E-005 + 201.23999999999998 -6.8012114092515897E-005 + 201.29999999999998 -6.6916481820456452E-005 + 201.35999999999999 -6.5735158008469041E-005 + 201.41999999999999 -6.4468525221389404E-005 + 201.47999999999999 -6.3117066312290090E-005 + 201.53999999999999 -6.1681367605107712E-005 + 201.59999999999999 -6.0162136163914180E-005 + 201.66000000000000 -5.8560193494847100E-005 + 201.72000000000000 -5.6876475575745928E-005 + 201.78000000000000 -5.5112026048134709E-005 + 201.84000000000000 -5.3268011490462010E-005 + 201.89999999999998 -5.1345710074208163E-005 + 201.95999999999998 -4.9346511816458808E-005 + 202.01999999999998 -4.7271915232516458E-005 + 202.07999999999998 -4.5123528588455106E-005 + 202.13999999999999 -4.2903072505462211E-005 + 202.19999999999999 -4.0612377873830415E-005 + 202.25999999999999 -3.8253370809806317E-005 + 202.31999999999999 -3.5828083507970866E-005 + 202.38000000000000 -3.3338639998465368E-005 + 202.44000000000000 -3.0787267151861317E-005 + 202.50000000000000 -2.8176277218454886E-005 + 202.56000000000000 -2.5508072803905374E-005 + 202.62000000000000 -2.2785130419269080E-005 + 202.67999999999998 -2.0010007573687493E-005 + 202.73999999999998 -1.7185331852138751E-005 + 202.79999999999998 -1.4313796896113025E-005 + 202.85999999999999 -1.1398155408155754E-005 + 202.91999999999999 -8.4412140603368061E-006 + 202.97999999999999 -5.4458284290423721E-006 + 203.03999999999999 -2.4148939259321634E-006 + 203.09999999999999 6.4866009206066694E-007 + 203.16000000000000 3.7418731241747531E-006 + 203.22000000000000 6.8617664440724551E-006 + 203.28000000000000 1.0005346775104447E-005 + 203.34000000000000 1.3169615241833888E-005 + 203.39999999999998 1.6351577185698978E-005 + 203.45999999999998 1.9548249075504206E-005 + 203.51999999999998 2.2756667478959295E-005 + 203.57999999999998 2.5973896244021798E-005 + 203.63999999999999 2.9197043095226774E-005 + 203.69999999999999 3.2423256500482053E-005 + 203.75999999999999 3.5649750857290078E-005 + 203.81999999999999 3.8873796789884884E-005 + 203.88000000000000 4.2092740575550743E-005 + 203.94000000000000 4.5304008770443646E-005 + 204.00000000000000 4.8505115431701433E-005 + 204.06000000000000 5.1693664476031870E-005 + 204.12000000000000 5.4867359839887286E-005 + 204.17999999999998 5.8024006630449105E-005 + 204.23999999999998 6.1161522001247911E-005 + 204.29999999999998 6.4277932064587357E-005 + 204.35999999999999 6.7371390418585010E-005 + 204.41999999999999 7.0440168336020453E-005 + 204.47999999999999 7.3482666541052602E-005 + 204.53999999999999 7.6497427960095445E-005 + 204.59999999999999 7.9483142141904961E-005 + 204.66000000000000 8.2438643966410266E-005 + 204.72000000000000 8.5362936848077102E-005 + 204.78000000000000 8.8255180475321510E-005 + 204.84000000000000 9.1114714312472611E-005 + 204.89999999999998 9.3941052028409712E-005 + 204.95999999999998 9.6733903180796967E-005 + 205.01999999999998 9.9493171523866458E-005 + 205.07999999999998 1.0221892846371208E-004 + 205.13999999999999 1.0491144730335461E-004 + 205.19999999999999 1.0757120862122716E-004 + 205.25999999999999 1.1019886706829947E-004 + 205.31999999999999 1.1279525569206597E-004 + 205.38000000000000 1.1536140192811223E-004 + 205.44000000000000 1.1789850886787605E-004 + 205.50000000000000 1.2040792724049387E-004 + 205.56000000000000 1.2289119054677706E-004 + 205.62000000000000 1.2534998471949358E-004 + 205.67999999999998 1.2778613016489179E-004 + 205.73999999999998 1.3020157273240169E-004 + 205.79999999999998 1.3259843434189185E-004 + 205.85999999999999 1.3497892929683554E-004 + 205.91999999999999 1.3734539536007948E-004 + 205.97999999999999 1.3970031312696881E-004 + 206.03999999999999 1.4204624839601684E-004 + 206.09999999999999 1.4438588754995730E-004 + 206.16000000000000 1.4672199368812112E-004 + 206.22000000000000 1.4905744110065326E-004 + 206.28000000000000 1.5139516716795238E-004 + 206.34000000000000 1.5373819429007947E-004 + 206.39999999999998 1.5608958255404124E-004 + 206.45999999999998 1.5845246212476156E-004 + 206.51999999999998 1.6083000641417371E-004 + 206.57999999999998 1.6322537939457920E-004 + 206.63999999999999 1.6564175706376645E-004 + 206.69999999999999 1.6808234001029987E-004 + 206.75999999999999 1.7055025520989301E-004 + 206.81999999999999 1.7304862627962481E-004 + 206.88000000000000 1.7558051565722536E-004 + 206.94000000000000 1.7814890209707482E-004 + 207.00000000000000 1.8075668839966810E-004 + 207.06000000000000 1.8340669426114274E-004 + 207.12000000000000 1.8610161834341584E-004 + 207.17999999999998 1.8884403858903019E-004 + 207.23999999999998 1.9163639565331070E-004 + 207.29999999999998 1.9448095507471031E-004 + 207.35999999999999 1.9737986440699891E-004 + 207.41999999999999 2.0033508272927780E-004 + 207.47999999999999 2.0334837893895807E-004 + 207.53999999999999 2.0642133135252911E-004 + 207.59999999999999 2.0955530966253243E-004 + 207.66000000000000 2.1275148495424919E-004 + 207.72000000000000 2.1601078938232452E-004 + 207.78000000000000 2.1933390738494701E-004 + 207.84000000000000 2.2272132573179250E-004 + 207.89999999999998 2.2617321159648440E-004 + 207.95999999999998 2.2968954761275491E-004 + 208.01999999999998 2.3326998109469469E-004 + 208.07999999999998 2.3691391020002901E-004 + 208.13999999999999 2.4062047096914019E-004 + 208.19999999999999 2.4438849486914670E-004 + 208.25999999999999 2.4821653850913420E-004 + 208.31999999999999 2.5210280837519472E-004 + 208.38000000000000 2.5604528668206117E-004 + 208.44000000000000 2.6004158684656817E-004 + 208.50000000000000 2.6408904053848041E-004 + 208.56000000000000 2.6818465431335510E-004 + 208.62000000000000 2.7232515648131734E-004 + 208.68000000000001 2.7650691289061741E-004 + 208.74000000000001 2.8072600893857966E-004 + 208.80000000000001 2.8497827002310177E-004 + 208.86000000000001 2.8925912276819854E-004 + 208.92000000000002 2.9356378904737865E-004 + 208.98000000000002 2.9788716373895928E-004 + 209.03999999999996 3.0222391342280897E-004 + 209.09999999999997 3.0656836964753118E-004 + 209.15999999999997 3.1091467038822646E-004 + 209.21999999999997 3.1525667157539748E-004 + 209.27999999999997 3.1958808013879034E-004 + 209.33999999999997 3.2390232943605986E-004 + 209.39999999999998 3.2819268943426846E-004 + 209.45999999999998 3.3245221842395536E-004 + 209.51999999999998 3.3667382153313775E-004 + 209.57999999999998 3.4085023683784937E-004 + 209.63999999999999 3.4497406331255589E-004 + 209.69999999999999 3.4903781385031555E-004 + 209.75999999999999 3.5303388639266136E-004 + 209.81999999999999 3.5695456520636314E-004 + 209.88000000000000 3.6079207653685023E-004 + 209.94000000000000 3.6453859466926286E-004 + 210.00000000000000 3.6818625175945367E-004 + 210.06000000000000 3.7172724668486939E-004 + 210.12000000000000 3.7515368653769494E-004 + 210.18000000000001 3.7845778736067456E-004 + 210.24000000000001 3.8163181769160318E-004 + 210.30000000000001 3.8466811368237787E-004 + 210.36000000000001 3.8755912796821751E-004 + 210.42000000000002 3.9029746312408564E-004 + 210.48000000000002 3.9287591289204586E-004 + 210.53999999999996 3.9528737870753546E-004 + 210.59999999999997 3.9752500806942645E-004 + 210.65999999999997 3.9958219533758421E-004 + 210.71999999999997 4.0145257617566854E-004 + 210.77999999999997 4.0313001077161393E-004 + 210.83999999999997 4.0460868488422972E-004 + 210.89999999999998 4.0588306451045113E-004 + 210.95999999999998 4.0694797919751561E-004 + 211.01999999999998 4.0779861521301499E-004 + 211.07999999999998 4.0843042507532584E-004 + 211.13999999999999 4.0883931596572009E-004 + 211.19999999999999 4.0902159360725138E-004 + 211.25999999999999 4.0897394560311640E-004 + 211.31999999999999 4.0869345888122101E-004 + 211.38000000000000 4.0817766794825835E-004 + 211.44000000000000 4.0742458925210564E-004 + 211.50000000000000 4.0643264741153928E-004 + 211.56000000000000 4.0520077610507998E-004 + 211.62000000000000 4.0372831980359930E-004 + 211.68000000000001 4.0201514398327586E-004 + 211.74000000000001 4.0006155025748010E-004 + 211.80000000000001 3.9786830186054194E-004 + 211.86000000000001 3.9543664682597742E-004 + 211.92000000000002 3.9276830609259207E-004 + 211.98000000000002 3.8986544379820205E-004 + 212.03999999999996 3.8673074605424925E-004 + 212.09999999999997 3.8336728619931096E-004 + 212.15999999999997 3.7977859743208438E-004 + 212.21999999999997 3.7596863908826334E-004 + 212.27999999999997 3.7194183976177312E-004 + 212.33999999999997 3.6770300067967077E-004 + 212.39999999999998 3.6325737504961948E-004 + 212.45999999999998 3.5861062320535867E-004 + 212.51999999999998 3.5376875327973001E-004 + 212.57999999999998 3.4873818214819325E-004 + 212.63999999999999 3.4352566960663377E-004 + 212.69999999999999 3.3813831106920748E-004 + 212.75999999999999 3.3258354055774474E-004 + 212.81999999999999 3.2686907690471798E-004 + 212.88000000000000 3.2100288824391627E-004 + 212.94000000000000 3.1499320558209883E-004 + 213.00000000000000 3.0884849708144515E-004 + 213.06000000000000 3.0257737542024649E-004 + 213.12000000000000 2.9618865052941594E-004 + 213.18000000000001 2.8969127014792146E-004 + 213.24000000000001 2.8309426928039704E-004 + 213.30000000000001 2.7640677873224756E-004 + 213.36000000000001 2.6963797217311895E-004 + 213.42000000000002 2.6279707139486598E-004 + 213.48000000000002 2.5589329875336697E-004 + 213.53999999999996 2.4893586488884271E-004 + 213.59999999999997 2.4193394203338465E-004 + 213.65999999999997 2.3489670474385898E-004 + 213.71999999999997 2.2783319768417072E-004 + 213.77999999999997 2.2075239951602741E-004 + 213.83999999999997 2.1366321255741641E-004 + 213.89999999999998 2.0657433796920032E-004 + 213.95999999999998 1.9949439810575248E-004 + 214.01999999999998 1.9243185082232301E-004 + 214.07999999999998 1.8539493146162736E-004 + 214.13999999999999 1.7839170427670851E-004 + 214.19999999999999 1.7143000518833731E-004 + 214.25999999999999 1.6451743650931782E-004 + 214.31999999999999 1.5766134404444622E-004 + 214.38000000000000 1.5086879431839434E-004 + 214.44000000000000 1.4414657220927893E-004 + 214.50000000000000 1.3750113584619865E-004 + 214.56000000000000 1.3093865742914233E-004 + 214.62000000000000 1.2446496455348430E-004 + 214.68000000000001 1.1808556761503747E-004 + 214.74000000000001 1.1180561662398541E-004 + 214.80000000000001 1.0562992804052381E-004 + 214.86000000000001 9.9562963764150185E-005 + 214.92000000000002 9.3608844450184219E-005 + 214.98000000000002 8.7771357499763297E-005 + 215.03999999999996 8.2053913915900161E-005 + 215.09999999999997 7.6459625674921101E-005 + 215.15999999999997 7.0991257254312848E-005 + 215.21999999999997 6.5651254457986514E-005 + 215.27999999999997 6.0441752826777384E-005 + 215.33999999999997 5.5364585246507907E-005 + 215.39999999999998 5.0421295673675502E-005 + 215.45999999999998 4.5613137454368517E-005 + 215.51999999999998 4.0941103359508371E-005 + 215.57999999999998 3.6405918986714954E-005 + 215.63999999999999 3.2008054620902245E-005 + 215.69999999999999 2.7747742088849169E-005 + 215.75999999999999 2.3624977645678019E-005 + 215.81999999999999 1.9639531356761894E-005 + 215.88000000000000 1.5790950966011154E-005 + 215.94000000000000 1.2078575832293835E-005 + 216.00000000000000 8.5015430305150963E-006 + 216.06000000000000 5.0587939024394600E-006 + 216.12000000000000 1.7490915305211873E-006 + 216.18000000000001 -1.4289756187300235E-006 + 216.24000000000001 -4.4769803511221515E-006 + 216.30000000000001 -7.3966394489622053E-006 + 216.36000000000001 -1.0189803838552930E-005 + 216.42000000000002 -1.2858435405619529E-005 + 216.48000000000002 -1.5404598670078880E-005 + 216.53999999999996 -1.7830437696326703E-005 + 216.59999999999997 -2.0138161535679194E-005 + 216.65999999999997 -2.2330022989715947E-005 + 216.71999999999997 -2.4408307623290923E-005 + 216.77999999999997 -2.6375316904936806E-005 + 216.83999999999997 -2.8233349090297497E-005 + 216.89999999999998 -2.9984703871519138E-005 + 216.95999999999998 -3.1631657944043644E-005 + 217.01999999999998 -3.3176466351030894E-005 + 217.07999999999998 -3.4621353422207820E-005 + 217.13999999999999 -3.5968513014486257E-005 + 217.19999999999999 -3.7220111065212087E-005 + 217.25999999999999 -3.8378270304475543E-005 + 217.31999999999999 -3.9445087567223749E-005 + 217.38000000000000 -4.0422628122213693E-005 + 217.44000000000000 -4.1312917407864520E-005 + 217.50000000000000 -4.2117949574798285E-005 + 217.56000000000000 -4.2839687277345103E-005 + 217.62000000000000 -4.3480042093268768E-005 + 217.68000000000001 -4.4040889681876380E-005 + 217.74000000000001 -4.4524059066093057E-005 + 217.80000000000001 -4.4931315595044842E-005 + 217.86000000000001 -4.5264377626193660E-005 + 217.92000000000002 -4.5524892623672887E-005 + 217.98000000000002 -4.5714439509281999E-005 + 218.03999999999996 -4.5834527436312204E-005 + 218.09999999999997 -4.5886589529079431E-005 + 218.15999999999997 -4.5871986228324709E-005 + 218.21999999999997 -4.5792008710224394E-005 + 218.27999999999997 -4.5647873843203091E-005 + 218.33999999999997 -4.5440736036028559E-005 + 218.39999999999998 -4.5171692929750266E-005 + 218.45999999999998 -4.4841795842946021E-005 + 218.51999999999998 -4.4452049308756460E-005 + 218.57999999999998 -4.4003423816238213E-005 + 218.63999999999999 -4.3496870345512469E-005 + 218.69999999999999 -4.2933315934858912E-005 + 218.75999999999999 -4.2313681987690828E-005 + 218.81999999999999 -4.1638879633062601E-005 + 218.88000000000000 -4.0909826740828450E-005 + 218.94000000000000 -4.0127441911202371E-005 + 219.00000000000000 -3.9292647048992581E-005 + 219.06000000000000 -3.8406375022531229E-005 + 219.12000000000000 -3.7469558173987679E-005 + 219.18000000000001 -3.6483141574384909E-005 + 219.24000000000001 -3.5448079260887069E-005 + 219.30000000000001 -3.4365325046310696E-005 + 219.36000000000001 -3.3235841229621806E-005 + 219.42000000000002 -3.2060590586589400E-005 + 219.48000000000002 -3.0840543153289634E-005 + 219.53999999999996 -2.9576664982191341E-005 + 219.59999999999997 -2.8269933448187920E-005 + 219.65999999999997 -2.6921324097059728E-005 + 219.71999999999997 -2.5531819270629131E-005 + 219.77999999999997 -2.4102404533189025E-005 + 219.83999999999997 -2.2634072235791981E-005 + 219.89999999999998 -2.1127817667057129E-005 + 219.95999999999998 -1.9584647541854773E-005 + 220.01999999999998 -1.8005577187848604E-005 + 220.07999999999998 -1.6391625080978141E-005 + 220.13999999999999 -1.4743821878461576E-005 + 220.19999999999999 -1.3063203529234609E-005 + 220.25999999999999 -1.1350812300634994E-005 + 220.31999999999999 -9.6076932342272345E-006 + 220.38000000000000 -7.8348933524594855E-006 + 220.44000000000000 -6.0334566070042933E-006 + 220.50000000000000 -4.2044211647509439E-006 + 220.56000000000000 -2.3488135705345428E-006 + 220.62000000000000 -4.6764371785767111E-007 + 220.68000000000001 1.4381005993386539E-006 + 220.74000000000001 3.3674613557992976E-006 + 220.80000000000001 5.3195149089926268E-006 + 220.86000000000001 7.2933811550054107E-006 + 220.92000000000002 9.2882285989235565E-006 + 220.98000000000002 1.1303279923851111E-005 + 221.03999999999996 1.3337819835332739E-005 + 221.09999999999997 1.5391199862263538E-005 + 221.15999999999997 1.7462845495133267E-005 + 221.21999999999997 1.9552256217189987E-005 + 221.27999999999997 2.1659009151547593E-005 + 221.33999999999997 2.3782768499265676E-005 + 221.39999999999998 2.5923279620069811E-005 + 221.45999999999998 2.8080378688332647E-005 + 221.51999999999998 3.0253985598734981E-005 + 221.57999999999998 3.2444116040249346E-005 + 221.63999999999999 3.4650867630335194E-005 + 221.69999999999999 3.6874443779633328E-005 + 221.75999999999999 3.9115133889992030E-005 + 221.81999999999999 4.1373320683409418E-005 + 221.88000000000000 4.3649489811053345E-005 + 221.94000000000000 4.5944224156640507E-005 + 222.00000000000000 4.8258202628301194E-005 + 222.06000000000000 5.0592216400830584E-005 + 222.12000000000000 5.2947149419202190E-005 + 222.18000000000001 5.5323984781272579E-005 + 222.24000000000001 5.7723811925767182E-005 + 222.30000000000001 6.0147817052179730E-005 + 222.36000000000001 6.2597286643504245E-005 + 222.42000000000002 6.5073589251541880E-005 + 222.48000000000002 6.7578191311322384E-005 + 222.53999999999996 7.0112640521207236E-005 + 222.59999999999997 7.2678547035473612E-005 + 222.65999999999997 7.5277610098302192E-005 + 222.71999999999997 7.7911574466775615E-005 + 222.77999999999997 8.0582245115344859E-005 + 222.83999999999997 8.3291479240895231E-005 + 222.89999999999998 8.6041152954057404E-005 + 222.95999999999998 8.8833184664091576E-005 + 223.01999999999998 9.1669489677174412E-005 + 223.07999999999998 9.4552017252060049E-005 + 223.13999999999999 9.7482687198976434E-005 + 223.19999999999999 1.0046342377981540E-004 + 223.25999999999999 1.0349610837975035E-004 + 223.31999999999999 1.0658258133477485E-004 + 223.38000000000000 1.0972462796431130E-004 + 223.44000000000000 1.1292396700833823E-004 + 223.50000000000000 1.1618222545417954E-004 + 223.56000000000000 1.1950091937267561E-004 + 223.62000000000000 1.2288146047044913E-004 + 223.68000000000001 1.2632510548141375E-004 + 223.74000000000001 1.2983298509129719E-004 + 223.80000000000001 1.3340603440902674E-004 + 223.86000000000001 1.3704502861026856E-004 + 223.92000000000002 1.4075052454282173E-004 + 223.98000000000002 1.4452289040442379E-004 + 224.03999999999996 1.4836225976146795E-004 + 224.09999999999997 1.5226855276577375E-004 + 224.15999999999997 1.5624143114524434E-004 + 224.21999999999997 1.6028031468407649E-004 + 224.27999999999997 1.6438437488816495E-004 + 224.33999999999997 1.6855250088531232E-004 + 224.39999999999998 1.7278331613372410E-004 + 224.45999999999998 1.7707514323664312E-004 + 224.51999999999998 1.8142605129615536E-004 + 224.57999999999998 1.8583377927296288E-004 + 224.63999999999999 1.9029576925711622E-004 + 224.69999999999999 1.9480914726494972E-004 + 224.75999999999999 1.9937072505802532E-004 + 224.81999999999999 2.0397700291720591E-004 + 224.88000000000000 2.0862409761066643E-004 + 224.94000000000000 2.1330779898374856E-004 + 225.00000000000000 2.1802359458794507E-004 + 225.06000000000000 2.2276661806083000E-004 + 225.12000000000000 2.2753167371240691E-004 + 225.18000000000001 2.3231322340567487E-004 + 225.24000000000001 2.3710540262740021E-004 + 225.30000000000001 2.4190207437591643E-004 + 225.36000000000001 2.4669674773100089E-004 + 225.42000000000002 2.5148269220475822E-004 + 225.48000000000002 2.5625287309615776E-004 + 225.53999999999996 2.6100006131651149E-004 + 225.59999999999997 2.6571670632493337E-004 + 225.65999999999997 2.7039511757308851E-004 + 225.71999999999997 2.7502734705136368E-004 + 225.77999999999997 2.7960529688084032E-004 + 225.83999999999997 2.8412068376990659E-004 + 225.89999999999998 2.8856507661516935E-004 + 225.95999999999998 2.9292995018683567E-004 + 226.01999999999998 2.9720661515805454E-004 + 226.07999999999998 3.0138632405214542E-004 + 226.13999999999999 3.0546025542291602E-004 + 226.19999999999999 3.0941950935316280E-004 + 226.25999999999999 3.1325519001866565E-004 + 226.31999999999999 3.1695833842698934E-004 + 226.38000000000000 3.2052006717362563E-004 + 226.44000000000000 3.2393151289306977E-004 + 226.50000000000000 3.2718389297732228E-004 + 226.56000000000000 3.3026847938847183E-004 + 226.62000000000000 3.3317671477662674E-004 + 226.68000000000001 3.3590018798618194E-004 + 226.74000000000001 3.3843064707716450E-004 + 226.80000000000001 3.4076013441667078E-004 + 226.86000000000001 3.4288084678150998E-004 + 226.92000000000002 3.4478535596794724E-004 + 226.98000000000002 3.4646648135249749E-004 + 227.03999999999996 3.4791733208760372E-004 + 227.09999999999997 3.4913147905536897E-004 + 227.15999999999997 3.5010280998656521E-004 + 227.21999999999997 3.5082561231535936E-004 + 227.27999999999997 3.5129465030599058E-004 + 227.33999999999997 3.5150506079758274E-004 + 227.39999999999998 3.5145243164978485E-004 + 227.45999999999998 3.5113284895097412E-004 + 227.51999999999998 3.5054290745897279E-004 + 227.57999999999998 3.4967961770252274E-004 + 227.63999999999999 3.4854050641803342E-004 + 227.69999999999999 3.4712363639700190E-004 + 227.75999999999999 3.4542757504437148E-004 + 227.81999999999999 3.4345141499679511E-004 + 227.88000000000000 3.4119473238530210E-004 + 227.94000000000000 3.3865770221124230E-004 + 228.00000000000000 3.3584100056028747E-004 + 228.06000000000000 3.3274585469325526E-004 + 228.12000000000000 3.2937402575610369E-004 + 228.18000000000001 3.2572784144211146E-004 + 228.24000000000001 3.2181021319256127E-004 + 228.30000000000001 3.1762455460610547E-004 + 228.36000000000001 3.1317482225257153E-004 + 228.42000000000002 3.0846560529479200E-004 + 228.48000000000002 3.0350190672807464E-004 + 228.53999999999996 2.9828932239485336E-004 + 228.59999999999997 2.9283394563017290E-004 + 228.65999999999997 2.8714236345736983E-004 + 228.71999999999997 2.8122161481973550E-004 + 228.77999999999997 2.7507921145989415E-004 + 228.83999999999997 2.6872308149295036E-004 + 228.89999999999998 2.6216155631073024E-004 + 228.95999999999998 2.5540332747851720E-004 + 229.01999999999998 2.4845744942945166E-004 + 229.07999999999998 2.4133325381130605E-004 + 229.13999999999999 2.3404045726399403E-004 + 229.19999999999999 2.2658900543944482E-004 + 229.25999999999999 2.1898907826822060E-004 + 229.31999999999999 2.1125106795311506E-004 + 229.38000000000000 2.0338556349921329E-004 + 229.44000000000000 1.9540338004064411E-004 + 229.50000000000000 1.8731546276514816E-004 + 229.56000000000000 1.7913286205713968E-004 + 229.62000000000000 1.7086676316252630E-004 + 229.68000000000001 1.6252842110343299E-004 + 229.74000000000001 1.5412916637903360E-004 + 229.80000000000001 1.4568036471267998E-004 + 229.86000000000001 1.3719338490403524E-004 + 229.92000000000002 1.2867958157642835E-004 + 229.97999999999996 1.2015022146388868E-004 + 230.03999999999996 1.1161653081065587E-004 + 230.09999999999997 1.0308957718280053E-004 + 230.15999999999997 9.4580304502008087E-005 + 230.21999999999997 8.6099498173682391E-005 + 230.27999999999997 7.7657688517801331E-005 + 230.33999999999997 6.9265203524261011E-005 + 230.39999999999998 6.0932083311009958E-005 + 230.45999999999998 5.2668093999802724E-005 + 230.51999999999998 4.4482707893944430E-005 + 230.57999999999998 3.6385058270806499E-005 + 230.63999999999999 2.8383950201993083E-005 + 230.69999999999999 2.0487837728706749E-005 + 230.75999999999999 1.2704822736264153E-005 + 230.81999999999999 5.0426377302070014E-006 + 230.88000000000000 -2.4913737792761449E-006 + 230.94000000000000 -9.8902229938388875E-006 + 231.00000000000000 -1.7147323495175963E-005 + 231.06000000000000 -2.4256474517675705E-005 + 231.12000000000000 -3.1211867881011716E-005 + 231.18000000000001 -3.8008106224317936E-005 + 231.24000000000001 -4.4640212624934267E-005 + 231.30000000000001 -5.1103612484460409E-005 + 231.36000000000001 -5.7394168107237006E-005 + 231.42000000000002 -6.3508172891645542E-005 + 231.47999999999996 -6.9442351483765843E-005 + 231.53999999999996 -7.5193883865225906E-005 + 231.59999999999997 -8.0760392341066109E-005 + 231.65999999999997 -8.6139949349233987E-005 + 231.71999999999997 -9.1331063270156797E-005 + 231.77999999999997 -9.6332691116973396E-005 + 231.83999999999997 -1.0114423274008722E-004 + 231.89999999999998 -1.0576550921623667E-004 + 231.95999999999998 -1.1019675762561094E-004 + 232.01999999999998 -1.1443861574626222E-004 + 232.07999999999998 -1.1849210856927814E-004 + 232.13999999999999 -1.2235863153378288E-004 + 232.19999999999999 -1.2603993210864249E-004 + 232.25999999999999 -1.2953810566790997E-004 + 232.31999999999999 -1.3285556131780048E-004 + 232.38000000000000 -1.3599500268138124E-004 + 232.44000000000000 -1.3895941935685601E-004 + 232.50000000000000 -1.4175206331684315E-004 + 232.56000000000000 -1.4437647314029822E-004 + 232.62000000000000 -1.4683638276182475E-004 + 232.68000000000001 -1.4913579095060444E-004 + 232.74000000000001 -1.5127887794147738E-004 + 232.80000000000001 -1.5327005675903795E-004 + 232.86000000000001 -1.5511390190823168E-004 + 232.92000000000002 -1.5681519614092914E-004 + 232.97999999999996 -1.5837885465291233E-004 + 233.03999999999996 -1.5980997011791489E-004 + 233.09999999999997 -1.6111374883562784E-004 + 233.15999999999997 -1.6229553588113882E-004 + 233.21999999999997 -1.6336077634625528E-004 + 233.27999999999997 -1.6431498644284360E-004 + 233.33999999999997 -1.6516377023570398E-004 + 233.39999999999998 -1.6591275860081172E-004 + 233.45999999999998 -1.6656761748605974E-004 + 233.51999999999998 -1.6713403198305535E-004 + 233.57999999999998 -1.6761765106798043E-004 + 233.63999999999999 -1.6802410289253663E-004 + 233.69999999999999 -1.6835897688217689E-004 + 233.75999999999999 -1.6862778001876255E-004 + 233.81999999999999 -1.6883597498420214E-004 + 233.88000000000000 -1.6898891937793784E-004 + 233.94000000000000 -1.6909184901920654E-004 + 234.00000000000000 -1.6914989693490065E-004 + 234.06000000000000 -1.6916811195938030E-004 + 234.12000000000000 -1.6915138136679647E-004 + 234.18000000000001 -1.6910449200623274E-004 + 234.24000000000001 -1.6903210744793860E-004 + 234.30000000000001 -1.6893872531100336E-004 + 234.36000000000001 -1.6882873172146702E-004 + 234.42000000000002 -1.6870636183407059E-004 + 234.47999999999996 -1.6857570385954418E-004 + 234.53999999999996 -1.6844068562673015E-004 + 234.59999999999997 -1.6830508495566985E-004 + 234.65999999999997 -1.6817250185215376E-004 + 234.71999999999997 -1.6804634843748203E-004 + 234.77999999999997 -1.6792986374271595E-004 + 234.83999999999997 -1.6782607796002138E-004 + 234.89999999999998 -1.6773784107614330E-004 + 234.95999999999998 -1.6766775267829838E-004 + 235.01999999999998 -1.6761822604041273E-004 + 235.07999999999998 -1.6759145390392571E-004 + 235.13999999999999 -1.6758942172539177E-004 + 235.19999999999999 -1.6761387261722468E-004 + 235.25999999999999 -1.6766632964877344E-004 + 235.31999999999999 -1.6774812419461020E-004 + 235.38000000000000 -1.6786035184593174E-004 + 235.44000000000000 -1.6800394245371399E-004 + 235.50000000000000 -1.6817959779697814E-004 + 235.56000000000000 -1.6838784119573084E-004 + 235.62000000000000 -1.6862901166270712E-004 + 235.68000000000001 -1.6890326989095884E-004 + 235.74000000000001 -1.6921060942388041E-004 + 235.80000000000001 -1.6955084050934447E-004 + 235.86000000000001 -1.6992362344120176E-004 + 235.92000000000002 -1.7032843285619032E-004 + 235.97999999999996 -1.7076460441669563E-004 + 236.03999999999996 -1.7123130125175690E-004 + 236.09999999999997 -1.7172752646341720E-004 + 236.15999999999997 -1.7225209663536650E-004 + 236.21999999999997 -1.7280371734442794E-004 + 236.27999999999997 -1.7338089150206943E-004 + 236.33999999999997 -1.7398199733845165E-004 + 236.39999999999998 -1.7460526648854460E-004 + 236.45999999999998 -1.7524877129838370E-004 + 236.51999999999998 -1.7591046012039758E-004 + 236.57999999999998 -1.7658819037758770E-004 + 236.63999999999999 -1.7727964914630729E-004 + 236.69999999999999 -1.7798247226287004E-004 + 236.75999999999999 -1.7869415615919082E-004 + 236.81999999999999 -1.7941215954879171E-004 + 236.88000000000000 -1.8013383599695845E-004 + 236.94000000000000 -1.8085653293914945E-004 + 237.00000000000000 -1.8157749807080242E-004 + 237.06000000000000 -1.8229393020527732E-004 + 237.12000000000000 -1.8300300713306334E-004 + 237.18000000000001 -1.8370188190857772E-004 + 237.24000000000001 -1.8438765349216172E-004 + 237.30000000000001 -1.8505742548448722E-004 + 237.36000000000001 -1.8570824265935835E-004 + 237.42000000000002 -1.8633714990708801E-004 + 237.47999999999996 -1.8694118159532703E-004 + 237.53999999999996 -1.8751735829169021E-004 + 237.59999999999997 -1.8806270242357570E-004 + 237.65999999999997 -1.8857422147804576E-004 + 237.71999999999997 -1.8904894649005244E-004 + 237.77999999999997 -1.8948390510462246E-004 + 237.83999999999997 -1.8987617463272994E-004 + 237.89999999999998 -1.9022284356012093E-004 + 237.95999999999998 -1.9052107042027017E-004 + 238.01999999999998 -1.9076804528394748E-004 + 238.07999999999998 -1.9096101894618744E-004 + 238.13999999999999 -1.9109734088893583E-004 + 238.19999999999999 -1.9117443399751033E-004 + 238.25999999999999 -1.9118979905328914E-004 + 238.31999999999999 -1.9114104024909651E-004 + 238.38000000000000 -1.9102589821619662E-004 + 238.44000000000000 -1.9084220111695180E-004 + 238.50000000000000 -1.9058787811896582E-004 + 238.56000000000000 -1.9026101378678224E-004 + 238.62000000000000 -1.8985980682622905E-004 + 238.68000000000001 -1.8938259143736386E-004 + 238.74000000000001 -1.8882778699685023E-004 + 238.80000000000001 -1.8819398125939865E-004 + 238.86000000000001 -1.8747990540676397E-004 + 238.92000000000002 -1.8668441815540565E-004 + 238.97999999999996 -1.8580647688501293E-004 + 239.03999999999996 -1.8484523700654636E-004 + 239.09999999999997 -1.8379996762014900E-004 + 239.15999999999997 -1.8267010624978703E-004 + 239.21999999999997 -1.8145522452177020E-004 + 239.27999999999997 -1.8015508720120536E-004 + 239.33999999999997 -1.7876958302542433E-004 + 239.39999999999998 -1.7729878620676923E-004 + 239.45999999999998 -1.7574293746229711E-004 + 239.51999999999998 -1.7410245876439570E-004 + 239.57999999999998 -1.7237794134336579E-004 + 239.63999999999999 -1.7057015720676875E-004 + 239.69999999999999 -1.6868004101299730E-004 + 239.75999999999999 -1.6670870275120429E-004 + 239.81999999999999 -1.6465742255175204E-004 + 239.88000000000000 -1.6252763298848648E-004 + 239.94000000000000 -1.6032091151157486E-004 + 240.00000000000000 -1.5803899872169334E-004 + 240.06000000000000 -1.5568377797515917E-004 + 240.12000000000000 -1.5325722764797348E-004 + 240.18000000000001 -1.5076148510468222E-004 + 240.24000000000001 -1.4819880078632787E-004 + 240.30000000000001 -1.4557153563026523E-004 + 240.36000000000001 -1.4288211528937247E-004 + 240.42000000000002 -1.4013310687182603E-004 + 240.47999999999996 -1.3732717541606454E-004 + 240.53999999999996 -1.3446706475924353E-004 + 240.59999999999997 -1.3155562717595711E-004 + 240.65999999999997 -1.2859578039436253E-004 + 240.71999999999997 -1.2559054975393353E-004 + 240.77999999999997 -1.2254306642818492E-004 + 240.83999999999997 -1.1945651911965234E-004 + 240.89999999999998 -1.1633417849857341E-004 + 240.95999999999998 -1.1317940780822119E-004 + 241.01999999999998 -1.0999562796685081E-004 + 241.07999999999998 -1.0678630691887597E-004 + 241.13999999999999 -1.0355496912659906E-004 + 241.19999999999999 -1.0030517831732087E-004 + 241.25999999999999 -9.7040523478724228E-005 + 241.31999999999999 -9.3764606452138310E-005 + 241.38000000000000 -9.0481020535700896E-005 + 241.44000000000000 -8.7193361408478072E-005 + 241.50000000000000 -8.3905202387480883E-005 + 241.56000000000000 -8.0620078366151212E-005 + 241.62000000000000 -7.7341499000694555E-005 + 241.68000000000001 -7.4072918730868880E-005 + 241.74000000000001 -7.0817743951378891E-005 + 241.80000000000001 -6.7579334153283099E-005 + 241.86000000000001 -6.4360979405684850E-005 + 241.92000000000002 -6.1165919463053575E-005 + 241.97999999999996 -5.7997327198229401E-005 + 242.03999999999996 -5.4858319639641770E-005 + 242.09999999999997 -5.1751947313958017E-005 + 242.15999999999997 -4.8681195976081714E-005 + 242.21999999999997 -4.5648978911601099E-005 + 242.27999999999997 -4.2658136647777922E-005 + 242.33999999999997 -3.9711427835006537E-005 + 242.39999999999998 -3.6811526259757340E-005 + 242.45999999999998 -3.3961019085501661E-005 + 242.51999999999998 -3.1162392935991346E-005 + 242.57999999999998 -2.8418027630521499E-005 + 242.63999999999999 -2.5730201906246509E-005 + 242.69999999999999 -2.3101066906293309E-005 + 242.75999999999999 -2.0532664711610149E-005 + 242.81999999999999 -1.8026911756050765E-005 + 242.88000000000000 -1.5585597335761306E-005 + 242.94000000000000 -1.3210389151827130E-005 + 243.00000000000000 -1.0902832855526278E-005 + 243.06000000000000 -8.6643454134466723E-006 + 243.12000000000000 -6.4962250066099468E-006 + 243.18000000000001 -4.3996528504660293E-006 + 243.24000000000001 -2.3756907528722867E-006 + 243.30000000000001 -4.2528918881054111E-007 + 243.36000000000001 1.4507135153584183E-006 + 243.42000000000002 3.2515898683230084E-006 + 243.47999999999996 4.9767212717455049E-006 + 243.53999999999996 6.6255981515828606E-006 + 243.59999999999997 8.1978216318753593E-006 + 243.65999999999997 9.6931024933991745E-006 + 243.71999999999997 1.1111264567859707E-005 + 243.77999999999997 1.2452246067042829E-005 + 243.83999999999997 1.3716099394288724E-005 + 243.89999999999998 1.4902996112242245E-005 + 243.95999999999998 1.6013222835612708E-005 + 244.01999999999998 1.7047186068179007E-005 + 244.07999999999998 1.8005408752196906E-005 + 244.13999999999999 1.8888525773348578E-005 + 244.19999999999999 1.9697289531159428E-005 + 244.25999999999999 2.0432556924734621E-005 + 244.31999999999999 2.1095293007029400E-005 + 244.38000000000000 2.1686560824490521E-005 + 244.44000000000000 2.2207517300302877E-005 + 244.50000000000000 2.2659410971936618E-005 + 244.56000000000000 2.3043571866578874E-005 + 244.62000000000000 2.3361409628380653E-005 + 244.68000000000001 2.3614406870143156E-005 + 244.74000000000001 2.3804112289744409E-005 + 244.80000000000001 2.3932142197487204E-005 + 244.86000000000001 2.4000172388476426E-005 + 244.92000000000002 2.4009937226273905E-005 + 244.97999999999996 2.3963226363186832E-005 + 245.03999999999996 2.3861886027792348E-005 + 245.09999999999997 2.3707810916397991E-005 + 245.15999999999997 2.3502951091757688E-005 + 245.21999999999997 2.3249302304240323E-005 + 245.27999999999997 2.2948911570518327E-005 + 245.33999999999997 2.2603867374607384E-005 + 245.39999999999998 2.2216299187081307E-005 + 245.45999999999998 2.1788380600812909E-005 + 245.51999999999998 2.1322316582669758E-005 + 245.57999999999998 2.0820341055365163E-005 + 245.63999999999999 2.0284710944012080E-005 + 245.69999999999999 1.9717701941262857E-005 + 245.75999999999999 1.9121598758815924E-005 + 245.81999999999999 1.8498688453866809E-005 + 245.88000000000000 1.7851251525703208E-005 + 245.94000000000000 1.7181561193032217E-005 + 246.00000000000000 1.6491868209014002E-005 + 246.06000000000000 1.5784400740466466E-005 + 246.12000000000000 1.5061359553951923E-005 + 246.18000000000001 1.4324906839040269E-005 + 246.24000000000001 1.3577170273556172E-005 + 246.30000000000001 1.2820237461626255E-005 + 246.36000000000001 1.2056152848129120E-005 + 246.42000000000002 1.1286919063333803E-005 + 246.47999999999996 1.0514493484881661E-005 + 246.53999999999996 9.7407919817064496E-006 + 246.59999999999997 8.9676822775377106E-006 + 246.65999999999997 8.1969859132398785E-006 + 246.71999999999997 7.4304770151523173E-006 + 246.77999999999997 6.6698761872946849E-006 + 246.83999999999997 5.9168514274067555E-006 + 246.89999999999998 5.1730072682896649E-006 + 246.95999999999998 4.4398844180510063E-006 + 247.01999999999998 3.7189501223171749E-006 + 247.07999999999998 3.0115945066126427E-006 + 247.13999999999999 2.3191205892827942E-006 + 247.19999999999999 1.6427418576015828E-006 + 247.25999999999999 9.8357366597488735E-007 + 247.31999999999999 3.4263039795285145E-007 + 247.38000000000000 -2.7917776906876568E-007 + 247.44000000000000 -8.8104620792902195E-007 + 247.50000000000000 -1.4622761500892324E-006 + 247.56000000000000 -2.0222726273579214E-006 + 247.62000000000000 -2.5605419746079336E-006 + 247.68000000000001 -3.0766872717259570E-006 + 247.74000000000001 -3.5704039600316482E-006 + 247.80000000000001 -4.0414743017750733E-006 + 247.86000000000001 -4.4897625884898095E-006 + 247.92000000000002 -4.9152106432826665E-006 + 247.97999999999996 -5.3178346512739666E-006 + 248.03999999999996 -5.6977211727393723E-006 + 248.09999999999997 -6.0550278304772133E-006 + 248.15999999999997 -6.3899819633468826E-006 + 248.21999999999997 -6.7028821207476745E-006 + 248.27999999999997 -6.9941007050655883E-006 + 248.33999999999997 -7.2640864828601920E-006 + 248.39999999999998 -7.5133657836261403E-006 + 248.45999999999998 -7.7425465974417314E-006 + 248.51999999999998 -7.9523207612935633E-006 + 248.57999999999998 -8.1434627743693656E-006 + 248.63999999999999 -8.3168298968055255E-006 + 248.69999999999999 -8.4733609373561529E-006 + 248.75999999999999 -8.6140683879810209E-006 + 248.81999999999999 -8.7400373484851421E-006 + 248.88000000000000 -8.8524145179219227E-006 + 248.94000000000000 -8.9524026275420481E-006 + 249.00000000000000 -9.0412488940496341E-006 + 249.06000000000000 -9.1202356615023863E-006 + 249.12000000000000 -9.1906740308161789E-006 + 249.18000000000001 -9.2538926688786193E-006 + 249.24000000000001 -9.3112316968434598E-006 + 249.30000000000001 -9.3640339388074669E-006 + 249.36000000000001 -9.4136429446616249E-006 + 249.42000000000002 -9.4613992147554438E-006 + 249.47999999999996 -9.5086367015147342E-006 + 249.53999999999996 -9.5566839090509239E-006 + 249.59999999999997 -9.6068641777203662E-006 + 249.65999999999997 -9.6604950471441883E-006 + 249.71999999999997 -9.7188912032463178E-006 + 249.77999999999997 -9.7833639231314010E-006 + 249.83999999999997 -9.8552229571283283E-006 + 249.89999999999998 -9.9357743849309426E-006 + 249.95999999999998 -1.0026318056787694E-005 + 250.01999999999998 -1.0128146962026170E-005 + 250.07999999999998 -1.0242540279548620E-005 + 250.13999999999999 -1.0370758693820795E-005 + 250.19999999999999 -1.0514036778282796E-005 + 250.25999999999999 -1.0673574430297878E-005 + 250.31999999999999 -1.0850529145852880E-005 + 250.38000000000000 -1.1046006910601381E-005 + 250.44000000000000 -1.1261053978884502E-005 + 250.50000000000000 -1.1496646947863057E-005 + 250.56000000000000 -1.1753687842144588E-005 + 250.62000000000000 -1.2032997039755146E-005 + 250.68000000000001 -1.2335306710506273E-005 + 250.74000000000001 -1.2661260049535782E-005 + 250.80000000000001 -1.3011406017335649E-005 + 250.86000000000001 -1.3386197882597392E-005 + 250.92000000000002 -1.3785995193474820E-005 + 250.97999999999996 -1.4211066545163938E-005 + 251.03999999999996 -1.4661588600812656E-005 + 251.09999999999997 -1.5137648260481815E-005 + 251.15999999999997 -1.5639245283487617E-005 + 251.21999999999997 -1.6166296358751508E-005 + 251.27999999999997 -1.6718636075096936E-005 + 251.33999999999997 -1.7296017231592887E-005 + 251.39999999999998 -1.7898115457220109E-005 + 251.45999999999998 -1.8524524672193913E-005 + 251.51999999999998 -1.9174763611461257E-005 + 251.57999999999998 -1.9848265699854205E-005 + 251.63999999999999 -2.0544384295055320E-005 + 251.69999999999999 -2.1262388851220484E-005 + 251.75999999999999 -2.2001458340943309E-005 + 251.81999999999999 -2.2760687319579105E-005 + 251.88000000000000 -2.3539079521324454E-005 + 251.94000000000000 -2.4335542390936692E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000003.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000003.BXY.semd new file mode 100644 index 00000000..f0a0b159 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000003.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 0.0000000000000000 + 44.700000000000003 0.0000000000000000 + 44.759999999999991 0.0000000000000000 + 44.819999999999993 0.0000000000000000 + 44.879999999999995 0.0000000000000000 + 44.939999999999998 0.0000000000000000 + 45.000000000000000 0.0000000000000000 + 45.060000000000002 0.0000000000000000 + 45.119999999999990 0.0000000000000000 + 45.179999999999993 0.0000000000000000 + 45.239999999999995 0.0000000000000000 + 45.299999999999997 0.0000000000000000 + 45.359999999999999 0.0000000000000000 + 45.420000000000002 0.0000000000000000 + 45.479999999999990 0.0000000000000000 + 45.539999999999992 0.0000000000000000 + 45.599999999999994 0.0000000000000000 + 45.659999999999997 0.0000000000000000 + 45.719999999999999 0.0000000000000000 + 45.780000000000001 0.0000000000000000 + 45.840000000000003 0.0000000000000000 + 45.899999999999991 0.0000000000000000 + 45.959999999999994 0.0000000000000000 + 46.019999999999996 0.0000000000000000 + 46.079999999999998 0.0000000000000000 + 46.140000000000001 0.0000000000000000 + 46.200000000000003 0.0000000000000000 + 46.259999999999991 0.0000000000000000 + 46.319999999999993 0.0000000000000000 + 46.379999999999995 0.0000000000000000 + 46.439999999999998 0.0000000000000000 + 46.500000000000000 0.0000000000000000 + 46.560000000000002 0.0000000000000000 + 46.619999999999990 0.0000000000000000 + 46.679999999999993 0.0000000000000000 + 46.739999999999995 0.0000000000000000 + 46.799999999999997 0.0000000000000000 + 46.859999999999999 0.0000000000000000 + 46.920000000000002 0.0000000000000000 + 46.979999999999990 0.0000000000000000 + 47.039999999999992 0.0000000000000000 + 47.099999999999994 0.0000000000000000 + 47.159999999999997 0.0000000000000000 + 47.219999999999999 0.0000000000000000 + 47.280000000000001 0.0000000000000000 + 47.340000000000003 0.0000000000000000 + 47.399999999999991 0.0000000000000000 + 47.459999999999994 0.0000000000000000 + 47.519999999999996 0.0000000000000000 + 47.579999999999998 0.0000000000000000 + 47.640000000000001 0.0000000000000000 + 47.700000000000003 0.0000000000000000 + 47.759999999999991 0.0000000000000000 + 47.819999999999993 0.0000000000000000 + 47.879999999999995 0.0000000000000000 + 47.939999999999998 0.0000000000000000 + 48.000000000000000 0.0000000000000000 + 48.060000000000002 0.0000000000000000 + 48.119999999999990 0.0000000000000000 + 48.179999999999993 0.0000000000000000 + 48.239999999999995 0.0000000000000000 + 48.299999999999997 0.0000000000000000 + 48.359999999999999 0.0000000000000000 + 48.420000000000002 0.0000000000000000 + 48.479999999999990 0.0000000000000000 + 48.539999999999992 0.0000000000000000 + 48.599999999999994 0.0000000000000000 + 48.659999999999997 0.0000000000000000 + 48.719999999999999 0.0000000000000000 + 48.780000000000001 0.0000000000000000 + 48.840000000000003 0.0000000000000000 + 48.899999999999991 0.0000000000000000 + 48.959999999999994 0.0000000000000000 + 49.019999999999996 0.0000000000000000 + 49.079999999999998 0.0000000000000000 + 49.140000000000001 0.0000000000000000 + 49.200000000000003 0.0000000000000000 + 49.259999999999991 0.0000000000000000 + 49.319999999999993 0.0000000000000000 + 49.379999999999995 0.0000000000000000 + 49.439999999999998 0.0000000000000000 + 49.500000000000000 0.0000000000000000 + 49.560000000000002 0.0000000000000000 + 49.619999999999990 0.0000000000000000 + 49.679999999999993 0.0000000000000000 + 49.739999999999995 0.0000000000000000 + 49.799999999999997 0.0000000000000000 + 49.859999999999999 0.0000000000000000 + 49.920000000000002 0.0000000000000000 + 49.979999999999990 0.0000000000000000 + 50.039999999999992 0.0000000000000000 + 50.099999999999994 0.0000000000000000 + 50.159999999999997 0.0000000000000000 + 50.219999999999999 0.0000000000000000 + 50.280000000000001 0.0000000000000000 + 50.340000000000003 0.0000000000000000 + 50.399999999999991 0.0000000000000000 + 50.459999999999994 0.0000000000000000 + 50.519999999999996 0.0000000000000000 + 50.579999999999998 0.0000000000000000 + 50.640000000000001 0.0000000000000000 + 50.700000000000003 0.0000000000000000 + 50.759999999999991 0.0000000000000000 + 50.819999999999993 0.0000000000000000 + 50.879999999999995 0.0000000000000000 + 50.939999999999998 0.0000000000000000 + 51.000000000000000 0.0000000000000000 + 51.060000000000002 0.0000000000000000 + 51.119999999999990 0.0000000000000000 + 51.179999999999993 0.0000000000000000 + 51.239999999999995 0.0000000000000000 + 51.299999999999997 0.0000000000000000 + 51.359999999999999 0.0000000000000000 + 51.420000000000002 0.0000000000000000 + 51.479999999999990 0.0000000000000000 + 51.539999999999992 0.0000000000000000 + 51.599999999999994 0.0000000000000000 + 51.659999999999997 0.0000000000000000 + 51.719999999999999 0.0000000000000000 + 51.780000000000001 0.0000000000000000 + 51.840000000000003 0.0000000000000000 + 51.899999999999991 0.0000000000000000 + 51.959999999999994 0.0000000000000000 + 52.019999999999996 0.0000000000000000 + 52.079999999999998 0.0000000000000000 + 52.140000000000001 0.0000000000000000 + 52.200000000000003 0.0000000000000000 + 52.259999999999991 0.0000000000000000 + 52.319999999999993 0.0000000000000000 + 52.379999999999995 0.0000000000000000 + 52.439999999999998 0.0000000000000000 + 52.500000000000000 0.0000000000000000 + 52.560000000000002 0.0000000000000000 + 52.619999999999990 0.0000000000000000 + 52.679999999999993 0.0000000000000000 + 52.739999999999995 0.0000000000000000 + 52.799999999999997 0.0000000000000000 + 52.859999999999999 0.0000000000000000 + 52.920000000000002 0.0000000000000000 + 52.979999999999990 0.0000000000000000 + 53.039999999999992 0.0000000000000000 + 53.099999999999994 0.0000000000000000 + 53.159999999999997 0.0000000000000000 + 53.219999999999999 0.0000000000000000 + 53.280000000000001 0.0000000000000000 + 53.339999999999989 0.0000000000000000 + 53.399999999999991 0.0000000000000000 + 53.459999999999994 0.0000000000000000 + 53.519999999999996 0.0000000000000000 + 53.579999999999998 0.0000000000000000 + 53.640000000000001 0.0000000000000000 + 53.700000000000003 0.0000000000000000 + 53.759999999999991 0.0000000000000000 + 53.819999999999993 0.0000000000000000 + 53.879999999999995 0.0000000000000000 + 53.939999999999998 0.0000000000000000 + 54.000000000000000 0.0000000000000000 + 54.060000000000002 0.0000000000000000 + 54.119999999999990 0.0000000000000000 + 54.179999999999993 0.0000000000000000 + 54.239999999999995 0.0000000000000000 + 54.299999999999997 0.0000000000000000 + 54.359999999999999 0.0000000000000000 + 54.420000000000002 0.0000000000000000 + 54.479999999999990 0.0000000000000000 + 54.539999999999992 0.0000000000000000 + 54.599999999999994 0.0000000000000000 + 54.659999999999997 0.0000000000000000 + 54.719999999999999 0.0000000000000000 + 54.780000000000001 0.0000000000000000 + 54.839999999999989 0.0000000000000000 + 54.899999999999991 0.0000000000000000 + 54.959999999999994 0.0000000000000000 + 55.019999999999996 0.0000000000000000 + 55.079999999999998 0.0000000000000000 + 55.140000000000001 0.0000000000000000 + 55.200000000000003 0.0000000000000000 + 55.259999999999991 0.0000000000000000 + 55.319999999999993 0.0000000000000000 + 55.379999999999995 0.0000000000000000 + 55.439999999999998 0.0000000000000000 + 55.500000000000000 0.0000000000000000 + 55.560000000000002 0.0000000000000000 + 55.619999999999990 0.0000000000000000 + 55.679999999999993 0.0000000000000000 + 55.739999999999995 0.0000000000000000 + 55.799999999999997 0.0000000000000000 + 55.859999999999999 0.0000000000000000 + 55.920000000000002 0.0000000000000000 + 55.979999999999990 0.0000000000000000 + 56.039999999999992 0.0000000000000000 + 56.099999999999994 0.0000000000000000 + 56.159999999999997 0.0000000000000000 + 56.219999999999999 0.0000000000000000 + 56.280000000000001 0.0000000000000000 + 56.339999999999989 0.0000000000000000 + 56.399999999999991 0.0000000000000000 + 56.459999999999994 0.0000000000000000 + 56.519999999999996 0.0000000000000000 + 56.579999999999998 0.0000000000000000 + 56.640000000000001 0.0000000000000000 + 56.700000000000003 0.0000000000000000 + 56.759999999999991 0.0000000000000000 + 56.819999999999993 0.0000000000000000 + 56.879999999999995 0.0000000000000000 + 56.939999999999998 0.0000000000000000 + 57.000000000000000 0.0000000000000000 + 57.060000000000002 0.0000000000000000 + 57.119999999999990 0.0000000000000000 + 57.179999999999993 0.0000000000000000 + 57.239999999999995 0.0000000000000000 + 57.299999999999997 0.0000000000000000 + 57.359999999999999 0.0000000000000000 + 57.420000000000002 0.0000000000000000 + 57.479999999999990 0.0000000000000000 + 57.539999999999992 0.0000000000000000 + 57.599999999999994 -4.4198558944047668E-040 + 57.659999999999997 -1.2437585564101513E-039 + 57.719999999999999 -2.4151010051309271E-039 + 57.780000000000001 -3.9182691111359022E-039 + 57.839999999999989 -5.5644173121402187E-039 + 57.899999999999991 -7.2105655131445353E-039 + 57.959999999999994 -8.8567137141488518E-039 + 58.019999999999996 -1.0332202965568500E-038 + 58.079999999999998 -1.1388069506829227E-038 + 58.140000000000001 -1.1857672480049129E-038 + 58.200000000000003 -1.1614005204035312E-038 + 58.259999999999991 -1.0588265354817643E-038 + 58.319999999999993 -8.7875095810084415E-039 + 58.379999999999995 -6.2976375865832339E-039 + 58.439999999999998 -3.2867375420571564E-039 + 58.500000000000000 -7.0232355748000797E-041 + 58.560000000000002 3.1462727524732408E-039 + 58.619999999999990 6.0749003703345743E-039 + 58.679999999999993 8.3254565221360135E-039 + 58.739999999999995 8.9013234134818684E-039 + 58.799999999999997 6.1968682820278203E-039 + 58.859999999999999 7.2073128803979867E-041 + 58.920000000000002 -8.2224238204603341E-039 + 58.979999999999990 -1.8211497109747269E-038 + 59.039999999999992 -2.9300747396096222E-038 + 59.099999999999994 -4.1139131069665179E-038 + 59.159999999999997 -5.3337671647721791E-038 + 59.219999999999999 -6.3589796724684560E-038 + 59.280000000000001 -6.8335471425747286E-038 + 59.339999999999989 -6.5966498951202789E-038 + 59.399999999999991 -5.4715108277539969E-038 + 59.459999999999994 -3.4364670447408800E-038 + 59.519999999999996 -5.5221186464654240E-039 + 59.579999999999998 2.7846956512946416E-038 + 59.640000000000001 6.1707063324547420E-038 + 59.700000000000003 9.3888198877115786E-038 + 59.759999999999991 1.1694397126121090E-037 + 59.819999999999993 1.2632325391092602E-037 + 59.879999999999995 1.1713292632771445E-037 + 59.939999999999998 8.5954065209047004E-038 + 60.000000000000000 3.5110181201398679E-038 + 60.060000000000002 -2.7715286905611292E-038 + 60.119999999999990 -9.9380173032461690E-038 + 60.179999999999993 -1.7644125173320586E-037 + 60.239999999999995 -2.5053689876777372E-037 + 60.299999999999997 -3.1019399412017360E-037 + 60.359999999999999 -3.4250706184678870E-037 + 60.420000000000002 -3.3863781921615939E-037 + 60.479999999999990 -2.8883505408128215E-037 + 60.539999999999992 -1.9187954823659699E-037 + 60.599999999999994 -5.1187428376651819E-038 + 60.659999999999997 1.2919298100482492E-037 + 60.719999999999999 3.3704229112931593E-037 + 60.780000000000001 5.6515844987802540E-037 + 60.839999999999989 7.6467924192223916E-037 + 60.899999999999991 9.4837601194759361E-037 + 60.959999999999994 1.0827955967993668E-036 + 61.019999999999996 1.1456180284900436E-036 + 61.079999999999998 1.1379981017166523E-036 + 61.140000000000001 1.0549837544182310E-036 + 61.200000000000003 9.0091713562605217E-037 + 61.259999999999991 6.8566212760095372E-037 + 61.319999999999993 4.0973927862698799E-037 + 61.379999999999995 8.5480006002762145E-038 + 61.439999999999998 -2.5870995973372922E-037 + 61.500000000000000 -5.8607008732829290E-037 + 61.560000000000002 -8.7387003384464108E-037 + 61.619999999999990 -1.0955306998120754E-036 + 61.679999999999993 -1.2350563647534868E-036 + 61.739999999999995 -1.2820691582231933E-036 + 61.799999999999997 -1.2507545696990406E-036 + 61.859999999999999 -1.1340922844333640E-036 + 61.920000000000002 -9.4363392330744828E-037 + 61.979999999999990 -6.5318691239563695E-037 + 62.039999999999992 -2.7585442125043775E-037 + 62.099999999999994 1.9801617932904640E-037 + 62.159999999999997 7.3345309492103512E-037 + 62.219999999999999 1.2872123573168840E-036 + 62.280000000000001 1.7687962703201111E-036 + 62.339999999999989 2.2051534030574675E-036 + 62.399999999999991 2.4924615785962235E-036 + 62.459999999999994 2.5175963411155736E-036 + 62.519999999999996 2.2525758074677098E-036 + 62.579999999999998 1.7178255436519022E-036 + 62.640000000000001 9.0387979596435818E-037 + 62.700000000000003 -2.8229570778788796E-037 + 62.759999999999991 -1.9006467206591734E-036 + 62.819999999999993 -3.8875869368465063E-036 + 62.879999999999995 -6.0647993622059075E-036 + 62.939999999999998 -8.2685650597584463E-036 + 63.000000000000000 -1.0286634197559649E-035 + 63.060000000000002 -1.1926539755843857E-035 + 63.119999999999990 -1.2997019467463429E-035 + 63.179999999999993 -1.3301743713687972E-035 + 63.239999999999995 -1.2754315544907796E-035 + 63.299999999999997 -1.1341788052685129E-035 + 63.359999999999999 -8.8007709232692419E-036 + 63.420000000000002 -5.0384178807642785E-036 + 63.479999999999990 -1.5233415197457760E-037 + 63.539999999999992 5.7576638870050201E-036 + 63.599999999999994 1.2536679232846575E-035 + 63.659999999999997 1.9882735680296853E-035 + 63.719999999999999 2.7497879393016331E-035 + 63.780000000000001 3.4925760166321717E-035 + 63.839999999999989 4.1643666923599449E-035 + 63.899999999999991 4.7101233515282503E-035 + 63.959999999999994 5.0717314765905941E-035 + 64.019999999999996 5.2041084813402222E-035 + 64.079999999999998 5.0466224151614834E-035 + 64.140000000000001 4.5502526119760955E-035 + 64.200000000000003 3.6690756602170504E-035 + 64.259999999999991 2.3910202064535277E-035 + 64.319999999999993 6.9639737716572158E-036 + 64.379999999999995 -1.4311369087673517E-035 + 64.439999999999998 -3.9530733193804822E-035 + 64.500000000000000 -6.8021293614614428E-035 + 64.560000000000002 -9.8847274582859648E-035 + 64.619999999999990 -1.3066587158728870E-034 + 64.679999999999993 -1.6198686345447588E-034 + 64.739999999999995 -1.9113253370783765E-034 + 64.799999999999997 -2.1603355465507455E-034 + 64.859999999999999 -2.3466728441485243E-034 + 64.920000000000002 -2.4474322131419498E-034 + 64.979999999999990 -2.4411709809085750E-034 + 65.039999999999992 -2.3070460716680730E-034 + 65.099999999999994 -2.0290832930353560E-034 + 65.159999999999997 -1.5949034925505000E-034 + 65.219999999999999 -9.9858730540938246E-035 + 65.280000000000001 -2.4155123562985615E-035 + 65.339999999999989 6.6557695265293403E-035 + 65.399999999999991 1.7025118016985369E-034 + 65.459999999999994 2.8370332000476177E-034 + 65.519999999999996 4.0266038999804966E-034 + 65.579999999999998 5.2171723022012171E-034 + 65.640000000000001 6.3450079162624500E-034 + 65.700000000000003 7.3370933088379997E-034 + 65.759999999999991 8.1135654973818155E-034 + 65.819999999999993 8.5914772243347991E-034 + 65.879999999999995 8.6886690073720845E-034 + 65.939999999999998 8.3278976770389836E-034 + 66.000000000000000 7.4420297646245961E-034 + 66.060000000000002 5.9805497810821926E-034 + 66.119999999999990 3.9145766612001630E-034 + 66.179999999999993 1.2430681190579453E-034 + 66.239999999999995 -2.0018790218695137E-034 + 66.299999999999997 -5.7508902718312940E-034 + 66.359999999999999 -9.8938211260938110E-034 + 66.420000000000002 -1.4278270608694552E-033 + 66.479999999999990 -1.8709884072817029E-033 + 66.539999999999992 -2.2954947348260241E-033 + 66.599999999999994 -2.6745539117745120E-033 + 66.659999999999997 -2.9790149953043441E-033 + 66.719999999999999 -3.1782337242018616E-033 + 66.780000000000001 -3.2415965071301732E-033 + 66.839999999999989 -3.1401818768282458E-033 + 66.899999999999991 -2.8486262853217538E-033 + 66.959999999999994 -2.3472134373523981E-033 + 67.019999999999996 -1.6239245053800187E-033 + 67.079999999999998 -6.7652622173204004E-034 + 67.140000000000001 4.8546692595068888E-034 + 67.199999999999989 1.8391889100286352E-033 + 67.259999999999991 3.3471715696008038E-033 + 67.319999999999993 4.9567024393964758E-033 + 67.379999999999995 6.5998457544079862E-033 + 67.439999999999998 8.1942724203813638E-033 + 67.500000000000000 9.6450482308686798E-033 + 67.560000000000002 1.0847513690067496E-032 + 67.619999999999990 1.1691010571352692E-032 + 67.679999999999993 1.2063732029682307E-032 + 67.739999999999995 1.1858521891044077E-032 + 67.799999999999997 1.0979459424289754E-032 + 67.859999999999999 9.3490528579660942E-033 + 67.920000000000002 6.9157601538101875E-033 + 67.979999999999990 3.6614824547631313E-033 + 68.039999999999992 -3.9130732637229242E-034 + 68.099999999999994 -5.1733775471969959E-033 + 68.159999999999997 -1.0563851704835047E-032 + 68.219999999999999 -1.6387224457307472E-032 + 68.280000000000001 -2.2412717865834335E-032 + 68.339999999999989 -2.8356464653393832E-032 + 68.399999999999991 -3.3886927687582881E-032 + 68.459999999999994 -3.8633821121495934E-032 + 68.519999999999996 -4.2200731171727578E-032 + 68.579999999999998 -4.4181413198646018E-032 + 68.640000000000001 -4.4179561617337830E-032 + 68.699999999999989 -4.1831679107622030E-032 + 68.759999999999991 -3.6832318701788253E-032 + 68.819999999999993 -2.8960842201759666E-032 + 68.879999999999995 -1.8108547577974672E-032 + 68.939999999999998 -4.3048030868467020E-033 + 69.000000000000000 1.2259447546399220E-032 + 69.060000000000002 3.1212445930220778E-032 + 69.119999999999990 5.1988437609239513E-032 + 69.179999999999993 7.3822399336156223E-032 + 69.239999999999995 9.5754326260659343E-032 + 69.299999999999997 1.1664460572039352E-031 + 69.359999999999999 1.3520166006826429E-031 + 69.420000000000002 1.5002254213022762E-031 + 69.479999999999990 1.5964680469238196E-031 + 69.539999999999992 1.6262307116213943E-031 + 69.599999999999994 1.5758709862695077E-031 + 69.659999999999997 1.4334937226991840E-031 + 69.719999999999999 1.1898921087506645E-031 + 69.780000000000001 8.3951605667970481E-032 + 69.839999999999989 3.8142354792866165E-032 + 69.899999999999991 -1.7984096741037942E-032 + 69.959999999999994 -8.3349769379324034E-032 + 70.019999999999996 -1.5619765612173659E-031 + 70.079999999999998 -2.3406185718225720E-031 + 70.140000000000001 -3.1376964680252297E-031 + 70.199999999999989 -3.9148095931229834E-031 + 70.259999999999991 -4.6276982966734047E-031 + 70.319999999999993 -5.2275128473181116E-031 + 70.379999999999995 -5.6625466151161679E-031 + 70.439999999999998 -5.8804312697241571E-031 + 70.500000000000000 -5.8307556938211468E-031 + 70.560000000000002 -5.4680511017564324E-031 + 70.619999999999990 -4.7550488249661197E-031 + 70.679999999999993 -3.6660896159654000E-031 + 70.739999999999995 -2.1905322619390612E-031 + 70.799999999999997 -3.3598709945782423E-032 + 70.859999999999999 1.8688311345406689E-031 + 70.920000000000002 4.3718432557321148E-031 + 70.979999999999990 7.0961621959700482E-031 + 71.039999999999992 9.9396877748029697E-031 + 71.099999999999994 1.2775940133969272E-030 + 71.159999999999997 1.5456310665013808E-030 + 71.219999999999999 1.7813865451159073E-030 + 71.280000000000001 1.9668768595516989E-030 + 71.339999999999989 2.0835337790172701E-030 + 71.399999999999991 2.1130651798433546E-030 + 71.459999999999994 2.0384526041712438E-030 + 71.519999999999996 1.8450597602045650E-030 + 71.579999999999998 1.5218117966209920E-030 + 71.640000000000001 1.0623980441728205E-030 + 71.699999999999989 4.6643983982571256E-031 + 71.759999999999991 -2.5944421283406390E-031 + 71.819999999999993 -1.1007465223786493E-030 + 71.879999999999995 -2.0344327359666689E-030 + 71.939999999999998 -3.0286310888674234E-030 + 72.000000000000000 -4.0427235733960923E-030 + 72.060000000000002 -5.0279085550824799E-030 + 72.119999999999990 -5.9282802973828105E-030 + 72.179999999999993 -6.6824663432031017E-030 + 72.239999999999995 -7.2258343764237657E-030 + 72.299999999999997 -7.4932526879778792E-030 + 72.359999999999999 -7.4223584890881146E-030 + 72.420000000000002 -6.9572543234300102E-030 + 72.479999999999990 -6.0525203619082198E-030 + 72.539999999999992 -4.6773832140757458E-030 + 72.599999999999994 -2.8198626351632461E-030 + 72.659999999999997 -4.9067281003801646E-031 + 72.719999999999999 2.2733637472551992E-030 + 72.780000000000001 5.4066437412803589E-030 + 72.839999999999989 8.8131322001064551E-030 + 72.899999999999991 1.2365975540235065E-029 + 72.959999999999994 1.5908637321266568E-029 + 73.019999999999996 1.9257747994008543E-029 + 73.079999999999998 2.2207828330928283E-029 + 73.140000000000001 2.4537964779951390E-029 + 73.199999999999989 2.6020436569263427E-029 + 73.259999999999991 2.6431187890144496E-029 + 73.319999999999993 2.5561925313870502E-029 + 73.379999999999995 2.3233519992534854E-029 + 73.439999999999998 1.9310227818015959E-029 + 73.500000000000000 1.3714170084374965E-029 + 73.560000000000002 6.4393634361479477E-030 + 73.619999999999990 -2.4354862078892852E-030 + 73.679999999999993 -1.2736300125004667E-029 + 73.739999999999995 -2.4185957444374487E-029 + 73.799999999999997 -3.6400542299154441E-029 + 73.859999999999999 -4.8890392881717532E-029 + 73.920000000000002 -6.1066713408375475E-029 + 73.979999999999990 -7.2254373574821332E-029 + 74.039999999999992 -8.1711319482964732E-029 + 74.099999999999994 -8.8654733590785095E-029 + 74.159999999999997 -9.2293801812348355E-029 + 74.219999999999999 -9.1868527217078344E-029 + 74.280000000000001 -8.6693697846204304E-029 + 74.339999999999989 -7.6206641942345733E-029 + 74.399999999999991 -6.0017011426447180E-029 + 74.459999999999994 -3.7956395293635350E-029 + 74.519999999999996 -1.0125257624817816E-029 + 74.579999999999998 2.3065611782771491E-029 + 74.640000000000001 6.0862313942277910E-029 + 74.699999999999989 1.0214670209241418E-028 + 74.759999999999991 1.4543007617654452E-028 + 74.819999999999993 1.8886447680450038E-028 + 74.879999999999995 2.3027414830989139E-028 + 74.939999999999998 2.6720897382278950E-028 + 75.000000000000000 2.9702095522397219E-028 + 75.060000000000002 3.1696391562556983E-028 + 75.119999999999990 3.2431524875432913E-028 + 75.179999999999993 3.1651742796266043E-028 + 75.239999999999995 2.9133571267527338E-028 + 75.299999999999997 2.4702643686309460E-028 + 75.359999999999999 1.8250985464412213E-028 + 75.420000000000002 9.7539082416503179E-029 + 75.479999999999990 -7.1438226814079779E-030 + 75.539999999999992 -1.2967458278962765E-028 + 75.599999999999994 -2.6696697101426306E-028 + 75.659999999999997 -4.1465730782090124E-028 + 75.719999999999999 -5.6710364041116245E-028 + 75.780000000000001 -7.1744884742959678E-028 + 75.839999999999989 -8.5775557575480618E-028 + 75.899999999999991 -9.7921859081668541E-028 + 75.959999999999994 -1.0724570123705050E-027 + 76.019999999999996 -1.1278854580047291E-027 + 76.079999999999998 -1.1361595205398517E-027 + 76.140000000000001 -1.0886851166723514E-027 + 76.199999999999989 -9.7817809938014969E-028 + 76.259999999999991 -7.9925438103326995E-028 + 76.319999999999993 -5.4902598563006298E-028 + 76.379999999999995 -2.2767555021045069E-028 + 76.439999999999998 1.6102505126408094E-028 + 76.500000000000000 6.0928472976937044E-028 + 76.560000000000002 1.1049916063722183E-027 + 76.619999999999990 1.6315725737964736E-027 + 76.679999999999993 2.1680529584403728E-027 + 76.739999999999995 2.6893440242173538E-027 + 76.799999999999997 3.1667840418628572E-027 + 76.859999999999999 3.5689502549293080E-027 + 76.920000000000002 3.8627461009881821E-027 + 76.979999999999990 4.0147570123558924E-027 + 77.039999999999992 3.9928537899856978E-027 + 77.099999999999994 3.7680064783595589E-027 + 77.159999999999997 3.3162541543574841E-027 + 77.219999999999999 2.6207605759443994E-027 + 77.280000000000001 1.6738668768439798E-027 + 77.339999999999989 4.7904456889453618E-028 + 77.399999999999991 -9.4737237138322781E-028 + 77.459999999999994 -2.5747901787868280E-027 + 77.519999999999996 -4.3574248733365209E-027 + 77.579999999999998 -6.2339595841142688E-027 + 77.640000000000001 -8.1279084836653419E-027 + 77.699999999999989 -9.9487863184803502E-027 + 77.759999999999991 -1.1594164101885002E-026 + 77.819999999999993 -1.2952657880303542E-026 + 77.879999999999995 -1.3907865484065770E-026 + 77.939999999999998 -1.4343210963902918E-026 + 78.000000000000000 -1.4147623949757507E-026 + 78.060000000000002 -1.3221906045667658E-026 + 78.119999999999990 -1.1485595837508951E-026 + 78.179999999999993 -8.8840842273583211E-027 + 78.239999999999995 -5.3956654393884090E-027 + 78.299999999999997 -1.0381838712187316E-027 + 78.359999999999999 4.1251197294113660E-027 + 78.420000000000002 9.9809834700975830E-027 + 78.479999999999990 1.6363141389443967E-026 + 78.539999999999992 2.3051402713965388E-026 + 78.599999999999994 2.9773189336466410E-026 + 78.659999999999997 3.6207848634914066E-026 + 78.719999999999999 4.1994017500075964E-026 + 78.780000000000001 4.6740178995980628E-026 + 78.839999999999989 5.0038432273657286E-026 + 78.899999999999991 5.1481345553134260E-026 + 78.959999999999994 5.0681636766134198E-026 + 79.019999999999996 4.7294130311850234E-026 + 79.079999999999998 4.1039391674412757E-026 + 79.140000000000001 3.1728167774882194E-026 + 79.199999999999989 1.9285569678634507E-026 + 79.259999999999991 3.7738696517672282E-027 + 79.319999999999993 -1.4587465221689533E-026 + 79.379999999999995 -3.5405869600579611E-026 + 79.439999999999998 -5.8105313688617014E-026 + 79.500000000000000 -8.1922980616521738E-026 + 79.560000000000002 -1.0591413985092861E-025 + 79.619999999999990 -1.2896647466938545E-025 + 79.679999999999993 -1.4982469594955630E-025 + 79.739999999999995 -1.6712593352756816E-025 + 79.799999999999997 -1.7944606404835471E-025 + 79.859999999999999 -1.8535652002930777E-025 + 79.920000000000002 -1.8349080939281995E-025 + 79.979999999999990 -1.7261901971332013E-025 + 80.039999999999992 -1.5172821430187064E-025 + 80.099999999999994 -1.2010601719194205E-025 + 80.159999999999997 -7.7423914577270155E-026 + 80.219999999999999 -2.3816450749920220E-026 + 80.280000000000001 4.0048169655234948E-026 + 80.340000000000003 1.1291057303108714E-025 + 80.400000000000006 1.9288071603548859E-025 + 80.460000000000008 2.7742107148571068E-025 + 80.519999999999982 3.6335707896482897E-025 + 80.579999999999984 4.4691877763670373E-025 + 80.639999999999986 5.2381662380691694E-025 + 80.699999999999989 5.8935404308508242E-025 + 80.759999999999991 6.3857673969127018E-025 + 80.819999999999993 6.6645896171459483E-025 + 80.879999999999995 6.6812306470801303E-025 + 80.939999999999998 6.3908880808397978E-025 + 81.000000000000000 5.7554490696752569E-025 + 81.060000000000002 4.7463490871255282E-025 + 81.120000000000005 3.3474582584161436E-025 + 81.180000000000007 1.5578769271033351E-025 + 81.240000000000009 -6.0551019793868716E-026 + 81.299999999999983 -3.1058704643352961E-025 + 81.359999999999985 -5.8848123300416998E-025 + 81.419999999999987 -8.8614997900432387E-025 + 81.479999999999990 -1.1932634302613377E-024 + 81.539999999999992 -1.4973463046752421E-024 + 81.599999999999994 -1.7839922111083467E-024 + 81.659999999999997 -2.0372013165893588E-024 + 81.719999999999999 -2.2398454329889598E-024 + 81.780000000000001 -2.3742602429104824E-024 + 81.840000000000003 -2.4229593895704314E-024 + 81.900000000000006 -2.3694568731877228E-024 + 81.960000000000008 -2.1991799075413068E-024 + 82.019999999999982 -1.9004433781317803E-024 + 82.079999999999984 -1.4654542025533891E-024 + 82.139999999999986 -8.9130384899323692E-025 + 82.199999999999989 -1.8090331141748769E-025 + 82.259999999999991 6.5619377859531067E-025 + 82.319999999999993 1.6031296133967208E-024 + 82.379999999999995 2.6353066542738784E-024 + 82.439999999999998 3.7202257109317709E-024 + 82.500000000000000 4.8176565738049199E-024 + 82.560000000000002 5.8801845169037445E-024 + 82.620000000000005 6.8541691545520933E-024 + 82.680000000000007 7.6811403068617856E-024 + 82.740000000000009 8.2996408128135592E-024 + 82.799999999999983 8.6475022947766474E-024 + 82.859999999999985 8.6645274535800553E-024 + 82.919999999999987 8.2955148764706949E-024 + 82.979999999999990 7.4935597303432809E-024 + 83.039999999999992 6.2235112289714893E-024 + 83.099999999999994 4.4654692095586130E-024 + 83.159999999999997 2.2181643769641805E-024 + 83.219999999999999 -4.9795666616608711E-025 + 83.280000000000001 -3.6381106230081939E-024 + 83.340000000000003 -7.1312314450634232E-024 + 83.400000000000006 -1.0878885254089340E-023 + 83.460000000000008 -1.4755240567381042E-023 + 83.519999999999982 -1.8608254182230686E-023 + 83.579999999999984 -2.2262238340173294E-023 + 83.639999999999986 -2.5521885547681280E-023 + 83.699999999999989 -2.8177831971715809E-023 + 83.759999999999991 -3.0013744936261052E-023 + 83.819999999999993 -3.0814859541876239E-023 + 83.879999999999995 -3.0377823120367555E-023 + 83.939999999999998 -2.8521601650519116E-023 + 84.000000000000000 -2.5099153693641327E-023 + 84.060000000000002 -2.0009444915842535E-023 + 84.120000000000005 -1.3209332681425294E-023 + 84.180000000000007 -4.7247770342101362E-024 + 84.240000000000009 5.3392426077602758E-024 + 84.299999999999983 1.6790759303041110E-023 + 84.359999999999985 2.9345425217509412E-023 + 84.419999999999987 4.2624413984826677E-023 + 84.479999999999990 5.6156147719058753E-023 + 84.539999999999992 6.9382442387029859E-023 + 84.599999999999994 8.1669481350758438E-023 + 84.659999999999997 9.2323846784251190E-023 + 84.719999999999999 1.0061379627406512E-022 + 84.780000000000001 1.0579550103597987E-022 + 84.840000000000003 1.0714406807906888E-022 + 84.900000000000006 1.0398853470608437E-022 + 84.960000000000008 9.5750039699504786E-023 + 85.019999999999982 8.1981885694525987E-023 + 85.079999999999984 6.2410086748286800E-023 + 85.139999999999986 3.6972647729571201E-023 + 85.199999999999989 5.8556789545636726E-024 + 85.259999999999991 -3.0475809511527138E-023 + 85.319999999999993 -7.1254559888192593E-023 + 85.379999999999995 -1.1539736795604786E-022 + 85.439999999999998 -1.6150315790519508E-022 + 85.500000000000000 -2.0786465855432643E-022 + 85.560000000000002 -2.5249552189041279E-022 + 85.620000000000005 -2.9317369075356336E-022 + 85.680000000000007 -3.2750208659938379E-022 + 85.740000000000009 -3.5298631528200129E-022 + 85.799999999999983 -3.6712866778850710E-022 + 85.859999999999985 -3.6753707483298130E-022 + 85.919999999999987 -3.5204621875402484E-022 + 85.979999999999990 -3.1884768633301826E-022 + 86.039999999999992 -2.6662468447686785E-022 + 86.099999999999994 -1.9468623985099970E-022 + 86.159999999999997 -1.0309510837801970E-022 + 86.219999999999999 7.2173999609722555E-024 + 86.280000000000001 1.3435660114528631E-022 + 86.340000000000003 2.7539660816230619E-022 + 86.400000000000006 4.2634657626500716E-022 + 86.460000000000008 5.8215825073472798E-022 + 86.519999999999982 7.3678001439963065E-022 + 86.579999999999984 8.8326293400468172E-022 + 86.639999999999986 1.0139216743382143E-021 + 86.699999999999989 1.1205520218497818E-021 + 86.759999999999991 1.1947044191496172E-021 + 86.819999999999993 1.2280098639810434E-021 + 86.879999999999995 1.2125530402951140E-021 + 86.939999999999998 1.1412828912755855E-021 + 87.000000000000000 1.0084496337263421E-021 + 87.060000000000002 8.1005295890827598E-022 + 87.120000000000005 5.4428465153197549E-022 + 87.180000000000007 2.1194527694319366E-022 + 87.240000000000009 -1.8318621670864950E-022 + 87.299999999999983 -6.3405329075875148E-022 + 87.359999999999985 -1.1301155835048496E-021 + 87.419999999999987 -1.6572599674872141E-021 + 87.479999999999990 -2.1978484031234122E-021 + 87.539999999999992 -2.7309229934770797E-021 + 87.599999999999994 -3.2325825834717927E-021 + 87.659999999999997 -3.6765403978075936E-021 + 87.719999999999999 -4.0348674591276566E-021 + 87.780000000000001 -4.2789174607980076E-021 + 87.840000000000003 -4.3804234406794766E-021 + 87.900000000000006 -4.3127411325877943E-021 + 87.960000000000008 -4.0522141792561402E-021 + 88.019999999999982 -3.5796207649068051E-021 + 88.079999999999984 -2.8816465089427995E-021 + 88.139999999999986 -1.9523359722351947E-021 + 88.199999999999989 -7.9444912343790937E-022 + 88.259999999999991 5.7934392891116641E-022 + 88.319999999999993 2.1455061552132094E-021 + 88.379999999999995 3.8689959409950425E-021 + 88.439999999999998 5.7030177462120137E-021 + 88.500000000000000 7.5892354002164276E-021 + 88.560000000000002 9.4585137418321847E-021 + 88.620000000000005 1.1232229033117384E-020 + 88.680000000000007 1.2824202106873128E-020 + 88.740000000000009 1.4143250226136781E-020 + 88.799999999999983 1.5096366174807516E-020 + 88.859999999999985 1.5592477121278299E-020 + 88.919999999999987 1.5546739192797956E-020 + 88.979999999999990 1.4885267689676221E-020 + 89.039999999999992 1.3550172234203971E-020 + 89.099999999999994 1.1504770382412374E-020 + 89.159999999999997 8.7387831853071815E-021 + 89.219999999999999 5.2732917658895339E-021 + 89.280000000000001 1.1652783851520641E-021 + 89.340000000000003 -3.4885265801526307E-021 + 89.400000000000006 -8.5487570570508612E-021 + 89.460000000000008 -1.3831633973123332E-020 + 89.519999999999982 -1.9108666363598883E-020 + 89.579999999999984 -2.4107931311856264E-020 + 89.639999999999986 -2.8517111464402032E-020 + 89.699999999999989 -3.1988485624182980E-020 + 89.759999999999991 -3.4145857263848385E-020 + 89.819999999999993 -3.4593459394445839E-020 + 89.879999999999995 -3.2926678528514440E-020 + 89.939999999999998 -2.8744562577620825E-020 + 90.000000000000000 -2.1663586645913228E-020 + 90.060000000000002 -1.1332449813134551E-020 + 90.120000000000005 2.5525368945001661E-021 + 90.180000000000007 2.0232205460618452E-020 + 90.240000000000009 4.1870146637460720E-020 + 90.299999999999983 6.7539519848608574E-020 + 90.359999999999985 9.7212538089634274E-020 + 90.419999999999987 1.3075276248598112E-019 + 90.479999999999990 1.6791179648266906E-019 + 90.539999999999992 2.0833034953368171E-019 + 90.599999999999994 2.5154488209778969E-019 + 90.659999999999997 2.9700049274194902E-019 + 90.719999999999999 3.4407060720410938E-019 + 90.780000000000001 3.9208244427743585E-019 + 90.840000000000003 4.4035083685264788E-019 + 90.900000000000006 4.8821793949593888E-019 + 90.960000000000008 5.3509878267129654E-019 + 91.019999999999982 5.8053219813958331E-019 + 91.079999999999984 6.2423628422277415E-019 + 91.139999999999986 6.6616608577092107E-019 + 91.199999999999989 7.0657120776613784E-019 + 91.259999999999991 7.4605508389178528E-019 + 91.319999999999993 7.8562522242186560E-019 + 91.379999999999995 8.2674390693855346E-019 + 91.439999999999998 8.7136474966055746E-019 + 91.500000000000000 9.2195892044801859E-019 + 91.560000000000002 9.8152757998977106E-019 + 91.620000000000005 1.0535988571527002E-018 + 91.680000000000007 1.1421991675607936E-018 + 91.739999999999981 1.2518093971612576E-018 + 91.799999999999983 1.3872924049456262E-018 + 91.859999999999985 1.5537938204992732E-018 + 91.919999999999987 1.7566188851519055E-018 + 91.979999999999990 2.0010774262947202E-018 + 92.039999999999992 2.2922993766793226E-018 + 92.099999999999994 2.6350199714688255E-018 + 92.159999999999997 3.0333341739939841E-018 + 92.219999999999999 3.4904265124915490E-018 + 92.280000000000001 4.0082556115946124E-018 + 92.340000000000003 4.5872256124290028E-018 + 92.400000000000006 5.2258168785835490E-018 + 92.460000000000008 5.9201877172085256E-018 + 92.519999999999982 6.6637531575066444E-018 + 92.579999999999984 7.4467132856542533E-018 + 92.639999999999986 8.2555755642378632E-018 + 92.699999999999989 9.0726005969538213E-018 + 92.759999999999991 9.8752491920389510E-018 + 92.819999999999993 1.0635544069992625E-017 + 92.879999999999995 1.1319371330057271E-017 + 92.939999999999998 1.1885741145447581E-017 + 93.000000000000000 1.2285926566831119E-017 + 93.060000000000002 1.2462489794666665E-017 + 93.120000000000005 1.2348175805125296E-017 + 93.180000000000007 1.1864589672451503E-017 + 93.239999999999981 1.0920708042663360E-017 + 93.299999999999983 9.4111034610184335E-018 + 93.359999999999985 7.2137639769182041E-018 + 93.419999999999987 4.1875954229396316E-018 + 93.479999999999990 1.6934132524890116E-019 + 93.539999999999992 -5.0300223593138474E-018 + 93.599999999999994 -1.1629640150457478E-017 + 93.659999999999997 -1.9884000179821928E-017 + 93.719999999999999 -3.0089108380831462E-017 + 93.780000000000001 -4.2589492326314613E-017 + 93.840000000000003 -5.7787042333256721E-017 + 93.900000000000006 -7.6150687955626499E-017 + 93.960000000000008 -9.8228412285233369E-017 + 94.019999999999982 -1.2466026272928059E-016 + 94.079999999999984 -1.5619438991564974E-016 + 94.139999999999986 -1.9370388483212903E-016 + 94.199999999999989 -2.3820847796412992E-016 + 94.259999999999991 -2.9089617278125958E-016 + 94.319999999999993 -3.5315141859123042E-016 + 94.379999999999995 -4.2658253478407887E-016 + 94.439999999999998 -5.1305799288513478E-016 + 94.500000000000000 -6.1474168411899284E-016 + 94.560000000000002 -7.3413639373966089E-016 + 94.620000000000005 -8.7413238680446739E-016 + 94.680000000000007 -1.0380574759226277E-015 + 94.739999999999981 -1.2297424761407137E-015 + 94.799999999999983 -1.4535828964601777E-015 + 94.859999999999985 -1.7146141371924658E-015 + 94.919999999999987 -2.0185973428766280E-015 + 94.979999999999990 -2.3721091062185976E-015 + 95.039999999999992 -2.7826468500287596E-015 + 95.099999999999994 -3.2587438449673935E-015 + 95.159999999999997 -3.8100954217892692E-015 + 95.219999999999999 -4.4476974906194409E-015 + 95.280000000000001 -5.1840122773482945E-015 + 95.340000000000003 -6.0331354163204065E-015 + 95.400000000000006 -7.0109869737837419E-015 + 95.460000000000008 -8.1355195989384561E-015 + 95.519999999999982 -9.4269684759122795E-015 + 95.579999999999984 -1.0908088922086857E-014 + 95.639999999999986 -1.2604440175499825E-014 + 95.699999999999989 -1.4544708951947385E-014 + 95.759999999999991 -1.6761026716749900E-014 + 95.819999999999993 -1.9289345493253791E-014 + 95.879999999999995 -2.2169846392523925E-014 + 95.939999999999998 -2.5447342898584654E-014 + 96.000000000000000 -2.9171791223317583E-014 + 96.060000000000002 -3.3398760660257901E-014 + 96.120000000000005 -3.8190009776207479E-014 + 96.180000000000007 -4.3614028763590046E-014 + 96.239999999999981 -4.9746703893453817E-014 + 96.299999999999983 -5.6671863292340396E-014 + 96.359999999999985 -6.4482083862424359E-014 + 96.419999999999987 -7.3279334719773462E-014 + 96.479999999999990 -8.3175719228494570E-014 + 96.539999999999992 -9.4294236003920073E-014 + 96.599999999999994 -1.0676944148697159E-013 + 96.659999999999997 -1.2074834469505455E-013 + 96.719999999999999 -1.3639092366696976E-013 + 96.780000000000001 -1.5387089562857677E-013 + 96.840000000000003 -1.7337613150954001E-013 + 96.900000000000006 -1.9510928581134883E-013 + 96.960000000000008 -2.1928798459494282E-013 + 97.019999999999982 -2.4614479967921214E-013 + 97.079999999999984 -2.7592737020780623E-013 + 97.139999999999986 -3.0889745698116452E-013 + 97.199999999999989 -3.4533014842674492E-013 + 97.259999999999991 -3.8551274404739123E-013 + 97.319999999999993 -4.2974192354913444E-013 + 97.379999999999995 -4.7832109153502767E-013 + 97.439999999999998 -5.3155660931984898E-013 + 97.500000000000000 -5.8975272981416011E-013 + 97.560000000000002 -6.5320476173725355E-013 + 97.620000000000005 -7.2219129342390466E-013 + 97.680000000000007 -7.9696418371344813E-013 + 97.739999999999981 -8.7773556926733596E-013 + 97.799999999999983 -9.6466374140192524E-013 + 97.859999999999985 -1.0578334204250085E-012 + 97.919999999999987 -1.1572344304700154E-012 + 97.979999999999990 -1.2627350523347123E-012 + 98.039999999999992 -1.3740492431056434E-012 + 98.099999999999994 -1.4906995762560165E-012 + 98.159999999999997 -1.6119733792775109E-012 + 98.219999999999999 -1.7368663860434884E-012 + 98.280000000000001 -1.8640222621097861E-012 + 98.340000000000003 -1.9916574843066347E-012 + 98.400000000000006 -2.1174779577209111E-012 + 98.460000000000008 -2.2385716594739701E-012 + 98.519999999999982 -2.3512988753580743E-012 + 98.579999999999984 -2.4511457093594934E-012 + 98.639999999999986 -2.5325716874426937E-012 + 98.699999999999989 -2.5888180763826198E-012 + 98.759999999999991 -2.6116902527085984E-012 + 98.819999999999993 -2.5913152085898506E-012 + 98.879999999999995 -2.5158494063997814E-012 + 98.939999999999998 -2.3711338703393632E-012 + 99.000000000000000 -2.1403477184930683E-012 + 99.060000000000002 -1.8035206750258595E-012 + 99.120000000000005 -1.3370508854318138E-012 + 99.180000000000007 -7.1313042233484432E-013 + 99.239999999999981 1.0092677701847398E-013 + 99.299999999999983 1.1434687674756621E-012 + 99.359999999999985 2.4593281630875397E-012 + 99.419999999999987 4.1008843012144359E-012 + 99.479999999999990 6.1291188445006539E-012 + 99.539999999999992 8.6150100889409298E-012 + 99.599999999999994 1.1640889002395429E-011 + 99.659999999999997 1.5302194898867401E-011 + 99.719999999999999 1.9709438552571436E-011 + 99.780000000000001 2.4990207575619975E-011 + 99.840000000000003 3.1291740450158176E-011 + 99.900000000000006 3.8783692001205311E-011 + 99.960000000000008 4.7661198046426669E-011 + 100.01999999999998 5.8148778206203202E-011 + 100.07999999999998 7.0503815188027305E-011 + 100.13999999999999 8.5021508897696259E-011 + 100.19999999999999 1.0204002052016945E-010 + 100.25999999999999 1.2194611074193052E-010 + 100.31999999999999 1.4518176995192655E-010 + 100.38000000000000 1.7225139450129688E-010 + 100.44000000000000 2.0373031582913952E-010 + 100.50000000000000 2.4027403303509493E-010 + 100.56000000000000 2.8262866787764248E-010 + 100.62000000000000 3.3164238801157134E-010 + 100.68000000000001 3.8827916137563296E-010 + 100.73999999999998 4.5363330826351419E-010 + 100.79999999999998 5.2894520265298478E-010 + 100.85999999999999 6.1562122608575455E-010 + 100.91999999999999 7.1525330052199481E-010 + 100.97999999999999 8.2964228142909302E-010 + 101.03999999999999 9.6082508179828681E-010 + 101.09999999999999 1.1111009443023199E-009 + 101.16000000000000 1.2830668488842936E-009 + 101.22000000000000 1.4796497095040640E-009 + 101.28000000000000 1.7041494019332265E-009 + 101.34000000000000 1.9602826360708135E-009 + 101.40000000000001 2.2522306737948388E-009 + 101.46000000000001 2.5846958921646511E-009 + 101.51999999999998 2.9629631933108742E-009 + 101.57999999999998 3.3929708071284427E-009 + 101.63999999999999 3.8813744694837517E-009 + 101.69999999999999 4.4356442941452495E-009 + 101.75999999999999 5.0641520991338960E-009 + 101.81999999999999 5.7762689092173087E-009 + 101.88000000000000 6.5824910688290693E-009 + 101.94000000000000 7.4945487142822150E-009 + 102.00000000000000 8.5255551286160107E-009 + 102.06000000000000 9.6901641133247088E-009 + 102.12000000000000 1.1004724923427163E-008 + 102.18000000000001 1.2487481504994850E-008 + 102.23999999999998 1.4158769493607390E-008 + 102.29999999999998 1.6041247180763078E-008 + 102.35999999999999 1.8160142412446478E-008 + 102.41999999999999 2.0543529037900245E-008 + 102.47999999999999 2.3222629034672221E-008 + 102.53999999999999 2.6232128257504571E-008 + 102.59999999999999 2.9610566563562039E-008 + 102.66000000000000 3.3400729112704224E-008 + 102.72000000000000 3.7650056832258166E-008 + 102.78000000000000 4.2411156961807756E-008 + 102.84000000000000 4.7742323948696335E-008 + 102.90000000000001 5.3708099923259482E-008 + 102.96000000000001 6.0379917241589565E-008 + 103.01999999999998 6.7836792219289220E-008 + 103.07999999999998 7.6166029947010107E-008 + 103.13999999999999 8.5464045244470419E-008 + 103.19999999999999 9.5837394969342850E-008 + 103.25999999999999 1.0740351451930843E-007 + 103.31999999999999 1.2029201446937381E-007 + 103.38000000000000 1.3464565321031067E-007 + 103.44000000000000 1.5062168655646725E-007 + 103.50000000000000 1.6839318896622725E-007 + 103.56000000000000 1.8815056566432120E-007 + 103.62000000000000 2.1010316304578202E-007 + 103.68000000000001 2.3448101123633205E-007 + 103.73999999999998 2.6153663760597005E-007 + 103.79999999999998 2.9154732010495491E-007 + 103.85999999999999 3.2481697075053418E-007 + 103.91999999999999 3.6167884005646414E-007 + 103.97999999999999 4.0249802020907132E-007 + 104.03999999999999 4.4767416133740964E-007 + 104.09999999999999 4.9764451323295112E-007 + 104.16000000000000 5.5288730707146729E-007 + 104.22000000000000 6.1392509005188111E-007 + 104.28000000000000 6.8132866272204047E-007 + 104.34000000000000 7.5572118021419492E-007 + 104.40000000000001 8.3778219885968323E-007 + 104.46000000000001 9.2825239558254190E-007 + 104.51999999999998 1.0279392039832280E-006 + 104.57999999999998 1.1377215509760036E-006 + 104.63999999999999 1.2585559324558360E-006 + 104.69999999999999 1.3914827512955426E-006 + 104.75999999999999 1.5376324349401634E-006 + 104.81999999999999 1.6982331718346502E-006 + 104.88000000000000 1.8746181995654185E-006 + 104.94000000000000 2.0682334674925762E-006 + 105.00000000000000 2.2806471349176530E-006 + 105.06000000000000 2.5135577080149834E-006 + 105.12000000000000 2.7688050682639836E-006 + 105.18000000000001 3.0483796413808875E-006 + 105.23999999999998 3.3544343532559679E-006 + 105.29999999999998 3.6892955035086618E-006 + 105.35999999999999 4.0554753203702167E-006 + 105.41999999999999 4.4556863492977243E-006 + 105.47999999999999 4.8928542722201290E-006 + 105.53999999999999 5.3701312737893541E-006 + 105.59999999999999 5.8909156561773075E-006 + 105.66000000000000 6.4588643201546024E-006 + 105.72000000000000 7.0779106585890986E-006 + 105.78000000000000 7.7522865213517084E-006 + 105.84000000000000 8.4865357537076600E-006 + 105.90000000000001 9.2855389015916473E-006 + 105.96000000000001 1.0154528696874701E-005 + 106.01999999999998 1.1099124655166153E-005 + 106.07999999999998 1.2125339690650883E-005 + 106.13999999999999 1.3239617205041261E-005 + 106.19999999999999 1.4448846557085101E-005 + 106.25999999999999 1.5760401913851699E-005 + 106.31999999999999 1.7182161325324311E-005 + 106.38000000000000 1.8722536104811638E-005 + 106.44000000000000 2.0390495448287292E-005 + 106.50000000000000 2.2195614883813161E-005 + 106.56000000000000 2.4148091775135123E-005 + 106.62000000000000 2.6258786435575223E-005 + 106.68000000000001 2.8539252866302657E-005 + 106.73999999999998 3.1001774820556406E-005 + 106.79999999999998 3.3659407565759974E-005 + 106.85999999999999 3.6526009409288136E-005 + 106.91999999999999 3.9616289530204663E-005 + 106.97999999999999 4.2945827978486117E-005 + 107.03999999999999 4.6531143146356753E-005 + 107.09999999999999 5.0389710539056928E-005 + 107.16000000000000 5.4540019626591445E-005 + 107.22000000000000 5.9001606002126640E-005 + 107.28000000000000 6.3795115227059958E-005 + 107.34000000000000 6.8942315502466917E-005 + 107.40000000000001 7.4466180150135222E-005 + 107.46000000000001 8.0390887043031822E-005 + 107.51999999999998 8.6741927077856528E-005 + 107.57999999999998 9.3546068586554542E-005 + 107.63999999999999 1.0083147565287761E-004 + 107.69999999999999 1.0862772237062670E-004 + 107.75999999999999 1.1696582858954260E-004 + 107.81999999999999 1.2587832149041933E-004 + 107.88000000000000 1.3539926272753224E-004 + 107.94000000000000 1.4556430623401557E-004 + 108.00000000000000 1.5641075897428343E-004 + 108.06000000000000 1.6797757025351033E-004 + 108.12000000000000 1.8030539333540566E-004 + 108.18000000000001 1.9343663124363737E-004 + 108.23999999999998 2.0741544378809871E-004 + 108.29999999999998 2.2228784393902621E-004 + 108.35999999999999 2.3810163957705205E-004 + 108.41999999999999 2.5490651749203610E-004 + 108.47999999999999 2.7275402546220764E-004 + 108.53999999999999 2.9169762134623482E-004 + 108.59999999999999 3.1179270963192118E-004 + 108.66000000000000 3.3309657942650944E-004 + 108.72000000000000 3.5566843853088149E-004 + 108.78000000000000 3.7956948414347120E-004 + 108.84000000000000 4.0486279262235303E-004 + 108.90000000000001 4.3161335967730266E-004 + 108.96000000000001 4.5988802415265680E-004 + 109.01999999999998 4.8975556304159439E-004 + 109.07999999999998 5.2128655747180270E-004 + 109.13999999999999 5.5455336544786213E-004 + 109.19999999999999 5.8963013920955323E-004 + 109.25999999999999 6.2659264320210110E-004 + 109.31999999999999 6.6551835717184715E-004 + 109.38000000000000 7.0648631167823182E-004 + 109.44000000000000 7.4957686563243764E-004 + 109.50000000000000 7.9487197644074385E-004 + 109.56000000000000 8.4245471387736528E-004 + 109.62000000000000 8.9240939340851392E-004 + 109.68000000000001 9.4482134271262487E-004 + 109.73999999999998 9.9977683697311166E-004 + 109.79999999999998 1.0573628464344773E-003 + 109.85999999999999 1.1176670838768943E-003 + 109.91999999999999 1.1807776405412644E-003 + 109.97999999999999 1.2467827944938371E-003 + 110.03999999999999 1.3157710512556799E-003 + 110.09999999999999 1.3878307136608635E-003 + 110.16000000000000 1.4630497955663970E-003 + 110.22000000000000 1.5415157785607359E-003 + 110.28000000000000 1.6233151728373531E-003 + 110.34000000000000 1.7085337124046775E-003 + 110.40000000000001 1.7972556393243131E-003 + 110.46000000000001 1.8895639254630453E-003 + 110.51999999999998 1.9855392907044880E-003 + 110.57999999999998 2.0852606871159252E-003 + 110.63999999999999 2.1888042991172396E-003 + 110.69999999999999 2.2962440455685743E-003 + 110.75999999999999 2.4076506860360438E-003 + 110.81999999999999 2.5230912497419293E-003 + 110.88000000000000 2.6426292759020920E-003 + 110.94000000000000 2.7663243986589731E-003 + 111.00000000000000 2.8942319517501498E-003 + 111.06000000000000 3.0264020351676124E-003 + 111.12000000000000 3.1628801757187411E-003 + 111.18000000000001 3.3037062343953226E-003 + 111.23999999999998 3.4489145192726639E-003 + 111.29999999999998 3.5985329057753777E-003 + 111.35999999999999 3.7525824505297164E-003 + 111.41999999999999 3.9110784712226244E-003 + 111.47999999999999 4.0740274990207362E-003 + 111.53999999999999 4.2414300401704737E-003 + 111.59999999999999 4.4132775564671330E-003 + 111.66000000000000 4.5895537568930757E-003 + 111.72000000000000 4.7702336196358327E-003 + 111.78000000000000 4.9552831491136221E-003 + 111.84000000000000 5.1446590081997258E-003 + 111.90000000000001 5.3383082580958814E-003 + 111.96000000000001 5.5361685622526396E-003 + 112.01999999999998 5.7381670820337190E-003 + 112.07999999999998 5.9442212454405164E-003 + 112.13999999999999 6.1542368003608986E-003 + 112.19999999999999 6.3681093718980170E-003 + 112.25999999999999 6.5857237670850447E-003 + 112.31999999999999 6.8069535498512142E-003 + 112.38000000000000 7.0316608446172437E-003 + 112.44000000000000 7.2596956322988088E-003 + 112.50000000000000 7.4908971856269295E-003 + 112.56000000000000 7.7250933963617036E-003 + 112.62000000000000 7.9620999968344781E-003 + 112.68000000000001 8.2017213258044896E-003 + 112.73999999999998 8.4437503882861895E-003 + 112.79999999999998 8.6879675358015000E-003 + 112.85999999999999 8.9341433059067638E-003 + 112.91999999999999 9.1820354149750611E-003 + 112.97999999999999 9.4313920301397364E-003 + 113.03999999999999 9.6819486712122257E-003 + 113.09999999999999 9.9334311602294733E-003 + 113.16000000000000 1.0185555481602616E-002 + 113.22000000000000 1.0438025576703966E-002 + 113.28000000000000 1.0690537522619540E-002 + 113.34000000000000 1.0942778055599182E-002 + 113.40000000000001 1.1194423705492883E-002 + 113.46000000000001 1.1445143165528370E-002 + 113.51999999999998 1.1694597959146858E-002 + 113.57999999999998 1.1942441922351679E-002 + 113.63999999999999 1.2188320433282430E-002 + 113.69999999999999 1.2431875850158196E-002 + 113.75999999999999 1.2672741480673912E-002 + 113.81999999999999 1.2910548534081575E-002 + 113.88000000000000 1.3144922427209693E-002 + 113.94000000000000 1.3375486903248799E-002 + 114.00000000000000 1.3601861897395991E-002 + 114.06000000000000 1.3823665890538638E-002 + 114.12000000000000 1.4040514711537113E-002 + 114.18000000000001 1.4252027827672877E-002 + 114.23999999999998 1.4457822390450939E-002 + 114.29999999999998 1.4657517610738175E-002 + 114.35999999999999 1.4850736423923910E-002 + 114.41999999999999 1.5037104157321747E-002 + 114.47999999999999 1.5216250973765806E-002 + 114.53999999999999 1.5387812588438887E-002 + 114.59999999999999 1.5551428941784734E-002 + 114.66000000000000 1.5706750673661996E-002 + 114.72000000000000 1.5853433149144662E-002 + 114.78000000000000 1.5991142783295421E-002 + 114.84000000000000 1.6119556249694612E-002 + 114.90000000000001 1.6238359158824343E-002 + 114.96000000000001 1.6347249623213028E-002 + 115.01999999999998 1.6445937222384563E-002 + 115.07999999999998 1.6534148770655368E-002 + 115.13999999999999 1.6611623389059079E-002 + 115.19999999999999 1.6678114335951625E-002 + 115.25999999999999 1.6733390157465527E-002 + 115.31999999999999 1.6777238711761566E-002 + 115.38000000000000 1.6809461712349930E-002 + 115.44000000000000 1.6829882989653013E-002 + 115.50000000000000 1.6838340526950643E-002 + 115.56000000000000 1.6834693799404294E-002 + 115.62000000000000 1.6818822516338611E-002 + 115.68000000000001 1.6790626705208957E-002 + 115.73999999999998 1.6750025814614062E-002 + 115.79999999999998 1.6696959214134454E-002 + 115.85999999999999 1.6631390628264457E-002 + 115.91999999999999 1.6553303144300507E-002 + 115.97999999999999 1.6462702801683684E-002 + 116.03999999999999 1.6359616667890015E-002 + 116.09999999999999 1.6244094638702113E-002 + 116.16000000000000 1.6116207587235597E-002 + 116.22000000000000 1.5976050064991611E-002 + 116.28000000000000 1.5823737906455373E-002 + 116.34000000000000 1.5659407526271762E-002 + 116.40000000000001 1.5483218506240648E-002 + 116.46000000000001 1.5295350305577791E-002 + 116.51999999999998 1.5096005509900661E-002 + 116.57999999999998 1.4885406006298788E-002 + 116.63999999999999 1.4663792206051433E-002 + 116.69999999999999 1.4431424199945619E-002 + 116.75999999999999 1.4188585887114814E-002 + 116.81999999999999 1.3935574135437175E-002 + 116.88000000000000 1.3672705191249015E-002 + 116.94000000000000 1.3400313762787379E-002 + 117.00000000000000 1.3118749211550975E-002 + 117.06000000000000 1.2828377075324436E-002 + 117.12000000000000 1.2529576317427783E-002 + 117.18000000000001 1.2222741507171871E-002 + 117.23999999999998 1.1908278870181956E-002 + 117.29999999999998 1.1586606520840757E-002 + 117.35999999999999 1.1258153506740651E-002 + 117.41999999999999 1.0923358736715271E-002 + 117.47999999999999 1.0582669760313617E-002 + 117.53999999999999 1.0236541932892513E-002 + 117.59999999999999 9.8854375570926294E-003 + 117.66000000000000 9.5298237297512488E-003 + 117.72000000000000 9.1701725720150125E-003 + 117.78000000000000 8.8069595627160591E-003 + 117.84000000000000 8.4406611487852674E-003 + 117.90000000000001 8.0717568491563575E-003 + 117.96000000000001 7.7007254993443006E-003 + 118.01999999999998 7.3280447997140672E-003 + 118.07999999999998 6.9541903838907402E-003 + 118.13999999999999 6.5796340820792132E-003 + 118.19999999999999 6.2048454517628013E-003 + 118.25999999999999 5.8302866722014096E-003 + 118.31999999999999 5.4564154816597564E-003 + 118.38000000000000 5.0836819425280908E-003 + 118.44000000000000 4.7125274401678911E-003 + 118.50000000000000 4.3433863881593747E-003 + 118.56000000000000 3.9766814006933129E-003 + 118.62000000000000 3.6128251805038741E-003 + 118.68000000000001 3.2522200567083361E-003 + 118.73999999999998 2.8952551321427536E-003 + 118.79999999999998 2.5423078120421320E-003 + 118.85999999999999 2.1937415140678785E-003 + 118.91999999999999 1.8499062905134927E-003 + 118.97999999999999 1.5111374356698794E-003 + 119.03999999999999 1.1777551196276515E-003 + 119.09999999999999 8.5006426015052134E-004 + 119.16000000000000 5.2835448945140180E-004 + 119.22000000000000 2.1289911077407406E-004 + 119.28000000000000 -9.6044779012152248E-005 + 119.34000000000000 -3.9823693150427476E-004 + 119.40000000000001 -6.9345369836849315E-004 + 119.46000000000001 -9.8148821218011113E-004 + 119.51999999999998 -1.2621503907466777E-003 + 119.57999999999998 -1.5352674347652877E-003 + 119.63999999999999 -1.8006832524925670E-003 + 119.69999999999999 -2.0582588247515434E-003 + 119.75999999999999 -2.3078714698670120E-003 + 119.81999999999999 -2.5494157674751860E-003 + 119.88000000000000 -2.7828021681850054E-003 + 119.94000000000000 -3.0079576203535293E-003 + 120.00000000000000 -3.2248248577441715E-003 + 120.06000000000000 -3.4333617870018966E-003 + 120.12000000000000 -3.6335424549568847E-003 + 120.18000000000001 -3.8253546937566034E-003 + 120.23999999999998 -4.0088016142787418E-003 + 120.29999999999998 -4.1839000741219455E-003 + 120.35999999999999 -4.3506797623787744E-003 + 120.41999999999999 -4.5091847429952914E-003 + 120.47999999999999 -4.6594709909773433E-003 + 120.53999999999999 -4.8016061292952082E-003 + 120.59999999999999 -4.9356699560524379E-003 + 120.66000000000000 -5.0617525690247588E-003 + 120.72000000000000 -5.1799552827379112E-003 + 120.78000000000000 -5.2903883465437087E-003 + 120.84000000000000 -5.3931717633848072E-003 + 120.90000000000001 -5.4884345541006737E-003 + 120.95999999999998 -5.5763131539030321E-003 + 121.01999999999998 -5.6569521408427548E-003 + 121.07999999999998 -5.7305027056183200E-003 + 121.13999999999999 -5.7971226768402141E-003 + 121.19999999999999 -5.8569751569196148E-003 + 121.25999999999999 -5.9102291832673478E-003 + 121.31999999999999 -5.9570582908402966E-003 + 121.38000000000000 -5.9976395835601194E-003 + 121.44000000000000 -6.0321545954649860E-003 + 121.50000000000000 -6.0607872724091939E-003 + 121.56000000000000 -6.0837250200581573E-003 + 121.62000000000000 -6.1011561783777032E-003 + 121.68000000000001 -6.1132721010633360E-003 + 121.73999999999998 -6.1202640404860445E-003 + 121.79999999999998 -6.1223245756809840E-003 + 121.85999999999999 -6.1196464873474275E-003 + 121.91999999999999 -6.1124221795096434E-003 + 121.97999999999999 -6.1008445473078720E-003 + 122.03999999999999 -6.0851049182650994E-003 + 122.09999999999999 -6.0653935924114876E-003 + 122.16000000000000 -6.0418991902196689E-003 + 122.22000000000000 -6.0148093231863877E-003 + 122.28000000000000 -5.9843092005877462E-003 + 122.34000000000000 -5.9505816863911062E-003 + 122.40000000000001 -5.9138067544758071E-003 + 122.45999999999998 -5.8741625413387989E-003 + 122.51999999999998 -5.8318235142102029E-003 + 122.57999999999998 -5.7869611392195553E-003 + 122.63999999999999 -5.7397436882376460E-003 + 122.69999999999999 -5.6903361841317964E-003 + 122.75999999999999 -5.6388997239535726E-003 + 122.81999999999999 -5.5855924889294485E-003 + 122.88000000000000 -5.5305671424978600E-003 + 122.94000000000000 -5.4739739388161967E-003 + 123.00000000000000 -5.4159592420656589E-003 + 123.06000000000000 -5.3566646105427896E-003 + 123.12000000000000 -5.2962280487099484E-003 + 123.18000000000001 -5.2347830621836504E-003 + 123.23999999999998 -5.1724596076906789E-003 + 123.29999999999998 -5.1093829847190806E-003 + 123.35999999999999 -5.0456745104090275E-003 + 123.41999999999999 -4.9814518557165415E-003 + 123.47999999999999 -4.9168276782681417E-003 + 123.53999999999999 -4.8519118155541177E-003 + 123.59999999999999 -4.7868086860774883E-003 + 123.66000000000000 -4.7216194578726875E-003 + 123.72000000000000 -4.6564413788318460E-003 + 123.78000000000000 -4.5913678913523086E-003 + 123.84000000000000 -4.5264881104853938E-003 + 123.90000000000001 -4.4618874365021984E-003 + 123.95999999999998 -4.3976476208860034E-003 + 124.01999999999998 -4.3338464130404809E-003 + 124.07999999999998 -4.2705584947385251E-003 + 124.13999999999999 -4.2078546906023414E-003 + 124.19999999999999 -4.1458025705308670E-003 + 124.25999999999999 -4.0844659306369449E-003 + 124.31999999999999 -4.0239047704702553E-003 + 124.38000000000000 -3.9641769472889840E-003 + 124.44000000000000 -3.9053364299483492E-003 + 124.50000000000000 -3.8474338341246304E-003 + 124.56000000000000 -3.7905168176918524E-003 + 124.62000000000000 -3.7346303183045859E-003 + 124.68000000000001 -3.6798157214810263E-003 + 124.73999999999998 -3.6261121551755052E-003 + 124.79999999999998 -3.5735556117127976E-003 + 124.85999999999999 -3.5221789026797985E-003 + 124.91999999999999 -3.4720128046676867E-003 + 124.97999999999999 -3.4230852940767228E-003 + 125.03999999999999 -3.3754216160872866E-003 + 125.09999999999999 -3.3290445973301183E-003 + 125.16000000000000 -3.2839742536042633E-003 + 125.22000000000000 -3.2402287792699324E-003 + 125.28000000000000 -3.1978237109778272E-003 + 125.34000000000000 -3.1567724902993215E-003 + 125.40000000000001 -3.1170864119793359E-003 + 125.45999999999998 -3.0787744813199664E-003 + 125.51999999999998 -3.0418435987786094E-003 + 125.57999999999998 -3.0062991534620166E-003 + 125.63999999999999 -2.9721441341627858E-003 + 125.69999999999999 -2.9393796744313356E-003 + 125.75999999999999 -2.9080055148286627E-003 + 125.81999999999999 -2.8780193165528849E-003 + 125.88000000000000 -2.8494168601612838E-003 + 125.94000000000000 -2.8221927090332920E-003 + 126.00000000000000 -2.7963398248404834E-003 + 126.06000000000000 -2.7718492634659056E-003 + 126.12000000000000 -2.7487105732969578E-003 + 126.18000000000001 -2.7269123820629760E-003 + 126.23999999999998 -2.7064413708370850E-003 + 126.29999999999998 -2.6872833915092065E-003 + 126.35999999999999 -2.6694226904205227E-003 + 126.41999999999999 -2.6528423825741476E-003 + 126.47999999999999 -2.6375245022659320E-003 + 126.53999999999999 -2.6234499792083675E-003 + 126.59999999999999 -2.6105987111273523E-003 + 126.66000000000000 -2.5989496235229222E-003 + 126.72000000000000 -2.5884810168613397E-003 + 126.78000000000000 -2.5791697060049581E-003 + 126.84000000000000 -2.5709917770503346E-003 + 126.90000000000001 -2.5639235368012559E-003 + 126.95999999999998 -2.5579395845470522E-003 + 127.01999999999998 -2.5530142252834695E-003 + 127.07999999999998 -2.5491210057496400E-003 + 127.13999999999999 -2.5462333442561073E-003 + 127.19999999999999 -2.5443238045466405E-003 + 127.25999999999999 -2.5433645372108533E-003 + 127.31999999999999 -2.5433274212438690E-003 + 127.38000000000000 -2.5441836813189338E-003 + 127.44000000000000 -2.5459043186555753E-003 + 127.50000000000000 -2.5484599941508622E-003 + 127.56000000000000 -2.5518211921608238E-003 + 127.62000000000000 -2.5559581406568921E-003 + 127.68000000000001 -2.5608408841412385E-003 + 127.73999999999998 -2.5664390479440444E-003 + 127.79999999999998 -2.5727221969075280E-003 + 127.85999999999999 -2.5796600571547802E-003 + 127.91999999999999 -2.5872220484588087E-003 + 127.97999999999999 -2.5953776549807735E-003 + 128.03999999999999 -2.6040960612897291E-003 + 128.09999999999999 -2.6133467161460668E-003 + 128.16000000000000 -2.6230990940705801E-003 + 128.22000000000000 -2.6333224999165608E-003 + 128.28000000000000 -2.6439864323574008E-003 + 128.34000000000000 -2.6550604451281794E-003 + 128.40000000000001 -2.6665142734114463E-003 + 128.45999999999998 -2.6783175512932718E-003 + 128.51999999999998 -2.6904399326711163E-003 + 128.57999999999998 -2.7028515258963495E-003 + 128.63999999999999 -2.7155225678707384E-003 + 128.69999999999999 -2.7284232113650190E-003 + 128.75999999999999 -2.7415240039297775E-003 + 128.81999999999999 -2.7547954751965245E-003 + 128.88000000000000 -2.7682085806664805E-003 + 128.94000000000000 -2.7817341549381865E-003 + 129.00000000000000 -2.7953432720681736E-003 + 129.06000000000000 -2.8090073072986571E-003 + 129.12000000000000 -2.8226979090131511E-003 + 129.18000000000001 -2.8363870618269161E-003 + 129.23999999999998 -2.8500465774331236E-003 + 129.29999999999998 -2.8636484897473550E-003 + 129.35999999999999 -2.8771651884311120E-003 + 129.41999999999999 -2.8905696179997195E-003 + 129.47999999999999 -2.9038344741463898E-003 + 129.53999999999999 -2.9169327877666723E-003 + 129.59999999999999 -2.9298381119041090E-003 + 129.66000000000000 -2.9425237238657467E-003 + 129.72000000000000 -2.9549636464226204E-003 + 129.78000000000000 -2.9671320714789091E-003 + 129.84000000000000 -2.9790033757346075E-003 + 129.90000000000001 -2.9905523141199250E-003 + 129.95999999999998 -3.0017541458374273E-003 + 130.01999999999998 -3.0125846381612699E-003 + 130.07999999999998 -3.0230195148534199E-003 + 130.13999999999999 -3.0330350199761803E-003 + 130.19999999999999 -3.0426082352325583E-003 + 130.25999999999999 -3.0517163392817207E-003 + 130.31999999999999 -3.0603369114808382E-003 + 130.38000000000000 -3.0684484035303269E-003 + 130.44000000000000 -3.0760299165746084E-003 + 130.50000000000000 -3.0830603725381309E-003 + 130.56000000000000 -3.0895198194970347E-003 + 130.62000000000000 -3.0953887601800614E-003 + 130.68000000000001 -3.1006486177973776E-003 + 130.73999999999998 -3.1052809777940998E-003 + 130.79999999999998 -3.1092682731544883E-003 + 130.85999999999999 -3.1125935820731261E-003 + 130.91999999999999 -3.1152405854680183E-003 + 130.97999999999999 -3.1171940755146225E-003 + 131.03999999999999 -3.1184394005593203E-003 + 131.09999999999999 -3.1189625869873171E-003 + 131.16000000000000 -3.1187505468526300E-003 + 131.22000000000000 -3.1177911897280488E-003 + 131.28000000000000 -3.1160730630540884E-003 + 131.34000000000000 -3.1135859917864415E-003 + 131.40000000000001 -3.1103205543038344E-003 + 131.45999999999998 -3.1062681498879056E-003 + 131.51999999999998 -3.1014212379973784E-003 + 131.57999999999998 -3.0957734246563695E-003 + 131.63999999999999 -3.0893193188720131E-003 + 131.69999999999999 -3.0820542579217693E-003 + 131.75999999999999 -3.0739751949528378E-003 + 131.81999999999999 -3.0650794575985416E-003 + 131.88000000000000 -3.0553659944745292E-003 + 131.94000000000000 -3.0448345774238511E-003 + 132.00000000000000 -3.0334857855466050E-003 + 132.06000000000000 -3.0213219842204339E-003 + 132.12000000000000 -3.0083458781806132E-003 + 132.18000000000001 -2.9945617792859723E-003 + 132.23999999999998 -2.9799745464686883E-003 + 132.29999999999998 -2.9645904695421769E-003 + 132.35999999999999 -2.9484168533459318E-003 + 132.41999999999999 -2.9314620837077414E-003 + 132.47999999999999 -2.9137354194949889E-003 + 132.53999999999999 -2.8952470938744881E-003 + 132.59999999999999 -2.8760085804506027E-003 + 132.66000000000000 -2.8560321944300555E-003 + 132.72000000000000 -2.8353312841366482E-003 + 132.78000000000000 -2.8139199033815170E-003 + 132.84000000000000 -2.7918135582260979E-003 + 132.90000000000001 -2.7690280175280417E-003 + 132.95999999999998 -2.7455806318911900E-003 + 133.01999999999998 -2.7214888367728014E-003 + 133.07999999999998 -2.6967714187017895E-003 + 133.13999999999999 -2.6714479046734832E-003 + 133.19999999999999 -2.6455384644921299E-003 + 133.25999999999999 -2.6190641428453592E-003 + 133.31999999999999 -2.5920464959419448E-003 + 133.38000000000000 -2.5645078476707198E-003 + 133.44000000000000 -2.5364711771826073E-003 + 133.50000000000000 -2.5079600525327642E-003 + 133.56000000000000 -2.4789983379602358E-003 + 133.62000000000000 -2.4496109106368143E-003 + 133.68000000000001 -2.4198226661344665E-003 + 133.73999999999998 -2.3896590123210024E-003 + 133.79999999999998 -2.3591458503299753E-003 + 133.85999999999999 -2.3283094846756219E-003 + 133.91999999999999 -2.2971762422566077E-003 + 133.97999999999999 -2.2657728943769879E-003 + 134.03999999999999 -2.2341262746511776E-003 + 134.09999999999999 -2.2022635751372242E-003 + 134.16000000000000 -2.1702118700158294E-003 + 134.22000000000000 -2.1379983778284364E-003 + 134.28000000000000 -2.1056506335892415E-003 + 134.34000000000000 -2.0731956366579524E-003 + 134.40000000000001 -2.0406611001472369E-003 + 134.45999999999998 -2.0080741816289977E-003 + 134.51999999999998 -1.9754620249468136E-003 + 134.57999999999998 -1.9428517457036510E-003 + 134.63999999999999 -1.9102702900679939E-003 + 134.69999999999999 -1.8777443494563542E-003 + 134.75999999999999 -1.8453006053641469E-003 + 134.81999999999999 -1.8129655800030483E-003 + 134.88000000000000 -1.7807652685767927E-003 + 134.94000000000000 -1.7487255803737981E-003 + 135.00000000000000 -1.7168722070767526E-003 + 135.06000000000000 -1.6852305072645409E-003 + 135.12000000000000 -1.6538251037128209E-003 + 135.18000000000001 -1.6226807102415687E-003 + 135.23999999999998 -1.5918213918356854E-003 + 135.29999999999998 -1.5612709342743987E-003 + 135.35999999999999 -1.5310525323647690E-003 + 135.41999999999999 -1.5011891159236285E-003 + 135.47999999999999 -1.4717030604683135E-003 + 135.53999999999999 -1.4426161650357564E-003 + 135.59999999999999 -1.4139499902206872E-003 + 135.66000000000000 -1.3857253470425986E-003 + 135.72000000000000 -1.3579626652800566E-003 + 135.78000000000000 -1.3306820270103349E-003 + 135.84000000000000 -1.3039027116552777E-003 + 135.90000000000001 -1.2776437828371254E-003 + 135.95999999999998 -1.2519236380679544E-003 + 136.01999999999998 -1.2267602069850568E-003 + 136.07999999999998 -1.2021710449336034E-003 + 136.13999999999999 -1.1781731024707409E-003 + 136.19999999999999 -1.1547827070938865E-003 + 136.25999999999999 -1.1320158128892246E-003 + 136.31999999999999 -1.1098878855010674E-003 + 136.38000000000000 -1.0884139341423174E-003 + 136.44000000000000 -1.0676082642558861E-003 + 136.50000000000000 -1.0474847220474084E-003 + 136.56000000000000 -1.0280566921191522E-003 + 136.62000000000000 -1.0093370015734583E-003 + 136.68000000000001 -9.9133801859682203E-004 + 136.73999999999998 -9.7407147779881935E-004 + 136.79999999999998 -9.5754867161335641E-004 + 136.85999999999999 -9.4178037678272343E-004 + 136.91999999999999 -9.2677680665420993E-004 + 136.97999999999999 -9.1254760176180520E-004 + 137.03999999999999 -8.9910205184552748E-004 + 137.09999999999999 -8.8644872186908390E-004 + 137.16000000000000 -8.7459580861471342E-004 + 137.22000000000000 -8.6355075394545417E-004 + 137.28000000000000 -8.5332065031034515E-004 + 137.34000000000000 -8.4391186150226452E-004 + 137.40000000000001 -8.3533032213039876E-004 + 137.45999999999998 -8.2758129629047889E-004 + 137.51999999999998 -8.2066945490969954E-004 + 137.57999999999998 -8.1459887596453423E-004 + 137.63999999999999 -8.0937290217681984E-004 + 137.69999999999999 -8.0499435489830124E-004 + 137.75999999999999 -8.0146532598383803E-004 + 137.81999999999999 -7.9878728239353967E-004 + 137.88000000000000 -7.9696101659511320E-004 + 137.94000000000000 -7.9598654288315536E-004 + 138.00000000000000 -7.9586315536350045E-004 + 138.06000000000000 -7.9658937153518489E-004 + 138.12000000000000 -7.9816311957542146E-004 + 138.18000000000001 -8.0058129453669676E-004 + 138.23999999999998 -8.0384014295837669E-004 + 138.29999999999998 -8.0793501586560773E-004 + 138.35999999999999 -8.1286045410054947E-004 + 138.41999999999999 -8.1860998648542718E-004 + 138.47999999999999 -8.2517635687276187E-004 + 138.53999999999999 -8.3255120945292208E-004 + 138.59999999999999 -8.4072539782038813E-004 + 138.66000000000000 -8.4968867997430042E-004 + 138.72000000000000 -8.5942980887846463E-004 + 138.78000000000000 -8.6993643942108294E-004 + 138.84000000000000 -8.8119511543261744E-004 + 138.90000000000001 -8.9319134795052407E-004 + 138.95999999999998 -9.0590950682654589E-004 + 139.01999999999998 -9.1933288246406962E-004 + 139.07999999999998 -9.3344352066987760E-004 + 139.13999999999999 -9.4822229152676180E-004 + 139.19999999999999 -9.6364899309319459E-004 + 139.25999999999999 -9.7970198114034944E-004 + 139.31999999999999 -9.9635875122725545E-004 + 139.38000000000000 -1.0135954503594502E-003 + 139.44000000000000 -1.0313868381656417E-003 + 139.50000000000000 -1.0497067962935847E-003 + 139.56000000000000 -1.0685278298412084E-003 + 139.62000000000000 -1.0878212447078138E-003 + 139.68000000000001 -1.1075572019017725E-003 + 139.73999999999998 -1.1277045876132757E-003 + 139.79999999999998 -1.1482313247387860E-003 + 139.85999999999999 -1.1691040896461189E-003 + 139.91999999999999 -1.1902883749294456E-003 + 139.97999999999999 -1.2117488861183754E-003 + 140.03999999999999 -1.2334488761855868E-003 + 140.09999999999999 -1.2553510192171386E-003 + 140.16000000000000 -1.2774166965621710E-003 + 140.22000000000000 -1.2996064477935347E-003 + 140.28000000000000 -1.3218801445003430E-003 + 140.34000000000000 -1.3441967766781944E-003 + 140.40000000000001 -1.3665144402481249E-003 + 140.45999999999998 -1.3887907471772183E-003 + 140.51999999999998 -1.4109826090608609E-003 + 140.57999999999998 -1.4330464968382471E-003 + 140.63999999999999 -1.4549382929364496E-003 + 140.69999999999999 -1.4766135529988150E-003 + 140.75999999999999 -1.4980275230154806E-003 + 140.81999999999999 -1.5191353218430858E-003 + 140.88000000000000 -1.5398918506542238E-003 + 140.94000000000000 -1.5602520493984587E-003 + 141.00000000000000 -1.5801708524958746E-003 + 141.06000000000000 -1.5996035129544326E-003 + 141.12000000000000 -1.6185054835113110E-003 + 141.18000000000001 -1.6368324752777117E-003 + 141.23999999999998 -1.6545409074123906E-003 + 141.29999999999998 -1.6715877114625933E-003 + 141.35999999999999 -1.6879305021960541E-003 + 141.41999999999999 -1.7035277474103530E-003 + 141.47999999999999 -1.7183389170539688E-003 + 141.53999999999999 -1.7323244715120717E-003 + 141.59999999999999 -1.7454459325437276E-003 + 141.66000000000000 -1.7576661133771221E-003 + 141.72000000000000 -1.7689491139490877E-003 + 141.78000000000000 -1.7792606136623123E-003 + 141.84000000000000 -1.7885677947662155E-003 + 141.90000000000001 -1.7968392915810047E-003 + 141.95999999999998 -1.8040455436445701E-003 + 142.01999999999998 -1.8101589320205745E-003 + 142.07999999999998 -1.8151535514294537E-003 + 142.13999999999999 -1.8190054114937499E-003 + 142.19999999999999 -1.8216927492590669E-003 + 142.25999999999999 -1.8231956940626490E-003 + 142.31999999999999 -1.8234966827797966E-003 + 142.38000000000000 -1.8225803632941854E-003 + 142.44000000000000 -1.8204335436396140E-003 + 142.50000000000000 -1.8170455326041468E-003 + 142.56000000000000 -1.8124079388296735E-003 + 142.62000000000000 -1.8065149201148649E-003 + 142.68000000000001 -1.7993628211026591E-003 + 142.73999999999998 -1.7909507858992792E-003 + 142.79999999999998 -1.7812801627840901E-003 + 142.85999999999999 -1.7703550587790766E-003 + 142.91999999999999 -1.7581819920629914E-003 + 142.97999999999999 -1.7447699326922066E-003 + 143.03999999999999 -1.7301303097580212E-003 + 143.09999999999999 -1.7142771241288590E-003 + 143.16000000000000 -1.6972267103552356E-003 + 143.22000000000000 -1.6789979668893995E-003 + 143.28000000000000 -1.6596117980911779E-003 + 143.34000000000000 -1.6390917390622186E-003 + 143.40000000000001 -1.6174632301537396E-003 + 143.45999999999998 -1.5947540374432519E-003 + 143.51999999999998 -1.5709939751395953E-003 + 143.57999999999998 -1.5462148864481739E-003 + 143.63999999999999 -1.5204506164069303E-003 + 143.69999999999999 -1.4937367826257865E-003 + 143.75999999999999 -1.4661107618676728E-003 + 143.81999999999999 -1.4376114839390278E-003 + 143.88000000000000 -1.4082796950763590E-003 + 143.94000000000000 -1.3781573694865133E-003 + 144.00000000000000 -1.3472879248297941E-003 + 144.06000000000000 -1.3157160326780972E-003 + 144.12000000000000 -1.2834874987362245E-003 + 144.18000000000001 -1.2506491324910374E-003 + 144.23999999999998 -1.2172487301405515E-003 + 144.29999999999998 -1.1833347696500170E-003 + 144.35999999999999 -1.1489563651946194E-003 + 144.41999999999999 -1.1141632044613132E-003 + 144.47999999999999 -1.0790053510040412E-003 + 144.53999999999999 -1.0435332060606600E-003 + 144.59999999999999 -1.0077972977524899E-003 + 144.66000000000000 -9.7184812226371107E-004 + 144.72000000000000 -9.3573630756686840E-004 + 144.78000000000000 -8.9951202920092476E-004 + 144.84000000000000 -8.6322531118421502E-004 + 144.90000000000001 -8.2692554117871409E-004 + 144.95999999999998 -7.9066184436755733E-004 + 145.01999999999998 -7.5448236206060264E-004 + 145.07999999999998 -7.1843479965051334E-004 + 145.13999999999999 -6.8256578932414922E-004 + 145.19999999999999 -6.4692105235055939E-004 + 145.25999999999999 -6.1154525048659448E-004 + 145.31999999999999 -5.7648196664342633E-004 + 145.38000000000000 -5.4177350000305508E-004 + 145.44000000000000 -5.0746088655342935E-004 + 145.50000000000000 -4.7358382248914100E-004 + 145.56000000000000 -4.4018049710284481E-004 + 145.62000000000000 -4.0728766410414076E-004 + 145.68000000000001 -3.7494052162766525E-004 + 145.73999999999998 -3.4317272897108400E-004 + 145.79999999999998 -3.1201627233314521E-004 + 145.85999999999999 -2.8150144819190934E-004 + 145.91999999999999 -2.5165691930159866E-004 + 145.97999999999999 -2.2250959688541785E-004 + 146.03999999999999 -1.9408465522448439E-004 + 146.09999999999999 -1.6640553964588069E-004 + 146.16000000000000 -1.3949386120193624E-004 + 146.22000000000000 -1.1336954958162160E-004 + 146.28000000000000 -8.8050689988326497E-005 + 146.34000000000000 -6.3553631248122248E-005 + 146.40000000000001 -3.9892961854801397E-005 + 146.45999999999998 -1.7081524229142268E-005 + 146.51999999999998 4.8695613071784481E-006 + 146.57999999999998 2.5950887763601354E-005 + 146.63999999999999 4.6154719241721796E-005 + 146.69999999999999 6.5474981957871776E-005 + 146.75999999999999 8.3907206637586052E-005 + 146.81999999999999 1.0144846005306374E-004 + 146.88000000000000 1.1809736694657865E-004 + 146.94000000000000 1.3385401002577113E-004 + 147.00000000000000 1.4871991065997021E-004 + 147.06000000000000 1.6269793413544858E-004 + 147.12000000000000 1.7579228771181263E-004 + 147.18000000000001 1.8800842210705984E-004 + 147.23999999999998 1.9935300566117014E-004 + 147.29999999999998 2.0983383827123415E-004 + 147.35999999999999 2.1945981860446153E-004 + 147.41999999999999 2.2824084786722884E-004 + 147.47999999999999 2.3618785709340233E-004 + 147.53999999999999 2.4331266252230202E-004 + 147.59999999999999 2.4962792944501367E-004 + 147.66000000000000 2.5514709880564417E-004 + 147.72000000000000 2.5988441456147488E-004 + 147.78000000000000 2.6385474744803738E-004 + 147.84000000000000 2.6707364340568257E-004 + 147.90000000000001 2.6955722358980815E-004 + 147.95999999999998 2.7132208624103574E-004 + 148.01999999999998 2.7238528393969271E-004 + 148.07999999999998 2.7276429978199897E-004 + 148.13999999999999 2.7247690667184785E-004 + 148.19999999999999 2.7154122957456268E-004 + 148.25999999999999 2.6997558931386040E-004 + 148.31999999999999 2.6779849391634340E-004 + 148.38000000000000 2.6502859912343830E-004 + 148.44000000000000 2.6168459739823801E-004 + 148.50000000000000 2.5778528081330090E-004 + 148.56000000000000 2.5334938726135172E-004 + 148.62000000000000 2.4839562496513216E-004 + 148.68000000000001 2.4294263542013839E-004 + 148.73999999999998 2.3700891363428631E-004 + 148.79999999999998 2.3061282675184276E-004 + 148.85999999999999 2.2377256227779216E-004 + 148.91999999999999 2.1650606073499331E-004 + 148.97999999999999 2.0883103775425207E-004 + 149.03999999999999 2.0076497664538710E-004 + 149.09999999999999 1.9232500762013383E-004 + 149.16000000000000 1.8352799510039687E-004 + 149.22000000000000 1.7439041419334544E-004 + 149.28000000000000 1.6492842140183804E-004 + 149.34000000000000 1.5515777322565641E-004 + 149.40000000000001 1.4509380231131312E-004 + 149.45999999999998 1.3475143737347656E-004 + 149.51999999999998 1.2414518707558523E-004 + 149.57999999999998 1.1328906628841229E-004 + 149.63999999999999 1.0219666162786069E-004 + 149.69999999999999 9.0881052870298457E-005 + 149.75999999999999 7.9354846911326374E-005 + 149.81999999999999 6.7630139281852505E-005 + 149.88000000000000 5.5718554879553245E-005 + 149.94000000000000 4.3631181785794632E-005 + 150.00000000000000 3.1378622149855651E-005 + 150.06000000000000 1.8970951034768457E-005 + 150.12000000000000 6.4177766042914031E-006 + 150.18000000000001 -6.2718339586460316E-006 + 150.23999999999998 -1.9089304233027212E-005 + 150.29999999999998 -3.2026535515305793E-005 + 150.35999999999999 -4.5075947669295181E-005 + 150.41999999999999 -5.8230415576828229E-005 + 150.47999999999999 -7.1483283621716871E-005 + 150.53999999999999 -8.4828393816992995E-005 + 150.59999999999999 -9.8260013641906531E-005 + 150.66000000000000 -1.1177284434497339E-004 + 150.72000000000000 -1.2536204214414566E-004 + 150.78000000000000 -1.3902316179726116E-004 + 150.84000000000000 -1.5275216817354202E-004 + 150.90000000000001 -1.6654539651058276E-004 + 150.95999999999998 -1.8039957752332260E-004 + 151.01999999999998 -1.9431176762256945E-004 + 151.07999999999998 -2.0827938800832579E-004 + 151.13999999999999 -2.2230012596067758E-004 + 151.19999999999999 -2.3637202580564079E-004 + 151.25999999999999 -2.5049337691726976E-004 + 151.31999999999999 -2.6466271108612784E-004 + 151.38000000000000 -2.7887878473666409E-004 + 151.44000000000000 -2.9314062071550526E-004 + 151.50000000000000 -3.0744731048330115E-004 + 151.56000000000000 -3.2179820313301636E-004 + 151.62000000000000 -3.3619273166344372E-004 + 151.68000000000001 -3.5063043432298718E-004 + 151.73999999999998 -3.6511091793783846E-004 + 151.79999999999998 -3.7963380746698140E-004 + 151.85999999999999 -3.9419872978135645E-004 + 151.91999999999999 -4.0880532212442895E-004 + 151.97999999999999 -4.2345311130776093E-004 + 152.03999999999999 -4.3814159005192157E-004 + 152.09999999999999 -4.5287003823884240E-004 + 152.16000000000000 -4.6763765803360625E-004 + 152.22000000000000 -4.8244337487357992E-004 + 152.28000000000000 -4.9728590384778447E-004 + 152.34000000000000 -5.1216375212252588E-004 + 152.40000000000001 -5.2707515514406156E-004 + 152.45999999999998 -5.4201798237007157E-004 + 152.51999999999998 -5.5698978136323467E-004 + 152.57999999999998 -5.7198770390188257E-004 + 152.63999999999999 -5.8700852759816847E-004 + 152.69999999999999 -6.0204860668964860E-004 + 152.75999999999999 -6.1710390738499595E-004 + 152.81999999999999 -6.3216983973921742E-004 + 152.88000000000000 -6.4724141758266875E-004 + 152.94000000000000 -6.6231305461484605E-004 + 153.00000000000000 -6.7737865455604757E-004 + 153.06000000000000 -6.9243162063530690E-004 + 153.12000000000000 -7.0746473616495136E-004 + 153.17999999999998 -7.2247026460513957E-004 + 153.23999999999998 -7.3743982036799619E-004 + 153.29999999999998 -7.5236442849280303E-004 + 153.35999999999999 -7.6723442466811436E-004 + 153.41999999999999 -7.8203954520834125E-004 + 153.47999999999999 -7.9676893415610739E-004 + 153.53999999999999 -8.1141104926849006E-004 + 153.59999999999999 -8.2595364629081442E-004 + 153.66000000000000 -8.4038399633975982E-004 + 153.72000000000000 -8.5468863245771027E-004 + 153.78000000000000 -8.6885365273880425E-004 + 153.84000000000000 -8.8286430936197866E-004 + 153.90000000000001 -8.9670546218017881E-004 + 153.95999999999998 -9.1036135450078002E-004 + 154.01999999999998 -9.2381572404918533E-004 + 154.07999999999998 -9.3705187706152784E-004 + 154.13999999999999 -9.5005249731357319E-004 + 154.19999999999999 -9.6280001067167349E-004 + 154.25999999999999 -9.7527633030915347E-004 + 154.31999999999999 -9.8746296580279553E-004 + 154.38000000000000 -9.9934128568985973E-004 + 154.44000000000000 -1.0108921706684874E-003 + 154.50000000000000 -1.0220964070184347E-003 + 154.56000000000000 -1.0329345733284768E-003 + 154.62000000000000 -1.0433869834040347E-003 + 154.67999999999998 -1.0534340711504989E-003 + 154.73999999999998 -1.0630559403314057E-003 + 154.79999999999998 -1.0722329399504944E-003 + 154.85999999999999 -1.0809454104691060E-003 + 154.91999999999999 -1.0891737565288434E-003 + 154.97999999999999 -1.0968986229103650E-003 + 155.03999999999999 -1.1041008794583228E-003 + 155.09999999999999 -1.1107617141969928E-003 + 155.16000000000000 -1.1168626791354672E-003 + 155.22000000000000 -1.1223857133499651E-003 + 155.28000000000000 -1.1273133069547034E-003 + 155.34000000000000 -1.1316283879486588E-003 + 155.40000000000001 -1.1353145825321897E-003 + 155.45999999999998 -1.1383562821966748E-003 + 155.51999999999998 -1.1407384754650752E-003 + 155.57999999999998 -1.1424469479424377E-003 + 155.63999999999999 -1.1434683940095753E-003 + 155.69999999999999 -1.1437903689415409E-003 + 155.75999999999999 -1.1434014550485072E-003 + 155.81999999999999 -1.1422911882000915E-003 + 155.88000000000000 -1.1404503093487312E-003 + 155.94000000000000 -1.1378704460270261E-003 + 156.00000000000000 -1.1345446680516612E-003 + 156.06000000000000 -1.1304668771359631E-003 + 156.12000000000000 -1.1256327203400520E-003 + 156.17999999999998 -1.1200386781436448E-003 + 156.23999999999998 -1.1136827784661433E-003 + 156.29999999999998 -1.1065643254944660E-003 + 156.35999999999999 -1.0986840640580247E-003 + 156.41999999999999 -1.0900440379277567E-003 + 156.47999999999999 -1.0806477881022440E-003 + 156.53999999999999 -1.0705000861064350E-003 + 156.59999999999999 -1.0596073928926348E-003 + 156.66000000000000 -1.0479775689807094E-003 + 156.72000000000000 -1.0356197529421032E-003 + 156.78000000000000 -1.0225446349801791E-003 + 156.84000000000000 -1.0087643258117928E-003 + 156.90000000000001 -9.9429238294904544E-004 + 156.95999999999998 -9.7914383195185943E-004 + 157.01999999999998 -9.6333491701266170E-004 + 157.07999999999998 -9.4688339194032647E-004 + 157.13999999999999 -9.2980839724079328E-004 + 157.19999999999999 -9.1213018252744014E-004 + 157.25999999999999 -8.9387048096358076E-004 + 157.31999999999999 -8.7505222343920580E-004 + 157.38000000000000 -8.5569944266130314E-004 + 157.44000000000000 -8.3583733633477500E-004 + 157.50000000000000 -8.1549221333086818E-004 + 157.56000000000000 -7.9469144159052970E-004 + 157.62000000000000 -7.7346328460610599E-004 + 157.67999999999998 -7.5183691857330323E-004 + 157.73999999999998 -7.2984248476851328E-004 + 157.79999999999998 -7.0751066713334993E-004 + 157.85999999999999 -6.8487301832332985E-004 + 157.91999999999999 -6.6196168296419776E-004 + 157.97999999999999 -6.3880932019056346E-004 + 158.03999999999999 -6.1544913405686024E-004 + 158.09999999999999 -5.9191469389344490E-004 + 158.16000000000000 -5.6823991846341037E-004 + 158.22000000000000 -5.4445886853514208E-004 + 158.28000000000000 -5.2060594651716732E-004 + 158.34000000000000 -4.9671552475672072E-004 + 158.40000000000001 -4.7282204134129488E-004 + 158.45999999999998 -4.4895990490716902E-004 + 158.51999999999998 -4.2516328439554032E-004 + 158.57999999999998 -4.0146626608162891E-004 + 158.63999999999999 -3.7790251238365357E-004 + 158.69999999999999 -3.5450530124970386E-004 + 158.75999999999999 -3.3130755221863657E-004 + 158.81999999999999 -3.0834153838465165E-004 + 158.88000000000000 -2.8563903619013945E-004 + 158.94000000000000 -2.6323106495296309E-004 + 159.00000000000000 -2.4114785359009963E-004 + 159.06000000000000 -2.1941894107617828E-004 + 159.12000000000000 -1.9807286418026916E-004 + 159.17999999999998 -1.7713727561001599E-004 + 159.23999999999998 -1.5663886026904438E-004 + 159.29999999999998 -1.3660323151453579E-004 + 159.35999999999999 -1.1705490555302586E-004 + 159.41999999999999 -9.8017272073374186E-005 + 159.47999999999999 -7.9512555505329948E-005 + 159.53999999999999 -6.1561805119818324E-005 + 159.59999999999999 -4.4184786030142568E-005 + 159.66000000000000 -2.7400056424324863E-005 + 159.72000000000000 -1.1224870535591177E-005 + 159.78000000000000 4.3248169397107794E-006 + 159.84000000000000 1.9234346231137835E-005 + 159.90000000000001 3.3490372585142310E-005 + 159.95999999999998 4.7080892731099903E-005 + 160.01999999999998 5.9995280023586537E-005 + 160.07999999999998 7.2224171840807715E-005 + 160.13999999999999 8.3759568012347805E-005 + 160.19999999999999 9.4594814461328847E-005 + 160.25999999999999 1.0472452074052249E-004 + 160.31999999999999 1.1414462842770316E-004 + 160.38000000000000 1.2285234516086940E-004 + 160.44000000000000 1.3084614003372320E-004 + 160.50000000000000 1.3812571237679949E-004 + 160.56000000000000 1.4469196998708047E-004 + 160.62000000000000 1.5054694238400622E-004 + 160.67999999999998 1.5569382881749089E-004 + 160.73999999999998 1.6013686573723083E-004 + 160.79999999999998 1.6388135505213737E-004 + 160.85999999999999 1.6693359714191664E-004 + 160.91999999999999 1.6930080047032630E-004 + 160.97999999999999 1.7099104447809713E-004 + 161.03999999999999 1.7201328035727542E-004 + 161.09999999999999 1.7237716060729369E-004 + 161.16000000000000 1.7209307089855315E-004 + 161.22000000000000 1.7117205075601130E-004 + 161.28000000000000 1.6962570344871886E-004 + 161.34000000000000 1.6746620624863114E-004 + 161.40000000000001 1.6470610870089825E-004 + 161.45999999999998 1.6135844105044127E-004 + 161.51999999999998 1.5743649732648037E-004 + 161.57999999999998 1.5295390754041554E-004 + 161.63999999999999 1.4792448357159023E-004 + 161.69999999999999 1.4236217493018727E-004 + 161.75999999999999 1.3628108237085895E-004 + 161.81999999999999 1.2969531967719979E-004 + 161.88000000000000 1.2261898297517252E-004 + 161.94000000000000 1.1506611072294461E-004 + 162.00000000000000 1.0705063774720804E-004 + 162.06000000000000 9.8586315058096454E-005 + 162.12000000000000 8.9686679889729485E-005 + 162.17999999999998 8.0365000009457408E-005 + 162.23999999999998 7.0634220983889311E-005 + 162.29999999999998 6.0506946000224749E-005 + 162.35999999999999 4.9995337258075632E-005 + 162.41999999999999 3.9111142931349623E-005 + 162.47999999999999 2.7865594213462233E-005 + 162.53999999999999 1.6269391148672157E-005 + 162.59999999999999 4.3326763229964931E-006 + 162.66000000000000 -7.9350517409662320E-006 + 162.72000000000000 -2.0524901230232174E-005 + 162.78000000000000 -3.3428678752628558E-005 + 162.84000000000000 -4.6638858744782840E-005 + 162.90000000000001 -6.0148651618984825E-005 + 162.95999999999998 -7.3951997458886033E-005 + 163.01999999999998 -8.8043569802628756E-005 + 163.07999999999998 -1.0241881849779097E-004 + 163.13999999999999 -1.1707393528007573E-004 + 163.19999999999999 -1.3200587949776697E-004 + 163.25999999999999 -1.4721234702133655E-004 + 163.31999999999999 -1.6269177948037621E-004 + 163.38000000000000 -1.7844336490933219E-004 + 163.44000000000000 -1.9446697731743961E-004 + 163.50000000000000 -2.1076323917774693E-004 + 163.56000000000000 -2.2733339843846373E-004 + 163.62000000000000 -2.4417936201279650E-004 + 163.67999999999998 -2.6130367619511829E-004 + 163.73999999999998 -2.7870948414924742E-004 + 163.79999999999998 -2.9640050909122517E-004 + 163.85999999999999 -3.1438098227058747E-004 + 163.91999999999999 -3.3265567152383985E-004 + 163.97999999999999 -3.5122976749531827E-004 + 164.03999999999999 -3.7010892351817341E-004 + 164.09999999999999 -3.8929919765297180E-004 + 164.16000000000000 -4.0880691112216448E-004 + 164.22000000000000 -4.2863874133324724E-004 + 164.28000000000000 -4.4880156017325715E-004 + 164.34000000000000 -4.6930246338618218E-004 + 164.40000000000001 -4.9014868339000077E-004 + 164.45999999999998 -5.1134749499567238E-004 + 164.51999999999998 -5.3290609204325896E-004 + 164.57999999999998 -5.5483167238567967E-004 + 164.63999999999999 -5.7713129703403597E-004 + 164.69999999999999 -5.9981181660232949E-004 + 164.75999999999999 -6.2287981553549299E-004 + 164.81999999999999 -6.4634141787785421E-004 + 164.88000000000000 -6.7020238082507336E-004 + 164.94000000000000 -6.9446789981982720E-004 + 165.00000000000000 -7.1914257000995653E-004 + 165.06000000000000 -7.4423044210797341E-004 + 165.12000000000000 -7.6973464543906168E-004 + 165.17999999999998 -7.9565763703301191E-004 + 165.23999999999998 -8.2200081096160183E-004 + 165.29999999999998 -8.4876469223769415E-004 + 165.35999999999999 -8.7594883780042093E-004 + 165.41999999999999 -9.0355153708816935E-004 + 165.47999999999999 -9.3156995214146781E-004 + 165.53999999999999 -9.5999996607291395E-004 + 165.59999999999999 -9.8883612030609830E-004 + 165.66000000000000 -1.0180717868921647E-003 + 165.72000000000000 -1.0476985963390223E-003 + 165.78000000000000 -1.0777068844855413E-003 + 165.84000000000000 -1.1080854026904257E-003 + 165.90000000000001 -1.1388212495765898E-003 + 165.95999999999998 -1.1698999165765578E-003 + 166.01999999999998 -1.2013052580850169E-003 + 166.07999999999998 -1.2330191615889344E-003 + 166.13999999999999 -1.2650220504746351E-003 + 166.19999999999999 -1.2972922993971926E-003 + 166.25999999999999 -1.3298063958121715E-003 + 166.31999999999999 -1.3625390920701300E-003 + 166.38000000000000 -1.3954633632587946E-003 + 166.44000000000000 -1.4285500626102477E-003 + 166.50000000000000 -1.4617680817636833E-003 + 166.56000000000000 -1.4950846286182586E-003 + 166.62000000000000 -1.5284648714650518E-003 + 166.67999999999998 -1.5618718672964107E-003 + 166.73999999999998 -1.5952671570249450E-003 + 166.79999999999998 -1.6286102078325951E-003 + 166.85999999999999 -1.6618586260748192E-003 + 166.91999999999999 -1.6949682333278276E-003 + 166.97999999999999 -1.7278932545984936E-003 + 167.03999999999999 -1.7605860050579751E-003 + 167.09999999999999 -1.7929974158173274E-003 + 167.16000000000000 -1.8250767579604745E-003 + 167.22000000000000 -1.8567717019701286E-003 + 167.28000000000000 -1.8880287496155165E-003 + 167.34000000000000 -1.9187928505672461E-003 + 167.40000000000001 -1.9490082958680895E-003 + 167.45999999999998 -1.9786174551418576E-003 + 167.51999999999998 -2.0075625007167741E-003 + 167.57999999999998 -2.0357844129268777E-003 + 167.63999999999999 -2.0632232042779937E-003 + 167.69999999999999 -2.0898186509243498E-003 + 167.75999999999999 -2.1155099848970240E-003 + 167.81999999999999 -2.1402356818912265E-003 + 167.88000000000000 -2.1639343275603054E-003 + 167.94000000000000 -2.1865443779589132E-003 + 168.00000000000000 -2.2080042338864596E-003 + 168.06000000000000 -2.2282526943897952E-003 + 168.12000000000000 -2.2472288428547070E-003 + 168.17999999999998 -2.2648720877045223E-003 + 168.23999999999998 -2.2811227818569689E-003 + 168.29999999999998 -2.2959219446880065E-003 + 168.35999999999999 -2.3092117885873628E-003 + 168.41999999999999 -2.3209354283642127E-003 + 168.47999999999999 -2.3310376206376287E-003 + 168.53999999999999 -2.3394645602418307E-003 + 168.59999999999999 -2.3461639937146098E-003 + 168.66000000000000 -2.3510854441767468E-003 + 168.72000000000000 -2.3541807695795108E-003 + 168.78000000000000 -2.3554037225750391E-003 + 168.84000000000000 -2.3547104274879269E-003 + 168.90000000000001 -2.3520596091491670E-003 + 168.95999999999998 -2.3474122643195620E-003 + 169.01999999999998 -2.3407326963516316E-003 + 169.07999999999998 -2.3319873950702120E-003 + 169.13999999999999 -2.3211466665165126E-003 + 169.19999999999999 -2.3081833679982041E-003 + 169.25999999999999 -2.2930740401167393E-003 + 169.31999999999999 -2.2757981967876945E-003 + 169.38000000000000 -2.2563390442697914E-003 + 169.44000000000000 -2.2346834494845489E-003 + 169.50000000000000 -2.2108216634209111E-003 + 169.56000000000000 -2.1847479071124935E-003 + 169.62000000000000 -2.1564600787538088E-003 + 169.67999999999998 -2.1259598480622179E-003 + 169.73999999999998 -2.0932528504110180E-003 + 169.79999999999998 -2.0583485894791649E-003 + 169.85999999999999 -2.0212607101682389E-003 + 169.91999999999999 -1.9820065007043640E-003 + 169.97999999999999 -1.9406075209919638E-003 + 170.03999999999999 -1.8970892996359610E-003 + 170.09999999999999 -1.8514812488689941E-003 + 170.16000000000000 -1.8038165264644733E-003 + 170.22000000000000 -1.7541325403715199E-003 + 170.28000000000000 -1.7024702797922768E-003 + 170.34000000000000 -1.6488745445960152E-003 + 170.40000000000001 -1.5933938563669442E-003 + 170.45999999999998 -1.5360805306592227E-003 + 170.51999999999998 -1.4769901884481859E-003 + 170.57999999999998 -1.4161821714127674E-003 + 170.63999999999999 -1.3537187384115093E-003 + 170.69999999999999 -1.2896657102866049E-003 + 170.75999999999999 -1.2240920191095785E-003 + 170.81999999999999 -1.1570692235929900E-003 + 170.88000000000000 -1.0886719880409258E-003 + 170.94000000000000 -1.0189773910785932E-003 + 171.00000000000000 -9.4806501919474735E-004 + 171.06000000000000 -8.7601692791882074E-004 + 171.12000000000000 -8.0291726136557219E-004 + 171.17999999999998 -7.2885202418825491E-004 + 171.23999999999998 -6.5390898301480717E-004 + 171.29999999999998 -5.7817771452793251E-004 + 171.35999999999999 -5.0174899871460927E-004 + 171.41999999999999 -4.2471473317966230E-004 + 171.47999999999999 -3.4716801442314635E-004 + 171.53999999999999 -2.6920259253792494E-004 + 171.59999999999999 -1.9091284714580406E-004 + 171.66000000000000 -1.1239361702408321E-004 + 171.72000000000000 -3.3739901200988099E-005 + 171.78000000000000 4.4953361260751079E-005 + 171.84000000000000 1.2359140404234127E-004 + 171.90000000000001 2.0207982868584832E-004 + 171.95999999999998 2.8032481526586836E-004 + 172.01999999999998 3.5823344841794179E-004 + 172.07999999999998 4.3571372449608087E-004 + 172.13999999999999 5.1267473689835252E-004 + 172.19999999999999 5.8902703644623708E-004 + 172.25999999999999 6.6468272478547978E-004 + 172.31999999999999 7.3955555221651278E-004 + 172.38000000000000 8.1356104254907274E-004 + 172.44000000000000 8.8661696546695271E-004 + 172.50000000000000 9.5864311429205663E-004 + 172.56000000000000 1.0295616233148646E-003 + 172.62000000000000 1.0992971501859114E-003 + 172.67999999999998 1.1677770147373431E-003 + 172.73999999999998 1.2349310199998797E-003 + 172.79999999999998 1.3006919693787729E-003 + 172.85999999999999 1.3649955664240519E-003 + 172.91999999999999 1.4277805527745310E-003 + 172.97999999999999 1.4889886906508188E-003 + 173.03999999999999 1.5485650923716440E-003 + 173.09999999999999 1.6064580055187684E-003 + 173.16000000000000 1.6626189952046581E-003 + 173.22000000000000 1.7170030070101170E-003 + 173.28000000000000 1.7695683651624333E-003 + 173.34000000000000 1.8202769170935274E-003 + 173.40000000000001 1.8690938336280625E-003 + 173.45999999999998 1.9159878257358049E-003 + 173.51999999999998 1.9609311443764565E-003 + 173.57999999999998 2.0038994111854793E-003 + 173.63999999999999 2.0448720736825836E-003 + 173.69999999999999 2.0838315594345052E-003 + 173.75999999999999 2.1207641478834453E-003 + 173.81999999999999 2.1556593997148167E-003 + 173.88000000000000 2.1885103289137693E-003 + 173.94000000000000 2.2193126859056064E-003 + 174.00000000000000 2.2480662635442350E-003 + 174.06000000000000 2.2747737557139275E-003 + 174.12000000000000 2.2994411035109782E-003 + 174.17999999999998 2.3220771510688038E-003 + 174.23999999999998 2.3426938565841052E-003 + 174.29999999999998 2.3613062212455944E-003 + 174.35999999999999 2.3779314776807897E-003 + 174.41999999999999 2.3925904715177042E-003 + 174.47999999999999 2.4053060672841490E-003 + 174.53999999999999 2.4161036897528839E-003 + 174.59999999999999 2.4250116598917466E-003 + 174.66000000000000 2.4320604764519051E-003 + 174.72000000000000 2.4372824364500513E-003 + 174.78000000000000 2.4407123572968582E-003 + 174.84000000000000 2.4423870796692255E-003 + 174.90000000000001 2.4423450791692743E-003 + 174.95999999999998 2.4406267539212162E-003 + 175.01999999999998 2.4372743994885205E-003 + 175.07999999999998 2.4323314583092719E-003 + 175.13999999999999 2.4258432122690418E-003 + 175.19999999999999 2.4178561497087935E-003 + 175.25999999999999 2.4084177823656770E-003 + 175.31999999999999 2.3975769359354149E-003 + 175.38000000000000 2.3853831478296787E-003 + 175.44000000000000 2.3718870199318830E-003 + 175.50000000000000 2.3571398266020193E-003 + 175.56000000000000 2.3411936842335028E-003 + 175.62000000000000 2.3241008675803699E-003 + 175.67999999999998 2.3059143663492609E-003 + 175.73999999999998 2.2866873621306422E-003 + 175.79999999999998 2.2664734687034165E-003 + 175.85999999999999 2.2453260943267632E-003 + 175.91999999999999 2.2232986813952630E-003 + 175.97999999999999 2.2004448781708418E-003 + 176.03999999999999 2.1768181809901461E-003 + 176.09999999999999 2.1524713420831973E-003 + 176.16000000000000 2.1274572204967477E-003 + 176.22000000000000 2.1018282286489045E-003 + 176.28000000000000 2.0756360009847184E-003 + 176.34000000000000 2.0489316766539581E-003 + 176.40000000000001 2.0217658478445767E-003 + 176.45999999999998 1.9941883631134430E-003 + 176.51999999999998 1.9662478604080382E-003 + 176.57999999999998 1.9379925651733681E-003 + 176.63999999999999 1.9094695755926521E-003 + 176.69999999999999 1.8807247986322431E-003 + 176.75999999999999 1.8518032739251985E-003 + 176.81999999999999 1.8227487548710393E-003 + 176.88000000000000 1.7936040329837087E-003 + 176.94000000000000 1.7644104643579565E-003 + 177.00000000000000 1.7352082931847855E-003 + 177.06000000000000 1.7060363006271995E-003 + 177.12000000000000 1.6769320480505203E-003 + 177.17999999999998 1.6479317045392100E-003 + 177.23999999999998 1.6190700650237746E-003 + 177.29999999999998 1.5903803654264968E-003 + 177.35999999999999 1.5618945065654726E-003 + 177.41999999999999 1.5336428826284499E-003 + 177.47999999999999 1.5056543225149593E-003 + 177.53999999999999 1.4779562296818166E-003 + 177.59999999999999 1.4505744111733472E-003 + 177.66000000000000 1.4235332691918305E-003 + 177.72000000000000 1.3968555466250688E-003 + 177.78000000000000 1.3705625911582819E-003 + 177.84000000000000 1.3446739445204790E-003 + 177.90000000000001 1.3192079575460301E-003 + 177.95999999999998 1.2941811387752141E-003 + 178.01999999999998 1.2696087390527990E-003 + 178.07999999999998 1.2455044597663785E-003 + 178.13999999999999 1.2218803525035780E-003 + 178.19999999999999 1.1987471873433151E-003 + 178.25999999999999 1.1761142441259859E-003 + 178.31999999999999 1.1539894612716084E-003 + 178.38000000000000 1.1323792828665466E-003 + 178.44000000000000 1.1112888822663427E-003 + 178.50000000000000 1.0907221855289766E-003 + 178.56000000000000 1.0706819268321295E-003 + 178.62000000000000 1.0511693401312214E-003 + 178.67999999999998 1.0321846774939676E-003 + 178.73999999999998 1.0137269959806150E-003 + 178.79999999999998 9.9579423982588218E-004 + 178.85999999999999 9.7838325815976829E-004 + 178.91999999999999 9.6149000887854543E-004 + 178.97999999999999 9.4510948708312272E-004 + 179.03999999999999 9.2923560082961787E-004 + 179.09999999999999 9.1386162382575253E-004 + 179.16000000000000 8.9897993452192995E-004 + 179.22000000000000 8.8458216846365239E-004 + 179.28000000000000 8.7065928768020168E-004 + 179.34000000000000 8.5720146276039395E-004 + 179.40000000000001 8.4419848770318588E-004 + 179.45999999999998 8.3163951129491462E-004 + 179.51999999999998 8.1951315895923370E-004 + 179.57999999999998 8.0780770874969317E-004 + 179.63999999999999 7.9651102454666545E-004 + 179.69999999999999 7.8561066732903823E-004 + 179.75999999999999 7.7509388535957518E-004 + 179.81999999999999 7.6494766433354985E-004 + 179.88000000000000 7.5515883397021236E-004 + 179.94000000000000 7.4571425201572271E-004 + 180.00000000000000 7.3660046000625879E-004 + 180.06000000000000 7.2780412076020097E-004 + 180.12000000000000 7.1931190259571479E-004 + 180.17999999999998 7.1111059989533028E-004 + 180.23999999999998 7.0318701908182756E-004 + 180.29999999999998 6.9552817430142805E-004 + 180.35999999999999 6.8812133732524075E-004 + 180.41999999999999 6.8095394372377684E-004 + 180.47999999999999 6.7401375707587562E-004 + 180.53999999999999 6.6728882677907254E-004 + 180.59999999999999 6.6076762429485500E-004 + 180.66000000000000 6.5443892693423924E-004 + 180.72000000000000 6.4829187638499512E-004 + 180.78000000000000 6.4231616880649209E-004 + 180.84000000000000 6.3650183751867934E-004 + 180.90000000000001 6.3083929209225155E-004 + 180.95999999999998 6.2531951453888236E-004 + 181.01999999999998 6.1993396090024818E-004 + 181.07999999999998 6.1467453581416165E-004 + 181.13999999999999 6.0953360123645905E-004 + 181.19999999999999 6.0450404721704317E-004 + 181.25999999999999 5.9957926398512785E-004 + 181.31999999999999 5.9475315662875516E-004 + 181.38000000000000 5.9002009236154747E-004 + 181.44000000000000 5.8537497349394805E-004 + 181.50000000000000 5.8081328702061204E-004 + 181.56000000000000 5.7633079968633452E-004 + 181.62000000000000 5.7192401141325133E-004 + 181.67999999999998 5.6758978201059925E-004 + 181.73999999999998 5.6332553890937496E-004 + 181.79999999999998 5.5912909774631127E-004 + 181.85999999999999 5.5499875703970969E-004 + 181.91999999999999 5.5093319273752405E-004 + 181.97999999999999 5.4693159223151227E-004 + 182.03999999999999 5.4299351696020259E-004 + 182.09999999999999 5.3911886716872127E-004 + 182.16000000000000 5.3530795090035298E-004 + 182.22000000000000 5.3156133596214477E-004 + 182.28000000000000 5.2787989165573707E-004 + 182.34000000000000 5.2426473942598776E-004 + 182.39999999999998 5.2071729402733218E-004 + 182.45999999999998 5.1723911802618167E-004 + 182.51999999999998 5.1383207949293793E-004 + 182.57999999999998 5.1049805424915331E-004 + 182.63999999999999 5.0723912228820564E-004 + 182.69999999999999 5.0405748089635727E-004 + 182.75999999999999 5.0095544744528089E-004 + 182.81999999999999 4.9793535459890679E-004 + 182.88000000000000 4.9499956398073872E-004 + 182.94000000000000 4.9215045316345469E-004 + 183.00000000000000 4.8939044624400196E-004 + 183.06000000000000 4.8672190893983986E-004 + 183.12000000000000 4.8414714002997745E-004 + 183.17999999999998 4.8166839328936053E-004 + 183.23999999999998 4.7928772872201866E-004 + 183.29999999999998 4.7700717768054177E-004 + 183.35999999999999 4.7482859976866046E-004 + 183.41999999999999 4.7275366048957343E-004 + 183.47999999999999 4.7078394241855650E-004 + 183.53999999999999 4.6892071165829496E-004 + 183.59999999999999 4.6716511770577337E-004 + 183.66000000000000 4.6551803794187268E-004 + 183.72000000000000 4.6398012137873954E-004 + 183.78000000000000 4.6255179175503573E-004 + 183.84000000000000 4.6123317479693823E-004 + 183.89999999999998 4.6002412772954858E-004 + 183.95999999999998 4.5892423016878023E-004 + 184.01999999999998 4.5793281503036924E-004 + 184.07999999999998 4.5704886490898584E-004 + 184.13999999999999 4.5627111409664024E-004 + 184.19999999999999 4.5559796047520845E-004 + 184.25999999999999 4.5502759967114720E-004 + 184.31999999999999 4.5455775289367516E-004 + 184.38000000000000 4.5418596618896175E-004 + 184.44000000000000 4.5390942845281132E-004 + 184.50000000000000 4.5372504252868395E-004 + 184.56000000000000 4.5362943889872448E-004 + 184.62000000000000 4.5361895839121457E-004 + 184.67999999999998 4.5368966476415888E-004 + 184.73999999999998 4.5383734745791651E-004 + 184.79999999999998 4.5405754539495485E-004 + 184.85999999999999 4.5434557427170461E-004 + 184.91999999999999 4.5469652249544821E-004 + 184.97999999999999 4.5510528467043509E-004 + 185.03999999999999 4.5556657653154459E-004 + 185.09999999999999 4.5607492548017600E-004 + 185.16000000000000 4.5662471735833065E-004 + 185.22000000000000 4.5721019386256955E-004 + 185.28000000000000 4.5782552184064500E-004 + 185.34000000000000 4.5846469557824144E-004 + 185.39999999999998 4.5912168561582442E-004 + 185.45999999999998 4.5979039742010617E-004 + 185.51999999999998 4.6046466259421582E-004 + 185.57999999999998 4.6113830189272966E-004 + 185.63999999999999 4.6180510275900430E-004 + 185.69999999999999 4.6245889243271086E-004 + 185.75999999999999 4.6309350822627420E-004 + 185.81999999999999 4.6370286324653727E-004 + 185.88000000000000 4.6428089562971099E-004 + 185.94000000000000 4.6482168885311737E-004 + 186.00000000000000 4.6531937552631800E-004 + 186.06000000000000 4.6576826212458666E-004 + 186.12000000000000 4.6616276995309098E-004 + 186.17999999999998 4.6649753156676062E-004 + 186.23999999999998 4.6676740104703096E-004 + 186.29999999999998 4.6696738503030472E-004 + 186.35999999999999 4.6709271565998408E-004 + 186.41999999999999 4.6713890411946991E-004 + 186.47999999999999 4.6710170459796389E-004 + 186.53999999999999 4.6697716444701800E-004 + 186.59999999999999 4.6676153753167141E-004 + 186.66000000000000 4.6645146784235687E-004 + 186.72000000000000 4.6604376457160652E-004 + 186.78000000000000 4.6553570257862613E-004 + 186.84000000000000 4.6492474044202282E-004 + 186.89999999999998 4.6420868701191808E-004 + 186.95999999999998 4.6338573062788780E-004 + 187.01999999999998 4.6245426970420087E-004 + 187.07999999999998 4.6141316079685341E-004 + 187.13999999999999 4.6026146209087967E-004 + 187.19999999999999 4.5899869704868891E-004 + 187.25999999999999 4.5762461527904484E-004 + 187.31999999999999 4.5613932361024910E-004 + 187.38000000000000 4.5454332610388485E-004 + 187.44000000000000 4.5283735457389530E-004 + 187.50000000000000 4.5102251331137217E-004 + 187.56000000000000 4.4910015493253731E-004 + 187.62000000000000 4.4707194419811862E-004 + 187.67999999999998 4.4493983545032447E-004 + 187.73999999999998 4.4270602956530730E-004 + 187.79999999999998 4.4037299270349554E-004 + 187.85999999999999 4.3794341108976834E-004 + 187.91999999999999 4.3542017388492637E-004 + 187.97999999999999 4.3280640193515897E-004 + 188.03999999999999 4.3010537917805665E-004 + 188.09999999999999 4.2732052729694181E-004 + 188.16000000000000 4.2445544847486934E-004 + 188.22000000000000 4.2151390971557608E-004 + 188.28000000000000 4.1849972956972052E-004 + 188.34000000000000 4.1541690512300741E-004 + 188.39999999999998 4.1226949913168617E-004 + 188.45999999999998 4.0906166988230821E-004 + 188.51999999999998 4.0579759935581363E-004 + 188.57999999999998 4.0248158600666463E-004 + 188.63999999999999 3.9911788294936742E-004 + 188.69999999999999 3.9571079523174272E-004 + 188.75999999999999 3.9226462461897245E-004 + 188.81999999999999 3.8878360643174452E-004 + 188.88000000000000 3.8527197210007932E-004 + 188.94000000000000 3.8173382805487536E-004 + 189.00000000000000 3.7817323523014053E-004 + 189.06000000000000 3.7459411910966594E-004 + 189.12000000000000 3.7100026797080014E-004 + 189.17999999999998 3.6739531226003322E-004 + 189.23999999999998 3.6378273469258373E-004 + 189.29999999999998 3.6016582471718421E-004 + 189.35999999999999 3.5654769382974298E-004 + 189.41999999999999 3.5293122236584667E-004 + 189.47999999999999 3.4931913559816487E-004 + 189.53999999999999 3.4571392190887513E-004 + 189.59999999999999 3.4211785209990801E-004 + 189.66000000000000 3.3853298798509635E-004 + 189.72000000000000 3.3496117068231604E-004 + 189.78000000000000 3.3140403198002018E-004 + 189.84000000000000 3.2786302684697941E-004 + 189.89999999999998 3.2433937133578128E-004 + 189.95999999999998 3.2083408687768309E-004 + 190.01999999999998 3.1734797541497009E-004 + 190.07999999999998 3.1388168003857023E-004 + 190.13999999999999 3.1043560008535073E-004 + 190.19999999999999 3.0700995103438120E-004 + 190.25999999999999 3.0360475940778998E-004 + 190.31999999999999 3.0021991206406545E-004 + 190.38000000000000 2.9685499936501011E-004 + 190.44000000000000 2.9350956284076646E-004 + 190.50000000000000 2.9018293383068519E-004 + 190.56000000000000 2.8687424075086299E-004 + 190.62000000000000 2.8358251837804589E-004 + 190.67999999999998 2.8030664205117706E-004 + 190.73999999999998 2.7704534833662117E-004 + 190.79999999999998 2.7379734155399277E-004 + 190.85999999999999 2.7056117866356750E-004 + 190.91999999999999 2.6733531647170198E-004 + 190.97999999999999 2.6411820781698132E-004 + 191.03999999999999 2.6090822041196018E-004 + 191.09999999999999 2.5770375697742104E-004 + 191.16000000000000 2.5450312878253910E-004 + 191.22000000000000 2.5130473378663615E-004 + 191.28000000000000 2.4810696461791739E-004 + 191.34000000000000 2.4490826791813235E-004 + 191.39999999999998 2.4170716781888289E-004 + 191.45999999999998 2.3850226971511938E-004 + 191.51999999999998 2.3529225965258693E-004 + 191.57999999999998 2.3207596931712281E-004 + 191.63999999999999 2.2885235793523151E-004 + 191.69999999999999 2.2562054369885170E-004 + 191.75999999999999 2.2237982596865695E-004 + 191.81999999999999 2.1912965537595835E-004 + 191.88000000000000 2.1586972779790470E-004 + 191.94000000000000 2.1259990667357883E-004 + 192.00000000000000 2.0932031633091183E-004 + 192.06000000000000 2.0603128531310096E-004 + 192.12000000000000 2.0273338714990840E-004 + 192.17999999999998 1.9942744081863589E-004 + 192.23999999999998 1.9611449129358437E-004 + 192.29999999999998 1.9279582899468610E-004 + 192.35999999999999 1.8947303458433177E-004 + 192.41999999999999 1.8614790681419907E-004 + 192.47999999999999 1.8282249441348440E-004 + 192.53999999999999 1.7949913050332674E-004 + 192.59999999999999 1.7618037186767571E-004 + 192.66000000000000 1.7286904949736500E-004 + 192.72000000000000 1.6956823168081813E-004 + 192.78000000000000 1.6628128850457445E-004 + 192.84000000000000 1.6301181411796788E-004 + 192.89999999999998 1.5976370168126102E-004 + 192.95999999999998 1.5654108266903108E-004 + 193.01999999999998 1.5334835307643114E-004 + 193.07999999999998 1.5019018242958936E-004 + 193.13999999999999 1.4707146959902980E-004 + 193.19999999999999 1.4399736742594368E-004 + 193.25999999999999 1.4097324438274193E-004 + 193.31999999999999 1.3800468481150056E-004 + 193.38000000000000 1.3509748354425871E-004 + 193.44000000000000 1.3225758236421619E-004 + 193.50000000000000 1.2949108179827662E-004 + 193.56000000000000 1.2680421755340124E-004 + 193.62000000000000 1.2420331219067452E-004 + 193.67999999999998 1.2169479356649476E-004 + 193.73999999999998 1.1928510367639468E-004 + 193.79999999999998 1.1698073744093171E-004 + 193.85999999999999 1.1478820825891451E-004 + 193.91999999999999 1.1271400223985508E-004 + 193.97999999999999 1.1076458412346237E-004 + 194.03999999999999 1.0894634927282947E-004 + 194.09999999999999 1.0726565815790217E-004 + 194.16000000000000 1.0572875907531976E-004 + 194.22000000000000 1.0434180644871394E-004 + 194.28000000000000 1.0311084417105269E-004 + 194.34000000000000 1.0204177839453780E-004 + 194.39999999999998 1.0114034758093196E-004 + 194.45999999999998 1.0041212847105794E-004 + 194.51999999999998 9.9862495921490397E-005 + 194.57999999999998 9.9496596343799263E-005 + 194.63999999999999 9.9319342489457044E-005 + 194.69999999999999 9.9335371677786269E-005 + 194.75999999999999 9.9549024599074356E-005 + 194.81999999999999 9.9964293577190275E-005 + 194.88000000000000 1.0058485001268914E-004 + 194.94000000000000 1.0141397400822129E-004 + 195.00000000000000 1.0245456195607752E-004 + 195.06000000000000 1.0370908307753989E-004 + 195.12000000000000 1.0517957843394720E-004 + 195.17999999999998 1.0686762355753733E-004 + 195.23999999999998 1.0877434187908395E-004 + 195.29999999999998 1.1090036523156024E-004 + 195.35999999999999 1.1324585167695713E-004 + 195.41999999999999 1.1581043700091574E-004 + 195.47999999999999 1.1859326858273504E-004 + 195.53999999999999 1.2159299799606056E-004 + 195.59999999999999 1.2480774747422564E-004 + 195.66000000000000 1.2823513909527158E-004 + 195.72000000000000 1.3187226063923529E-004 + 195.78000000000000 1.3571570197766917E-004 + 195.84000000000000 1.3976152725700603E-004 + 195.89999999999998 1.4400527640182978E-004 + 195.95999999999998 1.4844200289321902E-004 + 196.01999999999998 1.5306622641953906E-004 + 196.07999999999998 1.5787195840941966E-004 + 196.13999999999999 1.6285271383857541E-004 + 196.19999999999999 1.6800153079394448E-004 + 196.25999999999999 1.7331093776438365E-004 + 196.31999999999999 1.7877301277143248E-004 + 196.38000000000000 1.8437937850812760E-004 + 196.44000000000000 1.9012121876046891E-004 + 196.50000000000000 1.9598927120713133E-004 + 196.56000000000000 2.0197391199684199E-004 + 196.62000000000000 2.0806507893082494E-004 + 196.67999999999998 2.1425235673278053E-004 + 196.73999999999998 2.2052501887068502E-004 + 196.79999999999998 2.2687195771051893E-004 + 196.85999999999999 2.3328180861882669E-004 + 196.91999999999999 2.3974292594494066E-004 + 196.97999999999999 2.4624339440952874E-004 + 197.03999999999999 2.5277107962981663E-004 + 197.09999999999999 2.5931367971204956E-004 + 197.16000000000000 2.6585871013104999E-004 + 197.22000000000000 2.7239355521292772E-004 + 197.28000000000000 2.7890548747112176E-004 + 197.34000000000000 2.8538174923710359E-004 + 197.39999999999998 2.9180951767517006E-004 + 197.45999999999998 2.9817597675653928E-004 + 197.51999999999998 3.0446835765609258E-004 + 197.57999999999998 3.1067393231684024E-004 + 197.63999999999999 3.1678014732348686E-004 + 197.69999999999999 3.2277452100802081E-004 + 197.75999999999999 3.2864477429723853E-004 + 197.81999999999999 3.3437881681182453E-004 + 197.88000000000000 3.3996479379279300E-004 + 197.94000000000000 3.4539109278705681E-004 + 198.00000000000000 3.5064635871757857E-004 + 198.06000000000000 3.5571960072912698E-004 + 198.12000000000000 3.6060009134229704E-004 + 198.17999999999998 3.6527749548387187E-004 + 198.23999999999998 3.6974186091843001E-004 + 198.29999999999998 3.7398356233377561E-004 + 198.35999999999999 3.7799342922900116E-004 + 198.41999999999999 3.8176274924693984E-004 + 198.47999999999999 3.8528323776135492E-004 + 198.53999999999999 3.8854713066851317E-004 + 198.59999999999999 3.9154712376984042E-004 + 198.66000000000000 3.9427647328547900E-004 + 198.72000000000000 3.9672903578765524E-004 + 198.78000000000000 3.9889913847826187E-004 + 198.84000000000000 4.0078182318459781E-004 + 198.89999999999998 4.0237265753979569E-004 + 198.95999999999998 4.0366783202086667E-004 + 199.01999999999998 4.0466411622784197E-004 + 199.07999999999998 4.0535899029903606E-004 + 199.13999999999999 4.0575051060364148E-004 + 199.19999999999999 4.0583737747103369E-004 + 199.25999999999999 4.0561892377272932E-004 + 199.31999999999999 4.0509503952443051E-004 + 199.38000000000000 4.0426625165236119E-004 + 199.44000000000000 4.0313371658539320E-004 + 199.50000000000000 4.0169910479093888E-004 + 199.56000000000000 3.9996470005315845E-004 + 199.62000000000000 3.9793331612755062E-004 + 199.67999999999998 3.9560832693534071E-004 + 199.73999999999998 3.9299365865748289E-004 + 199.79999999999998 3.9009371640579178E-004 + 199.85999999999999 3.8691348871993162E-004 + 199.91999999999999 3.8345843248744472E-004 + 199.97999999999999 3.7973448851312254E-004 + 200.03999999999999 3.7574808565458214E-004 + 200.09999999999999 3.7150611934458100E-004 + 200.16000000000000 3.6701593813242569E-004 + 200.22000000000000 3.6228530980965911E-004 + 200.28000000000000 3.5732240892549625E-004 + 200.34000000000000 3.5213578900861815E-004 + 200.39999999999998 3.4673435816488937E-004 + 200.45999999999998 3.4112731229376581E-004 + 200.51999999999998 3.3532418224992442E-004 + 200.57999999999998 3.2933475663133737E-004 + 200.63999999999999 3.2316903838080808E-004 + 200.69999999999999 3.1683724230984828E-004 + 200.75999999999999 3.1034975395807855E-004 + 200.81999999999999 3.0371710895102247E-004 + 200.88000000000000 2.9694991515891720E-004 + 200.94000000000000 2.9005892855152462E-004 + 201.00000000000000 2.8305495657160055E-004 + 201.06000000000000 2.7594881619310467E-004 + 201.12000000000000 2.6875135156459901E-004 + 201.17999999999998 2.6147343951813740E-004 + 201.23999999999998 2.5412588423127691E-004 + 201.29999999999998 2.4671948934546899E-004 + 201.35999999999999 2.3926500663455245E-004 + 201.41999999999999 2.3177307795767309E-004 + 201.47999999999999 2.2425424213803061E-004 + 201.53999999999999 2.1671896488052413E-004 + 201.59999999999999 2.0917756064160742E-004 + 201.66000000000000 2.0164019598465212E-004 + 201.72000000000000 1.9411688137972719E-004 + 201.78000000000000 1.8661742014584350E-004 + 201.84000000000000 1.7915145788159319E-004 + 201.89999999999998 1.7172842310838463E-004 + 201.95999999999998 1.6435754052801675E-004 + 202.01999999999998 1.5704778474977574E-004 + 202.07999999999998 1.4980789727670057E-004 + 202.13999999999999 1.4264640522921985E-004 + 202.19999999999999 1.3557154778118970E-004 + 202.25999999999999 1.2859134467435254E-004 + 202.31999999999999 1.2171355216193523E-004 + 202.38000000000000 1.1494567499310509E-004 + 202.44000000000000 1.0829492870301856E-004 + 202.50000000000000 1.0176828193104697E-004 + 202.56000000000000 9.5372432057550240E-005 + 202.62000000000000 8.9113826670830285E-005 + 202.67999999999998 8.2998639472168639E-005 + 202.73999999999998 7.7032779159399615E-005 + 202.79999999999998 7.1221897626948263E-005 + 202.85999999999999 6.5571388941150689E-005 + 202.91999999999999 6.0086391736620661E-005 + 202.97999999999999 5.4771795031086884E-005 + 203.03999999999999 4.9632268767525598E-005 + 203.09999999999999 4.4672242217646339E-005 + 203.16000000000000 3.9895923672643258E-005 + 203.22000000000000 3.5307314270992509E-005 + 203.28000000000000 3.0910221000253993E-005 + 203.34000000000000 2.6708260095695946E-005 + 203.39999999999998 2.2704867928388148E-005 + 203.45999999999998 1.8903311695965830E-005 + 203.51999999999998 1.5306694296429003E-005 + 203.57999999999998 1.1917956479678142E-005 + 203.63999999999999 8.7398910112434539E-006 + 203.69999999999999 5.7751363257142177E-006 + 203.75999999999999 3.0261865685131185E-006 + 203.81999999999999 4.9537100833177627E-007 + 203.88000000000000 -1.8151189566657090E-006 + 203.94000000000000 -3.9032527385304280E-006 + 204.00000000000000 -5.7671491548897357E-006 + 204.06000000000000 -7.4050776577578042E-006 + 204.12000000000000 -8.8154708659244537E-006 + 204.17999999999998 -9.9969095865206260E-006 + 204.23999999999998 -1.0948126183597760E-005 + 204.29999999999998 -1.1668002053059782E-005 + 204.35999999999999 -1.2155565752632847E-005 + 204.41999999999999 -1.2409986115285656E-005 + 204.47999999999999 -1.2430578295637300E-005 + 204.53999999999999 -1.2216792680506984E-005 + 204.59999999999999 -1.1768218080485727E-005 + 204.66000000000000 -1.1084583548167554E-005 + 204.72000000000000 -1.0165758063653401E-005 + 204.78000000000000 -9.0117589796908217E-006 + 204.84000000000000 -7.6227582492010244E-006 + 204.89999999999998 -5.9990921970530923E-006 + 204.95999999999998 -4.1412705714180672E-006 + 205.01999999999998 -2.0499920749540383E-006 + 205.07999999999998 2.7384206344944631E-007 + 205.13999999999999 2.8291190044361166E-006 + 205.19999999999999 5.6144891045556888E-006 + 205.25999999999999 8.6283625556246784E-006 + 205.31999999999999 1.1868886337485274E-005 + 205.38000000000000 1.5333945992671645E-005 + 205.44000000000000 1.9021141266123751E-005 + 205.50000000000000 2.2927788372527023E-005 + 205.56000000000000 2.7050903132847045E-005 + 205.62000000000000 3.1387199723799961E-005 + 205.67999999999998 3.5933085276399518E-005 + 205.73999999999998 4.0684642318624916E-005 + 205.79999999999998 4.5637648424441945E-005 + 205.85999999999999 5.0787552568534156E-005 + 205.91999999999999 5.6129458599445410E-005 + 205.97999999999999 6.1658159519102868E-005 + 206.03999999999999 6.7368081445850413E-005 + 206.09999999999999 7.3253328347773272E-005 + 206.16000000000000 7.9307628008369054E-005 + 206.22000000000000 8.5524338677473236E-005 + 206.28000000000000 9.1896478127806230E-005 + 206.34000000000000 9.8416671937024997E-005 + 206.39999999999998 1.0507718203064227E-004 + 206.45999999999998 1.1186989523173825E-004 + 206.51999999999998 1.1878630946210230E-004 + 206.57999999999998 1.2581756866405944E-004 + 206.63999999999999 1.3295443340504803E-004 + 206.69999999999999 1.4018730546387422E-004 + 206.75999999999999 1.4750625875887104E-004 + 206.81999999999999 1.5490102432648165E-004 + 206.88000000000000 1.6236099975808603E-004 + 206.94000000000000 1.6987529852874705E-004 + 207.00000000000000 1.7743273571081149E-004 + 207.06000000000000 1.8502183137621996E-004 + 207.12000000000000 1.9263087596239393E-004 + 207.17999999999998 2.0024794501512211E-004 + 207.23999999999998 2.0786084029052681E-004 + 207.29999999999998 2.1545720528380195E-004 + 207.35999999999999 2.2302446436298843E-004 + 207.41999999999999 2.3054994123056254E-004 + 207.47999999999999 2.3802077759762288E-004 + 207.53999999999999 2.4542400261817748E-004 + 207.59999999999999 2.5274656353865078E-004 + 207.66000000000000 2.5997535209074666E-004 + 207.72000000000000 2.6709722373773314E-004 + 207.78000000000000 2.7409898965139080E-004 + 207.84000000000000 2.8096749355205770E-004 + 207.89999999999998 2.8768969273146002E-004 + 207.95999999999998 2.9425255878279700E-004 + 208.01999999999998 3.0064322153812217E-004 + 208.07999999999998 3.0684898294217636E-004 + 208.13999999999999 3.1285731013281287E-004 + 208.19999999999999 3.1865591285532837E-004 + 208.25999999999999 3.2423272943984792E-004 + 208.31999999999999 3.2957597904854192E-004 + 208.38000000000000 3.3467426504754606E-004 + 208.44000000000000 3.3951647714232315E-004 + 208.50000000000000 3.4409186623448695E-004 + 208.56000000000000 3.4839017594890623E-004 + 208.62000000000000 3.5240151652587639E-004 + 208.68000000000001 3.5611642979279192E-004 + 208.74000000000001 3.5952600448459459E-004 + 208.80000000000001 3.6262180815102346E-004 + 208.86000000000001 3.6539594073912307E-004 + 208.92000000000002 3.6784106388559656E-004 + 208.98000000000002 3.6995038634959432E-004 + 209.03999999999996 3.7171778847929659E-004 + 209.09999999999997 3.7313768958810618E-004 + 209.15999999999997 3.7420521328281455E-004 + 209.21999999999997 3.7491611232843956E-004 + 209.27999999999997 3.7526680848439377E-004 + 209.33999999999997 3.7525442141633206E-004 + 209.39999999999998 3.7487676204217590E-004 + 209.45999999999998 3.7413233838465390E-004 + 209.51999999999998 3.7302034662245649E-004 + 209.57999999999998 3.7154075156224165E-004 + 209.63999999999999 3.6969413976444172E-004 + 209.69999999999999 3.6748183439487471E-004 + 209.75999999999999 3.6490590693763535E-004 + 209.81999999999999 3.6196906262872715E-004 + 209.88000000000000 3.5867470213035897E-004 + 209.94000000000000 3.5502693673468530E-004 + 210.00000000000000 3.5103052647500368E-004 + 210.06000000000000 3.4669084905205986E-004 + 210.12000000000000 3.4201394971283225E-004 + 210.18000000000001 3.3700654164334448E-004 + 210.24000000000001 3.3167587869672928E-004 + 210.30000000000001 3.2602985745179211E-004 + 210.36000000000001 3.2007688450572509E-004 + 210.42000000000002 3.1382594825962663E-004 + 210.48000000000002 3.0728658143330302E-004 + 210.53999999999996 3.0046871082675219E-004 + 210.59999999999997 2.9338278962178009E-004 + 210.65999999999997 2.8603967539531284E-004 + 210.71999999999997 2.7845060283528963E-004 + 210.77999999999997 2.7062719611591724E-004 + 210.83999999999997 2.6258135856257618E-004 + 210.89999999999998 2.5432524879306472E-004 + 210.95999999999998 2.4587129330288745E-004 + 211.01999999999998 2.3723210966919273E-004 + 211.07999999999998 2.2842049028455185E-004 + 211.13999999999999 2.1944935744724528E-004 + 211.19999999999999 2.1033171620735131E-004 + 211.25999999999999 2.0108067107791103E-004 + 211.31999999999999 1.9170933740887355E-004 + 211.38000000000000 1.8223081805110247E-004 + 211.44000000000000 1.7265822569810266E-004 + 211.50000000000000 1.6300459801270160E-004 + 211.56000000000000 1.5328289615302855E-004 + 211.62000000000000 1.4350596879415047E-004 + 211.68000000000001 1.3368651666901502E-004 + 211.74000000000001 1.2383705490716753E-004 + 211.80000000000001 1.1396991670018488E-004 + 211.86000000000001 1.0409716940414104E-004 + 211.92000000000002 9.4230626354718401E-005 + 211.98000000000002 8.4381801968679877E-005 + 212.03999999999996 7.4561895932350180E-005 + 212.09999999999997 6.4781755628452321E-005 + 212.15999999999997 5.5051847105984952E-005 + 212.21999999999997 4.5382254151365345E-005 + 212.27999999999997 3.5782632566180267E-005 + 212.33999999999997 2.6262232620975939E-005 + 212.39999999999998 1.6829846863720342E-005 + 212.45999999999998 7.4938394183335664E-006 + 212.51999999999998 -1.7378770324551917E-006 + 212.57999999999998 -1.0857850903114741E-005 + 212.63999999999999 -1.9859081388818042E-005 + 212.69999999999999 -2.8735020696485597E-005 + 212.75999999999999 -3.7479545716431067E-005 + 212.81999999999999 -4.6087017957904689E-005 + 212.88000000000000 -5.4552230078322824E-005 + 212.94000000000000 -6.2870384518418570E-005 + 213.00000000000000 -7.1037146246976136E-005 + 213.06000000000000 -7.9048589993999368E-005 + 213.12000000000000 -8.6901219875665798E-005 + 213.18000000000001 -9.4591955815383170E-005 + 213.24000000000001 -1.0211811253579042E-004 + 213.30000000000001 -1.0947739986946444E-004 + 213.36000000000001 -1.1666792710486032E-004 + 213.42000000000002 -1.2368816670456134E-004 + 213.48000000000002 -1.3053696043169611E-004 + 213.53999999999996 -1.3721347782780092E-004 + 213.59999999999997 -1.4371724982859482E-004 + 213.65999999999997 -1.5004807744185088E-004 + 213.71999999999997 -1.5620608659692786E-004 + 213.77999999999997 -1.6219163143815399E-004 + 213.83999999999997 -1.6800535609172337E-004 + 213.89999999999998 -1.7364811191712985E-004 + 213.95999999999998 -1.7912095390679311E-004 + 214.01999999999998 -1.8442513666289099E-004 + 214.07999999999998 -1.8956205743542886E-004 + 214.13999999999999 -1.9453327716169116E-004 + 214.19999999999999 -1.9934046161941422E-004 + 214.25999999999999 -2.0398539944879298E-004 + 214.31999999999999 -2.0846997536241085E-004 + 214.38000000000000 -2.1279613775985757E-004 + 214.44000000000000 -2.1696588109061595E-004 + 214.50000000000000 -2.2098125485991033E-004 + 214.56000000000000 -2.2484430802509418E-004 + 214.62000000000000 -2.2855710235928012E-004 + 214.68000000000001 -2.3212171242559503E-004 + 214.74000000000001 -2.3554016434841716E-004 + 214.80000000000001 -2.3881446797140371E-004 + 214.86000000000001 -2.4194651065694321E-004 + 214.92000000000002 -2.4493819422977397E-004 + 214.98000000000002 -2.4779128080268463E-004 + 215.03999999999996 -2.5050745458070285E-004 + 215.09999999999997 -2.5308833519119343E-004 + 215.15999999999997 -2.5553539784883936E-004 + 215.21999999999997 -2.5784999002381948E-004 + 215.27999999999997 -2.6003339582844230E-004 + 215.33999999999997 -2.6208672382204307E-004 + 215.39999999999998 -2.6401101806233372E-004 + 215.45999999999998 -2.6580718588983495E-004 + 215.51999999999998 -2.6747605337011594E-004 + 215.57999999999998 -2.6901829201270811E-004 + 215.63999999999999 -2.7043450806648044E-004 + 215.69999999999999 -2.7172515669332504E-004 + 215.75999999999999 -2.7289064610980208E-004 + 215.81999999999999 -2.7393128128012624E-004 + 215.88000000000000 -2.7484726075069799E-004 + 215.94000000000000 -2.7563872375304700E-004 + 216.00000000000000 -2.7630573538550078E-004 + 216.06000000000000 -2.7684823701044984E-004 + 216.12000000000000 -2.7726614441107335E-004 + 216.18000000000001 -2.7755930333370909E-004 + 216.24000000000001 -2.7772749789736566E-004 + 216.30000000000001 -2.7777048196861822E-004 + 216.36000000000001 -2.7768800728497070E-004 + 216.42000000000002 -2.7747972948930465E-004 + 216.48000000000002 -2.7714535676086956E-004 + 216.53999999999996 -2.7668459445701928E-004 + 216.59999999999997 -2.7609713111468313E-004 + 216.65999999999997 -2.7538270688958714E-004 + 216.71999999999997 -2.7454112509925984E-004 + 216.77999999999997 -2.7357221014269695E-004 + 216.83999999999997 -2.7247590466158371E-004 + 216.89999999999998 -2.7125217122375543E-004 + 216.95999999999998 -2.6990108211711217E-004 + 217.01999999999998 -2.6842280190515446E-004 + 217.07999999999998 -2.6681760255786670E-004 + 217.13999999999999 -2.6508587221992999E-004 + 217.19999999999999 -2.6322810162495520E-004 + 217.25999999999999 -2.6124492952640820E-004 + 217.31999999999999 -2.5913707056380382E-004 + 217.38000000000000 -2.5690543568693497E-004 + 217.44000000000000 -2.5455103370041474E-004 + 217.50000000000000 -2.5207504668032707E-004 + 217.56000000000000 -2.4947876941195833E-004 + 217.62000000000000 -2.4676370221416366E-004 + 217.68000000000001 -2.4393148344380134E-004 + 217.74000000000001 -2.4098390914400209E-004 + 217.80000000000001 -2.3792300155048689E-004 + 217.86000000000001 -2.3475089161529113E-004 + 217.92000000000002 -2.3146992477067268E-004 + 217.98000000000002 -2.2808264769425823E-004 + 218.03999999999996 -2.2459174227068974E-004 + 218.09999999999997 -2.2100011485673974E-004 + 218.15999999999997 -2.1731082665348695E-004 + 218.21999999999997 -2.1352708867211612E-004 + 218.27999999999997 -2.0965231109719375E-004 + 218.33999999999997 -2.0569007635691961E-004 + 218.39999999999998 -2.0164405123238588E-004 + 218.45999999999998 -1.9751813473068127E-004 + 218.51999999999998 -1.9331631475565431E-004 + 218.57999999999998 -1.8904272756891860E-004 + 218.63999999999999 -1.8470163573910129E-004 + 218.69999999999999 -1.8029739773056761E-004 + 218.75999999999999 -1.7583453061937655E-004 + 218.81999999999999 -1.7131763765535586E-004 + 218.88000000000000 -1.6675142410935850E-004 + 218.94000000000000 -1.6214073146036132E-004 + 219.00000000000000 -1.5749045411134747E-004 + 219.06000000000000 -1.5280558486549265E-004 + 219.12000000000000 -1.4809121369648107E-004 + 219.18000000000001 -1.4335248204795520E-004 + 219.24000000000001 -1.3859461662676161E-004 + 219.30000000000001 -1.3382287023137106E-004 + 219.36000000000001 -1.2904254696996718E-004 + 219.42000000000002 -1.2425897451561431E-004 + 219.48000000000002 -1.1947747794768032E-004 + 219.53999999999996 -1.1470339647955039E-004 + 219.59999999999997 -1.0994204744455394E-004 + 219.65999999999997 -1.0519872792455277E-004 + 219.71999999999997 -1.0047867927915392E-004 + 219.77999999999997 -9.5787106638524342E-005 + 219.83999999999997 -9.1129141072687428E-005 + 219.89999999999998 -8.6509856375046622E-005 + 219.95999999999998 -8.1934232695496503E-005 + 220.01999999999998 -7.7407190251018538E-005 + 220.07999999999998 -7.2933538281865602E-005 + 220.13999999999999 -6.8517999486470443E-005 + 220.19999999999999 -6.4165198763009801E-005 + 220.25999999999999 -5.9879650140454012E-005 + 220.31999999999999 -5.5665757734709034E-005 + 220.38000000000000 -5.1527807827935726E-005 + 220.44000000000000 -4.7469968145647366E-005 + 220.50000000000000 -4.3496273323031110E-005 + 220.56000000000000 -3.9610620263810612E-005 + 220.62000000000000 -3.5816745213964312E-005 + 220.68000000000001 -3.2118248875254687E-005 + 220.74000000000001 -2.8518557463223112E-005 + 220.80000000000001 -2.5020923851552531E-005 + 220.86000000000001 -2.1628427831403595E-005 + 220.92000000000002 -1.8343961183011720E-005 + 220.98000000000002 -1.5170224793482120E-005 + 221.03999999999996 -1.2109714993095565E-005 + 221.09999999999997 -9.1647353678899425E-006 + 221.15999999999997 -6.3373861264706619E-006 + 221.21999999999997 -3.6295571407720569E-006 + 221.27999999999997 -1.0429354870896189E-006 + 221.33999999999997 1.4210053617866089E-006 + 221.39999999999998 3.7610009821144007E-006 + 221.45999999999998 5.9759906245798566E-006 + 221.51999999999998 8.0651294807809774E-006 + 221.57999999999998 1.0027777791920081E-005 + 221.63999999999999 1.1863512797282498E-005 + 221.69999999999999 1.3572118543882702E-005 + 221.75999999999999 1.5153595065696847E-005 + 221.81999999999999 1.6608146851865660E-005 + 221.88000000000000 1.7936190836746978E-005 + 221.94000000000000 1.9138354102108467E-005 + 222.00000000000000 2.0215468396368694E-005 + 222.06000000000000 2.1168567968585430E-005 + 222.12000000000000 2.1998886496481659E-005 + 222.18000000000001 2.2707851708278142E-005 + 222.24000000000001 2.3297078000325034E-005 + 222.30000000000001 2.3768361138296066E-005 + 222.36000000000001 2.4123670819471822E-005 + 222.42000000000002 2.4365142846612253E-005 + 222.48000000000002 2.4495069915268465E-005 + 222.53999999999996 2.4515894771179907E-005 + 222.59999999999997 2.4430208119286244E-005 + 222.65999999999997 2.4240730171480067E-005 + 222.71999999999997 2.3950314115968743E-005 + 222.77999999999997 2.3561934263423755E-005 + 222.83999999999997 2.3078678912319915E-005 + 222.89999999999998 2.2503750561449056E-005 + 222.95999999999998 2.1840452800543270E-005 + 223.01999999999998 2.1092184388565791E-005 + 223.07999999999998 2.0262438638651524E-005 + 223.13999999999999 1.9354788264166791E-005 + 223.19999999999999 1.8372881839332055E-005 + 223.25999999999999 1.7320432385021010E-005 + 223.31999999999999 1.6201211150238414E-005 + 223.38000000000000 1.5019031120530486E-005 + 223.44000000000000 1.3777741570505553E-005 + 223.50000000000000 1.2481211625251104E-005 + 223.56000000000000 1.1133322978715455E-005 + 223.62000000000000 9.7379539202565522E-006 + 223.68000000000001 8.2989714033722551E-006 + 223.74000000000001 6.8202177575108543E-006 + 223.80000000000001 5.3054987000711722E-006 + 223.86000000000001 3.7585773689098624E-006 + 223.92000000000002 2.1831624593401540E-006 + 223.98000000000002 5.8290346583037618E-007 + 224.03999999999996 -1.0386214322106346E-006 + 224.09999999999997 -2.6779105802854392E-006 + 224.15999999999997 -4.3315433792852823E-006 + 224.21999999999997 -5.9961911433666086E-006 + 224.27999999999997 -7.6686165327681759E-006 + 224.33999999999997 -9.3456877162144129E-006 + 224.39999999999998 -1.1024377642039132E-005 + 224.45999999999998 -1.2701775919417004E-005 + 224.51999999999998 -1.4375089410087285E-005 + 224.57999999999998 -1.6041653979205646E-005 + 224.63999999999999 -1.7698935896810366E-005 + 224.69999999999999 -1.9344543087734973E-005 + 224.75999999999999 -2.0976222405187376E-005 + 224.81999999999999 -2.2591867853035761E-005 + 224.88000000000000 -2.4189524371237446E-005 + 224.94000000000000 -2.5767387999847548E-005 + 225.00000000000000 -2.7323803509223596E-005 + 225.06000000000000 -2.8857270612965865E-005 + 225.12000000000000 -3.0366433549982082E-005 + 225.18000000000001 -3.1850092095606011E-005 + 225.24000000000001 -3.3307182062243873E-005 + 225.30000000000001 -3.4736783229188267E-005 + 225.36000000000001 -3.6138110938633793E-005 + 225.42000000000002 -3.7510511052728197E-005 + 225.48000000000002 -3.8853461413648265E-005 + 225.53999999999996 -4.0166564040994108E-005 + 225.59999999999997 -4.1449537510259889E-005 + 225.65999999999997 -4.2702231955999518E-005 + 225.71999999999997 -4.3924598840442019E-005 + 225.77999999999997 -4.5116709597987770E-005 + 225.83999999999997 -4.6278745474446164E-005 + 225.89999999999998 -4.7410993926150796E-005 + 225.95999999999998 -4.8513840854006047E-005 + 226.01999999999998 -4.9587780207601580E-005 + 226.07999999999998 -5.0633389623272632E-005 + 226.13999999999999 -5.1651333306459883E-005 + 226.19999999999999 -5.2642351657109304E-005 + 226.25999999999999 -5.3607261205471610E-005 + 226.31999999999999 -5.4546936037426648E-005 + 226.38000000000000 -5.5462297922621000E-005 + 226.44000000000000 -5.6354310126515935E-005 + 226.50000000000000 -5.7223966706605191E-005 + 226.56000000000000 -5.8072291813815932E-005 + 226.62000000000000 -5.8900315532306455E-005 + 226.68000000000001 -5.9709077473160246E-005 + 226.74000000000001 -6.0499624014372636E-005 + 226.80000000000001 -6.1272994588804495E-005 + 226.86000000000001 -6.2030226023972583E-005 + 226.92000000000002 -6.2772345077641376E-005 + 226.98000000000002 -6.3500364623541279E-005 + 227.03999999999996 -6.4215288629661832E-005 + 227.09999999999997 -6.4918110719369278E-005 + 227.15999999999997 -6.5609807404429544E-005 + 227.21999999999997 -6.6291340385416569E-005 + 227.27999999999997 -6.6963661293756112E-005 + 227.33999999999997 -6.7627686631713856E-005 + 227.39999999999998 -6.8284327671033358E-005 + 227.45999999999998 -6.8934457401304374E-005 + 227.51999999999998 -6.9578908001265434E-005 + 227.57999999999998 -7.0218485777205568E-005 + 227.63999999999999 -7.0853939243643087E-005 + 227.69999999999999 -7.1485968724090742E-005 + 227.75999999999999 -7.2115215466776985E-005 + 227.81999999999999 -7.2742251685050692E-005 + 227.88000000000000 -7.3367586996839459E-005 + 227.94000000000000 -7.3991652579568322E-005 + 228.00000000000000 -7.4614805393266294E-005 + 228.06000000000000 -7.5237315183903023E-005 + 228.12000000000000 -7.5859382845625028E-005 + 228.18000000000001 -7.6481122425093231E-005 + 228.24000000000001 -7.7102579234627949E-005 + 228.30000000000001 -7.7723720592721683E-005 + 228.36000000000001 -7.8344430577359107E-005 + 228.42000000000002 -7.8964541662596624E-005 + 228.48000000000002 -7.9583802778855788E-005 + 228.53999999999996 -8.0201914136624212E-005 + 228.59999999999997 -8.0818501844942363E-005 + 228.65999999999997 -8.1433141001400447E-005 + 228.71999999999997 -8.2045357009768744E-005 + 228.77999999999997 -8.2654599625837995E-005 + 228.83999999999997 -8.3260301505945589E-005 + 228.89999999999998 -8.3861827182462679E-005 + 228.95999999999998 -8.4458491259030075E-005 + 229.01999999999998 -8.5049581723505187E-005 + 229.07999999999998 -8.5634325050050597E-005 + 229.13999999999999 -8.6211923107152341E-005 + 229.19999999999999 -8.6781538663789200E-005 + 229.25999999999999 -8.7342299678504361E-005 + 229.31999999999999 -8.7893293415226666E-005 + 229.38000000000000 -8.8433586930039359E-005 + 229.44000000000000 -8.8962220690491496E-005 + 229.50000000000000 -8.9478199249997618E-005 + 229.56000000000000 -8.9980500403093002E-005 + 229.62000000000000 -9.0468091054734053E-005 + 229.68000000000001 -9.0939906438411382E-005 + 229.74000000000001 -9.1394864721580974E-005 + 229.80000000000001 -9.1831857974852387E-005 + 229.86000000000001 -9.2249768205414812E-005 + 229.92000000000002 -9.2647456103726845E-005 + 229.97999999999996 -9.3023773166917907E-005 + 230.03999999999996 -9.3377559155054870E-005 + 230.09999999999997 -9.3707647068839742E-005 + 230.15999999999997 -9.4012884872326366E-005 + 230.21999999999997 -9.4292114654165635E-005 + 230.27999999999997 -9.4544188764445760E-005 + 230.33999999999997 -9.4767986289286119E-005 + 230.39999999999998 -9.4962406084280544E-005 + 230.45999999999998 -9.5126371558704374E-005 + 230.51999999999998 -9.5258859252419679E-005 + 230.57999999999998 -9.5358874891201075E-005 + 230.63999999999999 -9.5425471144420409E-005 + 230.69999999999999 -9.5457747722003553E-005 + 230.75999999999999 -9.5454846502453851E-005 + 230.81999999999999 -9.5415959012214144E-005 + 230.88000000000000 -9.5340319707637526E-005 + 230.94000000000000 -9.5227206215452159E-005 + 231.00000000000000 -9.5075943483561087E-005 + 231.06000000000000 -9.4885877042524608E-005 + 231.12000000000000 -9.4656397580842959E-005 + 231.18000000000001 -9.4386923233972020E-005 + 231.24000000000001 -9.4076905819773341E-005 + 231.30000000000001 -9.3725817157265995E-005 + 231.36000000000001 -9.3333158375757776E-005 + 231.42000000000002 -9.2898471523331154E-005 + 231.47999999999996 -9.2421318339540372E-005 + 231.53999999999996 -9.1901307273837789E-005 + 231.59999999999997 -9.1338084620485070E-005 + 231.65999999999997 -9.0731343834428535E-005 + 231.71999999999997 -9.0080821975394181E-005 + 231.77999999999997 -8.9386326335614416E-005 + 231.83999999999997 -8.8647714496745142E-005 + 231.89999999999998 -8.7864902318412219E-005 + 231.95999999999998 -8.7037881249171374E-005 + 232.01999999999998 -8.6166697132079048E-005 + 232.07999999999998 -8.5251479315487746E-005 + 232.13999999999999 -8.4292408772298656E-005 + 232.19999999999999 -8.3289733555892077E-005 + 232.25999999999999 -8.2243765956634062E-005 + 232.31999999999999 -8.1154871186977609E-005 + 232.38000000000000 -8.0023473404769869E-005 + 232.44000000000000 -7.8850049272927785E-005 + 232.50000000000000 -7.7635119037214572E-005 + 232.56000000000000 -7.6379252441666781E-005 + 232.62000000000000 -7.5083055772418408E-005 + 232.68000000000001 -7.3747190629459575E-005 + 232.74000000000001 -7.2372346872147871E-005 + 232.80000000000001 -7.0959268216946086E-005 + 232.86000000000001 -6.9508734579987102E-005 + 232.92000000000002 -6.8021563940253482E-005 + 232.97999999999996 -6.6498628789536389E-005 + 233.03999999999996 -6.4940832326792366E-005 + 233.09999999999997 -6.3349137851043005E-005 + 233.15999999999997 -6.1724535904087485E-005 + 233.21999999999997 -6.0068067147298350E-005 + 233.27999999999997 -5.8380815606039561E-005 + 233.33999999999997 -5.6663909195612240E-005 + 233.39999999999998 -5.4918515562409095E-005 + 233.45999999999998 -5.3145838639775890E-005 + 233.51999999999998 -5.1347127399153199E-005 + 233.57999999999998 -4.9523669074076342E-005 + 233.63999999999999 -4.7676777620062799E-005 + 233.69999999999999 -4.5807806193939091E-005 + 233.75999999999999 -4.3918144517489544E-005 + 233.81999999999999 -4.2009206410567014E-005 + 233.88000000000000 -4.0082436802760202E-005 + 233.94000000000000 -3.8139309653046397E-005 + 234.00000000000000 -3.6181324620391187E-005 + 234.06000000000000 -3.4209996318844332E-005 + 234.12000000000000 -3.2226868447164225E-005 + 234.18000000000001 -3.0233491099541238E-005 + 234.24000000000001 -2.8231424036830180E-005 + 234.30000000000001 -2.6222234856302385E-005 + 234.36000000000001 -2.4207494358631912E-005 + 234.42000000000002 -2.2188761486081343E-005 + 234.47999999999996 -2.0167589569645185E-005 + 234.53999999999996 -1.8145515492580239E-005 + 234.59999999999997 -1.6124057540690688E-005 + 234.65999999999997 -1.4104712937264409E-005 + 234.71999999999997 -1.2088951441396478E-005 + 234.77999999999997 -1.0078216581562835E-005 + 234.83999999999997 -8.0739240447311795E-006 + 234.89999999999998 -6.0774592745637548E-006 + 234.95999999999998 -4.0901793103910293E-006 + 235.01999999999998 -2.1134116008398032E-006 + 235.07999999999998 -1.4845537239981632E-007 + 235.13999999999999 1.8034175798131786E-006 + 235.19999999999999 3.7409649574439428E-006 + 235.25999999999999 5.6629725071894069E-006 + 235.31999999999999 7.5682563505431127E-006 + 235.38000000000000 9.4556657843944399E-006 + 235.44000000000000 1.1324087291438023E-005 + 235.50000000000000 1.3172442887515692E-005 + 235.56000000000000 1.4999699801699641E-005 + 235.62000000000000 1.6804875058984875E-005 + 235.68000000000001 1.8587034921483935E-005 + 235.74000000000001 2.0345303180392486E-005 + 235.80000000000001 2.2078861763862853E-005 + 235.86000000000001 2.3786959432492111E-005 + 235.92000000000002 2.5468906516955618E-005 + 235.97999999999996 2.7124080697889255E-005 + 236.03999999999996 2.8751926577701667E-005 + 236.09999999999997 3.0351950731255964E-005 + 236.15999999999997 3.1923723330196757E-005 + 236.21999999999997 3.3466879525218587E-005 + 236.27999999999997 3.4981104526336686E-005 + 236.33999999999997 3.6466147664202575E-005 + 236.39999999999998 3.7921800223714026E-005 + 236.45999999999998 3.9347902935993621E-005 + 236.51999999999998 4.0744342953081971E-005 + 236.57999999999998 4.2111045356553247E-005 + 236.63999999999999 4.3447978818323153E-005 + 236.69999999999999 4.4755148625743902E-005 + 236.75999999999999 4.6032600267831144E-005 + 236.81999999999999 4.7280402844630309E-005 + 236.88000000000000 4.8498668105382956E-005 + 236.94000000000000 4.9687540656455573E-005 + 237.00000000000000 5.0847191909575521E-005 + 237.06000000000000 5.1977814330653135E-005 + 237.12000000000000 5.3079639883547364E-005 + 237.18000000000001 5.4152911569994597E-005 + 237.24000000000001 5.5197898253809719E-005 + 237.30000000000001 5.6214882298757967E-005 + 237.36000000000001 5.7204158373859454E-005 + 237.42000000000002 5.8166026411874110E-005 + 237.47999999999996 5.9100793819400512E-005 + 237.53999999999996 6.0008765110172483E-005 + 237.59999999999997 6.0890249543264709E-005 + 237.65999999999997 6.1745554634761159E-005 + 237.71999999999997 6.2574966418911315E-005 + 237.77999999999997 6.3378777800825661E-005 + 237.83999999999997 6.4157279184476917E-005 + 237.89999999999998 6.4910738155827275E-005 + 237.95999999999998 6.5639430395716963E-005 + 238.01999999999998 6.6343616579948704E-005 + 238.07999999999998 6.7023541358244797E-005 + 238.13999999999999 6.7679447792264844E-005 + 238.19999999999999 6.8311566615432745E-005 + 238.25999999999999 6.8920114596237689E-005 + 238.31999999999999 6.9505299848370125E-005 + 238.38000000000000 7.0067291163410648E-005 + 238.44000000000000 7.0606252131180864E-005 + 238.50000000000000 7.1122321179968947E-005 + 238.56000000000000 7.1615597843128015E-005 + 238.62000000000000 7.2086155952043584E-005 + 238.68000000000001 7.2534033634904439E-005 + 238.74000000000001 7.2959245484231105E-005 + 238.80000000000001 7.3361755182648015E-005 + 238.86000000000001 7.3741503455936795E-005 + 238.92000000000002 7.4098392495062989E-005 + 238.97999999999996 7.4432298120610942E-005 + 239.03999999999996 7.4743070583014855E-005 + 239.09999999999997 7.5030539402761069E-005 + 239.15999999999997 7.5294514925854873E-005 + 239.21999999999997 7.5534795730418988E-005 + 239.27999999999997 7.5751184658286858E-005 + 239.33999999999997 7.5943472149103913E-005 + 239.39999999999998 7.6111441354219532E-005 + 239.45999999999998 7.6254903861191234E-005 + 239.51999999999998 7.6373651347455595E-005 + 239.57999999999998 7.6467503626938057E-005 + 239.63999999999999 7.6536275967416752E-005 + 239.69999999999999 7.6579808664289638E-005 + 239.75999999999999 7.6597936915020595E-005 + 239.81999999999999 7.6590504355198702E-005 + 239.88000000000000 7.6557378349501447E-005 + 239.94000000000000 7.6498429666213346E-005 + 240.00000000000000 7.6413527290833231E-005 + 240.06000000000000 7.6302563988105216E-005 + 240.12000000000000 7.6165443783526217E-005 + 240.18000000000001 7.6002070384893452E-005 + 240.24000000000001 7.5812362184218948E-005 + 240.30000000000001 7.5596255964683977E-005 + 240.36000000000001 7.5353703751988971E-005 + 240.42000000000002 7.5084682934184425E-005 + 240.47999999999996 7.4789180715213808E-005 + 240.53999999999996 7.4467223278361935E-005 + 240.59999999999997 7.4118850220579823E-005 + 240.65999999999997 7.3744139739021167E-005 + 240.71999999999997 7.3343183715815339E-005 + 240.77999999999997 7.2916127911744799E-005 + 240.83999999999997 7.2463141255280490E-005 + 240.89999999999998 7.1984425467096905E-005 + 240.95999999999998 7.1480232966272318E-005 + 241.01999999999998 7.0950845075452910E-005 + 241.07999999999998 7.0396593595360482E-005 + 241.13999999999999 6.9817849277306113E-005 + 241.19999999999999 6.9215029903897562E-005 + 241.25999999999999 6.8588591435667234E-005 + 241.31999999999999 6.7939042484469909E-005 + 241.38000000000000 6.7266932894414472E-005 + 241.44000000000000 6.6572856715385712E-005 + 241.50000000000000 6.5857452681972436E-005 + 241.56000000000000 6.5121390599823687E-005 + 241.62000000000000 6.4365386963195344E-005 + 241.68000000000001 6.3590184741273446E-005 + 241.74000000000001 6.2796548130323275E-005 + 241.80000000000001 6.1985277981938382E-005 + 241.86000000000001 6.1157181389455997E-005 + 241.92000000000002 6.0313082979687341E-005 + 241.97999999999996 5.9453830004765901E-005 + 242.03999999999996 5.8580262625089351E-005 + 242.09999999999997 5.7693241296674832E-005 + 242.15999999999997 5.6793614416892882E-005 + 242.21999999999997 5.5882257740287789E-005 + 242.27999999999997 5.4960038016217401E-005 + 242.33999999999997 5.4027847602243536E-005 + 242.39999999999998 5.3086578238700492E-005 + 242.45999999999998 5.2137134821790585E-005 + 242.51999999999998 5.1180445832716341E-005 + 242.57999999999998 5.0217456035753211E-005 + 242.63999999999999 4.9249124961368776E-005 + 242.69999999999999 4.8276439000153202E-005 + 242.75999999999999 4.7300393752442772E-005 + 242.81999999999999 4.6322006382157669E-005 + 242.88000000000000 4.5342300743910292E-005 + 242.94000000000000 4.4362312920338336E-005 + 243.00000000000000 4.3383071481100689E-005 + 243.06000000000000 4.2405597144479024E-005 + 243.12000000000000 4.1430902304144807E-005 + 243.18000000000001 4.0459968988696343E-005 + 243.24000000000001 3.9493757780758928E-005 + 243.30000000000001 3.8533190507831853E-005 + 243.36000000000001 3.7579147036124867E-005 + 243.42000000000002 3.6632464042354846E-005 + 243.47999999999996 3.5693929431709186E-005 + 243.53999999999996 3.4764285623793844E-005 + 243.59999999999997 3.3844227601075726E-005 + 243.65999999999997 3.2934398526174619E-005 + 243.71999999999997 3.2035401027660807E-005 + 243.77999999999997 3.1147791217303933E-005 + 243.83999999999997 3.0272093188193284E-005 + 243.89999999999998 2.9408790273343558E-005 + 243.95999999999998 2.8558332346030701E-005 + 244.01999999999998 2.7721139083099378E-005 + 244.07999999999998 2.6897602113318192E-005 + 244.13999999999999 2.6088080580247913E-005 + 244.19999999999999 2.5292904812875318E-005 + 244.25999999999999 2.4512377425147913E-005 + 244.31999999999999 2.3746766249581444E-005 + 244.38000000000000 2.2996306647336963E-005 + 244.44000000000000 2.2261199090911169E-005 + 244.50000000000000 2.1541603221463539E-005 + 244.56000000000000 2.0837637628872080E-005 + 244.62000000000000 2.0149380007586999E-005 + 244.68000000000001 1.9476861434999872E-005 + 244.74000000000001 1.8820069549248691E-005 + 244.80000000000001 1.8178942782587988E-005 + 244.86000000000001 1.7553376529495906E-005 + 244.92000000000002 1.6943219005809727E-005 + 244.97999999999996 1.6348278175156785E-005 + 245.03999999999996 1.5768315918674337E-005 + 245.09999999999997 1.5203058810317856E-005 + 245.15999999999997 1.4652193390585916E-005 + 245.21999999999997 1.4115374948474693E-005 + 245.27999999999997 1.3592226626177312E-005 + 245.33999999999997 1.3082344367159437E-005 + 245.39999999999998 1.2585301244585199E-005 + 245.45999999999998 1.2100649257933660E-005 + 245.51999999999998 1.1627924780949483E-005 + 245.57999999999998 1.1166648690181086E-005 + 245.63999999999999 1.0716333506769395E-005 + 245.69999999999999 1.0276485885964204E-005 + 245.75999999999999 9.8466078566438175E-006 + 245.81999999999999 9.4262015369086293E-006 + 245.88000000000000 9.0147714117967541E-006 + 245.94000000000000 8.6118255816671230E-006 + 246.00000000000000 8.2168794105979084E-006 + 246.06000000000000 7.8294532934597907E-006 + 246.12000000000000 7.4490773775398047E-006 + 246.18000000000001 7.0752895454498578E-006 + 246.24000000000001 6.7076357579590479E-006 + 246.30000000000001 6.3456708990057476E-006 + 246.36000000000001 5.9889563867444519E-006 + 246.42000000000002 5.6370617376726875E-006 + 246.47999999999996 5.2895636472599714E-006 + 246.53999999999996 4.9460465200735038E-006 + 246.59999999999997 4.6061031808139385E-006 + 246.65999999999997 4.2693347140367886E-006 + 246.71999999999997 3.9353566952293441E-006 + 246.77999999999997 3.6037961616752954E-006 + 246.83999999999997 3.2742996167685134E-006 + 246.89999999999998 2.9465347340811187E-006 + 246.95999999999998 2.6201949744243924E-006 + 247.01999999999998 2.2950036667781577E-006 + 247.07999999999998 1.9707180143718864E-006 + 247.13999999999999 1.6471337631175720E-006 + 247.19999999999999 1.3240872058941075E-006 + 247.25999999999999 1.0014611536582205E-006 + 247.31999999999999 6.7918240604622186E-007 + 247.38000000000000 3.5722666044889558E-007 + 247.44000000000000 3.5616349808802156E-008 + 247.50000000000000 -2.8557761409189521E-007 + 247.56000000000000 -6.0624012373080751E-007 + 247.62000000000000 -9.2621160430723227E-007 + 247.68000000000001 -1.2452914007480164E-006 + 247.74000000000001 -1.5632405158869001E-006 + 247.80000000000001 -1.8797822692831709E-006 + 247.86000000000001 -2.1946066124088793E-006 + 247.92000000000002 -2.5073716309564333E-006 + 247.97999999999996 -2.8177056179406289E-006 + 248.03999999999996 -3.1252079908101435E-006 + 248.09999999999997 -3.4294494570428021E-006 + 248.15999999999997 -3.7299723362626474E-006 + 248.21999999999997 -4.0262933249965197E-006 + 248.27999999999997 -4.3178986400021632E-006 + 248.33999999999997 -4.6042490857978965E-006 + 248.39999999999998 -4.8847763626287414E-006 + 248.45999999999998 -5.1588846625882554E-006 + 248.51999999999998 -5.4259533005035787E-006 + 248.57999999999998 -5.6853344025564495E-006 + 248.63999999999999 -5.9363568714568451E-006 + 248.69999999999999 -6.1783290212486879E-006 + 248.75999999999999 -6.4105388520887722E-006 + 248.81999999999999 -6.6322589402649169E-006 + 248.88000000000000 -6.8427473859874888E-006 + 248.94000000000000 -7.0412535311870824E-006 + 249.00000000000000 -7.2270188549101458E-006 + 249.06000000000000 -7.3992812436605369E-006 + 249.12000000000000 -7.5572764867241336E-006 + 249.18000000000001 -7.7002421967769068E-006 + 249.24000000000001 -7.8274199003338280E-006 + 249.30000000000001 -7.9380574861838405E-006 + 249.36000000000001 -8.0314111768620608E-006 + 249.42000000000002 -8.1067486476998243E-006 + 249.47999999999996 -8.1633515597994244E-006 + 249.53999999999996 -8.2005162951385382E-006 + 249.59999999999997 -8.2175604502687993E-006 + 249.65999999999997 -8.2138228870587245E-006 + 249.71999999999997 -8.1886703512243203E-006 + 249.77999999999997 -8.1414998120720068E-006 + 249.83999999999997 -8.0717417254890012E-006 + 249.89999999999998 -7.9788675812074765E-006 + 249.95999999999998 -7.8623909237100327E-006 + 250.01999999999998 -7.7218719691210495E-006 + 250.07999999999998 -7.5569231422171029E-006 + 250.13999999999999 -7.3672105398108263E-006 + 250.19999999999999 -7.1524558839877851E-006 + 250.25999999999999 -6.9124393664750169E-006 + 250.31999999999999 -6.6470019034511406E-006 + 250.38000000000000 -6.3560416970313018E-006 + 250.44000000000000 -6.0395195377162718E-006 + 250.50000000000000 -5.6974528622646313E-006 + 250.56000000000000 -5.3299170080569429E-006 + 250.62000000000000 -4.9370464451481115E-006 + 250.68000000000001 -4.5190298457004285E-006 + 250.74000000000001 -4.0761105116171680E-006 + 250.80000000000001 -3.6085859238686403E-006 + 250.86000000000001 -3.1168057388092254E-006 + 250.92000000000002 -2.6011732882973851E-006 + 250.97999999999996 -2.0621465147964330E-006 + 251.03999999999996 -1.5002344185382062E-006 + 251.09999999999997 -9.1600384979777214E-007 + 251.15999999999997 -3.1007497348635484E-007 + 251.21999999999997 3.1687123606065321E-007 + 251.27999999999997 9.6409928464238826E-007 + 251.33999999999997 1.6308163005081266E-006 + 251.39999999999998 2.3161694829757100E-006 + 251.45999999999998 3.0192511140208662E-006 + 251.51999999999998 3.7390932704862103E-006 + 251.57999999999998 4.4746797608715105E-006 + 251.63999999999999 5.2249434261754844E-006 + 251.69999999999999 5.9887677005824202E-006 + 251.75999999999999 6.7649957792461661E-006 + 251.81999999999999 7.5524322661630520E-006 + 251.88000000000000 8.3498508019681511E-006 + 251.94000000000000 9.1559973607028059E-006 diff --git a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000004.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000004.BXY.semd new file mode 100644 index 00000000..7ff55a75 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000004.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 -3.6744236677553120E-041 + 1.7999999999999972 -9.9491053995370065E-041 + 1.8599999999999994 -1.7508160341017814E-040 + 1.9200000000000017 -2.5067215282498622E-040 + 1.9799999999999969 -3.2626271575540425E-040 + 2.0399999999999991 -4.0185325165460237E-040 + 2.1000000000000014 -4.7744378755380048E-040 + 2.1599999999999966 -5.2165529398979686E-040 + 2.2199999999999989 -5.2178147572440911E-040 + 2.2800000000000011 -4.6832410270021365E-040 + 2.3399999999999963 -3.5661834323222640E-040 + 2.3999999999999986 -1.8847468085300782E-040 + 2.4600000000000009 2.3343825326867406E-041 + 2.5199999999999960 2.6652182753464569E-040 + 2.5799999999999983 5.0969981791626526E-040 + 2.6400000000000006 7.5564250740942553E-040 + 2.6999999999999957 9.9364407323775094E-040 + 2.7599999999999980 7.2903217674711873E-040 + 2.8200000000000003 2.8324132936615560E-040 + 2.8799999999999955 -1.7240237227475305E-040 + 2.9399999999999977 -8.9860018910628354E-040 + 3.0000000000000000 -1.6606468098030174E-039 + 3.0599999999999952 -2.4736879415273712E-039 + 3.1199999999999974 -3.2572082397116873E-039 + 3.1799999999999997 -5.2887979333605837E-039 + 3.2399999999999949 -8.0414685024720268E-039 + 3.2999999999999972 -1.1361047320005509E-038 + 3.3599999999999994 -1.4376019849174457E-038 + 3.4199999999999946 -1.6923180709955741E-038 + 3.4799999999999969 -1.9011215468584539E-038 + 3.5399999999999991 -2.0665428107656105E-038 + 3.6000000000000014 -2.1985574172783370E-038 + 3.6599999999999966 -2.2373036519954279E-038 + 3.7199999999999989 -2.1441641786757258E-038 + 3.7800000000000011 -1.9585784919255081E-038 + 3.8399999999999963 -1.7496410558497248E-038 + 3.8999999999999986 -1.4753392472875311E-038 + 3.9600000000000009 -1.1717041956626813E-038 + 4.0199999999999960 -9.5119162825920666E-039 + 4.0799999999999983 -8.1933007935414573E-039 + 4.1400000000000006 -1.0941552978630173E-038 + 4.1999999999999957 -1.5606522267537621E-038 + 4.2599999999999980 -2.3129439741364050E-038 + 4.3200000000000003 -3.1589361771239637E-038 + 4.3799999999999955 -4.0969010270879503E-038 + 4.4399999999999977 -4.8415952061612853E-038 + 4.5000000000000000 -5.3097209022326409E-038 + 4.5599999999999952 -5.3736457212258991E-038 + 4.6199999999999974 -4.9516791408481783E-038 + 4.6799999999999997 -4.0203125085614536E-038 + 4.7399999999999949 -2.3129912188808348E-038 + 4.7999999999999972 4.6659676977634079E-039 + 4.8599999999999994 5.0977711260226937E-038 + 4.9199999999999946 1.1549362046415868E-037 + 4.9799999999999969 1.9668873428411584E-037 + 5.0399999999999991 2.7879583021847965E-037 + 5.1000000000000014 3.5482778259588658E-037 + 5.1599999999999966 4.1694786411472854E-037 + 5.2199999999999989 4.5815280894877956E-037 + 5.2800000000000011 4.8065883251489621E-037 + 5.3399999999999963 4.7599335372331763E-037 + 5.3999999999999986 4.4547993412117024E-037 + 5.4600000000000009 3.5552578537225134E-037 + 5.5199999999999960 2.1609996740126857E-037 + 5.5799999999999983 3.6916719668675415E-038 + 5.6400000000000006 -1.6316555854853977E-037 + 5.6999999999999957 -3.6583545786187781E-037 + 5.7599999999999980 -5.4481945823189659E-037 + 5.8200000000000003 -6.6776704127217924E-037 + 5.8799999999999955 -7.0278779902897437E-037 + 5.9399999999999977 -6.2070629201662299E-037 + 6.0000000000000000 -4.1981481388950396E-037 + 6.0599999999999952 -4.9382578991414361E-038 + 6.1199999999999974 4.8891333360877576E-037 + 6.1799999999999997 1.1898699466743512E-036 + 6.2399999999999949 1.9996455539418904E-036 + 6.2999999999999972 2.7894436661945065E-036 + 6.3599999999999994 3.4646786379429469E-036 + 6.4199999999999946 3.9649273716552610E-036 + 6.4799999999999969 4.2061547878899836E-036 + 6.5399999999999991 4.0738253499739299E-036 + 6.6000000000000014 3.4372010653575038E-036 + 6.6599999999999966 2.1556265184131820E-036 + 6.7199999999999989 2.6454227970313302E-037 + 6.7800000000000011 -2.2200870535442595E-036 + 6.8399999999999963 -5.2196873339923649E-036 + 6.8999999999999986 -8.6327395788288131E-036 + 6.9600000000000009 -1.2210838889219730E-035 + 7.0199999999999960 -1.5771710170342122E-035 + 7.0799999999999983 -1.8989924176933454E-035 + 7.1400000000000006 -2.1457839181188194E-035 + 7.1999999999999957 -2.2710096688185261E-035 + 7.2599999999999980 -2.2333232756865868E-035 + 7.3200000000000003 -1.9659628731140563E-035 + 7.3799999999999955 -1.4493423766042294E-035 + 7.4399999999999977 -6.6367678889503013E-036 + 7.5000000000000000 3.8366293182747079E-036 + 7.5599999999999952 1.6853610444868486E-035 + 7.6199999999999974 3.1928546882826807E-035 + 7.6799999999999997 4.8194475512488456E-035 + 7.7399999999999949 6.4615419703949526E-035 + 7.7999999999999972 8.0000223263317765E-035 + 7.8599999999999994 9.2758568607134440E-035 + 7.9199999999999946 1.0108186656654524E-034 + 7.9799999999999969 1.0290542000813780E-034 + 8.0399999999999991 9.6366948107223786E-035 + 8.1000000000000014 7.9562179917363342E-035 + 8.1599999999999966 5.0970936090154765E-035 + 8.2199999999999989 9.6113730097937254E-036 + 8.2800000000000011 -4.4734644531544972E-035 + 8.3399999999999963 -1.1132777734661028E-034 + 8.3999999999999986 -1.8824222859269891E-034 + 8.4600000000000009 -2.7216743088121529E-034 + 8.5199999999999960 -3.5834284874267339E-034 + 8.5799999999999983 -4.4052738560487836E-034 + 8.6400000000000006 -5.1110818315236229E-034 + 8.6999999999999957 -5.6136657738620431E-034 + 8.7599999999999980 -5.8176668640754220E-034 + 8.8200000000000003 -5.6253670351292221E-034 + 8.8799999999999955 -4.9446992296105667E-034 + 8.9399999999999977 -3.6972160207536791E-034 + 9.0000000000000000 -1.8287356041892361E-034 + 9.0599999999999952 6.8000910269282459E-035 + 9.1199999999999974 3.8024498503458648E-034 + 9.1799999999999997 7.4561385761254604E-034 + 9.2399999999999949 1.1494108337039380E-033 + 9.2999999999999972 1.5699880546335942E-033 + 9.3599999999999994 1.9786472993913231E-033 + 9.4199999999999946 2.3398098851499299E-033 + 9.4799999999999969 2.6124012406350923E-033 + 9.5399999999999991 2.7514887943627838E-033 + 9.5999999999999943 2.7108423781132380E-033 + 9.6599999999999966 2.4463571126954077E-033 + 9.7199999999999989 1.9201073113797185E-033 + 9.7800000000000011 1.1049979733311800E-033 + 9.8399999999999963 -1.0225391249294031E-035 + 9.8999999999999986 -1.4159646977139299E-033 + 9.9600000000000009 -3.0770834950502437E-033 + 10.019999999999996 -4.9290861158565565E-033 + 10.079999999999998 -6.8756293988122807E-033 + 10.140000000000001 -8.7879679711837584E-033 + 10.199999999999996 -1.0506824164102349E-032 + 10.259999999999998 -1.1847195046922763E-032 + 10.320000000000000 -1.2606446389456155E-032 + 10.379999999999995 -1.2575880188366733E-032 + 10.439999999999998 -1.1555752818009124E-032 + 10.500000000000000 -9.3733908107560810E-033 + 10.559999999999995 -5.9037647211332621E-033 + 10.619999999999997 -1.0914807880673637E-033 + 10.680000000000000 5.0272020330373453E-033 + 10.739999999999995 1.2304092008417120E-032 + 10.799999999999997 2.0462581628552962E-032 + 10.859999999999999 2.9087207013807812E-032 + 10.919999999999995 3.7621631931634039E-032 + 10.979999999999997 4.5377307981607602E-032 + 11.039999999999999 5.1554761675831239E-032 + 11.099999999999994 5.5278988358973732E-032 + 11.159999999999997 5.5649613116052268E-032 + 11.219999999999999 5.1805517741526112E-032 + 11.280000000000001 4.3002300593407342E-032 + 11.339999999999996 2.8699669664865961E-032 + 11.399999999999999 8.6542064486551552E-033 + 11.460000000000001 -1.6988523195357757E-032 + 11.519999999999996 -4.7609973363935713E-032 + 11.579999999999998 -8.2051385862510678E-032 + 11.640000000000001 -1.1857274385116515E-031 + 11.699999999999996 -1.5484755572848162E-031 + 11.759999999999998 -1.8800256565278077E-031 + 11.820000000000000 -2.1471017373816003E-031 + 11.879999999999995 -2.3133901741627659E-031 + 11.939999999999998 -2.3416486230480895E-031 + 12.000000000000000 -2.1963977461092389E-031 + 12.059999999999995 -1.8471216923746996E-031 + 12.119999999999997 -1.2718500723705732E-031 + 12.180000000000000 -4.6092706560586398E-032 + 12.239999999999995 5.7928200992532371E-032 + 12.299999999999997 1.8230547009342784E-031 + 12.359999999999999 3.2226979719090519E-031 + 12.419999999999995 4.7070342304226232E-031 + 12.479999999999997 6.1813676449690914E-031 + 12.539999999999999 7.5292853041390041E-031 + 12.599999999999994 8.6165888107233555E-031 + 12.659999999999997 9.2975506466797178E-031 + 12.719999999999999 9.4235501134587921E-031 + 12.780000000000001 8.8539826252733772E-031 + 12.839999999999996 7.4691123930827672E-031 + 12.899999999999999 5.1843244383608355E-031 + 12.960000000000001 1.9649869657760269E-031 + 13.019999999999996 -2.1590986273418566E-031 + 13.079999999999998 -7.0808887412051489E-031 + 13.140000000000001 -1.2606307643202530E-030 + 13.199999999999996 -1.8448966564101198E-030 + 13.259999999999998 -2.4230842461101992E-030 + 13.320000000000000 -2.9490260747951719E-030 + 13.379999999999995 -3.3698265224364018E-030 + 13.439999999999998 -3.6284052178015927E-030 + 13.500000000000000 -3.6669580323353802E-030 + 13.559999999999995 -3.4312818919141798E-030 + 13.619999999999997 -2.8758244472306022E-030 + 13.680000000000000 -1.9692357645925376E-030 + 13.739999999999995 -7.0010522437539720E-031 + 13.799999999999997 9.1751852379273666E-031 + 13.859999999999999 2.8393032226513804E-030 + 13.919999999999995 4.9870420143483374E-030 + 13.979999999999997 7.2468531759856133E-030 + 14.039999999999999 9.4697304519442826E-030 + 14.099999999999994 1.1474938443665529E-029 + 14.159999999999997 1.3056647238311192E-029 + 14.219999999999999 1.3994037729835442E-029 + 14.280000000000001 1.4064898067988971E-029 + 14.339999999999996 1.3062465028765471E-029 + 14.399999999999999 1.0814948554833382E-029 + 14.460000000000001 7.2068735996574100E-030 + 14.519999999999996 2.2009862764487410E-030 + 14.579999999999998 -4.1408026289932172E-030 + 14.640000000000001 -1.1639273612690577E-029 + 14.699999999999996 -1.9984584864504310E-029 + 14.759999999999998 -2.8729911601313286E-029 + 14.820000000000000 -3.7294099084606373E-029 + 14.879999999999995 -4.4975193960642367E-029 + 14.939999999999998 -5.0976298846813464E-029 + 15.000000000000000 -5.4444578850799024E-029 + 15.059999999999995 -5.4523451618686771E-029 + 15.119999999999997 -5.0416999331599408E-029 + 15.180000000000000 -4.1464486554991157E-029 + 15.239999999999995 -2.7221678633240938E-029 + 15.299999999999997 -7.5442662267048688E-030 + 15.359999999999999 1.7332267001466842E-029 + 15.419999999999995 4.6723287506100934E-029 + 15.479999999999997 7.9443656899315383E-029 + 15.539999999999999 1.1378231230766834E-028 + 15.599999999999994 1.4751053833954742E-028 + 15.659999999999997 1.7793083285685182E-028 + 15.719999999999999 2.0197191852148007E-028 + 15.780000000000001 2.1633310107774748E-028 + 15.839999999999996 2.1767829330555781E-028 + 15.899999999999999 2.0287662788956148E-028 + 15.960000000000001 1.6928189166918202E-028 + 16.019999999999996 1.1503924726117386E-028 + 16.079999999999998 3.9402403869480042E-029 + 16.140000000000001 -5.6959603903861041E-029 + 16.200000000000003 -1.7169084419479393E-028 + 16.259999999999991 -3.0053967817234498E-028 + 16.319999999999993 -4.3724217232306047E-028 + 16.379999999999995 -5.7352605007829639E-028 + 16.439999999999998 -6.9926212406756468E-028 + 16.500000000000000 -8.0278382036800026E-028 + 16.560000000000002 -8.7138954136593335E-028 + 16.620000000000005 -8.9203095368192439E-028 + 16.679999999999993 -8.5217852582503527E-028 + 16.739999999999995 -7.4084115853954131E-028 + 16.799999999999997 -5.4969995997546218E-028 + 16.859999999999999 -2.7430029706705202E-028 + 16.920000000000002 8.4770253798917679E-029 + 16.980000000000004 5.2080495146645085E-028 + 17.039999999999992 1.0200998409497114E-027 + 17.099999999999994 1.5613802013587600E-027 + 17.159999999999997 2.1156366381656837E-027 + 17.219999999999999 2.6464706764941117E-027 + 17.280000000000001 3.1110345266263006E-027 + 17.340000000000003 3.4616260627029422E-027 + 17.399999999999991 3.6479667094792422E-027 + 17.459999999999994 3.6201501453238277E-027 + 17.519999999999996 3.3321966497090150E-027 + 17.579999999999998 2.7460974988165201E-027 + 17.640000000000001 1.8361704696994823E-027 + 17.700000000000003 5.9349490168777354E-028 + 17.759999999999991 -9.6986553532826293E-028 + 17.819999999999993 -2.8171826403082874E-027 + 17.879999999999995 -4.8842949904202228E-027 + 17.939999999999998 -7.0781233907489785E-027 + 18.000000000000000 -9.2768455112277492E-027 + 18.060000000000002 -1.1332053882519043E-026 + 18.120000000000005 -1.3073165218412375E-026 + 18.179999999999993 -1.4314244544996917E-026 + 18.239999999999995 -1.4863280876338033E-026 + 18.299999999999997 -1.4533793035358468E-026 + 18.359999999999999 -1.3158465527575593E-026 + 18.420000000000002 -1.0604313069462997E-026 + 18.480000000000004 -6.7886785292825256E-027 + 18.539999999999992 -1.6951700742628118E-027 + 18.599999999999994 4.6115384939666439E-027 + 18.659999999999997 1.1973234010834332E-026 + 18.719999999999999 2.0129323790078484E-026 + 18.780000000000001 2.8712924586559000E-026 + 18.840000000000003 3.7253119469131193E-026 + 18.899999999999991 4.5184457005684074E-026 + 18.959999999999994 5.1864519034618733E-026 + 19.019999999999996 5.6599994926677848E-026 + 19.079999999999998 5.8681248194769644E-026 + 19.140000000000001 5.7424799524028817E-026 + 19.200000000000003 5.2222545891318346E-026 + 19.259999999999991 4.2595844760571206E-026 + 19.319999999999993 2.8251955204973653E-026 + 19.379999999999995 9.1396582326982172E-027 + 19.439999999999998 -1.4499636703749803E-026 + 19.500000000000000 -4.2089436032912111E-026 + 19.560000000000002 -7.2688690014899027E-026 + 19.620000000000005 -1.0497967550184879E-025 + 19.679999999999993 -1.3727728114318230E-025 + 19.739999999999995 -1.6756319967367688E-025 + 19.799999999999997 -1.9354758290185726E-025 + 19.859999999999999 -2.1275940863592510E-025 + 19.920000000000002 -2.2266540422693254E-025 + 19.980000000000004 -2.2081537198167150E-025 + 20.039999999999992 -2.0500983922981019E-025 + 20.099999999999994 -1.7348377111130756E-025 + 20.159999999999997 -1.2509792510615386E-025 + 20.219999999999999 -5.9527454203410123E-026 + 20.280000000000001 2.2564334665169442E-026 + 20.340000000000003 1.1938054329027126E-025 + 20.399999999999991 2.2788749367957501E-025 + 20.459999999999994 3.4376800807437449E-025 + 20.519999999999996 4.6144408942616676E-025 + 20.579999999999998 5.7418021418347584E-025 + 20.640000000000001 6.7427545991300551E-025 + 20.700000000000003 7.5334877638493875E-025 + 20.759999999999991 8.0271691341701771E-025 + 20.819999999999993 8.1385849758834807E-025 + 20.879999999999995 7.7895209297992895E-025 + 20.939999999999998 6.9146885667587142E-025 + 21.000000000000000 5.4679362527849013E-025 + 21.060000000000002 3.4284315222575034E-025 + 21.120000000000005 8.0643756379332165E-026 + 21.179999999999993 -2.3517275880789136E-025 + 21.239999999999995 -5.9599850708749872E-025 + 21.299999999999997 -9.8904736501048548E-025 + 21.359999999999999 -1.3973625927412186E-024 + 21.420000000000002 -1.8000693363707632E-024 + 21.480000000000004 -2.1728989227996549E-024 + 21.539999999999992 -2.4890006390140169E-024 + 21.599999999999994 -2.7200424670685548E-024 + 21.659999999999997 -2.8375852941730429E-024 + 21.719999999999999 -2.8146970399785571E-024 + 21.780000000000001 -2.6277535215384775E-024 + 21.840000000000003 -2.2583538491707588E-024 + 21.899999999999991 -1.6952590781031567E-024 + 21.959999999999994 -9.3624694183171118E-025 + 22.019999999999996 1.0236282217878353E-026 + 22.079999999999998 1.1237533558883982E-024 + 22.140000000000001 2.3710133560500692E-024 + 22.200000000000003 3.7055896640208501E-024 + 22.259999999999991 5.0683280827059364E-024 + 22.319999999999993 6.3885343329934191E-024 + 22.379999999999995 7.5859963087704469E-024 + 22.439999999999998 8.5738627859012726E-024 + 22.500000000000000 9.2623506591257215E-024 + 22.560000000000002 9.5632099497587354E-024 + 22.619999999999990 9.3948125291317646E-024 + 22.679999999999993 8.6876871899601013E-024 + 22.739999999999995 7.3902609240964531E-024 + 22.799999999999997 5.4745318702386830E-024 + 22.859999999999999 2.9413475449418966E-024 + 22.920000000000002 -1.7505356950696893E-025 + 22.980000000000004 -3.8035948534340013E-024 + 23.039999999999992 -7.8343568584269202E-024 + 23.099999999999994 -1.2118345049433566E-023 + 23.159999999999997 -1.6469290675818549E-023 + 23.219999999999999 -2.0667707193031529E-023 + 23.280000000000001 -2.4467311114498079E-023 + 23.340000000000003 -2.7603809334393473E-023 + 23.399999999999991 -2.9805947828805963E-023 + 23.459999999999994 -3.0808557487099518E-023 + 23.519999999999996 -3.0367213818381282E-023 + 23.579999999999998 -2.8273988075963874E-023 + 23.640000000000001 -2.4373614428789686E-023 + 23.700000000000003 -1.8579325952480459E-023 + 23.759999999999991 -1.0887479515782420E-023 + 23.819999999999993 -1.3900881588694625E-024 + 23.879999999999995 9.7156900465117471E-024 + 23.939999999999998 2.2121987468132060E-023 + 24.000000000000000 3.5409417227418495E-023 + 24.060000000000002 4.9051676435090293E-023 + 24.119999999999990 6.2426095035220473E-023 + 24.179999999999993 7.4830426043068404E-023 + 24.239999999999995 8.5505851339306147E-023 + 24.299999999999997 9.3665921525769837E-023 + 24.359999999999999 9.8530877251161235E-023 + 24.420000000000002 9.9366315579336433E-023 + 24.480000000000004 9.5525005406541496E-023 + 24.539999999999992 8.6490256323300386E-023 + 24.599999999999994 7.1918952136108501E-023 + 24.659999999999997 5.1682284712891182E-023 + 24.719999999999999 2.5901902424466973E-023 + 24.780000000000001 -5.0206889930633789E-024 + 24.840000000000003 -4.0383867767233459E-023 + 24.899999999999991 -7.9176584038945122E-023 + 24.959999999999994 -1.2008210527266244E-022 + 25.019999999999996 -1.6149607973237485E-022 + 25.079999999999998 -2.0156010712407643E-022 + 25.140000000000001 -2.3821110863592217E-022 + 25.200000000000003 -2.6924650485061407E-022 + 25.259999999999991 -2.9240419022207393E-022 + 25.319999999999993 -3.0545586801239455E-022 + 25.379999999999995 -3.0631115107721255E-022 + 25.439999999999998 -2.9312968679707101E-022 + 25.500000000000000 -2.6443719256278293E-022 + 25.560000000000002 -2.1924133108575243E-022 + 25.619999999999990 -1.5714220109599668E-022 + 25.679999999999993 -7.8432367764745481E-023 + 25.739999999999995 1.5819113279609899E-023 + 25.799999999999997 1.2370432511709152E-022 + 25.859999999999999 2.4244106380419117E-022 + 25.920000000000002 3.6836936681345036E-022 + 25.980000000000004 4.9698428604383584E-022 + 26.039999999999992 6.2300844107661129E-022 + 26.099999999999994 7.4050669524613000E-022 + 26.159999999999997 8.4304379789358544E-022 + 26.219999999999999 9.2388453268772064E-022 + 26.280000000000001 9.7623381638020785E-022 + 26.340000000000003 9.9351246317393112E-022 + 26.399999999999991 9.6966241062826722E-022 + 26.459999999999994 8.9947247876138380E-022 + 26.519999999999996 7.7891438829480546E-022 + 26.579999999999998 6.0547615586219402E-022 + 26.640000000000001 3.7847854437757666E-022 + 26.700000000000003 9.9358619598947686E-023 + 26.759999999999991 -2.2809717890486281E-022 + 26.819999999999993 -5.9758698861028859E-022 + 26.879999999999995 -1.0002137877286837E-021 + 26.939999999999998 -1.4245073766118171E-021 + 27.000000000000000 -1.8565637718828801E-021 + 27.060000000000002 -2.2803146881444186E-021 + 27.119999999999990 -2.6779354219932070E-021 + 27.179999999999993 -3.0303959313844422E-021 + 27.239999999999995 -3.3181523953306197E-021 + 27.299999999999997 -3.5219732847490676E-021 + 27.359999999999999 -3.6238806630910640E-021 + 27.420000000000002 -3.6081875438840410E-021 + 27.480000000000004 -3.4625973640459591E-021 + 27.539999999999992 -3.1793235567119988E-021 + 27.599999999999994 -2.7561873396353000E-021 + 27.659999999999997 -2.1976330578902966E-021 + 27.719999999999999 -1.5156089649691220E-021 + 27.780000000000001 -7.3024405053545910E-022 + 27.840000000000003 1.2973707415310353E-022 + 27.899999999999991 1.0269207194458033E-021 + 27.959999999999994 1.9154903555609316E-021 + 28.019999999999996 2.7419294878383193E-021 + 28.079999999999998 3.4461783866734073E-021 + 28.140000000000001 3.9632547814250522E-021 + 28.200000000000003 4.2253196827373362E-021 + 28.259999999999991 4.1641676184551972E-021 + 28.319999999999993 3.7140772583975489E-021 + 28.379999999999995 2.8149160369081620E-021 + 28.439999999999998 1.4154078085591962E-021 + 28.500000000000000 -5.2361429375772539E-022 + 28.560000000000002 -3.0261013890259473E-021 + 28.619999999999990 -6.0980536518501342E-021 + 28.679999999999993 -9.7253404272164054E-021 + 28.739999999999995 -1.3872266113248873E-020 + 28.799999999999997 -1.8481110849046262E-020 + 28.859999999999999 -2.3472779148496976E-020 + 28.920000000000002 -2.8748758195008762E-020 + 28.980000000000004 -3.4194416930574348E-020 + 29.039999999999992 -3.9683738076375573E-020 + 29.099999999999994 -4.5085449049539192E-020 + 29.159999999999997 -5.0270432429865436E-020 + 29.219999999999999 -5.5120175277110888E-020 + 29.280000000000001 -5.9536045275517422E-020 + 29.340000000000003 -6.3448999502723860E-020 + 29.399999999999991 -6.6829240620714742E-020 + 29.459999999999994 -6.9695183964890002E-020 + 29.519999999999996 -7.2121324624750134E-020 + 29.579999999999998 -7.4244272562057783E-020 + 29.640000000000001 -7.6266214127698433E-020 + 29.700000000000003 -7.8455448041492555E-020 + 29.759999999999991 -8.1143006847075066E-020 + 29.819999999999993 -8.4715501215082105E-020 + 29.879999999999995 -8.9603256059374144E-020 + 29.939999999999998 -9.6263974320040876E-020 + 30.000000000000000 -1.0516194661613351E-019 + 30.060000000000002 -1.1674300707979120E-019 + 30.119999999999990 -1.3140587045563933E-019 + 30.179999999999993 -1.4947085790876151E-019 + 30.239999999999995 -1.7114649289430959E-019 + 30.299999999999997 -1.9649639098531220E-019 + 30.359999999999999 -2.2540663810991251E-019 + 30.420000000000002 -2.5755645767082693E-019 + 30.480000000000004 -2.9239335168198779E-019 + 30.539999999999992 -3.2911464433027394E-019 + 30.599999999999994 -3.6665673182806483E-019 + 30.659999999999997 -4.0369355147965449E-019 + 30.719999999999999 -4.3864570170548464E-019 + 30.780000000000001 -4.6969960080538902E-019 + 30.840000000000003 -4.9483788999042416E-019 + 30.899999999999991 -5.1187934461858609E-019 + 30.959999999999994 -5.1852722715911139E-019 + 31.019999999999996 -5.1242271170287663E-019 + 31.079999999999998 -4.9120183167691174E-019 + 31.140000000000001 -4.5254979500929179E-019 + 31.200000000000003 -3.9424805434388209E-019 + 31.259999999999991 -3.1421091749057009E-019 + 31.319999999999993 -2.1049950239757876E-019 + 31.379999999999995 -8.1313809918611433E-020 + 31.439999999999998 7.5049331862009876E-020 + 31.500000000000000 2.6027707488639267E-019 + 31.560000000000002 4.7616539684712796E-019 + 31.619999999999990 7.2479537894993434E-019 + 31.679999999999993 1.0087666824030248E-018 + 31.739999999999995 1.3314782928176513E-018 + 31.799999999999997 1.6974805129177582E-018 + 31.859999999999999 2.1128722822748629E-018 + 31.920000000000002 2.5857613429543102E-018 + 31.980000000000004 3.1267700241103616E-018 + 32.039999999999992 3.7495755287921235E-018 + 32.099999999999994 4.4714981250190043E-018 + 32.159999999999997 5.3140851314549628E-018 + 32.219999999999999 6.3037397501670344E-018 + 32.280000000000001 7.4722999677570437E-018 + 32.340000000000003 8.8576521378381318E-018 + 32.399999999999991 1.0504265556494424E-017 + 32.459999999999994 1.2463706922022909E-017 + 32.519999999999996 1.4795131222001940E-017 + 32.579999999999998 1.7565677552322518E-017 + 32.640000000000001 2.0850821031373535E-017 + 32.700000000000003 2.4734694876022733E-017 + 32.759999999999991 2.9310350697204587E-017 + 32.819999999999993 3.4680010517709976E-017 + 32.879999999999995 4.0955308969360719E-017 + 32.939999999999998 4.8257554545653753E-017 + 33.000000000000000 5.6718066355500609E-017 + 33.060000000000002 6.6478587977340306E-017 + 33.119999999999990 7.7691938958364550E-017 + 33.179999999999993 9.0522747798127325E-017 + 33.239999999999995 1.0514855382175263E-016 + 33.299999999999997 1.2176113027632444E-016 + 33.359999999999999 1.4056819015675045E-016 + 33.420000000000002 1.6179567040019898E-016 + 33.480000000000004 1.8569029161356695E-016 + 33.539999999999992 2.1252266487007995E-016 + 33.599999999999994 2.4259102346734313E-016 + 33.659999999999997 2.7622538842018406E-016 + 33.719999999999999 3.1379237280713844E-016 + 33.780000000000001 3.5570062437672127E-016 + 33.840000000000003 4.0240636162440165E-016 + 33.899999999999991 4.5442014250944392E-016 + 33.959999999999994 5.1231293895682089E-016 + 34.019999999999996 5.7672352917580600E-016 + 34.079999999999998 6.4836570419073600E-016 + 34.140000000000001 7.2803481450020301E-016 + 34.200000000000003 8.1661505002895864E-016 + 34.259999999999991 9.1508628717552013E-016 + 34.319999999999993 1.0245301037935880E-015 + 34.379999999999995 1.1461347590249130E-015 + 34.439999999999998 1.2811995537705463E-015 + 34.500000000000000 1.4311380429408724E-015 + 34.560000000000002 1.5974791600144754E-015 + 34.619999999999990 1.7818672879753995E-015 + 34.679999999999993 1.9860590513670036E-015 + 34.739999999999995 2.2119184042468750E-015 + 34.799999999999997 2.4614074755427836E-015 + 34.859999999999999 2.7365767474785992E-015 + 34.920000000000002 3.0395481030535056E-015 + 34.980000000000004 3.3724972210031226E-015 + 35.039999999999992 3.7376265385620823E-015 + 35.099999999999994 4.1371377328406452E-015 + 35.159999999999997 4.5731945704393336E-015 + 35.219999999999999 5.0478799620962885E-015 + 35.280000000000001 5.5631478773157809E-015 + 35.340000000000003 6.1207606863222062E-015 + 35.399999999999991 6.7222210702721188E-015 + 35.459999999999994 7.3686955090084153E-015 + 35.519999999999996 8.0609172634699527E-015 + 35.579999999999998 8.7990854020237879E-015 + 35.640000000000001 9.5827314673977868E-015 + 35.700000000000003 1.0410589557901404E-014 + 35.759999999999991 1.1280426503917378E-014 + 35.819999999999993 1.2188846224829762E-014 + 35.879999999999995 1.3131088149593769E-014 + 35.939999999999998 1.4100771521327555E-014 + 36.000000000000000 1.5089596754732632E-014 + 36.060000000000002 1.6087042213088897E-014 + 36.119999999999990 1.7079959538056946E-014 + 36.179999999999993 1.8052154717078012E-014 + 36.239999999999995 1.8983874617615420E-014 + 36.299999999999997 1.9851228812149097E-014 + 36.359999999999999 2.0625530440253647E-014 + 36.420000000000002 2.1272543199225143E-014 + 36.479999999999990 2.1751581647411911E-014 + 36.539999999999992 2.2014537852290295E-014 + 36.599999999999994 2.2004725505737466E-014 + 36.659999999999997 2.1655562643759900E-014 + 36.719999999999999 2.0889111053813218E-014 + 36.780000000000001 1.9614335026766991E-014 + 36.840000000000003 1.7725221344818463E-014 + 36.899999999999991 1.5098571030680825E-014 + 36.959999999999994 1.1591511581966309E-014 + 37.019999999999996 7.0387240403707340E-015 + 37.079999999999998 1.2492832250565028E-015 + 37.140000000000001 -5.9968261542301143E-015 + 37.200000000000003 -1.4952858851413484E-014 + 37.259999999999991 -2.5909538426623416E-014 + 37.319999999999993 -3.9200228590294230E-014 + 37.379999999999995 -5.5206556921281483E-014 + 37.439999999999998 -7.4364516994994165E-014 + 37.500000000000000 -9.7171488837989157E-014 + 37.560000000000002 -1.2419398776484053E-013 + 37.619999999999990 -1.5607621957925363E-013 + 37.679999999999993 -1.9354973428275691E-013 + 37.739999999999995 -2.3744395725108969E-013 + 37.799999999999997 -2.8869784587240367E-013 + 37.859999999999999 -3.4837305074178835E-013 + 37.920000000000002 -4.1766792348065747E-013 + 37.979999999999990 -4.9793373816592474E-013 + 38.039999999999992 -5.9069176108874828E-013 + 38.099999999999994 -6.9765262074432737E-013 + 38.159999999999997 -8.2073775083808099E-013 + 38.219999999999999 -9.6210259603289651E-013 + 38.280000000000001 -1.1241612807929925E-012 + 38.340000000000003 -1.3096164220246265E-012 + 38.399999999999991 -1.5214881703726056E-012 + 38.459999999999994 -1.7631485557246557E-012 + 38.519999999999996 -2.0383585697579426E-012 + 38.579999999999998 -2.3513066807056856E-012 + 38.640000000000001 -2.7066546470276503E-012 + 38.700000000000003 -3.1095852468057265E-012 + 38.759999999999991 -3.5658513799018466E-012 + 38.819999999999993 -4.0818336554054345E-012 + 38.879999999999995 -4.6646028142848358E-012 + 38.939999999999998 -5.3219825545793734E-012 + 39.000000000000000 -6.0626212190276402E-012 + 39.060000000000002 -6.8960689115432213E-012 + 39.119999999999990 -7.8328570647363649E-012 + 39.179999999999993 -8.8845871364960545E-012 + 39.239999999999995 -1.0064029161669909E-011 + 39.299999999999997 -1.1385210600274073E-011 + 39.359999999999999 -1.2863535184822638E-011 + 39.420000000000002 -1.4515876411447404E-011 + 39.479999999999990 -1.6360719373798082E-011 + 39.539999999999992 -1.8418275116391959E-011 + 39.599999999999994 -2.0710603675434744E-011 + 39.659999999999997 -2.3261768091351777E-011 + 39.719999999999999 -2.6097955378206914E-011 + 39.780000000000001 -2.9247648074914538E-011 + 39.840000000000003 -3.2741755723135140E-011 + 39.899999999999991 -3.6613779571952277E-011 + 39.959999999999994 -4.0899961871596747E-011 + 40.019999999999996 -4.5639450080790591E-011 + 40.079999999999998 -5.0874433566309976E-011 + 40.140000000000001 -5.6650331940691290E-011 + 40.200000000000003 -6.3015900491662680E-011 + 40.259999999999991 -7.0023385145607818E-011 + 40.319999999999993 -7.7728602208073671E-011 + 40.379999999999995 -8.6191093392431523E-011 + 40.439999999999998 -9.5474204257356766E-011 + 40.500000000000000 -1.0564506264437876E-010 + 40.560000000000002 -1.1677461990990463E-010 + 40.619999999999990 -1.2893764917157761E-010 + 40.679999999999993 -1.4221256985437438E-010 + 40.739999999999995 -1.5668133986692736E-010 + 40.799999999999997 -1.7242916966890133E-010 + 40.859999999999999 -1.8954420835821330E-010 + 40.920000000000002 -2.0811705353084667E-010 + 40.979999999999990 -2.2824018885145176E-010 + 41.039999999999992 -2.5000713722098988E-010 + 41.099999999999994 -2.7351168661383545E-010 + 41.159999999999997 -2.9884652722139952E-010 + 41.219999999999999 -3.2610201566890867E-010 + 41.280000000000001 -3.5536437542645720E-010 + 41.340000000000003 -3.8671381575575697E-010 + 41.399999999999991 -4.2022190499379101E-010 + 41.459999999999994 -4.5594910742553184E-010 + 41.519999999999996 -4.9394100528266807E-010 + 41.579999999999998 -5.3422479748392763E-010 + 41.640000000000001 -5.7680464653835713E-010 + 41.700000000000003 -6.2165638072927997E-010 + 41.759999999999991 -6.6872150481523445E-010 + 41.819999999999993 -7.1790018253106871E-010 + 41.879999999999995 -7.6904322393718454E-010 + 41.939999999999998 -8.2194276927550558E-010 + 42.000000000000000 -8.7632175656886279E-010 + 42.060000000000002 -9.3182185527665416E-010 + 42.119999999999990 -9.8798976785592306E-010 + 42.179999999999993 -1.0442612435947001E-009 + 42.239999999999995 -1.0999435367966741E-009 + 42.299999999999997 -1.1541952901951419E-009 + 42.359999999999999 -1.2060035709286332E-009 + 42.420000000000002 -1.2541582725276378E-009 + 42.479999999999990 -1.2972226016441979E-009 + 42.539999999999992 -1.3335003433423799E-009 + 42.599999999999994 -1.3609994549837057E-009 + 42.659999999999997 -1.3773893214782692E-009 + 42.719999999999999 -1.3799552895922785E-009 + 42.780000000000001 -1.3655462587117876E-009 + 42.840000000000003 -1.3305150345567238E-009 + 42.899999999999991 -1.2706535344124713E-009 + 42.959999999999994 -1.1811207718828418E-009 + 43.019999999999996 -1.0563589119786466E-009 + 43.079999999999998 -8.9000437435992245E-010 + 43.140000000000001 -6.7478472437681916E-010 + 43.200000000000003 -4.0240643235941914E-010 + 43.259999999999991 -6.3429507223157239E-011 + 43.319999999999993 3.5287200217920733E-010 + 43.379999999999995 8.5866539258830225E-010 + 43.439999999999998 1.4677237568014902E-009 + 43.500000000000000 2.1956318981984275E-009 + 43.560000000000002 3.0599798269148168E-009 + 43.619999999999990 4.0806028098292286E-009 + 43.679999999999993 5.2798350109162119E-009 + 43.739999999999995 6.6827920482580702E-009 + 43.799999999999997 8.3176961124874787E-009 + 43.859999999999999 1.0216200557874318E-008 + 43.920000000000002 1.2413776478655535E-008 + 43.979999999999990 1.4950141381872188E-008 + 44.039999999999992 1.7869694438950439E-008 + 44.099999999999994 2.1222050827714706E-008 + 44.159999999999997 2.5062558654781488E-008 + 44.219999999999999 2.9452941648907726E-008 + 44.280000000000001 3.4461939187425083E-008 + 44.340000000000003 4.0166043731216320E-008 + 44.399999999999991 4.6650294475762126E-008 + 44.459999999999994 5.4009155849831138E-008 + 44.519999999999996 6.2347478521599298E-008 + 44.579999999999998 7.1781515746890798E-008 + 44.640000000000001 8.2440093185992509E-008 + 44.700000000000003 9.4465879193325574E-008 + 44.759999999999991 1.0801658742000835E-007 + 44.819999999999993 1.2326667201445522E-007 + 44.879999999999995 1.4040874104933732E-007 + 44.939999999999998 1.5965542259257256E-007 + 45.000000000000000 1.8124124792928845E-007 + 45.060000000000002 2.0542461485738264E-007 + 45.119999999999990 2.3249021242856547E-007 + 45.179999999999993 2.6275118768253942E-007 + 45.239999999999995 2.9655207027653289E-007 + 45.299999999999997 3.3427146015149750E-007 + 45.359999999999999 3.7632508560256372E-007 + 45.420000000000002 4.2316930790028784E-007 + 45.479999999999990 4.7530459550617177E-007 + 45.539999999999992 5.3327931920725741E-007 + 45.599999999999994 5.9769440265156668E-007 + 45.659999999999997 6.6920742721357706E-007 + 45.719999999999999 7.4853781061159289E-007 + 45.780000000000001 8.3647182582555720E-007 + 45.840000000000003 9.3386869934714399E-007 + 45.899999999999991 1.0416663837660141E-006 + 45.959999999999994 1.1608880586939324E-006 + 46.019999999999996 1.2926497666074999E-006 + 46.079999999999998 1.4381674975798502E-006 + 46.140000000000001 1.5987657387849529E-006 + 46.200000000000003 1.7758856533651616E-006 + 46.259999999999991 1.9710951739289510E-006 + 46.319999999999993 2.1860979337385760E-006 + 46.379999999999995 2.4227454264691973E-006 + 46.439999999999998 2.6830474474855945E-006 + 46.500000000000000 2.9691841665426041E-006 + 46.560000000000002 3.2835200340401731E-006 + 46.619999999999990 3.6286173467379214E-006 + 46.679999999999993 4.0072509282821471E-006 + 46.739999999999995 4.4224235914713051E-006 + 46.799999999999997 4.8773828834231166E-006 + 46.859999999999999 5.3756408560171556E-006 + 46.920000000000002 5.9209901146288839E-006 + 46.979999999999990 6.5175245041978032E-006 + 47.039999999999992 7.1696628566559797E-006 + 47.099999999999994 7.8821694265534144E-006 + 47.159999999999997 8.6601750378392950E-006 + 47.219999999999999 9.5092097214334652E-006 + 47.280000000000001 1.0435219499132306E-005 + 47.340000000000003 1.1444603183353355E-005 + 47.399999999999991 1.2544237064277914E-005 + 47.459999999999994 1.3741506488928359E-005 + 47.519999999999996 1.5044338102988925E-005 + 47.579999999999998 1.6461239668058051E-005 + 47.640000000000001 1.8001327367892410E-005 + 47.700000000000003 1.9674366350223468E-005 + 47.759999999999991 2.1490813871910569E-005 + 47.819999999999993 2.3461857573660404E-005 + 47.879999999999995 2.5599458629597631E-005 + 47.939999999999998 2.7916397656093335E-005 + 48.000000000000000 3.0426315251137217E-005 + 48.060000000000002 3.3143774826548982E-005 + 48.119999999999990 3.6084301114909003E-005 + 48.179999999999993 3.9264427974875512E-005 + 48.239999999999995 4.2701778291776252E-005 + 48.299999999999997 4.6415082479964030E-005 + 48.359999999999999 5.0424271309776800E-005 + 48.420000000000002 5.4750513483960859E-005 + 48.479999999999990 5.9416288898472428E-005 + 48.539999999999992 6.4445440664161679E-005 + 48.599999999999994 6.9863261440256005E-005 + 48.659999999999997 7.5696535301562600E-005 + 48.719999999999999 8.1973620686456031E-005 + 48.780000000000001 8.8724511073384811E-005 + 48.840000000000003 9.5980926973038313E-005 + 48.899999999999991 1.0377635989191923E-004 + 48.959999999999994 1.1214615419615183E-004 + 49.019999999999996 1.2112759037956234E-004 + 49.079999999999998 1.3075994875573615E-004 + 49.140000000000001 1.4108460559119306E-004 + 49.200000000000003 1.5214508784388236E-004 + 49.259999999999991 1.6398713834501561E-004 + 49.319999999999993 1.7665881101667477E-004 + 49.379999999999995 1.9021053311119311E-004 + 49.439999999999998 2.0469520596765216E-004 + 49.500000000000000 2.2016824215166620E-004 + 49.560000000000002 2.3668766928679265E-004 + 49.619999999999990 2.5431415354162750E-004 + 49.679999999999993 2.7311111326619014E-004 + 49.739999999999995 2.9314478759222241E-004 + 49.799999999999997 3.1448419159978223E-004 + 49.859999999999999 3.3720132737537824E-004 + 49.920000000000002 3.6137114345350415E-004 + 49.979999999999990 3.8707165979152757E-004 + 50.039999999999992 4.1438384195381027E-004 + 50.099999999999994 4.4339189014753588E-004 + 50.159999999999997 4.7418300319787511E-004 + 50.219999999999999 5.0684769965256868E-004 + 50.280000000000001 5.4147955655767894E-004 + 50.340000000000003 5.7817536866829771E-004 + 50.399999999999991 6.1703509432103193E-004 + 50.459999999999994 6.5816195822687110E-004 + 50.519999999999996 7.0166227853571091E-004 + 50.579999999999998 7.4764558395818250E-004 + 50.640000000000001 7.9622439836319594E-004 + 50.700000000000003 8.4751458665941739E-004 + 50.759999999999991 9.0163460478114455E-004 + 50.819999999999993 9.5870616248743630E-004 + 50.879999999999995 1.0188534758594544E-003 + 50.939999999999998 1.0822039992544039E-003 + 51.000000000000000 1.1488873151283192E-003 + 51.060000000000002 1.2190358104253378E-003 + 51.119999999999990 1.2927841499632234E-003 + 51.179999999999993 1.3702691086407521E-003 + 51.239999999999995 1.4516296226899448E-003 + 51.299999999999997 1.5370061810491718E-003 + 51.359999999999999 1.6265410373594387E-003 + 51.420000000000002 1.7203779499192235E-003 + 51.479999999999990 1.8186617874903781E-003 + 51.539999999999992 1.9215379583761149E-003 + 51.599999999999994 2.0291526998128017E-003 + 51.659999999999997 2.1416521143905664E-003 + 51.719999999999999 2.2591829802573052E-003 + 51.780000000000001 2.3818913178824028E-003 + 51.840000000000003 2.5099224313270257E-003 + 51.899999999999991 2.6434197894957606E-003 + 51.959999999999994 2.7825265385255926E-003 + 52.019999999999996 2.9273828581409698E-003 + 52.079999999999998 3.0781270112394785E-003 + 52.140000000000001 3.2348943819414900E-003 + 52.200000000000003 3.3978169055627807E-003 + 52.259999999999991 3.5670225534234746E-003 + 52.319999999999993 3.7426355881811906E-003 + 52.379999999999995 3.9247747677200020E-003 + 52.439999999999998 4.1135541646974520E-003 + 52.500000000000000 4.3090811921563041E-003 + 52.560000000000002 4.5114572270266119E-003 + 52.619999999999990 4.7207765636911175E-003 + 52.679999999999993 4.9371260275026859E-003 + 52.739999999999995 5.1605838693418414E-003 + 52.799999999999997 5.3912198759148459E-003 + 52.859999999999999 5.6290938308748420E-003 + 52.920000000000002 5.8742567654785681E-003 + 52.979999999999990 6.1267481991841496E-003 + 53.039999999999992 6.3865960037110033E-003 + 53.099999999999994 6.6538175281183939E-003 + 53.159999999999997 6.9284169376735219E-003 + 53.219999999999999 7.2103862466680931E-003 + 53.280000000000001 7.4997027032779068E-003 + 53.339999999999989 7.7963300234478155E-003 + 53.399999999999991 8.1002176620045760E-003 + 53.459999999999994 8.4112991534355305E-003 + 53.519999999999996 8.7294938441155705E-003 + 53.579999999999998 9.0547030935780176E-003 + 53.640000000000001 9.3868126229810084E-003 + 53.700000000000003 9.7256906533970070E-003 + 53.759999999999991 1.0071187263260827E-002 + 53.819999999999993 1.0423137138774480E-002 + 53.879999999999995 1.0781354468350317E-002 + 53.939999999999998 1.1145635098165445E-002 + 54.000000000000000 1.1515756096052264E-002 + 54.060000000000002 1.1891476626991247E-002 + 54.119999999999990 1.2272535145209656E-002 + 54.179999999999993 1.2658652148192931E-002 + 54.239999999999995 1.3049526317934698E-002 + 54.299999999999997 1.3444840272464186E-002 + 54.359999999999999 1.3844254325912648E-002 + 54.420000000000002 1.4247410812094605E-002 + 54.479999999999990 1.4653933193241342E-002 + 54.539999999999992 1.5063421366131180E-002 + 54.599999999999994 1.5475462527284375E-002 + 54.659999999999997 1.5889623220312819E-002 + 54.719999999999999 1.6305450500203562E-002 + 54.780000000000001 1.6722473330066358E-002 + 54.839999999999989 1.7140203622008764E-002 + 54.899999999999991 1.7558138607779532E-002 + 54.959999999999994 1.7975756966252830E-002 + 55.019999999999996 1.8392523178003571E-002 + 55.079999999999998 1.8807887201233942E-002 + 55.140000000000001 1.9221285062195916E-002 + 55.200000000000003 1.9632136805241372E-002 + 55.259999999999991 2.0039853672065157E-002 + 55.319999999999993 2.0443833388540857E-002 + 55.379999999999995 2.0843466076185285E-002 + 55.439999999999998 2.1238130921227796E-002 + 55.500000000000000 2.1627200591105043E-002 + 55.560000000000002 2.2010037919716220E-002 + 55.619999999999990 2.2386002071261110E-002 + 55.679999999999993 2.2754451031782690E-002 + 55.739999999999995 2.3114735175522566E-002 + 55.799999999999997 2.3466205237534926E-002 + 55.859999999999999 2.3808214621141726E-002 + 55.920000000000002 2.4140113024714263E-002 + 55.979999999999990 2.4461255591605828E-002 + 56.039999999999992 2.4771003192773398E-002 + 56.099999999999994 2.5068720497284293E-002 + 56.159999999999997 2.5353782999231866E-002 + 56.219999999999999 2.5625570334883940E-002 + 56.280000000000001 2.5883477633199044E-002 + 56.339999999999989 2.6126906732817392E-002 + 56.399999999999991 2.6355277996985085E-002 + 56.459999999999994 2.6568023250778790E-002 + 56.519999999999996 2.6764593944780247E-002 + 56.579999999999998 2.6944460675977607E-002 + 56.640000000000001 2.7107108734272588E-002 + 56.700000000000003 2.7252048757132791E-002 + 56.759999999999991 2.7378814446127980E-002 + 56.819999999999993 2.7486962638796946E-002 + 56.879999999999995 2.7576075154020011E-002 + 56.939999999999998 2.7645759805660589E-002 + 57.000000000000000 2.7695653505190758E-002 + 57.060000000000002 2.7725421364344926E-002 + 57.119999999999990 2.7734760341703888E-002 + 57.179999999999993 2.7723397002656292E-002 + 57.239999999999995 2.7691090564964854E-002 + 57.299999999999997 2.7637633271020659E-002 + 57.359999999999999 2.7562854377537114E-002 + 57.420000000000002 2.7466613746626806E-002 + 57.479999999999990 2.7348809201180942E-002 + 57.539999999999992 2.7209375445325285E-002 + 57.599999999999994 2.7048280736079393E-002 + 57.659999999999997 2.6865532202213160E-002 + 57.719999999999999 2.6661171812831209E-002 + 57.780000000000001 2.6435282079051475E-002 + 57.839999999999989 2.6187979088470363E-002 + 57.899999999999991 2.5919422038068088E-002 + 57.959999999999994 2.5629804070163069E-002 + 58.019999999999996 2.5319351436398286E-002 + 58.079999999999998 2.4988332443253571E-002 + 58.140000000000001 2.4637051814078680E-002 + 58.200000000000003 2.4265846389794333E-002 + 58.259999999999991 2.3875091100300023E-002 + 58.319999999999993 2.3465195226575961E-002 + 58.379999999999995 2.3036601569420716E-002 + 58.439999999999998 2.2589781460587401E-002 + 58.500000000000000 2.2125244460372420E-002 + 58.560000000000002 2.1643527736280213E-002 + 58.619999999999990 2.1145197431467755E-002 + 58.679999999999993 2.0630849853838003E-002 + 58.739999999999995 2.0101106031439719E-002 + 58.799999999999997 1.9556613182348744E-002 + 58.859999999999999 1.8998044945102967E-002 + 58.920000000000002 1.8426095344458122E-002 + 58.979999999999990 1.7841480239504132E-002 + 59.039999999999992 1.7244935021207140E-002 + 59.099999999999994 1.6637211944862097E-002 + 59.159999999999997 1.6019080003657295E-002 + 59.219999999999999 1.5391322792346444E-002 + 59.280000000000001 1.4754734467242072E-002 + 59.339999999999989 1.4110124564414340E-002 + 59.399999999999991 1.3458306054952410E-002 + 59.459999999999994 1.2800102853014195E-002 + 59.519999999999996 1.2136341819277145E-002 + 59.579999999999998 1.1467855407886082E-002 + 59.640000000000001 1.0795475447389895E-002 + 59.700000000000003 1.0120035713642114E-002 + 59.759999999999991 9.4423658490845955E-003 + 59.819999999999993 8.7632932282316004E-003 + 59.879999999999995 8.0836393597211453E-003 + 59.939999999999998 7.4042187676313844E-003 + 60.000000000000000 6.7258359154250130E-003 + 60.060000000000002 6.0492864486347752E-003 + 60.119999999999990 5.3753526912114352E-003 + 60.179999999999993 4.7048034921800558E-003 + 60.239999999999995 4.0383931190941498E-003 + 60.299999999999997 3.3768588206522436E-003 + 60.359999999999999 2.7209202661650595E-003 + 60.420000000000002 2.0712782455472598E-003 + 60.479999999999990 1.4286126508531284E-003 + 60.539999999999992 7.9358241727209484E-004 + 60.599999999999994 1.6682390133769250E-004 + 60.659999999999997 -4.5104998074164704E-004 + 60.719999999999999 -1.0594511013367572E-003 + 60.780000000000001 -1.6578163484381923E-003 + 60.839999999999989 -2.2456083137620854E-003 + 60.899999999999991 -2.8223162308456309E-003 + 60.959999999999994 -3.3874568548118273E-003 + 61.019999999999996 -3.9405738926178409E-003 + 61.079999999999998 -4.4812400452280358E-003 + 61.140000000000001 -5.0090557368720383E-003 + 61.200000000000003 -5.5236500544344402E-003 + 61.259999999999991 -6.0246815670454259E-003 + 61.319999999999993 -6.5118372401108248E-003 + 61.379999999999995 -6.9848325485594772E-003 + 61.439999999999998 -7.4434109809248606E-003 + 61.500000000000000 -7.8873479189349050E-003 + 61.560000000000002 -8.3164434067034519E-003 + 61.619999999999990 -8.7305280981731497E-003 + 61.679999999999993 -9.1294589827399988E-003 + 61.739999999999995 -9.5131222979187875E-003 + 61.799999999999997 -9.8814281343054707E-003 + 61.859999999999999 -1.0234316185659838E-002 + 61.920000000000002 -1.0571750678272776E-002 + 61.979999999999990 -1.0893720156267361E-002 + 62.039999999999992 -1.1200238342948018E-002 + 62.099999999999994 -1.1491343180138235E-002 + 62.159999999999997 -1.1767094089302437E-002 + 62.219999999999999 -1.2027575041350826E-002 + 62.280000000000001 -1.2272890180170772E-002 + 62.339999999999989 -1.2503164546011143E-002 + 62.399999999999991 -1.2718543111331006E-002 + 62.459999999999994 -1.2919188437771017E-002 + 62.519999999999996 -1.3105281291495260E-002 + 62.579999999999998 -1.3277021473765620E-002 + 62.640000000000001 -1.3434623065205891E-002 + 62.700000000000003 -1.3578315075168530E-002 + 62.759999999999991 -1.3708340994431738E-002 + 62.819999999999993 -1.3824958367566085E-002 + 62.879999999999995 -1.3928435505183757E-002 + 62.939999999999998 -1.4019053310255818E-002 + 63.000000000000000 -1.4097102277661862E-002 + 63.060000000000002 -1.4162883070610990E-002 + 63.119999999999990 -1.4216704815285319E-002 + 63.179999999999993 -1.4258883043028917E-002 + 63.239999999999995 -1.4289743449072989E-002 + 63.299999999999997 -1.4309613454319360E-002 + 63.359999999999999 -1.4318828485710193E-002 + 63.420000000000002 -1.4317727967991661E-002 + 63.479999999999990 -1.4306653139547994E-002 + 63.539999999999992 -1.4285949353072201E-002 + 63.599999999999994 -1.4255965556597704E-002 + 63.659999999999997 -1.4217049063855229E-002 + 63.719999999999999 -1.4169550144499724E-002 + 63.780000000000001 -1.4113818868203539E-002 + 63.839999999999989 -1.4050203110591885E-002 + 63.899999999999991 -1.3979050638882266E-002 + 63.959999999999994 -1.3900708117559026E-002 + 64.019999999999996 -1.3815518793067768E-002 + 64.079999999999998 -1.3723823970555540E-002 + 64.140000000000001 -1.3625962633234220E-002 + 64.200000000000003 -1.3522267685395002E-002 + 64.259999999999991 -1.3413069441735575E-002 + 64.319999999999993 -1.3298693314281327E-002 + 64.379999999999995 -1.3179460050664123E-002 + 64.439999999999998 -1.3055685110891776E-002 + 64.500000000000000 -1.2927678967132821E-002 + 64.560000000000002 -1.2795745355644992E-002 + 64.619999999999990 -1.2660182378355632E-002 + 64.679999999999993 -1.2521283008690754E-002 + 64.739999999999995 -1.2379332948694427E-002 + 64.799999999999997 -1.2234611491341614E-002 + 64.859999999999999 -1.2087389755452808E-002 + 64.920000000000002 -1.1937933149447733E-002 + 64.979999999999990 -1.1786500382965545E-002 + 65.039999999999992 -1.1633342537404933E-002 + 65.099999999999994 -1.1478703499388026E-002 + 65.159999999999997 -1.1322819329846074E-002 + 65.219999999999999 -1.1165919549038785E-002 + 65.280000000000001 -1.1008226696873420E-002 + 65.339999999999989 -1.0849953649280264E-002 + 65.399999999999991 -1.0691308198593952E-002 + 65.459999999999994 -1.0532488969807619E-002 + 65.519999999999996 -1.0373687414463133E-002 + 65.579999999999998 -1.0215089280963895E-002 + 65.640000000000001 -1.0056872151934836E-002 + 65.700000000000003 -9.8992049875764737E-003 + 65.759999999999991 -9.7422512295895110E-003 + 65.819999999999993 -9.5861650492619216E-003 + 65.879999999999995 -9.4310954221568984E-003 + 65.939999999999998 -9.2771843403095904E-003 + 66.000000000000000 -9.1245651060503953E-003 + 66.060000000000002 -8.9733649690187812E-003 + 66.119999999999990 -8.8237042745733900E-003 + 66.179999999999993 -8.6756973602768600E-003 + 66.239999999999995 -8.5294516291093483E-003 + 66.299999999999997 -8.3850671481128635E-003 + 66.359999999999999 -8.2426390259516952E-003 + 66.420000000000002 -8.1022545532024298E-003 + 66.479999999999990 -7.9639962379664149E-003 + 66.539999999999992 -7.8279391123472677E-003 + 66.599999999999994 -7.6941542346866581E-003 + 66.659999999999997 -7.5627047706717382E-003 + 66.719999999999999 -7.4336503846866514E-003 + 66.780000000000001 -7.3070436593065703E-003 + 66.839999999999989 -7.1829329887069856E-003 + 66.899999999999991 -7.0613600227576560E-003 + 66.959999999999994 -6.9423627615944287E-003 + 67.019999999999996 -6.8259735828932709E-003 + 67.079999999999998 -6.7122203839475427E-003 + 67.140000000000001 -6.6011265944405113E-003 + 67.199999999999989 -6.4927100992935886E-003 + 67.259999999999991 -6.3869850781190290E-003 + 67.319999999999993 -6.2839610923255589E-003 + 67.379999999999995 -6.1836443975229541E-003 + 67.439999999999998 -6.0860362679107079E-003 + 67.500000000000000 -5.9911344692129840E-003 + 67.560000000000002 -5.8989329404330474E-003 + 67.619999999999990 -5.8094220765436766E-003 + 67.679999999999993 -5.7225896630732380E-003 + 67.739999999999995 -5.6384190324079526E-003 + 67.799999999999997 -5.5568906246664463E-003 + 67.859999999999999 -5.4779823290265111E-003 + 67.920000000000002 -5.4016683424011501E-003 + 67.979999999999990 -5.3279211646328137E-003 + 68.039999999999992 -5.2567094035498065E-003 + 68.099999999999994 -5.1880002010554647E-003 + 68.159999999999997 -5.1217584747854476E-003 + 68.219999999999999 -5.0579461060276578E-003 + 68.280000000000001 -4.9965231336744813E-003 + 68.339999999999989 -4.9374477515238702E-003 + 68.399999999999991 -4.8806768702960683E-003 + 68.459999999999994 -4.8261644046803023E-003 + 68.519999999999996 -4.7738635188078402E-003 + 68.579999999999998 -4.7237258679096415E-003 + 68.640000000000001 -4.6757015209192244E-003 + 68.699999999999989 -4.6297389441227604E-003 + 68.759999999999991 -4.5857857914045055E-003 + 68.819999999999993 -4.5437879710517187E-003 + 68.879999999999995 -4.5036918137987660E-003 + 68.939999999999998 -4.4654412307374679E-003 + 69.000000000000000 -4.4289801167575792E-003 + 69.060000000000002 -4.3942516128038910E-003 + 69.119999999999990 -4.3611976910886878E-003 + 69.179999999999993 -4.3297606142818296E-003 + 69.239999999999995 -4.2998811538081938E-003 + 69.299999999999997 -4.2715012088334692E-003 + 69.359999999999999 -4.2445608646066299E-003 + 69.420000000000002 -4.2190005570701787E-003 + 69.479999999999990 -4.1947606326673045E-003 + 69.539999999999992 -4.1717817892700099E-003 + 69.599999999999994 -4.1500033167314980E-003 + 69.659999999999997 -4.1293661743264922E-003 + 69.719999999999999 -4.1098101614563103E-003 + 69.780000000000001 -4.0912755996867414E-003 + 69.839999999999989 -4.0737038072740841E-003 + 69.899999999999991 -4.0570352109687534E-003 + 69.959999999999994 -4.0412111606518159E-003 + 70.019999999999996 -4.0261729255219826E-003 + 70.079999999999998 -4.0118624693952273E-003 + 70.140000000000001 -3.9982221300303364E-003 + 70.199999999999989 -3.9851946159980486E-003 + 70.259999999999991 -3.9727232367139454E-003 + 70.319999999999993 -3.9607519676911288E-003 + 70.379999999999995 -3.9492250561848968E-003 + 70.439999999999998 -3.9380875409249566E-003 + 70.500000000000000 -3.9272849751112822E-003 + 70.560000000000002 -3.9167642208882449E-003 + 70.619999999999990 -3.9064719101316436E-003 + 70.679999999999993 -3.8963561254460044E-003 + 70.739999999999995 -3.8863654578217464E-003 + 70.799999999999997 -3.8764495713165831E-003 + 70.859999999999999 -3.8665582946477749E-003 + 70.920000000000002 -3.8566425883991011E-003 + 70.979999999999990 -3.8466546091473494E-003 + 71.039999999999992 -3.8365473730145126E-003 + 71.099999999999994 -3.8262743912854942E-003 + 71.159999999999997 -3.8157908209620235E-003 + 71.219999999999999 -3.8050520065166060E-003 + 71.280000000000001 -3.7940150284721608E-003 + 71.339999999999989 -3.7826371714690149E-003 + 71.399999999999991 -3.7708775118584096E-003 + 71.459999999999994 -3.7586958545376037E-003 + 71.519999999999996 -3.7460530144865843E-003 + 71.579999999999998 -3.7329109795259572E-003 + 71.640000000000001 -3.7192333265244990E-003 + 71.699999999999989 -3.7049841880119300E-003 + 71.759999999999991 -3.6901291948039259E-003 + 71.819999999999993 -3.6746352893520609E-003 + 71.879999999999995 -3.6584703699497770E-003 + 71.939999999999998 -3.6416035238430889E-003 + 72.000000000000000 -3.6240056665053019E-003 + 72.060000000000002 -3.6056483966737038E-003 + 72.119999999999990 -3.5865052891284237E-003 + 72.179999999999993 -3.5665507427125893E-003 + 72.239999999999995 -3.5457606128662432E-003 + 72.299999999999997 -3.5241123894682934E-003 + 72.359999999999999 -3.5015848500895945E-003 + 72.420000000000002 -3.4781583381205969E-003 + 72.479999999999990 -3.4538142509031784E-003 + 72.539999999999992 -3.4285359747443971E-003 + 72.599999999999994 -3.4023081079370024E-003 + 72.659999999999997 -3.3751168351350514E-003 + 72.719999999999999 -3.3469500482088774E-003 + 72.780000000000001 -3.3177967736114002E-003 + 72.839999999999989 -3.2876481314139212E-003 + 72.899999999999991 -3.2564965377614671E-003 + 72.959999999999994 -3.2243359190129790E-003 + 73.019999999999996 -3.1911623435909161E-003 + 73.079999999999998 -3.1569729975531782E-003 + 73.140000000000001 -3.1217673704560605E-003 + 73.199999999999989 -3.0855463519519366E-003 + 73.259999999999991 -3.0483120348220524E-003 + 73.319999999999993 -3.0100688501006247E-003 + 73.379999999999995 -2.9708228241173635E-003 + 73.439999999999998 -2.9305816342170827E-003 + 73.500000000000000 -2.8893548858600548E-003 + 73.560000000000002 -2.8471535082279513E-003 + 73.619999999999990 -2.8039906537082522E-003 + 73.679999999999993 -2.7598807802463486E-003 + 73.739999999999995 -2.7148404674272849E-003 + 73.799999999999997 -2.6688877372596262E-003 + 73.859999999999999 -2.6220421254210032E-003 + 73.920000000000002 -2.5743253226056095E-003 + 73.979999999999990 -2.5257605353576004E-003 + 74.039999999999992 -2.4763723314604759E-003 + 74.099999999999994 -2.4261872071775648E-003 + 74.159999999999997 -2.3752331667071880E-003 + 74.219999999999999 -2.3235399099583291E-003 + 74.280000000000001 -2.2711381933978713E-003 + 74.339999999999989 -2.2180606211746876E-003 + 74.399999999999991 -2.1643413464538601E-003 + 74.459999999999994 -2.1100159000659990E-003 + 74.519999999999996 -2.0551211917564619E-003 + 74.579999999999998 -1.9996949624136824E-003 + 74.640000000000001 -1.9437769581637499E-003 + 74.699999999999989 -1.8874074820871725E-003 + 74.759999999999991 -1.8306284518882839E-003 + 74.819999999999993 -1.7734828842242477E-003 + 74.879999999999995 -1.7160146913097107E-003 + 74.939999999999998 -1.6582688091434598E-003 + 75.000000000000000 -1.6002909853484537E-003 + 75.060000000000002 -1.5421279494190797E-003 + 75.119999999999990 -1.4838273238487855E-003 + 75.179999999999993 -1.4254370960746429E-003 + 75.239999999999995 -1.3670060632897795E-003 + 75.299999999999997 -1.3085833874528590E-003 + 75.359999999999999 -1.2502188692667844E-003 + 75.420000000000002 -1.1919626281304547E-003 + 75.479999999999990 -1.1338647729870238E-003 + 75.539999999999992 -1.0759760161315730E-003 + 75.599999999999994 -1.0183466484266670E-003 + 75.659999999999997 -9.6102733612795971E-004 + 75.719999999999999 -9.0406842338920472E-004 + 75.780000000000001 -8.4752004102174431E-004 + 75.839999999999989 -7.9143220676478553E-004 + 75.899999999999991 -7.3585448181381040E-004 + 75.959999999999994 -6.8083584558366274E-004 + 76.019999999999996 -6.2642489382643744E-004 + 76.079999999999998 -5.7266948117867084E-004 + 76.140000000000001 -5.1961687212252142E-004 + 76.199999999999989 -4.6731342075292265E-004 + 76.259999999999991 -4.1580472777780111E-004 + 76.319999999999993 -3.6513534635044241E-004 + 76.379999999999995 -3.1534893608809443E-004 + 76.439999999999998 -2.6648802326936609E-004 + 76.500000000000000 -2.1859394206708387E-004 + 76.560000000000002 -1.7170687666279505E-004 + 76.619999999999990 -1.2586564370818703E-004 + 76.679999999999993 -8.1107783751317150E-005 + 76.739999999999995 -3.7469389953955706E-005 + 76.799999999999997 5.0149058689433776E-006 + 76.859999999999999 4.6311963635262003E-005 + 76.920000000000002 8.6390232136437478E-005 + 76.979999999999990 1.2521979425369090E-004 + 77.039999999999992 1.6277233583891556E-004 + 77.099999999999994 1.9902124224345163E-004 + 77.159999999999997 2.3394162061818858E-004 + 77.219999999999999 2.6751029217682792E-004 + 77.280000000000001 2.9970583140677447E-004 + 77.339999999999989 3.3050861304433576E-004 + 77.399999999999991 3.5990070054190998E-004 + 77.459999999999994 3.8786596848252967E-004 + 77.519999999999996 4.1439010315645077E-004 + 77.579999999999998 4.3946049175709899E-004 + 77.640000000000001 4.6306629414617274E-004 + 77.699999999999989 4.8519844015042040E-004 + 77.759999999999991 5.0584951914273146E-004 + 77.819999999999993 5.2501392467208430E-004 + 77.879999999999995 5.4268763668425071E-004 + 77.939999999999998 5.5886835096623970E-004 + 78.000000000000000 5.7355537540390101E-004 + 78.060000000000002 5.8674968530582502E-004 + 78.119999999999990 5.9845373798398781E-004 + 78.179999999999993 6.0867159820198532E-004 + 78.239999999999995 6.1740886550821843E-004 + 78.299999999999997 6.2467257819704249E-004 + 78.359999999999999 6.3047131891227025E-004 + 78.420000000000002 6.3481495464168844E-004 + 78.479999999999990 6.3771485376241336E-004 + 78.539999999999992 6.3918364656927293E-004 + 78.599999999999994 6.3923524611987094E-004 + 78.659999999999997 6.3788483679946709E-004 + 78.719999999999999 6.3514884466280615E-004 + 78.780000000000001 6.3104484932425414E-004 + 78.839999999999989 6.2559143169132428E-004 + 78.899999999999991 6.1880840390828647E-004 + 78.959999999999994 6.1071653293122668E-004 + 79.019999999999996 6.0133755400208473E-004 + 79.079999999999998 5.9069418036562554E-004 + 79.140000000000001 5.7880990207324467E-004 + 79.199999999999989 5.6570913858623511E-004 + 79.259999999999991 5.5141699850588561E-004 + 79.319999999999993 5.3595946361947595E-004 + 79.379999999999995 5.1936316297542852E-004 + 79.439999999999998 5.0165530871883798E-004 + 79.500000000000000 4.8286386989931484E-004 + 79.560000000000002 4.6301730440611092E-004 + 79.619999999999990 4.4214468527925153E-004 + 79.679999999999993 4.2027560713036314E-004 + 79.739999999999995 3.9744008273235785E-004 + 79.799999999999997 3.7366867004138377E-004 + 79.859999999999999 3.4899233774206122E-004 + 79.920000000000002 3.2344242477241891E-004 + 79.979999999999990 2.9705069015200064E-004 + 80.039999999999992 2.6984922833111146E-004 + 80.099999999999994 2.4187050014917656E-004 + 80.159999999999997 2.1314724584803205E-004 + 80.219999999999999 1.8371244225949768E-004 + 80.280000000000001 1.5359941662279733E-004 + 80.340000000000003 1.2284166533672560E-004 + 80.400000000000006 9.1472896377161984E-005 + 80.460000000000008 5.9526985627053558E-005 + 80.519999999999982 2.7037995737339308E-005 + 80.579999999999984 -5.9599141830663462E-006 + 80.639999999999986 -3.9432482435863879E-005 + 80.699999999999989 -7.3345401183719732E-005 + 80.759999999999991 -1.0766429419912116E-004 + 80.819999999999993 -1.4235480710778791E-004 + 80.879999999999995 -1.7738257965292539E-004 + 80.939999999999998 -2.1271329251013686E-004 + 81.000000000000000 -2.4831271717332674E-004 + 81.060000000000002 -2.8414667142555918E-004 + 81.120000000000005 -3.2018112863404000E-004 + 81.180000000000007 -3.5638217972161490E-004 + 81.240000000000009 -3.9271604837334590E-004 + 81.299999999999983 -4.2914918999483744E-004 + 81.359999999999985 -4.6564819096225413E-004 + 81.419999999999987 -5.0217987445812533E-004 + 81.479999999999990 -5.3871131718080103E-004 + 81.539999999999992 -5.7520984640734593E-004 + 81.599999999999994 -6.1164307616222555E-004 + 81.659999999999997 -6.4797896536878253E-004 + 81.719999999999999 -6.8418571469799645E-004 + 81.780000000000001 -7.2023199974829738E-004 + 81.840000000000003 -7.5608669495405058E-004 + 81.900000000000006 -7.9171924847077019E-004 + 81.960000000000008 -8.2709955730770755E-004 + 82.019999999999982 -8.6219786896380378E-004 + 82.079999999999984 -8.9698497188896251E-004 + 82.139999999999986 -9.3143215435596946E-004 + 82.199999999999989 -9.6551134502689405E-004 + 82.259999999999991 -9.9919499411311010E-004 + 82.319999999999993 -1.0324561022216645E-003 + 82.379999999999995 -1.0652683415721400E-003 + 82.439999999999998 -1.0976059816179798E-003 + 82.500000000000000 -1.1294440183764599E-003 + 82.560000000000002 -1.1607580186559227E-003 + 82.620000000000005 -1.1915243563017130E-003 + 82.680000000000007 -1.2217200804127189E-003 + 82.740000000000009 -1.2513228267771420E-003 + 82.799999999999983 -1.2803110569933607E-003 + 82.859999999999985 -1.3086640106801072E-003 + 82.919999999999987 -1.3363614868625755E-003 + 82.979999999999990 -1.3633842444922414E-003 + 83.039999999999992 -1.3897136853267156E-003 + 83.099999999999994 -1.4153317792703257E-003 + 83.159999999999997 -1.4402215371386482E-003 + 83.219999999999999 -1.4643665386023853E-003 + 83.280000000000001 -1.4877512480819392E-003 + 83.340000000000003 -1.5103609004270319E-003 + 83.400000000000006 -1.5321813047833946E-003 + 83.460000000000008 -1.5531992082617357E-003 + 83.519999999999982 -1.5734020971832072E-003 + 83.579999999999984 -1.5927783406035343E-003 + 83.639999999999986 -1.6113167864615246E-003 + 83.699999999999989 -1.6290073867182013E-003 + 83.759999999999991 -1.6458404690152541E-003 + 83.819999999999993 -1.6618074236144614E-003 + 83.879999999999995 -1.6769003328114822E-003 + 83.939999999999998 -1.6911118367757766E-003 + 84.000000000000000 -1.7044355709888103E-003 + 84.060000000000002 -1.7168656497051227E-003 + 84.120000000000005 -1.7283972173881290E-003 + 84.180000000000007 -1.7390258674652246E-003 + 84.240000000000009 -1.7487478288306906E-003 + 84.299999999999983 -1.7575602033371945E-003 + 84.359999999999985 -1.7654607465519543E-003 + 84.419999999999987 -1.7724478128677947E-003 + 84.479999999999990 -1.7785204162774852E-003 + 84.539999999999992 -1.7836782071138017E-003 + 84.599999999999994 -1.7879215718919381E-003 + 84.659999999999997 -1.7912513965935325E-003 + 84.719999999999999 -1.7936693067519020E-003 + 84.780000000000001 -1.7951775639660024E-003 + 84.840000000000003 -1.7957791242303579E-003 + 84.900000000000006 -1.7954772748567298E-003 + 84.960000000000008 -1.7942762662726674E-003 + 85.019999999999982 -1.7921808296803364E-003 + 85.079999999999984 -1.7891963672910867E-003 + 85.139999999999986 -1.7853289517843506E-003 + 85.199999999999989 -1.7805850050434358E-003 + 85.259999999999991 -1.7749719915415157E-003 + 85.319999999999993 -1.7684976002151924E-003 + 85.379999999999995 -1.7611705666604120E-003 + 85.439999999999998 -1.7529999502750838E-003 + 85.500000000000000 -1.7439956900892539E-003 + 85.560000000000002 -1.7341683119031809E-003 + 85.620000000000005 -1.7235289846042896E-003 + 85.680000000000007 -1.7120894085455199E-003 + 85.740000000000009 -1.6998621517154760E-003 + 85.799999999999983 -1.6868602413839774E-003 + 85.859999999999985 -1.6730975736501980E-003 + 85.919999999999987 -1.6585884700968613E-003 + 85.979999999999990 -1.6433480776074216E-003 + 86.039999999999992 -1.6273921630664411E-003 + 86.099999999999994 -1.6107370448458893E-003 + 86.159999999999997 -1.5933998690764826E-003 + 86.219999999999999 -1.5753982951993907E-003 + 86.280000000000001 -1.5567507332047551E-003 + 86.340000000000003 -1.5374760139733059E-003 + 86.400000000000006 -1.5175940266981419E-003 + 86.460000000000008 -1.4971248630185807E-003 + 86.519999999999982 -1.4760895193140482E-003 + 86.579999999999984 -1.4545094309833051E-003 + 86.639999999999986 -1.4324068333951539E-003 + 86.699999999999989 -1.4098044811029493E-003 + 86.759999999999991 -1.3867254400665133E-003 + 86.819999999999993 -1.3631938475335041E-003 + 86.879999999999995 -1.3392341275558484E-003 + 86.939999999999998 -1.3148711302917347E-003 + 87.000000000000000 -1.2901305187584201E-003 + 87.060000000000002 -1.2650382955126283E-003 + 87.120000000000005 -1.2396206816984359E-003 + 87.180000000000007 -1.2139047103909908E-003 + 87.240000000000009 -1.1879176671244092E-003 + 87.299999999999983 -1.1616870411245985E-003 + 87.359999999999985 -1.1352410737313333E-003 + 87.419999999999987 -1.1086078404890624E-003 + 87.479999999999990 -1.0818160205227721E-003 + 87.539999999999992 -1.0548943496740868E-003 + 87.599999999999994 -1.0278718509185384E-003 + 87.659999999999997 -1.0007775665549677E-003 + 87.719999999999999 -9.7364069243889182E-004 + 87.780000000000001 -9.4649053218388596E-004 + 87.840000000000003 -9.1935652723557494E-004 + 87.900000000000006 -8.9226783649117795E-004 + 87.960000000000008 -8.6525378074073722E-004 + 88.019999999999982 -8.3834345690316414E-004 + 88.079999999999984 -8.1156576904455871E-004 + 88.139999999999986 -7.8494956917465604E-004 + 88.199999999999989 -7.5852341875787027E-004 + 88.259999999999991 -7.3231546430945242E-004 + 88.319999999999993 -7.0635361074103745E-004 + 88.379999999999995 -6.8066532494785519E-004 + 88.439999999999998 -6.5527772310430756E-004 + 88.500000000000000 -6.3021737845290007E-004 + 88.560000000000002 -6.0551028932934561E-004 + 88.620000000000005 -5.8118196343188045E-004 + 88.680000000000007 -5.5725724298936650E-004 + 88.740000000000009 -5.3376034585100299E-004 + 88.799999999999983 -5.1071477134086824E-004 + 88.859999999999985 -4.8814333435333464E-004 + 88.919999999999987 -4.6606795136647575E-004 + 88.979999999999990 -4.4450989027635892E-004 + 89.039999999999992 -4.2348950154414333E-004 + 89.099999999999994 -4.0302630418556146E-004 + 89.159999999999997 -3.8313888752812417E-004 + 89.219999999999999 -3.6384494702232264E-004 + 89.280000000000001 -3.4516124752842763E-004 + 89.340000000000003 -3.2710359739934736E-004 + 89.400000000000006 -3.0968675232978478E-004 + 89.460000000000008 -2.9292453340087091E-004 + 89.519999999999982 -2.7682967477097014E-004 + 89.579999999999984 -2.6141393383660461E-004 + 89.639999999999986 -2.4668792743560731E-004 + 89.699999999999989 -2.3266133151144319E-004 + 89.759999999999991 -2.1934265820481078E-004 + 89.819999999999993 -2.0673939036048336E-004 + 89.879999999999995 -1.9485790076510074E-004 + 89.939999999999998 -1.8370350337355794E-004 + 90.000000000000000 -1.7328046745399012E-004 + 90.060000000000002 -1.6359193077201937E-004 + 90.120000000000005 -1.5464001858559126E-004 + 90.180000000000007 -1.4642580509310730E-004 + 90.240000000000009 -1.3894935171740124E-004 + 90.299999999999983 -1.3220968567194215E-004 + 90.359999999999985 -1.2620484843549047E-004 + 90.419999999999987 -1.2093191832273143E-004 + 90.479999999999990 -1.1638701791816306E-004 + 90.539999999999992 -1.1256535281109411E-004 + 90.599999999999994 -1.0946121660903279E-004 + 90.659999999999997 -1.0706804015405773E-004 + 90.719999999999999 -1.0537839942546817E-004 + 90.780000000000001 -1.0438404347884629E-004 + 90.840000000000003 -1.0407592598071526E-004 + 90.900000000000006 -1.0444424907111451E-004 + 90.960000000000008 -1.0547844505532580E-004 + 91.019999999999982 -1.0716723067336984E-004 + 91.079999999999984 -1.0949864953822876E-004 + 91.139999999999986 -1.1246008132728721E-004 + 91.199999999999989 -1.1603826782805601E-004 + 91.259999999999991 -1.2021937055409302E-004 + 91.319999999999993 -1.2498894172182246E-004 + 91.379999999999995 -1.3033204306895377E-004 + 91.439999999999998 -1.3623321465045042E-004 + 91.500000000000000 -1.4267649491135189E-004 + 91.560000000000002 -1.4964552137554469E-004 + 91.620000000000005 -1.5712351631791971E-004 + 91.680000000000007 -1.6509332051599829E-004 + 91.739999999999981 -1.7353746469576551E-004 + 91.799999999999983 -1.8243814687610301E-004 + 91.859999999999985 -1.9177730024316967E-004 + 91.919999999999987 -2.0153663944551947E-004 + 91.979999999999990 -2.1169766597784682E-004 + 92.039999999999992 -2.2224170646569332E-004 + 92.099999999999994 -2.3314991739934788E-004 + 92.159999999999997 -2.4440336002847060E-004 + 92.219999999999999 -2.5598301846321511E-004 + 92.280000000000001 -2.6786980481197830E-004 + 92.340000000000003 -2.8004454920705659E-004 + 92.400000000000006 -2.9248811162962821E-004 + 92.460000000000008 -3.0518130303349382E-004 + 92.519999999999982 -3.1810503262417485E-004 + 92.579999999999984 -3.3124018813339337E-004 + 92.639999999999986 -3.4456771913269626E-004 + 92.699999999999989 -3.5806865564958943E-004 + 92.759999999999991 -3.7172414377899347E-004 + 92.819999999999993 -3.8551542297047663E-004 + 92.879999999999995 -3.9942391500805537E-004 + 92.939999999999998 -4.1343109804985011E-004 + 93.000000000000000 -4.2751871054393206E-004 + 93.060000000000002 -4.4166860214933624E-004 + 93.120000000000005 -4.5586284816450322E-004 + 93.180000000000007 -4.7008373361191974E-004 + 93.239999999999981 -4.8431383998564782E-004 + 93.299999999999983 -4.9853590677943348E-004 + 93.359999999999985 -5.1273298064512078E-004 + 93.419999999999987 -5.2688843396735867E-004 + 93.479999999999990 -5.4098588285608035E-004 + 93.539999999999992 -5.5500930251036786E-004 + 93.599999999999994 -5.6894295465338186E-004 + 93.659999999999997 -5.8277148744728376E-004 + 93.719999999999999 -5.9647985796488297E-004 + 93.780000000000001 -6.1005347998712876E-004 + 93.840000000000003 -6.2347800933205510E-004 + 93.900000000000006 -6.3673957146089108E-004 + 93.960000000000008 -6.4982462101512888E-004 + 94.019999999999982 -6.6272004362985244E-004 + 94.079999999999984 -6.7541319817237633E-004 + 94.139999999999986 -6.8789169510248094E-004 + 94.199999999999989 -7.0014365735427981E-004 + 94.259999999999991 -7.1215760918604389E-004 + 94.319999999999993 -7.2392253533370759E-004 + 94.379999999999995 -7.3542778170817744E-004 + 94.439999999999998 -7.4666321691226956E-004 + 94.500000000000000 -7.5761912442171692E-004 + 94.560000000000002 -7.6828616884648917E-004 + 94.620000000000005 -7.7865561904991143E-004 + 94.680000000000007 -7.8871919469390727E-004 + 94.739999999999981 -7.9846918363384912E-004 + 94.799999999999983 -8.0789821698854143E-004 + 94.859999999999985 -8.1699965421363704E-004 + 94.919999999999987 -8.2576712302643803E-004 + 94.979999999999990 -8.3419515434002669E-004 + 95.039999999999992 -8.4227856431361170E-004 + 95.099999999999994 -8.5001280517859712E-004 + 95.159999999999997 -8.5739397002434885E-004 + 95.219999999999999 -8.6441860565533225E-004 + 95.280000000000001 -8.7108393148481304E-004 + 95.340000000000003 -8.7738769592642638E-004 + 95.400000000000006 -8.8332831871688617E-004 + 95.460000000000008 -8.8890460312315140E-004 + 95.519999999999982 -8.9411609487484206E-004 + 95.579999999999984 -8.9896285411862934E-004 + 95.639999999999986 -9.0344539247330376E-004 + 95.699999999999989 -9.0756493090958393E-004 + 95.759999999999991 -9.1132312908748139E-004 + 95.819999999999993 -9.1472225768306789E-004 + 95.879999999999995 -9.1776506727325963E-004 + 95.939999999999998 -9.2045490302168035E-004 + 96.000000000000000 -9.2279556022139978E-004 + 96.060000000000002 -9.2479143251641255E-004 + 96.120000000000005 -9.2644747623696593E-004 + 96.180000000000007 -9.2776916477576492E-004 + 96.239999999999981 -9.2876241131552458E-004 + 96.299999999999983 -9.2943374360154320E-004 + 96.359999999999985 -9.2979024760536048E-004 + 96.419999999999987 -9.2983945485467878E-004 + 96.479999999999990 -9.2958949788049842E-004 + 96.539999999999992 -9.2904895653709262E-004 + 96.599999999999994 -9.2822697959513698E-004 + 96.659999999999997 -9.2713324968326692E-004 + 96.719999999999999 -9.2577780435719979E-004 + 96.780000000000001 -9.2417126320587073E-004 + 96.840000000000003 -9.2232468522373309E-004 + 96.900000000000006 -9.2024962352670926E-004 + 96.960000000000008 -9.1795802746822970E-004 + 97.019999999999982 -9.1546227601346612E-004 + 97.079999999999984 -9.1277520330645186E-004 + 97.139999999999986 -9.0990997390243589E-004 + 97.199999999999989 -9.0688017249975297E-004 + 97.259999999999991 -9.0369978200194258E-004 + 97.319999999999993 -9.0038308158485426E-004 + 97.379999999999995 -8.9694475368363633E-004 + 97.439999999999998 -8.9339975497181663E-004 + 97.500000000000000 -8.8976343748649388E-004 + 97.560000000000002 -8.8605143962459541E-004 + 97.620000000000005 -8.8227961134885601E-004 + 97.680000000000007 -8.7846420097476344E-004 + 97.739999999999981 -8.7462167744753797E-004 + 97.799999999999983 -8.7076879158859855E-004 + 97.859999999999985 -8.6692256491221749E-004 + 97.919999999999987 -8.6310029303622885E-004 + 97.979999999999990 -8.5931945974400783E-004 + 98.039999999999992 -8.5559762076068704E-004 + 98.099999999999994 -8.5195278031255383E-004 + 98.159999999999997 -8.4840297927111163E-004 + 98.219999999999999 -8.4496634824472565E-004 + 98.280000000000001 -8.4166140242670476E-004 + 98.340000000000003 -8.3850648994971159E-004 + 98.400000000000006 -8.3552011412387590E-004 + 98.460000000000008 -8.3272092170981807E-004 + 98.519999999999982 -8.3012747582177332E-004 + 98.579999999999984 -8.2775834800284903E-004 + 98.639999999999986 -8.2563221431049012E-004 + 98.699999999999989 -8.2376747095454900E-004 + 98.759999999999991 -8.2218261326371007E-004 + 98.819999999999993 -8.2089589184195281E-004 + 98.879999999999995 -8.1992538030030958E-004 + 98.939999999999998 -8.1928901823815920E-004 + 99.000000000000000 -8.1900448548729676E-004 + 99.060000000000002 -8.1908914109548399E-004 + 99.120000000000005 -8.1956015025860536E-004 + 99.180000000000007 -8.2043423761192134E-004 + 99.239999999999981 -8.2172778959471835E-004 + 99.299999999999983 -8.2345675012474192E-004 + 99.359999999999985 -8.2563669562590739E-004 + 99.419999999999987 -8.2828255306386864E-004 + 99.479999999999990 -8.3140888480724533E-004 + 99.539999999999992 -8.3502952038711983E-004 + 99.599999999999994 -8.3915781395841704E-004 + 99.659999999999997 -8.4380630397452026E-004 + 99.719999999999999 -8.4898699447482912E-004 + 99.780000000000001 -8.5471101832557356E-004 + 99.840000000000003 -8.6098871648980643E-004 + 99.900000000000006 -8.6782957884315481E-004 + 99.960000000000008 -8.7524220305542407E-004 + 100.01999999999998 -8.8323424769891790E-004 + 100.07999999999998 -8.9181227707579641E-004 + 100.13999999999999 -9.0098187856872572E-004 + 100.19999999999999 -9.1074745352350103E-004 + 100.25999999999999 -9.2111243489312702E-004 + 100.31999999999999 -9.3207892290101172E-004 + 100.38000000000000 -9.4364779113111140E-004 + 100.44000000000000 -9.5581873561873291E-004 + 100.50000000000000 -9.6859007479381184E-004 + 100.56000000000000 -9.8195878223692953E-004 + 100.62000000000000 -9.9592047191598304E-004 + 100.68000000000001 -1.0104694353150116E-003 + 100.73999999999998 -1.0255985253932933E-003 + 100.79999999999998 -1.0412990950792946E-003 + 100.85999999999999 -1.0575611561662488E-003 + 100.91999999999999 -1.0743730093709871E-003 + 100.97999999999999 -1.0917218021265344E-003 + 101.03999999999999 -1.1095928423104082E-003 + 101.09999999999999 -1.1279701330424885E-003 + 101.16000000000000 -1.1468361530603264E-003 + 101.22000000000000 -1.1661719228356060E-003 + 101.28000000000000 -1.1859568388107816E-003 + 101.34000000000000 -1.2061687907908461E-003 + 101.40000000000001 -1.2267841832801203E-003 + 101.46000000000001 -1.2477781586008082E-003 + 101.51999999999998 -1.2691241782876598E-003 + 101.57999999999998 -1.2907941883519595E-003 + 101.63999999999999 -1.3127590118437340E-003 + 101.69999999999999 -1.3349879066281783E-003 + 101.75999999999999 -1.3574487968003673E-003 + 101.81999999999999 -1.3801084932528870E-003 + 101.88000000000000 -1.4029322149233317E-003 + 101.94000000000000 -1.4258843201456221E-003 + 102.00000000000000 -1.4489278871699799E-003 + 102.06000000000000 -1.4720248656591936E-003 + 102.12000000000000 -1.4951362401181092E-003 + 102.18000000000001 -1.5182220661157173E-003 + 102.23999999999998 -1.5412414662330301E-003 + 102.29999999999998 -1.5641530189036451E-003 + 102.35999999999999 -1.5869143110790757E-003 + 102.41999999999999 -1.6094823513441738E-003 + 102.47999999999999 -1.6318135453269316E-003 + 102.53999999999999 -1.6538639067162305E-003 + 102.59999999999999 -1.6755891216509514E-003 + 102.66000000000000 -1.6969446080959156E-003 + 102.72000000000000 -1.7178852972004404E-003 + 102.78000000000000 -1.7383663245263299E-003 + 102.84000000000000 -1.7583426607363129E-003 + 102.90000000000001 -1.7777693951808041E-003 + 102.96000000000001 -1.7966016898756556E-003 + 103.01999999999998 -1.8147950790076198E-003 + 103.07999999999998 -1.8323056538959244E-003 + 103.13999999999999 -1.8490895879858271E-003 + 103.19999999999999 -1.8651038355103739E-003 + 103.25999999999999 -1.8803059540626040E-003 + 103.31999999999999 -1.8946542491818784E-003 + 103.38000000000000 -1.9081078634769679E-003 + 103.44000000000000 -1.9206269105540232E-003 + 103.50000000000000 -1.9321724457476669E-003 + 103.56000000000000 -1.9427066657624985E-003 + 103.62000000000000 -1.9521930609132808E-003 + 103.68000000000001 -1.9605963019393457E-003 + 103.73999999999998 -1.9678826024698915E-003 + 103.79999999999998 -1.9740192967901775E-003 + 103.85999999999999 -1.9789754330637472E-003 + 103.91999999999999 -1.9827218016125157E-003 + 103.97999999999999 -1.9852305149366924E-003 + 104.03999999999999 -1.9864753356386932E-003 + 104.09999999999999 -1.9864324671142663E-003 + 104.16000000000000 -1.9850792808740357E-003 + 104.22000000000000 -1.9823951911603251E-003 + 104.28000000000000 -1.9783616555407871E-003 + 104.34000000000000 -1.9729619371823982E-003 + 104.40000000000001 -1.9661816279563571E-003 + 104.46000000000001 -1.9580081116446178E-003 + 104.51999999999998 -1.9484305379323071E-003 + 104.57999999999998 -1.9374406692502159E-003 + 104.63999999999999 -1.9250319444930276E-003 + 104.69999999999999 -1.9112002229450548E-003 + 104.75999999999999 -1.8959432547993895E-003 + 104.81999999999999 -1.8792610548456034E-003 + 104.88000000000000 -1.8611556775225695E-003 + 104.94000000000000 -1.8416311301067796E-003 + 105.00000000000000 -1.8206937481729435E-003 + 105.06000000000000 -1.7983517093187831E-003 + 105.12000000000000 -1.7746154975346754E-003 + 105.18000000000001 -1.7494974045705240E-003 + 105.23999999999998 -1.7230118090485493E-003 + 105.29999999999998 -1.6951750570019621E-003 + 105.35999999999999 -1.6660052393074603E-003 + 105.41999999999999 -1.6355226783428684E-003 + 105.47999999999999 -1.6037491196346663E-003 + 105.53999999999999 -1.5707082965812698E-003 + 105.59999999999999 -1.5364258246632866E-003 + 105.66000000000000 -1.5009286385275382E-003 + 105.72000000000000 -1.4642455587541216E-003 + 105.78000000000000 -1.4264067436395732E-003 + 105.84000000000000 -1.3874441455071114E-003 + 105.90000000000001 -1.3473908024277128E-003 + 105.96000000000001 -1.3062812391360984E-003 + 106.01999999999998 -1.2641514298429967E-003 + 106.07999999999998 -1.2210385182487369E-003 + 106.13999999999999 -1.1769806008946548E-003 + 106.19999999999999 -1.1320170268668292E-003 + 106.25999999999999 -1.0861881497309289E-003 + 106.31999999999999 -1.0395350179147704E-003 + 106.38000000000000 -9.9209982836987571E-004 + 106.44000000000000 -9.4392556372916467E-004 + 106.50000000000000 -8.9505557931048247E-004 + 106.56000000000000 -8.4553413317442364E-004 + 106.62000000000000 -7.9540600456350519E-004 + 106.68000000000001 -7.4471634905427884E-004 + 106.73999999999998 -6.9351086906871266E-004 + 106.79999999999998 -6.4183548158119072E-004 + 106.85999999999999 -5.8973639495525458E-004 + 106.91999999999999 -5.3725995075745421E-004 + 106.97999999999999 -4.8445262257601918E-004 + 107.03999999999999 -4.3136089784768557E-004 + 107.09999999999999 -3.7803118426185417E-004 + 107.16000000000000 -3.2450984476447393E-004 + 107.22000000000000 -2.7084307436700403E-004 + 107.28000000000000 -2.1707673680063382E-004 + 107.34000000000000 -1.6325646605235006E-004 + 107.40000000000001 -1.0942746562427550E-004 + 107.46000000000001 -5.5634534140149242E-005 + 107.51999999999998 -1.9220194472119881E-006 + 107.57999999999998 5.1666324926308424E-005 + 107.63999999999999 1.0508731139915386E-004 + 107.69999999999999 1.5829837992243777E-004 + 107.75999999999999 2.1125765199928596E-004 + 107.81999999999999 2.6392397783141729E-004 + 107.88000000000000 3.1625697282675308E-004 + 107.94000000000000 3.6821710234544717E-004 + 108.00000000000000 4.1976555660349995E-004 + 108.06000000000000 4.7086456835283863E-004 + 108.12000000000000 5.2147720070497348E-004 + 108.18000000000001 5.7156744630311798E-004 + 108.23999999999998 6.2110024352471198E-004 + 108.29999999999998 6.7004171783867415E-004 + 108.35999999999999 7.1835886104489337E-004 + 108.41999999999999 7.6601976029657185E-004 + 108.47999999999999 8.1299359615117565E-004 + 108.53999999999999 8.5925066690889745E-004 + 108.59999999999999 9.0476226319709751E-004 + 108.66000000000000 9.4950103939266161E-004 + 108.72000000000000 9.9344063743573197E-004 + 108.78000000000000 1.0365558400543613E-003 + 108.84000000000000 1.0788226950540207E-003 + 108.90000000000001 1.1202182901302738E-003 + 108.96000000000001 1.1607208752028527E-003 + 109.01999999999998 1.2003101024740822E-003 + 109.07999999999998 1.2389664796514793E-003 + 109.13999999999999 1.2766718048953529E-003 + 109.19999999999999 1.3134090537214578E-003 + 109.25999999999999 1.3491623059409821E-003 + 109.31999999999999 1.3839166980868763E-003 + 109.38000000000000 1.4176587065716166E-003 + 109.44000000000000 1.4503757801458419E-003 + 109.50000000000000 1.4820564178865058E-003 + 109.56000000000000 1.5126902963260008E-003 + 109.62000000000000 1.5422681932847585E-003 + 109.68000000000001 1.5707819752707485E-003 + 109.73999999999998 1.5982244879551777E-003 + 109.79999999999998 1.6245897419020902E-003 + 109.85999999999999 1.6498725847405619E-003 + 109.91999999999999 1.6740691040627886E-003 + 109.97999999999999 1.6971763063706590E-003 + 110.03999999999999 1.7191920485372253E-003 + 110.09999999999999 1.7401154766034184E-003 + 110.16000000000000 1.7599465063625013E-003 + 110.22000000000000 1.7786858486586216E-003 + 110.28000000000000 1.7963353033525597E-003 + 110.34000000000000 1.8128975624260666E-003 + 110.40000000000001 1.8283760153864103E-003 + 110.46000000000001 1.8427752038827686E-003 + 110.51999999999998 1.8561001799191968E-003 + 110.57999999999998 1.8683570607893162E-003 + 110.63999999999999 1.8795525683224382E-003 + 110.69999999999999 1.8896943766713425E-003 + 110.75999999999999 1.8987905522085302E-003 + 110.81999999999999 1.9068502702146851E-003 + 110.88000000000000 1.9138831796810497E-003 + 110.94000000000000 1.9198996390286573E-003 + 111.00000000000000 1.9249106610958241E-003 + 111.06000000000000 1.9289280861472184E-003 + 111.12000000000000 1.9319642456279659E-003 + 111.18000000000001 1.9340319100099573E-003 + 111.23999999999998 1.9351447217762386E-003 + 111.29999999999998 1.9353165790921625E-003 + 111.35999999999999 1.9345622210672087E-003 + 111.41999999999999 1.9328968438026752E-003 + 111.47999999999999 1.9303360623722035E-003 + 111.53999999999999 1.9268961956887371E-003 + 111.59999999999999 1.9225937647789834E-003 + 111.66000000000000 1.9174460130779276E-003 + 111.72000000000000 1.9114705773362224E-003 + 111.78000000000000 1.9046853846100735E-003 + 111.84000000000000 1.8971088961358144E-003 + 111.90000000000001 1.8887598776962148E-003 + 111.96000000000001 1.8796576060687098E-003 + 112.01999999999998 1.8698217432537919E-003 + 112.07999999999998 1.8592720763957200E-003 + 112.13999999999999 1.8480287617136327E-003 + 112.19999999999999 1.8361123533454744E-003 + 112.25999999999999 1.8235436200696954E-003 + 112.31999999999999 1.8103435716945386E-003 + 112.38000000000000 1.7965334450264138E-003 + 112.44000000000000 1.7821347509400843E-003 + 112.50000000000000 1.7671690967142907E-003 + 112.56000000000000 1.7516583095799928E-003 + 112.62000000000000 1.7356243686166644E-003 + 112.68000000000001 1.7190891872951499E-003 + 112.73999999999998 1.7020749749978232E-003 + 112.79999999999998 1.6846041244578847E-003 + 112.85999999999999 1.6666987502695575E-003 + 112.91999999999999 1.6483813407106784E-003 + 112.97999999999999 1.6296741031937621E-003 + 113.03999999999999 1.6105995602993875E-003 + 113.09999999999999 1.5911798413980143E-003 + 113.16000000000000 1.5714373672845753E-003 + 113.22000000000000 1.5513943448999131E-003 + 113.28000000000000 1.5310729600155021E-003 + 113.34000000000000 1.5104950392456288E-003 + 113.40000000000001 1.4896823863200035E-003 + 113.46000000000001 1.4686569004639693E-003 + 113.51999999999998 1.4474399351175023E-003 + 113.57999999999998 1.4260528570708341E-003 + 113.63999999999999 1.4045167088397039E-003 + 113.69999999999999 1.3828521694252622E-003 + 113.75999999999999 1.3610798508442688E-003 + 113.81999999999999 1.3392199780801254E-003 + 113.88000000000000 1.3172923277354599E-003 + 113.94000000000000 1.2953166352511678E-003 + 114.00000000000000 1.2733119806479446E-003 + 114.06000000000000 1.2512971991041212E-003 + 114.12000000000000 1.2292908306294308E-003 + 114.18000000000001 1.2073108350767370E-003 + 114.23999999999998 1.1853750296541839E-003 + 114.29999999999998 1.1635004912651905E-003 + 114.35999999999999 1.1417039602967991E-003 + 114.41999999999999 1.1200018822445164E-003 + 114.47999999999999 1.0984100472466126E-003 + 114.53999999999999 1.0769440016209599E-003 + 114.59999999999999 1.0556186141849008E-003 + 114.66000000000000 1.0344484979192253E-003 + 114.72000000000000 1.0134474656486371E-003 + 114.78000000000000 9.9262899296449205E-004 + 114.84000000000000 9.7200620888552311E-004 + 114.90000000000001 9.5159141362909116E-004 + 114.96000000000001 9.3139649516934013E-004 + 115.01999999999998 9.1143295614711428E-004 + 115.07999999999998 8.9171164142798711E-004 + 115.13999999999999 8.7224288241429242E-004 + 115.19999999999999 8.5303645806115937E-004 + 115.25999999999999 8.3410157473484084E-004 + 115.31999999999999 8.1544699748642457E-004 + 115.38000000000000 7.9708079524217683E-004 + 115.44000000000000 7.7901069581479078E-004 + 115.50000000000000 7.6124385342370658E-004 + 115.56000000000000 7.4378677614433020E-004 + 115.62000000000000 7.2664559998663453E-004 + 115.68000000000001 7.0982593434573184E-004 + 115.73999999999998 6.9333282168590829E-004 + 115.79999999999998 6.7717090637268833E-004 + 115.85999999999999 6.6134432286341787E-004 + 115.91999999999999 6.4585679203653693E-004 + 115.97999999999999 6.3071152034215538E-004 + 116.03999999999999 6.1591125588481260E-004 + 116.09999999999999 6.0145839194007049E-004 + 116.16000000000000 5.8735488918780488E-004 + 116.22000000000000 5.7360221112866651E-004 + 116.28000000000000 5.6020161871457174E-004 + 116.34000000000000 5.4715379651440292E-004 + 116.40000000000001 5.3445912608210779E-004 + 116.46000000000001 5.2211771547020273E-004 + 116.51999999999998 5.1012919454883408E-004 + 116.57999999999998 4.9849301437097525E-004 + 116.63999999999999 4.8720818460468553E-004 + 116.69999999999999 4.7627352392979054E-004 + 116.75999999999999 4.6568746604980780E-004 + 116.81999999999999 4.5544824362239207E-004 + 116.88000000000000 4.4555383511401061E-004 + 116.94000000000000 4.3600195142863828E-004 + 117.00000000000000 4.2679008460555978E-004 + 117.06000000000000 4.1791557028946071E-004 + 117.12000000000000 4.0937550802121506E-004 + 117.18000000000001 4.0116678363301221E-004 + 117.23999999999998 3.9328620220099934E-004 + 117.29999999999998 3.8573039084594457E-004 + 117.35999999999999 3.7849584241577338E-004 + 117.41999999999999 3.7157888798440114E-004 + 117.47999999999999 3.6497579579513082E-004 + 117.53999999999999 3.5868274427521419E-004 + 117.59999999999999 3.5269578755400252E-004 + 117.66000000000000 3.4701095003926359E-004 + 117.72000000000000 3.4162413900773220E-004 + 117.78000000000000 3.3653121496527566E-004 + 117.84000000000000 3.3172801539858447E-004 + 117.90000000000001 3.2721034725618180E-004 + 117.96000000000001 3.2297392807425769E-004 + 118.01999999999998 3.1901449699900321E-004 + 118.07999999999998 3.1532775107217061E-004 + 118.13999999999999 3.1190939598921893E-004 + 118.19999999999999 3.0875510654197291E-004 + 118.25999999999999 3.0586048161616625E-004 + 118.31999999999999 3.0322123159684137E-004 + 118.38000000000000 3.0083296870864385E-004 + 118.44000000000000 2.9869137460266379E-004 + 118.50000000000000 2.9679206682100797E-004 + 118.56000000000000 2.9513070957181559E-004 + 118.62000000000000 2.9370292881580363E-004 + 118.68000000000001 2.9250435454337531E-004 + 118.73999999999998 2.9153065678151234E-004 + 118.79999999999998 2.9077747774465827E-004 + 118.85999999999999 2.9024044025236547E-004 + 118.91999999999999 2.8991514311087560E-004 + 118.97999999999999 2.8979720535594661E-004 + 119.03999999999999 2.8988218961917115E-004 + 119.09999999999999 2.9016562757786099E-004 + 119.16000000000000 2.9064298371804493E-004 + 119.22000000000000 2.9130971856567659E-004 + 119.28000000000000 2.9216114784681317E-004 + 119.34000000000000 2.9319254092778825E-004 + 119.40000000000001 2.9439912281958305E-004 + 119.46000000000001 2.9577593958369272E-004 + 119.51999999999998 2.9731793678638139E-004 + 119.57999999999998 2.9901995648601689E-004 + 119.63999999999999 3.0087667281508717E-004 + 119.69999999999999 3.0288260123551204E-004 + 119.75999999999999 3.0503208503321013E-004 + 119.81999999999999 3.0731932930347031E-004 + 119.88000000000000 3.0973827376878682E-004 + 119.94000000000000 3.1228275050374925E-004 + 120.00000000000000 3.1494634096438452E-004 + 120.06000000000000 3.1772241562743161E-004 + 120.12000000000000 3.2060409475890878E-004 + 120.18000000000001 3.2358428999588838E-004 + 120.23999999999998 3.2665570016685318E-004 + 120.29999999999998 3.2981071072571021E-004 + 120.35999999999999 3.3304150407556488E-004 + 120.41999999999999 3.3634001258393663E-004 + 120.47999999999999 3.3969779182213425E-004 + 120.53999999999999 3.4310620965378628E-004 + 120.59999999999999 3.4655634180846400E-004 + 120.66000000000000 3.5003886057474514E-004 + 120.72000000000000 3.5354431675690295E-004 + 120.78000000000000 3.5706282130079100E-004 + 120.84000000000000 3.6058424970416181E-004 + 120.90000000000001 3.6409814241194040E-004 + 120.95999999999998 3.6759377045521746E-004 + 121.01999999999998 3.7106011246220149E-004 + 121.07999999999998 3.7448584313636273E-004 + 121.13999999999999 3.7785938236244013E-004 + 121.19999999999999 3.8116888537896343E-004 + 121.25999999999999 3.8440223125443200E-004 + 121.31999999999999 3.8754713050642470E-004 + 121.38000000000000 3.9059100236434269E-004 + 121.44000000000000 3.9352111696705662E-004 + 121.50000000000000 3.9632457700131509E-004 + 121.56000000000000 3.9898831906998134E-004 + 121.62000000000000 4.0149911803091375E-004 + 121.68000000000001 4.0384369156578991E-004 + 121.73999999999998 4.0600868973925629E-004 + 121.79999999999998 4.0798068712302678E-004 + 121.85999999999999 4.0974625477426793E-004 + 121.91999999999999 4.1129195018797831E-004 + 121.97999999999999 4.1260439799636970E-004 + 122.03999999999999 4.1367027301203267E-004 + 122.09999999999999 4.1447641993576909E-004 + 122.16000000000000 4.1500979705953180E-004 + 122.22000000000000 4.1525752038135496E-004 + 122.28000000000000 4.1520695332670360E-004 + 122.34000000000000 4.1484575722118018E-004 + 122.40000000000001 4.1416183726258589E-004 + 122.45999999999998 4.1314351884397531E-004 + 122.51999999999998 4.1177949203604611E-004 + 122.57999999999998 4.1005888471545154E-004 + 122.63999999999999 4.0797128413746928E-004 + 122.69999999999999 4.0550687365298018E-004 + 122.75999999999999 4.0265632128860064E-004 + 122.81999999999999 3.9941095779557581E-004 + 122.88000000000000 3.9576274111138002E-004 + 122.94000000000000 3.9170433671810391E-004 + 123.00000000000000 3.8722916961729048E-004 + 123.06000000000000 3.8233137523875253E-004 + 123.12000000000000 3.7700593590883565E-004 + 123.18000000000001 3.7124865022753503E-004 + 123.23999999999998 3.6505618025082934E-004 + 123.29999999999998 3.5842606567767783E-004 + 123.35999999999999 3.5135684642193627E-004 + 123.41999999999999 3.4384794332966415E-004 + 123.47999999999999 3.3589972556187042E-004 + 123.53999999999999 3.2751361345405836E-004 + 123.59999999999999 3.1869196726915520E-004 + 123.66000000000000 3.0943822153762363E-004 + 123.72000000000000 2.9975678389264950E-004 + 123.78000000000000 2.8965312110713697E-004 + 123.84000000000000 2.7913378191087653E-004 + 123.90000000000001 2.6820634290198290E-004 + 123.95999999999998 2.5687937071087666E-004 + 124.01999999999998 2.4516252923787823E-004 + 124.07999999999998 2.3306652398077525E-004 + 124.13999999999999 2.2060305926701893E-004 + 124.19999999999999 2.0778486969263331E-004 + 124.25999999999999 1.9462566606962960E-004 + 124.31999999999999 1.8114017139580986E-004 + 124.38000000000000 1.6734405676737933E-004 + 124.44000000000000 1.5325389416498558E-004 + 124.50000000000000 1.3888719386460571E-004 + 124.56000000000000 1.2426230363624962E-004 + 124.62000000000000 1.0939838647211887E-004 + 124.68000000000001 9.4315413488941038E-005 + 124.73999999999998 7.9034088128934112E-005 + 124.79999999999998 6.3575791432739372E-005 + 124.85999999999999 4.7962570255708281E-005 + 124.91999999999999 3.2217056219850776E-005 + 124.97999999999999 1.6362420317305541E-005 + 125.03999999999999 4.2231405502122921E-007 + 125.09999999999999 -1.5579196379789520E-005 + 125.16000000000000 -3.1617666738013404E-005 + 125.22000000000000 -4.7668354215225448E-005 + 125.28000000000000 -6.3706257601998912E-005 + 125.34000000000000 -7.9706186357273335E-005 + 125.40000000000001 -9.5642830824108272E-005 + 125.45999999999998 -1.1149080197273975E-004 + 125.51999999999998 -1.2722471445031624E-004 + 125.57999999999998 -1.4281921693318805E-004 + 125.63999999999999 -1.5824909207961028E-004 + 125.69999999999999 -1.7348923516112360E-004 + 125.75999999999999 -1.8851482464176951E-004 + 125.81999999999999 -2.0330125349520364E-004 + 125.88000000000000 -2.1782432643339039E-004 + 125.94000000000000 -2.3206022917591143E-004 + 126.00000000000000 -2.4598558553472948E-004 + 126.06000000000000 -2.5957751737160214E-004 + 126.12000000000000 -2.7281376421666885E-004 + 126.18000000000001 -2.8567266722313438E-004 + 126.23999999999998 -2.9813318749951235E-004 + 126.29999999999998 -3.1017508160650252E-004 + 126.35999999999999 -3.2177884034822525E-004 + 126.41999999999999 -3.3292577553431426E-004 + 126.47999999999999 -3.4359808074818415E-004 + 126.53999999999999 -3.5377881806495124E-004 + 126.59999999999999 -3.6345200622427761E-004 + 126.66000000000000 -3.7260261131414821E-004 + 126.72000000000000 -3.8121657200825920E-004 + 126.78000000000000 -3.8928087893428694E-004 + 126.84000000000000 -3.9678349059360464E-004 + 126.90000000000001 -4.0371346194862946E-004 + 126.95999999999998 -4.1006088478090763E-004 + 127.01999999999998 -4.1581689969801249E-004 + 127.07999999999998 -4.2097383239680193E-004 + 127.13999999999999 -4.2552491583387720E-004 + 127.19999999999999 -4.2946462472087785E-004 + 127.25999999999999 -4.3278838167326112E-004 + 127.31999999999999 -4.3549279963271318E-004 + 127.38000000000000 -4.3757549200919586E-004 + 127.44000000000000 -4.3903514351585979E-004 + 127.50000000000000 -4.3987160077161062E-004 + 127.56000000000000 -4.4008575467223204E-004 + 127.62000000000000 -4.3967950602754111E-004 + 127.68000000000001 -4.3865581542104154E-004 + 127.73999999999998 -4.3701867363799679E-004 + 127.79999999999998 -4.3477311895057954E-004 + 127.85999999999999 -4.3192519901212470E-004 + 127.91999999999999 -4.2848189314979325E-004 + 127.97999999999999 -4.2445119404090802E-004 + 128.03999999999999 -4.1984213636753919E-004 + 128.09999999999999 -4.1466449820182119E-004 + 128.16000000000000 -4.0892908310482612E-004 + 128.22000000000000 -4.0264744837956553E-004 + 128.28000000000000 -3.9583207327841864E-004 + 128.34000000000000 -3.8849615187725654E-004 + 128.40000000000001 -3.8065368184252255E-004 + 128.45999999999998 -3.7231937942090374E-004 + 128.51999999999998 -3.6350859423868394E-004 + 128.57999999999998 -3.5423738036158411E-004 + 128.63999999999999 -3.4452237285187383E-004 + 128.69999999999999 -3.3438082016273277E-004 + 128.75999999999999 -3.2383044407430472E-004 + 128.81999999999999 -3.1288954565635826E-004 + 128.88000000000000 -3.0157683421643444E-004 + 128.94000000000000 -2.8991148932581317E-004 + 129.00000000000000 -2.7791312072616259E-004 + 129.06000000000000 -2.6560170518288097E-004 + 129.12000000000000 -2.5299753837748564E-004 + 129.18000000000001 -2.4012128247076413E-004 + 129.23999999999998 -2.2699383726492386E-004 + 129.29999999999998 -2.1363643276243996E-004 + 129.35999999999999 -2.0007045821567742E-004 + 129.41999999999999 -1.8631752896812901E-004 + 129.47999999999999 -1.7239944658568570E-004 + 129.53999999999999 -1.5833813514965926E-004 + 129.59999999999999 -1.4415560724072440E-004 + 129.66000000000000 -1.2987396621058197E-004 + 129.72000000000000 -1.1551537293444321E-004 + 129.78000000000000 -1.0110196820066957E-004 + 129.84000000000000 -8.6655887393556481E-005 + 129.90000000000001 -7.2199167673015830E-005 + 129.95999999999998 -5.7753799771920268E-005 + 130.01999999999998 -4.3341631516714401E-005 + 130.07999999999998 -2.8984351554328619E-005 + 130.13999999999999 -1.4703442788870776E-005 + 130.19999999999999 -5.2018538856701111E-007 + 130.25999999999999 1.3544401566006797E-005 + 130.31999999999999 2.7469572068392143E-005 + 130.38000000000000 4.1234889930400163E-005 + 130.44000000000000 5.4820250346097653E-005 + 130.50000000000000 6.8205901495839677E-005 + 130.56000000000000 8.1372473942588930E-005 + 130.62000000000000 9.4300997945874620E-005 + 130.68000000000001 1.0697293523594600E-004 + 130.73999999999998 1.1937017505221192E-004 + 130.79999999999998 1.3147507729561905E-004 + 130.85999999999999 1.4327051016208397E-004 + 130.91999999999999 1.5473980188314182E-004 + 130.97999999999999 1.6586682842563083E-004 + 131.03999999999999 1.7663605013158894E-004 + 131.09999999999999 1.8703244720729597E-004 + 131.16000000000000 1.9704160395884269E-004 + 131.22000000000000 2.0664974544527226E-004 + 131.28000000000000 2.1584369953801978E-004 + 131.34000000000000 2.2461098486563569E-004 + 131.40000000000001 2.3293976208541765E-004 + 131.45999999999998 2.4081888741760431E-004 + 131.51999999999998 2.4823798294760640E-004 + 131.57999999999998 2.5518737206460187E-004 + 131.63999999999999 2.6165815195739091E-004 + 131.69999999999999 2.6764213015835237E-004 + 131.75999999999999 2.7313195707519733E-004 + 131.81999999999999 2.7812098182937754E-004 + 131.88000000000000 2.8260338727888591E-004 + 131.94000000000000 2.8657412223600240E-004 + 132.00000000000000 2.9002895915053727E-004 + 132.06000000000000 2.9296438548010026E-004 + 132.12000000000000 2.9537773779881243E-004 + 132.18000000000001 2.9726712892055114E-004 + 132.23999999999998 2.9863141381567199E-004 + 132.29999999999998 2.9947017229929156E-004 + 132.35999999999999 2.9978379971011836E-004 + 132.41999999999999 2.9957343922565538E-004 + 132.47999999999999 2.9884092841473358E-004 + 132.53999999999999 2.9758884055162944E-004 + 132.59999999999999 2.9582045334649421E-004 + 132.66000000000000 2.9353981784211559E-004 + 132.72000000000000 2.9075162513584853E-004 + 132.78000000000000 2.8746124240688870E-004 + 132.84000000000000 2.8367475882270756E-004 + 132.90000000000001 2.7939883244304785E-004 + 132.95999999999998 2.7464082771113871E-004 + 133.01999999999998 2.6940874686459914E-004 + 133.07999999999998 2.6371113842099371E-004 + 133.13999999999999 2.5755712316035003E-004 + 133.19999999999999 2.5095641606569187E-004 + 133.25999999999999 2.4391919482936815E-004 + 133.31999999999999 2.3645619525306704E-004 + 133.38000000000000 2.2857856351904857E-004 + 133.44000000000000 2.2029788504856850E-004 + 133.50000000000000 2.1162615072953483E-004 + 133.56000000000000 2.0257566294139563E-004 + 133.62000000000000 1.9315912930813274E-004 + 133.68000000000001 1.8338943104272503E-004 + 133.73999999999998 1.7327973346625779E-004 + 133.79999999999998 1.6284346751289352E-004 + 133.85999999999999 1.5209417560137337E-004 + 133.91999999999999 1.4104554339788698E-004 + 133.97999999999999 1.2971134119530299E-004 + 134.03999999999999 1.1810543858366340E-004 + 134.09999999999999 1.0624169019461330E-004 + 134.16000000000000 9.4133981347617861E-005 + 134.22000000000000 8.1796159806386143E-005 + 134.28000000000000 6.9242007212226922E-005 + 134.34000000000000 5.6485201102482220E-005 + 134.40000000000001 4.3539301507447126E-005 + 134.45999999999998 3.0417734179898405E-005 + 134.51999999999998 1.7133724923657107E-005 + 134.57999999999998 3.7003345518680627E-006 + 134.63999999999999 -9.8696182749563412E-006 + 134.69999999999999 -2.3563565515425955E-005 + 134.75999999999999 -3.7369193916694498E-005 + 134.81999999999999 -5.1274457844902775E-005 + 134.88000000000000 -6.5267609139190976E-005 + 134.94000000000000 -7.9337234439136089E-005 + 135.00000000000000 -9.3472235398267057E-005 + 135.06000000000000 -1.0766185191623504E-004 + 135.12000000000000 -1.2189565395767153E-004 + 135.18000000000001 -1.3616359273888501E-004 + 135.23999999999998 -1.5045596948402916E-004 + 135.29999999999998 -1.6476344895315450E-004 + 135.35999999999999 -1.7907705892976486E-004 + 135.41999999999999 -1.9338820474723898E-004 + 135.47999999999999 -2.0768864886250746E-004 + 135.53999999999999 -2.2197049669031051E-004 + 135.59999999999999 -2.3622619420525108E-004 + 135.66000000000000 -2.5044856140925021E-004 + 135.72000000000000 -2.6463072600676574E-004 + 135.78000000000000 -2.7876610942695123E-004 + 135.84000000000000 -2.9284844106213805E-004 + 135.90000000000001 -3.0687172320746246E-004 + 135.95999999999998 -3.2083022007664292E-004 + 136.01999999999998 -3.3471840949754982E-004 + 136.07999999999998 -3.4853097369929876E-004 + 136.13999999999999 -3.6226281654648887E-004 + 136.19999999999999 -3.7590893753366804E-004 + 136.25999999999999 -3.8946453290272597E-004 + 136.31999999999999 -4.0292481741582424E-004 + 136.38000000000000 -4.1628514967557588E-004 + 136.44000000000000 -4.2954087944644369E-004 + 136.50000000000000 -4.4268745817109198E-004 + 136.56000000000000 -4.5572019417268185E-004 + 136.62000000000000 -4.6863445854638034E-004 + 136.68000000000001 -4.8142551824157466E-004 + 136.73999999999998 -4.9408853094730875E-004 + 136.79999999999998 -5.0661855924492610E-004 + 136.85999999999999 -5.1901048107507797E-004 + 136.91999999999999 -5.3125902552875724E-004 + 136.97999999999999 -5.4335873893339339E-004 + 137.03999999999999 -5.5530390120443914E-004 + 137.09999999999999 -5.6708860530225080E-004 + 137.16000000000000 -5.7870663603351070E-004 + 137.22000000000000 -5.9015154314141457E-004 + 137.28000000000000 -6.0141656379218418E-004 + 137.34000000000000 -6.1249458412790132E-004 + 137.40000000000001 -6.2337814956761454E-004 + 137.45999999999998 -6.3405955359844884E-004 + 137.51999999999998 -6.4453069414304853E-004 + 137.57999999999998 -6.5478322063330832E-004 + 137.63999999999999 -6.6480825636589728E-004 + 137.69999999999999 -6.7459672928875110E-004 + 137.75999999999999 -6.8413919309012901E-004 + 137.81999999999999 -6.9342576564059401E-004 + 137.88000000000000 -7.0244638350518672E-004 + 137.94000000000000 -7.1119057699635521E-004 + 138.00000000000000 -7.1964764011963819E-004 + 138.06000000000000 -7.2780652677016265E-004 + 138.12000000000000 -7.3565599942703082E-004 + 138.18000000000001 -7.4318457669334144E-004 + 138.23999999999998 -7.5038056202325219E-004 + 138.29999999999998 -7.5723209523994033E-004 + 138.35999999999999 -7.6372716202873934E-004 + 138.41999999999999 -7.6985365997485886E-004 + 138.47999999999999 -7.7559944873605978E-004 + 138.53999999999999 -7.8095231126399593E-004 + 138.59999999999999 -7.8590004359544384E-004 + 138.66000000000000 -7.9043057789843327E-004 + 138.72000000000000 -7.9453187974013644E-004 + 138.78000000000000 -7.9819201731859619E-004 + 138.84000000000000 -8.0139931066341183E-004 + 138.90000000000001 -8.0414242869778982E-004 + 138.95999999999998 -8.0641014942702015E-004 + 139.01999999999998 -8.0819160996279142E-004 + 139.07999999999998 -8.0947646452568804E-004 + 139.13999999999999 -8.1025473330463397E-004 + 139.19999999999999 -8.1051692400661846E-004 + 139.25999999999999 -8.1025408165970379E-004 + 139.31999999999999 -8.0945786050702813E-004 + 139.38000000000000 -8.0812056379317226E-004 + 139.44000000000000 -8.0623507109037315E-004 + 139.50000000000000 -8.0379512757074699E-004 + 139.56000000000000 -8.0079511199005913E-004 + 139.62000000000000 -7.9723028457676320E-004 + 139.68000000000001 -7.9309664691807160E-004 + 139.73999999999998 -7.8839112175598956E-004 + 139.79999999999998 -7.8311162766708602E-004 + 139.85999999999999 -7.7725687369658029E-004 + 139.91999999999999 -7.7082662524594839E-004 + 139.97999999999999 -7.6382160874549328E-004 + 140.03999999999999 -7.5624356324221435E-004 + 140.09999999999999 -7.4809524038301888E-004 + 140.16000000000000 -7.3938052086111497E-004 + 140.22000000000000 -7.3010421492834029E-004 + 140.28000000000000 -7.2027228177549214E-004 + 140.34000000000000 -7.0989177201000056E-004 + 140.40000000000001 -6.9897086237739035E-004 + 140.45999999999998 -6.8751869704039288E-004 + 140.51999999999998 -6.7554561548946457E-004 + 140.57999999999998 -6.6306296183741794E-004 + 140.63999999999999 -6.5008315610778347E-004 + 140.69999999999999 -6.3661965998836566E-004 + 140.75999999999999 -6.2268703843848592E-004 + 140.81999999999999 -6.0830068522108895E-004 + 140.88000000000000 -5.9347709178735389E-004 + 140.94000000000000 -5.7823367017283589E-004 + 141.00000000000000 -5.6258873288529557E-004 + 141.06000000000000 -5.4656144922829767E-004 + 141.12000000000000 -5.3017182432371494E-004 + 141.18000000000001 -5.1344057045633385E-004 + 141.23999999999998 -4.9638930246040619E-004 + 141.29999999999998 -4.7904027010677957E-004 + 141.35999999999999 -4.6141633669772528E-004 + 141.41999999999999 -4.4354108215321472E-004 + 141.47999999999999 -4.2543852169343036E-004 + 141.53999999999999 -4.0713320377512406E-004 + 141.59999999999999 -3.8865019849040509E-004 + 141.66000000000000 -3.7001491619102441E-004 + 141.72000000000000 -3.5125318690961918E-004 + 141.78000000000000 -3.3239103623582052E-004 + 141.84000000000000 -3.1345481376066607E-004 + 141.90000000000001 -2.9447098480991441E-004 + 141.95999999999998 -2.7546617708004234E-004 + 142.01999999999998 -2.5646705233856558E-004 + 142.07999999999998 -2.3750033662388550E-004 + 142.13999999999999 -2.1859261378128576E-004 + 142.19999999999999 -1.9977044357744576E-004 + 142.25999999999999 -1.8106016684284223E-004 + 142.31999999999999 -1.6248793275011687E-004 + 142.38000000000000 -1.4407960549142135E-004 + 142.44000000000000 -1.2586071544523769E-004 + 142.50000000000000 -1.0785641013431627E-004 + 142.56000000000000 -9.0091441374432217E-005 + 142.62000000000000 -7.2590048944513842E-005 + 142.68000000000001 -5.5375981920805961E-005 + 142.73999999999998 -3.8472394840645775E-005 + 142.79999999999998 -2.1901853395126612E-005 + 142.85999999999999 -5.6862693492837058E-006 + 142.91999999999999 1.0153128032338235E-005 + 142.97999999999999 2.5595817464412000E-005 + 143.03999999999999 4.0622045364179208E-005 + 143.09999999999999 5.5212836150589915E-005 + 143.16000000000000 6.9350025505225947E-005 + 143.22000000000000 8.3016294628927354E-005 + 143.28000000000000 9.6195188975085780E-005 + 143.34000000000000 1.0887114640169984E-004 + 143.40000000000001 1.2102949782235490E-004 + 143.45999999999998 1.3265651748420733E-004 + 143.51999999999998 1.4373940602157074E-004 + 143.57999999999998 1.5426632119811944E-004 + 143.63999999999999 1.6422637986377041E-004 + 143.69999999999999 1.7360968554388048E-004 + 143.75999999999999 1.8240730340536273E-004 + 143.81999999999999 1.9061129800529723E-004 + 143.88000000000000 1.9821468951311115E-004 + 143.94000000000000 2.0521150546179334E-004 + 144.00000000000000 2.1159675370997969E-004 + 144.06000000000000 2.1736642122046154E-004 + 144.12000000000000 2.2251749493053865E-004 + 144.18000000000001 2.2704790366347204E-004 + 144.23999999999998 2.3095656585502802E-004 + 144.29999999999998 2.3424335378142673E-004 + 144.35999999999999 2.3690908369856649E-004 + 144.41999999999999 2.3895551902278496E-004 + 144.47999999999999 2.4038536039949838E-004 + 144.53999999999999 2.4120221440393386E-004 + 144.59999999999999 2.4141060547949481E-004 + 144.66000000000000 2.4101592998733575E-004 + 144.72000000000000 2.4002446087626045E-004 + 144.78000000000000 2.3844333092374391E-004 + 144.84000000000000 2.3628053312088658E-004 + 144.90000000000001 2.3354485171742619E-004 + 144.95999999999998 2.3024587522270804E-004 + 145.01999999999998 2.2639396183375807E-004 + 145.07999999999998 2.2200024027495079E-004 + 145.13999999999999 2.1707654294608639E-004 + 145.19999999999999 2.1163544240330613E-004 + 145.25999999999999 2.0569016534000099E-004 + 145.31999999999999 1.9925461091466841E-004 + 145.38000000000000 1.9234329496890766E-004 + 145.44000000000000 1.8497134307989690E-004 + 145.50000000000000 1.7715444656356472E-004 + 145.56000000000000 1.6890883574635778E-004 + 145.62000000000000 1.6025125468875810E-004 + 145.68000000000001 1.5119895065077586E-004 + 145.73999999999998 1.4176959263975379E-004 + 145.79999999999998 1.3198128369491070E-004 + 145.85999999999999 1.2185251993855200E-004 + 145.91999999999999 1.1140213238073868E-004 + 145.97999999999999 1.0064929240993554E-004 + 146.03999999999999 8.9613431948215285E-005 + 146.09999999999999 7.8314269153538808E-005 + 146.16000000000000 6.6771728522484514E-005 + 146.22000000000000 5.5005931960872128E-005 + 146.28000000000000 4.3037162984646817E-005 + 146.34000000000000 3.0885833075903400E-005 + 146.40000000000001 1.8572450939039494E-005 + 146.45999999999998 6.1176086611024279E-006 + 146.51999999999998 -6.4580761393234700E-006 + 146.57999999999998 -1.9133965385229464E-005 + 146.63999999999999 -3.1889440778643124E-005 + 146.69999999999999 -4.4703946082262196E-005 + 146.75999999999999 -5.7556981235674340E-005 + 146.81999999999999 -7.0428181653364575E-005 + 146.88000000000000 -8.3297318531408768E-005 + 146.94000000000000 -9.6144327310796027E-005 + 147.00000000000000 -1.0894935058357327E-004 + 147.06000000000000 -1.2169279755755948E-004 + 147.12000000000000 -1.3435532304290467E-004 + 147.18000000000001 -1.4691789573550301E-004 + 147.23999999999998 -1.5936182548842559E-004 + 147.29999999999998 -1.7166880846435428E-004 + 147.35999999999999 -1.8382092325436479E-004 + 147.41999999999999 -1.9580068194394531E-004 + 147.47999999999999 -2.0759106745984855E-004 + 147.53999999999999 -2.1917551541241688E-004 + 147.59999999999999 -2.3053798848466349E-004 + 147.66000000000000 -2.4166299817460010E-004 + 147.72000000000000 -2.5253559726012137E-004 + 147.78000000000000 -2.6314139989459595E-004 + 147.84000000000000 -2.7346660608648394E-004 + 147.90000000000001 -2.8349802177407899E-004 + 147.95999999999998 -2.9322305260037757E-004 + 148.01999999999998 -3.0262976949987095E-004 + 148.07999999999998 -3.1170685950293359E-004 + 148.13999999999999 -3.2044367407949015E-004 + 148.19999999999999 -3.2883024485925425E-004 + 148.25999999999999 -3.3685727752368007E-004 + 148.31999999999999 -3.4451616545866051E-004 + 148.38000000000000 -3.5179897276611235E-004 + 148.44000000000000 -3.5869852439139799E-004 + 148.50000000000000 -3.6520836887454051E-004 + 148.56000000000000 -3.7132275020874440E-004 + 148.62000000000000 -3.7703665757090547E-004 + 148.68000000000001 -3.8234582083894334E-004 + 148.73999999999998 -3.8724674105439683E-004 + 148.79999999999998 -3.9173657195975718E-004 + 148.85999999999999 -3.9581331434316214E-004 + 148.91999999999999 -3.9947559646757937E-004 + 148.97999999999999 -4.0272284982995386E-004 + 149.03999999999999 -4.0555520099527635E-004 + 149.09999999999999 -4.0797340731498334E-004 + 149.16000000000000 -4.0997900483096580E-004 + 149.22000000000000 -4.1157415556310407E-004 + 149.28000000000000 -4.1276170598150008E-004 + 149.34000000000000 -4.1354510058653392E-004 + 149.40000000000001 -4.1392845523921908E-004 + 149.45999999999998 -4.1391642185398215E-004 + 149.51999999999998 -4.1351428811012026E-004 + 149.57999999999998 -4.1272789230788117E-004 + 149.63999999999999 -4.1156356749868161E-004 + 149.69999999999999 -4.1002824194763673E-004 + 149.75999999999999 -4.0812927455675761E-004 + 149.81999999999999 -4.0587455291910392E-004 + 149.88000000000000 -4.0327236208211259E-004 + 149.94000000000000 -4.0033147290539033E-004 + 150.00000000000000 -3.9706101193712255E-004 + 150.06000000000000 -3.9347051845965952E-004 + 150.12000000000000 -3.8956990495191970E-004 + 150.18000000000001 -3.8536938324160532E-004 + 150.23999999999998 -3.8087945714100738E-004 + 150.29999999999998 -3.7611095791897323E-004 + 150.35999999999999 -3.7107493580440472E-004 + 150.41999999999999 -3.6578264984755900E-004 + 150.47999999999999 -3.6024555762382995E-004 + 150.53999999999999 -3.5447530627306212E-004 + 150.59999999999999 -3.4848360838285952E-004 + 150.66000000000000 -3.4228232296604211E-004 + 150.72000000000000 -3.3588337898416782E-004 + 150.78000000000000 -3.2929871456091972E-004 + 150.84000000000000 -3.2254028776023422E-004 + 150.90000000000001 -3.1562005659739324E-004 + 150.95999999999998 -3.0854986329918288E-004 + 151.01999999999998 -3.0134151033664214E-004 + 151.07999999999998 -2.9400668433152231E-004 + 151.13999999999999 -2.8655697772882665E-004 + 151.19999999999999 -2.7900375287442762E-004 + 151.25999999999999 -2.7135821370465036E-004 + 151.31999999999999 -2.6363140198460935E-004 + 151.38000000000000 -2.5583411510153711E-004 + 151.44000000000000 -2.4797688822172432E-004 + 151.50000000000000 -2.4007000555031988E-004 + 151.56000000000000 -2.3212354175710710E-004 + 151.62000000000000 -2.2414723515308264E-004 + 151.68000000000001 -2.1615054666239433E-004 + 151.73999999999998 -2.0814266095450982E-004 + 151.79999999999998 -2.0013246139106723E-004 + 151.85999999999999 -1.9212851576566931E-004 + 151.91999999999999 -1.8413910335937438E-004 + 151.97999999999999 -1.7617217626104208E-004 + 152.03999999999999 -1.6823537179623611E-004 + 152.09999999999999 -1.6033601197992992E-004 + 152.16000000000000 -1.5248108526024463E-004 + 152.22000000000000 -1.4467727314553439E-004 + 152.28000000000000 -1.3693091676427098E-004 + 152.34000000000000 -1.2924803470168764E-004 + 152.40000000000001 -1.2163432941159309E-004 + 152.45999999999998 -1.1409515044135478E-004 + 152.51999999999998 -1.0663556398653725E-004 + 152.57999999999998 -9.9260274313637487E-005 + 152.63999999999999 -9.1973696279824008E-005 + 152.69999999999999 -8.4779916691211609E-005 + 152.75999999999999 -7.7682747725673295E-005 + 152.81999999999999 -7.0685689673093529E-005 + 152.88000000000000 -6.3791983209462021E-005 + 152.94000000000000 -5.7004604617972576E-005 + 153.00000000000000 -5.0326275712617280E-005 + 153.06000000000000 -4.3759495859513022E-005 + 153.12000000000000 -3.7306561525714807E-005 + 153.17999999999998 -3.0969544284378426E-005 + 153.23999999999998 -2.4750368231602354E-005 + 153.29999999999998 -1.8650758145982415E-005 + 153.35999999999999 -1.2672305526748376E-005 + 153.41999999999999 -6.8164621395021549E-006 + 153.47999999999999 -1.0845396256746469E-006 + 153.53999999999999 4.5222486709375556E-006 + 153.59999999999999 1.0002806261454739E-005 + 153.66000000000000 1.5356135069686308E-005 + 153.72000000000000 2.0581315480511396E-005 + 153.78000000000000 2.5677513182352988E-005 + 153.84000000000000 3.0643972023603708E-005 + 153.90000000000001 3.5480001473658495E-005 + 153.95999999999998 4.0184967383837993E-005 + 154.01999999999998 4.4758298507180258E-005 + 154.07999999999998 4.9199466422213096E-005 + 154.13999999999999 5.3507990666603318E-005 + 154.19999999999999 5.7683424115095362E-005 + 154.25999999999999 6.1725355877493608E-005 + 154.31999999999999 6.5633400473030510E-005 + 154.38000000000000 6.9407206898327743E-005 + 154.44000000000000 7.3046437712675206E-005 + 154.50000000000000 7.6550787655793877E-005 + 154.56000000000000 7.9919978403920780E-005 + 154.62000000000000 8.3153751711510890E-005 + 154.67999999999998 8.6251888378949937E-005 + 154.73999999999998 8.9214203151806267E-005 + 154.79999999999998 9.2040552713396962E-005 + 154.85999999999999 9.4730856759255686E-005 + 154.91999999999999 9.7285085915140983E-005 + 154.97999999999999 9.9703289509759974E-005 + 155.03999999999999 1.0198558201341180E-004 + 155.09999999999999 1.0413219435205441E-004 + 155.16000000000000 1.0614342651974512E-004 + 155.22000000000000 1.0801971516048911E-004 + 155.28000000000000 1.0976160104005354E-004 + 155.34000000000000 1.1136975880194722E-004 + 155.40000000000001 1.1284499501830242E-004 + 155.45999999999998 1.1418827172677301E-004 + 155.51999999999998 1.1540069161333348E-004 + 155.57999999999998 1.1648351879786395E-004 + 155.63999999999999 1.1743818765089147E-004 + 155.69999999999999 1.1826630364789544E-004 + 155.75999999999999 1.1896962665486326E-004 + 155.81999999999999 1.1955012855290978E-004 + 155.88000000000000 1.2000996234448426E-004 + 155.94000000000000 1.2035145647892428E-004 + 156.00000000000000 1.2057714033234837E-004 + 156.06000000000000 1.2068973085076869E-004 + 156.12000000000000 1.2069214947850554E-004 + 156.17999999999998 1.2058751893278643E-004 + 156.23999999999998 1.2037914786178975E-004 + 156.29999999999998 1.2007053012551999E-004 + 156.35999999999999 1.1966536080067344E-004 + 156.41999999999999 1.1916751198476287E-004 + 156.47999999999999 1.1858102121410927E-004 + 156.53999999999999 1.1791011150529527E-004 + 156.59999999999999 1.1715915395694295E-004 + 156.66000000000000 1.1633268027493532E-004 + 156.72000000000000 1.1543534525518747E-004 + 156.78000000000000 1.1447193822726705E-004 + 156.84000000000000 1.1344738215695701E-004 + 156.90000000000001 1.1236668035049732E-004 + 156.95999999999998 1.1123492601066860E-004 + 157.01999999999998 1.1005729437877172E-004 + 157.07999999999998 1.0883901866193375E-004 + 157.13999999999999 1.0758537123647584E-004 + 157.19999999999999 1.0630165008910724E-004 + 157.25999999999999 1.0499314815008571E-004 + 157.31999999999999 1.0366516403027682E-004 + 157.38000000000000 1.0232294947632336E-004 + 157.44000000000000 1.0097169296631082E-004 + 157.50000000000000 9.9616531045356035E-005 + 157.56000000000000 9.8262471563216320E-005 + 157.62000000000000 9.6914423840893698E-005 + 157.67999999999998 9.5577155130198790E-005 + 157.73999999999998 9.4255255044336885E-005 + 157.79999999999998 9.2953140504095652E-005 + 157.85999999999999 9.1675022236891221E-005 + 157.91999999999999 9.0424890134369425E-005 + 157.97999999999999 8.9206489279121056E-005 + 158.03999999999999 8.8023313931750693E-005 + 158.09999999999999 8.6878592844039638E-005 + 158.16000000000000 8.5775266993136948E-005 + 158.22000000000000 8.4715989871423576E-005 + 158.28000000000000 8.3703105830435420E-005 + 158.34000000000000 8.2738655354014023E-005 + 158.40000000000001 8.1824352783923569E-005 + 158.45999999999998 8.0961594357192491E-005 + 158.51999999999998 8.0151430530642386E-005 + 158.57999999999998 7.9394577710224296E-005 + 158.63999999999999 7.8691416676441515E-005 + 158.69999999999999 7.8041972433802638E-005 + 158.75999999999999 7.7445931568416389E-005 + 158.81999999999999 7.6902609768648785E-005 + 158.88000000000000 7.6410995644259362E-005 + 158.94000000000000 7.5969721469768250E-005 + 159.00000000000000 7.5577082126178537E-005 + 159.06000000000000 7.5231016081382725E-005 + 159.12000000000000 7.4929149060266097E-005 + 159.17999999999998 7.4668777506350627E-005 + 159.23999999999998 7.4446897595084182E-005 + 159.29999999999998 7.4260198210395224E-005 + 159.35999999999999 7.4105088889745563E-005 + 159.41999999999999 7.3977718238984401E-005 + 159.47999999999999 7.3873980932923840E-005 + 159.53999999999999 7.3789531112624211E-005 + 159.59999999999999 7.3719835292606543E-005 + 159.66000000000000 7.3660134279204397E-005 + 159.72000000000000 7.3605512590101317E-005 + 159.78000000000000 7.3550878507514875E-005 + 159.84000000000000 7.3491007027911664E-005 + 159.90000000000001 7.3420563535744096E-005 + 159.95999999999998 7.3334080138679465E-005 + 160.01999999999998 7.3226002177188138E-005 + 160.07999999999998 7.3090715385030572E-005 + 160.13999999999999 7.2922530210284563E-005 + 160.19999999999999 7.2715730970365723E-005 + 160.25999999999999 7.2464573661108853E-005 + 160.31999999999999 7.2163292859886942E-005 + 160.38000000000000 7.1806147294182300E-005 + 160.44000000000000 7.1387417003920326E-005 + 160.50000000000000 7.0901428861763625E-005 + 160.56000000000000 7.0342564843590519E-005 + 160.62000000000000 6.9705274659246746E-005 + 160.67999999999998 6.8984118832349358E-005 + 160.73999999999998 6.8173751861061487E-005 + 160.79999999999998 6.7268962368583797E-005 + 160.85999999999999 6.6264647970064257E-005 + 160.91999999999999 6.5155877127880021E-005 + 160.97999999999999 6.3937844369218961E-005 + 161.03999999999999 6.2605922899268280E-005 + 161.09999999999999 6.1155639129432571E-005 + 161.16000000000000 5.9582705744783780E-005 + 161.22000000000000 5.7883000327848894E-005 + 161.28000000000000 5.6052574267453589E-005 + 161.34000000000000 5.4087655547029379E-005 + 161.40000000000001 5.1984665208959391E-005 + 161.45999999999998 4.9740193998782413E-005 + 161.51999999999998 4.7351015920506410E-005 + 161.57999999999998 4.4814090627486196E-005 + 161.63999999999999 4.2126545376896675E-005 + 161.69999999999999 3.9285692333611408E-005 + 161.75999999999999 3.6289034671483001E-005 + 161.81999999999999 3.3134232842674190E-005 + 161.88000000000000 2.9819136923898086E-005 + 161.94000000000000 2.6341768161808458E-005 + 162.00000000000000 2.2700324943739362E-005 + 162.06000000000000 1.8893170316586260E-005 + 162.12000000000000 1.4918844236042509E-005 + 162.17999999999998 1.0776052952134088E-005 + 162.23999999999998 6.4636608857433908E-006 + 162.29999999999998 1.9806981092639814E-006 + 162.35999999999999 -2.6736420584086333E-006 + 162.41999999999999 -7.5000092771447832E-006 + 162.47999999999999 -1.2498894199908219E-005 + 162.53999999999999 -1.7670627168521132E-005 + 162.59999999999999 -2.3015383875736556E-005 + 162.66000000000000 -2.8533172506277119E-005 + 162.72000000000000 -3.4223838080504125E-005 + 162.78000000000000 -4.0087056683378048E-005 + 162.84000000000000 -4.6122326977372671E-005 + 162.90000000000001 -5.2328966613568068E-005 + 162.95999999999998 -5.8706104808920362E-005 + 163.01999999999998 -6.5252674010869108E-005 + 163.07999999999998 -7.1967405587022569E-005 + 163.13999999999999 -7.8848820282138331E-005 + 163.19999999999999 -8.5895206213186653E-005 + 163.25999999999999 -9.3104643527538381E-005 + 163.31999999999999 -1.0047496143686216E-004 + 163.38000000000000 -1.0800375105734308E-004 + 163.44000000000000 -1.1568833878193729E-004 + 163.50000000000000 -1.2352581042272443E-004 + 163.56000000000000 -1.3151296253487935E-004 + 163.62000000000000 -1.3964633289411958E-004 + 163.67999999999998 -1.4792215408555837E-004 + 163.73999999999998 -1.5633637278793315E-004 + 163.79999999999998 -1.6488464129770430E-004 + 163.85999999999999 -1.7356227643546134E-004 + 163.91999999999999 -1.8236429011279221E-004 + 163.97999999999999 -1.9128535810932737E-004 + 164.03999999999999 -2.0031982605482544E-004 + 164.09999999999999 -2.0946170960218033E-004 + 164.16000000000000 -2.1870462559227794E-004 + 164.22000000000000 -2.2804185606439359E-004 + 164.28000000000000 -2.3746632484535134E-004 + 164.34000000000000 -2.4697060318542349E-004 + 164.40000000000001 -2.5654686081659842E-004 + 164.45999999999998 -2.6618690640520438E-004 + 164.51999999999998 -2.7588220924816022E-004 + 164.57999999999998 -2.8562382378762870E-004 + 164.63999999999999 -2.9540246780602135E-004 + 164.69999999999999 -3.0520850225978981E-004 + 164.75999999999999 -3.1503185414352339E-004 + 164.81999999999999 -3.2486223159377246E-004 + 164.88000000000000 -3.3468888664852763E-004 + 164.94000000000000 -3.4450080418584435E-004 + 165.00000000000000 -3.5428663210496905E-004 + 165.06000000000000 -3.6403466213230065E-004 + 165.12000000000000 -3.7373290688657776E-004 + 165.17999999999998 -3.8336906186888902E-004 + 165.23999999999998 -3.9293060657672087E-004 + 165.29999999999998 -4.0240468035963363E-004 + 165.35999999999999 -4.1177822202657910E-004 + 165.41999999999999 -4.2103795617206923E-004 + 165.47999999999999 -4.3017037750454846E-004 + 165.53999999999999 -4.3916179270554712E-004 + 165.59999999999999 -4.4799840200758414E-004 + 165.66000000000000 -4.5666624270553053E-004 + 165.72000000000000 -4.6515126333628596E-004 + 165.78000000000000 -4.7343936067641753E-004 + 165.84000000000000 -4.8151634570779098E-004 + 165.90000000000001 -4.8936807084846361E-004 + 165.95999999999998 -4.9698035826094918E-004 + 166.01999999999998 -5.0433915181018597E-004 + 166.07999999999998 -5.1143044483081877E-004 + 166.13999999999999 -5.1824031081790115E-004 + 166.19999999999999 -5.2475503695610410E-004 + 166.25999999999999 -5.3096101162973758E-004 + 166.31999999999999 -5.3684490001882550E-004 + 166.38000000000000 -5.4239360725507821E-004 + 166.44000000000000 -5.4759418689515906E-004 + 166.50000000000000 -5.5243403619278074E-004 + 166.56000000000000 -5.5690098631099960E-004 + 166.62000000000000 -5.6098298775458908E-004 + 166.67999999999998 -5.6466846999996304E-004 + 166.73999999999998 -5.6794630222587589E-004 + 166.79999999999998 -5.7080561347763574E-004 + 166.85999999999999 -5.7323617110826837E-004 + 166.91999999999999 -5.7522808609821623E-004 + 166.97999999999999 -5.7677194502735304E-004 + 167.03999999999999 -5.7785896719125460E-004 + 167.09999999999999 -5.7848080675529248E-004 + 167.16000000000000 -5.7862973148569113E-004 + 167.22000000000000 -5.7829849584267485E-004 + 167.28000000000000 -5.7748058606147442E-004 + 167.34000000000000 -5.7617002134737665E-004 + 167.40000000000001 -5.7436147914791938E-004 + 167.45999999999998 -5.7205018634187439E-004 + 167.51999999999998 -5.6923208015476773E-004 + 167.57999999999998 -5.6590381689545697E-004 + 167.63999999999999 -5.6206257773226773E-004 + 167.69999999999999 -5.5770624992012479E-004 + 167.75999999999999 -5.5283351296186978E-004 + 167.81999999999999 -5.4744357598165234E-004 + 167.88000000000000 -5.4153637513377096E-004 + 167.94000000000000 -5.3511243074045396E-004 + 168.00000000000000 -5.2817297128337820E-004 + 168.06000000000000 -5.2071995106068409E-004 + 168.12000000000000 -5.1275595396100692E-004 + 168.17999999999998 -5.0428414356497580E-004 + 168.23999999999998 -4.9530851096414097E-004 + 168.29999999999998 -4.8583347040842534E-004 + 168.35999999999999 -4.7586423835542952E-004 + 168.41999999999999 -4.6540660654753450E-004 + 168.47999999999999 -4.5446699463253844E-004 + 168.53999999999999 -4.4305242842865772E-004 + 168.59999999999999 -4.3117053628311230E-004 + 168.66000000000000 -4.1882955850283660E-004 + 168.72000000000000 -4.0603833793807000E-004 + 168.78000000000000 -3.9280629151811281E-004 + 168.84000000000000 -3.7914339355248994E-004 + 168.90000000000001 -3.6506016223730584E-004 + 168.95999999999998 -3.5056765239223657E-004 + 169.01999999999998 -3.3567750272034180E-004 + 169.07999999999998 -3.2040177239493734E-004 + 169.13999999999999 -3.0475312641260451E-004 + 169.19999999999999 -2.8874460946518146E-004 + 169.25999999999999 -2.7238978911056080E-004 + 169.31999999999999 -2.5570273611835178E-004 + 169.38000000000000 -2.3869790288485643E-004 + 169.44000000000000 -2.2139010792107292E-004 + 169.50000000000000 -2.0379468835938884E-004 + 169.56000000000000 -1.8592731750316889E-004 + 169.62000000000000 -1.6780404289014943E-004 + 169.67999999999998 -1.4944123327612562E-004 + 169.73999999999998 -1.3085563370884482E-004 + 169.79999999999998 -1.1206428509507677E-004 + 169.85999999999999 -9.3084514030387081E-005 + 169.91999999999999 -7.3933929944719495E-005 + 169.97999999999999 -5.4630407283342411E-005 + 170.03999999999999 -3.5192059308444580E-005 + 170.09999999999999 -1.5637227108657367E-005 + 170.16000000000000 4.0155266620709300E-006 + 170.22000000000000 2.3747474329439531E-005 + 170.28000000000000 4.3539705725625200E-005 + 170.34000000000000 6.3373142935484715E-005 + 170.40000000000001 8.3228546206886168E-005 + 170.45999999999998 1.0308655127974421E-004 + 170.51999999999998 1.2292768277708644E-004 + 170.57999999999998 1.4273237383882235E-004 + 170.63999999999999 1.6248097479237237E-004 + 170.69999999999999 1.8215376279654292E-004 + 170.75999999999999 2.0173097349497293E-004 + 170.81999999999999 2.2119284314155022E-004 + 170.88000000000000 2.4051957203265249E-004 + 170.94000000000000 2.5969138338749703E-004 + 171.00000000000000 2.7868858343377772E-004 + 171.06000000000000 2.9749150454330957E-004 + 171.12000000000000 3.1608058985774251E-004 + 171.17999999999998 3.3443640522877585E-004 + 171.23999999999998 3.5253961118672289E-004 + 171.29999999999998 3.7037108522284336E-004 + 171.35999999999999 3.8791187157372515E-004 + 171.41999999999999 4.0514316532188634E-004 + 171.47999999999999 4.2204648722073807E-004 + 171.53999999999999 4.3860347402575390E-004 + 171.59999999999999 4.5479617070106248E-004 + 171.66000000000000 4.7060685420417130E-004 + 171.72000000000000 4.8601805389995276E-004 + 171.78000000000000 5.0101271625204065E-004 + 171.84000000000000 5.1557408720497944E-004 + 171.90000000000001 5.2968578601491104E-004 + 171.95999999999998 5.4333180935580696E-004 + 172.01999999999998 5.5649660504516021E-004 + 172.07999999999998 5.6916507817077687E-004 + 172.13999999999999 5.8132248434538216E-004 + 172.19999999999999 5.9295470110083573E-004 + 172.25999999999999 6.0404794611747270E-004 + 172.31999999999999 6.1458912490319751E-004 + 172.38000000000000 6.2456562225435221E-004 + 172.44000000000000 6.3396530497933856E-004 + 172.50000000000000 6.4277672570784154E-004 + 172.56000000000000 6.5098915420192720E-004 + 172.62000000000000 6.5859232526207958E-004 + 172.67999999999998 6.6557665101916812E-004 + 172.73999999999998 6.7193334503782166E-004 + 172.79999999999998 6.7765418794031075E-004 + 172.85999999999999 6.8273170366267512E-004 + 172.91999999999999 6.8715918851441026E-004 + 172.97999999999999 6.9093056005375486E-004 + 173.03999999999999 6.9404064224103611E-004 + 173.09999999999999 6.9648494882470254E-004 + 173.16000000000000 6.9825978244433264E-004 + 173.22000000000000 6.9936210527357537E-004 + 173.28000000000000 6.9978986281367644E-004 + 173.34000000000000 6.9954163493283550E-004 + 173.40000000000001 6.9861681489941910E-004 + 173.45999999999998 6.9701565905710278E-004 + 173.51999999999998 6.9473930444595130E-004 + 173.57999999999998 6.9178947498345301E-004 + 173.63999999999999 6.8816881696309772E-004 + 173.69999999999999 6.8388079281215847E-004 + 173.75999999999999 6.7892965065426093E-004 + 173.81999999999999 6.7332034211243250E-004 + 173.88000000000000 6.6705872669877103E-004 + 173.94000000000000 6.6015138577784000E-004 + 174.00000000000000 6.5260564997222058E-004 + 174.06000000000000 6.4442974038143570E-004 + 174.12000000000000 6.3563245231118537E-004 + 174.17999999999998 6.2622342943223280E-004 + 174.23999999999998 6.1621296904514815E-004 + 174.29999999999998 6.0561223603370392E-004 + 174.35999999999999 5.9443289523952898E-004 + 174.41999999999999 5.8268736407529793E-004 + 174.47999999999999 5.7038876877376059E-004 + 174.53999999999999 5.5755085239194780E-004 + 174.59999999999999 5.4418795809538093E-004 + 174.66000000000000 5.3031504081259956E-004 + 174.72000000000000 5.1594767122172935E-004 + 174.78000000000000 5.0110196674848248E-004 + 174.84000000000000 4.8579453450719383E-004 + 174.90000000000001 4.7004252062152657E-004 + 174.95999999999998 4.5386353936173387E-004 + 175.01999999999998 4.3727573719448779E-004 + 175.07999999999998 4.2029756253899421E-004 + 175.13999999999999 4.0294795282651150E-004 + 175.19999999999999 3.8524617746711805E-004 + 175.25999999999999 3.6721188320355905E-004 + 175.31999999999999 3.4886498861204298E-004 + 175.38000000000000 3.3022576101265612E-004 + 175.44000000000000 3.1131465569295824E-004 + 175.50000000000000 2.9215237451024530E-004 + 175.56000000000000 2.7275987527487029E-004 + 175.62000000000000 2.5315824278566372E-004 + 175.67999999999998 2.3336866345911728E-004 + 175.73999999999998 2.1341251239789065E-004 + 175.79999999999998 1.9331121850471326E-004 + 175.85999999999999 1.7308628475206525E-004 + 175.91999999999999 1.5275924950927162E-004 + 175.97999999999999 1.3235162108301440E-004 + 176.03999999999999 1.1188493524591785E-004 + 176.09999999999999 9.1380673529674236E-005 + 176.16000000000000 7.0860220908880607E-005 + 176.22000000000000 5.0344906219585427E-005 + 176.28000000000000 2.9855896476294049E-005 + 176.34000000000000 9.4142175164362271E-006 + 176.40000000000001 -1.0959264411967366E-005 + 176.45999999999998 -3.1243890603229279E-005 + 176.51999999999998 -5.1419230692953100E-005 + 176.57999999999998 -7.1465071221700488E-005 + 176.63999999999999 -9.1361497902650785E-005 + 176.69999999999999 -1.1108885897206399E-004 + 176.75999999999999 -1.3062782348845450E-004 + 176.81999999999999 -1.4995937305385063E-004 + 176.88000000000000 -1.6906484290691033E-004 + 176.94000000000000 -1.8792592543355778E-004 + 177.00000000000000 -2.0652468681162347E-004 + 177.06000000000000 -2.2484361078495637E-004 + 177.12000000000000 -2.4286555829948280E-004 + 177.17999999999998 -2.6057383967851530E-004 + 177.23999999999998 -2.7795220520884025E-004 + 177.29999999999998 -2.9498482539501707E-004 + 177.35999999999999 -3.1165638076397937E-004 + 177.41999999999999 -3.2795197578971942E-004 + 177.47999999999999 -3.4385728344329302E-004 + 177.53999999999999 -3.5935842986774806E-004 + 177.59999999999999 -3.7444200193896858E-004 + 177.66000000000000 -3.8909523648415648E-004 + 177.72000000000000 -4.0330581990491644E-004 + 177.78000000000000 -4.1706194945188781E-004 + 177.84000000000000 -4.3035243332934604E-004 + 177.90000000000001 -4.4316659951493942E-004 + 177.95999999999998 -4.5549437046301516E-004 + 178.01999999999998 -4.6732623864556978E-004 + 178.07999999999998 -4.7865321662524655E-004 + 178.13999999999999 -4.8946694390568282E-004 + 178.19999999999999 -4.9975964406601310E-004 + 178.25999999999999 -5.0952407593640237E-004 + 178.31999999999999 -5.1875368000852112E-004 + 178.38000000000000 -5.2744244079133337E-004 + 178.44000000000000 -5.3558500485223340E-004 + 178.50000000000000 -5.4317652323413628E-004 + 178.56000000000000 -5.5021288212134646E-004 + 178.62000000000000 -5.5669055538784713E-004 + 178.67999999999998 -5.6260664515237022E-004 + 178.73999999999998 -5.6795896894625420E-004 + 178.79999999999998 -5.7274582887480781E-004 + 178.85999999999999 -5.7696637164687120E-004 + 178.91999999999999 -5.8062027392509052E-004 + 178.97999999999999 -5.8370793669315245E-004 + 179.03999999999999 -5.8623029214368292E-004 + 179.09999999999999 -5.8818910842971521E-004 + 179.16000000000000 -5.8958674193502049E-004 + 179.22000000000000 -5.9042615230610882E-004 + 179.28000000000000 -5.9071109602990175E-004 + 179.34000000000000 -5.9044583669581483E-004 + 179.40000000000001 -5.8963541208923104E-004 + 179.45999999999998 -5.8828540971540941E-004 + 179.51999999999998 -5.8640215128601472E-004 + 179.57999999999998 -5.8399247701747660E-004 + 179.63999999999999 -5.8106397193864073E-004 + 179.69999999999999 -5.7762475364311124E-004 + 179.75999999999999 -5.7368361467878179E-004 + 179.81999999999999 -5.6924985868841212E-004 + 179.88000000000000 -5.6433351623208332E-004 + 179.94000000000000 -5.5894510774107586E-004 + 180.00000000000000 -5.5309579573231953E-004 + 180.06000000000000 -5.4679726416129941E-004 + 180.12000000000000 -5.4006172454663893E-004 + 180.17999999999998 -5.3290201428625168E-004 + 180.23999999999998 -5.2533136749993129E-004 + 180.29999999999998 -5.1736369673282569E-004 + 180.35999999999999 -5.0901336183912995E-004 + 180.41999999999999 -5.0029512986455964E-004 + 180.47999999999999 -4.9122423270628671E-004 + 180.53999999999999 -4.8181651145128539E-004 + 180.59999999999999 -4.7208793224097685E-004 + 180.66000000000000 -4.6205509220762099E-004 + 180.72000000000000 -4.5173477203641800E-004 + 180.78000000000000 -4.4114422145180885E-004 + 180.84000000000000 -4.3030091669604530E-004 + 180.90000000000001 -4.1922255938794907E-004 + 180.95999999999998 -4.0792716545507557E-004 + 181.01999999999998 -3.9643293229046569E-004 + 181.07999999999998 -3.8475820747554821E-004 + 181.13999999999999 -3.7292148926393586E-004 + 181.19999999999999 -3.6094134950229786E-004 + 181.25999999999999 -3.4883652497832637E-004 + 181.31999999999999 -3.3662564871836121E-004 + 181.38000000000000 -3.2432746615583975E-004 + 181.44000000000000 -3.1196061378095359E-004 + 181.50000000000000 -2.9954366197331491E-004 + 181.56000000000000 -2.8709509629651342E-004 + 181.62000000000000 -2.7463325038311505E-004 + 181.67999999999998 -2.6217625766399065E-004 + 181.73999999999998 -2.4974200491067566E-004 + 181.79999999999998 -2.3734820184505515E-004 + 181.85999999999999 -2.2501222331028657E-004 + 181.91999999999999 -2.1275107140952148E-004 + 181.97999999999999 -2.0058145980811413E-004 + 182.03999999999999 -1.8851965680900012E-004 + 182.09999999999999 -1.7658152993658421E-004 + 182.16000000000000 -1.6478245105890698E-004 + 182.22000000000000 -1.5313732516409771E-004 + 182.28000000000000 -1.4166050762965106E-004 + 182.34000000000000 -1.3036582742756916E-004 + 182.39999999999998 -1.1926649914167727E-004 + 182.45999999999998 -1.0837515538225272E-004 + 182.51999999999998 -9.7703765004123467E-005 + 182.57999999999998 -8.7263674516670391E-005 + 182.63999999999999 -7.7065505061650971E-005 + 182.69999999999999 -6.7119226641277271E-005 + 182.75999999999999 -5.7434045971122125E-005 + 182.81999999999999 -4.8018450831391709E-005 + 182.88000000000000 -3.8880185345671693E-005 + 182.94000000000000 -3.0026224586681751E-005 + 183.00000000000000 -2.1462758460859404E-005 + 183.06000000000000 -1.3195214371481830E-005 + 183.12000000000000 -5.2282202106402820E-006 + 183.17999999999998 2.4343700272837668E-006 + 183.23999999999998 9.7895023377036747E-006 + 183.29999999999998 1.6834899568268720E-005 + 183.35999999999999 2.3569068799531692E-005 + 183.41999999999999 2.9991289367437606E-005 + 183.47999999999999 3.6101606387894757E-005 + 183.53999999999999 4.1900808608863876E-005 + 183.59999999999999 4.7390429627697654E-005 + 183.66000000000000 5.2572723369855752E-005 + 183.72000000000000 5.7450649324109672E-005 + 183.78000000000000 6.2027851562217965E-005 + 183.84000000000000 6.6308642130962528E-005 + 183.89999999999998 7.0297967482103079E-005 + 183.95999999999998 7.4001403186024347E-005 + 184.01999999999998 7.7425120563730425E-005 + 184.07999999999998 8.0575858860952457E-005 + 184.13999999999999 8.3460886923803678E-005 + 184.19999999999999 8.6088002417460390E-005 + 184.25999999999999 8.8465459022245060E-005 + 184.31999999999999 9.0601978678821451E-005 + 184.38000000000000 9.2506699693286625E-005 + 184.44000000000000 9.4189135838500349E-005 + 184.50000000000000 9.5659145260595937E-005 + 184.56000000000000 9.6926897831964604E-005 + 184.62000000000000 9.8002843593266261E-005 + 184.67999999999998 9.8897665702847066E-005 + 184.73999999999998 9.9622246489092364E-005 + 184.79999999999998 1.0018764586419360E-004 + 184.85999999999999 1.0060502582943271E-004 + 184.91999999999999 1.0088565923639949E-004 + 184.97999999999999 1.0104086967421750E-004 + 185.03999999999999 1.0108198734033261E-004 + 185.09999999999999 1.0102032296554624E-004 + 185.16000000000000 1.0086714939484993E-004 + 185.22000000000000 1.0063364200471929E-004 + 185.28000000000000 1.0033086004388956E-004 + 185.34000000000000 9.9969697277688149E-005 + 185.39999999999998 9.9560873374396135E-005 + 185.45999999999998 9.9114880615666000E-005 + 185.51999999999998 9.8641976361460817E-005 + 185.57999999999998 9.8152140448119692E-005 + 185.63999999999999 9.7655039094881574E-005 + 185.69999999999999 9.7160012910022835E-005 + 185.75999999999999 9.6676059221405849E-005 + 185.81999999999999 9.6211780385715105E-005 + 185.88000000000000 9.5775394387550623E-005 + 185.94000000000000 9.5374701938318870E-005 + 186.00000000000000 9.5017069750526781E-005 + 186.06000000000000 9.4709419645078917E-005 + 186.12000000000000 9.4458211889212159E-005 + 186.17999999999998 9.4269447186774483E-005 + 186.23999999999998 9.4148647117527282E-005 + 186.29999999999998 9.4100849285828916E-005 + 186.35999999999999 9.4130596246131347E-005 + 186.41999999999999 9.4241961051364583E-005 + 186.47999999999999 9.4438514319547718E-005 + 186.53999999999999 9.4723336179779443E-005 + 186.59999999999999 9.5099018190406598E-005 + 186.66000000000000 9.5567646444038898E-005 + 186.72000000000000 9.6130822660168058E-005 + 186.78000000000000 9.6789665853211379E-005 + 186.84000000000000 9.7544808963595005E-005 + 186.89999999999998 9.8396398413935684E-005 + 186.95999999999998 9.9344100926673651E-005 + 187.01999999999998 1.0038710820788273E-004 + 187.07999999999998 1.0152414851923749E-004 + 187.13999999999999 1.0275348864151698E-004 + 187.19999999999999 1.0407295104215763E-004 + 187.25999999999999 1.0547991421883189E-004 + 187.31999999999999 1.0697134012349263E-004 + 187.38000000000000 1.0854378899810587E-004 + 187.44000000000000 1.1019341631623393E-004 + 187.50000000000000 1.1191601507796949E-004 + 187.56000000000000 1.1370701820724920E-004 + 187.62000000000000 1.1556153366443336E-004 + 187.67999999999998 1.1747436004154440E-004 + 187.73999999999998 1.1944001334968625E-004 + 187.79999999999998 1.2145272511356803E-004 + 187.85999999999999 1.2350651318002119E-004 + 187.91999999999999 1.2559516231597584E-004 + 187.97999999999999 1.2771223538288841E-004 + 188.03999999999999 1.2985114933771499E-004 + 188.09999999999999 1.3200514803220423E-004 + 188.16000000000000 1.3416731230812083E-004 + 188.22000000000000 1.3633062013576426E-004 + 188.28000000000000 1.3848793054043731E-004 + 188.34000000000000 1.4063202549660810E-004 + 188.39999999999998 1.4275559129569676E-004 + 188.45999999999998 1.4485124210283801E-004 + 188.51999999999998 1.4691158542311092E-004 + 188.57999999999998 1.4892916329448100E-004 + 188.63999999999999 1.5089650826224260E-004 + 188.69999999999999 1.5280615442441015E-004 + 188.75999999999999 1.5465066010417379E-004 + 188.81999999999999 1.5642262499338509E-004 + 188.88000000000000 1.5811467146388736E-004 + 188.94000000000000 1.5971950195012288E-004 + 189.00000000000000 1.6122992095439303E-004 + 189.06000000000000 1.6263882552188381E-004 + 189.12000000000000 1.6393923015140902E-004 + 189.17999999999998 1.6512428918947011E-004 + 189.23999999999998 1.6618732171677604E-004 + 189.29999999999998 1.6712179234957118E-004 + 189.35999999999999 1.6792137105592497E-004 + 189.41999999999999 1.6857992907147863E-004 + 189.47999999999999 1.6909152550504924E-004 + 189.53999999999999 1.6945043583418932E-004 + 189.59999999999999 1.6965118790998466E-004 + 189.66000000000000 1.6968854612932431E-004 + 189.72000000000000 1.6955749316453043E-004 + 189.78000000000000 1.6925326652260378E-004 + 189.84000000000000 1.6877136400394232E-004 + 189.89999999999998 1.6810753285067165E-004 + 189.95999999999998 1.6725777458049488E-004 + 190.01999999999998 1.6621832783859114E-004 + 190.07999999999998 1.6498571548710810E-004 + 190.13999999999999 1.6355668078964073E-004 + 190.19999999999999 1.6192824921173270E-004 + 190.25999999999999 1.6009767647370566E-004 + 190.31999999999999 1.5806248531963246E-004 + 190.38000000000000 1.5582041879249619E-004 + 190.44000000000000 1.5336949302590538E-004 + 190.50000000000000 1.5070795013973014E-004 + 190.56000000000000 1.4783429605663234E-004 + 190.62000000000000 1.4474724955020518E-004 + 190.67999999999998 1.4144579001819908E-004 + 190.73999999999998 1.3792914506962175E-004 + 190.79999999999998 1.3419677020813056E-004 + 190.85999999999999 1.3024836820490018E-004 + 190.91999999999999 1.2608387952525450E-004 + 190.97999999999999 1.2170347359250867E-004 + 191.03999999999999 1.1710756026455162E-004 + 191.09999999999999 1.1229677971791390E-004 + 191.16000000000000 1.0727198925569853E-004 + 191.22000000000000 1.0203428107860490E-004 + 191.28000000000000 9.6584937601628507E-005 + 191.34000000000000 9.0925448623948918E-005 + 191.39999999999998 8.5057499281776671E-005 + 191.45999999999998 7.8982961021705910E-005 + 191.51999999999998 7.2703869043336451E-005 + 191.57999999999998 6.6222429807400951E-005 + 191.63999999999999 5.9540996492930478E-005 + 191.69999999999999 5.2662059732851151E-005 + 191.75999999999999 4.5588243655366490E-005 + 191.81999999999999 3.8322296243886630E-005 + 191.88000000000000 3.0867082359792191E-005 + 191.94000000000000 2.3225580596897425E-005 + 192.00000000000000 1.5400875774566949E-005 + 192.06000000000000 7.3961603140910317E-006 + 192.12000000000000 -7.8526785775614515E-007 + 192.17999999999998 -9.1400059602844838E-006 + 192.23999999999998 -1.7664537953460704E-005 + 192.29999999999998 -2.6355244018175337E-005 + 192.35999999999999 -3.5208376614363630E-005 + 192.41999999999999 -4.4220075087966640E-005 + 192.47999999999999 -5.3386355412550546E-005 + 192.53999999999999 -6.2703093020983263E-005 + 192.59999999999999 -7.2166036664734237E-005 + 192.66000000000000 -8.1770791208569892E-005 + 192.72000000000000 -9.1512810542569939E-005 + 192.78000000000000 -1.0138741783905412E-004 + 192.84000000000000 -1.1138975902310683E-004 + 192.89999999999998 -1.2151481946131665E-004 + 192.95999999999998 -1.3175744930886071E-004 + 193.01999999999998 -1.4211231794526594E-004 + 193.07999999999998 -1.5257390262590995E-004 + 193.13999999999999 -1.6313652177411101E-004 + 193.19999999999999 -1.7379427159241250E-004 + 193.25999999999999 -1.8454111941777594E-004 + 193.31999999999999 -1.9537075844428109E-004 + 193.38000000000000 -2.0627670708750289E-004 + 193.44000000000000 -2.1725224081701233E-004 + 193.50000000000000 -2.2829042517691066E-004 + 193.56000000000000 -2.3938404197132259E-004 + 193.62000000000000 -2.5052563500572620E-004 + 193.67999999999998 -2.6170745237573498E-004 + 193.73999999999998 -2.7292151621485355E-004 + 193.79999999999998 -2.8415951140506871E-004 + 193.85999999999999 -2.9541281298098781E-004 + 193.91999999999999 -3.0667249090762805E-004 + 193.97999999999999 -3.1792929393644658E-004 + 194.03999999999999 -3.2917362532180555E-004 + 194.09999999999999 -3.4039556193160179E-004 + 194.16000000000000 -3.5158484036393426E-004 + 194.22000000000000 -3.6273084796748580E-004 + 194.28000000000000 -3.7382258923695827E-004 + 194.34000000000000 -3.8484875305126709E-004 + 194.39999999999998 -3.9579769675598589E-004 + 194.45999999999998 -4.0665736436683211E-004 + 194.51999999999998 -4.1741542328035394E-004 + 194.57999999999998 -4.2805917943806532E-004 + 194.63999999999999 -4.3857558387847055E-004 + 194.69999999999999 -4.4895132903312839E-004 + 194.75999999999999 -4.5917274574785663E-004 + 194.81999999999999 -4.6922594847580612E-004 + 194.88000000000000 -4.7909671346029489E-004 + 194.94000000000000 -4.8877057384739725E-004 + 195.00000000000000 -4.9823291312103433E-004 + 195.06000000000000 -5.0746881315106847E-004 + 195.12000000000000 -5.1646321712615765E-004 + 195.17999999999998 -5.2520090857823280E-004 + 195.23999999999998 -5.3366660313271242E-004 + 195.29999999999998 -5.4184478481557482E-004 + 195.35999999999999 -5.4972002883278844E-004 + 195.41999999999999 -5.5727678476056035E-004 + 195.47999999999999 -5.6449956865696764E-004 + 195.53999999999999 -5.7137287943553666E-004 + 195.59999999999999 -5.7788127327710649E-004 + 195.66000000000000 -5.8400957332602817E-004 + 195.72000000000000 -5.8974257184034090E-004 + 195.78000000000000 -5.9506532702858106E-004 + 195.84000000000000 -5.9996311117528763E-004 + 195.89999999999998 -6.0442153308107912E-004 + 195.95999999999998 -6.0842631925655838E-004 + 196.01999999999998 -6.1196381689278614E-004 + 196.07999999999998 -6.1502059206755501E-004 + 196.13999999999999 -6.1758367896085455E-004 + 196.19999999999999 -6.1964064343195179E-004 + 196.25999999999999 -6.2117954065847559E-004 + 196.31999999999999 -6.2218899799670153E-004 + 196.38000000000000 -6.2265830689032739E-004 + 196.44000000000000 -6.2257741665524787E-004 + 196.50000000000000 -6.2193688236440378E-004 + 196.56000000000000 -6.2072811896070530E-004 + 196.62000000000000 -6.1894320698293714E-004 + 196.67999999999998 -6.1657523348354658E-004 + 196.73999999999998 -6.1361795923178190E-004 + 196.79999999999998 -6.1006609481108502E-004 + 196.85999999999999 -6.0591535716151786E-004 + 196.91999999999999 -6.0116226419625800E-004 + 196.97999999999999 -5.9580446228070830E-004 + 197.03999999999999 -5.8984041377571855E-004 + 197.09999999999999 -5.8326973360863204E-004 + 197.16000000000000 -5.7609306801797652E-004 + 197.22000000000000 -5.6831200901590636E-004 + 197.28000000000000 -5.5992933195706484E-004 + 197.34000000000000 -5.5094873012742109E-004 + 197.39999999999998 -5.4137507866756397E-004 + 197.45999999999998 -5.3121426272865937E-004 + 197.51999999999998 -5.2047326532142892E-004 + 197.57999999999998 -5.0916010310069946E-004 + 197.63999999999999 -4.9728383230060013E-004 + 197.69999999999999 -4.8485457261229173E-004 + 197.75999999999999 -4.7188350131416751E-004 + 197.81999999999999 -4.5838273236678984E-004 + 197.88000000000000 -4.4436541211082041E-004 + 197.94000000000000 -4.2984563292456941E-004 + 198.00000000000000 -4.1483836978135875E-004 + 198.06000000000000 -3.9935961076582735E-004 + 198.12000000000000 -3.8342608962601090E-004 + 198.17999999999998 -3.6705546155499228E-004 + 198.23999999999998 -3.5026614745201589E-004 + 198.29999999999998 -3.3307727981504037E-004 + 198.35999999999999 -3.1550872223486413E-004 + 198.41999999999999 -2.9758097327824145E-004 + 198.47999999999999 -2.7931516809755902E-004 + 198.53999999999999 -2.6073296240679581E-004 + 198.59999999999999 -2.4185652193503405E-004 + 198.66000000000000 -2.2270845710863237E-004 + 198.72000000000000 -2.0331175065557239E-004 + 198.78000000000000 -1.8368969318384234E-004 + 198.84000000000000 -1.6386585527515288E-004 + 198.89999999999998 -1.4386398777729693E-004 + 198.95999999999998 -1.2370799564306680E-004 + 199.01999999999998 -1.0342184632252859E-004 + 199.07999999999998 -8.3029516910285741E-005 + 199.13999999999999 -6.2554923316861943E-005 + 199.19999999999999 -4.2021870402539123E-005 + 199.25999999999999 -2.1453980923506138E-005 + 199.31999999999999 -8.7465308666990876E-007 + 199.38000000000000 1.9693034087652639E-005 + 199.44000000000000 4.0226334731490360E-005 + 199.50000000000000 6.0702934527474390E-005 + 199.56000000000000 8.1100951520252272E-005 + 199.62000000000000 1.0139903183301898E-004 + 199.67999999999998 1.2157637729349463E-004 + 199.73999999999998 1.4161279560581856E-004 + 199.79999999999998 1.6148873326911125E-004 + 199.85999999999999 1.8118532072987860E-004 + 199.91999999999999 2.0068441190613118E-004 + 199.97999999999999 2.1996862233837343E-004 + 200.03999999999999 2.3902132829319066E-004 + 200.09999999999999 2.5782677316175354E-004 + 200.16000000000000 2.7636998983990811E-004 + 200.22000000000000 2.9463690422566079E-004 + 200.28000000000000 3.1261435273493735E-004 + 200.34000000000000 3.3029008023316019E-004 + 200.39999999999998 3.4765270244326956E-004 + 200.45999999999998 3.6469186338598249E-004 + 200.51999999999998 3.8139810370310282E-004 + 200.57999999999998 3.9776298390543772E-004 + 200.63999999999999 4.1377894197649486E-004 + 200.69999999999999 4.2943945052453466E-004 + 200.75999999999999 4.4473890922360198E-004 + 200.81999999999999 4.5967268330528697E-004 + 200.88000000000000 4.7423713290939504E-004 + 200.94000000000000 4.8842947543514901E-004 + 201.00000000000000 5.0224787854844834E-004 + 201.06000000000000 5.1569130796647272E-004 + 201.12000000000000 5.2875971431008445E-004 + 201.17999999999998 5.4145386946806407E-004 + 201.23999999999998 5.5377532808665881E-004 + 201.29999999999998 5.6572641158186864E-004 + 201.35999999999999 5.7731016789923210E-004 + 201.41999999999999 5.8853032553410844E-004 + 201.47999999999999 5.9939132866163752E-004 + 201.53999999999999 6.0989818330901878E-004 + 201.59999999999999 6.2005649266283231E-004 + 201.66000000000000 6.2987238206225430E-004 + 201.72000000000000 6.3935255258162796E-004 + 201.78000000000000 6.4850410458832958E-004 + 201.84000000000000 6.5733454074764542E-004 + 201.89999999999998 6.6585172742012345E-004 + 201.95999999999998 6.7406386474263484E-004 + 202.01999999999998 6.8197945637484805E-004 + 202.07999999999998 6.8960719259794374E-004 + 202.13999999999999 6.9695602171708330E-004 + 202.19999999999999 7.0403496217559384E-004 + 202.25999999999999 7.1085326716463081E-004 + 202.31999999999999 7.1742013080225171E-004 + 202.38000000000000 7.2374481646082908E-004 + 202.44000000000000 7.2983660851157347E-004 + 202.50000000000000 7.3570467304824897E-004 + 202.56000000000000 7.4135810178686454E-004 + 202.62000000000000 7.4680590308898198E-004 + 202.67999999999998 7.5205675182631428E-004 + 202.73999999999998 7.5711933821457147E-004 + 202.79999999999998 7.6200189517808509E-004 + 202.85999999999999 7.6671251725273632E-004 + 202.91999999999999 7.7125886313527574E-004 + 202.97999999999999 7.7564834295831765E-004 + 203.03999999999999 7.7988788510308712E-004 + 203.09999999999999 7.8398409060187620E-004 + 203.16000000000000 7.8794311391042627E-004 + 203.22000000000000 7.9177063756449286E-004 + 203.28000000000000 7.9547189557391197E-004 + 203.34000000000000 7.9905164227974139E-004 + 203.39999999999998 8.0251402059843425E-004 + 203.45999999999998 8.0586267244638164E-004 + 203.51999999999998 8.0910078087281410E-004 + 203.57999999999998 8.1223095579652021E-004 + 203.63999999999999 8.1525523015305815E-004 + 203.69999999999999 8.1817513144233649E-004 + 203.75999999999999 8.2099154101564068E-004 + 203.81999999999999 8.2370493415717867E-004 + 203.88000000000000 8.2631510573103427E-004 + 203.94000000000000 8.2882140903939598E-004 + 204.00000000000000 8.3122260205071403E-004 + 204.06000000000000 8.3351695080188207E-004 + 204.12000000000000 8.3570218755023306E-004 + 204.17999999999998 8.3777563463151663E-004 + 204.23999999999998 8.3973394191790614E-004 + 204.29999999999998 8.4157355120988457E-004 + 204.35999999999999 8.4329037361861186E-004 + 204.41999999999999 8.4487974659159073E-004 + 204.47999999999999 8.4633671035615676E-004 + 204.53999999999999 8.4765591067960595E-004 + 204.59999999999999 8.4883170326688676E-004 + 204.66000000000000 8.4985789401783218E-004 + 204.72000000000000 8.5072812421016898E-004 + 204.78000000000000 8.5143567461837765E-004 + 204.84000000000000 8.5197353989648452E-004 + 204.89999999999998 8.5233444224318538E-004 + 204.95999999999998 8.5251101253213627E-004 + 205.01999999999998 8.5249548745578124E-004 + 205.07999999999998 8.5228007938118432E-004 + 205.13999999999999 8.5185691703454499E-004 + 205.19999999999999 8.5121791941263807E-004 + 205.25999999999999 8.5035494316273400E-004 + 205.31999999999999 8.4925991858964011E-004 + 205.38000000000000 8.4792467120594326E-004 + 205.44000000000000 8.4634113981503728E-004 + 205.50000000000000 8.4450129781247704E-004 + 205.56000000000000 8.4239723559422321E-004 + 205.62000000000000 8.4002126921214144E-004 + 205.67999999999998 8.3736573237879787E-004 + 205.73999999999998 8.3442328279418839E-004 + 205.79999999999998 8.3118677872297839E-004 + 205.85999999999999 8.2764923942551204E-004 + 205.91999999999999 8.2380414967410062E-004 + 205.97999999999999 8.1964519105748594E-004 + 206.03999999999999 8.1516644961608295E-004 + 206.09999999999999 8.1036237042230212E-004 + 206.16000000000000 8.0522764320080722E-004 + 206.22000000000000 7.9975761790781650E-004 + 206.28000000000000 7.9394794187179316E-004 + 206.34000000000000 7.8779475832033272E-004 + 206.39999999999998 7.8129467080561709E-004 + 206.45999999999998 7.7444480874835691E-004 + 206.51999999999998 7.6724274366248013E-004 + 206.57999999999998 7.5968673384193826E-004 + 206.63999999999999 7.5177542234141574E-004 + 206.69999999999999 7.4350821589896910E-004 + 206.75999999999999 7.3488494851850028E-004 + 206.81999999999999 7.2590614283972053E-004 + 206.88000000000000 7.1657292566310222E-004 + 206.94000000000000 7.0688691782565748E-004 + 207.00000000000000 6.9685052160403638E-004 + 207.06000000000000 6.8646663543947203E-004 + 207.12000000000000 6.7573888911984735E-004 + 207.17999999999998 6.6467156604596339E-004 + 207.23999999999998 6.5326949263598338E-004 + 207.29999999999998 6.4153813442533716E-004 + 207.35999999999999 6.2948364489745501E-004 + 207.41999999999999 6.1711270289108828E-004 + 207.47999999999999 6.0443271199592231E-004 + 207.53999999999999 5.9145163783868822E-004 + 207.59999999999999 5.7817793487778481E-004 + 207.66000000000000 5.6462077458266033E-004 + 207.72000000000000 5.5078977415254100E-004 + 207.78000000000000 5.3669518004725598E-004 + 207.84000000000000 5.2234769578398484E-004 + 207.89999999999998 5.0775860217044055E-004 + 207.95999999999998 4.9293967885033843E-004 + 208.01999999999998 4.7790301177172629E-004 + 208.07999999999998 4.6266133116575536E-004 + 208.13999999999999 4.4722767810215724E-004 + 208.19999999999999 4.3161556198148158E-004 + 208.25999999999999 4.1583879755939355E-004 + 208.31999999999999 3.9991159056119134E-004 + 208.38000000000000 3.8384851043381409E-004 + 208.44000000000000 3.6766436228449946E-004 + 208.50000000000000 3.5137427681150221E-004 + 208.56000000000000 3.3499358038519786E-004 + 208.62000000000000 3.1853788172819418E-004 + 208.68000000000001 3.0202297828199387E-004 + 208.74000000000001 2.8546480676176522E-004 + 208.80000000000001 2.6887944352063100E-004 + 208.86000000000001 2.5228307436679501E-004 + 208.92000000000002 2.3569193354145405E-004 + 208.98000000000002 2.1912234895052097E-004 + 209.03999999999996 2.0259062222904484E-004 + 209.09999999999997 1.8611301869273731E-004 + 209.15999999999997 1.6970578211959243E-004 + 209.21999999999997 1.5338504703383567E-004 + 209.27999999999997 1.3716683388669264E-004 + 209.33999999999997 1.2106703056166890E-004 + 209.39999999999998 1.0510131791478145E-004 + 209.45999999999998 8.9285163996118792E-005 + 209.51999999999998 7.3633828233845430E-005 + 209.57999999999998 5.8162272718311343E-005 + 209.63999999999999 4.2885174156457830E-005 + 209.69999999999999 2.7816886938285605E-005 + 209.75999999999999 1.2971418015299917E-005 + 209.81999999999999 -1.6375828689362561E-006 + 209.88000000000000 -1.5996873544301856E-005 + 209.94000000000000 -3.0093613717403135E-005 + 210.00000000000000 -4.3915400461655402E-005 + 210.06000000000000 -5.7450286893078176E-005 + 210.12000000000000 -7.0686800243595761E-005 + 210.18000000000001 -8.3613946890499644E-005 + 210.24000000000001 -9.6221262115921157E-005 + 210.30000000000001 -1.0849879322759340E-004 + 210.36000000000001 -1.2043712911503974E-004 + 210.42000000000002 -1.3202742062266617E-004 + 210.48000000000002 -1.4326140331081050E-004 + 210.53999999999996 -1.5413138443787434E-004 + 210.59999999999997 -1.6463025862697674E-004 + 210.65999999999997 -1.7475153788153381E-004 + 210.71999999999997 -1.8448935805216236E-004 + 210.77999999999997 -1.9383844895862984E-004 + 210.83999999999997 -2.0279418522264886E-004 + 210.89999999999998 -2.1135257133854423E-004 + 210.95999999999998 -2.1951024587355534E-004 + 211.01999999999998 -2.2726445819829251E-004 + 211.07999999999998 -2.3461309894858281E-004 + 211.13999999999999 -2.4155468167287993E-004 + 211.19999999999999 -2.4808835356266535E-004 + 211.25999999999999 -2.5421384391173264E-004 + 211.31999999999999 -2.5993147194834643E-004 + 211.38000000000000 -2.6524221842779609E-004 + 211.44000000000000 -2.7014759661437931E-004 + 211.50000000000000 -2.7464969286391909E-004 + 211.56000000000000 -2.7875117494714909E-004 + 211.62000000000000 -2.8245530093393422E-004 + 211.68000000000001 -2.8576577766209731E-004 + 211.74000000000001 -2.8868691821191917E-004 + 211.80000000000001 -2.9122352728414762E-004 + 211.86000000000001 -2.9338086877323764E-004 + 211.92000000000002 -2.9516471998815047E-004 + 211.98000000000002 -2.9658131262818015E-004 + 212.03999999999996 -2.9763733595057309E-004 + 212.09999999999997 -2.9833989195973747E-004 + 212.15999999999997 -2.9869645639929356E-004 + 212.21999999999997 -2.9871497517861787E-004 + 212.27999999999997 -2.9840365400255554E-004 + 212.33999999999997 -2.9777110523570601E-004 + 212.39999999999998 -2.9682622050302478E-004 + 212.45999999999998 -2.9557817276361299E-004 + 212.51999999999998 -2.9403642081013794E-004 + 212.57999999999998 -2.9221064267625590E-004 + 212.63999999999999 -2.9011076668994146E-004 + 212.69999999999999 -2.8774691154095943E-004 + 212.75999999999999 -2.8512931310489738E-004 + 212.81999999999999 -2.8226836981986664E-004 + 212.88000000000000 -2.7917464075588236E-004 + 212.94000000000000 -2.7585870698802604E-004 + 213.00000000000000 -2.7233128703544978E-004 + 213.06000000000000 -2.6860314789522505E-004 + 213.12000000000000 -2.6468505421814106E-004 + 213.18000000000001 -2.6058779550068161E-004 + 213.24000000000001 -2.5632217592972686E-004 + 213.30000000000001 -2.5189900342667445E-004 + 213.36000000000001 -2.4732893229109236E-004 + 213.42000000000002 -2.4262268402798820E-004 + 213.48000000000002 -2.3779081854558649E-004 + 213.53999999999996 -2.3284380741864279E-004 + 213.59999999999997 -2.2779201634656705E-004 + 213.65999999999997 -2.2264569269052955E-004 + 213.71999999999997 -2.1741489278366698E-004 + 213.77999999999997 -2.1210955933947213E-004 + 213.83999999999997 -2.0673939796004887E-004 + 213.89999999999998 -2.0131395696310834E-004 + 213.95999999999998 -1.9584256125889068E-004 + 214.01999999999998 -1.9033429812746218E-004 + 214.07999999999998 -1.8479804406495545E-004 + 214.13999999999999 -1.7924240241204293E-004 + 214.19999999999999 -1.7367572420671779E-004 + 214.25999999999999 -1.6810609988866327E-004 + 214.31999999999999 -1.6254138334418443E-004 + 214.38000000000000 -1.5698909152598702E-004 + 214.44000000000000 -1.5145649253730452E-004 + 214.50000000000000 -1.4595055875312520E-004 + 214.56000000000000 -1.4047798061640656E-004 + 214.62000000000000 -1.3504515963424420E-004 + 214.68000000000001 -1.2965821719700295E-004 + 214.74000000000001 -1.2432296584106165E-004 + 214.80000000000001 -1.1904495299860005E-004 + 214.86000000000001 -1.1382945031680454E-004 + 214.92000000000002 -1.0868143744394326E-004 + 214.98000000000002 -1.0360561347767630E-004 + 215.03999999999996 -9.8606415023327253E-005 + 215.09999999999997 -9.3688015913014587E-005 + 215.15999999999997 -8.8854315393541226E-005 + 215.21999999999997 -8.4108974522113114E-005 + 215.27999999999997 -7.9455375964443691E-005 + 215.33999999999997 -7.4896670829340477E-005 + 215.39999999999998 -7.0435758487289360E-005 + 215.45999999999998 -6.6075305777061312E-005 + 215.51999999999998 -6.1817737384310412E-005 + 215.57999999999998 -5.7665253111471043E-005 + 215.63999999999999 -5.3619823909633264E-005 + 215.69999999999999 -4.9683213811504138E-005 + 215.75999999999999 -4.5856968501310687E-005 + 215.81999999999999 -4.2142429445651407E-005 + 215.88000000000000 -3.8540746004700336E-005 + 215.94000000000000 -3.5052876854973223E-005 + 216.00000000000000 -3.1679597431611668E-005 + 216.06000000000000 -2.8421515904723833E-005 + 216.12000000000000 -2.5279081714528207E-005 + 216.18000000000001 -2.2252593548644790E-005 + 216.24000000000001 -1.9342207995593309E-005 + 216.30000000000001 -1.6547949155062566E-005 + 216.36000000000001 -1.3869726287922670E-005 + 216.42000000000002 -1.1307333423613191E-005 + 216.48000000000002 -8.8604680165989168E-006 + 216.53999999999996 -6.5287316370186535E-006 + 216.59999999999997 -4.3116425009445459E-006 + 216.65999999999997 -2.2086416451612337E-006 + 216.71999999999997 -2.1909885649729265E-007 + 216.77999999999997 1.6576803017877004E-006 + 216.83999999999997 3.4224519575345142E-006 + 216.89999999999998 5.0760279535216895E-006 + 216.95999999999998 6.6192730442849651E-006 + 217.01999999999998 8.0531013392927794E-006 + 217.07999999999998 9.3784719619079798E-006 + 217.13999999999999 1.0596386420873186E-005 + 217.19999999999999 1.1707887021468468E-005 + 217.25999999999999 1.2714053291717821E-005 + 217.31999999999999 1.3615996356346523E-005 + 217.38000000000000 1.4414857378637562E-005 + 217.44000000000000 1.5111804019742309E-005 + 217.50000000000000 1.5708026449456123E-005 + 217.56000000000000 1.6204731532159947E-005 + 217.62000000000000 1.6603144001619477E-005 + 217.68000000000001 1.6904499740023373E-005 + 217.74000000000001 1.7110045968073620E-005 + 217.80000000000001 1.7221037938582014E-005 + 217.86000000000001 1.7238737860586649E-005 + 217.92000000000002 1.7164421686760441E-005 + 217.98000000000002 1.6999367846225591E-005 + 218.03999999999996 1.6744874174483097E-005 + 218.09999999999997 1.6402251828668470E-005 + 218.15999999999997 1.5972827542111462E-005 + 218.21999999999997 1.5457959214199963E-005 + 218.27999999999997 1.4859028729220786E-005 + 218.33999999999997 1.4177454051894566E-005 + 218.39999999999998 1.3414690974887937E-005 + 218.45999999999998 1.2572237666052365E-005 + 218.51999999999998 1.1651642065064704E-005 + 218.57999999999998 1.0654502371595190E-005 + 218.63999999999999 9.5824688616361029E-006 + 218.69999999999999 8.4372495987777482E-006 + 218.75999999999999 7.2206072553994308E-006 + 218.81999999999999 5.9343652605832627E-006 + 218.88000000000000 4.5804030737231178E-006 + 218.94000000000000 3.1606528647004160E-006 + 219.00000000000000 1.6771054796677784E-006 + 219.06000000000000 1.3180725318520979E-007 + 219.12000000000000 -1.4731409738292874E-006 + 219.18000000000001 -3.1355874102107841E-006 + 219.24000000000001 -4.8533268547806857E-006 + 219.30000000000001 -6.6241009881398312E-006 + 219.36000000000001 -8.4455993798310846E-006 + 219.42000000000002 -1.0315460893451634E-005 + 219.48000000000002 -1.2231267649843913E-005 + 219.53999999999996 -1.4190548474630408E-005 + 219.59999999999997 -1.6190782421746871E-005 + 219.65999999999997 -1.8229390180767271E-005 + 219.71999999999997 -2.0303742386800474E-005 + 219.77999999999997 -2.2411153825295586E-005 + 219.83999999999997 -2.4548889654524057E-005 + 219.89999999999998 -2.6714172440801559E-005 + 219.95999999999998 -2.8904172280464651E-005 + 220.01999999999998 -3.1116020450445229E-005 + 220.07999999999998 -3.3346813519834074E-005 + 220.13999999999999 -3.5593613069505158E-005 + 220.19999999999999 -3.7853463160932592E-005 + 220.25999999999999 -4.0123381096364808E-005 + 220.31999999999999 -4.2400375835472174E-005 + 220.38000000000000 -4.4681455743762324E-005 + 220.44000000000000 -4.6963627221722684E-005 + 220.50000000000000 -4.9243907958433118E-005 + 220.56000000000000 -5.1519331890359297E-005 + 220.62000000000000 -5.3786956516322992E-005 + 220.68000000000001 -5.6043863048282619E-005 + 220.74000000000001 -5.8287178111042448E-005 + 220.80000000000001 -6.0514062248565261E-005 + 220.86000000000001 -6.2721720270087522E-005 + 220.92000000000002 -6.4907420827444934E-005 + 220.98000000000002 -6.7068478488161489E-005 + 221.03999999999996 -6.9202278238210269E-005 + 221.09999999999997 -7.1306258878982797E-005 + 221.15999999999997 -7.3377946089803924E-005 + 221.21999999999997 -7.5414940032369037E-005 + 221.27999999999997 -7.7414912811662141E-005 + 221.33999999999997 -7.9375620828872758E-005 + 221.39999999999998 -8.1294921210858407E-005 + 221.45999999999998 -8.3170753344138202E-005 + 221.51999999999998 -8.5001170060591661E-005 + 221.57999999999998 -8.6784321017716073E-005 + 221.63999999999999 -8.8518458773424993E-005 + 221.69999999999999 -9.0201947925842122E-005 + 221.75999999999999 -9.1833272498749232E-005 + 221.81999999999999 -9.3411036696186336E-005 + 221.88000000000000 -9.4933973431783714E-005 + 221.94000000000000 -9.6400931976361467E-005 + 222.00000000000000 -9.7810898573404432E-005 + 222.06000000000000 -9.9162984817489789E-005 + 222.12000000000000 -1.0045643947644696E-004 + 222.18000000000001 -1.0169065125565793E-004 + 222.24000000000001 -1.0286513140431107E-004 + 222.30000000000001 -1.0397953712455557E-004 + 222.36000000000001 -1.0503365469779158E-004 + 222.42000000000002 -1.0602739937033016E-004 + 222.48000000000002 -1.0696082773264113E-004 + 222.53999999999996 -1.0783411535707311E-004 + 222.59999999999997 -1.0864755020907174E-004 + 222.65999999999997 -1.0940155357452458E-004 + 222.71999999999997 -1.1009665675341894E-004 + 222.77999999999997 -1.1073349136864916E-004 + 222.83999999999997 -1.1131280030438759E-004 + 222.89999999999998 -1.1183542334517669E-004 + 222.95999999999998 -1.1230230009768947E-004 + 223.01999999999998 -1.1271445483464042E-004 + 223.07999999999998 -1.1307301017288843E-004 + 223.13999999999999 -1.1337916656289462E-004 + 223.19999999999999 -1.1363421703536404E-004 + 223.25999999999999 -1.1383952068965743E-004 + 223.31999999999999 -1.1399653138517981E-004 + 223.38000000000000 -1.1410677586053201E-004 + 223.44000000000000 -1.1417184730115943E-004 + 223.50000000000000 -1.1419341492571503E-004 + 223.56000000000000 -1.1417321839748587E-004 + 223.62000000000000 -1.1411305939292105E-004 + 223.68000000000001 -1.1401480538975463E-004 + 223.74000000000001 -1.1388035650560305E-004 + 223.80000000000001 -1.1371168230396244E-004 + 223.86000000000001 -1.1351077419290137E-004 + 223.92000000000002 -1.1327966981905516E-004 + 223.98000000000002 -1.1302039842317886E-004 + 224.03999999999996 -1.1273501299841415E-004 + 224.09999999999997 -1.1242558272595775E-004 + 224.15999999999997 -1.1209414126699218E-004 + 224.21999999999997 -1.1174272355386174E-004 + 224.27999999999997 -1.1137332586898157E-004 + 224.33999999999997 -1.1098790746085902E-004 + 224.39999999999998 -1.1058839697963615E-004 + 224.45999999999998 -1.1017666835566723E-004 + 224.51999999999998 -1.0975454724889510E-004 + 224.57999999999998 -1.0932379585804289E-004 + 224.63999999999999 -1.0888610527472749E-004 + 224.69999999999999 -1.0844311358755752E-004 + 224.75999999999999 -1.0799639584580725E-004 + 224.81999999999999 -1.0754744456305708E-004 + 224.88000000000000 -1.0709768832280825E-004 + 224.94000000000000 -1.0664847650526839E-004 + 225.00000000000000 -1.0620106561152681E-004 + 225.06000000000000 -1.0575665891489282E-004 + 225.12000000000000 -1.0531635770222749E-004 + 225.18000000000001 -1.0488117772313389E-004 + 225.24000000000001 -1.0445203220405170E-004 + 225.30000000000001 -1.0402973733271908E-004 + 225.36000000000001 -1.0361500788971508E-004 + 225.42000000000002 -1.0320845899545309E-004 + 225.48000000000002 -1.0281059156538485E-004 + 225.53999999999996 -1.0242177528734580E-004 + 225.59999999999997 -1.0204229292891524E-004 + 225.65999999999997 -1.0167228303526176E-004 + 225.71999999999997 -1.0131177934100160E-004 + 225.77999999999997 -1.0096068541567244E-004 + 225.83999999999997 -1.0061880095085038E-004 + 225.89999999999998 -1.0028580017794412E-004 + 225.95999999999998 -9.9961237672185834E-005 + 226.01999999999998 -9.9644566833408021E-005 + 226.07999999999998 -9.9335141828605701E-005 + 226.13999999999999 -9.9032193724003469E-005 + 226.19999999999999 -9.8734857209496413E-005 + 226.25999999999999 -9.8442177405127010E-005 + 226.31999999999999 -9.8153106836639193E-005 + 226.38000000000000 -9.7866504253225426E-005 + 226.44000000000000 -9.7581153055137384E-005 + 226.50000000000000 -9.7295756492238287E-005 + 226.56000000000000 -9.7008939591118523E-005 + 226.62000000000000 -9.6719271769985510E-005 + 226.68000000000001 -9.6425258225832101E-005 + 226.74000000000001 -9.6125339690564216E-005 + 226.80000000000001 -9.5817916467366997E-005 + 226.86000000000001 -9.5501354054959402E-005 + 226.92000000000002 -9.5173973504448568E-005 + 226.98000000000002 -9.4834078214173901E-005 + 227.03999999999996 -9.4479949974425554E-005 + 227.09999999999997 -9.4109862229140696E-005 + 227.15999999999997 -9.3722085241968413E-005 + 227.21999999999997 -9.3314900034442193E-005 + 227.27999999999997 -9.2886597638475442E-005 + 227.33999999999997 -9.2435518848511266E-005 + 227.39999999999998 -9.1960001632501704E-005 + 227.45999999999998 -9.1458444274003414E-005 + 227.51999999999998 -9.0929303094585179E-005 + 227.57999999999998 -9.0371076047169368E-005 + 227.63999999999999 -8.9782334668076064E-005 + 227.69999999999999 -8.9161722870117167E-005 + 227.75999999999999 -8.8507959518036977E-005 + 227.81999999999999 -8.7819861725160569E-005 + 227.88000000000000 -8.7096323699468496E-005 + 227.94000000000000 -8.6336368101344742E-005 + 228.00000000000000 -8.5539108188855263E-005 + 228.06000000000000 -8.4703779781010452E-005 + 228.12000000000000 -8.3829732428315101E-005 + 228.18000000000001 -8.2916450504129014E-005 + 228.24000000000001 -8.1963548078943274E-005 + 228.30000000000001 -8.0970767386289786E-005 + 228.36000000000001 -7.9937995185727626E-005 + 228.42000000000002 -7.8865246634926062E-005 + 228.48000000000002 -7.7752696887435044E-005 + 228.53999999999996 -7.6600638562084644E-005 + 228.59999999999997 -7.5409525494415935E-005 + 228.65999999999997 -7.4179933442442613E-005 + 228.71999999999997 -7.2912595256400793E-005 + 228.77999999999997 -7.1608354138169388E-005 + 228.83999999999997 -7.0268196828311366E-005 + 228.89999999999998 -6.8893239652966992E-005 + 228.95999999999998 -6.7484712748204810E-005 + 229.01999999999998 -6.6043978264380572E-005 + 229.07999999999998 -6.4572500345454648E-005 + 229.13999999999999 -6.3071860674906554E-005 + 229.19999999999999 -6.1543740489817904E-005 + 229.25999999999999 -5.9989930293451158E-005 + 229.31999999999999 -5.8412305929022420E-005 + 229.38000000000000 -5.6812839851652386E-005 + 229.44000000000000 -5.5193586858723338E-005 + 229.50000000000000 -5.3556677105075757E-005 + 229.56000000000000 -5.1904307505634742E-005 + 229.62000000000000 -5.0238747305791660E-005 + 229.68000000000001 -4.8562310512316489E-005 + 229.74000000000001 -4.6877365648196425E-005 + 229.80000000000001 -4.5186319309145318E-005 + 229.86000000000001 -4.3491608435287329E-005 + 229.92000000000002 -4.1795685579760933E-005 + 229.97999999999996 -4.0101025818240213E-005 + 230.03999999999996 -3.8410099327613978E-005 + 230.09999999999997 -3.6725379739984552E-005 + 230.15999999999997 -3.5049322756566153E-005 + 230.21999999999997 -3.3384374824461526E-005 + 230.27999999999997 -3.1732938820637571E-005 + 230.33999999999997 -3.0097393998518269E-005 + 230.39999999999998 -2.8480070607706404E-005 + 230.45999999999998 -2.6883251665376520E-005 + 230.51999999999998 -2.5309161856620925E-005 + 230.57999999999998 -2.3759962355465578E-005 + 230.63999999999999 -2.2237743005720576E-005 + 230.69999999999999 -2.0744517111161755E-005 + 230.75999999999999 -1.9282207035777326E-005 + 230.81999999999999 -1.7852649839867692E-005 + 230.88000000000000 -1.6457582823997599E-005 + 230.94000000000000 -1.5098640067070912E-005 + 231.00000000000000 -1.3777348052644206E-005 + 231.06000000000000 -1.2495119042484408E-005 + 231.12000000000000 -1.1253250639527220E-005 + 231.18000000000001 -1.0052919677168911E-005 + 231.24000000000001 -8.8951849447557147E-006 + 231.30000000000001 -7.7809829077625936E-006 + 231.36000000000001 -6.7111296384058357E-006 + 231.42000000000002 -5.6863233204851762E-006 + 231.47999999999996 -4.7071450539664316E-006 + 231.53999999999996 -3.7740612418902082E-006 + 231.59999999999997 -2.8874282301552762E-006 + 231.65999999999997 -2.0474950541889429E-006 + 231.71999999999997 -1.2544055405664520E-006 + 231.77999999999997 -5.0820326716691902E-007 + 231.83999999999997 1.9116747913766006E-007 + 231.89999999999998 8.4385831842135471E-007 + 231.95999999999998 1.4501163689272344E-006 + 232.01999999999998 2.0102825178669971E-006 + 232.07999999999998 2.5247903460159821E-006 + 232.13999999999999 2.9941671252449129E-006 + 232.19999999999999 3.4190327363951273E-006 + 232.25999999999999 3.8000996657369828E-006 + 232.31999999999999 4.1381738845581364E-006 + 232.38000000000000 4.4341524508390614E-006 + 232.44000000000000 4.6890226576970148E-006 + 232.50000000000000 4.9038611558408890E-006 + 232.56000000000000 5.0798292128812985E-006 + 232.62000000000000 5.2181706377355435E-006 + 232.68000000000001 5.3202075006306397E-006 + 232.74000000000001 5.3873337864444395E-006 + 232.80000000000001 5.4210107466689172E-006 + 232.86000000000001 5.4227609306361026E-006 + 232.92000000000002 5.3941624619891507E-006 + 232.97999999999996 5.3368418679802888E-006 + 233.03999999999996 5.2524693618435112E-006 + 233.09999999999997 5.1427534052570834E-006 + 233.15999999999997 5.0094357545202728E-006 + 233.21999999999997 4.8542859215985858E-006 + 233.27999999999997 4.6790982320381277E-006 + 233.33999999999997 4.4856897601570850E-006 + 233.39999999999998 4.2758954556269807E-006 + 233.45999999999998 4.0515670133874295E-006 + 233.51999999999998 3.8145689036370105E-006 + 233.57999999999998 3.5667788466844433E-006 + 233.63999999999999 3.3100829646557842E-006 + 233.69999999999999 3.0463763149741747E-006 + 233.75999999999999 2.7775571615897283E-006 + 233.81999999999999 2.5055248795775881E-006 + 233.88000000000000 2.2321780865448564E-006 + 233.94000000000000 1.9594092066135466E-006 + 234.00000000000000 1.6891010460726700E-006 + 234.06000000000000 1.4231228362342959E-006 + 234.12000000000000 1.1633252657668253E-006 + 234.18000000000001 9.1153586309074396E-007 + 234.24000000000001 6.6955512906118064E-007 + 234.30000000000001 4.3915162167923288E-007 + 234.36000000000001 2.2205719023773599E-007 + 234.42000000000002 1.9963182160540778E-008 + 234.47999999999996 -1.6548280882755198E-007 + 234.53999999999996 -3.3268194514848593E-007 + 234.59999999999997 -4.8008648544336570E-007 + 234.65999999999997 -6.0620410157338801E-007 + 234.71999999999997 -7.0960095352690290E-007 + 234.77999999999997 -7.8890328894647635E-007 + 234.83999999999997 -8.4280232645604823E-007 + 234.89999999999998 -8.7005567139143125E-007 + 234.95999999999998 -8.6949057422657983E-007 + 235.01999999999998 -8.4000589004593437E-007 + 235.07999999999998 -7.8057466346636118E-007 + 235.13999999999999 -6.9024589923702494E-007 + 235.19999999999999 -5.6814650056066511E-007 + 235.25999999999999 -4.1348301362300358E-007 + 235.31999999999999 -2.2554249884117212E-007 + 235.38000000000000 -3.6942151596334627E-009 + 235.44000000000000 2.5261020249159280E-007 + 235.50000000000000 5.4383520690440694E-007 + 235.56000000000000 8.7036224891656908E-007 + 235.62000000000000 1.2324887529445420E-006 + 235.68000000000001 1.6304263141635530E-006 + 235.74000000000001 2.0643036667655851E-006 + 235.80000000000001 2.5341638638390489E-006 + 235.86000000000001 3.0399649304662761E-006 + 235.92000000000002 3.5815789291467619E-006 + 235.97999999999996 4.1587939507471713E-006 + 236.03999999999996 4.7713108991535495E-006 + 236.09999999999997 5.4187470415172180E-006 + 236.15999999999997 6.1006348344249925E-006 + 236.21999999999997 6.8164229853535045E-006 + 236.27999999999997 7.5654786069805757E-006 + 236.33999999999997 8.3470911104886790E-006 + 236.39999999999998 9.1604693889976110E-006 + 236.45999999999998 1.0004753948923783E-005 + 236.51999999999998 1.0879012957828846E-005 + 236.57999999999998 1.1782255603738806E-005 + 236.63999999999999 1.2713428259991435E-005 + 236.69999999999999 1.3671427665940371E-005 + 236.75999999999999 1.4655103333273400E-005 + 236.81999999999999 1.5663265607045573E-005 + 236.88000000000000 1.6694688789813044E-005 + 236.94000000000000 1.7748117670180556E-005 + 237.00000000000000 1.8822271093344788E-005 + 237.06000000000000 1.9915850680460039E-005 + 237.12000000000000 2.1027538463381709E-005 + 237.18000000000001 2.2156004095501698E-005 + 237.24000000000001 2.3299901544925714E-005 + 237.30000000000001 2.4457879399069752E-005 + 237.36000000000001 2.5628570252128866E-005 + 237.42000000000002 2.6810608720606428E-005 + 237.47999999999996 2.8002612681251054E-005 + 237.53999999999996 2.9203197013883006E-005 + 237.59999999999997 3.0410970645352497E-005 + 237.65999999999997 3.1624539522611904E-005 + 237.71999999999997 3.2842504907601536E-005 + 237.77999999999997 3.4063474994026217E-005 + 237.83999999999997 3.5286053114579081E-005 + 237.89999999999998 3.6508847898769903E-005 + 237.95999999999998 3.7730481604713804E-005 + 238.01999999999998 3.8949584991444509E-005 + 238.07999999999998 4.0164800456678483E-005 + 238.13999999999999 4.1374784969654348E-005 + 238.19999999999999 4.2578213941750273E-005 + 238.25999999999999 4.3773784717283709E-005 + 238.31999999999999 4.4960213963252806E-005 + 238.38000000000000 4.6136240432361270E-005 + 238.44000000000000 4.7300623039202483E-005 + 238.50000000000000 4.8452137416885172E-005 + 238.56000000000000 4.9589585980859704E-005 + 238.62000000000000 5.0711781543578257E-005 + 238.68000000000001 5.1817561964481550E-005 + 238.74000000000001 5.2905776910533786E-005 + 238.80000000000001 5.3975293074715379E-005 + 238.86000000000001 5.5024991489355062E-005 + 238.92000000000002 5.6053772030132945E-005 + 238.97999999999996 5.7060547707501666E-005 + 239.03999999999996 5.8044247621175756E-005 + 239.09999999999997 5.9003824204260015E-005 + 239.15999999999997 5.9938245118641897E-005 + 239.21999999999997 6.0846495214722033E-005 + 239.27999999999997 6.1727585475836893E-005 + 239.33999999999997 6.2580548267636302E-005 + 239.39999999999998 6.3404431081291721E-005 + 239.45999999999998 6.4198319237735420E-005 + 239.51999999999998 6.4961320047682438E-005 + 239.57999999999998 6.5692560489350902E-005 + 239.63999999999999 6.6391190388655235E-005 + 239.69999999999999 6.7056388450895016E-005 + 239.75999999999999 6.7687353179607160E-005 + 239.81999999999999 6.8283322883691501E-005 + 239.88000000000000 6.8843543049284812E-005 + 239.94000000000000 6.9367291734733012E-005 + 240.00000000000000 6.9853878013193479E-005 + 240.06000000000000 7.0302637229009013E-005 + 240.12000000000000 7.0712943661275365E-005 + 240.18000000000001 7.1084202475325866E-005 + 240.24000000000001 7.1415845877993971E-005 + 240.30000000000001 7.1707360447828035E-005 + 240.36000000000001 7.1958269365447175E-005 + 240.42000000000002 7.2168148095244392E-005 + 240.47999999999996 7.2336605000542008E-005 + 240.53999999999996 7.2463327716908448E-005 + 240.59999999999997 7.2548044628224914E-005 + 240.65999999999997 7.2590545400755206E-005 + 240.71999999999997 7.2590682021402917E-005 + 240.77999999999997 7.2548375634606045E-005 + 240.83999999999997 7.2463599202870075E-005 + 240.89999999999998 7.2336399180470735E-005 + 240.95999999999998 7.2166882231446561E-005 + 241.01999999999998 7.1955221119960556E-005 + 241.07999999999998 7.1701668280011471E-005 + 241.13999999999999 7.1406528516734325E-005 + 241.19999999999999 7.1070179443616727E-005 + 241.25999999999999 7.0693069278171262E-005 + 241.31999999999999 7.0275705601278537E-005 + 241.38000000000000 6.9818664621753616E-005 + 241.44000000000000 6.9322594380272904E-005 + 241.50000000000000 6.8788198666509058E-005 + 241.56000000000000 6.8216261052748454E-005 + 241.62000000000000 6.7607613490916398E-005 + 241.68000000000001 6.6963148860104001E-005 + 241.74000000000001 6.6283830662327092E-005 + 241.80000000000001 6.5570657060918028E-005 + 241.86000000000001 6.4824694718858776E-005 + 241.92000000000002 6.4047048441031682E-005 + 241.97999999999996 6.3238864344854296E-005 + 242.03999999999996 6.2401339962615379E-005 + 242.09999999999997 6.1535700313361934E-005 + 242.15999999999997 6.0643190733572743E-005 + 242.21999999999997 5.9725104661268308E-005 + 242.27999999999997 5.8782742013476596E-005 + 242.33999999999997 5.7817422838697682E-005 + 242.39999999999998 5.6830495351967198E-005 + 242.45999999999998 5.5823301094268107E-005 + 242.51999999999998 5.4797211576819003E-005 + 242.57999999999998 5.3753590718437461E-005 + 242.63999999999999 5.2693816186097832E-005 + 242.69999999999999 5.1619255737159058E-005 + 242.75999999999999 5.0531285683235099E-005 + 242.81999999999999 4.9431264603427854E-005 + 242.88000000000000 4.8320545751967535E-005 + 242.94000000000000 4.7200467856163047E-005 + 243.00000000000000 4.6072344847231698E-005 + 243.06000000000000 4.4937474242879722E-005 + 243.12000000000000 4.3797121624490279E-005 + 243.18000000000001 4.2652521935692234E-005 + 243.24000000000001 4.1504875105662428E-005 + 243.30000000000001 4.0355345918142244E-005 + 243.36000000000001 3.9205048501919069E-005 + 243.42000000000002 3.8055062929747758E-005 + 243.47999999999996 3.6906422020875279E-005 + 243.53999999999996 3.5760106785238383E-005 + 243.59999999999997 3.4617060062108455E-005 + 243.65999999999997 3.3478172156952058E-005 + 243.71999999999997 3.2344288008517989E-005 + 243.77999999999997 3.1216209179837393E-005 + 243.83999999999997 3.0094685984928689E-005 + 243.89999999999998 2.8980437271190431E-005 + 243.95999999999998 2.7874128803090848E-005 + 244.01999999999998 2.6776386434312734E-005 + 244.07999999999998 2.5687791856136061E-005 + 244.13999999999999 2.4608888035092143E-005 + 244.19999999999999 2.3540172413273476E-005 + 244.25999999999999 2.2482110429171848E-005 + 244.31999999999999 2.1435117092438817E-005 + 244.38000000000000 2.0399575595902602E-005 + 244.44000000000000 1.9375830167181055E-005 + 244.50000000000000 1.8364188700649689E-005 + 244.56000000000000 1.7364922772837588E-005 + 244.62000000000000 1.6378273603148951E-005 + 244.68000000000001 1.5404453997526768E-005 + 244.74000000000001 1.4443647984111667E-005 + 244.80000000000001 1.3496016505713968E-005 + 244.86000000000001 1.2561703880347702E-005 + 244.92000000000002 1.1640833349812863E-005 + 244.97999999999996 1.0733516297041200E-005 + 245.03999999999996 9.8398510443340870E-006 + 245.09999999999997 8.9599281403591602E-006 + 245.15999999999997 8.0938262293545211E-006 + 245.21999999999997 7.2416216629063018E-006 + 245.27999999999997 6.4033820372454358E-006 + 245.33999999999997 5.5791687781369152E-006 + 245.39999999999998 4.7690396509686474E-006 + 245.45999999999998 3.9730450111642691E-006 + 245.51999999999998 3.1912283340877311E-006 + 245.57999999999998 2.4236292227249271E-006 + 245.63999999999999 1.6702793987446391E-006 + 245.69999999999999 9.3120546752631462E-007 + 245.75999999999999 2.0642977888954624E-007 + 245.81999999999999 -5.0402996108793442E-007 + 245.88000000000000 -1.2001584628171838E-006 + 245.94000000000000 -1.8819423329188592E-006 + 246.00000000000000 -2.5493677294581422E-006 + 246.06000000000000 -3.2024214045621048E-006 + 246.12000000000000 -3.8410861340996164E-006 + 246.18000000000001 -4.4653447110915875E-006 + 246.24000000000001 -5.0751768794455611E-006 + 246.30000000000001 -5.6705595264913912E-006 + 246.36000000000001 -6.2514701497628085E-006 + 246.42000000000002 -6.8178862335220255E-006 + 246.47999999999996 -7.3697886915557365E-006 + 246.53999999999996 -7.9071648636127593E-006 + 246.59999999999997 -8.4300079122534353E-006 + 246.65999999999997 -8.9383220692280712E-006 + 246.71999999999997 -9.4321262475933312E-006 + 246.77999999999997 -9.9114527220375830E-006 + 246.83999999999997 -1.0376353386342269E-005 + 246.89999999999998 -1.0826897600370427E-005 + 246.95999999999998 -1.1263173261764172E-005 + 247.01999999999998 -1.1685289307457039E-005 + 247.07999999999998 -1.2093373726089637E-005 + 247.13999999999999 -1.2487573684327500E-005 + 247.19999999999999 -1.2868053196002109E-005 + 247.25999999999999 -1.3234994716585199E-005 + 247.31999999999999 -1.3588596042882257E-005 + 247.38000000000000 -1.3929068816376525E-005 + 247.44000000000000 -1.4256638328175979E-005 + 247.50000000000000 -1.4571544230523609E-005 + 247.56000000000000 -1.4874036513110725E-005 + 247.62000000000000 -1.5164381881813114E-005 + 247.68000000000001 -1.5442857308638812E-005 + 247.74000000000001 -1.5709753324403324E-005 + 247.80000000000001 -1.5965376721597162E-005 + 247.86000000000001 -1.6210049449271584E-005 + 247.92000000000002 -1.6444111344983835E-005 + 247.97999999999996 -1.6667918724731191E-005 + 248.03999999999996 -1.6881844992788014E-005 + 248.09999999999997 -1.7086282735241614E-005 + 248.15999999999997 -1.7281643866801976E-005 + 248.21999999999997 -1.7468353143699389E-005 + 248.27999999999997 -1.7646855139155139E-005 + 248.33999999999997 -1.7817607848296808E-005 + 248.39999999999998 -1.7981084223149548E-005 + 248.45999999999998 -1.8137766263416579E-005 + 248.51999999999998 -1.8288143362268405E-005 + 248.57999999999998 -1.8432716188139802E-005 + 248.63999999999999 -1.8571985783588350E-005 + 248.69999999999999 -1.8706453453873527E-005 + 248.75999999999999 -1.8836621969243548E-005 + 248.81999999999999 -1.8962984735855290E-005 + 248.88000000000000 -1.9086031210880244E-005 + 248.94000000000000 -1.9206240342340487E-005 + 249.00000000000000 -1.9324077599642871E-005 + 249.06000000000000 -1.9439994102797999E-005 + 249.12000000000000 -1.9554423806616743E-005 + 249.18000000000001 -1.9667777997448667E-005 + 249.24000000000001 -1.9780449987348680E-005 + 249.30000000000001 -1.9892806086904696E-005 + 249.36000000000001 -2.0005189770723488E-005 + 249.42000000000002 -2.0117916343219657E-005 + 249.47999999999996 -2.0231276812441489E-005 + 249.53999999999996 -2.0345536521709970E-005 + 249.59999999999997 -2.0460929228923348E-005 + 249.65999999999997 -2.0577668909858974E-005 + 249.71999999999997 -2.0695942580135279E-005 + 249.77999999999997 -2.0815914373802626E-005 + 249.83999999999997 -2.0937725719122732E-005 + 249.89999999999998 -2.1061501758666954E-005 + 249.95999999999998 -2.1187343164124533E-005 + 250.01999999999998 -2.1315335885599843E-005 + 250.07999999999998 -2.1445545438917555E-005 + 250.13999999999999 -2.1578021376457342E-005 + 250.19999999999999 -2.1712792433616889E-005 + 250.25999999999999 -2.1849863628287489E-005 + 250.31999999999999 -2.1989224363071462E-005 + 250.38000000000000 -2.2130832974492059E-005 + 250.44000000000000 -2.2274625301905660E-005 + 250.50000000000000 -2.2420504986862153E-005 + 250.56000000000000 -2.2568344381027555E-005 + 250.62000000000000 -2.2717985845449596E-005 + 250.68000000000001 -2.2869233296391087E-005 + 250.74000000000001 -2.3021859553280225E-005 + 250.80000000000001 -2.3175604501232468E-005 + 250.86000000000001 -2.3330176737615376E-005 + 250.92000000000002 -2.3485253875072704E-005 + 250.97999999999996 -2.3640492372304228E-005 + 251.03999999999996 -2.3795526087686860E-005 + 251.09999999999997 -2.3949973933399166E-005 + 251.15999999999997 -2.4103446798989211E-005 + 251.21999999999997 -2.4255550033872619E-005 + 251.27999999999997 -2.4405891335340410E-005 + 251.33999999999997 -2.4554083285717901E-005 + 251.39999999999998 -2.4699745694700495E-005 + 251.45999999999998 -2.4842511299061331E-005 + 251.51999999999998 -2.4982025531621114E-005 + 251.57999999999998 -2.5117947244555245E-005 + 251.63999999999999 -2.5249954623269406E-005 + 251.69999999999999 -2.5377728525133508E-005 + 251.75999999999999 -2.5500967406913284E-005 + 251.81999999999999 -2.5619374812186221E-005 + 251.88000000000000 -2.5732657559184698E-005 + 251.94000000000000 -2.5840526957494709E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000000.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000000.BXY.semd new file mode 100644 index 00000000..db5872ec --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000000.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 2.1717254238207618E-040 + 15.960000000000001 5.0733637930527816E-040 + 16.019999999999996 7.9750021622848015E-040 + 16.079999999999998 9.3429126300925848E-040 + 16.140000000000001 8.5330330481261314E-040 + 16.200000000000003 6.6974639969277435E-040 + 16.259999999999991 1.8980340640703421E-040 + 16.319999999999993 -5.1093285828812587E-040 + 16.379999999999995 -1.4798540307695322E-039 + 16.439999999999998 -2.7370091877958733E-039 + 16.500000000000000 -4.2704776701394543E-039 + 16.560000000000002 -5.8348906191463064E-039 + 16.620000000000005 -7.3882373705223727E-039 + 16.679999999999993 -8.6218427735818001E-039 + 16.739999999999995 -9.5554661029526862E-039 + 16.799999999999997 -9.9540071249274632E-039 + 16.859999999999999 -9.7186937164101394E-039 + 16.920000000000002 -8.8077266960528444E-039 + 16.980000000000004 -7.3105001871858755E-039 + 17.039999999999992 -2.8280678399219143E-039 + 17.099999999999994 3.2466006759154918E-039 + 17.159999999999997 9.5027434204846824E-039 + 17.219999999999999 1.5033202845504794E-038 + 17.280000000000001 1.9923631607194146E-038 + 17.340000000000003 2.4196609065043852E-038 + 17.399999999999991 2.7581940149978142E-038 + 17.459999999999994 2.8339862379034560E-038 + 17.519999999999996 2.5553520452568236E-038 + 17.579999999999998 1.8360111738329136E-038 + 17.640000000000001 8.1875087757036287E-039 + 17.700000000000003 -2.8961043783070687E-039 + 17.759999999999991 -1.3165254252558940E-038 + 17.819999999999993 -2.0721797630461015E-038 + 17.879999999999995 -2.4896769791660818E-038 + 17.939999999999998 -2.2698559232527538E-038 + 18.000000000000000 -1.3444925762113681E-038 + 18.060000000000002 4.4166472848849468E-039 + 18.120000000000005 3.2029884281126221E-038 + 18.179999999999993 6.2913631918002039E-038 + 18.239999999999995 9.8195527008798391E-038 + 18.299999999999997 1.3498895504591232E-037 + 18.359999999999999 1.5203577603930670E-037 + 18.420000000000002 1.4561740059032604E-037 + 18.480000000000004 1.1811578924978777E-037 + 18.539999999999992 6.8161639913232679E-038 + 18.599999999999994 -1.5069212996089696E-039 + 18.659999999999997 -8.4203412402865545E-038 + 18.719999999999999 -1.9157114595091904E-037 + 18.780000000000001 -3.1506196219756926E-037 + 18.840000000000003 -4.3862529453620788E-037 + 18.899999999999991 -5.4954079124248014E-037 + 18.959999999999994 -6.2742821135124397E-037 + 19.019999999999996 -6.6742070690122999E-037 + 19.079999999999998 -6.6747025680843153E-037 + 19.140000000000001 -6.2338774232459119E-037 + 19.200000000000003 -5.3426012191807472E-037 + 19.259999999999991 -3.8338950026161463E-037 + 19.319999999999993 -1.7347200317483121E-037 + 19.379999999999995 7.7761039740813464E-038 + 19.439999999999998 3.3548239669292359E-037 + 19.500000000000000 5.5834300644071946E-037 + 19.560000000000002 7.1145060564870350E-037 + 19.620000000000005 7.7255192686773213E-037 + 19.679999999999993 7.2772257135768569E-037 + 19.739999999999995 6.0432624393248416E-037 + 19.799999999999997 3.9092275010315991E-037 + 19.859999999999999 9.0225242728247125E-038 + 19.920000000000002 -3.0779637956375690E-037 + 19.980000000000004 -7.8476217548666821E-037 + 20.039999999999992 -1.2918011011467611E-036 + 20.099999999999994 -1.8340120372168738E-036 + 20.159999999999997 -2.3940694319366234E-036 + 20.219999999999999 -2.8545839859452457E-036 + 20.280000000000001 -3.1867598732172795E-036 + 20.340000000000003 -3.3240541166779362E-036 + 20.399999999999991 -3.2506108514271919E-036 + 20.459999999999994 -2.9533508024228246E-036 + 20.519999999999996 -2.4124542360792743E-036 + 20.579999999999998 -1.6129522578337284E-036 + 20.640000000000001 -5.1909774250577974E-037 + 20.700000000000003 9.2081813773571759E-037 + 20.759999999999991 2.6416429887426815E-036 + 20.819999999999993 4.6150312442064421E-036 + 20.879999999999995 6.7977522173629776E-036 + 20.939999999999998 9.2095044891036340E-036 + 21.000000000000000 1.1727418019219338E-035 + 21.060000000000002 1.4205897957372002E-035 + 21.120000000000005 1.6521093599558345E-035 + 21.179999999999993 1.8292997287938916E-035 + 21.239999999999995 1.9328242427822316E-035 + 21.299999999999997 1.9422008689798561E-035 + 21.359999999999999 1.8263856226180568E-035 + 21.420000000000002 1.5496473259364898E-035 + 21.480000000000004 1.0634790566726507E-035 + 21.539999999999992 3.3437574024276183E-036 + 21.599999999999994 -6.4492408388063636E-036 + 21.659999999999997 -1.8649206292953744E-035 + 21.719999999999999 -3.3020676211981588E-035 + 21.780000000000001 -4.9090902652645294E-035 + 21.840000000000003 -6.6075301261508711E-035 + 21.899999999999991 -8.2791196802178596E-035 + 21.959999999999994 -9.7638064939591433E-035 + 22.019999999999996 -1.0873317145128337E-034 + 22.079999999999998 -1.1372059075304146E-034 + 22.140000000000001 -1.1005004404263780E-034 + 22.200000000000003 -9.5165058037596821E-035 + 22.259999999999991 -6.6448685296349542E-035 + 22.319999999999993 -2.1679061553487164E-035 + 22.379999999999995 4.0857351995591273E-035 + 22.439999999999998 1.2167829943730747E-034 + 22.500000000000000 2.1984082653902608E-034 + 22.560000000000002 3.3262342706925155E-034 + 22.619999999999990 4.5517798378303503E-034 + 22.679999999999993 5.8024492689172900E-034 + 22.739999999999995 6.9803837310157333E-034 + 22.799999999999997 7.9669925444133707E-034 + 22.859999999999999 8.6206776286441256E-034 + 22.920000000000002 8.7858707791306410E-034 + 22.980000000000004 8.3009431658988513E-034 + 23.039999999999992 7.0107098322632289E-034 + 23.099999999999994 4.7801271176672018E-034 + 23.159999999999997 1.5117440909947389E-034 + 23.219999999999999 -2.8348177174964917E-034 + 23.280000000000001 -8.2245507699129143E-034 + 23.340000000000003 -1.4528663806030280E-033 + 23.399999999999991 -2.1507990762112409E-033 + 23.459999999999994 -2.8802048734992982E-033 + 23.519999999999996 -3.5924364635328365E-033 + 23.579999999999998 -4.2266890444316110E-033 + 23.640000000000001 -4.7114877959334526E-033 + 23.700000000000003 -4.9674753880201442E-033 + 23.759999999999991 -4.9116143443137761E-033 + 23.819999999999993 -4.4626635484311877E-033 + 23.879999999999995 -3.5480579724342103E-033 + 23.939999999999998 -2.1118969619717358E-033 + 24.000000000000000 -1.2370058122022022E-034 + 24.060000000000002 2.4125335839398722E-033 + 24.119999999999990 5.4496118282511110E-033 + 24.179999999999993 8.8895499326894315E-033 + 24.239999999999995 1.2577913476412064E-032 + 24.299999999999997 1.6301056144766185E-032 + 24.359999999999999 1.9787206099995056E-032 + 24.420000000000002 2.2712292176980731E-032 + 24.480000000000004 2.4711181446878490E-032 + 24.539999999999992 2.5394862565086409E-032 + 24.599999999999994 2.4373713419793132E-032 + 24.659999999999997 2.1286607496082617E-032 + 24.719999999999999 1.5835065813601140E-032 + 24.780000000000001 7.8211432806462637E-033 + 24.840000000000003 -2.8129040727546392E-033 + 24.899999999999991 -1.5945687346035996E-032 + 24.959999999999994 -3.1241562954065565E-032 + 25.019999999999996 -4.8122871191432521E-032 + 25.079999999999998 -6.5753289083678209E-032 + 25.140000000000001 -8.3036238616690219E-032 + 25.200000000000003 -9.8631964689508767E-032 + 25.259999999999991 -1.1099652999720672E-031 + 25.319999999999993 -1.1844488807090492E-031 + 25.379999999999995 -1.1923927624189752E-031 + 25.439999999999998 -1.1170228407876724E-031 + 25.500000000000000 -9.4351930053477434E-032 + 25.560000000000002 -6.6054777184314679E-032 + 25.619999999999990 -2.6189432488104436E-032 + 25.679999999999993 2.5188515314279415E-032 + 25.739999999999995 8.7191646483655543E-032 + 25.799999999999997 1.5796947605547524E-031 + 25.859999999999999 2.3461529956191563E-031 + 25.920000000000002 3.1312668335913186E-031 + 25.980000000000004 3.8843436697710078E-031 + 26.039999999999992 4.5451301228565092E-031 + 26.099999999999994 5.0458438558561130E-031 + 26.159999999999997 5.3141935550012524E-031 + 26.219999999999999 5.2773978541741330E-031 + 26.280000000000001 4.8671425390030111E-031 + 26.340000000000003 4.0253387493609692E-031 + 26.399999999999991 2.7104593464310683E-031 + 26.459999999999994 9.0414286397875870E-032 + 26.519999999999996 -1.3823364004151771E-031 + 26.579999999999998 -4.1022037692993516E-031 + 26.640000000000001 -7.1684670513247569E-031 + 26.700000000000003 -1.0450912775139571E-030 + 26.759999999999991 -1.3775398662220313E-030 + 26.819999999999993 -1.6925986207152208E-030 + 26.879999999999995 -1.9650383017261953E-030 + 26.939999999999998 -2.1669028814658724E-030 + 27.000000000000000 -2.2688005566755636E-030 + 27.060000000000002 -2.2415698494012661E-030 + 27.119999999999990 -2.0582898702290152E-030 + 27.179999999999993 -1.6965726020883005E-030 + 27.239999999999995 -1.1410423272898890E-030 + 27.299999999999997 -3.8587626897262979E-031 + 27.359999999999999 5.6274851474255747E-031 + 27.420000000000002 1.6844879639287257E-030 + 27.480000000000004 2.9431431611753782E-030 + 27.539999999999992 4.2856629866799391E-030 + 27.599999999999994 5.6420508024758218E-030 + 27.659999999999997 6.9263659474797424E-030 + 27.719999999999999 8.0389798394112301E-030 + 27.780000000000001 8.8702012502305057E-030 + 27.840000000000003 9.3053147070319811E-030 + 27.899999999999991 9.2309912253682107E-030 + 27.959999999999994 8.5429372230852969E-030 + 28.019999999999996 7.1545387394985724E-030 + 28.079999999999998 5.0061429271803222E-030 + 28.140000000000001 2.0745084665159334E-030 + 28.200000000000003 -1.6181517120044685E-030 + 28.259999999999991 -5.9961989680837782E-030 + 28.319999999999993 -1.0924386863269340E-029 + 28.379999999999995 -1.6204237708594204E-029 + 28.439999999999998 -2.1573708280917768E-029 + 28.500000000000000 -2.6710833699445351E-029 + 28.560000000000002 -3.1241898698016205E-029 + 28.619999999999990 -3.4754531173065071E-029 + 28.679999999999993 -3.6815860224917770E-029 + 28.739999999999995 -3.6995607150942258E-029 + 28.799999999999997 -3.4893601035643507E-029 + 28.859999999999999 -3.0170924083296635E-029 + 28.920000000000002 -2.2583386023137845E-029 + 28.980000000000004 -1.2015736103948547E-029 + 29.039999999999992 1.4853735870535952E-030 + 29.099999999999994 1.7681980405036619E-029 + 29.159999999999997 3.6121433909370526E-029 + 29.219999999999999 5.6121737180852211E-029 + 29.280000000000001 7.6768065011402319E-029 + 29.340000000000003 9.6922963274195501E-029 + 29.399999999999991 1.1525216717721970E-028 + 29.459999999999994 1.3026747025301966E-028 + 29.519999999999996 1.4038725768263014E-028 + 29.579999999999998 1.4401446844788794E-028 + 29.640000000000001 1.3963051815049162E-028 + 29.700000000000003 1.2590254430474181E-028 + 29.759999999999991 1.0180006641474993E-028 + 29.819999999999993 6.6715705799679645E-029 + 29.879999999999995 2.0583617824892760E-029 + 29.939999999999998 -3.6012010240447064E-029 + 30.000000000000000 -1.0174664706071697E-028 + 30.060000000000002 -1.7449222656921731E-028 + 30.119999999999990 -2.5128974731863639E-028 + 30.179999999999993 -3.2836605419914028E-028 + 30.239999999999995 -4.0120204767916092E-028 + 30.299999999999997 -4.6465785318556779E-028 + 30.359999999999999 -5.1315803622840301E-028 + 30.420000000000002 -5.4093707703504923E-028 + 30.480000000000004 -5.4234212821981568E-028 + 30.539999999999992 -5.1218537187273138E-028 + 30.599999999999994 -4.4613498548585849E-028 + 30.659999999999997 -3.4112890006002911E-028 + 30.719999999999999 -1.9579121006912850E-028 + 30.780000000000001 -1.0828175233574713E-029 + 30.840000000000003 2.1062363412206891E-028 + 30.899999999999991 4.6272475530524249E-028 + 30.959999999999994 7.3676615308918749E-028 + 31.019999999999996 1.0211367317731608E-027 + 31.079999999999998 1.3014515130813537E-027 + 31.140000000000001 1.5608612811682281E-027 + 31.200000000000003 1.7805597343404938E-027 + 31.259999999999991 1.9404944170165272E-027 + 31.319999999999993 2.0202778424711837E-027 + 31.379999999999995 2.0002820298586445E-027 + 31.439999999999998 1.8628888826014229E-027 + 31.500000000000000 1.5938535941928640E-027 + 31.560000000000002 1.1837232572125697E-027 + 31.619999999999990 6.2924191823315373E-028 + 31.679999999999993 -6.5337745022699657E-029 + 31.739999999999995 -8.8712949656264543E-028 + 31.799999999999997 -1.8137662509292994E-027 + 31.859999999999999 -2.8129306963569913E-027 + 31.920000000000002 -3.8423540819240739E-027 + 31.980000000000004 -4.8503645818476196E-027 + 32.039999999999992 -5.7770567285907638E-027 + 32.099999999999994 -6.5561185076895443E-027 + 32.159999999999997 -7.1173382104737574E-027 + 32.219999999999999 -7.3897661602158873E-027 + 32.280000000000001 -7.3054771757099978E-027 + 32.340000000000003 -6.8038323627083953E-027 + 32.399999999999991 -5.8360889097975552E-027 + 32.459999999999994 -4.3701778673073464E-027 + 32.519999999999996 -2.3954103462451463E-027 + 32.579999999999998 7.3149400002774124E-029 + 32.640000000000001 2.9909388411539252E-027 + 32.700000000000003 6.2810925940365657E-027 + 32.759999999999991 9.8328868956070419E-027 + 32.819999999999993 1.3501735469093244E-026 + 32.879999999999995 1.7111000582466065E-026 + 32.939999999999998 2.0455834028699687E-026 + 33.000000000000000 2.3309195769334825E-026 + 33.060000000000002 2.5430088875588284E-026 + 33.119999999999990 2.6573959775612661E-026 + 33.179999999999993 2.6505089937404246E-026 + 33.239999999999995 2.5010646785922684E-026 + 33.299999999999997 2.1915935792304567E-026 + 33.359999999999999 1.7100260871388739E-026 + 33.420000000000002 1.0512661458886984E-026 + 33.480000000000004 2.1866766249997736E-027 + 33.539999999999992 -7.7468118166554374E-027 + 33.599999999999994 -1.9049621982493431E-026 + 33.659999999999997 -3.1370243939755469E-026 + 33.719999999999999 -4.4242684583682339E-026 + 33.780000000000001 -5.7091078964307057E-026 + 33.840000000000003 -6.9240792677025622E-026 + 33.899999999999991 -7.9936507201964136E-026 + 33.959999999999994 -8.8367560856771920E-026 + 34.019999999999996 -9.3700394496977232E-026 + 34.079999999999998 -9.5117678580253145E-026 + 34.140000000000001 -9.1863179672101415E-026 + 34.200000000000003 -8.3291014487688824E-026 + 34.259999999999991 -6.8917559550279237E-026 + 34.319999999999993 -4.8473691526538292E-026 + 34.379999999999995 -2.1954899802551169E-026 + 34.439999999999998 1.0333701661763485E-026 + 34.500000000000000 4.7740700203223419E-026 + 34.560000000000002 8.9243001888839049E-026 + 34.619999999999990 1.3343518633851976E-025 + 34.679999999999993 1.7853633507369743E-025 + 34.739999999999995 2.2241696973557828E-025 + 34.799999999999997 2.6264795056637691E-025 + 34.859999999999999 2.9657267326301787E-025 + 34.920000000000002 3.2140239523854149E-025 + 34.980000000000004 3.3433406992109125E-025 + 35.039999999999992 3.3268829613266720E-025 + 35.099999999999994 3.1406373893840922E-025 + 35.159999999999997 2.7650310561815361E-025 + 35.219999999999999 2.1866441073149458E-025 + 35.280000000000001 1.3998957833958368E-025 + 35.340000000000003 4.0862120716085284E-026 + 35.399999999999991 -7.7256319466139692E-026 + 35.459999999999994 -2.1172007725484102E-025 + 35.519999999999996 -3.5863469724293392E-025 + 35.579999999999998 -5.1284316170510556E-025 + 35.640000000000001 -6.6797168087611475E-025 + 35.700000000000003 -8.1654279262372436E-025 + 35.759999999999991 -9.5016060165569212E-025 + 35.819999999999993 -1.0597711212612256E-024 + 35.879999999999995 -1.1359965882242482E-024 + 35.939999999999998 -1.1695398589454300E-024 + 36.000000000000000 -1.1516499292777855E-024 + 36.060000000000002 -1.0746357755837685E-024 + 36.119999999999990 -9.3241188853009071E-025 + 36.179999999999993 -7.2105371170858842E-025 + 36.239999999999995 -4.3933741296457646E-025 + 36.299999999999997 -8.9236153690870885E-026 + 36.359999999999999 3.2365823688080974E-025 + 36.420000000000002 7.8981990113188970E-025 + 36.479999999999990 1.2956128248368507E-024 + 36.539999999999992 1.8232832907070026E-024 + 36.599999999999994 2.3511475174184741E-024 + 36.659999999999997 2.8539979122294102E-024 + 36.719999999999999 3.3037407822728556E-024 + 36.780000000000001 3.6702728089365027E-024 + 36.840000000000003 3.9225910868220299E-024 + 36.899999999999991 4.0301204231730703E-024 + 36.959999999999994 3.9642308089670583E-024 + 37.019999999999996 3.6998981502011060E-024 + 37.079999999999998 3.2174583850419568E-024 + 37.140000000000001 2.5043799993083656E-024 + 37.200000000000003 1.5569804794356989E-024 + 37.259999999999991 3.8199196997553362E-025 + 37.319999999999993 -1.0021160208702094E-024 + 37.379999999999995 -2.5641594900920245E-024 + 37.439999999999998 -4.2597049593684899E-024 + 37.500000000000000 -6.0310705065844764E-024 + 37.560000000000002 -7.8079422381832069E-024 + 37.619999999999990 -9.5086734312613290E-024 + 37.679999999999993 -1.1042307666174052E-023 + 37.739999999999995 -1.2311345512415759E-023 + 37.799999999999997 -1.3215230547769973E-023 + 37.859999999999999 -1.3654511540159275E-023 + 37.920000000000002 -1.3535585024078060E-023 + 37.979999999999990 -1.2775886836790039E-023 + 38.039999999999992 -1.1309365469695667E-023 + 38.099999999999994 -9.0920189536291165E-024 + 38.159999999999997 -6.1072710183159688E-024 + 38.219999999999999 -2.3708889465138029E-024 + 38.280000000000001 2.0648150737457767E-024 + 38.340000000000003 7.1078281889125475E-024 + 38.399999999999991 1.2624595743067464E-023 + 38.459999999999994 1.8439787135438593E-023 + 38.519999999999996 2.4337900693161297E-023 + 38.579999999999998 3.0066920526935582E-023 + 38.640000000000001 3.5344132908215557E-023 + 38.700000000000003 3.9864188367959084E-023 + 38.759999999999991 4.3309328888970882E-023 + 38.819999999999993 4.5361686024634314E-023 + 38.879999999999995 4.5717356458101781E-023 + 38.939999999999998 4.4101916289509175E-023 + 39.000000000000000 4.0286884023970619E-023 + 39.060000000000002 3.4106542458494188E-023 + 39.119999999999990 2.5474431939427110E-023 + 39.179999999999993 1.4398775645221192E-023 + 39.239999999999995 9.9596397090392948E-025 + 39.299999999999997 -1.4498687399869563E-023 + 39.359999999999999 -3.1723827025561023E-023 + 39.420000000000002 -5.0189348984817203E-023 + 39.479999999999990 -6.9278804430112127E-023 + 39.539999999999992 -8.8257618231303272E-023 + 39.599999999999994 -1.0628743240789409E-022 + 39.659999999999997 -1.2244695474449445E-022 + 39.719999999999999 -1.3575918600823588E-022 + 39.780000000000001 -1.4522491763172258E-022 + 39.840000000000003 -1.4986176632710976E-022 + 39.899999999999991 -1.4874805258206227E-022 + 39.959999999999994 -1.4107029867664212E-022 + 40.019999999999996 -1.2617283760053023E-022 + 40.079999999999998 -1.0360787624939695E-022 + 40.140000000000001 -7.3183927637397308E-023 + 40.200000000000003 -3.5010582904268708E-023 + 40.259999999999991 1.0462936849940110E-023 + 40.319999999999993 6.2417562988331442E-023 + 40.379999999999995 1.1964510113843697E-022 + 40.439999999999998 1.8054196131391609E-022 + 40.500000000000000 2.4311815657792656E-022 + 40.560000000000002 3.0502308440868686E-022 + 40.619999999999990 3.6358955521733663E-022 + 40.679999999999993 4.1589677892534795E-022 + 40.739999999999995 4.5885259360735369E-022 + 40.799999999999997 4.8929433876164373E-022 + 40.859999999999999 5.0410685649513594E-022 + 40.920000000000002 5.0035591711824328E-022 + 40.979999999999990 4.7543349450562548E-022 + 41.039999999999992 4.2721109021920078E-022 + 41.099999999999994 3.5419656502020219E-022 + 41.159999999999997 2.5568811728418177E-022 + 41.219999999999999 1.3191968505672128E-022 + 41.280000000000001 -1.5809889922836910E-023 + 41.340000000000003 -1.8503142913489635E-022 + 41.399999999999991 -3.7203104296907647E-022 + 41.459999999999994 -5.7181515854827200E-022 + 41.519999999999996 -7.7812228847045524E-022 + 41.579999999999998 -9.8348824369037098E-022 + 41.640000000000001 -1.1793704995728845E-021 + 41.700000000000003 -1.3563365458497460E-021 + 41.759999999999991 -1.5043176712761069E-021 + 41.819999999999993 -1.6129298786323549E-021 + 41.879999999999995 -1.6718578664281826E-021 + 41.939999999999998 -1.6712975258853665E-021 + 42.000000000000000 -1.6024477538410381E-021 + 42.060000000000002 -1.4580388824689794E-021 + 42.119999999999990 -1.2328828612934350E-021 + 42.179999999999993 -9.2442376980251523E-022 + 42.239999999999995 -5.3326725026640873E-022 + 42.299999999999997 -6.3663438581989860E-023 + 42.359999999999999 4.7608691670147787E-022 + 42.420000000000002 1.0733290828160281E-021 + 42.479999999999990 1.7108851122053513E-021 + 42.539999999999992 2.3670476064333284E-021 + 42.599999999999994 3.0157605328653898E-021 + 42.659999999999997 3.6270111972244147E-021 + 42.719999999999999 4.1674459061594054E-021 + 42.780000000000001 4.6012208778187302E-021 + 42.840000000000003 4.8910851149291568E-021 + 42.899999999999991 4.9996860959444396E-021 + 42.959999999999994 4.8910684014148241E-021 + 43.019999999999996 4.5323397739067417E-021 + 43.079999999999998 3.8954394318485286E-021 + 43.140000000000001 2.9589609803688302E-021 + 43.200000000000003 1.7099428626003538E-021 + 43.259999999999991 1.4554860976000774E-022 + 43.319999999999993 -1.7254676556174214E-021 + 43.379999999999995 -3.8815937544876396E-021 + 43.439999999999998 -6.2878162215057931E-021 + 43.500000000000000 -8.8953705664824299E-021 + 43.560000000000002 -1.1642103651673089E-020 + 43.619999999999990 -1.4453502652609456E-020 + 43.679999999999993 -1.7244473047897391E-020 + 43.739999999999995 -1.9921863466172436E-020 + 43.799999999999997 -2.2387794888226470E-020 + 43.859999999999999 -2.4543710434694424E-020 + 43.920000000000002 -2.6295114980120607E-020 + 43.979999999999990 -2.7556892174667012E-020 + 44.039999999999992 -2.8259028492810912E-020 + 44.099999999999994 -2.8352587937727318E-020 + 44.159999999999997 -2.7815713144300303E-020 + 44.219999999999999 -2.6659362602102225E-020 + 44.280000000000001 -2.4932538975432487E-020 + 44.340000000000003 -2.2726729157430550E-020 + 44.399999999999991 -2.0179186805000998E-020 + 44.459999999999994 -1.7474882159369973E-020 + 44.519999999999996 -1.4846758864442135E-020 + 44.579999999999998 -1.2574109080793274E-020 + 44.640000000000001 -1.0978888163171989E-020 + 44.700000000000003 -1.0419868147219286E-020 + 44.759999999999991 -1.1284604316757712E-020 + 44.819999999999993 -1.3979249798978067E-020 + 44.879999999999995 -1.8916443692996619E-020 + 44.939999999999998 -2.6501414490249868E-020 + 45.000000000000000 -3.7116741461858321E-020 + 45.060000000000002 -5.1106295126862706E-020 + 45.119999999999990 -6.8758736513510437E-020 + 45.179999999999993 -9.0291264652708607E-020 + 45.239999999999995 -1.1583439563608098E-019 + 45.299999999999997 -1.4541823942542627E-019 + 45.359999999999999 -1.7896116972596087E-019 + 45.420000000000002 -2.1626135652310434E-019 + 45.479999999999990 -2.5699199164789748E-019 + 45.539999999999992 -3.0070053717598480E-019 + 45.599999999999994 -3.4681221337671074E-019 + 45.659999999999997 -3.9463814222866880E-019 + 45.719999999999999 -4.4338802920842760E-019 + 45.780000000000001 -4.9218698039854760E-019 + 45.840000000000003 -5.4009585337356492E-019 + 45.899999999999991 -5.8613454095729364E-019 + 45.959999999999994 -6.2930694650204286E-019 + 46.019999999999996 -6.6862611342701465E-019 + 46.079999999999998 -7.0313762846656303E-019 + 46.140000000000001 -7.3193983426379304E-019 + 46.200000000000003 -7.5419839503731989E-019 + 46.259999999999991 -7.6915217126476933E-019 + 46.319999999999993 -7.7610878024079755E-019 + 46.379999999999995 -7.7442682497252069E-019 + 46.439999999999998 -7.6348121558319425E-019 + 46.500000000000000 -7.4261082088034704E-019 + 46.560000000000002 -7.1104364856835728E-019 + 46.619999999999990 -6.6780005949273588E-019 + 46.679999999999993 -6.1156826094830052E-019 + 46.739999999999995 -5.4055363987884290E-019 + 46.799999999999997 -4.5230045612720093E-019 + 46.859999999999999 -3.4347907088342673E-019 + 46.920000000000002 -2.0965211238464746E-019 + 46.979999999999990 -4.5001671572709157E-020 + 47.039999999999992 1.5796787065323460E-019 + 47.099999999999994 4.0875983460482701E-019 + 47.159999999999997 7.1923828641378395E-019 + 47.219999999999999 1.1040139921743598E-018 + 47.280000000000001 1.5808532901314222E-018 + 47.340000000000003 2.1711229604159292E-018 + 47.399999999999991 2.9002485057577039E-018 + 47.459999999999994 3.7982210258725624E-018 + 47.519999999999996 4.9001229195398872E-018 + 47.579999999999998 6.2467115858877324E-018 + 47.640000000000001 7.8850221459828621E-018 + 47.700000000000003 9.8690713322011443E-018 + 47.759999999999991 1.2260585774886563E-017 + 47.819999999999993 1.5129862551443480E-017 + 47.879999999999995 1.8556703073472258E-017 + 47.939999999999998 2.2631510446939413E-017 + 48.000000000000000 2.7456470748054269E-017 + 48.060000000000002 3.3147027342506237E-017 + 48.119999999999990 3.9833443811049546E-017 + 48.179999999999993 4.7662733665505338E-017 + 48.239999999999995 5.6800718311599377E-017 + 48.299999999999997 6.7434485395302390E-017 + 48.359999999999999 7.9775217362918048E-017 + 48.420000000000002 9.4061285828852785E-017 + 48.479999999999990 1.1056176847097389E-016 + 48.539999999999992 1.2958048131829594E-016 + 48.599999999999994 1.5146034393245015E-016 + 48.659999999999997 1.7658827685445142E-016 + 48.719999999999999 2.0540064131126491E-016 + 48.780000000000001 2.3838903408348049E-016 + 48.840000000000003 2.7610654822129477E-016 + 48.899999999999991 3.1917534211892781E-016 + 48.959999999999994 3.6829373260090126E-016 + 49.019999999999996 4.2424413676987937E-016 + 49.079999999999998 4.8790202630352592E-016 + 49.140000000000001 5.6024513667940891E-016 + 49.200000000000003 6.4236341392324591E-016 + 49.259999999999991 7.3546959074536319E-016 + 49.319999999999993 8.4090991112606000E-016 + 49.379999999999995 9.6017647695265162E-016 + 49.439999999999998 1.0949192615686665E-015 + 49.500000000000000 1.2469594915502134E-015 + 49.560000000000002 1.4183038081350197E-015 + 49.619999999999990 1.6111576874400925E-015 + 49.679999999999993 1.8279420641026174E-015 + 49.739999999999995 2.0713075304997447E-015 + 49.799999999999997 2.3441524858642669E-015 + 49.859999999999999 2.6496365464423841E-015 + 49.920000000000002 2.9912011565540055E-015 + 49.979999999999990 3.3725837818147463E-015 + 50.039999999999992 3.7978359893598474E-015 + 50.099999999999994 4.2713386698191654E-015 + 50.159999999999997 4.7978155857898371E-015 + 50.219999999999999 5.3823473228051760E-015 + 50.280000000000001 6.0303825736708770E-015 + 50.340000000000003 6.7477418047587631E-015 + 50.399999999999991 7.5406195514072923E-015 + 50.459999999999994 8.4155822705553286E-015 + 50.519999999999996 9.3795544234010428E-015 + 50.579999999999998 1.0439794955195119E-014 + 50.640000000000001 1.1603864549843085E-014 + 50.700000000000003 1.2879580552540609E-014 + 50.759999999999991 1.4274944912738695E-014 + 50.819999999999993 1.5798063349050404E-014 + 50.879999999999995 1.7457029466760611E-014 + 50.939999999999998 1.9259781592785273E-014 + 51.000000000000000 2.1213928074803232E-014 + 51.060000000000002 2.3326535354217794E-014 + 51.119999999999990 2.5603864485631222E-014 + 51.179999999999993 2.8051047022593562E-014 + 51.239999999999995 3.0671718510791541E-014 + 51.299999999999997 3.3467548805053160E-014 + 51.359999999999999 3.6437720003372804E-014 + 51.420000000000002 3.9578293701036811E-014 + 51.479999999999990 4.2881465144805994E-014 + 51.539999999999992 4.6334678666339188E-014 + 51.599999999999994 4.9919639775661986E-014 + 51.659999999999997 5.3611116660542309E-014 + 51.719999999999999 5.7375563472959474E-014 + 51.780000000000001 6.1169532460843203E-014 + 51.840000000000003 6.4937854967040647E-014 + 51.899999999999991 6.8611472403933763E-014 + 51.959999999999994 7.2105060613356659E-014 + 52.019999999999996 7.5314114902256266E-014 + 52.079999999999998 7.8111821906016281E-014 + 52.140000000000001 8.0345274193393705E-014 + 52.200000000000003 8.1831249069351917E-014 + 52.259999999999991 8.2351363717261893E-014 + 52.319999999999993 8.1646536668012403E-014 + 52.379999999999995 7.9410663614260087E-014 + 52.439999999999998 7.5283434412739784E-014 + 52.500000000000000 6.8842197007556999E-014 + 52.560000000000002 5.9592552055961297E-014 + 52.619999999999990 4.6957992216609950E-014 + 52.679999999999993 3.0267963975683748E-014 + 52.739999999999995 8.7443503691182193E-015 + 52.799999999999997 -1.8513585288297743E-014 + 52.859999999999999 -5.2546483045404861E-014 + 52.920000000000002 -9.4554063051071239E-014 + 52.979999999999990 -1.4591677174827658E-013 + 53.039999999999992 -2.0822027051501087E-013 + 53.099999999999994 -2.8328262770313954E-013 + 53.159999999999997 -3.7318501606304353E-013 + 53.219999999999999 -4.8030613777447098E-013 + 53.280000000000001 -6.0735990390366261E-013 + 53.339999999999989 -7.5743910747044273E-013 + 53.399999999999991 -9.3406244683066148E-013 + 53.459999999999994 -1.1412282353621711E-012 + 53.519999999999996 -1.3834727178071483E-012 + 53.579999999999998 -1.6659378869155933E-012 + 53.640000000000001 -1.9944410665001884E-012 + 53.700000000000003 -2.3755598565581447E-012 + 53.759999999999991 -2.8167197409635785E-012 + 53.819999999999993 -3.3262930219486055E-012 + 53.879999999999995 -3.9137093021439365E-012 + 53.939999999999998 -4.5895775603088463E-012 + 54.000000000000000 -5.3658172498566044E-012 + 54.060000000000002 -6.2558131909368248E-012 + 54.119999999999990 -7.2745666817474301E-012 + 54.179999999999993 -8.4388811444280233E-012 + 54.239999999999995 -9.7675586104988639E-012 + 54.299999999999997 -1.1281608724551717E-011 + 54.359999999999999 -1.3004494160594111E-011 + 54.420000000000002 -1.4962382133561662E-011 + 54.479999999999990 -1.7184421407878419E-011 + 54.539999999999992 -1.9703068077592124E-011 + 54.599999999999994 -2.2554402476995888E-011 + 54.659999999999997 -2.5778512392476671E-011 + 54.719999999999999 -2.9419874480426233E-011 + 54.780000000000001 -3.3527812968396612E-011 + 54.839999999999989 -3.8156940629667988E-011 + 54.899999999999991 -4.3367700087700659E-011 + 54.959999999999994 -4.9226889247873939E-011 + 55.019999999999996 -5.5808278616707537E-011 + 55.079999999999998 -6.3193231932185661E-011 + 55.140000000000001 -7.1471436708407055E-011 + 55.200000000000003 -8.0741630777381581E-011 + 55.259999999999991 -9.1112389882329040E-011 + 55.319999999999993 -1.0270300704567277E-010 + 55.379999999999995 -1.1564439157025609E-010 + 55.439999999999998 -1.3008003955712468E-010 + 55.500000000000000 -1.4616711686891874E-010 + 55.560000000000002 -1.6407748323626446E-010 + 55.619999999999990 -1.8399892828507848E-010 + 55.679999999999993 -2.0613638466191541E-010 + 55.739999999999995 -2.3071319557967368E-010 + 55.799999999999997 -2.5797240376501190E-010 + 55.859999999999999 -2.8817831001503272E-010 + 55.920000000000002 -3.2161770881961694E-010 + 55.979999999999990 -3.5860169073559669E-010 + 56.039999999999992 -3.9946672754344375E-010 + 56.099999999999994 -4.4457676681031387E-010 + 56.159999999999997 -4.9432439697834186E-010 + 56.219999999999999 -5.4913252832636799E-010 + 56.280000000000001 -6.0945597371634519E-010 + 56.339999999999989 -6.7578296075822391E-010 + 56.399999999999991 -7.4863658926937238E-010 + 56.459999999999994 -8.2857605367315106E-010 + 56.519999999999996 -9.1619776179445931E-010 + 56.579999999999998 -1.0121366555055011E-009 + 56.640000000000001 -1.1170665879821492E-009 + 56.700000000000003 -1.2317009719325394E-009 + 56.759999999999991 -1.3567925515456823E-009 + 56.819999999999993 -1.4931335824473193E-009 + 56.879999999999995 -1.6415547701895473E-009 + 56.939999999999998 -1.8029227704163590E-009 + 57.000000000000000 -1.9781396395201906E-009 + 57.060000000000002 -2.1681382671827071E-009 + 57.119999999999990 -2.3738783094779016E-009 + 57.179999999999993 -2.5963410610679716E-009 + 57.239999999999995 -2.8365221946840956E-009 + 57.299999999999997 -3.0954233763069382E-009 + 57.359999999999999 -3.3740419277222856E-009 + 57.420000000000002 -3.6733576262255982E-009 + 57.479999999999990 -3.9943187283426496E-009 + 57.539999999999992 -4.3378221632844909E-009 + 57.599999999999994 -4.7046944475853332E-009 + 57.659999999999997 -5.0956655863478363E-009 + 57.719999999999999 -5.5113397170737991E-009 + 57.780000000000001 -5.9521623883258823E-009 + 57.839999999999989 -6.4183820653088882E-009 + 57.899999999999991 -6.9100028416515932E-009 + 57.959999999999994 -7.4267348726677133E-009 + 58.019999999999996 -7.9679341603117711E-009 + 58.079999999999998 -8.5325354492948295E-009 + 58.140000000000001 -9.1189743641148525E-009 + 58.200000000000003 -9.7251011813061948E-009 + 58.259999999999991 -1.0348078687651465E-008 + 58.319999999999993 -1.0984272099712053E-008 + 58.379999999999995 -1.1629122004991933E-008 + 58.439999999999998 -1.2276998227255255E-008 + 58.500000000000000 -1.2921042262361274E-008 + 58.560000000000002 -1.3552980531735958E-008 + 58.619999999999990 -1.4162925191170654E-008 + 58.679999999999993 -1.4739143720945684E-008 + 58.739999999999995 -1.5267807751149859E-008 + 58.799999999999997 -1.5732701312622940E-008 + 58.859999999999999 -1.6114909426820603E-008 + 58.920000000000002 -1.6392458956493684E-008 + 58.979999999999990 -1.6539930736081834E-008 + 59.039999999999992 -1.6528012991878736E-008 + 59.099999999999994 -1.6323022647226455E-008 + 59.159999999999997 -1.5886365533234026E-008 + 59.219999999999999 -1.5173938840912847E-008 + 59.280000000000001 -1.4135470003719510E-008 + 59.339999999999989 -1.2713788389963559E-008 + 59.399999999999991 -1.0844019812105225E-008 + 59.459999999999994 -8.4526903123427559E-009 + 59.519999999999996 -5.4567779094642217E-009 + 59.579999999999998 -1.7625873573441255E-009 + 59.640000000000001 2.7353814823154747E-009 + 59.700000000000003 8.1557578107749168E-009 + 59.759999999999991 1.4631732562863962E-008 + 59.819999999999993 2.2312633350569455E-008 + 59.879999999999995 3.1365573191715886E-008 + 59.939999999999998 4.1977391879826418E-008 + 60.000000000000000 5.4356696309859830E-008 + 60.060000000000002 6.8736070900111807E-008 + 60.119999999999990 8.5374557049368776E-008 + 60.179999999999993 1.0456019507042356E-007 + 60.239999999999995 1.2661311465537386E-007 + 60.299999999999997 1.5188855799154055E-007 + 60.359999999999999 1.8078044306178229E-007 + 60.420000000000002 2.1372478416840609E-007 + 60.479999999999990 2.5120412828799201E-007 + 60.539999999999992 2.9375171794212518E-007 + 60.599999999999994 3.4195635122263898E-007 + 60.659999999999997 3.9646732355759584E-007 + 60.719999999999999 4.5800039389367809E-007 + 60.780000000000001 5.2734345379383662E-007 + 60.839999999999989 6.0536329465181853E-007 + 60.899999999999991 6.9301203890529750E-007 + 60.959999999999994 7.9133560215485258E-007 + 61.019999999999996 9.0148148401022986E-007 + 61.079999999999998 1.0247070152366606E-006 + 61.140000000000001 1.1623892959018047E-006 + 61.200000000000003 1.3160353699712193E-006 + 61.259999999999991 1.4872932435115917E-006 + 61.319999999999993 1.6779629325024405E-006 + 61.379999999999995 1.8900088630973194E-006 + 61.439999999999998 2.1255745532306953E-006 + 61.500000000000000 2.3869947989606274E-006 + 61.560000000000002 2.6768133600082337E-006 + 61.619999999999990 2.9977966633811290E-006 + 61.679999999999993 3.3529534358938583E-006 + 61.739999999999995 3.7455522784043584E-006 + 61.799999999999997 4.1791401808897598E-006 + 61.859999999999999 4.6575651370740656E-006 + 61.920000000000002 5.1849985556047699E-006 + 61.979999999999990 5.7659566673492181E-006 + 62.039999999999992 6.4053270832147368E-006 + 62.099999999999994 7.1083950316519518E-006 + 62.159999999999997 7.8808721848262003E-006 + 62.219999999999999 8.7289231908321828E-006 + 62.280000000000001 9.6592003843879939E-006 + 62.339999999999989 1.0678874059164339E-005 + 62.399999999999991 1.1795669978391309E-005 + 62.459999999999994 1.3017902481719467E-005 + 62.519999999999996 1.4354513326822438E-005 + 62.579999999999998 1.5815111643622017E-005 + 62.640000000000001 1.7410019973127218E-005 + 62.700000000000003 1.9150311119164131E-005 + 62.759999999999991 2.1047861979342752E-005 + 62.819999999999993 2.3115395629926387E-005 + 62.879999999999995 2.5366532128527762E-005 + 62.939999999999998 2.7815843619617398E-005 + 63.000000000000000 3.0478908367993660E-005 + 63.060000000000002 3.3372362490755652E-005 + 63.119999999999990 3.6513955091406015E-005 + 63.179999999999993 3.9922630896676347E-005 + 63.239999999999995 4.3618557665995693E-005 + 63.299999999999997 4.7623215451387187E-005 + 63.359999999999999 5.1959461814895538E-005 + 63.420000000000002 5.6651597282843983E-005 + 63.479999999999990 6.1725425468258467E-005 + 63.539999999999992 6.7208326391131283E-005 + 63.599999999999994 7.3129357727587662E-005 + 63.659999999999997 7.9519288450141494E-005 + 63.719999999999999 8.6410700705087806E-005 + 63.780000000000001 9.3838052768749540E-005 + 63.839999999999989 1.0183777679563845E-004 + 63.899999999999991 1.1044835043398474E-004 + 63.959999999999994 1.1971037605409336E-004 + 64.019999999999996 1.2966662380190359E-004 + 64.079999999999998 1.4036218594800392E-004 + 64.140000000000001 1.5184451802265005E-004 + 64.200000000000003 1.6416350173376317E-004 + 64.259999999999991 1.7737153980184445E-004 + 64.319999999999993 1.9152367412947767E-004 + 64.379999999999995 2.0667760053655682E-004 + 64.439999999999998 2.2289377123759849E-004 + 64.500000000000000 2.4023546400076209E-004 + 64.560000000000002 2.5876890099786864E-004 + 64.619999999999990 2.7856318028354093E-004 + 64.679999999999993 2.9969054186062942E-004 + 64.739999999999995 3.2222627138436962E-004 + 64.799999999999997 3.4624877552044106E-004 + 64.859999999999999 3.7183973036827330E-004 + 64.920000000000002 3.9908396714932374E-004 + 64.979999999999990 4.2806966866175785E-004 + 65.039999999999992 4.5888839053065438E-004 + 65.099999999999994 4.9163491049902049E-004 + 65.159999999999997 5.2640747881492532E-004 + 65.219999999999999 5.6330759063287299E-004 + 65.280000000000001 6.0244024657334810E-004 + 65.339999999999989 6.4391385350353561E-004 + 65.399999999999991 6.8783995373150381E-004 + 65.459999999999994 7.3433356509632368E-004 + 65.519999999999996 7.8351281766215043E-004 + 65.579999999999998 8.3549916995239414E-004 + 65.640000000000001 8.9041720596490237E-004 + 65.700000000000003 9.4839471743951543E-004 + 65.759999999999991 1.0095621101453554E-003 + 65.819999999999993 1.0740529225319244E-003 + 65.879999999999995 1.1420033479673020E-003 + 65.939999999999998 1.2135520582708351E-003 + 66.000000000000000 1.2888402991938631E-003 + 66.060000000000002 1.3680113677812420E-003 + 66.119999999999990 1.4512106762907685E-003 + 66.179999999999993 1.5385855717845072E-003 + 66.239999999999995 1.6302849927785300E-003 + 66.299999999999997 1.7264589120541899E-003 + 66.359999999999999 1.8272587453032109E-003 + 66.420000000000002 1.9328364890077376E-003 + 66.479999999999990 2.0433445573761247E-003 + 66.539999999999992 2.1589355134765367E-003 + 66.599999999999994 2.2797618155647489E-003 + 66.659999999999997 2.4059753262070664E-003 + 66.719999999999999 2.5377271241137679E-003 + 66.780000000000001 2.6751660753913408E-003 + 66.839999999999989 2.8184403503363196E-003 + 66.899999999999991 2.9676948448407268E-003 + 66.959999999999994 3.1230724863881222E-003 + 67.019999999999996 3.2847123497263980E-003 + 67.079999999999998 3.4527502166583454E-003 + 67.140000000000001 3.6273174540931820E-003 + 67.199999999999989 3.8085403667943137E-003 + 67.259999999999991 3.9965403863779841E-003 + 67.319999999999993 4.1914328029583198E-003 + 67.379999999999995 4.3933262883830973E-003 + 67.439999999999998 4.6023226373139870E-003 + 67.500000000000000 4.8185159272976629E-003 + 67.560000000000002 5.0419922889491618E-003 + 67.619999999999990 5.2728279791730889E-003 + 67.679999999999993 5.5110901510354512E-003 + 67.739999999999995 5.7568363982463235E-003 + 67.799999999999997 6.0101136038820226E-003 + 67.859999999999999 6.2709561958494142E-003 + 67.920000000000002 6.5393868711165846E-003 + 67.979999999999990 6.8154165447581478E-003 + 68.039999999999992 7.0990418202576981E-003 + 68.099999999999994 7.3902461544100182E-003 + 68.159999999999997 7.6889983522488454E-003 + 68.219999999999999 7.9952521552622731E-003 + 68.280000000000001 8.3089457047542774E-003 + 68.339999999999989 8.6300011797463272E-003 + 68.399999999999991 8.9583238823870755E-003 + 68.459999999999994 9.2938028423935060E-003 + 68.519999999999996 9.6363070170331442E-003 + 68.579999999999998 9.9856902947259279E-003 + 68.640000000000001 1.0341786363580888E-002 + 68.699999999999989 1.0704411885928716E-002 + 68.759999999999991 1.1073361737097194E-002 + 68.819999999999993 1.1448412408604064E-002 + 68.879999999999995 1.1829322123898787E-002 + 68.939999999999998 1.2215828698038880E-002 + 69.000000000000000 1.2607647637701336E-002 + 69.060000000000002 1.3004477660791295E-002 + 69.119999999999990 1.3405994538108328E-002 + 69.179999999999993 1.3811856441666917E-002 + 69.239999999999995 1.4221698556632661E-002 + 69.299999999999997 1.4635138185049428E-002 + 69.359999999999999 1.5051773684778596E-002 + 69.420000000000002 1.5471180054845686E-002 + 69.479999999999990 1.5892914562154730E-002 + 69.539999999999992 1.6316520155378815E-002 + 69.599999999999994 1.6741513925910188E-002 + 69.659999999999997 1.7167399810947653E-002 + 69.719999999999999 1.7593662163902880E-002 + 69.780000000000001 1.8019770000971189E-002 + 69.839999999999989 1.8445174901257518E-002 + 69.899999999999991 1.8869313226564963E-002 + 69.959999999999994 1.9291606628713296E-002 + 70.019999999999996 1.9711464902583051E-002 + 70.079999999999998 2.0128282549723896E-002 + 70.140000000000001 2.0541442861725913E-002 + 70.199999999999989 2.0950320953100125E-002 + 70.259999999999991 2.1354276708508677E-002 + 70.319999999999993 2.1752667799403994E-002 + 70.379999999999995 2.2144841304945432E-002 + 70.439999999999998 2.2530141038610146E-002 + 70.500000000000000 2.2907901444167371E-002 + 70.560000000000002 2.3277457824908081E-002 + 70.619999999999990 2.3638143093806099E-002 + 70.679999999999993 2.3989288739430775E-002 + 70.739999999999995 2.4330229079529204E-002 + 70.799999999999997 2.4660297446896098E-002 + 70.859999999999999 2.4978836593416310E-002 + 70.920000000000002 2.5285191963387278E-002 + 70.979999999999990 2.5578715707187404E-002 + 71.039999999999992 2.5858770943932099E-002 + 71.099999999999994 2.6124729824124705E-002 + 71.159999999999997 2.6375976930360881E-002 + 71.219999999999999 2.6611912987554179E-002 + 71.280000000000001 2.6831949351525535E-002 + 71.339999999999989 2.7035516837540009E-002 + 71.399999999999991 2.7222067098745313E-002 + 71.459999999999994 2.7391067626642451E-002 + 71.519999999999996 2.7542009188735578E-002 + 71.579999999999998 2.7674406877586030E-002 + 71.640000000000001 2.7787798758646065E-002 + 71.699999999999989 2.7881746768465131E-002 + 71.759999999999991 2.7955843754301143E-002 + 71.819999999999993 2.8009707694433970E-002 + 71.879999999999995 2.8042988359734750E-002 + 71.939999999999998 2.8055365483006463E-002 + 72.000000000000000 2.8046548879722369E-002 + 72.060000000000002 2.8016285451465481E-002 + 72.119999999999990 2.7964352951497108E-002 + 72.179999999999993 2.7890564296774042E-002 + 72.239999999999995 2.7794765101429884E-002 + 72.299999999999997 2.7676842964138429E-002 + 72.359999999999999 2.7536716492145778E-002 + 72.420000000000002 2.7374344825596204E-002 + 72.479999999999990 2.7189724217472695E-002 + 72.539999999999992 2.6982885478120451E-002 + 72.599999999999994 2.6753903088585700E-002 + 72.659999999999997 2.6502885153193028E-002 + 72.719999999999999 2.6229978449183393E-002 + 72.780000000000001 2.5935371670749895E-002 + 72.839999999999989 2.5619286015921998E-002 + 72.899999999999991 2.5281985327495825E-002 + 72.959999999999994 2.4923766328688198E-002 + 73.019999999999996 2.4544963168317693E-002 + 73.079999999999998 2.4145947515227879E-002 + 73.140000000000001 2.3727124313019925E-002 + 73.199999999999989 2.3288935129935563E-002 + 73.259999999999991 2.2831853699045748E-002 + 73.319999999999993 2.2356387426777553E-002 + 73.379999999999995 2.1863072627387060E-002 + 73.439999999999998 2.1352478766661371E-002 + 73.500000000000000 2.0825203665015984E-002 + 73.560000000000002 2.0281872175568164E-002 + 73.619999999999990 1.9723134888941164E-002 + 73.679999999999993 1.9149669691212446E-002 + 73.739999999999995 1.8562174384374925E-002 + 73.799999999999997 1.7961371874442193E-002 + 73.859999999999999 1.7348005457862335E-002 + 73.920000000000002 1.6722831973296749E-002 + 73.979999999999990 1.6086628889280641E-002 + 74.039999999999992 1.5440190828003849E-002 + 74.099999999999994 1.4784319975513348E-002 + 74.159999999999997 1.4119833139725431E-002 + 74.219999999999999 1.3447557248834752E-002 + 74.280000000000001 1.2768326194006273E-002 + 74.339999999999989 1.2082978331034786E-002 + 74.399999999999991 1.1392357612917438E-002 + 74.459999999999994 1.0697310201420122E-002 + 74.519999999999996 9.9986823998081294E-003 + 74.579999999999998 9.2973182795999809E-003 + 74.640000000000001 8.5940586205940032E-003 + 74.699999999999989 7.8897402868006485E-003 + 74.759999999999991 7.1851918986701197E-003 + 74.819999999999993 6.4812346782321438E-003 + 74.879999999999995 5.7786792273020679E-003 + 74.939999999999998 5.0783247376743274E-003 + 75.000000000000000 4.3809570090778266E-003 + 75.060000000000002 3.6873463949835023E-003 + 75.119999999999990 2.9982478704085316E-003 + 75.179999999999993 2.3143985055633790E-003 + 75.239999999999995 1.6365163389324988E-003 + 75.299999999999997 9.6529923232750140E-004 + 75.359999999999999 3.0142377773699079E-004 + 75.420000000000002 -3.5445536356768165E-004 + 75.479999999999990 -1.0017073396061979E-003 + 75.539999999999992 -1.6397258273281382E-003 + 75.599999999999994 -2.2679286383199887E-003 + 75.659999999999997 -2.8857611208562791E-003 + 75.719999999999999 -3.4926932738404094E-003 + 75.780000000000001 -4.0882232003748254E-003 + 75.839999999999989 -4.6718765862393159E-003 + 75.899999999999991 -5.2432071020429103E-003 + 75.959999999999994 -5.8017967423587410E-003 + 76.019999999999996 -6.3472562927086376E-003 + 76.079999999999998 -6.8792258478076289E-003 + 76.140000000000001 -7.3973724791689755E-003 + 76.199999999999989 -7.9013949464262698E-003 + 76.259999999999991 -8.3910191030819124E-003 + 76.319999999999993 -8.8659996483428649E-003 + 76.379999999999995 -9.3261195822557357E-003 + 76.439999999999998 -9.7711923546820855E-003 + 76.500000000000000 -1.0201055707911294E-002 + 76.560000000000002 -1.0615578017927788E-002 + 76.619999999999990 -1.1014653500405416E-002 + 76.679999999999993 -1.1398201392614871E-002 + 76.739999999999995 -1.1766169706522663E-002 + 76.799999999999997 -1.2118530163554081E-002 + 76.859999999999999 -1.2455279624258807E-002 + 76.920000000000002 -1.2776437878318761E-002 + 76.979999999999990 -1.3082048128792255E-002 + 77.039999999999992 -1.3372176568823441E-002 + 77.099999999999994 -1.3646910207036612E-002 + 77.159999999999997 -1.3906357058172940E-002 + 77.219999999999999 -1.4150644254415033E-002 + 77.280000000000001 -1.4379918842881286E-002 + 77.339999999999989 -1.4594343822121453E-002 + 77.399999999999991 -1.4794100202754113E-002 + 77.459999999999994 -1.4979385612113854E-002 + 77.519999999999996 -1.5150410786226497E-002 + 77.579999999999998 -1.5307403286705684E-002 + 77.640000000000001 -1.5450601429235215E-002 + 77.699999999999989 -1.5580256889706233E-002 + 77.759999999999991 -1.5696631490358267E-002 + 77.819999999999993 -1.5799997413162542E-002 + 77.879999999999995 -1.5890636956324262E-002 + 77.939999999999998 -1.5968838915413064E-002 + 78.000000000000000 -1.6034902745831817E-002 + 78.060000000000002 -1.6089131529562182E-002 + 78.119999999999990 -1.6131835769285226E-002 + 78.179999999999993 -1.6163329574051508E-002 + 78.239999999999995 -1.6183930238506769E-002 + 78.299999999999997 -1.6193959585148677E-002 + 78.359999999999999 -1.6193742740256752E-002 + 78.420000000000002 -1.6183606796054593E-002 + 78.479999999999990 -1.6163877116900177E-002 + 78.539999999999992 -1.6134880907085956E-002 + 78.599999999999994 -1.6096945986908001E-002 + 78.659999999999997 -1.6050396736881734E-002 + 78.719999999999999 -1.5995558533264998E-002 + 78.780000000000001 -1.5932753772688643E-002 + 78.839999999999989 -1.5862303032653596E-002 + 78.899999999999991 -1.5784522404476333E-002 + 78.959999999999994 -1.5699724247957854E-002 + 79.019999999999996 -1.5608219381511886E-002 + 79.079999999999998 -1.5510311337756325E-002 + 79.140000000000001 -1.5406301259706129E-002 + 79.199999999999989 -1.5296484295961789E-002 + 79.259999999999991 -1.5181151122240331E-002 + 79.319999999999993 -1.5060585881983810E-002 + 79.379999999999995 -1.4935066934517526E-002 + 79.439999999999998 -1.4804868024624862E-002 + 79.500000000000000 -1.4670254846068775E-002 + 79.560000000000002 -1.4531488611928305E-002 + 79.619999999999990 -1.4388823454232504E-002 + 79.679999999999993 -1.4242506322297732E-002 + 79.739999999999995 -1.4092778050924104E-002 + 79.799999999999997 -1.3939873809939688E-002 + 79.859999999999999 -1.3784020765093918E-002 + 79.920000000000002 -1.3625440255451324E-002 + 79.979999999999990 -1.3464346435815363E-002 + 80.039999999999992 -1.3300945833537251E-002 + 80.099999999999994 -1.3135440447766954E-002 + 80.159999999999997 -1.2968024456546903E-002 + 80.219999999999999 -1.2798887122986985E-002 + 80.280000000000001 -1.2628209196686030E-002 + 80.340000000000003 -1.2456165887561804E-002 + 80.400000000000006 -1.2282925574941556E-002 + 80.460000000000008 -1.2108652078269288E-002 + 80.519999999999982 -1.1933502554334218E-002 + 80.579999999999984 -1.1757628697169412E-002 + 80.639999999999986 -1.1581174351470120E-002 + 80.699999999999989 -1.1404280724278256E-002 + 80.759999999999991 -1.1227082305264657E-002 + 80.819999999999993 -1.1049707172445440E-002 + 80.879999999999995 -1.0872279712108957E-002 + 80.939999999999998 -1.0694919388518903E-002 + 81.000000000000000 -1.0517738671365615E-002 + 81.060000000000002 -1.0340848498192994E-002 + 81.120000000000005 -1.0164352907988594E-002 + 81.180000000000007 -9.9883515309433686E-003 + 81.240000000000009 -9.8129402363085518E-003 + 81.299999999999983 -9.6382114160771127E-003 + 81.359999999999985 -9.4642534757522247E-003 + 81.419999999999987 -9.2911484044456462E-003 + 81.479999999999990 -9.1189782273613743E-003 + 81.539999999999992 -8.9478182513440668E-003 + 81.599999999999994 -8.7777418309762049E-003 + 81.659999999999997 -8.6088188630695645E-003 + 81.719999999999999 -8.4411165121178102E-003 + 81.780000000000001 -8.2746972643653674E-003 + 81.840000000000003 -8.1096224007815472E-003 + 81.900000000000006 -7.9459491999557819E-003 + 81.960000000000008 -7.7837322049314961E-003 + 82.019999999999982 -7.6230232598147925E-003 + 82.079999999999984 -7.4638721265190304E-003 + 82.139999999999986 -7.3063260825605488E-003 + 82.199999999999989 -7.1504296676728925E-003 + 82.259999999999991 -6.9962242873448455E-003 + 82.319999999999993 -6.8437506995151654E-003 + 82.379999999999995 -6.6930467319672414E-003 + 82.439999999999998 -6.5441475762334613E-003 + 82.500000000000000 -6.3970871499685064E-003 + 82.560000000000002 -6.2518968620861644E-003 + 82.620000000000005 -6.1086062480765150E-003 + 82.680000000000007 -5.9672431938050750E-003 + 82.740000000000009 -5.8278338250146808E-003 + 82.799999999999983 -5.6904018129018763E-003 + 82.859999999999985 -5.5549692660603551E-003 + 82.919999999999987 -5.4215577948248245E-003 + 82.979999999999990 -5.2901856141330892E-003 + 83.039999999999992 -5.1608699466222365E-003 + 83.099999999999994 -5.0336265811570385E-003 + 83.159999999999997 -4.9084693774811092E-003 + 83.219999999999999 -4.7854112334268263E-003 + 83.280000000000001 -4.6644632362386525E-003 + 83.340000000000003 -4.5456345838637740E-003 + 83.400000000000006 -4.4289336402791157E-003 + 83.460000000000008 -4.3143672010406715E-003 + 83.519999999999982 -4.2019405689300406E-003 + 83.579999999999984 -4.0916578321848508E-003 + 83.639999999999986 -3.9835214143811703E-003 + 83.699999999999989 -3.8775331106885775E-003 + 83.759999999999991 -3.7736926905324124E-003 + 83.819999999999993 -3.6719992380422591E-003 + 83.879999999999995 -3.5724503228783087E-003 + 83.939999999999998 -3.4750426469678502E-003 + 84.000000000000000 -3.3797710962449631E-003 + 84.060000000000002 -3.2866298934943750E-003 + 84.120000000000005 -3.1956121384589752E-003 + 84.180000000000007 -3.1067094619616886E-003 + 84.240000000000009 -3.0199123070063479E-003 + 84.299999999999983 -2.9352106174160885E-003 + 84.359999999999985 -2.8525928998621971E-003 + 84.419999999999987 -2.7720465780815980E-003 + 84.479999999999990 -2.6935580104864515E-003 + 84.539999999999992 -2.6171130278685902E-003 + 84.599999999999994 -2.5426963759224790E-003 + 84.659999999999997 -2.4702917697578216E-003 + 84.719999999999999 -2.3998822457457760E-003 + 84.780000000000001 -2.3314496143801693E-003 + 84.840000000000003 -2.2649754130437856E-003 + 84.900000000000006 -2.2004403389118388E-003 + 84.960000000000008 -2.1378240903083068E-003 + 85.019999999999982 -2.0771060186757025E-003 + 85.079999999999984 -2.0182645366216981E-003 + 85.139999999999986 -1.9612778383676127E-003 + 85.199999999999989 -1.9061231465920597E-003 + 85.259999999999991 -1.8527771001151062E-003 + 85.319999999999993 -1.8012161874715945E-003 + 85.379999999999995 -1.7514161337664215E-003 + 85.439999999999998 -1.7033522558894281E-003 + 85.500000000000000 -1.6569994519033870E-003 + 85.560000000000002 -1.6123320664906545E-003 + 85.620000000000005 -1.5693242247593940E-003 + 85.680000000000007 -1.5279496328170872E-003 + 85.740000000000009 -1.4881816762225264E-003 + 85.799999999999983 -1.4499932349405981E-003 + 85.859999999999985 -1.4133572224086263E-003 + 85.919999999999987 -1.3782463059712328E-003 + 85.979999999999990 -1.3446326286083764E-003 + 86.039999999999992 -1.3124883840537596E-003 + 86.099999999999994 -1.2817854240945929E-003 + 86.159999999999997 -1.2524956808252134E-003 + 86.219999999999999 -1.2245908431962192E-003 + 86.280000000000001 -1.1980424890295647E-003 + 86.340000000000003 -1.1728221650071432E-003 + 86.400000000000006 -1.1489012610538354E-003 + 86.460000000000008 -1.1262511942934290E-003 + 86.519999999999982 -1.1048433447989677E-003 + 86.579999999999984 -1.0846490595473640E-003 + 86.639999999999986 -1.0656397916666770E-003 + 86.699999999999989 -1.0477868286678954E-003 + 86.759999999999991 -1.0310616134493488E-003 + 86.819999999999993 -1.0154357288332677E-003 + 86.879999999999995 -1.0008807138675989E-003 + 86.939999999999998 -9.8736814183340176E-004 + 87.000000000000000 -9.7486983132614752E-004 + 87.060000000000002 -9.6335764472626931E-004 + 87.120000000000005 -9.5280364530101510E-004 + 87.180000000000007 -9.4317987280538465E-004 + 87.240000000000009 -9.3445863439813341E-004 + 87.299999999999983 -9.2661244397184025E-004 + 87.359999999999985 -9.1961382361784721E-004 + 87.419999999999987 -9.1343568485217203E-004 + 87.479999999999990 -9.0805091582675198E-004 + 87.539999999999992 -9.0343274974200060E-004 + 87.599999999999994 -8.9955462598024648E-004 + 87.659999999999997 -8.9639004809517330E-004 + 87.719999999999999 -8.9391285591381765E-004 + 87.780000000000001 -8.9209702169416763E-004 + 87.840000000000003 -8.9091687103631367E-004 + 87.900000000000006 -8.9034686709348314E-004 + 87.960000000000008 -8.9036170939483974E-004 + 88.019999999999982 -8.9093645668584815E-004 + 88.079999999999984 -8.9204635185094472E-004 + 88.139999999999986 -8.9366703424375270E-004 + 88.199999999999989 -8.9577424156479649E-004 + 88.259999999999991 -8.9834408994322748E-004 + 88.319999999999993 -9.0135316872805348E-004 + 88.379999999999995 -9.0477817370904212E-004 + 88.439999999999998 -9.0859621984194869E-004 + 88.500000000000000 -9.1278485983412299E-004 + 88.560000000000002 -9.1732182784081816E-004 + 88.620000000000005 -9.2218533302511059E-004 + 88.680000000000007 -9.2735392035713871E-004 + 88.740000000000009 -9.3280637243101853E-004 + 88.799999999999983 -9.3852202056478665E-004 + 88.859999999999985 -9.4448049503020404E-004 + 88.919999999999987 -9.5066165414965415E-004 + 88.979999999999990 -9.5704593177464627E-004 + 89.039999999999992 -9.6361407757588821E-004 + 89.099999999999994 -9.7034713200642563E-004 + 89.159999999999997 -9.7722671022189224E-004 + 89.219999999999999 -9.8423465833257450E-004 + 89.280000000000001 -9.9135331107689313E-004 + 89.340000000000003 -9.9856530809710434E-004 + 89.400000000000006 -1.0058538229705222E-003 + 89.460000000000008 -1.0132023255562748E-003 + 89.519999999999982 -1.0205948848004281E-003 + 89.579999999999984 -1.0280158581215117E-003 + 89.639999999999986 -1.0354500325389349E-003 + 89.699999999999989 -1.0428826103852436E-003 + 89.759999999999991 -1.0502993508663600E-003 + 89.819999999999993 -1.0576863553053177E-003 + 89.879999999999995 -1.0650301578055768E-003 + 89.939999999999998 -1.0723180784940501E-003 + 90.000000000000000 -1.0795373369590295E-003 + 90.060000000000002 -1.0866759586776241E-003 + 90.120000000000005 -1.0937222845444675E-003 + 90.180000000000007 -1.1006651148078141E-003 + 90.240000000000009 -1.1074937541209840E-003 + 90.299999999999983 -1.1141979619087240E-003 + 90.359999999999985 -1.1207679416827296E-003 + 90.419999999999987 -1.1271942488875488E-003 + 90.479999999999990 -1.1334679383690276E-003 + 90.539999999999992 -1.1395805212808846E-003 + 90.599999999999994 -1.1455239198412345E-003 + 90.659999999999997 -1.1512904832743521E-003 + 90.719999999999999 -1.1568730791293085E-003 + 90.780000000000001 -1.1622649144131351E-003 + 90.840000000000003 -1.1674597030137022E-003 + 90.900000000000006 -1.1724514772955166E-003 + 90.960000000000008 -1.1772347285415000E-003 + 91.019999999999982 -1.1818045196806816E-003 + 91.079999999999984 -1.1861561864313502E-003 + 91.139999999999986 -1.1902854222667833E-003 + 91.199999999999989 -1.1941883575303609E-003 + 91.259999999999991 -1.1978614955856239E-003 + 91.319999999999993 -1.2013016829846410E-003 + 91.379999999999995 -1.2045063863945439E-003 + 91.439999999999998 -1.2074732182746125E-003 + 91.500000000000000 -1.2102003142561507E-003 + 91.560000000000002 -1.2126860725512559E-003 + 91.620000000000005 -1.2149294139578784E-003 + 91.680000000000007 -1.2169296330384145E-003 + 91.739999999999981 -1.2186863236956121E-003 + 91.799999999999983 -1.2201996092021117E-003 + 91.859999999999985 -1.2214696964196574E-003 + 91.919999999999987 -1.2224972894276042E-003 + 91.979999999999990 -1.2232835329736924E-003 + 92.039999999999992 -1.2238299443294389E-003 + 92.099999999999994 -1.2241381742980292E-003 + 92.159999999999997 -1.2242104913803605E-003 + 92.219999999999999 -1.2240492037764352E-003 + 92.280000000000001 -1.2236570739468709E-003 + 92.340000000000003 -1.2230370066725242E-003 + 92.400000000000006 -1.2221925399381005E-003 + 92.460000000000008 -1.2211270353921439E-003 + 92.519999999999982 -1.2198442729906220E-003 + 92.579999999999984 -1.2183484658454561E-003 + 92.639999999999986 -1.2166437839298749E-003 + 92.699999999999989 -1.2147345814062054E-003 + 92.759999999999991 -1.2126257398156154E-003 + 92.819999999999993 -1.2103220991032425E-003 + 92.879999999999995 -1.2078288278696411E-003 + 92.939999999999998 -1.2051511655125420E-003 + 93.000000000000000 -1.2022947269514064E-003 + 93.060000000000002 -1.1992649612233815E-003 + 93.120000000000005 -1.1960679026927783E-003 + 93.180000000000007 -1.1927092932368546E-003 + 93.239999999999981 -1.1891952879726677E-003 + 93.299999999999983 -1.1855319795979627E-003 + 93.359999999999985 -1.1817257495334798E-003 + 93.419999999999987 -1.1777829273086425E-003 + 93.479999999999990 -1.1737099800859434E-003 + 93.539999999999992 -1.1695132849185151E-003 + 93.599999999999994 -1.1651994809387524E-003 + 93.659999999999997 -1.1607749956493380E-003 + 93.719999999999999 -1.1562463012455969E-003 + 93.780000000000001 -1.1516200264500057E-003 + 93.840000000000003 -1.1469026352465778E-003 + 93.900000000000006 -1.1421005309825729E-003 + 93.960000000000008 -1.1372201383554506E-003 + 94.019999999999982 -1.1322678138848347E-003 + 94.079999999999984 -1.1272499665338262E-003 + 94.139999999999986 -1.1221727165967618E-003 + 94.199999999999989 -1.1170423430254147E-003 + 94.259999999999991 -1.1118648953532813E-003 + 94.319999999999993 -1.1066466112870813E-003 + 94.379999999999995 -1.1013934327256288E-003 + 94.439999999999998 -1.0961113170375359E-003 + 94.500000000000000 -1.0908060223702931E-003 + 94.560000000000002 -1.0854833964894484E-003 + 94.620000000000005 -1.0801491173516530E-003 + 94.680000000000007 -1.0748087932712460E-003 + 94.739999999999981 -1.0694678548544446E-003 + 94.799999999999983 -1.0641317034075259E-003 + 94.859999999999985 -1.0588056653499350E-003 + 94.919999999999987 -1.0534948794289312E-003 + 94.979999999999990 -1.0482043462584382E-003 + 95.039999999999992 -1.0429390726933217E-003 + 95.099999999999994 -1.0377037275628755E-003 + 95.159999999999997 -1.0325030335571295E-003 + 95.219999999999999 -1.0273416966734314E-003 + 95.280000000000001 -1.0222240484995240E-003 + 95.340000000000003 -1.0171544374083235E-003 + 95.400000000000006 -1.0121372016286935E-003 + 95.460000000000008 -1.0071764235159847E-003 + 95.519999999999982 -1.0022762563522000E-003 + 95.579999999999984 -9.9744063813501471E-004 + 95.639999999999986 -9.9267352768763828E-004 + 95.699999999999989 -9.8797882337574544E-004 + 95.759999999999991 -9.8336041063941263E-004 + 95.819999999999993 -9.7882185988897009E-004 + 95.879999999999995 -9.7436694048633806E-004 + 95.939999999999998 -9.6999930498583035E-004 + 96.000000000000000 -9.6572264617905549E-004 + 96.060000000000002 -9.6154051623136374E-004 + 96.120000000000005 -9.5745643951579700E-004 + 96.180000000000007 -9.5347388209240849E-004 + 96.239999999999981 -9.4959635968264622E-004 + 96.299999999999983 -9.4582729434235940E-004 + 96.359999999999985 -9.4217014554875164E-004 + 96.419999999999987 -9.3862831952129478E-004 + 96.479999999999990 -9.3520519928655963E-004 + 96.539999999999992 -9.3190416912730190E-004 + 96.599999999999994 -9.2872853591080128E-004 + 96.659999999999997 -9.2568162373948045E-004 + 96.719999999999999 -9.2276676277969866E-004 + 96.780000000000001 -9.1998726982500873E-004 + 96.840000000000003 -9.1734645143168672E-004 + 96.900000000000006 -9.1484754015201892E-004 + 96.960000000000008 -9.1249380915457462E-004 + 97.019999999999982 -9.1028850018373350E-004 + 97.079999999999984 -9.0823484342503647E-004 + 97.139999999999986 -9.0633596007974539E-004 + 97.199999999999989 -9.0459500150158294E-004 + 97.259999999999991 -9.0301503800101148E-004 + 97.319999999999993 -9.0159908231814893E-004 + 97.379999999999995 -9.0035017119067119E-004 + 97.439999999999998 -8.9927115966982715E-004 + 97.500000000000000 -8.9836489760213739E-004 + 97.560000000000002 -8.9763414852553683E-004 + 97.620000000000005 -8.9708166652526400E-004 + 97.680000000000007 -8.9670994948150512E-004 + 97.739999999999981 -8.9652153266239895E-004 + 97.799999999999983 -8.9651865630591436E-004 + 97.859999999999985 -8.9670363666285796E-004 + 97.919999999999987 -8.9707857442118070E-004 + 97.979999999999990 -8.9764534185408267E-004 + 98.039999999999992 -8.9840563793846682E-004 + 98.099999999999994 -8.9936106025808617E-004 + 98.159999999999997 -9.0051286478576211E-004 + 98.219999999999999 -9.0186224801046375E-004 + 98.280000000000001 -9.0340997923475327E-004 + 98.340000000000003 -9.0515667668332966E-004 + 98.400000000000006 -9.0710268099557689E-004 + 98.460000000000008 -9.0924797585573451E-004 + 98.519999999999982 -9.1159234537818864E-004 + 98.579999999999984 -9.1413519078606311E-004 + 98.639999999999986 -9.1687562185358647E-004 + 98.699999999999989 -9.1981239224480358E-004 + 98.759999999999991 -9.2294398758591438E-004 + 98.819999999999993 -9.2626840750510242E-004 + 98.879999999999995 -9.2978353465695705E-004 + 98.939999999999998 -9.3348664057310961E-004 + 99.000000000000000 -9.3737476173887915E-004 + 99.060000000000002 -9.4144449842735738E-004 + 99.120000000000005 -9.4569206678807522E-004 + 99.180000000000007 -9.5011335187551455E-004 + 99.239999999999981 -9.5470371236937301E-004 + 99.299999999999983 -9.5945809801675005E-004 + 99.359999999999985 -9.6437095497479432E-004 + 99.419999999999987 -9.6943650746719127E-004 + 99.479999999999990 -9.7464830519054053E-004 + 99.539999999999992 -9.7999941998548330E-004 + 99.599999999999994 -9.8548257954131574E-004 + 99.659999999999997 -9.9108983778971468E-004 + 99.719999999999999 -9.9681277263729954E-004 + 99.780000000000001 -1.0026427172775156E-003 + 99.840000000000003 -1.0085701758266534E-003 + 99.900000000000006 -1.0145852500185264E-003 + 99.960000000000008 -1.0206777634499938E-003 + 100.01999999999998 -1.0268368682288039E-003 + 100.07999999999998 -1.0330511884549469E-003 + 100.13999999999999 -1.0393090704601256E-003 + 100.19999999999999 -1.0455984806527145E-003 + 100.25999999999999 -1.0519068454669382E-003 + 100.31999999999999 -1.0582210992138334E-003 + 100.38000000000000 -1.0645278143232933E-003 + 100.44000000000000 -1.0708132686456579E-003 + 100.50000000000000 -1.0770634698472248E-003 + 100.56000000000000 -1.0832639615728544E-003 + 100.62000000000000 -1.0893999891862468E-003 + 100.68000000000001 -1.0954564635561118E-003 + 100.73999999999998 -1.1014180076904299E-003 + 100.79999999999998 -1.1072689468850060E-003 + 100.85999999999999 -1.1129936178143817E-003 + 100.91999999999999 -1.1185757750366695E-003 + 100.97999999999999 -1.1239994016289852E-003 + 101.03999999999999 -1.1292480333171778E-003 + 101.09999999999999 -1.1343052199718200E-003 + 101.16000000000000 -1.1391544436021848E-003 + 101.22000000000000 -1.1437790540329334E-003 + 101.28000000000000 -1.1481625719554911E-003 + 101.34000000000000 -1.1522883575620568E-003 + 101.40000000000001 -1.1561400703197933E-003 + 101.46000000000001 -1.1597013328437783E-003 + 101.51999999999998 -1.1629560994695115E-003 + 101.57999999999998 -1.1658882733413948E-003 + 101.63999999999999 -1.1684823027819514E-003 + 101.69999999999999 -1.1707226661900794E-003 + 101.75999999999999 -1.1725943446252933E-003 + 101.81999999999999 -1.1740825456552318E-003 + 101.88000000000000 -1.1751729456402930E-003 + 101.94000000000000 -1.1758515953440832E-003 + 102.00000000000000 -1.1761051482892116E-003 + 102.06000000000000 -1.1759206869632461E-003 + 102.12000000000000 -1.1752858633666866E-003 + 102.18000000000001 -1.1741889633828345E-003 + 102.23999999999998 -1.1726190287495916E-003 + 102.29999999999998 -1.1705654717731914E-003 + 102.35999999999999 -1.1680187674154791E-003 + 102.41999999999999 -1.1649700154481623E-003 + 102.47999999999999 -1.1614111215821330E-003 + 102.53999999999999 -1.1573348366374788E-003 + 102.59999999999999 -1.1527347968398839E-003 + 102.66000000000000 -1.1476056866564425E-003 + 102.72000000000000 -1.1419428260913138E-003 + 102.78000000000000 -1.1357427780415222E-003 + 102.84000000000000 -1.1290028827495454E-003 + 102.90000000000001 -1.1217214986662079E-003 + 102.96000000000001 -1.1138980733914575E-003 + 103.01999999999998 -1.1055329159586332E-003 + 103.07999999999998 -1.0966275801985836E-003 + 103.13999999999999 -1.0871845004859948E-003 + 103.19999999999999 -1.0772070276950623E-003 + 103.25999999999999 -1.0666997308941878E-003 + 103.31999999999999 -1.0556680923966561E-003 + 103.38000000000000 -1.0441185716027965E-003 + 103.44000000000000 -1.0320587836724236E-003 + 103.50000000000000 -1.0194972162339221E-003 + 103.56000000000000 -1.0064433934415633E-003 + 103.62000000000000 -9.9290786590767142E-004 + 103.68000000000001 -9.7890213522977337E-004 + 103.73999999999998 -9.6443866074991092E-004 + 103.79999999999998 -9.4953085116050869E-004 + 103.85999999999999 -9.3419299641427556E-004 + 103.91999999999999 -9.1844037082185626E-004 + 103.97999999999999 -9.0228892010896645E-004 + 104.03999999999999 -8.8575561564625989E-004 + 104.09999999999999 -8.6885803441172837E-004 + 104.16000000000000 -8.5161470417956426E-004 + 104.22000000000000 -8.3404462313231109E-004 + 104.28000000000000 -8.1616751288709761E-004 + 104.34000000000000 -7.9800372142159958E-004 + 104.40000000000001 -7.7957413865593005E-004 + 104.46000000000001 -7.6090018059605993E-004 + 104.51999999999998 -7.4200369187722476E-004 + 104.57999999999998 -7.2290685773592183E-004 + 104.63999999999999 -7.0363234052218688E-004 + 104.69999999999999 -6.8420294621677645E-004 + 104.75999999999999 -6.6464181841522285E-004 + 104.81999999999999 -6.4497228578828437E-004 + 104.88000000000000 -6.2521775732183433E-004 + 104.94000000000000 -6.0540180901943682E-004 + 105.00000000000000 -5.8554794933494958E-004 + 105.06000000000000 -5.6567973715736654E-004 + 105.12000000000000 -5.4582057041621993E-004 + 105.18000000000001 -5.2599376102775372E-004 + 105.23999999999998 -5.0622244341622916E-004 + 105.29999999999998 -4.8652944944389668E-004 + 105.35999999999999 -4.6693734739626134E-004 + 105.41999999999999 -4.4746841182376294E-004 + 105.47999999999999 -4.2814448511375113E-004 + 105.53999999999999 -4.0898693715540213E-004 + 105.59999999999999 -3.9001670239151737E-004 + 105.66000000000000 -3.7125428442406254E-004 + 105.72000000000000 -3.5271950620958893E-004 + 105.78000000000000 -3.3443168474132473E-004 + 105.84000000000000 -3.1640949760800225E-004 + 105.90000000000001 -2.9867100426109969E-004 + 105.96000000000001 -2.8123351262440574E-004 + 106.01999999999998 -2.6411370644994841E-004 + 106.07999999999998 -2.4732747956040618E-004 + 106.13999999999999 -2.3088997042725371E-004 + 106.19999999999999 -2.1481555406679091E-004 + 106.25999999999999 -1.9911774141030279E-004 + 106.31999999999999 -1.8380924941881159E-004 + 106.38000000000000 -1.6890189639237764E-004 + 106.44000000000000 -1.5440663553198576E-004 + 106.50000000000000 -1.4033350531915059E-004 + 106.56000000000000 -1.2669164671498911E-004 + 106.62000000000000 -1.1348924155363518E-004 + 106.68000000000001 -1.0073357438620055E-004 + 106.73999999999998 -8.8431003196864086E-005 + 106.79999999999998 -7.6586926166196770E-005 + 106.85999999999999 -6.5205867870485638E-005 + 106.91999999999999 -5.4291430311768544E-005 + 106.97999999999999 -4.3846328528886522E-005 + 107.03999999999999 -3.3872425481466808E-005 + 107.09999999999999 -2.4370730052403600E-005 + 107.16000000000000 -1.5341431548893139E-005 + 107.22000000000000 -6.7839329798807227E-006 + 107.28000000000000 1.3031476632667434E-006 + 107.34000000000000 8.9219351322503127E-006 + 107.40000000000001 1.6075282640877694E-005 + 107.46000000000001 2.2766754001924162E-005 + 107.51999999999998 2.9000599782593051E-005 + 107.57999999999998 3.4781739051178821E-005 + 107.63999999999999 4.0115730132857329E-005 + 107.69999999999999 4.5008763581056674E-005 + 107.75999999999999 4.9467633198532262E-005 + 107.81999999999999 5.3499713778551005E-005 + 107.88000000000000 5.7112933850906548E-005 + 107.94000000000000 6.0315757217089908E-005 + 108.00000000000000 6.3117140264048137E-005 + 108.06000000000000 6.5526503700419193E-005 + 108.12000000000000 6.7553706105378725E-005 + 108.18000000000001 6.9208986287009006E-005 + 108.23999999999998 7.0502943258157953E-005 + 108.29999999999998 7.1446505347116306E-005 + 108.35999999999999 7.2050860514111264E-005 + 108.41999999999999 7.2327435270561524E-005 + 108.47999999999999 7.2287860243961535E-005 + 108.53999999999999 7.1943924147923442E-005 + 108.59999999999999 7.1307538919645536E-005 + 108.66000000000000 7.0390705915836618E-005 + 108.72000000000000 6.9205486398148049E-005 + 108.78000000000000 6.7763974930517225E-005 + 108.84000000000000 6.6078258001522381E-005 + 108.90000000000001 6.4160390275433711E-005 + 108.96000000000001 6.2022371871345793E-005 + 109.01999999999998 5.9676115071804505E-005 + 109.07999999999998 5.7133408494923749E-005 + 109.13999999999999 5.4405898989761775E-005 + 109.19999999999999 5.1505054817737794E-005 + 109.25999999999999 4.8442147893639631E-005 + 109.31999999999999 4.5228211199563197E-005 + 109.38000000000000 4.1874016357963065E-005 + 109.44000000000000 3.8390044982278641E-005 + 109.50000000000000 3.4786458898812154E-005 + 109.56000000000000 3.1073078267310133E-005 + 109.62000000000000 2.7259359507890455E-005 + 109.68000000000001 2.3354366854223889E-005 + 109.73999999999998 1.9366758148505449E-005 + 109.79999999999998 1.5304766368496761E-005 + 109.85999999999999 1.1176181294274731E-005 + 109.91999999999999 6.9883353291931178E-006 + 109.97999999999999 2.7480975908037461E-006 + 110.03999999999999 -1.5381521041284134E-006 + 110.09999999999999 -5.8645318989027768E-006 + 110.16000000000000 -1.0225659045807198E-005 + 110.22000000000000 -1.4616676777557929E-005 + 110.28000000000000 -1.9033255326001287E-005 + 110.34000000000000 -2.3471618540511873E-005 + 110.40000000000001 -2.7928554688172297E-005 + 110.46000000000001 -3.2401421624895232E-005 + 110.51999999999998 -3.6888164259828521E-005 + 110.57999999999998 -4.1387336821631108E-005 + 110.63999999999999 -4.5898091479096901E-005 + 110.69999999999999 -5.0420201636190521E-005 + 110.75999999999999 -5.4954055533390084E-005 + 110.81999999999999 -5.9500666871151754E-005 + 110.88000000000000 -6.4061659834250344E-005 + 110.94000000000000 -6.8639268397632520E-005 + 111.00000000000000 -7.3236333374712237E-005 + 111.06000000000000 -7.7856283264608392E-005 + 111.12000000000000 -8.2503123331007170E-005 + 111.18000000000001 -8.7181391745674017E-005 + 111.23999999999998 -9.1896197014384518E-005 + 111.29999999999998 -9.6653143271766559E-005 + 111.35999999999999 -1.0145834583195848E-004 + 111.41999999999999 -1.0631839179496928E-004 + 111.47999999999999 -1.1124035904290733E-004 + 111.53999999999999 -1.1623174849278695E-004 + 111.59999999999999 -1.2130049639340714E-004 + 111.66000000000000 -1.2645497716104180E-004 + 111.72000000000000 -1.3170394616009740E-004 + 111.78000000000000 -1.3705655352842108E-004 + 111.84000000000000 -1.4252230013557513E-004 + 111.90000000000001 -1.4811107850812104E-004 + 111.96000000000001 -1.5383305123444938E-004 + 112.01999999999998 -1.5969871516992130E-004 + 112.07999999999998 -1.6571881999641970E-004 + 112.13999999999999 -1.7190439084019594E-004 + 112.19999999999999 -1.7826662833526086E-004 + 112.25999999999999 -1.8481692068420658E-004 + 112.31999999999999 -1.9156681227881539E-004 + 112.38000000000000 -1.9852793183528799E-004 + 112.44000000000000 -2.0571198400144030E-004 + 112.50000000000000 -2.1313069122081451E-004 + 112.56000000000000 -2.2079576194127903E-004 + 112.62000000000000 -2.2871887550503255E-004 + 112.68000000000001 -2.3691155634347568E-004 + 112.73999999999998 -2.4538525834750673E-004 + 112.79999999999998 -2.5415123575837830E-004 + 112.85999999999999 -2.6322056536907089E-004 + 112.91999999999999 -2.7260404613296092E-004 + 112.97999999999999 -2.8231222357622676E-004 + 113.03999999999999 -2.9235527540825019E-004 + 113.09999999999999 -3.0274307098821158E-004 + 113.16000000000000 -3.1348502076006935E-004 + 113.22000000000000 -3.2459012992635590E-004 + 113.28000000000000 -3.3606688078048955E-004 + 113.34000000000000 -3.4792321766727541E-004 + 113.40000000000001 -3.6016652746452126E-004 + 113.46000000000001 -3.7280346208083865E-004 + 113.51999999999998 -3.8584015834350631E-004 + 113.57999999999998 -3.9928187171395598E-004 + 113.63999999999999 -4.1313320880319993E-004 + 113.69999999999999 -4.2739795806973004E-004 + 113.75999999999999 -4.4207902883423714E-004 + 113.81999999999999 -4.5717846240526548E-004 + 113.88000000000000 -4.7269740665729232E-004 + 113.94000000000000 -4.8863610971397139E-004 + 114.00000000000000 -5.0499383787893206E-004 + 114.06000000000000 -5.2176884222747346E-004 + 114.12000000000000 -5.3895840138445147E-004 + 114.18000000000001 -5.5655874820649521E-004 + 114.23999999999998 -5.7456507564351063E-004 + 114.29999999999998 -5.9297146271645367E-004 + 114.35999999999999 -6.1177091402867174E-004 + 114.41999999999999 -6.3095527687489909E-004 + 114.47999999999999 -6.5051529464707578E-004 + 114.53999999999999 -6.7044038791749783E-004 + 114.59999999999999 -6.9071892795191322E-004 + 114.66000000000000 -7.1133804040249510E-004 + 114.72000000000000 -7.3228359390373286E-004 + 114.78000000000000 -7.5354019105011868E-004 + 114.84000000000000 -7.7509109892481278E-004 + 114.90000000000001 -7.9691855268368568E-004 + 114.96000000000001 -8.1900342992683589E-004 + 115.01999999999998 -8.4132534410433224E-004 + 115.07999999999998 -8.6386278044426441E-004 + 115.13999999999999 -8.8659295295117854E-004 + 115.19999999999999 -9.0949192004976067E-004 + 115.25999999999999 -9.3253463426981880E-004 + 115.31999999999999 -9.5569490067479038E-004 + 115.38000000000000 -9.7894571292107325E-004 + 115.44000000000000 -1.0022588227285862E-003 + 115.50000000000000 -1.0256050215401002E-003 + 115.56000000000000 -1.0489542812560069E-003 + 115.62000000000000 -1.0722756634595979E-003 + 115.68000000000001 -1.0955372827727028E-003 + 115.73999999999998 -1.1187067483394979E-003 + 115.79999999999998 -1.1417506442227489E-003 + 115.85999999999999 -1.1646349753283852E-003 + 115.91999999999999 -1.1873251105680108E-003 + 115.97999999999999 -1.2097858851988180E-003 + 116.03999999999999 -1.2319815548080813E-003 + 116.09999999999999 -1.2538759570740940E-003 + 116.16000000000000 -1.2754326599240039E-003 + 116.22000000000000 -1.2966147482863491E-003 + 116.28000000000000 -1.3173853177756503E-003 + 116.34000000000000 -1.3377071739621978E-003 + 116.40000000000001 -1.3575431771745495E-003 + 116.46000000000001 -1.3768561105254335E-003 + 116.51999999999998 -1.3956090947106800E-003 + 116.57999999999998 -1.4137653488057119E-003 + 116.63999999999999 -1.4312885380786651E-003 + 116.69999999999999 -1.4481425788468627E-003 + 116.75999999999999 -1.4642920343746046E-003 + 116.81999999999999 -1.4797020481050682E-003 + 116.88000000000000 -1.4943383306640196E-003 + 116.94000000000000 -1.5081675226559360E-003 + 117.00000000000000 -1.5211570671494813E-003 + 117.06000000000000 -1.5332752864297904E-003 + 117.12000000000000 -1.5444917113052352E-003 + 117.18000000000001 -1.5547766983847174E-003 + 117.23999999999998 -1.5641020243734502E-003 + 117.29999999999998 -1.5724406252612330E-003 + 117.35999999999999 -1.5797667900270746E-003 + 117.41999999999999 -1.5860563211788463E-003 + 117.47999999999999 -1.5912865194193727E-003 + 117.53999999999999 -1.5954361791295354E-003 + 117.59999999999999 -1.5984857504497303E-003 + 117.66000000000000 -1.6004174741440645E-003 + 117.72000000000000 -1.6012153269669429E-003 + 117.78000000000000 -1.6008651455773012E-003 + 117.84000000000000 -1.5993545668457347E-003 + 117.90000000000001 -1.5966733209998752E-003 + 117.96000000000001 -1.5928129893344361E-003 + 118.01999999999998 -1.5877672089643032E-003 + 118.07999999999998 -1.5815315778599619E-003 + 118.13999999999999 -1.5741039382352266E-003 + 118.19999999999999 -1.5654838037436533E-003 + 118.25999999999999 -1.5556730890165021E-003 + 118.31999999999999 -1.5446756327192339E-003 + 118.38000000000000 -1.5324972457198436E-003 + 118.44000000000000 -1.5191461071946495E-003 + 118.50000000000000 -1.5046322616839186E-003 + 118.56000000000000 -1.4889677153974970E-003 + 118.62000000000000 -1.4721667452147153E-003 + 118.68000000000001 -1.4542453175228664E-003 + 118.73999999999998 -1.4352217846909663E-003 + 118.79999999999998 -1.4151161207208182E-003 + 118.85999999999999 -1.3939504320507577E-003 + 118.91999999999999 -1.3717485691671937E-003 + 118.97999999999999 -1.3485362837818305E-003 + 119.03999999999999 -1.3243410609022805E-003 + 119.09999999999999 -1.2991922098099667E-003 + 119.16000000000000 -1.2731205239921537E-003 + 119.22000000000000 -1.2461585094115748E-003 + 119.28000000000000 -1.2183401273604048E-003 + 119.34000000000000 -1.1897006416586272E-003 + 119.40000000000001 -1.1602767559796021E-003 + 119.46000000000001 -1.1301063690854546E-003 + 119.51999999999998 -1.0992285605235252E-003 + 119.57999999999998 -1.0676833195064738E-003 + 119.63999999999999 -1.0355115625053349E-003 + 119.69999999999999 -1.0027552695634414E-003 + 119.75999999999999 -9.6945709472188979E-004 + 119.81999999999999 -9.3566020120632693E-004 + 119.88000000000000 -9.0140853230962154E-004 + 119.94000000000000 -8.6674635789477398E-004 + 120.00000000000000 -8.3171821259313858E-004 + 120.06000000000000 -7.9636910816931455E-004 + 120.12000000000000 -7.6074417439557257E-004 + 120.18000000000001 -7.2488852761353200E-004 + 120.23999999999998 -6.8884729795128975E-004 + 120.29999999999998 -6.5266552351014211E-004 + 120.35999999999999 -6.1638786102830620E-004 + 120.41999999999999 -5.8005873716838259E-004 + 120.47999999999999 -5.4372208893114604E-004 + 120.53999999999999 -5.0742133668427191E-004 + 120.59999999999999 -4.7119928732362794E-004 + 120.66000000000000 -4.3509799876436999E-004 + 120.72000000000000 -3.9915874992482671E-004 + 120.78000000000000 -3.6342191576374630E-004 + 120.84000000000000 -3.2792693442198302E-004 + 120.90000000000001 -2.9271220285676132E-004 + 120.95999999999998 -2.5781507457414558E-004 + 121.01999999999998 -2.2327169025989065E-004 + 121.07999999999998 -1.8911704024916876E-004 + 121.13999999999999 -1.5538483908685919E-004 + 121.19999999999999 -1.2210754063525742E-004 + 121.25999999999999 -8.9316234381743855E-005 + 121.31999999999999 -5.7040594343066986E-005 + 121.38000000000000 -2.5308896652555639E-005 + 121.44000000000000 5.8520927872595966E-006 + 121.50000000000000 3.6417091135983614E-005 + 121.56000000000000 6.6362362711474366E-005 + 121.62000000000000 9.5665740171892215E-005 + 121.68000000000001 1.2430663774413200E-004 + 121.73999999999998 1.5226610502495889E-004 + 121.79999999999998 1.7952681748381654E-004 + 121.85999999999999 2.0607301605437292E-004 + 121.91999999999999 2.3189062781302838E-004 + 121.97999999999999 2.5696710818161577E-004 + 122.03999999999999 2.8129156224903436E-004 + 122.09999999999999 3.0485460853681221E-004 + 122.16000000000000 3.2764840113918577E-004 + 122.22000000000000 3.4966665134491078E-004 + 122.28000000000000 3.7090437071761955E-004 + 122.34000000000000 3.9135812734305419E-004 + 122.40000000000001 4.1102576919623240E-004 + 122.45999999999998 4.2990649160788854E-004 + 122.51999999999998 4.4800075985602071E-004 + 122.57999999999998 4.6531030624912380E-004 + 122.63999999999999 4.8183801733799183E-004 + 122.69999999999999 4.9758797766975436E-004 + 122.75999999999999 5.1256537105444225E-004 + 122.81999999999999 5.2677652163201716E-004 + 122.88000000000000 5.4022865977845205E-004 + 122.94000000000000 5.5293011599710578E-004 + 123.00000000000000 5.6489016846879704E-004 + 123.06000000000000 5.7611897866390103E-004 + 123.12000000000000 5.8662753642839437E-004 + 123.18000000000001 5.9642761598223209E-004 + 123.23999999999998 6.0553186552887283E-004 + 123.29999999999998 6.1395345708358722E-004 + 123.35999999999999 6.2170624797451980E-004 + 123.41999999999999 6.2880471940364620E-004 + 123.47999999999999 6.3526372544902719E-004 + 123.53999999999999 6.4109865142267567E-004 + 123.59999999999999 6.4632520827682992E-004 + 123.66000000000000 6.5095945909942048E-004 + 123.72000000000000 6.5501772954142427E-004 + 123.78000000000000 6.5851653743924821E-004 + 123.84000000000000 6.6147250299249398E-004 + 123.90000000000001 6.6390254010065492E-004 + 123.95999999999998 6.6582356359034915E-004 + 124.01999999999998 6.6725236784386367E-004 + 124.07999999999998 6.6820594188960478E-004 + 124.13999999999999 6.6870127033159799E-004 + 124.19999999999999 6.6875513485824777E-004 + 124.25999999999999 6.6838430399531346E-004 + 124.31999999999999 6.6760537674936829E-004 + 124.38000000000000 6.6643490903697279E-004 + 124.44000000000000 6.6488920742017055E-004 + 124.50000000000000 6.6298428246746232E-004 + 124.56000000000000 6.6073601614934259E-004 + 124.62000000000000 6.5816003366741345E-004 + 124.68000000000001 6.5527159575291425E-004 + 124.73999999999998 6.5208579103349820E-004 + 124.79999999999998 6.4861716561360637E-004 + 124.85999999999999 6.4488011137749318E-004 + 124.91999999999999 6.4088860897471023E-004 + 124.97999999999999 6.3665626296466804E-004 + 125.03999999999999 6.3219627876171707E-004 + 125.09999999999999 6.2752155930410414E-004 + 125.16000000000000 6.2264456938400988E-004 + 125.22000000000000 6.1757742576484267E-004 + 125.28000000000000 6.1233185332898563E-004 + 125.34000000000000 6.0691923113990532E-004 + 125.40000000000001 6.0135049535024829E-004 + 125.45999999999998 5.9563622050891763E-004 + 125.51999999999998 5.8978658229729276E-004 + 125.57999999999998 5.8381138450729216E-004 + 125.63999999999999 5.7772007621433258E-004 + 125.69999999999999 5.7152160110188080E-004 + 125.75999999999999 5.6522464109204037E-004 + 125.81999999999999 5.5883745874371442E-004 + 125.88000000000000 5.5236794895398809E-004 + 125.94000000000000 5.4582357450100013E-004 + 126.00000000000000 5.3921149670477003E-004 + 126.06000000000000 5.3253848500975625E-004 + 126.12000000000000 5.2581104581665662E-004 + 126.18000000000001 5.1903531876056909E-004 + 126.23999999999998 5.1221710855811424E-004 + 126.29999999999998 5.0536209915386283E-004 + 126.35999999999999 4.9847547665437327E-004 + 126.41999999999999 4.9156235475749461E-004 + 126.47999999999999 4.8462750281178272E-004 + 126.53999999999999 4.7767558535037754E-004 + 126.59999999999999 4.7071093997100543E-004 + 126.66000000000000 4.6373778302557980E-004 + 126.72000000000000 4.5676002980542707E-004 + 126.78000000000000 4.4978149094717171E-004 + 126.84000000000000 4.4280573913851455E-004 + 126.90000000000001 4.3583613595241262E-004 + 126.95999999999998 4.2887589204482533E-004 + 127.01999999999998 4.2192804231250736E-004 + 127.07999999999998 4.1499537644986123E-004 + 127.13999999999999 4.0808053812805048E-004 + 127.19999999999999 4.0118600916400337E-004 + 127.25999999999999 3.9431413503820414E-004 + 127.31999999999999 3.8746708665253867E-004 + 127.38000000000000 3.8064700391548633E-004 + 127.44000000000000 3.7385579643297331E-004 + 127.50000000000000 3.6709537713751968E-004 + 127.56000000000000 3.6036757545529680E-004 + 127.62000000000000 3.5367411582353837E-004 + 127.68000000000001 3.4701674953413616E-004 + 127.73999999999998 3.4039713923042503E-004 + 127.79999999999998 3.3381693464040697E-004 + 127.85999999999999 3.2727774650539277E-004 + 127.91999999999999 3.2078112193059709E-004 + 127.97999999999999 3.1432860885344043E-004 + 128.03999999999999 3.0792174704515556E-004 + 128.09999999999999 3.0156199773600752E-004 + 128.16000000000000 2.9525076746829849E-004 + 128.22000000000000 2.8898942180122071E-004 + 128.28000000000000 2.8277932530173578E-004 + 128.34000000000000 2.7662174019738565E-004 + 128.40000000000001 2.7051788958199017E-004 + 128.45999999999998 2.6446899135569970E-004 + 128.51999999999998 2.5847621538063184E-004 + 128.57999999999998 2.5254071052028030E-004 + 128.63999999999999 2.4666362228439322E-004 + 128.69999999999999 2.4084608054786966E-004 + 128.75999999999999 2.3508923578500858E-004 + 128.81999999999999 2.2939423309949953E-004 + 128.88000000000000 2.2376225392073564E-004 + 128.94000000000000 2.1819449861511708E-004 + 129.00000000000000 2.1269217725765935E-004 + 129.06000000000000 2.0725650057443846E-004 + 129.12000000000000 2.0188872064758151E-004 + 129.18000000000001 1.9659007062165440E-004 + 129.23999999999998 1.9136177897769639E-004 + 129.29999999999998 1.8620508850526120E-004 + 129.35999999999999 1.8112120061936201E-004 + 129.41999999999999 1.7611130211408682E-004 + 129.47999999999999 1.7117653221926696E-004 + 129.53999999999999 1.6631800960893847E-004 + 129.59999999999999 1.6153682853595341E-004 + 129.66000000000000 1.5683405924105126E-004 + 129.72000000000000 1.5221076454674691E-004 + 129.78000000000000 1.4766796576511342E-004 + 129.84000000000000 1.4320668772155730E-004 + 129.90000000000001 1.3882798181396751E-004 + 129.95999999999998 1.3453288505293440E-004 + 130.01999999999998 1.3032247251276328E-004 + 130.07999999999998 1.2619783043920233E-004 + 130.13999999999999 1.2216007425364095E-004 + 130.19999999999999 1.1821034393497918E-004 + 130.25999999999999 1.1434979916565246E-004 + 130.31999999999999 1.1057962057359373E-004 + 130.38000000000000 1.0690100523756860E-004 + 130.44000000000000 1.0331515429207160E-004 + 130.50000000000000 9.9823273515822766E-005 + 130.56000000000000 9.6426559832300677E-005 + 130.62000000000000 9.3126205888722740E-005 + 130.68000000000001 8.9923398061811946E-005 + 130.73999999999998 8.6819299014914903E-005 + 130.79999999999998 8.3815057470118369E-005 + 130.85999999999999 8.0911807288501237E-005 + 130.91999999999999 7.8110676817325298E-005 + 130.97999999999999 7.5412777128378063E-005 + 131.03999999999999 7.2819221720023399E-005 + 131.09999999999999 7.0331108701660250E-005 + 131.16000000000000 6.7949528701354353E-005 + 131.22000000000000 6.5675586552626643E-005 + 131.28000000000000 6.3510370818194896E-005 + 131.34000000000000 6.1454961261861788E-005 + 131.40000000000001 5.9510430445751503E-005 + 131.45999999999998 5.7677838082333204E-005 + 131.51999999999998 5.5958232478608923E-005 + 131.57999999999998 5.4352617355563498E-005 + 131.63999999999999 5.2861988146288868E-005 + 131.69999999999999 5.1487291318128431E-005 + 131.75999999999999 5.0229446534271672E-005 + 131.81999999999999 4.9089335281967985E-005 + 131.88000000000000 4.8067807883877430E-005 + 131.94000000000000 4.7165678866430823E-005 + 132.00000000000000 4.6383731871736337E-005 + 132.06000000000000 4.5722727249202015E-005 + 132.12000000000000 4.5183395838768384E-005 + 132.18000000000001 4.4766459050846799E-005 + 132.23999999999998 4.4472616304698868E-005 + 132.29999999999998 4.4302547890668276E-005 + 132.35999999999999 4.4256924075078153E-005 + 132.41999999999999 4.4336385324241363E-005 + 132.47999999999999 4.4541550413487580E-005 + 132.53999999999999 4.4873004968750646E-005 + 132.59999999999999 4.5331294552441273E-005 + 132.66000000000000 4.5916911090191192E-005 + 132.72000000000000 4.6630287604295610E-005 + 132.78000000000000 4.7471799572352637E-005 + 132.84000000000000 4.8441736369288529E-005 + 132.90000000000001 4.9540321720333720E-005 + 132.95999999999998 5.0767701570137966E-005 + 133.01999999999998 5.2123930107231958E-005 + 133.07999999999998 5.3609003334119637E-005 + 133.13999999999999 5.5222844664544425E-005 + 133.19999999999999 5.6965320781695343E-005 + 133.25999999999999 5.8836243584951590E-005 + 133.31999999999999 6.0835392991771777E-005 + 133.38000000000000 6.2962504520367688E-005 + 133.44000000000000 6.5217295554297991E-005 + 133.50000000000000 6.7599466199612146E-005 + 133.56000000000000 7.0108699629177116E-005 + 133.62000000000000 7.2744672341918976E-005 + 133.68000000000001 7.5507041533655957E-005 + 133.73999999999998 7.8395439643809663E-005 + 133.79999999999998 8.1409476116533046E-005 + 133.85999999999999 8.4548733314262142E-005 + 133.91999999999999 8.7812739987919023E-005 + 133.97999999999999 9.1200982996026965E-005 + 134.03999999999999 9.4712895667407345E-005 + 134.09999999999999 9.8347833101186763E-005 + 134.16000000000000 1.0210510199441312E-004 + 134.22000000000000 1.0598393051603616E-004 + 134.28000000000000 1.0998348550830880E-004 + 134.34000000000000 1.1410286924370893E-004 + 134.40000000000001 1.1834111463718960E-004 + 134.45999999999998 1.2269718660451402E-004 + 134.51999999999998 1.2717002929347025E-004 + 134.57999999999998 1.3175850068152193E-004 + 134.63999999999999 1.3646145497753803E-004 + 134.69999999999999 1.4127767485274807E-004 + 134.75999999999999 1.4620591602111709E-004 + 134.81999999999999 1.5124489865407263E-004 + 134.88000000000000 1.5639326840258063E-004 + 134.94000000000000 1.6164963839515042E-004 + 135.00000000000000 1.6701253259701894E-004 + 135.06000000000000 1.7248042419697846E-004 + 135.12000000000000 1.7805170788439938E-004 + 135.18000000000001 1.8372467847976273E-004 + 135.23999999999998 1.8949753620579995E-004 + 135.29999999999998 1.9536838333315321E-004 + 135.35999999999999 2.0133518095277953E-004 + 135.41999999999999 2.0739581695536740E-004 + 135.47999999999999 2.1354802221707389E-004 + 135.53999999999999 2.1978944096947742E-004 + 135.59999999999999 2.2611756980311020E-004 + 135.66000000000000 2.3252979302002084E-004 + 135.72000000000000 2.3902337171256450E-004 + 135.78000000000000 2.4559542385511494E-004 + 135.84000000000000 2.5224295792358487E-004 + 135.90000000000001 2.5896280422362238E-004 + 135.95999999999998 2.6575169654334351E-004 + 136.01999999999998 2.7260621240565475E-004 + 136.07999999999998 2.7952272739578974E-004 + 136.13999999999999 2.8649747133680176E-004 + 136.19999999999999 2.9352645646742696E-004 + 136.25999999999999 3.0060554606133923E-004 + 136.31999999999999 3.0773031858912940E-004 + 136.38000000000000 3.1489620005783445E-004 + 136.44000000000000 3.2209837789896363E-004 + 136.50000000000000 3.2933178876224842E-004 + 136.56000000000000 3.3659114511422339E-004 + 136.62000000000000 3.4387094355758176E-004 + 136.68000000000001 3.5116545488036614E-004 + 136.73999999999998 3.5846872316064012E-004 + 136.79999999999998 3.6577456543833138E-004 + 136.85999999999999 3.7307662807487864E-004 + 136.91999999999999 3.8036836859369145E-004 + 136.97999999999999 3.8764294910045984E-004 + 137.03999999999999 3.9489347003779721E-004 + 137.09999999999999 4.0211273900881106E-004 + 137.16000000000000 4.0929350244491811E-004 + 137.22000000000000 4.1642824013364050E-004 + 137.28000000000000 4.2350923104220888E-004 + 137.34000000000000 4.3052860985439139E-004 + 137.40000000000001 4.3747837227040953E-004 + 137.45999999999998 4.4435027069334549E-004 + 137.51999999999998 4.5113584310782192E-004 + 137.57999999999998 4.5782651376346796E-004 + 137.63999999999999 4.6441348591638178E-004 + 137.69999999999999 4.7088782570750169E-004 + 137.75999999999999 4.7724042742840596E-004 + 137.81999999999999 4.8346205162350814E-004 + 137.88000000000000 4.8954335491683426E-004 + 137.94000000000000 4.9547489529625801E-004 + 138.00000000000000 5.0124712421497090E-004 + 138.06000000000000 5.0685046704455547E-004 + 138.12000000000000 5.1227534827242573E-004 + 138.18000000000001 5.1751212863191396E-004 + 138.23999999999998 5.2255125643562393E-004 + 138.29999999999998 5.2738318401824853E-004 + 138.35999999999999 5.3199846362308372E-004 + 138.41999999999999 5.3638768438998711E-004 + 138.47999999999999 5.4054155354147846E-004 + 138.53999999999999 5.4445101605921640E-004 + 138.59999999999999 5.4810698485122219E-004 + 138.66000000000000 5.5150060819170025E-004 + 138.72000000000000 5.5462332430203549E-004 + 138.78000000000000 5.5746664211199374E-004 + 138.84000000000000 5.6002235443539474E-004 + 138.90000000000001 5.6228253210396841E-004 + 138.95999999999998 5.6423946860032121E-004 + 139.01999999999998 5.6588581028963272E-004 + 139.07999999999998 5.6721443701585657E-004 + 139.13999999999999 5.6821868055925381E-004 + 139.19999999999999 5.6889223459729427E-004 + 139.25999999999999 5.6922918985096013E-004 + 139.31999999999999 5.6922397323656306E-004 + 139.38000000000000 5.6887159131792560E-004 + 139.44000000000000 5.6816743164893964E-004 + 139.50000000000000 5.6710736705979355E-004 + 139.56000000000000 5.6568777207907173E-004 + 139.62000000000000 5.6390550611939180E-004 + 139.68000000000001 5.6175803614281399E-004 + 139.73999999999998 5.5924325418808113E-004 + 139.79999999999998 5.5635966076189147E-004 + 139.85999999999999 5.5310629526922350E-004 + 139.91999999999999 5.4948270177873767E-004 + 139.97999999999999 5.4548904889054539E-004 + 140.03999999999999 5.4112615649423918E-004 + 140.09999999999999 5.3639530620758680E-004 + 140.16000000000000 5.3129847479908756E-004 + 140.22000000000000 5.2583828470716511E-004 + 140.28000000000000 5.2001797783421497E-004 + 140.34000000000000 5.1384132918127600E-004 + 140.40000000000001 5.0731289038995751E-004 + 140.45999999999998 5.0043774344893681E-004 + 140.51999999999998 4.9322166643710500E-004 + 140.57999999999998 4.8567112186364794E-004 + 140.63999999999999 4.7779312355748793E-004 + 140.69999999999999 4.6959528780335369E-004 + 140.75999999999999 4.6108582144667606E-004 + 140.81999999999999 4.5227343192872662E-004 + 140.88000000000000 4.4316746263312772E-004 + 140.94000000000000 4.3377769507290439E-004 + 141.00000000000000 4.2411440062511317E-004 + 141.06000000000000 4.1418830425576979E-004 + 141.12000000000000 4.0401059996196921E-004 + 141.18000000000001 3.9359281744718737E-004 + 141.23999999999998 3.8294692017550410E-004 + 141.29999999999998 3.7208519849030619E-004 + 141.35999999999999 3.6102030128102913E-004 + 141.41999999999999 3.4976521789490924E-004 + 141.47999999999999 3.3833322723103348E-004 + 141.53999999999999 3.2673788881738353E-004 + 141.59999999999999 3.1499299736507431E-004 + 141.66000000000000 3.0311266925950060E-004 + 141.72000000000000 2.9111114539329683E-004 + 141.78000000000000 2.7900292520843594E-004 + 141.84000000000000 2.6680262476538175E-004 + 141.90000000000001 2.5452497498344338E-004 + 141.95999999999998 2.4218482765419905E-004 + 142.01999999999998 2.2979706565528731E-004 + 142.07999999999998 2.1737656865827886E-004 + 142.13999999999999 2.0493817641899730E-004 + 142.19999999999999 1.9249669883212542E-004 + 142.25999999999999 1.8006679027276321E-004 + 142.31999999999999 1.6766294752245634E-004 + 142.38000000000000 1.5529951615798082E-004 + 142.44000000000000 1.4299060515609701E-004 + 142.50000000000000 1.3075008477373912E-004 + 142.56000000000000 1.1859153966533255E-004 + 142.62000000000000 1.0652827552720830E-004 + 142.68000000000001 9.4573257401936765E-005 + 142.73999999999998 8.2739130258738713E-005 + 142.79999999999998 7.1038169557837748E-005 + 142.85999999999999 5.9482270485166116E-005 + 142.91999999999999 4.8082924888895131E-005 + 142.97999999999999 3.6851213814141621E-005 + 143.03999999999999 2.5797798743462038E-005 + 143.09999999999999 1.4932872533749554E-005 + 143.16000000000000 4.2661662991088901E-006 + 143.22000000000000 -6.1930870867508066E-006 + 143.28000000000000 -1.6436146868270482E-005 + 143.34000000000000 -2.6454799722843836E-005 + 143.40000000000001 -3.6241357264269615E-005 + 143.45999999999998 -4.5788678259876868E-005 + 143.51999999999998 -5.5090163386516491E-005 + 143.57999999999998 -6.4139767544819901E-005 + 143.63999999999999 -7.2932022424079709E-005 + 143.69999999999999 -8.1461985949684375E-005 + 143.75999999999999 -8.9725295534601347E-005 + 143.81999999999999 -9.7718130534814459E-005 + 143.88000000000000 -1.0543722839553366E-004 + 143.94000000000000 -1.1287984602856306E-004 + 144.00000000000000 -1.2004379352407464E-004 + 144.06000000000000 -1.2692740649471767E-004 + 144.12000000000000 -1.3352953943283267E-004 + 144.18000000000001 -1.3984954965507907E-004 + 144.23999999999998 -1.4588732021317990E-004 + 144.29999999999998 -1.5164323581340049E-004 + 144.35999999999999 -1.5711813615528782E-004 + 144.41999999999999 -1.6231337288290693E-004 + 144.47999999999999 -1.6723076799343483E-004 + 144.53999999999999 -1.7187259244508501E-004 + 144.59999999999999 -1.7624154860048532E-004 + 144.66000000000000 -1.8034078287513557E-004 + 144.72000000000000 -1.8417384192012887E-004 + 144.78000000000000 -1.8774465212697183E-004 + 144.84000000000000 -1.9105750024997779E-004 + 144.90000000000001 -1.9411700938245613E-004 + 144.95999999999998 -1.9692814105989694E-004 + 145.01999999999998 -1.9949611179892116E-004 + 145.07999999999998 -2.0182641378612163E-004 + 145.13999999999999 -2.0392478323664410E-004 + 145.19999999999999 -2.0579716890742621E-004 + 145.25999999999999 -2.0744972678804691E-004 + 145.31999999999999 -2.0888880425771491E-004 + 145.38000000000000 -2.1012089959256347E-004 + 145.44000000000000 -2.1115266812092587E-004 + 145.50000000000000 -2.1199088065708448E-004 + 145.56000000000000 -2.1264247274199253E-004 + 145.62000000000000 -2.1311445550841254E-004 + 145.68000000000001 -2.1341395377542422E-004 + 145.73999999999998 -2.1354815874478629E-004 + 145.79999999999998 -2.1352433502192132E-004 + 145.85999999999999 -2.1334978243535242E-004 + 145.91999999999999 -2.1303182740281643E-004 + 145.97999999999999 -2.1257782782148197E-004 + 146.03999999999999 -2.1199509720713357E-004 + 146.09999999999999 -2.1129094175124100E-004 + 146.16000000000000 -2.1047257772301186E-004 + 146.22000000000000 -2.0954718540739474E-004 + 146.28000000000000 -2.0852182212539508E-004 + 146.34000000000000 -2.0740345669938634E-004 + 146.40000000000001 -2.0619891068816907E-004 + 146.45999999999998 -2.0491489679817193E-004 + 146.51999999999998 -2.0355798287383770E-004 + 146.57999999999998 -2.0213456113469020E-004 + 146.63999999999999 -2.0065090287985871E-004 + 146.69999999999999 -1.9911308940221250E-004 + 146.75999999999999 -1.9752709007475749E-004 + 146.81999999999999 -1.9589867722348130E-004 + 146.88000000000000 -1.9423347499664969E-004 + 146.94000000000000 -1.9253695671331308E-004 + 147.00000000000000 -1.9081441372770174E-004 + 147.06000000000000 -1.8907095351473668E-004 + 147.12000000000000 -1.8731151950381430E-004 + 147.18000000000001 -1.8554082994597212E-004 + 147.23999999999998 -1.8376343989834316E-004 + 147.29999999999998 -1.8198367037345736E-004 + 147.35999999999999 -1.8020562426287659E-004 + 147.41999999999999 -1.7843318334934100E-004 + 147.47999999999999 -1.7666998101959470E-004 + 147.53999999999999 -1.7491942049162863E-004 + 147.59999999999999 -1.7318468363234133E-004 + 147.66000000000000 -1.7146868464387353E-004 + 147.72000000000000 -1.6977412842811537E-004 + 147.78000000000000 -1.6810349054428871E-004 + 147.84000000000000 -1.6645904277955487E-004 + 147.90000000000001 -1.6484283204932883E-004 + 147.95999999999998 -1.6325673508878568E-004 + 148.01999999999998 -1.6170243875919752E-004 + 148.07999999999998 -1.6018148550896554E-004 + 148.13999999999999 -1.5869524127502048E-004 + 148.19999999999999 -1.5724491339381156E-004 + 148.25999999999999 -1.5583158488414436E-004 + 148.31999999999999 -1.5445620063935688E-004 + 148.38000000000000 -1.5311954397172951E-004 + 148.44000000000000 -1.5182227598389985E-004 + 148.50000000000000 -1.5056493807048650E-004 + 148.56000000000000 -1.4934789822973249E-004 + 148.62000000000000 -1.4817139606272629E-004 + 148.68000000000001 -1.4703553394117684E-004 + 148.73999999999998 -1.4594025531321767E-004 + 148.79999999999998 -1.4488538140192901E-004 + 148.85999999999999 -1.4387058798169750E-004 + 148.91999999999999 -1.4289540811416711E-004 + 148.97999999999999 -1.4195927291873510E-004 + 149.03999999999999 -1.4106146826347205E-004 + 149.09999999999999 -1.4020121823380007E-004 + 149.16000000000000 -1.3937764856639329E-004 + 149.22000000000000 -1.3858978692556421E-004 + 149.28000000000000 -1.3783663226084450E-004 + 149.34000000000000 -1.3711709398456316E-004 + 149.40000000000001 -1.3643007003881640E-004 + 149.45999999999998 -1.3577443232978416E-004 + 149.51999999999998 -1.3514902360950768E-004 + 149.57999999999998 -1.3455265770760119E-004 + 149.63999999999999 -1.3398416185958289E-004 + 149.69999999999999 -1.3344235001212305E-004 + 149.75999999999999 -1.3292602730954650E-004 + 149.81999999999999 -1.3243401882222770E-004 + 149.88000000000000 -1.3196512068273074E-004 + 149.94000000000000 -1.3151814385759306E-004 + 150.00000000000000 -1.3109192065981781E-004 + 150.06000000000000 -1.3068527558019819E-004 + 150.12000000000000 -1.3029706568266455E-004 + 150.18000000000001 -1.2992612938825482E-004 + 150.23999999999998 -1.2957134184847676E-004 + 150.29999999999998 -1.2923157466407706E-004 + 150.35999999999999 -1.2890573631367560E-004 + 150.41999999999999 -1.2859273992606464E-004 + 150.47999999999999 -1.2829154279635378E-004 + 150.53999999999999 -1.2800109512330521E-004 + 150.59999999999999 -1.2772037506002566E-004 + 150.66000000000000 -1.2744839084012353E-004 + 150.72000000000000 -1.2718417364378535E-004 + 150.78000000000000 -1.2692676459849891E-004 + 150.84000000000000 -1.2667523341082265E-004 + 150.90000000000001 -1.2642863654179501E-004 + 150.95999999999998 -1.2618607386313802E-004 + 151.01999999999998 -1.2594668707008037E-004 + 151.07999999999998 -1.2570960355201064E-004 + 151.13999999999999 -1.2547402482670117E-004 + 151.19999999999999 -1.2523916419696497E-004 + 151.25999999999999 -1.2500427638020576E-004 + 151.31999999999999 -1.2476867642055261E-004 + 151.38000000000000 -1.2453173411798520E-004 + 151.44000000000000 -1.2429287357064824E-004 + 151.50000000000000 -1.2405156899526035E-004 + 151.56000000000000 -1.2380735370611044E-004 + 151.62000000000000 -1.2355983901389330E-004 + 151.68000000000001 -1.2330865936242859E-004 + 151.73999999999998 -1.2305352460657750E-004 + 151.79999999999998 -1.2279415545102688E-004 + 151.85999999999999 -1.2253033136709406E-004 + 151.91999999999999 -1.2226181200202275E-004 + 151.97999999999999 -1.2198839834835350E-004 + 152.03999999999999 -1.2170987090413024E-004 + 152.09999999999999 -1.2142601242091591E-004 + 152.16000000000000 -1.2113658446306653E-004 + 152.22000000000000 -1.2084134160273434E-004 + 152.28000000000000 -1.2054000041971410E-004 + 152.34000000000000 -1.2023228691782740E-004 + 152.40000000000001 -1.1991790755425410E-004 + 152.45999999999998 -1.1959656617291966E-004 + 152.51999999999998 -1.1926798311519997E-004 + 152.57999999999998 -1.1893185971905384E-004 + 152.63999999999999 -1.1858797008102958E-004 + 152.69999999999999 -1.1823608357579602E-004 + 152.75999999999999 -1.1787601883334101E-004 + 152.81999999999999 -1.1750764716432895E-004 + 152.88000000000000 -1.1713088065562707E-004 + 152.94000000000000 -1.1674567129058717E-004 + 153.00000000000000 -1.1635201554815406E-004 + 153.06000000000000 -1.1594994719535780E-004 + 153.12000000000000 -1.1553952881361587E-004 + 153.17999999999998 -1.1512083496097663E-004 + 153.23999999999998 -1.1469395247549668E-004 + 153.29999999999998 -1.1425897268340962E-004 + 153.35999999999999 -1.1381597155802856E-004 + 153.41999999999999 -1.1336502025805584E-004 + 153.47999999999999 -1.1290615036318592E-004 + 153.53999999999999 -1.1243938837821218E-004 + 153.59999999999999 -1.1196472919100187E-004 + 153.66000000000000 -1.1148214838175666E-004 + 153.72000000000000 -1.1099161296190584E-004 + 153.78000000000000 -1.1049305642142420E-004 + 153.84000000000000 -1.0998642776303077E-004 + 153.90000000000001 -1.0947165898792720E-004 + 153.95999999999998 -1.0894869727038915E-004 + 154.01999999999998 -1.0841749232250598E-004 + 154.07999999999998 -1.0787801771808980E-004 + 154.13999999999999 -1.0733024916973499E-004 + 154.19999999999999 -1.0677418968564668E-004 + 154.25999999999999 -1.0620986093295008E-004 + 154.31999999999999 -1.0563728370795187E-004 + 154.38000000000000 -1.0505649840828252E-004 + 154.44000000000000 -1.0446755652245123E-004 + 154.50000000000000 -1.0387050966660012E-004 + 154.56000000000000 -1.0326541853358448E-004 + 154.62000000000000 -1.0265233732778243E-004 + 154.67999999999998 -1.0203132878392492E-004 + 154.73999999999998 -1.0140244973312573E-004 + 154.79999999999998 -1.0076576867573988E-004 + 154.85999999999999 -1.0012135179344317E-004 + 154.91999999999999 -9.9469278584058416E-005 + 154.97999999999999 -9.8809637820106662E-005 + 155.03999999999999 -9.8142552247218194E-005 + 155.09999999999999 -9.7468154480205018E-005 + 155.16000000000000 -9.6786597057923641E-005 + 155.22000000000000 -9.6098065605526790E-005 + 155.28000000000000 -9.5402768941035214E-005 + 155.34000000000000 -9.4700941476674613E-005 + 155.40000000000001 -9.3992836600071558E-005 + 155.45999999999998 -9.3278742823753555E-005 + 155.51999999999998 -9.2558958134304092E-005 + 155.57999999999998 -9.1833792360580631E-005 + 155.63999999999999 -9.1103573512259925E-005 + 155.69999999999999 -9.0368632824960700E-005 + 155.75999999999999 -8.9629322052397993E-005 + 155.81999999999999 -8.8886001052193112E-005 + 155.88000000000000 -8.8139037239393688E-005 + 155.94000000000000 -8.7388811104254139E-005 + 156.00000000000000 -8.6635736530082163E-005 + 156.06000000000000 -8.5880228443142005E-005 + 156.12000000000000 -8.5122733010696387E-005 + 156.17999999999998 -8.4363747125761897E-005 + 156.23999999999998 -8.3603775661293217E-005 + 156.29999999999998 -8.2843374574772166E-005 + 156.35999999999999 -8.2083131394692605E-005 + 156.41999999999999 -8.1323672752969971E-005 + 156.47999999999999 -8.0565654240286389E-005 + 156.53999999999999 -7.9809770080188481E-005 + 156.59999999999999 -7.9056729115436277E-005 + 156.66000000000000 -7.8307265458890473E-005 + 156.72000000000000 -7.7562113289451022E-005 + 156.78000000000000 -7.6822018507780910E-005 + 156.84000000000000 -7.6087717245149183E-005 + 156.90000000000001 -7.5359949642615353E-005 + 156.95999999999998 -7.4639424616631042E-005 + 157.01999999999998 -7.3926831816248175E-005 + 157.07999999999998 -7.3222857121566713E-005 + 157.13999999999999 -7.2528147491582730E-005 + 157.19999999999999 -7.1843332198075251E-005 + 157.25999999999999 -7.1169016243874880E-005 + 157.31999999999999 -7.0505778469851166E-005 + 157.38000000000000 -6.9854183799958095E-005 + 157.44000000000000 -6.9214773853306418E-005 + 157.50000000000000 -6.8588068263005655E-005 + 157.56000000000000 -6.7974583396915300E-005 + 157.62000000000000 -6.7374807393732827E-005 + 157.67999999999998 -6.6789191443498072E-005 + 157.73999999999998 -6.6218180664764380E-005 + 157.79999999999998 -6.5662194945712414E-005 + 157.85999999999999 -6.5121617524077950E-005 + 157.91999999999999 -6.4596815117338077E-005 + 157.97999999999999 -6.4088108777294450E-005 + 158.03999999999999 -6.3595794416703959E-005 + 158.09999999999999 -6.3120124533512658E-005 + 158.16000000000000 -6.2661344325124743E-005 + 158.22000000000000 -6.2219643641086211E-005 + 158.28000000000000 -6.1795197523749202E-005 + 158.34000000000000 -6.1388148551167694E-005 + 158.40000000000001 -6.0998623508284399E-005 + 158.45999999999998 -6.0626726032246237E-005 + 158.51999999999998 -6.0272538969023276E-005 + 158.57999999999998 -5.9936124045875375E-005 + 158.63999999999999 -5.9617531496034909E-005 + 158.69999999999999 -5.9316783086078532E-005 + 158.75999999999999 -5.9033877068893670E-005 + 158.81999999999999 -5.8768780902263450E-005 + 158.88000000000000 -5.8521423597855500E-005 + 158.94000000000000 -5.8291699367693709E-005 + 159.00000000000000 -5.8079452812991934E-005 + 159.06000000000000 -5.7884485309059022E-005 + 159.12000000000000 -5.7706538460755780E-005 + 159.17999999999998 -5.7545304210697911E-005 + 159.23999999999998 -5.7400424251418819E-005 + 159.29999999999998 -5.7271487447671055E-005 + 159.35999999999999 -5.7158041646333006E-005 + 159.41999999999999 -5.7059600713282594E-005 + 159.47999999999999 -5.6975652576190320E-005 + 159.53999999999999 -5.6905669402134280E-005 + 159.59999999999999 -5.6849117078730890E-005 + 159.66000000000000 -5.6805465876804462E-005 + 159.72000000000000 -5.6774200721625860E-005 + 159.78000000000000 -5.6754823727138724E-005 + 159.84000000000000 -5.6746860346399390E-005 + 159.90000000000001 -5.6749862527863817E-005 + 159.95999999999998 -5.6763406472489387E-005 + 160.01999999999998 -5.6787089385632729E-005 + 160.07999999999998 -5.6820518824171736E-005 + 160.13999999999999 -5.6863312118857182E-005 + 160.19999999999999 -5.6915079507585269E-005 + 160.25999999999999 -5.6975427643075075E-005 + 160.31999999999999 -5.7043935290601975E-005 + 160.38000000000000 -5.7120159849435462E-005 + 160.44000000000000 -5.7203628202196359E-005 + 160.50000000000000 -5.7293832284533835E-005 + 160.56000000000000 -5.7390229076015052E-005 + 160.62000000000000 -5.7492248488601106E-005 + 160.67999999999998 -5.7599297384291572E-005 + 160.73999999999998 -5.7710759608007593E-005 + 160.79999999999998 -5.7826013282362398E-005 + 160.85999999999999 -5.7944445873343813E-005 + 160.91999999999999 -5.8065446577192693E-005 + 160.97999999999999 -5.8188441587412123E-005 + 161.03999999999999 -5.8312878393174556E-005 + 161.09999999999999 -5.8438249944856863E-005 + 161.16000000000000 -5.8564094548157908E-005 + 161.22000000000000 -5.8690001679355387E-005 + 161.28000000000000 -5.8815604257519901E-005 + 161.34000000000000 -5.8940584681317496E-005 + 161.40000000000001 -5.9064681569527402E-005 + 161.45999999999998 -5.9187662054124503E-005 + 161.51999999999998 -5.9309335556699964E-005 + 161.57999999999998 -5.9429553004654997E-005 + 161.63999999999999 -5.9548184479325655E-005 + 161.69999999999999 -5.9665130066783812E-005 + 161.75999999999999 -5.9780311118307956E-005 + 161.81999999999999 -5.9893667907833205E-005 + 161.88000000000000 -6.0005161836319545E-005 + 161.94000000000000 -6.0114785937503704E-005 + 162.00000000000000 -6.0222536955623798E-005 + 162.06000000000000 -6.0328445880162872E-005 + 162.12000000000000 -6.0432577621528875E-005 + 162.17999999999998 -6.0535017418546778E-005 + 162.23999999999998 -6.0635886297969387E-005 + 162.29999999999998 -6.0735331144487889E-005 + 162.35999999999999 -6.0833539259053636E-005 + 162.41999999999999 -6.0930724845448984E-005 + 162.47999999999999 -6.1027138722776088E-005 + 162.53999999999999 -6.1123052660820085E-005 + 162.59999999999999 -6.1218779461421483E-005 + 162.66000000000000 -6.1314646863249708E-005 + 162.72000000000000 -6.1411019907205494E-005 + 162.78000000000000 -6.1508270793671376E-005 + 162.84000000000000 -6.1606795744984167E-005 + 162.90000000000001 -6.1707007625703343E-005 + 162.95999999999998 -6.1809344564530951E-005 + 163.01999999999998 -6.1914256534999302E-005 + 163.07999999999998 -6.2022196831393452E-005 + 163.13999999999999 -6.2133640066919845E-005 + 163.19999999999999 -6.2249061937227719E-005 + 163.25999999999999 -6.2368957164673811E-005 + 163.31999999999999 -6.2493802176721397E-005 + 163.38000000000000 -6.2624072342711711E-005 + 163.44000000000000 -6.2760232353644506E-005 + 163.50000000000000 -6.2902726304718166E-005 + 163.56000000000000 -6.3051977114473131E-005 + 163.62000000000000 -6.3208367039855359E-005 + 163.67999999999998 -6.3372232184576133E-005 + 163.73999999999998 -6.3543855390195387E-005 + 163.79999999999998 -6.3723484735661224E-005 + 163.85999999999999 -6.3911296344835043E-005 + 163.91999999999999 -6.4107403800574007E-005 + 163.97999999999999 -6.4311869796088861E-005 + 164.03999999999999 -6.4524690289746852E-005 + 164.09999999999999 -6.4745812567213498E-005 + 164.16000000000000 -6.4975139508646965E-005 + 164.22000000000000 -6.5212513655158065E-005 + 164.28000000000000 -6.5457756475921394E-005 + 164.34000000000000 -6.5710649129343586E-005 + 164.40000000000001 -6.5970942891182958E-005 + 164.45999999999998 -6.6238367391018241E-005 + 164.51999999999998 -6.6512630517488402E-005 + 164.57999999999998 -6.6793418641314468E-005 + 164.63999999999999 -6.7080394687184250E-005 + 164.69999999999999 -6.7373195739194608E-005 + 164.75999999999999 -6.7671417455482762E-005 + 164.81999999999999 -6.7974630503576049E-005 + 164.88000000000000 -6.8282358770910544E-005 + 164.94000000000000 -6.8594073905820267E-005 + 165.00000000000000 -6.8909207533719566E-005 + 165.06000000000000 -6.9227128570353941E-005 + 165.12000000000000 -6.9547153216121380E-005 + 165.17999999999998 -6.9868539394494581E-005 + 165.23999999999998 -7.0190502982625064E-005 + 165.29999999999998 -7.0512211498332728E-005 + 165.35999999999999 -7.0832777696642194E-005 + 165.41999999999999 -7.1151303995339478E-005 + 165.47999999999999 -7.1466848066062494E-005 + 165.53999999999999 -7.1778474055197457E-005 + 165.59999999999999 -7.2085215404138752E-005 + 165.66000000000000 -7.2386130674568112E-005 + 165.72000000000000 -7.2680253596188457E-005 + 165.78000000000000 -7.2966648172952884E-005 + 165.84000000000000 -7.3244373253925413E-005 + 165.90000000000001 -7.3512510134032358E-005 + 165.95999999999998 -7.3770129421105201E-005 + 166.01999999999998 -7.4016328375574187E-005 + 166.07999999999998 -7.4250180699801858E-005 + 166.13999999999999 -7.4470779838354398E-005 + 166.19999999999999 -7.4677199402348478E-005 + 166.25999999999999 -7.4868527239623097E-005 + 166.31999999999999 -7.5043831977523895E-005 + 166.38000000000000 -7.5202187224947991E-005 + 166.44000000000000 -7.5342676529137695E-005 + 166.50000000000000 -7.5464383487781279E-005 + 166.56000000000000 -7.5566422495967561E-005 + 166.62000000000000 -7.5647919542245925E-005 + 166.67999999999998 -7.5708034039653367E-005 + 166.73999999999998 -7.5745976022819627E-005 + 166.79999999999998 -7.5761011457081115E-005 + 166.85999999999999 -7.5752441267868873E-005 + 166.91999999999999 -7.5719637445009142E-005 + 166.97999999999999 -7.5662042770453244E-005 + 167.03999999999999 -7.5579153094762605E-005 + 167.09999999999999 -7.5470530525708197E-005 + 167.16000000000000 -7.5335796287495749E-005 + 167.22000000000000 -7.5174635543536698E-005 + 167.28000000000000 -7.4986776103437095E-005 + 167.34000000000000 -7.4772003420392829E-005 + 167.40000000000001 -7.4530132101156517E-005 + 167.45999999999998 -7.4261037046663913E-005 + 167.51999999999998 -7.3964619743595945E-005 + 167.57999999999998 -7.3640836476850858E-005 + 167.63999999999999 -7.3289672630032492E-005 + 167.69999999999999 -7.2911165680740415E-005 + 167.75999999999999 -7.2505405752741964E-005 + 167.81999999999999 -7.2072546001407075E-005 + 167.88000000000000 -7.1612801537209196E-005 + 167.94000000000000 -7.1126444753669179E-005 + 168.00000000000000 -7.0613856669642853E-005 + 168.06000000000000 -7.0075473207334248E-005 + 168.12000000000000 -6.9511829044602275E-005 + 168.17999999999998 -6.8923548650709910E-005 + 168.23999999999998 -6.8311334862353047E-005 + 168.29999999999998 -6.7675990424332573E-005 + 168.35999999999999 -6.7018388963521982E-005 + 168.41999999999999 -6.6339491014485503E-005 + 168.47999999999999 -6.5640330150828620E-005 + 168.53999999999999 -6.4921999738495260E-005 + 168.59999999999999 -6.4185669503202358E-005 + 168.66000000000000 -6.3432554029665798E-005 + 168.72000000000000 -6.2663916194009405E-005 + 168.78000000000000 -6.1881065913740895E-005 + 168.84000000000000 -6.1085359057358948E-005 + 168.90000000000001 -6.0278175809430546E-005 + 168.95999999999998 -5.9460936840899877E-005 + 169.01999999999998 -5.8635095642767960E-005 + 169.07999999999998 -5.7802128650361699E-005 + 169.13999999999999 -5.6963534607148653E-005 + 169.19999999999999 -5.6120839040480185E-005 + 169.25999999999999 -5.5275574066714672E-005 + 169.31999999999999 -5.4429303905483180E-005 + 169.38000000000000 -5.3583585771979735E-005 + 169.44000000000000 -5.2739987334052614E-005 + 169.50000000000000 -5.1900072221586026E-005 + 169.56000000000000 -5.1065401954520544E-005 + 169.62000000000000 -5.0237526298711460E-005 + 169.67999999999998 -4.9417976660284823E-005 + 169.73999999999998 -4.8608264853361376E-005 + 169.79999999999998 -4.7809884435845628E-005 + 169.85999999999999 -4.7024295858140879E-005 + 169.91999999999999 -4.6252943802824526E-005 + 169.97999999999999 -4.5497239105253448E-005 + 170.03999999999999 -4.4758569688464175E-005 + 170.09999999999999 -4.4038286104649426E-005 + 170.16000000000000 -4.3337713893716740E-005 + 170.22000000000000 -4.2658144758007607E-005 + 170.28000000000000 -4.2000826825488763E-005 + 170.34000000000000 -4.1366970967140881E-005 + 170.40000000000001 -4.0757732742923096E-005 + 170.45999999999998 -4.0174223423298985E-005 + 170.51999999999998 -3.9617485491109131E-005 + 170.57999999999998 -3.9088487361569628E-005 + 170.63999999999999 -3.8588124578227864E-005 + 170.69999999999999 -3.8117197078280156E-005 + 170.75999999999999 -3.7676421101758948E-005 + 170.81999999999999 -3.7266416413908887E-005 + 170.88000000000000 -3.6887697566800798E-005 + 170.94000000000000 -3.6540686966665437E-005 + 171.00000000000000 -3.6225704972191490E-005 + 171.06000000000000 -3.5942985167003818E-005 + 171.12000000000000 -3.5692681879890059E-005 + 171.17999999999998 -3.5474867143603782E-005 + 171.23999999999998 -3.5289559584899909E-005 + 171.29999999999998 -3.5136715035513367E-005 + 171.35999999999999 -3.5016255472210815E-005 + 171.41999999999999 -3.4928056865424141E-005 + 171.47999999999999 -3.4871975638269032E-005 + 171.53999999999999 -3.4847843946304002E-005 + 171.59999999999999 -3.4855469463809709E-005 + 171.66000000000000 -3.4894644324738002E-005 + 171.72000000000000 -3.4965131526877993E-005 + 171.78000000000000 -3.5066667815551325E-005 + 171.84000000000000 -3.5198953998025689E-005 + 171.90000000000001 -3.5361649990381487E-005 + 171.95999999999998 -3.5554367757348959E-005 + 172.01999999999998 -3.5776663250181818E-005 + 172.07999999999998 -3.6028035170501197E-005 + 172.13999999999999 -3.6307924700743484E-005 + 172.19999999999999 -3.6615702783736778E-005 + 172.25999999999999 -3.6950690121863455E-005 + 172.31999999999999 -3.7312154635811457E-005 + 172.38000000000000 -3.7699319181162172E-005 + 172.44000000000000 -3.8111373182882750E-005 + 172.50000000000000 -3.8547483846979662E-005 + 172.56000000000000 -3.9006803046691304E-005 + 172.62000000000000 -3.9488491648178378E-005 + 172.67999999999998 -3.9991711991999623E-005 + 172.73999999999998 -4.0515659531904080E-005 + 172.79999999999998 -4.1059545767418510E-005 + 172.85999999999999 -4.1622622825987374E-005 + 172.91999999999999 -4.2204171529802140E-005 + 172.97999999999999 -4.2803513551199819E-005 + 173.03999999999999 -4.3419999196125436E-005 + 173.09999999999999 -4.4053014160213393E-005 + 173.16000000000000 -4.4701966059938769E-005 + 173.22000000000000 -4.5366288835611393E-005 + 173.28000000000000 -4.6045436818825181E-005 + 173.34000000000000 -4.6738871149554551E-005 + 173.40000000000001 -4.7446077348288655E-005 + 173.45999999999998 -4.8166549245287542E-005 + 173.51999999999998 -4.8899797395123137E-005 + 173.57999999999998 -4.9645351391778789E-005 + 173.63999999999999 -5.0402771756170929E-005 + 173.69999999999999 -5.1171637033664069E-005 + 173.75999999999999 -5.1951569315548363E-005 + 173.81999999999999 -5.2742232922014430E-005 + 173.88000000000000 -5.3543336088124547E-005 + 173.94000000000000 -5.4354648148671298E-005 + 174.00000000000000 -5.5175990381046880E-005 + 174.06000000000000 -5.6007252889563275E-005 + 174.12000000000000 -5.6848384171623301E-005 + 174.17999999999998 -5.7699395693760030E-005 + 174.23999999999998 -5.8560368916175815E-005 + 174.29999999999998 -5.9431441523954761E-005 + 174.35999999999999 -6.0312814945014115E-005 + 174.41999999999999 -6.1204744457174663E-005 + 174.47999999999999 -6.2107549398460692E-005 + 174.53999999999999 -6.3021599978504154E-005 + 174.59999999999999 -6.3947320663800922E-005 + 174.66000000000000 -6.4885195833475412E-005 + 174.72000000000000 -6.5835758353783777E-005 + 174.78000000000000 -6.6799604025767739E-005 + 174.84000000000000 -6.7777378084229884E-005 + 174.90000000000001 -6.8769795636121824E-005 + 174.95999999999998 -6.9777618182312326E-005 + 175.01999999999998 -7.0801664070277421E-005 + 175.07999999999998 -7.1842811919601776E-005 + 175.13999999999999 -7.2902009184745047E-005 + 175.19999999999999 -7.3980230803207350E-005 + 175.25999999999999 -7.5078522322559081E-005 + 175.31999999999999 -7.6197960705011396E-005 + 175.38000000000000 -7.7339670196183339E-005 + 175.44000000000000 -7.8504810940174149E-005 + 175.50000000000000 -7.9694563755608507E-005 + 175.56000000000000 -8.0910143465918923E-005 + 175.62000000000000 -8.2152774618767210E-005 + 175.67999999999998 -8.3423712088806544E-005 + 175.73999999999998 -8.4724217604734332E-005 + 175.79999999999998 -8.6055566719553666E-005 + 175.85999999999999 -8.7419053560380209E-005 + 175.91999999999999 -8.8815963404127913E-005 + 175.97999999999999 -9.0247596540946582E-005 + 176.03999999999999 -9.1715270391286264E-005 + 176.09999999999999 -9.3220276385718001E-005 + 176.16000000000000 -9.4763932306493874E-005 + 176.22000000000000 -9.6347524788433091E-005 + 176.28000000000000 -9.7972344733891664E-005 + 176.34000000000000 -9.9639636422223189E-005 + 176.40000000000001 -1.0135065022077709E-004 + 176.45999999999998 -1.0310657397137399E-004 + 176.51999999999998 -1.0490856387036004E-004 + 176.57999999999998 -1.0675772439015579E-004 + 176.63999999999999 -1.0865509825291257E-004 + 176.69999999999999 -1.1060167514084181E-004 + 176.75999999999999 -1.1259836684547036E-004 + 176.81999999999999 -1.1464603899720365E-004 + 176.88000000000000 -1.1674546863475720E-004 + 176.94000000000000 -1.1889739575099935E-004 + 177.00000000000000 -1.2110247622873565E-004 + 177.06000000000000 -1.2336132531168609E-004 + 177.12000000000000 -1.2567449940928724E-004 + 177.17999999999998 -1.2804252116792081E-004 + 177.23999999999998 -1.3046585454168076E-004 + 177.29999999999998 -1.3294491078052833E-004 + 177.35999999999999 -1.3548005621963273E-004 + 177.41999999999999 -1.3807161951146562E-004 + 177.47999999999999 -1.4071985332320239E-004 + 177.53999999999999 -1.4342497972457123E-004 + 177.59999999999999 -1.4618713458820504E-004 + 177.66000000000000 -1.4900634455497174E-004 + 177.72000000000000 -1.5188259661263781E-004 + 177.78000000000000 -1.5481575762194778E-004 + 177.84000000000000 -1.5780558934880217E-004 + 177.90000000000001 -1.6085175934418681E-004 + 177.95999999999998 -1.6395380700638508E-004 + 178.01999999999998 -1.6711118631815148E-004 + 178.07999999999998 -1.7032322600655703E-004 + 178.13999999999999 -1.7358918213560118E-004 + 178.19999999999999 -1.7690817836866709E-004 + 178.25999999999999 -1.8027930533246690E-004 + 178.31999999999999 -1.8370153818856683E-004 + 178.38000000000000 -1.8717383200465739E-004 + 178.44000000000000 -1.9069505265839853E-004 + 178.50000000000000 -1.9426404061265358E-004 + 178.56000000000000 -1.9787957769857296E-004 + 178.62000000000000 -2.0154043055460038E-004 + 178.67999999999998 -2.0524530133838597E-004 + 178.73999999999998 -2.0899286115070746E-004 + 178.79999999999998 -2.1278170817003460E-004 + 178.85999999999999 -2.1661039674160070E-004 + 178.91999999999999 -2.2047740818397415E-004 + 178.97999999999999 -2.2438112521851560E-004 + 179.03999999999999 -2.2831985119125764E-004 + 179.09999999999999 -2.3229174989725367E-004 + 179.16000000000000 -2.3629491266620139E-004 + 179.22000000000000 -2.4032730928644230E-004 + 179.28000000000000 -2.4438677487066825E-004 + 179.34000000000000 -2.4847102026702374E-004 + 179.40000000000001 -2.5257764566053071E-004 + 179.45999999999998 -2.5670412751330478E-004 + 179.51999999999998 -2.6084785573754103E-004 + 179.57999999999998 -2.6500610326179980E-004 + 179.63999999999999 -2.6917607429472840E-004 + 179.69999999999999 -2.7335488871968894E-004 + 179.75999999999999 -2.7753961931943443E-004 + 179.81999999999999 -2.8172722896540833E-004 + 179.88000000000000 -2.8591464159283226E-004 + 179.94000000000000 -2.9009875242064665E-004 + 180.00000000000000 -2.9427635288690188E-004 + 180.06000000000000 -2.9844424455922918E-004 + 180.12000000000000 -3.0259911290982821E-004 + 180.17999999999998 -3.0673760394868746E-004 + 180.23999999999998 -3.1085629802248942E-004 + 180.29999999999998 -3.1495169953045971E-004 + 180.35999999999999 -3.1902021200043434E-004 + 180.41999999999999 -3.2305819625474508E-004 + 180.47999999999999 -3.2706184815750323E-004 + 180.53999999999999 -3.3102736644433545E-004 + 180.59999999999999 -3.3495077931075822E-004 + 180.66000000000000 -3.3882809741862536E-004 + 180.72000000000000 -3.4265518543505395E-004 + 180.78000000000000 -3.4642781092453950E-004 + 180.84000000000000 -3.5014167235954054E-004 + 180.90000000000001 -3.5379238995689036E-004 + 180.95999999999998 -3.5737547837355995E-004 + 181.01999999999998 -3.6088638259221929E-004 + 181.07999999999998 -3.6432048302299959E-004 + 181.13999999999999 -3.6767300504578557E-004 + 181.19999999999999 -3.7093920619022845E-004 + 181.25999999999999 -3.7411423885268821E-004 + 181.31999999999999 -3.7719314454058036E-004 + 181.38000000000000 -3.8017093087150850E-004 + 181.44000000000000 -3.8304254636465420E-004 + 181.50000000000000 -3.8580289970125781E-004 + 181.56000000000000 -3.8844683526226661E-004 + 181.62000000000000 -3.9096922870507714E-004 + 181.67999999999998 -3.9336480689604260E-004 + 181.73999999999998 -3.9562835944587858E-004 + 181.79999999999998 -3.9775462385619473E-004 + 181.85999999999999 -3.9973833435649601E-004 + 181.91999999999999 -4.0157422845578356E-004 + 181.97999999999999 -4.0325701104133860E-004 + 182.03999999999999 -4.0478141735264143E-004 + 182.09999999999999 -4.0614216529176114E-004 + 182.16000000000000 -4.0733400315877145E-004 + 182.22000000000000 -4.0835166249402908E-004 + 182.28000000000000 -4.0918989341182522E-004 + 182.34000000000000 -4.0984344533131546E-004 + 182.39999999999998 -4.1030711139970917E-004 + 182.45999999999998 -4.1057567577359506E-004 + 182.51999999999998 -4.1064396491175117E-004 + 182.57999999999998 -4.1050684692837193E-004 + 182.63999999999999 -4.1015919836384559E-004 + 182.69999999999999 -4.0959598887164691E-004 + 182.75999999999999 -4.0881223132628629E-004 + 182.81999999999999 -4.0780314559953605E-004 + 182.88000000000000 -4.0656395382929466E-004 + 182.94000000000000 -4.0509005786034459E-004 + 183.00000000000000 -4.0337706279509433E-004 + 183.06000000000000 -4.0142071122707034E-004 + 183.12000000000000 -3.9921698648261758E-004 + 183.17999999999998 -3.9676210909627942E-004 + 183.23999999999998 -3.9405249653546952E-004 + 183.29999999999998 -3.9108485945653511E-004 + 183.35999999999999 -3.8785619940983007E-004 + 183.41999999999999 -3.8436372850246834E-004 + 183.47999999999999 -3.8060502850846442E-004 + 183.53999999999999 -3.7657794407844911E-004 + 183.59999999999999 -3.7228063319121399E-004 + 183.66000000000000 -3.6771152765220167E-004 + 183.72000000000000 -3.6286939872003863E-004 + 183.78000000000000 -3.5775336271968782E-004 + 183.84000000000000 -3.5236283222270313E-004 + 183.89999999999998 -3.4669758112246772E-004 + 183.95999999999998 -3.4075773881218284E-004 + 184.01999999999998 -3.3454382586726929E-004 + 184.07999999999998 -3.2805673317720717E-004 + 184.13999999999999 -3.2129778630287905E-004 + 184.19999999999999 -3.1426868039590344E-004 + 184.25999999999999 -3.0697159034279539E-004 + 184.31999999999999 -2.9940912021688353E-004 + 184.38000000000000 -2.9158433716009358E-004 + 184.44000000000000 -2.8350076418007280E-004 + 184.50000000000000 -2.7516241745126888E-004 + 184.56000000000000 -2.6657379010251221E-004 + 184.62000000000000 -2.5773981188373255E-004 + 184.67999999999998 -2.4866592697371932E-004 + 184.73999999999998 -2.3935801618764319E-004 + 184.79999999999998 -2.2982242093085923E-004 + 184.85999999999999 -2.2006593461720617E-004 + 184.91999999999999 -2.1009579315706898E-004 + 184.97999999999999 -1.9991963348042291E-004 + 185.03999999999999 -1.8954551715839608E-004 + 185.09999999999999 -1.7898191812273562E-004 + 185.16000000000000 -1.6823771593695247E-004 + 185.22000000000000 -1.5732215635360961E-004 + 185.28000000000000 -1.4624485642829378E-004 + 185.34000000000000 -1.3501580311976101E-004 + 185.39999999999998 -1.2364533747855151E-004 + 185.45999999999998 -1.1214412255461181E-004 + 185.51999999999998 -1.0052314140511530E-004 + 185.57999999999998 -8.8793681829491794E-005 + 185.63999999999999 -7.6967312204499934E-005 + 185.69999999999999 -6.5055845852525073E-005 + 185.75999999999999 -5.3071308186414831E-005 + 185.81999999999999 -4.1025960618483733E-005 + 185.88000000000000 -2.8932204702380901E-005 + 185.94000000000000 -1.6802584410027752E-005 + 186.00000000000000 -4.6497707474146377E-006 + 186.06000000000000 7.5135223795491502E-006 + 186.12000000000000 1.9674496783956211E-005 + 186.17999999999998 3.1820361790548228E-005 + 186.23999999999998 4.3938320138992042E-005 + 186.29999999999998 5.6015605424466241E-005 + 186.35999999999999 6.8039509817554726E-005 + 186.41999999999999 7.9997397423367314E-005 + 186.47999999999999 9.1876740165685997E-005 + 186.53999999999999 1.0366513139707445E-004 + 186.59999999999999 1.1535031800221695E-004 + 186.66000000000000 1.2692019299460330E-004 + 186.72000000000000 1.3836287062100419E-004 + 186.78000000000000 1.4966663802567452E-004 + 186.84000000000000 1.6082004623242137E-004 + 186.89999999999998 1.7181194058908829E-004 + 186.95999999999998 1.8263145778572214E-004 + 187.01999999999998 1.9326802130460025E-004 + 187.07999999999998 2.0371146912823303E-004 + 187.13999999999999 2.1395200244782767E-004 + 187.19999999999999 2.2398020351489250E-004 + 187.25999999999999 2.3378714474673625E-004 + 187.31999999999999 2.4336432811393423E-004 + 187.38000000000000 2.5270374173924675E-004 + 187.44000000000000 2.6179783266909250E-004 + 187.50000000000000 2.7063959503353181E-004 + 187.56000000000000 2.7922253508823216E-004 + 187.62000000000000 2.8754063223556943E-004 + 187.67999999999998 2.9558842004038936E-004 + 187.73999999999998 3.0336094030284283E-004 + 187.79999999999998 3.1085377260770762E-004 + 187.85999999999999 3.1806300681711810E-004 + 187.91999999999999 3.2498522026568798E-004 + 187.97999999999999 3.3161757742024137E-004 + 188.03999999999999 3.3795769917573375E-004 + 188.09999999999999 3.4400374454515394E-004 + 188.16000000000000 3.4975436614189748E-004 + 188.22000000000000 3.5520878278846445E-004 + 188.28000000000000 3.6036666977063840E-004 + 188.34000000000000 3.6522822345887781E-004 + 188.39999999999998 3.6979417645776388E-004 + 188.45999999999998 3.7406572042070310E-004 + 188.51999999999998 3.7804457225697755E-004 + 188.57999999999998 3.8173290566636436E-004 + 188.63999999999999 3.8513335277189152E-004 + 188.69999999999999 3.8824904145454771E-004 + 188.75999999999999 3.9108349289467361E-004 + 188.81999999999999 3.9364067649676622E-004 + 188.88000000000000 3.9592495850358420E-004 + 188.94000000000000 3.9794104339702145E-004 + 189.00000000000000 3.9969409287340382E-004 + 189.06000000000000 4.0118949113917467E-004 + 189.12000000000000 4.0243299760792854E-004 + 189.17999999999998 4.0343066626409845E-004 + 189.23999999999998 4.0418885457187614E-004 + 189.29999999999998 4.0471413156592848E-004 + 189.35999999999999 4.0501334199970223E-004 + 189.41999999999999 4.0509355165001151E-004 + 189.47999999999999 4.0496199703530980E-004 + 189.53999999999999 4.0462613904074414E-004 + 189.59999999999999 4.0409356323874623E-004 + 189.66000000000000 4.0337201005030221E-004 + 189.72000000000000 4.0246934015633260E-004 + 189.78000000000000 4.0139355187094342E-004 + 189.84000000000000 4.0015266822859803E-004 + 189.89999999999998 3.9875478520422561E-004 + 189.95999999999998 3.9720808426870732E-004 + 190.01999999999998 3.9552067288734850E-004 + 190.07999999999998 3.9370076629558583E-004 + 190.13999999999999 3.9175649679792560E-004 + 190.19999999999999 3.8969602141083174E-004 + 190.25999999999999 3.8752742807678521E-004 + 190.31999999999999 3.8525876360496765E-004 + 190.38000000000000 3.8289803727013246E-004 + 190.44000000000000 3.8045317338700717E-004 + 190.50000000000000 3.7793206731621791E-004 + 190.56000000000000 3.7534250843638292E-004 + 190.62000000000000 3.7269227030797987E-004 + 190.67999999999998 3.6998896449157972E-004 + 190.73999999999998 3.6724018222499140E-004 + 190.79999999999998 3.6445337844454864E-004 + 190.85999999999999 3.6163591697198474E-004 + 190.91999999999999 3.5879509260631327E-004 + 190.97999999999999 3.5593800083536783E-004 + 191.03999999999999 3.5307165885766151E-004 + 191.09999999999999 3.5020289044148512E-004 + 191.16000000000000 3.4733842178074617E-004 + 191.22000000000000 3.4448477217643357E-004 + 191.28000000000000 3.4164831458049442E-004 + 191.34000000000000 3.3883521359655570E-004 + 191.39999999999998 3.3605147866350567E-004 + 191.45999999999998 3.3330297526997643E-004 + 191.51999999999998 3.3059535365758069E-004 + 191.57999999999998 3.2793414410281247E-004 + 191.63999999999999 3.2532469342602145E-004 + 191.69999999999999 3.2277217325645511E-004 + 191.75999999999999 3.2028167717357704E-004 + 191.81999999999999 3.1785810684951932E-004 + 191.88000000000000 3.1550630404591969E-004 + 191.94000000000000 3.1323093194947891E-004 + 192.00000000000000 3.1103651562905686E-004 + 192.06000000000000 3.0892749367906623E-004 + 192.12000000000000 3.0690814751815920E-004 + 192.17999999999998 3.0498261122353964E-004 + 192.23999999999998 3.0315488744331413E-004 + 192.29999999999998 3.0142878300182019E-004 + 192.35999999999999 2.9980799017581680E-004 + 192.41999999999999 2.9829595662838595E-004 + 192.47999999999999 2.9689598368640819E-004 + 192.53999999999999 2.9561117341118438E-004 + 192.59999999999999 2.9444440609967650E-004 + 192.66000000000000 2.9339833228319640E-004 + 192.72000000000000 2.9247545573447636E-004 + 192.78000000000000 2.9167802404758691E-004 + 192.84000000000000 2.9100813985306309E-004 + 192.89999999999998 2.9046769406070646E-004 + 192.95999999999998 2.9005834866634096E-004 + 193.01999999999998 2.8978164516355975E-004 + 193.07999999999998 2.8963896044185077E-004 + 193.13999999999999 2.8963140012836218E-004 + 193.19999999999999 2.8976003186910010E-004 + 193.25999999999999 2.9002563852960540E-004 + 193.31999999999999 2.9042888726706756E-004 + 193.38000000000000 2.9097020368197969E-004 + 193.44000000000000 2.9164989447558729E-004 + 193.50000000000000 2.9246799002005452E-004 + 193.56000000000000 2.9342434220463678E-004 + 193.62000000000000 2.9451854153135509E-004 + 193.67999999999998 2.9574995956761665E-004 + 193.73999999999998 2.9711768939021463E-004 + 193.79999999999998 2.9862059137119554E-004 + 193.85999999999999 3.0025727737091601E-004 + 193.91999999999999 3.0202606099017770E-004 + 193.97999999999999 3.0392498588210665E-004 + 194.03999999999999 3.0595184060414548E-004 + 194.09999999999999 3.0810416468239312E-004 + 194.16000000000000 3.1037918668892859E-004 + 194.22000000000000 3.1277395494661763E-004 + 194.28000000000000 3.1528522640456724E-004 + 194.34000000000000 3.1790955913302071E-004 + 194.39999999999998 3.2064324995004050E-004 + 194.45999999999998 3.2348240953416021E-004 + 194.51999999999998 3.2642287229523852E-004 + 194.57999999999998 3.2946035110003658E-004 + 194.63999999999999 3.3259028363994401E-004 + 194.69999999999999 3.3580793912625580E-004 + 194.75999999999999 3.3910836032702860E-004 + 194.81999999999999 3.4248644739169110E-004 + 194.88000000000000 3.4593688815683099E-004 + 194.94000000000000 3.4945419344382901E-004 + 195.00000000000000 3.5303272069381905E-004 + 195.06000000000000 3.5666660852844893E-004 + 195.12000000000000 3.6034987690424913E-004 + 195.17999999999998 3.6407636500311884E-004 + 195.23999999999998 3.6783981745628952E-004 + 195.29999999999998 3.7163377260415265E-004 + 195.35999999999999 3.7545169155001154E-004 + 195.41999999999999 3.7928687980688913E-004 + 195.47999999999999 3.8313257595900749E-004 + 195.53999999999999 3.8698193005135874E-004 + 195.59999999999999 3.9082792276410162E-004 + 195.66000000000000 3.9466352259373463E-004 + 195.72000000000000 3.9848162945650321E-004 + 195.78000000000000 4.0227512894003791E-004 + 195.84000000000000 4.0603681590431180E-004 + 195.89999999999998 4.0975950786351084E-004 + 195.95999999999998 4.1343603523057723E-004 + 196.01999999999998 4.1705922462601468E-004 + 196.07999999999998 4.2062196104682625E-004 + 196.13999999999999 4.2411721469865242E-004 + 196.19999999999999 4.2753801963839327E-004 + 196.25999999999999 4.3087756999629395E-004 + 196.31999999999999 4.3412915091236952E-004 + 196.38000000000000 4.3728617898073149E-004 + 196.44000000000000 4.4034231302958211E-004 + 196.50000000000000 4.4329138494793335E-004 + 196.56000000000000 4.4612744135079472E-004 + 196.62000000000000 4.4884467860353968E-004 + 196.67999999999998 4.5143762264183572E-004 + 196.73999999999998 4.5390097669906448E-004 + 196.79999999999998 4.5622971062600037E-004 + 196.85999999999999 4.5841904513160180E-004 + 196.91999999999999 4.6046443359491003E-004 + 196.97999999999999 4.6236159483296766E-004 + 197.03999999999999 4.6410654432852284E-004 + 197.09999999999999 4.6569558631979059E-004 + 197.16000000000000 4.6712527124112986E-004 + 197.22000000000000 4.6839246388074218E-004 + 197.28000000000000 4.6949435503919920E-004 + 197.34000000000000 4.7042846162793884E-004 + 197.39999999999998 4.7119268150401777E-004 + 197.45999999999998 4.7178520153601667E-004 + 197.51999999999998 4.7220467690174933E-004 + 197.57999999999998 4.7245014496211037E-004 + 197.63999999999999 4.7252104271777067E-004 + 197.69999999999999 4.7241721053176014E-004 + 197.75999999999999 4.7213899114948788E-004 + 197.81999999999999 4.7168713602890774E-004 + 197.88000000000000 4.7106282694882388E-004 + 197.94000000000000 4.7026769882111281E-004 + 198.00000000000000 4.6930381235216326E-004 + 198.06000000000000 4.6817364190817126E-004 + 198.12000000000000 4.6688001999869609E-004 + 198.17999999999998 4.6542623498701017E-004 + 198.23999999999998 4.6381590212882197E-004 + 198.29999999999998 4.6205297115132821E-004 + 198.35999999999999 4.6014174983189271E-004 + 198.41999999999999 4.5808686952605784E-004 + 198.47999999999999 4.5589319867454889E-004 + 198.53999999999999 4.5356598431120569E-004 + 198.59999999999999 4.5111067380934221E-004 + 198.66000000000000 4.4853303532657444E-004 + 198.72000000000000 4.4583904117188151E-004 + 198.78000000000000 4.4303487480297477E-004 + 198.84000000000000 4.4012703522768471E-004 + 198.89999999999998 4.3712216367352788E-004 + 198.95999999999998 4.3402713763805901E-004 + 199.01999999999998 4.3084899229879224E-004 + 199.07999999999998 4.2759494473232747E-004 + 199.13999999999999 4.2427231436036072E-004 + 199.19999999999999 4.2088853351705086E-004 + 199.25999999999999 4.1745119012718277E-004 + 199.31999999999999 4.1396787535046052E-004 + 199.38000000000000 4.1044615196386344E-004 + 199.44000000000000 4.0689367891118516E-004 + 199.50000000000000 4.0331803306357467E-004 + 199.56000000000000 3.9972666705798729E-004 + 199.62000000000000 3.9612702942130526E-004 + 199.67999999999998 3.9252634644042152E-004 + 199.73999999999998 3.8893171079851057E-004 + 199.79999999999998 3.8535010084870321E-004 + 199.85999999999999 3.8178821851617828E-004 + 199.91999999999999 3.7825256213831206E-004 + 199.97999999999999 3.7474932718610770E-004 + 200.03999999999999 3.7128451376960308E-004 + 200.09999999999999 3.6786380092916816E-004 + 200.16000000000000 3.6449256975202443E-004 + 200.22000000000000 3.6117587264922744E-004 + 200.28000000000000 3.5791835901177044E-004 + 200.34000000000000 3.5472442810443818E-004 + 200.39999999999998 3.5159803022608531E-004 + 200.45999999999998 3.4854273792481492E-004 + 200.51999999999998 3.4556175011685284E-004 + 200.57999999999998 3.4265779182579635E-004 + 200.63999999999999 3.3983321177124095E-004 + 200.69999999999999 3.3708996221306969E-004 + 200.75999999999999 3.3442945940720848E-004 + 200.81999999999999 3.3185277791681917E-004 + 200.88000000000000 3.2936048512350376E-004 + 200.94000000000000 3.2695273480374583E-004 + 201.00000000000000 3.2462924054834947E-004 + 201.06000000000000 3.2238927374069728E-004 + 201.12000000000000 3.2023168087780675E-004 + 201.17999999999998 3.1815489260831904E-004 + 201.23999999999998 3.1615689520222458E-004 + 201.29999999999998 3.1423529231833594E-004 + 201.35999999999999 3.1238728923921165E-004 + 201.41999999999999 3.1060967631782270E-004 + 201.47999999999999 3.0889890831943149E-004 + 201.53999999999999 3.0725098799303299E-004 + 201.59999999999999 3.0566163886453575E-004 + 201.66000000000000 3.0412620970008048E-004 + 201.72000000000000 3.0263973661754046E-004 + 201.78000000000000 3.0119694519523832E-004 + 201.84000000000000 2.9979226726091593E-004 + 201.89999999999998 2.9841987797500934E-004 + 201.95999999999998 2.9707372480177304E-004 + 202.01999999999998 2.9574753161903592E-004 + 202.07999999999998 2.9443483947597918E-004 + 202.13999999999999 2.9312906664952237E-004 + 202.19999999999999 2.9182348466275825E-004 + 202.25999999999999 2.9051128077614536E-004 + 202.31999999999999 2.8918558504452462E-004 + 202.38000000000000 2.8783948837953117E-004 + 202.44000000000000 2.8646608710731472E-004 + 202.50000000000000 2.8505852334360254E-004 + 202.56000000000000 2.8360992956085395E-004 + 202.62000000000000 2.8211356949896357E-004 + 202.67999999999998 2.8056273644313357E-004 + 202.73999999999998 2.7895090283272175E-004 + 202.79999999999998 2.7727164102530233E-004 + 202.85999999999999 2.7551867836128353E-004 + 202.91999999999999 2.7368591247978755E-004 + 202.97999999999999 2.7176749174928877E-004 + 203.03999999999999 2.6975771965765196E-004 + 203.09999999999999 2.6765119338605743E-004 + 203.16000000000000 2.6544274504968531E-004 + 203.22000000000000 2.6312752154952247E-004 + 203.28000000000000 2.6070093320662222E-004 + 203.34000000000000 2.5815878656784653E-004 + 203.39999999999998 2.5549721837830772E-004 + 203.45999999999998 2.5271269851190640E-004 + 203.51999999999998 2.4980216391465369E-004 + 203.57999999999998 2.4676289661319757E-004 + 203.63999999999999 2.4359262401003293E-004 + 203.69999999999999 2.4028946145461858E-004 + 203.75999999999999 2.3685196246737503E-004 + 203.81999999999999 2.3327912908406896E-004 + 203.88000000000000 2.2957039616252803E-004 + 203.94000000000000 2.2572559873983489E-004 + 204.00000000000000 2.2174496865707234E-004 + 204.06000000000000 2.1762917639407255E-004 + 204.12000000000000 2.1337934563690585E-004 + 204.17999999999998 2.0899693131482867E-004 + 204.23999999999998 2.0448380784618991E-004 + 204.29999999999998 1.9984225845578768E-004 + 204.35999999999999 1.9507491663071377E-004 + 204.41999999999999 1.9018482626690413E-004 + 204.47999999999999 1.8517538033889462E-004 + 204.53999999999999 1.8005034007344300E-004 + 204.59999999999999 1.7481384519299055E-004 + 204.66000000000000 1.6947034665214947E-004 + 204.72000000000000 1.6402467528594148E-004 + 204.78000000000000 1.5848196263356680E-004 + 204.84000000000000 1.5284763962876923E-004 + 204.89999999999998 1.4712742772415507E-004 + 204.95999999999998 1.4132734419952555E-004 + 205.01999999999998 1.3545362979680008E-004 + 205.07999999999998 1.2951274952648474E-004 + 205.13999999999999 1.2351137156112207E-004 + 205.19999999999999 1.1745632545365499E-004 + 205.25999999999999 1.1135459522861293E-004 + 205.31999999999999 1.0521327555101261E-004 + 205.38000000000000 9.9039559955730870E-005 + 205.44000000000000 9.2840700080124377E-005 + 205.50000000000000 8.6624002510601809E-005 + 205.56000000000000 8.0396799504705801E-005 + 205.62000000000000 7.4166425979342208E-005 + 205.67999999999998 6.7940198855363887E-005 + 205.73999999999998 6.1725409974460382E-005 + 205.79999999999998 5.5529313707821991E-005 + 205.85999999999999 4.9359083366561599E-005 + 205.91999999999999 4.3221802994365173E-005 + 205.97999999999999 3.7124479270420184E-005 + 206.03999999999999 3.1073989934556588E-005 + 206.09999999999999 2.5077083881671700E-005 + 206.16000000000000 1.9140360192508022E-005 + 206.22000000000000 1.3270254448306517E-005 + 206.28000000000000 7.4730102518157311E-006 + 206.34000000000000 1.7546784240552359E-006 + 206.39999999999998 -3.8789103077435955E-006 + 206.45999999999998 -9.4221522106811918E-006 + 206.51999999999998 -1.4869685173362348E-005 + 206.57999999999998 -2.0216392809647742E-005 + 206.63999999999999 -2.5457432589276067E-005 + 206.69999999999999 -3.0588218200664886E-005 + 206.75999999999999 -3.5604448344268016E-005 + 206.81999999999999 -4.0502093946797674E-005 + 206.88000000000000 -4.5277400653753440E-005 + 206.94000000000000 -4.9926910954862375E-005 + 207.00000000000000 -5.4447436066138299E-005 + 207.06000000000000 -5.8836075139115216E-005 + 207.12000000000000 -6.3090220586246447E-005 + 207.17999999999998 -6.7207544043116556E-005 + 207.23999999999998 -7.1185993498838811E-005 + 207.29999999999998 -7.5023805434954073E-005 + 207.35999999999999 -7.8719507932089959E-005 + 207.41999999999999 -8.2271902387279455E-005 + 207.47999999999999 -8.5680077746881476E-005 + 207.53999999999999 -8.8943399005054493E-005 + 207.59999999999999 -9.2061513458362618E-005 + 207.66000000000000 -9.5034336026967643E-005 + 207.72000000000000 -9.7862049454221120E-005 + 207.78000000000000 -1.0054508358161950E-004 + 207.84000000000000 -1.0308412217209520E-004 + 207.89999999999998 -1.0548008982050750E-004 + 207.95999999999998 -1.0773412845643395E-004 + 208.01999999999998 -1.0984759153063927E-004 + 208.07999999999998 -1.1182205171813166E-004 + 208.13999999999999 -1.1365926732850736E-004 + 208.19999999999999 -1.1536115862537763E-004 + 208.25999999999999 -1.1692981244183754E-004 + 208.31999999999999 -1.1836750466032869E-004 + 208.38000000000000 -1.1967660671066146E-004 + 208.44000000000000 -1.2085967748104215E-004 + 208.50000000000000 -1.2191936995084632E-004 + 208.56000000000000 -1.2285848494605301E-004 + 208.62000000000000 -1.2367992916000154E-004 + 208.68000000000001 -1.2438672452056373E-004 + 208.74000000000001 -1.2498199643635365E-004 + 208.80000000000001 -1.2546896289109823E-004 + 208.86000000000001 -1.2585095275408770E-004 + 208.92000000000002 -1.2613134597023502E-004 + 208.98000000000002 -1.2631360133358381E-004 + 209.03999999999996 -1.2640126583999295E-004 + 209.09999999999997 -1.2639789399330288E-004 + 209.15999999999997 -1.2630712042213047E-004 + 209.21999999999997 -1.2613258825797547E-004 + 209.27999999999997 -1.2587796854212304E-004 + 209.33999999999997 -1.2554693449674987E-004 + 209.39999999999998 -1.2514316891589817E-004 + 209.45999999999998 -1.2467032898060327E-004 + 209.51999999999998 -1.2413208383791867E-004 + 209.57999999999998 -1.2353202245246232E-004 + 209.63999999999999 -1.2287377371326212E-004 + 209.69999999999999 -1.2216088991496752E-004 + 209.75999999999999 -1.2139688621485034E-004 + 209.81999999999999 -1.2058523715199696E-004 + 209.88000000000000 -1.1972937605711655E-004 + 209.94000000000000 -1.1883267257021223E-004 + 210.00000000000000 -1.1789843191956514E-004 + 210.06000000000000 -1.1692990714612322E-004 + 210.12000000000000 -1.1593026941971800E-004 + 210.18000000000001 -1.1490261292829628E-004 + 210.24000000000001 -1.1384995652235144E-004 + 210.30000000000001 -1.1277521448794192E-004 + 210.36000000000001 -1.1168119701310092E-004 + 210.42000000000002 -1.1057061632326354E-004 + 210.48000000000002 -1.0944608486040887E-004 + 210.53999999999996 -1.0831007735702259E-004 + 210.59999999999997 -1.0716496024558245E-004 + 210.65999999999997 -1.0601298827960466E-004 + 210.71999999999997 -1.0485628033905225E-004 + 210.77999999999997 -1.0369684839510191E-004 + 210.83999999999997 -1.0253660081087663E-004 + 210.89999999999998 -1.0137731561232690E-004 + 210.95999999999998 -1.0022067699925260E-004 + 211.01999999999998 -9.9068248050098278E-005 + 211.07999999999998 -9.7921512673292897E-005 + 211.13999999999999 -9.6781855457922646E-005 + 211.19999999999999 -9.5650558254195672E-005 + 211.25999999999999 -9.4528817888154894E-005 + 211.31999999999999 -9.3417741780626212E-005 + 211.38000000000000 -9.2318336833893967E-005 + 211.44000000000000 -9.1231520205289091E-005 + 211.50000000000000 -9.0158113120037629E-005 + 211.56000000000000 -8.9098852682635647E-005 + 211.62000000000000 -8.8054351801283195E-005 + 211.68000000000001 -8.7025147126794825E-005 + 211.74000000000001 -8.6011654906152014E-005 + 211.80000000000001 -8.5014201748360188E-005 + 211.86000000000001 -8.4033026897879689E-005 + 211.92000000000002 -8.3068260852968672E-005 + 211.98000000000002 -8.2119960083098110E-005 + 212.03999999999996 -8.1188094227155507E-005 + 212.09999999999997 -8.0272565337835349E-005 + 212.15999999999997 -7.9373228396986342E-005 + 212.21999999999997 -7.8489865349304380E-005 + 212.27999999999997 -7.7622230954186341E-005 + 212.33999999999997 -7.6770054054731542E-005 + 212.39999999999998 -7.5933019666910156E-005 + 212.45999999999998 -7.5110812413688911E-005 + 212.51999999999998 -7.4303098860967450E-005 + 212.57999999999998 -7.3509530434699179E-005 + 212.63999999999999 -7.2729772548356234E-005 + 212.69999999999999 -7.1963471087238760E-005 + 212.75999999999999 -7.1210269106751562E-005 + 212.81999999999999 -7.0469803847031479E-005 + 212.88000000000000 -6.9741712372855023E-005 + 212.94000000000000 -6.9025606650553357E-005 + 213.00000000000000 -6.8321095197360667E-005 + 213.06000000000000 -6.7627777542524718E-005 + 213.12000000000000 -6.6945225229165495E-005 + 213.18000000000001 -6.6273002437087377E-005 + 213.24000000000001 -6.5610650484457982E-005 + 213.30000000000001 -6.4957701422692750E-005 + 213.36000000000001 -6.4313663838943159E-005 + 213.42000000000002 -6.3678042549038561E-005 + 213.48000000000002 -6.3050328445569856E-005 + 213.53999999999996 -6.2430012181908081E-005 + 213.59999999999997 -6.1816578841618225E-005 + 213.65999999999997 -6.1209514095668654E-005 + 213.71999999999997 -6.0608318297410022E-005 + 213.77999999999997 -6.0012483877479603E-005 + 213.83999999999997 -5.9421537360098034E-005 + 213.89999999999998 -5.8834992362019564E-005 + 213.95999999999998 -5.8252414112460276E-005 + 214.01999999999998 -5.7673365581360338E-005 + 214.07999999999998 -5.7097442561327963E-005 + 214.13999999999999 -5.6524273497883151E-005 + 214.19999999999999 -5.5953502300443167E-005 + 214.25999999999999 -5.5384815739247218E-005 + 214.31999999999999 -5.4817923818047966E-005 + 214.38000000000000 -5.4252577584480889E-005 + 214.44000000000000 -5.3688548034729791E-005 + 214.50000000000000 -5.3125649837910632E-005 + 214.56000000000000 -5.2563718689347683E-005 + 214.62000000000000 -5.2002622922012930E-005 + 214.68000000000001 -5.1442257787514899E-005 + 214.74000000000001 -5.0882531414622395E-005 + 214.80000000000001 -5.0323372748623775E-005 + 214.86000000000001 -4.9764724310276361E-005 + 214.92000000000002 -4.9206540862613271E-005 + 214.98000000000002 -4.8648775362226199E-005 + 215.03999999999996 -4.8091390855961146E-005 + 215.09999999999997 -4.7534343093775269E-005 + 215.15999999999997 -4.6977592783238953E-005 + 215.21999999999997 -4.6421103409228576E-005 + 215.27999999999997 -4.5864833525952361E-005 + 215.33999999999997 -4.5308750905061893E-005 + 215.39999999999998 -4.4752837911607708E-005 + 215.45999999999998 -4.4197086402268299E-005 + 215.51999999999998 -4.3641517244856692E-005 + 215.57999999999998 -4.3086177342634434E-005 + 215.63999999999999 -4.2531152179543452E-005 + 215.69999999999999 -4.1976560217208756E-005 + 215.75999999999999 -4.1422572072587358E-005 + 215.81999999999999 -4.0869399095876082E-005 + 215.88000000000000 -4.0317312590094238E-005 + 215.94000000000000 -3.9766614262455142E-005 + 216.00000000000000 -3.9217659376327174E-005 + 216.06000000000000 -3.8670842285041736E-005 + 216.12000000000000 -3.8126578681523077E-005 + 216.18000000000001 -3.7585316079680950E-005 + 216.24000000000001 -3.7047508960148731E-005 + 216.30000000000001 -3.6513619759568204E-005 + 216.36000000000001 -3.5984101165420557E-005 + 216.42000000000002 -3.5459389020879618E-005 + 216.48000000000002 -3.4939902329698630E-005 + 216.53999999999996 -3.4426028830370680E-005 + 216.59999999999997 -3.3918124430094086E-005 + 216.65999999999997 -3.3416510524954783E-005 + 216.71999999999997 -3.2921474400744686E-005 + 216.77999999999997 -3.2433275254002790E-005 + 216.83999999999997 -3.1952132900536789E-005 + 216.89999999999998 -3.1478249805418686E-005 + 216.95999999999998 -3.1011806517229546E-005 + 217.01999999999998 -3.0552961485178023E-005 + 217.07999999999998 -3.0101872767235834E-005 + 217.13999999999999 -2.9658683522898885E-005 + 217.19999999999999 -2.9223531000509911E-005 + 217.25999999999999 -2.8796554010819849E-005 + 217.31999999999999 -2.8377885268459372E-005 + 217.38000000000000 -2.7967654331144726E-005 + 217.44000000000000 -2.7565981669518807E-005 + 217.50000000000000 -2.7172979876105186E-005 + 217.56000000000000 -2.6788747260287206E-005 + 217.62000000000000 -2.6413357465540840E-005 + 217.68000000000001 -2.6046864449433128E-005 + 217.74000000000001 -2.5689289395144903E-005 + 217.80000000000001 -2.5340623522963450E-005 + 217.86000000000001 -2.5000818430170811E-005 + 217.92000000000002 -2.4669788087912431E-005 + 217.98000000000002 -2.4347407680879363E-005 + 218.03999999999996 -2.4033514187348273E-005 + 218.09999999999997 -2.3727904497747031E-005 + 218.15999999999997 -2.3430341282613129E-005 + 218.21999999999997 -2.3140555129823761E-005 + 218.27999999999997 -2.2858246008390600E-005 + 218.33999999999997 -2.2583092916640670E-005 + 218.39999999999998 -2.2314748556186021E-005 + 218.45999999999998 -2.2052853527897463E-005 + 218.51999999999998 -2.1797035231424201E-005 + 218.57999999999998 -2.1546915918876770E-005 + 218.63999999999999 -2.1302111069562185E-005 + 218.69999999999999 -2.1062236263426415E-005 + 218.75999999999999 -2.0826913574758900E-005 + 218.81999999999999 -2.0595770269947315E-005 + 218.88000000000000 -2.0368441536739827E-005 + 218.94000000000000 -2.0144576284674527E-005 + 219.00000000000000 -1.9923840597755084E-005 + 219.06000000000000 -1.9705914700362811E-005 + 219.12000000000000 -1.9490501182204656E-005 + 219.18000000000001 -1.9277319942607759E-005 + 219.24000000000001 -1.9066112964582143E-005 + 219.30000000000001 -1.8856643760638002E-005 + 219.36000000000001 -1.8648696362621648E-005 + 219.42000000000002 -1.8442076084779729E-005 + 219.48000000000002 -1.8236604302620459E-005 + 219.53999999999996 -1.8032114935812386E-005 + 219.59999999999997 -1.7828455906047380E-005 + 219.65999999999997 -1.7625483663513762E-005 + 219.71999999999997 -1.7423056124331273E-005 + 219.77999999999997 -1.7221035394624301E-005 + 219.83999999999997 -1.7019278916779654E-005 + 219.89999999999998 -1.6817642816370075E-005 + 219.95999999999998 -1.6615973986856350E-005 + 220.01999999999998 -1.6414112219852872E-005 + 220.07999999999998 -1.6211892964339090E-005 + 220.13999999999999 -1.6009146490210945E-005 + 220.19999999999999 -1.5805700758629227E-005 + 220.25999999999999 -1.5601382124717514E-005 + 220.31999999999999 -1.5396021602002972E-005 + 220.38000000000000 -1.5189458478900922E-005 + 220.44000000000000 -1.4981543669066844E-005 + 220.50000000000000 -1.4772144788336668E-005 + 220.56000000000000 -1.4561142714706862E-005 + 220.62000000000000 -1.4348444109997681E-005 + 220.68000000000001 -1.4133971005778855E-005 + 220.74000000000001 -1.3917667119863385E-005 + 220.80000000000001 -1.3699496079158326E-005 + 220.86000000000001 -1.3479436278385925E-005 + 220.92000000000002 -1.3257478761452028E-005 + 220.98000000000002 -1.3033624944686931E-005 + 221.03999999999996 -1.2807880907839811E-005 + 221.09999999999997 -1.2580256526907794E-005 + 221.15999999999997 -1.2350759197679912E-005 + 221.21999999999997 -1.2119392398255060E-005 + 221.27999999999997 -1.1886155939733336E-005 + 221.33999999999997 -1.1651044169728885E-005 + 221.39999999999998 -1.1414047431682703E-005 + 221.45999999999998 -1.1175152180653689E-005 + 221.51999999999998 -1.0934346527651726E-005 + 221.57999999999998 -1.0691621771786906E-005 + 221.63999999999999 -1.0446975016244372E-005 + 221.69999999999999 -1.0200414267034355E-005 + 221.75999999999999 -9.9519623037429571E-006 + 221.81999999999999 -9.7016589755880464E-006 + 221.88000000000000 -9.4495631519413788E-006 + 221.94000000000000 -9.1957556625297179E-006 + 222.00000000000000 -8.9403394790485836E-006 + 222.06000000000000 -8.6834390265324708E-006 + 222.12000000000000 -8.4252010074895361E-006 + 222.18000000000001 -8.1657938227106247E-006 + 222.24000000000001 -7.9054051098746771E-006 + 222.30000000000001 -7.6442390229184420E-006 + 222.36000000000001 -7.3825198035925207E-006 + 222.42000000000002 -7.1204860252476371E-006 + 222.48000000000002 -6.8583942733648096E-006 + 222.53999999999996 -6.5965160768016402E-006 + 222.59999999999997 -6.3351413625432467E-006 + 222.65999999999997 -6.0745764601914692E-006 + 222.71999999999997 -5.8151464834501232E-006 + 222.77999999999997 -5.5571945516587385E-006 + 222.83999999999997 -5.3010839863549103E-006 + 222.89999999999998 -5.0471951965166483E-006 + 222.95999999999998 -4.7959252142082781E-006 + 223.01999999999998 -4.5476858431973647E-006 + 223.07999999999998 -4.3028991314418508E-006 + 223.13999999999999 -4.0619933550214519E-006 + 223.19999999999999 -3.8253973104512810E-006 + 223.25999999999999 -3.5935351641468108E-006 + 223.31999999999999 -3.3668188136761619E-006 + 223.38000000000000 -3.1456434549969771E-006 + 223.44000000000000 -2.9303815347967328E-006 + 223.50000000000000 -2.7213776961468640E-006 + 223.56000000000000 -2.5189456186479313E-006 + 223.62000000000000 -2.3233663122995543E-006 + 223.68000000000001 -2.1348868433701745E-006 + 223.74000000000001 -1.9537215941573091E-006 + 223.80000000000001 -1.7800546649558180E-006 + 223.86000000000001 -1.6140432117033114E-006 + 223.92000000000002 -1.4558212161405456E-006 + 223.98000000000002 -1.3055049483817008E-006 + 224.03999999999996 -1.1631972481953697E-006 + 224.09999999999997 -1.0289913141401561E-006 + 224.15999999999997 -9.0297474629215675E-007 + 224.21999999999997 -7.8523137346642928E-007 + 224.27999999999997 -6.7584228436023996E-007 + 224.33999999999997 -5.7488573845023817E-007 + 224.39999999999998 -4.8243517964169284E-007 + 224.45999999999998 -3.9855608663616476E-007 + 224.51999999999998 -3.2330261759262587E-007 + 224.57999999999998 -2.5671331489287493E-007 + 224.63999999999999 -1.9880642711591945E-007 + 224.69999999999999 -1.4957576872903265E-007 + 224.75999999999999 -1.0898763257407503E-007 + 224.81999999999999 -7.6977898097026158E-008 + 224.88000000000000 -5.3451302201039819E-008 + 224.94000000000000 -3.8281135580885121E-008 + 225.00000000000000 -3.1311341057744963E-008 + 225.06000000000000 -3.2358948866232566E-008 + 225.12000000000000 -4.1218573087509759E-008 + 225.18000000000001 -5.7667000731789280E-008 + 225.24000000000001 -8.1468664844611835E-008 + 225.30000000000001 -1.1238118619974018E-007 + 225.36000000000001 -1.5016110651498304E-007 + 225.42000000000002 -1.9456873872724423E-007 + 225.48000000000002 -2.4537245622801946E-007 + 225.53999999999996 -3.0235227055990088E-007 + 225.59999999999997 -3.6530257818088791E-007 + 225.65999999999997 -4.3403387633451603E-007 + 225.71999999999997 -5.0837318538869919E-007 + 225.77999999999997 -5.8816499171270707E-007 + 225.83999999999997 -6.7327024078399624E-007 + 225.89999999999998 -7.6356614943239635E-007 + 225.95999999999998 -8.5894474639454196E-007 + 226.01999999999998 -9.5931219081222565E-007 + 226.07999999999998 -1.0645874706291776E-006 + 226.13999999999999 -1.1747016506859637E-006 + 226.19999999999999 -1.2895962197051455E-006 + 226.25999999999999 -1.4092218415953063E-006 + 226.31999999999999 -1.5335374366586925E-006 + 226.38000000000000 -1.6625071336372986E-006 + 226.44000000000000 -1.7960988960111644E-006 + 226.50000000000000 -1.9342814412037010E-006 + 226.56000000000000 -2.0770206934177187E-006 + 226.62000000000000 -2.2242760816828068E-006 + 226.68000000000001 -2.3759965682902829E-006 + 226.74000000000001 -2.5321168583190521E-006 + 226.80000000000001 -2.6925524476032033E-006 + 226.86000000000001 -2.8571979510771167E-006 + 226.92000000000002 -3.0259228144628367E-006 + 226.98000000000002 -3.1985702004299544E-006 + 227.03999999999996 -3.3749567963130759E-006 + 227.09999999999997 -3.5548737464220963E-006 + 227.15999999999997 -3.7380883482387544E-006 + 227.21999999999997 -3.9243493025340417E-006 + 227.27999999999997 -4.1133894668123393E-006 + 227.33999999999997 -4.3049324388044054E-006 + 227.39999999999998 -4.4986985098767539E-006 + 227.45999999999998 -4.6944102538432350E-006 + 227.51999999999998 -4.8917981581585533E-006 + 227.57999999999998 -5.0906047297481839E-006 + 227.63999999999999 -5.2905892090360505E-006 + 227.69999999999999 -5.4915278493110012E-006 + 227.75999999999999 -5.6932145424309843E-006 + 227.81999999999999 -5.8954598069624639E-006 + 227.88000000000000 -6.0980878631661843E-006 + 227.94000000000000 -6.3009323435936856E-006 + 228.00000000000000 -6.5038323640044736E-006 + 228.06000000000000 -6.7066263429774560E-006 + 228.12000000000000 -6.9091484634325643E-006 + 228.18000000000001 -7.1112236115771039E-006 + 228.24000000000001 -7.3126646804923160E-006 + 228.30000000000001 -7.5132720991198071E-006 + 228.36000000000001 -7.7128341106938262E-006 + 228.42000000000002 -7.9111267967281897E-006 + 228.48000000000002 -8.1079193778283154E-006 + 228.53999999999996 -8.3029799867783343E-006 + 228.59999999999997 -8.4960835792953685E-006 + 228.65999999999997 -8.6870144208798210E-006 + 228.71999999999997 -8.8755784515382548E-006 + 228.77999999999997 -9.0616062451039058E-006 + 228.83999999999997 -9.2449614513908494E-006 + 228.89999999999998 -9.4255461201288339E-006 + 228.95999999999998 -9.6033003949385646E-006 + 229.01999999999998 -9.7782082967126235E-006 + 229.07999999999998 -9.9502954646271007E-006 + 229.13999999999999 -1.0119625532058940E-005 + 229.19999999999999 -1.0286300296941349E-005 + 229.25999999999999 -1.0450451762041338E-005 + 229.31999999999999 -1.0612238137190283E-005 + 229.38000000000000 -1.0771837785241181E-005 + 229.44000000000000 -1.0929444433705622E-005 + 229.50000000000000 -1.1085259302898777E-005 + 229.56000000000000 -1.1239488641595796E-005 + 229.62000000000000 -1.1392337444086154E-005 + 229.68000000000001 -1.1544006939049497E-005 + 229.74000000000001 -1.1694691625504996E-005 + 229.80000000000001 -1.1844577222221693E-005 + 229.86000000000001 -1.1993839106283363E-005 + 229.92000000000002 -1.2142642040311675E-005 + 229.97999999999996 -1.2291135677721933E-005 + 230.03999999999996 -1.2439456592524862E-005 + 230.09999999999997 -1.2587724757533559E-005 + 230.15999999999997 -1.2736041595353633E-005 + 230.21999999999997 -1.2884487046300813E-005 + 230.27999999999997 -1.3033118877747268E-005 + 230.33999999999997 -1.3181969298004226E-005 + 230.39999999999998 -1.3331042070424103E-005 + 230.45999999999998 -1.3480312996333180E-005 + 230.51999999999998 -1.3629727976982463E-005 + 230.57999999999998 -1.3779202678234953E-005 + 230.63999999999999 -1.3928625334334483E-005 + 230.69999999999999 -1.4077859073168563E-005 + 230.75999999999999 -1.4226742512618880E-005 + 230.81999999999999 -1.4375097312654185E-005 + 230.88000000000000 -1.4522728518453431E-005 + 230.94000000000000 -1.4669433675959872E-005 + 231.00000000000000 -1.4815004630763532E-005 + 231.06000000000000 -1.4959230426896541E-005 + 231.12000000000000 -1.5101902334675010E-005 + 231.18000000000001 -1.5242811743872119E-005 + 231.24000000000001 -1.5381752858243318E-005 + 231.30000000000001 -1.5518520647630280E-005 + 231.36000000000001 -1.5652909021826940E-005 + 231.42000000000002 -1.5784703133862515E-005 + 231.47999999999996 -1.5913680409963840E-005 + 231.53999999999996 -1.6039602172565704E-005 + 231.59999999999997 -1.6162213421339746E-005 + 231.65999999999997 -1.6281237062296706E-005 + 231.71999999999997 -1.6396372304157332E-005 + 231.77999999999997 -1.6507294956401727E-005 + 231.83999999999997 -1.6613659492538201E-005 + 231.89999999999998 -1.6715100952222834E-005 + 231.95999999999998 -1.6811246453952192E-005 + 232.01999999999998 -1.6901713089946547E-005 + 232.07999999999998 -1.6986119835200566E-005 + 232.13999999999999 -1.7064098218589127E-005 + 232.19999999999999 -1.7135296921021700E-005 + 232.25999999999999 -1.7199389835206717E-005 + 232.31999999999999 -1.7256086905793182E-005 + 232.38000000000000 -1.7305136291867821E-005 + 232.44000000000000 -1.7346321303180967E-005 + 232.50000000000000 -1.7379471703743822E-005 + 232.56000000000000 -1.7404456000314766E-005 + 232.62000000000000 -1.7421173983626427E-005 + 232.68000000000001 -1.7429560248622338E-005 + 232.74000000000001 -1.7429572224233992E-005 + 232.80000000000001 -1.7421183468761787E-005 + 232.86000000000001 -1.7404380094888623E-005 + 232.92000000000002 -1.7379149944780029E-005 + 232.97999999999996 -1.7345477013733320E-005 + 233.03999999999996 -1.7303340223937209E-005 + 233.09999999999997 -1.7252703200888785E-005 + 233.15999999999997 -1.7193520199298222E-005 + 233.21999999999997 -1.7125735341333207E-005 + 233.27999999999997 -1.7049278725791910E-005 + 233.33999999999997 -1.6964073314768839E-005 + 233.39999999999998 -1.6870035386849165E-005 + 233.45999999999998 -1.6767082245469103E-005 + 233.51999999999998 -1.6655132439753380E-005 + 233.57999999999998 -1.6534108565033294E-005 + 233.63999999999999 -1.6403942004369130E-005 + 233.69999999999999 -1.6264577067315189E-005 + 233.75999999999999 -1.6115966284575409E-005 + 233.81999999999999 -1.5958075498022146E-005 + 233.88000000000000 -1.5790882391346842E-005 + 233.94000000000000 -1.5614374414831523E-005 + 234.00000000000000 -1.5428554354647824E-005 + 234.06000000000000 -1.5233435600061052E-005 + 234.12000000000000 -1.5029040059909518E-005 + 234.18000000000001 -1.4815405589864381E-005 + 234.24000000000001 -1.4592583748187845E-005 + 234.30000000000001 -1.4360640484922993E-005 + 234.36000000000001 -1.4119661327690333E-005 + 234.42000000000002 -1.3869750807580703E-005 + 234.47999999999996 -1.3611038501269270E-005 + 234.53999999999996 -1.3343677708631600E-005 + 234.59999999999997 -1.3067849347552788E-005 + 234.65999999999997 -1.2783760134819908E-005 + 234.71999999999997 -1.2491643630078226E-005 + 234.77999999999997 -1.2191759095120630E-005 + 234.83999999999997 -1.1884389117707728E-005 + 234.89999999999998 -1.1569833993036917E-005 + 234.95999999999998 -1.1248410287067179E-005 + 235.01999999999998 -1.0920447586234650E-005 + 235.07999999999998 -1.0586283373796696E-005 + 235.13999999999999 -1.0246261442693966E-005 + 235.19999999999999 -9.9007291800243720E-006 + 235.25999999999999 -9.5500372545074505E-006 + 235.31999999999999 -9.1945414898025212E-006 + 235.38000000000000 -8.8346036142994523E-006 + 235.44000000000000 -8.4705952172526392E-006 + 235.50000000000000 -8.1029022874524794E-006 + 235.56000000000000 -7.7319316906072184E-006 + 235.62000000000000 -7.3581130853842944E-006 + 235.68000000000001 -6.9819053301180921E-006 + 235.74000000000001 -6.6038013289430695E-006 + 235.80000000000001 -6.2243267641512792E-006 + 235.86000000000001 -5.8440447391960196E-006 + 235.92000000000002 -5.4635501318763963E-006 + 235.97999999999996 -5.0834686062406882E-006 + 236.03999999999996 -4.7044478626029219E-006 + 236.09999999999997 -4.3271530624918568E-006 + 236.15999999999997 -3.9522559246137957E-006 + 236.21999999999997 -3.5804266875770374E-006 + 236.27999999999997 -3.2123236419950768E-006 + 236.33999999999997 -2.8485826360546686E-006 + 236.39999999999998 -2.4898119274403365E-006 + 236.45999999999998 -2.1365814380727625E-006 + 236.51999999999998 -1.7894211476496238E-006 + 236.57999999999998 -1.4488163931864831E-006 + 236.63999999999999 -1.1152065857011125E-006 + 236.69999999999999 -7.8898626655464642E-007 + 236.75999999999999 -4.7050732891954214E-007 + 236.81999999999999 -1.6008156520797020E-007 + 236.88000000000000 1.4201422647019224E-007 + 236.94000000000000 4.3553621396888369E-007 + 237.00000000000000 7.2026871504363578E-007 + 237.06000000000000 9.9602202246537125E-007 + 237.12000000000000 1.2626305300477824E-006 + 237.18000000000001 1.5199525489048824E-006 + 237.24000000000001 1.7678710920772505E-006 + 237.30000000000001 2.0062946207870979E-006 + 237.36000000000001 2.2351600929095443E-006 + 237.42000000000002 2.4544356518080220E-006 + 237.47999999999996 2.6641224557271518E-006 + 237.53999999999996 2.8642575876689344E-006 + 237.59999999999997 3.0549147056147579E-006 + 237.65999999999997 3.2362041177705446E-006 + 237.71999999999997 3.4082722686405778E-006 + 237.77999999999997 3.5712992188404108E-006 + 237.83999999999997 3.7254943333169858E-006 + 237.89999999999998 3.8710930952507227E-006 + 237.95999999999998 4.0083511609316578E-006 + 238.01999999999998 4.1375398430474529E-006 + 238.07999999999998 4.2589408002980588E-006 + 238.13999999999999 4.3728429661851318E-006 + 238.19999999999999 4.4795382736691919E-006 + 238.25999999999999 4.5793201791945236E-006 + 238.31999999999999 4.6724829224854882E-006 + 238.38000000000000 4.7593230507637907E-006 + 238.44000000000000 4.8401404327720660E-006 + 238.50000000000000 4.9152412021830143E-006 + 238.56000000000000 4.9849411118216542E-006 + 238.62000000000000 5.0495684941403425E-006 + 238.68000000000001 5.1094661613710262E-006 + 238.74000000000001 5.1649953674694319E-006 + 238.80000000000001 5.2165354371430305E-006 + 238.86000000000001 5.2644835823909931E-006 + 238.92000000000002 5.3092538088718716E-006 + 238.97999999999996 5.3512747075688002E-006 + 239.03999999999996 5.3909856071989279E-006 + 239.09999999999997 5.4288338190100801E-006 + 239.15999999999997 5.4652696506809626E-006 + 239.21999999999997 5.5007439231635171E-006 + 239.27999999999997 5.5357057122633016E-006 + 239.33999999999997 5.5706007809477066E-006 + 239.39999999999998 5.6058725305089661E-006 + 239.45999999999998 5.6419653354137177E-006 + 239.51999999999998 5.6793255815699104E-006 + 239.57999999999998 5.7184108764533475E-006 + 239.63999999999999 5.7596942476474026E-006 + 239.69999999999999 5.8036720051584977E-006 + 239.75999999999999 5.8508731668410610E-006 + 239.81999999999999 5.9018656929698466E-006 + 239.88000000000000 5.9572630743813920E-006 + 239.94000000000000 6.0177306962860332E-006 + 240.00000000000000 6.0839908474482355E-006 + 240.06000000000000 6.1568241171130469E-006 + 240.12000000000000 6.2370709627630042E-006 + 240.18000000000001 6.3256296953482261E-006 + 240.24000000000001 6.4234566880174353E-006 + 240.30000000000001 6.5315604869504729E-006 + 240.36000000000001 6.6510011231914763E-006 + 240.42000000000002 6.7828839887204234E-006 + 240.47999999999996 6.9283571397478531E-006 + 240.53999999999996 7.0886095197730138E-006 + 240.59999999999997 7.2648690054915085E-006 + 240.65999999999997 7.4584001475937653E-006 + 240.71999999999997 7.6705061774035226E-006 + 240.77999999999997 7.9025296976054462E-006 + 240.83999999999997 8.1558561436299206E-006 + 240.89999999999998 8.4319133188367423E-006 + 240.95999999999998 8.7321770216414288E-006 + 241.01999999999998 9.0581696452092610E-006 + 241.07999999999998 9.4114646010617972E-006 + 241.13999999999999 9.7936854862382534E-006 + 241.19999999999999 1.0206503018561176E-005 + 241.25999999999999 1.0651638558545647E-005 + 241.31999999999999 1.1130854472028449E-005 + 241.38000000000000 1.1645954289129663E-005 + 241.44000000000000 1.2198777925713654E-005 + 241.50000000000000 1.2791195486412807E-005 + 241.56000000000000 1.3425108136048507E-005 + 241.62000000000000 1.4102439222237699E-005 + 241.68000000000001 1.4825134332894310E-005 + 241.74000000000001 1.5595159148212281E-005 + 241.80000000000001 1.6414504536782019E-005 + 241.86000000000001 1.7285178970205898E-005 + 241.92000000000002 1.8209216892832770E-005 + 241.97999999999996 1.9188679140249517E-005 + 242.03999999999996 2.0225654197324087E-005 + 242.09999999999997 2.1322264936932171E-005 + 242.15999999999997 2.2480665802846617E-005 + 242.21999999999997 2.3703042429662797E-005 + 242.27999999999997 2.4991614362276935E-005 + 242.33999999999997 2.6348626653987859E-005 + 242.39999999999998 2.7776347968005009E-005 + 242.45999999999998 2.9277062780091721E-005 + 242.51999999999998 3.0853067196629843E-005 + 242.57999999999998 3.2506652787639309E-005 + 242.63999999999999 3.4240102194116800E-005 + 242.69999999999999 3.6055678001295263E-005 + 242.75999999999999 3.7955617225218017E-005 + 242.81999999999999 3.9942119028546681E-005 + 242.88000000000000 4.2017339456271016E-005 + 242.94000000000000 4.4183391355858074E-005 + 243.00000000000000 4.6442340464745982E-005 + 243.06000000000000 4.8796191147349507E-005 + 243.12000000000000 5.1246910001698782E-005 + 243.18000000000001 5.3796407059717129E-005 + 243.24000000000001 5.6446540667651357E-005 + 243.30000000000001 5.9199123747384444E-005 + 243.36000000000001 6.2055915165893359E-005 + 243.42000000000002 6.5018617478687871E-005 + 243.47999999999996 6.8088881438549295E-005 + 243.53999999999996 7.1268294002376178E-005 + 243.59999999999997 7.4558356801436771E-005 + 243.65999999999997 7.7960494518561306E-005 + 243.71999999999997 8.1476029412543531E-005 + 243.77999999999997 8.5106171430033060E-005 + 243.83999999999997 8.8851979548738665E-005 + 243.89999999999998 9.2714394089512129E-005 + 243.95999999999998 9.6694163559990089E-005 + 244.01999999999998 1.0079187084723393E-004 + 244.07999999999998 1.0500787738385519E-004 + 244.13999999999999 1.0934236352711132E-004 + 244.19999999999999 1.1379526397400826E-004 + 244.25999999999999 1.1836627839852575E-004 + 244.31999999999999 1.2305486949331626E-004 + 244.38000000000000 1.2786024535467788E-004 + 244.44000000000000 1.3278136233135852E-004 + 244.50000000000000 1.3781690469056063E-004 + 244.56000000000000 1.4296527696848365E-004 + 244.62000000000000 1.4822461900537557E-004 + 244.68000000000001 1.5359279871449057E-004 + 244.74000000000001 1.5906736796785038E-004 + 244.80000000000001 1.6464560790602667E-004 + 244.86000000000001 1.7032449299916026E-004 + 244.92000000000002 1.7610068918918947E-004 + 244.97999999999996 1.8197055266421525E-004 + 245.03999999999996 1.8793009641725506E-004 + 245.09999999999997 1.9397502430367711E-004 + 245.15999999999997 2.0010072143679579E-004 + 245.21999999999997 2.0630225809678790E-004 + 245.27999999999997 2.1257432570331896E-004 + 245.33999999999997 2.1891132832384716E-004 + 245.39999999999998 2.2530731847694764E-004 + 245.45999999999998 2.3175602608071315E-004 + 245.51999999999998 2.3825089255229733E-004 + 245.57999999999998 2.4478504780537399E-004 + 245.63999999999999 2.5135130105777514E-004 + 245.69999999999999 2.5794217104662260E-004 + 245.75999999999999 2.6454991760510214E-004 + 245.81999999999999 2.7116648577086124E-004 + 245.88000000000000 2.7778357126313698E-004 + 245.94000000000000 2.8439263569123767E-004 + 246.00000000000000 2.9098483684254517E-004 + 246.06000000000000 2.9755114736401624E-004 + 246.12000000000000 3.0408234101968786E-004 + 246.18000000000001 3.1056886871259405E-004 + 246.24000000000001 3.1700109571319287E-004 + 246.30000000000001 3.2336912680758440E-004 + 246.36000000000001 3.2966294097628809E-004 + 246.42000000000002 3.3587238651314817E-004 + 246.47999999999996 3.4198716572904413E-004 + 246.53999999999996 3.4799690017150368E-004 + 246.59999999999997 3.5389114250134688E-004 + 246.65999999999997 3.5965944827105078E-004 + 246.71999999999997 3.6529134601496615E-004 + 246.77999999999997 3.7077634137716641E-004 + 246.83999999999997 3.7610405450676210E-004 + 246.89999999999998 3.8126417405604749E-004 + 246.95999999999998 3.8624648677404721E-004 + 247.01999999999998 3.9104090755925583E-004 + 247.07999999999998 3.9563752878113000E-004 + 247.13999999999999 4.0002658149070357E-004 + 247.19999999999999 4.0419849164498030E-004 + 247.25999999999999 4.0814393646510731E-004 + 247.31999999999999 4.1185377597816747E-004 + 247.38000000000000 4.1531915495120637E-004 + 247.44000000000000 4.1853146359864649E-004 + 247.50000000000000 4.2148237722892847E-004 + 247.56000000000000 4.2416386131807413E-004 + 247.62000000000000 4.2656824568713562E-004 + 247.68000000000001 4.2868816549550108E-004 + 247.74000000000001 4.3051664928843989E-004 + 247.80000000000001 4.3204713255720248E-004 + 247.86000000000001 4.3327349108809827E-004 + 247.92000000000002 4.3419000936310555E-004 + 247.97999999999996 4.3479142106336957E-004 + 248.03999999999996 4.3507307203179504E-004 + 248.09999999999997 4.3503070389660429E-004 + 248.15999999999997 4.3466062798767040E-004 + 248.21999999999997 4.3395973342923286E-004 + 248.27999999999997 4.3292547873625113E-004 + 248.33999999999997 4.3155584433750890E-004 + 248.39999999999998 4.2984947275332487E-004 + 248.45999999999998 4.2780554057688882E-004 + 248.51999999999998 4.2542382134036326E-004 + 248.57999999999998 4.2270466983050143E-004 + 248.63999999999999 4.1964908196603039E-004 + 248.69999999999999 4.1625859700468221E-004 + 248.75999999999999 4.1253541327346304E-004 + 248.81999999999999 4.0848227937759522E-004 + 248.88000000000000 4.0410247810344295E-004 + 248.94000000000000 3.9940000300848301E-004 + 249.00000000000000 3.9437932487000393E-004 + 249.06000000000000 3.8904558889902359E-004 + 249.12000000000000 3.8340447497445409E-004 + 249.18000000000001 3.7746220607157762E-004 + 249.24000000000001 3.7122563962810925E-004 + 249.30000000000001 3.6470212046946622E-004 + 249.36000000000001 3.5789955862882886E-004 + 249.42000000000002 3.5082637732539233E-004 + 249.47999999999996 3.4349151239651988E-004 + 249.53999999999996 3.3590432521166531E-004 + 249.59999999999997 3.2807469875754058E-004 + 249.65999999999997 3.2001288359981598E-004 + 249.71999999999997 3.1172955778018105E-004 + 249.77999999999997 3.0323578645751555E-004 + 249.83999999999997 2.9454295218485707E-004 + 249.89999999999998 2.8566277193165396E-004 + 249.95999999999998 2.7660722435287200E-004 + 250.01999999999998 2.6738857929438836E-004 + 250.07999999999998 2.5801934270928799E-004 + 250.13999999999999 2.4851221070611976E-004 + 250.19999999999999 2.3888010201809020E-004 + 250.25999999999999 2.2913604254359835E-004 + 250.31999999999999 2.1929325907030174E-004 + 250.38000000000000 2.0936504460476759E-004 + 250.44000000000000 1.9936475868644014E-004 + 250.50000000000000 1.8930583750746891E-004 + 250.56000000000000 1.7920171463373645E-004 + 250.62000000000000 1.6906577640910946E-004 + 250.68000000000001 1.5891138545377607E-004 + 250.74000000000001 1.4875180923436314E-004 + 250.80000000000001 1.3860018393965922E-004 + 250.86000000000001 1.2846944771503392E-004 + 250.92000000000002 1.1837236962949143E-004 + 250.97999999999996 1.0832146682468124E-004 + 251.03999999999996 9.8328990259113734E-005 + 251.09999999999997 8.8406896518512944E-005 + 251.15999999999997 7.8566807744371328E-005 + 251.21999999999997 6.8820005340750705E-005 + 251.27999999999997 5.9177395964752881E-005 + 251.33999999999997 4.9649501286830857E-005 + 251.39999999999998 4.0246434510025312E-005 + 251.45999999999998 3.0977903639364879E-005 + 251.51999999999998 2.1853160631434358E-005 + 251.57999999999998 1.2881050818790642E-005 + 251.63999999999999 4.0699395818503102E-006 + 251.69999999999999 -4.5722422431520171E-006 + 251.75999999999999 -1.3038043497501211E-005 + 251.81999999999999 -2.1320489287154662E-005 + 251.88000000000000 -2.9413076118301164E-005 + 251.94000000000000 -3.7309800154508737E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000001.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000001.BXY.semd new file mode 100644 index 00000000..04deb847 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 -3.1308649263890069E-042 + -17.940000000000001 -1.0263037953741761E-041 + -17.880000000000003 -2.2349445420469944E-041 + -17.820000000000000 -4.0459676614783112E-041 + -17.760000000000002 -6.5799426492963895E-041 + -17.700000000000003 -9.9688185155535990E-041 + -17.640000000000001 -1.3444508544407607E-040 + -17.580000000000002 -1.7113317647124486E-040 + -17.520000000000000 -2.1013966437059021E-040 + -17.460000000000001 -2.5653033767623574E-040 + -17.400000000000002 -2.8987652000682505E-040 + -17.340000000000000 -3.1787416235680941E-040 + -17.280000000000001 -3.3946279490243668E-040 + -17.220000000000002 -3.5387978536587156E-040 + -17.160000000000000 -3.4625287616225199E-040 + -17.100000000000001 -3.1423354170407092E-040 + -17.040000000000003 -2.5571334800151435E-040 + -16.980000000000000 -1.6888549076740800E-040 + -16.920000000000002 -5.2251463920661093E-041 + -16.859999999999999 8.5950784816347441E-041 + -16.800000000000001 2.6656859246235407E-040 + -16.740000000000002 4.8849818484092871E-040 + -16.680000000000000 7.6194881237229768E-040 + -16.620000000000001 1.0802047026887183E-039 + -16.560000000000002 1.4552822012158752E-039 + -16.500000000000000 1.8862263788127733E-039 + -16.440000000000001 2.3728702722763539E-039 + -16.380000000000003 2.9252541577122861E-039 + -16.320000000000000 3.2313214681493864E-039 + -16.260000000000002 3.3010071873299407E-039 + -16.200000000000003 3.1006129394663646E-039 + -16.140000000000001 2.7190934195372805E-039 + -16.080000000000002 2.1073820900018305E-039 + -16.020000000000000 1.2454618149807239E-039 + -15.960000000000001 1.0606283445063297E-040 + -15.899999999999999 -1.1457182790387601E-039 + -15.840000000000003 -2.5321024479319194E-039 + -15.780000000000001 -4.0064337636979705E-039 + -15.719999999999999 -5.5469717594390147E-039 + -15.660000000000004 -7.1219825985336849E-039 + -15.600000000000001 -8.7457478257409731E-039 + -15.539999999999999 -1.1148346483153797E-038 + -15.480000000000004 -1.4422144129116979E-038 + -15.420000000000002 -1.8604675104986876E-038 + -15.359999999999999 -2.3721147917685969E-038 + -15.300000000000004 -2.9965312864733778E-038 + -15.240000000000002 -3.7057553190220472E-038 + -15.180000000000000 -4.5349990292014577E-038 + -15.120000000000005 -5.4450012046931455E-038 + -15.060000000000002 -6.4587690749543990E-038 + -15.000000000000000 -7.6400082781232856E-038 + -14.939999999999998 -9.0405119015934503E-038 + -14.880000000000003 -1.0360417659068693E-037 + -14.820000000000000 -1.1638219042828468E-037 + -14.759999999999998 -1.2902273640623844E-037 + -14.700000000000003 -1.4139490225906910E-037 + -14.640000000000001 -1.5336053757945018E-037 + -14.579999999999998 -1.6565831782074271E-037 + -14.520000000000003 -1.7964758608461787E-037 + -14.460000000000001 -2.0103974276759187E-037 + -14.399999999999999 -2.2757405477368206E-037 + -14.340000000000003 -2.6002690605953881E-037 + -14.280000000000001 -2.9886618160816572E-037 + -14.219999999999999 -3.4493236594751686E-037 + -14.160000000000004 -3.9868987709807463E-037 + -14.100000000000001 -4.6105751185665227E-037 + -14.039999999999999 -5.3287361548321461E-037 + -13.980000000000004 -6.1533328448137348E-037 + -13.920000000000002 -7.0169304556106666E-037 + -13.859999999999999 -7.9369271244585872E-037 + -13.800000000000004 -8.6233657073422679E-037 + -13.740000000000002 -9.3502356529063216E-037 + -13.680000000000000 -9.9724082170286461E-037 + -13.620000000000005 -1.0488610849154676E-036 + -13.560000000000002 -1.0800082819294766E-036 + -13.500000000000000 -1.1248719217629116E-036 + -13.439999999999998 -1.1755970561356017E-036 + -13.380000000000003 -1.2161761654737549E-036 + -13.320000000000000 -1.2503463912396699E-036 + -13.259999999999998 -1.2757453976972276E-036 + -13.200000000000003 -1.3019741874692514E-036 + -13.140000000000001 -1.3359885001469437E-036 + -13.079999999999998 -1.3896197315761193E-036 + -13.020000000000003 -1.4711203161975661E-036 + -12.960000000000001 -1.5955377121289121E-036 + -12.899999999999999 -1.7620002759591218E-036 + -12.840000000000003 -1.9718814116504828E-036 + -12.780000000000001 -2.2259430904266864E-036 + -12.719999999999999 -2.5234821533355268E-036 + -12.660000000000004 -2.8599121296510366E-036 + -12.600000000000001 -3.2697688852078187E-036 + -12.539999999999999 -3.7471262008528478E-036 + -12.480000000000004 -4.3213314842653204E-036 + -12.420000000000002 -4.9498685741728902E-036 + -12.359999999999999 -5.4870853300699624E-036 + -12.300000000000004 -5.9305433480326557E-036 + -12.240000000000002 -6.2825049487213451E-036 + -12.180000000000000 -6.5548210676300906E-036 + -12.120000000000005 -6.7712541004462531E-036 + -12.060000000000002 -7.0692117735647333E-036 + -12.000000000000000 -7.4167920192486662E-036 + -11.940000000000005 -7.8235311039383150E-036 + -11.880000000000003 -8.2994139853129249E-036 + -11.820000000000000 -8.7410603411717586E-036 + -11.759999999999998 -9.0807201399642619E-036 + -11.700000000000003 -9.1980885737177466E-036 + -11.640000000000001 -9.1946340998046648E-036 + -11.579999999999998 -8.9658960097481266E-036 + -11.520000000000003 -8.1659636609094401E-036 + -11.460000000000001 -6.5751427481230432E-036 + -11.399999999999999 -4.1851308167820655E-036 + -11.340000000000003 -1.2832158144966133E-036 + -11.280000000000001 2.1119176646636842E-036 + -11.219999999999999 5.6274821010728943E-036 + -11.160000000000004 8.9504590722259078E-036 + -11.100000000000001 1.1647070933904212E-035 + -11.039999999999999 1.3217909027669220E-035 + -10.980000000000004 1.3122031041809055E-035 + -10.920000000000002 1.0550985322087208E-035 + -10.859999999999999 4.9891380633759613E-036 + -10.800000000000004 -3.8622354846574770E-036 + -10.740000000000002 -1.6047145768680771E-035 + -10.680000000000000 -3.0949248319874727E-035 + -10.620000000000005 -4.7753738895490436E-035 + -10.560000000000002 -6.4869691269537168E-035 + -10.500000000000000 -8.0287845964269502E-035 + -10.440000000000005 -9.1629701471819160E-035 + -10.380000000000003 -9.6366191588096167E-035 + -10.320000000000000 -9.2154299088964772E-035 + -10.259999999999998 -7.7235763048443609E-035 + -10.200000000000003 -5.0926302265622112E-035 + -10.140000000000001 -1.4133714072739103E-035 + -10.079999999999998 3.0292366768165371E-035 + -10.020000000000003 7.7168480085571777E-035 + -9.9600000000000009 1.1888953433128000E-034 + -9.8999999999999986 1.4564581716726615E-034 + -9.8400000000000034 1.4597181062174593E-034 + -9.7800000000000011 1.0782291658528005E-034 + -9.7199999999999989 2.0045972489235000E-035 + -9.6600000000000037 -1.2572928630183434E-034 + -9.6000000000000014 -3.3288702381838815E-034 + -9.5399999999999991 -5.9761004119693699E-034 + -9.4800000000000040 -9.0646908453050161E-034 + -9.4200000000000017 -1.2348922042683080E-033 + -9.3599999999999994 -1.5462521241107865E-033 + -9.3000000000000043 -1.7921616196103587E-033 + -9.2400000000000020 -1.9143878445485487E-033 + -9.1799999999999997 -1.8486213976826564E-033 + -9.1200000000000045 -1.5302748456021499E-033 + -9.0600000000000023 -9.0228475831430190E-034 + -9.0000000000000000 7.5340231053246468E-035 + -8.9400000000000048 1.4147500748052736E-033 + -8.8800000000000026 3.0890842227844142E-033 + -8.8200000000000003 5.0219895112360090E-033 + -8.7599999999999980 7.0791685802495864E-033 + -8.7000000000000028 9.0634479495118640E-033 + -8.6400000000000006 1.0714929136905524E-032 + -8.5799999999999983 1.1717704021694277E-032 + -8.5200000000000031 1.1714363744084512E-032 + -8.4600000000000009 1.0329137283355153E-032 + -8.3999999999999986 7.1998881439969020E-033 + -8.3400000000000034 2.0184455081298783E-033 + -8.2800000000000011 -5.4220473208410021E-033 + -8.2199999999999989 -1.5175233286146024E-032 + -8.1600000000000037 -2.7088301951203528E-032 + -8.1000000000000014 -4.0751734878398478E-032 + -8.0399999999999991 -5.5457123834457507E-032 + -7.9800000000000040 -7.0168791749474233E-032 + -7.9200000000000017 -8.3515302394227298E-032 + -7.8599999999999994 -9.3806979014971794E-032 + -7.8000000000000043 -9.9085214799873605E-032 + -7.7400000000000020 -9.7208424488337758E-032 + -7.6799999999999997 -8.5978261331027990E-032 + -7.6200000000000045 -6.3307704023547677E-032 + -7.5600000000000023 -2.7430236261287000E-032 + -7.5000000000000000 2.2853892720665062E-032 + -7.4400000000000048 8.7901974248477131E-032 + -7.3800000000000026 1.6693585059745304E-031 + -7.3200000000000003 2.5774815383032068E-031 + -7.2599999999999980 3.5643051782517682E-031 + -7.2000000000000028 4.5715051284480047E-031 + -7.1400000000000006 5.5201035898248186E-031 + -7.0799999999999983 6.3102442545240542E-031 + -7.0200000000000031 6.8225527447631215E-031 + -6.9600000000000009 6.9214936237526086E-031 + -6.8999999999999986 6.4611063720628104E-031 + -6.8400000000000034 5.2934433689908667E-031 + -6.7800000000000011 3.2799080538896154E-031 + -6.7199999999999989 3.0552936688762094E-032 + -6.6600000000000037 -3.7040445890989169E-031 + -6.6000000000000014 -8.7633505389767263E-031 + -6.5399999999999991 -1.4806591570660908E-030 + -6.4800000000000040 -2.1667101873958718E-030 + -6.4200000000000017 -2.9058496693246597E-030 + -6.3599999999999994 -3.6559696998457000E-030 + -6.3000000000000043 -4.3606301448738234E-030 + -6.2400000000000020 -4.9491106690135145E-030 + -6.1799999999999997 -5.3376635647962377E-030 + -6.1200000000000045 -5.4322390119888477E-030 + -6.0600000000000023 -5.1329159133638706E-030 + -6.0000000000000000 -4.3401924575142184E-030 + -5.9400000000000048 -2.9631830638803672E-030 + -5.8800000000000026 -9.2961777576170545E-031 + -5.8200000000000003 1.8026437606032277E-030 + -5.7600000000000051 5.2330751782647667E-030 + -5.7000000000000028 9.3056457207049226E-030 + -5.6400000000000006 1.3896646764984597E-029 + -5.5799999999999983 1.8804340818499539E-029 + -5.5200000000000031 2.3741788248806813E-029 + -5.4600000000000009 2.8334330130836539E-029 + -5.3999999999999986 3.2123236008781257E-029 + -5.3400000000000034 3.4576928926828229E-029 + -5.2800000000000011 3.5111066442801400E-029 + -5.2199999999999989 3.3118327974802785E-029 + -5.1600000000000037 2.8008357793693614E-029 + -5.1000000000000014 1.9257556901357700E-029 + -5.0399999999999991 6.4677705602110467E-030 + -4.9800000000000040 -1.0568149180673160E-029 + -4.9200000000000017 -3.1796759876786339E-029 + -4.8599999999999994 -5.6834406680770948E-029 + -4.8000000000000043 -8.4902567128171410E-029 + -4.7400000000000020 -1.1477392507053135E-028 + -4.6799999999999997 -1.4473593931849886E-028 + -4.6200000000000045 -1.7257893916367270E-028 + -4.5600000000000023 -1.9561608989123082E-028 + -4.5000000000000000 -2.1074217730207687E-028 + -4.4400000000000048 -2.1453759627290529E-028 + -4.3800000000000026 -2.0342213460726693E-028 + -4.3200000000000003 -1.7386134627782249E-028 + -4.2600000000000051 -1.2262562541389939E-028 + -4.2000000000000028 -4.7098218778030987E-029 + -4.1400000000000006 5.4375812620996957E-029 + -4.0799999999999983 1.8211229409131873E-028 + -4.0200000000000031 3.3470072445643316E-028 + -3.9600000000000009 5.0863112082696532E-028 + -3.8999999999999986 6.9796488069207183E-028 + -3.8400000000000034 8.9408489395643387E-028 + -3.7800000000000011 1.0855645150172377E-027 + -3.7199999999999989 1.2581985499817662E-027 + -3.6600000000000037 1.3952393748640753E-027 + -3.6000000000000014 1.4778805270324597E-027 + -3.5399999999999991 1.4860230152925910E-027 + -3.4800000000000040 1.3993519453965450E-027 + -3.4200000000000017 1.1987317981546737E-027 + -3.3599999999999994 8.6791502903590174E-028 + -3.3000000000000043 3.9552678647224708E-028 + -3.2400000000000020 -2.2273648330480615E-028 + -3.1799999999999997 -9.8179421456513129E-028 + -3.1200000000000045 -1.8648909162662153E-027 + -3.0600000000000023 -2.8414961829959518E-027 + -3.0000000000000000 -3.8656062823278275E-027 + -2.9400000000000048 -4.8746812497982796E-027 + -2.8800000000000026 -5.7894704424757107E-027 + -2.8200000000000003 -6.5149890479551472E-027 + -2.7600000000000051 -6.9428890623038900E-027 + -2.7000000000000028 -6.9554379919006416E-027 + -2.6400000000000006 -6.4312516459655705E-027 + -2.5799999999999983 -5.2528419989520058E-027 + -2.5200000000000031 -3.3159205370861512E-027 + -2.4600000000000009 -5.4025707855388408E-028 + -2.3999999999999986 3.1182842831682650E-027 + -2.3400000000000034 7.6550886382618318E-027 + -2.2800000000000011 1.3004275517882444E-026 + -2.2199999999999989 1.9027250900811705E-026 + -2.1600000000000037 2.5503460334192106E-026 + -2.1000000000000014 3.2124575798942897E-026 + -2.0399999999999991 3.8493436439053713E-026 + -1.9800000000000040 4.4129070255408507E-026 + -1.9200000000000017 4.8479015789104261E-026 + -1.8599999999999994 5.0939955163867815E-026 + -1.8000000000000043 5.0887365194045840E-026 + -1.7400000000000020 4.7714382731074119E-026 + -1.6799999999999997 4.0879548957522821E-026 + -1.6200000000000045 2.9962321052687883E-026 + -1.5600000000000023 1.4724541295631825E-026 + -1.5000000000000000 -4.8249967359185717E-027 + -1.4400000000000048 -2.8366399047454616E-026 + -1.3800000000000026 -5.5209552532177818E-026 + -1.3200000000000003 -8.4245229930650973E-026 + -1.2600000000000051 -1.1391229330173143E-025 + -1.2000000000000028 -1.4218708267499849E-025 + -1.1400000000000006 -1.6660129629885458E-025 + -1.0799999999999983 -1.8429393585174886E-025 + -1.0200000000000031 -1.9210237189577055E-025 + -0.96000000000000085 -1.8669577518365352E-025 + -0.89999999999999858 -1.6475259066060627E-025 + -0.84000000000000341 -1.2318095824878229E-025 + -0.78000000000000114 -5.9378109881820075E-026 + -0.71999999999999886 2.8478508583568687E-026 + -0.66000000000000369 1.4111982391250591E-025 + -0.60000000000000142 2.7786847451196374E-025 + -0.53999999999999915 4.3633508241100272E-025 + -0.48000000000000398 6.1215065511354522E-025 + -0.42000000000000171 7.9875966232778217E-025 + -0.35999999999999943 9.8730144333908270E-025 + -0.30000000000000426 1.1666072172394186E-024 + -0.24000000000000199 1.3233409866616013E-024 + -0.17999999999999972 1.4423078832860489E-024 + -0.12000000000000455 1.5069509603610036E-024 + -6.0000000000002274E-002 1.5000492939733100E-024 + 0.0000000000000000 1.4046213533119322E-024 + 5.9999999999995168E-002 1.2050267824770651E-024 + 0.11999999999999744 8.8824642481241212E-025 + 0.17999999999999972 4.4530289943907145E-025 + 0.23999999999999488 -1.2722910271552303E-025 + 0.29999999999999716 -8.2569434276798304E-025 + 0.35999999999999943 -1.6378986790728747E-024 + 0.42000000000000171 -2.5418206863825106E-024 + 0.47999999999999687 -3.5046173313569042E-024 + 0.53999999999999915 -4.4820464849840566E-024 + 0.60000000000000142 -5.4184439847543489E-024 + 0.65999999999999659 -6.2473871604219358E-024 + 0.71999999999999886 -6.8931718615372576E-024 + 0.78000000000000114 -7.2732109542533003E-024 + 0.83999999999999631 -7.3014314747715267E-024 + 0.89999999999999858 -6.8927205949250085E-024 + 0.96000000000000085 -5.9684024021133846E-024 + 1.0199999999999960 -4.4626891029102099E-024 + 1.0799999999999983 -2.3299529107046620E-024 + 1.1400000000000006 4.4739588445279896E-025 + 1.1999999999999957 3.8507432816254969E-024 + 1.2599999999999980 7.8172122220217961E-024 + 1.3200000000000003 1.2232212862142326E-023 + 1.3799999999999955 1.6923183730476957E-023 + 1.4399999999999977 2.1655162553418965E-023 + 1.5000000000000000 2.6128909564147098E-023 + 1.5599999999999952 2.9982274998864836E-023 + 1.6199999999999974 3.2795547701787153E-023 + 1.6799999999999997 3.4101415591114935E-023 + 1.7399999999999949 3.3400034565135713E-023 + 1.7999999999999972 3.0179598322372982E-023 + 1.8599999999999994 2.3942429786018040E-023 + 1.9200000000000017 1.4236426122692348E-023 + 1.9799999999999969 6.9120170087869867E-025 + 2.0399999999999991 -1.6942138089680226E-023 + 2.1000000000000014 -3.8749133860185215E-023 + 2.1599999999999966 -6.4610120253641951E-023 + 2.2199999999999989 -9.4161015561396534E-023 + 2.2800000000000011 -1.2675981731965571E-022 + 2.3399999999999963 -1.6146241904543059E-022 + 2.3999999999999986 -1.9701148084077844E-022 + 2.4600000000000009 -2.3184248627545807E-022 + 2.5199999999999960 -2.6411074390542420E-022 + 2.5799999999999983 -2.9174309233757935E-022 + 2.6400000000000006 -3.1251701528629161E-022 + 2.6999999999999957 -3.2416927909773476E-022 + 2.7599999999999980 -3.2453452740488320E-022 + 2.8200000000000003 -3.1171273166406013E-022 + 2.8799999999999955 -2.8426202853052325E-022 + 2.9399999999999977 -2.4141158959176250E-022 + 3.0000000000000000 -1.8328615129945917E-022 + 3.0599999999999952 -1.1113122303093879E-022 + 3.1199999999999974 -2.7525373310846566E-023 + 3.1799999999999997 6.3435849728637875E-023 + 3.2399999999999949 1.5600257686411030E-022 + 3.2999999999999972 2.4269867526383808E-022 + 3.3599999999999994 3.1433409282587780E-022 + 3.4199999999999946 3.6012035838536376E-022 + 3.4799999999999969 3.6790462320793178E-022 + 3.5399999999999991 3.2453451743932844E-022 + 3.6000000000000014 2.1636056761795761E-022 + 3.6599999999999966 2.9875680122072782E-023 + 3.7199999999999989 -2.4751871655304712E-022 + 3.7800000000000011 -6.2663617526999841E-022 + 3.8399999999999963 -1.1155540459813707E-021 + 3.8999999999999986 -1.7186231176252445E-021 + 3.9600000000000009 -2.4354952631039328E-021 + 4.0199999999999960 -3.2602352595365997E-021 + 4.0799999999999983 -4.1805795239980593E-021 + 4.1400000000000006 -5.1774320667234867E-021 + 4.1999999999999957 -6.2246706615466395E-021 + 4.2599999999999980 -7.2893414335019119E-021 + 4.3200000000000003 -8.3323156891396161E-021 + 4.3799999999999955 -9.3094642317590759E-021 + 4.4399999999999977 -1.0173384147120133E-020 + 4.5000000000000000 -1.0875693688187288E-020 + 4.5599999999999952 -1.1369866953584693E-020 + 4.6199999999999974 -1.1614551958217983E-020 + 4.6799999999999997 -1.1577271405265549E-020 + 4.7399999999999949 -1.1238363680927063E-020 + 4.7999999999999972 -1.0594974690365341E-020 + 4.8599999999999994 -9.6648713663045210E-021 + 4.9199999999999946 -8.4898260010392715E-021 + 4.9799999999999969 -7.1382781051186108E-021 + 5.0399999999999991 -5.7069707554631462E-021 + 5.1000000000000014 -4.3212836331539307E-021 + 5.1599999999999966 -3.1339868734229085E-021 + 5.2199999999999989 -2.3221653981083388E-021 + 5.2800000000000011 -2.0821743217188288E-021 + 5.3399999999999963 -2.6225277254137025E-021 + 5.3999999999999986 -4.1547400267481205E-021 + 5.4600000000000009 -6.8822709183818539E-021 + 5.5199999999999960 -1.0987843228398634E-020 + 5.5799999999999983 -1.6619554530626701E-020 + 5.6400000000000006 -2.3876334235770794E-020 + 5.6999999999999957 -3.2793455579241128E-020 + 5.7599999999999980 -4.3328854944304731E-020 + 5.8200000000000003 -5.5351235085720289E-020 + 5.8799999999999955 -6.8630821959095379E-020 + 5.9399999999999977 -8.2833665092884871E-020 + 6.0000000000000000 -9.7520558180563284E-020 + 6.0599999999999952 -1.1215110525078950E-019 + 6.1199999999999974 -1.2609363795629241E-019 + 6.1799999999999997 -1.3864139590953201E-019 + 6.2399999999999949 -1.4903483065164967E-019 + 6.2999999999999972 -1.5648969842140052E-019 + 6.3599999999999994 -1.6023051989810694E-019 + 6.4199999999999946 -1.5952769462884732E-019 + 6.4799999999999969 -1.5373705494466062E-019 + 6.5399999999999991 -1.4233968242889367E-019 + 6.6000000000000014 -1.2497954885042100E-019 + 6.6599999999999966 -1.0149619857268014E-019 + 6.7199999999999989 -7.1949520060770360E-020 + 6.7800000000000011 -3.6633587470174006E-020 + 6.8399999999999963 3.9233421700175992E-021 + 6.8999999999999986 4.8975688989457172E-020 + 6.9600000000000009 9.7596376808904425E-020 + 7.0199999999999960 1.4873359848806812E-019 + 7.0799999999999983 2.0128956751480676E-019 + 7.1400000000000006 2.5422146119576713E-019 + 7.1999999999999957 3.0666315040611259E-019 + 7.2599999999999980 3.5806670259914409E-019 + 7.3200000000000003 4.0835895799231138E-019 + 7.3799999999999955 4.5811105557018463E-019 + 7.4399999999999977 5.0871322556998678E-019 + 7.5000000000000000 5.6254994401621706E-019 + 7.5599999999999952 6.2316842845546685E-019 + 7.6199999999999974 6.9543281151563673E-019 + 7.6799999999999997 7.8565745664734847E-019 + 7.7399999999999949 9.0171165046148151E-019 + 7.7999999999999972 1.0530901055877053E-018 + 7.8599999999999994 1.2509453593459998E-018 + 7.9199999999999946 1.5080768781894735E-018 + 7.9799999999999969 1.8388802149557555E-018 + 8.0399999999999991 2.2592551730094034E-018 + 8.1000000000000014 2.7864769636881954E-018 + 8.1599999999999966 3.4390426773723844E-018 + 8.2199999999999989 4.2364987607325520E-018 + 8.2800000000000011 5.1992656311290661E-018 + 8.3399999999999963 6.3484823984865713E-018 + 8.3999999999999986 7.7058765879553330E-018 + 8.4600000000000009 9.2936925306656749E-018 + 8.5199999999999960 1.1134696633029657E-017 + 8.5799999999999983 1.3252280995894894E-017 + 8.6400000000000006 1.5670689808980613E-017 + 8.6999999999999957 1.8415377973694342E-017 + 8.7599999999999980 2.1513539427007228E-017 + 8.8200000000000003 2.4994805569954664E-017 + 8.8799999999999955 2.8892118715383662E-017 + 8.9399999999999977 3.3242797575425260E-017 + 9.0000000000000000 3.8089799884646681E-017 + 9.0599999999999952 4.3483161390723027E-017 + 9.1199999999999974 4.9481596503244233E-017 + 9.1799999999999997 5.6154257047805363E-017 + 9.2399999999999949 6.3582621226773271E-017 + 9.2999999999999972 7.1862512935436652E-017 + 9.3599999999999994 8.1106157262291153E-017 + 9.4199999999999946 9.1444317773210104E-017 + 9.4799999999999969 1.0302839109073590E-016 + 9.5399999999999991 1.1603261853607851E-016 + 9.5999999999999943 1.3065610859447242E-016 + 9.6599999999999966 1.4712488269787017E-016 + 9.7199999999999989 1.6569387658754094E-016 + 9.7800000000000011 1.8664881077673050E-016 + 9.8399999999999963 2.1030803141167028E-016 + 9.8999999999999986 2.3702424667870871E-016 + 9.9600000000000009 2.6718632359239474E-016 + 10.019999999999996 3.0122100301708818E-016 + 10.079999999999998 3.3959463015413156E-016 + 10.140000000000001 3.8281533533304098E-016 + 10.199999999999996 4.3143485870854231E-016 + 10.259999999999998 4.8605113655842329E-016 + 10.320000000000000 5.4731061144517158E-016 + 10.379999999999995 6.1591161143781081E-016 + 10.439999999999998 6.9260775609586776E-016 + 10.500000000000000 7.7821204906516966E-016 + 10.559999999999995 8.7360125568395927E-016 + 10.619999999999997 9.7972121549401157E-016 + 10.680000000000000 1.0975930262009192E-015 + 10.739999999999995 1.2283189272044546E-015 + 10.799999999999997 1.3730895584243033E-015 + 10.859999999999999 1.5331917133938649E-015 + 10.919999999999995 1.7100163406829658E-015 + 10.979999999999997 1.9050668121874074E-015 + 11.039999999999999 2.1199668731034338E-015 + 11.099999999999994 2.3564696096480733E-015 + 11.159999999999997 2.6164644594322405E-015 + 11.219999999999999 2.9019848436231243E-015 + 11.280000000000001 3.2152147398766221E-015 + 11.339999999999996 3.5584920263174541E-015 + 11.399999999999999 3.9343113836213137E-015 + 11.460000000000001 4.3453234953628969E-015 + 11.519999999999996 4.7943333230598031E-015 + 11.579999999999998 5.2842885708778760E-015 + 11.640000000000001 5.8182723345877730E-015 + 11.699999999999996 6.3994798248983139E-015 + 11.759999999999998 7.0311964763378381E-015 + 11.820000000000000 7.7167628146981351E-015 + 11.879999999999995 8.4595322965138154E-015 + 11.939999999999998 9.2628170882216762E-015 + 12.000000000000000 1.0129823987569517E-014 + 12.059999999999995 1.1063573853160395E-014 + 12.119999999999997 1.2066803720169994E-014 + 12.180000000000000 1.3141851614442774E-014 + 12.239999999999995 1.4290519579905601E-014 + 12.299999999999997 1.5513914996327774E-014 + 12.359999999999999 1.6812259620315065E-014 + 12.419999999999995 1.8184672202469822E-014 + 12.479999999999997 1.9628911803277746E-014 + 12.539999999999999 2.1141083323886070E-014 + 12.599999999999994 2.2715299221098294E-014 + 12.659999999999997 2.4343285826319829E-014 + 12.719999999999999 2.6013938174900354E-014 + 12.780000000000001 2.7712794388106964E-014 + 12.839999999999996 2.9421457563984857E-014 + 12.899999999999999 3.1116926390504736E-014 + 12.960000000000001 3.2770805819500448E-014 + 13.019999999999996 3.4348455284773044E-014 + 13.079999999999998 3.5807968690257609E-014 + 13.140000000000001 3.7099056601349817E-014 + 13.199999999999996 3.8161733457925900E-014 + 13.259999999999998 3.8924846883608324E-014 + 13.320000000000000 3.9304421808123008E-014 + 13.379999999999995 3.9201720934557764E-014 + 13.439999999999998 3.8501076371436705E-014 + 13.500000000000000 3.7067450609105088E-014 + 13.559999999999995 3.4743612839902508E-014 + 13.619999999999997 3.1346898686369828E-014 + 13.680000000000000 2.6665666764632380E-014 + 13.739999999999995 2.0455174717566102E-014 + 13.799999999999997 1.2432853930057905E-014 + 13.859999999999999 2.2730519444902678E-015 + 13.919999999999995 -1.0398958760689075E-014 + 13.979999999999997 -2.6013821842103303E-014 + 14.039999999999999 -4.5065718712720687E-014 + 14.099999999999994 -6.8121123355791488E-014 + 14.159999999999997 -9.5828480482335990E-014 + 14.219999999999999 -1.2892946510869042E-013 + 14.280000000000001 -1.6827130612323613E-013 + 14.339999999999996 -2.1482083488917804E-013 + 14.399999999999999 -2.6968012487440879E-013 + 14.460000000000001 -3.3410448230556427E-013 + 14.519999999999996 -4.0952195006165522E-013 + 14.579999999999998 -4.9755569338281056E-013 + 14.640000000000001 -6.0004883411187628E-013 + 14.699999999999996 -7.1909212644624880E-013 + 14.759999999999998 -8.5705495800631568E-013 + 14.820000000000000 -1.0166202413175592E-012 + 14.879999999999995 -1.2008222240739495E-012 + 14.939999999999998 -1.4130897196299395E-012 + 15.000000000000000 -1.6572943191761876E-012 + 15.059999999999995 -1.9378023552533581E-012 + 15.119999999999997 -2.2595338421358719E-012 + 15.180000000000000 -2.6280282581933341E-012 + 15.239999999999995 -3.0495165388335150E-012 + 15.299999999999997 -3.5310005255707786E-012 + 15.359999999999999 -4.0803417265676605E-012 + 15.419999999999995 -4.7063590265451613E-012 + 15.479999999999997 -5.4189382186997984E-012 + 15.539999999999999 -6.2291480740148465E-012 + 15.599999999999994 -7.1493752599984217E-012 + 15.659999999999997 -8.1934664170684605E-012 + 15.719999999999999 -9.3768939347245294E-012 + 15.780000000000001 -1.0716924655050327E-011 + 15.839999999999996 -1.2232819610745849E-011 + 15.899999999999999 -1.3946039808197346E-011 + 15.960000000000001 -1.5880487788885327E-011 + 16.019999999999996 -1.8062761402001064E-011 + 16.079999999999998 -2.0522431175361548E-011 + 16.140000000000001 -2.3292358865521325E-011 + 16.200000000000003 -2.6409027431583504E-011 + 16.259999999999991 -2.9912913606420387E-011 + 16.319999999999993 -3.3848893058277904E-011 + 16.379999999999995 -3.8266686250857139E-011 + 16.439999999999998 -4.3221334880548265E-011 + 16.500000000000000 -4.8773736141287000E-011 + 16.560000000000002 -5.4991207689512343E-011 + 16.620000000000005 -6.1948130704664110E-011 + 16.679999999999993 -6.9726626071940704E-011 + 16.739999999999995 -7.8417309129681463E-011 + 16.799999999999997 -8.8120068408510411E-011 + 16.859999999999999 -9.8944972147250968E-011 + 16.920000000000002 -1.1101322919828107E-010 + 16.980000000000004 -1.2445819116189114E-010 + 17.039999999999992 -1.3942650461184805E-010 + 17.099999999999994 -1.5607933059036062E-010 + 17.159999999999997 -1.7459364684913956E-010 + 17.219999999999999 -1.9516369290578956E-010 + 17.280000000000001 -2.1800247168800094E-010 + 17.340000000000003 -2.4334341792869817E-010 + 17.399999999999991 -2.7144225491977456E-010 + 17.459999999999994 -3.0257880629677291E-010 + 17.519999999999996 -3.3705921679642183E-010 + 17.579999999999998 -3.7521798877742143E-010 + 17.640000000000001 -4.1742048104229845E-010 + 17.700000000000003 -4.6406549462259256E-010 + 17.759999999999991 -5.1558792238386413E-010 + 17.819999999999993 -5.7246168133923017E-010 + 17.879999999999995 -6.3520277889882007E-010 + 17.939999999999998 -7.0437266048844517E-010 + 18.000000000000000 -7.8058169855412461E-010 + 18.060000000000002 -8.6449288564419721E-010 + 18.120000000000005 -9.5682573863191600E-010 + 18.179999999999993 -1.0583602551486804E-009 + 18.239999999999995 -1.1699416329652961E-009 + 18.299999999999997 -1.2924843736679346E-009 + 18.359999999999999 -1.4269772734591730E-009 + 18.420000000000002 -1.5744882082146569E-009 + 18.480000000000004 -1.7361694840672650E-009 + 18.539999999999992 -1.9132625581484769E-009 + 18.599999999999994 -2.1071041498558580E-009 + 18.659999999999997 -2.3191314015238694E-009 + 18.719999999999999 -2.5508871460346901E-009 + 18.780000000000001 -2.8040262729304929E-009 + 18.840000000000003 -3.0803204045004185E-009 + 18.899999999999991 -3.3816646972595419E-009 + 18.959999999999994 -3.7100820956646508E-009 + 19.019999999999996 -4.0677289898604913E-009 + 19.079999999999998 -4.4569001945942575E-009 + 19.140000000000001 -4.8800330396772776E-009 + 19.200000000000003 -5.3397107814317588E-009 + 19.259999999999991 -5.8386668742332155E-009 + 19.319999999999993 -6.3797863198431352E-009 + 19.379999999999995 -6.9661063815796929E-009 + 19.439999999999998 -7.6008168364938579E-009 + 19.500000000000000 -8.2872583375769024E-009 + 19.560000000000002 -9.0289174675630217E-009 + 19.620000000000005 -9.8294230863262767E-009 + 19.679999999999993 -1.0692533485723025E-008 + 19.739999999999995 -1.1622129835419531E-008 + 19.799999999999997 -1.2622198576009354E-008 + 19.859999999999999 -1.3696812386336429E-008 + 19.920000000000002 -1.4850105296634521E-008 + 19.980000000000004 -1.6086246830725543E-008 + 20.039999999999992 -1.7409404600903947E-008 + 20.099999999999994 -1.8823704661838486E-008 + 20.159999999999997 -2.0333178262052398E-008 + 20.219999999999999 -2.1941710002696648E-008 + 20.280000000000001 -2.3652964933719975E-008 + 20.340000000000003 -2.5470308038853009E-008 + 20.399999999999991 -2.7396717327531877E-008 + 20.459999999999994 -2.9434678196179301E-008 + 20.519999999999996 -3.1586062629415627E-008 + 20.579999999999998 -3.3851988021314129E-008 + 20.640000000000001 -3.6232657305800233E-008 + 20.700000000000003 -3.8727193091236121E-008 + 20.759999999999991 -4.1333417157730546E-008 + 20.819999999999993 -4.4047633213645351E-008 + 20.879999999999995 -4.6864363311578438E-008 + 20.939999999999998 -4.9776050536263902E-008 + 21.000000000000000 -5.2772743818016020E-008 + 21.060000000000002 -5.5841719504209350E-008 + 21.120000000000005 -5.8967070866419179E-008 + 21.179999999999993 -6.2129241560470042E-008 + 21.239999999999995 -6.5304525159409482E-008 + 21.299999999999997 -6.8464491499184737E-008 + 21.359999999999999 -7.1575320681929537E-008 + 21.420000000000002 -7.4597128792147890E-008 + 21.480000000000004 -7.7483159795586404E-008 + 21.539999999999992 -8.0178931530877457E-008 + 21.599999999999994 -8.2621241209838301E-008 + 21.659999999999997 -8.4737122866036190E-008 + 21.719999999999999 -8.6442662023185906E-008 + 21.780000000000001 -8.7641679951111788E-008 + 21.840000000000003 -8.8224301919344206E-008 + 21.899999999999991 -8.8065406686583114E-008 + 21.959999999999994 -8.7022850095002775E-008 + 22.019999999999996 -8.4935579015323787E-008 + 22.079999999999998 -8.1621514423614529E-008 + 22.140000000000001 -7.6875273673584491E-008 + 22.200000000000003 -7.0465662267710476E-008 + 22.259999999999991 -6.2132845693074755E-008 + 22.319999999999993 -5.1585424917721074E-008 + 22.379999999999995 -3.8497101560624856E-008 + 22.439999999999998 -2.2503091363152627E-008 + 22.500000000000000 -3.1961698689033456E-009 + 22.560000000000002 1.9877558226497645E-008 + 22.619999999999990 4.7223338434324436E-008 + 22.679999999999993 7.9402823818631608E-008 + 22.739999999999995 1.1703958225670677E-007 + 22.799999999999997 1.6082505360635464E-007 + 22.859999999999999 2.1152508411186830E-007 + 22.920000000000002 2.6998686461745822E-007 + 22.980000000000004 3.3714659126991784E-007 + 23.039999999999992 4.1403774019103751E-007 + 23.099999999999994 5.0179992183604570E-007 + 23.159999999999997 6.0168843972117008E-007 + 23.219999999999999 7.1508488045207688E-007 + 23.280000000000001 8.4350811604069481E-007 + 23.340000000000003 9.8862624778269081E-007 + 23.399999999999991 1.1522700408461774E-006 + 23.459999999999994 1.3364462595979629E-006 + 23.519999999999996 1.5433532854855165E-006 + 23.579999999999998 1.7753966986921975E-006 + 23.640000000000001 2.0352068827303980E-006 + 23.700000000000003 2.3256574640439444E-006 + 23.759999999999991 2.6498849716469104E-006 + 23.819999999999993 3.0113099238566938E-006 + 23.879999999999995 3.4136600937995796E-006 + 23.939999999999998 3.8609938485546580E-006 + 24.000000000000000 4.3577258188782403E-006 + 24.060000000000002 4.9086553629449353E-006 + 24.119999999999990 5.5189952405891577E-006 + 24.179999999999993 6.1944019826658578E-006 + 24.239999999999995 6.9410098857167282E-006 + 24.299999999999997 7.7654653222191120E-006 + 24.359999999999999 8.6749631218181300E-006 + 24.420000000000002 9.6772879726252540E-006 + 24.480000000000004 1.0780853931341438E-005 + 24.539999999999992 1.1994748635292195E-005 + 24.599999999999994 1.3328780734627679E-005 + 24.659999999999997 1.4793525085556797E-005 + 24.719999999999999 1.6400379265311020E-005 + 24.780000000000001 1.8161613924708550E-005 + 24.840000000000003 2.0090428042039959E-005 + 24.899999999999991 2.2201012071262070E-005 + 24.959999999999994 2.4508609467176193E-005 + 25.019999999999996 2.7029580367616160E-005 + 25.079999999999998 2.9781465540873217E-005 + 25.140000000000001 3.2783066674691268E-005 + 25.200000000000003 3.6054512517323731E-005 + 25.259999999999991 3.9617337287942242E-005 + 25.319999999999993 4.3494561734976691E-005 + 25.379999999999995 4.7710777017563344E-005 + 25.439999999999998 5.2292227369466367E-005 + 25.500000000000000 5.7266895723637667E-005 + 25.560000000000002 6.2664604128781894E-005 + 25.619999999999990 6.8517104346356555E-005 + 25.679999999999993 7.4858170391486437E-005 + 25.739999999999995 8.1723704066568505E-005 + 25.799999999999997 8.9151833545285855E-005 + 25.859999999999999 9.7183019260467374E-005 + 25.920000000000002 1.0586014430827379E-004 + 25.980000000000004 1.1522865731340327E-004 + 26.039999999999992 1.2533665551182980E-004 + 26.099999999999994 1.3623499658277848E-004 + 26.159999999999997 1.4797743274099146E-004 + 26.219999999999999 1.6062069374345400E-004 + 26.280000000000001 1.7422463828632002E-004 + 26.340000000000003 1.8885231793400249E-004 + 26.399999999999991 2.0457013348729313E-004 + 26.459999999999994 2.2144794170667393E-004 + 26.519999999999996 2.3955915065961396E-004 + 26.579999999999998 2.5898086405266862E-004 + 26.640000000000001 2.7979393304991654E-004 + 26.700000000000003 3.0208312095088730E-004 + 26.759999999999991 3.2593719789389153E-004 + 26.819999999999993 3.5144896692017796E-004 + 26.879999999999995 3.7871542967562544E-004 + 26.939999999999998 4.0783790838448258E-004 + 27.000000000000000 4.3892202007836162E-004 + 27.060000000000002 4.7207789316687266E-004 + 27.119999999999990 5.0742010761655159E-004 + 27.179999999999993 5.4506780102898326E-004 + 27.239999999999995 5.8514470892940260E-004 + 27.299999999999997 6.2777927507262068E-004 + 27.359999999999999 6.7310460229388967E-004 + 27.420000000000002 7.2125854936723759E-004 + 27.480000000000004 7.7238358091422023E-004 + 27.539999999999992 8.2662697705313828E-004 + 27.599999999999994 8.8414072417082623E-004 + 27.659999999999997 9.4508139623208204E-004 + 27.719999999999999 1.0096101305938311E-003 + 27.780000000000001 1.0778927702378318E-003 + 27.840000000000003 1.1500993392099918E-003 + 27.899999999999991 1.2264043868337202E-003 + 27.959999999999994 1.3069866363533522E-003 + 28.019999999999996 1.3920289543934462E-003 + 28.079999999999998 1.4817178395808552E-003 + 28.140000000000001 1.5762438473195665E-003 + 28.200000000000003 1.6758005970248233E-003 + 28.259999999999991 1.7805853749131189E-003 + 28.319999999999993 1.8907981511715520E-003 + 28.379999999999995 2.0066417806116920E-003 + 28.439999999999998 2.1283212474588835E-003 + 28.500000000000000 2.2560436821459353E-003 + 28.560000000000002 2.3900179800513000E-003 + 28.619999999999990 2.5304543449363318E-003 + 28.679999999999993 2.6775633598080011E-003 + 28.739999999999995 2.8315564315725115E-003 + 28.799999999999997 2.9926446550573760E-003 + 28.859999999999999 3.1610387322142902E-003 + 28.920000000000002 3.3369480001278614E-003 + 28.980000000000004 3.5205799505240586E-003 + 29.039999999999992 3.7121399940156217E-003 + 29.099999999999994 3.9118308226260643E-003 + 29.159999999999997 4.1198509148790072E-003 + 29.219999999999999 4.3363946568011243E-003 + 29.280000000000001 4.5616523137636672E-003 + 29.340000000000003 4.7958076363978459E-003 + 29.399999999999991 5.0390377834126478E-003 + 29.459999999999994 5.2915128110234688E-003 + 29.519999999999996 5.5533958225496222E-003 + 29.579999999999998 5.8248402343436907E-003 + 29.640000000000001 6.1059894381301346E-003 + 29.700000000000003 6.3969777050004459E-003 + 29.759999999999991 6.6979274921197653E-003 + 29.819999999999993 7.0089483457874881E-003 + 29.879999999999995 7.3301376715062408E-003 + 29.939999999999998 7.6615783970805061E-003 + 30.000000000000000 8.0033390544852184E-003 + 30.060000000000002 8.3554726806402482E-003 + 30.119999999999990 8.7180156370052098E-003 + 30.179999999999993 9.0909875409299866E-003 + 30.239999999999995 9.4743897310881967E-003 + 30.299999999999997 9.8682023241568311E-003 + 30.359999999999999 1.0272387955345854E-002 + 30.420000000000002 1.0686888330182607E-002 + 30.480000000000004 1.1111623350266725E-002 + 30.539999999999992 1.1546490329873151E-002 + 30.599999999999994 1.1991363548485701E-002 + 30.659999999999997 1.2446095546433672E-002 + 30.719999999999999 1.2910512030711301E-002 + 30.780000000000001 1.3384415143492159E-002 + 30.840000000000003 1.3867580300779808E-002 + 30.899999999999991 1.4359760090767348E-002 + 30.959999999999994 1.4860677387914233E-002 + 31.019999999999996 1.5370030077741098E-002 + 31.079999999999998 1.5887487853159674E-002 + 31.140000000000001 1.6412693116084093E-002 + 31.200000000000003 1.6945260659222701E-002 + 31.259999999999991 1.7484777733452441E-002 + 31.319999999999993 1.8030803769604774E-002 + 31.379999999999995 1.8582869499268261E-002 + 31.439999999999998 1.9140477180148514E-002 + 31.500000000000000 1.9703102976283922E-002 + 31.560000000000002 2.0270195751364826E-002 + 31.619999999999990 2.0841175832678860E-002 + 31.679999999999993 2.1415435088877933E-002 + 31.739999999999995 2.1992344189982117E-002 + 31.799999999999997 2.2571246597271902E-002 + 31.859999999999999 2.3151458378274748E-002 + 31.920000000000002 2.3732272133754714E-002 + 31.980000000000004 2.4312958911800384E-002 + 32.039999999999992 2.4892764211655788E-002 + 32.099999999999994 2.5470912899066687E-002 + 32.159999999999997 2.6046614730098078E-002 + 32.219999999999999 2.6619053187485107E-002 + 32.280000000000001 2.7187399934138410E-002 + 32.340000000000003 2.7750805592253729E-002 + 32.399999999999991 2.8308406820621124E-002 + 32.459999999999994 2.8859328852238301E-002 + 32.519999999999996 2.9402685197223711E-002 + 32.579999999999998 2.9937579295741628E-002 + 32.640000000000001 3.0463105932750971E-002 + 32.700000000000003 3.0978354578202954E-002 + 32.759999999999991 3.1482408305954876E-002 + 32.819999999999993 3.1974348109069198E-002 + 32.879999999999995 3.2453258949941062E-002 + 32.939999999999998 3.2918218383587730E-002 + 33.000000000000000 3.3368319137647248E-002 + 33.060000000000002 3.3802648525693396E-002 + 33.119999999999990 3.4220313238366697E-002 + 33.179999999999993 3.4620418874993446E-002 + 33.239999999999995 3.5002092937510464E-002 + 33.299999999999997 3.5364472835218375E-002 + 33.359999999999999 3.5706713042227646E-002 + 33.420000000000002 3.6027991635871941E-002 + 33.480000000000004 3.6327498796673789E-002 + 33.539999999999992 3.6604458493591202E-002 + 33.599999999999994 3.6858113160402356E-002 + 33.659999999999997 3.7087740052162380E-002 + 33.719999999999999 3.7292641405903770E-002 + 33.780000000000001 3.7472154366772502E-002 + 33.840000000000003 3.7625646151145872E-002 + 33.899999999999991 3.7752526803921889E-002 + 33.959999999999994 3.7852236993808901E-002 + 34.019999999999996 3.7924259388038589E-002 + 34.079999999999998 3.7968115956140983E-002 + 34.140000000000001 3.7983381530081378E-002 + 34.200000000000003 3.7969662127005949E-002 + 34.259999999999991 3.7926617075271458E-002 + 34.319999999999993 3.7853953801863967E-002 + 34.379999999999995 3.7751420020182280E-002 + 34.439999999999998 3.7618824754501089E-002 + 34.500000000000000 3.7456021688049346E-002 + 34.560000000000002 3.7262906078501946E-002 + 34.619999999999990 3.7039442220724188E-002 + 34.679999999999993 3.6785634113245098E-002 + 34.739999999999995 3.6501546814558056E-002 + 34.799999999999997 3.6187296194241811E-002 + 34.859999999999999 3.5843043869999480E-002 + 34.920000000000002 3.5469016458289690E-002 + 34.980000000000004 3.5065481660282755E-002 + 35.039999999999992 3.4632766350174871E-002 + 35.099999999999994 3.4171252355783936E-002 + 35.159999999999997 3.3681368590396665E-002 + 35.219999999999999 3.3163600133878424E-002 + 35.280000000000001 3.2618473801693998E-002 + 35.340000000000003 3.2046571590313065E-002 + 35.399999999999991 3.1448521216304870E-002 + 35.459999999999994 3.0824997682839465E-002 + 35.519999999999996 3.0176717702049338E-002 + 35.579999999999998 2.9504448574224861E-002 + 35.640000000000001 2.8808993304471994E-002 + 35.700000000000003 2.8091197652267721E-002 + 35.759999999999991 2.7351945403342376E-002 + 35.819999999999993 2.6592156279342048E-002 + 35.879999999999995 2.5812783620838116E-002 + 35.939999999999998 2.5014815152679396E-002 + 36.000000000000000 2.4199265082662090E-002 + 36.060000000000002 2.3367178356958371E-002 + 36.119999999999990 2.2519621984667830E-002 + 36.179999999999993 2.1657686884975443E-002 + 36.239999999999995 2.0782485183683728E-002 + 36.299999999999997 1.9895143638961835E-002 + 36.359999999999999 1.8996806382414026E-002 + 36.420000000000002 1.8088628114128071E-002 + 36.479999999999990 1.7171776443093111E-002 + 36.539999999999992 1.6247421990301419E-002 + 36.599999999999994 1.5316743381917939E-002 + 36.659999999999997 1.4380917350045309E-002 + 36.719999999999999 1.3441119878406616E-002 + 36.780000000000001 1.2498526080890294E-002 + 36.840000000000003 1.1554304949677153E-002 + 36.899999999999991 1.0609615626721068E-002 + 36.959999999999994 9.6656072894591820E-003 + 37.019999999999996 8.7234147045997454E-003 + 37.079999999999998 7.7841569912551062E-003 + 37.140000000000001 6.8489362953289149E-003 + 37.200000000000003 5.9188332836491190E-003 + 37.259999999999991 4.9949066815048217E-003 + 37.319999999999993 4.0781906420025481E-003 + 37.379999999999995 3.1696925403483841E-003 + 37.439999999999998 2.2703928313414518E-003 + 37.500000000000000 1.3812407786906818E-003 + 37.560000000000002 5.0315453130741876E-004 + 37.619999999999990 -3.6298086889933009E-004 + 37.679999999999993 -1.2163148090902306E-003 + 37.739999999999995 -2.0560324979922626E-003 + 37.799999999999997 -2.8813558734758411E-003 + 37.859999999999999 -3.6915450400552031E-003 + 37.920000000000002 -4.4858988702555459E-003 + 37.979999999999990 -5.2637559979064330E-003 + 38.039999999999992 -6.0244953984710655E-003 + 38.099999999999994 -6.7675373175582528E-003 + 38.159999999999997 -7.4923424557962930E-003 + 38.219999999999999 -8.1984149038316634E-003 + 38.280000000000001 -8.8852993629456260E-003 + 38.340000000000003 -9.5525817156581240E-003 + 38.399999999999991 -1.0199892629200204E-002 + 38.459999999999994 -1.0826901368484439E-002 + 38.519999999999996 -1.1433321304223460E-002 + 38.579999999999998 -1.2018905262379722E-002 + 38.640000000000001 -1.2583447659742029E-002 + 38.700000000000003 -1.3126783055135198E-002 + 38.759999999999991 -1.3648785141188285E-002 + 38.819999999999993 -1.4149365082836481E-002 + 38.879999999999995 -1.4628474266301938E-002 + 38.939999999999998 -1.5086098432374476E-002 + 39.000000000000000 -1.5522261578875204E-002 + 39.060000000000002 -1.5937021677898035E-002 + 39.119999999999990 -1.6330467845197569E-002 + 39.179999999999993 -1.6702727166000141E-002 + 39.239999999999995 -1.7053953332785698E-002 + 39.299999999999997 -1.7384330654509093E-002 + 39.359999999999999 -1.7694076336474102E-002 + 39.420000000000002 -1.7983428175069354E-002 + 39.479999999999990 -1.8252654943439146E-002 + 39.539999999999992 -1.8502048234168556E-002 + 39.599999999999994 -1.8731922064036857E-002 + 39.659999999999997 -1.8942612895584653E-002 + 39.719999999999999 -1.9134476410002221E-002 + 39.780000000000001 -1.9307887479793340E-002 + 39.840000000000003 -1.9463239383022718E-002 + 39.899999999999991 -1.9600939821369311E-002 + 39.959999999999994 -1.9721409363705814E-002 + 40.019999999999996 -1.9825083699090480E-002 + 40.079999999999998 -1.9912409590043090E-002 + 40.140000000000001 -1.9983841753790629E-002 + 40.200000000000003 -2.0039844445141675E-002 + 40.259999999999991 -2.0080891841715822E-002 + 40.319999999999993 -2.0107462470245745E-002 + 40.379999999999995 -2.0120034472047400E-002 + 40.439999999999998 -2.0119098150231777E-002 + 40.500000000000000 -2.0105139294984212E-002 + 40.560000000000002 -2.0078648386345547E-002 + 40.619999999999990 -2.0040114896570715E-002 + 40.679999999999993 -1.9990029744171862E-002 + 40.739999999999995 -1.9928876618920878E-002 + 40.799999999999997 -1.9857138522565879E-002 + 40.859999999999999 -1.9775296649398370E-002 + 40.920000000000002 -1.9683827276471551E-002 + 40.979999999999990 -1.9583197572848897E-002 + 41.039999999999992 -1.9473869823247232E-002 + 41.099999999999994 -1.9356300920747860E-002 + 41.159999999999997 -1.9230939646840122E-002 + 41.219999999999999 -1.9098224240289390E-002 + 41.280000000000001 -1.8958588632686055E-002 + 41.340000000000003 -1.8812455603545563E-002 + 41.399999999999991 -1.8660236689158428E-002 + 41.459999999999994 -1.8502334099618031E-002 + 41.519999999999996 -1.8339141637343459E-002 + 41.579999999999998 -1.8171038472016794E-002 + 41.640000000000001 -1.7998395946270028E-002 + 41.700000000000003 -1.7821573694259761E-002 + 41.759999999999991 -1.7640917760320521E-002 + 41.819999999999993 -1.7456766634835721E-002 + 41.879999999999995 -1.7269444897830447E-002 + 41.939999999999998 -1.7079266862604033E-002 + 42.000000000000000 -1.6886534161689185E-002 + 42.060000000000002 -1.6691534915601505E-002 + 42.119999999999990 -1.6494549436293440E-002 + 42.179999999999993 -1.6295844601844453E-002 + 42.239999999999995 -1.6095674541196953E-002 + 42.299999999999997 -1.5894285117762579E-002 + 42.359999999999999 -1.5691905622558754E-002 + 42.420000000000002 -1.5488761470369376E-002 + 42.479999999999990 -1.5285063232005212E-002 + 42.539999999999992 -1.5081010406661075E-002 + 42.599999999999994 -1.4876792975138440E-002 + 42.659999999999997 -1.4672591466739285E-002 + 42.719999999999999 -1.4468575665652118E-002 + 42.780000000000001 -1.4264906803038945E-002 + 42.840000000000003 -1.4061734508511439E-002 + 42.899999999999991 -1.3859201891752541E-002 + 42.959999999999994 -1.3657441233043710E-002 + 43.019999999999996 -1.3456578451954096E-002 + 43.079999999999998 -1.3256729675385969E-002 + 43.140000000000001 -1.3058002685031845E-002 + 43.200000000000003 -1.2860498343815552E-002 + 43.259999999999991 -1.2664311124099888E-002 + 43.319999999999993 -1.2469526641351276E-002 + 43.379999999999995 -1.2276224780936828E-002 + 43.439999999999998 -1.2084477770026350E-002 + 43.500000000000000 -1.1894353480442701E-002 + 43.560000000000002 -1.1705913567426689E-002 + 43.619999999999990 -1.1519212082175309E-002 + 43.679999999999993 -1.1334299640192936E-002 + 43.739999999999995 -1.1151221538295789E-002 + 43.799999999999997 -1.0970017632521600E-002 + 43.859999999999999 -1.0790724800879914E-002 + 43.920000000000002 -1.0613372961945840E-002 + 43.979999999999990 -1.0437990784153972E-002 + 44.039999999999992 -1.0264602214560796E-002 + 44.099999999999994 -1.0093227794500805E-002 + 44.159999999999997 -9.9238843387045774E-003 + 44.219999999999999 -9.7565852090028306E-003 + 44.280000000000001 -9.5913441616973065E-003 + 44.340000000000003 -9.4281688550083721E-003 + 44.399999999999991 -9.2670656656561740E-003 + 44.459999999999994 -9.1080400363137814E-003 + 44.519999999999996 -8.9510944905013962E-003 + 44.579999999999998 -8.7962285954838060E-003 + 44.640000000000001 -8.6434422481152396E-003 + 44.700000000000003 -8.4927319866058126E-003 + 44.759999999999991 -8.3440954572144722E-003 + 44.819999999999993 -8.1975266530542081E-003 + 44.879999999999995 -8.0530192017846409E-003 + 44.939999999999998 -7.9105674679215421E-003 + 45.000000000000000 -7.7701625746695686E-003 + 45.060000000000002 -7.6317965862504351E-003 + 45.119999999999990 -7.4954594311218035E-003 + 45.179999999999993 -7.3611420475735122E-003 + 45.239999999999995 -7.2288343468411816E-003 + 45.299999999999997 -7.0985259452432080E-003 + 45.359999999999999 -6.9702064838331104E-003 + 45.420000000000002 -6.8438647716512384E-003 + 45.479999999999990 -6.7194897975555012E-003 + 45.539999999999992 -6.5970702190372493E-003 + 45.599999999999994 -6.4765956965293506E-003 + 45.659999999999997 -6.3580551582550215E-003 + 45.719999999999999 -6.2414376574169506E-003 + 45.780000000000001 -6.1267323571740041E-003 + 45.840000000000003 -6.0139288338086939E-003 + 45.899999999999991 -5.9030159868354399E-003 + 45.959999999999994 -5.7939832665514562E-003 + 46.019999999999996 -5.6868204856874646E-003 + 46.079999999999998 -5.5815180302021044E-003 + 46.140000000000001 -5.4780652285329849E-003 + 46.200000000000003 -5.3764526143262707E-003 + 46.259999999999991 -5.2766701880650009E-003 + 46.319999999999993 -5.1787087157831148E-003 + 46.379999999999995 -5.0825583213918663E-003 + 46.439999999999998 -4.9882098689208575E-003 + 46.500000000000000 -4.8956534558554678E-003 + 46.560000000000002 -4.8048791150840046E-003 + 46.619999999999990 -4.7158780781066632E-003 + 46.679999999999993 -4.6286406932324756E-003 + 46.739999999999995 -4.5431572642327918E-003 + 46.799999999999997 -4.4594180498979327E-003 + 46.859999999999999 -4.3774127131116112E-003 + 46.920000000000002 -4.2971314527643903E-003 + 46.979999999999990 -4.2185642088869869E-003 + 47.039999999999992 -4.1416999018799947E-003 + 47.099999999999994 -4.0665283642720481E-003 + 47.159999999999997 -3.9930384641933565E-003 + 47.219999999999999 -3.9212188751301825E-003 + 47.280000000000001 -3.8510572114550030E-003 + 47.340000000000003 -3.7825422357027176E-003 + 47.399999999999991 -3.7156611782340485E-003 + 47.459999999999994 -3.6504014268729165E-003 + 47.519999999999996 -3.5867495313169659E-003 + 47.579999999999998 -3.5246922220355564E-003 + 47.640000000000001 -3.4642153443425845E-003 + 47.700000000000003 -3.4053044288769856E-003 + 47.759999999999991 -3.3479446191200671E-003 + 47.819999999999993 -3.2921205047446354E-003 + 47.879999999999995 -3.2378162227020882E-003 + 47.939999999999998 -3.1850157112069712E-003 + 48.000000000000000 -3.1337019770260812E-003 + 48.060000000000002 -3.0838578670376775E-003 + 48.119999999999990 -3.0354653801625085E-003 + 48.179999999999993 -2.9885062539988985E-003 + 48.239999999999995 -2.9429618360326112E-003 + 48.299999999999997 -2.8988126824400595E-003 + 48.359999999999999 -2.8560395179554102E-003 + 48.420000000000002 -2.8146219833496263E-003 + 48.479999999999990 -2.7745396632683221E-003 + 48.539999999999992 -2.7357714676323635E-003 + 48.599999999999994 -2.6982961520188812E-003 + 48.659999999999997 -2.6620922130567515E-003 + 48.719999999999999 -2.6271373154779696E-003 + 48.780000000000001 -2.5934092897998400E-003 + 48.840000000000003 -2.5608857076673949E-003 + 48.899999999999991 -2.5295435081628191E-003 + 48.959999999999994 -2.4993593971247732E-003 + 49.019999999999996 -2.4703101697089369E-003 + 49.079999999999998 -2.4423723709777489E-003 + 49.140000000000001 -2.4155222583049189E-003 + 49.200000000000003 -2.3897360812964639E-003 + 49.259999999999991 -2.3649896299973018E-003 + 49.319999999999993 -2.3412588813405805E-003 + 49.379999999999995 -2.3185198329132004E-003 + 49.439999999999998 -2.2967481286237982E-003 + 49.500000000000000 -2.2759195704896923E-003 + 49.560000000000002 -2.2560100114285045E-003 + 49.619999999999990 -2.2369949761834908E-003 + 49.679999999999993 -2.2188504615499242E-003 + 49.739999999999995 -2.2015524431337691E-003 + 49.799999999999997 -2.1850766405871096E-003 + 49.859999999999999 -2.1693991587180207E-003 + 49.920000000000002 -2.1544964404505815E-003 + 49.979999999999990 -2.1403445055014543E-003 + 50.039999999999992 -2.1269197027241589E-003 + 50.099999999999994 -2.1141989499727579E-003 + 50.159999999999997 -2.1021588924806946E-003 + 50.219999999999999 -2.0907766649571999E-003 + 50.280000000000001 -2.0800288479097678E-003 + 50.340000000000003 -2.0698932651553306E-003 + 50.399999999999991 -2.0603474863558099E-003 + 50.459999999999994 -2.0513690607123982E-003 + 50.519999999999996 -2.0429357322207849E-003 + 50.579999999999998 -2.0350263301667643E-003 + 50.640000000000001 -2.0276191795398526E-003 + 50.700000000000003 -2.0206928474192274E-003 + 50.759999999999991 -2.0142269561672851E-003 + 50.819999999999993 -2.0082005015184092E-003 + 50.879999999999995 -2.0025933603550297E-003 + 50.939999999999998 -1.9973856110888245E-003 + 51.000000000000000 -1.9925575497866579E-003 + 51.060000000000002 -1.9880897619473205E-003 + 51.119999999999990 -1.9839633558832166E-003 + 51.179999999999993 -1.9801599642044151E-003 + 51.239999999999995 -1.9766613910026844E-003 + 51.299999999999997 -1.9734496342559689E-003 + 51.359999999999999 -1.9705069927098049E-003 + 51.420000000000002 -1.9678165512554574E-003 + 51.479999999999990 -1.9653610929332146E-003 + 51.539999999999992 -1.9631244516111947E-003 + 51.599999999999994 -1.9610902775639631E-003 + 51.659999999999997 -1.9592425913649058E-003 + 51.719999999999999 -1.9575663885270560E-003 + 51.780000000000001 -1.9560466457923227E-003 + 51.840000000000003 -1.9546683220129286E-003 + 51.899999999999991 -1.9534171523173938E-003 + 51.959999999999994 -1.9522793721066486E-003 + 52.019999999999996 -1.9512415616464284E-003 + 52.079999999999998 -1.9502905507400308E-003 + 52.140000000000001 -1.9494135964221633E-003 + 52.200000000000003 -1.9485986860208228E-003 + 52.259999999999991 -1.9478340432941752E-003 + 52.319999999999993 -1.9471082970647223E-003 + 52.379999999999995 -1.9464107593312071E-003 + 52.439999999999998 -1.9457308241112449E-003 + 52.500000000000000 -1.9450589149310005E-003 + 52.560000000000002 -1.9443854307144128E-003 + 52.619999999999990 -1.9437013782060190E-003 + 52.679999999999993 -1.9429983688784673E-003 + 52.739999999999995 -1.9422682129940977E-003 + 52.799999999999997 -1.9415031277986458E-003 + 52.859999999999999 -1.9406959734440728E-003 + 52.920000000000002 -1.9398399267029913E-003 + 52.979999999999990 -1.9389283799760965E-003 + 53.039999999999992 -1.9379554453756332E-003 + 53.099999999999994 -1.9369153717069243E-003 + 53.159999999999997 -1.9358029490596505E-003 + 53.219999999999999 -1.9346131350447123E-003 + 53.280000000000001 -1.9333413751402673E-003 + 53.339999999999989 -1.9319834096570485E-003 + 53.399999999999991 -1.9305353621840258E-003 + 53.459999999999994 -1.9289937742292794E-003 + 53.519999999999996 -1.9273553190348228E-003 + 53.579999999999998 -1.9256170553017871E-003 + 53.640000000000001 -1.9237764387505755E-003 + 53.700000000000003 -1.9218312216053453E-003 + 53.759999999999991 -1.9197791657298430E-003 + 53.819999999999993 -1.9176186208685994E-003 + 53.879999999999995 -1.9153478977985687E-003 + 53.939999999999998 -1.9129656858170882E-003 + 54.000000000000000 -1.9104708734372236E-003 + 54.060000000000002 -1.9078623979593382E-003 + 54.119999999999990 -1.9051394677877197E-003 + 54.179999999999993 -1.9023014730001860E-003 + 54.239999999999995 -1.8993478066604639E-003 + 54.299999999999997 -1.8962781277749290E-003 + 54.359999999999999 -1.8930919278643743E-003 + 54.420000000000002 -1.8897892109960999E-003 + 54.479999999999990 -1.8863696393697318E-003 + 54.539999999999992 -1.8828333896932176E-003 + 54.599999999999994 -1.8791803837030147E-003 + 54.659999999999997 -1.8754107302966084E-003 + 54.719999999999999 -1.8715245874161718E-003 + 54.780000000000001 -1.8675220036711499E-003 + 54.839999999999989 -1.8634032286245594E-003 + 54.899999999999991 -1.8591687484799764E-003 + 54.959999999999994 -1.8548186354251587E-003 + 55.019999999999996 -1.8503532735695291E-003 + 55.079999999999998 -1.8457729633081107E-003 + 55.140000000000001 -1.8410781835193494E-003 + 55.200000000000003 -1.8362691974350067E-003 + 55.259999999999991 -1.8313464491416000E-003 + 55.319999999999993 -1.8263103425004005E-003 + 55.379999999999995 -1.8211613476591519E-003 + 55.439999999999998 -1.8158997336994612E-003 + 55.500000000000000 -1.8105259809058348E-003 + 55.560000000000002 -1.8050405449738219E-003 + 55.619999999999990 -1.7994438607841770E-003 + 55.679999999999993 -1.7937366096925258E-003 + 55.739999999999995 -1.7879192204366960E-003 + 55.799999999999997 -1.7819923177074498E-003 + 55.859999999999999 -1.7759566372153330E-003 + 55.920000000000002 -1.7698127437183241E-003 + 55.979999999999990 -1.7635614391149914E-003 + 56.039999999999992 -1.7572036713338910E-003 + 56.099999999999994 -1.7507403189467819E-003 + 56.159999999999997 -1.7441723987872838E-003 + 56.219999999999999 -1.7375010233450150E-003 + 56.280000000000001 -1.7307274223350183E-003 + 56.339999999999989 -1.7238528861079488E-003 + 56.399999999999991 -1.7168788369185881E-003 + 56.459999999999994 -1.7098067082367808E-003 + 56.519999999999996 -1.7026382064751304E-003 + 56.579999999999998 -1.6953750625403349E-003 + 56.640000000000001 -1.6880190744325699E-003 + 56.700000000000003 -1.6805723103453891E-003 + 56.759999999999991 -1.6730368743852033E-003 + 56.819999999999993 -1.6654151272107859E-003 + 56.879999999999995 -1.6577091217247308E-003 + 56.939999999999998 -1.6499215133426838E-003 + 57.000000000000000 -1.6420550475733378E-003 + 57.060000000000002 -1.6341122976025592E-003 + 57.119999999999990 -1.6260962541648260E-003 + 57.179999999999993 -1.6180098804225971E-003 + 57.239999999999995 -1.6098564248432346E-003 + 57.299999999999997 -1.6016391142653829E-003 + 57.359999999999999 -1.5933614128135173E-003 + 57.420000000000002 -1.5850268765565426E-003 + 57.479999999999990 -1.5766390802032372E-003 + 57.539999999999992 -1.5682018590769374E-003 + 57.599999999999994 -1.5597191662361279E-003 + 57.659999999999997 -1.5511948869231665E-003 + 57.719999999999999 -1.5426330438088590E-003 + 57.780000000000001 -1.5340379608496594E-003 + 57.839999999999989 -1.5254139564519558E-003 + 57.899999999999991 -1.5167654296604496E-003 + 57.959999999999994 -1.5080966522820866E-003 + 58.019999999999996 -1.4994122380568003E-003 + 58.079999999999998 -1.4907165940498898E-003 + 58.140000000000001 -1.4820144724117265E-003 + 58.200000000000003 -1.4733103819473984E-003 + 58.259999999999991 -1.4646088748769194E-003 + 58.319999999999993 -1.4559146797048796E-003 + 58.379999999999995 -1.4472322642135778E-003 + 58.439999999999998 -1.4385663536271582E-003 + 58.500000000000000 -1.4299214794956869E-003 + 58.560000000000002 -1.4213020270020405E-003 + 58.619999999999990 -1.4127125700907691E-003 + 58.679999999999993 -1.4041574242563751E-003 + 58.739999999999995 -1.3956410670149545E-003 + 58.799999999999997 -1.3871678088851584E-003 + 58.859999999999999 -1.3787416588993333E-003 + 58.920000000000002 -1.3703668495356524E-003 + 58.979999999999990 -1.3620473197104800E-003 + 59.039999999999992 -1.3537871411622986E-003 + 59.099999999999994 -1.3455901218132190E-003 + 59.159999999999997 -1.3374600640873426E-003 + 59.219999999999999 -1.3294005943517229E-003 + 59.280000000000001 -1.3214152015804460E-003 + 59.339999999999989 -1.3135073294986280E-003 + 59.399999999999991 -1.3056804591893797E-003 + 59.459999999999994 -1.2979377393087543E-003 + 59.519999999999996 -1.2902822953782171E-003 + 59.579999999999998 -1.2827172070656949E-003 + 59.640000000000001 -1.2752452042922152E-003 + 59.700000000000003 -1.2678691554663555E-003 + 59.759999999999991 -1.2605912795286430E-003 + 59.819999999999993 -1.2534141989357821E-003 + 59.879999999999995 -1.2463402501282689E-003 + 59.939999999999998 -1.2393714533883869E-003 + 60.000000000000000 -1.2325095969256982E-003 + 60.060000000000002 -1.2257565009327566E-003 + 60.119999999999990 -1.2191137428516161E-003 + 60.179999999999993 -1.2125826108152220E-003 + 60.239999999999995 -1.2061644166734061E-003 + 60.299999999999997 -1.1998602533516936E-003 + 60.359999999999999 -1.1936708371560010E-003 + 60.420000000000002 -1.1875968958976624E-003 + 60.479999999999990 -1.1816389768160196E-003 + 60.539999999999992 -1.1757973135809660E-003 + 60.599999999999994 -1.1700721725106356E-003 + 60.659999999999997 -1.1644635823733925E-003 + 60.719999999999999 -1.1589713960518451E-003 + 60.780000000000001 -1.1535953119204700E-003 + 60.839999999999989 -1.1483349248569226E-003 + 60.899999999999991 -1.1431895813151058E-003 + 60.959999999999994 -1.1381585706415058E-003 + 61.019999999999996 -1.1332409642412615E-003 + 61.079999999999998 -1.1284356611078192E-003 + 61.140000000000001 -1.1237414698256072E-003 + 61.200000000000003 -1.1191569939991378E-003 + 61.259999999999991 -1.1146808296481400E-003 + 61.319999999999993 -1.1103112985214906E-003 + 61.379999999999995 -1.1060466190527772E-003 + 61.439999999999998 -1.1018849445362069E-003 + 61.500000000000000 -1.0978241758301159E-003 + 61.560000000000002 -1.0938620713954899E-003 + 61.619999999999990 -1.0899963231351258E-003 + 61.679999999999993 -1.0862245607716032E-003 + 61.739999999999995 -1.0825439788286490E-003 + 61.799999999999997 -1.0789521684975531E-003 + 61.859999999999999 -1.0754460892100860E-003 + 61.920000000000002 -1.0720229663885700E-003 + 61.979999999999990 -1.0686797402361685E-003 + 62.039999999999992 -1.0654133264080573E-003 + 62.099999999999994 -1.0622205513365153E-003 + 62.159999999999997 -1.0590980584548636E-003 + 62.219999999999999 -1.0560425056488575E-003 + 62.280000000000001 -1.0530505703098619E-003 + 62.339999999999989 -1.0501185502875777E-003 + 62.399999999999991 -1.0472429039689161E-003 + 62.459999999999994 -1.0444201128480563E-003 + 62.519999999999996 -1.0416464505696959E-003 + 62.579999999999998 -1.0389182337504535E-003 + 62.640000000000001 -1.0362318286742168E-003 + 62.700000000000003 -1.0335833972305701E-003 + 62.759999999999991 -1.0309690855058856E-003 + 62.819999999999993 -1.0283852387418311E-003 + 62.879999999999995 -1.0258280573359274E-003 + 62.939999999999998 -1.0232938301181600E-003 + 63.000000000000000 -1.0207788231923272E-003 + 63.060000000000002 -1.0182791964707105E-003 + 63.119999999999990 -1.0157913349389518E-003 + 63.179999999999993 -1.0133114659352622E-003 + 63.239999999999995 -1.0108360637462557E-003 + 63.299999999999997 -1.0083615801290424E-003 + 63.359999999999999 -1.0058843044289168E-003 + 63.420000000000002 -1.0034009272329161E-003 + 63.479999999999990 -1.0009079397122823E-003 + 63.539999999999992 -9.9840197120956101E-004 + 63.599999999999994 -9.9587986929410314E-004 + 63.659999999999997 -9.9333839230518364E-004 + 63.719999999999999 -9.9077433428859337E-004 + 63.780000000000001 -9.8818470501677480E-004 + 63.839999999999989 -9.8556661470524005E-004 + 63.899999999999991 -9.8291719827908741E-004 + 63.959999999999994 -9.8023388497434647E-004 + 64.019999999999996 -9.7751391954667248E-004 + 64.079999999999998 -9.7475496791324520E-004 + 64.140000000000001 -9.7195458567374542E-004 + 64.200000000000003 -9.6911061228925535E-004 + 64.259999999999991 -9.6622100106308014E-004 + 64.319999999999993 -9.6328375436027043E-004 + 64.379999999999995 -9.6029708030069842E-004 + 64.439999999999998 -9.5725926621197295E-004 + 64.500000000000000 -9.5416877453915485E-004 + 64.560000000000002 -9.5102414861606972E-004 + 64.619999999999990 -9.4782409716270930E-004 + 64.679999999999993 -9.4456737898718701E-004 + 64.739999999999995 -9.4125282900561877E-004 + 64.799999999999997 -9.3787940815022474E-004 + 64.859999999999999 -9.3444617145914519E-004 + 64.920000000000002 -9.3095211545468431E-004 + 64.979999999999990 -9.2739646504357725E-004 + 65.039999999999992 -9.2377835883927816E-004 + 65.099999999999994 -9.2009706223847602E-004 + 65.159999999999997 -9.1635180304314807E-004 + 65.219999999999999 -9.1254196297898573E-004 + 65.280000000000001 -9.0866687654521643E-004 + 65.339999999999989 -9.0472600162898906E-004 + 65.399999999999991 -9.0071877890639967E-004 + 65.459999999999994 -8.9664465441817269E-004 + 65.519999999999996 -8.9250316043087334E-004 + 65.579999999999998 -8.8829384374425780E-004 + 65.640000000000001 -8.8401637647576750E-004 + 65.700000000000003 -8.7967031427068872E-004 + 65.759999999999991 -8.7525530626517080E-004 + 65.819999999999993 -8.7077098286611791E-004 + 65.879999999999995 -8.6621704567872043E-004 + 65.939999999999998 -8.6159304884112788E-004 + 66.000000000000000 -8.5689866722665591E-004 + 66.060000000000002 -8.5213341538891048E-004 + 66.119999999999990 -8.4729698795879202E-004 + 66.179999999999993 -8.4238881416064863E-004 + 66.239999999999995 -8.3740842747233226E-004 + 66.299999999999997 -8.3235514927946510E-004 + 66.359999999999999 -8.2722843264340607E-004 + 66.420000000000002 -8.2202767545139514E-004 + 66.479999999999990 -8.1675210539249781E-004 + 66.539999999999992 -8.1140108680488295E-004 + 66.599999999999994 -8.0597382132385005E-004 + 66.659999999999997 -8.0046958862882314E-004 + 66.719999999999999 -7.9488765088061750E-004 + 66.780000000000001 -7.8922735023499236E-004 + 66.839999999999989 -7.8348799218390798E-004 + 66.899999999999991 -7.7766885443912093E-004 + 66.959999999999994 -7.7176934396001103E-004 + 67.019999999999996 -7.6578895025389596E-004 + 67.079999999999998 -7.5972715845601889E-004 + 67.140000000000001 -7.5358356692276942E-004 + 67.199999999999989 -7.4735780345339174E-004 + 67.259999999999991 -7.4104964910678549E-004 + 67.319999999999993 -7.3465881858109398E-004 + 67.379999999999995 -7.2818512287722978E-004 + 67.439999999999998 -7.2162861516497894E-004 + 67.500000000000000 -7.1498934029957527E-004 + 67.560000000000002 -7.0826738511773452E-004 + 67.619999999999990 -7.0146297967657015E-004 + 67.679999999999993 -6.9457641915551642E-004 + 67.739999999999995 -6.8760825741944419E-004 + 67.799999999999997 -6.8055897828233974E-004 + 67.859999999999999 -6.7342934842748426E-004 + 67.920000000000002 -6.6622022444158514E-004 + 67.979999999999990 -6.5893261660270074E-004 + 68.039999999999992 -6.5156769561336230E-004 + 68.099999999999994 -6.4412684183836699E-004 + 68.159999999999997 -6.3661155912516103E-004 + 68.219999999999999 -6.2902357408331402E-004 + 68.280000000000001 -6.2136476064393749E-004 + 68.339999999999989 -6.1363726917985917E-004 + 68.399999999999991 -6.0584342899519810E-004 + 68.459999999999994 -5.9798576436427672E-004 + 68.519999999999996 -5.9006694310994039E-004 + 68.579999999999998 -5.8208993438605468E-004 + 68.640000000000001 -5.7405783893524343E-004 + 68.699999999999989 -5.6597405001433297E-004 + 68.759999999999991 -5.5784208504610657E-004 + 68.819999999999993 -5.4966569141041543E-004 + 68.879999999999995 -5.4144887146333177E-004 + 68.939999999999998 -5.3319563396179428E-004 + 69.000000000000000 -5.2491042522516732E-004 + 69.060000000000002 -5.1659774907117893E-004 + 69.119999999999990 -5.0826237272010521E-004 + 69.179999999999993 -4.9990913849441720E-004 + 69.239999999999995 -4.9154317559988499E-004 + 69.299999999999997 -4.8316976245948648E-004 + 69.359999999999999 -4.7479424067088308E-004 + 69.420000000000002 -4.6642229994211170E-004 + 69.479999999999990 -4.5805962942428117E-004 + 69.539999999999992 -4.4971211575382548E-004 + 69.599999999999994 -4.4138580390139866E-004 + 69.659999999999997 -4.3308683471818585E-004 + 69.719999999999999 -4.2482144929494129E-004 + 69.780000000000001 -4.1659600490679170E-004 + 69.839999999999989 -4.0841697669534915E-004 + 69.899999999999991 -4.0029090287592634E-004 + 69.959999999999994 -3.9222437714243929E-004 + 70.019999999999996 -3.8422407656709377E-004 + 70.079999999999998 -3.7629675732747138E-004 + 70.140000000000001 -3.6844913854853167E-004 + 70.199999999999989 -3.6068798265824129E-004 + 70.259999999999991 -3.5302006618610798E-004 + 70.319999999999993 -3.4545219802505257E-004 + 70.379999999999995 -3.3799110984219518E-004 + 70.439999999999998 -3.3064354074624258E-004 + 70.500000000000000 -3.2341612570941286E-004 + 70.560000000000002 -3.1631544139200477E-004 + 70.619999999999990 -3.0934799529805997E-004 + 70.679999999999993 -3.0252020884405058E-004 + 70.739999999999995 -2.9583837000069977E-004 + 70.799999999999997 -2.8930863167254901E-004 + 70.859999999999999 -2.8293708612031512E-004 + 70.920000000000002 -2.7672961970968122E-004 + 70.979999999999990 -2.7069199011402678E-004 + 71.039999999999992 -2.6482979897062366E-004 + 71.099999999999994 -2.5914856520411708E-004 + 71.159999999999997 -2.5365354364450708E-004 + 71.219999999999999 -2.4834990739362929E-004 + 71.280000000000001 -2.4324262698813509E-004 + 71.339999999999989 -2.3833651262984587E-004 + 71.399999999999991 -2.3363616834738864E-004 + 71.459999999999994 -2.2914601878138612E-004 + 71.519999999999996 -2.2487030739319917E-004 + 71.579999999999998 -2.2081304846024674E-004 + 71.640000000000001 -2.1697800879855476E-004 + 71.699999999999989 -2.1336878155839639E-004 + 71.759999999999991 -2.0998863607615405E-004 + 71.819999999999993 -2.0684064028499252E-004 + 71.879999999999995 -2.0392757737326035E-004 + 71.939999999999998 -2.0125193961504314E-004 + 72.000000000000000 -1.9881598276076445E-004 + 72.060000000000002 -1.9662164953559630E-004 + 72.119999999999990 -1.9467064662724614E-004 + 72.179999999999993 -1.9296439480919736E-004 + 72.239999999999995 -1.9150409226433569E-004 + 72.299999999999997 -1.9029066221193296E-004 + 72.359999999999999 -1.8932485101196664E-004 + 72.420000000000002 -1.8860717543616492E-004 + 72.479999999999990 -1.8813799578764812E-004 + 72.539999999999992 -1.8791746611344690E-004 + 72.599999999999994 -1.8794562728132521E-004 + 72.659999999999997 -1.8822236796362668E-004 + 72.719999999999999 -1.8874746076012522E-004 + 72.780000000000001 -1.8952056129075323E-004 + 72.839999999999989 -1.9054126375617439E-004 + 72.899999999999991 -1.9180900266773602E-004 + 72.959999999999994 -1.9332316943334416E-004 + 73.019999999999996 -1.9508305798284794E-004 + 73.079999999999998 -1.9708790261019869E-004 + 73.140000000000001 -1.9933684606863024E-004 + 73.199999999999989 -2.0182895860207733E-004 + 73.259999999999991 -2.0456326634619504E-004 + 73.319999999999993 -2.0753871018167210E-004 + 73.379999999999995 -2.1075421949927499E-004 + 73.439999999999998 -2.1420869228254283E-004 + 73.500000000000000 -2.1790100241180247E-004 + 73.560000000000002 -2.2183004241356055E-004 + 73.619999999999990 -2.2599474381409582E-004 + 73.679999999999993 -2.3039403545879348E-004 + 73.739999999999995 -2.3502694727760900E-004 + 73.799999999999997 -2.3989257333214596E-004 + 73.859999999999999 -2.4499011047068614E-004 + 73.920000000000002 -2.5031885388805436E-004 + 73.979999999999990 -2.5587821062348091E-004 + 74.039999999999992 -2.6166775085588126E-004 + 74.099999999999994 -2.6768714238947148E-004 + 74.159999999999997 -2.7393621167172557E-004 + 74.219999999999999 -2.8041492478159856E-004 + 74.280000000000001 -2.8712337014770797E-004 + 74.339999999999989 -2.9406177632791897E-004 + 74.399999999999991 -3.0123052392513352E-004 + 74.459999999999994 -3.0863006555122721E-004 + 74.519999999999996 -3.1626101574052734E-004 + 74.579999999999998 -3.2412407363109538E-004 + 74.640000000000001 -3.3222001404367300E-004 + 74.699999999999989 -3.4054972993151399E-004 + 74.759999999999991 -3.4911418415394159E-004 + 74.819999999999993 -3.5791437799636877E-004 + 74.879999999999995 -3.6695137425816311E-004 + 74.939999999999998 -3.7622629036686137E-004 + 75.000000000000000 -3.8574023508483894E-004 + 75.060000000000002 -3.9549428550877724E-004 + 75.119999999999990 -4.0548951675193652E-004 + 75.179999999999993 -4.1572697335106197E-004 + 75.239999999999995 -4.2620757959167739E-004 + 75.299999999999997 -4.3693219601967517E-004 + 75.359999999999999 -4.4790149310556219E-004 + 75.420000000000002 -4.5911606029835862E-004 + 75.479999999999990 -4.7057624054877627E-004 + 75.539999999999992 -4.8228221524822447E-004 + 75.599999999999994 -4.9423385483976154E-004 + 75.659999999999997 -5.0643080519050259E-004 + 75.719999999999999 -5.1887245105332021E-004 + 75.780000000000001 -5.3155776768738935E-004 + 75.839999999999989 -5.4448547693856041E-004 + 75.899999999999991 -5.5765390694286344E-004 + 75.959999999999994 -5.7106087167851038E-004 + 76.019999999999996 -5.8470395733091929E-004 + 76.079999999999998 -5.9858011030207632E-004 + 76.140000000000001 -6.1268595332090222E-004 + 76.199999999999989 -6.2701758599757859E-004 + 76.259999999999991 -6.4157051459801367E-004 + 76.319999999999993 -6.5633974152251270E-004 + 76.379999999999995 -6.7131968617382585E-004 + 76.439999999999998 -6.8650410662138815E-004 + 76.500000000000000 -7.0188609191664604E-004 + 76.560000000000002 -7.1745814443618895E-004 + 76.619999999999990 -7.3321203996894082E-004 + 76.679999999999993 -7.4913887263390133E-004 + 76.739999999999995 -7.6522890469674987E-004 + 76.799999999999997 -7.8147174898663893E-004 + 76.859999999999999 -7.9785614983023372E-004 + 76.920000000000002 -8.1437023075677461E-004 + 76.979999999999990 -8.3100120096803360E-004 + 77.039999999999992 -8.4773559122500164E-004 + 77.099999999999994 -8.6455911645091693E-004 + 77.159999999999997 -8.8145671330030811E-004 + 77.219999999999999 -8.9841258018218736E-004 + 77.280000000000001 -9.1541015347275671E-004 + 77.339999999999989 -9.3243221196017345E-004 + 77.399999999999991 -9.4946079975788444E-004 + 77.459999999999994 -9.6647715678858915E-004 + 77.519999999999996 -9.8346190790549160E-004 + 77.579999999999998 -1.0003948969925635E-003 + 77.640000000000001 -1.0172554302588584E-003 + 77.699999999999989 -1.0340222061182825E-003 + 77.759999999999991 -1.0506730914748256E-003 + 77.819999999999993 -1.0671854518190546E-003 + 77.879999999999995 -1.0835361879321772E-003 + 77.939999999999998 -1.0997014813042833E-003 + 78.000000000000000 -1.1156570879268407E-003 + 78.060000000000002 -1.1313781975190056E-003 + 78.119999999999990 -1.1468397013167145E-003 + 78.179999999999993 -1.1620158866047143E-003 + 78.239999999999995 -1.1768808659150796E-003 + 78.299999999999997 -1.1914082051000636E-003 + 78.359999999999999 -1.2055715107517741E-003 + 78.420000000000002 -1.2193437916364288E-003 + 78.479999999999990 -1.2326983729570838E-003 + 78.539999999999992 -1.2456081479743138E-003 + 78.599999999999994 -1.2580460596294406E-003 + 78.659999999999997 -1.2699851609029580E-003 + 78.719999999999999 -1.2813983059070618E-003 + 78.780000000000001 -1.2922589464086137E-003 + 78.839999999999989 -1.3025403202948939E-003 + 78.899999999999991 -1.3122161598967455E-003 + 78.959999999999994 -1.3212604793655797E-003 + 79.019999999999996 -1.3296476632074674E-003 + 79.079999999999998 -1.3373527757488421E-003 + 79.140000000000001 -1.3443509563931619E-003 + 79.199999999999989 -1.3506183235910058E-003 + 79.259999999999991 -1.3561315608368147E-003 + 79.319999999999993 -1.3608679867453072E-003 + 79.379999999999995 -1.3648058609620815E-003 + 79.439999999999998 -1.3679241403406440E-003 + 79.500000000000000 -1.3702029097935695E-003 + 79.560000000000002 -1.3716230494178062E-003 + 79.619999999999990 -1.3721665629261041E-003 + 79.679999999999993 -1.3718164522728653E-003 + 79.739999999999995 -1.3705570049384838E-003 + 79.799999999999997 -1.3683736156187550E-003 + 79.859999999999999 -1.3652529065822372E-003 + 79.920000000000002 -1.3611828638856766E-003 + 79.979999999999990 -1.3561528282966596E-003 + 80.039999999999992 -1.3501533830698274E-003 + 80.099999999999994 -1.3431765454415064E-003 + 80.159999999999997 -1.3352157116125771E-003 + 80.219999999999999 -1.3262659982693846E-003 + 80.280000000000001 -1.3163239253309545E-003 + 80.340000000000003 -1.3053873226589279E-003 + 80.400000000000006 -1.2934559166350118E-003 + 80.460000000000008 -1.2805309034424318E-003 + 80.519999999999982 -1.2666151116303545E-003 + 80.579999999999984 -1.2517129589800296E-003 + 80.639999999999986 -1.2358307235162684E-003 + 80.699999999999989 -1.2189760862186003E-003 + 80.759999999999991 -1.2011587197084926E-003 + 80.819999999999993 -1.1823898497217056E-003 + 80.879999999999995 -1.1626823298698697E-003 + 80.939999999999998 -1.1420507633495215E-003 + 81.000000000000000 -1.1205114255250167E-003 + 81.060000000000002 -1.0980820476291489E-003 + 81.120000000000005 -1.0747822410932752E-003 + 81.180000000000007 -1.0506329399063744E-003 + 81.240000000000009 -1.0256569307601261E-003 + 81.299999999999983 -9.9987825928565051E-004 + 81.359999999999985 -9.7332239278428816E-004 + 81.419999999999987 -9.4601633173718854E-004 + 81.479999999999990 -9.1798825369172117E-004 + 81.539999999999992 -8.8926774095432579E-004 + 81.599999999999994 -8.5988557820569753E-004 + 81.659999999999997 -8.2987375413669142E-004 + 81.719999999999999 -7.9926543726513335E-004 + 81.780000000000001 -7.6809478535807706E-004 + 81.840000000000003 -7.3639697230145945E-004 + 81.900000000000006 -7.0420817090495729E-004 + 81.960000000000008 -6.7156532981533406E-004 + 82.019999999999982 -6.3850618684419295E-004 + 82.079999999999984 -6.0506933071020137E-004 + 82.139999999999986 -5.7129393595128843E-004 + 82.199999999999989 -5.3721975452720343E-004 + 82.259999999999991 -5.0288693314632185E-004 + 82.319999999999993 -4.6833612513566818E-004 + 82.379999999999995 -4.3360829496384782E-004 + 82.439999999999998 -3.9874454149395756E-004 + 82.500000000000000 -3.6378617010411526E-004 + 82.560000000000002 -3.2877453132465831E-004 + 82.620000000000005 -2.9375091921415673E-004 + 82.680000000000007 -2.5875653720633016E-004 + 82.740000000000009 -2.2383233742452512E-004 + 82.799999999999983 -1.8901907250624557E-004 + 82.859999999999985 -1.5435707698010235E-004 + 82.919999999999987 -1.1988629079815431E-004 + 82.979999999999990 -8.5646123481863934E-005 + 83.039999999999992 -5.1675410639982259E-005 + 83.099999999999994 -1.8012372490096662E-005 + 83.159999999999997 1.5305514805632189E-005 + 83.219999999999999 4.8241557080224704E-005 + 83.280000000000001 8.0759909509910247E-005 + 83.340000000000003 1.1282564776015833E-004 + 83.400000000000006 1.4440485939516150E-004 + 83.460000000000008 1.7546464802780686E-004 + 83.519999999999982 2.0597325164397996E-004 + 83.579999999999984 2.3590005484974818E-004 + 83.639999999999986 2.6521569916298132E-004 + 83.699999999999989 2.9389210410394321E-004 + 83.759999999999991 3.2190248992253645E-004 + 83.819999999999993 3.4922143250321443E-004 + 83.879999999999995 3.7582496962070060E-004 + 83.939999999999998 4.0169050117164331E-004 + 84.000000000000000 4.2679684487050554E-004 + 84.060000000000002 4.5112436423425204E-004 + 84.120000000000005 4.7465483541035236E-004 + 84.180000000000007 4.9737157700710120E-004 + 84.240000000000009 5.1925930333128608E-004 + 84.299999999999983 5.4030429645994570E-004 + 84.359999999999985 5.6049416794032270E-004 + 84.419999999999987 5.7981826256806154E-004 + 84.479999999999990 5.9826711458216958E-004 + 84.539999999999992 6.1583289384433250E-004 + 84.599999999999994 6.3250916305721732E-004 + 84.659999999999997 6.4829087747811202E-004 + 84.719999999999999 6.6317451264452274E-004 + 84.780000000000001 6.7715783878836272E-004 + 84.840000000000003 6.9023997775866325E-004 + 84.900000000000006 7.0242156535114790E-004 + 84.960000000000008 7.1370445020751310E-004 + 85.019999999999982 7.2409174363360885E-004 + 85.079999999999984 7.3358796865379211E-004 + 85.139999999999986 7.4219877250378610E-004 + 85.199999999999989 7.4993105294607549E-004 + 85.259999999999991 7.5679288114362502E-004 + 85.319999999999993 7.6279335133428241E-004 + 85.379999999999995 7.6794272423504615E-004 + 85.439999999999998 7.7225220692411149E-004 + 85.500000000000000 7.7573400002710097E-004 + 85.560000000000002 7.7840137068674168E-004 + 85.620000000000005 7.8026823914446994E-004 + 85.680000000000007 7.8134954055988524E-004 + 85.740000000000009 7.8166084665202843E-004 + 85.799999999999983 7.8121865006203271E-004 + 85.859999999999985 7.8004002897790077E-004 + 85.919999999999987 7.7814276257058980E-004 + 85.979999999999990 7.7554510238009300E-004 + 86.039999999999992 7.7226603488370071E-004 + 86.099999999999994 7.6832494557385654E-004 + 86.159999999999997 7.6374178291180978E-004 + 86.219999999999999 7.5853673758215744E-004 + 86.280000000000001 7.5273058873565838E-004 + 86.340000000000003 7.4634423672428896E-004 + 86.400000000000006 7.3939903313300975E-004 + 86.460000000000008 7.3191644038363363E-004 + 86.519999999999982 7.2391814148734337E-004 + 86.579999999999984 7.1542593345768095E-004 + 86.639999999999986 7.0646181094350779E-004 + 86.699999999999989 6.9704773537930119E-004 + 86.759999999999991 6.8720579743536392E-004 + 86.819999999999993 6.7695795975773775E-004 + 86.879999999999995 6.6632626109538865E-004 + 86.939999999999998 6.5533264136916633E-004 + 87.000000000000000 6.4399890169651130E-004 + 87.060000000000002 6.3234675954400060E-004 + 87.120000000000005 6.2039787464829158E-004 + 87.180000000000007 6.0817361054280831E-004 + 87.240000000000009 5.9569529618075812E-004 + 87.299999999999983 5.8298392108478063E-004 + 87.359999999999985 5.7006025039188296E-004 + 87.419999999999987 5.5694486100234719E-004 + 87.479999999999990 5.4365794978243468E-004 + 87.539999999999992 5.3021942430788436E-004 + 87.599999999999994 5.1664894529316349E-004 + 87.659999999999997 5.0296565791596191E-004 + 87.719999999999999 4.8918842384757205E-004 + 87.780000000000001 4.7533565504010171E-004 + 87.840000000000003 4.6142532352455140E-004 + 87.900000000000006 4.4747498699320223E-004 + 87.960000000000008 4.3350176478449673E-004 + 88.019999999999982 4.1952225722395370E-004 + 88.079999999999984 4.0555263121896441E-004 + 88.139999999999986 3.9160853026428018E-004 + 88.199999999999989 3.7770516420913375E-004 + 88.259999999999991 3.6385720184364887E-004 + 88.319999999999993 3.5007882226796913E-004 + 88.379999999999995 3.3638378463310593E-004 + 88.439999999999998 3.2278529076178603E-004 + 88.500000000000000 3.0929609927568319E-004 + 88.560000000000002 2.9592841207973540E-004 + 88.620000000000005 2.8269395514651796E-004 + 88.680000000000007 2.6960400038296520E-004 + 88.740000000000009 2.5666928616385656E-004 + 88.799999999999983 2.4390003007797873E-004 + 88.859999999999985 2.3130599809324237E-004 + 88.919999999999987 2.1889639595823574E-004 + 88.979999999999990 2.0667992869325151E-004 + 89.039999999999992 1.9466480449559616E-004 + 89.099999999999994 1.8285869772780711E-004 + 89.159999999999997 1.7126881268222647E-004 + 89.219999999999999 1.5990185575287766E-004 + 89.280000000000001 1.4876403739736574E-004 + 89.340000000000003 1.3786108529894664E-004 + 89.400000000000006 1.2719828087283923E-004 + 89.460000000000008 1.1678042189504496E-004 + 89.519999999999982 1.0661187175133124E-004 + 89.579999999999984 9.6696586097161550E-005 + 89.639999999999986 8.7038068334852861E-005 + 89.699999999999989 7.7639440334621799E-005 + 89.759999999999991 6.8503405224444973E-005 + 89.819999999999993 5.9632296115280016E-005 + 89.879999999999995 5.1028077249536866E-005 + 89.939999999999998 4.2692334022106155E-005 + 90.000000000000000 3.4626308632812134E-005 + 90.060000000000002 2.6830899212332076E-005 + 90.120000000000005 1.9306686812627236E-005 + 90.180000000000007 1.2053934521906497E-005 + 90.240000000000009 5.0726155068565431E-006 + 90.299999999999983 -1.6375785915830752E-006 + 90.359999999999985 -8.0772131379726598E-006 + 90.419999999999987 -1.4247096337008614E-005 + 90.479999999999990 -2.0148261048938194E-005 + 90.539999999999992 -2.5781944968329565E-005 + 90.599999999999994 -3.1149574503152004E-005 + 90.659999999999997 -3.6252751173168058E-005 + 90.719999999999999 -4.1093238455462842E-005 + 90.780000000000001 -4.5672943605178300E-005 + 90.840000000000003 -4.9993918414374168E-005 + 90.900000000000006 -5.4058351092588192E-005 + 90.960000000000008 -5.7868561220352908E-005 + 91.019999999999982 -6.1426986116186827E-005 + 91.079999999999984 -6.4736191101525349E-005 + 91.139999999999986 -6.7798865877714544E-005 + 91.199999999999989 -7.0617812360816370E-005 + 91.259999999999991 -7.3195954714043045E-005 + 91.319999999999993 -7.5536320653220098E-005 + 91.379999999999995 -7.7642049241663671E-005 + 91.439999999999998 -7.9516359253620751E-005 + 91.500000000000000 -8.1162556894397668E-005 + 91.560000000000002 -8.2584019164872794E-005 + 91.620000000000005 -8.3784172508758590E-005 + 91.680000000000007 -8.4766482450700817E-005 + 91.739999999999981 -8.5534429995356011E-005 + 91.799999999999983 -8.6091500375898457E-005 + 91.859999999999985 -8.6441159093304470E-005 + 91.919999999999987 -8.6586866251993436E-005 + 91.979999999999990 -8.6532042008355051E-005 + 92.039999999999992 -8.6280052624060770E-005 + 92.099999999999994 -8.5834218045646824E-005 + 92.159999999999997 -8.5197826414434963E-005 + 92.219999999999999 -8.4374091243127232E-005 + 92.280000000000001 -8.3366196509501204E-005 + 92.340000000000003 -8.2177271130218885E-005 + 92.400000000000006 -8.0810408067223804E-005 + 92.460000000000008 -7.9268650720858979E-005 + 92.519999999999982 -7.7555025050834452E-005 + 92.579999999999984 -7.5672495422846048E-005 + 92.639999999999986 -7.3624000146803602E-005 + 92.699999999999989 -7.1412445475271295E-005 + 92.759999999999991 -6.9040677152580376E-005 + 92.819999999999993 -6.6511499850344059E-005 + 92.879999999999995 -6.3827653190613845E-005 + 92.939999999999998 -6.0991803546380408E-005 + 93.000000000000000 -5.8006534753850162E-005 + 93.060000000000002 -5.4874354118996039E-005 + 93.120000000000005 -5.1597671857399292E-005 + 93.180000000000007 -4.8178788921508394E-005 + 93.239999999999981 -4.4619911997369640E-005 + 93.299999999999983 -4.0923127853668266E-005 + 93.359999999999985 -3.7090422388916533E-005 + 93.419999999999987 -3.3123672471185915E-005 + 93.479999999999990 -2.9024649828054971E-005 + 93.539999999999992 -2.4795029013472179E-005 + 93.599999999999994 -2.0436388363685841E-005 + 93.659999999999997 -1.5950210879343354E-005 + 93.719999999999999 -1.1337894251769795E-005 + 93.780000000000001 -6.6007528077078866E-006 + 93.840000000000003 -1.7400166200556126E-006 + 93.900000000000006 3.2431658955874557E-006 + 93.960000000000008 8.3477276917660298E-006 + 94.019999999999982 1.3572686747975107E-005 + 94.079999999999984 1.8917142026919805E-005 + 94.139999999999986 2.4380281614881947E-005 + 94.199999999999989 2.9961377325889778E-005 + 94.259999999999991 3.5659785772619977E-005 + 94.319999999999993 4.1474953785313712E-005 + 94.379999999999995 4.7406400507350767E-005 + 94.439999999999998 5.3453727128706412E-005 + 94.500000000000000 5.9616598346341007E-005 + 94.560000000000002 6.5894728304012140E-005 + 94.620000000000005 7.2287885363732192E-005 + 94.680000000000007 7.8795871912403111E-005 + 94.739999999999981 8.5418494614885075E-005 + 94.799999999999983 9.2155570869768925E-005 + 94.859999999999985 9.9006899764742117E-005 + 94.919999999999987 1.0597225773318185E-004 + 94.979999999999990 1.1305137576813392E-004 + 95.039999999999992 1.2024391411512559E-004 + 95.099999999999994 1.2754950788700098E-004 + 95.159999999999997 1.3496766055060111E-004 + 95.219999999999999 1.4249779801913851E-004 + 95.280000000000001 1.5013926544754617E-004 + 95.340000000000003 1.5789128593828879E-004 + 95.400000000000006 1.6575292825724114E-004 + 95.460000000000008 1.7372316536625802E-004 + 95.519999999999982 1.8180078081922685E-004 + 95.579999999999984 1.8998440407788934E-004 + 95.639999999999986 1.9827249621091645E-004 + 95.699999999999989 2.0666330172116853E-004 + 95.759999999999991 2.1515485585034091E-004 + 95.819999999999993 2.2374496978840304E-004 + 95.879999999999995 2.3243121231486430E-004 + 95.939999999999998 2.4121086490715968E-004 + 96.000000000000000 2.5008096031020231E-004 + 96.060000000000002 2.5903821533967834E-004 + 96.120000000000005 2.6807902509435488E-004 + 96.180000000000007 2.7719950541807501E-004 + 96.239999999999981 2.8639535296354446E-004 + 96.299999999999983 2.9566201519795192E-004 + 96.359999999999985 3.0499450639404172E-004 + 96.419999999999987 3.1438752237530866E-004 + 96.479999999999990 3.2383535972473152E-004 + 96.539999999999992 3.3333199691936989E-004 + 96.599999999999994 3.4287095707156371E-004 + 96.659999999999997 3.5244539888896781E-004 + 96.719999999999999 3.6204808255158082E-004 + 96.780000000000001 3.7167143901901403E-004 + 96.840000000000003 3.8130737745363166E-004 + 96.900000000000006 3.9094749683976204E-004 + 96.960000000000008 4.0058297970971523E-004 + 97.019999999999982 4.1020459726415188E-004 + 97.079999999999984 4.1980271021359008E-004 + 97.139999999999986 4.2936733648375785E-004 + 97.199999999999989 4.3888810290667793E-004 + 97.259999999999991 4.4835427382810487E-004 + 97.319999999999993 4.5775476104463985E-004 + 97.379999999999995 4.6707820178350652E-004 + 97.439999999999998 4.7631283559991283E-004 + 97.500000000000000 4.8544670781083550E-004 + 97.560000000000002 4.9446756635342331E-004 + 97.620000000000005 5.0336294013427006E-004 + 97.680000000000007 5.1212013203594719E-004 + 97.739999999999981 5.2072629164575399E-004 + 97.799999999999983 5.2916833521779146E-004 + 97.859999999999985 5.3743311119604220E-004 + 97.919999999999987 5.4550734390920383E-004 + 97.979999999999990 5.5337759671481241E-004 + 98.039999999999992 5.6103039568610781E-004 + 98.099999999999994 5.6845220068116678E-004 + 98.159999999999997 5.7562943506688641E-004 + 98.219999999999999 5.8254845487837022E-004 + 98.280000000000001 5.8919574334531037E-004 + 98.340000000000003 5.9555775285817850E-004 + 98.400000000000006 6.0162100185451046E-004 + 98.460000000000008 6.0737226621514488E-004 + 98.519999999999982 6.1279826225625730E-004 + 98.579999999999984 6.1788604154882579E-004 + 98.639999999999986 6.2262288276839644E-004 + 98.699999999999989 6.2699630958166694E-004 + 98.759999999999991 6.3099425364580961E-004 + 98.819999999999993 6.3460497349990632E-004 + 98.879999999999995 6.3781717002334615E-004 + 98.939999999999998 6.4061992652745788E-004 + 99.000000000000000 6.4300294078568313E-004 + 99.060000000000002 6.4495643324319037E-004 + 99.120000000000005 6.4647103770940594E-004 + 99.180000000000007 6.4753812133217458E-004 + 99.239999999999981 6.4814960748478675E-004 + 99.299999999999983 6.4829811408158072E-004 + 99.359999999999985 6.4797688079489110E-004 + 99.419999999999987 6.4717973454866203E-004 + 99.479999999999990 6.4590128173396802E-004 + 99.539999999999992 6.4413679259247908E-004 + 99.599999999999994 6.4188222377114623E-004 + 99.659999999999997 6.3913433570706997E-004 + 99.719999999999999 6.3589052843058484E-004 + 99.780000000000001 6.3214905010359026E-004 + 99.840000000000003 6.2790890995412523E-004 + 99.900000000000006 6.2316986069875947E-004 + 99.960000000000008 6.1793263234850978E-004 + 100.01999999999998 6.1219860617135681E-004 + 100.07999999999998 6.0597008593167166E-004 + 100.13999999999999 5.9925027483504227E-004 + 100.19999999999999 5.9204322808753930E-004 + 100.25999999999999 5.8435386237219342E-004 + 100.31999999999999 5.7618799484415555E-004 + 100.38000000000000 5.6755224218604024E-004 + 100.44000000000000 5.5845404654755021E-004 + 100.50000000000000 5.4890174601601716E-004 + 100.56000000000000 5.3890452864069620E-004 + 100.62000000000000 5.2847230504170207E-004 + 100.68000000000001 5.1761572262744705E-004 + 100.73999999999998 5.0634623562959458E-004 + 100.79999999999998 4.9467597724726768E-004 + 100.85999999999999 4.8261776442169106E-004 + 100.91999999999999 4.7018519034840791E-004 + 100.97999999999999 4.5739233073795139E-004 + 101.03999999999999 4.4425390254284100E-004 + 101.09999999999999 4.3078519963407483E-004 + 101.16000000000000 4.1700204946923316E-004 + 101.22000000000000 4.0292085862933769E-004 + 101.28000000000000 3.8855842995320450E-004 + 101.34000000000000 3.7393203531187907E-004 + 101.40000000000001 3.5905936261073864E-004 + 101.46000000000001 3.4395847381935767E-004 + 101.51999999999998 3.2864779081393094E-004 + 101.57999999999998 3.1314598949601103E-004 + 101.63999999999999 2.9747200592601192E-004 + 101.69999999999999 2.8164499733087387E-004 + 101.75999999999999 2.6568424196075625E-004 + 101.81999999999999 2.4960918449008892E-004 + 101.88000000000000 2.3343934625790188E-004 + 101.94000000000000 2.1719425085451780E-004 + 102.00000000000000 2.0089342112397378E-004 + 102.06000000000000 1.8455634544564534E-004 + 102.12000000000000 1.6820241857669818E-004 + 102.18000000000001 1.5185092471648213E-004 + 102.23999999999998 1.3552097354672525E-004 + 102.29999999999998 1.1923148006028742E-004 + 102.35999999999999 1.0300114258699593E-004 + 102.41999999999999 8.6848376733073224E-005 + 102.47999999999999 7.0791321133151355E-005 + 102.53999999999999 5.4847768071764825E-005 + 102.59999999999999 3.9035153060735224E-005 + 102.66000000000000 2.3370515821894829E-005 + 102.72000000000000 7.8704554982835405E-006 + 102.78000000000000 -7.4489133719397664E-006 + 102.84000000000000 -2.2571942947806030E-005 + 102.90000000000001 -3.7483528237258907E-005 + 102.96000000000001 -5.2169119895772477E-005 + 103.01999999999998 -6.6614753636404594E-005 + 103.07999999999998 -8.0807058690921657E-005 + 103.13999999999999 -9.4733292599665148E-005 + 103.19999999999999 -1.0838135819910461E-004 + 103.25999999999999 -1.2173980661236472E-004 + 103.31999999999999 -1.3479786930447476E-004 + 103.38000000000000 -1.4754545280271122E-004 + 103.44000000000000 -1.5997311953627315E-004 + 103.50000000000000 -1.7207216399907130E-004 + 103.56000000000000 -1.8383454990889957E-004 + 103.62000000000000 -1.9525296026803475E-004 + 103.68000000000001 -2.0632074332550568E-004 + 103.73999999999998 -2.1703199825830503E-004 + 103.79999999999998 -2.2738148300524891E-004 + 103.85999999999999 -2.3736473170670125E-004 + 103.91999999999999 -2.4697790642970219E-004 + 103.97999999999999 -2.5621791082502439E-004 + 104.03999999999999 -2.6508237533068356E-004 + 104.09999999999999 -2.7356958379928478E-004 + 104.16000000000000 -2.8167853619306385E-004 + 104.22000000000000 -2.8940896895779345E-004 + 104.28000000000000 -2.9676117684591691E-004 + 104.34000000000000 -3.0373616998044859E-004 + 104.40000000000001 -3.1033559964705566E-004 + 104.46000000000001 -3.1656170558203050E-004 + 104.51999999999998 -3.2241732183384974E-004 + 104.57999999999998 -3.2790586878951946E-004 + 104.63999999999999 -3.3303128834786459E-004 + 104.69999999999999 -3.3779805345444003E-004 + 104.75999999999999 -3.4221113147841765E-004 + 104.81999999999999 -3.4627595443410450E-004 + 104.88000000000000 -3.4999841075587562E-004 + 104.94000000000000 -3.5338477383943284E-004 + 105.00000000000000 -3.5644178491509265E-004 + 105.06000000000000 -3.5917648853829543E-004 + 105.12000000000000 -3.6159633440626852E-004 + 105.18000000000001 -3.6370915605160229E-004 + 105.23999999999998 -3.6552307779873542E-004 + 105.29999999999998 -3.6704652260040110E-004 + 105.35999999999999 -3.6828818312107758E-004 + 105.41999999999999 -3.6925699680270677E-004 + 105.47999999999999 -3.6996219652322358E-004 + 105.53999999999999 -3.7041316887130116E-004 + 105.59999999999999 -3.7061949482703447E-004 + 105.66000000000000 -3.7059089391460831E-004 + 105.72000000000000 -3.7033722006789190E-004 + 105.78000000000000 -3.6986839309909476E-004 + 105.84000000000000 -3.6919445376990738E-004 + 105.90000000000001 -3.6832541983944437E-004 + 105.96000000000001 -3.6727131750175776E-004 + 106.01999999999998 -3.6604217532057329E-004 + 106.07999999999998 -3.6464800167478718E-004 + 106.13999999999999 -3.6309876143487854E-004 + 106.19999999999999 -3.6140427975078087E-004 + 106.25999999999999 -3.5957436548596781E-004 + 106.31999999999999 -3.5761871286567055E-004 + 106.38000000000000 -3.5554697815261055E-004 + 106.44000000000000 -3.5336863359328554E-004 + 106.50000000000000 -3.5109305975584618E-004 + 106.56000000000000 -3.4872950662618332E-004 + 106.62000000000000 -3.4628706987823837E-004 + 106.68000000000001 -3.4377470395426270E-004 + 106.73999999999998 -3.4120123641614731E-004 + 106.79999999999998 -3.3857526004431136E-004 + 106.85999999999999 -3.3590519784265264E-004 + 106.91999999999999 -3.3319928583261182E-004 + 106.97999999999999 -3.3046553016091289E-004 + 107.03999999999999 -3.2771170998685935E-004 + 107.09999999999999 -3.2494536244731016E-004 + 107.16000000000000 -3.2217369752903142E-004 + 107.22000000000000 -3.1940374219403903E-004 + 107.28000000000000 -3.1664219031429780E-004 + 107.34000000000000 -3.1389548295689807E-004 + 107.40000000000001 -3.1116971435012449E-004 + 107.46000000000001 -3.0847074572169808E-004 + 107.51999999999998 -3.0580415164576383E-004 + 107.57999999999998 -3.0317518111051719E-004 + 107.63999999999999 -3.0058878968547431E-004 + 107.69999999999999 -2.9804967070356679E-004 + 107.75999999999999 -2.9556224396679021E-004 + 107.81999999999999 -2.9313059190730562E-004 + 107.88000000000000 -2.9075853257703652E-004 + 107.94000000000000 -2.8844964946105257E-004 + 108.00000000000000 -2.8620717910249956E-004 + 108.06000000000000 -2.8403410437137625E-004 + 108.12000000000000 -2.8193304662496788E-004 + 108.18000000000001 -2.7990645927776123E-004 + 108.23999999999998 -2.7795633084671379E-004 + 108.29999999999998 -2.7608441338643956E-004 + 108.35999999999999 -2.7429216820551455E-004 + 108.41999999999999 -2.7258072797917935E-004 + 108.47999999999999 -2.7095091532056993E-004 + 108.53999999999999 -2.6940319505557074E-004 + 108.59999999999999 -2.6793775412188836E-004 + 108.66000000000000 -2.6655443005365632E-004 + 108.72000000000000 -2.6525279463327021E-004 + 108.78000000000000 -2.6403205952905447E-004 + 108.84000000000000 -2.6289116989741673E-004 + 108.90000000000001 -2.6182873107473409E-004 + 108.96000000000001 -2.6084305189173800E-004 + 109.01999999999998 -2.5993215689521030E-004 + 109.07999999999998 -2.5909376229776778E-004 + 109.13999999999999 -2.5832527898420770E-004 + 109.19999999999999 -2.5762383129554418E-004 + 109.25999999999999 -2.5698630145001161E-004 + 109.31999999999999 -2.5640925912046600E-004 + 109.38000000000000 -2.5588903212722951E-004 + 109.44000000000000 -2.5542160929837904E-004 + 109.50000000000000 -2.5500285233841702E-004 + 109.56000000000000 -2.5462829494559097E-004 + 109.62000000000000 -2.5429329763294699E-004 + 109.68000000000001 -2.5399299052787265E-004 + 109.73999999999998 -2.5372234736976420E-004 + 109.79999999999998 -2.5347612352156481E-004 + 109.85999999999999 -2.5324896151301789E-004 + 109.91999999999999 -2.5303533898025140E-004 + 109.97999999999999 -2.5282962660695874E-004 + 110.03999999999999 -2.5262614560843958E-004 + 110.09999999999999 -2.5241902755816374E-004 + 110.16000000000000 -2.5220242504352087E-004 + 110.22000000000000 -2.5197034968202370E-004 + 110.28000000000000 -2.5171686179246224E-004 + 110.34000000000000 -2.5143589892750973E-004 + 110.40000000000001 -2.5112141077048055E-004 + 110.46000000000001 -2.5076736497473115E-004 + 110.51999999999998 -2.5036772941042907E-004 + 110.57999999999998 -2.4991645624097326E-004 + 110.63999999999999 -2.4940759792436003E-004 + 110.69999999999999 -2.4883525578590606E-004 + 110.75999999999999 -2.4819356124678360E-004 + 110.81999999999999 -2.4747682448720854E-004 + 110.88000000000000 -2.4667950220448831E-004 + 110.94000000000000 -2.4579616086245151E-004 + 111.00000000000000 -2.4482155771106791E-004 + 111.06000000000000 -2.4375073217934248E-004 + 111.12000000000000 -2.4257889504021934E-004 + 111.18000000000001 -2.4130155991204278E-004 + 111.23999999999998 -2.3991451994447702E-004 + 111.29999999999998 -2.3841384715346796E-004 + 111.35999999999999 -2.3679594857717112E-004 + 111.41999999999999 -2.3505758165520945E-004 + 111.47999999999999 -2.3319580562927681E-004 + 111.53999999999999 -2.3120806534464736E-004 + 111.59999999999999 -2.2909212242188916E-004 + 111.66000000000000 -2.2684612171256372E-004 + 111.72000000000000 -2.2446854222435116E-004 + 111.78000000000000 -2.2195822704717424E-004 + 111.84000000000000 -2.1931438340852885E-004 + 111.90000000000001 -2.1653658869872920E-004 + 111.96000000000001 -2.1362475438524485E-004 + 112.01999999999998 -2.1057920601813494E-004 + 112.07999999999998 -2.0740062550623909E-004 + 112.13999999999999 -2.0409005477203162E-004 + 112.19999999999999 -2.0064895377968660E-004 + 112.25999999999999 -1.9707915010284922E-004 + 112.31999999999999 -1.9338286657031857E-004 + 112.38000000000000 -1.8956274755919944E-004 + 112.44000000000000 -1.8562182778701473E-004 + 112.50000000000000 -1.8156354370454697E-004 + 112.56000000000000 -1.7739172156516813E-004 + 112.62000000000000 -1.7311056668648902E-004 + 112.68000000000001 -1.6872469609199368E-004 + 112.73999999999998 -1.6423906256463714E-004 + 112.79999999999998 -1.5965899403299597E-004 + 112.85999999999999 -1.5499017327466334E-004 + 112.91999999999999 -1.5023859946031892E-004 + 112.97999999999999 -1.4541055657280320E-004 + 113.03999999999999 -1.4051266560509955E-004 + 113.09999999999999 -1.3555177924390110E-004 + 113.16000000000000 -1.3053504666344352E-004 + 113.22000000000000 -1.2546982080009411E-004 + 113.28000000000000 -1.2036370289548352E-004 + 113.34000000000000 -1.1522449006918239E-004 + 113.40000000000001 -1.1006018155123540E-004 + 113.46000000000001 -1.0487893151765783E-004 + 113.51999999999998 -9.9689059997353684E-005 + 113.57999999999998 -9.4499023810957727E-005 + 113.63999999999999 -8.9317404127334108E-005 + 113.69999999999999 -8.4152887903058698E-005 + 113.75999999999999 -7.9014230820037264E-005 + 113.81999999999999 -7.3910244589060501E-005 + 113.88000000000000 -6.8849788906836035E-005 + 113.94000000000000 -6.3841729342561146E-005 + 114.00000000000000 -5.8894926353841226E-005 + 114.06000000000000 -5.4018190442065055E-005 + 114.12000000000000 -4.9220289553252712E-005 + 114.18000000000001 -4.4509889889503757E-005 + 114.23999999999998 -3.9895562466505863E-005 + 114.29999999999998 -3.5385740039502783E-005 + 114.35999999999999 -3.0988706451119868E-005 + 114.41999999999999 -2.6712570436447499E-005 + 114.47999999999999 -2.2565245837377126E-005 + 114.53999999999999 -1.8554434048658532E-005 + 114.59999999999999 -1.4687604043963010E-005 + 114.66000000000000 -1.0971976077143506E-005 + 114.72000000000000 -7.4144995711803546E-006 + 114.78000000000000 -4.0218419690521995E-006 + 114.84000000000000 -8.0036498724355155E-007 + 114.90000000000001 2.2438837255280530E-006 + 114.96000000000001 5.1051976527852836E-006 + 115.01999999999998 7.7782160703480242E-006 + 115.07999999999998 1.0257948841046534E-005 + 115.13999999999999 1.2539787484792673E-005 + 115.19999999999999 1.4619514593042982E-005 + 115.25999999999999 1.6493320306388905E-005 + 115.31999999999999 1.8157817348601292E-005 + 115.38000000000000 1.9610044774337416E-005 + 115.44000000000000 2.0847475492949856E-005 + 115.50000000000000 2.1868029540751604E-005 + 115.56000000000000 2.2670075906492986E-005 + 115.62000000000000 2.3252431282448289E-005 + 115.68000000000001 2.3614374113813026E-005 + 115.73999999999998 2.3755633034083739E-005 + 115.79999999999998 2.3676398021835734E-005 + 115.85999999999999 2.3377313093116683E-005 + 115.91999999999999 2.2859480599086911E-005 + 115.97999999999999 2.2124448736325838E-005 + 116.03999999999999 2.1174216213778351E-005 + 116.09999999999999 2.0011227136318311E-005 + 116.16000000000000 1.8638358271967317E-005 + 116.22000000000000 1.7058916411095546E-005 + 116.28000000000000 1.5276627378311578E-005 + 116.34000000000000 1.3295623815775832E-005 + 116.40000000000001 1.1120433081912119E-005 + 116.46000000000001 8.7559613561600178E-006 + 116.51999999999998 6.2074749109323174E-006 + 116.57999999999998 3.4805849827181820E-006 + 116.63999999999999 5.8122358935218313E-007 + 116.69999999999999 -2.4843747051324615E-006 + 116.75999999999999 -5.7096978235268358E-006 + 116.81999999999999 -9.0879696647864262E-006 + 116.88000000000000 -1.2612181986635924E-005 + 116.94000000000000 -1.6275111114732991E-005 + 117.00000000000000 -2.0069335363619586E-005 + 117.06000000000000 -2.3987260501066149E-005 + 117.12000000000000 -2.8021131996831872E-005 + 117.18000000000001 -3.2163051885176775E-005 + 117.23999999999998 -3.6405001276251180E-005 + 117.29999999999998 -4.0738846735488001E-005 + 117.35999999999999 -4.5156366582664397E-005 + 117.41999999999999 -4.9649260202457147E-005 + 117.47999999999999 -5.4209159938952824E-005 + 117.53999999999999 -5.8827654516957787E-005 + 117.59999999999999 -6.3496314424214099E-005 + 117.66000000000000 -6.8206715424912119E-005 + 117.72000000000000 -7.2950429774822065E-005 + 117.78000000000000 -7.7719093655243492E-005 + 117.84000000000000 -8.2504404156791118E-005 + 117.90000000000001 -8.7298144607232821E-005 + 117.96000000000001 -9.2092223585964913E-005 + 118.01999999999998 -9.6878679267159112E-005 + 118.07999999999998 -1.0164972983831847E-004 + 118.13999999999999 -1.0639778257574466E-004 + 118.19999999999999 -1.1111542286605724E-004 + 118.25999999999999 -1.1579546631076813E-004 + 118.31999999999999 -1.2043096864001269E-004 + 118.38000000000000 -1.2501521231132628E-004 + 118.44000000000000 -1.2954173248782482E-004 + 118.50000000000000 -1.3400429608340054E-004 + 118.56000000000000 -1.3839693266383789E-004 + 118.62000000000000 -1.4271390581573510E-004 + 118.68000000000001 -1.4694971532918299E-004 + 118.73999999999998 -1.5109909199447611E-004 + 118.79999999999998 -1.5515702781643707E-004 + 118.85999999999999 -1.5911873546369798E-004 + 118.91999999999999 -1.6297964815997659E-004 + 118.97999999999999 -1.6673545029286451E-004 + 119.03999999999999 -1.7038206684795960E-004 + 119.09999999999999 -1.7391564056181793E-004 + 119.16000000000000 -1.7733261517906295E-004 + 119.22000000000000 -1.8062964895646536E-004 + 119.28000000000000 -1.8380368038473560E-004 + 119.34000000000000 -1.8685192301544888E-004 + 119.40000000000001 -1.8977190034037935E-004 + 119.46000000000001 -1.9256140958128236E-004 + 119.51999999999998 -1.9521854619943145E-004 + 119.57999999999998 -1.9774169382918814E-004 + 119.63999999999999 -2.0012956493051175E-004 + 119.69999999999999 -2.0238112343763776E-004 + 119.75999999999999 -2.0449566857163871E-004 + 119.81999999999999 -2.0647275213853084E-004 + 119.88000000000000 -2.0831219810891528E-004 + 119.94000000000000 -2.1001409555726142E-004 + 120.00000000000000 -2.1157879355187680E-004 + 120.06000000000000 -2.1300682698372609E-004 + 120.12000000000000 -2.1429898939810574E-004 + 120.18000000000001 -2.1545628141793750E-004 + 120.23999999999998 -2.1647986668797291E-004 + 120.29999999999998 -2.1737111953074254E-004 + 120.35999999999999 -2.1813155686770799E-004 + 120.41999999999999 -2.1876287782721066E-004 + 120.47999999999999 -2.1926691535274748E-004 + 120.53999999999999 -2.1964566271798168E-004 + 120.59999999999999 -2.1990123507010958E-004 + 120.66000000000000 -2.2003587845141143E-004 + 120.72000000000000 -2.2005200115390129E-004 + 120.78000000000000 -2.1995210647517106E-004 + 120.84000000000000 -2.1973883043961570E-004 + 120.90000000000001 -2.1941492666642754E-004 + 120.95999999999998 -2.1898323308710256E-004 + 121.01999999999998 -2.1844671586820983E-004 + 121.07999999999998 -2.1780844796640841E-004 + 121.13999999999999 -2.1707159019145644E-004 + 121.19999999999999 -2.1623939064191119E-004 + 121.25999999999999 -2.1531516482257000E-004 + 121.31999999999999 -2.1430232350253038E-004 + 121.38000000000000 -2.1320431833661460E-004 + 121.44000000000000 -2.1202467062323089E-004 + 121.50000000000000 -2.1076695497143725E-004 + 121.56000000000000 -2.0943474813491322E-004 + 121.62000000000000 -2.0803169674415829E-004 + 121.68000000000001 -2.0656142748667363E-004 + 121.73999999999998 -2.0502758848474334E-004 + 121.79999999999998 -2.0343381822616465E-004 + 121.85999999999999 -2.0178371079925851E-004 + 121.91999999999999 -2.0008085997156870E-004 + 121.97999999999999 -1.9832880209934419E-004 + 122.03999999999999 -1.9653100235108624E-004 + 122.09999999999999 -1.9469089600869830E-004 + 122.16000000000000 -1.9281184330728274E-004 + 122.22000000000000 -1.9089710143594641E-004 + 122.28000000000000 -1.8894985270233655E-004 + 122.34000000000000 -1.8697319748031896E-004 + 122.40000000000001 -1.8497017866435025E-004 + 122.45999999999998 -1.8294369556685959E-004 + 122.51999999999998 -1.8089658140418030E-004 + 122.57999999999998 -1.7883159875777907E-004 + 122.63999999999999 -1.7675140871575458E-004 + 122.69999999999999 -1.7465858830320585E-004 + 122.75999999999999 -1.7255565478151096E-004 + 122.81999999999999 -1.7044503653616545E-004 + 122.88000000000000 -1.6832906758467494E-004 + 122.94000000000000 -1.6621004545029766E-004 + 123.00000000000000 -1.6409018583588315E-004 + 123.06000000000000 -1.6197158761228772E-004 + 123.12000000000000 -1.5985633516490478E-004 + 123.18000000000001 -1.5774640256540257E-004 + 123.23999999999998 -1.5564370877000391E-004 + 123.29999999999998 -1.5355006340867110E-004 + 123.35999999999999 -1.5146719387688147E-004 + 123.41999999999999 -1.4939676591950739E-004 + 123.47999999999999 -1.4734033688390612E-004 + 123.53999999999999 -1.4529938862698841E-004 + 123.59999999999999 -1.4327532542497953E-004 + 123.66000000000000 -1.4126943562204887E-004 + 123.72000000000000 -1.3928297323301679E-004 + 123.78000000000000 -1.3731708736352860E-004 + 123.84000000000000 -1.3537284315019623E-004 + 123.90000000000001 -1.3345124986980823E-004 + 123.95999999999998 -1.3155325497556856E-004 + 124.01999999999998 -1.2967974665490016E-004 + 124.07999999999998 -1.2783157223053088E-004 + 124.13999999999999 -1.2600951327261799E-004 + 124.19999999999999 -1.2421433204949336E-004 + 124.25999999999999 -1.2244671874664457E-004 + 124.31999999999999 -1.2070735200687816E-004 + 124.38000000000000 -1.1899685636952653E-004 + 124.44000000000000 -1.1731583583161770E-004 + 124.50000000000000 -1.1566486859685168E-004 + 124.56000000000000 -1.1404447638111225E-004 + 124.62000000000000 -1.1245517713024769E-004 + 124.68000000000001 -1.1089744264854785E-004 + 124.73999999999998 -1.0937171917510652E-004 + 124.79999999999998 -1.0787841701015392E-004 + 124.85999999999999 -1.0641794074972356E-004 + 124.91999999999999 -1.0499064199221664E-004 + 124.97999999999999 -1.0359687077282014E-004 + 125.03999999999999 -1.0223693284056883E-004 + 125.09999999999999 -1.0091110507646894E-004 + 125.16000000000000 -9.9619663697331478E-005 + 125.22000000000000 -9.8362836645064593E-005 + 125.28000000000000 -9.7140829632936875E-005 + 125.34000000000000 -9.5953827864660133E-005 + 125.40000000000001 -9.4801985037705201E-005 + 125.45999999999998 -9.3685412623581850E-005 + 125.51999999999998 -9.2604201964801541E-005 + 125.57999999999998 -9.1558408415883341E-005 + 125.63999999999999 -9.0548047759562379E-005 + 125.69999999999999 -8.9573109456496497E-005 + 125.75999999999999 -8.8633547649892303E-005 + 125.81999999999999 -8.7729294044300532E-005 + 125.88000000000000 -8.6860243716063042E-005 + 125.94000000000000 -8.6026278858940624E-005 + 126.00000000000000 -8.5227252349000761E-005 + 126.06000000000000 -8.4463026767069431E-005 + 126.12000000000000 -8.3733437117825151E-005 + 126.18000000000001 -8.3038332231207131E-005 + 126.23999999999998 -8.2377555647372651E-005 + 126.29999999999998 -8.1750969569804009E-005 + 126.35999999999999 -8.1158434069759382E-005 + 126.41999999999999 -8.0599816458564187E-005 + 126.47999999999999 -8.0075011293046720E-005 + 126.53999999999999 -7.9583912803797636E-005 + 126.59999999999999 -7.9126416288711267E-005 + 126.66000000000000 -7.8702437572157944E-005 + 126.72000000000000 -7.8311864348198907E-005 + 126.78000000000000 -7.7954601960806240E-005 + 126.84000000000000 -7.7630529129694664E-005 + 126.90000000000001 -7.7339522171529349E-005 + 126.95999999999998 -7.7081426799373908E-005 + 127.01999999999998 -7.6856073472424106E-005 + 127.07999999999998 -7.6663264345661823E-005 + 127.13999999999999 -7.6502801950836948E-005 + 127.19999999999999 -7.6374451937164271E-005 + 127.25999999999999 -7.6277969316856803E-005 + 127.31999999999999 -7.6213109298143368E-005 + 127.38000000000000 -7.6179609770695556E-005 + 127.44000000000000 -7.6177220877544525E-005 + 127.50000000000000 -7.6205686687408792E-005 + 127.56000000000000 -7.6264769008240510E-005 + 127.62000000000000 -7.6354238612022252E-005 + 127.68000000000001 -7.6473869063992087E-005 + 127.73999999999998 -7.6623456390037187E-005 + 127.79999999999998 -7.6802795028175428E-005 + 127.85999999999999 -7.7011691253673386E-005 + 127.91999999999999 -7.7249955857889874E-005 + 127.97999999999999 -7.7517378269939199E-005 + 128.03999999999999 -7.7813740580963262E-005 + 128.09999999999999 -7.8138809423385064E-005 + 128.16000000000000 -7.8492313056419038E-005 + 128.22000000000000 -7.8873953251261050E-005 + 128.28000000000000 -7.9283379201727615E-005 + 128.34000000000000 -7.9720194884449157E-005 + 128.40000000000001 -8.0183955989449293E-005 + 128.45999999999998 -8.0674170078074664E-005 + 128.51999999999998 -8.1190282862827996E-005 + 128.57999999999998 -8.1731694966564704E-005 + 128.63999999999999 -8.2297748745234299E-005 + 128.69999999999999 -8.2887754295745054E-005 + 128.75999999999999 -8.3500961184760849E-005 + 128.81999999999999 -8.4136602608199135E-005 + 128.88000000000000 -8.4793850104008820E-005 + 128.94000000000000 -8.5471861943196703E-005 + 129.00000000000000 -8.6169767834614596E-005 + 129.06000000000000 -8.6886658471338186E-005 + 129.12000000000000 -8.7621607858086640E-005 + 129.18000000000001 -8.8373670957599392E-005 + 129.23999999999998 -8.9141874438342298E-005 + 129.29999999999998 -8.9925208481248084E-005 + 129.35999999999999 -9.0722662888333976E-005 + 129.41999999999999 -9.1533186917588266E-005 + 129.47999999999999 -9.2355699473060127E-005 + 129.53999999999999 -9.3189106576291918E-005 + 129.59999999999999 -9.4032279241241143E-005 + 129.66000000000000 -9.4884068585867273E-005 + 129.72000000000000 -9.5743316827804804E-005 + 129.78000000000000 -9.6608824147646145E-005 + 129.84000000000000 -9.7479391442429611E-005 + 129.90000000000001 -9.8353807268232931E-005 + 129.95999999999998 -9.9230844752308493E-005 + 130.01999999999998 -1.0010928935042536E-004 + 130.07999999999998 -1.0098793773320889E-004 + 130.13999999999999 -1.0186558467738432E-004 + 130.19999999999999 -1.0274104590050120E-004 + 130.25999999999999 -1.0361316233205710E-004 + 130.31999999999999 -1.0448080513014997E-004 + 130.38000000000000 -1.0534287535405135E-004 + 130.44000000000000 -1.0619831132111665E-004 + 130.50000000000000 -1.0704609913920351E-004 + 130.56000000000000 -1.0788527162217100E-004 + 130.62000000000000 -1.0871490663102896E-004 + 130.68000000000001 -1.0953412738874280E-004 + 130.73999999999998 -1.1034212278452652E-004 + 130.79999999999998 -1.1113812360748742E-004 + 130.85999999999999 -1.1192143262505952E-004 + 130.91999999999999 -1.1269138473941018E-004 + 130.97999999999999 -1.1344739137829498E-004 + 131.03999999999999 -1.1418890662322673E-004 + 131.09999999999999 -1.1491545795409409E-004 + 131.16000000000000 -1.1562662916994946E-004 + 131.22000000000000 -1.1632204097863465E-004 + 131.28000000000000 -1.1700139559328641E-004 + 131.34000000000000 -1.1766444875023182E-004 + 131.40000000000001 -1.1831099804466834E-004 + 131.45999999999998 -1.1894091600381575E-004 + 131.51999999999998 -1.1955414828495681E-004 + 131.57999999999998 -1.2015067759608497E-004 + 131.63999999999999 -1.2073056968299905E-004 + 131.69999999999999 -1.2129393454800667E-004 + 131.75999999999999 -1.2184096682058121E-004 + 131.81999999999999 -1.2237190435315093E-004 + 131.88000000000000 -1.2288706435797876E-004 + 131.94000000000000 -1.2338683758385439E-004 + 132.00000000000000 -1.2387168000667519E-004 + 132.06000000000000 -1.2434211231495752E-004 + 132.12000000000000 -1.2479872330687080E-004 + 132.18000000000001 -1.2524214958332800E-004 + 132.23999999999998 -1.2567309039269336E-004 + 132.29999999999998 -1.2609233174242125E-004 + 132.35999999999999 -1.2650070115706347E-004 + 132.41999999999999 -1.2689906027128070E-004 + 132.47999999999999 -1.2728835020410536E-004 + 132.53999999999999 -1.2766952741973634E-004 + 132.59999999999999 -1.2804362463089867E-004 + 132.66000000000000 -1.2841170249980766E-004 + 132.72000000000000 -1.2877486508278984E-004 + 132.78000000000000 -1.2913425808809719E-004 + 132.84000000000000 -1.2949106811583166E-004 + 132.90000000000001 -1.2984655280463475E-004 + 132.95999999999998 -1.3020196911553303E-004 + 133.01999999999998 -1.3055866099593485E-004 + 133.07999999999998 -1.3091800438032761E-004 + 133.13999999999999 -1.3128139688363874E-004 + 133.19999999999999 -1.3165034396271094E-004 + 133.25999999999999 -1.3202637795841322E-004 + 133.31999999999999 -1.3241105774917700E-004 + 133.38000000000000 -1.3280603472252836E-004 + 133.44000000000000 -1.3321298251083521E-004 + 133.50000000000000 -1.3363363591495462E-004 + 133.56000000000000 -1.3406976186010536E-004 + 133.62000000000000 -1.3452315453470442E-004 + 133.68000000000001 -1.3499564724398609E-004 + 133.73999999999998 -1.3548905750452962E-004 + 133.79999999999998 -1.3600522099168092E-004 + 133.85999999999999 -1.3654599206502154E-004 + 133.91999999999999 -1.3711319314924848E-004 + 133.97999999999999 -1.3770860000586479E-004 + 134.03999999999999 -1.3833398021111828E-004 + 134.09999999999999 -1.3899107341921625E-004 + 134.16000000000000 -1.3968153265430015E-004 + 134.22000000000000 -1.4040699816505071E-004 + 134.28000000000000 -1.4116900556729453E-004 + 134.34000000000000 -1.4196903681034799E-004 + 134.40000000000001 -1.4280851075955606E-004 + 134.45999999999998 -1.4368874673313607E-004 + 134.51999999999998 -1.4461101333832329E-004 + 134.57999999999998 -1.4557646498600574E-004 + 134.63999999999999 -1.4658614303974919E-004 + 134.69999999999999 -1.4764102363212835E-004 + 134.75999999999999 -1.4874194754167650E-004 + 134.81999999999999 -1.4988965442512062E-004 + 134.88000000000000 -1.5108472819525275E-004 + 134.94000000000000 -1.5232760494617516E-004 + 135.00000000000000 -1.5361861900594143E-004 + 135.06000000000000 -1.5495790171550115E-004 + 135.12000000000000 -1.5634543123267103E-004 + 135.18000000000001 -1.5778097747717003E-004 + 135.23999999999998 -1.5926415396761229E-004 + 135.29999999999998 -1.6079432847485931E-004 + 135.35999999999999 -1.6237069565980822E-004 + 135.41999999999999 -1.6399219714035172E-004 + 135.47999999999999 -1.6565758683490808E-004 + 135.53999999999999 -1.6736538427235455E-004 + 135.59999999999999 -1.6911390378113896E-004 + 135.66000000000000 -1.7090120116500972E-004 + 135.72000000000000 -1.7272515252895356E-004 + 135.78000000000000 -1.7458339876802803E-004 + 135.84000000000000 -1.7647338054348438E-004 + 135.90000000000001 -1.7839233932444713E-004 + 135.95999999999998 -1.8033730502406504E-004 + 136.01999999999998 -1.8230512434134360E-004 + 136.07999999999998 -1.8429248361328656E-004 + 136.13999999999999 -1.8629585050991410E-004 + 136.19999999999999 -1.8831155143772015E-004 + 136.25999999999999 -1.9033574277596365E-004 + 136.31999999999999 -1.9236441017496337E-004 + 136.38000000000000 -1.9439338891787296E-004 + 136.44000000000000 -1.9641837015056836E-004 + 136.50000000000000 -1.9843488480795167E-004 + 136.56000000000000 -2.0043832224341137E-004 + 136.62000000000000 -2.0242397135562045E-004 + 136.68000000000001 -2.0438698121633142E-004 + 136.73999999999998 -2.0632236157586226E-004 + 136.79999999999998 -2.0822504363425957E-004 + 136.85999999999999 -2.1008984766800233E-004 + 136.91999999999999 -2.1191153199682220E-004 + 136.97999999999999 -2.1368476764141217E-004 + 137.03999999999999 -2.1540418342499894E-004 + 137.09999999999999 -2.1706435174495401E-004 + 137.16000000000000 -2.1865982773166683E-004 + 137.22000000000000 -2.2018517142060961E-004 + 137.28000000000000 -2.2163494554036978E-004 + 137.34000000000000 -2.2300373575133181E-004 + 137.40000000000001 -2.2428616882738005E-004 + 137.45999999999998 -2.2547698392689675E-004 + 137.51999999999998 -2.2657094207625795E-004 + 137.57999999999998 -2.2756292537837812E-004 + 137.63999999999999 -2.2844792422865821E-004 + 137.69999999999999 -2.2922105197711930E-004 + 137.75999999999999 -2.2987757446009125E-004 + 137.81999999999999 -2.3041291279494232E-004 + 137.88000000000000 -2.3082264460414385E-004 + 137.94000000000000 -2.3110253347313067E-004 + 138.00000000000000 -2.3124852167451016E-004 + 138.06000000000000 -2.3125677760663733E-004 + 138.12000000000000 -2.3112365360200476E-004 + 138.18000000000001 -2.3084575135373181E-004 + 138.23999999999998 -2.3041987195102982E-004 + 138.29999999999998 -2.2984302454722542E-004 + 138.35999999999999 -2.2911251836367350E-004 + 138.41999999999999 -2.2822586919239878E-004 + 138.47999999999999 -2.2718083997791207E-004 + 138.53999999999999 -2.2597548847114066E-004 + 138.59999999999999 -2.2460811484592254E-004 + 138.66000000000000 -2.2307730151783367E-004 + 138.72000000000000 -2.2138192351605124E-004 + 138.78000000000000 -2.1952111813298633E-004 + 138.84000000000000 -2.1749434853247132E-004 + 138.90000000000001 -2.1530138221811316E-004 + 138.95999999999998 -2.1294229514510010E-004 + 139.01999999999998 -2.1041751298684732E-004 + 139.07999999999998 -2.0772779557904223E-004 + 139.13999999999999 -2.0487419803439055E-004 + 139.19999999999999 -2.0185818255089564E-004 + 139.25999999999999 -1.9868156840074203E-004 + 139.31999999999999 -1.9534650279527766E-004 + 139.38000000000000 -1.9185552411831778E-004 + 139.44000000000000 -1.8821154716645383E-004 + 139.50000000000000 -1.8441784016589945E-004 + 139.56000000000000 -1.8047804329927896E-004 + 139.62000000000000 -1.7639616273999761E-004 + 139.68000000000001 -1.7217655999277197E-004 + 139.73999999999998 -1.6782394666685170E-004 + 139.79999999999998 -1.6334334512170491E-004 + 139.85999999999999 -1.5874014484673128E-004 + 139.91999999999999 -1.5402000813034654E-004 + 139.97999999999999 -1.4918892414661597E-004 + 140.03999999999999 -1.4425316617388222E-004 + 140.09999999999999 -1.3921928264835827E-004 + 140.16000000000000 -1.3409408582649643E-004 + 140.22000000000000 -1.2888464266809754E-004 + 140.28000000000000 -1.2359825338697340E-004 + 140.34000000000000 -1.1824245215425776E-004 + 140.40000000000001 -1.1282500882189409E-004 + 140.45999999999998 -1.0735387082949219E-004 + 140.51999999999998 -1.0183720807563060E-004 + 140.57999999999998 -9.6283368982598327E-005 + 140.63999999999999 -9.0700885437229784E-005 + 140.69999999999999 -8.5098437988232140E-005 + 140.75999999999999 -7.9484874190861261E-005 + 140.81999999999999 -7.3869154232530603E-005 + 140.88000000000000 -6.8260378346422063E-005 + 140.94000000000000 -6.2667709006987535E-005 + 141.00000000000000 -5.7100410912884657E-005 + 141.06000000000000 -5.1567779615373496E-005 + 141.12000000000000 -4.6079149422303968E-005 + 141.18000000000001 -4.0643843554157973E-005 + 141.23999999999998 -3.5271167304784550E-005 + 141.29999999999998 -2.9970369150216572E-005 + 141.35999999999999 -2.4750618227000279E-005 + 141.41999999999999 -1.9620975619426777E-005 + 141.47999999999999 -1.4590369259237863E-005 + 141.53999999999999 -9.6675686394474501E-006 + 141.59999999999999 -4.8611695508971621E-006 + 141.66000000000000 -1.7955818352094641E-007 + 141.72000000000000 4.3690932204563235E-006 + 141.78000000000000 8.7768587812358742E-006 + 141.84000000000000 1.3036062962112675E-005 + 141.90000000000001 1.7139303821947604E-005 + 141.95999999999998 2.1079464316992460E-005 + 142.01999999999998 2.4849727689737270E-005 + 142.07999999999998 2.8443582648455177E-005 + 142.13999999999999 3.1854839009333001E-005 + 142.19999999999999 3.5077641382811238E-005 + 142.25999999999999 3.8106477352413454E-005 + 142.31999999999999 4.0936181098157943E-005 + 142.38000000000000 4.3561953583454758E-005 + 142.44000000000000 4.5979358580953038E-005 + 142.50000000000000 4.8184341652054844E-005 + 142.56000000000000 5.0173241080900206E-005 + 142.62000000000000 5.1942786380460273E-005 + 142.68000000000001 5.3490108478271373E-005 + 142.73999999999998 5.4812751715648085E-005 + 142.79999999999998 5.5908667732806853E-005 + 142.85999999999999 5.6776234083127109E-005 + 142.91999999999999 5.7414247002330701E-005 + 142.97999999999999 5.7821931503886376E-005 + 143.03999999999999 5.7998932916415387E-005 + 143.09999999999999 5.7945325882833111E-005 + 143.16000000000000 5.7661606074480596E-005 + 143.22000000000000 5.7148689773219224E-005 + 143.28000000000000 5.6407900558389766E-005 + 143.34000000000000 5.5440973561042565E-005 + 143.40000000000001 5.4250046114111299E-005 + 143.45999999999998 5.2837644990404804E-005 + 143.51999999999998 5.1206681325669118E-005 + 143.57999999999998 4.9360424216363014E-005 + 143.63999999999999 4.7302515096580219E-005 + 143.69999999999999 4.5036931488769555E-005 + 143.75999999999999 4.2567979841197845E-005 + 143.81999999999999 3.9900294183005681E-005 + 143.88000000000000 3.7038807935199795E-005 + 143.94000000000000 3.3988743691777561E-005 + 144.00000000000000 3.0755606108713240E-005 + 144.06000000000000 2.7345166034042340E-005 + 144.12000000000000 2.3763445154510553E-005 + 144.18000000000001 2.0016706755893748E-005 + 144.23999999999998 1.6111445685289142E-005 + 144.29999999999998 1.2054372944081875E-005 + 144.35999999999999 7.8524059529280592E-006 + 144.41999999999999 3.5126654289796510E-006 + 144.47999999999999 -9.5754650999519826E-007 + 144.53999999999999 -5.5507550229793564E-006 + 144.59999999999999 -1.0259321632804767E-005 + 144.66000000000000 -1.5075455746984463E-005 + 144.72000000000000 -1.9991233820183710E-005 + 144.78000000000000 -2.4998605051482969E-005 + 144.84000000000000 -3.0089414383945265E-005 + 144.90000000000001 -3.5255408819242213E-005 + 144.95999999999998 -4.0488271132250273E-005 + 145.01999999999998 -4.5779605807105554E-005 + 145.07999999999998 -5.1120989242575231E-005 + 145.13999999999999 -5.6503964082452574E-005 + 145.19999999999999 -6.1920058924290594E-005 + 145.25999999999999 -6.7360812210072696E-005 + 145.31999999999999 -7.2817781908725353E-005 + 145.38000000000000 -7.8282543252041490E-005 + 145.44000000000000 -8.3746722548960680E-005 + 145.50000000000000 -8.9202005152683175E-005 + 145.56000000000000 -9.4640126918320121E-005 + 145.62000000000000 -1.0005290641484895E-004 + 145.68000000000001 -1.0543226100668132E-004 + 145.73999999999998 -1.1077017154579398E-004 + 145.79999999999998 -1.1605874117928377E-004 + 145.85999999999999 -1.2129018880402223E-004 + 145.91999999999999 -1.2645685644019537E-004 + 145.97999999999999 -1.3155119846485890E-004 + 146.03999999999999 -1.3656583237553629E-004 + 146.09999999999999 -1.4149354289421593E-004 + 146.16000000000000 -1.4632728356813292E-004 + 146.22000000000000 -1.5106018993311010E-004 + 146.28000000000000 -1.5568561826324220E-004 + 146.34000000000000 -1.6019712435415753E-004 + 146.40000000000001 -1.6458849088739474E-004 + 146.45999999999998 -1.6885376651360585E-004 + 146.51999999999998 -1.7298721308394333E-004 + 146.57999999999998 -1.7698339359098646E-004 + 146.63999999999999 -1.8083711829522837E-004 + 146.69999999999999 -1.8454345957097547E-004 + 146.75999999999999 -1.8809777458847431E-004 + 146.81999999999999 -1.9149571028389178E-004 + 146.88000000000000 -1.9473317992405736E-004 + 146.94000000000000 -1.9780635363907342E-004 + 147.00000000000000 -2.0071171904955607E-004 + 147.06000000000000 -2.0344600326436093E-004 + 147.12000000000000 -2.0600620977954270E-004 + 147.18000000000001 -2.0838963223581726E-004 + 147.23999999999998 -2.1059382630331494E-004 + 147.29999999999998 -2.1261660416379576E-004 + 147.35999999999999 -2.1445607645340434E-004 + 147.41999999999999 -2.1611065560726473E-004 + 147.47999999999999 -2.1757899158078139E-004 + 147.53999999999999 -2.1886006835910411E-004 + 147.59999999999999 -2.1995315915397865E-004 + 147.66000000000000 -2.2085781256920621E-004 + 147.72000000000000 -2.2157391692833849E-004 + 147.78000000000000 -2.2210165586865376E-004 + 147.84000000000000 -2.2244152775683024E-004 + 147.90000000000001 -2.2259433059776114E-004 + 147.95999999999998 -2.2256117432531986E-004 + 148.01999999999998 -2.2234345748675988E-004 + 148.07999999999998 -2.2194290251704863E-004 + 148.13999999999999 -2.2136148613066941E-004 + 148.19999999999999 -2.2060146789161194E-004 + 148.25999999999999 -2.1966535044136212E-004 + 148.31999999999999 -2.1855589622787950E-004 + 148.38000000000000 -2.1727612529959950E-004 + 148.44000000000000 -2.1582925954387929E-004 + 148.50000000000000 -2.1421874741868235E-004 + 148.56000000000000 -2.1244822073384446E-004 + 148.62000000000000 -2.1052152443733102E-004 + 148.68000000000001 -2.0844271556910108E-004 + 148.73999999999998 -2.0621599002968702E-004 + 148.79999999999998 -2.0384574912443395E-004 + 148.85999999999999 -2.0133655380743579E-004 + 148.91999999999999 -1.9869314448381614E-004 + 148.97999999999999 -1.9592044115733861E-004 + 149.03999999999999 -1.9302348881318439E-004 + 149.09999999999999 -1.9000755410129193E-004 + 149.16000000000000 -1.8687798971223524E-004 + 149.22000000000000 -1.8364035117452270E-004 + 149.28000000000000 -1.8030033385155975E-004 + 149.34000000000000 -1.7686375802979611E-004 + 149.40000000000001 -1.7333656346946657E-004 + 149.45999999999998 -1.6972485887852725E-004 + 149.51999999999998 -1.6603479507808694E-004 + 149.57999999999998 -1.6227268929772429E-004 + 149.63999999999999 -1.5844491378871230E-004 + 149.69999999999999 -1.5455793170128182E-004 + 149.75999999999999 -1.5061825895151533E-004 + 149.81999999999999 -1.4663247921177240E-004 + 149.88000000000000 -1.4260719064701166E-004 + 149.94000000000000 -1.3854906934192325E-004 + 150.00000000000000 -1.3446475755161011E-004 + 150.06000000000000 -1.3036091539013261E-004 + 150.12000000000000 -1.2624420069696907E-004 + 150.18000000000001 -1.2212123515277525E-004 + 150.23999999999998 -1.1799861835561486E-004 + 150.29999999999998 -1.1388287954417620E-004 + 150.35999999999999 -1.0978051696386402E-004 + 150.41999999999999 -1.0569793293513324E-004 + 150.47999999999999 -1.0164145327358810E-004 + 150.53999999999999 -9.7617299026467715E-005 + 150.59999999999999 -9.3631600798557306E-005 + 150.66000000000000 -8.9690354833779604E-005 + 150.72000000000000 -8.5799449794277897E-005 + 150.78000000000000 -8.1964614277581970E-005 + 150.84000000000000 -7.8191449803027491E-005 + 150.90000000000001 -7.4485393544462578E-005 + 150.95999999999998 -7.0851714957317501E-005 + 151.01999999999998 -6.7295517400516567E-005 + 151.07999999999998 -6.3821712681174706E-005 + 151.13999999999999 -6.0435028539952926E-005 + 151.19999999999999 -5.7139981700943250E-005 + 151.25999999999999 -5.3940880743277600E-005 + 151.31999999999999 -5.0841813361050152E-005 + 151.38000000000000 -4.7846635323508980E-005 + 151.44000000000000 -4.4958963876922849E-005 + 151.50000000000000 -4.2182158300466611E-005 + 151.56000000000000 -3.9519331293066513E-005 + 151.62000000000000 -3.6973323251904627E-005 + 151.68000000000001 -3.4546711009954293E-005 + 151.73999999999998 -3.2241789220517476E-005 + 151.79999999999998 -3.0060579108279316E-005 + 151.85999999999999 -2.8004824561381019E-005 + 151.91999999999999 -2.6075982834182753E-005 + 151.97999999999999 -2.4275236365327813E-005 + 152.03999999999999 -2.2603491627681436E-005 + 152.09999999999999 -2.1061378034775620E-005 + 152.16000000000000 -1.9649262806066254E-005 + 152.22000000000000 -1.8367242058112658E-005 + 152.28000000000000 -1.7215158348735976E-005 + 152.34000000000000 -1.6192596804249652E-005 + 152.40000000000001 -1.5298893973074978E-005 + 152.45999999999998 -1.4533141848394394E-005 + 152.51999999999998 -1.3894194978743181E-005 + 152.57999999999998 -1.3380670405651851E-005 + 152.63999999999999 -1.2990956870636326E-005 + 152.69999999999999 -1.2723216633637320E-005 + 152.75999999999999 -1.2575398001134939E-005 + 152.81999999999999 -1.2545235756660246E-005 + 152.88000000000000 -1.2630265021984475E-005 + 152.94000000000000 -1.2827829916312628E-005 + 153.00000000000000 -1.3135092287938954E-005 + 153.06000000000000 -1.3549050244242725E-005 + 153.12000000000000 -1.4066548021721714E-005 + 153.17999999999998 -1.4684291724092161E-005 + 153.23999999999998 -1.5398871535027128E-005 + 153.29999999999998 -1.6206769969970290E-005 + 153.35999999999999 -1.7104383658014440E-005 + 153.41999999999999 -1.8088031235886687E-005 + 153.47999999999999 -1.9153982768008023E-005 + 153.53999999999999 -2.0298457029080834E-005 + 153.59999999999999 -2.1517640334930541E-005 + 153.66000000000000 -2.2807696247506901E-005 + 153.72000000000000 -2.4164772679858513E-005 + 153.78000000000000 -2.5585008557018067E-005 + 153.84000000000000 -2.7064534138017034E-005 + 153.90000000000001 -2.8599480162660976E-005 + 153.95999999999998 -3.0185978528082916E-005 + 154.01999999999998 -3.1820169108698009E-005 + 154.07999999999998 -3.3498196995413753E-005 + 154.13999999999999 -3.5216224531644101E-005 + 154.19999999999999 -3.6970433393090702E-005 + 154.25999999999999 -3.8757022073235670E-005 + 154.31999999999999 -4.0572233011139386E-005 + 154.38000000000000 -4.2412350200918869E-005 + 154.44000000000000 -4.4273701326886960E-005 + 154.50000000000000 -4.6152694053125662E-005 + 154.56000000000000 -4.8045795333102110E-005 + 154.62000000000000 -4.9949568750143362E-005 + 154.67999999999998 -5.1860662810059260E-005 + 154.73999999999998 -5.3775839533323508E-005 + 154.79999999999998 -5.5691958884803779E-005 + 154.85999999999999 -5.7606004802964921E-005 + 154.91999999999999 -5.9515057951378046E-005 + 154.97999999999999 -6.1416334569339135E-005 + 155.03999999999999 -6.3307154036217709E-005 + 155.09999999999999 -6.5184951148436587E-005 + 155.16000000000000 -6.7047252436129790E-005 + 155.22000000000000 -6.8891705703251168E-005 + 155.28000000000000 -7.0716035722227590E-005 + 155.34000000000000 -7.2518074643045636E-005 + 155.40000000000001 -7.4295731265781347E-005 + 155.45999999999998 -7.6046997188709031E-005 + 155.51999999999998 -7.7769956515491914E-005 + 155.57999999999998 -7.9462772716268541E-005 + 155.63999999999999 -8.1123689600329384E-005 + 155.69999999999999 -8.2751037954288103E-005 + 155.75999999999999 -8.4343244539172564E-005 + 155.81999999999999 -8.5898835422590735E-005 + 155.88000000000000 -8.7416418393952355E-005 + 155.94000000000000 -8.8894716740681962E-005 + 156.00000000000000 -9.0332567748410895E-005 + 156.06000000000000 -9.1728896836391216E-005 + 156.12000000000000 -9.3082767412828868E-005 + 156.17999999999998 -9.4393321182517759E-005 + 156.23999999999998 -9.5659838300862985E-005 + 156.29999999999998 -9.6881693119579983E-005 + 156.35999999999999 -9.8058358981878974E-005 + 156.41999999999999 -9.9189422417110963E-005 + 156.47999999999999 -1.0027456454707313E-004 + 156.53999999999999 -1.0131354957950325E-004 + 156.59999999999999 -1.0230623706386761E-004 + 156.66000000000000 -1.0325257147019505E-004 + 156.72000000000000 -1.0415256614896393E-004 + 156.78000000000000 -1.0500633163032524E-004 + 156.84000000000000 -1.0581403036815072E-004 + 156.90000000000001 -1.0657589892045080E-004 + 156.95999999999998 -1.0729222993810877E-004 + 157.01999999999998 -1.0796339330296872E-004 + 157.07999999999998 -1.0858980808115796E-004 + 157.13999999999999 -1.0917194170730801E-004 + 157.19999999999999 -1.0971032284645539E-004 + 157.25999999999999 -1.1020550275757909E-004 + 157.31999999999999 -1.1065808368469540E-004 + 157.38000000000000 -1.1106868896502671E-004 + 157.44000000000000 -1.1143797985483250E-004 + 157.50000000000000 -1.1176663097785024E-004 + 157.56000000000000 -1.1205533158356862E-004 + 157.62000000000000 -1.1230478666708019E-004 + 157.67999999999998 -1.1251569792829071E-004 + 157.73999999999998 -1.1268877541985314E-004 + 157.79999999999998 -1.1282472957833172E-004 + 157.85999999999999 -1.1292428499906300E-004 + 157.91999999999999 -1.1298814844137911E-004 + 157.97999999999999 -1.1301703470885789E-004 + 158.03999999999999 -1.1301166237101781E-004 + 158.09999999999999 -1.1297274297435653E-004 + 158.16000000000000 -1.1290099365099384E-004 + 158.22000000000000 -1.1279712940012526E-004 + 158.28000000000000 -1.1266188095946485E-004 + 158.34000000000000 -1.1249594867577541E-004 + 158.40000000000001 -1.1230004571985854E-004 + 158.45999999999998 -1.1207486413982472E-004 + 158.51999999999998 -1.1182109517680089E-004 + 158.57999999999998 -1.1153940798348748E-004 + 158.63999999999999 -1.1123045144852462E-004 + 158.69999999999999 -1.1089485388342438E-004 + 158.75999999999999 -1.1053319970949855E-004 + 158.81999999999999 -1.1014606290596382E-004 + 158.88000000000000 -1.0973398505684763E-004 + 158.94000000000000 -1.0929747850567528E-004 + 159.00000000000000 -1.0883703691475720E-004 + 159.06000000000000 -1.0835313034991031E-004 + 159.12000000000000 -1.0784622713443472E-004 + 159.17999999999998 -1.0731676934600314E-004 + 159.23999999999998 -1.0676521629290458E-004 + 159.29999999999998 -1.0619203980186401E-004 + 159.35999999999999 -1.0559771689177629E-004 + 159.41999999999999 -1.0498274112288506E-004 + 159.47999999999999 -1.0434764722131186E-004 + 159.53999999999999 -1.0369299228942218E-004 + 159.59999999999999 -1.0301937505071482E-004 + 159.66000000000000 -1.0232742637558955E-004 + 159.72000000000000 -1.0161781435534681E-004 + 159.78000000000000 -1.0089124449897499E-004 + 159.84000000000000 -1.0014847794105378E-004 + 159.90000000000001 -9.9390292963386591E-005 + 159.95999999999998 -9.8617523755251241E-005 + 160.01999999999998 -9.7831024876787119E-005 + 160.07999999999998 -9.7031707978534101E-005 + 160.13999999999999 -9.6220514281160962E-005 + 160.19999999999999 -9.5398423522247977E-005 + 160.25999999999999 -9.4566473439285838E-005 + 160.31999999999999 -9.3725729695797697E-005 + 160.38000000000000 -9.2877305799824521E-005 + 160.44000000000000 -9.2022362937278464E-005 + 160.50000000000000 -9.1162110147620766E-005 + 160.56000000000000 -9.0297814033224989E-005 + 160.62000000000000 -8.9430757374088035E-005 + 160.67999999999998 -8.8562288464067476E-005 + 160.73999999999998 -8.7693783202423477E-005 + 160.79999999999998 -8.6826642435206973E-005 + 160.85999999999999 -8.5962285468277531E-005 + 160.91999999999999 -8.5102143307232223E-005 + 160.97999999999999 -8.4247663265609842E-005 + 161.03999999999999 -8.3400289447636548E-005 + 161.09999999999999 -8.2561449936316040E-005 + 161.16000000000000 -8.1732562233113496E-005 + 161.22000000000000 -8.0915028845424388E-005 + 161.28000000000000 -8.0110217893869618E-005 + 161.34000000000000 -7.9319483369174321E-005 + 161.40000000000001 -7.8544146099958804E-005 + 161.45999999999998 -7.7785501280301544E-005 + 161.51999999999998 -7.7044815390514849E-005 + 161.57999999999998 -7.6323330888886936E-005 + 161.63999999999999 -7.5622256435611015E-005 + 161.69999999999999 -7.4942788426660806E-005 + 161.75999999999999 -7.4286080323302087E-005 + 161.81999999999999 -7.3653263666556126E-005 + 161.88000000000000 -7.3045417661087603E-005 + 161.94000000000000 -7.2463601359929491E-005 + 162.00000000000000 -7.1908810625225206E-005 + 162.06000000000000 -7.1381986638067890E-005 + 162.12000000000000 -7.0884013858661635E-005 + 162.17999999999998 -7.0415706194854814E-005 + 162.23999999999998 -6.9977775897563725E-005 + 162.29999999999998 -6.9570872606599757E-005 + 162.35999999999999 -6.9195542807714877E-005 + 162.41999999999999 -6.8852234384850556E-005 + 162.47999999999999 -6.8541300911362864E-005 + 162.53999999999999 -6.8263009830453543E-005 + 162.59999999999999 -6.8017516861735550E-005 + 162.66000000000000 -6.7804878541722705E-005 + 162.72000000000000 -6.7625087879993380E-005 + 162.78000000000000 -6.7478037948711658E-005 + 162.84000000000000 -6.7363560785091187E-005 + 162.90000000000001 -6.7281416460967310E-005 + 162.95999999999998 -6.7231289201923552E-005 + 163.01999999999998 -6.7212813860953233E-005 + 163.07999999999998 -6.7225580893893704E-005 + 163.13999999999999 -6.7269120879332405E-005 + 163.19999999999999 -6.7342900959408160E-005 + 163.25999999999999 -6.7446363066609496E-005 + 163.31999999999999 -6.7578886668543908E-005 + 163.38000000000000 -6.7739803651751412E-005 + 163.44000000000000 -6.7928390457685679E-005 + 163.50000000000000 -6.8143882912034812E-005 + 163.56000000000000 -6.8385469195789768E-005 + 163.62000000000000 -6.8652277447471606E-005 + 163.67999999999998 -6.8943392742623356E-005 + 163.73999999999998 -6.9257857153900447E-005 + 163.79999999999998 -6.9594677416692102E-005 + 163.85999999999999 -6.9952808066805957E-005 + 163.91999999999999 -7.0331183050812140E-005 + 163.97999999999999 -7.0728718056827842E-005 + 164.03999999999999 -7.1144280935593211E-005 + 164.09999999999999 -7.1576742159681401E-005 + 164.16000000000000 -7.2024928693551409E-005 + 164.22000000000000 -7.2487667817257100E-005 + 164.28000000000000 -7.2963766566092422E-005 + 164.34000000000000 -7.3452018217865571E-005 + 164.40000000000001 -7.3951190848851504E-005 + 164.45999999999998 -7.4460038815282005E-005 + 164.51999999999998 -7.4977303820403620E-005 + 164.57999999999998 -7.5501706662551955E-005 + 164.63999999999999 -7.6031943411622305E-005 + 164.69999999999999 -7.6566696771114044E-005 + 164.75999999999999 -7.7104636035983456E-005 + 164.81999999999999 -7.7644426618788572E-005 + 164.88000000000000 -7.8184718942779139E-005 + 164.94000000000000 -7.8724183800380732E-005 + 165.00000000000000 -7.9261480672596722E-005 + 165.06000000000000 -7.9795299370104868E-005 + 165.12000000000000 -8.0324350116788425E-005 + 165.17999999999998 -8.0847364895270961E-005 + 165.23999999999998 -8.1363121495469176E-005 + 165.29999999999998 -8.1870415027637542E-005 + 165.35999999999999 -8.2368102280597831E-005 + 165.41999999999999 -8.2855063050019922E-005 + 165.47999999999999 -8.3330234731584976E-005 + 165.53999999999999 -8.3792569824734381E-005 + 165.59999999999999 -8.4241082952832139E-005 + 165.66000000000000 -8.4674801087769412E-005 + 165.72000000000000 -8.5092791843490657E-005 + 165.78000000000000 -8.5494139164100455E-005 + 165.84000000000000 -8.5877972904640563E-005 + 165.90000000000001 -8.6243445812026124E-005 + 165.95999999999998 -8.6589740774888622E-005 + 166.01999999999998 -8.6916089441260678E-005 + 166.07999999999998 -8.7221762636272815E-005 + 166.13999999999999 -8.7506080285301531E-005 + 166.19999999999999 -8.7768445805384244E-005 + 166.25999999999999 -8.8008313082819939E-005 + 166.31999999999999 -8.8225244557443351E-005 + 166.38000000000000 -8.8418887157976658E-005 + 166.44000000000000 -8.8588983050817412E-005 + 166.50000000000000 -8.8735386413213340E-005 + 166.56000000000000 -8.8858055995564599E-005 + 166.62000000000000 -8.8957064983419642E-005 + 166.67999999999998 -8.9032579724023802E-005 + 166.73999999999998 -8.9084892822170121E-005 + 166.79999999999998 -8.9114371368848773E-005 + 166.85999999999999 -8.9121474855509056E-005 + 166.91999999999999 -8.9106759733242948E-005 + 166.97999999999999 -8.9070832904958734E-005 + 167.03999999999999 -8.9014387413765766E-005 + 167.09999999999999 -8.8938156240585676E-005 + 167.16000000000000 -8.8842917994134892E-005 + 167.22000000000000 -8.8729511433796514E-005 + 167.28000000000000 -8.8598821496725240E-005 + 167.34000000000000 -8.8451757074414536E-005 + 167.40000000000001 -8.8289283844544516E-005 + 167.45999999999998 -8.8112393152392789E-005 + 167.51999999999998 -8.7922141073795430E-005 + 167.57999999999998 -8.7719597217974854E-005 + 167.63999999999999 -8.7505907991447122E-005 + 167.69999999999999 -8.7282237299232898E-005 + 167.75999999999999 -8.7049798143956078E-005 + 167.81999999999999 -8.6809825016136139E-005 + 167.88000000000000 -8.6563595150461605E-005 + 167.94000000000000 -8.6312407331844113E-005 + 168.00000000000000 -8.6057574285796509E-005 + 168.06000000000000 -8.5800399793196431E-005 + 168.12000000000000 -8.5542195854849620E-005 + 168.17999999999998 -8.5284258942553603E-005 + 168.23999999999998 -8.5027850273236026E-005 + 168.29999999999998 -8.4774222112665322E-005 + 168.35999999999999 -8.4524567816022519E-005 + 168.41999999999999 -8.4280053217461104E-005 + 168.47999999999999 -8.4041778499808852E-005 + 168.53999999999999 -8.3810807973248974E-005 + 168.59999999999999 -8.3588149231411015E-005 + 168.66000000000000 -8.3374766453063999E-005 + 168.72000000000000 -8.3171558356030635E-005 + 168.78000000000000 -8.2979372258985823E-005 + 168.84000000000000 -8.2799011721625601E-005 + 168.90000000000001 -8.2631217176337924E-005 + 168.95999999999998 -8.2476688599019874E-005 + 169.01999999999998 -8.2336042689149232E-005 + 169.07999999999998 -8.2209859765403659E-005 + 169.13999999999999 -8.2098653089757715E-005 + 169.19999999999999 -8.2002862656163170E-005 + 169.25999999999999 -8.1922869225070806E-005 + 169.31999999999999 -8.1858978942802121E-005 + 169.38000000000000 -8.1811429463320910E-005 + 169.44000000000000 -8.1780374125629463E-005 + 169.50000000000000 -8.1765898926884631E-005 + 169.56000000000000 -8.1768013495286493E-005 + 169.62000000000000 -8.1786663904070397E-005 + 169.67999999999998 -8.1821717056183420E-005 + 169.73999999999998 -8.1873004774976835E-005 + 169.79999999999998 -8.1940268300613827E-005 + 169.85999999999999 -8.2023213849482526E-005 + 169.91999999999999 -8.2121480970409315E-005 + 169.97999999999999 -8.2234681182612824E-005 + 170.03999999999999 -8.2362376689183679E-005 + 170.09999999999999 -8.2504085484661702E-005 + 170.16000000000000 -8.2659281779590881E-005 + 170.22000000000000 -8.2827409965271310E-005 + 170.28000000000000 -8.3007869458043499E-005 + 170.34000000000000 -8.3200021231299545E-005 + 170.40000000000001 -8.3403184085086341E-005 + 170.45999999999998 -8.3616650972292435E-005 + 170.51999999999998 -8.3839662855821753E-005 + 170.57999999999998 -8.4071432345233631E-005 + 170.63999999999999 -8.4311133796044081E-005 + 170.69999999999999 -8.4557927876166740E-005 + 170.75999999999999 -8.4810932222187122E-005 + 170.81999999999999 -8.5069254185997142E-005 + 170.88000000000000 -8.5331988725494435E-005 + 170.94000000000000 -8.5598214927705695E-005 + 171.00000000000000 -8.5867024252057119E-005 + 171.06000000000000 -8.6137497092749632E-005 + 171.12000000000000 -8.6408724641102010E-005 + 171.17999999999998 -8.6679798335301662E-005 + 171.23999999999998 -8.6949829636580989E-005 + 171.29999999999998 -8.7217934880760942E-005 + 171.35999999999999 -8.7483224408225240E-005 + 171.41999999999999 -8.7744834220336763E-005 + 171.47999999999999 -8.8001892104419877E-005 + 171.53999999999999 -8.8253521707969384E-005 + 171.59999999999999 -8.8498849632958829E-005 + 171.66000000000000 -8.8737004198728985E-005 + 171.72000000000000 -8.8967112734021381E-005 + 171.78000000000000 -8.9188305826789797E-005 + 171.84000000000000 -8.9399717255839116E-005 + 171.90000000000001 -8.9600499966419566E-005 + 171.95999999999998 -8.9789818425669660E-005 + 172.01999999999998 -8.9966866653549163E-005 + 172.07999999999998 -9.0130881592490910E-005 + 172.13999999999999 -9.0281131950664369E-005 + 172.19999999999999 -9.0416934682775415E-005 + 172.25999999999999 -9.0537671063962568E-005 + 172.31999999999999 -9.0642786855511131E-005 + 172.38000000000000 -9.0731777720995944E-005 + 172.44000000000000 -9.0804203176407671E-005 + 172.50000000000000 -9.0859696766306834E-005 + 172.56000000000000 -9.0897937670994947E-005 + 172.62000000000000 -9.0918669613602481E-005 + 172.67999999999998 -9.0921680860067076E-005 + 172.73999999999998 -9.0906826667552893E-005 + 172.79999999999998 -9.0873998858770878E-005 + 172.85999999999999 -9.0823123048506654E-005 + 172.91999999999999 -9.0754183534567134E-005 + 172.97999999999999 -9.0667203732414448E-005 + 173.03999999999999 -9.0562242274953373E-005 + 173.09999999999999 -9.0439435662412497E-005 + 173.16000000000000 -9.0298970291460549E-005 + 173.22000000000000 -9.0141091423256514E-005 + 173.28000000000000 -8.9966126269494141E-005 + 173.34000000000000 -8.9774483168241281E-005 + 173.40000000000001 -8.9566640966114335E-005 + 173.45999999999998 -8.9343186816944240E-005 + 173.51999999999998 -8.9104783961366438E-005 + 173.57999999999998 -8.8852181621169665E-005 + 173.63999999999999 -8.8586217869404153E-005 + 173.69999999999999 -8.8307809704564092E-005 + 173.75999999999999 -8.8017938765753536E-005 + 173.81999999999999 -8.7717639330690087E-005 + 173.88000000000000 -8.7408006537440728E-005 + 173.94000000000000 -8.7090155849993888E-005 + 174.00000000000000 -8.6765227796425901E-005 + 174.06000000000000 -8.6434385916014673E-005 + 174.12000000000000 -8.6098798043375159E-005 + 174.17999999999998 -8.5759622018838648E-005 + 174.23999999999998 -8.5418018806706315E-005 + 174.29999999999998 -8.5075150436674383E-005 + 174.35999999999999 -8.4732157120998830E-005 + 174.41999999999999 -8.4390193694940292E-005 + 174.47999999999999 -8.4050405502230871E-005 + 174.53999999999999 -8.3713946349911903E-005 + 174.59999999999999 -8.3381977748834879E-005 + 174.66000000000000 -8.3055663549066208E-005 + 174.72000000000000 -8.2736181347490710E-005 + 174.78000000000000 -8.2424720939615415E-005 + 174.84000000000000 -8.2122473277580684E-005 + 174.90000000000001 -8.1830627784767890E-005 + 174.95999999999998 -8.1550356056550688E-005 + 175.01999999999998 -8.1282819774154387E-005 + 175.07999999999998 -8.1029138246911938E-005 + 175.13999999999999 -8.0790404280213531E-005 + 175.19999999999999 -8.0567633754971573E-005 + 175.25999999999999 -8.0361793112177318E-005 + 175.31999999999999 -8.0173780377649389E-005 + 175.38000000000000 -8.0004397438742156E-005 + 175.44000000000000 -7.9854368640119215E-005 + 175.50000000000000 -7.9724338337582449E-005 + 175.56000000000000 -7.9614844879523643E-005 + 175.62000000000000 -7.9526358996153169E-005 + 175.67999999999998 -7.9459258665980385E-005 + 175.73999999999998 -7.9413845745388972E-005 + 175.79999999999998 -7.9390357953440974E-005 + 175.85999999999999 -7.9388962884743557E-005 + 175.91999999999999 -7.9409766700584380E-005 + 175.97999999999999 -7.9452820038620149E-005 + 176.03999999999999 -7.9518120662273731E-005 + 176.09999999999999 -7.9605617136673884E-005 + 176.16000000000000 -7.9715205665121277E-005 + 176.22000000000000 -7.9846723306317612E-005 + 176.28000000000000 -7.9999969431077749E-005 + 176.34000000000000 -8.0174680072111847E-005 + 176.40000000000001 -8.0370548849240095E-005 + 176.45999999999998 -8.0587201073466138E-005 + 176.51999999999998 -8.0824200898664496E-005 + 176.57999999999998 -8.1081060059174368E-005 + 176.63999999999999 -8.1357240648298774E-005 + 176.69999999999999 -8.1652133446024532E-005 + 176.75999999999999 -8.1965083532569837E-005 + 176.81999999999999 -8.2295374089802088E-005 + 176.88000000000000 -8.2642253006534667E-005 + 176.94000000000000 -8.3004919345883255E-005 + 177.00000000000000 -8.3382529098393417E-005 + 177.06000000000000 -8.3774193293713068E-005 + 177.12000000000000 -8.4178998892041123E-005 + 177.17999999999998 -8.4595991277879658E-005 + 177.23999999999998 -8.5024182213938116E-005 + 177.29999999999998 -8.5462565540869278E-005 + 177.35999999999999 -8.5910106408409884E-005 + 177.41999999999999 -8.6365739469181164E-005 + 177.47999999999999 -8.6828381914381104E-005 + 177.53999999999999 -8.7296922061404577E-005 + 177.59999999999999 -8.7770240794323860E-005 + 177.66000000000000 -8.8247196765332269E-005 + 177.72000000000000 -8.8726640457341231E-005 + 177.78000000000000 -8.9207413607358163E-005 + 177.84000000000000 -8.9688354787106404E-005 + 177.90000000000001 -9.0168320925723640E-005 + 177.95999999999998 -9.0646155987518149E-005 + 178.01999999999998 -9.1120738439901046E-005 + 178.07999999999998 -9.1590936649226477E-005 + 178.13999999999999 -9.2055655908310194E-005 + 178.19999999999999 -9.2513803397141646E-005 + 178.25999999999999 -9.2964321837218998E-005 + 178.31999999999999 -9.3406166585024359E-005 + 178.38000000000000 -9.3838298773249852E-005 + 178.44000000000000 -9.4259710767920953E-005 + 178.50000000000000 -9.4669392307275666E-005 + 178.56000000000000 -9.5066360831535686E-005 + 178.62000000000000 -9.5449629000285126E-005 + 178.67999999999998 -9.5818234965820248E-005 + 178.73999999999998 -9.6171229557830587E-005 + 178.79999999999998 -9.6507670632567616E-005 + 178.85999999999999 -9.6826635130850186E-005 + 178.91999999999999 -9.7127254261303262E-005 + 178.97999999999999 -9.7408670145787929E-005 + 179.03999999999999 -9.7670090023201531E-005 + 179.09999999999999 -9.7910765354219267E-005 + 179.16000000000000 -9.8130010429979170E-005 + 179.22000000000000 -9.8327205508685301E-005 + 179.28000000000000 -9.8501806899197657E-005 + 179.34000000000000 -9.8653348286085118E-005 + 179.40000000000001 -9.8781442922890518E-005 + 179.45999999999998 -9.8885792532016806E-005 + 179.51999999999998 -9.8966168700940628E-005 + 179.57999999999998 -9.9022413772427984E-005 + 179.63999999999999 -9.9054443599335003E-005 + 179.69999999999999 -9.9062245347570122E-005 + 179.75999999999999 -9.9045856749296641E-005 + 179.81999999999999 -9.9005379663811340E-005 + 179.88000000000000 -9.8940956542767776E-005 + 179.94000000000000 -9.8852797883216956E-005 + 180.00000000000000 -9.8741138168607979E-005 + 180.06000000000000 -9.8606274978492420E-005 + 180.12000000000000 -9.8448553880100696E-005 + 180.17999999999998 -9.8268382345554633E-005 + 180.23999999999998 -9.8066213640604576E-005 + 180.29999999999998 -9.7842570145984558E-005 + 180.35999999999999 -9.7598045250408519E-005 + 180.41999999999999 -9.7333297628998132E-005 + 180.47999999999999 -9.7049052880969920E-005 + 180.53999999999999 -9.6746115610232703E-005 + 180.59999999999999 -9.6425346616469440E-005 + 180.66000000000000 -9.6087676388474557E-005 + 180.72000000000000 -9.5734101428648956E-005 + 180.78000000000000 -9.5365647619630319E-005 + 180.84000000000000 -9.4983386535751888E-005 + 180.90000000000001 -9.4588428589307392E-005 + 180.95999999999998 -9.4181891761493085E-005 + 181.01999999999998 -9.3764912225195046E-005 + 181.07999999999998 -9.3338621399831933E-005 + 181.13999999999999 -9.2904147491417886E-005 + 181.19999999999999 -9.2462611191042381E-005 + 181.25999999999999 -9.2015121918047454E-005 + 181.31999999999999 -9.1562771070909828E-005 + 181.38000000000000 -9.1106644818743747E-005 + 181.44000000000000 -9.0647807885679160E-005 + 181.50000000000000 -9.0187316140411371E-005 + 181.56000000000000 -8.9726225020047505E-005 + 181.62000000000000 -8.9265567838687929E-005 + 181.67999999999998 -8.8806382470065171E-005 + 181.73999999999998 -8.8349692314099499E-005 + 181.79999999999998 -8.7896514340555877E-005 + 181.85999999999999 -8.7447842920127122E-005 + 181.91999999999999 -8.7004658576362372E-005 + 181.97999999999999 -8.6567903183285932E-005 + 182.03999999999999 -8.6138483394672524E-005 + 182.09999999999999 -8.5717270159087707E-005 + 182.16000000000000 -8.5305085284812833E-005 + 182.22000000000000 -8.4902696029678373E-005 + 182.28000000000000 -8.4510795876967942E-005 + 182.34000000000000 -8.4130029082325845E-005 + 182.39999999999998 -8.3760978010824464E-005 + 182.45999999999998 -8.3404153574253971E-005 + 182.51999999999998 -8.3060025936503333E-005 + 182.57999999999998 -8.2728989424301263E-005 + 182.63999999999999 -8.2411409385671882E-005 + 182.69999999999999 -8.2107599703186990E-005 + 182.75999999999999 -8.1817828608082586E-005 + 182.81999999999999 -8.1542354594100081E-005 + 182.88000000000000 -8.1281384126397082E-005 + 182.94000000000000 -8.1035112384411563E-005 + 183.00000000000000 -8.0803714201950827E-005 + 183.06000000000000 -8.0587315379683895E-005 + 183.12000000000000 -8.0386034808793840E-005 + 183.17999999999998 -8.0199949204019268E-005 + 183.23999999999998 -8.0029116414582715E-005 + 183.29999999999998 -7.9873528574569719E-005 + 183.35999999999999 -7.9733150767085777E-005 + 183.41999999999999 -7.9607906314497028E-005 + 183.47999999999999 -7.9497648410099283E-005 + 183.53999999999999 -7.9402190348604944E-005 + 183.59999999999999 -7.9321302475346387E-005 + 183.66000000000000 -7.9254697602941461E-005 + 183.72000000000000 -7.9202061570340763E-005 + 183.78000000000000 -7.9163023935085238E-005 + 183.84000000000000 -7.9137183231558193E-005 + 183.89999999999998 -7.9124125716363003E-005 + 183.95999999999998 -7.9123403217440917E-005 + 184.01999999999998 -7.9134544201907948E-005 + 184.07999999999998 -7.9157076715019836E-005 + 184.13999999999999 -7.9190508515540947E-005 + 184.19999999999999 -7.9234328827797694E-005 + 184.25999999999999 -7.9288026162203768E-005 + 184.31999999999999 -7.9351067905202789E-005 + 184.38000000000000 -7.9422916259598887E-005 + 184.44000000000000 -7.9503007666067611E-005 + 184.50000000000000 -7.9590752850932313E-005 + 184.56000000000000 -7.9685551979807165E-005 + 184.62000000000000 -7.9786773347983943E-005 + 184.67999999999998 -7.9893763135962140E-005 + 184.73999999999998 -8.0005844513656154E-005 + 184.79999999999998 -8.0122328804402857E-005 + 184.85999999999999 -8.0242507460559137E-005 + 184.91999999999999 -8.0365659081870617E-005 + 184.97999999999999 -8.0491065870465534E-005 + 185.03999999999999 -8.0618001898494497E-005 + 185.09999999999999 -8.0745751516129790E-005 + 185.16000000000000 -8.0873610530896302E-005 + 185.22000000000000 -8.1000895446514819E-005 + 185.28000000000000 -8.1126926311558635E-005 + 185.34000000000000 -8.1251059588055544E-005 + 185.39999999999998 -8.1372669999999782E-005 + 185.45999999999998 -8.1491155118591010E-005 + 185.51999999999998 -8.1605938610620246E-005 + 185.57999999999998 -8.1716448261466982E-005 + 185.63999999999999 -8.1822145531257892E-005 + 185.69999999999999 -8.1922508814922317E-005 + 185.75999999999999 -8.2017029211048589E-005 + 185.81999999999999 -8.2105228097694813E-005 + 185.88000000000000 -8.2186641923856100E-005 + 185.94000000000000 -8.2260832048685324E-005 + 186.00000000000000 -8.2327377211862033E-005 + 186.06000000000000 -8.2385906435861908E-005 + 186.12000000000000 -8.2436065116473555E-005 + 186.17999999999998 -8.2477557330068614E-005 + 186.23999999999998 -8.2510122583102449E-005 + 186.29999999999998 -8.2533552988295743E-005 + 186.35999999999999 -8.2547690712598493E-005 + 186.41999999999999 -8.2552430180357189E-005 + 186.47999999999999 -8.2547732612730268E-005 + 186.53999999999999 -8.2533602248872751E-005 + 186.59999999999999 -8.2510110930986993E-005 + 186.66000000000000 -8.2477366969333545E-005 + 186.72000000000000 -8.2435535914496258E-005 + 186.78000000000000 -8.2384834461690355E-005 + 186.84000000000000 -8.2325506844287794E-005 + 186.89999999999998 -8.2257862712648060E-005 + 186.95999999999998 -8.2182238317149794E-005 + 187.01999999999998 -8.2099010295509455E-005 + 187.07999999999998 -8.2008589028011132E-005 + 187.13999999999999 -8.1911428259398941E-005 + 187.19999999999999 -8.1808012389484851E-005 + 187.25999999999999 -8.1698863790394073E-005 + 187.31999999999999 -8.1584532519131449E-005 + 187.38000000000000 -8.1465605046191243E-005 + 187.44000000000000 -8.1342711329315107E-005 + 187.50000000000000 -8.1216488458572624E-005 + 187.56000000000000 -8.1087589874937949E-005 + 187.62000000000000 -8.0956706700231580E-005 + 187.67999999999998 -8.0824517150480138E-005 + 187.73999999999998 -8.0691718679091177E-005 + 187.79999999999998 -8.0558999920377357E-005 + 187.85999999999999 -8.0427032326567049E-005 + 187.91999999999999 -8.0296468138129544E-005 + 187.97999999999999 -8.0167945134727677E-005 + 188.03999999999999 -8.0042073363401892E-005 + 188.09999999999999 -7.9919425900383176E-005 + 188.16000000000000 -7.9800572282129795E-005 + 188.22000000000000 -7.9686045311437405E-005 + 188.28000000000000 -7.9576349685153255E-005 + 188.34000000000000 -7.9471971321282817E-005 + 188.39999999999998 -7.9373378903168688E-005 + 188.45999999999998 -7.9281025415561083E-005 + 188.51999999999998 -7.9195378969427782E-005 + 188.57999999999998 -7.9116865697189369E-005 + 188.63999999999999 -7.9045920572554858E-005 + 188.69999999999999 -7.8982961789812327E-005 + 188.75999999999999 -7.8928386020678801E-005 + 188.81999999999999 -7.8882582379210620E-005 + 188.88000000000000 -7.8845897118539823E-005 + 188.94000000000000 -7.8818661361913087E-005 + 189.00000000000000 -7.8801136604912000E-005 + 189.06000000000000 -7.8793566416906436E-005 + 189.12000000000000 -7.8796113918285147E-005 + 189.17999999999998 -7.8808892710035189E-005 + 189.23999999999998 -7.8831962134146271E-005 + 189.29999999999998 -7.8865314853133391E-005 + 189.35999999999999 -7.8908881943995723E-005 + 189.41999999999999 -7.8962535895459756E-005 + 189.47999999999999 -7.9026110711593036E-005 + 189.53999999999999 -7.9099402884356406E-005 + 189.59999999999999 -7.9182170151336924E-005 + 189.66000000000000 -7.9274140096762059E-005 + 189.72000000000000 -7.9375047632189417E-005 + 189.78000000000000 -7.9484605795427168E-005 + 189.84000000000000 -7.9602527585025080E-005 + 189.89999999999998 -7.9728534100384816E-005 + 189.95999999999998 -7.9862344694327296E-005 + 190.01999999999998 -8.0003671935979011E-005 + 190.07999999999998 -8.0152247197040955E-005 + 190.13999999999999 -8.0307769928662236E-005 + 190.19999999999999 -8.0469946526240800E-005 + 190.25999999999999 -8.0638458617361504E-005 + 190.31999999999999 -8.0812970527371561E-005 + 190.38000000000000 -8.0993116474480819E-005 + 190.44000000000000 -8.1178490457889892E-005 + 190.50000000000000 -8.1368654367432755E-005 + 190.56000000000000 -8.1563143898176854E-005 + 190.62000000000000 -8.1761466887031429E-005 + 190.67999999999998 -8.1963082617622583E-005 + 190.73999999999998 -8.2167449983460474E-005 + 190.79999999999998 -8.2373991602200395E-005 + 190.85999999999999 -8.2582119176007309E-005 + 190.91999999999999 -8.2791251208556602E-005 + 190.97999999999999 -8.3000798452649929E-005 + 191.03999999999999 -8.3210172192675427E-005 + 191.09999999999999 -8.3418794146715870E-005 + 191.16000000000000 -8.3626089932542196E-005 + 191.22000000000000 -8.3831487195189794E-005 + 191.28000000000000 -8.4034424474975218E-005 + 191.34000000000000 -8.4234341719967881E-005 + 191.39999999999998 -8.4430657780573909E-005 + 191.45999999999998 -8.4622810367898359E-005 + 191.51999999999998 -8.4810214440939231E-005 + 191.57999999999998 -8.4992269871639198E-005 + 191.63999999999999 -8.5168377471101734E-005 + 191.69999999999999 -8.5337917704281910E-005 + 191.75999999999999 -8.5500259676617331E-005 + 191.81999999999999 -8.5654765119246568E-005 + 191.88000000000000 -8.5800812365106701E-005 + 191.94000000000000 -8.5937770984674677E-005 + 192.00000000000000 -8.6065024600230500E-005 + 192.06000000000000 -8.6181984668806677E-005 + 192.12000000000000 -8.6288076269059412E-005 + 192.17999999999998 -8.6382775179607760E-005 + 192.23999999999998 -8.6465588134243651E-005 + 192.29999999999998 -8.6536067199294970E-005 + 192.35999999999999 -8.6593793686142703E-005 + 192.41999999999999 -8.6638401272598082E-005 + 192.47999999999999 -8.6669573203675137E-005 + 192.53999999999999 -8.6687029510517651E-005 + 192.59999999999999 -8.6690527017905755E-005 + 192.66000000000000 -8.6679858930707892E-005 + 192.72000000000000 -8.6654867168977631E-005 + 192.78000000000000 -8.6615408849454858E-005 + 192.84000000000000 -8.6561387083609347E-005 + 192.89999999999998 -8.6492724849218650E-005 + 192.95999999999998 -8.6409393454998107E-005 + 193.01999999999998 -8.6311388306544614E-005 + 193.07999999999998 -8.6198751293664735E-005 + 193.13999999999999 -8.6071550048855838E-005 + 193.19999999999999 -8.5929917942965410E-005 + 193.25999999999999 -8.5774027552712427E-005 + 193.31999999999999 -8.5604093323544871E-005 + 193.38000000000000 -8.5420397535122298E-005 + 193.44000000000000 -8.5223261233751543E-005 + 193.50000000000000 -8.5013057717884489E-005 + 193.56000000000000 -8.4790229200233641E-005 + 193.62000000000000 -8.4555255860967551E-005 + 193.67999999999998 -8.4308669183186789E-005 + 193.73999999999998 -8.4051043056992188E-005 + 193.79999999999998 -8.3782987986101248E-005 + 193.85999999999999 -8.3505151682324586E-005 + 193.91999999999999 -8.3218219957720076E-005 + 193.97999999999999 -8.2922910868289665E-005 + 194.03999999999999 -8.2619951221969074E-005 + 194.09999999999999 -8.2310104929025785E-005 + 194.16000000000000 -8.1994158975776501E-005 + 194.22000000000000 -8.1672920067849355E-005 + 194.28000000000000 -8.1347196507201237E-005 + 194.34000000000000 -8.1017820647827498E-005 + 194.39999999999998 -8.0685632387416539E-005 + 194.45999999999998 -8.0351484884225535E-005 + 194.51999999999998 -8.0016213870502608E-005 + 194.57999999999998 -7.9680671107906981E-005 + 194.63999999999999 -7.9345686656868633E-005 + 194.69999999999999 -7.9012080434799183E-005 + 194.75999999999999 -7.8680648815556239E-005 + 194.81999999999999 -7.8352184110151710E-005 + 194.88000000000000 -7.8027415006060770E-005 + 194.94000000000000 -7.7707060441158785E-005 + 195.00000000000000 -7.7391807516352632E-005 + 195.06000000000000 -7.7082301738292357E-005 + 195.12000000000000 -7.6779157569089264E-005 + 195.17999999999998 -7.6482957486752174E-005 + 195.23999999999998 -7.6194267663972769E-005 + 195.29999999999998 -7.5913629578104822E-005 + 195.35999999999999 -7.5641565970007462E-005 + 195.41999999999999 -7.5378585939874131E-005 + 195.47999999999999 -7.5125191480388955E-005 + 195.53999999999999 -7.4881880852763834E-005 + 195.59999999999999 -7.4649151230713021E-005 + 195.66000000000000 -7.4427493020151381E-005 + 195.72000000000000 -7.4217396773468313E-005 + 195.78000000000000 -7.4019340715945268E-005 + 195.84000000000000 -7.3833787312715628E-005 + 195.89999999999998 -7.3661178336181920E-005 + 195.95999999999998 -7.3501934553569500E-005 + 196.01999999999998 -7.3356447085048203E-005 + 196.07999999999998 -7.3225069096844800E-005 + 196.13999999999999 -7.3108116434031733E-005 + 196.19999999999999 -7.3005866923847227E-005 + 196.25999999999999 -7.2918555706866396E-005 + 196.31999999999999 -7.2846382041243815E-005 + 196.38000000000000 -7.2789522855242118E-005 + 196.44000000000000 -7.2748100939631086E-005 + 196.50000000000000 -7.2722252603862631E-005 + 196.56000000000000 -7.2712087145750066E-005 + 196.62000000000000 -7.2717724964439326E-005 + 196.67999999999998 -7.2739277184321458E-005 + 196.73999999999998 -7.2776889800197142E-005 + 196.79999999999998 -7.2830703009124959E-005 + 196.85999999999999 -7.2900890393838897E-005 + 196.91999999999999 -7.2987657014277115E-005 + 196.97999999999999 -7.3091213429975742E-005 + 197.03999999999999 -7.3211796167242391E-005 + 197.09999999999999 -7.3349641837727449E-005 + 197.16000000000000 -7.3505012911172343E-005 + 197.22000000000000 -7.3678155275308109E-005 + 197.28000000000000 -7.3869312892899355E-005 + 197.34000000000000 -7.4078701579333885E-005 + 197.39999999999998 -7.4306523759987207E-005 + 197.45999999999998 -7.4552948300715433E-005 + 197.51999999999998 -7.4818126077750671E-005 + 197.57999999999998 -7.5102180655935727E-005 + 197.63999999999999 -7.5405189560569932E-005 + 197.69999999999999 -7.5727219795772147E-005 + 197.75999999999999 -7.6068323511907060E-005 + 197.81999999999999 -7.6428520184289653E-005 + 197.88000000000000 -7.6807824980500565E-005 + 197.94000000000000 -7.7206249953170120E-005 + 198.00000000000000 -7.7623814683864165E-005 + 198.06000000000000 -7.8060526777583883E-005 + 198.12000000000000 -7.8516407658733557E-005 + 198.17999999999998 -7.8991485857311675E-005 + 198.23999999999998 -7.9485776557708778E-005 + 198.29999999999998 -7.9999328357938297E-005 + 198.35999999999999 -8.0532163328355270E-005 + 198.41999999999999 -8.1084304047206884E-005 + 198.47999999999999 -8.1655774102703572E-005 + 198.53999999999999 -8.2246584582728103E-005 + 198.59999999999999 -8.2856721953835006E-005 + 198.66000000000000 -8.3486166513857193E-005 + 198.72000000000000 -8.4134879833614836E-005 + 198.78000000000000 -8.4802802507309756E-005 + 198.84000000000000 -8.5489860273999519E-005 + 198.89999999999998 -8.6195950193276719E-005 + 198.95999999999998 -8.6920973012486597E-005 + 199.01999999999998 -8.7664784485781246E-005 + 199.07999999999998 -8.8427250031217368E-005 + 199.13999999999999 -8.9208207821747879E-005 + 199.19999999999999 -9.0007484149757944E-005 + 199.25999999999999 -9.0824876413248706E-005 + 199.31999999999999 -9.1660170283755697E-005 + 199.38000000000000 -9.2513131644840143E-005 + 199.44000000000000 -9.3383489584270785E-005 + 199.50000000000000 -9.4270940677340862E-005 + 199.56000000000000 -9.5175160929625267E-005 + 199.62000000000000 -9.6095762992678052E-005 + 199.67999999999998 -9.7032348624448525E-005 + 199.73999999999998 -9.7984458244080664E-005 + 199.79999999999998 -9.8951581909417904E-005 + 199.85999999999999 -9.9933188161579017E-005 + 199.91999999999999 -1.0092866996784422E-004 + 199.97999999999999 -1.0193740353771232E-004 + 200.03999999999999 -1.0295870591709630E-004 + 200.09999999999999 -1.0399187165492966E-004 + 200.16000000000000 -1.0503614172655157E-004 + 200.22000000000000 -1.0609072842858525E-004 + 200.28000000000000 -1.0715480582242700E-004 + 200.34000000000000 -1.0822750590207902E-004 + 200.39999999999998 -1.0930791359007604E-004 + 200.45999999999998 -1.1039508697634831E-004 + 200.51999999999998 -1.1148801250173302E-004 + 200.57999999999998 -1.1258564249039030E-004 + 200.63999999999999 -1.1368684775520459E-004 + 200.69999999999999 -1.1479045214383828E-004 + 200.75999999999999 -1.1589518544064392E-004 + 200.81999999999999 -1.1699971575299627E-004 + 200.88000000000000 -1.1810263315467949E-004 + 200.94000000000000 -1.1920242645366530E-004 + 201.00000000000000 -1.2029753140657900E-004 + 201.06000000000000 -1.2138629330890716E-004 + 201.12000000000000 -1.2246695975849379E-004 + 201.17999999999998 -1.2353770598231734E-004 + 201.23999999999998 -1.2459666956880970E-004 + 201.29999999999998 -1.2564187358102619E-004 + 201.35999999999999 -1.2667128751772420E-004 + 201.41999999999999 -1.2768282120852664E-004 + 201.47999999999999 -1.2867433240739104E-004 + 201.53999999999999 -1.2964358520367445E-004 + 201.59999999999999 -1.3058830203279599E-004 + 201.66000000000000 -1.3150613177915417E-004 + 201.72000000000000 -1.3239465018112460E-004 + 201.78000000000000 -1.3325138848525325E-004 + 201.84000000000000 -1.3407378982052004E-004 + 201.89999999999998 -1.3485921876643173E-004 + 201.95999999999998 -1.3560497372866326E-004 + 202.01999999999998 -1.3630829586275717E-004 + 202.07999999999998 -1.3696633407956962E-004 + 202.13999999999999 -1.3757621383828349E-004 + 202.19999999999999 -1.3813498136100981E-004 + 202.25999999999999 -1.3863964901903426E-004 + 202.31999999999999 -1.3908719569334543E-004 + 202.38000000000000 -1.3947457354293651E-004 + 202.44000000000000 -1.3979873481286188E-004 + 202.50000000000000 -1.4005664689589891E-004 + 202.56000000000000 -1.4024529394017103E-004 + 202.62000000000000 -1.4036167742786446E-004 + 202.67999999999998 -1.4040285142950603E-004 + 202.73999999999998 -1.4036594258818325E-004 + 202.79999999999998 -1.4024810844649987E-004 + 202.85999999999999 -1.4004658528475204E-004 + 202.91999999999999 -1.3975869856927052E-004 + 202.97999999999999 -1.3938182312582629E-004 + 203.03999999999999 -1.3891343345063910E-004 + 203.09999999999999 -1.3835109119446080E-004 + 203.16000000000000 -1.3769241619203707E-004 + 203.22000000000000 -1.3693512729087232E-004 + 203.28000000000000 -1.3607705890345852E-004 + 203.34000000000000 -1.3511610425967507E-004 + 203.39999999999998 -1.3405028671294097E-004 + 203.45999999999998 -1.3287772393232126E-004 + 203.51999999999998 -1.3159668716896406E-004 + 203.57999999999998 -1.3020552932735782E-004 + 203.63999999999999 -1.2870278238666491E-004 + 203.69999999999999 -1.2708709921627537E-004 + 203.75999999999999 -1.2535728867331937E-004 + 203.81999999999999 -1.2351233332564450E-004 + 203.88000000000000 -1.2155137720699936E-004 + 203.94000000000000 -1.1947375181264667E-004 + 204.00000000000000 -1.1727895888147232E-004 + 204.06000000000000 -1.1496667553009326E-004 + 204.12000000000000 -1.1253676337733837E-004 + 204.17999999999998 -1.0998927165048797E-004 + 204.23999999999998 -1.0732443345035164E-004 + 204.29999999999998 -1.0454264302367554E-004 + 204.35999999999999 -1.0164448659256025E-004 + 204.41999999999999 -9.8630716831884537E-005 + 204.47999999999999 -9.5502244858176440E-005 + 204.53999999999999 -9.2260159421476021E-005 + 204.59999999999999 -8.8905698258340136E-005 + 204.66000000000000 -8.5440274579503132E-005 + 204.72000000000000 -8.1865446578080332E-005 + 204.78000000000000 -7.8182912763631731E-005 + 204.84000000000000 -7.4394534050318799E-005 + 204.89999999999998 -7.0502312394648476E-005 + 204.95999999999998 -6.6508385383811920E-005 + 205.01999999999998 -6.2415036793221726E-005 + 205.07999999999998 -5.8224664825635309E-005 + 205.13999999999999 -5.3939806445433537E-005 + 205.19999999999999 -4.9563114905308365E-005 + 205.25999999999999 -4.5097350183475945E-005 + 205.31999999999999 -4.0545391450539408E-005 + 205.38000000000000 -3.5910214616018838E-005 + 205.44000000000000 -3.1194892172553940E-005 + 205.50000000000000 -2.6402590474691666E-005 + 205.56000000000000 -2.1536557745236222E-005 + 205.62000000000000 -1.6600126151740879E-005 + 205.67999999999998 -1.1596694562418448E-005 + 205.73999999999998 -6.5297378471965549E-006 + 205.79999999999998 -1.4027865377809806E-006 + 205.85999999999999 3.7805697128709024E-006 + 205.91999999999999 9.0166962376186155E-006 + 205.97999999999999 1.4301922744909615E-005 + 206.03999999999999 1.9632545014087373E-005 + 206.09999999999999 2.5004844041288681E-005 + 206.16000000000000 3.0415095717460121E-005 + 206.22000000000000 3.5859577944557063E-005 + 206.28000000000000 4.1334584506412544E-005 + 206.34000000000000 4.6836434611118216E-005 + 206.39999999999998 5.2361489996019558E-005 + 206.45999999999998 5.7906157642987800E-005 + 206.51999999999998 6.3466912927558831E-005 + 206.57999999999998 6.9040280283939209E-005 + 206.63999999999999 7.4622861121424579E-005 + 206.69999999999999 8.0211333173659392E-005 + 206.75999999999999 8.5802448307794102E-005 + 206.81999999999999 9.1393025637047915E-005 + 206.88000000000000 9.6979961734043499E-005 + 206.94000000000000 1.0256021868966920E-004 + 207.00000000000000 1.0813083851815709E-004 + 207.06000000000000 1.1368893175411521E-004 + 207.12000000000000 1.1923166724698986E-004 + 207.17999999999998 1.2475627668199937E-004 + 207.23999999999998 1.3026005853875215E-004 + 207.29999999999998 1.3574038417340389E-004 + 207.35999999999999 1.4119471713339973E-004 + 207.41999999999999 1.4662057182978730E-004 + 207.47999999999999 1.5201555881705136E-004 + 207.53999999999999 1.5737741254929602E-004 + 207.59999999999999 1.6270393791091280E-004 + 207.66000000000000 1.6799305901397718E-004 + 207.72000000000000 1.7324281921376995E-004 + 207.78000000000000 1.7845136950327863E-004 + 207.84000000000000 1.8361701394379950E-004 + 207.89999999999998 1.8873814189143296E-004 + 207.95999999999998 1.9381326954418491E-004 + 208.01999999999998 1.9884104870391308E-004 + 208.07999999999998 2.0382019873206426E-004 + 208.13999999999999 2.0874953456079121E-004 + 208.19999999999999 2.1362798207171164E-004 + 208.25999999999999 2.1845449484237040E-004 + 208.31999999999999 2.2322813234996927E-004 + 208.38000000000000 2.2794795852002644E-004 + 208.44000000000000 2.3261307515572681E-004 + 208.50000000000000 2.3722263771713435E-004 + 208.56000000000000 2.4177578690496486E-004 + 208.62000000000000 2.4627169125327733E-004 + 208.68000000000001 2.5070953116636756E-004 + 208.74000000000001 2.5508843408648415E-004 + 208.80000000000001 2.5940761238188648E-004 + 208.86000000000001 2.6366623670574530E-004 + 208.92000000000002 2.6786347604575546E-004 + 208.98000000000002 2.7199849990370667E-004 + 209.03999999999996 2.7607047429310030E-004 + 209.09999999999997 2.8007853934605904E-004 + 209.15999999999997 2.8402188033432456E-004 + 209.21999999999997 2.8789959717975193E-004 + 209.27999999999997 2.9171078381832924E-004 + 209.33999999999997 2.9545448639600242E-004 + 209.39999999999998 2.9912974093092336E-004 + 209.45999999999998 3.0273546811842298E-004 + 209.51999999999998 3.0627054334814250E-004 + 209.57999999999998 3.0973376729181453E-004 + 209.63999999999999 3.1312381605805664E-004 + 209.69999999999999 3.1643933061836386E-004 + 209.75999999999999 3.1967877888517933E-004 + 209.81999999999999 3.2284057911138739E-004 + 209.88000000000000 3.2592299977330963E-004 + 209.94000000000000 3.2892418038361101E-004 + 210.00000000000000 3.3184220817210862E-004 + 210.06000000000000 3.3467505612044465E-004 + 210.12000000000000 3.3742056371492435E-004 + 210.18000000000001 3.4007655952348459E-004 + 210.24000000000001 3.4264071590419249E-004 + 210.30000000000001 3.4511066828079207E-004 + 210.36000000000001 3.4748399328728889E-004 + 210.42000000000002 3.4975819884452600E-004 + 210.48000000000002 3.5193075174958497E-004 + 210.53999999999996 3.5399913827900746E-004 + 210.59999999999997 3.5596076223970278E-004 + 210.65999999999997 3.5781301817197040E-004 + 210.71999999999997 3.5955336634500303E-004 + 210.77999999999997 3.6117915105328283E-004 + 210.83999999999997 3.6268778329329090E-004 + 210.89999999999998 3.6407670597365867E-004 + 210.95999999999998 3.6534339947096321E-004 + 211.01999999999998 3.6648532189440447E-004 + 211.07999999999998 3.6750001435529239E-004 + 211.13999999999999 3.6838502245742811E-004 + 211.19999999999999 3.6913801286378738E-004 + 211.25999999999999 3.6975668110320146E-004 + 211.31999999999999 3.7023885807897599E-004 + 211.38000000000000 3.7058244261087980E-004 + 211.44000000000000 3.7078547068225207E-004 + 211.50000000000000 3.7084607009220150E-004 + 211.56000000000000 3.7076251800147121E-004 + 211.62000000000000 3.7053327134461728E-004 + 211.68000000000001 3.7015693013834434E-004 + 211.74000000000001 3.6963227808880893E-004 + 211.80000000000001 3.6895833368148583E-004 + 211.86000000000001 3.6813431117467684E-004 + 211.92000000000002 3.6715963680676600E-004 + 211.98000000000002 3.6603400721973398E-004 + 212.03999999999996 3.6475738179601684E-004 + 212.09999999999997 3.6332998876471417E-004 + 212.15999999999997 3.6175228863980012E-004 + 212.21999999999997 3.6002510840886477E-004 + 212.27999999999997 3.5814952495410833E-004 + 212.33999999999997 3.5612685574066855E-004 + 212.39999999999998 3.5395881787305994E-004 + 212.45999999999998 3.5164736307295095E-004 + 212.51999999999998 3.4919474290904964E-004 + 212.57999999999998 3.4660347164040871E-004 + 212.63999999999999 3.4387637461233910E-004 + 212.69999999999999 3.4101653405329787E-004 + 212.75999999999999 3.3802734698817021E-004 + 212.81999999999999 3.3491239259279040E-004 + 212.88000000000000 3.3167556637458034E-004 + 212.94000000000000 3.2832094596616494E-004 + 213.00000000000000 3.2485289919419164E-004 + 213.06000000000000 3.2127599529629047E-004 + 213.12000000000000 3.1759504356122152E-004 + 213.18000000000001 3.1381502966208057E-004 + 213.24000000000001 3.0994123997822229E-004 + 213.30000000000001 3.0597915015212978E-004 + 213.36000000000001 3.0193437236194874E-004 + 213.42000000000002 2.9781276450100124E-004 + 213.48000000000002 2.9362042811772077E-004 + 213.53999999999996 2.8936351960936037E-004 + 213.59999999999997 2.8504842577518089E-004 + 213.65999999999997 2.8068167281389283E-004 + 213.71999999999997 2.7626987618311380E-004 + 213.77999999999997 2.7181980496273305E-004 + 213.83999999999997 2.6733827106865390E-004 + 213.89999999999998 2.6283213505153583E-004 + 213.95999999999998 2.5830829758986498E-004 + 214.01999999999998 2.5377369464864579E-004 + 214.07999999999998 2.4923517866470098E-004 + 214.13999999999999 2.4469959523506444E-004 + 214.19999999999999 2.4017374738101167E-004 + 214.25999999999999 2.3566432877630854E-004 + 214.31999999999999 2.3117794282397856E-004 + 214.38000000000000 2.2672106717743355E-004 + 214.44000000000000 2.2230005997487317E-004 + 214.50000000000000 2.1792112044108253E-004 + 214.56000000000000 2.1359029375993353E-004 + 214.62000000000000 2.0931347455920254E-004 + 214.68000000000001 2.0509632173719761E-004 + 214.74000000000001 2.0094438091420452E-004 + 214.80000000000001 1.9686291260440203E-004 + 214.86000000000001 1.9285697971555647E-004 + 214.92000000000002 1.8893143925012511E-004 + 214.98000000000002 1.8509085674619805E-004 + 215.03999999999996 1.8133952724127145E-004 + 215.09999999999997 1.7768147261036155E-004 + 215.15999999999997 1.7412041646375912E-004 + 215.21999999999997 1.7065971021463418E-004 + 215.27999999999997 1.6730244529924312E-004 + 215.33999999999997 1.6405131142341802E-004 + 215.39999999999998 1.6090864091269284E-004 + 215.45999999999998 1.5787641292925472E-004 + 215.51999999999998 1.5495622887879904E-004 + 215.57999999999998 1.5214931200087180E-004 + 215.63999999999999 1.4945649312727991E-004 + 215.69999999999999 1.4687825217511320E-004 + 215.75999999999999 1.4441466966963945E-004 + 215.81999999999999 1.4206546627179667E-004 + 215.88000000000000 1.3983001306333223E-004 + 215.94000000000000 1.3770731052724789E-004 + 216.00000000000000 1.3569600027922300E-004 + 216.06000000000000 1.3379440797259141E-004 + 216.12000000000000 1.3200049218599843E-004 + 216.18000000000001 1.3031191310535557E-004 + 216.24000000000001 1.2872598935846294E-004 + 216.30000000000001 1.2723974155645320E-004 + 216.36000000000001 1.2584986165972012E-004 + 216.42000000000002 1.2455276336815544E-004 + 216.48000000000002 1.2334454143532065E-004 + 216.53999999999996 1.2222104909403379E-004 + 216.59999999999997 1.2117783325180567E-004 + 216.65999999999997 1.2021020520068857E-004 + 216.71999999999997 1.1931324714669929E-004 + 216.77999999999997 1.1848179025042522E-004 + 216.83999999999997 1.1771048313395156E-004 + 216.89999999999998 1.1699380139158841E-004 + 216.95999999999998 1.1632604096822080E-004 + 217.01999999999998 1.1570137597297761E-004 + 217.07999999999998 1.1511385810810474E-004 + 217.13999999999999 1.1455744610827206E-004 + 217.19999999999999 1.1402605577206239E-004 + 217.25999999999999 1.1351354258420435E-004 + 217.31999999999999 1.1301374762726156E-004 + 217.38000000000000 1.1252053724839444E-004 + 217.44000000000000 1.1202777426656449E-004 + 217.50000000000000 1.1152940289359949E-004 + 217.56000000000000 1.1101941149589711E-004 + 217.62000000000000 1.1049189105135497E-004 + 217.68000000000001 1.0994102837199148E-004 + 217.74000000000001 1.0936115195910533E-004 + 217.80000000000001 1.0874672962366298E-004 + 217.86000000000001 1.0809236908760254E-004 + 217.92000000000002 1.0739289442435182E-004 + 217.98000000000002 1.0664328482840290E-004 + 218.03999999999996 1.0583874998080367E-004 + 218.09999999999997 1.0497471822887151E-004 + 218.15999999999997 1.0404684346844582E-004 + 218.21999999999997 1.0305105460995393E-004 + 218.27999999999997 1.0198352347312378E-004 + 218.33999999999997 1.0084068196061747E-004 + 218.39999999999998 9.9619263116182741E-005 + 218.45999999999998 9.8316291393653590E-005 + 218.51999999999998 9.6929085437662770E-005 + 218.57999999999998 9.5455281932018448E-005 + 218.63999999999999 9.3892811420894046E-005 + 218.69999999999999 9.2239946426140795E-005 + 218.75999999999999 9.0495278081565851E-005 + 218.81999999999999 8.8657730465034449E-005 + 218.88000000000000 8.6726546173387004E-005 + 218.94000000000000 8.4701331591542460E-005 + 219.00000000000000 8.2582007313175418E-005 + 219.06000000000000 8.0368850037617552E-005 + 219.12000000000000 7.8062458409550403E-005 + 219.18000000000001 7.5663776355762349E-005 + 219.24000000000001 7.3174069816454905E-005 + 219.30000000000001 7.0594923633472963E-005 + 219.36000000000001 6.7928231213799643E-005 + 219.42000000000002 6.5176179819845267E-005 + 219.48000000000002 6.2341247708090088E-005 + 219.53999999999996 5.9426181210984223E-005 + 219.59999999999997 5.6433965687519411E-005 + 219.65999999999997 5.3367839063421234E-005 + 219.71999999999997 5.0231232788560252E-005 + 219.77999999999997 4.7027792567149641E-005 + 219.83999999999997 4.3761342352138998E-005 + 219.89999999999998 4.0435860400593073E-005 + 219.95999999999998 3.7055475251505600E-005 + 220.01999999999998 3.3624453191807827E-005 + 220.07999999999998 3.0147171368418867E-005 + 220.13999999999999 2.6628121995717513E-005 + 220.19999999999999 2.3071880553512951E-005 + 220.25999999999999 1.9483121088133437E-005 + 220.31999999999999 1.5866582116894422E-005 + 220.38000000000000 1.2227065439365794E-005 + 220.44000000000000 8.5694308504266204E-006 + 220.50000000000000 4.8985798108914795E-006 + 220.56000000000000 1.2194417373238442E-006 + 220.62000000000000 -2.4630360084361573E-006 + 220.68000000000001 -6.1439030188108624E-006 + 220.74000000000001 -9.8182221508293109E-006 + 220.80000000000001 -1.3481083190718962E-005 + 220.86000000000001 -1.7127621283488713E-005 + 220.92000000000002 -2.0753029575560801E-005 + 220.98000000000002 -2.4352579854459008E-005 + 221.03999999999996 -2.7921633392463687E-005 + 221.09999999999997 -3.1455652321399428E-005 + 221.15999999999997 -3.4950224661395738E-005 + 221.21999999999997 -3.8401055262629664E-005 + 221.27999999999997 -4.1803994441641744E-005 + 221.33999999999997 -4.5155028362013608E-005 + 221.39999999999998 -4.8450300072454906E-005 + 221.45999999999998 -5.1686103489641356E-005 + 221.51999999999998 -5.4858888308535598E-005 + 221.57999999999998 -5.7965261109007142E-005 + 221.63999999999999 -6.1001997142300270E-005 + 221.69999999999999 -6.3966030203987603E-005 + 221.75999999999999 -6.6854464576145614E-005 + 221.81999999999999 -6.9664575463996878E-005 + 221.88000000000000 -7.2393795545615437E-005 + 221.94000000000000 -7.5039754372852919E-005 + 222.00000000000000 -7.7600253202982075E-005 + 222.06000000000000 -8.0073277497328424E-005 + 222.12000000000000 -8.2456985964869100E-005 + 222.18000000000001 -8.4749743749003815E-005 + 222.24000000000001 -8.6950108621195140E-005 + 222.30000000000001 -8.9056831997670895E-005 + 222.36000000000001 -9.1068836398791741E-005 + 222.42000000000002 -9.2985268938308843E-005 + 222.48000000000002 -9.4805442436465595E-005 + 222.53999999999996 -9.6528862910007387E-005 + 222.59999999999997 -9.8155208637727942E-005 + 222.65999999999997 -9.9684343509093610E-005 + 222.71999999999997 -1.0111629752896773E-004 + 222.77999999999997 -1.0245124375232849E-004 + 222.83999999999997 -1.0368954049320870E-004 + 222.89999999999998 -1.0483166722724660E-004 + 222.95999999999998 -1.0587825626268188E-004 + 223.01999999999998 -1.0683007881176341E-004 + 223.07999999999998 -1.0768803304577044E-004 + 223.13999999999999 -1.0845315002188336E-004 + 223.19999999999999 -1.0912659935748160E-004 + 223.25999999999999 -1.0970966948499983E-004 + 223.31999999999999 -1.1020375923349935E-004 + 223.38000000000000 -1.1061039182337782E-004 + 223.44000000000000 -1.1093121535773110E-004 + 223.50000000000000 -1.1116797655009930E-004 + 223.56000000000000 -1.1132252919084155E-004 + 223.62000000000000 -1.1139682393965818E-004 + 223.68000000000001 -1.1139290494726925E-004 + 223.74000000000001 -1.1131289759349166E-004 + 223.80000000000001 -1.1115899534721607E-004 + 223.86000000000001 -1.1093346812773263E-004 + 223.92000000000002 -1.1063863349512279E-004 + 223.98000000000002 -1.1027685321789667E-004 + 224.03999999999996 -1.0985053043535452E-004 + 224.09999999999997 -1.0936208468844478E-004 + 224.15999999999997 -1.0881397674266516E-004 + 224.21999999999997 -1.0820866080494461E-004 + 224.27999999999997 -1.0754860794587071E-004 + 224.33999999999997 -1.0683630852011936E-004 + 224.39999999999998 -1.0607422894392506E-004 + 224.45999999999998 -1.0526484105155268E-004 + 224.51999999999998 -1.0441060302314497E-004 + 224.57999999999998 -1.0351398444759451E-004 + 224.63999999999999 -1.0257740573321253E-004 + 224.69999999999999 -1.0160328681290169E-004 + 224.75999999999999 -1.0059401443018593E-004 + 224.81999999999999 -9.9551952369163318E-005 + 224.88000000000000 -9.8479423241258247E-005 + 224.94000000000000 -9.7378710711950610E-005 + 225.00000000000000 -9.6252062755664854E-005 + 225.06000000000000 -9.5101670005007580E-005 + 225.12000000000000 -9.3929666216870070E-005 + 225.18000000000001 -9.2738132327327215E-005 + 225.24000000000001 -9.1529104070077342E-005 + 225.30000000000001 -9.0304540598285817E-005 + 225.36000000000001 -8.9066351307060635E-005 + 225.42000000000002 -8.7816382094488185E-005 + 225.48000000000002 -8.6556432934538428E-005 + 225.53999999999996 -8.5288240975337409E-005 + 225.59999999999997 -8.4013489599691772E-005 + 225.65999999999997 -8.2733827162505776E-005 + 225.71999999999997 -8.1450834215818861E-005 + 225.77999999999997 -8.0166060032801963E-005 + 225.83999999999997 -7.8880995638443561E-005 + 225.89999999999998 -7.7597082735357664E-005 + 225.95999999999998 -7.6315733454831270E-005 + 226.01999999999998 -7.5038277070570055E-005 + 226.07999999999998 -7.3766016867531729E-005 + 226.13999999999999 -7.2500178707019479E-005 + 226.19999999999999 -7.1241930825483279E-005 + 226.25999999999999 -6.9992402445531588E-005 + 226.31999999999999 -6.8752630573249264E-005 + 226.38000000000000 -6.7523604630695863E-005 + 226.44000000000000 -6.6306243912395447E-005 + 226.50000000000000 -6.5101425581634575E-005 + 226.56000000000000 -6.3909959837788258E-005 + 226.62000000000000 -6.2732604381529898E-005 + 226.68000000000001 -6.1570090829644229E-005 + 226.74000000000001 -6.0423099580491735E-005 + 226.80000000000001 -5.9292281589027704E-005 + 226.86000000000001 -5.8178269478655595E-005 + 226.92000000000002 -5.7081678328875333E-005 + 226.98000000000002 -5.6003108960144048E-005 + 227.03999999999996 -5.4943149193013133E-005 + 227.09999999999997 -5.3902369375731966E-005 + 227.15999999999997 -5.2881343994220842E-005 + 227.21999999999997 -5.1880618660714920E-005 + 227.27999999999997 -5.0900735010061241E-005 + 227.33999999999997 -4.9942200076998342E-005 + 227.39999999999998 -4.9005500435691485E-005 + 227.45999999999998 -4.8091082305411832E-005 + 227.51999999999998 -4.7199355845546836E-005 + 227.57999999999998 -4.6330682405091465E-005 + 227.63999999999999 -4.5485379930601596E-005 + 227.69999999999999 -4.4663711415775183E-005 + 227.75999999999999 -4.3865879384966221E-005 + 227.81999999999999 -4.3092035987491450E-005 + 227.88000000000000 -4.2342280377719850E-005 + 227.94000000000000 -4.1616665805273344E-005 + 228.00000000000000 -4.0915185253906471E-005 + 228.06000000000000 -4.0237801511199832E-005 + 228.12000000000000 -3.9584429944222835E-005 + 228.18000000000001 -3.8954957668992020E-005 + 228.24000000000001 -3.8349234436560573E-005 + 228.30000000000001 -3.7767086550919087E-005 + 228.36000000000001 -3.7208318570952360E-005 + 228.42000000000002 -3.6672706332247327E-005 + 228.48000000000002 -3.6160009858124218E-005 + 228.53999999999996 -3.5669969262211230E-005 + 228.59999999999997 -3.5202298269197453E-005 + 228.65999999999997 -3.4756690263523190E-005 + 228.71999999999997 -3.4332809493406357E-005 + 228.77999999999997 -3.3930298861389157E-005 + 228.83999999999997 -3.3548773338860768E-005 + 228.89999999999998 -3.3187816460945407E-005 + 228.95999999999998 -3.2846977757940039E-005 + 229.01999999999998 -3.2525775898186532E-005 + 229.07999999999998 -3.2223699071747043E-005 + 229.13999999999999 -3.1940206506859860E-005 + 229.19999999999999 -3.1674719753294090E-005 + 229.25999999999999 -3.1426639002738635E-005 + 229.31999999999999 -3.1195334769319086E-005 + 229.38000000000000 -3.0980154650231089E-005 + 229.44000000000000 -3.0780423166586130E-005 + 229.50000000000000 -3.0595445732119509E-005 + 229.56000000000000 -3.0424524549538919E-005 + 229.62000000000000 -3.0266946173620144E-005 + 229.68000000000001 -3.0121995756989307E-005 + 229.74000000000001 -2.9988964308666106E-005 + 229.80000000000001 -2.9867145500280485E-005 + 229.86000000000001 -2.9755852319801585E-005 + 229.92000000000002 -2.9654410210105773E-005 + 229.97999999999996 -2.9562173030678089E-005 + 230.03999999999996 -2.9478524102583636E-005 + 230.09999999999997 -2.9402877003682120E-005 + 230.15999999999997 -2.9334685027768923E-005 + 230.21999999999997 -2.9273439661534856E-005 + 230.27999999999997 -2.9218667887920571E-005 + 230.33999999999997 -2.9169942010317723E-005 + 230.39999999999998 -2.9126872278580091E-005 + 230.45999999999998 -2.9089100607307857E-005 + 230.51999999999998 -2.9056305275579939E-005 + 230.57999999999998 -2.9028190126767619E-005 + 230.63999999999999 -2.9004481698074382E-005 + 230.69999999999999 -2.8984926430619128E-005 + 230.75999999999999 -2.8969281265024922E-005 + 230.81999999999999 -2.8957310558286282E-005 + 230.88000000000000 -2.8948784122544813E-005 + 230.94000000000000 -2.8943474314849648E-005 + 231.00000000000000 -2.8941152778579765E-005 + 231.06000000000000 -2.8941592107586973E-005 + 231.12000000000000 -2.8944571887030244E-005 + 231.18000000000001 -2.8949869746113506E-005 + 231.24000000000001 -2.8957277275780726E-005 + 231.30000000000001 -2.8966596672622901E-005 + 231.36000000000001 -2.8977646634606968E-005 + 231.42000000000002 -2.8990266593833230E-005 + 231.47999999999996 -2.9004319736924761E-005 + 231.53999999999996 -2.9019693564021923E-005 + 231.59999999999997 -2.9036305395141773E-005 + 231.65999999999997 -2.9054090468507014E-005 + 231.71999999999997 -2.9073011038081210E-005 + 231.77999999999997 -2.9093043295505589E-005 + 231.83999999999997 -2.9114180952066739E-005 + 231.89999999999998 -2.9136422291774215E-005 + 231.95999999999998 -2.9159765147617977E-005 + 232.01999999999998 -2.9184204991360340E-005 + 232.07999999999998 -2.9209722315917251E-005 + 232.13999999999999 -2.9236283950858577E-005 + 232.19999999999999 -2.9263835060590698E-005 + 232.25999999999999 -2.9292302853745337E-005 + 232.31999999999999 -2.9321593338182242E-005 + 232.38000000000000 -2.9351592586237059E-005 + 232.44000000000000 -2.9382174475077382E-005 + 232.50000000000000 -2.9413200755946512E-005 + 232.56000000000000 -2.9444526655183166E-005 + 232.62000000000000 -2.9476009884163655E-005 + 232.68000000000001 -2.9507514599845138E-005 + 232.74000000000001 -2.9538913360759394E-005 + 232.80000000000001 -2.9570094475887501E-005 + 232.86000000000001 -2.9600964188937968E-005 + 232.92000000000002 -2.9631443051934649E-005 + 232.97999999999996 -2.9661471840078137E-005 + 233.03999999999996 -2.9691000913044540E-005 + 233.09999999999997 -2.9719993049420873E-005 + 233.15999999999997 -2.9748417953098265E-005 + 233.21999999999997 -2.9776243606434505E-005 + 233.27999999999997 -2.9803434411884593E-005 + 233.33999999999997 -2.9829946483446328E-005 + 233.39999999999998 -2.9855723027351557E-005 + 233.45999999999998 -2.9880695857327857E-005 + 233.51999999999998 -2.9904780632985195E-005 + 233.57999999999998 -2.9927884685959825E-005 + 233.63999999999999 -2.9949902814546952E-005 + 233.69999999999999 -2.9970725922352560E-005 + 233.75999999999999 -2.9990246831704157E-005 + 233.81999999999999 -3.0008365210101230E-005 + 233.88000000000000 -3.0024994590077098E-005 + 233.94000000000000 -3.0040069459638108E-005 + 234.00000000000000 -3.0053546738005254E-005 + 234.06000000000000 -3.0065411657117524E-005 + 234.12000000000000 -3.0075681546790120E-005 + 234.18000000000001 -3.0084398815795267E-005 + 234.24000000000001 -3.0091632912356592E-005 + 234.30000000000001 -3.0097480644447531E-005 + 234.36000000000001 -3.0102053575494190E-005 + 234.42000000000002 -3.0105472074353723E-005 + 234.47999999999996 -3.0107861605646864E-005 + 234.53999999999996 -3.0109347400792855E-005 + 234.59999999999997 -3.0110035430138405E-005 + 234.65999999999997 -3.0110016473836836E-005 + 234.71999999999997 -3.0109355775838321E-005 + 234.77999999999997 -3.0108089774094046E-005 + 234.83999999999997 -3.0106229899890804E-005 + 234.89999999999998 -3.0103748703721053E-005 + 234.95999999999998 -3.0100595507373282E-005 + 235.01999999999998 -3.0096689124683666E-005 + 235.07999999999998 -3.0091926144887486E-005 + 235.13999999999999 -3.0086189127466634E-005 + 235.19999999999999 -3.0079341747002860E-005 + 235.25999999999999 -3.0071244450603420E-005 + 235.31999999999999 -3.0061755564171689E-005 + 235.38000000000000 -3.0050738868368376E-005 + 235.44000000000000 -3.0038059564796237E-005 + 235.50000000000000 -3.0023599053041687E-005 + 235.56000000000000 -3.0007246589837033E-005 + 235.62000000000000 -2.9988904122590517E-005 + 235.68000000000001 -2.9968482300692268E-005 + 235.74000000000001 -2.9945904757312024E-005 + 235.80000000000001 -2.9921100778843631E-005 + 235.86000000000001 -2.9894005659383015E-005 + 235.92000000000002 -2.9864554250969848E-005 + 235.97999999999996 -2.9832684653143334E-005 + 236.03999999999996 -2.9798325902438718E-005 + 236.09999999999997 -2.9761408208272626E-005 + 236.15999999999997 -2.9721847868737725E-005 + 236.21999999999997 -2.9679559052351777E-005 + 236.27999999999997 -2.9634444210191150E-005 + 236.33999999999997 -2.9586405186030504E-005 + 236.39999999999998 -2.9535330503848008E-005 + 236.45999999999998 -2.9481114472199143E-005 + 236.51999999999998 -2.9423645595761823E-005 + 236.57999999999998 -2.9362821590791823E-005 + 236.63999999999999 -2.9298546763799766E-005 + 236.69999999999999 -2.9230739239608719E-005 + 236.75999999999999 -2.9159331857417109E-005 + 236.81999999999999 -2.9084280003454730E-005 + 236.88000000000000 -2.9005566097261025E-005 + 236.94000000000000 -2.8923198754991077E-005 + 237.00000000000000 -2.8837219947785613E-005 + 237.06000000000000 -2.8747702418620072E-005 + 237.12000000000000 -2.8654754945895739E-005 + 237.18000000000001 -2.8558519736877989E-005 + 237.24000000000001 -2.8459168703703835E-005 + 237.30000000000001 -2.8356907093434888E-005 + 237.36000000000001 -2.8251964252392760E-005 + 237.42000000000002 -2.8144592341266721E-005 + 237.47999999999996 -2.8035059462683870E-005 + 237.53999999999996 -2.7923645694290394E-005 + 237.59999999999997 -2.7810634641565384E-005 + 237.65999999999997 -2.7696309768631875E-005 + 237.71999999999997 -2.7580946853714988E-005 + 237.77999999999997 -2.7464809457171254E-005 + 237.83999999999997 -2.7348149182215100E-005 + 237.89999999999998 -2.7231198739843580E-005 + 237.95999999999998 -2.7114171304697537E-005 + 238.01999999999998 -2.6997263228204502E-005 + 238.07999999999998 -2.6880651429745091E-005 + 238.13999999999999 -2.6764502073831190E-005 + 238.19999999999999 -2.6648967356379123E-005 + 238.25999999999999 -2.6534191560075918E-005 + 238.31999999999999 -2.6420316606636071E-005 + 238.38000000000000 -2.6307487711061956E-005 + 238.44000000000000 -2.6195847846511144E-005 + 238.50000000000000 -2.6085550416661209E-005 + 238.56000000000000 -2.5976751482103287E-005 + 238.62000000000000 -2.5869612323385212E-005 + 238.68000000000001 -2.5764302684293641E-005 + 238.74000000000001 -2.5660986004918157E-005 + 238.80000000000001 -2.5559824144849008E-005 + 238.86000000000001 -2.5460969979318383E-005 + 238.92000000000002 -2.5364557998078922E-005 + 238.97999999999996 -2.5270704674719733E-005 + 239.03999999999996 -2.5179499010233692E-005 + 239.09999999999997 -2.5091000176933671E-005 + 239.15999999999997 -2.5005233989700220E-005 + 239.21999999999997 -2.4922193914662983E-005 + 239.27999999999997 -2.4841838468576387E-005 + 239.33999999999997 -2.4764097435403518E-005 + 239.39999999999998 -2.4688872051796041E-005 + 239.45999999999998 -2.4616046339328262E-005 + 239.51999999999998 -2.4545488169491856E-005 + 239.57999999999998 -2.4477058080651931E-005 + 239.63999999999999 -2.4410619102435542E-005 + 239.69999999999999 -2.4346041319788266E-005 + 239.75999999999999 -2.4283208459946331E-005 + 239.81999999999999 -2.4222020779145690E-005 + 239.88000000000000 -2.4162405731858304E-005 + 239.94000000000000 -2.4104305159070578E-005 + 240.00000000000000 -2.4047690410600698E-005 + 240.06000000000000 -2.3992552220503642E-005 + 240.12000000000000 -2.3938898169260788E-005 + 240.18000000000001 -2.3886747206601051E-005 + 240.24000000000001 -2.3836133825818862E-005 + 240.30000000000001 -2.3787090272135728E-005 + 240.36000000000001 -2.3739650285290108E-005 + 240.42000000000002 -2.3693842619411137E-005 + 240.47999999999996 -2.3649691577098608E-005 + 240.53999999999996 -2.3607209297276155E-005 + 240.59999999999997 -2.3566400055160519E-005 + 240.65999999999997 -2.3527263795767504E-005 + 240.71999999999997 -2.3489789337043253E-005 + 240.77999999999997 -2.3453964811639019E-005 + 240.83999999999997 -2.3419781027460676E-005 + 240.89999999999998 -2.3387232593386783E-005 + 240.95999999999998 -2.3356320374834793E-005 + 241.01999999999998 -2.3327058706835856E-005 + 241.07999999999998 -2.3299470986819940E-005 + 241.13999999999999 -2.3273592967809415E-005 + 241.19999999999999 -2.3249477284801454E-005 + 241.25999999999999 -2.3227182173256375E-005 + 241.31999999999999 -2.3206778014778966E-005 + 241.38000000000000 -2.3188331915709533E-005 + 241.44000000000000 -2.3171912673762279E-005 + 241.50000000000000 -2.3157586342924306E-005 + 241.56000000000000 -2.3145403374586977E-005 + 241.62000000000000 -2.3135399717632940E-005 + 241.68000000000001 -2.3127595143534576E-005 + 241.74000000000001 -2.3121983578013166E-005 + 241.80000000000001 -2.3118538789069425E-005 + 241.86000000000001 -2.3117210067644075E-005 + 241.92000000000002 -2.3117924956851999E-005 + 241.97999999999996 -2.3120590189362177E-005 + 242.03999999999996 -2.3125090733558805E-005 + 242.09999999999997 -2.3131301999858216E-005 + 242.15999999999997 -2.3139082925183847E-005 + 242.21999999999997 -2.3148287494758918E-005 + 242.27999999999997 -2.3158762467373389E-005 + 242.33999999999997 -2.3170351993270275E-005 + 242.39999999999998 -2.3182902908785789E-005 + 242.45999999999998 -2.3196259371460039E-005 + 242.51999999999998 -2.3210272518468058E-005 + 242.57999999999998 -2.3224791545555351E-005 + 242.63999999999999 -2.3239669578633813E-005 + 242.69999999999999 -2.3254766643336868E-005 + 242.75999999999999 -2.3269937325962161E-005 + 242.81999999999999 -2.3285041257790697E-005 + 242.88000000000000 -2.3299938591079280E-005 + 242.94000000000000 -2.3314489861185711E-005 + 243.00000000000000 -2.3328558063448867E-005 + 243.06000000000000 -2.3342006719672054E-005 + 243.12000000000000 -2.3354703864725961E-005 + 243.18000000000001 -2.3366522429152554E-005 + 243.24000000000001 -2.3377344430131385E-005 + 243.30000000000001 -2.3387056157840227E-005 + 243.36000000000001 -2.3395559973489513E-005 + 243.42000000000002 -2.3402768035575768E-005 + 243.47999999999996 -2.3408606685718299E-005 + 243.53999999999996 -2.3413020961053037E-005 + 243.59999999999997 -2.3415969299021241E-005 + 243.65999999999997 -2.3417426544949761E-005 + 243.71999999999997 -2.3417390268585691E-005 + 243.77999999999997 -2.3415865695624109E-005 + 243.83999999999997 -2.3412879411576223E-005 + 243.89999999999998 -2.3408470720662912E-005 + 243.95999999999998 -2.3402691859352690E-005 + 244.01999999999998 -2.3395607562978855E-005 + 244.07999999999998 -2.3387294284883217E-005 + 244.13999999999999 -2.3377837888054752E-005 + 244.19999999999999 -2.3367335001439737E-005 + 244.25999999999999 -2.3355885191274822E-005 + 244.31999999999999 -2.3343597799828106E-005 + 244.38000000000000 -2.3330586205743922E-005 + 244.44000000000000 -2.3316968403540858E-005 + 244.50000000000000 -2.3302864797741080E-005 + 244.56000000000000 -2.3288396779534269E-005 + 244.62000000000000 -2.3273686767466957E-005 + 244.68000000000001 -2.3258854395281097E-005 + 244.74000000000001 -2.3244018205779037E-005 + 244.80000000000001 -2.3229294541018675E-005 + 244.86000000000001 -2.3214788333379382E-005 + 244.92000000000002 -2.3200600379170263E-005 + 244.97999999999996 -2.3186827274442893E-005 + 245.03999999999996 -2.3173550092249001E-005 + 245.09999999999997 -2.3160843868856017E-005 + 245.15999999999997 -2.3148775305453456E-005 + 245.21999999999997 -2.3137396261997423E-005 + 245.27999999999997 -2.3126749851152706E-005 + 245.33999999999997 -2.3116870554555500E-005 + 245.39999999999998 -2.3107776406033287E-005 + 245.45999999999998 -2.3099481008346560E-005 + 245.51999999999998 -2.3091981934743917E-005 + 245.57999999999998 -2.3085266991300505E-005 + 245.63999999999999 -2.3079311009548156E-005 + 245.69999999999999 -2.3074076777326528E-005 + 245.75999999999999 -2.3069513673680061E-005 + 245.81999999999999 -2.3065556117058684E-005 + 245.88000000000000 -2.3062127689215416E-005 + 245.94000000000000 -2.3059135530158816E-005 + 246.00000000000000 -2.3056473459474975E-005 + 246.06000000000000 -2.3054023629476519E-005 + 246.12000000000000 -2.3051657439991333E-005 + 246.18000000000001 -2.3049234578757907E-005 + 246.24000000000001 -2.3046616064430169E-005 + 246.30000000000001 -2.3043655327744137E-005 + 246.36000000000001 -2.3040210018976703E-005 + 246.42000000000002 -2.3036143988461011E-005 + 246.47999999999996 -2.3031333502272592E-005 + 246.53999999999996 -2.3025665539005380E-005 + 246.59999999999997 -2.3019049519675515E-005 + 246.65999999999997 -2.3011416086248674E-005 + 246.71999999999997 -2.3002719550282789E-005 + 246.77999999999997 -2.2992942806339139E-005 + 246.83999999999997 -2.2982093905671092E-005 + 246.89999999999998 -2.2970205462896956E-005 + 246.95999999999998 -2.2957333491416683E-005 + 247.01999999999998 -2.2943557624563492E-005 + 247.07999999999998 -2.2928974473979301E-005 + 247.13999999999999 -2.2913699076262636E-005 + 247.19999999999999 -2.2897852907698391E-005 + 247.25999999999999 -2.2881569095432180E-005 + 247.31999999999999 -2.2864980062715909E-005 + 247.38000000000000 -2.2848223218883639E-005 + 247.44000000000000 -2.2831431078407517E-005 + 247.50000000000000 -2.2814737188087957E-005 + 247.56000000000000 -2.2798267854277357E-005 + 247.62000000000000 -2.2782145097996450E-005 + 247.68000000000001 -2.2766487405994344E-005 + 247.74000000000001 -2.2751413969902902E-005 + 247.80000000000001 -2.2737036518838188E-005 + 247.86000000000001 -2.2723468966734010E-005 + 247.92000000000002 -2.2710823892059076E-005 + 247.97999999999996 -2.2699209474177310E-005 + 248.03999999999996 -2.2688739883970772E-005 + 248.09999999999997 -2.2679523907405442E-005 + 248.15999999999997 -2.2671667736043406E-005 + 248.21999999999997 -2.2665273043492466E-005 + 248.27999999999997 -2.2660431127394564E-005 + 248.33999999999997 -2.2657223593729547E-005 + 248.39999999999998 -2.2655718738198849E-005 + 248.45999999999998 -2.2655962944007839E-005 + 248.51999999999998 -2.2657987731273342E-005 + 248.57999999999998 -2.2661795887408402E-005 + 248.63999999999999 -2.2667369055047304E-005 + 248.69999999999999 -2.2674664378954700E-005 + 248.75999999999999 -2.2683607357010828E-005 + 248.81999999999999 -2.2694102979154267E-005 + 248.88000000000000 -2.2706027671217161E-005 + 248.94000000000000 -2.2719237347337714E-005 + 249.00000000000000 -2.2733567608294256E-005 + 249.06000000000000 -2.2748834222666098E-005 + 249.12000000000000 -2.2764841314113645E-005 + 249.18000000000001 -2.2781381442433186E-005 + 249.24000000000001 -2.2798233971758174E-005 + 249.30000000000001 -2.2815177899531052E-005 + 249.36000000000001 -2.2831986630333570E-005 + 249.42000000000002 -2.2848433338572195E-005 + 249.47999999999996 -2.2864291380625835E-005 + 249.53999999999996 -2.2879337823328816E-005 + 249.59999999999997 -2.2893355032518747E-005 + 249.65999999999997 -2.2906128776412640E-005 + 249.71999999999997 -2.2917452206432674E-005 + 249.77999999999997 -2.2927129882959977E-005 + 249.83999999999997 -2.2934974078545726E-005 + 249.89999999999998 -2.2940811184668360E-005 + 249.95999999999998 -2.2944475518864450E-005 + 250.01999999999998 -2.2945820099900670E-005 + 250.07999999999998 -2.2944713340151901E-005 + 250.13999999999999 -2.2941036288049686E-005 + 250.19999999999999 -2.2934692277627721E-005 + 250.25999999999999 -2.2925601619495221E-005 + 250.31999999999999 -2.2913703101691942E-005 + 250.38000000000000 -2.2898954299248537E-005 + 250.44000000000000 -2.2881330501807074E-005 + 250.50000000000000 -2.2860821094699626E-005 + 250.56000000000000 -2.2837433924183794E-005 + 250.62000000000000 -2.2811188960537795E-005 + 250.68000000000001 -2.2782118017765092E-005 + 250.74000000000001 -2.2750262268292906E-005 + 250.80000000000001 -2.2715670971381570E-005 + 250.86000000000001 -2.2678401148267170E-005 + 250.92000000000002 -2.2638511883393558E-005 + 250.97999999999996 -2.2596068125946784E-005 + 251.03999999999996 -2.2551134243394773E-005 + 251.09999999999997 -2.2503776219344725E-005 + 251.15999999999997 -2.2454065470595168E-005 + 251.21999999999997 -2.2402072470755786E-005 + 251.27999999999997 -2.2347871457051925E-005 + 251.33999999999997 -2.2291538196528363E-005 + 251.39999999999998 -2.2233153698459222E-005 + 251.45999999999998 -2.2172798596272679E-005 + 251.51999999999998 -2.2110559638423477E-005 + 251.57999999999998 -2.2046525178525239E-005 + 251.63999999999999 -2.1980784839535023E-005 + 251.69999999999999 -2.1913430569022675E-005 + 251.75999999999999 -2.1844550113210355E-005 + 251.81999999999999 -2.1774231005474513E-005 + 251.88000000000000 -2.1702552077823209E-005 + 251.94000000000000 -2.1629587751700129E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000002.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000002.BXY.semd new file mode 100644 index 00000000..f739686e --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000002.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 -2.5511736853461428E-040 + 31.920000000000002 -7.7753821252659458E-040 + 31.980000000000004 -1.5821626241865702E-039 + 32.039999999999992 -2.6457700535565625E-039 + 32.099999999999994 -3.8393058742821241E-039 + 32.159999999999997 -5.0328414657181754E-039 + 32.219999999999999 -6.2263772864437369E-039 + 32.280000000000001 -7.2727982059294300E-039 + 32.340000000000003 -8.0976378699367553E-039 + 32.399999999999991 -8.4929650861105594E-039 + 32.459999999999994 -8.3483375174777028E-039 + 32.519999999999996 -7.5945941104874665E-039 + 32.579999999999998 -6.2188873153024529E-039 + 32.640000000000001 -4.2742073134746608E-039 + 32.700000000000003 -1.8838868689530407E-039 + 32.759999999999991 7.0495564358179520E-040 + 32.819999999999993 3.2937981561166311E-039 + 32.879999999999995 5.6558770116628040E-039 + 32.939999999999998 7.5027306439495185E-039 + 33.000000000000000 7.2574600998836122E-039 + 33.060000000000002 5.6767811595797287E-039 + 33.119999999999990 1.5342162981424058E-039 + 33.179999999999993 -5.4059274778753899E-039 + 33.239999999999995 -1.3640526154055483E-038 + 33.299999999999997 -2.2770457949137587E-038 + 33.359999999999999 -3.2464344032772970E-038 + 33.420000000000002 -4.1962500827851348E-038 + 33.480000000000004 -4.8407274175056818E-038 + 33.539999999999992 -4.9846066030675544E-038 + 33.599999999999994 -4.4379537446521621E-038 + 33.659999999999997 -3.1301153823550943E-038 + 33.719999999999999 -1.0836476425663923E-038 + 33.780000000000001 1.1638676300568079E-038 + 33.840000000000003 3.6588428960748082E-038 + 33.899999999999991 6.4551218142387209E-038 + 33.959999999999994 9.3165240835397182E-038 + 34.019999999999996 1.0566295837194844E-037 + 34.079999999999998 9.9913857322008525E-038 + 34.140000000000001 7.0089868494927616E-038 + 34.200000000000003 1.9157814823189177E-038 + 34.259999999999991 -4.1271013471260703E-038 + 34.319999999999993 -1.0904266973349388E-037 + 34.379999999999995 -1.8251848559713160E-037 + 34.439999999999998 -2.6006872487207349E-037 + 34.500000000000000 -3.2443457392434296E-037 + 34.560000000000002 -3.5795750491238332E-037 + 34.619999999999990 -3.5073846006728487E-037 + 34.679999999999993 -2.9434969816608281E-037 + 34.739999999999995 -1.9078039304111922E-037 + 34.799999999999997 -4.3885643262059815E-038 + 34.859999999999999 1.3907737991356460E-037 + 34.920000000000002 3.3607890906184921E-037 + 34.980000000000004 5.4138610889024617E-037 + 35.039999999999992 7.3947179529813600E-037 + 35.099999999999994 9.0854204249176812E-037 + 35.159999999999997 1.0265245018473626E-036 + 35.219999999999999 1.0780311700389222E-036 + 35.280000000000001 1.0451290509157914E-036 + 35.340000000000003 8.7954899375987951E-037 + 35.399999999999991 5.7739471195181277E-037 + 35.459999999999994 1.4490222289930796E-037 + 35.519999999999996 -3.9006884492911042E-037 + 35.579999999999998 -9.9738727995556088E-037 + 35.640000000000001 -1.6155201940103728E-036 + 35.700000000000003 -2.1621649618042212E-036 + 35.759999999999991 -2.5837257001116252E-036 + 35.819999999999993 -2.8355212171396601E-036 + 35.879999999999995 -2.8346545011140729E-036 + 35.939999999999998 -2.4301172568047982E-036 + 36.000000000000000 -1.6322730862778989E-036 + 36.060000000000002 -5.2091163409434444E-037 + 36.119999999999990 7.8568487690227442E-037 + 36.179999999999993 2.2052589334554887E-036 + 36.239999999999995 3.6347906784426779E-036 + 36.299999999999997 4.9407551410760876E-036 + 36.359999999999999 6.0244273720191536E-036 + 36.420000000000002 6.7053410934398043E-036 + 36.479999999999990 6.8468269062694155E-036 + 36.539999999999992 6.2844510406961702E-036 + 36.599999999999994 4.9955042475306595E-036 + 36.659999999999997 2.9899005631100310E-036 + 36.719999999999999 2.9842409573703245E-037 + 36.780000000000001 -2.9619408771566037E-036 + 36.840000000000003 -6.6254275571642194E-036 + 36.899999999999991 -1.0418219364617375E-035 + 36.959999999999994 -1.3887104305074571E-035 + 37.019999999999996 -1.6633111469770714E-035 + 37.079999999999998 -1.8285122970112505E-035 + 37.140000000000001 -1.8441072943899463E-035 + 37.200000000000003 -1.6801474765876814E-035 + 37.259999999999991 -1.3180057436688032E-035 + 37.319999999999993 -7.5088603844099633E-036 + 37.379999999999995 2.3526802822701266E-037 + 37.439999999999998 1.0045010976883597E-035 + 37.500000000000000 2.1460656333220782E-035 + 37.560000000000002 3.3872202479783648E-035 + 37.619999999999990 4.6394771243131659E-035 + 37.679999999999993 5.8016490872182084E-035 + 37.739999999999995 6.7439560933749214E-035 + 37.799999999999997 7.3445077605781445E-035 + 37.859999999999999 7.4821374652985024E-035 + 37.920000000000002 7.0541808301194412E-035 + 37.979999999999990 5.9604815897845022E-035 + 38.039999999999992 4.1222184753341918E-035 + 38.099999999999994 1.4969775160641932E-035 + 38.159999999999997 -1.8896568305083177E-035 + 38.219999999999999 -5.9830780987970941E-035 + 38.280000000000001 -1.0657933018604735E-034 + 38.340000000000003 -1.5719561441322058E-034 + 38.399999999999991 -2.0909059555523675E-034 + 38.459999999999994 -2.5903066445344734E-034 + 38.519999999999996 -3.0323758075661228E-034 + 38.579999999999998 -3.3753291263840610E-034 + 38.640000000000001 -3.5752149154734433E-034 + 38.700000000000003 -3.5891762533894060E-034 + 38.759999999999991 -3.3771748066670968E-034 + 38.819999999999993 -2.9065077623448473E-034 + 38.879999999999995 -2.1540564825207532E-034 + 38.939999999999998 -1.1096923322451322E-034 + 39.000000000000000 2.1905526659258194E-035 + 39.060000000000002 1.8034752252062865E-034 + 39.119999999999990 3.5934939722133595E-034 + 39.179999999999993 5.5147737106241659E-034 + 39.239999999999995 7.4691150072771877E-034 + 39.299999999999997 9.3361562269444271E-034 + 39.359999999999999 1.0976332033795614E-033 + 39.420000000000002 1.2235924885465301E-033 + 39.479999999999990 1.2954487967830276E-033 + 39.539999999999992 1.2973640806559493E-033 + 39.599999999999994 1.2147422579035009E-033 + 39.659999999999997 1.0354359018117466E-033 + 39.719999999999999 7.5105894175566832E-034 + 39.780000000000001 3.5822214127607812E-034 + 39.840000000000003 -1.4019637531415218E-034 + 39.899999999999991 -7.3396593286213167E-034 + 39.959999999999994 -1.4046555763935276E-033 + 40.019999999999996 -2.1251587895653816E-033 + 40.079999999999998 -2.8596393455096239E-033 + 40.140000000000001 -3.5640602166675699E-033 + 40.200000000000003 -4.1873149793287568E-033 + 40.259999999999991 -4.6730370331917270E-033 + 40.319999999999993 -4.9620990342488422E-033 + 40.379999999999995 -4.9957828005077328E-033 + 40.439999999999998 -4.7195211837237174E-033 + 40.500000000000000 -4.0872508326962420E-033 + 40.560000000000002 -3.0659298247934770E-033 + 40.619999999999990 -1.6402583987932459E-033 + 40.679999999999993 1.8282396985554849E-034 + 40.739999999999995 2.3701183881939832E-033 + 40.799999999999997 4.8589847516296677E-033 + 40.859999999999999 7.5553648659044901E-033 + 40.920000000000002 1.0333358511605936E-032 + 40.979999999999990 1.3036684568896345E-032 + 41.039999999999992 1.5482311912430764E-032 + 41.099999999999994 1.7466454233077881E-032 + 41.159999999999997 1.8773040471587710E-032 + 41.219999999999999 1.9184549776159557E-032 + 41.280000000000001 1.8495116915577235E-032 + 41.340000000000003 1.6525474805038957E-032 + 41.399999999999991 1.3139171775853950E-032 + 41.459999999999994 8.2593866773674417E-033 + 41.519999999999996 1.8853586897492006E-033 + 41.579999999999998 -5.8925878309589759E-033 + 41.640000000000001 -1.4880629399882507E-032 + 41.700000000000003 -2.4772899229993557E-032 + 41.759999999999991 -3.5148055358112274E-032 + 41.819999999999993 -4.5472162152741992E-032 + 41.879999999999995 -5.5108914674494753E-032 + 41.939999999999998 -6.3338044475617939E-032 + 42.000000000000000 -6.9382286823140689E-032 + 42.060000000000002 -7.2443015697496524E-032 + 42.119999999999990 -7.1744029375529812E-032 + 42.179999999999993 -6.6582433737573749E-032 + 42.239999999999995 -5.6384944817704998E-032 + 42.299999999999997 -4.0767290954867533E-032 + 42.359999999999999 -1.9593796330394087E-032 + 42.420000000000002 6.9663715146786437E-033 + 42.479999999999990 3.8390266824058251E-032 + 42.539999999999992 7.3763774394906534E-032 + 42.599999999999994 1.1176022174715040E-031 + 42.659999999999997 1.5063921293282811E-031 + 42.719999999999999 1.8826960349128863E-031 + 42.780000000000001 2.2217989129813121E-031 + 42.840000000000003 2.4963818172486850E-031 + 42.899999999999991 2.6776254114304035E-031 + 42.959999999999994 2.7366129225612660E-031 + 43.019999999999996 2.6460035796071619E-031 + 43.079999999999998 2.3819332083996274E-031 + 43.140000000000001 1.9260728661684826E-031 + 43.200000000000003 1.2677550205472557E-031 + 43.259999999999991 4.0605872034818341E-032 + 43.319999999999993 -6.4827577087455629E-032 + 43.379999999999995 -1.8712439921539784E-031 + 43.439999999999998 -3.2244408004221748E-031 + 43.500000000000000 -4.6545341106536131E-031 + 43.560000000000002 -6.0935035628079700E-031 + 43.619999999999990 -7.4597674510232890E-031 + 43.679999999999993 -8.6603003771132025E-031 + 43.739999999999995 -9.5938048847619830E-031 + 43.799999999999997 -1.0154953943788817E-030 + 43.859999999999999 -1.0239662107761322E-030 + 43.920000000000002 -9.7512754582179739E-031 + 43.979999999999990 -8.6075022618695685E-031 + 44.039999999999992 -6.7478223059019900E-031 + 44.099999999999994 -4.1410576525657341E-031 + 44.159999999999997 -7.9268518142729361E-032 + 44.219999999999999 3.2485479225861545E-031 + 44.280000000000001 7.8852254403491030E-031 + 44.340000000000003 1.2967606643410680E-030 + 44.399999999999991 1.8292234619689528E-030 + 44.459999999999994 2.3603328266145795E-030 + 44.519999999999996 2.8597364267326532E-030 + 44.579999999999998 3.2931213818849191E-030 + 44.640000000000001 3.6234022746217973E-030 + 44.700000000000003 3.8122858527614365E-030 + 44.759999999999991 3.8221951001799838E-030 + 44.819999999999993 3.6185108836905371E-030 + 44.879999999999995 3.1720675469395431E-030 + 44.939999999999998 2.4618047947442781E-030 + 45.000000000000000 1.4774620309417740E-030 + 45.060000000000002 2.2217059646323182E-031 + 45.119999999999990 -1.2852206110469449E-030 + 45.179999999999993 -3.0082594185438161E-030 + 45.239999999999995 -4.8916370003830979E-030 + 45.299999999999997 -6.8607468677027182E-030 + 45.359999999999999 -8.8222335180800146E-030 + 45.420000000000002 -1.0665677454133843E-029 + 45.479999999999990 -1.2266542338619308E-029 + 45.539999999999992 -1.3490435787158072E-029 + 45.599999999999994 -1.4198708263334859E-029 + 45.659999999999997 -1.4255308360012160E-029 + 45.719999999999999 -1.3534763473018879E-029 + 45.780000000000001 -1.1931037059427838E-029 + 45.840000000000003 -9.3669444761893348E-030 + 45.899999999999991 -5.8037148449729447E-030 + 45.959999999999994 -1.2501909993385330E-030 + 46.019999999999996 4.2288887641637463E-030 + 46.079999999999998 1.0506156746121943E-029 + 46.140000000000001 1.7387074293773089E-029 + 46.200000000000003 2.4608217095041582E-029 + 46.259999999999991 3.1839012842067678E-029 + 46.319999999999993 3.8687426761103656E-029 + 46.379999999999995 4.4710025810392544E-029 + 46.439999999999998 4.9426659502643241E-029 + 46.500000000000000 5.2339762066180622E-029 + 46.560000000000002 5.2958094950547466E-029 + 46.619999999999990 5.0824418120517178E-029 + 46.679999999999993 4.5546327366498501E-029 + 46.739999999999995 3.6829118113411037E-029 + 46.799999999999997 2.4509307046557567E-029 + 46.859999999999999 8.5871269860715409E-030 + 46.920000000000002 -1.0743921420853340E-029 + 46.979999999999990 -3.3072643147080077E-029 + 47.039999999999992 -5.7752873428106496E-029 + 47.099999999999994 -8.3895773409243663E-029 + 47.159999999999997 -1.1037357512172918E-028 + 47.219999999999999 -1.3583674709285331E-028 + 47.280000000000001 -1.5874589130835379E-028 + 47.340000000000003 -1.7741940939864344E-028 + 47.399999999999991 -1.9009706788652409E-028 + 47.459999999999994 -1.9501894635789953E-028 + 47.519999999999996 -1.9051822498963057E-028 + 47.579999999999998 -1.7512549115375137E-028 + 47.640000000000001 -1.4768093932715634E-028 + 47.700000000000003 -1.0745009541598949E-028 + 47.759999999999991 -5.4237479500544731E-029 + 47.819999999999993 1.1507811758570900E-029 + 47.879999999999995 8.8601737969394711E-029 + 47.939999999999998 1.7505739149290503E-028 + 48.000000000000000 2.6804684384970906E-028 + 48.060000000000002 3.6389989159272082E-028 + 48.119999999999990 4.5814611296620309E-028 + 48.179999999999993 5.4560558323830435E-028 + 48.239999999999995 6.2053163134045766E-028 + 48.299999999999997 6.7680764093275356E-028 + 48.359999999999999 7.0819679804014217E-028 + 48.420000000000002 7.0864099276597424E-028 + 48.479999999999990 6.7260243818175020E-028 + 48.539999999999992 5.9543749043849046E-028 + 48.599999999999994 4.7378931519903349E-028 + 48.659999999999997 3.0598291819059734E-028 + 48.719999999999999 9.2402819169609288E-029 + 48.780000000000001 -1.6416875631776678E-028 + 48.840000000000003 -4.5827664226534713E-028 + 48.899999999999991 -7.8160473997586305E-028 + 48.959999999999994 -1.1229007438109563E-027 + 49.019999999999996 -1.4680338693312419E-027 + 49.079999999999998 -1.8002081161469069E-027 + 49.140000000000001 -2.1003449465950742E-027 + 49.200000000000003 -2.3476450112219808E-027 + 49.259999999999991 -2.5203325032527572E-027 + 49.319999999999993 -2.5965739621672866E-027 + 49.379999999999995 -2.5555581812530597E-027 + 49.439999999999998 -2.3787082325625152E-027 + 49.500000000000000 -2.0509906736369569E-027 + 49.560000000000002 -1.5622713922352308E-027 + 49.619999999999990 -9.0866220576857778E-028 + 49.679999999999993 -9.3787255935528404E-029 + 49.739999999999995 8.7010359231913049E-028 + 49.799999999999997 1.9612543444219910E-027 + 49.859999999999999 3.1478423560388620E-027 + 49.920000000000002 4.3878116940300799E-027 + 49.979999999999990 5.6291804243882187E-027 + 50.039999999999992 6.8108834034911376E-027 + 50.099999999999994 7.8642025519871659E-027 + 50.159999999999997 8.7148105185814923E-027 + 50.219999999999999 9.2854362370695005E-027 + 50.280000000000001 9.4991251884052966E-027 + 50.340000000000003 9.2830370669946305E-027 + 50.399999999999991 8.5726913952950761E-027 + 50.459999999999994 7.3165284757746640E-027 + 50.519999999999996 5.4806250022841984E-027 + 50.579999999999998 3.0533544206805581E-027 + 50.640000000000001 4.9774873098952722E-029 + 50.700000000000003 -3.4845274285640925E-027 + 50.759999999999991 -7.4704026976047536E-027 + 50.819999999999993 -1.1793195733596744E-026 + 50.879999999999995 -1.6302170591653298E-026 + 50.939999999999998 -2.0811566542720193E-026 + 51.000000000000000 -2.5103502153000419E-026 + 51.060000000000002 -2.8932902641992062E-026 + 51.119999999999990 -3.2034563956436280E-026 + 51.179999999999993 -3.4132370227784184E-026 + 51.239999999999995 -3.4950599922004869E-026 + 51.299999999999997 -3.4227139876621354E-026 + 51.359999999999999 -3.1728292994726345E-026 + 51.420000000000002 -2.7264766120440312E-026 + 51.479999999999990 -2.0708294379254316E-026 + 51.539999999999992 -1.2008181519781116E-026 + 51.599999999999994 -1.2070371519807225E-027 + 51.659999999999997 1.1545230849510399E-026 + 51.719999999999999 2.5980085920054114E-026 + 51.780000000000001 4.1702670769910710E-026 + 51.840000000000003 5.8188767867846060E-026 + 51.899999999999991 7.4787298821933347E-026 + 51.959999999999994 9.0729212414591635E-026 + 52.019999999999996 1.0514344365369225E-025 + 52.079999999999998 1.1708038722993481E-025 + 52.140000000000001 1.2554308405587101E-025 + 52.200000000000003 1.2952592902987651E-025 + 52.259999999999991 1.2806048852974307E-025 + 52.319999999999993 1.2026740065468503E-025 + 52.379999999999995 1.0541302408558295E-025 + 52.439999999999998 8.2969024393544784E-026 + 52.500000000000000 5.2672610461017117E-026 + 52.560000000000002 1.4584635782499436E-026 + 52.619999999999990 -3.0857314945415547E-026 + 52.679999999999993 -8.2794342590826643E-026 + 52.739999999999995 -1.3991375058708619E-025 + 52.799999999999997 -2.0043200741406849E-025 + 52.859999999999999 -2.6209690293394197E-025 + 52.920000000000002 -3.2221200498883425E-025 + 52.979999999999990 -3.7768586674333765E-025 + 53.039999999999992 -4.2510847220364403E-025 + 53.099999999999994 -4.6085568646195314E-025 + 53.159999999999997 -4.8122154587990098E-025 + 53.219999999999999 -4.8257743840871545E-025 + 53.280000000000001 -4.6155511582943797E-025 + 53.339999999999989 -4.1524903021039668E-025 + 53.399999999999991 -3.4143198013151396E-025 + 53.459999999999994 -2.3877639638519814E-025 + 53.519999999999996 -1.0707167931766868E-025 + 53.579999999999998 5.2573466378752365E-026 + 53.640000000000001 2.3755499626003770E-025 + 53.700000000000003 4.4363743095632280E-025 + 53.759999999999991 6.6487049039517597E-025 + 53.819999999999993 8.9357131496176562E-025 + 53.879999999999995 1.1203847235947230E-024 + 53.939999999999998 1.3344317095792333E-024 + 54.000000000000000 1.5235547155155740E-024 + 54.060000000000002 1.6746645538874960E-024 + 54.119999999999990 1.7741893041738499E-024 + 54.179999999999993 1.8086236400406734E-024 + 54.239999999999995 1.7651676410044320E-024 + 54.299999999999997 1.6324419011044135E-024 + 54.359999999999999 1.4012579342801323E-024 + 54.420000000000002 1.0654177318683707E-024 + 54.479999999999990 6.2250857879533989E-025 + 54.539999999999992 7.4658668525422868E-026 + 54.599999999999994 -5.7079270853252348E-025 + 54.659999999999997 -1.3007518557927175E-024 + 54.719999999999999 -2.0960041645890994E-024 + 54.780000000000001 -2.9310670399244755E-024 + 54.839999999999989 -3.7743105404973307E-024 + 54.899999999999991 -4.5883801482539231E-024 + 54.959999999999994 -5.3309538269048383E-024 + 55.019999999999996 -5.9558561464835515E-024 + 55.079999999999998 -6.4145325758901197E-024 + 55.140000000000001 -6.6578787430104441E-024 + 55.200000000000003 -6.6383976591956127E-024 + 55.259999999999991 -6.3126407540712977E-024 + 55.319999999999993 -5.6438652532637929E-024 + 55.379999999999995 -4.6048223866791291E-024 + 55.439999999999998 -3.1805730882279561E-024 + 55.500000000000000 -1.3712022571313094E-024 + 55.560000000000002 8.0570220019234898E-025 + 55.619999999999990 3.3129642796629367E-024 + 55.679999999999993 6.0922773604799035E-024 + 55.739999999999995 9.0633736530504863E-024 + 55.799999999999997 1.2124039529580107E-023 + 55.859999999999999 1.5151134484949542E-023 + 55.920000000000002 1.8002710446582176E-023 + 55.979999999999990 2.0521325519148938E-023 + 56.039999999999992 2.2538582721011389E-023 + 56.099999999999994 2.3880896268882776E-023 + 56.159999999999997 2.4376423371316573E-023 + 56.219999999999999 2.3863028631103318E-023 + 56.280000000000001 2.2197104494763184E-023 + 56.339999999999989 1.9262976601650348E-023 + 56.399999999999991 1.4982590853438088E-023 + 56.459999999999994 9.3250731903604885E-024 + 56.519999999999996 2.3157433079995957E-024 + 56.579999999999998 -5.9559275877206864E-024 + 56.640000000000001 -1.5329911866654420E-023 + 56.700000000000003 -2.5571297177894904E-023 + 56.759999999999991 -3.6368605486508550E-023 + 56.819999999999993 -4.7335168118647991E-023 + 56.879999999999995 -5.8014078587330122E-023 + 56.939999999999998 -6.7886965387260010E-023 + 57.000000000000000 -7.6386935964370251E-023 + 57.060000000000002 -8.2915657128122091E-023 + 57.119999999999990 -8.6864561230974256E-023 + 57.179999999999993 -8.7639909905911163E-023 + 57.239999999999995 -8.4691167004950761E-023 + 57.299999999999997 -7.7542038471212165E-023 + 57.359999999999999 -6.5823209851401745E-023 + 57.420000000000002 -4.9305630997439820E-023 + 57.479999999999990 -2.7932996543650990E-023 + 57.539999999999992 -1.8517944615822544E-024 + 57.599999999999994 2.8562552377204545E-023 + 57.659999999999997 6.2685518688898263E-023 + 57.719999999999999 9.9630848335602344E-023 + 57.780000000000001 1.3824738531746593E-022 + 57.839999999999989 1.7712684001439160E-022 + 57.899999999999991 2.1462400198451679E-022 + 57.959999999999994 2.4889042738126907E-022 + 58.019999999999996 2.7792236507108193E-022 + 58.079999999999998 2.9962285614106030E-022 + 58.140000000000001 3.1187775998961770E-022 + 58.200000000000003 3.1264440682318668E-022 + 58.259999999999991 3.0005122112937196E-022 + 58.319999999999993 2.7250546956928475E-022 + 58.379999999999995 2.2880581998698801E-022 + 58.439999999999998 1.6825571245271396E-022 + 58.500000000000000 9.0772528147834153E-023 + 58.560000000000002 -3.0127135250213193E-024 + 58.619999999999990 -1.1167080701367512E-022 + 58.679999999999993 -2.3291115541232250E-022 + 58.739999999999995 -3.6354575215986520E-022 + 58.799999999999997 -4.9948604813909725E-022 + 58.859999999999999 -6.3577837945392606E-022 + 58.920000000000002 -7.6668114618479215E-022 + 58.979999999999990 -8.8578855768500723E-022 + 59.039999999999992 -9.8620108430705608E-022 + 59.099999999999994 -1.0607434767849588E-021 + 59.159999999999997 -1.1022278556799771E-021 + 59.219999999999999 -1.1037577539897561E-021 + 59.280000000000001 -1.0590664474948261E-021 + 59.339999999999989 -9.6288002821931852E-022 + 59.399999999999991 -8.1129456456955642E-022 + 59.459999999999994 -6.0215263275529904E-022 + 59.519999999999996 -3.3540391648924985E-022 + 59.579999999999998 -1.3432744848168475E-023 + 59.640000000000001 3.5866646212643669E-022 + 59.700000000000003 7.7288542297643506E-022 + 59.759999999999991 1.2181875586472795E-021 + 59.819999999999993 1.6805018424607657E-021 + 59.879999999999995 2.1428422223123014E-021 + 59.939999999999998 2.5855638506117838E-021 + 60.000000000000000 2.9867683233187822E-021 + 60.060000000000002 3.3228606954121745E-021 + 60.119999999999990 3.5692615194409045E-021 + 60.179999999999993 3.7012644351114052E-021 + 60.239999999999995 3.6950266726578129E-021 + 60.299999999999997 3.5286728408682099E-021 + 60.359999999999999 3.1834832231926476E-021 + 60.420000000000002 2.6451283560806514E-021 + 60.479999999999990 1.9049105145022393E-021 + 60.539999999999992 9.6095760838007374E-022 + 60.599999999999994 -1.8068077683176827E-022 + 60.659999999999997 -1.5051030539163484E-021 + 60.719999999999999 -2.9878430882728651E-021 + 60.780000000000001 -4.5944501342968406E-021 + 60.839999999999989 -6.2804129433860398E-021 + 60.899999999999991 -7.9914846795522696E-021 + 60.959999999999994 -9.6644636195621197E-021 + 61.019999999999996 -1.1228456942980282E-020 + 61.079999999999998 -1.2606657424228732E-020 + 61.140000000000001 -1.3718635112465459E-020 + 61.200000000000003 -1.4483127257412847E-020 + 61.259999999999991 -1.4821290099023692E-020 + 61.319999999999993 -1.4660350500101243E-020 + 61.379999999999995 -1.3937561978617541E-020 + 61.439999999999998 -1.2604356643478709E-020 + 61.500000000000000 -1.0630545466085153E-020 + 61.560000000000002 -8.0083981936073255E-021 + 61.619999999999990 -4.7564217626161357E-021 + 61.679999999999993 -9.2262244957476332E-022 + 61.739999999999995 3.4129673019315093E-021 + 61.799999999999997 8.1367062815792276E-021 + 61.859999999999999 1.3100942048064790E-020 + 61.920000000000002 1.8124980760010559E-020 + 61.979999999999990 2.2997632702015318E-020 + 62.039999999999992 2.7481450564749038E-020 + 62.099999999999994 3.1318801773324077E-020 + 62.159999999999997 3.4239802675681488E-020 + 62.219999999999999 3.5972088656749725E-020 + 62.280000000000001 3.6252363900373194E-020 + 62.339999999999989 3.4839524243378025E-020 + 62.399999999999991 3.1529081998128024E-020 + 62.459999999999994 2.6168575478575861E-020 + 62.519999999999996 1.8673531738869286E-020 + 62.579999999999998 9.0433912577317127E-021 + 62.640000000000001 -2.6230786127523472E-021 + 62.700000000000003 -1.6113646241179511E-020 + 62.759999999999991 -3.1090346537737178E-020 + 62.819999999999993 -4.7079850623984240E-020 + 62.879999999999995 -6.3467028572730301E-020 + 62.939999999999998 -7.9492465763454666E-020 + 63.000000000000000 -9.4254348481725976E-020 + 63.060000000000002 -1.0671528457610122E-019 + 63.119999999999990 -1.1571392668201236E-019 + 63.179999999999993 -1.1998187927833327E-019 + 63.239999999999995 -1.1816531028567970E-019 + 63.299999999999997 -1.0885106395153624E-019 + 63.359999999999999 -9.0596178484302601E-020 + 63.420000000000002 -6.1959330645948884E-020 + 63.479999999999990 -2.1534016483053471E-020 + 63.539999999999992 3.2019999461129570E-020 + 63.599999999999994 9.9947901637753317E-020 + 63.659999999999997 1.8337673051581389E-019 + 63.719999999999999 2.8330064062412338E-019 + 63.780000000000001 4.0057649325156581E-019 + 63.839999999999989 5.3593448071560221E-019 + 63.899999999999991 6.9000440055972260E-019 + 63.959999999999994 8.6336253187087437E-019 + 64.019999999999996 1.0565997922842780E-018 + 64.079999999999998 1.2704151562337990E-018 + 64.140000000000001 1.5057348638010380E-018 + 64.200000000000003 1.7638583489516188E-018 + 64.259999999999991 2.0466323246889684E-018 + 64.319999999999993 2.3566531394558475E-018 + 64.379999999999995 2.6974920669051451E-018 + 64.439999999999998 3.0739470409145825E-018 + 64.500000000000000 3.4923122043095539E-018 + 64.560000000000002 3.9606650242889404E-018 + 64.619999999999990 4.4891630331843356E-018 + 64.679999999999993 5.0903442291538431E-018 + 64.739999999999995 5.7794282142748808E-018 + 64.799999999999997 6.5745984882595276E-018 + 64.859999999999999 7.4972889486460889E-018 + 64.920000000000002 8.5724147067621833E-018 + 64.979999999999990 9.8285961166382716E-018 + 65.039999999999992 1.1298327042113150E-017 + 65.099999999999994 1.3018100125306963E-017 + 65.159999999999997 1.5028491555610873E-017 + 65.219999999999999 1.7374163889071662E-017 + 65.280000000000001 2.0103842306598378E-017 + 65.339999999999989 2.3270207150639152E-017 + 65.399999999999991 2.6929743605601976E-017 + 65.459999999999994 3.1142516463804807E-017 + 65.519999999999996 3.5971910246653395E-017 + 65.579999999999998 4.1484294728603402E-017 + 65.640000000000001 4.7748654954975944E-017 + 65.700000000000003 5.4836185657405947E-017 + 65.759999999999991 6.2819833648415333E-017 + 65.819999999999993 7.1773806219731257E-017 + 65.879999999999995 8.1772975317477493E-017 + 65.939999999999998 9.2892285828468464E-017 + 66.000000000000000 1.0520595836728744E-016 + 66.060000000000002 1.1878669791915292E-016 + 66.119999999999990 1.3370452219095756E-016 + 66.179999999999993 1.5002557535604019E-016 + 66.239999999999995 1.6781034561478035E-016 + 66.299999999999997 1.8711158437461899E-016 + 66.359999999999999 2.0797154486399670E-016 + 66.420000000000002 2.3041854829258164E-016 + 66.479999999999990 2.5446242469692462E-016 + 66.539999999999992 2.8008859597480418E-016 + 66.599999999999994 3.0725122832943073E-016 + 66.659999999999997 3.3586395621750694E-016 + 66.719999999999999 3.6578849708498269E-016 + 66.780000000000001 3.9682040665961058E-016 + 66.839999999999989 4.2867222086550689E-016 + 66.899999999999991 4.6095229439694858E-016 + 66.959999999999994 4.9313907155971284E-016 + 67.019999999999996 5.2455063833598282E-016 + 67.079999999999998 5.5430735039747428E-016 + 67.140000000000001 5.8128797051273730E-016 + 67.199999999999989 6.0407815988108561E-016 + 67.259999999999991 6.2090800589590916E-016 + 67.319999999999993 6.2958045905043549E-016 + 67.379999999999995 6.2738474712401172E-016 + 67.439999999999998 6.1099788269663379E-016 + 67.500000000000000 5.7637058251616694E-016 + 67.560000000000002 5.1859226008042457E-016 + 67.619999999999990 4.3173302278207109E-016 + 67.679999999999993 3.0866828705259128E-016 + 67.739999999999995 1.4087097520316694E-016 + 67.799999999999997 -8.1828230296134428E-017 + 67.859999999999999 -3.7150866956651693E-016 + 67.920000000000002 -7.4247296423326632E-016 + 67.979999999999990 -1.2116151058740747E-015 + 68.039999999999992 -1.7988099077106595E-015 + 68.099999999999994 -2.5273877338419201E-015 + 68.159999999999997 -3.4246717477643837E-015 + 68.219999999999999 -4.5225702019532594E-015 + 68.280000000000001 -5.8582709364269850E-015 + 68.339999999999989 -7.4750286148317357E-015 + 68.399999999999991 -9.4230475092718731E-015 + 68.459999999999994 -1.1760489230192016E-014 + 68.519999999999996 -1.4554622447434818E-014 + 68.579999999999998 -1.7883134516476599E-014 + 68.640000000000001 -2.1835587837735711E-014 + 68.699999999999989 -2.6515085383897789E-014 + 68.759999999999991 -3.2040201403086658E-014 + 68.819999999999993 -3.8547035889938178E-014 + 68.879999999999995 -4.6191733462925939E-014 + 68.939999999999998 -5.5153069477538558E-014 + 69.000000000000000 -6.5635618746245559E-014 + 69.060000000000002 -7.7873058843591865E-014 + 69.119999999999990 -9.2132226496872294E-014 + 69.179999999999993 -1.0871728399963464E-013 + 69.239999999999995 -1.2797458128740817E-013 + 69.299999999999997 -1.5029810231023620E-013 + 69.359999999999999 -1.7613560154821301E-013 + 69.420000000000002 -2.0599513283420693E-013 + 69.479999999999990 -2.4045271383380021E-013 + 69.539999999999992 -2.8016071938851704E-013 + 69.599999999999994 -3.2585677507354702E-013 + 69.659999999999997 -3.7837464913965173E-013 + 69.719999999999999 -4.3865467626846978E-013 + 69.780000000000001 -5.0775738140524132E-013 + 69.839999999999989 -5.8687641562937296E-013 + 69.899999999999991 -6.7735397626553000E-013 + 69.959999999999994 -7.8069749340591676E-013 + 70.019999999999996 -8.9859798110616253E-013 + 70.079999999999998 -1.0329502059818239E-012 + 70.140000000000001 -1.1858740894958311E-012 + 70.199999999999989 -1.3597388035797319E-012 + 70.259999999999991 -1.5571888395302998E-012 + 70.319999999999993 -1.7811720850127739E-012 + 70.379999999999995 -2.0349688719295325E-012 + 70.439999999999998 -2.3222267855137855E-012 + 70.500000000000000 -2.6469945611440999E-012 + 70.560000000000002 -3.0137595352347316E-012 + 70.619999999999990 -3.4274882877719706E-012 + 70.679999999999993 -3.8936701745295738E-012 + 70.739999999999995 -4.4183593121384859E-012 + 70.799999999999997 -5.0082276192330553E-012 + 70.859999999999999 -5.6706083723004319E-012 + 70.920000000000002 -6.4135539685536621E-012 + 70.979999999999990 -7.2458829677461106E-012 + 71.039999999999992 -8.1772389465405839E-012 + 71.099999999999994 -9.2181438830163305E-012 + 71.159999999999997 -1.0380052754770023E-011 + 71.219999999999999 -1.1675404386491029E-011 + 71.280000000000001 -1.3117679075258589E-011 + 71.339999999999989 -1.4721443737459641E-011 + 71.399999999999991 -1.6502384044083626E-011 + 71.459999999999994 -1.8477349342493843E-011 + 71.519999999999996 -2.0664376518683024E-011 + 71.579999999999998 -2.3082688921610194E-011 + 71.640000000000001 -2.5752701540698563E-011 + 71.699999999999989 -2.8695991181188712E-011 + 71.759999999999991 -3.1935243787358673E-011 + 71.819999999999993 -3.5494157067920111E-011 + 71.879999999999995 -3.9397342487131165E-011 + 71.939999999999998 -4.3670130505487856E-011 + 72.000000000000000 -4.8338360936604027E-011 + 72.060000000000002 -5.3428086563394625E-011 + 72.119999999999990 -5.8965207214199631E-011 + 72.179999999999993 -6.4974975891517240E-011 + 72.239999999999995 -7.1481495296249048E-011 + 72.299999999999997 -7.8506954735010043E-011 + 72.359999999999999 -8.6070833353156054E-011 + 72.420000000000002 -9.4188843990213140E-011 + 72.479999999999990 -1.0287175216656469E-010 + 72.539999999999992 -1.1212386796060938E-010 + 72.599999999999994 -1.2194140082152882E-010 + 72.659999999999997 -1.3231036454174006E-010 + 72.719999999999999 -1.4320422567116968E-010 + 72.780000000000001 -1.5458111379513353E-010 + 72.839999999999989 -1.6638051370005415E-010 + 72.899999999999991 -1.7851949563039511E-010 + 72.959999999999994 -1.9088827483525444E-010 + 73.019999999999996 -2.0334515679746658E-010 + 73.079999999999998 -2.1571053182337615E-010 + 73.140000000000001 -2.2776009826420760E-010 + 73.199999999999989 -2.3921700469346400E-010 + 73.259999999999991 -2.4974293816563396E-010 + 73.319999999999993 -2.5892761836190652E-010 + 73.379999999999995 -2.6627707971583136E-010 + 73.439999999999998 -2.7120030445448459E-010 + 73.500000000000000 -2.7299345046559827E-010 + 73.560000000000002 -2.7082280548052265E-010 + 73.619999999999990 -2.6370436687226199E-010 + 73.679999999999993 -2.5048176816757034E-010 + 73.739999999999995 -2.2980024543465237E-010 + 73.799999999999997 -2.0007743465914016E-010 + 73.859999999999999 -1.5947126317657548E-010 + 73.920000000000002 -1.0584213186949253E-010 + 73.979999999999990 -3.6711005578003226E-011 + 74.039999999999992 5.0786989458445500E-011 + 74.099999999999994 1.5995636786251494E-010 + 74.159999999999997 2.9460095808358613E-010 + 74.219999999999999 4.5909005311166738E-010 + 74.280000000000001 6.5843399715003740E-010 + 74.339999999999989 8.9837005510001204E-010 + 74.399999999999991 1.1854548705960749E-009 + 74.459999999999994 1.5271703325871724E-009 + 74.519999999999996 1.9320422725200490E-009 + 74.579999999999998 2.4097709053184185E-009 + 74.640000000000001 2.9713796757025014E-009 + 74.699999999999989 3.6293757880023131E-009 + 74.759999999999991 4.3979371413320188E-009 + 74.819999999999993 5.2931075330539389E-009 + 74.879999999999995 6.3330322593758986E-009 + 74.939999999999998 7.5381973561249534E-009 + 75.000000000000000 8.9317142327853202E-009 + 75.060000000000002 1.0539622245177840E-008 + 75.119999999999990 1.2391228090194531E-008 + 75.179999999999993 1.4519491271932531E-008 + 75.239999999999995 1.6961426219534342E-008 + 75.299999999999997 1.9758576650339319E-008 + 75.359999999999999 2.2957508623085339E-008 + 75.420000000000002 2.6610381455911329E-008 + 75.479999999999990 3.0775549124504654E-008 + 75.539999999999992 3.5518265236069786E-008 + 75.599999999999994 4.0911390926247713E-008 + 75.659999999999997 4.7036237598209632E-008 + 75.719999999999999 5.3983487908057457E-008 + 75.780000000000001 6.1854110965067671E-008 + 75.839999999999989 7.0760557041089570E-008 + 75.899999999999991 8.0827818434750859E-008 + 75.959999999999994 9.2194803024482904E-008 + 76.019999999999996 1.0501577093232292E-007 + 76.079999999999998 1.1946180791890872E-007 + 76.140000000000001 1.3572258128288279E-007 + 76.199999999999989 1.5400815876074340E-007 + 76.259999999999991 1.7455104416687069E-007 + 76.319999999999993 1.9760839351379804E-007 + 76.379999999999995 2.2346422633309417E-007 + 76.439999999999998 2.5243234483941767E-007 + 76.500000000000000 2.8485875430000875E-007 + 76.560000000000002 3.2112510389082237E-007 + 76.619999999999990 3.6165176164598575E-007 + 76.679999999999993 4.0690151827751856E-007 + 76.739999999999995 4.5738338329287109E-007 + 76.799999999999997 5.1365686436753275E-007 + 76.859999999999999 5.7633675926514167E-007 + 76.920000000000002 6.4609742189406774E-007 + 76.979999999999990 7.2367899091120911E-007 + 77.039999999999992 8.0989226638305982E-007 + 77.099999999999994 9.0562520871686053E-007 + 77.159999999999997 1.0118499450601991E-006 + 77.219999999999999 1.1296292478561827E-006 + 77.280000000000001 1.2601248495954365E-006 + 77.339999999999989 1.4046051066938326E-006 + 77.399999999999991 1.5644542507937771E-006 + 77.459999999999994 1.7411818987263256E-006 + 77.519999999999996 1.9364329141356642E-006 + 77.579999999999998 2.1519982454743636E-006 + 77.640000000000001 2.3898271352302039E-006 + 77.699999999999989 2.6520389528392199E-006 + 77.759999999999991 2.9409358852870596E-006 + 77.819999999999993 3.2590182455297027E-006 + 77.879999999999995 3.6089987176502206E-006 + 77.939999999999998 3.9938191444784887E-006 + 78.000000000000000 4.4166666160219716E-006 + 78.060000000000002 4.8809912515951822E-006 + 78.119999999999990 5.3905261946787845E-006 + 78.179999999999993 5.9493077442259504E-006 + 78.239999999999995 6.5616966123232780E-006 + 78.299999999999997 7.2324005479582729E-006 + 78.359999999999999 7.9664975263921005E-006 + 78.420000000000002 8.7694623946265065E-006 + 78.479999999999990 9.6471947280024853E-006 + 78.539999999999992 1.0606039462765141E-005 + 78.599999999999994 1.1652829520700332E-005 + 78.659999999999997 1.2794904199453760E-005 + 78.719999999999999 1.4040148689774788E-005 + 78.780000000000001 1.5397024440885671E-005 + 78.839999999999989 1.6874608146024978E-005 + 78.899999999999991 1.8482626619515950E-005 + 78.959999999999994 2.0231501102217626E-005 + 79.019999999999996 2.2132381241675034E-005 + 79.079999999999998 2.4197187644864178E-005 + 79.140000000000001 2.6438655931840934E-005 + 79.199999999999989 2.8870389567402218E-005 + 79.259999999999991 3.1506901693346270E-005 + 79.319999999999993 3.4363657751176045E-005 + 79.379999999999995 3.7457146298368552E-005 + 79.439999999999998 4.0804913218668029E-005 + 79.500000000000000 4.4425608631173959E-005 + 79.560000000000002 4.8339073473632207E-005 + 79.619999999999990 5.2566359276425075E-005 + 79.679999999999993 5.7129827571794704E-005 + 79.739999999999995 6.2053166758632670E-005 + 79.799999999999997 6.7361490608631202E-005 + 79.859999999999999 7.3081358136640041E-005 + 79.920000000000002 7.9240898116849859E-005 + 79.979999999999990 8.5869814715472617E-005 + 80.039999999999992 9.2999480696238926E-005 + 80.099999999999994 1.0066300693024118E-004 + 80.159999999999997 1.0889530255480789E-004 + 80.219999999999999 1.1773312646060546E-004 + 80.280000000000001 1.2721515986816642E-004 + 80.340000000000003 1.3738210877456457E-004 + 80.400000000000006 1.4827671820922297E-004 + 80.460000000000008 1.5994382839638343E-004 + 80.519999999999982 1.7243053956135680E-004 + 80.579999999999984 1.8578617364352530E-004 + 80.639999999999986 2.0006236733341261E-004 + 80.699999999999989 2.1531311546146311E-004 + 80.759999999999991 2.3159485276649902E-004 + 80.819999999999993 2.4896651689900319E-004 + 80.879999999999995 2.6748955650889451E-004 + 80.939999999999998 2.8722802564220190E-004 + 81.000000000000000 3.0824857532922898E-004 + 81.060000000000002 3.3062057860651313E-004 + 81.120000000000005 3.5441606262365548E-004 + 81.180000000000007 3.7970978868460525E-004 + 81.240000000000009 4.0657928923046999E-004 + 81.299999999999983 4.3510487964382340E-004 + 81.359999999999985 4.6536963379442789E-004 + 81.419999999999987 4.9745939391304358E-004 + 81.479999999999990 5.3146280969899591E-004 + 81.539999999999992 5.6747131565668281E-004 + 81.599999999999994 6.0557907067664463E-004 + 81.659999999999997 6.4588284008831680E-004 + 81.719999999999999 6.8848223978942684E-004 + 81.780000000000001 7.3347926516992832E-004 + 81.840000000000003 7.8097869188991970E-004 + 81.900000000000006 8.3108772769851841E-004 + 81.960000000000008 8.8391597105040576E-004 + 82.019999999999982 9.3957507969171612E-004 + 82.079999999999984 9.9817909360398445E-004 + 82.139999999999986 1.0598439841876662E-003 + 82.199999999999989 1.1246878138120428E-003 + 82.259999999999991 1.1928301417301866E-003 + 82.319999999999993 1.2643921895758650E-003 + 82.379999999999995 1.3394965814102491E-003 + 82.439999999999998 1.4182672210443982E-003 + 82.500000000000000 1.5008284514599199E-003 + 82.560000000000002 1.5873058255501031E-003 + 82.620000000000005 1.6778254218317531E-003 + 82.680000000000007 1.7725133526338931E-003 + 82.740000000000009 1.8714953331353920E-003 + 82.799999999999983 1.9748972139240427E-003 + 82.859999999999985 2.0828434575896901E-003 + 82.919999999999987 2.1954580742086340E-003 + 82.979999999999990 2.3128636006196786E-003 + 83.039999999999992 2.4351804551575279E-003 + 83.099999999999994 2.5625271407868216E-003 + 83.159999999999997 2.6950194385910817E-003 + 83.219999999999999 2.8327701833465208E-003 + 83.280000000000001 2.9758891087812893E-003 + 83.340000000000003 3.1244814009542990E-003 + 83.400000000000006 3.2786487984697316E-003 + 83.460000000000008 3.4384874432761823E-003 + 83.519999999999982 3.6040886770064080E-003 + 83.579999999999984 3.7755378399802523E-003 + 83.639999999999986 3.9529143750793140E-003 + 83.699999999999989 4.1362907255911383E-003 + 83.759999999999991 4.3257318237075572E-003 + 83.819999999999993 4.5212957733719679E-003 + 83.879999999999995 4.7230310592515316E-003 + 83.939999999999998 4.9309780059586051E-003 + 84.000000000000000 5.1451674907361192E-003 + 84.060000000000002 5.3656207473511347E-003 + 84.120000000000005 5.5923483995409798E-003 + 84.180000000000007 5.8253499030386539E-003 + 84.240000000000009 6.0646135344698234E-003 + 84.299999999999983 6.3101156658744917E-003 + 84.359999999999985 6.5618210448793466E-003 + 84.419999999999987 6.8196809879861710E-003 + 84.479999999999990 7.0836321673941492E-003 + 84.539999999999992 7.3536002130428482E-003 + 84.599999999999994 7.6294943545657436E-003 + 84.659999999999997 7.9112098981306243E-003 + 84.719999999999999 8.1986273480010932E-003 + 84.780000000000001 8.4916125190633192E-003 + 84.840000000000003 8.7900142224994031E-003 + 84.900000000000006 9.0936675989165446E-003 + 84.960000000000008 9.4023898989420828E-003 + 85.019999999999982 9.7159828203642884E-003 + 85.079999999999984 1.0034230117977919E-002 + 85.139999999999986 1.0356901538113458E-002 + 85.199999999999989 1.0683748887820622E-002 + 85.259999999999991 1.1014506256885968E-002 + 85.319999999999993 1.1348892972815305E-002 + 85.379999999999995 1.1686609670256490E-002 + 85.439999999999998 1.2027341704995313E-002 + 85.500000000000000 1.2370757196644731E-002 + 85.560000000000002 1.2716509614955240E-002 + 85.620000000000005 1.3064235499955662E-002 + 85.680000000000007 1.3413554955028030E-002 + 85.740000000000009 1.3764073281872784E-002 + 85.799999999999983 1.4115381737891468E-002 + 85.859999999999985 1.4467054713286982E-002 + 85.919999999999987 1.4818656713666748E-002 + 85.979999999999990 1.5169735786400724E-002 + 86.039999999999992 1.5519828313195580E-002 + 86.099999999999994 1.5868459736739032E-002 + 86.159999999999997 1.6215140600704739E-002 + 86.219999999999999 1.6559374792042864E-002 + 86.280000000000001 1.6900653958287548E-002 + 86.340000000000003 1.7238465621518682E-002 + 86.400000000000006 1.7572284537338560E-002 + 86.460000000000008 1.7901581661926604E-002 + 86.519999999999982 1.8225819153081024E-002 + 86.579999999999984 1.8544459181867250E-002 + 86.639999999999986 1.8856955777041762E-002 + 86.699999999999989 1.9162764159070492E-002 + 86.759999999999991 1.9461336747823067E-002 + 86.819999999999993 1.9752124987659988E-002 + 86.879999999999995 2.0034585234875411E-002 + 86.939999999999998 2.0308174977631235E-002 + 87.000000000000000 2.0572353884874637E-002 + 87.060000000000002 2.0826588055320026E-002 + 87.120000000000005 2.1070350178020739E-002 + 87.180000000000007 2.1303121144492090E-002 + 87.240000000000009 2.1524392545284009E-002 + 87.299999999999983 2.1733663309035107E-002 + 87.359999999999985 2.1930445751368443E-002 + 87.419999999999987 2.2114267967015093E-002 + 87.479999999999990 2.2284668635977074E-002 + 87.539999999999992 2.2441205606016285E-002 + 87.599999999999994 2.2583452592012773E-002 + 87.659999999999997 2.2711000429149780E-002 + 87.719999999999999 2.2823462919811004E-002 + 87.780000000000001 2.2920471347958354E-002 + 87.840000000000003 2.3001681117571240E-002 + 87.900000000000006 2.3066770179605751E-002 + 87.960000000000008 2.3115439491934890E-002 + 88.019999999999982 2.3147416570180171E-002 + 88.079999999999984 2.3162454353598129E-002 + 88.139999999999986 2.3160332556912418E-002 + 88.199999999999989 2.3140858976090830E-002 + 88.259999999999991 2.3103870758450776E-002 + 88.319999999999993 2.3049231473889743E-002 + 88.379999999999995 2.2976837400603078E-002 + 88.439999999999998 2.2886612249574965E-002 + 88.500000000000000 2.2778513195089261E-002 + 88.560000000000002 2.2652525644790530E-002 + 88.620000000000005 2.2508668988529091E-002 + 88.680000000000007 2.2346992191855836E-002 + 88.740000000000009 2.2167577641033075E-002 + 88.799999999999983 2.1970535725588707E-002 + 88.859999999999985 2.1756013300835708E-002 + 88.919999999999987 2.1524182700639292E-002 + 88.979999999999990 2.1275252366905622E-002 + 89.039999999999992 2.1009459477336807E-002 + 89.099999999999994 2.0727070738861635E-002 + 89.159999999999997 2.0428385191941064E-002 + 89.219999999999999 2.0113728013484957E-002 + 89.280000000000001 1.9783454384258797E-002 + 89.340000000000003 1.9437946931982541E-002 + 89.400000000000006 1.9077616364061425E-002 + 89.460000000000008 1.8702895864571169E-002 + 89.519999999999982 1.8314247761766690E-002 + 89.579999999999984 1.7912156324205172E-002 + 89.639999999999986 1.7497128148012062E-002 + 89.699999999999989 1.7069693581282748E-002 + 89.759999999999991 1.6630400216040887E-002 + 89.819999999999993 1.6179816819243298E-002 + 89.879999999999995 1.5718530831281718E-002 + 89.939999999999998 1.5247143444710223E-002 + 90.000000000000000 1.4766273520230773E-002 + 90.060000000000002 1.4276551037794983E-002 + 90.120000000000005 1.3778619702670207E-002 + 90.180000000000007 1.3273132787646094E-002 + 90.240000000000009 1.2760751455257817E-002 + 90.299999999999983 1.2242146509836361E-002 + 90.359999999999985 1.1717992288599127E-002 + 90.419999999999987 1.1188969138657984E-002 + 90.479999999999990 1.0655758853625625E-002 + 90.539999999999992 1.0119044193637114E-002 + 90.599999999999994 9.5795089866885751E-003 + 90.659999999999997 9.0378332226598197E-003 + 90.719999999999999 8.4946943281948139E-003 + 90.780000000000001 7.9507648924360876E-003 + 90.840000000000003 7.4067101469775486E-003 + 90.900000000000006 6.8631879571244749E-003 + 90.960000000000008 6.3208468512441999E-003 + 91.019999999999982 5.7803246445113253E-003 + 91.079999999999984 5.2422475151397419E-003 + 91.139999999999986 4.7072276461354338E-003 + 91.199999999999989 4.1758642092314729E-003 + 91.259999999999991 3.6487397016140804E-003 + 91.319999999999993 3.1264204643618532E-003 + 91.379999999999995 2.6094554496027822E-003 + 91.439999999999998 2.0983748409543735E-003 + 91.500000000000000 1.5936897831932630E-003 + 91.560000000000002 1.0958905593917911E-003 + 91.620000000000005 6.0544694522991207E-004 + 91.680000000000007 1.2280730240889475E-004 + 91.739999999999981 -3.5160299262579153E-004 + 91.799999999999983 -8.1738068198293587E-004 + 91.859999999999985 -1.2741463062020436E-003 + 91.919999999999987 -1.7215431208302285E-003 + 91.979999999999990 -2.1592388704876238E-003 + 92.039999999999992 -2.5869250555123516E-003 + 92.099999999999994 -3.0043183046321695E-003 + 92.159999999999997 -3.4111586801735504E-003 + 92.219999999999999 -3.8072111176822927E-003 + 92.280000000000001 -4.1922647691958756E-003 + 92.340000000000003 -4.5661325759165051E-003 + 92.400000000000006 -4.9286525669227661E-003 + 92.460000000000008 -5.2796854287724543E-003 + 92.519999999999982 -5.6191159507932463E-003 + 92.579999999999984 -5.9468521511382736E-003 + 92.639999999999986 -6.2628245790080266E-003 + 92.699999999999989 -6.5669854197078622E-003 + 92.759999999999991 -6.8593109913768430E-003 + 92.819999999999993 -7.1397945433208827E-003 + 92.879999999999995 -7.4084534876342183E-003 + 92.939999999999998 -7.6653242634151094E-003 + 93.000000000000000 -7.9104617853642603E-003 + 93.060000000000002 -8.1439392411247272E-003 + 93.120000000000005 -8.3658485444368172E-003 + 93.180000000000007 -8.5762976667754249E-003 + 93.239999999999981 -8.7754123330732719E-003 + 93.299999999999983 -8.9633320801397968E-003 + 93.359999999999985 -9.1402112119622833E-003 + 93.419999999999987 -9.3062185447823874E-003 + 93.479999999999990 -9.4615347493455359E-003 + 93.539999999999992 -9.6063534707685107E-003 + 93.599999999999994 -9.7408773851375488E-003 + 93.659999999999997 -9.8653218485922779E-003 + 93.719999999999999 -9.9799105828746633E-003 + 93.780000000000001 -1.0084874776003184E-002 + 93.840000000000003 -1.0180454881132806E-002 + 93.900000000000006 -1.0266897057937336E-002 + 93.960000000000008 -1.0344454089635160E-002 + 94.019999999999982 -1.0413382836258105E-002 + 94.079999999999984 -1.0473944864646596E-002 + 94.139999999999986 -1.0526405837899450E-002 + 94.199999999999989 -1.0571032779760634E-002 + 94.259999999999991 -1.0608096918831170E-002 + 94.319999999999993 -1.0637868174180493E-002 + 94.379999999999995 -1.0660618572721322E-002 + 94.439999999999998 -1.0676619659275880E-002 + 94.500000000000000 -1.0686141467976727E-002 + 94.560000000000002 -1.0689454297875468E-002 + 94.620000000000005 -1.0686824472940306E-002 + 94.680000000000007 -1.0678517479824406E-002 + 94.739999999999981 -1.0664795359335108E-002 + 94.799999999999983 -1.0645916846433014E-002 + 94.859999999999985 -1.0622135341010990E-002 + 94.919999999999987 -1.0593702010519094E-002 + 94.979999999999990 -1.0560860396860338E-002 + 95.039999999999992 -1.0523851903406862E-002 + 95.099999999999994 -1.0482911626434879E-002 + 95.159999999999997 -1.0438266993829694E-002 + 95.219999999999999 -1.0390141809015064E-002 + 95.280000000000001 -1.0338752512083818E-002 + 95.340000000000003 -1.0284309438869212E-002 + 95.400000000000006 -1.0227016926792551E-002 + 95.460000000000008 -1.0167070244201288E-002 + 95.519999999999982 -1.0104660572240954E-002 + 95.579999999999984 -1.0039970329481960E-002 + 95.639999999999986 -9.9731750240682412E-003 + 95.699999999999989 -9.9044441478003259E-003 + 95.759999999999991 -9.8339395792017871E-003 + 95.819999999999993 -9.7618142641254547E-003 + 95.879999999999995 -9.6882176007590387E-003 + 95.939999999999998 -9.6132896368449385E-003 + 96.000000000000000 -9.5371646476713756E-003 + 96.060000000000002 -9.4599680948209280E-003 + 96.120000000000005 -9.3818213593021560E-003 + 96.180000000000007 -9.3028375224433312E-003 + 96.239999999999981 -9.2231238201393815E-003 + 96.299999999999983 -9.1427812366107405E-003 + 96.359999999999985 -9.0619043112534804E-003 + 96.419999999999987 -8.9805823875616711E-003 + 96.479999999999990 -8.8988974960462729E-003 + 96.539999999999992 -8.8169273802720573E-003 + 96.599999999999994 -8.7347445419173868E-003 + 96.659999999999997 -8.6524152852930063E-003 + 96.719999999999999 -8.5700013006949974E-003 + 96.780000000000001 -8.4875604299535119E-003 + 96.840000000000003 -8.4051456501929994E-003 + 96.900000000000006 -8.3228045586787071E-003 + 96.960000000000008 -8.2405820827991284E-003 + 97.019999999999982 -8.1585180667096933E-003 + 97.079999999999984 -8.0766500553739826E-003 + 97.139999999999986 -7.9950102069291460E-003 + 97.199999999999989 -7.9136297342432688E-003 + 97.259999999999991 -7.8325350815882447E-003 + 97.319999999999993 -7.7517503217879400E-003 + 97.379999999999995 -7.6712974904494117E-003 + 97.439999999999998 -7.5911961238300327E-003 + 97.500000000000000 -7.5114625095661263E-003 + 97.560000000000002 -7.4321122705760679E-003 + 97.620000000000005 -7.3531584167297690E-003 + 97.680000000000007 -7.2746122510931634E-003 + 97.739999999999981 -7.1964840393150915E-003 + 97.799999999999983 -7.1187817255035819E-003 + 97.859999999999985 -7.0415133807391573E-003 + 97.919999999999987 -6.9646854622150665E-003 + 97.979999999999990 -6.8883034925154470E-003 + 98.039999999999992 -6.8123718895895750E-003 + 98.099999999999994 -6.7368949208028404E-003 + 98.159999999999997 -6.6618759009635384E-003 + 98.219999999999999 -6.5873175301307992E-003 + 98.280000000000001 -6.5132225699993367E-003 + 98.340000000000003 -6.4395940997669203E-003 + 98.400000000000006 -6.3664332438816773E-003 + 98.460000000000008 -6.2937423492477182E-003 + 98.519999999999982 -6.2215236667094442E-003 + 98.579999999999984 -6.1497788080326779E-003 + 98.639999999999986 -6.0785096364171752E-003 + 98.699999999999989 -6.0077182642694965E-003 + 98.759999999999991 -5.9374066183613475E-003 + 98.819999999999993 -5.8675767714460921E-003 + 98.879999999999995 -5.7982315755980268E-003 + 98.939999999999998 -5.7293726107319979E-003 + 99.000000000000000 -5.6610026660680159E-003 + 99.060000000000002 -5.5931244392187635E-003 + 99.120000000000005 -5.5257405804673134E-003 + 99.180000000000007 -5.4588548971322712E-003 + 99.239999999999981 -5.3924701822879399E-003 + 99.299999999999983 -5.3265897748187305E-003 + 99.359999999999985 -5.2612179547572545E-003 + 99.419999999999987 -5.1963574382974942E-003 + 99.479999999999990 -5.1320120058236714E-003 + 99.539999999999992 -5.0681859092920447E-003 + 99.599999999999994 -5.0048830511861073E-003 + 99.659999999999997 -4.9421074000857764E-003 + 99.719999999999999 -4.8798628094850324E-003 + 99.780000000000001 -4.8181532986577135E-003 + 99.840000000000003 -4.7569831033259921E-003 + 99.900000000000006 -4.6963561070585622E-003 + 99.960000000000008 -4.6362755326499021E-003 + 100.01999999999998 -4.5767455009239726E-003 + 100.07999999999998 -4.5177697981456716E-003 + 100.13999999999999 -4.4593514165549705E-003 + 100.19999999999999 -4.4014938954664243E-003 + 100.25999999999999 -4.3441999301677969E-003 + 100.31999999999999 -4.2874725331214052E-003 + 100.38000000000000 -4.2313139683056592E-003 + 100.44000000000000 -4.1757264396256929E-003 + 100.50000000000000 -4.1207119101841268E-003 + 100.56000000000000 -4.0662719725926867E-003 + 100.62000000000000 -4.0124080948892495E-003 + 100.68000000000001 -3.9591207037261416E-003 + 100.73999999999998 -3.9064108792028632E-003 + 100.79999999999998 -3.8542784677267463E-003 + 100.85999999999999 -3.8027234096471296E-003 + 100.91999999999999 -3.7517459367648913E-003 + 100.97999999999999 -3.7013445152590850E-003 + 101.03999999999999 -3.6515184128938943E-003 + 101.09999999999999 -3.6022660431919828E-003 + 101.16000000000000 -3.5535855325687332E-003 + 101.22000000000000 -3.5054747842493128E-003 + 101.28000000000000 -3.4579317001359336E-003 + 101.34000000000000 -3.4109534101020309E-003 + 101.40000000000001 -3.3645367671320111E-003 + 101.46000000000001 -3.3186784333151410E-003 + 101.51999999999998 -3.2733746555360975E-003 + 101.57999999999998 -3.2286219597885387E-003 + 101.63999999999999 -3.1844159763251300E-003 + 101.69999999999999 -3.1407525723560533E-003 + 101.75999999999999 -3.0976270773387937E-003 + 101.81999999999999 -3.0550349986677426E-003 + 101.88000000000000 -3.0129711520296390E-003 + 101.94000000000000 -2.9714310316422518E-003 + 102.00000000000000 -2.9304092174712460E-003 + 102.06000000000000 -2.8899006871831818E-003 + 102.12000000000000 -2.8498998761916348E-003 + 102.18000000000001 -2.8104020573434811E-003 + 102.23999999999998 -2.7714017773070709E-003 + 102.29999999999998 -2.7328935634154529E-003 + 102.35999999999999 -2.6948723982202541E-003 + 102.41999999999999 -2.6573329359375094E-003 + 102.47999999999999 -2.6202698754500577E-003 + 102.53999999999999 -2.5836785878567419E-003 + 102.59999999999999 -2.5475537766750499E-003 + 102.66000000000000 -2.5118905652338512E-003 + 102.72000000000000 -2.4766843856744085E-003 + 102.78000000000000 -2.4419305272504171E-003 + 102.84000000000000 -2.4076251766056980E-003 + 102.90000000000001 -2.3737636325474867E-003 + 102.96000000000001 -2.3403419700698223E-003 + 103.01999999999998 -2.3073564892970213E-003 + 103.07999999999998 -2.2748037121406496E-003 + 103.13999999999999 -2.2426797744007788E-003 + 103.19999999999999 -2.2109816778366296E-003 + 103.25999999999999 -2.1797063561172078E-003 + 103.31999999999999 -2.1488513297553075E-003 + 103.38000000000000 -2.1184137788042910E-003 + 103.44000000000000 -2.0883913695874095E-003 + 103.50000000000000 -2.0587819765995477E-003 + 103.56000000000000 -2.0295836852367802E-003 + 103.62000000000000 -2.0007945612489676E-003 + 103.68000000000001 -1.9724133051288758E-003 + 103.73999999999998 -1.9444384208744843E-003 + 103.79999999999998 -1.9168687321582014E-003 + 103.85999999999999 -1.8897033337991862E-003 + 103.91999999999999 -1.8629413105327702E-003 + 103.97999999999999 -1.8365821312596644E-003 + 104.03999999999999 -1.8106250697169242E-003 + 104.09999999999999 -1.7850699197449215E-003 + 104.16000000000000 -1.7599161907031998E-003 + 104.22000000000000 -1.7351639372185884E-003 + 104.28000000000000 -1.7108129452083178E-003 + 104.34000000000000 -1.6868632710769456E-003 + 104.40000000000001 -1.6633150894160645E-003 + 104.46000000000001 -1.6401685106747347E-003 + 104.51999999999998 -1.6174238041782344E-003 + 104.57999999999998 -1.5950809925422240E-003 + 104.63999999999999 -1.5731402979597686E-003 + 104.69999999999999 -1.5516019463015494E-003 + 104.75999999999999 -1.5304659353521937E-003 + 104.81999999999999 -1.5097324287163499E-003 + 104.88000000000000 -1.4894013253612568E-003 + 104.94000000000000 -1.4694725889360292E-003 + 105.00000000000000 -1.4499461313300052E-003 + 105.06000000000000 -1.4308214420690995E-003 + 105.12000000000000 -1.4120981585086529E-003 + 105.18000000000001 -1.3937758155723576E-003 + 105.23999999999998 -1.3758535886119875E-003 + 105.29999999999998 -1.3583306298245266E-003 + 105.35999999999999 -1.3412058305969084E-003 + 105.41999999999999 -1.3244780429768777E-003 + 105.47999999999999 -1.3081459407828745E-003 + 105.53999999999999 -1.2922079046311140E-003 + 105.59999999999999 -1.2766622454723861E-003 + 105.66000000000000 -1.2615068832798775E-003 + 105.72000000000000 -1.2467396864988161E-003 + 105.78000000000000 -1.2323585136088944E-003 + 105.84000000000000 -1.2183607585414477E-003 + 105.90000000000001 -1.2047437051642587E-003 + 105.96000000000001 -1.1915045054476550E-003 + 106.01999999999998 -1.1786399659273505E-003 + 106.07999999999998 -1.1661467200906662E-003 + 106.13999999999999 -1.1540214257142062E-003 + 106.19999999999999 -1.1422603244250927E-003 + 106.25999999999999 -1.1308595408547116E-003 + 106.31999999999999 -1.1198149741487421E-003 + 106.38000000000000 -1.1091225115905062E-003 + 106.44000000000000 -1.0987775892077360E-003 + 106.50000000000000 -1.0887757464030270E-003 + 106.56000000000000 -1.0791122206188189E-003 + 106.62000000000000 -1.0697822722614961E-003 + 106.68000000000001 -1.0607808787177404E-003 + 106.73999999999998 -1.0521030604853858E-003 + 106.79999999999998 -1.0437435266265305E-003 + 106.85999999999999 -1.0356971976536989E-003 + 106.91999999999999 -1.0279587375321714E-003 + 106.97999999999999 -1.0205228617161093E-003 + 107.03999999999999 -1.0133841249049442E-003 + 107.09999999999999 -1.0065371212252859E-003 + 107.16000000000000 -9.9997648819816058E-004 + 107.22000000000000 -9.9369687137817325E-004 + 107.28000000000000 -9.8769286798323702E-004 + 107.34000000000000 -9.8195913659849025E-004 + 107.40000000000001 -9.7649038403541750E-004 + 107.46000000000001 -9.7128152740569968E-004 + 107.51999999999998 -9.6632727894685065E-004 + 107.57999999999998 -9.6162269875600898E-004 + 107.63999999999999 -9.5716281782538522E-004 + 107.69999999999999 -9.5294285832290822E-004 + 107.75999999999999 -9.4895806196615222E-004 + 107.81999999999999 -9.4520391737527702E-004 + 107.88000000000000 -9.4167604697920938E-004 + 107.94000000000000 -9.3837021673762839E-004 + 108.00000000000000 -9.3528233762943543E-004 + 108.06000000000000 -9.3240859980371182E-004 + 108.12000000000000 -9.2974529601174099E-004 + 108.18000000000001 -9.2728893681017226E-004 + 108.23999999999998 -9.2503636749599193E-004 + 108.29999999999998 -9.2298453707285229E-004 + 108.35999999999999 -9.2113063575400026E-004 + 108.41999999999999 -9.1947216070919374E-004 + 108.47999999999999 -9.1800689217102734E-004 + 108.53999999999999 -9.1673289283115988E-004 + 108.59999999999999 -9.1564837193101249E-004 + 108.66000000000000 -9.1475197617009495E-004 + 108.72000000000000 -9.1404250312692435E-004 + 108.78000000000000 -9.1351918235450119E-004 + 108.84000000000000 -9.1318150082883684E-004 + 108.90000000000001 -9.1302919747091125E-004 + 108.96000000000001 -9.1306236611539263E-004 + 109.01999999999998 -9.1328135987994502E-004 + 109.07999999999998 -9.1368682716630781E-004 + 109.13999999999999 -9.1427976919910008E-004 + 109.19999999999999 -9.1506141625595852E-004 + 109.25999999999999 -9.1603330976958055E-004 + 109.31999999999999 -9.1719732224668747E-004 + 109.38000000000000 -9.1855549107103555E-004 + 109.44000000000000 -9.2011020983397422E-004 + 109.50000000000000 -9.2186414193804486E-004 + 109.56000000000000 -9.2382010151808430E-004 + 109.62000000000000 -9.2598124734174776E-004 + 109.68000000000001 -9.2835088199260426E-004 + 109.73999999999998 -9.3093263772643241E-004 + 109.79999999999998 -9.3373020452458934E-004 + 109.85999999999999 -9.3674759317784596E-004 + 109.91999999999999 -9.3998901780521695E-004 + 109.97999999999999 -9.4345875162720003E-004 + 110.03999999999999 -9.4716136117558170E-004 + 110.09999999999999 -9.5110134516404989E-004 + 110.16000000000000 -9.5528353365902845E-004 + 110.22000000000000 -9.5971271722550397E-004 + 110.28000000000000 -9.6439388626578019E-004 + 110.34000000000000 -9.6933195234364517E-004 + 110.40000000000001 -9.7453189878486061E-004 + 110.46000000000001 -9.7999877402672351E-004 + 110.51999999999998 -9.8573734127243109E-004 + 110.57999999999998 -9.9175262483836664E-004 + 110.63999999999999 -9.9804933763108388E-004 + 110.69999999999999 -1.0046320796965021E-003 + 110.75999999999999 -1.0115053720159025E-003 + 110.81999999999999 -1.0186736102229302E-003 + 110.88000000000000 -1.0261407680226893E-003 + 110.94000000000000 -1.0339106535456814E-003 + 111.00000000000000 -1.0419867630016484E-003 + 111.06000000000000 -1.0503722704396339E-003 + 111.12000000000000 -1.0590700382822154E-003 + 111.18000000000001 -1.0680826476312023E-003 + 111.23999999999998 -1.0774119564876965E-003 + 111.29999999999998 -1.0870596639217639E-003 + 111.35999999999999 -1.0970268804708868E-003 + 111.41999999999999 -1.1073141106258183E-003 + 111.47999999999999 -1.1179214367775623E-003 + 111.53999999999999 -1.1288484538649135E-003 + 111.59999999999999 -1.1400940443722072E-003 + 111.66000000000000 -1.1516564339053724E-003 + 111.72000000000000 -1.1635332735983920E-003 + 111.78000000000000 -1.1757215886855172E-003 + 111.84000000000000 -1.1882174643543025E-003 + 111.90000000000001 -1.2010164672109837E-003 + 111.96000000000001 -1.2141133570987863E-003 + 112.01999999999998 -1.2275020673399701E-003 + 112.07999999999998 -1.2411756703287532E-003 + 112.13999999999999 -1.2551265703150975E-003 + 112.19999999999999 -1.2693461815580656E-003 + 112.25999999999999 -1.2838250037271878E-003 + 112.31999999999999 -1.2985527469420634E-003 + 112.38000000000000 -1.3135182918417739E-003 + 112.44000000000000 -1.3287094419211292E-003 + 112.50000000000000 -1.3441131066565227E-003 + 112.56000000000000 -1.3597154354934222E-003 + 112.62000000000000 -1.3755015024877696E-003 + 112.68000000000001 -1.3914553958755556E-003 + 112.73999999999998 -1.4075604442072636E-003 + 112.79999999999998 -1.4237991105659137E-003 + 112.85999999999999 -1.4401526718588191E-003 + 112.91999999999999 -1.4566016851434440E-003 + 112.97999999999999 -1.4731257868715883E-003 + 113.03999999999999 -1.4897038107820979E-003 + 113.09999999999999 -1.5063137102007142E-003 + 113.16000000000000 -1.5229326126596076E-003 + 113.22000000000000 -1.5395368101478106E-003 + 113.28000000000000 -1.5561019200970266E-003 + 113.34000000000000 -1.5726028341367395E-003 + 113.40000000000001 -1.5890136462867290E-003 + 113.46000000000001 -1.6053077387555687E-003 + 113.51999999999998 -1.6214579223256286E-003 + 113.57999999999998 -1.6374366080094786E-003 + 113.63999999999999 -1.6532154744765130E-003 + 113.69999999999999 -1.6687658273288023E-003 + 113.75999999999999 -1.6840582759916727E-003 + 113.81999999999999 -1.6990634222488637E-003 + 113.88000000000000 -1.7137512890220087E-003 + 113.94000000000000 -1.7280916858310293E-003 + 114.00000000000000 -1.7420543561684418E-003 + 114.06000000000000 -1.7556086573612684E-003 + 114.12000000000000 -1.7687240284159501E-003 + 114.18000000000001 -1.7813699492351220E-003 + 114.23999999999998 -1.7935157277529778E-003 + 114.29999999999998 -1.8051311126395576E-003 + 114.35999999999999 -1.8161859389901279E-003 + 114.41999999999999 -1.8266503495099613E-003 + 114.47999999999999 -1.8364949292744139E-003 + 114.53999999999999 -1.8456905264013549E-003 + 114.59999999999999 -1.8542086347287600E-003 + 114.66000000000000 -1.8620213306339364E-003 + 114.72000000000000 -1.8691015618428303E-003 + 114.78000000000000 -1.8754226797492802E-003 + 114.84000000000000 -1.8809589597479934E-003 + 114.90000000000001 -1.8856858556439405E-003 + 114.96000000000001 -1.8895794655278864E-003 + 115.01999999999998 -1.8926170446910916E-003 + 115.07999999999998 -1.8947769709582892E-003 + 115.13999999999999 -1.8960387204757232E-003 + 115.19999999999999 -1.8963831941185524E-003 + 115.25999999999999 -1.8957924142696441E-003 + 115.31999999999999 -1.8942497442775820E-003 + 115.38000000000000 -1.8917401998821846E-003 + 115.44000000000000 -1.8882499551163513E-003 + 115.50000000000000 -1.8837669783652046E-003 + 115.56000000000000 -1.8782807171216613E-003 + 115.62000000000000 -1.8717821621009013E-003 + 115.68000000000001 -1.8642640416482925E-003 + 115.73999999999998 -1.8557208087061894E-003 + 115.79999999999998 -1.8461485153005940E-003 + 115.85999999999999 -1.8355452020445394E-003 + 115.91999999999999 -1.8239105020083834E-003 + 115.97999999999999 -1.8112460339172595E-003 + 116.03999999999999 -1.7975550311741251E-003 + 116.09999999999999 -1.7828426209324675E-003 + 116.16000000000000 -1.7671160784713061E-003 + 116.22000000000000 -1.7503840930449830E-003 + 116.28000000000000 -1.7326573458521745E-003 + 116.34000000000000 -1.7139483590784244E-003 + 116.40000000000001 -1.6942714828442624E-003 + 116.46000000000001 -1.6736427942886391E-003 + 116.51999999999998 -1.6520802520045340E-003 + 116.57999999999998 -1.6296032853420398E-003 + 116.63999999999999 -1.6062333395086338E-003 + 116.69999999999999 -1.5819930777869653E-003 + 116.75999999999999 -1.5569071436410686E-003 + 116.81999999999999 -1.5310014968334300E-003 + 116.88000000000000 -1.5043037714249372E-003 + 116.94000000000000 -1.4768430007864549E-003 + 117.00000000000000 -1.4486492866848072E-003 + 117.06000000000000 -1.4197545413335425E-003 + 117.12000000000000 -1.3901915121617417E-003 + 117.18000000000001 -1.3599942155044481E-003 + 117.23999999999998 -1.3291979391440543E-003 + 117.29999999999998 -1.2978386740653473E-003 + 117.35999999999999 -1.2659534622153125E-003 + 117.41999999999999 -1.2335803070798073E-003 + 117.47999999999999 -1.2007578144102734E-003 + 117.53999999999999 -1.1675253452444741E-003 + 117.59999999999999 -1.1339228207044401E-003 + 117.66000000000000 -1.0999905334329431E-003 + 117.72000000000000 -1.0657693884852351E-003 + 117.78000000000000 -1.0313005137373447E-003 + 117.84000000000000 -9.9662506351976747E-004 + 117.90000000000001 -9.6178451875747158E-004 + 117.96000000000001 -9.2682027341737367E-004 + 118.01999999999998 -8.9177374453531903E-004 + 118.07999999999998 -8.5668612297230438E-004 + 118.13999999999999 -8.2159829956926435E-004 + 118.19999999999999 -7.8655088334830402E-004 + 118.25999999999999 -7.5158396117929350E-004 + 118.31999999999999 -7.1673717514784182E-004 + 118.38000000000000 -6.8204957794328741E-004 + 118.44000000000000 -6.4755949363651082E-004 + 118.50000000000000 -6.1330446180821196E-004 + 118.56000000000000 -5.7932117586673810E-004 + 118.62000000000000 -5.4564545533294212E-004 + 118.68000000000001 -5.1231213190125013E-004 + 118.73999999999998 -4.7935505430265807E-004 + 118.79999999999998 -4.4680683927267073E-004 + 118.85999999999999 -4.1469903443388894E-004 + 118.91999999999999 -3.8306197283241643E-004 + 118.97999999999999 -3.5192471479933104E-004 + 119.03999999999999 -3.2131503731363951E-004 + 119.09999999999999 -2.9125934491974721E-004 + 119.16000000000000 -2.6178273665185606E-004 + 119.22000000000000 -2.3290883859786106E-004 + 119.28000000000000 -2.0465986452347109E-004 + 119.34000000000000 -1.7705655786437357E-004 + 119.40000000000001 -1.5011820239791475E-004 + 119.46000000000001 -1.2386258752290636E-004 + 119.51999999999998 -9.8305967154689480E-005 + 119.57999999999998 -7.3463100489106278E-005 + 119.63999999999999 -4.9347241175707078E-005 + 119.69999999999999 -2.5970118373244607E-005 + 119.75999999999999 -3.3419354735394325E-006 + 119.81999999999999 1.8528587855280075E-005 + 119.88000000000000 3.9634203389066325E-005 + 119.94000000000000 5.9969148373889667E-005 + 120.00000000000000 7.9529102758942120E-005 + 120.06000000000000 9.8311152879074486E-005 + 120.12000000000000 1.1631378946187974E-004 + 120.18000000000001 1.3353684550781986E-004 + 120.23999999999998 1.4998149049270476E-004 + 120.29999999999998 1.6565017511337233E-004 + 120.35999999999999 1.8054656902359120E-004 + 120.41999999999999 1.9467556607097788E-004 + 120.47999999999999 2.0804319319682872E-004 + 120.53999999999999 2.2065662073759315E-004 + 120.59999999999999 2.3252403133346968E-004 + 120.66000000000000 2.4365465381605603E-004 + 120.72000000000000 2.5405864538694277E-004 + 120.78000000000000 2.6374708401123492E-004 + 120.84000000000000 2.7273193431139915E-004 + 120.90000000000001 2.8102594905742202E-004 + 120.95999999999998 2.8864262828482177E-004 + 121.01999999999998 2.9559615542286492E-004 + 121.07999999999998 3.0190137425269246E-004 + 121.13999999999999 3.0757372193883402E-004 + 121.19999999999999 3.1262915610949038E-004 + 121.25999999999999 3.1708417103410499E-004 + 121.31999999999999 3.2095563528508760E-004 + 121.38000000000000 3.2426081542847110E-004 + 121.44000000000000 3.2701732483121545E-004 + 121.50000000000000 3.2924306846606594E-004 + 121.56000000000000 3.3095615554931798E-004 + 121.62000000000000 3.3217485690878538E-004 + 121.68000000000001 3.3291760291909368E-004 + 121.73999999999998 3.3320293298084693E-004 + 121.79999999999998 3.3304940984065043E-004 + 121.85999999999999 3.3247558824886899E-004 + 121.91999999999999 3.3149995577447288E-004 + 121.97999999999999 3.3014100494898859E-004 + 122.03999999999999 3.2841704109614814E-004 + 122.09999999999999 3.2634620536253398E-004 + 122.16000000000000 3.2394649316153145E-004 + 122.22000000000000 3.2123564148745204E-004 + 122.28000000000000 3.1823112341221500E-004 + 122.34000000000000 3.1495014115230831E-004 + 122.40000000000001 3.1140955782149094E-004 + 122.45999999999998 3.0762591950358347E-004 + 122.51999999999998 3.0361540811898622E-004 + 122.57999999999998 2.9939379605760103E-004 + 122.63999999999999 2.9497648371304809E-004 + 122.69999999999999 2.9037838341438877E-004 + 122.75999999999999 2.8561405641678943E-004 + 122.81999999999999 2.8069756049512720E-004 + 122.88000000000000 2.7564251455399879E-004 + 122.94000000000000 2.7046201800657617E-004 + 123.00000000000000 2.6516875314961682E-004 + 123.06000000000000 2.5977486132146635E-004 + 123.12000000000000 2.5429203451539313E-004 + 123.18000000000001 2.4873144692756719E-004 + 123.23999999999998 2.4310376636630597E-004 + 123.29999999999998 2.3741919407272311E-004 + 123.35999999999999 2.3168739103023595E-004 + 123.41999999999999 2.2591752600022012E-004 + 123.47999999999999 2.2011829461148990E-004 + 123.53999999999999 2.1429787831631254E-004 + 123.59999999999999 2.0846397772376695E-004 + 123.66000000000000 2.0262384150296673E-004 + 123.72000000000000 1.9678420129727321E-004 + 123.78000000000000 1.9095135690739591E-004 + 123.84000000000000 1.8513114223240326E-004 + 123.90000000000001 1.7932896918937857E-004 + 123.95999999999998 1.7354981657991794E-004 + 124.01999999999998 1.6779825482465729E-004 + 124.07999999999998 1.6207843937361514E-004 + 124.13999999999999 1.5639415948193750E-004 + 124.19999999999999 1.5074885331736184E-004 + 124.25999999999999 1.4514558607103372E-004 + 124.31999999999999 1.3958711089056940E-004 + 124.38000000000000 1.3407584627132143E-004 + 124.44000000000000 1.2861392690693068E-004 + 124.50000000000000 1.2320320695107803E-004 + 124.56000000000000 1.1784525277020487E-004 + 124.62000000000000 1.1254140530260993E-004 + 124.68000000000001 1.0729273726467389E-004 + 124.73999999999998 1.0210012991261563E-004 + 124.79999999999998 9.6964254907051944E-005 + 124.85999999999999 9.1885588422226179E-005 + 124.91999999999999 8.6864451842354128E-005 + 124.97999999999999 8.1900989480045275E-005 + 125.03999999999999 7.6995220102688873E-005 + 125.09999999999999 7.2147030459182281E-005 + 125.16000000000000 6.7356202521806085E-005 + 125.22000000000000 6.2622417276638913E-005 + 125.28000000000000 5.7945279335451581E-005 + 125.34000000000000 5.3324320437522531E-005 + 125.40000000000001 4.8759013358886607E-005 + 125.45999999999998 4.4248799182758274E-005 + 125.51999999999998 3.9793079523656767E-005 + 125.57999999999998 3.5391237601760478E-005 + 125.63999999999999 3.1042651318981745E-005 + 125.69999999999999 2.6746692379235659E-005 + 125.75999999999999 2.2502743997993078E-005 + 125.81999999999999 1.8310209717432554E-005 + 125.88000000000000 1.4168512303781757E-005 + 125.94000000000000 1.0077112723063235E-005 + 126.00000000000000 6.0355056902280621E-006 + 126.06000000000000 2.0432351159791004E-006 + 126.12000000000000 -1.9001046751413630E-006 + 126.18000000000001 -5.7948625349556099E-006 + 126.23999999999998 -9.6413262382350534E-006 + 126.29999999999998 -1.3439714351041815E-005 + 126.35999999999999 -1.7190181648465766E-005 + 126.41999999999999 -2.0892802584080215E-005 + 126.47999999999999 -2.4547581916884698E-005 + 126.53999999999999 -2.8154448817677876E-005 + 126.59999999999999 -3.1713247648031510E-005 + 126.66000000000000 -3.5223756912284116E-005 + 126.72000000000000 -3.8685673167499946E-005 + 126.78000000000000 -4.2098625301249957E-005 + 126.84000000000000 -4.5462168464646441E-005 + 126.90000000000001 -4.8775799080458459E-005 + 126.95999999999998 -5.2038940651889767E-005 + 127.01999999999998 -5.5250973280667297E-005 + 127.07999999999998 -5.8411216353497536E-005 + 127.13999999999999 -6.1518940291862997E-005 + 127.19999999999999 -6.4573377776588217E-005 + 127.25999999999999 -6.7573722974610393E-005 + 127.31999999999999 -7.0519137863436941E-005 + 127.38000000000000 -7.3408773655893282E-005 + 127.44000000000000 -7.6241746307886032E-005 + 127.50000000000000 -7.9017160479469441E-005 + 127.56000000000000 -8.1734116942889211E-005 + 127.62000000000000 -8.4391712809002130E-005 + 127.68000000000001 -8.6989044480510099E-005 + 127.73999999999998 -8.9525234785614650E-005 + 127.79999999999998 -9.1999399206233836E-005 + 127.85999999999999 -9.4410694743250002E-005 + 127.91999999999999 -9.6758293239830636E-005 + 127.97999999999999 -9.9041414484146186E-005 + 128.03999999999999 -1.0125931983368925E-004 + 128.09999999999999 -1.0341129983067491E-004 + 128.16000000000000 -1.0549673093907524E-004 + 128.22000000000000 -1.0751502348980724E-004 + 128.28000000000000 -1.0946567605573247E-004 + 128.34000000000000 -1.1134824459503640E-004 + 128.40000000000001 -1.1316236763080596E-004 + 128.45999999999998 -1.1490777465693019E-004 + 128.51999999999998 -1.1658426214398484E-004 + 128.57999999999998 -1.1819173344271671E-004 + 128.63999999999999 -1.1973019291687911E-004 + 128.69999999999999 -1.2119973077353773E-004 + 128.75999999999999 -1.2260054367804160E-004 + 128.81999999999999 -1.2393293900807254E-004 + 128.88000000000000 -1.2519731994960309E-004 + 128.94000000000000 -1.2639421918842221E-004 + 129.00000000000000 -1.2752428918412931E-004 + 129.06000000000000 -1.2858827513812071E-004 + 129.12000000000000 -1.2958706641262593E-004 + 129.18000000000001 -1.3052166545491958E-004 + 129.23999999999998 -1.3139319108390949E-004 + 129.29999999999998 -1.3220290223106427E-004 + 129.35999999999999 -1.3295215719049137E-004 + 129.41999999999999 -1.3364242222671397E-004 + 129.47999999999999 -1.3427530508335582E-004 + 129.53999999999999 -1.3485250968072964E-004 + 129.59999999999999 -1.3537585124435975E-004 + 129.66000000000000 -1.3584724446906107E-004 + 129.72000000000000 -1.3626870812760651E-004 + 129.78000000000000 -1.3664233509212535E-004 + 129.84000000000000 -1.3697031180317574E-004 + 129.90000000000001 -1.3725490453615432E-004 + 129.95999999999998 -1.3749844926248342E-004 + 130.01999999999998 -1.3770335846860916E-004 + 130.07999999999998 -1.3787208804688406E-004 + 130.13999999999999 -1.3800717019501782E-004 + 130.19999999999999 -1.3811119030450908E-004 + 130.25999999999999 -1.3818678934102136E-004 + 130.31999999999999 -1.3823665733981303E-004 + 130.38000000000000 -1.3826352445921080E-004 + 130.44000000000000 -1.3827015342009156E-004 + 130.50000000000000 -1.3825936570264181E-004 + 130.56000000000000 -1.3823401345648136E-004 + 130.62000000000000 -1.3819697276142468E-004 + 130.68000000000001 -1.3815113598956774E-004 + 130.73999999999998 -1.3809943279953355E-004 + 130.79999999999998 -1.3804480162669583E-004 + 130.85999999999999 -1.3799018367947367E-004 + 130.91999999999999 -1.3793852317403940E-004 + 130.97999999999999 -1.3789276377429229E-004 + 131.03999999999999 -1.3785583746636220E-004 + 131.09999999999999 -1.3783065094292223E-004 + 131.16000000000000 -1.3782008886890860E-004 + 131.22000000000000 -1.3782702333966850E-004 + 131.28000000000000 -1.3785427410645758E-004 + 131.34000000000000 -1.3790464004881896E-004 + 131.40000000000001 -1.3798086768987807E-004 + 131.45999999999998 -1.3808565999472031E-004 + 131.51999999999998 -1.3822172600132482E-004 + 131.57999999999998 -1.3839169842228542E-004 + 131.63999999999999 -1.3859815256520063E-004 + 131.69999999999999 -1.3884367198568437E-004 + 131.75999999999999 -1.3913076911899533E-004 + 131.81999999999999 -1.3946194482500210E-004 + 131.88000000000000 -1.3983967588287590E-004 + 131.94000000000000 -1.4026638934113393E-004 + 132.00000000000000 -1.4074448144844125E-004 + 132.06000000000000 -1.4127634285407569E-004 + 132.12000000000000 -1.4186433039576777E-004 + 132.18000000000001 -1.4251079197967123E-004 + 132.23999999999998 -1.4321803693524536E-004 + 132.29999999999998 -1.4398838160579211E-004 + 132.35999999999999 -1.4482412495433341E-004 + 132.41999999999999 -1.4572757277236937E-004 + 132.47999999999999 -1.4670099204854665E-004 + 132.53999999999999 -1.4774667960420026E-004 + 132.59999999999999 -1.4886693917802620E-004 + 132.66000000000000 -1.5006405520359093E-004 + 132.72000000000000 -1.5134035966681057E-004 + 132.78000000000000 -1.5269820941621087E-004 + 132.84000000000000 -1.5413997291737462E-004 + 132.90000000000001 -1.5566804392401755E-004 + 132.95999999999998 -1.5728489678869882E-004 + 133.01999999999998 -1.5899302509826262E-004 + 133.07999999999998 -1.6079500095065669E-004 + 133.13999999999999 -1.6269343401108076E-004 + 133.19999999999999 -1.6469102603176424E-004 + 133.25999999999999 -1.6679053152218970E-004 + 133.31999999999999 -1.6899481945416582E-004 + 133.38000000000000 -1.7130682734002494E-004 + 133.44000000000000 -1.7372957341018038E-004 + 133.50000000000000 -1.7626621207127713E-004 + 133.56000000000000 -1.7891996669467801E-004 + 133.62000000000000 -1.8169420995521035E-004 + 133.68000000000001 -1.8459239869412871E-004 + 133.73999999999998 -1.8761814386157710E-004 + 133.79999999999998 -1.9077515674051056E-004 + 133.85999999999999 -1.9406725913371150E-004 + 133.91999999999999 -1.9749842714890557E-004 + 133.97999999999999 -2.0107274313410287E-004 + 134.03999999999999 -2.0479441679820164E-004 + 134.09999999999999 -2.0866776459982405E-004 + 134.16000000000000 -2.1269722055051020E-004 + 134.22000000000000 -2.1688732423225758E-004 + 134.28000000000000 -2.2124273087918817E-004 + 134.34000000000000 -2.2576815778257352E-004 + 134.40000000000001 -2.3046845156242811E-004 + 134.45999999999998 -2.3534847024450525E-004 + 134.51999999999998 -2.4041319287547143E-004 + 134.57999999999998 -2.4566763007481901E-004 + 134.63999999999999 -2.5111681586658047E-004 + 134.69999999999999 -2.5676582267008976E-004 + 134.75999999999999 -2.6261977445166579E-004 + 134.81999999999999 -2.6868373792636436E-004 + 134.88000000000000 -2.7496280394829803E-004 + 134.94000000000000 -2.8146202573332504E-004 + 135.00000000000000 -2.8818642041142281E-004 + 135.06000000000000 -2.9514095826482957E-004 + 135.12000000000000 -3.0233047950635055E-004 + 135.18000000000001 -3.0975977097731725E-004 + 135.23999999999998 -3.1743348545893281E-004 + 135.29999999999998 -3.2535609550790769E-004 + 135.35999999999999 -3.3353195666673149E-004 + 135.41999999999999 -3.4196521254151136E-004 + 135.47999999999999 -3.5065975596947313E-004 + 135.53999999999999 -3.5961920984208841E-004 + 135.59999999999999 -3.6884695737009925E-004 + 135.66000000000000 -3.7834602278238665E-004 + 135.72000000000000 -3.8811911950812532E-004 + 135.78000000000000 -3.9816857972133546E-004 + 135.84000000000000 -4.0849631978191151E-004 + 135.90000000000001 -4.1910379790615384E-004 + 135.95999999999998 -4.2999211460376194E-004 + 136.01999999999998 -4.4116180407150840E-004 + 136.07999999999998 -4.5261290809296044E-004 + 136.13999999999999 -4.6434497120364604E-004 + 136.19999999999999 -4.7635686267017980E-004 + 136.25999999999999 -4.8864693937070007E-004 + 136.31999999999999 -5.0121295393357754E-004 + 136.38000000000000 -5.1405204001718908E-004 + 136.44000000000000 -5.2716059077311016E-004 + 136.50000000000000 -5.4053444654957679E-004 + 136.56000000000000 -5.5416858737404465E-004 + 136.62000000000000 -5.6805735006317339E-004 + 136.68000000000001 -5.8219435071029974E-004 + 136.73999999999998 -5.9657238755677776E-004 + 136.79999999999998 -6.1118345104409525E-004 + 136.85999999999999 -6.2601878510876684E-004 + 136.91999999999999 -6.4106885827657075E-004 + 136.97999999999999 -6.5632317782554986E-004 + 137.03999999999999 -6.7177062090419777E-004 + 137.09999999999999 -6.8739896296786342E-004 + 137.16000000000000 -7.0319535726865421E-004 + 137.22000000000000 -7.1914608521441695E-004 + 137.28000000000000 -7.3523641276614299E-004 + 137.34000000000000 -7.5145100740306567E-004 + 137.40000000000001 -7.6777358794665189E-004 + 137.45999999999998 -7.8418703742522068E-004 + 137.51999999999998 -8.0067339061506537E-004 + 137.57999999999998 -8.1721401491760407E-004 + 137.63999999999999 -8.3378943034725938E-004 + 137.69999999999999 -8.5037936333506826E-004 + 137.75999999999999 -8.6696289900753875E-004 + 137.81999999999999 -8.8351832392540703E-004 + 137.88000000000000 -9.0002322027490705E-004 + 137.94000000000000 -9.1645462273668202E-004 + 138.00000000000000 -9.3278890098229803E-004 + 138.06000000000000 -9.4900163986084778E-004 + 138.12000000000000 -9.6506813812395381E-004 + 138.18000000000001 -9.8096314854957201E-004 + 138.23999999999998 -9.9666068332941119E-004 + 138.29999999999998 -1.0121345952798723E-003 + 138.35999999999999 -1.0273583259122836E-003 + 138.41999999999999 -1.0423049318534407E-003 + 138.47999999999999 -1.0569472108579673E-003 + 138.53999999999999 -1.0712576385617778E-003 + 138.59999999999999 -1.0852087372967560E-003 + 138.66000000000000 -1.0987729203862828E-003 + 138.72000000000000 -1.1119225188114651E-003 + 138.78000000000000 -1.1246299334776457E-003 + 138.84000000000000 -1.1368677092447291E-003 + 138.90000000000001 -1.1486085934386998E-003 + 138.95999999999998 -1.1598253400838076E-003 + 139.01999999999998 -1.1704914952175196E-003 + 139.07999999999998 -1.1805806657900551E-003 + 139.13999999999999 -1.1900668363653978E-003 + 139.19999999999999 -1.1989247642072861E-003 + 139.25999999999999 -1.2071296911971170E-003 + 139.31999999999999 -1.2146576223732827E-003 + 139.38000000000000 -1.2214850600014064E-003 + 139.44000000000000 -1.2275895802290908E-003 + 139.50000000000000 -1.2329496100589143E-003 + 139.56000000000000 -1.2375442024756518E-003 + 139.62000000000000 -1.2413538638720723E-003 + 139.68000000000001 -1.2443597829178933E-003 + 139.73999999999998 -1.2465443335590166E-003 + 139.79999999999998 -1.2478913117862480E-003 + 139.85999999999999 -1.2483855257307782E-003 + 139.91999999999999 -1.2480130710134764E-003 + 139.97999999999999 -1.2467615742270738E-003 + 140.03999999999999 -1.2446197098936710E-003 + 140.09999999999999 -1.2415779628861601E-003 + 140.16000000000000 -1.2376279987102521E-003 + 140.22000000000000 -1.2327631280219888E-003 + 140.28000000000000 -1.2269781615170980E-003 + 140.34000000000000 -1.2202695329211789E-003 + 140.40000000000001 -1.2126353006510994E-003 + 140.45999999999998 -1.2040749962799308E-003 + 140.51999999999998 -1.1945899526196744E-003 + 140.57999999999998 -1.1841832447409715E-003 + 140.63999999999999 -1.1728594242142146E-003 + 140.69999999999999 -1.1606247997069615E-003 + 140.75999999999999 -1.1474873734733525E-003 + 140.81999999999999 -1.1334566560865004E-003 + 140.88000000000000 -1.1185441530453541E-003 + 140.94000000000000 -1.1027627444778298E-003 + 141.00000000000000 -1.0861270544812104E-003 + 141.06000000000000 -1.0686532844445507E-003 + 141.12000000000000 -1.0503591384602850E-003 + 141.18000000000001 -1.0312638860463107E-003 + 141.23999999999998 -1.0113884707248265E-003 + 141.29999999999998 -9.9075488863551689E-004 + 141.35999999999999 -9.6938698460926893E-004 + 141.41999999999999 -9.4730964143865178E-004 + 141.47999999999999 -9.2454914715160361E-004 + 141.53999999999999 -9.0113303540969420E-004 + 141.59999999999999 -8.7708990816856146E-004 + 141.66000000000000 -8.5244950270419297E-004 + 141.72000000000000 -8.2724271171337590E-004 + 141.78000000000000 -8.0150135369855767E-004 + 141.84000000000000 -7.7525808146463541E-004 + 141.90000000000001 -7.4854641881140103E-004 + 141.95999999999998 -7.2140075084801037E-004 + 142.01999999999998 -6.9385596975832589E-004 + 142.07999999999998 -6.6594767193265422E-004 + 142.13999999999999 -6.3771196994884271E-004 + 142.19999999999999 -6.0918532924143548E-004 + 142.25999999999999 -5.8040463911021329E-004 + 142.31999999999999 -5.5140704230626988E-004 + 142.38000000000000 -5.2222982879404959E-004 + 142.44000000000000 -4.9291030408327207E-004 + 142.50000000000000 -4.6348585025866916E-004 + 142.56000000000000 -4.3399377572266653E-004 + 142.62000000000000 -4.0447101513834088E-004 + 142.68000000000001 -3.7495438048111871E-004 + 142.73999999999998 -3.4548020563616213E-004 + 142.79999999999998 -3.1608442869431388E-004 + 142.85999999999999 -2.8680247735681581E-004 + 142.91999999999999 -2.5766911519043236E-004 + 142.97999999999999 -2.2871844010875986E-004 + 143.03999999999999 -1.9998379071253845E-004 + 143.09999999999999 -1.7149771521940573E-004 + 143.16000000000000 -1.4329186239575752E-004 + 143.22000000000000 -1.1539692636770617E-004 + 143.28000000000000 -8.7842615908218581E-005 + 143.34000000000000 -6.0657614387901271E-005 + 143.40000000000001 -3.3869519551919062E-005 + 143.45999999999998 -7.5047508864687307E-006 + 143.51999999999998 1.8411405310433701E-005 + 143.57999999999998 4.3854925804522885E-005 + 143.63999999999999 6.8803025330492761E-005 + 143.69999999999999 9.3234189882455986E-005 + 143.75999999999999 1.1712823919824699E-004 + 143.81999999999999 1.4046635368630513E-004 + 143.88000000000000 1.6323103251558659E-004 + 143.94000000000000 1.8540619738395591E-004 + 144.00000000000000 2.0697715824597059E-004 + 144.06000000000000 2.2793059477695186E-004 + 144.12000000000000 2.4825466207184044E-004 + 144.18000000000001 2.6793883326465363E-004 + 144.23999999999998 2.8697402181835903E-004 + 144.29999999999998 3.0535254755592448E-004 + 144.35999999999999 3.2306805384200825E-004 + 144.41999999999999 3.4011557974867224E-004 + 144.47999999999999 3.5649148258545295E-004 + 144.53999999999999 3.7219343336771248E-004 + 144.59999999999999 3.8722035437504702E-004 + 144.66000000000000 4.0157240181985430E-004 + 144.72000000000000 4.1525100391867447E-004 + 144.78000000000000 4.2825873443605965E-004 + 144.84000000000000 4.4059924053429253E-004 + 144.90000000000001 4.5227732914389970E-004 + 144.95999999999998 4.6329877356346622E-004 + 145.01999999999998 4.7367043001495185E-004 + 145.07999999999998 4.8340005905295668E-004 + 145.13999999999999 4.9249632766193722E-004 + 145.19999999999999 5.0096875202266936E-004 + 145.25999999999999 5.0882772153584138E-004 + 145.31999999999999 5.1608423953179326E-004 + 145.38000000000000 5.2275015058984723E-004 + 145.44000000000000 5.2883786755867767E-004 + 145.50000000000000 5.3436046894497920E-004 + 145.56000000000000 5.3933155972136343E-004 + 145.62000000000000 5.4376517355315490E-004 + 145.68000000000001 5.4767585846083775E-004 + 145.73999999999998 5.5107856186537322E-004 + 145.79999999999998 5.5398860982222890E-004 + 145.85999999999999 5.5642156129011939E-004 + 145.91999999999999 5.5839320762719139E-004 + 145.97999999999999 5.5991963555726760E-004 + 146.03999999999999 5.6101705864373811E-004 + 146.09999999999999 5.6170176876256300E-004 + 146.16000000000000 5.6199013015889403E-004 + 146.22000000000000 5.6189854322132959E-004 + 146.28000000000000 5.6144342140384055E-004 + 146.34000000000000 5.6064102287704961E-004 + 146.40000000000001 5.5950763634064955E-004 + 146.45999999999998 5.5805930609687090E-004 + 146.51999999999998 5.5631191795075694E-004 + 146.57999999999998 5.5428122334186172E-004 + 146.63999999999999 5.5198256880134838E-004 + 146.69999999999999 5.4943116884127762E-004 + 146.75999999999999 5.4664192492151552E-004 + 146.81999999999999 5.4362933879394690E-004 + 146.88000000000000 5.4040760361414805E-004 + 146.94000000000000 5.3699054402860829E-004 + 147.00000000000000 5.3339154679876548E-004 + 147.06000000000000 5.2962366049087663E-004 + 147.12000000000000 5.2569950452121313E-004 + 147.18000000000001 5.2163132871199311E-004 + 147.23999999999998 5.1743084519880085E-004 + 147.29999999999998 5.1310944339175298E-004 + 147.35999999999999 5.0867790207935058E-004 + 147.41999999999999 5.0414673549447893E-004 + 147.47999999999999 4.9952590172980195E-004 + 147.53999999999999 4.9482495443817014E-004 + 147.59999999999999 4.9005295201622685E-004 + 147.66000000000000 4.8521849049771318E-004 + 147.72000000000000 4.8032978840238259E-004 + 147.78000000000000 4.7539450652126354E-004 + 147.84000000000000 4.7041993535643594E-004 + 147.90000000000001 4.6541289560848896E-004 + 147.95999999999998 4.6037971844687292E-004 + 148.01999999999998 4.5532639638598061E-004 + 148.07999999999998 4.5025851304566415E-004 + 148.13999999999999 4.4518111470441915E-004 + 148.19999999999999 4.4009892864981350E-004 + 148.25999999999999 4.3501632339741430E-004 + 148.31999999999999 4.2993727910950718E-004 + 148.38000000000000 4.2486540323096670E-004 + 148.44000000000000 4.1980398583962527E-004 + 148.50000000000000 4.1475597910840898E-004 + 148.56000000000000 4.0972401987673940E-004 + 148.62000000000000 4.0471047772288216E-004 + 148.68000000000001 3.9971740630328313E-004 + 148.73999999999998 3.9474660310513605E-004 + 148.79999999999998 3.8979963512485643E-004 + 148.85999999999999 3.8487779025560064E-004 + 148.91999999999999 3.7998216195581341E-004 + 148.97999999999999 3.7511359300059052E-004 + 149.03999999999999 3.7027276627502070E-004 + 149.09999999999999 3.6546018309205732E-004 + 149.16000000000000 3.6067616057692880E-004 + 149.22000000000000 3.5592085734079251E-004 + 149.28000000000000 3.5119429016486521E-004 + 149.34000000000000 3.4649642249451025E-004 + 149.40000000000001 3.4182703705811651E-004 + 149.45999999999998 3.3718588701934940E-004 + 149.51999999999998 3.3257264330919064E-004 + 149.57999999999998 3.2798689656160274E-004 + 149.63999999999999 3.2342826285426836E-004 + 149.69999999999999 3.1889630331359851E-004 + 149.75999999999999 3.1439055930958677E-004 + 149.81999999999999 3.0991058784757568E-004 + 149.88000000000000 3.0545597802223009E-004 + 149.94000000000000 3.0102629482953603E-004 + 150.00000000000000 2.9662115944160998E-004 + 150.06000000000000 2.9224024001162709E-004 + 150.12000000000000 2.8788324874649433E-004 + 150.18000000000001 2.8354987305304318E-004 + 150.23999999999998 2.7923992442745497E-004 + 150.29999999999998 2.7495321025183979E-004 + 150.35999999999999 2.7068963150186936E-004 + 150.41999999999999 2.6644909526200866E-004 + 150.47999999999999 2.6223159463532365E-004 + 150.53999999999999 2.5803719872225531E-004 + 150.59999999999999 2.5386602717765070E-004 + 150.66000000000000 2.4971826660019652E-004 + 150.72000000000000 2.4559416744970386E-004 + 150.78000000000000 2.4149406800363612E-004 + 150.84000000000000 2.3741842130612381E-004 + 150.90000000000001 2.3336768244953246E-004 + 150.95999999999998 2.2934248722837700E-004 + 151.01999999999998 2.2534347087993108E-004 + 151.07999999999998 2.2137140497625364E-004 + 151.13999999999999 2.1742713776479183E-004 + 151.19999999999999 2.1351158863929773E-004 + 151.25999999999999 2.0962577026299804E-004 + 151.31999999999999 2.0577078767933981E-004 + 151.38000000000000 2.0194779408880630E-004 + 151.44000000000000 1.9815802301644762E-004 + 151.50000000000000 1.9440277682041337E-004 + 151.56000000000000 1.9068343872958478E-004 + 151.62000000000000 1.8700142966860244E-004 + 151.68000000000001 1.8335822224251259E-004 + 151.73999999999998 1.7975538780490931E-004 + 151.79999999999998 1.7619449086769910E-004 + 151.85999999999999 1.7267718232465840E-004 + 151.91999999999999 1.6920514153361080E-004 + 151.97999999999999 1.6578008329295050E-004 + 152.03999999999999 1.6240378500990307E-004 + 152.09999999999999 1.5907803439654849E-004 + 152.16000000000000 1.5580467234304585E-004 + 152.22000000000000 1.5258557476732792E-004 + 152.28000000000000 1.4942263032836309E-004 + 152.34000000000000 1.4631778446226319E-004 + 152.40000000000001 1.4327299266705007E-004 + 152.45999999999998 1.4029021985598045E-004 + 152.51999999999998 1.3737146876600611E-004 + 152.57999999999998 1.3451875828235130E-004 + 152.63999999999999 1.3173412658796932E-004 + 152.69999999999999 1.2901961812958351E-004 + 152.75999999999999 1.2637728986133131E-004 + 152.81999999999999 1.2380921782917563E-004 + 152.88000000000000 1.2131747636445766E-004 + 152.94000000000000 1.1890415026947517E-004 + 153.00000000000000 1.1657131376204455E-004 + 153.06000000000000 1.1432105968183684E-004 + 153.12000000000000 1.1215544904721987E-004 + 153.17999999999998 1.1007656183403984E-004 + 153.23999999999998 1.0808645553284591E-004 + 153.29999999999998 1.0618717125615562E-004 + 153.35999999999999 1.0438074516169495E-004 + 153.41999999999999 1.0266918070557584E-004 + 153.47999999999999 1.0105447209403402E-004 + 153.53999999999999 9.9538586213121632E-005 + 153.59999999999999 9.8123468563734317E-005 + 153.66000000000000 9.6811037631921497E-005 + 153.72000000000000 9.5603207150829868E-005 + 153.78000000000000 9.4501841276712500E-005 + 153.84000000000000 9.3508810994703115E-005 + 153.90000000000001 9.2625954372308465E-005 + 153.95999999999998 9.1855112427778615E-005 + 154.01999999999998 9.1198105675957951E-005 + 154.07999999999998 9.0656758500276674E-005 + 154.13999999999999 9.0232882564997971E-005 + 154.19999999999999 8.9928294798860680E-005 + 154.25999999999999 8.9744807165258460E-005 + 154.31999999999999 8.9684227762999396E-005 + 154.38000000000000 8.9748378981719578E-005 + 154.44000000000000 8.9939053218038233E-005 + 154.50000000000000 9.0258050079315182E-005 + 154.56000000000000 9.0707164886968253E-005 + 154.62000000000000 9.1288154871331035E-005 + 154.67999999999998 9.2002761157140969E-005 + 154.73999999999998 9.2852690490287599E-005 + 154.79999999999998 9.3839617518232709E-005 + 154.85999999999999 9.4965169882772939E-005 + 154.91999999999999 9.6230919380044621E-005 + 154.97999999999999 9.7638387141958644E-005 + 155.03999999999999 9.9189034854028519E-005 + 155.09999999999999 1.0088425326173804E-004 + 155.16000000000000 1.0272536826210232E-004 + 155.22000000000000 1.0471364397169083E-004 + 155.28000000000000 1.0685024742859779E-004 + 155.34000000000000 1.0913628414626231E-004 + 155.40000000000001 1.1157275898285470E-004 + 155.45999999999998 1.1416062460475872E-004 + 155.51999999999998 1.1690070960734203E-004 + 155.57999999999998 1.1979374804653504E-004 + 155.63999999999999 1.2284038672293298E-004 + 155.69999999999999 1.2604112353418255E-004 + 155.75999999999999 1.2939636236718437E-004 + 155.81999999999999 1.3290633711327300E-004 + 155.88000000000000 1.3657114675290084E-004 + 155.94000000000000 1.4039072772715645E-004 + 156.00000000000000 1.4436482267057746E-004 + 156.06000000000000 1.4849299433632640E-004 + 156.12000000000000 1.5277458984335807E-004 + 156.17999999999998 1.5720871258181790E-004 + 156.23999999999998 1.6179426644159897E-004 + 156.29999999999998 1.6652986542255784E-004 + 156.35999999999999 1.7141385621660161E-004 + 156.41999999999999 1.7644432160410670E-004 + 156.47999999999999 1.8161902807499979E-004 + 156.53999999999999 1.8693543684930217E-004 + 156.59999999999999 1.9239068039892207E-004 + 156.66000000000000 1.9798156373488832E-004 + 156.72000000000000 2.0370452451998420E-004 + 156.78000000000000 2.0955566688867384E-004 + 156.84000000000000 2.1553069992546122E-004 + 156.90000000000001 2.2162493246429571E-004 + 156.95999999999998 2.2783330001075196E-004 + 157.01999999999998 2.3415032839017500E-004 + 157.07999999999998 2.4057003265377610E-004 + 157.13999999999999 2.4708611279007008E-004 + 157.19999999999999 2.5369173096027772E-004 + 157.25999999999999 2.6037965984136463E-004 + 157.31999999999999 2.6714216856697060E-004 + 157.38000000000000 2.7397108739772309E-004 + 157.44000000000000 2.8085773062525867E-004 + 157.50000000000000 2.8779297264551007E-004 + 157.56000000000000 2.9476721594644945E-004 + 157.62000000000000 3.0177038464618755E-004 + 157.67999999999998 3.0879189926879121E-004 + 157.73999999999998 3.1582074805744294E-004 + 157.79999999999998 3.2284545690486810E-004 + 157.85999999999999 3.2985407893162467E-004 + 157.91999999999999 3.3683420535608668E-004 + 157.97999999999999 3.4377304070839408E-004 + 158.03999999999999 3.5065730732784231E-004 + 158.09999999999999 3.5747334661376462E-004 + 158.16000000000000 3.6420708452769758E-004 + 158.22000000000000 3.7084399950039644E-004 + 158.28000000000000 3.7736929461236528E-004 + 158.34000000000000 3.8376775977752478E-004 + 158.40000000000001 3.9002384306768985E-004 + 158.45999999999998 3.9612169139117590E-004 + 158.51999999999998 4.0204511866459303E-004 + 158.57999999999998 4.0777770891239928E-004 + 158.63999999999999 4.1330279731996216E-004 + 158.69999999999999 4.1860346780996506E-004 + 158.75999999999999 4.2366267051051392E-004 + 158.81999999999999 4.2846314160243368E-004 + 158.88000000000000 4.3298760393363793E-004 + 158.94000000000000 4.3721857013509849E-004 + 159.00000000000000 4.4113864328213713E-004 + 159.06000000000000 4.4473036020652201E-004 + 159.12000000000000 4.4797626745908634E-004 + 159.17999999999998 4.5085902093399397E-004 + 159.23999999999998 4.5336143510787638E-004 + 159.29999999999998 4.5546640789326926E-004 + 159.35999999999999 4.5715718078812945E-004 + 159.41999999999999 4.5841709872220567E-004 + 159.47999999999999 4.5922995459611533E-004 + 159.53999999999999 4.5957984793528622E-004 + 159.59999999999999 4.5945127124336277E-004 + 159.66000000000000 4.5882922752552003E-004 + 159.72000000000000 4.5769912382281246E-004 + 159.78000000000000 4.5604700710250967E-004 + 159.84000000000000 4.5385948330553755E-004 + 159.90000000000001 4.5112382270914614E-004 + 159.95999999999998 4.4782798451222980E-004 + 160.01999999999998 4.4396068893791667E-004 + 160.07999999999998 4.3951142171899280E-004 + 160.13999999999999 4.3447053905670699E-004 + 160.19999999999999 4.2882928513646634E-004 + 160.25999999999999 4.2257978820580273E-004 + 160.31999999999999 4.1571515126051332E-004 + 160.38000000000000 4.0822952138491601E-004 + 160.44000000000000 4.0011802523877470E-004 + 160.50000000000000 3.9137687570206894E-004 + 160.56000000000000 3.8200341516901772E-004 + 160.62000000000000 3.7199610703946083E-004 + 160.67999999999998 3.6135456695632524E-004 + 160.73999999999998 3.5007959359199077E-004 + 160.79999999999998 3.3817324768962553E-004 + 160.85999999999999 3.2563878147977141E-004 + 160.91999999999999 3.1248076934162997E-004 + 160.97999999999999 2.9870499268046680E-004 + 161.03999999999999 2.8431856093129743E-004 + 161.09999999999999 2.6932990911468881E-004 + 161.16000000000000 2.5374876445722152E-004 + 161.22000000000000 2.3758614774080171E-004 + 161.28000000000000 2.2085445805367090E-004 + 161.34000000000000 2.0356735353664455E-004 + 161.40000000000001 1.8573984308110052E-004 + 161.45999999999998 1.6738820070840186E-004 + 161.51999999999998 1.4852996866121729E-004 + 161.57999999999998 1.2918397376844638E-004 + 161.63999999999999 1.0937026004945081E-004 + 161.69999999999999 8.9110067374568021E-005 + 161.75999999999999 6.8425820177723490E-005 + 161.81999999999999 4.7341075316630556E-005 + 161.88000000000000 2.5880487302277173E-005 + 161.94000000000000 4.0697725164332872E-006 + 162.00000000000000 -1.8064346013411884E-005 + 162.06000000000000 -4.0494159826463434E-005 + 162.12000000000000 -6.3191050942427413E-005 + 162.17999999999998 -8.6125519452439768E-005 + 162.23999999999998 -1.0926722783001722E-004 + 162.29999999999998 -1.3258509155131341E-004 + 162.35999999999999 -1.5604730665224923E-004 + 162.41999999999999 -1.7962143907860294E-004 + 162.47999999999999 -2.0327442932338986E-004 + 162.53999999999999 -2.2697273177043763E-004 + 162.59999999999999 -2.5068234588877553E-004 + 162.66000000000000 -2.7436885616918144E-004 + 162.72000000000000 -2.9799756942685581E-004 + 162.78000000000000 -3.2153355205838852E-004 + 162.84000000000000 -3.4494174468757086E-004 + 162.90000000000001 -3.6818699428437321E-004 + 162.95999999999998 -3.9123418203719051E-004 + 163.01999999999998 -4.1404827048734132E-004 + 163.07999999999998 -4.3659440196922782E-004 + 163.13999999999999 -4.5883800232318525E-004 + 163.19999999999999 -4.8074479522710310E-004 + 163.25999999999999 -5.0228087823607991E-004 + 163.31999999999999 -5.2341298429131795E-004 + 163.38000000000000 -5.4410829031688529E-004 + 163.44000000000000 -5.6433474612689713E-004 + 163.50000000000000 -5.8406087443378771E-004 + 163.56000000000000 -6.0325611036956238E-004 + 163.62000000000000 -6.2189063616289531E-004 + 163.67999999999998 -6.3993564612785988E-004 + 163.73999999999998 -6.5736325786273442E-004 + 163.79999999999998 -6.7414667050370706E-004 + 163.85999999999999 -6.9026015941939527E-004 + 163.91999999999999 -7.0567911496171080E-004 + 163.97999999999999 -7.2038018374571402E-004 + 164.03999999999999 -7.3434130592780968E-004 + 164.09999999999999 -7.4754164360113908E-004 + 164.16000000000000 -7.5996175858313963E-004 + 164.22000000000000 -7.7158358069064374E-004 + 164.28000000000000 -7.8239048636705264E-004 + 164.34000000000000 -7.9236730798273229E-004 + 164.40000000000001 -8.0150036402531686E-004 + 164.45999999999998 -8.0977750515865928E-004 + 164.51999999999998 -8.1718816172524913E-004 + 164.57999999999998 -8.2372326983006275E-004 + 164.63999999999999 -8.2937543211303506E-004 + 164.69999999999999 -8.3413873217058577E-004 + 164.75999999999999 -8.3800892282905677E-004 + 164.81999999999999 -8.4098334896913159E-004 + 164.88000000000000 -8.4306100353574579E-004 + 164.94000000000000 -8.4424243185722493E-004 + 165.00000000000000 -8.4452979970519985E-004 + 165.06000000000000 -8.4392680024656590E-004 + 165.12000000000000 -8.4243874504421213E-004 + 165.17999999999998 -8.4007252037568013E-004 + 165.23999999999998 -8.3683644785623071E-004 + 165.29999999999998 -8.3274039734335136E-004 + 165.35999999999999 -8.2779560929924223E-004 + 165.41999999999999 -8.2201479110284548E-004 + 165.47999999999999 -8.1541204106442221E-004 + 165.53999999999999 -8.0800267622186349E-004 + 165.59999999999999 -7.9980339287963190E-004 + 165.66000000000000 -7.9083210671415324E-004 + 165.72000000000000 -7.8110785000727666E-004 + 165.78000000000000 -7.7065088887832479E-004 + 165.84000000000000 -7.5948236698016838E-004 + 165.90000000000001 -7.4762449081897336E-004 + 165.95999999999998 -7.3510053600583198E-004 + 166.01999999999998 -7.2193446642942983E-004 + 166.07999999999998 -7.0815113777614939E-004 + 166.13999999999999 -6.9377627731523816E-004 + 166.19999999999999 -6.7883610818392042E-004 + 166.25999999999999 -6.6335758997851965E-004 + 166.31999999999999 -6.4736823348437132E-004 + 166.38000000000000 -6.3089606634894927E-004 + 166.44000000000000 -6.1396943091342638E-004 + 166.50000000000000 -5.9661721310070768E-004 + 166.56000000000000 -5.7886849490146688E-004 + 166.62000000000000 -5.6075263914319006E-004 + 166.67999999999998 -5.4229914141190085E-004 + 166.73999999999998 -5.2353761758500747E-004 + 166.79999999999998 -5.0449772505393911E-004 + 166.85999999999999 -4.8520907277376933E-004 + 166.91999999999999 -4.6570119136184890E-004 + 166.97999999999999 -4.4600340540164264E-004 + 167.03999999999999 -4.2614482318848617E-004 + 167.09999999999999 -4.0615432283815057E-004 + 167.16000000000000 -3.8606038642787210E-004 + 167.22000000000000 -3.6589112165198376E-004 + 167.28000000000000 -3.4567416461615027E-004 + 167.34000000000000 -3.2543669743486178E-004 + 167.40000000000001 -3.0520530639236413E-004 + 167.45999999999998 -2.8500601541376778E-004 + 167.51999999999998 -2.6486423838682511E-004 + 167.57999999999998 -2.4480468552480993E-004 + 167.63999999999999 -2.2485142597079963E-004 + 167.69999999999999 -2.0502773208272063E-004 + 167.75999999999999 -1.8535619252902123E-004 + 167.81999999999999 -1.6585853806774369E-004 + 167.88000000000000 -1.4655573854536084E-004 + 167.94000000000000 -1.2746793178163411E-004 + 168.00000000000000 -1.0861436445153442E-004 + 168.06000000000000 -9.0013439775959335E-005 + 168.12000000000000 -7.1682662559140848E-005 + 168.17999999999998 -5.3638627109224850E-005 + 168.23999999999998 -3.5897014204571180E-005 + 168.29999999999998 -1.8472576498318574E-005 + 168.35999999999999 -1.3791292210841520E-006 + 168.41999999999999 1.5370437266718206E-005 + 168.47999999999999 3.1764181033434536E-005 + 168.53999999999999 4.7791082668598214E-005 + 168.59999999999999 6.3441071431215439E-005 + 168.66000000000000 7.8704994899080530E-005 + 168.72000000000000 9.3574600131255762E-005 + 168.78000000000000 1.0804255441076952E-004 + 168.84000000000000 1.2210240005891353E-004 + 168.90000000000001 1.3574855634052114E-004 + 168.95999999999998 1.4897628789226677E-004 + 169.01999999999998 1.6178170540313789E-004 + 169.07999999999998 1.7416171615999631E-004 + 169.13999999999999 1.8611402814231096E-004 + 169.19999999999999 1.9763714413101232E-004 + 169.25999999999999 2.0873025220274552E-004 + 169.31999999999999 2.1939330512563788E-004 + 169.38000000000000 2.2962696237586089E-004 + 169.44000000000000 2.3943252842980123E-004 + 169.50000000000000 2.4881194728529777E-004 + 169.56000000000000 2.5776779558954601E-004 + 169.62000000000000 2.6630320155926127E-004 + 169.67999999999998 2.7442192869313846E-004 + 169.73999999999998 2.8212821654954190E-004 + 169.79999999999998 2.8942679494502107E-004 + 169.85999999999999 2.9632289813295403E-004 + 169.91999999999999 3.0282220502430727E-004 + 169.97999999999999 3.0893081077529365E-004 + 170.03999999999999 3.1465515671144401E-004 + 170.09999999999999 3.2000214015658209E-004 + 170.16000000000000 3.2497889318047638E-004 + 170.22000000000000 3.2959291802895621E-004 + 170.28000000000000 3.3385200658720695E-004 + 170.34000000000000 3.3776418775646381E-004 + 170.40000000000001 3.4133771454341748E-004 + 170.45999999999998 3.4458102728433001E-004 + 170.51999999999998 3.4750280082006133E-004 + 170.57999999999998 3.5011184641131415E-004 + 170.63999999999999 3.5241710830167692E-004 + 170.69999999999999 3.5442764683132595E-004 + 170.75999999999999 3.5615257784099797E-004 + 170.81999999999999 3.5760115208415249E-004 + 170.88000000000000 3.5878259925494599E-004 + 170.94000000000000 3.5970620398071763E-004 + 171.00000000000000 3.6038125268675586E-004 + 171.06000000000000 3.6081698654540583E-004 + 171.12000000000000 3.6102265785405120E-004 + 171.17999999999998 3.6100743233281570E-004 + 171.23999999999998 3.6078047719344096E-004 + 171.29999999999998 3.6035078868298183E-004 + 171.35999999999999 3.5972735104604646E-004 + 171.41999999999999 3.5891900996938347E-004 + 171.47999999999999 3.5793450620002202E-004 + 171.53999999999999 3.5678250534157158E-004 + 171.59999999999999 3.5547151308045106E-004 + 171.66000000000000 3.5400992475667224E-004 + 171.72000000000000 3.5240600205999935E-004 + 171.78000000000000 3.5066781823962171E-004 + 171.84000000000000 3.4880336749808959E-004 + 171.90000000000001 3.4682043458250916E-004 + 171.95999999999998 3.4472665999049542E-004 + 172.01999999999998 3.4252946856066374E-004 + 172.07999999999998 3.4023618730695998E-004 + 172.13999999999999 3.3785392772352153E-004 + 172.19999999999999 3.3538958778339787E-004 + 172.25999999999999 3.3284994324677298E-004 + 172.31999999999999 3.3024152690103425E-004 + 172.38000000000000 3.2757070636333231E-004 + 172.44000000000000 3.2484362778015263E-004 + 172.50000000000000 3.2206628118466315E-004 + 172.56000000000000 3.1924451985770056E-004 + 172.62000000000000 3.1638393878683467E-004 + 172.67999999999998 3.1348999304423568E-004 + 172.73999999999998 3.1056796064906527E-004 + 172.79999999999998 3.0762297533115879E-004 + 172.85999999999999 3.0465999349954818E-004 + 172.91999999999999 3.0168381439938481E-004 + 172.97999999999999 2.9869913290653374E-004 + 173.03999999999999 2.9571045405097903E-004 + 173.09999999999999 2.9272216149559883E-004 + 173.16000000000000 2.8973850712273020E-004 + 173.22000000000000 2.8676361768370160E-004 + 173.28000000000000 2.8380142278877093E-004 + 173.34000000000000 2.8085580392809423E-004 + 173.40000000000001 2.7793045911105713E-004 + 173.45999999999998 2.7502896158788828E-004 + 173.51999999999998 2.7215481727271617E-004 + 173.57999999999998 2.6931132287122492E-004 + 173.63999999999999 2.6650172523224886E-004 + 173.69999999999999 2.6372911487728670E-004 + 173.75999999999999 2.6099647862185259E-004 + 173.81999999999999 2.5830670640996571E-004 + 173.88000000000000 2.5566258750078146E-004 + 173.94000000000000 2.5306682071397815E-004 + 174.00000000000000 2.5052196595532839E-004 + 174.06000000000000 2.4803057382519775E-004 + 174.12000000000000 2.4559506686553647E-004 + 174.17999999999998 2.4321779047570003E-004 + 174.23999999999998 2.4090102599620255E-004 + 174.29999999999998 2.3864702002168275E-004 + 174.35999999999999 2.3645792199825853E-004 + 174.41999999999999 2.3433581749640674E-004 + 174.47999999999999 2.3228274856240666E-004 + 174.53999999999999 2.3030067556027299E-004 + 174.59999999999999 2.2839150085323092E-004 + 174.66000000000000 2.2655706809885566E-004 + 174.72000000000000 2.2479914817167561E-004 + 174.78000000000000 2.2311943648825258E-004 + 174.84000000000000 2.2151956921341218E-004 + 174.90000000000001 2.2000106730141780E-004 + 174.95999999999998 2.1856539703841809E-004 + 175.01999999999998 2.1721396766500277E-004 + 175.07999999999998 2.1594803150230195E-004 + 175.13999999999999 2.1476878719595277E-004 + 175.19999999999999 2.1367732611457264E-004 + 175.25999999999999 2.1267463280994146E-004 + 175.31999999999999 2.1176156823368920E-004 + 175.38000000000000 2.1093890010728217E-004 + 175.44000000000000 2.1020726003070927E-004 + 175.50000000000000 2.0956716124224411E-004 + 175.56000000000000 2.0901897326085423E-004 + 175.62000000000000 2.0856296844095796E-004 + 175.67999999999998 2.0819924425253175E-004 + 175.73999999999998 2.0792777030761609E-004 + 175.79999999999998 2.0774834511488592E-004 + 175.85999999999999 2.0766063966843592E-004 + 175.91999999999999 2.0766415779405851E-004 + 175.97999999999999 2.0775824124578236E-004 + 176.03999999999999 2.0794206621563635E-004 + 176.09999999999999 2.0821462070424283E-004 + 176.16000000000000 2.0857471547778460E-004 + 176.22000000000000 2.0902099296426341E-004 + 176.28000000000000 2.0955188563561607E-004 + 176.34000000000000 2.1016560369945680E-004 + 176.40000000000001 2.1086017497921151E-004 + 176.45999999999998 2.1163341263256275E-004 + 176.51999999999998 2.1248285471467325E-004 + 176.57999999999998 2.1340586305549741E-004 + 176.63999999999999 2.1439953195345011E-004 + 176.69999999999999 2.1546067842994520E-004 + 176.75999999999999 2.1658592674105698E-004 + 176.81999999999999 2.1777158163372749E-004 + 176.88000000000000 2.1901372696158178E-004 + 176.94000000000000 2.2030814884629318E-004 + 177.00000000000000 2.2165044014545168E-004 + 177.06000000000000 2.2303586967454604E-004 + 177.12000000000000 2.2445950236109154E-004 + 177.17999999999998 2.2591615104773901E-004 + 177.23999999999998 2.2740033876305000E-004 + 177.29999999999998 2.2890642063779767E-004 + 177.35999999999999 2.3042852124619795E-004 + 177.41999999999999 2.3196052190192437E-004 + 177.47999999999999 2.3349610614387781E-004 + 177.53999999999999 2.3502877246806412E-004 + 177.59999999999999 2.3655184753568635E-004 + 177.66000000000000 2.3805846906360250E-004 + 177.72000000000000 2.3954159100439247E-004 + 177.78000000000000 2.4099403011600652E-004 + 177.84000000000000 2.4240845504950367E-004 + 177.90000000000001 2.4377738307707866E-004 + 177.95999999999998 2.4509322202309467E-004 + 178.01999999999998 2.4634824922975930E-004 + 178.07999999999998 2.4753464558074136E-004 + 178.13999999999999 2.4864451465651268E-004 + 178.19999999999999 2.4966988776050378E-004 + 178.25999999999999 2.5060277163123726E-004 + 178.31999999999999 2.5143512595271879E-004 + 178.38000000000000 2.5215888187475177E-004 + 178.44000000000000 2.5276606510415858E-004 + 178.50000000000000 2.5324868651199062E-004 + 178.56000000000000 2.5359887454059273E-004 + 178.62000000000000 2.5380886080770453E-004 + 178.67999999999998 2.5387102689492078E-004 + 178.73999999999998 2.5377786401970908E-004 + 178.79999999999998 2.5352211908725812E-004 + 178.85999999999999 2.5309672358453947E-004 + 178.91999999999999 2.5249492414546032E-004 + 178.97999999999999 2.5171018626030903E-004 + 179.03999999999999 2.5073633118090003E-004 + 179.09999999999999 2.4956748715316852E-004 + 179.16000000000000 2.4819818577949279E-004 + 179.22000000000000 2.4662332712708281E-004 + 179.28000000000000 2.4483819562036912E-004 + 179.34000000000000 2.4283853534448393E-004 + 179.40000000000001 2.4062055723889764E-004 + 179.45999999999998 2.3818095575259653E-004 + 179.51999999999998 2.3551689442014495E-004 + 179.57999999999998 2.3262606681969316E-004 + 179.63999999999999 2.2950670751881917E-004 + 179.69999999999999 2.2615762344830093E-004 + 179.75999999999999 2.2257816005903780E-004 + 179.81999999999999 2.1876826565531097E-004 + 179.88000000000000 2.1472851091069420E-004 + 179.94000000000000 2.1046005674958188E-004 + 180.00000000000000 2.0596468792864677E-004 + 180.06000000000000 2.0124484904183356E-004 + 180.12000000000000 1.9630362555348051E-004 + 180.17999999999998 1.9114474865665419E-004 + 180.23999999999998 1.8577258848094177E-004 + 180.29999999999998 1.8019221272907353E-004 + 180.35999999999999 1.7440934881325933E-004 + 180.41999999999999 1.6843036841032160E-004 + 180.47999999999999 1.6226232083130595E-004 + 180.53999999999999 1.5591289268599253E-004 + 180.59999999999999 1.4939042524981716E-004 + 180.66000000000000 1.4270389583627332E-004 + 180.72000000000000 1.3586288512273484E-004 + 180.78000000000000 1.2887758129732918E-004 + 180.84000000000000 1.2175877813606602E-004 + 180.90000000000001 1.1451782844058741E-004 + 180.95999999999998 1.0716659068827859E-004 + 181.01999999999998 9.9717453197891061E-005 + 181.07999999999998 9.2183280371619606E-005 + 181.13999999999999 8.4577384628350125E-005 + 181.19999999999999 7.6913474602402490E-005 + 181.25999999999999 6.9205646658100154E-005 + 181.31999999999999 6.1468338035441234E-005 + 181.38000000000000 5.3716270822224325E-005 + 181.44000000000000 4.5964448676763388E-005 + 181.50000000000000 3.8228066243235155E-005 + 181.56000000000000 3.0522505837533051E-005 + 181.62000000000000 2.2863290291357963E-005 + 181.67999999999998 1.5266034014539631E-005 + 181.73999999999998 7.7464052413414330E-006 + 181.79999999999998 3.2007557687565846E-007 + 181.85999999999999 -6.9973048044363270E-006 + 181.91999999999999 -1.4190182848273175E-005 + 181.97999999999999 -2.1243101698344481E-005 + 182.03999999999999 -2.8140790835367385E-005 + 182.09999999999999 -3.4868170577613346E-005 + 182.16000000000000 -4.1410410365689792E-005 + 182.22000000000000 -4.7752992515160044E-005 + 182.28000000000000 -5.3881740565415125E-005 + 182.34000000000000 -5.9782853706404171E-005 + 182.39999999999998 -6.5442970086640386E-005 + 182.45999999999998 -7.0849207107738144E-005 + 182.51999999999998 -7.5989179027773041E-005 + 182.57999999999998 -8.0851083545029051E-005 + 182.63999999999999 -8.5423690568921950E-005 + 182.69999999999999 -8.9696419790847662E-005 + 182.75999999999999 -9.3659382764079254E-005 + 182.81999999999999 -9.7303353314146562E-005 + 182.88000000000000 -1.0061989018650628E-004 + 182.94000000000000 -1.0360128521572995E-004 + 183.00000000000000 -1.0624060598176736E-004 + 183.06000000000000 -1.0853174003950904E-004 + 183.12000000000000 -1.1046939618814478E-004 + 183.17999999999998 -1.1204915167007172E-004 + 183.23999999999998 -1.1326740552255580E-004 + 183.29999999999998 -1.1412144763388450E-004 + 183.35999999999999 -1.1460940341848579E-004 + 183.41999999999999 -1.1473032871878436E-004 + 183.47999999999999 -1.1448412590087830E-004 + 183.53999999999999 -1.1387156574185315E-004 + 183.59999999999999 -1.1289430402606338E-004 + 183.66000000000000 -1.1155485031161310E-004 + 183.72000000000000 -1.0985659345011095E-004 + 183.78000000000000 -1.0780375966958761E-004 + 183.84000000000000 -1.0540138672954748E-004 + 183.89999999999998 -1.0265533010250914E-004 + 183.95999999999998 -9.9572224234872940E-005 + 184.01999999999998 -9.6159526069191232E-005 + 184.07999999999998 -9.2425361031210282E-005 + 184.13999999999999 -8.8378637037356148E-005 + 184.19999999999999 -8.4028909922926370E-005 + 184.25999999999999 -7.9386431910902106E-005 + 184.31999999999999 -7.4462038096723035E-005 + 184.38000000000000 -6.9267196022947710E-005 + 184.44000000000000 -6.3813896397481247E-005 + 184.50000000000000 -5.8114675681843748E-005 + 184.56000000000000 -5.2182532696353522E-005 + 184.62000000000000 -4.6030926169660961E-005 + 184.67999999999998 -3.9673693320011304E-005 + 184.73999999999998 -3.3125030283232389E-005 + 184.79999999999998 -2.6399469484421316E-005 + 184.85999999999999 -1.9511787420246279E-005 + 184.91999999999999 -1.2476972052063394E-005 + 184.97999999999999 -5.3101957407473480E-006 + 185.03999999999999 1.9732399647850451E-006 + 185.09999999999999 9.3579654605315510E-006 + 185.16000000000000 1.6828574479046685E-005 + 185.22000000000000 2.4369681407178671E-005 + 185.28000000000000 3.1965972436141861E-005 + 185.34000000000000 3.9602243096164751E-005 + 185.39999999999998 4.7263441476846940E-005 + 185.45999999999998 5.4934716428493244E-005 + 185.51999999999998 6.2601465959443209E-005 + 185.57999999999998 7.0249354145565180E-005 + 185.63999999999999 7.7864364861143426E-005 + 185.69999999999999 8.5432827890374004E-005 + 185.75999999999999 9.2941457722367024E-005 + 185.81999999999999 1.0037737588502449E-004 + 185.88000000000000 1.0772813499059273E-004 + 185.94000000000000 1.1498174454259093E-004 + 186.00000000000000 1.2212670695544125E-004 + 186.06000000000000 1.2915201821779722E-004 + 186.12000000000000 1.3604718408322792E-004 + 186.17999999999998 1.4280224425125868E-004 + 186.23999999999998 1.4940779342640682E-004 + 186.29999999999998 1.5585498202256193E-004 + 186.35999999999999 1.6213553503388283E-004 + 186.41999999999999 1.6824174997126856E-004 + 186.47999999999999 1.7416650131818844E-004 + 186.53999999999999 1.7990326095274325E-004 + 186.59999999999999 1.8544610167222001E-004 + 186.66000000000000 1.9078968944178485E-004 + 186.72000000000000 1.9592929812806245E-004 + 186.78000000000000 2.0086074644357169E-004 + 186.84000000000000 2.0558049074570050E-004 + 186.89999999999998 2.1008555847963937E-004 + 186.95999999999998 2.1437353442750812E-004 + 187.01999999999998 2.1844256699342574E-004 + 187.07999999999998 2.2229136781976887E-004 + 187.13999999999999 2.2591914137637156E-004 + 187.19999999999999 2.2932564108162082E-004 + 187.25999999999999 2.3251111544904043E-004 + 187.31999999999999 2.3547625207316056E-004 + 187.38000000000000 2.3822224537960787E-004 + 187.44000000000000 2.4075066143618287E-004 + 187.50000000000000 2.4306353606394260E-004 + 187.56000000000000 2.4516323248134674E-004 + 187.62000000000000 2.4705251700722636E-004 + 187.67999999999998 2.4873447291441690E-004 + 187.73999999999998 2.5021249718762623E-004 + 187.79999999999998 2.5149029310331792E-004 + 187.85999999999999 2.5257180133210239E-004 + 187.91999999999999 2.5346123688096771E-004 + 187.97999999999999 2.5416301238240035E-004 + 188.03999999999999 2.5468177698612874E-004 + 188.09999999999999 2.5502230250295166E-004 + 188.16000000000000 2.5518958128070430E-004 + 188.22000000000000 2.5518875107083958E-004 + 188.28000000000000 2.5502501256745286E-004 + 188.34000000000000 2.5470373935890494E-004 + 188.39999999999998 2.5423040738966479E-004 + 188.45999999999998 2.5361047886183206E-004 + 188.51999999999998 2.5284957113719096E-004 + 188.57999999999998 2.5195328617258500E-004 + 188.63999999999999 2.5092731302336289E-004 + 188.69999999999999 2.4977731132211990E-004 + 188.75999999999999 2.4850893900177790E-004 + 188.81999999999999 2.4712788080873984E-004 + 188.88000000000000 2.4563973259014900E-004 + 188.94000000000000 2.4405009791090654E-004 + 189.00000000000000 2.4236450549325908E-004 + 189.06000000000000 2.4058840378952278E-004 + 189.12000000000000 2.3872716690665716E-004 + 189.17999999999998 2.3678607346034204E-004 + 189.23999999999998 2.3477028827274671E-004 + 189.29999999999998 2.3268485210068982E-004 + 189.35999999999999 2.3053470948486743E-004 + 189.41999999999999 2.2832465248142899E-004 + 189.47999999999999 2.2605934600332679E-004 + 189.53999999999999 2.2374331592332999E-004 + 189.59999999999999 2.2138096718708612E-004 + 189.66000000000000 2.1897651017340007E-004 + 189.72000000000000 2.1653408473317531E-004 + 189.78000000000000 2.1405761452186292E-004 + 189.84000000000000 2.1155099399852788E-004 + 189.89999999999998 2.0901789810512188E-004 + 189.95999999999998 2.0646191842683929E-004 + 190.01999999999998 2.0388647674832308E-004 + 190.07999999999998 2.0129491475404232E-004 + 190.13999999999999 1.9869044410116530E-004 + 190.19999999999999 1.9607615803055590E-004 + 190.25999999999999 1.9345500871316841E-004 + 190.31999999999999 1.9082984681777150E-004 + 190.38000000000000 1.8820341065077582E-004 + 190.44000000000000 1.8557828653079230E-004 + 190.50000000000000 1.8295696852708046E-004 + 190.56000000000000 1.8034182679902395E-004 + 190.62000000000000 1.7773509478521610E-004 + 190.67999999999998 1.7513888638968499E-004 + 190.73999999999998 1.7255519048253357E-004 + 190.79999999999998 1.6998587911758509E-004 + 190.85999999999999 1.6743267804431153E-004 + 190.91999999999999 1.6489721908634719E-004 + 190.97999999999999 1.6238100281177354E-004 + 191.03999999999999 1.5988543419417052E-004 + 191.09999999999999 1.5741178080031670E-004 + 191.16000000000000 1.5496122147277736E-004 + 191.22000000000000 1.5253484231425688E-004 + 191.28000000000000 1.5013363463941886E-004 + 191.34000000000000 1.4775850803715824E-004 + 191.39999999999998 1.4541029538351114E-004 + 191.45999999999998 1.4308975894851048E-004 + 191.51999999999998 1.4079757230245745E-004 + 191.57999999999998 1.3853436251227272E-004 + 191.63999999999999 1.3630070867204328E-004 + 191.69999999999999 1.3409712206974641E-004 + 191.75999999999999 1.3192405708811064E-004 + 191.81999999999999 1.2978191682844591E-004 + 191.88000000000000 1.2767109218769535E-004 + 191.94000000000000 1.2559190236083399E-004 + 192.00000000000000 1.2354460120513459E-004 + 192.06000000000000 1.2152943437065042E-004 + 192.12000000000000 1.1954659536983696E-004 + 192.17999999999998 1.1759622066285453E-004 + 192.23999999999998 1.1567841246165223E-004 + 192.29999999999998 1.1379323417099535E-004 + 192.35999999999999 1.1194071266677657E-004 + 192.41999999999999 1.1012082985485970E-004 + 192.47999999999999 1.0833353291514095E-004 + 192.53999999999999 1.0657872925168651E-004 + 192.59999999999999 1.0485630424007819E-004 + 192.66000000000000 1.0316612598926383E-004 + 192.72000000000000 1.0150801519075252E-004 + 192.78000000000000 9.9881785362001250E-005 + 192.84000000000000 9.8287233818633674E-005 + 192.89999999999998 9.6724150671308469E-005 + 192.95999999999998 9.5192298527213115E-005 + 193.01999999999998 9.3691463801662652E-005 + 193.07999999999998 9.2221411502219354E-005 + 193.13999999999999 9.0781916761407887E-005 + 193.19999999999999 8.9372751335845018E-005 + 193.25999999999999 8.7993697178933843E-005 + 193.31999999999999 8.6644552561882730E-005 + 193.38000000000000 8.5325109733248977E-005 + 193.44000000000000 8.4035172480978425E-005 + 193.50000000000000 8.2774542107721171E-005 + 193.56000000000000 8.1543035313986356E-005 + 193.62000000000000 8.0340466711766449E-005 + 193.67999999999998 7.9166655624717962E-005 + 193.73999999999998 7.8021406114723763E-005 + 193.79999999999998 7.6904534650974448E-005 + 193.85999999999999 7.5815837120713641E-005 + 193.91999999999999 7.4755109156277236E-005 + 193.97999999999999 7.3722128227709738E-005 + 194.03999999999999 7.2716674849544790E-005 + 194.09999999999999 7.1738512660510137E-005 + 194.16000000000000 7.0787399209773581E-005 + 194.22000000000000 6.9863087656401389E-005 + 194.28000000000000 6.8965306535981075E-005 + 194.34000000000000 6.8093803214654402E-005 + 194.39999999999998 6.7248309961067749E-005 + 194.45999999999998 6.6428567447142248E-005 + 194.51999999999998 6.5634306963594546E-005 + 194.57999999999998 6.4865275646185114E-005 + 194.63999999999999 6.4121209796265163E-005 + 194.69999999999999 6.3401860353933521E-005 + 194.75999999999999 6.2706984280952159E-005 + 194.81999999999999 6.2036350393408367E-005 + 194.88000000000000 6.1389715279388878E-005 + 194.94000000000000 6.0766842184092850E-005 + 195.00000000000000 6.0167502941866825E-005 + 195.06000000000000 5.9591452782224453E-005 + 195.12000000000000 5.9038455359859153E-005 + 195.17999999999998 5.8508253568080341E-005 + 195.23999999999998 5.8000595561781559E-005 + 195.29999999999998 5.7515205977073668E-005 + 195.35999999999999 5.7051806624261789E-005 + 195.41999999999999 5.6610083461492764E-005 + 195.47999999999999 5.6189722844660362E-005 + 195.53999999999999 5.5790387541298239E-005 + 195.59999999999999 5.5411718396022190E-005 + 195.66000000000000 5.5053337480376323E-005 + 195.72000000000000 5.4714850078939856E-005 + 195.78000000000000 5.4395845221798459E-005 + 195.84000000000000 5.4095895315865069E-005 + 195.89999999999998 5.3814551607325338E-005 + 195.95999999999998 5.3551361085332786E-005 + 196.01999999999998 5.3305846626509125E-005 + 196.07999999999998 5.3077526362639544E-005 + 196.13999999999999 5.2865901209787748E-005 + 196.19999999999999 5.2670474298093837E-005 + 196.25999999999999 5.2490727491044071E-005 + 196.31999999999999 5.2326142615091489E-005 + 196.38000000000000 5.2176188028225263E-005 + 196.44000000000000 5.2040330529752219E-005 + 196.50000000000000 5.1918029135541087E-005 + 196.56000000000000 5.1808736205825275E-005 + 196.62000000000000 5.1711896308257236E-005 + 196.67999999999998 5.1626944186777493E-005 + 196.73999999999998 5.1553314471636766E-005 + 196.79999999999998 5.1490433715392150E-005 + 196.85999999999999 5.1437717634100103E-005 + 196.91999999999999 5.1394572153798382E-005 + 196.97999999999999 5.1360406823062945E-005 + 197.03999999999999 5.1334615281508821E-005 + 197.09999999999999 5.1316589591488046E-005 + 197.16000000000000 5.1305713837747584E-005 + 197.22000000000000 5.1301366762427858E-005 + 197.28000000000000 5.1302925705042281E-005 + 197.34000000000000 5.1309772833563197E-005 + 197.39999999999998 5.1321277655361707E-005 + 197.45999999999998 5.1336822055626937E-005 + 197.51999999999998 5.1355791423848669E-005 + 197.57999999999998 5.1377576070328355E-005 + 197.63999999999999 5.1401585493943392E-005 + 197.69999999999999 5.1427242288408026E-005 + 197.75999999999999 5.1453977240273360E-005 + 197.81999999999999 5.1481249262048695E-005 + 197.88000000000000 5.1508540734817161E-005 + 197.94000000000000 5.1535351900499727E-005 + 198.00000000000000 5.1561207724824446E-005 + 198.06000000000000 5.1585669259368249E-005 + 198.12000000000000 5.1608313793922932E-005 + 198.17999999999998 5.1628749484102020E-005 + 198.23999999999998 5.1646611095779143E-005 + 198.29999999999998 5.1661560449442083E-005 + 198.35999999999999 5.1673273188036359E-005 + 198.41999999999999 5.1681455416073209E-005 + 198.47999999999999 5.1685829001244635E-005 + 198.53999999999999 5.1686134691060239E-005 + 198.59999999999999 5.1682126154969478E-005 + 198.66000000000000 5.1673573855848242E-005 + 198.72000000000000 5.1660257947309532E-005 + 198.78000000000000 5.1641970316498864E-005 + 198.84000000000000 5.1618512155996289E-005 + 198.89999999999998 5.1589691584044234E-005 + 198.95999999999998 5.1555329535771111E-005 + 199.01999999999998 5.1515252141463142E-005 + 199.07999999999998 5.1469297985889481E-005 + 199.13999999999999 5.1417315648508747E-005 + 199.19999999999999 5.1359172475393018E-005 + 199.25999999999999 5.1294738137693601E-005 + 199.31999999999999 5.1223901500301147E-005 + 199.38000000000000 5.1146569154078916E-005 + 199.44000000000000 5.1062665250250408E-005 + 199.50000000000000 5.0972123321268059E-005 + 199.56000000000000 5.0874897787512520E-005 + 199.62000000000000 5.0770964563368010E-005 + 199.67999999999998 5.0660312066495169E-005 + 199.73999999999998 5.0542949259874215E-005 + 199.79999999999998 5.0418896088383621E-005 + 199.85999999999999 5.0288189317482356E-005 + 199.91999999999999 5.0150883187378143E-005 + 199.97999999999999 5.0007031260561262E-005 + 200.03999999999999 4.9856698511466731E-005 + 200.09999999999999 4.9699967125254020E-005 + 200.16000000000000 4.9536914192531756E-005 + 200.22000000000000 4.9367623106878957E-005 + 200.28000000000000 4.9192175459088447E-005 + 200.34000000000000 4.9010660794390573E-005 + 200.39999999999998 4.8823162368028057E-005 + 200.45999999999998 4.8629768158245093E-005 + 200.51999999999998 4.8430566604493666E-005 + 200.57999999999998 4.8225648196746156E-005 + 200.63999999999999 4.8015108065686696E-005 + 200.69999999999999 4.7799046411002531E-005 + 200.75999999999999 4.7577575299587241E-005 + 200.81999999999999 4.7350808723321138E-005 + 200.88000000000000 4.7118885616289591E-005 + 200.94000000000000 4.6881959746065811E-005 + 201.00000000000000 4.6640200643535275E-005 + 201.06000000000000 4.6393811188670388E-005 + 201.12000000000000 4.6143010230831402E-005 + 201.17999999999998 4.5888052170436691E-005 + 201.23999999999998 4.5629217553951260E-005 + 201.29999999999998 4.5366818480227623E-005 + 201.35999999999999 4.5101191014766058E-005 + 201.41999999999999 4.4832708618179916E-005 + 201.47999999999999 4.4561770096778903E-005 + 201.53999999999999 4.4288801202640677E-005 + 201.59999999999999 4.4014252932696742E-005 + 201.66000000000000 4.3738598420687000E-005 + 201.72000000000000 4.3462324381927716E-005 + 201.78000000000000 4.3185934861860844E-005 + 201.84000000000000 4.2909948358804564E-005 + 201.89999999999998 4.2634896941734337E-005 + 201.95999999999998 4.2361311863066990E-005 + 202.01999999999998 4.2089736014559659E-005 + 202.07999999999998 4.1820719056784136E-005 + 202.13999999999999 4.1554810122450266E-005 + 202.19999999999999 4.1292561949373580E-005 + 202.25999999999999 4.1034537340720056E-005 + 202.31999999999999 4.0781301542819192E-005 + 202.38000000000000 4.0533425518875574E-005 + 202.44000000000000 4.0291487255216417E-005 + 202.50000000000000 4.0056077513040905E-005 + 202.56000000000000 3.9827799206001234E-005 + 202.62000000000000 3.9607268054958935E-005 + 202.67999999999998 3.9395107178556718E-005 + 202.73999999999998 3.9191957267958130E-005 + 202.79999999999998 3.8998472947402177E-005 + 202.85999999999999 3.8815318620858281E-005 + 202.91999999999999 3.8643177215035428E-005 + 202.97999999999999 3.8482738835257476E-005 + 203.03999999999999 3.8334697743356408E-005 + 203.09999999999999 3.8199755402619429E-005 + 203.16000000000000 3.8078625983422369E-005 + 203.22000000000000 3.7972018429240611E-005 + 203.28000000000000 3.7880644219338089E-005 + 203.34000000000000 3.7805209720553411E-005 + 203.39999999999998 3.7746425919719267E-005 + 203.45999999999998 3.7704999082775607E-005 + 203.51999999999998 3.7681628276149456E-005 + 203.57999999999998 3.7677022715902535E-005 + 203.63999999999999 3.7691890133495418E-005 + 203.69999999999999 3.7726940592217311E-005 + 203.75999999999999 3.7782897065464011E-005 + 203.81999999999999 3.7860493023875144E-005 + 203.88000000000000 3.7960487101681028E-005 + 203.94000000000000 3.8083658948287565E-005 + 204.00000000000000 3.8230816637178790E-005 + 204.06000000000000 3.8402804187818980E-005 + 204.12000000000000 3.8600504457480294E-005 + 204.17999999999998 3.8824844067013569E-005 + 204.23999999999998 3.9076802569330584E-005 + 204.29999999999998 3.9357402812177869E-005 + 204.35999999999999 3.9667726942603537E-005 + 204.41999999999999 4.0008910398386893E-005 + 204.47999999999999 4.0382139651004377E-005 + 204.53999999999999 4.0788660886861069E-005 + 204.59999999999999 4.1229775391104048E-005 + 204.66000000000000 4.1706833425697755E-005 + 204.72000000000000 4.2221236565579200E-005 + 204.78000000000000 4.2774435611133191E-005 + 204.84000000000000 4.3367924041168845E-005 + 204.89999999999998 4.4003241954033481E-005 + 204.95999999999998 4.4681974674693197E-005 + 205.01999999999998 4.5405739520319998E-005 + 205.07999999999998 4.6176198575291830E-005 + 205.13999999999999 4.6995043140785588E-005 + 205.19999999999999 4.7864004902999543E-005 + 205.25999999999999 4.8784860908404189E-005 + 205.31999999999999 4.9759406670488411E-005 + 205.38000000000000 5.0789482328459566E-005 + 205.44000000000000 5.1876959481137949E-005 + 205.50000000000000 5.3023749128440891E-005 + 205.56000000000000 5.4231796593238438E-005 + 205.62000000000000 5.5503069396574960E-005 + 205.67999999999998 5.6839573929202573E-005 + 205.73999999999998 5.8243346743351091E-005 + 205.79999999999998 5.9716439452569734E-005 + 205.85999999999999 6.1260923098660722E-005 + 205.91999999999999 6.2878890128090096E-005 + 205.97999999999999 6.4572439029500787E-005 + 206.03999999999999 6.6343653296549140E-005 + 206.09999999999999 6.8194623997119876E-005 + 206.16000000000000 7.0127415414370669E-005 + 206.22000000000000 7.2144069165671948E-005 + 206.28000000000000 7.4246573440323851E-005 + 206.34000000000000 7.6436885599989797E-005 + 206.39999999999998 7.8716892083832799E-005 + 206.45999999999998 8.1088418945232557E-005 + 206.51999999999998 8.3553206608566699E-005 + 206.57999999999998 8.6112919647888527E-005 + 206.63999999999999 8.8769111264964083E-005 + 206.69999999999999 9.1523244199547178E-005 + 206.75999999999999 9.4376658955331170E-005 + 206.81999999999999 9.7330583107813030E-005 + 206.88000000000000 1.0038611832393442E-004 + 206.94000000000000 1.0354422833984419E-004 + 207.00000000000000 1.0680573306205769E-004 + 207.06000000000000 1.1017133948671924E-004 + 207.12000000000000 1.1364158286702650E-004 + 207.17999999999998 1.1721684400710476E-004 + 207.23999999999998 1.2089735744707513E-004 + 207.29999999999998 1.2468317669542549E-004 + 207.35999999999999 1.2857420099759699E-004 + 207.41999999999999 1.3257014045421340E-004 + 207.47999999999999 1.3667053182776946E-004 + 207.53999999999999 1.4087469892375484E-004 + 207.59999999999999 1.4518178225614135E-004 + 207.66000000000000 1.4959071455454315E-004 + 207.72000000000000 1.5410019820584687E-004 + 207.78000000000000 1.5870873898371756E-004 + 207.84000000000000 1.6341458166496561E-004 + 207.89999999999998 1.6821576220080344E-004 + 207.95999999999998 1.7311003979587791E-004 + 208.01999999999998 1.7809492669389166E-004 + 208.07999999999998 1.8316768409849121E-004 + 208.13999999999999 1.8832533268479606E-004 + 208.19999999999999 1.9356458757468267E-004 + 208.25999999999999 1.9888193691669121E-004 + 208.31999999999999 2.0427356062354107E-004 + 208.38000000000000 2.0973538293240037E-004 + 208.44000000000000 2.1526305595645257E-004 + 208.50000000000000 2.2085197910606455E-004 + 208.56000000000000 2.2649727131776083E-004 + 208.62000000000000 2.3219379803253828E-004 + 208.68000000000001 2.3793615085464326E-004 + 208.74000000000001 2.4371867635223152E-004 + 208.80000000000001 2.4953548556644290E-004 + 208.86000000000001 2.5538042498989748E-004 + 208.92000000000002 2.6124712756068748E-004 + 208.98000000000002 2.6712895565539010E-004 + 209.03999999999996 2.7301907310772625E-004 + 209.09999999999997 2.7891045087504482E-004 + 209.15999999999997 2.8479578693592345E-004 + 209.21999999999997 2.9066763636988782E-004 + 209.27999999999997 2.9651834499279769E-004 + 209.33999999999997 3.0234003293921723E-004 + 209.39999999999998 3.0812471331625145E-004 + 209.45999999999998 3.1386415954933968E-004 + 209.51999999999998 3.1955008123246909E-004 + 209.57999999999998 3.2517397893755081E-004 + 209.63999999999999 3.3072725958018499E-004 + 209.69999999999999 3.3620119909590963E-004 + 209.75999999999999 3.4158704099293623E-004 + 209.81999999999999 3.4687590133858468E-004 + 209.88000000000000 3.5205886768429435E-004 + 209.94000000000000 3.5712698753372432E-004 + 210.00000000000000 3.6207127458065368E-004 + 210.06000000000000 3.6688280982588936E-004 + 210.12000000000000 3.7155267466086600E-004 + 210.18000000000001 3.7607194415175381E-004 + 210.24000000000001 3.8043190850107361E-004 + 210.30000000000001 3.8462382248860821E-004 + 210.36000000000001 3.8863909869480393E-004 + 210.42000000000002 3.9246933239341330E-004 + 210.48000000000002 3.9610628176853794E-004 + 210.53999999999996 3.9954186963592144E-004 + 210.59999999999997 4.0276824045138088E-004 + 210.65999999999997 4.0577776227658383E-004 + 210.71999999999997 4.0856311408084994E-004 + 210.77999999999997 4.1111715978932496E-004 + 210.83999999999997 4.1343310456621495E-004 + 210.89999999999998 4.1550452742169803E-004 + 210.95999999999998 4.1732523196125930E-004 + 211.01999999999998 4.1888947907708614E-004 + 211.07999999999998 4.2019181636208702E-004 + 211.13999999999999 4.2122720547077764E-004 + 211.19999999999999 4.2199102053882165E-004 + 211.25999999999999 4.2247904068957976E-004 + 211.31999999999999 4.2268744690231050E-004 + 211.38000000000000 4.2261292494697741E-004 + 211.44000000000000 4.2225253841311425E-004 + 211.50000000000000 4.2160385313886424E-004 + 211.56000000000000 4.2066490229196701E-004 + 211.62000000000000 4.1943415912522178E-004 + 211.68000000000001 4.1791063142140216E-004 + 211.74000000000001 4.1609378880756959E-004 + 211.80000000000001 4.1398362977235258E-004 + 211.86000000000001 4.1158063561448036E-004 + 211.92000000000002 4.0888574671495636E-004 + 211.98000000000002 4.0590048242025500E-004 + 212.03999999999996 4.0262684887243670E-004 + 212.09999999999997 3.9906734945483569E-004 + 212.15999999999997 3.9522497649573210E-004 + 212.21999999999997 3.9110324052642968E-004 + 212.27999999999997 3.8670615645699673E-004 + 212.33999999999997 3.8203820351661032E-004 + 212.39999999999998 3.7710431461456244E-004 + 212.45999999999998 3.7190991330943933E-004 + 212.51999999999998 3.6646091843775118E-004 + 212.57999999999998 3.6076359266722026E-004 + 212.63999999999999 3.5482465587482890E-004 + 212.69999999999999 3.4865129614823485E-004 + 212.75999999999999 3.4225097377113436E-004 + 212.81999999999999 3.3563157867975366E-004 + 212.88000000000000 3.2880138026418541E-004 + 212.94000000000000 3.2176889020105913E-004 + 213.00000000000000 3.1454297312221623E-004 + 213.06000000000000 3.0713277110837767E-004 + 213.12000000000000 2.9954766394601703E-004 + 213.18000000000001 2.9179730224854216E-004 + 213.24000000000001 2.8389153700242759E-004 + 213.30000000000001 2.7584041559313539E-004 + 213.36000000000001 2.6765418650999509E-004 + 213.42000000000002 2.5934321018076877E-004 + 213.48000000000002 2.5091800563010748E-004 + 213.53999999999996 2.4238917047637469E-004 + 213.59999999999997 2.3376741945165796E-004 + 213.65999999999997 2.2506353689137360E-004 + 213.71999999999997 2.1628832736738811E-004 + 213.77999999999997 2.0745260622568280E-004 + 213.83999999999997 1.9856718940420139E-004 + 213.89999999999998 1.8964290941994079E-004 + 213.95999999999998 1.8069051110191619E-004 + 214.01999999999998 1.7172067089879262E-004 + 214.07999999999998 1.6274394004088958E-004 + 214.13999999999999 1.5377079404415726E-004 + 214.19999999999999 1.4481154652559668E-004 + 214.25999999999999 1.3587636150016609E-004 + 214.31999999999999 1.2697520900823011E-004 + 214.38000000000000 1.1811784644081508E-004 + 214.44000000000000 1.0931381520946214E-004 + 214.50000000000000 1.0057241058083528E-004 + 214.56000000000000 9.1902674659437056E-005 + 214.62000000000000 8.3313376057436961E-005 + 214.68000000000001 7.4812998225774096E-005 + 214.74000000000001 6.6409710348166513E-005 + 214.80000000000001 5.8111372361043136E-005 + 214.86000000000001 4.9925532907478502E-005 + 214.92000000000002 4.1859417918947014E-005 + 214.98000000000002 3.3919896048867549E-005 + 215.03999999999996 2.6113505218592346E-005 + 215.09999999999997 1.8446431788380332E-005 + 215.15999999999997 1.0924515784951132E-005 + 215.21999999999997 3.5532413723784754E-006 + 215.27999999999997 -3.6622669111712231E-006 + 215.33999999999997 -1.0717236769724936E-005 + 215.39999999999998 -1.7607261702037143E-005 + 215.45999999999998 -2.4328285988518808E-005 + 215.51999999999998 -3.0876620065025964E-005 + 215.57999999999998 -3.7248928322075942E-005 + 215.63999999999999 -4.3442238008834357E-005 + 215.69999999999999 -4.9453931507662349E-005 + 215.75999999999999 -5.5281742833712132E-005 + 215.81999999999999 -6.0923772068136277E-005 + 215.88000000000000 -6.6378451315233144E-005 + 215.94000000000000 -7.1644573030611182E-005 + 216.00000000000000 -7.6721265190323883E-005 + 216.06000000000000 -8.1607993935564190E-005 + 216.12000000000000 -8.6304551545441960E-005 + 216.18000000000001 -9.0811043134102649E-005 + 216.24000000000001 -9.5127888576462870E-005 + 216.30000000000001 -9.9255811700285136E-005 + 216.36000000000001 -1.0319581167658744E-004 + 216.42000000000002 -1.0694916123067208E-004 + 216.48000000000002 -1.1051738386930380E-004 + 216.53999999999996 -1.1390226012437340E-004 + 216.59999999999997 -1.1710577048325376E-004 + 216.65999999999997 -1.2013014259453635E-004 + 216.71999999999997 -1.2297775809483422E-004 + 216.77999999999997 -1.2565120382886796E-004 + 216.83999999999997 -1.2815321977799918E-004 + 216.89999999999998 -1.3048670307147639E-004 + 216.95999999999998 -1.3265469070761839E-004 + 217.01999999999998 -1.3466035222595447E-004 + 217.07999999999998 -1.3650695822013616E-004 + 217.13999999999999 -1.3819789791411863E-004 + 217.19999999999999 -1.3973664045387611E-004 + 217.25999999999999 -1.4112677539515118E-004 + 217.31999999999999 -1.4237194029576123E-004 + 217.38000000000000 -1.4347588235188750E-004 + 217.44000000000000 -1.4444239468420415E-004 + 217.50000000000000 -1.4527532671309098E-004 + 217.56000000000000 -1.4597859352271248E-004 + 217.62000000000000 -1.4655612776198550E-004 + 217.68000000000001 -1.4701191921748331E-004 + 217.74000000000001 -1.4734995393292629E-004 + 217.80000000000001 -1.4757424779696495E-004 + 217.86000000000001 -1.4768883349868022E-004 + 217.92000000000002 -1.4769770647502810E-004 + 217.98000000000002 -1.4760486193851421E-004 + 218.03999999999996 -1.4741426970534138E-004 + 218.09999999999997 -1.4712985299137132E-004 + 218.15999999999997 -1.4675548764471837E-004 + 218.21999999999997 -1.4629499599854733E-004 + 218.27999999999997 -1.4575214387107502E-004 + 218.33999999999997 -1.4513064380217714E-004 + 218.39999999999998 -1.4443411677809550E-004 + 218.45999999999998 -1.4366613685019427E-004 + 218.51999999999998 -1.4283018924474307E-004 + 218.57999999999998 -1.4192969526764744E-004 + 218.63999999999999 -1.4096799245757948E-004 + 218.69999999999999 -1.3994836332659153E-004 + 218.75999999999999 -1.3887398988012101E-004 + 218.81999999999999 -1.3774799906450370E-004 + 218.88000000000000 -1.3657346485778914E-004 + 218.94000000000000 -1.3535335118458922E-004 + 219.00000000000000 -1.3409061009609296E-004 + 219.06000000000000 -1.3278807624487112E-004 + 219.12000000000000 -1.3144854108039421E-004 + 219.18000000000001 -1.3007471734229308E-004 + 219.24000000000001 -1.2866924270092642E-004 + 219.30000000000001 -1.2723468635271224E-004 + 219.36000000000001 -1.2577354764154816E-004 + 219.42000000000002 -1.2428822108483814E-004 + 219.48000000000002 -1.2278104822155942E-004 + 219.53999999999996 -1.2125426353616186E-004 + 219.59999999999997 -1.1971000672820685E-004 + 219.65999999999997 -1.1815035506877246E-004 + 219.71999999999997 -1.1657726811155518E-004 + 219.77999999999997 -1.1499262771776248E-004 + 219.83999999999997 -1.1339822388939356E-004 + 219.89999999999998 -1.1179573177184383E-004 + 219.95999999999998 -1.1018675498918776E-004 + 220.01999999999998 -1.0857279208360738E-004 + 220.07999999999998 -1.0695526599035742E-004 + 220.13999999999999 -1.0533549891507149E-004 + 220.19999999999999 -1.0371472270613072E-004 + 220.25999999999999 -1.0209409553828158E-004 + 220.31999999999999 -1.0047469376738383E-004 + 220.38000000000000 -9.8857504515328270E-005 + 220.44000000000000 -9.7243443385706924E-005 + 220.50000000000000 -9.5633356068207631E-005 + 220.56000000000000 -9.4028001656546551E-005 + 220.62000000000000 -9.2428069972399094E-005 + 220.68000000000001 -9.0834179543995155E-005 + 220.74000000000001 -8.9246875616348897E-005 + 220.80000000000001 -8.7666626207990217E-005 + 220.86000000000001 -8.6093817985100462E-005 + 220.92000000000002 -8.4528771662640593E-005 + 220.98000000000002 -8.2971714307545136E-005 + 221.03999999999996 -8.1422799529754707E-005 + 221.09999999999997 -7.9882096881502636E-005 + 221.15999999999997 -7.8349600604059371E-005 + 221.21999999999997 -7.6825199888902519E-005 + 221.27999999999997 -7.5308717241266452E-005 + 221.33999999999997 -7.3799885192552493E-005 + 221.39999999999998 -7.2298354109819190E-005 + 221.45999999999998 -7.0803691293289369E-005 + 221.51999999999998 -6.9315373925566911E-005 + 221.57999999999998 -6.7832819419811000E-005 + 221.63999999999999 -6.6355367222613169E-005 + 221.69999999999999 -6.4882274859643190E-005 + 221.75999999999999 -6.3412737309840564E-005 + 221.81999999999999 -6.1945902398678816E-005 + 221.88000000000000 -6.0480841793738763E-005 + 221.94000000000000 -5.9016566500930156E-005 + 222.00000000000000 -5.7552040536383760E-005 + 222.06000000000000 -5.6086167511255793E-005 + 222.12000000000000 -5.4617797257097880E-005 + 222.18000000000001 -5.3145721849951422E-005 + 222.24000000000001 -5.1668676316347849E-005 + 222.30000000000001 -5.0185345333548237E-005 + 222.36000000000001 -4.8694348999376190E-005 + 222.42000000000002 -4.7194242345378997E-005 + 222.48000000000002 -4.5683519210514104E-005 + 222.53999999999996 -4.4160602202904754E-005 + 222.59999999999997 -4.2623849149254623E-005 + 222.65999999999997 -4.1071546776805473E-005 + 222.71999999999997 -3.9501910337919555E-005 + 222.77999999999997 -3.7913088535297049E-005 + 222.83999999999997 -3.6303155384700896E-005 + 222.89999999999998 -3.4670117681007346E-005 + 222.95999999999998 -3.3011908902756023E-005 + 223.01999999999998 -3.1326413129522594E-005 + 223.07999999999998 -2.9611439628347457E-005 + 223.13999999999999 -2.7864751158046540E-005 + 223.19999999999999 -2.6084049792517402E-005 + 223.25999999999999 -2.4266990978910715E-005 + 223.31999999999999 -2.2411183810177243E-005 + 223.38000000000000 -2.0514194599656996E-005 + 223.44000000000000 -1.8573549744836848E-005 + 223.50000000000000 -1.6586735189383506E-005 + 223.56000000000000 -1.4551207943831466E-005 + 223.62000000000000 -1.2464389920696686E-005 + 223.68000000000001 -1.0323675026232562E-005 + 223.74000000000001 -8.1264318299252454E-006 + 223.80000000000001 -5.8700041982328120E-006 + 223.86000000000001 -3.5517157170187113E-006 + 223.92000000000002 -1.1688758263927778E-006 + 223.98000000000002 1.2812178403869238E-006 + 224.03999999999996 3.8012736530785889E-006 + 224.09999999999997 6.3940014098222831E-006 + 224.15999999999997 9.0621019975597790E-006 + 224.21999999999997 1.1808263877759818E-005 + 224.27999999999997 1.4635152618978148E-005 + 224.33999999999997 1.7545402195969307E-005 + 224.39999999999998 2.0541608427883242E-005 + 224.45999999999998 2.3626315394029077E-005 + 224.51999999999998 2.6802010143545873E-005 + 224.57999999999998 3.0071115097672587E-005 + 224.63999999999999 3.3435968340411939E-005 + 224.69999999999999 3.6898832752883589E-005 + 224.75999999999999 4.0461860088720186E-005 + 224.81999999999999 4.4127107978913889E-005 + 224.88000000000000 4.7896517731191377E-005 + 224.94000000000000 5.1771906896455627E-005 + 225.00000000000000 5.5754958304352378E-005 + 225.06000000000000 5.9847218125749950E-005 + 225.12000000000000 6.4050074284462369E-005 + 225.18000000000001 6.8364763580393940E-005 + 225.24000000000001 7.2792348229645468E-005 + 225.30000000000001 7.7333712992594991E-005 + 225.36000000000001 8.1989551259516500E-005 + 225.42000000000002 8.6760354759125874E-005 + 225.48000000000002 9.1646403433232767E-005 + 225.53999999999996 9.6647762193728879E-005 + 225.59999999999997 1.0176424519124023E-004 + 225.65999999999997 1.0699544611045073E-004 + 225.71999999999997 1.1234068600615173E-004 + 225.77999999999997 1.1779904692172948E-004 + 225.83999999999997 1.2336932194295284E-004 + 225.89999999999998 1.2905003048346392E-004 + 225.95999999999998 1.3483940967111760E-004 + 226.01999999999998 1.4073541246971871E-004 + 226.07999999999998 1.4673567383253797E-004 + 226.13999999999999 1.5283754665975846E-004 + 226.19999999999999 1.5903806820692231E-004 + 226.25999999999999 1.6533396496776353E-004 + 226.31999999999999 1.7172166387007144E-004 + 226.38000000000000 1.7819726780720816E-004 + 226.44000000000000 1.8475657448694435E-004 + 226.50000000000000 1.9139507950924705E-004 + 226.56000000000000 1.9810792502340021E-004 + 226.62000000000000 2.0488998689738376E-004 + 226.68000000000001 2.1173581704784643E-004 + 226.74000000000001 2.1863966757812220E-004 + 226.80000000000001 2.2559544320094167E-004 + 226.86000000000001 2.3259679198028629E-004 + 226.92000000000002 2.3963705492028841E-004 + 226.98000000000002 2.4670924361416293E-004 + 227.03999999999996 2.5380612114695702E-004 + 227.09999999999997 2.6092010838847494E-004 + 227.15999999999997 2.6804340961871648E-004 + 227.21999999999997 2.7516791327169795E-004 + 227.27999999999997 2.8228526270662117E-004 + 227.33999999999997 2.8938682448216314E-004 + 227.39999999999998 2.9646374641134545E-004 + 227.45999999999998 3.0350695246789339E-004 + 227.51999999999998 3.1050710041998446E-004 + 227.57999999999998 3.1745468911036903E-004 + 227.63999999999999 3.2434000182247295E-004 + 227.69999999999999 3.3115318915155742E-004 + 227.75999999999999 3.3788424940860861E-004 + 227.81999999999999 3.4452300174744324E-004 + 227.88000000000000 3.5105923528914226E-004 + 227.94000000000000 3.5748257217592611E-004 + 228.00000000000000 3.6378261939644304E-004 + 228.06000000000000 3.6994893123975701E-004 + 228.12000000000000 3.7597098471034483E-004 + 228.18000000000001 3.8183835700244194E-004 + 228.24000000000001 3.8754060973739677E-004 + 228.30000000000001 3.9306731511136765E-004 + 228.36000000000001 3.9840814390246823E-004 + 228.42000000000002 4.0355285374780000E-004 + 228.48000000000002 4.0849135828034975E-004 + 228.53999999999996 4.1321363748986098E-004 + 228.59999999999997 4.1770986911054665E-004 + 228.65999999999997 4.2197046556815328E-004 + 228.71999999999997 4.2598595387729088E-004 + 228.77999999999997 4.2974718157252076E-004 + 228.83999999999997 4.3324521584009327E-004 + 228.89999999999998 4.3647137745193816E-004 + 228.95999999999998 4.3941733759905483E-004 + 229.01999999999998 4.4207507515990076E-004 + 229.07999999999998 4.4443694499102850E-004 + 229.13999999999999 4.4649568445961891E-004 + 229.19999999999999 4.4824440427548753E-004 + 229.25999999999999 4.4967669756789454E-004 + 229.31999999999999 4.5078657141096721E-004 + 229.38000000000000 4.5156854243297263E-004 + 229.44000000000000 4.5201764665888061E-004 + 229.50000000000000 4.5212937440552504E-004 + 229.56000000000000 4.5189983916672251E-004 + 229.62000000000000 4.5132568354732159E-004 + 229.68000000000001 4.5040411189767554E-004 + 229.74000000000001 4.4913295332398137E-004 + 229.80000000000001 4.4751057734104788E-004 + 229.86000000000001 4.4553603029968459E-004 + 229.92000000000002 4.4320890225099283E-004 + 229.97999999999996 4.4052945630025425E-004 + 230.03999999999996 4.3749851116563513E-004 + 230.09999999999997 4.3411756021625460E-004 + 230.15999999999997 4.3038866558118568E-004 + 230.21999999999997 4.2631454257487745E-004 + 230.27999999999997 4.2189848150590083E-004 + 230.33999999999997 4.1714440710381164E-004 + 230.39999999999998 4.1205679780562110E-004 + 230.45999999999998 4.0664073971169505E-004 + 230.51999999999998 4.0090193127727627E-004 + 230.57999999999998 3.9484659206557595E-004 + 230.63999999999999 3.8848151661576366E-004 + 230.69999999999999 3.8181409001373324E-004 + 230.75999999999999 3.7485218113972470E-004 + 230.81999999999999 3.6760423277186114E-004 + 230.88000000000000 3.6007916557639566E-004 + 230.94000000000000 3.5228635582044835E-004 + 231.00000000000000 3.4423573766629336E-004 + 231.06000000000000 3.3593761798870417E-004 + 231.12000000000000 3.2740273983671670E-004 + 231.18000000000001 3.1864227002944374E-004 + 231.24000000000001 3.0966772399359209E-004 + 231.30000000000001 3.0049098950585664E-004 + 231.36000000000001 2.9112420560522385E-004 + 231.42000000000002 2.8157984994979035E-004 + 231.47999999999996 2.7187055652244316E-004 + 231.53999999999996 2.6200925862100352E-004 + 231.59999999999997 2.5200899724515247E-004 + 231.65999999999997 2.4188295619970583E-004 + 231.71999999999997 2.3164448001820455E-004 + 231.77999999999997 2.2130688607703808E-004 + 231.83999999999997 2.1088359611898196E-004 + 231.89999999999998 2.0038801731229674E-004 + 231.95999999999998 1.8983354756581472E-004 + 232.01999999999998 1.7923348219130674E-004 + 232.07999999999998 1.6860105961702108E-004 + 232.13999999999999 1.5794941535669305E-004 + 232.19999999999999 1.4729152347929168E-004 + 232.25999999999999 1.3664019396955094E-004 + 232.31999999999999 1.2600805827317555E-004 + 232.38000000000000 1.1540751049702348E-004 + 232.44000000000000 1.0485071709366884E-004 + 232.50000000000000 9.4349586884006725E-005 + 232.56000000000000 8.3915738348051982E-005 + 232.62000000000000 7.3560475864548484E-005 + 232.68000000000001 6.3294802431015048E-005 + 232.74000000000001 5.3129335851057582E-005 + 232.80000000000001 4.3074358561982543E-005 + 232.86000000000001 3.3139760152923960E-005 + 232.92000000000002 2.3335022491968414E-005 + 232.97999999999996 1.3669218582415954E-005 + 233.03999999999996 4.1509918209422303E-006 + 233.09999999999997 -5.2114560320025891E-006 + 233.15999999999997 -1.4410388688110638E-005 + 233.21999999999997 -2.3438517946017660E-005 + 233.27999999999997 -3.2289045566956901E-005 + 233.33999999999997 -4.0955630824183847E-005 + 233.39999999999998 -4.9432427054883627E-005 + 233.45999999999998 -5.7714069872515905E-005 + 233.51999999999998 -6.5795676182759419E-005 + 233.57999999999998 -7.3672861244984640E-005 + 233.63999999999999 -8.1341704594485858E-005 + 233.69999999999999 -8.8798777046461612E-005 + 233.75999999999999 -9.6041119484595867E-005 + 233.81999999999999 -1.0306624634433354E-004 + 233.88000000000000 -1.0987211813247165E-004 + 233.94000000000000 -1.1645715314746540E-004 + 234.00000000000000 -1.2282022107499085E-004 + 234.06000000000000 -1.2896060491574245E-004 + 234.12000000000000 -1.3487800075785055E-004 + 234.18000000000001 -1.4057252872123535E-004 + 234.24000000000001 -1.4604468528645184E-004 + 234.30000000000001 -1.5129535733833798E-004 + 234.36000000000001 -1.5632577723449990E-004 + 234.42000000000002 -1.6113753324593116E-004 + 234.47999999999996 -1.6573256531430484E-004 + 234.53999999999996 -1.7011310453205234E-004 + 234.59999999999997 -1.7428171478256092E-004 + 234.65999999999997 -1.7824121258513048E-004 + 234.71999999999997 -1.8199471070086130E-004 + 234.77999999999997 -1.8554558751438768E-004 + 234.83999999999997 -1.8889742143929743E-004 + 234.89999999999998 -1.9205406147027347E-004 + 234.95999999999998 -1.9501952061489337E-004 + 235.01999999999998 -1.9779803884534421E-004 + 235.07999999999998 -2.0039401714481105E-004 + 235.13999999999999 -2.0281201302951152E-004 + 235.19999999999999 -2.0505671377024236E-004 + 235.25999999999999 -2.0713294195784561E-004 + 235.31999999999999 -2.0904563295571382E-004 + 235.38000000000000 -2.1079978390286871E-004 + 235.44000000000000 -2.1240047972458619E-004 + 235.50000000000000 -2.1385284349508866E-004 + 235.56000000000000 -2.1516205400684424E-004 + 235.62000000000000 -2.1633330478179198E-004 + 235.68000000000001 -2.1737176590535246E-004 + 235.74000000000001 -2.1828262824199869E-004 + 235.80000000000001 -2.1907103224892135E-004 + 235.86000000000001 -2.1974208756139169E-004 + 235.92000000000002 -2.2030083100962232E-004 + 235.97999999999996 -2.2075225914459183E-004 + 236.03999999999996 -2.2110127930900629E-004 + 236.09999999999997 -2.2135267833532681E-004 + 236.15999999999997 -2.2151115854990208E-004 + 236.21999999999997 -2.2158132989333467E-004 + 236.27999999999997 -2.2156766519379495E-004 + 236.33999999999997 -2.2147450731408811E-004 + 236.39999999999998 -2.2130607376721358E-004 + 236.45999999999998 -2.2106643190933291E-004 + 236.51999999999998 -2.2075950113503834E-004 + 236.57999999999998 -2.2038907539975079E-004 + 236.63999999999999 -2.1995877981227904E-004 + 236.69999999999999 -2.1947207641231247E-004 + 236.75999999999999 -2.1893229753016625E-004 + 236.81999999999999 -2.1834259586686508E-004 + 236.88000000000000 -2.1770596017870700E-004 + 236.94000000000000 -2.1702524536790785E-004 + 237.00000000000000 -2.1630312562674335E-004 + 237.06000000000000 -2.1554212733267410E-004 + 237.12000000000000 -2.1474462185021881E-004 + 237.18000000000001 -2.1391280165453390E-004 + 237.24000000000001 -2.1304873133838766E-004 + 237.30000000000001 -2.1215429931433302E-004 + 237.36000000000001 -2.1123124902272685E-004 + 237.42000000000002 -2.1028116440281275E-004 + 237.47999999999996 -2.0930549140528044E-004 + 237.53999999999996 -2.0830550440703095E-004 + 237.59999999999997 -2.0728234062550478E-004 + 237.65999999999997 -2.0623700161799644E-004 + 237.71999999999997 -2.0517035562384042E-004 + 237.77999999999997 -2.0408310716011230E-004 + 237.83999999999997 -2.0297583770921990E-004 + 237.89999999999998 -2.0184902214258281E-004 + 237.95999999999998 -2.0070300127957437E-004 + 238.01999999999998 -1.9953804152700308E-004 + 238.07999999999998 -1.9835426713829828E-004 + 238.13999999999999 -1.9715175398364067E-004 + 238.19999999999999 -1.9593046796522338E-004 + 238.25999999999999 -1.9469033439071813E-004 + 238.31999999999999 -1.9343120548364923E-004 + 238.38000000000000 -1.9215286879927350E-004 + 238.44000000000000 -1.9085509698433536E-004 + 238.50000000000000 -1.8953761834372788E-004 + 238.56000000000000 -1.8820016216365592E-004 + 238.62000000000000 -1.8684239682875380E-004 + 238.68000000000001 -1.8546399059204684E-004 + 238.74000000000001 -1.8406460532025559E-004 + 238.80000000000001 -1.8264390009657873E-004 + 238.86000000000001 -1.8120148928799516E-004 + 238.92000000000002 -1.7973701841468727E-004 + 238.97999999999996 -1.7825012269754735E-004 + 239.03999999999996 -1.7674039393872386E-004 + 239.09999999999997 -1.7520743747855735E-004 + 239.15999999999997 -1.7365087605176780E-004 + 239.21999999999997 -1.7207029146340059E-004 + 239.27999999999997 -1.7046527661630309E-004 + 239.33999999999997 -1.6883544974276743E-004 + 239.39999999999998 -1.6718041961004789E-004 + 239.45999999999998 -1.6549980130440634E-004 + 239.51999999999998 -1.6379323357866801E-004 + 239.57999999999998 -1.6206039977308693E-004 + 239.63999999999999 -1.6030099386581592E-004 + 239.69999999999999 -1.5851476396983049E-004 + 239.75999999999999 -1.5670152081209015E-004 + 239.81999999999999 -1.5486109665112288E-004 + 239.88000000000000 -1.5299341303126075E-004 + 239.94000000000000 -1.5109844690760129E-004 + 240.00000000000000 -1.4917622393000745E-004 + 240.06000000000000 -1.4722686988850230E-004 + 240.12000000000000 -1.4525054930170350E-004 + 240.18000000000001 -1.4324752531449795E-004 + 240.24000000000001 -1.4121809613689838E-004 + 240.30000000000001 -1.3916264908167962E-004 + 240.36000000000001 -1.3708161839535844E-004 + 240.42000000000002 -1.3497552511403595E-004 + 240.47999999999996 -1.3284491864530405E-004 + 240.53999999999996 -1.3069040802243611E-004 + 240.59999999999997 -1.2851264971028227E-004 + 240.65999999999997 -1.2631237446784690E-004 + 240.71999999999997 -1.2409032747910705E-004 + 240.77999999999997 -1.2184730513004859E-004 + 240.83999999999997 -1.1958415447380266E-004 + 240.89999999999998 -1.1730176273692701E-004 + 240.95999999999998 -1.1500107675100763E-004 + 241.01999999999998 -1.1268308973276610E-004 + 241.07999999999998 -1.1034882167539959E-004 + 241.13999999999999 -1.0799937696663408E-004 + 241.19999999999999 -1.0563588494940251E-004 + 241.25999999999999 -1.0325955014765117E-004 + 241.31999999999999 -1.0087162161178191E-004 + 241.38000000000000 -9.8473418979548176E-005 + 241.44000000000000 -9.6066293982875747E-005 + 241.50000000000000 -9.3651674165167608E-005 + 241.56000000000000 -9.1231036888028203E-005 + 241.62000000000000 -8.8805897559852642E-005 + 241.68000000000001 -8.6377827413082416E-005 + 241.74000000000001 -8.3948441003732396E-005 + 241.80000000000001 -8.1519388230527672E-005 + 241.86000000000001 -7.9092338802707997E-005 + 241.92000000000002 -7.6669000139143695E-005 + 241.97999999999996 -7.4251090392755812E-005 + 242.03999999999996 -7.1840334275594784E-005 + 242.09999999999997 -6.9438460287492130E-005 + 242.15999999999997 -6.7047190006028052E-005 + 242.21999999999997 -6.4668236875018161E-005 + 242.27999999999997 -6.2303291916047260E-005 + 242.33999999999997 -5.9954022035723529E-005 + 242.39999999999998 -5.7622073218762018E-005 + 242.45999999999998 -5.5309045668043784E-005 + 242.51999999999998 -5.3016521994858845E-005 + 242.57999999999998 -5.0746038616860176E-005 + 242.63999999999999 -4.8499093875676503E-005 + 242.69999999999999 -4.6277145885799715E-005 + 242.75999999999999 -4.4081611463383392E-005 + 242.81999999999999 -4.1913876246927173E-005 + 242.88000000000000 -3.9775278761886056E-005 + 242.94000000000000 -3.7667121680328103E-005 + 243.00000000000000 -3.5590662322112868E-005 + 243.06000000000000 -3.3547121466349229E-005 + 243.12000000000000 -3.1537671040279908E-005 + 243.18000000000001 -2.9563445192710989E-005 + 243.24000000000001 -2.7625519545955493E-005 + 243.30000000000001 -2.5724925204666030E-005 + 243.36000000000001 -2.3862633442056898E-005 + 243.42000000000002 -2.2039560362412048E-005 + 243.47999999999996 -2.0256548403189028E-005 + 243.53999999999996 -1.8514376541669483E-005 + 243.59999999999997 -1.6813749553854853E-005 + 243.65999999999997 -1.5155292259487085E-005 + 243.71999999999997 -1.3539555269063848E-005 + 243.77999999999997 -1.1967006194310055E-005 + 243.83999999999997 -1.0438029915254055E-005 + 243.89999999999998 -8.9529315058976242E-006 + 243.95999999999998 -7.5119338496366133E-006 + 244.01999999999998 -6.1151861301854653E-006 + 244.07999999999998 -4.7627603897694114E-006 + 244.13999999999999 -3.4546594073473707E-006 + 244.19999999999999 -2.1908187652289738E-006 + 244.25999999999999 -9.7111236815621011E-007 + 244.31999999999999 2.0464225253003741E-007 + 244.38000000000000 1.3366812972217546E-006 + 244.44000000000000 2.4252904063309676E-006 + 244.50000000000000 3.4708010180794656E-006 + 244.56000000000000 4.4735880049017817E-006 + 244.62000000000000 5.4340651015087675E-006 + 244.68000000000001 6.3526860424045177E-006 + 244.74000000000001 7.2299414566742616E-006 + 244.80000000000001 8.0663566115517935E-006 + 244.86000000000001 8.8624923411758232E-006 + 244.92000000000002 9.6189428638771650E-006 + 244.97999999999996 1.0336335610032871E-005 + 245.03999999999996 1.1015327311177164E-005 + 245.09999999999997 1.1656604805537281E-005 + 245.15999999999997 1.2260883743503237E-005 + 245.21999999999997 1.2828902688993795E-005 + 245.27999999999997 1.3361425104456876E-005 + 245.33999999999997 1.3859233818894053E-005 + 245.39999999999998 1.4323128958844205E-005 + 245.45999999999998 1.4753925406364540E-005 + 245.51999999999998 1.5152448665787089E-005 + 245.57999999999998 1.5519536313495538E-005 + 245.63999999999999 1.5856032150883496E-005 + 245.69999999999999 1.6162785011618605E-005 + 245.75999999999999 1.6440648235950088E-005 + 245.81999999999999 1.6690479297356637E-005 + 245.88000000000000 1.6913135115784953E-005 + 245.94000000000000 1.7109473021752334E-005 + 246.00000000000000 1.7280354186264970E-005 + 246.06000000000000 1.7426635354355050E-005 + 246.12000000000000 1.7549172119956719E-005 + 246.18000000000001 1.7648818968414553E-005 + 246.24000000000001 1.7726423403987753E-005 + 246.30000000000001 1.7782829371888726E-005 + 246.36000000000001 1.7818871793216455E-005 + 246.42000000000002 1.7835374814467062E-005 + 246.47999999999996 1.7833154657679462E-005 + 246.53999999999996 1.7813010978576342E-005 + 246.59999999999997 1.7775726631962389E-005 + 246.65999999999997 1.7722066280718141E-005 + 246.71999999999997 1.7652778174297742E-005 + 246.77999999999997 1.7568587413954686E-005 + 246.83999999999997 1.7470196883273001E-005 + 246.89999999999998 1.7358285078033871E-005 + 246.95999999999998 1.7233510525901904E-005 + 247.01999999999998 1.7096508396689470E-005 + 247.07999999999998 1.6947887492384140E-005 + 247.13999999999999 1.6788238041950351E-005 + 247.19999999999999 1.6618126967682871E-005 + 247.25999999999999 1.6438098497079807E-005 + 247.31999999999999 1.6248676386891159E-005 + 247.38000000000000 1.6050364295379507E-005 + 247.44000000000000 1.5843644701571944E-005 + 247.50000000000000 1.5628975737319704E-005 + 247.56000000000000 1.5406794771880572E-005 + 247.62000000000000 1.5177515949964141E-005 + 247.68000000000001 1.4941526289292199E-005 + 247.74000000000001 1.4699189823376369E-005 + 247.80000000000001 1.4450842143398589E-005 + 247.86000000000001 1.4196790487326395E-005 + 247.92000000000002 1.3937312185772388E-005 + 247.97999999999996 1.3672654003211345E-005 + 248.03999999999996 1.3403033501883857E-005 + 248.09999999999997 1.3128636548457625E-005 + 248.15999999999997 1.2849617408737132E-005 + 248.21999999999997 1.2566099997006624E-005 + 248.27999999999997 1.2278181920058961E-005 + 248.33999999999997 1.1985930352373884E-005 + 248.39999999999998 1.1689387529079027E-005 + 248.45999999999998 1.1388570510485150E-005 + 248.51999999999998 1.1083475016028081E-005 + 248.57999999999998 1.0774076346514538E-005 + 248.63999999999999 1.0460331620965361E-005 + 248.69999999999999 1.0142185238589882E-005 + 248.75999999999999 9.8195671160518483E-006 + 248.81999999999999 9.4923972769771895E-006 + 248.88000000000000 9.1605884483169975E-006 + 248.94000000000000 8.8240504850415815E-006 + 249.00000000000000 8.4826882365545112E-006 + 249.06000000000000 8.1364073376203258E-006 + 249.12000000000000 7.7851145480294726E-006 + 249.18000000000001 7.4287207506438278E-006 + 249.24000000000001 7.0671417898634242E-006 + 249.30000000000001 6.7002998722836684E-006 + 249.36000000000001 6.3281242722811349E-006 + 249.42000000000002 5.9505516521708887E-006 + 249.47999999999996 5.5675263291451854E-006 + 249.53999999999996 5.1790003836152518E-006 + 249.59999999999997 4.7849335622430249E-006 + 249.65999999999997 4.3852906261690998E-006 + 249.71999999999997 3.9800428698091058E-006 + 249.77999999999997 3.5691653987031459E-006 + 249.83999999999997 3.1526374147908684E-006 + 249.89999999999998 2.7304409384705634E-006 + 249.95999999999998 2.3025606119986566E-006 + 250.01999999999998 1.8689835927232577E-006 + 250.07999999999998 1.4297000317029283E-006 + 250.13999999999999 9.8470344760903403E-007 + 250.19999999999999 5.3399246583837466E-007 + 250.25999999999999 7.7572216741154799E-008 + 250.31999999999999 -3.8454482408739014E-007 + 250.38000000000000 -8.5233589428229454E-007 + 250.44000000000000 -1.3257664836796374E-006 + 250.50000000000000 -1.8047885376436799E-006 + 250.56000000000000 -2.2893396669354466E-006 + 250.62000000000000 -2.7793416839126589E-006 + 250.68000000000001 -3.2747007142869557E-006 + 250.74000000000001 -3.7753073705426431E-006 + 250.80000000000001 -4.2810378049555519E-006 + 250.86000000000001 -4.7917546621984095E-006 + 250.92000000000002 -5.3073096702523740E-006 + 250.97999999999996 -5.8275466858334622E-006 + 251.03999999999996 -6.3523029244351227E-006 + 251.09999999999997 -6.8814137800734669E-006 + 251.15999999999997 -7.4147138106146794E-006 + 251.21999999999997 -7.9520418527154134E-006 + 251.27999999999997 -8.4932402835612719E-006 + 251.33999999999997 -9.0381575146277556E-006 + 251.39999999999998 -9.5866488467255034E-006 + 251.45999999999998 -1.0138577473744503E-005 + 251.51999999999998 -1.0693813331889043E-005 + 251.57999999999998 -1.1252230259316405E-005 + 251.63999999999999 -1.1813706187154981E-005 + 251.69999999999999 -1.2378120382424494E-005 + 251.75999999999999 -1.2945349687621391E-005 + 251.81999999999999 -1.3515266658057218E-005 + 251.88000000000000 -1.4087736146592380E-005 + 251.94000000000000 -1.4662612860029503E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000003.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000003.BXY.semd new file mode 100644 index 00000000..1ca2b8cb --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000003.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 0.0000000000000000 + 12.119999999999997 0.0000000000000000 + 12.180000000000000 0.0000000000000000 + 12.239999999999995 0.0000000000000000 + 12.299999999999997 0.0000000000000000 + 12.359999999999999 0.0000000000000000 + 12.419999999999995 0.0000000000000000 + 12.479999999999997 0.0000000000000000 + 12.539999999999999 0.0000000000000000 + 12.599999999999994 0.0000000000000000 + 12.659999999999997 0.0000000000000000 + 12.719999999999999 0.0000000000000000 + 12.780000000000001 0.0000000000000000 + 12.839999999999996 0.0000000000000000 + 12.899999999999999 0.0000000000000000 + 12.960000000000001 0.0000000000000000 + 13.019999999999996 0.0000000000000000 + 13.079999999999998 0.0000000000000000 + 13.140000000000001 0.0000000000000000 + 13.199999999999996 0.0000000000000000 + 13.259999999999998 0.0000000000000000 + 13.320000000000000 0.0000000000000000 + 13.379999999999995 0.0000000000000000 + 13.439999999999998 0.0000000000000000 + 13.500000000000000 0.0000000000000000 + 13.559999999999995 0.0000000000000000 + 13.619999999999997 0.0000000000000000 + 13.680000000000000 0.0000000000000000 + 13.739999999999995 0.0000000000000000 + 13.799999999999997 0.0000000000000000 + 13.859999999999999 0.0000000000000000 + 13.919999999999995 0.0000000000000000 + 13.979999999999997 0.0000000000000000 + 14.039999999999999 0.0000000000000000 + 14.099999999999994 0.0000000000000000 + 14.159999999999997 0.0000000000000000 + 14.219999999999999 0.0000000000000000 + 14.280000000000001 0.0000000000000000 + 14.339999999999996 0.0000000000000000 + 14.399999999999999 0.0000000000000000 + 14.460000000000001 0.0000000000000000 + 14.519999999999996 0.0000000000000000 + 14.579999999999998 0.0000000000000000 + 14.640000000000001 0.0000000000000000 + 14.699999999999996 0.0000000000000000 + 14.759999999999998 0.0000000000000000 + 14.820000000000000 0.0000000000000000 + 14.879999999999995 0.0000000000000000 + 14.939999999999998 0.0000000000000000 + 15.000000000000000 0.0000000000000000 + 15.059999999999995 0.0000000000000000 + 15.119999999999997 0.0000000000000000 + 15.180000000000000 0.0000000000000000 + 15.239999999999995 0.0000000000000000 + 15.299999999999997 0.0000000000000000 + 15.359999999999999 0.0000000000000000 + 15.419999999999995 0.0000000000000000 + 15.479999999999997 0.0000000000000000 + 15.539999999999999 0.0000000000000000 + 15.599999999999994 0.0000000000000000 + 15.659999999999997 0.0000000000000000 + 15.719999999999999 0.0000000000000000 + 15.780000000000001 0.0000000000000000 + 15.839999999999996 0.0000000000000000 + 15.899999999999999 0.0000000000000000 + 15.960000000000001 0.0000000000000000 + 16.019999999999996 0.0000000000000000 + 16.079999999999998 0.0000000000000000 + 16.140000000000001 0.0000000000000000 + 16.200000000000003 0.0000000000000000 + 16.259999999999991 0.0000000000000000 + 16.319999999999993 0.0000000000000000 + 16.379999999999995 0.0000000000000000 + 16.439999999999998 0.0000000000000000 + 16.500000000000000 0.0000000000000000 + 16.560000000000002 0.0000000000000000 + 16.620000000000005 0.0000000000000000 + 16.679999999999993 0.0000000000000000 + 16.739999999999995 0.0000000000000000 + 16.799999999999997 0.0000000000000000 + 16.859999999999999 0.0000000000000000 + 16.920000000000002 0.0000000000000000 + 16.980000000000004 0.0000000000000000 + 17.039999999999992 0.0000000000000000 + 17.099999999999994 0.0000000000000000 + 17.159999999999997 0.0000000000000000 + 17.219999999999999 0.0000000000000000 + 17.280000000000001 0.0000000000000000 + 17.340000000000003 0.0000000000000000 + 17.399999999999991 0.0000000000000000 + 17.459999999999994 0.0000000000000000 + 17.519999999999996 0.0000000000000000 + 17.579999999999998 0.0000000000000000 + 17.640000000000001 0.0000000000000000 + 17.700000000000003 0.0000000000000000 + 17.759999999999991 0.0000000000000000 + 17.819999999999993 0.0000000000000000 + 17.879999999999995 0.0000000000000000 + 17.939999999999998 0.0000000000000000 + 18.000000000000000 0.0000000000000000 + 18.060000000000002 0.0000000000000000 + 18.120000000000005 0.0000000000000000 + 18.179999999999993 0.0000000000000000 + 18.239999999999995 0.0000000000000000 + 18.299999999999997 0.0000000000000000 + 18.359999999999999 0.0000000000000000 + 18.420000000000002 0.0000000000000000 + 18.480000000000004 0.0000000000000000 + 18.539999999999992 0.0000000000000000 + 18.599999999999994 0.0000000000000000 + 18.659999999999997 0.0000000000000000 + 18.719999999999999 0.0000000000000000 + 18.780000000000001 0.0000000000000000 + 18.840000000000003 0.0000000000000000 + 18.899999999999991 0.0000000000000000 + 18.959999999999994 0.0000000000000000 + 19.019999999999996 0.0000000000000000 + 19.079999999999998 0.0000000000000000 + 19.140000000000001 0.0000000000000000 + 19.200000000000003 0.0000000000000000 + 19.259999999999991 0.0000000000000000 + 19.319999999999993 0.0000000000000000 + 19.379999999999995 0.0000000000000000 + 19.439999999999998 0.0000000000000000 + 19.500000000000000 0.0000000000000000 + 19.560000000000002 0.0000000000000000 + 19.620000000000005 0.0000000000000000 + 19.679999999999993 0.0000000000000000 + 19.739999999999995 0.0000000000000000 + 19.799999999999997 0.0000000000000000 + 19.859999999999999 0.0000000000000000 + 19.920000000000002 0.0000000000000000 + 19.980000000000004 0.0000000000000000 + 20.039999999999992 0.0000000000000000 + 20.099999999999994 0.0000000000000000 + 20.159999999999997 0.0000000000000000 + 20.219999999999999 0.0000000000000000 + 20.280000000000001 0.0000000000000000 + 20.340000000000003 0.0000000000000000 + 20.399999999999991 0.0000000000000000 + 20.459999999999994 0.0000000000000000 + 20.519999999999996 0.0000000000000000 + 20.579999999999998 0.0000000000000000 + 20.640000000000001 0.0000000000000000 + 20.700000000000003 0.0000000000000000 + 20.759999999999991 0.0000000000000000 + 20.819999999999993 0.0000000000000000 + 20.879999999999995 0.0000000000000000 + 20.939999999999998 0.0000000000000000 + 21.000000000000000 0.0000000000000000 + 21.060000000000002 0.0000000000000000 + 21.120000000000005 0.0000000000000000 + 21.179999999999993 0.0000000000000000 + 21.239999999999995 0.0000000000000000 + 21.299999999999997 0.0000000000000000 + 21.359999999999999 0.0000000000000000 + 21.420000000000002 0.0000000000000000 + 21.480000000000004 0.0000000000000000 + 21.539999999999992 0.0000000000000000 + 21.599999999999994 0.0000000000000000 + 21.659999999999997 0.0000000000000000 + 21.719999999999999 0.0000000000000000 + 21.780000000000001 0.0000000000000000 + 21.840000000000003 0.0000000000000000 + 21.899999999999991 0.0000000000000000 + 21.959999999999994 0.0000000000000000 + 22.019999999999996 0.0000000000000000 + 22.079999999999998 0.0000000000000000 + 22.140000000000001 0.0000000000000000 + 22.200000000000003 0.0000000000000000 + 22.259999999999991 0.0000000000000000 + 22.319999999999993 0.0000000000000000 + 22.379999999999995 0.0000000000000000 + 22.439999999999998 0.0000000000000000 + 22.500000000000000 0.0000000000000000 + 22.560000000000002 0.0000000000000000 + 22.619999999999990 0.0000000000000000 + 22.679999999999993 0.0000000000000000 + 22.739999999999995 0.0000000000000000 + 22.799999999999997 0.0000000000000000 + 22.859999999999999 0.0000000000000000 + 22.920000000000002 0.0000000000000000 + 22.980000000000004 0.0000000000000000 + 23.039999999999992 0.0000000000000000 + 23.099999999999994 0.0000000000000000 + 23.159999999999997 0.0000000000000000 + 23.219999999999999 0.0000000000000000 + 23.280000000000001 0.0000000000000000 + 23.340000000000003 0.0000000000000000 + 23.399999999999991 0.0000000000000000 + 23.459999999999994 0.0000000000000000 + 23.519999999999996 0.0000000000000000 + 23.579999999999998 0.0000000000000000 + 23.640000000000001 0.0000000000000000 + 23.700000000000003 0.0000000000000000 + 23.759999999999991 0.0000000000000000 + 23.819999999999993 0.0000000000000000 + 23.879999999999995 0.0000000000000000 + 23.939999999999998 0.0000000000000000 + 24.000000000000000 0.0000000000000000 + 24.060000000000002 0.0000000000000000 + 24.119999999999990 0.0000000000000000 + 24.179999999999993 0.0000000000000000 + 24.239999999999995 0.0000000000000000 + 24.299999999999997 0.0000000000000000 + 24.359999999999999 0.0000000000000000 + 24.420000000000002 0.0000000000000000 + 24.480000000000004 0.0000000000000000 + 24.539999999999992 0.0000000000000000 + 24.599999999999994 0.0000000000000000 + 24.659999999999997 0.0000000000000000 + 24.719999999999999 0.0000000000000000 + 24.780000000000001 0.0000000000000000 + 24.840000000000003 0.0000000000000000 + 24.899999999999991 0.0000000000000000 + 24.959999999999994 0.0000000000000000 + 25.019999999999996 0.0000000000000000 + 25.079999999999998 0.0000000000000000 + 25.140000000000001 0.0000000000000000 + 25.200000000000003 0.0000000000000000 + 25.259999999999991 0.0000000000000000 + 25.319999999999993 0.0000000000000000 + 25.379999999999995 0.0000000000000000 + 25.439999999999998 0.0000000000000000 + 25.500000000000000 0.0000000000000000 + 25.560000000000002 0.0000000000000000 + 25.619999999999990 0.0000000000000000 + 25.679999999999993 0.0000000000000000 + 25.739999999999995 0.0000000000000000 + 25.799999999999997 0.0000000000000000 + 25.859999999999999 0.0000000000000000 + 25.920000000000002 0.0000000000000000 + 25.980000000000004 0.0000000000000000 + 26.039999999999992 0.0000000000000000 + 26.099999999999994 0.0000000000000000 + 26.159999999999997 0.0000000000000000 + 26.219999999999999 0.0000000000000000 + 26.280000000000001 0.0000000000000000 + 26.340000000000003 0.0000000000000000 + 26.399999999999991 0.0000000000000000 + 26.459999999999994 0.0000000000000000 + 26.519999999999996 0.0000000000000000 + 26.579999999999998 0.0000000000000000 + 26.640000000000001 0.0000000000000000 + 26.700000000000003 0.0000000000000000 + 26.759999999999991 0.0000000000000000 + 26.819999999999993 0.0000000000000000 + 26.879999999999995 0.0000000000000000 + 26.939999999999998 0.0000000000000000 + 27.000000000000000 0.0000000000000000 + 27.060000000000002 0.0000000000000000 + 27.119999999999990 0.0000000000000000 + 27.179999999999993 0.0000000000000000 + 27.239999999999995 0.0000000000000000 + 27.299999999999997 0.0000000000000000 + 27.359999999999999 0.0000000000000000 + 27.420000000000002 0.0000000000000000 + 27.480000000000004 0.0000000000000000 + 27.539999999999992 0.0000000000000000 + 27.599999999999994 0.0000000000000000 + 27.659999999999997 0.0000000000000000 + 27.719999999999999 0.0000000000000000 + 27.780000000000001 0.0000000000000000 + 27.840000000000003 0.0000000000000000 + 27.899999999999991 0.0000000000000000 + 27.959999999999994 0.0000000000000000 + 28.019999999999996 0.0000000000000000 + 28.079999999999998 0.0000000000000000 + 28.140000000000001 0.0000000000000000 + 28.200000000000003 0.0000000000000000 + 28.259999999999991 0.0000000000000000 + 28.319999999999993 0.0000000000000000 + 28.379999999999995 0.0000000000000000 + 28.439999999999998 0.0000000000000000 + 28.500000000000000 0.0000000000000000 + 28.560000000000002 0.0000000000000000 + 28.619999999999990 0.0000000000000000 + 28.679999999999993 0.0000000000000000 + 28.739999999999995 0.0000000000000000 + 28.799999999999997 0.0000000000000000 + 28.859999999999999 0.0000000000000000 + 28.920000000000002 0.0000000000000000 + 28.980000000000004 0.0000000000000000 + 29.039999999999992 0.0000000000000000 + 29.099999999999994 0.0000000000000000 + 29.159999999999997 0.0000000000000000 + 29.219999999999999 0.0000000000000000 + 29.280000000000001 0.0000000000000000 + 29.340000000000003 0.0000000000000000 + 29.399999999999991 0.0000000000000000 + 29.459999999999994 0.0000000000000000 + 29.519999999999996 0.0000000000000000 + 29.579999999999998 0.0000000000000000 + 29.640000000000001 0.0000000000000000 + 29.700000000000003 0.0000000000000000 + 29.759999999999991 0.0000000000000000 + 29.819999999999993 0.0000000000000000 + 29.879999999999995 0.0000000000000000 + 29.939999999999998 0.0000000000000000 + 30.000000000000000 0.0000000000000000 + 30.060000000000002 0.0000000000000000 + 30.119999999999990 0.0000000000000000 + 30.179999999999993 0.0000000000000000 + 30.239999999999995 0.0000000000000000 + 30.299999999999997 0.0000000000000000 + 30.359999999999999 0.0000000000000000 + 30.420000000000002 0.0000000000000000 + 30.480000000000004 0.0000000000000000 + 30.539999999999992 0.0000000000000000 + 30.599999999999994 0.0000000000000000 + 30.659999999999997 0.0000000000000000 + 30.719999999999999 0.0000000000000000 + 30.780000000000001 0.0000000000000000 + 30.840000000000003 0.0000000000000000 + 30.899999999999991 0.0000000000000000 + 30.959999999999994 0.0000000000000000 + 31.019999999999996 0.0000000000000000 + 31.079999999999998 0.0000000000000000 + 31.140000000000001 0.0000000000000000 + 31.200000000000003 0.0000000000000000 + 31.259999999999991 0.0000000000000000 + 31.319999999999993 0.0000000000000000 + 31.379999999999995 0.0000000000000000 + 31.439999999999998 0.0000000000000000 + 31.500000000000000 0.0000000000000000 + 31.560000000000002 0.0000000000000000 + 31.619999999999990 0.0000000000000000 + 31.679999999999993 0.0000000000000000 + 31.739999999999995 0.0000000000000000 + 31.799999999999997 0.0000000000000000 + 31.859999999999999 0.0000000000000000 + 31.920000000000002 0.0000000000000000 + 31.980000000000004 0.0000000000000000 + 32.039999999999992 0.0000000000000000 + 32.099999999999994 0.0000000000000000 + 32.159999999999997 0.0000000000000000 + 32.219999999999999 0.0000000000000000 + 32.280000000000001 0.0000000000000000 + 32.340000000000003 0.0000000000000000 + 32.399999999999991 0.0000000000000000 + 32.459999999999994 0.0000000000000000 + 32.519999999999996 0.0000000000000000 + 32.579999999999998 0.0000000000000000 + 32.640000000000001 0.0000000000000000 + 32.700000000000003 0.0000000000000000 + 32.759999999999991 0.0000000000000000 + 32.819999999999993 0.0000000000000000 + 32.879999999999995 0.0000000000000000 + 32.939999999999998 0.0000000000000000 + 33.000000000000000 0.0000000000000000 + 33.060000000000002 0.0000000000000000 + 33.119999999999990 0.0000000000000000 + 33.179999999999993 0.0000000000000000 + 33.239999999999995 0.0000000000000000 + 33.299999999999997 0.0000000000000000 + 33.359999999999999 0.0000000000000000 + 33.420000000000002 0.0000000000000000 + 33.480000000000004 0.0000000000000000 + 33.539999999999992 0.0000000000000000 + 33.599999999999994 0.0000000000000000 + 33.659999999999997 0.0000000000000000 + 33.719999999999999 0.0000000000000000 + 33.780000000000001 0.0000000000000000 + 33.840000000000003 0.0000000000000000 + 33.899999999999991 0.0000000000000000 + 33.959999999999994 0.0000000000000000 + 34.019999999999996 0.0000000000000000 + 34.079999999999998 0.0000000000000000 + 34.140000000000001 0.0000000000000000 + 34.200000000000003 0.0000000000000000 + 34.259999999999991 0.0000000000000000 + 34.319999999999993 0.0000000000000000 + 34.379999999999995 0.0000000000000000 + 34.439999999999998 0.0000000000000000 + 34.500000000000000 0.0000000000000000 + 34.560000000000002 0.0000000000000000 + 34.619999999999990 0.0000000000000000 + 34.679999999999993 0.0000000000000000 + 34.739999999999995 0.0000000000000000 + 34.799999999999997 0.0000000000000000 + 34.859999999999999 0.0000000000000000 + 34.920000000000002 0.0000000000000000 + 34.980000000000004 0.0000000000000000 + 35.039999999999992 0.0000000000000000 + 35.099999999999994 0.0000000000000000 + 35.159999999999997 0.0000000000000000 + 35.219999999999999 0.0000000000000000 + 35.280000000000001 0.0000000000000000 + 35.340000000000003 0.0000000000000000 + 35.399999999999991 0.0000000000000000 + 35.459999999999994 0.0000000000000000 + 35.519999999999996 0.0000000000000000 + 35.579999999999998 0.0000000000000000 + 35.640000000000001 0.0000000000000000 + 35.700000000000003 0.0000000000000000 + 35.759999999999991 0.0000000000000000 + 35.819999999999993 0.0000000000000000 + 35.879999999999995 0.0000000000000000 + 35.939999999999998 0.0000000000000000 + 36.000000000000000 0.0000000000000000 + 36.060000000000002 0.0000000000000000 + 36.119999999999990 0.0000000000000000 + 36.179999999999993 0.0000000000000000 + 36.239999999999995 0.0000000000000000 + 36.299999999999997 0.0000000000000000 + 36.359999999999999 0.0000000000000000 + 36.420000000000002 0.0000000000000000 + 36.479999999999990 0.0000000000000000 + 36.539999999999992 0.0000000000000000 + 36.599999999999994 0.0000000000000000 + 36.659999999999997 0.0000000000000000 + 36.719999999999999 0.0000000000000000 + 36.780000000000001 0.0000000000000000 + 36.840000000000003 0.0000000000000000 + 36.899999999999991 0.0000000000000000 + 36.959999999999994 0.0000000000000000 + 37.019999999999996 0.0000000000000000 + 37.079999999999998 0.0000000000000000 + 37.140000000000001 0.0000000000000000 + 37.200000000000003 0.0000000000000000 + 37.259999999999991 0.0000000000000000 + 37.319999999999993 0.0000000000000000 + 37.379999999999995 0.0000000000000000 + 37.439999999999998 0.0000000000000000 + 37.500000000000000 0.0000000000000000 + 37.560000000000002 0.0000000000000000 + 37.619999999999990 0.0000000000000000 + 37.679999999999993 0.0000000000000000 + 37.739999999999995 0.0000000000000000 + 37.799999999999997 0.0000000000000000 + 37.859999999999999 0.0000000000000000 + 37.920000000000002 0.0000000000000000 + 37.979999999999990 0.0000000000000000 + 38.039999999999992 0.0000000000000000 + 38.099999999999994 0.0000000000000000 + 38.159999999999997 0.0000000000000000 + 38.219999999999999 0.0000000000000000 + 38.280000000000001 0.0000000000000000 + 38.340000000000003 0.0000000000000000 + 38.399999999999991 0.0000000000000000 + 38.459999999999994 0.0000000000000000 + 38.519999999999996 0.0000000000000000 + 38.579999999999998 0.0000000000000000 + 38.640000000000001 0.0000000000000000 + 38.700000000000003 0.0000000000000000 + 38.759999999999991 0.0000000000000000 + 38.819999999999993 0.0000000000000000 + 38.879999999999995 0.0000000000000000 + 38.939999999999998 0.0000000000000000 + 39.000000000000000 0.0000000000000000 + 39.060000000000002 0.0000000000000000 + 39.119999999999990 0.0000000000000000 + 39.179999999999993 0.0000000000000000 + 39.239999999999995 0.0000000000000000 + 39.299999999999997 0.0000000000000000 + 39.359999999999999 0.0000000000000000 + 39.420000000000002 0.0000000000000000 + 39.479999999999990 0.0000000000000000 + 39.539999999999992 0.0000000000000000 + 39.599999999999994 0.0000000000000000 + 39.659999999999997 0.0000000000000000 + 39.719999999999999 0.0000000000000000 + 39.780000000000001 0.0000000000000000 + 39.840000000000003 0.0000000000000000 + 39.899999999999991 0.0000000000000000 + 39.959999999999994 0.0000000000000000 + 40.019999999999996 0.0000000000000000 + 40.079999999999998 0.0000000000000000 + 40.140000000000001 0.0000000000000000 + 40.200000000000003 0.0000000000000000 + 40.259999999999991 0.0000000000000000 + 40.319999999999993 0.0000000000000000 + 40.379999999999995 0.0000000000000000 + 40.439999999999998 0.0000000000000000 + 40.500000000000000 0.0000000000000000 + 40.560000000000002 0.0000000000000000 + 40.619999999999990 0.0000000000000000 + 40.679999999999993 0.0000000000000000 + 40.739999999999995 0.0000000000000000 + 40.799999999999997 0.0000000000000000 + 40.859999999999999 0.0000000000000000 + 40.920000000000002 0.0000000000000000 + 40.979999999999990 0.0000000000000000 + 41.039999999999992 0.0000000000000000 + 41.099999999999994 0.0000000000000000 + 41.159999999999997 0.0000000000000000 + 41.219999999999999 0.0000000000000000 + 41.280000000000001 0.0000000000000000 + 41.340000000000003 0.0000000000000000 + 41.399999999999991 0.0000000000000000 + 41.459999999999994 0.0000000000000000 + 41.519999999999996 0.0000000000000000 + 41.579999999999998 0.0000000000000000 + 41.640000000000001 0.0000000000000000 + 41.700000000000003 0.0000000000000000 + 41.759999999999991 0.0000000000000000 + 41.819999999999993 0.0000000000000000 + 41.879999999999995 0.0000000000000000 + 41.939999999999998 0.0000000000000000 + 42.000000000000000 0.0000000000000000 + 42.060000000000002 0.0000000000000000 + 42.119999999999990 0.0000000000000000 + 42.179999999999993 0.0000000000000000 + 42.239999999999995 0.0000000000000000 + 42.299999999999997 0.0000000000000000 + 42.359999999999999 0.0000000000000000 + 42.420000000000002 0.0000000000000000 + 42.479999999999990 0.0000000000000000 + 42.539999999999992 0.0000000000000000 + 42.599999999999994 0.0000000000000000 + 42.659999999999997 0.0000000000000000 + 42.719999999999999 0.0000000000000000 + 42.780000000000001 0.0000000000000000 + 42.840000000000003 0.0000000000000000 + 42.899999999999991 0.0000000000000000 + 42.959999999999994 0.0000000000000000 + 43.019999999999996 0.0000000000000000 + 43.079999999999998 0.0000000000000000 + 43.140000000000001 0.0000000000000000 + 43.200000000000003 0.0000000000000000 + 43.259999999999991 0.0000000000000000 + 43.319999999999993 0.0000000000000000 + 43.379999999999995 0.0000000000000000 + 43.439999999999998 0.0000000000000000 + 43.500000000000000 0.0000000000000000 + 43.560000000000002 0.0000000000000000 + 43.619999999999990 0.0000000000000000 + 43.679999999999993 0.0000000000000000 + 43.739999999999995 0.0000000000000000 + 43.799999999999997 0.0000000000000000 + 43.859999999999999 0.0000000000000000 + 43.920000000000002 0.0000000000000000 + 43.979999999999990 0.0000000000000000 + 44.039999999999992 0.0000000000000000 + 44.099999999999994 0.0000000000000000 + 44.159999999999997 0.0000000000000000 + 44.219999999999999 0.0000000000000000 + 44.280000000000001 0.0000000000000000 + 44.340000000000003 0.0000000000000000 + 44.399999999999991 0.0000000000000000 + 44.459999999999994 0.0000000000000000 + 44.519999999999996 0.0000000000000000 + 44.579999999999998 0.0000000000000000 + 44.640000000000001 0.0000000000000000 + 44.700000000000003 0.0000000000000000 + 44.759999999999991 0.0000000000000000 + 44.819999999999993 0.0000000000000000 + 44.879999999999995 0.0000000000000000 + 44.939999999999998 0.0000000000000000 + 45.000000000000000 0.0000000000000000 + 45.060000000000002 0.0000000000000000 + 45.119999999999990 0.0000000000000000 + 45.179999999999993 0.0000000000000000 + 45.239999999999995 0.0000000000000000 + 45.299999999999997 0.0000000000000000 + 45.359999999999999 0.0000000000000000 + 45.420000000000002 0.0000000000000000 + 45.479999999999990 0.0000000000000000 + 45.539999999999992 0.0000000000000000 + 45.599999999999994 0.0000000000000000 + 45.659999999999997 0.0000000000000000 + 45.719999999999999 0.0000000000000000 + 45.780000000000001 0.0000000000000000 + 45.840000000000003 0.0000000000000000 + 45.899999999999991 0.0000000000000000 + 45.959999999999994 0.0000000000000000 + 46.019999999999996 0.0000000000000000 + 46.079999999999998 0.0000000000000000 + 46.140000000000001 0.0000000000000000 + 46.200000000000003 0.0000000000000000 + 46.259999999999991 0.0000000000000000 + 46.319999999999993 0.0000000000000000 + 46.379999999999995 0.0000000000000000 + 46.439999999999998 0.0000000000000000 + 46.500000000000000 0.0000000000000000 + 46.560000000000002 0.0000000000000000 + 46.619999999999990 0.0000000000000000 + 46.679999999999993 0.0000000000000000 + 46.739999999999995 0.0000000000000000 + 46.799999999999997 0.0000000000000000 + 46.859999999999999 0.0000000000000000 + 46.920000000000002 0.0000000000000000 + 46.979999999999990 0.0000000000000000 + 47.039999999999992 0.0000000000000000 + 47.099999999999994 0.0000000000000000 + 47.159999999999997 0.0000000000000000 + 47.219999999999999 0.0000000000000000 + 47.280000000000001 0.0000000000000000 + 47.340000000000003 0.0000000000000000 + 47.399999999999991 0.0000000000000000 + 47.459999999999994 0.0000000000000000 + 47.519999999999996 0.0000000000000000 + 47.579999999999998 0.0000000000000000 + 47.640000000000001 0.0000000000000000 + 47.700000000000003 0.0000000000000000 + 47.759999999999991 0.0000000000000000 + 47.819999999999993 0.0000000000000000 + 47.879999999999995 0.0000000000000000 + 47.939999999999998 0.0000000000000000 + 48.000000000000000 0.0000000000000000 + 48.060000000000002 0.0000000000000000 + 48.119999999999990 0.0000000000000000 + 48.179999999999993 0.0000000000000000 + 48.239999999999995 0.0000000000000000 + 48.299999999999997 0.0000000000000000 + 48.359999999999999 0.0000000000000000 + 48.420000000000002 0.0000000000000000 + 48.479999999999990 0.0000000000000000 + 48.539999999999992 0.0000000000000000 + 48.599999999999994 0.0000000000000000 + 48.659999999999997 0.0000000000000000 + 48.719999999999999 0.0000000000000000 + 48.780000000000001 0.0000000000000000 + 48.840000000000003 0.0000000000000000 + 48.899999999999991 0.0000000000000000 + 48.959999999999994 0.0000000000000000 + 49.019999999999996 0.0000000000000000 + 49.079999999999998 0.0000000000000000 + 49.140000000000001 0.0000000000000000 + 49.200000000000003 0.0000000000000000 + 49.259999999999991 0.0000000000000000 + 49.319999999999993 0.0000000000000000 + 49.379999999999995 0.0000000000000000 + 49.439999999999998 0.0000000000000000 + 49.500000000000000 0.0000000000000000 + 49.560000000000002 0.0000000000000000 + 49.619999999999990 0.0000000000000000 + 49.679999999999993 0.0000000000000000 + 49.739999999999995 0.0000000000000000 + 49.799999999999997 0.0000000000000000 + 49.859999999999999 0.0000000000000000 + 49.920000000000002 0.0000000000000000 + 49.979999999999990 0.0000000000000000 + 50.039999999999992 0.0000000000000000 + 50.099999999999994 0.0000000000000000 + 50.159999999999997 0.0000000000000000 + 50.219999999999999 0.0000000000000000 + 50.280000000000001 0.0000000000000000 + 50.340000000000003 0.0000000000000000 + 50.399999999999991 0.0000000000000000 + 50.459999999999994 0.0000000000000000 + 50.519999999999996 0.0000000000000000 + 50.579999999999998 0.0000000000000000 + 50.640000000000001 0.0000000000000000 + 50.700000000000003 0.0000000000000000 + 50.759999999999991 0.0000000000000000 + 50.819999999999993 0.0000000000000000 + 50.879999999999995 0.0000000000000000 + 50.939999999999998 0.0000000000000000 + 51.000000000000000 0.0000000000000000 + 51.060000000000002 0.0000000000000000 + 51.119999999999990 0.0000000000000000 + 51.179999999999993 0.0000000000000000 + 51.239999999999995 0.0000000000000000 + 51.299999999999997 0.0000000000000000 + 51.359999999999999 0.0000000000000000 + 51.420000000000002 0.0000000000000000 + 51.479999999999990 0.0000000000000000 + 51.539999999999992 0.0000000000000000 + 51.599999999999994 0.0000000000000000 + 51.659999999999997 0.0000000000000000 + 51.719999999999999 0.0000000000000000 + 51.780000000000001 0.0000000000000000 + 51.840000000000003 0.0000000000000000 + 51.899999999999991 0.0000000000000000 + 51.959999999999994 0.0000000000000000 + 52.019999999999996 0.0000000000000000 + 52.079999999999998 0.0000000000000000 + 52.140000000000001 0.0000000000000000 + 52.200000000000003 0.0000000000000000 + 52.259999999999991 0.0000000000000000 + 52.319999999999993 0.0000000000000000 + 52.379999999999995 0.0000000000000000 + 52.439999999999998 0.0000000000000000 + 52.500000000000000 0.0000000000000000 + 52.560000000000002 0.0000000000000000 + 52.619999999999990 0.0000000000000000 + 52.679999999999993 0.0000000000000000 + 52.739999999999995 0.0000000000000000 + 52.799999999999997 0.0000000000000000 + 52.859999999999999 0.0000000000000000 + 52.920000000000002 0.0000000000000000 + 52.979999999999990 0.0000000000000000 + 53.039999999999992 0.0000000000000000 + 53.099999999999994 0.0000000000000000 + 53.159999999999997 0.0000000000000000 + 53.219999999999999 0.0000000000000000 + 53.280000000000001 0.0000000000000000 + 53.339999999999989 0.0000000000000000 + 53.399999999999991 0.0000000000000000 + 53.459999999999994 0.0000000000000000 + 53.519999999999996 0.0000000000000000 + 53.579999999999998 0.0000000000000000 + 53.640000000000001 0.0000000000000000 + 53.700000000000003 0.0000000000000000 + 53.759999999999991 0.0000000000000000 + 53.819999999999993 0.0000000000000000 + 53.879999999999995 0.0000000000000000 + 53.939999999999998 0.0000000000000000 + 54.000000000000000 0.0000000000000000 + 54.060000000000002 0.0000000000000000 + 54.119999999999990 0.0000000000000000 + 54.179999999999993 0.0000000000000000 + 54.239999999999995 0.0000000000000000 + 54.299999999999997 0.0000000000000000 + 54.359999999999999 0.0000000000000000 + 54.420000000000002 0.0000000000000000 + 54.479999999999990 0.0000000000000000 + 54.539999999999992 0.0000000000000000 + 54.599999999999994 0.0000000000000000 + 54.659999999999997 0.0000000000000000 + 54.719999999999999 0.0000000000000000 + 54.780000000000001 0.0000000000000000 + 54.839999999999989 0.0000000000000000 + 54.899999999999991 0.0000000000000000 + 54.959999999999994 0.0000000000000000 + 55.019999999999996 0.0000000000000000 + 55.079999999999998 0.0000000000000000 + 55.140000000000001 0.0000000000000000 + 55.200000000000003 0.0000000000000000 + 55.259999999999991 0.0000000000000000 + 55.319999999999993 0.0000000000000000 + 55.379999999999995 0.0000000000000000 + 55.439999999999998 0.0000000000000000 + 55.500000000000000 0.0000000000000000 + 55.560000000000002 0.0000000000000000 + 55.619999999999990 0.0000000000000000 + 55.679999999999993 0.0000000000000000 + 55.739999999999995 0.0000000000000000 + 55.799999999999997 0.0000000000000000 + 55.859999999999999 0.0000000000000000 + 55.920000000000002 0.0000000000000000 + 55.979999999999990 0.0000000000000000 + 56.039999999999992 0.0000000000000000 + 56.099999999999994 0.0000000000000000 + 56.159999999999997 0.0000000000000000 + 56.219999999999999 0.0000000000000000 + 56.280000000000001 0.0000000000000000 + 56.339999999999989 0.0000000000000000 + 56.399999999999991 0.0000000000000000 + 56.459999999999994 0.0000000000000000 + 56.519999999999996 0.0000000000000000 + 56.579999999999998 0.0000000000000000 + 56.640000000000001 0.0000000000000000 + 56.700000000000003 0.0000000000000000 + 56.759999999999991 0.0000000000000000 + 56.819999999999993 0.0000000000000000 + 56.879999999999995 0.0000000000000000 + 56.939999999999998 0.0000000000000000 + 57.000000000000000 0.0000000000000000 + 57.060000000000002 0.0000000000000000 + 57.119999999999990 0.0000000000000000 + 57.179999999999993 0.0000000000000000 + 57.239999999999995 0.0000000000000000 + 57.299999999999997 0.0000000000000000 + 57.359999999999999 0.0000000000000000 + 57.420000000000002 0.0000000000000000 + 57.479999999999990 0.0000000000000000 + 57.539999999999992 0.0000000000000000 + 57.599999999999994 0.0000000000000000 + 57.659999999999997 0.0000000000000000 + 57.719999999999999 0.0000000000000000 + 57.780000000000001 0.0000000000000000 + 57.839999999999989 0.0000000000000000 + 57.899999999999991 0.0000000000000000 + 57.959999999999994 0.0000000000000000 + 58.019999999999996 0.0000000000000000 + 58.079999999999998 0.0000000000000000 + 58.140000000000001 0.0000000000000000 + 58.200000000000003 -1.5431866314066871E-040 + 58.259999999999991 -5.0486644442168476E-040 + 58.319999999999993 -1.2244051228638129E-039 + 58.379999999999995 -2.3562429583624912E-039 + 58.439999999999998 -3.9012641872206863E-039 + 58.500000000000000 -5.8103854953927839E-039 + 58.560000000000002 -7.8993793773575350E-039 + 58.619999999999990 -1.0052133977683277E-038 + 58.679999999999993 -1.2268648296844710E-038 + 58.739999999999995 -1.4269312129068942E-038 + 58.799999999999997 -1.5817878674163384E-038 + 58.859999999999999 -1.6737239045787659E-038 + 58.920000000000002 -1.6889390784932420E-038 + 58.979999999999990 -1.6194232933645425E-038 + 59.039999999999992 -1.4646931787579765E-038 + 59.099999999999994 -1.2324193916771611E-038 + 59.159999999999997 -9.3840552658020911E-039 + 59.219999999999999 -6.1594802011525115E-039 + 59.280000000000001 -2.7737499233443412E-039 + 59.339999999999989 3.5838154519587927E-040 + 59.399999999999991 2.9041849763134779E-039 + 59.459999999999994 3.8116412878771773E-039 + 59.519999999999996 2.7389197493190798E-039 + 59.579999999999998 -1.0164026036457035E-040 + 59.640000000000001 -5.9843893253331621E-039 + 59.700000000000003 -1.3273752925412419E-038 + 59.759999999999991 -2.1451823933452847E-038 + 59.819999999999993 -3.0548878492079753E-038 + 59.879999999999995 -4.0081174343190813E-038 + 59.939999999999998 -4.8923344470247474E-038 + 60.000000000000000 -5.4605125956361033E-038 + 60.060000000000002 -5.4005579230647561E-038 + 60.119999999999990 -4.5977496354742001E-038 + 60.179999999999993 -2.8744025116720930E-038 + 60.239999999999995 -2.9490789868184134E-039 + 60.299999999999997 2.6446041887471878E-038 + 60.359999999999999 5.8441511231332206E-038 + 60.420000000000002 9.1976113357443791E-038 + 60.479999999999990 1.2080530341111311E-037 + 60.539999999999992 1.4281330938396946E-037 + 60.599999999999994 1.5048759975541580E-037 + 60.659999999999997 1.3890814154360509E-037 + 60.719999999999999 1.0750725361266823E-037 + 60.780000000000001 5.6961915962994246E-038 + 60.839999999999989 -3.0977260101590909E-039 + 60.899999999999991 -6.9704602408235222E-038 + 60.959999999999994 -1.3944233049554532E-037 + 61.019999999999996 -2.0328928433069941E-037 + 61.079999999999998 -2.5482788605758377E-037 + 61.140000000000001 -2.8050513282321397E-037 + 61.200000000000003 -2.7201173285514954E-037 + 61.259999999999991 -2.1815457001532992E-037 + 61.319999999999993 -1.2156817880630742E-037 + 61.379999999999995 1.8655732244014680E-038 + 61.439999999999998 1.9951992886893238E-037 + 61.500000000000000 3.9686438003707706E-037 + 61.560000000000002 5.9819341693630872E-037 + 61.619999999999990 7.8012186691289125E-037 + 61.679999999999993 9.1932531712298283E-037 + 61.739999999999995 1.0287040282342747E-036 + 61.799999999999997 1.0876770201400440E-036 + 61.859999999999999 1.0829436740717535E-036 + 61.920000000000002 1.0084301286360173E-036 + 61.979999999999990 8.6843205874569792E-037 + 62.039999999999992 6.6076620923689214E-037 + 62.099999999999994 4.0279190718488737E-037 + 62.159999999999997 1.0451207734888524E-037 + 62.219999999999999 -2.0996500383129267E-037 + 62.280000000000001 -5.1693825385455907E-037 + 62.339999999999989 -7.9469429737450606E-037 + 62.399999999999991 -1.0238133675129861E-036 + 62.459999999999994 -1.2071293009174577E-036 + 62.519999999999996 -1.3088471922860152E-036 + 62.579999999999998 -1.3305255813263051E-036 + 62.640000000000001 -1.2351817075088460E-036 + 62.700000000000003 -1.0516183844925306E-036 + 62.759999999999991 -7.5018063911444268E-037 + 62.819999999999993 -3.2214868067911563E-037 + 62.879999999999995 2.2040903327134098E-037 + 62.939999999999998 8.4534187056959132E-037 + 63.000000000000000 1.6018562938231287E-036 + 63.060000000000002 2.4143655961136109E-036 + 63.119999999999990 3.1791341529955509E-036 + 63.179999999999993 3.7952785612615727E-036 + 63.239999999999995 4.1683310332586655E-036 + 63.299999999999997 4.2123632022708101E-036 + 63.359999999999999 3.9110738847711794E-036 + 63.420000000000002 3.3025832692477811E-036 + 63.479999999999990 2.2138474049431172E-036 + 63.539999999999992 6.1966666814594714E-037 + 63.599999999999994 -1.5581299080283643E-036 + 63.659999999999997 -4.0795012522207552E-036 + 63.719999999999999 -6.8314703135839157E-036 + 63.780000000000001 -9.6107547614978512E-036 + 63.839999999999989 -1.2134822053995872E-035 + 63.899999999999991 -1.4177827948706717E-035 + 63.959999999999994 -1.5405095839020584E-035 + 64.019999999999996 -1.5737172483013832E-035 + 64.079999999999998 -1.5071485297211276E-035 + 64.140000000000001 -1.3171634709842405E-035 + 64.200000000000003 -9.9416663562445430E-036 + 64.259999999999991 -5.1994232907733990E-036 + 64.319999999999993 8.1202384717919964E-037 + 64.379999999999995 7.9497118020272716E-036 + 64.439999999999998 1.6049874374590347E-035 + 64.500000000000000 2.4767940523839934E-035 + 64.560000000000002 3.3794890040448638E-035 + 64.619999999999990 4.2610294364971992E-035 + 64.679999999999993 5.0692824030321835E-035 + 64.739999999999995 5.7276226552897802E-035 + 64.799999999999997 6.1872946995783175E-035 + 64.859999999999999 6.3781981491688290E-035 + 64.920000000000002 6.2507230193361415E-035 + 64.979999999999990 5.7501372011503863E-035 + 65.039999999999992 4.8171956941737584E-035 + 65.099999999999994 3.4254561949902635E-035 + 65.159999999999997 1.5620632477134961E-035 + 65.219999999999999 -7.6989783498871896E-036 + 65.280000000000001 -3.5287820754469683E-035 + 65.339999999999989 -6.6413160241793342E-035 + 65.399999999999991 -1.0009365905410285E-034 + 65.459999999999994 -1.3507074413562407E-034 + 65.519999999999996 -1.6971977083279163E-034 + 65.579999999999998 -2.0231522345405534E-034 + 65.640000000000001 -2.3086564742460814E-034 + 65.700000000000003 -2.5330453577498784E-034 + 65.759999999999991 -2.6723904664524578E-034 + 65.819999999999993 -2.7036545884717890E-034 + 65.879999999999995 -2.6053268245544876E-034 + 65.939999999999998 -2.3589110969870804E-034 + 66.000000000000000 -1.9501528593102454E-034 + 66.060000000000002 -1.3704809056913193E-034 + 66.119999999999990 -6.1920324372235767E-035 + 66.179999999999993 2.9654498603375606E-035 + 66.239999999999995 1.3592914518043281E-034 + 66.299999999999997 2.5406755813624462E-034 + 66.359999999999999 3.8002370023155993E-034 + 66.420000000000002 5.0862231209869568E-034 + 66.479999999999990 6.3359831274910999E-034 + 66.539999999999992 7.4770822306647349E-034 + 66.599999999999994 8.4288980216978457E-034 + 66.659999999999997 9.1061898085950161E-034 + 66.719999999999999 9.4220690045978066E-034 + 66.780000000000001 9.2926240103829412E-034 + 66.839999999999989 8.6415900228895434E-034 + 66.899999999999991 7.4076308217628571E-034 + 66.959999999999994 5.5480167126645862E-034 + 67.019999999999996 3.0453354661216479E-034 + 67.079999999999998 -8.7474500451653699E-036 + 67.140000000000001 -3.8020192795588600E-034 + 67.199999999999989 -8.0108363767834277E-034 + 67.259999999999991 -1.2584314609699631E-033 + 67.319999999999993 -1.7350285411194165E-033 + 67.379999999999995 -2.2094757104952104E-033 + 67.439999999999998 -2.6566754899885034E-033 + 67.500000000000000 -3.0483512167797388E-033 + 67.560000000000002 -3.3539980426827488E-033 + 67.619999999999990 -3.5420518929002060E-033 + 67.679999999999993 -3.5813534488621683E-033 + 67.739999999999995 -3.4427852005672111E-033 + 67.799999999999997 -3.1011483737086139E-033 + 67.859999999999999 -2.5371538748030180E-033 + 67.920000000000002 -1.7394887571510346E-033 + 67.979999999999990 -7.0678241333887102E-034 + 68.039999999999992 5.5052468112155527E-034 + 68.099999999999994 2.0085930608325889E-033 + 68.159999999999997 3.6290420163171739E-033 + 68.219999999999999 5.3582548576925007E-033 + 68.280000000000001 7.1273990301735959E-033 + 68.339999999999989 8.8532191545491700E-033 + 68.399999999999991 1.0439654718948942E-032 + 68.459999999999994 1.1780497390046597E-032 + 68.519999999999996 1.2762881097714058E-032 + 68.579999999999998 1.3271832388368164E-032 + 68.640000000000001 1.3195711830810593E-032 + 68.699999999999989 1.2432468245030529E-032 + 68.759999999999991 1.0896497182957830E-032 + 68.819999999999993 8.5259274074568209E-033 + 68.879999999999995 5.2899790579295612E-033 + 68.939999999999998 1.1960858238836692E-033 + 69.000000000000000 -3.7036416543267534E-033 + 69.060000000000002 -9.3070564600932704E-033 + 69.119999999999990 -1.5458107997979108E-032 + 69.179999999999993 -2.1945096444709063E-032 + 69.239999999999995 -2.8501336579988584E-032 + 69.299999999999997 -3.4808716690806590E-032 + 69.359999999999999 -4.0504449697733263E-032 + 69.420000000000002 -4.5191295626015475E-032 + 69.479999999999990 -4.8451297010745972E-032 + 69.539999999999992 -4.9862997636358559E-032 + 69.599999999999994 -4.9021919745712312E-032 + 69.659999999999997 -4.5563813954305684E-032 + 69.719999999999999 -3.9190051089245663E-032 + 69.780000000000001 -2.9694246750919890E-032 + 69.839999999999989 -1.6989012959971012E-032 + 69.899999999999991 -1.1315726855856189E-033 + 69.959999999999994 1.7653305429810710E-032 + 70.019999999999996 3.8954617908047803E-032 + 70.079999999999998 6.2162373394232306E-032 + 70.140000000000001 8.6462423310513705E-032 + 70.199999999999989 1.1084056290258690E-031 + 70.259999999999991 1.3409720338624594E-031 + 70.319999999999993 1.5487389511575132E-031 + 70.379999999999995 1.7169236664463604E-031 + 70.439999999999998 1.8300637593539637E-031 + 70.500000000000000 1.8726620513178625E-031 + 70.560000000000002 1.8299459940359611E-031 + 70.619999999999990 1.6887269032250669E-031 + 70.679999999999993 1.4383317175639462E-031 + 70.739999999999995 1.0715771156923838E-031 + 70.799999999999997 5.8574221353136805E-032 + 70.859999999999999 -1.6505672629353794E-033 + 70.920000000000002 -7.2628603670586947E-032 + 70.979999999999990 -1.5278419761816542E-031 + 71.039999999999992 -2.3980949033312003E-031 + 71.099999999999994 -3.3064817725350132E-031 + 71.159999999999997 -4.2151293296189214E-031 + 71.219999999999999 -5.0794176820843844E-031 + 71.280000000000001 -5.8489733468381312E-031 + 71.339999999999989 -6.4691176077078112E-031 + 71.399999999999991 -6.8827806379509715E-031 + 71.459999999999994 -7.0328672526962258E-031 + 71.519999999999996 -6.8650429285454803E-031 + 71.579999999999998 -6.3308709216493703E-031 + 71.640000000000001 -5.3912156962168391E-031 + 71.699999999999989 -4.0197892827709132E-031 + 71.759999999999991 -2.2066948434977760E-031 + 71.819999999999993 3.8205495304861003E-033 + 71.879999999999995 2.6822875875187118E-031 + 71.939999999999998 5.6677490786046426E-031 + 72.000000000000000 8.9099796171708098E-031 + 72.060000000000002 1.2296954291238165E-030 + 72.119999999999990 1.5689843428559400E-030 + 72.179999999999993 1.8925025884540751E-030 + 72.239999999999995 2.1817652015923788E-030 + 72.299999999999997 2.4166849523868576E-030 + 72.359999999999999 2.5762623344881805E-030 + 72.420000000000002 2.6394387594218247E-030 + 72.479999999999990 2.5861019225927487E-030 + 72.539999999999992 2.3982204330690899E-030 + 72.599999999999994 2.0610772269611018E-030 + 72.659999999999997 1.5645570983897051E-030 + 72.719999999999999 9.0443806649752705E-031 + 72.780000000000001 8.3625418719304318E-032 + 72.839999999999989 -8.8674354660269272E-031 + 72.899999999999991 -1.9863947822075984E-030 + 72.959999999999994 -3.1852937705683257E-030 + 73.019999999999996 -4.4433817153496576E-030 + 73.079999999999998 -5.7107430829746534E-030 + 73.140000000000001 -6.9282751546739567E-030 + 73.199999999999989 -8.0289105282339047E-030 + 73.259999999999991 -8.9394327200216745E-030 + 73.319999999999993 -9.5828969444454419E-030 + 73.379999999999995 -9.8816544941361337E-030 + 73.439999999999998 -9.7609242865680914E-030 + 73.500000000000000 -9.1528536668195225E-030 + 73.560000000000002 -8.0009499225915990E-030 + 73.619999999999990 -6.2647370004621349E-030 + 73.679999999999993 -3.9244575671353157E-030 + 73.739999999999995 -9.8560688371991046E-031 + 73.799999999999997 2.5169537725691079E-030 + 73.859999999999999 6.5155574529554705E-030 + 73.920000000000002 1.0907252193731984E-029 + 73.979999999999990 1.5552568720888320E-029 + 74.039999999999992 2.0275794300687176E-029 + 74.099999999999994 2.4867005189340363E-029 + 74.159999999999997 2.9086069385796406E-029 + 74.219999999999999 3.2668749213488209E-029 + 74.280000000000001 3.5334998630269043E-029 + 74.339999999999989 3.6799425072472762E-029 + 74.399999999999991 3.6783799240776515E-029 + 74.459999999999994 3.5031369705099632E-029 + 74.519999999999996 3.1322626376823138E-029 + 74.579999999999998 2.5492022459393325E-029 + 74.640000000000001 1.7445009133802908E-029 + 74.699999999999989 7.1746926265145005E-030 + 74.759999999999991 -5.2227928157692518E-030 + 74.819999999999993 -1.9535092846842834E-029 + 74.879999999999995 -3.5423620543004456E-029 + 74.939999999999998 -5.2417730492356838E-029 + 75.000000000000000 -6.9914053371596752E-029 + 75.060000000000002 -8.7181928021877924E-029 + 75.119999999999990 -1.0337564875527997E-028 + 75.179999999999993 -1.1755418449984772E-028 + 75.239999999999995 -1.2870871337060845E-028 + 75.299999999999997 -1.3579792240951461E-028 + 75.359999999999999 -1.3779084358301841E-028 + 75.420000000000002 -1.3371654598819662E-028 + 75.479999999999990 -1.2271935366328828E-028 + 75.539999999999992 -1.0411817501373989E-028 + 75.599999999999994 -7.7467818720547976E-029 + 75.659999999999997 -4.2619751166850827E-029 + 75.719999999999999 2.2061106428470542E-031 + 75.780000000000001 5.0443190549640088E-029 + 75.839999999999989 1.0699268540503591E-028 + 75.899999999999991 1.6834163821987394E-028 + 75.959999999999994 2.3248075777450172E-028 + 76.019999999999996 2.9692975711727556E-028 + 76.079999999999998 3.5877165225238840E-028 + 76.140000000000001 4.1471300640764371E-028 + 76.199999999999989 4.6117145910154126E-028 + 76.259999999999991 4.9439131358514410E-028 + 76.319999999999993 5.1058661243721668E-028 + 76.379999999999995 5.0610933173738137E-028 + 76.439999999999998 4.7763995805938813E-028 + 76.500000000000000 4.2239449539067110E-028 + 76.560000000000002 3.3834217681650168E-028 + 76.619999999999990 2.2442514236617111E-028 + 76.679999999999993 8.0770298312235795E-029 + 76.739999999999995 -9.1117076159380677E-029 + 76.799999999999997 -2.8819007452175683E-028 + 76.859999999999999 -5.0574002609065569E-028 + 76.920000000000002 -7.3733163966049592E-028 + 76.979999999999990 -9.7480551608538268E-028 + 77.039999999999992 -1.2083601147466787E-027 + 77.099999999999994 -1.4267206512563518E-027 + 77.159999999999997 -1.6174038335039057E-027 + 77.219999999999999 -1.7670807719035306E-027 + 77.280000000000001 -1.8620388045638172E-027 + 77.339999999999989 -1.8887375418702178E-027 + 77.399999999999991 -1.8344488017280610E-027 + 77.459999999999994 -1.6879672009811921E-027 + 77.519999999999996 -1.4403689967763720E-027 + 77.579999999999998 -1.0857947497281206E-027 + 77.640000000000001 -6.2222331073003679E-028 + 77.699999999999989 -5.2201744148967656E-029 + 77.759999999999991 6.1650880159741997E-028 + 77.819999999999993 1.3704155608046304E-027 + 77.879999999999995 2.1899455870386143E-027 + 77.939999999999998 3.0493153090234481E-027 + 78.000000000000000 3.9166527304939933E-027 + 78.060000000000002 4.7544161456509152E-027 + 78.119999999999990 5.5201305241034274E-027 + 78.179999999999993 6.1674688240957264E-027 + 78.239999999999995 6.6476825300495784E-027 + 78.299999999999997 6.9113736459375725E-027 + 78.359999999999999 6.9105899382800516E-027 + 78.420000000000002 6.6011970473051606E-027 + 78.479999999999990 5.9454744175341333E-027 + 78.539999999999992 4.9148485314428810E-027 + 78.599999999999994 3.4926737939753542E-027 + 78.659999999999997 1.6769353758175508E-027 + 78.719999999999999 -5.1724745360875804E-028 + 78.780000000000001 -3.0554705806442442E-027 + 78.839999999999989 -5.8823918443929851E-027 + 78.899999999999991 -8.9207335681745975E-027 + 78.959999999999994 -1.2071090059117028E-026 + 79.019999999999996 -1.5212679644602229E-026 + 79.079999999999998 -1.8205162775201087E-026 + 79.140000000000001 -2.0891617444619259E-026 + 79.199999999999989 -2.3102730596107019E-026 + 79.259999999999991 -2.4662222728387997E-026 + 79.319999999999993 -2.5393457212661541E-026 + 79.379999999999995 -2.5127150868640301E-026 + 79.439999999999998 -2.3710013259754829E-026 + 79.500000000000000 -2.1014096898731753E-026 + 79.560000000000002 -1.6946558401913675E-026 + 79.619999999999990 -1.1459469145760000E-026 + 79.679999999999993 -4.5592678321813742E-027 + 79.739999999999995 3.6846404377153394E-027 + 79.799999999999997 1.3132634001313370E-026 + 79.859999999999999 2.3569495290584448E-026 + 79.920000000000002 3.4701489450907741E-026 + 79.979999999999990 4.6156374519516801E-026 + 80.039999999999992 5.7486831062295222E-026 + 80.099999999999994 6.8177724999119345E-026 + 80.159999999999997 7.7657524621701689E-026 + 80.219999999999999 8.5313975700846556E-026 + 80.280000000000001 9.0514139885339854E-026 + 80.340000000000003 9.2628548583867048E-026 + 80.400000000000006 9.1059119248549588E-026 + 80.460000000000008 8.5270245622736402E-026 + 80.519999999999982 7.4822210124548300E-026 + 80.579999999999984 5.9405817093409319E-026 + 80.639999999999986 3.8877007903380918E-026 + 80.699999999999989 1.3289863188983578E-026 + 80.759999999999991 -1.7073571648414072E-026 + 80.819999999999993 -5.1678569802682602E-026 + 80.879999999999995 -8.9719910085858561E-026 + 80.939999999999998 -1.3011287613948320E-025 + 81.000000000000000 -1.7149489963892195E-025 + 81.060000000000002 -2.1223943369024166E-025 + 81.120000000000005 -2.5048351862857083E-025 + 81.180000000000007 -2.8416984453153233E-025 + 81.240000000000009 -3.1110415815158430E-025 + 81.299999999999983 -3.2902754924646926E-025 + 81.359999999999985 -3.3570339859738730E-025 + 81.419999999999987 -3.2901717791458738E-025 + 81.479999999999990 -3.0708710047031818E-025 + 81.539999999999992 -2.6838244350134101E-025 + 81.599999999999994 -2.1184590835422747E-025 + 81.659999999999997 -1.3701523364678734E-025 + 81.719999999999999 -4.4138695717281437E-026 + 81.780000000000001 6.5721309554899741E-026 + 81.840000000000003 1.9060287008715683E-025 + 81.900000000000006 3.2758439640307755E-025 + 81.960000000000008 4.7275546781640510E-025 + 82.019999999999982 6.2122565256585567E-025 + 82.079999999999984 7.6717670642819642E-025 + 82.139999999999986 9.0396263959288420E-025 + 82.199999999999989 1.0242612541215109E-024 + 82.259999999999991 1.1202788218678687E-024 + 82.319999999999993 1.1840075027932345E-024 + 82.379999999999995 1.2075330085059305E-024 + 82.439999999999998 1.1833874638665206E-024 + 82.500000000000000 1.1049392831035876E-024 + 82.560000000000002 9.6680939345043681E-025 + 82.620000000000005 7.6530079110590349E-025 + 82.680000000000007 4.9882413093416811E-025 + 82.740000000000009 1.6830166137424973E-025 + 82.799999999999983 -2.2247216970850011E-025 + 82.859999999999985 -6.6653435848305288E-025 + 82.919999999999987 -1.1535461897223187E-024 + 82.979999999999990 -1.6696953594726315E-024 + 83.039999999999992 -2.1977320501885522E-024 + 83.099999999999994 -2.7171559065445276E-024 + 83.159999999999997 -3.2045715024803198E-024 + 83.219999999999999 -3.6342227597839179E-024 + 83.280000000000001 -3.9787132426101238E-024 + 83.340000000000003 -4.2099090307790835E-024 + 83.400000000000006 -4.3000157481220629E-024 + 83.460000000000008 -4.2228123377033603E-024 + 83.519999999999982 -3.9550101508883193E-024 + 83.579999999999984 -3.4777036107114767E-024 + 83.639999999999986 -2.7778615271614335E-024 + 83.699999999999989 -1.8498055533349304E-024 + 83.759999999999991 -6.9660594163412359E-025 + 83.819999999999993 6.6867138499404636E-025 + 83.879999999999995 2.2219507511908976E-024 + 83.939999999999998 3.9274356745553042E-024 + 84.000000000000000 5.7372855899698576E-024 + 84.060000000000002 7.5917516981233399E-024 + 84.120000000000005 9.4198390868444219E-024 + 84.180000000000007 1.1140544045953602E-023 + 84.240000000000009 1.2664711814461287E-023 + 84.299999999999983 1.3897522015526034E-023 + 84.359999999999985 1.4741604029310446E-023 + 84.419999999999987 1.5100739104174104E-023 + 84.479999999999990 1.4884086560773723E-023 + 84.539999999999992 1.4010842524590020E-023 + 84.599999999999994 1.2415184502240077E-023 + 84.659999999999997 1.0051355492981492E-023 + 84.719999999999999 6.8986898588895881E-024 + 84.780000000000001 2.9663437267743327E-024 + 84.840000000000003 -1.7024834564767000E-024 + 84.900000000000006 -7.0271206021499167E-024 + 84.960000000000008 -1.2887035366144887E-023 + 85.019999999999982 -1.9120754509719195E-023 + 85.079999999999984 -2.5526328616746041E-023 + 85.139999999999986 -3.1863559524144893E-023 + 85.199999999999989 -3.7858175333609736E-023 + 85.259999999999991 -4.3208052609391820E-023 + 85.319999999999993 -4.7591556348805807E-023 + 85.379999999999995 -5.0677950313680246E-023 + 85.439999999999998 -5.2139781402366515E-023 + 85.500000000000000 -5.1666994237813204E-023 + 85.560000000000002 -4.8982466495353799E-023 + 85.620000000000005 -4.3858505711856297E-023 + 85.680000000000007 -3.6133825174516286E-023 + 85.740000000000009 -2.5730278851817489E-023 + 85.799999999999983 -1.2668711989675151E-023 + 85.859999999999985 2.9169379178911601E-024 + 85.919999999999987 2.0768080981611581E-023 + 85.979999999999990 4.0493355643796873E-023 + 86.039999999999992 6.1564776854767176E-023 + 86.099999999999994 8.3318948776233545E-023 + 86.159999999999997 1.0496408236425459E-022 + 86.219999999999999 1.2559333178212176E-022 + 86.280000000000001 1.4420489627604272E-022 + 86.340000000000003 1.5972904016433733E-022 + 86.400000000000006 1.7106193504231249E-022 + 86.460000000000008 1.7710591550116994E-022 + 86.519999999999982 1.7681553900647920E-022 + 86.579999999999984 1.6924822656259548E-022 + 86.639999999999986 1.5361829750742239E-022 + 86.699999999999989 1.2935248846140694E-022 + 86.759999999999991 9.6144936248202171E-023 + 86.819999999999993 5.4009409496955342E-023 + 86.879999999999995 3.3260769512932469E-024 + 86.939999999999998 -5.5119804006293586E-023 + 87.000000000000000 -1.2011011168304904E-022 + 87.060000000000002 -1.8997960824480102E-022 + 87.120000000000005 -2.6261782641405724E-022 + 87.180000000000007 -3.3548936771826441E-022 + 87.240000000000009 -4.0567443898265766E-022 + 87.299999999999983 -4.6993081302267663E-022 + 87.359999999999985 -5.2477790031692362E-022 + 87.419999999999987 -5.6660253943415981E-022 + 87.479999999999990 -5.9178562655634451E-022 + 87.539999999999992 -5.9684715340611578E-022 + 87.599999999999994 -5.7860658064545551E-022 + 87.659999999999997 -5.3435425606675342E-022 + 87.719999999999999 -4.6202866698986908E-022 + 87.780000000000001 -3.6039328706672169E-022 + 87.840000000000003 -2.2920578413265236E-022 + 87.900000000000006 -6.9371853736216045E-023 + 87.960000000000008 1.1692434467337543E-022 + 88.019999999999982 3.2612240630725208E-022 + 88.079999999999984 5.5322735572558665E-022 + 88.139999999999986 7.9180071425746476E-022 + 88.199999999999989 1.0340067325730160E-021 + 88.259999999999991 1.2707199291907795E-021 + 88.319999999999993 1.4916990261562274E-021 + 88.379999999999995 1.6858291843104585E-021 + 88.439999999999998 1.8414329205894961E-021 + 88.500000000000000 1.9466465187211523E-021 + 88.560000000000002 1.9898587531140380E-021 + 88.620000000000005 1.9602004132897837E-021 + 88.680000000000007 1.8480754362258213E-021 + 88.740000000000009 1.6457179630268920E-021 + 88.799999999999983 1.3477571224753019E-021 + 88.859999999999985 9.5177021224781171E-022 + 88.919999999999987 4.5879841335834158E-022 + 88.979999999999990 -1.2619565411555553E-022 + 89.039999999999992 -7.9395963027561948E-022 + 89.099999999999994 -1.5306942510471486E-021 + 89.159999999999997 -2.3179371680545938E-021 + 89.219999999999999 -3.1326088989470531E-021 + 89.280000000000001 -3.9472444022441840E-021 + 89.340000000000003 -4.7304269733110073E-021 + 89.400000000000006 -5.4474364860175215E-021 + 89.460000000000008 -6.0611170370516181E-021 + 89.519999999999982 -6.5329623046797695E-021 + 89.579999999999984 -6.8244100666720025E-021 + 89.639999999999986 -6.8983210841982171E-021 + 89.699999999999989 -6.7206171056101229E-021 + 89.759999999999991 -6.2620346525308742E-021 + 89.819999999999993 -5.4999476299607155E-021 + 89.879999999999995 -4.4201928251795280E-021 + 89.939999999999998 -3.0188379971746699E-021 + 90.000000000000000 -1.3038094855874994E-021 + 90.060000000000002 7.0369327716694671E-022 + 90.120000000000005 2.9680902868810120E-021 + 90.180000000000007 5.4386913228072065E-021 + 90.240000000000009 8.0494394637169835E-021 + 90.299999999999983 1.0719189043859241E-020 + 90.359999999999985 1.3352594381914310E-020 + 90.419999999999987 1.5841645237299458E-020 + 90.479999999999990 1.8067907269874460E-020 + 90.539999999999992 1.9905452692715800E-020 + 90.599999999999994 2.1224498983133609E-020 + 90.659999999999997 2.1895696117319200E-020 + 90.719999999999999 2.1795018452727812E-020 + 90.780000000000001 2.0809152683523863E-020 + 90.840000000000003 1.8841273055843442E-020 + 90.900000000000006 1.5817035296644442E-020 + 90.960000000000008 1.1690613824726118E-020 + 91.019999999999982 6.4505772585986180E-021 + 91.079999999999984 1.2538601484390195E-022 + 91.139999999999986 -7.2117805423191655E-021 + 91.199999999999989 -1.5439048691704401E-020 + 91.259999999999991 -2.4383065645224357E-020 + 91.319999999999993 -3.3817590956061202E-020 + 91.379999999999995 -4.3463759171742233E-020 + 91.439999999999998 -5.2992179257284606E-020 + 91.500000000000000 -6.2027082925685415E-020 + 91.560000000000002 -7.0152592123774719E-020 + 91.620000000000005 -7.6921283973193080E-020 + 91.680000000000007 -8.1864837093576632E-020 + 91.739999999999981 -8.4506877943282880E-020 + 91.799999999999983 -8.4377742627540705E-020 + 91.859999999999985 -8.1030816635137927E-020 + 91.919999999999987 -7.4060130566103525E-020 + 91.979999999999990 -6.3118668092066878E-020 + 92.039999999999992 -4.7936751626074691E-020 + 92.099999999999994 -2.8339955850849788E-020 + 92.159999999999997 -4.2654210829001471E-021 + 92.219999999999999 2.4223970249230489E-020 + 92.280000000000001 5.6928538591083284E-020 + 92.340000000000003 9.3504989357332013E-020 + 92.400000000000006 1.3346475695879841E-019 + 92.460000000000008 1.7617800180755083E-019 + 92.519999999999982 2.2088460226395651E-019 + 92.579999999999984 2.6671246747124600E-019 + 92.639999999999986 3.1270390807372108E-019 + 92.699999999999989 3.5785072008787952E-019 + 92.759999999999991 4.0113711561837722E-019 + 92.819999999999993 4.4159228139613608E-019 + 92.879999999999995 4.7834943612258321E-019 + 92.939999999999998 5.1071489488472937E-019 + 93.000000000000000 5.3824166656673070E-019 + 93.060000000000002 5.6080973268644581E-019 + 93.120000000000005 5.7870962612368746E-019 + 93.180000000000007 5.9273026027925289E-019 + 93.239999999999981 6.0424623058766018E-019 + 93.299999999999983 6.1530478912752883E-019 + 93.359999999999985 6.2870657524983693E-019 + 93.419999999999987 6.4808463025424921E-019 + 93.479999999999990 6.7797379893684719E-019 + 93.539999999999992 7.2386729264386577E-019 + 93.599999999999994 7.9226410516932943E-019 + 93.659999999999997 8.9069984510937897E-019 + 93.719999999999999 1.0277591480118285E-018 + 93.780000000000001 1.2130749644641495E-018 + 93.840000000000003 1.4572972132402822E-018 + 93.900000000000006 1.7720499139383099E-018 + 93.960000000000008 2.1698659669778614E-018 + 94.019999999999982 2.6640932751267734E-018 + 94.079999999999984 3.2687924551779877E-018 + 94.139999999999986 3.9986045044095951E-018 + 94.199999999999989 4.8685986930871361E-018 + 94.259999999999991 5.8941316659172987E-018 + 94.319999999999993 7.0906643271141622E-018 + 94.379999999999995 8.4736086359766990E-018 + 94.439999999999998 1.0058153346473003E-017 + 94.500000000000000 1.1859106607535888E-017 + 94.560000000000002 1.3890762460696353E-017 + 94.620000000000005 1.6166782936800760E-017 + 94.680000000000007 1.8700106309682868E-017 + 94.739999999999981 2.1502914236713103E-017 + 94.799999999999983 2.4586612311308745E-017 + 94.859999999999985 2.7961847295398376E-017 + 94.919999999999987 3.1638624232319636E-017 + 94.979999999999990 3.5626392752937151E-017 + 95.039999999999992 3.9934189138267046E-017 + 95.099999999999994 4.4570804271822312E-017 + 95.159999999999997 4.9545003440571472E-017 + 95.219999999999999 5.4865572433739025E-017 + 95.280000000000001 6.0541431188809854E-017 + 95.340000000000003 6.6581606701998473E-017 + 95.400000000000006 7.2994924958585608E-017 + 95.460000000000008 7.9789677569943879E-017 + 95.519999999999982 8.6972767992267404E-017 + 95.579999999999984 9.4548577589923833E-017 + 95.639999999999986 1.0251725355956719E-016 + 95.699999999999989 1.1087238524874759E-016 + 95.759999999999991 1.1959773353365487E-016 + 95.819999999999993 1.2866328062171405E-016 + 95.879999999999995 1.3801985532898184E-016 + 95.939999999999998 1.4759261853682737E-016 + 96.000000000000000 1.5727270214870650E-016 + 96.060000000000002 1.6690724254484577E-016 + 96.120000000000005 1.7628704820308987E-016 + 96.180000000000007 1.8513223290343738E-016 + 96.239999999999981 1.9307422836437664E-016 + 96.299999999999983 1.9963580454258856E-016 + 96.359999999999985 2.0420605094707528E-016 + 96.419999999999987 2.0601243900242393E-016 + 96.479999999999990 2.0408778714897611E-016 + 96.539999999999992 1.9723271730987615E-016 + 96.599999999999994 1.8397047809681782E-016 + 96.659999999999997 1.6249768820394052E-016 + 96.719999999999999 1.3062652094762382E-016 + 96.780000000000001 8.5720003963195122E-017 + 96.840000000000003 2.4615024554172439E-017 + 96.900000000000006 -5.6463948094394022E-017 + 96.960000000000008 -1.6199641067248506E-016 + 97.019999999999982 -2.9728222829504140E-016 + 97.079999999999984 -4.6856541219786931E-016 + 97.139999999999986 -6.8317415705667147E-016 + 97.199999999999989 -9.4968764981235078E-016 + 97.259999999999991 -1.2781092392287712E-015 + 97.319999999999993 -1.6800921258460999E-015 + 97.379999999999995 -2.1691566299706888E-015 + 97.439999999999998 -2.7609805627108977E-015 + 97.500000000000000 -3.4736832568087574E-015 + 97.560000000000002 -4.3281997406344986E-015 + 97.620000000000005 -5.3486405442906066E-015 + 97.680000000000007 -6.5627716696659171E-015 + 97.739999999999981 -8.0025039130270481E-015 + 97.799999999999983 -9.7044696376328861E-015 + 97.859999999999985 -1.1710686660494074E-014 + 97.919999999999987 -1.4069278462070387E-014 + 97.979999999999990 -1.6835296199304246E-014 + 98.039999999999992 -2.0071676641937377E-014 + 98.099999999999994 -2.3850265777748522E-014 + 98.159999999999997 -2.8253047512392837E-014 + 98.219999999999999 -3.3373430637317874E-014 + 98.280000000000001 -3.9317800624494827E-014 + 98.340000000000003 -4.6207151261695815E-014 + 98.400000000000006 -5.4178988661980759E-014 + 98.460000000000008 -6.3389395505671210E-014 + 98.519999999999982 -7.4015359316974844E-014 + 98.579999999999984 -8.6257465115983971E-014 + 98.639999999999986 -1.0034263247887647E-013 + 98.699999999999989 -1.1652758018469487E-013 + 98.759999999999991 -1.3510203531403477E-013 + 98.819999999999993 -1.5639299574995022E-013 + 98.879999999999995 -1.8076903505693867E-013 + 98.939999999999998 -2.0864481072169132E-013 + 99.000000000000000 -2.4048660420319724E-013 + 99.060000000000002 -2.7681799588512752E-013 + 99.120000000000005 -3.1822621242249593E-013 + 99.180000000000007 -3.6536915285757550E-013 + 99.239999999999981 -4.1898274032322924E-013 + 99.299999999999983 -4.7988885578528235E-013 + 99.359999999999985 -5.4900518566225141E-013 + 99.419999999999987 -6.2735392186290863E-013 + 99.479999999999990 -7.1607230665021831E-013 + 99.539999999999992 -8.1642422987093552E-013 + 99.599999999999994 -9.2981138726573406E-013 + 99.659999999999997 -1.0577876465381847E-012 + 99.719999999999999 -1.2020701514946108E-012 + 99.780000000000001 -1.3645561629748928E-012 + 99.840000000000003 -1.5473365904348730E-012 + 99.900000000000006 -1.7527126669483784E-012 + 99.960000000000008 -1.9832107582904787E-012 + 100.01999999999998 -2.2416025972586333E-012 + 100.07999999999998 -2.5309188304555445E-012 + 100.13999999999999 -2.8544705548199862E-012 + 100.19999999999999 -3.2158612559648954E-012 + 100.25999999999999 -3.6190079434635449E-012 + 100.31999999999999 -4.0681555420699473E-012 + 100.38000000000000 -4.5678945974708659E-012 + 100.44000000000000 -5.1231681669583109E-012 + 100.50000000000000 -5.7392874505401554E-012 + 100.56000000000000 -6.4219378526032040E-012 + 100.62000000000000 -7.1771816609237420E-012 + 100.68000000000001 -8.0114496972782720E-012 + 100.73999999999998 -8.9315424866807672E-012 + 100.79999999999998 -9.9445985048466227E-012 + 100.85999999999999 -1.1058073900968315E-011 + 100.91999999999999 -1.2279696967237655E-011 + 100.97999999999999 -1.3617407831816514E-011 + 101.03999999999999 -1.5079283975009004E-011 + 101.09999999999999 -1.6673439085848236E-011 + 101.16000000000000 -1.8407897818045238E-011 + 101.22000000000000 -2.0290437039286654E-011 + 101.28000000000000 -2.2328389289715201E-011 + 101.34000000000000 -2.4528399342721942E-011 + 101.40000000000001 -2.6896149860691071E-011 + 101.46000000000001 -2.9435993613277481E-011 + 101.51999999999998 -3.2150533879602975E-011 + 101.57999999999998 -3.5040126653185004E-011 + 101.63999999999999 -3.8102285205457819E-011 + 101.69999999999999 -4.1330979189197581E-011 + 101.75999999999999 -4.4715779032420783E-011 + 101.81999999999999 -4.8240907942630450E-011 + 101.88000000000000 -5.1884065801471975E-011 + 101.94000000000000 -5.5615121209751153E-011 + 102.00000000000000 -5.9394562338111999E-011 + 102.06000000000000 -6.3171661798507478E-011 + 102.12000000000000 -6.6882387143976661E-011 + 102.18000000000001 -7.0446972507762851E-011 + 102.23999999999998 -7.3767178548309924E-011 + 102.29999999999998 -7.6722992839532141E-011 + 102.35999999999999 -7.9168913536656566E-011 + 102.41999999999999 -8.0929777775543843E-011 + 102.47999999999999 -8.1795913125999205E-011 + 102.53999999999999 -8.1517458139845222E-011 + 102.59999999999999 -7.9798014935148920E-011 + 102.66000000000000 -7.6287389401856853E-011 + 102.72000000000000 -7.0573459140733403E-011 + 102.78000000000000 -6.2172505694368980E-011 + 102.84000000000000 -5.0518538378677552E-011 + 102.90000000000001 -3.4951574882233066E-011 + 102.96000000000001 -1.4703369427946567E-011 + 103.01999999999998 1.1117851084403755E-011 + 103.07999999999998 4.3545597486826208E-011 + 103.13999999999999 8.3773953821254613E-011 + 103.19999999999999 1.3318093993093972E-010 + 103.25999999999999 1.9335341775824308E-010 + 103.31999999999999 2.6611606216198970E-010 + 103.38000000000000 3.5356284969191285E-010 + 103.44000000000000 4.5809401023271950E-010 + 103.50000000000000 5.8245535890480685E-010 + 103.56000000000000 7.2978367314747377E-010 + 103.62000000000000 9.0365980319031868E-010 + 103.68000000000001 1.1081637389007017E-009 + 103.73999999999998 1.3479377880538991E-009 + 103.79999999999998 1.6282602743422280E-009 + 103.85999999999999 1.9551230024114646E-009 + 103.91999999999999 2.3353195470225878E-009 + 103.97999999999999 2.7765490858651915E-009 + 104.03999999999999 3.2875213970382164E-009 + 104.09999999999999 3.8780821802382381E-009 + 104.16000000000000 4.5593448000345319E-009 + 104.22000000000000 5.3438568397795884E-009 + 104.28000000000000 6.2457532117496953E-009 + 104.34000000000000 7.2809440858894431E-009 + 104.40000000000001 8.4673366400480027E-009 + 104.46000000000001 9.8250433307631076E-009 + 104.51999999999998 1.1376654882849787E-008 + 104.57999999999998 1.3147516093325113E-008 + 104.63999999999999 1.5166031713985656E-008 + 104.69999999999999 1.7464013127629059E-008 + 104.75999999999999 2.0077050648125005E-008 + 104.81999999999999 2.3044941230036629E-008 + 104.88000000000000 2.6412150666391587E-008 + 104.94000000000000 3.0228315275124893E-008 + 105.00000000000000 3.4548795838490016E-008 + 105.06000000000000 3.9435266328994109E-008 + 105.12000000000000 4.4956466758715011E-008 + 105.18000000000001 5.1188817047867718E-008 + 105.23999999999998 5.8217370305996419E-008 + 105.29999999999998 6.6136558269632415E-008 + 105.35999999999999 7.5051277393477456E-008 + 105.41999999999999 8.5077898035140912E-008 + 105.47999999999999 9.6345444153089561E-008 + 105.53999999999999 1.0899683764927722E-007 + 105.59999999999999 1.2319033678455596E-007 + 105.66000000000000 1.3910096854434746E-007 + 105.72000000000000 1.5692226739082899E-007 + 105.78000000000000 1.7686801868647187E-007 + 105.84000000000000 1.9917421289911998E-007 + 105.90000000000001 2.2410133801468629E-007 + 105.96000000000001 2.5193627190022449E-007 + 106.01999999999998 2.8299528662761280E-007 + 106.07999999999998 3.1762638758773979E-007 + 106.13999999999999 3.5621260256381213E-007 + 106.19999999999999 3.9917495062704362E-007 + 106.25999999999999 4.4697577496621516E-007 + 106.31999999999999 5.0012293950291806E-007 + 106.38000000000000 5.5917352191459469E-007 + 106.44000000000000 6.2473822500745472E-007 + 106.50000000000000 6.9748623799221158E-007 + 106.56000000000000 7.7815008016171690E-007 + 106.62000000000000 8.6753131083649980E-007 + 106.68000000000001 9.6650637428067053E-007 + 106.73999999999998 1.0760330722770088E-006 + 106.79999999999998 1.1971567072268091E-006 + 106.85999999999999 1.3310183439304367E-006 + 106.91999999999999 1.4788623033640868E-006 + 106.97999999999999 1.6420441578288860E-006 + 107.03999999999999 1.8220398161079053E-006 + 107.09999999999999 2.0204554561902446E-006 + 107.16000000000000 2.2390384904682611E-006 + 107.22000000000000 2.4796870608930940E-006 + 107.28000000000000 2.7444635957086061E-006 + 107.34000000000000 3.0356039465058467E-006 + 107.40000000000001 3.3555355180097707E-006 + 107.46000000000001 3.7068872837882185E-006 + 107.51999999999998 4.0925078292966264E-006 + 107.57999999999998 4.5154780331476900E-006 + 107.63999999999999 4.9791306451855371E-006 + 107.69999999999999 5.4870677192014819E-006 + 107.75999999999999 6.0431801078331500E-006 + 107.81999999999999 6.6516666378782548E-006 + 107.88000000000000 7.3170545389178829E-006 + 107.94000000000000 8.0442233794238445E-006 + 108.00000000000000 8.8384290005872032E-006 + 108.06000000000000 9.7053271154593869E-006 + 108.12000000000000 1.0650999498318618E-005 + 108.18000000000001 1.1681981933498137E-005 + 108.23999999999998 1.2805296020186743E-005 + 108.29999999999998 1.4028472642160614E-005 + 108.35999999999999 1.5359589368504693E-005 + 108.41999999999999 1.6807301572419492E-005 + 108.47999999999999 1.8380881207345856E-005 + 108.53999999999999 2.0090237878125468E-005 + 108.59999999999999 2.1945980665355949E-005 + 108.66000000000000 2.3959435416793341E-005 + 108.72000000000000 2.6142695569376912E-005 + 108.78000000000000 2.8508665385020149E-005 + 108.84000000000000 3.1071099162266127E-005 + 108.90000000000001 3.3844648607062973E-005 + 108.96000000000001 3.6844903511018120E-005 + 109.01999999999998 4.0088449092018855E-005 + 109.07999999999998 4.3592918669381424E-005 + 109.13999999999999 4.7377023673972725E-005 + 109.19999999999999 5.1460626201594049E-005 + 109.25999999999999 5.5864784026327407E-005 + 109.31999999999999 6.0611808730930388E-005 + 109.38000000000000 6.5725311408129113E-005 + 109.44000000000000 7.1230268452402513E-005 + 109.50000000000000 7.7153075015821203E-005 + 109.56000000000000 8.3521616913714383E-005 + 109.62000000000000 9.0365307283707261E-005 + 109.68000000000001 9.7715144719165629E-005 + 109.73999999999998 1.0560379699129732E-004 + 109.79999999999998 1.1406563500984779E-004 + 109.85999999999999 1.2313681329877729E-004 + 109.91999999999999 1.3285529173192979E-004 + 109.97999999999999 1.4326095234339016E-004 + 110.03999999999999 1.5439560050557559E-004 + 110.09999999999999 1.6630308104750957E-004 + 110.16000000000000 1.7902921214523832E-004 + 110.22000000000000 1.9262200377877231E-004 + 110.28000000000000 2.0713157106737269E-004 + 110.34000000000000 2.2261028647171233E-004 + 110.40000000000001 2.3911270903423387E-004 + 110.46000000000001 2.5669573141235037E-004 + 110.51999999999998 2.7541858508160825E-004 + 110.57999999999998 2.9534285929850424E-004 + 110.63999999999999 3.1653250365570363E-004 + 110.69999999999999 3.3905398275692686E-004 + 110.75999999999999 3.6297615496344240E-004 + 110.81999999999999 3.8837026161271632E-004 + 110.88000000000000 4.1531013475048904E-004 + 110.94000000000000 4.4387198457589730E-004 + 111.00000000000000 4.7413452818469560E-004 + 111.06000000000000 5.0617895684252896E-004 + 111.12000000000000 5.4008882078750392E-004 + 111.18000000000001 5.7595016853179614E-004 + 111.23999999999998 6.1385127384479168E-004 + 111.29999999999998 6.5388282226242964E-004 + 111.35999999999999 6.9613768978659264E-004 + 111.41999999999999 7.4071103906104879E-004 + 111.47999999999999 7.8770007337606988E-004 + 111.53999999999999 8.3720390049850737E-004 + 111.59999999999999 8.8932377116710340E-004 + 111.66000000000000 9.4416251813330169E-004 + 111.72000000000000 1.0018247208924682E-003 + 111.78000000000000 1.0624165691564139E-003 + 111.84000000000000 1.1260453506460933E-003 + 111.90000000000001 1.1928198562364627E-003 + 111.96000000000001 1.2628497433869090E-003 + 112.01999999999998 1.3362454199574957E-003 + 112.07999999999998 1.4131182921364020E-003 + 112.13999999999999 1.4935795569895839E-003 + 112.19999999999999 1.5777407849469544E-003 + 112.25999999999999 1.6657136609627998E-003 + 112.31999999999999 1.7576090743169352E-003 + 112.38000000000000 1.8535375517244065E-003 + 112.44000000000000 1.9536083984176265E-003 + 112.50000000000000 2.0579299897952805E-003 + 112.56000000000000 2.1666085838396502E-003 + 112.62000000000000 2.2797487599919859E-003 + 112.68000000000001 2.3974527638739103E-003 + 112.73999999999998 2.5198200488752509E-003 + 112.79999999999998 2.6469467762511040E-003 + 112.85999999999999 2.7789260948693764E-003 + 112.91999999999999 2.9158469881245853E-003 + 112.97999999999999 3.0577940467787787E-003 + 113.03999999999999 3.2048469742737232E-003 + 113.09999999999999 3.3570808149968765E-003 + 113.16000000000000 3.5145645872074588E-003 + 113.22000000000000 3.6773612867366558E-003 + 113.28000000000000 3.8455275056405356E-003 + 113.34000000000000 4.0191124958253990E-003 + 113.40000000000001 4.1981585166882491E-003 + 113.46000000000001 4.3827001742010362E-003 + 113.51999999999998 4.5727624056232314E-003 + 113.57999999999998 4.7683628039242674E-003 + 113.63999999999999 4.9695084514991619E-003 + 113.69999999999999 5.1761974421492699E-003 + 113.75999999999999 5.3884170871006422E-003 + 113.81999999999999 5.6061446873459974E-003 + 113.88000000000000 5.8293457145006658E-003 + 113.94000000000000 6.0579750112020022E-003 + 114.00000000000000 6.2919745924838863E-003 + 114.06000000000000 6.5312745931271413E-003 + 114.12000000000000 6.7757925054610741E-003 + 114.18000000000001 7.0254333663907799E-003 + 114.23999999999998 7.2800874613090545E-003 + 114.29999999999998 7.5396330216044079E-003 + 114.35999999999999 7.8039331001726886E-003 + 114.41999999999999 8.0728380511537485E-003 + 114.47999999999999 8.3461818737930980E-003 + 114.53999999999999 8.6237870314177460E-003 + 114.59999999999999 8.9054581560623746E-003 + 114.66000000000000 9.1909863049960058E-003 + 114.72000000000000 9.4801483442702381E-003 + 114.78000000000000 9.7727054758378114E-003 + 114.84000000000000 1.0068404524340114E-002 + 114.90000000000001 1.0366976489152512E-002 + 114.96000000000001 1.0668138590136803E-002 + 115.01999999999998 1.0971593286292290E-002 + 115.07999999999998 1.1277028848544153E-002 + 115.13999999999999 1.1584118514130715E-002 + 115.19999999999999 1.1892522958320011E-002 + 115.25999999999999 1.2201887309291726E-002 + 115.31999999999999 1.2511844640178174E-002 + 115.38000000000000 1.2822016527806566E-002 + 115.44000000000000 1.3132009262831746E-002 + 115.50000000000000 1.3441420676742949E-002 + 115.56000000000000 1.3749835031915880E-002 + 115.62000000000000 1.4056827477480455E-002 + 115.68000000000001 1.4361962550563885E-002 + 115.73999999999998 1.4664795709124205E-002 + 115.79999999999998 1.4964874176183971E-002 + 115.85999999999999 1.5261738209091002E-002 + 115.91999999999999 1.5554919964947168E-002 + 115.97999999999999 1.5843947090697717E-002 + 116.03999999999999 1.6128341637112069E-002 + 116.09999999999999 1.6407621096303664E-002 + 116.16000000000000 1.6681302492284528E-002 + 116.22000000000000 1.6948899761481378E-002 + 116.28000000000000 1.7209923784661456E-002 + 116.34000000000000 1.7463888793815042E-002 + 116.40000000000001 1.7710309679780448E-002 + 116.46000000000001 1.7948702507650190E-002 + 116.51999999999998 1.8178589816321051E-002 + 116.57999999999998 1.8399496487358925E-002 + 116.63999999999999 1.8610957690636407E-002 + 116.69999999999999 1.8812509545889276E-002 + 116.75999999999999 1.9003702434656353E-002 + 116.81999999999999 1.9184093768798170E-002 + 116.88000000000000 1.9353252357273015E-002 + 116.94000000000000 1.9510760922275709E-002 + 117.00000000000000 1.9656213768044932E-002 + 117.06000000000000 1.9789218536770764E-002 + 117.12000000000000 1.9909400712589946E-002 + 117.18000000000001 2.0016401555404364E-002 + 117.23999999999998 2.0109880333465582E-002 + 117.29999999999998 2.0189514149291980E-002 + 117.35999999999999 2.0255003441162392E-002 + 117.41999999999999 2.0306066746816964E-002 + 117.47999999999999 2.0342445252630563E-002 + 117.53999999999999 2.0363901473246817E-002 + 117.59999999999999 2.0370222809296477E-002 + 117.66000000000000 2.0361222361411122E-002 + 117.72000000000000 2.0336736265165623E-002 + 117.78000000000000 2.0296625880466497E-002 + 117.84000000000000 2.0240777747451363E-002 + 117.90000000000001 2.0169108921889736E-002 + 117.96000000000001 2.0081562700411199E-002 + 118.01999999999998 1.9978107662998380E-002 + 118.07999999999998 1.9858742058459087E-002 + 118.13999999999999 1.9723493351786778E-002 + 118.19999999999999 1.9572414827755118E-002 + 118.25999999999999 1.9405589188174675E-002 + 118.31999999999999 1.9223127610473321E-002 + 118.38000000000000 1.9025169004341102E-002 + 118.44000000000000 1.8811881054944853E-002 + 118.50000000000000 1.8583459657011244E-002 + 118.56000000000000 1.8340125750158760E-002 + 118.62000000000000 1.8082130721009251E-002 + 118.68000000000001 1.7809752374175456E-002 + 118.73999999999998 1.7523291122668479E-002 + 118.79999999999998 1.7223077024292061E-002 + 118.85999999999999 1.6909462428072172E-002 + 118.91999999999999 1.6582821769844193E-002 + 118.97999999999999 1.6243556605828682E-002 + 119.03999999999999 1.5892091576804580E-002 + 119.09999999999999 1.5528866424264274E-002 + 119.16000000000000 1.5154346030971396E-002 + 119.22000000000000 1.4769012445234318E-002 + 119.28000000000000 1.4373367417786708E-002 + 119.34000000000000 1.3967929488035423E-002 + 119.40000000000001 1.3553231149937043E-002 + 119.46000000000001 1.3129819295162990E-002 + 119.51999999999998 1.2698255252112952E-002 + 119.57999999999998 1.2259111917619752E-002 + 119.63999999999999 1.1812970721860527E-002 + 119.69999999999999 1.1360423773408361E-002 + 119.75999999999999 1.0902070953198126E-002 + 119.81999999999999 1.0438516159613777E-002 + 119.88000000000000 9.9703699000695985E-003 + 119.94000000000000 9.4982452006376512E-003 + 120.00000000000000 9.0227577027791033E-003 + 120.06000000000000 8.5445221732473511E-003 + 120.12000000000000 8.0641536256609806E-003 + 120.18000000000001 7.5822630429403836E-003 + 120.23999999999998 7.0994596039449485E-003 + 120.29999999999998 6.6163458327437733E-003 + 120.35999999999999 6.1335190117409698E-003 + 120.41999999999999 5.6515679909091643E-003 + 120.47999999999999 5.1710726824282750E-003 + 120.53999999999999 4.6926033640359117E-003 + 120.59999999999999 4.2167177820412330E-003 + 120.66000000000000 3.7439626100469236E-003 + 120.72000000000000 3.2748699746718993E-003 + 120.78000000000000 2.8099579934597594E-003 + 120.84000000000000 2.3497288609951807E-003 + 120.90000000000001 1.8946688408406696E-003 + 120.95999999999998 1.4452465620482999E-003 + 121.01999999999998 1.0019123931866145E-003 + 121.07999999999998 5.6509771467603653E-004 + 121.13999999999999 1.3521514385507813E-004 + 121.19999999999999 -2.8734311766399987E-004 + 121.25999999999999 -7.0220549765693488E-004 + 121.31999999999999 -1.1090211245748400E-003 + 121.38000000000000 -1.5074608495039099E-003 + 121.44000000000000 -1.8972172730333530E-003 + 121.50000000000000 -2.2780049437126837E-003 + 121.56000000000000 -2.6495605892447823E-003 + 121.62000000000000 -3.0116432729799685E-003 + 121.68000000000001 -3.3640345951539917E-003 + 121.73999999999998 -3.7065381775465713E-003 + 121.79999999999998 -4.0389798064797344E-003 + 121.85999999999999 -4.3612077348024010E-003 + 121.91999999999999 -4.6730920552080415E-003 + 121.97999999999999 -4.9745252852814101E-003 + 122.03999999999999 -5.2654202058711238E-003 + 122.09999999999999 -5.5457107964841604E-003 + 122.16000000000000 -5.8153524895883518E-003 + 122.22000000000000 -6.0743199217463215E-003 + 122.28000000000000 -6.3226083674397483E-003 + 122.34000000000000 -6.5602312931353707E-003 + 122.40000000000001 -6.7872213147450022E-003 + 122.45999999999998 -7.0036283789985648E-003 + 122.51999999999998 -7.2095206741336843E-003 + 122.57999999999998 -7.4049814155300632E-003 + 122.63999999999999 -7.5901118261442200E-003 + 122.69999999999999 -7.7650259917982634E-003 + 122.75999999999999 -7.9298543347611182E-003 + 122.81999999999999 -8.0847396210398173E-003 + 122.88000000000000 -8.2298380611706898E-003 + 122.94000000000000 -8.3653169453233329E-003 + 123.00000000000000 -8.4913563237029189E-003 + 123.06000000000000 -8.6081451227971988E-003 + 123.12000000000000 -8.7158831288446370E-003 + 123.18000000000001 -8.8147787924813779E-003 + 123.23999999999998 -8.9050478299088388E-003 + 123.29999999999998 -8.9869133299215996E-003 + 123.35999999999999 -9.0606046184901912E-003 + 123.41999999999999 -9.1263578960489224E-003 + 123.47999999999999 -9.1844122648401579E-003 + 123.53999999999999 -9.2350121709887049E-003 + 123.59999999999999 -9.2784038861161225E-003 + 123.66000000000000 -9.3148373755803579E-003 + 123.72000000000000 -9.3445641855333383E-003 + 123.78000000000000 -9.3678368109448209E-003 + 123.84000000000000 -9.3849091690882940E-003 + 123.90000000000001 -9.3960325755429886E-003 + 123.95999999999998 -9.4014611604628182E-003 + 124.01999999999998 -9.4014440382881870E-003 + 124.07999999999998 -9.3962307944488888E-003 + 124.13999999999999 -9.3860675932003652E-003 + 124.19999999999999 -9.3711983821685423E-003 + 124.25999999999999 -9.3518633227633128E-003 + 124.31999999999999 -9.3282987846445425E-003 + 124.38000000000000 -9.3007369462518620E-003 + 124.44000000000000 -9.2694052378396018E-003 + 124.50000000000000 -9.2345263585662026E-003 + 124.56000000000000 -9.1963170680700486E-003 + 124.62000000000000 -9.1549882018912201E-003 + 124.68000000000001 -9.1107466702029186E-003 + 124.73999999999998 -9.0637921718925187E-003 + 124.79999999999998 -9.0143181701834111E-003 + 124.85999999999999 -8.9625111937771257E-003 + 124.91999999999999 -8.9085522964392552E-003 + 124.97999999999999 -8.8526159944700162E-003 + 125.03999999999999 -8.7948691581455733E-003 + 125.09999999999999 -8.7354710618002766E-003 + 125.16000000000000 -8.6745771867632777E-003 + 125.22000000000000 -8.6123331065030648E-003 + 125.28000000000000 -8.5488780132522511E-003 + 125.34000000000000 -8.4843462003820775E-003 + 125.40000000000001 -8.4188627093099867E-003 + 125.45999999999998 -8.3525473123264287E-003 + 125.51999999999998 -8.2855128337181640E-003 + 125.57999999999998 -8.2178649010062124E-003 + 125.63999999999999 -8.1497043076002203E-003 + 125.69999999999999 -8.0811240943925149E-003 + 125.75999999999999 -8.0122112628204130E-003 + 125.81999999999999 -7.9430481789768623E-003 + 125.88000000000000 -7.8737096998053938E-003 + 125.94000000000000 -7.8042651727133483E-003 + 126.00000000000000 -7.7347790915235654E-003 + 126.06000000000000 -7.6653109913050882E-003 + 126.12000000000000 -7.5959155297518292E-003 + 126.18000000000001 -7.5266407441039497E-003 + 126.23999999999998 -7.4575317317271527E-003 + 126.29999999999998 -7.3886279915757868E-003 + 126.35999999999999 -7.3199653960174041E-003 + 126.41999999999999 -7.2515751459752082E-003 + 126.47999999999999 -7.1834854779091826E-003 + 126.53999999999999 -7.1157209317573560E-003 + 126.59999999999999 -7.0483015204019332E-003 + 126.66000000000000 -6.9812451735761461E-003 + 126.72000000000000 -6.9145656729059672E-003 + 126.78000000000000 -6.8482749325060469E-003 + 126.84000000000000 -6.7823825517546567E-003 + 126.90000000000001 -6.7168939698973992E-003 + 126.95999999999998 -6.6518139751399353E-003 + 127.01999999999998 -6.5871445218652867E-003 + 127.07999999999998 -6.5228858219560388E-003 + 127.13999999999999 -6.4590364224137832E-003 + 127.19999999999999 -6.3955936055089067E-003 + 127.25999999999999 -6.3325524381200324E-003 + 127.31999999999999 -6.2699076471715940E-003 + 127.38000000000000 -6.2076522606685156E-003 + 127.44000000000000 -6.1457791314758854E-003 + 127.50000000000000 -6.0842791816850591E-003 + 127.56000000000000 -6.0231434628455803E-003 + 127.62000000000000 -5.9623622973773837E-003 + 127.68000000000001 -5.9019253786951253E-003 + 127.73999999999998 -5.8418221709780780E-003 + 127.79999999999998 -5.7820416430987885E-003 + 127.85999999999999 -5.7225736911215783E-003 + 127.91999999999999 -5.6634068742633719E-003 + 127.97999999999999 -5.6045304824661824E-003 + 128.03999999999999 -5.5459334757009112E-003 + 128.09999999999999 -5.4876049355698986E-003 + 128.16000000000000 -5.4295344702382916E-003 + 128.22000000000000 -5.3717121671856584E-003 + 128.28000000000000 -5.3141279764757649E-003 + 128.34000000000000 -5.2567723438586974E-003 + 128.40000000000001 -5.1996357047585035E-003 + 128.45999999999998 -5.1427096708584318E-003 + 128.51999999999998 -5.0859860132053646E-003 + 128.57999999999998 -5.0294569217695434E-003 + 128.63999999999999 -4.9731149276242281E-003 + 128.69999999999999 -4.9169534010971754E-003 + 128.75999999999999 -4.8609661835987607E-003 + 128.81999999999999 -4.8051484423069484E-003 + 128.88000000000000 -4.7494945100141116E-003 + 128.94000000000000 -4.6940006239090852E-003 + 129.00000000000000 -4.6386626281074515E-003 + 129.06000000000000 -4.5834775573536232E-003 + 129.12000000000000 -4.5284426291412935E-003 + 129.18000000000001 -4.4735564454396540E-003 + 129.23999999999998 -4.4188177383671055E-003 + 129.29999999999998 -4.3642260645847973E-003 + 129.35999999999999 -4.3097812678631843E-003 + 129.41999999999999 -4.2554834199381233E-003 + 129.47999999999999 -4.2013347048465927E-003 + 129.53999999999999 -4.1473361076582145E-003 + 129.59999999999999 -4.0934907022248000E-003 + 129.66000000000000 -4.0398007616582396E-003 + 129.72000000000000 -3.9862706724340504E-003 + 129.78000000000000 -3.9329042531033916E-003 + 129.84000000000000 -3.8797058977805849E-003 + 129.90000000000001 -3.8266808139146972E-003 + 129.95999999999998 -3.7738347190382831E-003 + 130.01999999999998 -3.7211735674919331E-003 + 130.07999999999998 -3.6687038054542746E-003 + 130.13999999999999 -3.6164326781055883E-003 + 130.19999999999999 -3.5643673956589424E-003 + 130.25999999999999 -3.5125155017094057E-003 + 130.31999999999999 -3.4608856456964905E-003 + 130.38000000000000 -3.4094862895683265E-003 + 130.44000000000000 -3.3583262923599913E-003 + 130.50000000000000 -3.3074151155694132E-003 + 130.56000000000000 -3.2567622921785399E-003 + 130.62000000000000 -3.2063777271227815E-003 + 130.68000000000001 -3.1562715814425768E-003 + 130.73999999999998 -3.1064546754681725E-003 + 130.79999999999998 -3.0569378259609355E-003 + 130.85999999999999 -3.0077318474575785E-003 + 130.91999999999999 -2.9588481161192315E-003 + 130.97999999999999 -2.9102980399682023E-003 + 131.03999999999999 -2.8620934095638208E-003 + 131.09999999999999 -2.8142459130446125E-003 + 131.16000000000000 -2.7667673527783897E-003 + 131.22000000000000 -2.7196699977118282E-003 + 131.28000000000000 -2.6729658615664833E-003 + 131.34000000000000 -2.6266671211141730E-003 + 131.40000000000001 -2.5807860502491046E-003 + 131.45999999999998 -2.5353344948823367E-003 + 131.51999999999998 -2.4903246360407569E-003 + 131.57999999999998 -2.4457684750041897E-003 + 131.63999999999999 -2.4016777894985122E-003 + 131.69999999999999 -2.3580646289202232E-003 + 131.75999999999999 -2.3149407299540578E-003 + 131.81999999999999 -2.2723176765692210E-003 + 131.88000000000000 -2.2302066958321005E-003 + 131.94000000000000 -2.1886189652886709E-003 + 132.00000000000000 -2.1475656170705116E-003 + 132.06000000000000 -2.1070573074964856E-003 + 132.12000000000000 -2.0671042736557623E-003 + 132.18000000000001 -2.0277171524060202E-003 + 132.23999999999998 -1.9889055940226197E-003 + 132.29999999999998 -1.9506792152788580E-003 + 132.35999999999999 -1.9130472938226667E-003 + 132.41999999999999 -1.8760186024031024E-003 + 132.47999999999999 -1.8396015950744979E-003 + 132.53999999999999 -1.8038044734999016E-003 + 132.59999999999999 -1.7686347456097398E-003 + 132.66000000000000 -1.7340995795322308E-003 + 132.72000000000000 -1.7002056209279978E-003 + 132.78000000000000 -1.6669593132054457E-003 + 132.84000000000000 -1.6343660393514832E-003 + 132.90000000000001 -1.6024313311170000E-003 + 132.95999999999998 -1.5711595887933773E-003 + 133.01999999999998 -1.5405550801152286E-003 + 133.07999999999998 -1.5106211769113844E-003 + 133.13999999999999 -1.4813608673309427E-003 + 133.19999999999999 -1.4527766417068858E-003 + 133.25999999999999 -1.4248702733313638E-003 + 133.31999999999999 -1.3976431589701687E-003 + 133.38000000000000 -1.3710958024085972E-003 + 133.44000000000000 -1.3452285097847634E-003 + 133.50000000000000 -1.3200406567037692E-003 + 133.56000000000000 -1.2955313090952060E-003 + 133.62000000000000 -1.2716988764900552E-003 + 133.68000000000001 -1.2485411191793842E-003 + 133.73999999999998 -1.2260553175963036E-003 + 133.79999999999998 -1.2042383947946246E-003 + 133.85999999999999 -1.1830863707535089E-003 + 133.91999999999999 -1.1625950651559652E-003 + 133.97999999999999 -1.1427595876169075E-003 + 134.03999999999999 -1.1235747057842924E-003 + 134.09999999999999 -1.1050344289112184E-003 + 134.16000000000000 -1.0871324369496492E-003 + 134.22000000000000 -1.0698620218473256E-003 + 134.28000000000000 -1.0532159149821434E-003 + 134.34000000000000 -1.0371863614706421E-003 + 134.40000000000001 -1.0217654241999313E-003 + 134.45999999999998 -1.0069444529348518E-003 + 134.51999999999998 -9.9271457769562247E-004 + 134.57999999999998 -9.7906642463779824E-004 + 134.63999999999999 -9.6599052526400754E-004 + 134.69999999999999 -9.5347672411559494E-004 + 134.75999999999999 -9.4151492009003320E-004 + 134.81999999999999 -9.3009453862292254E-004 + 134.88000000000000 -9.1920472571143882E-004 + 134.94000000000000 -9.0883445854906988E-004 + 135.00000000000000 -8.9897256491278251E-004 + 135.06000000000000 -8.8960763975649230E-004 + 135.12000000000000 -8.8072814728823760E-004 + 135.18000000000001 -8.7232249552042377E-004 + 135.23999999999998 -8.6437880956625264E-004 + 135.29999999999998 -8.5688545589630567E-004 + 135.35999999999999 -8.4983046736916636E-004 + 135.41999999999999 -8.4320212385432115E-004 + 135.47999999999999 -8.3698853906720916E-004 + 135.53999999999999 -8.3117790655335159E-004 + 135.59999999999999 -8.2575865257887495E-004 + 135.66000000000000 -8.2071904057930210E-004 + 135.72000000000000 -8.1604751065962383E-004 + 135.78000000000000 -8.1173267788662586E-004 + 135.84000000000000 -8.0776331157389513E-004 + 135.90000000000001 -8.0412830730192076E-004 + 135.95999999999998 -8.0081668824855319E-004 + 136.01999999999998 -7.9781773551784502E-004 + 136.07999999999998 -7.9512097613230288E-004 + 136.13999999999999 -7.9271603734280556E-004 + 136.19999999999999 -7.9059301720214034E-004 + 136.25999999999999 -7.8874213322567522E-004 + 136.31999999999999 -7.8715388386360510E-004 + 136.38000000000000 -7.8581914349370064E-004 + 136.44000000000000 -7.8472913164339428E-004 + 136.50000000000000 -7.8387535630498200E-004 + 136.56000000000000 -7.8324967937970470E-004 + 136.62000000000000 -7.8284449917525656E-004 + 136.68000000000001 -7.8265241256514980E-004 + 136.73999999999998 -7.8266651131312238E-004 + 136.79999999999998 -7.8288035581032414E-004 + 136.85999999999999 -7.8328780186607617E-004 + 136.91999999999999 -7.8388325019738460E-004 + 136.97999999999999 -7.8466154107701195E-004 + 137.03999999999999 -7.8561786592562077E-004 + 137.09999999999999 -7.8674800453771177E-004 + 137.16000000000000 -7.8804806830837606E-004 + 137.22000000000000 -7.8951468670257052E-004 + 137.28000000000000 -7.9114490192768805E-004 + 137.34000000000000 -7.9293620923454543E-004 + 137.40000000000001 -7.9488661566298193E-004 + 137.45999999999998 -7.9699442954755072E-004 + 137.51999999999998 -7.9925859028380140E-004 + 137.57999999999998 -8.0167833858694505E-004 + 137.63999999999999 -8.0425341084174311E-004 + 137.69999999999999 -8.0698390161587608E-004 + 137.75999999999999 -8.0987034348417065E-004 + 137.81999999999999 -8.1291370529738849E-004 + 137.88000000000000 -8.1611542452829139E-004 + 137.94000000000000 -8.1947716753683086E-004 + 138.00000000000000 -8.2300110404558732E-004 + 138.06000000000000 -8.2668963838410830E-004 + 138.12000000000000 -8.3054570037653728E-004 + 138.18000000000001 -8.3457249558390627E-004 + 138.23999999999998 -8.3877351121644376E-004 + 138.29999999999998 -8.4315261440547713E-004 + 138.35999999999999 -8.4771389690331566E-004 + 138.41999999999999 -8.5246187836967170E-004 + 138.47999999999999 -8.5740125076957181E-004 + 138.53999999999999 -8.6253689219019597E-004 + 138.59999999999999 -8.6787396826223679E-004 + 138.66000000000000 -8.7341791330353526E-004 + 138.72000000000000 -8.7917420905637630E-004 + 138.78000000000000 -8.8514863499854820E-004 + 138.84000000000000 -8.9134696079901468E-004 + 138.90000000000001 -8.9777512565588084E-004 + 138.95999999999998 -9.0443911729083302E-004 + 139.01999999999998 -9.1134484369464466E-004 + 139.07999999999998 -9.1849835428187046E-004 + 139.13999999999999 -9.2590559048465139E-004 + 139.19999999999999 -9.3357239127056307E-004 + 139.25999999999999 -9.4150453008584102E-004 + 139.31999999999999 -9.4970761465074224E-004 + 139.38000000000000 -9.5818705452895610E-004 + 139.44000000000000 -9.6694802085508082E-004 + 139.50000000000000 -9.7599558808656405E-004 + 139.56000000000000 -9.8533418942984207E-004 + 139.62000000000000 -9.9496829170315484E-004 + 139.68000000000001 -1.0049018547831530E-003 + 139.73999999999998 -1.0151385051593172E-003 + 139.79999999999998 -1.0256813878120636E-003 + 139.85999999999999 -1.0365332899126226E-003 + 139.91999999999999 -1.0476964274741759E-003 + 139.97999999999999 -1.0591724805683060E-003 + 140.03999999999999 -1.0709626927570784E-003 + 140.09999999999999 -1.0830675976421624E-003 + 140.16000000000000 -1.0954872985687138E-003 + 140.22000000000000 -1.1082209126720601E-003 + 140.28000000000000 -1.1212671432889027E-003 + 140.34000000000000 -1.1346238417948781E-003 + 140.40000000000001 -1.1482881672672763E-003 + 140.45999999999998 -1.1622565704258383E-003 + 140.51999999999998 -1.1765244805485785E-003 + 140.57999999999998 -1.1910866505456328E-003 + 140.63999999999999 -1.2059367335589583E-003 + 140.69999999999999 -1.2210676816142082E-003 + 140.75999999999999 -1.2364716084986153E-003 + 140.81999999999999 -1.2521394860436307E-003 + 140.88000000000000 -1.2680614449840661E-003 + 140.94000000000000 -1.2842265895493458E-003 + 141.00000000000000 -1.3006230969643338E-003 + 141.06000000000000 -1.3172381580315296E-003 + 141.12000000000000 -1.3340580723817694E-003 + 141.18000000000001 -1.3510678411235782E-003 + 141.23999999999998 -1.3682518974185503E-003 + 141.29999999999998 -1.3855935197304907E-003 + 141.35999999999999 -1.4030748944251275E-003 + 141.41999999999999 -1.4206772956617162E-003 + 141.47999999999999 -1.4383811369760762E-003 + 141.53999999999999 -1.4561658713761251E-003 + 141.59999999999999 -1.4740100611554750E-003 + 141.66000000000000 -1.4918912346798391E-003 + 141.72000000000000 -1.5097863676765502E-003 + 141.78000000000000 -1.5276712584944823E-003 + 141.84000000000000 -1.5455210367910830E-003 + 141.90000000000001 -1.5633099982998706E-003 + 141.95999999999998 -1.5810118879424112E-003 + 142.01999999999998 -1.5985995735258026E-003 + 142.07999999999998 -1.6160453716090799E-003 + 142.13999999999999 -1.6333210057101818E-003 + 142.19999999999999 -1.6503974780272851E-003 + 142.25999999999999 -1.6672455602098960E-003 + 142.31999999999999 -1.6838353239407610E-003 + 142.38000000000000 -1.7001366644969075E-003 + 142.44000000000000 -1.7161190083941013E-003 + 142.50000000000000 -1.7317515567793075E-003 + 142.56000000000000 -1.7470032688634918E-003 + 142.62000000000000 -1.7618430898556808E-003 + 142.68000000000001 -1.7762396596297790E-003 + 142.73999999999998 -1.7901621109701635E-003 + 142.79999999999998 -1.8035791542485879E-003 + 142.85999999999999 -1.8164599538754080E-003 + 142.91999999999999 -1.8287738110020369E-003 + 142.97999999999999 -1.8404903985367749E-003 + 143.03999999999999 -1.8515797295847402E-003 + 143.09999999999999 -1.8620123657446673E-003 + 143.16000000000000 -1.8717594632803424E-003 + 143.22000000000000 -1.8807928544097065E-003 + 143.28000000000000 -1.8890850906336735E-003 + 143.34000000000000 -1.8966095147961897E-003 + 143.40000000000001 -1.9033401916063104E-003 + 143.45999999999998 -1.9092523736333718E-003 + 143.51999999999998 -1.9143220671703849E-003 + 143.57999999999998 -1.9185267202794455E-003 + 143.63999999999999 -1.9218446788739285E-003 + 143.69999999999999 -1.9242554663554015E-003 + 143.75999999999999 -1.9257400726449740E-003 + 143.81999999999999 -1.9262808498896771E-003 + 143.88000000000000 -1.9258612707994842E-003 + 143.94000000000000 -1.9244664611634886E-003 + 144.00000000000000 -1.9220830051524607E-003 + 144.06000000000000 -1.9186991112360129E-003 + 144.12000000000000 -1.9143045877169521E-003 + 144.18000000000001 -1.9088907865863066E-003 + 144.23999999999998 -1.9024509016601846E-003 + 144.29999999999998 -1.8949797299479942E-003 + 144.35999999999999 -1.8864739529593424E-003 + 144.41999999999999 -1.8769319311309663E-003 + 144.47999999999999 -1.8663539047042261E-003 + 144.53999999999999 -1.8547420039725167E-003 + 144.59999999999999 -1.8420999830385980E-003 + 144.66000000000000 -1.8284336426462840E-003 + 144.72000000000000 -1.8137505617807470E-003 + 144.78000000000000 -1.7980601695825793E-003 + 144.84000000000000 -1.7813736515504301E-003 + 144.90000000000001 -1.7637041295129165E-003 + 144.95999999999998 -1.7450664540950877E-003 + 145.01999999999998 -1.7254770719170149E-003 + 145.07999999999998 -1.7049543914336523E-003 + 145.13999999999999 -1.6835182740437768E-003 + 145.19999999999999 -1.6611903938861081E-003 + 145.25999999999999 -1.6379939655237791E-003 + 145.31999999999999 -1.6139537590795536E-003 + 145.38000000000000 -1.5890959302052587E-003 + 145.44000000000000 -1.5634481100003140E-003 + 145.50000000000000 -1.5370394221532531E-003 + 145.56000000000000 -1.5099001631741424E-003 + 145.62000000000000 -1.4820619154323166E-003 + 145.68000000000001 -1.4535573311709280E-003 + 145.73999999999998 -1.4244201990738030E-003 + 145.79999999999998 -1.3946854774457705E-003 + 145.85999999999999 -1.3643887203246088E-003 + 145.91999999999999 -1.3335665791025528E-003 + 145.97999999999999 -1.3022562899712015E-003 + 146.03999999999999 -1.2704957647910232E-003 + 146.09999999999999 -1.2383236280799092E-003 + 146.16000000000000 -1.2057787704122392E-003 + 146.22000000000000 -1.1729005877766335E-003 + 146.28000000000000 -1.1397287939142148E-003 + 146.34000000000000 -1.1063031915636778E-003 + 146.40000000000001 -1.0726638408248695E-003 + 146.45999999999998 -1.0388506479913487E-003 + 146.51999999999998 -1.0049035648844818E-003 + 146.57999999999998 -9.7086254106068135E-004 + 146.63999999999999 -9.3676710691186133E-004 + 146.69999999999999 -9.0265645785891414E-004 + 146.75999999999999 -8.6856948035768486E-004 + 146.81999999999999 -8.3454453791576087E-004 + 146.88000000000000 -8.0061937663970827E-004 + 146.94000000000000 -7.6683115847227842E-004 + 147.00000000000000 -7.3321629499210634E-004 + 147.06000000000000 -6.9981047545726127E-004 + 147.12000000000000 -6.6664855918319816E-004 + 147.18000000000001 -6.3376425841636099E-004 + 147.23999999999998 -6.0119050985933036E-004 + 147.29999999999998 -5.6895917637132397E-004 + 147.35999999999999 -5.3710101162384903E-004 + 147.41999999999999 -5.0564557633148621E-004 + 147.47999999999999 -4.7462136287627530E-004 + 147.53999999999999 -4.4405568646060500E-004 + 147.59999999999999 -4.1397450798522024E-004 + 147.66000000000000 -3.8440263914026702E-004 + 147.72000000000000 -3.5536353923282840E-004 + 147.78000000000000 -3.2687946207588534E-004 + 147.84000000000000 -2.9897125538837156E-004 + 147.90000000000001 -2.7165848568396855E-004 + 147.95999999999998 -2.4495941845629522E-004 + 148.01999999999998 -2.1889101350142304E-004 + 148.07999999999998 -1.9346886753605203E-004 + 148.13999999999999 -1.6870727275952594E-004 + 148.19999999999999 -1.4461923348301560E-004 + 148.25999999999999 -1.2121645021607349E-004 + 148.31999999999999 -9.8509331630771687E-005 + 148.38000000000000 -7.6507038469395222E-005 + 148.44000000000000 -5.5217560066389259E-005 + 148.50000000000000 -3.4647629716334208E-005 + 148.56000000000000 -1.4802852984396899E-005 + 148.62000000000000 4.3122976264744798E-006 + 148.68000000000001 2.2694448657116433E-005 + 148.73999999999998 4.0341233521000279E-005 + 148.79999999999998 5.7251281517476307E-005 + 148.85999999999999 7.3424184987070089E-005 + 148.91999999999999 8.8860425847121658E-005 + 148.97999999999999 1.0356131911427960E-004 + 149.03999999999999 1.1752899395246348E-004 + 149.09999999999999 1.3076630368705829E-004 + 149.16000000000000 1.4327682443284043E-004 + 149.22000000000000 1.5506477702533411E-004 + 149.28000000000000 1.6613497127064658E-004 + 149.34000000000000 1.7649278478119867E-004 + 149.40000000000001 1.8614405124287809E-004 + 149.45999999999998 1.9509509729488303E-004 + 149.51999999999998 2.0335264320592948E-004 + 149.57999999999998 2.1092375312194812E-004 + 149.63999999999999 2.1781576124591876E-004 + 149.69999999999999 2.2403628034850872E-004 + 149.75999999999999 2.2959309620351276E-004 + 149.81999999999999 2.3449418079415167E-004 + 149.88000000000000 2.3874755614820527E-004 + 149.94000000000000 2.4236133032200520E-004 + 150.00000000000000 2.4534358301671420E-004 + 150.06000000000000 2.4770238280491682E-004 + 150.12000000000000 2.4944576086770944E-004 + 150.18000000000001 2.5058159801987569E-004 + 150.23999999999998 2.5111765387152537E-004 + 150.29999999999998 2.5106152947952355E-004 + 150.35999999999999 2.5042063177946680E-004 + 150.41999999999999 2.4920215324280047E-004 + 150.47999999999999 2.4741308693732532E-004 + 150.53999999999999 2.4506016790825199E-004 + 150.59999999999999 2.4214985911360858E-004 + 150.66000000000000 2.3868837975028068E-004 + 150.72000000000000 2.3468165345156845E-004 + 150.78000000000000 2.3013533273402259E-004 + 150.84000000000000 2.2505476136787454E-004 + 150.90000000000001 2.1944497300281011E-004 + 150.95999999999998 2.1331072541721507E-004 + 151.01999999999998 2.0665643762286578E-004 + 151.07999999999998 1.9948624422108034E-004 + 151.13999999999999 1.9180400687352899E-004 + 151.19999999999999 1.8361323466612779E-004 + 151.25999999999999 1.7491721096720640E-004 + 151.31999999999999 1.6571890441434124E-004 + 151.38000000000000 1.5602106635438339E-004 + 151.44000000000000 1.4582622651949120E-004 + 151.50000000000000 1.3513669934259412E-004 + 151.56000000000000 1.2395460945989619E-004 + 151.62000000000000 1.1228197614856673E-004 + 151.68000000000001 1.0012064163152716E-004 + 151.73999999999998 8.7472399681539877E-005 + 151.79999999999998 7.4338990654255913E-005 + 151.85999999999999 6.0722110525456442E-005 + 151.91999999999999 4.6623497220164487E-005 + 151.97999999999999 3.2044919931114690E-005 + 152.03999999999999 1.6988240234698231E-005 + 152.09999999999999 1.4554155049252310E-006 + 152.16000000000000 -1.4551426637478916E-005 + 152.22000000000000 -3.1030000235247415E-005 + 152.28000000000000 -4.7977768208601581E-005 + 152.34000000000000 -6.5391955621348679E-005 + 152.40000000000001 -8.3269462577869501E-005 + 152.45999999999998 -1.0160687515648836E-004 + 152.51999999999998 -1.2040038768510700E-004 + 152.57999999999998 -1.3964577401878278E-004 + 152.63999999999999 -1.5933833244831733E-004 + 152.69999999999999 -1.7947286908709826E-004 + 152.75999999999999 -2.0004357459489820E-004 + 152.81999999999999 -2.2104413001274460E-004 + 152.88000000000000 -2.4246754768951888E-004 + 152.94000000000000 -2.6430613471266118E-004 + 153.00000000000000 -2.8655152497330432E-004 + 153.06000000000000 -3.0919460069585546E-004 + 153.12000000000000 -3.3222545901694003E-004 + 153.17999999999998 -3.5563336287577430E-004 + 153.23999999999998 -3.7940680742093279E-004 + 153.29999999999998 -4.0353340343855727E-004 + 153.35999999999999 -4.2799979418252810E-004 + 153.41999999999999 -4.5279188587703982E-004 + 153.47999999999999 -4.7789457991934765E-004 + 153.53999999999999 -5.0329186670274170E-004 + 153.59999999999999 -5.2896675705684740E-004 + 153.66000000000000 -5.5490124097137470E-004 + 153.72000000000000 -5.8107648978794374E-004 + 153.78000000000000 -6.0747247738428592E-004 + 153.84000000000000 -6.3406835313253103E-004 + 153.90000000000001 -6.6084217044855243E-004 + 153.95999999999998 -6.8777097454702130E-004 + 154.01999999999998 -7.1483081745157937E-004 + 154.07999999999998 -7.4199672623903622E-004 + 154.13999999999999 -7.6924275694172312E-004 + 154.19999999999999 -7.9654199237480668E-004 + 154.25999999999999 -8.2386652904202300E-004 + 154.31999999999999 -8.5118754410277954E-004 + 154.38000000000000 -8.7847532750403353E-004 + 154.44000000000000 -9.0569932372049978E-004 + 154.50000000000000 -9.3282799373878614E-004 + 154.56000000000000 -9.5982924763743978E-004 + 154.62000000000000 -9.8667011567559111E-004 + 154.67999999999998 -1.0133168661963915E-003 + 154.73999999999998 -1.0397353267666970E-003 + 154.79999999999998 -1.0658906584000961E-003 + 154.85999999999999 -1.0917474273439949E-003 + 154.91999999999999 -1.1172697261091311E-003 + 154.97999999999999 -1.1424213554496456E-003 + 155.03999999999999 -1.1671655981807913E-003 + 155.09999999999999 -1.1914655444818056E-003 + 155.16000000000000 -1.2152840255905293E-003 + 155.22000000000000 -1.2385837736954858E-003 + 155.28000000000000 -1.2613274597945228E-003 + 155.34000000000000 -1.2834776987673967E-003 + 155.40000000000001 -1.3049972338135879E-003 + 155.45999999999998 -1.3258490172660202E-003 + 155.51999999999998 -1.3459962696746959E-003 + 155.57999999999998 -1.3654025183506315E-003 + 155.63999999999999 -1.3840317808757525E-003 + 155.69999999999999 -1.4018484656237906E-003 + 155.75999999999999 -1.4188179627246432E-003 + 155.81999999999999 -1.4349059000323193E-003 + 155.88000000000000 -1.4500789765243460E-003 + 155.94000000000000 -1.4643048334452987E-003 + 156.00000000000000 -1.4775518234843381E-003 + 156.06000000000000 -1.4897896842367962E-003 + 156.12000000000000 -1.5009891672142250E-003 + 156.17999999999998 -1.5111222239003366E-003 + 156.23999999999998 -1.5201621188478591E-003 + 156.29999999999998 -1.5280834195397735E-003 + 156.35999999999999 -1.5348623235891068E-003 + 156.41999999999999 -1.5404766224399466E-003 + 156.47999999999999 -1.5449055543777150E-003 + 156.53999999999999 -1.5481301263142034E-003 + 156.59999999999999 -1.5501331252297413E-003 + 156.66000000000000 -1.5508991506664577E-003 + 156.72000000000000 -1.5504147884642175E-003 + 156.78000000000000 -1.5486685350618642E-003 + 156.84000000000000 -1.5456508475978558E-003 + 156.90000000000001 -1.5413543930326390E-003 + 156.95999999999998 -1.5357738118630968E-003 + 157.01999999999998 -1.5289059342093831E-003 + 157.07999999999998 -1.5207496701081312E-003 + 157.13999999999999 -1.5113061006189427E-003 + 157.19999999999999 -1.5005786222239224E-003 + 157.25999999999999 -1.4885728213865368E-003 + 157.31999999999999 -1.4752962078322276E-003 + 157.38000000000000 -1.4607588462922270E-003 + 157.44000000000000 -1.4449727645867389E-003 + 157.50000000000000 -1.4279521250239796E-003 + 157.56000000000000 -1.4097134074854746E-003 + 157.62000000000000 -1.3902749686442268E-003 + 157.67999999999998 -1.3696575419665025E-003 + 157.73999999999998 -1.3478837981846764E-003 + 157.79999999999998 -1.3249785728818347E-003 + 157.85999999999999 -1.3009683634927882E-003 + 157.91999999999999 -1.2758820421562636E-003 + 157.97999999999999 -1.2497501166402578E-003 + 158.03999999999999 -1.2226050655838397E-003 + 158.09999999999999 -1.1944810391998771E-003 + 158.16000000000000 -1.1654141149272581E-003 + 158.22000000000000 -1.1354418870843472E-003 + 158.28000000000000 -1.1046034923320478E-003 + 158.34000000000000 -1.0729395980339142E-003 + 158.40000000000001 -1.0404922797765193E-003 + 158.45999999999998 -1.0073047550620718E-003 + 158.51999999999998 -9.7342157993643408E-004 + 158.57999999999998 -9.3888840882737400E-004 + 158.63999999999999 -9.0375167633707960E-004 + 158.69999999999999 -8.6805874605143081E-004 + 158.75999999999999 -8.3185788855016734E-004 + 158.81999999999999 -7.9519787076495763E-004 + 158.88000000000000 -7.5812808063816439E-004 + 158.94000000000000 -7.2069831196595576E-004 + 159.00000000000000 -6.8295879307625094E-004 + 159.06000000000000 -6.4495983291710537E-004 + 159.12000000000000 -6.0675200310108689E-004 + 159.17999999999998 -5.6838589314067429E-004 + 159.23999999999998 -5.2991195037827639E-004 + 159.29999999999998 -4.9138053982896162E-004 + 159.35999999999999 -4.5284176385549876E-004 + 159.41999999999999 -4.1434531224170698E-004 + 159.47999999999999 -3.7594048398538607E-004 + 159.53999999999999 -3.3767594471398831E-004 + 159.59999999999999 -2.9959978830681832E-004 + 159.66000000000000 -2.6175932795310947E-004 + 159.72000000000000 -2.2420105068972514E-004 + 159.78000000000000 -1.8697052055718119E-004 + 159.84000000000000 -1.5011231075677897E-004 + 159.90000000000001 -1.1366990709148173E-004 + 159.95999999999998 -7.7685683587164981E-005 + 160.01999999999998 -4.2200742802846354E-005 + 160.07999999999998 -7.2549543007938730E-006 + 160.13999999999999 2.7113172789036737E-005 + 160.19999999999999 6.0866494569635811E-005 + 160.25999999999999 9.3969368945083585E-005 + 160.31999999999999 1.2638754354508339E-004 + 160.38000000000000 1.5808832984308695E-004 + 160.44000000000000 1.8904059451400063E-004 + 160.50000000000000 2.1921478349005719E-004 + 160.56000000000000 2.4858295463167613E-004 + 160.62000000000000 2.7711877014874553E-004 + 160.67999999999998 3.0479756652277367E-004 + 160.73999999999998 3.3159633321694289E-004 + 160.79999999999998 3.5749370882113770E-004 + 160.85999999999999 3.8247001066269635E-004 + 160.91999999999999 4.0650715861721026E-004 + 160.97999999999999 4.2958881103004722E-004 + 161.03999999999999 4.5170016560154845E-004 + 161.09999999999999 4.7282807668584865E-004 + 161.16000000000000 4.9296091300089209E-004 + 161.22000000000000 5.1208869703781230E-004 + 161.28000000000000 5.3020285319552423E-004 + 161.34000000000000 5.4729631132484217E-004 + 161.40000000000001 5.6336348088448229E-004 + 161.45999999999998 5.7840017590784186E-004 + 161.51999999999998 5.9240353127948300E-004 + 161.57999999999998 6.0537197089800213E-004 + 161.63999999999999 6.1730526173797381E-004 + 161.69999999999999 6.2820438365064157E-004 + 161.75999999999999 6.3807162345234979E-004 + 161.81999999999999 6.4691025377824700E-004 + 161.88000000000000 6.5472481206883468E-004 + 161.94000000000000 6.6152080002182339E-004 + 162.00000000000000 6.6730478365398032E-004 + 162.06000000000000 6.7208434225921856E-004 + 162.12000000000000 6.7586796426453532E-004 + 162.17999999999998 6.7866493326094990E-004 + 162.23999999999998 6.8048543453770116E-004 + 162.29999999999998 6.8134035907622059E-004 + 162.35999999999999 6.8124126790946346E-004 + 162.41999999999999 6.8020036435067729E-004 + 162.47999999999999 6.7823044589018625E-004 + 162.53999999999999 6.7534473138879483E-004 + 162.59999999999999 6.7155706450868261E-004 + 162.66000000000000 6.6688147861903137E-004 + 162.72000000000000 6.6133245373042361E-004 + 162.78000000000000 6.5492472912112717E-004 + 162.84000000000000 6.4767334436747234E-004 + 162.90000000000001 6.3959354832108563E-004 + 162.95999999999998 6.3070073326416910E-004 + 163.01999999999998 6.2101043015870268E-004 + 163.07999999999998 6.1053834658414711E-004 + 163.13999999999999 5.9930022852709621E-004 + 163.19999999999999 5.8731192108577393E-004 + 163.25999999999999 5.7458933606417185E-004 + 163.31999999999999 5.6114831176510009E-004 + 163.38000000000000 5.4700481734293598E-004 + 163.44000000000000 5.3217472577491418E-004 + 163.50000000000000 5.1667381229359962E-004 + 163.56000000000000 5.0051789682460635E-004 + 163.62000000000000 4.8372257711113499E-004 + 163.67999999999998 4.6630350797563470E-004 + 163.73999999999998 4.4827610996183857E-004 + 163.79999999999998 4.2965571467970878E-004 + 163.85999999999999 4.1045752866021075E-004 + 163.91999999999999 3.9069661397010599E-004 + 163.97999999999999 3.7038787254451458E-004 + 164.03999999999999 3.4954607288763978E-004 + 164.09999999999999 3.2818588804947070E-004 + 164.16000000000000 3.0632184598914226E-004 + 164.22000000000000 2.8396832059186447E-004 + 164.28000000000000 2.6113961683029297E-004 + 164.34000000000000 2.3784993189203415E-004 + 164.40000000000001 2.1411338114395414E-004 + 164.45999999999998 1.8994402966072569E-004 + 164.51999999999998 1.6535589894366045E-004 + 164.57999999999998 1.4036294168181987E-004 + 164.63999999999999 1.1497909212383975E-004 + 164.69999999999999 8.9218292087445158E-005 + 164.75999999999999 6.3094482764613539E-005 + 164.81999999999999 3.6621633583003784E-005 + 164.88000000000000 9.8137757922431453E-006 + 164.94000000000000 -1.7315009894969988E-005 + 165.00000000000000 -4.4750560642705577E-005 + 165.06000000000000 -7.2478608898246852E-005 + 165.12000000000000 -1.0048472923194867E-004 + 165.17999999999998 -1.2875433921530788E-004 + 165.23999999999998 -1.5727270141326340E-004 + 165.29999999999998 -1.8602483649456179E-004 + 165.35999999999999 -2.1499559435702347E-004 + 165.41999999999999 -2.4416951342478589E-004 + 165.47999999999999 -2.7353088780164618E-004 + 165.53999999999999 -3.0306375193689037E-004 + 165.59999999999999 -3.3275179947894051E-004 + 165.66000000000000 -3.6257846828462918E-004 + 165.72000000000000 -3.9252690619316887E-004 + 165.78000000000000 -4.2257983167907432E-004 + 165.84000000000000 -4.5271980030195673E-004 + 165.90000000000001 -4.8292891327813843E-004 + 165.95999999999998 -5.1318900932867482E-004 + 166.01999999999998 -5.4348153622211766E-004 + 166.07999999999998 -5.7378772344563226E-004 + 166.13999999999999 -6.0408834102921476E-004 + 166.19999999999999 -6.3436389735321732E-004 + 166.25999999999999 -6.6459459009182134E-004 + 166.31999999999999 -6.9476019847879622E-004 + 166.38000000000000 -7.2484013673351842E-004 + 166.44000000000000 -7.5481354734942068E-004 + 166.50000000000000 -7.8465915904478618E-004 + 166.56000000000000 -8.1435538630185943E-004 + 166.62000000000000 -8.4388028646629966E-004 + 166.67999999999998 -8.7321149461434301E-004 + 166.73999999999998 -9.0232641240007390E-004 + 166.79999999999998 -9.3120214571782139E-004 + 166.85999999999999 -9.5981541835653381E-004 + 166.91999999999999 -9.8814267801669358E-004 + 166.97999999999999 -1.0161602618867494E-003 + 167.03999999999999 -1.0438441467918314E-003 + 167.09999999999999 -1.0711701401347070E-003 + 167.16000000000000 -1.0981139088970103E-003 + 167.22000000000000 -1.1246509972799243E-003 + 167.28000000000000 -1.1507569072785170E-003 + 167.34000000000000 -1.1764069217100790E-003 + 167.40000000000001 -1.2015763622915190E-003 + 167.45999999999998 -1.2262406413884343E-003 + 167.51999999999998 -1.2503750717837972E-003 + 167.57999999999998 -1.2739549299408471E-003 + 167.63999999999999 -1.2969557173009071E-003 + 167.69999999999999 -1.3193528720054730E-003 + 167.75999999999999 -1.3411221655234584E-003 + 167.81999999999999 -1.3622394679886009E-003 + 167.88000000000000 -1.3826807101158130E-003 + 167.94000000000000 -1.4024221934747525E-003 + 168.00000000000000 -1.4214403890110340E-003 + 168.06000000000000 -1.4397121340891635E-003 + 168.12000000000000 -1.4572144952315913E-003 + 168.17999999999998 -1.4739249981516448E-003 + 168.23999999999998 -1.4898213612357183E-003 + 168.29999999999998 -1.5048819586088431E-003 + 168.35999999999999 -1.5190855114535300E-003 + 168.41999999999999 -1.5324114400120316E-003 + 168.47999999999999 -1.5448394771145227E-003 + 168.53999999999999 -1.5563501241499067E-003 + 168.59999999999999 -1.5669241688973129E-003 + 168.66000000000000 -1.5765435027379081E-003 + 168.72000000000000 -1.5851902901680369E-003 + 168.78000000000000 -1.5928476527209544E-003 + 168.84000000000000 -1.5994992956421554E-003 + 168.90000000000001 -1.6051295577035741E-003 + 168.95999999999998 -1.6097239296432638E-003 + 169.01999999999998 -1.6132683623090250E-003 + 169.07999999999998 -1.6157498302755847E-003 + 169.13999999999999 -1.6171560473569051E-003 + 169.19999999999999 -1.6174757491120417E-003 + 169.25999999999999 -1.6166986082091581E-003 + 169.31999999999999 -1.6148150825309948E-003 + 169.38000000000000 -1.6118168303962100E-003 + 169.44000000000000 -1.6076961634458212E-003 + 169.50000000000000 -1.6024468460211221E-003 + 169.56000000000000 -1.5960633605148435E-003 + 169.62000000000000 -1.5885411768880244E-003 + 169.67999999999998 -1.5798770581999116E-003 + 169.73999999999998 -1.5700686878379337E-003 + 169.79999999999998 -1.5591147950871464E-003 + 169.85999999999999 -1.5470152379749107E-003 + 169.91999999999999 -1.5337709591713604E-003 + 169.97999999999999 -1.5193838776658920E-003 + 170.03999999999999 -1.5038570944863954E-003 + 170.09999999999999 -1.4871949125969698E-003 + 170.16000000000000 -1.4694025550147304E-003 + 170.22000000000000 -1.4504864750111875E-003 + 170.28000000000000 -1.4304540579376053E-003 + 170.34000000000000 -1.4093140207430542E-003 + 170.40000000000001 -1.3870762671953946E-003 + 170.45999999999998 -1.3637517486335456E-003 + 170.51999999999998 -1.3393525525901041E-003 + 170.57999999999998 -1.3138918671382806E-003 + 170.63999999999999 -1.2873840672901443E-003 + 170.69999999999999 -1.2598445763037612E-003 + 170.75999999999999 -1.2312901855850312E-003 + 170.81999999999999 -1.2017385647717601E-003 + 170.88000000000000 -1.1712085772899411E-003 + 170.94000000000000 -1.1397201721092005E-003 + 171.00000000000000 -1.1072944358533983E-003 + 171.06000000000000 -1.0739532302434889E-003 + 171.12000000000000 -1.0397197287667110E-003 + 171.17999999999998 -1.0046178666320187E-003 + 171.23999999999998 -9.6867261210591702E-004 + 171.29999999999998 -9.3190986511300236E-004 + 171.35999999999999 -8.9435643062147426E-004 + 171.41999999999999 -8.5603997463300468E-004 + 171.47999999999999 -8.1698901524137604E-004 + 171.53999999999999 -7.7723283833531760E-004 + 171.59999999999999 -7.3680177572988921E-004 + 171.66000000000000 -6.9572663393311588E-004 + 171.72000000000000 -6.5403907557070760E-004 + 171.78000000000000 -6.1177153633904554E-004 + 171.84000000000000 -5.6895701396865971E-004 + 171.90000000000001 -5.2562921621150606E-004 + 171.95999999999998 -4.8182242942995142E-004 + 172.01999999999998 -4.3757152198515946E-004 + 172.07999999999998 -3.9291184875702383E-004 + 172.13999999999999 -3.4787922541540530E-004 + 172.19999999999999 -3.0250983908310791E-004 + 172.25999999999999 -2.5684026685649620E-004 + 172.31999999999999 -2.1090740331067786E-004 + 172.38000000000000 -1.6474835065470172E-004 + 172.44000000000000 -1.1840041305757301E-004 + 172.50000000000000 -7.1901053132443732E-005 + 172.56000000000000 -2.5287838633026037E-005 + 172.62000000000000 2.1401649860798984E-005 + 172.67999999999998 6.8129865683132218E-005 + 172.73999999999998 1.1485924280197685E-004 + 172.79999999999998 1.6155239709762835E-004 + 172.85999999999999 2.0817211207302161E-004 + 172.91999999999999 2.5468127035526247E-004 + 172.97999999999999 3.0104314316574551E-004 + 173.03999999999999 3.4722117760477051E-004 + 173.09999999999999 3.9317931038137686E-004 + 173.16000000000000 4.3888178634456424E-004 + 173.22000000000000 4.8429333188985913E-004 + 173.28000000000000 5.2937917181845287E-004 + 173.34000000000000 5.7410518300041093E-004 + 173.40000000000001 6.1843771529907681E-004 + 173.45999999999998 6.6234390133392961E-004 + 173.51999999999998 7.0579146872649630E-004 + 173.57999999999998 7.4874896673087464E-004 + 173.63999999999999 7.9118573262775514E-004 + 173.69999999999999 8.3307182604373830E-004 + 173.75999999999999 8.7437822654094061E-004 + 173.81999999999999 9.1507690556567379E-004 + 173.88000000000000 9.5514057410047066E-004 + 173.94000000000000 9.9454304681960534E-004 + 174.00000000000000 1.0332590337442072E-003 + 174.06000000000000 1.0712643897626678E-003 + 174.12000000000000 1.1085357919688552E-003 + 174.17999999999998 1.1450510078135968E-003 + 174.23999999999998 1.1807890600655136E-003 + 174.29999999999998 1.2157299290703749E-003 + 174.35999999999999 1.2498547865410340E-003 + 174.41999999999999 1.2831455863963768E-003 + 174.47999999999999 1.3155858602067879E-003 + 174.53999999999999 1.3471599300160177E-003 + 174.59999999999999 1.3778535245885740E-003 + 174.66000000000000 1.4076532519004304E-003 + 174.72000000000000 1.4365469808813999E-003 + 174.78000000000000 1.4645237488274136E-003 + 174.84000000000000 1.4915736412372132E-003 + 174.90000000000001 1.5176878236973009E-003 + 174.95999999999998 1.5428586247426535E-003 + 175.01999999999998 1.5670794239220497E-003 + 175.07999999999998 1.5903447362776986E-003 + 175.13999999999999 1.6126499429368316E-003 + 175.19999999999999 1.6339915629072842E-003 + 175.25999999999999 1.6543669220428232E-003 + 175.31999999999999 1.6737745203141430E-003 + 175.38000000000000 1.6922137089468363E-003 + 175.44000000000000 1.7096848098108904E-003 + 175.50000000000000 1.7261891557273331E-003 + 175.56000000000000 1.7417286514807390E-003 + 175.62000000000000 1.7563062510311241E-003 + 175.67999999999998 1.7699257224806674E-003 + 175.73999999999998 1.7825914659325409E-003 + 175.79999999999998 1.7943088440097602E-003 + 175.85999999999999 1.8050836820892556E-003 + 175.91999999999999 1.8149227778080088E-003 + 175.97999999999999 1.8238332796180097E-003 + 176.03999999999999 1.8318231873282673E-003 + 176.09999999999999 1.8389008609744479E-003 + 176.16000000000000 1.8450751457260222E-003 + 176.22000000000000 1.8503556717122565E-003 + 176.28000000000000 1.8547523669266471E-003 + 176.34000000000000 1.8582755953619127E-003 + 176.40000000000001 1.8609360293979436E-003 + 176.45999999999998 1.8627448436259568E-003 + 176.51999999999998 1.8637134813393450E-003 + 176.57999999999998 1.8638536545325002E-003 + 176.63999999999999 1.8631776637761739E-003 + 176.69999999999999 1.8616977031259291E-003 + 176.75999999999999 1.8594265721951562E-003 + 176.81999999999999 1.8563771726945086E-003 + 176.88000000000000 1.8525624511105960E-003 + 176.94000000000000 1.8479959485591013E-003 + 177.00000000000000 1.8426911905119645E-003 + 177.06000000000000 1.8366617675123578E-003 + 177.12000000000000 1.8299216114266812E-003 + 177.17999999999998 1.8224847281278545E-003 + 177.23999999999998 1.8143651541439121E-003 + 177.29999999999998 1.8055774056483307E-003 + 177.35999999999999 1.7961357275276760E-003 + 177.41999999999999 1.7860547055414682E-003 + 177.47999999999999 1.7753487896581309E-003 + 177.53999999999999 1.7640326025839686E-003 + 177.59999999999999 1.7521207993920315E-003 + 177.66000000000000 1.7396281138384708E-003 + 177.72000000000000 1.7265693393651617E-003 + 177.78000000000000 1.7129592365926372E-003 + 177.84000000000000 1.6988127638267491E-003 + 177.90000000000001 1.6841449009056719E-003 + 177.95999999999998 1.6689706024858519E-003 + 178.01999999999998 1.6533049787707194E-003 + 178.07999999999998 1.6371633428742100E-003 + 178.13999999999999 1.6205608573811054E-003 + 178.19999999999999 1.6035130082352441E-003 + 178.25999999999999 1.5860352843335406E-003 + 178.31999999999999 1.5681431011732609E-003 + 178.38000000000000 1.5498523111550882E-003 + 178.44000000000000 1.5311784841338472E-003 + 178.50000000000000 1.5121376698563440E-003 + 178.56000000000000 1.4927456374052167E-003 + 178.62000000000000 1.4730184905268320E-003 + 178.67999999999998 1.4529721656725714E-003 + 178.73999999999998 1.4326229214372966E-003 + 178.79999999999998 1.4119870201208364E-003 + 178.85999999999999 1.3910806997353496E-003 + 178.91999999999999 1.3699203752000923E-003 + 178.97999999999999 1.3485224162974384E-003 + 179.03999999999999 1.3269032685503048E-003 + 179.09999999999999 1.3050795098109983E-003 + 179.16000000000000 1.2830677658300386E-003 + 179.22000000000000 1.2608845074642458E-003 + 179.28000000000000 1.2385466105292629E-003 + 179.34000000000000 1.2160706318567807E-003 + 179.40000000000001 1.1934733964643366E-003 + 179.45999999999998 1.1707716189590513E-003 + 179.51999999999998 1.1479820969685650E-003 + 179.57999999999998 1.1251215869985409E-003 + 179.63999999999999 1.1022067267774909E-003 + 179.69999999999999 1.0792543426923200E-003 + 179.75999999999999 1.0562810816244703E-003 + 179.81999999999999 1.0333034780559333E-003 + 179.88000000000000 1.0103381542471564E-003 + 179.94000000000000 9.8740151692903121E-004 + 180.00000000000000 9.6450978927433914E-004 + 180.06000000000000 9.4167909225092127E-004 + 180.12000000000000 9.1892550031029809E-004 + 180.17999999999998 8.9626482221626482E-004 + 180.23999999999998 8.7371260894829003E-004 + 180.29999999999998 8.5128436897812876E-004 + 180.35999999999999 8.2899519639913872E-004 + 180.41999999999999 8.0686008435655349E-004 + 180.47999999999999 7.8489358690394010E-004 + 180.53999999999999 7.6311013402171073E-004 + 180.59999999999999 7.4152375035281049E-004 + 180.66000000000000 7.2014813950175649E-004 + 180.72000000000000 6.9899670578335679E-004 + 180.78000000000000 6.7808247511005762E-004 + 180.84000000000000 6.5741814335710147E-004 + 180.90000000000001 6.3701598977934225E-004 + 180.95999999999998 6.1688782759786046E-004 + 181.01999999999998 5.9704521802270291E-004 + 181.07999999999998 5.7749921828606336E-004 + 181.13999999999999 5.5826046555453675E-004 + 181.19999999999999 5.3933921123740063E-004 + 181.25999999999999 5.2074518998533148E-004 + 181.31999999999999 5.0248780129781350E-004 + 181.38000000000000 4.8457592450872392E-004 + 181.44000000000000 4.6701799652013943E-004 + 181.50000000000000 4.4982198322962021E-004 + 181.56000000000000 4.3299541970375096E-004 + 181.62000000000000 4.1654527964460569E-004 + 181.67999999999998 4.0047815988354023E-004 + 181.73999999999998 3.8480011151158439E-004 + 181.79999999999998 3.6951677029347437E-004 + 181.85999999999999 3.5463319496715389E-004 + 181.91999999999999 3.4015398990630530E-004 + 181.97999999999999 3.2608331476460751E-004 + 182.03999999999999 3.1242473854902565E-004 + 182.09999999999999 2.9918148127208000E-004 + 182.16000000000000 2.8635620743938596E-004 + 182.22000000000000 2.7395115151840587E-004 + 182.28000000000000 2.6196812813901053E-004 + 182.34000000000000 2.5040843511540582E-004 + 182.39999999999998 2.3927303334161194E-004 + 182.45999999999998 2.2856244671769547E-004 + 182.51999999999998 2.1827681212379903E-004 + 182.57999999999998 2.0841589702874310E-004 + 182.63999999999999 1.9897907385257193E-004 + 182.69999999999999 1.8996539648943073E-004 + 182.75999999999999 1.8137358081713999E-004 + 182.81999999999999 1.7320200726866626E-004 + 182.88000000000000 1.6544876441998836E-004 + 182.94000000000000 1.5811163650606197E-004 + 183.00000000000000 1.5118809912717269E-004 + 183.06000000000000 1.4467537561257414E-004 + 183.12000000000000 1.3857040151957719E-004 + 183.17999999999998 1.3286986799914110E-004 + 183.23999999999998 1.2757021653130230E-004 + 183.29999999999998 1.2266767312684679E-004 + 183.35999999999999 1.1815823429892400E-004 + 183.41999999999999 1.1403773745179480E-004 + 183.47999999999999 1.1030179769025921E-004 + 183.53999999999999 1.0694591280593877E-004 + 183.59999999999999 1.0396542255617107E-004 + 183.66000000000000 1.0135556162817080E-004 + 183.72000000000000 9.9111461504187710E-005 + 183.78000000000000 9.7228165672890051E-005 + 183.84000000000000 9.5700647757446011E-005 + 183.89999999999998 9.4523845603612755E-005 + 183.95999999999998 9.3692654092139403E-005 + 184.01999999999998 9.3201938298922220E-005 + 184.07999999999998 9.3046544004757057E-005 + 184.13999999999999 9.3221301340253742E-005 + 184.19999999999999 9.3721038287613971E-005 + 184.25999999999999 9.4540565650634066E-005 + 184.31999999999999 9.5674703849429497E-005 + 184.38000000000000 9.7118269835437808E-005 + 184.44000000000000 9.8866058745535493E-005 + 184.50000000000000 1.0091288489718322E-004 + 184.56000000000000 1.0325353460055815E-004 + 184.62000000000000 1.0588281811091208E-004 + 184.67999999999998 1.0879552890048159E-004 + 184.73999999999998 1.1198645707983734E-004 + 184.79999999999998 1.1545038398351939E-004 + 184.85999999999999 1.1918210564253389E-004 + 184.91999999999999 1.2317641019401676E-004 + 184.97999999999999 1.2742810593181769E-004 + 185.03999999999999 1.3193198780939538E-004 + 185.09999999999999 1.3668284772345144E-004 + 185.16000000000000 1.4167550237184620E-004 + 185.22000000000000 1.4690473316084348E-004 + 185.28000000000000 1.5236535102057644E-004 + 185.34000000000000 1.5805212510475983E-004 + 185.39999999999998 1.6395983918194557E-004 + 185.45999999999998 1.7008321521632801E-004 + 185.51999999999998 1.7641695912840326E-004 + 185.57999999999998 1.8295568965604896E-004 + 185.63999999999999 1.8969401167878290E-004 + 185.69999999999999 1.9662643296913869E-004 + 185.75999999999999 2.0374736709823175E-004 + 185.81999999999999 2.1105114342846111E-004 + 185.88000000000000 2.1853194204197635E-004 + 185.94000000000000 2.2618384061313533E-004 + 186.00000000000000 2.3400074051349934E-004 + 186.06000000000000 2.4197641671949976E-004 + 186.12000000000000 2.5010445787450894E-004 + 186.17999999999998 2.5837823645214749E-004 + 186.23999999999998 2.6679101083195469E-004 + 186.29999999999998 2.7533577409220037E-004 + 186.35999999999999 2.8400531826347470E-004 + 186.41999999999999 2.9279224091640911E-004 + 186.47999999999999 3.0168889723232873E-004 + 186.53999999999999 3.1068740573696153E-004 + 186.59999999999999 3.1977968624148412E-004 + 186.66000000000000 3.2895738754985804E-004 + 186.72000000000000 3.3821194970942882E-004 + 186.78000000000000 3.4753454290160582E-004 + 186.84000000000000 3.5691614698993328E-004 + 186.89999999999998 3.6634742361097686E-004 + 186.95999999999998 3.7581884638443670E-004 + 187.01999999999998 3.8532062504305147E-004 + 187.07999999999998 3.9484271065090364E-004 + 187.13999999999999 4.0437484739605484E-004 + 187.19999999999999 4.1390649270101043E-004 + 187.25999999999999 4.2342691580607190E-004 + 187.31999999999999 4.3292511982861786E-004 + 187.38000000000000 4.4238983842505303E-004 + 187.44000000000000 4.5180964710074160E-004 + 187.50000000000000 4.6117281609344584E-004 + 187.56000000000000 4.7046746748623757E-004 + 187.62000000000000 4.7968153415804611E-004 + 187.67999999999998 4.8880273748535261E-004 + 187.73999999999998 4.9781861418845804E-004 + 187.79999999999998 5.0671656812782272E-004 + 187.85999999999999 5.1548393545226400E-004 + 187.91999999999999 5.2410786368223619E-004 + 187.97999999999999 5.3257542564787109E-004 + 188.03999999999999 5.4087362390179555E-004 + 188.09999999999999 5.4898952317097025E-004 + 188.16000000000000 5.5691009386394708E-004 + 188.22000000000000 5.6462242434771688E-004 + 188.28000000000000 5.7211358497291176E-004 + 188.34000000000000 5.7937076653241388E-004 + 188.39999999999998 5.8638120224874192E-004 + 188.45999999999998 5.9313241881654092E-004 + 188.51999999999998 5.9961196245156636E-004 + 188.57999999999998 6.0580767194423331E-004 + 188.63999999999999 6.1170753673119678E-004 + 188.69999999999999 6.1729985864401990E-004 + 188.75999999999999 6.2257322769228231E-004 + 188.81999999999999 6.2751648700071390E-004 + 188.88000000000000 6.3211875023021355E-004 + 188.94000000000000 6.3636961680807707E-004 + 189.00000000000000 6.4025896016808154E-004 + 189.06000000000000 6.4377708885979669E-004 + 189.12000000000000 6.4691472920622725E-004 + 189.17999999999998 6.4966309854554453E-004 + 189.23999999999998 6.5201394474467876E-004 + 189.29999999999998 6.5395943357094907E-004 + 189.35999999999999 6.5549234187907944E-004 + 189.41999999999999 6.5660606056954537E-004 + 189.47999999999999 6.5729451085821847E-004 + 189.53999999999999 6.5755231231944824E-004 + 189.59999999999999 6.5737467643242847E-004 + 189.66000000000000 6.5675754143642868E-004 + 189.72000000000000 6.5569757192853850E-004 + 189.78000000000000 6.5419204930264904E-004 + 189.84000000000000 6.5223909401299302E-004 + 189.89999999999998 6.4983750187261281E-004 + 189.95999999999998 6.4698687233863135E-004 + 190.01999999999998 6.4368751356809820E-004 + 190.07999999999998 6.3994059235244973E-004 + 190.13999999999999 6.3574787341301540E-004 + 190.19999999999999 6.3111210635786780E-004 + 190.25999999999999 6.2603669480345962E-004 + 190.31999999999999 6.2052583048427133E-004 + 190.38000000000000 6.1458442213287569E-004 + 190.44000000000000 6.0821817112704482E-004 + 190.50000000000000 6.0143346834982936E-004 + 190.56000000000000 5.9423757044070667E-004 + 190.62000000000000 5.8663828337189279E-004 + 190.67999999999998 5.7864429670270311E-004 + 190.73999999999998 5.7026483796468550E-004 + 190.79999999999998 5.6150993984841868E-004 + 190.85999999999999 5.5239034103865862E-004 + 190.91999999999999 5.4291726178911780E-004 + 190.97999999999999 5.3310269569214965E-004 + 191.03999999999999 5.2295920553019934E-004 + 191.09999999999999 5.1249994801969077E-004 + 191.16000000000000 5.0173863161485617E-004 + 191.22000000000000 4.9068947480505757E-004 + 191.28000000000000 4.7936728321277546E-004 + 191.34000000000000 4.6778724041151453E-004 + 191.39999999999998 4.5596504042917223E-004 + 191.45999999999998 4.4391679061657859E-004 + 191.51999999999998 4.3165895585639411E-004 + 191.57999999999998 4.1920829667464526E-004 + 191.63999999999999 4.0658194402857449E-004 + 191.69999999999999 3.9379726070163312E-004 + 191.75999999999999 3.8087184753355535E-004 + 191.81999999999999 3.6782347394729697E-004 + 191.88000000000000 3.5467006958164434E-004 + 191.94000000000000 3.4142966869870473E-004 + 192.00000000000000 3.2812041843045131E-004 + 192.06000000000000 3.1476047818721820E-004 + 192.12000000000000 3.0136798518259835E-004 + 192.17999999999998 2.8796104962792578E-004 + 192.23999999999998 2.7455774455943595E-004 + 192.29999999999998 2.6117598764047287E-004 + 192.35999999999999 2.4783355676384161E-004 + 192.41999999999999 2.3454807769597848E-004 + 192.47999999999999 2.2133696456062230E-004 + 192.53999999999999 2.0821733942498949E-004 + 192.59999999999999 1.9520606893907476E-004 + 192.66000000000000 1.8231973793131307E-004 + 192.72000000000000 1.6957460413778946E-004 + 192.78000000000000 1.5698652890765134E-004 + 192.84000000000000 1.4457099815024663E-004 + 192.89999999999998 1.3234310344854849E-004 + 192.95999999999998 1.2031747086272523E-004 + 193.01999999999998 1.0850828171385962E-004 + 193.07999999999998 9.6929275769782667E-005 + 193.13999999999999 8.5593657388164797E-005 + 193.19999999999999 7.4514152242236096E-005 + 193.25999999999999 6.3702970191869992E-005 + 193.31999999999999 5.3171769204311645E-005 + 193.38000000000000 4.2931673581804597E-005 + 193.44000000000000 3.2993266419099388E-005 + 193.50000000000000 2.3366556775650025E-005 + 193.56000000000000 1.4060998649993904E-005 + 193.62000000000000 5.0854649082594555E-006 + 193.67999999999998 -3.5517277855920529E-006 + 193.73999999999998 -1.1842845762123509E-005 + 193.79999999999998 -1.9780724507787128E-005 + 193.85999999999999 -2.7358777803985767E-005 + 193.91999999999999 -3.4570992313698032E-005 + 193.97999999999999 -4.1411912505935221E-005 + 194.03999999999999 -4.7876641933020988E-005 + 194.09999999999999 -5.3960863934563813E-005 + 194.16000000000000 -5.9660774891057524E-005 + 194.22000000000000 -6.4973132243286691E-005 + 194.28000000000000 -6.9895208363113419E-005 + 194.34000000000000 -7.4424784700436781E-005 + 194.39999999999998 -7.8560161651471390E-005 + 194.45999999999998 -8.2300111417750211E-005 + 194.51999999999998 -8.5643884546830496E-005 + 194.57999999999998 -8.8591197286128615E-005 + 194.63999999999999 -9.1142199176521809E-005 + 194.69999999999999 -9.3297477239600579E-005 + 194.75999999999999 -9.5058035745889847E-005 + 194.81999999999999 -9.6425262851882241E-005 + 194.88000000000000 -9.7400936371119391E-005 + 194.94000000000000 -9.7987202597786389E-005 + 195.00000000000000 -9.8186558651107143E-005 + 195.06000000000000 -9.8001846631214055E-005 + 195.12000000000000 -9.7436242162115942E-005 + 195.17999999999998 -9.6493226531188474E-005 + 195.23999999999998 -9.5176587584601673E-005 + 195.29999999999998 -9.3490420882389502E-005 + 195.35999999999999 -9.1439083105302794E-005 + 195.41999999999999 -8.9027228975019839E-005 + 195.47999999999999 -8.6259773521663892E-005 + 195.53999999999999 -8.3141891503881929E-005 + 195.59999999999999 -7.9679003694025995E-005 + 195.66000000000000 -7.5876782588159305E-005 + 195.72000000000000 -7.1741137386564612E-005 + 195.78000000000000 -6.7278202847685930E-005 + 195.84000000000000 -6.2494340612492341E-005 + 195.89999999999998 -5.7396121797109749E-005 + 195.95999999999998 -5.1990338289434316E-005 + 196.01999999999998 -4.6283984272209463E-005 + 196.07999999999998 -4.0284246079549366E-005 + 196.13999999999999 -3.3998515755763044E-005 + 196.19999999999999 -2.7434355707437008E-005 + 196.25999999999999 -2.0599523624914723E-005 + 196.31999999999999 -1.3501950797045383E-005 + 196.38000000000000 -6.1497468858496692E-006 + 196.44000000000000 1.4488085386597919E-006 + 196.50000000000000 9.2852658289192340E-006 + 196.56000000000000 1.7351001522580609E-005 + 196.62000000000000 2.5637213408494563E-005 + 196.67999999999998 3.4134932711973833E-005 + 196.73999999999998 4.2835011316083093E-005 + 196.79999999999998 5.1728110556390082E-005 + 196.85999999999999 6.0804725485001890E-005 + 196.91999999999999 7.0055147079890319E-005 + 196.97999999999999 7.9469478623263358E-005 + 197.03999999999999 8.9037628542760518E-005 + 197.09999999999999 9.8749312159112672E-005 + 197.16000000000000 1.0859400777702826E-004 + 197.22000000000000 1.1856103155353086E-004 + 197.28000000000000 1.2863947245499944E-004 + 197.34000000000000 1.3881823682231287E-004 + 197.39999999999998 1.4908600012332471E-004 + 197.45999999999998 1.5943128119665597E-004 + 197.51999999999998 1.6984239254349995E-004 + 197.57999999999998 1.8030748534612990E-004 + 197.63999999999999 1.9081450726789355E-004 + 197.69999999999999 2.0135127886349504E-004 + 197.75999999999999 2.1190544995014718E-004 + 197.81999999999999 2.2246456652484141E-004 + 197.88000000000000 2.3301604272597180E-004 + 197.94000000000000 2.4354714192346066E-004 + 198.00000000000000 2.5404507380816308E-004 + 198.06000000000000 2.6449696045160819E-004 + 198.12000000000000 2.7488983701313795E-004 + 198.17999999999998 2.8521063056761493E-004 + 198.23999999999998 2.9544631372687064E-004 + 198.29999999999998 3.0558376325368416E-004 + 198.35999999999999 3.1560981716586780E-004 + 198.41999999999999 3.2551133965191549E-004 + 198.47999999999999 3.3527517586265089E-004 + 198.53999999999999 3.4488819215541577E-004 + 198.59999999999999 3.5433733709675148E-004 + 198.66000000000000 3.6360958054627488E-004 + 198.72000000000000 3.7269197265243686E-004 + 198.78000000000000 3.8157168666229884E-004 + 198.84000000000000 3.9023603719074963E-004 + 198.89999999999998 3.9867249223338018E-004 + 198.95999999999998 4.0686867576792237E-004 + 199.01999999999998 4.1481246517113032E-004 + 199.07999999999998 4.2249198641108193E-004 + 199.13999999999999 4.2989562762076224E-004 + 199.19999999999999 4.3701208515195691E-004 + 199.25999999999999 4.4383038608759173E-004 + 199.31999999999999 4.5033993690854197E-004 + 199.38000000000000 4.5653054554530421E-004 + 199.44000000000000 4.6239243542180077E-004 + 199.50000000000000 4.6791625115769672E-004 + 199.56000000000000 4.7309315539897397E-004 + 199.62000000000000 4.7791479578439212E-004 + 199.67999999999998 4.8237331514079012E-004 + 199.73999999999998 4.8646139161424200E-004 + 199.79999999999998 4.9017229903199945E-004 + 199.85999999999999 4.9349985777226392E-004 + 199.91999999999999 4.9643853045417026E-004 + 199.97999999999999 4.9898330781357925E-004 + 200.03999999999999 5.0112989683017263E-004 + 200.09999999999999 5.0287464606501436E-004 + 200.16000000000000 5.0421443457423240E-004 + 200.22000000000000 5.0514697053528402E-004 + 200.28000000000000 5.0567052674258201E-004 + 200.34000000000000 5.0578417707439888E-004 + 200.39999999999998 5.0548761188430884E-004 + 200.45999999999998 5.0478130191166856E-004 + 200.51999999999998 5.0366640724774394E-004 + 200.57999999999998 5.0214491527351447E-004 + 200.63999999999999 5.0021946208628080E-004 + 200.69999999999999 4.9789342840981686E-004 + 200.75999999999999 4.9517102929778683E-004 + 200.81999999999999 4.9205716228114963E-004 + 200.88000000000000 4.8855748317831672E-004 + 200.94000000000000 4.8467844733674035E-004 + 201.00000000000000 4.8042715232401772E-004 + 201.06000000000000 4.7581154136456410E-004 + 201.12000000000000 4.7084016203854993E-004 + 201.17999999999998 4.6552230667607565E-004 + 201.23999999999998 4.5986795761178293E-004 + 201.29999999999998 4.5388768903884853E-004 + 201.35999999999999 4.4759280660779219E-004 + 201.41999999999999 4.4099514868758900E-004 + 201.47999999999999 4.3410717830751110E-004 + 201.53999999999999 4.2694191833176091E-004 + 201.59999999999999 4.1951284667014543E-004 + 201.66000000000000 4.1183402007509868E-004 + 201.72000000000000 4.0391995275768317E-004 + 201.78000000000000 3.9578557386627487E-004 + 201.84000000000000 3.8744617050122030E-004 + 201.89999999999998 3.7891746338463252E-004 + 201.95999999999998 3.7021543866666703E-004 + 202.01999999999998 3.6135645371274165E-004 + 202.07999999999998 3.5235715063338259E-004 + 202.13999999999999 3.4323431226206764E-004 + 202.19999999999999 3.3400494184098177E-004 + 202.25999999999999 3.2468628216285393E-004 + 202.31999999999999 3.1529562992955269E-004 + 202.38000000000000 3.0585037702591459E-004 + 202.44000000000000 2.9636800523355494E-004 + 202.50000000000000 2.8686597681600295E-004 + 202.56000000000000 2.7736175772955657E-004 + 202.62000000000000 2.6787272491695790E-004 + 202.67999999999998 2.5841615745592707E-004 + 202.73999999999998 2.4900921599587891E-004 + 202.79999999999998 2.3966884662417377E-004 + 202.85999999999999 2.3041182532973600E-004 + 202.91999999999999 2.2125463081656331E-004 + 202.97999999999999 2.1221344906767071E-004 + 203.03999999999999 2.0330416291991613E-004 + 203.09999999999999 1.9454227348664205E-004 + 203.16000000000000 1.8594287531619710E-004 + 203.22000000000000 1.7752065827737946E-004 + 203.28000000000000 1.6928982306278409E-004 + 203.34000000000000 1.6126408448027653E-004 + 203.39999999999998 1.5345667033970017E-004 + 203.45999999999998 1.4588021918128248E-004 + 203.51999999999998 1.3854681098324139E-004 + 203.57999999999998 1.3146796863113498E-004 + 203.63999999999999 1.2465458038792181E-004 + 203.69999999999999 1.1811689448550360E-004 + 203.75999999999999 1.1186452993532605E-004 + 203.81999999999999 1.0590642729634144E-004 + 203.88000000000000 1.0025086457325321E-004 + 203.94000000000000 9.4905395287458229E-005 + 204.00000000000000 8.9876897190554670E-005 + 204.06000000000000 8.5171521230048450E-005 + 204.12000000000000 8.0794669505448557E-005 + 204.17999999999998 7.6751045885040800E-005 + 204.23999999999998 7.3044601514254707E-005 + 204.29999999999998 6.9678538796952522E-005 + 204.35999999999999 6.6655323538945612E-005 + 204.41999999999999 6.3976668070326841E-005 + 204.47999999999999 6.1643542734026699E-005 + 204.53999999999999 5.9656167688839376E-005 + 204.59999999999999 5.8014027024042838E-005 + 204.66000000000000 5.6715868961180411E-005 + 204.72000000000000 5.5759718167051170E-005 + 204.78000000000000 5.5142870353850400E-005 + 204.84000000000000 5.4861917019084273E-005 + 204.89999999999998 5.4912761865726314E-005 + 204.95999999999998 5.5290607586872423E-005 + 205.01999999999998 5.5989987273466669E-005 + 205.07999999999998 5.7004785732528830E-005 + 205.13999999999999 5.8328259345847709E-005 + 205.19999999999999 5.9953016397563781E-005 + 205.25999999999999 6.1871091137077883E-005 + 205.31999999999999 6.4073923723269731E-005 + 205.38000000000000 6.6552411749326348E-005 + 205.44000000000000 6.9296896072798639E-005 + 205.50000000000000 7.2297215519728070E-005 + 205.56000000000000 7.5542743351788452E-005 + 205.62000000000000 7.9022358803194814E-005 + 205.67999999999998 8.2724515515542122E-005 + 205.73999999999998 8.6637266547291770E-005 + 205.79999999999998 9.0748280071726518E-005 + 205.85999999999999 9.5044887265595542E-005 + 205.91999999999999 9.9514077053781605E-005 + 205.97999999999999 1.0414253776507094E-004 + 206.03999999999999 1.0891672420154235E-004 + 206.09999999999999 1.1382283958590484E-004 + 206.16000000000000 1.1884687133506400E-004 + 206.22000000000000 1.2397465293373752E-004 + 206.28000000000000 1.2919186449956445E-004 + 206.34000000000000 1.3448405315846142E-004 + 206.39999999999998 1.3983671245425722E-004 + 206.45999999999998 1.4523525965472092E-004 + 206.51999999999998 1.5066510091064651E-004 + 206.57999999999998 1.5611161468871584E-004 + 206.63999999999999 1.6156024991591315E-004 + 206.69999999999999 1.6699649448641640E-004 + 206.75999999999999 1.7240593689253110E-004 + 206.81999999999999 1.7777428201613002E-004 + 206.88000000000000 1.8308737528115434E-004 + 206.94000000000000 1.8833126293566743E-004 + 207.00000000000000 1.9349217258306876E-004 + 207.06000000000000 1.9855657812143418E-004 + 207.12000000000000 2.0351121457775359E-004 + 207.17999999999998 2.0834309355535202E-004 + 207.23999999999998 2.1303955597343183E-004 + 207.29999999999998 2.1758827580176457E-004 + 207.35999999999999 2.2197732652693247E-004 + 207.41999999999999 2.2619514375513746E-004 + 207.47999999999999 2.3023060158823346E-004 + 207.53999999999999 2.3407298585226836E-004 + 207.59999999999999 2.3771207784041958E-004 + 207.66000000000000 2.4113814147039010E-004 + 207.72000000000000 2.4434194242750580E-004 + 207.78000000000000 2.4731475022905607E-004 + 207.84000000000000 2.5004838237621408E-004 + 207.89999999999998 2.5253519871862393E-004 + 207.95999999999998 2.5476810252666603E-004 + 208.01999999999998 2.5674056618388698E-004 + 208.07999999999998 2.5844668580162432E-004 + 208.13999999999999 2.5988110436305845E-004 + 208.19999999999999 2.6103908575026639E-004 + 208.25999999999999 2.6191647774376355E-004 + 208.31999999999999 2.6250974461375115E-004 + 208.38000000000000 2.6281591953682094E-004 + 208.44000000000000 2.6283268013241789E-004 + 208.50000000000000 2.6255833426443192E-004 + 208.56000000000000 2.6199177646024044E-004 + 208.62000000000000 2.6113252437321788E-004 + 208.68000000000001 2.5998073708668378E-004 + 208.74000000000001 2.5853715969182409E-004 + 208.80000000000001 2.5680316736400872E-004 + 208.86000000000001 2.5478073301519907E-004 + 208.92000000000002 2.5247244484949622E-004 + 208.98000000000002 2.4988149497161792E-004 + 209.03999999999996 2.4701164046638999E-004 + 209.09999999999997 2.4386722860259507E-004 + 209.15999999999997 2.4045315524637113E-004 + 209.21999999999997 2.3677485927915196E-004 + 209.27999999999997 2.3283832782221777E-004 + 209.33999999999997 2.2865004185224042E-004 + 209.39999999999998 2.2421696607794633E-004 + 209.45999999999998 2.1954655106013637E-004 + 209.51999999999998 2.1464664271249269E-004 + 209.57999999999998 2.0952554894407494E-004 + 209.63999999999999 2.0419195118120942E-004 + 209.69999999999999 1.9865488556286659E-004 + 209.75999999999999 1.9292375540100066E-004 + 209.81999999999999 1.8700826358801208E-004 + 209.88000000000000 1.8091842092212446E-004 + 209.94000000000000 1.7466445296541755E-004 + 210.00000000000000 1.6825688867770828E-004 + 210.06000000000000 1.6170641241894105E-004 + 210.12000000000000 1.5502391557361449E-004 + 210.18000000000001 1.4822047354601882E-004 + 210.24000000000001 1.4130724352358451E-004 + 210.30000000000001 1.3429551585761865E-004 + 210.36000000000001 1.2719665699195839E-004 + 210.42000000000002 1.2002208388810859E-004 + 210.48000000000002 1.1278324072618335E-004 + 210.53999999999996 1.0549156799559404E-004 + 210.59999999999997 9.8158489022660614E-005 + 210.65999999999997 9.0795373588773944E-005 + 210.71999999999997 8.3413504635602141E-005 + 210.77999999999997 7.6024069366275855E-005 + 210.83999999999997 6.8638119603827401E-005 + 210.89999999999998 6.1266567623430876E-005 + 210.95999999999998 5.3920134642171841E-005 + 211.01999999999998 4.6609354305059521E-005 + 211.07999999999998 3.9344539193447772E-005 + 211.13999999999999 3.2135739000273190E-005 + 211.19999999999999 2.4992754800335407E-005 + 211.25999999999999 1.7925087513433249E-005 + 211.31999999999999 1.0941943789713952E-005 + 211.38000000000000 4.0521921893328292E-006 + 211.44000000000000 -2.7356290780923354E-006 + 211.50000000000000 -9.4133488762640388E-006 + 211.56000000000000 -1.5973177469370381E-005 + 211.62000000000000 -2.2407700072432409E-005 + 211.68000000000001 -2.8709905593753922E-005 + 211.74000000000001 -3.4873181601585565E-005 + 211.80000000000001 -4.0891327982072923E-005 + 211.86000000000001 -4.6758559817400988E-005 + 211.92000000000002 -5.2469520204979382E-005 + 211.98000000000002 -5.8019257918337215E-005 + 212.03999999999996 -6.3403249778808167E-005 + 212.09999999999997 -6.8617393924716709E-005 + 212.15999999999997 -7.3658005026643386E-005 + 212.21999999999997 -7.8521793837455639E-005 + 212.27999999999997 -8.3205922438632775E-005 + 212.33999999999997 -8.7707914784813565E-005 + 212.39999999999998 -9.2025729488438257E-005 + 212.45999999999998 -9.6157712339383627E-005 + 212.51999999999998 -1.0010260686784177E-004 + 212.57999999999998 -1.0385954519567698E-004 + 212.63999999999999 -1.0742805111903464E-004 + 212.69999999999999 -1.1080801429872862E-004 + 212.75999999999999 -1.1399971951936186E-004 + 212.81999999999999 -1.1700379050773562E-004 + 212.88000000000000 -1.1982124372724283E-004 + 212.94000000000000 -1.2245341865352432E-004 + 213.00000000000000 -1.2490200162412028E-004 + 213.06000000000000 -1.2716898994395069E-004 + 213.12000000000000 -1.2925670518935823E-004 + 213.18000000000001 -1.3116775619682658E-004 + 213.24000000000001 -1.3290502537902839E-004 + 213.30000000000001 -1.3447167180383955E-004 + 213.36000000000001 -1.3587107067758507E-004 + 213.42000000000002 -1.3710685537267385E-004 + 213.48000000000002 -1.3818284051621979E-004 + 213.53999999999996 -1.3910303450726194E-004 + 213.59999999999997 -1.3987164425585726E-004 + 213.65999999999997 -1.4049302151168994E-004 + 213.71999999999997 -1.4097167255432735E-004 + 213.77999999999997 -1.4131221686500167E-004 + 213.83999999999997 -1.4151939647961268E-004 + 213.89999999999998 -1.4159805459778839E-004 + 213.95999999999998 -1.4155314740901673E-004 + 214.01999999999998 -1.4138969664242421E-004 + 214.07999999999998 -1.4111277995149641E-004 + 214.13999999999999 -1.4072750996999377E-004 + 214.19999999999999 -1.4023906595241338E-004 + 214.25999999999999 -1.3965264607839902E-004 + 214.31999999999999 -1.3897346863437542E-004 + 214.38000000000000 -1.3820674975968580E-004 + 214.44000000000000 -1.3735769028751753E-004 + 214.50000000000000 -1.3643148590618650E-004 + 214.56000000000000 -1.3543328570745112E-004 + 214.62000000000000 -1.3436818636706452E-004 + 214.68000000000001 -1.3324125401015447E-004 + 214.74000000000001 -1.3205748104174359E-004 + 214.80000000000001 -1.3082179089640006E-004 + 214.86000000000001 -1.2953903746066372E-004 + 214.92000000000002 -1.2821395857208031E-004 + 214.98000000000002 -1.2685122862832036E-004 + 215.03999999999996 -1.2545539404226129E-004 + 215.09999999999997 -1.2403091784103583E-004 + 215.15999999999997 -1.2258210812526497E-004 + 215.21999999999997 -1.2111317781157828E-004 + 215.27999999999997 -1.1962819845861407E-004 + 215.33999999999997 -1.1813109946148133E-004 + 215.39999999999998 -1.1662565973278284E-004 + 215.45999999999998 -1.1511550602040132E-004 + 215.51999999999998 -1.1360409217842450E-004 + 215.57999999999998 -1.1209473543228445E-004 + 215.63999999999999 -1.1059055953681361E-004 + 215.69999999999999 -1.0909450809928392E-004 + 215.75999999999999 -1.0760938880230924E-004 + 215.81999999999999 -1.0613781383727524E-004 + 215.88000000000000 -1.0468223155084868E-004 + 215.94000000000000 -1.0324492088235025E-004 + 216.00000000000000 -1.0182800703096179E-004 + 216.06000000000000 -1.0043345916492938E-004 + 216.12000000000000 -9.9063098040841054E-005 + 216.18000000000001 -9.7718586929989773E-005 + 216.24000000000001 -9.6401458961604128E-005 + 216.30000000000001 -9.5113123584358644E-005 + 216.36000000000001 -9.3854829981570613E-005 + 216.42000000000002 -9.2627718416013561E-005 + 216.48000000000002 -9.1432788966684073E-005 + 216.53999999999996 -9.0270919613725490E-005 + 216.59999999999997 -8.9142859560218489E-005 + 216.65999999999997 -8.8049221306041808E-005 + 216.71999999999997 -8.6990497686546020E-005 + 216.77999999999997 -8.5967037403740694E-005 + 216.83999999999997 -8.4979072978438357E-005 + 216.89999999999998 -8.4026699473264857E-005 + 216.95999999999998 -8.3109888340544889E-005 + 217.01999999999998 -8.2228494243941509E-005 + 217.07999999999998 -8.1382252242470510E-005 + 217.13999999999999 -8.0570791076132222E-005 + 217.19999999999999 -7.9793630758449147E-005 + 217.25999999999999 -7.9050218007906809E-005 + 217.31999999999999 -7.8339899904226017E-005 + 217.38000000000000 -7.7661970048526071E-005 + 217.44000000000000 -7.7015643866020091E-005 + 217.50000000000000 -7.6400093530829390E-005 + 217.56000000000000 -7.5814444159964575E-005 + 217.62000000000000 -7.5257781574541267E-005 + 217.68000000000001 -7.4729165745145794E-005 + 217.74000000000001 -7.4227619375972175E-005 + 217.80000000000001 -7.3752145686784218E-005 + 217.86000000000001 -7.3301741332644071E-005 + 217.92000000000002 -7.2875363011682396E-005 + 217.98000000000002 -7.2471961871306879E-005 + 218.03999999999996 -7.2090485689020248E-005 + 218.09999999999997 -7.1729856847930340E-005 + 218.15999999999997 -7.1388989064330005E-005 + 218.21999999999997 -7.1066792230063913E-005 + 218.27999999999997 -7.0762164341847949E-005 + 218.33999999999997 -7.0474019825298294E-005 + 218.39999999999998 -7.0201253109185345E-005 + 218.45999999999998 -6.9942784511577936E-005 + 218.51999999999998 -6.9697542767052040E-005 + 218.57999999999998 -6.9464457070235905E-005 + 218.63999999999999 -6.9242482199246392E-005 + 218.69999999999999 -6.9030590217702709E-005 + 218.75999999999999 -6.8827781353766448E-005 + 218.81999999999999 -6.8633087693620152E-005 + 218.88000000000000 -6.8445555125588577E-005 + 218.94000000000000 -6.8264279515912866E-005 + 219.00000000000000 -6.8088375923187411E-005 + 219.06000000000000 -6.7917012813124443E-005 + 219.12000000000000 -6.7749382649218211E-005 + 219.18000000000001 -6.7584729830363850E-005 + 219.24000000000001 -6.7422348603832954E-005 + 219.30000000000001 -6.7261576977214926E-005 + 219.36000000000001 -6.7101816447389222E-005 + 219.42000000000002 -6.6942520315519874E-005 + 219.48000000000002 -6.6783203297440433E-005 + 219.53999999999996 -6.6623435137711510E-005 + 219.59999999999997 -6.6462857657179463E-005 + 219.65999999999997 -6.6301178485288941E-005 + 219.71999999999997 -6.6138153741310247E-005 + 219.77999999999997 -6.5973615345930244E-005 + 219.83999999999997 -6.5807431123589453E-005 + 219.89999999999998 -6.5639529434654916E-005 + 219.95999999999998 -6.5469876674714966E-005 + 220.01999999999998 -6.5298482067187693E-005 + 220.07999999999998 -6.5125376640687332E-005 + 220.13999999999999 -6.4950618241522978E-005 + 220.19999999999999 -6.4774295319332194E-005 + 220.25999999999999 -6.4596490027259211E-005 + 220.31999999999999 -6.4417318592479441E-005 + 220.38000000000000 -6.4236899697106434E-005 + 220.44000000000000 -6.4055369017740799E-005 + 220.50000000000000 -6.3872878794581065E-005 + 220.56000000000000 -6.3689604600801762E-005 + 220.62000000000000 -6.3505738573443231E-005 + 220.68000000000001 -6.3321505404079372E-005 + 220.74000000000001 -6.3137160068247531E-005 + 220.80000000000001 -6.2952989585822157E-005 + 220.86000000000001 -6.2769319182561154E-005 + 220.92000000000002 -6.2586499330617951E-005 + 220.98000000000002 -6.2404935674909278E-005 + 221.03999999999996 -6.2225044680518692E-005 + 221.09999999999997 -6.2047275801430763E-005 + 221.15999999999997 -6.1872088940928901E-005 + 221.21999999999997 -6.1699955441161971E-005 + 221.27999999999997 -6.1531347596355092E-005 + 221.33999999999997 -6.1366726498681413E-005 + 221.39999999999998 -6.1206538869466528E-005 + 221.45999999999998 -6.1051208581372709E-005 + 221.51999999999998 -6.0901119433882914E-005 + 221.57999999999998 -6.0756636444260499E-005 + 221.63999999999999 -6.0618073132213096E-005 + 221.69999999999999 -6.0485722418079684E-005 + 221.75999999999999 -6.0359829003854180E-005 + 221.81999999999999 -6.0240614792867866E-005 + 221.88000000000000 -6.0128261747224492E-005 + 221.94000000000000 -6.0022924885170650E-005 + 222.00000000000000 -5.9924745801218320E-005 + 222.06000000000000 -5.9833836319582619E-005 + 222.12000000000000 -5.9750294053305938E-005 + 222.18000000000001 -5.9674204304056052E-005 + 222.24000000000001 -5.9605633308507053E-005 + 222.30000000000001 -5.9544628196779153E-005 + 222.36000000000001 -5.9491226589639559E-005 + 222.42000000000002 -5.9445446798043703E-005 + 222.48000000000002 -5.9407278116589351E-005 + 222.53999999999996 -5.9376695412321886E-005 + 222.59999999999997 -5.9353641507763278E-005 + 222.65999999999997 -5.9338031436198093E-005 + 222.71999999999997 -5.9329754469135740E-005 + 222.77999999999997 -5.9328662102042014E-005 + 222.83999999999997 -5.9334583024697231E-005 + 222.89999999999998 -5.9347299085148628E-005 + 222.95999999999998 -5.9366579833206514E-005 + 223.01999999999998 -5.9392160094699328E-005 + 223.07999999999998 -5.9423738026032435E-005 + 223.13999999999999 -5.9460993380159669E-005 + 223.19999999999999 -5.9503571812259071E-005 + 223.25999999999999 -5.9551087785807187E-005 + 223.31999999999999 -5.9603131045327793E-005 + 223.38000000000000 -5.9659259664164308E-005 + 223.44000000000000 -5.9718998533043563E-005 + 223.50000000000000 -5.9781839652038818E-005 + 223.56000000000000 -5.9847249183849063E-005 + 223.62000000000000 -5.9914660333879125E-005 + 223.68000000000001 -5.9983473105955452E-005 + 223.74000000000001 -6.0053061032468808E-005 + 223.80000000000001 -6.0122779763760578E-005 + 223.86000000000001 -6.0191958078868390E-005 + 223.92000000000002 -6.0259923988090772E-005 + 223.98000000000002 -6.0325975434547956E-005 + 224.03999999999996 -6.0389416652764083E-005 + 224.09999999999997 -6.0449556798461548E-005 + 224.15999999999997 -6.0505710600742139E-005 + 224.21999999999997 -6.0557199425263273E-005 + 224.27999999999997 -6.0603357319698124E-005 + 224.33999999999997 -6.0643524394443093E-005 + 224.39999999999998 -6.0677062062188954E-005 + 224.45999999999998 -6.0703338097173296E-005 + 224.51999999999998 -6.0721721515948147E-005 + 224.57999999999998 -6.0731573703309683E-005 + 224.63999999999999 -6.0732266326729415E-005 + 224.69999999999999 -6.0723150371867161E-005 + 224.75999999999999 -6.0703570795002496E-005 + 224.81999999999999 -6.0672859108435614E-005 + 224.88000000000000 -6.0630325241976791E-005 + 224.94000000000000 -6.0575283492467682E-005 + 225.00000000000000 -6.0507027188953341E-005 + 225.06000000000000 -6.0424859383571836E-005 + 225.12000000000000 -6.0328078057362327E-005 + 225.18000000000001 -6.0216008888515772E-005 + 225.24000000000001 -6.0087999901052835E-005 + 225.30000000000001 -5.9943428557974039E-005 + 225.36000000000001 -5.9781729641680885E-005 + 225.42000000000002 -5.9602381171928361E-005 + 225.48000000000002 -5.9404927803332212E-005 + 225.53999999999996 -5.9188976052152354E-005 + 225.59999999999997 -5.8954191525372823E-005 + 225.65999999999997 -5.8700321131067840E-005 + 225.71999999999997 -5.8427163598179954E-005 + 225.77999999999997 -5.8134580402836350E-005 + 225.83999999999997 -5.7822495335926074E-005 + 225.89999999999998 -5.7490880705964916E-005 + 225.95999999999998 -5.7139753878918733E-005 + 226.01999999999998 -5.6769170895081274E-005 + 226.07999999999998 -5.6379225004508078E-005 + 226.13999999999999 -5.5970049006969491E-005 + 226.19999999999999 -5.5541806993107676E-005 + 226.25999999999999 -5.5094696871902826E-005 + 226.31999999999999 -5.4628952485898550E-005 + 226.38000000000000 -5.4144849543221898E-005 + 226.44000000000000 -5.3642699858923065E-005 + 226.50000000000000 -5.3122868744661519E-005 + 226.56000000000000 -5.2585770985101647E-005 + 226.62000000000000 -5.2031880537033767E-005 + 226.68000000000001 -5.1461725007764938E-005 + 226.74000000000001 -5.0875892604272739E-005 + 226.80000000000001 -5.0275034419262940E-005 + 226.86000000000001 -4.9659862139849569E-005 + 226.92000000000002 -4.9031144559617605E-005 + 226.98000000000002 -4.8389709786976407E-005 + 227.03999999999996 -4.7736435649967583E-005 + 227.09999999999997 -4.7072265747852854E-005 + 227.15999999999997 -4.6398174149640149E-005 + 227.21999999999997 -4.5715189787782297E-005 + 227.27999999999997 -4.5024385413866045E-005 + 227.33999999999997 -4.4326867399047989E-005 + 227.39999999999998 -4.3623782743928937E-005 + 227.45999999999998 -4.2916313400512289E-005 + 227.51999999999998 -4.2205674061733886E-005 + 227.57999999999998 -4.1493106325133367E-005 + 227.63999999999999 -4.0779882828041638E-005 + 227.69999999999999 -4.0067296066624526E-005 + 227.75999999999999 -3.9356654741392587E-005 + 227.81999999999999 -3.8649284207874874E-005 + 227.88000000000000 -3.7946507181942995E-005 + 227.94000000000000 -3.7249657238049780E-005 + 228.00000000000000 -3.6560051357336402E-005 + 228.06000000000000 -3.5879000169114803E-005 + 228.12000000000000 -3.5207787580427826E-005 + 228.18000000000001 -3.4547678962332781E-005 + 228.24000000000001 -3.3899906064817624E-005 + 228.30000000000001 -3.3265676375832351E-005 + 228.36000000000001 -3.2646163497567324E-005 + 228.42000000000002 -3.2042513965095827E-005 + 228.48000000000002 -3.1455839690523666E-005 + 228.53999999999996 -3.0887233123996945E-005 + 228.59999999999997 -3.0337760117930693E-005 + 228.65999999999997 -2.9808466538971175E-005 + 228.71999999999997 -2.9300379632909778E-005 + 228.77999999999997 -2.8814510814969885E-005 + 228.83999999999997 -2.8351848555261559E-005 + 228.89999999999998 -2.7913363594707495E-005 + 228.95999999999998 -2.7499995073274168E-005 + 229.01999999999998 -2.7112653873626231E-005 + 229.07999999999998 -2.6752203690618148E-005 + 229.13999999999999 -2.6419457627325881E-005 + 229.19999999999999 -2.6115168049748382E-005 + 229.25999999999999 -2.5840013313396816E-005 + 229.31999999999999 -2.5594595449462296E-005 + 229.38000000000000 -2.5379423440673993E-005 + 229.44000000000000 -2.5194912760442671E-005 + 229.50000000000000 -2.5041379321060639E-005 + 229.56000000000000 -2.4919045589411718E-005 + 229.62000000000000 -2.4828028002555126E-005 + 229.68000000000001 -2.4768350715188808E-005 + 229.74000000000001 -2.4739950180915975E-005 + 229.80000000000001 -2.4742681785721996E-005 + 229.86000000000001 -2.4776316011001371E-005 + 229.92000000000002 -2.4840562696574695E-005 + 229.97999999999996 -2.4935065908578462E-005 + 230.03999999999996 -2.5059409037372819E-005 + 230.09999999999997 -2.5213121543660035E-005 + 230.15999999999997 -2.5395676765856314E-005 + 230.21999999999997 -2.5606497034357789E-005 + 230.27999999999997 -2.5844942887789613E-005 + 230.33999999999997 -2.6110314348843558E-005 + 230.39999999999998 -2.6401850708862577E-005 + 230.45999999999998 -2.6718713769843778E-005 + 230.51999999999998 -2.7059992409888611E-005 + 230.57999999999998 -2.7424697161673121E-005 + 230.63999999999999 -2.7811753434076757E-005 + 230.69999999999999 -2.8220003535199129E-005 + 230.75999999999999 -2.8648207068532094E-005 + 230.81999999999999 -2.9095042798052298E-005 + 230.88000000000000 -2.9559113553194990E-005 + 230.94000000000000 -3.0038954715861373E-005 + 231.00000000000000 -3.0533032221960161E-005 + 231.06000000000000 -3.1039759870908151E-005 + 231.12000000000000 -3.1557502444154915E-005 + 231.18000000000001 -3.2084577944501182E-005 + 231.24000000000001 -3.2619275581370970E-005 + 231.30000000000001 -3.3159847148875347E-005 + 231.36000000000001 -3.3704531938196563E-005 + 231.42000000000002 -3.4251539350247835E-005 + 231.47999999999996 -3.4799064895937362E-005 + 231.53999999999996 -3.5345293770670883E-005 + 231.59999999999997 -3.5888387704302784E-005 + 231.65999999999997 -3.6426512863231626E-005 + 231.71999999999997 -3.6957819794422205E-005 + 231.77999999999997 -3.7480457627758849E-005 + 231.83999999999997 -3.7992576395655751E-005 + 231.89999999999998 -3.8492333212325113E-005 + 231.95999999999998 -3.8977892160394948E-005 + 232.01999999999998 -3.9447431601617581E-005 + 232.07999999999998 -3.9899159166852006E-005 + 232.13999999999999 -4.0331307474547583E-005 + 232.19999999999999 -4.0742139972547242E-005 + 232.25999999999999 -4.1129959762818413E-005 + 232.31999999999999 -4.1493110923790509E-005 + 232.38000000000000 -4.1829985487408274E-005 + 232.44000000000000 -4.2139012817619278E-005 + 232.50000000000000 -4.2418678095593700E-005 + 232.56000000000000 -4.2667500651225911E-005 + 232.62000000000000 -4.2884060014433694E-005 + 232.68000000000001 -4.3066973730734232E-005 + 232.74000000000001 -4.3214907467565925E-005 + 232.80000000000001 -4.3326575756136748E-005 + 232.86000000000001 -4.3400743466063572E-005 + 232.92000000000002 -4.3436237620765968E-005 + 232.97999999999996 -4.3431933173630943E-005 + 233.03999999999996 -4.3386781155806172E-005 + 233.09999999999997 -4.3299807248957377E-005 + 233.15999999999997 -4.3170110715319543E-005 + 233.21999999999997 -4.2996885098440015E-005 + 233.27999999999997 -4.2779421885632100E-005 + 233.33999999999997 -4.2517103501141752E-005 + 233.39999999999998 -4.2209426984761176E-005 + 233.45999999999998 -4.1855994896362964E-005 + 233.51999999999998 -4.1456516956680172E-005 + 233.57999999999998 -4.1010810613839496E-005 + 233.63999999999999 -4.0518790823505132E-005 + 233.69999999999999 -3.9980471800713434E-005 + 233.75999999999999 -3.9395954748296540E-005 + 233.81999999999999 -3.8765429358283396E-005 + 233.88000000000000 -3.8089155217275767E-005 + 233.94000000000000 -3.7367463964596610E-005 + 234.00000000000000 -3.6600746267450120E-005 + 234.06000000000000 -3.5789456490213589E-005 + 234.12000000000000 -3.4934104706656100E-005 + 234.18000000000001 -3.4035260457427776E-005 + 234.24000000000001 -3.3093549415896767E-005 + 234.30000000000001 -3.2109657590637237E-005 + 234.36000000000001 -3.1084336760068015E-005 + 234.42000000000002 -3.0018407435339180E-005 + 234.47999999999996 -2.8912759215550051E-005 + 234.53999999999996 -2.7768365014465636E-005 + 234.59999999999997 -2.6586265959285688E-005 + 234.65999999999997 -2.5367586605144013E-005 + 234.71999999999997 -2.4113526471267166E-005 + 234.77999999999997 -2.2825360472761161E-005 + 234.83999999999997 -2.1504433517639026E-005 + 234.89999999999998 -2.0152155305260009E-005 + 234.95999999999998 -1.8769994649490541E-005 + 235.01999999999998 -1.7359467768500316E-005 + 235.07999999999998 -1.5922139201499392E-005 + 235.13999999999999 -1.4459611428996422E-005 + 235.19999999999999 -1.2973520594713972E-005 + 235.25999999999999 -1.1465529942515883E-005 + 235.31999999999999 -9.9373272787964826E-006 + 235.38000000000000 -8.3906257062055178E-006 + 235.44000000000000 -6.8271580543609277E-006 + 235.50000000000000 -5.2486787915780230E-006 + 235.56000000000000 -3.6569614374695024E-006 + 235.62000000000000 -2.0538001763159995E-006 + 235.68000000000001 -4.4100713102731980E-007 + 235.74000000000001 1.1795894871681256E-006 + 235.80000000000001 2.8061477700919196E-006 + 235.86000000000001 4.4368169841922115E-006 + 235.92000000000002 6.0697419888322488E-006 + 235.97999999999996 7.7030691626278299E-006 + 236.03999999999996 9.3349545605649768E-006 + 236.09999999999997 1.0963569538565645E-005 + 236.15999999999997 1.2587106265756099E-005 + 236.21999999999997 1.4203785370630904E-005 + 236.27999999999997 1.5811859091382730E-005 + 236.33999999999997 1.7409617861431548E-005 + 236.39999999999998 1.8995390915548894E-005 + 236.45999999999998 2.0567546849993959E-005 + 236.51999999999998 2.2124497190825135E-005 + 236.57999999999998 2.3664692365829171E-005 + 236.63999999999999 2.5186624057407325E-005 + 236.69999999999999 2.6688818931325258E-005 + 236.75999999999999 2.8169848213363060E-005 + 236.81999999999999 2.9628315225643157E-005 + 236.88000000000000 3.1062867170064693E-005 + 236.94000000000000 3.2472194358426831E-005 + 237.00000000000000 3.3855035018369186E-005 + 237.06000000000000 3.5210175356264967E-005 + 237.12000000000000 3.6536458751564226E-005 + 237.18000000000001 3.7832795184495283E-005 + 237.24000000000001 3.9098167960602075E-005 + 237.30000000000001 4.0331631758621806E-005 + 237.36000000000001 4.1532327618919124E-005 + 237.42000000000002 4.2699473999682229E-005 + 237.47999999999996 4.3832380655593644E-005 + 237.53999999999996 4.4930435865166603E-005 + 237.59999999999997 4.5993115432336112E-005 + 237.65999999999997 4.7019970831182987E-005 + 237.71999999999997 4.8010619969495157E-005 + 237.77999999999997 4.8964756608793989E-005 + 237.83999999999997 4.9882125842160641E-005 + 237.89999999999998 5.0762523637401180E-005 + 237.95999999999998 5.1605794644456002E-005 + 238.01999999999998 5.2411823564516954E-005 + 238.07999999999998 5.3180528196510275E-005 + 238.13999999999999 5.3911865646105076E-005 + 238.19999999999999 5.4605823515616929E-005 + 238.25999999999999 5.5262430831340086E-005 + 238.31999999999999 5.5881755732768631E-005 + 238.38000000000000 5.6463901316965200E-005 + 238.44000000000000 5.7009030896688768E-005 + 238.50000000000000 5.7517342472192219E-005 + 238.56000000000000 5.7989096560257257E-005 + 238.62000000000000 5.8424612336813614E-005 + 238.68000000000001 5.8824258849724131E-005 + 238.74000000000001 5.9188460836003394E-005 + 238.80000000000001 5.9517699294793112E-005 + 238.86000000000001 5.9812498829068861E-005 + 238.92000000000002 6.0073425496282243E-005 + 238.97999999999996 6.0301087987996410E-005 + 239.03999999999996 6.0496127094794499E-005 + 239.09999999999997 6.0659198467633742E-005 + 239.15999999999997 6.0790987168028046E-005 + 239.21999999999997 6.0892183613497073E-005 + 239.27999999999997 6.0963499305484280E-005 + 239.33999999999997 6.1005636758018549E-005 + 239.39999999999998 6.1019305766899504E-005 + 239.45999999999998 6.1005230377578088E-005 + 239.51999999999998 6.0964129257917718E-005 + 239.57999999999998 6.0896719182098539E-005 + 239.63999999999999 6.0803732358230911E-005 + 239.69999999999999 6.0685893923428464E-005 + 239.75999999999999 6.0543939362421568E-005 + 239.81999999999999 6.0378598477079306E-005 + 239.88000000000000 6.0190603714369177E-005 + 239.94000000000000 5.9980692431968891E-005 + 240.00000000000000 5.9749587361920203E-005 + 240.06000000000000 5.9498008240909662E-005 + 240.12000000000000 5.9226667176178113E-005 + 240.18000000000001 5.8936258327037421E-005 + 240.24000000000001 5.8627464458050382E-005 + 240.30000000000001 5.8300945544222246E-005 + 240.36000000000001 5.7957351803812902E-005 + 240.42000000000002 5.7597314780668963E-005 + 240.47999999999996 5.7221450059196731E-005 + 240.53999999999996 5.6830357923968387E-005 + 240.59999999999997 5.6424625236066338E-005 + 240.65999999999997 5.6004825203264663E-005 + 240.71999999999997 5.5571525272228471E-005 + 240.77999999999997 5.5125285858295759E-005 + 240.83999999999997 5.4666649501447594E-005 + 240.89999999999998 5.4196154219448620E-005 + 240.95999999999998 5.3714315437857612E-005 + 241.01999999999998 5.3221640854159986E-005 + 241.07999999999998 5.2718608012898213E-005 + 241.13999999999999 5.2205670311816476E-005 + 241.19999999999999 5.1683251144891043E-005 + 241.25999999999999 5.1151739799231023E-005 + 241.31999999999999 5.0611479811242943E-005 + 241.38000000000000 5.0062782697903922E-005 + 241.44000000000000 4.9505907389530363E-005 + 241.50000000000000 4.8941080333203812E-005 + 241.56000000000000 4.8368487806167518E-005 + 241.62000000000000 4.7788277204528202E-005 + 241.68000000000001 4.7200567765341417E-005 + 241.74000000000001 4.6605458367914790E-005 + 241.80000000000001 4.6003031123217745E-005 + 241.86000000000001 4.5393349380619071E-005 + 241.92000000000002 4.4776474643522063E-005 + 241.97999999999996 4.4152463223797983E-005 + 242.03999999999996 4.3521367257281341E-005 + 242.09999999999997 4.2883251234694245E-005 + 242.15999999999997 4.2238171114356975E-005 + 242.21999999999997 4.1586183298034009E-005 + 242.27999999999997 4.0927341097578537E-005 + 242.33999999999997 4.0261682452487425E-005 + 242.39999999999998 3.9589242183271514E-005 + 242.45999999999998 3.8910027440890203E-005 + 242.51999999999998 3.8224030358314202E-005 + 242.57999999999998 3.7531220437736529E-005 + 242.63999999999999 3.6831547601269885E-005 + 242.69999999999999 3.6124935657682811E-005 + 242.75999999999999 3.5411292859590898E-005 + 242.81999999999999 3.4690514196005587E-005 + 242.88000000000000 3.3962486563038047E-005 + 242.94000000000000 3.3227093332641304E-005 + 243.00000000000000 3.2484226840860707E-005 + 243.06000000000000 3.1733790006545698E-005 + 243.12000000000000 3.0975713987692300E-005 + 243.18000000000001 3.0209941740532380E-005 + 243.24000000000001 2.9436458023714856E-005 + 243.30000000000001 2.8655274577346241E-005 + 243.36000000000001 2.7866440462162542E-005 + 243.42000000000002 2.7070037680872491E-005 + 243.47999999999996 2.6266183658455200E-005 + 243.53999999999996 2.5455029075782342E-005 + 243.59999999999997 2.4636750882030330E-005 + 243.65999999999997 2.3811554601732133E-005 + 243.71999999999997 2.2979670806035296E-005 + 243.77999999999997 2.2141353199941185E-005 + 243.83999999999997 2.1296876795818239E-005 + 243.89999999999998 2.0446540167506228E-005 + 243.95999999999998 1.9590661044859324E-005 + 244.01999999999998 1.8729583222846679E-005 + 244.07999999999998 1.7863673302737171E-005 + 244.13999999999999 1.6993324576737051E-005 + 244.19999999999999 1.6118961714517705E-005 + 244.25999999999999 1.5241037439491237E-005 + 244.31999999999999 1.4360036839749290E-005 + 244.38000000000000 1.3476479136516251E-005 + 244.44000000000000 1.2590913984201958E-005 + 244.50000000000000 1.1703922418788686E-005 + 244.56000000000000 1.0816117242839817E-005 + 244.62000000000000 9.9281381120999567E-006 + 244.68000000000001 9.0406507593099407E-006 + 244.74000000000001 8.1543460027493910E-006 + 244.80000000000001 7.2699371503491029E-006 + 244.86000000000001 6.3881586256755692E-006 + 244.92000000000002 5.5097638766092411E-006 + 244.97999999999996 4.6355269435056718E-006 + 245.03999999999996 3.7662428444850462E-006 + 245.09999999999997 2.9027257115824554E-006 + 245.15999999999997 2.0458114962266162E-006 + 245.21999999999997 1.1963586660071569E-006 + 245.27999999999997 3.5524843413959923E-007 + 245.33999999999997 -4.7661551835773376E-007 + 245.39999999999998 -1.2983081682970116E-006 + 245.45999999999998 -2.1088842114922539E-006 + 245.51999999999998 -2.9073810920684283E-006 + 245.57999999999998 -3.6928225806342072E-006 + 245.63999999999999 -4.4642232524499401E-006 + 245.69999999999999 -5.2205931669615887E-006 + 245.75999999999999 -5.9609428643102915E-006 + 245.81999999999999 -6.6842884461289247E-006 + 245.88000000000000 -7.3896574970338483E-006 + 245.94000000000000 -8.0760889336770970E-006 + 246.00000000000000 -8.7426417263618829E-006 + 246.06000000000000 -9.3883916528860485E-006 + 246.12000000000000 -1.0012436363237133E-005 + 246.18000000000001 -1.0613891188412927E-005 + 246.24000000000001 -1.1191891253499108E-005 + 246.30000000000001 -1.1745588725634224E-005 + 246.36000000000001 -1.2274152533810659E-005 + 246.42000000000002 -1.2776763367451073E-005 + 246.47999999999996 -1.3252615501928928E-005 + 246.53999999999996 -1.3700916054926951E-005 + 246.59999999999997 -1.4120884765162707E-005 + 246.65999999999997 -1.4511758605108576E-005 + 246.71999999999997 -1.4872790670129622E-005 + 246.77999999999997 -1.5203257133679049E-005 + 246.83999999999997 -1.5502462356835345E-005 + 246.89999999999998 -1.5769742548813945E-005 + 246.95999999999998 -1.6004474764946728E-005 + 247.01999999999998 -1.6206079965883918E-005 + 247.07999999999998 -1.6374030556630315E-005 + 247.13999999999999 -1.6507852658019219E-005 + 247.19999999999999 -1.6607131129009071E-005 + 247.25999999999999 -1.6671513714223765E-005 + 247.31999999999999 -1.6700711124491960E-005 + 247.38000000000000 -1.6694495645044867E-005 + 247.44000000000000 -1.6652703373089298E-005 + 247.50000000000000 -1.6575229843186709E-005 + 247.56000000000000 -1.6462032026163242E-005 + 247.62000000000000 -1.6313122439318871E-005 + 247.68000000000001 -1.6128571698613958E-005 + 247.74000000000001 -1.5908503068225878E-005 + 247.80000000000001 -1.5653095541675053E-005 + 247.86000000000001 -1.5362576991155277E-005 + 247.92000000000002 -1.5037232941499557E-005 + 247.97999999999996 -1.4677402635719525E-005 + 248.03999999999996 -1.4283478729511401E-005 + 248.09999999999997 -1.3855913809845642E-005 + 248.15999999999997 -1.3395218045420959E-005 + 248.21999999999997 -1.2901962141668687E-005 + 248.27999999999997 -1.2376775264367566E-005 + 248.33999999999997 -1.1820347687266555E-005 + 248.39999999999998 -1.1233426842981429E-005 + 248.45999999999998 -1.0616818115944664E-005 + 248.51999999999998 -9.9713799233360299E-006 + 248.57999999999998 -9.2980229389743926E-006 + 248.63999999999999 -8.5977042197301212E-006 + 248.69999999999999 -7.8714256208121656E-006 + 248.75999999999999 -7.1202271267545035E-006 + 248.81999999999999 -6.3451861829989736E-006 + 248.88000000000000 -5.5474127502900032E-006 + 248.94000000000000 -4.7280474051185874E-006 + 249.00000000000000 -3.8882583009805385E-006 + 249.06000000000000 -3.0292410045465715E-006 + 249.12000000000000 -2.1522156916665689E-006 + 249.18000000000001 -1.2584256948013443E-006 + 249.24000000000001 -3.4913652388591240E-007 + 249.30000000000001 5.7436362385547175E-007 + 249.36000000000001 1.5107690458122985E-006 + 249.42000000000002 2.4587568731188728E-006 + 249.47999999999996 3.4169900355634662E-006 + 249.53999999999996 4.3841233447762939E-006 + 249.59999999999997 5.3588057231640770E-006 + 249.65999999999997 6.3396854918103696E-006 + 249.71999999999997 7.3254163685929547E-006 + 249.77999999999997 8.3146634178482670E-006 + 249.83999999999997 9.3061051327567605E-006 + 249.89999999999998 1.0298442388125341E-005 + 249.95999999999998 1.1290397666620182E-005 + 250.01999999999998 1.2280724734589345E-005 + 250.07999999999998 1.3268202636328780E-005 + 250.13999999999999 1.4251645163613634E-005 + 250.19999999999999 1.5229897868003851E-005 + 250.25999999999999 1.6201838041941116E-005 + 250.31999999999999 1.7166371802780524E-005 + 250.38000000000000 1.8122440087793028E-005 + 250.44000000000000 1.9069011148349811E-005 + 250.50000000000000 2.0005081967750864E-005 + 250.56000000000000 2.0929678768137107E-005 + 250.62000000000000 2.1841859626583881E-005 + 250.68000000000001 2.2740712047422620E-005 + 250.74000000000001 2.3625353924297786E-005 + 250.80000000000001 2.4494941416032528E-005 + 250.86000000000001 2.5348665756581746E-005 + 250.92000000000002 2.6185763239335791E-005 + 250.97999999999996 2.7005512095345464E-005 + 251.03999999999996 2.7807236658410367E-005 + 251.09999999999997 2.8590313678919840E-005 + 251.15999999999997 2.9354173454571070E-005 + 251.21999999999997 3.0098295185514462E-005 + 251.27999999999997 3.0822218204160907E-005 + 251.33999999999997 3.1525530901675995E-005 + 251.39999999999998 3.2207877054524938E-005 + 251.45999999999998 3.2868952920688671E-005 + 251.51999999999998 3.3508499244754707E-005 + 251.57999999999998 3.4126306371085909E-005 + 251.63999999999999 3.4722203998266607E-005 + 251.69999999999999 3.5296069560903941E-005 + 251.75999999999999 3.5847818509560928E-005 + 251.81999999999999 3.6377400399805530E-005 + 251.88000000000000 3.6884806144449231E-005 + 251.94000000000000 3.7370059163202850E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000004.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000004.BXY.semd new file mode 100644 index 00000000..5ca33714 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000004.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 -5.4834177800978590E-041 + 2.0399999999999991 -1.2334937635723831E-040 + 2.1000000000000014 -2.0554558553207167E-040 + 2.1599999999999966 -2.8774179470690504E-040 + 2.2199999999999989 -3.8391611801741577E-040 + 2.2800000000000011 -5.2377486600659548E-040 + 2.3399999999999963 -6.7736263543983902E-040 + 2.3999999999999986 -8.1303768042748870E-040 + 2.4600000000000009 -9.0270737316244571E-040 + 2.5199999999999960 -9.3452776838459107E-040 + 2.5799999999999983 -9.0183085882514132E-040 + 2.6400000000000006 -7.7124406255138880E-040 + 2.6999999999999957 -5.3245361760075748E-040 + 2.7599999999999980 -1.8479807002167028E-040 + 2.8200000000000003 2.3943281486094099E-040 + 2.8799999999999955 7.4748697210814157E-040 + 2.9399999999999977 1.2903737756011060E-039 + 3.0000000000000000 1.8253112379383782E-039 + 3.0599999999999952 2.3492924062154451E-039 + 3.1199999999999974 2.4121635785405956E-039 + 3.1799999999999997 2.0169222776341192E-039 + 3.2399999999999949 8.5677053510963689E-040 + 3.2999999999999972 -1.1260462190061220E-039 + 3.3599999999999994 -3.6651862797453440E-039 + 3.4199999999999946 -6.6137039040464232E-039 + 3.4799999999999969 -9.5249443010432884E-039 + 3.5399999999999991 -1.3238756828772894E-038 + 3.6000000000000014 -1.7170496021104799E-038 + 3.6599999999999966 -2.0673208843486708E-038 + 3.7199999999999989 -2.3067027699908163E-038 + 3.7800000000000011 -2.3993834212805818E-038 + 3.8399999999999963 -2.2823420347457013E-038 + 3.8999999999999986 -1.9514446573276361E-038 + 3.9600000000000009 -1.4793952310559576E-038 + 4.0199999999999960 -9.1376423092284480E-039 + 4.0799999999999983 -2.8846554214340154E-039 + 4.1400000000000006 3.3775099351536774E-039 + 4.1999999999999957 7.6306846471560179E-039 + 4.2599999999999980 8.9909195030751783E-039 + 4.3200000000000003 6.4881111375933733E-039 + 4.3799999999999955 -2.2726450089616352E-039 + 4.4399999999999977 -1.7633107635823217E-038 + 4.5000000000000000 -3.8646891551845267E-038 + 4.5599999999999952 -6.4403324085412597E-038 + 4.6199999999999974 -9.1501041105191348E-038 + 4.6799999999999997 -1.1710986455380478E-037 + 4.7399999999999949 -1.3729265657774036E-037 + 4.7999999999999972 -1.4844741138691018E-037 + 4.8599999999999994 -1.4688374480124359E-037 + 4.9199999999999946 -1.2982636603337736E-037 + 4.9799999999999969 -9.6902450390157554E-038 + 5.0399999999999991 -4.7007333364671854E-038 + 5.1000000000000014 2.6106279049790164E-038 + 5.1599999999999966 1.2628495573976156E-037 + 5.2199999999999989 2.4137290103592981E-037 + 5.2800000000000011 3.6023599681270805E-037 + 5.3399999999999963 4.6436976725653869E-037 + 5.3999999999999986 5.5065419424171073E-037 + 5.4600000000000009 5.9830331885993153E-037 + 5.5199999999999960 5.9557970982016937E-037 + 5.5799999999999983 5.3600169730045338E-037 + 5.6400000000000006 4.2277887397426881E-037 + 5.6999999999999957 2.5511305208399388E-037 + 5.7599999999999980 2.6992143972028658E-038 + 5.8200000000000003 -2.6072449354688416E-037 + 5.8799999999999955 -5.6651056231468381E-037 + 5.9399999999999977 -8.6096455577238413E-037 + 6.0000000000000000 -1.1096680321210473E-036 + 6.0599999999999952 -1.2750212448810376E-036 + 6.1199999999999974 -1.3171838420749589E-036 + 6.1799999999999997 -1.2044423497644808E-036 + 6.2399999999999949 -9.1932669048090461E-037 + 6.2999999999999972 -3.9090051709915682E-037 + 6.3599999999999994 4.0908047513466517E-037 + 6.4199999999999946 1.4212212977932644E-036 + 6.4799999999999969 2.5848097638014276E-036 + 6.5399999999999991 3.8276524193239889E-036 + 6.6000000000000014 4.9918866518587405E-036 + 6.6599999999999966 5.9718781429833840E-036 + 6.7199999999999989 6.6274626263227763E-036 + 6.7800000000000011 6.7800253172838627E-036 + 6.8399999999999963 6.3153640221417590E-036 + 6.8999999999999986 4.9425092883792554E-036 + 6.9600000000000009 2.6058619505923360E-036 + 7.0199999999999960 -7.2052143195321326E-037 + 7.0799999999999983 -5.0166183105077661E-036 + 7.1400000000000006 -9.9379854889126287E-036 + 7.1999999999999957 -1.5233045567843328E-035 + 7.2599999999999980 -2.0448442959388661E-035 + 7.3200000000000003 -2.5197147054818375E-035 + 7.3799999999999955 -2.9119453155890135E-035 + 7.4399999999999977 -3.1756461326902087E-035 + 7.5000000000000000 -3.2300641095319376E-035 + 7.5599999999999952 -2.9966571885399157E-035 + 7.6199999999999974 -2.4232644472288185E-035 + 7.6799999999999997 -1.4739422320963668E-035 + 7.7399999999999949 -1.2711550080832967E-036 + 7.7999999999999972 1.6141025415467254E-035 + 7.8599999999999994 3.7073782104881188E-035 + 7.9199999999999946 6.0770634590978721E-035 + 7.9799999999999969 8.5899612365001433E-035 + 8.0399999999999991 1.1094242314947914E-034 + 8.1000000000000014 1.3402607227638689E-034 + 8.1599999999999966 1.5271321804131325E-034 + 8.2199999999999989 1.6451668554168776E-034 + 8.2800000000000011 1.6645701722988671E-034 + 8.3399999999999963 1.5584208344955744E-034 + 8.3999999999999986 1.3015709039798313E-034 + 8.4600000000000009 8.7370051189606298E-035 + 8.5199999999999960 2.6183148511702741E-035 + 8.5799999999999983 -5.3624783889177015E-035 + 8.6400000000000006 -1.5091551563726276E-034 + 8.6999999999999957 -2.6299591921307852E-034 + 8.7599999999999980 -3.8539515108888285E-034 + 8.8200000000000003 -5.1171665306768638E-034 + 8.8799999999999955 -6.3363424225755260E-034 + 8.9399999999999977 -7.4103275623833750E-034 + 9.0000000000000000 -8.2224860010433812E-034 + 9.0599999999999952 -8.6458798572310173E-034 + 9.1199999999999974 -8.5499613951693835E-034 + 9.1799999999999997 -7.8088155581238036E-034 + 9.2399999999999949 -6.3121820155644388E-034 + 9.2999999999999972 -3.9771370409979799E-034 + 9.3599999999999994 -7.6086920734587088E-035 + 9.4199999999999946 3.3259477336760587E-034 + 9.4799999999999969 8.2068024521498347E-034 + 9.5399999999999991 1.3728689195063913E-033 + 9.5999999999999943 1.9654203836928403E-033 + 9.6599999999999966 2.5658528411534067E-033 + 9.7199999999999989 3.1331005362893151E-033 + 9.7800000000000011 3.6183848551548703E-033 + 9.8399999999999963 3.9668242715197111E-033 + 9.8999999999999986 4.1199313995906189E-033 + 9.9600000000000009 4.0188227505092851E-033 + 10.019999999999996 3.6083022468489348E-033 + 10.079999999999998 2.8416122948343959E-033 + 10.140000000000001 1.6856934870004727E-033 + 10.199999999999996 1.2670594182981371E-034 + 10.259999999999998 -1.8245305805615800E-033 + 10.320000000000000 -4.1275291171992266E-033 + 10.379999999999995 -6.7080633299759638E-033 + 10.439999999999998 -9.4554395084446597E-033 + 10.500000000000000 -1.2221629853080080E-032 + 10.559999999999995 -1.4822737945054465E-032 + 10.619999999999997 -1.7043157137113809E-032 + 10.680000000000000 -1.8642779421871064E-032 + 10.739999999999995 -1.9367347508853679E-032 + 10.799999999999997 -1.8962024295650974E-032 + 10.859999999999999 -1.7187920703343012E-032 + 10.919999999999995 -1.3841169364397249E-032 + 10.979999999999997 -8.7738662895958371E-033 + 11.039999999999999 -1.9159460975271322E-033 + 11.099999999999994 6.7031488745839718E-033 + 11.159999999999997 1.6934399922460232E-032 + 11.219999999999999 2.8492234622900811E-032 + 11.280000000000001 4.0942325516726975E-032 + 11.339999999999996 5.3695797027543610E-032 + 11.399999999999999 6.6011470183733382E-032 + 11.460000000000001 7.7007655774370605E-032 + 11.519999999999996 8.5684686903690850E-032 + 11.579999999999998 9.0959074316367984E-032 + 11.640000000000001 9.1709777195583093E-032 + 11.699999999999996 8.6836414204683903E-032 + 11.759999999999998 7.5328718545296312E-032 + 11.820000000000000 5.6345855469004188E-032 + 11.879999999999995 2.9303272137083548E-032 + 11.939999999999998 -6.0357436990804115E-033 + 12.000000000000000 -4.9467760716592373E-032 + 12.059999999999995 -1.0026066336042431E-031 + 12.119999999999997 -1.5707432298651640E-031 + 12.180000000000000 -2.1789682178800969E-031 + 12.239999999999995 -2.8000269233968112E-031 + 12.299999999999997 -3.3994071783687700E-031 + 12.359999999999999 -3.9355904796490090E-031 + 12.419999999999995 -4.3607478915114840E-031 + 12.479999999999997 -4.6219600086096998E-031 + 12.539999999999999 -4.6630225449269841E-031 + 12.599999999999994 -4.4268928144054682E-031 + 12.659999999999997 -3.8588073485950279E-031 + 12.719999999999999 -2.9100764592335449E-031 + 12.780000000000001 -1.5425208257464794E-031 + 12.839999999999996 2.6652884479392387E-032 + 12.899999999999999 2.5188122462877406E-031 + 12.960000000000001 5.1895011807716417E-031 + 13.019999999999996 8.2216330682066655E-031 + 13.079999999999998 1.1520978100020709E-030 + 13.140000000000001 1.4951792670121255E-030 + 13.199999999999996 1.8333993739348048E-030 + 13.259999999999998 2.1442348906917838E-030 + 13.320000000000000 2.4008344920505699E-030 + 13.379999999999995 2.5725384676906702E-030 + 13.439999999999998 2.6257977633072796E-030 + 13.500000000000000 2.5255453412883720E-030 + 13.559999999999995 2.2370638277123871E-030 + 13.619999999999997 1.7283651441795602E-030 + 13.680000000000000 9.7307007171519817E-031 + 13.739999999999995 -4.6265016145772434E-032 + 13.799999999999997 -1.3344768147185742E-030 + 13.859999999999999 -2.8799370873334423E-030 + 13.919999999999995 -4.6507236205268838E-030 + 13.979999999999997 -6.5911027643585315E-030 + 14.039999999999999 -8.6186634334890873E-030 + 14.099999999999994 -1.0622494956747870E-029 + 14.159999999999997 -1.2462840238306056E-029 + 14.219999999999999 -1.3972670468328139E-029 + 14.280000000000001 -1.4961616062248242E-029 + 14.339999999999996 -1.5222641342286540E-029 + 14.399999999999999 -1.4541752544039355E-029 + 14.460000000000001 -1.2710904219433925E-029 + 14.519999999999996 -9.5440508939492326E-030 + 14.579999999999998 -4.8960787108941500E-030 + 14.640000000000001 1.3159550621398423E-030 + 14.699999999999996 9.0901711808613580E-030 + 14.759999999999998 1.8317038563523449E-029 + 14.820000000000000 2.8757974729063597E-029 + 14.879999999999995 4.0027281720860786E-029 + 14.939999999999998 5.1579623844093825E-029 + 15.000000000000000 6.2705444895480037E-029 + 15.059999999999995 7.2536745006192543E-029 + 15.119999999999997 8.0065564621732898E-029 + 15.180000000000000 8.4177231824520110E-029 + 15.239999999999995 8.3699834223941151E-029 + 15.299999999999997 7.7470702196326769E-029 + 15.359999999999999 6.4419506644525069E-029 + 15.419999999999995 4.3666476371686607E-029 + 15.479999999999997 1.4632550101498398E-029 + 15.539999999999999 -2.2843190514694196E-029 + 15.599999999999994 -6.8385292283416980E-029 + 15.659999999999997 -1.2097105606190432E-028 + 15.719999999999999 -1.7883667274596106E-028 + 15.780000000000001 -2.3941128044108030E-028 + 15.839999999999996 -2.9929045808989874E-028 + 15.899999999999999 -3.5426102492690428E-028 + 15.960000000000001 -3.9938798196407255E-028 + 16.019999999999996 -4.2917289516689912E-028 + 16.079999999999998 -4.3779015860062617E-028 + 16.140000000000001 -4.1940413338556071E-028 + 16.200000000000003 -3.6856426485719974E-028 + 16.259999999999991 -2.8067010995675737E-028 + 16.319999999999993 -1.5249108140384476E-028 + 16.379999999999995 1.7282205601061453E-029 + 16.439999999999998 2.2748477759306307E-028 + 16.500000000000000 4.7396039376764443E-028 + 16.560000000000002 7.4912453802803712E-028 + 16.620000000000005 1.0416560935788706E-027 + 16.679999999999993 1.3363686300503101E-027 + 16.739999999999995 1.6143129291331978E-027 + 16.799999999999997 1.8531561667770446E-027 + 16.859999999999999 2.0278775381228012E-027 + 16.920000000000002 2.1118053372001634E-027 + 16.980000000000004 2.0780050508836257E-027 + 17.039999999999992 1.9010035829410656E-027 + 17.099999999999994 1.5588129584395067E-027 + 17.159999999999997 1.0351838918984434E-027 + 17.219999999999999 3.2199247793334109E-028 + 17.280000000000001 -5.7837073954928289E-028 + 17.340000000000003 -1.6507661470599459E-027 + 17.399999999999991 -2.8654068671887644E-027 + 17.459999999999994 -4.1764985914775821E-027 + 17.519999999999996 -5.5216244472940703E-027 + 17.579999999999998 -6.8220803218617415E-027 + 17.640000000000001 -7.9843453645825832E-027 + 17.700000000000003 -8.9028404121983811E-027 + 17.759999999999991 -9.4640728753880021E-027 + 17.819999999999993 -9.5521974344299060E-027 + 17.879999999999995 -9.0559422584336699E-027 + 17.939999999999998 -7.8767345022545605E-027 + 18.000000000000000 -5.9377656894315614E-027 + 18.060000000000002 -3.1936081658421060E-027 + 18.120000000000005 3.6011606582018184E-028 + 18.179999999999993 4.6776233840981454E-027 + 18.239999999999995 9.6551146249201607E-027 + 18.299999999999997 1.5124942345793512E-026 + 18.359999999999999 2.0852584200261789E-026 + 18.420000000000002 2.6537213391296021E-026 + 18.480000000000004 3.1816547303476485E-026 + 18.539999999999992 3.6276579379903861E-026 + 18.599999999999994 3.9466551750260552E-026 + 18.659999999999997 4.0919323834182730E-026 + 18.719999999999999 4.0176931215449235E-026 + 18.780000000000001 3.6820832877541511E-026 + 18.840000000000003 3.0505852029209890E-026 + 18.899999999999991 2.0996493853638040E-026 + 18.959999999999994 8.2038371730429041E-027 + 19.019999999999996 -7.7791495908779747E-027 + 19.079999999999998 -2.6646370316840907E-026 + 19.140000000000001 -4.7854136495573592E-026 + 19.200000000000003 -7.0606347655943075E-026 + 19.259999999999991 -9.3852077547217090E-026 + 19.319999999999993 -1.1629813215621975E-025 + 19.379999999999995 -1.3643878921173630E-025 + 19.439999999999998 -1.5260410976276080E-025 + 19.500000000000000 -1.6302763660999696E-025 + 19.560000000000002 -1.6593302157048564E-025 + 19.620000000000005 -1.5963797725208956E-025 + 19.679999999999993 -1.4267274540556600E-025 + 19.739999999999995 -1.1390863420112696E-025 + 19.799999999999997 -7.2690843545301741E-026 + 19.859999999999999 -1.8968631682640001E-026 + 19.920000000000002 4.6585481059894132E-026 + 19.980000000000004 1.2247658971492637E-025 + 20.039999999999992 2.0631786959026706E-025 + 20.099999999999994 2.9480024767960262E-025 + 20.159999999999997 3.8371024477085637E-025 + 20.219999999999999 4.6800379965200169E-025 + 20.280000000000001 5.4194200173560938E-025 + 20.340000000000003 5.9929210719330224E-025 + 20.399999999999991 6.3359423222305182E-025 + 20.459999999999994 6.3848963011224367E-025 + 20.519999999999996 6.0810361475661021E-025 + 20.579999999999998 5.3746999116963809E-025 + 20.640000000000001 4.2298055486771793E-025 + 20.700000000000003 2.6283868927273541E-025 + 20.759999999999991 5.7491457988782798E-026 + 20.819999999999993 -1.8998789288380593E-025 + 20.879999999999995 -4.7359733364691393E-025 + 20.939999999999998 -7.8421478690636652E-025 + 21.000000000000000 -1.1095474303533921E-024 + 21.060000000000002 -1.4342501939300025E-024 + 21.120000000000005 -1.7402348819578911E-024 + 21.179999999999993 -2.0071861435246576E-024 + 21.239999999999995 -2.2132910102561208E-024 + 21.299999999999997 -2.3361778394665045E-024 + 21.359999999999999 -2.3540487436573420E-024 + 21.420000000000002 -2.2469759382164129E-024 + 21.480000000000004 -1.9983177262084115E-024 + 21.539999999999992 -1.5961984924673471E-024 + 21.599999999999994 -1.0349795458343078E-024 + 21.659999999999997 -3.1664300862625179E-025 + 21.719999999999999 5.4800416932258971E-025 + 21.780000000000001 1.5383986221606365E-024 + 21.840000000000003 2.6236588290443334E-024 + 21.899999999999991 3.7624828429303925E-024 + 21.959999999999994 4.9035870538431944E-024 + 22.019999999999996 5.9867512773504372E-024 + 22.079999999999998 6.9445117627575462E-024 + 22.140000000000001 7.7045198533432433E-024 + 22.200000000000003 8.1925481051744313E-024 + 22.259999999999991 8.3360875417541938E-024 + 22.319999999999993 8.0684471970858288E-024 + 22.379999999999995 7.3332143179491789E-024 + 22.439999999999998 6.0889003645670202E-024 + 22.500000000000000 4.3135690648722364E-024 + 22.560000000000002 2.0091919204002445E-024 + 22.619999999999990 -7.9453620916217117E-025 + 22.679999999999993 -4.0371976873280435E-024 + 22.739999999999995 -7.6257587125050391E-024 + 22.799999999999997 -1.1434050339087806E-023 + 22.859999999999999 -1.5303866462101294E-023 + 22.920000000000002 -1.9047874169927648E-023 + 22.980000000000004 -2.2454470503784955E-023 + 23.039999999999992 -2.5294642287767224E-023 + 23.099999999999994 -2.7330788942908447E-023 + 23.159999999999997 -2.8327371955717845E-023 + 23.219999999999999 -2.8063122485490074E-023 + 23.280000000000001 -2.6344444944191770E-023 + 23.340000000000003 -2.3019529700526993E-023 + 23.399999999999991 -1.7992556567485432E-023 + 23.459999999999994 -1.1237320200445231E-023 + 23.519999999999996 -2.8094955018291376E-024 + 23.579999999999998 7.1432763534935279E-024 + 23.640000000000001 1.8374294522956901E-023 + 23.700000000000003 3.0534525979414997E-023 + 23.759999999999991 4.3173873084416175E-023 + 23.819999999999993 5.5747615357721701E-023 + 23.879999999999995 6.7628508092654010E-023 + 23.939999999999998 7.8124740923978638E-023 + 24.000000000000000 8.6503841263730491E-023 + 24.060000000000002 9.2022193042072591E-023 + 24.119999999999990 9.3959582674694775E-023 + 24.179999999999993 9.1657879813583890E-023 + 24.239999999999995 8.4562568299887413E-023 + 24.299999999999997 7.2265563039959642E-023 + 24.359999999999999 5.4547416237355251E-023 + 24.420000000000002 3.1416825455124433E-023 + 24.480000000000004 3.1451211675002326E-024 + 24.539999999999992 -2.9706678409704008E-023 + 24.599999999999994 -6.6270626975057023E-023 + 24.659999999999997 -1.0536672877933023E-022 + 24.719999999999999 -1.4551191765896319E-022 + 24.780000000000001 -1.8494493217183095E-022 + 24.840000000000003 -2.2166804798310925E-022 + 24.899999999999991 -2.5350642069457084E-022 + 24.959999999999994 -2.7818460659211909E-022 + 25.019999999999996 -2.9341932337038892E-022 + 25.079999999999998 -2.9702636100212321E-022 + 25.140000000000001 -2.8703874463860326E-022 + 25.200000000000003 -2.6183216528401592E-022 + 25.259999999999991 -2.2025286897911118E-022 + 25.319999999999993 -1.6174223394723257E-022 + 25.379999999999995 -8.6451950076266291E-023 + 25.439999999999998 4.6573944556773838E-024 + 25.500000000000000 1.0974111257969374E-022 + 25.560000000000002 2.2602567079362483E-022 + 25.619999999999990 3.4980094893967649E-022 + 25.679999999999993 4.7645532321502106E-022 + 25.739999999999995 6.0055832775265803E-022 + 25.799999999999997 7.1599365534222966E-022 + 25.859999999999999 8.1614398545968915E-022 + 25.920000000000002 8.9412678017361156E-022 + 25.980000000000004 9.4307664804242926E-022 + 26.039999999999992 9.5646899506592344E-022 + 26.099999999999994 9.2847504133179403E-022 + 26.159999999999997 8.5433635025646246E-022 + 26.219999999999999 7.3074499195141568E-022 + 26.280000000000001 5.5621123687007273E-022 + 26.340000000000003 3.3140074177139160E-022 + 26.399999999999991 5.9420830383428637E-023 + 26.459999999999994 -2.5396538480662979E-022 + 26.519999999999996 -6.0021653517497981E-022 + 26.579999999999998 -9.6800237436932354E-022 + 26.640000000000001 -1.3433211456876257E-021 + 26.700000000000003 -1.7097578410042417E-021 + 26.759999999999991 -2.0488930273052087E-021 + 26.819999999999993 -2.3408641843041039E-021 + 26.879999999999995 -2.5650751701697678E-021 + 26.939999999999998 -2.7010451507327836E-021 + 27.000000000000000 -2.7293741974611029E-021 + 27.060000000000002 -2.6328013421249113E-021 + 27.119999999999990 -2.3973179828432620E-021 + 27.179999999999993 -2.0132934683304744E-021 + 27.239999999999995 -1.4765629196731371E-021 + 27.299999999999997 -7.8942384581845650E-022 + 27.359999999999999 3.8520568865925372E-023 + 27.420000000000002 9.8972767677201949E-022 + 27.480000000000004 2.0383528402039862E-021 + 27.539999999999992 3.1502119336871307E-021 + 27.599999999999994 4.2831143851279205E-021 + 27.659999999999997 5.3876061158195148E-021 + 27.719999999999999 6.4081442351828332E-021 + 27.780000000000001 7.2847097315609605E-021 + 27.840000000000003 7.9548433084863934E-021 + 27.899999999999991 8.3560735028651810E-021 + 27.959999999999994 8.4286793975212806E-021 + 28.019999999999996 8.1186991495462569E-021 + 28.079999999999998 7.3810950430074544E-021 + 28.140000000000001 6.1829330619151252E-021 + 28.200000000000003 4.5064492809465170E-021 + 28.259999999999991 2.3518263191923039E-021 + 28.319999999999993 -2.6046937207950898E-022 + 28.379999999999995 -3.2879766551367239E-021 + 28.439999999999998 -6.6653110229369045E-021 + 28.500000000000000 -1.0304179508158188E-020 + 28.560000000000002 -1.4094471519249889E-020 + 28.619999999999990 -1.7906540132523351E-020 + 28.679999999999993 -2.1594709076167685E-020 + 28.739999999999995 -2.5002062089823413E-020 + 28.799999999999997 -2.7966443215652910E-020 + 28.859999999999999 -3.0327614076447668E-020 + 28.920000000000002 -3.1935391958182677E-020 + 28.980000000000004 -3.2658508917772923E-020 + 29.039999999999992 -3.2393989843065238E-020 + 29.099999999999994 -3.1076669257345593E-020 + 29.159999999999997 -2.8688419198072575E-020 + 29.219999999999999 -2.5266729621582235E-020 + 29.280000000000001 -2.0912155884938410E-020 + 29.340000000000003 -1.5794191146287677E-020 + 29.399999999999991 -1.0155078160616158E-020 + 29.459999999999994 -4.3112504491487279E-021 + 29.519999999999996 1.3480685806590431E-021 + 29.579999999999998 6.3652850337543325E-021 + 29.640000000000001 1.0222005429574883E-020 + 29.700000000000003 1.2349966568290009E-020 + 29.759999999999991 1.2144999760192531E-020 + 29.819999999999993 8.9839276210487988E-021 + 29.879999999999995 2.2438765579273213E-021 + 29.939999999999998 -8.6765313272451434E-021 + 30.000000000000000 -2.4334770353098870E-020 + 30.060000000000002 -4.5221807216784150E-020 + 30.119999999999990 -7.1740300446833616E-020 + 30.179999999999993 -1.0418450837953540E-019 + 30.239999999999995 -1.4272325022367404E-019 + 30.299999999999997 -1.8738695202690259E-019 + 30.359999999999999 -2.3805961549266997E-019 + 30.420000000000002 -2.9447729803471546E-019 + 30.480000000000004 -3.5623361215997512E-019 + 30.539999999999992 -4.2279231153665251E-019 + 30.599999999999994 -4.9350827258582769E-019 + 30.659999999999997 -5.6765649951521004E-019 + 30.719999999999999 -6.4446838680575580E-019 + 30.780000000000001 -7.2317533029288227E-019 + 30.840000000000003 -8.0305844212441159E-019 + 30.899999999999991 -8.8350196698223177E-019 + 30.959999999999994 -9.6405066162360878E-019 + 31.019999999999996 -1.0444663488357627E-018 + 31.079999999999998 -1.1247840680420411E-018 + 31.140000000000001 -1.2053634098306671E-018 + 31.200000000000003 -1.2869317485588545E-018 + 31.259999999999991 -1.3706193304793383E-018 + 31.319999999999993 -1.4579801606334317E-018 + 31.379999999999995 -1.5509997339800552E-018 + 31.439999999999998 -1.6520842319478288E-018 + 31.500000000000000 -1.7640304514675886E-018 + 31.560000000000002 -1.8899755117243681E-018 + 31.619999999999990 -2.0333253909967282E-018 + 31.679999999999993 -2.1976580147618851E-018 + 31.739999999999995 -2.3866076547971380E-018 + 31.799999999999997 -2.6037239310483173E-018 + 31.859999999999999 -2.8523141073078957E-018 + 31.920000000000002 -3.1352606648769025E-018 + 31.980000000000004 -3.4548255487898877E-018 + 32.039999999999992 -3.8124337469915394E-018 + 32.099999999999994 -4.2084474887118540E-018 + 32.159999999999997 -4.6419280333354940E-018 + 32.219999999999999 -5.1103872239720088E-018 + 32.280000000000001 -5.6095222411995236E-018 + 32.340000000000003 -6.1329663474167216E-018 + 32.399999999999991 -6.6720020185171510E-018 + 32.459999999999994 -7.2152875206600880E-018 + 32.519999999999996 -7.7485698134371752E-018 + 32.579999999999998 -8.2543847980046227E-018 + 32.640000000000001 -8.7117356877561616E-018 + 32.700000000000003 -9.0957618116133034E-018 + 32.759999999999991 -9.3773777178009492E-018 + 32.819999999999993 -9.5228742660138574E-018 + 32.879999999999995 -9.4934667187474880E-018 + 32.939999999999998 -9.2447960882577958E-018 + 33.000000000000000 -8.7263534726658807E-018 + 33.060000000000002 -7.8807897856788018E-018 + 33.119999999999990 -6.6431671687088463E-018 + 33.179999999999993 -4.9400092796835405E-018 + 33.239999999999995 -2.6882990256640541E-018 + 33.299999999999997 2.0584980864016189E-019 + 33.359999999999999 3.8486695494146920E-018 + 33.420000000000002 8.3604229956687886E-018 + 33.480000000000004 1.3877464405756362E-017 + 33.539999999999992 2.0554572764892477E-017 + 33.599999999999994 2.8567870754118987E-017 + 33.659999999999997 3.8117775924118044E-017 + 33.719999999999999 4.9432840918083307E-017 + 33.780000000000001 6.2774204003444457E-017 + 33.840000000000003 7.8440249231755028E-017 + 33.899999999999991 9.6772194316167695E-017 + 33.959999999999994 1.1816079151796561E-016 + 34.019999999999996 1.4305314317351914E-016 + 34.079999999999998 1.7196119894762410E-016 + 34.140000000000001 2.0547065130764280E-016 + 34.200000000000003 2.4425113618977458E-016 + 34.259999999999991 2.8906788960941452E-016 + 34.319999999999993 3.4079378218100848E-016 + 34.379999999999995 4.0042340561260205E-016 + 34.439999999999998 4.6908838027842579E-016 + 34.500000000000000 5.4807384488150555E-016 + 34.560000000000002 6.3883651361924451E-016 + 34.619999999999990 7.4302397277972196E-016 + 34.679999999999993 8.6249625385000103E-016 + 34.739999999999995 9.9934817257542348E-016 + 34.799999999999997 1.1559344482195236E-015 + 34.859999999999999 1.3348962318652474E-015 + 34.920000000000002 1.5391870768805247E-015 + 34.980000000000004 1.7721062488879623E-015 + 35.039999999999992 2.0373278391939434E-015 + 35.099999999999994 2.3389368874367620E-015 + 35.159999999999997 2.6814657956949550E-015 + 35.219999999999999 3.0699308378367643E-015 + 35.280000000000001 3.5098769936429481E-015 + 35.340000000000003 4.0074194426848716E-015 + 35.399999999999991 4.5692912385009256E-015 + 35.459999999999994 5.2028914781002148E-015 + 35.519999999999996 5.9163395153841353E-015 + 35.579999999999998 6.7185283934980477E-015 + 35.640000000000001 7.6191844749648350E-015 + 35.700000000000003 8.6289319526161042E-015 + 35.759999999999991 9.7593463044460581E-015 + 35.819999999999993 1.1023031538523213E-014 + 35.879999999999995 1.2433687766482680E-014 + 35.939999999999998 1.4006167844497928E-014 + 36.000000000000000 1.5756566489608739E-014 + 36.060000000000002 1.7702276448765788E-014 + 36.119999999999990 1.9862062613164158E-014 + 36.179999999999993 2.2256131775315381E-014 + 36.239999999999995 2.4906198545352100E-014 + 36.299999999999997 2.7835526905727369E-014 + 36.359999999999999 3.1068980089980789E-014 + 36.420000000000002 3.4633084901569256E-014 + 36.479999999999990 3.8556016627887835E-014 + 36.539999999999992 4.2867612733335143E-014 + 36.599999999999994 4.7599361884326052E-014 + 36.659999999999997 5.2784341610157983E-014 + 36.719999999999999 5.8457130746071648E-014 + 36.780000000000001 6.4653707468201155E-014 + 36.840000000000003 7.1411255943708952E-014 + 36.899999999999991 7.8767948903022626E-014 + 36.959999999999994 8.6762614985722959E-014 + 37.019999999999996 9.5434384917383168E-014 + 37.079999999999998 1.0482217517660505E-013 + 37.140000000000001 1.1496407171640372E-013 + 37.200000000000003 1.2589666054488324E-013 + 37.259999999999991 1.3765407404489619E-013 + 37.319999999999993 1.5026689390599069E-013 + 37.379999999999995 1.6376088757907916E-013 + 37.439999999999998 1.7815541424223657E-013 + 37.500000000000000 1.9346160750553813E-013 + 37.560000000000002 2.0968023036939884E-013 + 37.619999999999990 2.2679895702086559E-013 + 37.679999999999993 2.4478951138482733E-013 + 37.739999999999995 2.6360399927891398E-013 + 37.799999999999997 2.8317085556415078E-013 + 37.859999999999999 3.0339002034047131E-013 + 37.920000000000002 3.2412721508887949E-013 + 37.979999999999990 3.4520777558202999E-013 + 38.039999999999992 3.6640899826877245E-013 + 38.099999999999994 3.8745160344345262E-013 + 38.159999999999997 4.0799003432446381E-013 + 38.219999999999999 4.2760095449098196E-013 + 38.280000000000001 4.4577055732980285E-013 + 38.340000000000003 4.6187970790682497E-013 + 38.399999999999991 4.7518753940104352E-013 + 38.459999999999994 4.8481251443338420E-013 + 38.519999999999996 4.8971016067752041E-013 + 38.579999999999998 4.8864958285687276E-013 + 38.640000000000001 4.8018590037688604E-013 + 38.700000000000003 4.6262862670917379E-013 + 38.759999999999991 4.3400667023109221E-013 + 38.819999999999993 3.9203027871851068E-013 + 38.879999999999995 3.3404644366755507E-013 + 38.939999999999998 2.5698702448463588E-013 + 39.000000000000000 1.5731735186272144E-013 + 39.060000000000002 3.0971283404204751E-014 + 39.119999999999990 -1.2671618840258068E-013 + 39.179999999999993 -3.2108801840613300E-013 + 39.239999999999995 -5.5824924287070068E-013 + 39.299999999999997 -8.4516313372011226E-013 + 39.359999999999999 -1.1897636757865822E-012 + 39.420000000000002 -1.6010642654884756E-012 + 39.479999999999990 -2.0892982270392383E-012 + 39.539999999999992 -2.6660597653191970E-012 + 39.599999999999994 -3.3444665191903440E-012 + 39.659999999999997 -4.1393365468820570E-012 + 39.719999999999999 -5.0673988965006053E-012 + 39.780000000000001 -6.1474921207161997E-012 + 39.840000000000003 -7.4008218648465812E-012 + 39.899999999999991 -8.8512228572959208E-012 + 39.959999999999994 -1.0525455067974904E-011 + 40.019999999999996 -1.2453515319443151E-011 + 40.079999999999998 -1.4669003365287132E-011 + 40.140000000000001 -1.7209515018416565E-011 + 40.200000000000003 -2.0117051902908123E-011 + 40.259999999999991 -2.3438513186241757E-011 + 40.319999999999993 -2.7226212230670255E-011 + 40.379999999999995 -3.1538404199600431E-011 + 40.439999999999998 -3.6439938239101192E-011 + 40.500000000000000 -4.2002919551313625E-011 + 40.560000000000002 -4.8307451129236529E-011 + 40.619999999999990 -5.5442406392967153E-011 + 40.679999999999993 -6.3506330748439322E-011 + 40.739999999999995 -7.2608391263740428E-011 + 40.799999999999997 -8.2869395576275498E-011 + 40.859999999999999 -9.4422923013788360E-011 + 40.920000000000002 -1.0741651531014478E-010 + 40.979999999999990 -1.2201300772557942E-010 + 41.039999999999992 -1.3839196523286020E-010 + 41.099999999999994 -1.5675121835037204E-010 + 41.159999999999997 -1.7730851856549007E-010 + 41.219999999999999 -2.0030327581001877E-010 + 41.280000000000001 -2.2599850965155335E-010 + 41.340000000000003 -2.5468308916750403E-010 + 41.399999999999991 -2.8667363332023597E-010 + 41.459999999999994 -3.2231716731707022E-010 + 41.519999999999996 -3.6199344496535023E-010 + 41.579999999999998 -4.0611785403969919E-010 + 41.640000000000001 -4.5514394009738823E-010 + 41.700000000000003 -5.0956706186202436E-010 + 41.759999999999991 -5.6992707058395652E-010 + 41.819999999999993 -6.3681192193264036E-010 + 41.879999999999995 -7.1086167044642613E-010 + 41.939999999999998 -7.9277145460589136E-010 + 42.000000000000000 -8.8329620691039305E-010 + 42.060000000000002 -9.8325463655124568E-010 + 42.119999999999990 -1.0935331641541671E-009 + 42.179999999999993 -1.2150911170300649E-009 + 42.239999999999995 -1.3489648873280593E-009 + 42.299999999999997 -1.4962724268368133E-009 + 42.359999999999999 -1.6582192565562098E-009 + 42.420000000000002 -1.8361011059983981E-009 + 42.479999999999990 -2.0313115666281391E-009 + 42.539999999999992 -2.2453449475306958E-009 + 42.599999999999994 -2.4798018934377308E-009 + 42.659999999999997 -2.7363944967468522E-009 + 42.719999999999999 -3.0169490777851780E-009 + 42.780000000000001 -3.3234120205357762E-009 + 42.840000000000003 -3.6578527686304923E-009 + 42.899999999999991 -4.0224661959141737E-009 + 42.959999999999994 -4.4195758506754621E-009 + 43.019999999999996 -4.8516345642713772E-009 + 43.079999999999998 -5.3212263815175992E-009 + 43.140000000000001 -5.8310640694943301E-009 + 43.200000000000003 -6.3839883388752544E-009 + 43.259999999999991 -6.9829621080106361E-009 + 43.319999999999993 -7.6310627258358904E-009 + 43.379999999999995 -8.3314785242210831E-009 + 43.439999999999998 -9.0874909597864904E-009 + 43.500000000000000 -9.9024630312296881E-009 + 43.560000000000002 -1.0779821240874765E-008 + 43.619999999999990 -1.1723027755638842E-008 + 43.679999999999993 -1.2735559930829549E-008 + 43.739999999999995 -1.3820867073636673E-008 + 43.799999999999997 -1.4982337626783423E-008 + 43.859999999999999 -1.6223246965563689E-008 + 43.920000000000002 -1.7546705842860873E-008 + 43.979999999999990 -1.8955589305406821E-008 + 44.039999999999992 -2.0452462985872366E-008 + 44.099999999999994 -2.2039499474208768E-008 + 44.159999999999997 -2.3718376055973653E-008 + 44.219999999999999 -2.5490149418670929E-008 + 44.280000000000001 -2.7355139614626251E-008 + 44.340000000000003 -2.9312762891833760E-008 + 44.399999999999991 -3.1361376069495413E-008 + 44.459999999999994 -3.3498070377116514E-008 + 44.519999999999996 -3.5718460910869556E-008 + 44.579999999999998 -3.8016436401653800E-008 + 44.640000000000001 -4.0383874486039826E-008 + 44.700000000000003 -4.2810335686467405E-008 + 44.759999999999991 -4.5282718592062536E-008 + 44.819999999999993 -4.7784848600396639E-008 + 44.879999999999995 -5.0297071002955056E-008 + 44.939999999999998 -5.2795733566562130E-008 + 45.000000000000000 -5.5252635790372529E-008 + 45.060000000000002 -5.7634463618297461E-008 + 45.119999999999990 -5.9902080654667862E-008 + 45.179999999999993 -6.2009801820282049E-008 + 45.239999999999995 -6.3904540162358231E-008 + 45.299999999999997 -6.5524929802970432E-008 + 45.359999999999999 -6.6800282226510196E-008 + 45.420000000000002 -6.7649485434456551E-008 + 45.479999999999990 -6.7979775446150367E-008 + 45.539999999999992 -6.7685382376645809E-008 + 45.599999999999994 -6.6645992816492722E-008 + 45.659999999999997 -6.4725232994355958E-008 + 45.719999999999999 -6.1768697249368923E-008 + 45.780000000000001 -5.7602115012936789E-008 + 45.840000000000003 -5.2029134258469217E-008 + 45.899999999999991 -4.4828931616039669E-008 + 45.959999999999994 -3.5753701741738087E-008 + 46.019999999999996 -2.4525631929168140E-008 + 46.079999999999998 -1.0834143991729353E-008 + 46.140000000000001 5.6678084257172074E-009 + 46.200000000000003 2.5367231090122839E-008 + 46.259999999999991 4.8695073303432726E-008 + 46.319999999999993 7.6130575950937131E-008 + 46.379999999999995 1.0820614792452361E-007 + 46.439999999999998 1.4551244903984221E-007 + 46.500000000000000 1.8870374739977189E-007 + 46.560000000000002 2.3850407776721104E-007 + 46.619999999999990 2.9571388391453337E-007 + 46.679999999999993 3.6121708482624576E-007 + 46.739999999999995 4.3598815601016568E-007 + 46.799999999999997 5.2110120603402056E-007 + 46.859999999999999 6.1773839446379953E-007 + 46.920000000000002 7.2719934182964944E-007 + 46.979999999999990 8.5091225663648773E-007 + 47.039999999999992 9.9044385057564413E-007 + 47.099999999999994 1.1475120695299661E-006 + 47.159999999999997 1.3239994159028891E-006 + 47.219999999999999 1.5219647961722981E-006 + 47.280000000000001 1.7436605450763491E-006 + 47.340000000000003 1.9915472724430172E-006 + 47.399999999999991 2.2683095027703679E-006 + 47.459999999999994 2.5768756202256542E-006 + 47.519999999999996 2.9204367780009201E-006 + 47.579999999999998 3.3024669927939412E-006 + 47.640000000000001 3.7267444171537787E-006 + 47.700000000000003 4.1973758309072193E-006 + 47.759999999999991 4.7188214730390117E-006 + 47.819999999999993 5.2959218336746739E-006 + 47.879999999999995 5.9339241216335965E-006 + 47.939999999999998 6.6385107750465079E-006 + 48.000000000000000 7.4158357373797780E-006 + 48.060000000000002 8.2725539020088067E-006 + 48.119999999999990 9.2158564982273145E-006 + 48.179999999999993 1.0253511590624581E-005 + 48.239999999999995 1.1393896507723074E-005 + 48.299999999999997 1.2646046956023268E-005 + 48.359999999999999 1.4019696856251669E-005 + 48.420000000000002 1.5525315926367981E-005 + 48.479999999999990 1.7174176863330498E-005 + 48.539999999999992 1.8978388059893722E-005 + 48.599999999999994 2.0950949831534159E-005 + 48.659999999999997 2.3105813794158380E-005 + 48.719999999999999 2.5457947698474740E-005 + 48.780000000000001 2.8023365836293072E-005 + 48.840000000000003 3.0819224344286147E-005 + 48.899999999999991 3.3863874747627060E-005 + 48.959999999999994 3.7176914003954788E-005 + 49.019999999999996 4.0779283716317601E-005 + 49.079999999999998 4.4693321629342734E-005 + 49.140000000000001 4.8942843838510270E-005 + 49.200000000000003 5.3553211226753408E-005 + 49.259999999999991 5.8551433455131314E-005 + 49.319999999999993 6.3966220233254855E-005 + 49.379999999999995 6.9828079461614544E-005 + 49.439999999999998 7.6169418568915810E-005 + 49.500000000000000 8.3024590117805705E-005 + 49.560000000000002 9.0430016223698898E-005 + 49.619999999999990 9.8424281602521458E-005 + 49.679999999999993 1.0704817582863840E-004 + 49.739999999999995 1.1634486569657929E-004 + 49.799999999999997 1.2635992529051761E-004 + 49.859999999999999 1.3714146707084301E-004 + 49.920000000000002 1.4874019604764019E-004 + 49.979999999999990 1.6120954235532926E-004 + 50.039999999999992 1.7460575464344313E-004 + 50.099999999999994 1.8898797683177145E-004 + 50.159999999999997 2.0441835048725380E-004 + 50.219999999999999 2.2096210987039566E-004 + 50.280000000000001 2.3868767321335430E-004 + 50.340000000000003 2.5766669035249092E-004 + 50.399999999999991 2.7797416646887970E-004 + 50.459999999999994 2.9968859447887313E-004 + 50.519999999999996 3.2289196873583575E-004 + 50.579999999999998 3.4766978792694189E-004 + 50.640000000000001 3.7411126161423494E-004 + 50.700000000000003 4.0230935481528349E-004 + 50.759999999999991 4.3236068811772520E-004 + 50.819999999999993 4.6436583946091685E-004 + 50.879999999999995 4.9842907226935510E-004 + 50.939999999999998 5.3465871192463711E-004 + 51.000000000000000 5.7316686951109773E-004 + 51.060000000000002 6.1406966980663623E-004 + 51.119999999999990 6.5748715464854885E-004 + 51.179999999999993 7.0354321770244109E-004 + 51.239999999999995 7.5236577100175957E-004 + 51.299999999999997 8.0408639709692985E-004 + 51.359999999999999 8.5884074847428020E-004 + 51.420000000000002 9.1676802622969570E-004 + 51.479999999999990 9.7801130268375001E-004 + 51.539999999999992 1.0427170032903084E-003 + 51.599999999999994 1.1110352486997572E-003 + 51.659999999999997 1.1831193527680579E-003 + 51.719999999999999 1.2591258552993746E-003 + 51.780000000000001 1.3392144132925497E-003 + 51.840000000000003 1.4235473901838833E-003 + 51.899999999999991 1.5122898271748314E-003 + 51.959999999999994 1.6056091694437466E-003 + 52.019999999999996 1.7036750127572301E-003 + 52.079999999999998 1.8066588799402190E-003 + 52.140000000000001 1.9147341165231485E-003 + 52.200000000000003 2.0280747481085997E-003 + 52.259999999999991 2.1468560187598625E-003 + 52.319999999999993 2.2712541790926130E-003 + 52.379999999999995 2.4014448204001154E-003 + 52.439999999999998 2.5376038162687299E-003 + 52.500000000000000 2.6799065048504480E-003 + 52.560000000000002 2.8285267776140171E-003 + 52.619999999999990 2.9836368072020600E-003 + 52.679999999999993 3.1454071067678166E-003 + 52.739999999999995 3.3140053495210524E-003 + 52.799999999999997 3.4895958156389690E-003 + 52.859999999999999 3.6723394882415550E-003 + 52.920000000000002 3.8623922416237272E-003 + 52.979999999999990 4.0599058584462428E-003 + 53.039999999999992 4.2650258152863805E-003 + 53.099999999999994 4.4778915085803075E-003 + 53.159999999999997 4.6986354383893088E-003 + 53.219999999999999 4.9273826989229335E-003 + 53.280000000000001 5.1642503301096345E-003 + 53.339999999999989 5.4093453241889685E-003 + 53.399999999999991 5.6627662139922524E-003 + 53.459999999999994 5.9246002903511411E-003 + 53.519999999999996 6.1949243038329485E-003 + 53.579999999999998 6.4738029923540937E-003 + 53.640000000000001 6.7612873064285496E-003 + 53.700000000000003 7.0574163855674143E-003 + 53.759999999999991 7.3622149468762924E-003 + 53.819999999999993 7.6756914537962290E-003 + 53.879999999999995 7.9978400718903019E-003 + 53.939999999999998 8.3286397743296773E-003 + 54.000000000000000 8.6680505604064036E-003 + 54.060000000000002 9.0160165852486412E-003 + 54.119999999999990 9.3724621832771034E-003 + 54.179999999999993 9.7372932017356067E-003 + 54.239999999999995 1.0110397507510411E-002 + 54.299999999999997 1.0491640649438042E-002 + 54.359999999999999 1.0880868149225582E-002 + 54.420000000000002 1.1277905412723470E-002 + 54.479999999999990 1.1682556993806012E-002 + 54.539999999999992 1.2094602703770949E-002 + 54.599999999999994 1.2513802104510996E-002 + 54.659999999999997 1.2939891688733319E-002 + 54.719999999999999 1.3372583548903265E-002 + 54.780000000000001 1.3811569249132793E-002 + 54.839999999999989 1.4256514753596374E-002 + 54.899999999999991 1.4707062800438271E-002 + 54.959999999999994 1.5162833133208086E-002 + 55.019999999999996 1.5623421334142037E-002 + 55.079999999999998 1.6088400559599897E-002 + 55.140000000000001 1.6557321590355036E-002 + 55.200000000000003 1.7029710139492647E-002 + 55.259999999999991 1.7505070386752822E-002 + 55.319999999999993 1.7982881235823672E-002 + 55.379999999999995 1.8462602523374019E-002 + 55.439999999999998 1.8943675262454086E-002 + 55.500000000000000 1.9425512829190163E-002 + 55.560000000000002 1.9907514789916404E-002 + 55.619999999999990 2.0389056911110249E-002 + 55.679999999999993 2.0869497509751721E-002 + 55.739999999999995 2.1348180456176438E-002 + 55.799999999999997 2.1824428486258929E-002 + 55.859999999999999 2.2297551310521902E-002 + 55.920000000000002 2.2766843655168748E-002 + 55.979999999999990 2.3231586125153181E-002 + 56.039999999999992 2.3691048086997915E-002 + 56.099999999999994 2.4144488022886077E-002 + 56.159999999999997 2.4591156586360741E-002 + 56.219999999999999 2.5030294780201575E-002 + 56.280000000000001 2.5461136529871867E-002 + 56.339999999999989 2.5882913912537643E-002 + 56.399999999999991 2.6294855317858069E-002 + 56.459999999999994 2.6696186956504424E-002 + 56.519999999999996 2.7086133842379609E-002 + 56.579999999999998 2.7463924207996496E-002 + 56.640000000000001 2.7828790426478109E-002 + 56.700000000000003 2.8179973051005270E-002 + 56.759999999999991 2.8516720258206486E-002 + 56.819999999999993 2.8838285484522618E-002 + 56.879999999999995 2.9143936134909634E-002 + 56.939999999999998 2.9432951608951909E-002 + 57.000000000000000 2.9704629236449346E-002 + 57.060000000000002 2.9958280103950824E-002 + 57.119999999999990 3.0193236099998300E-002 + 57.179999999999993 3.0408848005879511E-002 + 57.239999999999995 3.0604492878593556E-002 + 57.299999999999997 3.0779567490611580E-002 + 57.359999999999999 3.0933500836301184E-002 + 57.420000000000002 3.1065748213905477E-002 + 57.479999999999990 3.1175787303312164E-002 + 57.539999999999992 3.1263131160841125E-002 + 57.599999999999994 3.1327329970770784E-002 + 57.659999999999997 3.1367962694501844E-002 + 57.719999999999999 3.1384647941551255E-002 + 57.780000000000001 3.1377034145011119E-002 + 57.839999999999989 3.1344816876257842E-002 + 57.899999999999991 3.1287726629958074E-002 + 57.959999999999994 3.1205535285429291E-002 + 58.019999999999996 3.1098053999575891E-002 + 58.079999999999998 3.0965138024128380E-002 + 58.140000000000001 3.0806683524515623E-002 + 58.200000000000003 3.0622632025485891E-002 + 58.259999999999991 3.0412970608774129E-002 + 58.319999999999993 3.0177725852672754E-002 + 58.379999999999995 2.9916975121357013E-002 + 58.439999999999998 2.9630836461055212E-002 + 58.500000000000000 2.9319475100454052E-002 + 58.560000000000002 2.8983099265089383E-002 + 58.619999999999990 2.8621962897168330E-002 + 58.679999999999993 2.8236364564155462E-002 + 58.739999999999995 2.7826645693947737E-002 + 58.799999999999997 2.7393194173384205E-002 + 58.859999999999999 2.6936436948073052E-002 + 58.920000000000002 2.6456844743876089E-002 + 58.979999999999990 2.5954930639343388E-002 + 59.039999999999992 2.5431245022465472E-002 + 59.099999999999994 2.4886378152993213E-002 + 59.159999999999997 2.4320958646368823E-002 + 59.219999999999999 2.3735648205460199E-002 + 59.280000000000001 2.3131148919477297E-002 + 59.339999999999989 2.2508191334952226E-002 + 59.399999999999991 2.1867539416432168E-002 + 59.459999999999994 2.1209988756237697E-002 + 59.519999999999996 2.0536359311953738E-002 + 59.579999999999998 1.9847499984138300E-002 + 59.640000000000001 1.9144283922784330E-002 + 59.700000000000003 1.8427602252938696E-002 + 59.759999999999991 1.7698372829463255E-002 + 59.819999999999993 1.6957527679108485E-002 + 59.879999999999995 1.6206016251381440E-002 + 59.939999999999998 1.5444801130135528E-002 + 60.000000000000000 1.4674855887958535E-002 + 60.060000000000002 1.3897165865767613E-002 + 60.119999999999990 1.3112721132441135E-002 + 60.179999999999993 1.2322518373488169E-002 + 60.239999999999995 1.1527555836557577E-002 + 60.299999999999997 1.0728834404137629E-002 + 60.359999999999999 9.9273508854598735E-003 + 60.420000000000002 9.1240993801771746E-003 + 60.479999999999990 8.3200685395429814E-003 + 60.539999999999992 7.5162381136802663E-003 + 60.599999999999994 6.7135777914123142E-003 + 60.659999999999997 5.9130459214485308E-003 + 60.719999999999999 5.1155864353003315E-003 + 60.780000000000001 4.3221265566626040E-003 + 60.839999999999989 3.5335764994371154E-003 + 60.899999999999991 2.7508272115462909E-003 + 60.959999999999994 1.9747482827100738E-003 + 61.019999999999996 1.2061860855036388E-003 + 61.079999999999998 4.4596296555636549E-004 + 61.140000000000001 -3.0512446996282965E-004 + 61.200000000000003 -1.0463061895954887E-003 + 61.259999999999991 -1.7768405631860701E-003 + 61.319999999999993 -2.4960162756956063E-003 + 61.379999999999995 -3.2031513203964893E-003 + 61.439999999999998 -3.8975953711429738E-003 + 61.500000000000000 -4.5787298079159574E-003 + 61.560000000000002 -5.2459695226826000E-003 + 61.619999999999990 -5.8987633640064331E-003 + 61.679999999999993 -6.5365932655745071E-003 + 61.739999999999995 -7.1589766923608848E-003 + 61.799999999999997 -7.7654648082256033E-003 + 61.859999999999999 -8.3556448023157544E-003 + 61.920000000000002 -8.9291396238934465E-003 + 61.979999999999990 -9.4856062311977993E-003 + 62.039999999999992 -1.0024736165331860E-002 + 62.099999999999994 -1.0546258161248209E-002 + 62.159999999999997 -1.1049933461802429E-002 + 62.219999999999999 -1.1535559496616239E-002 + 62.280000000000001 -1.2002966403181492E-002 + 62.339999999999989 -1.2452019688835225E-002 + 62.399999999999991 -1.2882615331042247E-002 + 62.459999999999994 -1.3294683031137827E-002 + 62.519999999999996 -1.3688184623366430E-002 + 62.579999999999998 -1.4063111626356701E-002 + 62.640000000000001 -1.4419485898451297E-002 + 62.700000000000003 -1.4757359389286793E-002 + 62.759999999999991 -1.5076811809652892E-002 + 62.819999999999993 -1.5377947974561112E-002 + 62.879999999999995 -1.5660900534146316E-002 + 62.939999999999998 -1.5925829534924940E-002 + 63.000000000000000 -1.6172914186558324E-002 + 63.060000000000002 -1.6402362091797327E-002 + 63.119999999999990 -1.6614397968505171E-002 + 63.179999999999993 -1.6809268328510547E-002 + 63.239999999999995 -1.6987239296597262E-002 + 63.299999999999997 -1.7148596929174243E-002 + 63.359999999999999 -1.7293641295530536E-002 + 63.420000000000002 -1.7422690279690400E-002 + 63.479999999999990 -1.7536075750594675E-002 + 63.539999999999992 -1.7634142500266573E-002 + 63.599999999999994 -1.7717247722573843E-002 + 63.659999999999997 -1.7785761991603609E-002 + 63.719999999999999 -1.7840061614190439E-002 + 63.780000000000001 -1.7880534720545564E-002 + 63.839999999999989 -1.7907577345317567E-002 + 63.899999999999991 -1.7921589260977519E-002 + 63.959999999999994 -1.7922977898745099E-002 + 64.019999999999996 -1.7912153075441004E-002 + 64.079999999999998 -1.7889531133526981E-002 + 64.140000000000001 -1.7855530195427703E-002 + 64.200000000000003 -1.7810566509816952E-002 + 64.259999999999991 -1.7755060661496441E-002 + 64.319999999999993 -1.7689431519256924E-002 + 64.379999999999995 -1.7614098979384034E-002 + 64.439999999999998 -1.7529478203255029E-002 + 64.500000000000000 -1.7435981282444179E-002 + 64.560000000000002 -1.7334019613422513E-002 + 64.619999999999990 -1.7224001237728246E-002 + 64.679999999999993 -1.7106325359505334E-002 + 64.739999999999995 -1.6981388395483788E-002 + 64.799999999999997 -1.6849582736491772E-002 + 64.859999999999999 -1.6711293841519956E-002 + 64.920000000000002 -1.6566897505425889E-002 + 64.979999999999990 -1.6416764418691818E-002 + 65.039999999999992 -1.6261257327097368E-002 + 65.099999999999994 -1.6100733171103828E-002 + 65.159999999999997 -1.5935536873935337E-002 + 65.219999999999999 -1.5766008843143185E-002 + 65.280000000000001 -1.5592478094376409E-002 + 65.339999999999989 -1.5415264361838980E-002 + 65.399999999999991 -1.5234680614969787E-002 + 65.459999999999994 -1.5051028982998231E-002 + 65.519999999999996 -1.4864603458648349E-002 + 65.579999999999998 -1.4675686854516583E-002 + 65.640000000000001 -1.4484553745591848E-002 + 65.700000000000003 -1.4291468574910747E-002 + 65.759999999999991 -1.4096685601599157E-002 + 65.819999999999993 -1.3900452097623113E-002 + 65.879999999999995 -1.3703003318388354E-002 + 65.939999999999998 -1.3504564752761621E-002 + 66.000000000000000 -1.3305354691913322E-002 + 66.060000000000002 -1.3105580474031400E-002 + 66.119999999999990 -1.2905440674268236E-002 + 66.179999999999993 -1.2705125348301313E-002 + 66.239999999999995 -1.2504814645596439E-002 + 66.299999999999997 -1.2304680898852394E-002 + 66.359999999999999 -1.2104886111321191E-002 + 66.420000000000002 -1.1905587495002281E-002 + 66.479999999999990 -1.1706929446099423E-002 + 66.539999999999992 -1.1509052202792339E-002 + 66.599999999999994 -1.1312085033632058E-002 + 66.659999999999997 -1.1116152394734753E-002 + 66.719999999999999 -1.0921370262564593E-002 + 66.780000000000001 -1.0727845745380918E-002 + 66.839999999999989 -1.0535681543431007E-002 + 66.899999999999991 -1.0344972136122114E-002 + 66.959999999999994 -1.0155805812690306E-002 + 67.019999999999996 -9.9682649946111306E-003 + 67.079999999999998 -9.7824265829106992E-003 + 67.140000000000001 -9.5983596832215756E-003 + 67.199999999999989 -9.4161296500703852E-003 + 67.259999999999991 -9.2357968757018471E-003 + 67.319999999999993 -9.0574154766499566E-003 + 67.379999999999995 -8.8810342418920406E-003 + 67.439999999999998 -8.7066985445610878E-003 + 67.500000000000000 -8.5344494000782357E-003 + 67.560000000000002 -8.3643214622766832E-003 + 67.619999999999990 -8.1963492613432755E-003 + 67.679999999999993 -8.0305600672252904E-003 + 67.739999999999995 -7.8669791555132963E-003 + 67.799999999999997 -7.7056278699491124E-003 + 67.859999999999999 -7.5465247442859538E-003 + 67.920000000000002 -7.3896854733807643E-003 + 67.979999999999990 -7.2351230009112047E-003 + 68.039999999999992 -7.0828464456684607E-003 + 68.099999999999994 -6.9328637806773362E-003 + 68.159999999999997 -6.7851800889967206E-003 + 68.219999999999999 -6.6397983849715127E-003 + 68.280000000000001 -6.4967195950806260E-003 + 68.339999999999989 -6.3559432823711171E-003 + 68.399999999999991 -6.2174665732619271E-003 + 68.459999999999994 -6.0812850824276633E-003 + 68.519999999999996 -5.9473939316449249E-003 + 68.579999999999998 -5.8157858901304819E-003 + 68.640000000000001 -5.6864534950804993E-003 + 68.699999999999989 -5.5593870160892825E-003 + 68.759999999999991 -5.4345766508872885E-003 + 68.819999999999993 -5.3120111862861369E-003 + 68.879999999999995 -5.1916791933703191E-003 + 68.939999999999998 -5.0735684367029348E-003 + 69.000000000000000 -4.9576654064475058E-003 + 69.060000000000002 -4.8439562034379609E-003 + 69.119999999999990 -4.7324268324333701E-003 + 69.179999999999993 -4.6230624436677170E-003 + 69.239999999999995 -4.5158486087973244E-003 + 69.299999999999997 -4.4107692014847275E-003 + 69.359999999999999 -4.3078080923694912E-003 + 69.420000000000002 -4.2069499676345885E-003 + 69.479999999999990 -4.1081777228564017E-003 + 69.539999999999992 -4.0114754930473092E-003 + 69.599999999999994 -3.9168262859474402E-003 + 69.659999999999997 -3.8242129157868582E-003 + 69.719999999999999 -3.7336184885417168E-003 + 69.780000000000001 -3.6450258383310718E-003 + 69.839999999999989 -3.5584171988309265E-003 + 69.899999999999991 -3.4737754167101266E-003 + 69.959999999999994 -3.3910828407673304E-003 + 70.019999999999996 -3.3103215442157538E-003 + 70.079999999999998 -3.2314738557094025E-003 + 70.140000000000001 -3.1545216339829716E-003 + 70.199999999999989 -3.0794473010018119E-003 + 70.259999999999991 -3.0062322614932040E-003 + 70.319999999999993 -2.9348584081646061E-003 + 70.379999999999995 -2.8653074229475282E-003 + 70.439999999999998 -2.7975607437515913E-003 + 70.500000000000000 -2.7315996733838764E-003 + 70.560000000000002 -2.6674054287242140E-003 + 70.619999999999990 -2.6049588401581970E-003 + 70.679999999999993 -2.5442410632833647E-003 + 70.739999999999995 -2.4852325561094497E-003 + 70.799999999999997 -2.4279137531717791E-003 + 70.859999999999999 -2.3722648642645451E-003 + 70.920000000000002 -2.3182660771865213E-003 + 70.979999999999990 -2.2658971975952178E-003 + 71.039999999999992 -2.2151379234158970E-003 + 71.099999999999994 -2.1659677806572936E-003 + 71.159999999999997 -2.1183653881908121E-003 + 71.219999999999999 -2.0723103060052454E-003 + 71.280000000000001 -2.0277809924996010E-003 + 71.339999999999989 -1.9847559253501502E-003 + 71.399999999999991 -1.9432134907714903E-003 + 71.459999999999994 -1.9031318218040952E-003 + 71.519999999999996 -1.8644888718512384E-003 + 71.579999999999998 -1.8272621804147581E-003 + 71.640000000000001 -1.7914293247316779E-003 + 71.699999999999989 -1.7569675705551226E-003 + 71.759999999999991 -1.7238540707177838E-003 + 71.819999999999993 -1.6920656225927386E-003 + 71.879999999999995 -1.6615790317158362E-003 + 71.939999999999998 -1.6323709402992614E-003 + 72.000000000000000 -1.6044178070827001E-003 + 72.060000000000002 -1.5776959860199881E-003 + 72.119999999999990 -1.5521814779493185E-003 + 72.179999999999993 -1.5278504388300941E-003 + 72.239999999999995 -1.5046787712404595E-003 + 72.299999999999997 -1.4826422560271272E-003 + 72.359999999999999 -1.4617168187321607E-003 + 72.420000000000002 -1.4418781050921396E-003 + 72.479999999999990 -1.4231015023117679E-003 + 72.539999999999992 -1.4053627680209817E-003 + 72.599999999999994 -1.3886374390873323E-003 + 72.659999999999997 -1.3729009290809082E-003 + 72.719999999999999 -1.3581286333341329E-003 + 72.780000000000001 -1.3442961020718072E-003 + 72.839999999999989 -1.3313787656584444E-003 + 72.899999999999991 -1.3193519516512483E-003 + 72.959999999999994 -1.3081912629211514E-003 + 73.019999999999996 -1.2978721251579559E-003 + 73.079999999999998 -1.2883701433697122E-003 + 73.140000000000001 -1.2796608464968181E-003 + 73.199999999999989 -1.2717200486581466E-003 + 73.259999999999991 -1.2645235798763022E-003 + 73.319999999999993 -1.2580472008628079E-003 + 73.379999999999995 -1.2522670126542898E-003 + 73.439999999999998 -1.2471590134416537E-003 + 73.500000000000000 -1.2426996401240630E-003 + 73.560000000000002 -1.2388651521718301E-003 + 73.619999999999990 -1.2356323051391220E-003 + 73.679999999999993 -1.2329777112390654E-003 + 73.739999999999995 -1.2308782460473541E-003 + 73.799999999999997 -1.2293110396521547E-003 + 73.859999999999999 -1.2282534433867365E-003 + 73.920000000000002 -1.2276829064998759E-003 + 73.979999999999990 -1.2275771963606778E-003 + 74.039999999999992 -1.2279142107794513E-003 + 74.099999999999994 -1.2286719263399945E-003 + 74.159999999999997 -1.2298288526549207E-003 + 74.219999999999999 -1.2313634610889228E-003 + 74.280000000000001 -1.2332546544113765E-003 + 74.339999999999989 -1.2354814831992203E-003 + 74.399999999999991 -1.2380233493697729E-003 + 74.459999999999994 -1.2408600021594355E-003 + 74.519999999999996 -1.2439712535477685E-003 + 74.579999999999998 -1.2473373189906009E-003 + 74.640000000000001 -1.2509388529687686E-003 + 74.699999999999989 -1.2547566805515722E-003 + 74.759999999999991 -1.2587722186416595E-003 + 74.819999999999993 -1.2629669368649874E-003 + 74.879999999999995 -1.2673230529002591E-003 + 74.939999999999998 -1.2718227477903318E-003 + 75.000000000000000 -1.2764489645306974E-003 + 75.060000000000002 -1.2811849153090700E-003 + 75.119999999999990 -1.2860142537268139E-003 + 75.179999999999993 -1.2909208379831279E-003 + 75.239999999999995 -1.2958893052303648E-003 + 75.299999999999997 -1.3009044493882134E-003 + 75.359999999999999 -1.3059517708139865E-003 + 75.420000000000002 -1.3110170875204933E-003 + 75.479999999999990 -1.3160866279967884E-003 + 75.539999999999992 -1.3211471521569565E-003 + 75.599999999999994 -1.3261857830782972E-003 + 75.659999999999997 -1.3311901419899913E-003 + 75.719999999999999 -1.3361485003212717E-003 + 75.780000000000001 -1.3410494244972880E-003 + 75.839999999999989 -1.3458819157372219E-003 + 75.899999999999991 -1.3506356690473509E-003 + 75.959999999999994 -1.3553007598883083E-003 + 76.019999999999996 -1.3598677223805164E-003 + 76.079999999999998 -1.3643274882026637E-003 + 76.140000000000001 -1.3686716244644312E-003 + 76.199999999999989 -1.3728922232555090E-003 + 76.259999999999991 -1.3769816897476138E-003 + 76.319999999999993 -1.3809329770973556E-003 + 76.379999999999995 -1.3847394646537546E-003 + 76.439999999999998 -1.3883950562996864E-003 + 76.500000000000000 -1.3918940105478431E-003 + 76.560000000000002 -1.3952311384178805E-003 + 76.619999999999990 -1.3984015161379048E-003 + 76.679999999999993 -1.4014009897222535E-003 + 76.739999999999995 -1.4042253162016756E-003 + 76.799999999999997 -1.4068711201395063E-003 + 76.859999999999999 -1.4093351094834016E-003 + 76.920000000000002 -1.4116144620457615E-003 + 76.979999999999990 -1.4137067980682437E-003 + 77.039999999999992 -1.4156099879889523E-003 + 77.099999999999994 -1.4173221551143514E-003 + 77.159999999999997 -1.4188420616171381E-003 + 77.219999999999999 -1.4201683226441929E-003 + 77.280000000000001 -1.4213002220093767E-003 + 77.339999999999989 -1.4222370745462752E-003 + 77.399999999999991 -1.4229785408703022E-003 + 77.459999999999994 -1.4235246423167291E-003 + 77.519999999999996 -1.4238752776338974E-003 + 77.579999999999998 -1.4240309745560539E-003 + 77.640000000000001 -1.4239921981085849E-003 + 77.699999999999989 -1.4237596491181656E-003 + 77.759999999999991 -1.4233342823264804E-003 + 77.819999999999993 -1.4227171911494075E-003 + 77.879999999999995 -1.4219095558457324E-003 + 77.939999999999998 -1.4209128237734809E-003 + 78.000000000000000 -1.4197285862145013E-003 + 78.060000000000002 -1.4183585553866822E-003 + 78.119999999999990 -1.4168044516125211E-003 + 78.179999999999993 -1.4150683950125531E-003 + 78.239999999999995 -1.4131523127524210E-003 + 78.299999999999997 -1.4110585460764371E-003 + 78.359999999999999 -1.4087893528116101E-003 + 78.420000000000002 -1.4063472680659844E-003 + 78.479999999999990 -1.4037346447828526E-003 + 78.539999999999992 -1.4009542400987651E-003 + 78.599999999999994 -1.3980086235771850E-003 + 78.659999999999997 -1.3949004465686069E-003 + 78.719999999999999 -1.3916327159956437E-003 + 78.780000000000001 -1.3882084046489664E-003 + 78.839999999999989 -1.3846303592111215E-003 + 78.899999999999991 -1.3809017131485137E-003 + 78.959999999999994 -1.3770254126874498E-003 + 79.019999999999996 -1.3730048358908667E-003 + 79.079999999999998 -1.3688431361336291E-003 + 79.140000000000001 -1.3645436406168722E-003 + 79.199999999999989 -1.3601095788506137E-003 + 79.259999999999991 -1.3555446926245230E-003 + 79.319999999999993 -1.3508523086063105E-003 + 79.379999999999995 -1.3460362764726726E-003 + 79.439999999999998 -1.3411000942360662E-003 + 79.500000000000000 -1.3360476236179623E-003 + 79.560000000000002 -1.3308826461331401E-003 + 79.619999999999990 -1.3256092494297381E-003 + 79.679999999999993 -1.3202312513550449E-003 + 79.739999999999995 -1.3147529260479547E-003 + 79.799999999999997 -1.3091784274746187E-003 + 79.859999999999999 -1.3035119366627652E-003 + 79.920000000000002 -1.2977577282913156E-003 + 79.979999999999990 -1.2919201925248541E-003 + 80.039999999999992 -1.2860039051824771E-003 + 80.099999999999994 -1.2800131825350585E-003 + 80.159999999999997 -1.2739526037949796E-003 + 80.219999999999999 -1.2678268309988081E-003 + 80.280000000000001 -1.2616403579386636E-003 + 80.340000000000003 -1.2553979186180045E-003 + 80.400000000000006 -1.2491043329323456E-003 + 80.460000000000008 -1.2427642420758348E-003 + 80.519999999999982 -1.2363825074130073E-003 + 80.579999999999984 -1.2299639355569825E-003 + 80.639999999999986 -1.2235134794675807E-003 + 80.699999999999989 -1.2170359868815255E-003 + 80.759999999999991 -1.2105365228342478E-003 + 80.819999999999993 -1.2040199967208757E-003 + 80.879999999999995 -1.1974913326725993E-003 + 80.939999999999998 -1.1909556496961058E-003 + 81.000000000000000 -1.1844179742726954E-003 + 81.060000000000002 -1.1778832892710620E-003 + 81.120000000000005 -1.1713565935484583E-003 + 81.180000000000007 -1.1648430319733927E-003 + 81.240000000000009 -1.1583475195673064E-003 + 81.299999999999983 -1.1518751930914024E-003 + 81.359999999999985 -1.1454310521866941E-003 + 81.419999999999987 -1.1390200081981628E-003 + 81.479999999999990 -1.1326469580212281E-003 + 81.539999999999992 -1.1263170009404029E-003 + 81.599999999999994 -1.1200349249930108E-003 + 81.659999999999997 -1.1138055270429816E-003 + 81.719999999999999 -1.1076336237861785E-003 + 81.780000000000001 -1.1015238187444146E-003 + 81.840000000000003 -1.0954808916700399E-003 + 81.900000000000006 -1.0895092896543643E-003 + 81.960000000000008 -1.0836135270693660E-003 + 82.019999999999982 -1.0777981181344235E-003 + 82.079999999999984 -1.0720674132204187E-003 + 82.139999999999986 -1.0664256067441646E-003 + 82.199999999999989 -1.0608768819498013E-003 + 82.259999999999991 -1.0554252674627564E-003 + 82.319999999999993 -1.0500748413983839E-003 + 82.379999999999995 -1.0448296419365718E-003 + 82.439999999999998 -1.0396934261566642E-003 + 82.500000000000000 -1.0346698355705112E-003 + 82.560000000000002 -1.0297626823599151E-003 + 82.620000000000005 -1.0249753795065011E-003 + 82.680000000000007 -1.0203114456237077E-003 + 82.740000000000009 -1.0157743079597203E-003 + 82.799999999999983 -1.0113671028209946E-003 + 82.859999999999985 -1.0070930817445379E-003 + 82.919999999999987 -1.0029553843196306E-003 + 82.979999999999990 -9.9895673747222701E-004 + 83.039999999999992 -9.9510005283160114E-004 + 83.099999999999994 -9.9138788552312362E-004 + 83.159999999999997 -9.8782284163342958E-004 + 83.219999999999999 -9.8440709822625121E-004 + 83.280000000000001 -9.8114285492742394E-004 + 83.340000000000003 -9.7803220009839271E-004 + 83.400000000000006 -9.7507695404077310E-004 + 83.460000000000008 -9.7227871906913066E-004 + 83.519999999999982 -9.6963903537093448E-004 + 83.579999999999984 -9.6715917933678022E-004 + 83.639999999999986 -9.6484033436060313E-004 + 83.699999999999989 -9.6268331243507096E-004 + 83.759999999999991 -9.6068887721933679E-004 + 83.819999999999993 -9.5885763443753899E-004 + 83.879999999999995 -9.5718985042244243E-004 + 83.939999999999998 -9.5568567834156202E-004 + 84.000000000000000 -9.5434500148840369E-004 + 84.060000000000002 -9.5316756174904592E-004 + 84.120000000000005 -9.5215275107859889E-004 + 84.180000000000007 -9.5129999320571923E-004 + 84.240000000000009 -9.5060819421885034E-004 + 84.299999999999983 -9.5007612110031055E-004 + 84.359999999999985 -9.4970235919238891E-004 + 84.419999999999987 -9.4948504960847794E-004 + 84.479999999999990 -9.4942227146705034E-004 + 84.539999999999992 -9.4951170825211310E-004 + 84.599999999999994 -9.4975083360999708E-004 + 84.659999999999997 -9.5013676233967020E-004 + 84.719999999999999 -9.5066636428979068E-004 + 84.780000000000001 -9.5133617726443111E-004 + 84.840000000000003 -9.5214256232644540E-004 + 84.900000000000006 -9.5308146112590129E-004 + 84.960000000000008 -9.5414859469766865E-004 + 85.019999999999982 -9.5533931791741595E-004 + 85.079999999999984 -9.5664877992625221E-004 + 85.139999999999986 -9.5807179530071136E-004 + 85.199999999999989 -9.5960294140339409E-004 + 85.259999999999991 -9.6123656311908866E-004 + 85.319999999999993 -9.6296665354483218E-004 + 85.379999999999995 -9.6478697756389759E-004 + 85.439999999999998 -9.6669103699403684E-004 + 85.500000000000000 -9.6867214122903981E-004 + 85.560000000000002 -9.7072336877117185E-004 + 85.620000000000005 -9.7283759876422163E-004 + 85.680000000000007 -9.7500749460168042E-004 + 85.740000000000009 -9.7722536692596679E-004 + 85.799999999999983 -9.7948356706611082E-004 + 85.859999999999985 -9.8177414125025925E-004 + 85.919999999999987 -9.8408908332797500E-004 + 85.979999999999990 -9.8642015186897248E-004 + 86.039999999999992 -9.8875889126443114E-004 + 86.099999999999994 -9.9109691595702671E-004 + 86.159999999999997 -9.9342544041801806E-004 + 86.219999999999999 -9.9573595766870365E-004 + 86.280000000000001 -9.9801947724890917E-004 + 86.340000000000003 -1.0002670092979869E-003 + 86.400000000000006 -1.0024695188887032E-003 + 86.460000000000008 -1.0046180936988081E-003 + 86.519999999999982 -1.0067035083015697E-003 + 86.579999999999984 -1.0087165794698330E-003 + 86.639999999999986 -1.0106479988895487E-003 + 86.699999999999989 -1.0124888155957257E-003 + 86.759999999999991 -1.0142296241940345E-003 + 86.819999999999993 -1.0158613191550796E-003 + 86.879999999999995 -1.0173747477745050E-003 + 86.939999999999998 -1.0187609168064377E-003 + 87.000000000000000 -1.0200107372828168E-003 + 87.060000000000002 -1.0211154477789647E-003 + 87.120000000000005 -1.0220663136314447E-003 + 87.180000000000007 -1.0228547205810182E-003 + 87.240000000000009 -1.0234720716293868E-003 + 87.299999999999983 -1.0239103390023722E-003 + 87.359999999999985 -1.0241612570195870E-003 + 87.419999999999987 -1.0242169746772726E-003 + 87.479999999999990 -1.0240698635782671E-003 + 87.539999999999992 -1.0237124928283488E-003 + 87.599999999999994 -1.0231376679520185E-003 + 87.659999999999997 -1.0223382601646893E-003 + 87.719999999999999 -1.0213077496179931E-003 + 87.780000000000001 -1.0200395894122134E-003 + 87.840000000000003 -1.0185276556906844E-003 + 87.900000000000006 -1.0167660405283822E-003 + 87.960000000000008 -1.0147490442135156E-003 + 88.019999999999982 -1.0124713157110248E-003 + 88.079999999999984 -1.0099279655562711E-003 + 88.139999999999986 -1.0071141064744722E-003 + 88.199999999999989 -1.0040254788021134E-003 + 88.259999999999991 -1.0006581181127561E-003 + 88.319999999999993 -9.9700812263650161E-004 + 88.379999999999995 -9.9307229821028980E-004 + 88.439999999999998 -9.8884763305920938E-004 + 88.500000000000000 -9.8433156416908251E-004 + 88.560000000000002 -9.7952185347879688E-004 + 88.620000000000005 -9.7441663668481910E-004 + 88.680000000000007 -9.6901466797198678E-004 + 88.740000000000009 -9.6331487155937442E-004 + 88.799999999999983 -9.5731659561538042E-004 + 88.859999999999985 -9.5101975615252243E-004 + 88.919999999999987 -9.4442453650684841E-004 + 88.979999999999990 -9.3753165566282494E-004 + 89.039999999999992 -9.3034215983899785E-004 + 89.099999999999994 -9.2285755988242766E-004 + 89.159999999999997 -9.1507987297587503E-004 + 89.219999999999999 -9.0701135441066194E-004 + 89.280000000000001 -8.9865485539552138E-004 + 89.340000000000003 -8.9001355949072485E-004 + 89.400000000000006 -8.8109108209216030E-004 + 89.460000000000008 -8.7189142301232739E-004 + 89.519999999999982 -8.6241907930502946E-004 + 89.579999999999984 -8.5267890305531385E-004 + 89.639999999999986 -8.4267607328361149E-004 + 89.699999999999989 -8.3241622327557923E-004 + 89.759999999999991 -8.2190543977248400E-004 + 89.819999999999993 -8.1115010610770526E-004 + 89.879999999999995 -8.0015708410861711E-004 + 89.939999999999998 -7.8893354815282447E-004 + 90.000000000000000 -7.7748702282225113E-004 + 90.060000000000002 -7.6582550048916653E-004 + 90.120000000000005 -7.5395720042669692E-004 + 90.180000000000007 -7.4189078880687544E-004 + 90.240000000000009 -7.2963526940534272E-004 + 90.299999999999983 -7.1719995794451794E-004 + 90.359999999999985 -7.0459452858989387E-004 + 90.419999999999987 -6.9182911216948608E-004 + 90.479999999999990 -6.7891402145166214E-004 + 90.539999999999992 -6.6585980491019837E-004 + 90.599999999999994 -6.5267747916653875E-004 + 90.659999999999997 -6.3937828765839831E-004 + 90.719999999999999 -6.2597365390424102E-004 + 90.780000000000001 -6.1247527922705643E-004 + 90.840000000000003 -5.9889515018137136E-004 + 90.900000000000006 -5.8524541584416864E-004 + 90.960000000000008 -5.7153841882373743E-004 + 91.019999999999982 -5.5778651178768862E-004 + 91.079999999999984 -5.4400241345159731E-004 + 91.139999999999986 -5.3019879555737839E-004 + 91.199999999999989 -5.1638846819278977E-004 + 91.259999999999991 -5.0258430690604337E-004 + 91.319999999999993 -4.8879920841829873E-004 + 91.379999999999995 -4.7504611025277465E-004 + 91.439999999999998 -4.6133798437689009E-004 + 91.500000000000000 -4.4768773305063132E-004 + 91.560000000000002 -4.3410826893006805E-004 + 91.620000000000005 -4.2061245389122539E-004 + 91.680000000000007 -4.0721314676164268E-004 + 91.739999999999981 -3.9392302478848861E-004 + 91.799999999999983 -3.8075476792132236E-004 + 91.859999999999985 -3.6772091602473803E-004 + 91.919999999999987 -3.5483392170597346E-004 + 91.979999999999990 -3.4210607618388847E-004 + 92.039999999999992 -3.2954949828184894E-004 + 92.099999999999994 -3.1717614909211015E-004 + 92.159999999999997 -3.0499784303518983E-004 + 92.219999999999999 -2.9302610942835261E-004 + 92.280000000000001 -2.8127225580211289E-004 + 92.340000000000003 -2.6974738464127589E-004 + 92.400000000000006 -2.5846227108881588E-004 + 92.460000000000008 -2.4742740296283193E-004 + 92.519999999999982 -2.3665293905562711E-004 + 92.579999999999984 -2.2614873699853874E-004 + 92.639999999999986 -2.1592424749636389E-004 + 92.699999999999989 -2.0598859690226844E-004 + 92.759999999999991 -1.9635054313468935E-004 + 92.819999999999993 -1.8701839494230394E-004 + 92.879999999999995 -1.7800013352169404E-004 + 92.939999999999998 -1.6930327166815758E-004 + 93.000000000000000 -1.6093495280943568E-004 + 93.060000000000002 -1.5290188706529499E-004 + 93.120000000000005 -1.4521038517988289E-004 + 93.180000000000007 -1.3786634234651929E-004 + 93.239999999999981 -1.3087525929568822E-004 + 93.299999999999983 -1.2424223051975662E-004 + 93.359999999999985 -1.1797193696480804E-004 + 93.419999999999987 -1.1206868770636752E-004 + 93.479999999999990 -1.0653639722213665E-004 + 93.539999999999992 -1.0137862438972706E-004 + 93.599999999999994 -9.6598535955676350E-005 + 93.659999999999997 -9.2198947640957337E-005 + 93.719999999999999 -8.8182324501457244E-005 + 93.780000000000001 -8.4550793148198752E-005 + 93.840000000000003 -8.1306148880417811E-005 + 93.900000000000006 -7.8449852282943107E-005 + 93.960000000000008 -7.5983051338449761E-005 + 94.019999999999982 -7.3906584798067102E-005 + 94.079999999999984 -7.2221005014213517E-005 + 94.139999999999986 -7.0926566757855306E-005 + 94.199999999999989 -7.0023258160565249E-005 + 94.259999999999991 -6.9510797616322372E-005 + 94.319999999999993 -6.9388661491830096E-005 + 94.379999999999995 -6.9656091277988964E-005 + 94.439999999999998 -7.0312098762197084E-005 + 94.500000000000000 -7.1355492956810433E-005 + 94.560000000000002 -7.2784909322547164E-005 + 94.620000000000005 -7.4598808065496182E-005 + 94.680000000000007 -7.6795508409470853E-005 + 94.739999999999981 -7.9373199969108465E-005 + 94.799999999999983 -8.2329975507072341E-005 + 94.859999999999985 -8.5663835117193168E-005 + 94.919999999999987 -8.9372728083470939E-005 + 94.979999999999990 -9.3454553006291614E-005 + 95.039999999999992 -9.7907215260071117E-005 + 95.099999999999994 -1.0272859288868846E-004 + 95.159999999999997 -1.0791660809566974E-004 + 95.219999999999999 -1.1346918234067899E-004 + 95.280000000000001 -1.1938431549039037E-004 + 95.340000000000003 -1.2566005772106609E-004 + 95.400000000000006 -1.3229452232278610E-004 + 95.460000000000008 -1.3928590273591161E-004 + 95.519999999999982 -1.4663248479950696E-004 + 95.579999999999984 -1.5433260283377473E-004 + 95.639999999999986 -1.6238470818842930E-004 + 95.699999999999989 -1.7078735122452447E-004 + 95.759999999999991 -1.7953911813662764E-004 + 95.819999999999993 -1.8863872037088076E-004 + 95.879999999999995 -1.9808492682448512E-004 + 95.939999999999998 -2.0787657381881721E-004 + 96.000000000000000 -2.1801256085505306E-004 + 96.060000000000002 -2.2849187769655863E-004 + 96.120000000000005 -2.3931354847898925E-004 + 96.180000000000007 -2.5047666681239785E-004 + 96.239999999999981 -2.6198033259675502E-004 + 96.299999999999983 -2.7382369957760681E-004 + 96.359999999999985 -2.8600596726028932E-004 + 96.419999999999987 -2.9852629560134648E-004 + 96.479999999999990 -3.1138389850287121E-004 + 96.539999999999992 -3.2457788533399816E-004 + 96.599999999999994 -3.3810742657878036E-004 + 96.659999999999997 -3.5197156111265522E-004 + 96.719999999999999 -3.6616932438651316E-004 + 96.780000000000001 -3.8069954392816702E-004 + 96.840000000000003 -3.9556104450060069E-004 + 96.900000000000006 -4.1075237261873238E-004 + 96.960000000000008 -4.2627194985192285E-004 + 97.019999999999982 -4.4211794411167437E-004 + 97.079999999999984 -4.5828833833919038E-004 + 97.139999999999986 -4.7478072780161737E-004 + 97.199999999999989 -4.9159240939384327E-004 + 97.259999999999991 -5.0872042158336766E-004 + 97.319999999999993 -5.2616125874566913E-004 + 97.379999999999995 -5.4391111239467213E-004 + 97.439999999999998 -5.6196568840212674E-004 + 97.500000000000000 -5.8032005455447015E-004 + 97.560000000000002 -5.9896896486566400E-004 + 97.620000000000005 -6.1790644616881532E-004 + 97.680000000000007 -6.3712608186844856E-004 + 97.739999999999981 -6.5662072824451765E-004 + 97.799999999999983 -6.7638264353825242E-004 + 97.859999999999985 -6.9640330799355173E-004 + 97.919999999999987 -7.1667356673077605E-004 + 97.979999999999990 -7.3718367356427356E-004 + 98.039999999999992 -7.5792298668902666E-004 + 98.099999999999994 -7.7888007952252054E-004 + 98.159999999999997 -8.0004281411306781E-004 + 98.219999999999999 -8.2139814706461665E-004 + 98.280000000000001 -8.4293230464983478E-004 + 98.340000000000003 -8.6463052315601961E-004 + 98.400000000000006 -8.8647734102713968E-004 + 98.460000000000008 -9.0845639189786938E-004 + 98.519999999999982 -9.3055022687230852E-004 + 98.579999999999984 -9.5274072146571637E-004 + 98.639999999999986 -9.7500882012981874E-004 + 98.699999999999989 -9.9733446709894492E-004 + 98.759999999999991 -1.0196966591333192E-003 + 98.819999999999993 -1.0420737397509343E-003 + 98.879999999999995 -1.0644428952394920E-003 + 98.939999999999998 -1.0867807760601383E-003 + 99.000000000000000 -1.1090628381222446E-003 + 99.060000000000002 -1.1312637000733203E-003 + 99.120000000000005 -1.1533573343398146E-003 + 99.180000000000007 -1.1753169978135415E-003 + 99.239999999999981 -1.1971150400635776E-003 + 99.299999999999983 -1.2187230229190246E-003 + 99.359999999999985 -1.2401119345959576E-003 + 99.419999999999987 -1.2612520596534031E-003 + 99.479999999999990 -1.2821132271501271E-003 + 99.539999999999992 -1.3026645059335843E-003 + 99.599999999999994 -1.3228748101296447E-003 + 99.659999999999997 -1.3427122542705510E-003 + 99.719999999999999 -1.3621448583480001E-003 + 99.780000000000001 -1.3811402588274524E-003 + 99.840000000000003 -1.3996658258194803E-003 + 99.900000000000006 -1.4176888528456472E-003 + 99.960000000000008 -1.4351763729034039E-003 + 100.01999999999998 -1.4520954825463026E-003 + 100.07999999999998 -1.4684133972129147E-003 + 100.13999999999999 -1.4840973473680874E-003 + 100.19999999999999 -1.4991149707748003E-003 + 100.25999999999999 -1.5134341041178020E-003 + 100.31999999999999 -1.5270227677653913E-003 + 100.38000000000000 -1.5398497484669623E-003 + 100.44000000000000 -1.5518841114268227E-003 + 100.50000000000000 -1.5630958559520575E-003 + 100.56000000000000 -1.5734553465752705E-003 + 100.62000000000000 -1.5829341915249877E-003 + 100.68000000000001 -1.5915043130141991E-003 + 100.73999999999998 -1.5991390675582056E-003 + 100.79999999999998 -1.6058127197183789E-003 + 100.85999999999999 -1.6115005105427759E-003 + 100.91999999999999 -1.6161791693748298E-003 + 100.97999999999999 -1.6198263617159742E-003 + 101.03999999999999 -1.6224215170217388E-003 + 101.09999999999999 -1.6239451082658040E-003 + 101.16000000000000 -1.6243794532563151E-003 + 101.22000000000000 -1.6237080997483964E-003 + 101.28000000000000 -1.6219165443406393E-003 + 101.34000000000000 -1.6189918290817370E-003 + 101.40000000000001 -1.6149228942140446E-003 + 101.46000000000001 -1.6097002664778540E-003 + 101.51999999999998 -1.6033165140817941E-003 + 101.57999999999998 -1.5957659773260932E-003 + 101.63999999999999 -1.5870450010637457E-003 + 101.69999999999999 -1.5771519644919997E-003 + 101.75999999999999 -1.5660871619334442E-003 + 101.81999999999999 -1.5538528199361390E-003 + 101.88000000000000 -1.5404534819213609E-003 + 101.94000000000000 -1.5258954038842949E-003 + 102.00000000000000 -1.5101872247322403E-003 + 102.06000000000000 -1.4933393732753653E-003 + 102.12000000000000 -1.4753644217670987E-003 + 102.18000000000001 -1.4562770509616908E-003 + 102.23999999999998 -1.4360939714908006E-003 + 102.29999999999998 -1.4148336187701628E-003 + 102.35999999999999 -1.3925167478800050E-003 + 102.41999999999999 -1.3691657219615492E-003 + 102.47999999999999 -1.3448050096907368E-003 + 102.53999999999999 -1.3194609245548885E-003 + 102.59999999999999 -1.2931614410806749E-003 + 102.66000000000000 -1.2659363272669653E-003 + 102.72000000000000 -1.2378170760519239E-003 + 102.78000000000000 -1.2088367532156717E-003 + 102.84000000000000 -1.1790297527610818E-003 + 102.90000000000001 -1.1484322273573736E-003 + 102.96000000000001 -1.1170814674222127E-003 + 103.01999999999998 -1.0850161927910154E-003 + 103.07999999999998 -1.0522761868025016E-003 + 103.13999999999999 -1.0189024459242441E-003 + 103.19999999999999 -9.8493684413743861E-004 + 103.25999999999999 -9.5042234681754357E-004 + 103.31999999999999 -9.1540256792210458E-004 + 103.38000000000000 -8.7992199922768452E-004 + 103.44000000000000 -8.4402556896831244E-004 + 103.50000000000000 -8.0775876585945300E-004 + 103.56000000000000 -7.7116760924386609E-004 + 103.62000000000000 -7.3429824008379105E-004 + 103.68000000000001 -6.9719714570205035E-004 + 103.73999999999998 -6.5991075692044970E-004 + 103.79999999999998 -6.2248572437739649E-004 + 103.85999999999999 -5.8496841720919769E-004 + 103.91999999999999 -5.4740504199996616E-004 + 103.97999999999999 -5.0984143615856339E-004 + 104.03999999999999 -4.7232317391918518E-004 + 104.09999999999999 -4.3489517780201956E-004 + 104.16000000000000 -3.9760177379439383E-004 + 104.22000000000000 -3.6048658789155117E-004 + 104.28000000000000 -3.2359246277569015E-004 + 104.34000000000000 -2.8696131345411067E-004 + 104.40000000000001 -2.5063406242031112E-004 + 104.46000000000001 -2.1465054444914260E-004 + 104.51999999999998 -1.7904954466078411E-004 + 104.57999999999998 -1.4386851178829524E-004 + 104.63999999999999 -1.0914366255438388E-004 + 104.69999999999999 -7.4909868743224992E-005 + 104.75999999999999 -4.1200594493554928E-005 + 104.81999999999999 -8.0478349653674284E-006 + 104.88000000000000 2.4517903680426858E-005 + 104.94000000000000 5.6467687259598094E-005 + 105.00000000000000 8.7774134591158412E-005 + 105.06000000000000 1.1841147644376011E-004 + 105.12000000000000 1.4835558085985200E-004 + 105.18000000000001 1.7758397576234664E-004 + 105.23999999999998 2.0607588006327953E-004 + 105.29999999999998 2.3381215728777196E-004 + 105.35999999999999 2.6077540908443412E-004 + 105.41999999999999 2.8694990249062546E-004 + 105.47999999999999 3.1232163913739319E-004 + 105.53999999999999 3.3687832186246857E-004 + 105.59999999999999 3.6060928838231257E-004 + 105.66000000000000 3.8350558529978923E-004 + 105.72000000000000 4.0555993180199564E-004 + 105.78000000000000 4.2676666195530321E-004 + 105.84000000000000 4.4712174797743723E-004 + 105.90000000000001 4.6662270160104850E-004 + 105.96000000000001 4.8526863820262293E-004 + 106.01999999999998 5.0306009238029509E-004 + 106.07999999999998 5.1999921564394220E-004 + 106.13999999999999 5.3608950036564910E-004 + 106.19999999999999 5.5133572570088189E-004 + 106.25999999999999 5.6574412114732890E-004 + 106.31999999999999 5.7932209297932406E-004 + 106.38000000000000 5.9207842158900698E-004 + 106.44000000000000 6.0402281583351030E-004 + 106.50000000000000 6.1516627091561774E-004 + 106.56000000000000 6.2552069272700961E-004 + 106.62000000000000 6.3509899045299703E-004 + 106.68000000000001 6.4391496728219422E-004 + 106.73999999999998 6.5198338313578099E-004 + 106.79999999999998 6.5931960100549787E-004 + 106.85999999999999 6.6593978910201837E-004 + 106.91999999999999 6.7186084064603708E-004 + 106.97999999999999 6.7710006375821922E-004 + 107.03999999999999 6.8167545921060712E-004 + 107.09999999999999 6.8560533129585917E-004 + 107.16000000000000 6.8890850303274926E-004 + 107.22000000000000 6.9160415632790197E-004 + 107.28000000000000 6.9371169114874291E-004 + 107.34000000000000 6.9525077064757463E-004 + 107.40000000000001 6.9624122571576976E-004 + 107.46000000000001 6.9670304865467861E-004 + 107.51999999999998 6.9665638782331690E-004 + 107.57999999999998 6.9612126265623916E-004 + 107.63999999999999 6.9511788889788974E-004 + 107.69999999999999 6.9366626078066237E-004 + 107.75999999999999 6.9178638831459923E-004 + 107.81999999999999 6.8949811147829348E-004 + 107.88000000000000 6.8682115603850959E-004 + 107.94000000000000 6.8377502986070404E-004 + 108.00000000000000 6.8037900343771599E-004 + 108.06000000000000 6.7665198392112948E-004 + 108.12000000000000 6.7261261943832773E-004 + 108.18000000000001 6.6827931299724805E-004 + 108.23999999999998 6.6366998714016451E-004 + 108.29999999999998 6.5880206672851572E-004 + 108.35999999999999 6.5369263676149422E-004 + 108.41999999999999 6.4835837991125168E-004 + 108.47999999999999 6.4281537890908047E-004 + 108.53999999999999 6.3707924777105392E-004 + 108.59999999999999 6.3116510422254243E-004 + 108.66000000000000 6.2508750581954161E-004 + 108.72000000000000 6.1886049102994765E-004 + 108.78000000000000 6.1249762708681015E-004 + 108.84000000000000 6.0601182814745593E-004 + 108.90000000000001 5.9941560344505776E-004 + 108.96000000000001 5.9272082006953412E-004 + 109.01999999999998 5.8593890353897437E-004 + 109.07999999999998 5.7908082279742995E-004 + 109.13999999999999 5.7215693768442857E-004 + 109.19999999999999 5.6517722748501524E-004 + 109.25999999999999 5.5815110447750337E-004 + 109.31999999999999 5.5108762338783540E-004 + 109.38000000000000 5.4399524780307691E-004 + 109.44000000000000 5.3688210546191397E-004 + 109.50000000000000 5.2975584696563209E-004 + 109.56000000000000 5.2262370398070191E-004 + 109.62000000000000 5.1549241184832442E-004 + 109.68000000000001 5.0836832335513589E-004 + 109.73999999999998 5.0125742425564598E-004 + 109.79999999999998 4.9416518332882941E-004 + 109.85999999999999 4.8709671796838848E-004 + 109.91999999999999 4.8005676520298146E-004 + 109.97999999999999 4.7304972138066198E-004 + 110.03999999999999 4.6607956393589732E-004 + 110.09999999999999 4.5914992599855936E-004 + 110.16000000000000 4.5226416833324423E-004 + 110.22000000000000 4.4542526524379264E-004 + 110.28000000000000 4.3863596763142571E-004 + 110.34000000000000 4.3189872619641480E-004 + 110.40000000000001 4.2521574017405285E-004 + 110.46000000000001 4.1858896700437963E-004 + 110.51999999999998 4.1202017745646063E-004 + 110.57999999999998 4.0551091154953750E-004 + 110.63999999999999 3.9906260061568256E-004 + 110.69999999999999 3.9267644950266703E-004 + 110.75999999999999 3.8635356157247334E-004 + 110.81999999999999 3.8009483945760530E-004 + 110.88000000000000 3.7390112201935230E-004 + 110.94000000000000 3.6777311906844028E-004 + 111.00000000000000 3.6171144560565602E-004 + 111.06000000000000 3.5571660043052345E-004 + 111.12000000000000 3.4978898639608609E-004 + 111.18000000000001 3.4392892812721524E-004 + 111.23999999999998 3.3813667780805339E-004 + 111.29999999999998 3.3241243869056605E-004 + 111.35999999999999 3.2675626463626585E-004 + 111.41999999999999 3.2116821242324830E-004 + 111.47999999999999 3.1564828205425151E-004 + 111.53999999999999 3.1019636259866187E-004 + 111.59999999999999 3.0481235122237189E-004 + 111.66000000000000 2.9949602763926388E-004 + 111.72000000000000 2.9424720868819691E-004 + 111.78000000000000 2.8906560886426616E-004 + 111.84000000000000 2.8395099391180376E-004 + 111.90000000000001 2.7890300909961320E-004 + 111.96000000000001 2.7392136423778446E-004 + 112.01999999999998 2.6900572719040203E-004 + 112.07999999999998 2.6415576085465187E-004 + 112.13999999999999 2.5937115706453834E-004 + 112.19999999999999 2.5465159121059057E-004 + 112.25999999999999 2.4999680517459214E-004 + 112.31999999999999 2.4540650030288515E-004 + 112.38000000000000 2.4088047366081192E-004 + 112.44000000000000 2.3641851606729663E-004 + 112.50000000000000 2.3202044922189668E-004 + 112.56000000000000 2.2768613092716313E-004 + 112.62000000000000 2.2341546329994041E-004 + 112.68000000000001 2.1920834878885593E-004 + 112.73999999999998 2.1506472919231048E-004 + 112.79999999999998 2.1098453394935296E-004 + 112.85999999999999 2.0696770580195509E-004 + 112.91999999999999 2.0301420738567190E-004 + 112.97999999999999 1.9912397608589836E-004 + 113.03999999999999 1.9529690998511834E-004 + 113.09999999999999 1.9153293016515238E-004 + 113.16000000000000 1.8783192401725628E-004 + 113.22000000000000 1.8419375268876028E-004 + 113.28000000000000 1.8061825504785687E-004 + 113.34000000000000 1.7710523497253751E-004 + 113.40000000000001 1.7365451683962649E-004 + 113.46000000000001 1.7026588305459238E-004 + 113.51999999999998 1.6693912176521879E-004 + 113.57999999999998 1.6367403806878084E-004 + 113.63999999999999 1.6047043493757767E-004 + 113.69999999999999 1.5732810450591917E-004 + 113.75999999999999 1.5424688741597116E-004 + 113.81999999999999 1.5122663594121832E-004 + 113.88000000000000 1.4826722900449714E-004 + 113.94000000000000 1.4536857504073009E-004 + 114.00000000000000 1.4253058992603625E-004 + 114.06000000000000 1.3975321069144940E-004 + 114.12000000000000 1.3703637895843998E-004 + 114.18000000000001 1.3438005954380028E-004 + 114.23999999999998 1.3178418670042202E-004 + 114.29999999999998 1.2924870686062401E-004 + 114.35999999999999 1.2677353330593162E-004 + 114.41999999999999 1.2435856536836747E-004 + 114.47999999999999 1.2200366128663446E-004 + 114.53999999999999 1.1970866511876818E-004 + 114.59999999999999 1.1747338815279541E-004 + 114.66000000000000 1.1529760038296009E-004 + 114.72000000000000 1.1318105297200478E-004 + 114.78000000000000 1.1112347365452367E-004 + 114.84000000000000 1.0912457903837768E-004 + 114.90000000000001 1.0718407453063471E-004 + 114.96000000000001 1.0530167759958170E-004 + 115.01999999999998 1.0347710698366253E-004 + 115.07999999999998 1.0171008836665561E-004 + 115.13999999999999 1.0000039763584888E-004 + 115.19999999999999 9.8347807978023963E-005 + 115.25999999999999 9.6752160832283863E-005 + 115.31999999999999 9.5213325292402713E-005 + 115.38000000000000 9.3731214390604012E-005 + 115.44000000000000 9.2305773983991418E-005 + 115.50000000000000 9.0937006091785334E-005 + 115.56000000000000 8.9624964894315659E-005 + 115.62000000000000 8.8369727927024437E-005 + 115.68000000000001 8.7171429794795168E-005 + 115.73999999999998 8.6030262806426647E-005 + 115.79999999999998 8.4946441797031667E-005 + 115.85999999999999 8.3920235062013145E-005 + 115.91999999999999 8.2951961117111827E-005 + 115.97999999999999 8.2041984948307738E-005 + 116.03999999999999 8.1190731016019866E-005 + 116.09999999999999 8.0398679698913918E-005 + 116.16000000000000 7.9666377715904580E-005 + 116.22000000000000 7.8994429057319197E-005 + 116.28000000000000 7.8383525423014570E-005 + 116.34000000000000 7.7834421875509963E-005 + 116.40000000000001 7.7347973408811973E-005 + 116.46000000000001 7.6925099024878629E-005 + 116.51999999999998 7.6566832892727333E-005 + 116.57999999999998 7.6274283335357382E-005 + 116.63999999999999 7.6048660675251758E-005 + 116.69999999999999 7.5891268943117202E-005 + 116.75999999999999 7.5803511453418590E-005 + 116.81999999999999 7.5786877866103957E-005 + 116.88000000000000 7.5842955057421735E-005 + 116.94000000000000 7.5973437643726217E-005 + 117.00000000000000 7.6180086333806456E-005 + 117.06000000000000 7.6464774657829398E-005 + 117.12000000000000 7.6829450049413934E-005 + 117.18000000000001 7.7276133936974260E-005 + 117.23999999999998 7.7806954562616078E-005 + 117.29999999999998 7.8424089353944850E-005 + 117.35999999999999 7.9129800802403726E-005 + 117.41999999999999 7.9926421711671856E-005 + 117.47999999999999 8.0816357882964454E-005 + 117.53999999999999 8.1802073272048368E-005 + 117.59999999999999 8.2886067700846128E-005 + 117.66000000000000 8.4070927195660717E-005 + 117.72000000000000 8.5359262525556260E-005 + 117.78000000000000 8.6753732843264901E-005 + 117.84000000000000 8.8257019312579265E-005 + 117.90000000000001 8.9871845633623639E-005 + 117.96000000000001 9.1600953363395502E-005 + 118.01999999999998 9.3447079564992915E-005 + 118.07999999999998 9.5412979157943705E-005 + 118.13999999999999 9.7501388548819665E-005 + 118.19999999999999 9.9715033412239179E-005 + 118.25999999999999 1.0205661393199601E-004 + 118.31999999999999 1.0452878428773610E-004 + 118.38000000000000 1.0713415826265093E-004 + 118.44000000000000 1.0987526452455043E-004 + 118.50000000000000 1.1275457668465035E-004 + 118.56000000000000 1.1577445395299068E-004 + 118.62000000000000 1.1893716333410891E-004 + 118.68000000000001 1.2224483232044193E-004 + 118.73999999999998 1.2569947161903135E-004 + 118.79999999999998 1.2930292178587571E-004 + 118.85999999999999 1.3305685242108217E-004 + 118.91999999999999 1.3696274184106963E-004 + 118.97999999999999 1.4102185963491641E-004 + 119.03999999999999 1.4523529259043356E-004 + 119.09999999999999 1.4960385461005462E-004 + 119.16000000000000 1.5412812523964283E-004 + 119.22000000000000 1.5880846324323202E-004 + 119.28000000000000 1.6364492193636152E-004 + 119.34000000000000 1.6863728043488857E-004 + 119.40000000000001 1.7378503298727676E-004 + 119.46000000000001 1.7908737542937468E-004 + 119.51999999999998 1.8454318876821337E-004 + 119.57999999999998 1.9015106925133587E-004 + 119.63999999999999 1.9590923121228423E-004 + 119.69999999999999 2.0181560921778315E-004 + 119.75999999999999 2.0786774879447053E-004 + 119.81999999999999 2.1406284544468084E-004 + 119.88000000000000 2.2039773975224676E-004 + 119.94000000000000 2.2686888623069571E-004 + 120.00000000000000 2.3347236017997317E-004 + 120.06000000000000 2.4020383779930205E-004 + 120.12000000000000 2.4705856639279728E-004 + 120.18000000000001 2.5403140497839413E-004 + 120.23999999999998 2.6111680444776381E-004 + 120.29999999999998 2.6830877004990164E-004 + 120.35999999999999 2.7560092008019121E-004 + 120.41999999999999 2.8298635913692142E-004 + 120.47999999999999 2.9045790896508857E-004 + 120.53999999999999 2.9800786720309751E-004 + 120.59999999999999 3.0562820734942572E-004 + 120.66000000000000 3.1331043575501797E-004 + 120.72000000000000 3.2104573662186089E-004 + 120.78000000000000 3.2882486164396659E-004 + 120.84000000000000 3.3663823201415870E-004 + 120.90000000000001 3.4447592385769836E-004 + 120.95999999999998 3.5232763391532994E-004 + 121.01999999999998 3.6018278020826124E-004 + 121.07999999999998 3.6803047419553590E-004 + 121.13999999999999 3.7585946439213437E-004 + 121.19999999999999 3.8365825500459404E-004 + 121.25999999999999 3.9141510876380720E-004 + 121.31999999999999 3.9911793412672302E-004 + 121.38000000000000 4.0675449218932733E-004 + 121.44000000000000 4.1431224028024434E-004 + 121.50000000000000 4.2177850633049650E-004 + 121.56000000000000 4.2914034498055828E-004 + 121.62000000000000 4.3638469871901987E-004 + 121.68000000000001 4.4349830615498132E-004 + 121.73999999999998 4.5046789817754468E-004 + 121.79999999999998 4.5728003749978530E-004 + 121.85999999999999 4.6392126518130726E-004 + 121.91999999999999 4.7037812282263485E-004 + 121.97999999999999 4.7663717558395864E-004 + 122.03999999999999 4.8268504270767155E-004 + 122.09999999999999 4.8850842964447562E-004 + 122.16000000000000 4.9409425640554040E-004 + 122.22000000000000 4.9942955692312059E-004 + 122.28000000000000 5.0450162860609120E-004 + 122.34000000000000 5.0929803465083313E-004 + 122.40000000000001 5.1380659365859267E-004 + 122.45999999999998 5.1801551195951193E-004 + 122.51999999999998 5.2191324020608510E-004 + 122.57999999999998 5.2548876498833663E-004 + 122.63999999999999 5.2873136569624439E-004 + 122.69999999999999 5.3163076621021133E-004 + 122.75999999999999 5.3417726234826555E-004 + 122.81999999999999 5.3636156659848120E-004 + 122.88000000000000 5.3817491136978952E-004 + 122.94000000000000 5.3960903347829493E-004 + 123.00000000000000 5.4065635719549154E-004 + 123.06000000000000 5.4130978659787680E-004 + 123.12000000000000 5.4156292597562342E-004 + 123.18000000000001 5.4140997610222506E-004 + 123.23999999999998 5.4084586569431005E-004 + 123.29999999999998 5.3986614424924944E-004 + 123.35999999999999 5.3846712757220382E-004 + 123.41999999999999 5.3664588379550269E-004 + 123.47999999999999 5.3440027789350029E-004 + 123.53999999999999 5.3172887428781996E-004 + 123.59999999999999 5.2863102030902660E-004 + 123.66000000000000 5.2510698171751718E-004 + 123.72000000000000 5.2115773576787920E-004 + 123.78000000000000 5.1678504260842348E-004 + 123.84000000000000 5.1199161757007467E-004 + 123.90000000000001 5.0678082396614376E-004 + 123.95999999999998 5.0115696317875192E-004 + 124.01999999999998 4.9512506997144792E-004 + 124.07999999999998 4.8869089928478798E-004 + 124.13999999999999 4.8186104648190598E-004 + 124.19999999999999 4.7464289141714876E-004 + 124.25999999999999 4.6704451027818007E-004 + 124.31999999999999 4.5907472873578527E-004 + 124.38000000000000 4.5074296727862082E-004 + 124.44000000000000 4.4205944481386415E-004 + 124.50000000000000 4.3303500545511305E-004 + 124.56000000000000 4.2368112676130287E-004 + 124.62000000000000 4.1400981529801396E-004 + 124.68000000000001 4.0403378066582792E-004 + 124.73999999999998 3.9376618981463909E-004 + 124.79999999999998 3.8322076853789335E-004 + 124.85999999999999 3.7241176077494804E-004 + 124.91999999999999 3.6135380277715218E-004 + 124.97999999999999 3.5006206291279818E-004 + 125.03999999999999 3.3855202218717380E-004 + 125.09999999999999 3.2683955493799323E-004 + 125.16000000000000 3.1494085848325783E-004 + 125.22000000000000 3.0287247291697488E-004 + 125.28000000000000 2.9065114023896866E-004 + 125.34000000000000 2.7829380279876311E-004 + 125.40000000000001 2.6581764518946778E-004 + 125.45999999999998 2.5323992026746563E-004 + 125.51999999999998 2.4057801898638817E-004 + 125.57999999999998 2.2784939784961354E-004 + 125.63999999999999 2.1507147943113704E-004 + 125.69999999999999 2.0226169573621963E-004 + 125.75999999999999 1.8943736289808391E-004 + 125.81999999999999 1.7661572421425213E-004 + 125.88000000000000 1.6381380353023406E-004 + 125.94000000000000 1.5104846183396241E-004 + 126.00000000000000 1.3833628489597701E-004 + 126.06000000000000 1.2569355728008679E-004 + 126.12000000000000 1.1313625822145748E-004 + 126.18000000000001 1.0067997820018858E-004 + 126.23999999999998 8.8339922573739987E-005 + 126.29999999999998 7.6130853419354843E-005 + 126.35999999999999 6.4067082382121871E-005 + 126.41999999999999 5.2162431276261902E-005 + 126.47999999999999 4.0430219917952803E-005 + 126.53999999999999 2.8883231103453426E-005 + 126.59999999999999 1.7533718919854857E-005 + 126.66000000000000 6.3933707220118432E-006 + 126.72000000000000 -4.5266998884689139E-006 + 126.78000000000000 -1.5215967227718595E-005 + 126.84000000000000 -2.5664505243429227E-005 + 126.90000000000001 -3.5863009704688366E-005 + 126.95999999999998 -4.5802793874823741E-005 + 127.01999999999998 -5.5475821752197830E-005 + 127.07999999999998 -6.4874716787770214E-005 + 127.13999999999999 -7.3992770915746325E-005 + 127.19999999999999 -8.2823953632005519E-005 + 127.25999999999999 -9.1362936229799413E-005 + 127.31999999999999 -9.9605091501993163E-005 + 127.38000000000000 -1.0754651368961129E-004 + 127.44000000000000 -1.1518399041148759E-004 + 127.50000000000000 -1.2251503760355353E-004 + 127.56000000000000 -1.2953789755218198E-004 + 127.62000000000000 -1.3625150254291242E-004 + 127.68000000000001 -1.4265545127136473E-004 + 127.73999999999998 -1.4875007216880566E-004 + 127.79999999999998 -1.5453631578310684E-004 + 127.85999999999999 -1.6001579790337800E-004 + 127.91999999999999 -1.6519071896210983E-004 + 127.97999999999999 -1.7006388354848495E-004 + 128.03999999999999 -1.7463865302986504E-004 + 128.09999999999999 -1.7891893358026219E-004 + 128.16000000000000 -1.8290915547067706E-004 + 128.22000000000000 -1.8661421141715311E-004 + 128.28000000000000 -1.9003949728835527E-004 + 128.34000000000000 -1.9319083337876231E-004 + 128.40000000000001 -1.9607444557953485E-004 + 128.45999999999998 -1.9869700500098434E-004 + 128.51999999999998 -2.0106554328928392E-004 + 128.57999999999998 -2.0318745037553997E-004 + 128.63999999999999 -2.0507048086844246E-004 + 128.69999999999999 -2.0672270021748984E-004 + 128.75999999999999 -2.0815248126291770E-004 + 128.81999999999999 -2.0936846517273017E-004 + 128.88000000000000 -2.1037954081637911E-004 + 128.94000000000000 -2.1119482482770697E-004 + 129.00000000000000 -2.1182364094006229E-004 + 129.06000000000000 -2.1227545940163359E-004 + 129.12000000000000 -2.1255985693316071E-004 + 129.18000000000001 -2.1268655056265134E-004 + 129.23999999999998 -2.1266528687320131E-004 + 129.29999999999998 -2.1250587821379204E-004 + 129.35999999999999 -2.1221810907235967E-004 + 129.41999999999999 -2.1181177703842260E-004 + 129.47999999999999 -2.1129659663074124E-004 + 129.53999999999999 -2.1068220989788755E-004 + 129.59999999999999 -2.0997818483646326E-004 + 129.66000000000000 -2.0919396091081629E-004 + 129.72000000000000 -2.0833884540699438E-004 + 129.78000000000000 -2.0742198950350670E-004 + 129.84000000000000 -2.0645234719148648E-004 + 129.90000000000001 -2.0543873407869497E-004 + 129.95999999999998 -2.0438975584155780E-004 + 130.01999999999998 -2.0331378990845746E-004 + 130.07999999999998 -2.0221900199880727E-004 + 130.13999999999999 -2.0111333369983482E-004 + 130.19999999999999 -2.0000445780052114E-004 + 130.25999999999999 -1.9889980426302488E-004 + 130.31999999999999 -1.9780652104433983E-004 + 130.38000000000000 -1.9673150307578636E-004 + 130.44000000000000 -1.9568132457371519E-004 + 130.50000000000000 -1.9466227312395004E-004 + 130.56000000000000 -1.9368033450980311E-004 + 130.62000000000000 -1.9274119778122983E-004 + 130.68000000000001 -1.9185021401486087E-004 + 130.73999999999998 -1.9101243374013447E-004 + 130.79999999999998 -1.9023253756556878E-004 + 130.85999999999999 -1.8951494421899233E-004 + 130.91999999999999 -1.8886369046352351E-004 + 130.97999999999999 -1.8828248597209003E-004 + 131.03999999999999 -1.8777472297630215E-004 + 131.09999999999999 -1.8734342778346699E-004 + 131.16000000000000 -1.8699130610824087E-004 + 131.22000000000000 -1.8672069671262252E-004 + 131.28000000000000 -1.8653361481673763E-004 + 131.34000000000000 -1.8643172327587922E-004 + 131.40000000000001 -1.8641633155651826E-004 + 131.45999999999998 -1.8648841508128009E-004 + 131.51999999999998 -1.8664859642648497E-004 + 131.57999999999998 -1.8689718233254676E-004 + 131.63999999999999 -1.8723414269854283E-004 + 131.69999999999999 -1.8765913657523001E-004 + 131.75999999999999 -1.8817149406958244E-004 + 131.81999999999999 -1.8877027433212554E-004 + 131.88000000000000 -1.8945422618324532E-004 + 131.94000000000000 -1.9022185663087254E-004 + 132.00000000000000 -1.9107137894259672E-004 + 132.06000000000000 -1.9200075681333550E-004 + 132.12000000000000 -1.9300771996730442E-004 + 132.18000000000001 -1.9408976081677348E-004 + 132.23999999999998 -1.9524412038658635E-004 + 132.29999999999998 -1.9646787689792412E-004 + 132.35999999999999 -1.9775781520966896E-004 + 132.41999999999999 -1.9911055825307353E-004 + 132.47999999999999 -2.0052250387257207E-004 + 132.53999999999999 -2.0198982857312607E-004 + 132.59999999999999 -2.0350851328718793E-004 + 132.66000000000000 -2.0507434437526048E-004 + 132.72000000000000 -2.0668290448524806E-004 + 132.78000000000000 -2.0832960837826518E-004 + 132.84000000000000 -2.1000966043393808E-004 + 132.90000000000001 -2.1171814077704433E-004 + 132.95999999999998 -2.1344996864924905E-004 + 133.01999999999998 -2.1519991546108819E-004 + 133.07999999999998 -2.1696266919995591E-004 + 133.13999999999999 -2.1873279007973495E-004 + 133.19999999999999 -2.2050476925071125E-004 + 133.25999999999999 -2.2227303695945833E-004 + 133.31999999999999 -2.2403199231532116E-004 + 133.38000000000000 -2.2577596688941226E-004 + 133.44000000000000 -2.2749931551878291E-004 + 133.50000000000000 -2.2919635362869529E-004 + 133.56000000000000 -2.3086143817637879E-004 + 133.62000000000000 -2.3248888366528657E-004 + 133.68000000000001 -2.3407305295803865E-004 + 133.73999999999998 -2.3560835484944721E-004 + 133.79999999999998 -2.3708919122173718E-004 + 133.85999999999999 -2.3851001024646374E-004 + 133.91999999999999 -2.3986532037030602E-004 + 133.97999999999999 -2.4114966476791936E-004 + 134.03999999999999 -2.4235764883444655E-004 + 134.09999999999999 -2.4348400153105022E-004 + 134.16000000000000 -2.4452348028384624E-004 + 134.22000000000000 -2.4547099803495624E-004 + 134.28000000000000 -2.4632156523232202E-004 + 134.34000000000000 -2.4707027993408715E-004 + 134.40000000000001 -2.4771249473930088E-004 + 134.45999999999998 -2.4824369942622710E-004 + 134.51999999999998 -2.4865956713701468E-004 + 134.57999999999998 -2.4895595213877611E-004 + 134.63999999999999 -2.4912894872813462E-004 + 134.69999999999999 -2.4917488577334043E-004 + 134.75999999999999 -2.4909034911694471E-004 + 134.81999999999999 -2.4887215866302724E-004 + 134.88000000000000 -2.4851737378425422E-004 + 134.94000000000000 -2.4802334562759365E-004 + 135.00000000000000 -2.4738764619864674E-004 + 135.06000000000000 -2.4660815271312729E-004 + 135.12000000000000 -2.4568296479528506E-004 + 135.18000000000001 -2.4461050938251217E-004 + 135.23999999999998 -2.4338944773541387E-004 + 135.29999999999998 -2.4201872102165282E-004 + 135.35999999999999 -2.4049757792596403E-004 + 135.41999999999999 -2.3882552071420018E-004 + 135.47999999999999 -2.3700235467318231E-004 + 135.53999999999999 -2.3502817616728752E-004 + 135.59999999999999 -2.3290340614050224E-004 + 135.66000000000000 -2.3062873652705246E-004 + 135.72000000000000 -2.2820518318991741E-004 + 135.78000000000000 -2.2563406763349109E-004 + 135.84000000000000 -2.2291704355453852E-004 + 135.90000000000001 -2.2005606145619926E-004 + 135.95999999999998 -2.1705338141277534E-004 + 136.01999999999998 -2.1391160282210108E-004 + 136.07999999999998 -2.1063358968364252E-004 + 136.13999999999999 -2.0722254388966035E-004 + 136.19999999999999 -2.0368196515116140E-004 + 136.25999999999999 -2.0001565918364910E-004 + 136.31999999999999 -1.9622769163852961E-004 + 136.38000000000000 -1.9232245007145095E-004 + 136.44000000000000 -1.8830458528861847E-004 + 136.50000000000000 -1.8417900619339259E-004 + 136.56000000000000 -1.7995092542068711E-004 + 136.62000000000000 -1.7562576912823463E-004 + 136.68000000000001 -1.7120924810951350E-004 + 136.73999999999998 -1.6670727273862039E-004 + 136.79999999999998 -1.6212597807280455E-004 + 136.85999999999999 -1.5747175681923603E-004 + 136.91999999999999 -1.5275117113685340E-004 + 136.97999999999999 -1.4797095147169888E-004 + 137.03999999999999 -1.4313802259176183E-004 + 137.09999999999999 -1.3825942872237697E-004 + 137.16000000000000 -1.3334234996988147E-004 + 137.22000000000000 -1.2839409470437506E-004 + 137.28000000000000 -1.2342206631198117E-004 + 137.34000000000000 -1.1843373033244533E-004 + 137.40000000000001 -1.1343661877539077E-004 + 137.45999999999998 -1.0843832046101839E-004 + 137.51999999999998 -1.0344644208853544E-004 + 137.57999999999998 -9.8468623463296201E-005 + 137.63999999999999 -9.3512488955284500E-005 + 137.69999999999999 -8.8585662880695355E-005 + 137.75999999999999 -8.3695747110061917E-005 + 137.81999999999999 -7.8850292236871088E-005 + 137.88000000000000 -7.4056812525327847E-005 + 137.94000000000000 -6.9322735083852483E-005 + 138.00000000000000 -6.4655413634666202E-005 + 138.06000000000000 -6.0062079202639159E-005 + 138.12000000000000 -5.5549852333272787E-005 + 138.18000000000001 -5.1125698390887855E-005 + 138.23999999999998 -4.6796426168638489E-005 + 138.29999999999998 -4.2568651767885434E-005 + 138.35999999999999 -3.8448783693653905E-005 + 138.41999999999999 -3.4443000646003794E-005 + 138.47999999999999 -3.0557235550584259E-005 + 138.53999999999999 -2.6797150910504228E-005 + 138.59999999999999 -2.3168136486711350E-005 + 138.66000000000000 -1.9675288222412609E-005 + 138.72000000000000 -1.6323395947999203E-005 + 138.78000000000000 -1.3116939053957089E-005 + 138.84000000000000 -1.0060080361643408E-005 + 138.90000000000001 -7.1566601118569477E-006 + 138.95999999999998 -4.4101946873164909E-006 + 139.01999999999998 -1.8238761207983872E-006 + 139.07999999999998 5.9943119375697101E-007 + 139.13999999999999 2.8571919872974036E-006 + 139.19999999999999 4.9471950915938742E-006 + 139.25999999999999 6.8675623061915891E-006 + 139.31999999999999 8.6167434232628543E-006 + 139.38000000000000 1.0193526318360163E-005 + 139.44000000000000 1.1597034266096658E-005 + 139.50000000000000 1.2826730934689886E-005 + 139.56000000000000 1.3882425197060041E-005 + 139.62000000000000 1.4764272482245034E-005 + 139.68000000000001 1.5472778571491702E-005 + 139.73999999999998 1.6008797763183191E-005 + 139.79999999999998 1.6373533944442761E-005 + 139.85999999999999 1.6568539735775782E-005 + 139.91999999999999 1.6595709594303221E-005 + 139.97999999999999 1.6457274421203062E-005 + 140.03999999999999 1.6155791088452582E-005 + 140.09999999999999 1.5694134263458640E-005 + 140.16000000000000 1.5075481447354103E-005 + 140.22000000000000 1.4303299740470900E-005 + 140.28000000000000 1.3381333146399057E-005 + 140.34000000000000 1.2313583744421765E-005 + 140.40000000000001 1.1104299218395928E-005 + 140.45999999999998 9.7579524370939992E-006 + 140.51999999999998 8.2792311131518484E-006 + 140.57999999999998 6.6730185027390598E-006 + 140.63999999999999 4.9443822409270949E-006 + 140.69999999999999 3.0985561596797644E-006 + 140.75999999999999 1.1409296446876543E-006 + 140.81999999999999 -9.2296287390910415E-007 + 140.88000000000000 -3.0874608406886872E-006 + 140.94000000000000 -5.3467848384741754E-006 + 141.00000000000000 -7.6950532481845465E-006 + 141.06000000000000 -1.0126294205512592E-005 + 141.12000000000000 -1.2634452828002893E-005 + 141.18000000000001 -1.5213411666617246E-005 + 141.23999999999998 -1.7857002527009569E-005 + 141.29999999999998 -2.0559014405915240E-005 + 141.35999999999999 -2.3313212299662898E-005 + 141.41999999999999 -2.6113356976933916E-005 + 141.47999999999999 -2.8953199892889420E-005 + 141.53999999999999 -3.1826517981640439E-005 + 141.59999999999999 -3.4727118046154240E-005 + 141.66000000000000 -3.7648848182518601E-005 + 141.72000000000000 -4.0585613552379582E-005 + 141.78000000000000 -4.3531384012871131E-005 + 141.84000000000000 -4.6480210238203537E-005 + 141.90000000000001 -4.9426243839082149E-005 + 141.95999999999998 -5.2363725213334135E-005 + 142.01999999999998 -5.5287018906603287E-005 + 142.07999999999998 -5.8190622512093032E-005 + 142.13999999999999 -6.1069147267757391E-005 + 142.19999999999999 -6.3917371552269249E-005 + 142.25999999999999 -6.6730209224505959E-005 + 142.31999999999999 -6.9502761644111319E-005 + 142.38000000000000 -7.2230283876247438E-005 + 142.44000000000000 -7.4908225562011609E-005 + 142.50000000000000 -7.7532217995848832E-005 + 142.56000000000000 -8.0098078440629403E-005 + 142.62000000000000 -8.2601833647453739E-005 + 142.68000000000001 -8.5039698787653986E-005 + 142.73999999999998 -8.7408109380939081E-005 + 142.79999999999998 -8.9703701342715123E-005 + 142.85999999999999 -9.1923323754238839E-005 + 142.91999999999999 -9.4064031458802359E-005 + 142.97999999999999 -9.6123089863823510E-005 + 143.03999999999999 -9.8097962430185548E-005 + 143.09999999999999 -9.9986331955771235E-005 + 143.16000000000000 -1.0178609699368606E-004 + 143.22000000000000 -1.0349534434388419E-004 + 143.28000000000000 -1.0511237070726258E-004 + 143.34000000000000 -1.0663567649186455E-004 + 143.40000000000001 -1.0806397775848068E-004 + 143.45999999999998 -1.0939618105020108E-004 + 143.51999999999998 -1.1063140611384609E-004 + 143.57999999999998 -1.1176896534262571E-004 + 143.63999999999999 -1.1280837820362210E-004 + 143.69999999999999 -1.1374935869371736E-004 + 143.75999999999999 -1.1459182800136361E-004 + 143.81999999999999 -1.1533588507592473E-004 + 143.88000000000000 -1.1598183039208978E-004 + 143.94000000000000 -1.1653016032701830E-004 + 144.00000000000000 -1.1698152401087452E-004 + 144.06000000000000 -1.1733676877316128E-004 + 144.12000000000000 -1.1759689384300263E-004 + 144.18000000000001 -1.1776306642061955E-004 + 144.23999999999998 -1.1783659283891147E-004 + 144.29999999999998 -1.1781893348182377E-004 + 144.35999999999999 -1.1771168510646331E-004 + 144.41999999999999 -1.1751655653788078E-004 + 144.47999999999999 -1.1723539383812098E-004 + 144.53999999999999 -1.1687013877101025E-004 + 144.59999999999999 -1.1642285622846412E-004 + 144.66000000000000 -1.1589570633327904E-004 + 144.72000000000000 -1.1529094393399597E-004 + 144.78000000000000 -1.1461091370399434E-004 + 144.84000000000000 -1.1385804116198716E-004 + 144.90000000000001 -1.1303483967769634E-004 + 144.95999999999998 -1.1214390599788595E-004 + 145.01999999999998 -1.1118790021314878E-004 + 145.07999999999998 -1.1016954250891820E-004 + 145.13999999999999 -1.0909161497343970E-004 + 145.19999999999999 -1.0795696359351491E-004 + 145.25999999999999 -1.0676846859763500E-004 + 145.31999999999999 -1.0552906158885160E-004 + 145.38000000000000 -1.0424169773168624E-004 + 145.44000000000000 -1.0290936319463591E-004 + 145.50000000000000 -1.0153506961524755E-004 + 145.56000000000000 -1.0012181989954901E-004 + 145.62000000000000 -9.8672645832512096E-005 + 145.68000000000001 -9.7190559938130282E-005 + 145.73999999999998 -9.5678582681653538E-005 + 145.79999999999998 -9.4139712252130811E-005 + 145.85999999999999 -9.2576925150964087E-005 + 145.91999999999999 -9.0993191626209734E-005 + 145.97999999999999 -8.9391452671330147E-005 + 146.03999999999999 -8.7774613235004243E-005 + 146.09999999999999 -8.6145570107345009E-005 + 146.16000000000000 -8.4507180953973034E-005 + 146.22000000000000 -8.2862260440249994E-005 + 146.28000000000000 -8.1213596158134329E-005 + 146.34000000000000 -7.9563938237535133E-005 + 146.40000000000001 -7.7915991499210075E-005 + 146.45999999999998 -7.6272421262200840E-005 + 146.51999999999998 -7.4635837263190859E-005 + 146.57999999999998 -7.3008799112066276E-005 + 146.63999999999999 -7.1393812234040645E-005 + 146.69999999999999 -6.9793316025148122E-005 + 146.75999999999999 -6.8209676569117093E-005 + 146.81999999999999 -6.6645190722063911E-005 + 146.88000000000000 -6.5102070605585168E-005 + 146.94000000000000 -6.3582458735529965E-005 + 147.00000000000000 -6.2088391257351407E-005 + 147.06000000000000 -6.0621825381800099E-005 + 147.12000000000000 -5.9184619737887576E-005 + 147.18000000000001 -5.7778534609129638E-005 + 147.23999999999998 -5.6405233381944907E-005 + 147.29999999999998 -5.5066286069191330E-005 + 147.35999999999999 -5.3763156469870907E-005 + 147.41999999999999 -5.2497221979576331E-005 + 147.47999999999999 -5.1269748442316525E-005 + 147.53999999999999 -5.0081919496866645E-005 + 147.59999999999999 -4.8934820290753294E-005 + 147.66000000000000 -4.7829441249905496E-005 + 147.72000000000000 -4.6766677637882438E-005 + 147.78000000000000 -4.5747335787436818E-005 + 147.84000000000000 -4.4772126225318457E-005 + 147.90000000000001 -4.3841669219907587E-005 + 147.95999999999998 -4.2956485422559970E-005 + 148.01999999999998 -4.2117004963901770E-005 + 148.07999999999998 -4.1323556125566249E-005 + 148.13999999999999 -4.0576366751484168E-005 + 148.19999999999999 -3.9875566073509350E-005 + 148.25999999999999 -3.9221183408372700E-005 + 148.31999999999999 -3.8613141852354418E-005 + 148.38000000000000 -3.8051268347684662E-005 + 148.44000000000000 -3.7535281493760226E-005 + 148.50000000000000 -3.7064810269641059E-005 + 148.56000000000000 -3.6639391230618586E-005 + 148.62000000000000 -3.6258470433338881E-005 + 148.68000000000001 -3.5921415069450006E-005 + 148.73999999999998 -3.5627519639510108E-005 + 148.79999999999998 -3.5376005963344932E-005 + 148.85999999999999 -3.5166044149704890E-005 + 148.91999999999999 -3.4996752794563355E-005 + 148.97999999999999 -3.4867207795282117E-005 + 149.03999999999999 -3.4776451845181253E-005 + 149.09999999999999 -3.4723499287432050E-005 + 149.16000000000000 -3.4707347148577583E-005 + 149.22000000000000 -3.4726973967307270E-005 + 149.28000000000000 -3.4781345253515689E-005 + 149.34000000000000 -3.4869426173951761E-005 + 149.40000000000001 -3.4990164808341679E-005 + 149.45999999999998 -3.5142516450449995E-005 + 149.51999999999998 -3.5325422100690417E-005 + 149.57999999999998 -3.5537820598707971E-005 + 149.63999999999999 -3.5778643983890582E-005 + 149.69999999999999 -3.6046822594672649E-005 + 149.75999999999999 -3.6341278511954002E-005 + 149.81999999999999 -3.6660923758111804E-005 + 149.88000000000000 -3.7004664830679055E-005 + 149.94000000000000 -3.7371399964906320E-005 + 150.00000000000000 -3.7760022149285401E-005 + 150.06000000000000 -3.8169416261390157E-005 + 150.12000000000000 -3.8598472058964772E-005 + 150.18000000000001 -3.9046071950467840E-005 + 150.23999999999998 -3.9511102480345561E-005 + 150.29999999999998 -3.9992460333783617E-005 + 150.35999999999999 -4.0489048649697787E-005 + 150.41999999999999 -4.0999791645194797E-005 + 150.47999999999999 -4.1523623770432844E-005 + 150.53999999999999 -4.2059512602227536E-005 + 150.59999999999999 -4.2606445534579151E-005 + 150.66000000000000 -4.3163446539040079E-005 + 150.72000000000000 -4.3729563243477928E-005 + 150.78000000000000 -4.4303888370289792E-005 + 150.84000000000000 -4.4885549008961381E-005 + 150.90000000000001 -4.5473704157485247E-005 + 150.95999999999998 -4.6067560941284339E-005 + 151.01999999999998 -4.6666355798925177E-005 + 151.07999999999998 -4.7269366938189866E-005 + 151.13999999999999 -4.7875910690718337E-005 + 151.19999999999999 -4.8485321955632023E-005 + 151.25999999999999 -4.9096979952831323E-005 + 151.31999999999999 -4.9710280191996900E-005 + 151.38000000000000 -5.0324649243991388E-005 + 151.44000000000000 -5.0939529251816656E-005 + 151.50000000000000 -5.1554381541192013E-005 + 151.56000000000000 -5.2168674270019090E-005 + 151.62000000000000 -5.2781907454526339E-005 + 151.68000000000001 -5.3393580915848569E-005 + 151.73999999999998 -5.4003215412488890E-005 + 151.79999999999998 -5.4610350139056259E-005 + 151.85999999999999 -5.5214536330495020E-005 + 151.91999999999999 -5.5815353200704212E-005 + 151.97999999999999 -5.6412406183952068E-005 + 152.03999999999999 -5.7005331684941720E-005 + 152.09999999999999 -5.7593802402574427E-005 + 152.16000000000000 -5.8177528205489624E-005 + 152.22000000000000 -5.8756267388189685E-005 + 152.28000000000000 -5.9329824329436383E-005 + 152.34000000000000 -5.9898031844291725E-005 + 152.40000000000001 -6.0460797150804127E-005 + 152.45999999999998 -6.1018053989401021E-005 + 152.51999999999998 -6.1569782175662570E-005 + 152.57999999999998 -6.2115993026418606E-005 + 152.63999999999999 -6.2656747447264473E-005 + 152.69999999999999 -6.3192116916894624E-005 + 152.75999999999999 -6.3722176851561645E-005 + 152.81999999999999 -6.4247033098290381E-005 + 152.88000000000000 -6.4766786532363012E-005 + 152.94000000000000 -6.5281523919212214E-005 + 153.00000000000000 -6.5791337337835855E-005 + 153.06000000000000 -6.6296284692614078E-005 + 153.12000000000000 -6.6796415755275790E-005 + 153.17999999999998 -6.7291750896262341E-005 + 153.23999999999998 -6.7782300717707730E-005 + 153.29999999999998 -6.8268044837818846E-005 + 153.35999999999999 -6.8748965454527549E-005 + 153.41999999999999 -6.9225011882903992E-005 + 153.47999999999999 -6.9696133640410714E-005 + 153.53999999999999 -7.0162267150384534E-005 + 153.59999999999999 -7.0623350667625950E-005 + 153.66000000000000 -7.1079326207635965E-005 + 153.72000000000000 -7.1530137459769669E-005 + 153.78000000000000 -7.1975725111827950E-005 + 153.84000000000000 -7.2416017709322784E-005 + 153.90000000000001 -7.2850962594804114E-005 + 153.95999999999998 -7.3280483632411710E-005 + 154.01999999999998 -7.3704495271930372E-005 + 154.07999999999998 -7.4122890297001451E-005 + 154.13999999999999 -7.4535551124300077E-005 + 154.19999999999999 -7.4942309781923761E-005 + 154.25999999999999 -7.5342984420506738E-005 + 154.31999999999999 -7.5737329357193018E-005 + 154.38000000000000 -7.6125068721719051E-005 + 154.44000000000000 -7.6505892286753084E-005 + 154.50000000000000 -7.6879435804726501E-005 + 154.56000000000000 -7.7245295562030427E-005 + 154.62000000000000 -7.7603028889521765E-005 + 154.67999999999998 -7.7952158454101729E-005 + 154.73999999999998 -7.8292176537806619E-005 + 154.79999999999998 -7.8622553151804899E-005 + 154.85999999999999 -7.8942753660205171E-005 + 154.91999999999999 -7.9252228551270607E-005 + 154.97999999999999 -7.9550426914893786E-005 + 155.03999999999999 -7.9836809204750136E-005 + 155.09999999999999 -8.0110827987036495E-005 + 155.16000000000000 -8.0371979763695325E-005 + 155.22000000000000 -8.0619764011834573E-005 + 155.28000000000000 -8.0853701715316543E-005 + 155.34000000000000 -8.1073348941088089E-005 + 155.40000000000001 -8.1278280568951972E-005 + 155.45999999999998 -8.1468125099439380E-005 + 155.51999999999998 -8.1642502158424843E-005 + 155.57999999999998 -8.1801095532799470E-005 + 155.63999999999999 -8.1943602676056126E-005 + 155.69999999999999 -8.2069762284502179E-005 + 155.75999999999999 -8.2179331640054923E-005 + 155.81999999999999 -8.2272124153489723E-005 + 155.88000000000000 -8.2347958070793249E-005 + 155.94000000000000 -8.2406705186456169E-005 + 156.00000000000000 -8.2448272669810593E-005 + 156.06000000000000 -8.2472589091771761E-005 + 156.12000000000000 -8.2479628468730515E-005 + 156.17999999999998 -8.2469398290263698E-005 + 156.23999999999998 -8.2441927076053450E-005 + 156.29999999999998 -8.2397306563235481E-005 + 156.35999999999999 -8.2335645747296323E-005 + 156.41999999999999 -8.2257092467178712E-005 + 156.47999999999999 -8.2161839609065868E-005 + 156.53999999999999 -8.2050122448553659E-005 + 156.59999999999999 -8.1922205904853598E-005 + 156.66000000000000 -8.1778406723265516E-005 + 156.72000000000000 -8.1619071394849158E-005 + 156.78000000000000 -8.1444612150835354E-005 + 156.84000000000000 -8.1255469220627705E-005 + 156.90000000000001 -8.1052143898111304E-005 + 156.95999999999998 -8.0835170682590221E-005 + 157.01999999999998 -8.0605130514401429E-005 + 157.07999999999998 -8.0362659924691242E-005 + 157.13999999999999 -8.0108435434225907E-005 + 157.19999999999999 -7.9843179780852627E-005 + 157.25999999999999 -7.9567638215321865E-005 + 157.31999999999999 -7.9282605442108168E-005 + 157.38000000000000 -7.8988901479091323E-005 + 157.44000000000000 -7.8687366172361164E-005 + 157.50000000000000 -7.8378858442904015E-005 + 157.56000000000000 -7.8064252224569101E-005 + 157.62000000000000 -7.7744428028190060E-005 + 157.67999999999998 -7.7420273057241532E-005 + 157.73999999999998 -7.7092665355235141E-005 + 157.79999999999998 -7.6762480719305476E-005 + 157.85999999999999 -7.6430598891964366E-005 + 157.91999999999999 -7.6097880609316980E-005 + 157.97999999999999 -7.5765183649788116E-005 + 158.03999999999999 -7.5433353757295261E-005 + 158.09999999999999 -7.5103222305241682E-005 + 158.16000000000000 -7.4775630456748427E-005 + 158.22000000000000 -7.4451399501940016E-005 + 158.28000000000000 -7.4131344507841131E-005 + 158.34000000000000 -7.3816284745075676E-005 + 158.40000000000001 -7.3507022090488780E-005 + 158.45999999999998 -7.3204345130021661E-005 + 158.51999999999998 -7.2909053292289516E-005 + 158.57999999999998 -7.2621916362052382E-005 + 158.63999999999999 -7.2343688512514385E-005 + 158.69999999999999 -7.2075113628662865E-005 + 158.75999999999999 -7.1816912350528369E-005 + 158.81999999999999 -7.1569766624585677E-005 + 158.88000000000000 -7.1334346803631635E-005 + 158.94000000000000 -7.1111277132373925E-005 + 159.00000000000000 -7.0901159717721204E-005 + 159.06000000000000 -7.0704534081904861E-005 + 159.12000000000000 -7.0521928697578893E-005 + 159.17999999999998 -7.0353827011014706E-005 + 159.23999999999998 -7.0200668179499684E-005 + 159.29999999999998 -7.0062842617282637E-005 + 159.35999999999999 -6.9940720005248034E-005 + 159.41999999999999 -6.9834614564571578E-005 + 159.47999999999999 -6.9744806053425912E-005 + 159.53999999999999 -6.9671542042701635E-005 + 159.59999999999999 -6.9615010797189155E-005 + 159.66000000000000 -6.9575380402215584E-005 + 159.72000000000000 -6.9552747360918514E-005 + 159.78000000000000 -6.9547181327813391E-005 + 159.84000000000000 -6.9558688976120310E-005 + 159.90000000000001 -6.9587231347785286E-005 + 159.95999999999998 -6.9632703182401874E-005 + 160.01999999999998 -6.9694953612431886E-005 + 160.07999999999998 -6.9773766250147152E-005 + 160.13999999999999 -6.9868859164138558E-005 + 160.19999999999999 -6.9979894469552939E-005 + 160.25999999999999 -7.0106472891370711E-005 + 160.31999999999999 -7.0248126915395723E-005 + 160.38000000000000 -7.0404355290762941E-005 + 160.44000000000000 -7.0574584236557034E-005 + 160.50000000000000 -7.0758195524377778E-005 + 160.56000000000000 -7.0954519415221770E-005 + 160.62000000000000 -7.1162858109236141E-005 + 160.67999999999998 -7.1382454621585537E-005 + 160.73999999999998 -7.1612533920652866E-005 + 160.79999999999998 -7.1852275198084050E-005 + 160.85999999999999 -7.2100825639607414E-005 + 160.91999999999999 -7.2357302501686039E-005 + 160.97999999999999 -7.2620805600644698E-005 + 161.03999999999999 -7.2890384086821689E-005 + 161.09999999999999 -7.3165069214315575E-005 + 161.16000000000000 -7.3443864097395736E-005 + 161.22000000000000 -7.3725737870229736E-005 + 161.28000000000000 -7.4009633716252545E-005 + 161.34000000000000 -7.4294480256977420E-005 + 161.40000000000001 -7.4579179339628914E-005 + 161.45999999999998 -7.4862630795000600E-005 + 161.51999999999998 -7.5143720322177199E-005 + 161.57999999999998 -7.5421332680130699E-005 + 161.63999999999999 -7.5694373687255047E-005 + 161.69999999999999 -7.5961764682437434E-005 + 161.75999999999999 -7.6222444327111227E-005 + 161.81999999999999 -7.6475398866373052E-005 + 161.88000000000000 -7.6719650456365075E-005 + 161.94000000000000 -7.6954272826159812E-005 + 162.00000000000000 -7.7178398324429700E-005 + 162.06000000000000 -7.7391203776462655E-005 + 162.12000000000000 -7.7591941734891223E-005 + 162.17999999999998 -7.7779925403106509E-005 + 162.23999999999998 -7.7954532968266924E-005 + 162.29999999999998 -7.8115186834112858E-005 + 162.35999999999999 -7.8261382125888171E-005 + 162.41999999999999 -7.8392664312670782E-005 + 162.47999999999999 -7.8508627187675074E-005 + 162.53999999999999 -7.8608907907819946E-005 + 162.59999999999999 -7.8693218519349493E-005 + 162.66000000000000 -7.8761275590851057E-005 + 162.72000000000000 -7.8812866811195159E-005 + 162.78000000000000 -7.8847818306641319E-005 + 162.84000000000000 -7.8865998446209362E-005 + 162.90000000000001 -7.8867309226348387E-005 + 162.95999999999998 -7.8851734700449521E-005 + 163.01999999999998 -7.8819273383363086E-005 + 163.07999999999998 -7.8770004808669826E-005 + 163.13999999999999 -7.8704059479282065E-005 + 163.19999999999999 -7.8621632226383339E-005 + 163.25999999999999 -7.8522974786325109E-005 + 163.31999999999999 -7.8408410955751646E-005 + 163.38000000000000 -7.8278319842074536E-005 + 163.44000000000000 -7.8133149955960632E-005 + 163.50000000000000 -7.7973401430923855E-005 + 163.56000000000000 -7.7799638796878463E-005 + 163.62000000000000 -7.7612472191179821E-005 + 163.67999999999998 -7.7412562491120153E-005 + 163.73999999999998 -7.7200608395374247E-005 + 163.79999999999998 -7.6977353354292378E-005 + 163.85999999999999 -7.6743556491137277E-005 + 163.91999999999999 -7.6500016908312752E-005 + 163.97999999999999 -7.6247540529135235E-005 + 164.03999999999999 -7.5986950165513761E-005 + 164.09999999999999 -7.5719086699128059E-005 + 164.16000000000000 -7.5444788355687458E-005 + 164.22000000000000 -7.5164887147254476E-005 + 164.28000000000000 -7.4880227565919330E-005 + 164.34000000000000 -7.4591650089349856E-005 + 164.40000000000001 -7.4299974541358407E-005 + 164.45999999999998 -7.4006033136235830E-005 + 164.51999999999998 -7.3710630179709384E-005 + 164.57999999999998 -7.3414580866127427E-005 + 164.63999999999999 -7.3118682286981958E-005 + 164.69999999999999 -7.2823730218307916E-005 + 164.75999999999999 -7.2530501443054287E-005 + 164.81999999999999 -7.2239769468303972E-005 + 164.88000000000000 -7.1952310905908174E-005 + 164.94000000000000 -7.1668888543971845E-005 + 165.00000000000000 -7.1390258486159634E-005 + 165.06000000000000 -7.1117175232243094E-005 + 165.12000000000000 -7.0850396157497175E-005 + 165.17999999999998 -7.0590657538664874E-005 + 165.23999999999998 -7.0338710001372666E-005 + 165.29999999999998 -7.0095277099384629E-005 + 165.35999999999999 -6.9861084538340711E-005 + 165.41999999999999 -6.9636839215965189E-005 + 165.47999999999999 -6.9423223688077341E-005 + 165.53999999999999 -6.9220894777872175E-005 + 165.59999999999999 -6.9030488065822032E-005 + 165.66000000000000 -6.8852595804593796E-005 + 165.72000000000000 -6.8687765686602042E-005 + 165.78000000000000 -6.8536497228890273E-005 + 165.84000000000000 -6.8399227724774713E-005 + 165.90000000000001 -6.8276347701075188E-005 + 165.95999999999998 -6.8168179245803206E-005 + 166.01999999999998 -6.8074965719683785E-005 + 166.07999999999998 -6.7996899730422792E-005 + 166.13999999999999 -6.7934099187208391E-005 + 166.19999999999999 -6.7886636497349544E-005 + 166.25999999999999 -6.7854503898192870E-005 + 166.31999999999999 -6.7837642471431248E-005 + 166.38000000000000 -6.7835951680184531E-005 + 166.44000000000000 -6.7849270977367383E-005 + 166.50000000000000 -6.7877413037481510E-005 + 166.56000000000000 -6.7920147431706370E-005 + 166.62000000000000 -6.7977193012091000E-005 + 166.67999999999998 -6.8048249123046177E-005 + 166.73999999999998 -6.8132973130949809E-005 + 166.79999999999998 -6.8230992265019990E-005 + 166.85999999999999 -6.8341886151286480E-005 + 166.91999999999999 -6.8465188327963619E-005 + 166.97999999999999 -6.8600389311201576E-005 + 167.03999999999999 -6.8746928874031249E-005 + 167.09999999999999 -6.8904187459156003E-005 + 167.16000000000000 -6.9071468231340395E-005 + 167.22000000000000 -6.9248042019408323E-005 + 167.28000000000000 -6.9433087006301372E-005 + 167.34000000000000 -6.9625735798125227E-005 + 167.40000000000001 -6.9825051402725328E-005 + 167.45999999999998 -7.0030044906599657E-005 + 167.51999999999998 -7.0239692086947813E-005 + 167.57999999999998 -7.0452914585348070E-005 + 167.63999999999999 -7.0668621160342910E-005 + 167.69999999999999 -7.0885692535017949E-005 + 167.75999999999999 -7.1103010079175518E-005 + 167.81999999999999 -7.1319454593520297E-005 + 167.88000000000000 -7.1533926580558653E-005 + 167.94000000000000 -7.1745349688796418E-005 + 168.00000000000000 -7.1952667282596899E-005 + 168.06000000000000 -7.2154870000254944E-005 + 168.12000000000000 -7.2350981591572927E-005 + 168.17999999999998 -7.2540075695180206E-005 + 168.23999999999998 -7.2721260900805880E-005 + 168.29999999999998 -7.2893684721136908E-005 + 168.35999999999999 -7.3056546493684819E-005 + 168.41999999999999 -7.3209063319898827E-005 + 168.47999999999999 -7.3350500243365375E-005 + 168.53999999999999 -7.3480150457956174E-005 + 168.59999999999999 -7.3597339470519207E-005 + 168.66000000000000 -7.3701431891846686E-005 + 168.72000000000000 -7.3791822432862250E-005 + 168.78000000000000 -7.3867927526442034E-005 + 168.84000000000000 -7.3929213684811832E-005 + 168.90000000000001 -7.3975178345515543E-005 + 168.95999999999998 -7.4005376053313239E-005 + 169.01999999999998 -7.4019392234592229E-005 + 169.07999999999998 -7.4016883280216429E-005 + 169.13999999999999 -7.3997546567523029E-005 + 169.19999999999999 -7.3961150950712141E-005 + 169.25999999999999 -7.3907526881746371E-005 + 169.31999999999999 -7.3836557669700677E-005 + 169.38000000000000 -7.3748206377373049E-005 + 169.44000000000000 -7.3642487778864376E-005 + 169.50000000000000 -7.3519492485596668E-005 + 169.56000000000000 -7.3379374370342564E-005 + 169.62000000000000 -7.3222343562118680E-005 + 169.67999999999998 -7.3048680489989440E-005 + 169.73999999999998 -7.2858703184402633E-005 + 169.79999999999998 -7.2652806617688666E-005 + 169.85999999999999 -7.2431406061362037E-005 + 169.91999999999999 -7.2194982707017818E-005 + 169.97999999999999 -7.1944057334790508E-005 + 170.03999999999999 -7.1679181880603964E-005 + 170.09999999999999 -7.1400950604462430E-005 + 170.16000000000000 -7.1109985802725475E-005 + 170.22000000000000 -7.0806930032228231E-005 + 170.28000000000000 -7.0492446273434794E-005 + 170.34000000000000 -7.0167234890847557E-005 + 170.40000000000001 -6.9831993506308190E-005 + 170.45999999999998 -6.9487440854345238E-005 + 170.51999999999998 -6.9134296749209995E-005 + 170.57999999999998 -6.8773297269566602E-005 + 170.63999999999999 -6.8405175870651775E-005 + 170.69999999999999 -6.8030678473687576E-005 + 170.75999999999999 -6.7650556851081675E-005 + 170.81999999999999 -6.7265556868878647E-005 + 170.88000000000000 -6.6876444035874491E-005 + 170.94000000000000 -6.6483993190989216E-005 + 171.00000000000000 -6.6088989352870890E-005 + 171.06000000000000 -6.5692239768750787E-005 + 171.12000000000000 -6.5294569443789948E-005 + 171.17999999999998 -6.4896809715686872E-005 + 171.23999999999998 -6.4499833546068587E-005 + 171.29999999999998 -6.4104526715322164E-005 + 171.35999999999999 -6.3711787825507509E-005 + 171.41999999999999 -6.3322539906827404E-005 + 171.47999999999999 -6.2937726382628577E-005 + 171.53999999999999 -6.2558280778295518E-005 + 171.59999999999999 -6.2185152481780662E-005 + 171.66000000000000 -6.1819274964615379E-005 + 171.72000000000000 -6.1461576911988288E-005 + 171.78000000000000 -6.1112961176120094E-005 + 171.84000000000000 -6.0774310883942333E-005 + 171.90000000000001 -6.0446465540492051E-005 + 171.95999999999998 -6.0130236818525756E-005 + 172.01999999999998 -5.9826391106959772E-005 + 172.07999999999998 -5.9535660552091417E-005 + 172.13999999999999 -5.9258726321381133E-005 + 172.19999999999999 -5.8996232138854603E-005 + 172.25999999999999 -5.8748787283241827E-005 + 172.31999999999999 -5.8516958193534195E-005 + 172.38000000000000 -5.8301285646060831E-005 + 172.44000000000000 -5.8102268214106992E-005 + 172.50000000000000 -5.7920387906374734E-005 + 172.56000000000000 -5.7756094661322598E-005 + 172.62000000000000 -5.7609810326974592E-005 + 172.67999999999998 -5.7481921777970285E-005 + 172.73999999999998 -5.7372793215659672E-005 + 172.79999999999998 -5.7282739359746121E-005 + 172.85999999999999 -5.7212038256748715E-005 + 172.91999999999999 -5.7160914724439756E-005 + 172.97999999999999 -5.7129535779849145E-005 + 173.03999999999999 -5.7117995926396706E-005 + 173.09999999999999 -5.7126329713570114E-005 + 173.16000000000000 -5.7154490838108712E-005 + 173.22000000000000 -5.7202347341970004E-005 + 173.28000000000000 -5.7269686595086216E-005 + 173.34000000000000 -5.7356220955573016E-005 + 173.40000000000001 -5.7461572239491636E-005 + 173.45999999999998 -5.7585280491500067E-005 + 173.51999999999998 -5.7726813712322535E-005 + 173.57999999999998 -5.7885577029873230E-005 + 173.63999999999999 -5.8060903952368277E-005 + 173.69999999999999 -5.8252075193212033E-005 + 173.75999999999999 -5.8458323727154894E-005 + 173.81999999999999 -5.8678836454180628E-005 + 173.88000000000000 -5.8912764708794573E-005 + 173.94000000000000 -5.9159229152073951E-005 + 174.00000000000000 -5.9417326562516853E-005 + 174.06000000000000 -5.9686124444028220E-005 + 174.12000000000000 -5.9964669634413502E-005 + 174.17999999999998 -6.0251997837223171E-005 + 174.23999999999998 -6.0547113348562837E-005 + 174.29999999999998 -6.0849014678255694E-005 + 174.35999999999999 -6.1156681771775261E-005 + 174.41999999999999 -6.1469076793576601E-005 + 174.47999999999999 -6.1785166550979231E-005 + 174.53999999999999 -6.2103887081799277E-005 + 174.59999999999999 -6.2424176510976012E-005 + 174.66000000000000 -6.2744993206579610E-005 + 174.72000000000000 -6.3065260766258881E-005 + 174.78000000000000 -6.3383934347442975E-005 + 174.84000000000000 -6.3699983582607967E-005 + 174.90000000000001 -6.4012390777207857E-005 + 174.95999999999998 -6.4320146252346653E-005 + 175.01999999999998 -6.4622286052730079E-005 + 175.07999999999998 -6.4917876155155645E-005 + 175.13999999999999 -6.5206011165251746E-005 + 175.19999999999999 -6.5485824899966667E-005 + 175.25999999999999 -6.5756490703275321E-005 + 175.31999999999999 -6.6017225178838739E-005 + 175.38000000000000 -6.6267298948238784E-005 + 175.44000000000000 -6.6506010104489297E-005 + 175.50000000000000 -6.6732729994722396E-005 + 175.56000000000000 -6.6946862379626090E-005 + 175.62000000000000 -6.7147874606894841E-005 + 175.67999999999998 -6.7335275055630783E-005 + 175.73999999999998 -6.7508636514210580E-005 + 175.79999999999998 -6.7667569152097645E-005 + 175.85999999999999 -6.7811762281592373E-005 + 175.91999999999999 -6.7940950203293412E-005 + 175.97999999999999 -6.8054915767887218E-005 + 176.03999999999999 -6.8153492683377029E-005 + 176.09999999999999 -6.8236567719339003E-005 + 176.16000000000000 -6.8304087311707887E-005 + 176.22000000000000 -6.8356036123963244E-005 + 176.28000000000000 -6.8392432691017068E-005 + 176.34000000000000 -6.8413344266031180E-005 + 176.40000000000001 -6.8418879427616173E-005 + 176.45999999999998 -6.8409169405002601E-005 + 176.51999999999998 -6.8384371899075813E-005 + 176.57999999999998 -6.8344687412611542E-005 + 176.63999999999999 -6.8290338084959806E-005 + 176.69999999999999 -6.8221569088059076E-005 + 176.75999999999999 -6.8138660336457908E-005 + 176.81999999999999 -6.8041928269021553E-005 + 176.88000000000000 -6.7931712521692253E-005 + 176.94000000000000 -6.7808390657843922E-005 + 177.00000000000000 -6.7672376171366583E-005 + 177.06000000000000 -6.7524128538320679E-005 + 177.12000000000000 -6.7364144595126184E-005 + 177.17999999999998 -6.7192962804022208E-005 + 177.23999999999998 -6.7011176278014835E-005 + 177.29999999999998 -6.6819413390791093E-005 + 177.35999999999999 -6.6618350110458940E-005 + 177.41999999999999 -6.6408686811101283E-005 + 177.47999999999999 -6.6191169861481546E-005 + 177.53999999999999 -6.5966574506079196E-005 + 177.59999999999999 -6.5735702623094438E-005 + 177.66000000000000 -6.5499366232930298E-005 + 177.72000000000000 -6.5258400439449385E-005 + 177.78000000000000 -6.5013661211653947E-005 + 177.84000000000000 -6.4765996102707419E-005 + 177.90000000000001 -6.4516276891720791E-005 + 177.95999999999998 -6.4265373475285998E-005 + 178.01999999999998 -6.4014149638712378E-005 + 178.07999999999998 -6.3763496262409780E-005 + 178.13999999999999 -6.3514312269667510E-005 + 178.19999999999999 -6.3267495575767180E-005 + 178.25999999999999 -6.3023953796712085E-005 + 178.31999999999999 -6.2784617435299002E-005 + 178.38000000000000 -6.2550436230113016E-005 + 178.44000000000000 -6.2322368503292297E-005 + 178.50000000000000 -6.2101385304575484E-005 + 178.56000000000000 -6.1888469829170754E-005 + 178.62000000000000 -6.1684614571130329E-005 + 178.67999999999998 -6.1490807750842270E-005 + 178.73999999999998 -6.1308040832939287E-005 + 178.79999999999998 -6.1137289594259469E-005 + 178.85999999999999 -6.0979502018664764E-005 + 178.91999999999999 -6.0835617541542414E-005 + 178.97999999999999 -6.0706526703265615E-005 + 179.03999999999999 -6.0593083315779861E-005 + 179.09999999999999 -6.0496101448293679E-005 + 179.16000000000000 -6.0416330162250681E-005 + 179.22000000000000 -6.0354476730216805E-005 + 179.28000000000000 -6.0311184400500145E-005 + 179.34000000000000 -6.0287034408848472E-005 + 179.40000000000001 -6.0282548911322466E-005 + 179.45999999999998 -6.0298191827075916E-005 + 179.51999999999998 -6.0334371997548591E-005 + 179.57999999999998 -6.0391435383377359E-005 + 179.63999999999999 -6.0469668856891178E-005 + 179.69999999999999 -6.0569307958882607E-005 + 179.75999999999999 -6.0690527525949115E-005 + 179.81999999999999 -6.0833447462314345E-005 + 179.88000000000000 -6.0998131703629327E-005 + 179.94000000000000 -6.1184585390682328E-005 + 180.00000000000000 -6.1392751247968128E-005 + 180.06000000000000 -6.1622508770001173E-005 + 180.12000000000000 -6.1873683688995590E-005 + 180.17999999999998 -6.2146019200887148E-005 + 180.23999999999998 -6.2439203788377059E-005 + 180.29999999999998 -6.2752848518421851E-005 + 180.35999999999999 -6.3086516445166673E-005 + 180.41999999999999 -6.3439676208133582E-005 + 180.47999999999999 -6.3811752674802451E-005 + 180.53999999999999 -6.4202080601332120E-005 + 180.59999999999999 -6.4609965126481654E-005 + 180.66000000000000 -6.5034633117349401E-005 + 180.72000000000000 -6.5475263341631060E-005 + 180.78000000000000 -6.5930985594814327E-005 + 180.84000000000000 -6.6400891563218653E-005 + 180.90000000000001 -6.6884022484658184E-005 + 180.95999999999998 -6.7379399757149780E-005 + 181.01999999999998 -6.7886008057323519E-005 + 181.07999999999998 -6.8402799787010369E-005 + 181.13999999999999 -6.8928718864408146E-005 + 181.19999999999999 -6.9462680035536204E-005 + 181.25999999999999 -7.0003591979812433E-005 + 181.31999999999999 -7.0550344754393606E-005 + 181.38000000000000 -7.1101827148017542E-005 + 181.44000000000000 -7.1656910714914485E-005 + 181.50000000000000 -7.2214470303910897E-005 + 181.56000000000000 -7.2773380579842613E-005 + 181.62000000000000 -7.3332517081368048E-005 + 181.67999999999998 -7.3890762850119457E-005 + 181.73999999999998 -7.4446996085335876E-005 + 181.79999999999998 -7.5000112626613012E-005 + 181.85999999999999 -7.5549023175253550E-005 + 181.91999999999999 -7.6092642031567074E-005 + 181.97999999999999 -7.6629912527754167E-005 + 182.03999999999999 -7.7159777513476926E-005 + 182.09999999999999 -7.7681214709765243E-005 + 182.16000000000000 -7.8193214498768507E-005 + 182.22000000000000 -7.8694800111826785E-005 + 182.28000000000000 -7.9185010344367840E-005 + 182.34000000000000 -7.9662900930519258E-005 + 182.39999999999998 -8.0127566095477014E-005 + 182.45999999999998 -8.0578125739131577E-005 + 182.51999999999998 -8.1013724665544184E-005 + 182.57999999999998 -8.1433541650485875E-005 + 182.63999999999999 -8.1836771292159529E-005 + 182.69999999999999 -8.2222661582340086E-005 + 182.75999999999999 -8.2590482373730105E-005 + 182.81999999999999 -8.2939540092086790E-005 + 182.88000000000000 -8.3269178275696782E-005 + 182.94000000000000 -8.3578782355757671E-005 + 183.00000000000000 -8.3867771584485325E-005 + 183.06000000000000 -8.4135598328261590E-005 + 183.12000000000000 -8.4381763586473461E-005 + 183.17999999999998 -8.4605798729699291E-005 + 183.23999999999998 -8.4807280445955741E-005 + 183.29999999999998 -8.4985813652887213E-005 + 183.35999999999999 -8.5141036494438822E-005 + 183.41999999999999 -8.5272629691572667E-005 + 183.47999999999999 -8.5380290226682882E-005 + 183.53999999999999 -8.5463759176240324E-005 + 183.59999999999999 -8.5522785810347469E-005 + 183.66000000000000 -8.5557156271994010E-005 + 183.72000000000000 -8.5566679265734291E-005 + 183.78000000000000 -8.5551181791939515E-005 + 183.84000000000000 -8.5510523708733294E-005 + 183.89999999999998 -8.5444577904917284E-005 + 183.95999999999998 -8.5353236973194669E-005 + 184.01999999999998 -8.5236437562594795E-005 + 184.07999999999998 -8.5094135470312250E-005 + 184.13999999999999 -8.4926307177252350E-005 + 184.19999999999999 -8.4732970123509006E-005 + 184.25999999999999 -8.4514173689359957E-005 + 184.31999999999999 -8.4269998220190971E-005 + 184.38000000000000 -8.4000558373330654E-005 + 184.44000000000000 -8.3706006173624127E-005 + 184.50000000000000 -8.3386524955914531E-005 + 184.56000000000000 -8.3042338576813784E-005 + 184.62000000000000 -8.2673695956758572E-005 + 184.67999999999998 -8.2280880006336063E-005 + 184.73999999999998 -8.1864205675430776E-005 + 184.79999999999998 -8.1424003691424985E-005 + 184.85999999999999 -8.0960636512978647E-005 + 184.91999999999999 -8.0474482717601069E-005 + 184.97999999999999 -7.9965940882974245E-005 + 185.03999999999999 -7.9435420021273703E-005 + 185.09999999999999 -7.8883351655409392E-005 + 185.16000000000000 -7.8310172295474844E-005 + 185.22000000000000 -7.7716334942962715E-005 + 185.28000000000000 -7.7102309064632375E-005 + 185.34000000000000 -7.6468564907559018E-005 + 185.39999999999998 -7.5815585073380482E-005 + 185.45999999999998 -7.5143873883262623E-005 + 185.51999999999998 -7.4453940767256062E-005 + 185.57999999999998 -7.3746303899438039E-005 + 185.63999999999999 -7.3021486656620592E-005 + 185.69999999999999 -7.2280039149939996E-005 + 185.75999999999999 -7.1522498723019680E-005 + 185.81999999999999 -7.0749420306244178E-005 + 185.88000000000000 -6.9961361527974227E-005 + 185.94000000000000 -6.9158879579604644E-005 + 186.00000000000000 -6.8342536800363712E-005 + 186.06000000000000 -6.7512887922240982E-005 + 186.12000000000000 -6.6670493498884034E-005 + 186.17999999999998 -6.5815903464574630E-005 + 186.23999999999998 -6.4949666877680415E-005 + 186.29999999999998 -6.4072332719645420E-005 + 186.35999999999999 -6.3184444877471894E-005 + 186.41999999999999 -6.2286547011294137E-005 + 186.47999999999999 -6.1379202881233606E-005 + 186.53999999999999 -6.0462964059834741E-005 + 186.59999999999999 -5.9538415284846345E-005 + 186.66000000000000 -5.8606165681256923E-005 + 186.72000000000000 -5.7666832227979652E-005 + 186.78000000000000 -5.6721086985702036E-005 + 186.84000000000000 -5.5769639731775943E-005 + 186.89999999999998 -5.4813227901417998E-005 + 186.95999999999998 -5.3852662427725241E-005 + 187.01999999999998 -5.2888799450340860E-005 + 187.07999999999998 -5.1922554558802839E-005 + 187.13999999999999 -5.0954910738308398E-005 + 187.19999999999999 -4.9986919598969617E-005 + 187.25999999999999 -4.9019694511552942E-005 + 187.31999999999999 -4.8054423931173393E-005 + 187.38000000000000 -4.7092367384548906E-005 + 187.44000000000000 -4.6134857313231618E-005 + 187.50000000000000 -4.5183301551377169E-005 + 187.56000000000000 -4.4239184761119877E-005 + 187.62000000000000 -4.3304069599351887E-005 + 187.67999999999998 -4.2379597074810338E-005 + 187.73999999999998 -4.1467493610219194E-005 + 187.79999999999998 -4.0569567499472956E-005 + 187.85999999999999 -3.9687716316736336E-005 + 187.91999999999999 -3.8823925286396633E-005 + 187.97999999999999 -3.7980264050409026E-005 + 188.03999999999999 -3.7158893279648722E-005 + 188.09999999999999 -3.6362065568833771E-005 + 188.16000000000000 -3.5592114223616026E-005 + 188.22000000000000 -3.4851467981154082E-005 + 188.28000000000000 -3.4142625077732758E-005 + 188.34000000000000 -3.3468174994612651E-005 + 188.39999999999998 -3.2830768680086253E-005 + 188.45999999999998 -3.2233128234659593E-005 + 188.51999999999998 -3.1678036050013171E-005 + 188.57999999999998 -3.1168318517594831E-005 + 188.63999999999999 -3.0706855420499159E-005 + 188.69999999999999 -3.0296555140367333E-005 + 188.75999999999999 -2.9940351064760800E-005 + 188.81999999999999 -2.9641198742866202E-005 + 188.88000000000000 -2.9402064061422529E-005 + 188.94000000000000 -2.9225909324009342E-005 + 189.00000000000000 -2.9115692245781878E-005 + 189.06000000000000 -2.9074356423777435E-005 + 189.12000000000000 -2.9104814382936495E-005 + 189.17999999999998 -2.9209945180654621E-005 + 189.23999999999998 -2.9392581279262428E-005 + 189.29999999999998 -2.9655505149325771E-005 + 189.35999999999999 -3.0001420285238794E-005 + 189.41999999999999 -3.0432960402947026E-005 + 189.47999999999999 -3.0952657972871552E-005 + 189.53999999999999 -3.1562947453810903E-005 + 189.59999999999999 -3.2266134778242141E-005 + 189.66000000000000 -3.3064402321970884E-005 + 189.72000000000000 -3.3959777571508129E-005 + 189.78000000000000 -3.4954135851008886E-005 + 189.84000000000000 -3.6049170719623232E-005 + 189.89999999999998 -3.7246396201541853E-005 + 189.95999999999998 -3.8547129921672218E-005 + 190.01999999999998 -3.9952482370440195E-005 + 190.07999999999998 -4.1463346764954810E-005 + 190.13999999999999 -4.3080394184070036E-005 + 190.19999999999999 -4.4804059669917973E-005 + 190.25999999999999 -4.6634540767729987E-005 + 190.31999999999999 -4.8571786747644076E-005 + 190.38000000000000 -5.0615506086194533E-005 + 190.44000000000000 -5.2765134147386640E-005 + 190.50000000000000 -5.5019845258330542E-005 + 190.56000000000000 -5.7378553016227326E-005 + 190.62000000000000 -5.9839887594727888E-005 + 190.67999999999998 -6.2402197736928438E-005 + 190.73999999999998 -6.5063550222484786E-005 + 190.79999999999998 -6.7821716760127623E-005 + 190.85999999999999 -7.0674166252670344E-005 + 190.91999999999999 -7.3618079969465009E-005 + 190.97999999999999 -7.6650324330459536E-005 + 191.03999999999999 -7.9767472316133209E-005 + 191.09999999999999 -8.2965785548512689E-005 + 191.16000000000000 -8.6241212535354038E-005 + 191.22000000000000 -8.9589412766374153E-005 + 191.28000000000000 -9.3005753739000327E-005 + 191.34000000000000 -9.6485297031854701E-005 + 191.39999999999998 -1.0002282018004982E-004 + 191.45999999999998 -1.0361283442167200E-004 + 191.51999999999998 -1.0724957225565605E-004 + 191.57999999999998 -1.1092702231235009E-004 + 191.63999999999999 -1.1463891313809121E-004 + 191.69999999999999 -1.1837872790614200E-004 + 191.75999999999999 -1.2213973569046041E-004 + 191.81999999999999 -1.2591497455136249E-004 + 191.88000000000000 -1.2969729431072145E-004 + 191.94000000000000 -1.3347934045836846E-004 + 192.00000000000000 -1.3725358753143780E-004 + 192.06000000000000 -1.4101233006322711E-004 + 192.12000000000000 -1.4474772462134359E-004 + 192.17999999999998 -1.4845176043458183E-004 + 192.23999999999998 -1.5211633850783916E-004 + 192.29999999999998 -1.5573321430231965E-004 + 192.35999999999999 -1.5929408192312964E-004 + 192.41999999999999 -1.6279054934023631E-004 + 192.47999999999999 -1.6621418013355743E-004 + 192.53999999999999 -1.6955651739110296E-004 + 192.59999999999999 -1.7280907994469784E-004 + 192.66000000000000 -1.7596342862671521E-004 + 192.72000000000000 -1.7901113737852283E-004 + 192.78000000000000 -1.8194385821156066E-004 + 192.84000000000000 -1.8475330669867935E-004 + 192.89999999999998 -1.8743134458192951E-004 + 192.95999999999998 -1.8996994394696037E-004 + 193.01999999999998 -1.9236121121807252E-004 + 193.07999999999998 -1.9459747100035324E-004 + 193.13999999999999 -1.9667120614887321E-004 + 193.19999999999999 -1.9857514643047022E-004 + 193.25999999999999 -2.0030227181703673E-004 + 193.31999999999999 -2.0184578856757276E-004 + 193.38000000000000 -2.0319920645825608E-004 + 193.44000000000000 -2.0435636059486551E-004 + 193.50000000000000 -2.0531136922874134E-004 + 193.56000000000000 -2.0605871525411631E-004 + 193.62000000000000 -2.0659323650499655E-004 + 193.67999999999998 -2.0691015023080689E-004 + 193.73999999999998 -2.0700510192708606E-004 + 193.79999999999998 -2.0687409132282141E-004 + 193.85999999999999 -2.0651359856475865E-004 + 193.91999999999999 -2.0592051783527255E-004 + 193.97999999999999 -2.0509219044354958E-004 + 194.03999999999999 -2.0402643818067626E-004 + 194.09999999999999 -2.0272153653875906E-004 + 194.16000000000000 -2.0117621513261714E-004 + 194.22000000000000 -1.9938971896852795E-004 + 194.28000000000000 -1.9736173712713755E-004 + 194.34000000000000 -1.9509247606324328E-004 + 194.39999999999998 -1.9258256886935115E-004 + 194.45999999999998 -1.8983318506522425E-004 + 194.51999999999998 -1.8684595093688394E-004 + 194.57999999999998 -1.8362295360193319E-004 + 194.63999999999999 -1.8016677568602561E-004 + 194.69999999999999 -1.7648046955591665E-004 + 194.75999999999999 -1.7256755194406756E-004 + 194.81999999999999 -1.6843200179822654E-004 + 194.88000000000000 -1.6407827300730026E-004 + 194.94000000000000 -1.5951124693011428E-004 + 195.00000000000000 -1.5473625501099303E-004 + 195.06000000000000 -1.4975904321409361E-004 + 195.12000000000000 -1.4458578474747926E-004 + 195.17999999999998 -1.3922305820252351E-004 + 195.23999999999998 -1.3367779794315053E-004 + 195.29999999999998 -1.2795732399929990E-004 + 195.35999999999999 -1.2206927006809788E-004 + 195.41999999999999 -1.1602157956586450E-004 + 195.47999999999999 -1.0982248594772678E-004 + 195.53999999999999 -1.0348046137713858E-004 + 195.59999999999999 -9.7004229751160081E-005 + 195.66000000000000 -9.0402683286292787E-005 + 195.72000000000000 -8.3684904824047726E-005 + 195.78000000000000 -7.6860110666410802E-005 + 195.84000000000000 -6.9937643093946481E-005 + 195.89999999999998 -6.2926929641764556E-005 + 195.95999999999998 -5.5837475460547779E-005 + 196.01999999999998 -4.8678826070414374E-005 + 196.07999999999998 -4.1460555085406072E-005 + 196.13999999999999 -3.4192246212955135E-005 + 196.19999999999999 -2.6883471432077468E-005 + 196.25999999999999 -1.9543758940283000E-005 + 196.31999999999999 -1.2182595492997963E-005 + 196.38000000000000 -4.8093878846456498E-006 + 196.44000000000000 2.5665535686575562E-006 + 196.50000000000000 9.9360343063636524E-006 + 196.56000000000000 1.7289999692284652E-005 + 196.62000000000000 2.4619556176988358E-005 + 196.67999999999998 3.1916000061846210E-005 + 196.73999999999998 3.9170839726959320E-005 + 196.79999999999998 4.6375814004067156E-005 + 196.85999999999999 5.3522926362829707E-005 + 196.91999999999999 6.0604464717681089E-005 + 196.97999999999999 6.7613006424496953E-005 + 197.03999999999999 7.4541451144661319E-005 + 197.09999999999999 8.1383046611989987E-005 + 197.16000000000000 8.8131393992352985E-005 + 197.22000000000000 9.4780444479700777E-005 + 197.28000000000000 1.0132456988668159E-004 + 197.34000000000000 1.0775850768397673E-004 + 197.39999999999998 1.1407740116107059E-004 + 197.45999999999998 1.2027678461869110E-004 + 197.51999999999998 1.2635262958420721E-004 + 197.57999999999998 1.3230130297376148E-004 + 197.63999999999999 1.3811960030807584E-004 + 197.69999999999999 1.4380476122507918E-004 + 197.75999999999999 1.4935441205974159E-004 + 197.81999999999999 1.5476662836212321E-004 + 197.88000000000000 1.6003991058847998E-004 + 197.94000000000000 1.6517317538267928E-004 + 198.00000000000000 1.7016577977603661E-004 + 198.06000000000000 1.7501749793934711E-004 + 198.12000000000000 1.7972854082729716E-004 + 198.17999999999998 1.8429953050168429E-004 + 198.23999999999998 1.8873147993486621E-004 + 198.29999999999998 1.9302587637016095E-004 + 198.35999999999999 1.9718455427090341E-004 + 198.41999999999999 2.0120977345098061E-004 + 198.47999999999999 2.0510417877339179E-004 + 198.53999999999999 2.0887080339992929E-004 + 198.59999999999999 2.1251303467748108E-004 + 198.66000000000000 2.1603464081729014E-004 + 198.72000000000000 2.1943971819954870E-004 + 198.78000000000000 2.2273268608754161E-004 + 198.84000000000000 2.2591832137479646E-004 + 198.89999999999998 2.2900166614311061E-004 + 198.95999999999998 2.3198808418659110E-004 + 199.01999999999998 2.3488316494810259E-004 + 199.07999999999998 2.3769281303181382E-004 + 199.13999999999999 2.4042310149147725E-004 + 199.19999999999999 2.4308040625567863E-004 + 199.25999999999999 2.4567121034549416E-004 + 199.31999999999999 2.4820223619025512E-004 + 199.38000000000000 2.5068029662746340E-004 + 199.44000000000000 2.5311238790584037E-004 + 199.50000000000000 2.5550561421391036E-004 + 199.56000000000000 2.5786718209951830E-004 + 199.62000000000000 2.6020431975729100E-004 + 199.67999999999998 2.6252433095539599E-004 + 199.73999999999998 2.6483455681126266E-004 + 199.79999999999998 2.6714231102365475E-004 + 199.85999999999999 2.6945495673737327E-004 + 199.91999999999999 2.7177971673415173E-004 + 199.97999999999999 2.7412388696298920E-004 + 200.03999999999999 2.7649461144821743E-004 + 200.09999999999999 2.7889900317135206E-004 + 200.16000000000000 2.8134404199442990E-004 + 200.22000000000000 2.8383658190471358E-004 + 200.28000000000000 2.8638340068820253E-004 + 200.34000000000000 2.8899101549123552E-004 + 200.39999999999998 2.9166585854463077E-004 + 200.45999999999998 2.9441414659162507E-004 + 200.51999999999998 2.9724188068519823E-004 + 200.57999999999998 3.0015479251934687E-004 + 200.63999999999999 3.0315844959502173E-004 + 200.69999999999999 3.0625808782313755E-004 + 200.75999999999999 3.0945866854616860E-004 + 200.81999999999999 3.1276489843810802E-004 + 200.88000000000000 3.1618103188815001E-004 + 200.94000000000000 3.1971112674805717E-004 + 201.00000000000000 3.2335881988242279E-004 + 201.06000000000000 3.2712737141150537E-004 + 201.12000000000000 3.3101965609680535E-004 + 201.17999999999998 3.3503822790027738E-004 + 201.23999999999998 3.3918517885094294E-004 + 201.29999999999998 3.4346224184606693E-004 + 201.35999999999999 3.4787069700923648E-004 + 201.41999999999999 3.5241147700607495E-004 + 201.47999999999999 3.5708509638964452E-004 + 201.53999999999999 3.6189161731412032E-004 + 201.59999999999999 3.6683067928147380E-004 + 201.66000000000000 3.7190154631513728E-004 + 201.72000000000000 3.7710305725372574E-004 + 201.78000000000000 3.8243358988548595E-004 + 201.84000000000000 3.8789116971690510E-004 + 201.89999999999998 3.9347335621828022E-004 + 201.95999999999998 3.9917726235488057E-004 + 202.01999999999998 4.0499958013268610E-004 + 202.07999999999998 4.1093656549440189E-004 + 202.13999999999999 4.1698406998768266E-004 + 202.19999999999999 4.2313749891974360E-004 + 202.25999999999999 4.2939181649282821E-004 + 202.31999999999999 4.3574154371919197E-004 + 202.38000000000000 4.4218081534623310E-004 + 202.44000000000000 4.4870329259900888E-004 + 202.50000000000000 4.5530229209021463E-004 + 202.56000000000000 4.6197062484012091E-004 + 202.62000000000000 4.6870075867967920E-004 + 202.67999999999998 4.7548484199134240E-004 + 202.73999999999998 4.8231453416983734E-004 + 202.79999999999998 4.8918119546553101E-004 + 202.85999999999999 4.9607585163484707E-004 + 202.91999999999999 5.0298915408731411E-004 + 202.97999999999999 5.0991144419427386E-004 + 203.03999999999999 5.1683277021456644E-004 + 203.09999999999999 5.2374296408985916E-004 + 203.16000000000000 5.3063152236702284E-004 + 203.22000000000000 5.3748768311935190E-004 + 203.28000000000000 5.4430038717180737E-004 + 203.34000000000000 5.5105849413260495E-004 + 203.39999999999998 5.5775060657923582E-004 + 203.45999999999998 5.6436512818433147E-004 + 203.51999999999998 5.7089025688098058E-004 + 203.57999999999998 5.7731405085779204E-004 + 203.63999999999999 5.8362451239642350E-004 + 203.69999999999999 5.8980954827463159E-004 + 203.75999999999999 5.9585698772140051E-004 + 203.81999999999999 6.0175452228776200E-004 + 203.88000000000000 6.0748986268638122E-004 + 203.94000000000000 6.1305081155282881E-004 + 204.00000000000000 6.1842511718069725E-004 + 204.06000000000000 6.2360060997685102E-004 + 204.12000000000000 6.2856527802201479E-004 + 204.17999999999998 6.3330720301789985E-004 + 204.23999999999998 6.3781463780734253E-004 + 204.29999999999998 6.4207602466637712E-004 + 204.35999999999999 6.4607993446459721E-004 + 204.41999999999999 6.4981533711081386E-004 + 204.47999999999999 6.5327138612664539E-004 + 204.53999999999999 6.5643761365444622E-004 + 204.59999999999999 6.5930380449749561E-004 + 204.66000000000000 6.6186011336850036E-004 + 204.72000000000000 6.6409711412321174E-004 + 204.78000000000000 6.6600587061399854E-004 + 204.84000000000000 6.6757776061080300E-004 + 204.89999999999998 6.6880467001021739E-004 + 204.95999999999998 6.6967904114389977E-004 + 205.01999999999998 6.7019379802148366E-004 + 205.07999999999998 6.7034235115420130E-004 + 205.13999999999999 6.7011875833333486E-004 + 205.19999999999999 6.6951763763173138E-004 + 205.25999999999999 6.6853420951727292E-004 + 205.31999999999999 6.6716422335758626E-004 + 205.38000000000000 6.6540428999104732E-004 + 205.44000000000000 6.6325146569860762E-004 + 205.50000000000000 6.6070360149896165E-004 + 205.56000000000000 6.5775912654295727E-004 + 205.62000000000000 6.5441730309850758E-004 + 205.67999999999998 6.5067801276426731E-004 + 205.73999999999998 6.4654184629225420E-004 + 205.79999999999998 6.4201015970794667E-004 + 205.85999999999999 6.3708499024002041E-004 + 205.91999999999999 6.3176906295372905E-004 + 205.97999999999999 6.2606589099280089E-004 + 206.03999999999999 6.1997958804390718E-004 + 206.09999999999999 6.1351505326284772E-004 + 206.16000000000000 6.0667781029979419E-004 + 206.22000000000000 5.9947418436225529E-004 + 206.28000000000000 5.9191093529437793E-004 + 206.34000000000000 5.8399571307820349E-004 + 206.39999999999998 5.7573667334420025E-004 + 206.45999999999998 5.6714265864640833E-004 + 206.51999999999998 5.5822309220996975E-004 + 206.57999999999998 5.4898784239624295E-004 + 206.63999999999999 5.3944744003175471E-004 + 206.69999999999999 5.2961282820358649E-004 + 206.75999999999999 5.1949556594607497E-004 + 206.81999999999999 5.0910757202056965E-004 + 206.88000000000000 4.9846120637506348E-004 + 206.94000000000000 4.8756923702398305E-004 + 207.00000000000000 4.7644470650336804E-004 + 207.06000000000000 4.6510104635443206E-004 + 207.12000000000000 4.5355200092636318E-004 + 207.17999999999998 4.4181149320112091E-004 + 207.23999999999998 4.2989372700769237E-004 + 207.29999999999998 4.1781312352111614E-004 + 207.35999999999999 4.0558417804293945E-004 + 207.41999999999999 3.9322162682279752E-004 + 207.47999999999999 3.8074020013839166E-004 + 207.53999999999999 3.6815477410079403E-004 + 207.59999999999999 3.5548024327596088E-004 + 207.66000000000000 3.4273147221003972E-004 + 207.72000000000000 3.2992332938335049E-004 + 207.78000000000000 3.1707061438094708E-004 + 207.84000000000000 3.0418806589538208E-004 + 207.89999999999998 2.9129022337809335E-004 + 207.95999999999998 2.7839152543014157E-004 + 208.01999999999998 2.6550622700279356E-004 + 208.07999999999998 2.5264834973483724E-004 + 208.13999999999999 2.3983163901782924E-004 + 208.19999999999999 2.2706960338435481E-004 + 208.25999999999999 2.1437539565512964E-004 + 208.31999999999999 2.0176186734480113E-004 + 208.38000000000000 1.8924152978119899E-004 + 208.44000000000000 1.7682647972540365E-004 + 208.50000000000000 1.6452846270556196E-004 + 208.56000000000000 1.5235876452705110E-004 + 208.62000000000000 1.4032828751913277E-004 + 208.68000000000001 1.2844747757035746E-004 + 208.74000000000001 1.1672633684898824E-004 + 208.80000000000001 1.0517440808095170E-004 + 208.86000000000001 9.3800777946028820E-005 + 208.92000000000002 8.2614058812664176E-005 + 208.98000000000002 7.1622399238879803E-005 + 209.03999999999996 6.0833446592212543E-005 + 209.09999999999997 5.0254390065943667E-005 + 209.15999999999997 3.9891902108752107E-005 + 209.21999999999997 2.9752177873988172E-005 + 209.27999999999997 1.9840909634264654E-005 + 209.33999999999997 1.0163296741024169E-005 + 209.39999999999998 7.2403883214365553E-007 + 209.45999999999998 -8.4726653869384691E-006 + 209.51999999999998 -1.7423107163560150E-005 + 209.57999999999998 -2.6124076120093833E-005 + 209.63999999999999 -3.4572847087395495E-005 + 209.69999999999999 -4.2767178809848051E-005 + 209.75999999999999 -5.0705292107308417E-005 + 209.81999999999999 -5.8385881203475441E-005 + 209.88000000000000 -6.5808084660090289E-005 + 209.94000000000000 -7.2971477368488952E-005 + 210.00000000000000 -7.9876060934364277E-005 + 210.06000000000000 -8.6522253951758612E-005 + 210.12000000000000 -9.2910865575236774E-005 + 210.18000000000001 -9.9043070601754132E-005 + 210.24000000000001 -1.0492043119378762E-004 + 210.30000000000001 -1.1054484414032671E-004 + 210.36000000000001 -1.1591855333712618E-004 + 210.42000000000002 -1.2104409642457766E-004 + 210.48000000000002 -1.2592434827372385E-004 + 210.53999999999996 -1.3056243318333564E-004 + 210.59999999999997 -1.3496176844929509E-004 + 210.65999999999997 -1.3912600024905549E-004 + 210.71999999999997 -1.4305906311618872E-004 + 210.77999999999997 -1.4676503013942888E-004 + 210.83999999999997 -1.5024825057708300E-004 + 210.89999999999998 -1.5351319669523747E-004 + 210.95999999999998 -1.5656453787572542E-004 + 211.01999999999998 -1.5940710008777029E-004 + 211.07999999999998 -1.6204579846631166E-004 + 211.13999999999999 -1.6448571122147423E-004 + 211.19999999999999 -1.6673197558044844E-004 + 211.25999999999999 -1.6878985039115070E-004 + 211.31999999999999 -1.7066462967480373E-004 + 211.38000000000000 -1.7236170991802627E-004 + 211.44000000000000 -1.7388648642506239E-004 + 211.50000000000000 -1.7524442327234306E-004 + 211.56000000000000 -1.7644100012353736E-004 + 211.62000000000000 -1.7748172647649471E-004 + 211.68000000000001 -1.7837210287841322E-004 + 211.74000000000001 -1.7911763710506886E-004 + 211.80000000000001 -1.7972381781892493E-004 + 211.86000000000001 -1.8019609146979588E-004 + 211.92000000000002 -1.8053989244866056E-004 + 211.98000000000002 -1.8076060055564175E-004 + 212.03999999999996 -1.8086351545079901E-004 + 212.09999999999997 -1.8085386099136737E-004 + 212.15999999999997 -1.8073677238986563E-004 + 212.21999999999997 -1.8051730059768313E-004 + 212.27999999999997 -1.8020038203721552E-004 + 212.33999999999997 -1.7979081618200735E-004 + 212.39999999999998 -1.7929330417870045E-004 + 212.45999999999998 -1.7871240071224020E-004 + 212.51999999999998 -1.7805252038826953E-004 + 212.57999999999998 -1.7731795821213230E-004 + 212.63999999999999 -1.7651287048920790E-004 + 212.69999999999999 -1.7564128856560537E-004 + 212.75999999999999 -1.7470711637437543E-004 + 212.81999999999999 -1.7371412600856472E-004 + 212.88000000000000 -1.7266598778900580E-004 + 212.94000000000000 -1.7156626365888883E-004 + 213.00000000000000 -1.7041839292829855E-004 + 213.06000000000000 -1.6922570049886292E-004 + 213.12000000000000 -1.6799144172346777E-004 + 213.18000000000001 -1.6671873568353132E-004 + 213.24000000000001 -1.6541062335553617E-004 + 213.30000000000001 -1.6407004103144690E-004 + 213.36000000000001 -1.6269979636782857E-004 + 213.42000000000002 -1.6130261206376750E-004 + 213.48000000000002 -1.5988108984432529E-004 + 213.53999999999996 -1.5843769111869254E-004 + 213.59999999999997 -1.5697479858601670E-004 + 213.65999999999997 -1.5549464446808431E-004 + 213.71999999999997 -1.5399935184649014E-004 + 213.77999999999997 -1.5249090944083785E-004 + 213.83999999999997 -1.5097119941583271E-004 + 213.89999999999998 -1.4944199771597336E-004 + 213.95999999999998 -1.4790494448149551E-004 + 214.01999999999998 -1.4636157276213063E-004 + 214.07999999999998 -1.4481337854619223E-004 + 214.13999999999999 -1.4326169555049930E-004 + 214.19999999999999 -1.4170778980852032E-004 + 214.25999999999999 -1.4015287204752590E-004 + 214.31999999999999 -1.3859804947068507E-004 + 214.38000000000000 -1.3704436176904607E-004 + 214.44000000000000 -1.3549279930023103E-004 + 214.50000000000000 -1.3394426031127242E-004 + 214.56000000000000 -1.3239959993295794E-004 + 214.62000000000000 -1.3085958746884404E-004 + 214.68000000000001 -1.2932495699939899E-004 + 214.74000000000001 -1.2779636105339780E-004 + 214.80000000000001 -1.2627440719185302E-004 + 214.86000000000001 -1.2475962965483554E-004 + 214.92000000000002 -1.2325253020703823E-004 + 214.98000000000002 -1.2175353916527857E-004 + 215.03999999999996 -1.2026302126126416E-004 + 215.09999999999997 -1.1878130421935393E-004 + 215.15999999999997 -1.1730867059193225E-004 + 215.21999999999997 -1.1584534980305147E-004 + 215.27999999999997 -1.1439153672486446E-004 + 215.33999999999997 -1.1294737127693946E-004 + 215.39999999999998 -1.1151297437127291E-004 + 215.45999999999998 -1.1008842564808655E-004 + 215.51999999999998 -1.0867376235812385E-004 + 215.57999999999998 -1.0726899396409871E-004 + 215.63999999999999 -1.0587410167713624E-004 + 215.69999999999999 -1.0448903606298135E-004 + 215.75999999999999 -1.0311372513391365E-004 + 215.81999999999999 -1.0174807231564508E-004 + 215.88000000000000 -1.0039195750850491E-004 + 215.94000000000000 -9.9045251380466964E-005 + 216.00000000000000 -9.7707811661538983E-005 + 216.06000000000000 -9.6379486662551451E-005 + 216.12000000000000 -9.5060122854099440E-005 + 216.18000000000001 -9.3749576392638344E-005 + 216.24000000000001 -9.2447712828632836E-005 + 216.30000000000001 -9.1154411433895567E-005 + 216.36000000000001 -8.9869575061801295E-005 + 216.42000000000002 -8.8593129771208303E-005 + 216.48000000000002 -8.7325021559204652E-005 + 216.53999999999996 -8.6065233759046256E-005 + 216.59999999999997 -8.4813777964606258E-005 + 216.65999999999997 -8.3570675326966292E-005 + 216.71999999999997 -8.2335981579579679E-005 + 216.77999999999997 -8.1109766677657448E-005 + 216.83999999999997 -7.9892126236057252E-005 + 216.89999999999998 -7.8683149530186863E-005 + 216.95999999999998 -7.7482946771618584E-005 + 217.01999999999998 -7.6291628746666851E-005 + 217.07999999999998 -7.5109316716162508E-005 + 217.13999999999999 -7.3936123485767162E-005 + 217.19999999999999 -7.2772176708142477E-005 + 217.25999999999999 -7.1617590457905391E-005 + 217.31999999999999 -7.0472506450347939E-005 + 217.38000000000000 -6.9337059882253077E-005 + 217.44000000000000 -6.8211390864066104E-005 + 217.50000000000000 -6.7095680309422492E-005 + 217.56000000000000 -6.5990103840017541E-005 + 217.62000000000000 -6.4894862417987263E-005 + 217.68000000000001 -6.3810177061114659E-005 + 217.74000000000001 -6.2736294154648424E-005 + 217.80000000000001 -6.1673461579275375E-005 + 217.86000000000001 -6.0621960609428016E-005 + 217.92000000000002 -5.9582067931983057E-005 + 217.98000000000002 -5.8554066676243691E-005 + 218.03999999999996 -5.7538246163526646E-005 + 218.09999999999997 -5.6534881811443721E-005 + 218.15999999999997 -5.5544235479695607E-005 + 218.21999999999997 -5.4566547933160770E-005 + 218.27999999999997 -5.3602044002674598E-005 + 218.33999999999997 -5.2650913619536794E-005 + 218.39999999999998 -5.1713322203341899E-005 + 218.45999999999998 -5.0789405447897388E-005 + 218.51999999999998 -4.9879269793952026E-005 + 218.57999999999998 -4.8982993868016999E-005 + 218.63999999999999 -4.8100627330833836E-005 + 218.69999999999999 -4.7232202633850350E-005 + 218.75999999999999 -4.6377732891489860E-005 + 218.81999999999999 -4.5537204823010780E-005 + 218.88000000000000 -4.4710599115155426E-005 + 218.94000000000000 -4.3897878624862539E-005 + 219.00000000000000 -4.3098990960897568E-005 + 219.06000000000000 -4.2313877392829363E-005 + 219.12000000000000 -4.1542460806555670E-005 + 219.18000000000001 -4.0784655690939005E-005 + 219.24000000000001 -4.0040354415382841E-005 + 219.30000000000001 -3.9309447202080393E-005 + 219.36000000000001 -3.8591799496616341E-005 + 219.42000000000002 -3.7887269665110674E-005 + 219.48000000000002 -3.7195696711081269E-005 + 219.53999999999996 -3.6516908433995929E-005 + 219.59999999999997 -3.5850731244407993E-005 + 219.65999999999997 -3.5196976723418920E-005 + 219.71999999999997 -3.4555458640623673E-005 + 219.77999999999997 -3.3925992547855501E-005 + 219.83999999999997 -3.3308396630866666E-005 + 219.89999999999998 -3.2702509536476718E-005 + 219.95999999999998 -3.2108167659457909E-005 + 220.01999999999998 -3.1525233523924123E-005 + 220.07999999999998 -3.0953579204521726E-005 + 220.13999999999999 -3.0393093103696107E-005 + 220.19999999999999 -2.9843683669147216E-005 + 220.25999999999999 -2.9305266241351172E-005 + 220.31999999999999 -2.8777770220112948E-005 + 220.38000000000000 -2.8261135423576385E-005 + 220.44000000000000 -2.7755302225023461E-005 + 220.50000000000000 -2.7260215097769247E-005 + 220.56000000000000 -2.6775818416494338E-005 + 220.62000000000000 -2.6302051572922172E-005 + 220.68000000000001 -2.5838851709851052E-005 + 220.74000000000001 -2.5386153726442570E-005 + 220.80000000000001 -2.4943882713731711E-005 + 220.86000000000001 -2.4511962599559208E-005 + 220.92000000000002 -2.4090317170273245E-005 + 220.98000000000002 -2.3678865598662872E-005 + 221.03999999999996 -2.3277533600296291E-005 + 221.09999999999997 -2.2886245029762533E-005 + 221.15999999999997 -2.2504925622427813E-005 + 221.21999999999997 -2.2133508910119872E-005 + 221.27999999999997 -2.1771927972270859E-005 + 221.33999999999997 -2.1420120893875461E-005 + 221.39999999999998 -2.1078021795599112E-005 + 221.45999999999998 -2.0745560648825341E-005 + 221.51999999999998 -2.0422666554538664E-005 + 221.57999999999998 -2.0109252856611209E-005 + 221.63999999999999 -1.9805221382501118E-005 + 221.69999999999999 -1.9510459392811164E-005 + 221.75999999999999 -1.9224833114149707E-005 + 221.81999999999999 -1.8948188678849737E-005 + 221.88000000000000 -1.8680351912678706E-005 + 221.94000000000000 -1.8421124717099175E-005 + 222.00000000000000 -1.8170289419718914E-005 + 222.06000000000000 -1.7927610684454102E-005 + 222.12000000000000 -1.7692830194531582E-005 + 222.18000000000001 -1.7465677842814393E-005 + 222.24000000000001 -1.7245871408503547E-005 + 222.30000000000001 -1.7033118527359847E-005 + 222.36000000000001 -1.6827117107402273E-005 + 222.42000000000002 -1.6627561305697301E-005 + 222.48000000000002 -1.6434138113970986E-005 + 222.53999999999996 -1.6246536037535811E-005 + 222.59999999999997 -1.6064443965724234E-005 + 222.65999999999997 -1.5887547026221818E-005 + 222.71999999999997 -1.5715532830150933E-005 + 222.77999999999997 -1.5548092358900490E-005 + 222.83999999999997 -1.5384917186744018E-005 + 222.89999999999998 -1.5225703383969333E-005 + 222.95999999999998 -1.5070153983757860E-005 + 223.01999999999998 -1.4917981045978227E-005 + 223.07999999999998 -1.4768902644320000E-005 + 223.13999999999999 -1.4622652259606806E-005 + 223.19999999999999 -1.4478976538180622E-005 + 223.25999999999999 -1.4337640664425994E-005 + 223.31999999999999 -1.4198426623854750E-005 + 223.38000000000000 -1.4061136646828409E-005 + 223.44000000000000 -1.3925597422427648E-005 + 223.50000000000000 -1.3791654321068321E-005 + 223.56000000000000 -1.3659175405630769E-005 + 223.62000000000000 -1.3528047988251459E-005 + 223.68000000000001 -1.3398179610836725E-005 + 223.74000000000001 -1.3269491770428674E-005 + 223.80000000000001 -1.3141922184041352E-005 + 223.86000000000001 -1.3015417511948347E-005 + 223.92000000000002 -1.2889934798079792E-005 + 223.98000000000002 -1.2765436363297320E-005 + 224.03999999999996 -1.2641890328269180E-005 + 224.09999999999997 -1.2519267438988862E-005 + 224.15999999999997 -1.2397543718763284E-005 + 224.21999999999997 -1.2276696848331220E-005 + 224.27999999999997 -1.2156710241443425E-005 + 224.33999999999997 -1.2037570865281435E-005 + 224.39999999999998 -1.1919273948501683E-005 + 224.45999999999998 -1.1801822612398778E-005 + 224.51999999999998 -1.1685227568056913E-005 + 224.57999999999998 -1.1569509870341750E-005 + 224.63999999999999 -1.1454700098019814E-005 + 224.69999999999999 -1.1340835027524457E-005 + 224.75999999999999 -1.1227958705938470E-005 + 224.81999999999999 -1.1116118972628866E-005 + 224.88000000000000 -1.1005364250898191E-005 + 224.94000000000000 -1.0895738454656217E-005 + 225.00000000000000 -1.0787280307588020E-005 + 225.06000000000000 -1.0680015085795898E-005 + 225.12000000000000 -1.0573954214558675E-005 + 225.18000000000001 -1.0469090488304838E-005 + 225.24000000000001 -1.0365395107668159E-005 + 225.30000000000001 -1.0262817762402332E-005 + 225.36000000000001 -1.0161286417157415E-005 + 225.42000000000002 -1.0060705171830873E-005 + 225.48000000000002 -9.9609584074056191E-006 + 225.53999999999996 -9.8619138252318863E-006 + 225.59999999999997 -9.7634255956175041E-006 + 225.65999999999997 -9.6653376474175240E-006 + 225.71999999999997 -9.5674901465845695E-006 + 225.77999999999997 -9.4697206217360931E-006 + 225.83999999999997 -9.3718722438099035E-006 + 225.89999999999998 -9.2737968111952288E-006 + 225.95999999999998 -9.1753555729915838E-006 + 226.01999999999998 -9.0764271929081510E-006 + 226.07999999999998 -8.9769061716743170E-006 + 226.13999999999999 -8.8767049004228012E-006 + 226.19999999999999 -8.7757567909689270E-006 + 226.25999999999999 -8.6740124297748221E-006 + 226.31999999999999 -8.5714452875635355E-006 + 226.38000000000000 -8.4680468872031003E-006 + 226.44000000000000 -8.3638263748429558E-006 + 226.50000000000000 -8.2588115622140967E-006 + 226.56000000000000 -8.1530494926320264E-006 + 226.62000000000000 -8.0466028759450013E-006 + 226.68000000000001 -7.9395496110217853E-006 + 226.74000000000001 -7.8319856846365375E-006 + 226.80000000000001 -7.7240214834572006E-006 + 226.86000000000001 -7.6157820326634454E-006 + 226.92000000000002 -7.5074085800628394E-006 + 226.98000000000002 -7.3990562352053307E-006 + 227.03999999999996 -7.2908934581773167E-006 + 227.09999999999997 -7.1831023841821926E-006 + 227.15999999999997 -7.0758768114220453E-006 + 227.21999999999997 -6.9694209694196378E-006 + 227.27999999999997 -6.8639487873098807E-006 + 227.33999999999997 -6.7596821169116342E-006 + 227.39999999999998 -6.6568496311977581E-006 + 227.45999999999998 -6.5556845820559660E-006 + 227.51999999999998 -6.4564245796693941E-006 + 227.57999999999998 -6.3593089153165452E-006 + 227.63999999999999 -6.2645782008887813E-006 + 227.69999999999999 -6.1724731542709790E-006 + 227.75999999999999 -6.0832329257160075E-006 + 227.81999999999999 -5.9970958257218348E-006 + 227.88000000000000 -5.9142960517420005E-006 + 227.94000000000000 -5.8350640324009111E-006 + 228.00000000000000 -5.7596246768389048E-006 + 228.06000000000000 -5.6881943613001794E-006 + 228.12000000000000 -5.6209810393016907E-006 + 228.18000000000001 -5.5581802294524526E-006 + 228.24000000000001 -5.4999737727830896E-006 + 228.30000000000001 -5.4465249185611918E-006 + 228.36000000000001 -5.3979779810178083E-006 + 228.42000000000002 -5.3544524691866153E-006 + 228.48000000000002 -5.3160417434569301E-006 + 228.53999999999996 -5.2828105851524560E-006 + 228.59999999999997 -5.2547917760559142E-006 + 228.65999999999997 -5.2319853222939433E-006 + 228.71999999999997 -5.2143567870450686E-006 + 228.77999999999997 -5.2018384899097168E-006 + 228.83999999999997 -5.1943299501642380E-006 + 228.89999999999998 -5.1916982943572316E-006 + 228.95999999999998 -5.1937833099003355E-006 + 229.01999999999998 -5.2003994255668498E-006 + 229.07999999999998 -5.2113402674109296E-006 + 229.13999999999999 -5.2263837000677112E-006 + 229.19999999999999 -5.2452949279857824E-006 + 229.25999999999999 -5.2678340611978114E-006 + 229.31999999999999 -5.2937590445065292E-006 + 229.38000000000000 -5.3228296347430400E-006 + 229.44000000000000 -5.3548126881385130E-006 + 229.50000000000000 -5.3894853066052293E-006 + 229.56000000000000 -5.4266360915687983E-006 + 229.62000000000000 -5.4660687239370516E-006 + 229.68000000000001 -5.5076005379166304E-006 + 229.74000000000001 -5.5510655463943839E-006 + 229.80000000000001 -5.5963122064603223E-006 + 229.86000000000001 -5.6432041025979446E-006 + 229.92000000000002 -5.6916181328782393E-006 + 229.97999999999996 -5.7414437219645802E-006 + 230.03999999999996 -5.7925826082309772E-006 + 230.09999999999997 -5.8449466497372294E-006 + 230.15999999999997 -5.8984585181257412E-006 + 230.21999999999997 -5.9530507134744503E-006 + 230.27999999999997 -6.0086659138385322E-006 + 230.33999999999997 -6.0652576632525332E-006 + 230.39999999999998 -6.1227919691558439E-006 + 230.45999999999998 -6.1812471420477298E-006 + 230.51999999999998 -6.2406160918833394E-006 + 230.57999999999998 -6.3009072599388347E-006 + 230.63999999999999 -6.3621478173148334E-006 + 230.69999999999999 -6.4243810675820072E-006 + 230.75999999999999 -6.4876704210948388E-006 + 230.81999999999999 -6.5520976923878005E-006 + 230.88000000000000 -6.6177634623374844E-006 + 230.94000000000000 -6.6847854489055008E-006 + 231.00000000000000 -6.7532978441914409E-006 + 231.06000000000000 -6.8234476464129565E-006 + 231.12000000000000 -6.8953927576363453E-006 + 231.18000000000001 -6.9692975035085038E-006 + 231.24000000000001 -7.0453296282674215E-006 + 231.30000000000001 -7.1236554781804415E-006 + 231.36000000000001 -7.2044369746283321E-006 + 231.42000000000002 -7.2878266894896575E-006 + 231.47999999999996 -7.3739634316428794E-006 + 231.53999999999996 -7.4629701397712766E-006 + 231.59999999999997 -7.5549493992692553E-006 + 231.65999999999997 -7.6499819838570161E-006 + 231.71999999999997 -7.7481261861020669E-006 + 231.77999999999997 -7.8494156330452409E-006 + 231.83999999999997 -7.9538578585564316E-006 + 231.89999999999998 -8.0614386219882747E-006 + 231.95999999999998 -8.1721203670378030E-006 + 232.01999999999998 -8.2858457994180584E-006 + 232.07999999999998 -8.4025389710153690E-006 + 232.13999999999999 -8.5221092716662350E-006 + 232.19999999999999 -8.6444566586901007E-006 + 232.25999999999999 -8.7694716595976718E-006 + 232.31999999999999 -8.8970394217209278E-006 + 232.38000000000000 -9.0270464644350794E-006 + 232.44000000000000 -9.1593811869680817E-006 + 232.50000000000000 -9.2939349792422396E-006 + 232.56000000000000 -9.4306096117295768E-006 + 232.62000000000000 -9.5693143986015280E-006 + 232.68000000000001 -9.7099706681900768E-006 + 232.74000000000001 -9.8525104635408573E-006 + 232.80000000000001 -9.9968774698666818E-006 + 232.86000000000001 -1.0143028311228483E-005 + 232.92000000000002 -1.0290928996032951E-005 + 232.97999999999996 -1.0440556174788553E-005 + 233.03999999999996 -1.0591894062310997E-005 + 233.09999999999997 -1.0744933705739744E-005 + 233.15999999999997 -1.0899671811238532E-005 + 233.21999999999997 -1.1056106388763539E-005 + 233.27999999999997 -1.1214239690389633E-005 + 233.33999999999997 -1.1374074065302116E-005 + 233.39999999999998 -1.1535611087410807E-005 + 233.45999999999998 -1.1698852216903053E-005 + 233.51999999999998 -1.1863799005023087E-005 + 233.57999999999998 -1.2030454539564265E-005 + 233.63999999999999 -1.2198822211939786E-005 + 233.69999999999999 -1.2368907888037289E-005 + 233.75999999999999 -1.2540719674305233E-005 + 233.81999999999999 -1.2714273167536755E-005 + 233.88000000000000 -1.2889588980996046E-005 + 233.94000000000000 -1.3066694880209004E-005 + 234.00000000000000 -1.3245626146693660E-005 + 234.06000000000000 -1.3426425229634548E-005 + 234.12000000000000 -1.3609141959194252E-005 + 234.18000000000001 -1.3793828571773977E-005 + 234.24000000000001 -1.3980540423788997E-005 + 234.30000000000001 -1.4169331884314560E-005 + 234.36000000000001 -1.4360249023456996E-005 + 234.42000000000002 -1.4553329086685895E-005 + 234.47999999999996 -1.4748590927638301E-005 + 234.53999999999996 -1.4946034238823896E-005 + 234.59999999999997 -1.5145630659902620E-005 + 234.65999999999997 -1.5347317296196032E-005 + 234.71999999999997 -1.5550998953993976E-005 + 234.77999999999997 -1.5756536565224377E-005 + 234.83999999999997 -1.5963751923502903E-005 + 234.89999999999998 -1.6172419743605427E-005 + 234.95999999999998 -1.6382268709699528E-005 + 235.01999999999998 -1.6592986924151933E-005 + 235.07999999999998 -1.6804219747907354E-005 + 235.13999999999999 -1.7015575393854195E-005 + 235.19999999999999 -1.7226627561289387E-005 + 235.25999999999999 -1.7436920648477956E-005 + 235.31999999999999 -1.7645975883448044E-005 + 235.38000000000000 -1.7853295909131176E-005 + 235.44000000000000 -1.8058366137631473E-005 + 235.50000000000000 -1.8260668458070832E-005 + 235.56000000000000 -1.8459677162555864E-005 + 235.62000000000000 -1.8654868759824860E-005 + 235.68000000000001 -1.8845714667655672E-005 + 235.74000000000001 -1.9031696860915738E-005 + 235.80000000000001 -1.9212296933160766E-005 + 235.86000000000001 -1.9387006642320177E-005 + 235.92000000000002 -1.9555318187381850E-005 + 235.97999999999996 -1.9716734515275184E-005 + 236.03999999999996 -1.9870761449574690E-005 + 236.09999999999997 -2.0016912850716935E-005 + 236.15999999999997 -2.0154706671211369E-005 + 236.21999999999997 -2.0283669810741752E-005 + 236.27999999999997 -2.0403335763555462E-005 + 236.33999999999997 -2.0513251737400309E-005 + 236.39999999999998 -2.0612975114077400E-005 + 236.45999999999998 -2.0702082403267823E-005 + 236.51999999999998 -2.0780165438663593E-005 + 236.57999999999998 -2.0846844074328980E-005 + 236.63999999999999 -2.0901761294315127E-005 + 236.69999999999999 -2.0944595236915484E-005 + 236.75999999999999 -2.0975052673252107E-005 + 236.81999999999999 -2.0992879915512260E-005 + 236.88000000000000 -2.0997859394993353E-005 + 236.94000000000000 -2.0989819190197358E-005 + 237.00000000000000 -2.0968622485032324E-005 + 237.06000000000000 -2.0934175794631009E-005 + 237.12000000000000 -2.0886429419961388E-005 + 237.18000000000001 -2.0825371087614563E-005 + 237.24000000000001 -2.0751028778410490E-005 + 237.30000000000001 -2.0663464456954276E-005 + 237.36000000000001 -2.0562777911307813E-005 + 237.42000000000002 -2.0449095676903351E-005 + 237.47999999999996 -2.0322574960756482E-005 + 237.53999999999996 -2.0183399789420359E-005 + 237.59999999999997 -2.0031777755644768E-005 + 237.65999999999997 -1.9867934675165290E-005 + 237.71999999999997 -1.9692116544429889E-005 + 237.77999999999997 -1.9504585244562425E-005 + 237.83999999999997 -1.9305613258805790E-005 + 237.89999999999998 -1.9095485253207153E-005 + 237.95999999999998 -1.8874492394443289E-005 + 238.01999999999998 -1.8642939313703721E-005 + 238.07999999999998 -1.8401129465836789E-005 + 238.13999999999999 -1.8149376673938763E-005 + 238.19999999999999 -1.7887993576331957E-005 + 238.25999999999999 -1.7617301388285599E-005 + 238.31999999999999 -1.7337620770919972E-005 + 238.38000000000000 -1.7049274244090811E-005 + 238.44000000000000 -1.6752592063927373E-005 + 238.50000000000000 -1.6447903560467536E-005 + 238.56000000000000 -1.6135546180314985E-005 + 238.62000000000000 -1.5815861289182553E-005 + 238.68000000000001 -1.5489194028864451E-005 + 238.74000000000001 -1.5155897590718006E-005 + 238.80000000000001 -1.4816334583722117E-005 + 238.86000000000001 -1.4470872902353976E-005 + 238.92000000000002 -1.4119889054121909E-005 + 238.97999999999996 -1.3763765121082140E-005 + 239.03999999999996 -1.3402888926240176E-005 + 239.09999999999997 -1.3037655575080071E-005 + 239.15999999999997 -1.2668466324656195E-005 + 239.21999999999997 -1.2295721331560184E-005 + 239.27999999999997 -1.1919826111870138E-005 + 239.33999999999997 -1.1541186968319673E-005 + 239.39999999999998 -1.1160210457404189E-005 + 239.45999999999998 -1.0777302617055479E-005 + 239.51999999999998 -1.0392870449737307E-005 + 239.57999999999998 -1.0007319636285477E-005 + 239.63999999999999 -9.6210598124183508E-006 + 239.69999999999999 -9.2345009561498705E-006 + 239.75999999999999 -8.8480581343425672E-006 + 239.81999999999999 -8.4621524590563401E-006 + 239.88000000000000 -8.0772131639546942E-006 + 239.94000000000000 -7.6936800122329981E-006 + 240.00000000000000 -7.3120047026678490E-006 + 240.06000000000000 -6.9326505419528890E-006 + 240.12000000000000 -6.5560946537611495E-006 + 240.18000000000001 -6.1828273638309111E-006 + 240.24000000000001 -5.8133518892711746E-006 + 240.30000000000001 -5.4481833965141347E-006 + 240.36000000000001 -5.0878445783880965E-006 + 240.42000000000002 -4.7328646336089082E-006 + 240.47999999999996 -4.3837754804731715E-006 + 240.53999999999996 -4.0411079772028260E-006 + 240.59999999999997 -3.7053867641411178E-006 + 240.65999999999997 -3.3771276911505021E-006 + 240.71999999999997 -3.0568331969119341E-006 + 240.77999999999997 -2.7449878593377113E-006 + 240.83999999999997 -2.4420556077860354E-006 + 240.89999999999998 -2.1484763941145235E-006 + 240.95999999999998 -1.8646627885607009E-006 + 241.01999999999998 -1.5909988704131789E-006 + 241.07999999999998 -1.3278376813539865E-006 + 241.13999999999999 -1.0754996055270758E-006 + 241.19999999999999 -8.3427166628267885E-007 + 241.25999999999999 -6.0440650138302603E-007 + 241.31999999999999 -3.8612188209906560E-007 + 241.38000000000000 -1.7959969867991987E-007 + 241.44000000000000 1.5014134932896969E-008 + 241.50000000000000 1.9761005699370724E-007 + 241.56000000000000 3.6811532121823344E-007 + 241.62000000000000 5.2649372636854664E-007 + 241.68000000000001 6.7274574897435202E-007 + 241.74000000000001 8.0690823957358073E-007 + 241.80000000000001 9.2905369692278521E-007 + 241.86000000000001 1.0392894703930259E-006 + 241.92000000000002 1.1377562566997844E-006 + 241.97999999999996 1.2246267110438150E-006 + 242.03999999999996 1.3001030129098139E-006 + 242.09999999999997 1.3644147597634554E-006 + 242.15999999999997 1.4178162056440756E-006 + 242.21999999999997 1.4605833675185573E-006 + 242.27999999999997 1.4930108932868739E-006 + 242.33999999999997 1.5154089916179754E-006 + 242.39999999999998 1.5281006339959046E-006 + 242.45999999999998 1.5314179842040099E-006 + 242.51999999999998 1.5257000015342427E-006 + 242.57999999999998 1.5112899904700791E-006 + 242.63999999999999 1.4885324814693751E-006 + 242.69999999999999 1.4577716909580288E-006 + 242.75999999999999 1.4193490114141313E-006 + 242.81999999999999 1.3736013829387287E-006 + 242.88000000000000 1.3208595085940877E-006 + 242.94000000000000 1.2614460904063037E-006 + 243.00000000000000 1.1956744429508791E-006 + 243.06000000000000 1.1238466121410751E-006 + 243.12000000000000 1.0462521641088270E-006 + 243.18000000000001 9.6316651952495051E-007 + 243.24000000000001 8.7484971719853235E-007 + 243.30000000000001 7.8154534950379119E-007 + 243.36000000000001 6.8347957641648602E-007 + 243.42000000000002 5.8086050325058443E-007 + 243.47999999999996 4.7387779985100698E-007 + 243.53999999999996 3.6270297321799327E-007 + 243.59999999999997 2.4748974862277540E-007 + 243.65999999999997 1.2837532798242688E-007 + 243.71999999999997 5.4815928960718913E-009 + 243.77999999999997 -1.2108292675179825E-007 + 243.83999999999997 -2.5122092426852926E-007 + 243.89999999999998 -3.8484402467675617E-007 + 243.95999999999998 -5.2187001086213055E-007 + 244.01999999999998 -6.6222049363665728E-007 + 244.07999999999998 -8.0581800993686373E-007 + 244.13999999999999 -9.5258400029198081E-007 + 244.19999999999999 -1.1024362303139034E-006 + 244.25999999999999 -1.2552872661368151E-006 + 244.31999999999999 -1.4110421725701565E-006 + 244.38000000000000 -1.5695978092521121E-006 + 244.44000000000000 -1.7308413864384037E-006 + 244.50000000000000 -1.8946497819156160E-006 + 244.56000000000000 -2.0608885337874843E-006 + 244.62000000000000 -2.2294122191309688E-006 + 244.68000000000001 -2.4000631239701952E-006 + 244.74000000000001 -2.5726716104370276E-006 + 244.80000000000001 -2.7470561347530341E-006 + 244.86000000000001 -2.9230230062963925E-006 + 244.92000000000002 -3.1003660985235291E-006 + 244.97999999999996 -3.2788674639442773E-006 + 245.03999999999996 -3.4582979486798593E-006 + 245.09999999999997 -3.6384167772443071E-006 + 245.15999999999997 -3.8189737835718655E-006 + 245.21999999999997 -3.9997093737801902E-006 + 245.27999999999997 -4.1803563341779024E-006 + 245.33999999999997 -4.3606423765647183E-006 + 245.39999999999998 -4.5402909105895779E-006 + 245.45999999999998 -4.7190240054837920E-006 + 245.51999999999998 -4.8965657214251982E-006 + 245.57999999999998 -5.0726430509757307E-006 + 245.63999999999999 -5.2469906407499433E-006 + 245.69999999999999 -5.4193523638628770E-006 + 245.75999999999999 -5.5894838394010175E-006 + 245.81999999999999 -5.7571548468579872E-006 + 245.88000000000000 -5.9221519955777115E-006 + 245.94000000000000 -6.0842791095613642E-006 + 246.00000000000000 -6.2433591948177470E-006 + 246.06000000000000 -6.3992366082127403E-006 + 246.12000000000000 -6.5517753883481244E-006 + 246.18000000000001 -6.7008611275701410E-006 + 246.24000000000001 -6.8464016194587101E-006 + 246.30000000000001 -6.9883250872065453E-006 + 246.36000000000001 -7.1265812630892815E-006 + 246.42000000000002 -7.2611412879435356E-006 + 246.47999999999996 -7.3919971824503292E-006 + 246.53999999999996 -7.5191617229268012E-006 + 246.59999999999997 -7.6426682556711451E-006 + 246.65999999999997 -7.7625718776286665E-006 + 246.71999999999997 -7.8789455667342153E-006 + 246.77999999999997 -7.9918848155103045E-006 + 246.83999999999997 -8.1015039810987541E-006 + 246.89999999999998 -8.2079360350031062E-006 + 246.95999999999998 -8.3113325233650058E-006 + 247.01999999999998 -8.4118621919117645E-006 + 247.07999999999998 -8.5097081417777666E-006 + 247.13999999999999 -8.6050657850988935E-006 + 247.19999999999999 -8.6981414713412103E-006 + 247.25999999999999 -8.7891507278144274E-006 + 247.31999999999999 -8.8783115236419542E-006 + 247.38000000000000 -8.9658446580349789E-006 + 247.44000000000000 -9.0519688727506140E-006 + 247.50000000000000 -9.1368975584955147E-006 + 247.56000000000000 -9.2208346912744620E-006 + 247.62000000000000 -9.3039724554669607E-006 + 247.68000000000001 -9.3864874952819941E-006 + 247.74000000000001 -9.4685383927780934E-006 + 247.80000000000001 -9.5502631385644286E-006 + 247.86000000000001 -9.6317759210368841E-006 + 247.92000000000002 -9.7131669669458964E-006 + 247.97999999999996 -9.7945010867567756E-006 + 248.03999999999996 -9.8758147650378705E-006 + 248.09999999999997 -9.9571175820035715E-006 + 248.15999999999997 -1.0038392037387706E-005 + 248.21999999999997 -1.0119594717323667E-005 + 248.27999999999997 -1.0200654791359948E-005 + 248.33999999999997 -1.0281477286554062E-005 + 248.39999999999998 -1.0361944923469526E-005 + 248.45999999999998 -1.0441918186733019E-005 + 248.51999999999998 -1.0521240570548201E-005 + 248.57999999999998 -1.0599739188407479E-005 + 248.63999999999999 -1.0677230402348777E-005 + 248.69999999999999 -1.0753520072913751E-005 + 248.75999999999999 -1.0828407712216868E-005 + 248.81999999999999 -1.0901690876467497E-005 + 248.88000000000000 -1.0973166322251102E-005 + 248.94000000000000 -1.1042635379290975E-005 + 249.00000000000000 -1.1109904780194022E-005 + 249.06000000000000 -1.1174787621294426E-005 + 249.12000000000000 -1.1237108503208509E-005 + 249.18000000000001 -1.1296702253255740E-005 + 249.24000000000001 -1.1353414806224628E-005 + 249.30000000000001 -1.1407106404883878E-005 + 249.36000000000001 -1.1457649671768994E-005 + 249.42000000000002 -1.1504930934448959E-005 + 249.47999999999996 -1.1548849256390894E-005 + 249.53999999999996 -1.1589316187326440E-005 + 249.59999999999997 -1.1626259386200000E-005 + 249.65999999999997 -1.1659617829544914E-005 + 249.71999999999997 -1.1689345326531550E-005 + 249.77999999999997 -1.1715411245305988E-005 + 249.83999999999997 -1.1737800388602932E-005 + 249.89999999999998 -1.1756513503932281E-005 + 249.95999999999998 -1.1771572541447012E-005 + 250.01999999999998 -1.1783016702258968E-005 + 250.07999999999998 -1.1790905811030792E-005 + 250.13999999999999 -1.1795321538331569E-005 + 250.19999999999999 -1.1796367408035861E-005 + 250.25999999999999 -1.1794170596980001E-005 + 250.31999999999999 -1.1788878264376265E-005 + 250.38000000000000 -1.1780656641259593E-005 + 250.44000000000000 -1.1769693583174909E-005 + 250.50000000000000 -1.1756191020627841E-005 + 250.56000000000000 -1.1740363844191405E-005 + 250.62000000000000 -1.1722438221709683E-005 + 250.68000000000001 -1.1702644099994502E-005 + 250.74000000000001 -1.1681215319627529E-005 + 250.80000000000001 -1.1658383295969809E-005 + 250.86000000000001 -1.1634372556380652E-005 + 250.92000000000002 -1.1609399556015312E-005 + 250.97999999999996 -1.1583667126058159E-005 + 251.03999999999996 -1.1557364887877903E-005 + 251.09999999999997 -1.1530664451413913E-005 + 251.15999999999997 -1.1503717050582246E-005 + 251.21999999999997 -1.1476654641418827E-005 + 251.27999999999997 -1.1449589820959628E-005 + 251.33999999999997 -1.1422611238449463E-005 + 251.39999999999998 -1.1395790476187365E-005 + 251.45999999999998 -1.1369176419581108E-005 + 251.51999999999998 -1.1342799283254663E-005 + 251.57999999999998 -1.1316667035422404E-005 + 251.63999999999999 -1.1290772647061349E-005 + 251.69999999999999 -1.1265091194031649E-005 + 251.75999999999999 -1.1239578922972854E-005 + 251.81999999999999 -1.1214176257045366E-005 + 251.88000000000000 -1.1188808843014757E-005 + 251.94000000000000 -1.1163390220447231E-005 diff --git a/seisflows/tests/test_data/test_solver/002 b/seisflows/tests/test_data/test_solver/002 deleted file mode 120000 index cbb9ee10..00000000 --- a/seisflows/tests/test_data/test_solver/002 +++ /dev/null @@ -1 +0,0 @@ -mainsolver/ \ No newline at end of file diff --git a/seisflows/tests/test_data/test_solver/002/DATA/Par_file b/seisflows/tests/test_data/test_solver/002/DATA/Par_file new file mode 100644 index 00000000..8b137891 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/DATA/Par_file @@ -0,0 +1 @@ + diff --git a/seisflows/tests/test_data/test_solver/002/DATA/SOURCE b/seisflows/tests/test_data/test_solver/002/DATA/SOURCE new file mode 120000 index 00000000..b0d2e8d8 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/DATA/SOURCE @@ -0,0 +1 @@ +SOURCE_002 \ No newline at end of file diff --git a/seisflows/tests/test_data/test_solver/002/DATA/SOURCE_002 b/seisflows/tests/test_data/test_solver/002/DATA/SOURCE_002 new file mode 100644 index 00000000..8371bd1f --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/DATA/SOURCE_002 @@ -0,0 +1,57 @@ +## Source 1 +source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver +xs = 116059.49 # source location x in meters +zs = 105566.07 # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) +## Source type parameters: +# 1 = elastic force or acoustic pressure +# 2 = moment tensor +# or Initial field type (when initialfield set in Par_file): +# For a plane wave including converted and reflected waves at the free surface: +# 1 = P wave, +# 2 = S wave, +# 3 = Rayleigh wave +# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: +# 4 = P wave, +# 5 = S wave +# For initial mode displacement: +# 6 = mode (2,3) of a rectangular membrane +source_type = 1 +# Source time function: +# In the case of a source located in an acoustic medium, +# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi +# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. +# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. +# Options: +# 1 = second derivative of a Gaussian (a.k.a. Ricker), +# 2 = first derivative of a Gaussian, +# 3 = Gaussian, +# 4 = Dirac, +# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), +# 6 = ocean acoustics type I, +# 7 = ocean acoustics type II, +# 8 = external source time function = 8 (source read from file), +# 9 = burst, +# 10 = Sinus source time function, +# 11 = Marmousi Ormsby wavelet +time_function_type = 2 +# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : +# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) +# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop +name_of_source_file = "" # Only for option 8 : file containing the source wavelet +burst_band_width = 0. # Only for option 9 : band width of the burst +f0 = 8.400e-02 # dominant source frequency (Hz) if not Dirac or Heaviside +tshift = 0.000e+00 # time shift when multi sources (if one source, must be zero) +## Force source +# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused +anglesource = 0.00 +## Moment tensor +# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. +Mxx = 1.000000 # Mxx component (for a moment tensor source only) +Mzz = -1.000000 # Mzz component (for a moment tensor source only) +Mxz = 0.000000 # Mxz component (for a moment tensor source only) +## Amplification (factor to amplify source time function) +factor = 1.000e+10 # amplification factor +## Moving source parameters +vx = 0.0 # Horizontal source velocity (m/s) +vz = 0.0 # Vertical source velocity (m/s) + diff --git a/seisflows/tests/test_data/test_solver/002/DATA/STATIONS b/seisflows/tests/test_data/test_solver/002/DATA/STATIONS new file mode 100644 index 00000000..8f979fe1 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/DATA/STATIONS @@ -0,0 +1,5 @@ +S000000 AA 2.43610e+05 2.78904e+05 0.0 0.0 +S000001 AA 3.38981e+05 1.77849e+05 0.0 0.0 +S000002 AA 1.64438e+05 2.94733e+05 0.0 0.0 +S000003 AA 9.22250e+04 3.68887e+05 0.0 0.0 +S000004 AA 2.90702e+05 2.46865e+05 0.0 0.0 diff --git a/seisflows/tests/test_data/test_solver/002/bin/xcombine_sem b/seisflows/tests/test_data/test_solver/002/bin/xcombine_sem new file mode 100755 index 00000000..969a4d93 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/bin/xcombine_sem @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xcombine_sem" + diff --git a/seisflows/tests/test_data/test_solver/002/bin/xmeshfem2D b/seisflows/tests/test_data/test_solver/002/bin/xmeshfem2D new file mode 100755 index 00000000..149ca704 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/bin/xmeshfem2D @@ -0,0 +1,2 @@ +#!/bin/bash -e +echo "xmeshfem2D" diff --git a/seisflows/tests/test_data/test_solver/002/bin/xsmooth_sem b/seisflows/tests/test_data/test_solver/002/bin/xsmooth_sem new file mode 100755 index 00000000..376b4aa5 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/bin/xsmooth_sem @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xsmooth_sem" + diff --git a/seisflows/tests/test_data/test_solver/002/bin/xspecfem2D b/seisflows/tests/test_data/test_solver/002/bin/xspecfem2D new file mode 100755 index 00000000..e50c2b0b --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/bin/xspecfem2D @@ -0,0 +1,3 @@ +#!/bin/bash -e +echo "xspecfem2D" + diff --git a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000000.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000000.BXY.semd new file mode 100644 index 00000000..d16979c4 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000000.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 7.2178874618681838E-040 + 9.7199999999999989 1.8513878120317818E-039 + 9.7800000000000011 3.6955160584047206E-039 + 9.8399999999999963 5.8923287824761814E-039 + 9.8999999999999986 8.0891411788759808E-039 + 9.9600000000000009 1.0285954230619103E-038 + 10.019999999999996 1.2482767282362225E-038 + 10.079999999999998 1.4212307438048636E-038 + 10.140000000000001 1.5282408375119769E-038 + 10.199999999999996 1.5094354987255393E-038 + 10.259999999999998 1.3428866777257449E-038 + 10.320000000000000 1.0217693014767987E-038 + 10.379999999999995 5.5909075531924194E-039 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 -6.1846708853652144E-039 + 10.559999999999995 -1.2369341770730429E-038 + 10.619999999999997 -1.7838040245734927E-038 + 10.680000000000000 -2.1667178513966619E-038 + 10.739999999999995 -2.3110430628380462E-038 + 10.799999999999997 -1.8873487192326227E-038 + 10.859999999999999 -7.2874848002899481E-039 + 10.919999999999995 1.0605023969591254E-038 + 10.979999999999997 3.1262379010091369E-038 + 11.039999999999999 5.3807968626622268E-038 + 11.099999999999994 7.7085171732600285E-038 + 11.159999999999997 9.9288993252832994E-038 + 11.219999999999999 1.0883820274168874E-037 + 11.280000000000001 1.0106240512948496E-037 + 11.339999999999996 7.0515723448719886E-038 + 11.399999999999999 1.8917678561461085E-038 + 11.460000000000001 -3.6144462675863762E-038 + 11.519999999999996 -9.0432482350734505E-038 + 11.579999999999998 -1.4750763105735690E-037 + 11.640000000000001 -1.9711580671437036E-037 + 11.699999999999996 -1.9260527175393642E-037 + 11.759999999999998 -1.2443252533076459E-037 + 11.820000000000000 1.0273926096812650E-038 + 11.879999999999995 1.7292277791637693E-037 + 11.939999999999998 3.5953624566540384E-037 + 12.000000000000000 5.6369572058909850E-037 + 12.059999999999995 7.8048986467677783E-037 + 12.119999999999997 9.6532593173584674E-037 + 12.180000000000000 1.0568421626683448E-036 + 12.239999999999995 9.9305481923709282E-037 + 12.299999999999997 7.3835081617987058E-037 + 12.359999999999999 3.2622102304005443E-037 + 12.419999999999995 -1.8937398450884212E-037 + 12.479999999999997 -7.6430670178061675E-037 + 12.539999999999999 -1.3579684378246404E-036 + 12.599999999999994 -1.9184887374040515E-036 + 12.659999999999997 -2.4187583226599442E-036 + 12.719999999999999 -2.7913203723811185E-036 + 12.780000000000001 -2.9233531049755549E-036 + 12.839999999999996 -2.7865064578701958E-036 + 12.899999999999999 -2.3176893972334490E-036 + 12.960000000000001 -1.5452944082439875E-036 + 13.019999999999996 -5.0273518555884018E-037 + 13.079999999999998 7.4864235115980465E-037 + 13.140000000000001 2.0891576215726035E-036 + 13.199999999999996 3.3607410135127378E-036 + 13.259999999999998 4.1590419061992063E-036 + 13.320000000000000 4.3463369684849329E-036 + 13.379999999999995 3.7051169301548191E-036 + 13.439999999999998 2.0800689751704983E-036 + 13.500000000000000 -5.3293833026875938E-037 + 13.559999999999995 -4.1438581984510685E-036 + 13.619999999999997 -8.3052467816438784E-036 + 13.680000000000000 -1.2606154253009181E-035 + 13.739999999999995 -1.6440754460212209E-035 + 13.799999999999997 -1.8969701420878402E-035 + 13.859999999999999 -1.9460540593840047E-035 + 13.919999999999995 -1.7322085870939719E-035 + 13.979999999999997 -1.1979391534166102E-035 + 14.039999999999999 -3.1404287508469866E-036 + 14.099999999999994 9.0244180517724176E-036 + 14.159999999999997 2.4156701375574953E-035 + 14.219999999999999 4.1473944439722375E-035 + 14.280000000000001 5.9440727014832504E-035 + 14.339999999999996 7.6278302393851236E-035 + 14.399999999999999 8.9855775021849342E-035 + 14.460000000000001 9.7866514357371105E-035 + 14.519999999999996 9.8040613774688215E-035 + 14.579999999999998 8.8234662401611654E-035 + 14.640000000000001 6.6786461491946876E-035 + 14.699999999999996 3.3059682346716628E-035 + 14.759999999999998 -1.3380246043039127E-035 + 14.820000000000000 -7.1143824256885119E-035 + 14.879999999999995 -1.3757597439024301E-034 + 14.939999999999998 -2.0906144887472748E-034 + 15.000000000000000 -2.8019465826199256E-034 + 15.059999999999995 -3.4421053164527723E-034 + 15.119999999999997 -3.9332527590327770E-034 + 15.180000000000000 -4.1912741737308649E-034 + 15.239999999999995 -4.1318879801733263E-034 + 15.299999999999997 -3.6821735535746918E-034 + 15.359999999999999 -2.7865657411617432E-034 + 15.419999999999995 -1.4134495136920520E-034 + 15.479999999999997 4.2918194144343333E-035 + 15.539999999999999 2.6892766352982820E-034 + 15.599999999999994 5.2621513377482929E-034 + 15.659999999999997 7.9884036718652330E-034 + 15.719999999999999 1.0654501805472719E-033 + 15.780000000000001 1.2999241844088624E-033 + 15.839999999999996 1.4726172524432485E-033 + 15.899999999999999 1.5523358833978597E-033 + 15.960000000000001 1.5086223755420862E-033 + 16.019999999999996 1.3148623635166347E-033 + 16.079999999999998 9.5172288396431975E-034 + 16.140000000000001 4.1063938007870897E-034 + 16.200000000000003 -3.0282328814140845E-034 + 16.259999999999991 -1.1659216613414926E-033 + 16.319999999999993 -2.1367376726486973E-033 + 16.379999999999995 -3.1533590295046808E-033 + 16.439999999999998 -4.1347344013352749E-033 + 16.500000000000000 -4.9834452179983220E-033 + 16.560000000000002 -5.5906802719759530E-033 + 16.620000000000005 -5.8434459933274017E-033 + 16.679999999999993 -5.6337095781715748E-033 + 16.739999999999995 -4.8695546037144016E-033 + 16.799999999999997 -3.4871639713221993E-033 + 16.859999999999999 -1.4632781961537943E-033 + 16.920000000000002 1.1732086302260937E-033 + 16.980000000000004 4.3316640144036080E-033 + 17.039999999999992 7.8535076790801784E-033 + 17.099999999999994 1.1510700211864853E-032 + 17.159999999999997 1.5010150407131408E-032 + 17.219999999999999 1.8004970993050038E-032 + 17.280000000000001 2.0113181578201808E-032 + 17.340000000000003 2.0943767156292138E-032 + 17.399999999999991 2.0129467500880017E-032 + 17.459999999999994 1.7364841247358589E-032 + 17.519999999999996 1.2447424771839575E-032 + 17.579999999999998 5.3188321221954512E-033 + 17.640000000000001 -3.8977234343857310E-033 + 17.700000000000003 -1.4867716098335954E-032 + 17.759999999999991 -2.7027768749487418E-032 + 17.819999999999993 -3.9584513050203748E-032 + 17.879999999999995 -5.1533531620483074E-032 + 17.939999999999998 -6.1701125663721589E-032 + 18.000000000000000 -6.8810101264020100E-032 + 18.060000000000002 -7.1569004996941090E-032 + 18.120000000000005 -6.8781961491290411E-032 + 18.179999999999993 -5.9473870112970162E-032 + 18.239999999999995 -4.3023170376485371E-032 + 18.299999999999997 -1.9292197983070224E-032 + 18.359999999999999 1.1256941059232873E-032 + 18.420000000000002 4.7474079583084116E-032 + 18.480000000000004 8.7473979733823773E-032 + 18.539999999999992 1.2864336102726006E-031 + 18.599999999999994 1.6771263152614846E-031 + 18.659999999999997 2.0089970480026391E-031 + 18.719999999999999 2.2412839150510330E-031 + 18.780000000000001 2.3331776599567932E-031 + 18.840000000000003 2.2473226115943842E-031 + 18.899999999999991 1.9537452563883561E-031 + 18.959999999999994 1.4339582216042179E-031 + 19.019999999999996 6.8492176063758124E-032 + 19.079999999999998 -2.7751039355579152E-032 + 19.140000000000001 -1.4160623868579648E-031 + 19.200000000000003 -2.6708298294590967E-031 + 19.259999999999991 -3.9597673186078189E-031 + 19.319999999999993 -5.1811734688435316E-031 + 19.379999999999995 -6.2183581009059130E-031 + 19.439999999999998 -6.9465367487685216E-031 + 19.500000000000000 -7.2418059136382128E-031 + 19.560000000000002 -6.9918476061970853E-031 + 19.620000000000005 -6.1077955002388726E-031 + 19.679999999999993 -4.5364820707602802E-031 + 19.739999999999995 -2.2720936791718266E-031 + 19.799999999999997 6.3387123554817158E-032 + 19.859999999999999 4.0655289843914280E-031 + 19.920000000000002 7.8395966405051230E-031 + 19.980000000000004 1.1707489911160406E-030 + 20.039999999999992 1.5363370845439154E-030 + 20.099999999999994 1.8458635882972178E-030 + 20.159999999999997 2.0622884299736216E-030 + 20.219999999999999 2.1490873499898689E-030 + 20.280000000000001 2.0734358662879123E-030 + 20.340000000000003 1.8097095466272120E-030 + 20.399999999999991 1.3430675721547258E-030 + 20.459999999999994 6.7283374837565098E-031 + 20.519999999999996 -1.8464753195440132E-031 + 20.579999999999998 -1.1940254157700999E-030 + 20.640000000000001 -2.3001622261120481E-030 + 20.700000000000003 -3.4288625991520185E-030 + 20.759999999999991 -4.4893457010824138E-030 + 20.819999999999993 -5.3785995590216715E-030 + 20.879999999999995 -5.9876225877599378E-030 + 20.939999999999998 -6.2094048871050774E-030 + 21.000000000000000 -5.9483287127636718E-030 + 21.060000000000002 -5.1304854940376474E-030 + 21.120000000000005 -3.7142375752041148E-030 + 21.179999999999993 -1.7001943708319288E-030 + 21.239999999999995 8.6033578097371287E-031 + 21.299999999999997 3.8594219091832443E-030 + 21.359999999999999 7.1301066051476206E-030 + 21.420000000000002 1.0448427021103466E-029 + 21.480000000000004 1.3540573602980452E-029 + 21.539999999999992 1.6095646717740617E-029 + 21.599999999999994 1.7784077940150508E-029 + 21.659999999999997 1.8281365413454576E-029 + 21.719999999999999 1.7296262264075229E-029 + 21.780000000000001 1.4602028700955246E-029 + 21.840000000000003 1.0068823939152371E-029 + 21.899999999999991 3.6948535471415375E-030 + 21.959999999999994 -4.3665094198045293E-030 + 22.019999999999996 -1.3786654217616472E-029 + 22.079999999999998 -2.4051790631903932E-029 + 22.140000000000001 -3.4466037743744628E-029 + 22.200000000000003 -4.4170016602280337E-029 + 22.259999999999991 -5.2176682087229823E-029 + 22.319999999999993 -5.7425181425493967E-029 + 22.379999999999995 -5.8852222463300928E-029 + 22.439999999999998 -5.5478958419198969E-029 + 22.500000000000000 -4.6509812459580956E-029 + 22.560000000000002 -3.1437928154193331E-029 + 22.619999999999990 -1.0150340558284362E-029 + 22.679999999999993 1.6975514157675339E-029 + 22.739999999999995 4.8993433274771500E-029 + 22.799999999999997 8.4338224719216575E-029 + 22.859999999999999 1.2081379123977960E-028 + 22.920000000000002 1.5562868349296940E-028 + 22.980000000000004 1.8548675691649116E-028 + 23.039999999999992 2.0673789215811456E-028 + 23.099999999999994 2.1559028837369100E-028 + 23.159999999999997 2.0838133818253700E-028 + 23.219999999999999 1.8189901347629983E-028 + 23.280000000000001 1.3374021685792712E-028 + 23.340000000000003 6.2686397776610978E-029 + 23.399999999999991 -3.0928301576322838E-029 + 23.459999999999994 -1.4488677356604634E-028 + 23.519999999999996 -2.7482993202786316E-028 + 23.579999999999998 -4.1410478681876120E-028 + 23.640000000000001 -5.5375542716836186E-028 + 23.700000000000003 -6.8268914836301101E-028 + 23.759999999999991 -7.8804455266533983E-028 + 23.819999999999993 -8.5577924413042136E-028 + 23.879999999999995 -8.7148120512229099E-028 + 23.939999999999998 -8.2139320940466528E-028 + 24.000000000000000 -6.9362091686971270E-028 + 24.060000000000002 -4.7947451334886678E-028 + 24.119999999999990 -1.7487370535346435E-028 + 24.179999999999993 2.1827581898808823E-028 + 24.239999999999995 6.9084232927501103E-028 + 24.299999999999997 1.2254891918798707E-027 + 24.359999999999999 1.7960871116469063E-027 + 24.420000000000002 2.3676489888781080E-027 + 24.480000000000004 2.8969082827043807E-027 + 24.539999999999992 3.3336441644668439E-027 + 24.599999999999994 3.6228183575451090E-027 + 24.659999999999997 3.7075520589802532E-027 + 24.719999999999999 3.5329063469012838E-027 + 24.780000000000001 3.0503718881886811E-027 + 24.840000000000003 2.2228987030652538E-027 + 24.899999999999991 1.0302176456021375E-027 + 24.959999999999994 -5.2586554563298722E-028 + 25.019999999999996 -2.4165911868829400E-027 + 25.079999999999998 -4.5822216922535121E-027 + 25.140000000000001 -6.9293485040315213E-027 + 25.200000000000003 -9.3300144494042323E-027 + 25.259999999999991 -1.1623100096344091E-026 + 25.319999999999993 -1.3618384388591372E-026 + 25.379999999999995 -1.5103544377404493E-026 + 25.439999999999998 -1.5854262323871870E-026 + 25.500000000000000 -1.5647379877571593E-026 + 25.560000000000002 -1.4276849815636456E-026 + 25.619999999999990 -1.1571959199490893E-026 + 25.679999999999993 -7.4170562027423487E-027 + 25.739999999999995 -1.7717381489435203E-027 + 25.799999999999997 5.3097954718725332E-027 + 25.859999999999999 1.3661727353855880E-026 + 25.920000000000002 2.2993595474057581E-026 + 25.980000000000004 3.2882959261784888E-026 + 26.039999999999992 4.2775496004180619E-026 + 26.099999999999994 5.1994028538258871E-026 + 26.159999999999997 5.9757776163662482E-026 + 26.219999999999999 6.5212628684939983E-026 + 26.280000000000001 6.7472749336231295E-026 + 26.340000000000003 6.5673098981144980E-026 + 26.399999999999991 5.9031608320722457E-026 + 26.459999999999994 4.6918955010051635E-026 + 26.519999999999996 2.8932864415937013E-026 + 26.579999999999998 4.9730897737737854E-027 + 26.640000000000001 -2.4687806165265363E-026 + 26.700000000000003 -5.9343168728881621E-026 + 26.759999999999991 -9.7806501019435508E-026 + 26.819999999999993 -1.3838736163912107E-025 + 26.879999999999995 -1.7889469461047182E-025 + 26.939999999999998 -2.1667316097055181E-025 + 27.000000000000000 -2.4867673722405819E-025 + 27.060000000000002 -2.7158246519245674E-025 + 27.119999999999990 -2.8194520281752385E-025 + 27.179999999999993 -2.7639192089982183E-025 + 27.239999999999995 -2.5185127625171826E-025 + 27.299999999999997 -2.0581095081004602E-025 + 27.359999999999999 -1.3659255468138862E-025 + 27.420000000000002 -4.3630018765558663E-026 + 27.480000000000004 7.2264860233843895E-026 + 27.539999999999992 2.0866896453985904E-025 + 27.599999999999994 3.6136728947918376E-025 + 27.659999999999997 5.2424691448843870E-025 + 27.719999999999999 6.8928693897375912E-025 + 27.780000000000001 8.4666444351133309E-025 + 27.840000000000003 9.8499209070094753E-025 + 27.899999999999991 1.0916998881973839E-024 + 27.959999999999994 1.1535657173937206E-024 + 28.019999999999996 1.1573918397157352E-024 + 28.079999999999998 1.0908154634531646E-024 + 28.140000000000001 9.4323021389804774E-025 + 28.200000000000003 7.0678458911778444E-025 + 28.259999999999991 3.7741307355212071E-025 + 28.319999999999993 -4.4156516254956468E-026 + 28.379999999999995 -5.5148394330597280E-025 + 28.439999999999998 -1.1316578660800685E-024 + 28.500000000000000 -1.7647747522495239E-024 + 28.560000000000002 -2.4237299786463004E-024 + 28.619999999999990 -3.0743990481627589E-024 + 28.679999999999993 -3.6762673006918974E-024 + 28.739999999999995 -4.1835627878674188E-024 + 28.799999999999997 -4.5469189091825140E-024 + 28.859999999999999 -4.7155749127696825E-024 + 28.920000000000002 -4.6400821047502699E-024 + 28.980000000000004 -4.2754622888692103E-024 + 29.039999999999992 -3.5847152827568056E-024 + 29.099999999999994 -2.5425396612531163E-024 + 29.159999999999997 -1.1390922416697256E-024 + 29.219999999999999 6.1642335953888582E-025 + 29.280000000000001 2.6925817320434129E-024 + 29.340000000000003 5.0332311119286493E-024 + 29.399999999999991 7.5559314779146448E-024 + 29.459999999999994 1.0151600682572752E-023 + 29.519999999999996 1.2685621637304919E-023 + 29.579999999999998 1.5000612311976511E-023 + 29.640000000000001 1.6921018383082808E-023 + 29.700000000000003 1.8259610373215600E-023 + 29.759999999999991 1.8825863235591439E-023 + 29.819999999999993 1.8436107461975768E-023 + 29.879999999999995 1.6925195793795721E-023 + 29.939999999999998 1.4159316153723973E-023 + 30.000000000000000 1.0049447721744523E-023 + 30.060000000000002 4.5648152638845861E-024 + 30.119999999999990 -2.2544087652954231E-024 + 30.179999999999993 -1.0285999115098146E-023 + 30.239999999999995 -1.9317093837040604E-023 + 30.299999999999997 -2.9039042170501286E-023 + 30.359999999999999 -3.9046637013336771E-023 + 30.420000000000002 -4.8842540864133687E-023 + 30.480000000000004 -5.7847615303436365E-023 + 30.539999999999992 -6.5417660619668044E-023 + 30.599999999999994 -7.0866794692229379E-023 + 30.659999999999997 -7.3497337235651592E-023 + 30.719999999999999 -7.2635829144313376E-023 + 30.780000000000001 -6.7674197205269487E-023 + 30.840000000000003 -5.8114777695561062E-023 + 30.899999999999991 -4.3617448433264344E-023 + 30.959999999999994 -2.4046602966372346E-023 + 31.019999999999996 4.8453294406886396E-025 + 31.079999999999998 2.9575187585187104E-023 + 31.140000000000001 6.2506941428803705E-023 + 31.200000000000003 9.8225367848634098E-023 + 31.259999999999991 1.3533656620416567E-022 + 31.319999999999993 1.7212104969710655E-022 + 31.379999999999995 2.0656741692735333E-022 + 31.439999999999998 2.3642744653514640E-022 + 31.500000000000000 2.5929293054194842E-022 + 31.560000000000002 2.7269427093633263E-022 + 31.619999999999990 2.7421876831964963E-022 + 31.679999999999993 2.6164601892200039E-022 + 31.739999999999995 2.3309589603706578E-022 + 31.799999999999997 1.8718345132507499E-022 + 31.859999999999999 1.2317370739521341E-022 + 31.920000000000002 4.1128488919483241E-023 + 31.980000000000004 -5.7963915281546364E-023 + 32.039999999999992 -1.7208527386630238E-022 + 32.099999999999994 -2.9811981475768574E-022 + 32.159999999999997 -4.3183138617568412E-022 + 32.219999999999999 -5.6789355925618000E-022 + 32.280000000000001 -6.9997929046750518E-022 + 32.340000000000003 -8.2091387495843211E-022 + 32.399999999999991 -9.2289451108871033E-022 + 32.459999999999994 -9.9777401239182323E-022 + 32.519999999999996 -1.0374050664445162E-021 + 32.579999999999998 -1.0340365180662608E-021 + 32.640000000000001 -9.8074986130132278E-022 + 32.700000000000003 -8.7192087673841346E-022 + 32.759999999999991 -7.0368770202279979E-022 + 32.819999999999993 -4.7440352935067228E-022 + 32.879999999999995 -1.8505110040501323E-022 + 32.939999999999998 1.6040645886500780E-022 + 33.000000000000000 5.5476347696416048E-022 + 33.060000000000002 9.8742201950789133E-022 + 33.119999999999990 1.4443775063232203E-021 + 33.179999999999993 1.9083581543787358E-021 + 33.239999999999995 2.3591336361310018E-021 + 33.299999999999997 2.7740021781796178E-021 + 33.359999999999999 3.1284574727112730E-021 + 33.420000000000002 3.3970338993580948E-021 + 33.480000000000004 3.5543159315209736E-021 + 33.539999999999992 3.5760932698029081E-021 + 33.599999999999994 3.4406332892085765E-021 + 33.659999999999997 3.1300363216552242E-021 + 33.719999999999999 2.6316308237441732E-021 + 33.780000000000001 1.9393590482274132E-021 + 33.840000000000003 1.0551007796023973E-021 + 33.899999999999991 -1.0121825463241387E-023 + 33.959999999999994 -1.2351231084318312E-021 + 34.019999999999996 -2.5877707789994648E-021 + 34.079999999999998 -4.0245041566323758E-021 + 34.140000000000001 -5.4902087525526800E-021 + 34.200000000000003 -6.9184981947044886E-021 + 34.259999999999991 -8.2324407065855039E-021 + 34.319999999999993 -9.3457706800152763E-021 + 34.379999999999995 -1.0164590769566113E-020 + 34.439999999999998 -1.0589575180437505E-020 + 34.500000000000000 -1.0518651460614478E-020 + 34.560000000000002 -9.8501190907331403E-021 + 34.619999999999990 -8.4861397233809044E-021 + 34.679999999999993 -6.3365118084290974E-021 + 34.739999999999995 -3.3226022525265869E-021 + 34.799999999999997 6.1871870084214503E-022 + 34.859999999999999 5.5312928488737031E-021 + 34.920000000000002 1.1436289847981610E-020 + 34.980000000000004 1.8329403607099208E-020 + 35.039999999999992 2.6178907152974460E-020 + 35.099999999999994 3.4924793380675645E-020 + 35.159999999999997 4.4479321281670113E-020 + 35.219999999999999 5.4729088773019131E-020 + 35.280000000000001 6.5539014306182243E-020 + 35.340000000000003 7.6758282404784246E-020 + 35.399999999999991 8.8228431598085209E-020 + 35.459999999999994 9.9793675085583114E-020 + 35.519999999999996 1.1131336095601906E-019 + 35.579999999999998 1.2267659340514871E-019 + 35.640000000000001 1.3381859113605290E-019 + 35.700000000000003 1.4473869979339389E-019 + 35.759999999999991 1.5551942315811526E-019 + 35.819999999999993 1.6634604997383550E-019 + 35.879999999999995 1.7752626333224389E-019 + 35.939999999999998 1.8950874614133794E-019 + 36.000000000000000 2.0290039168225294E-019 + 36.060000000000002 2.1848084247613278E-019 + 36.119999999999990 2.3721397963027972E-019 + 36.179999999999993 2.6025507985430200E-019 + 36.239999999999995 2.8895293831307150E-019 + 36.299999999999997 3.2484652310497438E-019 + 36.359999999999999 3.6965492654590548E-019 + 36.420000000000002 4.2526107878266619E-019 + 36.479999999999990 4.9368722407185428E-019 + 36.539999999999992 5.7706383212605731E-019 + 36.599999999999994 6.7759042116992821E-019 + 36.659999999999997 7.9748862593325862E-019 + 36.719999999999999 9.3894824237015736E-019 + 36.780000000000001 1.1040654669099708E-018 + 36.840000000000003 1.2947740535694753E-018 + 36.899999999999991 1.5127706562628460E-018 + 36.959999999999994 1.7594314049965611E-018 + 37.019999999999996 2.0357235548494159E-018 + 37.079999999999998 2.3421083017060855E-018 + 37.140000000000001 2.6784370381796017E-018 + 37.200000000000003 3.0438377173652296E-018 + 37.259999999999991 3.4365902588225753E-018 + 37.319999999999993 3.8539888305031415E-018 + 37.379999999999995 4.2921844808028311E-018 + 37.439999999999998 4.7460095188558680E-018 + 37.500000000000000 5.2087683628864555E-018 + 37.560000000000002 5.6719973066331114E-018 + 37.619999999999990 6.1251738443184236E-018 + 37.679999999999993 6.5553713747112674E-018 + 37.739999999999995 6.9468366005490019E-018 + 37.799999999999997 7.2804814240552263E-018 + 37.859999999999999 7.5332601739731708E-018 + 37.920000000000002 7.6774126991913889E-018 + 37.979999999999990 7.6795427992462445E-018 + 38.039999999999992 7.4994992910386212E-018 + 38.099999999999994 7.0890191420463311E-018 + 38.159999999999997 6.3900946612805367E-018 + 38.219999999999999 5.3330031941014569E-018 + 38.280000000000001 3.8339538713798061E-018 + 38.340000000000003 1.7922875327272309E-018 + 38.399999999999991 -9.1286492586884381E-019 + 38.459999999999994 -4.4265128718631732E-018 + 38.519999999999996 -8.9224627335538473E-018 + 38.579999999999998 -1.4608749462859142E-017 + 38.640000000000001 -2.1734038236523359E-017 + 38.700000000000003 -3.0594991463208755E-017 + 38.759999999999991 -4.1544902243504938E-017 + 38.819999999999993 -5.5003719903358982E-017 + 38.879999999999995 -7.1469436855022266E-017 + 38.939999999999998 -9.1531440736422220E-017 + 39.000000000000000 -1.1588576096337550E-016 + 39.060000000000002 -1.4535235617120688E-016 + 39.119999999999990 -1.8089519592850888E-016 + 39.179999999999993 -2.2364505120575747E-016 + 39.239999999999995 -2.7492546997365958E-016 + 39.299999999999997 -3.3628209263901640E-016 + 39.359999999999999 -4.0951669832801118E-016 + 39.420000000000002 -4.9672520192146387E-016 + 39.479999999999990 -6.0034078355982858E-016 + 39.539999999999992 -7.2318369144660571E-016 + 39.599999999999994 -8.6851592187058692E-016 + 39.659999999999997 -1.0401047142899179E-015 + 39.719999999999999 -1.2422931996331619E-015 + 39.780000000000001 -1.4800811415261011E-015 + 39.840000000000003 -1.7592146765172582E-015 + 39.899999999999991 -2.0862880907266215E-015 + 39.959999999999994 -2.4688582971631078E-015 + 40.019999999999996 -2.9155734547216780E-015 + 40.079999999999998 -3.4363156285166257E-015 + 40.140000000000001 -4.0423636594366451E-015 + 40.200000000000003 -4.7465709601726540E-015 + 40.259999999999991 -5.5635685358424798E-015 + 40.319999999999993 -6.5099885153714345E-015 + 40.379999999999995 -7.6047132351256102E-015 + 40.439999999999998 -8.8691501319294443E-015 + 40.500000000000000 -1.0327541846356809E-014 + 40.560000000000002 -1.2007304953299387E-014 + 40.619999999999990 -1.3939402764089302E-014 + 40.679999999999993 -1.6158757039683200E-014 + 40.739999999999995 -1.8704704346386527E-014 + 40.799999999999997 -2.1621491930458888E-014 + 40.859999999999999 -2.4958818494736679E-014 + 40.920000000000002 -2.8772418039274463E-014 + 40.979999999999990 -3.3124712755248993E-014 + 41.039999999999992 -3.8085488917174840E-014 + 41.099999999999994 -4.3732634900131679E-014 + 41.159999999999997 -5.0152943352814802E-014 + 41.219999999999999 -5.7442952773933730E-014 + 41.280000000000001 -6.5709813647284336E-014 + 41.340000000000003 -7.5072233388249732E-014 + 41.399999999999991 -8.5661416993194719E-014 + 41.459999999999994 -9.7622077438538711E-014 + 41.519999999999996 -1.1111337333596956E-013 + 41.579999999999998 -1.2631001491207689E-013 + 41.640000000000001 -1.4340306346542398E-013 + 41.700000000000003 -1.6260100137755135E-013 + 41.759999999999991 -1.8413042841630751E-013 + 41.819999999999993 -2.0823679883504702E-013 + 41.879999999999995 -2.3518485364724418E-013 + 41.939999999999998 -2.6525890468000201E-013 + 42.000000000000000 -2.9876280449549861E-013 + 42.060000000000002 -3.3601938957034368E-013 + 42.119999999999990 -3.7736941816497106E-013 + 42.179999999999993 -4.2316989307845697E-013 + 42.239999999999995 -4.7379154813516405E-013 + 42.299999999999997 -5.2961514458966137E-013 + 42.359999999999999 -5.9102698261681664E-013 + 42.420000000000002 -6.5841224994650691E-013 + 42.479999999999990 -7.3214688002439307E-013 + 42.539999999999992 -8.1258755089477887E-013 + 42.599999999999994 -9.0005850408223401E-013 + 42.659999999999997 -9.9483524406117653E-013 + 42.719999999999999 -1.0971252867752576E-012 + 42.780000000000001 -1.2070434270727533E-012 + 42.840000000000003 -1.3245829094401174E-012 + 42.899999999999991 -1.4495797258626965E-012 + 42.959999999999994 -1.5816700187540182E-012 + 43.019999999999996 -1.7202394316444896E-012 + 43.079999999999998 -1.8643620674578148E-012 + 43.140000000000001 -2.0127290172347013E-012 + 43.200000000000003 -2.1635623124889189E-012 + 43.259999999999991 -2.3145139528623897E-012 + 43.319999999999993 -2.4625475337689825E-012 + 43.379999999999995 -2.6037984200423901E-012 + 43.439999999999998 -2.7334108148888946E-012 + 43.500000000000000 -2.8453459856493582E-012 + 43.560000000000002 -2.9321591800561147E-012 + 43.619999999999990 -2.9847404138958131E-012 + 43.679999999999993 -2.9920118802547979E-012 + 43.739999999999995 -2.9405776087121419E-012 + 43.799999999999997 -2.8143166124619417E-012 + 43.859999999999999 -2.5939114601760266E-012 + 43.920000000000002 -2.2563094854707234E-012 + 43.979999999999990 -1.7740939061805473E-012 + 44.039999999999992 -1.1147606712952022E-012 + 44.099999999999994 -2.3988829653472860E-013 + 44.159999999999997 8.9581419376833398E-013 + 44.219999999999999 2.3456113952907741E-012 + 44.280000000000001 4.1719830427144964E-012 + 44.340000000000003 6.4480843558518563E-012 + 44.399999999999991 9.2593747462169637E-012 + 44.459999999999994 1.2705520009396866E-011 + 44.519999999999996 1.6902508712716731E-011 + 44.579999999999998 2.1985133302680813E-011 + 44.640000000000001 2.8109772861308548E-011 + 44.700000000000003 3.5457552798351011E-011 + 44.759999999999991 4.4237997001914246E-011 + 44.819999999999993 5.4693096814868686E-011 + 44.879999999999995 6.7101989993028009E-011 + 44.939999999999998 8.1786191835894509E-011 + 45.000000000000000 9.9115652480801329E-011 + 45.060000000000002 1.1951545367518227E-010 + 45.119999999999990 1.4347357515603873E-010 + 45.179999999999993 1.7154934069676372E-010 + 45.239999999999995 2.0438339568038446E-010 + 45.299999999999997 2.4270859997042659E-010 + 45.359999999999999 2.8736257065801659E-010 + 45.420000000000002 3.3930128017308503E-010 + 45.479999999999990 3.9961542597735985E-010 + 45.539999999999992 4.6954747171324552E-010 + 45.599999999999994 5.5051194600796163E-010 + 45.659999999999997 6.4411741520072345E-010 + 45.719999999999999 7.5219221829375256E-010 + 45.780000000000001 8.7681152015748386E-010 + 45.840000000000003 1.0203292251283132E-009 + 45.899999999999991 1.1854135785642998E-009 + 45.959999999999994 1.3750854869524392E-009 + 46.019999999999996 1.5927643260995808E-009 + 46.079999999999998 1.8423146898559074E-009 + 46.140000000000001 2.1281030770240881E-009 + 46.200000000000003 2.4550585768363963E-009 + 46.259999999999991 2.8287413599518537E-009 + 46.319999999999993 3.2554175862920050E-009 + 46.379999999999995 3.7421465750727105E-009 + 46.439999999999998 4.2968712833397171E-009 + 46.500000000000000 4.9285254457182591E-009 + 46.560000000000002 5.6471489732340008E-009 + 46.619999999999990 6.4640183411618168E-009 + 46.679999999999993 7.3917855312810636E-009 + 46.739999999999995 8.4446430604538226E-009 + 46.799999999999997 9.6384946530198856E-009 + 46.859999999999999 1.0991150312873679E-008 + 46.920000000000002 1.2522545640852928E-008 + 46.979999999999990 1.4254972799398397E-008 + 47.039999999999992 1.6213348399675897E-008 + 47.099999999999994 1.8425504449082780E-008 + 47.159999999999997 2.0922505472497443E-008 + 47.219999999999999 2.3738997742361225E-008 + 47.280000000000001 2.6913611851150964E-008 + 47.340000000000003 3.0489372641580105E-008 + 47.399999999999991 3.4514193639260390E-008 + 47.459999999999994 3.9041358771744894E-008 + 47.519999999999996 4.4130132153964326E-008 + 47.579999999999998 4.9846362503198105E-008 + 47.640000000000001 5.6263168848021209E-008 + 47.700000000000003 6.3461701657265793E-008 + 47.759999999999991 7.1531936968598548E-008 + 47.819999999999993 8.0573637133487837E-008 + 47.879999999999995 9.0697280641420363E-008 + 47.939999999999998 1.0202515894978812E-007 + 48.000000000000000 1.1469257022646348E-007 + 48.060000000000002 1.2884909436553764E-007 + 48.119999999999990 1.4466002630226470E-007 + 48.179999999999993 1.6230786367941106E-007 + 48.239999999999995 1.8199400512698091E-007 + 48.299999999999997 2.0394054444589995E-007 + 48.359999999999999 2.2839231390919108E-007 + 48.420000000000002 2.5561899861102080E-007 + 48.479999999999990 2.8591744420142793E-007 + 48.539999999999992 3.1961423883502076E-007 + 48.599999999999994 3.5706841392325863E-007 + 48.659999999999997 3.9867451981646664E-007 + 48.719999999999999 4.4486580975290041E-007 + 48.780000000000001 4.9611769626335030E-007 + 48.840000000000003 5.5295174467764320E-007 + 48.899999999999991 6.1593946560175805E-007 + 48.959999999999994 6.8570700021704683E-007 + 49.019999999999996 7.6293961225467247E-007 + 49.079999999999998 8.4838734533121163E-007 + 49.140000000000001 9.4286997489618525E-007 + 49.200000000000003 1.0472834177577512E-006 + 49.259999999999991 1.1626061971304884E-006 + 49.319999999999993 1.2899057936554266E-006 + 49.379999999999995 1.4303471035825405E-006 + 49.439999999999998 1.5851989046376938E-006 + 49.500000000000000 1.7558440518336380E-006 + 49.560000000000002 1.9437877634023107E-006 + 49.619999999999990 2.1506672329080915E-006 + 49.679999999999993 2.3782630800038248E-006 + 49.739999999999995 2.6285094064480821E-006 + 49.799999999999997 2.9035066986546330E-006 + 49.859999999999999 3.2055347268563829E-006 + 49.920000000000002 3.5370656945620913E-006 + 49.979999999999990 3.9007781529753029E-006 + 50.039999999999992 4.2995738105225329E-006 + 50.099999999999994 4.7365934068569726E-006 + 50.159999999999997 5.2152339691490502E-006 + 50.219999999999999 5.7391686967104548E-006 + 50.280000000000001 6.3123646206538162E-006 + 50.340000000000003 6.9391047662192713E-006 + 50.399999999999991 7.6240092975330712E-006 + 50.459999999999994 8.3720601235439478E-006 + 50.519999999999996 9.1886256824667772E-006 + 50.579999999999998 1.0079486369331113E-005 + 50.640000000000001 1.1050861908881793E-005 + 50.700000000000003 1.2109439886111996E-005 + 50.759999999999991 1.3262405053456978E-005 + 50.819999999999993 1.4517473956019019E-005 + 50.879999999999995 1.5882927452651995E-005 + 50.939999999999998 1.7367647810319278E-005 + 51.000000000000000 1.8981153358200271E-005 + 51.060000000000002 2.0733634049646065E-005 + 51.119999999999990 2.2635994916941583E-005 + 51.179999999999993 2.4699906046392222E-005 + 51.239999999999995 2.6937829069319544E-005 + 51.299999999999997 2.9363080497366554E-005 + 51.359999999999999 3.1989864679152587E-005 + 51.420000000000002 3.4833334858845625E-005 + 51.479999999999990 3.7909632641804475E-005 + 51.539999999999992 4.1235954106037572E-005 + 51.599999999999994 4.4830597605788798E-005 + 51.659999999999997 4.8713012805380982E-005 + 51.719999999999999 5.2903875379233610E-005 + 51.780000000000001 5.7425133623459560E-005 + 51.840000000000003 6.2300075860408528E-005 + 51.899999999999991 6.7553389992683677E-005 + 51.959999999999994 7.3211230281230866E-005 + 52.019999999999996 7.9301304038489011E-005 + 52.079999999999998 8.5852879360102168E-005 + 52.140000000000001 9.2896918919730049E-005 + 52.200000000000003 1.0046613247610186E-004 + 52.259999999999991 1.0859501684363834E-004 + 52.319999999999993 1.1731994578113248E-004 + 52.379999999999995 1.2667927875722351E-004 + 52.439999999999998 1.3671335451625026E-004 + 52.500000000000000 1.4746464107687413E-004 + 52.560000000000002 1.5897775870161722E-004 + 52.619999999999990 1.7129955358620682E-004 + 52.679999999999993 1.8447920306491298E-004 + 52.739999999999995 1.9856832120994985E-004 + 52.799999999999997 2.1362084038635716E-004 + 52.859999999999999 2.2969333422665671E-004 + 52.920000000000002 2.4684491244332388E-004 + 52.979999999999990 2.6513731954479609E-004 + 53.039999999999992 2.8463501425201346E-004 + 53.099999999999994 3.0540526280822800E-004 + 53.159999999999997 3.2751804976823880E-004 + 53.219999999999999 3.5104635243512946E-004 + 53.280000000000001 3.7606595431421302E-004 + 53.339999999999989 4.0265569410692312E-004 + 53.399999999999991 4.3089734602746110E-004 + 53.459999999999994 4.6087566232822717E-004 + 53.519999999999996 4.9267851785792655E-004 + 53.579999999999998 5.2639673960102338E-004 + 53.640000000000001 5.6212433217006316E-004 + 53.700000000000003 5.9995832366548953E-004 + 53.759999999999991 6.3999874175887407E-004 + 53.819999999999993 6.8234872124414388E-004 + 53.879999999999995 7.2711442307829338E-004 + 53.939999999999998 7.7440479002045153E-004 + 54.000000000000000 8.2433197295677914E-004 + 54.060000000000002 8.7701074407248419E-004 + 54.119999999999990 9.3255871278579122E-004 + 54.179999999999993 9.9109618990146837E-004 + 54.239999999999995 1.0527461700905237E-003 + 54.299999999999997 1.1176340296624335E-003 + 54.359999999999999 1.1858874160664485E-003 + 54.420000000000002 1.2576363133311040E-003 + 54.479999999999990 1.3330126621357743E-003 + 54.539999999999992 1.4121501705914026E-003 + 54.599999999999994 1.4951844697543631E-003 + 54.659999999999997 1.5822523732891150E-003 + 54.719999999999999 1.6734920034940325E-003 + 54.780000000000001 1.7690424719283009E-003 + 54.839999999999989 1.8690435741626162E-003 + 54.899999999999991 1.9736355849578648E-003 + 54.959999999999994 2.0829588641097458E-003 + 55.019999999999996 2.1971536758002117E-003 + 55.079999999999998 2.3163596365580129E-003 + 55.140000000000001 2.4407156048452030E-003 + 55.200000000000003 2.5703590337122317E-003 + 55.259999999999991 2.7054256482133060E-003 + 55.319999999999993 2.8460494815609715E-003 + 55.379999999999995 2.9923615505300402E-003 + 55.439999999999998 3.1444908211684577E-003 + 55.500000000000000 3.3025616302338715E-003 + 55.560000000000002 3.4666955102526102E-003 + 55.619999999999990 3.6370086297581872E-003 + 55.679999999999993 3.8136132131151011E-003 + 55.739999999999995 3.9966155099866235E-003 + 55.799999999999997 4.1861163430192937E-003 + 55.859999999999999 4.3822095735646929E-003 + 55.920000000000002 4.5849825486488976E-003 + 55.979999999999990 4.7945142524778630E-003 + 56.039999999999992 5.0108760230016614E-003 + 56.099999999999994 5.2341308868758037E-003 + 56.159999999999997 5.4643320417418284E-003 + 56.219999999999999 5.7015226790795718E-003 + 56.280000000000001 5.9457353924287810E-003 + 56.339999999999989 6.1969929352475991E-003 + 56.399999999999991 6.4553049295893077E-003 + 56.459999999999994 6.7206702440966654E-003 + 56.519999999999996 6.9930732338252003E-003 + 56.579999999999998 7.2724868551183632E-003 + 56.640000000000001 7.5588689656214776E-003 + 56.700000000000003 7.8521632481151852E-003 + 56.759999999999991 8.1522987014532224E-003 + 56.819999999999993 8.4591888002624998E-003 + 56.879999999999995 8.7727310229030967E-003 + 56.939999999999998 9.0928087268857261E-003 + 57.000000000000000 9.4192853246213570E-003 + 57.060000000000002 9.7520084527709366E-003 + 57.119999999999990 1.0090808800635193E-002 + 57.179999999999993 1.0435498797013847E-002 + 57.239999999999995 1.0785873019966146E-002 + 57.299999999999997 1.1141708459649801E-002 + 57.359999999999999 1.1502762962713705E-002 + 57.420000000000002 1.1868775640377431E-002 + 57.479999999999990 1.2239466741193823E-002 + 57.539999999999992 1.2614538282710343E-002 + 57.599999999999994 1.2993671969503432E-002 + 57.659999999999997 1.3376535237962030E-002 + 57.719999999999999 1.3762770439113815E-002 + 57.780000000000001 1.4152006164592463E-002 + 57.839999999999989 1.4543851841612344E-002 + 57.899999999999991 1.4937897047031468E-002 + 57.959999999999994 1.5333714497220175E-002 + 58.019999999999996 1.5730860908267478E-002 + 58.079999999999998 1.6128874318992143E-002 + 58.140000000000001 1.6527277637677123E-002 + 58.200000000000003 1.6925577720175534E-002 + 58.259999999999991 1.7323267397891549E-002 + 58.319999999999993 1.7719822619941435E-002 + 58.379999999999995 1.8114706509233698E-002 + 58.439999999999998 1.8507370583486431E-002 + 58.500000000000000 1.8897254232385734E-002 + 58.560000000000002 1.9283783625603269E-002 + 58.619999999999990 1.9666377174779839E-002 + 58.679999999999993 2.0044442951551944E-002 + 58.739999999999995 2.0417383409509906E-002 + 58.799999999999997 2.0784589173971135E-002 + 58.859999999999999 2.1145451759271992E-002 + 58.920000000000002 2.1499353011610524E-002 + 58.979999999999990 2.1845673347895379E-002 + 59.039999999999992 2.2183793990916075E-002 + 59.099999999999994 2.2513093246728025E-002 + 59.159999999999997 2.2832951371238960E-002 + 59.219999999999999 2.3142752604603793E-002 + 59.280000000000001 2.3441882124673720E-002 + 59.339999999999989 2.3729732398255200E-002 + 59.399999999999991 2.4005704398886822E-002 + 59.459999999999994 2.4269206096783028E-002 + 59.519999999999996 2.4519654273004333E-002 + 59.579999999999998 2.4756478211985775E-002 + 59.640000000000001 2.4979121861091198E-002 + 59.700000000000003 2.5187040590830465E-002 + 59.759999999999991 2.5379710682640996E-002 + 59.819999999999993 2.5556621825927061E-002 + 59.879999999999995 2.5717286585145487E-002 + 59.939999999999998 2.5861230831417746E-002 + 60.000000000000000 2.5988011491846326E-002 + 60.060000000000002 2.6097202629364082E-002 + 60.119999999999990 2.6188404814415270E-002 + 60.179999999999993 2.6261244216813470E-002 + 60.239999999999995 2.6315375162766424E-002 + 60.299999999999997 2.6350478965377028E-002 + 60.359999999999999 2.6366266674632457E-002 + 60.420000000000002 2.6362478444202565E-002 + 60.479999999999990 2.6338888727417891E-002 + 60.539999999999992 2.6295302699916034E-002 + 60.599999999999994 2.6231555742291086E-002 + 60.659999999999997 2.6147522428837094E-002 + 60.719999999999999 2.6043106977491206E-002 + 60.780000000000001 2.5918252143746070E-002 + 60.839999999999989 2.5772933585519717E-002 + 60.899999999999991 2.5607162216297490E-002 + 60.959999999999994 2.5420987952879056E-002 + 61.019999999999996 2.5214494851497609E-002 + 61.079999999999998 2.4987804067829571E-002 + 61.140000000000001 2.4741071366478639E-002 + 61.200000000000003 2.4474489580038117E-002 + 61.259999999999991 2.4188286519734061E-002 + 61.319999999999993 2.3882729168292115E-002 + 61.379999999999995 2.3558116558941265E-002 + 61.439999999999998 2.3214782420069531E-002 + 61.500000000000000 2.2853094116659721E-002 + 61.560000000000002 2.2473452596785425E-002 + 61.619999999999990 2.2076293725505170E-002 + 61.679999999999993 2.1662082376427756E-002 + 61.739999999999995 2.1231313129688345E-002 + 61.799999999999997 2.0784512546400440E-002 + 61.859999999999999 2.0322232520125924E-002 + 61.920000000000002 1.9845053197229498E-002 + 61.979999999999990 1.9353582202583978E-002 + 62.039999999999992 1.8848447997040569E-002 + 62.099999999999994 1.8330304772767963E-002 + 62.159999999999997 1.7799827377739573E-002 + 62.219999999999999 1.7257710728383908E-002 + 62.280000000000001 1.6704666955140061E-002 + 62.339999999999989 1.6141423819327039E-002 + 62.399999999999991 1.5568726175762189E-002 + 62.459999999999994 1.4987330980424389E-002 + 62.519999999999996 1.4398006265032792E-002 + 62.579999999999998 1.3801527336763521E-002 + 62.640000000000001 1.3198681242590417E-002 + 62.700000000000003 1.2590258841013734E-002 + 62.759999999999991 1.1977053710029320E-002 + 62.819999999999993 1.1359863061093418E-002 + 62.879999999999995 1.0739485196489429E-002 + 62.939999999999998 1.0116715907763777E-002 + 63.000000000000000 9.4923473828604221E-003 + 63.060000000000002 8.8671688537760064E-003 + 63.119999999999990 8.2419610942126020E-003 + 63.179999999999993 7.6174962869184140E-003 + 63.239999999999995 6.9945375983665103E-003 + 63.299999999999997 6.3738366035065693E-003 + 63.359999999999999 5.7561317471496194E-003 + 63.420000000000002 5.1421450271314359E-003 + 63.479999999999990 4.5325845136272979E-003 + 63.539999999999992 3.9281404549273442E-003 + 63.599999999999994 3.3294835635869651E-003 + 63.659999999999997 2.7372648976840665E-003 + 63.719999999999999 2.1521143530927461E-003 + 63.780000000000001 1.5746393052665361E-003 + 63.839999999999989 1.0054244306562615E-003 + 63.899999999999991 4.4502969534068520E-004 + 63.959999999999994 -1.0600951411291544E-004 + 64.019999999999996 -6.4718393835167410E-004 + 64.079999999999998 -1.1780107685233306E-003 + 64.140000000000001 -1.6980344406639781E-003 + 64.200000000000003 -2.2068267847925537E-003 + 64.259999999999991 -2.7039869884283494E-003 + 64.319999999999993 -3.1891434449669051E-003 + 64.379999999999995 -3.6619527055585899E-003 + 64.439999999999998 -4.1221006772566788E-003 + 64.500000000000000 -4.5693006163836803E-003 + 64.560000000000002 -5.0032962854058699E-003 + 64.619999999999990 -5.4238601840400306E-003 + 64.679999999999993 -5.8307917336378988E-003 + 64.739999999999995 -6.2239194831343854E-003 + 64.799999999999997 -6.6031013642036240E-003 + 64.859999999999999 -6.9682206884775204E-003 + 64.920000000000002 -7.3191904449257921E-003 + 64.979999999999990 -7.6559494223970414E-003 + 65.039999999999992 -7.9784609025304598E-003 + 65.099999999999994 -8.2867166212237352E-003 + 65.159999999999997 -8.5807310663537500E-003 + 65.219999999999999 -8.8605437512534035E-003 + 65.280000000000001 -9.1262174470600459E-003 + 65.339999999999989 -9.3778378844135580E-003 + 65.399999999999991 -9.6155122211429040E-003 + 65.459999999999994 -9.8393684183288050E-003 + 65.519999999999996 -1.0049553449976769E-002 + 65.579999999999998 -1.0246235680852455E-002 + 65.640000000000001 -1.0429599178813202E-002 + 65.700000000000003 -1.0599847054991089E-002 + 65.759999999999991 -1.0757196231198442E-002 + 65.819999999999993 -1.0901880669823351E-002 + 65.879999999999995 -1.1034146591037830E-002 + 65.939999999999998 -1.1154254190646209E-002 + 66.000000000000000 -1.1262475413324561E-002 + 66.060000000000002 -1.1359093882866100E-002 + 66.119999999999990 -1.1444400666981056E-002 + 66.179999999999993 -1.1518699508442323E-002 + 66.239999999999995 -1.1582298808282470E-002 + 66.299999999999997 -1.1635514749075501E-002 + 66.359999999999999 -1.1678670420351986E-002 + 66.420000000000002 -1.1712093159095336E-002 + 66.479999999999990 -1.1736113620719895E-002 + 66.539999999999992 -1.1751067985402992E-002 + 66.599999999999994 -1.1757292854523781E-002 + 66.659999999999997 -1.1755127433560294E-002 + 66.719999999999999 -1.1744910529797826E-002 + 66.780000000000001 -1.1726981570540708E-002 + 66.839999999999989 -1.1701679371168169E-002 + 66.899999999999991 -1.1669340250030517E-002 + 66.959999999999994 -1.1630298934708209E-002 + 67.019999999999996 -1.1584887241004546E-002 + 67.079999999999998 -1.1533433288557287E-002 + 67.140000000000001 -1.1476261624683660E-002 + 67.199999999999989 -1.1413692071006228E-002 + 67.259999999999991 -1.1346038266350075E-002 + 67.319999999999993 -1.1273610209378717E-002 + 67.379999999999995 -1.1196709274180089E-002 + 67.439999999999998 -1.1115632416779205E-002 + 67.500000000000000 -1.1030670102616396E-002 + 67.560000000000002 -1.0942104009529106E-002 + 67.619999999999990 -1.0850209918306727E-002 + 67.679999999999993 -1.0755255964092054E-002 + 67.739999999999995 -1.0657502388395352E-002 + 67.799999999999997 -1.0557200929116091E-002 + 67.859999999999999 -1.0454594824546267E-002 + 67.920000000000002 -1.0349920825216278E-002 + 67.979999999999990 -1.0243405951334817E-002 + 68.039999999999992 -1.0135269670523073E-002 + 68.099999999999994 -1.0025721775543010E-002 + 68.159999999999997 -9.9149640636613297E-003 + 68.219999999999999 -9.8031908504921644E-003 + 68.280000000000001 -9.6905878821606922E-003 + 68.339999999999989 -9.5773305392841627E-003 + 68.399999999999991 -9.4635879586365892E-003 + 68.459999999999994 -9.3495206684076522E-003 + 68.519999999999996 -9.2352797998610583E-003 + 68.579999999999998 -9.1210106004428471E-003 + 68.640000000000001 -9.0068493287195316E-003 + 68.699999999999989 -8.8929241227927967E-003 + 68.759999999999991 -8.7793579482210327E-003 + 68.819999999999993 -8.6662635241506834E-003 + 68.879999999999995 -8.5537470261428574E-003 + 68.939999999999998 -8.4419083906562345E-003 + 69.000000000000000 -8.3308412338457868E-003 + 69.060000000000002 -8.2206322549443194E-003 + 69.119999999999990 -8.1113618367831264E-003 + 69.179999999999993 -8.0031033261108771E-003 + 69.239999999999995 -7.8959244230323022E-003 + 69.299999999999997 -7.7898877862498158E-003 + 69.359999999999999 -7.6850500665151646E-003 + 69.420000000000002 -7.5814630164303554E-003 + 69.479999999999990 -7.4791732186094747E-003 + 69.539999999999992 -7.3782219938096621E-003 + 69.599999999999994 -7.2786474466284782E-003 + 69.659999999999997 -7.1804815637608399E-003 + 69.719999999999999 -7.0837524555167671E-003 + 69.780000000000001 -6.9884852397307700E-003 + 69.839999999999989 -6.8947009964321453E-003 + 69.899999999999991 -6.8024168159000814E-003 + 69.959999999999994 -6.7116477098504695E-003 + 70.019999999999996 -6.6224038169941414E-003 + 70.079999999999998 -6.5346933224468924E-003 + 70.140000000000001 -6.4485212193239128E-003 + 70.199999999999989 -6.3638908544469477E-003 + 70.259999999999991 -6.2808016885120633E-003 + 70.319999999999993 -6.1992518603122132E-003 + 70.379999999999995 -6.1192367617926256E-003 + 70.439999999999998 -6.0407505546727280E-003 + 70.500000000000000 -5.9637850157386110E-003 + 70.560000000000002 -5.8883302621141539E-003 + 70.619999999999990 -5.8143747190102044E-003 + 70.679999999999993 -5.7419059617763689E-003 + 70.739999999999995 -5.6709100603465224E-003 + 70.799999999999997 -5.6013715351484854E-003 + 70.859999999999999 -5.5332745518384113E-003 + 70.920000000000002 -5.4666020589867565E-003 + 70.979999999999990 -5.4013356612180692E-003 + 71.039999999999992 -5.3374575044637818E-003 + 71.099999999999994 -5.2749479404160093E-003 + 71.159999999999997 -5.2137869423665648E-003 + 71.219999999999999 -5.1539550353016383E-003 + 71.280000000000001 -5.0954309474081048E-003 + 71.339999999999989 -5.0381946230778395E-003 + 71.399999999999991 -4.9822238025331710E-003 + 71.459999999999994 -4.9274978388572852E-003 + 71.519999999999996 -4.8739953628769896E-003 + 71.579999999999998 -4.8216945296879997E-003 + 71.640000000000001 -4.7705734860581791E-003 + 71.699999999999989 -4.7206109019656290E-003 + 71.759999999999991 -4.6717850420517791E-003 + 71.819999999999993 -4.6240747874909064E-003 + 71.879999999999995 -4.5774579889696848E-003 + 71.939999999999998 -4.5319141427943672E-003 + 72.000000000000000 -4.4874216809375582E-003 + 72.060000000000002 -4.4439606798974728E-003 + 72.119999999999990 -4.4015095399142848E-003 + 72.179999999999993 -4.3600489066204385E-003 + 72.239999999999995 -4.3195586346339463E-003 + 72.299999999999997 -4.2800190980959770E-003 + 72.359999999999999 -4.2414110506574362E-003 + 72.420000000000002 -4.2037158684845597E-003 + 72.479999999999990 -4.1669147788914339E-003 + 72.539999999999992 -4.1309897141534827E-003 + 72.599999999999994 -4.0959232973204890E-003 + 72.659999999999997 -4.0616974805674924E-003 + 72.719999999999999 -4.0282955384474996E-003 + 72.780000000000001 -3.9957011405941057E-003 + 72.839999999999989 -3.9638975336303639E-003 + 72.899999999999991 -3.9328695374985182E-003 + 72.959999999999994 -3.9026012106096004E-003 + 73.019999999999996 -3.8730776435839890E-003 + 73.079999999999998 -3.8442837040873162E-003 + 73.140000000000001 -3.8162056690589441E-003 + 73.199999999999989 -3.7888290913355191E-003 + 73.259999999999991 -3.7621403910299517E-003 + 73.319999999999993 -3.7361263372734039E-003 + 73.379999999999995 -3.7107737563132842E-003 + 73.439999999999998 -3.6860698195497563E-003 + 73.500000000000000 -3.6620021238436269E-003 + 73.560000000000002 -3.6385583580283622E-003 + 73.619999999999990 -3.6157265334458063E-003 + 73.679999999999993 -3.5934950034856696E-003 + 73.739999999999995 -3.5718520140158288E-003 + 73.799999999999997 -3.5507859312368705E-003 + 73.859999999999999 -3.5302860918099187E-003 + 73.920000000000002 -3.5103412268390915E-003 + 73.979999999999990 -3.4909403931849279E-003 + 74.039999999999992 -3.4720728025881315E-003 + 74.099999999999994 -3.4537281036401543E-003 + 74.159999999999997 -3.4358956597360327E-003 + 74.219999999999999 -3.4185653094631072E-003 + 74.280000000000001 -3.4017268597649288E-003 + 74.339999999999989 -3.3853698307441766E-003 + 74.399999999999991 -3.3694841955756363E-003 + 74.459999999999994 -3.3540597482098478E-003 + 74.519999999999996 -3.3390866114574092E-003 + 74.579999999999998 -3.3245544050274412E-003 + 74.640000000000001 -3.3104529825363107E-003 + 74.699999999999989 -3.2967725417965815E-003 + 74.759999999999991 -3.2835022539050894E-003 + 74.819999999999993 -3.2706320562537351E-003 + 74.879999999999995 -3.2581514985367079E-003 + 74.939999999999998 -3.2460501022682775E-003 + 75.000000000000000 -3.2343172890405285E-003 + 75.060000000000002 -3.2229424015159467E-003 + 75.119999999999990 -3.2119148422158268E-003 + 75.179999999999993 -3.2012237630473371E-003 + 75.239999999999995 -3.1908581210602842E-003 + 75.299999999999997 -3.1808071302583890E-003 + 75.359999999999999 -3.1710601748277866E-003 + 75.420000000000002 -3.1616059450103916E-003 + 75.479999999999990 -3.1524334367066214E-003 + 75.539999999999992 -3.1435316165599192E-003 + 75.599999999999994 -3.1348892563449419E-003 + 75.659999999999997 -3.1264949166025522E-003 + 75.719999999999999 -3.1183376218786585E-003 + 75.780000000000001 -3.1104056764116972E-003 + 75.839999999999989 -3.1026876910067746E-003 + 75.899999999999991 -3.0951723678924615E-003 + 75.959999999999994 -3.0878480871509529E-003 + 76.019999999999996 -3.0807031244211172E-003 + 76.079999999999998 -3.0737263759047563E-003 + 76.140000000000001 -3.0669057995840738E-003 + 76.199999999999989 -3.0602301902996291E-003 + 76.259999999999991 -3.0536879820515141E-003 + 76.319999999999993 -3.0472677991108042E-003 + 76.379999999999995 -3.0409580663246080E-003 + 76.439999999999998 -3.0347477644667642E-003 + 76.500000000000000 -3.0286257645538084E-003 + 76.560000000000002 -3.0225807958590284E-003 + 76.619999999999990 -3.0166022563154343E-003 + 76.679999999999993 -3.0106793093978498E-003 + 76.739999999999995 -3.0048016423944888E-003 + 76.799999999999997 -2.9989583354325107E-003 + 76.859999999999999 -2.9931396738142875E-003 + 76.920000000000002 -2.9873355495627302E-003 + 76.979999999999990 -2.9815359893453262E-003 + 77.039999999999992 -2.9757313103322622E-003 + 77.099999999999994 -2.9699122523075545E-003 + 77.159999999999997 -2.9640695097982689E-003 + 77.219999999999999 -2.9581940700008766E-003 + 77.280000000000001 -2.9522774438268482E-003 + 77.339999999999989 -2.9463111652084503E-003 + 77.399999999999991 -2.9402869097609825E-003 + 77.459999999999994 -2.9341967613502320E-003 + 77.519999999999996 -2.9280335062825680E-003 + 77.579999999999998 -2.9217897008206443E-003 + 77.640000000000001 -2.9154584075483745E-003 + 77.699999999999989 -2.9090331139727203E-003 + 77.759999999999991 -2.9025076442984379E-003 + 77.819999999999993 -2.8958758101955005E-003 + 77.879999999999995 -2.8891321098979995E-003 + 77.939999999999998 -2.8822712159704139E-003 + 78.000000000000000 -2.8752879682515768E-003 + 78.060000000000002 -2.8681776616862418E-003 + 78.119999999999990 -2.8609356594880815E-003 + 78.179999999999993 -2.8535580120250762E-003 + 78.239999999999995 -2.8460404042470336E-003 + 78.299999999999997 -2.8383795271738508E-003 + 78.359999999999999 -2.8305719146479742E-003 + 78.420000000000002 -2.8226141192884435E-003 + 78.479999999999990 -2.8145035018426003E-003 + 78.539999999999992 -2.8062371340223892E-003 + 78.599999999999994 -2.7978128405108755E-003 + 78.659999999999997 -2.7892281526325246E-003 + 78.719999999999999 -2.7804812070534608E-003 + 78.780000000000001 -2.7715703305301754E-003 + 78.839999999999989 -2.7624937911452626E-003 + 78.899999999999991 -2.7532501605929552E-003 + 78.959999999999994 -2.7438383417475115E-003 + 79.019999999999996 -2.7342569538296568E-003 + 79.079999999999998 -2.7245049109385993E-003 + 79.140000000000001 -2.7145814625114907E-003 + 79.199999999999989 -2.7044857496073636E-003 + 79.259999999999991 -2.6942170868897732E-003 + 79.319999999999993 -2.6837745966415546E-003 + 79.379999999999995 -2.6731577311475325E-003 + 79.439999999999998 -2.6623659254720817E-003 + 79.500000000000000 -2.6513982340032193E-003 + 79.560000000000002 -2.6402541466442817E-003 + 79.619999999999990 -2.6289330856237038E-003 + 79.679999999999993 -2.6174346345690697E-003 + 79.739999999999995 -2.6057578226386952E-003 + 79.799999999999997 -2.5939018700165957E-003 + 79.859999999999999 -2.5818660994885402E-003 + 79.920000000000002 -2.5696496934764263E-003 + 79.979999999999990 -2.5572518131398467E-003 + 80.039999999999992 -2.5446711132606236E-003 + 80.099999999999994 -2.5319068385439639E-003 + 80.159999999999997 -2.5189573817086782E-003 + 80.219999999999999 -2.5058217164515228E-003 + 80.280000000000001 -2.4924980118163965E-003 + 80.340000000000003 -2.4789847327153494E-003 + 80.400000000000006 -2.4652800187587886E-003 + 80.460000000000008 -2.4513820278948945E-003 + 80.519999999999982 -2.4372885257263857E-003 + 80.579999999999984 -2.4229974340665718E-003 + 80.639999999999986 -2.4085064524906655E-003 + 80.699999999999989 -2.3938132476194109E-003 + 80.759999999999991 -2.3789152895685554E-003 + 80.819999999999993 -2.3638098678868294E-003 + 80.879999999999995 -2.3484943069738851E-003 + 80.939999999999998 -2.3329660955955299E-003 + 81.000000000000000 -2.3172222492234672E-003 + 81.060000000000002 -2.3012599564431672E-003 + 81.120000000000005 -2.2850760912018421E-003 + 81.180000000000007 -2.2686675150884344E-003 + 81.240000000000009 -2.2520312050598288E-003 + 81.299999999999983 -2.2351642026379195E-003 + 81.359999999999985 -2.2180632011382798E-003 + 81.419999999999987 -2.2007249723208565E-003 + 81.479999999999990 -2.1831466152365509E-003 + 81.539999999999992 -2.1653246760901610E-003 + 81.599999999999994 -2.1472562642323801E-003 + 81.659999999999997 -2.1289384988942895E-003 + 81.719999999999999 -2.1103685263302746E-003 + 81.780000000000001 -2.0915438229288301E-003 + 81.840000000000003 -2.0724619824128172E-003 + 81.900000000000006 -2.0531205913936136E-003 + 81.960000000000008 -2.0335179059612651E-003 + 82.019999999999982 -2.0136522225459776E-003 + 82.079999999999984 -1.9935221734145082E-003 + 82.139999999999986 -1.9731268454390143E-003 + 82.199999999999989 -1.9524656171590877E-003 + 82.259999999999991 -1.9315380753193096E-003 + 82.319999999999993 -1.9103441896729883E-003 + 82.379999999999995 -1.8888847445003853E-003 + 82.439999999999998 -1.8671605124049950E-003 + 82.500000000000000 -1.8451727820045266E-003 + 82.560000000000002 -1.8229234118564456E-003 + 82.620000000000005 -1.8004145630102228E-003 + 82.680000000000007 -1.7776491189291648E-003 + 82.740000000000009 -1.7546301865347209E-003 + 82.799999999999983 -1.7313615838926212E-003 + 82.859999999999985 -1.7078476153523875E-003 + 82.919999999999987 -1.6840932273481861E-003 + 82.979999999999990 -1.6601040723419154E-003 + 83.039999999999992 -1.6358861147752709E-003 + 83.099999999999994 -1.6114461330373605E-003 + 83.159999999999997 -1.5867915136342607E-003 + 83.219999999999999 -1.5619304347577136E-003 + 83.280000000000001 -1.5368715344183498E-003 + 83.340000000000003 -1.5116241065910260E-003 + 83.400000000000006 -1.4861982153973963E-003 + 83.460000000000008 -1.4606044643430179E-003 + 83.519999999999982 -1.4348540588935345E-003 + 83.579999999999984 -1.4089589553377686E-003 + 83.639999999999986 -1.3829316218683485E-003 + 83.699999999999989 -1.3567850988176616E-003 + 83.759999999999991 -1.3305331630160989E-003 + 83.819999999999993 -1.3041900464111997E-003 + 83.879999999999995 -1.2777706988265881E-003 + 83.939999999999998 -1.2512904047067106E-003 + 84.000000000000000 -1.2247651423576986E-003 + 84.060000000000002 -1.1982115955305698E-003 + 84.120000000000005 -1.1716466139587377E-003 + 84.180000000000007 -1.1450878221458123E-003 + 84.240000000000009 -1.1185532494918846E-003 + 84.299999999999983 -1.0920614077665411E-003 + 84.359999999999985 -1.0656312973722942E-003 + 84.419999999999987 -1.0392821523657141E-003 + 84.479999999999990 -1.0130336392288376E-003 + 84.539999999999992 -9.8690581903672055E-004 + 84.599999999999994 -9.6091912340283436E-004 + 84.659999999999997 -9.3509409104953339E-004 + 84.719999999999999 -9.0945162561968836E-004 + 84.780000000000001 -8.8401285813138604E-004 + 84.840000000000003 -8.5879895245714248E-004 + 84.900000000000006 -8.3383125498811086E-004 + 84.960000000000008 -8.0913126181212790E-004 + 85.019999999999982 -7.8472047524677209E-004 + 85.079999999999984 -7.6062056732576931E-004 + 85.139999999999986 -7.3685308346722888E-004 + 85.199999999999989 -7.1343953466420230E-004 + 85.259999999999991 -6.9040142971418480E-004 + 85.319999999999993 -6.6776008900019403E-004 + 85.379999999999995 -6.4553663531008172E-004 + 85.439999999999998 -6.2375212379006889E-004 + 85.500000000000000 -6.0242729548275881E-004 + 85.560000000000002 -5.8158252469127207E-004 + 85.620000000000005 -5.6123798111694530E-004 + 85.680000000000007 -5.4141325271261215E-004 + 85.740000000000009 -5.2212765385941805E-004 + 85.799999999999983 -5.0340004075586861E-004 + 85.859999999999985 -4.8524863261372581E-004 + 85.919999999999987 -4.6769120347974326E-004 + 85.979999999999990 -4.5074487626277696E-004 + 86.039999999999992 -4.3442623907925798E-004 + 86.099999999999994 -4.1875119385255302E-004 + 86.159999999999997 -4.0373498057845513E-004 + 86.219999999999999 -3.8939214190541701E-004 + 86.280000000000001 -3.7573651542715359E-004 + 86.340000000000003 -3.6278115076467717E-004 + 86.400000000000006 -3.5053832777376365E-004 + 86.460000000000008 -3.3901953211500584E-004 + 86.519999999999982 -3.2823535745062684E-004 + 86.579999999999984 -3.1819555056647128E-004 + 86.639999999999986 -3.0890892487728982E-004 + 86.699999999999989 -3.0038334445659371E-004 + 86.759999999999991 -2.9262568520571451E-004 + 86.819999999999993 -2.8564180913126833E-004 + 86.879999999999995 -2.7943657788622508E-004 + 86.939999999999998 -2.7401374862079917E-004 + 87.000000000000000 -2.6937603896424496E-004 + 87.060000000000002 -2.6552505306994077E-004 + 87.120000000000005 -2.6246129799011768E-004 + 87.180000000000007 -2.6018416773782862E-004 + 87.240000000000009 -2.5869194519059129E-004 + 87.299999999999983 -2.5798177157128539E-004 + 87.359999999999985 -2.5804967685983505E-004 + 87.419999999999987 -2.5889061982676328E-004 + 87.479999999999990 -2.6049834029942803E-004 + 87.539999999999992 -2.6286553687740970E-004 + 87.599999999999994 -2.6598372523003896E-004 + 87.659999999999997 -2.6984332046498265E-004 + 87.719999999999999 -2.7443364601095180E-004 + 87.780000000000001 -2.7974287671408152E-004 + 87.840000000000003 -2.8575804121123321E-004 + 87.900000000000006 -2.9246508227974378E-004 + 87.960000000000008 -2.9984884580831495E-004 + 88.019999999999982 -3.0789307580175208E-004 + 88.079999999999984 -3.1658044476951777E-004 + 88.139999999999986 -3.2589254520706563E-004 + 88.199999999999989 -3.3581001174710337E-004 + 88.259999999999991 -3.4631239652328121E-004 + 88.319999999999993 -3.5737834712305165E-004 + 88.379999999999995 -3.6898556091229741E-004 + 88.439999999999998 -3.8111075807323530E-004 + 88.500000000000000 -3.9372992846413635E-004 + 88.560000000000002 -4.0681814094754506E-004 + 88.620000000000005 -4.2034971295743651E-004 + 88.680000000000007 -4.3429820636971576E-004 + 88.740000000000009 -4.4863647329391456E-004 + 88.799999999999983 -4.6333667509050537E-004 + 88.859999999999985 -4.7837038495253392E-004 + 88.919999999999987 -4.9370854691777456E-004 + 88.979999999999990 -5.0932150651481259E-004 + 89.039999999999992 -5.2517923978896252E-004 + 89.099999999999994 -5.4125110042144793E-004 + 89.159999999999997 -5.5750612294286198E-004 + 89.219999999999999 -5.7391299418923971E-004 + 89.280000000000001 -5.9044007098546872E-004 + 89.340000000000003 -6.0705545490626143E-004 + 89.400000000000006 -6.2372715517572549E-004 + 89.460000000000008 -6.4042296010140580E-004 + 89.519999999999982 -6.5711068578275841E-004 + 89.579999999999984 -6.7375811248517807E-004 + 89.639999999999986 -6.9033309441610938E-004 + 89.699999999999989 -7.0680363620814984E-004 + 89.759999999999991 -7.2313795184999672E-004 + 89.819999999999993 -7.3930454726628219E-004 + 89.879999999999995 -7.5527210832049111E-004 + 89.939999999999998 -7.7100978364200439E-004 + 90.000000000000000 -7.8648714558043702E-004 + 90.060000000000002 -8.0167418116355101E-004 + 90.120000000000005 -8.1654135598355150E-004 + 90.180000000000007 -8.3105967895501687E-004 + 90.240000000000009 -8.4520085197115720E-004 + 90.299999999999983 -8.5893723299177869E-004 + 90.359999999999985 -8.7224179197600816E-004 + 90.419999999999987 -8.8508831479574385E-004 + 90.479999999999990 -8.9745144684845327E-004 + 90.539999999999992 -9.0930655619157307E-004 + 90.599999999999994 -9.2063011707127452E-004 + 90.659999999999997 -9.3139951033096744E-004 + 90.719999999999999 -9.4159298911439119E-004 + 90.780000000000001 -9.5119001905397344E-004 + 90.840000000000003 -9.6017113381501105E-004 + 90.900000000000006 -9.6851790634217417E-004 + 90.960000000000008 -9.7621312383956574E-004 + 91.019999999999982 -9.8324078567899303E-004 + 91.079999999999984 -9.8958602438136323E-004 + 91.139999999999986 -9.9523530743118893E-004 + 91.199999999999989 -1.0001762123418752E-003 + 91.259999999999991 -1.0043976009268298E-003 + 91.319999999999993 -1.0078895559808034E-003 + 91.379999999999995 -1.0106436266236929E-003 + 91.439999999999998 -1.0126524909589087E-003 + 91.500000000000000 -1.0139100918296702E-003 + 91.560000000000002 -1.0144117060629273E-003 + 91.620000000000005 -1.0141540012725122E-003 + 91.680000000000007 -1.0131348281383666E-003 + 91.739999999999981 -1.0113534901320697E-003 + 91.799999999999983 -1.0088105496861353E-003 + 91.859999999999985 -1.0055078947551694E-003 + 91.919999999999987 -1.0014487058441325E-003 + 91.979999999999990 -9.9663746802076915E-004 + 92.039999999999992 -9.9107992018339342E-004 + 92.099999999999994 -9.8478309864770560E-004 + 92.159999999999997 -9.7775532385593303E-004 + 92.219999999999999 -9.7000590314277608E-004 + 92.280000000000001 -9.6154556340884080E-004 + 92.340000000000003 -9.5238603462643513E-004 + 92.400000000000006 -9.4254023222739266E-004 + 92.460000000000008 -9.3202215535694260E-004 + 92.519999999999982 -9.2084672172958507E-004 + 92.579999999999984 -9.0902992878095015E-004 + 92.639999999999986 -8.9658867494532622E-004 + 92.699999999999989 -8.8354079729658784E-004 + 92.759999999999991 -8.6990502027612607E-004 + 92.819999999999993 -8.5570099631752093E-004 + 92.879999999999995 -8.4094908172187874E-004 + 92.939999999999998 -8.2567040652736540E-004 + 93.000000000000000 -8.0988686207742573E-004 + 93.060000000000002 -7.9362097081125851E-004 + 93.120000000000005 -7.7689581758123871E-004 + 93.180000000000007 -7.5973517952672084E-004 + 93.239999999999981 -7.4216326708465366E-004 + 93.299999999999983 -7.2420467122542506E-004 + 93.359999999999985 -7.0588449631348114E-004 + 93.419999999999987 -6.8722804505735576E-004 + 93.479999999999990 -6.6826102857428537E-004 + 93.539999999999992 -6.4900930759527941E-004 + 93.599999999999994 -6.2949881298896893E-004 + 93.659999999999997 -6.0975573579427969E-004 + 93.719999999999999 -5.8980621017862386E-004 + 93.780000000000001 -5.6967636349130896E-004 + 93.840000000000003 -5.4939239920367728E-004 + 93.900000000000006 -5.2898029776834283E-004 + 93.960000000000008 -5.0846597224168250E-004 + 94.019999999999982 -4.8787515493684994E-004 + 94.079999999999984 -4.6723329792290060E-004 + 94.139999999999986 -4.4656565392058641E-004 + 94.199999999999989 -4.2589716065802720E-004 + 94.259999999999991 -4.0525233870857111E-004 + 94.319999999999993 -3.8465530626300467E-004 + 94.379999999999995 -3.6412973720774758E-004 + 94.439999999999998 -3.4369881625875831E-004 + 94.500000000000000 -3.2338512717607233E-004 + 94.560000000000002 -3.0321070593916085E-004 + 94.620000000000005 -2.8319695644301289E-004 + 94.680000000000007 -2.6336458062160671E-004 + 94.739999999999981 -2.4373361125146507E-004 + 94.799999999999983 -2.2432329995462143E-004 + 94.859999999999985 -2.0515216884515623E-004 + 94.919999999999987 -1.8623800992160266E-004 + 94.979999999999990 -1.6759775455763227E-004 + 95.039999999999992 -1.4924753349702556E-004 + 95.099999999999994 -1.3120266051352083E-004 + 95.159999999999997 -1.1347763139101267E-004 + 95.219999999999999 -9.6086082843471613E-005 + 95.280000000000001 -7.9040779714694749E-005 + 95.340000000000003 -6.2353659122672584E-005 + 95.400000000000006 -4.6035771623721396E-005 + 95.460000000000008 -3.0097301650275505E-005 + 95.519999999999982 -1.4547567246305386E-005 + 95.579999999999984 6.0498076885393779E-007 + 95.639999999999986 1.5352784057955965E-005 + 95.699999999999989 2.9689119831716578E-005 + 95.759999999999991 4.3608144180895867E-005 + 95.819999999999993 5.7104818475473663E-005 + 95.879999999999995 7.0174945448126875E-005 + 95.939999999999998 8.2815112950340608E-005 + 96.000000000000000 9.5022696188947392E-005 + 96.060000000000002 1.0679578901053957E-004 + 96.120000000000005 1.1813320494150707E-004 + 96.180000000000007 1.2903445919495429E-004 + 96.239999999999981 1.3949966890577735E-004 + 96.299999999999983 1.4952958993982667E-004 + 96.359999999999985 1.5912556630728365E-004 + 96.419999999999987 1.6828946077911957E-004 + 96.479999999999990 1.7702368245126789E-004 + 96.539999999999992 1.8533112362942026E-004 + 96.599999999999994 1.9321511955344871E-004 + 96.659999999999997 2.0067943583288936E-004 + 96.719999999999999 2.0772825015378491E-004 + 96.780000000000001 2.1436609880623965E-004 + 96.840000000000003 2.2059781379416205E-004 + 96.900000000000006 2.2642856680675827E-004 + 96.960000000000008 2.3186373726057511E-004 + 97.019999999999982 2.3690892450866713E-004 + 97.079999999999984 2.4156993088061060E-004 + 97.139999999999986 2.4585261979983203E-004 + 97.199999999999989 2.4976297186017198E-004 + 97.259999999999991 2.5330698963211867E-004 + 97.319999999999993 2.5649067870008209E-004 + 97.379999999999995 2.5931999253146168E-004 + 97.439999999999998 2.6180079457733922E-004 + 97.500000000000000 2.6393885894132396E-004 + 97.560000000000002 2.6573980408828676E-004 + 97.620000000000005 2.6720912390339869E-004 + 97.680000000000007 2.6835206433356579E-004 + 97.739999999999981 2.6917376348512949E-004 + 97.799999999999983 2.6967915141760804E-004 + 97.859999999999985 2.6987289142854073E-004 + 97.919999999999987 2.6975949563123842E-004 + 97.979999999999990 2.6934317098422186E-004 + 98.039999999999992 2.6862797046298961E-004 + 98.099999999999994 2.6761765901713182E-004 + 98.159999999999997 2.6631577900915594E-004 + 98.219999999999999 2.6472559539025782E-004 + 98.280000000000001 2.6285011310361921E-004 + 98.340000000000003 2.6069207390076851E-004 + 98.400000000000006 2.5825390205048526E-004 + 98.460000000000008 2.5553781334058733E-004 + 98.519999999999982 2.5254566958355284E-004 + 98.579999999999984 2.4927906238218501E-004 + 98.639999999999986 2.4573936201219705E-004 + 98.699999999999989 2.4192763854901322E-004 + 98.759999999999991 2.3784473354446545E-004 + 98.819999999999993 2.3349128150124693E-004 + 98.879999999999995 2.2886770635714690E-004 + 98.939999999999998 2.2397425506886300E-004 + 99.000000000000000 2.1881107340518676E-004 + 99.060000000000002 2.1337819478099051E-004 + 99.120000000000005 2.0767554073799501E-004 + 99.180000000000007 2.0170300863751200E-004 + 99.239999999999981 1.9546047621196946E-004 + 99.299999999999983 1.8894780397867041E-004 + 99.359999999999985 1.8216492001722187E-004 + 99.419999999999987 1.7511178366270868E-004 + 99.479999999999990 1.6778846275530739E-004 + 99.539999999999992 1.6019510201446750E-004 + 99.599999999999994 1.5233196524864638E-004 + 99.659999999999997 1.4419948563224993E-004 + 99.719999999999999 1.3579826942608709E-004 + 99.780000000000001 1.2712908790143542E-004 + 99.840000000000003 1.1819296360640755E-004 + 99.900000000000006 1.0899114033584997E-004 + 99.960000000000008 9.9525140032478146E-005 + 100.01999999999998 8.9796752878841212E-005 + 100.07999999999998 7.9808092211580391E-005 + 100.13999999999999 6.9561606578959337E-005 + 100.19999999999999 5.9060076729068209E-005 + 100.25999999999999 4.8306653050199171E-005 + 100.31999999999999 3.7304875417295790E-005 + 100.38000000000000 2.6058646351004203E-005 + 100.44000000000000 1.4572285872252454E-005 + 100.50000000000000 2.8504947793734796E-006 + 100.56000000000000 -9.1015916208905729E-006 + 100.62000000000000 -2.1278476760663536E-005 + 100.68000000000001 -3.3674218152662089E-005 + 100.73999999999998 -4.6282501640668784E-005 + 100.79999999999998 -5.9096596200286119E-005 + 100.85999999999999 -7.2109374524487510E-005 + 100.91999999999999 -8.5313322061492466E-005 + 100.97999999999999 -9.8700532603898200E-005 + 101.03999999999999 -1.1226273233001326E-004 + 101.09999999999999 -1.2599125767809321E-004 + 101.16000000000000 -1.3987711897741527E-004 + 101.22000000000000 -1.5391097199706925E-004 + 101.28000000000000 -1.6808315249578189E-004 + 101.34000000000000 -1.8238369171596949E-004 + 101.40000000000001 -1.9680238307595550E-004 + 101.46000000000001 -2.1132871850085836E-004 + 101.51999999999998 -2.2595202484312655E-004 + 101.57999999999998 -2.4066143526532886E-004 + 101.63999999999999 -2.5544592186764600E-004 + 101.69999999999999 -2.7029434787960270E-004 + 101.75999999999999 -2.8519547331487598E-004 + 101.81999999999999 -3.0013803255751943E-004 + 101.88000000000000 -3.1511067445512446E-004 + 101.94000000000000 -3.3010207830143676E-004 + 102.00000000000000 -3.4510091313335483E-004 + 102.06000000000000 -3.6009589812600976E-004 + 102.12000000000000 -3.7507575426443639E-004 + 102.18000000000001 -3.9002932801458778E-004 + 102.23999999999998 -4.0494552495611588E-004 + 102.29999999999998 -4.1981332215776092E-004 + 102.35999999999999 -4.3462184023318500E-004 + 102.41999999999999 -4.4936034491266445E-004 + 102.47999999999999 -4.6401824067214163E-004 + 102.53999999999999 -4.7858511243548883E-004 + 102.59999999999999 -4.9305078078160634E-004 + 102.66000000000000 -5.0740526115585654E-004 + 102.72000000000000 -5.2163885655492025E-004 + 102.78000000000000 -5.3574210689352861E-004 + 102.84000000000000 -5.4970582801433738E-004 + 102.90000000000001 -5.6352126008785608E-004 + 102.96000000000001 -5.7717991430473754E-004 + 103.01999999999998 -5.9067357811698430E-004 + 103.07999999999998 -6.0399442152313850E-004 + 103.13999999999999 -6.1713494869967576E-004 + 103.19999999999999 -6.3008800654295498E-004 + 103.25999999999999 -6.4284679933002283E-004 + 103.31999999999999 -6.5540481255676607E-004 + 103.38000000000000 -6.6775584668489279E-004 + 103.44000000000000 -6.7989402340492156E-004 + 103.50000000000000 -6.9181369308414563E-004 + 103.56000000000000 -7.0350947021415283E-004 + 103.62000000000000 -7.1497633882816071E-004 + 103.68000000000001 -7.2620945277580590E-004 + 103.73999999999998 -7.3720427302476413E-004 + 103.79999999999998 -7.4795648627170176E-004 + 103.85999999999999 -7.5846201802972583E-004 + 103.91999999999999 -7.6871706495525876E-004 + 103.97999999999999 -7.7871795293401789E-004 + 104.03999999999999 -7.8846133150311084E-004 + 104.09999999999999 -7.9794413866410426E-004 + 104.16000000000000 -8.0716340978745924E-004 + 104.22000000000000 -8.1611641968882176E-004 + 104.28000000000000 -8.2480058803344528E-004 + 104.34000000000000 -8.3321361190749101E-004 + 104.40000000000001 -8.4135319906059015E-004 + 104.46000000000001 -8.4921724321789405E-004 + 104.51999999999998 -8.5680379645405424E-004 + 104.57999999999998 -8.6411087765495584E-004 + 104.63999999999999 -8.7113663479996986E-004 + 104.69999999999999 -8.7787932556026606E-004 + 104.75999999999999 -8.8433716670244722E-004 + 104.81999999999999 -8.9050844059467688E-004 + 104.88000000000000 -8.9639136775780984E-004 + 104.94000000000000 -9.0198437747693945E-004 + 105.00000000000000 -9.0728576463241953E-004 + 105.06000000000000 -9.1229391462492647E-004 + 105.12000000000000 -9.1700719876044382E-004 + 105.18000000000001 -9.2142404154995207E-004 + 105.23999999999998 -9.2554290426367296E-004 + 105.29999999999998 -9.2936229170773217E-004 + 105.35999999999999 -9.3288073884766423E-004 + 105.41999999999999 -9.3609668998409512E-004 + 105.47999999999999 -9.3900877975488346E-004 + 105.53999999999999 -9.4161556959805397E-004 + 105.59999999999999 -9.4391572987408351E-004 + 105.66000000000000 -9.4590795372375596E-004 + 105.72000000000000 -9.4759098845815040E-004 + 105.78000000000000 -9.4896350828879142E-004 + 105.84000000000000 -9.5002441382941827E-004 + 105.90000000000001 -9.5077264649937650E-004 + 105.96000000000001 -9.5120714975945140E-004 + 106.01999999999998 -9.5132710221710584E-004 + 106.07999999999998 -9.5113168856751109E-004 + 106.13999999999999 -9.5062029263301114E-004 + 106.19999999999999 -9.4979241432691834E-004 + 106.25999999999999 -9.4864778446783038E-004 + 106.31999999999999 -9.4718631933466823E-004 + 106.38000000000000 -9.4540811694637491E-004 + 106.44000000000000 -9.4331361256547045E-004 + 106.50000000000000 -9.4090338808870732E-004 + 106.56000000000000 -9.3817826548921136E-004 + 106.62000000000000 -9.3513946846525235E-004 + 106.68000000000001 -9.3178837909480689E-004 + 106.73999999999998 -9.2812680687852107E-004 + 106.79999999999998 -9.2415683725411541E-004 + 106.85999999999999 -9.1988082928037048E-004 + 106.91999999999999 -9.1530157287756384E-004 + 106.97999999999999 -9.1042226204499554E-004 + 107.03999999999999 -9.0524635150477230E-004 + 107.09999999999999 -8.9977788175957729E-004 + 107.16000000000000 -8.9402121251539596E-004 + 107.22000000000000 -8.8798119711226849E-004 + 107.28000000000000 -8.8166314547869699E-004 + 107.34000000000000 -8.7507280398172588E-004 + 107.40000000000001 -8.6821643769425280E-004 + 107.46000000000001 -8.6110087451627499E-004 + 107.51999999999998 -8.5373331709621221E-004 + 107.57999999999998 -8.4612160945043144E-004 + 107.63999999999999 -8.3827397421341312E-004 + 107.69999999999999 -8.3019930850763079E-004 + 107.75999999999999 -8.2190685431758625E-004 + 107.81999999999999 -8.1340645361998763E-004 + 107.88000000000000 -8.0470844112637079E-004 + 107.94000000000000 -7.9582362143266832E-004 + 108.00000000000000 -7.8676335182021034E-004 + 108.06000000000000 -7.7753951050969414E-004 + 108.12000000000000 -7.6816439234270130E-004 + 108.18000000000001 -7.5865086747685059E-004 + 108.23999999999998 -7.4901234066010133E-004 + 108.29999999999998 -7.3926259787107272E-004 + 108.35999999999999 -7.2941607084240181E-004 + 108.41999999999999 -7.1948760934801767E-004 + 108.47999999999999 -7.0949250276557531E-004 + 108.53999999999999 -6.9944663348894495E-004 + 108.59999999999999 -6.8936615165101614E-004 + 108.66000000000000 -6.7926781807558601E-004 + 108.72000000000000 -6.6916864327167696E-004 + 108.78000000000000 -6.5908598875624095E-004 + 108.84000000000000 -6.4903772782737409E-004 + 108.90000000000001 -6.3904187179748676E-004 + 108.96000000000001 -6.2911671479360851E-004 + 109.01999999999998 -6.1928091404034075E-004 + 109.07999999999998 -6.0955317703660801E-004 + 109.13999999999999 -5.9995255096615004E-004 + 109.19999999999999 -5.9049810271240624E-004 + 109.25999999999999 -5.8120910712740684E-004 + 109.31999999999999 -5.7210486431183742E-004 + 109.38000000000000 -5.6320488141288732E-004 + 109.44000000000000 -5.5452851425493485E-004 + 109.50000000000000 -5.4609534759534435E-004 + 109.56000000000000 -5.3792481259202834E-004 + 109.62000000000000 -5.3003630853419147E-004 + 109.68000000000001 -5.2244917055235937E-004 + 109.73999999999998 -5.1518255328211900E-004 + 109.79999999999998 -5.0825542095441194E-004 + 109.85999999999999 -5.0168656428991980E-004 + 109.91999999999999 -4.9549429256644055E-004 + 109.97999999999999 -4.8969671085537518E-004 + 110.03999999999999 -4.8431152955507483E-004 + 110.09999999999999 -4.7935594083957714E-004 + 110.16000000000000 -4.7484653827962933E-004 + 110.22000000000000 -4.7079952114327181E-004 + 110.28000000000000 -4.6723041683120818E-004 + 110.34000000000000 -4.6415397743386412E-004 + 110.40000000000001 -4.6158437156889758E-004 + 110.46000000000001 -4.5953499460582537E-004 + 110.51999999999998 -4.5801843050841194E-004 + 110.57999999999998 -4.5704641167564942E-004 + 110.63999999999999 -4.5662985746052127E-004 + 110.69999999999999 -4.5677869459132892E-004 + 110.75999999999999 -4.5750187173122239E-004 + 110.81999999999999 -4.5880744466414441E-004 + 110.88000000000000 -4.6070227058555332E-004 + 110.94000000000000 -4.6319222422733193E-004 + 111.00000000000000 -4.6628188322730052E-004 + 111.06000000000000 -4.6997469986218281E-004 + 111.12000000000000 -4.7427284084406227E-004 + 111.18000000000001 -4.7917711569055583E-004 + 111.23999999999998 -4.8468702447790888E-004 + 111.29999999999998 -4.9080066271534940E-004 + 111.35999999999999 -4.9751467563090876E-004 + 111.41999999999999 -5.0482423791305174E-004 + 111.47999999999999 -5.1272304568721506E-004 + 111.53999999999999 -5.2120326458263784E-004 + 111.59999999999999 -5.3025552398123013E-004 + 111.66000000000000 -5.3986894444176881E-004 + 111.72000000000000 -5.5003110645802261E-004 + 111.78000000000000 -5.6072797640260581E-004 + 111.84000000000000 -5.7194402965056533E-004 + 111.90000000000001 -5.8366222595163065E-004 + 111.96000000000001 -5.9586379613449402E-004 + 112.01999999999998 -6.0852865029749630E-004 + 112.07999999999998 -6.2163507493466952E-004 + 112.13999999999999 -6.3515987332946305E-004 + 112.19999999999999 -6.4907833936160217E-004 + 112.25999999999999 -6.6336426996332128E-004 + 112.31999999999999 -6.7799009297534873E-004 + 112.38000000000000 -6.9292670036497615E-004 + 112.44000000000000 -7.0814381622139706E-004 + 112.50000000000000 -7.2360968032671765E-004 + 112.56000000000000 -7.3929136768914497E-004 + 112.62000000000000 -7.5515464001437880E-004 + 112.68000000000001 -7.7116422655955212E-004 + 112.73999999999998 -7.8728363966005469E-004 + 112.79999999999998 -8.0347559117374483E-004 + 112.85999999999999 -8.1970169282546122E-004 + 112.91999999999999 -8.3592284510163083E-004 + 112.97999999999999 -8.5209913959434177E-004 + 113.03999999999999 -8.6819004753691963E-004 + 113.09999999999999 -8.8415447155079944E-004 + 113.16000000000000 -8.9995087245063415E-004 + 113.22000000000000 -9.1553729038258930E-004 + 113.28000000000000 -9.3087156662066922E-004 + 113.34000000000000 -9.4591140115737416E-004 + 113.40000000000001 -9.6061442090208298E-004 + 113.46000000000001 -9.7493835719927543E-004 + 113.51999999999998 -9.8884112054282384E-004 + 113.57999999999998 -1.0022808994689680E-003 + 113.63999999999999 -1.0152163251415615E-003 + 113.69999999999999 -1.0276066885827931E-003 + 113.75999999999999 -1.0394117995332040E-003 + 113.81999999999999 -1.0505923504296002E-003 + 113.88000000000000 -1.0611100397901047E-003 + 113.94000000000000 -1.0709274932122637E-003 + 114.00000000000000 -1.0800086012213931E-003 + 114.06000000000000 -1.0883184237355436E-003 + 114.12000000000000 -1.0958234807462413E-003 + 114.18000000000001 -1.1024917900877814E-003 + 114.23999999999998 -1.1082929486299965E-003 + 114.29999999999998 -1.1131980960295341E-003 + 114.35999999999999 -1.1171804098721401E-003 + 114.41999999999999 -1.1202148699364972E-003 + 114.47999999999999 -1.1222783426502988E-003 + 114.53999999999999 -1.1233496949678138E-003 + 114.59999999999999 -1.1234100697274283E-003 + 114.66000000000000 -1.1224426804317847E-003 + 114.72000000000000 -1.1204330421169355E-003 + 114.78000000000000 -1.1173691768585586E-003 + 114.84000000000000 -1.1132413433255963E-003 + 114.90000000000001 -1.1080422302438696E-003 + 114.96000000000001 -1.1017672554440507E-003 + 115.01999999999998 -1.0944141536075457E-003 + 115.07999999999998 -1.0859833693334794E-003 + 115.13999999999999 -1.0764778617961921E-003 + 115.19999999999999 -1.0659033013570535E-003 + 115.25999999999999 -1.0542678799601338E-003 + 115.31999999999999 -1.0415823377670772E-003 + 115.38000000000000 -1.0278600665613300E-003 + 115.44000000000000 -1.0131169330108018E-003 + 115.50000000000000 -9.9737124278660477E-004 + 115.56000000000000 -9.8064377661182109E-004 + 115.62000000000000 -9.6295766137016834E-004 + 115.68000000000001 -9.4433830936247842E-004 + 115.73999999999998 -9.2481339663682703E-004 + 115.79999999999998 -9.0441285181799976E-004 + 115.85999999999999 -8.8316855475909027E-004 + 115.91999999999999 -8.6111458525627189E-004 + 115.97999999999999 -8.3828677492578461E-004 + 116.03999999999999 -8.1472296736024132E-004 + 116.09999999999999 -7.9046266057256238E-004 + 116.16000000000000 -7.6554703719345003E-004 + 116.22000000000000 -7.4001879722127982E-004 + 116.28000000000000 -7.1392206342229246E-004 + 116.34000000000000 -6.8730228920580480E-004 + 116.40000000000001 -6.6020613786771983E-004 + 116.46000000000001 -6.3268121799260222E-004 + 116.51999999999998 -6.0477609138337863E-004 + 116.57999999999998 -5.7653999415837004E-004 + 116.63999999999999 -5.4802270703559436E-004 + 116.69999999999999 -5.1927459451543700E-004 + 116.75999999999999 -4.9034617920169212E-004 + 116.81999999999999 -4.6128819362606372E-004 + 116.88000000000000 -4.3215127726637618E-004 + 116.94000000000000 -4.0298590776435475E-004 + 117.00000000000000 -3.7384227774300827E-004 + 117.06000000000000 -3.4477015460791913E-004 + 117.12000000000000 -3.1581870335786332E-004 + 117.18000000000001 -2.8703638966085903E-004 + 117.23999999999998 -2.5847086589938676E-004 + 117.29999999999998 -2.3016881687941518E-004 + 117.35999999999999 -2.0217580966072312E-004 + 117.41999999999999 -1.7453633570459426E-004 + 117.47999999999999 -1.4729350079890961E-004 + 117.53999999999999 -1.2048905067203514E-004 + 117.59999999999999 -9.4163237349351788E-005 + 117.66000000000000 -6.8354642299600513E-005 + 117.72000000000000 -4.3100198556464094E-005 + 117.78000000000000 -1.8435005126353601E-005 + 117.84000000000000 5.6077028788164586E-006 + 117.90000000000001 2.8996624336988038E-005 + 117.96000000000001 5.1702515269529654E-005 + 118.01999999999998 7.3698227306928635E-005 + 118.07999999999998 9.4958707434963387E-005 + 118.13999999999999 1.1546114026930244E-004 + 118.19999999999999 1.3518489342340091E-004 + 118.25999999999999 1.5411158178487339E-004 + 118.31999999999999 1.7222507105585196E-004 + 118.38000000000000 1.8951153544122492E-004 + 118.44000000000000 2.0595940916403718E-004 + 118.50000000000000 2.2155934530766381E-004 + 118.56000000000000 2.3630432559922223E-004 + 118.62000000000000 2.5018954409515906E-004 + 118.68000000000001 2.6321241656312354E-004 + 118.73999999999998 2.7537253089403139E-004 + 118.79999999999998 2.8667163117107575E-004 + 118.85999999999999 2.9711360428387435E-004 + 118.91999999999999 3.0670435063123415E-004 + 118.97999999999999 3.1545181730326490E-004 + 119.03999999999999 3.2336591761646588E-004 + 119.09999999999999 3.3045839158665335E-004 + 119.16000000000000 3.3674282249532912E-004 + 119.22000000000000 3.4223452114364957E-004 + 119.28000000000000 3.4695041994202468E-004 + 119.34000000000000 3.5090909261806079E-004 + 119.40000000000001 3.5413056604497914E-004 + 119.46000000000001 3.5663623180335648E-004 + 119.51999999999998 3.5844885646482228E-004 + 119.57999999999998 3.5959232212851163E-004 + 119.63999999999999 3.6009169731447915E-004 + 119.69999999999999 3.5997303341103759E-004 + 119.75999999999999 3.5926332067941333E-004 + 119.81999999999999 3.5799042572897755E-004 + 119.88000000000000 3.5618288951489113E-004 + 119.94000000000000 3.5386996461783389E-004 + 120.00000000000000 3.5108141148885877E-004 + 120.06000000000000 3.4784746912099913E-004 + 120.12000000000000 3.4419870836270642E-004 + 120.18000000000001 3.4016597821593872E-004 + 120.23999999999998 3.3578026868897801E-004 + 120.29999999999998 3.3107265370496545E-004 + 120.35999999999999 3.2607411808427492E-004 + 120.41999999999999 3.2081554908825941E-004 + 120.47999999999999 3.1532764480202255E-004 + 120.53999999999999 3.0964075090975248E-004 + 120.59999999999999 3.0378484570137989E-004 + 120.66000000000000 2.9778946370819491E-004 + 120.72000000000000 2.9168356596485381E-004 + 120.78000000000000 2.8549556302314983E-004 + 120.84000000000000 2.7925317605504444E-004 + 120.90000000000001 2.7298343634250230E-004 + 120.95999999999998 2.6671261339585744E-004 + 121.01999999999998 2.6046611781727102E-004 + 121.07999999999998 2.5426858947617326E-004 + 121.13999999999999 2.4814369522569438E-004 + 121.19999999999999 2.4211425653269681E-004 + 121.25999999999999 2.3620205232664982E-004 + 121.31999999999999 2.3042786645678537E-004 + 121.38000000000000 2.2481145888260203E-004 + 121.44000000000000 2.1937146949245164E-004 + 121.50000000000000 2.1412544328150711E-004 + 121.56000000000000 2.0908974792690685E-004 + 121.62000000000000 2.0427961485412500E-004 + 121.68000000000001 1.9970902610303814E-004 + 121.73999999999998 1.9539075182205840E-004 + 121.79999999999998 1.9133634751248787E-004 + 121.85999999999999 1.8755611703490040E-004 + 121.91999999999999 1.8405911945866489E-004 + 121.97999999999999 1.8085319359883903E-004 + 122.03999999999999 1.7794493153179140E-004 + 122.09999999999999 1.7533971804857844E-004 + 122.16000000000000 1.7304173918141267E-004 + 122.22000000000000 1.7105402338699264E-004 + 122.28000000000000 1.6937845495452856E-004 + 122.34000000000000 1.6801577925074790E-004 + 122.40000000000001 1.6696564644225442E-004 + 122.45999999999998 1.6622662804848659E-004 + 122.51999999999998 1.6579624441169142E-004 + 122.57999999999998 1.6567100379912328E-004 + 122.63999999999999 1.6584638507357327E-004 + 122.69999999999999 1.6631690253192817E-004 + 122.75999999999999 1.6707611307501609E-004 + 122.81999999999999 1.6811663892215948E-004 + 122.88000000000000 1.6943021723566000E-004 + 122.94000000000000 1.7100769979421328E-004 + 123.00000000000000 1.7283912519810391E-004 + 123.06000000000000 1.7491370631523157E-004 + 123.12000000000000 1.7721991602586738E-004 + 123.18000000000001 1.7974553492092909E-004 + 123.23999999999998 1.8247764669045117E-004 + 123.29999999999998 1.8540275321688463E-004 + 123.35999999999999 1.8850675827292564E-004 + 123.41999999999999 1.9177509414605861E-004 + 123.47999999999999 1.9519271933173601E-004 + 123.53999999999999 1.9874416988691068E-004 + 123.59999999999999 2.0241363164605981E-004 + 123.66000000000000 2.0618499984120195E-004 + 123.72000000000000 2.1004190668431953E-004 + 123.78000000000000 2.1396772052507002E-004 + 123.84000000000000 2.1794573000616640E-004 + 123.90000000000001 2.2195902722637375E-004 + 123.95999999999998 2.2599066126529336E-004 + 124.01999999999998 2.3002362720324051E-004 + 124.07999999999998 2.3404097762398998E-004 + 124.13999999999999 2.3802574818063978E-004 + 124.19999999999999 2.4196112738605928E-004 + 124.25999999999999 2.4583040156443085E-004 + 124.31999999999999 2.4961707678076121E-004 + 124.38000000000000 2.5330485896365285E-004 + 124.44000000000000 2.5687781089304810E-004 + 124.50000000000000 2.6032018174413046E-004 + 124.56000000000000 2.6361669302731646E-004 + 124.62000000000000 2.6675242756568363E-004 + 124.68000000000001 2.6971288166208142E-004 + 124.73999999999998 2.7248406131874980E-004 + 124.79999999999998 2.7505245301458447E-004 + 124.85999999999999 2.7740514768610439E-004 + 124.91999999999999 2.7952974127290898E-004 + 124.97999999999999 2.8141450830665427E-004 + 125.03999999999999 2.8304833229419058E-004 + 125.09999999999999 2.8442070947742090E-004 + 125.16000000000000 2.8552190611960302E-004 + 125.22000000000000 2.8634281004425029E-004 + 125.28000000000000 2.8687512874258687E-004 + 125.34000000000000 2.8711125521398444E-004 + 125.40000000000001 2.8704437071796557E-004 + 125.45999999999998 2.8666845452224126E-004 + 125.51999999999998 2.8597828679481098E-004 + 125.57999999999998 2.8496940164735019E-004 + 125.63999999999999 2.8363821583469068E-004 + 125.69999999999999 2.8198192488194755E-004 + 125.75999999999999 2.7999851529558544E-004 + 125.81999999999999 2.7768684759769404E-004 + 125.88000000000000 2.7504655200970388E-004 + 125.94000000000000 2.7207807362284993E-004 + 126.00000000000000 2.6878267567273111E-004 + 126.06000000000000 2.6516235668492811E-004 + 126.12000000000000 2.6121995187754313E-004 + 126.18000000000001 2.5695901955207043E-004 + 126.23999999999998 2.5238390346142212E-004 + 126.29999999999998 2.4749970513091051E-004 + 126.35999999999999 2.4231222747314617E-004 + 126.41999999999999 2.3682800766111308E-004 + 126.47999999999999 2.3105429230700067E-004 + 126.53999999999999 2.2499902678458803E-004 + 126.59999999999999 2.1867082583272603E-004 + 126.66000000000000 2.1207896073538433E-004 + 126.72000000000000 2.0523335695821026E-004 + 126.78000000000000 1.9814451647351915E-004 + 126.84000000000000 1.9082354780225930E-004 + 126.90000000000001 1.8328213164161110E-004 + 126.95999999999998 1.7553246707231669E-004 + 127.01999999999998 1.6758722662424107E-004 + 127.07999999999998 1.5945957621917720E-004 + 127.13999999999999 1.5116310551818398E-004 + 127.19999999999999 1.4271179825797053E-004 + 127.25999999999999 1.3412001695726992E-004 + 127.31999999999999 1.2540244615458514E-004 + 127.38000000000000 1.1657409794333126E-004 + 127.44000000000000 1.0765023715612903E-004 + 127.50000000000000 9.8646402439577218E-005 + 127.56000000000000 8.9578345394926163E-005 + 127.62000000000000 8.0462039730661255E-005 + 127.68000000000001 7.1313634255397483E-005 + 127.73999999999998 6.2149432240816264E-005 + 127.79999999999998 5.2985876612783700E-005 + 127.85999999999999 4.3839518532738426E-005 + 127.91999999999999 3.4726996589548738E-005 + 127.97999999999999 2.5665009245052676E-005 + 128.03999999999999 1.6670279343295760E-005 + 128.09999999999999 7.7595304500985744E-006 + 128.16000000000000 -1.0505437004444027E-006 + 128.22000000000000 -9.7433132785344596E-006 + 128.28000000000000 -1.8302243344109208E-005 + 128.34000000000000 -2.6710919251753683E-005 + 128.40000000000001 -3.4953076950813061E-005 + 128.45999999999998 -4.3012642257350785E-005 + 128.51999999999998 -5.0873735147221241E-005 + 128.57999999999998 -5.8520698241730652E-005 + 128.63999999999999 -6.5938125953709557E-005 + 128.69999999999999 -7.3110863718372306E-005 + 128.75999999999999 -8.0024038288039993E-005 + 128.81999999999999 -8.6663072552786621E-005 + 128.88000000000000 -9.3013663714401837E-005 + 128.94000000000000 -9.9061847585001553E-005 + 129.00000000000000 -1.0479396741649214E-004 + 129.06000000000000 -1.1019670235444843E-004 + 129.12000000000000 -1.1525706351256398E-004 + 129.18000000000001 -1.1996242952511854E-004 + 129.23999999999998 -1.2430056443191997E-004 + 129.29999999999998 -1.2825961422853772E-004 + 129.35999999999999 -1.3182813669067290E-004 + 129.41999999999999 -1.3499511860207313E-004 + 129.47999999999999 -1.3774999330816001E-004 + 129.53999999999999 -1.4008265702770062E-004 + 129.59999999999999 -1.4198352061121997E-004 + 129.66000000000000 -1.4344346782457491E-004 + 129.72000000000000 -1.4445391809988651E-004 + 129.78000000000000 -1.4500681998682834E-004 + 129.84000000000000 -1.4509466290069494E-004 + 129.90000000000001 -1.4471050452597079E-004 + 129.95999999999998 -1.4384794548081981E-004 + 130.01999999999998 -1.4250115887759027E-004 + 130.07999999999998 -1.4066489249081029E-004 + 130.13999999999999 -1.3833443583274687E-004 + 130.19999999999999 -1.3550569519717219E-004 + 130.25999999999999 -1.3217511684384311E-004 + 130.31999999999999 -1.2833972295331358E-004 + 130.38000000000000 -1.2399713783650974E-004 + 130.44000000000000 -1.1914554264381378E-004 + 130.50000000000000 -1.1378371421661560E-004 + 130.56000000000000 -1.0791100349441220E-004 + 130.62000000000000 -1.0152737294906637E-004 + 130.68000000000001 -9.4633381535559196E-005 + 130.73999999999998 -8.7230196684111099E-005 + 130.79999999999998 -7.9319592479266675E-005 + 130.85999999999999 -7.0903965748019690E-005 + 130.91999999999999 -6.1986351298459763E-005 + 130.97999999999999 -5.2570389879141551E-005 + 131.03999999999999 -4.2660361052414069E-005 + 131.09999999999999 -3.2261181825203963E-005 + 131.16000000000000 -2.1378386579228194E-005 + 131.22000000000000 -1.0018138882320762E-005 + 131.28000000000000 1.8127758809493211E-006 + 131.34000000000000 1.4106972812816119E-005 + 131.40000000000001 2.6856454451597015E-005 + 131.45999999999998 4.0052623831314733E-005 + 131.51999999999998 5.3686326731621346E-005 + 131.57999999999998 6.7747817762887653E-005 + 131.63999999999999 8.2226817666846485E-005 + 131.69999999999999 9.7112497116071521E-005 + 131.75999999999999 1.1239349184274147E-004 + 131.81999999999999 1.2805795786811561E-004 + 131.88000000000000 1.4409351266886914E-004 + 131.94000000000000 1.6048730184004117E-004 + 132.00000000000000 1.7722602722059215E-004 + 132.06000000000000 1.9429588886355859E-004 + 132.12000000000000 2.1168267450403540E-004 + 132.18000000000001 2.2937174215074870E-004 + 132.23999999999998 2.4734797424028450E-004 + 132.29999999999998 2.6559588254001793E-004 + 132.35999999999999 2.8409955693431020E-004 + 132.41999999999999 3.0284272912434673E-004 + 132.47999999999999 3.2180872238248383E-004 + 132.53999999999999 3.4098047920282781E-004 + 132.59999999999999 3.6034065603676464E-004 + 132.66000000000000 3.7987152488297432E-004 + 132.72000000000000 3.9955504044633200E-004 + 132.78000000000000 4.1937293628229827E-004 + 132.84000000000000 4.3930660389082307E-004 + 132.90000000000001 4.5933728754203108E-004 + 132.95999999999998 4.7944592259276179E-004 + 133.01999999999998 4.9961336264681101E-004 + 133.07999999999998 5.1982031022163705E-004 + 133.13999999999999 5.4004732987454997E-004 + 133.19999999999999 5.6027485334918031E-004 + 133.25999999999999 5.8048339475201419E-004 + 133.31999999999999 6.0065335817141693E-004 + 133.38000000000000 6.2076517232173675E-004 + 133.44000000000000 6.4079934680685185E-004 + 133.50000000000000 6.6073641402601430E-004 + 133.56000000000000 6.8055698740913657E-004 + 133.62000000000000 7.0024182017568116E-004 + 133.68000000000001 7.1977178075487971E-004 + 133.73999999999998 7.3912778512707535E-004 + 133.79999999999998 7.5829104247940597E-004 + 133.85999999999999 7.7724275977316000E-004 + 133.91999999999999 7.9596441931738466E-004 + 133.97999999999999 8.1443769456629271E-004 + 134.03999999999999 8.3264443077106357E-004 + 134.09999999999999 8.5056676815406745E-004 + 134.16000000000000 8.6818692589106581E-004 + 134.22000000000000 8.8548753350033388E-004 + 134.28000000000000 9.0245156907046336E-004 + 134.34000000000000 9.1906219747390811E-004 + 134.40000000000001 9.3530293877611983E-004 + 134.45999999999998 9.5115778131784441E-004 + 134.51999999999998 9.6661111646731803E-004 + 134.57999999999998 9.8164754912280754E-004 + 134.63999999999999 9.9625249372762670E-004 + 134.69999999999999 1.0104115181704184E-003 + 134.75999999999999 1.0241108636010162E-003 + 134.81999999999999 1.0373371138193040E-003 + 134.88000000000000 1.0500773913364625E-003 + 134.94000000000000 1.0623195082018295E-003 + 135.00000000000000 1.0740515246679355E-003 + 135.06000000000000 1.0852622430505565E-003 + 135.12000000000000 1.0959407734045623E-003 + 135.18000000000001 1.1060768380221902E-003 + 135.23999999999998 1.1156605625398288E-003 + 135.29999999999998 1.1246827311995943E-003 + 135.35999999999999 1.1331344137481632E-003 + 135.41999999999999 1.1410071527036276E-003 + 135.47999999999999 1.1482931548391659E-003 + 135.53999999999999 1.1549850639293014E-003 + 135.59999999999999 1.1610758674686305E-003 + 135.66000000000000 1.1665592292401581E-003 + 135.72000000000000 1.1714291766253642E-003 + 135.78000000000000 1.1756804356848846E-003 + 135.84000000000000 1.1793079192403198E-003 + 135.90000000000001 1.1823073494981939E-003 + 135.95999999999998 1.1846748292097993E-003 + 136.01999999999998 1.1864070282046329E-003 + 136.07999999999998 1.1875011202757354E-003 + 136.13999999999999 1.1879548414939704E-003 + 136.19999999999999 1.1877662053941687E-003 + 136.25999999999999 1.1869339877677288E-003 + 136.31999999999999 1.1854571690907937E-003 + 136.38000000000000 1.1833354590510437E-003 + 136.44000000000000 1.1805686781285636E-003 + 136.50000000000000 1.1771573049512020E-003 + 136.56000000000000 1.1731020656850779E-003 + 136.62000000000000 1.1684041094999131E-003 + 136.68000000000001 1.1630649397678325E-003 + 136.73999999999998 1.1570863625125619E-003 + 136.79999999999998 1.1504706481078508E-003 + 136.85999999999999 1.1432202602833193E-003 + 136.91999999999999 1.1353380708960129E-003 + 136.97999999999999 1.1268270886918188E-003 + 137.03999999999999 1.1176907875783332E-003 + 137.09999999999999 1.1079329006364897E-003 + 137.16000000000000 1.0975573854351030E-003 + 137.22000000000000 1.0865685564136727E-003 + 137.28000000000000 1.0749709985402155E-003 + 137.34000000000000 1.0627697042999819E-003 + 137.40000000000001 1.0499698240394751E-003 + 137.45999999999998 1.0365766708433808E-003 + 137.51999999999998 1.0225961979256775E-003 + 137.57999999999998 1.0080344303104087E-003 + 137.63999999999999 9.9289775587505413E-004 + 137.69999999999999 9.7719262967567075E-004 + 137.75999999999999 9.6092603814504438E-004 + 137.81999999999999 9.4410502288373320E-004 + 137.88000000000000 9.2673704934438390E-004 + 137.94000000000000 9.0882973219363059E-004 + 138.00000000000000 8.9039090893085074E-004 + 138.06000000000000 8.7142863556913730E-004 + 138.12000000000000 8.5195128381281818E-004 + 138.18000000000001 8.3196744807874671E-004 + 138.23999999999998 8.1148587705206316E-004 + 138.29999999999998 7.9051557177101139E-004 + 138.35999999999999 7.6906571054473274E-004 + 138.41999999999999 7.4714573653199843E-004 + 138.47999999999999 7.2476540561471905E-004 + 138.53999999999999 7.0193450066503881E-004 + 138.59999999999999 6.7866320316420684E-004 + 138.66000000000000 6.5496185288802281E-004 + 138.72000000000000 6.3084103530970464E-004 + 138.78000000000000 6.0631169521381284E-004 + 138.84000000000000 5.8138489566974638E-004 + 138.90000000000001 5.5607209362936480E-004 + 138.95999999999998 5.3038496245902866E-004 + 139.01999999999998 5.0433543040520590E-004 + 139.07999999999998 4.7793582111974373E-004 + 139.13999999999999 4.5119857592334898E-004 + 139.19999999999999 4.2413658166639331E-004 + 139.25999999999999 3.9676287914968642E-004 + 139.31999999999999 3.6909088776415926E-004 + 139.38000000000000 3.4113424575563583E-004 + 139.44000000000000 3.1290690187991499E-004 + 139.50000000000000 2.8442300780406974E-004 + 139.56000000000000 2.5569701180913054E-004 + 139.62000000000000 2.2674362820051218E-004 + 139.68000000000001 1.9757775479916696E-004 + 139.73999999999998 1.6821457754349762E-004 + 139.79999999999998 1.3866948512950198E-004 + 139.85999999999999 1.0895810388380600E-004 + 139.91999999999999 7.9096283745003936E-005 + 139.97999999999999 4.9100090007836736E-005 + 140.03999999999999 1.8985790921179213E-005 + 140.09999999999999 -1.1230084017474028E-005 + 140.16000000000000 -4.1530851258557341E-005 + 140.22000000000000 -7.1899610676954734E-005 + 140.28000000000000 -1.0231927209977489E-004 + 140.34000000000000 -1.3277256857330966E-004 + 140.40000000000001 -1.6324207985815068E-004 + 140.45999999999998 -1.9371024050022996E-004 + 140.51999999999998 -2.2415935486399155E-004 + 140.57999999999998 -2.5457164911150151E-004 + 140.63999999999999 -2.8492924479841028E-004 + 140.69999999999999 -3.1521422105631802E-004 + 140.75999999999999 -3.4540865091552505E-004 + 140.81999999999999 -3.7549456361604975E-004 + 140.88000000000000 -4.0545406748690763E-004 + 140.94000000000000 -4.3526925759654713E-004 + 141.00000000000000 -4.6492231504843373E-004 + 141.06000000000000 -4.9439551707394292E-004 + 141.12000000000000 -5.2367118306943165E-004 + 141.18000000000001 -5.5273178633916857E-004 + 141.23999999999998 -5.8155997570803807E-004 + 141.29999999999998 -6.1013847913439674E-004 + 141.35999999999999 -6.3845013079175214E-004 + 141.41999999999999 -6.6647805749177921E-004 + 141.47999999999999 -6.9420544868267103E-004 + 141.53999999999999 -7.2161584066091479E-004 + 141.59999999999999 -7.4869277399501762E-004 + 141.66000000000000 -7.7542024420299656E-004 + 141.72000000000000 -8.0178244243758637E-004 + 141.78000000000000 -8.2776372829594181E-004 + 141.84000000000000 -8.5334892493555911E-004 + 141.90000000000001 -8.7852314242914560E-004 + 141.95999999999998 -9.0327175123937320E-004 + 142.01999999999998 -9.2758051241079208E-004 + 142.07999999999998 -9.5143563370129309E-004 + 142.13999999999999 -9.7482357007318851E-004 + 142.19999999999999 -9.9773132013780881E-004 + 142.25999999999999 -1.0201462255961808E-003 + 142.31999999999999 -1.0420560628847566E-003 + 142.38000000000000 -1.0634490558054813E-003 + 142.44000000000000 -1.0843135851121735E-003 + 142.50000000000000 -1.1046388055636362E-003 + 142.56000000000000 -1.1244140147449757E-003 + 142.62000000000000 -1.1436289801746260E-003 + 142.68000000000001 -1.1622739102956593E-003 + 142.73999999999998 -1.1803393928992237E-003 + 142.79999999999998 -1.1978164009098810E-003 + 142.85999999999999 -1.2146962588322858E-003 + 142.91999999999999 -1.2309705888226812E-003 + 142.97999999999999 -1.2466317540402261E-003 + 143.03999999999999 -1.2616721721945667E-003 + 143.09999999999999 -1.2760847248721701E-003 + 143.16000000000000 -1.2898627505878769E-003 + 143.22000000000000 -1.3029998669549770E-003 + 143.28000000000000 -1.3154901466471878E-003 + 143.34000000000000 -1.3273280393854524E-003 + 143.40000000000001 -1.3385081748102051E-003 + 143.45999999999998 -1.3490258787403134E-003 + 143.51999999999998 -1.3588764589548515E-003 + 143.57999999999998 -1.3680555750506162E-003 + 143.63999999999999 -1.3765594681171434E-003 + 143.69999999999999 -1.3843844092935674E-003 + 143.75999999999999 -1.3915270089448566E-003 + 143.81999999999999 -1.3979840934995910E-003 + 143.88000000000000 -1.4037526337958820E-003 + 143.94000000000000 -1.4088301374240841E-003 + 144.00000000000000 -1.4132138764253771E-003 + 144.06000000000000 -1.4169016386638214E-003 + 144.12000000000000 -1.4198912358199813E-003 + 144.18000000000001 -1.4221806680062416E-003 + 144.23999999999998 -1.4237680666706147E-003 + 144.29999999999998 -1.4246517670639437E-003 + 144.35999999999999 -1.4248303050381906E-003 + 144.41999999999999 -1.4243023876220143E-003 + 144.47999999999999 -1.4230666386295964E-003 + 144.53999999999999 -1.4211221392791073E-003 + 144.59999999999999 -1.4184678851534281E-003 + 144.66000000000000 -1.4151031908539811E-003 + 144.72000000000000 -1.4110274043325477E-003 + 144.78000000000000 -1.4062401335743178E-003 + 144.84000000000000 -1.4007412036732662E-003 + 144.90000000000001 -1.3945306782186359E-003 + 144.95999999999998 -1.3876085846740523E-003 + 145.01999999999998 -1.3799753590669731E-003 + 145.07999999999998 -1.3716316191672605E-003 + 145.13999999999999 -1.3625781836528140E-003 + 145.19999999999999 -1.3528161986685293E-003 + 145.25999999999999 -1.3423469280956996E-003 + 145.31999999999999 -1.3311720801815325E-003 + 145.38000000000000 -1.3192933587384754E-003 + 145.44000000000000 -1.3067130289967414E-003 + 145.50000000000000 -1.2934334988794114E-003 + 145.56000000000000 -1.2794575476144108E-003 + 145.62000000000000 -1.2647883317123290E-003 + 145.68000000000001 -1.2494291727554513E-003 + 145.73999999999998 -1.2333840668043599E-003 + 145.79999999999998 -1.2166570525620958E-003 + 145.85999999999999 -1.1992528030890187E-003 + 145.91999999999999 -1.1811764433606489E-003 + 145.97999999999999 -1.1624334844304877E-003 + 146.03999999999999 -1.1430299629237135E-003 + 146.09999999999999 -1.1229723880336381E-003 + 146.16000000000000 -1.1022680013185512E-003 + 146.22000000000000 -1.0809245411778693E-003 + 146.28000000000000 -1.0589504576533572E-003 + 146.34000000000000 -1.0363548880911889E-003 + 146.40000000000001 -1.0131475443381213E-003 + 146.45999999999998 -9.8933891985908775E-004 + 146.51999999999998 -9.6494027062931970E-004 + 146.57999999999998 -9.3996353882304991E-004 + 146.63999999999999 -9.1442140782638324E-004 + 146.69999999999999 -8.8832731392150463E-004 + 146.75999999999999 -8.6169541696484589E-004 + 146.81999999999999 -8.3454068154986639E-004 + 146.88000000000000 -8.0687870686503018E-004 + 146.94000000000000 -7.7872579267566097E-004 + 147.00000000000000 -7.5009904545044999E-004 + 147.06000000000000 -7.2101633076696980E-004 + 147.12000000000000 -6.9149599265635629E-004 + 147.18000000000001 -6.6155725094657245E-004 + 147.23999999999998 -6.3121998391877255E-004 + 147.29999999999998 -6.0050471780648902E-004 + 147.35999999999999 -5.6943266719276049E-004 + 147.41999999999999 -5.3802567605546424E-004 + 147.47999999999999 -5.0630635747609960E-004 + 147.53999999999999 -4.7429785710367052E-004 + 147.59999999999999 -4.4202399722853493E-004 + 147.66000000000000 -4.0950920412725553E-004 + 147.72000000000000 -3.7677849848280010E-004 + 147.78000000000000 -3.4385736939676875E-004 + 147.84000000000000 -3.1077189306581878E-004 + 147.90000000000001 -2.7754856364392371E-004 + 147.95999999999998 -2.4421424322605033E-004 + 148.01999999999998 -2.1079624876861136E-004 + 148.07999999999998 -1.7732210816525707E-004 + 148.13999999999999 -1.4381963438158660E-004 + 148.19999999999999 -1.1031681717777730E-004 + 148.25999999999999 -7.6841786811534618E-005 + 148.31999999999999 -4.3422730637993160E-005 + 148.38000000000000 -1.0087839612794350E-005 + 148.44000000000000 2.3134688140298073E-005 + 148.50000000000000 5.6216780268705358E-005 + 148.56000000000000 8.9130521030890222E-005 + 148.62000000000000 1.2184817702693649E-004 + 148.68000000000001 1.5434223655011898E-004 + 148.73999999999998 1.8658550370665225E-004 + 148.79999999999998 2.1855114334870185E-004 + 148.85999999999999 2.5021266211844106E-004 + 148.91999999999999 2.8154402484412573E-004 + 148.97999999999999 3.1251965392896445E-004 + 149.03999999999999 3.4311456669187696E-004 + 149.09999999999999 3.7330425627914621E-004 + 149.16000000000000 4.0306488944544743E-004 + 149.22000000000000 4.3237329732097784E-004 + 149.28000000000000 4.6120697021702562E-004 + 149.34000000000000 4.8954416424857423E-004 + 149.40000000000001 5.1736392279165642E-004 + 149.45999999999998 5.4464607634822253E-004 + 149.51999999999998 5.7137126328930051E-004 + 149.57999999999998 5.9752113327776507E-004 + 149.63999999999999 6.2307812575486073E-004 + 149.69999999999999 6.4802565482352244E-004 + 149.75999999999999 6.7234804341941045E-004 + 149.81999999999999 6.9603069834755919E-004 + 149.88000000000000 7.1906001214270448E-004 + 149.94000000000000 7.4142329060109739E-004 + 150.00000000000000 7.6310896288416929E-004 + 150.06000000000000 7.8410643817976354E-004 + 150.12000000000000 8.0440619541291862E-004 + 150.18000000000001 8.2399974705955610E-004 + 150.23999999999998 8.4287956360708596E-004 + 150.29999999999998 8.6103921935012039E-004 + 150.35999999999999 8.7847324535642274E-004 + 150.41999999999999 8.9517718741230717E-004 + 150.47999999999999 9.1114750746318807E-004 + 150.53999999999999 9.2638160214352698E-004 + 150.59999999999999 9.4087777984431023E-004 + 150.66000000000000 9.5463520384248012E-004 + 150.72000000000000 9.6765389179491522E-004 + 150.78000000000000 9.7993464938788549E-004 + 150.84000000000000 9.9147901999920300E-004 + 150.90000000000001 1.0022894187833101E-003 + 150.95999999999998 1.0123689351743451E-003 + 151.01999999999998 1.0217212192773350E-003 + 151.07999999999998 1.0303508045099066E-003 + 151.13999999999999 1.0382626893958662E-003 + 151.19999999999999 1.0454625808517927E-003 + 151.25999999999999 1.0519568017077622E-003 + 151.31999999999999 1.0577521695455656E-003 + 151.38000000000000 1.0628559812823847E-003 + 151.44000000000000 1.0672762336157880E-003 + 151.50000000000000 1.0710212017436618E-003 + 151.56000000000000 1.0740995608429123E-003 + 151.62000000000000 1.0765204681188448E-003 + 151.68000000000001 1.0782934756043614E-003 + 151.73999999999998 1.0794284091879339E-003 + 151.79999999999998 1.0799352512932353E-003 + 151.85999999999999 1.0798243052238556E-003 + 151.91999999999999 1.0791060937750297E-003 + 151.97999999999999 1.0777911701649622E-003 + 152.03999999999999 1.0758903264763585E-003 + 152.09999999999999 1.0734144199019469E-003 + 152.16000000000000 1.0703743448168652E-003 + 152.22000000000000 1.0667809262012485E-003 + 152.28000000000000 1.0626453159295031E-003 + 152.34000000000000 1.0579784129094980E-003 + 152.40000000000001 1.0527913129434584E-003 + 152.45999999999998 1.0470949767816572E-003 + 152.51999999999998 1.0409003262228582E-003 + 152.57999999999998 1.0342184625740719E-003 + 152.63999999999999 1.0270602893958564E-003 + 152.69999999999999 1.0194367015804546E-003 + 152.75999999999999 1.0113585966286271E-003 + 152.81999999999999 1.0028368465036424E-003 + 152.88000000000000 9.9388217855460770E-004 + 152.94000000000000 9.8450547986814142E-004 + 153.00000000000000 9.7471736288074298E-004 + 153.06000000000000 9.6452850995559412E-004 + 153.12000000000000 9.5394946176896784E-004 + 153.17999999999998 9.4299079724193642E-004 + 153.23999999999998 9.3166294399430491E-004 + 153.29999999999998 9.1997635953155479E-004 + 153.35999999999999 9.0794137655221302E-004 + 153.41999999999999 8.9556842441271755E-004 + 153.47999999999999 8.8286766393732565E-004 + 153.53999999999999 8.6984934332589789E-004 + 153.59999999999999 8.5652375413582441E-004 + 153.66000000000000 8.4290105836650072E-004 + 153.72000000000000 8.2899149935192445E-004 + 153.78000000000000 8.1480533199036406E-004 + 153.84000000000000 8.0035269493959073E-004 + 153.90000000000001 7.8564376230307010E-004 + 153.95999999999998 7.7068883598685716E-004 + 154.01999999999998 7.5549808848775245E-004 + 154.07999999999998 7.4008183182985160E-004 + 154.13999999999999 7.2445028058035123E-004 + 154.19999999999999 7.0861368127853389E-004 + 154.25999999999999 6.9258237783497117E-004 + 154.31999999999999 6.7636669295584502E-004 + 154.38000000000000 6.5997693205231082E-004 + 154.44000000000000 6.4342352629329763E-004 + 154.50000000000000 6.2671688778437773E-004 + 154.56000000000000 6.0986743043903874E-004 + 154.62000000000000 5.9288566051810812E-004 + 154.67999999999998 5.7578208434961664E-004 + 154.73999999999998 5.5856725135515841E-004 + 154.79999999999998 5.4125167682329410E-004 + 154.85999999999999 5.2384599112080348E-004 + 154.91999999999999 5.0636073706668500E-004 + 154.97999999999999 4.8880645187463401E-004 + 155.03999999999999 4.7119366116480841E-004 + 155.09999999999999 4.5353291576657919E-004 + 155.16000000000000 4.3583468239634198E-004 + 155.22000000000000 4.1810931317388716E-004 + 155.28000000000000 4.0036720853584858E-004 + 155.34000000000000 3.8261861555722958E-004 + 155.40000000000001 3.6487367217469794E-004 + 155.45999999999998 3.4714243697041872E-004 + 155.51999999999998 3.2943487479723934E-004 + 155.57999999999998 3.1176081295777966E-004 + 155.63999999999999 2.9412998026727226E-004 + 155.69999999999999 2.7655191006789305E-004 + 155.75999999999999 2.5903612905730117E-004 + 155.81999999999999 2.4159186796190101E-004 + 155.88000000000000 2.2422827360695524E-004 + 155.94000000000000 2.0695435436901029E-004 + 156.00000000000000 1.8977884587710280E-004 + 156.06000000000000 1.7271036439555365E-004 + 156.12000000000000 1.5575726617503906E-004 + 156.17999999999998 1.3892775247746310E-004 + 156.23999999999998 1.2222973664832463E-004 + 156.29999999999998 1.0567091628866491E-004 + 156.35999999999999 8.9258712593278484E-005 + 156.41999999999999 7.3000312366900804E-005 + 156.47999999999999 5.6902636010764499E-005 + 156.53999999999999 4.0972321493544853E-005 + 156.59999999999999 2.5215756405017297E-005 + 156.66000000000000 9.6390681905466410E-006 + 156.72000000000000 -5.7518850377655202E-006 + 156.78000000000000 -2.0951481755230468E-005 + 156.84000000000000 -3.5954362922119117E-005 + 156.90000000000001 -5.0755403989032885E-005 + 156.95999999999998 -6.5349714978721885E-005 + 157.01999999999998 -7.9732650124891721E-005 + 157.07999999999998 -9.3899776649903951E-005 + 157.13999999999999 -1.0784689633287855E-004 + 157.19999999999999 -1.2157001952206356E-004 + 157.25999999999999 -1.3506541348331356E-004 + 157.31999999999999 -1.4832951598483726E-004 + 157.38000000000000 -1.6135901017612291E-004 + 157.44000000000000 -1.7415077388814173E-004 + 157.50000000000000 -1.8670190127713192E-004 + 157.56000000000000 -1.9900964920807645E-004 + 157.62000000000000 -2.1107150228312358E-004 + 157.67999999999998 -2.2288509323147143E-004 + 157.73999999999998 -2.3444820543881158E-004 + 157.79999999999998 -2.4575879105277147E-004 + 157.85999999999999 -2.5681488861917533E-004 + 157.91999999999999 -2.6761470937793731E-004 + 157.97999999999999 -2.7815651153367425E-004 + 158.03999999999999 -2.8843865220870915E-004 + 158.09999999999999 -2.9845956844939926E-004 + 158.16000000000000 -3.0821778498342695E-004 + 158.22000000000000 -3.1771183771837571E-004 + 158.28000000000000 -3.2694036942693263E-004 + 158.34000000000000 -3.3590202935011924E-004 + 158.40000000000001 -3.4459553709779007E-004 + 158.45999999999998 -3.5301965305946224E-004 + 158.51999999999998 -3.6117319767433903E-004 + 158.57999999999998 -3.6905505572144219E-004 + 158.63999999999999 -3.7666410362636028E-004 + 158.69999999999999 -3.8399931710723169E-004 + 158.75999999999999 -3.9105973613803516E-004 + 158.81999999999999 -3.9784439658958632E-004 + 158.88000000000000 -4.0435243981424640E-004 + 158.94000000000000 -4.1058301908127747E-004 + 159.00000000000000 -4.1653537211820999E-004 + 159.06000000000000 -4.2220874016141516E-004 + 159.12000000000000 -4.2760240358031762E-004 + 159.17999999999998 -4.3271572826986278E-004 + 159.23999999999998 -4.3754812515676435E-004 + 159.29999999999998 -4.4209906346309242E-004 + 159.35999999999999 -4.4636812032759738E-004 + 159.41999999999999 -4.5035489381535363E-004 + 159.47999999999999 -4.5405912179102901E-004 + 159.53999999999999 -4.5748063289454002E-004 + 159.59999999999999 -4.6061937764220717E-004 + 159.66000000000000 -4.6347547182139020E-004 + 159.72000000000000 -4.6604914788794452E-004 + 159.78000000000000 -4.6834084141972288E-004 + 159.84000000000000 -4.7035114670051386E-004 + 159.90000000000001 -4.7208088993400273E-004 + 159.95999999999998 -4.7353105707982342E-004 + 160.01999999999998 -4.7470285954914510E-004 + 160.07999999999998 -4.7559785614215730E-004 + 160.13999999999999 -4.7621765724496057E-004 + 160.19999999999999 -4.7656429832542579E-004 + 160.25999999999999 -4.7664002067866317E-004 + 160.31999999999999 -4.7644737033584317E-004 + 160.38000000000000 -4.7598913063627064E-004 + 160.44000000000000 -4.7526842075342927E-004 + 160.50000000000000 -4.7428871698440437E-004 + 160.56000000000000 -4.7305379487248074E-004 + 160.62000000000000 -4.7156773130636496E-004 + 160.67999999999998 -4.6983498579107076E-004 + 160.73999999999998 -4.6786040842094432E-004 + 160.79999999999998 -4.6564910599091987E-004 + 160.85999999999999 -4.6320662153196486E-004 + 160.91999999999999 -4.6053886740484893E-004 + 160.97999999999999 -4.5765210084255595E-004 + 161.03999999999999 -4.5455290968829842E-004 + 161.09999999999999 -4.5124825981866285E-004 + 161.16000000000000 -4.4774547632499598E-004 + 161.22000000000000 -4.4405220578033446E-004 + 161.28000000000000 -4.4017645210855006E-004 + 161.34000000000000 -4.3612657270252278E-004 + 161.40000000000001 -4.3191120139694463E-004 + 161.45999999999998 -4.2753926627519005E-004 + 161.51999999999998 -4.2302010091793294E-004 + 161.57999999999998 -4.1836324398455163E-004 + 161.63999999999999 -4.1357852198572938E-004 + 161.69999999999999 -4.0867611376257490E-004 + 161.75999999999999 -4.0366640223576803E-004 + 161.81999999999999 -3.9856000730268038E-004 + 161.88000000000000 -3.9336780980538382E-004 + 161.94000000000000 -3.8810082872394347E-004 + 162.00000000000000 -3.8277029449547753E-004 + 162.06000000000000 -3.7738756426073853E-004 + 162.12000000000000 -3.7196417461756955E-004 + 162.17999999999998 -3.6651165571892499E-004 + 162.23999999999998 -3.6104162463834473E-004 + 162.29999999999998 -3.5556567442820752E-004 + 162.35999999999999 -3.5009543163727277E-004 + 162.41999999999999 -3.4464242223564086E-004 + 162.47999999999999 -3.3921807763955192E-004 + 162.53999999999999 -3.3383374799714200E-004 + 162.59999999999999 -3.2850062946060860E-004 + 162.66000000000000 -3.2322971423258282E-004 + 162.72000000000000 -3.1803183128816540E-004 + 162.78000000000000 -3.1291759962385438E-004 + 162.84000000000000 -3.0789735628009929E-004 + 162.90000000000001 -3.0298120053582278E-004 + 162.95999999999998 -2.9817891690813228E-004 + 163.01999999999998 -2.9350000719357612E-004 + 163.07999999999998 -2.8895361103638398E-004 + 163.13999999999999 -2.8454852043274901E-004 + 163.19999999999999 -2.8029308552727573E-004 + 163.25999999999999 -2.7619527771747626E-004 + 163.31999999999999 -2.7226258170027183E-004 + 163.38000000000000 -2.6850199420798919E-004 + 163.44000000000000 -2.6492003090790328E-004 + 163.50000000000000 -2.6152259094239894E-004 + 163.56000000000000 -2.5831506719010521E-004 + 163.62000000000000 -2.5530220397679423E-004 + 163.67999999999998 -2.5248819177836216E-004 + 163.73999999999998 -2.4987656220997839E-004 + 163.79999999999998 -2.4747022249572824E-004 + 163.85999999999999 -2.4527143490305799E-004 + 163.91999999999999 -2.4328187095968380E-004 + 163.97999999999999 -2.4150249761729334E-004 + 164.03999999999999 -2.3993369330957304E-004 + 164.09999999999999 -2.3857516404720473E-004 + 164.16000000000000 -2.3742603812564140E-004 + 164.22000000000000 -2.3648480969274338E-004 + 164.28000000000000 -2.3574934972226422E-004 + 164.34000000000000 -2.3521695441396358E-004 + 164.40000000000001 -2.3488428491270943E-004 + 164.45999999999998 -2.3474744731248257E-004 + 164.51999999999998 -2.3480195963876537E-004 + 164.57999999999998 -2.3504273915649711E-004 + 164.63999999999999 -2.3546415711077194E-004 + 164.69999999999999 -2.3606004648820932E-004 + 164.75999999999999 -2.3682368968875060E-004 + 164.81999999999999 -2.3774784710038340E-004 + 164.88000000000000 -2.3882480880483512E-004 + 164.94000000000000 -2.4004634963966317E-004 + 165.00000000000000 -2.4140377134033539E-004 + 165.06000000000000 -2.4288804085347758E-004 + 165.12000000000000 -2.4448965686126853E-004 + 165.17999999999998 -2.4619879381681674E-004 + 165.23999999999998 -2.4800527206459783E-004 + 165.29999999999998 -2.4989865791473216E-004 + 165.35999999999999 -2.5186826668107201E-004 + 165.41999999999999 -2.5390317669586013E-004 + 165.47999999999999 -2.5599232659412937E-004 + 165.53999999999999 -2.5812446632021138E-004 + 165.59999999999999 -2.6028829772684260E-004 + 165.66000000000000 -2.6247243497428492E-004 + 165.72000000000000 -2.6466550426708954E-004 + 165.78000000000000 -2.6685612304319585E-004 + 165.84000000000000 -2.6903295611092063E-004 + 165.90000000000001 -2.7118476381035280E-004 + 165.95999999999998 -2.7330044442982235E-004 + 166.01999999999998 -2.7536906081831151E-004 + 166.07999999999998 -2.7737984752278379E-004 + 166.13999999999999 -2.7932228308352286E-004 + 166.19999999999999 -2.8118613237004071E-004 + 166.25999999999999 -2.8296141946699150E-004 + 166.31999999999999 -2.8463850881726413E-004 + 166.38000000000000 -2.8620807880414846E-004 + 166.44000000000000 -2.8766120246769700E-004 + 166.50000000000000 -2.8898930770320473E-004 + 166.56000000000000 -2.9018428741570904E-004 + 166.62000000000000 -2.9123838322321621E-004 + 166.67999999999998 -2.9214438233215925E-004 + 166.73999999999998 -2.9289545670038459E-004 + 166.79999999999998 -2.9348536472964174E-004 + 166.85999999999999 -2.9390829592737202E-004 + 166.91999999999999 -2.9415899290895914E-004 + 166.97999999999999 -2.9423278904509235E-004 + 167.03999999999999 -2.9412555097185907E-004 + 167.09999999999999 -2.9383373061690814E-004 + 167.16000000000000 -2.9335441344858484E-004 + 167.22000000000000 -2.9268529024315253E-004 + 167.28000000000000 -2.9182466328109052E-004 + 167.34000000000000 -2.9077145327745149E-004 + 167.40000000000001 -2.8952525425601387E-004 + 167.45999999999998 -2.8808631189999125E-004 + 167.51999999999998 -2.8645538517436654E-004 + 167.57999999999998 -2.8463390068940263E-004 + 167.63999999999999 -2.8262382440169488E-004 + 167.69999999999999 -2.8042776498733002E-004 + 167.75999999999999 -2.7804879860060039E-004 + 167.81999999999999 -2.7549054802672500E-004 + 167.88000000000000 -2.7275715330345857E-004 + 167.94000000000000 -2.6985315662213211E-004 + 168.00000000000000 -2.6678361178693061E-004 + 168.06000000000000 -2.6355395479903571E-004 + 168.12000000000000 -2.6017004702617863E-004 + 168.17999999999998 -2.5663816739421172E-004 + 168.23999999999998 -2.5296491006919947E-004 + 168.29999999999998 -2.4915728645417197E-004 + 168.35999999999999 -2.4522263339068616E-004 + 168.41999999999999 -2.4116860643711062E-004 + 168.47999999999999 -2.3700319713680117E-004 + 168.53999999999999 -2.3273469133445270E-004 + 168.59999999999999 -2.2837161722097751E-004 + 168.66000000000000 -2.2392277026402776E-004 + 168.72000000000000 -2.1939716112061571E-004 + 168.78000000000000 -2.1480397170765828E-004 + 168.84000000000000 -2.1015252574814024E-004 + 168.90000000000001 -2.0545223921678758E-004 + 168.95999999999998 -2.0071260142634205E-004 + 169.01999999999998 -1.9594311626992676E-004 + 169.07999999999998 -1.9115324048767820E-004 + 169.13999999999999 -1.8635240185317463E-004 + 169.19999999999999 -1.8154989471290612E-004 + 169.25999999999999 -1.7675489482032740E-004 + 169.31999999999999 -1.7197639806697842E-004 + 169.38000000000000 -1.6722319174630179E-004 + 169.44000000000000 -1.6250385195116569E-004 + 169.50000000000000 -1.5782670923104151E-004 + 169.56000000000000 -1.5319980454562242E-004 + 169.62000000000000 -1.4863092992994427E-004 + 169.67999999999998 -1.4412755301858933E-004 + 169.73999999999998 -1.3969682928303701E-004 + 169.79999999999998 -1.3534561116288060E-004 + 169.85999999999999 -1.3108037571205077E-004 + 169.91999999999999 -1.2690726161743314E-004 + 169.97999999999999 -1.2283204715935728E-004 + 170.03999999999999 -1.1886010658084687E-004 + 170.09999999999999 -1.1499643990444545E-004 + 170.16000000000000 -1.1124562076381765E-004 + 170.22000000000000 -1.0761180464359340E-004 + 170.28000000000000 -1.0409870760007648E-004 + 170.34000000000000 -1.0070961587057362E-004 + 170.40000000000001 -9.7447341405259671E-005 + 170.45999999999998 -9.4314248154798866E-005 + 170.51999999999998 -9.1312231356195089E-005 + 170.57999999999998 -8.8442706374853159E-005 + 170.63999999999999 -8.5706610357998730E-005 + 170.69999999999999 -8.3104408212033467E-005 + 170.75999999999999 -8.0636084697646349E-005 + 170.81999999999999 -7.8301144946007502E-005 + 170.88000000000000 -7.6098639481588209E-005 + 170.94000000000000 -7.4027150813351609E-005 + 171.00000000000000 -7.2084791163245292E-005 + 171.06000000000000 -7.0269239424803281E-005 + 171.12000000000000 -6.8577727824771186E-005 + 171.17999999999998 -6.7007091674721719E-005 + 171.23999999999998 -6.5553749328164162E-005 + 171.29999999999998 -6.4213745984729870E-005 + 171.35999999999999 -6.2982762086785145E-005 + 171.41999999999999 -6.1856152322029934E-005 + 171.47999999999999 -6.0828958569977071E-005 + 171.53999999999999 -5.9895942638009826E-005 + 171.59999999999999 -5.9051605523527405E-005 + 171.66000000000000 -5.8290219753086671E-005 + 171.72000000000000 -5.7605861649635101E-005 + 171.78000000000000 -5.6992424559048202E-005 + 171.84000000000000 -5.6443634849257536E-005 + 171.90000000000001 -5.5953094952543100E-005 + 171.95999999999998 -5.5514272427994610E-005 + 172.01999999999998 -5.5120542912178309E-005 + 172.07999999999998 -5.4765187388658554E-005 + 172.13999999999999 -5.4441427234912327E-005 + 172.19999999999999 -5.4142413905423117E-005 + 172.25999999999999 -5.3861264378139733E-005 + 172.31999999999999 -5.3591078712134232E-005 + 172.38000000000000 -5.3324937966868163E-005 + 172.44000000000000 -5.3055957302088308E-005 + 172.50000000000000 -5.2777285683460435E-005 + 172.56000000000000 -5.2482132898758272E-005 + 172.62000000000000 -5.2163814629622251E-005 + 172.67999999999998 -5.1815764170211502E-005 + 172.73999999999998 -5.1431566453002332E-005 + 172.79999999999998 -5.1004982375720913E-005 + 172.85999999999999 -5.0529984963046641E-005 + 172.91999999999999 -5.0000787459906929E-005 + 172.97999999999999 -4.9411839424882304E-005 + 173.03999999999999 -4.8757877458290659E-005 + 173.09999999999999 -4.8033921112491991E-005 + 173.16000000000000 -4.7235295940261139E-005 + 173.22000000000000 -4.6357632608329168E-005 + 173.28000000000000 -4.5396883657604158E-005 + 173.34000000000000 -4.4349312889481568E-005 + 173.40000000000001 -4.3211505520852850E-005 + 173.45999999999998 -4.1980368025189399E-005 + 173.51999999999998 -4.0653126142506337E-005 + 173.57999999999998 -3.9227327256380038E-005 + 173.63999999999999 -3.7700844343437840E-005 + 173.69999999999999 -3.6071869949130610E-005 + 173.75999999999999 -3.4338927582345158E-005 + 173.81999999999999 -3.2500874373600695E-005 + 173.88000000000000 -3.0556902853913712E-005 + 173.94000000000000 -2.8506550387046534E-005 + 174.00000000000000 -2.6349694725239347E-005 + 174.06000000000000 -2.4086561888296480E-005 + 174.12000000000000 -2.1717734349977124E-005 + 174.17999999999998 -1.9244142923763991E-005 + 174.23999999999998 -1.6667060818512920E-005 + 174.29999999999998 -1.3988111894433229E-005 + 174.35999999999999 -1.1209248365219793E-005 + 174.41999999999999 -8.3327466026591595E-006 + 174.47999999999999 -5.3611994679027341E-006 + 174.53999999999999 -2.2975015565868885E-006 + 174.59999999999999 8.5517060712675814E-007 + 174.66000000000000 4.0933589138810337E-006 + 174.72000000000000 7.4133611543880033E-006 + 174.78000000000000 1.0811226132850904E-005 + 174.84000000000000 1.4282783349809613E-005 + 174.90000000000001 1.7823651780134562E-005 + 174.95999999999998 2.1429259694550973E-005 + 175.01999999999998 2.5094866606478927E-005 + 175.07999999999998 2.8815569403682022E-005 + 175.13999999999999 3.2586329748337830E-005 + 175.19999999999999 3.6401985943236998E-005 + 175.25999999999999 4.0257290480928026E-005 + 175.31999999999999 4.4146903330083133E-005 + 175.38000000000000 4.8065441760496803E-005 + 175.44000000000000 5.2007476656939395E-005 + 175.50000000000000 5.5967576900863738E-005 + 175.56000000000000 5.9940318505761857E-005 + 175.62000000000000 6.3920299547433703E-005 + 175.67999999999998 6.7902172581042530E-005 + 175.73999999999998 7.1880653567874336E-005 + 175.79999999999998 7.5850520867272247E-005 + 175.85999999999999 7.9806662034124571E-005 + 175.91999999999999 8.3744055199672283E-005 + 175.97999999999999 8.7657796450756018E-005 + 176.03999999999999 9.1543090547558317E-005 + 176.09999999999999 9.5395276568992945E-005 + 176.16000000000000 9.9209841750250196E-005 + 176.22000000000000 1.0298240113934822E-004 + 176.28000000000000 1.0670873547576304E-004 + 176.34000000000000 1.1038480180614754E-004 + 176.40000000000001 1.1400672225973549E-004 + 176.45999999999998 1.1757082625253441E-004 + 176.51999999999998 1.2107366107756987E-004 + 176.57999999999998 1.2451199881947412E-004 + 176.63999999999999 1.2788285970290406E-004 + 176.69999999999999 1.3118351972157127E-004 + 176.75999999999999 1.3441155614589461E-004 + 176.81999999999999 1.3756480030352214E-004 + 176.88000000000000 1.4064138444502556E-004 + 176.94000000000000 1.4363976306902714E-004 + 177.00000000000000 1.4655868796060344E-004 + 177.06000000000000 1.4939721290378762E-004 + 177.12000000000000 1.5215470303962223E-004 + 177.17999999999998 1.5483081269694089E-004 + 177.23999999999998 1.5742546188159958E-004 + 177.29999999999998 1.5993887141719566E-004 + 177.35999999999999 1.6237151274058745E-004 + 177.41999999999999 1.6472409919753508E-004 + 177.47999999999999 1.6699759959133443E-004 + 177.53999999999999 1.6919320275278149E-004 + 177.59999999999999 1.7131231565001723E-004 + 177.66000000000000 1.7335653970805171E-004 + 177.72000000000000 1.7532769716645274E-004 + 177.78000000000000 1.7722780372926540E-004 + 177.84000000000000 1.7905903794474638E-004 + 177.90000000000001 1.8082378199193555E-004 + 177.95999999999998 1.8252458840217707E-004 + 178.01999999999998 1.8416414214137539E-004 + 178.07999999999998 1.8574530220204368E-004 + 178.13999999999999 1.8727108004277157E-004 + 178.19999999999999 1.8874458140166343E-004 + 178.25999999999999 1.9016905078579827E-004 + 178.31999999999999 1.9154780786042705E-004 + 178.38000000000000 1.9288424296687461E-004 + 178.44000000000000 1.9418182905231050E-004 + 178.50000000000000 1.9544406162168922E-004 + 178.56000000000000 1.9667445064193250E-004 + 178.62000000000000 1.9787654242401625E-004 + 178.67999999999998 1.9905380286882173E-004 + 178.73999999999998 2.0020970871699158E-004 + 178.79999999999998 2.0134766849354713E-004 + 178.85999999999999 2.0247102610768876E-004 + 178.91999999999999 2.0358303830444278E-004 + 178.97999999999999 2.0468684106100061E-004 + 179.03999999999999 2.0578547196493555E-004 + 179.09999999999999 2.0688183124189258E-004 + 179.16000000000000 2.0797866606571996E-004 + 179.22000000000000 2.0907856100242252E-004 + 179.28000000000000 2.1018391345239089E-004 + 179.34000000000000 2.1129697614502219E-004 + 179.40000000000001 2.1241975904328974E-004 + 179.45999999999998 2.1355410642019278E-004 + 179.51999999999998 2.1470163740197382E-004 + 179.57999999999998 2.1586375617713355E-004 + 179.63999999999999 2.1704164053774498E-004 + 179.69999999999999 2.1823625628475873E-004 + 179.75999999999999 2.1944837336558356E-004 + 179.81999999999999 2.2067851129586318E-004 + 179.88000000000000 2.2192700262765983E-004 + 179.94000000000000 2.2319396200265712E-004 + 180.00000000000000 2.2447926061454400E-004 + 180.06000000000000 2.2578263918565132E-004 + 180.12000000000000 2.2710356501898327E-004 + 180.17999999999998 2.2844132940257891E-004 + 180.23999999999998 2.2979501844316383E-004 + 180.29999999999998 2.3116351426795149E-004 + 180.35999999999999 2.3254549505976230E-004 + 180.41999999999999 2.3393942086278064E-004 + 180.47999999999999 2.3534352061418178E-004 + 180.53999999999999 2.3675586717558737E-004 + 180.59999999999999 2.3817426771998565E-004 + 180.66000000000000 2.3959636780549072E-004 + 180.72000000000000 2.4101962005323722E-004 + 180.78000000000000 2.4244127716799467E-004 + 180.84000000000000 2.4385845853884850E-004 + 180.90000000000001 2.4526812335624550E-004 + 180.95999999999998 2.4666713368520863E-004 + 181.01999999999998 2.4805220114667171E-004 + 181.07999999999998 2.4942003070424354E-004 + 181.13999999999999 2.5076726080874216E-004 + 181.19999999999999 2.5209051348174286E-004 + 181.25999999999999 2.5338638530808343E-004 + 181.31999999999999 2.5465149841385012E-004 + 181.38000000000000 2.5588252408161890E-004 + 181.44000000000000 2.5707620667391969E-004 + 181.50000000000000 2.5822933989928765E-004 + 181.56000000000000 2.5933881223226454E-004 + 181.62000000000000 2.6040154609669825E-004 + 181.67999999999998 2.6141460103411789E-004 + 181.73999999999998 2.6237511795911185E-004 + 181.79999999999998 2.6328033301075229E-004 + 181.85999999999999 2.6412752439186854E-004 + 181.91999999999999 2.6491415163292572E-004 + 181.97999999999999 2.6563778478164889E-004 + 182.03999999999999 2.6629605646803252E-004 + 182.09999999999999 2.6688680934710114E-004 + 182.16000000000000 2.6740798800672341E-004 + 182.22000000000000 2.6785769086509146E-004 + 182.28000000000000 2.6823423528627008E-004 + 182.34000000000000 2.6853610642967501E-004 + 182.39999999999998 2.6876200029429348E-004 + 182.45999999999998 2.6891085020564262E-004 + 182.51999999999998 2.6898180666074071E-004 + 182.57999999999998 2.6897430863809788E-004 + 182.63999999999999 2.6888799905968127E-004 + 182.69999999999999 2.6872281016425751E-004 + 182.75999999999999 2.6847891091822556E-004 + 182.81999999999999 2.6815671639523065E-004 + 182.88000000000000 2.6775689969632993E-004 + 182.94000000000000 2.6728039863511987E-004 + 183.00000000000000 2.6672834073340388E-004 + 183.06000000000000 2.6610211162763367E-004 + 183.12000000000000 2.6540329421731484E-004 + 183.17999999999998 2.6463366683873339E-004 + 183.23999999999998 2.6379523806209368E-004 + 183.29999999999998 2.6289011798236048E-004 + 183.35999999999999 2.6192064509136597E-004 + 183.41999999999999 2.6088926705300199E-004 + 183.47999999999999 2.5979861851677805E-004 + 183.53999999999999 2.5865142349483023E-004 + 183.59999999999999 2.5745052959974372E-004 + 183.66000000000000 2.5619891670657351E-004 + 183.72000000000000 2.5489957274150998E-004 + 183.78000000000000 2.5355566401465596E-004 + 183.84000000000000 2.5217037641929192E-004 + 183.89999999999998 2.5074700145635051E-004 + 183.95999999999998 2.4928882332915547E-004 + 184.01999999999998 2.4779918164005970E-004 + 184.07999999999998 2.4628145409308171E-004 + 184.13999999999999 2.4473905484419061E-004 + 184.19999999999999 2.4317539508820395E-004 + 184.25999999999999 2.4159391098995002E-004 + 184.31999999999999 2.3999799889346332E-004 + 184.38000000000000 2.3839103949122156E-004 + 184.44000000000000 2.3677639589989212E-004 + 184.50000000000000 2.3515736335497084E-004 + 184.56000000000000 2.3353720758975764E-004 + 184.62000000000000 2.3191908589457010E-004 + 184.67999999999998 2.3030606957554520E-004 + 184.73999999999998 2.2870109106987071E-004 + 184.79999999999998 2.2710696543735571E-004 + 184.85999999999999 2.2552634138624014E-004 + 184.91999999999999 2.2396172040428240E-004 + 184.97999999999999 2.2241543686860252E-004 + 185.03999999999999 2.2088959360030459E-004 + 185.09999999999999 2.1938611600062362E-004 + 185.16000000000000 2.1790675089028525E-004 + 185.22000000000000 2.1645299169319122E-004 + 185.28000000000000 2.1502618308429002E-004 + 185.34000000000000 2.1362741848331385E-004 + 185.39999999999998 2.1225767164319574E-004 + 185.45999999999998 2.1091767844196436E-004 + 185.51999999999998 2.0960806047666186E-004 + 185.57999999999998 2.0832926057103523E-004 + 185.63999999999999 2.0708159246922089E-004 + 185.69999999999999 2.0586522572406884E-004 + 185.75999999999999 2.0468021282159108E-004 + 185.81999999999999 2.0352649372812164E-004 + 185.88000000000000 2.0240387082964058E-004 + 185.94000000000000 2.0131206394331780E-004 + 186.00000000000000 2.0025066766654696E-004 + 186.06000000000000 1.9921917896727179E-004 + 186.12000000000000 1.9821697451889527E-004 + 186.17999999999998 1.9724330706158763E-004 + 186.23999999999998 1.9629737348842829E-004 + 186.29999999999998 1.9537823016233560E-004 + 186.35999999999999 1.9448485448490883E-004 + 186.41999999999999 1.9361614279354719E-004 + 186.47999999999999 1.9277093568787981E-004 + 186.53999999999999 1.9194799807223893E-004 + 186.59999999999999 1.9114608054056123E-004 + 186.66000000000000 1.9036393646268440E-004 + 186.72000000000000 1.8960030449941592E-004 + 186.78000000000000 1.8885394035104017E-004 + 186.84000000000000 1.8812367517043462E-004 + 186.89999999999998 1.8740840526061431E-004 + 186.95999999999998 1.8670713637370352E-004 + 187.01999999999998 1.8601896288846686E-004 + 187.07999999999998 1.8534312050128357E-004 + 187.13999999999999 1.8467898785109495E-004 + 187.19999999999999 1.8402608438070471E-004 + 187.25999999999999 1.8338411235119245E-004 + 187.31999999999999 1.8275293488362787E-004 + 187.38000000000000 1.8213256584601820E-004 + 187.44000000000000 1.8152323572661212E-004 + 187.50000000000000 1.8092530749753977E-004 + 187.56000000000000 1.8033936581952740E-004 + 187.62000000000000 1.7976617418364959E-004 + 187.67999999999998 1.7920664483122090E-004 + 187.73999999999998 1.7866188762189676E-004 + 187.79999999999998 1.7813317146474493E-004 + 187.85999999999999 1.7762196397498587E-004 + 187.91999999999999 1.7712987770959754E-004 + 187.97999999999999 1.7665869220166575E-004 + 188.03999999999999 1.7621034436305754E-004 + 188.09999999999999 1.7578695180374250E-004 + 188.16000000000000 1.7539073662935825E-004 + 188.22000000000000 1.7502410365999972E-004 + 188.28000000000000 1.7468957542846961E-004 + 188.34000000000000 1.7438979236703028E-004 + 188.39999999999998 1.7412754214619479E-004 + 188.45999999999998 1.7390572154557651E-004 + 188.51999999999998 1.7372730485976014E-004 + 188.57999999999998 1.7359537926846434E-004 + 188.63999999999999 1.7351312242559581E-004 + 188.69999999999999 1.7348378083662170E-004 + 188.75999999999999 1.7351065152170465E-004 + 188.81999999999999 1.7359707615688603E-004 + 188.88000000000000 1.7374639374015345E-004 + 188.94000000000000 1.7396198643542497E-004 + 189.00000000000000 1.7424717140049751E-004 + 189.06000000000000 1.7460524641733143E-004 + 189.12000000000000 1.7503942801221108E-004 + 189.17999999999998 1.7555282045723266E-004 + 189.23999999999998 1.7614838029094413E-004 + 189.29999999999998 1.7682894941759651E-004 + 189.35999999999999 1.7759713235297159E-004 + 189.41999999999999 1.7845535055272701E-004 + 189.47999999999999 1.7940576476517994E-004 + 189.53999999999999 1.8045030040174346E-004 + 189.59999999999999 1.8159059673201916E-004 + 189.66000000000000 1.8282799037350298E-004 + 189.72000000000000 1.8416350889484233E-004 + 189.78000000000000 1.8559788726058441E-004 + 189.84000000000000 1.8713148631875195E-004 + 189.89999999999998 1.8876436104081214E-004 + 189.95999999999998 1.9049625125396020E-004 + 190.01999999999998 1.9232651147273067E-004 + 190.07999999999998 1.9425416207468358E-004 + 190.13999999999999 1.9627787238455134E-004 + 190.19999999999999 1.9839593952589396E-004 + 190.25999999999999 2.0060628813022143E-004 + 190.31999999999999 2.0290646859589325E-004 + 190.38000000000000 2.0529363671704844E-004 + 190.44000000000000 2.0776455648933325E-004 + 190.50000000000000 2.1031557413172180E-004 + 190.56000000000000 2.1294262978426503E-004 + 190.62000000000000 2.1564125111406843E-004 + 190.67999999999998 2.1840651151402464E-004 + 190.73999999999998 2.2123309168290811E-004 + 190.79999999999998 2.2411523432363557E-004 + 190.85999999999999 2.2704678428497595E-004 + 190.91999999999999 2.3002115848299353E-004 + 190.97999999999999 2.3303140454527242E-004 + 191.03999999999999 2.3607019775254143E-004 + 191.09999999999999 2.3912985604048847E-004 + 191.16000000000000 2.4220238556154432E-004 + 191.22000000000000 2.4527949081636129E-004 + 191.28000000000000 2.4835261314072788E-004 + 191.34000000000000 2.5141295396175471E-004 + 191.39999999999998 2.5445152329676323E-004 + 191.45999999999998 2.5745911875079476E-004 + 191.51999999999998 2.6042644751354859E-004 + 191.57999999999998 2.6334408480252448E-004 + 191.63999999999999 2.6620253036934479E-004 + 191.69999999999999 2.6899225484195149E-004 + 191.75999999999999 2.7170370188138416E-004 + 191.81999999999999 2.7432731148926487E-004 + 191.88000000000000 2.7685359336715215E-004 + 191.94000000000000 2.7927315853461471E-004 + 192.00000000000000 2.8157669604258535E-004 + 192.06000000000000 2.8375510785864081E-004 + 192.12000000000000 2.8579938369018622E-004 + 192.17999999999998 2.8770076975542937E-004 + 192.23999999999998 2.8945074697220004E-004 + 192.29999999999998 2.9104105625807233E-004 + 192.35999999999999 2.9246376225503803E-004 + 192.41999999999999 2.9371121840929607E-004 + 192.47999999999999 2.9477624064908596E-004 + 192.53999999999999 2.9565195018402843E-004 + 192.59999999999999 2.9633193275238438E-004 + 192.66000000000000 2.9681028498676964E-004 + 192.72000000000000 2.9708153259412032E-004 + 192.78000000000000 2.9714079570865082E-004 + 192.84000000000000 2.9698372057450210E-004 + 192.89999999999998 2.9660652449725085E-004 + 192.95999999999998 2.9600613279460140E-004 + 193.01999999999998 2.9518000634235885E-004 + 193.07999999999998 2.9412631972890218E-004 + 193.13999999999999 2.9284396041447065E-004 + 193.19999999999999 2.9133244181106120E-004 + 193.25999999999999 2.8959204426983484E-004 + 193.31999999999999 2.8762377925191818E-004 + 193.38000000000000 2.8542932952035200E-004 + 193.44000000000000 2.8301110438114447E-004 + 193.50000000000000 2.8037230212282673E-004 + 193.56000000000000 2.7751675340349926E-004 + 193.62000000000000 2.7444900394199296E-004 + 193.67999999999998 2.7117434253723344E-004 + 193.73999999999998 2.6769869918625736E-004 + 193.79999999999998 2.6402866408587280E-004 + 193.85999999999999 2.6017151562039199E-004 + 193.91999999999999 2.5613511545896081E-004 + 193.97999999999999 2.5192797947186883E-004 + 194.03999999999999 2.4755920322715945E-004 + 194.09999999999999 2.4303846223617712E-004 + 194.16000000000000 2.3837600877955187E-004 + 194.22000000000000 2.3358261129612540E-004 + 194.28000000000000 2.2866956993647749E-004 + 194.34000000000000 2.2364869690083878E-004 + 194.39999999999998 2.1853223045768247E-004 + 194.45999999999998 2.1333286503468968E-004 + 194.51999999999998 2.0806371914011300E-004 + 194.57999999999998 2.0273823238349829E-004 + 194.63999999999999 1.9737021191669767E-004 + 194.69999999999999 1.9197375841024326E-004 + 194.75999999999999 1.8656315460132634E-004 + 194.81999999999999 1.8115296815130822E-004 + 194.88000000000000 1.7575785715299056E-004 + 194.94000000000000 1.7039260740904958E-004 + 195.00000000000000 1.6507203761345382E-004 + 195.06000000000000 1.5981101174195324E-004 + 195.12000000000000 1.5462431704365399E-004 + 195.17999999999998 1.4952670874069339E-004 + 195.23999999999998 1.4453279729037066E-004 + 195.29999999999998 1.3965700675380545E-004 + 195.35999999999999 1.3491355813896458E-004 + 195.41999999999999 1.3031646920644684E-004 + 195.47999999999999 1.2587946953204784E-004 + 195.53999999999999 1.2161597534083947E-004 + 195.59999999999999 1.1753905670018918E-004 + 195.66000000000000 1.1366142681218234E-004 + 195.72000000000000 1.0999537723728261E-004 + 195.78000000000000 1.0655277962821230E-004 + 195.84000000000000 1.0334503147868308E-004 + 195.89999999999998 1.0038304165352108E-004 + 195.95999999999998 9.7677197599118851E-005 + 196.01999999999998 9.5237358589142466E-005 + 196.07999999999998 9.3072776518207922E-005 + 196.13999999999999 9.1192117963720555E-005 + 196.19999999999999 8.9603432497384263E-005 + 196.25999999999999 8.8314112691725995E-005 + 196.31999999999999 8.7330907744183971E-005 + 196.38000000000000 8.6659877550109617E-005 + 196.44000000000000 8.6306404519027904E-005 + 196.50000000000000 8.6275165568762039E-005 + 196.56000000000000 8.6570114672984656E-005 + 196.62000000000000 8.7194513826637548E-005 + 196.67999999999998 8.8150918842733089E-005 + 196.73999999999998 8.9441169024175908E-005 + 196.79999999999998 9.1066389750078266E-005 + 196.85999999999999 9.3027014292648637E-005 + 196.91999999999999 9.5322781320936640E-005 + 196.97999999999999 9.7952744818852725E-005 + 197.03999999999999 1.0091528766923014E-004 + 197.09999999999999 1.0420813884506284E-004 + 197.16000000000000 1.0782838445134511E-004 + 197.22000000000000 1.1177246645755205E-004 + 197.28000000000000 1.1603623205274860E-004 + 197.34000000000000 1.2061493514632131E-004 + 197.39999999999998 1.2550320672909766E-004 + 197.45999999999998 1.3069516761721832E-004 + 197.51999999999998 1.3618434773551879E-004 + 197.57999999999998 1.4196377089168452E-004 + 197.63999999999999 1.4802594901647574E-004 + 197.69999999999999 1.5436291020354392E-004 + 197.75999999999999 1.6096619674065428E-004 + 197.81999999999999 1.6782687385649681E-004 + 197.88000000000000 1.7493562957433077E-004 + 197.94000000000000 1.8228268845184290E-004 + 198.00000000000000 1.8985791693637197E-004 + 198.06000000000000 1.9765079087857341E-004 + 198.12000000000000 2.0565045079238103E-004 + 198.17999999999998 2.1384570648430744E-004 + 198.23999999999998 2.2222509109770099E-004 + 198.29999999999998 2.3077684582804937E-004 + 198.35999999999999 2.3948895593258124E-004 + 198.41999999999999 2.4834919299402785E-004 + 198.47999999999999 2.5734512073006947E-004 + 198.53999999999999 2.6646414882869091E-004 + 198.59999999999999 2.7569351307127191E-004 + 198.66000000000000 2.8502031430848563E-004 + 198.72000000000000 2.9443155274011952E-004 + 198.78000000000000 3.0391414152665402E-004 + 198.84000000000000 3.1345487332693904E-004 + 198.89999999999998 3.2304050811841992E-004 + 198.95999999999998 3.3265772974842362E-004 + 199.01999999999998 3.4229321148172701E-004 + 199.07999999999998 3.5193357417152789E-004 + 199.13999999999999 3.6156544639202550E-004 + 199.19999999999999 3.7117542432445769E-004 + 199.25999999999999 3.8075013991552286E-004 + 199.31999999999999 3.9027616134565385E-004 + 199.38000000000000 3.9974016430467945E-004 + 199.44000000000000 4.0912882752788848E-004 + 199.50000000000000 4.1842892948878134E-004 + 199.56000000000000 4.2762724294593830E-004 + 199.62000000000000 4.3671062707105267E-004 + 199.67999999999998 4.4566600425883048E-004 + 199.73999999999998 4.5448054650583933E-004 + 199.79999999999998 4.6314134624901191E-004 + 199.85999999999999 4.7163572929247302E-004 + 199.91999999999999 4.7995112574102778E-004 + 199.97999999999999 4.8807517250073470E-004 + 200.03999999999999 4.9599559363828105E-004 + 200.09999999999999 5.0370032571113910E-004 + 200.16000000000000 5.1117750410496375E-004 + 200.22000000000000 5.1841535505431997E-004 + 200.28000000000000 5.2540237603627298E-004 + 200.34000000000000 5.3212726138774584E-004 + 200.39999999999998 5.3857886826945553E-004 + 200.45999999999998 5.4474624775461200E-004 + 200.51999999999998 5.5061871213423440E-004 + 200.57999999999998 5.5618578835661279E-004 + 200.63999999999999 5.6143724315048393E-004 + 200.69999999999999 5.6636307481685417E-004 + 200.75999999999999 5.7095356986269113E-004 + 200.81999999999999 5.7519920748715049E-004 + 200.88000000000000 5.7909087974918430E-004 + 200.94000000000000 5.8261964315741257E-004 + 201.00000000000000 5.8577693398549483E-004 + 201.06000000000000 5.8855451140444020E-004 + 201.12000000000000 5.9094449096071754E-004 + 201.17999999999998 5.9293936390707484E-004 + 201.23999999999998 5.9453202477750106E-004 + 201.29999999999998 5.9571579308248621E-004 + 201.35999999999999 5.9648435543088892E-004 + 201.41999999999999 5.9683183935605236E-004 + 201.47999999999999 5.9675284331777855E-004 + 201.53999999999999 5.9624245863809113E-004 + 201.59999999999999 5.9529618373378528E-004 + 201.66000000000000 5.9391009843877949E-004 + 201.72000000000000 5.9208075708434089E-004 + 201.78000000000000 5.8980512106425052E-004 + 201.84000000000000 5.8708085840298294E-004 + 201.89999999999998 5.8390601633642400E-004 + 201.95999999999998 5.8027928840316523E-004 + 202.01999999999998 5.7619987729524438E-004 + 202.07999999999998 5.7166750013626258E-004 + 202.13999999999999 5.6668252088119722E-004 + 202.19999999999999 5.6124578258499435E-004 + 202.25999999999999 5.5535878387645804E-004 + 202.31999999999999 5.4902360110081619E-004 + 202.38000000000000 5.4224286334535990E-004 + 202.44000000000000 5.3501980201194977E-004 + 202.50000000000000 5.2735828970126061E-004 + 202.56000000000000 5.1926289128010391E-004 + 202.62000000000000 5.1073865501099613E-004 + 202.67999999999998 5.0179130913388583E-004 + 202.73999999999998 4.9242729301114392E-004 + 202.79999999999998 4.8265351752159371E-004 + 202.85999999999999 4.7247763692403045E-004 + 202.91999999999999 4.6190799561640362E-004 + 202.97999999999999 4.5095343141517196E-004 + 203.03999999999999 4.3962344197922491E-004 + 203.09999999999999 4.2792822118018891E-004 + 203.16000000000000 4.1587848348115014E-004 + 203.22000000000000 4.0348556612530877E-004 + 203.28000000000000 3.9076142100950498E-004 + 203.34000000000000 3.7771849064145946E-004 + 203.39999999999998 3.6436977534414449E-004 + 203.45999999999998 3.5072886453291403E-004 + 203.51999999999998 3.3680980096059617E-004 + 203.57999999999998 3.2262710555842466E-004 + 203.63999999999999 3.0819581311572675E-004 + 203.69999999999999 2.9353132535806761E-004 + 203.75999999999999 2.7864953927329394E-004 + 203.81999999999999 2.6356672930151714E-004 + 203.88000000000000 2.4829949940480430E-004 + 203.94000000000000 2.3286483992704266E-004 + 204.00000000000000 2.1728007390597485E-004 + 204.06000000000000 2.0156280924717905E-004 + 204.12000000000000 1.8573092839881328E-004 + 204.17999999999998 1.6980256351262286E-004 + 204.23999999999998 1.5379605517420065E-004 + 204.29999999999998 1.3772993119237723E-004 + 204.35999999999999 1.2162288095274357E-004 + 204.41999999999999 1.0549372221155911E-004 + 204.47999999999999 8.9361343620869349E-005 + 204.53999999999999 7.3244736290195458E-005 + 204.59999999999999 5.7162867687415901E-005 + 204.66000000000000 4.1134736682571861E-005 + 204.72000000000000 2.5179277420901034E-005 + 204.78000000000000 9.3153473919294705E-006 + 204.84000000000000 -6.4383216499903661E-006 + 204.89999999999998 -2.2063127377953124E-005 + 204.95999999999998 -3.7540668842530375E-005 + 205.01999999999998 -5.2852753955102318E-005 + 205.07999999999998 -6.7981483190658788E-005 + 205.13999999999999 -8.2909188709594462E-005 + 205.19999999999999 -9.7618576993351657E-005 + 205.25999999999999 -1.1209270537802248E-004 + 205.31999999999999 -1.2631500415494746E-004 + 205.38000000000000 -1.4026933542099024E-004 + 205.44000000000000 -1.5394004440050354E-004 + 205.50000000000000 -1.6731191871707077E-004 + 205.56000000000000 -1.8037028472134986E-004 + 205.62000000000000 -1.9310100126104308E-004 + 205.67999999999998 -2.0549049312906917E-004 + 205.73999999999998 -2.1752578568505341E-004 + 205.79999999999998 -2.2919447560923667E-004 + 205.85999999999999 -2.4048484071499207E-004 + 205.91999999999999 -2.5138580224165160E-004 + 205.97999999999999 -2.6188694402585675E-004 + 206.03999999999999 -2.7197852783992718E-004 + 206.09999999999999 -2.8165153567519876E-004 + 206.16000000000000 -2.9089771635079317E-004 + 206.22000000000000 -2.9970951917937511E-004 + 206.28000000000000 -3.0808015778271291E-004 + 206.34000000000000 -3.1600362560059610E-004 + 206.39999999999998 -3.2347466581731234E-004 + 206.45999999999998 -3.3048884654241102E-004 + 206.51999999999998 -3.3704251965959087E-004 + 206.57999999999998 -3.4313288905498692E-004 + 206.63999999999999 -3.4875786647237339E-004 + 206.69999999999999 -3.5391633401930334E-004 + 206.75999999999999 -3.5860785575428996E-004 + 206.81999999999999 -3.6283285084934486E-004 + 206.88000000000000 -3.6659258795716776E-004 + 206.94000000000000 -3.6988906767122429E-004 + 207.00000000000000 -3.7272513181951702E-004 + 207.06000000000000 -3.7510435558508082E-004 + 207.12000000000000 -3.7703110642679544E-004 + 207.17999999999998 -3.7851047793999458E-004 + 207.23999999999998 -3.7954831705690108E-004 + 207.29999999999998 -3.8015112300013933E-004 + 207.35999999999999 -3.8032613132538373E-004 + 207.41999999999999 -3.8008122786032902E-004 + 207.47999999999999 -3.7942488673212523E-004 + 207.53999999999999 -3.7836624619300130E-004 + 207.59999999999999 -3.7691501591200220E-004 + 207.66000000000000 -3.7508151069193333E-004 + 207.72000000000000 -3.7287652784522961E-004 + 207.78000000000000 -3.7031139872353771E-004 + 207.84000000000000 -3.6739796403749029E-004 + 207.89999999999998 -3.6414849524338098E-004 + 207.95999999999998 -3.6057570314540401E-004 + 208.01999999999998 -3.5669266986759605E-004 + 208.07999999999998 -3.5251286757511741E-004 + 208.13999999999999 -3.4805010662890734E-004 + 208.19999999999999 -3.4331846291711535E-004 + 208.25999999999999 -3.3833229805810023E-004 + 208.31999999999999 -3.3310617391295717E-004 + 208.38000000000000 -3.2765490971990648E-004 + 208.44000000000000 -3.2199340851920871E-004 + 208.50000000000000 -3.1613676472933504E-004 + 208.56000000000000 -3.1010013056068862E-004 + 208.62000000000000 -3.0389869532499814E-004 + 208.68000000000001 -2.9754771089130416E-004 + 208.74000000000001 -2.9106235707245052E-004 + 208.80000000000001 -2.8445784070579454E-004 + 208.86000000000001 -2.7774923686518349E-004 + 208.92000000000002 -2.7095149932476130E-004 + 208.98000000000002 -2.6407942447363318E-004 + 209.03999999999996 -2.5714767236978013E-004 + 209.09999999999997 -2.5017065180771926E-004 + 209.15999999999997 -2.4316252450605182E-004 + 209.21999999999997 -2.3613718019854161E-004 + 209.27999999999997 -2.2910822374490867E-004 + 209.33999999999997 -2.2208890394451137E-004 + 209.39999999999998 -2.1509213597438714E-004 + 209.45999999999998 -2.0813044629095729E-004 + 209.51999999999998 -2.0121599599875976E-004 + 209.57999999999998 -1.9436052422671168E-004 + 209.63999999999999 -1.8757535538849670E-004 + 209.69999999999999 -1.8087136011121652E-004 + 209.75999999999999 -1.7425898268695329E-004 + 209.81999999999999 -1.6774819344168119E-004 + 209.88000000000000 -1.6134849961184174E-004 + 209.94000000000000 -1.5506894102703685E-004 + 210.00000000000000 -1.4891806806132415E-004 + 210.06000000000000 -1.4290395827481475E-004 + 210.12000000000000 -1.3703415020678672E-004 + 210.18000000000001 -1.3131572718522614E-004 + 210.24000000000001 -1.2575524472106835E-004 + 210.30000000000001 -1.2035872946384373E-004 + 210.36000000000001 -1.1513172053162257E-004 + 210.42000000000002 -1.1007920497879552E-004 + 210.48000000000002 -1.0520567976593116E-004 + 210.53999999999996 -1.0051509620688940E-004 + 210.59999999999997 -9.6010916854114613E-005 + 210.65999999999997 -9.1696086942349612E-005 + 210.71999999999997 -8.7573050360331299E-005 + 210.77999999999997 -8.3643777132069795E-005 + 210.83999999999997 -7.9909752233546554E-005 + 210.89999999999998 -7.6371996224964547E-005 + 210.95999999999998 -7.3031090829114059E-005 + 211.01999999999998 -6.9887180042030658E-005 + 211.07999999999998 -6.6939998005186133E-005 + 211.13999999999999 -6.4188887240234613E-005 + 211.19999999999999 -6.1632796703420571E-005 + 211.25999999999999 -5.9270316065576238E-005 + 211.31999999999999 -5.7099682809486676E-005 + 211.38000000000000 -5.5118805069020824E-005 + 211.44000000000000 -5.3325259777185909E-005 + 211.50000000000000 -5.1716337613903506E-005 + 211.56000000000000 -5.0289032823643007E-005 + 211.62000000000000 -4.9040076561118737E-005 + 211.68000000000001 -4.7965933994445274E-005 + 211.74000000000001 -4.7062848139262263E-005 + 211.80000000000001 -4.6326834839534034E-005 + 211.86000000000001 -4.5753702512449133E-005 + 211.92000000000002 -4.5339082386460915E-005 + 211.98000000000002 -4.5078437042044540E-005 + 212.03999999999996 -4.4967072472106161E-005 + 212.09999999999997 -4.5000165126664745E-005 + 212.15999999999997 -4.5172761630196987E-005 + 212.21999999999997 -4.5479817407184151E-005 + 212.27999999999997 -4.5916179062505531E-005 + 212.33999999999997 -4.6476623059808804E-005 + 212.39999999999998 -4.7155852203023818E-005 + 212.45999999999998 -4.7948515172417606E-005 + 212.51999999999998 -4.8849202693579090E-005 + 212.57999999999998 -4.9852472439702915E-005 + 212.63999999999999 -5.0952858428909732E-005 + 212.69999999999999 -5.2144870723068321E-005 + 212.75999999999999 -5.3423013823486748E-005 + 212.81999999999999 -5.4781803770000979E-005 + 212.88000000000000 -5.6215768534906094E-005 + 212.94000000000000 -5.7719468199334392E-005 + 213.00000000000000 -5.9287504281377036E-005 + 213.06000000000000 -6.0914528902756871E-005 + 213.12000000000000 -6.2595250836068475E-005 + 213.18000000000001 -6.4324451946888526E-005 + 213.24000000000001 -6.6096998039482112E-005 + 213.30000000000001 -6.7907828077581358E-005 + 213.36000000000001 -6.9751967118638852E-005 + 213.42000000000002 -7.1624537275699385E-005 + 213.48000000000002 -7.3520739161938052E-005 + 213.53999999999996 -7.5435866158442928E-005 + 213.59999999999997 -7.7365300348536978E-005 + 213.65999999999997 -7.9304491322028226E-005 + 213.71999999999997 -8.1248979959300005E-005 + 213.77999999999997 -8.3194390011268740E-005 + 213.83999999999997 -8.5136429052752358E-005 + 213.89999999999998 -8.7070869079744793E-005 + 213.95999999999998 -8.8993589185010303E-005 + 214.01999999999998 -9.0900535016797589E-005 + 214.07999999999998 -9.2787763618607398E-005 + 214.13999999999999 -9.4651409373482770E-005 + 214.19999999999999 -9.6487729559449934E-005 + 214.25999999999999 -9.8293073544797736E-005 + 214.31999999999999 -1.0006390611046737E-004 + 214.38000000000000 -1.0179682597431618E-004 + 214.44000000000000 -1.0348853321920452E-004 + 214.50000000000000 -1.0513584984003972E-004 + 214.56000000000000 -1.0673572551359739E-004 + 214.62000000000000 -1.0828522289387652E-004 + 214.68000000000001 -1.0978151493878405E-004 + 214.74000000000001 -1.1122188604095461E-004 + 214.80000000000001 -1.1260372884155778E-004 + 214.86000000000001 -1.1392453916051325E-004 + 214.92000000000002 -1.1518192089832015E-004 + 214.98000000000002 -1.1637355924863159E-004 + 215.03999999999996 -1.1749723990927761E-004 + 215.09999999999997 -1.1855085857805487E-004 + 215.15999999999997 -1.1953240480896092E-004 + 215.21999999999997 -1.2043996307301118E-004 + 215.27999999999997 -1.2127172851415341E-004 + 215.33999999999997 -1.2202600337250280E-004 + 215.39999999999998 -1.2270122248505053E-004 + 215.45999999999998 -1.2329592773905671E-004 + 215.51999999999998 -1.2380878747229727E-004 + 215.57999999999998 -1.2423859585296353E-004 + 215.63999999999999 -1.2458427864759305E-004 + 215.69999999999999 -1.2484488158635189E-004 + 215.75999999999999 -1.2501960320951788E-004 + 215.81999999999999 -1.2510774507350919E-004 + 215.88000000000000 -1.2510876166642250E-004 + 215.94000000000000 -1.2502223394558791E-004 + 216.00000000000000 -1.2484786441091622E-004 + 216.06000000000000 -1.2458550413600914E-004 + 216.12000000000000 -1.2423513127658221E-004 + 216.18000000000001 -1.2379684476035544E-004 + 216.24000000000001 -1.2327089835875019E-004 + 216.30000000000001 -1.2265766778767168E-004 + 216.36000000000001 -1.2195769160509357E-004 + 216.42000000000002 -1.2117164440124087E-004 + 216.48000000000002 -1.2030032625990936E-004 + 216.53999999999996 -1.1934470126817682E-004 + 216.59999999999997 -1.1830586628745061E-004 + 216.65999999999997 -1.1718505838230184E-004 + 216.71999999999997 -1.1598363718213304E-004 + 216.77999999999997 -1.1470310711123671E-004 + 216.83999999999997 -1.1334508823984736E-004 + 216.89999999999998 -1.1191131036599677E-004 + 216.95999999999998 -1.1040361679866518E-004 + 217.01999999999998 -1.0882396703479299E-004 + 217.07999999999998 -1.0717440177263253E-004 + 217.13999999999999 -1.0545706965204702E-004 + 217.19999999999999 -1.0367420190716495E-004 + 217.25999999999999 -1.0182812200045449E-004 + 217.31999999999999 -9.9921250966706571E-005 + 217.38000000000000 -9.7956094208624634E-005 + 217.44000000000000 -9.5935235690981403E-005 + 217.50000000000000 -9.3861367307551333E-005 + 217.56000000000000 -9.1737260770245993E-005 + 217.62000000000000 -8.9565772755567544E-005 + 217.68000000000001 -8.7349848706180889E-005 + 217.74000000000001 -8.5092496639221370E-005 + 217.80000000000001 -8.2796809819082816E-005 + 217.86000000000001 -8.0465921188351900E-005 + 217.92000000000002 -7.8103020517342498E-005 + 217.98000000000002 -7.5711329672768110E-005 + 218.03999999999996 -7.3294093124011994E-005 + 218.09999999999997 -7.0854571251629600E-005 + 218.15999999999997 -6.8396010807191256E-005 + 218.21999999999997 -6.5921656268013262E-005 + 218.27999999999997 -6.3434729631444228E-005 + 218.33999999999997 -6.0938423555709920E-005 + 218.39999999999998 -5.8435896120664055E-005 + 218.45999999999998 -5.5930271329347663E-005 + 218.51999999999998 -5.3424630941504455E-005 + 218.57999999999998 -5.0922022347618674E-005 + 218.63999999999999 -4.8425444633173092E-005 + 218.69999999999999 -4.5937852103549759E-005 + 218.75999999999999 -4.3462149846674685E-005 + 218.81999999999999 -4.1001201292243950E-005 + 218.88000000000000 -3.8557795207033567E-005 + 218.94000000000000 -3.6134672279727049E-005 + 219.00000000000000 -3.3734490290101703E-005 + 219.06000000000000 -3.1359834142244585E-005 + 219.12000000000000 -2.9013194256981298E-005 + 219.18000000000001 -2.6696967968807091E-005 + 219.24000000000001 -2.4413450589430149E-005 + 219.30000000000001 -2.2164824952900885E-005 + 219.36000000000001 -1.9953163799501754E-005 + 219.42000000000002 -1.7780426618836099E-005 + 219.48000000000002 -1.5648457817053517E-005 + 219.53999999999996 -1.3558994262617128E-005 + 219.59999999999997 -1.1513664527259605E-005 + 219.65999999999997 -9.5139939362950172E-006 + 219.71999999999997 -7.5614105978664761E-006 + 219.77999999999997 -5.6572507584275428E-006 + 219.83999999999997 -3.8027594566965090E-006 + 219.89999999999998 -1.9990945742742329E-006 + 219.95999999999998 -2.4732593652420265E-007 + 220.01999999999998 1.4515672537967212E-006 + 220.07999999999998 3.0966986686704208E-006 + 220.13999999999999 4.6872810082007982E-006 + 220.19999999999999 6.2226297978785984E-006 + 220.25999999999999 7.7021698958505874E-006 + 220.31999999999999 9.1254403440132990E-006 + 220.38000000000000 1.0492096052812358E-005 + 220.44000000000000 1.1801909839296029E-005 + 220.50000000000000 1.3054770326836518E-005 + 220.56000000000000 1.4250679546049520E-005 + 220.62000000000000 1.5389744204425608E-005 + 220.68000000000001 1.6472168648818039E-005 + 220.74000000000001 1.7498244400768694E-005 + 220.80000000000001 1.8468339735681902E-005 + 220.86000000000001 1.9382884827637194E-005 + 220.92000000000002 2.0242362679272841E-005 + 220.98000000000002 2.1047305165843614E-005 + 221.03999999999996 2.1798278945157002E-005 + 221.09999999999997 2.2495885821011460E-005 + 221.15999999999997 2.3140754101038028E-005 + 221.21999999999997 2.3733546801397080E-005 + 221.27999999999997 2.4274959679364576E-005 + 221.33999999999997 2.4765725482806490E-005 + 221.39999999999998 2.5206613116402475E-005 + 221.45999999999998 2.5598444958910329E-005 + 221.51999999999998 2.5942085152257197E-005 + 221.57999999999998 2.6238452160441649E-005 + 221.63999999999999 2.6488511991924444E-005 + 221.69999999999999 2.6693280929288563E-005 + 221.75999999999999 2.6853818138521874E-005 + 221.81999999999999 2.6971219370183534E-005 + 221.88000000000000 2.7046608325087347E-005 + 221.94000000000000 2.7081126743627394E-005 + 222.00000000000000 2.7075929635484238E-005 + 222.06000000000000 2.7032172279847853E-005 + 222.12000000000000 2.6951000151647459E-005 + 222.18000000000001 2.6833545995244109E-005 + 222.24000000000001 2.6680924137849777E-005 + 222.30000000000001 2.6494226478319125E-005 + 222.36000000000001 2.6274520842570400E-005 + 222.42000000000002 2.6022851798621440E-005 + 222.48000000000002 2.5740245578319200E-005 + 222.53999999999996 2.5427709788467956E-005 + 222.59999999999997 2.5086232802608117E-005 + 222.65999999999997 2.4716791952184379E-005 + 222.71999999999997 2.4320350562639706E-005 + 222.77999999999997 2.3897864834376146E-005 + 222.83999999999997 2.3450276238954834E-005 + 222.89999999999998 2.2978515227480491E-005 + 222.95999999999998 2.2483496715135702E-005 + 223.01999999999998 2.1966119716968594E-005 + 223.07999999999998 2.1427262692383996E-005 + 223.13999999999999 2.0867783591584047E-005 + 223.19999999999999 2.0288515350563276E-005 + 223.25999999999999 1.9690269130548687E-005 + 223.31999999999999 1.9073830183978184E-005 + 223.38000000000000 1.8439956857514335E-005 + 223.44000000000000 1.7789389384498727E-005 + 223.50000000000000 1.7122843830732092E-005 + 223.56000000000000 1.6441018384710733E-005 + 223.62000000000000 1.5744588032953917E-005 + 223.68000000000001 1.5034212168451636E-005 + 223.74000000000001 1.4310524961981166E-005 + 223.80000000000001 1.3574138999209128E-005 + 223.86000000000001 1.2825638949891511E-005 + 223.92000000000002 1.2065574900817094E-005 + 223.98000000000002 1.1294463893709447E-005 + 224.03999999999996 1.0512777173053655E-005 + 224.09999999999997 9.7209412461595711E-006 + 224.15999999999997 8.9193364841144165E-006 + 224.21999999999997 8.1082935783096923E-006 + 224.27999999999997 7.2880974626589883E-006 + 224.33999999999997 6.4589895284901801E-006 + 224.39999999999998 5.6211778347720141E-006 + 224.45999999999998 4.7748450028942576E-006 + 224.51999999999998 3.9201562806207523E-006 + 224.57999999999998 3.0572739958693465E-006 + 224.63999999999999 2.1863654043633121E-006 + 224.69999999999999 1.3076151897964557E-006 + 224.75999999999999 4.2122869094107645E-007 + 224.81999999999999 -4.7255803928636646E-007 + 224.88000000000000 -1.3734820914122984E-006 + 224.94000000000000 -2.2812505139919366E-006 + 225.00000000000000 -3.1955490540896673E-006 + 225.06000000000000 -4.1160487989760973E-006 + 225.12000000000000 -5.0424135936414918E-006 + 225.18000000000001 -5.9743138229659946E-006 + 225.24000000000001 -6.9114334370494401E-006 + 225.30000000000001 -7.8534797747546343E-006 + 225.36000000000001 -8.8001907050934799E-006 + 225.42000000000002 -9.7513333553250321E-006 + 225.48000000000002 -1.0706709063966475E-005 + 225.53999999999996 -1.1666143585420756E-005 + 225.59999999999997 -1.2629481324713878E-005 + 225.65999999999997 -1.3596573764330189E-005 + 225.71999999999997 -1.4567262902892662E-005 + 225.77999999999997 -1.5541371002115506E-005 + 225.83999999999997 -1.6518680110304998E-005 + 225.89999999999998 -1.7498925664120120E-005 + 225.95999999999998 -1.8481778594957138E-005 + 226.01999999999998 -1.9466844817469405E-005 + 226.07999999999998 -2.0453652035973495E-005 + 226.13999999999999 -2.1441661350182602E-005 + 226.19999999999999 -2.2430263034740084E-005 + 226.25999999999999 -2.3418786459029392E-005 + 226.31999999999999 -2.4406509059863846E-005 + 226.38000000000000 -2.5392668829926132E-005 + 226.44000000000000 -2.6376477271102593E-005 + 226.50000000000000 -2.7357124824510943E-005 + 226.56000000000000 -2.8333792919864040E-005 + 226.62000000000000 -2.9305661748774780E-005 + 226.68000000000001 -3.0271907487870991E-005 + 226.74000000000001 -3.1231709311252027E-005 + 226.80000000000001 -3.2184235754537151E-005 + 226.86000000000001 -3.3128654839699927E-005 + 226.92000000000002 -3.4064110970020246E-005 + 226.98000000000002 -3.4989727018872018E-005 + 227.03999999999996 -3.5904594439327515E-005 + 227.09999999999997 -3.6807763234553393E-005 + 227.15999999999997 -3.7698238381519342E-005 + 227.21999999999997 -3.8574975515213449E-005 + 227.27999999999997 -3.9436883089257935E-005 + 227.33999999999997 -4.0282816818025501E-005 + 227.39999999999998 -4.1111597140557148E-005 + 227.45999999999998 -4.1922002487957190E-005 + 227.51999999999998 -4.2712783159429458E-005 + 227.57999999999998 -4.3482663983108467E-005 + 227.63999999999999 -4.4230352511508463E-005 + 227.69999999999999 -4.4954552366324620E-005 + 227.75999999999999 -4.5653955681343800E-005 + 227.81999999999999 -4.6327257063674484E-005 + 227.88000000000000 -4.6973156976996755E-005 + 227.94000000000000 -4.7590350363618919E-005 + 228.00000000000000 -4.8177538232017762E-005 + 228.06000000000000 -4.8733427000708862E-005 + 228.12000000000000 -4.9256725576460870E-005 + 228.18000000000001 -4.9746136535040856E-005 + 228.24000000000001 -5.0200368979016083E-005 + 228.30000000000001 -5.0618140578202476E-005 + 228.36000000000001 -5.0998169447406026E-005 + 228.42000000000002 -5.1339181170642342E-005 + 228.48000000000002 -5.1639913338301533E-005 + 228.53999999999996 -5.1899121081353073E-005 + 228.59999999999997 -5.2115575080987894E-005 + 228.65999999999997 -5.2288068455294532E-005 + 228.71999999999997 -5.2415411833269105E-005 + 228.77999999999997 -5.2496440527231901E-005 + 228.83999999999997 -5.2530009427334625E-005 + 228.89999999999998 -5.2514987927160711E-005 + 228.95999999999998 -5.2450258409841540E-005 + 229.01999999999998 -5.2334706823015411E-005 + 229.07999999999998 -5.2167232478835069E-005 + 229.13999999999999 -5.1946722938558695E-005 + 229.19999999999999 -5.1672071063932648E-005 + 229.25999999999999 -5.1342161636351368E-005 + 229.31999999999999 -5.0955878336308636E-005 + 229.38000000000000 -5.0512106309379059E-005 + 229.44000000000000 -5.0009732466828037E-005 + 229.50000000000000 -4.9447653899958340E-005 + 229.56000000000000 -4.8824785097434945E-005 + 229.62000000000000 -4.8140064340891539E-005 + 229.68000000000001 -4.7392451521377751E-005 + 229.74000000000001 -4.6580938670439382E-005 + 229.80000000000001 -4.5704548788094959E-005 + 229.86000000000001 -4.4762329996695012E-005 + 229.92000000000002 -4.3753356882009797E-005 + 229.97999999999996 -4.2676720454584306E-005 + 230.03999999999996 -4.1531518845779328E-005 + 230.09999999999997 -4.0316840253366158E-005 + 230.15999999999997 -3.9031766233180108E-005 + 230.21999999999997 -3.7675347593149543E-005 + 230.27999999999997 -3.6246593742148903E-005 + 230.33999999999997 -3.4744477511081963E-005 + 230.39999999999998 -3.3167917229007634E-005 + 230.45999999999998 -3.1515785903201247E-005 + 230.51999999999998 -2.9786907253763018E-005 + 230.57999999999998 -2.7980063317236789E-005 + 230.63999999999999 -2.6093996725903340E-005 + 230.69999999999999 -2.4127431338873424E-005 + 230.75999999999999 -2.2079071393500093E-005 + 230.81999999999999 -1.9947619641252253E-005 + 230.88000000000000 -1.7731776717924323E-005 + 230.94000000000000 -1.5430261343491288E-005 + 231.00000000000000 -1.3041795017524648E-005 + 231.06000000000000 -1.0565116306744944E-005 + 231.12000000000000 -7.9989807346737230E-006 + 231.18000000000001 -5.3421389158721330E-006 + 231.24000000000001 -2.5933458052222431E-006 + 231.30000000000001 2.4865436821475706E-007 + 231.36000000000001 3.1851304405459048E-006 + 231.42000000000002 6.2173806542748396E-006 + 231.47999999999996 9.3467252504539662E-006 + 231.53999999999996 1.2574514595830678E-005 + 231.59999999999997 1.5902120979299002E-005 + 231.65999999999997 1.9330942526556768E-005 + 231.71999999999997 2.2862375336847464E-005 + 231.77999999999997 2.6497823354839800E-005 + 231.83999999999997 3.0238664126122197E-005 + 231.89999999999998 3.4086240804893433E-005 + 231.95999999999998 3.8041843256516003E-005 + 232.01999999999998 4.2106696647296734E-005 + 232.07999999999998 4.6281948051506704E-005 + 232.13999999999999 5.0568630348037406E-005 + 232.19999999999999 5.4967694899016751E-005 + 232.25999999999999 5.9479973981960585E-005 + 232.31999999999999 6.4106183758232859E-005 + 232.38000000000000 6.8846923550039976E-005 + 232.44000000000000 7.3702676093225370E-005 + 232.50000000000000 7.8673796659315987E-005 + 232.56000000000000 8.3760524317712400E-005 + 232.62000000000000 8.8962964000845044E-005 + 232.68000000000001 9.4281094439440901E-005 + 232.74000000000001 9.9714733740708872E-005 + 232.80000000000001 1.0526357110065246E-004 + 232.86000000000001 1.1092709516731555E-004 + 232.92000000000002 1.1670463678086736E-004 + 232.97999999999996 1.2259529983552265E-004 + 233.03999999999996 1.2859799462943864E-004 + 233.09999999999997 1.3471134752639815E-004 + 233.15999999999997 1.4093375455668042E-004 + 233.21999999999997 1.4726334880998650E-004 + 233.27999999999997 1.5369796104732343E-004 + 233.33999999999997 1.6023514105920078E-004 + 233.39999999999998 1.6687211025097600E-004 + 233.45999999999998 1.7360580648439567E-004 + 233.51999999999998 1.8043285005739143E-004 + 233.57999999999998 1.8734954639105475E-004 + 233.63999999999999 1.9435189265296136E-004 + 233.69999999999999 2.0143556753410849E-004 + 233.75999999999999 2.0859591611493825E-004 + 233.81999999999999 2.1582801867126169E-004 + 233.88000000000000 2.2312660744523314E-004 + 233.94000000000000 2.3048607217445228E-004 + 234.00000000000000 2.3790052775148139E-004 + 234.06000000000000 2.4536372371044928E-004 + 234.12000000000000 2.5286910858602837E-004 + 234.18000000000001 2.6040974696059523E-004 + 234.24000000000001 2.6797843645390480E-004 + 234.30000000000001 2.7556759606213964E-004 + 234.36000000000001 2.8316935666508093E-004 + 234.42000000000002 2.9077547463834486E-004 + 234.47999999999996 2.9837744220713062E-004 + 234.53999999999996 3.0596643405818254E-004 + 234.59999999999997 3.1353335295873647E-004 + 234.65999999999997 3.2106879461950522E-004 + 234.71999999999997 3.2856312885127538E-004 + 234.77999999999997 3.3600647917392203E-004 + 234.83999999999997 3.4338871694676224E-004 + 234.89999999999998 3.5069954530406628E-004 + 234.95999999999998 3.5792843384195675E-004 + 235.01999999999998 3.6506469877468499E-004 + 235.07999999999998 3.7209746050181848E-004 + 235.13999999999999 3.7901570535653557E-004 + 235.19999999999999 3.8580824502141805E-004 + 235.25999999999999 3.9246383564114364E-004 + 235.31999999999999 3.9897112080230666E-004 + 235.38000000000000 4.0531865239395938E-004 + 235.44000000000000 4.1149494277339704E-004 + 235.50000000000000 4.1748851303404074E-004 + 235.56000000000000 4.2328788778371547E-004 + 235.62000000000000 4.2888164917326044E-004 + 235.68000000000001 4.3425849750655096E-004 + 235.74000000000001 4.3940721738982034E-004 + 235.80000000000001 4.4431672991267272E-004 + 235.86000000000001 4.4897620645569002E-004 + 235.92000000000002 4.5337501886151017E-004 + 235.97999999999996 4.5750280287157525E-004 + 236.03999999999996 4.6134947904717037E-004 + 236.09999999999997 4.6490523971431821E-004 + 236.15999999999997 4.6816060579559350E-004 + 236.21999999999997 4.7110644263069869E-004 + 236.27999999999997 4.7373403402055315E-004 + 236.33999999999997 4.7603498987105764E-004 + 236.39999999999998 4.7800135079039703E-004 + 236.45999999999998 4.7962559792606686E-004 + 236.51999999999998 4.8090066113243497E-004 + 236.57999999999998 4.8181998518929476E-004 + 236.63999999999999 4.8237750442935775E-004 + 236.69999999999999 4.8256770584271294E-004 + 236.75999999999999 4.8238571442394058E-004 + 236.81999999999999 4.8182719309041968E-004 + 236.88000000000000 4.8088853267264992E-004 + 236.94000000000000 4.7956669855349419E-004 + 237.00000000000000 4.7785941040223874E-004 + 237.06000000000000 4.7576510689148124E-004 + 237.12000000000000 4.7328293621451043E-004 + 237.18000000000001 4.7041276481627153E-004 + 237.24000000000001 4.6715522343927063E-004 + 237.30000000000001 4.6351168445524384E-004 + 237.36000000000001 4.5948424400868665E-004 + 237.42000000000002 4.5507571361326661E-004 + 237.47999999999996 4.5028959236002641E-004 + 237.53999999999996 4.4513013408327054E-004 + 237.59999999999997 4.3960223073282801E-004 + 237.65999999999997 4.3371152253456931E-004 + 237.71999999999997 4.2746425883472374E-004 + 237.77999999999997 4.2086734758675263E-004 + 237.83999999999997 4.1392839080050864E-004 + 237.89999999999998 4.0665564225728882E-004 + 237.95999999999998 3.9905795840742257E-004 + 238.01999999999998 3.9114487874651426E-004 + 238.07999999999998 3.8292651318447729E-004 + 238.13999999999999 3.7441362347382946E-004 + 238.19999999999999 3.6561755633217303E-004 + 238.25999999999999 3.5655021796398618E-004 + 238.31999999999999 3.4722406657893093E-004 + 238.38000000000000 3.3765207075327523E-004 + 238.44000000000000 3.2784769174473092E-004 + 238.50000000000000 3.1782479038291013E-004 + 238.56000000000000 3.0759765536622088E-004 + 238.62000000000000 2.9718097727811084E-004 + 238.68000000000001 2.8658967335025795E-004 + 238.74000000000001 2.7583900655787913E-004 + 238.80000000000001 2.6494443828238936E-004 + 238.86000000000001 2.5392164985954069E-004 + 238.92000000000002 2.4278643046703638E-004 + 238.97999999999996 2.3155472456604071E-004 + 239.03999999999996 2.2024252202734187E-004 + 239.09999999999997 2.0886585474911892E-004 + 239.15999999999997 1.9744080932757878E-004 + 239.21999999999997 1.8598337782987763E-004 + 239.27999999999997 1.7450950535434305E-004 + 239.33999999999997 1.6303506430139574E-004 + 239.39999999999998 1.5157574009244695E-004 + 239.45999999999998 1.4014705987484808E-004 + 239.51999999999998 1.2876431617046889E-004 + 239.57999999999998 1.1744256971332817E-004 + 239.63999999999999 1.0619659276708394E-004 + 239.69999999999999 9.5040793326857913E-005 + 239.75999999999999 8.3989245514201456E-005 + 239.81999999999999 7.3055635975318819E-005 + 239.88000000000000 6.2253213744889682E-005 + 239.94000000000000 5.1594791065852466E-005 + 240.00000000000000 4.1092693826582727E-005 + 240.06000000000000 3.0758770162811468E-005 + 240.12000000000000 2.0604351364022246E-005 + 240.18000000000001 1.0640239634891493E-005 + 240.24000000000001 8.7667748699345305E-007 + 240.30000000000001 -8.6766405303881490E-006 + 240.36000000000001 -1.8010603410345055E-005 + 240.42000000000002 -2.7116696017398531E-005 + 240.47999999999996 -3.5987019364772040E-005 + 240.53999999999996 -4.4614284190764376E-005 + 240.59999999999997 -5.2991838318849487E-005 + 240.65999999999997 -6.1113677016657683E-005 + 240.71999999999997 -6.8974446428419562E-005 + 240.77999999999997 -7.6569460161366075E-005 + 240.83999999999997 -8.3894677691455057E-005 + 240.89999999999998 -9.0946722466470742E-005 + 240.95999999999998 -9.7722866344896833E-005 + 241.01999999999998 -1.0422103384554458E-004 + 241.07999999999998 -1.1043974804568181E-004 + 241.13999999999999 -1.1637816585958634E-004 + 241.19999999999999 -1.2203602262483851E-004 + 241.25999999999999 -1.2741363093388995E-004 + 241.31999999999999 -1.3251185928044032E-004 + 241.38000000000000 -1.3733209475889717E-004 + 241.44000000000000 -1.4187624145608146E-004 + 241.50000000000000 -1.4614668802981888E-004 + 241.56000000000000 -1.5014629958538323E-004 + 241.62000000000000 -1.5387841426749141E-004 + 241.68000000000001 -1.5734679095346662E-004 + 241.74000000000001 -1.6055564166601806E-004 + 241.80000000000001 -1.6350957450308369E-004 + 241.86000000000001 -1.6621360498549062E-004 + 241.92000000000002 -1.6867314483558704E-004 + 241.97999999999996 -1.7089394045220491E-004 + 242.03999999999996 -1.7288212260236789E-004 + 242.09999999999997 -1.7464410179898428E-004 + 242.15999999999997 -1.7618659139775450E-004 + 242.21999999999997 -1.7751656904604885E-004 + 242.27999999999997 -1.7864123965398242E-004 + 242.33999999999997 -1.7956799671270109E-004 + 242.39999999999998 -1.8030440633900368E-004 + 242.45999999999998 -1.8085814705177602E-004 + 242.51999999999998 -1.8123703588192213E-004 + 242.57999999999998 -1.8144892290184022E-004 + 242.63999999999999 -1.8150172179708413E-004 + 242.69999999999999 -1.8140338856137972E-004 + 242.75999999999999 -1.8116186722047818E-004 + 242.81999999999999 -1.8078511914167234E-004 + 242.88000000000000 -1.8028107510276981E-004 + 242.94000000000000 -1.7965761593729819E-004 + 243.00000000000000 -1.7892259837832709E-004 + 243.06000000000000 -1.7808381857473018E-004 + 243.12000000000000 -1.7714900648883153E-004 + 243.18000000000001 -1.7612579787721410E-004 + 243.24000000000001 -1.7502173703037749E-004 + 243.30000000000001 -1.7384426981638734E-004 + 243.36000000000001 -1.7260066854390171E-004 + 243.42000000000002 -1.7129807546130749E-004 + 243.47999999999996 -1.6994345935207887E-004 + 243.53999999999996 -1.6854360360971495E-004 + 243.59999999999997 -1.6710509496611071E-004 + 243.65999999999997 -1.6563428316627472E-004 + 243.71999999999997 -1.6413729406107675E-004 + 243.77999999999997 -1.6262001892108997E-004 + 243.83999999999997 -1.6108811143758343E-004 + 243.89999999999998 -1.5954696487820830E-004 + 243.95999999999998 -1.5800175198335997E-004 + 244.01999999999998 -1.5645737506088785E-004 + 244.07999999999998 -1.5491851210080069E-004 + 244.13999999999999 -1.5338960947423934E-004 + 244.19999999999999 -1.5187486317620537E-004 + 244.25999999999999 -1.5037823803974222E-004 + 244.31999999999999 -1.4890347236817955E-004 + 244.38000000000000 -1.4745406531915681E-004 + 244.44000000000000 -1.4603328913837766E-004 + 244.50000000000000 -1.4464414723001107E-004 + 244.56000000000000 -1.4328942475663362E-004 + 244.62000000000000 -1.4197163672462546E-004 + 244.68000000000001 -1.4069305925913740E-004 + 244.74000000000001 -1.3945571643202438E-004 + 244.80000000000001 -1.3826137596458085E-004 + 244.86000000000001 -1.3711154830951930E-004 + 244.92000000000002 -1.3600752957092230E-004 + 244.97999999999996 -1.3495034569361981E-004 + 245.03999999999996 -1.3394082605033814E-004 + 245.09999999999997 -1.3297956211584115E-004 + 245.15999999999997 -1.3206696439882400E-004 + 245.21999999999997 -1.3120324787537215E-004 + 245.27999999999997 -1.3038844845260678E-004 + 245.33999999999997 -1.2962245869296192E-004 + 245.39999999999998 -1.2890499357595829E-004 + 245.45999999999998 -1.2823563729215886E-004 + 245.51999999999998 -1.2761383240968282E-004 + 245.57999999999998 -1.2703889399341204E-004 + 245.63999999999999 -1.2651001357085086E-004 + 245.69999999999999 -1.2602624499431951E-004 + 245.75999999999999 -1.2558652636275575E-004 + 245.81999999999999 -1.2518966767321649E-004 + 245.88000000000000 -1.2483438108306044E-004 + 245.94000000000000 -1.2451923177940038E-004 + 246.00000000000000 -1.2424270966217415E-004 + 246.06000000000000 -1.2400319952917969E-004 + 246.12000000000000 -1.2379898292046355E-004 + 246.18000000000001 -1.2362825164515985E-004 + 246.24000000000001 -1.2348914814308657E-004 + 246.30000000000001 -1.2337972228285832E-004 + 246.36000000000001 -1.2329798403260586E-004 + 246.42000000000002 -1.2324187591128093E-004 + 246.47999999999996 -1.2320934106411921E-004 + 246.53999999999996 -1.2319824359956338E-004 + 246.59999999999997 -1.2320647070629442E-004 + 246.65999999999997 -1.2323185551975154E-004 + 246.71999999999997 -1.2327224052133615E-004 + 246.77999999999997 -1.2332544102793168E-004 + 246.83999999999997 -1.2338929288552102E-004 + 246.89999999999998 -1.2346162492547292E-004 + 246.95999999999998 -1.2354028520668192E-004 + 247.01999999999998 -1.2362311959848637E-004 + 247.07999999999998 -1.2370798665497923E-004 + 247.13999999999999 -1.2379280973102749E-004 + 247.19999999999999 -1.2387552765499545E-004 + 247.25999999999999 -1.2395411331825784E-004 + 247.31999999999999 -1.2402661230724094E-004 + 247.38000000000000 -1.2409109627931390E-004 + 247.44000000000000 -1.2414568748508637E-004 + 247.50000000000000 -1.2418860588988309E-004 + 247.56000000000000 -1.2421808865555419E-004 + 247.62000000000000 -1.2423242579652445E-004 + 247.68000000000001 -1.2422996585498660E-004 + 247.74000000000001 -1.2420909990651128E-004 + 247.80000000000001 -1.2416824983909832E-004 + 247.86000000000001 -1.2410588215444330E-004 + 247.92000000000002 -1.2402051465188201E-004 + 247.97999999999996 -1.2391066163864448E-004 + 248.03999999999996 -1.2377489625553528E-004 + 248.09999999999997 -1.2361182348403531E-004 + 248.15999999999997 -1.2342009212226786E-004 + 248.21999999999997 -1.2319840212674969E-004 + 248.27999999999997 -1.2294551497461426E-004 + 248.33999999999997 -1.2266025758292590E-004 + 248.39999999999998 -1.2234154489389478E-004 + 248.45999999999998 -1.2198836663888903E-004 + 248.51999999999998 -1.2159980803604195E-004 + 248.57999999999998 -1.2117505656174835E-004 + 248.63999999999999 -1.2071338673110601E-004 + 248.69999999999999 -1.2021418353935204E-004 + 248.75999999999999 -1.1967689444334133E-004 + 248.81999999999999 -1.1910104196617160E-004 + 248.88000000000000 -1.1848622949334011E-004 + 248.94000000000000 -1.1783210556778670E-004 + 249.00000000000000 -1.1713836429727979E-004 + 249.06000000000000 -1.1640472031386254E-004 + 249.12000000000000 -1.1563092183213024E-004 + 249.18000000000001 -1.1481671415816027E-004 + 249.24000000000001 -1.1396187339512641E-004 + 249.30000000000001 -1.1306618148098328E-004 + 249.36000000000001 -1.1212942928881729E-004 + 249.42000000000002 -1.1115144775844564E-004 + 249.47999999999996 -1.1013209326195390E-004 + 249.53999999999996 -1.0907126673402744E-004 + 249.59999999999997 -1.0796893415317515E-004 + 249.65999999999997 -1.0682511573673702E-004 + 249.71999999999997 -1.0563991512644147E-004 + 249.77999999999997 -1.0441352694099032E-004 + 249.83999999999997 -1.0314623707149123E-004 + 249.89999999999998 -1.0183841209177165E-004 + 249.95999999999998 -1.0049051731351994E-004 + 250.01999999999998 -9.9103087230398580E-005 + 250.07999999999998 -9.7676735485170289E-005 + 250.13999999999999 -9.6212142857582378E-005 + 250.19999999999999 -9.4710060809203111E-005 + 250.25999999999999 -9.3171271892754587E-005 + 250.31999999999999 -9.1596592120552089E-005 + 250.38000000000000 -8.9986889184332517E-005 + 250.44000000000000 -8.8343046355349996E-005 + 250.50000000000000 -8.6665975358368871E-005 + 250.56000000000000 -8.4956616003474457E-005 + 250.62000000000000 -8.3215930611045590E-005 + 250.68000000000001 -8.1444913835084550E-005 + 250.74000000000001 -7.9644606352326976E-005 + 250.80000000000001 -7.7816092136541657E-005 + 250.86000000000001 -7.5960509942805103E-005 + 250.92000000000002 -7.4079054429995430E-005 + 250.97999999999996 -7.2172982809350070E-005 + 251.03999999999996 -7.0243625415318775E-005 + 251.09999999999997 -6.8292378272210473E-005 + 251.15999999999997 -6.6320713017237336E-005 + 251.21999999999997 -6.4330171368624507E-005 + 251.27999999999997 -6.2322362913565496E-005 + 251.33999999999997 -6.0298971988775814E-005 + 251.39999999999998 -5.8261735258193905E-005 + 251.45999999999998 -5.6212450901474947E-005 + 251.51999999999998 -5.4152975677658965E-005 + 251.57999999999998 -5.2085210873225633E-005 + 251.63999999999999 -5.0011111633372745E-005 + 251.69999999999999 -4.7932666117349974E-005 + 251.75999999999999 -4.5851908897857380E-005 + 251.81999999999999 -4.3770905216110277E-005 + 251.88000000000000 -4.1691748256329175E-005 + 251.94000000000000 -3.9616558437922696E-005 diff --git a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000001.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000001.BXY.semd new file mode 100644 index 00000000..687d10f0 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 1.2056616632021526E-041 + 10.320000000000000 3.9401423474784629E-041 + 10.379999999999995 7.7607499130147244E-041 + 10.439999999999998 1.2599154056573850E-040 + 10.500000000000000 1.7853862034132732E-040 + 10.559999999999995 2.3524874738568226E-040 + 10.619999999999997 2.9195887443003721E-040 + 10.680000000000000 3.5292764906810488E-040 + 10.739999999999995 4.1815508915742239E-040 + 10.799999999999997 4.8033156903059584E-040 + 10.859999999999999 5.2696556290012197E-040 + 10.919999999999995 5.5004364384581983E-040 + 10.979999999999997 5.4763466208896976E-040 + 11.039999999999999 5.2003130266289107E-040 + 11.099999999999994 4.6125411212483216E-040 + 11.159999999999997 3.7186088850412563E-040 + 11.219999999999999 2.5574068194880945E-040 + 11.280000000000001 1.1760578399670414E-040 + 11.339999999999996 -2.4545032975874585E-041 + 11.399999999999999 -1.6742533926838069E-040 + 11.460000000000001 -3.0868002931344087E-040 + 11.519999999999996 -3.5690459401382420E-040 + 11.579999999999998 -2.7723278145068874E-040 + 11.640000000000001 -5.2110592460264529E-041 + 11.699999999999996 3.9965796649283078E-040 + 11.759999999999998 1.0133016679727971E-039 + 11.820000000000000 5.2766933024180547E-039 + 11.879999999999995 1.1996996456117291E-038 + 11.939999999999998 2.0908469924756148E-038 + 12.000000000000000 3.0611249557930357E-038 + 12.059999999999995 4.0085164805058791E-038 + 12.119999999999997 4.9300706667485925E-038 + 12.180000000000000 5.8236000596085572E-038 + 12.239999999999995 6.6707695733925535E-038 + 12.299999999999997 7.3396421692844982E-038 + 12.359999999999999 7.5578371876400310E-038 + 12.419999999999995 7.4056604795488025E-038 + 12.479999999999997 6.8364259123985490E-038 + 12.539999999999999 5.8447562467555419E-038 + 12.599999999999994 4.4701167730316739E-038 + 12.659999999999997 2.8287550624683698E-038 + 12.719999999999999 8.5474436174925271E-039 + 12.780000000000001 -1.1002290688486897E-038 + 12.839999999999996 -3.0398795504988611E-038 + 12.899999999999999 -4.6386080279107063E-038 + 12.960000000000001 -5.4488230710909449E-038 + 13.019999999999996 -5.5850828296020530E-038 + 13.079999999999998 -4.9794172753475939E-038 + 13.140000000000001 -3.2222843901602156E-038 + 13.199999999999996 -8.1824220540981228E-039 + 13.259999999999998 2.3196833138341772E-038 + 13.320000000000000 6.6803112745456500E-038 + 13.379999999999995 1.2125845702765876E-037 + 13.439999999999998 1.7523437681970698E-037 + 13.500000000000000 2.2396549513459998E-037 + 13.559999999999995 2.5836144071522480E-037 + 13.619999999999997 2.4249614949529446E-037 + 13.680000000000000 1.6561185210716099E-037 + 13.739999999999995 2.3998852489473052E-038 + 13.799999999999997 -1.5842890676047773E-037 + 13.859999999999999 -3.8107951446310052E-037 + 13.919999999999995 -6.0999983445009742E-037 + 13.979999999999997 -8.4767424357302486E-037 + 14.039999999999999 -1.0712949299672245E-036 + 14.099999999999994 -1.2382807540116233E-036 + 14.159999999999997 -1.3793481994915575E-036 + 14.219999999999999 -1.5005608100028846E-036 + 14.280000000000001 -1.5179449486982298E-036 + 14.339999999999996 -1.3621538897679964E-036 + 14.399999999999999 -1.0387443867491364E-036 + 14.460000000000001 -5.4949595891946987E-037 + 14.519999999999996 4.4880558041394267E-038 + 14.579999999999998 7.2692162227800646E-037 + 14.640000000000001 1.4515997319390112E-036 + 14.699999999999996 2.1828707550658766E-036 + 14.759999999999998 2.8633784675596292E-036 + 14.820000000000000 3.3081340523132881E-036 + 14.879999999999995 3.4248632825147166E-036 + 14.939999999999998 3.1240503482816444E-036 + 15.000000000000000 2.3965300090624906E-036 + 15.059999999999995 1.1710914925403126E-036 + 15.119999999999997 -5.4507324057983445E-037 + 15.180000000000000 -2.6769509931523486E-036 + 15.239999999999995 -5.0769722319259768E-036 + 15.299999999999997 -7.6986545983397229E-036 + 15.359999999999999 -1.0292245168993042E-035 + 15.419999999999995 -1.2621530682671216E-035 + 15.479999999999997 -1.4365211369384578E-035 + 15.539999999999999 -1.5227375188473250E-035 + 15.599999999999994 -1.4970940384317735E-035 + 15.659999999999997 -1.3127869374656572E-035 + 15.719999999999999 -9.5320672550857703E-036 + 15.780000000000001 -3.9500783956231623E-036 + 15.839999999999996 3.7462809029410232E-036 + 15.899999999999999 1.3545289954790113E-035 + 15.960000000000001 2.5287613051411800E-035 + 16.019999999999996 3.8637387266140358E-035 + 16.079999999999998 5.3062395109602549E-035 + 16.140000000000001 6.7890507687603670E-035 + 16.200000000000003 8.1969639637089772E-035 + 16.259999999999991 9.4040713786651640E-035 + 16.319999999999993 1.0278066221786503E-034 + 16.379999999999995 1.0680085947572730E-034 + 16.439999999999998 1.0442207970171738E-034 + 16.500000000000000 9.4102433524444142E-035 + 16.560000000000002 7.4435834281442255E-035 + 16.620000000000005 4.4262385537870762E-035 + 16.679999999999993 2.8169894089903727E-036 + 16.739999999999995 -5.0134623446123219E-035 + 16.799999999999997 -1.1410090543029718E-034 + 16.859999999999999 -1.8783556536047798E-034 + 16.920000000000002 -2.6895718332427698E-034 + 16.980000000000004 -3.5403383637556746E-034 + 17.039999999999992 -4.3847865780688380E-034 + 17.099999999999994 -5.1655290078599721E-034 + 17.159999999999997 -5.8139181625634043E-034 + 17.219999999999999 -6.2521799055334049E-034 + 17.280000000000001 -6.3959244995372121E-034 + 17.340000000000003 -6.1584878070603016E-034 + 17.399999999999991 -5.4561941342999883E-034 + 17.459999999999994 -4.2148762020927565E-034 + 17.519999999999996 -2.3775737796046757E-034 + 17.579999999999998 8.7030638371556075E-036 + 17.640000000000001 3.1756717717165177E-034 + 17.700000000000003 6.8414836681601143E-034 + 17.759999999999991 1.0985909011780151E-033 + 17.819999999999993 1.5452119624465219E-033 + 17.879999999999995 2.0020339670956921E-033 + 17.939999999999998 2.4407028875821449E-033 + 18.000000000000000 2.8267891938940943E-033 + 18.060000000000002 3.1206293768108716E-033 + 18.120000000000005 3.2787276313484953E-033 + 18.179999999999993 3.2557916676621444E-033 + 18.239999999999995 3.0074296641145396E-033 + 18.299999999999997 2.4934554811018490E-033 + 18.359999999999999 1.6817442964398266E-033 + 18.420000000000002 5.5249651186919269E-034 + 18.480000000000004 -8.9730517088935519E-034 + 18.539999999999992 -2.6494866426380240E-033 + 18.599999999999994 -4.6606610516852549E-033 + 18.659999999999997 -6.8589648139133070E-033 + 18.719999999999999 -9.1420370162459498E-033 + 18.780000000000001 -1.1376528520944582E-032 + 18.840000000000003 -1.3399758770272494E-032 + 18.899999999999991 -1.5023757507242767E-032 + 18.959999999999994 -1.6042069603855531E-032 + 19.019999999999996 -1.6239473883761067E-032 + 19.079999999999998 -1.5404645042905510E-032 + 19.140000000000001 -1.3345571849341152E-032 + 19.200000000000003 -9.9072851570075076E-033 + 19.259999999999991 -4.9912243033413539E-033 + 19.319999999999993 1.4247479048764860E-033 + 19.379999999999995 9.2669111713614085E-033 + 19.439999999999998 1.8348341264801589E-032 + 19.500000000000000 2.8355320236598335E-032 + 19.560000000000002 3.8839334092600004E-032 + 19.620000000000005 4.9216457236087923E-032 + 19.679999999999993 5.8775872463188093E-032 + 19.739999999999995 6.6698992406439912E-032 + 19.799999999999997 7.2090217528474922E-032 + 19.859999999999999 7.4019856650224113E-032 + 19.920000000000002 7.1578916768334600E-032 + 19.980000000000004 6.3944640910509576E-032 + 20.039999999999992 5.0454632215450881E-032 + 20.099999999999994 3.0686437366668693E-032 + 20.159999999999997 4.5381835582270147E-033 + 20.219999999999999 -2.7694832290292593E-032 + 20.280000000000001 -6.5253849386357168E-032 + 20.340000000000003 -1.0686720446922545E-031 + 20.399999999999991 -1.5072487184684919E-031 + 20.459999999999994 -1.9448357518565466E-031 + 20.519999999999996 -2.3530866418144059E-031 + 20.579999999999998 -2.6995755945173459E-031 + 20.640000000000001 -2.9490764640188207E-031 + 20.700000000000003 -3.0652936099859555E-031 + 20.759999999999991 -3.0130172813916245E-031 + 20.819999999999993 -2.7606480974581408E-031 + 20.879999999999995 -2.2829920337436017E-031 + 20.939999999999998 -1.5641963343469006E-031 + 21.000000000000000 -6.0065392281598345E-032 + 21.060000000000002 5.9632276123855603E-032 + 21.120000000000005 1.9982834250522339E-031 + 21.179999999999993 3.5581149435216926E-031 + 21.239999999999995 5.2094450115364021E-031 + 21.299999999999997 6.8671985227504196E-031 + 21.359999999999999 8.4294846326489677E-031 + 21.420000000000002 9.7809484587052517E-031 + 21.480000000000004 1.0797633327979548E-030 + 21.539999999999992 1.1353327287708155E-030 + 21.599999999999994 1.1327232593186613E-030 + 21.659999999999997 1.0612703235525011E-030 + 21.719999999999999 9.1266620445912711E-031 + 21.780000000000001 6.8191893067322129E-031 + 21.840000000000003 3.6826832844381158E-031 + 21.899999999999991 -2.4010942796771010E-032 + 21.959999999999994 -4.8499228839370434E-031 + 22.019999999999996 -9.9874120311119219E-031 + 22.079999999999998 -1.5432910735513240E-030 + 22.140000000000001 -2.0910093983905246E-030 + 22.200000000000003 -2.6094006775061692E-030 + 22.259999999999991 -3.0623658037614042E-030 + 22.319999999999993 -3.4119140092515789E-030 + 22.379999999999995 -3.6202883884600401E-030 + 22.439999999999998 -3.6524316968337250E-030 + 22.500000000000000 -3.4786824238090432E-030 + 22.560000000000002 -3.0775582095521664E-030 + 22.619999999999990 -2.4384456739082355E-030 + 22.679999999999993 -1.5639980342727437E-030 + 22.739999999999995 -4.7202709008627919E-031 + 22.799999999999997 8.0333379879743962E-031 + 22.859999999999999 2.2113925673865949E-030 + 22.920000000000002 3.6857652904267373E-030 + 22.980000000000004 5.1464695529040533E-030 + 23.039999999999992 6.5033015590861085E-030 + 23.099999999999994 7.6604692094785928E-030 + 23.159999999999997 8.5223651631267126E-030 + 23.219999999999999 9.0002486522298664E-030 + 23.280000000000001 9.0195030236842189E-030 + 23.340000000000003 8.5270304755836372E-030 + 23.399999999999991 7.4982592174836740E-030 + 23.459999999999994 5.9431675856211075E-030 + 23.519999999999996 3.9106944770776113E-030 + 23.579999999999998 1.4909084965750855E-030 + 23.640000000000001 -1.1856362418229003E-030 + 23.700000000000003 -3.9518305386133384E-030 + 23.759999999999991 -6.6115329420374491E-030 + 23.819999999999993 -8.9507831175117165E-030 + 23.879999999999995 -1.0752531628035483E-029 + 23.939999999999998 -1.1814415719848907E-029 + 24.000000000000000 -1.1968774730259913E-029 + 24.060000000000002 -1.1103767356413491E-029 + 24.119999999999990 -9.1841263222305363E-030 + 24.179999999999993 -6.2698277668920905E-030 + 24.239999999999995 -2.5307287127307851E-030 + 24.299999999999997 1.7448542590162934E-030 + 24.359999999999999 6.1496296380247299E-030 + 24.420000000000002 1.0166690093715427E-029 + 24.480000000000004 1.3190214706248587E-029 + 24.539999999999992 1.4558407825088869E-029 + 24.599999999999994 1.3598867899721165E-029 + 24.659999999999997 9.6856753989658270E-030 + 24.719999999999999 2.3064573248364546E-030 + 24.780000000000001 -8.8634729651678019E-030 + 24.840000000000003 -2.3883922388061610E-029 + 24.899999999999991 -4.2474765085210524E-029 + 24.959999999999994 -6.3949202299257660E-029 + 25.019999999999996 -8.7162344695954536E-029 + 25.079999999999998 -1.1048252285359574E-028 + 25.140000000000001 -1.3179281407463426E-028 + 25.200000000000003 -1.4852987462412722E-028 + 25.259999999999991 -1.5776594834939821E-028 + 25.319999999999993 -1.5633848674045530E-028 + 25.379999999999995 -1.4102916149351547E-028 + 25.439999999999998 -1.0879141229142146E-028 + 25.500000000000000 -5.7021713169956004E-029 + 25.560000000000002 1.6133858719999947E-029 + 25.619999999999990 1.1145091730819627E-028 + 25.679999999999993 2.2829306727168891E-028 + 25.739999999999995 3.6429512813745703E-028 + 25.799999999999997 5.1508814307091785E-028 + 25.859999999999999 6.7409465668011485E-028 + 25.920000000000002 8.3242390264189631E-028 + 25.980000000000004 9.7889691284219132E-028 + 26.039999999999992 1.1002295990230640E-027 + 26.099999999999994 1.1813978596295153E-027 + 26.159999999999997 1.2062032565586344E-027 + 26.219999999999999 1.1580473831607320E-027 + 26.280000000000001 1.0209134722248798E-027 + 26.340000000000003 7.8053994923254840E-028 + 26.399999999999991 4.2575427470764813E-028 + 26.459999999999994 -5.0079353410634550E-029 + 26.519999999999996 -6.4756389613914567E-028 + 26.579999999999998 -1.3598064163866849E-027 + 26.640000000000001 -2.1710845727024231E-027 + 26.700000000000003 -3.0557530045472388E-027 + 26.759999999999991 -3.9775106529155116E-027 + 26.819999999999993 -4.8891462653267697E-027 + 26.879999999999995 -5.7328901568886938E-027 + 26.939999999999998 -6.4414752530842269E-027 + 27.000000000000000 -6.9400030618807386E-027 + 27.060000000000002 -7.1486724810854280E-027 + 27.119999999999990 -6.9864040617773349E-027 + 27.179999999999993 -6.3753309414852675E-027 + 27.239999999999995 -5.2460833302504618E-027 + 27.299999999999997 -3.5437323085828206E-027 + 27.359999999999999 -1.2341792410396475E-027 + 27.420000000000002 1.6892726652045150E-027 + 27.480000000000004 5.1995085509069029E-027 + 27.539999999999992 9.2297540510261780E-027 + 27.599999999999994 1.3668735980129800E-026 + 27.659999999999997 1.8357343118258136E-026 + 27.719999999999999 2.3087279472623282E-026 + 27.780000000000001 2.7602201642664468E-026 + 27.840000000000003 3.1601801004598446E-026 + 27.899999999999991 3.4749199124198804E-026 + 27.959999999999994 3.6681916416325269E-026 + 28.019999999999996 3.7026560475023338E-026 + 28.079999999999998 3.5417166153989176E-026 + 28.140000000000001 3.1516937389076083E-026 + 28.200000000000003 2.5042849894241125E-026 + 28.259999999999991 1.5792392190643576E-026 + 28.319999999999993 3.6713866146793198E-027 + 28.379999999999995 -1.1278402323109322E-026 + 28.439999999999998 -2.8853418331169161E-026 + 28.500000000000000 -4.8665951142807348E-026 + 28.560000000000002 -7.0127220310137806E-026 + 28.619999999999990 -9.2437828805008109E-026 + 28.679999999999993 -1.1458763974110024E-025 + 28.739999999999995 -1.3536687194334684E-025 + 28.799999999999997 -1.5339009559608834E-025 + 28.859999999999999 -1.6713438780994843E-025 + 28.920000000000002 -1.7499233808982439E-025 + 28.980000000000004 -1.7534005737801536E-025 + 29.039999999999992 -1.6661949617428067E-025 + 29.099999999999994 -1.4743350127341716E-025 + 29.159999999999997 -1.1665110758728263E-025 + 29.219999999999999 -7.3519437434778836E-026 + 29.280000000000001 -1.7777665290381798E-026 + 29.340000000000003 5.0232460425322184E-026 + 29.399999999999991 1.2946621151284934E-025 + 29.459999999999994 2.1809243315081514E-025 + 29.519999999999996 3.1343485330905297E-025 + 29.579999999999998 4.1194587767361060E-025 + 29.640000000000001 5.0922044897389310E-025 + 29.700000000000003 6.0005651977793586E-025 + 29.759999999999991 6.7856826260235020E-025 + 29.819999999999993 7.3835585133466548E-025 + 29.879999999999995 7.7273379012387992E-025 + 29.939999999999998 7.7501691396973845E-025 + 30.000000000000000 7.3886055036411077E-025 + 30.060000000000002 6.5864676932599892E-025 + 30.119999999999990 5.2990669011873074E-025 + 30.179999999999993 3.4976309877551958E-025 + 30.239999999999995 1.1737515207568929E-025 + 30.299999999999997 -1.6563739633377013E-025 + 30.359999999999999 -4.9481517783210549E-025 + 30.420000000000002 -8.6255306519231504E-025 + 30.480000000000004 -1.2578960095449263E-024 + 30.539999999999992 -1.6664649844062777E-024 + 30.599999999999994 -2.0705411275018352E-024 + 30.659999999999997 -2.4493315994136872E-024 + 30.719999999999999 -2.7794387824278221E-024 + 30.780000000000001 -3.0355425484472684E-024 + 30.840000000000003 -3.1913039444965312E-024 + 30.899999999999991 -3.2204818317725632E-024 + 30.959999999999994 -3.0982469529820136E-024 + 31.019999999999996 -2.8026627769914010E-024 + 31.079999999999998 -2.3162895207279398E-024 + 31.140000000000001 -1.6278540870998275E-024 + 31.200000000000003 -7.3391519948486027E-025 + 31.259999999999991 3.5955984850385315E-025 + 31.319999999999993 1.6357990884935818E-024 + 31.379999999999995 3.0661113358734354E-024 + 31.439999999999998 4.6091592715865203E-024 + 31.500000000000000 6.2107194843411642E-024 + 31.560000000000002 7.8040324420127250E-024 + 31.619999999999990 9.3108218090246104E-024 + 31.679999999999993 1.0643056177065539E-023 + 31.739999999999995 1.1705494261106778E-023 + 31.799999999999997 1.2399026361034226E-023 + 31.859999999999999 1.2624785353383945E-023 + 31.920000000000002 1.2288963503609308E-023 + 31.980000000000004 1.1308224768700119E-023 + 32.039999999999992 9.6155514766486189E-024 + 32.099999999999994 7.1663160481350976E-024 + 32.159999999999997 3.9443279268266107E-024 + 32.219999999999999 -3.2449539228672223E-026 + 32.280000000000001 -4.7068332662215340E-024 + 32.340000000000003 -9.9783682409039509E-024 + 32.399999999999991 -1.5700655766235933E-023 + 32.459999999999994 -2.1680425866308071E-023 + 32.519999999999996 -2.7678698007052244E-023 + 32.579999999999998 -3.3414328195981945E-023 + 32.640000000000001 -3.8570166659331315E-023 + 32.700000000000003 -4.2802002303865919E-023 + 32.759999999999991 -4.5750318352043039E-023 + 32.819999999999993 -4.7054758272867490E-023 + 32.879999999999995 -4.6371103514755922E-023 + 32.939999999999998 -4.3390369072634032E-023 + 33.000000000000000 -3.7859427334035467E-023 + 33.060000000000002 -2.9602484875499194E-023 + 33.119999999999990 -1.8542501233586052E-023 + 33.179999999999993 -4.7215342814664035E-024 + 33.239999999999995 1.1681143260292728E-023 + 33.299999999999997 3.0334366205302961E-023 + 33.359999999999999 5.0745148093339375E-023 + 33.420000000000002 7.2254724015391034E-023 + 33.480000000000004 9.4041760392034354E-023 + 33.539999999999992 1.1513378365178495E-022 + 33.599999999999994 1.3442764266060848E-022 + 33.659999999999997 1.5071952642530148E-022 + 33.719999999999999 1.6274468334339982E-022 + 33.780000000000001 1.6922665689037591E-022 + 33.840000000000003 1.6893516640787197E-022 + 33.899999999999991 1.6075139734892707E-022 + 33.959999999999994 1.4373889439846675E-022 + 34.019999999999996 1.1721757350880534E-022 + 34.079999999999998 8.0837866946445209E-023 + 34.140000000000001 3.4651664743134427E-023 + 34.200000000000003 -2.0823864983996293E-023 + 34.259999999999991 -8.4553749397895029E-023 + 34.319999999999993 -1.5494813427755395E-022 + 34.379999999999995 -2.2984512045992163E-022 + 34.439999999999998 -3.0651714942855548E-022 + 34.500000000000000 -3.8170492808033592E-022 + 34.560000000000002 -4.5168127160867515E-022 + 34.619999999999990 -5.1234703708535931E-022 + 34.679999999999993 -5.5935987644367656E-022 + 34.739999999999995 -5.8829442419686567E-022 + 34.799999999999997 -5.9483279822155335E-022 + 34.859999999999999 -5.7498003851667433E-022 + 34.920000000000002 -5.2529968628115361E-022 + 34.980000000000004 -4.4316125379300793E-022 + 35.039999999999992 -3.2699010200535652E-022 + 35.099999999999994 -1.7650896097602250E-022 + 35.159999999999997 7.0412583502741833E-024 + 35.219999999999999 2.2071501122653264E-022 + 35.280000000000001 4.5972355350909255E-022 + 35.340000000000003 7.1735780324372398E-022 + 35.399999999999991 9.8498632160856242E-022 + 35.459999999999994 1.2521395097273492E-021 + 35.519999999999996 1.5066893768800631E-021 + 35.579999999999998 1.7351324978796572E-021 + 35.640000000000001 1.9229780194348660E-021 + 35.700000000000003 2.0552404768112401E-021 + 35.759999999999991 2.1170303274288365E-021 + 35.819999999999993 2.0942315494039350E-021 + 35.879999999999995 1.9742497714775692E-021 + 35.939999999999998 1.7468072258360002E-021 + 36.000000000000000 1.4047577492418886E-021 + 36.060000000000002 9.4488813325146493E-022 + 36.119999999999990 3.6866976058880920E-022 + 36.179999999999993 -3.1708157787506166E-022 + 36.239999999999995 -1.0996771911117875E-021 + 36.299999999999997 -1.9602033265475362E-021 + 36.359999999999999 -2.8733858286248943E-021 + 36.420000000000002 -3.8077072922416580E-021 + 36.479999999999990 -4.7258117925239893E-021 + 36.539999999999992 -5.5852205758593775E-021 + 36.599999999999994 -6.3393721284244177E-021 + 36.659999999999997 -6.9389913956242018E-021 + 36.719999999999999 -7.3337793393048378E-021 + 36.780000000000001 -7.4743931202348881E-021 + 36.840000000000003 -7.3146820298124747E-021 + 36.899999999999991 -6.8141202944841233E-021 + 36.959999999999994 -5.9403619975471850E-021 + 37.019999999999996 -4.6718348802044488E-021 + 37.079999999999998 -3.0002709232037520E-021 + 37.140000000000001 -9.3305944272985620E-022 + 37.200000000000003 1.5046908260395663E-021 + 37.259999999999991 4.2685139407105074E-021 + 37.319999999999993 7.2934862286457327E-021 + 37.379999999999995 1.0493787977514873E-020 + 37.439999999999998 1.3763035635025564E-020 + 37.500000000000000 1.6975474968809790E-020 + 37.560000000000002 1.9988107353065736E-020 + 37.619999999999990 2.2643788924705522E-020 + 37.679999999999993 2.4775327027413990E-020 + 37.739999999999995 2.6210532460695215E-020 + 37.799999999999997 2.6778179329066203E-020 + 37.859999999999999 2.6314760182512017E-020 + 37.920000000000002 2.4671880140811601E-020 + 37.979999999999990 2.1724114802641322E-020 + 38.039999999999992 1.7377081263489712E-020 + 38.099999999999994 1.1575436792022631E-020 + 38.159999999999997 4.3105429896166033E-021 + 38.219999999999999 -4.3725972291433661E-021 + 38.280000000000001 -1.4369432851854078E-020 + 38.340000000000003 -2.5511382155915486E-020 + 38.399999999999991 -3.7563102127834240E-020 + 38.459999999999994 -5.0221893088905603E-020 + 38.519999999999996 -6.3119476194132256E-020 + 38.579999999999998 -7.5826495306437229E-020 + 38.640000000000001 -8.7859900127901794E-020 + 38.700000000000003 -9.8693327404373045E-020 + 38.759999999999991 -1.0777056048246693E-019 + 38.819999999999993 -1.1452202401023432E-019 + 38.879999999999995 -1.1838408283267828E-019 + 38.939999999999998 -1.1882091600545546E-019 + 39.000000000000000 -1.1534853133450588E-019 + 39.060000000000002 -1.0756038626830656E-019 + 39.119999999999990 -9.5153919835501546E-020 + 39.179999999999993 -7.7957257838615870E-020 + 39.239999999999995 -5.5955090428295574E-020 + 39.299999999999997 -2.9312855753572396E-020 + 39.359999999999999 1.6019837401722304E-021 + 39.420000000000002 3.6202607405617941E-020 + 39.479999999999990 7.3670612949730538E-020 + 39.539999999999992 1.1295009103484519E-019 + 39.599999999999994 1.5274894486306697E-019 + 39.659999999999997 1.9154857458123197E-019 + 39.719999999999999 2.2762257667723867E-019 + 39.780000000000001 2.5906521892454156E-019 + 39.840000000000003 2.8383003883401207E-019 + 39.899999999999991 2.9977850972477500E-019 + 39.959999999999994 3.0473866927556761E-019 + 40.019999999999996 2.9657302665187500E-019 + 40.079999999999998 2.7325460592758936E-019 + 40.140000000000001 2.3294982577268755E-019 + 40.200000000000003 1.7410611392575209E-019 + 40.259999999999991 9.5542240434163329E-020 + 40.319999999999993 -3.4617113688476098E-021 + 40.379999999999995 -1.2307742062158767E-019 + 40.439999999999998 -2.6284810567963048E-019 + 40.500000000000000 -4.2161824499232193E-019 + 40.560000000000002 -5.9747702606008304E-019 + 40.619999999999990 -7.8771911344442251E-019 + 40.679999999999993 -9.8882564564315185E-019 + 40.739999999999995 -1.1964698437958504E-018 + 40.799999999999997 -1.4055481271959206E-018 + 40.859999999999999 -1.6102398351905488E-018 + 40.920000000000002 -1.8040964292016047E-018 + 40.979999999999990 -1.9801603157059372E-018 + 41.039999999999992 -2.1311122560039675E-018 + 41.099999999999994 -2.2494451145687669E-018 + 41.159999999999997 -2.3276620148095157E-018 + 41.219999999999999 -2.3584910996071338E-018 + 41.280000000000001 -2.3351144129436319E-018 + 41.340000000000003 -2.2514019415268148E-018 + 41.399999999999991 -2.1021410889833820E-018 + 41.459999999999994 -1.8832551077754617E-018 + 41.519999999999996 -1.5919981106644967E-018 + 41.579999999999998 -1.2271167962817722E-018 + 41.640000000000001 -7.8896818320338080E-019 + 41.700000000000003 -2.7958242150695813E-019 + 41.759999999999991 2.9734025684713479E-019 + 41.819999999999993 9.3650424163256801E-019 + 41.879999999999995 1.6311779672661901E-018 + 41.939999999999998 2.3734385995293229E-018 + 42.000000000000000 3.1545103433466043E-018 + 42.060000000000002 3.9651959934566021E-018 + 42.119999999999990 4.7963981422173250E-018 + 42.179999999999993 5.6397344596624083E-018 + 42.239999999999995 6.4882282847984121E-018 + 42.299999999999997 7.3370773592914337E-018 + 42.359999999999999 8.1844827537947308E-018 + 42.420000000000002 9.0325257874035698E-018 + 42.479999999999990 9.8880785480192539E-018 + 42.539999999999992 1.0763723173595029E-017 + 42.599999999999994 1.1678687064848278E-017 + 42.659999999999997 1.2659746474643701E-017 + 42.719999999999999 1.3742105635182200E-017 + 42.780000000000001 1.4970233728145213E-017 + 42.840000000000003 1.6398653368979740E-017 + 42.899999999999991 1.8092664606219565E-017 + 42.959999999999994 2.0129005502507978E-017 + 43.019999999999996 2.2596480871186555E-017 + 43.079999999999998 2.5596518702989296E-017 + 43.140000000000001 2.9243732817691624E-017 + 43.200000000000003 3.3666448882930962E-017 + 43.259999999999991 3.9007260595001202E-017 + 43.319999999999993 4.5423657621325785E-017 + 43.379999999999995 5.3088727778969102E-017 + 43.439999999999998 6.2192003324061878E-017 + 43.500000000000000 7.2940465926360444E-017 + 43.560000000000002 8.5559739335004470E-017 + 43.619999999999990 1.0029562888065238E-016 + 43.679999999999993 1.1741583680610106E-016 + 43.739999999999995 1.3721209795076378E-016 + 43.799999999999997 1.6000254368333805E-016 + 43.859999999999999 1.8613448213296611E-016 + 43.920000000000002 2.1598769618659674E-016 + 43.979999999999990 2.4997779553116911E-016 + 44.039999999999992 2.8856004944533300E-016 + 44.099999999999994 3.3223367621814501E-016 + 44.159999999999997 3.8154620246099635E-016 + 44.219999999999999 4.3709790709949342E-016 + 44.280000000000001 4.9954687134307018E-016 + 44.340000000000003 5.6961343979099295E-016 + 44.399999999999991 6.4808530024893049E-016 + 44.459999999999994 7.3582141774500741E-016 + 44.519999999999996 8.3375704133421189E-016 + 44.579999999999998 9.4290702169212904E-016 + 44.640000000000001 1.0643694485385323E-015 + 44.700000000000003 1.1993279858011319E-015 + 44.759999999999991 1.3490539947436571E-015 + 44.819999999999993 1.5149072884123128E-015 + 44.879999999999995 1.6983349772372699E-015 + 44.939999999999998 1.9008711775054008E-015 + 45.000000000000000 2.1241330745863347E-015 + 45.060000000000002 2.3698157011733544E-015 + 45.119999999999990 2.6396854239833801E-015 + 45.179999999999993 2.9355706760114029E-015 + 45.239999999999995 3.2593508441836168E-015 + 45.299999999999997 3.6129410785201077E-015 + 45.359999999999999 3.9982736531128399E-015 + 45.420000000000002 4.4172777662123943E-015 + 45.479999999999990 4.8718518547495731E-015 + 45.539999999999992 5.3638325955375012E-015 + 45.599999999999994 5.8949577174281228E-015 + 45.659999999999997 6.4668212291423475E-015 + 45.719999999999999 7.0808217505734500E-015 + 45.780000000000001 7.7380979537690232E-015 + 45.840000000000003 8.4394581084954573E-015 + 45.899999999999991 9.1852917461578580E-015 + 45.959999999999994 9.9754706346328746E-015 + 46.019999999999996 1.0809231271933749E-014 + 46.079999999999998 1.1685034531280352E-014 + 46.140000000000001 1.2600408637644397E-014 + 46.200000000000003 1.3551757503787435E-014 + 46.259999999999991 1.4534147344316483E-014 + 46.319999999999993 1.5541054639617726E-014 + 46.379999999999995 1.6564066598437378E-014 + 46.439999999999998 1.7592553181090933E-014 + 46.500000000000000 1.8613270126562367E-014 + 46.560000000000002 1.9609912546156792E-014 + 46.619999999999990 2.0562597755886806E-014 + 46.679999999999993 2.1447276768658633E-014 + 46.739999999999995 2.2235051386037364E-014 + 46.799999999999997 2.2891394655165749E-014 + 46.859999999999999 2.3375270656315915E-014 + 46.920000000000002 2.3638122387791271E-014 + 46.979999999999990 2.3622721272342786E-014 + 47.039999999999992 2.3261859172458679E-014 + 47.099999999999994 2.2476874744775594E-014 + 47.159999999999997 2.1175965307802480E-014 + 47.219999999999999 1.9252300685912250E-014 + 47.280000000000001 1.6581893213733605E-014 + 47.340000000000003 1.3021170398722594E-014 + 47.399999999999991 8.4042840018672900E-015 + 47.459999999999994 2.5400405449862648E-015 + 47.519999999999996 -4.7914876176938406E-015 + 47.579999999999998 -1.3842815696444686E-014 + 47.640000000000001 -2.4903291792922429E-014 + 47.700000000000003 -3.8303932248339450E-014 + 47.759999999999991 -5.4422730141650424E-014 + 47.819999999999993 -7.3690621766986848E-014 + 47.879999999999995 -9.6598151378055289E-014 + 47.939999999999998 -1.2370284754763607E-013 + 48.000000000000000 -1.5563741192322270E-013 + 48.060000000000002 -1.9311883670066168E-013 + 48.119999999999990 -2.3695859184698136E-013 + 48.179999999999993 -2.8807373529318910E-013 + 48.239999999999995 -3.4749948134733058E-013 + 48.299999999999997 -4.1640265137856676E-013 + 48.359999999999999 -4.9609713017017583E-013 + 48.420000000000002 -5.8806026628112363E-013 + 48.479999999999990 -6.9395122732602571E-013 + 48.539999999999992 -8.1563158316243262E-013 + 48.599999999999994 -9.5518699029183450E-013 + 48.659999999999997 -1.1149517312954008E-012 + 48.719999999999999 -1.2975349022033081E-012 + 48.780000000000001 -1.5058494633500999E-012 + 48.840000000000003 -1.7431438535323542E-012 + 48.899999999999991 -2.0130356578842401E-012 + 48.959999999999994 -2.3195486282391768E-012 + 49.019999999999996 -2.6671545297401833E-012 + 49.079999999999998 -3.0608139439601635E-012 + 49.140000000000001 -3.5060239160078216E-012 + 49.200000000000003 -4.0088702082742454E-012 + 49.259999999999991 -4.5760766677623624E-012 + 49.319999999999993 -5.2150686244085706E-012 + 49.379999999999995 -5.9340291681413393E-012 + 49.439999999999998 -6.7419668867668652E-012 + 49.500000000000000 -7.6487865880477117E-012 + 49.560000000000002 -8.6653616544849138E-012 + 49.619999999999990 -9.8036108523172348E-012 + 49.679999999999993 -1.1076582852029669E-011 + 49.739999999999995 -1.2498543937040495E-011 + 49.799999999999997 -1.4085063723332822E-011 + 49.859999999999999 -1.5853112926524803E-011 + 49.920000000000002 -1.7821153242705425E-011 + 49.979999999999990 -2.0009249800680770E-011 + 50.039999999999992 -2.2439168210858972E-011 + 50.099999999999994 -2.5134473238254323E-011 + 50.159999999999997 -2.8120651102553852E-011 + 50.219999999999999 -3.1425199422896317E-011 + 50.280000000000001 -3.5077744183031004E-011 + 50.340000000000003 -3.9110133293321296E-011 + 50.399999999999991 -4.3556555549233772E-011 + 50.459999999999994 -4.8453611312262822E-011 + 50.519999999999996 -5.3840398296724002E-011 + 50.579999999999998 -5.9758599156748718E-011 + 50.640000000000001 -6.6252539111571145E-011 + 50.700000000000003 -7.3369206724732699E-011 + 50.759999999999991 -8.1158273184962999E-011 + 50.819999999999993 -8.9672095765876060E-011 + 50.879999999999995 -9.8965657911190034E-011 + 50.939999999999998 -1.0909644806142431E-010 + 51.000000000000000 -1.2012434459579508E-010 + 51.060000000000002 -1.3211136777396448E-010 + 51.119999999999990 -1.4512144473474147E-010 + 51.179999999999993 -1.5921999086736024E-010 + 51.239999999999995 -1.7447346758592368E-010 + 51.299999999999997 -1.9094872510953539E-010 + 51.359999999999999 -2.0871235506843626E-010 + 51.420000000000002 -2.2782964839573733E-010 + 51.479999999999990 -2.4836360820810057E-010 + 51.539999999999992 -2.7037367112213748E-010 + 51.599999999999994 -2.9391403686297205E-010 + 51.659999999999997 -3.1903182434566689E-010 + 51.719999999999999 -3.4576496300198612E-010 + 51.780000000000001 -3.7413955244360881E-010 + 51.840000000000003 -4.0416687614962001E-010 + 51.899999999999991 -4.3583989917541569E-010 + 51.959999999999994 -4.6912930512116151E-010 + 52.019999999999996 -5.0397860437218433E-010 + 52.079999999999998 -5.4029894046258806E-010 + 52.140000000000001 -5.7796286147802241E-010 + 52.200000000000003 -6.1679677379359904E-010 + 52.259999999999991 -6.5657338539327756E-010 + 52.319999999999993 -6.9700198687727340E-010 + 52.379999999999995 -7.3771790108384169E-010 + 52.439999999999998 -7.7827026938699899E-010 + 52.500000000000000 -8.1810860524762993E-010 + 52.560000000000002 -8.5656687535203050E-010 + 52.619999999999990 -8.9284591914083572E-010 + 52.679999999999993 -9.2599354111226466E-010 + 52.739999999999995 -9.5488202179293447E-010 + 52.799999999999997 -9.7818276707094018E-010 + 52.859999999999999 -9.9433749322352211E-010 + 52.920000000000002 -1.0015263731339769E-009 + 52.979999999999990 -9.9763196983131852E-010 + 53.039999999999992 -9.8019861909736918E-010 + 53.099999999999994 -9.4638743732925740E-010 + 53.159999999999997 -8.9292570048927011E-010 + 53.219999999999999 -8.1605032016586167E-010 + 53.280000000000001 -7.1144472408243660E-010 + 53.339999999999989 -5.7416886942743936E-010 + 53.399999999999991 -3.9858077470605839E-010 + 53.459999999999994 -1.7824962984839101E-010 + 53.519999999999996 9.4140040346126187E-011 + 53.579999999999998 4.2689754072088945E-010 + 53.640000000000001 8.2944340124380071E-010 + 53.700000000000003 1.3124412647166977E-009 + 53.759999999999991 1.8879438300420930E-009 + 53.819999999999993 2.5695530416330481E-009 + 53.879999999999995 3.3726024414533313E-009 + 53.939999999999998 4.3143468754992183E-009 + 54.000000000000000 5.4141865638519488E-009 + 54.060000000000002 6.6939018268694356E-009 + 54.119999999999990 8.1779181843131360E-009 + 54.179999999999993 9.8935948077687569E-009 + 54.239999999999995 1.1871546890667088E-008 + 54.299999999999997 1.4145992322675481E-008 + 54.359999999999999 1.6755144398973773E-008 + 54.420000000000002 1.9741624887842096E-008 + 54.479999999999990 2.3152923973830875E-008 + 54.539999999999992 2.7041929894332490E-008 + 54.599999999999994 3.1467458996036624E-008 + 54.659999999999997 3.6494887369859303E-008 + 54.719999999999999 4.2196790027622217E-008 + 54.780000000000001 4.8653706900866244E-008 + 54.839999999999989 5.5954902908983715E-008 + 54.899999999999991 6.4199254280087643E-008 + 54.959999999999994 7.3496179347818780E-008 + 55.019999999999996 8.3966701673771406E-008 + 55.079999999999998 9.5744534027610539E-008 + 55.140000000000001 1.0897733353978636E-007 + 55.200000000000003 1.2382801498662587E-007 + 55.259999999999991 1.4047621781460494E-007 + 55.319999999999993 1.5911987294173679E-007 + 55.379999999999995 1.7997688889618811E-007 + 55.439999999999998 2.0328706138911420E-007 + 55.500000000000000 2.2931404826607274E-007 + 55.560000000000002 2.5834751021598234E-007 + 55.619999999999990 2.9070555592210739E-007 + 55.679999999999993 3.2673730108737926E-007 + 55.739999999999995 3.6682553366965134E-007 + 55.799999999999997 4.1138980780085241E-007 + 55.859999999999999 4.6088958846397080E-007 + 55.920000000000002 5.1582787917096208E-007 + 55.979999999999990 5.7675483209992138E-007 + 56.039999999999992 6.4427182570191089E-007 + 56.099999999999994 7.1903600549802231E-007 + 56.159999999999997 8.0176485283061890E-007 + 56.219999999999999 8.9324109638200283E-007 + 56.280000000000001 9.9431850642400199E-007 + 56.339999999999989 1.1059276200225737E-006 + 56.399999999999991 1.2290820114361867E-006 + 56.459999999999994 1.3648845356732990E-006 + 56.519999999999996 1.5145356903574758E-006 + 56.579999999999998 1.6793400512873475E-006 + 56.640000000000001 1.8607157749957896E-006 + 56.700000000000003 2.0602027614747488E-006 + 56.759999999999991 2.2794719487563274E-006 + 56.819999999999993 2.5203354483163004E-006 + 56.879999999999995 2.7847584491601006E-006 + 56.939999999999998 3.0748693646668481E-006 + 57.000000000000000 3.3929726526467345E-006 + 57.060000000000002 3.7415616770496328E-006 + 57.119999999999990 4.1233327463485295E-006 + 57.179999999999993 4.5411999566462108E-006 + 57.239999999999995 4.9983101272932530E-006 + 57.299999999999997 5.4980590600899990E-006 + 57.359999999999999 6.0441123815907438E-006 + 57.420000000000002 6.6404195096355046E-006 + 57.479999999999990 7.2912366595988428E-006 + 57.539999999999992 8.0011446970415006E-006 + 57.599999999999994 8.7750745505654905E-006 + 57.659999999999997 9.6183272223932026E-006 + 57.719999999999999 1.0536600119107505E-005 + 57.780000000000001 1.1536011653925223E-005 + 57.839999999999989 1.2623126543420034E-005 + 57.899999999999991 1.3804988136743936E-005 + 57.959999999999994 1.5089146711632017E-005 + 58.019999999999996 1.6483685725762185E-005 + 58.079999999999998 1.7997261616470790E-005 + 58.140000000000001 1.9639132154079874E-005 + 58.200000000000003 2.1419193812745058E-005 + 58.259999999999991 2.3348017856963572E-005 + 58.319999999999993 2.5436894530288582E-005 + 58.379999999999995 2.7697858278873417E-005 + 58.439999999999998 3.0143746865561254E-005 + 58.500000000000000 3.2788232389421561E-005 + 58.560000000000002 3.5645871485333546E-005 + 58.619999999999990 3.8732148618829084E-005 + 58.679999999999993 4.2063526972503368E-005 + 58.739999999999995 4.5657497912219058E-005 + 58.799999999999997 4.9532609208677421E-005 + 58.859999999999999 5.3708558259636640E-005 + 58.920000000000002 5.8206219441220821E-005 + 58.979999999999990 6.3047691298253553E-005 + 59.039999999999992 6.8256373687875340E-005 + 59.099999999999994 7.3857000250684572E-005 + 59.159999999999997 7.9875717795485691E-005 + 59.219999999999999 8.6340144176570927E-005 + 59.280000000000001 9.3279403866337711E-005 + 59.339999999999989 1.0072420999602622E-004 + 59.399999999999991 1.0870692139598242E-004 + 59.459999999999994 1.1726159845828837E-004 + 59.519999999999996 1.2642405746686892E-004 + 59.579999999999998 1.3623195631838047E-004 + 59.640000000000001 1.4672481914903182E-004 + 59.700000000000003 1.5794411133367858E-004 + 59.759999999999991 1.6993333892519714E-004 + 59.819999999999993 1.8273803305320243E-004 + 59.879999999999995 1.9640586740701747E-004 + 59.939999999999998 2.1098666356828542E-004 + 60.000000000000000 2.2653249856661697E-004 + 60.060000000000002 2.4309773485761154E-004 + 60.119999999999990 2.6073902429538657E-004 + 60.179999999999993 2.7951543945909285E-004 + 60.239999999999995 2.9948844642748351E-004 + 60.299999999999997 3.2072197702333360E-004 + 60.359999999999999 3.4328245035327522E-004 + 60.420000000000002 3.6723883734072631E-004 + 60.479999999999990 3.9266267445729693E-004 + 60.539999999999992 4.1962795583898305E-004 + 60.599999999999994 4.4821130688814782E-004 + 60.659999999999997 4.7849207548695025E-004 + 60.719999999999999 5.1055210109392669E-004 + 60.780000000000001 5.4447580527332100E-004 + 60.839999999999989 5.8035029323977891E-004 + 60.899999999999991 6.1826516261891834E-004 + 60.959999999999994 6.5831247649119913E-004 + 61.019999999999996 7.0058693648222684E-004 + 61.079999999999998 7.4518560192936994E-004 + 61.140000000000001 7.9220802647743838E-004 + 61.200000000000003 8.4175598000685412E-004 + 61.259999999999991 8.9393355876865425E-004 + 61.319999999999993 9.4884698741132224E-004 + 61.379999999999995 1.0066046462868065E-003 + 61.439999999999998 1.0673169441842881E-003 + 61.500000000000000 1.1310957927146764E-003 + 61.560000000000002 1.1980551914140918E-003 + 61.619999999999990 1.2683104718465320E-003 + 61.679999999999993 1.3419783095843948E-003 + 61.739999999999995 1.4191767938025277E-003 + 61.799999999999997 1.5000250336501080E-003 + 61.859999999999999 1.5846426853938010E-003 + 61.920000000000002 1.6731503840865564E-003 + 61.979999999999990 1.7656687720989058E-003 + 62.039999999999992 1.8623191207717486E-003 + 62.099999999999994 1.9632220512644308E-003 + 62.159999999999997 2.0684980733988931E-003 + 62.219999999999999 2.1782671602839799E-003 + 62.280000000000001 2.2926477772220251E-003 + 62.339999999999989 2.4117577817185641E-003 + 62.399999999999991 2.5357126740369325E-003 + 62.459999999999994 2.6646265740975597E-003 + 62.519999999999996 2.7986111471022461E-003 + 62.579999999999998 2.9377750829034295E-003 + 62.640000000000001 3.0822243847724775E-003 + 62.700000000000003 3.2320617228335418E-003 + 62.759999999999991 3.3873853052435684E-003 + 62.819999999999993 3.5482894289861804E-003 + 62.879999999999995 3.7148640649012753E-003 + 62.939999999999998 3.8871937538975726E-003 + 63.000000000000000 4.0653571949847240E-003 + 63.060000000000002 4.2494277007163661E-003 + 63.119999999999990 4.4394719578115232E-003 + 63.179999999999993 4.6355501048066091E-003 + 63.239999999999995 4.8377140638311538E-003 + 63.299999999999997 5.0460093505510072E-003 + 63.359999999999999 5.2604725878973814E-003 + 63.420000000000002 5.4811311032639653E-003 + 63.479999999999990 5.7080045823956612E-003 + 63.539999999999992 5.9411019249335749E-003 + 63.599999999999994 6.1804233837132591E-003 + 63.659999999999997 6.4259575723772146E-003 + 63.719999999999999 6.6776827882819908E-003 + 63.780000000000001 6.9355664454651749E-003 + 63.839999999999989 7.1995650221471355E-003 + 63.899999999999991 7.4696212028467083E-003 + 63.959999999999994 7.7456665183682702E-003 + 64.019999999999996 8.0276205866197450E-003 + 64.079999999999998 8.3153883226175299E-003 + 64.140000000000001 8.6088628274247365E-003 + 64.200000000000003 8.9079222929706828E-003 + 64.259999999999991 9.2124328784794953E-003 + 64.319999999999993 9.5222461662387882E-003 + 64.379999999999995 9.8371982033020940E-003 + 64.439999999999998 1.0157111811468639E-002 + 64.500000000000000 1.0481796362144231E-002 + 64.560000000000002 1.0811044818510048E-002 + 64.619999999999990 1.1144636069491580E-002 + 64.679999999999993 1.1482334084399375E-002 + 64.739999999999995 1.1823889881804616E-002 + 64.799999999999997 1.2169036908400389E-002 + 64.859999999999999 1.2517496363141048E-002 + 64.920000000000002 1.2868974347824903E-002 + 64.979999999999990 1.3223162218624525E-002 + 65.039999999999992 1.3579738427109160E-002 + 65.099999999999994 1.3938365688489787E-002 + 65.159999999999997 1.4298694912052637E-002 + 65.219999999999999 1.4660364642341531E-002 + 65.280000000000001 1.5022995664713160E-002 + 65.339999999999989 1.5386202879338130E-002 + 65.399999999999991 1.5749585477050902E-002 + 65.459999999999994 1.6112733209017224E-002 + 65.519999999999996 1.6475221643224600E-002 + 65.579999999999998 1.6836621473216590E-002 + 65.640000000000001 1.7196487880936417E-002 + 65.700000000000003 1.7554370657298011E-002 + 65.759999999999991 1.7909811292096945E-002 + 65.819999999999993 1.8262341959085653E-002 + 65.879999999999995 1.8611487035776544E-002 + 65.939999999999998 1.8956769793960826E-002 + 66.000000000000000 1.9297705243035989E-002 + 66.060000000000002 1.9633803294299791E-002 + 66.119999999999990 1.9964572630687273E-002 + 66.179999999999993 2.0289516948981057E-002 + 66.239999999999995 2.0608142408394994E-002 + 66.299999999999997 2.0919952726436344E-002 + 66.359999999999999 2.1224451659783372E-002 + 66.420000000000002 2.1521146626699725E-002 + 66.479999999999990 2.1809543719187408E-002 + 66.539999999999992 2.2089155296128947E-002 + 66.599999999999994 2.2359499372509896E-002 + 66.659999999999997 2.2620099403236272E-002 + 66.719999999999999 2.2870484363830688E-002 + 66.780000000000001 2.3110190267088795E-002 + 66.839999999999989 2.3338765346397537E-002 + 66.899999999999991 2.3555767338304889E-002 + 66.959999999999994 2.3760760815320199E-002 + 67.019999999999996 2.3953325181629185E-002 + 67.079999999999998 2.4133053587553362E-002 + 67.140000000000001 2.4299554428332922E-002 + 67.199999999999989 2.4452448125714829E-002 + 67.259999999999991 2.4591371120586274E-002 + 67.319999999999993 2.4715977318320547E-002 + 67.379999999999995 2.4825939546285550E-002 + 67.439999999999998 2.4920948535727485E-002 + 67.500000000000000 2.5000714154104660E-002 + 67.560000000000002 2.5064966660819841E-002 + 67.619999999999990 2.5113457356384657E-002 + 67.679999999999993 2.5145955918919004E-002 + 67.739999999999995 2.5162258641835925E-002 + 67.799999999999997 2.5162180186331096E-002 + 67.859999999999999 2.5145561644566220E-002 + 67.920000000000002 2.5112268269228296E-002 + 67.979999999999990 2.5062186483103235E-002 + 68.039999999999992 2.4995228750959494E-002 + 68.099999999999994 2.4911330604503731E-002 + 68.159999999999997 2.4810453360379361E-002 + 68.219999999999999 2.4692585893441921E-002 + 68.280000000000001 2.4557740108349962E-002 + 68.339999999999989 2.4405952302736476E-002 + 68.399999999999991 2.4237283641398481E-002 + 68.459999999999994 2.4051823593562768E-002 + 68.519999999999996 2.3849684949118471E-002 + 68.579999999999998 2.3631003891215377E-002 + 68.640000000000001 2.3395942021571470E-002 + 68.699999999999989 2.3144686720723638E-002 + 68.759999999999991 2.2877449665417892E-002 + 68.819999999999993 2.2594463707877519E-002 + 68.879999999999995 2.2295984523933329E-002 + 68.939999999999998 2.1982291517955398E-002 + 69.000000000000000 2.1653688682171449E-002 + 69.060000000000002 2.1310498056549412E-002 + 69.119999999999990 2.0953062884988615E-002 + 69.179999999999993 2.0581748551799034E-002 + 69.239999999999995 2.0196933863844798E-002 + 69.299999999999997 1.9799023312045583E-002 + 69.359999999999999 1.9388435550656488E-002 + 69.420000000000002 1.8965603607941962E-002 + 69.479999999999990 1.8530982800381027E-002 + 69.539999999999992 1.8085038184375683E-002 + 69.599999999999994 1.7628249418914305E-002 + 69.659999999999997 1.7161110638903646E-002 + 69.719999999999999 1.6684127179400099E-002 + 69.780000000000001 1.6197816083926352E-002 + 69.839999999999989 1.5702703687244555E-002 + 69.899999999999991 1.5199326139615124E-002 + 69.959999999999994 1.4688227176142814E-002 + 70.019999999999996 1.4169956959290009E-002 + 70.079999999999998 1.3645072490480069E-002 + 70.140000000000001 1.3114135641776926E-002 + 70.199999999999989 1.2577712642172082E-002 + 70.259999999999991 1.2036371306917065E-002 + 70.319999999999993 1.1490680798609472E-002 + 70.379999999999995 1.0941213311395779E-002 + 70.439999999999998 1.0388540619033267E-002 + 70.500000000000000 9.8332301850816844E-003 + 70.560000000000002 9.2758512811789949E-003 + 70.619999999999990 8.7169687588719517E-003 + 70.679999999999993 8.1571427518352738E-003 + 70.739999999999995 7.5969296529441533E-003 + 70.799999999999997 7.0368805795637491E-003 + 70.859999999999999 6.4775388142610871E-003 + 70.920000000000002 5.9194424245115193E-003 + 70.979999999999990 5.3631196784302343E-003 + 71.039999999999992 4.8090914765422021E-003 + 71.099999999999994 4.2578687493063814E-003 + 71.159999999999997 3.7099522558838843E-003 + 71.219999999999999 3.1658330884472815E-003 + 71.280000000000001 2.6259901219236759E-003 + 71.339999999999989 2.0908908316968314E-003 + 71.399999999999991 1.5609909241438269E-003 + 71.459999999999994 1.0367323499979979E-003 + 71.519999999999996 5.1854436526346944E-004 + 71.579999999999998 6.8434502188541432E-006 + 71.640000000000001 -4.9796946941139985E-004 + 71.699999999999989 -9.9550643976593174E-004 + 71.759999999999991 -1.4853947238377715E-003 + 71.819999999999993 -1.9672763979213352E-003 + 71.879999999999995 -2.4408090487787071E-003 + 71.939999999999998 -2.9056644438272151E-003 + 72.000000000000000 -3.3615310993833462E-003 + 72.060000000000002 -3.8081127725539715E-003 + 72.119999999999990 -4.2451288213037472E-003 + 72.179999999999993 -4.6723154516961039E-003 + 72.239999999999995 -5.0894234247955954E-003 + 72.299999999999997 -5.4962208127233188E-003 + 72.359999999999999 -5.8924905764733649E-003 + 72.420000000000002 -6.2780330117456692E-003 + 72.479999999999990 -6.6526640327636702E-003 + 72.539999999999992 -7.0162139486422293E-003 + 72.599999999999994 -7.3685313191356270E-003 + 72.659999999999997 -7.7094785961210367E-003 + 72.719999999999999 -8.0389352679862327E-003 + 72.780000000000001 -8.3567954865535390E-003 + 72.839999999999989 -8.6629692126581094E-003 + 72.899999999999991 -8.9573819106960762E-003 + 72.959999999999994 -9.2399740565637239E-003 + 73.019999999999996 -9.5107006373676330E-003 + 73.079999999999998 -9.7695309842972759E-003 + 73.140000000000001 -1.0016450801391944E-002 + 73.199999999999989 -1.0251458001868590E-002 + 73.259999999999991 -1.0474565092628436E-002 + 73.319999999999993 -1.0685799473858237E-002 + 73.379999999999995 -1.0885202114209062E-002 + 73.439999999999998 -1.1072825815535529E-002 + 73.500000000000000 -1.1248738306053288E-002 + 73.560000000000002 -1.1413018579981312E-002 + 73.619999999999990 -1.1565758746206568E-002 + 73.679999999999993 -1.1707062676073299E-002 + 73.739999999999995 -1.1837047342533116E-002 + 73.799999999999997 -1.1955840095935080E-002 + 73.859999999999999 -1.2063580282314719E-002 + 73.920000000000002 -1.2160417657633276E-002 + 73.979999999999990 -1.2246512857684513E-002 + 74.039999999999992 -1.2322038416999359E-002 + 74.099999999999994 -1.2387174182296803E-002 + 74.159999999999997 -1.2442112102390773E-002 + 74.219999999999999 -1.2487050056897157E-002 + 74.280000000000001 -1.2522198368818906E-002 + 74.339999999999989 -1.2547773340314854E-002 + 74.399999999999991 -1.2564000030385471E-002 + 74.459999999999994 -1.2571111635428060E-002 + 74.519999999999996 -1.2569348348318226E-002 + 74.579999999999998 -1.2558957546949667E-002 + 74.640000000000001 -1.2540192185831729E-002 + 74.699999999999989 -1.2513312024362965E-002 + 74.759999999999991 -1.2478582607002764E-002 + 74.819999999999993 -1.2436274533374902E-002 + 74.879999999999995 -1.2386661560640489E-002 + 74.939999999999998 -1.2330024259654040E-002 + 75.000000000000000 -1.2266643742918710E-002 + 75.060000000000002 -1.2196807851038719E-002 + 75.119999999999990 -1.2120805765681615E-002 + 75.179999999999993 -1.2038929724636915E-002 + 75.239999999999995 -1.1951471853978551E-002 + 75.299999999999997 -1.1858729191476930E-002 + 75.359999999999999 -1.1760996900241037E-002 + 75.420000000000002 -1.1658570882854965E-002 + 75.479999999999990 -1.1551748412209481E-002 + 75.539999999999992 -1.1440824582624378E-002 + 75.599999999999994 -1.1326095490036374E-002 + 75.659999999999997 -1.1207853790755283E-002 + 75.719999999999999 -1.1086391350309139E-002 + 75.780000000000001 -1.0961997311626502E-002 + 75.839999999999989 -1.0834958408791362E-002 + 75.899999999999991 -1.0705556806680071E-002 + 75.959999999999994 -1.0574072701056795E-002 + 76.019999999999996 -1.0440779782155612E-002 + 76.079999999999998 -1.0305948395352871E-002 + 76.140000000000001 -1.0169843962976263E-002 + 76.199999999999989 -1.0032725029620037E-002 + 76.259999999999991 -9.8948446499092391E-003 + 76.319999999999993 -9.7564513612394162E-003 + 76.379999999999995 -9.6177846388154145E-003 + 76.439999999999998 -9.4790775564152392E-003 + 76.500000000000000 -9.3405570989409034E-003 + 76.560000000000002 -9.2024407490264876E-003 + 76.619999999999990 -9.0649377321900381E-003 + 76.679999999999993 -8.9282512292749288E-003 + 76.739999999999995 -8.7925735311026459E-003 + 76.799999999999997 -8.6580892584211134E-003 + 76.859999999999999 -8.5249746604120526E-003 + 76.920000000000002 -8.3933957568448798E-003 + 76.979999999999990 -8.2635088034924663E-003 + 77.039999999999992 -8.1354616926375464E-003 + 77.099999999999994 -8.0093917388050790E-003 + 77.159999999999997 -7.8854269960727669E-003 + 77.219999999999999 -7.7636858181018330E-003 + 77.280000000000001 -7.6442773839777468E-003 + 77.339999999999989 -7.5273000247703201E-003 + 77.399999999999991 -7.4128421865992007E-003 + 77.459999999999994 -7.3009830828281589E-003 + 77.519999999999996 -7.1917914063781311E-003 + 77.579999999999998 -7.0853271815585206E-003 + 77.640000000000001 -6.9816402995254928E-003 + 77.699999999999989 -6.8807715726364052E-003 + 77.759999999999991 -6.7827523329810199E-003 + 77.819999999999993 -6.6876048431256272E-003 + 77.879999999999995 -6.5953427496792264E-003 + 77.939999999999998 -6.5059711661347424E-003 + 78.000000000000000 -6.4194862056712364E-003 + 78.060000000000002 -6.3358767386040311E-003 + 78.119999999999990 -6.2551231245899681E-003 + 78.179999999999993 -6.1771985254388531E-003 + 78.239999999999995 -6.1020691869966880E-003 + 78.299999999999997 -6.0296937869197082E-003 + 78.359999999999999 -5.9600252049768531E-003 + 78.420000000000002 -5.8930098645556079E-003 + 78.479999999999990 -5.8285880580291362E-003 + 78.539999999999992 -5.7666955754602390E-003 + 78.599999999999994 -5.7072620977021106E-003 + 78.659999999999997 -5.6502137858583604E-003 + 78.719999999999999 -5.5954711275434492E-003 + 78.780000000000001 -5.5429519825434068E-003 + 78.839999999999989 -5.4925707281597604E-003 + 78.899999999999991 -5.4442376246246500E-003 + 78.959999999999994 -5.3978613473957679E-003 + 79.019999999999996 -5.3533480931832423E-003 + 79.079999999999998 -5.3106028121721344E-003 + 79.140000000000001 -5.2695279892731378E-003 + 79.199999999999989 -5.2300254512196217E-003 + 79.259999999999991 -5.1919969848723980E-003 + 79.319999999999993 -5.1553429158905945E-003 + 79.379999999999995 -5.1199649578755526E-003 + 79.439999999999998 -5.0857645372197570E-003 + 79.500000000000000 -5.0526438153660124E-003 + 79.560000000000002 -5.0205066859663333E-003 + 79.619999999999990 -4.9892577234367493E-003 + 79.679999999999993 -4.9588041716158819E-003 + 79.739999999999995 -4.9290546995718141E-003 + 79.799999999999997 -4.8999201929057403E-003 + 79.859999999999999 -4.8713145001825636E-003 + 79.920000000000002 -4.8431538927629740E-003 + 79.979999999999990 -4.8153575873617826E-003 + 80.039999999999992 -4.7878482752975043E-003 + 80.099999999999994 -4.7605517619139079E-003 + 80.159999999999997 -4.7333975024923423E-003 + 80.219999999999999 -4.7063187582266994E-003 + 80.280000000000001 -4.6792521697394942E-003 + 80.340000000000003 -4.6521390962354619E-003 + 80.400000000000006 -4.6249241470217592E-003 + 80.460000000000008 -4.5975562480683012E-003 + 80.519999999999982 -4.5699889614978541E-003 + 80.579999999999984 -4.5421791374021065E-003 + 80.639999999999986 -4.5140882927289898E-003 + 80.699999999999989 -4.4856824351591799E-003 + 80.759999999999991 -4.4569316326956328E-003 + 80.819999999999993 -4.4278105272509641E-003 + 80.879999999999995 -4.3982963391941098E-003 + 80.939999999999998 -4.3683721051554977E-003 + 81.000000000000000 -4.3380243823940168E-003 + 81.060000000000002 -4.3072437301887303E-003 + 81.120000000000005 -4.2760236500858006E-003 + 81.180000000000007 -4.2443624901170015E-003 + 81.240000000000009 -4.2122619460453941E-003 + 81.299999999999983 -4.1797261601496530E-003 + 81.359999999999985 -4.1467639664106411E-003 + 81.419999999999987 -4.1133869965626294E-003 + 81.479999999999990 -4.0796097639470450E-003 + 81.539999999999992 -4.0454496228795288E-003 + 81.599999999999994 -4.0109265130800348E-003 + 81.659999999999997 -3.9760627269841212E-003 + 81.719999999999999 -3.9408836908509538E-003 + 81.780000000000001 -3.9054162768548347E-003 + 81.840000000000003 -3.8696894277284789E-003 + 81.900000000000006 -3.8337340135467949E-003 + 81.960000000000008 -3.7975821522251607E-003 + 82.019999999999982 -3.7612678821693983E-003 + 82.079999999999984 -3.7248259761175585E-003 + 82.139999999999986 -3.6882927663616275E-003 + 82.199999999999989 -3.6517047605377061E-003 + 82.259999999999991 -3.6150997535616181E-003 + 82.319999999999993 -3.5785155439507495E-003 + 82.379999999999995 -3.5419906343305929E-003 + 82.439999999999998 -3.5055634158636787E-003 + 82.500000000000000 -3.4692721033343934E-003 + 82.560000000000002 -3.4331551093494330E-003 + 82.620000000000005 -3.3972499866414024E-003 + 82.680000000000007 -3.3615941495319405E-003 + 82.740000000000009 -3.3262243204075217E-003 + 82.799999999999983 -3.2911763545750211E-003 + 82.859999999999985 -3.2564852456641300E-003 + 82.919999999999987 -3.2221847267403414E-003 + 82.979999999999990 -3.1883074100753721E-003 + 83.039999999999992 -3.1548846761167617E-003 + 83.099999999999994 -3.1219465797606271E-003 + 83.159999999999997 -3.0895211695256618E-003 + 83.219999999999999 -3.0576352299595730E-003 + 83.280000000000001 -3.0263140867643422E-003 + 83.340000000000003 -2.9955809414452211E-003 + 83.400000000000006 -2.9654572736684546E-003 + 83.460000000000008 -2.9359623309416030E-003 + 83.519999999999982 -2.9071138469906415E-003 + 83.579999999999984 -2.8789270938845059E-003 + 83.639999999999986 -2.8514155927795376E-003 + 83.699999999999989 -2.8245911111499308E-003 + 83.759999999999991 -2.7984629254442814E-003 + 83.819999999999993 -2.7730379118779624E-003 + 83.879999999999995 -2.7483215056693265E-003 + 83.939999999999998 -2.7243166414988259E-003 + 84.000000000000000 -2.7010243199503399E-003 + 84.060000000000002 -2.6784434772331341E-003 + 84.120000000000005 -2.6565709330436922E-003 + 84.180000000000007 -2.6354014274463169E-003 + 84.240000000000009 -2.6149280664143266E-003 + 84.299999999999983 -2.5951419461516436E-003 + 84.359999999999985 -2.5760316515950421E-003 + 84.419999999999987 -2.5575846146338867E-003 + 84.479999999999990 -2.5397860254311976E-003 + 84.539999999999992 -2.5226199701717310E-003 + 84.599999999999994 -2.5060681443572303E-003 + 84.659999999999997 -2.4901110562231205E-003 + 84.719999999999999 -2.4747272670412202E-003 + 84.780000000000001 -2.4598944011412190E-003 + 84.840000000000003 -2.4455881843574974E-003 + 84.900000000000006 -2.4317836048962380E-003 + 84.960000000000008 -2.4184541790972470E-003 + 85.019999999999982 -2.4055721988904656E-003 + 85.079999999999984 -2.3931093519720353E-003 + 85.139999999999986 -2.3810359322705209E-003 + 85.199999999999989 -2.3693216264758232E-003 + 85.259999999999991 -2.3579358073818509E-003 + 85.319999999999993 -2.3468466015489123E-003 + 85.379999999999995 -2.3360224658023005E-003 + 85.439999999999998 -2.3254312514203513E-003 + 85.500000000000000 -2.3150402824438057E-003 + 85.560000000000002 -2.3048170274944158E-003 + 85.620000000000005 -2.2947288181905862E-003 + 85.680000000000007 -2.2847434512049745E-003 + 85.740000000000009 -2.2748285233939432E-003 + 85.799999999999983 -2.2649521043691459E-003 + 85.859999999999985 -2.2550825613794601E-003 + 85.919999999999987 -2.2451889889525700E-003 + 85.979999999999990 -2.2352408471814525E-003 + 86.039999999999992 -2.2252087560664757E-003 + 86.099999999999994 -2.2150638882143100E-003 + 86.159999999999997 -2.2047779719465842E-003 + 86.219999999999999 -2.1943240699263448E-003 + 86.280000000000001 -2.1836765336447610E-003 + 86.340000000000003 -2.1728102433972462E-003 + 86.400000000000006 -2.1617019887432412E-003 + 86.460000000000008 -2.1503295500666527E-003 + 86.519999999999982 -2.1386721875641473E-003 + 86.579999999999984 -2.1267104977433613E-003 + 86.639999999999986 -2.1144269297514577E-003 + 86.699999999999989 -2.1018050260046667E-003 + 86.759999999999991 -2.0888302554600531E-003 + 86.819999999999993 -2.0754898714451298E-003 + 86.879999999999995 -2.0617729018191982E-003 + 86.939999999999998 -2.0476699329791417E-003 + 87.000000000000000 -2.0331733968734136E-003 + 87.060000000000002 -2.0182778479265911E-003 + 87.120000000000005 -2.0029793076606012E-003 + 87.180000000000007 -1.9872759152089851E-003 + 87.240000000000009 -1.9711673979280215E-003 + 87.299999999999983 -1.9546556637027625E-003 + 87.359999999999985 -1.9377442779117471E-003 + 87.419999999999987 -1.9204385394471679E-003 + 87.479999999999990 -1.9027457943433148E-003 + 87.539999999999992 -1.8846749873189452E-003 + 87.599999999999994 -1.8662369254484317E-003 + 87.659999999999997 -1.8474440834000711E-003 + 87.719999999999999 -1.8283105011941672E-003 + 87.780000000000001 -1.8088519000165255E-003 + 87.840000000000003 -1.7890854963134428E-003 + 87.900000000000006 -1.7690302672652464E-003 + 87.960000000000008 -1.7487061873765163E-003 + 88.019999999999982 -1.7281348716489051E-003 + 88.079999999999984 -1.7073392946193350E-003 + 88.139999999999986 -1.6863433665458994E-003 + 88.199999999999989 -1.6651721793050291E-003 + 88.259999999999991 -1.6438520296881314E-003 + 88.319999999999993 -1.6224099806037672E-003 + 88.379999999999995 -1.6008741290785807E-003 + 88.439999999999998 -1.5792732005653497E-003 + 88.500000000000000 -1.5576367484556616E-003 + 88.560000000000002 -1.5359948207740405E-003 + 88.620000000000005 -1.5143777195429106E-003 + 88.680000000000007 -1.4928165052558815E-003 + 88.740000000000009 -1.4713422407102476E-003 + 88.799999999999983 -1.4499861500364315E-003 + 88.859999999999985 -1.4287798736813142E-003 + 88.919999999999987 -1.4077546748770247E-003 + 88.979999999999990 -1.3869416955045674E-003 + 89.039999999999992 -1.3663720706792299E-003 + 89.099999999999994 -1.3460763110732354E-003 + 89.159999999999997 -1.3260845860879847E-003 + 89.219999999999999 -1.3064266760182694E-003 + 89.280000000000001 -1.2871316242408001E-003 + 89.340000000000003 -1.2682277059282562E-003 + 89.400000000000006 -1.2497423423842129E-003 + 89.460000000000008 -1.2317021982941479E-003 + 89.519999999999982 -1.2141329241772861E-003 + 89.579999999999984 -1.1970590439641744E-003 + 89.639999999999986 -1.1805039458732162E-003 + 89.699999999999989 -1.1644898597583510E-003 + 89.759999999999991 -1.1490378216563752E-003 + 89.819999999999993 -1.1341674299358781E-003 + 89.879999999999995 -1.1198970769661562E-003 + 89.939999999999998 -1.1062436187672918E-003 + 90.000000000000000 -1.0932226130733677E-003 + 90.060000000000002 -1.0808479996715430E-003 + 90.120000000000005 -1.0691321171224528E-003 + 90.180000000000007 -1.0580859238383913E-003 + 90.240000000000009 -1.0477186674033377E-003 + 90.299999999999983 -1.0380382746902784E-003 + 90.359999999999985 -1.0290508690442063E-003 + 90.419999999999987 -1.0207609468708273E-003 + 90.479999999999990 -1.0131714099256626E-003 + 90.539999999999992 -1.0062835282758020E-003 + 90.599999999999994 -1.0000971398343463E-003 + 90.659999999999997 -9.9461027573304571E-004 + 90.719999999999999 -9.8981953362503876E-004 + 90.780000000000001 -9.8571987642755480E-004 + 90.840000000000003 -9.8230463819729127E-004 + 90.900000000000006 -9.7956574303777861E-004 + 90.960000000000008 -9.7749361945106300E-004 + 91.019999999999982 -9.7607729951264580E-004 + 91.079999999999984 -9.7530436128878131E-004 + 91.139999999999986 -9.7516105205068104E-004 + 91.199999999999989 -9.7563229183027429E-004 + 91.259999999999991 -9.7670183663302475E-004 + 91.319999999999993 -9.7835223900303247E-004 + 91.379999999999995 -9.8056501441275536E-004 + 91.439999999999998 -9.8332051254137152E-004 + 91.500000000000000 -9.8659800530788151E-004 + 91.560000000000002 -9.9037612844217883E-004 + 91.620000000000005 -9.9463254012806561E-004 + 91.680000000000007 -9.9934399757622841E-004 + 91.739999999999981 -1.0044866379964866E-003 + 91.799999999999983 -1.0100358738379144E-003 + 91.859999999999985 -1.0159666691663440E-003 + 91.919999999999987 -1.0222533878772031E-003 + 91.979999999999990 -1.0288699588959704E-003 + 92.039999999999992 -1.0357898215207773E-003 + 92.099999999999994 -1.0429861806866383E-003 + 92.159999999999997 -1.0504321040811990E-003 + 92.219999999999999 -1.0581003270427466E-003 + 92.280000000000001 -1.0659637468682171E-003 + 92.340000000000003 -1.0739947597525790E-003 + 92.400000000000006 -1.0821663672899141E-003 + 92.460000000000008 -1.0904512978791850E-003 + 92.519999999999982 -1.0988225663690402E-003 + 92.579999999999984 -1.1072534864459097E-003 + 92.639999999999986 -1.1157175946529142E-003 + 92.699999999999989 -1.1241890553317659E-003 + 92.759999999999991 -1.1326423293003842E-003 + 92.819999999999993 -1.1410523517027048E-003 + 92.879999999999995 -1.1493949136469903E-003 + 92.939999999999998 -1.1576461906344048E-003 + 93.000000000000000 -1.1657832738775145E-003 + 93.060000000000002 -1.1737838120023409E-003 + 93.120000000000005 -1.1816264575887218E-003 + 93.180000000000007 -1.1892904672092370E-003 + 93.239999999999981 -1.1967564022690642E-003 + 93.299999999999983 -1.2040054010528484E-003 + 93.359999999999985 -1.2110196771534661E-003 + 93.419999999999987 -1.2177827399917148E-003 + 93.479999999999990 -1.2242787549430398E-003 + 93.539999999999992 -1.2304933120959179E-003 + 93.599999999999994 -1.2364128092024753E-003 + 93.659999999999997 -1.2420249061817371E-003 + 93.719999999999999 -1.2473186389685828E-003 + 93.780000000000001 -1.2522840151960714E-003 + 93.840000000000003 -1.2569121918494448E-003 + 93.900000000000006 -1.2611959028325324E-003 + 93.960000000000008 -1.2651287668979548E-003 + 94.019999999999982 -1.2687057353270399E-003 + 94.079999999999984 -1.2719231620336813E-003 + 94.139999999999986 -1.2747785349833019E-003 + 94.199999999999989 -1.2772708401752794E-003 + 94.259999999999991 -1.2793998914618473E-003 + 94.319999999999993 -1.2811673022676512E-003 + 94.379999999999995 -1.2825758211323227E-003 + 94.439999999999998 -1.2836291624558488E-003 + 94.500000000000000 -1.2843327069385034E-003 + 94.560000000000002 -1.2846927943526447E-003 + 94.620000000000005 -1.2847170333466101E-003 + 94.680000000000007 -1.2844144609459676E-003 + 94.739999999999981 -1.2837949562491174E-003 + 94.799999999999983 -1.2828698806336594E-003 + 94.859999999999985 -1.2816514207626044E-003 + 94.919999999999987 -1.2801530948944987E-003 + 94.979999999999990 -1.2783895151220847E-003 + 95.039999999999992 -1.2763762034399512E-003 + 95.099999999999994 -1.2741295902509498E-003 + 95.159999999999997 -1.2716673327210614E-003 + 95.219999999999999 -1.2690080663218190E-003 + 95.280000000000001 -1.2661709542072489E-003 + 95.340000000000003 -1.2631761298888191E-003 + 95.400000000000006 -1.2600447267343408E-003 + 95.460000000000008 -1.2567984958721135E-003 + 95.519999999999982 -1.2534598283741229E-003 + 95.579999999999984 -1.2500517374061798E-003 + 95.639999999999986 -1.2465981289834663E-003 + 95.699999999999989 -1.2431230566501176E-003 + 95.759999999999991 -1.2396514397591191E-003 + 95.819999999999993 -1.2362084808106206E-003 + 95.879999999999995 -1.2328197703469616E-003 + 95.939999999999998 -1.2295112433066784E-003 + 96.000000000000000 -1.2263093543800640E-003 + 96.060000000000002 -1.2232404985808489E-003 + 96.120000000000005 -1.2203315230674197E-003 + 96.180000000000007 -1.2176092298654575E-003 + 96.239999999999981 -1.2151005461931447E-003 + 96.299999999999983 -1.2128324936615746E-003 + 96.359999999999985 -1.2108319620067916E-003 + 96.419999999999987 -1.2091259780730417E-003 + 96.479999999999990 -1.2077410394625253E-003 + 96.539999999999992 -1.2067035829196144E-003 + 96.599999999999994 -1.2060399743192224E-003 + 96.659999999999997 -1.2057760519127302E-003 + 96.719999999999999 -1.2059371707930700E-003 + 96.780000000000001 -1.2065484403360985E-003 + 96.840000000000003 -1.2076342634937830E-003 + 96.900000000000006 -1.2092184563844116E-003 + 96.960000000000008 -1.2113243454400255E-003 + 97.019999999999982 -1.2139744658809031E-003 + 97.079999999999984 -1.2171906327570119E-003 + 97.139999999999986 -1.2209937834896625E-003 + 97.199999999999989 -1.2254041958814875E-003 + 97.259999999999991 -1.2304410510294327E-003 + 97.319999999999993 -1.2361225463735762E-003 + 97.379999999999995 -1.2424662241518497E-003 + 97.439999999999998 -1.2494882511166867E-003 + 97.500000000000000 -1.2572038804494442E-003 + 97.560000000000002 -1.2656272369872324E-003 + 97.620000000000005 -1.2747711020885950E-003 + 97.680000000000007 -1.2846472393750628E-003 + 97.739999999999981 -1.2952659592490230E-003 + 97.799999999999983 -1.3066363487418814E-003 + 97.859999999999985 -1.3187661450609458E-003 + 97.919999999999987 -1.3316617201040676E-003 + 97.979999999999990 -1.3453277172540865E-003 + 98.039999999999992 -1.3597676266330120E-003 + 98.099999999999994 -1.3749830615238485E-003 + 98.159999999999997 -1.3909742041300099E-003 + 98.219999999999999 -1.4077397512757554E-003 + 98.280000000000001 -1.4252764528388982E-003 + 98.340000000000003 -1.4435794552074667E-003 + 98.400000000000006 -1.4626422292048035E-003 + 98.460000000000008 -1.4824565409440667E-003 + 98.519999999999982 -1.5030121431685352E-003 + 98.579999999999984 -1.5242973018245037E-003 + 98.639999999999986 -1.5462981679866107E-003 + 98.699999999999989 -1.5689993060811229E-003 + 98.759999999999991 -1.5923834305939368E-003 + 98.819999999999993 -1.6164314373879340E-003 + 98.879999999999995 -1.6411222519735385E-003 + 98.939999999999998 -1.6664331917141998E-003 + 99.000000000000000 -1.6923395903329708E-003 + 99.060000000000002 -1.7188150815906024E-003 + 99.120000000000005 -1.7458314774621898E-003 + 99.180000000000007 -1.7733589508930625E-003 + 99.239999999999981 -1.8013657148870904E-003 + 99.299999999999983 -1.8298181972242204E-003 + 99.359999999999985 -1.8586813879439370E-003 + 99.419999999999987 -1.8879182630838480E-003 + 99.479999999999990 -1.9174905632239922E-003 + 99.539999999999992 -1.9473579707102516E-003 + 99.599999999999994 -1.9774789085205001E-003 + 99.659999999999997 -2.0078100046341373E-003 + 99.719999999999999 -2.0383068968990595E-003 + 99.780000000000001 -2.0689233901385602E-003 + 99.840000000000003 -2.0996123032624831E-003 + 99.900000000000006 -2.1303246696271110E-003 + 99.960000000000008 -2.1610110988426884E-003 + 100.01999999999998 -2.1916205183600229E-003 + 100.07999999999998 -2.2221010884624871E-003 + 100.13999999999999 -2.2523998919670115E-003 + 100.19999999999999 -2.2824634736787453E-003 + 100.25999999999999 -2.3122371798737951E-003 + 100.31999999999999 -2.3416659635067372E-003 + 100.38000000000000 -2.3706946210446324E-003 + 100.44000000000000 -2.3992670892256955E-003 + 100.50000000000000 -2.4273272214708928E-003 + 100.56000000000000 -2.4548188349151510E-003 + 100.62000000000000 -2.4816852591877485E-003 + 100.68000000000001 -2.5078703150147748E-003 + 100.73999999999998 -2.5333175692372738E-003 + 100.79999999999998 -2.5579713714103535E-003 + 100.85999999999999 -2.5817763132314924E-003 + 100.91999999999999 -2.6046771827638233E-003 + 100.97999999999999 -2.6266199297524427E-003 + 101.03999999999999 -2.6475512721601370E-003 + 101.09999999999999 -2.6674183629051967E-003 + 101.16000000000000 -2.6861697055257398E-003 + 101.22000000000000 -2.7037551852448698E-003 + 101.28000000000000 -2.7201254908365063E-003 + 101.34000000000000 -2.7352332465822291E-003 + 101.40000000000001 -2.7490321953447779E-003 + 101.46000000000001 -2.7614779590252251E-003 + 101.51999999999998 -2.7725276609559747E-003 + 101.57999999999998 -2.7821405585565992E-003 + 101.63999999999999 -2.7902777619611741E-003 + 101.69999999999999 -2.7969022669100314E-003 + 101.75999999999999 -2.8019795583760910E-003 + 101.81999999999999 -2.8054772316062340E-003 + 101.88000000000000 -2.8073650808936759E-003 + 101.94000000000000 -2.8076155065263264E-003 + 102.00000000000000 -2.8062035434622858E-003 + 102.06000000000000 -2.8031065713918770E-003 + 102.12000000000000 -2.7983045524939379E-003 + 102.18000000000001 -2.7917805459133009E-003 + 102.23999999999998 -2.7835199489729466E-003 + 102.29999999999998 -2.7735114298947311E-003 + 102.35999999999999 -2.7617459261247974E-003 + 102.41999999999999 -2.7482176577667342E-003 + 102.47999999999999 -2.7329238278402260E-003 + 102.53999999999999 -2.7158640863844119E-003 + 102.59999999999999 -2.6970414653163114E-003 + 102.66000000000000 -2.6764616660136576E-003 + 102.72000000000000 -2.6541331369936984E-003 + 102.78000000000000 -2.6300676132207310E-003 + 102.84000000000000 -2.6042792780427045E-003 + 102.90000000000001 -2.5767849676431079E-003 + 102.96000000000001 -2.5476046160143530E-003 + 103.01999999999998 -2.5167608041036927E-003 + 103.07999999999998 -2.4842787633022399E-003 + 103.13999999999999 -2.4501860171205073E-003 + 103.19999999999999 -2.4145131311933358E-003 + 103.25999999999999 -2.3772930132273003E-003 + 103.31999999999999 -2.3385604846836265E-003 + 103.38000000000000 -2.2983530154893766E-003 + 103.44000000000000 -2.2567102791942635E-003 + 103.50000000000000 -2.2136743920545985E-003 + 103.56000000000000 -2.1692887926509975E-003 + 103.62000000000000 -2.1235995449719845E-003 + 103.68000000000001 -2.0766539969791584E-003 + 103.73999999999998 -2.0285017710852346E-003 + 103.79999999999998 -1.9791935697605258E-003 + 103.85999999999999 -1.9287819252519643E-003 + 103.91999999999999 -1.8773204776186322E-003 + 103.97999999999999 -1.8248643773192230E-003 + 104.03999999999999 -1.7714698337499054E-003 + 104.09999999999999 -1.7171938655536861E-003 + 104.16000000000000 -1.6620944558869233E-003 + 104.22000000000000 -1.6062303147751803E-003 + 104.28000000000000 -1.5496608386287901E-003 + 104.34000000000000 -1.4924454797711026E-003 + 104.40000000000001 -1.4346443345919272E-003 + 104.46000000000001 -1.3763178699581482E-003 + 104.51999999999998 -1.3175261286002134E-003 + 104.57999999999998 -1.2583294912136759E-003 + 104.63999999999999 -1.1987881871133217E-003 + 104.69999999999999 -1.1389621604017571E-003 + 104.75999999999999 -1.0789109200586295E-003 + 104.81999999999999 -1.0186935332331959E-003 + 104.88000000000000 -9.5836860626043207E-004 + 104.94000000000000 -8.9799398563583340E-004 + 105.00000000000000 -8.3762685491247323E-004 + 105.06000000000000 -7.7732352123365900E-004 + 105.12000000000000 -7.1713950104814513E-004 + 105.18000000000001 -6.5712911078035505E-004 + 105.23999999999998 -5.9734580141506354E-004 + 105.29999999999998 -5.3784188646783225E-004 + 105.35999999999999 -4.7866834421991924E-004 + 105.41999999999999 -4.1987489319893364E-004 + 105.47999999999999 -3.6151003739175994E-004 + 105.53999999999999 -3.0362085896934395E-004 + 105.59999999999999 -2.4625297840070570E-004 + 105.66000000000000 -1.8945059147347710E-004 + 105.72000000000000 -1.3325635989011158E-004 + 105.78000000000000 -7.7711451637374446E-005 + 105.84000000000000 -2.2855452280932626E-005 + 105.90000000000001 3.1273637304241440E-005 + 105.96000000000001 8.4639407934198059E-005 + 106.01999999999998 1.3720702677324798E-004 + 106.07999999999998 1.8894325159230548E-004 + 106.13999999999999 2.3981641498875677E-004 + 106.19999999999999 2.8979650200830649E-004 + 106.25999999999999 3.3885504672085824E-004 + 106.31999999999999 3.8696512520491671E-004 + 106.38000000000000 4.3410138694936469E-004 + 106.44000000000000 4.8024004763613440E-004 + 106.50000000000000 5.2535875772776873E-004 + 106.56000000000000 5.6943675409493004E-004 + 106.62000000000000 6.1245461815378935E-004 + 106.68000000000001 6.5439450526030309E-004 + 106.73999999999998 6.9523986022397089E-004 + 106.79999999999998 7.3497557695339404E-004 + 106.85999999999999 7.7358791095193168E-004 + 106.91999999999999 8.1106445058059455E-004 + 106.97999999999999 8.4739403766042297E-004 + 107.03999999999999 8.8256680691932280E-004 + 107.09999999999999 9.1657402883012478E-004 + 107.16000000000000 9.4940824507543445E-004 + 107.22000000000000 9.8106297131306231E-004 + 107.28000000000000 1.0115331505802781E-003 + 107.34000000000000 1.0408144710758970E-003 + 107.40000000000001 1.0689039733491753E-003 + 107.46000000000001 1.0957993973770249E-003 + 107.51999999999998 1.1214995963410499E-003 + 107.57999999999998 1.1460044086905306E-003 + 107.63999999999999 1.1693144350723925E-003 + 107.69999999999999 1.1914311720840384E-003 + 107.75999999999999 1.2123571599919353E-003 + 107.81999999999999 1.2320953915884397E-003 + 107.88000000000000 1.2506499854154703E-003 + 107.94000000000000 1.2680254923996194E-003 + 108.00000000000000 1.2842274019580400E-003 + 108.06000000000000 1.2992618838777931E-003 + 108.12000000000000 1.3131356939562338E-003 + 108.18000000000001 1.3258560466215235E-003 + 108.23999999999998 1.3374312164707589E-003 + 108.29999999999998 1.3478696773073118E-003 + 108.35999999999999 1.3571807599118142E-003 + 108.41999999999999 1.3653741208552866E-003 + 108.47999999999999 1.3724601795778316E-003 + 108.53999999999999 1.3784497099076868E-003 + 108.59999999999999 1.3833541197972286E-003 + 108.66000000000000 1.3871853614003749E-003 + 108.72000000000000 1.3899557386401111E-003 + 108.78000000000000 1.3916782734894415E-003 + 108.84000000000000 1.3923662198111154E-003 + 108.90000000000001 1.3920335662525891E-003 + 108.96000000000001 1.3906947636610307E-003 + 109.01999999999998 1.3883647212277049E-003 + 109.07999999999998 1.3850587623947888E-003 + 109.13999999999999 1.3807928641750460E-003 + 109.19999999999999 1.3755832514707213E-003 + 109.25999999999999 1.3694469249748817E-003 + 109.31999999999999 1.3624010577140333E-003 + 109.38000000000000 1.3544635020791191E-003 + 109.44000000000000 1.3456523620652512E-003 + 109.50000000000000 1.3359864447874974E-003 + 109.56000000000000 1.3254848455330746E-003 + 109.62000000000000 1.3141670256708177E-003 + 109.68000000000001 1.3020531011225006E-003 + 109.73999999999998 1.2891634446279793E-003 + 109.79999999999998 1.2755187858416203E-003 + 109.85999999999999 1.2611402871591727E-003 + 109.91999999999999 1.2460495582507596E-003 + 109.97999999999999 1.2302686956090110E-003 + 110.03999999999999 1.2138198209008513E-003 + 110.09999999999999 1.1967258532175587E-003 + 110.16000000000000 1.1790097934138038E-003 + 110.22000000000000 1.1606952719561976E-003 + 110.28000000000000 1.1418060815841734E-003 + 110.34000000000000 1.1223663893729318E-003 + 110.40000000000001 1.1024007463322895E-003 + 110.46000000000001 1.0819341431541410E-003 + 110.51999999999998 1.0609915765981640E-003 + 110.57999999999998 1.0395986853515978E-003 + 110.63999999999999 1.0177810043240359E-003 + 110.69999999999999 9.9556461436194760E-004 + 110.75999999999999 9.7297579821217892E-004 + 110.81999999999999 9.5004087288261046E-004 + 110.88000000000000 9.2678642235469416E-004 + 110.94000000000000 9.0323919896640608E-004 + 111.00000000000000 8.7942593931437311E-004 + 111.06000000000000 8.5537355743288781E-004 + 111.12000000000000 8.3110900315047078E-004 + 111.18000000000001 8.0665923277838396E-004 + 111.23999999999998 7.8205122342467543E-004 + 111.29999999999998 7.5731187125194070E-004 + 111.35999999999999 7.3246812614166982E-004 + 111.41999999999999 7.0754684196817560E-004 + 111.47999999999999 6.8257470738658412E-004 + 111.53999999999999 6.5757838301523370E-004 + 111.59999999999999 6.3258432489940203E-004 + 111.66000000000000 6.0761883102356472E-004 + 111.72000000000000 5.8270801571834170E-004 + 111.78000000000000 5.5787775573623870E-004 + 111.84000000000000 5.3315369974438036E-004 + 111.90000000000001 5.0856122379221039E-004 + 111.96000000000001 4.8412532511684893E-004 + 112.01999999999998 4.5987067137354235E-004 + 112.07999999999998 4.3582155167665957E-004 + 112.13999999999999 4.1200185021400337E-004 + 112.19999999999999 3.8843495382457754E-004 + 112.25999999999999 3.6514379205958709E-004 + 112.31999999999999 3.4215078848490237E-004 + 112.38000000000000 3.1947779076612882E-004 + 112.44000000000000 2.9714605791985509E-004 + 112.50000000000000 2.7517629261709112E-004 + 112.56000000000000 2.5358854936672644E-004 + 112.62000000000000 2.3240221629184613E-004 + 112.68000000000001 2.1163603386077642E-004 + 112.73999999999998 1.9130802179566662E-004 + 112.79999999999998 1.7143553101868849E-004 + 112.85999999999999 1.5203516265227673E-004 + 112.91999999999999 1.3312277409497817E-004 + 112.97999999999999 1.1471346625531808E-004 + 113.03999999999999 9.6821563681058264E-005 + 113.09999999999999 7.9460597027074915E-005 + 113.16000000000000 6.2643296500326627E-005 + 113.22000000000000 4.6381576302836563E-005 + 113.28000000000000 3.0686512945469869E-005 + 113.34000000000000 1.5568338670547997E-005 + 113.40000000000001 1.0364374844975454E-006 + 113.46000000000001 -1.2900672576021229E-005 + 113.51999999999998 -2.6235338623538330E-005 + 113.57999999999998 -3.8960786098361731E-005 + 113.63999999999999 -5.1071115303036670E-005 + 113.69999999999999 -6.2561307709971991E-005 + 113.75999999999999 -7.3427226923731799E-005 + 113.81999999999999 -8.3665606889820617E-005 + 113.88000000000000 -9.3274068027690023E-005 + 113.94000000000000 -1.0225110367308594E-004 + 114.00000000000000 -1.1059606578620180E-004 + 114.06000000000000 -1.1830917928870734E-004 + 114.12000000000000 -1.2539152191674884E-004 + 114.18000000000001 -1.3184503224325980E-004 + 114.23999999999998 -1.3767248453527695E-004 + 114.29999999999998 -1.4287750627781288E-004 + 114.35999999999999 -1.4746455621528060E-004 + 114.41999999999999 -1.5143890389090746E-004 + 114.47999999999999 -1.5480663089160798E-004 + 114.53999999999999 -1.5757464723091576E-004 + 114.59999999999999 -1.5975063758832879E-004 + 114.66000000000000 -1.6134307214236279E-004 + 114.72000000000000 -1.6236119069881484E-004 + 114.78000000000000 -1.6281495840546469E-004 + 114.84000000000000 -1.6271508248949266E-004 + 114.90000000000001 -1.6207299254461762E-004 + 114.96000000000001 -1.6090079922805161E-004 + 115.01999999999998 -1.5921125061392713E-004 + 115.07999999999998 -1.5701776089125386E-004 + 115.13999999999999 -1.5433435381400406E-004 + 115.19999999999999 -1.5117564037625699E-004 + 115.25999999999999 -1.4755682419961038E-004 + 115.31999999999999 -1.4349363441440685E-004 + 115.38000000000000 -1.3900232771225639E-004 + 115.44000000000000 -1.3409965652795864E-004 + 115.50000000000000 -1.2880284307823954E-004 + 115.56000000000000 -1.2312956903123661E-004 + 115.62000000000000 -1.1709793755893912E-004 + 115.68000000000001 -1.1072644136878716E-004 + 115.73999999999998 -1.0403395687452685E-004 + 115.79999999999998 -9.7039717483538853E-005 + 115.85999999999999 -8.9763253302542313E-005 + 115.91999999999999 -8.2224385978058642E-005 + 115.97999999999999 -7.4443182489057426E-005 + 116.03999999999999 -6.6439939668641731E-005 + 116.09999999999999 -5.8235121981115957E-005 + 116.16000000000000 -4.9849340477326810E-005 + 116.22000000000000 -4.1303308392615190E-005 + 116.28000000000000 -3.2617804515125020E-005 + 116.34000000000000 -2.3813623319972823E-005 + 116.40000000000001 -1.4911548116747562E-005 + 116.46000000000001 -5.9323079917843100E-006 + 116.51999999999998 3.1034639278219016E-006 + 116.57999999999998 1.2175266314004565E-005 + 116.63999999999999 2.1262771382567367E-005 + 116.69999999999999 3.0345844904163961E-005 + 116.75999999999999 3.9404593354322819E-005 + 116.81999999999999 4.8419409836404280E-005 + 116.88000000000000 5.7370969104131220E-005 + 116.94000000000000 6.6240303310328801E-005 + 117.00000000000000 7.5008806646225399E-005 + 117.06000000000000 8.3658295446159214E-005 + 117.12000000000000 9.2171007249660340E-005 + 117.18000000000001 1.0052967194610490E-004 + 117.23999999999998 1.0871753224198517E-004 + 117.29999999999998 1.1671835318624195E-004 + 117.35999999999999 1.2451651664287702E-004 + 117.41999999999999 1.3209700968670784E-004 + 117.47999999999999 1.3944546854974805E-004 + 117.53999999999999 1.4654821575483390E-004 + 117.59999999999999 1.5339227807041828E-004 + 117.66000000000000 1.5996543618904219E-004 + 117.72000000000000 1.6625625608432336E-004 + 117.78000000000000 1.7225408282836474E-004 + 117.84000000000000 1.7794905528985600E-004 + 117.90000000000001 1.8333215990532772E-004 + 117.96000000000001 1.8839522848903379E-004 + 118.01999999999998 1.9313093142137323E-004 + 118.07999999999998 1.9753281648947959E-004 + 118.13999999999999 2.0159528617858072E-004 + 118.19999999999999 2.0531360011854664E-004 + 118.25999999999999 2.0868392031705033E-004 + 118.31999999999999 2.1170322322973360E-004 + 118.38000000000000 2.1436941707584899E-004 + 118.44000000000000 2.1668122068495662E-004 + 118.50000000000000 2.1863824872298706E-004 + 118.56000000000000 2.2024097028732227E-004 + 118.62000000000000 2.2149068540954574E-004 + 118.68000000000001 2.2238956116462521E-004 + 118.73999999999998 2.2294056851523955E-004 + 118.79999999999998 2.2314751186941600E-004 + 118.85999999999999 2.2301499592520543E-004 + 118.91999999999999 2.2254839144908521E-004 + 118.97999999999999 2.2175384683056047E-004 + 119.03999999999999 2.2063823435800430E-004 + 119.09999999999999 2.1920910557815605E-004 + 119.16000000000000 2.1747470482665824E-004 + 119.22000000000000 2.1544388434517468E-004 + 119.28000000000000 2.1312610141816090E-004 + 119.34000000000000 2.1053136099174222E-004 + 119.40000000000001 2.0767017026796525E-004 + 119.46000000000001 2.0455350283695437E-004 + 119.51999999999998 2.0119273528650599E-004 + 119.57999999999998 1.9759964162123682E-004 + 119.63999999999999 1.9378632344993696E-004 + 119.69999999999999 1.8976517479317085E-004 + 119.75999999999999 1.8554883311866949E-004 + 119.81999999999999 1.8115012746999459E-004 + 119.88000000000000 1.7658208623449819E-004 + 119.94000000000000 1.7185783251326558E-004 + 120.00000000000000 1.6699058823394289E-004 + 120.06000000000000 1.6199361978195127E-004 + 120.12000000000000 1.5688021008680958E-004 + 120.18000000000001 1.5166359420519819E-004 + 120.23999999999998 1.4635694383137747E-004 + 120.29999999999998 1.4097330012879732E-004 + 120.35999999999999 1.3552556337478302E-004 + 120.41999999999999 1.3002640987045121E-004 + 120.47999999999999 1.2448830437317127E-004 + 120.53999999999999 1.1892341713846833E-004 + 120.59999999999999 1.1334360169368593E-004 + 120.66000000000000 1.0776035016710104E-004 + 120.72000000000000 1.0218476833347727E-004 + 120.78000000000000 9.6627525224799831E-005 + 120.84000000000000 9.1098828870439530E-005 + 120.90000000000001 8.5608408288510163E-005 + 120.95999999999998 8.0165479435465153E-005 + 121.01999999999998 7.4778725509109327E-005 + 121.07999999999998 6.9456266746705067E-005 + 121.13999999999999 6.4205656271030574E-005 + 121.19999999999999 5.9033867025689730E-005 + 121.25999999999999 5.3947270674738161E-005 + 121.31999999999999 4.8951616817742349E-005 + 121.38000000000000 4.4052050688789955E-005 + 121.44000000000000 3.9253087789917031E-005 + 121.50000000000000 3.4558618411686101E-005 + 121.56000000000000 2.9971895472370511E-005 + 121.62000000000000 2.5495535100178928E-005 + 121.68000000000001 2.1131522174216076E-005 + 121.73999999999998 1.6881208869465170E-005 + 121.79999999999998 1.2745317478768868E-005 + 121.85999999999999 8.7239503831500137E-006 + 121.91999999999999 4.8166004887739787E-006 + 121.97999999999999 1.0221582225711526E-006 + 122.03999999999999 -2.6610632924648246E-006 + 122.09999999999999 -6.2353158484046269E-006 + 122.16000000000000 -9.7033946704479666E-006 + 122.22000000000000 -1.3068618291338295E-005 + 122.28000000000000 -1.6334798928548324E-005 + 122.34000000000000 -1.9506214716420617E-005 + 122.40000000000001 -2.2587589895614085E-005 + 122.45999999999998 -2.5584053765687717E-005 + 122.51999999999998 -2.8501120505024538E-005 + 122.57999999999998 -3.1344660605351105E-005 + 122.63999999999999 -3.4120871893023483E-005 + 122.69999999999999 -3.6836243207414980E-005 + 122.75999999999999 -3.9497533121392970E-005 + 122.81999999999999 -4.2111729692327175E-005 + 122.88000000000000 -4.4686045763857065E-005 + 122.94000000000000 -4.7227862136025697E-005 + 123.00000000000000 -4.9744717828130348E-005 + 123.06000000000000 -5.2244266964273147E-005 + 123.12000000000000 -5.4734258683613892E-005 + 123.18000000000001 -5.7222493242708466E-005 + 123.23999999999998 -5.9716800720841061E-005 + 123.29999999999998 -6.2224990253867884E-005 + 123.35999999999999 -6.4754835566412119E-005 + 123.41999999999999 -6.7314021407939047E-005 + 123.47999999999999 -6.9910111271128921E-005 + 123.53999999999999 -7.2550514416216779E-005 + 123.59999999999999 -7.5242456503699556E-005 + 123.66000000000000 -7.7992930206051083E-005 + 123.72000000000000 -8.0808671640854779E-005 + 123.78000000000000 -8.3696138055818493E-005 + 123.84000000000000 -8.6661460944702508E-005 + 123.90000000000001 -8.9710438622027106E-005 + 123.95999999999998 -9.2848500070032098E-005 + 124.01999999999998 -9.6080689207333648E-005 + 124.07999999999998 -9.9411657399335138E-005 + 124.13999999999999 -1.0284561485910342E-004 + 124.19999999999999 -1.0638635510919100E-004 + 124.25999999999999 -1.1003722414584147E-004 + 124.31999999999999 -1.1380109152634461E-004 + 124.38000000000000 -1.1768036294319951E-004 + 124.44000000000000 -1.2167695230086816E-004 + 124.50000000000000 -1.2579229118345650E-004 + 124.56000000000000 -1.3002727699936741E-004 + 124.62000000000000 -1.3438229532979594E-004 + 124.68000000000001 -1.3885720050425791E-004 + 124.73999999999998 -1.4345134420213409E-004 + 124.79999999999998 -1.4816347980424355E-004 + 124.85999999999999 -1.5299182430683042E-004 + 124.91999999999999 -1.5793402193697159E-004 + 124.97999999999999 -1.6298718964151472E-004 + 125.03999999999999 -1.6814785895794489E-004 + 125.09999999999999 -1.7341201803728958E-004 + 125.16000000000000 -1.7877509139853034E-004 + 125.22000000000000 -1.8423198110149999E-004 + 125.28000000000000 -1.8977702463265122E-004 + 125.34000000000000 -1.9540408097056905E-004 + 125.40000000000001 -2.0110649346652941E-004 + 125.45999999999998 -2.0687712735407485E-004 + 125.51999999999998 -2.1270835816479642E-004 + 125.57999999999998 -2.1859211957058307E-004 + 125.63999999999999 -2.2451993189376724E-004 + 125.69999999999999 -2.3048289009210289E-004 + 125.75999999999999 -2.3647169240814569E-004 + 125.81999999999999 -2.4247667984691126E-004 + 125.88000000000000 -2.4848780417344098E-004 + 125.94000000000000 -2.5449472071141581E-004 + 126.00000000000000 -2.6048671042430422E-004 + 126.06000000000000 -2.6645281688502862E-004 + 126.12000000000000 -2.7238174641937692E-004 + 126.18000000000001 -2.7826197205576549E-004 + 126.23999999999998 -2.8408176680208677E-004 + 126.29999999999998 -2.8982913553184542E-004 + 126.35999999999999 -2.9549198310212932E-004 + 126.41999999999999 -3.0105800210669908E-004 + 126.47999999999999 -3.0651480676601014E-004 + 126.53999999999999 -3.1184989013950497E-004 + 126.59999999999999 -3.1705073655789143E-004 + 126.66000000000000 -3.2210481200825375E-004 + 126.72000000000000 -3.2699960474552760E-004 + 126.78000000000000 -3.3172262144836256E-004 + 126.84000000000000 -3.3626146084296223E-004 + 126.90000000000001 -3.4060387187390215E-004 + 126.95999999999998 -3.4473775857535527E-004 + 127.01999999999998 -3.4865116100754920E-004 + 127.07999999999998 -3.5233238350584277E-004 + 127.13999999999999 -3.5576992710433208E-004 + 127.19999999999999 -3.5895258103039063E-004 + 127.25999999999999 -3.6186943927633017E-004 + 127.31999999999999 -3.6450988326903474E-004 + 127.38000000000000 -3.6686364323680045E-004 + 127.44000000000000 -3.6892084472635577E-004 + 127.50000000000000 -3.7067204134493302E-004 + 127.56000000000000 -3.7210818880259808E-004 + 127.62000000000000 -3.7322071875362493E-004 + 127.68000000000001 -3.7400156897579925E-004 + 127.73999999999998 -3.7444323406419865E-004 + 127.79999999999998 -3.7453872346109696E-004 + 127.85999999999999 -3.7428168068373671E-004 + 127.91999999999999 -3.7366632584656239E-004 + 127.97999999999999 -3.7268755704844482E-004 + 128.03999999999999 -3.7134095503419914E-004 + 128.09999999999999 -3.6962277556723398E-004 + 128.16000000000000 -3.6753000044206763E-004 + 128.22000000000000 -3.6506038656356458E-004 + 128.28000000000000 -3.6221242178895136E-004 + 128.34000000000000 -3.5898540310783127E-004 + 128.40000000000001 -3.5537938277785055E-004 + 128.45999999999998 -3.5139519126278231E-004 + 128.51999999999998 -3.4703447779517167E-004 + 128.57999999999998 -3.4229967938738880E-004 + 128.63999999999999 -3.3719411835999371E-004 + 128.69999999999999 -3.3172187502299372E-004 + 128.75999999999999 -3.2588785207297920E-004 + 128.81999999999999 -3.1969781149258648E-004 + 128.88000000000000 -3.1315831830861526E-004 + 128.94000000000000 -3.0627670561095239E-004 + 129.00000000000000 -2.9906121722873157E-004 + 129.06000000000000 -2.9152085347237321E-004 + 129.12000000000000 -2.8366544742653858E-004 + 129.18000000000001 -2.7550558813624505E-004 + 129.23999999999998 -2.6705270780566444E-004 + 129.29999999999998 -2.5831893228818941E-004 + 129.35999999999999 -2.4931718662578979E-004 + 129.41999999999999 -2.4006115841971411E-004 + 129.47999999999999 -2.3056518525036476E-004 + 129.53999999999999 -2.2084425898970486E-004 + 129.59999999999999 -2.1091408785520004E-004 + 129.66000000000000 -2.0079093856185094E-004 + 129.72000000000000 -1.9049166611665111E-004 + 129.78000000000000 -1.8003369373752865E-004 + 129.84000000000000 -1.6943491284194170E-004 + 129.90000000000001 -1.5871370446300762E-004 + 129.95999999999998 -1.4788884257532173E-004 + 130.01999999999998 -1.3697952140552972E-004 + 130.07999999999998 -1.2600526561896543E-004 + 130.13999999999999 -1.1498587967329983E-004 + 130.19999999999999 -1.0394144066226968E-004 + 130.25999999999999 -9.2892237048750723E-005 + 130.31999999999999 -8.1858699231370587E-005 + 130.38000000000000 -7.0861384478195319E-005 + 130.44000000000000 -5.9920918729885323E-005 + 130.50000000000000 -4.9057921868210513E-005 + 130.56000000000000 -3.8292977014378111E-005 + 130.62000000000000 -2.7646556065963629E-005 + 130.68000000000001 -1.7138984885652187E-005 + 130.73999999999998 -6.7903645492947847E-006 + 130.79999999999998 3.3794764029485847E-006 + 130.85999999999999 1.3351036266296754E-005 + 130.91999999999999 2.3105205898488766E-005 + 130.97999999999999 3.2623317834459885E-005 + 131.03999999999999 4.1887207442735109E-005 + 131.09999999999999 5.0879253593699539E-005 + 131.16000000000000 5.9582434138115316E-005 + 131.22000000000000 6.7980380549782627E-005 + 131.28000000000000 7.6057399659868765E-005 + 131.34000000000000 8.3798528382893577E-005 + 131.40000000000001 9.1189590631739857E-005 + 131.45999999999998 9.8217196062316324E-005 + 131.51999999999998 1.0486881484729944E-004 + 131.57999999999998 1.1113278355881248E-004 + 131.63999999999999 1.1699835643778722E-004 + 131.69999999999999 1.2245572261583248E-004 + 131.75999999999999 1.2749605057259494E-004 + 131.81999999999999 1.3211150639489132E-004 + 131.88000000000000 1.3629530551885062E-004 + 131.94000000000000 1.4004169544955098E-004 + 132.00000000000000 1.4334606026073882E-004 + 132.06000000000000 1.4620484623277774E-004 + 132.12000000000000 1.4861563757897114E-004 + 132.18000000000001 1.5057716536911528E-004 + 132.23999999999998 1.5208934132348494E-004 + 132.29999999999998 1.5315322782580868E-004 + 132.35999999999999 1.5377104311342616E-004 + 132.41999999999999 1.5394619811325024E-004 + 132.47999999999999 1.5368322768224209E-004 + 132.53999999999999 1.5298783504725467E-004 + 132.59999999999999 1.5186686393878167E-004 + 132.66000000000000 1.5032824405445682E-004 + 132.72000000000000 1.4838099672007086E-004 + 132.78000000000000 1.4603518368064809E-004 + 132.84000000000000 1.4330188899757261E-004 + 132.90000000000001 1.4019319882309283E-004 + 132.95999999999998 1.3672212212767151E-004 + 133.01999999999998 1.3290258692587174E-004 + 133.07999999999998 1.2874940387599783E-004 + 133.13999999999999 1.2427820001548247E-004 + 133.19999999999999 1.1950539552564402E-004 + 133.25999999999999 1.1444815563106268E-004 + 133.31999999999999 1.0912433243591713E-004 + 133.38000000000000 1.0355244750816217E-004 + 133.44000000000000 9.7751610697478515E-005 + 133.50000000000000 9.1741491882390926E-005 + 133.56000000000000 8.5542245756499015E-005 + 133.62000000000000 7.9174492716634729E-005 + 133.68000000000001 7.2659219016759966E-005 + 133.73999999999998 6.6017744549099608E-005 + 133.79999999999998 5.9271644453312867E-005 + 133.85999999999999 5.2442700306876728E-005 + 133.91999999999999 4.5552821294253763E-005 + 133.97999999999999 3.8623983458233998E-005 + 134.03999999999999 3.1678165921350190E-005 + 134.09999999999999 2.4737289033347556E-005 + 134.16000000000000 1.7823139131911113E-005 + 134.22000000000000 1.0957313397470761E-005 + 134.28000000000000 4.1611556219894733E-006 + 134.34000000000000 -2.5443055878881720E-006 + 134.40000000000001 -9.1384155279755682E-006 + 134.45999999999998 -1.5600947931215225E-005 + 134.51999999999998 -2.1912157990332913E-005 + 134.57999999999998 -2.8052841921846369E-005 + 134.63999999999999 -3.4004381676232098E-005 + 134.69999999999999 -3.9748799205997266E-005 + 134.75999999999999 -4.5268801892276879E-005 + 134.81999999999999 -5.0547820455462760E-005 + 134.88000000000000 -5.5570071309812023E-005 + 134.94000000000000 -6.0320594716918810E-005 + 135.00000000000000 -6.4785276762580556E-005 + 135.06000000000000 -6.8950918883099217E-005 + 135.12000000000000 -7.2805237152440974E-005 + 135.18000000000001 -7.6336938203758737E-005 + 135.23999999999998 -7.9535712450368480E-005 + 135.29999999999998 -8.2392279462265890E-005 + 135.35999999999999 -8.4898417851743873E-005 + 135.41999999999999 -8.7046959267321765E-005 + 135.47999999999999 -8.8831834769155198E-005 + 135.53999999999999 -9.0248073164684984E-005 + 135.59999999999999 -9.1291804341831154E-005 + 135.66000000000000 -9.1960263541961387E-005 + 135.72000000000000 -9.2251819478181976E-005 + 135.78000000000000 -9.2165946657440286E-005 + 135.84000000000000 -9.1703237028258226E-005 + 135.90000000000001 -9.0865378074569541E-005 + 135.95999999999998 -8.9655164831938688E-005 + 136.01999999999998 -8.8076477564433679E-005 + 136.07999999999998 -8.6134278994232555E-005 + 136.13999999999999 -8.3834580426310717E-005 + 136.19999999999999 -8.1184457592952137E-005 + 136.25999999999999 -7.8191988458830084E-005 + 136.31999999999999 -7.4866268016397905E-005 + 136.38000000000000 -7.1217349564262932E-005 + 136.44000000000000 -6.7256236431129985E-005 + 136.50000000000000 -6.2994833923311943E-005 + 136.56000000000000 -5.8445920841934470E-005 + 136.62000000000000 -5.3623104099459011E-005 + 136.68000000000001 -4.8540763928631195E-005 + 136.73999999999998 -4.3214019954469612E-005 + 136.79999999999998 -3.7658669582258594E-005 + 136.85999999999999 -3.1891134074056589E-005 + 136.91999999999999 -2.5928399801225973E-005 + 136.97999999999999 -1.9787967909219417E-005 + 137.03999999999999 -1.3487786209116559E-005 + 137.09999999999999 -7.0461966816255386E-006 + 137.16000000000000 -4.8187033436661339E-007 + 137.22000000000000 6.1862485420900949E-006 + 137.28000000000000 1.2938998751144300E-005 + 137.34000000000000 1.9757063120528451E-005 + 137.40000000000001 2.6621029721877437E-005 + 137.45999999999998 3.3511434712335964E-005 + 137.51999999999998 4.0408842625956623E-005 + 137.57999999999998 4.7293862284985083E-005 + 137.63999999999999 5.4147247617032403E-005 + 137.69999999999999 6.0949939846382037E-005 + 137.75999999999999 6.7683113749949071E-005 + 137.81999999999999 7.4328231601795424E-005 + 137.88000000000000 8.0867131547001492E-005 + 137.94000000000000 8.7282069330995516E-005 + 138.00000000000000 9.3555765478823389E-005 + 138.06000000000000 9.9671472074195207E-005 + 138.12000000000000 1.0561307577110205E-004 + 138.18000000000001 1.1136507961170196E-004 + 138.23999999999998 1.1691270334618050E-004 + 138.29999999999998 1.2224192941990742E-004 + 138.35999999999999 1.2733954796029969E-004 + 138.41999999999999 1.3219321258009609E-004 + 138.47999999999999 1.3679146178223879E-004 + 138.53999999999999 1.4112379350600130E-004 + 138.59999999999999 1.4518062968804594E-004 + 138.66000000000000 1.4895342834814364E-004 + 138.72000000000000 1.5243462893757477E-004 + 138.78000000000000 1.5561773717167026E-004 + 138.84000000000000 1.5849727715587327E-004 + 138.90000000000001 1.6106889257106754E-004 + 138.95999999999998 1.6332925311949171E-004 + 139.01999999999998 1.6527612960184502E-004 + 139.07999999999998 1.6690837478073204E-004 + 139.13999999999999 1.6822593693427713E-004 + 139.19999999999999 1.6922985269978815E-004 + 139.25999999999999 1.6992221346478147E-004 + 139.31999999999999 1.7030623818862451E-004 + 139.38000000000000 1.7038616681348121E-004 + 139.44000000000000 1.7016730644237000E-004 + 139.50000000000000 1.6965600910372099E-004 + 139.56000000000000 1.6885961074422068E-004 + 139.62000000000000 1.6778649158683185E-004 + 139.68000000000001 1.6644596736176254E-004 + 139.73999999999998 1.6484825800815254E-004 + 139.79999999999998 1.6300450243121462E-004 + 139.85999999999999 1.6092667263521666E-004 + 139.91999999999999 1.5862755542370662E-004 + 139.97999999999999 1.5612068251609680E-004 + 140.03999999999999 1.5342027253770205E-004 + 140.09999999999999 1.5054120651819544E-004 + 140.16000000000000 1.4749896109062484E-004 + 140.22000000000000 1.4430954366967502E-004 + 140.28000000000000 1.4098943096456259E-004 + 140.34000000000000 1.3755550626157149E-004 + 140.40000000000001 1.3402502637616795E-004 + 140.45999999999998 1.3041555333052530E-004 + 140.51999999999998 1.2674487913066682E-004 + 140.57999999999998 1.2303099697371142E-004 + 140.63999999999999 1.1929198955884966E-004 + 140.69999999999999 1.1554604031407609E-004 + 140.75999999999999 1.1181131020362619E-004 + 140.81999999999999 1.0810594943841096E-004 + 140.88000000000000 1.0444794315429713E-004 + 140.94000000000000 1.0085515811904914E-004 + 141.00000000000000 9.7345191581320914E-005 + 141.06000000000000 9.3935373665511742E-005 + 141.12000000000000 9.0642680951948641E-005 + 141.18000000000001 8.7483687828305152E-005 + 141.23999999999998 8.4474510181020238E-005 + 141.29999999999998 8.1630770265650595E-005 + 141.35999999999999 7.8967510246747474E-005 + 141.41999999999999 7.6499178443545449E-005 + 141.47999999999999 7.4239574763774083E-005 + 141.53999999999999 7.2201797840185000E-005 + 141.59999999999999 7.0398229234185954E-005 + 141.66000000000000 6.8840493643547017E-005 + 141.72000000000000 6.7539426859350809E-005 + 141.78000000000000 6.6505067700830918E-005 + 141.84000000000000 6.5746602400810187E-005 + 141.90000000000001 6.5272387887503741E-005 + 141.95999999999998 6.5089908444843872E-005 + 142.01999999999998 6.5205779458463279E-005 + 142.07999999999998 6.5625723914711334E-005 + 142.13999999999999 6.6354577558864404E-005 + 142.19999999999999 6.7396284254435138E-005 + 142.25999999999999 6.8753883617711021E-005 + 142.31999999999999 7.0429523819353981E-005 + 142.38000000000000 7.2424458727644720E-005 + 142.44000000000000 7.4739048317401353E-005 + 142.50000000000000 7.7372784556543176E-005 + 142.56000000000000 8.0324310164900937E-005 + 142.62000000000000 8.3591389962133053E-005 + 142.68000000000001 8.7170993925437973E-005 + 142.73999999999998 9.1059264173311993E-005 + 142.79999999999998 9.5251584832380847E-005 + 142.85999999999999 9.9742585566317706E-005 + 142.91999999999999 1.0452619861939874E-004 + 142.97999999999999 1.0959566389168643E-004 + 143.03999999999999 1.1494360040368055E-004 + 143.09999999999999 1.2056201133243131E-004 + 143.16000000000000 1.2644235606177766E-004 + 143.22000000000000 1.3257558068562216E-004 + 143.28000000000000 1.3895213755503710E-004 + 143.34000000000000 1.4556205685429665E-004 + 143.40000000000001 1.5239499225485104E-004 + 143.45999999999998 1.5944020862193305E-004 + 143.51999999999998 1.6668670116628281E-004 + 143.57999999999998 1.7412317274389125E-004 + 143.63999999999999 1.8173809601732742E-004 + 143.69999999999999 1.8951976203370645E-004 + 143.75999999999999 1.9745630900544543E-004 + 143.81999999999999 2.0553574775856857E-004 + 143.88000000000000 2.1374604265161673E-004 + 143.94000000000000 2.2207512094424745E-004 + 144.00000000000000 2.3051092674562936E-004 + 144.06000000000000 2.3904145494499626E-004 + 144.12000000000000 2.4765478293995824E-004 + 144.18000000000001 2.5633913580495350E-004 + 144.23999999999998 2.6508289391944680E-004 + 144.29999999999998 2.7387466016724966E-004 + 144.35999999999999 2.8270327295505112E-004 + 144.41999999999999 2.9155787513207115E-004 + 144.47999999999999 3.0042785106471558E-004 + 144.53999999999999 3.0930300531046043E-004 + 144.59999999999999 3.1817347265700841E-004 + 144.66000000000000 3.2702973839090268E-004 + 144.72000000000000 3.3586267974522092E-004 + 144.78000000000000 3.4466364503480301E-004 + 144.84000000000000 3.5342441956507444E-004 + 144.90000000000001 3.6213719734683354E-004 + 144.95999999999998 3.7079461218119183E-004 + 145.01999999999998 3.7938983140082904E-004 + 145.07999999999998 3.8791642419776451E-004 + 145.13999999999999 3.9636848548652823E-004 + 145.19999999999999 4.0474060099233116E-004 + 145.25999999999999 4.1302780571743017E-004 + 145.31999999999999 4.2122567210241474E-004 + 145.38000000000000 4.2933025961693912E-004 + 145.44000000000000 4.3733810220579814E-004 + 145.50000000000000 4.4524624225399442E-004 + 145.56000000000000 4.5305225920674918E-004 + 145.62000000000000 4.6075410893922522E-004 + 145.68000000000001 4.6835026058084870E-004 + 145.73999999999998 4.7583971784752126E-004 + 145.79999999999998 4.8322182836287703E-004 + 145.85999999999999 4.9049642158299897E-004 + 145.91999999999999 4.9766368942723348E-004 + 145.97999999999999 5.0472424638285185E-004 + 146.03999999999999 5.1167904598632718E-004 + 146.09999999999999 5.1852931281081533E-004 + 146.16000000000000 5.2527659662047869E-004 + 146.22000000000000 5.3192276017644425E-004 + 146.28000000000000 5.3846989309180838E-004 + 146.34000000000000 5.4492035634617041E-004 + 146.40000000000001 5.5127663375593354E-004 + 146.45999999999998 5.5754139278055574E-004 + 146.51999999999998 5.6371746476533671E-004 + 146.57999999999998 5.6980781527780455E-004 + 146.63999999999999 5.7581548534718077E-004 + 146.69999999999999 5.8174364417192133E-004 + 146.75999999999999 5.8759547784861094E-004 + 146.81999999999999 5.9337419645266439E-004 + 146.88000000000000 5.9908314694075745E-004 + 146.94000000000000 6.0472549454123551E-004 + 147.00000000000000 6.1030458093328421E-004 + 147.06000000000000 6.1582349372699466E-004 + 147.12000000000000 6.2128527608386699E-004 + 147.18000000000001 6.2669299318458892E-004 + 147.23999999999998 6.3204939003185879E-004 + 147.29999999999998 6.3735714597145776E-004 + 147.35999999999999 6.4261863567699159E-004 + 147.41999999999999 6.4783617356252193E-004 + 147.47999999999999 6.5301171154295368E-004 + 147.53999999999999 6.5814691428084675E-004 + 147.59999999999999 6.6324323030142191E-004 + 147.66000000000000 6.6830165426204086E-004 + 147.72000000000000 6.7332299094559811E-004 + 147.78000000000000 6.7830764258962524E-004 + 147.84000000000000 6.8325562743059773E-004 + 147.90000000000001 6.8816664024258848E-004 + 147.95999999999998 6.9303998405105245E-004 + 148.01999999999998 6.9787447178677265E-004 + 148.07999999999998 7.0266871523336617E-004 + 148.13999999999999 7.0742078808068529E-004 + 148.19999999999999 7.1212833743958509E-004 + 148.25999999999999 7.1678875153827583E-004 + 148.31999999999999 7.2139891577321241E-004 + 148.38000000000000 7.2595525278754223E-004 + 148.44000000000000 7.3045388822063630E-004 + 148.50000000000000 7.3489044245362764E-004 + 148.56000000000000 7.3926010739899708E-004 + 148.62000000000000 7.4355762601036046E-004 + 148.68000000000001 7.4777741755538744E-004 + 148.73999999999998 7.5191338876977364E-004 + 148.79999999999998 7.5595907319360423E-004 + 148.85999999999999 7.5990757368338149E-004 + 148.91999999999999 7.6375151422263411E-004 + 148.97999999999999 7.6748324312229715E-004 + 149.03999999999999 7.7109470625799257E-004 + 149.09999999999999 7.7457739815992184E-004 + 149.16000000000000 7.7792255912645044E-004 + 149.22000000000000 7.8112100537053536E-004 + 149.28000000000000 7.8416325009687577E-004 + 149.34000000000000 7.8703951028174634E-004 + 149.40000000000001 7.8973979326361562E-004 + 149.45999999999998 7.9225377094910439E-004 + 149.51999999999998 7.9457096703152504E-004 + 149.57999999999998 7.9668054133885452E-004 + 149.63999999999999 7.9857152738502387E-004 + 149.69999999999999 8.0023279869360583E-004 + 149.75999999999999 8.0165300651994142E-004 + 149.81999999999999 8.0282068893183789E-004 + 149.88000000000000 8.0372427797623807E-004 + 149.94000000000000 8.0435206984979233E-004 + 150.00000000000000 8.0469229990811719E-004 + 150.06000000000000 8.0473313117189547E-004 + 150.12000000000000 8.0446277099047072E-004 + 150.18000000000001 8.0386929353828051E-004 + 150.23999999999998 8.0294089838297059E-004 + 150.29999999999998 8.0166572898608809E-004 + 150.35999999999999 8.0003212255056768E-004 + 150.41999999999999 7.9802844265214952E-004 + 150.47999999999999 7.9564324474332409E-004 + 150.53999999999999 7.9286519372878488E-004 + 150.59999999999999 7.8968307356511657E-004 + 150.66000000000000 7.8608600739336746E-004 + 150.72000000000000 7.8206327564507040E-004 + 150.78000000000000 7.7760448488924442E-004 + 150.84000000000000 7.7269943753030155E-004 + 150.90000000000001 7.6733829676074662E-004 + 150.95999999999998 7.6151161669547668E-004 + 151.01999999999998 7.5521026898188806E-004 + 151.07999999999998 7.4842552704758444E-004 + 151.13999999999999 7.4114910468460525E-004 + 151.19999999999999 7.3337316448552009E-004 + 151.25999999999999 7.2509027247521954E-004 + 151.31999999999999 7.1629357800060529E-004 + 151.38000000000000 7.0697678597810552E-004 + 151.44000000000000 6.9713410010420810E-004 + 151.50000000000000 6.8676037455049502E-004 + 151.56000000000000 6.7585110069926999E-004 + 151.62000000000000 6.6440240765101985E-004 + 151.68000000000001 6.5241109061280273E-004 + 151.73999999999998 6.3987460390424933E-004 + 151.79999999999998 6.2679116832479943E-004 + 151.85999999999999 6.1315980395597119E-004 + 151.91999999999999 5.9898018213573720E-004 + 151.97999999999999 5.8425279953850512E-004 + 152.03999999999999 5.6897897478498888E-004 + 152.09999999999999 5.5316079346071187E-004 + 152.16000000000000 5.3680111286989393E-004 + 152.22000000000000 5.1990360689235186E-004 + 152.28000000000000 5.0247290613441371E-004 + 152.34000000000000 4.8451434539777333E-004 + 152.40000000000001 4.6603413798988698E-004 + 152.45999999999998 4.4703942205854858E-004 + 152.51999999999998 4.2753819247178226E-004 + 152.57999999999998 4.0753929264004821E-004 + 152.63999999999999 3.8705249084756911E-004 + 152.69999999999999 3.6608848527089311E-004 + 152.75999999999999 3.4465880840576856E-004 + 152.81999999999999 3.2277598824999239E-004 + 152.88000000000000 3.0045340307053138E-004 + 152.94000000000000 2.7770542764720443E-004 + 153.00000000000000 2.5454732516208691E-004 + 153.06000000000000 2.3099526684344091E-004 + 153.12000000000000 2.0706633332254372E-004 + 153.17999999999998 1.8277850287070924E-004 + 153.23999999999998 1.5815065655661552E-004 + 153.29999999999998 1.3320249672675206E-004 + 153.35999999999999 1.0795458595731617E-004 + 153.41999999999999 8.2428328763490611E-005 + 153.47999999999999 5.6645889139933118E-005 + 153.53999999999999 3.0630220508507765E-005 + 153.59999999999999 4.4050019323923109E-006 + 153.66000000000000 -2.2005364282858134E-005 + 153.72000000000000 -4.8575792582945863E-005 + 153.78000000000000 -7.5280537210386999E-005 + 153.84000000000000 -1.0209324944500225E-004 + 153.90000000000001 -1.2898694074892954E-004 + 153.95999999999998 -1.5593408097643797E-004 + 154.01999999999998 -1.8290658002321933E-004 + 154.07999999999998 -2.0987583075313227E-004 + 154.13999999999999 -2.3681278066307827E-004 + 154.19999999999999 -2.6368788866449450E-004 + 154.25999999999999 -2.9047124424929396E-004 + 154.31999999999999 -3.1713255302824220E-004 + 154.38000000000000 -3.4364121635538153E-004 + 154.44000000000000 -3.6996633166693795E-004 + 154.50000000000000 -3.9607672381789682E-004 + 154.56000000000000 -4.2194108384661027E-004 + 154.62000000000000 -4.4752796615783177E-004 + 154.67999999999998 -4.7280583656431996E-004 + 154.73999999999998 -4.9774305538060042E-004 + 154.79999999999998 -5.2230807237832672E-004 + 154.85999999999999 -5.4646945168088437E-004 + 154.91999999999999 -5.7019580114003681E-004 + 154.97999999999999 -5.9345589613092186E-004 + 155.03999999999999 -6.1621887645455572E-004 + 155.09999999999999 -6.3845400996472685E-004 + 155.16000000000000 -6.6013104142562649E-004 + 155.22000000000000 -6.8122003043420525E-004 + 155.28000000000000 -7.0169149149900962E-004 + 155.34000000000000 -7.2151640547718954E-004 + 155.40000000000001 -7.4066630765825744E-004 + 155.45999999999998 -7.5911329306416490E-004 + 155.51999999999998 -7.7683013699794137E-004 + 155.57999999999998 -7.9379032457155155E-004 + 155.63999999999999 -8.0996796823021571E-004 + 155.69999999999999 -8.2533809980275884E-004 + 155.75999999999999 -8.3987647873356487E-004 + 155.81999999999999 -8.5355984597444852E-004 + 155.88000000000000 -8.6636571598319235E-004 + 155.94000000000000 -8.7827278281149589E-004 + 156.00000000000000 -8.8926062096170394E-004 + 156.06000000000000 -8.9930994994025346E-004 + 156.12000000000000 -9.0840253810596852E-004 + 156.17999999999998 -9.1652135939558036E-004 + 156.23999999999998 -9.2365059368464326E-004 + 156.29999999999998 -9.2977554236751785E-004 + 156.35999999999999 -9.3488293965785158E-004 + 156.41999999999999 -9.3896069977953940E-004 + 156.47999999999999 -9.4199817279303529E-004 + 156.53999999999999 -9.4398601668250700E-004 + 156.59999999999999 -9.4491625209793310E-004 + 156.66000000000000 -9.4478245693526081E-004 + 156.72000000000000 -9.4357960455855789E-004 + 156.78000000000000 -9.4130404156468768E-004 + 156.84000000000000 -9.3795369054008339E-004 + 156.90000000000001 -9.3352801091591041E-004 + 156.95999999999998 -9.2802795832591732E-004 + 157.01999999999998 -9.2145593664459983E-004 + 157.07999999999998 -9.1381613757250517E-004 + 157.13999999999999 -9.0511412756633829E-004 + 157.19999999999999 -8.9535700211645073E-004 + 157.25999999999999 -8.8455343199569621E-004 + 157.31999999999999 -8.7271371148050006E-004 + 157.38000000000000 -8.5984967419478278E-004 + 157.44000000000000 -8.4597455465614143E-004 + 157.50000000000000 -8.3110316262749125E-004 + 157.56000000000000 -8.1525185511244051E-004 + 157.62000000000000 -7.9843843921232824E-004 + 157.67999999999998 -7.8068210600823907E-004 + 157.73999999999998 -7.6200339796139293E-004 + 157.79999999999998 -7.4242436899686019E-004 + 157.85999999999999 -7.2196822874223828E-004 + 157.91999999999999 -7.0065968411967558E-004 + 157.97999999999999 -6.7852456951099436E-004 + 158.03999999999999 -6.5559007526373020E-004 + 158.09999999999999 -6.3188445096486819E-004 + 158.16000000000000 -6.0743708219787519E-004 + 158.22000000000000 -5.8227852440243780E-004 + 158.28000000000000 -5.5644034878143435E-004 + 158.34000000000000 -5.2995502059698845E-004 + 158.40000000000001 -5.0285593127156591E-004 + 158.45999999999998 -4.7517741167733385E-004 + 158.51999999999998 -4.4695450070846818E-004 + 158.57999999999998 -4.1822297787793807E-004 + 158.63999999999999 -3.8901936617005933E-004 + 158.69999999999999 -3.5938063256753515E-004 + 158.75999999999999 -3.2934430284679167E-004 + 158.81999999999999 -2.9894827675649668E-004 + 158.88000000000000 -2.6823082441806008E-004 + 158.94000000000000 -2.3723049462398124E-004 + 159.00000000000000 -2.0598593038623420E-004 + 159.06000000000000 -1.7453592451920801E-004 + 159.12000000000000 -1.4291930243439307E-004 + 159.17999999999998 -1.1117476183882105E-004 + 159.23999999999998 -7.9340893279825295E-005 + 159.29999999999998 -4.7456052804077111E-005 + 159.35999999999999 -1.5558314243417914E-005 + 159.41999999999999 1.6314623631779071E-005 + 159.47999999999999 4.8125504371563385E-005 + 159.53999999999999 7.9837560744326082E-005 + 159.59999999999999 1.1141459949237865E-004 + 159.66000000000000 1.4282107472276292E-004 + 159.72000000000000 1.7402213543957126E-004 + 159.78000000000000 2.0498367718170684E-004 + 159.84000000000000 2.3567241762895616E-004 + 159.90000000000001 2.6605601756840444E-004 + 159.95999999999998 2.9610295888742564E-004 + 160.01999999999998 3.2578281667121383E-004 + 160.07999999999998 3.5506613836584522E-004 + 160.13999999999999 3.8392461399206835E-004 + 160.19999999999999 4.1233102243016709E-004 + 160.25999999999999 4.4025933493231076E-004 + 160.31999999999999 4.6768469973002366E-004 + 160.38000000000000 4.9458352781748421E-004 + 160.44000000000000 5.2093346655774188E-004 + 160.50000000000000 5.4671345164518609E-004 + 160.56000000000000 5.7190371842083510E-004 + 160.62000000000000 5.9648584691858876E-004 + 160.67999999999998 6.2044261816833588E-004 + 160.73999999999998 6.4375822100484000E-004 + 160.79999999999998 6.6641810662595188E-004 + 160.85999999999999 6.8840903692671718E-004 + 160.91999999999999 7.0971900645791139E-004 + 160.97999999999999 7.3033727790212640E-004 + 161.03999999999999 7.5025444556008590E-004 + 161.09999999999999 7.6946229476212644E-004 + 161.16000000000000 7.8795382702903107E-004 + 161.22000000000000 8.0572324271147814E-004 + 161.28000000000000 8.2276577406630187E-004 + 161.34000000000000 8.3907798301814229E-004 + 161.40000000000001 8.5465736390401888E-004 + 161.45999999999998 8.6950258116048787E-004 + 161.51999999999998 8.8361317669250850E-004 + 161.57999999999998 8.9698981379398722E-004 + 161.63999999999999 9.0963403889114734E-004 + 161.69999999999999 9.2154829249239934E-004 + 161.75999999999999 9.3273587823101967E-004 + 161.81999999999999 9.4320086422078266E-004 + 161.88000000000000 9.5294806967226157E-004 + 161.94000000000000 9.6198299500419005E-004 + 162.00000000000000 9.7031176877592103E-004 + 162.06000000000000 9.7794117608381113E-004 + 162.12000000000000 9.8487849523290461E-004 + 162.17999999999998 9.9113142277955954E-004 + 162.23999999999998 9.9670821208851018E-004 + 162.29999999999998 1.0016174791926021E-003 + 162.35999999999999 1.0058680259937729E-003 + 162.41999999999999 1.0094691951444109E-003 + 162.47999999999999 1.0124304730282003E-003 + 162.53999999999999 1.0147615777371906E-003 + 162.59999999999999 1.0164722650124886E-003 + 162.66000000000000 1.0175725485449736E-003 + 162.72000000000000 1.0180724740481253E-003 + 162.78000000000000 1.0179824247389989E-003 + 162.84000000000000 1.0173125366619202E-003 + 162.90000000000001 1.0160731599360097E-003 + 162.95999999999998 1.0142743162786351E-003 + 163.01999999999998 1.0119264587891824E-003 + 163.07999999999998 1.0090396693355117E-003 + 163.13999999999999 1.0056239895148106E-003 + 163.19999999999999 1.0016893829162643E-003 + 163.25999999999999 9.9724575440009698E-004 + 163.31999999999999 9.9230279594973866E-004 + 163.38000000000000 9.8687023280754206E-004 + 163.44000000000000 9.8095748512178147E-004 + 163.50000000000000 9.7457380516353075E-004 + 163.56000000000000 9.6772833706665795E-004 + 163.62000000000000 9.6043002030442965E-004 + 163.67999999999998 9.5268774391606592E-004 + 163.73999999999998 9.4451017559368800E-004 + 163.79999999999998 9.3590584957719050E-004 + 163.85999999999999 9.2688308475974554E-004 + 163.91999999999999 9.1745023326404371E-004 + 163.97999999999999 9.0761534413682122E-004 + 164.03999999999999 8.9738647507667734E-004 + 164.09999999999999 8.8677151499317371E-004 + 164.16000000000000 8.7577833730028245E-004 + 164.22000000000000 8.6441475455574545E-004 + 164.28000000000000 8.5268841124403947E-004 + 164.34000000000000 8.4060705389489402E-004 + 164.40000000000001 8.2817838648832881E-004 + 164.45999999999998 8.1541004278807172E-004 + 164.51999999999998 8.0230974691900025E-004 + 164.57999999999998 7.8888515923322808E-004 + 164.63999999999999 7.7514417223167127E-004 + 164.69999999999999 7.6109458545835565E-004 + 164.75999999999999 7.4674441050573740E-004 + 164.81999999999999 7.3210165223593819E-004 + 164.88000000000000 7.1717459651073827E-004 + 164.94000000000000 7.0197152028328999E-004 + 165.00000000000000 6.8650090350295978E-004 + 165.06000000000000 6.7077145392956605E-004 + 165.12000000000000 6.5479199038917491E-004 + 165.17999999999998 6.3857157715515418E-004 + 165.23999999999998 6.2211947401184017E-004 + 165.29999999999998 6.0544510954967763E-004 + 165.35999999999999 5.8855822935991711E-004 + 165.41999999999999 5.7146865300391483E-004 + 165.47999999999999 5.5418644154434430E-004 + 165.53999999999999 5.3672200732251955E-004 + 165.59999999999999 5.1908582530934904E-004 + 165.66000000000000 5.0128864089927572E-004 + 165.72000000000000 4.8334142706099039E-004 + 165.78000000000000 4.6525533788481098E-004 + 165.84000000000000 4.4704169789092264E-004 + 165.90000000000001 4.2871208530169603E-004 + 165.95999999999998 4.1027821439457997E-004 + 166.01999999999998 3.9175196440615386E-004 + 166.07999999999998 3.7314542543308434E-004 + 166.13999999999999 3.5447081956745553E-004 + 166.19999999999999 3.3574052053004507E-004 + 166.25999999999999 3.1696702137367516E-004 + 166.31999999999999 2.9816296974004877E-004 + 166.38000000000000 2.7934113138325086E-004 + 166.44000000000000 2.6051430857163709E-004 + 166.50000000000000 2.4169539424891313E-004 + 166.56000000000000 2.2289734275851206E-004 + 166.62000000000000 2.0413309934521313E-004 + 166.67999999999998 1.8541565223806317E-004 + 166.73999999999998 1.6675790817581704E-004 + 166.79999999999998 1.4817275718915360E-004 + 166.85999999999999 1.2967301136342739E-004 + 166.91999999999999 1.1127136784311237E-004 + 166.97999999999999 9.2980412774192072E-005 + 167.03999999999999 7.4812576859061862E-005 + 167.09999999999999 5.6780087112449207E-005 + 167.16000000000000 3.8895029627305891E-005 + 167.22000000000000 2.1169254334597355E-005 + 167.28000000000000 3.6143884107183133E-006 + 167.34000000000000 -1.3758177793018758E-005 + 167.40000000000001 -3.0937304719452882E-005 + 167.45999999999998 -4.7912120329995261E-005 + 167.51999999999998 -6.4672032048314855E-005 + 167.57999999999998 -8.1206732583367173E-005 + 167.63999999999999 -9.7506222055599383E-005 + 167.69999999999999 -1.1356079330421007E-004 + 167.75999999999999 -1.2936107731920145E-004 + 167.81999999999999 -1.4489801105362950E-004 + 167.88000000000000 -1.6016288970039494E-004 + 167.94000000000000 -1.7514736182228316E-004 + 168.00000000000000 -1.8984339853522257E-004 + 168.06000000000000 -2.0424339171505617E-004 + 168.12000000000000 -2.1834008897396229E-004 + 168.17999999999998 -2.3212663328856504E-004 + 168.23999999999998 -2.4559653954012048E-004 + 168.29999999999998 -2.5874373402820185E-004 + 168.35999999999999 -2.7156258789857974E-004 + 168.41999999999999 -2.8404777314801143E-004 + 168.47999999999999 -2.9619444694496043E-004 + 168.53999999999999 -3.0799817097135581E-004 + 168.59999999999999 -3.1945485129947313E-004 + 168.66000000000000 -3.3056082937192073E-004 + 168.72000000000000 -3.4131285373606131E-004 + 168.78000000000000 -3.5170794381650443E-004 + 168.84000000000000 -3.6174362729323058E-004 + 168.90000000000001 -3.7141765394131811E-004 + 168.95999999999998 -3.8072821403598961E-004 + 169.01999999999998 -3.8967382840071819E-004 + 169.07999999999998 -3.9825330817649609E-004 + 169.13999999999999 -4.0646580973003737E-004 + 169.19999999999999 -4.1431078586255644E-004 + 169.25999999999999 -4.2178804524878988E-004 + 169.31999999999999 -4.2889758595235887E-004 + 169.38000000000000 -4.3563974224117090E-004 + 169.44000000000000 -4.4201515911615973E-004 + 169.50000000000000 -4.4802474000655467E-004 + 169.56000000000000 -4.5366958840508412E-004 + 169.62000000000000 -4.5895108952420590E-004 + 169.67999999999998 -4.6387087421404709E-004 + 169.73999999999998 -4.6843083687823125E-004 + 169.79999999999998 -4.7263306405669942E-004 + 169.85999999999999 -4.7647990230189474E-004 + 169.91999999999999 -4.7997378915451736E-004 + 169.97999999999999 -4.8311754743395952E-004 + 170.03999999999999 -4.8591399367343887E-004 + 170.09999999999999 -4.8836625463133951E-004 + 170.16000000000000 -4.9047766912978371E-004 + 170.22000000000000 -4.9225166495948534E-004 + 170.28000000000000 -4.9369189769646175E-004 + 170.34000000000000 -4.9480222271643093E-004 + 170.40000000000001 -4.9558655813654469E-004 + 170.45999999999998 -4.9604902901773551E-004 + 170.51999999999998 -4.9619391344522140E-004 + 170.57999999999998 -4.9602572624104612E-004 + 170.63999999999999 -4.9554907649424678E-004 + 170.69999999999999 -4.9476864245603556E-004 + 170.75999999999999 -4.9368941637611572E-004 + 170.81999999999999 -4.9231634934791965E-004 + 170.88000000000000 -4.9065470743432237E-004 + 170.94000000000000 -4.8870982645774744E-004 + 171.00000000000000 -4.8648718588559806E-004 + 171.06000000000000 -4.8399237191792006E-004 + 171.12000000000000 -4.8123121116402164E-004 + 171.17999999999998 -4.7820953852056419E-004 + 171.23999999999998 -4.7493342247616058E-004 + 171.29999999999998 -4.7140905179445235E-004 + 171.35999999999999 -4.6764275929976309E-004 + 171.41999999999999 -4.6364098598462020E-004 + 171.47999999999999 -4.5941037383501323E-004 + 171.53999999999999 -4.5495764968311587E-004 + 171.59999999999999 -4.5028973299351895E-004 + 171.66000000000000 -4.4541367561033946E-004 + 171.72000000000000 -4.4033672592111336E-004 + 171.78000000000000 -4.3506621989888904E-004 + 171.84000000000000 -4.2960969818457457E-004 + 171.90000000000001 -4.2397479388636759E-004 + 171.95999999999998 -4.1816928937002244E-004 + 172.01999999999998 -4.1220116889433548E-004 + 172.07999999999998 -4.0607850134198424E-004 + 172.13999999999999 -3.9980944888986717E-004 + 172.19999999999999 -3.9340233364555330E-004 + 172.25999999999999 -3.8686554065483076E-004 + 172.31999999999999 -3.8020758947223180E-004 + 172.38000000000000 -3.7343706028999599E-004 + 172.44000000000000 -3.6656258392720820E-004 + 172.50000000000000 -3.5959291563871312E-004 + 172.56000000000000 -3.5253674747131691E-004 + 172.62000000000000 -3.4540290440427009E-004 + 172.67999999999998 -3.3820019775400445E-004 + 172.73999999999998 -3.3093746748641222E-004 + 172.79999999999998 -3.2362356573882773E-004 + 172.85999999999999 -3.1626731463043489E-004 + 172.91999999999999 -3.0887753500824012E-004 + 172.97999999999999 -3.0146304260046344E-004 + 173.03999999999999 -2.9403254683863373E-004 + 173.09999999999999 -2.8659478984226265E-004 + 173.16000000000000 -2.7915842993254844E-004 + 173.22000000000000 -2.7173202299676986E-004 + 173.28000000000000 -2.6432404863406756E-004 + 173.34000000000000 -2.5694288658332522E-004 + 173.40000000000001 -2.4959678918065842E-004 + 173.45999999999998 -2.4229386465631151E-004 + 173.51999999999998 -2.3504207240854826E-004 + 173.57999999999998 -2.2784920305709693E-004 + 173.63999999999999 -2.2072285883926218E-004 + 173.69999999999999 -2.1367044996525945E-004 + 173.75999999999999 -2.0669916458688245E-004 + 173.81999999999999 -1.9981595783559607E-004 + 173.88000000000000 -1.9302756996832009E-004 + 173.94000000000000 -1.8634049025454893E-004 + 174.00000000000000 -1.7976093947467763E-004 + 174.06000000000000 -1.7329489022676237E-004 + 174.12000000000000 -1.6694803014547177E-004 + 174.17999999999998 -1.6072579614468700E-004 + 174.23999999999998 -1.5463333879086526E-004 + 174.29999999999998 -1.4867552053775152E-004 + 174.35999999999999 -1.4285692035862857E-004 + 174.41999999999999 -1.3718181563982139E-004 + 174.47999999999999 -1.3165421043648105E-004 + 174.53999999999999 -1.2627777490228546E-004 + 174.59999999999999 -1.2105591095249558E-004 + 174.66000000000000 -1.1599170246638355E-004 + 174.72000000000000 -1.1108791128665091E-004 + 174.78000000000000 -1.0634699937781397E-004 + 174.84000000000000 -1.0177111593484259E-004 + 174.90000000000001 -9.7362100254001478E-005 + 174.95999999999998 -9.3121475201690814E-005 + 175.01999999999998 -8.9050467130214253E-005 + 175.07999999999998 -8.5149987047792886E-005 + 175.13999999999999 -8.1420647231397508E-005 + 175.19999999999999 -7.7862788017704998E-005 + 175.25999999999999 -7.4476453034698023E-005 + 175.31999999999999 -7.1261411829845109E-005 + 175.38000000000000 -6.8217188020580700E-005 + 175.44000000000000 -6.5343041019645648E-005 + 175.50000000000000 -6.2638002279268875E-005 + 175.56000000000000 -6.0100876069733411E-005 + 175.62000000000000 -5.7730259402565296E-005 + 175.67999999999998 -5.5524545840892199E-005 + 175.73999999999998 -5.3481945517972143E-005 + 175.79999999999998 -5.1600500514082648E-005 + 175.85999999999999 -4.9878097807966735E-005 + 175.91999999999999 -4.8312472762083768E-005 + 175.97999999999999 -4.6901232510677152E-005 + 176.03999999999999 -4.5641870040066114E-005 + 176.09999999999999 -4.4531767944089502E-005 + 176.16000000000000 -4.3568224712031345E-005 + 176.22000000000000 -4.2748451543763119E-005 + 176.28000000000000 -4.2069614663932308E-005 + 176.34000000000000 -4.1528817812013001E-005 + 176.40000000000001 -4.1123139710151738E-005 + 176.45999999999998 -4.0849638221614238E-005 + 176.51999999999998 -4.0705370053124019E-005 + 176.57999999999998 -4.0687397829609904E-005 + 176.63999999999999 -4.0792810842556304E-005 + 176.69999999999999 -4.1018737254082144E-005 + 176.75999999999999 -4.1362356514171356E-005 + 176.81999999999999 -4.1820905020280542E-005 + 176.88000000000000 -4.2391698961459045E-005 + 176.94000000000000 -4.3072131777208344E-005 + 177.00000000000000 -4.3859680776942172E-005 + 177.06000000000000 -4.4751943534671162E-005 + 177.12000000000000 -4.5746605256429921E-005 + 177.17999999999998 -4.6841473954702878E-005 + 177.23999999999998 -4.8034472656390875E-005 + 177.29999999999998 -4.9323633561207636E-005 + 177.35999999999999 -5.0707130730930090E-005 + 177.41999999999999 -5.2183253532370335E-005 + 177.47999999999999 -5.3750432468852036E-005 + 177.53999999999999 -5.5407211699235426E-005 + 177.59999999999999 -5.7152283350354625E-005 + 177.66000000000000 -5.8984450454045974E-005 + 177.72000000000000 -6.0902649938532268E-005 + 177.78000000000000 -6.2905936634334852E-005 + 177.84000000000000 -6.4993493313973146E-005 + 177.90000000000001 -6.7164608594967021E-005 + 177.95999999999998 -6.9418669193305497E-005 + 178.01999999999998 -7.1755168716316545E-005 + 178.07999999999998 -7.4173673908796778E-005 + 178.13999999999999 -7.6673827840331607E-005 + 178.19999999999999 -7.9255340832220817E-005 + 178.25999999999999 -8.1917978049122087E-005 + 178.31999999999999 -8.4661528903211261E-005 + 178.38000000000000 -8.7485831705555480E-005 + 178.44000000000000 -9.0390704507954233E-005 + 178.50000000000000 -9.3375975499275995E-005 + 178.56000000000000 -9.6441471484324598E-005 + 178.62000000000000 -9.9586969573367304E-005 + 178.67999999999998 -1.0281219560709678E-004 + 178.73999999999998 -1.0611682808159160E-004 + 178.79999999999998 -1.0950049694965202E-004 + 178.85999999999999 -1.1296270584840625E-004 + 178.91999999999999 -1.1650287687390953E-004 + 178.97999999999999 -1.2012032253814944E-004 + 179.03999999999999 -1.2381423544639567E-004 + 179.09999999999999 -1.2758366438073574E-004 + 179.16000000000000 -1.3142750355251779E-004 + 179.22000000000000 -1.3534446652902878E-004 + 179.28000000000000 -1.3933308368342353E-004 + 179.34000000000000 -1.4339168641867435E-004 + 179.40000000000001 -1.4751842205796024E-004 + 179.45999999999998 -1.5171116898753817E-004 + 179.51999999999998 -1.5596758279314457E-004 + 179.57999999999998 -1.6028505018383447E-004 + 179.63999999999999 -1.6466073177085681E-004 + 179.69999999999999 -1.6909148181595899E-004 + 179.75999999999999 -1.7357387844441655E-004 + 179.81999999999999 -1.7810421613110222E-004 + 179.88000000000000 -1.8267851063789175E-004 + 179.94000000000000 -1.8729249480869910E-004 + 180.00000000000000 -1.9194158144518193E-004 + 180.06000000000000 -1.9662094467821792E-004 + 180.12000000000000 -2.0132546157946115E-004 + 180.17999999999998 -2.0604973328177295E-004 + 180.23999999999998 -2.1078810633125977E-004 + 180.29999999999998 -2.1553465947423621E-004 + 180.35999999999999 -2.2028323129427076E-004 + 180.41999999999999 -2.2502741906269634E-004 + 180.47999999999999 -2.2976060517440220E-004 + 180.53999999999999 -2.3447595829144448E-004 + 180.59999999999999 -2.3916645029898619E-004 + 180.66000000000000 -2.4382485188359911E-004 + 180.72000000000000 -2.4844370169404390E-004 + 180.78000000000000 -2.5301542585961552E-004 + 180.84000000000000 -2.5753225697881999E-004 + 180.90000000000001 -2.6198628641138861E-004 + 180.95999999999998 -2.6636945954937433E-004 + 181.01999999999998 -2.7067360061559548E-004 + 181.07999999999998 -2.7489044522146562E-004 + 181.13999999999999 -2.7901160531946205E-004 + 181.19999999999999 -2.8302864314469505E-004 + 181.25999999999999 -2.8693303958252672E-004 + 181.31999999999999 -2.9071627397516281E-004 + 181.38000000000000 -2.9436976265331978E-004 + 181.44000000000000 -2.9788498421466983E-004 + 181.50000000000000 -3.0125344015470465E-004 + 181.56000000000000 -3.0446665480811781E-004 + 181.62000000000000 -3.0751624874760094E-004 + 181.67999999999998 -3.1039393432255000E-004 + 181.73999999999998 -3.1309153277897734E-004 + 181.79999999999998 -3.1560106276256434E-004 + 181.85999999999999 -3.1791466490740505E-004 + 181.91999999999999 -3.2002462815560698E-004 + 181.97999999999999 -3.2192346477954916E-004 + 182.03999999999999 -3.2360395772594342E-004 + 182.09999999999999 -3.2505906033203515E-004 + 182.16000000000000 -3.2628195890376519E-004 + 182.22000000000000 -3.2726615186390008E-004 + 182.28000000000000 -3.2800537010430888E-004 + 182.34000000000000 -3.2849362253780170E-004 + 182.39999999999998 -3.2872525269417362E-004 + 182.45999999999998 -3.2869488476866901E-004 + 182.51999999999998 -3.2839741814914814E-004 + 182.57999999999998 -3.2782814261611218E-004 + 182.63999999999999 -3.2698264653190280E-004 + 182.69999999999999 -3.2585682431858840E-004 + 182.75999999999999 -3.2444692537176721E-004 + 182.81999999999999 -3.2274958083005825E-004 + 182.88000000000000 -3.2076174171278394E-004 + 182.94000000000000 -3.1848072844162988E-004 + 183.00000000000000 -3.1590418674631870E-004 + 183.06000000000000 -3.1303017958627982E-004 + 183.12000000000000 -3.0985712599844781E-004 + 183.17999999999998 -3.0638381179296816E-004 + 183.23999999999998 -3.0260939908642684E-004 + 183.29999999999998 -2.9853342367474407E-004 + 183.35999999999999 -2.9415578434271149E-004 + 183.41999999999999 -2.8947682092710938E-004 + 183.47999999999999 -2.8449716134967541E-004 + 183.53999999999999 -2.7921787092113968E-004 + 183.59999999999999 -2.7364036863041462E-004 + 183.66000000000000 -2.6776645550146821E-004 + 183.72000000000000 -2.6159832415311764E-004 + 183.78000000000000 -2.5513847053814515E-004 + 183.84000000000000 -2.4838980043002479E-004 + 183.89999999999998 -2.4135552701036906E-004 + 183.95999999999998 -2.3403922921667308E-004 + 184.01999999999998 -2.2644483585553489E-004 + 184.07999999999998 -2.1857656512522887E-004 + 184.13999999999999 -2.1043898534297219E-004 + 184.19999999999999 -2.0203692833014296E-004 + 184.25999999999999 -1.9337557077674894E-004 + 184.31999999999999 -1.8446034701194796E-004 + 184.38000000000000 -1.7529696063174361E-004 + 184.44000000000000 -1.6589142614948908E-004 + 184.50000000000000 -1.5624997749480880E-004 + 184.56000000000000 -1.4637914983129698E-004 + 184.62000000000000 -1.3628570350785279E-004 + 184.67999999999998 -1.2597667064752417E-004 + 184.73999999999998 -1.1545933332694174E-004 + 184.79999999999998 -1.0474121054380595E-004 + 184.85999999999999 -9.3830068546876089E-005 + 184.91999999999999 -8.2733930308341914E-005 + 184.97999999999999 -7.1461049034713029E-005 + 185.03999999999999 -6.0019920192112201E-005 + 185.09999999999999 -4.8419280040841046E-005 + 185.16000000000000 -3.6668097529979707E-005 + 185.22000000000000 -2.4775571823262846E-005 + 185.28000000000000 -1.2751111554353303E-005 + 185.34000000000000 -6.0435083866122955E-007 + 185.39999999999998 1.1654882454918289E-005 + 185.45999999999998 2.4016560939764976E-005 + 185.51999999999998 3.6470475739993361E-005 + 185.57999999999998 4.9006260940015931E-005 + 185.63999999999999 6.1613383589317205E-005 + 185.69999999999999 7.4281172782782916E-005 + 185.75999999999999 8.6998819235952754E-005 + 185.81999999999999 9.9755408586628489E-005 + 185.88000000000000 1.1253989879747446E-004 + 185.94000000000000 1.2534117837624810E-004 + 186.00000000000000 1.3814801585751606E-004 + 186.06000000000000 1.5094912337776018E-004 + 186.12000000000000 1.6373312021170322E-004 + 186.17999999999998 1.7648859284554550E-004 + 186.23999999999998 1.8920403622552231E-004 + 186.29999999999998 2.0186792162505099E-004 + 186.35999999999999 2.1446865024711887E-004 + 186.41999999999999 2.2699462919754205E-004 + 186.47999999999999 2.3943421217066538E-004 + 186.53999999999999 2.5177572441099216E-004 + 186.59999999999999 2.6400749442850142E-004 + 186.66000000000000 2.7611785129319364E-004 + 186.72000000000000 2.8809517456338158E-004 + 186.78000000000000 2.9992787420324280E-004 + 186.84000000000000 3.1160436881849554E-004 + 186.89999999999998 3.2311316749559837E-004 + 186.95999999999998 3.3444290912352571E-004 + 187.01999999999998 3.4558232774180287E-004 + 187.07999999999998 3.5652025894636981E-004 + 187.13999999999999 3.6724568940435732E-004 + 187.19999999999999 3.7774781915791305E-004 + 187.25999999999999 3.8801597973369014E-004 + 187.31999999999999 3.9803974644255066E-004 + 187.38000000000000 4.0780891244557803E-004 + 187.44000000000000 4.1731356412244840E-004 + 187.50000000000000 4.2654397099025639E-004 + 187.56000000000000 4.3549069297995903E-004 + 187.62000000000000 4.4414464088725120E-004 + 187.67999999999998 4.5249699480772007E-004 + 187.73999999999998 4.6053923941647334E-004 + 187.79999999999998 4.6826321155803033E-004 + 187.85999999999999 4.7566110100232852E-004 + 187.91999999999999 4.8272544790803486E-004 + 187.97999999999999 4.8944916394066333E-004 + 188.03999999999999 4.9582548354413049E-004 + 188.09999999999999 5.0184806408785226E-004 + 188.16000000000000 5.0751102110375610E-004 + 188.22000000000000 5.1280877933518538E-004 + 188.28000000000000 5.1773623590509828E-004 + 188.34000000000000 5.2228874745102055E-004 + 188.39999999999998 5.2646201771293821E-004 + 188.45999999999998 5.3025216650512234E-004 + 188.51999999999998 5.3365585430135303E-004 + 188.57999999999998 5.3667019812145202E-004 + 188.63999999999999 5.3929268537058887E-004 + 188.69999999999999 5.4152140012246792E-004 + 188.75999999999999 5.4335477550432115E-004 + 188.81999999999999 5.4479175299017725E-004 + 188.88000000000000 5.4583178675428952E-004 + 188.94000000000000 5.4647482208571789E-004 + 189.00000000000000 5.4672115450345973E-004 + 189.06000000000000 5.4657172929938296E-004 + 189.12000000000000 5.4602778616488919E-004 + 189.17999999999998 5.4509116608408067E-004 + 189.23999999999998 5.4376417774316976E-004 + 189.29999999999998 5.4204945949384246E-004 + 189.35999999999999 5.3995016345129458E-004 + 189.41999999999999 5.3746980849533302E-004 + 189.47999999999999 5.3461247095356191E-004 + 189.53999999999999 5.3138247513119562E-004 + 189.59999999999999 5.2778462546927750E-004 + 189.66000000000000 5.2382401073079070E-004 + 189.72000000000000 5.1950617755233393E-004 + 189.78000000000000 5.1483695227609388E-004 + 189.84000000000000 5.0982247437160097E-004 + 189.89999999999998 5.0446916615593917E-004 + 189.95999999999998 4.9878383619796106E-004 + 190.01999999999998 4.9277351287791056E-004 + 190.07999999999998 4.8644545476787099E-004 + 190.13999999999999 4.7980728999450140E-004 + 190.19999999999999 4.7286677176541845E-004 + 190.25999999999999 4.6563193680635443E-004 + 190.31999999999999 4.5811103836816404E-004 + 190.38000000000000 4.5031245549378448E-004 + 190.44000000000000 4.4224485922073363E-004 + 190.50000000000000 4.3391703310152540E-004 + 190.56000000000000 4.2533799243803119E-004 + 190.62000000000000 4.1651684925914692E-004 + 190.67999999999998 4.0746286423994381E-004 + 190.73999999999998 3.9818542598327292E-004 + 190.79999999999998 3.8869401855870479E-004 + 190.85999999999999 3.7899827984571709E-004 + 190.91999999999999 3.6910782401717521E-004 + 190.97999999999999 3.5903238217236088E-004 + 191.03999999999999 3.4878171719417714E-004 + 191.09999999999999 3.3836556303628706E-004 + 191.16000000000000 3.2779373741328186E-004 + 191.22000000000000 3.1707597761569678E-004 + 191.28000000000000 3.0622203794362880E-004 + 191.34000000000000 2.9524158927225915E-004 + 191.39999999999998 2.8414423710566454E-004 + 191.45999999999998 2.7293959118281156E-004 + 191.51999999999998 2.6163711894754236E-004 + 191.57999999999998 2.5024623187961808E-004 + 191.63999999999999 2.3877624598144691E-004 + 191.69999999999999 2.2723635500255038E-004 + 191.75999999999999 2.1563568519157936E-004 + 191.81999999999999 2.0398322908144159E-004 + 191.88000000000000 1.9228787356497646E-004 + 191.94000000000000 1.8055840904679634E-004 + 192.00000000000000 1.6880350399984707E-004 + 192.06000000000000 1.5703169438262545E-004 + 192.12000000000000 1.4525140427119846E-004 + 192.17999999999998 1.3347092115167450E-004 + 192.23999999999998 1.2169841756480497E-004 + 192.29999999999998 1.0994191205434005E-004 + 192.35999999999999 9.8209299990586565E-005 + 192.41999999999999 8.6508332166888009E-005 + 192.47999999999999 7.4846594375609204E-005 + 192.53999999999999 6.3231529952109124E-005 + 192.59999999999999 5.1670419163002578E-005 + 192.66000000000000 4.0170374650487903E-005 + 192.72000000000000 2.8738344911350476E-005 + 192.78000000000000 1.7381094625037550E-005 + 192.84000000000000 6.1052079265404728E-006 + 192.89999999999998 -5.0829078188845652E-006 + 192.95999999999998 -1.6177042604827233E-005 + 193.01999999999998 -2.7171172165663827E-005 + 193.07999999999998 -3.8059472887171867E-005 + 193.13999999999999 -4.8836323484501384E-005 + 193.19999999999999 -5.9496296330700952E-005 + 193.25999999999999 -7.0034178817980213E-005 + 193.31999999999999 -8.0444955531632420E-005 + 193.38000000000000 -9.0723821991420953E-005 + 193.44000000000000 -1.0086619343979082E-004 + 193.50000000000000 -1.1086769293414013E-004 + 193.56000000000000 -1.2072416209385528E-004 + 193.62000000000000 -1.3043166547844280E-004 + 193.67999999999998 -1.3998645824708149E-004 + 193.73999999999998 -1.4938505489676203E-004 + 193.79999999999998 -1.5862415535483417E-004 + 193.85999999999999 -1.6770070571566211E-004 + 193.91999999999999 -1.7661190158631363E-004 + 193.97999999999999 -1.8535512805278298E-004 + 194.03999999999999 -1.9392802974047110E-004 + 194.09999999999999 -2.0232847026780846E-004 + 194.16000000000000 -2.1055454400499757E-004 + 194.22000000000000 -2.1860461673889794E-004 + 194.28000000000000 -2.2647726974261249E-004 + 194.34000000000000 -2.3417133212721454E-004 + 194.39999999999998 -2.4168589381138716E-004 + 194.45999999999998 -2.4902029826902642E-004 + 194.51999999999998 -2.5617409035127037E-004 + 194.57999999999998 -2.6314715310068863E-004 + 194.63999999999999 -2.6993955301224832E-004 + 194.69999999999999 -2.7655165151867683E-004 + 194.75999999999999 -2.8298407873478943E-004 + 194.81999999999999 -2.8923764889215070E-004 + 194.88000000000000 -2.9531345642779759E-004 + 194.94000000000000 -3.0121287470685683E-004 + 195.00000000000000 -3.0693750423913435E-004 + 195.06000000000000 -3.1248918394877385E-004 + 195.12000000000000 -3.1786997234441411E-004 + 195.17999999999998 -3.2308219979914661E-004 + 195.23999999999998 -3.2812837087775007E-004 + 195.29999999999998 -3.3301117874611500E-004 + 195.35999999999999 -3.3773363007604028E-004 + 195.41999999999999 -3.4229884305598943E-004 + 195.47999999999999 -3.4671012833291045E-004 + 195.53999999999999 -3.5097104025217382E-004 + 195.59999999999999 -3.5508526414002652E-004 + 195.66000000000000 -3.5905666178640287E-004 + 195.72000000000000 -3.6288926950679934E-004 + 195.78000000000000 -3.6658729107428081E-004 + 195.84000000000000 -3.7015504187955500E-004 + 195.89999999999998 -3.7359695148005937E-004 + 195.95999999999998 -3.7691761773593570E-004 + 196.01999999999998 -3.8012178405976983E-004 + 196.07999999999998 -3.8321424581122017E-004 + 196.13999999999999 -3.8619990775687769E-004 + 196.19999999999999 -3.8908375952563436E-004 + 196.25999999999999 -3.9187083679754461E-004 + 196.31999999999999 -3.9456627757098481E-004 + 196.38000000000000 -3.9717523892781741E-004 + 196.44000000000000 -3.9970291083127178E-004 + 196.50000000000000 -4.0215448261644941E-004 + 196.56000000000000 -4.0453515206223685E-004 + 196.62000000000000 -4.0685004281854309E-004 + 196.67999999999998 -4.0910425771277119E-004 + 196.73999999999998 -4.1130286687268946E-004 + 196.79999999999998 -4.1345081985391750E-004 + 196.85999999999999 -4.1555300362588202E-004 + 196.91999999999999 -4.1761415626776898E-004 + 196.97999999999999 -4.1963887694651124E-004 + 197.03999999999999 -4.2163164108686822E-004 + 197.09999999999999 -4.2359672186137963E-004 + 197.16000000000000 -4.2553819656322359E-004 + 197.22000000000000 -4.2746002884693277E-004 + 197.28000000000000 -4.2936587759245012E-004 + 197.34000000000000 -4.3125923869451709E-004 + 197.39999999999998 -4.3314331251220197E-004 + 197.45999999999998 -4.3502108733830912E-004 + 197.51999999999998 -4.3689529444791285E-004 + 197.57999999999998 -4.3876842090386246E-004 + 197.63999999999999 -4.4064260899741607E-004 + 197.69999999999999 -4.4251979896814874E-004 + 197.75999999999999 -4.4440160142881542E-004 + 197.81999999999999 -4.4628933088020474E-004 + 197.88000000000000 -4.4818400326820067E-004 + 197.94000000000000 -4.5008633045601692E-004 + 198.00000000000000 -4.5199673303459047E-004 + 198.06000000000000 -4.5391533322907432E-004 + 198.12000000000000 -4.5584192792818916E-004 + 198.17999999999998 -4.5777596025907581E-004 + 198.23999999999998 -4.5971664102248009E-004 + 198.29999999999998 -4.6166284595363158E-004 + 198.35999999999999 -4.6361308785287871E-004 + 198.41999999999999 -4.6556566905284506E-004 + 198.47999999999999 -4.6751848672467065E-004 + 198.53999999999999 -4.6946923585813492E-004 + 198.59999999999999 -4.7141525242084067E-004 + 198.66000000000000 -4.7335366312717327E-004 + 198.72000000000000 -4.7528124469977745E-004 + 198.78000000000000 -4.7719455590623848E-004 + 198.84000000000000 -4.7908994640259999E-004 + 198.89999999999998 -4.8096347060179960E-004 + 198.95999999999998 -4.8281096585622477E-004 + 199.01999999999998 -4.8462811627980466E-004 + 199.07999999999998 -4.8641033137853513E-004 + 199.13999999999999 -4.8815293560122030E-004 + 199.19999999999999 -4.8985107374142076E-004 + 199.25999999999999 -4.9149974504966308E-004 + 199.31999999999999 -4.9309388606546319E-004 + 199.38000000000000 -4.9462830567876170E-004 + 199.44000000000000 -4.9609773983986432E-004 + 199.50000000000000 -4.9749683595662223E-004 + 199.56000000000000 -4.9882032149645953E-004 + 199.62000000000000 -5.0006287687210944E-004 + 199.67999999999998 -5.0121913105778237E-004 + 199.73999999999998 -5.0228386724608708E-004 + 199.79999999999998 -5.0325183118640022E-004 + 199.85999999999999 -5.0411777828580679E-004 + 199.91999999999999 -5.0487670057443410E-004 + 199.97999999999999 -5.0552361802786285E-004 + 200.03999999999999 -5.0605358863016524E-004 + 200.09999999999999 -5.0646195982636535E-004 + 200.16000000000000 -5.0674405788866353E-004 + 200.22000000000000 -5.0689547093737389E-004 + 200.28000000000000 -5.0691189937311317E-004 + 200.34000000000000 -5.0678920472360244E-004 + 200.39999999999998 -5.0652343250921382E-004 + 200.45999999999998 -5.0611091622780862E-004 + 200.51999999999998 -5.0554807840213600E-004 + 200.57999999999998 -5.0483155093697103E-004 + 200.63999999999999 -5.0395830423065151E-004 + 200.69999999999999 -5.0292545313586226E-004 + 200.75999999999999 -5.0173034387896516E-004 + 200.81999999999999 -5.0037063363351467E-004 + 200.88000000000000 -4.9884420968554911E-004 + 200.94000000000000 -4.9714911585542530E-004 + 201.00000000000000 -4.9528378245593848E-004 + 201.06000000000000 -4.9324687310064476E-004 + 201.12000000000000 -4.9103729461900871E-004 + 201.17999999999998 -4.8865423299380344E-004 + 201.23999999999998 -4.8609705649245541E-004 + 201.29999999999998 -4.8336548353604592E-004 + 201.35999999999999 -4.8045953770208644E-004 + 201.41999999999999 -4.7737940830995805E-004 + 201.47999999999999 -4.7412549882509402E-004 + 201.53999999999999 -4.7069853604808745E-004 + 201.59999999999999 -4.6709943170341554E-004 + 201.66000000000000 -4.6332927627789245E-004 + 201.72000000000000 -4.5938945480732563E-004 + 201.78000000000000 -4.5528147508664275E-004 + 201.84000000000000 -4.5100711398988764E-004 + 201.89999999999998 -4.4656824096455478E-004 + 201.95999999999998 -4.4196694345723586E-004 + 202.01999999999998 -4.3720539996251691E-004 + 202.07999999999998 -4.3228601464470796E-004 + 202.13999999999999 -4.2721128602668789E-004 + 202.19999999999999 -4.2198384291748729E-004 + 202.25999999999999 -4.1660641791170988E-004 + 202.31999999999999 -4.1108183933312816E-004 + 202.38000000000000 -4.0541304481515449E-004 + 202.44000000000000 -3.9960306733592894E-004 + 202.50000000000000 -3.9365496963927535E-004 + 202.56000000000000 -3.8757194908898310E-004 + 202.62000000000000 -3.8135720606600202E-004 + 202.67999999999998 -3.7501398419269988E-004 + 202.73999999999998 -3.6854562333262035E-004 + 202.79999999999998 -3.6195545221540543E-004 + 202.85999999999999 -3.5524680058715167E-004 + 202.91999999999999 -3.4842306768531638E-004 + 202.97999999999999 -3.4148763135015468E-004 + 203.03999999999999 -3.3444390436208627E-004 + 203.09999999999999 -3.2729526690599710E-004 + 203.16000000000000 -3.2004510805172558E-004 + 203.22000000000000 -3.1269675339260682E-004 + 203.28000000000000 -3.0525353847883158E-004 + 203.34000000000000 -2.9771877392117518E-004 + 203.39999999999998 -2.9009572735668788E-004 + 203.45999999999998 -2.8238761683049358E-004 + 203.51999999999998 -2.7459765195566308E-004 + 203.57999999999998 -2.6672898838025485E-004 + 203.63999999999999 -2.5878472793947093E-004 + 203.69999999999999 -2.5076796553056294E-004 + 203.75999999999999 -2.4268170479034267E-004 + 203.81999999999999 -2.3452893739603215E-004 + 203.88000000000000 -2.2631264749218432E-004 + 203.94000000000000 -2.1803577042269262E-004 + 204.00000000000000 -2.0970123974497148E-004 + 204.06000000000000 -2.0131195035966423E-004 + 204.12000000000000 -1.9287079885438595E-004 + 204.17999999999998 -1.8438068885267598E-004 + 204.23999999999998 -1.7584455296374153E-004 + 204.29999999999998 -1.6726529725675612E-004 + 204.35999999999999 -1.5864589485344935E-004 + 204.41999999999999 -1.4998932346748208E-004 + 204.47999999999999 -1.4129859290388041E-004 + 204.53999999999999 -1.3257680189047874E-004 + 204.59999999999999 -1.2382707354498051E-004 + 204.66000000000000 -1.1505258185239275E-004 + 204.72000000000000 -1.0625657611322709E-004 + 204.78000000000000 -9.7442380704861509E-005 + 204.84000000000000 -8.8613380485412857E-005 + 204.89999999999998 -7.9773032600647384E-005 + 204.95999999999998 -7.0924877175687908E-005 + 205.01999999999998 -6.2072536059465397E-005 + 205.07999999999998 -5.3219706395078716E-005 + 205.13999999999999 -4.4370171916573754E-005 + 205.19999999999999 -3.5527795325616726E-005 + 205.25999999999999 -2.6696532089811613E-005 + 205.31999999999999 -1.7880422318474958E-005 + 205.38000000000000 -9.0835964476186653E-006 + 205.44000000000000 -3.1027278004087057E-007 + 205.50000000000000 8.4352379808856571E-006 + 205.56000000000000 1.7148533715111019E-005 + 205.62000000000000 2.5825115331467911E-005 + 205.67999999999998 3.4460401366086754E-005 + 205.73999999999998 4.3049704155217608E-005 + 205.79999999999998 5.1588248563381657E-005 + 205.85999999999999 6.0071168017423706E-005 + 205.91999999999999 6.8493500459929313E-005 + 205.97999999999999 7.6850207678957661E-005 + 206.03999999999999 8.5136160649306025E-005 + 206.09999999999999 9.3346166107427913E-005 + 206.16000000000000 1.0147494280889874E-004 + 206.22000000000000 1.0951715322520407E-004 + 206.28000000000000 1.1746740646915779E-004 + 206.34000000000000 1.2532026749825445E-004 + 206.39999999999998 1.3307027411271085E-004 + 206.45999999999998 1.4071192900150990E-004 + 206.51999999999998 1.4823970600484602E-004 + 206.57999999999998 1.5564812577577736E-004 + 206.63999999999999 1.6293169068776900E-004 + 206.69999999999999 1.7008495142818321E-004 + 206.75999999999999 1.7710247973051952E-004 + 206.81999999999999 1.8397893547753279E-004 + 206.88000000000000 1.9070902217731690E-004 + 206.94000000000000 1.9728755406924698E-004 + 207.00000000000000 2.0370943441568441E-004 + 207.06000000000000 2.0996965971595180E-004 + 207.12000000000000 2.1606338129620669E-004 + 207.17999999999998 2.2198586876773503E-004 + 207.23999999999998 2.2773254523914110E-004 + 207.29999999999998 2.3329897529567398E-004 + 207.35999999999999 2.3868092850763722E-004 + 207.41999999999999 2.4387428027126582E-004 + 207.47999999999999 2.4887512328166679E-004 + 207.53999999999999 2.5367978381337004E-004 + 207.59999999999999 2.5828475406675252E-004 + 207.66000000000000 2.6268672608264419E-004 + 207.72000000000000 2.6688260931965281E-004 + 207.78000000000000 2.7086954497615814E-004 + 207.84000000000000 2.7464492271156714E-004 + 207.89999999999998 2.7820634834474571E-004 + 207.95999999999998 2.8155167751566261E-004 + 208.01999999999998 2.8467903913700411E-004 + 208.07999999999998 2.8758686046138844E-004 + 208.13999999999999 2.9027382528483441E-004 + 208.19999999999999 2.9273888124828101E-004 + 208.25999999999999 2.9498129609766243E-004 + 208.31999999999999 2.9700068239909855E-004 + 208.38000000000000 2.9879691544487994E-004 + 208.44000000000000 3.0037018182940819E-004 + 208.50000000000000 3.0172106970342290E-004 + 208.56000000000000 3.0285042481325805E-004 + 208.62000000000000 3.0375941093191628E-004 + 208.68000000000001 3.0444960044428559E-004 + 208.74000000000001 3.0492286583997091E-004 + 208.80000000000001 3.0518137238274765E-004 + 208.86000000000001 3.0522765276332737E-004 + 208.92000000000002 3.0506451929086743E-004 + 208.98000000000002 3.0469509400874963E-004 + 209.03999999999996 3.0412282580098802E-004 + 209.09999999999997 3.0335147634426502E-004 + 209.15999999999997 3.0238502568114364E-004 + 209.21999999999997 3.0122779015200626E-004 + 209.27999999999997 2.9988426487021099E-004 + 209.33999999999997 2.9835929322941514E-004 + 209.39999999999998 2.9665784014771407E-004 + 209.45999999999998 2.9478520876418106E-004 + 209.51999999999998 2.9274685291177650E-004 + 209.57999999999998 2.9054844932175429E-004 + 209.63999999999999 2.8819584791523161E-004 + 209.69999999999999 2.8569511057424115E-004 + 209.75999999999999 2.8305241633204881E-004 + 209.81999999999999 2.8027422502420024E-004 + 209.88000000000000 2.7736700945595527E-004 + 209.94000000000000 2.7433740430051916E-004 + 210.00000000000000 2.7119221828785292E-004 + 210.06000000000000 2.6793833039353703E-004 + 210.12000000000000 2.6458276807486475E-004 + 210.18000000000001 2.6113255859466154E-004 + 210.24000000000001 2.5759484907387554E-004 + 210.30000000000001 2.5397680976571558E-004 + 210.36000000000001 2.5028567865559807E-004 + 210.42000000000002 2.4652863577707214E-004 + 210.48000000000002 2.4271293420034915E-004 + 210.53999999999996 2.3884572481280467E-004 + 210.59999999999997 2.3493417502648697E-004 + 210.65999999999997 2.3098533331462624E-004 + 210.71999999999997 2.2700621315325842E-004 + 210.77999999999997 2.2300371069687818E-004 + 210.83999999999997 2.1898461199912496E-004 + 210.89999999999998 2.1495555922914619E-004 + 210.95999999999998 2.1092305080753571E-004 + 211.01999999999998 2.0689345295133026E-004 + 211.07999999999998 2.0287292683261924E-004 + 211.13999999999999 1.9886745757689251E-004 + 211.19999999999999 1.9488286522609035E-004 + 211.25999999999999 1.9092472712420685E-004 + 211.31999999999999 1.8699843307991624E-004 + 211.38000000000000 1.8310916822237563E-004 + 211.44000000000000 1.7926189645460979E-004 + 211.50000000000000 1.7546135883522609E-004 + 211.56000000000000 1.7171204317138552E-004 + 211.62000000000000 1.6801823510137793E-004 + 211.68000000000001 1.6438398669225168E-004 + 211.74000000000001 1.6081309508968246E-004 + 211.80000000000001 1.5730913809681684E-004 + 211.86000000000001 1.5387545151126879E-004 + 211.92000000000002 1.5051510865757260E-004 + 211.98000000000002 1.4723096255787234E-004 + 212.03999999999996 1.4402560783627921E-004 + 212.09999999999997 1.4090139470805948E-004 + 212.15999999999997 1.3786042228045717E-004 + 212.21999999999997 1.3490453283610015E-004 + 212.27999999999997 1.3203533920003228E-004 + 212.33999999999997 1.2925419269150444E-004 + 212.39999999999998 1.2656219086164112E-004 + 212.45999999999998 1.2396020071684944E-004 + 212.51999999999998 1.2144882751086512E-004 + 212.57999999999998 1.1902844834503918E-004 + 212.63999999999999 1.1669918132685769E-004 + 212.69999999999999 1.1446096681244388E-004 + 212.75999999999999 1.1231347372221103E-004 + 212.81999999999999 1.1025617801781088E-004 + 212.88000000000000 1.0828835296370937E-004 + 212.94000000000000 1.0640906186417743E-004 + 213.00000000000000 1.0461721245847034E-004 + 213.06000000000000 1.0291151690369468E-004 + 213.12000000000000 1.0129055300551295E-004 + 213.18000000000001 9.9752737141474396E-005 + 213.24000000000001 9.8296348388144595E-005 + 213.30000000000001 9.6919558248750515E-005 + 213.36000000000001 9.5620421070046719E-005 + 213.42000000000002 9.4396889304575342E-005 + 213.48000000000002 9.3246826046656432E-005 + 213.53999999999996 9.2168022420114907E-005 + 213.59999999999997 9.1158189134597046E-005 + 213.65999999999997 9.0214977426708012E-005 + 213.71999999999997 8.9335981401765096E-005 + 213.77999999999997 8.8518754446973612E-005 + 213.83999999999997 8.7760792091471488E-005 + 213.89999999999998 8.7059562638610772E-005 + 213.95999999999998 8.6412500109099829E-005 + 214.01999999999998 8.5817020584887902E-005 + 214.07999999999998 8.5270510045061662E-005 + 214.13999999999999 8.4770340942235249E-005 + 214.19999999999999 8.4313891167554577E-005 + 214.25999999999999 8.3898538579867582E-005 + 214.31999999999999 8.3521653996813317E-005 + 214.38000000000000 8.3180643830702279E-005 + 214.44000000000000 8.2872921238501474E-005 + 214.50000000000000 8.2595952287930848E-005 + 214.56000000000000 8.2347223775996474E-005 + 214.62000000000000 8.2124294656921003E-005 + 214.68000000000001 8.1924757351718093E-005 + 214.74000000000001 8.1746289513626329E-005 + 214.80000000000001 8.1586626609329895E-005 + 214.86000000000001 8.1443595424654405E-005 + 214.92000000000002 8.1315101919146425E-005 + 214.98000000000002 8.1199145122254471E-005 + 215.03999999999996 8.1093820928177546E-005 + 215.09999999999997 8.0997315549416644E-005 + 215.15999999999997 8.0907929315317330E-005 + 215.21999999999997 8.0824060277903258E-005 + 215.27999999999997 8.0744217776098680E-005 + 215.33999999999997 8.0667012410447756E-005 + 215.39999999999998 8.0591180720736947E-005 + 215.45999999999998 8.0515563721111265E-005 + 215.51999999999998 8.0439104321949320E-005 + 215.57999999999998 8.0360866419172664E-005 + 215.63999999999999 8.0280019512151603E-005 + 215.69999999999999 8.0195851917692559E-005 + 215.75999999999999 8.0107759140054567E-005 + 215.81999999999999 8.0015233819863657E-005 + 215.88000000000000 7.9917899748105882E-005 + 215.94000000000000 7.9815468116022908E-005 + 216.00000000000000 7.9707774542005824E-005 + 216.06000000000000 7.9594741970666043E-005 + 216.12000000000000 7.9476409116020964E-005 + 216.18000000000001 7.9352913581835137E-005 + 216.24000000000001 7.9224481094918703E-005 + 216.30000000000001 7.9091445938086891E-005 + 216.36000000000001 7.8954235303859978E-005 + 216.42000000000002 7.8813375325550322E-005 + 216.48000000000002 7.8669469182492854E-005 + 216.53999999999996 7.8523223548027644E-005 + 216.59999999999997 7.8375431844567126E-005 + 216.65999999999997 7.8226979593893557E-005 + 216.71999999999997 7.8078823071541810E-005 + 216.77999999999997 7.7932015622743427E-005 + 216.83999999999997 7.7787676915223587E-005 + 216.89999999999998 7.7647016054326729E-005 + 216.95999999999998 7.7511307292292737E-005 + 217.01999999999998 7.7381910597407560E-005 + 217.07999999999998 7.7260225796612408E-005 + 217.13999999999999 7.7147728632478448E-005 + 217.19999999999999 7.7045956808080660E-005 + 217.25999999999999 7.6956474760663549E-005 + 217.31999999999999 7.6880887792896621E-005 + 217.38000000000000 7.6820835847953337E-005 + 217.44000000000000 7.6777979840909921E-005 + 217.50000000000000 7.6753984703267875E-005 + 217.56000000000000 7.6750512670005754E-005 + 217.62000000000000 7.6769227861462618E-005 + 217.68000000000001 7.6811755116733756E-005 + 217.74000000000001 7.6879718259045116E-005 + 217.80000000000001 7.6974691218408247E-005 + 217.86000000000001 7.7098199294387579E-005 + 217.92000000000002 7.7251717768344106E-005 + 217.98000000000002 7.7436668962979814E-005 + 218.03999999999996 7.7654421801211891E-005 + 218.09999999999997 7.7906264065221996E-005 + 218.15999999999997 7.8193413158722378E-005 + 218.21999999999997 7.8517013330141347E-005 + 218.27999999999997 7.8878132012000438E-005 + 218.33999999999997 7.9277748832736508E-005 + 218.39999999999998 7.9716773379438500E-005 + 218.45999999999998 8.0196003314943049E-005 + 218.51999999999998 8.0716171117574758E-005 + 218.57999999999998 8.1277906828249253E-005 + 218.63999999999999 8.1881729779879726E-005 + 218.69999999999999 8.2528071037153624E-005 + 218.75999999999999 8.3217246436086801E-005 + 218.81999999999999 8.3949475188583895E-005 + 218.88000000000000 8.4724844495538817E-005 + 218.94000000000000 8.5543351213829901E-005 + 219.00000000000000 8.6404834636636519E-005 + 219.06000000000000 8.7309037759549597E-005 + 219.12000000000000 8.8255562773113377E-005 + 219.18000000000001 8.9243876484473175E-005 + 219.24000000000001 9.0273325709781839E-005 + 219.30000000000001 9.1343121905763976E-005 + 219.36000000000001 9.2452341157617024E-005 + 219.42000000000002 9.3599912318252665E-005 + 219.48000000000002 9.4784654155560387E-005 + 219.53999999999996 9.6005237710206662E-005 + 219.59999999999997 9.7260223991099757E-005 + 219.65999999999997 9.8548035190756741E-005 + 219.71999999999997 9.9866982145136075E-005 + 219.77999999999997 1.0121525414329152E-004 + 219.83999999999997 1.0259091872459272E-004 + 219.89999999999998 1.0399195885799317E-004 + 219.95999999999998 1.0541623655997589E-004 + 220.01999999999998 1.0686152794976875E-004 + 220.07999999999998 1.0832549498044420E-004 + 220.13999999999999 1.0980573200744429E-004 + 220.19999999999999 1.1129973253929302E-004 + 220.25999999999999 1.1280492691044000E-004 + 220.31999999999999 1.1431866324421309E-004 + 220.38000000000000 1.1583821559397800E-004 + 220.44000000000000 1.1736078280783688E-004 + 220.50000000000000 1.1888352558720748E-004 + 220.56000000000000 1.2040353095658364E-004 + 220.62000000000000 1.2191783490473942E-004 + 220.68000000000001 1.2342342082619987E-004 + 220.74000000000001 1.2491721664450536E-004 + 220.80000000000001 1.2639612306182812E-004 + 220.86000000000001 1.2785698004255457E-004 + 220.92000000000002 1.2929661834126739E-004 + 220.98000000000002 1.3071181985478935E-004 + 221.03999999999996 1.3209934432215043E-004 + 221.09999999999997 1.3345592889995179E-004 + 221.15999999999997 1.3477830654529038E-004 + 221.21999999999997 1.3606317284667140E-004 + 221.27999999999997 1.3730725511468844E-004 + 221.33999999999997 1.3850726345145182E-004 + 221.39999999999998 1.3965994657594828E-004 + 221.45999999999998 1.4076206938233208E-004 + 221.51999999999998 1.4181042845929034E-004 + 221.57999999999998 1.4280186393985264E-004 + 221.63999999999999 1.4373329503948435E-004 + 221.69999999999999 1.4460169147294667E-004 + 221.75999999999999 1.4540407308608066E-004 + 221.81999999999999 1.4613759850122987E-004 + 221.88000000000000 1.4679950115754420E-004 + 221.94000000000000 1.4738708385631587E-004 + 222.00000000000000 1.4789779864845319E-004 + 222.06000000000000 1.4832918816800082E-004 + 222.12000000000000 1.4867891959973356E-004 + 222.18000000000001 1.4894478857201298E-004 + 222.24000000000001 1.4912471529567200E-004 + 222.30000000000001 1.4921674264254211E-004 + 222.36000000000001 1.4921904652120659E-004 + 222.42000000000002 1.4912993888196028E-004 + 222.48000000000002 1.4894789302698496E-004 + 222.53999999999996 1.4867148889499381E-004 + 222.59999999999997 1.4829946072898912E-004 + 222.65999999999997 1.4783071262718431E-004 + 222.71999999999997 1.4726429973532643E-004 + 222.77999999999997 1.4659943245471787E-004 + 222.83999999999997 1.4583551937854966E-004 + 222.89999999999998 1.4497212171726368E-004 + 222.95999999999998 1.4400903705323346E-004 + 223.01999999999998 1.4294620440441220E-004 + 223.07999999999998 1.4178383345768295E-004 + 223.13999999999999 1.4052233616906103E-004 + 223.19999999999999 1.3916232738454590E-004 + 223.25999999999999 1.3770469393509393E-004 + 223.31999999999999 1.3615052972262371E-004 + 223.38000000000000 1.3450117564042240E-004 + 223.44000000000000 1.3275822953525475E-004 + 223.50000000000000 1.3092352002161295E-004 + 223.56000000000000 1.2899912903463695E-004 + 223.62000000000000 1.2698735746926958E-004 + 223.68000000000001 1.2489077245917202E-004 + 223.74000000000001 1.2271214859355743E-004 + 223.80000000000001 1.2045449191488968E-004 + 223.86000000000001 1.1812103110453685E-004 + 223.92000000000002 1.1571521601851315E-004 + 223.98000000000002 1.1324070514456982E-004 + 224.03999999999996 1.1070135239376166E-004 + 224.09999999999997 1.0810121958362101E-004 + 224.15999999999997 1.0544454960869024E-004 + 224.21999999999997 1.0273578585849099E-004 + 224.27999999999997 9.9979553645000843E-005 + 224.33999999999997 9.7180652982283046E-005 + 224.39999999999998 9.4344063637971510E-005 + 224.45999999999998 9.1474934471824708E-005 + 224.51999999999998 8.8578569375807751E-005 + 224.57999999999998 8.5660440460914164E-005 + 224.63999999999999 8.2726170229837598E-005 + 224.69999999999999 7.9781512428129864E-005 + 224.75999999999999 7.6832363474628514E-005 + 224.81999999999999 7.3884740008790369E-005 + 224.88000000000000 7.0944772829726162E-005 + 224.94000000000000 6.8018681736459682E-005 + 225.00000000000000 6.5112795337297997E-005 + 225.06000000000000 6.2233503580260010E-005 + 225.12000000000000 5.9387264669585076E-005 + 225.18000000000001 5.6580583363800541E-005 + 225.24000000000001 5.3820009320438677E-005 + 225.30000000000001 5.1112109887238741E-005 + 225.36000000000001 4.8463460929428584E-005 + 225.42000000000002 4.5880644495610907E-005 + 225.48000000000002 4.3370219802271815E-005 + 225.53999999999996 4.0938721454282647E-005 + 225.59999999999997 3.8592650318339258E-005 + 225.65999999999997 3.6338454565856842E-005 + 225.71999999999997 3.4182521511638174E-005 + 225.77999999999997 3.2131170807426086E-005 + 225.83999999999997 3.0190633048936460E-005 + 225.89999999999998 2.8367052701649158E-005 + 225.95999999999998 2.6666470562644587E-005 + 226.01999999999998 2.5094811099331841E-005 + 226.07999999999998 2.3657882672664151E-005 + 226.13999999999999 2.2361354133514680E-005 + 226.19999999999999 2.1210759150145939E-005 + 226.25999999999999 2.0211473136848748E-005 + 226.31999999999999 1.9368714600185742E-005 + 226.38000000000000 1.8687531626066810E-005 + 226.44000000000000 1.8172787207488745E-005 + 226.50000000000000 1.7829158755755702E-005 + 226.56000000000000 1.7661119665730310E-005 + 226.62000000000000 1.7672937060829471E-005 + 226.68000000000001 1.7868656792126991E-005 + 226.74000000000001 1.8252092849407424E-005 + 226.80000000000001 1.8826824411859921E-005 + 226.86000000000001 1.9596176434702013E-005 + 226.92000000000002 2.0563215848282789E-005 + 226.98000000000002 2.1730736591862155E-005 + 227.03999999999996 2.3101258182120575E-005 + 227.09999999999997 2.4677005298288624E-005 + 227.15999999999997 2.6459913815643840E-005 + 227.21999999999997 2.8451603512574851E-005 + 227.27999999999997 3.0653385828248283E-005 + 227.33999999999997 3.3066257905357543E-005 + 227.39999999999998 3.5690884021536413E-005 + 227.45999999999998 3.8527605847643442E-005 + 227.51999999999998 4.1576426423765503E-005 + 227.57999999999998 4.4837013942211227E-005 + 227.63999999999999 4.8308701904775105E-005 + 227.69999999999999 5.1990474177883917E-005 + 227.75999999999999 5.5880982532959852E-005 + 227.81999999999999 5.9978518438885532E-005 + 227.88000000000000 6.4281043656718638E-005 + 227.94000000000000 6.8786159236741457E-005 + 228.00000000000000 7.3491113757192608E-005 + 228.06000000000000 7.8392820207517062E-005 + 228.12000000000000 8.3487810990061451E-005 + 228.18000000000001 8.8772269306426182E-005 + 228.24000000000001 9.4242001930543002E-005 + 228.30000000000001 9.9892468871684003E-005 + 228.36000000000001 1.0571873826397471E-004 + 228.42000000000002 1.1171551245675086E-004 + 228.48000000000002 1.1787710418726379E-004 + 228.53999999999996 1.2419746369477254E-004 + 228.59999999999997 1.3067014276851142E-004 + 228.65999999999997 1.3728834894712226E-004 + 228.71999999999997 1.4404490589025793E-004 + 228.77999999999997 1.5093227652390864E-004 + 228.83999999999997 1.5794255657522504E-004 + 228.89999999999998 1.6506751056672092E-004 + 228.95999999999998 1.7229857961484083E-004 + 229.01999999999998 1.7962688074668086E-004 + 229.07999999999998 1.8704322863862156E-004 + 229.13999999999999 1.9453817163891823E-004 + 229.19999999999999 2.0210196041611509E-004 + 229.25999999999999 2.0972463453205746E-004 + 229.31999999999999 2.1739598345070957E-004 + 229.38000000000000 2.2510557295542477E-004 + 229.44000000000000 2.3284278805734475E-004 + 229.50000000000000 2.4059684383086869E-004 + 229.56000000000000 2.4835680378700519E-004 + 229.62000000000000 2.5611154359670308E-004 + 229.68000000000001 2.6384984150549097E-004 + 229.74000000000001 2.7156039887114478E-004 + 229.80000000000001 2.7923176483529613E-004 + 229.86000000000001 2.8685248176569113E-004 + 229.92000000000002 2.9441096072348785E-004 + 229.97999999999996 3.0189563880009252E-004 + 230.03999999999996 3.0929494014436047E-004 + 230.09999999999997 3.1659729325051518E-004 + 230.15999999999997 3.2379116600773098E-004 + 230.21999999999997 3.3086507483827177E-004 + 230.27999999999997 3.3780765532399274E-004 + 230.33999999999997 3.4460763918010357E-004 + 230.39999999999998 3.5125391395973357E-004 + 230.45999999999998 3.5773553290588747E-004 + 230.51999999999998 3.6404173949387749E-004 + 230.57999999999998 3.7016202490712248E-004 + 230.63999999999999 3.7608612509154609E-004 + 230.69999999999999 3.8180406683888444E-004 + 230.75999999999999 3.8730619939476873E-004 + 230.81999999999999 3.9258317419286836E-004 + 230.88000000000000 3.9762603629439971E-004 + 230.94000000000000 4.0242618237992908E-004 + 231.00000000000000 4.0697542483000371E-004 + 231.06000000000000 4.1126598345707274E-004 + 231.12000000000000 4.1529052461897014E-004 + 231.18000000000001 4.1904217278733804E-004 + 231.24000000000001 4.2251450359514933E-004 + 231.30000000000001 4.2570161805860458E-004 + 231.36000000000001 4.2859808557685520E-004 + 231.42000000000002 4.3119901893193252E-004 + 231.47999999999996 4.3350005582605696E-004 + 231.53999999999996 4.3549736955165156E-004 + 231.59999999999997 4.3718774470041327E-004 + 231.65999999999997 4.3856848059483890E-004 + 231.71999999999997 4.3963744105239132E-004 + 231.77999999999997 4.4039314264509113E-004 + 231.83999999999997 4.4083461698274492E-004 + 231.89999999999998 4.4096154728551185E-004 + 231.95999999999998 4.4077414567169330E-004 + 232.01999999999998 4.4027330184301643E-004 + 232.07999999999998 4.3946046997647362E-004 + 232.13999999999999 4.3833771238121241E-004 + 232.19999999999999 4.3690768157475843E-004 + 232.25999999999999 4.3517363115229369E-004 + 232.31999999999999 4.3313939060976060E-004 + 232.38000000000000 4.3080940971073988E-004 + 232.44000000000000 4.2818865270347772E-004 + 232.50000000000000 4.2528273300386954E-004 + 232.56000000000000 4.2209773127673103E-004 + 232.62000000000000 4.1864032164255446E-004 + 232.68000000000001 4.1491772790990108E-004 + 232.74000000000001 4.1093763328048686E-004 + 232.80000000000001 4.0670824189777290E-004 + 232.86000000000001 4.0223826684210101E-004 + 232.92000000000002 3.9753681177106501E-004 + 232.97999999999996 3.9261351360158383E-004 + 233.03999999999996 3.8747835462122498E-004 + 233.09999999999997 3.8214171673897228E-004 + 233.15999999999997 3.7661439965832341E-004 + 233.21999999999997 3.7090749727455938E-004 + 233.27999999999997 3.6503249066464075E-004 + 233.33999999999997 3.5900103198554921E-004 + 233.39999999999998 3.5282514038386412E-004 + 233.45999999999998 3.4651705762995307E-004 + 233.51999999999998 3.4008921697879443E-004 + 233.57999999999998 3.3355424584702716E-004 + 233.63999999999999 3.2692493648059942E-004 + 233.69999999999999 3.2021418280152829E-004 + 233.75999999999999 3.1343503973971389E-004 + 233.81999999999999 3.0660061976428826E-004 + 233.88000000000000 2.9972403772021179E-004 + 233.94000000000000 2.9281852771933972E-004 + 234.00000000000000 2.8589722443286895E-004 + 234.06000000000000 2.7897333447554390E-004 + 234.12000000000000 2.7205998180764344E-004 + 234.18000000000001 2.6517013486077192E-004 + 234.24000000000001 2.5831674964213865E-004 + 234.30000000000001 2.5151256822446890E-004 + 234.36000000000001 2.4477019564721035E-004 + 234.42000000000002 2.3810202973245043E-004 + 234.47999999999996 2.3152025476443202E-004 + 234.53999999999996 2.2503674811947448E-004 + 234.59999999999997 2.1866313662461686E-004 + 234.65999999999997 2.1241072364402110E-004 + 234.71999999999997 2.0629046618731548E-004 + 234.77999999999997 2.0031295362798481E-004 + 234.83999999999997 1.9448840758069845E-004 + 234.89999999999998 1.8882660758924957E-004 + 234.95999999999998 1.8333691121278709E-004 + 235.01999999999998 1.7802824630921177E-004 + 235.07999999999998 1.7290904226130284E-004 + 235.13999999999999 1.6798729722626346E-004 + 235.19999999999999 1.6327049044216634E-004 + 235.25999999999999 1.5876558377983516E-004 + 235.31999999999999 1.5447904128743857E-004 + 235.38000000000000 1.5041681276068301E-004 + 235.44000000000000 1.4658426653234993E-004 + 235.50000000000000 1.4298626515480962E-004 + 235.56000000000000 1.3962711017792659E-004 + 235.62000000000000 1.3651053500293180E-004 + 235.68000000000001 1.3363971140484534E-004 + 235.74000000000001 1.3101722695283723E-004 + 235.80000000000001 1.2864511100703040E-004 + 235.86000000000001 1.2652479957488464E-004 + 235.92000000000002 1.2465715369590574E-004 + 235.97999999999996 1.2304244767100857E-004 + 236.03999999999996 1.2168040023251589E-004 + 236.09999999999997 1.2057013296743735E-004 + 236.15999999999997 1.1971020144501965E-004 + 236.21999999999997 1.1909860959510937E-004 + 236.27999999999997 1.1873280781720617E-004 + 236.33999999999997 1.1860968659565067E-004 + 236.39999999999998 1.1872562313040471E-004 + 236.45999999999998 1.1907645856632162E-004 + 236.51999999999998 1.1965753594703841E-004 + 236.57999999999998 1.2046370776868057E-004 + 236.63999999999999 1.2148932548757454E-004 + 236.69999999999999 1.2272828537924428E-004 + 236.75999999999999 1.2417402560368964E-004 + 236.81999999999999 1.2581954561810890E-004 + 236.88000000000000 1.2765741636147168E-004 + 236.94000000000000 1.2967982077224976E-004 + 237.00000000000000 1.3187852232737708E-004 + 237.06000000000000 1.3424493612627591E-004 + 237.12000000000000 1.3677009427728388E-004 + 237.18000000000001 1.3944470880672275E-004 + 237.24000000000001 1.4225915906817752E-004 + 237.30000000000001 1.4520351959497539E-004 + 237.36000000000001 1.4826759934168717E-004 + 237.42000000000002 1.5144094078221130E-004 + 237.47999999999996 1.5471285834584841E-004 + 237.53999999999996 1.5807244058125950E-004 + 237.59999999999997 1.6150860232990257E-004 + 237.65999999999997 1.6501005586126889E-004 + 237.71999999999997 1.6856539442266681E-004 + 237.77999999999997 1.7216308155352874E-004 + 237.83999999999997 1.7579151054579543E-004 + 237.89999999999998 1.7943895436315052E-004 + 237.95999999999998 1.8309367645408849E-004 + 238.01999999999998 1.8674386295803189E-004 + 238.07999999999998 1.9037773920832041E-004 + 238.13999999999999 1.9398351928674905E-004 + 238.19999999999999 1.9754944339024543E-004 + 238.25999999999999 2.0106383666474760E-004 + 238.31999999999999 2.0451507592578129E-004 + 238.38000000000000 2.0789165893745194E-004 + 238.44000000000000 2.1118217631457644E-004 + 238.50000000000000 2.1437539055094192E-004 + 238.56000000000000 2.1746021434643713E-004 + 238.62000000000000 2.2042573953999896E-004 + 238.68000000000001 2.2326126824044273E-004 + 238.74000000000001 2.2595632692858384E-004 + 238.80000000000001 2.2850072022413104E-004 + 238.86000000000001 2.3088451491048030E-004 + 238.92000000000002 2.3309804918674167E-004 + 238.97999999999996 2.3513200863343886E-004 + 239.03999999999996 2.3697737866426453E-004 + 239.09999999999997 2.3862554596158693E-004 + 239.15999999999997 2.4006823425316138E-004 + 239.21999999999997 2.4129756025638094E-004 + 239.27999999999997 2.4230607024186554E-004 + 239.33999999999997 2.4308672552474374E-004 + 239.39999999999998 2.4363292204055423E-004 + 239.45999999999998 2.4393854553177358E-004 + 239.51999999999998 2.4399791114691866E-004 + 239.57999999999998 2.4380584130117357E-004 + 239.63999999999999 2.4335767717186912E-004 + 239.69999999999999 2.4264925830151465E-004 + 239.75999999999999 2.4167695568601513E-004 + 239.81999999999999 2.4043765548104106E-004 + 239.88000000000000 2.3892882674571978E-004 + 239.94000000000000 2.3714846903875460E-004 + 240.00000000000000 2.3509517218874956E-004 + 240.06000000000000 2.3276809172528463E-004 + 240.12000000000000 2.3016695135308170E-004 + 240.18000000000001 2.2729207127385404E-004 + 240.24000000000001 2.2414432791838574E-004 + 240.30000000000001 2.2072519774251996E-004 + 240.36000000000001 2.1703674175088634E-004 + 240.42000000000002 2.1308159781160144E-004 + 240.47999999999996 2.0886298124964280E-004 + 240.53999999999996 2.0438466742748134E-004 + 240.59999999999997 1.9965097077299181E-004 + 240.65999999999997 1.9466678883986642E-004 + 240.71999999999997 1.8943755628016333E-004 + 240.77999999999997 1.8396920786655093E-004 + 240.83999999999997 1.7826821660957935E-004 + 240.89999999999998 1.7234152535522203E-004 + 240.95999999999998 1.6619658563724569E-004 + 241.01999999999998 1.5984132373233977E-004 + 241.07999999999998 1.5328407833808505E-004 + 241.13999999999999 1.4653365355099302E-004 + 241.19999999999999 1.3959925083762995E-004 + 241.25999999999999 1.3249044995508074E-004 + 241.31999999999999 1.2521722943696254E-004 + 241.38000000000000 1.1778987703073506E-004 + 241.44000000000000 1.1021900789001841E-004 + 241.50000000000000 1.0251553732092272E-004 + 241.56000000000000 9.4690628974982520E-005 + 241.62000000000000 8.6755703686929763E-005 + 241.68000000000001 7.8722380815596853E-005 + 241.74000000000001 7.0602443549236903E-005 + 241.80000000000001 6.2407850168489550E-005 + 241.86000000000001 5.4150650278089420E-005 + 241.92000000000002 4.5842993980059840E-005 + 241.97999999999996 3.7497087130309664E-005 + 242.03999999999996 2.9125156175765347E-005 + 242.09999999999997 2.0739426921551062E-005 + 242.15999999999997 1.2352086310925978E-005 + 242.21999999999997 3.9752605917211619E-006 + 242.27999999999997 -4.3790087612766433E-006 + 242.33999999999997 -1.2698811222316185E-005 + 242.39999999999998 -2.0972371790651293E-005 + 242.45999999999998 -2.9188098782086137E-005 + 242.51999999999998 -3.7334593802420793E-005 + 242.57999999999998 -4.5400685625094113E-005 + 242.63999999999999 -5.3375445985417247E-005 + 242.69999999999999 -6.1248235104722603E-005 + 242.75999999999999 -6.9008699210917925E-005 + 242.81999999999999 -7.6646805593136901E-005 + 242.88000000000000 -8.4152860175618671E-005 + 242.94000000000000 -9.1517533533368755E-005 + 243.00000000000000 -9.8731883300232735E-005 + 243.06000000000000 -1.0578734358919272E-004 + 243.12000000000000 -1.1267577605367767E-004 + 243.18000000000001 -1.1938946932103938E-004 + 243.24000000000001 -1.2592114636002710E-004 + 243.30000000000001 -1.3226397551190452E-004 + 243.36000000000001 -1.3841158473923681E-004 + 243.42000000000002 -1.4435805720850364E-004 + 243.47999999999996 -1.5009795119127572E-004 + 243.53999999999996 -1.5562628944704445E-004 + 243.59999999999997 -1.6093857737827386E-004 + 243.65999999999997 -1.6603075213352542E-004 + 243.71999999999997 -1.7089926718703253E-004 + 243.77999999999997 -1.7554100941986190E-004 + 243.83999999999997 -1.7995332057621087E-004 + 243.89999999999998 -1.8413401746186810E-004 + 243.95999999999998 -1.8808138536892307E-004 + 244.01999999999998 -1.9179411602624659E-004 + 244.07999999999998 -1.9527139940300314E-004 + 244.13999999999999 -1.9851277470255807E-004 + 244.19999999999999 -2.0151829668825104E-004 + 244.25999999999999 -2.0428838110359560E-004 + 244.31999999999999 -2.0682390653379369E-004 + 244.38000000000000 -2.0912612922594883E-004 + 244.44000000000000 -2.1119667247064636E-004 + 244.50000000000000 -2.1303758947240219E-004 + 244.56000000000000 -2.1465127953210688E-004 + 244.62000000000000 -2.1604049098296964E-004 + 244.68000000000001 -2.1720833997879624E-004 + 244.74000000000001 -2.1815825282183972E-004 + 244.80000000000001 -2.1889398987460289E-004 + 244.86000000000001 -2.1941957278650006E-004 + 244.92000000000002 -2.1973933198605702E-004 + 244.97999999999996 -2.1985787271731883E-004 + 245.03999999999996 -2.1977999923461557E-004 + 245.09999999999997 -2.1951079731807690E-004 + 245.15999999999997 -2.1905553290515973E-004 + 245.21999999999997 -2.1841963655943656E-004 + 245.27999999999997 -2.1760875492163648E-004 + 245.33999999999997 -2.1662868978978550E-004 + 245.39999999999998 -2.1548536323901974E-004 + 245.45999999999998 -2.1418486081688513E-004 + 245.51999999999998 -2.1273334377230722E-004 + 245.57999999999998 -2.1113709261300577E-004 + 245.63999999999999 -2.0940248598023842E-004 + 245.69999999999999 -2.0753594663196426E-004 + 245.75999999999999 -2.0554397062398703E-004 + 245.81999999999999 -2.0343313087799826E-004 + 245.88000000000000 -2.0121000053062432E-004 + 245.94000000000000 -1.9888120867049975E-004 + 246.00000000000000 -1.9645338213527091E-004 + 246.06000000000000 -1.9393315442054997E-004 + 246.12000000000000 -1.9132714231118685E-004 + 246.18000000000001 -1.8864198040557611E-004 + 246.24000000000001 -1.8588424532746051E-004 + 246.30000000000001 -1.8306047037296817E-004 + 246.36000000000001 -1.8017714086485250E-004 + 246.42000000000002 -1.7724070618782103E-004 + 246.47999999999996 -1.7425748850939812E-004 + 246.53999999999996 -1.7123380023040149E-004 + 246.59999999999997 -1.6817582530051018E-004 + 246.65999999999997 -1.6508964216102311E-004 + 246.71999999999997 -1.6198123176365927E-004 + 246.77999999999997 -1.5885646599161628E-004 + 246.83999999999997 -1.5572109743317930E-004 + 246.89999999999998 -1.5258076067214903E-004 + 246.95999999999998 -1.4944092051422656E-004 + 247.01999999999998 -1.4630691567567595E-004 + 247.07999999999998 -1.4318394696463733E-004 + 247.13999999999999 -1.4007705325945217E-004 + 247.19999999999999 -1.3699112628642318E-004 + 247.25999999999999 -1.3393089693675288E-004 + 247.31999999999999 -1.3090090709217523E-004 + 247.38000000000000 -1.2790555024801611E-004 + 247.44000000000000 -1.2494906102008114E-004 + 247.50000000000000 -1.2203547731238118E-004 + 247.56000000000000 -1.1916865941640922E-004 + 247.62000000000000 -1.1635230238513183E-004 + 247.68000000000001 -1.1358991528694079E-004 + 247.74000000000001 -1.1088482447740661E-004 + 247.80000000000001 -1.0824017634364255E-004 + 247.86000000000001 -1.0565893096474970E-004 + 247.92000000000002 -1.0314385975936353E-004 + 247.97999999999996 -1.0069755597947059E-004 + 248.03999999999996 -9.8322405505169954E-005 + 248.09999999999997 -9.6020625135890799E-005 + 248.15999999999997 -9.3794230591104821E-005 + 248.21999999999997 -9.1645050090567227E-005 + 248.27999999999997 -8.9574709304868956E-005 + 248.33999999999997 -8.7584654837224166E-005 + 248.39999999999998 -8.5676133927065765E-005 + 248.45999999999998 -8.3850190232602123E-005 + 248.51999999999998 -8.2107684108786674E-005 + 248.57999999999998 -8.0449271842230843E-005 + 248.63999999999999 -7.8875423361094831E-005 + 248.69999999999999 -7.7386416244455415E-005 + 248.75999999999999 -7.5982345816670173E-005 + 248.81999999999999 -7.4663108896750639E-005 + 248.88000000000000 -7.3428435651507086E-005 + 248.94000000000000 -7.2277872948223824E-005 + 249.00000000000000 -7.1210799447567869E-005 + 249.06000000000000 -7.0226431384391602E-005 + 249.12000000000000 -6.9323818526259589E-005 + 249.18000000000001 -6.8501872174295500E-005 + 249.24000000000001 -6.7759344167020986E-005 + 249.30000000000001 -6.7094857941728069E-005 + 249.36000000000001 -6.6506903425994648E-005 + 249.42000000000002 -6.5993849065689532E-005 + 249.47999999999996 -6.5553938067226437E-005 + 249.53999999999996 -6.5185304730362397E-005 + 249.59999999999997 -6.4885967857219784E-005 + 249.65999999999997 -6.4653860198425110E-005 + 249.71999999999997 -6.4486806931036481E-005 + 249.77999999999997 -6.4382544872468441E-005 + 249.83999999999997 -6.4338718675585453E-005 + 249.89999999999998 -6.4352898463895835E-005 + 249.95999999999998 -6.4422577884645370E-005 + 250.01999999999998 -6.4545176824239712E-005 + 250.07999999999998 -6.4718035501420691E-005 + 250.13999999999999 -6.4938464894768780E-005 + 250.19999999999999 -6.5203694437159909E-005 + 250.25999999999999 -6.5510923701242151E-005 + 250.31999999999999 -6.5857307651841872E-005 + 250.38000000000000 -6.6239964151803670E-005 + 250.44000000000000 -6.6655997465910708E-005 + 250.50000000000000 -6.7102479822670280E-005 + 250.56000000000000 -6.7576485452044142E-005 + 250.62000000000000 -6.8075074440781164E-005 + 250.68000000000001 -6.8595322599662698E-005 + 250.74000000000001 -6.9134305409317932E-005 + 250.80000000000001 -6.9689114388041021E-005 + 250.86000000000001 -7.0256874826960777E-005 + 250.92000000000002 -7.0834734106007096E-005 + 250.97999999999996 -7.1419872110927313E-005 + 251.03999999999996 -7.2009492884516832E-005 + 251.09999999999997 -7.2600861787317482E-005 + 251.15999999999997 -7.3191283314151556E-005 + 251.21999999999997 -7.3778104127877975E-005 + 251.27999999999997 -7.4358735581844522E-005 + 251.33999999999997 -7.4930640500556932E-005 + 251.39999999999998 -7.5491348974256081E-005 + 251.45999999999998 -7.6038454046486044E-005 + 251.51999999999998 -7.6569621416134470E-005 + 251.57999999999998 -7.7082589286817156E-005 + 251.63999999999999 -7.7575166933790360E-005 + 251.69999999999999 -7.8045249789553112E-005 + 251.75999999999999 -7.8490810289167648E-005 + 251.81999999999999 -7.8909905054644171E-005 + 251.88000000000000 -7.9300680847965547E-005 + 251.94000000000000 -7.9661358070119638E-005 diff --git a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000002.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000002.BXY.semd new file mode 100644 index 00000000..cb16b234 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000002.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 -5.2915643675703574E-041 + 0.42000000000000171 -1.6057421509864921E-040 + 0.47999999999999687 -2.6823278652159485E-040 + 0.53999999999999915 -3.7589135794454049E-040 + 0.60000000000000142 -4.8354992936748612E-040 + 0.65999999999999659 -5.9120850079043176E-040 + 0.71999999999999886 -6.2774440624899901E-040 + 0.78000000000000114 -5.9613718784527063E-040 + 0.83999999999999631 -4.6905182381982609E-040 + 0.89999999999999858 -2.1302651640867465E-040 + 0.96000000000000085 2.3938299722775371E-040 + 1.0199999999999960 7.0122825836605193E-040 + 1.0799999999999983 1.0425217873724553E-039 + 1.1400000000000006 1.0610791571353424E-039 + 1.1999999999999957 6.2527349066867408E-040 + 1.2599999999999980 -3.6585679581507211E-040 + 1.3200000000000003 -2.4238554243891911E-039 + 1.3799999999999955 -5.6853875003347901E-039 + 1.4399999999999977 -9.8768792385281358E-039 + 1.5000000000000000 -1.4293320996075573E-038 + 1.5599999999999952 -1.8635994365506231E-038 + 1.6199999999999974 -2.0919028764254788E-038 + 1.6799999999999997 -2.0375068230480415E-038 + 1.7399999999999949 -1.6666878880053797E-038 + 1.7999999999999972 -1.0397015291344122E-038 + 1.8599999999999994 3.8777221784209327E-040 + 1.9200000000000017 1.6298252414110097E-038 + 1.9799999999999969 4.0311147384602035E-038 + 2.0399999999999991 7.1236368409102955E-038 + 2.1000000000000014 1.0464709825555939E-037 + 2.1599999999999966 1.3257594801708835E-037 + 2.2199999999999989 1.5213899166477556E-037 + 2.2800000000000011 1.6259148873637202E-037 + 2.3399999999999963 1.6179360445507958E-037 + 2.3999999999999986 1.4673960583315985E-037 + 2.4600000000000009 1.1595571220591170E-037 + 2.5199999999999960 6.7204637212543549E-038 + 2.5799999999999983 -8.1610960771455464E-039 + 2.6400000000000006 -1.0493711316551359E-037 + 2.6999999999999957 -2.1696192338517343E-037 + 2.7599999999999980 -3.4185026547647752E-037 + 2.8200000000000003 -4.6430488774024783E-037 + 2.8799999999999955 -5.5628809719019335E-037 + 2.9399999999999977 -6.0065022440084261E-037 + 3.0000000000000000 -5.9976900891998709E-037 + 3.0599999999999952 -5.4633715477663153E-037 + 3.1199999999999974 -4.3524688443152088E-037 + 3.1799999999999997 -2.6382538154315498E-037 + 3.2399999999999949 1.0920823687572810E-038 + 3.2999999999999972 3.6843177872755018E-037 + 3.3599999999999994 7.4969445192931041E-037 + 3.4199999999999946 1.1139058144542727E-036 + 3.4799999999999969 1.4182393489760518E-036 + 3.5399999999999991 1.6018650706885575E-036 + 3.6000000000000014 1.5821444302708043E-036 + 3.6599999999999966 1.2911886692686619E-036 + 3.7199999999999989 6.9630972243900800E-037 + 3.7800000000000011 -1.6585567227396164E-037 + 3.8399999999999963 -1.2677598225677206E-036 + 3.8999999999999986 -2.4978831224778349E-036 + 3.9600000000000009 -3.7696831097289985E-036 + 4.0199999999999960 -4.8360328586479510E-036 + 4.0799999999999983 -5.4563581923699358E-036 + 4.1400000000000006 -5.4436502084129433E-036 + 4.1999999999999957 -4.5891710304016809E-036 + 4.2599999999999980 -2.7525203129881873E-036 + 4.3200000000000003 2.4190883649689619E-037 + 4.3799999999999955 4.3122765077851875E-036 + 4.4399999999999977 9.1988363851713389E-036 + 4.5000000000000000 1.4636291583079297E-035 + 4.5599999999999952 2.0215765652892524E-035 + 4.6199999999999974 2.5391409972425025E-035 + 4.6799999999999997 2.9511906275019036E-035 + 4.7399999999999949 3.1967790254183139E-035 + 4.7999999999999972 3.1892801955562674E-035 + 4.8599999999999994 2.8426469508963418E-035 + 4.9199999999999946 2.0720996102711931E-035 + 4.9799999999999969 8.2569521046645255E-036 + 5.0399999999999991 -8.9140378444285972E-036 + 5.1000000000000014 -3.0371811975041318E-035 + 5.1599999999999966 -5.5253580770470763E-035 + 5.2199999999999989 -8.2115209942053588E-035 + 5.2800000000000011 -1.0887374918505915E-034 + 5.3399999999999963 -1.3278664121470963E-034 + 5.3999999999999986 -1.5088363289691724E-034 + 5.4600000000000009 -1.5937220798992196E-034 + 5.5199999999999960 -1.5461341796463771E-034 + 5.5799999999999983 -1.3301672365247736E-034 + 5.6400000000000006 -9.1407810163435380E-035 + 5.6999999999999957 -2.7473084911516730E-035 + 5.7599999999999980 5.9724051632506782E-035 + 5.8200000000000003 1.6930789540574730E-034 + 5.8799999999999955 2.9812796402015360E-034 + 5.9399999999999977 4.4036434535823763E-034 + 6.0000000000000000 5.8723026790590300E-034 + 6.0599999999999952 7.2699716582372601E-034 + 6.1199999999999974 8.4509395560112769E-034 + 6.1799999999999997 9.2456881028055341E-034 + 6.2399999999999949 9.4702031097647393E-034 + 6.2999999999999972 8.9360038798419322E-034 + 6.3599999999999994 7.4679025970623779E-034 + 6.4199999999999946 4.9207013103594188E-034 + 6.4799999999999969 1.2017467384374206E-034 + 6.5399999999999991 -3.7062212774044800E-034 + 6.6000000000000014 -9.7218847209602595E-034 + 6.6599999999999966 -1.6644874428213779E-033 + 6.7199999999999989 -2.4139497148790860E-033 + 6.7800000000000011 -3.1725677385360808E-033 + 6.8399999999999963 -3.8779717565487180E-033 + 6.8999999999999986 -4.4547969291343015E-033 + 6.9600000000000009 -4.8175468596425155E-033 + 7.0199999999999960 -4.8750254996488231E-033 + 7.0799999999999983 -4.5366087187168070E-033 + 7.1400000000000006 -3.7200676513756377E-033 + 7.1999999999999957 -2.3608444533845354E-033 + 7.2599999999999980 -4.2230575271961399E-034 + 7.3200000000000003 2.0935810361189393E-033 + 7.3799999999999955 5.1359803424565053E-033 + 7.4399999999999977 8.5962508272887357E-033 + 7.5000000000000000 1.2301517869685149E-032 + 7.5599999999999952 1.6011864898542229E-032 + 7.6199999999999974 1.9422368995719143E-032 + 7.6799999999999997 2.2171071529963764E-032 + 7.7399999999999949 2.3853730726939667E-032 + 7.7999999999999972 2.4045907602252471E-032 + 7.8599999999999994 2.2332438733480367E-032 + 7.9199999999999946 1.8343773675857837E-032 + 7.9799999999999969 1.1797911675786726E-032 + 8.0399999999999991 2.5459827311206004E-033 + 8.1000000000000014 -9.3813572768583587E-033 + 8.1599999999999966 -2.3730272713073508E-032 + 8.2199999999999989 -3.9987029748215711E-032 + 8.2800000000000011 -5.7352966075762478E-032 + 8.3399999999999963 -7.4735949348331176E-032 + 8.3999999999999986 -9.0763202666376990E-032 + 8.4600000000000009 -1.0381961812995209E-031 + 8.5199999999999960 -1.1211476370432196E-031 + 8.5799999999999983 -1.1378041162211974E-031 + 8.6400000000000006 -1.0699784616469098E-031 + 8.6999999999999957 -9.0152588008826162E-032 + 8.7599999999999980 -6.2010534757245525E-032 + 8.8200000000000003 -2.1907121209013221E-032 + 8.8799999999999955 3.0062413804936220E-032 + 8.9399999999999977 9.2866063618478526E-032 + 9.0000000000000000 1.6438823276449628E-031 + 9.0599999999999952 2.4133162723571350E-031 + 9.1199999999999974 3.1918645823158142E-031 + 9.1799999999999997 3.9228507166092371E-031 + 9.2399999999999949 4.5395758050469922E-031 + 9.2999999999999972 4.9679919959455771E-031 + 9.3599999999999994 5.1305496284041733E-031 + 9.4199999999999946 4.9511910489249509E-031 + 9.4799999999999969 4.3613671449617361E-031 + 9.5399999999999991 3.3068609895201319E-031 + 9.5999999999999943 1.7550821022475872E-031 + 9.6599999999999966 -2.9760540440943989E-032 + 9.7199999999999989 -2.8190592872789966E-031 + 9.7800000000000011 -5.7356489164454825E-031 + 9.8399999999999963 -8.9283220137223878E-031 + 9.8999999999999986 -1.2231118460975841E-030 + 9.9600000000000009 -1.5432747130746859E-030 + 10.019999999999996 -1.8281782932378047E-030 + 10.079999999999998 -2.0495840374177868E-030 + 10.140000000000001 -2.1774899779522666E-030 + 10.199999999999996 -2.1818703162379327E-030 + 10.259999999999998 -2.0347783499404963E-030 + 10.320000000000000 -1.7127412858762303E-030 + 10.379999999999995 -1.1993319476597364E-030 + 10.439999999999998 -4.8777768216466979E-031 + 10.500000000000000 4.1657195943845212E-031 + 10.559999999999995 1.4941164117139115E-030 + 10.619999999999997 2.7094242888219235E-030 + 10.680000000000000 4.0104195521781980E-030 + 10.739999999999995 5.3285270880371377E-030 + 10.799999999999997 6.5799552635547983E-030 + 10.859999999999999 7.6682321661290125E-030 + 10.919999999999995 8.4880541207710444E-030 + 10.979999999999997 8.9304325007575945E-030 + 11.039999999999999 8.8890238777314679E-030 + 11.099999999999994 8.2674368658326359E-030 + 11.159999999999997 6.9872162446008984E-030 + 11.219999999999999 4.9960942958801421E-030 + 11.280000000000001 2.2760426560458528E-030 + 11.339999999999996 -1.1494282472965364E-030 + 11.399999999999999 -5.2092911627068215E-030 + 11.460000000000001 -9.7809147342826914E-030 + 11.519999999999996 -1.4688411750517055E-029 + 11.579999999999998 -1.9703878094420315E-029 + 11.640000000000001 -2.4551872635419396E-029 + 11.699999999999996 -2.8917299239294307E-029 + 11.759999999999998 -3.2456731285235994E-029 + 11.820000000000000 -3.4812947790540727E-029 + 11.879999999999995 -3.5632301594146405E-029 + 11.939999999999998 -3.4584268629231881E-029 + 12.000000000000000 -3.1382408637521644E-029 + 12.059999999999995 -2.5805789195688360E-029 + 12.119999999999997 -1.7719827222903239E-029 + 12.180000000000000 -7.0954924657121036E-030 + 12.239999999999995 5.9741741807725205E-030 + 12.299999999999997 2.1261181696662655E-029 + 12.359999999999999 3.8394064557367733E-029 + 12.419999999999995 5.6854377933669813E-029 + 12.479999999999997 7.5978409288275047E-029 + 12.539999999999999 9.4964328682537126E-029 + 12.599999999999994 1.1288455065748652E-028 + 12.659999999999997 1.2870307672034105E-028 + 12.719999999999999 1.4129744768079244E-028 + 12.780000000000001 1.4948493906544465E-028 + 12.839999999999996 1.5205294199248225E-028 + 12.899999999999999 1.4779344217817783E-028 + 12.960000000000001 1.3554229362429134E-028 + 13.019999999999996 1.1422377276305555E-028 + 13.079999999999998 8.2902324239633537E-029 + 13.140000000000001 4.0842307888128907E-029 + 13.199999999999996 -1.2421679563951475E-029 + 13.259999999999998 -7.7002842925131004E-029 + 13.320000000000000 -1.5256724357369537E-028 + 13.379999999999995 -2.3822570900341256E-028 + 13.439999999999998 -3.3241428721567698E-028 + 13.500000000000000 -4.3276677854272491E-028 + 13.559999999999995 -5.3598567796588039E-028 + 13.619999999999997 -6.3772156691856545E-028 + 13.680000000000000 -7.3247355504788323E-028 + 13.739999999999995 -8.1352857778481645E-028 + 13.799999999999997 -8.7295920958297062E-028 + 13.859999999999999 -9.0170337250536785E-028 + 13.919999999999995 -8.8975019757893500E-028 + 13.979999999999997 -8.2645743062153804E-028 + 14.039999999999999 -7.0102121007782549E-028 + 14.099999999999994 -5.0311589396337145E-028 + 14.159999999999997 -2.2371338271712455E-028 + 14.219999999999999 1.4392315813608641E-028 + 14.280000000000001 6.0308618207151844E-028 + 14.339999999999996 1.1523498022957027E-027 + 14.399999999999999 1.7842310052680480E-027 + 14.460000000000001 2.4838660489424409E-027 + 14.519999999999996 3.2278019845955157E-027 + 14.579999999999998 3.9830292461443484E-027 + 14.640000000000001 4.7063980647300314E-027 + 14.699999999999996 5.3445656345028591E-027 + 14.759999999999998 5.8346381441528468E-027 + 14.820000000000000 6.1056551348790682E-027 + 14.879999999999995 6.0810443187336582E-027 + 14.939999999999998 5.6821427522904227E-027 + 15.000000000000000 4.8328289164442042E-027 + 15.059999999999995 3.4652416603748048E-027 + 15.119999999999997 1.5264718268621453E-027 + 15.180000000000000 -1.0139701235284299E-027 + 15.239999999999995 -4.1562295558928861E-027 + 15.299999999999997 -7.8621457799951320E-027 + 15.359999999999999 -1.2047787214910940E-026 + 15.419999999999995 -1.6577118004198058E-026 + 15.479999999999997 -2.1257500334725590E-026 + 15.539999999999999 -2.5837784583738306E-026 + 15.599999999999994 -3.0009782464483972E-026 + 15.659999999999997 -3.3413801297836829E-026 + 15.719999999999999 -3.5648895143201165E-026 + 15.780000000000001 -3.6288270369756645E-026 + 15.839999999999996 -3.4900046359963623E-026 + 15.899999999999999 -3.1073306749508293E-026 + 15.960000000000001 -2.4448977363900546E-026 + 16.019999999999996 -1.4754607277814068E-026 + 16.079999999999998 -1.8418050426645216E-027 + 16.140000000000001 1.4275578617562808E-026 + 16.200000000000003 3.3384682775345943E-026 + 16.259999999999991 5.5040996317912217E-026 + 16.319999999999993 7.8542804418157384E-026 + 16.379999999999995 1.0291587148526979E-025 + 16.439999999999998 1.2691160694122123E-025 + 16.500000000000000 1.4902165354972582E-025 + 16.560000000000002 1.6751168337036971E-025 + 16.620000000000005 1.8047621159094542E-025 + 16.679999999999993 1.8591561368013324E-025 + 16.739999999999995 1.8183538423324776E-025 + 16.799999999999997 1.6636595426199572E-025 + 16.859999999999999 1.3790031656836690E-025 + 16.920000000000002 9.5244606493097948E-026 + 16.980000000000004 3.7775291228266166E-026 + 17.039999999999992 -3.4405138863092023E-026 + 17.099999999999994 -1.2032359783895370E-025 + 17.159999999999997 -2.1801366933971760E-025 + 17.219999999999999 -3.2442639627917933E-025 + 17.280000000000001 -4.3538632022962399E-025 + 17.340000000000003 -5.4560404344128714E-025 + 17.399999999999991 -6.4875571977675427E-025 + 17.459999999999994 -7.3763738199297180E-025 + 17.519999999999996 -8.0439941466689272E-025 + 17.579999999999998 -8.4086253997073300E-025 + 17.640000000000001 -8.3891293255783566E-025 + 17.700000000000003 -7.9096785209989244E-025 + 17.759999999999991 -6.9049830625547421E-025 + 17.819999999999993 -5.3259012735498360E-025 + 17.879999999999995 -3.1451774189003803E-025 + 17.939999999999998 -3.6302306942567877E-026 + 18.000000000000000 2.9878170927117241E-025 + 18.060000000000002 6.8378766617196098E-025 + 18.120000000000005 1.1078028411509884E-024 + 18.179999999999993 1.5558198740419663E-024 + 18.239999999999995 2.0088060980473800E-024 + 18.299999999999997 2.4440020211052842E-024 + 18.359999999999999 2.8354701420463233E-024 + 18.420000000000002 3.1549073718320080E-024 + 18.480000000000004 3.3727180744814343E-024 + 18.539999999999992 3.4593349688256785E-024 + 18.599999999999994 3.3867574531839560E-024 + 18.659999999999997 3.1302577723627507E-024 + 18.719999999999999 2.6701953476689269E-024 + 18.780000000000001 1.9938580341419351E-024 + 18.840000000000003 1.0972417550102085E-024 + 18.899999999999991 -1.3338194096290770E-026 + 18.959999999999994 -1.3199049285447908E-024 + 19.019999999999996 -2.7918614738992698E-024 + 19.079999999999998 -4.3855188591976839E-024 + 19.140000000000001 -6.0442038791204858E-024 + 19.200000000000003 -7.6990233322986057E-024 + 19.259999999999991 -9.2703407625131466E-024 + 19.319999999999993 -1.0669988537301196E-023 + 19.379999999999995 -1.1804208427686310E-023 + 19.439999999999998 -1.2577271256159748E-023 + 19.500000000000000 -1.2895691737529188E-023 + 19.560000000000002 -1.2672913420064473E-023 + 19.620000000000005 -1.1834292164303988E-023 + 19.679999999999993 -1.0322189064614868E-023 + 19.739999999999995 -8.1009366320747454E-024 + 19.799999999999997 -5.1614403028775493E-024 + 19.859999999999999 -1.5251539210068407E-024 + 19.920000000000002 2.7528277350316151E-024 + 19.980000000000004 7.5817860114471481E-024 + 20.039999999999992 1.2834726476771311E-023 + 20.099999999999994 1.8349217688599616E-023 + 20.159999999999997 2.3929849959806926E-023 + 20.219999999999999 2.9352336037317440E-023 + 20.280000000000001 3.4369279849706906E-023 + 20.340000000000003 3.8717483010497625E-023 + 20.399999999999991 4.2126637077039031E-023 + 20.459999999999994 4.4329169445177482E-023 + 20.519999999999996 4.5070919639893719E-023 + 20.579999999999998 4.4122309685074724E-023 + 20.640000000000001 4.1289591763379425E-023 + 20.700000000000003 3.6425793711991422E-023 + 20.759999999999991 2.9440904144242188E-023 + 20.819999999999993 2.0310927428208345E-023 + 20.879999999999995 9.0854527871815596E-024 + 20.939999999999998 -4.1066143021571662E-024 + 21.000000000000000 -1.9053319139389534E-023 + 21.060000000000002 -3.5458155984012384E-023 + 21.120000000000005 -5.2940838829495071E-023 + 21.179999999999993 -7.1040334416139611E-023 + 21.239999999999995 -8.9220152392226149E-023 + 21.299999999999997 -1.0687571698680687E-022 + 21.359999999999999 -1.2334370297745794E-022 + 21.420000000000002 -1.3791321144440260E-022 + 21.480000000000004 -1.4983860546820769E-022 + 21.539999999999992 -1.5835399194906068E-022 + 21.599999999999994 -1.6268932578624351E-022 + 21.659999999999997 -1.6208822587337801E-022 + 21.719999999999999 -1.5582768960818465E-022 + 21.780000000000001 -1.4323999864137578E-022 + 21.840000000000003 -1.2373710259492459E-022 + 21.899999999999991 -9.6837927271443046E-023 + 21.959999999999994 -6.2198924361095650E-023 + 22.019999999999996 -1.9647922829616455E-023 + 22.079999999999998 3.0778426694288034E-023 + 22.140000000000001 8.8794085691472144E-023 + 22.200000000000003 1.5382053477413539E-022 + 22.259999999999991 2.2494237227748204E-022 + 22.319999999999993 3.0086350692085514E-022 + 22.379999999999995 3.7986600674488255E-022 + 22.439999999999998 4.5977504842455321E-022 + 22.500000000000000 5.3793403086641885E-022 + 22.560000000000002 6.1119367442035349E-022 + 22.619999999999990 6.7592049258556676E-022 + 22.679999999999993 7.2802975390042127E-022 + 22.739999999999995 7.6304824750742296E-022 + 22.799999999999997 7.7621155892803700E-022 + 22.859999999999999 7.6260033468156578E-022 + 22.920000000000002 7.1731833440481938E-022 + 22.980000000000004 6.3571363271876002E-022 + 23.039999999999992 5.1364232385842947E-022 + 23.099999999999994 3.4777054272155527E-022 + 23.159999999999997 1.3590886213527723E-022 + 23.219999999999999 -1.2263092101396007E-022 + 23.280000000000001 -4.2667125027935094E-022 + 23.340000000000003 -7.7281254095144146E-022 + 23.399999999999991 -1.1551073995699826E-021 + 23.459999999999994 -1.5647874038651998E-021 + 23.519999999999996 -1.9900698989992797E-021 + 23.579999999999998 -2.4160715562277693E-021 + 23.640000000000001 -2.8248557548078766E-021 + 23.700000000000003 -3.1956408039794466E-021 + 23.759999999999991 -3.5051908474814383E-021 + 23.819999999999993 -3.7284069235042309E-021 + 23.879999999999995 -3.8391306433672670E-021 + 23.939999999999998 -3.8111584504997386E-021 + 24.000000000000000 -3.6194627729268501E-021 + 24.060000000000002 -3.2415931435638693E-021 + 24.119999999999990 -2.6592255143950551E-021 + 24.179999999999993 -1.8598096470191992E-021 + 24.239999999999995 -8.3825361550351756E-022 + 24.299999999999997 4.0143629411944650E-022 + 24.359999999999999 1.8446418341569306E-021 + 24.420000000000002 3.4648484392605984E-021 + 24.480000000000004 5.2226855423161519E-021 + 24.539999999999992 7.0654098964804226E-021 + 24.599999999999994 8.9269144455076130E-021 + 24.659999999999997 1.0728369278993042E-020 + 24.719999999999999 1.2379562853650398E-020 + 24.780000000000001 1.3780999967023257E-020 + 24.840000000000003 1.4826777476726505E-020 + 24.899999999999991 1.5408237106746502E-020 + 24.959999999999994 1.5418342500255082E-020 + 25.019999999999996 1.4756688950347586E-020 + 25.079999999999998 1.3335017696900352E-020 + 25.140000000000001 1.1083044502091600E-020 + 25.200000000000003 7.9543964886827334E-021 + 25.259999999999991 3.9323713500458545E-021 + 25.319999999999993 -9.6475176067698644E-022 + 25.379999999999995 -6.6791809342892533E-021 + 25.439999999999998 -1.3110174166147337E-020 + 25.500000000000000 -2.0112026711666104E-020 + 25.560000000000002 -2.7493787081769473E-020 + 25.619999999999990 -3.5020960959836633E-020 + 25.679999999999993 -4.2419422044976254E-020 + 25.739999999999995 -4.9381653362400599E-020 + 25.799999999999997 -5.5575414248108086E-020 + 25.859999999999999 -6.0654743341149129E-020 + 25.920000000000002 -6.4273133139190874E-020 + 25.980000000000004 -6.6098636595307870E-020 + 26.039999999999992 -6.5830460878128624E-020 + 26.099999999999994 -6.3216532346933981E-020 + 26.159999999999997 -5.8071393473096168E-020 + 26.219999999999999 -5.0293686153945254E-020 + 26.280000000000001 -3.9882433779756452E-020 + 26.340000000000003 -2.6951196357679658E-020 + 26.399999999999991 -1.1739281771801653E-020 + 26.459999999999994 5.3809041638822171E-021 + 26.519999999999996 2.3901176224433783E-020 + 26.579999999999998 4.3180245926665241E-020 + 26.640000000000001 6.2452334659697524E-020 + 26.700000000000003 8.0842112881629808E-020 + 26.759999999999991 9.7386144952114672E-020 + 26.819999999999993 1.1106065306108974E-019 + 26.879999999999995 1.2081539783575931E-019 + 26.939999999999998 1.2561283216737538E-019 + 27.000000000000000 1.2447160688552197E-019 + 27.060000000000002 1.1651323183240833E-019 + 27.119999999999990 1.0101018783414920E-019 + 27.179999999999993 7.7433916771443907E-020 + 27.239999999999995 4.5500442705851374E-020 + 27.299999999999997 5.2116293415369952E-021 + 27.359999999999999 -4.3110130454402931E-020 + 27.420000000000002 -9.8795790316344266E-020 + 27.480000000000004 -1.6081446755545299E-019 + 27.539999999999992 -2.2777084166889319E-019 + 27.599999999999994 -2.9791644133105694E-019 + 27.659999999999997 -3.6917634105629444E-019 + 27.719999999999999 -4.3919121034198473E-019 + 27.780000000000001 -5.0537530319739662E-019 + 27.840000000000003 -5.6498896767660704E-019 + 27.899999999999991 -6.1522456196499761E-019 + 27.959999999999994 -6.5330348959247733E-019 + 28.019999999999996 -6.7658083255554461E-019 + 28.079999999999998 -6.8265443224977817E-019 + 28.140000000000001 -6.6947287595484056E-019 + 28.200000000000003 -6.3543824461322432E-019 + 28.259999999999991 -5.7949732332086776E-019 + 28.319999999999993 -5.0121534887987797E-019 + 28.379999999999995 -4.0082651325637719E-019 + 28.439999999999998 -2.7925530468656585E-019 + 28.500000000000000 -1.3810223077626092E-019 + 28.560000000000002 2.0409538423311436E-020 + 28.619999999999990 1.9353126936935816E-019 + 28.679999999999993 3.7813325515987074E-019 + 28.739999999999995 5.7089531716155970E-019 + 28.799999999999997 7.6854647029339219E-019 + 28.859999999999999 9.6814947115014565E-019 + 28.920000000000002 1.1674241038497823E-018 + 28.980000000000004 1.3651080176170912E-018 + 29.039999999999992 1.5613399378936217E-018 + 29.099999999999994 1.7580603393716906E-018 + 29.159999999999997 1.9594164231423938E-018 + 29.219999999999999 2.1721560955082493E-018 + 29.280000000000001 2.4060000665808270E-018 + 29.340000000000003 2.6739699958341124E-018 + 29.399999999999991 2.9926773533259742E-018 + 29.459999999999994 3.3825324778275549E-018 + 29.519999999999996 3.8678871404581620E-018 + 29.579999999999998 4.4770935978323377E-018 + 29.640000000000001 5.2424677587322630E-018 + 29.700000000000003 6.2001694805397527E-018 + 29.759999999999991 7.3899928497969242E-018 + 29.819999999999993 8.8550847925904116E-018 + 29.879999999999995 1.0641589821255088E-017 + 29.939999999999998 1.2798279493223337E-017 + 30.000000000000000 1.5376141487234240E-017 + 30.060000000000002 1.8428008429938968E-017 + 30.119999999999990 2.2008228988654288E-017 + 30.179999999999993 2.6172448416595708E-017 + 30.239999999999995 3.0977515020329590E-017 + 30.299999999999997 3.6481599697060216E-017 + 30.359999999999999 4.2744495038843964E-017 + 30.420000000000002 4.9828258735428352E-017 + 30.480000000000004 5.7798091209031861E-017 + 30.539999999999992 6.6723640778935051E-017 + 30.599999999999994 7.6680603282946591E-017 + 30.659999999999997 8.7752726473689729E-017 + 30.719999999999999 1.0003422397356458E-016 + 30.780000000000001 1.1363251036579261E-016 + 30.840000000000003 1.2867136055159980E-016 + 30.899999999999991 1.4529425938714709E-016 + 30.959999999999994 1.6366817122803011E-016 + 31.019999999999996 1.8398730479147216E-016 + 31.079999999999998 2.0647721033108338E-016 + 31.140000000000001 2.3139878475942666E-016 + 31.200000000000003 2.5905198203864883E-016 + 31.259999999999991 2.8977984454876705E-016 + 31.319999999999993 3.2397187397776847E-016 + 31.379999999999995 3.6206682238078060E-016 + 31.439999999999998 4.0455557085553984E-016 + 31.500000000000000 4.5198280020503874E-016 + 31.560000000000002 5.0494825472921370E-016 + 31.619999999999990 5.6410686570354174E-016 + 31.679999999999993 6.3016840219749623E-016 + 31.739999999999995 7.0389576483031014E-016 + 31.799999999999997 7.8610224261621882E-016 + 31.859999999999999 8.7764770254066538E-016 + 31.920000000000002 9.7943325226240005E-016 + 31.980000000000004 1.0923954725449941E-015 + 32.039999999999992 1.2174977983177322E-015 + 32.099999999999994 1.3557216395952583E-015 + 32.159999999999997 1.5080547106764106E-015 + 32.219999999999999 1.6754782954112013E-015 + 32.280000000000001 1.8589522148791256E-015 + 32.340000000000003 2.0593966795863956E-015 + 32.399999999999991 2.2776724898921573E-015 + 32.459999999999994 2.5145566722783563E-015 + 32.519999999999996 2.7707162035893365E-015 + 32.579999999999998 3.0466749345558687E-015 + 32.640000000000001 3.3427759965302259E-015 + 32.700000000000003 3.6591393534752737E-015 + 32.759999999999991 3.9956138349670394E-015 + 32.819999999999993 4.3517149371107864E-015 + 32.879999999999995 4.7265611028200876E-015 + 32.939999999999998 5.1187915097991965E-015 + 33.000000000000000 5.5264784789576758E-015 + 33.060000000000002 5.9470222253617895E-015 + 33.119999999999990 6.3770292744497927E-015 + 33.179999999999993 6.8121731683394248E-015 + 33.239999999999995 7.2470379171288215E-015 + 33.299999999999997 7.6749353194718340E-015 + 33.359999999999999 8.0876940226430015E-015 + 33.420000000000002 8.4754310702530756E-015 + 33.480000000000004 8.8262724158894534E-015 + 33.539999999999992 9.1260596800602129E-015 + 33.599999999999994 9.3579924039342647E-015 + 33.659999999999997 9.5022431968278347E-015 + 33.719999999999999 9.5355058796303202E-015 + 33.780000000000001 9.4304950413675849E-015 + 33.840000000000003 9.1553735361979733E-015 + 33.899999999999991 8.6730956102838058E-015 + 33.959999999999994 7.9406849626646351E-015 + 34.019999999999996 6.9083980967254995E-015 + 34.079999999999998 5.5187594241278100E-015 + 34.140000000000001 3.7055336977872185E-015 + 34.200000000000003 1.3924849777688172E-015 + 34.259999999999991 -1.5080143902576239E-015 + 34.319999999999993 -5.0964858507983454E-015 + 34.379999999999995 -9.4881135128251772E-015 + 34.439999999999998 -1.4814744670698156E-014 + 34.500000000000000 -2.1227091485236293E-014 + 34.560000000000002 -2.8897218093025354E-014 + 34.619999999999990 -3.8021430934290448E-014 + 34.679999999999993 -4.8823388708128801E-014 + 34.739999999999995 -6.1557645898029150E-014 + 34.799999999999997 -7.6513614792176431E-014 + 34.859999999999999 -9.4019979363421628E-014 + 34.920000000000002 -1.1444954105677659E-013 + 34.980000000000004 -1.3822487431827630E-013 + 35.039999999999992 -1.6582427401649325E-013 + 35.099999999999994 -1.9778831007154398E-013 + 35.159999999999997 -2.3472748297215390E-013 + 35.219999999999999 -2.7733024379853005E-013 + 35.280000000000001 -3.2637200234234567E-013 + 35.340000000000003 -3.8272518418944732E-013 + 35.399999999999991 -4.4736973018168795E-013 + 35.459999999999994 -5.2140547037254941E-013 + 35.519999999999996 -6.0606449702355073E-013 + 35.579999999999998 -7.0272614380641476E-013 + 35.640000000000001 -8.1293186723072127E-013 + 35.700000000000003 -9.3840251619818574E-013 + 35.759999999999991 -1.0810562153613329E-012 + 35.819999999999993 -1.2430292035180702E-012 + 35.879999999999995 -1.4266962123803411E-012 + 35.939999999999998 -1.6346947862488454E-012 + 36.000000000000000 -1.8699510699266335E-012 + 36.060000000000002 -2.1357063869996780E-012 + 36.119999999999990 -2.4355462747842633E-012 + 36.179999999999993 -2.7734343430988995E-012 + 36.239999999999995 -3.1537444765223464E-012 + 36.299999999999997 -3.5812995482968713E-012 + 36.359999999999999 -4.0614086562353187E-012 + 36.420000000000002 -4.5999107691786235E-012 + 36.479999999999990 -5.2032182807793311E-012 + 36.539999999999992 -5.8783666515462371E-012 + 36.599999999999994 -6.6330614724518552E-012 + 36.659999999999997 -7.4757371524938132E-012 + 36.719999999999999 -8.4156066280986763E-012 + 36.780000000000001 -9.4627240980538939E-012 + 36.840000000000003 -1.0628043966940257E-011 + 36.899999999999991 -1.1923488882475817E-011 + 36.959999999999994 -1.3362005227419711E-011 + 37.019999999999996 -1.4957642904945925E-011 + 37.079999999999998 -1.6725611149873168E-011 + 37.140000000000001 -1.8682345854473340E-011 + 37.200000000000003 -2.0845590266883642E-011 + 37.259999999999991 -2.3234436093909778E-011 + 37.319999999999993 -2.5869414043638328E-011 + 37.379999999999995 -2.8772520786725304E-011 + 37.439999999999998 -3.1967290622672110E-011 + 37.500000000000000 -3.5478834967209187E-011 + 37.560000000000002 -3.9333861138337913E-011 + 37.619999999999990 -4.3560711162622667E-011 + 37.679999999999993 -4.8189332203777333E-011 + 37.739999999999995 -5.3251277530644270E-011 + 37.799999999999997 -5.8779654924634066E-011 + 37.859999999999999 -6.4809045684611037E-011 + 37.920000000000002 -7.1375398569241021E-011 + 37.979999999999990 -7.8515849830003889E-011 + 38.039999999999992 -8.6268528274993758E-011 + 38.099999999999994 -9.4672294610531981E-011 + 38.159999999999997 -1.0376642144258498E-010 + 38.219999999999999 -1.1359009770605912E-010 + 38.280000000000001 -1.2418199166354591E-010 + 38.340000000000003 -1.3557953857094026E-010 + 38.399999999999991 -1.4781828712372056E-010 + 38.459999999999994 -1.6093096269841013E-010 + 38.519999999999996 -1.7494635245597994E-010 + 38.579999999999998 -1.8988808813866164E-010 + 38.640000000000001 -2.0577314392245309E-010 + 38.700000000000003 -2.2261007230443564E-010 + 38.759999999999991 -2.4039704149496974E-010 + 38.819999999999993 -2.5911940334638434E-010 + 38.879999999999995 -2.7874701549520882E-010 + 38.939999999999998 -2.9923115243248570E-010 + 39.000000000000000 -3.2050068206766580E-010 + 39.060000000000002 -3.4245800654073756E-010 + 39.119999999999990 -3.6497425722478913E-010 + 39.179999999999993 -3.8788371496635982E-010 + 39.239999999999995 -4.1097774393619222E-010 + 39.299999999999997 -4.3399723573733369E-010 + 39.359999999999999 -4.5662479723927256E-010 + 39.420000000000002 -4.7847522680009206E-010 + 39.479999999999990 -4.9908501943726140E-010 + 39.539999999999992 -5.1790044187143176E-010 + 39.599999999999994 -5.3426394207036685E-010 + 39.659999999999997 -5.4739876435896436E-010 + 39.719999999999999 -5.5639169851826941E-010 + 39.780000000000001 -5.6017376461896024E-010 + 39.840000000000003 -5.5749790774490907E-010 + 39.899999999999991 -5.4691477153315898E-010 + 39.959999999999994 -5.2674423082244739E-010 + 40.019999999999996 -4.9504531015071154E-010 + 40.079999999999998 -4.4958002964800941E-010 + 40.140000000000001 -3.8777611823636864E-010 + 40.200000000000003 -3.0668126456386884E-010 + 40.259999999999991 -2.0291648803783816E-010 + 40.319999999999993 -7.2619722644354955E-011 + 40.379999999999995 8.8613921578652491E-011 + 40.439999999999998 2.8579933562295460E-010 + 40.500000000000000 5.2463876499660860E-010 + 40.560000000000002 8.1160159165942504E-010 + 40.619999999999990 1.1540207536217639E-009 + 40.679999999999993 1.5601946941181604E-009 + 40.739999999999995 2.0395031575605098E-009 + 40.799999999999997 2.6025316925590048E-009 + 40.859999999999999 3.2612139601863014E-009 + 40.920000000000002 4.0289875620450759E-009 + 40.979999999999990 4.9209631035952558E-009 + 41.039999999999992 5.9541152644354865E-009 + 41.099999999999994 7.1474999269490496E-009 + 41.159999999999997 8.5224705495245767E-009 + 41.219999999999999 1.0102945824841947E-008 + 41.280000000000001 1.1915683111935937E-008 + 41.340000000000003 1.3990592311959248E-008 + 41.399999999999991 1.6361070048212880E-008 + 41.459999999999994 1.9064383457235552E-008 + 41.519999999999996 2.2142057534439725E-008 + 41.579999999999998 2.5640360232502473E-008 + 41.640000000000001 2.9610755470424977E-008 + 41.700000000000003 3.4110478967945947E-008 + 41.759999999999991 3.9203117657640415E-008 + 41.819999999999993 4.4959237361349859E-008 + 41.879999999999995 5.1457129020392749E-008 + 41.939999999999998 5.8783558252181981E-008 + 42.000000000000000 6.7034620017702634E-008 + 42.060000000000002 7.6316676867539546E-008 + 42.119999999999990 8.6747345535328062E-008 + 42.179999999999993 9.8456606830536629E-008 + 42.239999999999995 1.1158802683813396E-007 + 42.299999999999997 1.2630002718203604E-007 + 42.359999999999999 1.4276733905689561E-007 + 42.420000000000002 1.6118248420832442E-007 + 42.479999999999990 1.8175757442154209E-007 + 42.539999999999992 2.0472605575571778E-007 + 42.599999999999994 2.3034464763778024E-007 + 42.659999999999997 2.5889567012188734E-007 + 42.719999999999999 2.9068910203954669E-007 + 42.780000000000001 3.2606543605389117E-007 + 42.840000000000003 3.6539820563728623E-007 + 42.899999999999991 4.0909696908422471E-007 + 42.959999999999994 4.5761061158908275E-007 + 43.019999999999996 5.1143066065580862E-007 + 43.079999999999998 5.7109524280882967E-007 + 43.140000000000001 6.3719292894073585E-007 + 43.200000000000003 7.1036718899766049E-007 + 43.259999999999991 7.9132115823460424E-007 + 43.319999999999993 8.8082260911997550E-007 + 43.379999999999995 9.7970937246558905E-007 + 43.439999999999998 1.0888954781676437E-006 + 43.500000000000000 1.2093771257775252E-006 + 43.560000000000002 1.3422397542579813E-006 + 43.619999999999990 1.4886651365976893E-006 + 43.679999999999993 1.6499393591977797E-006 + 43.739999999999995 1.8274610626709465E-006 + 43.799999999999997 2.0227510487814902E-006 + 43.859999999999999 2.2374606143830967E-006 + 43.920000000000002 2.4733829430782141E-006 + 43.979999999999990 2.7324636529026029E-006 + 44.039999999999992 3.0168128744950183E-006 + 44.099999999999994 3.3287176564464945E-006 + 44.159999999999997 3.6706551663666654E-006 + 44.219999999999999 4.0453076335764704E-006 + 44.280000000000001 4.4555765439848269E-006 + 44.340000000000003 4.9045987694025470E-006 + 44.399999999999991 5.3957654213289782E-006 + 44.459999999999994 5.9327386483129748E-006 + 44.519999999999996 6.5194709049039751E-006 + 44.579999999999998 7.1602262115189161E-006 + 44.640000000000001 7.8596024308002477E-006 + 44.700000000000003 8.6225516958705263E-006 + 44.759999999999991 9.4544085815316582E-006 + 44.819999999999993 1.0360911539734977E-005 + 44.879999999999995 1.1348233879011048E-005 + 44.939999999999998 1.2423008394323986E-005 + 45.000000000000000 1.3592363533188208E-005 + 45.060000000000002 1.4863950615516630E-005 + 45.119999999999990 1.6245975954613597E-005 + 45.179999999999993 1.7747239175368097E-005 + 45.239999999999995 1.9377167001701026E-005 + 45.299999999999997 2.1145856173840766E-005 + 45.359999999999999 2.3064104732409988E-005 + 45.420000000000002 2.5143464520860467E-005 + 45.479999999999990 2.7396279991661014E-005 + 45.539999999999992 2.9835733240532400E-005 + 45.599999999999994 3.2475889058308950E-005 + 45.659999999999997 3.5331753344378589E-005 + 45.719999999999999 3.8419316768244657E-005 + 45.780000000000001 4.1755605014791185E-005 + 45.840000000000003 4.5358745300690394E-005 + 45.899999999999991 4.9248014105318618E-005 + 45.959999999999994 5.3443892107400108E-005 + 46.019999999999996 5.7968139285381797E-005 + 46.079999999999998 6.2843849306901020E-005 + 46.140000000000001 6.8095499239425859E-005 + 46.200000000000003 7.3749046756158503E-005 + 46.259999999999991 7.9831969536162510E-005 + 46.319999999999993 8.6373345213409949E-005 + 46.379999999999995 9.3403901259455494E-005 + 46.439999999999998 1.0095614180305637E-004 + 46.500000000000000 1.0906437214036012E-004 + 46.560000000000002 1.1776474940310247E-004 + 46.619999999999990 1.2709540735564038E-004 + 46.679999999999993 1.3709652499800464E-004 + 46.739999999999995 1.4781036395726291E-004 + 46.799999999999997 1.5928138941573495E-004 + 46.859999999999999 1.7155630749889289E-004 + 46.920000000000002 1.8468413758558356E-004 + 46.979999999999990 1.9871631602660038E-004 + 47.039999999999992 2.1370674995179850E-004 + 47.099999999999994 2.2971189620412232E-004 + 47.159999999999997 2.4679085540003199E-004 + 47.219999999999999 2.6500531518826201E-004 + 47.280000000000001 2.8441982043288190E-004 + 47.340000000000003 3.0510164307499869E-004 + 47.399999999999991 3.2712088401364763E-004 + 47.459999999999994 3.5055065859704564E-004 + 47.519999999999996 3.7546701109944459E-004 + 47.579999999999998 4.0194895721640066E-004 + 47.640000000000001 4.3007857825555593E-004 + 47.700000000000003 4.5994107316225333E-004 + 47.759999999999991 4.9162471622921230E-004 + 47.819999999999993 5.2522090377408244E-004 + 47.879999999999995 5.6082420543303107E-004 + 47.939999999999998 5.9853236184452920E-004 + 48.000000000000000 6.3844616626933606E-004 + 48.060000000000002 6.8066961416395934E-004 + 48.119999999999990 7.2530968334683934E-004 + 48.179999999999993 7.7247662876632223E-004 + 48.239999999999995 8.2228357612889485E-004 + 48.299999999999997 8.7484666605766495E-004 + 48.359999999999999 9.3028503148018075E-004 + 48.420000000000002 9.8872042155747361E-004 + 48.479999999999990 1.0502774121272746E-003 + 48.539999999999992 1.1150833148299455E-003 + 48.599999999999994 1.1832677063428429E-003 + 48.659999999999997 1.2549625051387371E-003 + 48.719999999999999 1.3303021228912000E-003 + 48.780000000000001 1.4094227677807951E-003 + 48.840000000000003 1.4924623294129493E-003 + 48.899999999999991 1.5795605507340617E-003 + 48.959999999999994 1.6708586090028366E-003 + 49.019999999999996 1.7664986648464436E-003 + 49.079999999999998 1.8666239369398529E-003 + 49.140000000000001 1.9713781475584656E-003 + 49.200000000000003 2.0809052076154410E-003 + 49.259999999999991 2.1953494070208459E-003 + 49.319999999999993 2.3148542719318983E-003 + 49.379999999999995 2.4395632665634597E-003 + 49.439999999999998 2.5696181949182635E-003 + 49.500000000000000 2.7051598859150483E-003 + 49.560000000000002 2.8463266941288843E-003 + 49.619999999999990 2.9932558417961634E-003 + 49.679999999999993 3.1460806271641994E-003 + 49.739999999999995 3.3049321997615944E-003 + 49.799999999999997 3.4699372381275001E-003 + 49.859999999999999 3.6412188560327411E-003 + 49.920000000000002 3.8188952470043832E-003 + 49.979999999999990 4.0030801236436335E-003 + 50.039999999999992 4.1938804968155779E-003 + 50.099999999999994 4.3913977824985746E-003 + 50.159999999999997 4.5957266304743035E-003 + 50.219999999999999 4.8069537736740667E-003 + 50.280000000000001 5.0251594140604443E-003 + 50.340000000000003 5.2504137733517349E-003 + 50.399999999999991 5.4827792257843115E-003 + 50.459999999999994 5.7223077768259797E-003 + 50.519999999999996 5.9690418675697561E-003 + 50.579999999999998 6.2230125288227564E-003 + 50.640000000000001 6.4842386966817425E-003 + 50.700000000000003 6.7527299456950230E-003 + 50.759999999999991 7.0284805627767958E-003 + 50.819999999999993 7.3114732880335178E-003 + 50.879999999999995 7.6016768854563765E-003 + 50.939999999999998 7.8990463993440542E-003 + 51.000000000000000 8.2035220641753399E-003 + 51.060000000000002 8.5150285744572361E-003 + 51.119999999999990 8.8334750270191182E-003 + 51.179999999999993 9.1587553603096512E-003 + 51.239999999999995 9.4907447306515104E-003 + 51.299999999999997 9.8293044693564032E-003 + 51.359999999999999 1.0174275981423658E-002 + 51.420000000000002 1.0525484412874713E-002 + 51.479999999999990 1.0882737350402787E-002 + 51.539999999999992 1.1245821813807190E-002 + 51.599999999999994 1.1614509732092181E-002 + 51.659999999999997 1.1988552890869680E-002 + 51.719999999999999 1.2367684022390028E-002 + 51.780000000000001 1.2751616530650808E-002 + 51.840000000000003 1.3140046907799395E-002 + 51.899999999999991 1.3532652552111377E-002 + 51.959999999999994 1.3929089964811285E-002 + 52.019999999999996 1.4328998743503851E-002 + 52.079999999999998 1.4731999945865220E-002 + 52.140000000000001 1.5137694512549158E-002 + 52.200000000000003 1.5545667062893377E-002 + 52.259999999999991 1.5955483898947069E-002 + 52.319999999999993 1.6366696478853401E-002 + 52.379999999999995 1.6778835603692921E-002 + 52.439999999999998 1.7191419513040079E-002 + 52.500000000000000 1.7603948217387790E-002 + 52.560000000000002 1.8015905811439643E-002 + 52.619999999999990 1.8426766674984000E-002 + 52.679999999999993 1.8835986398467681E-002 + 52.739999999999995 1.9243011983603377E-002 + 52.799999999999997 1.9647274946874335E-002 + 52.859999999999999 2.0048198135387912E-002 + 52.920000000000002 2.0445193844030572E-002 + 52.979999999999990 2.0837665027743518E-002 + 53.039999999999992 2.1225008321427988E-002 + 53.099999999999994 2.1606612642588389E-002 + 53.159999999999997 2.1981860563065749E-002 + 53.219999999999999 2.2350134398537339E-002 + 53.280000000000001 2.2710808903373791E-002 + 53.339999999999989 2.3063260336169282E-002 + 53.399999999999991 2.3406862921638977E-002 + 53.459999999999994 2.3740990825001820E-002 + 53.519999999999996 2.4065022858004513E-002 + 53.579999999999998 2.4378342035363459E-002 + 53.640000000000001 2.4680337006968821E-002 + 53.700000000000003 2.4970402723443429E-002 + 53.759999999999991 2.5247940168333718E-002 + 53.819999999999993 2.5512363353844991E-002 + 53.879999999999995 2.5763098407191536E-002 + 53.939999999999998 2.5999578725308364E-002 + 54.000000000000000 2.6221258096268268E-002 + 54.060000000000002 2.6427603163379419E-002 + 54.119999999999990 2.6618098161764754E-002 + 54.179999999999993 2.6792247629121479E-002 + 54.239999999999995 2.6949572374748376E-002 + 54.299999999999997 2.7089618861880615E-002 + 54.359999999999999 2.7211954494479919E-002 + 54.420000000000002 2.7316170944738850E-002 + 54.479999999999990 2.7401882975154428E-002 + 54.539999999999992 2.7468737054538967E-002 + 54.599999999999994 2.7516401753467236E-002 + 54.659999999999997 2.7544576925248254E-002 + 54.719999999999999 2.7552991904330706E-002 + 54.780000000000001 2.7541407506445140E-002 + 54.839999999999989 2.7509614168149916E-002 + 54.899999999999991 2.7457434592242754E-002 + 54.959999999999994 2.7384725895036901E-002 + 55.019999999999996 2.7291378703530926E-002 + 55.079999999999998 2.7177315461811912E-002 + 55.140000000000001 2.7042498234964376E-002 + 55.200000000000003 2.6886918759556094E-002 + 55.259999999999991 2.6710607321922462E-002 + 55.319999999999993 2.6513627170389686E-002 + 55.379999999999995 2.6296079922747774E-002 + 55.439999999999998 2.6058100495093148E-002 + 55.500000000000000 2.5799861906147487E-002 + 55.560000000000002 2.5521570345005417E-002 + 55.619999999999990 2.5223466286515259E-002 + 55.679999999999993 2.4905828309548191E-002 + 55.739999999999995 2.4568965895485871E-002 + 55.799999999999997 2.4213223214146543E-002 + 55.859999999999999 2.3838977777981302E-002 + 55.920000000000002 2.3446636349705036E-002 + 55.979999999999990 2.3036643356183634E-002 + 56.039999999999992 2.2609467265930376E-002 + 56.099999999999994 2.2165610281439246E-002 + 56.159999999999997 2.1705600795917483E-002 + 56.219999999999999 2.1229993958732280E-002 + 56.280000000000001 2.0739373035799657E-002 + 56.339999999999989 2.0234342926615641E-002 + 56.399999999999991 1.9715532712898783E-002 + 56.459999999999994 1.9183600410563540E-002 + 56.519999999999996 1.8639212877292137E-002 + 56.579999999999998 1.8083061683361469E-002 + 56.640000000000001 1.7515856751701104E-002 + 56.700000000000003 1.6938321038709167E-002 + 56.759999999999991 1.6351194498589901E-002 + 56.819999999999993 1.5755226646978069E-002 + 56.879999999999995 1.5151179990283812E-002 + 56.939999999999998 1.4539824641308253E-002 + 57.000000000000000 1.3921938093997164E-002 + 57.060000000000002 1.3298303940494870E-002 + 57.119999999999990 1.2669710355094909E-002 + 57.179999999999993 1.2036946580466890E-002 + 57.239999999999995 1.1400802138508461E-002 + 57.299999999999997 1.0762065544399086E-002 + 57.359999999999999 1.0121522892562899E-002 + 57.420000000000002 9.4799549070299499E-003 + 57.479999999999990 8.8381357061630104E-003 + 57.539999999999992 8.1968315670066585E-003 + 57.599999999999994 7.5568006745753667E-003 + 57.659999999999997 6.9187881189188812E-003 + 57.719999999999999 6.2835278669525511E-003 + 57.780000000000001 5.6517398082540993E-003 + 57.839999999999989 5.0241281934268476E-003 + 57.899999999999991 4.4013807596115428E-003 + 57.959999999999994 3.7841679568860129E-003 + 58.019999999999996 3.1731412298265701E-003 + 58.079999999999998 2.5689313125805968E-003 + 58.140000000000001 1.9721482872872716E-003 + 58.200000000000003 1.3833800585462256E-003 + 58.259999999999991 8.0319149626300202E-004 + 58.319999999999993 2.3212408888692126E-004 + 58.379999999999995 -3.2930554388052786E-004 + 58.439999999999998 -8.8060605524572220E-004 + 58.500000000000000 -1.4213120856504367E-003 + 58.560000000000002 -1.9509840149310883E-003 + 58.619999999999990 -2.4692092083330617E-003 + 58.679999999999993 -2.9756022785741103E-003 + 58.739999999999995 -3.4698047546171231E-003 + 58.799999999999997 -3.9514866831436464E-003 + 58.859999999999999 -4.4203456699632819E-003 + 58.920000000000002 -4.8761067635992705E-003 + 58.979999999999990 -5.3185219524411464E-003 + 59.039999999999992 -5.7473725535457524E-003 + 59.099999999999994 -6.1624660344860808E-003 + 59.159999999999997 -6.5636378621138176E-003 + 59.219999999999999 -6.9507510960452948E-003 + 59.280000000000001 -7.3236937826607652E-003 + 59.339999999999989 -7.6823813164228595E-003 + 59.399999999999991 -8.0267547320292242E-003 + 59.459999999999994 -8.3567807242068467E-003 + 59.519999999999996 -8.6724502531108742E-003 + 59.579999999999998 -8.9737769606962892E-003 + 59.640000000000001 -9.2608007295633243E-003 + 59.700000000000003 -9.5335811878539470E-003 + 59.759999999999991 -9.7922015320416906E-003 + 59.819999999999993 -1.0036765960196538E-002 + 59.879999999999995 -1.0267399002759305E-002 + 59.939999999999998 -1.0484243593831728E-002 + 60.000000000000000 -1.0687462771338778E-002 + 60.060000000000002 -1.0877236330291432E-002 + 60.119999999999990 -1.1053761271141958E-002 + 60.179999999999993 -1.1217250096743863E-002 + 60.239999999999995 -1.1367932074599350E-002 + 60.299999999999997 -1.1506049297031385E-002 + 60.359999999999999 -1.1631855118139399E-002 + 60.420000000000002 -1.1745617781665031E-002 + 60.479999999999990 -1.1847616356427688E-002 + 60.539999999999992 -1.1938138548311331E-002 + 60.599999999999994 -1.2017483836833499E-002 + 60.659999999999997 -1.2085957408584945E-002 + 60.719999999999999 -1.2143873471165254E-002 + 60.780000000000001 -1.2191552956725884E-002 + 60.839999999999989 -1.2229322823147770E-002 + 60.899999999999991 -1.2257513231892359E-002 + 60.959999999999994 -1.2276459038057901E-002 + 61.019999999999996 -1.2286499587113895E-002 + 61.079999999999998 -1.2287973941666169E-002 + 61.140000000000001 -1.2281226215854993E-002 + 61.200000000000003 -1.2266597346242771E-002 + 61.259999999999991 -1.2244431369597599E-002 + 61.319999999999993 -1.2215070694553331E-002 + 61.379999999999995 -1.2178854945773797E-002 + 61.439999999999998 -1.2136124108257472E-002 + 61.500000000000000 -1.2087213763667554E-002 + 61.560000000000002 -1.2032456737132078E-002 + 61.619999999999990 -1.1972183656405235E-002 + 61.679999999999993 -1.1906718113117129E-002 + 61.739999999999995 -1.1836380450139997E-002 + 61.799999999999997 -1.1761484663005556E-002 + 61.859999999999999 -1.1682340901040490E-002 + 61.920000000000002 -1.1599251603015798E-002 + 61.979999999999990 -1.1512513230816718E-002 + 62.039999999999992 -1.1422414639268821E-002 + 62.099999999999994 -1.1329238926555796E-002 + 62.159999999999997 -1.1233260351069946E-002 + 62.219999999999999 -1.1134746609566780E-002 + 62.280000000000001 -1.1033956486464457E-002 + 62.339999999999989 -1.0931141567265448E-002 + 62.399999999999991 -1.0826545043843682E-002 + 62.459999999999994 -1.0720400789743423E-002 + 62.519999999999996 -1.0612934695712020E-002 + 62.579999999999998 -1.0504364055327786E-002 + 62.640000000000001 -1.0394897007767820E-002 + 62.700000000000003 -1.0284734451162375E-002 + 62.759999999999991 -1.0174066719676736E-002 + 62.819999999999993 -1.0063076156146482E-002 + 62.879999999999995 -9.9519366043352327E-003 + 62.939999999999998 -9.8408124280362948E-003 + 63.000000000000000 -9.7298594948211775E-003 + 63.060000000000002 -9.6192264870742349E-003 + 63.119999999999990 -9.5090512445733643E-003 + 63.179999999999993 -9.3994647805353947E-003 + 63.239999999999995 -9.2905897606667901E-003 + 63.299999999999997 -9.1825415004840316E-003 + 63.359999999999999 -9.0754267627515053E-003 + 63.420000000000002 -8.9693439707219623E-003 + 63.479999999999990 -8.8643840853458687E-003 + 63.539999999999992 -8.7606311807219665E-003 + 63.599999999999994 -8.6581633154923787E-003 + 63.659999999999997 -8.5570488864454130E-003 + 63.719999999999999 -8.4573522824135453E-003 + 63.780000000000001 -8.3591297794983494E-003 + 63.839999999999989 -8.2624324282541094E-003 + 63.899999999999991 -8.1673036769799728E-003 + 63.959999999999994 -8.0737824326702207E-003 + 64.019999999999996 -7.9819018431937349E-003 + 64.079999999999998 -7.8916900058668051E-003 + 64.140000000000001 -7.8031686821063758E-003 + 64.200000000000003 -7.7163564022528358E-003 + 64.259999999999991 -7.6312658921985528E-003 + 64.319999999999993 -7.5479063297053551E-003 + 64.379999999999995 -7.4662818435800356E-003 + 64.439999999999998 -7.3863938854553599E-003 + 64.500000000000000 -7.3082389451232157E-003 + 64.560000000000002 -7.2318110482439205E-003 + 64.619999999999990 -7.1571008995820421E-003 + 64.679999999999993 -7.0840957707536149E-003 + 64.739999999999995 -7.0127811034667881E-003 + 64.799999999999997 -6.9431384984076300E-003 + 64.859999999999999 -6.8751489404671341E-003 + 64.920000000000002 -6.8087895054851216E-003 + 64.979999999999990 -6.7440365356465064E-003 + 65.039999999999992 -6.6808640165128708E-003 + 65.099999999999994 -6.6192451352512036E-003 + 65.159999999999997 -6.5591515466181076E-003 + 65.219999999999999 -6.5005532958584472E-003 + 65.280000000000001 -6.4434197405611252E-003 + 65.339999999999989 -6.3877187800758205E-003 + 65.399999999999991 -6.3334183574858451E-003 + 65.459999999999994 -6.2804848962731341E-003 + 65.519999999999996 -6.2288857781565409E-003 + 65.579999999999998 -6.1785871783312726E-003 + 65.640000000000001 -6.1295541043893580E-003 + 65.700000000000003 -6.0817531335049559E-003 + 65.759999999999991 -6.0351490821908584E-003 + 65.819999999999993 -5.9897083092488096E-003 + 65.879999999999995 -5.9453967193191593E-003 + 65.939999999999998 -5.9021797749470454E-003 + 66.000000000000000 -5.8600241484651856E-003 + 66.060000000000002 -5.8188957193781605E-003 + 66.119999999999990 -5.7787615307042439E-003 + 66.179999999999993 -5.7395891450076550E-003 + 66.239999999999995 -5.7013457752937181E-003 + 66.299999999999997 -5.6639999984888509E-003 + 66.359999999999999 -5.6275205474703091E-003 + 66.420000000000002 -5.5918754602372342E-003 + 66.479999999999990 -5.5570355081560746E-003 + 66.539999999999992 -5.5229704217950037E-003 + 66.599999999999994 -5.4896507952846910E-003 + 66.659999999999997 -5.4570484648136536E-003 + 66.719999999999999 -5.4251353067978503E-003 + 66.780000000000001 -5.3938833118886455E-003 + 66.839999999999989 -5.3632654901242917E-003 + 66.899999999999991 -5.3332555924439726E-003 + 66.959999999999994 -5.3038271115903798E-003 + 67.019999999999996 -5.2749547777666481E-003 + 67.079999999999998 -5.2466128626571301E-003 + 67.140000000000001 -5.2187762912718084E-003 + 67.199999999999989 -5.1914213328925797E-003 + 67.259999999999991 -5.1645235489393426E-003 + 67.319999999999993 -5.1380592810055022E-003 + 67.379999999999995 -5.1120048313305650E-003 + 67.439999999999998 -5.0863372253789046E-003 + 67.500000000000000 -5.0610328898035919E-003 + 67.560000000000002 -5.0360695771483428E-003 + 67.619999999999990 -5.0114244736905351E-003 + 67.679999999999993 -4.9870758294922194E-003 + 67.739999999999995 -4.9630012646965198E-003 + 67.799999999999997 -4.9391792352081942E-003 + 67.859999999999999 -4.9155875237253798E-003 + 67.920000000000002 -4.8922046200311174E-003 + 67.979999999999990 -4.8690094995874770E-003 + 68.039999999999992 -4.8459803591171680E-003 + 68.099999999999994 -4.8230958943482651E-003 + 68.159999999999997 -4.8003355817375463E-003 + 68.219999999999999 -4.7776778687609834E-003 + 68.280000000000001 -4.7551022565770354E-003 + 68.339999999999989 -4.7325876096723785E-003 + 68.399999999999991 -4.7101137025143966E-003 + 68.459999999999994 -4.6876590118800354E-003 + 68.519999999999996 -4.6652035843132936E-003 + 68.579999999999998 -4.6427269997363404E-003 + 68.640000000000001 -4.6202087130151883E-003 + 68.699999999999989 -4.5976281731774345E-003 + 68.759999999999991 -4.5749656582068253E-003 + 68.819999999999993 -4.5522016389477199E-003 + 68.879999999999995 -4.5293157851977314E-003 + 68.939999999999998 -4.5062890770332237E-003 + 69.000000000000000 -4.4831024094343459E-003 + 69.060000000000002 -4.4597367604050867E-003 + 69.119999999999990 -4.4361738746002497E-003 + 69.179999999999993 -4.4123955351637540E-003 + 69.239999999999995 -4.3883834239799024E-003 + 69.299999999999997 -4.3641204492313110E-003 + 69.359999999999999 -4.3395892028271522E-003 + 69.420000000000002 -4.3147740213814196E-003 + 69.479999999999990 -4.2896586360835131E-003 + 69.539999999999992 -4.2642277051817626E-003 + 69.599999999999994 -4.2384662862791191E-003 + 69.659999999999997 -4.2123604374927105E-003 + 69.719999999999999 -4.1858967493737407E-003 + 69.780000000000001 -4.1590617939354941E-003 + 69.839999999999989 -4.1318434351256799E-003 + 69.899999999999991 -4.1042305249849960E-003 + 69.959999999999994 -4.0762125220279548E-003 + 70.019999999999996 -4.0477799194795685E-003 + 70.079999999999998 -4.0189231165022607E-003 + 70.140000000000001 -3.9896341467349087E-003 + 70.199999999999989 -3.9599061268982870E-003 + 70.259999999999991 -3.9297323759058395E-003 + 70.319999999999993 -3.8991079486967581E-003 + 70.379999999999995 -3.8680284125624338E-003 + 70.439999999999998 -3.8364902424877336E-003 + 70.500000000000000 -3.8044914300465384E-003 + 70.560000000000002 -3.7720305789516206E-003 + 70.619999999999990 -3.7391075896339287E-003 + 70.679999999999993 -3.7057235727864877E-003 + 70.739999999999995 -3.6718805379676719E-003 + 70.799999999999997 -3.6375815636973323E-003 + 70.859999999999999 -3.6028307637630420E-003 + 70.920000000000002 -3.5676336049793814E-003 + 70.979999999999990 -3.5319968194890659E-003 + 71.039999999999992 -3.4959279147012828E-003 + 71.099999999999994 -3.4594356459278124E-003 + 71.159999999999997 -3.4225299597725736E-003 + 71.219999999999999 -3.3852219586684657E-003 + 71.280000000000001 -3.3475237649508976E-003 + 71.339999999999989 -3.3094482288153499E-003 + 71.399999999999991 -3.2710099604716181E-003 + 71.459999999999994 -3.2322239557601097E-003 + 71.519999999999996 -3.1931063204333593E-003 + 71.579999999999998 -3.1536744575640487E-003 + 71.640000000000001 -3.1139465403354247E-003 + 71.699999999999989 -3.0739414679729674E-003 + 71.759999999999991 -3.0336790916232637E-003 + 71.819999999999993 -2.9931802122444393E-003 + 71.879999999999995 -2.9524662062222714E-003 + 71.939999999999998 -2.9115597644960621E-003 + 72.000000000000000 -2.8704837434748009E-003 + 72.060000000000002 -2.8292616902409690E-003 + 72.119999999999990 -2.7879180123140590E-003 + 72.179999999999993 -2.7464776099578236E-003 + 72.239999999999995 -2.7049658703498479E-003 + 72.299999999999997 -2.6634086311651105E-003 + 72.359999999999999 -2.6218323134057971E-003 + 72.420000000000002 -2.5802635331494505E-003 + 72.479999999999990 -2.5387293279061319E-003 + 72.539999999999992 -2.4972566900375863E-003 + 72.599999999999994 -2.4558730680058764E-003 + 72.659999999999997 -2.4146058228222056E-003 + 72.719999999999999 -2.3734825454468653E-003 + 72.780000000000001 -2.3325306271084630E-003 + 72.839999999999989 -2.2917773147700170E-003 + 72.899999999999991 -2.2512497872341141E-003 + 72.959999999999994 -2.2109749512132237E-003 + 73.019999999999996 -2.1709797620283505E-003 + 73.079999999999998 -2.1312900246463753E-003 + 73.140000000000001 -2.0919318886891301E-003 + 73.199999999999989 -2.0529304691303081E-003 + 73.259999999999991 -2.0143109012576454E-003 + 73.319999999999993 -1.9760974273950803E-003 + 73.379999999999995 -1.9383137661296815E-003 + 73.439999999999998 -1.9009829803622730E-003 + 73.500000000000000 -1.8641274510617992E-003 + 73.560000000000002 -1.8277687015221577E-003 + 73.619999999999990 -1.7919274389070774E-003 + 73.679999999999993 -1.7566237375157001E-003 + 73.739999999999995 -1.7218763782018722E-003 + 73.799999999999997 -1.6877036366904088E-003 + 73.859999999999999 -1.6541226199959988E-003 + 73.920000000000002 -1.6211493298961240E-003 + 73.979999999999990 -1.5887990558513224E-003 + 74.039999999999992 -1.5570856434146342E-003 + 74.099999999999994 -1.5260222020877143E-003 + 74.159999999999997 -1.4956204298869436E-003 + 74.219999999999999 -1.4658914741763219E-003 + 74.280000000000001 -1.4368446872423915E-003 + 74.339999999999989 -1.4084886605841710E-003 + 74.399999999999991 -1.3808308942100268E-003 + 74.459999999999994 -1.3538776668381301E-003 + 74.519999999999996 -1.3276342851627279E-003 + 74.579999999999998 -1.3021047097754360E-003 + 74.640000000000001 -1.2772919554917769E-003 + 74.699999999999989 -1.2531979341058866E-003 + 74.759999999999991 -1.2298235434894593E-003 + 74.819999999999993 -1.2071685123371846E-003 + 74.879999999999995 -1.1852315504990393E-003 + 74.939999999999998 -1.1640106304704478E-003 + 75.000000000000000 -1.1435023861549156E-003 + 75.060000000000002 -1.1237028243518731E-003 + 75.119999999999990 -1.1046068725526271E-003 + 75.179999999999993 -1.0862085955905499E-003 + 75.239999999999995 -1.0685014998316822E-003 + 75.299999999999997 -1.0514779319180201E-003 + 75.359999999999999 -1.0351296225039499E-003 + 75.420000000000002 -1.0194477142423887E-003 + 75.479999999999990 -1.0044225579531859E-003 + 75.539999999999992 -9.9004401051901538E-004 + 75.599999999999994 -9.7630120633214630E-004 + 75.659999999999997 -9.6318276723318685E-004 + 75.719999999999999 -9.5067683141682722E-004 + 75.780000000000001 -9.3877112734551383E-004 + 75.839999999999989 -9.2745277122440047E-004 + 75.899999999999991 -9.1670862066577270E-004 + 75.959999999999994 -9.0652516345757358E-004 + 76.019999999999996 -8.9688847143998718E-004 + 76.079999999999998 -8.8778449777160450E-004 + 76.140000000000001 -8.7919875838709388E-004 + 76.199999999999989 -8.7111651268746400E-004 + 76.259999999999991 -8.6352308026448879E-004 + 76.319999999999993 -8.5640348300281162E-004 + 76.379999999999995 -8.4974260173581321E-004 + 76.439999999999998 -8.4352533397477928E-004 + 76.500000000000000 -8.3773646340611096E-004 + 76.560000000000002 -8.3236088538805365E-004 + 76.619999999999990 -8.2738345783051309E-004 + 76.679999999999993 -8.2278910591138056E-004 + 76.739999999999995 -8.1856276621380421E-004 + 76.799999999999997 -8.1468950887934237E-004 + 76.859999999999999 -8.1115456513597417E-004 + 76.920000000000002 -8.0794312543360132E-004 + 76.979999999999990 -8.0504068282979578E-004 + 77.039999999999992 -8.0243280347003785E-004 + 77.099999999999994 -8.0010514898926749E-004 + 77.159999999999997 -7.9804363390190863E-004 + 77.219999999999999 -7.9623422246564036E-004 + 77.280000000000001 -7.9466307702852931E-004 + 77.339999999999989 -7.9331655740948605E-004 + 77.399999999999991 -7.9218116386545493E-004 + 77.459999999999994 -7.9124356632363378E-004 + 77.519999999999996 -7.9049058020915462E-004 + 77.579999999999998 -7.8990933000015816E-004 + 77.640000000000001 -7.8948703399434527E-004 + 77.699999999999989 -7.8921107901433127E-004 + 77.759999999999991 -7.8906912885020990E-004 + 77.819999999999993 -7.8904894156198017E-004 + 77.879999999999995 -7.8913852825537346E-004 + 77.939999999999998 -7.8932600268247135E-004 + 78.000000000000000 -7.8959972539481300E-004 + 78.060000000000002 -7.8994815494353517E-004 + 78.119999999999990 -7.9036002100669285E-004 + 78.179999999999993 -7.9082411261962541E-004 + 78.239999999999995 -7.9132935285025651E-004 + 78.299999999999997 -7.9186493771860262E-004 + 78.359999999999999 -7.9242013072685052E-004 + 78.420000000000002 -7.9298428187192234E-004 + 78.479999999999990 -7.9354699753961038E-004 + 78.539999999999992 -7.9409790286821390E-004 + 78.599999999999994 -7.9462691720191380E-004 + 78.659999999999997 -7.9512399117950328E-004 + 78.719999999999999 -7.9557923410551723E-004 + 78.780000000000001 -7.9598302067134408E-004 + 78.839999999999989 -7.9632568084039444E-004 + 78.899999999999991 -7.9659787457083222E-004 + 78.959999999999994 -7.9679040811054961E-004 + 79.019999999999996 -7.9689414048561948E-004 + 79.079999999999998 -7.9690021778160787E-004 + 79.140000000000001 -7.9679998533035892E-004 + 79.199999999999989 -7.9658482387544619E-004 + 79.259999999999991 -7.9624641084492646E-004 + 79.319999999999993 -7.9577664520969838E-004 + 79.379999999999995 -7.9516764406811638E-004 + 79.439999999999998 -7.9441165760940819E-004 + 79.500000000000000 -7.9350123789648837E-004 + 79.560000000000002 -7.9242918658068004E-004 + 79.619999999999990 -7.9118866165319975E-004 + 79.679999999999993 -7.8977288901450112E-004 + 79.739999999999995 -7.8817564770364171E-004 + 79.799999999999997 -7.8639095649435603E-004 + 79.859999999999999 -7.8441306279170269E-004 + 79.920000000000002 -7.8223673189690166E-004 + 79.979999999999990 -7.7985705545699664E-004 + 80.039999999999992 -7.7726940830117361E-004 + 80.099999999999994 -7.7446968547662030E-004 + 80.159999999999997 -7.7145406006987483E-004 + 80.219999999999999 -7.6821923925506433E-004 + 80.280000000000001 -7.6476236984978382E-004 + 80.340000000000003 -7.6108094225060515E-004 + 80.400000000000006 -7.5717295930400274E-004 + 80.460000000000008 -7.5303691700816288E-004 + 80.519999999999982 -7.4867181327052743E-004 + 80.579999999999984 -7.4407712008252574E-004 + 80.639999999999986 -7.3925287791037908E-004 + 80.699999999999989 -7.3419968803237093E-004 + 80.759999999999991 -7.2891865775813274E-004 + 80.819999999999993 -7.2341154257989581E-004 + 80.879999999999995 -7.1768066656302467E-004 + 80.939999999999998 -7.1172901562233939E-004 + 81.000000000000000 -7.0556016030180865E-004 + 81.060000000000002 -6.9917835349581113E-004 + 81.120000000000005 -6.9258841577541101E-004 + 81.180000000000007 -6.8579588858355299E-004 + 81.240000000000009 -6.7880701438037940E-004 + 81.299999999999983 -6.7162857533868323E-004 + 81.359999999999985 -6.6426805045801838E-004 + 81.419999999999987 -6.5673358929241820E-004 + 81.479999999999990 -6.4903404904435250E-004 + 81.539999999999992 -6.4117875640653068E-004 + 81.599999999999994 -6.3317780338715884E-004 + 81.659999999999997 -6.2504191650708280E-004 + 81.719999999999999 -6.1678247616565505E-004 + 81.780000000000001 -6.0841144223244467E-004 + 81.840000000000003 -5.9994138096299639E-004 + 81.900000000000006 -5.9138548600846973E-004 + 81.960000000000008 -5.8275765044793265E-004 + 82.019999999999982 -5.7407220409547361E-004 + 82.079999999999984 -5.6534417822728814E-004 + 82.139999999999986 -5.5658900835172580E-004 + 82.199999999999989 -5.4782274204142885E-004 + 82.259999999999991 -5.3906202253371760E-004 + 82.319999999999993 -5.3032383341518980E-004 + 82.379999999999995 -5.2162567956358093E-004 + 82.439999999999998 -5.1298541219308336E-004 + 82.500000000000000 -5.0442132269527286E-004 + 82.560000000000002 -4.9595198703709660E-004 + 82.620000000000005 -4.8759630728862166E-004 + 82.680000000000007 -4.7937345007603688E-004 + 82.740000000000009 -4.7130284369931657E-004 + 82.799999999999983 -4.6340402398425056E-004 + 82.859999999999985 -4.5569671660447911E-004 + 82.919999999999987 -4.4820074191450699E-004 + 82.979999999999990 -4.4093591280605252E-004 + 83.039999999999992 -4.3392214273296845E-004 + 83.099999999999994 -4.2717922989493878E-004 + 83.159999999999997 -4.2072692104179802E-004 + 83.219999999999999 -4.1458478363461891E-004 + 83.280000000000001 -4.0877219450245717E-004 + 83.340000000000003 -4.0330825749910733E-004 + 83.400000000000006 -3.9821175089721538E-004 + 83.460000000000008 -3.9350111406918692E-004 + 83.519999999999982 -3.8919427609275889E-004 + 83.579999999999984 -3.8530870301465241E-004 + 83.639999999999986 -3.8186126585545407E-004 + 83.699999999999989 -3.7886825968768643E-004 + 83.759999999999991 -3.7634524550748938E-004 + 83.819999999999993 -3.7430709989159922E-004 + 83.879999999999995 -3.7276789889086168E-004 + 83.939999999999998 -3.7174085513872547E-004 + 84.000000000000000 -3.7123832436552150E-004 + 84.060000000000002 -3.7127169996102090E-004 + 84.120000000000005 -3.7185142442018094E-004 + 84.180000000000007 -3.7298689197845226E-004 + 84.240000000000009 -3.7468641574247283E-004 + 84.299999999999983 -3.7695721530585553E-004 + 84.359999999999985 -3.7980534963190024E-004 + 84.419999999999987 -3.8323566280024855E-004 + 84.479999999999990 -3.8725181133842420E-004 + 84.539999999999992 -3.9185614925336216E-004 + 84.599999999999994 -3.9704972209440631E-004 + 84.659999999999997 -4.0283228336800104E-004 + 84.719999999999999 -4.0920221173952913E-004 + 84.780000000000001 -4.1615651555550388E-004 + 84.840000000000003 -4.2369080915525051E-004 + 84.900000000000006 -4.3179929234384668E-004 + 84.960000000000008 -4.4047476467148439E-004 + 85.019999999999982 -4.4970870502553345E-004 + 85.079999999999984 -4.5949109948079992E-004 + 85.139999999999986 -4.6981054731872287E-004 + 85.199999999999989 -4.8065434964635669E-004 + 85.259999999999991 -4.9200835785382529E-004 + 85.319999999999993 -5.0385709404923934E-004 + 85.379999999999995 -5.1618374714408361E-004 + 85.439999999999998 -5.2897026896994844E-004 + 85.500000000000000 -5.4219732374684044E-004 + 85.560000000000002 -5.5584429702643578E-004 + 85.620000000000005 -5.6988945978336781E-004 + 85.680000000000007 -5.8430981645726343E-004 + 85.740000000000009 -5.9908135009923921E-004 + 85.799999999999983 -6.1417898680930425E-004 + 85.859999999999985 -6.2957658058377731E-004 + 85.919999999999987 -6.4524713082908438E-004 + 85.979999999999990 -6.6116265358949228E-004 + 86.039999999999992 -6.7729434133238461E-004 + 86.099999999999994 -6.9361265233808950E-004 + 86.159999999999997 -7.1008744907520040E-004 + 86.219999999999999 -7.2668783376608574E-004 + 86.280000000000001 -7.4338251124386246E-004 + 86.340000000000003 -7.6013962618628713E-004 + 86.400000000000006 -7.7692701539795891E-004 + 86.460000000000008 -7.9371222508382421E-004 + 86.519999999999982 -8.1046253224562981E-004 + 86.579999999999984 -8.2714512741158741E-004 + 86.639999999999986 -8.4372712499331079E-004 + 86.699999999999989 -8.6017568062109369E-004 + 86.759999999999991 -8.7645801948411288E-004 + 86.819999999999993 -8.9254166450027810E-004 + 86.879999999999995 -9.0839439097699587E-004 + 86.939999999999998 -9.2398435774003506E-004 + 87.000000000000000 -9.3928008089414991E-004 + 87.060000000000002 -9.5425072423832721E-004 + 87.120000000000005 -9.6886601719440592E-004 + 87.180000000000007 -9.8309651931725926E-004 + 87.240000000000009 -9.9691333167764833E-004 + 87.299999999999983 -1.0102886222893702E-003 + 87.359999999999985 -1.0231954874436880E-003 + 87.419999999999987 -1.0356080333380666E-003 + 87.479999999999990 -1.0475013653774674E-003 + 87.539999999999992 -1.0588517900274425E-003 + 87.599999999999994 -1.0696368975281470E-003 + 87.659999999999997 -1.0798353704874154E-003 + 87.719999999999999 -1.0894274671819854E-003 + 87.780000000000001 -1.0983947950015298E-003 + 87.840000000000003 -1.1067202721242373E-003 + 87.900000000000006 -1.1143883719397683E-003 + 87.960000000000008 -1.1213850000224826E-003 + 88.019999999999982 -1.1276977730949257E-003 + 88.079999999999984 -1.1333157194421256E-003 + 88.139999999999986 -1.1382297974562891E-003 + 88.199999999999989 -1.1424322987132116E-003 + 88.259999999999991 -1.1459174390142880E-003 + 88.319999999999993 -1.1486810966930318E-003 + 88.379999999999995 -1.1507208641044014E-003 + 88.439999999999998 -1.1520359849323883E-003 + 88.500000000000000 -1.1526277228017161E-003 + 88.560000000000002 -1.1524989252572019E-003 + 88.620000000000005 -1.1516545650131003E-003 + 88.680000000000007 -1.1501008934759471E-003 + 88.740000000000009 -1.1478462866727672E-003 + 88.799999999999983 -1.1449006931127457E-003 + 88.859999999999985 -1.1412758653523575E-003 + 88.919999999999987 -1.1369854060921619E-003 + 88.979999999999990 -1.1320444290402157E-003 + 89.039999999999992 -1.1264696669093094E-003 + 89.099999999999994 -1.1202797474094187E-003 + 89.159999999999997 -1.1134945406022828E-003 + 89.219999999999999 -1.1061356991418012E-003 + 89.280000000000001 -1.0982262332361018E-003 + 89.340000000000003 -1.0897907666389114E-003 + 89.400000000000006 -1.0808552098886814E-003 + 89.460000000000008 -1.0714468329691737E-003 + 89.519999999999982 -1.0615944395058205E-003 + 89.579999999999984 -1.0513277681629065E-003 + 89.639999999999986 -1.0406781936087592E-003 + 89.699999999999989 -1.0296779165573041E-003 + 89.759999999999991 -1.0183602900898853E-003 + 89.819999999999993 -1.0067598400110610E-003 + 89.879999999999995 -9.9491179067330896E-004 + 89.939999999999998 -9.8285266199336571E-004 + 90.000000000000000 -9.7061948219129431E-004 + 90.060000000000002 -9.5825010757453945E-004 + 90.120000000000005 -9.4578310467955046E-004 + 90.180000000000007 -9.3325753625362034E-004 + 90.240000000000009 -9.2071301491023546E-004 + 90.299999999999983 -9.0818958190496085E-004 + 90.359999999999985 -8.9572757590722916E-004 + 90.419999999999987 -8.8336761283483499E-004 + 90.479999999999990 -8.7115035584505005E-004 + 90.539999999999992 -8.5911672383489051E-004 + 90.599999999999994 -8.4730747860270049E-004 + 90.659999999999997 -8.3576339360077437E-004 + 90.719999999999999 -8.2452501553261664E-004 + 90.780000000000001 -8.1363262749126219E-004 + 90.840000000000003 -8.0312625221172149E-004 + 90.900000000000006 -7.9304535604294234E-004 + 90.960000000000008 -7.8342902615595434E-004 + 91.019999999999982 -7.7431572980232331E-004 + 91.079999999999984 -7.6574327811833461E-004 + 91.139999999999986 -7.5774870762133342E-004 + 91.199999999999989 -7.5036836143654536E-004 + 91.259999999999991 -7.4363759946571156E-004 + 91.319999999999993 -7.3759088270742169E-004 + 91.379999999999995 -7.3226151788946428E-004 + 91.439999999999998 -7.2768177257529008E-004 + 91.500000000000000 -7.2388271133644203E-004 + 91.560000000000002 -7.2089421957426331E-004 + 91.620000000000005 -7.1874471137116022E-004 + 91.680000000000007 -7.1746124251443515E-004 + 91.739999999999981 -7.1706950183056894E-004 + 91.799999999999983 -7.1759358430717587E-004 + 91.859999999999985 -7.1905605773396879E-004 + 91.919999999999987 -7.2147778949570686E-004 + 91.979999999999990 -7.2487791085764145E-004 + 92.039999999999992 -7.2927396845041178E-004 + 92.099999999999994 -7.3468159480850101E-004 + 92.159999999999997 -7.4111469892881551E-004 + 92.219999999999999 -7.4858525883838808E-004 + 92.280000000000001 -7.5710330931803046E-004 + 92.340000000000003 -7.6667716087471883E-004 + 92.400000000000006 -7.7731289330283139E-004 + 92.460000000000008 -7.8901480714521936E-004 + 92.519999999999982 -8.0178513301523485E-004 + 92.579999999999984 -8.1562406993534097E-004 + 92.639999999999986 -8.3052983958184132E-004 + 92.699999999999989 -8.4649873001138489E-004 + 92.759999999999991 -8.6352472265361908E-004 + 92.819999999999993 -8.8160012795882687E-004 + 92.879999999999995 -9.0071485921145063E-004 + 92.939999999999998 -9.2085710938991474E-004 + 93.000000000000000 -9.4201271398494679E-004 + 93.060000000000002 -9.6416578998649984E-004 + 93.120000000000005 -9.8729822415866359E-004 + 93.180000000000007 -1.0113899494631983E-003 + 93.239999999999981 -1.0364189349333327E-003 + 93.299999999999983 -1.0623610893946691E-003 + 93.359999999999985 -1.0891904356769989E-003 + 93.419999999999987 -1.1168789890675622E-003 + 93.479999999999990 -1.1453969325564551E-003 + 93.539999999999992 -1.1747125509991626E-003 + 93.599999999999994 -1.2047922451167696E-003 + 93.659999999999997 -1.2356005531429129E-003 + 93.719999999999999 -1.2671005084651213E-003 + 93.780000000000001 -1.2992531854620168E-003 + 93.840000000000003 -1.3320180357257307E-003 + 93.900000000000006 -1.3653532463413856E-003 + 93.960000000000008 -1.3992149499695208E-003 + 94.019999999999982 -1.4335582694485435E-003 + 94.079999999999984 -1.4683368078827542E-003 + 94.139999999999986 -1.5035028024060443E-003 + 94.199999999999989 -1.5390071809754681E-003 + 94.259999999999991 -1.5747995459265850E-003 + 94.319999999999993 -1.6108287772142740E-003 + 94.379999999999995 -1.6470422519126839E-003 + 94.439999999999998 -1.6833864880741588E-003 + 94.500000000000000 -1.7198074589389427E-003 + 94.560000000000002 -1.7562496869055941E-003 + 94.620000000000005 -1.7926573175942435E-003 + 94.680000000000007 -1.8289737955832911E-003 + 94.739999999999981 -1.8651419439592674E-003 + 94.799999999999983 -1.9011038238670053E-003 + 94.859999999999985 -1.9368014742738285E-003 + 94.919999999999987 -1.9721762880688782E-003 + 94.979999999999990 -2.0071699141546604E-003 + 95.039999999999992 -2.0417231282262977E-003 + 95.099999999999994 -2.0757774161507003E-003 + 95.159999999999997 -2.1092738068703128E-003 + 95.219999999999999 -2.1421539282430336E-003 + 95.280000000000001 -2.1743596096948513E-003 + 95.340000000000003 -2.2058331341023424E-003 + 95.400000000000006 -2.2365169410968940E-003 + 95.460000000000008 -2.2663545549357149E-003 + 95.519999999999982 -2.2952903064146699E-003 + 95.579999999999984 -2.3232688826815132E-003 + 95.639999999999986 -2.3502363706286718E-003 + 95.699999999999989 -2.3761394115512629E-003 + 95.759999999999991 -2.4009263446557422E-003 + 95.819999999999993 -2.4245464948665077E-003 + 95.879999999999995 -2.4469504114635440E-003 + 95.939999999999998 -2.4680906113516460E-003 + 96.000000000000000 -2.4879207920070400E-003 + 96.060000000000002 -2.5063957603934095E-003 + 96.120000000000005 -2.5234732385300005E-003 + 96.180000000000007 -2.5391119964704770E-003 + 96.239999999999981 -2.5532727348259749E-003 + 96.299999999999983 -2.5659186118980443E-003 + 96.359999999999985 -2.5770146574276352E-003 + 96.419999999999987 -2.5865280285243008E-003 + 96.479999999999990 -2.5944286465175966E-003 + 96.539999999999992 -2.6006881080478314E-003 + 96.599999999999994 -2.6052810010654195E-003 + 96.659999999999997 -2.6081841141750231E-003 + 96.719999999999999 -2.6093772285515509E-003 + 96.780000000000001 -2.6088423407762910E-003 + 96.840000000000003 -2.6065642195520974E-003 + 96.900000000000006 -2.6025302819029151E-003 + 96.960000000000008 -2.5967311037503574E-003 + 97.019999999999982 -2.5891598426525395E-003 + 97.079999999999984 -2.5798124704072990E-003 + 97.139999999999986 -2.5686879502064630E-003 + 97.199999999999989 -2.5557877193225272E-003 + 97.259999999999991 -2.5411164487966764E-003 + 97.319999999999993 -2.5246815393329004E-003 + 97.379999999999995 -2.5064933931865548E-003 + 97.439999999999998 -2.4865653164553581E-003 + 97.500000000000000 -2.4649131887388718E-003 + 97.560000000000002 -2.4415560444086557E-003 + 97.620000000000005 -2.4165152378993883E-003 + 97.680000000000007 -2.3898153905551485E-003 + 97.739999999999981 -2.3614834053755341E-003 + 97.799999999999983 -2.3315487792166596E-003 + 97.859999999999985 -2.3000437845854069E-003 + 97.919999999999987 -2.2670029630921787E-003 + 97.979999999999990 -2.2324634710749738E-003 + 98.039999999999992 -2.1964646531490890E-003 + 98.099999999999994 -2.1590480743303290E-003 + 98.159999999999997 -2.1202572829796861E-003 + 98.219999999999999 -2.0801380999324638E-003 + 98.280000000000001 -2.0387382859912554E-003 + 98.340000000000003 -1.9961072663414055E-003 + 98.400000000000006 -1.9522960899059434E-003 + 98.460000000000008 -1.9073572596263169E-003 + 98.519999999999982 -1.8613450888335758E-003 + 98.579999999999984 -1.8143149927229236E-003 + 98.639999999999986 -1.7663235488213618E-003 + 98.699999999999989 -1.7174284461246008E-003 + 98.759999999999991 -1.6676882439505289E-003 + 98.819999999999993 -1.6171623431441222E-003 + 98.879999999999995 -1.5659106475269973E-003 + 98.939999999999998 -1.5139936181707155E-003 + 99.000000000000000 -1.4614720426915505E-003 + 99.060000000000002 -1.4084070042147934E-003 + 99.120000000000005 -1.3548594641289474E-003 + 99.180000000000007 -1.3008903170352564E-003 + 99.239999999999981 -1.2465602181441528E-003 + 99.299999999999983 -1.1919295715565235E-003 + 99.359999999999985 -1.1370582713168594E-003 + 99.419999999999987 -1.0820054875553570E-003 + 99.479999999999990 -1.0268295475759214E-003 + 99.539999999999992 -9.7158798650549415E-004 + 99.599999999999994 -9.1633739026159944E-004 + 99.659999999999997 -8.6113323085275644E-004 + 99.719999999999999 -8.0602958815276433E-004 + 99.780000000000001 -7.5107938332928301E-004 + 99.840000000000003 -6.9633417100744698E-004 + 99.900000000000006 -6.4184378205629810E-004 + 99.960000000000008 -5.8765663048631765E-004 + 100.01999999999998 -5.3381925942368050E-004 + 100.07999999999998 -4.8037658504126800E-004 + 100.13999999999999 -4.2737167026786401E-004 + 100.19999999999999 -3.7484562544947347E-004 + 100.25999999999999 -3.2283769630557160E-004 + 100.31999999999999 -2.7138511322754482E-004 + 100.38000000000000 -2.2052301437248208E-004 + 100.44000000000000 -1.7028455684043976E-004 + 100.50000000000000 -1.2070079612942126E-004 + 100.56000000000000 -7.1800740460197996E-005 + 100.62000000000000 -2.3611192774244689E-005 + 100.68000000000001 2.3843035615976133E-005 + 100.73999999999998 7.0539254298464905E-005 + 100.79999999999998 1.1645687489325945E-004 + 100.85999999999999 1.6157735679972143E-004 + 100.91999999999999 2.0588417254105635E-004 + 100.97999999999999 2.4936283773897383E-004 + 101.03999999999999 2.9200083409601426E-004 + 101.09999999999999 3.3378755223708353E-004 + 101.16000000000000 3.7471424230151382E-004 + 101.22000000000000 4.1477407438476974E-004 + 101.28000000000000 4.5396193097727787E-004 + 101.34000000000000 4.9227442451068909E-004 + 101.40000000000001 5.2970986129049840E-004 + 101.46000000000001 5.6626806570444881E-004 + 101.51999999999998 6.0195036559058653E-004 + 101.57999999999998 6.3675961069130978E-004 + 101.63999999999999 6.7069989733031386E-004 + 101.69999999999999 7.0377662075058920E-004 + 101.75999999999999 7.3599641750209251E-004 + 101.81999999999999 7.6736688685406470E-004 + 101.88000000000000 7.9789672534453181E-004 + 101.94000000000000 8.2759558654574923E-004 + 102.00000000000000 8.5647391677600836E-004 + 102.06000000000000 8.8454286906257558E-004 + 102.12000000000000 9.1181437316232173E-004 + 102.18000000000001 9.3830091258515261E-004 + 102.23999999999998 9.6401559513888970E-004 + 102.29999999999998 9.8897181994534529E-004 + 102.35999999999999 1.0131834508376144E-003 + 102.41999999999999 1.0366646141926339E-003 + 102.47999999999999 1.0594296396657641E-003 + 102.53999999999999 1.0814930865565020E-003 + 102.59999999999999 1.1028696542401406E-003 + 102.66000000000000 1.1235737576176753E-003 + 102.72000000000000 1.1436201295019733E-003 + 102.78000000000000 1.1630230528046398E-003 + 102.84000000000000 1.1817966897891060E-003 + 102.90000000000001 1.1999551084167057E-003 + 102.96000000000001 1.2175119181294563E-003 + 103.01999999999998 1.2344803748672152E-003 + 103.07999999999998 1.2508734176333984E-003 + 103.13999999999999 1.2667033746005334E-003 + 103.19999999999999 1.2819823031974085E-003 + 103.25999999999999 1.2967215670197508E-003 + 103.31999999999999 1.3109322233028744E-003 + 103.38000000000000 1.3246246922130800E-003 + 103.44000000000000 1.3378087078125744E-003 + 103.50000000000000 1.3504934747755150E-003 + 103.56000000000000 1.3626876016636254E-003 + 103.62000000000000 1.3743993525224690E-003 + 103.68000000000001 1.3856361898160596E-003 + 103.73999999999998 1.3964048972857127E-003 + 103.79999999999998 1.4067118271545421E-003 + 103.85999999999999 1.4165626241179822E-003 + 103.91999999999999 1.4259625320973714E-003 + 103.97999999999999 1.4349158951531375E-003 + 104.03999999999999 1.4434269071047650E-003 + 104.09999999999999 1.4514987861103338E-003 + 104.16000000000000 1.4591345882596705E-003 + 104.22000000000000 1.4663365493717655E-003 + 104.28000000000000 1.4731065859575649E-003 + 104.34000000000000 1.4794460087375605E-003 + 104.40000000000001 1.4853558449295489E-003 + 104.46000000000001 1.4908366652680678E-003 + 104.51999999999998 1.4958884641346130E-003 + 104.57999999999998 1.5005112566828772E-003 + 104.63999999999999 1.5047044890267299E-003 + 104.69999999999999 1.5084673613249564E-003 + 104.75999999999999 1.5117987935239429E-003 + 104.81999999999999 1.5146977660092302E-003 + 104.88000000000000 1.5171628361599781E-003 + 104.94000000000000 1.5191925732818269E-003 + 105.00000000000000 1.5207854498200139E-003 + 105.06000000000000 1.5219397472302418E-003 + 105.12000000000000 1.5226537695097384E-003 + 105.18000000000001 1.5229259201566489E-003 + 105.23999999999998 1.5227545855945454E-003 + 105.29999999999998 1.5221381866874540E-003 + 105.35999999999999 1.5210753173659068E-003 + 105.41999999999999 1.5195646539480686E-003 + 105.47999999999999 1.5176050012525781E-003 + 105.53999999999999 1.5151954375265825E-003 + 105.59999999999999 1.5123351993199768E-003 + 105.66000000000000 1.5090236126401218E-003 + 105.72000000000000 1.5052604549444972E-003 + 105.78000000000000 1.5010457873213350E-003 + 105.84000000000000 1.4963797657854690E-003 + 105.90000000000001 1.4912632574246951E-003 + 105.96000000000001 1.4856970346346840E-003 + 106.01999999999998 1.4796825434988589E-003 + 106.07999999999998 1.4732212515276596E-003 + 106.13999999999999 1.4663153381562326E-003 + 106.19999999999999 1.4589671148601789E-003 + 106.25999999999999 1.4511793954994031E-003 + 106.31999999999999 1.4429551988594336E-003 + 106.38000000000000 1.4342979828297592E-003 + 106.44000000000000 1.4252118566956727E-003 + 106.50000000000000 1.4157011427786291E-003 + 106.56000000000000 1.4057703230075144E-003 + 106.62000000000000 1.3954246306334022E-003 + 106.68000000000001 1.3846694349307449E-003 + 106.73999999999998 1.3735105603043416E-003 + 106.79999999999998 1.3619541756328517E-003 + 106.85999999999999 1.3500068611540840E-003 + 106.91999999999999 1.3376754804486474E-003 + 106.97999999999999 1.3249672266768169E-003 + 107.03999999999999 1.3118896806222371E-003 + 107.09999999999999 1.2984507072318287E-003 + 107.16000000000000 1.2846583523499588E-003 + 107.22000000000000 1.2705210193260195E-003 + 107.28000000000000 1.2560474478070581E-003 + 107.34000000000000 1.2412463371981874E-003 + 107.40000000000001 1.2261268505503746E-003 + 107.46000000000001 1.2106982778101595E-003 + 107.51999999999998 1.1949700171411176E-003 + 107.57999999999998 1.1789516043416430E-003 + 107.63999999999999 1.1626528836134018E-003 + 107.69999999999999 1.1460839074356867E-003 + 107.75999999999999 1.1292545694672699E-003 + 107.81999999999999 1.1121751318497750E-003 + 107.88000000000000 1.0948559081212022E-003 + 107.94000000000000 1.0773072135177378E-003 + 108.00000000000000 1.0595396844937271E-003 + 108.06000000000000 1.0415637040852869E-003 + 108.12000000000000 1.0233899936954336E-003 + 108.18000000000001 1.0050290934170139E-003 + 108.23999999999998 9.8649163574407277E-004 + 108.29999999999998 9.6778844301179297E-004 + 108.35999999999999 9.4893004296960320E-004 + 108.41999999999999 9.2992714558312302E-004 + 108.47999999999999 9.1079037796355387E-004 + 108.53999999999999 8.9153036036546530E-004 + 108.59999999999999 8.7215760737034079E-004 + 108.66000000000000 8.5268264144568444E-004 + 108.72000000000000 8.3311601041614902E-004 + 108.78000000000000 8.1346812066425606E-004 + 108.84000000000000 7.9374944444924082E-004 + 108.90000000000001 7.7397036924140505E-004 + 108.96000000000001 7.5414121916795446E-004 + 109.01999999999998 7.3427240511004404E-004 + 109.07999999999998 7.1437421223184737E-004 + 109.13999999999999 6.9445694072288477E-004 + 109.19999999999999 6.7453088051461912E-004 + 109.25999999999999 6.5460627112748750E-004 + 109.31999999999999 6.3469328556665092E-004 + 109.38000000000000 6.1480218449216592E-004 + 109.44000000000000 5.9494304399174266E-004 + 109.50000000000000 5.7512608042762682E-004 + 109.56000000000000 5.5536130599126584E-004 + 109.62000000000000 5.3565880956939064E-004 + 109.68000000000001 5.1602864201956303E-004 + 109.73999999999998 4.9648075226024443E-004 + 109.79999999999998 4.7702520421347123E-004 + 109.85999999999999 4.5767186826018509E-004 + 109.91999999999999 4.3843073187385857E-004 + 109.97999999999999 4.1931167560677426E-004 + 110.03999999999999 4.0032459712497476E-004 + 110.09999999999999 3.8147937606881807E-004 + 110.16000000000000 3.6278583226495771E-004 + 110.22000000000000 3.4425374980626513E-004 + 110.28000000000000 3.2589286376901269E-004 + 110.34000000000000 3.0771289834404517E-004 + 110.40000000000001 2.8972344407543835E-004 + 110.46000000000001 2.7193406080253043E-004 + 110.51999999999998 2.5435417790424427E-004 + 110.57999999999998 2.3699311064945576E-004 + 110.63999999999999 2.1986003461647245E-004 + 110.69999999999999 2.0296398911724423E-004 + 110.75999999999999 1.8631389425538940E-004 + 110.81999999999999 1.6991843322594993E-004 + 110.88000000000000 1.5378612941848778E-004 + 110.94000000000000 1.3792530850027757E-004 + 111.00000000000000 1.2234409735589776E-004 + 111.06000000000000 1.0705036862716063E-004 + 111.12000000000000 9.2051756519275816E-005 + 111.18000000000001 7.7355641521723202E-005 + 111.23999999999998 6.2969138834416971E-005 + 111.29999999999998 4.8899063541639548E-005 + 111.35999999999999 3.5151908510158410E-005 + 111.41999999999999 2.1733835498625430E-005 + 111.47999999999999 8.6506522625197359E-006 + 111.53999999999999 -4.0922153577772545E-006 + 111.59999999999999 -1.6489743027411243E-005 + 111.66000000000000 -2.8537339055541010E-005 + 111.72000000000000 -4.0230853724412087E-005 + 111.78000000000000 -5.1566608459622172E-005 + 111.84000000000000 -6.2541414932485367E-005 + 111.90000000000001 -7.3152581420633759E-005 + 111.96000000000001 -8.3397948730384294E-005 + 112.01999999999998 -9.3275883533497792E-005 + 112.07999999999998 -1.0278530551423960E-004 + 112.13999999999999 -1.1192568951845244E-004 + 112.19999999999999 -1.2069705971467074E-004 + 112.25999999999999 -1.2910000776703064E-004 + 112.31999999999999 -1.3713568832771395E-004 + 112.38000000000000 -1.4480585462814575E-004 + 112.44000000000000 -1.5211280087139336E-004 + 112.50000000000000 -1.5905941868821157E-004 + 112.56000000000000 -1.6564915558445962E-004 + 112.62000000000000 -1.7188601942475637E-004 + 112.68000000000001 -1.7777458057417550E-004 + 112.73999999999998 -1.8331997428158747E-004 + 112.79999999999998 -1.8852787917203874E-004 + 112.85999999999999 -1.9340448722691964E-004 + 112.91999999999999 -1.9795655380494754E-004 + 112.97999999999999 -2.0219131903253013E-004 + 113.03999999999999 -2.0611650101159886E-004 + 113.09999999999999 -2.0974034895801662E-004 + 113.16000000000000 -2.1307152534166511E-004 + 113.22000000000000 -2.1611918382413907E-004 + 113.28000000000000 -2.1889284906964019E-004 + 113.34000000000000 -2.2140245646654191E-004 + 113.40000000000001 -2.2365833350334325E-004 + 113.46000000000001 -2.2567114654295687E-004 + 113.51999999999998 -2.2745188759601246E-004 + 113.57999999999998 -2.2901181885690968E-004 + 113.63999999999999 -2.3036248324022804E-004 + 113.69999999999999 -2.3151566185903319E-004 + 113.75999999999999 -2.3248331631566633E-004 + 113.81999999999999 -2.3327758221558992E-004 + 113.88000000000000 -2.3391074437629125E-004 + 113.94000000000000 -2.3439516298660328E-004 + 114.00000000000000 -2.3474327745157567E-004 + 114.06000000000000 -2.3496754459775390E-004 + 114.12000000000000 -2.3508041806892806E-004 + 114.18000000000001 -2.3509430938329081E-004 + 114.23999999999998 -2.3502156954980749E-004 + 114.29999999999998 -2.3487440819782324E-004 + 114.35999999999999 -2.3466492333290760E-004 + 114.41999999999999 -2.3440502970691597E-004 + 114.47999999999999 -2.3410642783521123E-004 + 114.53999999999999 -2.3378068229120845E-004 + 114.59999999999999 -2.3343899593619629E-004 + 114.66000000000000 -2.3309237472102587E-004 + 114.72000000000000 -2.3275150337786907E-004 + 114.78000000000000 -2.3242676151427643E-004 + 114.84000000000000 -2.3212817781638001E-004 + 114.90000000000001 -2.3186542812583371E-004 + 114.96000000000001 -2.3164777517916128E-004 + 115.01999999999998 -2.3148408552475113E-004 + 115.07999999999998 -2.3138280053801844E-004 + 115.13999999999999 -2.3135189554717974E-004 + 115.19999999999999 -2.3139887378968935E-004 + 115.25999999999999 -2.3153072932480549E-004 + 115.31999999999999 -2.3175394125929857E-004 + 115.38000000000000 -2.3207444147061869E-004 + 115.44000000000000 -2.3249759753872631E-004 + 115.50000000000000 -2.3302821804833287E-004 + 115.56000000000000 -2.3367050815417743E-004 + 115.62000000000000 -2.3442811541322646E-004 + 115.68000000000001 -2.3530405548896077E-004 + 115.73999999999998 -2.3630076086355965E-004 + 115.79999999999998 -2.3742007790368504E-004 + 115.85999999999999 -2.3866321130798260E-004 + 115.91999999999999 -2.4003077399271228E-004 + 115.97999999999999 -2.4152279414298779E-004 + 116.03999999999999 -2.4313874977070820E-004 + 116.09999999999999 -2.4487747841129263E-004 + 116.16000000000000 -2.4673724794085087E-004 + 116.22000000000000 -2.4871574136972049E-004 + 116.28000000000000 -2.5081009533612893E-004 + 116.34000000000000 -2.5301686110828402E-004 + 116.40000000000001 -2.5533203155915263E-004 + 116.46000000000001 -2.5775104741966495E-004 + 116.51999999999998 -2.6026878648949031E-004 + 116.57999999999998 -2.6287954832765242E-004 + 116.63999999999999 -2.6557714554457078E-004 + 116.69999999999999 -2.6835483651255286E-004 + 116.75999999999999 -2.7120537698847348E-004 + 116.81999999999999 -2.7412100123912734E-004 + 116.88000000000000 -2.7709347237723754E-004 + 116.94000000000000 -2.8011407903884479E-004 + 117.00000000000000 -2.8317366822438431E-004 + 117.06000000000000 -2.8626264556291109E-004 + 117.12000000000000 -2.8937106655685277E-004 + 117.18000000000001 -2.9248858226244912E-004 + 117.23999999999998 -2.9560453180579128E-004 + 117.29999999999998 -2.9870787708946426E-004 + 117.35999999999999 -3.0178736155951668E-004 + 117.41999999999999 -3.0483141625840679E-004 + 117.47999999999999 -3.0782828562826530E-004 + 117.53999999999999 -3.1076595586564880E-004 + 117.59999999999999 -3.1363231038241481E-004 + 117.66000000000000 -3.1641498089135181E-004 + 117.72000000000000 -3.1910156294218312E-004 + 117.78000000000000 -3.2167954762955640E-004 + 117.84000000000000 -3.2413633040142393E-004 + 117.90000000000001 -3.2645928210832544E-004 + 117.96000000000001 -3.2863576352243459E-004 + 118.01999999999998 -3.3065317661691264E-004 + 118.07999999999998 -3.3249895762215429E-004 + 118.13999999999999 -3.3416064092361736E-004 + 118.19999999999999 -3.3562587218597458E-004 + 118.25999999999999 -3.3688244476906830E-004 + 118.31999999999999 -3.3791835086048432E-004 + 118.38000000000000 -3.3872177278975466E-004 + 118.44000000000000 -3.3928122092466933E-004 + 118.50000000000000 -3.3958537972631094E-004 + 118.56000000000000 -3.3962332789021801E-004 + 118.62000000000000 -3.3938448502563644E-004 + 118.68000000000001 -3.3885863817719906E-004 + 118.73999999999998 -3.3803598060505076E-004 + 118.79999999999998 -3.3690712308711299E-004 + 118.85999999999999 -3.3546319834511468E-004 + 118.91999999999999 -3.3369579890650623E-004 + 118.97999999999999 -3.3159700546141061E-004 + 119.03999999999999 -3.2915949334071576E-004 + 119.09999999999999 -3.2637649242452229E-004 + 119.16000000000000 -3.2324175730172642E-004 + 119.22000000000000 -3.1974969928009171E-004 + 119.28000000000000 -3.1589530852489016E-004 + 119.34000000000000 -3.1167425287026396E-004 + 119.40000000000001 -3.0708283962819431E-004 + 119.46000000000001 -3.0211801021488708E-004 + 119.51999999999998 -2.9677738702346029E-004 + 119.57999999999998 -2.9105926692121140E-004 + 119.63999999999999 -2.8496266652062530E-004 + 119.69999999999999 -2.7848726969862607E-004 + 119.75999999999999 -2.7163344868169045E-004 + 119.81999999999999 -2.6440227066921746E-004 + 119.88000000000000 -2.5679548478362344E-004 + 119.94000000000000 -2.4881555064677481E-004 + 120.00000000000000 -2.4046560048680666E-004 + 120.06000000000000 -2.3174945614721284E-004 + 120.12000000000000 -2.2267158529842330E-004 + 120.18000000000001 -2.1323712338922653E-004 + 120.23999999999998 -2.0345185641055567E-004 + 120.29999999999998 -1.9332221669830782E-004 + 120.35999999999999 -1.8285519596101008E-004 + 120.41999999999999 -1.7205843210558482E-004 + 120.47999999999999 -1.6094015508799850E-004 + 120.53999999999999 -1.4950912548158170E-004 + 120.59999999999999 -1.3777466501190330E-004 + 120.66000000000000 -1.2574661090182268E-004 + 120.72000000000000 -1.1343531672588323E-004 + 120.78000000000000 -1.0085163623056102E-004 + 120.84000000000000 -8.8006840917631126E-005 + 120.90000000000001 -7.4912693170602044E-005 + 120.95999999999998 -6.1581347704918072E-005 + 121.01999999999998 -4.8025379888309505E-005 + 121.07999999999998 -3.4257734047561112E-005 + 121.13999999999999 -2.0291736264212310E-005 + 121.19999999999999 -6.1410427908277805E-006 + 121.25999999999999 8.1803640693482496E-006 + 121.31999999999999 2.2658192941720163E-005 + 121.38000000000000 3.7277864828106693E-005 + 121.44000000000000 5.2024527752722290E-005 + 121.50000000000000 6.6883077472473305E-005 + 121.56000000000000 8.1838168784454591E-005 + 121.62000000000000 9.6874236417630909E-005 + 121.68000000000001 1.1197550987219980E-004 + 121.73999999999998 1.2712602583484937E-004 + 121.79999999999998 1.4230965349863267E-004 + 121.85999999999999 1.5751010436474599E-004 + 121.91999999999999 1.7271093231523144E-004 + 121.97999999999999 1.8789555633374363E-004 + 122.03999999999999 2.0304731879298581E-004 + 122.09999999999999 2.1814940025141803E-004 + 122.16000000000000 2.3318493249816920E-004 + 122.22000000000000 2.4813692999119141E-004 + 122.28000000000000 2.6298833834597013E-004 + 122.34000000000000 2.7772203306111672E-004 + 122.40000000000001 2.9232081897290684E-004 + 122.45999999999998 3.0676745093564798E-004 + 122.51999999999998 3.2104465747885449E-004 + 122.57999999999998 3.3513509334385757E-004 + 122.63999999999999 3.4902141637471875E-004 + 122.69999999999999 3.6268620803435805E-004 + 122.75999999999999 3.7611202822466372E-004 + 122.81999999999999 3.8928146339912225E-004 + 122.88000000000000 4.0217708561160226E-004 + 122.94000000000000 4.1478148917499047E-004 + 123.00000000000000 4.2707727317550489E-004 + 123.06000000000000 4.3904707729295288E-004 + 123.12000000000000 4.5067365137482621E-004 + 123.18000000000001 4.6193980227997875E-004 + 123.23999999999998 4.7282838498168315E-004 + 123.29999999999998 4.8332241107504955E-004 + 123.35999999999999 4.9340508046437695E-004 + 123.41999999999999 5.0305969959126375E-004 + 123.47999999999999 5.1226981363946178E-004 + 123.53999999999999 5.2101911565514188E-004 + 123.59999999999999 5.2929164937882815E-004 + 123.66000000000000 5.3707160026584243E-004 + 123.72000000000000 5.4434351765582107E-004 + 123.78000000000000 5.5109237433935204E-004 + 123.84000000000000 5.5730335936596644E-004 + 123.90000000000001 5.6296216239739671E-004 + 123.95999999999998 5.6805483536813135E-004 + 124.01999999999998 5.7256796075525276E-004 + 124.07999999999998 5.7648853598823979E-004 + 124.13999999999999 5.7980424931498647E-004 + 124.19999999999999 5.8250327157526505E-004 + 124.25999999999999 5.8457439499795137E-004 + 124.31999999999999 5.8600713661577950E-004 + 124.38000000000000 5.8679173375809446E-004 + 124.44000000000000 5.8691924602260527E-004 + 124.50000000000000 5.8638140785163416E-004 + 124.56000000000000 5.8517081353772946E-004 + 124.62000000000000 5.8328099803003051E-004 + 124.68000000000001 5.8070640592883011E-004 + 124.73999999999998 5.7744239117739305E-004 + 124.79999999999998 5.7348528675878522E-004 + 124.85999999999999 5.6883251229655697E-004 + 124.91999999999999 5.6348241367894746E-004 + 124.97999999999999 5.5743444186385181E-004 + 125.03999999999999 5.5068915887146030E-004 + 125.09999999999999 5.4324820527794013E-004 + 125.16000000000000 5.3511437139098345E-004 + 125.22000000000000 5.2629154895702591E-004 + 125.28000000000000 5.1678477311077771E-004 + 125.34000000000000 5.0660028320757518E-004 + 125.40000000000001 4.9574547611231734E-004 + 125.45999999999998 4.8422888058627318E-004 + 125.51999999999998 4.7206035607495712E-004 + 125.57999999999998 4.5925071823759182E-004 + 125.63999999999999 4.4581209493779370E-004 + 125.69999999999999 4.3175774647785144E-004 + 125.75999999999999 4.1710203713834598E-004 + 125.81999999999999 4.0186039994623306E-004 + 125.88000000000000 3.8604946253697228E-004 + 125.94000000000000 3.6968680975492347E-004 + 126.00000000000000 3.5279114568611853E-004 + 126.06000000000000 3.3538209762509525E-004 + 126.12000000000000 3.1748027507236043E-004 + 126.18000000000001 2.9910719972012543E-004 + 126.23999999999998 2.8028519378937226E-004 + 126.29999999999998 2.6103741996260054E-004 + 126.35999999999999 2.4138781642652119E-004 + 126.41999999999999 2.2136098904423598E-004 + 126.47999999999999 2.0098223978618206E-004 + 126.53999999999999 1.8027741135650697E-004 + 126.59999999999999 1.5927293021652080E-004 + 126.66000000000000 1.3799568343479820E-004 + 126.72000000000000 1.1647296234177513E-004 + 126.78000000000000 9.4732417206738192E-005 + 126.84000000000000 7.2801968549479439E-005 + 126.90000000000001 5.0709771238952522E-005 + 126.95999999999998 2.8484121809182417E-005 + 127.01999999999998 6.1534065671554374E-006 + 127.07999999999998 -1.6253975480322971E-005 + 127.13999999999999 -3.8709678012521437E-005 + 127.19999999999999 -6.1185478208669892E-005 + 127.25999999999999 -8.3653344047630277E-005 + 127.31999999999999 -1.0608549529921073E-004 + 127.38000000000000 -1.2845447744150876E-004 + 127.44000000000000 -1.5073319684737662E-004 + 127.50000000000000 -1.7289502347306372E-004 + 127.56000000000000 -1.9491380013742022E-004 + 127.62000000000000 -2.1676392609277015E-004 + 127.68000000000001 -2.3842039196027661E-004 + 127.73999999999998 -2.5985884789250574E-004 + 127.79999999999998 -2.8105562984840515E-004 + 127.85999999999999 -3.0198778706024416E-004 + 127.91999999999999 -3.2263317403388644E-004 + 127.97999999999999 -3.4297038607758283E-004 + 128.03999999999999 -3.6297892724127635E-004 + 128.09999999999999 -3.8263913674408442E-004 + 128.16000000000000 -4.0193225196819341E-004 + 128.22000000000000 -4.2084041884373933E-004 + 128.28000000000000 -4.3934666927415678E-004 + 128.34000000000000 -4.5743508453422848E-004 + 128.40000000000001 -4.7509064846725690E-004 + 128.45999999999998 -4.9229934839262451E-004 + 128.51999999999998 -5.0904808073319553E-004 + 128.57999999999998 -5.2532478641914506E-004 + 128.63999999999999 -5.4111833786111522E-004 + 128.69999999999999 -5.5641856385790366E-004 + 128.75999999999999 -5.7121636623902157E-004 + 128.81999999999999 -5.8550348527716331E-004 + 128.88000000000000 -5.9927265645915286E-004 + 128.94000000000000 -6.1251746897191992E-004 + 129.00000000000000 -6.2523247139470439E-004 + 129.06000000000000 -6.3741309753998789E-004 + 129.12000000000000 -6.4905554478533820E-004 + 129.18000000000001 -6.6015692330962490E-004 + 129.23999999999998 -6.7071512826958582E-004 + 129.29999999999998 -6.8072878512836718E-004 + 129.35999999999999 -6.9019726461353457E-004 + 129.41999999999999 -6.9912075799368162E-004 + 129.47999999999999 -7.0750001894971247E-004 + 129.53999999999999 -7.1533633374983713E-004 + 129.59999999999999 -7.2263180096737364E-004 + 129.66000000000000 -7.2938886198518004E-004 + 129.72000000000000 -7.3561063312230451E-004 + 129.78000000000000 -7.4130068911464520E-004 + 129.84000000000000 -7.4646293909058398E-004 + 129.90000000000001 -7.5110181726176554E-004 + 129.95999999999998 -7.5522211019100991E-004 + 130.01999999999998 -7.5882893589521519E-004 + 130.07999999999998 -7.6192773299110198E-004 + 130.13999999999999 -7.6452408416957890E-004 + 130.19999999999999 -7.6662405854452473E-004 + 130.25999999999999 -7.6823369071371257E-004 + 130.31999999999999 -7.6935940035319488E-004 + 130.38000000000000 -7.7000768421493370E-004 + 130.44000000000000 -7.7018516241127762E-004 + 130.50000000000000 -7.6989868769633681E-004 + 130.56000000000000 -7.6915506645934193E-004 + 130.62000000000000 -7.6796113311560735E-004 + 130.68000000000001 -7.6632387932578337E-004 + 130.73999999999998 -7.6425016406862951E-004 + 130.79999999999998 -7.6174692009576747E-004 + 130.85999999999999 -7.5882108020633617E-004 + 130.91999999999999 -7.5547944140838097E-004 + 130.97999999999999 -7.5172876333197175E-004 + 131.03999999999999 -7.4757566696265893E-004 + 131.09999999999999 -7.4302665063254517E-004 + 131.16000000000000 -7.3808816149425040E-004 + 131.22000000000000 -7.3276651284609885E-004 + 131.28000000000000 -7.2706789874716986E-004 + 131.34000000000000 -7.2099832403454858E-004 + 131.40000000000001 -7.1456369394457984E-004 + 131.45999999999998 -7.0776977014826224E-004 + 131.51999999999998 -7.0062221291023483E-004 + 131.57999999999998 -6.9312649137503828E-004 + 131.63999999999999 -6.8528805342438475E-004 + 131.69999999999999 -6.7711222334517027E-004 + 131.75999999999999 -6.6860418154731868E-004 + 131.81999999999999 -6.5976898991290992E-004 + 131.88000000000000 -6.5061164826520968E-004 + 131.94000000000000 -6.4113708124312698E-004 + 132.00000000000000 -6.3135014722566301E-004 + 132.06000000000000 -6.2125560310831082E-004 + 132.12000000000000 -6.1085817568716939E-004 + 132.18000000000001 -6.0016250849048648E-004 + 132.23999999999998 -5.8917323490197734E-004 + 132.29999999999998 -5.7789497788542402E-004 + 132.35999999999999 -5.6633230770748505E-004 + 132.41999999999999 -5.5448983320574032E-004 + 132.47999999999999 -5.4237217173594703E-004 + 132.53999999999999 -5.2998399418423985E-004 + 132.59999999999999 -5.1733006770844419E-004 + 132.66000000000000 -5.0441514635426738E-004 + 132.72000000000000 -4.9124416199664424E-004 + 132.78000000000000 -4.7782215864530081E-004 + 132.84000000000000 -4.6415421957862480E-004 + 132.90000000000001 -4.5024568829122702E-004 + 132.95999999999998 -4.3610201664555571E-004 + 133.01999999999998 -4.2172885135069937E-004 + 133.07999999999998 -4.0713196126722736E-004 + 133.13999999999999 -3.9231737085591617E-004 + 133.19999999999999 -3.7729129082446415E-004 + 133.25999999999999 -3.6206009426192226E-004 + 133.31999999999999 -3.4663039661907532E-004 + 133.38000000000000 -3.3100904516552101E-004 + 133.44000000000000 -3.1520308671047437E-004 + 133.50000000000000 -2.9921979595085664E-004 + 133.56000000000000 -2.8306669266176150E-004 + 133.62000000000000 -2.6675151119662775E-004 + 133.68000000000001 -2.5028223921455713E-004 + 133.73999999999998 -2.3366712432196105E-004 + 133.79999999999998 -2.1691462077512910E-004 + 133.85999999999999 -2.0003346541353439E-004 + 133.91999999999999 -1.8303263976770655E-004 + 133.97999999999999 -1.6592134097198779E-004 + 134.03999999999999 -1.4870899390938088E-004 + 134.09999999999999 -1.3140528640780293E-004 + 134.16000000000000 -1.1402010279445002E-004 + 134.22000000000000 -9.6563563456900851E-005 + 134.28000000000000 -7.9045953160458194E-005 + 134.34000000000000 -6.1477757701255885E-005 + 134.40000000000001 -4.3869642066908040E-005 + 134.45999999999998 -2.6232427659577329E-005 + 134.51999999999998 -8.5770753793761378E-006 + 134.57999999999998 9.0853212581013880E-006 + 134.63999999999999 2.6743557711769217E-005 + 134.69999999999999 4.4386320050544652E-005 + 134.75999999999999 6.2002219677920948E-005 + 134.81999999999999 7.9579797224430898E-005 + 134.88000000000000 9.7107537108572181E-005 + 134.94000000000000 1.1457387444318108E-004 + 135.00000000000000 1.3196724307981545E-004 + 135.06000000000000 1.4927607408457436E-004 + 135.12000000000000 1.6648877408708223E-004 + 135.18000000000001 1.8359381910270294E-004 + 135.23999999999998 2.0057969785158359E-004 + 135.29999999999998 2.1743496735920816E-004 + 135.35999999999999 2.3414828784147661E-004 + 135.41999999999999 2.5070837217135844E-004 + 135.47999999999999 2.6710410253462862E-004 + 135.53999999999999 2.8332443840266009E-004 + 135.59999999999999 2.9935846107290376E-004 + 135.66000000000000 3.1519546367090901E-004 + 135.72000000000000 3.3082486507860263E-004 + 135.78000000000000 3.4623626219711497E-004 + 135.84000000000000 3.6141944046226381E-004 + 135.90000000000001 3.7636438199440693E-004 + 135.95999999999998 3.9106124342915178E-004 + 136.01999999999998 4.0550042754307824E-004 + 136.07999999999998 4.1967254375228252E-004 + 136.13999999999999 4.3356839635075507E-004 + 136.19999999999999 4.4717902253776183E-004 + 136.25999999999999 4.6049570151774841E-004 + 136.31999999999999 4.7350997609431095E-004 + 136.38000000000000 4.8621356942493845E-004 + 136.44000000000000 4.9859852229349735E-004 + 136.50000000000000 5.1065703478519846E-004 + 136.56000000000000 5.2238170000672710E-004 + 136.62000000000000 5.3376521935673694E-004 + 136.68000000000001 5.4480062927214331E-004 + 136.73999999999998 5.5548114268282967E-004 + 136.79999999999998 5.6580020876403209E-004 + 136.85999999999999 5.7575162939832046E-004 + 136.91999999999999 5.8532936952597036E-004 + 136.97999999999999 5.9452777427961489E-004 + 137.03999999999999 6.0334126011985434E-004 + 137.09999999999999 6.1176455566963053E-004 + 137.16000000000000 6.1979268901344111E-004 + 137.22000000000000 6.2742086683302176E-004 + 137.28000000000000 6.3464460504953171E-004 + 137.34000000000000 6.4145965849568803E-004 + 137.40000000000001 6.4786213118889636E-004 + 137.45999999999998 6.5384823151907589E-004 + 137.51999999999998 6.5941462535735768E-004 + 137.57999999999998 6.6455815342868424E-004 + 137.63999999999999 6.6927599158111072E-004 + 137.69999999999999 6.7356563914146414E-004 + 137.75999999999999 6.7742482101965291E-004 + 137.81999999999999 6.8085161441998852E-004 + 137.88000000000000 6.8384434595027555E-004 + 137.94000000000000 6.8640187304392047E-004 + 138.00000000000000 6.8852310215355126E-004 + 138.06000000000000 6.9020746317188970E-004 + 138.12000000000000 6.9145469145401783E-004 + 138.18000000000001 6.9226481552840506E-004 + 138.23999999999998 6.9263825845296777E-004 + 138.29999999999998 6.9257587826447771E-004 + 138.35999999999999 6.9207893209497298E-004 + 138.41999999999999 6.9114902388060632E-004 + 138.47999999999999 6.8978825485277245E-004 + 138.53999999999999 6.8799908873286861E-004 + 138.59999999999999 6.8578459037371578E-004 + 138.66000000000000 6.8314823487613673E-004 + 138.72000000000000 6.8009398650426163E-004 + 138.78000000000000 6.7662636548161822E-004 + 138.84000000000000 6.7275042989872465E-004 + 138.90000000000001 6.6847176934197437E-004 + 138.95999999999998 6.6379654067227748E-004 + 139.01999999999998 6.5873144417858201E-004 + 139.07999999999998 6.5328385871073354E-004 + 139.13999999999999 6.4746147809000552E-004 + 139.19999999999999 6.4127287711578541E-004 + 139.25999999999999 6.3472698187431466E-004 + 139.31999999999999 6.2783337636637291E-004 + 139.38000000000000 6.2060221198003589E-004 + 139.44000000000000 6.1304423740891532E-004 + 139.50000000000000 6.0517080072159334E-004 + 139.56000000000000 5.9699370649542757E-004 + 139.62000000000000 5.8852533066329385E-004 + 139.68000000000001 5.7977877893215335E-004 + 139.73999999999998 5.7076751978227648E-004 + 139.79999999999998 5.6150569136502264E-004 + 139.85999999999999 5.5200790709523809E-004 + 139.91999999999999 5.4228930646842155E-004 + 139.97999999999999 5.3236558648804230E-004 + 140.03999999999999 5.2225282498340685E-004 + 140.09999999999999 5.1196766963646390E-004 + 140.16000000000000 5.0152708050067892E-004 + 140.22000000000000 4.9094845612741194E-004 + 140.28000000000000 4.8024954560073644E-004 + 140.34000000000000 4.6944845576265366E-004 + 140.40000000000001 4.5856346641917915E-004 + 140.45999999999998 4.4761310523359367E-004 + 140.51999999999998 4.3661609784721104E-004 + 140.57999999999998 4.2559130045988821E-004 + 140.63999999999999 4.1455765619709045E-004 + 140.69999999999999 4.0353413353282790E-004 + 140.75999999999999 3.9253968143059903E-004 + 140.81999999999999 3.8159323989654382E-004 + 140.88000000000000 3.7071363803089130E-004 + 140.94000000000000 3.5991954216491203E-004 + 141.00000000000000 3.4922946028658787E-004 + 141.06000000000000 3.3866171777905524E-004 + 141.12000000000000 3.2823429771097073E-004 + 141.18000000000001 3.1796489618379298E-004 + 141.23999999999998 3.0787083971547697E-004 + 141.29999999999998 2.9796904221715071E-004 + 141.35999999999999 2.8827599444449225E-004 + 141.41999999999999 2.7880764003785003E-004 + 141.47999999999999 2.6957939989095936E-004 + 141.53999999999999 2.6060605924533144E-004 + 141.59999999999999 2.5190179808648629E-004 + 141.66000000000000 2.4348010864258166E-004 + 141.72000000000000 2.3535375007255650E-004 + 141.78000000000000 2.2753470232051343E-004 + 141.84000000000000 2.2003415438711513E-004 + 141.90000000000001 2.1286249091486529E-004 + 141.95999999999998 2.0602920868268020E-004 + 142.01999999999998 1.9954290008357994E-004 + 142.07999999999998 1.9341125080158447E-004 + 142.13999999999999 1.8764100864443909E-004 + 142.19999999999999 1.8223798346303678E-004 + 142.25999999999999 1.7720700773852721E-004 + 142.31999999999999 1.7255192911901635E-004 + 142.38000000000000 1.6827560531994162E-004 + 142.44000000000000 1.6437988730756443E-004 + 142.50000000000000 1.6086563794988370E-004 + 142.56000000000000 1.5773273836263069E-004 + 142.62000000000000 1.5498005304456479E-004 + 142.68000000000001 1.5260545384692320E-004 + 142.73999999999998 1.5060586099596777E-004 + 142.79999999999998 1.4897718789773698E-004 + 142.85999999999999 1.4771440360767423E-004 + 142.91999999999999 1.4681155639847623E-004 + 142.97999999999999 1.4626174175145370E-004 + 143.03999999999999 1.4605715796646708E-004 + 143.09999999999999 1.4618911583324457E-004 + 143.16000000000000 1.4664805846648223E-004 + 143.22000000000000 1.4742360228858816E-004 + 143.28000000000000 1.4850452329065816E-004 + 143.34000000000000 1.4987880552433963E-004 + 143.40000000000001 1.5153368438974776E-004 + 143.45999999999998 1.5345564566162216E-004 + 143.51999999999998 1.5563047122020183E-004 + 143.57999999999998 1.5804327068257435E-004 + 143.63999999999999 1.6067852484408593E-004 + 143.69999999999999 1.6352011816947397E-004 + 143.75999999999999 1.6655138544062513E-004 + 143.81999999999999 1.6975514986001776E-004 + 143.88000000000000 1.7311376351380949E-004 + 143.94000000000000 1.7660918988171646E-004 + 144.00000000000000 1.8022300982616725E-004 + 144.06000000000000 1.8393648665057842E-004 + 144.12000000000000 1.8773061690601658E-004 + 144.18000000000001 1.9158613671800049E-004 + 144.23999999999998 1.9548364166744274E-004 + 144.29999999999998 1.9940357269606951E-004 + 144.35999999999999 2.0332624218709084E-004 + 144.41999999999999 2.0723191854448632E-004 + 144.47999999999999 2.1110080160558609E-004 + 144.53999999999999 2.1491313651576246E-004 + 144.59999999999999 2.1864916548841156E-004 + 144.66000000000000 2.2228919660370505E-004 + 144.72000000000000 2.2581362655109958E-004 + 144.78000000000000 2.2920301313977332E-004 + 144.84000000000000 2.3243800800342872E-004 + 144.90000000000001 2.3549953823468506E-004 + 144.95999999999998 2.3836872183192041E-004 + 145.01999999999998 2.4102697661653117E-004 + 145.07999999999998 2.4345606224126175E-004 + 145.13999999999999 2.4563805703902851E-004 + 145.19999999999999 2.4755545658927030E-004 + 145.25999999999999 2.4919121882067041E-004 + 145.31999999999999 2.5052875566525370E-004 + 145.38000000000000 2.5155203173598737E-004 + 145.44000000000000 2.5224554581332006E-004 + 145.50000000000000 2.5259436843662667E-004 + 145.56000000000000 2.5258418018557168E-004 + 145.62000000000000 2.5220132306725846E-004 + 145.68000000000001 2.5143275399402851E-004 + 145.73999999999998 2.5026611423303489E-004 + 145.79999999999998 2.4868971666993565E-004 + 145.85999999999999 2.4669260821070306E-004 + 145.91999999999999 2.4426449487112244E-004 + 145.97999999999999 2.4139585605974673E-004 + 146.03999999999999 2.3807789422363029E-004 + 146.09999999999999 2.3430250885695707E-004 + 146.16000000000000 2.3006244085491400E-004 + 146.22000000000000 2.2535117901181063E-004 + 146.28000000000000 2.2016302300666341E-004 + 146.34000000000000 2.1449305193778855E-004 + 146.40000000000001 2.0833720197919089E-004 + 146.45999999999998 2.0169219666686940E-004 + 146.51999999999998 1.9455562220889493E-004 + 146.57999999999998 1.8692593859419515E-004 + 146.63999999999999 1.7880241110155375E-004 + 146.69999999999999 1.7018518020989803E-004 + 146.75999999999999 1.6107526942101073E-004 + 146.81999999999999 1.5147448121483674E-004 + 146.88000000000000 1.4138548473527620E-004 + 146.94000000000000 1.3081177250556919E-004 + 147.00000000000000 1.1975765068011932E-004 + 147.06000000000000 1.0822822744368759E-004 + 147.12000000000000 9.6229384203754657E-005 + 147.18000000000001 8.3767784319645566E-005 + 147.23999999999998 7.0850840182666537E-005 + 147.29999999999998 5.7486670446280034E-005 + 147.35999999999999 4.3684159379106467E-005 + 147.41999999999999 2.9452839378642861E-005 + 147.47999999999999 1.4802932054564474E-005 + 147.53999999999999 -2.5468839298718694E-007 + 147.59999999999999 -1.5708513292077983E-005 + 147.66000000000000 -3.1546451870641449E-005 + 147.72000000000000 -4.7755814170037994E-005 + 147.78000000000000 -6.4323380008141830E-005 + 147.84000000000000 -8.1235384679449879E-005 + 147.90000000000001 -9.8477603918573189E-005 + 147.95999999999998 -1.1603532000494914E-004 + 148.01999999999998 -1.3389338004700447E-004 + 148.07999999999998 -1.5203625239698781E-004 + 148.13999999999999 -1.7044800759686557E-004 + 148.19999999999999 -1.8911236517169601E-004 + 148.25999999999999 -2.0801270777372517E-004 + 148.31999999999999 -2.2713213713758908E-004 + 148.38000000000000 -2.4645349373254985E-004 + 148.44000000000000 -2.6595934499708441E-004 + 148.50000000000000 -2.8563207593214362E-004 + 148.56000000000000 -3.0545388169319005E-004 + 148.62000000000000 -3.2540674976539098E-004 + 148.68000000000001 -3.4547255957892615E-004 + 148.73999999999998 -3.6563303959188492E-004 + 148.79999999999998 -3.8586990794922427E-004 + 148.85999999999999 -4.0616476437048106E-004 + 148.91999999999999 -4.2649918138047406E-004 + 148.97999999999999 -4.4685474932792913E-004 + 149.03999999999999 -4.6721300803711813E-004 + 149.09999999999999 -4.8755559998752416E-004 + 149.16000000000000 -5.0786415433178033E-004 + 149.22000000000000 -5.2812034375856565E-004 + 149.28000000000000 -5.4830601138393072E-004 + 149.34000000000000 -5.6840296412569472E-004 + 149.40000000000001 -5.8839306828757209E-004 + 149.45999999999998 -6.0825840411727282E-004 + 149.51999999999998 -6.2798102695864712E-004 + 149.57999999999998 -6.4754313165543470E-004 + 149.63999999999999 -6.6692695785430735E-004 + 149.69999999999999 -6.8611487152161013E-004 + 149.75999999999999 -7.0508930437325132E-004 + 149.81999999999999 -7.2383285074098319E-004 + 149.88000000000000 -7.4232815186669283E-004 + 149.94000000000000 -7.6055790445099254E-004 + 150.00000000000000 -7.7850498106850395E-004 + 150.06000000000000 -7.9615226834972574E-004 + 150.12000000000000 -8.1348294216299034E-004 + 150.18000000000001 -8.3048016165865237E-004 + 150.23999999999998 -8.4712726117431550E-004 + 150.29999999999998 -8.6340764968727887E-004 + 150.35999999999999 -8.7930497250662256E-004 + 150.41999999999999 -8.9480292714071293E-004 + 150.47999999999999 -9.0988530863074643E-004 + 150.53999999999999 -9.2453610211214773E-004 + 150.59999999999999 -9.3873939404766544E-004 + 150.66000000000000 -9.5247926229864515E-004 + 150.72000000000000 -9.6574006325421033E-004 + 150.78000000000000 -9.7850624821747400E-004 + 150.84000000000000 -9.9076246692241204E-004 + 150.90000000000001 -1.0024933351711358E-003 + 150.95999999999998 -1.0136838822591178E-003 + 151.01999999999998 -1.0243189843371422E-003 + 151.07999999999998 -1.0343840528050916E-003 + 151.13999999999999 -1.0438644404980888E-003 + 151.19999999999999 -1.0527459042750562E-003 + 151.25999999999999 -1.0610143967515477E-003 + 151.31999999999999 -1.0686561846342060E-003 + 151.38000000000000 -1.0756578050037592E-003 + 151.44000000000000 -1.0820061943837564E-003 + 151.50000000000000 -1.0876885823184542E-003 + 151.56000000000000 -1.0926927093185682E-003 + 151.62000000000000 -1.0970063890787642E-003 + 151.68000000000001 -1.1006184760229663E-003 + 151.73999999999998 -1.1035178200595741E-003 + 151.79999999999998 -1.1056938881958958E-003 + 151.85999999999999 -1.1071366327771524E-003 + 151.91999999999999 -1.1078367747294165E-003 + 151.97999999999999 -1.1077855235528404E-003 + 152.03999999999999 -1.1069747500678500E-003 + 152.09999999999999 -1.1053970719790839E-003 + 152.16000000000000 -1.1030457935021858E-003 + 152.22000000000000 -1.0999151192044602E-003 + 152.28000000000000 -1.0959999808689890E-003 + 152.34000000000000 -1.0912962625033466E-003 + 152.40000000000001 -1.0858007613968846E-003 + 152.45999999999998 -1.0795110461193531E-003 + 152.51999999999998 -1.0724260229160840E-003 + 152.57999999999998 -1.0645454659151863E-003 + 152.63999999999999 -1.0558703139788503E-003 + 152.69999999999999 -1.0464024744901235E-003 + 152.75999999999999 -1.0361449755130097E-003 + 152.81999999999999 -1.0251020728909636E-003 + 152.88000000000000 -1.0132790860748889E-003 + 152.94000000000000 -1.0006827401913758E-003 + 153.00000000000000 -9.8732077943630226E-004 + 153.06000000000000 -9.7320208470814745E-004 + 153.12000000000000 -9.5833699157699343E-004 + 153.17999999999998 -9.4273691765713030E-004 + 153.23999999999998 -9.2641458237365307E-004 + 153.29999999999998 -9.0938393811196695E-004 + 153.35999999999999 -8.9166018539229305E-004 + 153.41999999999999 -8.7325991783794132E-004 + 153.47999999999999 -8.5420098294142612E-004 + 153.53999999999999 -8.3450231058531895E-004 + 153.59999999999999 -8.1418422402924841E-004 + 153.66000000000000 -7.9326822644466843E-004 + 153.72000000000000 -7.7177707099105436E-004 + 153.78000000000000 -7.4973463229808168E-004 + 153.84000000000000 -7.2716587930001441E-004 + 153.90000000000001 -7.0409699523086048E-004 + 153.95999999999998 -6.8055502889087548E-004 + 154.01999999999998 -6.5656813985144635E-004 + 154.07999999999998 -6.3216546889490550E-004 + 154.13999999999999 -6.0737697395253653E-004 + 154.19999999999999 -5.8223341970674227E-004 + 154.25999999999999 -5.5676639953412778E-004 + 154.31999999999999 -5.3100815096023630E-004 + 154.38000000000000 -5.0499161729408303E-004 + 154.44000000000000 -4.7875029712114530E-004 + 154.50000000000000 -4.5231813986958147E-004 + 154.56000000000000 -4.2572959763128649E-004 + 154.62000000000000 -3.9901947985159853E-004 + 154.67999999999998 -3.7222282838815507E-004 + 154.73999999999998 -3.4537493014025005E-004 + 154.79999999999998 -3.1851118992640040E-004 + 154.85999999999999 -2.9166706475657251E-004 + 154.91999999999999 -2.6487798145971472E-004 + 154.97999999999999 -2.3817919732763623E-004 + 155.03999999999999 -2.1160580600018748E-004 + 155.09999999999999 -1.8519262155990000E-004 + 155.16000000000000 -1.5897406795007096E-004 + 155.22000000000000 -1.3298411529907264E-004 + 155.28000000000000 -1.0725618345952737E-004 + 155.34000000000000 -8.1823101881712396E-005 + 155.40000000000001 -5.6716998551632403E-005 + 155.45999999999998 -3.1969230931889041E-005 + 155.51999999999998 -7.6103009406770447E-006 + 155.57999999999998 1.6330205644845663E-005 + 155.63999999999999 3.9823674819790726E-005 + 155.69999999999999 6.2842570761670056E-005 + 155.75999999999999 8.5360478970234320E-005 + 155.81999999999999 1.0735216474452264E-004 + 155.88000000000000 1.2879365097774403E-004 + 155.94000000000000 1.4966225348203674E-004 + 156.00000000000000 1.6993665781800041E-004 + 156.06000000000000 1.8959693569364615E-004 + 156.12000000000000 2.0862461071321028E-004 + 156.17999999999998 2.2700268390386374E-004 + 156.23999999999998 2.4471565563854736E-004 + 156.29999999999998 2.6174954913992020E-004 + 156.35999999999999 2.7809197081729028E-004 + 156.41999999999999 2.9373205314640850E-004 + 156.47999999999999 3.0866049696139905E-004 + 156.53999999999999 3.2286959300617345E-004 + 156.59999999999999 3.3635318751669429E-004 + 156.66000000000000 3.4910671089248465E-004 + 156.72000000000000 3.6112720522106696E-004 + 156.78000000000000 3.7241319495896834E-004 + 156.84000000000000 3.8296483077113403E-004 + 156.90000000000001 3.9278378551515543E-004 + 156.95999999999998 4.0187323057688616E-004 + 157.01999999999998 4.1023789549787928E-004 + 157.07999999999998 4.1788399264556993E-004 + 157.13999999999999 4.2481917569185055E-004 + 157.19999999999999 4.3105256554599742E-004 + 157.25999999999999 4.3659460732714517E-004 + 157.31999999999999 4.4145714446230434E-004 + 157.38000000000000 4.4565331067014441E-004 + 157.44000000000000 4.4919748617072133E-004 + 157.50000000000000 4.5210522408121654E-004 + 157.56000000000000 4.5439313689853351E-004 + 157.62000000000000 4.5607897269651248E-004 + 157.67999999999998 4.5718138891867079E-004 + 157.73999999999998 4.5771994345266721E-004 + 157.79999999999998 4.5771502207662626E-004 + 157.85999999999999 4.5718778000956628E-004 + 157.91999999999999 4.5616006621954644E-004 + 157.97999999999999 4.5465428754909481E-004 + 158.03999999999999 4.5269346759831499E-004 + 158.09999999999999 4.5030110005001700E-004 + 158.16000000000000 4.4750107372050339E-004 + 158.22000000000000 4.4431764438479629E-004 + 158.28000000000000 4.4077536545795081E-004 + 158.34000000000000 4.3689901045608639E-004 + 158.40000000000001 4.3271350373146061E-004 + 158.45999999999998 4.2824388230067195E-004 + 158.51999999999998 4.2351517364297268E-004 + 158.57999999999998 4.1855237796086127E-004 + 158.63999999999999 4.1338039279858340E-004 + 158.69999999999999 4.0802384759225450E-004 + 158.75999999999999 4.0250720748485712E-004 + 158.81999999999999 3.9685450177598234E-004 + 158.88000000000000 3.9108943626915780E-004 + 158.94000000000000 3.8523517020670240E-004 + 159.00000000000000 3.7931444719846869E-004 + 159.06000000000000 3.7334928115883128E-004 + 159.12000000000000 3.6736114861227523E-004 + 159.17999999999998 3.6137078172144264E-004 + 159.23999999999998 3.5539819514062202E-004 + 159.29999999999998 3.4946261835137242E-004 + 159.35999999999999 3.4358252454313228E-004 + 159.41999999999999 3.3777549229068192E-004 + 159.47999999999999 3.3205827919231698E-004 + 159.53999999999999 3.2644679228351807E-004 + 159.59999999999999 3.2095596278555597E-004 + 159.66000000000000 3.1559980566114089E-004 + 159.72000000000000 3.1039141021278695E-004 + 159.78000000000000 3.0534292969029242E-004 + 159.84000000000000 3.0046549829672303E-004 + 159.90000000000001 2.9576933359807281E-004 + 159.95999999999998 2.9126360278086292E-004 + 160.01999999999998 2.8695648400457540E-004 + 160.07999999999998 2.8285519885623035E-004 + 160.13999999999999 2.7896592896531819E-004 + 160.19999999999999 2.7529386316292348E-004 + 160.25999999999999 2.7184327993400124E-004 + 160.31999999999999 2.6861738280120948E-004 + 160.38000000000000 2.6561849995977087E-004 + 160.44000000000000 2.6284796688403732E-004 + 160.50000000000000 2.6030623947306407E-004 + 160.56000000000000 2.5799280256591723E-004 + 160.62000000000000 2.5590632376306814E-004 + 160.67999999999998 2.5404462264709879E-004 + 160.73999999999998 2.5240470388228684E-004 + 160.79999999999998 2.5098272689922475E-004 + 160.85999999999999 2.4977419042047363E-004 + 160.91999999999999 2.4877379852879125E-004 + 160.97999999999999 2.4797560727086152E-004 + 161.03999999999999 2.4737303756204782E-004 + 161.09999999999999 2.4695890612861661E-004 + 161.16000000000000 2.4672546095554272E-004 + 161.22000000000000 2.4666447698845346E-004 + 161.28000000000000 2.4676722750070106E-004 + 161.34000000000000 2.4702457304253696E-004 + 161.40000000000001 2.4742699671121126E-004 + 161.45999999999998 2.4796464440460415E-004 + 161.51999999999998 2.4862734500246151E-004 + 161.57999999999998 2.4940469910559638E-004 + 161.63999999999999 2.5028604742729599E-004 + 161.69999999999999 2.5126056896714142E-004 + 161.75999999999999 2.5231724307677421E-004 + 161.81999999999999 2.5344497173868628E-004 + 161.88000000000000 2.5463254505417635E-004 + 161.94000000000000 2.5586865206989138E-004 + 162.00000000000000 2.5714198619811147E-004 + 162.06000000000000 2.5844120622728166E-004 + 162.12000000000000 2.5975499841182246E-004 + 162.17999999999998 2.6107214957065935E-004 + 162.23999999999998 2.6238147249580892E-004 + 162.29999999999998 2.6367191291546652E-004 + 162.35999999999999 2.6493262074382478E-004 + 162.41999999999999 2.6615286524953236E-004 + 162.47999999999999 2.6732216012959043E-004 + 162.53999999999999 2.6843024729477451E-004 + 162.59999999999999 2.6946712508995772E-004 + 162.66000000000000 2.7042308495298003E-004 + 162.72000000000000 2.7128869668337116E-004 + 162.78000000000000 2.7205489059147587E-004 + 162.84000000000000 2.7271282797985735E-004 + 162.90000000000001 2.7325406996593019E-004 + 162.95999999999998 2.7367048785822371E-004 + 163.01999999999998 2.7395430932250091E-004 + 163.07999999999998 2.7409802280784791E-004 + 163.13999999999999 2.7409454772662128E-004 + 163.19999999999999 2.7393707024406483E-004 + 163.25999999999999 2.7361914617205087E-004 + 163.31999999999999 2.7313469232348111E-004 + 163.38000000000000 2.7247796424039589E-004 + 163.44000000000000 2.7164357524800788E-004 + 163.50000000000000 2.7062648895097638E-004 + 163.56000000000000 2.6942204219807621E-004 + 163.62000000000000 2.6802604749874667E-004 + 163.67999999999998 2.6643457073122581E-004 + 163.73999999999998 2.6464417193650125E-004 + 163.79999999999998 2.6265178317030370E-004 + 163.85999999999999 2.6045475029518896E-004 + 163.91999999999999 2.5805080491570767E-004 + 163.97999999999999 2.5543811289565531E-004 + 164.03999999999999 2.5261520948742294E-004 + 164.09999999999999 2.4958103735216088E-004 + 164.16000000000000 2.4633495391416626E-004 + 164.22000000000000 2.4287667806170848E-004 + 164.28000000000000 2.3920627575261763E-004 + 164.34000000000000 2.3532425707449548E-004 + 164.40000000000001 2.3123141793249854E-004 + 164.45999999999998 2.2692898057017773E-004 + 164.51999999999998 2.2241851440945684E-004 + 164.57999999999998 2.1770195019181319E-004 + 164.63999999999999 2.1278160689818952E-004 + 164.69999999999999 2.0766012658321575E-004 + 164.75999999999999 2.0234054619659372E-004 + 164.81999999999999 1.9682629396619965E-004 + 164.88000000000000 1.9112116216808678E-004 + 164.94000000000000 1.8522931289528853E-004 + 165.00000000000000 1.7915528996992092E-004 + 165.06000000000000 1.7290401382182474E-004 + 165.12000000000000 1.6648078860875587E-004 + 165.17999999999998 1.5989128150693533E-004 + 165.23999999999998 1.5314154593176632E-004 + 165.29999999999998 1.4623801123348103E-004 + 165.35999999999999 1.3918744141771500E-004 + 165.41999999999999 1.3199696040556541E-004 + 165.47999999999999 1.2467404707790827E-004 + 165.53999999999999 1.1722653688548086E-004 + 165.59999999999999 1.0966256848478154E-004 + 165.66000000000000 1.0199061941143026E-004 + 165.72000000000000 9.4219487659522451E-005 + 165.78000000000000 8.6358274453586419E-005 + 165.84000000000000 7.8416385991401943E-005 + 165.90000000000001 7.0403503620251754E-005 + 165.95999999999998 6.2329598811473855E-005 + 166.01999999999998 5.4204894401831892E-005 + 166.07999999999998 4.6039868279247286E-005 + 166.13999999999999 3.7845232752239819E-005 + 166.19999999999999 2.9631906055044578E-005 + 166.25999999999999 2.1411010658505768E-005 + 166.31999999999999 1.3193851880816004E-005 + 166.38000000000000 4.9918932700461014E-006 + 166.44000000000000 -3.1832581280405909E-006 + 166.50000000000000 -1.1319880827872068E-005 + 166.56000000000000 -1.9406158010966325E-005 + 166.62000000000000 -2.7430186468898350E-005 + 166.67999999999998 -3.5380019779316345E-005 + 166.73999999999998 -4.3243677117150285E-005 + 166.79999999999998 -5.1009173652918961E-005 + 166.85999999999999 -5.8664539898122533E-005 + 166.91999999999999 -6.6197867999248368E-005 + 166.97999999999999 -7.3597300891422001E-005 + 167.03999999999999 -8.0851094730700229E-005 + 167.09999999999999 -8.7947628175893427E-005 + 167.16000000000000 -9.4875430384128390E-005 + 167.22000000000000 -1.0162323585864567E-004 + 167.28000000000000 -1.0817996859125949E-004 + 167.34000000000000 -1.1453478973234678E-004 + 167.40000000000001 -1.2067713568987041E-004 + 167.45999999999998 -1.2659673686198013E-004 + 167.51999999999998 -1.3228362405792238E-004 + 167.57999999999998 -1.3772814885175353E-004 + 167.63999999999999 -1.4292104462056753E-004 + 167.69999999999999 -1.4785339425066882E-004 + 167.75999999999999 -1.5251668981628523E-004 + 167.81999999999999 -1.5690282922117095E-004 + 167.88000000000000 -1.6100411087522048E-004 + 167.94000000000000 -1.6481328500424919E-004 + 168.00000000000000 -1.6832358146057531E-004 + 168.06000000000000 -1.7152865692176276E-004 + 168.12000000000000 -1.7442268975154321E-004 + 168.17999999999998 -1.7700033467808380E-004 + 168.23999999999998 -1.7925675617837624E-004 + 168.29999999999998 -1.8118765658019050E-004 + 168.35999999999999 -1.8278925005529352E-004 + 168.41999999999999 -1.8405833145120266E-004 + 168.47999999999999 -1.8499222192844842E-004 + 168.53999999999999 -1.8558880177248693E-004 + 168.59999999999999 -1.8584652227472584E-004 + 168.66000000000000 -1.8576437645168538E-004 + 168.72000000000000 -1.8534194994102222E-004 + 168.78000000000000 -1.8457931332770860E-004 + 168.84000000000000 -1.8347716635236494E-004 + 168.90000000000001 -1.8203671650876408E-004 + 168.95999999999998 -1.8025967999853605E-004 + 169.01999999999998 -1.7814831104431253E-004 + 169.07999999999998 -1.7570536559559624E-004 + 169.13999999999999 -1.7293409573363301E-004 + 169.19999999999999 -1.6983822238169529E-004 + 169.25999999999999 -1.6642196210264518E-004 + 169.31999999999999 -1.6268997577276805E-004 + 169.38000000000000 -1.5864737345468502E-004 + 169.44000000000000 -1.5429970969230492E-004 + 169.50000000000000 -1.4965294336174629E-004 + 169.56000000000000 -1.4471346632233140E-004 + 169.62000000000000 -1.3948806537198116E-004 + 169.67999999999998 -1.3398391017204841E-004 + 169.73999999999998 -1.2820854421448884E-004 + 169.79999999999998 -1.2216987610651371E-004 + 169.85999999999999 -1.1587614245705876E-004 + 169.91999999999999 -1.0933590359176415E-004 + 169.97999999999999 -1.0255801563517100E-004 + 170.03999999999999 -9.5551614394057677E-005 + 170.09999999999999 -8.8326102533976638E-005 + 170.16000000000000 -8.0891118774403055E-005 + 170.22000000000000 -7.3256512979681673E-005 + 170.28000000000000 -6.5432338718237492E-005 + 170.34000000000000 -5.7428814938544428E-005 + 170.40000000000001 -4.9256320653984949E-005 + 170.45999999999998 -4.0925372284543537E-005 + 170.51999999999998 -3.2446607036832883E-005 + 170.57999999999998 -2.3830761851432706E-005 + 170.63999999999999 -1.5088660058459267E-005 + 170.69999999999999 -6.2311978320351725E-006 + 170.75999999999999 2.7306756467197492E-006 + 170.81999999999999 1.1785970271637273E-005 + 170.88000000000000 2.0923667482809086E-005 + 170.94000000000000 3.0132739795365520E-005 + 171.00000000000000 3.9402162892023498E-005 + 171.06000000000000 4.8720919651537521E-005 + 171.12000000000000 5.8078037563404747E-005 + 171.17999999999998 6.7462583532837406E-005 + 171.23999999999998 7.6863683667063675E-005 + 171.29999999999998 8.6270542914795016E-005 + 171.35999999999999 9.5672467977432835E-005 + 171.41999999999999 1.0505886860244787E-004 + 171.47999999999999 1.1441927927942957E-004 + 171.53999999999999 1.2374335999373014E-004 + 171.59999999999999 1.3302093912069210E-004 + 171.66000000000000 1.4224200505505284E-004 + 171.72000000000000 1.5139674618869914E-004 + 171.78000000000000 1.6047552470052482E-004 + 171.84000000000000 1.6946894450254842E-004 + 171.90000000000001 1.7836781379965290E-004 + 171.95999999999998 1.8716317954547439E-004 + 172.01999999999998 1.9584633247605353E-004 + 172.07999999999998 2.0440885567524057E-004 + 172.13999999999999 2.1284258218918662E-004 + 172.19999999999999 2.2113964585241666E-004 + 172.25999999999999 2.2929244170787847E-004 + 172.31999999999999 2.3729371624827859E-004 + 172.38000000000000 2.4513648328186089E-004 + 172.44000000000000 2.5281408938984912E-004 + 172.50000000000000 2.6032025487694445E-004 + 172.56000000000000 2.6764898373777749E-004 + 172.62000000000000 2.7479465703543352E-004 + 172.67999999999998 2.8175196569856490E-004 + 172.73999999999998 2.8851599109958325E-004 + 172.79999999999998 2.9508218508745166E-004 + 172.85999999999999 3.0144632946117088E-004 + 172.91999999999999 3.0760460799217571E-004 + 172.97999999999999 3.1355355514260056E-004 + 173.03999999999999 3.1929012239966404E-004 + 173.09999999999999 3.2481160407100946E-004 + 173.16000000000000 3.3011565897385841E-004 + 173.22000000000000 3.3520036921816224E-004 + 173.28000000000000 3.4006412068886586E-004 + 173.34000000000000 3.4470579281434656E-004 + 173.40000000000001 3.4912452500112073E-004 + 173.45999999999998 3.5331987688081752E-004 + 173.51999999999998 3.5729175215473517E-004 + 173.57999999999998 3.6104035770932437E-004 + 173.63999999999999 3.6456632692740424E-004 + 173.69999999999999 3.6787056145983177E-004 + 173.75999999999999 3.7095427557212561E-004 + 173.81999999999999 3.7381904210568987E-004 + 173.88000000000000 3.7646669530351192E-004 + 173.94000000000000 3.7889931465429137E-004 + 174.00000000000000 3.8111931535032270E-004 + 174.06000000000000 3.8312930181542938E-004 + 174.12000000000000 3.8493217778492789E-004 + 174.17999999999998 3.8653097831579388E-004 + 174.23999999999998 3.8792903092638409E-004 + 174.29999999999998 3.8912979369254728E-004 + 174.35999999999999 3.9013690924346380E-004 + 174.41999999999999 3.9095419141807692E-004 + 174.47999999999999 3.9158556709309911E-004 + 174.53999999999999 3.9203508001187565E-004 + 174.59999999999999 3.9230692511502124E-004 + 174.66000000000000 3.9240532218738557E-004 + 174.72000000000000 3.9233456535967432E-004 + 174.78000000000000 3.9209907543762276E-004 + 174.84000000000000 3.9170322340441614E-004 + 174.90000000000001 3.9115143898630885E-004 + 174.95999999999998 3.9044811349487284E-004 + 175.01999999999998 3.8959766372146786E-004 + 175.07999999999998 3.8860446419247859E-004 + 175.13999999999999 3.8747285716017263E-004 + 175.19999999999999 3.8620708134185584E-004 + 175.25999999999999 3.8481131793614967E-004 + 175.31999999999999 3.8328963837735893E-004 + 175.38000000000000 3.8164605212622128E-004 + 175.44000000000000 3.7988435537489746E-004 + 175.50000000000000 3.7800825206300560E-004 + 175.56000000000000 3.7602131053635340E-004 + 175.62000000000000 3.7392692404739818E-004 + 175.67999999999998 3.7172836599161331E-004 + 175.73999999999998 3.6942866362198493E-004 + 175.79999999999998 3.6703072864147643E-004 + 175.85999999999999 3.6453724947461085E-004 + 175.91999999999999 3.6195082034147009E-004 + 175.97999999999999 3.5927376353026203E-004 + 176.03999999999999 3.5650824002696506E-004 + 176.09999999999999 3.5365627554758978E-004 + 176.16000000000000 3.5071972277391796E-004 + 176.22000000000000 3.4770020737012654E-004 + 176.28000000000000 3.4459925743883019E-004 + 176.34000000000000 3.4141819123012030E-004 + 176.40000000000001 3.3815823039861715E-004 + 176.45999999999998 3.3482039145918749E-004 + 176.51999999999998 3.3140559165000227E-004 + 176.57999999999998 3.2791458472706864E-004 + 176.63999999999999 3.2434804157182711E-004 + 176.69999999999999 3.2070645855014987E-004 + 176.75999999999999 3.1699020179498790E-004 + 176.81999999999999 3.1319960543100303E-004 + 176.88000000000000 3.0933486827349106E-004 + 176.94000000000000 3.0539605800343147E-004 + 177.00000000000000 3.0138325101739888E-004 + 177.06000000000000 2.9729639672337589E-004 + 177.12000000000000 2.9313542850334764E-004 + 177.17999999999998 2.8890022217320440E-004 + 177.23999999999998 2.8459064020469648E-004 + 177.29999999999998 2.8020651272957648E-004 + 177.35999999999999 2.7574770094377455E-004 + 177.41999999999999 2.7121405891150023E-004 + 177.47999999999999 2.6660547711245404E-004 + 177.53999999999999 2.6192191490248448E-004 + 177.59999999999999 2.5716331129072305E-004 + 177.66000000000000 2.5232976528168874E-004 + 177.72000000000000 2.4742140370518777E-004 + 177.78000000000000 2.4243847179226626E-004 + 177.84000000000000 2.3738128352797353E-004 + 177.90000000000001 2.3225031411711790E-004 + 177.95999999999998 2.2704613502142677E-004 + 178.01999999999998 2.2176945580615302E-004 + 178.07999999999998 2.1642111715009868E-004 + 178.13999999999999 2.1100211618381827E-004 + 178.19999999999999 2.0551358964204366E-004 + 178.25999999999999 1.9995683755783138E-004 + 178.31999999999999 1.9433334735486699E-004 + 178.38000000000000 1.8864473018986229E-004 + 178.44000000000000 1.8289278756870102E-004 + 178.50000000000000 1.7707946889020126E-004 + 178.56000000000000 1.7120692170282772E-004 + 178.62000000000000 1.6527743665698010E-004 + 178.67999999999998 1.5929349129016523E-004 + 178.73999999999998 1.5325774231645794E-004 + 178.79999999999998 1.4717298582253915E-004 + 178.85999999999999 1.4104223232498553E-004 + 178.91999999999999 1.3486864652034503E-004 + 178.97999999999999 1.2865558404087315E-004 + 179.03999999999999 1.2240655446298958E-004 + 179.09999999999999 1.1612524117317205E-004 + 179.16000000000000 1.0981553224824781E-004 + 179.22000000000000 1.0348146215235685E-004 + 179.28000000000000 9.7127234735517110E-005 + 179.34000000000000 9.0757221924864931E-005 + 179.40000000000001 8.4375943837686315E-005 + 179.45999999999998 7.7988049665752223E-005 + 179.51999999999998 7.1598329628583328E-005 + 179.57999999999998 6.5211687265562002E-005 + 179.63999999999999 5.8833116650422670E-005 + 179.69999999999999 5.2467710910627666E-005 + 179.75999999999999 4.6120615802765712E-005 + 179.81999999999999 3.9797036516196010E-005 + 179.88000000000000 3.3502225161174846E-005 + 179.94000000000000 2.7241437499553213E-005 + 180.00000000000000 2.1019962955150687E-005 + 180.06000000000000 1.4843080873424546E-005 + 180.12000000000000 8.7160552375767731E-006 + 180.17999999999998 2.6441416704568773E-006 + 180.23999999999998 -3.3674384841727282E-006 + 180.29999999999998 -9.3134997820977333E-006 + 180.35999999999999 -1.5188898510809704E-005 + 180.41999999999999 -2.0988545718187117E-005 + 180.47999999999999 -2.6707407457405042E-005 + 180.53999999999999 -3.2340531840282608E-005 + 180.59999999999999 -3.7883040367526097E-005 + 180.66000000000000 -4.3330157145458830E-005 + 180.72000000000000 -4.8677217897295844E-005 + 180.78000000000000 -5.3919691087456708E-005 + 180.84000000000000 -5.9053182346262586E-005 + 180.90000000000001 -6.4073466017000130E-005 + 180.95999999999998 -6.8976492548950273E-005 + 181.01999999999998 -7.3758409764884981E-005 + 181.07999999999998 -7.8415572002388896E-005 + 181.13999999999999 -8.2944565895374964E-005 + 181.19999999999999 -8.7342212746543599E-005 + 181.25999999999999 -9.1605580571154927E-005 + 181.31999999999999 -9.5731991540486539E-005 + 181.38000000000000 -9.9719050645721976E-005 + 181.44000000000000 -1.0356461093465500E-004 + 181.50000000000000 -1.0726679910180163E-004 + 181.56000000000000 -1.1082401650284107E-004 + 181.62000000000000 -1.1423495062663854E-004 + 181.67999999999998 -1.1749856252849556E-004 + 181.73999999999998 -1.2061408887497989E-004 + 181.79999999999998 -1.2358104168381845E-004 + 181.85999999999999 -1.2639922160123131E-004 + 181.91999999999999 -1.2906871443937713E-004 + 181.97999999999999 -1.3158985998792052E-004 + 182.03999999999999 -1.3396329744596030E-004 + 182.09999999999999 -1.3618993813258677E-004 + 182.16000000000000 -1.3827098529200075E-004 + 182.22000000000000 -1.4020790813055572E-004 + 182.28000000000000 -1.4200245420295505E-004 + 182.34000000000000 -1.4365666390490163E-004 + 182.39999999999998 -1.4517284789519966E-004 + 182.45999999999998 -1.4655356538002579E-004 + 182.51999999999998 -1.4780165668715683E-004 + 182.57999999999998 -1.4892020237509753E-004 + 182.63999999999999 -1.4991254886339404E-004 + 182.69999999999999 -1.5078227307561959E-004 + 182.75999999999999 -1.5153318261795296E-004 + 182.81999999999999 -1.5216928498920190E-004 + 182.88000000000000 -1.5269480727261571E-004 + 182.94000000000000 -1.5311417096930123E-004 + 183.00000000000000 -1.5343195066870610E-004 + 183.06000000000000 -1.5365288474739674E-004 + 183.12000000000000 -1.5378184071015573E-004 + 183.17999999999998 -1.5382380513958164E-004 + 183.23999999999998 -1.5378384548779515E-004 + 183.29999999999998 -1.5366713559324542E-004 + 183.35999999999999 -1.5347886296271525E-004 + 183.41999999999999 -1.5322426031188629E-004 + 183.47999999999999 -1.5290857391375804E-004 + 183.53999999999999 -1.5253704743313948E-004 + 183.59999999999999 -1.5211490059171282E-004 + 183.66000000000000 -1.5164731232283069E-004 + 183.72000000000000 -1.5113941753500069E-004 + 183.78000000000000 -1.5059626437892386E-004 + 183.84000000000000 -1.5002284577468248E-004 + 183.89999999999998 -1.4942404567197098E-004 + 183.95999999999998 -1.4880465122260359E-004 + 184.01999999999998 -1.4816935876073756E-004 + 184.07999999999998 -1.4752271652778253E-004 + 184.13999999999999 -1.4686914700646385E-004 + 184.19999999999999 -1.4621294029226140E-004 + 184.25999999999999 -1.4555820187303622E-004 + 184.31999999999999 -1.4490887079738864E-004 + 184.38000000000000 -1.4426870106860299E-004 + 184.44000000000000 -1.4364122101378848E-004 + 184.50000000000000 -1.4302973011624199E-004 + 184.56000000000000 -1.4243728464974722E-004 + 184.62000000000000 -1.4186667876419168E-004 + 184.67999999999998 -1.4132044112780600E-004 + 184.73999999999998 -1.4080079175271833E-004 + 184.79999999999998 -1.4030966863204112E-004 + 184.85999999999999 -1.3984868644565044E-004 + 184.91999999999999 -1.3941916826354890E-004 + 184.97999999999999 -1.3902212014385964E-004 + 185.03999999999999 -1.3865823054942119E-004 + 185.09999999999999 -1.3832788900866919E-004 + 185.16000000000000 -1.3803119589275354E-004 + 185.22000000000000 -1.3776793999586894E-004 + 185.28000000000000 -1.3753764241663944E-004 + 185.34000000000000 -1.3733952327829409E-004 + 185.39999999999998 -1.3717256110370611E-004 + 185.45999999999998 -1.3703544778511761E-004 + 185.51999999999998 -1.3692661252682101E-004 + 185.57999999999998 -1.3684423233116015E-004 + 185.63999999999999 -1.3678624931154324E-004 + 185.69999999999999 -1.3675033116900036E-004 + 185.75999999999999 -1.3673390520855866E-004 + 185.81999999999999 -1.3673417818446657E-004 + 185.88000000000000 -1.3674809738712247E-004 + 185.94000000000000 -1.3677240488152030E-004 + 186.00000000000000 -1.3680358166586363E-004 + 186.06000000000000 -1.3683793940753416E-004 + 186.12000000000000 -1.3687156845454317E-004 + 186.17999999999998 -1.3690036323336403E-004 + 186.23999999999998 -1.3692005853303268E-004 + 186.29999999999998 -1.3692622587881733E-004 + 186.35999999999999 -1.3691429245969502E-004 + 186.41999999999999 -1.3687956880933892E-004 + 186.47999999999999 -1.3681725430846840E-004 + 186.53999999999999 -1.3672247565170168E-004 + 186.59999999999999 -1.3659027369731833E-004 + 186.66000000000000 -1.3641565027802715E-004 + 186.72000000000000 -1.3619355157429300E-004 + 186.78000000000000 -1.3591893762954232E-004 + 186.84000000000000 -1.3558675748843213E-004 + 186.89999999999998 -1.3519197751022538E-004 + 186.95999999999998 -1.3472958225820204E-004 + 187.01999999999998 -1.3419463435921004E-004 + 187.07999999999998 -1.3358223191478196E-004 + 187.13999999999999 -1.3288756822197578E-004 + 187.19999999999999 -1.3210591926499486E-004 + 187.25999999999999 -1.3123269562134103E-004 + 187.31999999999999 -1.3026340221078061E-004 + 187.38000000000000 -1.2919368269061790E-004 + 187.44000000000000 -1.2801934356218120E-004 + 187.50000000000000 -1.2673633294195551E-004 + 187.56000000000000 -1.2534077188971056E-004 + 187.62000000000000 -1.2382896025468949E-004 + 187.67999999999998 -1.2219741153115583E-004 + 187.73999999999998 -1.2044282028515334E-004 + 187.79999999999998 -1.1856211400947364E-004 + 187.85999999999999 -1.1655242654170263E-004 + 187.91999999999999 -1.1441114886295994E-004 + 187.97999999999999 -1.1213592979886961E-004 + 188.03999999999999 -1.0972466119459905E-004 + 188.09999999999999 -1.0717553129461125E-004 + 188.16000000000000 -1.0448701546462045E-004 + 188.22000000000000 -1.0165789768974959E-004 + 188.28000000000000 -9.8687288150485988E-005 + 188.34000000000000 -9.5574615816039591E-005 + 188.39999999999998 -9.2319653471430012E-005 + 188.45999999999998 -8.8922535031677911E-005 + 188.51999999999998 -8.5383732390889545E-005 + 188.57999999999998 -8.1704081735431915E-005 + 188.63999999999999 -7.7884781857296220E-005 + 188.69999999999999 -7.3927393929667409E-005 + 188.75999999999999 -6.9833834194917089E-005 + 188.81999999999999 -6.5606374401885100E-005 + 188.88000000000000 -6.1247640135096167E-005 + 188.94000000000000 -5.6760609751851304E-005 + 189.00000000000000 -5.2148607275700337E-005 + 189.06000000000000 -4.7415292491790051E-005 + 189.12000000000000 -4.2564669266524559E-005 + 189.17999999999998 -3.7601080080955011E-005 + 189.23999999999998 -3.2529201167776576E-005 + 189.29999999999998 -2.7354040659317804E-005 + 189.35999999999999 -2.2080942314022621E-005 + 189.41999999999999 -1.6715586249298654E-005 + 189.47999999999999 -1.1263979363827344E-005 + 189.53999999999999 -5.7324524180049472E-006 + 189.59999999999999 -1.2766078875895435E-007 + 189.66000000000000 5.5434300414555718E-006 + 189.72000000000000 1.1273552283133038E-005 + 189.78000000000000 1.7055145176114421E-005 + 189.84000000000000 2.2880374113820819E-005 + 189.89999999999998 2.8741147239891613E-005 + 189.95999999999998 3.4629126124426072E-005 + 190.01999999999998 4.0535757710180736E-005 + 190.07999999999998 4.6452287938484655E-005 + 190.13999999999999 5.2369780767908198E-005 + 190.19999999999999 5.8279146434169304E-005 + 190.25999999999999 6.4171155371121750E-005 + 190.31999999999999 7.0036461702798733E-005 + 190.38000000000000 7.5865623852994267E-005 + 190.44000000000000 8.1649131588816751E-005 + 190.50000000000000 8.7377393993350979E-005 + 190.56000000000000 9.3040796788463622E-005 + 190.62000000000000 9.8629695124594706E-005 + 190.67999999999998 1.0413444481328797E-004 + 190.73999999999998 1.0954540856345654E-004 + 190.79999999999998 1.1485298635608025E-004 + 190.85999999999999 1.2004764391637466E-004 + 190.91999999999999 1.2511990771068456E-004 + 190.97999999999999 1.3006041456915191E-004 + 191.03999999999999 1.3485991186189356E-004 + 191.09999999999999 1.3950927941297746E-004 + 191.16000000000000 1.4399957729767306E-004 + 191.22000000000000 1.4832204424677974E-004 + 191.28000000000000 1.5246810203298336E-004 + 191.34000000000000 1.5642943881721616E-004 + 191.39999999999998 1.6019796490492430E-004 + 191.45999999999998 1.6376585753394269E-004 + 191.51999999999998 1.6712558521619816E-004 + 191.57999999999998 1.7026991001913570E-004 + 191.63999999999999 1.7319190475500719E-004 + 191.69999999999999 1.7588500678483693E-004 + 191.75999999999999 1.7834298246559050E-004 + 191.81999999999999 1.8055996881107835E-004 + 191.88000000000000 1.8253047771590300E-004 + 191.94000000000000 1.8424944291361078E-004 + 192.00000000000000 1.8571218249944713E-004 + 192.06000000000000 1.8691445651342612E-004 + 192.12000000000000 1.8785243267701939E-004 + 192.17999999999998 1.8852272446868155E-004 + 192.23999999999998 1.8892240248863308E-004 + 192.29999999999998 1.8904897748465166E-004 + 192.35999999999999 1.8890039264869533E-004 + 192.41999999999999 1.8847504488850409E-004 + 192.47999999999999 1.8777178257026091E-004 + 192.53999999999999 1.8678992029664654E-004 + 192.59999999999999 1.8552916911441144E-004 + 192.66000000000000 1.8398969404543087E-004 + 192.72000000000000 1.8217208157826064E-004 + 192.78000000000000 1.8007734117546045E-004 + 192.84000000000000 1.7770688992775830E-004 + 192.89999999999998 1.7506252491781025E-004 + 192.95999999999998 1.7214648256837730E-004 + 193.01999999999998 1.6896137203124384E-004 + 193.07999999999998 1.6551019190961174E-004 + 193.13999999999999 1.6179630109752698E-004 + 193.19999999999999 1.5782343954702960E-004 + 193.25999999999999 1.5359571831491961E-004 + 193.31999999999999 1.4911759201573869E-004 + 193.38000000000000 1.4439386585194208E-004 + 193.44000000000000 1.3942966390365023E-004 + 193.50000000000000 1.3423043029424833E-004 + 193.56000000000000 1.2880191125781259E-004 + 193.62000000000000 1.2315011896724948E-004 + 193.67999999999998 1.1728136360637306E-004 + 193.73999999999998 1.1120217353158889E-004 + 193.79999999999998 1.0491930947212579E-004 + 193.85999999999999 9.8439758082442087E-005 + 193.91999999999999 9.1770693985463643E-005 + 193.97999999999999 8.4919453658357331E-005 + 194.03999999999999 7.7893560294643250E-005 + 194.09999999999999 7.0700671958816373E-005 + 194.16000000000000 6.3348590439020461E-005 + 194.22000000000000 5.5845237245273047E-005 + 194.28000000000000 4.8198642312613201E-005 + 194.34000000000000 4.0416943984099955E-005 + 194.39999999999998 3.2508367439421372E-005 + 194.45999999999998 2.4481219905535572E-005 + 194.51999999999998 1.6343869782020817E-005 + 194.57999999999998 8.1047506512605335E-006 + 194.63999999999999 -2.2766979562283791E-007 + 194.69999999999999 -8.6448898571267534E-006 + 194.75999999999999 -1.7138385159373251E-005 + 194.81999999999999 -2.5699635265194289E-005 + 194.88000000000000 -3.4320124357024349E-005 + 194.94000000000000 -4.2991345456290997E-005 + 195.00000000000000 -5.1704841836977215E-005 + 195.06000000000000 -6.0452183738149102E-005 + 195.12000000000000 -6.9225001558227033E-005 + 195.17999999999998 -7.8014974293343773E-005 + 195.23999999999998 -8.6813848738741733E-005 + 195.29999999999998 -9.5613462858528178E-005 + 195.35999999999999 -1.0440570160672511E-004 + 195.41999999999999 -1.1318255930087786E-004 + 195.47999999999999 -1.2193611382606852E-004 + 195.53999999999999 -1.3065854384599758E-004 + 195.59999999999999 -1.3934211869643569E-004 + 195.66000000000000 -1.4797923015509600E-004 + 195.72000000000000 -1.5656238756639679E-004 + 195.78000000000000 -1.6508422855434474E-004 + 195.84000000000000 -1.7353749164664617E-004 + 195.89999999999998 -1.8191509314542607E-004 + 195.95999999999998 -1.9021009762594607E-004 + 196.01999999999998 -1.9841567247332113E-004 + 196.07999999999998 -2.0652521235827663E-004 + 196.13999999999999 -2.1453220903520486E-004 + 196.19999999999999 -2.2243037480606869E-004 + 196.25999999999999 -2.3021356960850186E-004 + 196.31999999999999 -2.3787581318274786E-004 + 196.38000000000000 -2.4541131517323317E-004 + 196.44000000000000 -2.5281449979634507E-004 + 196.50000000000000 -2.6007990823328098E-004 + 196.56000000000000 -2.6720233109583176E-004 + 196.62000000000000 -2.7417672620516490E-004 + 196.67999999999998 -2.8099823734235526E-004 + 196.73999999999998 -2.8766221562081656E-004 + 196.79999999999998 -2.9416419751113724E-004 + 196.85999999999999 -3.0049996632650153E-004 + 196.91999999999999 -3.0666546727582976E-004 + 196.97999999999999 -3.1265691476563571E-004 + 197.03999999999999 -3.1847072039734985E-004 + 197.09999999999999 -3.2410349373312303E-004 + 197.16000000000000 -3.2955208485715059E-004 + 197.22000000000000 -3.3481356638331676E-004 + 197.28000000000000 -3.3988520242729032E-004 + 197.34000000000000 -3.4476455579323544E-004 + 197.39999999999998 -3.4944929315313772E-004 + 197.45999999999998 -3.5393733707671097E-004 + 197.51999999999998 -3.5822683443841703E-004 + 197.57999999999998 -3.6231612315502866E-004 + 197.63999999999999 -3.6620367002162288E-004 + 197.69999999999999 -3.6988819315726380E-004 + 197.75999999999999 -3.7336856219830137E-004 + 197.81999999999999 -3.7664386662092397E-004 + 197.88000000000000 -3.7971330453716719E-004 + 197.94000000000000 -3.8257635110422624E-004 + 198.00000000000000 -3.8523256022973359E-004 + 198.06000000000000 -3.8768169278631840E-004 + 198.12000000000000 -3.8992373566295268E-004 + 198.17999999999998 -3.9195874562528436E-004 + 198.23999999999998 -3.9378696743617465E-004 + 198.29999999999998 -3.9540886674830787E-004 + 198.35999999999999 -3.9682501229676328E-004 + 198.41999999999999 -3.9803614884785141E-004 + 198.47999999999999 -3.9904312675307155E-004 + 198.53999999999999 -3.9984693610918564E-004 + 198.59999999999999 -4.0044875455706860E-004 + 198.66000000000000 -4.0084979422435777E-004 + 198.72000000000000 -4.0105144914856565E-004 + 198.78000000000000 -4.0105512428700646E-004 + 198.84000000000000 -4.0086239525623815E-004 + 198.89999999999998 -4.0047489854334975E-004 + 198.95999999999998 -3.9989434545522143E-004 + 199.01999999999998 -3.9912251441999604E-004 + 199.07999999999998 -3.9816130692493090E-004 + 199.13999999999999 -3.9701265819360484E-004 + 199.19999999999999 -3.9567856718143463E-004 + 199.25999999999999 -3.9416109507507777E-004 + 199.31999999999999 -3.9246236382877537E-004 + 199.38000000000000 -3.9058451746151670E-004 + 199.44000000000000 -3.8852978985829745E-004 + 199.50000000000000 -3.8630044299699440E-004 + 199.56000000000000 -3.8389877825001373E-004 + 199.62000000000000 -3.8132716079970872E-004 + 199.67999999999998 -3.7858795621489172E-004 + 199.73999999999998 -3.7568358491095705E-004 + 199.79999999999998 -3.7261651617276548E-004 + 199.85999999999999 -3.6938918772672373E-004 + 199.91999999999999 -3.6600415248193085E-004 + 199.97999999999999 -3.6246393312796540E-004 + 200.03999999999999 -3.5877113909755950E-004 + 200.09999999999999 -3.5492838588326654E-004 + 200.16000000000000 -3.5093834615177084E-004 + 200.22000000000000 -3.4680373627420151E-004 + 200.28000000000000 -3.4252732393837219E-004 + 200.34000000000000 -3.3811188017845984E-004 + 200.39999999999998 -3.3356028753918647E-004 + 200.45999999999998 -3.2887544868064164E-004 + 200.51999999999998 -3.2406032373190726E-004 + 200.57999999999998 -3.1911793268380850E-004 + 200.63999999999999 -3.1405131666084688E-004 + 200.69999999999999 -3.0886360746429673E-004 + 200.75999999999999 -3.0355794211507788E-004 + 200.81999999999999 -2.9813754164566281E-004 + 200.88000000000000 -2.9260563653668196E-004 + 200.94000000000000 -2.8696551592297370E-004 + 201.00000000000000 -2.8122050468423911E-004 + 201.06000000000000 -2.7537398156891792E-004 + 201.12000000000000 -2.6942936470740410E-004 + 201.17999999999998 -2.6339009742120734E-004 + 201.23999999999998 -2.5725966708850138E-004 + 201.29999999999998 -2.5104162717773669E-004 + 201.35999999999999 -2.4473953191982980E-004 + 201.41999999999999 -2.3835701032596707E-004 + 201.47999999999999 -2.3189771038836739E-004 + 201.53999999999999 -2.2536532128186406E-004 + 201.59999999999999 -2.1876355491609272E-004 + 201.66000000000000 -2.1209616008824900E-004 + 201.72000000000000 -2.0536694147798703E-004 + 201.78000000000000 -1.9857966015780789E-004 + 201.84000000000000 -1.9173814400894149E-004 + 201.89999999999998 -1.8484619766537144E-004 + 201.95999999999998 -1.7790767616840666E-004 + 202.01999999999998 -1.7092639670787579E-004 + 202.07999999999998 -1.6390617653723929E-004 + 202.13999999999999 -1.5685084601785093E-004 + 202.19999999999999 -1.4976421666883021E-004 + 202.25999999999999 -1.4265009436671217E-004 + 202.31999999999999 -1.3551225403267306E-004 + 202.38000000000000 -1.2835446949016795E-004 + 202.44000000000000 -1.2118047568727295E-004 + 202.50000000000000 -1.1399399870097247E-004 + 202.56000000000000 -1.0679872452964577E-004 + 202.62000000000000 -9.9598305114541696E-005 + 202.67999999999998 -9.2396372141424041E-005 + 202.73999999999998 -8.5196495360843560E-005 + 202.79999999999998 -7.8002196697053125E-005 + 202.85999999999999 -7.0816980330910722E-005 + 202.91999999999999 -6.3644270878582927E-005 + 202.97999999999999 -5.6487448018192874E-005 + 203.03999999999999 -4.9349826832023758E-005 + 203.09999999999999 -4.2234690230047125E-005 + 203.16000000000000 -3.5145258300085764E-005 + 203.22000000000000 -2.8084703798480023E-005 + 203.28000000000000 -2.1056151932476413E-005 + 203.34000000000000 -1.4062683159797919E-005 + 203.39999999999998 -7.1073447823312167E-006 + 203.45999999999998 -1.9314781381439043E-007 + 203.51999999999998 6.6769257127607343E-006 + 203.57999999999998 1.3499924061644718E-005 + 203.63999999999999 2.0272903969104471E-005 + 203.69999999999999 2.6992961772906266E-005 + 203.75999999999999 3.3657196134927208E-005 + 203.81999999999999 4.0262736812417660E-005 + 203.88000000000000 4.6806723739240812E-005 + 203.94000000000000 5.3286305871241270E-005 + 204.00000000000000 5.9698652068058508E-005 + 204.06000000000000 6.6040936472575509E-005 + 204.12000000000000 7.2310353700581834E-005 + 204.17999999999998 7.8504093177500674E-005 + 204.23999999999998 8.4619354871130837E-005 + 204.29999999999998 9.0653336165330301E-005 + 204.35999999999999 9.6603228527035074E-005 + 204.41999999999999 1.0246620067321796E-004 + 204.47999999999999 1.0823941581554254E-004 + 204.53999999999999 1.1392001845367969E-004 + 204.59999999999999 1.1950511192655995E-004 + 204.66000000000000 1.2499176976438436E-004 + 204.72000000000000 1.3037702364223603E-004 + 204.78000000000000 1.3565787917897335E-004 + 204.84000000000000 1.4083127956328591E-004 + 204.89999999999998 1.4589413741230260E-004 + 204.95999999999998 1.5084329840098427E-004 + 205.01999999999998 1.5567560505110861E-004 + 205.07999999999998 1.6038783363231748E-004 + 205.13999999999999 1.6497673971719491E-004 + 205.19999999999999 1.6943903431296243E-004 + 205.25999999999999 1.7377141768476847E-004 + 205.31999999999999 1.7797055833083648E-004 + 205.38000000000000 1.8203310855540529E-004 + 205.44000000000000 1.8595571757623391E-004 + 205.50000000000000 1.8973503508318409E-004 + 205.56000000000000 1.9336769477758324E-004 + 205.62000000000000 1.9685035470973829E-004 + 205.67999999999998 2.0017966566218746E-004 + 205.73999999999998 2.0335230958517066E-004 + 205.79999999999998 2.0636498716310403E-004 + 205.85999999999999 2.0921441132554014E-004 + 205.91999999999999 2.1189734364211548E-004 + 205.97999999999999 2.1441057434634013E-004 + 206.03999999999999 2.1675095017427567E-004 + 206.09999999999999 2.1891536053186904E-004 + 206.16000000000000 2.2090075229139021E-004 + 206.22000000000000 2.2270414451814745E-004 + 206.28000000000000 2.2432262895644893E-004 + 206.34000000000000 2.2575336680919620E-004 + 206.39999999999998 2.2699364474100740E-004 + 206.45999999999998 2.2804084359818631E-004 + 206.51999999999998 2.2889246336899502E-004 + 206.57999999999998 2.2954610786281082E-004 + 206.63999999999999 2.2999956846101791E-004 + 206.69999999999999 2.3025074723523589E-004 + 206.75999999999999 2.3029774012034164E-004 + 206.81999999999999 2.3013882368880722E-004 + 206.88000000000000 2.2977247062084557E-004 + 206.94000000000000 2.2919733961623677E-004 + 207.00000000000000 2.2841229845646499E-004 + 207.06000000000000 2.2741645557122471E-004 + 207.12000000000000 2.2620914317475406E-004 + 207.17999999999998 2.2478991770653593E-004 + 207.23999999999998 2.2315857700288551E-004 + 207.29999999999998 2.2131515432923513E-004 + 207.35999999999999 2.1925993845716638E-004 + 207.41999999999999 2.1699345325474484E-004 + 207.47999999999999 2.1451644209436198E-004 + 207.53999999999999 2.1182991922885603E-004 + 207.59999999999999 2.0893511055516663E-004 + 207.66000000000000 2.0583346756313474E-004 + 207.72000000000000 2.0252669211169355E-004 + 207.78000000000000 1.9901671617533360E-004 + 207.84000000000000 1.9530571373025296E-004 + 207.89999999999998 1.9139606929217831E-004 + 207.95999999999998 1.8729045150282477E-004 + 208.01999999999998 1.8299175115468671E-004 + 208.07999999999998 1.7850310754467100E-004 + 208.13999999999999 1.7382791040334542E-004 + 208.19999999999999 1.6896982476263480E-004 + 208.25999999999999 1.6393277912845456E-004 + 208.31999999999999 1.5872096661750229E-004 + 208.38000000000000 1.5333883591507936E-004 + 208.44000000000000 1.4779111749031179E-004 + 208.50000000000000 1.4208279965994560E-004 + 208.56000000000000 1.3621912129295173E-004 + 208.62000000000000 1.3020557451170328E-004 + 208.68000000000001 1.2404788524974440E-004 + 208.74000000000001 1.1775200186959863E-004 + 208.80000000000001 1.1132407802447265E-004 + 208.86000000000001 1.0477048224839781E-004 + 208.92000000000002 9.8097742234501040E-005 + 208.98000000000002 9.1312577701180482E-005 + 209.03999999999996 8.4421847959953892E-005 + 209.09999999999997 7.7432565022968070E-005 + 209.15999999999997 7.0351871615489790E-005 + 209.21999999999997 6.3187017648745234E-005 + 209.27999999999997 5.5945382988596512E-005 + 209.33999999999997 4.8634453759971216E-005 + 209.39999999999998 4.1261815005289097E-005 + 209.45999999999998 3.3835141724077105E-005 + 209.51999999999998 2.6362200434770753E-005 + 209.57999999999998 1.8850847027737799E-005 + 209.63999999999999 1.1309012077905971E-005 + 209.69999999999999 3.7446943039945328E-006 + 209.75999999999999 -3.8340331565654221E-006 + 209.81999999999999 -1.1419059348635856E-005 + 209.88000000000000 -1.9002222030971549E-005 + 209.94000000000000 -2.6575333776461340E-005 + 210.00000000000000 -3.4130197070197882E-005 + 210.06000000000000 -4.1658597038580440E-005 + 210.12000000000000 -4.9152357321924002E-005 + 210.18000000000001 -5.6603330483393134E-005 + 210.24000000000001 -6.4003421626442015E-005 + 210.30000000000001 -7.1344604805739087E-005 + 210.36000000000001 -7.8618960283209990E-005 + 210.42000000000002 -8.5818658362787122E-005 + 210.48000000000002 -9.2936000504310223E-005 + 210.53999999999996 -9.9963436289991241E-005 + 210.59999999999997 -1.0689354820648565E-004 + 210.65999999999997 -1.1371910708693735E-004 + 210.71999999999997 -1.2043303943601316E-004 + 210.77999999999997 -1.2702846842247372E-004 + 210.83999999999997 -1.3349871094626157E-004 + 210.89999999999998 -1.3983727194361275E-004 + 210.95999999999998 -1.4603784929096797E-004 + 211.01999999999998 -1.5209438165951321E-004 + 211.07999999999998 -1.5800099640887080E-004 + 211.13999999999999 -1.6375202738924471E-004 + 211.19999999999999 -1.6934204588722149E-004 + 211.25999999999999 -1.7476583999416587E-004 + 211.31999999999999 -1.8001843466987306E-004 + 211.38000000000000 -1.8509510513325863E-004 + 211.44000000000000 -1.8999134409339102E-004 + 211.50000000000000 -1.9470294063552687E-004 + 211.56000000000000 -1.9922592316164178E-004 + 211.62000000000000 -2.0355661103275844E-004 + 211.68000000000001 -2.0769159419747055E-004 + 211.74000000000001 -2.1162778177282159E-004 + 211.80000000000001 -2.1536237814542272E-004 + 211.86000000000001 -2.1889285891165739E-004 + 211.92000000000002 -2.2221705823372544E-004 + 211.98000000000002 -2.2533308616930642E-004 + 212.03999999999996 -2.2823938588328413E-004 + 212.09999999999997 -2.3093469554615992E-004 + 212.15999999999997 -2.3341805682084062E-004 + 212.21999999999997 -2.3568879517106448E-004 + 212.27999999999997 -2.3774652410524745E-004 + 212.33999999999997 -2.3959112167584953E-004 + 212.39999999999998 -2.4122275658880981E-004 + 212.45999999999998 -2.4264175681410963E-004 + 212.51999999999998 -2.4384876711902993E-004 + 212.57999999999998 -2.4484459184482719E-004 + 212.63999999999999 -2.4563029444202208E-004 + 212.69999999999999 -2.4620709133764114E-004 + 212.75999999999999 -2.4657639026258682E-004 + 212.81999999999999 -2.4673978915905776E-004 + 212.88000000000000 -2.4669905597329161E-004 + 212.94000000000000 -2.4645612094990042E-004 + 213.00000000000000 -2.4601308424820260E-004 + 213.06000000000000 -2.4537218635706682E-004 + 213.12000000000000 -2.4453581977052765E-004 + 213.18000000000001 -2.4350653334992531E-004 + 213.24000000000001 -2.4228699791748495E-004 + 213.30000000000001 -2.4088001346063800E-004 + 213.36000000000001 -2.3928848517977276E-004 + 213.42000000000002 -2.3751541730802819E-004 + 213.48000000000002 -2.3556393890684566E-004 + 213.53999999999996 -2.3343721366909335E-004 + 213.59999999999997 -2.3113849486806599E-004 + 213.65999999999997 -2.2867106756263551E-004 + 213.71999999999997 -2.2603826964726683E-004 + 213.77999999999997 -2.2324341777867648E-004 + 213.83999999999997 -2.2028986432554023E-004 + 213.89999999999998 -2.1718091472800572E-004 + 213.95999999999998 -2.1391984051807511E-004 + 214.01999999999998 -2.1050991415089159E-004 + 214.07999999999998 -2.0695431507715544E-004 + 214.13999999999999 -2.0325618167095654E-004 + 214.19999999999999 -1.9941858220614970E-004 + 214.25999999999999 -1.9544449118789523E-004 + 214.31999999999999 -1.9133682641288096E-004 + 214.38000000000000 -1.8709840038420706E-004 + 214.44000000000000 -1.8273197851641118E-004 + 214.50000000000000 -1.7824021243550295E-004 + 214.56000000000000 -1.7362567835478115E-004 + 214.62000000000000 -1.6889086213074667E-004 + 214.68000000000001 -1.6403818983262255E-004 + 214.74000000000001 -1.5906998663228796E-004 + 214.80000000000001 -1.5398849049339078E-004 + 214.86000000000001 -1.4879588527985497E-004 + 214.92000000000002 -1.4349425570775481E-004 + 214.98000000000002 -1.3808561084151922E-004 + 215.03999999999996 -1.3257187652608969E-004 + 215.09999999999997 -1.2695490837261371E-004 + 215.15999999999997 -1.2123646773706931E-004 + 215.21999999999997 -1.1541824310279678E-004 + 215.27999999999997 -1.0950181389281129E-004 + 215.33999999999997 -1.0348870791465131E-004 + 215.39999999999998 -9.7380349543501124E-005 + 215.45999999999998 -9.1178075457615173E-005 + 215.51999999999998 -8.4883145815926140E-005 + 215.57999999999998 -7.8496739792509047E-005 + 215.63999999999999 -7.2019954346613674E-005 + 215.69999999999999 -6.5453823647760304E-005 + 215.75999999999999 -5.8799316310967623E-005 + 215.81999999999999 -5.2057343132720649E-005 + 215.88000000000000 -4.5228763051447353E-005 + 215.94000000000000 -3.8314409135540354E-005 + 216.00000000000000 -3.1315078105371204E-005 + 216.06000000000000 -2.4231551082569679E-005 + 216.12000000000000 -1.7064609433760369E-005 + 216.18000000000001 -9.8150260803016909E-006 + 216.24000000000001 -2.4835904482109979E-006 + 216.30000000000001 4.9288836150713057E-006 + 216.36000000000001 1.2421571103891373E-005 + 216.42000000000002 1.9993602708282564E-005 + 216.48000000000002 2.7644083770020483E-005 + 216.53999999999996 3.5372079645708993E-005 + 216.59999999999997 4.3176617520165287E-005 + 216.65999999999997 5.1056680819989388E-005 + 216.71999999999997 5.9011206241126372E-005 + 216.77999999999997 6.7039090710998506E-005 + 216.83999999999997 7.5139172749131108E-005 + 216.89999999999998 8.3310261001038789E-005 + 216.95999999999998 9.1551104976158833E-005 + 217.01999999999998 9.9860379486024659E-005 + 217.07999999999998 1.0823672018384892E-004 + 217.13999999999999 1.1667868131964753E-004 + 217.19999999999999 1.2518476726339971E-004 + 217.25999999999999 1.3375339931403466E-004 + 217.31999999999999 1.4238289918772990E-004 + 217.38000000000000 1.5107150961570995E-004 + 217.44000000000000 1.5981738656168078E-004 + 217.50000000000000 1.6861856684308404E-004 + 217.56000000000000 1.7747299024572063E-004 + 217.62000000000000 1.8637847333657359E-004 + 217.68000000000001 1.9533272423964221E-004 + 217.74000000000001 2.0433330603981899E-004 + 217.80000000000001 2.1337765630184273E-004 + 217.86000000000001 2.2246307725691254E-004 + 217.92000000000002 2.3158673093590028E-004 + 217.98000000000002 2.4074566206931051E-004 + 218.03999999999996 2.4993672512525387E-004 + 218.09999999999997 2.5915666610595281E-004 + 218.15999999999997 2.6840208136588565E-004 + 218.21999999999997 2.7766940800411582E-004 + 218.27999999999997 2.8695494662363253E-004 + 218.33999999999997 2.9625486125537683E-004 + 218.39999999999998 3.0556516877651673E-004 + 218.45999999999998 3.1488174887968519E-004 + 218.51999999999998 3.2420030223101091E-004 + 218.57999999999998 3.3351647865516971E-004 + 218.63999999999999 3.4282570625949864E-004 + 218.69999999999999 3.5212330640347229E-004 + 218.75999999999999 3.6140447880791125E-004 + 218.81999999999999 3.7066427333701024E-004 + 218.88000000000000 3.7989759348082191E-004 + 218.94000000000000 3.8909921812070158E-004 + 219.00000000000000 3.9826375845383472E-004 + 219.06000000000000 4.0738571499522163E-004 + 219.12000000000000 4.1645946539933571E-004 + 219.18000000000001 4.2547917256442486E-004 + 219.24000000000001 4.3443888325945184E-004 + 219.30000000000001 4.4333253621601045E-004 + 219.36000000000001 4.5215383466914311E-004 + 219.42000000000002 4.6089642504364744E-004 + 219.48000000000002 4.6955375734968486E-004 + 219.53999999999996 4.7811913209290269E-004 + 219.59999999999997 4.8658580208175186E-004 + 219.65999999999997 4.9494695774792178E-004 + 219.71999999999997 5.0319550711002607E-004 + 219.77999999999997 5.1132444460363165E-004 + 219.83999999999997 5.1932660820700523E-004 + 219.89999999999998 5.2719480476818973E-004 + 219.95999999999998 5.3492177104982528E-004 + 220.01999999999998 5.4250025002114421E-004 + 220.07999999999998 5.4992297830807344E-004 + 220.13999999999999 5.5718259455177850E-004 + 220.19999999999999 5.6427175597039293E-004 + 220.25999999999999 5.7118320077644566E-004 + 220.31999999999999 5.7790957711910916E-004 + 220.38000000000000 5.8444357301077601E-004 + 220.44000000000000 5.9077800689815102E-004 + 220.50000000000000 5.9690550927263459E-004 + 220.56000000000000 6.0281890681324751E-004 + 220.62000000000000 6.0851102468324910E-004 + 220.68000000000001 6.1397462285906466E-004 + 220.74000000000001 6.1920267850919871E-004 + 220.80000000000001 6.2418820676344710E-004 + 220.86000000000001 6.2892416624164837E-004 + 220.92000000000002 6.3340372737393966E-004 + 220.98000000000002 6.3762023911593385E-004 + 221.03999999999996 6.4156705307256805E-004 + 221.09999999999997 6.4523767575957634E-004 + 221.15999999999997 6.4862582589092098E-004 + 221.21999999999997 6.5172537126386202E-004 + 221.27999999999997 6.5453047244483332E-004 + 221.33999999999997 6.5703535401731355E-004 + 221.39999999999998 6.5923454486639145E-004 + 221.45999999999998 6.6112283139947942E-004 + 221.51999999999998 6.6269528514727508E-004 + 221.57999999999998 6.6394720467096845E-004 + 221.63999999999999 6.6487414391869064E-004 + 221.69999999999999 6.6547200457022925E-004 + 221.75999999999999 6.6573694374005507E-004 + 221.81999999999999 6.6566539014879388E-004 + 221.88000000000000 6.6525414266792185E-004 + 221.94000000000000 6.6450021243050770E-004 + 222.00000000000000 6.6340096617243467E-004 + 222.06000000000000 6.6195407862486776E-004 + 222.12000000000000 6.6015755819561297E-004 + 222.18000000000001 6.5800970713584118E-004 + 222.24000000000001 6.5550915538652253E-004 + 222.30000000000001 6.5265487206362760E-004 + 222.36000000000001 6.4944621511606312E-004 + 222.42000000000002 6.4588285769800959E-004 + 222.48000000000002 6.4196484558840037E-004 + 222.53999999999996 6.3769258210288318E-004 + 222.59999999999997 6.3306687529755270E-004 + 222.65999999999997 6.2808895863356940E-004 + 222.71999999999997 6.2276046000823016E-004 + 222.77999999999997 6.1708342746206600E-004 + 222.83999999999997 6.1106034559908046E-004 + 222.89999999999998 6.0469405661433282E-004 + 222.95999999999998 5.9798797927310544E-004 + 223.01999999999998 5.9094581622402137E-004 + 223.07999999999998 5.8357178020893713E-004 + 223.13999999999999 5.7587050901069213E-004 + 223.19999999999999 5.6784701166479100E-004 + 223.25999999999999 5.5950670980682723E-004 + 223.31999999999999 5.5085556393657197E-004 + 223.38000000000000 5.4189976641892570E-004 + 223.44000000000000 5.3264594207007147E-004 + 223.50000000000000 5.2310105286924977E-004 + 223.56000000000000 5.1327248718228925E-004 + 223.62000000000000 5.0316790549747290E-004 + 223.68000000000001 4.9279539152573444E-004 + 223.74000000000001 4.8216325877969220E-004 + 223.80000000000001 4.7128021418704150E-004 + 223.86000000000001 4.6015534095787718E-004 + 223.92000000000002 4.4879794839507381E-004 + 223.98000000000002 4.3721775466960805E-004 + 224.03999999999996 4.2542472741355781E-004 + 224.09999999999997 4.1342924235731335E-004 + 224.15999999999997 4.0124192963098470E-004 + 224.21999999999997 3.8887374004378762E-004 + 224.27999999999997 3.7633591661388689E-004 + 224.33999999999997 3.6364003056348965E-004 + 224.39999999999998 3.5079786019062833E-004 + 224.45999999999998 3.3782147307271656E-004 + 224.51999999999998 3.2472320423176953E-004 + 224.57999999999998 3.1151554792061779E-004 + 224.63999999999999 2.9821118176251801E-004 + 224.69999999999999 2.8482296004995593E-004 + 224.75999999999999 2.7136384993347825E-004 + 224.81999999999999 2.5784690690363097E-004 + 224.88000000000000 2.4428527332056129E-004 + 224.94000000000000 2.3069216417272878E-004 + 225.00000000000000 2.1708076923393751E-004 + 225.06000000000000 2.0346431965103192E-004 + 225.12000000000000 1.8985604748187791E-004 + 225.18000000000001 1.7626911583437747E-004 + 225.24000000000001 1.6271668221552372E-004 + 225.30000000000001 1.4921181936906181E-004 + 225.36000000000001 1.3576756231884705E-004 + 225.42000000000002 1.2239683903932794E-004 + 225.48000000000002 1.0911250154092853E-004 + 225.53999999999996 9.5927279124064619E-005 + 225.59999999999997 8.2853780096359093E-005 + 225.65999999999997 6.9904467780401803E-005 + 225.71999999999997 5.7091651535894768E-005 + 225.77999999999997 4.4427430459086968E-005 + 225.83999999999997 3.1923722306774863E-005 + 225.89999999999998 1.9592173601110715E-005 + 225.95999999999998 7.4442054796320127E-006 + 226.01999999999998 -4.5090748621146258E-006 + 226.07999999999998 -1.6256853074196683E-005 + 226.13999999999999 -2.7788681462460502E-005 + 226.19999999999999 -3.9094460241555962E-005 + 226.25999999999999 -5.0164471564944865E-005 + 226.31999999999999 -6.0989425050606537E-005 + 226.38000000000000 -7.1560442625779737E-005 + 226.44000000000000 -8.1869070366881252E-005 + 226.50000000000000 -9.1907324510369015E-005 + 226.56000000000000 -1.0166767978282950E-004 + 226.62000000000000 -1.1114307120741693E-004 + 226.68000000000001 -1.2032691403655564E-004 + 226.74000000000001 -1.2921308351671401E-004 + 226.80000000000001 -1.3779597424917631E-004 + 226.86000000000001 -1.4607042055913240E-004 + 226.92000000000002 -1.5403175156403231E-004 + 226.98000000000002 -1.6167578084863357E-004 + 227.03999999999996 -1.6899882390601135E-004 + 227.09999999999997 -1.7599766237371916E-004 + 227.15999999999997 -1.8266958298833385E-004 + 227.21999999999997 -1.8901237586865959E-004 + 227.27999999999997 -1.9502430737236822E-004 + 227.33999999999997 -2.0070414766586799E-004 + 227.39999999999998 -2.0605119194097522E-004 + 227.45999999999998 -2.1106520434876515E-004 + 227.51999999999998 -2.1574648912323216E-004 + 227.57999999999998 -2.2009584992328828E-004 + 227.63999999999999 -2.2411459322335602E-004 + 227.69999999999999 -2.2780453853160745E-004 + 227.75999999999999 -2.3116803699383532E-004 + 227.81999999999999 -2.3420786143023373E-004 + 227.88000000000000 -2.3692732315574267E-004 + 227.94000000000000 -2.3933019545870868E-004 + 228.00000000000000 -2.4142071462254848E-004 + 228.06000000000000 -2.4320351506438109E-004 + 228.12000000000000 -2.4468370793274475E-004 + 228.18000000000001 -2.4586675799782268E-004 + 228.24000000000001 -2.4675853132356340E-004 + 228.30000000000001 -2.4736524914178033E-004 + 228.36000000000001 -2.4769346119890383E-004 + 228.42000000000002 -2.4775000699287685E-004 + 228.48000000000002 -2.4754207134021006E-004 + 228.53999999999996 -2.4707707574623492E-004 + 228.59999999999997 -2.4636271743292201E-004 + 228.65999999999997 -2.4540692139244432E-004 + 228.71999999999997 -2.4421782688501280E-004 + 228.77999999999997 -2.4280378669209741E-004 + 228.83999999999997 -2.4117337054551421E-004 + 228.89999999999998 -2.3933529135822403E-004 + 228.95999999999998 -2.3729847341067610E-004 + 229.01999999999998 -2.3507197755218449E-004 + 229.07999999999998 -2.3266501119211075E-004 + 229.13999999999999 -2.3008687731882030E-004 + 229.19999999999999 -2.2734701878711485E-004 + 229.25999999999999 -2.2445493179990835E-004 + 229.31999999999999 -2.2142019109168670E-004 + 229.38000000000000 -2.1825243792940817E-004 + 229.44000000000000 -2.1496130297368572E-004 + 229.50000000000000 -2.1155638800989264E-004 + 229.56000000000000 -2.0804730814141413E-004 + 229.62000000000000 -2.0444359062054562E-004 + 229.68000000000001 -2.0075468439005568E-004 + 229.74000000000001 -1.9698991446393880E-004 + 229.80000000000001 -1.9315851746107260E-004 + 229.86000000000001 -1.8926956321511506E-004 + 229.92000000000002 -1.8533193571028357E-004 + 229.97999999999996 -1.8135436170561937E-004 + 230.03999999999996 -1.7734537024568223E-004 + 230.09999999999997 -1.7331328777119031E-004 + 230.15999999999997 -1.6926621856334562E-004 + 230.21999999999997 -1.6521204055804469E-004 + 230.27999999999997 -1.6115841552636633E-004 + 230.33999999999997 -1.5711275296973956E-004 + 230.39999999999998 -1.5308223564746492E-004 + 230.45999999999998 -1.4907377835352508E-004 + 230.51999999999998 -1.4509404179636226E-004 + 230.57999999999998 -1.4114942190421033E-004 + 230.63999999999999 -1.3724603203822862E-004 + 230.69999999999999 -1.3338972601413754E-004 + 230.75999999999999 -1.2958604248997316E-004 + 230.81999999999999 -1.2584025920657426E-004 + 230.88000000000000 -1.2215732094524745E-004 + 230.94000000000000 -1.1854186427245455E-004 + 231.00000000000000 -1.1499822927329195E-004 + 231.06000000000000 -1.1153041983812143E-004 + 231.12000000000000 -1.0814213735185874E-004 + 231.18000000000001 -1.0483673830727901E-004 + 231.24000000000001 -1.0161726544564764E-004 + 231.30000000000001 -9.8486441423821085E-005 + 231.36000000000001 -9.5446667314798343E-005 + 231.42000000000002 -9.2500016639412774E-005 + 231.47999999999996 -8.9648246896135839E-005 + 231.53999999999996 -8.6892794495528700E-005 + 231.59999999999997 -8.4234808758568911E-005 + 231.65999999999997 -8.1675119393987975E-005 + 231.71999999999997 -7.9214264381659351E-005 + 231.77999999999997 -7.6852489158373938E-005 + 231.83999999999997 -7.4589753185594013E-005 + 231.89999999999998 -7.2425738407771328E-005 + 231.95999999999998 -7.0359873680832903E-005 + 232.01999999999998 -6.8391323705061497E-005 + 232.07999999999998 -6.6518998031048026E-005 + 232.13999999999999 -6.4741581755880620E-005 + 232.19999999999999 -6.3057535684894070E-005 + 232.25999999999999 -6.1465109120625101E-005 + 232.31999999999999 -5.9962351017419286E-005 + 232.38000000000000 -5.8547116189634107E-005 + 232.44000000000000 -5.7217097695417983E-005 + 232.50000000000000 -5.5969817218761668E-005 + 232.56000000000000 -5.4802642671278602E-005 + 232.62000000000000 -5.3712798334774891E-005 + 232.68000000000001 -5.2697376977508922E-005 + 232.74000000000001 -5.1753342518580899E-005 + 232.80000000000001 -5.0877544850282229E-005 + 232.86000000000001 -5.0066728726659905E-005 + 232.92000000000002 -4.9317534514042676E-005 + 232.97999999999996 -4.8626511431832443E-005 + 233.03999999999996 -4.7990133190571724E-005 + 233.09999999999997 -4.7404802044907176E-005 + 233.15999999999997 -4.6866853446919718E-005 + 233.21999999999997 -4.6372585624327449E-005 + 233.27999999999997 -4.5918259784595213E-005 + 233.33999999999997 -4.5500115997663590E-005 + 233.39999999999998 -4.5114395494561080E-005 + 233.45999999999998 -4.4757345201662338E-005 + 233.51999999999998 -4.4425240622426019E-005 + 233.57999999999998 -4.4114397195163300E-005 + 233.63999999999999 -4.3821187240420549E-005 + 233.69999999999999 -4.3542046970235885E-005 + 233.75999999999999 -4.3273492184630031E-005 + 233.81999999999999 -4.3012131879386054E-005 + 233.88000000000000 -4.2754659412511226E-005 + 233.94000000000000 -4.2497879978342124E-005 + 234.00000000000000 -4.2238706983905905E-005 + 234.06000000000000 -4.1974161512128604E-005 + 234.12000000000000 -4.1701378632433877E-005 + 234.18000000000001 -4.1417607913278500E-005 + 234.24000000000001 -4.1120220064384243E-005 + 234.30000000000001 -4.0806696741168383E-005 + 234.36000000000001 -4.0474641532081763E-005 + 234.42000000000002 -4.0121778489337506E-005 + 234.47999999999996 -3.9745957326273911E-005 + 234.53999999999996 -3.9345143682328625E-005 + 234.59999999999997 -3.8917444790121252E-005 + 234.65999999999997 -3.8461095610434429E-005 + 234.71999999999997 -3.7974468804352854E-005 + 234.77999999999997 -3.7456075823511249E-005 + 234.83999999999997 -3.6904589376583146E-005 + 234.89999999999998 -3.6318828138380666E-005 + 234.95999999999998 -3.5697772050309690E-005 + 235.01999999999998 -3.5040565735429467E-005 + 235.07999999999998 -3.4346520002312097E-005 + 235.13999999999999 -3.3615119719123255E-005 + 235.19999999999999 -3.2846020859552296E-005 + 235.25999999999999 -3.2039058945036646E-005 + 235.31999999999999 -3.1194233584975770E-005 + 235.38000000000000 -3.0311717228724886E-005 + 235.44000000000000 -2.9391849302564010E-005 + 235.50000000000000 -2.8435131426246942E-005 + 235.56000000000000 -2.7442217532132023E-005 + 235.62000000000000 -2.6413912225375580E-005 + 235.68000000000001 -2.5351154079681887E-005 + 235.74000000000001 -2.4255013417657611E-005 + 235.80000000000001 -2.3126678148936649E-005 + 235.86000000000001 -2.1967450715775145E-005 + 235.92000000000002 -2.0778729715895660E-005 + 235.97999999999996 -1.9562005971898133E-005 + 236.03999999999996 -1.8318856857725862E-005 + 236.09999999999997 -1.7050940786946946E-005 + 236.15999999999997 -1.5759989385284508E-005 + 236.21999999999997 -1.4447802929090212E-005 + 236.27999999999997 -1.3116255322726867E-005 + 236.33999999999997 -1.1767290628342258E-005 + 236.39999999999998 -1.0402916977296415E-005 + 236.45999999999998 -9.0252198910955164E-006 + 236.51999999999998 -7.6363540624435885E-006 + 236.57999999999998 -6.2385411386401117E-006 + 236.63999999999999 -4.8340795704839838E-006 + 236.69999999999999 -3.4253330959954462E-006 + 236.75999999999999 -2.0147304009822123E-006 + 236.81999999999999 -6.0475643974415039E-007 + 236.88000000000000 8.0205588152858145E-007 + 236.94000000000000 2.2031340012178629E-006 + 237.00000000000000 3.5958848161072205E-006 + 237.06000000000000 4.9777026986971632E-006 + 237.12000000000000 6.3459889380711552E-006 + 237.18000000000001 7.6981654036303757E-006 + 237.24000000000001 9.0316872294531038E-006 + 237.30000000000001 1.0344063113960731E-005 + 237.36000000000001 1.1632856937900344E-005 + 237.42000000000002 1.2895705656840060E-005 + 237.47999999999996 1.4130318710906779E-005 + 237.53999999999996 1.5334484353310300E-005 + 237.59999999999997 1.6506065733573526E-005 + 237.65999999999997 1.7643007567038959E-005 + 237.71999999999997 1.8743320510006759E-005 + 237.77999999999997 1.9805079300088984E-005 + 237.83999999999997 2.0826421228648458E-005 + 237.89999999999998 2.1805533656527980E-005 + 237.95999999999998 2.2740655601641635E-005 + 238.01999999999998 2.3630064288033873E-005 + 238.07999999999998 2.4472087947200709E-005 + 238.13999999999999 2.5265097672684146E-005 + 238.19999999999999 2.6007521590548523E-005 + 238.25999999999999 2.6697839675946844E-005 + 238.31999999999999 2.7334604689101366E-005 + 238.38000000000000 2.7916451341696593E-005 + 238.44000000000000 2.8442101058212223E-005 + 238.50000000000000 2.8910391009482902E-005 + 238.56000000000000 2.9320272042063881E-005 + 238.62000000000000 2.9670823385210503E-005 + 238.68000000000001 2.9961262397587829E-005 + 238.74000000000001 3.0190952127038880E-005 + 238.80000000000001 3.0359401856769519E-005 + 238.86000000000001 3.0466267136705574E-005 + 238.92000000000002 3.0511353161453504E-005 + 238.97999999999996 3.0494600097427022E-005 + 239.03999999999996 3.0416088151652205E-005 + 239.09999999999997 3.0276019554127797E-005 + 239.15999999999997 3.0074713833500431E-005 + 239.21999999999997 2.9812598323286324E-005 + 239.27999999999997 2.9490202754408908E-005 + 239.33999999999997 2.9108144194843901E-005 + 239.39999999999998 2.8667130393376413E-005 + 239.45999999999998 2.8167949703503376E-005 + 239.51999999999998 2.7611473612927529E-005 + 239.57999999999998 2.6998650705865033E-005 + 239.63999999999999 2.6330506895692020E-005 + 239.69999999999999 2.5608155112678801E-005 + 239.75999999999999 2.4832792280564677E-005 + 239.81999999999999 2.4005700412445539E-005 + 239.88000000000000 2.3128257918665334E-005 + 239.94000000000000 2.2201933417652673E-005 + 240.00000000000000 2.1228294185865868E-005 + 240.06000000000000 2.0209006971969032E-005 + 240.12000000000000 1.9145830964995507E-005 + 240.18000000000001 1.8040623103777675E-005 + 240.24000000000001 1.6895334229300757E-005 + 240.30000000000001 1.5712000037866985E-005 + 240.36000000000001 1.4492739150518889E-005 + 240.42000000000002 1.3239745637114789E-005 + 240.47999999999996 1.1955279328171214E-005 + 240.53999999999996 1.0641658474161909E-005 + 240.59999999999997 9.3012488854311967E-006 + 240.65999999999997 7.9364587339241480E-006 + 240.71999999999997 6.5497236093554579E-006 + 240.77999999999997 5.1435019354843621E-006 + 240.83999999999997 3.7202635666448957E-006 + 240.89999999999998 2.2824860355760222E-006 + 240.95999999999998 8.3264493357239429E-007 + 241.01999999999998 -6.2678829337326970E-007 + 241.07999999999998 -2.0933513436783403E-006 + 241.13999999999999 -3.5645918242855142E-006 + 241.19999999999999 -5.0380683318096539E-006 + 241.25999999999999 -6.5113501471797621E-006 + 241.31999999999999 -7.9820151135878350E-006 + 241.38000000000000 -9.4476473588440912E-006 + 241.44000000000000 -1.0905834891184559E-005 + 241.50000000000000 -1.2354167787769968E-005 + 241.56000000000000 -1.3790234947531270E-005 + 241.62000000000000 -1.5211629439432844E-005 + 241.68000000000001 -1.6615939182324287E-005 + 241.74000000000001 -1.8000756342765772E-005 + 241.80000000000001 -1.9363678955878540E-005 + 241.86000000000001 -2.0702315941983485E-005 + 241.92000000000002 -2.2014295601600096E-005 + 241.97999999999996 -2.3297272223364185E-005 + 242.03999999999996 -2.4548931946542005E-005 + 242.09999999999997 -2.5767001604981050E-005 + 242.15999999999997 -2.6949259509855197E-005 + 242.21999999999997 -2.8093537838123291E-005 + 242.27999999999997 -2.9197732422905296E-005 + 242.33999999999997 -3.0259799706612071E-005 + 242.39999999999998 -3.1277762401486573E-005 + 242.45999999999998 -3.2249704424006338E-005 + 242.51999999999998 -3.3173775228584752E-005 + 242.57999999999998 -3.4048173764153250E-005 + 242.63999999999999 -3.4871153791381714E-005 + 242.69999999999999 -3.5641006240781512E-005 + 242.75999999999999 -3.6356056799839784E-005 + 242.81999999999999 -3.7014663538419111E-005 + 242.88000000000000 -3.7615205115891358E-005 + 242.94000000000000 -3.8156073621357144E-005 + 243.00000000000000 -3.8635679282685993E-005 + 243.06000000000000 -3.9052442784134470E-005 + 243.12000000000000 -3.9404797853968905E-005 + 243.18000000000001 -3.9691196174774033E-005 + 243.24000000000001 -3.9910104342736182E-005 + 243.30000000000001 -4.0060006452466781E-005 + 243.36000000000001 -4.0139417301543347E-005 + 243.42000000000002 -4.0146874097433796E-005 + 243.47999999999996 -4.0080947546762911E-005 + 243.53999999999996 -3.9940239041202577E-005 + 243.59999999999997 -3.9723387536352861E-005 + 243.65999999999997 -3.9429052588555341E-005 + 243.71999999999997 -3.9055933433693680E-005 + 243.77999999999997 -3.8602750016083738E-005 + 243.83999999999997 -3.8068248652211243E-005 + 243.89999999999998 -3.7451188954470307E-005 + 243.95999999999998 -3.6750348800315242E-005 + 244.01999999999998 -3.5964519369989476E-005 + 244.07999999999998 -3.5092496123708463E-005 + 244.13999999999999 -3.4133079415108461E-005 + 244.19999999999999 -3.3085077583987174E-005 + 244.25999999999999 -3.1947304639657776E-005 + 244.31999999999999 -3.0718580884997357E-005 + 244.38000000000000 -2.9397736300277554E-005 + 244.44000000000000 -2.7983613484642555E-005 + 244.50000000000000 -2.6475066428852439E-005 + 244.56000000000000 -2.4870965810537269E-005 + 244.62000000000000 -2.3170199428926762E-005 + 244.68000000000001 -2.1371680197879872E-005 + 244.74000000000001 -1.9474342237084216E-005 + 244.80000000000001 -1.7477140534524551E-005 + 244.86000000000001 -1.5379058677275549E-005 + 244.92000000000002 -1.3179105854491558E-005 + 244.97999999999996 -1.0876321839324470E-005 + 245.03999999999996 -8.4697772220297990E-006 + 245.09999999999997 -5.9585804007232019E-006 + 245.15999999999997 -3.3418824549807238E-006 + 245.21999999999997 -6.1888050273822639E-007 + 245.27999999999997 2.2111719855179628E-006 + 245.33999999999997 5.1489573881246030E-006 + 245.39999999999998 8.1950849238185271E-006 + 245.45999999999998 1.1350076730440271E-005 + 245.51999999999998 1.4614365778736601E-005 + 245.57999999999998 1.7988278654077414E-005 + 245.63999999999999 2.1472032145207828E-005 + 245.69999999999999 2.5065723603726425E-005 + 245.75999999999999 2.8769317920994491E-005 + 245.81999999999999 3.2582656976424584E-005 + 245.88000000000000 3.6505435035785570E-005 + 245.94000000000000 4.0537203839186072E-005 + 246.00000000000000 4.4677377111354980E-005 + 246.06000000000000 4.8925208455751809E-005 + 246.12000000000000 5.3279801305785142E-005 + 246.18000000000001 5.7740095538527515E-005 + 246.24000000000001 6.2304861458390684E-005 + 246.30000000000001 6.6972701551796469E-005 + 246.36000000000001 7.1742030150190387E-005 + 246.42000000000002 7.6611065600814388E-005 + 246.47999999999996 8.1577833070108226E-005 + 246.53999999999996 8.6640129327176813E-005 + 246.59999999999997 9.1795547353637158E-005 + 246.65999999999997 9.7041428052988096E-005 + 246.71999999999997 1.0237486000891474E-004 + 246.77999999999997 1.0779269608933374E-004 + 246.83999999999997 1.1329150461864149E-004 + 246.89999999999998 1.1886760862180856E-004 + 246.95999999999998 1.2451704893000131E-004 + 247.01999999999998 1.3023559313032765E-004 + 247.07999999999998 1.3601872321438965E-004 + 247.13999999999999 1.4186165163686715E-004 + 247.19999999999999 1.4775933440232638E-004 + 247.25999999999999 1.5370643015952929E-004 + 247.31999999999999 1.5969733566735420E-004 + 247.38000000000000 1.6572620910622300E-004 + 247.44000000000000 1.7178691240594940E-004 + 247.50000000000000 1.7787306830077234E-004 + 247.56000000000000 1.8397805354345936E-004 + 247.62000000000000 1.9009499790848173E-004 + 247.68000000000001 1.9621677117166145E-004 + 247.74000000000001 2.0233601142044663E-004 + 247.80000000000001 2.0844515137019077E-004 + 247.86000000000001 2.1453636925571962E-004 + 247.92000000000002 2.2060163872107913E-004 + 247.97999999999996 2.2663273022900830E-004 + 248.03999999999996 2.3262120268341958E-004 + 248.09999999999997 2.3855847110820701E-004 + 248.15999999999997 2.4443574460124995E-004 + 248.21999999999997 2.5024408292189813E-004 + 248.27999999999997 2.5597445312503989E-004 + 248.33999999999997 2.6161764975937560E-004 + 248.39999999999998 2.6716436475387876E-004 + 248.45999999999998 2.7260526403671164E-004 + 248.51999999999998 2.7793088782580123E-004 + 248.57999999999998 2.8313174631521741E-004 + 248.63999999999999 2.8819837012716116E-004 + 248.69999999999999 2.9312124269776816E-004 + 248.75999999999999 2.9789089158126583E-004 + 248.81999999999999 3.0249787513847654E-004 + 248.88000000000000 3.0693291049162295E-004 + 248.94000000000000 3.1118671770794979E-004 + 249.00000000000000 3.1525020461711399E-004 + 249.06000000000000 3.1911443860514098E-004 + 249.12000000000000 3.2277067613147682E-004 + 249.18000000000001 3.2621037839358584E-004 + 249.24000000000001 3.2942533493927987E-004 + 249.30000000000001 3.3240751149346402E-004 + 249.36000000000001 3.3514925998961054E-004 + 249.42000000000002 3.3764324440185736E-004 + 249.47999999999996 3.3988244617016446E-004 + 249.53999999999996 3.4186020474148346E-004 + 249.59999999999997 3.4357030541203574E-004 + 249.65999999999997 3.4500693984301409E-004 + 249.71999999999997 3.4616465504261541E-004 + 249.77999999999997 3.4703853006363018E-004 + 249.83999999999997 3.4762401674888038E-004 + 249.89999999999998 3.4791710358242372E-004 + 249.95999999999998 3.4791423925569105E-004 + 250.01999999999998 3.4761241129453892E-004 + 250.07999999999998 3.4700911901797268E-004 + 250.13999999999999 3.4610239539398094E-004 + 250.19999999999999 3.4489089134406885E-004 + 250.25999999999999 3.4337377451251750E-004 + 250.31999999999999 3.4155084403174470E-004 + 250.38000000000000 3.3942250004909868E-004 + 250.44000000000000 3.3698978064826673E-004 + 250.50000000000000 3.3425431459170043E-004 + 250.56000000000000 3.3121836027476975E-004 + 250.62000000000000 3.2788484617644388E-004 + 250.68000000000001 3.2425729461391350E-004 + 250.74000000000001 3.2033980474272775E-004 + 250.80000000000001 3.1613711023507061E-004 + 250.86000000000001 3.1165453072540635E-004 + 250.92000000000002 3.0689795933178479E-004 + 250.97999999999996 3.0187379892274521E-004 + 251.03999999999996 2.9658900537365290E-004 + 251.09999999999997 2.9105105805415303E-004 + 251.15999999999997 2.8526794671930258E-004 + 251.21999999999997 2.7924812810370186E-004 + 251.27999999999997 2.7300049408077930E-004 + 251.33999999999997 2.6653442910522316E-004 + 251.39999999999998 2.5985972797627028E-004 + 251.45999999999998 2.5298656424826982E-004 + 251.51999999999998 2.4592552712686958E-004 + 251.57999999999998 2.3868757342246325E-004 + 251.63999999999999 2.3128398590414547E-004 + 251.69999999999999 2.2372637725334891E-004 + 251.75999999999999 2.1602663662828586E-004 + 251.81999999999999 2.0819688560583491E-004 + 251.88000000000000 2.0024946697918156E-004 + 251.94000000000000 1.9219692202215952E-004 diff --git a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000003.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000003.BXY.semd new file mode 100644 index 00000000..8e6f31b0 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000003.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 -1.3878611807908207E-040 + 11.399999999999999 -4.4180314483820787E-040 + 11.460000000000001 -1.2058609987875974E-040 + 11.519999999999996 9.7159398703450947E-040 + 11.579999999999998 2.9321325863309064E-039 + 11.640000000000001 5.8950461712750650E-039 + 11.699999999999996 9.7380763380319790E-039 + 11.759999999999998 1.4549749591582184E-038 + 11.820000000000000 2.0593590500362335E-038 + 11.879999999999995 2.7724607973613967E-038 + 11.939999999999998 3.5190323197306064E-038 + 12.000000000000000 4.2285927657203287E-038 + 12.059999999999995 4.7279137954487271E-038 + 12.119999999999997 4.8982327231724065E-038 + 12.180000000000000 4.9143047210158395E-038 + 12.239999999999995 4.6752052766513243E-038 + 12.299999999999997 3.4674860798280870E-038 + 12.359999999999999 1.8911692615449188E-038 + 12.419999999999995 6.8833964007681900E-040 + 12.479999999999997 -1.9765468045398348E-038 + 12.539999999999999 -4.1534027249228299E-038 + 12.599999999999994 -6.5975544088128006E-038 + 12.659999999999997 -9.3156120436336587E-038 + 12.719999999999999 -1.1269714538716969E-037 + 12.780000000000001 -1.2187266801376175E-037 + 12.839999999999996 -1.1692663430641086E-037 + 12.899999999999999 -1.0632199962491043E-037 + 12.960000000000001 -8.7987324606921547E-038 + 13.019999999999996 -5.2116095314696596E-038 + 13.079999999999998 -8.7782330058308854E-040 + 13.140000000000001 5.8452900930400482E-038 + 13.199999999999996 1.2428129716871427E-037 + 13.259999999999998 1.9246825435348565E-037 + 13.320000000000000 2.5770990283195619E-037 + 13.379999999999995 3.2327007078393673E-037 + 13.439999999999998 3.7856730571290266E-037 + 13.500000000000000 4.2033797131833665E-037 + 13.559999999999995 4.4327931538321721E-037 + 13.619999999999997 4.4544433897556414E-037 + 13.680000000000000 4.2681032138614686E-037 + 13.739999999999995 3.6875175112035249E-037 + 13.799999999999997 2.7648590787598271E-037 + 13.859999999999999 1.5034620038920731E-037 + 13.919999999999995 -1.0406600707636529E-038 + 13.979999999999997 -2.0255353521607390E-037 + 14.039999999999999 -4.1325392457944713E-037 + 14.099999999999994 -6.2421890292952142E-037 + 14.159999999999997 -8.1879045072597130E-037 + 14.219999999999999 -9.7992847017913231E-037 + 14.280000000000001 -1.0673123811099949E-036 + 14.339999999999996 -1.0839755297987958E-036 + 14.399999999999999 -9.9819718669059914E-037 + 14.460000000000001 -7.9738107379018227E-037 + 14.519999999999996 -4.6692042725156733E-037 + 14.579999999999998 1.8624129878627832E-038 + 14.640000000000001 6.4278600076430268E-037 + 14.699999999999996 1.3733992719589946E-036 + 14.759999999999998 2.1858130171645110E-036 + 14.820000000000000 3.0073446496230496E-036 + 14.879999999999995 3.8670821266083555E-036 + 14.939999999999998 4.7021521278472267E-036 + 15.000000000000000 5.4965131145262857E-036 + 15.059999999999995 6.0855703428909581E-036 + 15.119999999999997 6.3969248011595800E-036 + 15.180000000000000 6.3408465866465622E-036 + 15.239999999999995 5.8709113448353522E-036 + 15.299999999999997 4.8774347671567456E-036 + 15.359999999999999 3.2808953586379278E-036 + 15.419999999999995 1.0153294086589831E-036 + 15.479999999999997 -1.8012288835658694E-036 + 15.539999999999999 -5.0628554700073386E-036 + 15.599999999999994 -8.6151009358351465E-036 + 15.659999999999997 -1.2317087447298518E-035 + 15.719999999999999 -1.5862073700298895E-035 + 15.780000000000001 -1.8966279207909924E-035 + 15.839999999999996 -2.1214714239027272E-035 + 15.899999999999999 -2.2240960907096360E-035 + 15.960000000000001 -2.1677525300669622E-035 + 16.019999999999996 -1.9248921820653349E-035 + 16.079999999999998 -1.4819336528514054E-035 + 16.140000000000001 -8.2587237988981694E-036 + 16.200000000000003 6.6464525596258775E-037 + 16.259999999999991 1.1744112558594932E-035 + 16.319999999999993 2.4712415169359864E-035 + 16.379999999999995 3.9106017963832990E-035 + 16.439999999999998 5.4493669156273344E-035 + 16.500000000000000 7.0046136532049175E-035 + 16.560000000000002 8.4829446336917361E-035 + 16.620000000000005 9.7798150604350486E-035 + 16.679999999999993 1.0775601198718680E-034 + 16.739999999999995 1.1349989014517211E-034 + 16.799999999999997 1.1386602344064050E-034 + 16.859999999999999 1.0771810421877267E-034 + 16.920000000000002 9.4245180302270150E-035 + 16.980000000000004 7.2820255387571873E-035 + 17.039999999999992 4.3190617142408298E-035 + 17.099999999999994 5.5601479660024505E-036 + 17.159999999999997 -3.9325740043698902E-035 + 17.219999999999999 -9.0131997711190810E-035 + 17.280000000000001 -1.4492160129176684E-034 + 17.340000000000003 -2.0115581718046329E-034 + 17.399999999999991 -2.5565774755053934E-034 + 17.459999999999994 -3.0482844221660621E-034 + 17.519999999999996 -3.4461850632590630E-034 + 17.579999999999998 -3.7079270344277866E-034 + 17.640000000000001 -3.7906635528028660E-034 + 17.700000000000003 -3.6557311416933383E-034 + 17.759999999999991 -3.2700640344622220E-034 + 17.819999999999993 -2.6088958015565158E-034 + 17.879999999999995 -1.6614426602099281E-034 + 17.939999999999998 -4.3335158894519674E-035 + 18.000000000000000 1.0521589283683903E-034 + 18.060000000000002 2.7519394093690213E-034 + 18.120000000000005 4.5987822263925812E-034 + 18.179999999999993 6.5068769850993309E-034 + 18.239999999999995 8.3686216783174846E-034 + 18.299999999999997 1.0056812003230978E-033 + 18.359999999999999 1.1432186194218253E-033 + 18.420000000000002 1.2349050105277288E-033 + 18.480000000000004 1.2661671710453352E-033 + 18.539999999999992 1.2235703149741423E-033 + 18.599999999999994 1.0956671677682784E-033 + 18.659999999999997 8.7431970260478679E-034 + 18.719999999999999 5.5577892691338199E-034 + 18.780000000000001 1.4177720860691463E-034 + 18.840000000000003 -3.5948473379349199E-034 + 18.899999999999991 -9.3259216770566507E-034 + 18.959999999999994 -1.5543728162974018E-033 + 19.019999999999996 -2.1939238194494360E-033 + 19.079999999999998 -2.8130319585517426E-033 + 19.140000000000001 -3.3670962081022042E-033 + 19.200000000000003 -3.8066911838272315E-033 + 19.259999999999991 -4.0798311147218783E-033 + 19.319999999999993 -4.1346906722802992E-033 + 19.379999999999995 -3.9230304406574132E-033 + 19.439999999999998 -3.4039624961043946E-033 + 19.500000000000000 -2.5481361957774665E-033 + 19.560000000000002 -1.3419842324217532E-033 + 19.620000000000005 2.0811811109384464E-034 + 19.679999999999993 2.0721078481274085E-033 + 19.739999999999995 4.1932177353483970E-033 + 19.799999999999997 6.4859751710898576E-033 + 19.859999999999999 8.8357323791035113E-033 + 19.920000000000002 1.1099441859456814E-032 + 19.980000000000004 1.3109098504545054E-032 + 20.039999999999992 1.4676936848175126E-032 + 20.099999999999994 1.5603094460286918E-032 + 20.159999999999997 1.5685630040440933E-032 + 20.219999999999999 1.4732716191070706E-032 + 20.280000000000001 1.2576968700216984E-032 + 20.340000000000003 9.0909407320359212E-033 + 20.399999999999991 4.2037541187973069E-033 + 20.459999999999994 -2.0826828327181543E-033 + 20.519999999999996 -9.6778929672988898E-033 + 20.579999999999998 -1.8389537868276285E-032 + 20.640000000000001 -2.7913401686659731E-032 + 20.700000000000003 -3.7827981436069610E-032 + 20.759999999999991 -4.7595228053719945E-032 + 20.819999999999993 -5.6568096462953266E-032 + 20.879999999999995 -6.4006452770183289E-032 + 20.939999999999998 -6.9101806723053009E-032 + 21.000000000000000 -7.1011290301123666E-032 + 21.060000000000002 -6.8900804747199376E-032 + 21.120000000000005 -6.1996658177819528E-032 + 21.179999999999993 -4.9644484608456380E-032 + 21.239999999999995 -3.1373422927456289E-032 + 21.299999999999997 -6.9630043261439368E-033 + 21.359999999999999 2.3490602916741244E-032 + 21.420000000000002 5.9512942319076577E-032 + 21.480000000000004 1.0019865569283551E-031 + 21.539999999999992 1.4417273836268979E-031 + 21.599999999999994 1.8957077677995713E-031 + 21.659999999999997 2.3404293629042768E-031 + 21.719999999999999 2.7478647072342255E-031 + 21.780000000000001 3.0861061678484648E-031 + 21.840000000000003 3.3203671538244023E-031 + 21.899999999999991 3.4143499472494888E-031 + 21.959999999999994 3.3319792109394370E-031 + 22.019999999999996 3.0394749943313261E-031 + 22.079999999999998 2.5077223703143514E-031 + 22.140000000000001 1.7148626547411846E-031 + 22.200000000000003 6.4900860771643813E-032 + 22.259999999999991 -6.8903978310816800E-032 + 22.319999999999993 -2.2832272361229715E-031 + 22.379999999999995 -4.0999916746798883E-031 + 22.439999999999998 -6.0865154484078318E-031 + 22.500000000000000 -8.1696685720899325E-031 + 22.560000000000002 -1.0255839997601761E-030 + 22.619999999999990 -1.2231840800342971E-030 + 22.679999999999993 -1.3967033715214331E-030 + 22.739999999999995 -1.5316818336836111E-030 + 22.799999999999997 -1.6127552048772951E-030 + 22.859999999999999 -1.6242917974207344E-030 + 22.920000000000002 -1.5511683764665470E-030 + 22.980000000000004 -1.3796727488630046E-030 + 23.039999999999992 -1.0985062026566903E-030 + 23.099999999999994 -6.9985729961105611E-031 + 23.159999999999997 -1.8050121002966786E-031 + 23.219999999999999 4.5712616579104434E-031 + 23.280000000000001 1.2039396831790651E-030 + 23.340000000000003 2.0433694773687896E-030 + 23.399999999999991 2.9507503789306192E-030 + 23.459999999999994 3.8930098503097031E-030 + 23.519999999999996 4.8287251707259007E-030 + 23.579999999999998 5.7086192915235583E-030 + 23.640000000000001 6.4765467618937441E-030 + 23.700000000000003 7.0710198250546701E-030 + 23.759999999999991 7.4272865393109956E-030 + 23.819999999999993 7.4799681348381796E-030 + 23.879999999999995 7.1662242311802016E-030 + 23.939999999999998 6.4293808487355543E-030 + 24.000000000000000 5.2229338260191156E-030 + 24.060000000000002 3.5147876735038853E-030 + 24.119999999999990 1.2915727369396319E-030 + 24.179999999999993 -1.4371662251695425E-030 + 24.239999999999995 -4.6351325217460253E-030 + 24.299999999999997 -8.2360466808782014E-030 + 24.359999999999999 -1.2141292111416411E-029 + 24.420000000000002 -1.6218702760650508E-029 + 24.480000000000004 -2.0302760034623486E-029 + 24.539999999999992 -2.4196447555725546E-029 + 24.599999999999994 -2.7674961303148154E-029 + 24.659999999999997 -3.0491431957206682E-029 + 24.719999999999999 -3.2384736769733137E-029 + 24.780000000000001 -3.3089411857117691E-029 + 24.840000000000003 -3.2347535161157679E-029 + 24.899999999999991 -2.9922390411315695E-029 + 24.959999999999994 -2.5613560651731706E-029 + 25.019999999999996 -1.9272984857095573E-029 + 25.079999999999998 -1.0821398097892123E-029 + 25.140000000000001 -2.6443385634576616E-031 + 25.200000000000003 1.2292401862637566E-029 + 25.259999999999991 2.6630811487183445E-029 + 25.319999999999993 4.2409780054384879E-029 + 25.379999999999995 5.9159627868481791E-029 + 25.439999999999998 7.6280991587257879E-029 + 25.500000000000000 9.3049640686736042E-029 + 25.560000000000002 1.0862788496176945E-028 + 25.619999999999990 1.2208319722775976E-028 + 25.679999999999993 1.3241439514354447E-028 + 25.739999999999995 1.3858546205031616E-028 + 25.799999999999997 1.3956675655076859E-028 + 25.859999999999999 1.3438304036448422E-028 + 25.920000000000002 1.2216714117038419E-028 + 25.980000000000004 1.0221792025636137E-028 + 26.039999999999992 7.4060507870791210E-029 + 26.099999999999994 3.7506607001775297E-029 + 26.159999999999997 -7.2879833730106099E-030 + 26.219999999999999 -5.9771572000924972E-029 + 26.280000000000001 -1.1895380500825878E-028 + 26.340000000000003 -1.8337526707395437E-028 + 26.399999999999991 -2.5109292905647046E-028 + 26.459999999999994 -3.1968462418521535E-028 + 26.519999999999996 -3.8627549561987159E-028 + 26.579999999999998 -4.4758871297081160E-028 + 26.640000000000001 -5.0002236281473237E-028 + 26.700000000000003 -5.3975317463003132E-028 + 26.759999999999991 -5.6286700832963778E-028 + 26.819999999999993 -5.6551450855801204E-028 + 26.879999999999995 -5.4408943616409305E-028 + 26.939999999999998 -4.9542537502217355E-028 + 27.000000000000000 -4.1700493207800112E-028 + 27.060000000000002 -3.0717519871905774E-028 + 27.119999999999990 -1.6536001389624640E-028 + 27.179999999999993 7.7397797512579828E-030 + 27.239999999999995 2.0996898478105784E-028 + 27.299999999999997 4.3757456790363391E-028 + 27.359999999999999 6.8510770100735779E-028 + 27.420000000000002 9.4538271599008106E-028 + 27.480000000000004 1.2095032022930900E-027 + 27.539999999999992 1.4669647433560466E-027 + 27.599999999999994 1.7058420667484599E-027 + 27.659999999999997 1.9130652231810057E-027 + 27.719999999999999 2.0747868760556358E-027 + 27.780000000000001 2.1768397016918314E-027 + 27.840000000000003 2.2052775433502425E-027 + 27.899999999999991 2.1469917397857365E-027 + 27.959999999999994 1.9903866487031716E-027 + 28.019999999999996 1.7260959743257482E-027 + 28.079999999999998 1.3477166570578032E-027 + 28.140000000000001 8.5253171643364825E-028 + 28.200000000000003 2.4219067073398863E-028 + 28.259999999999991 -4.7668661199272589E-028 + 28.319999999999993 -1.2920191301391662E-027 + 28.379999999999995 -2.1859233503270193E-027 + 28.439999999999998 -3.1345584890565178E-027 + 28.500000000000000 -4.1081904981889728E-027 + 28.560000000000002 -5.0715058174416773E-027 + 28.619999999999990 -5.9841959503923196E-027 + 28.679999999999993 -6.8018329832477523E-027 + 28.739999999999995 -7.4770363617174217E-027 + 28.799999999999997 -7.9609316223634403E-027 + 28.859999999999999 -8.2048805186492698E-027 + 28.920000000000002 -8.1624536749446206E-027 + 28.980000000000004 -7.7915980777394360E-027 + 29.039999999999992 -7.0569457067017603E-027 + 29.099999999999994 -5.9321850457418849E-027 + 29.159999999999997 -4.4024155524071212E-027 + 29.219999999999999 -2.4663843719717162E-027 + 29.280000000000001 -1.3850577307766259E-028 + 29.340000000000003 2.5494534855965880E-027 + 29.399999999999991 5.5471279313959911E-027 + 29.459999999999994 8.7848599221027178E-027 + 29.519999999999996 1.2173659037715403E-026 + 29.579999999999998 1.5605905321628644E-026 + 29.640000000000001 1.8956872623566546E-026 + 29.700000000000003 2.2087113019064927E-026 + 29.759999999999991 2.4845740532061203E-026 + 29.819999999999993 2.7074589098656719E-026 + 29.879999999999995 2.8613216283394972E-026 + 29.939999999999998 2.9304655980552232E-026 + 30.000000000000000 2.9001817934906540E-026 + 30.060000000000002 2.7574347011995830E-026 + 30.119999999999990 2.4915766915076578E-026 + 30.179999999999993 2.0950654768719088E-026 + 30.239999999999995 1.5641600569013876E-026 + 30.299999999999997 8.9956256274883232E-027 + 30.359999999999999 1.0698007488078885E-027 + 30.420000000000002 -8.0242959865879321E-027 + 30.480000000000004 -1.8117545602077583E-026 + 30.539999999999992 -2.8981996744947599E-026 + 30.599999999999994 -4.0331566291422723E-026 + 30.659999999999997 -5.1824940918801031E-026 + 30.719999999999999 -6.3070841146084120E-026 + 30.780000000000001 -7.3635728841959560E-026 + 30.840000000000003 -8.3053969160568388E-026 + 30.899999999999991 -9.0840359560008846E-026 + 30.959999999999994 -9.6504824717139250E-026 + 31.019999999999996 -9.9569069670762385E-026 + 31.079999999999998 -9.9584675584896988E-026 + 31.140000000000001 -9.6152315524304153E-026 + 31.200000000000003 -8.8941402063870156E-026 + 31.259999999999991 -7.7709606733411937E-026 + 31.319999999999993 -6.2321482337668519E-026 + 31.379999999999995 -4.2765535353031667E-026 + 31.439999999999998 -1.9168888295107974E-026 + 31.500000000000000 8.1911011132066517E-027 + 31.560000000000002 3.8879024217201142E-026 + 31.619999999999990 7.2298118244719634E-026 + 31.679999999999993 1.0769178471521136E-025 + 31.739999999999995 1.4415064101907472E-025 + 31.799999999999997 1.8062515451108625E-025 + 31.859999999999999 2.1594397068961298E-025 + 31.920000000000002 2.4883798970875799E-025 + 31.980000000000004 2.7796969523285190E-025 + 32.039999999999992 3.0196738784746386E-025 + 32.099999999999994 3.1946364894228372E-025 + 32.159999999999997 3.2913702497161493E-025 + 32.219999999999999 3.2975611699395757E-025 + 32.280000000000001 3.2022479461539298E-025 + 32.340000000000003 2.9962717419552163E-025 + 32.399999999999991 2.6727142719632067E-025 + 32.459999999999994 2.2273073392342102E-025 + 32.519999999999996 1.6588024134492339E-025 + 32.579999999999998 9.6928818477380615E-026 + 32.640000000000001 1.6444641922232351E-026 + 32.700000000000003 -7.4626693867974262E-026 + 32.759999999999991 -1.7495174597887283E-025 + 32.819999999999993 -2.8280748963287573E-025 + 32.879999999999995 -3.9608828038990273E-025 + 32.939999999999998 -5.1232180830966371E-025 + 33.000000000000000 -6.2869402946711445E-025 + 33.060000000000002 -7.4208241983752254E-025 + 33.119999999999990 -8.4909790798124168E-025 + 33.179999999999993 -9.4613422478772133E-025 + 33.239999999999995 -1.0294245130065993E-024 + 33.299999999999997 -1.0951053066537445E-024 + 33.359999999999999 -1.1392864870345695E-024 + 33.420000000000002 -1.1581275750667687E-024 + 33.480000000000004 -1.1479204442688742E-024 + 33.539999999999992 -1.1051776439227928E-024 + 33.599999999999994 -1.0267276324808072E-024 + 33.659999999999997 -9.0981631177435992E-025 + 33.719999999999999 -7.5221585025698791E-025 + 33.780000000000001 -5.5234051553685142E-025 + 33.840000000000003 -3.0936985215761082E-025 + 33.899999999999991 -2.3379368231995052E-026 + 33.959999999999994 3.0452332819509740E-025 + 34.019999999999996 6.7205701071928895E-025 + 34.079999999999998 1.0756231595259931E-024 + 34.140000000000001 1.5101646438446682E-024 + 34.200000000000003 1.9690299204916366E-024 + 34.259999999999991 2.4438506906296664E-024 + 34.319999999999993 2.9244396434206906E-024 + 34.379999999999995 3.3987184972861447E-024 + 34.439999999999998 3.8526881077405304E-024 + 34.500000000000000 4.2704494883585080E-024 + 34.560000000000002 4.6342919008310898E-024 + 34.619999999999990 4.9248587924552021E-024 + 34.679999999999993 5.1214083972303858E-024 + 34.739999999999995 5.2021758307593647E-024 + 34.799999999999997 5.1448509304053957E-024 + 34.859999999999999 4.9271823335274087E-024 + 34.920000000000002 4.5277047225637519E-024 + 34.980000000000004 3.9265973193774968E-024 + 35.039999999999992 3.1066622158554854E-024 + 35.099999999999994 2.0544160227695226E-024 + 35.159999999999997 7.6126983312364460E-025 + 35.219999999999999 -7.7522656962306251E-025 + 35.280000000000001 -2.5501091513417801E-024 + 35.340000000000003 -4.5497409329237474E-024 + 35.399999999999991 -6.7506233343541414E-024 + 35.459999999999994 -9.1183299586963014E-024 + 35.519999999999996 -1.1606632857854914E-023 + 35.579999999999998 -1.4156895401823457E-023 + 35.640000000000001 -1.6697800897951629E-023 + 35.700000000000003 -1.9145489326529146E-023 + 35.759999999999991 -2.1404176575910156E-023 + 35.819999999999993 -2.3367323290387796E-023 + 35.879999999999995 -2.4919405149964872E-023 + 35.939999999999998 -2.5938323775508884E-023 + 36.000000000000000 -2.6298491199021894E-023 + 36.060000000000002 -2.5874586234186597E-023 + 36.119999999999990 -2.4545962656703882E-023 + 36.179999999999993 -2.2201650211222254E-023 + 36.239999999999995 -1.8745889456527313E-023 + 36.299999999999997 -1.4104065234810298E-023 + 36.359999999999999 -8.2289016766049653E-024 + 36.420000000000002 -1.1067221440826903E-024 + 36.479999999999990 7.2363953685422863E-024 + 36.539999999999992 1.6728873329639715E-023 + 36.599999999999994 2.7248509398532922E-023 + 36.659999999999997 3.8618304130710124E-023 + 36.719999999999999 5.0603491837058903E-023 + 36.780000000000001 6.2910126254767751E-023 + 36.840000000000003 7.5185471910677684E-023 + 36.899999999999991 8.7020492675323144E-023 + 36.959999999999994 9.7954681983838815E-023 + 37.019999999999996 1.0748340172071593E-022 + 37.079999999999998 1.1506792783771828E-022 + 37.140000000000001 1.2014818417695463E-022 + 37.200000000000003 1.2215821989508978E-022 + 37.259999999999991 1.2054424978033093E-022 + 37.319999999999993 1.1478509624895507E-022 + 37.379999999999995 1.0441466299072667E-022 + 37.439999999999998 8.9045961398065656E-023 + 37.500000000000000 6.8396158575774364E-023 + 37.560000000000002 4.2311926396106025E-023 + 37.619999999999990 1.0794334227363329E-023 + 37.679999999999993 -2.5977741519163978E-023 + 37.739999999999995 -6.7626547787260581E-023 + 37.799999999999997 -1.1355774272077984E-022 + 37.859999999999999 -1.6294741489821296E-022 + 37.920000000000002 -2.1473449642225711E-022 + 37.979999999999990 -2.6762000738396632E-022 + 38.039999999999992 -3.2007389578869221E-022 + 38.099999999999994 -3.7035052538464262E-022 + 38.159999999999997 -4.1651334167497155E-022 + 38.219999999999999 -4.5646945859146111E-022 + 38.280000000000001 -4.8801422729075234E-022 + 38.340000000000003 -5.0888599700476567E-022 + 38.399999999999991 -5.1683052828238151E-022 + 38.459999999999994 -5.0967457686816095E-022 + 38.519999999999996 -4.8540744903176166E-022 + 38.579999999999998 -4.4226872968471871E-022 + 38.640000000000001 -3.7884110695824490E-022 + 38.700000000000003 -2.9414489171422498E-022 + 38.759999999999991 -1.8773230096722797E-022 + 38.819999999999993 -5.9778176521452510E-023 + 38.879999999999995 8.8836469175338573E-023 + 38.939999999999998 2.5645128233704186E-022 + 39.000000000000000 4.4056808040908879E-022 + 39.060000000000002 6.3781055159217221E-022 + 39.119999999999990 8.4390643198761864E-022 + 39.179999999999993 1.0536949632223922E-021 + 39.239999999999995 1.2611641208810767E-021 + 39.299999999999997 1.4595195287445569E-021 + 39.359999999999999 1.6412882542700521E-021 + 39.420000000000002 1.7984576433679687E-021 + 39.479999999999990 1.9226515280778767E-021 + 39.539999999999992 2.0053417364928764E-021 + 39.599999999999994 2.0380939826528787E-021 + 39.659999999999997 2.0128450936899963E-021 + 39.719999999999999 1.9222069907550365E-021 + 39.780000000000001 1.7597917995498003E-021 + 39.840000000000003 1.5205499418850802E-021 + 39.899999999999991 1.2011143373391105E-021 + 39.959999999999994 8.0013746079239309E-022 + 40.019999999999996 3.1861337106329165E-022 + 40.079999999999998 -2.3982954912893192E-022 + 40.140000000000001 -8.6867918456820714E-022 + 40.200000000000003 -1.5583452352186401E-021 + 40.259999999999991 -2.2960337814984179E-021 + 40.319999999999993 -3.0657072380352557E-021 + 40.379999999999995 -3.8481373666271021E-021 + 40.439999999999998 -4.6210676964888500E-021 + 40.500000000000000 -5.3594924790520774E-021 + 40.560000000000002 -6.0360586242272559E-021 + 40.619999999999990 -6.6215974930642933E-021 + 40.679999999999993 -7.0857845176489375E-021 + 40.739999999999995 -7.3979267019259987E-021 + 40.799999999999997 -7.5278673746011627E-021 + 40.859999999999999 -7.4469963735243406E-021 + 40.920000000000002 -7.1293516315168917E-021 + 40.979999999999990 -6.5527842161296939E-021 + 41.039999999999992 -5.7001617860600292E-021 + 41.099999999999994 -4.5605792715228947E-021 + 41.159999999999997 -3.1305352444364928E-021 + 41.219999999999999 -1.4150362368544868E-021 + 41.280000000000001 5.7141732962256625E-022 + 41.340000000000003 2.8040132683212217E-021 + 41.399999999999991 5.2470177193012637E-021 + 41.459999999999994 7.8534359920479748E-021 + 41.519999999999996 1.0564972154586150E-020 + 41.579999999999998 1.3312338782687107E-020 + 41.640000000000001 1.6015958009368399E-020 + 41.700000000000003 1.8587077393875710E-020 + 41.759999999999991 2.0929310659340734E-020 + 41.819999999999993 2.2940638247370570E-020 + 41.879999999999995 2.4515832784225696E-020 + 41.939999999999998 2.5549311098557409E-020 + 42.000000000000000 2.5938366088340549E-020 + 42.060000000000002 2.5586741132985933E-020 + 42.119999999999990 2.4408453302729873E-020 + 42.179999999999993 2.2331805393672813E-020 + 42.239999999999995 1.9303464022084104E-020 + 42.299999999999997 1.5292501702691028E-020 + 42.359999999999999 1.0294246954682832E-020 + 42.420000000000002 4.3338343769552075E-021 + 42.479999999999990 -2.5307459114859986E-021 + 42.539999999999992 -1.0206193956041167E-020 + 42.599999999999994 -1.8562256683171322E-020 + 42.659999999999997 -2.7431006435361915E-020 + 42.719999999999999 -3.6607193651650276E-020 + 42.780000000000001 -4.5849801923944982E-020 + 42.840000000000003 -5.4884893763516601E-020 + 42.899999999999991 -6.3409844781020398E-020 + 42.959999999999994 -7.1098978384443024E-020 + 43.019999999999996 -7.7610621781585465E-020 + 43.079999999999998 -8.2595558944249623E-020 + 43.140000000000001 -8.5706754213330513E-020 + 43.200000000000003 -8.6610251794930322E-020 + 43.259999999999991 -8.4997048740618151E-020 + 43.319999999999993 -8.0595697993046586E-020 + 43.379999999999995 -7.3185371593424275E-020 + 43.439999999999998 -6.2609062975036568E-020 + 43.500000000000000 -4.8786511616894272E-020 + 43.560000000000002 -3.1726488792139687E-020 + 43.619999999999990 -1.1537972389645051E-020 + 43.679999999999993 1.1560229498547652E-020 + 43.739999999999995 3.7231888904170511E-020 + 43.799999999999997 6.5018242743167471E-020 + 43.859999999999999 9.4335808249587586E-020 + 43.920000000000002 1.2447760786572944E-019 + 43.979999999999990 1.5461804418218498E-019 + 44.039999999999992 1.8382186873890681E-019 + 44.099999999999994 2.1105739601417829E-019 + 44.159999999999997 2.3521421724023805E-019 + 44.219999999999999 2.5512535991057147E-019 + 44.280000000000001 2.6959387394257096E-019 + 44.340000000000003 2.7742363526822149E-019 + 44.399999999999991 2.7745410771392592E-019 + 44.459999999999994 2.6859849332489689E-019 + 44.519999999999996 2.4988479231072500E-019 + 44.579999999999998 2.2049885965395526E-019 + 44.640000000000001 1.7982862606036215E-019 + 44.700000000000003 1.2750851258965646E-019 + 44.759999999999991 6.3462758067086086E-020 + 44.819999999999993 -1.2053661040641217E-020 + 44.879999999999995 -9.8417816369507208E-020 + 44.939999999999998 -1.9460673338150713E-019 + 45.000000000000000 -2.9917217878466955E-019 + 45.060000000000002 -4.1022356705745287E-019 + 45.119999999999990 -5.2542067767797869E-019 + 45.179999999999993 -6.4197765274828256E-019 + 45.239999999999995 -7.5667942822434642E-019 + 45.299999999999997 -8.6591216799840785E-019 + 45.359999999999999 -9.6570801228090697E-019 + 45.420000000000002 -1.0518058643046104E-018 + 45.479999999999990 -1.1197275285967012E-018 + 45.539999999999992 -1.1648703007804844E-018 + 45.599999999999994 -1.1826148836668365E-018 + 45.659999999999997 -1.1684481775624037E-018 + 45.719999999999999 -1.1180998545498450E-018 + 45.780000000000001 -1.0276905011638735E-018 + 45.840000000000003 -8.9388911470181053E-019 + 45.899999999999991 -7.1407709959211886E-019 + 45.959999999999994 -4.8651564936410190E-019 + 46.019999999999996 -2.1051131774845696E-019 + 46.079999999999998 1.1342294891969364E-019 + 46.140000000000001 4.8341814173709588E-019 + 46.200000000000003 8.9611461216493665E-019 + 46.259999999999991 1.3465496730473533E-018 + 46.319999999999993 1.8280717203449254E-018 + 46.379999999999995 2.3322884960462801E-018 + 46.439999999999998 2.8490535071623706E-018 + 46.500000000000000 3.3664967180582364E-018 + 46.560000000000002 3.8711071190766684E-018 + 46.619999999999990 4.3478674105288578E-018 + 46.679999999999993 4.7804479044505518E-018 + 46.739999999999995 5.1514610667617657E-018 + 46.799999999999997 5.4427802359298638E-018 + 46.859999999999999 5.6359209614795113E-018 + 46.920000000000002 5.7124840980340215E-018 + 46.979999999999990 5.6546613957596395E-018 + 47.039999999999992 5.4457932073926655E-018 + 47.099999999999994 5.0709797186273836E-018 + 47.159999999999997 4.5177320701485485E-018 + 47.219999999999999 3.7766607877788226E-018 + 47.280000000000001 2.8421757300396814E-018 + 47.340000000000003 1.7132104663541088E-018 + 47.399999999999991 3.9392324365644831E-019 + 47.459999999999994 -1.1056067895266157E-018 + 47.519999999999996 -2.7687317745890048E-018 + 47.579999999999998 -4.5716447524630970E-018 + 47.640000000000001 -6.4828550019537573E-018 + 47.700000000000003 -8.4627633565733264E-018 + 47.759999999999991 -1.0463346665597729E-017 + 47.819999999999993 -1.2427977085628153E-017 + 47.879999999999995 -1.4291390914518524E-017 + 47.939999999999998 -1.5979801238358103E-017 + 48.000000000000000 -1.7411236192874389E-017 + 48.060000000000002 -1.8496027408759887E-017 + 48.119999999999990 -1.9137529142357353E-017 + 48.179999999999993 -1.9233053578484329E-017 + 48.239999999999995 -1.8675017644665648E-017 + 48.299999999999997 -1.7352306629320366E-017 + 48.359999999999999 -1.5151898133784555E-017 + 48.420000000000002 -1.1960674642993749E-017 + 48.479999999999990 -7.6674492628356998E-018 + 48.539999999999992 -2.1652250273187600E-018 + 48.599999999999994 4.6463809423055124E-018 + 48.659999999999997 1.2858589757478697E-017 + 48.719999999999999 2.2550688932885642E-017 + 48.780000000000001 3.3787243510949181E-017 + 48.840000000000003 4.6615199609754635E-017 + 48.899999999999991 6.1061008888596702E-017 + 48.959999999999994 7.7127692246722406E-017 + 49.019999999999996 9.4792110044524219E-017 + 49.079999999999998 1.1400233654902364E-016 + 49.140000000000001 1.3467531154211626E-016 + 49.200000000000003 1.5669467552043558E-016 + 49.259999999999991 1.7990920956710446E-016 + 49.319999999999993 2.0413161707029845E-016 + 49.379999999999995 2.2913802082802511E-016 + 49.439999999999998 2.5466802531267539E-016 + 49.500000000000000 2.8042581023026383E-016 + 49.560000000000002 3.0608205809271548E-016 + 49.619999999999990 3.3127683456305592E-016 + 49.679999999999993 3.5562396844816606E-016 + 49.739999999999995 3.7871631521686836E-016 + 49.799999999999997 4.0013258979846890E-016 + 49.859999999999999 4.1944588451376753E-016 + 49.920000000000002 4.3623341667707684E-016 + 49.979999999999990 4.5008800928015205E-016 + 50.039999999999992 4.6063111866044737E-016 + 50.099999999999994 4.6752724250714060E-016 + 50.159999999999997 4.7050029269543970E-016 + 50.219999999999999 4.6935098588675740E-016 + 50.280000000000001 4.6397572165626788E-016 + 50.340000000000003 4.5438554730413854E-016 + 50.399999999999991 4.4072684900458439E-016 + 50.459999999999994 4.2330167604860799E-016 + 50.519999999999996 4.0258766859454128E-016 + 50.579999999999998 3.7925761090073697E-016 + 50.640000000000001 3.5419675290558288E-016 + 50.700000000000003 3.2851864288460924E-016 + 50.759999999999991 3.0357811342210566E-016 + 50.819999999999993 2.8097795169923642E-016 + 50.879999999999995 2.6257204207386771E-016 + 50.939999999999998 2.5046466218495541E-016 + 51.000000000000000 2.4699735651431342E-016 + 51.060000000000002 2.5473228609316605E-016 + 51.119999999999990 2.7642539757920615E-016 + 51.179999999999993 3.1498420014634284E-016 + 51.239999999999995 3.7342163580981351E-016 + 51.299999999999997 4.5479147246534709E-016 + 51.359999999999999 5.6211094832048082E-016 + 51.420000000000002 6.9826875168982558E-016 + 51.479999999999990 8.6592135747785286E-016 + 51.539999999999992 1.0673677623853012E-015 + 51.599999999999994 1.3044116832617029E-015 + 51.659999999999997 1.5782020030168070E-015 + 51.719999999999999 1.8890595607774315E-015 + 51.780000000000001 2.2362871931079447E-015 + 51.840000000000003 2.6179594689212001E-015 + 51.899999999999991 3.0306995204764848E-015 + 51.959999999999994 3.4694311776312955E-015 + 52.019999999999996 3.9271176790534886E-015 + 52.079999999999998 4.3944974726385792E-015 + 52.140000000000001 4.8597731944969228E-015 + 52.200000000000003 5.3083189247923959E-015 + 52.259999999999991 5.7223556851292219E-015 + 52.319999999999993 6.0806200057693569E-015 + 52.379999999999995 6.3580030488204832E-015 + 52.439999999999998 6.5252074731071557E-015 + 52.500000000000000 6.5483664583502144E-015 + 52.560000000000002 6.3886801836540616E-015 + 52.619999999999990 6.0020112654626358E-015 + 52.679999999999993 5.3384970039566092E-015 + 52.739999999999995 4.3421227817038630E-015 + 52.799999999999997 2.9503707548031024E-015 + 52.859999999999999 1.0937274615371383E-015 + 52.920000000000002 -1.3046881195834773E-015 + 52.979999999999990 -4.3295984188801412E-015 + 53.039999999999992 -8.0740296263379223E-015 + 53.099999999999994 -1.2639743327490882E-014 + 53.159999999999997 -1.8137728804189575E-014 + 53.219999999999999 -2.4688785360196200E-014 + 53.280000000000001 -3.2423970936152237E-014 + 53.339999999999989 -4.1485303437334453E-014 + 53.399999999999991 -5.2026327280961046E-014 + 53.459999999999994 -6.4212928290141187E-014 + 53.519999999999996 -7.8224123746190058E-014 + 53.579999999999998 -9.4253051969727162E-014 + 53.640000000000001 -1.1250801530459121E-013 + 53.700000000000003 -1.3321374274734167E-013 + 53.759999999999991 -1.5661304185893533E-013 + 53.819999999999993 -1.8296813118026776E-013 + 53.879999999999995 -2.1256297504973108E-013 + 53.939999999999998 -2.4570563479952033E-013 + 54.000000000000000 -2.8273098144711532E-013 + 54.060000000000002 -3.2400353050568003E-013 + 54.119999999999990 -3.6992196344742389E-013 + 54.179999999999993 -4.2092292322338872E-013 + 54.239999999999995 -4.7748558844415851E-013 + 54.299999999999997 -5.4013841552912505E-013 + 54.359999999999999 -6.0946410287151272E-013 + 54.420000000000002 -6.8610827261124527E-013 + 54.479999999999990 -7.7078733759995554E-013 + 54.539999999999992 -8.6429754062351907E-013 + 54.599999999999994 -9.6752633464016553E-013 + 54.659999999999997 -1.0814621011938170E-012 + 54.719999999999999 -1.2072101150251216E-012 + 54.780000000000001 -1.3460037796454698E-012 + 54.839999999999989 -1.4992221716816040E-012 + 54.899999999999991 -1.6684053839773267E-012 + 54.959999999999994 -1.8552753014457666E-012 + 55.019999999999996 -2.0617547297818306E-012 + 55.079999999999998 -2.2899909501827194E-012 + 55.140000000000001 -2.5423761967445735E-012 + 55.200000000000003 -2.8215732241970103E-012 + 55.259999999999991 -3.1305412485901240E-012 + 55.319999999999993 -3.4725677052887169E-012 + 55.379999999999995 -3.8512948912228579E-012 + 55.439999999999998 -4.2707489741029440E-012 + 55.500000000000000 -4.7353749543581500E-012 + 55.560000000000002 -5.2500626996404651E-012 + 55.619999999999990 -5.8201934605740986E-012 + 55.679999999999993 -6.4516622023717207E-012 + 55.739999999999995 -7.1509102081899988E-012 + 55.799999999999997 -7.9249647018279852E-012 + 55.859999999999999 -8.7814756537483493E-012 + 55.920000000000002 -9.7287421237862353E-012 + 55.979999999999990 -1.0775732413773036E-011 + 56.039999999999992 -1.1932129141757233E-011 + 56.099999999999994 -1.3208345906828785E-011 + 56.159999999999997 -1.4615542608193385E-011 + 56.219999999999999 -1.6165649070728081E-011 + 56.280000000000001 -1.7871373465708407E-011 + 56.339999999999989 -1.9746191931655709E-011 + 56.399999999999991 -2.1804374306190578E-011 + 56.459999999999994 -2.4060911298227431E-011 + 56.519999999999996 -2.6531548949007343E-011 + 56.579999999999998 -2.9232715079144785E-011 + 56.640000000000001 -3.2181449992182771E-011 + 56.700000000000003 -3.5395387936669419E-011 + 56.759999999999991 -3.8892605260375686E-011 + 56.819999999999993 -4.2691515382404666E-011 + 56.879999999999995 -4.6810782077156115E-011 + 56.939999999999998 -5.1269080956369538E-011 + 57.000000000000000 -5.6084970355024247E-011 + 57.060000000000002 -6.1276600720115740E-011 + 57.119999999999990 -6.6861433665190895E-011 + 57.179999999999993 -7.2856021373427241E-011 + 57.239999999999995 -7.9275554661701660E-011 + 57.299999999999997 -8.6133480389577133E-011 + 57.359999999999999 -9.3440983682601314E-011 + 57.420000000000002 -1.0120648021754769E-010 + 57.479999999999990 -1.0943495445170704E-010 + 57.539999999999992 -1.1812728382853403E-010 + 57.599999999999994 -1.2727939410554768E-010 + 57.659999999999997 -1.3688132271034543E-010 + 57.719999999999999 -1.4691612469962063E-010 + 57.780000000000001 -1.5735879558252315E-010 + 57.839999999999989 -1.6817476943513462E-010 + 57.899999999999991 -1.7931857219710012E-010 + 57.959999999999994 -1.9073185109200630E-010 + 58.019999999999996 -2.0234175998027999E-010 + 58.079999999999998 -2.1405822127230161E-010 + 58.140000000000001 -2.2577191390451471E-010 + 58.200000000000003 -2.3735118700595178E-010 + 58.259999999999991 -2.4863892675331989E-010 + 58.319999999999993 -2.5944886865538136E-010 + 58.379999999999995 -2.6956166692778807E-010 + 58.439999999999998 -2.7871998839308389E-010 + 58.500000000000000 -2.8662330259306321E-010 + 58.560000000000002 -2.9292228959607687E-010 + 58.619999999999990 -2.9721190636521984E-010 + 58.679999999999993 -2.9902401081593483E-010 + 58.739999999999995 -2.9781927815634538E-010 + 58.799999999999997 -2.9297689832240591E-010 + 58.859999999999999 -2.8378477017752612E-010 + 58.920000000000002 -2.6942692565799371E-010 + 58.979999999999990 -2.4897010570578733E-010 + 59.039999999999992 -2.2134858240493648E-010 + 59.099999999999994 -1.8534735662660331E-010 + 59.159999999999997 -1.3958291358138608E-010 + 59.219999999999999 -8.2483311942298680E-011 + 59.280000000000001 -1.2261714949837912E-011 + 59.339999999999989 7.3108805935700164E-011 + 59.399999999999991 1.7592466814837250E-010 + 59.459999999999994 2.9878454819099941E-010 + 59.519999999999996 4.4462890282379371E-010 + 59.579999999999998 6.1677828613144403E-010 + 59.640000000000001 8.1898064081713353E-010 + 59.700000000000003 1.0554613938201364E-009 + 59.759999999999991 1.3309802319338220E-009 + 59.819999999999993 1.6508936910678252E-009 + 59.879999999999995 2.0212284446225174E-009 + 59.939999999999998 2.4487527772685452E-009 + 60.000000000000000 2.9410672174487509E-009 + 60.060000000000002 3.5066892250505914E-009 + 60.119999999999990 4.1551669761406272E-009 + 60.179999999999993 4.8971946835615488E-009 + 60.239999999999995 5.7447284243313347E-009 + 60.299999999999997 6.7111333906125580E-009 + 60.359999999999999 7.8113380133015223E-009 + 60.420000000000002 9.0619926727098587E-009 + 60.479999999999990 1.0481667079211081E-008 + 60.539999999999992 1.2091057897158369E-008 + 60.599999999999994 1.3913183607995395E-008 + 60.659999999999997 1.5973651126863839E-008 + 60.719999999999999 1.8300918182494608E-008 + 60.780000000000001 2.0926577947775516E-008 + 60.839999999999989 2.3885686106640001E-008 + 60.899999999999991 2.7217114759679725E-008 + 60.959999999999994 3.0963908331737180E-008 + 61.019999999999996 3.5173740527493485E-008 + 61.079999999999998 3.9899322503502360E-008 + 61.140000000000001 4.5198905707659618E-008 + 61.200000000000003 5.1136858326908413E-008 + 61.259999999999991 5.7784200075087162E-008 + 61.319999999999993 6.5219271265790641E-008 + 61.379999999999995 7.3528414262472020E-008 + 61.439999999999998 8.2806701109441364E-008 + 61.500000000000000 9.3158811897168149E-008 + 61.560000000000002 1.0469983020005050E-007 + 61.619999999999990 1.1755631030104575E-007 + 61.679999999999993 1.3186728005489915E-007 + 61.739999999999995 1.4778528186476943E-007 + 61.799999999999997 1.6547783144588046E-007 + 61.859999999999999 1.8512848956116424E-007 + 61.920000000000002 2.0693850133669590E-007 + 61.979999999999990 2.3112823612837082E-007 + 62.039999999999992 2.5793889323701189E-007 + 62.099999999999994 2.8763444446608508E-007 + 62.159999999999997 3.2050354584869603E-007 + 62.219999999999999 3.5686144048331564E-007 + 62.280000000000001 3.9705269102240168E-007 + 62.339999999999989 4.4145359727767301E-007 + 62.399999999999991 4.9047435396612254E-007 + 62.459999999999994 5.4456264228125597E-007 + 62.519999999999996 6.0420652041643349E-007 + 62.579999999999998 6.6993773419911607E-007 + 62.640000000000001 7.4233547657168828E-007 + 62.700000000000003 8.2202970345870063E-007 + 62.759999999999991 9.0970681573929766E-007 + 62.819999999999993 1.0061127855512330E-006 + 62.879999999999995 1.1120585332719816E-006 + 62.939999999999998 1.2284252944591056E-006 + 63.000000000000000 1.3561699994536447E-006 + 63.060000000000002 1.4963323012652182E-006 + 63.119999999999990 1.6500390072933692E-006 + 63.179999999999993 1.8185141281441860E-006 + 63.239999999999995 2.0030837048672458E-006 + 63.299999999999997 2.2051847465372840E-006 + 63.359999999999999 2.4263744697349135E-006 + 63.420000000000002 2.6683374974687932E-006 + 63.479999999999990 2.9328993883125838E-006 + 63.539999999999992 3.2220339223900682E-006 + 63.599999999999994 3.5378742491212122E-006 + 63.659999999999997 3.8827282414985724E-006 + 63.719999999999999 4.2590867595186090E-006 + 63.780000000000001 4.6696425498401993E-006 + 63.839999999999989 5.1172981879526965E-006 + 63.899999999999991 5.6051887059923992E-006 + 63.959999999999994 6.1366921303848436E-006 + 64.019999999999996 6.7154492623026884E-006 + 64.079999999999998 7.3453829622653592E-006 + 64.140000000000001 8.0307149423856679E-006 + 64.200000000000003 8.7759912555722585E-006 + 64.259999999999991 9.5861013652637535E-006 + 64.319999999999993 1.0466300443024247E-005 + 64.379999999999995 1.1422234098364341E-005 + 64.439999999999998 1.2459965345902740E-005 + 64.500000000000000 1.3586002901011223E-005 + 64.560000000000002 1.4807327108358747E-005 + 64.619999999999990 1.6131422699492384E-005 + 64.679999999999993 1.7566304688406538E-005 + 64.739999999999995 1.9120566403558336E-005 + 64.799999999999997 2.0803390896952720E-005 + 64.859999999999999 2.2624610094252196E-005 + 64.920000000000002 2.4594730307993545E-005 + 64.979999999999990 2.6724969922965515E-005 + 65.039999999999992 2.9027312698334476E-005 + 65.099999999999994 3.1514544457159834E-005 + 65.159999999999997 3.4200290515519144E-005 + 65.219999999999999 3.7099072209265678E-005 + 65.280000000000001 4.0226357889205390E-005 + 65.339999999999989 4.3598596215104751E-005 + 65.399999999999991 4.7233284533353245E-005 + 65.459999999999994 5.1149012472123534E-005 + 65.519999999999996 5.5365521177911899E-005 + 65.579999999999998 5.9903758730191534E-005 + 65.640000000000001 6.4785930012980808E-005 + 65.700000000000003 7.0035584624268392E-005 + 65.759999999999991 7.5677643587923610E-005 + 65.819999999999993 8.1738472414658278E-005 + 65.879999999999995 8.8245934873672988E-005 + 65.939999999999998 9.5229482819496805E-005 + 66.000000000000000 1.0272018923516196E-004 + 66.060000000000002 1.1075085287563923E-004 + 66.119999999999990 1.1935600849119683E-004 + 66.179999999999993 1.2857206295351380E-004 + 66.239999999999995 1.3843727529436376E-004 + 66.299999999999997 1.4899190609052275E-004 + 66.359999999999999 1.6027823032640007E-004 + 66.420000000000002 1.7234062729355466E-004 + 66.479999999999990 1.8522563932426046E-004 + 66.539999999999992 1.9898199271441410E-004 + 66.599999999999994 2.1366074045864780E-004 + 66.659999999999997 2.2931527216133127E-004 + 66.719999999999999 2.4600135544062494E-004 + 66.780000000000001 2.6377720279766563E-004 + 66.839999999999989 2.8270359436663103E-004 + 66.899999999999991 3.0284375426816893E-004 + 66.959999999999994 3.2426360865506844E-004 + 67.019999999999996 3.4703167379136551E-004 + 67.079999999999998 3.7121911369038870E-004 + 67.140000000000001 3.9689982990679642E-004 + 67.199999999999989 4.2415044336569039E-004 + 67.259999999999991 4.5305028583445862E-004 + 67.319999999999993 4.8368145609279100E-004 + 67.379999999999995 5.1612880172024014E-004 + 67.439999999999998 5.5047998490496595E-004 + 67.500000000000000 5.8682535972751841E-004 + 67.560000000000002 6.2525790959284651E-004 + 67.619999999999990 6.6587355061640922E-004 + 67.679999999999993 7.0877056721945354E-004 + 67.739999999999995 7.5405006015054755E-004 + 67.799999999999997 8.0181553426936897E-004 + 67.859999999999999 8.5217302269953140E-004 + 67.920000000000002 9.0523089791175887E-004 + 67.979999999999990 9.6109985168670877E-004 + 68.039999999999992 1.0198927583435296E-003 + 68.099999999999994 1.0817244410502248E-003 + 68.159999999999997 1.1467118861620295E-003 + 68.219999999999999 1.2149734188131927E-003 + 68.280000000000001 1.2866292786196812E-003 + 68.339999999999989 1.3618011031848233E-003 + 68.399999999999991 1.4406115742928880E-003 + 68.459999999999994 1.5231846292739035E-003 + 68.519999999999996 1.6096448087858047E-003 + 68.579999999999998 1.7001172622162308E-003 + 68.640000000000001 1.7947273857707082E-003 + 68.699999999999989 1.8936004155054101E-003 + 68.759999999999991 1.9968616214726172E-003 + 68.819999999999993 2.1046355190059160E-003 + 68.879999999999995 2.2170455956735434E-003 + 68.939999999999998 2.3342141412223062E-003 + 69.000000000000000 2.4562620023028687E-003 + 69.060000000000002 2.5833078613724646E-003 + 69.119999999999990 2.7154680755686455E-003 + 69.179999999999993 2.8528563346051240E-003 + 69.239999999999995 2.9955831738635317E-003 + 69.299999999999997 3.1437554066564852E-003 + 69.359999999999999 3.2974758401442452E-003 + 69.420000000000002 3.4568427877046072E-003 + 69.479999999999990 3.6219496976332291E-003 + 69.539999999999992 3.7928847187385130E-003 + 69.599999999999994 3.9697300328276636E-003 + 69.659999999999997 4.1525613403443082E-003 + 69.719999999999999 4.3414473444819204E-003 + 69.780000000000001 4.5364496967180302E-003 + 69.839999999999989 4.7376223205183362E-003 + 69.899999999999991 4.9450105641861931E-003 + 69.959999999999994 5.1586511085799118E-003 + 70.019999999999996 5.3785709690625065E-003 + 70.079999999999998 5.6047870260438771E-003 + 70.140000000000001 5.8373080812357224E-003 + 70.199999999999989 6.0761287817172457E-003 + 70.259999999999991 6.3212342321981793E-003 + 70.319999999999993 6.5725979126367781E-003 + 70.379999999999995 6.8301806194298702E-003 + 70.439999999999998 7.0939307292809204E-003 + 70.500000000000000 7.3637831645368542E-003 + 70.560000000000002 7.6396596748001368E-003 + 70.619999999999990 7.9214684181747944E-003 + 70.679999999999993 8.2091026613538287E-003 + 70.739999999999995 8.5024421596301813E-003 + 70.799999999999997 8.8013503419747188E-003 + 70.859999999999999 9.1056756620301015E-003 + 70.920000000000002 9.4152528329629840E-003 + 70.979999999999990 9.7298986496406857E-003 + 71.039999999999992 1.0049416279997385E-002 + 71.099999999999994 1.0373591652360081E-002 + 71.159999999999997 1.0702193317800979E-002 + 71.219999999999999 1.1034975828183089E-002 + 71.280000000000001 1.1371677126657102E-002 + 71.339999999999989 1.1712018445211931E-002 + 71.399999999999991 1.2055703422715586E-002 + 71.459999999999994 1.2402422965355486E-002 + 71.519999999999996 1.2751848762452646E-002 + 71.579999999999998 1.3103639787961025E-002 + 71.640000000000001 1.3457436984408560E-002 + 71.699999999999989 1.3812866691983212E-002 + 71.759999999999991 1.4169541137645117E-002 + 71.819999999999993 1.4527057512572165E-002 + 71.879999999999995 1.4884998766881742E-002 + 71.939999999999998 1.5242936297994572E-002 + 72.000000000000000 1.5600425728047934E-002 + 72.060000000000002 1.5957012560842018E-002 + 72.119999999999990 1.6312229204586373E-002 + 72.179999999999993 1.6665597241572783E-002 + 72.239999999999995 1.7016627775696562E-002 + 72.299999999999997 1.7364822462779275E-002 + 72.359999999999999 1.7709675065687019E-002 + 72.420000000000002 1.8050671148695647E-002 + 72.479999999999990 1.8387291200769131E-002 + 72.539999999999992 1.8719006257048885E-002 + 72.599999999999994 1.9045283192059757E-002 + 72.659999999999997 1.9365588438471359E-002 + 72.719999999999999 1.9679382329413977E-002 + 72.780000000000001 1.9986125114378250E-002 + 72.839999999999989 2.0285276702247338E-002 + 72.899999999999991 2.0576296519277192E-002 + 72.959999999999994 2.0858647322289467E-002 + 73.019999999999996 2.1131793558451326E-002 + 73.079999999999998 2.1395204239254912E-002 + 73.140000000000001 2.1648356571013341E-002 + 73.199999999999989 2.1890729491389010E-002 + 73.259999999999991 2.2121816234902923E-002 + 73.319999999999993 2.2341116279521858E-002 + 73.379999999999995 2.2548137838171167E-002 + 73.439999999999998 2.2742404358280673E-002 + 73.500000000000000 2.2923451802104179E-002 + 73.560000000000002 2.3090830279494497E-002 + 73.619999999999990 2.3244104993801307E-002 + 73.679999999999993 2.3382858259010923E-002 + 73.739999999999995 2.3506691627316983E-002 + 73.799999999999997 2.3615224374596167E-002 + 73.859999999999999 2.3708095193156153E-002 + 73.920000000000002 2.3784967919483445E-002 + 73.979999999999990 2.3845525100300614E-002 + 74.039999999999992 2.3889474655947020E-002 + 74.099999999999994 2.3916549288784724E-002 + 74.159999999999997 2.3926503942714190E-002 + 74.219999999999999 2.3919123456842734E-002 + 74.280000000000001 2.3894218128824429E-002 + 74.339999999999989 2.3851622201036309E-002 + 74.399999999999991 2.3791203857550312E-002 + 74.459999999999994 2.3712856715199748E-002 + 74.519999999999996 2.3616506857067610E-002 + 74.579999999999998 2.3502105899107763E-002 + 74.640000000000001 2.3369637202315514E-002 + 74.699999999999989 2.3219117235916326E-002 + 74.759999999999991 2.3050586998678065E-002 + 74.819999999999993 2.2864125182269025E-002 + 74.879999999999995 2.2659838600021832E-002 + 74.939999999999998 2.2437861378724111E-002 + 75.000000000000000 2.2198363840732368E-002 + 75.060000000000002 2.1941543383611286E-002 + 75.119999999999990 2.1667629080206020E-002 + 75.179999999999993 2.1376878231599356E-002 + 75.239999999999995 2.1069579676957880E-002 + 75.299999999999997 2.0746049747266793E-002 + 75.359999999999999 2.0406633099701622E-002 + 75.420000000000002 2.0051702184821208E-002 + 75.479999999999990 1.9681658412868043E-002 + 75.539999999999992 1.9296926236340699E-002 + 75.599999999999994 1.8897956991196289E-002 + 75.659999999999997 1.8485225218250845E-002 + 75.719999999999999 1.8059230273058339E-002 + 75.780000000000001 1.7620493213150634E-002 + 75.839999999999989 1.7169554758913880E-002 + 75.899999999999991 1.6706977552897174E-002 + 75.959999999999994 1.6233343154215232E-002 + 76.019999999999996 1.5749249210897383E-002 + 76.079999999999998 1.5255308702581034E-002 + 76.140000000000001 1.4752152304991526E-002 + 76.199999999999989 1.4240421718974910E-002 + 76.259999999999991 1.3720769496882633E-002 + 76.319999999999993 1.3193860637701456E-002 + 76.379999999999995 1.2660369600928787E-002 + 76.439999999999998 1.2120976747173998E-002 + 76.500000000000000 1.1576368957778990E-002 + 76.560000000000002 1.1027237910378228E-002 + 76.619999999999990 1.0474278424143333E-002 + 76.679999999999993 9.9181861895403303E-003 + 76.739999999999995 9.3596571937492653E-003 + 76.799999999999997 8.7993860133364146E-003 + 76.859999999999999 8.2380632619466036E-003 + 76.920000000000002 7.6763771912874094E-003 + 76.979999999999990 7.1150089709408944E-003 + 77.039999999999992 6.5546313049890479E-003 + 77.099999999999994 5.9959099716383434E-003 + 77.159999999999997 5.4395008916903881E-003 + 77.219999999999999 4.8860476897662590E-003 + 77.280000000000001 4.3361828086008270E-003 + 77.339999999999989 3.7905227015237290E-003 + 77.399999999999991 3.2496712371143360E-003 + 77.459999999999994 2.7142149633022578E-003 + 77.519999999999996 2.1847241055213060E-003 + 77.579999999999998 1.6617510224103170E-003 + 77.640000000000001 1.1458282592466023E-003 + 77.699999999999989 6.3746933922718529E-004 + 77.759999999999991 1.3716717375184700E-004 + 77.819999999999993 -3.5460667250143121E-004 + 77.879999999999995 -8.3740301930538175E-004 + 77.939999999999998 -1.3107945578811999E-003 + 78.000000000000000 -1.7743776363397909E-003 + 78.060000000000002 -2.2277720945642829E-003 + 78.119999999999990 -2.6706215365133621E-003 + 78.179999999999993 -3.1025938578643068E-003 + 78.239999999999995 -3.5233817419149153E-003 + 78.299999999999997 -3.9327023050660936E-003 + 78.359999999999999 -4.3302977115913964E-003 + 78.420000000000002 -4.7159353144617536E-003 + 78.479999999999990 -5.0894065384285260E-003 + 78.539999999999992 -5.4505285047980068E-003 + 78.599999999999994 -5.7991426867044704E-003 + 78.659999999999997 -6.1351146240705579E-003 + 78.719999999999999 -6.4583345125507358E-003 + 78.780000000000001 -6.7687176046675561E-003 + 78.839999999999989 -7.0662007800037299E-003 + 78.899999999999991 -7.3507454495475438E-003 + 78.959999999999994 -7.6223347585175714E-003 + 79.019999999999996 -7.8809748673503120E-003 + 79.079999999999998 -8.1266934841803060E-003 + 79.140000000000001 -8.3595392130336212E-003 + 79.199999999999989 -8.5795806346431851E-003 + 79.259999999999991 -8.7869065390838753E-003 + 79.319999999999993 -8.9816256851083139E-003 + 79.379999999999995 -9.1638628931116559E-003 + 79.439999999999998 -9.3337617600223743E-003 + 79.500000000000000 -9.4914827505122555E-003 + 79.560000000000002 -9.6372023140150857E-003 + 79.619999999999990 -9.7711116419861577E-003 + 79.679999999999993 -9.8934165058461171E-003 + 79.739999999999995 -1.0004336115405271E-002 + 79.799999999999997 -1.0104102007358859E-002 + 79.859999999999999 -1.0192956574830395E-002 + 79.920000000000002 -1.0271155698363673E-002 + 79.979999999999990 -1.0338963008451461E-002 + 80.039999999999992 -1.0396652002727776E-002 + 80.099999999999994 -1.0444504770993051E-002 + 80.159999999999997 -1.0482809823821602E-002 + 80.219999999999999 -1.0511862772970379E-002 + 80.280000000000001 -1.0531964998265671E-002 + 80.340000000000003 -1.0543423681141606E-002 + 80.400000000000006 -1.0546549122465979E-002 + 80.460000000000008 -1.0541654318247188E-002 + 80.519999999999982 -1.0529056953614307E-002 + 80.579999999999984 -1.0509073319075100E-002 + 80.639999999999986 -1.0482024330044063E-002 + 80.699999999999989 -1.0448229483140737E-002 + 80.759999999999991 -1.0408008043453263E-002 + 80.819999999999993 -1.0361678032577414E-002 + 80.879999999999995 -1.0309557144094053E-002 + 80.939999999999998 -1.0251960206280877E-002 + 81.000000000000000 -1.0189199301620152E-002 + 81.060000000000002 -1.0121583153253406E-002 + 81.120000000000005 -1.0049416500309645E-002 + 81.180000000000007 -9.9730003157533203E-003 + 81.240000000000009 -9.8926308045775967E-003 + 81.299999999999983 -9.8085985322295538E-003 + 81.359999999999985 -9.7211898629100627E-003 + 81.419999999999987 -9.6306836681930696E-003 + 81.479999999999990 -9.5373535505970369E-003 + 81.539999999999992 -9.4414656775650176E-003 + 81.599999999999994 -9.3432813632673105E-003 + 81.659999999999997 -9.2430513128460810E-003 + 81.719999999999999 -9.1410224893665754E-003 + 81.780000000000001 -9.0374323419758536E-003 + 81.840000000000003 -8.9325106839223435E-003 + 81.900000000000006 -8.8264811179380887E-003 + 81.960000000000008 -8.7195576480736843E-003 + 82.019999999999982 -8.6119466110553666E-003 + 82.079999999999984 -8.5038470170624211E-003 + 82.139999999999986 -8.3954485962103257E-003 + 82.199999999999989 -8.2869338790900419E-003 + 82.259999999999991 -8.1784763140580648E-003 + 82.319999999999993 -8.0702412852385365E-003 + 82.379999999999995 -7.9623872487101944E-003 + 82.439999999999998 -7.8550624757361218E-003 + 82.500000000000000 -7.7484089449275147E-003 + 82.560000000000002 -7.6425588303554916E-003 + 82.620000000000005 -7.5376383139582701E-003 + 82.680000000000007 -7.4337640715348638E-003 + 82.740000000000009 -7.3310455765224405E-003 + 82.799999999999983 -7.2295851433576089E-003 + 82.859999999999985 -7.1294775186116453E-003 + 82.919999999999987 -7.0308095127542027E-003 + 82.979999999999990 -6.9336610598602164E-003 + 83.039999999999992 -6.8381059380084423E-003 + 83.099999999999994 -6.7442098659842211E-003 + 83.159999999999997 -6.6520325163794952E-003 + 83.219999999999999 -6.5616270575634059E-003 + 83.280000000000001 -6.4730402918787826E-003 + 83.340000000000003 -6.3863131733773934E-003 + 83.400000000000006 -6.3014800774425592E-003 + 83.460000000000008 -6.2185710799386963E-003 + 83.519999999999982 -6.1376095066129205E-003 + 83.579999999999984 -6.0586143248893545E-003 + 83.639999999999986 -5.9815992507379814E-003 + 83.699999999999989 -5.9065725130855286E-003 + 83.759999999999991 -5.8335382970086010E-003 + 83.819999999999993 -5.7624962605736388E-003 + 83.879999999999995 -5.6934422344870174E-003 + 83.939999999999998 -5.6263669913760072E-003 + 84.000000000000000 -5.5612580132186739E-003 + 84.060000000000002 -5.4980998823353344E-003 + 84.120000000000005 -5.4368726150073564E-003 + 84.180000000000007 -5.3775541378308410E-003 + 84.240000000000009 -5.3201183541667883E-003 + 84.299999999999983 -5.2645365089930103E-003 + 84.359999999999985 -5.2107778239703934E-003 + 84.419999999999987 -5.1588095493327654E-003 + 84.479999999999990 -5.1085951522712673E-003 + 84.539999999999992 -5.0600970920564045E-003 + 84.599999999999994 -5.0132757105963649E-003 + 84.659999999999997 -4.9680897960954424E-003 + 84.719999999999999 -4.9244964323818616E-003 + 84.780000000000001 -4.8824513518984751E-003 + 84.840000000000003 -4.8419095750821583E-003 + 84.900000000000006 -4.8028247135456902E-003 + 84.960000000000008 -4.7651494725165500E-003 + 85.019999999999982 -4.7288357864578726E-003 + 85.079999999999984 -4.6938350718201882E-003 + 85.139999999999986 -4.6600985814926610E-003 + 85.199999999999989 -4.6275771779248761E-003 + 85.259999999999991 -4.5962215265179553E-003 + 85.319999999999993 -4.5659821696302904E-003 + 85.379999999999995 -4.5368099513606024E-003 + 85.439999999999998 -4.5086552645853392E-003 + 85.500000000000000 -4.4814694251803094E-003 + 85.560000000000002 -4.4552043693460467E-003 + 85.620000000000005 -4.4298120818399098E-003 + 85.680000000000007 -4.4052449939532036E-003 + 85.740000000000009 -4.3814575901464457E-003 + 85.799999999999983 -4.3584038823783295E-003 + 85.859999999999985 -4.3360392375847651E-003 + 85.919999999999987 -4.3143200705678840E-003 + 85.979999999999990 -4.2932043164850553E-003 + 86.039999999999992 -4.2726501791177469E-003 + 86.099999999999994 -4.2526173359315397E-003 + 86.159999999999997 -4.2330667549946577E-003 + 86.219999999999999 -4.2139619639475507E-003 + 86.280000000000001 -4.1952655906005538E-003 + 86.340000000000003 -4.1769441408269397E-003 + 86.400000000000006 -4.1589643151481058E-003 + 86.460000000000008 -4.1412943341678282E-003 + 86.519999999999982 -4.1239046106501913E-003 + 86.579999999999984 -4.1067666294291065E-003 + 86.639999999999986 -4.0898540087135945E-003 + 86.699999999999989 -4.0731421682978297E-003 + 86.759999999999991 -4.0566077397234676E-003 + 86.819999999999993 -4.0402293904216336E-003 + 86.879999999999995 -4.0239880257284559E-003 + 86.939999999999998 -4.0078654739535207E-003 + 87.000000000000000 -3.9918466531044900E-003 + 87.060000000000002 -3.9759170237978550E-003 + 87.120000000000005 -3.9600646204462605E-003 + 87.180000000000007 -3.9442783156160410E-003 + 87.240000000000009 -3.9285505999261975E-003 + 87.299999999999983 -3.9128743939910128E-003 + 87.359999999999985 -3.8972447956364216E-003 + 87.419999999999987 -3.8816587981556289E-003 + 87.479999999999990 -3.8661150978109432E-003 + 87.539999999999992 -3.8506141571514243E-003 + 87.599999999999994 -3.8351587553626509E-003 + 87.659999999999997 -3.8197527001555334E-003 + 87.719999999999999 -3.8044020718111275E-003 + 87.780000000000001 -3.7891144318771709E-003 + 87.840000000000003 -3.7738992373314460E-003 + 87.900000000000006 -3.7587673133252395E-003 + 87.960000000000008 -3.7437318899209635E-003 + 88.019999999999982 -3.7288067550289338E-003 + 88.079999999999984 -3.7140079252561660E-003 + 88.139999999999986 -3.6993532116335647E-003 + 88.199999999999989 -3.6848618474472870E-003 + 88.259999999999991 -3.6705541088857827E-003 + 88.319999999999993 -3.6564519912830580E-003 + 88.379999999999995 -3.6425789311936418E-003 + 88.439999999999998 -3.6289596606576390E-003 + 88.500000000000000 -3.6156202603189018E-003 + 88.560000000000002 -3.6025882185302741E-003 + 88.620000000000005 -3.5898918391732730E-003 + 88.680000000000007 -3.5775607507140283E-003 + 88.740000000000009 -3.5656257265219470E-003 + 88.799999999999983 -3.5541188828426017E-003 + 88.859999999999985 -3.5430726423692207E-003 + 88.919999999999987 -3.5325205303011913E-003 + 88.979999999999990 -3.5224971225512793E-003 + 89.039999999999992 -3.5130377843341069E-003 + 89.099999999999994 -3.5041782837657728E-003 + 89.159999999999997 -3.4959554014777970E-003 + 89.219999999999999 -3.4884060402959392E-003 + 89.280000000000001 -3.4815678437974478E-003 + 89.340000000000003 -3.4754787130761968E-003 + 89.400000000000006 -3.4701767527897374E-003 + 89.460000000000008 -3.4657003874414317E-003 + 89.519999999999982 -3.4620880306706508E-003 + 89.579999999999984 -3.4593783086543668E-003 + 89.639999999999986 -3.4576096915519250E-003 + 89.699999999999989 -3.4568200707376473E-003 + 89.759999999999991 -3.4570473266084261E-003 + 89.819999999999993 -3.4583289765858327E-003 + 89.879999999999995 -3.4607021298617290E-003 + 89.939999999999998 -3.4642028067636212E-003 + 90.000000000000000 -3.4688668185522725E-003 + 90.060000000000002 -3.4747288654250010E-003 + 90.120000000000005 -3.4818227472180299E-003 + 90.180000000000007 -3.4901810761459027E-003 + 90.240000000000009 -3.4998354722776226E-003 + 90.299999999999983 -3.5108164647461968E-003 + 90.359999999999985 -3.5231525791264207E-003 + 90.419999999999987 -3.5368710220990886E-003 + 90.479999999999990 -3.5519973395535006E-003 + 90.539999999999992 -3.5685553266490921E-003 + 90.599999999999994 -3.5865666362137195E-003 + 90.659999999999997 -3.6060512087074813E-003 + 90.719999999999999 -3.6270266160879985E-003 + 90.780000000000001 -3.6495077991878146E-003 + 90.840000000000003 -3.6735079152079076E-003 + 90.900000000000006 -3.6990370150861152E-003 + 90.960000000000008 -3.7261025041968399E-003 + 91.019999999999982 -3.7547096417832517E-003 + 91.079999999999984 -3.7848596222005873E-003 + 91.139999999999986 -3.8165519362279871E-003 + 91.199999999999989 -3.8497823405613707E-003 + 91.259999999999991 -3.8845428453355389E-003 + 91.319999999999993 -3.9208231902631407E-003 + 91.379999999999995 -3.9586093110090060E-003 + 91.439999999999998 -3.9978838871665059E-003 + 91.500000000000000 -4.0386256866990116E-003 + 91.560000000000002 -4.0808098016536353E-003 + 91.620000000000005 -4.1244077416079236E-003 + 91.680000000000007 -4.1693877101016408E-003 + 91.739999999999981 -4.2157138295636056E-003 + 91.799999999999983 -4.2633464725293935E-003 + 91.859999999999985 -4.3122415215991507E-003 + 91.919999999999987 -4.3623520121124646E-003 + 91.979999999999990 -4.4136266704699481E-003 + 92.039999999999992 -4.4660097543407773E-003 + 92.099999999999994 -4.5194422737332108E-003 + 92.159999999999997 -4.5738609300439194E-003 + 92.219999999999999 -4.6291984657049010E-003 + 92.280000000000001 -4.6853846093468047E-003 + 92.340000000000003 -4.7423445819963286E-003 + 92.400000000000006 -4.8000000301071516E-003 + 92.460000000000008 -4.8582681821600950E-003 + 92.519999999999982 -4.9170641990984179E-003 + 92.579999999999984 -4.9762983680836084E-003 + 92.639999999999986 -5.0358785654400565E-003 + 92.699999999999989 -5.0957090865085463E-003 + 92.759999999999991 -5.1556911452086416E-003 + 92.819999999999993 -5.2157223769883354E-003 + 92.879999999999995 -5.2756985952513453E-003 + 92.939999999999998 -5.3355128956544444E-003 + 93.000000000000000 -5.3950546039705522E-003 + 93.060000000000002 -5.4542118564579484E-003 + 93.120000000000005 -5.5128704300961831E-003 + 93.180000000000007 -5.5709146202313998E-003 + 93.239999999999981 -5.6282261167548836E-003 + 93.299999999999983 -5.6846853762528840E-003 + 93.359999999999985 -5.7401727009535166E-003 + 93.419999999999987 -5.7945656117900724E-003 + 93.479999999999990 -5.8477423604640973E-003 + 93.539999999999992 -5.8995800089265780E-003 + 93.599999999999994 -5.9499555588468705E-003 + 93.659999999999997 -5.9987465835808435E-003 + 93.719999999999999 -6.0458298353483382E-003 + 93.780000000000001 -6.0910835858200224E-003 + 93.840000000000003 -6.1343866983637457E-003 + 93.900000000000006 -6.1756193218881449E-003 + 93.960000000000008 -6.2146633587519436E-003 + 94.019999999999982 -6.2514018154340408E-003 + 94.079999999999984 -6.2857203538296304E-003 + 94.139999999999986 -6.3175067565544342E-003 + 94.199999999999989 -6.3466511352658038E-003 + 94.259999999999991 -6.3730471510969160E-003 + 94.319999999999993 -6.3965920293384488E-003 + 94.379999999999995 -6.4171849929166866E-003 + 94.439999999999998 -6.4347303660159724E-003 + 94.500000000000000 -6.4491364073583878E-003 + 94.560000000000002 -6.4603152216295579E-003 + 94.620000000000005 -6.4681838531292831E-003 + 94.680000000000007 -6.4726641197387514E-003 + 94.739999999999981 -6.4736826280078798E-003 + 94.799999999999983 -6.4711716611512878E-003 + 94.859999999999985 -6.4650686444231780E-003 + 94.919999999999987 -6.4553168780316023E-003 + 94.979999999999990 -6.4418652349315609E-003 + 95.039999999999992 -6.4246695635849400E-003 + 95.099999999999994 -6.4036906178262477E-003 + 95.159999999999997 -6.3788966710705657E-003 + 95.219999999999999 -6.3502621922387759E-003 + 95.280000000000001 -6.3177677348983169E-003 + 95.340000000000003 -6.2814009118671785E-003 + 95.400000000000006 -6.2411564388687862E-003 + 95.460000000000008 -6.1970353387273752E-003 + 95.519999999999982 -6.1490461849305110E-003 + 95.579999999999984 -6.0972033818807213E-003 + 95.639999999999986 -6.0415296422353312E-003 + 95.699999999999989 -5.9820540096061142E-003 + 95.759999999999991 -5.9188121564769268E-003 + 95.819999999999993 -5.8518461148757313E-003 + 95.879999999999995 -5.7812060732723748E-003 + 95.939999999999998 -5.7069479018405566E-003 + 96.000000000000000 -5.6291345076942686E-003 + 96.060000000000002 -5.5478351409821670E-003 + 96.120000000000005 -5.4631257036830217E-003 + 96.180000000000007 -5.3750868961463258E-003 + 96.239999999999981 -5.2838071921360178E-003 + 96.299999999999983 -5.1893797744441538E-003 + 96.359999999999985 -5.0919040011690331E-003 + 96.419999999999987 -4.9914844487085157E-003 + 96.479999999999990 -4.8882308155295999E-003 + 96.539999999999992 -4.7822581700234642E-003 + 96.599999999999994 -4.6736852153164473E-003 + 96.659999999999997 -4.5626356963075565E-003 + 96.719999999999999 -4.4492370078915659E-003 + 96.780000000000001 -4.3336206250153952E-003 + 96.840000000000003 -4.2159216462246850E-003 + 96.900000000000006 -4.0962783703230934E-003 + 96.960000000000008 -3.9748313275908276E-003 + 97.019999999999982 -3.8517240396959513E-003 + 97.079999999999984 -3.7271025522568370E-003 + 97.139999999999986 -3.6011141733462869E-003 + 97.199999999999989 -3.4739080759480191E-003 + 97.259999999999991 -3.3456343634170526E-003 + 97.319999999999993 -3.2164446236199575E-003 + 97.379999999999995 -3.0864901365268657E-003 + 97.439999999999998 -2.9559231223136532E-003 + 97.500000000000000 -2.8248954100413178E-003 + 97.560000000000002 -2.6935576037151088E-003 + 97.620000000000005 -2.5620605941996635E-003 + 97.680000000000007 -2.4305539052176897E-003 + 97.739999999999981 -2.2991852119558166E-003 + 97.799999999999983 -2.1681005849717968E-003 + 97.859999999999985 -2.0374444152433243E-003 + 97.919999999999987 -1.9073583383412205E-003 + 97.979999999999990 -1.7779814785852232E-003 + 98.039999999999992 -1.6494501057220620E-003 + 98.099999999999994 -1.5218974022837867E-003 + 98.159999999999997 -1.3954530674556978E-003 + 98.219999999999999 -1.2702433293669776E-003 + 98.280000000000001 -1.1463900907610486E-003 + 98.340000000000003 -1.0240116050451240E-003 + 98.400000000000006 -9.0322190526774472E-004 + 98.460000000000008 -7.8413033505657132E-004 + 98.519999999999982 -6.6684186955994124E-004 + 98.579999999999984 -5.5145668361964719E-004 + 98.639999999999986 -4.3806998344839729E-004 + 98.699999999999989 -3.2677210219103289E-004 + 98.759999999999991 -2.1764837075104778E-004 + 98.819999999999993 -1.1077865173928674E-004 + 98.879999999999995 -6.2377964585840634E-006 + 98.939999999999998 9.5904735410910942E-005 + 99.000000000000000 1.9558493737745599E-004 + 99.060000000000002 2.9274405307182162E-004 + 99.120000000000005 3.8732884456307945E-004 + 99.180000000000007 4.7929133029075369E-004 + 99.239999999999981 5.6858903031787309E-004 + 99.299999999999983 6.5518484943722808E-004 + 99.359999999999985 7.3904691522692554E-004 + 99.419999999999987 8.2014867803762250E-004 + 99.479999999999990 8.9846874823030273E-004 + 99.539999999999992 9.7399076011192619E-004 + 99.599999999999994 1.0467034549372831E-003 + 99.659999999999997 1.1166003907992477E-003 + 99.719999999999999 1.1836800291491699E-003 + 99.780000000000001 1.2479452246245868E-003 + 99.840000000000003 1.3094036843847628E-003 + 99.900000000000006 1.3680672261826507E-003 + 99.960000000000008 1.4239520427567847E-003 + 100.01999999999998 1.4770783199981262E-003 + 100.07999999999998 1.5274701497462477E-003 + 100.13999999999999 1.5751553412622036E-003 + 100.19999999999999 1.6201652536088915E-003 + 100.25999999999999 1.6625346620094336E-003 + 100.31999999999999 1.7023014272012438E-003 + 100.38000000000000 1.7395066862599200E-003 + 100.44000000000000 1.7741939853607193E-003 + 100.50000000000000 1.8064098774664627E-003 + 100.56000000000000 1.8362031424808555E-003 + 100.62000000000000 1.8636247652731373E-003 + 100.68000000000001 1.8887279830643697E-003 + 100.73999999999998 1.9115677592692281E-003 + 100.79999999999998 1.9322007729935370E-003 + 100.85999999999999 1.9506851142157030E-003 + 100.91999999999999 1.9670801788673900E-003 + 100.97999999999999 1.9814465768380821E-003 + 101.03999999999999 1.9938457887838396E-003 + 101.09999999999999 2.0043400294695972E-003 + 101.16000000000000 2.0129920216668262E-003 + 101.22000000000000 2.0198651445076064E-003 + 101.28000000000000 2.0250231398766813E-003 + 101.34000000000000 2.0285292419973729E-003 + 101.40000000000001 2.0304472849801808E-003 + 101.46000000000001 2.0308405966666726E-003 + 101.51999999999998 2.0297723377425865E-003 + 101.57999999999998 2.0273049864951145E-003 + 101.63999999999999 2.0235006217241783E-003 + 101.69999999999999 2.0184205536888343E-003 + 101.75999999999999 2.0121253471603439E-003 + 101.81999999999999 2.0046743457506123E-003 + 101.88000000000000 1.9961263207377965E-003 + 101.94000000000000 1.9865382946776186E-003 + 102.00000000000000 1.9759665377674573E-003 + 102.06000000000000 1.9644658049201803E-003 + 102.12000000000000 1.9520896860672561E-003 + 102.18000000000001 1.9388901532995150E-003 + 102.23999999999998 1.9249176848673698E-003 + 102.29999999999998 1.9102212866736698E-003 + 102.35999999999999 1.8948483449024258E-003 + 102.41999999999999 1.8788446704076406E-003 + 102.47999999999999 1.8622544334647977E-003 + 102.53999999999999 1.8451201351027155E-003 + 102.59999999999999 1.8274824889730136E-003 + 102.66000000000000 1.8093806114463412E-003 + 102.72000000000000 1.7908520389887982E-003 + 102.78000000000000 1.7719325474592948E-003 + 102.84000000000000 1.7526559648209350E-003 + 102.90000000000001 1.7330548083754802E-003 + 102.96000000000001 1.7131596575215118E-003 + 103.01999999999998 1.6929997346499148E-003 + 103.07999999999998 1.6726023342068224E-003 + 103.13999999999999 1.6519932886210236E-003 + 103.19999999999999 1.6311968544875073E-003 + 103.25999999999999 1.6102357368046247E-003 + 103.31999999999999 1.5891311089475130E-003 + 103.38000000000000 1.5679027558359729E-003 + 103.44000000000000 1.5465690848043673E-003 + 103.50000000000000 1.5251470405418031E-003 + 103.56000000000000 1.5036523792141623E-003 + 103.62000000000000 1.4820996123244721E-003 + 103.68000000000001 1.4605021344678577E-003 + 103.73999999999998 1.4388720502455836E-003 + 103.79999999999998 1.4172206002430259E-003 + 103.85999999999999 1.3955579558895582E-003 + 103.91999999999999 1.3738935338559310E-003 + 103.97999999999999 1.3522356975573487E-003 + 104.03999999999999 1.3305921067310799E-003 + 104.09999999999999 1.3089695710375299E-003 + 104.16000000000000 1.2873745388039962E-003 + 104.22000000000000 1.2658126711618297E-003 + 104.28000000000000 1.2442889742649680E-003 + 104.34000000000000 1.2228081538559498E-003 + 104.40000000000001 1.2013744261085096E-003 + 104.46000000000001 1.1799916646255400E-003 + 104.51999999999998 1.1586635574068534E-003 + 104.57999999999998 1.1373933178344486E-003 + 104.63999999999999 1.1161839848935972E-003 + 104.69999999999999 1.0950386797931202E-003 + 104.75999999999999 1.0739601746204369E-003 + 104.81999999999999 1.0529513466252076E-003 + 104.88000000000000 1.0320149964498948E-003 + 104.94000000000000 1.0111539845711220E-003 + 105.00000000000000 9.9037145693110849E-004 + 105.06000000000000 9.6967041206757793E-004 + 105.12000000000000 9.4905419447480991E-004 + 105.18000000000001 9.2852633124239619E-004 + 105.23999999999998 9.0809051431569687E-004 + 105.29999999999998 8.8775075701117952E-004 + 105.35999999999999 8.6751137210472362E-004 + 105.41999999999999 8.4737698406560499E-004 + 105.47999999999999 8.2735247205660361E-004 + 105.53999999999999 8.0744317883480257E-004 + 105.59999999999999 7.8765467593366629E-004 + 105.66000000000000 7.6799296462606761E-004 + 105.72000000000000 7.4846441802332657E-004 + 105.78000000000000 7.2907585874945309E-004 + 105.84000000000000 7.0983438128538717E-004 + 105.90000000000001 6.9074744125491641E-004 + 105.96000000000001 6.7182294796070633E-004 + 106.01999999999998 6.5306913685910027E-004 + 106.07999999999998 6.3449449424700496E-004 + 106.13999999999999 6.1610789949626270E-004 + 106.19999999999999 5.9791850424404313E-004 + 106.25999999999999 5.7993575075519462E-004 + 106.31999999999999 5.6216923129692275E-004 + 106.38000000000000 5.4462885271262199E-004 + 106.44000000000000 5.2732471136338846E-004 + 106.50000000000000 5.1026698378416231E-004 + 106.56000000000000 4.9346603356992605E-004 + 106.62000000000000 4.7693227246893544E-004 + 106.68000000000001 4.6067614744353788E-004 + 106.73999999999998 4.4470819354144506E-004 + 106.79999999999998 4.2903892766209088E-004 + 106.85999999999999 4.1367881270482272E-004 + 106.91999999999999 3.9863821750616378E-004 + 106.97999999999999 3.8392735959201908E-004 + 107.03999999999999 3.6955637898460048E-004 + 107.09999999999999 3.5553525879285263E-004 + 107.16000000000000 3.4187363591326077E-004 + 107.22000000000000 3.2858097716266521E-004 + 107.28000000000000 3.1566642584209486E-004 + 107.34000000000000 3.0313879630459566E-004 + 107.40000000000001 2.9100649521317717E-004 + 107.46000000000001 2.7927753210514708E-004 + 107.51999999999998 2.6795939154453623E-004 + 107.57999999999998 2.5705907643485792E-004 + 107.63999999999999 2.4658307552914959E-004 + 107.69999999999999 2.3653724445952011E-004 + 107.75999999999999 2.2692685763775738E-004 + 107.81999999999999 2.1775647990307436E-004 + 107.88000000000000 2.0903003016766749E-004 + 107.94000000000000 2.0075069557167705E-004 + 108.00000000000000 1.9292095810462468E-004 + 108.06000000000000 1.8554254962132124E-004 + 108.12000000000000 1.7861639737731723E-004 + 108.18000000000001 1.7214270204589914E-004 + 108.23999999999998 1.6612083740409896E-004 + 108.29999999999998 1.6054938608884775E-004 + 108.35999999999999 1.5542616223358996E-004 + 108.41999999999999 1.5074814435701525E-004 + 108.47999999999999 1.4651151959905849E-004 + 108.53999999999999 1.4271166678949879E-004 + 108.59999999999999 1.3934316904133369E-004 + 108.66000000000000 1.3639983200021145E-004 + 108.72000000000000 1.3387465722853752E-004 + 108.78000000000000 1.3175986616950771E-004 + 108.84000000000000 1.3004691161975761E-004 + 108.90000000000001 1.2872650773786115E-004 + 108.96000000000001 1.2778859768115846E-004 + 109.01999999999998 1.2722241996261915E-004 + 109.07999999999998 1.2701650762972737E-004 + 109.13999999999999 1.2715871612935462E-004 + 109.19999999999999 1.2763625336848224E-004 + 109.25999999999999 1.2843572143473428E-004 + 109.31999999999999 1.2954310862671342E-004 + 109.38000000000000 1.3094387316000950E-004 + 109.44000000000000 1.3262295926341620E-004 + 109.50000000000000 1.3456482006401818E-004 + 109.56000000000000 1.3675349667082270E-004 + 109.62000000000000 1.3917263424952005E-004 + 109.68000000000001 1.4180555931025206E-004 + 109.73999999999998 1.4463526757492652E-004 + 109.79999999999998 1.4764452977299890E-004 + 109.85999999999999 1.5081590576399999E-004 + 109.91999999999999 1.5413179377217308E-004 + 109.97999999999999 1.5757450987955129E-004 + 110.03999999999999 1.6112629543810217E-004 + 110.09999999999999 1.6476941770270955E-004 + 110.16000000000000 1.6848615630463940E-004 + 110.22000000000000 1.7225891819306884E-004 + 110.28000000000000 1.7607024927539965E-004 + 110.34000000000000 1.7990287515457531E-004 + 110.40000000000001 1.8373975919840020E-004 + 110.46000000000001 1.8756420195899346E-004 + 110.51999999999998 1.9135980055062736E-004 + 110.57999999999998 1.9511053297311106E-004 + 110.63999999999999 1.9880083159664081E-004 + 110.69999999999999 2.0241557868711738E-004 + 110.75999999999999 2.0594014736502892E-004 + 110.81999999999999 2.0936046942411139E-004 + 110.88000000000000 2.1266304622348007E-004 + 110.94000000000000 2.1583498277252567E-004 + 111.00000000000000 2.1886405959065387E-004 + 111.06000000000000 2.2173869658425780E-004 + 111.12000000000000 2.2444804325722522E-004 + 111.18000000000001 2.2698195144861050E-004 + 111.23999999999998 2.2933102493548558E-004 + 111.29999999999998 2.3148662491616622E-004 + 111.35999999999999 2.3344091233190557E-004 + 111.41999999999999 2.3518684813490879E-004 + 111.47999999999999 2.3671825297917840E-004 + 111.53999999999999 2.3802970614296648E-004 + 111.59999999999999 2.3911675222935497E-004 + 111.66000000000000 2.3997566977201844E-004 + 111.72000000000000 2.4060363040428903E-004 + 111.78000000000000 2.4099869724897554E-004 + 111.84000000000000 2.4115976393670116E-004 + 111.90000000000001 2.4108653077796230E-004 + 111.96000000000001 2.4077959259412594E-004 + 112.01999999999998 2.4024030526868386E-004 + 112.07999999999998 2.3947086411607154E-004 + 112.13999999999999 2.3847419839047575E-004 + 112.19999999999999 2.3725403856593230E-004 + 112.25999999999999 2.3581481083425490E-004 + 112.31999999999999 2.3416162152134056E-004 + 112.38000000000000 2.3230030042615372E-004 + 112.44000000000000 2.3023725724597696E-004 + 112.50000000000000 2.2797950555243445E-004 + 112.56000000000000 2.2553464348773418E-004 + 112.62000000000000 2.2291078790106415E-004 + 112.68000000000001 2.2011655499565484E-004 + 112.73999999999998 2.1716100074939041E-004 + 112.79999999999998 2.1405362162661907E-004 + 112.85999999999999 2.1080425726959775E-004 + 112.91999999999999 2.0742310633317651E-004 + 112.97999999999999 2.0392067791676679E-004 + 113.03999999999999 2.0030769614100884E-004 + 113.09999999999999 1.9659511909174459E-004 + 113.16000000000000 1.9279404513481888E-004 + 113.22000000000000 1.8891573277355126E-004 + 113.28000000000000 1.8497147384835831E-004 + 113.34000000000000 1.8097263424475942E-004 + 113.40000000000001 1.7693054243721158E-004 + 113.46000000000001 1.7285648472858733E-004 + 113.51999999999998 1.6876164297306687E-004 + 113.57999999999998 1.6465706753655184E-004 + 113.63999999999999 1.6055364832699657E-004 + 113.69999999999999 1.5646205264289648E-004 + 113.75999999999999 1.5239269816168493E-004 + 113.81999999999999 1.4835570801081439E-004 + 113.88000000000000 1.4436092138335696E-004 + 113.94000000000000 1.4041779509934993E-004 + 114.00000000000000 1.3653544364350664E-004 + 114.06000000000000 1.3272255320642459E-004 + 114.12000000000000 1.2898740783238381E-004 + 114.18000000000001 1.2533782223132388E-004 + 114.23999999999998 1.2178113825294122E-004 + 114.29999999999998 1.1832419792331066E-004 + 114.35999999999999 1.1497332368203995E-004 + 114.41999999999999 1.1173432072123700E-004 + 114.47999999999999 1.0861243302680618E-004 + 114.53999999999999 1.0561235000970653E-004 + 114.59999999999999 1.0273819315778163E-004 + 114.66000000000000 9.9993521530314082E-005 + 114.72000000000000 9.7381303684589894E-005 + 114.78000000000000 9.4903946795216253E-005 + 114.84000000000000 9.2563272704256029E-005 + 114.90000000000001 9.0360546803607759E-005 + 114.96000000000001 8.8296471410645189E-005 + 115.01999999999998 8.6371201021638846E-005 + 115.07999999999998 8.4584345666015697E-005 + 115.13999999999999 8.2935006139924294E-005 + 115.19999999999999 8.1421761952251096E-005 + 115.25999999999999 8.0042705786672369E-005 + 115.31999999999999 7.8795451349848670E-005 + 115.38000000000000 7.7677147251363740E-005 + 115.44000000000000 7.6684492563335225E-005 + 115.50000000000000 7.5813764340285089E-005 + 115.56000000000000 7.5060832602101606E-005 + 115.62000000000000 7.4421156812885700E-005 + 115.68000000000001 7.3889838775549000E-005 + 115.73999999999998 7.3461613651428073E-005 + 115.79999999999998 7.3130874892642938E-005 + 115.85999999999999 7.2891706299356353E-005 + 115.91999999999999 7.2737890930185467E-005 + 115.97999999999999 7.2662954873129585E-005 + 116.03999999999999 7.2660163566061234E-005 + 116.09999999999999 7.2722554256362241E-005 + 116.16000000000000 7.2842986154756032E-005 + 116.22000000000000 7.3014138679143733E-005 + 116.28000000000000 7.3228562512584632E-005 + 116.34000000000000 7.3478669052230640E-005 + 116.40000000000001 7.3756806469898475E-005 + 116.46000000000001 7.4055234485572840E-005 + 116.51999999999998 7.4366191519688888E-005 + 116.57999999999998 7.4681893899314946E-005 + 116.63999999999999 7.4994570627964525E-005 + 116.69999999999999 7.5296483464190345E-005 + 116.75999999999999 7.5579935814410612E-005 + 116.81999999999999 7.5837307763643562E-005 + 116.88000000000000 7.6061066431165177E-005 + 116.94000000000000 7.6243783466202960E-005 + 117.00000000000000 7.6378156521358747E-005 + 117.06000000000000 7.6457010994616299E-005 + 117.12000000000000 7.6473332781807561E-005 + 117.18000000000001 7.6420281486324487E-005 + 117.23999999999998 7.6291183776966198E-005 + 117.29999999999998 7.6079574107921238E-005 + 117.35999999999999 7.5779195274998802E-005 + 117.41999999999999 7.5384018151697317E-005 + 117.47999999999999 7.4888249887918617E-005 + 117.53999999999999 7.4286349820239372E-005 + 117.59999999999999 7.3573060013755584E-005 + 117.66000000000000 7.2743371052617063E-005 + 117.72000000000000 7.1792577007739989E-005 + 117.78000000000000 7.0716275465493601E-005 + 117.84000000000000 6.9510381284663066E-005 + 117.90000000000001 6.8171125218062951E-005 + 117.96000000000001 6.6695084469514212E-005 + 118.01999999999998 6.5079177368594819E-005 + 118.07999999999998 6.3320677469178192E-005 + 118.13999999999999 6.1417221661637123E-005 + 118.19999999999999 5.9366830177012367E-005 + 118.25999999999999 5.7167910369493349E-005 + 118.31999999999999 5.4819264048009794E-005 + 118.38000000000000 5.2320075459652511E-005 + 118.44000000000000 4.9669969769944525E-005 + 118.50000000000000 4.6868958067072168E-005 + 118.56000000000000 4.3917473192815816E-005 + 118.62000000000000 4.0816381027290418E-005 + 118.68000000000001 3.7566960914904734E-005 + 118.73999999999998 3.4170931375408499E-005 + 118.79999999999998 3.0630424362255537E-005 + 118.85999999999999 2.6948006811076158E-005 + 118.91999999999999 2.3126647918185245E-005 + 118.97999999999999 1.9169762679353827E-005 + 119.03999999999999 1.5081160510003455E-005 + 119.09999999999999 1.0865070565838083E-005 + 119.16000000000000 6.5261252586086457E-006 + 119.22000000000000 2.0693686030950106E-006 + 119.28000000000000 -2.4997738851526542E-006 + 119.34000000000000 -7.1754633943241927E-006 + 119.40000000000001 -1.1951477335616869E-005 + 119.46000000000001 -1.6821223897520377E-005 + 119.51999999999998 -2.1777720394629250E-005 + 119.57999999999998 -2.6813605590869835E-005 + 119.63999999999999 -3.1921165016372801E-005 + 119.69999999999999 -3.7092329272407290E-005 + 119.75999999999999 -4.2318663272886955E-005 + 119.81999999999999 -4.7591409149975834E-005 + 119.88000000000000 -5.2901469061542822E-005 + 119.94000000000000 -5.8239469104263039E-005 + 120.00000000000000 -6.3595707969238413E-005 + 120.06000000000000 -6.8960242053715197E-005 + 120.12000000000000 -7.4322853430501505E-005 + 120.18000000000001 -7.9673110551045756E-005 + 120.23999999999998 -8.5000374527596009E-005 + 120.29999999999998 -9.0293816913611434E-005 + 120.35999999999999 -9.5542473833462200E-005 + 120.41999999999999 -1.0073523582561287E-004 + 120.47999999999999 -1.0586090441066006E-004 + 120.53999999999999 -1.1090819910712166E-004 + 120.59999999999999 -1.1586579176612715E-004 + 120.66000000000000 -1.2072233972724585E-004 + 120.72000000000000 -1.2546649888661653E-004 + 120.78000000000000 -1.3008696986426050E-004 + 120.84000000000000 -1.3457249038820738E-004 + 120.90000000000001 -1.3891187138606646E-004 + 120.95999999999998 -1.4309404860532245E-004 + 121.01999999999998 -1.4710808450333436E-004 + 121.07999999999998 -1.5094319287917472E-004 + 121.13999999999999 -1.5458877420253324E-004 + 121.19999999999999 -1.5803441922480511E-004 + 121.25999999999999 -1.6126996279399903E-004 + 121.31999999999999 -1.6428548167898130E-004 + 121.38000000000000 -1.6707136113264682E-004 + 121.44000000000000 -1.6961829736575606E-004 + 121.50000000000000 -1.7191729273826261E-004 + 121.56000000000000 -1.7395972167659230E-004 + 121.62000000000000 -1.7573734114596166E-004 + 121.68000000000001 -1.7724233261598405E-004 + 121.73999999999998 -1.7846730255273598E-004 + 121.79999999999998 -1.7940532058157194E-004 + 121.85999999999999 -1.8004989173854937E-004 + 121.91999999999999 -1.8039505516528049E-004 + 121.97999999999999 -1.8043535101976190E-004 + 122.03999999999999 -1.8016585535246665E-004 + 122.09999999999999 -1.7958220319555404E-004 + 122.16000000000000 -1.7868058265751050E-004 + 122.22000000000000 -1.7745776184770873E-004 + 122.28000000000000 -1.7591109923916127E-004 + 122.34000000000000 -1.7403856997574304E-004 + 122.40000000000001 -1.7183876055289568E-004 + 122.45999999999998 -1.6931089194074044E-004 + 122.51999999999998 -1.6645481250866201E-004 + 122.57999999999998 -1.6327100481763570E-004 + 122.63999999999999 -1.5976060833763244E-004 + 122.69999999999999 -1.5592542208697532E-004 + 122.75999999999999 -1.5176787581713287E-004 + 122.81999999999999 -1.4729104894803640E-004 + 122.88000000000000 -1.4249869072361350E-004 + 122.94000000000000 -1.3739520197875033E-004 + 123.00000000000000 -1.3198558382473743E-004 + 123.06000000000000 -1.2627552011923966E-004 + 123.12000000000000 -1.2027129548191185E-004 + 123.18000000000001 -1.1397983238722828E-004 + 123.23999999999998 -1.0740866002369114E-004 + 123.29999999999998 -1.0056590851071369E-004 + 123.35999999999999 -9.3460313569796366E-005 + 123.41999999999999 -8.6101193341093455E-005 + 123.47999999999999 -7.8498430732273951E-005 + 123.53999999999999 -7.0662476326002941E-005 + 123.59999999999999 -6.2604335711929974E-005 + 123.66000000000000 -5.4335547534393382E-005 + 123.72000000000000 -4.5868171800314936E-005 + 123.78000000000000 -3.7214776595945320E-005 + 123.84000000000000 -2.8388425030601294E-005 + 123.90000000000001 -1.9402653141056862E-005 + 123.95999999999998 -1.0271448506619038E-005 + 124.01999999999998 -1.0092352494899669E-006 + 124.07999999999998 8.3691526699602673E-006 + 124.13999999999999 1.7848495835990080E-005 + 124.19999999999999 2.7413209836974402E-005 + 124.25999999999999 3.7047373153859408E-005 + 124.31999999999999 4.6734758525571235E-005 + 124.38000000000000 5.6458849807510996E-005 + 124.44000000000000 6.6202873995632771E-005 + 124.50000000000000 7.5949836417855293E-005 + 124.56000000000000 8.5682545272591223E-005 + 124.62000000000000 9.5383634067592232E-005 + 124.68000000000001 1.0503558753077563E-004 + 124.73999999999998 1.1462078102974417E-004 + 124.79999999999998 1.2412150896448702E-004 + 124.85999999999999 1.3352000259002974E-004 + 124.91999999999999 1.4279846137465609E-004 + 124.97999999999999 1.5193906146910728E-004 + 125.03999999999999 1.6092403093097659E-004 + 125.09999999999999 1.6973564020475671E-004 + 125.16000000000000 1.7835623560650779E-004 + 125.22000000000000 1.8676826164069153E-004 + 125.28000000000000 1.9495432006858755E-004 + 125.34000000000000 2.0289717115029772E-004 + 125.40000000000001 2.1057973965527948E-004 + 125.45999999999998 2.1798522021935230E-004 + 125.51999999999998 2.2509701299490003E-004 + 125.57999999999998 2.3189884114469507E-004 + 125.63999999999999 2.3837471699107487E-004 + 125.69999999999999 2.4450897576120014E-004 + 125.75999999999999 2.5028634730238114E-004 + 125.81999999999999 2.5569188071128369E-004 + 125.88000000000000 2.6071112741489261E-004 + 125.94000000000000 2.6533003740051783E-004 + 126.00000000000000 2.6953503900142340E-004 + 126.06000000000000 2.7331302294917318E-004 + 126.12000000000000 2.7665142847528367E-004 + 126.18000000000001 2.7953823300097476E-004 + 126.23999999999998 2.8196194069441343E-004 + 126.29999999999998 2.8391167244518897E-004 + 126.35999999999999 2.8537713017718984E-004 + 126.41999999999999 2.8634864859079838E-004 + 126.47999999999999 2.8681720229451976E-004 + 126.53999999999999 2.8677443539912604E-004 + 126.59999999999999 2.8621261486537031E-004 + 126.66000000000000 2.8512472230661317E-004 + 126.72000000000000 2.8350447925913960E-004 + 126.78000000000000 2.8134627115541651E-004 + 126.84000000000000 2.7864522777525010E-004 + 126.90000000000001 2.7539721531747401E-004 + 126.95999999999998 2.7159884100191005E-004 + 127.01999999999998 2.6724745524083334E-004 + 127.07999999999998 2.6234117479261108E-004 + 127.13999999999999 2.5687884776721807E-004 + 127.19999999999999 2.5086011416103088E-004 + 127.25999999999999 2.4428539456552496E-004 + 127.31999999999999 2.3715585799426815E-004 + 127.38000000000000 2.2947349878152471E-004 + 127.44000000000000 2.2124104393726488E-004 + 127.50000000000000 2.1246203120026569E-004 + 127.56000000000000 2.0314076469802746E-004 + 127.62000000000000 1.9328236193411091E-004 + 127.68000000000001 1.8289271352264378E-004 + 127.73999999999998 1.7197847520060563E-004 + 127.79999999999998 1.6054712544520203E-004 + 127.85999999999999 1.4860689269923763E-004 + 127.91999999999999 1.3616678734562512E-004 + 127.97999999999999 1.2323657470536379E-004 + 128.03999999999999 1.0982677879068524E-004 + 128.09999999999999 9.5948664985915640E-005 + 128.16000000000000 8.1614219976718815E-005 + 128.22000000000000 6.6836146441322009E-005 + 128.28000000000000 5.1627847089658494E-005 + 128.34000000000000 3.6003398949458038E-005 + 128.40000000000001 1.9977549774319625E-005 + 128.45999999999998 3.5656834437954781E-006 + 128.51999999999998 -1.3216181934623451E-005 + 128.57999999999998 -3.0351437667590925E-005 + 128.63999999999999 -4.7822873643379473E-005 + 128.69999999999999 -6.5612715811780544E-005 + 128.75999999999999 -8.3702645727942775E-005 + 128.81999999999999 -1.0207382142831287E-004 + 128.88000000000000 -1.2070690255868856E-004 + 128.94000000000000 -1.3958202810279179E-004 + 129.00000000000000 -1.5867889502659653E-004 + 129.06000000000000 -1.7797674489614053E-004 + 129.12000000000000 -1.9745441682478900E-004 + 129.18000000000001 -2.1709034763684701E-004 + 129.23999999999998 -2.3686257673965192E-004 + 129.29999999999998 -2.5674880485833433E-004 + 129.35999999999999 -2.7672642941069296E-004 + 129.41999999999999 -2.9677252059963583E-004 + 129.47999999999999 -3.1686392526450062E-004 + 129.53999999999999 -3.3697721136891794E-004 + 129.59999999999999 -3.5708876313175574E-004 + 129.66000000000000 -3.7717478655766696E-004 + 129.72000000000000 -3.9721136308179398E-004 + 129.78000000000000 -4.1717443894564164E-004 + 129.84000000000000 -4.3703994715643560E-004 + 129.90000000000001 -4.5678372717960851E-004 + 129.95999999999998 -4.7638156858093267E-004 + 130.01999999999998 -4.9580942401892853E-004 + 130.07999999999998 -5.1504320852790899E-004 + 130.13999999999999 -5.3405896349449536E-004 + 130.19999999999999 -5.5283291776366287E-004 + 130.25999999999999 -5.7134139443625347E-004 + 130.31999999999999 -5.8956095378306570E-004 + 130.38000000000000 -6.0746844298071657E-004 + 130.44000000000000 -6.2504090386036762E-004 + 130.50000000000000 -6.4225575184808227E-004 + 130.56000000000000 -6.5909067795702470E-004 + 130.62000000000000 -6.7552384743573652E-004 + 130.68000000000001 -6.9153376962672989E-004 + 130.73999999999998 -7.0709943231485220E-004 + 130.79999999999998 -7.2220026866299646E-004 + 130.85999999999999 -7.3681627264067799E-004 + 130.91999999999999 -7.5092792096216436E-004 + 130.97999999999999 -7.6451630291115560E-004 + 131.03999999999999 -7.7756314807068082E-004 + 131.09999999999999 -7.9005086867320925E-004 + 131.16000000000000 -8.0196249018030382E-004 + 131.22000000000000 -8.1328179450963832E-004 + 131.28000000000000 -8.2399332274406712E-004 + 131.34000000000000 -8.3408238707942622E-004 + 131.40000000000001 -8.4353515748317154E-004 + 131.45999999999998 -8.5233861445525871E-004 + 131.51999999999998 -8.6048055239082368E-004 + 131.57999999999998 -8.6794979746836036E-004 + 131.63999999999999 -8.7473604155140802E-004 + 131.69999999999999 -8.8083000670708832E-004 + 131.75999999999999 -8.8622320943420013E-004 + 131.81999999999999 -8.9090834270812505E-004 + 131.88000000000000 -8.9487900022670777E-004 + 131.94000000000000 -8.9812998691095802E-004 + 132.00000000000000 -9.0065685726334896E-004 + 132.06000000000000 -9.0245650682180007E-004 + 132.12000000000000 -9.0352664378320620E-004 + 132.18000000000001 -9.0386623159971827E-004 + 132.23999999999998 -9.0347516339023856E-004 + 132.29999999999998 -9.0235453135643830E-004 + 132.35999999999999 -9.0050639705481169E-004 + 132.41999999999999 -8.9793382195254277E-004 + 132.47999999999999 -8.9464112073198892E-004 + 132.53999999999999 -8.9063352911071037E-004 + 132.59999999999999 -8.8591752272283567E-004 + 132.66000000000000 -8.8050037055100296E-004 + 132.72000000000000 -8.7439059780119793E-004 + 132.78000000000000 -8.6759759339631658E-004 + 132.84000000000000 -8.6013191015432992E-004 + 132.90000000000001 -8.5200511589865328E-004 + 132.95999999999998 -8.4322965380165997E-004 + 133.01999999999998 -8.3381896476344367E-004 + 133.07999999999998 -8.2378742499002156E-004 + 133.13999999999999 -8.1315035638892651E-004 + 133.19999999999999 -8.0192397219928241E-004 + 133.25999999999999 -7.9012532186300611E-004 + 133.31999999999999 -7.7777223583958563E-004 + 133.38000000000000 -7.6488338075253698E-004 + 133.44000000000000 -7.5147815235414176E-004 + 133.50000000000000 -7.3757661788641292E-004 + 133.56000000000000 -7.2319943990050805E-004 + 133.62000000000000 -7.0836793666164083E-004 + 133.68000000000001 -6.9310405458847214E-004 + 133.73999999999998 -6.7743013462644879E-004 + 133.79999999999998 -6.6136903821652411E-004 + 133.85999999999999 -6.4494392092043944E-004 + 133.91999999999999 -6.2817846965326643E-004 + 133.97999999999999 -6.1109658182883630E-004 + 134.03999999999999 -5.9372245294943770E-004 + 134.09999999999999 -5.7608043950345867E-004 + 134.16000000000000 -5.5819516346610745E-004 + 134.22000000000000 -5.4009127183884476E-004 + 134.28000000000000 -5.2179348203893210E-004 + 134.34000000000000 -5.0332659073368681E-004 + 134.40000000000001 -4.8471524075394362E-004 + 134.45999999999998 -4.6598410235643384E-004 + 134.51999999999998 -4.4715760270299743E-004 + 134.57999999999998 -4.2826006171320434E-004 + 134.63999999999999 -4.0931552326449640E-004 + 134.69999999999999 -3.9034771127761670E-004 + 134.75999999999999 -3.7137999220590481E-004 + 134.81999999999999 -3.5243540756110120E-004 + 134.88000000000000 -3.3353648092433280E-004 + 134.94000000000000 -3.1470523039113036E-004 + 135.00000000000000 -2.9596320417415008E-004 + 135.06000000000000 -2.7733128668656139E-004 + 135.12000000000000 -2.5882977011591578E-004 + 135.18000000000001 -2.4047825389360601E-004 + 135.23999999999998 -2.2229567629378477E-004 + 135.29999999999998 -2.0430015459921335E-004 + 135.35999999999999 -1.8650909655578237E-004 + 135.41999999999999 -1.6893905889843141E-004 + 135.47999999999999 -1.5160577557094050E-004 + 135.53999999999999 -1.3452413478713400E-004 + 135.59999999999999 -1.1770810358328956E-004 + 135.66000000000000 -1.0117079374376864E-004 + 135.72000000000000 -8.4924367377882065E-005 + 135.78000000000000 -6.8980094532765330E-005 + 135.84000000000000 -5.3348270166762068E-005 + 135.90000000000001 -3.8038261376608614E-005 + 135.95999999999998 -2.3058473430684238E-005 + 136.01999999999998 -8.4163539365425350E-006 + 136.07999999999998 5.8816018147873355E-006 + 136.13999999999999 1.9829861210143119E-005 + 136.19999999999999 3.3423848354599943E-005 + 136.25999999999999 4.6659941512696611E-005 + 136.31999999999999 5.9535454316677721E-005 + 136.38000000000000 7.2048653666063618E-005 + 136.44000000000000 8.4198724189161176E-005 + 136.50000000000000 9.5985777455493332E-005 + 136.56000000000000 1.0741082362681785E-004 + 136.62000000000000 1.1847574983090920E-004 + 136.68000000000001 1.2918331128960393E-004 + 136.73999999999998 1.3953711713726239E-004 + 136.79999999999998 1.4954159099575466E-004 + 136.85999999999999 1.5920195002970598E-004 + 136.91999999999999 1.6852416174110551E-004 + 136.97999999999999 1.7751493617393469E-004 + 137.03999999999999 1.8618164988847550E-004 + 137.09999999999999 1.9453236702969307E-004 + 137.16000000000000 2.0257577182937209E-004 + 137.22000000000000 2.1032113099304922E-004 + 137.28000000000000 2.1777822684936976E-004 + 137.34000000000000 2.2495736313750143E-004 + 137.40000000000001 2.3186931536900077E-004 + 137.45999999999998 2.3852526233521064E-004 + 137.51999999999998 2.4493675287337878E-004 + 137.57999999999998 2.5111572161925740E-004 + 137.63999999999999 2.5707437209573756E-004 + 137.69999999999999 2.6282519581481961E-004 + 137.75999999999999 2.6838089738131479E-004 + 137.81999999999999 2.7375437156065884E-004 + 137.88000000000000 2.7895867374855878E-004 + 137.94000000000000 2.8400700071150287E-004 + 138.00000000000000 2.8891262563363182E-004 + 138.06000000000000 2.9368888614429012E-004 + 138.12000000000000 2.9834914136947971E-004 + 138.18000000000001 3.0290668044641062E-004 + 138.23999999999998 3.0737482199216061E-004 + 138.29999999999998 3.1176673157740076E-004 + 138.35999999999999 3.1609548122642586E-004 + 138.41999999999999 3.2037394721791911E-004 + 138.47999999999999 3.2461492185343135E-004 + 138.53999999999999 3.2883085722746740E-004 + 138.59999999999999 3.3303401951243616E-004 + 138.66000000000000 3.3723632810445515E-004 + 138.72000000000000 3.4144946863086427E-004 + 138.78000000000000 3.4568476831754752E-004 + 138.84000000000000 3.4995312249331141E-004 + 138.90000000000001 3.5426510541096520E-004 + 138.95999999999998 3.5863091376213131E-004 + 139.01999999999998 3.6306023222907474E-004 + 139.07999999999998 3.6756237391382020E-004 + 139.13999999999999 3.7214617588322548E-004 + 139.19999999999999 3.7682003105022450E-004 + 139.25999999999999 3.8159184518438995E-004 + 139.31999999999999 3.8646903002814953E-004 + 139.38000000000000 3.9145854918797181E-004 + 139.44000000000000 3.9656679292480936E-004 + 139.50000000000000 4.0179970255773551E-004 + 139.56000000000000 4.0716268636553047E-004 + 139.62000000000000 4.1266068400771930E-004 + 139.68000000000001 4.1829808088516640E-004 + 139.73999999999998 4.2407875612300106E-004 + 139.79999999999998 4.3000606657154843E-004 + 139.85999999999999 4.3608287875046239E-004 + 139.91999999999999 4.4231154364927840E-004 + 139.97999999999999 4.4869386634133543E-004 + 140.03999999999999 4.5523119578014942E-004 + 140.09999999999999 4.6192438631554997E-004 + 140.16000000000000 4.6877377612280656E-004 + 140.22000000000000 4.7577923100613725E-004 + 140.28000000000000 4.8294016573872446E-004 + 140.34000000000000 4.9025553031529470E-004 + 140.40000000000001 4.9772379045873779E-004 + 140.45999999999998 5.0534304820966803E-004 + 140.51999999999998 5.1311091126728700E-004 + 140.57999999999998 5.2102467752280438E-004 + 140.63999999999999 5.2908119058817907E-004 + 140.69999999999999 5.3727689445626052E-004 + 140.75999999999999 5.4560795021792261E-004 + 140.81999999999999 5.5407013881838781E-004 + 140.88000000000000 5.6265885722995841E-004 + 140.94000000000000 5.7136927223737301E-004 + 141.00000000000000 5.8019622000728198E-004 + 141.06000000000000 5.8913421528763586E-004 + 141.12000000000000 5.9817751655185823E-004 + 141.18000000000001 6.0732016749606753E-004 + 141.23999999999998 6.1655589825097032E-004 + 141.29999999999998 6.2587834648170451E-004 + 141.35999999999999 6.3528079493965772E-004 + 141.41999999999999 6.4475640982940893E-004 + 141.47999999999999 6.5429811882090016E-004 + 141.53999999999999 6.6389869340103679E-004 + 141.59999999999999 6.7355068214490228E-004 + 141.66000000000000 6.8324653059487195E-004 + 141.72000000000000 6.9297863049794304E-004 + 141.78000000000000 7.0273914050715926E-004 + 141.84000000000000 7.1252008276359894E-004 + 141.90000000000001 7.2231343141815969E-004 + 141.95999999999998 7.3211103593779324E-004 + 142.01999999999998 7.4190464687459766E-004 + 142.07999999999998 7.5168589790520547E-004 + 142.13999999999999 7.6144638285699224E-004 + 142.19999999999999 7.7117764679928032E-004 + 142.25999999999999 7.8087117843587375E-004 + 142.31999999999999 7.9051840878829611E-004 + 142.38000000000000 8.0011067807863928E-004 + 142.44000000000000 8.0963933849713822E-004 + 142.50000000000000 8.1909572156932983E-004 + 142.56000000000000 8.2847104709664039E-004 + 142.62000000000000 8.3775658658899205E-004 + 142.68000000000001 8.4694358131615153E-004 + 142.73999999999998 8.5602326638606167E-004 + 142.79999999999998 8.6498684754575015E-004 + 142.85999999999999 8.7382541063640959E-004 + 142.91999999999999 8.8253020676840998E-004 + 142.97999999999999 8.9109243893093198E-004 + 143.03999999999999 8.9950321258696524E-004 + 143.09999999999999 9.0775380311668239E-004 + 143.16000000000000 9.1583530209224536E-004 + 143.22000000000000 9.2373894776727082E-004 + 143.28000000000000 9.3145597668232321E-004 + 143.34000000000000 9.3897760949654505E-004 + 143.40000000000001 9.4629516463997797E-004 + 143.45999999999998 9.5340006954201318E-004 + 143.51999999999998 9.6028370674018312E-004 + 143.57999999999998 9.6693756448114636E-004 + 143.63999999999999 9.7335319474841861E-004 + 143.69999999999999 9.7952235622465484E-004 + 143.75999999999999 9.8543670133944628E-004 + 143.81999999999999 9.9108812419685353E-004 + 143.88000000000000 9.9646862674929474E-004 + 143.94000000000000 1.0015704074492798E-003 + 144.00000000000000 1.0063856833814903E-003 + 144.06000000000000 1.0109069282636740E-003 + 144.12000000000000 1.0151266194817245E-003 + 144.18000000000001 1.0190376015488172E-003 + 144.23999999999998 1.0226328309113554E-003 + 144.29999999999998 1.0259054601020308E-003 + 144.35999999999999 1.0288488969703174E-003 + 144.41999999999999 1.0314567592555879E-003 + 144.47999999999999 1.0337229126865740E-003 + 144.53999999999999 1.0356415214044588E-003 + 144.59999999999999 1.0372070677809558E-003 + 144.66000000000000 1.0384143237007525E-003 + 144.72000000000000 1.0392584141597115E-003 + 144.78000000000000 1.0397348501580222E-003 + 144.84000000000000 1.0398394481945057E-003 + 144.90000000000001 1.0395685103542895E-003 + 144.95999999999998 1.0389189196521500E-003 + 145.01999999999998 1.0378877277412931E-003 + 145.07999999999998 1.0364726473417437E-003 + 145.13999999999999 1.0346719212735863E-003 + 145.19999999999999 1.0324840804953181E-003 + 145.25999999999999 1.0299083763633864E-003 + 145.31999999999999 1.0269444246269889E-003 + 145.38000000000000 1.0235926726619275E-003 + 145.44000000000000 1.0198537834174386E-003 + 145.50000000000000 1.0157291220632123E-003 + 145.56000000000000 1.0112206785689512E-003 + 145.62000000000000 1.0063309069533329E-003 + 145.68000000000001 1.0010629075842992E-003 + 145.73999999999998 9.9542032136045486E-004 + 145.79999999999998 9.8940745101865372E-004 + 145.85999999999999 9.8302907066181566E-004 + 145.91999999999999 9.7629072430218907E-004 + 145.97999999999999 9.6919850908468489E-004 + 146.03999999999999 9.6175898963078981E-004 + 146.09999999999999 9.5397948145492430E-004 + 146.16000000000000 9.4586782684585608E-004 + 146.22000000000000 9.3743255515210189E-004 + 146.28000000000000 9.2868268187851015E-004 + 146.34000000000000 9.1962790565915163E-004 + 146.40000000000001 9.1027845381079584E-004 + 146.45999999999998 9.0064506421511439E-004 + 146.51999999999998 8.9073908180247168E-004 + 146.57999999999998 8.8057236760725490E-004 + 146.63999999999999 8.7015725962950050E-004 + 146.69999999999999 8.5950658815738738E-004 + 146.75999999999999 8.4863356628574822E-004 + 146.81999999999999 8.3755187884471474E-004 + 146.88000000000000 8.2627563398337926E-004 + 146.94000000000000 8.1481922432657993E-004 + 147.00000000000000 8.0319733136544958E-004 + 147.06000000000000 7.9142501979852708E-004 + 147.12000000000000 7.7951749078508854E-004 + 147.18000000000001 7.6749013541003086E-004 + 147.23999999999998 7.5535861787538305E-004 + 147.29999999999998 7.4313872405072352E-004 + 147.35999999999999 7.3084621998368551E-004 + 147.41999999999999 7.1849705149944578E-004 + 147.47999999999999 7.0610708452330088E-004 + 147.53999999999999 6.9369219890853633E-004 + 147.59999999999999 6.8126817924884326E-004 + 147.66000000000000 6.6885081474902163E-004 + 147.72000000000000 6.5645563406717953E-004 + 147.78000000000000 6.4409804018841820E-004 + 147.84000000000000 6.3179320826889547E-004 + 147.90000000000001 6.1955611285121508E-004 + 147.95999999999998 6.0740136384450610E-004 + 148.01999999999998 5.9534323385622217E-004 + 148.07999999999998 5.8339575140343102E-004 + 148.13999999999999 5.7157239355592603E-004 + 148.19999999999999 5.5988630375636208E-004 + 148.25999999999999 5.4835011696111795E-004 + 148.31999999999999 5.3697594810164805E-004 + 148.38000000000000 5.2577540645796464E-004 + 148.44000000000000 5.1475946468310650E-004 + 148.50000000000000 5.0393850884277564E-004 + 148.56000000000000 4.9332229525200376E-004 + 148.62000000000000 4.8291993997347574E-004 + 148.68000000000001 4.7273982082378374E-004 + 148.73999999999998 4.6278964356890587E-004 + 148.79999999999998 4.5307633393562173E-004 + 148.85999999999999 4.4360616982676813E-004 + 148.91999999999999 4.3438461643516854E-004 + 148.97999999999999 4.2541640492673490E-004 + 149.03999999999999 4.1670548171421356E-004 + 149.09999999999999 4.0825500974246898E-004 + 149.16000000000000 4.0006743001378255E-004 + 149.22000000000000 3.9214438653237607E-004 + 149.28000000000000 3.8448682322936669E-004 + 149.34000000000000 3.7709486580198232E-004 + 149.40000000000001 3.6996800032559077E-004 + 149.45999999999998 3.6310490406491933E-004 + 149.51999999999998 3.5650356557246818E-004 + 149.57999999999998 3.5016129408737916E-004 + 149.63999999999999 3.4407468264561065E-004 + 149.69999999999999 3.3823966316434147E-004 + 149.75999999999999 3.3265151545301100E-004 + 149.81999999999999 3.2730484962174773E-004 + 149.88000000000000 3.2219369833743939E-004 + 149.94000000000000 3.1731143974339027E-004 + 150.00000000000000 3.1265088823120119E-004 + 150.06000000000000 3.0820433210737233E-004 + 150.12000000000000 3.0396343797351090E-004 + 150.18000000000001 2.9991945121886235E-004 + 150.23999999999998 2.9606308721615612E-004 + 150.29999999999998 2.9238465492509411E-004 + 150.35999999999999 2.8887400726561362E-004 + 150.41999999999999 2.8552063822014117E-004 + 150.47999999999999 2.8231374040935098E-004 + 150.53999999999999 2.7924218342725225E-004 + 150.59999999999999 2.7629460802980246E-004 + 150.66000000000000 2.7345939074740149E-004 + 150.72000000000000 2.7072479118187427E-004 + 150.78000000000000 2.6807887686916538E-004 + 150.84000000000000 2.6550970832670603E-004 + 150.90000000000001 2.6300518701949111E-004 + 150.95999999999998 2.6055324773433658E-004 + 151.01999999999998 2.5814183548305376E-004 + 151.07999999999998 2.5575891437183728E-004 + 151.13999999999999 2.5339254788512834E-004 + 151.19999999999999 2.5103088512653892E-004 + 151.25999999999999 2.4866222888666811E-004 + 151.31999999999999 2.4627503666707759E-004 + 151.38000000000000 2.4385799378394722E-004 + 151.44000000000000 2.4139994558548713E-004 + 151.50000000000000 2.3889003885815954E-004 + 151.56000000000000 2.3631769949877444E-004 + 151.62000000000000 2.3367259563951756E-004 + 151.68000000000001 2.3094479307439914E-004 + 151.73999999999998 2.2812466758430418E-004 + 151.79999999999998 2.2520297820268525E-004 + 151.85999999999999 2.2217088675604101E-004 + 151.91999999999999 2.1901997176119331E-004 + 151.97999999999999 2.1574226970373354E-004 + 152.03999999999999 2.1233026543523252E-004 + 152.09999999999999 2.0877691869916414E-004 + 152.16000000000000 2.0507570141988372E-004 + 152.22000000000000 2.0122056624414611E-004 + 152.28000000000000 1.9720599318257182E-004 + 152.34000000000000 1.9302699171114209E-004 + 152.40000000000001 1.8867911490119815E-004 + 152.45999999999998 1.8415843288544634E-004 + 152.51999999999998 1.7946157746144301E-004 + 152.57999999999998 1.7458571808688184E-004 + 152.63999999999999 1.6952855422784627E-004 + 152.69999999999999 1.6428835706386666E-004 + 152.75999999999999 1.5886391071711381E-004 + 152.81999999999999 1.5325454936954497E-004 + 152.88000000000000 1.4746010974352891E-004 + 152.94000000000000 1.4148096948917626E-004 + 153.00000000000000 1.3531802377910975E-004 + 153.06000000000000 1.2897263835249281E-004 + 153.12000000000000 1.2244668396517715E-004 + 153.17999999999998 1.1574248634138773E-004 + 153.23999999999998 1.0886285602659690E-004 + 153.29999999999998 1.0181103177153292E-004 + 153.35999999999999 9.4590690289290518E-005 + 153.41999999999999 8.7205925143305486E-005 + 153.47999999999999 7.9661233394480319E-005 + 153.53999999999999 7.1961489648541817E-005 + 153.59999999999999 6.4111949115954392E-005 + 153.66000000000000 5.6118203060809927E-005 + 153.72000000000000 4.7986188435462625E-005 + 153.78000000000000 3.9722157179022256E-005 + 153.84000000000000 3.1332655431981724E-005 + 153.90000000000001 2.2824517119530455E-005 + 153.95999999999998 1.4204829573067299E-005 + 154.01999999999998 5.4809277232377988E-006 + 154.07999999999998 -3.3396408809916708E-006 + 154.13999999999999 -1.2249116773207265E-005 + 154.19999999999999 -2.1239572563915365E-005 + 154.25999999999999 -3.0302930220215887E-005 + 154.31999999999999 -3.9430972075754641E-005 + 154.38000000000000 -4.8615369224335820E-005 + 154.44000000000000 -5.7847710061101581E-005 + 154.50000000000000 -6.7119518940243755E-005 + 154.56000000000000 -7.6422275028397118E-005 + 154.62000000000000 -8.5747426404287724E-005 + 154.67999999999998 -9.5086412113566421E-005 + 154.73999999999998 -1.0443068472357962E-004 + 154.79999999999998 -1.1377172035892990E-004 + 154.85999999999999 -1.2310104601159086E-004 + 154.91999999999999 -1.3241021128837448E-004 + 154.97999999999999 -1.4169084874938916E-004 + 155.03999999999999 -1.5093466685157182E-004 + 155.09999999999999 -1.6013344842960155E-004 + 155.16000000000000 -1.6927908721256030E-004 + 155.22000000000000 -1.7836355953022954E-004 + 155.28000000000000 -1.8737895048677949E-004 + 155.34000000000000 -1.9631748705745776E-004 + 155.40000000000001 -2.0517150603145169E-004 + 155.45999999999998 -2.1393348295132636E-004 + 155.51999999999998 -2.2259605289601307E-004 + 155.57999999999998 -2.3115200631860806E-004 + 155.63999999999999 -2.3959428996490038E-004 + 155.69999999999999 -2.4791601563543570E-004 + 155.75999999999999 -2.5611054124230172E-004 + 155.81999999999999 -2.6417133115460694E-004 + 155.88000000000000 -2.7209213643303879E-004 + 155.94000000000000 -2.7986684626137275E-004 + 156.00000000000000 -2.8748957764021874E-004 + 156.06000000000000 -2.9495471151539933E-004 + 156.12000000000000 -3.0225677008582821E-004 + 156.17999999999998 -3.0939057998849955E-004 + 156.23999999999998 -3.1635112104729798E-004 + 156.29999999999998 -3.2313360580451714E-004 + 156.35999999999999 -3.2973348144842932E-004 + 156.41999999999999 -3.3614638985371659E-004 + 156.47999999999999 -3.4236822957096853E-004 + 156.53999999999999 -3.4839508152750197E-004 + 156.59999999999999 -3.5422325674385298E-004 + 156.66000000000000 -3.5984927171739503E-004 + 156.72000000000000 -3.6526984517274813E-004 + 156.78000000000000 -3.7048190555615733E-004 + 156.84000000000000 -3.7548262213079806E-004 + 156.90000000000001 -3.8026941109979697E-004 + 156.95999999999998 -3.8483982488698006E-004 + 157.01999999999998 -3.8919172510531726E-004 + 157.07999999999998 -3.9332312650776390E-004 + 157.13999999999999 -3.9723229538465930E-004 + 157.19999999999999 -4.0091774502299445E-004 + 157.25999999999999 -4.0437819878146996E-004 + 157.31999999999999 -4.0761262077106396E-004 + 157.38000000000000 -4.1062021223085615E-004 + 157.44000000000000 -4.1340040347862380E-004 + 157.50000000000000 -4.1595284625278300E-004 + 157.56000000000000 -4.1827745205618485E-004 + 157.62000000000000 -4.2037434061191080E-004 + 157.67999999999998 -4.2224388897207915E-004 + 157.73999999999998 -4.2388669106447214E-004 + 157.79999999999998 -4.2530358943766776E-004 + 157.85999999999999 -4.2649563208835094E-004 + 157.91999999999999 -4.2746411336558343E-004 + 157.97999999999999 -4.2821057411836244E-004 + 158.03999999999999 -4.2873671806631689E-004 + 158.09999999999999 -4.2904455499643060E-004 + 158.16000000000000 -4.2913629873262771E-004 + 158.22000000000000 -4.2901432519150303E-004 + 158.28000000000000 -4.2868131021257658E-004 + 158.34000000000000 -4.2814009158476666E-004 + 158.40000000000001 -4.2739372824572049E-004 + 158.45999999999998 -4.2644553767765523E-004 + 158.51999999999998 -4.2529899172028506E-004 + 158.57999999999998 -4.2395777703412729E-004 + 158.63999999999999 -4.2242576674163105E-004 + 158.69999999999999 -4.2070708132201757E-004 + 158.75999999999999 -4.1880596145199735E-004 + 158.81999999999999 -4.1672689080250340E-004 + 158.88000000000000 -4.1447452465901547E-004 + 158.94000000000000 -4.1205368780294026E-004 + 159.00000000000000 -4.0946937722503320E-004 + 159.06000000000000 -4.0672670565061996E-004 + 159.12000000000000 -4.0383102390665232E-004 + 159.17999999999998 -4.0078776295987588E-004 + 159.23999999999998 -3.9760254769209653E-004 + 159.29999999999998 -3.9428110514854326E-004 + 159.35999999999999 -3.9082924761469587E-004 + 159.41999999999999 -3.8725289672370065E-004 + 159.47999999999999 -3.8355810932121098E-004 + 159.53999999999999 -3.7975098571042169E-004 + 159.59999999999999 -3.7583768529667700E-004 + 159.66000000000000 -3.7182442699900433E-004 + 159.72000000000000 -3.6771748508294678E-004 + 159.78000000000000 -3.6352309672044603E-004 + 159.84000000000000 -3.5924752092146545E-004 + 159.90000000000001 -3.5489704063993701E-004 + 159.95999999999998 -3.5047790688876940E-004 + 160.01999999999998 -3.4599628594220286E-004 + 160.07999999999998 -3.4145836992232942E-004 + 160.13999999999999 -3.3687025443481140E-004 + 160.19999999999999 -3.3223791879214944E-004 + 160.25999999999999 -3.2756734278951771E-004 + 160.31999999999999 -3.2286436009835014E-004 + 160.38000000000000 -3.1813470937612297E-004 + 160.44000000000000 -3.1338404216489142E-004 + 160.50000000000000 -3.0861788366768602E-004 + 160.56000000000000 -3.0384159633613060E-004 + 160.62000000000000 -2.9906044287730186E-004 + 160.67999999999998 -2.9427946356885311E-004 + 160.73999999999998 -2.8950359981746337E-004 + 160.79999999999998 -2.8473759315206151E-004 + 160.85999999999999 -2.7998595803313666E-004 + 160.91999999999999 -2.7525306482196831E-004 + 160.97999999999999 -2.7054301940819558E-004 + 161.03999999999999 -2.6585974076193326E-004 + 161.09999999999999 -2.6120688763147076E-004 + 161.16000000000000 -2.5658789867566293E-004 + 161.22000000000000 -2.5200593799071990E-004 + 161.28000000000000 -2.4746393130907615E-004 + 161.34000000000000 -2.4296455906782396E-004 + 161.40000000000001 -2.3851022736771896E-004 + 161.45999999999998 -2.3410312320403204E-004 + 161.51999999999998 -2.2974512875256696E-004 + 161.57999999999998 -2.2543790807521592E-004 + 161.63999999999999 -2.2118285281394487E-004 + 161.69999999999999 -2.1698110950209442E-004 + 161.75999999999999 -2.1283359005894222E-004 + 161.81999999999999 -2.0874097576557959E-004 + 161.88000000000000 -2.0470370697739715E-004 + 161.94000000000000 -2.0072201025099286E-004 + 162.00000000000000 -1.9679587915501386E-004 + 162.06000000000000 -1.9292509897727358E-004 + 162.12000000000000 -1.8910926769180093E-004 + 162.17999999999998 -1.8534777824220989E-004 + 162.23999999999998 -1.8163983112827261E-004 + 162.29999999999998 -1.7798443914001191E-004 + 162.35999999999999 -1.7438043279672109E-004 + 162.41999999999999 -1.7082648188941125E-004 + 162.47999999999999 -1.6732112401989766E-004 + 162.53999999999999 -1.6386271223751237E-004 + 162.59999999999999 -1.6044950920749915E-004 + 162.66000000000000 -1.5707962540056450E-004 + 162.72000000000000 -1.5375105467392764E-004 + 162.78000000000000 -1.5046171196261452E-004 + 162.84000000000000 -1.4720942699106754E-004 + 162.90000000000001 -1.4399194435821006E-004 + 162.95999999999998 -1.4080696004380804E-004 + 163.01999999999998 -1.3765211014559963E-004 + 163.07999999999998 -1.3452501581056185E-004 + 163.13999999999999 -1.3142326670000489E-004 + 163.19999999999999 -1.2834444764910316E-004 + 163.25999999999999 -1.2528615634200814E-004 + 163.31999999999999 -1.2224600561826227E-004 + 163.38000000000000 -1.1922166375688755E-004 + 163.44000000000000 -1.1621082276531115E-004 + 163.50000000000000 -1.1321124164414744E-004 + 163.56000000000000 -1.1022076458977002E-004 + 163.62000000000000 -1.0723731940025710E-004 + 163.67999999999998 -1.0425892956848235E-004 + 163.73999999999998 -1.0128374980563341E-004 + 163.79999999999998 -9.8310047126176428E-005 + 163.85999999999999 -9.5336225656569721E-005 + 163.91999999999999 -9.2360852294340480E-005 + 163.97999999999999 -8.9382636942040173E-005 + 164.03999999999999 -8.6400449744441165E-005 + 164.09999999999999 -8.3413332737346582E-005 + 164.16000000000000 -8.0420533053665301E-005 + 164.22000000000000 -7.7421448183435408E-005 + 164.28000000000000 -7.4415668364938384E-005 + 164.34000000000000 -7.1402980558811019E-005 + 164.40000000000001 -6.8383333116226049E-005 + 164.45999999999998 -6.5356888328476265E-005 + 164.51999999999998 -6.2323991276339271E-005 + 164.57999999999998 -5.9285168418339420E-005 + 164.63999999999999 -5.6241143983968214E-005 + 164.69999999999999 -5.3192824309201641E-005 + 164.75999999999999 -5.0141313991139268E-005 + 164.81999999999999 -4.7087889748900762E-005 + 164.88000000000000 -4.4034032719016318E-005 + 164.94000000000000 -4.0981405996426914E-005 + 165.00000000000000 -3.7931857183895926E-005 + 165.06000000000000 -3.4887425332722947E-005 + 165.12000000000000 -3.1850325405559623E-005 + 165.17999999999998 -2.8822955979156221E-005 + 165.23999999999998 -2.5807880120199690E-005 + 165.29999999999998 -2.2807830219149383E-005 + 165.35999999999999 -1.9825708175704626E-005 + 165.41999999999999 -1.6864545103953549E-005 + 165.47999999999999 -1.3927531235754477E-005 + 165.53999999999999 -1.1017960441489812E-005 + 165.59999999999999 -8.1392542854149202E-006 + 165.66000000000000 -5.2949308651866788E-006 + 165.72000000000000 -2.4885879810379264E-006 + 165.78000000000000 2.7610662861955261E-007 + 165.84000000000000 2.9954303545669758E-006 + 165.90000000000001 5.6656232995613494E-006 + 165.95999999999998 8.2828981196794242E-006 + 166.01999999999998 1.0843456723605412E-005 + 166.07999999999998 1.3343499721260092E-005 + 166.13999999999999 1.5779244342284628E-005 + 166.19999999999999 1.8146934023107805E-005 + 166.25999999999999 2.0442843421332434E-005 + 166.31999999999999 2.2663297589912991E-005 + 166.38000000000000 2.4804676454322483E-005 + 166.44000000000000 2.6863425111024226E-005 + 166.50000000000000 2.8836068752267591E-005 + 166.56000000000000 3.0719215960993787E-005 + 166.62000000000000 3.2509571421269477E-005 + 166.67999999999998 3.4203944705382157E-005 + 166.73999999999998 3.5799267133087983E-005 + 166.79999999999998 3.7292590580351341E-005 + 166.85999999999999 3.8681101553542266E-005 + 166.91999999999999 3.9962134848020575E-005 + 166.97999999999999 4.1133179408377593E-005 + 167.03999999999999 4.2191893554097572E-005 + 167.09999999999999 4.3136104611043381E-005 + 167.16000000000000 4.3963822798652690E-005 + 167.22000000000000 4.4673249948597197E-005 + 167.28000000000000 4.5262781813607195E-005 + 167.34000000000000 4.5731021742618963E-005 + 167.40000000000001 4.6076785046196836E-005 + 167.45999999999998 4.6299096124924533E-005 + 167.51999999999998 4.6397203364207442E-005 + 167.57999999999998 4.6370581647554046E-005 + 167.63999999999999 4.6218923870105632E-005 + 167.69999999999999 4.5942161851318204E-005 + 167.75999999999999 4.5540449607791401E-005 + 167.81999999999999 4.5014169596843947E-005 + 167.88000000000000 4.4363936941416672E-005 + 167.94000000000000 4.3590582397323192E-005 + 168.00000000000000 4.2695164656384383E-005 + 168.06000000000000 4.1678954819621592E-005 + 168.12000000000000 4.0543432831810142E-005 + 168.17999999999998 3.9290283863062381E-005 + 168.23999999999998 3.7921384827596911E-005 + 168.29999999999998 3.6438802960450387E-005 + 168.35999999999999 3.4844787369647936E-005 + 168.41999999999999 3.3141748830965707E-005 + 168.47999999999999 3.1332272433957288E-005 + 168.53999999999999 2.9419095772312116E-005 + 168.59999999999999 2.7405103647234139E-005 + 168.66000000000000 2.5293324951025618E-005 + 168.72000000000000 2.3086931673191933E-005 + 168.78000000000000 2.0789223125600265E-005 + 168.84000000000000 1.8403633488940920E-005 + 168.90000000000001 1.5933720477928140E-005 + 168.95999999999998 1.3383169546974768E-005 + 169.01999999999998 1.0755784629224651E-005 + 169.07999999999998 8.0554823138438793E-006 + 169.13999999999999 5.2862913304398678E-006 + 169.19999999999999 2.4523480586437652E-006 + 169.25999999999999 -4.4212235618829179E-007 + 169.31999999999999 -3.3927955373135599E-006 + 169.38000000000000 -6.3952787920016159E-006 + 169.44000000000000 -9.4451043264189961E-006 + 169.50000000000000 -1.2537749426754549E-005 + 169.56000000000000 -1.5668657840058383E-005 + 169.62000000000000 -1.8833227447742539E-005 + 169.67999999999998 -2.2026842358372646E-005 + 169.73999999999998 -2.5244885977680419E-005 + 169.79999999999998 -2.8482737987500472E-005 + 169.85999999999999 -3.1735790582373269E-005 + 169.91999999999999 -3.4999465153845774E-005 + 169.97999999999999 -3.8269205971170752E-005 + 170.03999999999999 -4.1540492852101868E-005 + 170.09999999999999 -4.4808825988187876E-005 + 170.16000000000000 -4.8069753811387378E-005 + 170.22000000000000 -5.1318859107710548E-005 + 170.28000000000000 -5.4551754173696760E-005 + 170.34000000000000 -5.7764092474744765E-005 + 170.40000000000001 -6.0951556077543163E-005 + 170.45999999999998 -6.4109870315367428E-005 + 170.51999999999998 -6.7234792951778946E-005 + 170.57999999999998 -7.0322121059136032E-005 + 170.63999999999999 -7.3367700223289241E-005 + 170.69999999999999 -7.6367420954009520E-005 + 170.75999999999999 -7.9317234540097982E-005 + 170.81999999999999 -8.2213157022243075E-005 + 170.88000000000000 -8.5051276323130700E-005 + 170.94000000000000 -8.7827762397389115E-005 + 171.00000000000000 -9.0538870231640363E-005 + 171.06000000000000 -9.3180960225044604E-005 + 171.12000000000000 -9.5750502874916170E-005 + 171.17999999999998 -9.8244076067346164E-005 + 171.23999999999998 -1.0065837674604975E-004 + 171.29999999999998 -1.0299022211926911E-004 + 171.35999999999999 -1.0523656572839476E-004 + 171.41999999999999 -1.0739446018540402E-004 + 171.47999999999999 -1.0946112572445297E-004 + 171.53999999999999 -1.1143389058444614E-004 + 171.59999999999999 -1.1331020141788477E-004 + 171.66000000000000 -1.1508763512997307E-004 + 171.72000000000000 -1.1676390748488195E-004 + 171.78000000000000 -1.1833685026261718E-004 + 171.84000000000000 -1.1980440643424666E-004 + 171.90000000000001 -1.2116466215779032E-004 + 171.95999999999998 -1.2241581013990892E-004 + 172.01999999999998 -1.2355619885569662E-004 + 172.07999999999998 -1.2458427531311528E-004 + 172.13999999999999 -1.2549863743258424E-004 + 172.19999999999999 -1.2629801180243617E-004 + 172.25999999999999 -1.2698128132872445E-004 + 172.31999999999999 -1.2754744623850827E-004 + 172.38000000000000 -1.2799567053547027E-004 + 172.44000000000000 -1.2832527390341041E-004 + 172.50000000000000 -1.2853571196181442E-004 + 172.56000000000000 -1.2862661147213693E-004 + 172.62000000000000 -1.2859773403939379E-004 + 172.67999999999998 -1.2844902204152799E-004 + 172.73999999999998 -1.2818056699271069E-004 + 172.79999999999998 -1.2779261332398272E-004 + 172.85999999999999 -1.2728556241524517E-004 + 172.91999999999999 -1.2665996893048266E-004 + 172.97999999999999 -1.2591655564747633E-004 + 173.03999999999999 -1.2505617009849536E-004 + 173.09999999999999 -1.2407981661130237E-004 + 173.16000000000000 -1.2298864121880238E-004 + 173.22000000000000 -1.2178392570900512E-004 + 173.28000000000000 -1.2046707209225722E-004 + 173.34000000000000 -1.1903962139876846E-004 + 173.40000000000001 -1.1750322881878035E-004 + 173.45999999999998 -1.1585965654425669E-004 + 173.51999999999998 -1.1411077248136485E-004 + 173.57999999999998 -1.1225854951951951E-004 + 173.63999999999999 -1.1030505506378289E-004 + 173.69999999999999 -1.0825243884501760E-004 + 173.75999999999999 -1.0610293779443276E-004 + 173.81999999999999 -1.0385886190212467E-004 + 173.88000000000000 -1.0152260538807289E-004 + 173.94000000000000 -9.9096635626116263E-005 + 174.00000000000000 -9.6583493543642417E-005 + 174.06000000000000 -9.3985787100893674E-005 + 174.12000000000000 -9.1306200368440843E-005 + 174.17999999999998 -8.8547475235579694E-005 + 174.23999999999998 -8.5712424495457552E-005 + 174.29999999999998 -8.2803931414088773E-005 + 174.35999999999999 -7.9824928001432765E-005 + 174.41999999999999 -7.6778412091671268E-005 + 174.47999999999999 -7.3667428254411694E-005 + 174.53999999999999 -7.0495054299616122E-005 + 174.59999999999999 -6.7264412810149262E-005 + 174.66000000000000 -6.3978648867782844E-005 + 174.72000000000000 -6.0640931499641976E-005 + 174.78000000000000 -5.7254426697058435E-005 + 174.84000000000000 -5.3822305941808997E-005 + 174.90000000000001 -5.0347735979001732E-005 + 174.95999999999998 -4.6833860393643908E-005 + 175.01999999999998 -4.3283802960785074E-005 + 175.07999999999998 -3.9700666369003864E-005 + 175.13999999999999 -3.6087522036894624E-005 + 175.19999999999999 -3.2447411028342306E-005 + 175.25999999999999 -2.8783355385877944E-005 + 175.31999999999999 -2.5098344569162478E-005 + 175.38000000000000 -2.1395351889651709E-005 + 175.44000000000000 -1.7677327928248602E-005 + 175.50000000000000 -1.3947212277002475E-005 + 175.56000000000000 -1.0207935853973020E-005 + 175.62000000000000 -6.4624181102658277E-006 + 175.67999999999998 -2.7135766850765055E-006 + 175.73999999999998 1.0356733074991268E-006 + 175.79999999999998 4.7824264343343596E-006 + 175.85999999999999 8.5237821335331335E-006 + 175.91999999999999 1.2256847374382704E-005 + 175.97999999999999 1.5978739071316383E-005 + 176.03999999999999 1.9686592883370295E-005 + 176.09999999999999 2.3377563166737138E-005 + 176.16000000000000 2.7048819394488210E-005 + 176.22000000000000 3.0697560057782297E-005 + 176.28000000000000 3.4321000573638968E-005 + 176.34000000000000 3.7916389304204041E-005 + 176.40000000000001 4.1480994953228417E-005 + 176.45999999999998 4.5012091607334723E-005 + 176.51999999999998 4.8506990207418759E-005 + 176.57999999999998 5.1962994950504589E-005 + 176.63999999999999 5.5377419567986469E-005 + 176.69999999999999 5.8747584996609190E-005 + 176.75999999999999 6.2070807270627672E-005 + 176.81999999999999 6.5344380608654866E-005 + 176.88000000000000 6.8565604314557886E-005 + 176.94000000000000 7.1731761661360537E-005 + 177.00000000000000 7.4840114786592485E-005 + 177.06000000000000 7.7887922840747187E-005 + 177.12000000000000 8.0872429558829487E-005 + 177.17999999999998 8.3790864303366299E-005 + 177.23999999999998 8.6640470687996280E-005 + 177.29999999999998 8.9418474013091084E-005 + 177.35999999999999 9.2122115709511983E-005 + 177.41999999999999 9.4748639601534342E-005 + 177.47999999999999 9.7295309002955137E-005 + 177.53999999999999 9.9759386775198828E-005 + 177.59999999999999 1.0213816827665828E-004 + 177.66000000000000 1.0442895979818285E-004 + 177.72000000000000 1.0662910304270966E-004 + 177.78000000000000 1.0873594810810764E-004 + 177.84000000000000 1.1074688120367112E-004 + 177.90000000000001 1.1265932165402582E-004 + 177.95999999999998 1.1447071640504426E-004 + 178.01999999999998 1.1617853345424579E-004 + 178.07999999999998 1.1778031669900006E-004 + 178.13999999999999 1.1927361286169375E-004 + 178.19999999999999 1.2065604332718694E-004 + 178.25999999999999 1.2192529063800715E-004 + 178.31999999999999 1.2307910500366077E-004 + 178.38000000000000 1.2411531584137110E-004 + 178.44000000000000 1.2503182327775313E-004 + 178.50000000000000 1.2582663003307543E-004 + 178.56000000000000 1.2649784358942823E-004 + 178.62000000000000 1.2704366448631777E-004 + 178.67999999999998 1.2746243757115653E-004 + 178.73999999999998 1.2775260901110071E-004 + 178.79999999999998 1.2791277701747488E-004 + 178.85999999999999 1.2794165546321407E-004 + 178.91999999999999 1.2783811853762158E-004 + 178.97999999999999 1.2760119798787986E-004 + 179.03999999999999 1.2723006431158648E-004 + 179.09999999999999 1.2672406096136631E-004 + 179.16000000000000 1.2608269279003166E-004 + 179.22000000000000 1.2530565062319042E-004 + 179.28000000000000 1.2439279350783940E-004 + 179.34000000000000 1.2334418041291207E-004 + 179.40000000000001 1.2216005977535923E-004 + 179.45999999999998 1.2084086345807016E-004 + 179.51999999999998 1.1938724239443464E-004 + 179.57999999999998 1.1780005528134260E-004 + 179.63999999999999 1.1608036949854847E-004 + 179.69999999999999 1.1422947373808542E-004 + 179.75999999999999 1.1224886743135823E-004 + 179.81999999999999 1.1014027122059111E-004 + 179.88000000000000 1.0790561866256862E-004 + 179.94000000000000 1.0554706994145880E-004 + 180.00000000000000 1.0306699867674565E-004 + 180.06000000000000 1.0046798163049565E-004 + 180.12000000000000 9.7752815007853220E-005 + 180.17999999999998 9.4924504296392746E-005 + 180.23999999999998 9.1986245775354072E-005 + 180.29999999999998 8.8941457407225378E-005 + 180.35999999999999 8.5793734725753108E-005 + 180.41999999999999 8.2546882061100760E-005 + 180.47999999999999 7.9204890024521052E-005 + 180.53999999999999 7.5771928325144814E-005 + 180.59999999999999 7.2252350438557430E-005 + 180.66000000000000 6.8650688706610989E-005 + 180.72000000000000 6.4971642119581911E-005 + 180.78000000000000 6.1220078551153280E-005 + 180.84000000000000 5.7401007124091073E-005 + 180.90000000000001 5.3519578411714338E-005 + 180.95999999999998 4.9581093625467349E-005 + 181.01999999999998 4.5590949288396245E-005 + 181.07999999999998 4.1554663416612717E-005 + 181.13999999999999 3.7477843643408090E-005 + 181.19999999999999 3.3366182682428692E-005 + 181.25999999999999 2.9225448878105342E-005 + 181.31999999999999 2.5061463837805431E-005 + 181.38000000000000 2.0880103979224299E-005 + 181.44000000000000 1.6687281014920262E-005 + 181.50000000000000 1.2488939563678927E-005 + 181.56000000000000 8.2910439321830976E-006 + 181.62000000000000 4.0995748487268567E-006 + 181.67999999999998 -7.9483486164639766E-008 + 181.73999999999998 -4.2401431671195137E-006 + 181.79999999999998 -8.3764298932683721E-006 + 181.85999999999999 -1.2482384723274353E-005 + 181.91999999999999 -1.6552079054133350E-005 + 181.97999999999999 -2.0579626640869220E-005 + 182.03999999999999 -2.4559186151596053E-005 + 182.09999999999999 -2.8484983126520399E-005 + 182.16000000000000 -3.2351326732221881E-005 + 182.22000000000000 -3.6152615824373472E-005 + 182.28000000000000 -3.9883357385466989E-005 + 182.34000000000000 -4.3538180127895132E-005 + 182.39999999999998 -4.7111853251463655E-005 + 182.45999999999998 -5.0599294935665938E-005 + 182.51999999999998 -5.3995582585349680E-005 + 182.57999999999998 -5.7295960371595630E-005 + 182.63999999999999 -6.0495859804179212E-005 + 182.69999999999999 -6.3590888175379102E-005 + 182.75999999999999 -6.6576850924094676E-005 + 182.81999999999999 -6.9449744607628274E-005 + 182.88000000000000 -7.2205754734481838E-005 + 182.94000000000000 -7.4841273576520200E-005 + 183.00000000000000 -7.7352881527101519E-005 + 183.06000000000000 -7.9737366129928661E-005 + 183.12000000000000 -8.1991722646665091E-005 + 183.17999999999998 -8.4113138345554331E-005 + 183.23999999999998 -8.6099010774688071E-005 + 183.29999999999998 -8.7946969678868859E-005 + 183.35999999999999 -8.9654842646261665E-005 + 183.41999999999999 -9.1220699117423293E-005 + 183.47999999999999 -9.2642830567346695E-005 + 183.53999999999999 -9.3919774633213023E-005 + 183.59999999999999 -9.5050319562215821E-005 + 183.66000000000000 -9.6033490329530403E-005 + 183.72000000000000 -9.6868585815346043E-005 + 183.78000000000000 -9.7555159361523134E-005 + 183.84000000000000 -9.8093021256734909E-005 + 183.89999999999998 -9.8482246938715580E-005 + 183.95999999999998 -9.8723177819867117E-005 + 184.01999999999998 -9.8816414257308209E-005 + 184.07999999999998 -9.8762800923113666E-005 + 184.13999999999999 -9.8563459886175756E-005 + 184.19999999999999 -9.8219726964303902E-005 + 184.25999999999999 -9.7733205265258683E-005 + 184.31999999999999 -9.7105724027041581E-005 + 184.38000000000000 -9.6339338646796817E-005 + 184.44000000000000 -9.5436330048559513E-005 + 184.50000000000000 -9.4399210698019580E-005 + 184.56000000000000 -9.3230691248987480E-005 + 184.62000000000000 -9.1933696030003939E-005 + 184.67999999999998 -9.0511357849150053E-005 + 184.73999999999998 -8.8967007426852594E-005 + 184.79999999999998 -8.7304175546906889E-005 + 184.85999999999999 -8.5526571650915116E-005 + 184.91999999999999 -8.3638095556515474E-005 + 184.97999999999999 -8.1642810328035604E-005 + 185.03999999999999 -7.9544973375360724E-005 + 185.09999999999999 -7.7348976795443174E-005 + 185.16000000000000 -7.5059375694707861E-005 + 185.22000000000000 -7.2680864940951519E-005 + 185.28000000000000 -7.0218286399234228E-005 + 185.34000000000000 -6.7676601384902022E-005 + 185.39999999999998 -6.5060878350661034E-005 + 185.45999999999998 -6.2376304399829887E-005 + 185.51999999999998 -5.9628163764856242E-005 + 185.57999999999998 -5.6821821923080063E-005 + 185.63999999999999 -5.3962733333552963E-005 + 185.69999999999999 -5.1056419422384146E-005 + 185.75999999999999 -4.8108459721514106E-005 + 185.81999999999999 -4.5124479917580777E-005 + 185.88000000000000 -4.2110147614815826E-005 + 185.94000000000000 -3.9071155649388404E-005 + 186.00000000000000 -3.6013206884164933E-005 + 186.06000000000000 -3.2942007748190365E-005 + 186.12000000000000 -2.9863253669710473E-005 + 186.17999999999998 -2.6782620277270013E-005 + 186.23999999999998 -2.3705738131802426E-005 + 186.29999999999998 -2.0638185933205960E-005 + 186.35999999999999 -1.7585483058047225E-005 + 186.41999999999999 -1.4553073977046292E-005 + 186.47999999999999 -1.1546318768146234E-005 + 186.53999999999999 -8.5704788174272028E-006 + 186.59999999999999 -5.6307175491874418E-006 + 186.66000000000000 -2.7320838687667622E-006 + 186.72000000000000 1.2048175469662577E-007 + 186.78000000000000 2.9221681718400267E-006 + 186.84000000000000 5.6682855495251066E-006 + 186.89999999999998 8.3542715512956624E-006 + 186.95999999999998 1.0975703267403682E-005 + 187.01999999999998 1.3528289727674404E-005 + 187.07999999999998 1.6007882573380997E-005 + 187.13999999999999 1.8410481617245141E-005 + 187.19999999999999 2.0732236205582621E-005 + 187.25999999999999 2.2969452413333402E-005 + 187.31999999999999 2.5118597477995416E-005 + 187.38000000000000 2.7176308549684960E-005 + 187.44000000000000 2.9139393329761929E-005 + 187.50000000000000 3.1004839189875444E-005 + 187.56000000000000 3.2769814760086314E-005 + 187.62000000000000 3.4431670420694338E-005 + 187.67999999999998 3.5987951541773279E-005 + 187.73999999999998 3.7436388364205492E-005 + 187.79999999999998 3.8774900121810446E-005 + 187.85999999999999 4.0001589960376774E-005 + 187.91999999999999 4.1114746220895514E-005 + 187.97999999999999 4.2112847507474952E-005 + 188.03999999999999 4.2994538555998058E-005 + 188.09999999999999 4.3758638907089815E-005 + 188.16000000000000 4.4404141574831689E-005 + 188.22000000000000 4.4930197754093698E-005 + 188.28000000000000 4.5336114819657716E-005 + 188.34000000000000 4.5621363298659510E-005 + 188.39999999999998 4.5785562399294381E-005 + 188.45999999999998 4.5828479892198295E-005 + 188.51999999999998 4.5750024564245285E-005 + 188.57999999999998 4.5550251727985905E-005 + 188.63999999999999 4.5229355791710103E-005 + 188.69999999999999 4.4787672070263607E-005 + 188.75999999999999 4.4225663171521385E-005 + 188.81999999999999 4.3543925311078830E-005 + 188.88000000000000 4.2743185304988361E-005 + 188.94000000000000 4.1824280349929372E-005 + 189.00000000000000 4.0788175818361460E-005 + 189.06000000000000 3.9635943350746296E-005 + 189.12000000000000 3.8368752042044391E-005 + 189.17999999999998 3.6987874143911976E-005 + 189.23999999999998 3.5494682491015589E-005 + 189.29999999999998 3.3890623906704128E-005 + 189.35999999999999 3.2177238304627496E-005 + 189.41999999999999 3.0356134921608776E-005 + 189.47999999999999 2.8429002652339528E-005 + 189.53999999999999 2.6397602358853265E-005 + 189.59999999999999 2.4263761821465057E-005 + 189.66000000000000 2.2029378769242704E-005 + 189.72000000000000 1.9696421020756292E-005 + 189.78000000000000 1.7266921965390348E-005 + 189.84000000000000 1.4742976243687020E-005 + 189.89999999999998 1.2126748897781122E-005 + 189.95999999999998 9.4204689516870305E-006 + 190.01999999999998 6.6264251969246602E-006 + 190.07999999999998 3.7469684142762868E-006 + 190.13999999999999 7.8450857064374782E-007 + 190.19999999999999 -2.2584942406966320E-006 + 190.25999999999999 -5.3795254633267036E-006 + 190.31999999999999 -8.5760247888733776E-006 + 190.38000000000000 -1.1845386221247088E-005 + 190.44000000000000 -1.5184959004551913E-005 + 190.50000000000000 -1.8592061082214296E-005 + 190.56000000000000 -2.2063967806355370E-005 + 190.62000000000000 -2.5597921041923704E-005 + 190.67999999999998 -2.9191129153659798E-005 + 190.73999999999998 -3.2840770473186876E-005 + 190.79999999999998 -3.6543977293193866E-005 + 190.85999999999999 -4.0297850683678146E-005 + 190.91999999999999 -4.4099464790406750E-005 + 190.97999999999999 -4.7945833939250726E-005 + 191.03999999999999 -5.1833949227520144E-005 + 191.09999999999999 -5.5760752721310773E-005 + 191.16000000000000 -5.9723133705590826E-005 + 191.22000000000000 -6.3717950188795918E-005 + 191.28000000000000 -6.7742010499856792E-005 + 191.34000000000000 -7.1792085804049595E-005 + 191.39999999999998 -7.5864887923825859E-005 + 191.45999999999998 -7.9957098150729264E-005 + 191.51999999999998 -8.4065358461653781E-005 + 191.57999999999998 -8.8186267552888413E-005 + 191.63999999999999 -9.2316387536659042E-005 + 191.69999999999999 -9.6452253234174235E-005 + 191.75999999999999 -1.0059035075134710E-004 + 191.81999999999999 -1.0472715781139481E-004 + 191.88000000000000 -1.0885909591876617E-004 + 191.94000000000000 -1.1298257337324940E-004 + 192.00000000000000 -1.1709397676771703E-004 + 192.06000000000000 -1.2118964884537511E-004 + 192.12000000000000 -1.2526592170377491E-004 + 192.17999999999998 -1.2931908892195782E-004 + 192.23999999999998 -1.3334540966529853E-004 + 192.29999999999998 -1.3734114150386849E-004 + 192.35999999999999 -1.4130251393061835E-004 + 192.41999999999999 -1.4522570102136885E-004 + 192.47999999999999 -1.4910689068217369E-004 + 192.53999999999999 -1.5294223226267428E-004 + 192.59999999999999 -1.5672785652680942E-004 + 192.66000000000000 -1.6045984901493169E-004 + 192.72000000000000 -1.6413429975320750E-004 + 192.78000000000000 -1.6774728388801750E-004 + 192.84000000000000 -1.7129481711558890E-004 + 192.89999999999998 -1.7477294976155549E-004 + 192.95999999999998 -1.7817764710788313E-004 + 193.01999999999998 -1.8150491723724983E-004 + 193.07999999999998 -1.8475072051681680E-004 + 193.13999999999999 -1.8791101704185585E-004 + 193.19999999999999 -1.9098173835694680E-004 + 193.25999999999999 -1.9395883727143482E-004 + 193.31999999999999 -1.9683822779201901E-004 + 193.38000000000000 -1.9961585852255838E-004 + 193.44000000000000 -2.0228767257279403E-004 + 193.50000000000000 -2.0484962768973109E-004 + 193.56000000000000 -2.0729772423848830E-004 + 193.62000000000000 -2.0962796072612121E-004 + 193.67999999999998 -2.1183639930819070E-004 + 193.73999999999998 -2.1391914017792224E-004 + 193.79999999999998 -2.1587233751316304E-004 + 193.85999999999999 -2.1769220417704708E-004 + 193.91999999999999 -2.1937502676858949E-004 + 193.97999999999999 -2.2091716057323803E-004 + 194.03999999999999 -2.2231503163980452E-004 + 194.09999999999999 -2.2356518014441670E-004 + 194.16000000000000 -2.2466419485636579E-004 + 194.22000000000000 -2.2560880375292264E-004 + 194.28000000000000 -2.2639579052792099E-004 + 194.34000000000000 -2.2702208733410079E-004 + 194.39999999999998 -2.2748471110592641E-004 + 194.45999999999998 -2.2778081320653625E-004 + 194.51999999999998 -2.2790766865541433E-004 + 194.57999999999998 -2.2786268655908531E-004 + 194.63999999999999 -2.2764342781357014E-004 + 194.69999999999999 -2.2724760705017277E-004 + 194.75999999999999 -2.2667309249292298E-004 + 194.81999999999999 -2.2591796050091073E-004 + 194.88000000000000 -2.2498045722037661E-004 + 194.94000000000000 -2.2385905457036583E-004 + 195.00000000000000 -2.2255240451188408E-004 + 195.06000000000000 -2.2105942004587743E-004 + 195.12000000000000 -2.1937924525203980E-004 + 195.17999999999998 -2.1751125977269482E-004 + 195.23999999999998 -2.1545512035994239E-004 + 195.29999999999998 -2.1321072625747495E-004 + 195.35999999999999 -2.1077826608639942E-004 + 195.41999999999999 -2.0815819474127279E-004 + 195.47999999999999 -2.0535125897941343E-004 + 195.53999999999999 -2.0235849689571642E-004 + 195.59999999999999 -1.9918122822575109E-004 + 195.66000000000000 -1.9582105053719844E-004 + 195.72000000000000 -1.9227987844146839E-004 + 195.78000000000000 -1.8855989482205183E-004 + 195.84000000000000 -1.8466358985031421E-004 + 195.89999999999998 -1.8059375569349947E-004 + 195.95999999999998 -1.7635345129665084E-004 + 196.01999999999998 -1.7194603501799254E-004 + 196.07999999999998 -1.6737516686716206E-004 + 196.13999999999999 -1.6264479343850764E-004 + 196.19999999999999 -1.5775913162897065E-004 + 196.25999999999999 -1.5272268571115988E-004 + 196.31999999999999 -1.4754023409028100E-004 + 196.38000000000000 -1.4221682756016633E-004 + 196.44000000000000 -1.3675779212862075E-004 + 196.50000000000000 -1.3116870316903908E-004 + 196.56000000000000 -1.2545540467884432E-004 + 196.62000000000000 -1.1962397506195426E-004 + 196.67999999999998 -1.1368071975084391E-004 + 196.73999999999998 -1.0763219652620741E-004 + 196.79999999999998 -1.0148516758758851E-004 + 196.85999999999999 -9.5246591349559072E-005 + 196.91999999999999 -8.8923635043232236E-005 + 196.97999999999999 -8.2523628317253799E-005 + 197.03999999999999 -7.6054076062341905E-005 + 197.09999999999999 -6.9522619781636931E-005 + 197.16000000000000 -6.2937037731100088E-005 + 197.22000000000000 -5.6305227130872782E-005 + 197.28000000000000 -4.9635177572376055E-005 + 197.34000000000000 -4.2934951343918010E-005 + 197.39999999999998 -3.6212677370449843E-005 + 197.45999999999998 -2.9476522159412659E-005 + 197.51999999999998 -2.2734681578876816E-005 + 197.57999999999998 -1.5995342146373166E-005 + 197.63999999999999 -9.2666862147355430E-006 + 197.69999999999999 -2.5568570884323047E-006 + 197.75999999999999 4.1260465034939885E-006 + 197.81999999999999 1.0773994804861121E-005 + 197.88000000000000 1.7379045327167781E-005 + 197.94000000000000 2.3933346095513769E-005 + 198.00000000000000 3.0429154423489034E-005 + 198.06000000000000 3.6858850369905709E-005 + 198.12000000000000 4.3214966497583975E-005 + 198.17999999999998 4.9490165713886761E-005 + 198.23999999999998 5.5677293154219611E-005 + 198.29999999999998 6.1769352982020713E-005 + 198.35999999999999 6.7759548556354610E-005 + 198.41999999999999 7.3641280308377890E-005 + 198.47999999999999 7.9408149998585353E-005 + 198.53999999999999 8.5054001204609982E-005 + 198.59999999999999 9.0572884271609007E-005 + 198.66000000000000 9.5959118736212466E-005 + 198.72000000000000 1.0120725890305700E-004 + 198.78000000000000 1.0631213151477010E-004 + 198.84000000000000 1.1126882809094760E-004 + 198.89999999999998 1.1607272607812619E-004 + 198.95999999999998 1.2071947628146366E-004 + 199.01999999999998 1.2520503579215313E-004 + 199.07999999999998 1.2952563670277692E-004 + 199.13999999999999 1.3367781169956101E-004 + 199.19999999999999 1.3765840958564345E-004 + 199.25999999999999 1.4146455505124002E-004 + 199.31999999999999 1.4509368793935932E-004 + 199.38000000000000 1.4854353059415076E-004 + 199.44000000000000 1.5181210923134196E-004 + 199.50000000000000 1.5489773916796206E-004 + 199.56000000000000 1.5779902338362528E-004 + 199.62000000000000 1.6051486143339275E-004 + 199.67999999999998 1.6304440826293766E-004 + 199.73999999999998 1.6538711588638848E-004 + 199.79999999999998 1.6754269042087332E-004 + 199.85999999999999 1.6951112258055661E-004 + 199.91999999999999 1.7129265855723072E-004 + 199.97999999999999 1.7288778337094969E-004 + 200.03999999999999 1.7429723679785014E-004 + 200.09999999999999 1.7552198949923774E-004 + 200.16000000000000 1.7656325491078367E-004 + 200.22000000000000 1.7742247063630263E-004 + 200.28000000000000 1.7810127862201108E-004 + 200.34000000000000 1.7860152520333961E-004 + 200.39999999999998 1.7892525992524113E-004 + 200.45999999999998 1.7907472679225337E-004 + 200.51999999999998 1.7905234444578024E-004 + 200.57999999999998 1.7886069289946532E-004 + 200.63999999999999 1.7850252766878462E-004 + 200.69999999999999 1.7798074590427384E-004 + 200.75999999999999 1.7729841018261671E-004 + 200.81999999999999 1.7645867514289325E-004 + 200.88000000000000 1.7546486746662434E-004 + 200.94000000000000 1.7432038641951563E-004 + 201.00000000000000 1.7302876588738187E-004 + 201.06000000000000 1.7159364861622317E-004 + 201.12000000000000 1.7001873707828922E-004 + 201.17999999999998 1.6830784234962563E-004 + 201.23999999999998 1.6646482235255282E-004 + 201.29999999999998 1.6449359838931061E-004 + 201.35999999999999 1.6239817524888941E-004 + 201.41999999999999 1.6018256527664120E-004 + 201.47999999999999 1.5785084863283215E-004 + 201.53999999999999 1.5540710473186108E-004 + 201.59999999999999 1.5285542795963523E-004 + 201.66000000000000 1.5019995616218163E-004 + 201.72000000000000 1.4744481197745347E-004 + 201.78000000000000 1.4459411447881437E-004 + 201.84000000000000 1.4165198459309902E-004 + 201.89999999999998 1.3862251471714258E-004 + 201.95999999999998 1.3550979785061383E-004 + 202.01999999999998 1.3231788946104406E-004 + 202.07999999999998 1.2905081873728063E-004 + 202.13999999999999 1.2571257775148927E-004 + 202.19999999999999 1.2230712314724462E-004 + 202.25999999999999 1.1883835499234561E-004 + 202.31999999999999 1.1531014733057852E-004 + 202.38000000000000 1.1172629704673565E-004 + 202.44000000000000 1.0809056320310877E-004 + 202.50000000000000 1.0440664638339775E-004 + 202.56000000000000 1.0067817441397980E-004 + 202.62000000000000 9.6908733417625081E-005 + 202.67999999999998 9.3101809473233765E-005 + 202.73999999999998 8.9260854666581589E-005 + 202.79999999999998 8.5389240956324411E-005 + 202.85999999999999 8.1490281530192937E-005 + 202.91999999999999 7.7567227461455417E-005 + 202.97999999999999 7.3623267865303312E-005 + 203.03999999999999 6.9661525232936648E-005 + 203.09999999999999 6.5685080097167633E-005 + 203.16000000000000 6.1696949434046519E-005 + 203.22000000000000 5.7700089965697577E-005 + 203.28000000000000 5.3697422674381475E-005 + 203.34000000000000 4.9691814320111060E-005 + 203.39999999999998 4.5686078047145613E-005 + 203.45999999999998 4.1682987996771525E-005 + 203.51999999999998 3.7685267258983542E-005 + 203.57999999999998 3.3695602256732869E-005 + 203.63999999999999 2.9716630991971311E-005 + 203.69999999999999 2.5750955470324851E-005 + 203.75999999999999 2.1801142435351552E-005 + 203.81999999999999 1.7869722593376096E-005 + 203.88000000000000 1.3959197324673389E-005 + 203.94000000000000 1.0072043389794027E-005 + 204.00000000000000 6.2107203454132556E-006 + 204.06000000000000 2.3776682034876954E-006 + 204.12000000000000 -1.4246727465507587E-006 + 204.17999999999998 -5.1938656676966994E-006 + 204.23999999999998 -8.9274699716139846E-006 + 204.29999999999998 -1.2623035878401450E-005 + 204.35999999999999 -1.6278093015101439E-005 + 204.41999999999999 -1.9890153434769631E-005 + 204.47999999999999 -2.3456705949596923E-005 + 204.53999999999999 -2.6975212243042692E-005 + 204.59999999999999 -3.0443110100944847E-005 + 204.66000000000000 -3.3857809533016710E-005 + 204.72000000000000 -3.7216696942564225E-005 + 204.78000000000000 -4.0517133051984400E-005 + 204.84000000000000 -4.3756464359664482E-005 + 204.89999999999998 -4.6932015452380509E-005 + 204.95999999999998 -5.0041096094773290E-005 + 205.01999999999998 -5.3081006882653995E-005 + 205.07999999999998 -5.6049046268446002E-005 + 205.13999999999999 -5.8942502625369567E-005 + 205.19999999999999 -6.1758656609906204E-005 + 205.25999999999999 -6.4494805235709650E-005 + 205.31999999999999 -6.7148244579320502E-005 + 205.38000000000000 -6.9716273436916645E-005 + 205.44000000000000 -7.2196200102612809E-005 + 205.50000000000000 -7.4585365911051274E-005 + 205.56000000000000 -7.6881111961989414E-005 + 205.62000000000000 -7.9080809980501543E-005 + 205.67999999999998 -8.1181857291962430E-005 + 205.73999999999998 -8.3181698514545754E-005 + 205.79999999999998 -8.5077816790232738E-005 + 205.85999999999999 -8.6867748470743710E-005 + 205.91999999999999 -8.8549089484168050E-005 + 205.97999999999999 -9.0119518514416403E-005 + 206.03999999999999 -9.1576778242332969E-005 + 206.09999999999999 -9.2918714580113892E-005 + 206.16000000000000 -9.4143273671397091E-005 + 206.22000000000000 -9.5248509986879448E-005 + 206.28000000000000 -9.6232602458942552E-005 + 206.34000000000000 -9.7093855288838478E-005 + 206.39999999999998 -9.7830705627673388E-005 + 206.45999999999998 -9.8441749016497075E-005 + 206.51999999999998 -9.8925737202996245E-005 + 206.57999999999998 -9.9281583345698136E-005 + 206.63999999999999 -9.9508367722186329E-005 + 206.69999999999999 -9.9605364835383766E-005 + 206.75999999999999 -9.9572031322531755E-005 + 206.81999999999999 -9.9408029060458691E-005 + 206.88000000000000 -9.9113211799678190E-005 + 206.94000000000000 -9.8687660125412746E-005 + 207.00000000000000 -9.8131659340187943E-005 + 207.06000000000000 -9.7445729171682954E-005 + 207.12000000000000 -9.6630624316922299E-005 + 207.17999999999998 -9.5687309996314270E-005 + 207.23999999999998 -9.4617000763753175E-005 + 207.29999999999998 -9.3421151959693119E-005 + 207.35999999999999 -9.2101449881444521E-005 + 207.41999999999999 -9.0659821178244761E-005 + 207.47999999999999 -8.9098416968804299E-005 + 207.53999999999999 -8.7419633499492770E-005 + 207.59999999999999 -8.5626088439577516E-005 + 207.66000000000000 -8.3720625771518213E-005 + 207.72000000000000 -8.1706318781974118E-005 + 207.78000000000000 -7.9586446355622297E-005 + 207.84000000000000 -7.7364507116971137E-005 + 207.89999999999998 -7.5044209278747688E-005 + 207.95999999999998 -7.2629474197300769E-005 + 208.01999999999998 -7.0124418915306789E-005 + 208.07999999999998 -6.7533364899520124E-005 + 208.13999999999999 -6.4860818403675272E-005 + 208.19999999999999 -6.2111485548418613E-005 + 208.25999999999999 -5.9290252211818098E-005 + 208.31999999999999 -5.6402176299687292E-005 + 208.38000000000000 -5.3452488252582803E-005 + 208.44000000000000 -5.0446570249325189E-005 + 208.50000000000000 -4.7389956147269476E-005 + 208.56000000000000 -4.4288304459889991E-005 + 208.62000000000000 -4.1147405326192766E-005 + 208.68000000000001 -3.7973142418489901E-005 + 208.74000000000001 -3.4771492029034333E-005 + 208.80000000000001 -3.1548505746273165E-005 + 208.86000000000001 -2.8310294532262283E-005 + 208.92000000000002 -2.5063008470426645E-005 + 208.98000000000002 -2.1812822421477078E-005 + 209.03999999999996 -1.8565927452522526E-005 + 209.09999999999997 -1.5328507791102264E-005 + 209.15999999999997 -1.2106732238779519E-005 + 209.21999999999997 -8.9067471431043267E-006 + 209.27999999999997 -5.7346489255196238E-006 + 209.33999999999997 -2.5964846033176253E-006 + 209.39999999999998 5.0176842864272801E-007 + 209.45999999999998 3.5542101379810162E-006 + 209.51999999999998 6.5550285738815446E-006 + 209.57999999999998 9.4985185484957444E-006 + 209.63999999999999 1.2379092960014392E-005 + 209.69999999999999 1.5191291453950002E-005 + 209.75999999999999 1.7929797596569659E-005 + 209.81999999999999 2.0589457237094404E-005 + 209.88000000000000 2.3165278049119440E-005 + 209.94000000000000 2.5652453630849678E-005 + 210.00000000000000 2.8046368650120490E-005 + 210.06000000000000 3.0342615332104337E-005 + 210.12000000000000 3.2537001675710003E-005 + 210.18000000000001 3.4625552604744700E-005 + 210.24000000000001 3.6604529769903195E-005 + 210.30000000000001 3.8470430483224753E-005 + 210.36000000000001 4.0219993391058393E-005 + 210.42000000000002 4.1850207608867009E-005 + 210.48000000000002 4.3358319621852972E-005 + 210.53999999999996 4.4741826153274146E-005 + 210.59999999999997 4.5998491861921488E-005 + 210.65999999999997 4.7126346976181188E-005 + 210.71999999999997 4.8123694952013762E-005 + 210.77999999999997 4.8989116504001516E-005 + 210.83999999999997 4.9721472039825055E-005 + 210.89999999999998 5.0319904306948853E-005 + 210.95999999999998 5.0783846484245191E-005 + 211.01999999999998 5.1113025387780877E-005 + 211.07999999999998 5.1307451928836790E-005 + 211.13999999999999 5.1367432799084302E-005 + 211.19999999999999 5.1293568131017178E-005 + 211.25999999999999 5.1086737825514422E-005 + 211.31999999999999 5.0748102204202142E-005 + 211.38000000000000 5.0279099216975941E-005 + 211.44000000000000 4.9681432810405185E-005 + 211.50000000000000 4.8957053164353568E-005 + 211.56000000000000 4.8108156376820809E-005 + 211.62000000000000 4.7137172892277012E-005 + 211.68000000000001 4.6046751284019770E-005 + 211.74000000000001 4.4839746529072076E-005 + 211.80000000000001 4.3519215308015382E-005 + 211.86000000000001 4.2088399484288661E-005 + 211.92000000000002 4.0550717492766565E-005 + 211.98000000000002 3.8909754510897611E-005 + 212.03999999999996 3.7169261357483347E-005 + 212.09999999999997 3.5333143664064066E-005 + 212.15999999999997 3.3405448831692444E-005 + 212.21999999999997 3.1390366414133894E-005 + 212.27999999999997 2.9292214693180426E-005 + 212.33999999999997 2.7115436154741945E-005 + 212.39999999999998 2.4864584927023695E-005 + 212.45999999999998 2.2544315156850012E-005 + 212.51999999999998 2.0159372421057021E-005 + 212.57999999999998 1.7714578524248310E-005 + 212.63999999999999 1.5214811382805799E-005 + 212.69999999999999 1.2665003146224229E-005 + 212.75999999999999 1.0070107855739524E-005 + 212.81999999999999 7.4351007510154059E-006 + 212.88000000000000 4.7649477822743317E-006 + 212.94000000000000 2.0646020676699460E-006 + 213.00000000000000 -6.6101273784317052E-007 + 213.06000000000000 -3.4070240358845258E-006 + 213.12000000000000 -6.1686114344632130E-006 + 213.18000000000001 -8.9410257892736042E-006 + 213.24000000000001 -1.1719594998735232E-005 + 213.30000000000001 -1.4499732153407228E-005 + 213.36000000000001 -1.7276951972466472E-005 + 213.42000000000002 -2.0046864185718307E-005 + 213.48000000000002 -2.2805190147182165E-005 + 213.53999999999996 -2.5547769158505643E-005 + 213.59999999999997 -2.8270556880979412E-005 + 213.65999999999997 -3.0969635878623073E-005 + 213.71999999999997 -3.3641226894505224E-005 + 213.77999999999997 -3.6281687664853968E-005 + 213.83999999999997 -3.8887517952323625E-005 + 213.89999999999998 -4.1455370668231909E-005 + 213.95999999999998 -4.3982046969095070E-005 + 214.01999999999998 -4.6464513809962934E-005 + 214.07999999999998 -4.8899894138824796E-005 + 214.13999999999999 -5.1285480052271088E-005 + 214.19999999999999 -5.3618729149784185E-005 + 214.25999999999999 -5.5897260195524317E-005 + 214.31999999999999 -5.8118870640168902E-005 + 214.38000000000000 -6.0281516752608898E-005 + 214.44000000000000 -6.2383331521902367E-005 + 214.50000000000000 -6.4422612371674190E-005 + 214.56000000000000 -6.6397825443183310E-005 + 214.62000000000000 -6.8307600686753073E-005 + 214.68000000000001 -7.0150736578924140E-005 + 214.74000000000001 -7.1926196442207826E-005 + 214.80000000000001 -7.3633110952981630E-005 + 214.86000000000001 -7.5270778345612276E-005 + 214.92000000000002 -7.6838647988182777E-005 + 214.98000000000002 -7.8336340353487801E-005 + 215.03999999999996 -7.9763639362125325E-005 + 215.09999999999997 -8.1120473122772442E-005 + 215.15999999999997 -8.2406919522561429E-005 + 215.21999999999997 -8.3623223152851065E-005 + 215.27999999999997 -8.4769753659864200E-005 + 215.33999999999997 -8.5847005061352575E-005 + 215.39999999999998 -8.6855606678481751E-005 + 215.45999999999998 -8.7796307224794918E-005 + 215.51999999999998 -8.8669952431655544E-005 + 215.57999999999998 -8.9477497534697981E-005 + 215.63999999999999 -9.0219992668314936E-005 + 215.69999999999999 -9.0898564995752057E-005 + 215.75999999999999 -9.1514421379155857E-005 + 215.81999999999999 -9.2068860714474222E-005 + 215.88000000000000 -9.2563248211446691E-005 + 215.94000000000000 -9.2999018149599955E-005 + 216.00000000000000 -9.3377692352222846E-005 + 216.06000000000000 -9.3700849796411612E-005 + 216.12000000000000 -9.3970155810998730E-005 + 216.18000000000001 -9.4187334660710098E-005 + 216.24000000000001 -9.4354189520875445E-005 + 216.30000000000001 -9.4472605580511301E-005 + 216.36000000000001 -9.4544520688525860E-005 + 216.42000000000002 -9.4571946479159207E-005 + 216.48000000000002 -9.4556959711327844E-005 + 216.53999999999996 -9.4501680800719139E-005 + 216.59999999999997 -9.4408292198547471E-005 + 216.65999999999997 -9.4279001417997457E-005 + 216.71999999999997 -9.4116068931514974E-005 + 216.77999999999997 -9.3921763892679781E-005 + 216.83999999999997 -9.3698393847559068E-005 + 216.89999999999998 -9.3448269990496801E-005 + 216.95999999999998 -9.3173726875619113E-005 + 217.01999999999998 -9.2877089490860562E-005 + 217.07999999999998 -9.2560696855571113E-005 + 217.13999999999999 -9.2226903810924046E-005 + 217.19999999999999 -9.1878054496053575E-005 + 217.25999999999999 -9.1516497735878781E-005 + 217.31999999999999 -9.1144602817335484E-005 + 217.38000000000000 -9.0764723881508758E-005 + 217.44000000000000 -9.0379245982348351E-005 + 217.50000000000000 -8.9990538847893156E-005 + 217.56000000000000 -8.9600984867604621E-005 + 217.62000000000000 -8.9212969735062689E-005 + 217.68000000000001 -8.8828875952176906E-005 + 217.74000000000001 -8.8451082904461573E-005 + 217.80000000000001 -8.8081957879031545E-005 + 217.86000000000001 -8.7723851423501256E-005 + 217.92000000000002 -8.7379095486564461E-005 + 217.98000000000002 -8.7049993978099169E-005 + 218.03999999999996 -8.6738832383543598E-005 + 218.09999999999997 -8.6447848725203664E-005 + 218.15999999999997 -8.6179254809274662E-005 + 218.21999999999997 -8.5935218974644688E-005 + 218.27999999999997 -8.5717869796760285E-005 + 218.33999999999997 -8.5529299834939348E-005 + 218.39999999999998 -8.5371567850630117E-005 + 218.45999999999998 -8.5246688891986333E-005 + 218.51999999999998 -8.5156647959632844E-005 + 218.57999999999998 -8.5103385665531250E-005 + 218.63999999999999 -8.5088798344655625E-005 + 218.69999999999999 -8.5114751153479829E-005 + 218.75999999999999 -8.5183066820783594E-005 + 218.81999999999999 -8.5295522130477948E-005 + 218.88000000000000 -8.5453850523416273E-005 + 218.94000000000000 -8.5659726064409104E-005 + 219.00000000000000 -8.5914769363074420E-005 + 219.06000000000000 -8.6220543832479549E-005 + 219.12000000000000 -8.6578553342249418E-005 + 219.18000000000001 -8.6990231393879161E-005 + 219.24000000000001 -8.7456950500545660E-005 + 219.30000000000001 -8.7980011596787788E-005 + 219.36000000000001 -8.8560651719858560E-005 + 219.42000000000002 -8.9200040769702609E-005 + 219.48000000000002 -8.9899283751547894E-005 + 219.53999999999996 -9.0659430555099590E-005 + 219.59999999999997 -9.1481477757043481E-005 + 219.65999999999997 -9.2366352357427432E-005 + 219.71999999999997 -9.3314928629098160E-005 + 219.77999999999997 -9.4328045804913596E-005 + 219.83999999999997 -9.5406476250724730E-005 + 219.89999999999998 -9.6550939468676385E-005 + 219.95999999999998 -9.7762110248629741E-005 + 220.01999999999998 -9.9040606684173304E-005 + 220.07999999999998 -1.0038697595675208E-004 + 220.13999999999999 -1.0180171842875842E-004 + 220.19999999999999 -1.0328525756882056E-004 + 220.25999999999999 -1.0483794308664000E-004 + 220.31999999999999 -1.0646006066748902E-004 + 220.38000000000000 -1.0815180692201806E-004 + 220.44000000000000 -1.0991331405444458E-004 + 220.50000000000000 -1.1174461025390983E-004 + 220.56000000000000 -1.1364565708746194E-004 + 220.62000000000000 -1.1561632820032114E-004 + 220.68000000000001 -1.1765640870863275E-004 + 220.74000000000001 -1.1976557871573267E-004 + 220.80000000000001 -1.2194346618027717E-004 + 220.86000000000001 -1.2418957783107671E-004 + 220.92000000000002 -1.2650336252585355E-004 + 220.98000000000002 -1.2888413806406678E-004 + 221.03999999999996 -1.3133115586909201E-004 + 221.09999999999997 -1.3384356561173345E-004 + 221.15999999999997 -1.3642040842774491E-004 + 221.21999999999997 -1.3906061859482905E-004 + 221.27999999999997 -1.4176300603434877E-004 + 221.33999999999997 -1.4452628178263793E-004 + 221.39999999999998 -1.4734901949253634E-004 + 221.45999999999998 -1.5022968030549297E-004 + 221.51999999999998 -1.5316659051701925E-004 + 221.57999999999998 -1.5615794066626052E-004 + 221.63999999999999 -1.5920177852626923E-004 + 221.69999999999999 -1.6229602911078177E-004 + 221.75999999999999 -1.6543845786611363E-004 + 221.81999999999999 -1.6862670132119031E-004 + 221.88000000000000 -1.7185825534016727E-004 + 221.94000000000000 -1.7513046764650644E-004 + 222.00000000000000 -1.7844054365352436E-004 + 222.06000000000000 -1.8178552687803302E-004 + 222.12000000000000 -1.8516234060226143E-004 + 222.18000000000001 -1.8856772999249172E-004 + 222.24000000000001 -1.9199831689839503E-004 + 222.30000000000001 -1.9545054254997623E-004 + 222.36000000000001 -1.9892071689104750E-004 + 222.42000000000002 -2.0240496964639740E-004 + 222.48000000000002 -2.0589931205704693E-004 + 222.53999999999996 -2.0939958650182595E-004 + 222.59999999999997 -2.1290148521328420E-004 + 222.65999999999997 -2.1640058586478074E-004 + 222.71999999999997 -2.1989228939172739E-004 + 222.77999999999997 -2.2337190504509571E-004 + 222.83999999999997 -2.2683462114142386E-004 + 222.89999999999998 -2.3027551105065768E-004 + 222.95999999999998 -2.3368952824760146E-004 + 223.01999999999998 -2.3707156471921127E-004 + 223.07999999999998 -2.4041644030279777E-004 + 223.13999999999999 -2.4371886965272735E-004 + 223.19999999999999 -2.4697352458991149E-004 + 223.25999999999999 -2.5017504123735202E-004 + 223.31999999999999 -2.5331798642132096E-004 + 223.38000000000000 -2.5639689531654355E-004 + 223.44000000000000 -2.5940627600436617E-004 + 223.50000000000000 -2.6234056616068714E-004 + 223.56000000000000 -2.6519423751643193E-004 + 223.62000000000000 -2.6796175873237976E-004 + 223.68000000000001 -2.7063755123433520E-004 + 223.74000000000001 -2.7321608150978266E-004 + 223.80000000000001 -2.7569183381091593E-004 + 223.86000000000001 -2.7805932529222869E-004 + 223.92000000000002 -2.8031314244022256E-004 + 223.98000000000002 -2.8244795147345776E-004 + 224.03999999999996 -2.8445844553945919E-004 + 224.09999999999997 -2.8633950218907942E-004 + 224.15999999999997 -2.8808604972069285E-004 + 224.21999999999997 -2.8969320653240228E-004 + 224.27999999999997 -2.9115625179114879E-004 + 224.33999999999997 -2.9247060789750493E-004 + 224.39999999999998 -2.9363186699422737E-004 + 224.45999999999998 -2.9463587759094801E-004 + 224.51999999999998 -2.9547860469784936E-004 + 224.57999999999998 -2.9615630888970169E-004 + 224.63999999999999 -2.9666540664747583E-004 + 224.69999999999999 -2.9700256183721812E-004 + 224.75999999999999 -2.9716465356093409E-004 + 224.81999999999999 -2.9714879178138059E-004 + 224.88000000000000 -2.9695232330204422E-004 + 224.94000000000000 -2.9657284334049742E-004 + 225.00000000000000 -2.9600818658688061E-004 + 225.06000000000000 -2.9525644380911802E-004 + 225.12000000000000 -2.9431597657827649E-004 + 225.18000000000001 -2.9318542100433161E-004 + 225.24000000000001 -2.9186363175563420E-004 + 225.30000000000001 -2.9034979821460354E-004 + 225.36000000000001 -2.8864342735295635E-004 + 225.42000000000002 -2.8674424379813464E-004 + 225.48000000000002 -2.8465229972561893E-004 + 225.53999999999996 -2.8236797714141016E-004 + 225.59999999999997 -2.7989189877239363E-004 + 225.65999999999997 -2.7722505343957446E-004 + 225.71999999999997 -2.7436869649647772E-004 + 225.77999999999997 -2.7132434214887253E-004 + 225.83999999999997 -2.6809380418435481E-004 + 225.89999999999998 -2.6467921500029782E-004 + 225.95999999999998 -2.6108292553769997E-004 + 226.01999999999998 -2.5730755846199954E-004 + 226.07999999999998 -2.5335601334654142E-004 + 226.13999999999999 -2.4923139895092767E-004 + 226.19999999999999 -2.4493709131706895E-004 + 226.25999999999999 -2.4047667177357437E-004 + 226.31999999999999 -2.3585396949704943E-004 + 226.38000000000000 -2.3107299737017636E-004 + 226.44000000000000 -2.2613800701187786E-004 + 226.50000000000000 -2.2105342280704887E-004 + 226.56000000000000 -2.1582388242125355E-004 + 226.62000000000000 -2.1045420947396107E-004 + 226.68000000000001 -2.0494940674218421E-004 + 226.74000000000001 -1.9931460989867819E-004 + 226.80000000000001 -1.9355514632094748E-004 + 226.86000000000001 -1.8767648018254996E-004 + 226.92000000000002 -1.8168419988867407E-004 + 226.98000000000002 -1.7558398440290578E-004 + 227.03999999999996 -1.6938166399194259E-004 + 227.09999999999997 -1.6308314225915672E-004 + 227.15999999999997 -1.5669439073127565E-004 + 227.21999999999997 -1.5022144710229054E-004 + 227.27999999999997 -1.4367039191266723E-004 + 227.33999999999997 -1.3704735914887674E-004 + 227.39999999999998 -1.3035852258968362E-004 + 227.45999999999998 -1.2361002540631021E-004 + 227.51999999999998 -1.1680806406922968E-004 + 227.57999999999998 -1.0995882152178146E-004 + 227.63999999999999 -1.0306843763275490E-004 + 227.69999999999999 -9.6143063769953745E-005 + 227.75999999999999 -8.9188797937413383E-005 + 227.81999999999999 -8.2211697292172546E-005 + 227.88000000000000 -7.5217761873669508E-005 + 227.94000000000000 -6.8212922166584756E-005 + 228.00000000000000 -6.1203035183006766E-005 + 228.06000000000000 -5.4193862016586347E-005 + 228.12000000000000 -4.7191081933273862E-005 + 228.18000000000001 -4.0200248836386434E-005 + 228.24000000000001 -3.3226818310062164E-005 + 228.30000000000001 -2.6276107631527840E-005 + 228.36000000000001 -1.9353333486793657E-005 + 228.42000000000002 -1.2463559578705705E-005 + 228.48000000000002 -5.6117348382653216E-006 + 228.53999999999996 1.1973393949404852E-006 + 228.59999999999997 7.9589937944147087E-006 + 228.65999999999997 1.4668686159972898E-005 + 228.71999999999997 2.1322020759290205E-005 + 228.77999999999997 2.7914738373002860E-005 + 228.83999999999997 3.4442704920791085E-005 + 228.89999999999998 4.0901940898220251E-005 + 228.95999999999998 4.7288600821119173E-005 + 229.01999999999998 5.3598972477434271E-005 + 229.07999999999998 5.9829487089548315E-005 + 229.13999999999999 6.5976737033718704E-005 + 229.19999999999999 7.2037439395276025E-005 + 229.25999999999999 7.8008472815040825E-005 + 229.31999999999999 8.3886862505949924E-005 + 229.38000000000000 8.9669793997218408E-005 + 229.44000000000000 9.5354583745882438E-005 + 229.50000000000000 1.0093868504079758E-004 + 229.56000000000000 1.0641972319774907E-004 + 229.62000000000000 1.1179543975847715E-004 + 229.68000000000001 1.1706370273052206E-004 + 229.74000000000001 1.2222252582394849E-004 + 229.80000000000001 1.2727001828643727E-004 + 229.86000000000001 1.3220440880281760E-004 + 229.92000000000002 1.3702400813556210E-004 + 229.97999999999996 1.4172724202268338E-004 + 230.03999999999996 1.4631262124026700E-004 + 230.09999999999997 1.5077873144194213E-004 + 230.15999999999997 1.5512425410158147E-004 + 230.21999999999997 1.5934794421806794E-004 + 230.27999999999997 1.6344861552352141E-004 + 230.33999999999997 1.6742518727303699E-004 + 230.39999999999998 1.7127662832732432E-004 + 230.45999999999998 1.7500198445539526E-004 + 230.51999999999998 1.7860036522483408E-004 + 230.57999999999998 1.8207094716753082E-004 + 230.63999999999999 1.8541296565881155E-004 + 230.69999999999999 1.8862570283171597E-004 + 230.75999999999999 1.9170850076706696E-004 + 230.81999999999999 1.9466075323265492E-004 + 230.88000000000000 1.9748187429937948E-004 + 230.94000000000000 2.0017132634711488E-004 + 231.00000000000000 2.0272858593381191E-004 + 231.06000000000000 2.0515316136643857E-004 + 231.12000000000000 2.0744457171228202E-004 + 231.18000000000001 2.0960234472255777E-004 + 231.24000000000001 2.1162604431886926E-004 + 231.30000000000001 2.1351525477170653E-004 + 231.36000000000001 2.1526956539463980E-004 + 231.42000000000002 2.1688857965112120E-004 + 231.47999999999996 2.1837194755362020E-004 + 231.53999999999996 2.1971934157352362E-004 + 231.59999999999997 2.2093046331069435E-004 + 231.65999999999997 2.2200507736211059E-004 + 231.71999999999997 2.2294295372300062E-004 + 231.77999999999997 2.2374393227306023E-004 + 231.83999999999997 2.2440789440218034E-004 + 231.89999999999998 2.2493473977459611E-004 + 231.95999999999998 2.2532445814760953E-004 + 232.01999999999998 2.2557703719799899E-004 + 232.07999999999998 2.2569251730171055E-004 + 232.13999999999999 2.2567094736718847E-004 + 232.19999999999999 2.2551244628477165E-004 + 232.25999999999999 2.2521715127403241E-004 + 232.31999999999999 2.2478520105997991E-004 + 232.38000000000000 2.2421678740602551E-004 + 232.44000000000000 2.2351214172491843E-004 + 232.50000000000000 2.2267149455212554E-004 + 232.56000000000000 2.2169517182991507E-004 + 232.62000000000000 2.2058351307754307E-004 + 232.68000000000001 2.1933692921863668E-004 + 232.74000000000001 2.1795588551913966E-004 + 232.80000000000001 2.1644092452012811E-004 + 232.86000000000001 2.1479267130166763E-004 + 232.92000000000002 2.1301182219498192E-004 + 232.97999999999996 2.1109917495876253E-004 + 233.03999999999996 2.0905559978919532E-004 + 233.09999999999997 2.0688207637959322E-004 + 233.15999999999997 2.0457966831141690E-004 + 233.21999999999997 2.0214951065013076E-004 + 233.27999999999997 1.9959285186809257E-004 + 233.33999999999997 1.9691098768610129E-004 + 233.39999999999998 1.9410533114720273E-004 + 233.45999999999998 1.9117733672510437E-004 + 233.51999999999998 1.8812854458805824E-004 + 233.57999999999998 1.8496056349403742E-004 + 233.63999999999999 1.8167508380763765E-004 + 233.69999999999999 1.7827383807240101E-004 + 233.75999999999999 1.7475865162589052E-004 + 233.81999999999999 1.7113140049270832E-004 + 233.88000000000000 1.6739406057531309E-004 + 233.94000000000000 1.6354869025390865E-004 + 234.00000000000000 1.5959739888905244E-004 + 234.06000000000000 1.5554239689849768E-004 + 234.12000000000000 1.5138598935312295E-004 + 234.18000000000001 1.4713057105107381E-004 + 234.24000000000001 1.4277862285736392E-004 + 234.30000000000001 1.3833270686250534E-004 + 234.36000000000001 1.3379550245142620E-004 + 234.42000000000002 1.2916977046998308E-004 + 234.47999999999996 1.2445836316304554E-004 + 234.53999999999996 1.1966422430557445E-004 + 234.59999999999997 1.1479037770745119E-004 + 234.65999999999997 1.0983993733949319E-004 + 234.71999999999997 1.0481609546864503E-004 + 234.77999999999997 9.9722139841809185E-005 + 234.83999999999997 9.4561408917488851E-005 + 234.89999999999998 8.9337326034041035E-005 + 234.95999999999998 8.4053394158861274E-005 + 235.01999999999998 7.8713160851093245E-005 + 235.07999999999998 7.3320247206176993E-005 + 235.13999999999999 6.7878326326865001E-005 + 235.19999999999999 6.2391136689736196E-005 + 235.25999999999999 5.6862447145216590E-005 + 235.31999999999999 5.1296082044219866E-005 + 235.38000000000000 4.5695907181448088E-005 + 235.44000000000000 4.0065822776311509E-005 + 235.50000000000000 3.4409767008009679E-005 + 235.56000000000000 2.8731706040119873E-005 + 235.62000000000000 2.3035642247298592E-005 + 235.68000000000001 1.7325602212477779E-005 + 235.74000000000001 1.1605650256057694E-005 + 235.80000000000001 5.8798839094870425E-006 + 235.86000000000001 1.5242895240787644E-007 + 235.92000000000002 -5.5725451923405191E-006 + 235.97999999999996 -1.1290845271166963E-005 + 236.03999999999996 -1.6998236236227122E-005 + 236.09999999999997 -2.2690447724420365E-005 + 236.15999999999997 -2.8363177187907751E-005 + 236.21999999999997 -3.4012099332009739E-005 + 236.27999999999997 -3.9632862912410671E-005 + 236.33999999999997 -4.5221095584670922E-005 + 236.39999999999998 -5.0772436239226879E-005 + 236.45999999999998 -5.6282519659531986E-005 + 236.51999999999998 -6.1747000450004675E-005 + 236.57999999999998 -6.7161560075603967E-005 + 236.63999999999999 -7.2521917268508185E-005 + 236.69999999999999 -7.7823837227921299E-005 + 236.75999999999999 -8.3063158733098172E-005 + 236.81999999999999 -8.8235771430210250E-005 + 236.88000000000000 -9.3337635432680748E-005 + 236.94000000000000 -9.8364781127319384E-005 + 237.00000000000000 -1.0331332999456617E-004 + 237.06000000000000 -1.0817946275208945E-004 + 237.12000000000000 -1.1295943389401757E-004 + 237.18000000000001 -1.1764957597830178E-004 + 237.24000000000001 -1.2224626804735786E-004 + 237.30000000000001 -1.2674595666751920E-004 + 237.36000000000001 -1.3114516207288852E-004 + 237.42000000000002 -1.3544043666061041E-004 + 237.47999999999996 -1.3962842195513136E-004 + 237.53999999999996 -1.4370580407121062E-004 + 237.59999999999997 -1.4766933189394634E-004 + 237.65999999999997 -1.5151584136487877E-004 + 237.71999999999997 -1.5524224223153330E-004 + 237.77999999999997 -1.5884554079905882E-004 + 237.83999999999997 -1.6232285842195535E-004 + 237.89999999999998 -1.6567140669189614E-004 + 237.95999999999998 -1.6888856149211792E-004 + 238.01999999999998 -1.7197180494632534E-004 + 238.07999999999998 -1.7491876399977060E-004 + 238.13999999999999 -1.7772720646345205E-004 + 238.19999999999999 -1.8039507376296402E-004 + 238.25999999999999 -1.8292043583264153E-004 + 238.31999999999999 -1.8530154538870747E-004 + 238.38000000000000 -1.8753677314834382E-004 + 238.44000000000000 -1.8962465847318654E-004 + 238.50000000000000 -1.9156387197533887E-004 + 238.56000000000000 -1.9335323973767248E-004 + 238.62000000000000 -1.9499171790511442E-004 + 238.68000000000001 -1.9647837336667082E-004 + 238.74000000000001 -1.9781242094251905E-004 + 238.80000000000001 -1.9899320988118113E-004 + 238.86000000000001 -2.0002019427185237E-004 + 238.92000000000002 -2.0089296364876201E-004 + 238.97999999999996 -2.0161122915223040E-004 + 239.03999999999996 -2.0217485165611150E-004 + 239.09999999999997 -2.0258380331116647E-004 + 239.15999999999997 -2.0283818953742303E-004 + 239.21999999999997 -2.0293827133094025E-004 + 239.27999999999997 -2.0288444272686433E-004 + 239.33999999999997 -2.0267722398330243E-004 + 239.39999999999998 -2.0231726569814592E-004 + 239.45999999999998 -2.0180537847814026E-004 + 239.51999999999998 -2.0114249094770737E-004 + 239.57999999999998 -2.0032967802809364E-004 + 239.63999999999999 -1.9936814745896150E-004 + 239.69999999999999 -1.9825920188169910E-004 + 239.75999999999999 -1.9700429194142186E-004 + 239.81999999999999 -1.9560496946684772E-004 + 239.88000000000000 -1.9406290194899550E-004 + 239.94000000000000 -1.9237984918541107E-004 + 240.00000000000000 -1.9055769082399602E-004 + 240.06000000000000 -1.8859838279564606E-004 + 240.12000000000000 -1.8650396360658775E-004 + 240.18000000000001 -1.8427658114314829E-004 + 240.24000000000001 -1.8191843301994855E-004 + 240.30000000000001 -1.7943181737301744E-004 + 240.36000000000001 -1.7681906493452110E-004 + 240.42000000000002 -1.7408258029841223E-004 + 240.47999999999996 -1.7122484208281530E-004 + 240.53999999999996 -1.6824834436398624E-004 + 240.59999999999997 -1.6515560058729799E-004 + 240.65999999999997 -1.6194921358474423E-004 + 240.71999999999997 -1.5863177648836846E-004 + 240.77999999999997 -1.5520587781649576E-004 + 240.83999999999997 -1.5167416101907668E-004 + 240.89999999999998 -1.4803924186213767E-004 + 240.95999999999998 -1.4430375745834572E-004 + 241.01999999999998 -1.4047033594032993E-004 + 241.07999999999998 -1.3654160098143259E-004 + 241.13999999999999 -1.3252016958828174E-004 + 241.19999999999999 -1.2840864026462389E-004 + 241.25999999999999 -1.2420960867116497E-004 + 241.31999999999999 -1.1992562726528716E-004 + 241.38000000000000 -1.1555924945681546E-004 + 241.44000000000000 -1.1111299362183976E-004 + 241.50000000000000 -1.0658933259962889E-004 + 241.56000000000000 -1.0199070282425682E-004 + 241.62000000000000 -9.7319504037675944E-005 + 241.68000000000001 -9.2578072466716066E-005 + 241.74000000000001 -8.7768694183551005E-005 + 241.80000000000001 -8.2893574066539267E-005 + 241.86000000000001 -7.7954852510257841E-005 + 241.92000000000002 -7.2954582547306014E-005 + 241.97999999999996 -6.7894747315783323E-005 + 242.03999999999996 -6.2777234449919669E-005 + 242.09999999999997 -5.7603848528511910E-005 + 242.15999999999997 -5.2376309573496701E-005 + 242.21999999999997 -4.7096253781421155E-005 + 242.27999999999997 -4.1765231307505434E-005 + 242.33999999999997 -3.6384719594615384E-005 + 242.39999999999998 -3.0956113602892894E-005 + 242.45999999999998 -2.5480746062813870E-005 + 242.51999999999998 -1.9959873291477957E-005 + 242.57999999999998 -1.4394693811492780E-005 + 242.63999999999999 -8.7863328243480311E-006 + 242.69999999999999 -3.1358675687104955E-006 + 242.75999999999999 2.5556960985089177E-006 + 242.81999999999999 8.2873992733120011E-006 + 242.88000000000000 1.4058350572764425E-005 + 242.94000000000000 1.9867713215516060E-005 + 243.00000000000000 2.5714711270160789E-005 + 243.06000000000000 3.1598622329482745E-005 + 243.12000000000000 3.7518785024917768E-005 + 243.18000000000001 4.3474578870699175E-005 + 243.24000000000001 4.9465435053655646E-005 + 243.30000000000001 5.5490823486923859E-005 + 243.36000000000001 6.1550252584793188E-005 + 243.42000000000002 6.7643247253798452E-005 + 243.47999999999996 7.3769364764060283E-005 + 243.53999999999996 7.9928145487190327E-005 + 243.59999999999997 8.6119142001000605E-005 + 243.65999999999997 9.2341893839049857E-005 + 243.71999999999997 9.8595928255484021E-005 + 243.77999999999997 1.0488074195805698E-004 + 243.83999999999997 1.1119582766883899E-004 + 243.89999999999998 1.1754061706456618E-004 + 243.95999999999998 1.2391452494710578E-004 + 244.01999999999998 1.3031691199505776E-004 + 244.07999999999998 1.3674714355275293E-004 + 244.13999999999999 1.4320451689712677E-004 + 244.19999999999999 1.4968830914971921E-004 + 244.25999999999999 1.5619780581105838E-004 + 244.31999999999999 1.6273220817356266E-004 + 244.38000000000000 1.6929070875123267E-004 + 244.44000000000000 1.7587245794522627E-004 + 244.50000000000000 1.8247660063778597E-004 + 244.56000000000000 1.8910222515806100E-004 + 244.62000000000000 1.9574838563541771E-004 + 244.68000000000001 2.0241408450118187E-004 + 244.74000000000001 2.0909825434180034E-004 + 244.80000000000001 2.1579980672011998E-004 + 244.86000000000001 2.2251758698273627E-004 + 244.92000000000002 2.2925035281203823E-004 + 244.97999999999996 2.3599682382899535E-004 + 245.03999999999996 2.4275567833938248E-004 + 245.09999999999997 2.4952549100888644E-004 + 245.15999999999997 2.5630480018488147E-004 + 245.21999999999997 2.6309206507436141E-004 + 245.27999999999997 2.6988570574640043E-004 + 245.33999999999997 2.7668413070923924E-004 + 245.39999999999998 2.8348566060519255E-004 + 245.45999999999998 2.9028862495420398E-004 + 245.51999999999998 2.9709129122465862E-004 + 245.57999999999998 3.0389192547421986E-004 + 245.63999999999999 3.1068880360544102E-004 + 245.69999999999999 3.1748014767757956E-004 + 245.75999999999999 3.2426415267751494E-004 + 245.81999999999999 3.3103905977150110E-004 + 245.88000000000000 3.3780305114575318E-004 + 245.94000000000000 3.4455431564678742E-004 + 246.00000000000000 3.5129102609565796E-004 + 246.06000000000000 3.5801135034597086E-004 + 246.12000000000000 3.6471344391004979E-004 + 246.18000000000001 3.7139548303199754E-004 + 246.24000000000001 3.7805559936841484E-004 + 246.30000000000001 3.8469191968721039E-004 + 246.36000000000001 3.9130255761293223E-004 + 246.42000000000002 3.9788561248561664E-004 + 246.47999999999996 4.0443920426717623E-004 + 246.53999999999996 4.1096143360841100E-004 + 246.59999999999997 4.1745040117643998E-004 + 246.65999999999997 4.2390419339512556E-004 + 246.71999999999997 4.3032089690139591E-004 + 246.77999999999997 4.3669860830126945E-004 + 246.83999999999997 4.4303537914375804E-004 + 246.89999999999998 4.4932925045991344E-004 + 246.95999999999998 4.5557830714848692E-004 + 247.01999999999998 4.6178054939536689E-004 + 247.07999999999998 4.6793403014647541E-004 + 247.13999999999999 4.7403672397824958E-004 + 247.19999999999999 4.8008658189019771E-004 + 247.25999999999999 4.8608150276168935E-004 + 247.31999999999999 4.9201946025391875E-004 + 247.38000000000000 4.9789829213732863E-004 + 247.44000000000000 5.0371589723000802E-004 + 247.50000000000000 5.0947008227959496E-004 + 247.56000000000000 5.1515858582099820E-004 + 247.62000000000000 5.2077925689164117E-004 + 247.68000000000001 5.2632984980216263E-004 + 247.74000000000001 5.3180797671880406E-004 + 247.80000000000001 5.3721134622152129E-004 + 247.86000000000001 5.4253753542548037E-004 + 247.92000000000002 5.4778416957735362E-004 + 247.97999999999996 5.5294874590569641E-004 + 248.03999999999996 5.5802870627590356E-004 + 248.09999999999997 5.6302141260444977E-004 + 248.15999999999997 5.6792421422083782E-004 + 248.21999999999997 5.7273436750041550E-004 + 248.27999999999997 5.7744904226058648E-004 + 248.33999999999997 5.8206533328832737E-004 + 248.39999999999998 5.8658027767701198E-004 + 248.45999999999998 5.9099076450268805E-004 + 248.51999999999998 5.9529368284045258E-004 + 248.57999999999998 5.9948583395724492E-004 + 248.63999999999999 6.0356388813531919E-004 + 248.69999999999999 6.0752451802653163E-004 + 248.75999999999999 6.1136431681310189E-004 + 248.81999999999999 6.1507980092411299E-004 + 248.88000000000000 6.1866750863344931E-004 + 248.94000000000000 6.2212391083209771E-004 + 249.00000000000000 6.2544537300431957E-004 + 249.06000000000000 6.2862841631019432E-004 + 249.12000000000000 6.3166928315401994E-004 + 249.18000000000001 6.3456440141746709E-004 + 249.24000000000001 6.3731012968689662E-004 + 249.30000000000001 6.3990269070338883E-004 + 249.36000000000001 6.4233845952308300E-004 + 249.42000000000002 6.4461369685981480E-004 + 249.47999999999996 6.4672472100689373E-004 + 249.53999999999996 6.4866771756994337E-004 + 249.59999999999997 6.5043897282968176E-004 + 249.65999999999997 6.5203476515576851E-004 + 249.71999999999997 6.5345137625406338E-004 + 249.77999999999997 6.5468514424388616E-004 + 249.83999999999997 6.5573230304447137E-004 + 249.89999999999998 6.5658926136538806E-004 + 249.95999999999998 6.5725244915829269E-004 + 250.01999999999998 6.5771833398505517E-004 + 250.07999999999998 6.5798347826111431E-004 + 250.13999999999999 6.5804458685185595E-004 + 250.19999999999999 6.5789835071888760E-004 + 250.25999999999999 6.5754162214440044E-004 + 250.31999999999999 6.5697139148518987E-004 + 250.38000000000000 6.5618471978327875E-004 + 250.44000000000000 6.5517888296927633E-004 + 250.50000000000000 6.5395134765159539E-004 + 250.56000000000000 6.5249959408821207E-004 + 250.62000000000000 6.5082134960509606E-004 + 250.68000000000001 6.4891453521314811E-004 + 250.74000000000001 6.4677718147732456E-004 + 250.80000000000001 6.4440758428212794E-004 + 250.86000000000001 6.4180424383741331E-004 + 250.92000000000002 6.3896582426224474E-004 + 250.97999999999996 6.3589124390063816E-004 + 251.03999999999996 6.3257963959070383E-004 + 251.09999999999997 6.2903045389056016E-004 + 251.15999999999997 6.2524326008966274E-004 + 251.21999999999997 6.2121802442510678E-004 + 251.27999999999997 6.1695480901534437E-004 + 251.33999999999997 6.1245405542679891E-004 + 251.39999999999998 6.0771640483541964E-004 + 251.45999999999998 6.0274285107617749E-004 + 251.51999999999998 5.9753458771738175E-004 + 251.57999999999998 5.9209308707952330E-004 + 251.63999999999999 5.8642007476204837E-004 + 251.69999999999999 5.8051767573228709E-004 + 251.75999999999999 5.7438808143277123E-004 + 251.81999999999999 5.6803395329648571E-004 + 251.88000000000000 5.6145815308495967E-004 + 251.94000000000000 5.5466384704170961E-004 diff --git a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000004.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000004.BXY.semd new file mode 100644 index 00000000..d976a597 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000004.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 0.0000000000000000 + 11.640000000000001 0.0000000000000000 + 11.699999999999996 0.0000000000000000 + 11.759999999999998 0.0000000000000000 + 11.820000000000000 0.0000000000000000 + 11.879999999999995 0.0000000000000000 + 11.939999999999998 0.0000000000000000 + 12.000000000000000 0.0000000000000000 + 12.059999999999995 -1.3141878785323312E-040 + 12.119999999999997 -3.0692565371215403E-040 + 12.180000000000000 -4.8243251957107494E-040 + 12.239999999999995 -6.5793938542999585E-040 + 12.299999999999997 -7.3394638153565132E-040 + 12.359999999999999 -6.6752318603573823E-040 + 12.419999999999995 -3.6976807449117532E-040 + 12.479999999999997 2.0338570658694027E-040 + 12.539999999999999 1.0477460176508079E-039 + 12.599999999999994 2.1199529536435795E-039 + 12.659999999999997 3.3105212363492402E-039 + 12.719999999999999 4.5010895190549010E-039 + 12.780000000000001 5.5432030737161338E-039 + 12.839999999999996 6.3388560025058782E-039 + 12.899999999999999 6.6660002282164062E-039 + 12.960000000000001 6.3541705867740055E-039 + 13.019999999999996 5.3288591700228819E-039 + 13.079999999999998 3.5410779120274139E-039 + 13.140000000000001 1.0484711907494129E-039 + 13.199999999999996 -1.9872436720777379E-039 + 13.259999999999998 -5.2478864683379643E-039 + 13.320000000000000 -7.9905491857565083E-039 + 13.379999999999995 -8.4948937097173870E-039 + 13.439999999999998 -5.1511532641208795E-039 + 13.500000000000000 1.4019485944441106E-039 + 13.559999999999995 1.1080403184446328E-038 + 13.619999999999997 2.2194900252466078E-038 + 13.680000000000000 3.3655885819130707E-038 + 13.739999999999995 4.4076000389131454E-038 + 13.799999999999997 5.4013298563006432E-038 + 13.859999999999999 6.3357395038891392E-038 + 13.919999999999995 6.3927389645938865E-038 + 13.979999999999997 5.2436217921126603E-038 + 14.039999999999999 2.8192838100228248E-038 + 14.099999999999994 -7.1730919322023290E-039 + 14.159999999999997 -5.1481369299352146E-038 + 14.219999999999999 -1.0070986181171248E-037 + 14.280000000000001 -1.5554200137204104E-037 + 14.339999999999996 -2.0503494401282793E-037 + 14.399999999999999 -2.3300910286596695E-037 + 14.460000000000001 -2.1686947096921921E-037 + 14.519999999999996 -1.5288578944745807E-037 + 14.579999999999998 -4.3526198763708098E-038 + 14.640000000000001 1.1130579359325658E-037 + 14.699999999999996 2.9475729797998001E-037 + 14.759999999999998 4.9022670425395400E-037 + 14.820000000000000 6.9437066998344712E-037 + 14.879999999999995 8.8598451057315745E-037 + 14.939999999999998 1.0201614585666907E-036 + 15.000000000000000 1.0611202518294340E-036 + 15.059999999999995 9.8242988518262492E-037 + 15.119999999999997 8.0654460202689949E-037 + 15.180000000000000 5.2964210339114397E-037 + 15.239999999999995 1.6005921298739241E-037 + 15.299999999999997 -2.9217863613537785E-037 + 15.359999999999999 -7.9184692795942857E-037 + 15.419999999999995 -1.3092034889282174E-036 + 15.479999999999997 -1.7873065088397931E-036 + 15.539999999999999 -2.1229463691950170E-036 + 15.599999999999994 -2.2205864646895160E-036 + 15.659999999999997 -2.0076155398814221E-036 + 15.719999999999999 -1.4817325472757805E-036 + 15.780000000000001 -6.1695016332182981E-037 + 15.839999999999996 5.7938921337258492E-037 + 15.899999999999999 1.9824814222905382E-036 + 15.960000000000001 3.4623325641492173E-036 + 16.019999999999996 4.8176691986445347E-036 + 16.079999999999998 5.8220611607824628E-036 + 16.140000000000001 6.3018740464915129E-036 + 16.200000000000003 6.0234130340097390E-036 + 16.259999999999991 4.8100629493357598E-036 + 16.319999999999993 2.5495996284801142E-036 + 16.379999999999995 -8.1293109334959340E-037 + 16.439999999999998 -5.2480511624811411E-036 + 16.500000000000000 -1.0357305071877913E-035 + 16.560000000000002 -1.5588645254581717E-035 + 16.620000000000005 -2.0409656275473334E-035 + 16.679999999999993 -2.3938800242852649E-035 + 16.739999999999995 -2.5406248844194534E-035 + 16.799999999999997 -2.4101785866837376E-035 + 16.859999999999999 -1.9429969668774146E-035 + 16.920000000000002 -1.1119345722783993E-035 + 16.980000000000004 8.5167570845802155E-037 + 17.039999999999992 1.6370593168607862E-035 + 17.099999999999994 3.4961501160300673E-035 + 17.159999999999997 5.5270172755578203E-035 + 17.219999999999999 7.5486702339834994E-035 + 17.280000000000001 9.3441250233522587E-035 + 17.340000000000003 1.0673555326300737E-034 + 17.399999999999991 1.1289501658646234E-034 + 17.459999999999994 1.0950612428190021E-034 + 17.519999999999996 9.4547503723738026E-035 + 17.579999999999998 6.6727622833370581E-035 + 17.640000000000001 2.5365892487741024E-035 + 17.700000000000003 -2.8909112318808000E-035 + 17.759999999999991 -9.4087634451174649E-035 + 17.819999999999993 -1.6683000613864128E-034 + 17.879999999999995 -2.4208334554010637E-034 + 17.939999999999998 -3.1339648443032038E-034 + 18.000000000000000 -3.7316543341275717E-034 + 18.060000000000002 -4.1306019118407926E-034 + 18.120000000000005 -4.2468980985999019E-034 + 18.179999999999993 -4.0034976219228884E-034 + 18.239999999999995 -3.3395514526154052E-034 + 18.299999999999997 -2.2194643841741654E-034 + 18.359999999999999 -6.4223439614329618E-035 + 18.420000000000002 1.3524800013944032E-034 + 18.480000000000004 3.6748872447940741E-034 + 18.539999999999992 6.1844494764659029E-034 + 18.599999999999994 8.6903380711450970E-034 + 18.659999999999997 1.0958218481204972E-033 + 18.719999999999999 1.2721800632985936E-033 + 18.780000000000001 1.3700415039532929E-033 + 18.840000000000003 1.3621852470091868E-033 + 18.899999999999991 1.2249758080324050E-033 + 18.959999999999994 9.4139635881318359E-034 + 19.019999999999996 5.0417596071668372E-034 + 19.079999999999998 -8.1314105850579921E-035 + 19.140000000000001 -7.9462723747497881E-034 + 19.200000000000003 -1.5987006941271656E-033 + 19.259999999999991 -2.4394570199904463E-033 + 19.319999999999993 -3.2469367925713340E-033 + 19.379999999999995 -3.9381715167895837E-033 + 19.439999999999998 -4.4219201108697319E-033 + 19.500000000000000 -4.6052602789202678E-033 + 19.560000000000002 -4.4018699244868122E-033 + 19.620000000000005 -3.7415880981779055E-033 + 19.679999999999993 -2.5806744976326984E-033 + 19.739999999999995 -9.1199003426926975E-034 + 19.799999999999997 1.2260218490665093E-033 + 19.859999999999999 3.7420969454073552E-033 + 19.920000000000002 6.4886865341038128E-033 + 19.980000000000004 9.2625622432079282E-033 + 20.039999999999992 1.1810818165521518E-032 + 20.099999999999994 1.3842828564223469E-032 + 20.159999999999997 1.5048454045501226E-032 + 20.219999999999999 1.5122236970961739E-032 + 20.280000000000001 1.3792752987051381E-032 + 20.340000000000003 1.0855605310577722E-032 + 20.399999999999991 6.2078587993268073E-033 + 20.459999999999994 -1.1888974532637523E-034 + 20.519999999999996 -7.9301130549688919E-033 + 20.579999999999998 -1.6848331654663696E-032 + 20.640000000000001 -2.6305175518554976E-032 + 20.700000000000003 -3.5548997967397805E-032 + 20.759999999999991 -4.3670993716081885E-032 + 20.819999999999993 -4.9651578606940355E-032 + 20.879999999999995 -5.2427596306499034E-032 + 20.939999999999998 -5.0978989236317266E-032 + 21.000000000000000 -4.4431651494770926E-032 + 21.060000000000002 -3.2170887957080932E-032 + 21.120000000000005 -1.3957831884249641E-032 + 21.179999999999993 9.9609715441046197E-033 + 21.239999999999995 3.8762097338067092E-032 + 21.299999999999997 7.0984163664437445E-032 + 21.359999999999999 1.0450955072240551E-031 + 21.420000000000002 1.3660024939500499E-031 + 21.480000000000004 1.6399705137817242E-031 + 21.539999999999992 1.8308792338073640E-031 + 21.599999999999994 1.9014643312420233E-031 + 21.659999999999997 1.8163550498127051E-031 + 21.719999999999999 1.5456471627731237E-031 + 21.780000000000001 1.0688244090707505E-031 + 21.840000000000003 3.7876471585242770E-032 + 21.899999999999991 -5.1449419622491951E-032 + 21.959999999999994 -1.5806109942109768E-031 + 22.019999999999996 -2.7668323556062973E-031 + 22.079999999999998 -3.9973349080546363E-031 + 22.140000000000001 -5.1744049395023327E-031 + 22.200000000000003 -6.1817744395685763E-031 + 22.259999999999991 -6.8903165900587557E-031 + 22.319999999999993 -7.1661560304004507E-031 + 22.379999999999995 -6.8810520412411259E-031 + 22.439999999999998 -5.9246932568699509E-031 + 22.500000000000000 -4.2183039757007602E-031 + 22.560000000000002 -1.7287100324581463E-031 + 22.619999999999990 1.5182081076977714E-031 + 22.679999999999993 5.4259410671471650E-031 + 22.739999999999995 9.8190496820096784E-031 + 22.799999999999997 1.4439559269424811E-030 + 22.859999999999999 1.8949425715250742E-030 + 22.920000000000002 2.2940237625651363E-030 + 22.980000000000004 2.5950982250084201E-030 + 23.039999999999992 2.7494241640870486E-030 + 23.099999999999994 2.7090565440040945E-030 + 23.159999999999997 2.4310053544945955E-030 + 23.219999999999999 1.8819354512680743E-030 + 23.280000000000001 1.0431487500887282E-030 + 23.340000000000003 -8.4494736335337005E-032 + 23.399999999999991 -1.4761331323877909E-030 + 23.459999999999994 -3.0793990964525377E-030 + 23.519999999999996 -4.8123569421605322E-030 + 23.579999999999998 -6.5633680908386345E-030 + 23.640000000000001 -8.1933309922959238E-030 + 23.700000000000003 -9.5406469844166362E-030 + 23.759999999999991 -1.0429126954986636E-029 + 23.819999999999993 -1.0678866244135675E-029 + 23.879999999999995 -1.0119877246479100E-029 + 23.939999999999998 -8.6080188189559784E-030 + 24.000000000000000 -6.0424562888550758E-030 + 24.060000000000002 -2.3836130917888577E-030 + 24.119999999999990 2.3297079498717649E-030 + 24.179999999999993 7.9655710902285392E-030 + 24.239999999999995 1.4288222648882633E-029 + 24.299999999999997 2.0953223037127109E-029 + 24.359999999999999 2.7510078062900614E-029 + 24.420000000000002 3.3413822370692740E-029 + 24.480000000000004 3.8046645790159379E-029 + 24.539999999999992 4.0750075444234386E-029 + 24.599999999999994 4.0867527248324539E-029 + 24.659999999999997 3.7796223891739771E-029 + 24.719999999999999 3.1046440472602948E-029 + 24.780000000000001 2.0305102485392673E-029 + 24.840000000000003 5.4997416444899201E-030 + 24.899999999999991 -1.3142095215949928E-029 + 24.959999999999994 -3.5043612871391564E-029 + 25.019999999999996 -5.9245697816444784E-029 + 25.079999999999998 -8.4396192899948723E-029 + 25.140000000000001 -1.0876709443836278E-028 + 25.200000000000003 -1.3030455041449332E-028 + 25.259999999999991 -1.4671485709498532E-028 + 25.319999999999993 -1.5558762524679477E-028 + 25.379999999999995 -1.5455474998168575E-028 + 25.439999999999998 -1.4148070125425432E-028 + 25.500000000000000 -1.1467631053602815E-028 + 25.560000000000002 -7.3124753424474973E-029 + 25.619999999999990 -1.6705238622743629E-029 + 25.679999999999993 5.3603351081587198E-029 + 25.739999999999995 1.3555825760195337E-028 + 25.799999999999997 2.2554911451898704E-028 + 25.859999999999999 3.1857525628351545E-028 + 25.920000000000002 4.0832284906917954E-028 + 25.980000000000004 4.8735691120494014E-028 + 26.039999999999992 5.4743806769123486E-028 + 26.099999999999994 5.7996612686612055E-028 + 26.159999999999997 5.7654383595505778E-028 + 26.219999999999999 5.2964359142014716E-028 + 26.280000000000001 4.3334869167419950E-028 + 26.340000000000003 2.8412971591855180E-028 + 26.399999999999991 8.1605318504177182E-029 + 26.459999999999994 -1.7077152009525586E-028 + 26.519999999999996 -4.6516778412777950E-028 + 26.579999999999998 -7.8903365034594314E-028 + 26.640000000000001 -1.1250414097445019E-027 + 26.700000000000003 -1.4513608423119644E-027 + 26.759999999999991 -1.7423168737314816E-027 + 26.819999999999993 -1.9694586513897940E-027 + 26.879999999999995 -2.1030454745712371E-027 + 26.939999999999998 -2.1139224562153751E-027 + 27.000000000000000 -1.9757298117608979E-027 + 27.060000000000002 -1.6673507760779843E-027 + 27.119999999999990 -1.1754716608163549E-027 + 27.179999999999993 -4.9709130169025251E-028 + 27.239999999999995 3.5820644230176502E-028 + 27.299999999999997 1.3664244001892538E-027 + 27.359999999999999 2.4879823654229833E-027 + 27.420000000000002 3.6674137059949303E-027 + 27.480000000000004 4.8341113678261096E-027 + 27.539999999999992 5.9042771558656374E-027 + 27.599999999999994 6.7841546383017708E-027 + 27.659999999999997 7.3745702283162013E-027 + 27.719999999999999 7.5767115235130114E-027 + 27.780000000000001 7.2989725618653216E-027 + 27.840000000000003 6.4645965015708128E-027 + 27.899999999999991 5.0197448527941716E-027 + 27.959999999999994 2.9415169280175953E-027 + 28.019999999999996 2.4537525541452331E-028 + 28.079999999999998 -3.0086302458712572E-027 + 28.140000000000001 -6.7114791738826190E-027 + 28.200000000000003 -1.0703250435912521E-026 + 28.259999999999991 -1.4774215820450844E-026 + 28.319999999999993 -1.8669422592674190E-026 + 28.379999999999995 -2.2097081003301840E-026 + 28.439999999999998 -2.4740866442028931E-026 + 28.500000000000000 -2.6276036955949403E-026 + 28.560000000000002 -2.6388978187265662E-026 + 28.619999999999990 -2.4799509872666898E-026 + 28.679999999999993 -2.1285005680521394E-026 + 28.739999999999995 -1.5705103323749243E-026 + 28.799999999999997 -8.0255314192438126E-027 + 28.859999999999999 1.6605715391639224E-027 + 28.920000000000002 1.3115652238105898E-026 + 28.980000000000004 2.5946778516607339E-026 + 29.039999999999992 3.9602442697176715E-026 + 29.099999999999994 5.3378614939027826E-026 + 29.159999999999997 6.6435216547206244E-026 + 29.219999999999999 7.7823705388856682E-026 + 29.280000000000001 8.6525992408053100E-026 + 29.340000000000003 9.1504154982946642E-026 + 29.399999999999991 9.1759771788303721E-026 + 29.459999999999994 8.6400972486571757E-026 + 29.519999999999996 7.4714427193282818E-026 + 29.579999999999998 5.6238948038700935E-026 + 29.640000000000001 3.0836678142051958E-026 + 29.700000000000003 -1.2426450456189251E-027 + 29.759999999999991 -3.9309067377499932E-026 + 29.819999999999993 -8.2196350198170906E-026 + 29.879999999999995 -1.2824710412554836E-025 + 29.939999999999998 -1.7532328285726715E-025 + 30.000000000000000 -2.2084558216131975E-025 + 30.060000000000002 -2.6186406173713103E-025 + 30.119999999999990 -2.9516125322217079E-025 + 30.179999999999993 -3.1738717917352088E-025 + 30.239999999999995 -3.2522421091715481E-025 + 30.299999999999997 -3.1557768558460628E-025 + 30.359999999999999 -2.8578629456777812E-025 + 30.420000000000002 -2.3384436195280580E-025 + 30.480000000000004 -1.5862634380417296E-025 + 30.539999999999992 -6.0102110043682325E-026 + 30.599999999999994 6.0469474264836558E-026 + 30.659999999999997 2.0038230320109993E-025 + 30.719999999999999 3.5537376590787736E-025 + 30.780000000000001 5.1957860262352490E-025 + 30.840000000000003 6.8555857746529012E-025 + 30.899999999999991 8.4441927207117162E-025 + 30.959999999999994 9.8602317577241413E-025 + 31.019999999999996 1.0993050301051556E-024 + 31.079999999999998 1.1726914678589226E-024 + 31.140000000000001 1.1946224241168275E-024 + 31.200000000000003 1.1541663103313455E-024 + 31.259999999999991 1.0417150967375457E-024 + 31.319999999999993 8.4973920057340460E-025 + 31.379999999999995 5.7357507427039476E-025 + 31.439999999999998 2.1221108216750326E-025 + 31.500000000000000 -2.3096687053540051E-025 + 31.560000000000002 -7.4751756873273236E-025 + 31.619999999999990 -1.3234250784340396E-024 + 31.679999999999993 -1.9387691644774719E-024 + 31.739999999999995 -2.5676449501213428E-024 + 31.799999999999997 -3.1783806290785838E-024 + 31.859999999999999 -3.7341059459258196E-024 + 31.920000000000002 -4.1937080729568460E-024 + 31.980000000000004 -4.5132077461108935E-024 + 32.039999999999992 -4.6475643342819482E-024 + 32.099999999999994 -4.5529005024901725E-024 + 32.159999999999997 -4.1891154557087509E-024 + 32.219999999999999 -3.5228203459322456E-024 + 32.280000000000001 -2.5305049319346875E-024 + 32.340000000000003 -1.2018044905706145E-024 + 32.399999999999991 4.5728941420346027E-025 + 32.459999999999994 2.4214686208544209E-024 + 32.519999999999996 4.6436194469537352E-024 + 32.579999999999998 7.0530289626774088E-024 + 32.640000000000001 9.5545549842840954E-024 + 32.700000000000003 1.2028985536663694E-023 + 32.759999999999991 1.4334822646142635E-023 + 32.819999999999993 1.6311676567817192E-023 + 32.879999999999995 1.7785407976291988E-023 + 32.939999999999998 1.8575075393445679E-023 + 33.000000000000000 1.8501661047571941E-023 + 33.060000000000002 1.7398422177924744E-023 + 33.119999999999990 1.5122611692364823E-023 + 33.179999999999993 1.1568151818961010E-023 + 33.239999999999995 6.6787380445386810E-024 + 33.299999999999997 4.6069878947968138E-025 + 33.359999999999999 -7.0051845537523875E-024 + 33.420000000000002 -1.5553741419520697E-023 + 33.480000000000004 -2.4928333193313362E-023 + 33.539999999999992 -3.4777525407776509E-023 + 33.599999999999994 -4.4656456095804694E-023 + 33.659999999999997 -5.4033680325351921E-023 + 33.719999999999999 -6.2304098195500767E-023 + 33.780000000000001 -6.8808402432714058E-023 + 33.840000000000003 -7.2859116981280825E-023 + 33.899999999999991 -7.3772963157547919E-023 + 33.959999999999994 -7.0908899347970254E-023 + 34.019999999999996 -6.3710748468008892E-023 + 34.079999999999998 -5.1752846479268553E-023 + 34.140000000000001 -3.4786789371219394E-023 + 34.200000000000003 -1.2786867951728839E-023 + 34.259999999999991 1.4008423579276653E-023 + 34.319999999999993 4.5061750556570224E-023 + 34.379999999999995 7.9512195829522417E-023 + 34.439999999999998 1.1616329222684536E-022 + 34.500000000000000 1.5348660864674686E-022 + 34.560000000000002 1.8964339489589913E-022 + 34.619999999999990 2.2252596100012612E-022 + 34.679999999999993 2.4981984359794221E-022 + 34.739999999999995 2.6908713598590322E-022 + 34.799999999999997 2.7786993016766199E-022 + 34.859999999999999 2.7381205381645105E-022 + 34.920000000000002 2.5479582454096303E-022 + 34.980000000000004 2.1908953479281207E-022 + 35.039999999999992 1.6550004007845802E-022 + 35.099999999999994 9.3523783741754771E-023 + 35.159999999999997 3.4887915318014942E-024 + 35.219999999999999 -1.0332060593140775E-022 + 35.280000000000001 -2.2456529646779836E-022 + 35.340000000000003 -3.5678745550209173E-022 + 35.399999999999991 -4.9539060791223700E-022 + 35.459999999999994 -6.3467017318792641E-022 + 35.519999999999996 -7.6790309689543444E-022 + 35.579999999999998 -8.8750048968600739E-022 + 35.640000000000001 -9.8522681753472291E-022 + 35.700000000000003 -1.0524867957456931E-021 + 35.759999999999991 -1.0806775715418582E-021 + 35.819999999999993 -1.0616010915150060E-021 + 35.879999999999995 -9.8792705675691974E-022 + 35.939999999999998 -8.5369443195150031E-022 + 36.000000000000000 -6.5483391234916764E-022 + 36.060000000000002 -3.8969149683336602E-022 + 36.119999999999990 -5.9527549270972608E-023 + 36.179999999999993 3.3103512417856584E-022 + 36.239999999999995 7.7364589362299623E-022 + 36.299999999999997 1.2559753431740907E-021 + 36.359999999999999 1.7616106626801370E-021 + 36.420000000000002 2.2701325055922502E-021 + 36.479999999999990 2.7573982256780071E-021 + 36.539999999999992 3.1960606540200474E-021 + 36.599999999999994 3.5563384327031169E-021 + 36.659999999999997 3.8070478904765572E-021 + 36.719999999999999 3.9168936194811990E-021 + 36.780000000000001 3.8560054628174252E-021 + 36.840000000000003 3.5976890597868214E-021 + 36.899999999999991 3.1203447389367084E-021 + 36.959999999999994 2.4094917764420946E-021 + 37.019999999999996 1.4598146689381917E-021 + 37.079999999999998 2.7714058561677907E-022 + 37.140000000000001 -1.1197703524095134E-021 + 37.200000000000003 -2.6977355668692300E-021 + 37.259999999999991 -4.4080915513813926E-021 + 37.319999999999993 -6.1861938121903070E-021 + 37.379999999999995 -7.9515934470444855E-021 + 37.439999999999998 -9.6089940887704325E-021 + 37.500000000000000 -1.1050079666727279E-020 + 37.560000000000002 -1.2156252172442005E-020 + 37.619999999999990 -1.2802299828121257E-020 + 37.679999999999993 -1.2860952100058836E-020 + 37.739999999999995 -1.2208240625245611E-020 + 37.799999999999997 -1.0729501447419456E-020 + 37.859999999999999 -8.3258321455501682E-021 + 37.920000000000002 -4.9207030655688794E-021 + 37.979999999999990 -4.6643482146065236E-022 + 38.039999999999992 5.0498600871001116E-021 + 38.099999999999994 1.1601277861725715E-020 + 38.159999999999997 1.9117453766299687E-020 + 38.219999999999999 2.7482720973420124E-020 + 38.280000000000001 3.6536446913528332E-020 + 38.340000000000003 4.6075960362192401E-020 + 38.399999999999991 5.5862324356491555E-020 + 38.459999999999994 6.5629212073499127E-020 + 38.519999999999996 7.5094902187188415E-020 + 38.579999999999998 8.3977405610132382E-020 + 38.640000000000001 9.2012428976622895E-020 + 38.700000000000003 9.8973902450454030E-020 + 38.759999999999991 1.0469632288231202E-019 + 38.819999999999993 1.0909840530319870E-019 + 38.879999999999995 1.1220688509264697E-019 + 38.939999999999998 1.1417967514033585E-019 + 39.000000000000000 1.1532697742412298E-019 + 39.060000000000002 1.1612931037560015E-019 + 39.119999999999990 1.1725119787376366E-019 + 39.179999999999993 1.1954923436185792E-019 + 39.239999999999995 1.2407340065327294E-019 + 39.299999999999997 1.3206083902570235E-019 + 39.359999999999999 1.4492151392697684E-019 + 39.420000000000002 1.6421489351665577E-019 + 39.479999999999990 1.9161796703052476E-019 + 39.539999999999992 2.2888509293260086E-019 + 39.599999999999994 2.7779958762419259E-019 + 39.659999999999997 3.4011915214315263E-019 + 39.719999999999999 4.1751576713333212E-019 + 39.780000000000001 5.1151206137547080E-019 + 39.840000000000003 6.2341648125393154E-019 + 39.899999999999991 7.5425844904923361E-019 + 39.959999999999994 9.0472654916558033E-019 + 40.019999999999996 1.0751108615892227E-018 + 40.079999999999998 1.2652516491915543E-018 + 40.140000000000001 1.4744945601838216E-018 + 40.200000000000003 1.7016544445313073E-018 + 40.259999999999991 1.9449847404491010E-018 + 40.319999999999993 2.2021538391654149E-018 + 40.379999999999995 2.4702225778610882E-018 + 40.439999999999998 2.7456206946612096E-018 + 40.500000000000000 3.0241166490548879E-018 + 40.560000000000002 3.3007728192460238E-018 + 40.619999999999990 3.5698774009615887E-018 + 40.679999999999993 3.8248414326879816E-018 + 40.739999999999995 4.0580503295591884E-018 + 40.799999999999997 4.2606548095380675E-018 + 40.859999999999999 4.4222839653644904E-018 + 40.920000000000002 4.5306636825854166E-018 + 40.979999999999990 4.5711194486012184E-018 + 41.039999999999992 4.5259482247276983E-018 + 41.099999999999994 4.3736226697272034E-018 + 41.159999999999997 4.0878060255471734E-018 + 41.219999999999999 3.6361774446569395E-018 + 41.280000000000001 2.9789726654534572E-018 + 41.340000000000003 2.0672916061826894E-018 + 41.399999999999991 8.4106000538850785E-019 + 41.459999999999994 -7.7334401882779123E-019 + 41.519999999999996 -2.8658547847438552E-018 + 41.579999999999998 -5.5459397569363177E-018 + 41.640000000000001 -8.9463023146186759E-018 + 41.700000000000003 -1.3227166101440365E-017 + 41.759999999999991 -1.8581150220400188E-017 + 41.819999999999993 -2.5238857590650848E-017 + 41.879999999999995 -3.3475297599888785E-017 + 41.939999999999998 -4.3617205799578916E-017 + 42.000000000000000 -5.6051331985312399E-017 + 42.060000000000002 -7.1234030292968953E-017 + 42.119999999999990 -8.9702017038422338E-017 + 42.179999999999993 -1.1208484194918451E-016 + 42.239999999999995 -1.3911920741617993E-016 + 42.299999999999997 -1.7166494611069087E-016 + 42.359999999999999 -2.1072371502776805E-016 + 42.420000000000002 -2.5745994225894004E-016 + 42.479999999999990 -3.1322565442694822E-016 + 42.539999999999992 -3.7958758334767710E-016 + 42.599999999999994 -4.5835903983162651E-016 + 42.659999999999997 -5.5163590658458635E-016 + 42.719999999999999 -6.6183764419455936E-016 + 42.780000000000001 -7.9175433078735192E-016 + 42.840000000000003 -9.4459905672738132E-016 + 42.899999999999991 -1.1240678088775692E-015 + 42.959999999999994 -1.3344068283964470E-015 + 43.019999999999996 -1.5804881950530043E-015 + 43.079999999999998 -1.8678961249968163E-015 + 43.140000000000001 -2.2030206959135667E-015 + 43.200000000000003 -2.5931646423800786E-015 + 43.259999999999991 -3.0466624016673108E-015 + 43.319999999999993 -3.5730096727699219E-015 + 43.379999999999995 -4.1830124651053497E-015 + 43.439999999999998 -4.8889446895526718E-015 + 43.500000000000000 -5.7047251205425036E-015 + 43.560000000000002 -6.6461180897961216E-015 + 43.619999999999990 -7.7309425294970598E-015 + 43.679999999999993 -8.9793094525221536E-015 + 43.739999999999995 -1.0413872420328837E-014 + 43.799999999999997 -1.2060118587642996E-014 + 43.859999999999999 -1.3946662209791690E-014 + 43.920000000000002 -1.6105574124798233E-014 + 43.979999999999990 -1.8572741819457660E-014 + 44.039999999999992 -2.1388239993351934E-014 + 44.099999999999994 -2.4596742325697523E-014 + 44.159999999999997 -2.8247942353691067E-014 + 44.219999999999999 -3.2397002799801166E-014 + 44.280000000000001 -3.7105033319031705E-014 + 44.340000000000003 -4.2439566621927824E-014 + 44.399999999999991 -4.8475035888014577E-014 + 44.459999999999994 -5.5293297067870926E-014 + 44.519999999999996 -6.2984063969696054E-014 + 44.579999999999998 -7.1645373271476809E-014 + 44.640000000000001 -8.1383982563509237E-014 + 44.700000000000003 -9.2315688553514337E-014 + 44.759999999999991 -1.0456559889543784E-013 + 44.819999999999993 -1.1826817402283635E-013 + 44.879999999999995 -1.3356717247808874E-013 + 44.939999999999998 -1.5061538930303432E-013 + 45.000000000000000 -1.6957391142590639E-013 + 45.060000000000002 -1.9061135258021168E-013 + 45.119999999999990 -2.1390231773390071E-013 + 45.179999999999993 -2.3962540190066377E-013 + 45.239999999999995 -2.6796046830168045E-013 + 45.299999999999997 -2.9908528404440982E-013 + 45.359999999999999 -3.3317074547277595E-013 + 45.420000000000002 -3.7037524782191280E-013 + 45.479999999999990 -4.1083739096544374E-013 + 45.539999999999992 -4.5466701492716846E-013 + 45.599999999999994 -5.0193388016307668E-013 + 45.659999999999997 -5.5265412252748246E-013 + 45.719999999999999 -6.0677382910306427E-013 + 45.780000000000001 -6.6414888205323116E-013 + 45.840000000000003 -7.2452076259164596E-013 + 45.899999999999991 -7.8748791050705787E-013 + 45.959999999999994 -8.5247052816581387E-013 + 46.019999999999996 -9.1866976732577354E-013 + 46.079999999999998 -9.8501926078981111E-013 + 46.140000000000001 -1.0501268329640863E-012 + 46.200000000000003 -1.1122061323756179E-012 + 46.259999999999991 -1.1689968730289815E-012 + 46.319999999999993 -1.2176705205662205E-012 + 46.379999999999995 -1.2547186343833736E-012 + 46.439999999999998 -1.2758250596093457E-012 + 46.500000000000000 -1.2757136775501761E-012 + 46.560000000000002 -1.2479719581318697E-012 + 46.619999999999990 -1.1848458139040443E-012 + 46.679999999999993 -1.0770012720527840E-012 + 46.739999999999995 -9.1324748044710341E-013 + 46.799999999999997 -6.8021370315694046E-013 + 46.859999999999999 -3.6198144867425951E-013 + 46.920000000000002 6.0349005512704203E-014 + 46.979999999999990 6.0915128341593438E-013 + 47.039999999999992 1.3108513435562648E-012 + 47.099999999999994 2.1965765304451385E-012 + 47.159999999999997 3.3029296542154983E-012 + 47.219999999999999 4.6728402538381938E-012 + 47.280000000000001 6.3565843925890761E-012 + 47.340000000000003 8.4129084741098740E-012 + 47.399999999999991 1.0910374837843315E-011 + 47.459999999999994 1.3928830440066483E-011 + 47.519999999999996 1.7561149347067375E-011 + 47.579999999999998 2.1915169356200767E-011 + 47.640000000000001 2.7115962157735964E-011 + 47.700000000000003 3.3308317921662097E-011 + 47.759999999999991 4.0659713729616101E-011 + 47.819999999999993 4.9363586038272038E-011 + 47.879999999999995 5.9643041833943865E-011 + 47.939999999999998 7.1755165292122944E-011 + 48.000000000000000 8.5995827699519814E-011 + 48.060000000000002 1.0270515108554439E-010 + 48.119999999999990 1.2227364067379464E-010 + 48.179999999999993 1.4514932043103684E-010 + 48.239999999999995 1.7184555249894464E-010 + 48.299999999999997 2.0295009335532813E-010 + 48.359999999999999 2.3913501626573397E-010 + 48.420000000000002 2.8116826629848739E-010 + 48.479999999999990 3.2992640555534009E-010 + 48.539999999999992 3.8640933876243680E-010 + 48.599999999999994 4.5175611829202432E-010 + 48.659999999999997 5.2726348688002934E-010 + 48.719999999999999 6.1440679095650164E-010 + 48.780000000000001 7.1486262974775270E-010 + 48.840000000000003 8.3053503878744777E-010 + 48.899999999999991 9.6358428791985808E-010 + 48.959999999999994 1.1164593279412424E-009 + 49.019999999999996 1.2919355067510687E-009 + 49.079999999999998 1.4931538175763980E-009 + 49.140000000000001 1.7236674369043755E-009 + 49.200000000000003 1.9874915727220635E-009 + 49.259999999999991 2.2891624976915477E-009 + 49.319999999999993 2.6337998356977135E-009 + 49.379999999999995 3.0271766826763776E-009 + 49.439999999999998 3.4757995085931842E-009 + 49.500000000000000 3.9869958825275160E-009 + 49.560000000000002 4.5690129908584849E-009 + 49.619999999999990 5.2311241463879468E-009 + 49.679999999999993 5.9837508326114773E-009 + 49.739999999999995 6.8385987361866888E-009 + 49.799999999999997 7.8088033060787079E-009 + 49.859999999999999 8.9090967419779453E-009 + 49.920000000000002 1.0155991066543698E-008 + 49.979999999999990 1.1567977340110257E-008 + 50.039999999999992 1.3165755847447322E-008 + 50.099999999999994 1.4972481445276748E-008 + 50.159999999999997 1.7014033942886885E-008 + 50.219999999999999 1.9319319446507586E-008 + 50.280000000000001 2.1920619015641614E-008 + 50.340000000000003 2.4853930858679554E-008 + 50.399999999999991 2.8159405304606754E-008 + 50.459999999999994 3.1881766672729322E-008 + 50.519999999999996 3.6070824476028721E-008 + 50.579999999999998 4.0781990371239907E-008 + 50.640000000000001 4.6076897153071473E-008 + 50.700000000000003 5.2024039857392715E-008 + 50.759999999999991 5.8699482722566435E-008 + 50.819999999999993 6.6187677375144185E-008 + 50.879999999999995 7.4582289699199389E-008 + 50.939999999999998 8.3987141347407193E-008 + 51.000000000000000 9.4517290640220832E-008 + 51.060000000000002 1.0630010452661550E-007 + 51.119999999999990 1.1947650219148066E-007 + 51.179999999999993 1.3420233017689842E-007 + 51.239999999999995 1.5064982911403009E-007 + 51.299999999999997 1.6900917454475362E-007 + 51.359999999999999 1.8949038184608728E-007 + 51.420000000000002 2.1232500083193614E-007 + 51.479999999999990 2.3776834814391006E-007 + 51.539999999999992 2.6610173106477204E-007 + 51.599999999999994 2.9763480294147225E-007 + 51.659999999999997 3.3270833368990511E-007 + 51.719999999999999 3.7169701308264076E-007 + 51.780000000000001 4.1501268801410412E-007 + 51.840000000000003 4.6310767756912590E-007 + 51.899999999999991 5.1647842012668248E-007 + 51.959999999999994 5.7566941606372945E-007 + 52.019999999999996 6.4127766304418566E-007 + 52.079999999999998 7.1395718894965532E-007 + 52.140000000000001 7.9442408935115508E-007 + 52.200000000000003 8.8346189919268057E-007 + 52.259999999999991 9.8192731901330368E-007 + 52.319999999999993 1.0907565922240769E-006 + 52.379999999999995 1.2109724951032950E-006 + 52.439999999999998 1.3436912903619720E-006 + 52.500000000000000 1.4901303058214814E-006 + 52.560000000000002 1.6516167086976399E-006 + 52.619999999999990 1.8295961643690551E-006 + 52.679999999999993 2.0256426830228179E-006 + 52.739999999999995 2.2414689314053757E-006 + 52.799999999999997 2.4789366589483481E-006 + 52.859999999999999 2.7400694901907708E-006 + 52.920000000000002 3.0270646303912886E-006 + 52.979999999999990 3.3423061565192236E-006 + 53.039999999999992 3.6883801883190301E-006 + 53.099999999999994 4.0680898088075158E-006 + 53.159999999999997 4.4844702803161404E-006 + 53.219999999999999 4.9408078624906702E-006 + 53.280000000000001 5.4406565852628104E-006 + 53.339999999999989 5.9878591894470707E-006 + 53.399999999999991 6.5865651533197582E-006 + 53.459999999999994 7.2412572291183561E-006 + 53.519999999999996 7.9567682919845886E-006 + 53.579999999999998 8.7383122399713900E-006 + 53.640000000000001 9.5915036385057628E-006 + 53.700000000000003 1.0522390181931996E-005 + 53.759999999999991 1.1537477591930706E-005 + 53.819999999999993 1.2643760072011686E-005 + 53.879999999999995 1.3848755691912055E-005 + 53.939999999999998 1.5160536868669904E-005 + 54.000000000000000 1.6587764658199710E-005 + 54.060000000000002 1.8139724848585583E-005 + 54.119999999999990 1.9826371310475574E-005 + 54.179999999999993 2.1658363635751795E-005 + 54.239999999999995 2.3647106027372326E-005 + 54.299999999999997 2.5804789048261485E-005 + 54.359999999999999 2.8144447899998520E-005 + 54.420000000000002 3.0679996582610166E-005 + 54.479999999999990 3.3426281511377158E-005 + 54.539999999999992 3.6399140850980505E-005 + 54.599999999999994 3.9615443915063467E-005 + 54.659999999999997 4.3093155654476581E-005 + 54.719999999999999 4.6851383674802997E-005 + 54.780000000000001 5.0910448930304591E-005 + 54.839999999999989 5.5291944341757003E-005 + 54.899999999999991 6.0018779943932349E-005 + 54.959999999999994 6.5115272993346125E-005 + 55.019999999999996 7.0607198107533182E-005 + 55.079999999999998 7.6521844667764750E-005 + 55.140000000000001 8.2888116324051706E-005 + 55.200000000000003 8.9736566133780598E-005 + 55.259999999999991 9.7099479045035492E-005 + 55.319999999999993 1.0501093600644236E-004 + 55.379999999999995 1.1350693564778421E-004 + 55.439999999999998 1.2262538342152574E-004 + 55.500000000000000 1.3240624834643218E-004 + 55.560000000000002 1.4289158848617385E-004 + 55.619999999999990 1.5412561338470465E-004 + 55.679999999999993 1.6615480795494948E-004 + 55.739999999999995 1.7902795092059016E-004 + 55.799999999999997 1.9279624446752531E-004 + 55.859999999999999 2.0751330162726919E-004 + 55.920000000000002 2.2323532478237798E-004 + 55.979999999999990 2.4002112848091415E-004 + 56.039999999999992 2.5793215666644099E-004 + 56.099999999999994 2.7703258745887454E-004 + 56.159999999999997 2.9738941353127249E-004 + 56.219999999999999 3.1907244025563376E-004 + 56.280000000000001 3.4215442575909861E-004 + 56.339999999999989 3.6671103142391141E-004 + 56.399999999999991 3.9282100175800510E-004 + 56.459999999999994 4.2056601408275356E-004 + 56.519999999999996 4.5003089344670613E-004 + 56.579999999999998 4.8130351511754609E-004 + 56.640000000000001 5.1447485131682574E-004 + 56.700000000000003 5.4963904196998271E-004 + 56.759999999999991 5.8689329118781280E-004 + 56.819999999999993 6.2633806177367292E-004 + 56.879999999999995 6.6807677604407251E-004 + 56.939999999999998 7.1221604429974367E-004 + 57.000000000000000 7.5886544251214819E-004 + 57.060000000000002 8.0813773413868876E-004 + 57.119999999999990 8.6014843713913232E-004 + 57.179999999999993 9.1501589438330389E-004 + 57.239999999999995 9.7286151792201961E-004 + 57.299999999999997 1.0338090838214297E-003 + 57.359999999999999 1.0979852254627211E-003 + 57.420000000000002 1.1655188491754525E-003 + 57.479999999999990 1.2365413461476811E-003 + 57.539999999999992 1.3111861130888549E-003 + 57.599999999999994 1.3895885303265572E-003 + 57.659999999999997 1.4718857844545016E-003 + 57.719999999999999 1.5582168010469229E-003 + 57.780000000000001 1.6487215389961933E-003 + 57.839999999999989 1.7435411997851675E-003 + 57.899999999999991 1.8428181515288836E-003 + 57.959999999999994 1.9466947055176520E-003 + 58.019999999999996 2.0553140086216107E-003 + 58.079999999999998 2.1688186663700150E-003 + 58.140000000000001 2.2873513719824023E-003 + 58.200000000000003 2.4110536772464788E-003 + 58.259999999999991 2.5400662320219074E-003 + 58.319999999999993 2.6745279801945274E-003 + 58.379999999999995 2.8145758440351267E-003 + 58.439999999999998 2.9603443165326297E-003 + 58.500000000000000 3.1119655368955952E-003 + 58.560000000000002 3.2695674750802023E-003 + 58.619999999999990 3.4332752223432484E-003 + 58.679999999999993 3.6032089701315403E-003 + 58.739999999999995 3.7794843405896204E-003 + 58.799999999999997 3.9622119646198087E-003 + 58.859999999999999 4.1514955939992481E-003 + 58.920000000000002 4.3474329656202054E-003 + 58.979999999999990 4.5501148286755467E-003 + 59.039999999999992 4.7596253461911981E-003 + 59.099999999999994 4.9760386263833492E-003 + 59.159999999999997 5.1994214001926126E-003 + 59.219999999999999 5.4298307101213082E-003 + 59.280000000000001 5.6673125616015039E-003 + 59.339999999999989 5.9119037276356111E-003 + 59.399999999999991 6.1636294688011605E-003 + 59.459999999999994 6.4225028506149518E-003 + 59.519999999999996 6.6885246264739000E-003 + 59.579999999999998 6.9616828366954415E-003 + 59.640000000000001 7.2419518181731828E-003 + 59.700000000000003 7.5292911907369189E-003 + 59.759999999999991 7.8236463048656796E-003 + 59.819999999999993 8.1249483357003216E-003 + 59.879999999999995 8.4331116321402638E-003 + 59.939999999999998 8.7480331240879766E-003 + 60.000000000000000 9.0695951183766312E-003 + 60.060000000000002 9.3976621257460535E-003 + 60.119999999999990 9.7320810563921965E-003 + 60.179999999999993 1.0072679613563370E-002 + 60.239999999999995 1.0419269184688737E-002 + 60.299999999999997 1.0771640752359080E-002 + 60.359999999999999 1.1129567048057927E-002 + 60.420000000000002 1.1492801934599070E-002 + 60.479999999999990 1.1861080161753723E-002 + 60.539999999999992 1.2234116169536832E-002 + 60.599999999999994 1.2611604650580111E-002 + 60.659999999999997 1.2993222021757659E-002 + 60.719999999999999 1.3378623397143099E-002 + 60.780000000000001 1.3767444604190654E-002 + 60.839999999999989 1.4159304379815635E-002 + 60.899999999999991 1.4553799409078064E-002 + 60.959999999999994 1.4950508616634462E-002 + 61.019999999999996 1.5348992133651783E-002 + 61.079999999999998 1.5748791921878814E-002 + 61.140000000000001 1.6149431646255357E-002 + 61.200000000000003 1.6550417698451201E-002 + 61.259999999999991 1.6951241815679016E-002 + 61.319999999999993 1.7351375810207192E-002 + 61.379999999999995 1.7750278272789872E-002 + 61.439999999999998 1.8147393451365592E-002 + 61.500000000000000 1.8542151837369972E-002 + 61.560000000000002 1.8933969166017261E-002 + 61.619999999999990 1.9322252722370932E-002 + 61.679999999999993 1.9706394900711473E-002 + 61.739999999999995 2.0085782396892935E-002 + 61.799999999999997 2.0459789237901736E-002 + 61.859999999999999 2.0827781957822211E-002 + 61.920000000000002 2.1189125512358926E-002 + 61.979999999999990 2.1543175548622825E-002 + 62.039999999999992 2.1889285269308903E-002 + 62.099999999999994 2.2226807228765404E-002 + 62.159999999999997 2.2555089923837479E-002 + 62.219999999999999 2.2873485581086858E-002 + 62.280000000000001 2.3181350061380241E-002 + 62.339999999999989 2.3478038381233173E-002 + 62.399999999999991 2.3762914480624897E-002 + 62.459999999999994 2.4035349210584752E-002 + 62.519999999999996 2.4294721046129342E-002 + 62.579999999999998 2.4540417302138580E-002 + 62.640000000000001 2.4771840778108074E-002 + 62.700000000000003 2.4988405906361772E-002 + 62.759999999999991 2.5189541930976396E-002 + 62.819999999999993 2.5374697292150753E-002 + 62.879999999999995 2.5543333386905030E-002 + 62.939999999999998 2.5694937746771569E-002 + 63.000000000000000 2.5829015676302018E-002 + 63.060000000000002 2.5945098794321518E-002 + 63.119999999999990 2.6042740257163050E-002 + 63.179999999999993 2.6121521991552252E-002 + 63.239999999999995 2.6181048718546169E-002 + 63.299999999999997 2.6220959859308786E-002 + 63.359999999999999 2.6240923325826643E-002 + 63.420000000000002 2.6240634984567295E-002 + 63.479999999999990 2.6219825682919633E-002 + 63.539999999999992 2.6178261490197065E-002 + 63.599999999999994 2.6115739330960338E-002 + 63.659999999999997 2.6032094912038069E-002 + 63.719999999999999 2.5927200243474623E-002 + 63.780000000000001 2.5800962186829278E-002 + 63.839999999999989 2.5653328057798630E-002 + 63.899999999999991 2.5484279099115117E-002 + 63.959999999999994 2.5293839225552683E-002 + 64.019999999999996 2.5082070000972800E-002 + 64.079999999999998 2.4849074618786389E-002 + 64.140000000000001 2.4594994124609894E-002 + 64.200000000000003 2.4320005619350597E-002 + 64.259999999999991 2.4024331844374334E-002 + 64.319999999999993 2.3708230615496036E-002 + 64.379999999999995 2.3372000257078501E-002 + 64.439999999999998 2.3015978892536100E-002 + 64.500000000000000 2.2640537798897593E-002 + 64.560000000000002 2.2246091192149139E-002 + 64.619999999999990 2.1833086522851982E-002 + 64.679999999999993 2.1402008738799713E-002 + 64.739999999999995 2.0953377815632349E-002 + 64.799999999999997 2.0487743760125084E-002 + 64.859999999999999 2.0005695584877390E-002 + 64.920000000000002 1.9507846350161992E-002 + 64.979999999999990 1.8994844528790841E-002 + 65.039999999999992 1.8467364663252016E-002 + 65.099999999999994 1.7926109464114919E-002 + 65.159999999999997 1.7371806387346620E-002 + 65.219999999999999 1.6805206748832759E-002 + 65.280000000000001 1.6227084430185987E-002 + 65.339999999999989 1.5638232502108891E-002 + 65.399999999999991 1.5039462037155744E-002 + 65.459999999999994 1.4431601585525066E-002 + 65.519999999999996 1.3815493795689075E-002 + 65.579999999999998 1.3191995198083126E-002 + 65.640000000000001 1.2561970617690066E-002 + 65.700000000000003 1.1926293932770058E-002 + 65.759999999999991 1.1285846986884231E-002 + 65.819999999999993 1.0641515336978423E-002 + 65.879999999999995 9.9941857856176899E-003 + 65.939999999999998 9.3447453045468545E-003 + 66.000000000000000 8.6940795813240570E-003 + 66.060000000000002 8.0430703712516833E-003 + 66.119999999999990 7.3925932122866737E-003 + 66.179999999999993 6.7435156050177532E-003 + 66.239999999999995 6.0966954676707381E-003 + 66.299999999999997 5.4529780685859692E-003 + 66.359999999999999 4.8131954712192825E-003 + 66.420000000000002 4.1781641385353497E-003 + 66.479999999999990 3.5486830903465787E-003 + 66.539999999999992 2.9255323623355181E-003 + 66.599999999999994 2.3094712784853116E-003 + 66.659999999999997 1.7012368337911462E-003 + 66.719999999999999 1.1015421947406015E-003 + 66.780000000000001 5.1107575892968726E-004 + 66.839999999999989 -6.9500979808993931E-005 + 66.899999999999991 -6.3955365228885526E-004 + 66.959999999999994 -1.1984771102154308E-003 + 67.019999999999996 -1.7456958338708027E-003 + 67.079999999999998 -2.2806652644341394E-003 + 67.140000000000001 -2.8028719839471574E-003 + 67.199999999999989 -3.3118356445975576E-003 + 67.259999999999991 -3.8071088395048849E-003 + 67.319999999999993 -4.2882771468020723E-003 + 67.379999999999995 -4.7549599283078668E-003 + 67.439999999999998 -5.2068115469213081E-003 + 67.500000000000000 -5.6435213513263130E-003 + 67.560000000000002 -6.0648122723170276E-003 + 67.619999999999990 -6.4704426646617743E-003 + 67.679999999999993 -6.8602056929182292E-003 + 67.739999999999995 -7.2339292243939653E-003 + 67.799999999999997 -7.5914754373895216E-003 + 67.859999999999999 -7.9327388143171328E-003 + 67.920000000000002 -8.2576486283899176E-003 + 67.979999999999990 -8.5661682961812452E-003 + 68.039999999999992 -8.8582914473646097E-003 + 68.099999999999994 -9.1340457922085751E-003 + 68.159999999999997 -9.3934870680143917E-003 + 68.219999999999999 -9.6367041994226254E-003 + 68.280000000000001 -9.8638135148317700E-003 + 68.339999999999989 -1.0074960411899160E-002 + 68.399999999999991 -1.0270317342274229E-002 + 68.459999999999994 -1.0450083752412742E-002 + 68.519999999999996 -1.0614483217483811E-002 + 68.579999999999998 -1.0763763508416208E-002 + 68.640000000000001 -1.0898195775159431E-002 + 68.699999999999989 -1.1018072492782083E-002 + 68.759999999999991 -1.1123707280218000E-002 + 68.819999999999993 -1.1215431290398849E-002 + 68.879999999999995 -1.1293594336091633E-002 + 68.939999999999998 -1.1358562339448814E-002 + 69.000000000000000 -1.1410716145535267E-002 + 69.060000000000002 -1.1450451787268645E-002 + 69.119999999999990 -1.1478176334086189E-002 + 69.179999999999993 -1.1494306653189085E-002 + 69.239999999999995 -1.1499271596514335E-002 + 69.299999999999997 -1.1493508661172831E-002 + 69.359999999999999 -1.1477461391686086E-002 + 69.420000000000002 -1.1451577820784547E-002 + 69.479999999999990 -1.1416312555433596E-002 + 69.539999999999992 -1.1372123915610141E-002 + 69.599999999999994 -1.1319470178619144E-002 + 69.659999999999997 -1.1258811099582038E-002 + 69.719999999999999 -1.1190608522397413E-002 + 69.780000000000001 -1.1115320259094475E-002 + 69.839999999999989 -1.1033403032504246E-002 + 69.899999999999991 -1.0945308725336302E-002 + 69.959999999999994 -1.0851486749357568E-002 + 70.019999999999996 -1.0752379603436953E-002 + 70.079999999999998 -1.0648425081004456E-002 + 70.140000000000001 -1.0540052058326572E-002 + 70.199999999999989 -1.0427681536409709E-002 + 70.259999999999991 -1.0311726261875306E-002 + 70.319999999999993 -1.0192591350208342E-002 + 70.379999999999995 -1.0070669111510533E-002 + 70.439999999999998 -9.9463431693216815E-003 + 70.500000000000000 -9.8199842687325487E-003 + 70.560000000000002 -9.6919519590521162E-003 + 70.619999999999990 -9.5625947929752972E-003 + 70.679999999999993 -9.4322469317933907E-003 + 70.739999999999995 -9.3012309687281868E-003 + 70.799999999999997 -9.1698567495655907E-003 + 70.859999999999999 -9.0384181128129078E-003 + 70.920000000000002 -8.9071984540195024E-003 + 70.979999999999990 -8.7764647232789900E-003 + 71.039999999999992 -8.6464720566794447E-003 + 71.099999999999994 -8.5174600277925991E-003 + 71.159999999999997 -8.3896548340583778E-003 + 71.219999999999999 -8.2632683382202424E-003 + 71.280000000000001 -8.1384988804299469E-003 + 71.339999999999989 -8.0155309617735565E-003 + 71.399999999999991 -7.8945342023379085E-003 + 71.459999999999994 -7.7756662812528765E-003 + 71.519999999999996 -7.6590698737362501E-003 + 71.579999999999998 -7.5448753573429273E-003 + 71.640000000000001 -7.4331996802597684E-003 + 71.699999999999989 -7.3241475194506592E-003 + 71.759999999999991 -7.2178110290177918E-003 + 71.819999999999993 -7.1142700399406088E-003 + 71.879999999999995 -7.0135923271120934E-003 + 71.939999999999998 -6.9158349964176698E-003 + 72.000000000000000 -6.8210430561942677E-003 + 72.060000000000002 -6.7292520458502054E-003 + 72.119999999999990 -6.6404862573210943E-003 + 72.179999999999993 -6.5547609074542712E-003 + 72.239999999999995 -6.4720811877415213E-003 + 72.299999999999997 -6.3924431496639039E-003 + 72.359999999999999 -6.3158346453540005E-003 + 72.420000000000002 -6.2422346781381231E-003 + 72.479999999999990 -6.1716147505155279E-003 + 72.539999999999992 -6.1039400137669246E-003 + 72.599999999999994 -6.0391676648368425E-003 + 72.659999999999997 -5.9772491783162060E-003 + 72.719999999999999 -5.9181296691988060E-003 + 72.780000000000001 -5.8617488070968034E-003 + 72.839999999999989 -5.8080408684772168E-003 + 72.899999999999991 -5.7569361871778937E-003 + 72.959999999999994 -5.7083599477595927E-003 + 73.019999999999996 -5.6622344088406570E-003 + 73.079999999999998 -5.6184778004036004E-003 + 73.140000000000001 -5.5770051318396498E-003 + 73.199999999999989 -5.5377292565369114E-003 + 73.259999999999991 -5.5005605052125782E-003 + 73.319999999999993 -5.4654068606586718E-003 + 73.379999999999995 -5.4321751781996096E-003 + 73.439999999999998 -5.4007707908829278E-003 + 73.500000000000000 -5.3710977672149071E-003 + 73.560000000000002 -5.3430606167930482E-003 + 73.619999999999990 -5.3165620386723886E-003 + 73.679999999999993 -5.2915052124630334E-003 + 73.739999999999995 -5.2677937418011524E-003 + 73.799999999999997 -5.2453308444986614E-003 + 73.859999999999999 -5.2240216862162996E-003 + 73.920000000000002 -5.2037709732093715E-003 + 73.979999999999990 -5.1844856450888729E-003 + 74.039999999999992 -5.1660727948955468E-003 + 74.099999999999994 -5.1484421078499525E-003 + 74.159999999999997 -5.1315041180583195E-003 + 74.219999999999999 -5.1151722450149036E-003 + 74.280000000000001 -5.0993607730600889E-003 + 74.339999999999989 -5.0839866828047749E-003 + 74.399999999999991 -5.0689693527245358E-003 + 74.459999999999994 -5.0542299243953185E-003 + 74.519999999999996 -5.0396925418821296E-003 + 74.579999999999998 -5.0252840903179091E-003 + 74.640000000000001 -5.0109338035332976E-003 + 74.699999999999989 -4.9965739268470026E-003 + 74.759999999999991 -4.9821392878482912E-003 + 74.819999999999993 -4.9675672740365877E-003 + 74.879999999999995 -4.9527994697717882E-003 + 74.939999999999998 -4.9377789962215882E-003 + 75.000000000000000 -4.9224522321452222E-003 + 75.060000000000002 -4.9067691581937455E-003 + 75.119999999999990 -4.8906818629722007E-003 + 75.179999999999993 -4.8741466087613670E-003 + 75.239999999999995 -4.8571217410738957E-003 + 75.299999999999997 -4.8395684480100993E-003 + 75.359999999999999 -4.8214515649509584E-003 + 75.420000000000002 -4.8027381171514543E-003 + 75.479999999999990 -4.7833992336030421E-003 + 75.539999999999992 -4.7634078016108323E-003 + 75.599999999999994 -4.7427400062297559E-003 + 75.659999999999997 -4.7213751340254052E-003 + 75.719999999999999 -4.6992945283506936E-003 + 75.780000000000001 -4.6764828077135515E-003 + 75.839999999999989 -4.6529271132407964E-003 + 75.899999999999991 -4.6286174614037258E-003 + 75.959999999999994 -4.6035457676521906E-003 + 76.019999999999996 -4.5777072184352780E-003 + 76.079999999999998 -4.5510992894415743E-003 + 76.140000000000001 -4.5237218684425562E-003 + 76.199999999999989 -4.4955763092920644E-003 + 76.259999999999991 -4.4666670137090310E-003 + 76.319999999999993 -4.4370000948410404E-003 + 76.379999999999995 -4.4065840604608037E-003 + 76.439999999999998 -4.3754291423201488E-003 + 76.500000000000000 -4.3435475231825890E-003 + 76.560000000000002 -4.3109535306015759E-003 + 76.619999999999990 -4.2776632169449873E-003 + 76.679999999999993 -4.2436939682911207E-003 + 76.739999999999995 -4.2090647779697852E-003 + 76.799999999999997 -4.1737957716666829E-003 + 76.859999999999999 -4.1379089420159809E-003 + 76.920000000000002 -4.1014281018553296E-003 + 76.979999999999990 -4.0643772041401389E-003 + 77.039999999999992 -4.0267818509026020E-003 + 77.099999999999994 -3.9886691019020808E-003 + 77.159999999999997 -3.9500660027765883E-003 + 77.219999999999999 -3.9110015176899975E-003 + 77.280000000000001 -3.8715050084714583E-003 + 77.339999999999989 -3.8316062097765269E-003 + 77.399999999999991 -3.7913363276488145E-003 + 77.459999999999994 -3.7507264055163534E-003 + 77.519999999999996 -3.7098085688250437E-003 + 77.579999999999998 -3.6686150011980322E-003 + 77.640000000000001 -3.6271782053858238E-003 + 77.699999999999989 -3.5855312751611806E-003 + 77.759999999999991 -3.5437071754236141E-003 + 77.819999999999993 -3.5017391349029228E-003 + 77.879999999999995 -3.4596603963672982E-003 + 77.939999999999998 -3.4175044094500459E-003 + 78.000000000000000 -3.3753042830133319E-003 + 78.060000000000002 -3.3330927473523646E-003 + 78.119999999999990 -3.2909024772546564E-003 + 78.179999999999993 -3.2487662412033760E-003 + 78.239999999999995 -3.2067160013204148E-003 + 78.299999999999997 -3.1647831031837658E-003 + 78.359999999999999 -3.1229986671487140E-003 + 78.420000000000002 -3.0813932071287018E-003 + 78.479999999999990 -3.0399968156443681E-003 + 78.539999999999992 -2.9988386002181714E-003 + 78.599999999999994 -2.9579473556044338E-003 + 78.659999999999997 -2.9173504889184916E-003 + 78.719999999999999 -2.8770753458306018E-003 + 78.780000000000001 -2.8371481187748457E-003 + 78.839999999999989 -2.7975939742408912E-003 + 78.899999999999991 -2.7584374197261018E-003 + 78.959999999999994 -2.7197017980825542E-003 + 79.019999999999996 -2.6814096846606854E-003 + 79.079999999999998 -2.6435829059240686E-003 + 79.140000000000001 -2.6062417708190744E-003 + 79.199999999999989 -2.5694056169404860E-003 + 79.259999999999991 -2.5330930865964984E-003 + 79.319999999999993 -2.4973214985493019E-003 + 79.379999999999995 -2.4621073513840029E-003 + 79.439999999999998 -2.4274656058701715E-003 + 79.500000000000000 -2.3934107174380615E-003 + 79.560000000000002 -2.3599553488389512E-003 + 79.619999999999990 -2.3271116079380347E-003 + 79.679999999999993 -2.2948902544722097E-003 + 79.739999999999995 -2.2633005122162787E-003 + 79.799999999999997 -2.2323513167908458E-003 + 79.859999999999999 -2.2020499546308876E-003 + 79.920000000000002 -2.1724029345864615E-003 + 79.979999999999990 -2.1434155724021769E-003 + 80.039999999999992 -2.1150918148740553E-003 + 80.099999999999994 -2.0874346626297028E-003 + 80.159999999999997 -2.0604464514939014E-003 + 80.219999999999999 -2.0341283716948577E-003 + 80.280000000000001 -2.0084805185307400E-003 + 80.340000000000003 -1.9835021544673741E-003 + 80.400000000000006 -1.9591914870242407E-003 + 80.460000000000008 -1.9355458913017380E-003 + 80.519999999999982 -1.9125619778483523E-003 + 80.579999999999984 -1.8902354359899686E-003 + 80.639999999999986 -1.8685611306888583E-003 + 80.699999999999989 -1.8475333995211594E-003 + 80.759999999999991 -1.8271458298444062E-003 + 80.819999999999993 -1.8073910172570157E-003 + 80.879999999999995 -1.7882612451131461E-003 + 80.939999999999998 -1.7697482152621491E-003 + 81.000000000000000 -1.7518430362132857E-003 + 81.060000000000002 -1.7345361100666822E-003 + 81.120000000000005 -1.7178175818834437E-003 + 81.180000000000007 -1.7016772326190531E-003 + 81.240000000000009 -1.6861044243416229E-003 + 81.299999999999983 -1.6710879515496773E-003 + 81.359999999999985 -1.6566164841146011E-003 + 81.419999999999987 -1.6426784995948636E-003 + 81.479999999999990 -1.6292621873234530E-003 + 81.539999999999992 -1.6163554250848407E-003 + 81.599999999999994 -1.6039462957856941E-003 + 81.659999999999997 -1.5920225106379002E-003 + 81.719999999999999 -1.5805717956469995E-003 + 81.780000000000001 -1.5695819507698656E-003 + 81.840000000000003 -1.5590406427233741E-003 + 81.900000000000006 -1.5489356571488074E-003 + 81.960000000000008 -1.5392550681968156E-003 + 82.019999999999982 -1.5299868061688893E-003 + 82.079999999999984 -1.5211191958159199E-003 + 82.139999999999986 -1.5126406309612392E-003 + 82.199999999999989 -1.5045398144893532E-003 + 82.259999999999991 -1.4968056051191826E-003 + 82.319999999999993 -1.4894271868018745E-003 + 82.379999999999995 -1.4823941240017192E-003 + 82.439999999999998 -1.4756962344631760E-003 + 82.500000000000000 -1.4693237221904802E-003 + 82.560000000000002 -1.4632670394150913E-003 + 82.620000000000005 -1.4575171557661580E-003 + 82.680000000000007 -1.4520653373969574E-003 + 82.740000000000009 -1.4469034519998709E-003 + 82.799999999999983 -1.4420237003658898E-003 + 82.859999999999985 -1.4374185239673959E-003 + 82.919999999999987 -1.4330811097411063E-003 + 82.979999999999990 -1.4290048764705326E-003 + 83.039999999999992 -1.4251837484522967E-003 + 83.099999999999994 -1.4216120955932094E-003 + 83.159999999999997 -1.4182847497582782E-003 + 83.219999999999999 -1.4151969454291897E-003 + 83.280000000000001 -1.4123444928636015E-003 + 83.340000000000003 -1.4097234380312032E-003 + 83.400000000000006 -1.4073305077798555E-003 + 83.460000000000008 -1.4051625483907765E-003 + 83.519999999999982 -1.4032168646325174E-003 + 83.579999999999984 -1.4014912413629497E-003 + 83.639999999999986 -1.3999838803182218E-003 + 83.699999999999989 -1.3986931535910567E-003 + 83.759999999999991 -1.3976177950832324E-003 + 83.819999999999993 -1.3967569001199481E-003 + 83.879999999999995 -1.3961097295041264E-003 + 83.939999999999998 -1.3956758726535686E-003 + 84.000000000000000 -1.3954553433394605E-003 + 84.060000000000002 -1.3954479685118655E-003 + 84.120000000000005 -1.3956540023340345E-003 + 84.180000000000007 -1.3960739460814413E-003 + 84.240000000000009 -1.3967080759328906E-003 + 84.299999999999983 -1.3975572261569183E-003 + 84.359999999999985 -1.3986220882260285E-003 + 84.419999999999987 -1.3999033258993859E-003 + 84.479999999999990 -1.4014018921931326E-003 + 84.539999999999992 -1.4031185256085544E-003 + 84.599999999999994 -1.4050539934686221E-003 + 84.659999999999997 -1.4072090240940971E-003 + 84.719999999999999 -1.4095844980602000E-003 + 84.780000000000001 -1.4121808713372433E-003 + 84.840000000000003 -1.4149987183424443E-003 + 84.900000000000006 -1.4180383291142956E-003 + 84.960000000000008 -1.4212999505025033E-003 + 85.019999999999982 -1.4247834254315678E-003 + 85.079999999999984 -1.4284887033137203E-003 + 85.139999999999986 -1.4324152807695665E-003 + 85.199999999999989 -1.4365626227411518E-003 + 85.259999999999991 -1.4409298291619373E-003 + 85.319999999999993 -1.4455156495389847E-003 + 85.379999999999995 -1.4503186795200736E-003 + 85.439999999999998 -1.4553370075393354E-003 + 85.500000000000000 -1.4605685791473453E-003 + 85.560000000000002 -1.4660110909649512E-003 + 85.620000000000005 -1.4716616533629783E-003 + 85.680000000000007 -1.4775172421803001E-003 + 85.740000000000009 -1.4835743110021976E-003 + 85.799999999999983 -1.4898292109509991E-003 + 85.859999999999985 -1.4962776123452308E-003 + 85.919999999999987 -1.5029150345305369E-003 + 85.979999999999990 -1.5097366924098643E-003 + 86.039999999999992 -1.5167371323987940E-003 + 86.099999999999994 -1.5239108417664507E-003 + 86.159999999999997 -1.5312516514333198E-003 + 86.219999999999999 -1.5387533394988742E-003 + 86.280000000000001 -1.5464090402737697E-003 + 86.340000000000003 -1.5542118581060116E-003 + 86.400000000000006 -1.5621541122973913E-003 + 86.460000000000008 -1.5702280802036329E-003 + 86.519999999999982 -1.5784254773461045E-003 + 86.579999999999984 -1.5867380128922707E-003 + 86.639999999999986 -1.5951568151296072E-003 + 86.699999999999989 -1.6036725825661442E-003 + 86.759999999999991 -1.6122758501059592E-003 + 86.819999999999993 -1.6209568639455538E-003 + 86.879999999999995 -1.6297055392000760E-003 + 86.939999999999998 -1.6385114130223692E-003 + 87.000000000000000 -1.6473637891190017E-003 + 87.060000000000002 -1.6562518613637692E-003 + 87.120000000000005 -1.6651643832617552E-003 + 87.180000000000007 -1.6740898873140238E-003 + 87.240000000000009 -1.6830168007215846E-003 + 87.299999999999983 -1.6919330109379902E-003 + 87.359999999999985 -1.7008266152492330E-003 + 87.419999999999987 -1.7096853754821838E-003 + 87.479999999999990 -1.7184967220602847E-003 + 87.539999999999992 -1.7272482012253491E-003 + 87.599999999999994 -1.7359270969768837E-003 + 87.659999999999997 -1.7445204376367446E-003 + 87.719999999999999 -1.7530151981047968E-003 + 87.780000000000001 -1.7613982198980984E-003 + 87.840000000000003 -1.7696564483123604E-003 + 87.900000000000006 -1.7777765143749860E-003 + 87.960000000000008 -1.7857450816980325E-003 + 88.019999999999982 -1.7935485597790884E-003 + 88.079999999999984 -1.8011733574925079E-003 + 88.139999999999986 -1.8086061361700658E-003 + 88.199999999999989 -1.8158331922567710E-003 + 88.259999999999991 -1.8228407551503813E-003 + 88.319999999999993 -1.8296151397500441E-003 + 88.379999999999995 -1.8361427294158635E-003 + 88.439999999999998 -1.8424097489118472E-003 + 88.500000000000000 -1.8484025336775057E-003 + 88.560000000000002 -1.8541075709866493E-003 + 88.620000000000005 -1.8595112175862779E-003 + 88.680000000000007 -1.8645997868608456E-003 + 88.740000000000009 -1.8693597835566234E-003 + 88.799999999999983 -1.8737779042661939E-003 + 88.859999999999985 -1.8778409384240461E-003 + 88.919999999999987 -1.8815355579366491E-003 + 88.979999999999990 -1.8848489744948023E-003 + 89.039999999999992 -1.8877681921204892E-003 + 89.099999999999994 -1.8902806598562556E-003 + 89.159999999999997 -1.8923737818682823E-003 + 89.219999999999999 -1.8940353013387505E-003 + 89.280000000000001 -1.8952531532188410E-003 + 89.340000000000003 -1.8960155785252189E-003 + 89.400000000000006 -1.8963107989785756E-003 + 89.460000000000008 -1.8961276284971695E-003 + 89.519999999999982 -1.8954551384589792E-003 + 89.579999999999984 -1.8942824894923834E-003 + 89.639999999999986 -1.8925994266537707E-003 + 89.699999999999989 -1.8903959818238046E-003 + 89.759999999999991 -1.8876625473035098E-003 + 89.819999999999993 -1.8843899967594605E-003 + 89.879999999999995 -1.8805694791132412E-003 + 89.939999999999998 -1.8761927088355443E-003 + 90.000000000000000 -1.8712520772892268E-003 + 90.060000000000002 -1.8657403673181029E-003 + 90.120000000000005 -1.8596506754480820E-003 + 90.180000000000007 -1.8529770597090298E-003 + 90.240000000000009 -1.8457140582663800E-003 + 90.299999999999983 -1.8378568553345982E-003 + 90.359999999999985 -1.8294010782396021E-003 + 90.419999999999987 -1.8203433754628304E-003 + 90.479999999999990 -1.8106809337562878E-003 + 90.539999999999992 -1.8004115429637048E-003 + 90.599999999999994 -1.7895340317337616E-003 + 90.659999999999997 -1.7780478588560788E-003 + 90.719999999999999 -1.7659532293035436E-003 + 90.780000000000001 -1.7532512439194636E-003 + 90.840000000000003 -1.7399438922179246E-003 + 90.900000000000006 -1.7260340352020841E-003 + 90.960000000000008 -1.7115252124705652E-003 + 91.019999999999982 -1.6964221078688158E-003 + 91.079999999999984 -1.6807301439829116E-003 + 91.139999999999986 -1.6644558493073729E-003 + 91.199999999999989 -1.6476065072783892E-003 + 91.259999999999991 -1.6301905479537762E-003 + 91.319999999999993 -1.6122171677339600E-003 + 91.379999999999995 -1.5936967506295203E-003 + 91.439999999999998 -1.5746405501073993E-003 + 91.500000000000000 -1.5550607054421657E-003 + 91.560000000000002 -1.5349704109450034E-003 + 91.620000000000005 -1.5143837923541725E-003 + 91.680000000000007 -1.4933161155872192E-003 + 91.739999999999981 -1.4717833742200167E-003 + 91.799999999999983 -1.4498026821753534E-003 + 91.859999999999985 -1.4273917767109662E-003 + 91.919999999999987 -1.4045694839541205E-003 + 91.979999999999990 -1.3813555894144213E-003 + 92.039999999999992 -1.3577706677096091E-003 + 92.099999999999994 -1.3338358783258519E-003 + 92.159999999999997 -1.3095734230588400E-003 + 92.219999999999999 -1.2850060852844100E-003 + 92.280000000000001 -1.2601573456480844E-003 + 92.340000000000003 -1.2350514808441349E-003 + 92.400000000000006 -1.2097131957170553E-003 + 92.460000000000008 -1.1841678033003770E-003 + 92.519999999999982 -1.1584410675743390E-003 + 92.579999999999984 -1.1325593019394303E-003 + 92.639999999999986 -1.1065492340997839E-003 + 92.699999999999989 -1.0804377176290778E-003 + 92.759999999999991 -1.0542521735910134E-003 + 92.819999999999993 -1.0280199177334242E-003 + 92.879999999999995 -1.0017686387830647E-003 + 92.939999999999998 -9.7552619053571784E-004 + 93.000000000000000 -9.4932034784679382E-004 + 93.060000000000002 -9.2317878171643722E-004 + 93.120000000000005 -8.9712924333593136E-004 + 93.180000000000007 -8.7119922028758312E-004 + 93.239999999999981 -8.4541595548586856E-004 + 93.299999999999983 -8.1980644333437265E-004 + 93.359999999999985 -7.9439731137077234E-004 + 93.419999999999987 -7.6921471058655471E-004 + 93.479999999999990 -7.4428430207976919E-004 + 93.539999999999992 -7.1963121223792090E-004 + 93.599999999999994 -6.9527993126417952E-004 + 93.659999999999997 -6.7125421509918362E-004 + 93.719999999999999 -6.4757707801382965E-004 + 93.780000000000001 -6.2427069596601985E-004 + 93.840000000000003 -6.0135638870986708E-004 + 93.900000000000006 -5.7885445339184833E-004 + 93.960000000000008 -5.5678419259972268E-004 + 94.019999999999982 -5.3516405452240338E-004 + 94.079999999999984 -5.1401119788911220E-004 + 94.139999999999986 -4.9334175574613365E-004 + 94.199999999999989 -4.7317060945399467E-004 + 94.259999999999991 -4.5351157899520191E-004 + 94.319999999999993 -4.3437714534039337E-004 + 94.379999999999995 -4.1577864677913405E-004 + 94.439999999999998 -3.9772611008113832E-004 + 94.500000000000000 -3.8022831147452134E-004 + 94.560000000000002 -3.6329269172895513E-004 + 94.620000000000005 -3.4692539862282425E-004 + 94.680000000000007 -3.3113131466830272E-004 + 94.739999999999981 -3.1591391893162293E-004 + 94.799999999999983 -3.0127544390803218E-004 + 94.859999999999985 -2.8721683115586123E-004 + 94.919999999999987 -2.7373763039152416E-004 + 94.979999999999990 -2.6083609627543881E-004 + 95.039999999999992 -2.4850926708184693E-004 + 95.099999999999994 -2.3675282084747881E-004 + 95.159999999999997 -2.2556118561508837E-004 + 95.219999999999999 -2.1492761976981006E-004 + 95.280000000000001 -2.0484410533658389E-004 + 95.340000000000003 -1.9530149715054826E-004 + 95.400000000000006 -1.8628951788479195E-004 + 95.460000000000008 -1.7779682272516485E-004 + 95.519999999999982 -1.6981101095307654E-004 + 95.579999999999984 -1.6231872561514672E-004 + 95.639999999999986 -1.5530567559530754E-004 + 95.699999999999989 -1.4875671915944659E-004 + 95.759999999999991 -1.4265591070865272E-004 + 95.819999999999993 -1.3698659099752676E-004 + 95.879999999999995 -1.3173144953717536E-004 + 95.939999999999998 -1.2687256601028258E-004 + 96.000000000000000 -1.2239147472020535E-004 + 96.060000000000002 -1.1826929195291896E-004 + 96.120000000000005 -1.1448670767259331E-004 + 96.180000000000007 -1.1102410325390312E-004 + 96.239999999999981 -1.0786160355879787E-004 + 96.299999999999983 -1.0497913788405633E-004 + 96.359999999999985 -1.0235650463051921E-004 + 96.419999999999987 -9.9973426833451911E-005 + 96.479999999999990 -9.7809629586076196E-005 + 96.539999999999992 -9.5844900261283638E-005 + 96.599999999999994 -9.4059123158605210E-005 + 96.659999999999997 -9.2432395900158507E-005 + 96.719999999999999 -9.0945018604005900E-005 + 96.780000000000001 -8.9577609177252397E-005 + 96.840000000000003 -8.8311122105601524E-005 + 96.900000000000006 -8.7126937471966001E-005 + 96.960000000000008 -8.6006898431153735E-005 + 97.019999999999982 -8.4933377051000280E-005 + 97.079999999999984 -8.3889305301163835E-005 + 97.139999999999986 -8.2858251620746969E-005 + 97.199999999999989 -8.1824450945014790E-005 + 97.259999999999991 -8.0772841797502505E-005 + 97.319999999999993 -7.9689130960176489E-005 + 97.379999999999995 -7.8559824741357569E-005 + 97.439999999999998 -7.7372238770412937E-005 + 97.500000000000000 -7.6114555740655762E-005 + 97.560000000000002 -7.4775843326082349E-005 + 97.620000000000005 -7.3346068550097441E-005 + 97.680000000000007 -7.1816129238723881E-005 + 97.739999999999981 -7.0177861081079448E-005 + 97.799999999999983 -6.8424058511570325E-005 + 97.859999999999985 -6.6548460973791433E-005 + 97.919999999999987 -6.4545773051750000E-005 + 97.979999999999990 -6.2411668695021416E-005 + 98.039999999999992 -6.0142782766366680E-005 + 98.099999999999994 -5.7736699734533233E-005 + 98.159999999999997 -5.5191953093387491E-005 + 98.219999999999999 -5.2508017788952724E-005 + 98.280000000000001 -4.9685296085656938E-005 + 98.340000000000003 -4.6725095612734944E-005 + 98.400000000000006 -4.3629626076331754E-005 + 98.460000000000008 -4.0401971568659782E-005 + 98.519999999999982 -3.7046075483875556E-005 + 98.579999999999984 -3.3566716730399406E-005 + 98.639999999999986 -2.9969492430688474E-005 + 98.699999999999989 -2.6260794824323219E-005 + 98.759999999999991 -2.2447786831432539E-005 + 98.819999999999993 -1.8538369555342170E-005 + 98.879999999999995 -1.4541163870472871E-005 + 98.939999999999998 -1.0465476093373940E-005 + 99.000000000000000 -6.3212740018174537E-006 + 99.060000000000002 -2.1191538778148172E-006 + 99.120000000000005 2.1296973369269105E-006 + 99.180000000000007 6.4135431135612886E-006 + 99.239999999999981 1.0720108169808603E-005 + 99.299999999999983 1.5036644615313527E-005 + 99.359999999999985 1.9349949822850726E-005 + 99.419999999999987 2.3646426830706213E-005 + 99.479999999999990 2.7912110414574500E-005 + 99.539999999999992 3.2132710202573932E-005 + 99.599999999999994 3.6293667773163276E-005 + 99.659999999999997 4.0380163932063971E-005 + 99.719999999999999 4.4377197237810176E-005 + 99.780000000000001 4.8269611993144267E-005 + 99.840000000000003 5.2042147811377505E-005 + 99.900000000000006 5.5679436530041288E-005 + 99.960000000000008 5.9166087492038492E-005 + 100.01999999999998 6.2486680088550889E-005 + 100.07999999999998 6.5625842750341513E-005 + 100.13999999999999 6.8568259746676504E-005 + 100.19999999999999 7.1298711508242996E-005 + 100.25999999999999 7.3802074149305249E-005 + 100.31999999999999 7.6063409827902998E-005 + 100.38000000000000 7.8067942246671580E-005 + 100.44000000000000 7.9801102636632162E-005 + 100.50000000000000 8.1248565131813977E-005 + 100.56000000000000 8.2396294223108512E-005 + 100.62000000000000 8.3230540662334647E-005 + 100.68000000000001 8.3737865282581576E-005 + 100.73999999999998 8.3905221090516978E-005 + 100.79999999999998 8.3719942562511795E-005 + 100.85999999999999 8.3169792829298025E-005 + 100.91999999999999 8.2242967555760612E-005 + 100.97999999999999 8.0928161303118061E-005 + 101.03999999999999 7.9214568884276577E-005 + 101.09999999999999 7.7091918950832311E-005 + 101.16000000000000 7.4550524102554429E-005 + 101.22000000000000 7.1581234092639022E-005 + 101.28000000000000 6.8175524506873498E-005 + 101.34000000000000 6.4325516616042946E-005 + 101.40000000000001 6.0023979823940894E-005 + 101.46000000000001 5.5264279959829704E-005 + 101.51999999999998 5.0040525620136332E-005 + 101.57999999999998 4.4347497426739732E-005 + 101.63999999999999 3.8180684697749057E-005 + 101.69999999999999 3.1536274328796175E-005 + 101.75999999999999 2.4411197344531376E-005 + 101.81999999999999 1.6803121200789729E-005 + 101.88000000000000 8.7104494537258744E-006 + 101.94000000000000 1.3237278674045329E-007 + 102.00000000000000 -8.9311682416059153E-006 + 102.06000000000000 -1.8479452279988781E-005 + 102.12000000000000 -2.8510979248413338E-005 + 102.18000000000001 -3.9023461680158732E-005 + 102.23999999999998 -5.0013816093554975E-005 + 102.29999999999998 -6.1478174556284883E-005 + 102.35999999999999 -7.3411869420404518E-005 + 102.41999999999999 -8.5809446529100104E-005 + 102.47999999999999 -9.8664685755293861E-005 + 102.53999999999999 -1.1197055780711675E-004 + 102.59999999999999 -1.2571929020104082E-004 + 102.66000000000000 -1.3990234475898762E-004 + 102.72000000000000 -1.5451042446639536E-004 + 102.78000000000000 -1.6953351759047014E-004 + 102.84000000000000 -1.8496086961764842E-004 + 102.90000000000001 -2.0078106998365085E-004 + 102.96000000000001 -2.1698198093451500E-004 + 103.01999999999998 -2.3355080518318644E-004 + 103.07999999999998 -2.5047414258696718E-004 + 103.13999999999999 -2.6773793510022478E-004 + 103.19999999999999 -2.8532752923633362E-004 + 103.25999999999999 -3.0322768703073828E-004 + 103.31999999999999 -3.2142264131219890E-004 + 103.38000000000000 -3.3989607313859329E-004 + 103.44000000000000 -3.5863117317483167E-004 + 103.50000000000000 -3.7761064292636483E-004 + 103.56000000000000 -3.9681675052114017E-004 + 103.62000000000000 -4.1623139318374585E-004 + 103.68000000000001 -4.3583604494389376E-004 + 103.73999999999998 -4.5561188327918761E-004 + 103.79999999999998 -4.7553973990948945E-004 + 103.85999999999999 -4.9560016336987547E-004 + 103.91999999999999 -5.1577356428064984E-004 + 103.97999999999999 -5.3604011851725373E-004 + 104.03999999999999 -5.5637982623902844E-004 + 104.09999999999999 -5.7677261845645220E-004 + 104.16000000000000 -5.9719835086017973E-004 + 104.22000000000000 -6.1763691063628336E-004 + 104.28000000000000 -6.3806813161366278E-004 + 104.34000000000000 -6.5847198275870167E-004 + 104.40000000000001 -6.7882854604645721E-004 + 104.46000000000001 -6.9911793775901429E-004 + 104.51999999999998 -7.1932059871510361E-004 + 104.57999999999998 -7.3941709044063548E-004 + 104.63999999999999 -7.5938825235485679E-004 + 104.69999999999999 -7.7921526961116790E-004 + 104.75999999999999 -7.9887962665139663E-004 + 104.81999999999999 -8.1836318384788235E-004 + 104.88000000000000 -8.3764816741148862E-004 + 104.94000000000000 -8.5671734774954086E-004 + 105.00000000000000 -8.7555385901564057E-004 + 105.06000000000000 -8.9414146485139890E-004 + 105.12000000000000 -9.1246440006416830E-004 + 105.18000000000001 -9.3050749678615921E-004 + 105.23999999999998 -9.4825614643546919E-004 + 105.29999999999998 -9.6569650107974480E-004 + 105.35999999999999 -9.8281515605653179E-004 + 105.41999999999999 -9.9959959549762441E-004 + 105.47999999999999 -1.0160378076860801E-003 + 105.53999999999999 -1.0321187800748730E-003 + 105.59999999999999 -1.0478320413668969E-003 + 105.66000000000000 -1.0631679610672256E-003 + 105.72000000000000 -1.0781175695294366E-003 + 105.78000000000000 -1.0926727118976552E-003 + 105.84000000000000 -1.1068262162419228E-003 + 105.90000000000001 -1.1205714300123622E-003 + 105.96000000000001 -1.1339026611494880E-003 + 106.01999999999998 -1.1468151523620234E-003 + 106.07999999999998 -1.1593048197076198E-003 + 106.13999999999999 -1.1713684345551871E-003 + 106.19999999999999 -1.1830035976336738E-003 + 106.25999999999999 -1.1942085431933026E-003 + 106.31999999999999 -1.2049826055335439E-003 + 106.38000000000000 -1.2153256949673432E-003 + 106.44000000000000 -1.2252386417497298E-003 + 106.50000000000000 -1.2347226348621277E-003 + 106.56000000000000 -1.2437801594325421E-003 + 106.62000000000000 -1.2524140574694282E-003 + 106.68000000000001 -1.2606278995973379E-003 + 106.73999999999998 -1.2684260530283745E-003 + 106.79999999999998 -1.2758132852225006E-003 + 106.85999999999999 -1.2827951905394182E-003 + 106.91999999999999 -1.2893777699024339E-003 + 106.97999999999999 -1.2955676917017112E-003 + 107.03999999999999 -1.3013720881186201E-003 + 107.09999999999999 -1.3067986030819883E-003 + 107.16000000000000 -1.3118551018050219E-003 + 107.22000000000000 -1.3165501434870125E-003 + 107.28000000000000 -1.3208923754618835E-003 + 107.34000000000000 -1.3248909886182465E-003 + 107.40000000000001 -1.3285552666470019E-003 + 107.46000000000001 -1.3318948484662282E-003 + 107.51999999999998 -1.3349197328253839E-003 + 107.57999999999998 -1.3376397708022366E-003 + 107.63999999999999 -1.3400649464112597E-003 + 107.69999999999999 -1.3422054779020109E-003 + 107.75999999999999 -1.3440713082215894E-003 + 107.81999999999999 -1.3456725805321313E-003 + 107.88000000000000 -1.3470192665248027E-003 + 107.94000000000000 -1.3481209038528677E-003 + 108.00000000000000 -1.3489872702345514E-003 + 108.06000000000000 -1.3496275531218911E-003 + 108.12000000000000 -1.3500507253542257E-003 + 108.18000000000001 -1.3502653185227210E-003 + 108.23999999999998 -1.3502794512860327E-003 + 108.29999999999998 -1.3501008019795005E-003 + 108.35999999999999 -1.3497366171445599E-003 + 108.41999999999999 -1.3491933429171292E-003 + 108.47999999999999 -1.3484771397239100E-003 + 108.53999999999999 -1.3475933355130674E-003 + 108.59999999999999 -1.3465465463876956E-003 + 108.66000000000000 -1.3453408375966817E-003 + 108.72000000000000 -1.3439795988051211E-003 + 108.78000000000000 -1.3424653644067835E-003 + 108.84000000000000 -1.3407999345232736E-003 + 108.90000000000001 -1.3389842406966465E-003 + 108.96000000000001 -1.3370184549285245E-003 + 109.01999999999998 -1.3349019836581563E-003 + 109.07999999999998 -1.3326332549305452E-003 + 109.13999999999999 -1.3302098585526842E-003 + 109.19999999999999 -1.3276285193987044E-003 + 109.25999999999999 -1.3248850872760068E-003 + 109.31999999999999 -1.3219747057365465E-003 + 109.38000000000000 -1.3188911520935875E-003 + 109.44000000000000 -1.3156279374201985E-003 + 109.50000000000000 -1.3121773087516680E-003 + 109.56000000000000 -1.3085309081005947E-003 + 109.62000000000000 -1.3046792439147202E-003 + 109.68000000000001 -1.3006122902117980E-003 + 109.73999999999998 -1.2963189655907478E-003 + 109.79999999999998 -1.2917877539771910E-003 + 109.85999999999999 -1.2870060263673302E-003 + 109.91999999999999 -1.2819608206633335E-003 + 109.97999999999999 -1.2766382244654808E-003 + 110.03999999999999 -1.2710239624881550E-003 + 110.09999999999999 -1.2651031469074826E-003 + 110.16000000000000 -1.2588602724577385E-003 + 110.22000000000000 -1.2522794526531843E-003 + 110.28000000000000 -1.2453444440283813E-003 + 110.34000000000000 -1.2380386203867061E-003 + 110.40000000000001 -1.2303450624595008E-003 + 110.46000000000001 -1.2222468601268161E-003 + 110.51999999999998 -1.2137267065796360E-003 + 110.57999999999998 -1.2047673734231572E-003 + 110.63999999999999 -1.1953517837495543E-003 + 110.69999999999999 -1.1854628293078854E-003 + 110.75999999999999 -1.1750834197219956E-003 + 110.81999999999999 -1.1641970290036888E-003 + 110.88000000000000 -1.1527873410931136E-003 + 110.94000000000000 -1.1408384688815559E-003 + 111.00000000000000 -1.1283350098884096E-003 + 111.06000000000000 -1.1152620887642170E-003 + 111.12000000000000 -1.1016055346498104E-003 + 111.18000000000001 -1.0873519833732464E-003 + 111.23999999999998 -1.0724886297089761E-003 + 111.29999999999998 -1.0570038657916510E-003 + 111.35999999999999 -1.0408868717135657E-003 + 111.41999999999999 -1.0241277489501138E-003 + 111.47999999999999 -1.0067179568601530E-003 + 111.53999999999999 -9.8864990133357838E-004 + 111.59999999999999 -9.6991728999078035E-004 + 111.66000000000000 -9.5051508779078818E-004 + 111.72000000000000 -9.3043961020539937E-004 + 111.78000000000000 -9.0968861106462530E-004 + 111.84000000000000 -8.8826132150471423E-004 + 111.90000000000001 -8.6615840940545887E-004 + 111.96000000000001 -8.4338213569595084E-004 + 112.01999999999998 -8.1993640897896187E-004 + 112.07999999999998 -7.9582671309545900E-004 + 112.13999999999999 -7.7106023930567820E-004 + 112.19999999999999 -7.4564587167556037E-004 + 112.25999999999999 -7.1959433142631732E-004 + 112.31999999999999 -6.9291806104716336E-004 + 112.38000000000000 -6.6563115841392745E-004 + 112.44000000000000 -6.3774954847290366E-004 + 112.50000000000000 -6.0929093998199910E-004 + 112.56000000000000 -5.8027477845902118E-004 + 112.62000000000000 -5.5072224107915037E-004 + 112.68000000000001 -5.2065625330848669E-004 + 112.73999999999998 -4.9010139058029516E-004 + 112.79999999999998 -4.5908384110234098E-004 + 112.85999999999999 -4.2763146855280456E-004 + 112.91999999999999 -3.9577367114849521E-004 + 112.97999999999999 -3.6354141079407345E-004 + 113.03999999999999 -3.3096699205633658E-004 + 113.09999999999999 -2.9808419407141199E-004 + 113.16000000000000 -2.6492808515200643E-004 + 113.22000000000000 -2.3153501684454223E-004 + 113.28000000000000 -1.9794249217067896E-004 + 113.34000000000000 -1.6418914823591269E-004 + 113.40000000000001 -1.3031463448344124E-004 + 113.46000000000001 -9.6359531316192503E-005 + 113.51999999999998 -6.2365277189999025E-005 + 113.57999999999998 -2.8374042569304889E-005 + 113.63999999999999 5.5713752542696656E-006 + 113.69999999999999 3.9427588178210171E-005 + 113.75999999999999 7.3150783006555904E-005 + 113.81999999999999 1.0669682975231781E-004 + 113.88000000000000 1.4002130046717457E-004 + 113.94000000000000 1.7307975068152446E-004 + 114.00000000000000 2.0582765702084147E-004 + 114.06000000000000 2.3822066581553181E-004 + 114.12000000000000 2.7021461075534182E-004 + 114.18000000000001 3.0176569185056112E-004 + 114.23999999999998 3.3283053531102445E-004 + 114.29999999999998 3.6336642115983536E-004 + 114.35999999999999 3.9333119757182892E-004 + 114.41999999999999 4.2268357601716754E-004 + 114.47999999999999 4.5138312796564472E-004 + 114.53999999999999 4.7939048911676852E-004 + 114.59999999999999 5.0666728333197597E-004 + 114.66000000000000 5.3317645494546510E-004 + 114.72000000000000 5.5888220015943061E-004 + 114.78000000000000 5.8375012652155849E-004 + 114.84000000000000 6.0774720038548496E-004 + 114.90000000000001 6.3084209515008535E-004 + 114.96000000000001 6.5300500031434112E-004 + 115.01999999999998 6.7420788313588107E-004 + 115.07999999999998 6.9442449859826014E-004 + 115.13999999999999 7.1363030779743244E-004 + 115.19999999999999 7.3180277426122310E-004 + 115.25999999999999 7.4892121169379774E-004 + 115.31999999999999 7.6496693382474351E-004 + 115.38000000000000 7.7992324959789299E-004 + 115.44000000000000 7.9377553460770645E-004 + 115.50000000000000 8.0651114594367239E-004 + 115.56000000000000 8.1811966203802473E-004 + 115.62000000000000 8.2859268833844273E-004 + 115.68000000000001 8.3792385422544664E-004 + 115.73999999999998 8.4610897412173915E-004 + 115.79999999999998 8.5314594050494804E-004 + 115.85999999999999 8.5903481029719192E-004 + 115.91999999999999 8.6377766784298028E-004 + 115.97999999999999 8.6737861683790370E-004 + 116.03999999999999 8.6984391156337060E-004 + 116.09999999999999 8.7118166991884442E-004 + 116.16000000000000 8.7140220980624992E-004 + 116.22000000000000 8.7051757932112505E-004 + 116.28000000000000 8.6854186015753181E-004 + 116.34000000000000 8.6549091437706453E-004 + 116.40000000000001 8.6138227175136290E-004 + 116.46000000000001 8.5623535257742115E-004 + 116.51999999999998 8.5007112083682545E-004 + 116.57999999999998 8.4291216524847248E-004 + 116.63999999999999 8.3478255998771739E-004 + 116.69999999999999 8.2570777339540248E-004 + 116.75999999999999 8.1571460029101366E-004 + 116.81999999999999 8.0483109419029152E-004 + 116.88000000000000 7.9308642110761127E-004 + 116.94000000000000 7.8051092550478099E-004 + 117.00000000000000 7.6713582599503990E-004 + 117.06000000000000 7.5299330913843260E-004 + 117.12000000000000 7.3811631103301155E-004 + 117.18000000000001 7.2253852519629834E-004 + 117.23999999999998 7.0629420558631392E-004 + 117.29999999999998 6.8941826417277287E-004 + 117.35999999999999 6.7194597061563048E-004 + 117.41999999999999 6.5391310991703587E-004 + 117.47999999999999 6.3535560325191272E-004 + 117.53999999999999 6.1630979283380989E-004 + 117.59999999999999 5.9681198483504103E-004 + 117.66000000000000 5.7689861524349521E-004 + 117.72000000000000 5.5660619782895403E-004 + 117.78000000000000 5.3597099259494328E-004 + 117.84000000000000 5.1502926263407819E-004 + 117.90000000000001 4.9381689708651564E-004 + 117.96000000000001 4.7236957416382466E-004 + 118.01999999999998 4.5072254382032002E-004 + 118.07999999999998 4.2891067839737084E-004 + 118.13999999999999 4.0696830418429126E-004 + 118.19999999999999 3.8492918554840916E-004 + 118.25999999999999 3.6282641582895733E-004 + 118.31999999999999 3.4069247489498398E-004 + 118.38000000000000 3.1855904308643242E-004 + 118.44000000000000 2.9645707944727777E-004 + 118.50000000000000 2.7441669395811735E-004 + 118.56000000000000 2.5246710958563980E-004 + 118.62000000000000 2.3063666667973637E-004 + 118.68000000000001 2.0895276085457172E-004 + 118.73999999999998 1.8744182115324455E-004 + 118.79999999999998 1.6612931463791636E-004 + 118.85999999999999 1.4503966622885620E-004 + 118.91999999999999 1.2419628547105644E-004 + 118.97999999999999 1.0362153446648352E-004 + 119.03999999999999 8.3336703911273741E-005 + 119.09999999999999 6.3362055281192039E-005 + 119.16000000000000 4.3716738708359707E-005 + 119.22000000000000 2.4418845663422666E-005 + 119.28000000000000 5.4853952005850283E-006 + 119.34000000000000 -1.3067665765484269E-005 + 119.40000000000001 -3.1225474998600003E-005 + 119.46000000000001 -4.8974227646460279E-005 + 119.51999999999998 -6.6301138229513340E-005 + 119.57999999999998 -8.3194504721209058E-005 + 119.63999999999999 -9.9643630267604269E-005 + 119.69999999999999 -1.1563882915410743E-004 + 119.75999999999999 -1.3117142993308753E-004 + 119.81999999999999 -1.4623373154646111E-004 + 119.88000000000000 -1.6081898015350059E-004 + 119.94000000000000 -1.7492137640774956E-004 + 120.00000000000000 -1.8853601623714672E-004 + 120.06000000000000 -2.0165890840733919E-004 + 120.12000000000000 -2.1428690768893904E-004 + 120.18000000000001 -2.2641774796528050E-004 + 120.23999999999998 -2.3804997245555835E-004 + 120.29999999999998 -2.4918289329772580E-004 + 120.35999999999999 -2.5981661913418696E-004 + 120.41999999999999 -2.6995194522442043E-004 + 120.47999999999999 -2.7959037903498799E-004 + 120.53999999999999 -2.8873408599666380E-004 + 120.59999999999999 -2.9738592241520227E-004 + 120.66000000000000 -3.0554924942492582E-004 + 120.72000000000000 -3.1322802001296224E-004 + 120.78000000000000 -3.2042671739833313E-004 + 120.84000000000000 -3.2715025975271512E-004 + 120.90000000000001 -3.3340404648352350E-004 + 120.95999999999998 -3.3919382416569078E-004 + 121.01999999999998 -3.4452577129142698E-004 + 121.07999999999998 -3.4940633950277926E-004 + 121.13999999999999 -3.5384225750287915E-004 + 121.19999999999999 -3.5784052413453818E-004 + 121.25999999999999 -3.6140836882120732E-004 + 121.31999999999999 -3.6455320765036792E-004 + 121.38000000000000 -3.6728253720513717E-004 + 121.44000000000000 -3.6960405433416292E-004 + 121.50000000000000 -3.7152552217726919E-004 + 121.56000000000000 -3.7305480777016228E-004 + 121.62000000000000 -3.7419971839644143E-004 + 121.68000000000001 -3.7496817620847109E-004 + 121.73999999999998 -3.7536796827153504E-004 + 121.79999999999998 -3.7540690631893202E-004 + 121.85999999999999 -3.7509276106201408E-004 + 121.91999999999999 -3.7443311747359408E-004 + 121.97999999999999 -3.7343548184591460E-004 + 122.03999999999999 -3.7210718317596918E-004 + 122.09999999999999 -3.7045543173817825E-004 + 122.16000000000000 -3.6848723248877587E-004 + 122.22000000000000 -3.6620937646434878E-004 + 122.28000000000000 -3.6362836702815067E-004 + 122.34000000000000 -3.6075056551885442E-004 + 122.40000000000001 -3.5758203128163891E-004 + 122.45999999999998 -3.5412853849810699E-004 + 122.51999999999998 -3.5039568714715903E-004 + 122.57999999999998 -3.4638872257058745E-004 + 122.63999999999999 -3.4211265879776742E-004 + 122.69999999999999 -3.3757222427579505E-004 + 122.75999999999999 -3.3277189044549234E-004 + 122.81999999999999 -3.2771586788434823E-004 + 122.88000000000000 -3.2240812454252299E-004 + 122.94000000000000 -3.1685242132217556E-004 + 123.00000000000000 -3.1105226229339732E-004 + 123.06000000000000 -3.0501099141976739E-004 + 123.12000000000000 -2.9873170634589887E-004 + 123.18000000000001 -2.9221741333454980E-004 + 123.23999999999998 -2.8547088482471514E-004 + 123.29999999999998 -2.7849483213746154E-004 + 123.35999999999999 -2.7129184140320156E-004 + 123.41999999999999 -2.6386442528520906E-004 + 123.47999999999999 -2.5621501359591846E-004 + 123.53999999999999 -2.4834603790737807E-004 + 123.59999999999999 -2.4025994846570541E-004 + 123.66000000000000 -2.3195916699023648E-004 + 123.72000000000000 -2.2344620067443069E-004 + 123.78000000000000 -2.1472364963125780E-004 + 123.84000000000000 -2.0579423299058605E-004 + 123.90000000000001 -1.9666077843941637E-004 + 123.95999999999998 -1.8732632664743211E-004 + 124.01999999999998 -1.7779411642780690E-004 + 124.07999999999998 -1.6806758489293125E-004 + 124.13999999999999 -1.5815047029297697E-004 + 124.19999999999999 -1.4804679932260961E-004 + 124.25999999999999 -1.3776089289690746E-004 + 124.31999999999999 -1.2729745957075072E-004 + 124.38000000000000 -1.1666153279646184E-004 + 124.44000000000000 -1.0585858085559846E-004 + 124.50000000000000 -9.4894476522018028E-005 + 124.56000000000000 -8.3775546555004356E-005 + 124.62000000000000 -7.2508590608431252E-005 + 124.68000000000001 -6.1100891189135476E-005 + 124.73999999999998 -4.9560254678243907E-005 + 124.79999999999998 -3.7894993148363929E-005 + 124.85999999999999 -2.6113980389063659E-005 + 124.91999999999999 -1.4226632186242033E-005 + 124.97999999999999 -2.2429289396171954E-006 + 125.03999999999999 9.8265751514346865E-006 + 125.09999999999999 2.1970764445059372E-005 + 125.16000000000000 3.4177936402974761E-005 + 125.22000000000000 4.6435830331235184E-005 + 125.28000000000000 5.8731626971602840E-005 + 125.34000000000000 7.1051968492310703E-005 + 125.40000000000001 8.3382951693173767E-005 + 125.45999999999998 9.5710176414948232E-005 + 125.51999999999998 1.0801875383848000E-004 + 125.57999999999998 1.2029330999721302E-004 + 125.63999999999999 1.3251804543268868E-004 + 125.69999999999999 1.4467675719200283E-004 + 125.75999999999999 1.5675284338268009E-004 + 125.81999999999999 1.6872935803726423E-004 + 125.88000000000000 1.8058904487166253E-004 + 125.94000000000000 1.9231438885808353E-004 + 126.00000000000000 2.0388763908634014E-004 + 126.06000000000000 2.1529080271103833E-004 + 126.12000000000000 2.2650576280579994E-004 + 126.18000000000001 2.3751424338443983E-004 + 126.23999999999998 2.4829792782253194E-004 + 126.29999999999998 2.5883845329402016E-004 + 126.35999999999999 2.6911744228185028E-004 + 126.41999999999999 2.7911659340106184E-004 + 126.47999999999999 2.8881772493937445E-004 + 126.53999999999999 2.9820281781129797E-004 + 126.59999999999999 3.0725406092354802E-004 + 126.66000000000000 3.1595384161331143E-004 + 126.72000000000000 3.2428496731195188E-004 + 126.78000000000000 3.3223056529028071E-004 + 126.84000000000000 3.3977420434949782E-004 + 126.90000000000001 3.4689996499016895E-004 + 126.95999999999998 3.5359244663187912E-004 + 127.01999999999998 3.5983684130024257E-004 + 127.07999999999998 3.6561897197312965E-004 + 127.13999999999999 3.7092541479908124E-004 + 127.19999999999999 3.7574346323495988E-004 + 127.25999999999999 3.8006118595634039E-004 + 127.31999999999999 3.8386748871463081E-004 + 127.38000000000000 3.8715216641038009E-004 + 127.44000000000000 3.8990589535083169E-004 + 127.50000000000000 3.9212032156813852E-004 + 127.56000000000000 3.9378807578612646E-004 + 127.62000000000000 3.9490275218033872E-004 + 127.68000000000001 3.9545904010889095E-004 + 127.73999999999998 3.9545261355462168E-004 + 127.79999999999998 3.9488028553097399E-004 + 127.85999999999999 3.9373994877488872E-004 + 127.91999999999999 3.9203059303624812E-004 + 127.97999999999999 3.8975233081689308E-004 + 128.03999999999999 3.8690639741752381E-004 + 128.09999999999999 3.8349521371536217E-004 + 128.16000000000000 3.7952231246731112E-004 + 128.22000000000000 3.7499241034180740E-004 + 128.28000000000000 3.6991130247381954E-004 + 128.34000000000000 3.6428595856456545E-004 + 128.40000000000001 3.5812443145706108E-004 + 128.45999999999998 3.5143597030495773E-004 + 128.51999999999998 3.4423078700123556E-004 + 128.57999999999998 3.3652024884423876E-004 + 128.63999999999999 3.2831673637282832E-004 + 128.69999999999999 3.1963365884743586E-004 + 128.75999999999999 3.1048536289090964E-004 + 128.81999999999999 3.0088716549790971E-004 + 128.88000000000000 2.9085531232281515E-004 + 128.94000000000000 2.8040690407377989E-004 + 129.00000000000000 2.6955987753405128E-004 + 129.06000000000000 2.5833293419337002E-004 + 129.12000000000000 2.4674555826796483E-004 + 129.18000000000001 2.3481784435671043E-004 + 129.23999999999998 2.2257058353256770E-004 + 129.29999999999998 2.1002516060280191E-004 + 129.35999999999999 1.9720345691675960E-004 + 129.41999999999999 1.8412785945219238E-004 + 129.47999999999999 1.7082117243839571E-004 + 129.53999999999999 1.5730653380726447E-004 + 129.59999999999999 1.4360741891886875E-004 + 129.66000000000000 1.2974753882134452E-004 + 129.72000000000000 1.1575079281147432E-004 + 129.78000000000000 1.0164121253265484E-004 + 129.84000000000000 8.7442921801447003E-005 + 129.90000000000001 7.3180017735150100E-005 + 129.95999999999998 5.8876586139579916E-005 + 130.01999999999998 4.4556601686140959E-005 + 130.07999999999998 3.0243897450250496E-005 + 130.13999999999999 1.5962095012747436E-005 + 130.19999999999999 1.7345644903060932E-006 + 130.25999999999999 -1.2415633167205978E-005 + 130.31999999999999 -2.6465795970518892E-005 + 130.38000000000000 -4.0393621116375838E-005 + 130.44000000000000 -5.4177258203667763E-005 + 130.50000000000000 -6.7795348413179882E-005 + 130.56000000000000 -8.1227080784908602E-005 + 130.62000000000000 -9.4452209245397901E-005 + 130.68000000000001 -1.0745111377681746E-004 + 130.73999999999998 -1.2020483138694943E-004 + 130.79999999999998 -1.3269510807532338E-004 + 130.85999999999999 -1.4490438190130941E-004 + 130.91999999999999 -1.5681586492115733E-004 + 130.97999999999999 -1.6841356453196587E-004 + 131.03999999999999 -1.7968229191551009E-004 + 131.09999999999999 -1.9060766166418934E-004 + 131.16000000000000 -2.0117617690387679E-004 + 131.22000000000000 -2.1137518094104969E-004 + 131.28000000000000 -2.2119294209879163E-004 + 131.34000000000000 -2.3061855148210549E-004 + 131.40000000000001 -2.3964205541676352E-004 + 131.45999999999998 -2.4825436734490704E-004 + 131.51999999999998 -2.5644733269456740E-004 + 131.57999999999998 -2.6421371386241575E-004 + 131.63999999999999 -2.7154714088697214E-004 + 131.69999999999999 -2.7844214197278786E-004 + 131.75999999999999 -2.8489416478330544E-004 + 131.81999999999999 -2.9089956891510454E-004 + 131.88000000000000 -2.9645558867950309E-004 + 131.94000000000000 -3.0156029970431630E-004 + 132.00000000000000 -3.0621262794131829E-004 + 132.06000000000000 -3.1041238107219749E-004 + 132.12000000000000 -3.1416017694927128E-004 + 132.18000000000001 -3.1745748145488068E-004 + 132.23999999999998 -3.2030653247941339E-004 + 132.29999999999998 -3.2271035153822836E-004 + 132.35999999999999 -3.2467270177053028E-004 + 132.41999999999999 -3.2619811191686871E-004 + 132.47999999999999 -3.2729172766060008E-004 + 132.53999999999999 -3.2795948383923914E-004 + 132.59999999999999 -3.2820789867112228E-004 + 132.66000000000000 -3.2804411592095094E-004 + 132.72000000000000 -3.2747589952255446E-004 + 132.78000000000000 -3.2651155017975319E-004 + 132.84000000000000 -3.2515992238248207E-004 + 132.90000000000001 -3.2343031088051760E-004 + 132.95999999999998 -3.2133255792635791E-004 + 133.01999999999998 -3.1887694105492702E-004 + 133.07999999999998 -3.1607407879971302E-004 + 133.13999999999999 -3.1293506852735032E-004 + 133.19999999999999 -3.0947131435415866E-004 + 133.25999999999999 -3.0569454958806377E-004 + 133.31999999999999 -3.0161686286886679E-004 + 133.38000000000000 -2.9725059319043421E-004 + 133.44000000000000 -2.9260831997695246E-004 + 133.50000000000000 -2.8770281641095650E-004 + 133.56000000000000 -2.8254712889044385E-004 + 133.62000000000000 -2.7715445015348182E-004 + 133.68000000000001 -2.7153810656772214E-004 + 133.73999999999998 -2.6571153110255795E-004 + 133.79999999999998 -2.5968825366499786E-004 + 133.85999999999999 -2.5348193322008721E-004 + 133.91999999999999 -2.4710621704179049E-004 + 133.97999999999999 -2.4057473656535097E-004 + 134.03999999999999 -2.3390115552029118E-004 + 134.09999999999999 -2.2709906718783527E-004 + 134.16000000000000 -2.2018204214608480E-004 + 134.22000000000000 -2.1316353214740645E-004 + 134.28000000000000 -2.0605690451037850E-004 + 134.34000000000000 -1.9887536017048873E-004 + 134.40000000000001 -1.9163199944565910E-004 + 134.45999999999998 -1.8433971182753802E-004 + 134.51999999999998 -1.7701121286144343E-004 + 134.57999999999998 -1.6965898552792933E-004 + 134.63999999999999 -1.6229530242522643E-004 + 134.69999999999999 -1.5493217385636923E-004 + 134.75999999999999 -1.4758137083884852E-004 + 134.81999999999999 -1.4025434279317417E-004 + 134.88000000000000 -1.3296226246520260E-004 + 134.94000000000000 -1.2571599139027010E-004 + 135.00000000000000 -1.1852602855292855E-004 + 135.06000000000000 -1.1140255364509402E-004 + 135.12000000000000 -1.0435536157546988E-004 + 135.18000000000001 -9.7393869829074756E-005 + 135.23999999999998 -9.0527117218706701E-005 + 135.29999999999998 -8.3763751033638076E-005 + 135.35999999999999 -7.7111987264607632E-005 + 135.41999999999999 -7.0579624838180819E-005 + 135.47999999999999 -6.4174024779372130E-005 + 135.53999999999999 -5.7902118774501318E-005 + 135.59999999999999 -5.1770393789545562E-005 + 135.66000000000000 -4.5784881256744100E-005 + 135.72000000000000 -3.9951158166378680E-005 + 135.78000000000000 -3.4274350509765619E-005 + 135.84000000000000 -2.8759104116134900E-005 + 135.90000000000001 -2.3409611373558061E-005 + 135.95999999999998 -1.8229587425745068E-005 + 136.01999999999998 -1.3222277380194275E-005 + 136.07999999999998 -8.3904570498862403E-006 + 136.13999999999999 -3.7364281944133308E-006 + 136.19999999999999 7.3798606857712943E-007 + 136.25999999999999 5.0314323042762946E-006 + 136.31999999999999 9.1430273388028850E-006 + 136.38000000000000 1.3072359414701585E-005 + 136.44000000000000 1.6819484253537195E-005 + 136.50000000000000 2.0384908899140765E-005 + 136.56000000000000 2.3769604937976843E-005 + 136.62000000000000 2.6974979697887919E-005 + 136.68000000000001 3.0002885041160620E-005 + 136.73999999999998 3.2855593751903258E-005 + 136.79999999999998 3.5535799135462385E-005 + 136.85999999999999 3.8046599611507562E-005 + 136.91999999999999 4.0391473238345226E-005 + 136.97999999999999 4.2574283087979310E-005 + 137.03999999999999 4.4599258002247033E-005 + 137.09999999999999 4.6470970516170176E-005 + 137.16000000000000 4.8194322584568540E-005 + 137.22000000000000 4.9774537388186069E-005 + 137.28000000000000 5.1217137075802553E-005 + 137.34000000000000 5.2527925179184030E-005 + 137.40000000000001 5.3712978334145626E-005 + 137.45999999999998 5.4778607419957292E-005 + 137.51999999999998 5.5731360898397869E-005 + 137.57999999999998 5.6578002557228598E-005 + 137.63999999999999 5.7325480743248613E-005 + 137.69999999999999 5.7980925451953851E-005 + 137.75999999999999 5.8551617047622378E-005 + 137.81999999999999 5.9044948569076896E-005 + 137.88000000000000 5.9468455188312533E-005 + 137.94000000000000 5.9829741876110944E-005 + 138.00000000000000 6.0136479531106292E-005 + 138.06000000000000 6.0396402683591301E-005 + 138.12000000000000 6.0617254242208360E-005 + 138.18000000000001 6.0806803954553321E-005 + 138.23999999999998 6.0972790476964089E-005 + 138.29999999999998 6.1122924587414635E-005 + 138.35999999999999 6.1264864892688245E-005 + 138.41999999999999 6.1406208726324894E-005 + 138.47999999999999 6.1554452849962296E-005 + 138.53999999999999 6.1716987716601722E-005 + 138.59999999999999 6.1901092218220950E-005 + 138.66000000000000 6.2113884890458685E-005 + 138.72000000000000 6.2362332954028806E-005 + 138.78000000000000 6.2653234355276719E-005 + 138.84000000000000 6.2993178354949595E-005 + 138.90000000000001 6.3388560277020833E-005 + 138.95999999999998 6.3845527995762613E-005 + 139.01999999999998 6.4369994561105001E-005 + 139.07999999999998 6.4967613341311621E-005 + 139.13999999999999 6.5643766438566064E-005 + 139.19999999999999 6.6403532183610434E-005 + 139.25999999999999 6.7251680623602709E-005 + 139.31999999999999 6.8192691552384680E-005 + 139.38000000000000 6.9230688255239855E-005 + 139.44000000000000 7.0369470511343364E-005 + 139.50000000000000 7.1612491301171002E-005 + 139.56000000000000 7.2962849581017784E-005 + 139.62000000000000 7.4423263841026069E-005 + 139.68000000000001 7.5996121499713186E-005 + 139.73999999999998 7.7683431089371890E-005 + 139.79999999999998 7.9486819380007452E-005 + 139.85999999999999 8.1407557069629116E-005 + 139.91999999999999 8.3446536486478899E-005 + 139.97999999999999 8.5604271054370791E-005 + 140.03999999999999 8.7880901306703485E-005 + 140.09999999999999 9.0276200291085422E-005 + 140.16000000000000 9.2789571256494049E-005 + 140.22000000000000 9.5420041716744647E-005 + 140.28000000000000 9.8166258651983751E-005 + 140.34000000000000 1.0102651098259927E-004 + 140.40000000000001 1.0399872272550145E-004 + 140.45999999999998 1.0708043992919878E-004 + 140.51999999999998 1.1026887163933061E-004 + 140.57999999999998 1.1356085433719688E-004 + 140.63999999999999 1.1695287710050170E-004 + 140.69999999999999 1.2044110164712227E-004 + 140.75999999999999 1.2402135838749306E-004 + 140.81999999999999 1.2768914968671669E-004 + 140.88000000000000 1.3143968435728253E-004 + 140.94000000000000 1.3526786010341243E-004 + 141.00000000000000 1.3916830403366519E-004 + 141.06000000000000 1.4313538703368696E-004 + 141.12000000000000 1.4716320540503224E-004 + 141.18000000000001 1.5124561089577764E-004 + 141.23999999999998 1.5537626681725130E-004 + 141.29999999999998 1.5954860728582457E-004 + 141.35999999999999 1.6375585980390672E-004 + 141.41999999999999 1.6799109998940002E-004 + 141.47999999999999 1.7224722699616193E-004 + 141.53999999999999 1.7651697280193031E-004 + 141.59999999999999 1.8079294450147238E-004 + 141.66000000000000 1.8506760373292758E-004 + 141.72000000000000 1.8933333550898932E-004 + 141.78000000000000 1.9358239665798381E-004 + 141.84000000000000 1.9780696345071452E-004 + 141.90000000000001 2.0199914368591347E-004 + 141.95999999999998 2.0615099769254771E-004 + 142.01999999999998 2.1025453024715946E-004 + 142.07999999999998 2.1430173240044527E-004 + 142.13999999999999 2.1828457825997355E-004 + 142.19999999999999 2.2219506709820978E-004 + 142.25999999999999 2.2602521964874532E-004 + 142.31999999999999 2.2976709241006536E-004 + 142.38000000000000 2.3341278986992051E-004 + 142.44000000000000 2.3695453856715780E-004 + 142.50000000000000 2.4038460757444481E-004 + 142.56000000000000 2.4369542223322258E-004 + 142.62000000000000 2.4687951583235332E-004 + 142.68000000000001 2.4992957069550395E-004 + 142.73999999999998 2.5283842189134518E-004 + 142.79999999999998 2.5559911026068553E-004 + 142.85999999999999 2.5820484788791103E-004 + 142.91999999999999 2.6064905469579288E-004 + 142.97999999999999 2.6292535442034291E-004 + 143.03999999999999 2.6502762636462150E-004 + 143.09999999999999 2.6694999904208874E-004 + 143.16000000000000 2.6868684418216522E-004 + 143.22000000000000 2.7023279875033798E-004 + 143.28000000000000 2.7158282536011378E-004 + 143.34000000000000 2.7273207414038337E-004 + 143.40000000000001 2.7367617094942669E-004 + 143.45999999999998 2.7441088359866092E-004 + 143.51999999999998 2.7493242046671253E-004 + 143.57999999999998 2.7523723794628069E-004 + 143.63999999999999 2.7532223379333857E-004 + 143.69999999999999 2.7518457644208557E-004 + 143.75999999999999 2.7482181069270927E-004 + 143.81999999999999 2.7423191227131301E-004 + 143.88000000000000 2.7341319436616148E-004 + 143.94000000000000 2.7236434876406573E-004 + 144.00000000000000 2.7108449843291684E-004 + 144.06000000000000 2.6957310176808506E-004 + 144.12000000000000 2.6783014341651601E-004 + 144.18000000000001 2.6585595211332227E-004 + 144.23999999999998 2.6365131772374309E-004 + 144.29999999999998 2.6121745410244700E-004 + 144.35999999999999 2.5855607255498118E-004 + 144.41999999999999 2.5566932235873951E-004 + 144.47999999999999 2.5255978340132040E-004 + 144.53999999999999 2.4923051107180963E-004 + 144.59999999999999 2.4568506007007938E-004 + 144.66000000000000 2.4192750413123366E-004 + 144.72000000000000 2.3796229131073360E-004 + 144.78000000000000 2.3379442594635878E-004 + 144.84000000000000 2.2942933979923152E-004 + 144.90000000000001 2.2487296738641992E-004 + 144.95999999999998 2.2013168929890499E-004 + 145.01999999999998 2.1521233718553215E-004 + 145.07999999999998 2.1012221831465919E-004 + 145.13999999999999 2.0486904657654120E-004 + 145.19999999999999 1.9946102828335120E-004 + 145.25999999999999 1.9390675285443226E-004 + 145.31999999999999 1.8821525487576848E-004 + 145.38000000000000 1.8239597190256249E-004 + 145.44000000000000 1.7645877017131000E-004 + 145.50000000000000 1.7041388877794930E-004 + 145.56000000000000 1.6427199854329177E-004 + 145.62000000000000 1.5804411672328892E-004 + 145.68000000000001 1.5174166823292269E-004 + 145.73999999999998 1.4537641641196853E-004 + 145.79999999999998 1.3896049515848863E-004 + 145.85999999999999 1.3250638298254418E-004 + 145.91999999999999 1.2602688189434230E-004 + 145.97999999999999 1.1953511448694330E-004 + 146.03999999999999 1.1304444934174591E-004 + 146.09999999999999 1.0656858326377734E-004 + 146.16000000000000 1.0012144048532192E-004 + 146.22000000000000 9.3717152413061919E-005 + 146.28000000000000 8.7370066252517306E-005 + 146.34000000000000 8.1094691301168904E-005 + 146.40000000000001 7.4905671482864864E-005 + 146.45999999999998 6.8817770128720332E-005 + 146.51999999999998 6.2845827990557979E-005 + 146.57999999999998 5.7004724374916229E-005 + 146.63999999999999 5.1309367690714050E-005 + 146.69999999999999 4.5774651709724841E-005 + 146.75999999999999 4.0415416638003515E-005 + 146.81999999999999 3.5246443217500334E-005 + 146.88000000000000 3.0282392714107879E-005 + 146.94000000000000 2.5537796730590871E-005 + 147.00000000000000 2.1027034560900498E-005 + 147.06000000000000 1.6764265857672883E-005 + 147.12000000000000 1.2763436387646955E-005 + 147.18000000000001 9.0382233786882566E-006 + 147.23999999999998 5.6020198843658975E-006 + 147.29999999999998 2.4678877246311692E-006 + 147.35999999999999 -3.5147446291095370E-007 + 147.41999999999999 -2.8437568875215988E-006 + 147.47999999999999 -4.9970840168244490E-006 + 147.53999999999999 -6.8000397156522970E-006 + 147.59999999999999 -8.2417079123368279E-006 + 147.66000000000000 -9.3117037881894795E-006 + 147.72000000000000 -1.0000214195712717E-005 + 147.78000000000000 -1.0298022272238692E-005 + 147.84000000000000 -1.0196546685543738E-005 + 147.90000000000001 -9.6878682569985325E-006 + 147.95999999999998 -8.7647648103443684E-006 + 148.01999999999998 -7.4207351913853502E-006 + 148.07999999999998 -5.6500293590795715E-006 + 148.13999999999999 -3.4476763183006945E-006 + 148.19999999999999 -8.0950252850021224E-007 + 148.25999999999999 2.2678367689324131E-006 + 148.31999999999999 5.7868409585088626E-006 + 148.38000000000000 9.7491430495158915E-006 + 148.44000000000000 1.4155492191445038E-005 + 148.50000000000000 1.9005733584758472E-005 + 148.56000000000000 2.4298793432348526E-005 + 148.62000000000000 3.0032671638219612E-005 + 148.68000000000001 3.6204423712672615E-005 + 148.73999999999998 4.2810153005872808E-005 + 148.79999999999998 4.9845011065263365E-005 + 148.85999999999999 5.7303178743238692E-005 + 148.91999999999999 6.5177875860944660E-005 + 148.97999999999999 7.3461355218897001E-005 + 149.03999999999999 8.2144913576895223E-005 + 149.09999999999999 9.1218881987690259E-005 + 149.16000000000000 1.0067264331316630E-004 + 149.22000000000000 1.1049465078691909E-004 + 149.28000000000000 1.2067241199753690E-004 + 149.34000000000000 1.3119252964478707E-004 + 149.40000000000001 1.4204071587793336E-004 + 149.45999999999998 1.5320180775270196E-004 + 149.51999999999998 1.6465976441770638E-004 + 149.57999999999998 1.7639771557103121E-004 + 149.63999999999999 1.8839798307453593E-004 + 149.69999999999999 2.0064209025275173E-004 + 149.75999999999999 2.1311083066085431E-004 + 149.81999999999999 2.2578423058835606E-004 + 149.88000000000000 2.3864165043059336E-004 + 149.94000000000000 2.5166178007370613E-004 + 150.00000000000000 2.6482263554979612E-004 + 150.06000000000000 2.7810172497345074E-004 + 150.12000000000000 2.9147598259489490E-004 + 150.18000000000001 3.0492179233912838E-004 + 150.23999999999998 3.1841512996153915E-004 + 150.29999999999998 3.3193145644520974E-004 + 150.35999999999999 3.4544597963102555E-004 + 150.41999999999999 3.5893352412424561E-004 + 150.47999999999999 3.7236864382110584E-004 + 150.53999999999999 3.8572564396583921E-004 + 150.59999999999999 3.9897869895108557E-004 + 150.66000000000000 4.1210178855374498E-004 + 150.72000000000000 4.2506888479526040E-004 + 150.78000000000000 4.3785388177349053E-004 + 150.84000000000000 4.5043069849467647E-004 + 150.90000000000001 4.6277336528710941E-004 + 150.95999999999998 4.7485600300414273E-004 + 151.01999999999998 4.8665292596209716E-004 + 151.07999999999998 4.9813860426283158E-004 + 151.13999999999999 5.0928793907260655E-004 + 151.19999999999999 5.2007602373565197E-004 + 151.25999999999999 5.3047837749871862E-004 + 151.31999999999999 5.4047093887400234E-004 + 151.38000000000000 5.5003016866248585E-004 + 151.44000000000000 5.5913304429954370E-004 + 151.50000000000000 5.6775711688724739E-004 + 151.56000000000000 5.7588059237872872E-004 + 151.62000000000000 5.8348238621084875E-004 + 151.68000000000001 5.9054206825078306E-004 + 151.73999999999998 5.9704006946519701E-004 + 151.79999999999998 6.0295758034275995E-004 + 151.85999999999999 6.0827659800963350E-004 + 151.91999999999999 6.1298010807134479E-004 + 151.97999999999999 6.1705200683071296E-004 + 152.03999999999999 6.2047717400314157E-004 + 152.09999999999999 6.2324133301749419E-004 + 152.16000000000000 6.2533142064295278E-004 + 152.22000000000000 6.2673526612255098E-004 + 152.28000000000000 6.2744185630654169E-004 + 152.34000000000000 6.2744119307793272E-004 + 152.40000000000001 6.2672450927186735E-004 + 152.45999999999998 6.2528401181503987E-004 + 152.51999999999998 6.2311319247359274E-004 + 152.57999999999998 6.2020654514764544E-004 + 152.63999999999999 6.1655977168345859E-004 + 152.69999999999999 6.1216984771578242E-004 + 152.75999999999999 6.0703483483067443E-004 + 152.81999999999999 6.0115406460898885E-004 + 152.88000000000000 5.9452796965311450E-004 + 152.94000000000000 5.8715823224827731E-004 + 153.00000000000000 5.7904768622306629E-004 + 153.06000000000000 5.7020034685280796E-004 + 153.12000000000000 5.6062142482008761E-004 + 153.17999999999998 5.5031726939153180E-004 + 153.23999999999998 5.3929538578921055E-004 + 153.29999999999998 5.2756433410373785E-004 + 153.35999999999999 5.1513380212812464E-004 + 153.41999999999999 5.0201461476485671E-004 + 153.47999999999999 4.8821854015062069E-004 + 153.53999999999999 4.7375844096447686E-004 + 153.59999999999999 4.5864816582253060E-004 + 153.66000000000000 4.4290253343838142E-004 + 153.72000000000000 4.2653726781605037E-004 + 153.78000000000000 4.0956902950067771E-004 + 153.84000000000000 3.9201531163444444E-004 + 153.90000000000001 3.7389446781774764E-004 + 153.95999999999998 3.5522562954813755E-004 + 154.01999999999998 3.3602873467141896E-004 + 154.07999999999998 3.1632439527344797E-004 + 154.13999999999999 2.9613395043606315E-004 + 154.19999999999999 2.7547932788786933E-004 + 154.25999999999999 2.5438311205459635E-004 + 154.31999999999999 2.3286838513801095E-004 + 154.38000000000000 2.1095880643964168E-004 + 154.44000000000000 1.8867843801980479E-004 + 154.50000000000000 1.6605177818550550E-004 + 154.56000000000000 1.4310369121496211E-004 + 154.62000000000000 1.1985934450091582E-004 + 154.67999999999998 9.6344194588436264E-005 + 154.73999999999998 7.2583898313005680E-005 + 154.79999999999998 4.8604305269825928E-005 + 154.85999999999999 2.4431369399639889E-005 + 154.91999999999999 9.1142569791504441E-008 + 154.97999999999999 -2.4390289814953268E-005 + 155.03999999999999 -4.8986859554785863E-005 + 155.09999999999999 -7.3672517392519665E-005 + 155.16000000000000 -9.8421317608874610E-005 + 155.22000000000000 -1.2320741423815340E-004 + 155.28000000000000 -1.4800512254116758E-004 + 155.34000000000000 -1.7278897708102796E-004 + 155.40000000000001 -1.9753370605217195E-004 + 155.45999999999998 -2.2221430974633081E-004 + 155.51999999999998 -2.4680608038964510E-004 + 155.57999999999998 -2.7128464814745102E-004 + 155.63999999999999 -2.9562599612749103E-004 + 155.69999999999999 -3.1980644277938109E-004 + 155.75999999999999 -3.4380281774604057E-004 + 155.81999999999999 -3.6759233133173595E-004 + 155.88000000000000 -3.9115270847313581E-004 + 155.94000000000000 -4.1446210026559519E-004 + 156.00000000000000 -4.3749922340048289E-004 + 156.06000000000000 -4.6024338154241593E-004 + 156.12000000000000 -4.8267443065530449E-004 + 156.17999999999998 -5.0477269620402109E-004 + 156.23999999999998 -5.2651919812872179E-004 + 156.29999999999998 -5.4789563041035517E-004 + 156.35999999999999 -5.6888419155739546E-004 + 156.41999999999999 -5.8946779401878658E-004 + 156.47999999999999 -6.0962990818876094E-004 + 156.53999999999999 -6.2935470466940165E-004 + 156.59999999999999 -6.4862705327232799E-004 + 156.66000000000000 -6.6743242862025629E-004 + 156.72000000000000 -6.8575698069020660E-004 + 156.78000000000000 -7.0358756964379989E-004 + 156.84000000000000 -7.2091171463039053E-004 + 156.90000000000001 -7.3771751877598195E-004 + 156.95999999999998 -7.5399397703654195E-004 + 157.01999999999998 -7.6973056420938163E-004 + 157.07999999999998 -7.8491747719428820E-004 + 157.13999999999999 -7.9954556644123629E-004 + 157.19999999999999 -8.1360641594929435E-004 + 157.25999999999999 -8.2709216220093636E-004 + 157.31999999999999 -8.3999569434935835E-004 + 157.38000000000000 -8.5231048517889034E-004 + 157.44000000000000 -8.6403074419807828E-004 + 157.50000000000000 -8.7515121512077906E-004 + 157.56000000000000 -8.8566724364797108E-004 + 157.62000000000000 -8.9557484657272566E-004 + 157.67999999999998 -9.0487067953793233E-004 + 157.73999999999998 -9.1355189267433654E-004 + 157.79999999999998 -9.2161636350890212E-004 + 157.85999999999999 -9.2906238443772029E-004 + 157.91999999999999 -9.3588896625916432E-004 + 157.97999999999999 -9.4209557719992837E-004 + 158.03999999999999 -9.4768221277778393E-004 + 158.09999999999999 -9.5264947044535787E-004 + 158.16000000000000 -9.5699842940710853E-004 + 158.22000000000000 -9.6073072264125936E-004 + 158.28000000000000 -9.6384842056668424E-004 + 158.34000000000000 -9.6635415975828505E-004 + 158.40000000000001 -9.6825088226975284E-004 + 158.45999999999998 -9.6954223320301560E-004 + 158.51999999999998 -9.7023212174336985E-004 + 158.57999999999998 -9.7032507309183875E-004 + 158.63999999999999 -9.6982594402959268E-004 + 158.69999999999999 -9.6873990515213438E-004 + 158.75999999999999 -9.6707263046833588E-004 + 158.81999999999999 -9.6483007384192711E-004 + 158.88000000000000 -9.6201879722878194E-004 + 158.94000000000000 -9.5864565218060655E-004 + 159.00000000000000 -9.5471764532568818E-004 + 159.06000000000000 -9.5024232519076821E-004 + 159.12000000000000 -9.4522757034633796E-004 + 159.17999999999998 -9.3968148180283389E-004 + 159.23999999999998 -9.3361256183671561E-004 + 159.29999999999998 -9.2702964458639154E-004 + 159.35999999999999 -9.1994164824281399E-004 + 159.41999999999999 -9.1235799200437820E-004 + 159.47999999999999 -9.0428830323733579E-004 + 159.53999999999999 -8.9574226596837866E-004 + 159.59999999999999 -8.8672992627129464E-004 + 159.66000000000000 -8.7726155905268224E-004 + 159.72000000000000 -8.6734753889579656E-004 + 159.78000000000000 -8.5699853731165706E-004 + 159.84000000000000 -8.4622522784060894E-004 + 159.90000000000001 -8.3503841184583497E-004 + 159.95999999999998 -8.2344918046943613E-004 + 160.01999999999998 -8.1146853581642430E-004 + 160.07999999999998 -7.9910774267647768E-004 + 160.13999999999999 -7.8637801345917031E-004 + 160.19999999999999 -7.7329077926052529E-004 + 160.25999999999999 -7.5985737653162821E-004 + 160.31999999999999 -7.4608936909848769E-004 + 160.38000000000000 -7.3199824149954647E-004 + 160.44000000000000 -7.1759555786524414E-004 + 160.50000000000000 -7.0289292584102461E-004 + 160.56000000000000 -6.8790206628031869E-004 + 160.62000000000000 -6.7263463319749766E-004 + 160.67999999999998 -6.5710237214997556E-004 + 160.73999999999998 -6.4131698490008581E-004 + 160.79999999999998 -6.2529022269576713E-004 + 160.85999999999999 -6.0903375740742360E-004 + 160.91999999999999 -5.9255932011954577E-004 + 160.97999999999999 -5.7587857418224552E-004 + 161.03999999999999 -5.5900316317457560E-004 + 161.09999999999999 -5.4194457577433559E-004 + 161.16000000000000 -5.2471433831846983E-004 + 161.22000000000000 -5.0732384588642390E-004 + 161.28000000000000 -4.8978451415030604E-004 + 161.34000000000000 -4.7210753573943175E-004 + 161.40000000000001 -4.5430406565428203E-004 + 161.45999999999998 -4.3638518811796778E-004 + 161.51999999999998 -4.1836186958363060E-004 + 161.57999999999998 -4.0024498723470800E-004 + 161.63999999999999 -3.8204528912960808E-004 + 161.69999999999999 -3.6377354301349898E-004 + 161.75999999999999 -3.4544029015996010E-004 + 161.81999999999999 -3.2705609856842761E-004 + 161.88000000000000 -3.0863142350358731E-004 + 161.94000000000000 -2.9017660524043742E-004 + 162.00000000000000 -2.7170198487650815E-004 + 162.06000000000000 -2.5321779129870833E-004 + 162.12000000000000 -2.3473412770684581E-004 + 162.17999999999998 -2.1626109802595810E-004 + 162.23999999999998 -1.9780868471508850E-004 + 162.29999999999998 -1.7938679988728856E-004 + 162.35999999999999 -1.6100523971531315E-004 + 162.41999999999999 -1.4267373822271653E-004 + 162.47999999999999 -1.2440190248481079E-004 + 162.53999999999999 -1.0619926165647697E-004 + 162.59999999999999 -8.8075241818925953E-005 + 162.66000000000000 -7.0039133324409575E-005 + 162.72000000000000 -5.2100135290161004E-005 + 162.78000000000000 -3.4267343558249716E-005 + 162.84000000000000 -1.6549736192382297E-005 + 162.90000000000001 1.0438161611754202E-006 + 162.95999999999998 1.8504553596261596E-005 + 163.01999999999998 3.5823816833049542E-005 + 163.07999999999998 5.2993056785418584E-005 + 163.13999999999999 7.0003829016970889E-005 + 163.19999999999999 8.6847801091157010E-005 + 163.25999999999999 1.0351672509537781E-004 + 163.31999999999999 1.2000247994856437E-004 + 163.38000000000000 1.3629704041132285E-004 + 163.44000000000000 1.5239249907969698E-004 + 163.50000000000000 1.6828107080333793E-004 + 163.56000000000000 1.8395507034364207E-004 + 163.62000000000000 1.9940695492793120E-004 + 163.67999999999998 2.1462930265180971E-004 + 163.73999999999998 2.2961485197343237E-004 + 163.79999999999998 2.4435648748515678E-004 + 163.85999999999999 2.5884724241339869E-004 + 163.91999999999999 2.7308031474950015E-004 + 163.97999999999999 2.8704908868166731E-004 + 164.03999999999999 3.0074712963312587E-004 + 164.09999999999999 3.1416822072975352E-004 + 164.16000000000000 3.2730631454120702E-004 + 164.22000000000000 3.4015561010290366E-004 + 164.28000000000000 3.5271053460311222E-004 + 164.34000000000000 3.6496574630578732E-004 + 164.40000000000001 3.7691610901817625E-004 + 164.45999999999998 3.8855683247796034E-004 + 164.51999999999998 3.9988329905636932E-004 + 164.57999999999998 4.1089117469975464E-004 + 164.63999999999999 4.2157647451218942E-004 + 164.69999999999999 4.3193537678367689E-004 + 164.75999999999999 4.4196440812702587E-004 + 164.81999999999999 4.5166034731655192E-004 + 164.88000000000000 4.6102025490016275E-004 + 164.94000000000000 4.7004151753176927E-004 + 165.00000000000000 4.7872172521156055E-004 + 165.06000000000000 4.8705878921102180E-004 + 165.12000000000000 4.9505100523384996E-004 + 165.17999999999998 5.0269682357006291E-004 + 165.23999999999998 5.0999500309653926E-004 + 165.29999999999998 5.1694465805778142E-004 + 165.35999999999999 5.2354513939389935E-004 + 165.41999999999999 5.2979608911648212E-004 + 165.47999999999999 5.3569753729030439E-004 + 165.53999999999999 5.4124966920246866E-004 + 165.59999999999999 5.4645312018166694E-004 + 165.66000000000000 5.5130867944880649E-004 + 165.72000000000000 5.5581751011505546E-004 + 165.78000000000000 5.5998100997308798E-004 + 165.84000000000000 5.6380102429285902E-004 + 165.90000000000001 5.6727948859757273E-004 + 165.95999999999998 5.7041877805492274E-004 + 166.01999999999998 5.7322135467059992E-004 + 166.07999999999998 5.7569011467369948E-004 + 166.13999999999999 5.7782799766676989E-004 + 166.19999999999999 5.7963837294888038E-004 + 166.25999999999999 5.8112468292351540E-004 + 166.31999999999999 5.8229050817649444E-004 + 166.38000000000000 5.8313978644467619E-004 + 166.44000000000000 5.8367643662825383E-004 + 166.50000000000000 5.8390465387006746E-004 + 166.56000000000000 5.8382867390217711E-004 + 166.62000000000000 5.8345289243691932E-004 + 166.67999999999998 5.8278180205602456E-004 + 166.73999999999998 5.8181998076360728E-004 + 166.79999999999998 5.8057211839219558E-004 + 166.85999999999999 5.7904292543313842E-004 + 166.91999999999999 5.7723723471280364E-004 + 166.97999999999999 5.7515986939395743E-004 + 167.03999999999999 5.7281579574503623E-004 + 167.09999999999999 5.7020989454374302E-004 + 167.16000000000000 5.6734710931056326E-004 + 167.22000000000000 5.6423243167550590E-004 + 167.28000000000000 5.6087077208426944E-004 + 167.34000000000000 5.5726707951534924E-004 + 167.40000000000001 5.5342632092181775E-004 + 167.45999999999998 5.4935323362092917E-004 + 167.51999999999998 5.4505269871583288E-004 + 167.57999999999998 5.4052942005261898E-004 + 167.63999999999999 5.3578805252237202E-004 + 167.69999999999999 5.3083312337166681E-004 + 167.75999999999999 5.2566910459087750E-004 + 167.81999999999999 5.2030031653331065E-004 + 167.88000000000000 5.1473098622204427E-004 + 167.94000000000000 5.0896513919343575E-004 + 168.00000000000000 5.0300680398138273E-004 + 168.06000000000000 4.9685978712114354E-004 + 168.12000000000000 4.9052781066595574E-004 + 168.17999999999998 4.8401450971946900E-004 + 168.23999999999998 4.7732334657493242E-004 + 168.29999999999998 4.7045765065366942E-004 + 168.35999999999999 4.6342074583942075E-004 + 168.41999999999999 4.5621572527802866E-004 + 168.47999999999999 4.4884565593199358E-004 + 168.53999999999999 4.4131346419404305E-004 + 168.59999999999999 4.3362198018248013E-004 + 168.66000000000000 4.2577397291717104E-004 + 168.72000000000000 4.1777209467157522E-004 + 168.78000000000000 4.0961894926181953E-004 + 168.84000000000000 4.0131705625074814E-004 + 168.90000000000001 3.9286881898478417E-004 + 168.95999999999998 3.8427660756416013E-004 + 169.01999999999998 3.7554277514908964E-004 + 169.07999999999998 3.6666963775005467E-004 + 169.13999999999999 3.5765942518283103E-004 + 169.19999999999999 3.4851436186923945E-004 + 169.25999999999999 3.3923666799704947E-004 + 169.31999999999999 3.2982858231879014E-004 + 169.38000000000000 3.2029234690648115E-004 + 169.44000000000000 3.1063024315260531E-004 + 169.50000000000000 3.0084457518990323E-004 + 169.56000000000000 2.9093769196347470E-004 + 169.62000000000000 2.8091202516027569E-004 + 169.67999999999998 2.7077002449465531E-004 + 169.73999999999998 2.6051426080937355E-004 + 169.79999999999998 2.5014737801155732E-004 + 169.85999999999999 2.3967210579960976E-004 + 169.91999999999999 2.2909123482246196E-004 + 169.97999999999999 2.1840768385071908E-004 + 170.03999999999999 2.0762448236094237E-004 + 170.09999999999999 1.9674474573485857E-004 + 170.16000000000000 1.8577169854574360E-004 + 170.22000000000000 1.7470871744118777E-004 + 170.28000000000000 1.6355927252093388E-004 + 170.34000000000000 1.5232697119179592E-004 + 170.40000000000001 1.4101555633105184E-004 + 170.45999999999998 1.2962889007416776E-004 + 170.51999999999998 1.1817098949759842E-004 + 170.57999999999998 1.0664601755520114E-004 + 170.63999999999999 9.5058283650669898E-005 + 170.69999999999999 8.3412219848278898E-005 + 170.75999999999999 7.1712424763720759E-005 + 170.81999999999999 5.9963642765601888E-005 + 170.88000000000000 4.8170756743163353E-005 + 170.94000000000000 3.6338792556416339E-005 + 171.00000000000000 2.4472911800222601E-005 + 171.06000000000000 1.2578416079715319E-005 + 171.12000000000000 6.6072155159757859E-007 + 171.17999999999998 -1.1274623069839967E-005 + 171.23999999999998 -2.3221959222404187E-005 + 171.29999999999998 -3.5175514587568792E-005 + 171.35999999999999 -4.7129417425799617E-005 + 171.41999999999999 -5.9077701564336041E-005 + 171.47999999999999 -7.1014306922718396E-005 + 171.53999999999999 -8.2933099530801448E-005 + 171.59999999999999 -9.4827865036182244E-005 + 171.66000000000000 -1.0669231458233978E-004 + 171.72000000000000 -1.1852011413713737E-004 + 171.78000000000000 -1.3030486192883178E-004 + 171.84000000000000 -1.4204013540391493E-004 + 171.90000000000001 -1.5371943372344000E-004 + 171.95999999999998 -1.6533623472480682E-004 + 172.01999999999998 -1.7688402673703087E-004 + 172.07999999999998 -1.8835623569624226E-004 + 172.13999999999999 -1.9974630875353123E-004 + 172.19999999999999 -2.1104765728389811E-004 + 172.25999999999999 -2.2225372481445742E-004 + 172.31999999999999 -2.3335793132130185E-004 + 172.38000000000000 -2.4435373816653202E-004 + 172.44000000000000 -2.5523460955299983E-004 + 172.50000000000000 -2.6599401234433880E-004 + 172.56000000000000 -2.7662546681572368E-004 + 172.62000000000000 -2.8712253371378530E-004 + 172.67999999999998 -2.9747876152032878E-004 + 172.73999999999998 -3.0768777870301874E-004 + 172.79999999999998 -3.1774323921313454E-004 + 172.85999999999999 -3.2763879911244516E-004 + 172.91999999999999 -3.3736823636234685E-004 + 172.97999999999999 -3.4692534287670461E-004 + 173.03999999999999 -3.5630396377401207E-004 + 173.09999999999999 -3.6549804260093186E-004 + 173.16000000000000 -3.7450155404099392E-004 + 173.22000000000000 -3.8330861496765179E-004 + 173.28000000000000 -3.9191337206143057E-004 + 173.34000000000000 -4.0031011997699814E-004 + 173.40000000000001 -4.0849316080538182E-004 + 173.45999999999998 -4.1645698849630683E-004 + 173.51999999999998 -4.2419618803401452E-004 + 173.57999999999998 -4.3170540488296011E-004 + 173.63999999999999 -4.3897945256899144E-004 + 173.69999999999999 -4.4601321514592629E-004 + 173.75999999999999 -4.5280174211153657E-004 + 173.81999999999999 -4.5934012493704696E-004 + 173.88000000000000 -4.6562363880835140E-004 + 173.94000000000000 -4.7164764866527227E-004 + 174.00000000000000 -4.7740764695383475E-004 + 174.06000000000000 -4.8289925349129454E-004 + 174.12000000000000 -4.8811819020919188E-004 + 174.17999999999998 -4.9306032864178623E-004 + 174.23999999999998 -4.9772171752462480E-004 + 174.29999999999998 -5.0209848114648428E-004 + 174.35999999999999 -5.0618693587104737E-004 + 174.41999999999999 -5.0998360040162196E-004 + 174.47999999999999 -5.1348513276985495E-004 + 174.53999999999999 -5.1668839180778040E-004 + 174.59999999999999 -5.1959039792390076E-004 + 174.66000000000000 -5.2218845403787417E-004 + 174.72000000000000 -5.2447997978111085E-004 + 174.78000000000000 -5.2646274815943014E-004 + 174.84000000000000 -5.2813470586631612E-004 + 174.90000000000001 -5.2949397518602071E-004 + 174.95999999999998 -5.3053903971667375E-004 + 175.01999999999998 -5.3126863245224834E-004 + 175.07999999999998 -5.3168161935487923E-004 + 175.13999999999999 -5.3177718862691139E-004 + 175.19999999999999 -5.3155482880761623E-004 + 175.25999999999999 -5.3101425755949306E-004 + 175.31999999999999 -5.3015549635538814E-004 + 175.38000000000000 -5.2897869823719077E-004 + 175.44000000000000 -5.2748442627270468E-004 + 175.50000000000000 -5.2567340308339971E-004 + 175.56000000000000 -5.2354669398918096E-004 + 175.62000000000000 -5.2110558184479609E-004 + 175.67999999999998 -5.1835164145542861E-004 + 175.73999999999998 -5.1528665803529650E-004 + 175.79999999999998 -5.1191276374099742E-004 + 175.85999999999999 -5.0823239733653526E-004 + 175.91999999999999 -5.0424816844135483E-004 + 175.97999999999999 -4.9996293502361285E-004 + 176.03999999999999 -4.9537998813133869E-004 + 176.09999999999999 -4.9050275664158313E-004 + 176.16000000000000 -4.8533491831587590E-004 + 176.22000000000000 -4.7988044670429505E-004 + 176.28000000000000 -4.7414356977132951E-004 + 176.34000000000000 -4.6812860941739578E-004 + 176.40000000000001 -4.6184023551843585E-004 + 176.45999999999998 -4.5528323569283635E-004 + 176.51999999999998 -4.4846262531722183E-004 + 176.57999999999998 -4.4138357085951482E-004 + 176.63999999999999 -4.3405140488488622E-004 + 176.69999999999999 -4.2647161205094827E-004 + 176.75999999999999 -4.1864983026920679E-004 + 176.81999999999999 -4.1059170664147919E-004 + 176.88000000000000 -4.0230308596144837E-004 + 176.94000000000000 -3.9378989439838632E-004 + 177.00000000000000 -3.8505809118788588E-004 + 177.06000000000000 -3.7611370929385647E-004 + 177.12000000000000 -3.6696281033871082E-004 + 177.17999999999998 -3.5761156299067662E-004 + 177.23999999999998 -3.4806607781293260E-004 + 177.29999999999998 -3.3833247286287066E-004 + 177.35999999999999 -3.2841687773822650E-004 + 177.41999999999999 -3.1832542227081678E-004 + 177.47999999999999 -3.0806412253672017E-004 + 177.53999999999999 -2.9763898190428214E-004 + 177.59999999999999 -2.8705596545598402E-004 + 177.66000000000000 -2.7632089626788552E-004 + 177.72000000000000 -2.6543953008880853E-004 + 177.78000000000000 -2.5441753672516589E-004 + 177.84000000000000 -2.4326045370372297E-004 + 177.90000000000001 -2.3197370332294991E-004 + 177.95999999999998 -2.2056256746434198E-004 + 178.01999999999998 -2.0903220739204803E-004 + 178.07999999999998 -1.9738762983780277E-004 + 178.13999999999999 -1.8563370799652118E-004 + 178.19999999999999 -1.7377516581685822E-004 + 178.25999999999999 -1.6181658397244417E-004 + 178.31999999999999 -1.4976239315594045E-004 + 178.38000000000000 -1.3761687620397850E-004 + 178.44000000000000 -1.2538417602007680E-004 + 178.50000000000000 -1.1306828935548228E-004 + 178.56000000000000 -1.0067308230534656E-004 + 178.62000000000000 -8.8202282851586276E-005 + 178.67999999999998 -7.5659487507479727E-005 + 178.73999999999998 -6.3048178900747390E-005 + 178.79999999999998 -5.0371720824921158E-005 + 178.85999999999999 -3.7633370838362802E-005 + 178.91999999999999 -2.4836291637672976E-005 + 178.97999999999999 -1.1983566199128124E-005 + 179.03999999999999 9.2180393401480729E-007 + 179.09999999999999 1.3876871752288761E-005 + 179.16000000000000 2.6878742876916374E-005 + 179.22000000000000 3.9924554912707533E-005 + 179.28000000000000 5.3011471141146609E-005 + 179.34000000000000 6.6136655237733556E-005 + 179.40000000000001 7.9297275074331013E-005 + 179.45999999999998 9.2490477111393650E-005 + 179.51999999999998 1.0571337367929046E-004 + 179.57999999999998 1.1896304572889347E-004 + 179.63999999999999 1.3223652447957391E-004 + 179.69999999999999 1.4553076498281320E-004 + 179.75999999999999 1.5884264626726317E-004 + 179.81999999999999 1.7216899215824187E-004 + 179.88000000000000 1.8550652530142971E-004 + 179.94000000000000 1.9885187371090237E-004 + 180.00000000000000 2.1220153455557664E-004 + 180.06000000000000 2.2555191854824804E-004 + 180.12000000000000 2.3889931086943460E-004 + 180.17999999999998 2.5223984580423510E-004 + 180.23999999999998 2.6556958717271096E-004 + 180.29999999999998 2.7888437398679262E-004 + 180.35999999999999 2.9217995892666176E-004 + 180.41999999999999 3.0545193061405862E-004 + 180.47999999999999 3.1869569286177601E-004 + 180.53999999999999 3.3190650917875176E-004 + 180.59999999999999 3.4507952340718742E-004 + 180.66000000000000 3.5820971453420330E-004 + 180.72000000000000 3.7129186576201963E-004 + 180.78000000000000 3.8432068747739262E-004 + 180.84000000000000 3.9729069410246958E-004 + 180.90000000000001 4.1019633900551901E-004 + 180.95999999999998 4.2303191751980713E-004 + 181.01999999999998 4.3579157337406653E-004 + 181.07999999999998 4.4846943545208488E-004 + 181.13999999999999 4.6105949528004993E-004 + 181.19999999999999 4.7355562648027203E-004 + 181.25999999999999 4.8595164467374997E-004 + 181.31999999999999 4.9824141320975273E-004 + 181.38000000000000 5.1041855402237551E-004 + 181.44000000000000 5.2247677734083798E-004 + 181.50000000000000 5.3440962647962709E-004 + 181.56000000000000 5.4621070496681994E-004 + 181.62000000000000 5.5787357771171990E-004 + 181.67999999999998 5.6939170856020621E-004 + 181.73999999999998 5.8075862886980032E-004 + 181.79999999999998 5.9196786608394609E-004 + 181.85999999999999 6.0301291884388411E-004 + 181.91999999999999 6.1388732849991534E-004 + 181.97999999999999 6.2458467854032492E-004 + 182.03999999999999 6.3509853374343558E-004 + 182.09999999999999 6.4542256625364552E-004 + 182.16000000000000 6.5555053626630108E-004 + 182.22000000000000 6.6547627514832136E-004 + 182.28000000000000 6.7519366246744943E-004 + 182.34000000000000 6.8469672714357749E-004 + 182.39999999999998 6.9397967905694181E-004 + 182.45999999999998 7.0303674811141882E-004 + 182.51999999999998 7.1186231875199600E-004 + 182.57999999999998 7.2045088447354386E-004 + 182.63999999999999 7.2879718116768133E-004 + 182.69999999999999 7.3689599688956764E-004 + 182.75999999999999 7.4474224807457169E-004 + 182.81999999999999 7.5233101782658132E-004 + 182.88000000000000 7.5965745275256564E-004 + 182.94000000000000 7.6671691134092240E-004 + 183.00000000000000 7.7350489712884913E-004 + 183.06000000000000 7.8001685035251054E-004 + 183.12000000000000 7.8624851682126766E-004 + 183.17999999999998 7.9219560029052908E-004 + 183.23999999999998 7.9785400860731220E-004 + 183.29999999999998 8.0321978966269557E-004 + 183.35999999999999 8.0828898086119435E-004 + 183.41999999999999 8.1305782638329757E-004 + 183.47999999999999 8.1752263979151501E-004 + 183.53999999999999 8.2167979217325621E-004 + 183.59999999999999 8.2552590254641556E-004 + 183.66000000000000 8.2905763031484862E-004 + 183.72000000000000 8.3227172084357796E-004 + 183.78000000000000 8.3516500502880833E-004 + 183.84000000000000 8.3773454339050254E-004 + 183.89999999999998 8.3997743550535064E-004 + 183.95999999999998 8.4189082136596903E-004 + 184.01999999999998 8.4347206841846193E-004 + 184.07999999999998 8.4471855209447349E-004 + 184.13999999999999 8.4562780210166867E-004 + 184.19999999999999 8.4619744698858019E-004 + 184.25999999999999 8.4642523170111092E-004 + 184.31999999999999 8.4630890870451500E-004 + 184.38000000000000 8.4584648687153151E-004 + 184.44000000000000 8.4503594503066337E-004 + 184.50000000000000 8.4387539846588009E-004 + 184.56000000000000 8.4236315021646931E-004 + 184.62000000000000 8.4049749688065787E-004 + 184.67999999999998 8.3827695064393574E-004 + 184.73999999999998 8.3570011324773225E-004 + 184.79999999999998 8.3276573911719839E-004 + 184.85999999999999 8.2947260311885156E-004 + 184.91999999999999 8.2581986534617090E-004 + 184.97999999999999 8.2180664138788195E-004 + 185.03999999999999 8.1743230809689369E-004 + 185.09999999999999 8.1269631192187506E-004 + 185.16000000000000 8.0759849810500253E-004 + 185.22000000000000 8.0213867814621701E-004 + 185.28000000000000 7.9631701910414421E-004 + 185.34000000000000 7.9013385372055057E-004 + 185.39999999999998 7.8358983469344068E-004 + 185.45999999999998 7.7668573066887300E-004 + 185.51999999999998 7.6942269033049076E-004 + 185.57999999999998 7.6180206023873165E-004 + 185.63999999999999 7.5382557765060656E-004 + 185.69999999999999 7.4549514616771757E-004 + 185.75999999999999 7.3681309667511399E-004 + 185.81999999999999 7.2778204564707754E-004 + 185.88000000000000 7.1840501838014298E-004 + 185.94000000000000 7.0868525747701098E-004 + 186.00000000000000 6.9862651530426675E-004 + 186.06000000000000 6.8823282079818690E-004 + 186.12000000000000 6.7750852474417721E-004 + 186.17999999999998 6.6645850048300615E-004 + 186.23999999999998 6.5508780644961721E-004 + 186.29999999999998 6.4340204375170490E-004 + 186.35999999999999 6.3140715999864189E-004 + 186.41999999999999 6.1910949777579558E-004 + 186.47999999999999 6.0651579750543600E-004 + 186.53999999999999 5.9363316507678350E-004 + 186.59999999999999 5.8046910844342884E-004 + 186.66000000000000 5.6703159433273750E-004 + 186.72000000000000 5.5332892009493184E-004 + 186.78000000000000 5.3936984830790704E-004 + 186.84000000000000 5.2516353938266097E-004 + 186.89999999999998 5.1071953159622882E-004 + 186.95999999999998 4.9604781205924374E-004 + 187.01999999999998 4.8115867329698672E-004 + 187.07999999999998 4.6606286843652847E-004 + 187.13999999999999 4.5077149404145302E-004 + 187.19999999999999 4.3529602175171865E-004 + 187.25999999999999 4.1964827254958273E-004 + 187.31999999999999 4.0384038680090319E-004 + 187.38000000000000 3.8788480081409062E-004 + 187.44000000000000 3.7179430218001078E-004 + 187.50000000000000 3.5558188004886949E-004 + 187.56000000000000 3.3926079729447244E-004 + 187.62000000000000 3.2284457457596794E-004 + 187.67999999999998 3.0634692870985998E-004 + 187.73999999999998 2.8978172831262556E-004 + 187.79999999999998 2.7316304773029431E-004 + 187.85999999999999 2.5650507920915131E-004 + 187.91999999999999 2.3982214705486985E-004 + 187.97999999999999 2.2312868634611789E-004 + 188.03999999999999 2.0643921507992912E-004 + 188.09999999999999 1.8976829509225802E-004 + 188.16000000000000 1.7313053043149264E-004 + 188.22000000000000 1.5654055792248462E-004 + 188.28000000000000 1.4001301310179664E-004 + 188.34000000000000 1.2356246373399952E-004 + 188.39999999999998 1.0720345912550982E-004 + 188.45999999999998 9.0950449732455719E-005 + 188.51999999999998 7.4817793509102812E-005 + 188.57999999999998 5.8819707144995372E-005 + 188.63999999999999 4.2970268717917333E-005 + 188.69999999999999 2.7283352057538185E-005 + 188.75999999999999 1.1772634110547503E-005 + 188.81999999999999 -3.5484518881059384E-006 + 188.88000000000000 -1.8666719196007545E-005 + 188.94000000000000 -3.3569261149035112E-005 + 189.00000000000000 -4.8243468231272282E-005 + 189.06000000000000 -6.2677063629875738E-005 + 189.12000000000000 -7.6858097070691669E-005 + 189.17999999999998 -9.0774979899126314E-005 + 189.23999999999998 -1.0441649574307113E-004 + 189.29999999999998 -1.1777181256582140E-004 + 189.35999999999999 -1.3083049718835127E-004 + 189.41999999999999 -1.4358255187569652E-004 + 189.47999999999999 -1.5601841061408365E-004 + 189.53999999999999 -1.6812893476304323E-004 + 189.59999999999999 -1.7990543971387063E-004 + 189.66000000000000 -1.9133970776227991E-004 + 189.72000000000000 -2.0242401760206327E-004 + 189.78000000000000 -2.1315112553662685E-004 + 189.84000000000000 -2.2351428712503454E-004 + 189.89999999999998 -2.3350727944067851E-004 + 189.95999999999998 -2.4312436187913717E-004 + 190.01999999999998 -2.5236034546536370E-004 + 190.07999999999998 -2.6121053686432904E-004 + 190.13999999999999 -2.6967074819002357E-004 + 190.19999999999999 -2.7773735208415525E-004 + 190.25999999999999 -2.8540717917236965E-004 + 190.31999999999999 -2.9267759126362132E-004 + 190.38000000000000 -2.9954652333022934E-004 + 190.44000000000000 -3.0601234397464931E-004 + 190.50000000000000 -3.1207390391014623E-004 + 190.56000000000000 -3.1773057072913242E-004 + 190.62000000000000 -3.2298216414768121E-004 + 190.67999999999998 -3.2782899827737434E-004 + 190.73999999999998 -3.3227183811281627E-004 + 190.79999999999998 -3.3631189583652204E-004 + 190.85999999999999 -3.3995084171734887E-004 + 190.91999999999999 -3.4319076192854565E-004 + 190.97999999999999 -3.4603415221115270E-004 + 191.03999999999999 -3.4848398775257457E-004 + 191.09999999999999 -3.5054356344463902E-004 + 191.16000000000000 -3.5221664463153547E-004 + 191.22000000000000 -3.5350733276252991E-004 + 191.28000000000000 -3.5442011677179724E-004 + 191.34000000000000 -3.5495980789813095E-004 + 191.39999999999998 -3.5513160189972907E-004 + 191.45999999999998 -3.5494097258635936E-004 + 191.51999999999998 -3.5439371508705548E-004 + 191.57999999999998 -3.5349592788645653E-004 + 191.63999999999999 -3.5225392514404960E-004 + 191.69999999999999 -3.5067435075163849E-004 + 191.75999999999999 -3.4876402904786876E-004 + 191.81999999999999 -3.4653000096619615E-004 + 191.88000000000000 -3.4397956112953569E-004 + 191.94000000000000 -3.4112011549511156E-004 + 192.00000000000000 -3.3795931965527548E-004 + 192.06000000000000 -3.3450492622962399E-004 + 192.12000000000000 -3.3076487069543518E-004 + 192.17999999999998 -3.2674719816834399E-004 + 192.23999999999998 -3.2246006131868315E-004 + 192.29999999999998 -3.1791175379618762E-004 + 192.35999999999999 -3.1311063170110312E-004 + 192.41999999999999 -3.0806514502549519E-004 + 192.47999999999999 -3.0278373884747413E-004 + 192.53999999999999 -2.9727497223260306E-004 + 192.59999999999999 -2.9154746190666409E-004 + 192.66000000000000 -2.8560978530482170E-004 + 192.72000000000000 -2.7947060889628548E-004 + 192.78000000000000 -2.7313853705855824E-004 + 192.84000000000000 -2.6662215719537190E-004 + 192.89999999999998 -2.5993012264683731E-004 + 192.95999999999998 -2.5307097699017999E-004 + 193.01999999999998 -2.4605324604616384E-004 + 193.07999999999998 -2.3888546207833072E-004 + 193.13999999999999 -2.3157603587674205E-004 + 193.19999999999999 -2.2413336502924674E-004 + 193.25999999999999 -2.1656575602681965E-004 + 193.31999999999999 -2.0888145968801398E-004 + 193.38000000000000 -2.0108866052541386E-004 + 193.44000000000000 -1.9319545962758901E-004 + 193.50000000000000 -1.8520984334564588E-004 + 193.56000000000000 -1.7713972105997598E-004 + 193.62000000000000 -1.6899291441713877E-004 + 193.67999999999998 -1.6077711381639912E-004 + 193.73999999999998 -1.5249991414218302E-004 + 193.79999999999998 -1.4416878824570216E-004 + 193.85999999999999 -1.3579109757967875E-004 + 193.91999999999999 -1.2737405997299592E-004 + 193.97999999999999 -1.1892478251892021E-004 + 194.03999999999999 -1.1045021055644872E-004 + 194.09999999999999 -1.0195718383955705E-004 + 194.16000000000000 -9.3452392628588711E-005 + 194.22000000000000 -8.4942408171379916E-005 + 194.28000000000000 -7.6433653963984966E-005 + 194.34000000000000 -6.7932427123800900E-005 + 194.39999999999998 -5.9444901889476772E-005 + 194.45999999999998 -5.0977133199590406E-005 + 194.51999999999998 -4.2535048727711257E-005 + 194.57999999999998 -3.4124466188292418E-005 + 194.63999999999999 -2.5751080319848779E-005 + 194.69999999999999 -1.7420480607029284E-005 + 194.75999999999999 -9.1381439419038111E-006 + 194.81999999999999 -9.0943028485182068E-007 + 194.88000000000000 7.2604071778240301E-006 + 194.94000000000000 1.5366225124217819E-005 + 195.00000000000000 2.3402992583833902E-005 + 195.06000000000000 3.1365797411257775E-005 + 195.12000000000000 3.9249837050823149E-005 + 195.17999999999998 4.7050421852346551E-005 + 195.23999999999998 5.4762985763975230E-005 + 195.29999999999998 6.2383079279603867E-005 + 195.35999999999999 6.9906360734384317E-005 + 195.41999999999999 7.7328609434248145E-005 + 195.47999999999999 8.4645721478357865E-005 + 195.53999999999999 9.1853707357608905E-005 + 195.59999999999999 9.8948691593929547E-005 + 195.66000000000000 1.0592688608916815E-004 + 195.72000000000000 1.1278463763026788E-004 + 195.78000000000000 1.1951837753669272E-004 + 195.84000000000000 1.2612466080332143E-004 + 195.89999999999998 1.3260011776875002E-004 + 195.95999999999998 1.3894150204052738E-004 + 196.01999999999998 1.4514564309581383E-004 + 196.07999999999998 1.5120948796167901E-004 + 196.13999999999999 1.5713010524401875E-004 + 196.19999999999999 1.6290464217191619E-004 + 196.25999999999999 1.6853033485313707E-004 + 196.31999999999999 1.7400454844938146E-004 + 196.38000000000000 1.7932476086401103E-004 + 196.44000000000000 1.8448856849554457E-004 + 196.50000000000000 1.8949365898593334E-004 + 196.56000000000000 1.9433784196472436E-004 + 196.62000000000000 1.9901905968722639E-004 + 196.67999999999998 2.0353537668375067E-004 + 196.73999999999998 2.0788494635328719E-004 + 196.79999999999998 2.1206606838401889E-004 + 196.85999999999999 2.1607716981797865E-004 + 196.91999999999999 2.1991677373010693E-004 + 196.97999999999999 2.2358357441974451E-004 + 197.03999999999999 2.2707637080866512E-004 + 197.09999999999999 2.3039408930067789E-004 + 197.16000000000000 2.3353576819473704E-004 + 197.22000000000000 2.3650060958539936E-004 + 197.28000000000000 2.3928794857112489E-004 + 197.34000000000000 2.4189720051418962E-004 + 197.39999999999998 2.4432795344703375E-004 + 197.45999999999998 2.4657993129700330E-004 + 197.51999999999998 2.4865297906494200E-004 + 197.57999999999998 2.5054704216925349E-004 + 197.63999999999999 2.5226226266820680E-004 + 197.69999999999999 2.5379883424025312E-004 + 197.75999999999999 2.5515712140362277E-004 + 197.81999999999999 2.5633763664269574E-004 + 197.88000000000000 2.5734098031431074E-004 + 197.94000000000000 2.5816787736737294E-004 + 198.00000000000000 2.5881917825955640E-004 + 198.06000000000000 2.5929589770132044E-004 + 198.12000000000000 2.5959912507520411E-004 + 198.17999999999998 2.5973008105543077E-004 + 198.23999999999998 2.5969015271248765E-004 + 198.29999999999998 2.5948082671248127E-004 + 198.35999999999999 2.5910375628100224E-004 + 198.41999999999999 2.5856069589100082E-004 + 198.47999999999999 2.5785356255082900E-004 + 198.53999999999999 2.5698438073568233E-004 + 198.59999999999999 2.5595532343218331E-004 + 198.66000000000000 2.5476871532691472E-004 + 198.72000000000000 2.5342706023133860E-004 + 198.78000000000000 2.5193296346615203E-004 + 198.84000000000000 2.5028912565362894E-004 + 198.89999999999998 2.4849847605667861E-004 + 198.95999999999998 2.4656400920562363E-004 + 199.01999999999998 2.4448888181186014E-004 + 199.07999999999998 2.4227639947599941E-004 + 199.13999999999999 2.3992992999477319E-004 + 199.19999999999999 2.3745296516784691E-004 + 199.25999999999999 2.3484916366250472E-004 + 199.31999999999999 2.3212222797755645E-004 + 199.38000000000000 2.2927606631063184E-004 + 199.44000000000000 2.2631456774611325E-004 + 199.50000000000000 2.2324175336137505E-004 + 199.56000000000000 2.2006180887937675E-004 + 199.62000000000000 2.1677897819881675E-004 + 199.67999999999998 2.1339760215550318E-004 + 199.73999999999998 2.0992213043053730E-004 + 199.79999999999998 2.0635711595611960E-004 + 199.85999999999999 2.0270722432542051E-004 + 199.91999999999999 1.9897720314464672E-004 + 199.97999999999999 1.9517193507974530E-004 + 200.03999999999999 1.9129637627414282E-004 + 200.09999999999999 1.8735559890775455E-004 + 200.16000000000000 1.8335478068641823E-004 + 200.22000000000000 1.7929920573669022E-004 + 200.28000000000000 1.7519422081633697E-004 + 200.34000000000000 1.7104529923626095E-004 + 200.39999999999998 1.6685798340611551E-004 + 200.45999999999998 1.6263790322701955E-004 + 200.51999999999998 1.5839076923695498E-004 + 200.57999999999998 1.5412237780770642E-004 + 200.63999999999999 1.4983856525696630E-004 + 200.69999999999999 1.4554525130192671E-004 + 200.75999999999999 1.4124842290908304E-004 + 200.81999999999999 1.3695411250297715E-004 + 200.88000000000000 1.3266840506000503E-004 + 200.94000000000000 1.2839745047726672E-004 + 201.00000000000000 1.2414740949406671E-004 + 201.06000000000000 1.1992450297574734E-004 + 201.12000000000000 1.1573503091030036E-004 + 201.17999999999998 1.1158527438788822E-004 + 201.23999999999998 1.0748159061993983E-004 + 201.29999999999998 1.0343034494256536E-004 + 201.35999999999999 9.9437934520595745E-005 + 201.41999999999999 9.5510773635616939E-005 + 201.47999999999999 9.1655305501824199E-005 + 201.53999999999999 8.7877972340037072E-005 + 201.59999999999999 8.4185221945183648E-005 + 201.66000000000000 8.0583506528691506E-005 + 201.72000000000000 7.7079246917827397E-005 + 201.78000000000000 7.3678852352798851E-005 + 201.84000000000000 7.0388700327098712E-005 + 201.89999999999998 6.7215129462861112E-005 + 201.95999999999998 6.4164421002329357E-005 + 202.01999999999998 6.1242792706260558E-005 + 202.07999999999998 5.8456402536544256E-005 + 202.13999999999999 5.5811307249147021E-005 + 202.19999999999999 5.3313488159517335E-005 + 202.25999999999999 5.0968796735145046E-005 + 202.31999999999999 4.8782984478335463E-005 + 202.38000000000000 4.6761667352547526E-005 + 202.44000000000000 4.4910317187063726E-005 + 202.50000000000000 4.3234264684614551E-005 + 202.56000000000000 4.1738663504630415E-005 + 202.62000000000000 4.0428503008302599E-005 + 202.67999999999998 3.9308579834925364E-005 + 202.73999999999998 3.8383495490120154E-005 + 202.79999999999998 3.7657638907960353E-005 + 202.85999999999999 3.7135176939326366E-005 + 202.91999999999999 3.6820046932694611E-005 + 202.97999999999999 3.6715934285973805E-005 + 203.03999999999999 3.6826264676706051E-005 + 203.09999999999999 3.7154198327714878E-005 + 203.16000000000000 3.7702606189855141E-005 + 203.22000000000000 3.8474064021496646E-005 + 203.28000000000000 3.9470838132810726E-005 + 203.34000000000000 4.0694877679289083E-005 + 203.39999999999998 4.2147785309007433E-005 + 203.45999999999998 4.3830821594547955E-005 + 203.51999999999998 4.5744889913967625E-005 + 203.57999999999998 4.7890515884783497E-005 + 203.63999999999999 5.0267850033798326E-005 + 203.69999999999999 5.2876643175041743E-005 + 203.75999999999999 5.5716245547714621E-005 + 203.81999999999999 5.8785604317976093E-005 + 203.88000000000000 6.2083231731207433E-005 + 203.94000000000000 6.5607231756616607E-005 + 204.00000000000000 6.9355279839513191E-005 + 204.06000000000000 7.3324614632379407E-005 + 204.12000000000000 7.7512041508408133E-005 + 204.17999999999998 8.1913921143547411E-005 + 204.23999999999998 8.6526197741104433E-005 + 204.29999999999998 9.1344381779954261E-005 + 204.35999999999999 9.6363540614100753E-005 + 204.41999999999999 1.0157831864658023E-004 + 204.47999999999999 1.0698294077470598E-004 + 204.53999999999999 1.1257119233002235E-004 + 204.59999999999999 1.1833647776000228E-004 + 204.66000000000000 1.2427176322268521E-004 + 204.72000000000000 1.3036962905685291E-004 + 204.78000000000000 1.3662224055151545E-004 + 204.84000000000000 1.4302139547345228E-004 + 204.89999999999998 1.4955847827660741E-004 + 204.95999999999998 1.5622452898079135E-004 + 205.01999999999998 1.6301022046052643E-004 + 205.07999999999998 1.6990586971949256E-004 + 205.13999999999999 1.7690145104998749E-004 + 205.19999999999999 1.8398660646287582E-004 + 205.25999999999999 1.9115070625870680E-004 + 205.31999999999999 1.9838281638935365E-004 + 205.38000000000000 2.0567172297622282E-004 + 205.44000000000000 2.1300597381470091E-004 + 205.50000000000000 2.2037387644823414E-004 + 205.56000000000000 2.2776357712663814E-004 + 205.62000000000000 2.3516301634222105E-004 + 205.67999999999998 2.4255997514056830E-004 + 205.73999999999998 2.4994213747906699E-004 + 205.79999999999998 2.5729706626562192E-004 + 205.85999999999999 2.6461228135289997E-004 + 205.91999999999999 2.7187525495286896E-004 + 205.97999999999999 2.7907339540702756E-004 + 206.03999999999999 2.8619420138857588E-004 + 206.09999999999999 2.9322510320131586E-004 + 206.16000000000000 3.0015370521179548E-004 + 206.22000000000000 3.0696761454308353E-004 + 206.28000000000000 3.1365456129400614E-004 + 206.34000000000000 3.2020245375333103E-004 + 206.39999999999998 3.2659931888238860E-004 + 206.45999999999998 3.3283336699703345E-004 + 206.51999999999998 3.3889303346859210E-004 + 206.57999999999998 3.4476695851762111E-004 + 206.63999999999999 3.5044406827138431E-004 + 206.69999999999999 3.5591360925651104E-004 + 206.75999999999999 3.6116506299093705E-004 + 206.81999999999999 3.6618831088607278E-004 + 206.88000000000000 3.7097360614302805E-004 + 206.94000000000000 3.7551154001242760E-004 + 207.00000000000000 3.7979315867830575E-004 + 207.06000000000000 3.8380992050903422E-004 + 207.12000000000000 3.8755376768421812E-004 + 207.17999999999998 3.9101710330459319E-004 + 207.23999999999998 3.9419288966272936E-004 + 207.29999999999998 3.9707454748075087E-004 + 207.35999999999999 3.9965604559359831E-004 + 207.41999999999999 4.0193191433444535E-004 + 207.47999999999999 4.0389721080645683E-004 + 207.53999999999999 4.0554762857757104E-004 + 207.59999999999999 4.0687934727851483E-004 + 207.66000000000000 4.0788917951767285E-004 + 207.72000000000000 4.0857446634857264E-004 + 207.78000000000000 4.0893321003120271E-004 + 207.84000000000000 4.0896395329471729E-004 + 207.89999999999998 4.0866580352370922E-004 + 207.95999999999998 4.0803848889880366E-004 + 208.01999999999998 4.0708229894625313E-004 + 208.07999999999998 4.0579810310101521E-004 + 208.13999999999999 4.0418735583593605E-004 + 208.19999999999999 4.0225209366927337E-004 + 208.25999999999999 3.9999491360260799E-004 + 208.31999999999999 3.9741892620647715E-004 + 208.38000000000000 3.9452784481374591E-004 + 208.44000000000000 3.9132591888815625E-004 + 208.50000000000000 3.8781794946028084E-004 + 208.56000000000000 3.8400922550116385E-004 + 208.62000000000000 3.7990554061056027E-004 + 208.68000000000001 3.7551317495401011E-004 + 208.74000000000001 3.7083891501878667E-004 + 208.80000000000001 3.6588999505721327E-004 + 208.86000000000001 3.6067407252214889E-004 + 208.92000000000002 3.5519920775141476E-004 + 208.98000000000002 3.4947384631625156E-004 + 209.03999999999996 3.4350682284467135E-004 + 209.09999999999997 3.3730724632106382E-004 + 209.15999999999997 3.3088461722852918E-004 + 209.21999999999997 3.2424865932851964E-004 + 209.27999999999997 3.1740935414100005E-004 + 209.33999999999997 3.1037691588973229E-004 + 209.39999999999998 3.0316172046206526E-004 + 209.45999999999998 2.9577434061809878E-004 + 209.51999999999998 2.8822548080786805E-004 + 209.57999999999998 2.8052594442875856E-004 + 209.63999999999999 2.7268664455084538E-004 + 209.69999999999999 2.6471848898404379E-004 + 209.75999999999999 2.5663248686361612E-004 + 209.81999999999999 2.4843959359952022E-004 + 209.88000000000000 2.4015077869911570E-004 + 209.94000000000000 2.3177701735012057E-004 + 210.00000000000000 2.2332914088319986E-004 + 210.06000000000000 2.1481794527044838E-004 + 210.12000000000000 2.0625411976541669E-004 + 210.18000000000001 1.9764822066227250E-004 + 210.24000000000001 1.8901066358254659E-004 + 210.30000000000001 1.8035170948806656E-004 + 210.36000000000001 1.7168142559770207E-004 + 210.42000000000002 1.6300969826154265E-004 + 210.48000000000002 1.5434617266389067E-004 + 210.53999999999996 1.4570028227267894E-004 + 210.59999999999997 1.3708119946009869E-004 + 210.65999999999997 1.2849778947470291E-004 + 210.71999999999997 1.1995866832116769E-004 + 210.77999999999997 1.1147212536397413E-004 + 210.83999999999997 1.0304613233650982E-004 + 210.89999999999998 9.4688345371958163E-005 + 210.95999999999998 8.6406043419192896E-005 + 211.01999999999998 7.8206185092151204E-005 + 211.07999999999998 7.0095327287686507E-005 + 211.13999999999999 6.2079686093187458E-005 + 211.19999999999999 5.4165094589262747E-005 + 211.25999999999999 4.6357004837357203E-005 + 211.31999999999999 3.8660512572488718E-005 + 211.38000000000000 3.1080320179725405E-005 + 211.44000000000000 2.3620767824337376E-005 + 211.50000000000000 1.6285829606002639E-005 + 211.56000000000000 9.0791363278716860E-006 + 211.62000000000000 2.0039576431405719E-006 + 211.68000000000001 -4.9367758334058853E-006 + 211.74000000000001 -1.1740470544421506E-005 + 211.80000000000001 -1.8404849015808113E-005 + 211.86000000000001 -2.4927952961401424E-005 + 211.92000000000002 -3.1308132556371342E-005 + 211.98000000000002 -3.7544026267722730E-005 + 212.03999999999996 -4.3634567823695930E-005 + 212.09999999999997 -4.9578976701762292E-005 + 212.15999999999997 -5.5376732533230329E-005 + 212.21999999999997 -6.1027591215670750E-005 + 212.27999999999997 -6.6531554862619572E-005 + 212.33999999999997 -7.1888878550288116E-005 + 212.39999999999998 -7.7100048757131501E-005 + 212.45999999999998 -8.2165779752309254E-005 + 212.51999999999998 -8.7086990849756098E-005 + 212.57999999999998 -9.1864819100551492E-005 + 212.63999999999999 -9.6500587518040458E-005 + 212.69999999999999 -1.0099579272209548E-004 + 212.75999999999999 -1.0535209296666557E-004 + 212.81999999999999 -1.0957129320214554E-004 + 212.88000000000000 -1.1365534111531916E-004 + 212.94000000000000 -1.1760629548177145E-004 + 213.00000000000000 -1.2142632199704433E-004 + 213.06000000000000 -1.2511766213161652E-004 + 213.12000000000000 -1.2868265176061726E-004 + 213.18000000000001 -1.3212367478423312E-004 + 213.24000000000001 -1.3544317750922277E-004 + 213.30000000000001 -1.3864365404153218E-004 + 213.36000000000001 -1.4172757729459271E-004 + 213.42000000000002 -1.4469749865620105E-004 + 213.48000000000002 -1.4755596472641765E-004 + 213.53999999999996 -1.5030550312005066E-004 + 213.59999999999997 -1.5294864058722769E-004 + 213.65999999999997 -1.5548792998921598E-004 + 213.71999999999997 -1.5792587456479659E-004 + 213.77999999999997 -1.6026494506865584E-004 + 213.83999999999997 -1.6250759837535406E-004 + 213.89999999999998 -1.6465629292862271E-004 + 213.95999999999998 -1.6671339082119846E-004 + 214.01999999999998 -1.6868126129713083E-004 + 214.07999999999998 -1.7056218435682109E-004 + 214.13999999999999 -1.7235842572376042E-004 + 214.19999999999999 -1.7407217245603434E-004 + 214.25999999999999 -1.7570556530243983E-004 + 214.31999999999999 -1.7726066943888136E-004 + 214.38000000000000 -1.7873948368845479E-004 + 214.44000000000000 -1.8014393340704132E-004 + 214.50000000000000 -1.8147589265018492E-004 + 214.56000000000000 -1.8273713094683607E-004 + 214.62000000000000 -1.8392935125460724E-004 + 214.68000000000001 -1.8505416282259138E-004 + 214.74000000000001 -1.8611310026268030E-004 + 214.80000000000001 -1.8710760443514353E-004 + 214.86000000000001 -1.8803906049985586E-004 + 214.92000000000002 -1.8890873117346824E-004 + 214.98000000000002 -1.8971781336768725E-004 + 215.03999999999996 -1.9046745947950226E-004 + 215.09999999999997 -1.9115869894310210E-004 + 215.15999999999997 -1.9179253062552026E-004 + 215.21999999999997 -1.9236984093371921E-004 + 215.27999999999997 -1.9289149316762742E-004 + 215.33999999999997 -1.9335827892211132E-004 + 215.39999999999998 -1.9377091875086628E-004 + 215.45999999999998 -1.9413014405891230E-004 + 215.51999999999998 -1.9443655965347551E-004 + 215.57999999999998 -1.9469079982568734E-004 + 215.63999999999999 -1.9489342223129454E-004 + 215.69999999999999 -1.9504498697757035E-004 + 215.75999999999999 -1.9514600516216116E-004 + 215.81999999999999 -1.9519698010070442E-004 + 215.88000000000000 -1.9519838516286487E-004 + 215.94000000000000 -1.9515070015074191E-004 + 216.00000000000000 -1.9505434314549507E-004 + 216.06000000000000 -1.9490976186238636E-004 + 216.12000000000000 -1.9471737473838641E-004 + 216.18000000000001 -1.9447758417151121E-004 + 216.24000000000001 -1.9419078798890656E-004 + 216.30000000000001 -1.9385735961334206E-004 + 216.36000000000001 -1.9347766414623202E-004 + 216.42000000000002 -1.9305207808730505E-004 + 216.48000000000002 -1.9258093008097285E-004 + 216.53999999999996 -1.9206455851472208E-004 + 216.59999999999997 -1.9150331695185727E-004 + 216.65999999999997 -1.9089753737733597E-004 + 216.71999999999997 -1.9024756985371380E-004 + 216.77999999999997 -1.8955374084225283E-004 + 216.83999999999997 -1.8881642660165801E-004 + 216.89999999999998 -1.8803601936878532E-004 + 216.95999999999998 -1.8721291294427559E-004 + 217.01999999999998 -1.8634753148401314E-004 + 217.07999999999998 -1.8544035122700073E-004 + 217.13999999999999 -1.8449188211746534E-004 + 217.19999999999999 -1.8350267823377100E-004 + 217.25999999999999 -1.8247331248204678E-004 + 217.31999999999999 -1.8140443148465473E-004 + 217.38000000000000 -1.8029673795105138E-004 + 217.44000000000000 -1.7915097554882110E-004 + 217.50000000000000 -1.7796793181493726E-004 + 217.56000000000000 -1.7674843874643684E-004 + 217.62000000000000 -1.7549339171140117E-004 + 217.68000000000001 -1.7420371790381550E-004 + 217.74000000000001 -1.7288039713621498E-004 + 217.80000000000001 -1.7152443129543897E-004 + 217.86000000000001 -1.7013685804573268E-004 + 217.92000000000002 -1.6871876844274584E-004 + 217.98000000000002 -1.6727124003573665E-004 + 218.03999999999996 -1.6579541513333948E-004 + 218.09999999999997 -1.6429243906792264E-004 + 218.15999999999997 -1.6276349010845378E-004 + 218.21999999999997 -1.6120975647914822E-004 + 218.27999999999997 -1.5963244995930798E-004 + 218.33999999999997 -1.5803280544787762E-004 + 218.39999999999998 -1.5641205451173216E-004 + 218.45999999999998 -1.5477147778967783E-004 + 218.51999999999998 -1.5311233591968661E-004 + 218.57999999999998 -1.5143593723199568E-004 + 218.63999999999999 -1.4974359010167757E-004 + 218.69999999999999 -1.4803662786061971E-004 + 218.75999999999999 -1.4631639307061353E-004 + 218.81999999999999 -1.4458421384357093E-004 + 218.88000000000000 -1.4284146251097811E-004 + 218.94000000000000 -1.4108950199055208E-004 + 219.00000000000000 -1.3932970003823324E-004 + 219.06000000000000 -1.3756341927969852E-004 + 219.12000000000000 -1.3579200696764386E-004 + 219.18000000000001 -1.3401680027213880E-004 + 219.24000000000001 -1.3223911304000656E-004 + 219.30000000000001 -1.3046025905549957E-004 + 219.36000000000001 -1.2868150923904257E-004 + 219.42000000000002 -1.2690408204041499E-004 + 219.48000000000002 -1.2512920726968739E-004 + 219.53999999999996 -1.2335802882928356E-004 + 219.59999999999997 -1.2159166653346855E-004 + 219.65999999999997 -1.1983119705843791E-004 + 219.71999999999997 -1.1807765262213168E-004 + 219.77999999999997 -1.1633201060716963E-004 + 219.83999999999997 -1.1459519939384381E-004 + 219.89999999999998 -1.1286810395999575E-004 + 219.95999999999998 -1.1115155995097864E-004 + 220.01999999999998 -1.0944635753330996E-004 + 220.07999999999998 -1.0775324516575209E-004 + 220.13999999999999 -1.0607291317604812E-004 + 220.19999999999999 -1.0440602045790682E-004 + 220.25999999999999 -1.0275317309223665E-004 + 220.31999999999999 -1.0111493621006120E-004 + 220.38000000000000 -9.9491829275845327E-005 + 220.44000000000000 -9.7884331021386259E-005 + 220.50000000000000 -9.6292866584881537E-005 + 220.56000000000000 -9.4717818157776386E-005 + 220.62000000000000 -9.3159509682996011E-005 + 220.68000000000001 -9.1618235446102965E-005 + 220.74000000000001 -9.0094214592063013E-005 + 220.80000000000001 -8.8587616455219523E-005 + 220.86000000000001 -8.7098543728019598E-005 + 220.92000000000002 -8.5627068058687116E-005 + 220.98000000000002 -8.4173178149629877E-005 + 221.03999999999996 -8.2736810918161181E-005 + 221.09999999999997 -8.1317846747779431E-005 + 221.15999999999997 -7.9916111848741286E-005 + 221.21999999999997 -7.8531367589641110E-005 + 221.27999999999997 -7.7163338433350348E-005 + 221.33999999999997 -7.5811701136160913E-005 + 221.39999999999998 -7.4476079186638051E-005 + 221.45999999999998 -7.3156056980878609E-005 + 221.51999999999998 -7.1851206470965922E-005 + 221.57999999999998 -7.0561060812672190E-005 + 221.63999999999999 -6.9285126008021236E-005 + 221.69999999999999 -6.8022911639556061E-005 + 221.75999999999999 -6.6773892827665945E-005 + 221.81999999999999 -6.5537559612926101E-005 + 221.88000000000000 -6.4313383600088616E-005 + 221.94000000000000 -6.3100834042409331E-005 + 222.00000000000000 -6.1899394331974176E-005 + 222.06000000000000 -6.0708532821297719E-005 + 222.12000000000000 -5.9527739124864301E-005 + 222.18000000000001 -5.8356495340376587E-005 + 222.24000000000001 -5.7194292137458587E-005 + 222.30000000000001 -5.6040615870243447E-005 + 222.36000000000001 -5.4894956989367966E-005 + 222.42000000000002 -5.3756808181612377E-005 + 222.48000000000002 -5.2625656921635943E-005 + 222.53999999999996 -5.1501004797805511E-005 + 222.59999999999997 -5.0382343384237535E-005 + 222.65999999999997 -4.9269177776978284E-005 + 222.71999999999997 -4.8161017682768744E-005 + 222.77999999999997 -4.7057381799272706E-005 + 222.83999999999997 -4.5957811665298477E-005 + 222.89999999999998 -4.4861867631542996E-005 + 222.95999999999998 -4.3769131724315572E-005 + 223.01999999999998 -4.2679219145617467E-005 + 223.07999999999998 -4.1591781858108518E-005 + 223.13999999999999 -4.0506517834749840E-005 + 223.19999999999999 -3.9423162852849497E-005 + 223.25999999999999 -3.8341503811969998E-005 + 223.31999999999999 -3.7261379522620668E-005 + 223.38000000000000 -3.6182681585475654E-005 + 223.44000000000000 -3.5105352461879002E-005 + 223.50000000000000 -3.4029384782247435E-005 + 223.56000000000000 -3.2954824184892809E-005 + 223.62000000000000 -3.1881767051859470E-005 + 223.68000000000001 -3.0810348444525279E-005 + 223.74000000000001 -2.9740752327743563E-005 + 223.80000000000001 -2.8673200396103183E-005 + 223.86000000000001 -2.7607951378730826E-005 + 223.92000000000002 -2.6545291206465206E-005 + 223.98000000000002 -2.5485547921735514E-005 + 224.03999999999996 -2.4429073826793091E-005 + 224.09999999999997 -2.3376253434594279E-005 + 224.15999999999997 -2.2327498658655754E-005 + 224.21999999999997 -2.1283256144593765E-005 + 224.27999999999997 -2.0243997814574855E-005 + 224.33999999999997 -1.9210237002657694E-005 + 224.39999999999998 -1.8182514923947160E-005 + 224.45999999999998 -1.7161413391146846E-005 + 224.51999999999998 -1.6147547756047581E-005 + 224.57999999999998 -1.5141570411203175E-005 + 224.63999999999999 -1.4144171237132872E-005 + 224.69999999999999 -1.3156077747310205E-005 + 224.75999999999999 -1.2178049360745159E-005 + 224.81999999999999 -1.1210873150304042E-005 + 224.88000000000000 -1.0255366245133893E-005 + 224.94000000000000 -9.3123656021978418E-006 + 225.00000000000000 -8.3827251274602985E-006 + 225.06000000000000 -7.4673087834134951E-006 + 225.12000000000000 -6.5669863584167926E-006 + 225.18000000000001 -5.6826237826475606E-006 + 225.24000000000001 -4.8150799821948026E-006 + 225.30000000000001 -3.9652000639419554E-006 + 225.36000000000001 -3.1338079441058622E-006 + 225.42000000000002 -2.3217020830808580E-006 + 225.48000000000002 -1.5296504257975527E-006 + 225.53999999999996 -7.5838381406233184E-007 + 225.59999999999997 -8.5937896118542822E-009 + 225.65999999999997 7.1907474695443810E-007 + 225.71999999999997 1.4240247872396500E-006 + 225.77999999999997 2.1057131169164674E-006 + 225.83999999999997 2.7636542132168546E-006 + 225.89999999999998 3.3974239050419130E-006 + 225.95999999999998 4.0066634046867319E-006 + 226.01999999999998 4.5910837042543980E-006 + 226.07999999999998 5.1504697953700991E-006 + 226.13999999999999 5.6846852028266917E-006 + 226.19999999999999 6.1936751991583181E-006 + 226.25999999999999 6.6774719229039625E-006 + 226.31999999999999 7.1361980291454050E-006 + 226.38000000000000 7.5700701340349986E-006 + 226.44000000000000 7.9794035343069348E-006 + 226.50000000000000 8.3646153787376861E-006 + 226.56000000000000 8.7262267786165434E-006 + 226.62000000000000 9.0648670522676367E-006 + 226.68000000000001 9.3812767077846648E-006 + 226.74000000000001 9.6763090914745105E-006 + 226.80000000000001 9.9509317759579888E-006 + 226.86000000000001 1.0206230681274969E-005 + 226.92000000000002 1.0443413174519695E-005 + 226.98000000000002 1.0663806077932179E-005 + 227.03999999999996 1.0868860494262360E-005 + 227.09999999999997 1.1060151198005506E-005 + 227.15999999999997 1.1239381663734768E-005 + 227.21999999999997 1.1408379693865016E-005 + 227.27999999999997 1.1569103195594154E-005 + 227.33999999999997 1.1723639021232887E-005 + 227.39999999999998 1.1874201093307379E-005 + 227.45999999999998 1.2023132737256692E-005 + 227.51999999999998 1.2172905479726112E-005 + 227.57999999999998 1.2326116342053045E-005 + 227.63999999999999 1.2485486192851453E-005 + 227.69999999999999 1.2653859805147538E-005 + 227.75999999999999 1.2834201660876977E-005 + 227.81999999999999 1.3029593138603900E-005 + 227.88000000000000 1.3243230941200352E-005 + 227.94000000000000 1.3478420276031684E-005 + 228.00000000000000 1.3738574694451102E-005 + 228.06000000000000 1.4027210330219283E-005 + 228.12000000000000 1.4347945023057790E-005 + 228.18000000000001 1.4704489702365959E-005 + 228.24000000000001 1.5100648834414362E-005 + 228.30000000000001 1.5540309495829874E-005 + 228.36000000000001 1.6027442731600527E-005 + 228.42000000000002 1.6566097947904362E-005 + 228.48000000000002 1.7160392674431025E-005 + 228.53999999999996 1.7814508640548204E-005 + 228.59999999999997 1.8532690003602349E-005 + 228.65999999999997 1.9319230233817081E-005 + 228.71999999999997 2.0178465780294233E-005 + 228.77999999999997 2.1114771947729231E-005 + 228.83999999999997 2.2132553130825367E-005 + 228.89999999999998 2.3236229067902859E-005 + 228.95999999999998 2.4430237752020536E-005 + 229.01999999999998 2.5719015736795262E-005 + 229.07999999999998 2.7106991485711008E-005 + 229.13999999999999 2.8598582494969112E-005 + 229.19999999999999 3.0198174333691910E-005 + 229.25999999999999 3.1910122546875301E-005 + 229.31999999999999 3.3738734191634993E-005 + 229.38000000000000 3.5688260945142340E-005 + 229.44000000000000 3.7762889266475204E-005 + 229.50000000000000 3.9966725008418213E-005 + 229.56000000000000 4.2303787474430747E-005 + 229.62000000000000 4.4777987969886797E-005 + 229.68000000000001 4.7393127886765548E-005 + 229.74000000000001 5.0152873334875504E-005 + 229.80000000000001 5.3060754681007665E-005 + 229.86000000000001 5.6120138791791751E-005 + 229.92000000000002 5.9334222046834653E-005 + 229.97999999999996 6.2706011872897351E-005 + 230.03999999999996 6.6238306519116307E-005 + 230.09999999999997 6.9933693994552305E-005 + 230.15999999999997 7.3794526161074893E-005 + 230.21999999999997 7.7822905809866473E-005 + 230.27999999999997 8.2020682287613456E-005 + 230.33999999999997 8.6389423726926948E-005 + 230.39999999999998 9.0930414427173363E-005 + 230.45999999999998 9.5644656614554295E-005 + 230.51999999999998 1.0053282969389290E-004 + 230.57999999999998 1.0559529277860395E-004 + 230.63999999999999 1.1083210327083990E-004 + 230.69999999999999 1.1624295223344330E-004 + 230.75999999999999 1.2182719364104561E-004 + 230.81999999999999 1.2758383700947401E-004 + 230.88000000000000 1.3351150026697382E-004 + 230.94000000000000 1.3960842792525125E-004 + 231.00000000000000 1.4587248572330228E-004 + 231.06000000000000 1.5230112422226708E-004 + 231.12000000000000 1.5889139743396308E-004 + 231.18000000000001 1.6563988643218100E-004 + 231.24000000000001 1.7254279323578698E-004 + 231.30000000000001 1.7959585263117650E-004 + 231.36000000000001 1.8679431279875012E-004 + 231.42000000000002 1.9413300093541259E-004 + 231.47999999999996 2.0160625110519586E-004 + 231.53999999999996 2.0920796140135896E-004 + 231.59999999999997 2.1693152379213967E-004 + 231.65999999999997 2.2476988839644822E-004 + 231.71999999999997 2.3271554478425916E-004 + 231.77999999999997 2.4076051763291168E-004 + 231.83999999999997 2.4889640527528747E-004 + 231.89999999999998 2.5711434716218541E-004 + 231.95999999999998 2.6540508915496403E-004 + 232.01999999999998 2.7375893356003969E-004 + 232.07999999999998 2.8216580074956981E-004 + 232.13999999999999 2.9061523438043225E-004 + 232.19999999999999 2.9909643710310371E-004 + 232.25999999999999 3.0759819637435972E-004 + 232.31999999999999 3.1610902707197424E-004 + 232.38000000000000 3.2461705412256491E-004 + 232.44000000000000 3.3311014196025216E-004 + 232.50000000000000 3.4157585961898618E-004 + 232.56000000000000 3.5000146224311923E-004 + 232.62000000000000 3.5837397423111586E-004 + 232.68000000000001 3.6668013280924871E-004 + 232.74000000000001 3.7490647280827744E-004 + 232.80000000000001 3.8303933616884445E-004 + 232.86000000000001 3.9106484626219253E-004 + 232.92000000000002 3.9896898291949041E-004 + 232.97999999999996 4.0673760871539488E-004 + 233.03999999999996 4.1435644449300420E-004 + 233.09999999999997 4.2181117184356143E-004 + 233.15999999999997 4.2908739910388420E-004 + 233.21999999999997 4.3617077611719123E-004 + 233.27999999999997 4.4304693169414984E-004 + 233.33999999999997 4.4970161822258049E-004 + 233.39999999999998 4.5612066038706645E-004 + 233.45999999999998 4.6229001652582950E-004 + 233.51999999999998 4.6819585790701390E-004 + 233.57999999999998 4.7382455301294590E-004 + 233.63999999999999 4.7916274189987686E-004 + 233.69999999999999 4.8419731583247282E-004 + 233.75999999999999 4.8891553587647387E-004 + 233.81999999999999 4.9330499472015267E-004 + 233.88000000000000 4.9735367369011646E-004 + 233.94000000000000 5.0104996732751696E-004 + 234.00000000000000 5.0438272401368044E-004 + 234.06000000000000 5.0734130931129155E-004 + 234.12000000000000 5.0991552262732802E-004 + 234.18000000000001 5.1209578863345916E-004 + 234.24000000000001 5.1387286806765635E-004 + 234.30000000000001 5.1523833392581799E-004 + 234.36000000000001 5.1618433718491393E-004 + 234.42000000000002 5.1670355242716172E-004 + 234.47999999999996 5.1678938531253321E-004 + 234.53999999999996 5.1643583649850370E-004 + 234.59999999999997 5.1563760424791960E-004 + 234.65999999999997 5.1439019940695784E-004 + 234.71999999999997 5.1268967185863848E-004 + 234.77999999999997 5.1053298925400083E-004 + 234.83999999999997 5.0791782439381600E-004 + 234.89999999999998 5.0484258606501838E-004 + 234.95999999999998 5.0130653772199017E-004 + 235.01999999999998 4.9730970506161709E-004 + 235.07999999999998 4.9285293043200770E-004 + 235.13999999999999 4.8793790934378834E-004 + 235.19999999999999 4.8256713543099470E-004 + 235.25999999999999 4.7674392789119076E-004 + 235.31999999999999 4.7047239470679030E-004 + 235.38000000000000 4.6375760157835920E-004 + 235.44000000000000 4.5660526212915260E-004 + 235.50000000000000 4.4902202028325163E-004 + 235.56000000000000 4.4101527864306934E-004 + 235.62000000000000 4.3259317839072168E-004 + 235.68000000000001 4.2376466115035292E-004 + 235.74000000000001 4.1453942907639866E-004 + 235.80000000000001 4.0492788901606109E-004 + 235.86000000000001 3.9494107959222924E-004 + 235.92000000000002 3.8459075571847730E-004 + 235.97999999999996 3.7388935420732344E-004 + 236.03999999999996 3.6284985101752738E-004 + 236.09999999999997 3.5148580107265197E-004 + 236.15999999999997 3.3981138858078482E-004 + 236.21999999999997 3.2784127225404097E-004 + 236.27999999999997 3.1559064431850852E-004 + 236.33999999999997 3.0307512926698593E-004 + 236.39999999999998 2.9031082259813046E-004 + 236.45999999999998 2.7731423009460035E-004 + 236.51999999999998 2.6410225026590219E-004 + 236.57999999999998 2.5069210944538440E-004 + 236.63999999999999 2.3710137197753854E-004 + 236.69999999999999 2.2334788607126011E-004 + 236.75999999999999 2.0944975570424582E-004 + 236.81999999999999 1.9542528302586611E-004 + 236.88000000000000 1.8129296230613053E-004 + 236.94000000000000 1.6707136018105683E-004 + 237.00000000000000 1.5277917812058238E-004 + 237.06000000000000 1.3843513010233877E-004 + 237.12000000000000 1.2405794138185044E-004 + 237.18000000000001 1.0966627996907087E-004 + 237.24000000000001 9.5278741819563342E-005 + 237.30000000000001 8.0913738678660803E-005 + 237.36000000000001 6.6589525916544237E-005 + 237.42000000000002 5.2324136541564529E-005 + 237.47999999999996 3.8135328739912665E-005 + 237.53999999999996 2.4040563030147251E-005 + 237.59999999999997 1.0056977826059831E-005 + 237.65999999999997 -3.7986859663340891E-006 + 237.71999999999997 -1.7510044921966693E-005 + 237.77999999999997 -3.1061160298334861E-005 + 237.83999999999997 -4.4436532830989907E-005 + 237.89999999999998 -5.7621132976155230E-005 + 237.95999999999998 -7.0600429049077091E-005 + 238.01999999999998 -8.3360407310120949E-005 + 238.07999999999998 -9.5887571234505673E-005 + 238.13999999999999 -1.0816897594717335E-004 + 238.19999999999999 -1.2019225396583700E-004 + 238.25999999999999 -1.3194562352430487E-004 + 238.31999999999999 -1.4341789081709241E-004 + 238.38000000000000 -1.5459849932836193E-004 + 238.44000000000000 -1.6547749975009211E-004 + 238.50000000000000 -1.7604560510460602E-004 + 238.56000000000000 -1.8629418137119472E-004 + 238.62000000000000 -1.9621524731695927E-004 + 238.68000000000001 -2.0580153963292442E-004 + 238.74000000000001 -2.1504643081374775E-004 + 238.80000000000001 -2.2394400965677192E-004 + 238.86000000000001 -2.3248907991625924E-004 + 238.92000000000002 -2.4067708494555963E-004 + 238.97999999999996 -2.4850421144547645E-004 + 239.03999999999996 -2.5596731807300669E-004 + 239.09999999999997 -2.6306394438808180E-004 + 239.15999999999997 -2.6979233047749220E-004 + 239.21999999999997 -2.7615135248022115E-004 + 239.27999999999997 -2.8214057910015542E-004 + 239.33999999999997 -2.8776022641611201E-004 + 239.39999999999998 -2.9301106707015090E-004 + 239.45999999999998 -2.9789458071285128E-004 + 239.51999999999998 -3.0241276824430563E-004 + 239.57999999999998 -3.0656827340491493E-004 + 239.63999999999999 -3.1036423518564801E-004 + 239.69999999999999 -3.1380437968671023E-004 + 239.75999999999999 -3.1689288844604643E-004 + 239.81999999999999 -3.1963445207444175E-004 + 239.88000000000000 -3.2203428724423763E-004 + 239.94000000000000 -3.2409800205171929E-004 + 240.00000000000000 -3.2583164499398509E-004 + 240.06000000000000 -3.2724164464143803E-004 + 240.12000000000000 -3.2833485967316334E-004 + 240.18000000000001 -3.2911846935819385E-004 + 240.24000000000001 -3.2960002003232057E-004 + 240.30000000000001 -3.2978735458088934E-004 + 240.36000000000001 -3.2968859161463604E-004 + 240.42000000000002 -3.2931221557894365E-004 + 240.47999999999996 -3.2866685431776630E-004 + 240.53999999999996 -3.2776144940527215E-004 + 240.59999999999997 -3.2660514379330934E-004 + 240.65999999999997 -3.2520720789639248E-004 + 240.71999999999997 -3.2357716267564262E-004 + 240.77999999999997 -3.2172461238929445E-004 + 240.83999999999997 -3.1965926001767181E-004 + 240.89999999999998 -3.1739099410597237E-004 + 240.95999999999998 -3.1492969966065285E-004 + 241.01999999999998 -3.1228527938868578E-004 + 241.07999999999998 -3.0946765814890534E-004 + 241.13999999999999 -3.0648674863272099E-004 + 241.19999999999999 -3.0335246495624739E-004 + 241.25999999999999 -3.0007460513680644E-004 + 241.31999999999999 -2.9666287284744119E-004 + 241.38000000000000 -2.9312686161932027E-004 + 241.44000000000000 -2.8947606378180502E-004 + 241.50000000000000 -2.8571978085420013E-004 + 241.56000000000000 -2.8186719334609959E-004 + 241.62000000000000 -2.7792724948030070E-004 + 241.68000000000001 -2.7390872992260555E-004 + 241.74000000000001 -2.6982024673585916E-004 + 241.80000000000001 -2.6567012712562868E-004 + 241.86000000000001 -2.6146656600072434E-004 + 241.92000000000002 -2.5721749719808556E-004 + 241.97999999999996 -2.5293061818893765E-004 + 242.03999999999996 -2.4861341909784737E-004 + 242.09999999999997 -2.4427310741720554E-004 + 242.15999999999997 -2.3991665186847111E-004 + 242.21999999999997 -2.3555084305900299E-004 + 242.27999999999997 -2.3118211408475797E-004 + 242.33999999999997 -2.2681666334929023E-004 + 242.39999999999998 -2.2246046457125688E-004 + 242.45999999999998 -2.1811912257703746E-004 + 242.51999999999998 -2.1379799283261999E-004 + 242.57999999999998 -2.0950211000771488E-004 + 242.63999999999999 -2.0523623351309967E-004 + 242.69999999999999 -2.0100477854040761E-004 + 242.75999999999999 -1.9681186245238411E-004 + 242.81999999999999 -1.9266127154973013E-004 + 242.88000000000000 -1.8855648560732512E-004 + 242.94000000000000 -1.8450065014430033E-004 + 243.00000000000000 -1.8049662830305128E-004 + 243.06000000000000 -1.7654696369914880E-004 + 243.12000000000000 -1.7265390423956359E-004 + 243.18000000000001 -1.6881941158014636E-004 + 243.24000000000001 -1.6504515989123386E-004 + 243.30000000000001 -1.6133258527391511E-004 + 243.36000000000001 -1.5768284360525073E-004 + 243.42000000000002 -1.5409688148948194E-004 + 243.47999999999996 -1.5057537501132279E-004 + 243.53999999999996 -1.4711881596767332E-004 + 243.59999999999997 -1.4372749246505432E-004 + 243.65999999999997 -1.4040147661881989E-004 + 243.71999999999997 -1.3714069896324208E-004 + 243.77999999999997 -1.3394486271355082E-004 + 243.83999999999997 -1.3081353644080413E-004 + 243.89999999999998 -1.2774614413704278E-004 + 243.95999999999998 -1.2474192707390909E-004 + 244.01999999999998 -1.2180000813546628E-004 + 244.07999999999998 -1.1891936723034095E-004 + 244.13999999999999 -1.1609883891161091E-004 + 244.19999999999999 -1.1333715995123675E-004 + 244.25999999999999 -1.1063294838692374E-004 + 244.31999999999999 -1.0798470227133877E-004 + 244.38000000000000 -1.0539082425267967E-004 + 244.44000000000000 -1.0284963401813643E-004 + 244.50000000000000 -1.0035935568272418E-004 + 244.56000000000000 -9.7918169724551911E-005 + 244.62000000000000 -9.5524180165807555E-005 + 244.68000000000001 -9.3175447182439287E-005 + 244.74000000000001 -9.0870004800568176E-005 + 244.80000000000001 -8.8605870101658349E-005 + 244.86000000000001 -8.6381052964760248E-005 + 244.92000000000002 -8.4193561778871792E-005 + 244.97999999999996 -8.2041423619178279E-005 + 245.03999999999996 -7.9922705795264150E-005 + 245.09999999999997 -7.7835506621001853E-005 + 245.15999999999997 -7.5777982685965088E-005 + 245.21999999999997 -7.3748350330125450E-005 + 245.27999999999997 -7.1744886351212813E-005 + 245.33999999999997 -6.9765952969432594E-005 + 245.39999999999998 -6.7809981242828474E-005 + 245.45999999999998 -6.5875491010993165E-005 + 245.51999999999998 -6.3961087787193062E-005 + 245.57999999999998 -6.2065450540477521E-005 + 245.63999999999999 -6.0187357237580939E-005 + 245.69999999999999 -5.8325668008076678E-005 + 245.75999999999999 -5.6479317351442657E-005 + 245.81999999999999 -5.4647326108519028E-005 + 245.88000000000000 -5.2828799553625717E-005 + 245.94000000000000 -5.1022918344246738E-005 + 246.00000000000000 -4.9228949480079877E-005 + 246.06000000000000 -4.7446235079787274E-005 + 246.12000000000000 -4.5674199806807523E-005 + 246.18000000000001 -4.3912357968969383E-005 + 246.24000000000001 -4.2160307652818656E-005 + 246.30000000000001 -4.0417736756894089E-005 + 246.36000000000001 -3.8684435850159177E-005 + 246.42000000000002 -3.6960288874729664E-005 + 246.47999999999996 -3.5245280920982845E-005 + 246.53999999999996 -3.3539508000182005E-005 + 246.59999999999997 -3.1843172860135446E-005 + 246.65999999999997 -3.0156582235432001E-005 + 246.71999999999997 -2.8480152146010605E-005 + 246.77999999999997 -2.6814404139925401E-005 + 246.83999999999997 -2.5159953415922116E-005 + 246.89999999999998 -2.3517514818670450E-005 + 246.95999999999998 -2.1887886486108308E-005 + 247.01999999999998 -2.0271943734399248E-005 + 247.07999999999998 -1.8670631096715765E-005 + 247.13999999999999 -1.7084950693953924E-005 + 247.19999999999999 -1.5515953448599406E-005 + 247.25999999999999 -1.3964727347842326E-005 + 247.31999999999999 -1.2432390740132093E-005 + 247.38000000000000 -1.0920082478918689E-005 + 247.44000000000000 -9.4289570665689408E-006 + 247.50000000000000 -7.9601812695600279E-006 + 247.56000000000000 -6.5149271729663273E-006 + 247.62000000000000 -5.0943704870070016E-006 + 247.68000000000001 -3.6996930036917333E-006 + 247.74000000000001 -2.3320796553012876E-006 + 247.80000000000001 -9.9272000377654823E-007 + 247.86000000000001 3.1718958454223134E-007 + 247.92000000000002 1.5964464924730255E-006 + 247.97999999999996 2.8438407806196096E-006 + 248.03999999999996 4.0581548579108632E-006 + 248.09999999999997 5.2381664218583139E-006 + 248.15999999999997 6.3826525385027889E-006 + 248.21999999999997 7.4903893708202215E-006 + 248.27999999999997 8.5601627349856291E-006 + 248.33999999999997 9.5907717820586969E-006 + 248.39999999999998 1.0581038308775042E-005 + 248.45999999999998 1.1529816436648601E-005 + 248.51999999999998 1.2435997944068316E-005 + 248.57999999999998 1.3298527591019745E-005 + 248.63999999999999 1.4116401645888491E-005 + 248.69999999999999 1.4888688174336186E-005 + 248.75999999999999 1.5614521569015133E-005 + 248.81999999999999 1.6293121475267811E-005 + 248.88000000000000 1.6923783541990161E-005 + 248.94000000000000 1.7505891140009613E-005 + 249.00000000000000 1.8038918181146405E-005 + 249.06000000000000 1.8522418901076156E-005 + 249.12000000000000 1.8956037514603619E-005 + 249.18000000000001 1.9339502343419567E-005 + 249.24000000000001 1.9672620660087440E-005 + 249.30000000000001 1.9955276501398913E-005 + 249.36000000000001 2.0187428880499238E-005 + 249.42000000000002 2.0369112244795291E-005 + 249.47999999999996 2.0500422724287002E-005 + 249.53999999999996 2.0581521979074254E-005 + 249.59999999999997 2.0612638975132454E-005 + 249.65999999999997 2.0594062054882469E-005 + 249.71999999999997 2.0526139701478833E-005 + 249.77999999999997 2.0409280752322107E-005 + 249.83999999999997 2.0243956778156268E-005 + 249.89999999999998 2.0030699128289630E-005 + 249.95999999999998 1.9770099920502823E-005 + 250.01999999999998 1.9462818629422711E-005 + 250.07999999999998 1.9109574191502463E-005 + 250.13999999999999 1.8711153428176418E-005 + 250.19999999999999 1.8268407532370848E-005 + 250.25999999999999 1.7782256995135107E-005 + 250.31999999999999 1.7253687966185236E-005 + 250.38000000000000 1.6683749664239817E-005 + 250.44000000000000 1.6073557977684771E-005 + 250.50000000000000 1.5424291900461169E-005 + 250.56000000000000 1.4737191436262284E-005 + 250.62000000000000 1.4013552312107968E-005 + 250.68000000000001 1.3254724160409334E-005 + 250.74000000000001 1.2462108379890967E-005 + 250.80000000000001 1.1637151075007145E-005 + 250.86000000000001 1.0781335874342106E-005 + 250.92000000000002 9.8961814522128995E-006 + 250.97999999999996 8.9832345230235939E-006 + 251.03999999999996 8.0440611033704556E-006 + 251.09999999999997 7.0802441479333911E-006 + 251.15999999999997 6.0933716209064429E-006 + 251.21999999999997 5.0850370860333761E-006 + 251.27999999999997 4.0568296068591454E-006 + 251.33999999999997 3.0103299421717065E-006 + 251.39999999999998 1.9471055006541187E-006 + 251.45999999999998 8.6870805985043289E-007 + 251.51999999999998 -2.2333132552776417E-007 + 251.57999999999998 -1.3275028216784437E-006 + 251.63999999999999 -2.4423205910378562E-006 + 251.69999999999999 -3.5663227569302760E-006 + 251.75999999999999 -4.6980723036525982E-006 + 251.81999999999999 -5.8361571795978917E-006 + 251.88000000000000 -6.9791910721118175E-006 + 251.94000000000000 -8.1258115655958061E-006 diff --git a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000000.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000000.BXY.semd new file mode 100644 index 00000000..19dcbd51 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000000.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 7.2266133582118980E-040 + 9.5399999999999991 1.8173820470092260E-039 + 9.5999999999999943 3.0690579755267261E-039 + 9.6599999999999966 4.4776892852095209E-039 + 9.7199999999999989 5.8863205948923157E-039 + 9.7800000000000011 7.1428765374633996E-039 + 9.8399999999999963 7.8034796458200550E-039 + 9.8999999999999986 7.2915424809379965E-039 + 9.9600000000000009 5.7030263102384579E-039 + 10.019999999999996 2.8098460989809246E-039 + 10.079999999999998 -1.3001138280316339E-039 + 10.140000000000001 -6.1009481544981573E-039 + 10.199999999999996 -1.1440682272342822E-038 + 10.259999999999998 -1.6780417045530810E-038 + 10.320000000000000 -2.1470103669919924E-038 + 10.379999999999995 -2.4783029313431301E-038 + 10.439999999999998 -2.6013585820355057E-038 + 10.500000000000000 -2.1485635306671410E-038 + 10.559999999999995 -1.3942389872980798E-038 + 10.619999999999997 -3.3251864617385301E-039 + 10.680000000000000 1.2617502362857970E-038 + 10.739999999999995 3.0605081894751767E-038 + 10.799999999999997 4.9498637038061379E-038 + 10.859999999999999 6.4188872202482570E-038 + 10.919999999999995 6.7060230079581437E-038 + 10.979999999999997 5.2898290364530329E-038 + 11.039999999999999 2.4144250536108362E-038 + 11.099999999999994 -1.9760352650622225E-038 + 11.159999999999997 -7.0455569569560684E-038 + 11.219999999999999 -1.2351767455523189E-037 + 11.280000000000001 -1.7868126183124889E-037 + 11.339999999999996 -2.3099289030525806E-037 + 11.399999999999999 -2.7105360466825137E-037 + 11.460000000000001 -2.7519647956902206E-037 + 11.519999999999996 -2.2394665323079562E-037 + 11.579999999999998 -1.1370586416802308E-037 + 11.640000000000001 3.0371892040734029E-038 + 11.699999999999996 1.9933368114441397E-037 + 11.759999999999998 3.8447198736136705E-037 + 11.820000000000000 5.9090053130625381E-037 + 11.879999999999995 7.8856563258181288E-037 + 11.939999999999998 9.1154669067042958E-037 + 12.000000000000000 9.0927043330662528E-037 + 12.059999999999995 7.7229467443663647E-037 + 12.119999999999997 4.9676573577349575E-037 + 12.180000000000000 8.5106783799276722E-038 + 12.239999999999995 -4.0366907742110555E-037 + 12.299999999999997 -9.2862989360590671E-037 + 12.359999999999999 -1.4623638747048113E-036 + 12.419999999999995 -1.9462718660450906E-036 + 12.479999999999997 -2.3443721871334205E-036 + 12.539999999999999 -2.5624945517182532E-036 + 12.599999999999994 -2.5297458696285488E-036 + 12.659999999999997 -2.2136194477163089E-036 + 12.719999999999999 -1.5878413207851567E-036 + 12.780000000000001 -6.8675513582433493E-037 + 12.839999999999996 4.3639050031683728E-037 + 12.899999999999999 1.7084731952136768E-036 + 12.960000000000001 2.9962535906637586E-036 + 13.019999999999996 4.0595604248080094E-036 + 13.079999999999998 4.6105579973778940E-036 + 13.140000000000001 4.4228286752795054E-036 + 13.199999999999996 3.3783200886920355E-036 + 13.259999999999998 1.4800286273126889E-036 + 13.320000000000000 -1.3925364408760836E-036 + 13.379999999999995 -5.1108008838838440E-036 + 13.439999999999998 -9.3361232404259675E-036 + 13.500000000000000 -1.3683272024210578E-035 + 13.559999999999995 -1.7599241561066957E-035 + 13.619999999999997 -2.0302468048350060E-035 + 13.680000000000000 -2.1129396710931356E-035 + 13.739999999999995 -1.9455870678147641E-035 + 13.799999999999997 -1.4781957134499535E-035 + 13.859999999999999 -6.8040643740284157E-036 + 13.919999999999995 4.4442550389847274E-036 + 13.979999999999997 1.8781898987329756E-035 + 14.039999999999999 3.5743081865405029E-035 + 14.099999999999994 5.3858257082513891E-035 + 14.159999999999997 7.1604161595934980E-035 + 14.219999999999999 8.7111740610505344E-035 + 14.280000000000001 9.8337451528580276E-035 + 14.339999999999996 1.0309722972192866E-034 + 14.399999999999999 9.9247799613742702E-035 + 14.460000000000001 8.4954437566983215E-035 + 14.519999999999996 5.8959205667498312E-035 + 14.579999999999998 2.0795366063379677E-035 + 14.640000000000001 -2.9329950290910248E-035 + 14.699999999999996 -8.9715300273695010E-035 + 14.759999999999998 -1.5766154676727905E-034 + 14.820000000000000 -2.2901844478042257E-034 + 14.879999999999995 -2.9838414073485836E-034 + 14.939999999999998 -3.5913706551322768E-034 + 15.000000000000000 -4.0382040358845961E-034 + 15.059999999999995 -4.2455549272628541E-034 + 15.119999999999997 -4.1363457036113150E-034 + 15.180000000000000 -3.6447148802286268E-034 + 15.239999999999995 -2.7222959042690803E-034 + 15.299999999999997 -1.3431237871451608E-034 + 15.359999999999999 4.8278077491360691E-035 + 15.419999999999995 2.7056896374184189E-034 + 15.479999999999997 5.2287715269153162E-034 + 15.539999999999999 7.9062981703029169E-034 + 15.599999999999994 1.0544405587956526E-033 + 15.659999999999997 1.2905906104310893E-033 + 15.719999999999999 1.4721072185778694E-033 + 15.780000000000001 1.5702681002602898E-033 + 15.839999999999996 1.5566663259487191E-033 + 15.899999999999999 1.4055234748783680E-033 + 15.960000000000001 1.0967284166497941E-033 + 16.019999999999996 6.1870097037278339E-034 + 16.079999999999998 -2.8547878003528213E-035 + 16.140000000000001 -8.3078359322082325E-034 + 16.200000000000003 -1.7573339347340591E-033 + 16.259999999999991 -2.7598831313601916E-033 + 16.319999999999993 -3.7723771760823976E-033 + 16.379999999999995 -4.7124144395524063E-033 + 16.439999999999998 -5.4843042426540708E-033 + 16.500000000000000 -5.9839343018024486E-033 + 16.560000000000002 -6.1054674397436087E-033 + 16.620000000000005 -5.7495963810883469E-033 + 16.679999999999993 -4.8333159058919286E-033 + 16.739999999999995 -3.3004636040593767E-033 + 16.799999999999997 -1.1324251108701861E-033 + 16.859999999999999 1.6416586433070234E-033 + 16.920000000000002 4.9363995697611182E-033 + 16.980000000000004 8.6042750700211075E-033 + 17.039999999999992 1.2433446844189036E-032 + 17.099999999999994 1.6150288717678930E-032 + 17.159999999999997 1.9427467062360143E-032 + 17.219999999999999 2.1898122235979407E-032 + 17.280000000000001 2.3176409437953571E-032 + 17.340000000000003 2.2884144924545473E-032 + 17.399999999999991 2.0682709483464276E-032 + 17.459999999999994 1.6308963436305806E-032 + 17.519999999999996 9.6130937349118722E-033 + 17.579999999999998 5.9589085061012113E-034 + 17.640000000000001 -1.0557608226463401E-032 + 17.700000000000003 -2.3451566941524339E-032 + 17.759999999999991 -3.7463483234167150E-032 + 17.819999999999993 -5.1742570702143634E-032 + 17.879999999999995 -6.5225608459505160E-032 + 17.939999999999998 -7.6672809884579494E-032 + 18.000000000000000 -8.4725278000482884E-032 + 18.060000000000002 -8.7984231260757733E-032 + 18.120000000000005 -8.5110627264903327E-032 + 18.179999999999993 -7.4941914516471832E-032 + 18.239999999999995 -5.6620639605124012E-032 + 18.299999999999997 -2.9727632642520191E-032 + 18.359999999999999 5.5894462599924908E-033 + 18.420000000000002 4.8502878738250297E-032 + 18.480000000000004 9.7419053122612974E-032 + 18.539999999999992 1.4993210032909762E-031 + 18.599999999999994 2.0282929068986504E-031 + 18.659999999999997 2.5215852109630654E-031 + 18.719999999999999 2.9336630711112084E-031 + 18.780000000000001 3.2151074404281928E-031 + 18.840000000000003 3.3154967785273491E-031 + 18.899999999999991 3.1869826968080674E-031 + 18.959999999999994 2.7884418609221283E-031 + 19.019999999999996 2.0900164745780066E-031 + 19.079999999999998 1.0777893596604358E-031 + 19.140000000000001 -2.4172759745569524E-032 + 19.200000000000003 -1.8376614921316468E-031 + 19.259999999999991 -3.6518117973116776E-031 + 19.319999999999993 -5.5970719522579971E-031 + 19.379999999999995 -7.5576497724372804E-031 + 19.439999999999998 -9.3914514407677473E-031 + 19.500000000000000 -1.0934903883073837E-030 + 19.560000000000002 -1.2010382724867322E-030 + 19.620000000000005 -1.2436246250719815E-030 + 19.679999999999993 -1.2039286616113955E-030 + 19.739999999999995 -1.0669209388491427E-030 + 19.799999999999997 -8.2144943686441194E-031 + 19.859999999999999 -4.6187884307677948E-031 + 19.920000000000002 1.0325295537571012E-032 + 19.980000000000004 5.8519426286615249E-031 + 20.039999999999992 1.2431739117173991E-030 + 20.099999999999994 1.9545087598800242E-030 + 20.159999999999997 2.6792314338630986E-030 + 20.219999999999999 3.3678872348327376E-030 + 20.280000000000001 3.9630888371789347E-030 + 20.340000000000003 4.4019679947634753E-030 + 20.399999999999991 4.6195262488235138E-030 + 20.459999999999994 4.5528365504040689E-030 + 20.519999999999996 4.1459678286123065E-030 + 20.579999999999998 3.3554299118584184E-030 + 20.640000000000001 2.1558597166721136E-030 + 20.700000000000003 5.4559423708478905E-031 + 20.759999999999991 -1.4482886623739344E-030 + 20.819999999999993 -3.7659251483934170E-030 + 20.879999999999995 -6.3121029546308396E-030 + 20.939999999999998 -8.9556665214947475E-030 + 21.000000000000000 -1.1531319903817615E-029 + 21.060000000000002 -1.3844197730469270E-029 + 21.120000000000005 -1.5677424064302983E-029 + 21.179999999999993 -1.6802748522584018E-029 + 21.239999999999995 -1.6994117519204339E-029 + 21.299999999999997 -1.6043832493121645E-029 + 21.359999999999999 -1.3780684193718584E-029 + 21.420000000000002 -1.0089197691907866E-029 + 21.480000000000004 -4.9288815374909756E-030 + 21.539999999999992 1.6478559061717143E-030 + 21.599999999999994 9.4805987451944337E-030 + 21.659999999999997 1.8290239417048802E-029 + 21.719999999999999 2.7674299093253495E-029 + 21.780000000000001 3.7109746491555194E-029 + 21.840000000000003 4.5964594516365895E-029 + 21.899999999999991 5.3519172445506298E-029 + 21.959999999999994 5.8997520843724220E-029 + 22.019999999999996 6.1608723937160088E-029 + 22.079999999999998 6.0597310131326342E-029 + 22.140000000000001 5.5301059407999350E-029 + 22.200000000000003 4.5213751943230379E-029 + 22.259999999999991 3.0049571379731529E-029 + 22.319999999999993 9.8052471310592380E-030 + 22.379999999999995 -1.5184765895880074E-029 + 22.439999999999998 -4.4204919657964684E-029 + 22.500000000000000 -7.6132249126956662E-029 + 22.560000000000002 -1.0943191592970289E-028 + 22.619999999999990 -1.4217912211508911E-028 + 22.679999999999993 -1.7211079348504514E-028 + 22.739999999999995 -1.9670922345110396E-028 + 22.799999999999997 -2.1331815720893357E-028 + 22.859999999999999 -2.1928968478641629E-028 + 22.920000000000002 -2.1215810137661428E-028 + 22.980000000000004 -1.8983441507430513E-028 + 23.039999999999992 -1.5081274842298928E-028 + 23.099999999999994 -9.4377324605403247E-029 + 23.159999999999997 -2.0796993233023128E-029 + 23.219999999999999 6.8507521840676612E-029 + 23.280000000000001 1.7083919811238883E-028 + 23.340000000000003 2.8215904899611790E-028 + 23.399999999999991 3.9709362101616551E-028 + 23.459999999999994 5.0902850455196496E-028 + 23.519999999999996 6.1029751091902951E-028 + 23.579999999999998 6.9247215905860951E-028 + 23.640000000000001 7.4675185020924511E-028 + 23.700000000000003 7.6444732302060638E-028 + 23.759999999999991 7.3754461326540554E-028 + 23.819999999999993 6.5932799525934762E-028 + 23.879999999999995 5.2503377939752697E-028 + 23.939999999999998 3.3250021173466325E-028 + 24.000000000000000 8.2772490818325613E-029 + 24.060000000000002 -2.1938157743387531E-028 + 24.119999999999990 -5.6509342871721135E-028 + 24.179999999999993 -9.4119876203290335E-028 + 24.239999999999995 -1.3302694098774024E-027 + 24.299999999999997 -1.7109109783674302E-027 + 24.359999999999999 -2.0583518507156788E-027 + 24.420000000000002 -2.3453386844874710E-027 + 24.480000000000004 -2.5433391362620734E-027 + 24.539999999999992 -2.6240301863043867E-027 + 24.599999999999994 -2.5610339844237107E-027 + 24.659999999999997 -2.3318394658664518E-027 + 24.719999999999999 -1.9198288589725047E-027 + 24.780000000000001 -1.3163064745008416E-027 + 24.840000000000003 -5.2241277545729240E-028 + 24.899999999999991 4.4920927182030714E-028 + 24.959999999999994 1.5731338665680866E-027 + 25.019999999999996 2.8103978140679951E-027 + 25.079999999999998 4.1084032006632973E-027 + 25.140000000000001 5.4015986231370288E-027 + 25.200000000000003 6.6130263374944039E-027 + 25.259999999999991 7.6567958271119815E-027 + 25.319999999999993 8.4415003083492167E-027 + 25.379999999999995 8.8745408272282006E-027 + 25.439999999999998 8.8672667532734401E-027 + 25.500000000000000 8.3407779742115510E-027 + 25.560000000000002 7.2321774211209556E-027 + 25.619999999999990 5.5009940465043736E-027 + 25.679999999999993 3.1354437870032406E-027 + 25.739999999999995 1.5815399355607120E-028 + 25.799999999999997 -3.3690724613216863E-027 + 25.859999999999999 -7.3418792356901259E-027 + 25.920000000000002 -1.1611794933749268E-026 + 25.980000000000004 -1.5986890937443445E-026 + 26.039999999999992 -2.0235020230452798E-026 + 26.099999999999994 -2.4089878299978442E-026 + 26.159999999999997 -2.7260078032237858E-026 + 26.219999999999999 -2.9441237475071815E-026 + 26.280000000000001 -3.0330937128451309E-026 + 26.340000000000003 -2.9646236442439972E-026 + 26.399999999999991 -2.7143190476143395E-026 + 26.459999999999994 -2.2637664994504537E-026 + 26.519999999999996 -1.6026476623307217E-026 + 26.579999999999998 -7.3077530155227474E-027 + 26.640000000000001 3.4007917073243212E-027 + 26.700000000000003 1.5847070601556274E-026 + 26.759999999999991 2.9634797937413487E-026 + 26.819999999999993 4.4220071211411451E-026 + 26.879999999999995 5.8915755600190731E-026 + 26.939999999999998 7.2904808853586108E-026 + 27.000000000000000 8.5263428468704510E-026 + 27.060000000000002 9.4994528128526740E-026 + 27.119999999999990 1.0107145692625011E-025 + 27.179999999999993 1.0249142092580908E-025 + 27.239999999999995 9.8337207711375647E-026 + 27.299999999999997 8.7845261371939372E-026 + 27.359999999999999 7.0477300975871620E-026 + 27.420000000000002 4.5992005635164581E-026 + 27.480000000000004 1.4512603763804149E-026 + 27.539999999999992 -2.3414322602770333E-026 + 27.599999999999994 -6.6773797328400169E-026 + 27.659999999999997 -1.1405644291217936E-025 + 27.719999999999999 -1.6325637915352162E-025 + 27.780000000000001 -2.1189758935079591E-025 + 27.840000000000003 -2.5709248502434501E-025 + 27.899999999999991 -2.9563492969232958E-025 + 27.959999999999994 -3.2412880370148860E-025 + 28.019999999999996 -3.3915075758817175E-025 + 28.079999999999998 -3.3744408262100077E-025 + 28.140000000000001 -3.1613772727268138E-025 + 28.200000000000003 -2.7298230091437813E-025 + 28.259999999999991 -2.0659223558923791E-025 + 28.319999999999993 -1.1668083370514227E-025 + 28.379999999999995 -4.2734370535191232E-027 + 28.439999999999998 1.2811788800036607E-025 + 28.500000000000000 2.7637551815324021E-025 + 28.560000000000002 4.3472981364071258E-025 + 28.619999999999990 5.9580115323597881E-025 + 28.679999999999993 7.5074328022079090E-025 + 28.739999999999995 8.8949842129489713E-025 + 28.799999999999997 1.0011680614922825E-024 + 28.859999999999999 1.0744995236666356E-024 + 28.920000000000002 1.0984796656279735E-024 + 28.980000000000004 1.0630205024515151E-024 + 29.039999999999992 9.5971339393596294E-025 + 29.099999999999994 7.8261943903299258E-025 + 29.159999999999997 5.2905774630687903E-025 + 29.219999999999999 2.0034405477260063E-025 + 29.280000000000001 -1.9757091798053720E-025 + 29.340000000000003 -6.5361878690570045E-025 + 29.399999999999991 -1.1513421377212860E-024 + 29.459999999999994 -1.6688881462528456E-024 + 29.519999999999996 -2.1793160400500118E-024 + 29.579999999999998 -2.6512558305023100E-024 + 29.640000000000001 -3.0499454553548818E-024 + 29.700000000000003 -3.3386533933772311E-024 + 29.759999999999991 -3.4804786596772365E-024 + 29.819999999999993 -3.4404877589924473E-024 + 29.879999999999995 -3.1881330824276845E-024 + 29.939999999999998 -2.6998605878235956E-024 + 30.000000000000000 -1.9617931706959452E-024 + 30.060000000000002 -9.7234854149082770E-025 + 30.119999999999990 2.5537418330747063E-025 + 30.179999999999993 1.6916185008430997E-024 + 30.239999999999995 3.2886021642548692E-024 + 30.299999999999997 4.9799460715885028E-024 + 30.359999999999999 6.6810914676917151E-024 + 30.420000000000002 8.2908688455500291E-024 + 30.480000000000004 9.6943500110681277E-024 + 30.539999999999992 1.0767061202755400E-023 + 30.599999999999994 1.1380584545698117E-023 + 30.659999999999997 1.1409474374451563E-023 + 30.719999999999999 1.0739355535327762E-023 + 30.780000000000001 9.2759406965698979E-024 + 30.840000000000003 6.9546296232523920E-024 + 30.899999999999991 3.7502214461859708E-024 + 30.959999999999994 -3.1380687115613473E-025 + 31.019999999999996 -5.1570957785109298E-024 + 31.079999999999998 -1.0635985037841869E-023 + 31.140000000000001 -1.6539611658919388E-023 + 31.200000000000003 -2.2589277546769372E-023 + 31.259999999999991 -2.8441769620195089E-023 + 31.319999999999993 -3.3697217473009766E-023 + 31.379999999999995 -3.7911974793186651E-023 + 31.439999999999998 -4.0616698885134823E-023 + 31.500000000000000 -4.1339642848961491E-023 + 31.560000000000002 -3.9634773318981756E-023 + 31.619999999999990 -3.5114023946523208E-023 + 31.679999999999993 -2.7482550244826064E-023 + 31.739999999999995 -1.6575502669035468E-023 + 31.799999999999997 -2.3944067627364305E-024 + 31.859999999999999 1.4859115325918873E-023 + 31.920000000000002 3.4754812709284589E-023 + 31.980000000000004 5.6613192268437165E-023 + 32.039999999999992 7.9495677764366563E-023 + 32.099999999999994 1.0220816612248396E-022 + 32.159999999999997 1.2332054905278371E-022 + 32.219999999999999 1.4120408005956022E-022 + 32.280000000000001 1.5408801936634993E-022 + 32.340000000000003 1.6013585514299957E-022 + 32.399999999999991 1.5754061863925599E-022 + 32.459999999999994 1.4463735127893384E-022 + 32.519999999999996 1.2002948194354944E-022 + 32.579999999999998 8.2724550511820185E-023 + 32.640000000000001 3.2273081050430008E-023 + 32.700000000000003 -3.1096767372091855E-023 + 32.759999999999991 -1.0635730768469014E-022 + 32.819999999999993 -1.9158182652574383E-022 + 32.879999999999995 -2.8387728511129078E-022 + 32.939999999999998 -3.7935939529325298E-022 + 33.000000000000000 -4.7317959243679699E-022 + 33.060000000000002 -5.5961220676630620E-022 + 33.119999999999990 -6.3220809630110753E-022 + 33.179999999999993 -6.8401930314639703E-022 + 33.239999999999995 -7.0789493432432468E-022 + 33.299999999999997 -6.9684530100668307E-022 + 33.359999999999999 -6.4446705838669541E-022 + 33.420000000000002 -5.4541692173964452E-022 + 33.480000000000004 -3.9591704861479044E-022 + 33.539999999999992 -1.9426977648551811E-022 + 33.599999999999994 5.8644645918447769E-023 + 33.659999999999997 3.5891748834627038E-022 + 33.719999999999999 6.9924203987210040E-022 + 33.780000000000001 1.0686597341093070E-021 + 33.840000000000003 1.4524579970623995E-021 + 33.899999999999991 1.8322527781475432E-021 + 33.959999999999994 2.1862852091413900E-021 + 34.019999999999996 2.4899578171035068E-021 + 34.079999999999998 2.7166244613379128E-021 + 34.140000000000001 2.8386406256984381E-021 + 34.200000000000003 2.8286671708790129E-021 + 34.259999999999991 2.6612052289952434E-021 + 34.319999999999993 2.3143278079810513E-021 + 34.379999999999995 1.7715536621228113E-021 + 34.439999999999998 1.0237961749585837E-021 + 34.500000000000000 7.1302262302814846E-023 + 34.560000000000002 -1.0745161981771868E-021 + 34.619999999999990 -2.3894693091310525E-021 + 34.679999999999993 -3.8353094266374278E-021 + 34.739999999999995 -5.3589067062297895E-021 + 34.799999999999997 -6.8919991303575355E-021 + 34.859999999999999 -8.3516267740645002E-021 + 34.920000000000002 -9.6413484823660403E-021 + 34.980000000000004 -1.0653311783849902E-020 + 35.039999999999992 -1.1271223968070986E-020 + 35.099999999999994 -1.1374232649709678E-020 + 35.159999999999997 -1.0841686278399543E-020 + 35.219999999999999 -9.5586753406127216E-021 + 35.280000000000001 -7.4222371128442854E-021 + 35.340000000000003 -4.3480160658515029E-021 + 35.399999999999991 -2.7712762639415760E-022 + 35.459999999999994 4.8170830067454561E-021 + 35.519999999999996 1.0922760180704656E-020 + 35.579999999999998 1.7984134075220659E-020 + 35.640000000000001 2.5897463114831588E-020 + 35.700000000000003 3.4508768151791880E-020 + 35.759999999999991 4.3613894338709315E-020 + 35.819999999999993 5.2961264136691120E-020 + 35.879999999999995 6.2257836696098417E-020 + 35.939999999999998 7.1178616012833674E-020 + 36.000000000000000 7.9379875088276939E-020 + 36.060000000000002 8.6516376662739369E-020 + 36.119999999999990 9.2262386868304028E-020 + 36.179999999999993 9.6336432620758642E-020 + 36.239999999999995 9.8529217392500871E-020 + 36.299999999999997 9.8734158918474557E-020 + 36.359999999999999 9.6979498456898742E-020 + 36.420000000000002 9.3460958740374253E-020 + 36.479999999999990 8.8573435150620108E-020 + 36.539999999999992 8.2940112936932380E-020 + 36.599999999999994 7.7437179119551560E-020 + 36.659999999999997 7.3212275979071448E-020 + 36.719999999999999 7.1694748901957002E-020 + 36.780000000000001 7.4595282237009812E-020 + 36.840000000000003 8.3893798548142154E-020 + 36.899999999999991 1.0181373988554615E-019 + 36.959999999999994 1.3078101993568832E-019 + 37.019999999999996 1.7336784906083286E-019 + 37.079999999999998 2.3222094959810213E-019 + 37.140000000000001 3.0997444400771367E-019 + 37.200000000000003 4.0914956731779164E-019 + 37.259999999999991 5.3204293475669034E-019 + 37.319999999999993 6.8060754111378194E-019 + 37.379999999999995 8.5632933784039990E-019 + 37.439999999999998 1.0601047515555332E-018 + 37.500000000000000 1.2921259649159569E-018 + 37.560000000000002 1.5517783518940161E-018 + 37.619999999999990 1.8375554460803032E-018 + 37.679999999999993 2.1470014075403114E-018 + 37.739999999999995 2.4766807663687492E-018 + 37.799999999999997 2.8221836211413589E-018 + 37.859999999999999 3.1781674095406708E-018 + 37.920000000000002 3.5384368064658252E-018 + 37.979999999999990 3.8960551473924687E-018 + 38.039999999999992 4.2434898978744679E-018 + 38.099999999999994 4.5727730531022005E-018 + 38.159999999999997 4.8756716286994398E-018 + 38.219999999999999 5.1438454771840245E-018 + 38.280000000000001 5.3689687482907548E-018 + 38.340000000000003 5.5427921355437327E-018 + 38.399999999999991 5.6571102387425764E-018 + 38.459999999999994 5.7035994387344972E-018 + 38.519999999999996 5.6734800670111312E-018 + 38.579999999999998 5.5569624732611317E-018 + 38.640000000000001 5.3424450450299552E-018 + 38.700000000000003 5.0153813635256414E-018 + 38.759999999999991 4.5568067830955704E-018 + 38.819999999999993 3.9414296987390721E-018 + 38.879999999999995 3.1352967537314829E-018 + 38.939999999999998 2.0929292762116117E-018 + 39.000000000000000 7.5390794929823323E-019 + 39.060000000000002 -9.6110848133505132E-019 + 39.119999999999990 -3.1550351663495743E-018 + 39.179999999999993 -5.9596905246355598E-018 + 39.239999999999995 -9.5417521214248277E-018 + 39.299999999999997 -1.4109650968871689E-017 + 39.359999999999999 -1.9921095026355247E-017 + 39.420000000000002 -2.7291575087481188E-017 + 39.479999999999990 -3.6603717402350257E-017 + 39.539999999999992 -4.8317818133278954E-017 + 39.599999999999994 -6.2983344731946437E-017 + 39.659999999999997 -8.1251744839143553E-017 + 39.719999999999999 -1.0389099580360513E-016 + 39.780000000000001 -1.3180139086997729E-016 + 39.840000000000003 -1.6603380299092006E-016 + 39.899999999999991 -2.0780984010033369E-016 + 39.959999999999994 -2.5854504167094006E-016 + 40.019999999999996 -3.1987508887642308E-016 + 40.079999999999998 -3.9368572626668650E-016 + 40.140000000000001 -4.8214728771133835E-016 + 40.200000000000003 -5.8775489010942590E-016 + 40.259999999999991 -7.1337340814169602E-016 + 40.319999999999993 -8.6229057243286394E-016 + 40.379999999999995 -1.0382769198852546E-015 + 40.439999999999998 -1.2456565856503346E-015 + 40.500000000000000 -1.4893869236590064E-015 + 40.560000000000002 -1.7751485990098115E-015 + 40.619999999999990 -2.1094539280559565E-015 + 40.679999999999993 -2.4997617994550642E-015 + 40.739999999999995 -2.9546164968263267E-015 + 40.799999999999997 -3.4837988334785064E-015 + 40.859999999999999 -4.0985000969338253E-015 + 40.920000000000002 -4.8115107483713973E-015 + 40.979999999999990 -5.6374431800245649E-015 + 41.039999999999992 -6.5929676707632079E-015 + 41.099999999999994 -7.6970808054977609E-015 + 41.159999999999997 -8.9714043356802811E-015 + 41.219999999999999 -1.0440508664609394E-014 + 41.280000000000001 -1.2132268910323321E-014 + 41.340000000000003 -1.4078269656558922E-014 + 41.399999999999991 -1.6314217942856225E-014 + 41.459999999999994 -1.8880427194439152E-014 + 41.519999999999996 -2.1822321723370447E-014 + 41.579999999999998 -2.5190988906331407E-014 + 41.640000000000001 -2.9043774802863910E-014 + 41.700000000000003 -3.3444913019842679E-014 + 41.759999999999991 -3.8466227022610347E-014 + 41.819999999999993 -4.4187872453436160E-014 + 41.879999999999995 -5.0699066210323411E-014 + 41.939999999999998 -5.8098946048314487E-014 + 42.000000000000000 -6.6497397216710594E-014 + 42.060000000000002 -7.6015950068946731E-014 + 42.119999999999990 -8.6788689654666329E-014 + 42.179999999999993 -9.8963186204121845E-014 + 42.239999999999995 -1.1270131922789262E-013 + 42.299999999999997 -1.2818021758357178E-013 + 42.359999999999999 -1.4559311143289601E-013 + 42.420000000000002 -1.6514999206420362E-013 + 42.479999999999990 -1.8707831494894535E-013 + 42.539999999999992 -2.1162325079361363E-013 + 42.599999999999994 -2.3904810873792774E-013 + 42.659999999999997 -2.6963394843669639E-013 + 42.719999999999999 -3.0367924934176168E-013 + 42.780000000000001 -3.4149871865551650E-013 + 42.840000000000003 -3.8342173726964296E-013 + 42.899999999999991 -4.2978972187090178E-013 + 42.959999999999994 -4.8095266164865738E-013 + 43.019999999999996 -5.3726445297160548E-013 + 43.079999999999998 -5.9907688671010979E-013 + 43.140000000000001 -6.6673165491274882E-013 + 43.200000000000003 -7.4055028849675594E-013 + 43.259999999999991 -8.2082163275672459E-013 + 43.319999999999993 -9.0778641978074435E-013 + 43.379999999999995 -1.0016179252660144E-012 + 43.439999999999998 -1.1023987126473758E-012 + 43.500000000000000 -1.2100917296047595E-012 + 43.560000000000002 -1.3245062473553938E-012 + 43.619999999999990 -1.4452563025246285E-012 + 43.679999999999993 -1.5717103193447240E-012 + 43.739999999999995 -1.7029322231529053E-012 + 43.799999999999997 -1.8376104410454073E-012 + 43.859999999999999 -1.9739740893495769E-012 + 43.920000000000002 -2.1096930270537168E-012 + 43.979999999999990 -2.2417616627671338E-012 + 44.039999999999992 -2.3663598494110179E-012 + 44.099999999999994 -2.4786919568719501E-012 + 44.159999999999997 -2.5727972501571733E-012 + 44.219999999999999 -2.6413268904744424E-012 + 44.280000000000001 -2.6752872911346260E-012 + 44.340000000000003 -2.6637372462598735E-012 + 44.399999999999991 -2.5934381613010708E-012 + 44.459999999999994 -2.4484519182423343E-012 + 44.519999999999996 -2.2096635411920408E-012 + 44.579999999999998 -1.8542477797961419E-012 + 44.640000000000001 -1.3550314279658657E-012 + 44.700000000000003 -6.7977239894959453E-013 + 44.759999999999991 2.0966709490348851E-013 + 44.819999999999993 1.3582873437868802E-012 + 44.879999999999995 2.8190538616790245E-012 + 44.939999999999998 4.6541578138180513E-012 + 45.000000000000000 6.9364618994468751E-012 + 45.060000000000002 9.7511605926691811E-012 + 45.119999999999990 1.3197665292184812E-011 + 45.179999999999993 1.7391807990358316E-011 + 45.239999999999995 2.2468257738700770E-011 + 45.299999999999997 2.8583406974259931E-011 + 45.359999999999999 3.5918528076625502E-011 + 45.420000000000002 4.4683474095565355E-011 + 45.479999999999990 5.5120782418138047E-011 + 45.539999999999992 6.7510428453751627E-011 + 45.599999999999994 8.2175237553276120E-011 + 45.659999999999997 9.9486814107722484E-011 + 45.719999999999999 1.1987260376494988E-010 + 45.780000000000001 1.4382353197634798E-010 + 45.840000000000003 1.7190291163040818E-010 + 45.899999999999991 2.0475640696550419E-010 + 45.959999999999994 2.4312314643079729E-010 + 46.019999999999996 2.8784850710046532E-010 + 46.079999999999998 3.3989838062900784E-010 + 46.140000000000001 4.0037530711471845E-010 + 46.200000000000003 4.7053664295565368E-010 + 46.259999999999991 5.5181468827600980E-010 + 46.319999999999993 6.4584017862960191E-010 + 46.379999999999995 7.5446696716606829E-010 + 46.439999999999998 8.7980210500769637E-010 + 46.500000000000000 1.0242371193687389E-009 + 46.560000000000002 1.1904848476577077E-009 + 46.619999999999990 1.3816197322964710E-009 + 46.679999999999993 1.6011245040688724E-009 + 46.739999999999995 1.8529381454641415E-009 + 46.799999999999997 2.1415154055136237E-009 + 46.859999999999999 2.4718886723846913E-009 + 46.920000000000002 2.8497387415912551E-009 + 46.979999999999990 3.2814735249946950E-009 + 47.039999999999992 3.7743164869463624E-009 + 47.099999999999994 4.3364032881327088E-009 + 47.159999999999997 4.9768911429303914E-009 + 47.219999999999999 5.7060759208619146E-009 + 47.280000000000001 6.5355336523282049E-009 + 47.340000000000003 7.4782619061345798E-009 + 47.399999999999991 8.5488494306065770E-009 + 47.459999999999994 9.7636566409541145E-009 + 47.519999999999996 1.1141018861735715E-008 + 47.579999999999998 1.2701470059113816E-008 + 47.640000000000001 1.4467995192205515E-008 + 47.700000000000003 1.6466297411175808E-008 + 47.759999999999991 1.8725107985456559E-008 + 47.819999999999993 2.1276519831778335E-008 + 47.879999999999995 2.4156343294938518E-008 + 47.939999999999998 2.7404541571595527E-008 + 48.000000000000000 3.1065653587041591E-008 + 48.060000000000002 3.5189298831527560E-008 + 48.119999999999990 3.9830709248152924E-008 + 48.179999999999993 4.5051349794263489E-008 + 48.239999999999995 5.0919546945677276E-008 + 48.299999999999997 5.7511240967804197E-008 + 48.359999999999999 6.4910732921471498E-008 + 48.420000000000002 7.3211595225654256E-008 + 48.479999999999990 8.2517593304558271E-008 + 48.539999999999992 9.2943709640250716E-008 + 48.599999999999994 1.0461734263885115E-007 + 48.659999999999997 1.1767950263468151E-007 + 48.719999999999999 1.3228619319111319E-007 + 48.780000000000001 1.4860984350750248E-007 + 48.840000000000003 1.6684097188620492E-007 + 48.899999999999991 1.8718998006748177E-007 + 48.959999999999994 2.0988897988253176E-007 + 49.019999999999996 2.3519398532512900E-007 + 49.079999999999998 2.6338710895334291E-007 + 49.140000000000001 2.9477906215204975E-007 + 49.200000000000003 3.2971191307882426E-007 + 49.259999999999991 3.6856183870432707E-007 + 49.319999999999993 4.1174249289649146E-007 + 49.379999999999995 4.5970828731643214E-007 + 49.439999999999998 5.1295805593484982E-007 + 49.500000000000000 5.7203928454160227E-007 + 49.560000000000002 6.3755231206465112E-007 + 49.619999999999990 7.1015499169190362E-007 + 49.679999999999993 7.9056789787464126E-007 + 49.739999999999995 8.7957941111191939E-007 + 49.799999999999997 9.7805230835311746E-007 + 49.859999999999999 1.0869293494483498E-006 + 49.920000000000002 1.2072408758992902E-006 + 49.979999999999990 1.3401110784567558E-006 + 50.039999999999992 1.4867672042015383E-006 + 50.099999999999994 1.6485468556241491E-006 + 50.159999999999997 1.8269081290737552E-006 + 50.219999999999999 2.0234382061284206E-006 + 50.280000000000001 2.2398647734664352E-006 + 50.340000000000003 2.4780667314120050E-006 + 50.399999999999991 2.7400858739076722E-006 + 50.459999999999994 3.0281405487811333E-006 + 50.519999999999996 3.3446386195820515E-006 + 50.579999999999998 3.6921911482917330E-006 + 50.640000000000001 4.0736298339360616E-006 + 50.700000000000003 4.4920220371923846E-006 + 50.759999999999991 4.9506886213144991E-006 + 50.819999999999993 5.4532215829609295E-006 + 50.879999999999995 6.0035058035251267E-006 + 50.939999999999998 6.6057382119121663E-006 + 51.000000000000000 7.2644497356816404E-006 + 51.060000000000002 7.9845311218280468E-006 + 51.119999999999990 8.7712561985082968E-006 + 51.179999999999993 9.6303085996258721E-006 + 51.239999999999995 1.0567803945524692E-005 + 51.299999999999997 1.1590329953291122E-005 + 51.359999999999999 1.2704967215432184E-005 + 51.420000000000002 1.3919325724884227E-005 + 51.479999999999990 1.5241576901315366E-005 + 51.539999999999992 1.6680494027989869E-005 + 51.599999999999994 1.8245484668058927E-005 + 51.659999999999997 1.9946626285331279E-005 + 51.719999999999999 2.1794714458027945E-005 + 51.780000000000001 2.3801305871400966E-005 + 51.840000000000003 2.5978754448717235E-005 + 51.899999999999991 2.8340262838377944E-005 + 51.959999999999994 3.0899935494948959E-005 + 52.019999999999996 3.3672817102291690E-005 + 52.079999999999998 3.6674949937600513E-005 + 52.140000000000001 3.9923427900583161E-005 + 52.200000000000003 4.3436461840638848E-005 + 52.259999999999991 4.7233418509719244E-005 + 52.319999999999993 5.1334895194056727E-005 + 52.379999999999995 5.5762765557888864E-005 + 52.439999999999998 6.0540263586001604E-005 + 52.500000000000000 6.5692024875021334E-005 + 52.560000000000002 7.1244162339322741E-005 + 52.619999999999990 7.7224355853887743E-005 + 52.679999999999993 8.3661877874251182E-005 + 52.739999999999995 9.0587684240114213E-005 + 52.799999999999997 9.8034502569550744E-005 + 52.859999999999999 1.0603686827201775E-004 + 52.920000000000002 1.1463123427204357E-004 + 52.979999999999990 1.2385602327279357E-004 + 53.039999999999992 1.3375168551311908E-004 + 53.099999999999994 1.4436083086878613E-004 + 53.159999999999997 1.5572823353536509E-004 + 53.219999999999999 1.6790096974914366E-004 + 53.280000000000001 1.8092840770910911E-004 + 53.339999999999989 1.9486238389415956E-004 + 53.399999999999991 2.0975719357748063E-004 + 53.459999999999994 2.2566969273710177E-004 + 53.519999999999996 2.4265933019073033E-004 + 53.579999999999998 2.6078829966095547E-004 + 53.640000000000001 2.8012149748457321E-004 + 53.700000000000003 3.0072666547117732E-004 + 53.759999999999991 3.2267437488592673E-004 + 53.819999999999993 3.4603813138765397E-004 + 53.879999999999995 3.7089442194672184E-004 + 53.939999999999998 3.9732269837655388E-004 + 54.000000000000000 4.2540552695817302E-004 + 54.060000000000002 4.5522849013974857E-004 + 54.119999999999990 4.8688022661037009E-004 + 54.179999999999993 5.2045262719039817E-004 + 54.239999999999995 5.5604053385041770E-004 + 54.299999999999997 5.9374211269365212E-004 + 54.359999999999999 6.3365839834087444E-004 + 54.420000000000002 6.7589370169069665E-004 + 54.479999999999990 7.2055533270587576E-004 + 54.539999999999992 7.6775364215666392E-004 + 54.599999999999994 8.1760196518256727E-004 + 54.659999999999997 8.7021651460116988E-004 + 54.719999999999999 9.2571647187201047E-004 + 54.780000000000001 9.8422355285647002E-004 + 54.839999999999989 1.0458622766329508E-003 + 54.899999999999991 1.1107596470300886E-003 + 54.959999999999994 1.1790450211443331E-003 + 55.019999999999996 1.2508502088343803E-003 + 55.079999999999998 1.3263086166382615E-003 + 55.140000000000001 1.4055559711152828E-003 + 55.200000000000003 1.4887295926402815E-003 + 55.259999999999991 1.5759684651145281E-003 + 55.319999999999993 1.6674125148156190E-003 + 55.379999999999995 1.7632027410005001E-003 + 55.439999999999998 1.8634813842392536E-003 + 55.500000000000000 1.9683900128215836E-003 + 55.560000000000002 2.0780714427830861E-003 + 55.619999999999990 2.1926677997593791E-003 + 55.679999999999993 2.3123206982168950E-003 + 55.739999999999995 2.4371709903029293E-003 + 55.799999999999997 2.5673581991785843E-003 + 55.859999999999999 2.7030201026377546E-003 + 55.920000000000002 2.8442921901918107E-003 + 55.979999999999990 2.9913078677615158E-003 + 56.039999999999992 3.1441972786060276E-003 + 56.099999999999994 3.3030868480895693E-003 + 56.159999999999997 3.4680999205498049E-003 + 56.219999999999999 3.6393545292080190E-003 + 56.280000000000001 3.8169638258039951E-003 + 56.339999999999989 4.0010359035715266E-003 + 56.399999999999991 4.1916727982445941E-003 + 56.459999999999994 4.3889697704902683E-003 + 56.519999999999996 4.5930146618126388E-003 + 56.579999999999998 4.8038883081980193E-003 + 56.640000000000001 5.0216625962497784E-003 + 56.700000000000003 5.2464006489681648E-003 + 56.759999999999991 5.4781563230279651E-003 + 56.819999999999993 5.7169732935715605E-003 + 56.879999999999995 5.9628842614087392E-003 + 56.939999999999998 6.2159112723653032E-003 + 57.000000000000000 6.4760642806735141E-003 + 57.060000000000002 6.7433412219482730E-003 + 57.119999999999990 7.0177256117967858E-003 + 57.179999999999993 7.2991903600136349E-003 + 57.239999999999995 7.5876907061791883E-003 + 57.299999999999997 7.8831694832086682E-003 + 57.359999999999999 8.1855549463557657E-003 + 57.420000000000002 8.4947571114454435E-003 + 57.479999999999990 8.8106725944583787E-003 + 57.539999999999992 9.1331807716814144E-003 + 57.599999999999994 9.4621429726618467E-003 + 57.659999999999997 9.7974041456242861E-003 + 57.719999999999999 1.0138791782180462E-002 + 57.780000000000001 1.0486114761839792E-002 + 57.839999999999989 1.0839163018194925E-002 + 57.899999999999991 1.1197709916838884E-002 + 57.959999999999994 1.1561509119894163E-002 + 58.019999999999996 1.1930295674060261E-002 + 58.079999999999998 1.2303784557643069E-002 + 58.140000000000001 1.2681673452546716E-002 + 58.200000000000003 1.3063638236803997E-002 + 58.259999999999991 1.3449340891658834E-002 + 58.319999999999993 1.3838419254969973E-002 + 58.379999999999995 1.4230493762610597E-002 + 58.439999999999998 1.4625169087616206E-002 + 58.500000000000000 1.5022029455704656E-002 + 58.560000000000002 1.5420642080138510E-002 + 58.619999999999990 1.5820555727767350E-002 + 58.679999999999993 1.6221302683851892E-002 + 58.739999999999995 1.6622399639337357E-002 + 58.799999999999997 1.7023345324206966E-002 + 58.859999999999999 1.7423625532854731E-002 + 58.920000000000002 1.7822712507162837E-002 + 58.979999999999990 1.8220062106948088E-002 + 59.039999999999992 1.8615116737333379E-002 + 59.099999999999994 1.9007308795992255E-002 + 59.159999999999997 1.9396059462934743E-002 + 59.219999999999999 1.9780780923531461E-002 + 59.280000000000001 2.0160873341172007E-002 + 59.339999999999989 2.0535733704029700E-002 + 59.399999999999991 2.0904748407171547E-002 + 59.459999999999994 2.1267301190614103E-002 + 59.519999999999996 2.1622769665715778E-002 + 59.579999999999998 2.1970530604363322E-002 + 59.640000000000001 2.2309957407637148E-002 + 59.700000000000003 2.2640424683727282E-002 + 59.759999999999991 2.2961306806754921E-002 + 59.819999999999993 2.3271984632846947E-002 + 59.879999999999995 2.3571839168697858E-002 + 59.939999999999998 2.3860260364465390E-002 + 60.000000000000000 2.4136644973632330E-002 + 60.060000000000002 2.4400396375234210E-002 + 60.119999999999990 2.4650932768060851E-002 + 60.179999999999993 2.4887679555332054E-002 + 60.239999999999995 2.5110079601579009E-002 + 60.299999999999997 2.5317585890238976E-002 + 60.359999999999999 2.5509674076604417E-002 + 60.420000000000002 2.5685833976743011E-002 + 60.479999999999990 2.5845574266513242E-002 + 60.539999999999992 2.5988428010126980E-002 + 60.599999999999994 2.6113948186171781E-002 + 60.659999999999997 2.6221710523328008E-002 + 60.719999999999999 2.6311318475637006E-002 + 60.780000000000001 2.6382398888333772E-002 + 60.839999999999989 2.6434607751248094E-002 + 60.899999999999991 2.6467630514891753E-002 + 60.959999999999994 2.6481180994777049E-002 + 61.019999999999996 2.6475002459048616E-002 + 61.079999999999998 2.6448870178427362E-002 + 61.140000000000001 2.6402594290192070E-002 + 61.200000000000003 2.6336017740389909E-002 + 61.259999999999991 2.6249014410405593E-002 + 61.319999999999993 2.6141497397499294E-002 + 61.379999999999995 2.6013409268230342E-002 + 61.439999999999998 2.5864732379278062E-002 + 61.500000000000000 2.5695484081070884E-002 + 61.560000000000002 2.5505718627332419E-002 + 61.619999999999990 2.5295524717319291E-002 + 61.679999999999993 2.5065025884062554E-002 + 61.739999999999995 2.4814385092098705E-002 + 61.799999999999997 2.4543800250662006E-002 + 61.859999999999999 2.4253504856454219E-002 + 61.920000000000002 2.3943767867598942E-002 + 61.979999999999990 2.3614893975287196E-002 + 62.039999999999992 2.3267220183174737E-002 + 62.099999999999994 2.2901117133489687E-002 + 62.159999999999997 2.2516992970887370E-002 + 62.219999999999999 2.2115282677990653E-002 + 62.280000000000001 2.1696453782371974E-002 + 62.339999999999989 2.1261005981853154E-002 + 62.399999999999991 2.0809467850952616E-002 + 62.459999999999994 2.0342393065152824E-002 + 62.519999999999996 1.9860363080687320E-002 + 62.579999999999998 1.9363986369038692E-002 + 62.640000000000001 1.8853893700751072E-002 + 62.700000000000003 1.8330737137175625E-002 + 62.759999999999991 1.7795192225506223E-002 + 62.819999999999993 1.7247951896563470E-002 + 62.879999999999995 1.6689728110088516E-002 + 62.939999999999998 1.6121248508181835E-002 + 63.000000000000000 1.5543253162026455E-002 + 63.060000000000002 1.4956496419969727E-002 + 63.119999999999990 1.4361744166678757E-002 + 63.179999999999993 1.3759769929862498E-002 + 63.239999999999995 1.3151353824324589E-002 + 63.299999999999997 1.2537283660742854E-002 + 63.359999999999999 1.1918348868999569E-002 + 63.420000000000002 1.1295341186899184E-002 + 63.479999999999990 1.0669052217364479E-002 + 63.539999999999992 1.0040273506316467E-002 + 63.599999999999994 9.4097917357426238E-003 + 63.659999999999997 8.7783873516326903E-003 + 63.719999999999999 8.1468350036099490E-003 + 63.780000000000001 7.5159021436538107E-003 + 63.839999999999989 6.8863435198026884E-003 + 63.899999999999991 6.2589041806951923E-003 + 63.959999999999994 5.6343142765716298E-003 + 64.019999999999996 5.0132914275475395E-003 + 64.079999999999998 4.3965352768791776E-003 + 64.140000000000001 3.7847292934463099E-003 + 64.200000000000003 3.1785376656196089E-003 + 64.259999999999991 2.5786049692536703E-003 + 64.319999999999993 1.9855551172559844E-003 + 64.379999999999995 1.3999900340525969E-003 + 64.439999999999998 8.2248819413115789E-004 + 64.500000000000000 2.5360473347910248E-004 + 64.560000000000002 -3.0612989649238514E-004 + 64.619999999999990 -8.5621091232212457E-004 + 64.679999999999993 -1.3961589639872153E-003 + 64.739999999999995 -1.9255215353989716E-003 + 64.799999999999997 -2.4438723821403703E-003 + 64.859999999999999 -2.9508133631375648E-003 + 64.920000000000002 -3.4459739537330289E-003 + 64.979999999999990 -3.9290117091013953E-003 + 65.039999999999992 -4.3996113827074971E-003 + 65.099999999999994 -4.8574866525853575E-003 + 65.159999999999997 -5.3023785584856960E-003 + 65.219999999999999 -5.7340563402238035E-003 + 65.280000000000001 -6.1523164384667739E-003 + 65.339999999999989 -6.5569843370445174E-003 + 65.399999999999991 -6.9479114092515486E-003 + 65.459999999999994 -7.3249766994696198E-003 + 65.519999999999996 -7.6880851996786060E-003 + 65.579999999999998 -8.0371674813527159E-003 + 65.640000000000001 -8.3721800118019898E-003 + 65.700000000000003 -8.6931040513256140E-003 + 65.759999999999991 -8.9999441664674121E-003 + 65.819999999999993 -9.2927293246965904E-003 + 65.879999999999995 -9.5715104719505378E-003 + 65.939999999999998 -9.8363603885817993E-003 + 66.000000000000000 -1.0087373021274101E-002 + 66.060000000000002 -1.0324663267811524E-002 + 66.119999999999990 -1.0548362696084950E-002 + 66.179999999999993 -1.0758623779402095E-002 + 66.239999999999995 -1.0955615558777301E-002 + 66.299999999999997 -1.1139522915976897E-002 + 66.359999999999999 -1.1310547091751158E-002 + 66.420000000000002 -1.1468903644448846E-002 + 66.479999999999990 -1.1614820741838646E-002 + 66.539999999999992 -1.1748541047485239E-002 + 66.599999999999994 -1.1870318132019568E-002 + 66.659999999999997 -1.1980414626876084E-002 + 66.719999999999999 -1.2079104146758203E-002 + 66.780000000000001 -1.2166670172773397E-002 + 66.839999999999989 -1.2243402395183166E-002 + 66.899999999999991 -1.2309597498347077E-002 + 66.959999999999994 -1.2365557899247835E-002 + 67.019999999999996 -1.2411591875756299E-002 + 67.079999999999998 -1.2448011479617089E-002 + 67.140000000000001 -1.2475132122783531E-002 + 67.199999999999989 -1.2493272543048302E-002 + 67.259999999999991 -1.2502752414131133E-002 + 67.319999999999993 -1.2503890804408264E-002 + 67.379999999999995 -1.2497010354008698E-002 + 67.439999999999998 -1.2482430571326912E-002 + 67.500000000000000 -1.2460469807166552E-002 + 67.560000000000002 -1.2431446756504523E-002 + 67.619999999999990 -1.2395675842930306E-002 + 67.679999999999993 -1.2353469058747636E-002 + 67.739999999999995 -1.2305134721099863E-002 + 67.799999999999997 -1.2250978003155666E-002 + 67.859999999999999 -1.2191299323296748E-002 + 67.920000000000002 -1.2126393912368220E-002 + 67.979999999999990 -1.2056551290041734E-002 + 68.039999999999992 -1.1982055245464258E-002 + 68.099999999999994 -1.1903184967249106E-002 + 68.159999999999997 -1.1820211552281711E-002 + 68.219999999999999 -1.1733401524575655E-002 + 68.280000000000001 -1.1643012843797200E-002 + 68.339999999999989 -1.1549298352959040E-002 + 68.399999999999991 -1.1452500915992125E-002 + 68.459999999999994 -1.1352858109740540E-002 + 68.519999999999996 -1.1250600097866142E-002 + 68.579999999999998 -1.1145949129540924E-002 + 68.640000000000001 -1.1039119244975849E-002 + 68.699999999999989 -1.0930317052111940E-002 + 68.759999999999991 -1.0819740950987148E-002 + 68.819999999999993 -1.0707583973232855E-002 + 68.879999999999995 -1.0594028664422044E-002 + 68.939999999999998 -1.0479251926455959E-002 + 69.000000000000000 -1.0363422055384295E-002 + 69.060000000000002 -1.0246700447926152E-002 + 69.119999999999990 -1.0129240127793123E-002 + 69.179999999999993 -1.0011187594066323E-002 + 69.239999999999995 -9.8926822643894182E-003 + 69.299999999999997 -9.7738558650819485E-003 + 69.359999999999999 -9.6548347599626650E-003 + 69.420000000000002 -9.5357368507337920E-003 + 69.479999999999990 -9.4166742998616319E-003 + 69.539999999999992 -9.2977518757709939E-003 + 69.599999999999994 -9.1790691661464783E-003 + 69.659999999999997 -9.0607201907721303E-003 + 69.719999999999999 -8.9427914520405199E-003 + 69.780000000000001 -8.8253654091029841E-003 + 69.839999999999989 -8.7085170029172331E-003 + 69.899999999999991 -8.5923190488833897E-003 + 69.959999999999994 -8.4768359893544060E-003 + 70.019999999999996 -8.3621289699508175E-003 + 70.079999999999998 -8.2482540451513878E-003 + 70.140000000000001 -8.1352627494329401E-003 + 70.199999999999989 -8.0232025751786288E-003 + 70.259999999999991 -7.9121168432006190E-003 + 70.319999999999993 -7.8020451596432167E-003 + 70.379999999999995 -7.6930233961879464E-003 + 70.439999999999998 -7.5850831391805033E-003 + 70.500000000000000 -7.4782538031273847E-003 + 70.560000000000002 -7.3725606064180870E-003 + 70.619999999999990 -7.2680268477602599E-003 + 70.679999999999993 -7.1646719451032761E-003 + 70.739999999999995 -7.0625133652679039E-003 + 70.799999999999997 -6.9615656698241686E-003 + 70.859999999999999 -6.8618411159358308E-003 + 70.920000000000002 -6.7633501642736793E-003 + 70.979999999999990 -6.6661007904856278E-003 + 71.039999999999992 -6.5700990795429116E-003 + 71.099999999999994 -6.4753497158752168E-003 + 71.159999999999997 -6.3818550130330933E-003 + 71.219999999999999 -6.2896163057611521E-003 + 71.280000000000001 -6.1986336421123826E-003 + 71.339999999999989 -6.1089058087829074E-003 + 71.399999999999991 -6.0204295714582565E-003 + 71.459999999999994 -5.9332015627225820E-003 + 71.519999999999996 -5.8472167112738902E-003 + 71.579999999999998 -5.7624695505678405E-003 + 71.640000000000001 -5.6789536600410761E-003 + 71.699999999999989 -5.5966620082936354E-003 + 71.759999999999991 -5.5155866548547844E-003 + 71.819999999999993 -5.4357196966247582E-003 + 71.879999999999995 -5.3570515402544330E-003 + 71.939999999999998 -5.2795727460010688E-003 + 72.000000000000000 -5.2032736669323596E-003 + 72.060000000000002 -5.1281445058561958E-003 + 72.119999999999990 -5.0541742041317270E-003 + 72.179999999999993 -4.9813526380642608E-003 + 72.239999999999995 -4.9096681159645633E-003 + 72.299999999999997 -4.8391095468765313E-003 + 72.359999999999999 -4.7696662776322901E-003 + 72.420000000000002 -4.7013268631286263E-003 + 72.479999999999990 -4.6340793716552701E-003 + 72.539999999999992 -4.5679129674900832E-003 + 72.599999999999994 -4.5028154285451805E-003 + 72.659999999999997 -4.4387758024250264E-003 + 72.719999999999999 -4.3757824891472973E-003 + 72.780000000000001 -4.3138239750323583E-003 + 72.839999999999989 -4.2528884352004519E-003 + 72.899999999999991 -4.1929646284172388E-003 + 72.959999999999994 -4.1340416925074478E-003 + 73.019999999999996 -4.0761078343199975E-003 + 73.079999999999998 -4.0191524029654282E-003 + 73.140000000000001 -3.9631639451320998E-003 + 73.199999999999989 -3.9081314286667709E-003 + 73.259999999999991 -3.8540442969725195E-003 + 73.319999999999993 -3.8008912535333582E-003 + 73.379999999999995 -3.7486618176429797E-003 + 73.439999999999998 -3.6973453762742109E-003 + 73.500000000000000 -3.6469314641337193E-003 + 73.560000000000002 -3.5974097662971839E-003 + 73.619999999999990 -3.5487702622440938E-003 + 73.679999999999993 -3.5010029567303005E-003 + 73.739999999999995 -3.4540976313064070E-003 + 73.799999999999997 -3.4080445542854364E-003 + 73.859999999999999 -3.3628341336823233E-003 + 73.920000000000002 -3.3184570055928165E-003 + 73.979999999999990 -3.2749034546183716E-003 + 74.039999999999992 -3.2321642849741064E-003 + 74.099999999999994 -3.1902304025701574E-003 + 74.159999999999997 -3.1490926214533975E-003 + 74.219999999999999 -3.1087416760010771E-003 + 74.280000000000001 -3.0691690690751753E-003 + 74.339999999999989 -3.0303653101189875E-003 + 74.399999999999991 -2.9923218590681747E-003 + 74.459999999999994 -2.9550296378144411E-003 + 74.519999999999996 -2.9184798102474220E-003 + 74.579999999999998 -2.8826638618823699E-003 + 74.640000000000001 -2.8475727421085765E-003 + 74.699999999999989 -2.8131979762164535E-003 + 74.759999999999991 -2.7795306770754496E-003 + 74.819999999999993 -2.7465625700609517E-003 + 74.879999999999995 -2.7142847559582469E-003 + 74.939999999999998 -2.6826888674485070E-003 + 75.000000000000000 -2.6517662186771956E-003 + 75.060000000000002 -2.6215083697710209E-003 + 75.119999999999990 -2.5919069746733353E-003 + 75.179999999999993 -2.5629534402401865E-003 + 75.239999999999995 -2.5346393553919125E-003 + 75.299999999999997 -2.5069562251092566E-003 + 75.359999999999999 -2.4798957577757057E-003 + 75.420000000000002 -2.4534496175998024E-003 + 75.479999999999990 -2.4276090083354272E-003 + 75.539999999999992 -2.4023658565843625E-003 + 75.599999999999994 -2.3777113179277651E-003 + 75.659999999999997 -2.3536367557615151E-003 + 75.719999999999999 -2.3301338627562001E-003 + 75.780000000000001 -2.3071938524879755E-003 + 75.839999999999989 -2.2848079533549287E-003 + 75.899999999999991 -2.2629675009119086E-003 + 75.959999999999994 -2.2416636617485150E-003 + 76.019999999999996 -2.2208874006932845E-003 + 76.079999999999998 -2.2006297904421110E-003 + 76.140000000000001 -2.1808819690468631E-003 + 76.199999999999989 -2.1616350241529724E-003 + 76.259999999999991 -2.1428799789152031E-003 + 76.319999999999993 -2.1246075976655604E-003 + 76.379999999999995 -2.1068089005984014E-003 + 76.439999999999998 -2.0894748212649823E-003 + 76.500000000000000 -2.0725961268085315E-003 + 76.560000000000002 -2.0561637305854313E-003 + 76.619999999999990 -2.0401683543367381E-003 + 76.679999999999993 -2.0246008726727618E-003 + 76.739999999999995 -2.0094520652024521E-003 + 76.799999999999997 -1.9947126692770999E-003 + 76.859999999999999 -1.9803733311689717E-003 + 76.920000000000002 -1.9664250910684045E-003 + 76.979999999999990 -1.9528584433200738E-003 + 77.039999999999992 -1.9396641617586922E-003 + 77.099999999999994 -1.9268327533893716E-003 + 77.159999999999997 -1.9143550556119161E-003 + 77.219999999999999 -1.9022217747344419E-003 + 77.280000000000001 -1.8904235149208612E-003 + 77.339999999999989 -1.8789509915182062E-003 + 77.399999999999991 -1.8677947322464892E-003 + 77.459999999999994 -1.8569454811593669E-003 + 77.519999999999996 -1.8463938923007207E-003 + 77.579999999999998 -1.8361306113208959E-003 + 77.640000000000001 -1.8261463765576820E-003 + 77.699999999999989 -1.8164316702798675E-003 + 77.759999999999991 -1.8069774093200136E-003 + 77.819999999999993 -1.7977742672701559E-003 + 77.879999999999995 -1.7888130389661291E-003 + 77.939999999999998 -1.7800844264080082E-003 + 78.000000000000000 -1.7715794429376862E-003 + 78.060000000000002 -1.7632889918184835E-003 + 78.119999999999990 -1.7552041495066152E-003 + 78.179999999999993 -1.7473160321138893E-003 + 78.239999999999995 -1.7396159851742407E-003 + 78.299999999999997 -1.7320951491328280E-003 + 78.359999999999999 -1.7247451053256559E-003 + 78.420000000000002 -1.7175575263124669E-003 + 78.479999999999990 -1.7105241338016132E-003 + 78.539999999999992 -1.7036367748422818E-003 + 78.599999999999994 -1.6968875203638521E-003 + 78.659999999999997 -1.6902685821749549E-003 + 78.719999999999999 -1.6837720723621586E-003 + 78.780000000000001 -1.6773905110909920E-003 + 78.839999999999989 -1.6711165320415604E-003 + 78.899999999999991 -1.6649428519172711E-003 + 78.959999999999994 -1.6588624312748016E-003 + 79.019999999999996 -1.6528682519260298E-003 + 79.079999999999998 -1.6469536247150605E-003 + 79.140000000000001 -1.6411119710087504E-003 + 79.199999999999989 -1.6353368073053149E-003 + 79.259999999999991 -1.6296219239480452E-003 + 79.319999999999993 -1.6239615673660835E-003 + 79.379999999999995 -1.6183499017059630E-003 + 79.439999999999998 -1.6127814755181496E-003 + 79.500000000000000 -1.6072511646509223E-003 + 79.560000000000002 -1.6017539025009390E-003 + 79.619999999999990 -1.5962851246337998E-003 + 79.679999999999993 -1.5908403140015384E-003 + 79.739999999999995 -1.5854154429489646E-003 + 79.799999999999997 -1.5800065870223100E-003 + 79.859999999999999 -1.5746100748676509E-003 + 79.920000000000002 -1.5692226184768341E-003 + 79.979999999999990 -1.5638410620040513E-003 + 80.039999999999992 -1.5584626769318693E-003 + 80.099999999999994 -1.5530847845049685E-003 + 80.159999999999997 -1.5477051355441366E-003 + 80.219999999999999 -1.5423214516894880E-003 + 80.280000000000001 -1.5369318927629435E-003 + 80.340000000000003 -1.5315347165206967E-003 + 80.400000000000006 -1.5261283756505927E-003 + 80.460000000000008 -1.5207117196520785E-003 + 80.519999999999982 -1.5152835744828049E-003 + 80.579999999999984 -1.5098430765094681E-003 + 80.639999999999986 -1.5043895882609012E-003 + 80.699999999999989 -1.4989225761021076E-003 + 80.759999999999991 -1.4934419794739853E-003 + 80.819999999999993 -1.4879475717410791E-003 + 80.879999999999995 -1.4824396766012920E-003 + 80.939999999999998 -1.4769184805206678E-003 + 81.000000000000000 -1.4713845376056072E-003 + 81.060000000000002 -1.4658385025019716E-003 + 81.120000000000005 -1.4602811576609868E-003 + 81.180000000000007 -1.4547135456889691E-003 + 81.240000000000009 -1.4491366230225025E-003 + 81.299999999999983 -1.4435517500669620E-003 + 81.359999999999985 -1.4379601625749033E-003 + 81.419999999999987 -1.4323631714248338E-003 + 81.479999999999990 -1.4267621912500182E-003 + 81.539999999999992 -1.4211588836640721E-003 + 81.599999999999994 -1.4155546061010182E-003 + 81.659999999999997 -1.4099510306228452E-003 + 81.719999999999999 -1.4043497728805656E-003 + 81.780000000000001 -1.3987525198376652E-003 + 81.840000000000003 -1.3931607938407959E-003 + 81.900000000000006 -1.3875763308784654E-003 + 81.960000000000008 -1.3820008398046655E-003 + 82.019999999999982 -1.3764359322292552E-003 + 82.079999999999984 -1.3708833865249265E-003 + 82.139999999999986 -1.3653446546985555E-003 + 82.199999999999989 -1.3598215182783573E-003 + 82.259999999999991 -1.3543153935377909E-003 + 82.319999999999993 -1.3488279684587662E-003 + 82.379999999999995 -1.3433605709997193E-003 + 82.439999999999998 -1.3379148101567279E-003 + 82.500000000000000 -1.3324918671698373E-003 + 82.560000000000002 -1.3270932384131671E-003 + 82.620000000000005 -1.3217199671483478E-003 + 82.680000000000007 -1.3163733628963449E-003 + 82.740000000000009 -1.3110543733915849E-003 + 82.799999999999983 -1.3057640913120823E-003 + 82.859999999999985 -1.3005032985884317E-003 + 82.919999999999987 -1.2952727687642292E-003 + 82.979999999999990 -1.2900731575563021E-003 + 83.039999999999992 -1.2849051675841829E-003 + 83.099999999999994 -1.2797691755171673E-003 + 83.159999999999997 -1.2746655308752712E-003 + 83.219999999999999 -1.2695946141172241E-003 + 83.280000000000001 -1.2645564239347320E-003 + 83.340000000000003 -1.2595510510466953E-003 + 83.400000000000006 -1.2545784416151385E-003 + 83.460000000000008 -1.2496383958051360E-003 + 83.519999999999982 -1.2447305596267305E-003 + 83.579999999999984 -1.2398546196644772E-003 + 83.639999999999986 -1.2350100646644734E-003 + 83.699999999999989 -1.2301961235991637E-003 + 83.759999999999991 -1.2254122687374647E-003 + 83.819999999999993 -1.2206576584061679E-003 + 83.879999999999995 -1.2159315099244316E-003 + 83.939999999999998 -1.2112328963774610E-003 + 84.000000000000000 -1.2065609378838634E-003 + 84.060000000000002 -1.2019145550064762E-003 + 84.120000000000005 -1.1972928102397941E-003 + 84.180000000000007 -1.1926945714648696E-003 + 84.240000000000009 -1.1881188038911045E-003 + 84.299999999999983 -1.1835642800547322E-003 + 84.359999999999985 -1.1790299737283547E-003 + 84.419999999999987 -1.1745146944029954E-003 + 84.479999999999990 -1.1700171919647967E-003 + 84.539999999999992 -1.1655362114176180E-003 + 84.599999999999994 -1.1610707091692725E-003 + 84.659999999999997 -1.1566194779615391E-003 + 84.719999999999999 -1.1521812004307841E-003 + 84.780000000000001 -1.1477546653054212E-003 + 84.840000000000003 -1.1433386519690415E-003 + 84.900000000000006 -1.1389319434288742E-003 + 84.960000000000008 -1.1345333354350656E-003 + 85.019999999999982 -1.1301416581280615E-003 + 85.079999999999984 -1.1257557377230315E-003 + 85.139999999999986 -1.1213746093503554E-003 + 85.199999999999989 -1.1169972688085390E-003 + 85.259999999999991 -1.1126226675605342E-003 + 85.319999999999993 -1.1082499278027632E-003 + 85.379999999999995 -1.1038784033087601E-003 + 85.439999999999998 -1.0995074186099262E-003 + 85.500000000000000 -1.0951363358500301E-003 + 85.560000000000002 -1.0907647970145580E-003 + 85.620000000000005 -1.0863923636628551E-003 + 85.680000000000007 -1.0820187577991892E-003 + 85.740000000000009 -1.0776438667370125E-003 + 85.799999999999983 -1.0732675232265451E-003 + 85.859999999999985 -1.0688896745125209E-003 + 85.919999999999987 -1.0645104964377042E-003 + 85.979999999999990 -1.0601299628872419E-003 + 86.039999999999992 -1.0557483694461677E-003 + 86.099999999999994 -1.0513660962190941E-003 + 86.159999999999997 -1.0469832761609869E-003 + 86.219999999999999 -1.0426005775944780E-003 + 86.280000000000001 -1.0382184506919465E-003 + 86.340000000000003 -1.0338374528322317E-003 + 86.400000000000006 -1.0294583414321768E-003 + 86.460000000000008 -1.0250819315139614E-003 + 86.519999999999982 -1.0207089412711827E-003 + 86.579999999999984 -1.0163403162863883E-003 + 86.639999999999986 -1.0119772291651221E-003 + 86.699999999999989 -1.0076207944637225E-003 + 86.759999999999991 -1.0032722597263283E-003 + 86.819999999999993 -9.9893295111422591E-004 + 86.879999999999995 -9.9460429426707214E-004 + 86.939999999999998 -9.9028767107285577E-004 + 87.000000000000000 -9.8598456820492893E-004 + 87.060000000000002 -9.8169656507519302E-004 + 87.120000000000005 -9.7742526417775354E-004 + 87.180000000000007 -9.7317228288836205E-004 + 87.240000000000009 -9.6893915626568056E-004 + 87.299999999999983 -9.6472746486529640E-004 + 87.359999999999985 -9.6053881326140205E-004 + 87.419999999999987 -9.5637469704315157E-004 + 87.479999999999990 -9.5223671162348493E-004 + 87.539999999999992 -9.4812633787347180E-004 + 87.599999999999994 -9.4404508735856213E-004 + 87.659999999999997 -9.3999431898515663E-004 + 87.719999999999999 -9.3597541341532869E-004 + 87.780000000000001 -9.3198975479472589E-004 + 87.840000000000003 -9.2803860073815026E-004 + 87.900000000000006 -9.2412320272174510E-004 + 87.960000000000008 -9.2024477233568300E-004 + 88.019999999999982 -9.1640446218761154E-004 + 88.079999999999984 -9.1260331504552320E-004 + 88.139999999999986 -9.0884238024618489E-004 + 88.199999999999989 -9.0512255272128211E-004 + 88.259999999999991 -9.0144468581624206E-004 + 88.319999999999993 -8.9780952208679834E-004 + 88.379999999999995 -8.9421774094255513E-004 + 88.439999999999998 -8.9066990306483111E-004 + 88.500000000000000 -8.8716648683796100E-004 + 88.560000000000002 -8.8370792697157346E-004 + 88.620000000000005 -8.8029445922676599E-004 + 88.680000000000007 -8.7692621961579212E-004 + 88.740000000000009 -8.7360333174439989E-004 + 88.799999999999983 -8.7032572782753189E-004 + 88.859999999999985 -8.6709328396779761E-004 + 88.919999999999987 -8.6390570483267702E-004 + 88.979999999999990 -8.6076265171417606E-004 + 89.039999999999992 -8.5766372798007535E-004 + 89.099999999999994 -8.5460832241864308E-004 + 89.159999999999997 -8.5159586533961097E-004 + 89.219999999999999 -8.4862548212348067E-004 + 89.280000000000001 -8.4569630850212332E-004 + 89.340000000000003 -8.4280741452085167E-004 + 89.400000000000006 -8.3995772034467617E-004 + 89.460000000000008 -8.3714604640832129E-004 + 89.519999999999982 -8.3437117044543314E-004 + 89.579999999999984 -8.3163178046456612E-004 + 89.639999999999986 -8.2892649950278376E-004 + 89.699999999999989 -8.2625386907286369E-004 + 89.759999999999991 -8.2361233204409604E-004 + 89.819999999999993 -8.2100036513485931E-004 + 89.879999999999995 -8.1841629526945188E-004 + 89.939999999999998 -8.1585849691350918E-004 + 90.000000000000000 -8.1332527204218375E-004 + 90.060000000000002 -8.1081492665747697E-004 + 90.120000000000005 -8.0832573686520843E-004 + 90.180000000000007 -8.0585595834494991E-004 + 90.240000000000009 -8.0340387103223175E-004 + 90.299999999999983 -8.0096768947858889E-004 + 90.359999999999985 -7.9854569041672813E-004 + 90.419999999999987 -7.9613613508573440E-004 + 90.479999999999990 -7.9373721444481128E-004 + 90.539999999999992 -7.9134723597246528E-004 + 90.599999999999994 -7.8896446374116880E-004 + 90.659999999999997 -7.8658717917269984E-004 + 90.719999999999999 -7.8421375478076292E-004 + 90.780000000000001 -7.8184255836533730E-004 + 90.840000000000003 -7.7947204264257818E-004 + 90.900000000000006 -7.7710066873978314E-004 + 90.960000000000008 -7.7472699347546443E-004 + 91.019999999999982 -7.7234967826746484E-004 + 91.079999999999984 -7.6996750442844800E-004 + 91.139999999999986 -7.6757924150079094E-004 + 91.199999999999989 -7.6518388484510193E-004 + 91.259999999999991 -7.6278043550037709E-004 + 91.319999999999993 -7.6036808062895987E-004 + 91.379999999999995 -7.5794608531606943E-004 + 91.439999999999998 -7.5551379802513965E-004 + 91.500000000000000 -7.5307064034157870E-004 + 91.560000000000002 -7.5061623796225836E-004 + 91.620000000000005 -7.4815015659960974E-004 + 91.680000000000007 -7.4567211864958892E-004 + 91.739999999999981 -7.4318201970790263E-004 + 91.799999999999983 -7.4067968809980018E-004 + 91.859999999999985 -7.3816509298683713E-004 + 91.919999999999987 -7.3563834884483479E-004 + 91.979999999999990 -7.3309960866526540E-004 + 92.039999999999992 -7.3054903625576384E-004 + 92.099999999999994 -7.2798701886114857E-004 + 92.159999999999997 -7.2541402595003776E-004 + 92.219999999999999 -7.2283049432058776E-004 + 92.280000000000001 -7.2023711366609150E-004 + 92.340000000000003 -7.1763457484600834E-004 + 92.400000000000006 -7.1502381496059289E-004 + 92.460000000000008 -7.1240571297550551E-004 + 92.519999999999982 -7.0978142895662048E-004 + 92.579999999999984 -7.0715209045916897E-004 + 92.639999999999986 -7.0451903451822717E-004 + 92.699999999999989 -7.0188355791053910E-004 + 92.759999999999991 -6.9924712058039415E-004 + 92.819999999999993 -6.9661122858926490E-004 + 92.879999999999995 -6.9397742955680671E-004 + 92.939999999999998 -6.9134725848666288E-004 + 93.000000000000000 -6.8872232450219086E-004 + 93.060000000000002 -6.8610430864022274E-004 + 93.120000000000005 -6.8349474867601646E-004 + 93.180000000000007 -6.8089534351075125E-004 + 93.239999999999981 -6.7830766927627639E-004 + 93.299999999999983 -6.7573342097744689E-004 + 93.359999999999985 -6.7317413584037770E-004 + 93.419999999999987 -6.7063137363248507E-004 + 93.479999999999990 -6.6810683329681687E-004 + 93.539999999999992 -6.6560196070988278E-004 + 93.599999999999994 -6.6311838127582230E-004 + 93.659999999999997 -6.6065761037607340E-004 + 93.719999999999999 -6.5822115527964197E-004 + 93.780000000000001 -6.5581047643559166E-004 + 93.840000000000003 -6.5342709472623428E-004 + 93.900000000000006 -6.5107237525491410E-004 + 93.960000000000008 -6.4874773139998526E-004 + 94.019999999999982 -6.4645448993332912E-004 + 94.079999999999984 -6.4419387159133149E-004 + 94.139999999999986 -6.4196714472618472E-004 + 94.199999999999989 -6.3977535516123406E-004 + 94.259999999999991 -6.3761958141232071E-004 + 94.319999999999993 -6.3550076659987960E-004 + 94.379999999999995 -6.3341966520455222E-004 + 94.439999999999998 -6.3137706707319034E-004 + 94.500000000000000 -6.2937363905455029E-004 + 94.560000000000002 -6.2740986498239137E-004 + 94.620000000000005 -6.2548607177235094E-004 + 94.680000000000007 -6.2360264781535237E-004 + 94.739999999999981 -6.2175971110327549E-004 + 94.799999999999983 -6.1995739278912173E-004 + 94.859999999999985 -6.1819558157496244E-004 + 94.919999999999987 -6.1647408372979913E-004 + 94.979999999999990 -6.1479260317342838E-004 + 95.039999999999992 -6.1315083373680173E-004 + 95.099999999999994 -6.1154816944781110E-004 + 95.159999999999997 -6.0998405156817946E-004 + 95.219999999999999 -6.0845770316112033E-004 + 95.280000000000001 -6.0696833652426933E-004 + 95.340000000000003 -6.0551503203956462E-004 + 95.400000000000006 -6.0409671528607238E-004 + 95.460000000000008 -6.0271235036108025E-004 + 95.519999999999982 -6.0136069022506753E-004 + 95.579999999999984 -6.0004052018029449E-004 + 95.639999999999986 -5.9875043850630082E-004 + 95.699999999999989 -5.9748907000210891E-004 + 95.759999999999991 -5.9625495360719272E-004 + 95.819999999999993 -5.9504653030885641E-004 + 95.879999999999995 -5.9386217693778757E-004 + 95.939999999999998 -5.9270029799868079E-004 + 96.000000000000000 -5.9155908694287712E-004 + 96.060000000000002 -5.9043681723185853E-004 + 96.120000000000005 -5.8933169400726931E-004 + 96.180000000000007 -5.8824187273327354E-004 + 96.239999999999981 -5.8716541523424744E-004 + 96.299999999999983 -5.8610037342985062E-004 + 96.359999999999985 -5.8504480309465149E-004 + 96.419999999999987 -5.8399664508366881E-004 + 96.479999999999990 -5.8295390196504908E-004 + 96.539999999999992 -5.8191455886548470E-004 + 96.599999999999994 -5.8087662786358916E-004 + 96.659999999999997 -5.7983815042677981E-004 + 96.719999999999999 -5.7879701966582077E-004 + 96.780000000000001 -5.7775147411022031E-004 + 96.840000000000003 -5.7669952292382671E-004 + 96.900000000000006 -5.7563949637731227E-004 + 96.960000000000008 -5.7456967440102107E-004 + 97.019999999999982 -5.7348845264327793E-004 + 97.079999999999984 -5.7239431548478429E-004 + 97.139999999999986 -5.7128583543000853E-004 + 97.199999999999989 -5.7016169942245942E-004 + 97.259999999999991 -5.6902077350413775E-004 + 97.319999999999993 -5.6786185809060759E-004 + 97.379999999999995 -5.6668397656943752E-004 + 97.439999999999998 -5.6548625292819773E-004 + 97.500000000000000 -5.6426780399400844E-004 + 97.560000000000002 -5.6302791430325291E-004 + 97.620000000000005 -5.6176596989841656E-004 + 97.680000000000007 -5.6048136820102288E-004 + 97.739999999999981 -5.5917366403336220E-004 + 97.799999999999983 -5.5784247014340979E-004 + 97.859999999999985 -5.5648751707117693E-004 + 97.919999999999987 -5.5510853637898735E-004 + 97.979999999999990 -5.5370551663711605E-004 + 98.039999999999992 -5.5227846609876658E-004 + 98.099999999999994 -5.5082755674342788E-004 + 98.159999999999997 -5.4935299679492906E-004 + 98.219999999999999 -5.4785528779005967E-004 + 98.280000000000001 -5.4633486243318063E-004 + 98.340000000000003 -5.4479242330494047E-004 + 98.400000000000006 -5.4322881559921163E-004 + 98.460000000000008 -5.4164487048271063E-004 + 98.519999999999982 -5.4004164573262243E-004 + 98.579999999999984 -5.3842026102307941E-004 + 98.639999999999986 -5.3678196577950483E-004 + 98.699999999999989 -5.3512807598410763E-004 + 98.759999999999991 -5.3346001714374674E-004 + 98.819999999999993 -5.3177929893804599E-004 + 98.879999999999995 -5.3008741689474946E-004 + 98.939999999999998 -5.2838597288602102E-004 + 99.000000000000000 -5.2667657666637471E-004 + 99.060000000000002 -5.2496096685611024E-004 + 99.120000000000005 -5.2324075701506740E-004 + 99.180000000000007 -5.2151776250732224E-004 + 99.239999999999981 -5.1979373045770458E-004 + 99.299999999999983 -5.1807037949712636E-004 + 99.359999999999985 -5.1634954593917076E-004 + 99.419999999999987 -5.1463297843496597E-004 + 99.479999999999990 -5.1292251322850241E-004 + 99.539999999999992 -5.1121997635505349E-004 + 99.599999999999994 -5.0952714116160320E-004 + 99.659999999999997 -5.0784580846525442E-004 + 99.719999999999999 -5.0617773192912431E-004 + 99.780000000000001 -5.0452477003691087E-004 + 99.840000000000003 -5.0288858239914524E-004 + 99.900000000000006 -5.0127095406629911E-004 + 99.960000000000008 -4.9967355153883030E-004 + 100.01999999999998 -4.9809804079863800E-004 + 100.07999999999998 -4.9654602614267304E-004 + 100.13999999999999 -4.9501906115515274E-004 + 100.19999999999999 -4.9351870810789521E-004 + 100.25999999999999 -4.9204647204909350E-004 + 100.31999999999999 -4.9060372806517189E-004 + 100.38000000000000 -4.8919187563234781E-004 + 100.44000000000000 -4.8781219065185201E-004 + 100.50000000000000 -4.8646596502163183E-004 + 100.56000000000000 -4.8515437899199101E-004 + 100.62000000000000 -4.8387856691026643E-004 + 100.68000000000001 -4.8263950304173282E-004 + 100.73999999999998 -4.8143813961958363E-004 + 100.79999999999998 -4.8027538627848924E-004 + 100.85999999999999 -4.7915194777425023E-004 + 100.91999999999999 -4.7806849231034310E-004 + 100.97999999999999 -4.7702553098829484E-004 + 101.03999999999999 -4.7602352224940378E-004 + 101.09999999999999 -4.7506278554318719E-004 + 101.16000000000000 -4.7414352228851084E-004 + 101.22000000000000 -4.7326577463659332E-004 + 101.28000000000000 -4.7242953717475489E-004 + 101.34000000000000 -4.7163468840487354E-004 + 101.40000000000001 -4.7088099824865455E-004 + 101.46000000000001 -4.7016813389612474E-004 + 101.51999999999998 -4.6949565392995153E-004 + 101.57999999999998 -4.6886304960977779E-004 + 101.63999999999999 -4.6826972576498993E-004 + 101.69999999999999 -4.6771503307715164E-004 + 101.75999999999999 -4.6719819378031682E-004 + 101.81999999999999 -4.6671843364079604E-004 + 101.88000000000000 -4.6627483921494691E-004 + 101.94000000000000 -4.6586649148166450E-004 + 102.00000000000000 -4.6549237090481860E-004 + 102.06000000000000 -4.6515137798079772E-004 + 102.12000000000000 -4.6484235910986623E-004 + 102.18000000000001 -4.6456411015587443E-004 + 102.23999999999998 -4.6431539379189273E-004 + 102.29999999999998 -4.6409481913070637E-004 + 102.35999999999999 -4.6390101047301603E-004 + 102.41999999999999 -4.6373253381733372E-004 + 102.47999999999999 -4.6358786219074703E-004 + 102.53999999999999 -4.6346550353600497E-004 + 102.59999999999999 -4.6336388569732283E-004 + 102.66000000000000 -4.6328143524016629E-004 + 102.72000000000000 -4.6321657417979851E-004 + 102.78000000000000 -4.6316769609827690E-004 + 102.84000000000000 -4.6313327099280677E-004 + 102.90000000000001 -4.6311171532730124E-004 + 102.96000000000001 -4.6310153810661845E-004 + 103.01999999999998 -4.6310123239029510E-004 + 103.07999999999998 -4.6310935667679700E-004 + 103.13999999999999 -4.6312449122991838E-004 + 103.19999999999999 -4.6314532092477816E-004 + 103.25999999999999 -4.6317053554421916E-004 + 103.31999999999999 -4.6319888382870066E-004 + 103.38000000000000 -4.6322917386325789E-004 + 103.44000000000000 -4.6326029136428161E-004 + 103.50000000000000 -4.6329117234617857E-004 + 103.56000000000000 -4.6332084148673330E-004 + 103.62000000000000 -4.6334835273520518E-004 + 103.68000000000001 -4.6337285637789100E-004 + 103.73999999999998 -4.6339357687361397E-004 + 103.79999999999998 -4.6340978672055087E-004 + 103.85999999999999 -4.6342091225741173E-004 + 103.91999999999999 -4.6342642767608521E-004 + 103.97999999999999 -4.6342587424500999E-004 + 104.03999999999999 -4.6341894350712079E-004 + 104.09999999999999 -4.6340539784648775E-004 + 104.16000000000000 -4.6338509972318877E-004 + 104.22000000000000 -4.6335801601805448E-004 + 104.28000000000000 -4.6332420935384685E-004 + 104.34000000000000 -4.6328386004691898E-004 + 104.40000000000001 -4.6323727327093704E-004 + 104.46000000000001 -4.6318481567556925E-004 + 104.51999999999998 -4.6312699890042777E-004 + 104.57999999999998 -4.6306443128778284E-004 + 104.63999999999999 -4.6299784091470623E-004 + 104.69999999999999 -4.6292806033664267E-004 + 104.75999999999999 -4.6285607661160951E-004 + 104.81999999999999 -4.6278297871096298E-004 + 104.88000000000000 -4.6270992034324536E-004 + 104.94000000000000 -4.6263826820714212E-004 + 105.00000000000000 -4.6256948023329955E-004 + 105.06000000000000 -4.6250513759810938E-004 + 105.12000000000000 -4.6244697191334536E-004 + 105.18000000000001 -4.6239678351339024E-004 + 105.23999999999998 -4.6235655413403296E-004 + 105.29999999999998 -4.6232838009178451E-004 + 105.35999999999999 -4.6231444675479973E-004 + 105.41999999999999 -4.6231711780767953E-004 + 105.47999999999999 -4.6233880310136153E-004 + 105.53999999999999 -4.6238205942432495E-004 + 105.59999999999999 -4.6244953556617857E-004 + 105.66000000000000 -4.6254397395980755E-004 + 105.72000000000000 -4.6266827732348683E-004 + 105.78000000000000 -4.6282544883555589E-004 + 105.84000000000000 -4.6301851997598609E-004 + 105.90000000000001 -4.6325074257874081E-004 + 105.96000000000001 -4.6352543691116508E-004 + 106.01999999999998 -4.6384603944885175E-004 + 106.07999999999998 -4.6421615200231518E-004 + 106.13999999999999 -4.6463947274034170E-004 + 106.19999999999999 -4.6511986094970997E-004 + 106.25999999999999 -4.6566134623629351E-004 + 106.31999999999999 -4.6626806931903217E-004 + 106.38000000000000 -4.6694435252402978E-004 + 106.44000000000000 -4.6769463381402676E-004 + 106.50000000000000 -4.6852349914721216E-004 + 106.56000000000000 -4.6943572575854455E-004 + 106.62000000000000 -4.7043620199482838E-004 + 106.68000000000001 -4.7152993268285580E-004 + 106.73999999999998 -4.7272207432020366E-004 + 106.79999999999998 -4.7401782124076666E-004 + 106.85999999999999 -4.7542261691553784E-004 + 106.91999999999999 -4.7694184718683640E-004 + 106.97999999999999 -4.7858116869724059E-004 + 107.03999999999999 -4.8034616544146471E-004 + 107.09999999999999 -4.8224257015579928E-004 + 107.16000000000000 -4.8427626777262207E-004 + 107.22000000000000 -4.8645309236887831E-004 + 107.28000000000000 -4.8877904683407368E-004 + 107.34000000000000 -4.9126009668004362E-004 + 107.40000000000001 -4.9390236846980518E-004 + 107.46000000000001 -4.9671197304817355E-004 + 107.51999999999998 -4.9969511112155540E-004 + 107.57999999999998 -5.0285795672691568E-004 + 107.63999999999999 -5.0620684461034546E-004 + 107.69999999999999 -5.0974803553691919E-004 + 107.75999999999999 -5.1348777102297005E-004 + 107.81999999999999 -5.1743230672990966E-004 + 107.88000000000000 -5.2158792484372212E-004 + 107.94000000000000 -5.2596083394232265E-004 + 108.00000000000000 -5.3055710800947340E-004 + 108.06000000000000 -5.3538277548127212E-004 + 108.12000000000000 -5.4044380979315521E-004 + 108.18000000000001 -5.4574595966773594E-004 + 108.23999999999998 -5.5129495198000744E-004 + 108.29999999999998 -5.5709621066180677E-004 + 108.35999999999999 -5.6315499359133297E-004 + 108.41999999999999 -5.6947649106025774E-004 + 108.47999999999999 -5.7606548720129771E-004 + 108.53999999999999 -5.8292661684872390E-004 + 108.59999999999999 -5.9006422347753981E-004 + 108.66000000000000 -5.9748232299560301E-004 + 108.72000000000000 -6.0518466661817476E-004 + 108.78000000000000 -6.1317464299737406E-004 + 108.84000000000000 -6.2145528107621908E-004 + 108.90000000000001 -6.3002933526552698E-004 + 108.96000000000001 -6.3889901619611830E-004 + 109.01999999999998 -6.4806619969576620E-004 + 109.07999999999998 -6.5753234811081964E-004 + 109.13999999999999 -6.6729835131252690E-004 + 109.19999999999999 -6.7736466209805950E-004 + 109.25999999999999 -6.8773131343007304E-004 + 109.31999999999999 -6.9839764401703058E-004 + 109.38000000000000 -7.0936256858871078E-004 + 109.44000000000000 -7.2062431638742624E-004 + 109.50000000000000 -7.3218057883477398E-004 + 109.56000000000000 -7.4402847484959875E-004 + 109.62000000000000 -7.5616436545051006E-004 + 109.68000000000001 -7.6858403042496691E-004 + 109.73999999999998 -7.8128257918240115E-004 + 109.79999999999998 -7.9425448728226184E-004 + 109.85999999999999 -8.0749341151602476E-004 + 109.91999999999999 -8.2099234850518217E-004 + 109.97999999999999 -8.3474353441216479E-004 + 110.03999999999999 -8.4873842116239546E-004 + 110.09999999999999 -8.6296792352571182E-004 + 110.16000000000000 -8.7742191943025142E-004 + 110.22000000000000 -8.9208972149303989E-004 + 110.28000000000000 -9.0695978887735769E-004 + 110.34000000000000 -9.2201977976491978E-004 + 110.40000000000001 -9.3725647326045483E-004 + 110.46000000000001 -9.5265608253058574E-004 + 110.51999999999998 -9.6820391680817706E-004 + 110.57999999999998 -9.8388455251684193E-004 + 110.63999999999999 -9.9968192222228084E-004 + 110.69999999999999 -1.0155790033291622E-003 + 110.75999999999999 -1.0315581681463663E-003 + 110.81999999999999 -1.0476010282243942E-003 + 110.88000000000000 -1.0636884874551263E-003 + 110.94000000000000 -1.0798008490736748E-003 + 111.00000000000000 -1.0959175687983939E-003 + 111.06000000000000 -1.1120177331783864E-003 + 111.12000000000000 -1.1280795423582891E-003 + 111.18000000000001 -1.1440807046912711E-003 + 111.23999999999998 -1.1599984046723666E-003 + 111.29999999999998 -1.1758093165497815E-003 + 111.35999999999999 -1.1914896224638053E-003 + 111.41999999999999 -1.2070148648568740E-003 + 111.47999999999999 -1.2223602167782956E-003 + 111.53999999999999 -1.2375006530516606E-003 + 111.59999999999999 -1.2524106190625575E-003 + 111.66000000000000 -1.2670643233676328E-003 + 111.72000000000000 -1.2814356656370624E-003 + 111.78000000000000 -1.2954983466862452E-003 + 111.84000000000000 -1.3092260599679825E-003 + 111.90000000000001 -1.3225921519858818E-003 + 111.96000000000001 -1.3355701877322572E-003 + 112.01999999999998 -1.3481335255249741E-003 + 112.07999999999998 -1.3602558038073179E-003 + 112.13999999999999 -1.3719106713677932E-003 + 112.19999999999999 -1.3830719073052449E-003 + 112.25999999999999 -1.3937135763793451E-003 + 112.31999999999999 -1.4038101119955445E-003 + 112.38000000000000 -1.4133363558648821E-003 + 112.44000000000000 -1.4222673841337314E-003 + 112.50000000000000 -1.4305787871705788E-003 + 112.56000000000000 -1.4382468238379666E-003 + 112.62000000000000 -1.4452482419041797E-003 + 112.68000000000001 -1.4515604324365306E-003 + 112.73999999999998 -1.4571614192741679E-003 + 112.79999999999998 -1.4620300280752769E-003 + 112.85999999999999 -1.4661460790160485E-003 + 112.91999999999999 -1.4694900164954840E-003 + 112.97999999999999 -1.4720432871078038E-003 + 113.03999999999999 -1.4737882578468027E-003 + 113.09999999999999 -1.4747084062594227E-003 + 113.16000000000000 -1.4747881980829126E-003 + 113.22000000000000 -1.4740134595598569E-003 + 113.28000000000000 -1.4723708036280645E-003 + 113.34000000000000 -1.4698483306780240E-003 + 113.40000000000001 -1.4664354259731564E-003 + 113.46000000000001 -1.4621225096827035E-003 + 113.51999999999998 -1.4569014687099134E-003 + 113.57999999999998 -1.4507655032301330E-003 + 113.63999999999999 -1.4437091764967424E-003 + 113.69999999999999 -1.4357284751965282E-003 + 113.75999999999999 -1.4268206204758414E-003 + 113.81999999999999 -1.4169844588113314E-003 + 113.88000000000000 -1.4062199877389165E-003 + 113.94000000000000 -1.3945289020891370E-003 + 114.00000000000000 -1.3819143051620342E-003 + 114.06000000000000 -1.3683804647419589E-003 + 114.12000000000000 -1.3539332566507118E-003 + 114.18000000000001 -1.3385800383212605E-003 + 114.23999999999998 -1.3223296269268003E-003 + 114.29999999999998 -1.3051919801336256E-003 + 114.35999999999999 -1.2871788026188164E-003 + 114.41999999999999 -1.2683030152899064E-003 + 114.47999999999999 -1.2485789749018435E-003 + 114.53999999999999 -1.2280222446020797E-003 + 114.59999999999999 -1.2066498827852995E-003 + 114.66000000000000 -1.1844802051069764E-003 + 114.72000000000000 -1.1615326562217031E-003 + 114.78000000000000 -1.1378279794249217E-003 + 114.84000000000000 -1.1133880901432565E-003 + 114.90000000000001 -1.0882360422099242E-003 + 114.96000000000001 -1.0623959768959600E-003 + 115.01999999999998 -1.0358930109161690E-003 + 115.07999999999998 -1.0087532324526086E-003 + 115.13999999999999 -9.8100367233466281E-004 + 115.19999999999999 -9.5267223657986670E-004 + 115.25999999999999 -9.2378759772069035E-004 + 115.31999999999999 -8.9437924205759060E-004 + 115.38000000000000 -8.6447726812440419E-004 + 115.44000000000000 -8.3411249972538089E-004 + 115.50000000000000 -8.0331623748515859E-004 + 115.56000000000000 -7.7212039152190013E-004 + 115.62000000000000 -7.4055733726074156E-004 + 115.68000000000001 -7.0865972325216426E-004 + 115.73999999999998 -6.7646068947953600E-004 + 115.79999999999998 -6.4399360959364210E-004 + 115.85999999999999 -6.1129200945149443E-004 + 115.91999999999999 -5.7838967496474166E-004 + 115.97999999999999 -5.4532047659536437E-004 + 116.03999999999999 -5.1211817536082221E-004 + 116.09999999999999 -4.7881673240986221E-004 + 116.16000000000000 -4.4544978197633991E-004 + 116.22000000000000 -4.1205092659848827E-004 + 116.28000000000000 -3.7865360195494353E-004 + 116.34000000000000 -3.4529089234979155E-004 + 116.40000000000001 -3.1199556017097425E-004 + 116.46000000000001 -2.7879998496626294E-004 + 116.51999999999998 -2.4573610085277538E-004 + 116.57999999999998 -2.1283535412804376E-004 + 116.63999999999999 -1.8012864631173465E-004 + 116.69999999999999 -1.4764623821799752E-004 + 116.75999999999999 -1.1541778887664674E-004 + 116.81999999999999 -8.3472216126631636E-005 + 116.88000000000000 -5.1837738785066338E-005 + 116.94000000000000 -2.0541794539417161E-005 + 117.00000000000000 1.0388987858469650E-005 + 117.06000000000000 4.0928844080557238E-005 + 117.12000000000000 7.1052850688356844E-005 + 117.18000000000001 1.0073699174725532E-004 + 117.23999999999998 1.2995825220998345E-004 + 117.29999999999998 1.5869446124119264E-004 + 117.35999999999999 1.8692450522637787E-004 + 117.41999999999999 2.1462820766946598E-004 + 117.47999999999999 2.4178647371472052E-004 + 117.53999999999999 2.6838118482445375E-004 + 117.59999999999999 2.9439524704877621E-004 + 117.66000000000000 3.1981266482030183E-004 + 117.72000000000000 3.4461843699482367E-004 + 117.78000000000000 3.6879868390944442E-004 + 117.84000000000000 3.9234059382224889E-004 + 117.90000000000001 4.1523242444066900E-004 + 117.96000000000001 4.3746349139390752E-004 + 118.01999999999998 4.5902427795716617E-004 + 118.07999999999998 4.7990625843723374E-004 + 118.13999999999999 5.0010203276565541E-004 + 118.19999999999999 5.1960519496459148E-004 + 118.25999999999999 5.3841049249875761E-004 + 118.31999999999999 5.5651373103457382E-004 + 118.38000000000000 5.7391165233590814E-004 + 118.44000000000000 5.9060204122235688E-004 + 118.50000000000000 6.0658380774616374E-004 + 118.56000000000000 6.2185664240339649E-004 + 118.62000000000000 6.3642128574601623E-004 + 118.68000000000001 6.5027930557173689E-004 + 118.73999999999998 6.6343332348726145E-004 + 118.79999999999998 6.7588664361429597E-004 + 118.85999999999999 6.8764350017678144E-004 + 118.91999999999999 6.9870884091262581E-004 + 118.97999999999999 7.0908845291445244E-004 + 119.03999999999999 7.1878874087318099E-004 + 119.09999999999999 7.2781690752337746E-004 + 119.16000000000000 7.3618083105239337E-004 + 119.22000000000000 7.4388893479564980E-004 + 119.28000000000000 7.5095034436489436E-004 + 119.34000000000000 7.5737471173080938E-004 + 119.40000000000001 7.6317234808390751E-004 + 119.46000000000001 7.6835393890997195E-004 + 119.51999999999998 7.7293083752803012E-004 + 119.57999999999998 7.7691479532224651E-004 + 119.63999999999999 7.8031801229264640E-004 + 119.69999999999999 7.8315307583067440E-004 + 119.75999999999999 7.8543308322442332E-004 + 119.81999999999999 7.8717136624812311E-004 + 119.88000000000000 7.8838162002924301E-004 + 119.94000000000000 7.8907787110069798E-004 + 120.00000000000000 7.8927426930657603E-004 + 120.06000000000000 7.8898538239694914E-004 + 120.12000000000000 7.8822576244321971E-004 + 120.18000000000001 7.8701016127813818E-004 + 120.23999999999998 7.8535349017680813E-004 + 120.29999999999998 7.8327069171184858E-004 + 120.35999999999999 7.8077685379712757E-004 + 120.41999999999999 7.7788706386563782E-004 + 120.47999999999999 7.7461635623465039E-004 + 120.53999999999999 7.7097975271097556E-004 + 120.59999999999999 7.6699231074136198E-004 + 120.66000000000000 7.6266896880721868E-004 + 120.72000000000000 7.5802461711421665E-004 + 120.78000000000000 7.5307407342291668E-004 + 120.84000000000000 7.4783204071350281E-004 + 120.90000000000001 7.4231310955790298E-004 + 120.95999999999998 7.3653173735942787E-004 + 121.01999999999998 7.3050228696098585E-004 + 121.07999999999998 7.2423884824227697E-004 + 121.13999999999999 7.1775544721838520E-004 + 121.19999999999999 7.1106596096590048E-004 + 121.25999999999999 7.0418396569745304E-004 + 121.31999999999999 6.9712282168055682E-004 + 121.38000000000000 6.8989575114487508E-004 + 121.44000000000000 6.8251568756871590E-004 + 121.50000000000000 6.7499534570546909E-004 + 121.56000000000000 6.6734715506961296E-004 + 121.62000000000000 6.5958314247894882E-004 + 121.68000000000001 6.5171517833067388E-004 + 121.73999999999998 6.4375478553850226E-004 + 121.79999999999998 6.3571322328838701E-004 + 121.85999999999999 6.2760139065736365E-004 + 121.91999999999999 6.1942984610432257E-004 + 121.97999999999999 6.1120882602671255E-004 + 122.03999999999999 6.0294825685148687E-004 + 122.09999999999999 5.9465772441416099E-004 + 122.16000000000000 5.8634648135607312E-004 + 122.22000000000000 5.7802347183552746E-004 + 122.28000000000000 5.6969735184160520E-004 + 122.34000000000000 5.6137632755275785E-004 + 122.40000000000001 5.5306841892080992E-004 + 122.45999999999998 5.4478125841582318E-004 + 122.51999999999998 5.3652214432599603E-004 + 122.57999999999998 5.2829811254532198E-004 + 122.63999999999999 5.2011584771874159E-004 + 122.69999999999999 5.1198179821765127E-004 + 122.75999999999999 5.0390201547707673E-004 + 122.81999999999999 4.9588227559331358E-004 + 122.88000000000000 4.8792802161969995E-004 + 122.94000000000000 4.8004440947805997E-004 + 123.00000000000000 4.7223630210025660E-004 + 123.06000000000000 4.6450825468571168E-004 + 123.12000000000000 4.5686448015131039E-004 + 123.18000000000001 4.4930886360145217E-004 + 123.23999999999998 4.4184502972256952E-004 + 123.29999999999998 4.3447627189766291E-004 + 123.35999999999999 4.2720563146529547E-004 + 123.41999999999999 4.2003577317854010E-004 + 123.47999999999999 4.1296915498109822E-004 + 123.53999999999999 4.0600789734020551E-004 + 123.59999999999999 3.9915387092777756E-004 + 123.66000000000000 3.9240870460838337E-004 + 123.72000000000000 3.8577370549020598E-004 + 123.78000000000000 3.7925000851571719E-004 + 123.84000000000000 3.7283847685918979E-004 + 123.90000000000001 3.6653977080354158E-004 + 123.95999999999998 3.6035435344758230E-004 + 124.01999999999998 3.5428251099835261E-004 + 124.07999999999998 3.4832428206153906E-004 + 124.13999999999999 3.4247953193818341E-004 + 124.19999999999999 3.3674800500601719E-004 + 124.25999999999999 3.3112919994005268E-004 + 124.31999999999999 3.2562254614182813E-004 + 124.38000000000000 3.2022720308026481E-004 + 124.44000000000000 3.1494227941252173E-004 + 124.50000000000000 3.0976665035586389E-004 + 124.56000000000000 3.0469906872203578E-004 + 124.62000000000000 2.9973814093697424E-004 + 124.68000000000001 2.9488231987701875E-004 + 124.73999999999998 2.9012991013996456E-004 + 124.79999999999998 2.8547911722202218E-004 + 124.85999999999999 2.8092800777862047E-004 + 124.91999999999999 2.7647450381189490E-004 + 124.97999999999999 2.7211645520717207E-004 + 125.03999999999999 2.6785159626453590E-004 + 125.09999999999999 2.6367761412269072E-004 + 125.16000000000000 2.5959209160582471E-004 + 125.22000000000000 2.5559258028242884E-004 + 125.28000000000000 2.5167657232484213E-004 + 125.34000000000000 2.4784150968394419E-004 + 125.40000000000001 2.4408488873050313E-004 + 125.45999999999998 2.4040410150510963E-004 + 125.51999999999998 2.3679661220939630E-004 + 125.57999999999998 2.3325983804609252E-004 + 125.63999999999999 2.2979121255567708E-004 + 125.69999999999999 2.2638820769490956E-004 + 125.75999999999999 2.2304828612113725E-004 + 125.81999999999999 2.1976895373991198E-004 + 125.88000000000000 2.1654769824014169E-004 + 125.94000000000000 2.1338208381349634E-004 + 126.00000000000000 2.1026963541914554E-004 + 126.06000000000000 2.0720795758051602E-004 + 126.12000000000000 2.0419463632831040E-004 + 126.18000000000001 2.0122732810158947E-004 + 126.23999999999998 1.9830370183554193E-004 + 126.29999999999998 1.9542147367218040E-004 + 126.35999999999999 1.9257841023071471E-004 + 126.41999999999999 1.8977232905980431E-004 + 126.47999999999999 1.8700111947338210E-004 + 126.53999999999999 1.8426274368317410E-004 + 126.59999999999999 1.8155524094012036E-004 + 126.66000000000000 1.7887673386330309E-004 + 126.72000000000000 1.7622543961300698E-004 + 126.78000000000000 1.7359968636008482E-004 + 126.84000000000000 1.7099789587301923E-004 + 126.90000000000001 1.6841859574989200E-004 + 126.95999999999998 1.6586044006512148E-004 + 127.01999999999998 1.6332219073486378E-004 + 127.07999999999998 1.6080273772283747E-004 + 127.13999999999999 1.5830106224180526E-004 + 127.19999999999999 1.5581628526982764E-004 + 127.25999999999999 1.5334760346950976E-004 + 127.31999999999999 1.5089434321069649E-004 + 127.38000000000000 1.4845594565669241E-004 + 127.44000000000000 1.4603192012636271E-004 + 127.50000000000000 1.4362191060951008E-004 + 127.56000000000000 1.4122563156783466E-004 + 127.62000000000000 1.3884288297876063E-004 + 127.68000000000001 1.3647355692903457E-004 + 127.73999999999998 1.3411764243434151E-004 + 127.79999999999998 1.3177520248347545E-004 + 127.85999999999999 1.2944635407311305E-004 + 127.91999999999999 1.2713132690627801E-004 + 127.97999999999999 1.2483040127011781E-004 + 128.03999999999999 1.2254393973365490E-004 + 128.09999999999999 1.2027236127045538E-004 + 128.16000000000000 1.1801617671549138E-004 + 128.22000000000000 1.1577594081384235E-004 + 128.28000000000000 1.1355227893657521E-004 + 128.34000000000000 1.1134586043791093E-004 + 128.40000000000001 1.0915742460632311E-004 + 128.45999999999998 1.0698774379351172E-004 + 128.51999999999998 1.0483763389526293E-004 + 128.57999999999998 1.0270796301478101E-004 + 128.63999999999999 1.0059959985358938E-004 + 128.69999999999999 9.8513454410959216E-005 + 128.75999999999999 9.6450426488677124E-005 + 128.81999999999999 9.4411437120132613E-005 + 128.88000000000000 9.2397390114486576E-005 + 128.94000000000000 9.0409178488081988E-005 + 129.00000000000000 8.8447673910230776E-005 + 129.06000000000000 8.6513710471352163E-005 + 129.12000000000000 8.4608089215028906E-005 + 129.18000000000001 8.2731580091264904E-005 + 129.23999999999998 8.0884895168626365E-005 + 129.29999999999998 7.9068690290516922E-005 + 129.35999999999999 7.7283583626852953E-005 + 129.41999999999999 7.5530137058403503E-005 + 129.47999999999999 7.3808852513335203E-005 + 129.53999999999999 7.2120188776070439E-005 + 129.59999999999999 7.0464548561985124E-005 + 129.66000000000000 6.8842276734679174E-005 + 129.72000000000000 6.7253681084998026E-005 + 129.78000000000000 6.5699018839721459E-005 + 129.84000000000000 6.4178500076274492E-005 + 129.90000000000001 6.2692281539489220E-005 + 129.95999999999998 6.1240477280450137E-005 + 130.01999999999998 5.9823152810765275E-005 + 130.07999999999998 5.8440320248773704E-005 + 130.13999999999999 5.7091948358826764E-005 + 130.19999999999999 5.5777937307646433E-005 + 130.25999999999999 5.4498144017177496E-005 + 130.31999999999999 5.3252351855382135E-005 + 130.38000000000000 5.2040292606167238E-005 + 130.44000000000000 5.0861630973286145E-005 + 130.50000000000000 4.9715967425730543E-005 + 130.56000000000000 4.8602839544251481E-005 + 130.62000000000000 4.7521730462486140E-005 + 130.68000000000001 4.6472060423495097E-005 + 130.73999999999998 4.5453202957747668E-005 + 130.79999999999998 4.4464471624396173E-005 + 130.85999999999999 4.3505146675082573E-005 + 130.91999999999999 4.2574466156164175E-005 + 130.97999999999999 4.1671639268919160E-005 + 131.03999999999999 4.0795849709971707E-005 + 131.09999999999999 3.9946258487896337E-005 + 131.16000000000000 3.9122017250272665E-005 + 131.22000000000000 3.8322265572767096E-005 + 131.28000000000000 3.7546133789014633E-005 + 131.34000000000000 3.6792745159812323E-005 + 131.40000000000001 3.6061224181103320E-005 + 131.45999999999998 3.5350686558356816E-005 + 131.51999999999998 3.4660245924176460E-005 + 131.57999999999998 3.3989009881434683E-005 + 131.63999999999999 3.3336072368682750E-005 + 131.69999999999999 3.2700524446737626E-005 + 131.75999999999999 3.2081444769208828E-005 + 131.81999999999999 3.1477901590392015E-005 + 131.88000000000000 3.0888951683672941E-005 + 131.94000000000000 3.0313641879930971E-005 + 132.00000000000000 2.9751003769471484E-005 + 132.06000000000000 2.9200066803683907E-005 + 132.12000000000000 2.8659856160002700E-005 + 132.18000000000001 2.8129395459873386E-005 + 132.23999999999998 2.7607714228972696E-005 + 132.29999999999998 2.7093853118728628E-005 + 132.35999999999999 2.6586865680405082E-005 + 132.41999999999999 2.6085830429891754E-005 + 132.47999999999999 2.5589846849051802E-005 + 132.53999999999999 2.5098054745418488E-005 + 132.59999999999999 2.4609621856989575E-005 + 132.66000000000000 2.4123759671129068E-005 + 132.72000000000000 2.3639725057466440E-005 + 132.78000000000000 2.3156819862817759E-005 + 132.84000000000000 2.2674396823595793E-005 + 132.90000000000001 2.2191856678638165E-005 + 132.95999999999998 2.1708648726941641E-005 + 133.01999999999998 2.1224271732485490E-005 + 133.07999999999998 2.0738274224415237E-005 + 133.13999999999999 2.0250253320882125E-005 + 133.19999999999999 1.9759851424914477E-005 + 133.25999999999999 1.9266755456173500E-005 + 133.31999999999999 1.8770698025591841E-005 + 133.38000000000000 1.8271453014618285E-005 + 133.44000000000000 1.7768834060823842E-005 + 133.50000000000000 1.7262699313294597E-005 + 133.56000000000000 1.6752946812917827E-005 + 133.62000000000000 1.6239513177317370E-005 + 133.68000000000001 1.5722378704121908E-005 + 133.73999999999998 1.5201564152139525E-005 + 133.79999999999998 1.4677135452523682E-005 + 133.85999999999999 1.4149202502285127E-005 + 133.91999999999999 1.3617918331860072E-005 + 133.97999999999999 1.3083483669528490E-005 + 134.03999999999999 1.2546146676322904E-005 + 134.09999999999999 1.2006199565582707E-005 + 134.16000000000000 1.1463981395352501E-005 + 134.22000000000000 1.0919874364046832E-005 + 134.28000000000000 1.0374301308474067E-005 + 134.34000000000000 9.8277229402829934E-006 + 134.40000000000001 9.2806328087792603E-006 + 134.45999999999998 8.7335515213958976E-006 + 134.51999999999998 8.1870204580490678E-006 + 134.57999999999998 7.6415947188733337E-006 + 134.63999999999999 7.0978340961504069E-006 + 134.69999999999999 6.5562970940689519E-006 + 134.75999999999999 6.0175329948873428E-006 + 134.81999999999999 5.4820724478334560E-006 + 134.88000000000000 4.9504218807852366E-006 + 134.94000000000000 4.4230548840015207E-006 + 135.00000000000000 3.9004099656128931E-006 + 135.06000000000000 3.3828828017727888E-006 + 135.12000000000000 2.8708248470644979E-006 + 135.18000000000001 2.3645398152635917E-006 + 135.23999999999998 1.8642826772265922E-006 + 135.29999999999998 1.3702590575877916E-006 + 135.35999999999999 8.8262554292183859E-007 + 135.41999999999999 4.0148968469822762E-007 + 135.47999999999999 -7.3088947334314818E-008 + 135.53999999999999 -5.4109761076439388E-007 + 135.59999999999999 -1.0025713609200605E-006 + 135.66000000000000 -1.4575917033688675E-006 + 135.72000000000000 -1.9062891657368359E-006 + 135.78000000000000 -2.3488448016225045E-006 + 135.84000000000000 -2.7854922171155280E-006 + 135.90000000000001 -3.2165214364990581E-006 + 135.95999999999998 -3.6422835294346597E-006 + 136.01999999999998 -4.0631941721837163E-006 + 136.07999999999998 -4.4797391940665465E-006 + 136.13999999999999 -4.8924793504730281E-006 + 136.19999999999999 -5.3020553288183712E-006 + 136.25999999999999 -5.7091904344026940E-006 + 136.31999999999999 -6.1146940018889169E-006 + 136.38000000000000 -6.5194641195154746E-006 + 136.44000000000000 -6.9244879248301602E-006 + 136.50000000000000 -7.3308406167445031E-006 + 136.56000000000000 -7.7396827816064052E-006 + 136.62000000000000 -8.1522576180268857E-006 + 136.68000000000001 -8.5698878136733764E-006 + 136.73999999999998 -8.9939677568447266E-006 + 136.79999999999998 -9.4259585672998448E-006 + 136.85999999999999 -9.8673817420087810E-006 + 136.91999999999999 -1.0319810429161531E-005 + 136.97999999999999 -1.0784862634740814E-005 + 137.03999999999999 -1.1264195685919975E-005 + 137.09999999999999 -1.1759499417540926E-005 + 137.16000000000000 -1.2272487299708713E-005 + 137.22000000000000 -1.2804897878456130E-005 + 137.28000000000000 -1.3358479930622004E-005 + 137.34000000000000 -1.3935000339272447E-005 + 137.40000000000001 -1.4536232428505090E-005 + 137.45999999999998 -1.5163957235276532E-005 + 137.51999999999998 -1.5819960034356657E-005 + 137.57999999999998 -1.6506028455770530E-005 + 137.63999999999999 -1.7223950487539747E-005 + 137.69999999999999 -1.7975514185335457E-005 + 137.75999999999999 -1.8762504329683824E-005 + 137.81999999999999 -1.9586699767869327E-005 + 137.88000000000000 -2.0449870864017896E-005 + 137.94000000000000 -2.1353775197658412E-005 + 138.00000000000000 -2.2300153108383397E-005 + 138.06000000000000 -2.3290724749814005E-005 + 138.12000000000000 -2.4327185767332526E-005 + 138.18000000000001 -2.5411193182007915E-005 + 138.23999999999998 -2.6544370209574360E-005 + 138.29999999999998 -2.7728283616647521E-005 + 138.35999999999999 -2.8964454485952144E-005 + 138.41999999999999 -3.0254335144340691E-005 + 138.47999999999999 -3.1599307738585476E-005 + 138.53999999999999 -3.3000671682552123E-005 + 138.59999999999999 -3.4459639269346304E-005 + 138.66000000000000 -3.5977323689728759E-005 + 138.72000000000000 -3.7554730015057620E-005 + 138.78000000000000 -3.9192753650799442E-005 + 138.84000000000000 -4.0892166883475017E-005 + 138.90000000000001 -4.2653608967700803E-005 + 138.95999999999998 -4.4477581439487311E-005 + 139.01999999999998 -4.6364449230503794E-005 + 139.07999999999998 -4.8314421649813703E-005 + 139.13999999999999 -5.0327558890864125E-005 + 139.19999999999999 -5.2403758460996624E-005 + 139.25999999999999 -5.4542753945519278E-005 + 139.31999999999999 -5.6744105574006071E-005 + 139.38000000000000 -5.9007205661835251E-005 + 139.44000000000000 -6.1331259018187350E-005 + 139.50000000000000 -6.3715302488030631E-005 + 139.56000000000000 -6.6158173040638377E-005 + 139.62000000000000 -6.8658516145907216E-005 + 139.68000000000001 -7.1214783517563858E-005 + 139.73999999999998 -7.3825223967653931E-005 + 139.79999999999998 -7.6487867515414852E-005 + 139.85999999999999 -7.9200541735070852E-005 + 139.91999999999999 -8.1960846477210260E-005 + 139.97999999999999 -8.4766162567086916E-005 + 140.03999999999999 -8.7613625304738710E-005 + 140.09999999999999 -9.0500142596004927E-005 + 140.16000000000000 -9.3422383276043974E-005 + 140.22000000000000 -9.6376770768829797E-005 + 140.28000000000000 -9.9359487781047401E-005 + 140.34000000000000 -1.0236645587782791E-004 + 140.40000000000001 -1.0539335293372512E-004 + 140.45999999999998 -1.0843562447595299E-004 + 140.51999999999998 -1.1148845370637069E-004 + 140.57999999999998 -1.1454678595269054E-004 + 140.63999999999999 -1.1760533584759886E-004 + 140.69999999999999 -1.2065858935450881E-004 + 140.75999999999999 -1.2370081386844613E-004 + 140.81999999999999 -1.2672605966920886E-004 + 140.88000000000000 -1.2972816071537294E-004 + 140.94000000000000 -1.3270077059409916E-004 + 141.00000000000000 -1.3563735051755663E-004 + 141.06000000000000 -1.3853120016138942E-004 + 141.12000000000000 -1.4137544365436976E-004 + 141.18000000000001 -1.4416303613349734E-004 + 141.23999999999998 -1.4688682443486910E-004 + 141.29999999999998 -1.4953954040112992E-004 + 141.35999999999999 -1.5211377264333381E-004 + 141.41999999999999 -1.5460201398646774E-004 + 141.47999999999999 -1.5699668803172747E-004 + 141.53999999999999 -1.5929014151268319E-004 + 141.59999999999999 -1.6147466383086158E-004 + 141.66000000000000 -1.6354249404508081E-004 + 141.72000000000000 -1.6548583537089078E-004 + 141.78000000000000 -1.6729692802953282E-004 + 141.84000000000000 -1.6896796949703819E-004 + 141.90000000000001 -1.7049119632774385E-004 + 141.95999999999998 -1.7185886856067189E-004 + 142.01999999999998 -1.7306332441285492E-004 + 142.07999999999998 -1.7409694593208724E-004 + 142.13999999999999 -1.7495221527813199E-004 + 142.19999999999999 -1.7562173873010892E-004 + 142.25999999999999 -1.7609819975260993E-004 + 142.31999999999999 -1.7637444009053265E-004 + 142.38000000000000 -1.7644347858318819E-004 + 142.44000000000000 -1.7629847600034878E-004 + 142.50000000000000 -1.7593280536682467E-004 + 142.56000000000000 -1.7534002551060227E-004 + 142.62000000000000 -1.7451393398258195E-004 + 142.68000000000001 -1.7344857485313594E-004 + 142.73999999999998 -1.7213823381433881E-004 + 142.79999999999998 -1.7057749808149512E-004 + 142.85999999999999 -1.6876124086676281E-004 + 142.91999999999999 -1.6668462928608494E-004 + 142.97999999999999 -1.6434319976804681E-004 + 143.03999999999999 -1.6173276144748630E-004 + 143.09999999999999 -1.5884953503033877E-004 + 143.16000000000000 -1.5569009721490691E-004 + 143.22000000000000 -1.5225137310973934E-004 + 143.28000000000000 -1.4853072154140824E-004 + 143.34000000000000 -1.4452586560572339E-004 + 143.40000000000001 -1.4023495433944524E-004 + 143.45999999999998 -1.3565654102676330E-004 + 143.51999999999998 -1.3078960052142650E-004 + 143.57999999999998 -1.2563352708037806E-004 + 143.63999999999999 -1.2018814614744012E-004 + 143.69999999999999 -1.1445371503693530E-004 + 143.75999999999999 -1.0843092220472898E-004 + 143.81999999999999 -1.0212088591756890E-004 + 143.88000000000000 -9.5525158196652831E-005 + 143.94000000000000 -8.8645741586414228E-005 + 144.00000000000000 -8.1485065842825248E-005 + 144.06000000000000 -7.4045996250378444E-005 + 144.12000000000000 -6.6331845350068997E-005 + 144.18000000000001 -5.8346352035975600E-005 + 144.23999999999998 -5.0093698712882328E-005 + 144.29999999999998 -4.1578500897663720E-005 + 144.35999999999999 -3.2805806175434360E-005 + 144.41999999999999 -2.3781086281688322E-005 + 144.47999999999999 -1.4510245970834607E-005 + 144.53999999999999 -4.9996007831880679E-006 + 144.59999999999999 4.7441241500084472E-006 + 144.66000000000000 1.4713792599816017E-005 + 144.72000000000000 2.4901874547608307E-005 + 144.78000000000000 3.5300456791757249E-005 + 144.84000000000000 4.5901269447345925E-005 + 144.90000000000001 5.6695657405439600E-005 + 144.95999999999998 6.7674632947143282E-005 + 145.01999999999998 7.8828859413713614E-005 + 145.07999999999998 9.0148713491933726E-005 + 145.13999999999999 1.0162424422859098E-004 + 145.19999999999999 1.1324520269565065E-004 + 145.25999999999999 1.2500108422825519E-004 + 145.31999999999999 1.3688113060100038E-004 + 145.38000000000000 1.4887433846140380E-004 + 145.44000000000000 1.6096947596902817E-004 + 145.50000000000000 1.7315510541089730E-004 + 145.56000000000000 1.8541958633465363E-004 + 145.62000000000000 1.9775109185992860E-004 + 145.68000000000001 2.1013767038430782E-004 + 145.73999999999998 2.2256718486785576E-004 + 145.79999999999998 2.3502737469868721E-004 + 145.85999999999999 2.4750588144184694E-004 + 145.91999999999999 2.5999022790241302E-004 + 145.97999999999999 2.7246784713129803E-004 + 146.03999999999999 2.8492613952308418E-004 + 146.09999999999999 2.9735241156824966E-004 + 146.16000000000000 3.0973396865598075E-004 + 146.22000000000000 3.2205806321537126E-004 + 146.28000000000000 3.3431201855347491E-004 + 146.34000000000000 3.4648305801913162E-004 + 146.40000000000001 3.5855855305710080E-004 + 146.45999999999998 3.7052588423573549E-004 + 146.51999999999998 3.8237247144012849E-004 + 146.57999999999998 3.9408583157156868E-004 + 146.63999999999999 4.0565356324363941E-004 + 146.69999999999999 4.1706345721005602E-004 + 146.75999999999999 4.2830336803208744E-004 + 146.81999999999999 4.3936128868565907E-004 + 146.88000000000000 4.5022541070731219E-004 + 146.94000000000000 4.6088408372437861E-004 + 147.00000000000000 4.7132580695097103E-004 + 147.06000000000000 4.8153936112741623E-004 + 147.12000000000000 4.9151362930095830E-004 + 147.18000000000001 5.0123782541123456E-004 + 147.23999999999998 5.1070127953270299E-004 + 147.29999999999998 5.1989367347239992E-004 + 147.35999999999999 5.2880486468103848E-004 + 147.41999999999999 5.3742499719921708E-004 + 147.47999999999999 5.4574442757337701E-004 + 147.53999999999999 5.5375380596030526E-004 + 147.59999999999999 5.6144409951229361E-004 + 147.66000000000000 5.6880650273484750E-004 + 147.72000000000000 5.7583250509434317E-004 + 147.78000000000000 5.8251392825972700E-004 + 147.84000000000000 5.8884288526078851E-004 + 147.90000000000001 5.9481178992248972E-004 + 147.95999999999998 6.0041332308214074E-004 + 148.01999999999998 6.0564055832234393E-004 + 148.07999999999998 6.1048690521286510E-004 + 148.13999999999999 6.1494602219983984E-004 + 148.19999999999999 6.1901192749583419E-004 + 148.25999999999999 6.2267907686593615E-004 + 148.31999999999999 6.2594217913173190E-004 + 148.38000000000000 6.2879638291795704E-004 + 148.44000000000000 6.3123716450451644E-004 + 148.50000000000000 6.3326042055803812E-004 + 148.56000000000000 6.3486238484618122E-004 + 148.62000000000000 6.3603974162006877E-004 + 148.68000000000001 6.3678952173051287E-004 + 148.73999999999998 6.3710924451245744E-004 + 148.79999999999998 6.3699677965462713E-004 + 148.85999999999999 6.3645049745304641E-004 + 148.91999999999999 6.3546920733228258E-004 + 148.97999999999999 6.3405212034754722E-004 + 149.03999999999999 6.3219892603431308E-004 + 149.09999999999999 6.2990982532188928E-004 + 149.16000000000000 6.2718548021009266E-004 + 149.22000000000000 6.2402691389867090E-004 + 149.28000000000000 6.2043581256663737E-004 + 149.34000000000000 6.1641422864934850E-004 + 149.40000000000001 6.1196479463293833E-004 + 149.45999999999998 6.0709054506241265E-004 + 149.51999999999998 6.0179502570521489E-004 + 149.57999999999998 5.9608232925740319E-004 + 149.63999999999999 5.8995701464633818E-004 + 149.69999999999999 5.8342421629409670E-004 + 149.75999999999999 5.7648937944099025E-004 + 149.81999999999999 5.6915858622831399E-004 + 149.88000000000000 5.6143833984491625E-004 + 149.94000000000000 5.5333566809407015E-004 + 150.00000000000000 5.4485799443459667E-004 + 150.06000000000000 5.3601330968429460E-004 + 150.12000000000000 5.2681003662497037E-004 + 150.18000000000001 5.1725699613467454E-004 + 150.23999999999998 5.0736348647832880E-004 + 150.29999999999998 4.9713930351733232E-004 + 150.35999999999999 4.8659460332389472E-004 + 150.41999999999999 4.7574000023725129E-004 + 150.47999999999999 4.6458658416909668E-004 + 150.53999999999999 4.5314574284767835E-004 + 150.59999999999999 4.4142929599489685E-004 + 150.66000000000000 4.2944947105783297E-004 + 150.72000000000000 4.1721883721628254E-004 + 150.78000000000000 4.0475029685182914E-004 + 150.84000000000000 3.9205706766343293E-004 + 150.90000000000001 3.7915267876410179E-004 + 150.95999999999998 3.6605096805925090E-004 + 151.01999999999998 3.5276599584105665E-004 + 151.07999999999998 3.3931203905432226E-004 + 151.13999999999999 3.2570363705556091E-004 + 151.19999999999999 3.1195544185662089E-004 + 151.25999999999999 2.9808229950335872E-004 + 151.31999999999999 2.8409912572600221E-004 + 151.38000000000000 2.7002095957753933E-004 + 151.44000000000000 2.5586289939165169E-004 + 151.50000000000000 2.4164008185811951E-004 + 151.56000000000000 2.2736765527346493E-004 + 151.62000000000000 2.1306071953535886E-004 + 151.68000000000001 1.9873437188699732E-004 + 151.73999999999998 1.8440361486528421E-004 + 151.79999999999998 1.7008338248516080E-004 + 151.85999999999999 1.5578846989776991E-004 + 151.91999999999999 1.4153355811418473E-004 + 151.97999999999999 1.2733317218914942E-004 + 152.03999999999999 1.1320164033224337E-004 + 152.09999999999999 9.9153109361184460E-005 + 152.16000000000000 8.5201498711408107E-005 + 152.22000000000000 7.1360494969509818E-005 + 152.28000000000000 5.7643505589048563E-005 + 152.34000000000000 4.4063648456364609E-005 + 152.40000000000001 3.0633743687417797E-005 + 152.45999999999998 1.7366290244717959E-005 + 152.51999999999998 4.2734225968570083E-006 + 152.57999999999998 -8.6331090127749967E-006 + 152.63999999999999 -2.1341936019840193E-005 + 152.69999999999999 -3.3842111489239301E-005 + 152.75999999999999 -4.6123119936282929E-005 + 152.81999999999999 -5.8174907825438429E-005 + 152.88000000000000 -6.9987887636508518E-005 + 152.94000000000000 -8.1552947331630345E-005 + 153.00000000000000 -9.2861494519964302E-005 + 153.06000000000000 -1.0390541652395976E-004 + 153.12000000000000 -1.1467714069765577E-004 + 153.17999999999998 -1.2516959953169234E-004 + 153.23999999999998 -1.3537625245610584E-004 + 153.29999999999998 -1.4529108997645102E-004 + 153.35999999999999 -1.5490861636361232E-004 + 153.41999999999999 -1.6422387713634431E-004 + 153.47999999999999 -1.7323243953130336E-004 + 153.53999999999999 -1.8193037426400164E-004 + 153.59999999999999 -1.9031427568689412E-004 + 153.66000000000000 -1.9838123263080223E-004 + 153.72000000000000 -2.0612884167894331E-004 + 153.78000000000000 -2.1355518395280458E-004 + 153.84000000000000 -2.2065887148330131E-004 + 153.90000000000001 -2.2743894355940796E-004 + 153.95999999999998 -2.3389495044766115E-004 + 154.01999999999998 -2.4002689567307876E-004 + 154.07999999999998 -2.4583523767257912E-004 + 154.13999999999999 -2.5132091667855801E-004 + 154.19999999999999 -2.5648527455149908E-004 + 154.25999999999999 -2.6133011501921219E-004 + 154.31999999999999 -2.6585769764893860E-004 + 154.38000000000000 -2.7007068451000892E-004 + 154.44000000000000 -2.7397213669154614E-004 + 154.50000000000000 -2.7756550961544144E-004 + 154.56000000000000 -2.8085465296319039E-004 + 154.62000000000000 -2.8384375109109073E-004 + 154.67999999999998 -2.8653735302760223E-004 + 154.73999999999998 -2.8894037016394849E-004 + 154.79999999999998 -2.9105797595388645E-004 + 154.85999999999999 -2.9289564745973133E-004 + 154.91999999999999 -2.9445916304099700E-004 + 154.97999999999999 -2.9575451207529706E-004 + 155.03999999999999 -2.9678789922700169E-004 + 155.09999999999999 -2.9756578189364875E-004 + 155.16000000000000 -2.9809478863130202E-004 + 155.22000000000000 -2.9838171247401508E-004 + 155.28000000000000 -2.9843350486834783E-004 + 155.34000000000000 -2.9825722732847258E-004 + 155.40000000000001 -2.9786007874315772E-004 + 155.45999999999998 -2.9724933167347842E-004 + 155.51999999999998 -2.9643234609712411E-004 + 155.57999999999998 -2.9541655644893544E-004 + 155.63999999999999 -2.9420947043180698E-004 + 155.69999999999999 -2.9281861675921762E-004 + 155.75999999999999 -2.9125156386895177E-004 + 155.81999999999999 -2.8951589403545521E-004 + 155.88000000000000 -2.8761916990621770E-004 + 155.94000000000000 -2.8556897538835644E-004 + 156.00000000000000 -2.8337289834116849E-004 + 156.06000000000000 -2.8103839400386811E-004 + 156.12000000000000 -2.7857301921635182E-004 + 156.17999999999998 -2.7598415134647437E-004 + 156.23999999999998 -2.7327918190502427E-004 + 156.29999999999998 -2.7046539639894368E-004 + 156.35999999999999 -2.6754999064090580E-004 + 156.41999999999999 -2.6454008916792436E-004 + 156.47999999999999 -2.6144265533658260E-004 + 156.53999999999999 -2.5826455896777671E-004 + 156.59999999999999 -2.5501256618968437E-004 + 156.66000000000000 -2.5169331769247621E-004 + 156.72000000000000 -2.4831327845002270E-004 + 156.78000000000000 -2.4487877122084361E-004 + 156.84000000000000 -2.4139601036119560E-004 + 156.90000000000001 -2.3787100342601410E-004 + 156.95999999999998 -2.3430964166624277E-004 + 157.01999999999998 -2.3071765726560684E-004 + 157.07999999999998 -2.2710057458569829E-004 + 157.13999999999999 -2.2346381194721836E-004 + 157.19999999999999 -2.1981259480118362E-004 + 157.25999999999999 -2.1615199041483777E-004 + 157.31999999999999 -2.1248688292188419E-004 + 157.38000000000000 -2.0882201820398308E-004 + 157.44000000000000 -2.0516195996362209E-004 + 157.50000000000000 -2.0151110318838728E-004 + 157.56000000000000 -1.9787371238794827E-004 + 157.62000000000000 -1.9425385261247501E-004 + 157.67999999999998 -1.9065544771118369E-004 + 157.73999999999998 -1.8708225008958317E-004 + 157.79999999999998 -1.8353787762051741E-004 + 157.85999999999999 -1.8002577899968008E-004 + 157.91999999999999 -1.7654926662169246E-004 + 157.97999999999999 -1.7311149315381186E-004 + 158.03999999999999 -1.6971547912196207E-004 + 158.09999999999999 -1.6636410821830265E-004 + 158.16000000000000 -1.6306009689628497E-004 + 158.22000000000000 -1.5980606002798244E-004 + 158.28000000000000 -1.5660447671848020E-004 + 158.34000000000000 -1.5345768468133983E-004 + 158.40000000000001 -1.5036791465666946E-004 + 158.45999999999998 -1.4733725786856238E-004 + 158.51999999999998 -1.4436768368108696E-004 + 158.57999999999998 -1.4146104181273966E-004 + 158.63999999999999 -1.3861905106585259E-004 + 158.69999999999999 -1.3584331584482576E-004 + 158.75999999999999 -1.3313531940629914E-004 + 158.81999999999999 -1.3049640699535570E-004 + 158.88000000000000 -1.2792782164730923E-004 + 158.94000000000000 -1.2543065808631935E-004 + 159.00000000000000 -1.2300590364971309E-004 + 159.06000000000000 -1.2065440455030272E-004 + 159.12000000000000 -1.1837689542968169E-004 + 159.17999999999998 -1.1617398689757949E-004 + 159.23999999999998 -1.1404617541113267E-004 + 159.29999999999998 -1.1199381028081842E-004 + 159.35999999999999 -1.1001716522576398E-004 + 159.41999999999999 -1.0811638064188670E-004 + 159.47999999999999 -1.0629149899266789E-004 + 159.53999999999999 -1.0454246691581355E-004 + 159.59999999999999 -1.0286912953029732E-004 + 159.66000000000000 -1.0127125324823992E-004 + 159.72000000000000 -9.9748537563225102E-005 + 159.78000000000000 -9.8300597219304206E-005 + 159.84000000000000 -9.6926980983106135E-005 + 159.90000000000001 -9.5627179453732593E-005 + 159.95999999999998 -9.4400639476156019E-005 + 160.01999999999998 -9.3246733782446651E-005 + 160.07999999999998 -9.2164808481677324E-005 + 160.13999999999999 -9.1154148769162789E-005 + 160.19999999999999 -9.0213997054845423E-005 + 160.25999999999999 -8.9343563902213473E-005 + 160.31999999999999 -8.8542006677783428E-005 + 160.38000000000000 -8.7808433992481218E-005 + 160.44000000000000 -8.7141932474821423E-005 + 160.50000000000000 -8.6541519107571500E-005 + 160.56000000000000 -8.6006191734478368E-005 + 160.62000000000000 -8.5534912299098094E-005 + 160.67999999999998 -8.5126585299146604E-005 + 160.73999999999998 -8.4780111637354375E-005 + 160.79999999999998 -8.4494341981261337E-005 + 160.85999999999999 -8.4268118343303446E-005 + 160.91999999999999 -8.4100267523414159E-005 + 160.97999999999999 -8.3989623427658576E-005 + 161.03999999999999 -8.3935014084288140E-005 + 161.09999999999999 -8.3935278578818151E-005 + 161.16000000000000 -8.3989286457118088E-005 + 161.22000000000000 -8.4095941480134915E-005 + 161.28000000000000 -8.4254164041167338E-005 + 161.34000000000000 -8.4462940337130297E-005 + 161.40000000000001 -8.4721285582480262E-005 + 161.45999999999998 -8.5028284100614968E-005 + 161.51999999999998 -8.5383067996865970E-005 + 161.57999999999998 -8.5784815116313941E-005 + 161.63999999999999 -8.6232761525596648E-005 + 161.69999999999999 -8.6726177975206617E-005 + 161.75999999999999 -8.7264396698292281E-005 + 161.81999999999999 -8.7846774642284087E-005 + 161.88000000000000 -8.8472708580350661E-005 + 161.94000000000000 -8.9141613854408079E-005 + 162.00000000000000 -8.9852941188955785E-005 + 162.06000000000000 -9.0606145940437733E-005 + 162.12000000000000 -9.1400705421212680E-005 + 162.17999999999998 -9.2236104573888600E-005 + 162.23999999999998 -9.3111841692450814E-005 + 162.29999999999998 -9.4027415576474084E-005 + 162.35999999999999 -9.4982351669525687E-005 + 162.41999999999999 -9.5976172014625014E-005 + 162.47999999999999 -9.7008414680261975E-005 + 162.53999999999999 -9.8078641823801197E-005 + 162.59999999999999 -9.9186415222293894E-005 + 162.66000000000000 -1.0033133903719224E-004 + 162.72000000000000 -1.0151303393524802E-004 + 162.78000000000000 -1.0273114679778460E-004 + 162.84000000000000 -1.0398533700064407E-004 + 162.90000000000001 -1.0527530064636450E-004 + 162.95999999999998 -1.0660074895080848E-004 + 163.01999999999998 -1.0796139403372387E-004 + 163.07999999999998 -1.0935697476512363E-004 + 163.13999999999999 -1.1078721568839826E-004 + 163.19999999999999 -1.1225183627591097E-004 + 163.25999999999999 -1.1375054971321619E-004 + 163.31999999999999 -1.1528303294165216E-004 + 163.38000000000000 -1.1684893277954333E-004 + 163.44000000000000 -1.1844785561815089E-004 + 163.50000000000000 -1.2007933484733031E-004 + 163.56000000000000 -1.2174286307196118E-004 + 163.62000000000000 -1.2343784741479988E-004 + 163.67999999999998 -1.2516362866878074E-004 + 163.73999999999998 -1.2691946308722671E-004 + 163.79999999999998 -1.2870452675405522E-004 + 163.85999999999999 -1.3051788188503451E-004 + 163.91999999999999 -1.3235853155525531E-004 + 163.97999999999999 -1.3422540129998074E-004 + 164.03999999999999 -1.3611729444497784E-004 + 164.09999999999999 -1.3803294951059782E-004 + 164.16000000000000 -1.3997102518401920E-004 + 164.22000000000000 -1.4193007511731628E-004 + 164.28000000000000 -1.4390859509418920E-004 + 164.34000000000000 -1.4590496855535973E-004 + 164.40000000000001 -1.4791753897568547E-004 + 164.45999999999998 -1.4994452485955751E-004 + 164.51999999999998 -1.5198409803368330E-004 + 164.57999999999998 -1.5403433060291678E-004 + 164.63999999999999 -1.5609318937530130E-004 + 164.69999999999999 -1.5815857367246130E-004 + 164.75999999999999 -1.6022824839757196E-004 + 164.81999999999999 -1.6229991118988903E-004 + 164.88000000000000 -1.6437113719401758E-004 + 164.94000000000000 -1.6643935097380354E-004 + 165.00000000000000 -1.6850188570855033E-004 + 165.06000000000000 -1.7055594031540114E-004 + 165.12000000000000 -1.7259858936556407E-004 + 165.17999999999998 -1.7462676027575860E-004 + 165.23999999999998 -1.7663724067911246E-004 + 165.29999999999998 -1.7862668163535835E-004 + 165.35999999999999 -1.8059162901752447E-004 + 165.41999999999999 -1.8252848000994103E-004 + 165.47999999999999 -1.8443351117449939E-004 + 165.53999999999999 -1.8630289382159164E-004 + 165.59999999999999 -1.8813266799376591E-004 + 165.66000000000000 -1.8991881579120016E-004 + 165.72000000000000 -1.9165720586312109E-004 + 165.78000000000000 -1.9334366056991068E-004 + 165.84000000000000 -1.9497390426653787E-004 + 165.90000000000001 -1.9654362983115579E-004 + 165.95999999999998 -1.9804848539850200E-004 + 166.01999999999998 -1.9948408358359441E-004 + 166.07999999999998 -2.0084601906838933E-004 + 166.13999999999999 -2.0212986877510706E-004 + 166.19999999999999 -2.0333120392065993E-004 + 166.25999999999999 -2.0444561502641151E-004 + 166.31999999999999 -2.0546867837510009E-004 + 166.38000000000000 -2.0639601217624018E-004 + 166.44000000000000 -2.0722326099132553E-004 + 166.50000000000000 -2.0794609010334200E-004 + 166.56000000000000 -2.0856021911820375E-004 + 166.62000000000000 -2.0906144325074595E-004 + 166.67999999999998 -2.0944561796032223E-004 + 166.73999999999998 -2.0970866508818859E-004 + 166.79999999999998 -2.0984662393677280E-004 + 166.85999999999999 -2.0985564525305000E-004 + 166.91999999999999 -2.0973200272908325E-004 + 166.97999999999999 -2.0947210264380867E-004 + 167.03999999999999 -2.0907253428966102E-004 + 167.09999999999999 -2.0853005294966563E-004 + 167.16000000000000 -2.0784161435400718E-004 + 167.22000000000000 -2.0700438201402040E-004 + 167.28000000000000 -2.0601574225228092E-004 + 167.34000000000000 -2.0487332009959963E-004 + 167.40000000000001 -2.0357501220996346E-004 + 167.45999999999998 -2.0211896702586384E-004 + 167.51999999999998 -2.0050361896767888E-004 + 167.57999999999998 -1.9872768011349495E-004 + 167.63999999999999 -1.9679013771278973E-004 + 167.69999999999999 -1.9469031313130877E-004 + 167.75999999999999 -1.9242782522976189E-004 + 167.81999999999999 -1.9000259496888263E-004 + 167.88000000000000 -1.8741486045478840E-004 + 167.94000000000000 -1.8466518848592168E-004 + 168.00000000000000 -1.8175446497865891E-004 + 168.06000000000000 -1.7868389618579925E-004 + 168.12000000000000 -1.7545502465199708E-004 + 168.17999999999998 -1.7206970886986006E-004 + 168.23999999999998 -1.6853014368096216E-004 + 168.29999999999998 -1.6483885739333154E-004 + 168.35999999999999 -1.6099870759512733E-004 + 168.41999999999999 -1.5701284423689889E-004 + 168.47999999999999 -1.5288477866994086E-004 + 168.53999999999999 -1.4861831461719457E-004 + 168.59999999999999 -1.4421756529971850E-004 + 168.66000000000000 -1.3968697055090603E-004 + 168.72000000000000 -1.3503123378564650E-004 + 168.78000000000000 -1.3025536495701127E-004 + 168.84000000000000 -1.2536465752707685E-004 + 168.90000000000001 -1.2036463426972969E-004 + 168.95999999999998 -1.1526108009813528E-004 + 169.01999999999998 -1.1006002613762734E-004 + 169.07999999999998 -1.0476771952913214E-004 + 169.13999999999999 -9.9390608421191123E-005 + 169.19999999999999 -9.3935336095662709E-005 + 169.25999999999999 -8.8408720998059390E-005 + 169.31999999999999 -8.2817734320319642E-005 + 169.38000000000000 -7.7169488007513136E-005 + 169.44000000000000 -7.1471217719101842E-005 + 169.50000000000000 -6.5730269196116471E-005 + 169.56000000000000 -5.9954079458692903E-005 + 169.62000000000000 -5.4150149079926885E-005 + 169.67999999999998 -4.8326046180468925E-005 + 169.73999999999998 -4.2489362758410807E-005 + 169.79999999999998 -3.6647725872576987E-005 + 169.85999999999999 -3.0808761785508386E-005 + 169.91999999999999 -2.4980084544848029E-005 + 169.97999999999999 -1.9169279373441972E-005 + 170.03999999999999 -1.3383886009684267E-005 + 170.09999999999999 -7.6313815503821555E-006 + 170.16000000000000 -1.9191693057942036E-006 + 170.22000000000000 3.7454408877909013E-006 + 170.28000000000000 9.3552470767591998E-006 + 170.34000000000000 1.4903173322154961E-005 + 170.40000000000001 2.0382274524568567E-005 + 170.45999999999998 2.5785761462979176E-005 + 170.51999999999998 3.1107010598785215E-005 + 170.57999999999998 3.6339575524670624E-005 + 170.63999999999999 4.1477199125030805E-005 + 170.69999999999999 4.6513829342650022E-005 + 170.75999999999999 5.1443630342870811E-005 + 170.81999999999999 5.6260992374911684E-005 + 170.88000000000000 6.0960537697240817E-005 + 170.94000000000000 6.5537136692073235E-005 + 171.00000000000000 6.9985902553020251E-005 + 171.06000000000000 7.4302222199559270E-005 + 171.12000000000000 7.8481731771986386E-005 + 171.17999999999998 8.2520345315011844E-005 + 171.23999999999998 8.6414244644102844E-005 + 171.29999999999998 9.0159876459532882E-005 + 171.35999999999999 9.3753975519435639E-005 + 171.41999999999999 9.7193532974656788E-005 + 171.47999999999999 1.0047582763095157E-004 + 171.53999999999999 1.0359838661182536E-004 + 171.59999999999999 1.0655901934845680E-004 + 171.66000000000000 1.0935578875358984E-004 + 171.72000000000000 1.1198703047326813E-004 + 171.78000000000000 1.1445132716754351E-004 + 171.84000000000000 1.1674751176078684E-004 + 171.90000000000001 1.1887466713784562E-004 + 171.95999999999998 1.2083212696513559E-004 + 172.01999999999998 1.2261945926842760E-004 + 172.07999999999998 1.2423646967226504E-004 + 172.13999999999999 1.2568319794982940E-004 + 172.19999999999999 1.2695990650657039E-004 + 172.25999999999999 1.2806707490921256E-004 + 172.31999999999999 1.2900539659433833E-004 + 172.38000000000000 1.2977575822394790E-004 + 172.44000000000000 1.3037925511839128E-004 + 172.50000000000000 1.3081714212427050E-004 + 172.56000000000000 1.3109085654223606E-004 + 172.62000000000000 1.3120197636980877E-004 + 172.67999999999998 1.3115221727392337E-004 + 172.73999999999998 1.3094342932231659E-004 + 172.79999999999998 1.3057756912314861E-004 + 172.85999999999999 1.3005668393432595E-004 + 172.91999999999999 1.2938289657190484E-004 + 172.97999999999999 1.2855840966832809E-004 + 173.03999999999999 1.2758545993871834E-004 + 173.09999999999999 1.2646632162491666E-004 + 173.16000000000000 1.2520331553941071E-004 + 173.22000000000000 1.2379878226588320E-004 + 173.28000000000000 1.2225508877084900E-004 + 173.34000000000000 1.2057456944337394E-004 + 173.40000000000001 1.1875960740420036E-004 + 173.45999999999998 1.1681256197255522E-004 + 173.51999999999998 1.1473578730041185E-004 + 173.57999999999998 1.1253163997593398E-004 + 173.63999999999999 1.1020246875288782E-004 + 173.69999999999999 1.0775059059505232E-004 + 173.75999999999999 1.0517833217698588E-004 + 173.81999999999999 1.0248798265048772E-004 + 173.88000000000000 9.9681823761496729E-005 + 173.94000000000000 9.6762098729364940E-005 + 174.00000000000000 9.3731022078991671E-005 + 174.06000000000000 9.0590788734180221E-005 + 174.12000000000000 8.7343546338853559E-005 + 174.17999999999998 8.3991406587358944E-005 + 174.23999999999998 8.0536437509110242E-005 + 174.29999999999998 7.6980675038821578E-005 + 174.35999999999999 7.3326106514845767E-005 + 174.41999999999999 6.9574689632681319E-005 + 174.47999999999999 6.5728332934123797E-005 + 174.53999999999999 6.1788931004410811E-005 + 174.59999999999999 5.7758340408976945E-005 + 174.66000000000000 5.3638401003838395E-005 + 174.72000000000000 4.9430953850473269E-005 + 174.78000000000000 4.5137841494298713E-005 + 174.84000000000000 4.0760904332788324E-005 + 174.90000000000001 3.6302020156999156E-005 + 174.95999999999998 3.1763099595481372E-005 + 175.01999999999998 2.7146104136378354E-005 + 175.07999999999998 2.2453053455570733E-005 + 175.13999999999999 1.7686037976930133E-005 + 175.19999999999999 1.2847237227059186E-005 + 175.25999999999999 7.9389281861086166E-006 + 175.31999999999999 2.9634919921132778E-006 + 175.38000000000000 -2.0765721061506067E-006 + 175.44000000000000 -7.1786330284228796E-006 + 175.50000000000000 -1.2339922660386602E-005 + 175.56000000000000 -1.7557528122646484E-005 + 175.62000000000000 -2.2828388396821699E-005 + 175.67999999999998 -2.8149272199854326E-005 + 175.73999999999998 -3.3516791772545621E-005 + 175.79999999999998 -3.8927384170843319E-005 + 175.85999999999999 -4.4377317427884690E-005 + 175.91999999999999 -4.9862682464818617E-005 + 175.97999999999999 -5.5379372239885427E-005 + 176.03999999999999 -6.0923122579363841E-005 + 176.09999999999999 -6.6489463037946154E-005 + 176.16000000000000 -7.2073748114551251E-005 + 176.22000000000000 -7.7671143758552868E-005 + 176.28000000000000 -8.3276623571523322E-005 + 176.34000000000000 -8.8884972681046030E-005 + 176.40000000000001 -9.4490795414305098E-005 + 176.45999999999998 -1.0008850419026158E-004 + 176.51999999999998 -1.0567233102580231E-004 + 176.57999999999998 -1.1123631186142837E-004 + 176.63999999999999 -1.1677430032427445E-004 + 176.69999999999999 -1.2227998009209037E-004 + 176.75999999999999 -1.2774684862105440E-004 + 176.81999999999999 -1.3316822274198070E-004 + 176.88000000000000 -1.3853726250350346E-004 + 176.94000000000000 -1.4384697464514155E-004 + 177.00000000000000 -1.4909020143644692E-004 + 177.06000000000000 -1.5425965585273203E-004 + 177.12000000000000 -1.5934791096335776E-004 + 177.17999999999998 -1.6434744322053958E-004 + 177.23999999999998 -1.6925062464371896E-004 + 177.29999999999998 -1.7404975173079053E-004 + 177.35999999999999 -1.7873704125231896E-004 + 177.41999999999999 -1.8330468308882066E-004 + 177.47999999999999 -1.8774482407684867E-004 + 177.53999999999999 -1.9204961852266764E-004 + 177.59999999999999 -1.9621120968636070E-004 + 177.66000000000000 -2.0022179429177419E-004 + 177.72000000000000 -2.0407359160736052E-004 + 177.78000000000000 -2.0775890324787236E-004 + 177.84000000000000 -2.1127010523955462E-004 + 177.90000000000001 -2.1459967324484407E-004 + 177.95999999999998 -2.1774019818211524E-004 + 178.01999999999998 -2.2068439871650384E-004 + 178.07999999999998 -2.2342516562302408E-004 + 178.13999999999999 -2.2595552795800207E-004 + 178.19999999999999 -2.2826869196407797E-004 + 178.25999999999999 -2.3035808862430576E-004 + 178.31999999999999 -2.3221735504853731E-004 + 178.38000000000000 -2.3384034764267734E-004 + 178.44000000000000 -2.3522122800034926E-004 + 178.50000000000000 -2.3635437946896919E-004 + 178.56000000000000 -2.3723452548371862E-004 + 178.62000000000000 -2.3785668530260825E-004 + 178.67999999999998 -2.3821621675197051E-004 + 178.73999999999998 -2.3830885678337299E-004 + 178.79999999999998 -2.3813067003124145E-004 + 178.85999999999999 -2.3767815874911163E-004 + 178.91999999999999 -2.3694821403256859E-004 + 178.97999999999999 -2.3593814952789288E-004 + 179.03999999999999 -2.3464570767507836E-004 + 179.09999999999999 -2.3306910246362149E-004 + 179.16000000000000 -2.3120698008861890E-004 + 179.22000000000000 -2.2905847042855714E-004 + 179.28000000000000 -2.2662317871522078E-004 + 179.34000000000000 -2.2390116996691178E-004 + 179.40000000000001 -2.2089300044808482E-004 + 179.45999999999998 -2.1759974381195657E-004 + 179.51999999999998 -2.1402292547797794E-004 + 179.57999999999998 -2.1016460877364474E-004 + 179.63999999999999 -2.0602732973223475E-004 + 179.69999999999999 -2.0161413286320763E-004 + 179.75999999999999 -1.9692856475348489E-004 + 179.81999999999999 -1.9197470044836045E-004 + 179.88000000000000 -1.8675709748178427E-004 + 179.94000000000000 -1.8128083336351264E-004 + 180.00000000000000 -1.7555147353748041E-004 + 180.06000000000000 -1.6957507691269568E-004 + 180.12000000000000 -1.6335818609226462E-004 + 180.17999999999998 -1.5690782687268590E-004 + 180.23999999999998 -1.5023147391166465E-004 + 180.29999999999998 -1.4333709174901260E-004 + 180.35999999999999 -1.3623305267309295E-004 + 180.41999999999999 -1.2892814922995792E-004 + 180.47999999999999 -1.2143158542176488E-004 + 180.53999999999999 -1.1375293075732410E-004 + 180.59999999999999 -1.0590213172944271E-004 + 180.66000000000000 -9.7889448745984122E-005 + 180.72000000000000 -8.9725471126244963E-005 + 180.78000000000000 -8.1421066912839993E-005 + 180.84000000000000 -7.2987378529564719E-005 + 180.90000000000001 -6.4435771455268958E-005 + 180.95999999999998 -5.5777829740806057E-005 + 181.01999999999998 -4.7025327534137187E-005 + 181.07999999999998 -3.8190221675393372E-005 + 181.13999999999999 -2.9284583916324282E-005 + 181.19999999999999 -2.0320601387023844E-005 + 181.25999999999999 -1.1310548185954982E-005 + 181.31999999999999 -2.2667704341146800E-006 + 181.38000000000000 6.7983730381867342E-006 + 181.44000000000000 1.5872515584805020E-005 + 181.50000000000000 2.4943330105931435E-005 + 181.56000000000000 3.3998526142579668E-005 + 181.62000000000000 4.3025911009280019E-005 + 181.67999999999998 5.2013413215629043E-005 + 181.73999999999998 6.0949104597490902E-005 + 181.79999999999998 6.9821233655183249E-005 + 181.85999999999999 7.8618279295823501E-005 + 181.91999999999999 8.7328931394359778E-005 + 181.97999999999999 9.5942157131461580E-005 + 182.03999999999999 1.0444722481410965E-004 + 182.09999999999999 1.1283370702111400E-004 + 182.16000000000000 1.2109153392153435E-004 + 182.22000000000000 1.2921100010011572E-004 + 182.28000000000000 1.3718277285941277E-004 + 182.34000000000000 1.4499795571027270E-004 + 182.39999999999998 1.5264804877868497E-004 + 182.45999999999998 1.6012500637002387E-004 + 182.51999999999998 1.6742125062746397E-004 + 182.57999999999998 1.7452964091171672E-004 + 182.63999999999999 1.8144350690196240E-004 + 182.69999999999999 1.8815669056589394E-004 + 182.75999999999999 1.9466350467492897E-004 + 182.81999999999999 2.0095873620870963E-004 + 182.88000000000000 2.0703769062355246E-004 + 182.94000000000000 2.1289615178025499E-004 + 183.00000000000000 2.1853037258082007E-004 + 183.06000000000000 2.2393712410350992E-004 + 183.12000000000000 2.2911362389958323E-004 + 183.17999999999998 2.3405761104249652E-004 + 183.23999999999998 2.3876725537150275E-004 + 183.29999999999998 2.4324121566568393E-004 + 183.35999999999999 2.4747860627706840E-004 + 183.41999999999999 2.5147899863309112E-004 + 183.47999999999999 2.5524240604241956E-004 + 183.53999999999999 2.5876930876673506E-004 + 183.59999999999999 2.6206056943436164E-004 + 183.66000000000000 2.6511752598287996E-004 + 183.72000000000000 2.6794189888125182E-004 + 183.78000000000000 2.7053584751545763E-004 + 183.84000000000000 2.7290186489628212E-004 + 183.89999999999998 2.7504287092045172E-004 + 183.95999999999998 2.7696216555098938E-004 + 184.01999999999998 2.7866333624634518E-004 + 184.07999999999998 2.8015038320793170E-004 + 184.13999999999999 2.8142754287911731E-004 + 184.19999999999999 2.8249934380133036E-004 + 184.25999999999999 2.8337062605992072E-004 + 184.31999999999999 2.8404645437471590E-004 + 184.38000000000000 2.8453211603720344E-004 + 184.44000000000000 2.8483308328443129E-004 + 184.50000000000000 2.8495504674106462E-004 + 184.56000000000000 2.8490381682240668E-004 + 184.62000000000000 2.8468535441387966E-004 + 184.67999999999998 2.8430570865101265E-004 + 184.73999999999998 2.8377111084724473E-004 + 184.79999999999998 2.8308786169625532E-004 + 184.85999999999999 2.8226228673116759E-004 + 184.91999999999999 2.8130086339085524E-004 + 184.97999999999999 2.8021009278577226E-004 + 185.03999999999999 2.7899658328440466E-004 + 185.09999999999999 2.7766698063874900E-004 + 185.16000000000000 2.7622798139893031E-004 + 185.22000000000000 2.7468634410002528E-004 + 185.28000000000000 2.7304887767636845E-004 + 185.34000000000000 2.7132243058507227E-004 + 185.39999999999998 2.6951387716662149E-004 + 185.45999999999998 2.6763015041492334E-004 + 185.51999999999998 2.6567816438661433E-004 + 185.57999999999998 2.6366483897000359E-004 + 185.63999999999999 2.6159712245102238E-004 + 185.69999999999999 2.5948188927695756E-004 + 185.75999999999999 2.5732605290359524E-004 + 185.81999999999999 2.5513641966648683E-004 + 185.88000000000000 2.5291976117156056E-004 + 185.94000000000000 2.5068283490361950E-004 + 186.00000000000000 2.4843225000467634E-004 + 186.06000000000000 2.4617456053326828E-004 + 186.12000000000000 2.4391628172504190E-004 + 186.17999999999998 2.4166375670434128E-004 + 186.23999999999998 2.3942330677423346E-004 + 186.29999999999998 2.3720115898197955E-004 + 186.35999999999999 2.3500341059953990E-004 + 186.41999999999999 2.3283610632711301E-004 + 186.47999999999999 2.3070518568884139E-004 + 186.53999999999999 2.2861652936010090E-004 + 186.59999999999999 2.2657588154870309E-004 + 186.66000000000000 2.2458896352907010E-004 + 186.72000000000000 2.2266141944612191E-004 + 186.78000000000000 2.2079875446523141E-004 + 186.84000000000000 2.1900646476639569E-004 + 186.89999999999998 2.1728993160584218E-004 + 186.95999999999998 2.1565442605298759E-004 + 187.01999999999998 2.1410515733113924E-004 + 187.07999999999998 2.1264721374569123E-004 + 187.13999999999999 2.1128558605089547E-004 + 187.19999999999999 2.1002511890970594E-004 + 187.25999999999999 2.0887057133618347E-004 + 187.31999999999999 2.0782651925774489E-004 + 187.38000000000000 2.0689741006292258E-004 + 187.44000000000000 2.0608757379639121E-004 + 187.50000000000000 2.0540110312690504E-004 + 187.56000000000000 2.0484196802917376E-004 + 187.62000000000000 2.0441394312018221E-004 + 187.67999999999998 2.0412061129773969E-004 + 187.73999999999998 2.0396537679117475E-004 + 187.79999999999998 2.0395142446937039E-004 + 187.85999999999999 2.0408174600738618E-004 + 187.91999999999999 2.0435913528133465E-004 + 187.97999999999999 2.0478612869648141E-004 + 188.03999999999999 2.0536508662419680E-004 + 188.09999999999999 2.0609812448496481E-004 + 188.16000000000000 2.0698715115513989E-004 + 188.22000000000000 2.0803384000641275E-004 + 188.28000000000000 2.0923963907311125E-004 + 188.34000000000000 2.1060575112713282E-004 + 188.39999999999998 2.1213316208509498E-004 + 188.45999999999998 2.1382258765115906E-004 + 188.51999999999998 2.1567449148600368E-004 + 188.57999999999998 2.1768910224539484E-004 + 188.63999999999999 2.1986638021236714E-004 + 188.69999999999999 2.2220601609990363E-004 + 188.75999999999999 2.2470740780147075E-004 + 188.81999999999999 2.2736966563671182E-004 + 188.88000000000000 2.3019161094822542E-004 + 188.94000000000000 2.3317175765244963E-004 + 189.00000000000000 2.3630829854450020E-004 + 189.06000000000000 2.3959906391417241E-004 + 189.12000000000000 2.4304158936066633E-004 + 189.17999999999998 2.4663306089314367E-004 + 189.23999999999998 2.5037031072919582E-004 + 189.29999999999998 2.5424980111870535E-004 + 189.35999999999999 2.5826768203053590E-004 + 189.41999999999999 2.6241973457454839E-004 + 189.47999999999999 2.6670138513220292E-004 + 189.53999999999999 2.7110771442248241E-004 + 189.59999999999999 2.7563346963192114E-004 + 189.66000000000000 2.8027308773625581E-004 + 189.72000000000000 2.8502065569769957E-004 + 189.78000000000000 2.8986994759828787E-004 + 189.84000000000000 2.9481443353786155E-004 + 189.89999999999998 2.9984731550147017E-004 + 189.95999999999998 3.0496147372340401E-004 + 190.01999999999998 3.1014951707531260E-004 + 190.07999999999998 3.1540376489728013E-004 + 190.13999999999999 3.2071628825215237E-004 + 190.19999999999999 3.2607892223305207E-004 + 190.25999999999999 3.3148318947395832E-004 + 190.31999999999999 3.3692043349074427E-004 + 190.38000000000000 3.4238173699779135E-004 + 190.44000000000000 3.4785791111792620E-004 + 190.50000000000000 3.5333961815566678E-004 + 190.56000000000000 3.5881731007649930E-004 + 190.62000000000000 3.6428118348702179E-004 + 190.67999999999998 3.6972133673517815E-004 + 190.73999999999998 3.7512765702170907E-004 + 190.79999999999998 3.8048992269262377E-004 + 190.85999999999999 3.8579778854927937E-004 + 190.91999999999999 3.9104080950742165E-004 + 190.97999999999999 3.9620848979010496E-004 + 191.03999999999999 4.0129025809067102E-004 + 191.09999999999999 4.0627555545503526E-004 + 191.16000000000000 4.1115381964728888E-004 + 191.22000000000000 4.1591453731350790E-004 + 191.28000000000000 4.2054722246220465E-004 + 191.34000000000000 4.2504154081730535E-004 + 191.39999999999998 4.2938718503824334E-004 + 191.45999999999998 4.3357400956282053E-004 + 191.51999999999998 4.3759210016310458E-004 + 191.57999999999998 4.4143170349164541E-004 + 191.63999999999999 4.4508318983658144E-004 + 191.69999999999999 4.4853725972262101E-004 + 191.75999999999999 4.5178479401216623E-004 + 191.81999999999999 4.5481701258865190E-004 + 191.88000000000000 4.5762534976301762E-004 + 191.94000000000000 4.6020166851825099E-004 + 192.00000000000000 4.6253809015732840E-004 + 192.06000000000000 4.6462709348803281E-004 + 192.12000000000000 4.6646158744530062E-004 + 192.17999999999998 4.6803485751105439E-004 + 192.23999999999998 4.6934063508473242E-004 + 192.29999999999998 4.7037304121537725E-004 + 192.35999999999999 4.7112667883187389E-004 + 192.41999999999999 4.7159665472333974E-004 + 192.47999999999999 4.7177851012955325E-004 + 192.53999999999999 4.7166831989500129E-004 + 192.59999999999999 4.7126264527133567E-004 + 192.66000000000000 4.7055863979194684E-004 + 192.72000000000000 4.6955392084552423E-004 + 192.78000000000000 4.6824665546023206E-004 + 192.84000000000000 4.6663555143092964E-004 + 192.89999999999998 4.6471988646460853E-004 + 192.95999999999998 4.6249950217697893E-004 + 193.01999999999998 4.5997478906919734E-004 + 193.07999999999998 4.5714669189904421E-004 + 193.13999999999999 4.5401672212421124E-004 + 193.19999999999999 4.5058696372770083E-004 + 193.25999999999999 4.4686005952455948E-004 + 193.31999999999999 4.4283920052538541E-004 + 193.38000000000000 4.3852815071260634E-004 + 193.44000000000000 4.3393121350456725E-004 + 193.50000000000000 4.2905321596645244E-004 + 193.56000000000000 4.2389958266287892E-004 + 193.62000000000000 4.1847616708383189E-004 + 193.67999999999998 4.1278940023571864E-004 + 193.73999999999998 4.0684615921347670E-004 + 193.79999999999998 4.0065384302408278E-004 + 193.85999999999999 3.9422025680014639E-004 + 193.91999999999999 3.8755367304152400E-004 + 193.97999999999999 3.8066280369263966E-004 + 194.03999999999999 3.7355670851123513E-004 + 194.09999999999999 3.6624486356813340E-004 + 194.16000000000000 3.5873706105890059E-004 + 194.22000000000000 3.5104347530052566E-004 + 194.28000000000000 3.4317453130263309E-004 + 194.34000000000000 3.3514096460862935E-004 + 194.39999999999998 3.2695379964301527E-004 + 194.45999999999998 3.1862423554014814E-004 + 194.51999999999998 3.1016377292421548E-004 + 194.57999999999998 3.0158402447916764E-004 + 194.63999999999999 2.9289679783039784E-004 + 194.69999999999999 2.8411408064102486E-004 + 194.75999999999999 2.7524795884925732E-004 + 194.81999999999999 2.6631063798181052E-004 + 194.88000000000000 2.5731431011953647E-004 + 194.94000000000000 2.4827130677022077E-004 + 195.00000000000000 2.3919394362338444E-004 + 195.06000000000000 2.3009452873329870E-004 + 195.12000000000000 2.2098535152623297E-004 + 195.17999999999998 2.1187862405898551E-004 + 195.23999999999998 2.0278651811369685E-004 + 195.29999999999998 1.9372108346377669E-004 + 195.35999999999999 1.8469423523745981E-004 + 195.41999999999999 1.7571776154158200E-004 + 195.47999999999999 1.6680331140976544E-004 + 195.53999999999999 1.5796230784837924E-004 + 195.59999999999999 1.4920598337891272E-004 + 195.66000000000000 1.4054537087985607E-004 + 195.72000000000000 1.3199124384969416E-004 + 195.78000000000000 1.2355410561084768E-004 + 195.84000000000000 1.1524419396249527E-004 + 195.89999999999998 1.0707145661172465E-004 + 195.95999999999998 9.9045540573683931E-005 + 196.01999999999998 9.1175749063555710E-005 + 196.07999999999998 8.3471081111887078E-005 + 196.13999999999999 7.5940153472595494E-005 + 196.19999999999999 6.8591232089288849E-005 + 196.25999999999999 6.1432226965331882E-005 + 196.31999999999999 5.4470643358934668E-005 + 196.38000000000000 4.7713625062404189E-005 + 196.44000000000000 4.1167910279147362E-005 + 196.50000000000000 3.4839864703760150E-005 + 196.56000000000000 2.8735448629091283E-005 + 196.62000000000000 2.2860239411386991E-005 + 196.67999999999998 1.7219420898636364E-005 + 196.73999999999998 1.1817806600421870E-005 + 196.79999999999998 6.6598205076563439E-006 + 196.85999999999999 1.7495158916890910E-006 + 196.91999999999999 -2.9094164388106755E-006 + 196.97999999999999 -7.3136579168445437E-006 + 197.03999999999999 -1.1460253497765146E-005 + 197.09999999999999 -1.5346595998131515E-005 + 197.16000000000000 -1.8970440745940646E-005 + 197.22000000000000 -2.2329887400255196E-005 + 197.28000000000000 -2.5423389941925060E-005 + 197.34000000000000 -2.8249745368499778E-005 + 197.39999999999998 -3.0808098036527478E-005 + 197.45999999999998 -3.3097926301039011E-005 + 197.51999999999998 -3.5119045305108257E-005 + 197.57999999999998 -3.6871604902399349E-005 + 197.63999999999999 -3.8356073458013974E-005 + 197.69999999999999 -3.9573226345195064E-005 + 197.75999999999999 -4.0524153382525790E-005 + 197.81999999999999 -4.1210229688811069E-005 + 197.88000000000000 -4.1633106950835733E-005 + 197.94000000000000 -4.1794707001682533E-005 + 198.00000000000000 -4.1697197233569514E-005 + 198.06000000000000 -4.1342978834589261E-005 + 198.12000000000000 -4.0734672396070829E-005 + 198.17999999999998 -3.9875105915755692E-005 + 198.23999999999998 -3.8767309347881929E-005 + 198.29999999999998 -3.7414486502484136E-005 + 198.35999999999999 -3.5820017516013060E-005 + 198.41999999999999 -3.3987449072709159E-005 + 198.47999999999999 -3.1920482602101354E-005 + 198.53999999999999 -2.9622979886177650E-005 + 198.59999999999999 -2.7098949678846007E-005 + 198.66000000000000 -2.4352554679551354E-005 + 198.72000000000000 -2.1388100154152562E-005 + 198.78000000000000 -1.8210043956011157E-005 + 198.84000000000000 -1.4822999216285598E-005 + 198.89999999999998 -1.1231727853620480E-005 + 198.95999999999998 -7.4411387655920469E-006 + 199.01999999999998 -3.4562954253445883E-006 + 199.07999999999998 7.1759095614547911E-007 + 199.13999999999999 5.0751486440915335E-006 + 199.19999999999999 9.6108682057147691E-006 + 199.25999999999999 1.4319085520610004E-005 + 199.31999999999999 1.9193990736610617E-005 + 199.38000000000000 2.4229631549457392E-005 + 199.44000000000000 2.9419912277130209E-005 + 199.50000000000000 3.4758614203009452E-005 + 199.56000000000000 4.0239377392348470E-005 + 199.62000000000000 4.5855704989268454E-005 + 199.67999999999998 5.1600973453080074E-005 + 199.73999999999998 5.7468438892673723E-005 + 199.79999999999998 6.3451237190188754E-005 + 199.85999999999999 6.9542376122754693E-005 + 199.91999999999999 7.5734747687981261E-005 + 199.97999999999999 8.2021122662152875E-005 + 200.03999999999999 8.8394176312657990E-005 + 200.09999999999999 9.4846428762390263E-005 + 200.16000000000000 1.0137033438200411E-004 + 200.22000000000000 1.0795819943380287E-004 + 200.28000000000000 1.1460222088421210E-004 + 200.34000000000000 1.2129449016285590E-004 + 200.39999999999998 1.2802699086951277E-004 + 200.45999999999998 1.3479158289938264E-004 + 200.51999999999998 1.4158001358469387E-004 + 200.57999999999998 1.4838391824429940E-004 + 200.63999999999999 1.5519482867192569E-004 + 200.69999999999999 1.6200418329074428E-004 + 200.75999999999999 1.6880330999592067E-004 + 200.81999999999999 1.7558342804671628E-004 + 200.88000000000000 1.8233568497425835E-004 + 200.94000000000000 1.8905115713136164E-004 + 201.00000000000000 1.9572084762573634E-004 + 201.06000000000000 2.0233571952300180E-004 + 201.12000000000000 2.0888668440840447E-004 + 201.17999999999998 2.1536464046461061E-004 + 201.23999999999998 2.2176049565836986E-004 + 201.29999999999998 2.2806515171975260E-004 + 201.35999999999999 2.3426959610725322E-004 + 201.41999999999999 2.4036480853894943E-004 + 201.47999999999999 2.4634189189041202E-004 + 201.53999999999999 2.5219206073266969E-004 + 201.59999999999999 2.5790659525723567E-004 + 201.66000000000000 2.6347693416627971E-004 + 201.72000000000000 2.6889466373321199E-004 + 201.78000000000000 2.7415149950430775E-004 + 201.84000000000000 2.7923934119434104E-004 + 201.89999999999998 2.8415026312261934E-004 + 201.95999999999998 2.8887654856032968E-004 + 202.01999999999998 2.9341066388639787E-004 + 202.07999999999998 2.9774528122187898E-004 + 202.13999999999999 3.0187331138565156E-004 + 202.19999999999999 3.0578783633930268E-004 + 202.25999999999999 3.0948228748401031E-004 + 202.31999999999999 3.1295024278469262E-004 + 202.38000000000000 3.1618558726620422E-004 + 202.44000000000000 3.1918251991974196E-004 + 202.50000000000000 3.2193550278897503E-004 + 202.56000000000000 3.2443931507994259E-004 + 202.62000000000000 3.2668910532162503E-004 + 202.67999999999998 3.2868036806964641E-004 + 202.73999999999998 3.3040892162915323E-004 + 202.79999999999998 3.3187106099135939E-004 + 202.85999999999999 3.3306338993540621E-004 + 202.91999999999999 3.3398297343396861E-004 + 202.97999999999999 3.3462732434683617E-004 + 203.03999999999999 3.3499434770848616E-004 + 203.09999999999999 3.3508243296862683E-004 + 203.16000000000000 3.3489035765287792E-004 + 203.22000000000000 3.3441739530410753E-004 + 203.28000000000000 3.3366325384083924E-004 + 203.34000000000000 3.3262806445548990E-004 + 203.39999999999998 3.3131240883082781E-004 + 203.45999999999998 3.2971731673626502E-004 + 203.51999999999998 3.2784423981147172E-004 + 203.57999999999998 3.2569501745683652E-004 + 203.63999999999999 3.2327197715679090E-004 + 203.69999999999999 3.2057782387708863E-004 + 203.75999999999999 3.1761569176909707E-004 + 203.81999999999999 3.1438909173402022E-004 + 203.88000000000000 3.1090197329282235E-004 + 203.94000000000000 3.0715865638010769E-004 + 204.00000000000000 3.0316387425548025E-004 + 204.06000000000000 2.9892273620920614E-004 + 204.12000000000000 2.9444074590746295E-004 + 204.17999999999998 2.8972375229194096E-004 + 204.23999999999998 2.8477799700191782E-004 + 204.29999999999998 2.7961003288917691E-004 + 204.35999999999999 2.7422680184053069E-004 + 204.41999999999999 2.6863553638135630E-004 + 204.47999999999999 2.6284378764115690E-004 + 204.53999999999999 2.5685948162920675E-004 + 204.59999999999999 2.5069071855201913E-004 + 204.66000000000000 2.4434591681296434E-004 + 204.72000000000000 2.3783377736406099E-004 + 204.78000000000000 2.3116314899472408E-004 + 204.84000000000000 2.2434316576133115E-004 + 204.89999999999998 2.1738309578276792E-004 + 204.95999999999998 2.1029241680492860E-004 + 205.01999999999998 2.0308073881703404E-004 + 205.07999999999998 1.9575780044579798E-004 + 205.13999999999999 1.8833345842552519E-004 + 205.19999999999999 1.8081764654864570E-004 + 205.25999999999999 1.7322038156374850E-004 + 205.31999999999999 1.6555171387550353E-004 + 205.38000000000000 1.5782168144241472E-004 + 205.44000000000000 1.5004039171001077E-004 + 205.50000000000000 1.4221785715236928E-004 + 205.56000000000000 1.3436409228732171E-004 + 205.62000000000000 1.2648901836302063E-004 + 205.67999999999998 1.1860248960648182E-004 + 205.73999999999998 1.1071423963925604E-004 + 205.79999999999998 1.0283389329733016E-004 + 205.85999999999999 9.4970932585126616E-005 + 205.91999999999999 8.7134654716315067E-005 + 205.97999999999999 7.9334210784898741E-005 + 206.03999999999999 7.1578556003719341E-005 + 206.09999999999999 6.3876432308042821E-005 + 206.16000000000000 5.6236364557707008E-005 + 206.22000000000000 4.8666648239174678E-005 + 206.28000000000000 4.1175330167655936E-005 + 206.34000000000000 3.3770202464579441E-005 + 206.39999999999998 2.6458778344401504E-005 + 206.45999999999998 1.9248279688648333E-005 + 206.51999999999998 1.2145643997812878E-005 + 206.57999999999998 5.1574877814759078E-006 + 206.63999999999999 -1.7098931884707561E-006 + 206.69999999999999 -8.4505300278559204E-006 + 206.75999999999999 -1.5058790861882937E-005 + 206.81999999999999 -2.1529389342648769E-005 + 206.88000000000000 -2.7857395136220291E-005 + 206.94000000000000 -3.4038240710427483E-005 + 207.00000000000000 -4.0067699392874426E-005 + 207.06000000000000 -4.5941917460687093E-005 + 207.12000000000000 -5.1657383586838742E-005 + 207.17999999999998 -5.7210954356820909E-005 + 207.23999999999998 -6.2599824603201410E-005 + 207.29999999999998 -6.7821533490995385E-005 + 207.35999999999999 -7.2873968143788044E-005 + 207.41999999999999 -7.7755321287734254E-005 + 207.47999999999999 -8.2464136902368377E-005 + 207.53999999999999 -8.6999247734183711E-005 + 207.59999999999999 -9.1359813626743443E-005 + 207.66000000000000 -9.5545291188240628E-005 + 207.72000000000000 -9.9555420891982174E-005 + 207.78000000000000 -1.0339024715558819E-004 + 207.84000000000000 -1.0705006656469416E-004 + 207.89999999999998 -1.1053545634254214E-004 + 207.95999999999998 -1.1384726057882570E-004 + 208.01999999999998 -1.1698657800771851E-004 + 208.07999999999998 -1.1995472359345720E-004 + 208.13999999999999 -1.2275325745110549E-004 + 208.19999999999999 -1.2538396626957208E-004 + 208.25999999999999 -1.2784882099548745E-004 + 208.31999999999999 -1.3014997599465844E-004 + 208.38000000000000 -1.3228977502833535E-004 + 208.44000000000000 -1.3427072810211969E-004 + 208.50000000000000 -1.3609546241484709E-004 + 208.56000000000000 -1.3776675090249220E-004 + 208.62000000000000 -1.3928749628008504E-004 + 208.68000000000001 -1.4066067795852162E-004 + 208.74000000000001 -1.4188938389676520E-004 + 208.80000000000001 -1.4297676928895297E-004 + 208.86000000000001 -1.4392608954383296E-004 + 208.92000000000002 -1.4474064330715860E-004 + 208.98000000000002 -1.4542380868652364E-004 + 209.03999999999996 -1.4597899961048068E-004 + 209.09999999999997 -1.4640966862904573E-004 + 209.15999999999997 -1.4671933548725689E-004 + 209.21999999999997 -1.4691154846700763E-004 + 209.27999999999997 -1.4698988377460925E-004 + 209.33999999999997 -1.4695796882647412E-004 + 209.39999999999998 -1.4681943628209933E-004 + 209.45999999999998 -1.4657792880498700E-004 + 209.51999999999998 -1.4623709545636979E-004 + 209.57999999999998 -1.4580059436658079E-004 + 209.63999999999999 -1.4527206906179318E-004 + 209.69999999999999 -1.4465515013458422E-004 + 209.75999999999999 -1.4395343297764058E-004 + 209.81999999999999 -1.4317050374877417E-004 + 209.88000000000000 -1.4230988248305871E-004 + 209.94000000000000 -1.4137506652473926E-004 + 210.00000000000000 -1.4036949280917113E-004 + 210.06000000000000 -1.3929657027739111E-004 + 210.12000000000000 -1.3815965647405635E-004 + 210.18000000000001 -1.3696203807698955E-004 + 210.24000000000001 -1.3570696530876235E-004 + 210.30000000000001 -1.3439765465526627E-004 + 210.36000000000001 -1.3303723941600104E-004 + 210.42000000000002 -1.3162884616156603E-004 + 210.48000000000002 -1.3017553270605321E-004 + 210.53999999999996 -1.2868032414704926E-004 + 210.59999999999997 -1.2714619960606802E-004 + 210.65999999999997 -1.2557610423636698E-004 + 210.71999999999997 -1.2397291555551587E-004 + 210.77999999999997 -1.2233947551834002E-004 + 210.83999999999997 -1.2067858913833698E-004 + 210.89999999999998 -1.1899298773213289E-004 + 210.95999999999998 -1.1728536214794557E-004 + 211.01999999999998 -1.1555834611848936E-004 + 211.07999999999998 -1.1381449535342483E-004 + 211.13999999999999 -1.1205631733959290E-004 + 211.19999999999999 -1.1028623865557072E-004 + 211.25999999999999 -1.0850662413480064E-004 + 211.31999999999999 -1.0671976605641265E-004 + 211.38000000000000 -1.0492787639735777E-004 + 211.44000000000000 -1.0313309876180078E-004 + 211.50000000000000 -1.0133750045640769E-004 + 211.56000000000000 -9.9543066263406443E-005 + 211.62000000000000 -9.7751719028455665E-005 + 211.68000000000001 -9.5965284665238247E-005 + 211.74000000000001 -9.4185537134335986E-005 + 211.80000000000001 -9.2414143385545814E-005 + 211.86000000000001 -9.0652705399047197E-005 + 211.92000000000002 -8.8902753226080422E-005 + 211.98000000000002 -8.7165722918782450E-005 + 212.03999999999996 -8.5442978640577999E-005 + 212.09999999999997 -8.3735804858508844E-005 + 212.15999999999997 -8.2045408157150200E-005 + 212.21999999999997 -8.0372932177449159E-005 + 212.27999999999997 -7.8719431709097889E-005 + 212.33999999999997 -7.7085912318742604E-005 + 212.39999999999998 -7.5473301106476071E-005 + 212.45999999999998 -7.3882465447727908E-005 + 212.51999999999998 -7.2314215408292467E-005 + 212.57999999999998 -7.0769308324434898E-005 + 212.63999999999999 -6.9248448612652463E-005 + 212.69999999999999 -6.7752284120535527E-005 + 212.75999999999999 -6.6281417450774101E-005 + 212.81999999999999 -6.4836407744812754E-005 + 212.88000000000000 -6.3417758218583628E-005 + 212.94000000000000 -6.2025923576388995E-005 + 213.00000000000000 -6.0661315921295493E-005 + 213.06000000000000 -5.9324289893863488E-005 + 213.12000000000000 -5.8015149383051535E-005 + 213.18000000000001 -5.6734148843998754E-005 + 213.24000000000001 -5.5481481421445975E-005 + 213.30000000000001 -5.4257291927325357E-005 + 213.36000000000001 -5.3061676405492339E-005 + 213.42000000000002 -5.1894677207112254E-005 + 213.48000000000002 -5.0756295050501141E-005 + 213.53999999999996 -4.9646487721359242E-005 + 213.59999999999997 -4.8565184586702504E-005 + 213.65999999999997 -4.7512279638119852E-005 + 213.71999999999997 -4.6487639446519183E-005 + 213.77999999999997 -4.5491120817678272E-005 + 213.83999999999997 -4.4522560310911917E-005 + 213.89999999999998 -4.3581789985751899E-005 + 213.95999999999998 -4.2668638410673175E-005 + 214.01999999999998 -4.1782927810214421E-005 + 214.07999999999998 -4.0924481840467851E-005 + 214.13999999999999 -4.0093123757126750E-005 + 214.19999999999999 -3.9288670174684479E-005 + 214.25999999999999 -3.8510933619899471E-005 + 214.31999999999999 -3.7759720262494777E-005 + 214.38000000000000 -3.7034820190759587E-005 + 214.44000000000000 -3.6336015318652988E-005 + 214.50000000000000 -3.5663063554946029E-005 + 214.56000000000000 -3.5015704742765457E-005 + 214.62000000000000 -3.4393657430799173E-005 + 214.68000000000001 -3.3796611854300867E-005 + 214.74000000000001 -3.3224237678869105E-005 + 214.80000000000001 -3.2676174194982227E-005 + 214.86000000000001 -3.2152042218759752E-005 + 214.92000000000002 -3.1651437341132438E-005 + 214.98000000000002 -3.1173935209347390E-005 + 215.03999999999996 -3.0719091067328356E-005 + 215.09999999999997 -3.0286453463263132E-005 + 215.15999999999997 -2.9875545672175147E-005 + 215.21999999999997 -2.9485886579733652E-005 + 215.27999999999997 -2.9116984590078305E-005 + 215.33999999999997 -2.8768339343530709E-005 + 215.39999999999998 -2.8439437820160907E-005 + 215.45999999999998 -2.8129770444867763E-005 + 215.51999999999998 -2.7838815919978509E-005 + 215.57999999999998 -2.7566048549230361E-005 + 215.63999999999999 -2.7310941222581104E-005 + 215.69999999999999 -2.7072963886765452E-005 + 215.75999999999999 -2.6851580380004385E-005 + 215.81999999999999 -2.6646260191214008E-005 + 215.88000000000000 -2.6456470754178036E-005 + 215.94000000000000 -2.6281681120716799E-005 + 216.00000000000000 -2.6121363430737805E-005 + 216.06000000000000 -2.5974995475254372E-005 + 216.12000000000000 -2.5842060909799642E-005 + 216.18000000000001 -2.5722047155439874E-005 + 216.24000000000001 -2.5614453518041402E-005 + 216.30000000000001 -2.5518780437543484E-005 + 216.36000000000001 -2.5434537448373302E-005 + 216.42000000000002 -2.5361237090404973E-005 + 216.48000000000002 -2.5298394412420364E-005 + 216.53999999999996 -2.5245534368916991E-005 + 216.59999999999997 -2.5202176985373389E-005 + 216.65999999999997 -2.5167849000306901E-005 + 216.71999999999997 -2.5142078166907287E-005 + 216.77999999999997 -2.5124396593011441E-005 + 216.83999999999997 -2.5114343246291189E-005 + 216.89999999999998 -2.5111462391245482E-005 + 216.95999999999998 -2.5115310073901128E-005 + 217.01999999999998 -2.5125459038387851E-005 + 217.07999999999998 -2.5141497694606121E-005 + 217.13999999999999 -2.5163038870933585E-005 + 217.19999999999999 -2.5189718722592196E-005 + 217.25999999999999 -2.5221202642466881E-005 + 217.31999999999999 -2.5257189213186822E-005 + 217.38000000000000 -2.5297403310085509E-005 + 217.44000000000000 -2.5341601868885050E-005 + 217.50000000000000 -2.5389574114681089E-005 + 217.56000000000000 -2.5441128963359993E-005 + 217.62000000000000 -2.5496101733220234E-005 + 217.68000000000001 -2.5554340847157806E-005 + 217.74000000000001 -2.5615708812541665E-005 + 217.80000000000001 -2.5680067926362649E-005 + 217.86000000000001 -2.5747281067572848E-005 + 217.92000000000002 -2.5817204624152875E-005 + 217.98000000000002 -2.5889685589074534E-005 + 218.03999999999996 -2.5964552205176056E-005 + 218.09999999999997 -2.6041615791314042E-005 + 218.15999999999997 -2.6120669974973690E-005 + 218.21999999999997 -2.6201491383058665E-005 + 218.27999999999997 -2.6283839024859272E-005 + 218.33999999999997 -2.6367456673936056E-005 + 218.39999999999998 -2.6452074817885428E-005 + 218.45999999999998 -2.6537417917107804E-005 + 218.51999999999998 -2.6623209428424021E-005 + 218.57999999999998 -2.6709167206375249E-005 + 218.63999999999999 -2.6795011211259870E-005 + 218.69999999999999 -2.6880466543830987E-005 + 218.75999999999999 -2.6965262940498276E-005 + 218.81999999999999 -2.7049135330985741E-005 + 218.88000000000000 -2.7131822490833767E-005 + 218.94000000000000 -2.7213066766552626E-005 + 219.00000000000000 -2.7292613803095050E-005 + 219.06000000000000 -2.7370209222492766E-005 + 219.12000000000000 -2.7445593560032568E-005 + 219.18000000000001 -2.7518503783817644E-005 + 219.24000000000001 -2.7588672306203060E-005 + 219.30000000000001 -2.7655819954482352E-005 + 219.36000000000001 -2.7719661488230704E-005 + 219.42000000000002 -2.7779905583044997E-005 + 219.48000000000002 -2.7836249737742990E-005 + 219.53999999999996 -2.7888387057428664E-005 + 219.59999999999997 -2.7936010903516444E-005 + 219.65999999999997 -2.7978809077460399E-005 + 219.71999999999997 -2.8016475169100726E-005 + 219.77999999999997 -2.8048705540696924E-005 + 219.83999999999997 -2.8075206690289831E-005 + 219.89999999999998 -2.8095697111724413E-005 + 219.95999999999998 -2.8109908815865955E-005 + 220.01999999999998 -2.8117592913652968E-005 + 220.07999999999998 -2.8118521294102632E-005 + 220.13999999999999 -2.8112485031514418E-005 + 220.19999999999999 -2.8099299668509103E-005 + 220.25999999999999 -2.8078810705486071E-005 + 220.31999999999999 -2.8050884533031246E-005 + 220.38000000000000 -2.8015417575686318E-005 + 220.44000000000000 -2.7972337119790782E-005 + 220.50000000000000 -2.7921596005587551E-005 + 220.56000000000000 -2.7863177634534232E-005 + 220.62000000000000 -2.7797093040238432E-005 + 220.68000000000001 -2.7723383630061958E-005 + 220.74000000000001 -2.7642114735467635E-005 + 220.80000000000001 -2.7553375496446388E-005 + 220.86000000000001 -2.7457283453665296E-005 + 220.92000000000002 -2.7353970341774203E-005 + 220.98000000000002 -2.7243588673117085E-005 + 221.03999999999996 -2.7126303795786559E-005 + 221.09999999999997 -2.7002293483275659E-005 + 221.15999999999997 -2.6871744421332409E-005 + 221.21999999999997 -2.6734845845024805E-005 + 221.27999999999997 -2.6591794736640060E-005 + 221.33999999999997 -2.6442792999615618E-005 + 221.39999999999998 -2.6288037199453343E-005 + 221.45999999999998 -2.6127729563184122E-005 + 221.51999999999998 -2.5962076546069396E-005 + 221.57999999999998 -2.5791286405290242E-005 + 221.63999999999999 -2.5615573154290723E-005 + 221.69999999999999 -2.5435161579254116E-005 + 221.75999999999999 -2.5250284760830080E-005 + 221.81999999999999 -2.5061189589343122E-005 + 221.88000000000000 -2.4868137472762239E-005 + 221.94000000000000 -2.4671406211745872E-005 + 222.00000000000000 -2.4471289561633257E-005 + 222.06000000000000 -2.4268094365260820E-005 + 222.12000000000000 -2.4062147068488404E-005 + 222.18000000000001 -2.3853782184137694E-005 + 222.24000000000001 -2.3643343971680441E-005 + 222.30000000000001 -2.3431183040681566E-005 + 222.36000000000001 -2.3217647839669681E-005 + 222.42000000000002 -2.3003092093835656E-005 + 222.48000000000002 -2.2787855478260162E-005 + 222.53999999999996 -2.2572272080635186E-005 + 222.59999999999997 -2.2356662767269046E-005 + 222.65999999999997 -2.2141336214173734E-005 + 222.71999999999997 -2.1926587318270443E-005 + 222.77999999999997 -2.1712696812917478E-005 + 222.83999999999997 -2.1499934723882282E-005 + 222.89999999999998 -2.1288558127607645E-005 + 222.95999999999998 -2.1078823067542141E-005 + 223.01999999999998 -2.0870974157079708E-005 + 223.07999999999998 -2.0665262941570399E-005 + 223.13999999999999 -2.0461938251574073E-005 + 223.19999999999999 -2.0261256398015264E-005 + 223.25999999999999 -2.0063477655974013E-005 + 223.31999999999999 -1.9868869609118950E-005 + 223.38000000000000 -1.9677708140789393E-005 + 223.44000000000000 -1.9490272401660241E-005 + 223.50000000000000 -1.9306843415926466E-005 + 223.56000000000000 -1.9127705569551486E-005 + 223.62000000000000 -1.8953139760615143E-005 + 223.68000000000001 -1.8783420754073160E-005 + 223.74000000000001 -1.8618813563684632E-005 + 223.80000000000001 -1.8459569168807090E-005 + 223.86000000000001 -1.8305926955611615E-005 + 223.92000000000002 -1.8158105304744208E-005 + 223.98000000000002 -1.8016305003641025E-005 + 224.03999999999996 -1.7880708291907674E-005 + 224.09999999999997 -1.7751478099966375E-005 + 224.15999999999997 -1.7628755103799490E-005 + 224.21999999999997 -1.7512668549372845E-005 + 224.27999999999997 -1.7403328851943231E-005 + 224.33999999999997 -1.7300829281728770E-005 + 224.39999999999998 -1.7205255640462584E-005 + 224.45999999999998 -1.7116677191460714E-005 + 224.51999999999998 -1.7035156916342278E-005 + 224.57999999999998 -1.6960746626568561E-005 + 224.63999999999999 -1.6893488377897675E-005 + 224.69999999999999 -1.6833413761178446E-005 + 224.75999999999999 -1.6780540265357752E-005 + 224.81999999999999 -1.6734875948174363E-005 + 224.88000000000000 -1.6696416312319874E-005 + 224.94000000000000 -1.6665141296016090E-005 + 225.00000000000000 -1.6641009954236070E-005 + 225.06000000000000 -1.6623965134188081E-005 + 225.12000000000000 -1.6613926558153995E-005 + 225.18000000000001 -1.6610794061949991E-005 + 225.24000000000001 -1.6614445947002128E-005 + 225.30000000000001 -1.6624732762319154E-005 + 225.36000000000001 -1.6641484047919516E-005 + 225.42000000000002 -1.6664502943023764E-005 + 225.48000000000002 -1.6693570825757194E-005 + 225.53999999999996 -1.6728444135693005E-005 + 225.59999999999997 -1.6768855057185452E-005 + 225.65999999999997 -1.6814516916861534E-005 + 225.71999999999997 -1.6865121536178892E-005 + 225.77999999999997 -1.6920342404280680E-005 + 225.83999999999997 -1.6979836001633420E-005 + 225.89999999999998 -1.7043247182363329E-005 + 225.95999999999998 -1.7110207608520609E-005 + 226.01999999999998 -1.7180341525346521E-005 + 226.07999999999998 -1.7253272801755780E-005 + 226.13999999999999 -1.7328616282705194E-005 + 226.19999999999999 -1.7405997056618831E-005 + 226.25999999999999 -1.7485041226687086E-005 + 226.31999999999999 -1.7565387200185338E-005 + 226.38000000000000 -1.7646682663601507E-005 + 226.44000000000000 -1.7728588782474402E-005 + 226.50000000000000 -1.7810784044585292E-005 + 226.56000000000000 -1.7892962423167912E-005 + 226.62000000000000 -1.7974830702176806E-005 + 226.68000000000001 -1.8056113669693698E-005 + 226.74000000000001 -1.8136548499345004E-005 + 226.80000000000001 -1.8215880891702343E-005 + 226.86000000000001 -1.8293867389797872E-005 + 226.92000000000002 -1.8370268912907230E-005 + 226.98000000000002 -1.8444844738553953E-005 + 227.03999999999996 -1.8517358574789414E-005 + 227.09999999999997 -1.8587566654253519E-005 + 227.15999999999997 -1.8655221863152616E-005 + 227.21999999999997 -1.8720070572544611E-005 + 227.27999999999997 -1.8781852999302535E-005 + 227.33999999999997 -1.8840304653423724E-005 + 227.39999999999998 -1.8895154279891743E-005 + 227.45999999999998 -1.8946132072107965E-005 + 227.51999999999998 -1.8992967116783603E-005 + 227.57999999999998 -1.9035391482149964E-005 + 227.63999999999999 -1.9073145264492372E-005 + 227.69999999999999 -1.9105975562716928E-005 + 227.75999999999999 -1.9133641124329263E-005 + 227.81999999999999 -1.9155910998410482E-005 + 227.88000000000000 -1.9172569202396373E-005 + 227.94000000000000 -1.9183409420041007E-005 + 228.00000000000000 -1.9188233344813951E-005 + 228.06000000000000 -1.9186849610576966E-005 + 228.12000000000000 -1.9179072874817770E-005 + 228.18000000000001 -1.9164708034969459E-005 + 228.24000000000001 -1.9143561569875233E-005 + 228.30000000000001 -1.9115421454046262E-005 + 228.36000000000001 -1.9080061369350381E-005 + 228.42000000000002 -1.9037230841955418E-005 + 228.48000000000002 -1.8986655783859112E-005 + 228.53999999999996 -1.8928030118342281E-005 + 228.59999999999997 -1.8861016276455906E-005 + 228.65999999999997 -1.8785240673130528E-005 + 228.71999999999997 -1.8700294728761715E-005 + 228.77999999999997 -1.8605739696158047E-005 + 228.83999999999997 -1.8501101106664339E-005 + 228.89999999999998 -1.8385873325460327E-005 + 228.95999999999998 -1.8259522920267030E-005 + 229.01999999999998 -1.8121489450966622E-005 + 229.07999999999998 -1.7971190488470874E-005 + 229.13999999999999 -1.7808021865446983E-005 + 229.19999999999999 -1.7631364415816633E-005 + 229.25999999999999 -1.7440577249886707E-005 + 229.31999999999999 -1.7235009649268967E-005 + 229.38000000000000 -1.7013994300170083E-005 + 229.44000000000000 -1.6776848401988792E-005 + 229.50000000000000 -1.6522873640546610E-005 + 229.56000000000000 -1.6251354277287110E-005 + 229.62000000000000 -1.5961555695134837E-005 + 229.68000000000001 -1.5652720204423292E-005 + 229.74000000000001 -1.5324061111979908E-005 + 229.80000000000001 -1.4974761210521197E-005 + 229.86000000000001 -1.4603970390796478E-005 + 229.92000000000002 -1.4210797943465642E-005 + 229.97999999999996 -1.3794306883917398E-005 + 230.03999999999996 -1.3353514289435464E-005 + 230.09999999999997 -1.2887385369244000E-005 + 230.15999999999997 -1.2394827777073139E-005 + 230.21999999999997 -1.1874692990513301E-005 + 230.27999999999997 -1.1325771567904817E-005 + 230.33999999999997 -1.0746794496342266E-005 + 230.39999999999998 -1.0136432145871673E-005 + 230.45999999999998 -9.4932932245059152E-006 + 230.51999999999998 -8.8159289546881054E-006 + 230.57999999999998 -8.1028345454840505E-006 + 230.63999999999999 -7.3524528315169332E-006 + 230.69999999999999 -6.5631742351451289E-006 + 230.75999999999999 -5.7333458732851914E-006 + 230.81999999999999 -4.8612719330174862E-006 + 230.88000000000000 -3.9452158426943210E-006 + 230.94000000000000 -2.9834034512001624E-006 + 231.00000000000000 -1.9740277316088354E-006 + 231.06000000000000 -9.1524715044862791E-007 + 231.12000000000000 1.9481279757882247E-007 + 231.18000000000001 1.3580601798289821E-006 + 231.24000000000001 2.5764388111350965E-006 + 231.30000000000001 3.8519307349355905E-006 + 231.36000000000001 5.1865543892989917E-006 + 231.42000000000002 6.5823727887568111E-006 + 231.47999999999996 8.0414920518141546E-006 + 231.53999999999996 9.5660682430325912E-006 + 231.59999999999997 1.1158301200441203E-005 + 231.65999999999997 1.2820442095907221E-005 + 231.71999999999997 1.4554786755500663E-005 + 231.77999999999997 1.6363676395249590E-005 + 231.83999999999997 1.8249485323188587E-005 + 231.89999999999998 2.0214624363826248E-005 + 231.95999999999998 2.2261524423294154E-005 + 232.01999999999998 2.4392631587399181E-005 + 232.07999999999998 2.6610385544549043E-005 + 232.13999999999999 2.8917223349035055E-005 + 232.19999999999999 3.1315552041380139E-005 + 232.25999999999999 3.3807738739653648E-005 + 232.31999999999999 3.6396098123355234E-005 + 232.38000000000000 3.9082880581366000E-005 + 232.44000000000000 4.1870251426133240E-005 + 232.50000000000000 4.4760286626922634E-005 + 232.56000000000000 4.7754971658512402E-005 + 232.62000000000000 5.0856166470842898E-005 + 232.68000000000001 5.4065621700205895E-005 + 232.74000000000001 5.7384960484971618E-005 + 232.80000000000001 6.0815659417491951E-005 + 232.86000000000001 6.4359082264338433E-005 + 232.92000000000002 6.8016429452970588E-005 + 232.97999999999996 7.1788765419379975E-005 + 233.03999999999996 7.5676995888400255E-005 + 233.09999999999997 7.9681864879429804E-005 + 233.15999999999997 8.3803957156821694E-005 + 233.21999999999997 8.8043685461953593E-005 + 233.27999999999997 9.2401274792147694E-005 + 233.33999999999997 9.6876766015353727E-005 + 233.39999999999998 1.0146999916502792E-004 + 233.45999999999998 1.0618060436198293E-004 + 233.51999999999998 1.1100797759801800E-004 + 233.57999999999998 1.1595130441416967E-004 + 233.63999999999999 1.2100948825134760E-004 + 233.69999999999999 1.2618118768186403E-004 + 233.75999999999999 1.3146479491313957E-004 + 233.81999999999999 1.3685840540829058E-004 + 233.88000000000000 1.4235982778901233E-004 + 233.94000000000000 1.4796654588179216E-004 + 234.00000000000000 1.5367576246313536E-004 + 234.06000000000000 1.5948433533799505E-004 + 234.12000000000000 1.6538879931362054E-004 + 234.18000000000001 1.7138538194967775E-004 + 234.24000000000001 1.7746998205996021E-004 + 234.30000000000001 1.8363815537730748E-004 + 234.36000000000001 1.8988513691248186E-004 + 234.42000000000002 1.9620585823794151E-004 + 234.47999999999996 2.0259493748265423E-004 + 234.53999999999996 2.0904670412126927E-004 + 234.59999999999997 2.1555512605232613E-004 + 234.65999999999997 2.2211390975714878E-004 + 234.71999999999997 2.2871653241744131E-004 + 234.77999999999997 2.3535611019155148E-004 + 234.83999999999997 2.4202555065471474E-004 + 234.89999999999998 2.4871747215324090E-004 + 234.95999999999998 2.5542425710206487E-004 + 235.01999999999998 2.6213802130893137E-004 + 235.07999999999998 2.6885064472594933E-004 + 235.13999999999999 2.7555377702968240E-004 + 235.19999999999999 2.8223886065789660E-004 + 235.25999999999999 2.8889706303668761E-004 + 235.31999999999999 2.9551937770213427E-004 + 235.38000000000000 3.0209659585911939E-004 + 235.44000000000000 3.0861928559901286E-004 + 235.50000000000000 3.1507787550804419E-004 + 235.56000000000000 3.2146260868142233E-004 + 235.62000000000000 3.2776353697580249E-004 + 235.68000000000001 3.3397064727727621E-004 + 235.74000000000001 3.4007375872408490E-004 + 235.80000000000001 3.4606261356986474E-004 + 235.86000000000001 3.5192690686829939E-004 + 235.92000000000002 3.5765630455676775E-004 + 235.97999999999996 3.6324038739490584E-004 + 236.03999999999996 3.6866883456792323E-004 + 236.09999999999997 3.7393133695409763E-004 + 236.15999999999997 3.7901765445000514E-004 + 236.21999999999997 3.8391762389748620E-004 + 236.27999999999997 3.8862122086632015E-004 + 236.33999999999997 3.9311859540060916E-004 + 236.39999999999998 3.9740001929188592E-004 + 236.45999999999998 4.0145605068385470E-004 + 236.51999999999998 4.0527738020597245E-004 + 236.57999999999998 4.0885501477062327E-004 + 236.63999999999999 4.1218017929067812E-004 + 236.69999999999999 4.1524440363497191E-004 + 236.75999999999999 4.1803951043922928E-004 + 236.81999999999999 4.2055764418211640E-004 + 236.88000000000000 4.2279134148053233E-004 + 236.94000000000000 4.2473342925593066E-004 + 237.00000000000000 4.2637718176073681E-004 + 237.06000000000000 4.2771624956488760E-004 + 237.12000000000000 4.2874472430766701E-004 + 237.18000000000001 4.2945715095201684E-004 + 237.24000000000001 4.2984851659197274E-004 + 237.30000000000001 4.2991432595270368E-004 + 237.36000000000001 4.2965055446454416E-004 + 237.42000000000002 4.2905376008640217E-004 + 237.47999999999996 4.2812104415616088E-004 + 237.53999999999996 4.2685002582747514E-004 + 237.59999999999997 4.2523894582552422E-004 + 237.65999999999997 4.2328663196980557E-004 + 237.71999999999997 4.2099245898431287E-004 + 237.77999999999997 4.1835650038320383E-004 + 237.83999999999997 4.1537935750441703E-004 + 237.89999999999998 4.1206232342990985E-004 + 237.95999999999998 4.0840726452567476E-004 + 238.01999999999998 4.0441668629783280E-004 + 238.07999999999998 4.0009370878670746E-004 + 238.13999999999999 3.9544201874662104E-004 + 238.19999999999999 3.9046600536816957E-004 + 238.25999999999999 3.8517055994040090E-004 + 238.31999999999999 3.7956123822310763E-004 + 238.38000000000000 3.7364409686894691E-004 + 238.44000000000000 3.6742577529202443E-004 + 238.50000000000000 3.6091350603442522E-004 + 238.56000000000000 3.5411497861889912E-004 + 238.62000000000000 3.4703845450577344E-004 + 238.68000000000001 3.3969264435431611E-004 + 238.74000000000001 3.3208676728331934E-004 + 238.80000000000001 3.2423043690455263E-004 + 238.86000000000001 3.1613374519743427E-004 + 238.92000000000002 3.0780718205001742E-004 + 238.97999999999996 2.9926164102207114E-004 + 239.03999999999996 2.9050832885233434E-004 + 239.09999999999997 2.8155880876165840E-004 + 239.15999999999997 2.7242491343863599E-004 + 239.21999999999997 2.6311880722454682E-004 + 239.27999999999997 2.5365288311158569E-004 + 239.33999999999997 2.4403969029910627E-004 + 239.39999999999998 2.3429204261206770E-004 + 239.45999999999998 2.2442287361445720E-004 + 239.51999999999998 2.1444523200176617E-004 + 239.57999999999998 2.0437226343701520E-004 + 239.63999999999999 1.9421718736235149E-004 + 239.69999999999999 1.8399322290799550E-004 + 239.75999999999999 1.7371360431894030E-004 + 239.81999999999999 1.6339149172139720E-004 + 239.88000000000000 1.5304002807876483E-004 + 239.94000000000000 1.4267223196051741E-004 + 240.00000000000000 1.3230097931896576E-004 + 240.06000000000000 1.2193899663914518E-004 + 240.12000000000000 1.1159884502140407E-004 + 240.18000000000001 1.0129285798508457E-004 + 240.24000000000001 9.1033138249841975E-005 + 240.30000000000001 8.0831539643417638E-005 + 240.36000000000001 7.0699626786288353E-005 + 240.42000000000002 6.0648706620802770E-005 + 240.47999999999996 5.0689741510395595E-005 + 240.53999999999996 4.0833382026076958E-005 + 240.59999999999997 3.1089923940041920E-005 + 240.65999999999997 2.1469318340191336E-005 + 240.71999999999997 1.1981136494912049E-005 + 240.77999999999997 2.6345679884020040E-006 + 240.83999999999997 -6.5616035510442700E-006 + 240.89999999999998 -1.5598992671766224E-005 + 240.95999999999998 -2.4469648722630806E-005 + 241.01999999999998 -3.3166043252169099E-005 + 241.07999999999998 -4.1681100187419988E-005 + 241.13999999999999 -5.0008184533117749E-005 + 241.19999999999999 -5.8141126860730232E-005 + 241.25999999999999 -6.6074208523170700E-005 + 241.31999999999999 -7.3802185863775728E-005 + 241.38000000000000 -8.1320272008912750E-005 + 241.44000000000000 -8.8624149235037912E-005 + 241.50000000000000 -9.5709955640607515E-005 + 241.56000000000000 -1.0257428014061302E-004 + 241.62000000000000 -1.0921416034029596E-004 + 241.68000000000001 -1.1562709137388521E-004 + 241.74000000000001 -1.2181096850644211E-004 + 241.80000000000001 -1.2776413506250607E-004 + 241.86000000000001 -1.3348533271799815E-004 + 241.92000000000002 -1.3897369810879782E-004 + 241.97999999999996 -1.4422875596998612E-004 + 242.03999999999996 -1.4925041665620644E-004 + 242.09999999999997 -1.5403894407488674E-004 + 242.15999999999997 -1.5859498380943680E-004 + 242.21999999999997 -1.6291951093257495E-004 + 242.27999999999997 -1.6701384242984459E-004 + 242.33999999999997 -1.7087962124793651E-004 + 242.39999999999998 -1.7451882155476158E-004 + 242.45999999999998 -1.7793371746083935E-004 + 242.51999999999998 -1.8112685724936480E-004 + 242.57999999999998 -1.8410109574574994E-004 + 242.63999999999999 -1.8685954406125660E-004 + 242.69999999999999 -1.8940558046718318E-004 + 242.75999999999999 -1.9174281788617706E-004 + 242.81999999999999 -1.9387505796277372E-004 + 242.88000000000000 -1.9580635587541681E-004 + 242.94000000000000 -1.9754091237197897E-004 + 243.00000000000000 -1.9908313811804171E-004 + 243.06000000000000 -2.0043755455326584E-004 + 243.12000000000000 -2.0160883773755669E-004 + 243.18000000000001 -2.0260176380555936E-004 + 243.24000000000001 -2.0342124789724577E-004 + 243.30000000000001 -2.0407224687564446E-004 + 243.36000000000001 -2.0455980630134160E-004 + 243.42000000000002 -2.0488904863291284E-004 + 243.47999999999996 -2.0506513576404876E-004 + 243.53999999999996 -2.0509324209125801E-004 + 243.59999999999997 -2.0497859862537741E-004 + 243.65999999999997 -2.0472643568917800E-004 + 243.71999999999997 -2.0434197833943762E-004 + 243.77999999999997 -2.0383048286123773E-004 + 243.83999999999997 -2.0319715260676903E-004 + 243.89999999999998 -2.0244719000388090E-004 + 243.95999999999998 -2.0158576845198640E-004 + 244.01999999999998 -2.0061799220539599E-004 + 244.07999999999998 -1.9954893779302858E-004 + 244.13999999999999 -1.9838360328220108E-004 + 244.19999999999999 -1.9712692206604233E-004 + 244.25999999999999 -1.9578373738414180E-004 + 244.31999999999999 -1.9435880638756778E-004 + 244.38000000000000 -1.9285678492180457E-004 + 244.44000000000000 -1.9128226551859225E-004 + 244.50000000000000 -1.8963966956450160E-004 + 244.56000000000000 -1.8793333969583422E-004 + 244.62000000000000 -1.8616749563193718E-004 + 244.68000000000001 -1.8434622061312152E-004 + 244.74000000000001 -1.8247349110778627E-004 + 244.80000000000001 -1.8055313707398624E-004 + 244.86000000000001 -1.7858886560236239E-004 + 244.92000000000002 -1.7658424649390450E-004 + 244.97999999999996 -1.7454270118464845E-004 + 245.03999999999996 -1.7246753292244729E-004 + 245.09999999999997 -1.7036190980072153E-004 + 245.15999999999997 -1.6822887466856864E-004 + 245.21999999999997 -1.6607131782958795E-004 + 245.27999999999997 -1.6389200457515431E-004 + 245.33999999999997 -1.6169357686541392E-004 + 245.39999999999998 -1.5947856457305639E-004 + 245.45999999999998 -1.5724934887276982E-004 + 245.51999999999998 -1.5500823942414966E-004 + 245.57999999999998 -1.5275740749652540E-004 + 245.63999999999999 -1.5049894344892160E-004 + 245.69999999999999 -1.4823483398980342E-004 + 245.75999999999999 -1.4596696816629261E-004 + 245.81999999999999 -1.4369715029665466E-004 + 245.88000000000000 -1.4142712208654564E-004 + 245.94000000000000 -1.3915852187812111E-004 + 246.00000000000000 -1.3689293196238457E-004 + 246.06000000000000 -1.3463187249357651E-004 + 246.12000000000000 -1.3237677055551183E-004 + 246.18000000000001 -1.3012900867607761E-004 + 246.24000000000001 -1.2788989668824648E-004 + 246.30000000000001 -1.2566067094857902E-004 + 246.36000000000001 -1.2344251958691587E-004 + 246.42000000000002 -1.2123655565387297E-004 + 246.47999999999996 -1.1904385561262057E-004 + 246.53999999999996 -1.1686542036697482E-004 + 246.59999999999997 -1.1470219948855385E-004 + 246.65999999999997 -1.1255511095862628E-004 + 246.71999999999997 -1.1042501309758443E-004 + 246.77999999999997 -1.0831274421651098E-004 + 246.83999999999997 -1.0621910064769076E-004 + 246.89999999999998 -1.0414486616932001E-004 + 246.95999999999998 -1.0209079277767292E-004 + 247.01999999999998 -1.0005762697468795E-004 + 247.07999999999998 -9.8046089651751452E-005 + 247.13999999999999 -9.6056909449350941E-005 + 247.19999999999999 -9.4090782628835100E-005 + 247.25999999999999 -9.2148413228517376E-005 + 247.31999999999999 -9.0230485203064638E-005 + 247.38000000000000 -8.8337667828099006E-005 + 247.44000000000000 -8.6470617814334485E-005 + 247.50000000000000 -8.4629955544528898E-005 + 247.56000000000000 -8.2816285673162021E-005 + 247.62000000000000 -8.1030177219990163E-005 + 247.68000000000001 -7.9272156892598871E-005 + 247.74000000000001 -7.7542727067304390E-005 + 247.80000000000001 -7.5842340909603115E-005 + 247.86000000000001 -7.4171418204736946E-005 + 247.92000000000002 -7.2530324560645881E-005 + 247.97999999999996 -7.0919403238358533E-005 + 248.03999999999996 -6.9338957158931452E-005 + 248.09999999999997 -6.7789243851776212E-005 + 248.15999999999997 -6.6270488542978127E-005 + 248.21999999999997 -6.4782905137591700E-005 + 248.27999999999997 -6.3326658706698585E-005 + 248.33999999999997 -6.1901897351237373E-005 + 248.39999999999998 -6.0508745550628399E-005 + 248.45999999999998 -5.9147287334353869E-005 + 248.51999999999998 -5.7817589763439296E-005 + 248.57999999999998 -5.6519695655141821E-005 + 248.63999999999999 -5.5253611934284123E-005 + 248.69999999999999 -5.4019322566726909E-005 + 248.75999999999999 -5.2816766745850551E-005 + 248.81999999999999 -5.1645857147534310E-005 + 248.88000000000000 -5.0506471751813599E-005 + 248.94000000000000 -4.9398450621935711E-005 + 249.00000000000000 -4.8321599822624553E-005 + 249.06000000000000 -4.7275693806412506E-005 + 249.12000000000000 -4.6260476101490461E-005 + 249.18000000000001 -4.5275667153419053E-005 + 249.24000000000001 -4.4320963345670463E-005 + 249.30000000000001 -4.3396036646728325E-005 + 249.36000000000001 -4.2500548216090223E-005 + 249.42000000000002 -4.1634142966173772E-005 + 249.47999999999996 -4.0796462311686601E-005 + 249.53999999999996 -3.9987131997127924E-005 + 249.59999999999997 -3.9205776998228068E-005 + 249.65999999999997 -3.8452011366615078E-005 + 249.71999999999997 -3.7725449910512338E-005 + 249.77999999999997 -3.7025695424738579E-005 + 249.83999999999997 -3.6352348087230928E-005 + 249.89999999999998 -3.5704993863803311E-005 + 249.95999999999998 -3.5083213380832334E-005 + 250.01999999999998 -3.4486575913324444E-005 + 250.07999999999998 -3.3914641041284760E-005 + 250.13999999999999 -3.3366955017768303E-005 + 250.19999999999999 -3.2843058315233214E-005 + 250.25999999999999 -3.2342479613371936E-005 + 250.31999999999999 -3.1864743261440213E-005 + 250.38000000000000 -3.1409369575024701E-005 + 250.44000000000000 -3.0975871611237715E-005 + 250.50000000000000 -3.0563771488577678E-005 + 250.56000000000000 -3.0172582433108184E-005 + 250.62000000000000 -2.9801824325617736E-005 + 250.68000000000001 -2.9451021685415883E-005 + 250.74000000000001 -2.9119700319774614E-005 + 250.80000000000001 -2.8807387907020609E-005 + 250.86000000000001 -2.8513616952972572E-005 + 250.92000000000002 -2.8237913096349020E-005 + 250.97999999999996 -2.7979804486086825E-005 + 251.03999999999996 -2.7738809221881061E-005 + 251.09999999999997 -2.7514442499123580E-005 + 251.15999999999997 -2.7306207373839684E-005 + 251.21999999999997 -2.7113600659645990E-005 + 251.27999999999997 -2.6936107718279064E-005 + 251.33999999999997 -2.6773203542225598E-005 + 251.39999999999998 -2.6624354832967138E-005 + 251.45999999999998 -2.6489020754427189E-005 + 251.51999999999998 -2.6366653313405285E-005 + 251.57999999999998 -2.6256698798012891E-005 + 251.63999999999999 -2.6158601908915396E-005 + 251.69999999999999 -2.6071810506846220E-005 + 251.75999999999999 -2.5995766258997454E-005 + 251.81999999999999 -2.5929917003715751E-005 + 251.88000000000000 -2.5873709134151663E-005 + 251.94000000000000 -2.5826589843657996E-005 diff --git a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000001.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000001.BXY.semd new file mode 100644 index 00000000..15e04a7b --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000001.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 1.9047947325680696E-041 + 9.6599999999999966 4.7801631255729527E-041 + 9.7199999999999989 8.0963644655591286E-041 + 9.7800000000000011 1.1853399198965025E-040 + 9.8399999999999963 1.5610433932370922E-040 + 9.8999999999999986 1.9367468665776818E-040 + 9.9600000000000009 2.3124503399182715E-040 + 10.019999999999996 2.6881538132588611E-040 + 10.079999999999998 2.9476597211933513E-040 + 10.140000000000001 3.0573024990259194E-040 + 10.199999999999996 2.9721250827673861E-040 + 10.259999999999998 2.7379197334178120E-040 + 10.320000000000000 2.3473770038851744E-040 + 10.379999999999995 1.8411636848667089E-040 + 10.439999999999998 1.3349503658482434E-040 + 10.500000000000000 8.2873704682977794E-041 + 10.559999999999995 3.4234278144716767E-041 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 -1.4433262853540114E-041 + 10.739999999999995 -2.7817408794710891E-041 + 10.799999999999997 -3.7837469302997748E-041 + 10.859999999999999 -3.7837469302997748E-041 + 10.919999999999995 -2.6618701526119067E-041 + 10.979999999999997 -2.8631069579593149E-041 + 11.039999999999999 -8.6929405862787565E-041 + 11.099999999999994 -2.1419827975108893E-040 + 11.159999999999997 -4.2290054397660115E-040 + 11.219999999999999 -8.3162391335705167E-040 + 11.280000000000001 -1.4202526265544075E-039 + 11.339999999999996 -2.0646413528711386E-039 + 11.399999999999999 -2.7534534885378964E-039 + 11.460000000000001 -3.4930508582150576E-039 + 11.519999999999996 -3.9578411204565838E-039 + 11.579999999999998 -4.0737023728246860E-039 + 11.640000000000001 -3.8269011238081391E-039 + 11.699999999999996 -3.2050909686852775E-039 + 11.759999999999998 -2.2194830833239895E-039 + 11.820000000000000 -8.5131590913418452E-040 + 11.879999999999995 1.2543664209253595E-039 + 11.939999999999998 4.2058881145649274E-039 + 12.000000000000000 1.1261526951862334E-038 + 12.059999999999995 2.3498081514019410E-038 + 12.119999999999997 4.1738934782271286E-038 + 12.180000000000000 6.7232431823714908E-038 + 12.239999999999995 1.0033883387272907E-037 + 12.299999999999997 1.3684010229251629E-037 + 12.359999999999999 1.8218202862480845E-037 + 12.419999999999995 2.3407603742086105E-037 + 12.479999999999997 2.8787517824774699E-037 + 12.539999999999999 3.3900025638394438E-037 + 12.599999999999994 3.5308046849616886E-037 + 12.659999999999997 3.2127956995349933E-037 + 12.719999999999999 2.3322841682554698E-037 + 12.780000000000001 9.3667553426624908E-038 + 12.839999999999996 -6.7424939405558236E-038 + 12.899999999999999 -2.4718115213285818E-037 + 12.960000000000001 -4.4057178674851252E-037 + 13.019999999999996 -6.4148324803475516E-037 + 13.079999999999998 -8.5774036239289216E-037 + 13.140000000000001 -1.0696165476951718E-036 + 13.199999999999996 -1.2392906943405259E-036 + 13.259999999999998 -1.3382211238633212E-036 + 13.320000000000000 -1.3509653714363017E-036 + 13.379999999999995 -1.2685388575382856E-036 + 13.439999999999998 -1.0847249171140527E-036 + 13.500000000000000 -7.6549818506645164E-037 + 13.559999999999995 -3.4708634513515717E-037 + 13.619999999999997 1.4920150684739916E-037 + 13.680000000000000 6.8962975001316116E-037 + 13.739999999999995 1.2179388241420341E-036 + 13.799999999999997 1.6816399691739355E-036 + 13.859999999999999 2.0411766091164609E-036 + 13.919999999999995 2.2468786344798396E-036 + 13.979999999999997 2.1084043573798231E-036 + 14.039999999999999 1.5650041067627021E-036 + 14.099999999999994 5.0977918734980377E-037 + 14.159999999999997 -9.6082572770173781E-037 + 14.219999999999999 -2.6796016471737172E-036 + 14.280000000000001 -4.5829777141779571E-036 + 14.339999999999996 -6.4793214171954576E-036 + 14.399999999999999 -8.1704763043717118E-036 + 14.460000000000001 -9.2803575783914874E-036 + 14.519999999999996 -9.4588587004788916E-036 + 14.579999999999998 -8.4693078304174038E-036 + 14.640000000000001 -6.1015420718455147E-036 + 14.699999999999996 -2.2329173076707272E-036 + 14.759999999999998 3.1818202070900904E-036 + 14.820000000000000 9.9870332402584016E-036 + 14.879999999999995 1.7877099662032185E-035 + 14.939999999999998 2.6515654192687352E-035 + 15.000000000000000 3.5332124646144339E-035 + 15.059999999999995 4.3447807073354876E-035 + 15.119999999999997 4.9677550502381451E-035 + 15.180000000000000 5.2883945042560564E-035 + 15.239999999999995 5.1813887752624663E-035 + 15.299999999999997 4.5385940937409095E-035 + 15.359999999999999 3.2600744380125654E-035 + 15.419999999999995 1.2761646832741941E-035 + 15.479999999999997 -1.4462843006303941E-035 + 15.539999999999999 -4.8843914717621941E-035 + 15.599999999999994 -8.9521810236514586E-035 + 15.659999999999997 -1.3514633743642941E-034 + 15.719999999999999 -1.8310808842183329E-034 + 15.780000000000001 -2.3019807803487546E-034 + 15.839999999999996 -2.7248575080922552E-034 + 15.899999999999999 -3.0533624999368759E-034 + 15.960000000000001 -3.2363768799795944E-034 + 16.019999999999996 -3.2210572296660599E-034 + 16.079999999999998 -2.9563705450715099E-034 + 16.140000000000001 -2.3974953528113205E-034 + 16.200000000000003 -1.5109769600136102E-034 + 16.259999999999991 -2.8029466862497559E-035 + 16.319999999999993 1.2884154947324470E-034 + 16.379999999999995 3.1611740069277238E-034 + 16.439999999999998 5.2717290622531514E-034 + 16.500000000000000 7.5181927082011245E-034 + 16.560000000000002 9.7617007282240353E-034 + 16.620000000000005 1.1828430242939699E-033 + 16.679999999999993 1.3513463923587535E-033 + 16.739999999999995 1.4589029093589029E-033 + 16.799999999999997 1.4816146937869072E-033 + 16.859999999999999 1.3960219409334476E-033 + 16.920000000000002 1.1810067538593749E-033 + 16.980000000000004 8.2000089314531456E-034 + 17.039999999999992 3.0339086935583001E-034 + 17.099999999999994 -3.6900764879194490E-034 + 17.159999999999997 -1.1855835135420943E-033 + 17.219999999999999 -2.1208666727811161E-033 + 17.280000000000001 -3.1339946990805485E-033 + 17.340000000000003 -4.1680109269807216E-033 + 17.399999999999991 -5.1501487974423355E-033 + 17.459999999999994 -5.9934053728480652E-033 + 17.519999999999996 -6.5995572288127757E-033 + 17.579999999999998 -6.8637485444281152E-033 + 17.640000000000001 -6.6807003133478398E-033 + 17.700000000000003 -5.9524494385104791E-033 + 17.759999999999991 -4.5974202108664393E-033 + 17.819999999999993 -2.5604886074894700E-033 + 17.879999999999995 1.7650654737988383E-034 + 17.939999999999998 3.5844102959454736E-033 + 18.000000000000000 7.5774507178539270E-033 + 18.060000000000002 1.2005833923482731E-032 + 18.120000000000005 1.6651279804269980E-032 + 18.179999999999993 2.1226507436333437E-032 + 18.239999999999995 2.5379635807353056E-032 + 18.299999999999997 2.8704348464444050E-032 + 18.359999999999999 3.0756427787653293E-032 + 18.420000000000002 3.1076967027596538E-032 + 18.480000000000004 2.9222127778104208E-032 + 18.539999999999992 2.4798825458611520E-032 + 18.599999999999994 1.7505119726619115E-032 + 18.659999999999997 7.1736066434556150E-033 + 18.719999999999999 -6.1847966311963705E-033 + 18.780000000000001 -2.2339535370390512E-032 + 18.840000000000003 -4.0805222746099841E-032 + 18.899999999999991 -6.0816426749505241E-032 + 18.959999999999994 -8.1316580949938471E-032 + 19.019999999999996 -1.0096499029999816E-031 + 19.079999999999998 -1.1816562525659511E-031 + 19.140000000000001 -1.3112061123119635E-031 + 19.200000000000003 -1.3791028029385397E-031 + 19.259999999999991 -1.3660018782972568E-031 + 19.319999999999993 -1.2537359688228065E-031 + 19.379999999999995 -1.0268605403408310E-031 + 19.439999999999998 -6.7436039971384769E-032 + 19.500000000000000 -1.9143511296952525E-032 + 19.560000000000002 4.1874409146835513E-032 + 19.620000000000005 1.1434338298263128E-031 + 19.679999999999993 1.9590210897887891E-031 + 19.739999999999995 2.8301864284083766E-031 + 19.799999999999997 3.7096864088635913E-031 + 19.859999999999999 4.5389091128637921E-031 + 19.920000000000002 5.2493351614424050E-031 + 19.980000000000004 5.7650021060537760E-031 + 20.039999999999992 6.0060262823352897E-031 + 20.099999999999994 5.8931724513249006E-031 + 20.159999999999997 5.3533878927266820E-031 + 20.219999999999999 4.3261389062440262E-031 + 20.280000000000001 2.7702898881621568E-031 + 20.340000000000003 6.7118051483012775E-032 + 20.399999999999991 -1.9525331507625318E-031 + 20.459999999999994 -5.0427874534994532E-031 + 20.519999999999996 -8.4973383161316018E-031 + 20.579999999999998 -1.2166906713088508E-030 + 20.640000000000001 -1.5854855613511119E-030 + 20.700000000000003 -1.9319936534714911E-030 + 20.759999999999991 -2.2282603467039140E-030 + 20.819999999999993 -2.4435213145795716E-030 + 20.879999999999995 -2.5456265776554188E-030 + 20.939999999999998 -2.5028593526018105E-030 + 21.000000000000000 -2.2861143824456957E-030 + 21.060000000000002 -1.8713665280742082E-030 + 21.120000000000005 -1.2423287350541429E-030 + 21.179999999999993 -3.9316700856925382E-031 + 21.239999999999995 6.6889496781185090E-031 + 21.299999999999997 1.9212718288417167E-030 + 21.359999999999999 3.3242259033241070E-030 + 21.420000000000002 4.8198113495447814E-030 + 21.480000000000004 6.3317702076435127E-030 + 21.539999999999992 7.7665859871841235E-030 + 21.599999999999994 9.0158588623233012E-030 + 21.659999999999997 9.9601235178910728E-030 + 21.719999999999999 1.0474155846093429E-029 + 21.780000000000001 1.0433734994786187E-029 + 21.840000000000003 9.7237248361480513E-030 + 21.899999999999991 8.2472220914144859E-030 + 21.959999999999994 5.9354192025236676E-030 + 22.019999999999996 2.7576929706171870E-030 + 22.079999999999998 -1.2686614195938636E-030 + 22.140000000000001 -6.0697379577300662E-030 + 22.200000000000003 -1.1508111241543642E-029 + 22.259999999999991 -1.7378502547259363E-029 + 22.319999999999993 -2.3406784327185864E-029 + 22.379999999999995 -2.9253060319049395E-029 + 22.439999999999998 -3.4519397749558953E-029 + 22.500000000000000 -3.8762674774673986E-029 + 22.560000000000002 -4.1512727800385717E-029 + 22.619999999999990 -4.2295720046103150E-029 + 22.679999999999993 -4.0662315449774460E-029 + 22.739999999999995 -3.6219853424837121E-029 + 22.799999999999997 -2.8667361528988907E-029 + 22.859999999999999 -1.7831811807704848E-029 + 22.920000000000002 -3.7036593213837288E-030 + 22.980000000000004 1.3530592813434898E-029 + 23.039999999999992 3.3461330157184425E-029 + 23.099999999999994 5.5436938470433625E-029 + 23.159999999999997 7.8555730969454901E-029 + 23.219999999999999 1.0167122657989419E-028 + 23.280000000000001 1.2341297662543309E-028 + 23.340000000000003 1.4222452459103281E-028 + 23.399999999999991 1.5641958823399820E-028 + 23.459999999999994 1.6425638303742323E-028 + 23.519999999999996 1.6402916548512729E-028 + 23.579999999999998 1.5417480463521275E-028 + 23.640000000000001 1.3339085213100731E-028 + 23.700000000000003 1.0076043318096295E-028 + 23.759999999999991 5.5877874380749736E-029 + 23.819999999999993 -1.0319943445035644E-030 + 23.879999999999995 -6.9008994855011268E-029 + 23.939999999999998 -1.4627572772555476E-028 + 24.000000000000000 -2.3018765182289004E-028 + 24.060000000000002 -3.1722360383828219E-028 + 24.119999999999990 -4.0302457948861184E-028 + 24.179999999999993 -4.8248714297838502E-028 + 24.239999999999995 -5.4991591256905898E-028 + 24.299999999999997 -5.9923717648848682E-028 + 24.359999999999999 -6.2427173780994854E-028 + 24.420000000000002 -6.1906296807145650E-028 + 24.480000000000004 -5.7825070152818293E-028 + 24.539999999999992 -4.9747817651942873E-028 + 24.599999999999994 -3.7381543537361360E-028 + 24.659999999999997 -2.0617803353714405E-028 + 24.719999999999999 4.2826214117119659E-030 + 24.780000000000001 2.5384417257494255E-028 + 24.840000000000003 5.3596120801207580E-028 + 24.899999999999991 8.4112435718568260E-028 + 24.959999999999994 1.1568574501700275E-027 + 25.019999999999996 1.4678764495429790E-027 + 25.079999999999998 1.7564290198046978E-027 + 25.140000000000001 2.0028268704141827E-027 + 25.200000000000003 2.1861743164685454E-027 + 25.259999999999991 2.2852880086530664E-027 + 25.319999999999993 2.2797878251493086E-027 + 25.379999999999995 2.1513310636009485E-027 + 25.439999999999998 1.8849457876913110E-027 + 25.500000000000000 1.4704100296174735E-027 + 25.560000000000002 9.0360891673401721E-028 + 25.619999999999990 1.8779390737151450E-028 + 25.679999999999993 -6.6533803135915513E-028 + 25.739999999999995 -1.6348346223936877E-027 + 25.799999999999997 -2.6900323522415439E-027 + 25.859999999999999 -3.7905385732414805E-027 + 25.920000000000002 -4.8867223391048420E-027 + 25.980000000000004 -5.9207745504302330E-027 + 26.039999999999992 -6.8283671528065983E-027 + 26.099999999999994 -7.5409264036835956E-027 + 26.159999999999997 -7.9884991121098086E-027 + 26.219999999999999 -8.1031554981521918E-027 + 26.280000000000001 -7.8228344673959858E-027 + 26.340000000000003 -7.0955076530286361E-027 + 26.399999999999991 -5.8834890736503614E-027 + 26.459999999999994 -4.1676935084671818E-027 + 26.519999999999996 -1.9516125154979584E-027 + 26.579999999999998 7.3524183094363498E-028 + 26.640000000000001 3.8346854394072351E-027 + 26.700000000000003 7.2582660285761891E-027 + 26.759999999999991 1.0886968400669831E-026 + 26.819999999999993 1.4572434143106258E-026 + 26.879999999999995 1.8139867693644256E-026 + 26.939999999999998 2.1392742149352626E-026 + 27.000000000000000 2.4119332179873121E-026 + 27.060000000000002 2.6101016386742421E-026 + 27.119999999999990 2.7122193987440621E-026 + 27.179999999999993 2.6981556145718426E-026 + 27.239999999999995 2.5504323048697921E-026 + 27.299999999999997 2.2554980711987214E-026 + 27.359999999999999 1.8049935818724346E-026 + 27.420000000000002 1.1969426370706611E-026 + 27.480000000000004 4.3679749792883187E-027 + 27.539999999999992 -4.6173576815101443E-027 + 27.599999999999994 -1.4761665839171041E-026 + 27.659999999999997 -2.5750531240297708E-026 + 27.719999999999999 -3.7182601717576497E-026 + 27.780000000000001 -4.8576881254813855E-026 + 27.840000000000003 -5.9385051020556586E-026 + 27.899999999999991 -6.9008868538380512E-026 + 27.959999999999994 -7.6822503367926043E-026 + 28.019999999999996 -8.2199328759816829E-026 + 28.079999999999998 -8.4542419525478299E-026 + 28.140000000000001 -8.3317744057421456E-026 + 28.200000000000003 -7.8088647922499624E-026 + 28.259999999999991 -6.8550121981961355E-026 + 28.319999999999993 -5.4560987441101595E-026 + 28.379999999999995 -3.6172181394290912E-026 + 28.439999999999998 -1.3649051818791263E-026 + 28.500000000000000 1.2514159242571375E-026 + 28.560000000000002 4.1589474324558197E-026 + 28.619999999999990 7.2621398891755984E-026 + 28.679999999999993 1.0444537508793559E-025 + 28.739999999999995 1.3571892910263926E-025 + 28.799999999999997 1.6496556023386762E-025 + 28.859999999999999 1.9063062558796516E-025 + 28.920000000000002 2.1114775730223871E-025 + 28.980000000000004 2.2501353429858801E-025 + 29.039999999999992 2.3086757617182208E-025 + 29.099999999999994 2.2757416791857678E-025 + 29.159999999999997 2.1430164262879364E-025 + 29.219999999999999 1.9059451936943982E-025 + 29.280000000000001 1.5643395208570312E-025 + 29.340000000000003 1.1228179356351562E-025 + 29.399999999999991 5.9103821932387370E-026 + 29.459999999999994 -1.6313113527347193E-027 + 29.519999999999996 -6.7980236313981550E-026 + 29.579999999999998 -1.3758150544082030E-025 + 29.640000000000001 -2.0774061671062702E-025 + 29.700000000000003 -2.7554173358873723E-025 + 29.759999999999991 -3.3798242219285111E-025 + 29.819999999999993 -3.9212609489012928E-025 + 29.879999999999995 -4.3526481128036616E-025 + 29.939999999999998 -4.6508354792114245E-025 + 30.000000000000000 -4.7981635944305902E-025 + 30.060000000000002 -4.7838281493726648E-025 + 30.119999999999990 -4.6049440987119288E-025 + 30.179999999999993 -4.2671992866117230E-025 + 30.239999999999995 -3.7850024785841762E-025 + 30.299999999999997 -3.1810533731940445E-025 + 30.359999999999999 -2.4852871017129053E-025 + 30.420000000000002 -1.7331786065782436E-025 + 30.480000000000004 -9.6343844444986568E-026 + 30.539999999999992 -2.1517453586609783E-026 + 30.599999999999994 4.7536112932751519E-026 + 30.659999999999997 1.0782658928493707E-025 + 30.719999999999999 1.5735073147817307E-025 + 30.780000000000001 1.9542178983111947E-025 + 30.840000000000003 2.2294827105626404E-025 + 30.899999999999991 2.4263257270913032E-025 + 30.959999999999994 2.5905983514251626E-025 + 31.019999999999996 2.7865072921935206E-025 + 31.079999999999998 3.0945488707316758E-025 + 31.140000000000001 3.6076885569055577E-025 + 31.200000000000003 4.4257170912125153E-025 + 31.259999999999991 5.6478128963990654E-025 + 31.319999999999993 7.3634751674216568E-025 + 31.379999999999995 9.6421173614660934E-025 + 31.439999999999998 1.2521767334091604E-024 + 31.500000000000000 1.5997454944170740E-024 + 31.560000000000002 2.0009993157601179E-024 + 31.619999999999990 2.4435989218522424E-024 + 31.679999999999993 2.9079969696082352E-024 + 31.739999999999995 3.3669590550896660E-024 + 31.799999999999997 3.7854840525496541E-024 + 31.859999999999999 4.1212124435531592E-024 + 31.920000000000002 4.3253949777840307E-024 + 31.980000000000004 4.3444788412766027E-024 + 32.039999999999992 4.1223356615981844E-024 + 32.099999999999994 3.6031312631180676E-024 + 32.159999999999997 2.7347898947058303E-024 + 32.219999999999999 1.4729747336187736E-024 + 32.280000000000001 -2.1454586937911767E-025 + 32.340000000000003 -2.3433240597162725E-024 + 32.399999999999991 -4.9076578052824258E-024 + 32.459999999999994 -7.8762811054766566E-024 + 32.519999999999996 -1.1188594067038782E-023 + 32.579999999999998 -1.4751749619058469E-023 + 32.640000000000001 -1.8438900293575317E-023 + 32.700000000000003 -2.2088922708285793E-023 + 32.759999999999991 -2.5507893435032930E-023 + 32.819999999999993 -2.8472552276460437E-023 + 32.879999999999995 -3.0735935314987045E-023 + 32.939999999999998 -3.2035259928166683E-023 + 33.000000000000000 -3.2102064130116788E-023 + 33.060000000000002 -3.0674462113280910E-023 + 33.119999999999990 -2.7511283257079801E-023 + 33.179999999999993 -2.2407700616489926E-023 + 33.239999999999995 -1.5211839155018251E-023 + 33.299999999999997 -5.8417080276771369E-024 + 33.359999999999999 5.6982884335973870E-024 + 33.420000000000002 1.9302130717666849E-023 + 33.480000000000004 3.4749194126796587E-023 + 33.539999999999992 5.1694414280006792E-023 + 33.599999999999994 6.9662589143921393E-023 + 33.659999999999997 8.8047715218905609E-023 + 33.719999999999999 1.0611817209583447E-022 + 33.780000000000001 1.2302834009223177E-022 + 33.840000000000003 1.3783718542846740E-022 + 33.899999999999991 1.4953393243313086E-022 + 33.959999999999994 1.5707075498687940E-022 + 34.019999999999996 1.5940205477723268E-022 + 34.079999999999998 1.5552955003304736E-022 + 34.140000000000001 1.4455206141296988E-022 + 34.200000000000003 1.2571848428667422E-022 + 34.259999999999991 9.8482171232740214E-023 + 34.319999999999993 6.2554609521572805E-023 + 34.379999999999995 1.7956066637344066E-023 + 34.439999999999998 -3.4939326619243885E-023 + 34.500000000000000 -9.5366502007767726E-023 + 34.560000000000002 -1.6214306317460153E-022 + 34.619999999999990 -2.3365596127712258E-022 + 34.679999999999993 -3.0786314073646304E-022 + 34.739999999999995 -3.8231239378714607E-022 + 34.799999999999997 -4.5417831152373561E-022 + 34.859999999999999 -5.2031833930829564E-022 + 34.920000000000002 -5.7734781270614840E-022 + 34.980000000000004 -6.2173352075176858E-022 + 35.039999999999992 -6.4990437366754019E-022 + 35.099999999999994 -6.5837683175087211E-022 + 35.159999999999997 -6.4389240612700335E-022 + 35.219999999999999 -6.0356335271136944E-022 + 35.280000000000001 -5.3502259061609068E-022 + 35.340000000000003 -4.3657271930104739E-022 + 35.399999999999991 -3.0732928920175686E-022 + 35.459999999999994 -1.4735263299753280E-022 + 35.519999999999996 4.2236839737555732E-023 + 35.579999999999998 2.5916576797908660E-022 + 35.640000000000001 4.9994176524717955E-022 + 35.700000000000003 7.5981895669198621E-022 + 35.759999999999991 1.0327994763722147E-021 + 35.819999999999993 1.3116733515769174E-021 + 35.879999999999995 1.5880990980595156E-021 + 35.939999999999998 1.8527271517965641E-021 + 36.000000000000000 2.0953646562063087E-021 + 36.060000000000002 2.3051823655658752E-021 + 36.119999999999990 2.4709605503543385E-021 + 36.179999999999993 2.5813727940059166E-021 + 36.239999999999995 2.6253005583782671E-021 + 36.299999999999997 2.5921768548327913E-021 + 36.359999999999999 2.4723533939854303E-021 + 36.420000000000002 2.2574817876864162E-021 + 36.479999999999990 1.9409053649751945E-021 + 36.539999999999992 1.5180525185128370E-021 + 36.599999999999994 9.8682358576244947E-022 + 36.659999999999997 3.4796233762061853E-022 + 36.719999999999999 -3.9459755739370533E-022 + 36.780000000000001 -1.2334199935176501E-021 + 36.840000000000003 -2.1573014219311491E-021 + 36.899999999999991 -3.1510622661921894E-021 + 36.959999999999994 -4.1954095839661919E-021 + 37.019999999999996 -5.2668862215262374E-021 + 37.079999999999998 -6.3379146054725188E-021 + 37.140000000000001 -7.3769596332703655E-021 + 37.200000000000003 -8.3488203503576318E-021 + 37.259999999999991 -9.2150669073123544E-021 + 37.319999999999993 -9.9346357706018814E-021 + 37.379999999999995 -1.0464604815028391E-020 + 37.439999999999998 -1.0761147067163399E-020 + 37.500000000000000 -1.0780679443608459E-020 + 37.560000000000002 -1.0481203874071700E-020 + 37.619999999999990 -9.8238365487484130E-021 + 37.679999999999993 -8.7745148719351852E-021 + 37.739999999999995 -7.3058626173436984E-021 + 37.799999999999997 -5.3991739312847693E-021 + 37.859999999999999 -3.0464796910754530E-021 + 37.920000000000002 -2.5264130601425709E-022 + 37.979999999999990 2.9626029616091662E-021 + 38.039999999999992 6.5627091469354484E-021 + 38.099999999999994 1.0492614055158792E-020 + 38.159999999999997 1.4677330686494699E-020 + 38.219999999999999 1.9020971775999606E-020 + 38.280000000000001 2.3406284820678803E-020 + 38.340000000000003 2.7694838949736109E-020 + 38.399999999999991 3.1727947769066593E-020 + 38.459999999999994 3.5328414150793018E-020 + 38.519999999999996 3.8303208769649161E-020 + 38.579999999999998 4.0447076194060616E-020 + 38.640000000000001 4.1547166671144540E-020 + 38.700000000000003 4.1388606229093803E-020 + 38.759999999999991 3.9761027984669036E-020 + 38.819999999999993 3.6465921227096508E-020 + 38.879999999999995 3.1324686498160253E-020 + 38.939999999999998 2.4187206178877364E-020 + 39.000000000000000 1.4940686261258467E-020 + 39.060000000000002 3.5185068900893252E-021 + 39.119999999999990 -1.0091231696306335E-020 + 39.179999999999993 -2.5837872706591537E-020 + 39.239999999999995 -4.3601357517945729E-020 + 39.299999999999997 -6.3186891400679455E-020 + 39.359999999999999 -8.4321344984221310E-020 + 39.420000000000002 -1.0665204251367296E-019 + 39.479999999999990 -1.2974795897536290E-019 + 39.539999999999992 -1.5310400055854583E-019 + 39.599999999999994 -1.7614833564926198E-019 + 39.659999999999997 -1.9825317981768194E-019 + 39.719999999999999 -2.1874899721336065E-019 + 39.780000000000001 -2.3694226383136099E-019 + 39.840000000000003 -2.5213664814451820E-019 + 39.899999999999991 -2.6365724987975193E-019 + 39.959999999999994 -2.7087769692687530E-019 + 40.019999999999996 -2.7324968411043146E-019 + 40.079999999999998 -2.7033414093094787E-019 + 40.140000000000001 -2.6183328403555144E-019 + 40.200000000000003 -2.4762281212015512E-019 + 40.259999999999991 -2.2778317023980879E-019 + 40.319999999999993 -2.0262860320510701E-019 + 40.379999999999995 -1.7273301238944438E-019 + 40.439999999999998 -1.3895103815079156E-019 + 40.500000000000000 -1.0243323673410908E-019 + 40.560000000000002 -6.4633714909856959E-020 + 40.619999999999990 -2.7309085877267375E-020 + 40.679999999999993 7.4929356206042395E-021 + 40.739999999999995 3.7456274522521370E-020 + 40.799999999999997 6.0031935996297156E-020 + 40.859999999999999 7.2487054327243766E-020 + 40.920000000000002 7.1968050733829739E-020 + 40.979999999999990 5.5578520812483876E-020 + 41.039999999999992 2.0471968771345237E-020 + 41.099999999999994 -3.6041307935160145E-020 + 41.159999999999997 -1.1637369839246391E-019 + 41.219999999999999 -2.2252797453248938E-019 + 41.280000000000001 -3.5595478860820087E-019 + 41.340000000000003 -5.1740304203856377E-019 + 41.399999999999991 -7.0676553038985137E-019 + 41.459999999999994 -9.2292493421621989E-019 + 41.519999999999996 -1.1636030581897613E-018 + 41.579999999999998 -1.4252186607913370E-018 + 41.640000000000001 -1.7027596930119819E-018 + 41.700000000000003 -1.9896742476661501E-018 + 41.759999999999991 -2.2777862168296621E-018 + 41.819999999999993 -2.5572404075399892E-018 + 41.879999999999995 -2.8164805660072374E-018 + 41.939999999999998 -3.0422670454978246E-018 + 42.000000000000000 -3.2197333685816347E-018 + 42.060000000000002 -3.3324850629131557E-018 + 42.119999999999990 -3.3627395057721259E-018 + 42.179999999999993 -3.2915050913879728E-018 + 42.239999999999995 -3.0987916446553358E-018 + 42.299999999999997 -2.7638520284513320E-018 + 42.359999999999999 -2.2654342394673373E-018 + 42.420000000000002 -1.5820403495583257E-018 + 42.479999999999990 -6.9217282316594356E-019 + 42.539999999999992 4.2545145912739410E-019 + 42.599999999999994 1.7917350279489961E-018 + 42.659999999999997 3.4271076367942424E-018 + 42.719999999999999 5.3515338495018992E-018 + 42.780000000000001 7.5846448811398207E-018 + 42.840000000000003 1.0146017425724413E-017 + 42.899999999999991 1.3055623078255772E-017 + 42.959999999999994 1.6334498904404330E-017 + 43.019999999999996 2.0005610717730071E-017 + 43.079999999999998 2.4094985874316749E-017 + 43.140000000000001 2.8633114266559275E-017 + 43.200000000000003 3.3656605919999012E-017 + 43.259999999999991 3.9210171126981468E-017 + 43.319999999999993 4.5348903072723525E-017 + 43.379999999999995 5.2140824789403315E-017 + 43.439999999999998 5.9669834348426231E-017 + 43.500000000000000 6.8038860956767854E-017 + 43.560000000000002 7.7373404190996509E-017 + 43.619999999999990 8.7825330393229971E-017 + 43.679999999999993 9.9576980083275889E-017 + 43.739999999999995 1.1284553387871677E-016 + 43.799999999999997 1.2788765550198049E-016 + 43.859999999999999 1.4500436872668146E-016 + 43.920000000000002 1.6454616759451131E-016 + 43.979999999999990 1.8691841611389226E-016 + 44.039999999999992 2.1258680769778183E-016 + 44.099999999999994 2.4208300129830578E-016 + 44.159999999999997 2.7601055035246682E-016 + 44.219999999999999 3.1505068797547579E-016 + 44.280000000000001 3.5996834423548064E-016 + 44.340000000000003 4.1161802412069622E-016 + 44.399999999999991 4.7094953560595806E-016 + 44.459999999999994 5.3901389716892124E-016 + 44.519999999999996 6.1696820291270981E-016 + 44.579999999999998 7.0608108217303553E-016 + 44.640000000000001 8.0773683317991671E-016 + 44.700000000000003 9.2343906278845295E-016 + 44.759999999999991 1.0548131575589598E-015 + 44.819999999999993 1.2036088088243263E-015 + 44.879999999999995 1.3716997560418900E-015 + 44.939999999999998 1.5610821587355837E-015 + 45.000000000000000 1.7738730828997144E-015 + 45.060000000000002 2.0123048479250232E-015 + 45.119999999999990 2.2787182066165598E-015 + 45.179999999999993 2.5755535793363171E-015 + 45.239999999999995 2.9053381033049351E-015 + 45.299999999999997 3.2706727746891244E-015 + 45.359999999999999 3.6742133769070203E-015 + 45.420000000000002 4.1186520698349115E-015 + 45.479999999999990 4.6066912563611390E-015 + 45.539999999999992 5.1410188403661785E-015 + 45.599999999999994 5.7242771537129534E-015 + 45.659999999999997 6.3590294608130864E-015 + 45.719999999999999 7.0477206003346166E-015 + 45.780000000000001 7.7926378648971735E-015 + 45.840000000000003 8.5958608064606413E-015 + 45.899999999999991 9.4592081751476997E-015 + 45.959999999999994 1.0384184140423902E-014 + 46.019999999999996 1.1371907185876639E-014 + 46.079999999999998 1.2423037655983360E-014 + 46.140000000000001 1.3537687335847647E-014 + 46.200000000000003 1.4715326025968902E-014 + 46.259999999999991 1.5954654496695953E-014 + 46.319999999999993 1.7253476330460158E-014 + 46.379999999999995 1.8608534709245852E-014 + 46.439999999999998 2.0015319437212443E-014 + 46.500000000000000 2.1467842445120290E-014 + 46.560000000000002 2.2958371257643850E-014 + 46.619999999999990 2.4477101291635189E-014 + 46.679999999999993 2.6011781319847932E-014 + 46.739999999999995 2.7547262706516702E-014 + 46.799999999999997 2.9064967102825261E-014 + 46.859999999999999 3.0542241226234083E-014 + 46.920000000000002 3.1951628698253777E-014 + 46.979999999999990 3.3259996971577167E-014 + 47.039999999999992 3.4427521208169061E-014 + 47.099999999999994 3.5406469622162999E-014 + 47.159999999999997 3.6139851011774518E-014 + 47.219999999999999 3.6559820425400701E-014 + 47.280000000000001 3.6585802230660452E-014 + 47.340000000000003 3.6122400955888247E-014 + 47.399999999999991 3.5056946318883584E-014 + 47.459999999999994 3.3256740580155833E-014 + 47.519999999999996 3.0565874195144133E-014 + 47.579999999999998 2.6801638869503273E-014 + 47.640000000000001 2.1750434024550137E-014 + 47.700000000000003 1.5163157886723542E-014 + 47.759999999999991 6.7500329371250264E-015 + 47.819999999999993 -3.8252539365197426E-015 + 47.879999999999995 -1.6952185647561406E-014 + 47.939999999999998 -3.3080692218734226E-014 + 48.000000000000000 -5.2729352501183026E-014 + 48.060000000000002 -7.6494778683799598E-014 + 48.119999999999990 -1.0506161540158155E-013 + 48.179999999999993 -1.3921404820040492E-013 + 48.239999999999995 -1.7984839166969566E-013 + 48.299999999999997 -2.2798709708593955E-013 + 48.359999999999999 -2.8479426129295495E-013 + 48.420000000000002 -3.5159269286687894E-013 + 48.479999999999990 -4.2988258290336664E-013 + 48.539999999999992 -5.2136269603440209E-013 + 48.599999999999994 -6.2795258615823918E-013 + 48.659999999999997 -7.5181805787551230E-013 + 48.719999999999999 -8.9539831475132273E-013 + 48.780000000000001 -1.0614358374342916E-012 + 48.840000000000003 -1.2530097571361451E-012 + 48.899999999999991 -1.4735710277871266E-012 + 48.959999999999994 -1.7269812369737846E-012 + 49.019999999999996 -2.0175551886750951E-012 + 49.079999999999998 -2.3501068322166902E-012 + 49.140000000000001 -2.7299994143869669E-012 + 49.200000000000003 -3.1631992046938825E-012 + 49.259999999999991 -3.6563335625188253E-012 + 49.319999999999993 -4.2167562887594937E-012 + 49.379999999999995 -4.8526128040887762E-012 + 49.439999999999998 -5.5729143737260647E-012 + 49.500000000000000 -6.3876196203880601E-012 + 49.560000000000002 -7.3077150431772829E-012 + 49.619999999999990 -8.3453101207221500E-012 + 49.679999999999993 -9.5137330049112033E-012 + 49.739999999999995 -1.0827635982084210E-011 + 49.799999999999997 -1.2303101694029933E-011 + 49.859999999999999 -1.3957768476374771E-011 + 49.920000000000002 -1.5810948294636415E-011 + 49.979999999999990 -1.7883762544871900E-011 + 50.039999999999992 -2.0199287241298027E-011 + 50.099999999999994 -2.2782687439471031E-011 + 50.159999999999997 -2.5661384912687706E-011 + 50.219999999999999 -2.8865213020625573E-011 + 50.280000000000001 -3.2426571373355675E-011 + 50.340000000000003 -3.6380632280196871E-011 + 50.399999999999991 -4.0765478671008078E-011 + 50.459999999999994 -4.5622320226564526E-011 + 50.519999999999996 -5.0995641852912905E-011 + 50.579999999999998 -5.6933415389875779E-011 + 50.640000000000001 -6.3487266802951811E-011 + 50.700000000000003 -7.0712672594072856E-011 + 50.759999999999991 -7.8669078529123743E-011 + 50.819999999999993 -8.7420125842187990E-011 + 50.879999999999995 -9.7033732490423116E-011 + 50.939999999999998 -1.0758224512588406E-010 + 51.000000000000000 -1.1914248586186039E-010 + 51.060000000000002 -1.3179584222238949E-010 + 51.119999999999990 -1.4562823496628181E-010 + 51.179999999999993 -1.6073007992032040E-010 + 51.239999999999995 -1.7719616541961391E-010 + 51.299999999999997 -1.9512537594542081E-010 + 51.359999999999999 -2.1462046417902116E-010 + 51.420000000000002 -2.3578755119401998E-010 + 51.479999999999990 -2.5873550928312944E-010 + 51.539999999999992 -2.8357523941567301E-010 + 51.599999999999994 -3.1041876315810729E-010 + 51.659999999999997 -3.3937788368757808E-010 + 51.719999999999999 -3.7056277999002202E-010 + 51.780000000000001 -4.0408027284314268E-010 + 51.840000000000003 -4.4003149837393977E-010 + 51.899999999999991 -4.7850950967882627E-010 + 51.959999999999994 -5.1959598734562153E-010 + 52.019999999999996 -5.6335770238196976E-010 + 52.079999999999998 -6.0984222262542598E-010 + 52.140000000000001 -6.5907287217094301E-010 + 52.200000000000003 -7.1104283621381586E-010 + 52.259999999999991 -7.6570837192819421E-010 + 52.319999999999993 -8.2298078586840044E-010 + 52.379999999999995 -8.8271753096877520E-010 + 52.439999999999998 -9.4471145521832368E-010 + 52.500000000000000 -1.0086788606233777E-009 + 52.560000000000002 -1.0742458008938487E-009 + 52.619999999999990 -1.1409321173623599E-009 + 52.679999999999993 -1.2081333388989645E-009 + 52.739999999999995 -1.2751002601663363E-009 + 52.799999999999997 -1.3409158370139221E-009 + 52.859999999999999 -1.4044686699176150E-009 + 52.920000000000002 -1.4644229994366531E-009 + 52.979999999999990 -1.5191848815520790E-009 + 53.039999999999992 -1.5668644671682387E-009 + 53.099999999999994 -1.6052326377937714E-009 + 53.159999999999997 -1.6316728451982164E-009 + 53.219999999999999 -1.6431267111865239E-009 + 53.280000000000001 -1.6360336475017877E-009 + 53.339999999999989 -1.6062622700623214E-009 + 53.399999999999991 -1.5490340802213793E-009 + 53.459999999999994 -1.4588385128739409E-009 + 53.519999999999996 -1.3293376242827376E-009 + 53.579999999999998 -1.1532608571325721E-009 + 53.640000000000001 -9.2228617749829560E-010 + 53.700000000000003 -6.2690907094343211E-010 + 53.759999999999991 -2.5629435549475535E-010 + 53.819999999999993 2.0188091226161111E-010 + 53.879999999999995 7.6161079694632480E-010 + 53.939999999999998 1.4387598421685739E-009 + 54.000000000000000 2.2512846034755651E-009 + 54.060000000000002 3.2194738292761662E-009 + 54.119999999999990 4.3662229422607294E-009 + 54.179999999999993 5.7173311313041669E-009 + 54.239999999999995 7.3018270209475707E-009 + 54.299999999999997 9.1523306921957935E-009 + 54.359999999999999 1.1305460665629538E-008 + 54.420000000000002 1.3802266341111180E-008 + 54.479999999999990 1.6688713250763743E-008 + 54.539999999999992 2.0016223671141315E-008 + 54.599999999999994 2.3842246729363426E-008 + 54.659999999999997 2.8230909611416304E-008 + 54.719999999999999 3.3253712418843296E-008 + 54.780000000000001 3.8990316314372111E-008 + 54.839999999999989 4.5529383519536688E-008 + 54.899999999999991 5.2969489758166542E-008 + 54.959999999999994 6.1420151618760872E-008 + 55.019999999999996 7.1002921498941987E-008 + 55.079999999999998 8.1852636814495753E-008 + 55.140000000000001 9.4118666722385726E-008 + 55.200000000000003 1.0796643228600317E-007 + 55.259999999999991 1.2357893820707484E-007 + 55.319999999999993 1.4115848224467359E-007 + 55.379999999999995 1.6092856244672300E-007 + 55.439999999999998 1.8313585195839086E-007 + 55.500000000000000 2.0805250827372209E-007 + 55.560000000000002 2.3597838518724176E-007 + 55.619999999999990 2.6724385839120108E-007 + 55.679999999999993 3.0221265782519263E-007 + 55.739999999999995 3.4128463196585998E-007 + 55.799999999999997 3.8489943367618235E-007 + 55.859999999999999 4.3353994499870194E-007 + 55.920000000000002 4.8773637413539750E-007 + 55.979999999999990 5.4807025031570608E-007 + 56.039999999999992 6.1517896245019396E-007 + 56.099999999999994 6.8976100459471850E-007 + 56.159999999999997 7.7258109089439589E-007 + 56.219999999999999 8.6447613610350773E-007 + 56.280000000000001 9.6636089443361395E-007 + 56.339999999999989 1.0792354737903383E-006 + 56.399999999999991 1.2041918985078313E-006 + 56.459999999999994 1.3424218121525565E-006 + 56.519999999999996 1.4952253007056095E-006 + 56.579999999999998 1.6640196002124545E-006 + 56.640000000000001 1.8503479687862380E-006 + 56.700000000000003 2.0558914721995432E-006 + 56.759999999999991 2.2824785041184348E-006 + 56.819999999999993 2.5320971189600993E-006 + 56.879999999999995 2.8069085233508701E-006 + 56.939999999999998 3.1092591444763930E-006 + 57.000000000000000 3.4416953549949561E-006 + 57.060000000000002 3.8069787093967544E-006 + 57.119999999999990 4.2081035208786295E-006 + 57.179999999999993 4.6483126942331735E-006 + 57.239999999999995 5.1311157536833546E-006 + 57.299999999999997 5.6603116499822051E-006 + 57.359999999999999 6.2400070392332231E-006 + 57.420000000000002 6.8746385641976330E-006 + 57.479999999999990 7.5689952668455679E-006 + 57.539999999999992 8.3282456158828744E-006 + 57.599999999999994 9.1579641120836323E-006 + 57.659999999999997 1.0064156619102563E-005 + 57.719999999999999 1.1053291504475803E-005 + 57.780000000000001 1.2132326071697978E-005 + 57.839999999999989 1.3308748013088490E-005 + 57.899999999999991 1.4590601561868829E-005 + 57.959999999999994 1.5986525487043865E-005 + 58.019999999999996 1.7505793190262179E-005 + 58.079999999999998 1.9158343961799573E-005 + 58.140000000000001 2.0954838399655253E-005 + 58.200000000000003 2.2906689204910120E-005 + 58.259999999999991 2.5026105657911955E-005 + 58.319999999999993 2.7326154004996038E-005 + 58.379999999999995 2.9820792981475476E-005 + 58.439999999999998 3.2524931381557642E-005 + 58.500000000000000 3.5454469319439292E-005 + 58.560000000000002 3.8626373709644487E-005 + 58.619999999999990 4.2058721148824992E-005 + 58.679999999999993 4.5770741236426314E-005 + 58.739999999999995 4.9782908497339816E-005 + 58.799999999999997 5.4116995508595095E-005 + 58.859999999999999 5.8796112116452716E-005 + 58.920000000000002 6.3844807145990839E-005 + 58.979999999999990 6.9289101552484907E-005 + 59.039999999999992 7.5156577908741922E-005 + 59.099999999999994 8.1476456167065077E-005 + 59.159999999999997 8.8279634920282378E-005 + 59.219999999999999 9.5598808077966536E-005 + 59.280000000000001 1.0346848571185998E-004 + 59.339999999999989 1.1192512138982451E-004 + 59.399999999999991 1.2100713326950143E-004 + 59.459999999999994 1.3075501411895417E-004 + 59.519999999999996 1.4121140877055763E-004 + 59.579999999999998 1.5242115884857310E-004 + 59.640000000000001 1.6443143081731846E-004 + 59.700000000000003 1.7729172148638436E-004 + 59.759999999999991 1.9105397428951398E-004 + 59.819999999999993 2.0577267527436307E-004 + 59.879999999999995 2.2150483929941157E-004 + 59.939999999999998 2.3831017758006175E-004 + 60.000000000000000 2.5625107926821199E-004 + 60.060000000000002 2.7539270494365608E-004 + 60.119999999999990 2.9580309093601515E-004 + 60.179999999999993 3.1755310750071128E-004 + 60.239999999999995 3.4071658703511780E-004 + 60.299999999999997 3.6537037436425184E-004 + 60.359999999999999 3.9159431212609449E-004 + 60.420000000000002 4.1947141042755954E-004 + 60.479999999999990 4.4908755368170691E-004 + 60.539999999999992 4.8053195493873499E-004 + 60.599999999999994 5.1389685676869810E-004 + 60.659999999999997 5.4927761618073798E-004 + 60.719999999999999 5.8677278730875492E-004 + 60.780000000000001 6.2648401887335369E-004 + 60.839999999999989 6.6851609070485820E-004 + 60.899999999999991 7.1297679775772374E-004 + 60.959999999999994 7.5997700853414529E-004 + 61.019999999999996 8.0963054634955857E-004 + 61.079999999999998 8.6205413034056908E-004 + 61.140000000000001 9.1736741516799459E-004 + 61.200000000000003 9.7569270738972992E-004 + 61.259999999999991 1.0371548691737028E-003 + 61.319999999999993 1.1018813874054461E-003 + 61.379999999999995 1.1700021136586266E-003 + 61.439999999999998 1.2416490976245506E-003 + 61.500000000000000 1.3169564073763974E-003 + 61.560000000000002 1.3960601042607270E-003 + 61.619999999999990 1.4790977668446106E-003 + 61.679999999999993 1.5662085232973255E-003 + 61.739999999999995 1.6575326713577890E-003 + 61.799999999999997 1.7532114506938756E-003 + 61.859999999999999 1.8533867963317113E-003 + 61.920000000000002 1.9582011769936308E-003 + 61.979999999999990 2.0677968413231173E-003 + 62.039999999999992 2.1823163278340287E-003 + 62.099999999999994 2.3019010508538913E-003 + 62.159999999999997 2.4266918904778632E-003 + 62.219999999999999 2.5568281924516173E-003 + 62.280000000000001 2.6924476682774869E-003 + 62.339999999999989 2.8336859617244777E-003 + 62.399999999999991 2.9806758737613995E-003 + 62.459999999999994 3.1335475896142346E-003 + 62.519999999999996 3.2924279086852821E-003 + 62.579999999999998 3.4574386789170868E-003 + 62.640000000000001 3.6286984535363570E-003 + 62.700000000000003 3.8063207778917230E-003 + 62.759999999999991 3.9904126912349873E-003 + 62.819999999999993 4.1810764414002104E-003 + 62.879999999999995 4.3784073793992394E-003 + 62.939999999999998 4.5824930652289568E-003 + 63.000000000000000 4.7934138805548424E-003 + 63.060000000000002 5.0112426249604089E-003 + 63.119999999999990 5.2360423654678146E-003 + 63.179999999999993 5.4678679598220998E-003 + 63.239999999999995 5.7067629266822108E-003 + 63.299999999999997 5.9527607359976670E-003 + 63.359999999999999 6.2058846349792992E-003 + 63.420000000000002 6.4661458073301519E-003 + 63.479999999999990 6.7335428933316460E-003 + 63.539999999999992 7.0080626718363867E-003 + 63.599999999999994 7.2896781666606895E-003 + 63.659999999999997 7.5783473676577342E-003 + 63.719999999999999 7.8740159878141845E-003 + 63.780000000000001 8.1766152003419981E-003 + 63.839999999999989 8.4860585777603911E-003 + 63.899999999999991 8.8022445310132202E-003 + 63.959999999999994 9.1250577884901731E-003 + 64.019999999999996 9.4543654249415170E-003 + 64.079999999999998 9.7900158250213802E-003 + 64.140000000000001 1.0131841815750385E-002 + 64.200000000000003 1.0479659818683866E-002 + 64.259999999999991 1.0833266805394780E-002 + 64.319999999999993 1.1192441327840431E-002 + 64.379999999999995 1.1556945201832054E-002 + 64.439999999999998 1.1926520907911674E-002 + 64.500000000000000 1.2300894583728546E-002 + 64.560000000000002 1.2679771255018202E-002 + 64.619999999999990 1.3062838872634182E-002 + 64.679999999999993 1.3449766824685508E-002 + 64.739999999999995 1.3840206771053140E-002 + 64.799999999999997 1.4233791212601633E-002 + 64.859999999999999 1.4630134404968118E-002 + 64.920000000000002 1.5028833005694473E-002 + 64.979999999999990 1.5429469765895411E-002 + 65.039999999999992 1.5831607158686319E-002 + 65.099999999999994 1.6234790095613016E-002 + 65.159999999999997 1.6638550925865990E-002 + 65.219999999999999 1.7042404527511722E-002 + 65.280000000000001 1.7445850911109693E-002 + 65.339999999999989 1.7848375362801996E-002 + 65.399999999999991 1.8249451963948188E-002 + 65.459999999999994 1.8648541735557800E-002 + 65.519999999999996 1.9045091652734453E-002 + 65.579999999999998 1.9438538601316183E-002 + 65.640000000000001 1.9828311385836340E-002 + 65.700000000000003 2.0213828236182837E-002 + 65.759999999999991 2.0594498856930838E-002 + 65.819999999999993 2.0969730595420750E-002 + 65.879999999999995 2.1338917031069483E-002 + 65.939999999999998 2.1701454780874173E-002 + 66.000000000000000 2.2056733377015064E-002 + 66.060000000000002 2.2404140402549042E-002 + 66.119999999999990 2.2743065429960956E-002 + 66.179999999999993 2.3072896893160742E-002 + 66.239999999999995 2.3393023503471728E-002 + 66.299999999999997 2.3702841465297872E-002 + 66.359999999999999 2.4001748253458393E-002 + 66.420000000000002 2.4289146986811633E-002 + 66.479999999999990 2.4564453061582132E-002 + 66.539999999999992 2.4827086756568556E-002 + 66.599999999999994 2.5076480122807474E-002 + 66.659999999999997 2.5312076526962893E-002 + 66.719999999999999 2.5533332810147046E-002 + 66.780000000000001 2.5739722361305492E-002 + 66.839999999999989 2.5930733283055517E-002 + 66.899999999999991 2.6105872569422005E-002 + 66.959999999999994 2.6264663410286541E-002 + 67.019999999999996 2.6406648943354608E-002 + 67.079999999999998 2.6531398450392027E-002 + 67.140000000000001 2.6638500714681809E-002 + 67.199999999999989 2.6727569208076316E-002 + 67.259999999999991 2.6798242023811255E-002 + 67.319999999999993 2.6850183155709719E-002 + 67.379999999999995 2.6883085441657899E-002 + 67.439999999999998 2.6896666017776058E-002 + 67.500000000000000 2.6890678876546531E-002 + 67.560000000000002 2.6864902680875338E-002 + 67.619999999999990 2.6819144331763689E-002 + 67.679999999999993 2.6753245857061094E-002 + 67.739999999999995 2.6667083860932271E-002 + 67.799999999999997 2.6560561962758505E-002 + 67.859999999999999 2.6433622459103169E-002 + 67.920000000000002 2.6286236873146154E-002 + 67.979999999999990 2.6118414202374370E-002 + 68.039999999999992 2.5930193881648265E-002 + 68.099999999999994 2.5721651962109161E-002 + 68.159999999999997 2.5492899818958945E-002 + 68.219999999999999 2.5244078594854273E-002 + 68.280000000000001 2.4975368321275719E-002 + 68.339999999999989 2.4686980386384935E-002 + 68.399999999999991 2.4379159483370244E-002 + 68.459999999999994 2.4052185302468585E-002 + 68.519999999999996 2.3706369232832567E-002 + 68.579999999999998 2.3342050633783668E-002 + 68.640000000000001 2.2959606294922989E-002 + 68.699999999999989 2.2559439645011267E-002 + 68.759999999999991 2.2141984924995591E-002 + 68.819999999999993 2.1707706402146632E-002 + 68.879999999999995 2.1257093526829925E-002 + 68.939999999999998 2.0790663040840759E-002 + 69.000000000000000 2.0308958088591910E-002 + 69.060000000000002 1.9812545247756563E-002 + 69.119999999999990 1.9302013734253075E-002 + 69.179999999999993 1.8777977253494449E-002 + 69.239999999999995 1.8241067543177308E-002 + 69.299999999999997 1.7691934728234354E-002 + 69.359999999999999 1.7131248004687807E-002 + 69.420000000000002 1.6559691618786343E-002 + 69.479999999999990 1.5977965840470083E-002 + 69.539999999999992 1.5386780395463366E-002 + 69.599999999999994 1.4786859920350590E-002 + 69.659999999999997 1.4178936021163322E-002 + 69.719999999999999 1.3563749692151848E-002 + 69.780000000000001 1.2942048589974298E-002 + 69.839999999999989 1.2314583995883288E-002 + 69.899999999999991 1.1682110093988351E-002 + 69.959999999999994 1.1045384844377238E-002 + 70.019999999999996 1.0405162171948616E-002 + 70.079999999999998 9.7621976540943432E-003 + 70.140000000000001 9.1172415586780412E-003 + 70.199999999999989 8.4710408218337530E-003 + 70.259999999999991 7.8243357235200390E-003 + 70.319999999999993 7.1778568569098415E-003 + 70.379999999999995 6.5323281432622645E-003 + 70.439999999999998 5.8884613224540827E-003 + 70.500000000000000 5.2469566250290282E-003 + 70.560000000000002 4.6085010475447243E-003 + 70.619999999999990 3.9737665274065821E-003 + 70.679999999999993 3.3434106057878732E-003 + 70.739999999999995 2.7180726574285059E-003 + 70.799999999999997 2.0983750317529215E-003 + 70.859999999999999 1.4849210605005379E-003 + 70.920000000000002 8.7829422111395912E-004 + 70.979999999999990 2.7905780036074305E-004 + 71.039999999999992 -3.1224698394610072E-004 + 71.099999999999994 -8.9510007316342445E-004 + 71.159999999999997 -1.4690047629740527E-003 + 71.219999999999999 -2.0334876738978751E-003 + 71.280000000000001 -2.5880995407253494E-003 + 71.339999999999989 -3.1324137086545917E-003 + 71.399999999999991 -3.6660288588948489E-003 + 71.459999999999994 -4.1885691220434505E-003 + 71.519999999999996 -4.6996830330658075E-003 + 71.579999999999998 -5.1990440509032112E-003 + 71.640000000000001 -5.6863511920878544E-003 + 71.699999999999989 -6.1613290540653313E-003 + 71.759999999999991 -6.6237250189777512E-003 + 71.819999999999993 -7.0733143349893798E-003 + 71.879999999999995 -7.5098950277073650E-003 + 71.939999999999998 -7.9332899744204155E-003 + 72.000000000000000 -8.3433463149684122E-003 + 72.060000000000002 -8.7399356459281676E-003 + 72.119999999999990 -9.1229512299801988E-003 + 72.179999999999993 -9.4923115643926002E-003 + 72.239999999999995 -9.8479558053599422E-003 + 72.299999999999997 -1.0189844098633286E-002 + 72.359999999999999 -1.0517960988861973E-002 + 72.420000000000002 -1.0832308251846686E-002 + 72.479999999999990 -1.1132908444617369E-002 + 72.539999999999992 -1.1419805364495180E-002 + 72.599999999999994 -1.1693059116252437E-002 + 72.659999999999997 -1.1952747839142925E-002 + 72.719999999999999 -1.2198966377567198E-002 + 72.780000000000001 -1.2431827432025179E-002 + 72.839999999999989 -1.2651457814656462E-002 + 72.899999999999991 -1.2857999827690999E-002 + 72.959999999999994 -1.3051609075456829E-002 + 73.019999999999996 -1.3232454605351048E-002 + 73.079999999999998 -1.3400716178319632E-002 + 73.140000000000001 -1.3556587034756830E-002 + 73.199999999999989 -1.3700270968046343E-002 + 73.259999999999991 -1.3831979029421617E-002 + 73.319999999999993 -1.3951934055553700E-002 + 73.379999999999995 -1.4060366589604417E-002 + 73.439999999999998 -1.4157514467068463E-002 + 73.500000000000000 -1.4243621838805943E-002 + 73.560000000000002 -1.4318938372918763E-002 + 73.619999999999990 -1.4383721030468326E-002 + 73.679999999999993 -1.4438230105521371E-002 + 73.739999999999995 -1.4482729622468569E-002 + 73.799999999999997 -1.4517487094382378E-002 + 73.859999999999999 -1.4542773477104623E-002 + 73.920000000000002 -1.4558860726732282E-002 + 73.979999999999990 -1.4566022154829755E-002 + 74.039999999999992 -1.4564533671849943E-002 + 74.099999999999994 -1.4554669322202295E-002 + 74.159999999999997 -1.4536705079601048E-002 + 74.219999999999999 -1.4510914951789123E-002 + 74.280000000000001 -1.4477574383510723E-002 + 74.339999999999989 -1.4436953977628607E-002 + 74.399999999999991 -1.4389323747180341E-002 + 74.459999999999994 -1.4334953751784184E-002 + 74.519999999999996 -1.4274108895534966E-002 + 74.579999999999998 -1.4207051972717698E-002 + 74.640000000000001 -1.4134042980831180E-002 + 74.699999999999989 -1.4055337867706965E-002 + 74.759999999999991 -1.3971190103544657E-002 + 74.819999999999993 -1.3881848304373562E-002 + 74.879999999999995 -1.3787557169652768E-002 + 74.939999999999998 -1.3688557314546823E-002 + 75.000000000000000 -1.3585086249762747E-002 + 75.060000000000002 -1.3477374199397782E-002 + 75.119999999999990 -1.3365649891707989E-002 + 75.179999999999993 -1.3250134156255824E-002 + 75.239999999999995 -1.3131044972957360E-002 + 75.299999999999997 -1.3008595459787635E-002 + 75.359999999999999 -1.2882992371947266E-002 + 75.420000000000002 -1.2754439182730998E-002 + 75.479999999999990 -1.2623132702645139E-002 + 75.539999999999992 -1.2489264573591802E-002 + 75.599999999999994 -1.2353024607622330E-002 + 75.659999999999997 -1.2214592726338437E-002 + 75.719999999999999 -1.2074147551438298E-002 + 75.780000000000001 -1.1931860720641488E-002 + 75.839999999999989 -1.1787899014078380E-002 + 75.899999999999991 -1.1642425157452202E-002 + 75.959999999999994 -1.1495595210826421E-002 + 76.019999999999996 -1.1347563044214769E-002 + 76.079999999999998 -1.1198476126680255E-002 + 76.140000000000001 -1.1048476414210003E-002 + 76.199999999999989 -1.0897701297706791E-002 + 76.259999999999991 -1.0746285047591342E-002 + 76.319999999999993 -1.0594355155815971E-002 + 76.379999999999995 -1.0442035987002224E-002 + 76.439999999999998 -1.0289447204472457E-002 + 76.500000000000000 -1.0136704295440132E-002 + 76.560000000000002 -9.9839177413500214E-003 + 76.619999999999990 -9.8311937093102306E-003 + 76.679999999999993 -9.6786354116936840E-003 + 76.739999999999995 -9.5263405077234964E-003 + 76.799999999999997 -9.3744034699519193E-003 + 76.859999999999999 -9.2229149055721472E-003 + 76.920000000000002 -9.0719617359933807E-003 + 76.979999999999990 -8.9216261475392154E-003 + 77.039999999999992 -8.7719872056983665E-003 + 77.099999999999994 -8.6231216490093108E-003 + 77.159999999999997 -8.4751025304431044E-003 + 77.219999999999999 -8.3279972244395296E-003 + 77.280000000000001 -8.1818713977227196E-003 + 77.339999999999989 -8.0367885442499953E-003 + 77.399999999999991 -7.8928070625183429E-003 + 77.459999999999994 -7.7499834207856054E-003 + 77.519999999999996 -7.6083704578264579E-003 + 77.579999999999998 -7.4680191256579140E-003 + 77.640000000000001 -7.3289758342772165E-003 + 77.699999999999989 -7.1912858921446806E-003 + 77.759999999999991 -7.0549909856406677E-003 + 77.819999999999993 -6.9201304942872223E-003 + 77.879999999999995 -6.7867416835778027E-003 + 77.939999999999998 -6.6548585476749866E-003 + 78.000000000000000 -6.5245123790267194E-003 + 78.060000000000002 -6.3957332883217604E-003 + 78.119999999999990 -6.2685484224912361E-003 + 78.179999999999993 -6.1429834871935375E-003 + 78.239999999999995 -6.0190610834968718E-003 + 78.299999999999997 -5.8968027598726939E-003 + 78.359999999999999 -5.7762276809357402E-003 + 78.420000000000002 -5.6573538324266306E-003 + 78.479999999999990 -5.5401962544470666E-003 + 78.539999999999992 -5.4247693190592724E-003 + 78.599999999999994 -5.3110847678609309E-003 + 78.659999999999997 -5.1991538737111752E-003 + 78.719999999999999 -5.0889853108193901E-003 + 78.780000000000001 -4.9805870292351792E-003 + 78.839999999999989 -4.8739652574411969E-003 + 78.899999999999991 -4.7691245602542098E-003 + 78.959999999999994 -4.6660693033175301E-003 + 79.019999999999996 -4.5648009670598323E-003 + 79.079999999999998 -4.4653208583149825E-003 + 79.140000000000001 -4.3676291676092473E-003 + 79.199999999999989 -4.2717244018977939E-003 + 79.259999999999991 -4.1776044822904156E-003 + 79.319999999999993 -4.0852656957620871E-003 + 79.379999999999995 -3.9947039760293221E-003 + 79.439999999999998 -3.9059139270860290E-003 + 79.500000000000000 -3.8188894219996217E-003 + 79.560000000000002 -3.7336231405237226E-003 + 79.619999999999990 -3.6501073128899866E-003 + 79.679999999999993 -3.5683328182185428E-003 + 79.739999999999995 -3.4882903909908723E-003 + 79.799999999999997 -3.4099694858507955E-003 + 79.859999999999999 -3.3333591379486414E-003 + 79.920000000000002 -3.2584476342743429E-003 + 79.979999999999990 -3.1852227632829786E-003 + 80.039999999999992 -3.1136714996586878E-003 + 80.099999999999994 -3.0437799479909721E-003 + 80.159999999999997 -2.9755343718312018E-003 + 80.219999999999999 -2.9089199973683388E-003 + 80.280000000000001 -2.8439217806078528E-003 + 80.340000000000003 -2.7805241169592612E-003 + 80.400000000000006 -2.7187109254778437E-003 + 80.460000000000008 -2.6584657831978348E-003 + 80.519999999999982 -2.5997713128793421E-003 + 80.579999999999984 -2.5426105408114770E-003 + 80.639999999999986 -2.4869656475919825E-003 + 80.699999999999989 -2.4328184955844808E-003 + 80.759999999999991 -2.3801506272131730E-003 + 80.819999999999993 -2.3289431131729163E-003 + 80.879999999999995 -2.2791770339781834E-003 + 80.939999999999998 -2.2308327357831101E-003 + 81.000000000000000 -2.1838904919479264E-003 + 81.060000000000002 -2.1383306036572075E-003 + 81.120000000000005 -2.0941324961580381E-003 + 81.180000000000007 -2.0512760661875948E-003 + 81.240000000000009 -2.0097406107742800E-003 + 81.299999999999983 -1.9695052277607424E-003 + 81.359999999999985 -1.9305490582528777E-003 + 81.419999999999987 -1.8928510203853940E-003 + 81.479999999999990 -1.8563897681139997E-003 + 81.539999999999992 -1.8211441400380259E-003 + 81.599999999999994 -1.7870928626064605E-003 + 81.659999999999997 -1.7542145100826368E-003 + 81.719999999999999 -1.7224877518183584E-003 + 81.780000000000001 -1.6918912076159917E-003 + 81.840000000000003 -1.6624034688599151E-003 + 81.900000000000006 -1.6340033242103595E-003 + 81.960000000000008 -1.6066692435692100E-003 + 82.019999999999982 -1.5803801606833437E-003 + 82.079999999999984 -1.5551146428906463E-003 + 82.139999999999986 -1.5308516995996115E-003 + 82.199999999999989 -1.5075702330464304E-003 + 82.259999999999991 -1.4852493258221829E-003 + 82.319999999999993 -1.4638680144657599E-003 + 82.379999999999995 -1.4434054329660012E-003 + 82.439999999999998 -1.4238410480763258E-003 + 82.500000000000000 -1.4051542388194664E-003 + 82.560000000000002 -1.3873243895160430E-003 + 82.620000000000005 -1.3703313821544613E-003 + 82.680000000000007 -1.3541549613946705E-003 + 82.740000000000009 -1.3387751100515425E-003 + 82.799999999999983 -1.3241719192823836E-003 + 82.859999999999985 -1.3103258138461981E-003 + 82.919999999999987 -1.2972173113374845E-003 + 82.979999999999990 -1.2848268886175190E-003 + 83.039999999999992 -1.2731355791256464E-003 + 83.099999999999994 -1.2621242909899068E-003 + 83.159999999999997 -1.2517742243518283E-003 + 83.219999999999999 -1.2420668376888642E-003 + 83.280000000000001 -1.2329835871302203E-003 + 83.340000000000003 -1.2245063910674586E-003 + 83.400000000000006 -1.2166170636903550E-003 + 83.460000000000008 -1.2092977721766098E-003 + 83.519999999999982 -1.2025308632359704E-003 + 83.579999999999984 -1.1962987199432137E-003 + 83.639999999999986 -1.1905839805578717E-003 + 83.699999999999989 -1.1853695553334623E-003 + 83.759999999999991 -1.1806383922775378E-003 + 83.819999999999993 -1.1763737071096851E-003 + 83.879999999999995 -1.1725590230772800E-003 + 83.939999999999998 -1.1691777717919305E-003 + 84.000000000000000 -1.1662136965465528E-003 + 84.060000000000002 -1.1636506580641214E-003 + 84.120000000000005 -1.1614727926256058E-003 + 84.180000000000007 -1.1596641837191867E-003 + 84.240000000000009 -1.1582093636612061E-003 + 84.299999999999983 -1.1570928462767438E-003 + 84.359999999999985 -1.1562991845177650E-003 + 84.419999999999987 -1.1558133748236770E-003 + 84.479999999999990 -1.1556203200351104E-003 + 84.539999999999992 -1.1557051304159798E-003 + 84.599999999999994 -1.1560533199583881E-003 + 84.659999999999997 -1.1566501350773009E-003 + 84.719999999999999 -1.1574812096453219E-003 + 84.780000000000001 -1.1585326087847597E-003 + 84.840000000000003 -1.1597900589021379E-003 + 84.900000000000006 -1.1612398590544804E-003 + 84.960000000000008 -1.1628685104361292E-003 + 85.019999999999982 -1.1646625792911221E-003 + 85.079999999999984 -1.1666088271543021E-003 + 85.139999999999986 -1.1686944412556965E-003 + 85.199999999999989 -1.1709066035429365E-003 + 85.259999999999991 -1.1732328931455959E-003 + 85.319999999999993 -1.1756612015201401E-003 + 85.379999999999995 -1.1781794117875586E-003 + 85.439999999999998 -1.1807757700492720E-003 + 85.500000000000000 -1.1834388686296909E-003 + 85.560000000000002 -1.1861575459655254E-003 + 85.620000000000005 -1.1889206389739996E-003 + 85.680000000000007 -1.1917174439393038E-003 + 85.740000000000009 -1.1945376374837015E-003 + 85.799999999999983 -1.1973708157418605E-003 + 85.859999999999985 -1.2002072240827649E-003 + 85.919999999999987 -1.2030371459123444E-003 + 85.979999999999990 -1.2058510925067284E-003 + 86.039999999999992 -1.2086401924093371E-003 + 86.099999999999994 -1.2113954432736618E-003 + 86.159999999999997 -1.2141083168561355E-003 + 86.219999999999999 -1.2167707397327627E-003 + 86.280000000000001 -1.2193747613422224E-003 + 86.340000000000003 -1.2219127771155654E-003 + 86.400000000000006 -1.2243776058360888E-003 + 86.460000000000008 -1.2267624074727662E-003 + 86.519999999999982 -1.2290605106921343E-003 + 86.579999999999984 -1.2312656576477332E-003 + 86.639999999999986 -1.2333719395336772E-003 + 86.699999999999989 -1.2353738590973272E-003 + 86.759999999999991 -1.2372659002044880E-003 + 86.819999999999993 -1.2390432971607710E-003 + 86.879999999999995 -1.2407011823340308E-003 + 86.939999999999998 -1.2422352778253425E-003 + 87.000000000000000 -1.2436414788268070E-003 + 87.060000000000002 -1.2449158739975578E-003 + 87.120000000000005 -1.2460550503987904E-003 + 87.180000000000007 -1.2470556583601732E-003 + 87.240000000000009 -1.2479146298854282E-003 + 87.299999999999983 -1.2486293240342890E-003 + 87.359999999999985 -1.2491972214981109E-003 + 87.419999999999987 -1.2496162417929859E-003 + 87.479999999999990 -1.2498845707353276E-003 + 87.539999999999992 -1.2500004729285509E-003 + 87.599999999999994 -1.2499626647092417E-003 + 87.659999999999997 -1.2497698851799864E-003 + 87.719999999999999 -1.2494213296768435E-003 + 87.780000000000001 -1.2489164389391392E-003 + 87.840000000000003 -1.2482548944344873E-003 + 87.900000000000006 -1.2474367182697464E-003 + 87.960000000000008 -1.2464620351099163E-003 + 88.019999999999982 -1.2453312318106747E-003 + 88.079999999999984 -1.2440449153127563E-003 + 88.139999999999986 -1.2426043272762163E-003 + 88.199999999999989 -1.2410102917910322E-003 + 88.259999999999991 -1.2392642079662908E-003 + 88.319999999999993 -1.2373677688595783E-003 + 88.379999999999995 -1.2353226450859478E-003 + 88.439999999999998 -1.2331308589763252E-003 + 88.500000000000000 -1.2307945725123159E-003 + 88.560000000000002 -1.2283161778910633E-003 + 88.620000000000005 -1.2256981375436227E-003 + 88.680000000000007 -1.2229430298968725E-003 + 88.740000000000009 -1.2200539410090203E-003 + 88.799999999999983 -1.2170336593723841E-003 + 88.859999999999985 -1.2138854587809267E-003 + 88.919999999999987 -1.2106126312319966E-003 + 88.979999999999990 -1.2072185763512084E-003 + 89.039999999999992 -1.2037068500765705E-003 + 89.099999999999994 -1.2000810707896189E-003 + 89.159999999999997 -1.1963450429940646E-003 + 89.219999999999999 -1.1925027114629565E-003 + 89.280000000000001 -1.1885580036192504E-003 + 89.340000000000003 -1.1845150104219811E-003 + 89.400000000000006 -1.1803778895260392E-003 + 89.460000000000008 -1.1761511235472578E-003 + 89.519999999999982 -1.1718389113125345E-003 + 89.579999999999984 -1.1674457769547937E-003 + 89.639999999999986 -1.1629761526028644E-003 + 89.699999999999989 -1.1584345360508919E-003 + 89.759999999999991 -1.1538256404776031E-003 + 89.819999999999993 -1.1491541942249279E-003 + 89.879999999999995 -1.1444245561183994E-003 + 89.939999999999998 -1.1396416072065659E-003 + 90.000000000000000 -1.1348098519052769E-003 + 90.060000000000002 -1.1299339258735099E-003 + 90.120000000000005 -1.1250185383011109E-003 + 90.180000000000007 -1.1200681847827645E-003 + 90.240000000000009 -1.1150873717422924E-003 + 90.299999999999983 -1.1100804286601617E-003 + 90.359999999999985 -1.1050518938802167E-003 + 90.419999999999987 -1.1000060210437580E-003 + 90.479999999999990 -1.0949469634521345E-003 + 90.539999999999992 -1.0898788860197097E-003 + 90.599999999999994 -1.0848058936610730E-003 + 90.659999999999997 -1.0797319736603678E-003 + 90.719999999999999 -1.0746610112052463E-003 + 90.780000000000001 -1.0695968412012045E-003 + 90.840000000000003 -1.0645431030209744E-003 + 90.900000000000006 -1.0595033182057114E-003 + 90.960000000000008 -1.0544811553557685E-003 + 91.019999999999982 -1.0494799182928407E-003 + 91.079999999999984 -1.0445028695952206E-003 + 91.139999999999986 -1.0395530487648883E-003 + 91.199999999999989 -1.0346336257127497E-003 + 91.259999999999991 -1.0297473199179980E-003 + 91.319999999999993 -1.0248968918554406E-003 + 91.379999999999995 -1.0200849933750266E-003 + 91.439999999999998 -1.0153138008257376E-003 + 91.500000000000000 -1.0105856903680885E-003 + 91.560000000000002 -1.0059027622616097E-003 + 91.620000000000005 -1.0012667442034016E-003 + 91.680000000000007 -9.9667926315805773E-004 + 91.739999999999981 -9.9214196957691570E-004 + 91.799999999999983 -9.8765616699638195E-004 + 91.859999999999985 -9.8322318328057786E-004 + 91.919999999999987 -9.7884413128936608E-004 + 91.979999999999990 -9.7451999928112830E-004 + 92.039999999999992 -9.7025155503288802E-004 + 92.099999999999994 -9.6603955108066312E-004 + 92.159999999999997 -9.6188467465731545E-004 + 92.219999999999999 -9.5778747677062134E-004 + 92.280000000000001 -9.5374849494197231E-004 + 92.340000000000003 -9.4976803734804862E-004 + 92.400000000000006 -9.4584653781419864E-004 + 92.460000000000008 -9.4198415307021968E-004 + 92.519999999999982 -9.3818117503554949E-004 + 92.579999999999984 -9.3443762936248052E-004 + 92.639999999999986 -9.3075362299200421E-004 + 92.699999999999989 -9.2712911136699793E-004 + 92.759999999999991 -9.2356410429091150E-004 + 92.819999999999993 -9.2005840139085997E-004 + 92.879999999999995 -9.1661191268819781E-004 + 92.939999999999998 -9.1322432619933916E-004 + 93.000000000000000 -9.0989545278189507E-004 + 93.060000000000002 -9.0662496244956208E-004 + 93.120000000000005 -9.0341262983059634E-004 + 93.180000000000007 -9.0025819894757838E-004 + 93.239999999999981 -8.9716136505194380E-004 + 93.299999999999983 -8.9412197829831345E-004 + 93.359999999999985 -8.9113988311417672E-004 + 93.419999999999987 -8.8821498425970295E-004 + 93.479999999999990 -8.8534725046600566E-004 + 93.539999999999992 -8.8253673947367246E-004 + 93.599999999999994 -8.7978369653287649E-004 + 93.659999999999997 -8.7708839562267800E-004 + 93.719999999999999 -8.7445128327631565E-004 + 93.780000000000001 -8.7187285673239259E-004 + 93.840000000000003 -8.6935392104633578E-004 + 93.900000000000006 -8.6689524186445643E-004 + 93.960000000000008 -8.6449779836239875E-004 + 94.019999999999982 -8.6216279716426968E-004 + 94.079999999999984 -8.5989149301494050E-004 + 94.139999999999986 -8.5768534186622843E-004 + 94.199999999999989 -8.5554603873709480E-004 + 94.259999999999991 -8.5347542758671519E-004 + 94.319999999999993 -8.5147552748584339E-004 + 94.379999999999995 -8.4954858891795541E-004 + 94.439999999999998 -8.4769711115227294E-004 + 94.500000000000000 -8.4592375428965824E-004 + 94.560000000000002 -8.4423148080180796E-004 + 94.620000000000005 -8.4262339262704895E-004 + 94.680000000000007 -8.4110291291796804E-004 + 94.739999999999981 -8.3967380236499767E-004 + 94.799999999999983 -8.3834003380384029E-004 + 94.859999999999985 -8.3710581711533534E-004 + 94.919999999999987 -8.3597575497759355E-004 + 94.979999999999990 -8.3495461233449458E-004 + 95.039999999999992 -8.3404759399653369E-004 + 95.099999999999994 -8.3326003684881171E-004 + 95.159999999999997 -8.3259772630421482E-004 + 95.219999999999999 -8.3206671175313908E-004 + 95.280000000000001 -8.3167328096513029E-004 + 95.340000000000003 -8.3142406114636975E-004 + 95.400000000000006 -8.3132598226346225E-004 + 95.460000000000008 -8.3138631824122118E-004 + 95.519999999999982 -8.3161257379813164E-004 + 95.579999999999984 -8.3201257376334990E-004 + 95.639999999999986 -8.3259451343466791E-004 + 95.699999999999989 -8.3336668350156024E-004 + 95.759999999999991 -8.3433781354958934E-004 + 95.819999999999993 -8.3551691294518615E-004 + 95.879999999999995 -8.3691319382850869E-004 + 95.939999999999998 -8.3853622432403913E-004 + 96.000000000000000 -8.4039577489600052E-004 + 96.060000000000002 -8.4250188947297157E-004 + 96.120000000000005 -8.4486489316345983E-004 + 96.180000000000007 -8.4749537681943414E-004 + 96.239999999999981 -8.5040412140839020E-004 + 96.299999999999983 -8.5360219778573610E-004 + 96.359999999999985 -8.5710088691594007E-004 + 96.419999999999987 -8.6091171097650923E-004 + 96.479999999999990 -8.6504627855879339E-004 + 96.539999999999992 -8.6951648592113219E-004 + 96.599999999999994 -8.7433441246948375E-004 + 96.659999999999997 -8.7951215811435445E-004 + 96.719999999999999 -8.8506217958055197E-004 + 96.780000000000001 -8.9099674942074900E-004 + 96.840000000000003 -8.9732841233195956E-004 + 96.900000000000006 -9.0406961959418517E-004 + 96.960000000000008 -9.1123297726940949E-004 + 97.019999999999982 -9.1883093153817498E-004 + 97.079999999999984 -9.2687607269344640E-004 + 97.139999999999986 -9.3538068911494879E-004 + 97.199999999999989 -9.4435709913969510E-004 + 97.259999999999991 -9.5381739802391789E-004 + 97.319999999999993 -9.6377343085649904E-004 + 97.379999999999995 -9.7423689938410242E-004 + 97.439999999999998 -9.8521924427411034E-004 + 97.500000000000000 -9.9673143733494370E-004 + 97.560000000000002 -1.0087843032514480E-003 + 97.620000000000005 -1.0213880866307796E-003 + 97.680000000000007 -1.0345525661376526E-003 + 97.739999999999981 -1.0482872864962180E-003 + 97.799999999999983 -1.0626010701216436E-003 + 97.859999999999985 -1.0775021766617843E-003 + 97.919999999999987 -1.0929983174505162E-003 + 97.979999999999990 -1.1090966134095421E-003 + 98.039999999999992 -1.1258032021079158E-003 + 98.099999999999994 -1.1431237089491958E-003 + 98.159999999999997 -1.1610627310478154E-003 + 98.219999999999999 -1.1796240909582932E-003 + 98.280000000000001 -1.1988106679290725E-003 + 98.340000000000003 -1.2186245554294134E-003 + 98.400000000000006 -1.2390664156534078E-003 + 98.460000000000008 -1.2601361057786116E-003 + 98.519999999999982 -1.2818321599434278E-003 + 98.579999999999984 -1.3041520343644406E-003 + 98.639999999999986 -1.3270919162920423E-003 + 98.699999999999989 -1.3506465600779229E-003 + 98.759999999999991 -1.3748096388190461E-003 + 98.819999999999993 -1.3995732941956285E-003 + 98.879999999999995 -1.4249282163508283E-003 + 98.939999999999998 -1.4508635697366992E-003 + 99.000000000000000 -1.4773672746283570E-003 + 99.060000000000002 -1.5044255129756110E-003 + 99.120000000000005 -1.5320230622585574E-003 + 99.180000000000007 -1.5601428994655709E-003 + 99.239999999999981 -1.5887665778805652E-003 + 99.299999999999983 -1.6178739614528710E-003 + 99.359999999999985 -1.6474434558939387E-003 + 99.419999999999987 -1.6774516934613616E-003 + 99.479999999999990 -1.7078736313610224E-003 + 99.539999999999992 -1.7386826229730378E-003 + 99.599999999999994 -1.7698502379492238E-003 + 99.659999999999997 -1.8013465573677495E-003 + 99.719999999999999 -1.8331400784327503E-003 + 99.780000000000001 -1.8651974170102628E-003 + 99.840000000000003 -1.8974838069663062E-003 + 99.900000000000006 -1.9299625143619178E-003 + 99.960000000000008 -1.9625957362191344E-003 + 100.01999999999998 -1.9953440291811328E-003 + 100.07999999999998 -2.0281663842569831E-003 + 100.13999999999999 -2.0610201958394356E-003 + 100.19999999999999 -2.0938619632619913E-003 + 100.25999999999999 -2.1266463589863557E-003 + 100.31999999999999 -2.1593270455226446E-003 + 100.38000000000000 -2.1918565990939384E-003 + 100.44000000000000 -2.2241861897715725E-003 + 100.50000000000000 -2.2562662712643415E-003 + 100.56000000000000 -2.2880462609580509E-003 + 100.62000000000000 -2.3194747759229849E-003 + 100.68000000000001 -2.3504992170964877E-003 + 100.73999999999998 -2.3810670493244631E-003 + 100.79999999999998 -2.4111243450049536E-003 + 100.85999999999999 -2.4406176627314448E-003 + 100.91999999999999 -2.4694924727618290E-003 + 100.97999999999999 -2.4976940875220139E-003 + 101.03999999999999 -2.5251678288807258E-003 + 101.09999999999999 -2.5518592492525943E-003 + 101.16000000000000 -2.5777135212685302E-003 + 101.22000000000000 -2.6026764971942670E-003 + 101.28000000000000 -2.6266938437574032E-003 + 101.34000000000000 -2.6497120101850640E-003 + 101.40000000000001 -2.6716783684063257E-003 + 101.46000000000001 -2.6925405440250041E-003 + 101.51999999999998 -2.7122472875610328E-003 + 101.57999999999998 -2.7307482863112333E-003 + 101.63999999999999 -2.7479946666144135E-003 + 101.69999999999999 -2.7639381120796616E-003 + 101.75999999999999 -2.7785326533486220E-003 + 101.81999999999999 -2.7917330337937449E-003 + 101.88000000000000 -2.8034960934298623E-003 + 101.94000000000000 -2.8137800588653962E-003 + 102.00000000000000 -2.8225456103387419E-003 + 102.06000000000000 -2.8297549155465321E-003 + 102.12000000000000 -2.8353725787691009E-003 + 102.18000000000001 -2.8393650525380871E-003 + 102.23999999999998 -2.8417014685077186E-003 + 102.29999999999998 -2.8423532115330751E-003 + 102.35999999999999 -2.8412943811991637E-003 + 102.41999999999999 -2.8385011228190134E-003 + 102.47999999999999 -2.8339528511873630E-003 + 102.53999999999999 -2.8276315906342639E-003 + 102.59999999999999 -2.8195218073788536E-003 + 102.66000000000000 -2.8096113819546481E-003 + 102.72000000000000 -2.7978908664439031E-003 + 102.78000000000000 -2.7843535048595724E-003 + 102.84000000000000 -2.7689962476320881E-003 + 102.90000000000001 -2.7518186510161933E-003 + 102.96000000000001 -2.7328233453126740E-003 + 103.01999999999998 -2.7120161200292875E-003 + 103.07999999999998 -2.6894058852727732E-003 + 103.13999999999999 -2.6650044636555271E-003 + 103.19999999999999 -2.6388271663064728E-003 + 103.25999999999999 -2.6108921087999010E-003 + 103.31999999999999 -2.5812207821480971E-003 + 103.38000000000000 -2.5498371799854672E-003 + 103.44000000000000 -2.5167684928116430E-003 + 103.50000000000000 -2.4820448194103621E-003 + 103.56000000000000 -2.4456992258894998E-003 + 103.62000000000000 -2.4077676232309416E-003 + 103.68000000000001 -2.3682887708326591E-003 + 103.73999999999998 -2.3273039541346803E-003 + 103.79999999999998 -2.2848566921680352E-003 + 103.85999999999999 -2.2409934621703963E-003 + 103.91999999999999 -2.1957629999696808E-003 + 103.97999999999999 -2.1492162057053800E-003 + 104.03999999999999 -2.1014063649838636E-003 + 104.09999999999999 -2.0523883035963998E-003 + 104.16000000000000 -2.0022192403083695E-003 + 104.22000000000000 -1.9509578002649929E-003 + 104.28000000000000 -1.8986644632705400E-003 + 104.34000000000000 -1.8454010590619569E-003 + 104.40000000000001 -1.7912307958944415E-003 + 104.46000000000001 -1.7362180439098305E-003 + 104.51999999999998 -1.6804283163138140E-003 + 104.57999999999998 -1.6239277443935046E-003 + 104.63999999999999 -1.5667835012549707E-003 + 104.69999999999999 -1.5090631220532570E-003 + 104.75999999999999 -1.4508348352518573E-003 + 104.81999999999999 -1.3921669483110940E-003 + 104.88000000000000 -1.3331277358632561E-003 + 104.94000000000000 -1.2737858347878976E-003 + 105.00000000000000 -1.2142096041700280E-003 + 105.06000000000000 -1.1544668918208527E-003 + 105.12000000000000 -1.0946251491205821E-003 + 105.18000000000001 -1.0347514456787018E-003 + 105.23999999999998 -9.7491198255722185E-004 + 105.29999999999998 -9.1517213153828039E-004 + 105.35999999999999 -8.5559618946807656E-004 + 105.41999999999999 -7.9624738371584787E-004 + 105.47999999999999 -7.3718784168363559E-004 + 105.53999999999999 -6.7847815467621318E-004 + 105.59999999999999 -6.2017750736125476E-004 + 105.66000000000000 -5.6234357540325096E-004 + 105.72000000000000 -5.0503226062754514E-004 + 105.78000000000000 -4.4829782702735768E-004 + 105.84000000000000 -3.9219261944037587E-004 + 105.90000000000001 -3.3676706954745305E-004 + 105.96000000000001 -2.8206962987316559E-004 + 106.01999999999998 -2.2814667575875248E-004 + 106.07999999999998 -1.7504246714916959E-004 + 106.13999999999999 -1.2279917171578868E-004 + 106.19999999999999 -7.1456709284347931E-005 + 106.25999999999999 -2.1052744716610703E-005 + 106.31999999999999 2.8377291542727480E-005 + 106.38000000000000 7.6800187296758693E-005 + 106.44000000000000 1.2418508350517773E-004 + 106.50000000000000 1.7050336893426578E-004 + 106.56000000000000 2.1572869436412923E-004 + 106.62000000000000 2.5983701521136289E-004 + 106.68000000000001 3.0280652859677472E-004 + 106.73999999999998 3.4461764637891315E-004 + 106.79999999999998 3.8525294079462741E-004 + 106.85999999999999 4.2469721820079752E-004 + 106.91999999999999 4.6293738336667815E-004 + 106.97999999999999 4.9996241721683948E-004 + 107.03999999999999 5.3576339153642728E-004 + 107.09999999999999 5.7033326314555744E-004 + 107.16000000000000 6.0366703848485214E-004 + 107.22000000000000 6.3576150629895468E-004 + 107.28000000000000 6.6661538796018965E-004 + 107.34000000000000 6.9622909050440554E-004 + 107.40000000000001 7.2460486131111878E-004 + 107.46000000000001 7.5174644487161293E-004 + 107.51999999999998 7.7765918358096910E-004 + 107.57999999999998 8.0235004190610355E-004 + 107.63999999999999 8.2582736030968715E-004 + 107.69999999999999 8.4810086907616950E-004 + 107.75999999999999 8.6918147129740769E-004 + 107.81999999999999 8.8908145659245222E-004 + 107.88000000000000 9.0781417555937406E-004 + 107.94000000000000 9.2539416322757323E-004 + 108.00000000000000 9.4183690189935168E-004 + 108.06000000000000 9.5715872235482250E-004 + 108.12000000000000 9.7137701589268262E-004 + 108.18000000000001 9.8450961091142968E-004 + 108.23999999999998 9.9657521138036653E-004 + 108.29999999999998 1.0075933994865493E-003 + 108.35999999999999 1.0175840647944274E-003 + 108.41999999999999 1.0265676755914230E-003 + 108.47999999999999 1.0345650772824711E-003 + 108.53999999999999 1.0415977429820463E-003 + 108.59999999999999 1.0476873252374386E-003 + 108.66000000000000 1.0528556115067854E-003 + 108.72000000000000 1.0571249763477446E-003 + 108.78000000000000 1.0605176435294023E-003 + 108.84000000000000 1.0630562568647531E-003 + 108.90000000000001 1.0647635301583832E-003 + 108.96000000000001 1.0656621982453563E-003 + 109.01999999999998 1.0657750126043543E-003 + 109.07999999999998 1.0651250362624736E-003 + 109.13999999999999 1.0637349491126947E-003 + 109.19999999999999 1.0616277206674960E-003 + 109.25999999999999 1.0588259561996336E-003 + 109.31999999999999 1.0553523941210358E-003 + 109.38000000000000 1.0512295505370251E-003 + 109.44000000000000 1.0464798426257943E-003 + 109.50000000000000 1.0411255714134185E-003 + 109.56000000000000 1.0351887256821817E-003 + 109.62000000000000 1.0286912343663971E-003 + 109.68000000000001 1.0216547521318636E-003 + 109.73999999999998 1.0141007534867042E-003 + 109.79999999999998 1.0060503190180000E-003 + 109.85999999999999 9.9752427778291241E-004 + 109.91999999999999 9.8854326293724331E-004 + 109.97999999999999 9.7912757657625396E-004 + 110.03999999999999 9.6929731163835492E-004 + 110.09999999999999 9.5907221082755728E-004 + 110.16000000000000 9.4847168944566331E-004 + 110.22000000000000 9.3751483802677533E-004 + 110.28000000000000 9.2622052072538767E-004 + 110.34000000000000 9.1460726300045822E-004 + 110.40000000000001 9.0269326138503415E-004 + 110.46000000000001 8.9049652849203741E-004 + 110.51999999999998 8.7803457121908850E-004 + 110.57999999999998 8.6532477950728326E-004 + 110.63999999999999 8.5238416668506286E-004 + 110.69999999999999 8.3922944209214689E-004 + 110.75999999999999 8.2587708155727204E-004 + 110.81999999999999 8.1234321357890834E-004 + 110.88000000000000 7.9864365531046380E-004 + 110.94000000000000 7.8479387711217173E-004 + 111.00000000000000 7.7080923015725178E-004 + 111.06000000000000 7.5670453063368160E-004 + 111.12000000000000 7.4249442255912269E-004 + 111.18000000000001 7.2819320423666634E-004 + 111.23999999999998 7.1381487645847416E-004 + 111.29999999999998 6.9937309222993255E-004 + 111.35999999999999 6.8488125327680256E-004 + 111.41999999999999 6.7035236611142767E-004 + 111.47999999999999 6.5579928533739519E-004 + 111.53999999999999 6.4123436398978034E-004 + 111.59999999999999 6.2666975955673440E-004 + 111.66000000000000 6.1211728043637228E-004 + 111.72000000000000 5.9758848419371510E-004 + 111.78000000000000 5.8309454440659916E-004 + 111.84000000000000 5.6864642721841875E-004 + 111.90000000000001 5.5425472650312872E-004 + 111.96000000000001 5.3992974129253850E-004 + 112.01999999999998 5.2568160831178773E-004 + 112.07999999999998 5.1152006338790984E-004 + 112.13999999999999 4.9745456230735382E-004 + 112.19999999999999 4.8349423848342518E-004 + 112.25999999999999 4.6964799800163360E-004 + 112.31999999999999 4.5592439262744718E-004 + 112.38000000000000 4.4233168285450202E-004 + 112.44000000000000 4.2887786163938477E-004 + 112.50000000000000 4.1557055551288600E-004 + 112.56000000000000 4.0241716870133661E-004 + 112.62000000000000 3.8942468434230963E-004 + 112.68000000000001 3.7659986788871909E-004 + 112.73999999999998 3.6394911687550864E-004 + 112.79999999999998 3.5147848535913674E-004 + 112.85999999999999 3.3919376733049770E-004 + 112.91999999999999 3.2710034961423154E-004 + 112.97999999999999 3.1520335939008590E-004 + 113.03999999999999 3.0350756416074195E-004 + 113.09999999999999 2.9201744447608701E-004 + 113.16000000000000 2.8073708717618639E-004 + 113.22000000000000 2.6967036645283180E-004 + 113.28000000000000 2.5882076900892218E-004 + 113.34000000000000 2.4819144844841066E-004 + 113.40000000000001 2.3778529200550985E-004 + 113.46000000000001 2.2760487770605387E-004 + 113.51999999999998 2.1765242178824667E-004 + 113.57999999999998 2.0792986454086661E-004 + 113.63999999999999 1.9843885953492417E-004 + 113.69999999999999 1.8918070510326809E-004 + 113.75999999999999 1.8015643027394188E-004 + 113.81999999999999 1.7136673801026870E-004 + 113.88000000000000 1.6281204783552206E-004 + 113.94000000000000 1.5449243731312820E-004 + 114.00000000000000 1.4640772396830231E-004 + 114.06000000000000 1.3855741968396280E-004 + 114.12000000000000 1.3094072726579730E-004 + 114.18000000000001 1.2355658013729276E-004 + 114.23999999999998 1.1640361774174777E-004 + 114.29999999999998 1.0948020884815499E-004 + 114.35999999999999 1.0278444860539109E-004 + 114.41999999999999 9.6314194345937875E-005 + 114.47999999999999 9.0067038323139587E-005 + 114.53999999999999 8.4040347070658497E-005 + 114.59999999999999 7.8231275120543674E-005 + 114.66000000000000 7.2636749704225255E-005 + 114.72000000000000 6.7253523120151148E-005 + 114.78000000000000 6.2078155834750890E-005 + 114.84000000000000 5.7107056579260070E-005 + 114.90000000000001 5.2336467219686695E-005 + 114.96000000000001 4.7762514577203677E-005 + 115.01999999999998 4.3381190678456433E-005 + 115.07999999999998 3.9188385887185295E-005 + 115.13999999999999 3.5179900977416619E-005 + 115.19999999999999 3.1351445410208979E-005 + 115.25999999999999 2.7698668129530784E-005 + 115.31999999999999 2.4217152708199522E-005 + 115.38000000000000 2.0902440056729514E-005 + 115.44000000000000 1.7750029287688199E-005 + 115.50000000000000 1.4755396248042177E-005 + 115.56000000000000 1.1913993022392674E-005 + 115.62000000000000 9.2212606338344697E-006 + 115.68000000000001 6.6726394761846150E-006 + 115.73999999999998 4.2635777496468297E-006 + 115.79999999999998 1.9895364271777201E-006 + 115.85999999999999 -1.5399851576426305E-007 + 115.91999999999999 -2.1715068546877293E-006 + 115.97999999999999 -4.0674261694780169E-006 + 116.03999999999999 -5.8461382446461100E-006 + 116.09999999999999 -7.5119622628144992E-006 + 116.16000000000000 -9.0691453233347249E-006 + 116.22000000000000 -1.0521846524053153E-005 + 116.28000000000000 -1.1874132718514535E-005 + 116.34000000000000 -1.3129964947838860E-005 + 116.40000000000001 -1.4293193306401136E-005 + 116.46000000000001 -1.5367541405334990E-005 + 116.51999999999998 -1.6356609144617770E-005 + 116.57999999999998 -1.7263861015985652E-005 + 116.63999999999999 -1.8092622698689621E-005 + 116.69999999999999 -1.8846084056079353E-005 + 116.75999999999999 -1.9527291072742506E-005 + 116.81999999999999 -2.0139155150497462E-005 + 116.88000000000000 -2.0684449226233917E-005 + 116.94000000000000 -2.1165816543174226E-005 + 117.00000000000000 -2.1585772379921269E-005 + 117.06000000000000 -2.1946716399924300E-005 + 117.12000000000000 -2.2250933058591245E-005 + 117.18000000000001 -2.2500599558723488E-005 + 117.23999999999998 -2.2697795860458414E-005 + 117.29999999999998 -2.2844510271148327E-005 + 117.35999999999999 -2.2942642630650887E-005 + 117.41999999999999 -2.2994010272453238E-005 + 117.47999999999999 -2.3000352899682133E-005 + 117.53999999999999 -2.2963336364980184E-005 + 117.59999999999999 -2.2884551188259629E-005 + 117.66000000000000 -2.2765517250454186E-005 + 117.72000000000000 -2.2607682890211747E-005 + 117.78000000000000 -2.2412427908219927E-005 + 117.84000000000000 -2.2181059772189487E-005 + 117.90000000000001 -2.1914821129038246E-005 + 117.96000000000001 -2.1614884833553050E-005 + 118.01999999999998 -2.1282358631607708E-005 + 118.07999999999998 -2.0918289432481236E-005 + 118.13999999999999 -2.0523669224716059E-005 + 118.19999999999999 -2.0099436542050669E-005 + 118.25999999999999 -1.9646484604143616E-005 + 118.31999999999999 -1.9165675959879783E-005 + 118.38000000000000 -1.8657842347925286E-005 + 118.44000000000000 -1.8123796405357663E-005 + 118.50000000000000 -1.7564348691315574E-005 + 118.56000000000000 -1.6980307934511074E-005 + 118.62000000000000 -1.6372494300768026E-005 + 118.68000000000001 -1.5741752535924652E-005 + 118.73999999999998 -1.5088954806958516E-005 + 118.79999999999998 -1.4415012379531663E-005 + 118.85999999999999 -1.3720877470272506E-005 + 118.91999999999999 -1.3007552914848061E-005 + 118.97999999999999 -1.2276088555328193E-005 + 119.03999999999999 -1.1527590543274075E-005 + 119.09999999999999 -1.0763214194415426E-005 + 119.16000000000000 -9.9841685039538640E-006 + 119.22000000000000 -9.1917117572266285E-006 + 119.28000000000000 -8.3871505356199864E-006 + 119.34000000000000 -7.5718353703228443E-006 + 119.40000000000001 -6.7471592333047965E-006 + 119.46000000000001 -5.9145529940671837E-006 + 119.51999999999998 -5.0754822821476817E-006 + 119.57999999999998 -4.2314471543766997E-006 + 119.63999999999999 -3.3839786287082547E-006 + 119.69999999999999 -2.5346383588306245E-006 + 119.75999999999999 -1.6850189875159050E-006 + 119.81999999999999 -8.3674336192050652E-007 + 119.88000000000000 8.5315197628358494E-009 + 119.94000000000000 8.4911586172448389E-007 + 120.00000000000000 1.6832813402686544E-006 + 120.06000000000000 2.5092627486720362E-006 + 120.12000000000000 3.3252543931294404E-006 + 120.18000000000001 4.1294080839418155E-006 + 120.23999999999998 4.9198348438969318E-006 + 120.29999999999998 5.6946024829396534E-006 + 120.35999999999999 6.4517400236814325E-006 + 120.41999999999999 7.1892385695647518E-006 + 120.47999999999999 7.9050579270585777E-006 + 120.53999999999999 8.5971322925459018E-006 + 120.59999999999999 9.2633769116658110E-006 + 120.66000000000000 9.9016982017862974E-006 + 120.72000000000000 1.0510000383865055E-005 + 120.78000000000000 1.1086201765230823E-005 + 120.84000000000000 1.1628239987270380E-005 + 120.90000000000001 1.2134086409356508E-005 + 120.95999999999998 1.2601755912132808E-005 + 121.01999999999998 1.3029318466059156E-005 + 121.07999999999998 1.3414904560794487E-005 + 121.13999999999999 1.3756718738016950E-005 + 121.19999999999999 1.4053042165395298E-005 + 121.25999999999999 1.4302240137873555E-005 + 121.31999999999999 1.4502769498317224E-005 + 121.38000000000000 1.4653176961822651E-005 + 121.44000000000000 1.4752108034467762E-005 + 121.50000000000000 1.4798304296302775E-005 + 121.56000000000000 1.4790604790050518E-005 + 121.62000000000000 1.4727953563883369E-005 + 121.68000000000001 1.4609395296141335E-005 + 121.73999999999998 1.4434080330411005E-005 + 121.79999999999998 1.4201267240678249E-005 + 121.85999999999999 1.3910327746338912E-005 + 121.91999999999999 1.3560751225381733E-005 + 121.97999999999999 1.3152150015698232E-005 + 122.03999999999999 1.2684264667025210E-005 + 122.09999999999999 1.2156971371781629E-005 + 122.16000000000000 1.1570287076336057E-005 + 122.22000000000000 1.0924373640423306E-005 + 122.28000000000000 1.0219547225957925E-005 + 122.34000000000000 9.4562788549595301E-006 + 122.40000000000001 8.6351956247888606E-006 + 122.45999999999998 7.7570810678880614E-006 + 122.51999999999998 6.8228768401177310E-006 + 122.57999999999998 5.8336737135543699E-006 + 122.63999999999999 4.7907099241748112E-006 + 122.69999999999999 3.6953628715312513E-006 + 122.75999999999999 2.5491403464851977E-006 + 122.81999999999999 1.3536677465421368E-006 + 122.88000000000000 1.1068123934395401E-007 + 122.94000000000000 -1.1779864104196619E-006 + 123.00000000000000 -2.5104132369339604E-006 + 123.06000000000000 -3.8846025129346490E-006 + 123.12000000000000 -5.2984893182367073E-006 + 123.18000000000001 -6.7499516623656776E-006 + 123.23999999999998 -8.2368160031876993E-006 + 123.29999999999998 -9.7568629267674509E-006 + 123.35999999999999 -1.1307836171670797E-005 + 123.41999999999999 -1.2887443140746593E-005 + 123.47999999999999 -1.4493362561898156E-005 + 123.53999999999999 -1.6123239915627781E-005 + 123.59999999999999 -1.7774704825087993E-005 + 123.66000000000000 -1.9445360149068538E-005 + 123.72000000000000 -2.1132798614837577E-005 + 123.78000000000000 -2.2834602001034107E-005 + 123.84000000000000 -2.4548350989067437E-005 + 123.90000000000001 -2.6271629075864049E-005 + 123.95999999999998 -2.8002037174338593E-005 + 124.01999999999998 -2.9737197730656969E-005 + 124.07999999999998 -3.1474778092055356E-005 + 124.13999999999999 -3.3212478308581273E-005 + 124.19999999999999 -3.4948062874378723E-005 + 124.25999999999999 -3.6679368265325291E-005 + 124.31999999999999 -3.8404299817761221E-005 + 124.38000000000000 -4.0120859870414450E-005 + 124.44000000000000 -4.1827143776923490E-005 + 124.50000000000000 -4.3521342485089753E-005 + 124.56000000000000 -4.5201761397342998E-005 + 124.62000000000000 -4.6866803648254967E-005 + 124.68000000000001 -4.8514990178052172E-005 + 124.73999999999998 -5.0144949133548014E-005 + 124.79999999999998 -5.1755410841896231E-005 + 124.85999999999999 -5.3345214026561832E-005 + 124.91999999999999 -5.4913295020999656E-005 + 124.97999999999999 -5.6458680135645700E-005 + 125.03999999999999 -5.7980490049325267E-005 + 125.09999999999999 -5.9477932446440996E-005 + 125.16000000000000 -6.0950296586001016E-005 + 125.22000000000000 -6.2396945879524205E-005 + 125.28000000000000 -6.3817328609698415E-005 + 125.34000000000000 -6.5210961456614540E-005 + 125.40000000000001 -6.6577430682609337E-005 + 125.45999999999998 -6.7916402229738522E-005 + 125.51999999999998 -6.9227617241011835E-005 + 125.57999999999998 -7.0510881150380838E-005 + 125.63999999999999 -7.1766080508265070E-005 + 125.69999999999999 -7.2993176316250090E-005 + 125.75999999999999 -7.4192215548930142E-005 + 125.81999999999999 -7.5363318868307332E-005 + 125.88000000000000 -7.6506690402981288E-005 + 125.94000000000000 -7.7622605636012759E-005 + 126.00000000000000 -7.8711440407705678E-005 + 126.06000000000000 -7.9773632291510135E-005 + 126.12000000000000 -8.0809685782503001E-005 + 126.18000000000001 -8.1820186150692435E-005 + 126.23999999999998 -8.2805786568137044E-005 + 126.29999999999998 -8.3767198215386026E-005 + 126.35999999999999 -8.4705190663143649E-005 + 126.41999999999999 -8.5620567651119168E-005 + 126.47999999999999 -8.6514187460327282E-005 + 126.53999999999999 -8.7386942089320570E-005 + 126.59999999999999 -8.8239741344659970E-005 + 126.66000000000000 -8.9073511264624135E-005 + 126.72000000000000 -8.9889202307832141E-005 + 126.78000000000000 -9.0687746077840371E-005 + 126.84000000000000 -9.1470109172622728E-005 + 126.90000000000001 -9.2237223140015801E-005 + 126.95999999999998 -9.2990035999906048E-005 + 127.01999999999998 -9.3729477657423214E-005 + 127.07999999999998 -9.4456452369932209E-005 + 127.13999999999999 -9.5171861244648204E-005 + 127.19999999999999 -9.5876582924154572E-005 + 127.25999999999999 -9.6571478589907052E-005 + 127.31999999999999 -9.7257392941167567E-005 + 127.38000000000000 -9.7935159209200338E-005 + 127.44000000000000 -9.8605571212565836E-005 + 127.50000000000000 -9.9269414610773558E-005 + 127.56000000000000 -9.9927423955073718E-005 + 127.62000000000000 -1.0058031992519396E-004 + 127.68000000000001 -1.0122876558615301E-004 + 127.73999999999998 -1.0187339663927717E-004 + 127.79999999999998 -1.0251478622345978E-004 + 127.85999999999999 -1.0315346495104818E-004 + 127.91999999999999 -1.0378987650978868E-004 + 127.97999999999999 -1.0442440092210803E-004 + 128.03999999999999 -1.0505733310615843E-004 + 128.09999999999999 -1.0568890136119183E-004 + 128.16000000000000 -1.0631923301740025E-004 + 128.22000000000000 -1.0694836155065379E-004 + 128.28000000000000 -1.0757623228093269E-004 + 128.34000000000000 -1.0820268812847380E-004 + 128.40000000000001 -1.0882747397958302E-004 + 128.45999999999998 -1.0945025476047033E-004 + 128.51999999999998 -1.1007058692566331E-004 + 128.57999999999998 -1.1068793075469400E-004 + 128.63999999999999 -1.1130166937623823E-004 + 128.69999999999999 -1.1191109320356160E-004 + 128.75999999999999 -1.1251539222084302E-004 + 128.81999999999999 -1.1311367831140646E-004 + 128.88000000000000 -1.1370498113375277E-004 + 128.94000000000000 -1.1428823429415907E-004 + 129.00000000000000 -1.1486228729277971E-004 + 129.06000000000000 -1.1542588084736117E-004 + 129.12000000000000 -1.1597767820684903E-004 + 129.18000000000001 -1.1651623909395162E-004 + 129.23999999999998 -1.1704001958561284E-004 + 129.29999999999998 -1.1754737964125550E-004 + 129.35999999999999 -1.1803656442545567E-004 + 129.41999999999999 -1.1850573072608589E-004 + 129.47999999999999 -1.1895293818103432E-004 + 129.53999999999999 -1.1937614361173245E-004 + 129.59999999999999 -1.1977322647151634E-004 + 129.66000000000000 -1.2014198592757149E-004 + 129.72000000000000 -1.2048013910114431E-004 + 129.78000000000000 -1.2078534644234469E-004 + 129.84000000000000 -1.2105522780412120E-004 + 129.90000000000001 -1.2128734624901280E-004 + 129.95999999999998 -1.2147925315276644E-004 + 130.01999999999998 -1.2162846434284938E-004 + 130.07999999999998 -1.2173250551354059E-004 + 130.13999999999999 -1.2178885773366555E-004 + 130.19999999999999 -1.2179505016953334E-004 + 130.25999999999999 -1.2174860461959597E-004 + 130.31999999999999 -1.2164706120492945E-004 + 130.38000000000000 -1.2148796053578249E-004 + 130.44000000000000 -1.2126889279253686E-004 + 130.50000000000000 -1.2098745695923405E-004 + 130.56000000000000 -1.2064127136081077E-004 + 130.62000000000000 -1.2022799105983495E-004 + 130.68000000000001 -1.1974530144195390E-004 + 130.73999999999998 -1.1919092289024421E-004 + 130.79999999999998 -1.1856262398149127E-004 + 130.85999999999999 -1.1785823185693695E-004 + 130.91999999999999 -1.1707561400501964E-004 + 130.97999999999999 -1.1621271195013047E-004 + 131.03999999999999 -1.1526756305185637E-004 + 131.09999999999999 -1.1423826836853771E-004 + 131.16000000000000 -1.1312305471015631E-004 + 131.22000000000000 -1.1192024798604999E-004 + 131.28000000000000 -1.1062829229494255E-004 + 131.34000000000000 -1.0924578275102929E-004 + 131.40000000000001 -1.0777145052483904E-004 + 131.45999999999998 -1.0620417549569692E-004 + 131.51999999999998 -1.0454298849597389E-004 + 131.57999999999998 -1.0278709340978099E-004 + 131.63999999999999 -1.0093584872173823E-004 + 131.69999999999999 -9.8988807308473254E-005 + 131.75999999999999 -9.6945666715435912E-005 + 131.81999999999999 -9.4806315511576189E-005 + 131.88000000000000 -9.2570799357553256E-005 + 131.94000000000000 -9.0239352714042843E-005 + 132.00000000000000 -8.7812373459236049E-005 + 132.06000000000000 -8.5290437033251133E-005 + 132.12000000000000 -8.2674286867043698E-005 + 132.18000000000001 -7.9964837610348427E-005 + 132.23999999999998 -7.7163187330483800E-005 + 132.29999999999998 -7.4270593466928424E-005 + 132.35999999999999 -7.1288504145704444E-005 + 132.41999999999999 -6.8218536884567501E-005 + 132.47999999999999 -6.5062489547831738E-005 + 132.53999999999999 -6.1822333499331075E-005 + 132.59999999999999 -5.8500230609299823E-005 + 132.66000000000000 -5.5098514951257579E-005 + 132.72000000000000 -5.1619703927759122E-005 + 132.78000000000000 -4.8066497017156052E-005 + 132.84000000000000 -4.4441771437777689E-005 + 132.90000000000001 -4.0748592449770852E-005 + 132.95999999999998 -3.6990190559408486E-005 + 133.01999999999998 -3.3169988085369886E-005 + 133.07999999999998 -2.9291565334768719E-005 + 133.13999999999999 -2.5358682187084613E-005 + 133.19999999999999 -2.1375257985228525E-005 + 133.25999999999999 -1.7345371910533668E-005 + 133.31999999999999 -1.3273255304442185E-005 + 133.38000000000000 -9.1632888201533033E-006 + 133.44000000000000 -5.0199830958523891E-006 + 133.50000000000000 -8.4797721302422726E-007 + 133.56000000000000 3.3479739835939972E-006 + 133.62000000000000 7.5630123359882789E-006 + 133.68000000000001 1.1792199813562152E-005 + 133.73999999999998 1.6030510416857313E-005 + 133.79999999999998 2.0272868498577484E-005 + 133.85999999999999 2.4514149213602743E-005 + 133.91999999999999 2.8749199847515237E-005 + 133.97999999999999 3.2972849671497808E-005 + 134.03999999999999 3.7179930287604530E-005 + 134.09999999999999 4.1365284875832696E-005 + 134.16000000000000 4.5523778464222864E-005 + 134.22000000000000 4.9650324372081896E-005 + 134.28000000000000 5.3739876431567791E-005 + 134.34000000000000 5.7787456824424291E-005 + 134.40000000000001 6.1788152051828646E-005 + 134.45999999999998 6.5737124425928420E-005 + 134.51999999999998 6.9629634443326075E-005 + 134.57999999999998 7.3461020280578141E-005 + 134.63999999999999 7.7226744684038171E-005 + 134.69999999999999 8.0922370051087994E-005 + 134.75999999999999 8.4543596957409333E-005 + 134.81999999999999 8.8086253557407434E-005 + 134.88000000000000 9.1546294637475368E-005 + 134.94000000000000 9.4919847440237955E-005 + 135.00000000000000 9.8203215526222786E-005 + 135.06000000000000 1.0139285289822443E-004 + 135.12000000000000 1.0448542774955136E-004 + 135.18000000000001 1.0747778920026535E-004 + 135.23999999999998 1.1036701569212494E-004 + 135.29999999999998 1.1315039024087653E-004 + 135.35999999999999 1.1582542569038776E-004 + 135.41999999999999 1.1838987285762724E-004 + 135.47999999999999 1.2084171200253717E-004 + 135.53999999999999 1.2317917047073449E-004 + 135.59999999999999 1.2540068696351823E-004 + 135.66000000000000 1.2750496414776349E-004 + 135.72000000000000 1.2949092242013030E-004 + 135.78000000000000 1.3135770213045818E-004 + 135.84000000000000 1.3310466768865466E-004 + 135.90000000000001 1.3473139226032833E-004 + 135.95999999999998 1.3623767063716428E-004 + 136.01999999999998 1.3762346322513121E-004 + 136.07999999999998 1.3888896028609285E-004 + 136.13999999999999 1.4003449185123442E-004 + 136.19999999999999 1.4106056558148123E-004 + 136.25999999999999 1.4196788001478444E-004 + 136.31999999999999 1.4275727206376385E-004 + 136.38000000000000 1.4342973712405842E-004 + 136.44000000000000 1.4398639007262871E-004 + 136.50000000000000 1.4442853469933195E-004 + 136.56000000000000 1.4475755275147875E-004 + 136.62000000000000 1.4497499983916120E-004 + 136.68000000000001 1.4508249799761430E-004 + 136.73999999999998 1.4508184473493939E-004 + 136.79999999999998 1.4497488616838596E-004 + 136.85999999999999 1.4476360563617626E-004 + 136.91999999999999 1.4445006908052165E-004 + 136.97999999999999 1.4403642614396089E-004 + 137.03999999999999 1.4352489917242057E-004 + 137.09999999999999 1.4291778426915152E-004 + 137.16000000000000 1.4221746113004876E-004 + 137.22000000000000 1.4142632192078031E-004 + 137.28000000000000 1.4054687000655434E-004 + 137.34000000000000 1.3958160112520371E-004 + 137.40000000000001 1.3853307561743469E-004 + 137.45999999999998 1.3740388062011277E-004 + 137.51999999999998 1.3619661884463631E-004 + 137.57999999999998 1.3491392397109187E-004 + 137.63999999999999 1.3355844036303815E-004 + 137.69999999999999 1.3213280877712421E-004 + 137.75999999999999 1.3063968317638370E-004 + 137.81999999999999 1.2908169122623995E-004 + 137.88000000000000 1.2746146045909538E-004 + 137.94000000000000 1.2578160732266419E-004 + 138.00000000000000 1.2404472089772489E-004 + 138.06000000000000 1.2225336817398889E-004 + 138.12000000000000 1.2041008961403266E-004 + 138.18000000000001 1.1851739179896718E-004 + 138.23999999999998 1.1657775060157135E-004 + 138.29999999999998 1.1459362347185407E-004 + 138.35999999999999 1.1256742088046870E-004 + 138.41999999999999 1.1050154829820902E-004 + 138.47999999999999 1.0839838448544225E-004 + 138.53999999999999 1.0626027815968259E-004 + 138.59999999999999 1.0408958035090772E-004 + 138.66000000000000 1.0188860863810861E-004 + 138.72000000000000 9.9659700006818396E-005 + 138.78000000000000 9.7405164682470101E-005 + 138.84000000000000 9.5127302135440513E-005 + 138.90000000000001 9.2828423156852264E-005 + 138.95999999999998 9.0510820801872595E-005 + 139.01999999999998 8.8176777709275320E-005 + 139.07999999999998 8.5828560508718655E-005 + 139.13999999999999 8.3468412785748272E-005 + 139.19999999999999 8.1098552920465640E-005 + 139.25999999999999 7.8721176107873558E-005 + 139.31999999999999 7.6338435620157256E-005 + 139.38000000000000 7.3952450968717623E-005 + 139.44000000000000 7.1565276252342369E-005 + 139.50000000000000 6.9178947447181888E-005 + 139.56000000000000 6.6795423859004739E-005 + 139.62000000000000 6.4416632142194887E-005 + 139.68000000000001 6.2044437029092864E-005 + 139.73999999999998 5.9680660596189869E-005 + 139.79999999999998 5.7327063283983517E-005 + 139.85999999999999 5.4985354461822025E-005 + 139.91999999999999 5.2657200541767363E-005 + 139.97999999999999 5.0344212379742635E-005 + 140.03999999999999 4.8047948996231014E-005 + 140.09999999999999 4.5769909694426980E-005 + 140.16000000000000 4.3511535177718274E-005 + 140.22000000000000 4.1274207528883928E-005 + 140.28000000000000 3.9059234761152975E-005 + 140.34000000000000 3.6867848708852564E-005 + 140.40000000000001 3.4701207026080292E-005 + 140.45999999999998 3.2560368146527071E-005 + 140.51999999999998 3.0446300118208710E-005 + 140.57999999999998 2.8359869361448807E-005 + 140.63999999999999 2.6301842678978677E-005 + 140.69999999999999 2.4272881142153962E-005 + 140.75999999999999 2.2273540694494293E-005 + 140.81999999999999 2.0304271486848601E-005 + 140.88000000000000 1.8365433248699718E-005 + 140.94000000000000 1.6457288237703604E-005 + 141.00000000000000 1.4580013569249954E-005 + 141.06000000000000 1.2733711677923324E-005 + 141.12000000000000 1.0918416138965517E-005 + 141.18000000000001 9.1341019425051247E-006 + 141.23999999999998 7.3806953817323214E-006 + 141.29999999999998 5.6580773777931435E-006 + 141.35999999999999 3.9660956939530522E-006 + 141.41999999999999 2.3045667599826871E-006 + 141.47999999999999 6.7328099603008414E-007 + 141.53999999999999 -9.2799576233739348E-007 + 141.59999999999999 -2.4995192522777619E-006 + 141.66000000000000 -4.0415683179795798E-006 + 141.72000000000000 -5.5544433607528279E-006 + 141.78000000000000 -7.0384672892998427E-006 + 141.84000000000000 -8.4939866124240489E-006 + 141.90000000000001 -9.9213695258160746E-006 + 141.95999999999998 -1.1321004554868209E-005 + 142.01999999999998 -1.2693297058515058E-005 + 142.07999999999998 -1.4038667379454517E-005 + 142.13999999999999 -1.5357541866665072E-005 + 142.19999999999999 -1.6650349393821951E-005 + 142.25999999999999 -1.7917507397002860E-005 + 142.31999999999999 -1.9159419723614152E-005 + 142.38000000000000 -2.0376460935707012E-005 + 142.44000000000000 -2.1568968575962904E-005 + 142.50000000000000 -2.2737233606514096E-005 + 142.56000000000000 -2.3881493471411907E-005 + 142.62000000000000 -2.5001918365088979E-005 + 142.68000000000001 -2.6098609316104120E-005 + 142.73999999999998 -2.7171589906357664E-005 + 142.79999999999998 -2.8220803558806796E-005 + 142.85999999999999 -2.9246107405811703E-005 + 142.91999999999999 -3.0247277203143046E-005 + 142.97999999999999 -3.1223999977087553E-005 + 143.03999999999999 -3.2175877737716246E-005 + 143.09999999999999 -3.3102434764086571E-005 + 143.16000000000000 -3.4003112295482306E-005 + 143.22000000000000 -3.4877264357522314E-005 + 143.28000000000000 -3.5724180389168330E-005 + 143.34000000000000 -3.6543068609426733E-005 + 143.40000000000001 -3.7333062615736885E-005 + 143.45999999999998 -3.8093231202347512E-005 + 143.51999999999998 -3.8822564558469786E-005 + 143.57999999999998 -3.9519985776009316E-005 + 143.63999999999999 -4.0184351938093895E-005 + 143.69999999999999 -4.0814440764327068E-005 + 143.75999999999999 -4.1408966153992179E-005 + 143.81999999999999 -4.1966572231051834E-005 + 143.88000000000000 -4.2485826409137015E-005 + 143.94000000000000 -4.2965226997134800E-005 + 144.00000000000000 -4.3403197700512216E-005 + 144.06000000000000 -4.3798094282010255E-005 + 144.12000000000000 -4.4148198339994010E-005 + 144.18000000000001 -4.4451717492898602E-005 + 144.23999999999998 -4.4706795439803884E-005 + 144.29999999999998 -4.4911502429605452E-005 + 144.35999999999999 -4.5063839898759806E-005 + 144.41999999999999 -4.5161749420262443E-005 + 144.47999999999999 -4.5203114909695895E-005 + 144.53999999999999 -4.5185753210246197E-005 + 144.59999999999999 -4.5107434072054370E-005 + 144.66000000000000 -4.4965885584564347E-005 + 144.72000000000000 -4.4758786631219033E-005 + 144.78000000000000 -4.4483795049016383E-005 + 144.84000000000000 -4.4138530415597251E-005 + 144.90000000000001 -4.3720599491945880E-005 + 144.95999999999998 -4.3227600668862731E-005 + 145.01999999999998 -4.2657127639783076E-005 + 145.07999999999998 -4.2006774802446415E-005 + 145.13999999999999 -4.1274158573495980E-005 + 145.19999999999999 -4.0456907324168109E-005 + 145.25999999999999 -3.9552671763558161E-005 + 145.31999999999999 -3.8559133385340128E-005 + 145.38000000000000 -3.7474009349517506E-005 + 145.44000000000000 -3.6295045483951651E-005 + 145.50000000000000 -3.5020037508373991E-005 + 145.56000000000000 -3.3646806900567999E-005 + 145.62000000000000 -3.2173229658100600E-005 + 145.68000000000001 -3.0597217380847635E-005 + 145.73999999999998 -2.8916729879073889E-005 + 145.79999999999998 -2.7129773127164028E-005 + 145.85999999999999 -2.5234414085523872E-005 + 145.91999999999999 -2.3228774590052156E-005 + 145.97999999999999 -2.1111038959650628E-005 + 146.03999999999999 -1.8879464238099971E-005 + 146.09999999999999 -1.6532388977589803E-005 + 146.16000000000000 -1.4068245198255434E-005 + 146.22000000000000 -1.1485561025916885E-005 + 146.28000000000000 -8.7829807345449177E-006 + 146.34000000000000 -5.9592657580220020E-006 + 146.40000000000001 -3.0133098931173846E-006 + 146.45999999999998 5.5854893934692945E-008 + 146.51999999999998 3.2490488321281915E-006 + 146.57999999999998 6.5669432841652939E-006 + 146.63999999999999 1.0010056759370306E-005 + 146.69999999999999 1.3578751093685709E-005 + 146.75999999999999 1.7273233760982727E-005 + 146.81999999999999 2.1093560253796897E-005 + 146.88000000000000 2.5039634032115809E-005 + 146.94000000000000 2.9111217043984598E-005 + 147.00000000000000 3.3307934315567206E-005 + 147.06000000000000 3.7629274426881496E-005 + 147.12000000000000 4.2074600706799350E-005 + 147.18000000000001 4.6643147949851623E-005 + 147.23999999999998 5.1334037516101967E-005 + 147.29999999999998 5.6146266910637412E-005 + 147.35999999999999 6.1078725729761931E-005 + 147.41999999999999 6.6130190651845282E-005 + 147.47999999999999 7.1299323997961960E-005 + 147.53999999999999 7.6584673770299479E-005 + 147.59999999999999 8.1984680737708736E-005 + 147.66000000000000 8.7497670472610177E-005 + 147.72000000000000 9.3121857638203042E-005 + 147.78000000000000 9.8855359697914833E-005 + 147.84000000000000 1.0469618713274478E-004 + 147.90000000000001 1.1064222637499671E-004 + 147.95999999999998 1.1669129677702533E-004 + 148.01999999999998 1.2284111420023813E-004 + 148.07999999999998 1.2908931560919420E-004 + 148.13999999999999 1.3543346415891588E-004 + 148.19999999999999 1.4187106380439499E-004 + 148.25999999999999 1.4839954111954833E-004 + 148.31999999999999 1.5501627734878818E-004 + 148.38000000000000 1.6171862116311312E-004 + 148.44000000000000 1.6850386402940981E-004 + 148.50000000000000 1.7536925864211969E-004 + 148.56000000000000 1.8231203449663242E-004 + 148.62000000000000 1.8932938626087215E-004 + 148.68000000000001 1.9641845883558071E-004 + 148.73999999999998 2.0357635978662648E-004 + 148.79999999999998 2.1080017575879822E-004 + 148.85999999999999 2.1808692711181398E-004 + 148.91999999999999 2.2543360799485071E-004 + 148.97999999999999 2.3283710597898818E-004 + 149.03999999999999 2.4029432131051186E-004 + 149.09999999999999 2.4780203615079697E-004 + 149.16000000000000 2.5535696135775375E-004 + 149.22000000000000 2.6295574041015950E-004 + 149.28000000000000 2.7059491894135457E-004 + 149.34000000000000 2.7827098630790650E-004 + 149.40000000000001 2.8598032705722237E-004 + 149.45999999999998 2.9371920854462613E-004 + 149.51999999999998 3.0148382331327759E-004 + 149.57999999999998 3.0927019056427465E-004 + 149.63999999999999 3.1707425694589510E-004 + 149.69999999999999 3.2489184761530819E-004 + 149.75999999999999 3.3271864843979570E-004 + 149.81999999999999 3.4055016236651402E-004 + 149.88000000000000 3.4838176340551300E-004 + 149.94000000000000 3.5620868937436304E-004 + 150.00000000000000 3.6402599524926573E-004 + 150.06000000000000 3.7182852224076625E-004 + 150.12000000000000 3.7961095774480263E-004 + 150.18000000000001 3.8736782657301268E-004 + 150.23999999999998 3.9509340132685386E-004 + 150.29999999999998 4.0278183535975522E-004 + 150.35999999999999 4.1042700958949607E-004 + 150.41999999999999 4.1802265273864600E-004 + 150.47999999999999 4.2556225254368306E-004 + 150.53999999999999 4.3303917884521720E-004 + 150.59999999999999 4.4044654182461793E-004 + 150.66000000000000 4.4777731145445392E-004 + 150.72000000000000 4.5502421716956147E-004 + 150.78000000000000 4.6217983882890706E-004 + 150.84000000000000 4.6923660498804332E-004 + 150.90000000000001 4.7618674337012682E-004 + 150.95999999999998 4.8302234725668082E-004 + 151.01999999999998 4.8973528842446144E-004 + 151.07999999999998 4.9631735189961039E-004 + 151.13999999999999 5.0276020777085617E-004 + 151.19999999999999 5.0905536794642518E-004 + 151.25999999999999 5.1519421909990658E-004 + 151.31999999999999 5.2116807656092917E-004 + 151.38000000000000 5.2696812613387738E-004 + 151.44000000000000 5.3258557976361941E-004 + 151.50000000000000 5.3801154568969679E-004 + 151.56000000000000 5.4323717486693540E-004 + 151.62000000000000 5.4825349123040971E-004 + 151.68000000000001 5.5305165225357736E-004 + 151.73999999999998 5.5762279528541339E-004 + 151.79999999999998 5.6195823994570598E-004 + 151.85999999999999 5.6604936786852232E-004 + 151.91999999999999 5.6988766292735888E-004 + 151.97999999999999 5.7346480045060368E-004 + 152.03999999999999 5.7677259483614022E-004 + 152.09999999999999 5.7980310292594245E-004 + 152.16000000000000 5.8254856299354339E-004 + 152.22000000000000 5.8500153819169317E-004 + 152.28000000000000 5.8715480377249268E-004 + 152.34000000000000 5.8900154272997090E-004 + 152.40000000000001 5.9053519759649396E-004 + 152.45999999999998 5.9174951702397650E-004 + 152.51999999999998 5.9263861851515482E-004 + 152.57999999999998 5.9319700972189587E-004 + 152.63999999999999 5.9341967559575033E-004 + 152.69999999999999 5.9330187482563366E-004 + 152.75999999999999 5.9283952415746467E-004 + 152.81999999999999 5.9202876599200223E-004 + 152.88000000000000 5.9086644444171575E-004 + 152.94000000000000 5.8934984031012560E-004 + 153.00000000000000 5.8747678412119676E-004 + 153.06000000000000 5.8524553174777838E-004 + 153.12000000000000 5.8265502628426183E-004 + 153.17999999999998 5.7970480758003367E-004 + 153.23999999999998 5.7639483689279794E-004 + 153.29999999999998 5.7272585717494534E-004 + 153.35999999999999 5.6869913196739099E-004 + 153.41999999999999 5.6431651186733783E-004 + 153.47999999999999 5.5958058223384258E-004 + 153.53999999999999 5.5449434514194963E-004 + 153.59999999999999 5.4906157177227893E-004 + 153.66000000000000 5.4328664744274821E-004 + 153.72000000000000 5.3717448708479997E-004 + 153.78000000000000 5.3073078434803344E-004 + 153.84000000000000 5.2396163973180429E-004 + 153.90000000000001 5.1687381840112307E-004 + 153.95999999999998 5.0947471959454703E-004 + 154.01999999999998 5.0177229485789618E-004 + 154.07999999999998 4.9377506935849172E-004 + 154.13999999999999 4.8549205809053788E-004 + 154.19999999999999 4.7693287690387255E-004 + 154.25999999999999 4.6810763047492731E-004 + 154.31999999999999 4.5902693335280180E-004 + 154.38000000000000 4.4970180669681275E-004 + 154.44000000000000 4.4014380789048719E-004 + 154.50000000000000 4.3036482516413800E-004 + 154.56000000000000 4.2037721207322534E-004 + 154.62000000000000 4.1019362104993928E-004 + 154.67999999999998 3.9982709354734723E-004 + 154.73999999999998 3.8929093488230995E-004 + 154.79999999999998 3.7859871364102096E-004 + 154.85999999999999 3.6776422853100979E-004 + 154.91999999999999 3.5680149824435806E-004 + 154.97999999999999 3.4572474368783451E-004 + 155.03999999999999 3.3454827305288553E-004 + 155.09999999999999 3.2328654994123865E-004 + 155.16000000000000 3.1195413962412127E-004 + 155.22000000000000 3.0056559130236333E-004 + 155.28000000000000 2.8913550127490937E-004 + 155.34000000000000 2.7767842181562806E-004 + 155.40000000000001 2.6620889565393132E-004 + 155.45999999999998 2.5474138623660531E-004 + 155.51999999999998 2.4329020800134535E-004 + 155.57999999999998 2.3186956148849388E-004 + 155.63999999999999 2.2049341181290779E-004 + 155.69999999999999 2.0917553723236873E-004 + 155.75999999999999 1.9792948318532425E-004 + 155.81999999999999 1.8676849513593860E-004 + 155.88000000000000 1.7570546965627460E-004 + 155.94000000000000 1.6475302505775179E-004 + 156.00000000000000 1.5392334841277331E-004 + 156.06000000000000 1.4322828393867782E-004 + 156.12000000000000 1.3267922364628451E-004 + 156.17999999999998 1.2228713161982306E-004 + 156.23999999999998 1.1206251772377726E-004 + 156.29999999999998 1.0201540754624421E-004 + 156.35999999999999 9.2155375388682840E-005 + 156.41999999999999 8.2491463001401291E-005 + 156.47999999999999 7.3032232265963422E-005 + 156.53999999999999 6.3785735922099057E-005 + 156.59999999999999 5.4759499868932070E-005 + 156.66000000000000 4.5960538262959582E-005 + 156.72000000000000 3.7395341194338899E-005 + 156.78000000000000 2.9069872869398941E-005 + 156.84000000000000 2.0989577705109921E-005 + 156.90000000000001 1.3159372087696616E-005 + 156.95999999999998 5.5836573686198527E-006 + 157.01999999999998 -1.7336904368667663E-006 + 157.07999999999998 -8.7892970163682434E-006 + 157.13999999999999 -1.5580299159457318E-005 + 157.19999999999999 -2.2104321465776799E-005 + 157.25999999999999 -2.8359483468460145E-005 + 157.31999999999999 -3.4344374538790209E-005 + 157.38000000000000 -4.0058035451662359E-005 + 157.44000000000000 -4.5499954910151324E-005 + 157.50000000000000 -5.0670042703471091E-005 + 157.56000000000000 -5.5568625482133610E-005 + 157.62000000000000 -6.0196398915267428E-005 + 157.67999999999998 -6.4554428449142530E-005 + 157.73999999999998 -6.8644119044269900E-005 + 157.79999999999998 -7.2467194866003497E-005 + 157.85999999999999 -7.6025692538524701E-005 + 157.91999999999999 -7.9321918215307535E-005 + 157.97999999999999 -8.2358419153203289E-005 + 158.03999999999999 -8.5137994944610445E-005 + 158.09999999999999 -8.7663643063445664E-005 + 158.16000000000000 -8.9938554182444257E-005 + 158.22000000000000 -9.1966087534262790E-005 + 158.28000000000000 -9.3749741133814868E-005 + 158.34000000000000 -9.5293143598843642E-005 + 158.40000000000001 -9.6600037091441670E-005 + 158.45999999999998 -9.7674239102578272E-005 + 158.51999999999998 -9.8519643974181553E-005 + 158.57999999999998 -9.9140167695176745E-005 + 158.63999999999999 -9.9539781177108077E-005 + 158.69999999999999 -9.9722455234370862E-005 + 158.75999999999999 -9.9692161212328690E-005 + 158.81999999999999 -9.9452850042988400E-005 + 158.88000000000000 -9.9008435643379130E-005 + 158.94000000000000 -9.8362804276363856E-005 + 159.00000000000000 -9.7519794203223260E-005 + 159.06000000000000 -9.6483171678357136E-005 + 159.12000000000000 -9.5256665875397041E-005 + 159.17999999999998 -9.3843931343847234E-005 + 159.23999999999998 -9.2248558159770493E-005 + 159.29999999999998 -9.0474068516326932E-005 + 159.35999999999999 -8.8523934655840129E-005 + 159.41999999999999 -8.6401547661639849E-005 + 159.47999999999999 -8.4110245608695633E-005 + 159.53999999999999 -8.1653306743893617E-005 + 159.59999999999999 -7.9033949322874014E-005 + 159.66000000000000 -7.6255343995776045E-005 + 159.72000000000000 -7.3320595462632554E-005 + 159.78000000000000 -7.0232759126499523E-005 + 159.84000000000000 -6.6994841981396947E-005 + 159.90000000000001 -6.3609811452243446E-005 + 159.95999999999998 -6.0080587025468343E-005 + 160.01999999999998 -5.6410034681803067E-005 + 160.07999999999998 -5.2601004515362693E-005 + 160.13999999999999 -4.8656306446020431E-005 + 160.19999999999999 -4.4578733137250120E-005 + 160.25999999999999 -4.0371064477489974E-005 + 160.31999999999999 -3.6036077287808557E-005 + 160.38000000000000 -3.1576549668644006E-005 + 160.44000000000000 -2.6995286763062387E-005 + 160.50000000000000 -2.2295112927699180E-005 + 160.56000000000000 -1.7478898527068932E-005 + 160.62000000000000 -1.2549560737846960E-005 + 160.67999999999998 -7.5100809300014751E-006 + 160.73999999999998 -2.3635085194889167E-006 + 160.79999999999998 2.8870246727264461E-006 + 160.85999999999999 8.2382997390112058E-006 + 160.91999999999999 1.3687003945880484E-005 + 160.97999999999999 1.9229727085149732E-005 + 161.03999999999999 2.4862948104783146E-005 + 161.09999999999999 3.0583036305070219E-005 + 161.16000000000000 3.6386244576812328E-005 + 161.22000000000000 4.2268706310449942E-005 + 161.28000000000000 4.8226431819166296E-005 + 161.34000000000000 5.4255301103301934E-005 + 161.40000000000001 6.0351058378899214E-005 + 161.45999999999998 6.6509307347733143E-005 + 161.51999999999998 7.2725511446000045E-005 + 161.57999999999998 7.8994979914741049E-005 + 161.63999999999999 8.5312867917689065E-005 + 161.69999999999999 9.1674157556945508E-005 + 161.75999999999999 9.8073668914605233E-005 + 161.81999999999999 1.0450605494737767E-004 + 161.88000000000000 1.1096579350606734E-004 + 161.94000000000000 1.1744717978911589E-004 + 162.00000000000000 1.2394434954932689E-004 + 162.06000000000000 1.3045126092560392E-004 + 162.12000000000000 1.3696168762221335E-004 + 162.17999999999998 1.4346925862297351E-004 + 162.23999999999998 1.4996743530107327E-004 + 162.29999999999998 1.5644952214874519E-004 + 162.35999999999999 1.6290869458972601E-004 + 162.41999999999999 1.6933796874372896E-004 + 162.47999999999999 1.7573026911645910E-004 + 162.53999999999999 1.8207838861904329E-004 + 162.59999999999999 1.8837500410910779E-004 + 162.66000000000000 1.9461271296068191E-004 + 162.72000000000000 2.0078402774334025E-004 + 162.78000000000000 2.0688137231180613E-004 + 162.84000000000000 2.1289709249813302E-004 + 162.90000000000001 2.1882348344359816E-004 + 162.95999999999998 2.2465277124370932E-004 + 163.01999999999998 2.3037719101398152E-004 + 163.07999999999998 2.3598890991839271E-004 + 163.13999999999999 2.4148005490116640E-004 + 163.19999999999999 2.4684278732652596E-004 + 163.25999999999999 2.5206924153135763E-004 + 163.31999999999999 2.5715160844959112E-004 + 163.38000000000000 2.6208205532065351E-004 + 163.44000000000000 2.6685291260004006E-004 + 163.50000000000000 2.7145644018383063E-004 + 163.56000000000000 2.7588514543682412E-004 + 163.62000000000000 2.8013154025110056E-004 + 163.67999999999998 2.8418832127128301E-004 + 163.73999999999998 2.8804836167406706E-004 + 163.79999999999998 2.9170466053600219E-004 + 163.85999999999999 2.9515044734123420E-004 + 163.91999999999999 2.9837921868713495E-004 + 163.97999999999999 3.0138465377442346E-004 + 164.03999999999999 3.0416073635660057E-004 + 164.09999999999999 3.0670172542017151E-004 + 164.16000000000000 3.0900222049166969E-004 + 164.22000000000000 3.1105709685964671E-004 + 164.28000000000000 3.1286158407046604E-004 + 164.34000000000000 3.1441130974180193E-004 + 164.40000000000001 3.1570222236208893E-004 + 164.45999999999998 3.1673071293112542E-004 + 164.51999999999998 3.1749356042432524E-004 + 164.57999999999998 3.1798790691631574E-004 + 164.63999999999999 3.1821136864419963E-004 + 164.69999999999999 3.1816199487977201E-004 + 164.75999999999999 3.1783820847183433E-004 + 164.81999999999999 3.1723894110912370E-004 + 164.88000000000000 3.1636354596426550E-004 + 164.94000000000000 3.1521186057892060E-004 + 165.00000000000000 3.1378409987994709E-004 + 165.06000000000000 3.1208099385454918E-004 + 165.12000000000000 3.1010376453337730E-004 + 165.17999999999998 3.0785399659754908E-004 + 165.23999999999998 3.0533381044178028E-004 + 165.29999999999998 3.0254577094367846E-004 + 165.35999999999999 2.9949287064197811E-004 + 165.41999999999999 2.9617859696378984E-004 + 165.47999999999999 2.9260689312083277E-004 + 165.53999999999999 2.8878210435481517E-004 + 165.59999999999999 2.8470904864549146E-004 + 165.66000000000000 2.8039303796694793E-004 + 165.72000000000000 2.7583973134485474E-004 + 165.78000000000000 2.7105524689253135E-004 + 165.84000000000000 2.6604611484571316E-004 + 165.90000000000001 2.6081920075853341E-004 + 165.95999999999998 2.5538181200352209E-004 + 166.01999999999998 2.4974154311174421E-004 + 166.07999999999998 2.4390632948169511E-004 + 166.13999999999999 2.3788448447927457E-004 + 166.19999999999999 2.3168448731357766E-004 + 166.25999999999999 2.2531512017604332E-004 + 166.31999999999999 2.1878539239618763E-004 + 166.38000000000000 2.1210452489512185E-004 + 166.44000000000000 2.0528190432585609E-004 + 166.50000000000000 1.9832704579018223E-004 + 166.56000000000000 1.9124962516064837E-004 + 166.62000000000000 1.8405937994195594E-004 + 166.67999999999998 1.7676614214089166E-004 + 166.73999999999998 1.6937984343629660E-004 + 166.79999999999998 1.6191039400815949E-004 + 166.85999999999999 1.5436776615211035E-004 + 166.91999999999999 1.4676192828322500E-004 + 166.97999999999999 1.3910281661690040E-004 + 167.03999999999999 1.3140035090967642E-004 + 167.09999999999999 1.2366439945806732E-004 + 167.16000000000000 1.1590475442570318E-004 + 167.22000000000000 1.0813113477367457E-004 + 167.28000000000000 1.0035310905186065E-004 + 167.34000000000000 9.2580157510808241E-005 + 167.40000000000001 8.4821599065249725E-005 + 167.45999999999998 7.7086578409360406E-005 + 167.51999999999998 6.9384035798665246E-005 + 167.57999999999998 6.1722722285878273E-005 + 167.63999999999999 5.4111159169197283E-005 + 167.69999999999999 4.6557609218281930E-005 + 167.75999999999999 3.9070089626846543E-005 + 167.81999999999999 3.1656348411631912E-005 + 167.88000000000000 2.4323840806147601E-005 + 167.94000000000000 1.7079748535083093E-005 + 168.00000000000000 9.9309430741649320E-006 + 168.06000000000000 2.8840028290895388E-006 + 168.12000000000000 -4.0548005601278004E-006 + 168.17999999999998 -1.0879502799944345E-005 + 168.23999999999998 -1.7584446313653102E-005 + 168.29999999999998 -2.4164284242153843E-005 + 168.35999999999999 -3.0613979438602806E-005 + 168.41999999999999 -3.6928799767961604E-005 + 168.47999999999999 -4.3104333215362366E-005 + 168.53999999999999 -4.9136471242939336E-005 + 168.59999999999999 -5.5021422438413027E-005 + 168.66000000000000 -6.0755706027586625E-005 + 168.72000000000000 -6.6336157894500422E-005 + 168.78000000000000 -7.1759911372475983E-005 + 168.84000000000000 -7.7024431592232777E-005 + 168.90000000000001 -8.2127473695023956E-005 + 168.95999999999998 -8.7067097276690268E-005 + 169.01999999999998 -9.1841680519928580E-005 + 169.07999999999998 -9.6449858758086056E-005 + 169.13999999999999 -1.0089058798162878E-004 + 169.19999999999999 -1.0516309569542600E-004 + 169.25999999999999 -1.0926686315986785E-004 + 169.31999999999999 -1.1320164690872832E-004 + 169.38000000000000 -1.1696744866822401E-004 + 169.44000000000000 -1.2056450958539244E-004 + 169.50000000000000 -1.2399330920923171E-004 + 169.56000000000000 -1.2725454660340724E-004 + 169.62000000000000 -1.3034915454953851E-004 + 169.67999999999998 -1.3327824809576699E-004 + 169.73999999999998 -1.3604315513024719E-004 + 169.79999999999998 -1.3864540825008352E-004 + 169.85999999999999 -1.4108674583656255E-004 + 169.91999999999999 -1.4336906198822026E-004 + 169.97999999999999 -1.4549443184738438E-004 + 170.03999999999999 -1.4746512546581718E-004 + 170.09999999999999 -1.4928356806317370E-004 + 170.16000000000000 -1.5095234334742424E-004 + 170.22000000000000 -1.5247421739016174E-004 + 170.28000000000000 -1.5385203528684140E-004 + 170.34000000000000 -1.5508882765782357E-004 + 170.40000000000001 -1.5618773191232430E-004 + 170.45999999999998 -1.5715195358150140E-004 + 170.51999999999998 -1.5798484732404519E-004 + 170.57999999999998 -1.5868982449047134E-004 + 170.63999999999999 -1.5927036207162237E-004 + 170.69999999999999 -1.5972998679201534E-004 + 170.75999999999999 -1.6007228166761868E-004 + 170.81999999999999 -1.6030086006232338E-004 + 170.88000000000000 -1.6041933553137189E-004 + 170.94000000000000 -1.6043136182745374E-004 + 171.00000000000000 -1.6034059671580432E-004 + 171.06000000000000 -1.6015068581456943E-004 + 171.12000000000000 -1.5986525578884144E-004 + 171.17999999999998 -1.5948794282992379E-004 + 171.23999999999998 -1.5902232288509169E-004 + 171.29999999999998 -1.5847197920291166E-004 + 171.35999999999999 -1.5784045406767730E-004 + 171.41999999999999 -1.5713127252569542E-004 + 171.47999999999999 -1.5634791209026617E-004 + 171.53999999999999 -1.5549379396488964E-004 + 171.59999999999999 -1.5457233550098795E-004 + 171.66000000000000 -1.5358687130504508E-004 + 171.72000000000000 -1.5254069563515142E-004 + 171.78000000000000 -1.5143705851230308E-004 + 171.84000000000000 -1.5027912403512407E-004 + 171.90000000000001 -1.4907001911730936E-004 + 171.95999999999998 -1.4781281456256279E-004 + 172.01999999999998 -1.4651050309569537E-004 + 172.07999999999998 -1.4516601500067327E-004 + 172.13999999999999 -1.4378217964628012E-004 + 172.19999999999999 -1.4236178679900233E-004 + 172.25999999999999 -1.4090751778945789E-004 + 172.31999999999999 -1.3942201359802136E-004 + 172.38000000000000 -1.3790778927761055E-004 + 172.44000000000000 -1.3636730145839815E-004 + 172.50000000000000 -1.3480294419249692E-004 + 172.56000000000000 -1.3321698679337178E-004 + 172.62000000000000 -1.3161164467422816E-004 + 172.67999999999998 -1.2998904354683300E-004 + 172.73999999999998 -1.2835122434624082E-004 + 172.79999999999998 -1.2670016451256041E-004 + 172.85999999999999 -1.2503774452948048E-004 + 172.91999999999999 -1.2336578035666810E-004 + 172.97999999999999 -1.2168604461663999E-004 + 173.03999999999999 -1.2000021029215895E-004 + 173.09999999999999 -1.1830990625220606E-004 + 173.16000000000000 -1.1661672455642355E-004 + 173.22000000000000 -1.1492220129711156E-004 + 173.28000000000000 -1.1322781601132326E-004 + 173.34000000000000 -1.1153502988510388E-004 + 173.40000000000001 -1.0984524645385369E-004 + 173.45999999999998 -1.0815984813417951E-004 + 173.51999999999998 -1.0648018320665985E-004 + 173.57999999999998 -1.0480756357686161E-004 + 173.63999999999999 -1.0314325664138766E-004 + 173.69999999999999 -1.0148850326461404E-004 + 173.75999999999999 -9.9844507623987510E-005 + 173.81999999999999 -9.8212428069961179E-005 + 173.88000000000000 -9.6593375133552180E-005 + 173.94000000000000 -9.4988420411755396E-005 + 174.00000000000000 -9.3398588229036677E-005 + 174.06000000000000 -9.1824856317548656E-005 + 174.12000000000000 -9.0268151238551180E-005 + 174.17999999999998 -8.8729366861073635E-005 + 174.23999999999998 -8.7209353960166121E-005 + 174.29999999999998 -8.5708903848940557E-005 + 174.35999999999999 -8.4228806651747223E-005 + 174.41999999999999 -8.2769806628559919E-005 + 174.47999999999999 -8.1332620870412753E-005 + 174.53999999999999 -7.9917954410046641E-005 + 174.59999999999999 -7.8526477245413341E-005 + 174.66000000000000 -7.7158855565107295E-005 + 174.72000000000000 -7.5815729245117382E-005 + 174.78000000000000 -7.4497726091012675E-005 + 174.84000000000000 -7.3205429234775884E-005 + 174.90000000000001 -7.1939409815287652E-005 + 174.95999999999998 -7.0700201282018082E-005 + 175.01999999999998 -6.9488305525506176E-005 + 175.07999999999998 -6.8304168010391287E-005 + 175.13999999999999 -6.7148190959907502E-005 + 175.19999999999999 -6.6020718614150887E-005 + 175.25999999999999 -6.4922019101274652E-005 + 175.31999999999999 -6.3852323218237397E-005 + 175.38000000000000 -6.2811779827053198E-005 + 175.44000000000000 -6.1800494277917367E-005 + 175.50000000000000 -6.0818497588632183E-005 + 175.56000000000000 -5.9865762280593401E-005 + 175.62000000000000 -5.8942224893046825E-005 + 175.67999999999998 -5.8047767980296200E-005 + 175.73999999999998 -5.7182240795945597E-005 + 175.79999999999998 -5.6345455045938061E-005 + 175.85999999999999 -5.5537195739897347E-005 + 175.91999999999999 -5.4757229550207596E-005 + 175.97999999999999 -5.4005295215628848E-005 + 176.03999999999999 -5.3281122928168791E-005 + 176.09999999999999 -5.2584421243406344E-005 + 176.16000000000000 -5.1914873811206604E-005 + 176.22000000000000 -5.1272148529827753E-005 + 176.28000000000000 -5.0655884649715308E-005 + 176.34000000000000 -5.0065697809735338E-005 + 176.40000000000001 -4.9501171864294978E-005 + 176.45999999999998 -4.8961852481066553E-005 + 176.51999999999998 -4.8447253964174559E-005 + 176.57999999999998 -4.7956853986910796E-005 + 176.63999999999999 -4.7490092791078750E-005 + 176.69999999999999 -4.7046384162413133E-005 + 176.75999999999999 -4.6625100504870182E-005 + 176.81999999999999 -4.6225604513227533E-005 + 176.88000000000000 -4.5847229830217591E-005 + 176.94000000000000 -4.5489297601935721E-005 + 177.00000000000000 -4.5151132275079177E-005 + 177.06000000000000 -4.4832048237078083E-005 + 177.12000000000000 -4.4531378758833214E-005 + 177.17999999999998 -4.4248457535175607E-005 + 177.23999999999998 -4.3982638781158868E-005 + 177.29999999999998 -4.3733297732515464E-005 + 177.35999999999999 -4.3499830350804985E-005 + 177.41999999999999 -4.3281648611159215E-005 + 177.47999999999999 -4.3078183374557736E-005 + 177.53999999999999 -4.2888884980858459E-005 + 177.59999999999999 -4.2713219547141171E-005 + 177.66000000000000 -4.2550660629963146E-005 + 177.72000000000000 -4.2400684676941127E-005 + 177.78000000000000 -4.2262780842307808E-005 + 177.84000000000000 -4.2136430119562794E-005 + 177.90000000000001 -4.2021121104821812E-005 + 177.95999999999998 -4.1916329197163408E-005 + 178.01999999999998 -4.1821535432618644E-005 + 178.07999999999998 -4.1736209180292094E-005 + 178.13999999999999 -4.1659811024990867E-005 + 178.19999999999999 -4.1591802403353331E-005 + 178.25999999999999 -4.1531633687403447E-005 + 178.31999999999999 -4.1478753591760383E-005 + 178.38000000000000 -4.1432608333610773E-005 + 178.44000000000000 -4.1392639124801551E-005 + 178.50000000000000 -4.1358290063781872E-005 + 178.56000000000000 -4.1328998675552643E-005 + 178.62000000000000 -4.1304203624266167E-005 + 178.67999999999998 -4.1283351372256694E-005 + 178.73999999999998 -4.1265891979918488E-005 + 178.79999999999998 -4.1251278074107416E-005 + 178.85999999999999 -4.1238968454498257E-005 + 178.91999999999999 -4.1228436158071220E-005 + 178.97999999999999 -4.1219170217246215E-005 + 179.03999999999999 -4.1210669126085147E-005 + 179.09999999999999 -4.1202452350798749E-005 + 179.16000000000000 -4.1194055323739228E-005 + 179.22000000000000 -4.1185039824252158E-005 + 179.28000000000000 -4.1174997414190434E-005 + 179.34000000000000 -4.1163537118424470E-005 + 179.40000000000001 -4.1150297215382281E-005 + 179.45999999999998 -4.1134951280884614E-005 + 179.51999999999998 -4.1117184631996750E-005 + 179.57999999999998 -4.1096717291749449E-005 + 179.63999999999999 -4.1073290790805583E-005 + 179.69999999999999 -4.1046661562044200E-005 + 179.75999999999999 -4.1016618684377772E-005 + 179.81999999999999 -4.0982959570275325E-005 + 179.88000000000000 -4.0945509551377182E-005 + 179.94000000000000 -4.0904103644689653E-005 + 180.00000000000000 -4.0858597734394107E-005 + 180.06000000000000 -4.0808873691614444E-005 + 180.12000000000000 -4.0754833431178065E-005 + 180.17999999999998 -4.0696408213234962E-005 + 180.23999999999998 -4.0633551367368268E-005 + 180.29999999999998 -4.0566256108605004E-005 + 180.35999999999999 -4.0494553554988003E-005 + 180.41999999999999 -4.0418505832700587E-005 + 180.47999999999999 -4.0338227914337155E-005 + 180.53999999999999 -4.0253875959061643E-005 + 180.59999999999999 -4.0165643667156371E-005 + 180.66000000000000 -4.0073771804149678E-005 + 180.72000000000000 -3.9978539012014522E-005 + 180.78000000000000 -3.9880256591972243E-005 + 180.84000000000000 -3.9779273952809093E-005 + 180.90000000000001 -3.9675955971561130E-005 + 180.95999999999998 -3.9570691436057046E-005 + 181.01999999999998 -3.9463874471912056E-005 + 181.07999999999998 -3.9355908926195578E-005 + 181.13999999999999 -3.9247196166369219E-005 + 181.19999999999999 -3.9138132136578389E-005 + 181.25999999999999 -3.9029096098334892E-005 + 181.31999999999999 -3.8920456128163458E-005 + 181.38000000000000 -3.8812566077464709E-005 + 181.44000000000000 -3.8705754792568524E-005 + 181.50000000000000 -3.8600337847489449E-005 + 181.56000000000000 -3.8496601272227624E-005 + 181.62000000000000 -3.8394824427284184E-005 + 181.67999999999998 -3.8295255521150583E-005 + 181.73999999999998 -3.8198129062185007E-005 + 181.79999999999998 -3.8103662477648413E-005 + 181.85999999999999 -3.8012050082550765E-005 + 181.91999999999999 -3.7923465526249889E-005 + 181.97999999999999 -3.7838067322378411E-005 + 182.03999999999999 -3.7755984470281710E-005 + 182.09999999999999 -3.7677330044744767E-005 + 182.16000000000000 -3.7602190543771418E-005 + 182.22000000000000 -3.7530637777407588E-005 + 182.28000000000000 -3.7462710460738026E-005 + 182.34000000000000 -3.7398431795506946E-005 + 182.39999999999998 -3.7337800789486634E-005 + 182.45999999999998 -3.7280804755227093E-005 + 182.51999999999998 -3.7227407457680627E-005 + 182.57999999999998 -3.7177561290540556E-005 + 182.63999999999999 -3.7131214742683671E-005 + 182.69999999999999 -3.7088296367763367E-005 + 182.75999999999999 -3.7048740927657364E-005 + 182.81999999999999 -3.7012470082377515E-005 + 182.88000000000000 -3.6979404862618114E-005 + 182.94000000000000 -3.6949458892385145E-005 + 183.00000000000000 -3.6922540939420085E-005 + 183.06000000000000 -3.6898550776579548E-005 + 183.12000000000000 -3.6877373015476383E-005 + 183.17999999999998 -3.6858884087363117E-005 + 183.23999999999998 -3.6842934932752999E-005 + 183.29999999999998 -3.6829359952266503E-005 + 183.35999999999999 -3.6817970479572474E-005 + 183.41999999999999 -3.6808548724421469E-005 + 183.47999999999999 -3.6800858005087795E-005 + 183.53999999999999 -3.6794641309165529E-005 + 183.59999999999999 -3.6789625563567801E-005 + 183.66000000000000 -3.6785517221847336E-005 + 183.72000000000000 -3.6782020969495815E-005 + 183.78000000000000 -3.6778847642954205E-005 + 183.84000000000000 -3.6775709823738768E-005 + 183.89999999999998 -3.6772342150208027E-005 + 183.95999999999998 -3.6768501332204778E-005 + 184.01999999999998 -3.6763975126443012E-005 + 184.07999999999998 -3.6758578906705555E-005 + 184.13999999999999 -3.6752166832962257E-005 + 184.19999999999999 -3.6744629295063446E-005 + 184.25999999999999 -3.6735886776670832E-005 + 184.31999999999999 -3.6725892541791409E-005 + 184.38000000000000 -3.6714625578404814E-005 + 184.44000000000000 -3.6702073733605920E-005 + 184.50000000000000 -3.6688237578322600E-005 + 184.56000000000000 -3.6673119104026337E-005 + 184.62000000000000 -3.6656711094550853E-005 + 184.67999999999998 -3.6638989538457458E-005 + 184.73999999999998 -3.6619910595784448E-005 + 184.79999999999998 -3.6599405502370512E-005 + 184.85999999999999 -3.6577373895900330E-005 + 184.91999999999999 -3.6553689219699840E-005 + 184.97999999999999 -3.6528197539787919E-005 + 185.03999999999999 -3.6500720620770636E-005 + 185.09999999999999 -3.6471056535527186E-005 + 185.16000000000000 -3.6438989471481779E-005 + 185.22000000000000 -3.6404294926925552E-005 + 185.28000000000000 -3.6366742766076899E-005 + 185.34000000000000 -3.6326111137620859E-005 + 185.39999999999998 -3.6282177539251349E-005 + 185.45999999999998 -3.6234733899888925E-005 + 185.51999999999998 -3.6183595664786860E-005 + 185.57999999999998 -3.6128590336816659E-005 + 185.63999999999999 -3.6069561658163334E-005 + 185.69999999999999 -3.6006383658985895E-005 + 185.75999999999999 -3.5938942818448361E-005 + 185.81999999999999 -3.5867146771267829E-005 + 185.88000000000000 -3.5790925032452927E-005 + 185.94000000000000 -3.5710224708204391E-005 + 186.00000000000000 -3.5625013223256812E-005 + 186.06000000000000 -3.5535268748594286E-005 + 186.12000000000000 -3.5440993860614893E-005 + 186.17999999999998 -3.5342204454160648E-005 + 186.23999999999998 -3.5238929847802621E-005 + 186.29999999999998 -3.5131226001674663E-005 + 186.35999999999999 -3.5019159970398634E-005 + 186.41999999999999 -3.4902823440685605E-005 + 186.47999999999999 -3.4782318673150564E-005 + 186.53999999999999 -3.4657775767668417E-005 + 186.59999999999999 -3.4529343023400355E-005 + 186.66000000000000 -3.4397189612140567E-005 + 186.72000000000000 -3.4261504364952238E-005 + 186.78000000000000 -3.4122494610789916E-005 + 186.84000000000000 -3.3980392033484977E-005 + 186.89999999999998 -3.3835452553700857E-005 + 186.95999999999998 -3.3687950918240727E-005 + 187.01999999999998 -3.3538188987946369E-005 + 187.07999999999998 -3.3386489287155959E-005 + 187.13999999999999 -3.3233207414896841E-005 + 187.19999999999999 -3.3078720294453725E-005 + 187.25999999999999 -3.2923438724385742E-005 + 187.31999999999999 -3.2767797969296143E-005 + 187.38000000000000 -3.2612264581768162E-005 + 187.44000000000000 -3.2457326870086409E-005 + 187.50000000000000 -3.2303502909299171E-005 + 187.56000000000000 -3.2151323931759384E-005 + 187.62000000000000 -3.2001334043008438E-005 + 187.67999999999998 -3.1854085780470980E-005 + 187.73999999999998 -3.1710134200086814E-005 + 187.79999999999998 -3.1570015630037437E-005 + 187.85999999999999 -3.1434255382281712E-005 + 187.91999999999999 -3.1303349213140049E-005 + 187.97999999999999 -3.1177753709916720E-005 + 188.03999999999999 -3.1057889471904291E-005 + 188.09999999999999 -3.0944128647847841E-005 + 188.16000000000000 -3.0836794638314921E-005 + 188.22000000000000 -3.0736153344233184E-005 + 188.28000000000000 -3.0642427226874201E-005 + 188.34000000000000 -3.0555784001520417E-005 + 188.39999999999998 -3.0476352280659739E-005 + 188.45999999999998 -3.0404220753026504E-005 + 188.51999999999998 -3.0339442795145997E-005 + 188.57999999999998 -3.0282045464334482E-005 + 188.63999999999999 -3.0232037958501876E-005 + 188.69999999999999 -3.0189411555753756E-005 + 188.75999999999999 -3.0154145421704070E-005 + 188.81999999999999 -3.0126205654931682E-005 + 188.88000000000000 -3.0105551318231418E-005 + 188.94000000000000 -3.0092128948580339E-005 + 189.00000000000000 -3.0085867517452464E-005 + 189.06000000000000 -3.0086677939134355E-005 + 189.12000000000000 -3.0094445823361423E-005 + 189.17999999999998 -3.0109026641239114E-005 + 189.23999999999998 -3.0130236780045757E-005 + 189.29999999999998 -3.0157854528583188E-005 + 189.35999999999999 -3.0191615014803390E-005 + 189.41999999999999 -3.0231208629342994E-005 + 189.47999999999999 -3.0276279162496582E-005 + 189.53999999999999 -3.0326433394655261E-005 + 189.59999999999999 -3.0381240040654016E-005 + 189.66000000000000 -3.0440238989022138E-005 + 189.72000000000000 -3.0502946869740360E-005 + 189.78000000000000 -3.0568867248222735E-005 + 189.84000000000000 -3.0637506936272519E-005 + 189.89999999999998 -3.0708367665821716E-005 + 189.95999999999998 -3.0780974430680791E-005 + 190.01999999999998 -3.0854864017007618E-005 + 190.07999999999998 -3.0929607426599296E-005 + 190.13999999999999 -3.1004798017820197E-005 + 190.19999999999999 -3.1080063308782588E-005 + 190.25999999999999 -3.1155062686329776E-005 + 190.31999999999999 -3.1229481906187104E-005 + 190.38000000000000 -3.1303024756881632E-005 + 190.44000000000000 -3.1375425254103528E-005 + 190.50000000000000 -3.1446425553822639E-005 + 190.56000000000000 -3.1515778635746874E-005 + 190.62000000000000 -3.1583250223270542E-005 + 190.67999999999998 -3.1648597099812647E-005 + 190.73999999999998 -3.1711579986115295E-005 + 190.79999999999998 -3.1771956860503082E-005 + 190.85999999999999 -3.1829478576005251E-005 + 190.91999999999999 -3.1883895470314699E-005 + 190.97999999999999 -3.1934954310932675E-005 + 191.03999999999999 -3.1982397219532609E-005 + 191.09999999999999 -3.2025973495660378E-005 + 191.16000000000000 -3.2065434685525475E-005 + 191.22000000000000 -3.2100537055127896E-005 + 191.28000000000000 -3.2131052087028634E-005 + 191.34000000000000 -3.2156759441596146E-005 + 191.39999999999998 -3.2177453675398471E-005 + 191.45999999999998 -3.2192936207007595E-005 + 191.51999999999998 -3.2203030375212853E-005 + 191.57999999999998 -3.2207574042707132E-005 + 191.63999999999999 -3.2206413291117620E-005 + 191.69999999999999 -3.2199409834899078E-005 + 191.75999999999999 -3.2186438168056898E-005 + 191.81999999999999 -3.2167386682937730E-005 + 191.88000000000000 -3.2142144312114543E-005 + 191.94000000000000 -3.2110622740632379E-005 + 192.00000000000000 -3.2072736830530103E-005 + 192.06000000000000 -3.2028405648391504E-005 + 192.12000000000000 -3.1977559306707145E-005 + 192.17999999999998 -3.1920131512102619E-005 + 192.23999999999998 -3.1856065220495428E-005 + 192.29999999999998 -3.1785308896683929E-005 + 192.35999999999999 -3.1707809709034176E-005 + 192.41999999999999 -3.1623524419248165E-005 + 192.47999999999999 -3.1532407414425746E-005 + 192.53999999999999 -3.1434428776760101E-005 + 192.59999999999999 -3.1329560400667255E-005 + 192.66000000000000 -3.1217777692181055E-005 + 192.72000000000000 -3.1099073019762459E-005 + 192.78000000000000 -3.0973458617929728E-005 + 192.84000000000000 -3.0840968839728349E-005 + 192.89999999999998 -3.0701658345971329E-005 + 192.95999999999998 -3.0555626994243845E-005 + 193.01999999999998 -3.0403008204707100E-005 + 193.07999999999998 -3.0243984164791964E-005 + 193.13999999999999 -3.0078795989044970E-005 + 193.19999999999999 -2.9907738649733284E-005 + 193.25999999999999 -2.9731168600980661E-005 + 193.31999999999999 -2.9549510183675354E-005 + 193.38000000000000 -2.9363243707100615E-005 + 193.44000000000000 -2.9172917034131772E-005 + 193.50000000000000 -2.8979128665072240E-005 + 193.56000000000000 -2.8782527782187847E-005 + 193.62000000000000 -2.8583808253133825E-005 + 193.67999999999998 -2.8383694773202592E-005 + 193.73999999999998 -2.8182935884125214E-005 + 193.79999999999998 -2.7982301753136632E-005 + 193.85999999999999 -2.7782566316370557E-005 + 193.91999999999999 -2.7584509851000525E-005 + 193.97999999999999 -2.7388913784898385E-005 + 194.03999999999999 -2.7196555255057267E-005 + 194.09999999999999 -2.7008214513412838E-005 + 194.16000000000000 -2.6824671347887732E-005 + 194.22000000000000 -2.6646712748472105E-005 + 194.28000000000000 -2.6475142470423642E-005 + 194.34000000000000 -2.6310780948772820E-005 + 194.39999999999998 -2.6154480524031072E-005 + 194.45999999999998 -2.6007125880141177E-005 + 194.51999999999998 -2.5869644335771596E-005 + 194.57999999999998 -2.5743002660774955E-005 + 194.63999999999999 -2.5628213333754321E-005 + 194.69999999999999 -2.5526329450336900E-005 + 194.75999999999999 -2.5438443867036387E-005 + 194.81999999999999 -2.5365676425681261E-005 + 194.88000000000000 -2.5309168815536458E-005 + 194.94000000000000 -2.5270073886819220E-005 + 195.00000000000000 -2.5249541828899169E-005 + 195.06000000000000 -2.5248709160793456E-005 + 195.12000000000000 -2.5268691128294815E-005 + 195.17999999999998 -2.5310568831210457E-005 + 195.23999999999998 -2.5375385753609228E-005 + 195.29999999999998 -2.5464139376196449E-005 + 195.35999999999999 -2.5577789771506869E-005 + 195.41999999999999 -2.5717252323824084E-005 + 195.47999999999999 -2.5883410842004608E-005 + 195.53999999999999 -2.6077121751514264E-005 + 195.59999999999999 -2.6299225491938628E-005 + 195.66000000000000 -2.6550558366192826E-005 + 195.72000000000000 -2.6831964863570898E-005 + 195.78000000000000 -2.7144305611965039E-005 + 195.84000000000000 -2.7488473099210895E-005 + 195.89999999999998 -2.7865396601526226E-005 + 195.95999999999998 -2.8276052302255265E-005 + 196.01999999999998 -2.8721462759009028E-005 + 196.07999999999998 -2.9202701666372373E-005 + 196.13999999999999 -2.9720892714237673E-005 + 196.19999999999999 -3.0277206782043167E-005 + 196.25999999999999 -3.0872859678450075E-005 + 196.31999999999999 -3.1509102002224598E-005 + 196.38000000000000 -3.2187210321853211E-005 + 196.44000000000000 -3.2908491094857770E-005 + 196.50000000000000 -3.3674270750196666E-005 + 196.56000000000000 -3.4485882385574370E-005 + 196.62000000000000 -3.5344674536082141E-005 + 196.67999999999998 -3.6252003689135367E-005 + 196.73999999999998 -3.7209231698066422E-005 + 196.79999999999998 -3.8217729120366754E-005 + 196.85999999999999 -3.9278880122761704E-005 + 196.91999999999999 -4.0394083837684218E-005 + 196.97999999999999 -4.1564750804446233E-005 + 197.03999999999999 -4.2792311490768284E-005 + 197.09999999999999 -4.4078215294283886E-005 + 197.16000000000000 -4.5423937579722155E-005 + 197.22000000000000 -4.6830974924565161E-005 + 197.28000000000000 -4.8300851214550006E-005 + 197.34000000000000 -4.9835099675963534E-005 + 197.39999999999998 -5.1435286858120873E-005 + 197.45999999999998 -5.3102976412310103E-005 + 197.51999999999998 -5.4839751182018485E-005 + 197.57999999999998 -5.6647191014392429E-005 + 197.63999999999999 -5.8526863667617622E-005 + 197.69999999999999 -6.0480329984279014E-005 + 197.75999999999999 -6.2509129612308103E-005 + 197.81999999999999 -6.4614757519315181E-005 + 197.88000000000000 -6.6798677919143503E-005 + 197.94000000000000 -6.9062317311863238E-005 + 198.00000000000000 -7.1407019290575962E-005 + 198.06000000000000 -7.3834065105167444E-005 + 198.12000000000000 -7.6344677261679762E-005 + 198.17999999999998 -7.8939962131411025E-005 + 198.23999999999998 -8.1620945427759824E-005 + 198.29999999999998 -8.4388540275534996E-005 + 198.35999999999999 -8.7243552306170082E-005 + 198.41999999999999 -9.0186657367714672E-005 + 198.47999999999999 -9.3218408064571812E-005 + 198.53999999999999 -9.6339208334371781E-005 + 198.59999999999999 -9.9549330012932771E-005 + 198.66000000000000 -1.0284889894330219E-004 + 198.72000000000000 -1.0623789423507830E-004 + 198.78000000000000 -1.0971615043507835E-004 + 198.84000000000000 -1.1328333594734178E-004 + 198.89999999999998 -1.1693897782508015E-004 + 198.95999999999998 -1.2068243410308458E-004 + 199.01999999999998 -1.2451293097470498E-004 + 199.07999999999998 -1.2842950114488639E-004 + 199.13999999999999 -1.3243106282529897E-004 + 199.19999999999999 -1.3651633133748993E-004 + 199.25999999999999 -1.4068385224919193E-004 + 199.31999999999999 -1.4493199700873010E-004 + 199.38000000000000 -1.4925896674450559E-004 + 199.44000000000000 -1.5366273217850128E-004 + 199.50000000000000 -1.5814108974670078E-004 + 199.56000000000000 -1.6269158917998027E-004 + 199.62000000000000 -1.6731153636493235E-004 + 199.67999999999998 -1.7199803679454273E-004 + 199.73999999999998 -1.7674792689748053E-004 + 199.79999999999998 -1.8155779444123914E-004 + 199.85999999999999 -1.8642397753357651E-004 + 199.91999999999999 -1.9134252490486439E-004 + 199.97999999999999 -1.9630927129206754E-004 + 200.03999999999999 -2.0131978954909273E-004 + 200.09999999999999 -2.0636941877537237E-004 + 200.16000000000000 -2.1145324831220653E-004 + 200.22000000000000 -2.1656615250515663E-004 + 200.28000000000000 -2.2170279094975423E-004 + 200.34000000000000 -2.2685761788281253E-004 + 200.39999999999998 -2.3202486784192652E-004 + 200.45999999999998 -2.3719861633070684E-004 + 200.51999999999998 -2.4237273718596657E-004 + 200.57999999999998 -2.4754090089057685E-004 + 200.63999999999999 -2.5269662301407849E-004 + 200.69999999999999 -2.5783325879641616E-004 + 200.75999999999999 -2.6294397005222661E-004 + 200.81999999999999 -2.6802169267257686E-004 + 200.88000000000000 -2.7305920947073755E-004 + 200.94000000000000 -2.7804911111455380E-004 + 201.00000000000000 -2.8298387062120788E-004 + 201.06000000000000 -2.8785569292137935E-004 + 201.12000000000000 -2.9265664105725911E-004 + 201.17999999999998 -2.9737865726820655E-004 + 201.23999999999998 -3.0201348297557063E-004 + 201.29999999999998 -3.0655282045240786E-004 + 201.35999999999999 -3.1098815779214079E-004 + 201.41999999999999 -3.1531095928828771E-004 + 201.47999999999999 -3.1951261572608637E-004 + 201.53999999999999 -3.2358453272384407E-004 + 201.59999999999999 -3.2751802014925895E-004 + 201.66000000000000 -3.3130448577728221E-004 + 201.72000000000000 -3.3493530221368330E-004 + 201.78000000000000 -3.3840199561403599E-004 + 201.84000000000000 -3.4169612710612283E-004 + 201.89999999999998 -3.4480934683503867E-004 + 201.95999999999998 -3.4773345223738624E-004 + 202.01999999999998 -3.5046043312836133E-004 + 202.07999999999998 -3.5298240451712645E-004 + 202.13999999999999 -3.5529164760069381E-004 + 202.19999999999999 -3.5738064634011291E-004 + 202.25999999999999 -3.5924213685857836E-004 + 202.31999999999999 -3.6086906861961351E-004 + 202.38000000000000 -3.6225463171434208E-004 + 202.44000000000000 -3.6339229832616675E-004 + 202.50000000000000 -3.6427582399822946E-004 + 202.56000000000000 -3.6489931465524876E-004 + 202.62000000000000 -3.6525719188229783E-004 + 202.67999999999998 -3.6534423578563118E-004 + 202.73999999999998 -3.6515561412843131E-004 + 202.79999999999998 -3.6468694380623051E-004 + 202.85999999999999 -3.6393420780101224E-004 + 202.91999999999999 -3.6289388153659956E-004 + 202.97999999999999 -3.6156286010206623E-004 + 203.03999999999999 -3.5993859670053156E-004 + 203.09999999999999 -3.5801897071558136E-004 + 203.16000000000000 -3.5580238113273372E-004 + 203.22000000000000 -3.5328780262323841E-004 + 203.28000000000000 -3.5047466839739329E-004 + 203.34000000000000 -3.4736299725630871E-004 + 203.39999999999998 -3.4395327376157540E-004 + 203.45999999999998 -3.4024661119205535E-004 + 203.51999999999998 -3.3624465868907066E-004 + 203.57999999999998 -3.3194953544396955E-004 + 203.63999999999999 -3.2736402530888782E-004 + 203.69999999999999 -3.2249133880961334E-004 + 203.75999999999999 -3.1733535308328160E-004 + 203.81999999999999 -3.1190043838192396E-004 + 203.88000000000000 -3.0619149092087446E-004 + 203.94000000000000 -3.0021400668177350E-004 + 204.00000000000000 -2.9397389516363701E-004 + 204.06000000000000 -2.8747767243605699E-004 + 204.12000000000000 -2.8073225370566749E-004 + 204.17999999999998 -2.7374510237128456E-004 + 204.23999999999998 -2.6652411628184529E-004 + 204.29999999999998 -2.5907756415635664E-004 + 204.35999999999999 -2.5141418282875305E-004 + 204.41999999999999 -2.4354307715582509E-004 + 204.47999999999999 -2.3547368647150430E-004 + 204.53999999999999 -2.2721583593824805E-004 + 204.59999999999999 -2.1877960668014097E-004 + 204.66000000000000 -2.1017540800346722E-004 + 204.72000000000000 -2.0141390114984884E-004 + 204.78000000000000 -1.9250599157321499E-004 + 204.84000000000000 -1.8346280725231609E-004 + 204.89999999999998 -1.7429570846599739E-004 + 204.95999999999998 -1.6501619868600014E-004 + 205.01999999999998 -1.5563596896568262E-004 + 205.07999999999998 -1.4616683308475188E-004 + 205.13999999999999 -1.3662072175857804E-004 + 205.19999999999999 -1.2700965560913960E-004 + 205.25999999999999 -1.1734570532033473E-004 + 205.31999999999999 -1.0764099053760546E-004 + 205.38000000000000 -9.7907613874379291E-005 + 205.44000000000000 -8.8157643140771721E-005 + 205.50000000000000 -7.8403069695035307E-005 + 205.56000000000000 -6.8655803950985116E-005 + 205.62000000000000 -5.8927617892639398E-005 + 205.67999999999998 -4.9230109453378335E-005 + 205.73999999999998 -3.9574705502738001E-005 + 205.79999999999998 -2.9972603086325339E-005 + 205.85999999999999 -2.0434766757591242E-005 + 205.91999999999999 -1.0971899033863494E-005 + 205.97999999999999 -1.5944209484366672E-006 + 206.03999999999999 7.6875342896052608E-006 + 206.09999999999999 1.6864141826157853E-005 + 206.16000000000000 2.5925895979611213E-005 + 206.22000000000000 3.4863617545808945E-005 + 206.28000000000000 4.3668469407931581E-005 + 206.34000000000000 5.2331969070674893E-005 + 206.39999999999998 6.0845969708995012E-005 + 206.45999999999998 6.9202722404272313E-005 + 206.51999999999998 7.7394846558668880E-005 + 206.57999999999998 8.5415338209623374E-005 + 206.63999999999999 9.3257615633544392E-005 + 206.69999999999999 1.0091549569807047E-004 + 206.75999999999999 1.0838322838247899E-004 + 206.81999999999999 1.1565548016257575E-004 + 206.88000000000000 1.2272738110789738E-004 + 206.94000000000000 1.2959446617710239E-004 + 207.00000000000000 1.3625274346446817E-004 + 207.06000000000000 1.4269868846270725E-004 + 207.12000000000000 1.4892918913204210E-004 + 207.17999999999998 1.5494157925435693E-004 + 207.23999999999998 1.6073365921952630E-004 + 207.29999999999998 1.6630361481445268E-004 + 207.35999999999999 1.7165009852609237E-004 + 207.41999999999999 1.7677213183176722E-004 + 207.47999999999999 1.8166915715937755E-004 + 207.53999999999999 1.8634100013128436E-004 + 207.59999999999999 1.9078784470348965E-004 + 207.66000000000000 1.9501026978569207E-004 + 207.72000000000000 1.9900919940426870E-004 + 207.78000000000000 2.0278587447252237E-004 + 207.84000000000000 2.0634188941855375E-004 + 207.89999999999998 2.0967915668622261E-004 + 207.95999999999998 2.1279991140798156E-004 + 208.01999999999998 2.1570669385354710E-004 + 208.07999999999998 2.1840231421524220E-004 + 208.13999999999999 2.2088987742984405E-004 + 208.19999999999999 2.2317273111511577E-004 + 208.25999999999999 2.2525447973682051E-004 + 208.31999999999999 2.2713894798932541E-004 + 208.38000000000000 2.2883017616390973E-004 + 208.44000000000000 2.3033238700579032E-004 + 208.50000000000000 2.3165001284410872E-004 + 208.56000000000000 2.3278761075103490E-004 + 208.62000000000000 2.3374989105561013E-004 + 208.68000000000001 2.3454167684837740E-004 + 208.74000000000001 2.3516789680449727E-004 + 208.80000000000001 2.3563357084915344E-004 + 208.86000000000001 2.3594377490825815E-004 + 208.92000000000002 2.3610368104055608E-004 + 208.98000000000002 2.3611847422169165E-004 + 209.03999999999996 2.3599337664355051E-004 + 209.09999999999997 2.3573367060653909E-004 + 209.15999999999997 2.3534461708903670E-004 + 209.21999999999997 2.3483148041043993E-004 + 209.27999999999997 2.3419953274844379E-004 + 209.33999999999997 2.3345399034804609E-004 + 209.39999999999998 2.3260004663115644E-004 + 209.45999999999998 2.3164284602069835E-004 + 209.51999999999998 2.3058747073348329E-004 + 209.57999999999998 2.2943892126461019E-004 + 209.63999999999999 2.2820211841835907E-004 + 209.69999999999999 2.2688189058464237E-004 + 209.75999999999999 2.2548292781584029E-004 + 209.81999999999999 2.2400984653710580E-004 + 209.88000000000000 2.2246713204434509E-004 + 209.94000000000000 2.2085915139199205E-004 + 210.00000000000000 2.1919014904766621E-004 + 210.06000000000000 2.1746424669534948E-004 + 210.12000000000000 2.1568543930451978E-004 + 210.18000000000001 2.1385762314661018E-004 + 210.24000000000001 2.1198456889911377E-004 + 210.30000000000001 2.1006994255774695E-004 + 210.36000000000001 2.0811728605165595E-004 + 210.42000000000002 2.0613003533277537E-004 + 210.48000000000002 2.0411153317209121E-004 + 210.53999999999996 2.0206498638190702E-004 + 210.59999999999997 1.9999351263367819E-004 + 210.65999999999997 1.9790010630270230E-004 + 210.71999999999997 1.9578763549391479E-004 + 210.77999999999997 1.9365885026693350E-004 + 210.83999999999997 1.9151635699269295E-004 + 210.89999999999998 1.8936266349849960E-004 + 210.95999999999998 1.8720015411355690E-004 + 211.01999999999998 1.8503106503199167E-004 + 211.07999999999998 1.8285751578177436E-004 + 211.13999999999999 1.8068149004571619E-004 + 211.19999999999999 1.7850490378536698E-004 + 211.25999999999999 1.7632952217032054E-004 + 211.31999999999999 1.7415704427371456E-004 + 211.38000000000000 1.7198908254476196E-004 + 211.44000000000000 1.6982714352681627E-004 + 211.50000000000000 1.6767270280327242E-004 + 211.56000000000000 1.6552715085324835E-004 + 211.62000000000000 1.6339184697777121E-004 + 211.68000000000001 1.6126807748270602E-004 + 211.74000000000001 1.5915708714186552E-004 + 211.80000000000001 1.5706009502838969E-004 + 211.86000000000001 1.5497822730188357E-004 + 211.92000000000002 1.5291259742392446E-004 + 211.98000000000002 1.5086425188857075E-004 + 212.03999999999996 1.4883414988147835E-004 + 212.09999999999997 1.4682322398312710E-004 + 212.15999999999997 1.4483232360511911E-004 + 212.21999999999997 1.4286221222859321E-004 + 212.27999999999997 1.4091358897712616E-004 + 212.33999999999997 1.3898710785017004E-004 + 212.39999999999998 1.3708334469060779E-004 + 212.45999999999998 1.3520280334764658E-004 + 212.51999999999998 1.3334591918569839E-004 + 212.57999999999998 1.3151308744038825E-004 + 212.63999999999999 1.2970466920159091E-004 + 212.69999999999999 1.2792095481150540E-004 + 212.75999999999999 1.2616223948752679E-004 + 212.81999999999999 1.2442872594954041E-004 + 212.88000000000000 1.2272062380390951E-004 + 212.94000000000000 1.2103811657405340E-004 + 213.00000000000000 1.1938134951786193E-004 + 213.06000000000000 1.1775043587022610E-004 + 213.12000000000000 1.1614545044327404E-004 + 213.18000000000001 1.1456645288829475E-004 + 213.24000000000001 1.1301344131041789E-004 + 213.30000000000001 1.1148638221411596E-004 + 213.36000000000001 1.0998520714335054E-004 + 213.42000000000002 1.0850979960983150E-004 + 213.48000000000002 1.0705999250293686E-004 + 213.53999999999996 1.0563559627989139E-004 + 213.59999999999997 1.0423637066891215E-004 + 213.65999999999997 1.0286205827716668E-004 + 213.71999999999997 1.0151236421436391E-004 + 213.77999999999997 1.0018697579363390E-004 + 213.83999999999997 9.8885566877285821E-005 + 213.89999999999998 9.7607810088838609E-005 + 213.95999999999998 9.6353371936482932E-005 + 214.01999999999998 9.5121906861979173E-005 + 214.07999999999998 9.3913080332807240E-005 + 214.13999999999999 9.2726553572951889E-005 + 214.19999999999999 9.1561998269383267E-005 + 214.25999999999999 9.0419086876083126E-005 + 214.31999999999999 8.9297481300891417E-005 + 214.38000000000000 8.8196855370149244E-005 + 214.44000000000000 8.7116855713984125E-005 + 214.50000000000000 8.6057136593450749E-005 + 214.56000000000000 8.5017345275459444E-005 + 214.62000000000000 8.3997115248178299E-005 + 214.68000000000001 8.2996068222727275E-005 + 214.74000000000001 8.2013826707874143E-005 + 214.80000000000001 8.1050003168333100E-005 + 214.86000000000001 8.0104212267530407E-005 + 214.92000000000002 7.9176088289185047E-005 + 214.98000000000002 7.8265248856658584E-005 + 215.03999999999996 7.7371346908239915E-005 + 215.09999999999997 7.6494032813640222E-005 + 215.15999999999997 7.5632989634624503E-005 + 215.21999999999997 7.4787909364548941E-005 + 215.27999999999997 7.3958519985246971E-005 + 215.33999999999997 7.3144560918293180E-005 + 215.39999999999998 7.2345780045177200E-005 + 215.45999999999998 7.1561938636430735E-005 + 215.51999999999998 7.0792808361950873E-005 + 215.57999999999998 7.0038180951041514E-005 + 215.63999999999999 6.9297820773200094E-005 + 215.69999999999999 6.8571511458631975E-005 + 215.75999999999999 6.7859014517994326E-005 + 215.81999999999999 6.7160085622228126E-005 + 215.88000000000000 6.6474471570604466E-005 + 215.94000000000000 6.5801907082674993E-005 + 216.00000000000000 6.5142106574748193E-005 + 216.06000000000000 6.4494780547797481E-005 + 216.12000000000000 6.3859621888396614E-005 + 216.18000000000001 6.3236309889909431E-005 + 216.24000000000001 6.2624526217821516E-005 + 216.30000000000001 6.2023934549955474E-005 + 216.36000000000001 6.1434193422224575E-005 + 216.42000000000002 6.0854948309449288E-005 + 216.48000000000002 6.0285845187948284E-005 + 216.53999999999996 5.9726514427541774E-005 + 216.59999999999997 5.9176580107648100E-005 + 216.65999999999997 5.8635668625421113E-005 + 216.71999999999997 5.8103386430666338E-005 + 216.77999999999997 5.7579341771021334E-005 + 216.83999999999997 5.7063128074079017E-005 + 216.89999999999998 5.6554346748471815E-005 + 216.95999999999998 5.6052593750722408E-005 + 217.01999999999998 5.5557475659659931E-005 + 217.07999999999998 5.5068596162153303E-005 + 217.13999999999999 5.4585583226871698E-005 + 217.19999999999999 5.4108068678542736E-005 + 217.25999999999999 5.3635710069648984E-005 + 217.31999999999999 5.3168180746984921E-005 + 217.38000000000000 5.2705183573065926E-005 + 217.44000000000000 5.2246440218677172E-005 + 217.50000000000000 5.1791690937283827E-005 + 217.56000000000000 5.1340696926671084E-005 + 217.62000000000000 5.0893232549105354E-005 + 217.68000000000001 5.0449084911248325E-005 + 217.74000000000001 5.0008045321173761E-005 + 217.80000000000001 4.9569908740444615E-005 + 217.86000000000001 4.9134466315893215E-005 + 217.92000000000002 4.8701513411487803E-005 + 217.98000000000002 4.8270829075586623E-005 + 218.03999999999996 4.7842196569186147E-005 + 218.09999999999997 4.7415397698628260E-005 + 218.15999999999997 4.6990212866122457E-005 + 218.21999999999997 4.6566428821975550E-005 + 218.27999999999997 4.6143851837311967E-005 + 218.33999999999997 4.5722306028778728E-005 + 218.39999999999998 4.5301646900185748E-005 + 218.45999999999998 4.4881763071342969E-005 + 218.51999999999998 4.4462581957680256E-005 + 218.57999999999998 4.4044074658798756E-005 + 218.63999999999999 4.3626259014861736E-005 + 218.69999999999999 4.3209192017592255E-005 + 218.75999999999999 4.2792975432008047E-005 + 218.81999999999999 4.2377745982399657E-005 + 218.88000000000000 4.1963664588058906E-005 + 218.94000000000000 4.1550917660061790E-005 + 219.00000000000000 4.1139700076504417E-005 + 219.06000000000000 4.0730205412981178E-005 + 219.12000000000000 4.0322625172889542E-005 + 219.18000000000001 3.9917126381381615E-005 + 219.24000000000001 3.9513866843863446E-005 + 219.30000000000001 3.9112973627155679E-005 + 219.36000000000001 3.8714539547146289E-005 + 219.42000000000002 3.8318638273772616E-005 + 219.48000000000002 3.7925312531704008E-005 + 219.53999999999996 3.7534585617956306E-005 + 219.59999999999997 3.7146466177781781E-005 + 219.65999999999997 3.6760945931580915E-005 + 219.71999999999997 3.6378015272542640E-005 + 219.77999999999997 3.5997658763332812E-005 + 219.83999999999997 3.5619874124661596E-005 + 219.89999999999998 3.5244665142121323E-005 + 219.95999999999998 3.4872043201492033E-005 + 220.01999999999998 3.4502036877461882E-005 + 220.07999999999998 3.4134682962523851E-005 + 220.13999999999999 3.3770027724472400E-005 + 220.19999999999999 3.3408125008148624E-005 + 220.25999999999999 3.3049031799358904E-005 + 220.31999999999999 3.2692804243179348E-005 + 220.38000000000000 3.2339498024901053E-005 + 220.44000000000000 3.1989158126414491E-005 + 220.50000000000000 3.1641818782013819E-005 + 220.56000000000000 3.1297506474224256E-005 + 220.62000000000000 3.0956234658952209E-005 + 220.68000000000001 3.0618008114974076E-005 + 220.74000000000001 3.0282816372935587E-005 + 220.80000000000001 2.9950639098626166E-005 + 220.86000000000001 2.9621452166270948E-005 + 220.92000000000002 2.9295222738755066E-005 + 220.98000000000002 2.8971912387119162E-005 + 221.03999999999996 2.8651483562739896E-005 + 221.09999999999997 2.8333896672434363E-005 + 221.15999999999997 2.8019108777483186E-005 + 221.21999999999997 2.7707079337765928E-005 + 221.27999999999997 2.7397771349025416E-005 + 221.33999999999997 2.7091146566297109E-005 + 221.39999999999998 2.6787170976437760E-005 + 221.45999999999998 2.6485816505143318E-005 + 221.51999999999998 2.6187058582226203E-005 + 221.57999999999998 2.5890886230518947E-005 + 221.63999999999999 2.5597298840855063E-005 + 221.69999999999999 2.5306309388251744E-005 + 221.75999999999999 2.5017957477251111E-005 + 221.81999999999999 2.4732304664666145E-005 + 221.88000000000000 2.4449439650975398E-005 + 221.94000000000000 2.4169482990734882E-005 + 222.00000000000000 2.3892589028642581E-005 + 222.06000000000000 2.3618947855020008E-005 + 222.12000000000000 2.3348782690659010E-005 + 222.18000000000001 2.3082344797841144E-005 + 222.24000000000001 2.2819917890377400E-005 + 222.30000000000001 2.2561806620763831E-005 + 222.36000000000001 2.2308335038218513E-005 + 222.42000000000002 2.2059838039728124E-005 + 222.48000000000002 2.1816656533253129E-005 + 222.53999999999996 2.1579129971726200E-005 + 222.59999999999997 2.1347594855973992E-005 + 222.65999999999997 2.1122376622096281E-005 + 222.71999999999997 2.0903790520802606E-005 + 222.77999999999997 2.0692143840621401E-005 + 222.83999999999997 2.0487733225721687E-005 + 222.89999999999998 2.0290847553743901E-005 + 222.95999999999998 2.0101775467090365E-005 + 223.01999999999998 1.9920814522419601E-005 + 223.07999999999998 1.9748267902155952E-005 + 223.13999999999999 1.9584453581457212E-005 + 223.19999999999999 1.9429715485176964E-005 + 223.25999999999999 1.9284420238131224E-005 + 223.31999999999999 1.9148964635554171E-005 + 223.38000000000000 1.9023775392578704E-005 + 223.44000000000000 1.8909305426719121E-005 + 223.50000000000000 1.8806035050860173E-005 + 223.56000000000000 1.8714471313276212E-005 + 223.62000000000000 1.8635136940209992E-005 + 223.68000000000001 1.8568568400941822E-005 + 223.74000000000001 1.8515312720538126E-005 + 223.80000000000001 1.8475919594708685E-005 + 223.86000000000001 1.8450942025337000E-005 + 223.92000000000002 1.8440926490668818E-005 + 223.98000000000002 1.8446425350714814E-005 + 224.03999999999996 1.8467985133450297E-005 + 224.09999999999997 1.8506155762333616E-005 + 224.15999999999997 1.8561497850698893E-005 + 224.21999999999997 1.8634580504855321E-005 + 224.27999999999997 1.8725993715401443E-005 + 224.33999999999997 1.8836355939239245E-005 + 224.39999999999998 1.8966312361957390E-005 + 224.45999999999998 1.9116549242255922E-005 + 224.51999999999998 1.9287791629191117E-005 + 224.57999999999998 1.9480810279754216E-005 + 224.63999999999999 1.9696419238420183E-005 + 224.69999999999999 1.9935476037195860E-005 + 224.75999999999999 2.0198882817451556E-005 + 224.81999999999999 2.0487579662208670E-005 + 224.88000000000000 2.0802544317516680E-005 + 224.94000000000000 2.1144782012810074E-005 + 225.00000000000000 2.1515333388626804E-005 + 225.06000000000000 2.1915259548286972E-005 + 225.12000000000000 2.2345645651993912E-005 + 225.18000000000001 2.2807600081428843E-005 + 225.24000000000001 2.3302254743342196E-005 + 225.30000000000001 2.3830768323720984E-005 + 225.36000000000001 2.4394322462812431E-005 + 225.42000000000002 2.4994133899630206E-005 + 225.48000000000002 2.5631451267057270E-005 + 225.53999999999996 2.6307564508885103E-005 + 225.59999999999997 2.7023802641544793E-005 + 225.65999999999997 2.7781545267582185E-005 + 225.71999999999997 2.8582212130598133E-005 + 225.77999999999997 2.9427271857479004E-005 + 225.83999999999997 3.0318238601097735E-005 + 225.89999999999998 3.1256666776936772E-005 + 225.95999999999998 3.2244149624197924E-005 + 226.01999999999998 3.3282323883570019E-005 + 226.07999999999998 3.4372840256057681E-005 + 226.13999999999999 3.5517377626833909E-005 + 226.19999999999999 3.6717634843495123E-005 + 226.25999999999999 3.7975314011951161E-005 + 226.31999999999999 3.9292131665449257E-005 + 226.38000000000000 4.0669796267197042E-005 + 226.44000000000000 4.2110016736690262E-005 + 226.50000000000000 4.3614496072699655E-005 + 226.56000000000000 4.5184934728523966E-005 + 226.62000000000000 4.6823016164806610E-005 + 226.68000000000001 4.8530407906047187E-005 + 226.74000000000001 5.0308764228820120E-005 + 226.80000000000001 5.2159728998338407E-005 + 226.86000000000001 5.4084919847419059E-005 + 226.92000000000002 5.6085922390236798E-005 + 226.98000000000002 5.8164298955663814E-005 + 227.03999999999996 6.0321582357795363E-005 + 227.09999999999997 6.2559255551738620E-005 + 227.15999999999997 6.4878761716768922E-005 + 227.21999999999997 6.7281493050910533E-005 + 227.27999999999997 6.9768766850725986E-005 + 227.33999999999997 7.2341861580695031E-005 + 227.39999999999998 7.5001963428928631E-005 + 227.45999999999998 7.7750195769116175E-005 + 227.51999999999998 8.0587600765188837E-005 + 227.57999999999998 8.3515127269370243E-005 + 227.63999999999999 8.6533634948199819E-005 + 227.69999999999999 8.9643904200282473E-005 + 227.75999999999999 9.2846601562965889E-005 + 227.81999999999999 9.6142291458814740E-005 + 227.88000000000000 9.9531426810929257E-005 + 227.94000000000000 1.0301433130883887E-004 + 228.00000000000000 1.0659121324108669E-004 + 228.06000000000000 1.1026213592052200E-004 + 228.12000000000000 1.1402700754870074E-004 + 228.18000000000001 1.1788557748338425E-004 + 228.24000000000001 1.2183743438504172E-004 + 228.30000000000001 1.2588198528133655E-004 + 228.36000000000001 1.3001841677696494E-004 + 228.42000000000002 1.3424575815343894E-004 + 228.48000000000002 1.3856278919643380E-004 + 228.53999999999996 1.4296810328156192E-004 + 228.59999999999997 1.4746009940415234E-004 + 228.65999999999997 1.5203692164118704E-004 + 228.71999999999997 1.5669651195246770E-004 + 228.77999999999997 1.6143661596060803E-004 + 228.83999999999997 1.6625474009161799E-004 + 228.89999999999998 1.7114818573631027E-004 + 228.95999999999998 1.7611406660353587E-004 + 229.01999999999998 1.8114926975739301E-004 + 229.07999999999998 1.8625046355665812E-004 + 229.13999999999999 1.9141411047755112E-004 + 229.19999999999999 1.9663646695528366E-004 + 229.25999999999999 2.0191355006965626E-004 + 229.31999999999999 2.0724114799565527E-004 + 229.38000000000000 2.1261481518913640E-004 + 229.44000000000000 2.1802987616043555E-004 + 229.50000000000000 2.2348135640432888E-004 + 229.56000000000000 2.2896405275807459E-004 + 229.62000000000000 2.3447248607767936E-004 + 229.68000000000001 2.4000089920951913E-004 + 229.74000000000001 2.4554328128123531E-004 + 229.80000000000001 2.5109337431865737E-004 + 229.86000000000001 2.5664462517163824E-004 + 229.92000000000002 2.6219027884077153E-004 + 229.97999999999996 2.6772334065321748E-004 + 230.03999999999996 2.7323660628997330E-004 + 230.09999999999997 2.7872270893254929E-004 + 230.15999999999997 2.8417413081650443E-004 + 230.21999999999997 2.8958313923095570E-004 + 230.27999999999997 2.9494197934264101E-004 + 230.33999999999997 3.0024268575316290E-004 + 230.39999999999998 3.0547730193463790E-004 + 230.45999999999998 3.1063778222911395E-004 + 230.51999999999998 3.1571599875900865E-004 + 230.57999999999998 3.2070377095914752E-004 + 230.63999999999999 3.2559295383223139E-004 + 230.69999999999999 3.3037530445656992E-004 + 230.75999999999999 3.3504263482593186E-004 + 230.81999999999999 3.3958672049649787E-004 + 230.88000000000000 3.4399934052970133E-004 + 230.94000000000000 3.4827234424108551E-004 + 231.00000000000000 3.5239756591410118E-004 + 231.06000000000000 3.5636695432634586E-004 + 231.12000000000000 3.6017250403346402E-004 + 231.18000000000001 3.6380632676806957E-004 + 231.24000000000001 3.6726066471642053E-004 + 231.30000000000001 3.7052795955870148E-004 + 231.36000000000001 3.7360075786881287E-004 + 231.42000000000002 3.7647187375991497E-004 + 231.47999999999996 3.7913438983530671E-004 + 231.53999999999996 3.8158159145131249E-004 + 231.59999999999997 3.8380710391408752E-004 + 231.65999999999997 3.8580482782645805E-004 + 231.71999999999997 3.8756903238702919E-004 + 231.77999999999997 3.8909432758726080E-004 + 231.83999999999997 3.9037566103649230E-004 + 231.89999999999998 3.9140844563195911E-004 + 231.95999999999998 3.9218837055426291E-004 + 232.01999999999998 3.9271158731039895E-004 + 232.07999999999998 3.9297469404687220E-004 + 232.13999999999999 3.9297465236800855E-004 + 232.19999999999999 3.9270888319254402E-004 + 232.25999999999999 3.9217526188779496E-004 + 232.31999999999999 3.9137210600979753E-004 + 232.38000000000000 3.9029817414384504E-004 + 232.44000000000000 3.8895277767470515E-004 + 232.50000000000000 3.8733563669562758E-004 + 232.56000000000000 3.8544704727744105E-004 + 232.62000000000000 3.8328775151902025E-004 + 232.68000000000001 3.8085905442790911E-004 + 232.74000000000001 3.7816274072318892E-004 + 232.80000000000001 3.7520116009701282E-004 + 232.86000000000001 3.7197716274370871E-004 + 232.92000000000002 3.6849413600546299E-004 + 232.97999999999996 3.6475603027999541E-004 + 233.03999999999996 3.6076724201372846E-004 + 233.09999999999997 3.5653269064558733E-004 + 233.15999999999997 3.5205783823815469E-004 + 233.21999999999997 3.4734864263684097E-004 + 233.27999999999997 3.4241148609842240E-004 + 233.33999999999997 3.3725330714325200E-004 + 233.39999999999998 3.3188141562671562E-004 + 233.45999999999998 3.2630364915359010E-004 + 233.51999999999998 3.2052823607802469E-004 + 233.57999999999998 3.1456384292299943E-004 + 233.63999999999999 3.0841955528034746E-004 + 233.69999999999999 3.0210475393649937E-004 + 233.75999999999999 2.9562932162987789E-004 + 233.81999999999999 2.8900343552348433E-004 + 233.88000000000000 2.8223758052103631E-004 + 233.94000000000000 2.7534260608957125E-004 + 234.00000000000000 2.6832962610800516E-004 + 234.06000000000000 2.6121002441250181E-004 + 234.12000000000000 2.5399542629432267E-004 + 234.18000000000001 2.4669768210433524E-004 + 234.24000000000001 2.3932880573880526E-004 + 234.30000000000001 2.3190097547351183E-004 + 234.36000000000001 2.2442654561234901E-004 + 234.42000000000002 2.1691792736195639E-004 + 234.47999999999996 2.0938767629700115E-004 + 234.53999999999996 2.0184838342190021E-004 + 234.59999999999997 1.9431269814543359E-004 + 234.65999999999997 1.8679328869270165E-004 + 234.71999999999997 1.7930283918543560E-004 + 234.77999999999997 1.7185401044023135E-004 + 234.83999999999997 1.6445940628436351E-004 + 234.89999999999998 1.5713158023256422E-004 + 234.95999999999998 1.4988298630988321E-004 + 235.01999999999998 1.4272598249344474E-004 + 235.07999999999998 1.3567276970017888E-004 + 235.13999999999999 1.2873538588524411E-004 + 235.19999999999999 1.2192565701776029E-004 + 235.25999999999999 1.1525518744114912E-004 + 235.31999999999999 1.0873534325759698E-004 + 235.38000000000000 1.0237718184164943E-004 + 235.44000000000000 9.6191470179493864E-005 + 235.50000000000000 9.0188631229557134E-005 + 235.56000000000000 8.4378748511921171E-005 + 235.62000000000000 7.8771523931861866E-005 + 235.68000000000001 7.3376282172212120E-005 + 235.74000000000001 6.8201942498811479E-005 + 235.80000000000001 6.3257024981596511E-005 + 235.86000000000001 5.8549622158461114E-005 + 235.92000000000002 5.4087411095613564E-005 + 235.97999999999996 4.9877637280225122E-005 + 236.03999999999996 4.5927113788959791E-005 + 236.09999999999997 4.2242205775277920E-005 + 236.15999999999997 3.8828829357517004E-005 + 236.21999999999997 3.5692432635220302E-005 + 236.27999999999997 3.2838005168924479E-005 + 236.33999999999997 3.0270031884666026E-005 + 236.39999999999998 2.7992504055694586E-005 + 236.45999999999998 2.6008896979350932E-005 + 236.51999999999998 2.4322163617455988E-005 + 236.57999999999998 2.2934702038652405E-005 + 236.63999999999999 2.1848360430155948E-005 + 236.69999999999999 2.1064420793393863E-005 + 236.75999999999999 2.0583596379607437E-005 + 236.81999999999999 2.0406016787820944E-005 + 236.88000000000000 2.0531252928892661E-005 + 236.94000000000000 2.0958288348479003E-005 + 237.00000000000000 2.1685554677950895E-005 + 237.06000000000000 2.2710922097331350E-005 + 237.12000000000000 2.4031720667346228E-005 + 237.18000000000001 2.5644748590759300E-005 + 237.24000000000001 2.7546286469633243E-005 + 237.30000000000001 2.9732117235817963E-005 + 237.36000000000001 3.2197526744894593E-005 + 237.42000000000002 3.4937325943161358E-005 + 237.47999999999996 3.7945849954949342E-005 + 237.53999999999996 4.1216970307153052E-005 + 237.59999999999997 4.4744103858222333E-005 + 237.65999999999997 4.8520220843172447E-005 + 237.71999999999997 5.2537837130475117E-005 + 237.77999999999997 5.6789037000745622E-005 + 237.83999999999997 6.1265454097607393E-005 + 237.89999999999998 6.5958309498515610E-005 + 237.95999999999998 7.0858395498413511E-005 + 238.01999999999998 7.5956097725033499E-005 + 238.07999999999998 8.1241419129609549E-005 + 238.13999999999999 8.6703979435711557E-005 + 238.19999999999999 9.2333046946269421E-005 + 238.25999999999999 9.8117550369455138E-005 + 238.31999999999999 1.0404611872100004E-004 + 238.38000000000000 1.1010709809139614E-004 + 238.44000000000000 1.1628856807959736E-004 + 238.50000000000000 1.2257837122311077E-004 + 238.56000000000000 1.2896415215189373E-004 + 238.62000000000000 1.3543336870552340E-004 + 238.68000000000001 1.4197328229220821E-004 + 238.74000000000001 1.4857104000113788E-004 + 238.80000000000001 1.5521365750017618E-004 + 238.86000000000001 1.6188804263360195E-004 + 238.92000000000002 1.6858098314484398E-004 + 238.97999999999996 1.7527923521845146E-004 + 239.03999999999996 1.8196946653457400E-004 + 239.09999999999997 1.8863833204675791E-004 + 239.15999999999997 1.9527245226759297E-004 + 239.21999999999997 2.0185845449289868E-004 + 239.27999999999997 2.0838299968450514E-004 + 239.33999999999997 2.1483279481540789E-004 + 239.39999999999998 2.2119463458317238E-004 + 239.45999999999998 2.2745542123861362E-004 + 239.51999999999998 2.3360220162685005E-004 + 239.57999999999998 2.3962218213370969E-004 + 239.63999999999999 2.4550277707839651E-004 + 239.69999999999999 2.5123160810192654E-004 + 239.75999999999999 2.5679652956137999E-004 + 239.81999999999999 2.6218576369358153E-004 + 239.88000000000000 2.6738770772482564E-004 + 239.94000000000000 2.7239113019446163E-004 + 240.00000000000000 2.7718514621931015E-004 + 240.06000000000000 2.8175921656687421E-004 + 240.12000000000000 2.8610317824693415E-004 + 240.18000000000001 2.9020726287878971E-004 + 240.24000000000001 2.9406210023281791E-004 + 240.30000000000001 2.9765877175183368E-004 + 240.36000000000001 3.0098882235549005E-004 + 240.42000000000002 3.0404418082697715E-004 + 240.47999999999996 3.0681733402577007E-004 + 240.53999999999996 3.0930126795684887E-004 + 240.59999999999997 3.1148946326187404E-004 + 240.65999999999997 3.1337595865285254E-004 + 240.71999999999997 3.1495530501928908E-004 + 240.77999999999997 3.1622271729180989E-004 + 240.83999999999997 3.1717390331391804E-004 + 240.89999999999998 3.1780526718913892E-004 + 240.95999999999998 3.1811375802805582E-004 + 241.01999999999998 3.1809691537894655E-004 + 241.07999999999998 3.1775296491956426E-004 + 241.13999999999999 3.1708070184709088E-004 + 241.19999999999999 3.1607956735454017E-004 + 241.25999999999999 3.1474959511918610E-004 + 241.31999999999999 3.1309143167356705E-004 + 241.38000000000000 3.1110634421169399E-004 + 241.44000000000000 3.0879620289604444E-004 + 241.50000000000000 3.0616345494574002E-004 + 241.56000000000000 3.0321117415252303E-004 + 241.62000000000000 2.9994301093442090E-004 + 241.68000000000001 2.9636317815034973E-004 + 241.74000000000001 2.9247646314540003E-004 + 241.80000000000001 2.8828828519909783E-004 + 241.86000000000001 2.8380454661164117E-004 + 241.92000000000002 2.7903176274293474E-004 + 241.97999999999996 2.7397690734668362E-004 + 242.03999999999996 2.6864752092306478E-004 + 242.09999999999997 2.6305163056030166E-004 + 242.15999999999997 2.5719778355044010E-004 + 242.21999999999997 2.5109489393149268E-004 + 242.27999999999997 2.4475236223490824E-004 + 242.33999999999997 2.3817993888730686E-004 + 242.39999999999998 2.3138776552667189E-004 + 242.45999999999998 2.2438628507113570E-004 + 242.51999999999998 2.1718624449785996E-004 + 242.57999999999998 2.0979866695029312E-004 + 242.63999999999999 2.0223482057015165E-004 + 242.69999999999999 1.9450617135964097E-004 + 242.75999999999999 1.8662436950404412E-004 + 242.81999999999999 1.7860124150486140E-004 + 242.88000000000000 1.7044874685871565E-004 + 242.94000000000000 1.6217897685227004E-004 + 243.00000000000000 1.5380408196388211E-004 + 243.06000000000000 1.4533633993104176E-004 + 243.12000000000000 1.3678805507735315E-004 + 243.18000000000001 1.2817157146304724E-004 + 243.24000000000001 1.1949922093874480E-004 + 243.30000000000001 1.1078334224614179E-004 + 243.36000000000001 1.0203619614250657E-004 + 243.42000000000002 9.3269980087500907E-005 + 243.47999999999996 8.4496762477775971E-005 + 243.53999999999996 7.5728468736370997E-005 + 243.59999999999997 6.6976839426799166E-005 + 243.65999999999997 5.8253402184721473E-005 + 243.71999999999997 4.9569431410972788E-005 + 243.77999999999997 4.0935930607096368E-005 + 243.83999999999997 3.2363604657484525E-005 + 243.89999999999998 2.3862830208077611E-005 + 243.95999999999998 1.5443653747875392E-005 + 244.01999999999998 7.1157531443157222E-006 + 244.07999999999998 -1.1115561159520157E-006 + 244.13999999999999 -9.2293394672873585E-006 + 244.19999999999999 -1.7229037540966884E-005 + 244.25999999999999 -2.5102487126176610E-005 + 244.31999999999999 -3.2841910587305041E-005 + 244.38000000000000 -4.0439927033096206E-005 + 244.44000000000000 -4.7889546776592273E-005 + 244.50000000000000 -5.5184187405170164E-005 + 244.56000000000000 -6.2317662816743975E-005 + 244.62000000000000 -6.9284200968423648E-005 + 244.68000000000001 -7.6078435527796864E-005 + 244.74000000000001 -8.2695418563119962E-005 + 244.80000000000001 -8.9130630470442098E-005 + 244.86000000000001 -9.5379973543771582E-005 + 244.92000000000002 -1.0143977086562276E-004 + 244.97999999999996 -1.0730677738668286E-004 + 245.03999999999996 -1.1297818031905866E-004 + 245.09999999999997 -1.1845159291357161E-004 + 245.15999999999997 -1.2372505051355906E-004 + 245.21999999999997 -1.2879699001583006E-004 + 245.27999999999997 -1.3366626104638970E-004 + 245.33999999999997 -1.3833209755083646E-004 + 245.39999999999998 -1.4279411960339158E-004 + 245.45999999999998 -1.4705230428956628E-004 + 245.51999999999998 -1.5110698906981322E-004 + 245.57999999999998 -1.5495885124484801E-004 + 245.63999999999999 -1.5860889487119998E-004 + 245.69999999999999 -1.6205844049820977E-004 + 245.75999999999999 -1.6530911157884798E-004 + 245.81999999999999 -1.6836280544184842E-004 + 245.88000000000000 -1.7122171836635668E-004 + 245.94000000000000 -1.7388830960139744E-004 + 246.00000000000000 -1.7636528146723569E-004 + 246.06000000000000 -1.7865560234704776E-004 + 246.12000000000000 -1.8076245506322387E-004 + 246.18000000000001 -1.8268922170341055E-004 + 246.24000000000001 -1.8443948702190428E-004 + 246.30000000000001 -1.8601702619552222E-004 + 246.36000000000001 -1.8742577016965490E-004 + 246.42000000000002 -1.8866979773695687E-004 + 246.47999999999996 -1.8975328598858446E-004 + 246.53999999999996 -1.9068055030174196E-004 + 246.59999999999997 -1.9145598349411112E-004 + 246.65999999999997 -1.9208404995838205E-004 + 246.71999999999997 -1.9256929398665587E-004 + 246.77999999999997 -1.9291629118615676E-004 + 246.83999999999997 -1.9312968357987508E-004 + 246.89999999999998 -1.9321414282902461E-004 + 246.95999999999998 -1.9317434897808057E-004 + 247.01999999999998 -1.9301503459905804E-004 + 247.07999999999998 -1.9274093516410918E-004 + 247.13999999999999 -1.9235681320772455E-004 + 247.19999999999999 -1.9186742012520621E-004 + 247.25999999999999 -1.9127755536836821E-004 + 247.31999999999999 -1.9059195274341199E-004 + 247.38000000000000 -1.8981537926563466E-004 + 247.44000000000000 -1.8895253971232506E-004 + 247.50000000000000 -1.8800809819516709E-004 + 247.56000000000000 -1.8698668408667976E-004 + 247.62000000000000 -1.8589280855643874E-004 + 247.68000000000001 -1.8473094200542625E-004 + 247.74000000000001 -1.8350541961355840E-004 + 247.80000000000001 -1.8222046362390449E-004 + 247.86000000000001 -1.8088018280847153E-004 + 247.92000000000002 -1.7948856775115048E-004 + 247.97999999999996 -1.7804945491085676E-004 + 248.03999999999996 -1.7656653461370890E-004 + 248.09999999999997 -1.7504340950795654E-004 + 248.15999999999997 -1.7348352000492624E-004 + 248.21999999999997 -1.7189017103117721E-004 + 248.27999999999997 -1.7026657340304813E-004 + 248.33999999999997 -1.6861583646318265E-004 + 248.39999999999998 -1.6694095780664278E-004 + 248.45999999999998 -1.6524482964284733E-004 + 248.51999999999998 -1.6353026159398524E-004 + 248.57999999999998 -1.6179996205921285E-004 + 248.63999999999999 -1.6005656808122475E-004 + 248.69999999999999 -1.5830259820469357E-004 + 248.75999999999999 -1.5654044757407799E-004 + 248.81999999999999 -1.5477241684736537E-004 + 248.88000000000000 -1.5300069204877420E-004 + 248.94000000000000 -1.5122732316550085E-004 + 249.00000000000000 -1.4945422232365594E-004 + 249.06000000000000 -1.4768317571535230E-004 + 249.12000000000000 -1.4591582047653173E-004 + 249.18000000000001 -1.4415366288503452E-004 + 249.24000000000001 -1.4239803003608147E-004 + 249.30000000000001 -1.4065017101539231E-004 + 249.36000000000001 -1.3891118265103221E-004 + 249.42000000000002 -1.3718205886001429E-004 + 249.47999999999996 -1.3546367439547634E-004 + 249.53999999999996 -1.3375683179359815E-004 + 249.59999999999997 -1.3206225190146424E-004 + 249.65999999999997 -1.3038056694323922E-004 + 249.71999999999997 -1.2871237968837255E-004 + 249.77999999999997 -1.2705823036925155E-004 + 249.83999999999997 -1.2541861012571980E-004 + 249.89999999999998 -1.2379396616448964E-004 + 249.95999999999998 -1.2218471581468696E-004 + 250.01999999999998 -1.2059121344865956E-004 + 250.07999999999998 -1.1901377930000339E-004 + 250.13999999999999 -1.1745267489178735E-004 + 250.19999999999999 -1.1590812693077315E-004 + 250.25999999999999 -1.1438029368025331E-004 + 250.31999999999999 -1.1286928921401425E-004 + 250.38000000000000 -1.1137517117044462E-004 + 250.44000000000000 -1.0989794540994682E-004 + 250.50000000000000 -1.0843756880742600E-004 + 250.56000000000000 -1.0699395669047346E-004 + 250.62000000000000 -1.0556698376391070E-004 + 250.68000000000001 -1.0415649144435432E-004 + 250.74000000000001 -1.0276229676042372E-004 + 250.80000000000001 -1.0138421595193917E-004 + 250.86000000000001 -1.0002203166095992E-004 + 250.92000000000002 -9.8675536665090608E-005 + 250.97999999999996 -9.7344513370240817E-005 + 251.03999999999996 -9.6028754876517560E-005 + 251.09999999999997 -9.4728046642823371E-005 + 251.15999999999997 -9.3442172714423158E-005 + 251.21999999999997 -9.2170941466673359E-005 + 251.27999999999997 -9.0914144819995938E-005 + 251.33999999999997 -8.9671575723154049E-005 + 251.39999999999998 -8.8443041341861365E-005 + 251.45999999999998 -8.7228335143442213E-005 + 251.51999999999998 -8.6027251838156660E-005 + 251.57999999999998 -8.4839583095532354E-005 + 251.63999999999999 -8.3665123230119583E-005 + 251.69999999999999 -8.2503664664302485E-005 + 251.75999999999999 -8.1355001820388847E-005 + 251.81999999999999 -8.0218937437542899E-005 + 251.88000000000000 -7.9095258093229650E-005 + 251.94000000000000 -7.7983787058899054E-005 diff --git a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000002.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000002.BXY.semd new file mode 100644 index 00000000..882f1ec5 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000002.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 7.5886722259613579E-041 + 0.53999999999999915 2.5212948569664084E-040 + 0.60000000000000142 5.4277068794660303E-040 + 0.65999999999999659 9.4614443317213183E-040 + 0.71999999999999886 1.4413480473435588E-039 + 0.78000000000000114 1.9613442045632197E-039 + 0.83999999999999631 2.1650740874008250E-039 + 0.89999999999999858 2.0204375643740807E-039 + 0.96000000000000085 1.4049336091198984E-039 + 1.0199999999999960 -8.7107145613100377E-041 + 1.0799999999999983 -2.4748289983846877E-039 + 1.1400000000000006 -5.6675090815012767E-039 + 1.1999999999999957 -9.8422379433704348E-039 + 1.2599999999999980 -1.4483602152448899E-038 + 1.3200000000000003 -1.8173997595028215E-038 + 1.3799999999999955 -2.0916382819013668E-038 + 1.4399999999999977 -2.0827977065134202E-038 + 1.5000000000000000 -1.7008573187315650E-038 + 1.5599999999999952 -9.2450437135210845E-039 + 1.6199999999999974 1.5036337932902958E-039 + 1.6799999999999997 1.3655005451310348E-038 + 1.7399999999999949 2.6600749957627384E-038 + 1.7999999999999972 4.0360080625049018E-038 + 1.8599999999999994 5.2714323923929560E-038 + 1.9200000000000017 6.3680685102581952E-038 + 1.9799999999999969 6.9705449801785464E-038 + 2.0399999999999991 6.9990985541468521E-038 + 2.1000000000000014 6.2752003747242965E-038 + 2.1599999999999966 4.9165518729738187E-038 + 2.2199999999999989 2.8902358961176232E-038 + 2.2800000000000011 1.7521269122838536E-039 + 2.3399999999999963 -3.2110824928944445E-038 + 2.3999999999999986 -7.2280287952531098E-038 + 2.4600000000000009 -1.1687504783949547E-037 + 2.5199999999999960 -1.6753835252512857E-037 + 2.5799999999999983 -2.2254016469734935E-037 + 2.6400000000000006 -2.7657961313122096E-037 + 2.6999999999999957 -3.2011274751212813E-037 + 2.7599999999999980 -3.4118150866206445E-037 + 2.8200000000000003 -3.3716127277632750E-037 + 2.8799999999999955 -3.0028173364558319E-037 + 2.9399999999999977 -2.2639110824039824E-037 + 3.0000000000000000 -1.0963020893910376E-037 + 3.0599999999999952 2.3161242355952228E-038 + 3.1199999999999974 1.6458958022510759E-037 + 3.1799999999999997 2.9516666098452764E-037 + 3.2399999999999949 3.9110878967390301E-037 + 3.2999999999999972 4.3453033698146869E-037 + 3.3599999999999994 3.9844457622716616E-037 + 3.4199999999999946 2.7081194754625323E-037 + 3.4799999999999969 3.5996155219765953E-038 + 3.5399999999999991 -2.8640818448845151E-037 + 3.6000000000000014 -6.5585000560753794E-037 + 3.6599999999999966 -1.0544194522285158E-036 + 3.7199999999999989 -1.4353214999292913E-036 + 3.7800000000000011 -1.7371313962138809E-036 + 3.8399999999999963 -1.8734636124054499E-036 + 3.8999999999999986 -1.7837537070232281E-036 + 3.9600000000000009 -1.3821834696490126E-036 + 4.0199999999999960 -6.3000030819828306E-037 + 4.0799999999999983 5.3205368889286006E-037 + 4.1400000000000006 2.0889445579083383E-036 + 4.1999999999999957 4.0221598357480089E-036 + 4.2599999999999980 6.1915595299307568E-036 + 4.3200000000000003 8.3663062762866538E-036 + 4.3799999999999955 1.0284619280912405E-035 + 4.4399999999999977 1.1615704043226100E-035 + 4.5000000000000000 1.2088992975887950E-035 + 4.5599999999999952 1.1391006015081203E-035 + 4.6199999999999974 9.2354732563310864E-036 + 4.6799999999999997 5.4440655720878152E-036 + 4.7399999999999949 -1.2292798937626712E-038 + 4.7999999999999972 -7.0268563260015213E-036 + 4.8599999999999994 -1.5296034237050073E-035 + 4.9199999999999946 -2.4284525948222908E-035 + 4.9799999999999969 -3.3258399348136678E-035 + 5.0399999999999991 -4.1016051409920680E-035 + 5.1000000000000014 -4.6447951468685300E-035 + 5.1599999999999966 -4.8530406227066389E-035 + 5.2199999999999989 -4.6094289685324353E-035 + 5.2800000000000011 -3.7919470417211185E-035 + 5.3399999999999963 -2.2920752158661842E-035 + 5.3999999999999986 -7.2006644635605953E-037 + 5.4600000000000009 2.8413000142152520E-035 + 5.5199999999999960 6.3647505691658510E-035 + 5.5799999999999983 1.0323659020657237E-034 + 5.6400000000000006 1.4451311036998812E-034 + 5.6999999999999957 1.8390342955709550E-034 + 5.7599999999999980 2.1694882978444878E-034 + 5.8200000000000003 2.3847693057853639E-034 + 5.8799999999999955 2.4325833488283089E-034 + 5.9399999999999977 2.2579565356174213E-034 + 6.0000000000000000 1.8146201877272555E-034 + 6.0599999999999952 1.0657114657934246E-034 + 6.1199999999999974 -5.5541838383396412E-037 + 6.1799999999999997 -1.3897339185366904E-034 + 6.2399999999999949 -3.0451393703531784E-034 + 6.2999999999999972 -4.8922568934490102E-034 + 6.3599999999999994 -6.8102908036657239E-034 + 6.4199999999999946 -8.6366446651432602E-034 + 6.4799999999999969 -1.0170376203410423E-033 + 6.5399999999999991 -1.1180175116625569E-033 + 6.6000000000000014 -1.1416500068053558E-033 + 6.6599999999999966 -1.0629816612105806E-033 + 6.7199999999999989 -8.5948476723557425E-034 + 6.7800000000000011 -5.1372314233799573E-034 + 6.8399999999999963 -1.6474520882491707E-035 + 6.8999999999999986 6.3011264069300296E-034 + 6.9600000000000009 1.4093880623280822E-033 + 7.0199999999999960 2.2875899148832670E-033 + 7.0799999999999983 3.2120786265287240E-033 + 7.1400000000000006 4.1106910588404338E-033 + 7.1999999999999957 4.8927585862980617E-033 + 7.2599999999999980 5.4520858003689721E-033 + 7.3200000000000003 5.6721229725999232E-033 + 7.3799999999999955 5.4334392897564719E-033 + 7.4399999999999977 4.6237264981507601E-033 + 7.5000000000000000 3.1498306223655341E-033 + 7.5599999999999952 9.5146343849440483E-034 + 7.6199999999999974 -1.9841718979511955E-033 + 7.6799999999999997 -5.6078859278954630E-033 + 7.7399999999999949 -9.7954446208709972E-033 + 7.7999999999999972 -1.4337474123310903E-032 + 7.8599999999999994 -1.8934002552597874E-032 + 7.9199999999999946 -2.3195398189036354E-032 + 7.9799999999999969 -2.6651208217216833E-032 + 8.0399999999999991 -2.8768757368726285E-032 + 8.1000000000000014 -2.8981628528169783E-032 + 8.1599999999999966 -2.6729144449303521E-032 + 8.2199999999999989 -2.1505955570507487E-032 + 8.2800000000000011 -1.2920341394226279E-032 + 8.3399999999999963 -7.5857170818887588E-034 + 8.3999999999999986 1.4948478996950335E-032 + 8.4600000000000009 3.3861430023488146E-032 + 8.5199999999999960 5.5277326299610906E-032 + 8.5799999999999983 7.8090274040600802E-032 + 8.6400000000000006 1.0077514787734673E-031 + 8.6999999999999957 1.2140177790204862E-031 + 8.7599999999999980 1.3768634319733815E-031 + 8.8200000000000003 1.4708537254188014E-031 + 8.8799999999999955 1.4693567328908218E-031 + 8.9399999999999977 1.3464051162114776E-031 + 9.0000000000000000 1.0789894479719481E-031 + 9.0599999999999952 6.4970451708547378E-032 + 9.1199999999999974 4.9627996269838767E-033 + 9.1799999999999997 -7.1874434069902867E-032 + 9.2399999999999949 -1.6387249414029012E-031 + 9.2999999999999972 -2.6770874014499387E-031 + 9.3599999999999994 -3.7824394383321011E-031 + 9.4199999999999946 -4.8846226546006799E-031 + 9.4799999999999969 -5.8954481218967441E-031 + 9.5399999999999991 -6.7110346403467621E-031 + 9.5999999999999943 -7.2159704211620732E-031 + 9.6599999999999966 -7.2894176954747134E-031 + 9.7199999999999989 -6.8131631865906374E-031 + 9.7800000000000011 -5.6814666506424380E-031 + 9.8399999999999963 -3.8123807291796524E-031 + 9.8999999999999986 -1.1600313815674925E-031 + 9.9600000000000009 2.2728571250849387E-031 + 10.019999999999996 6.4230926465841969E-031 + 10.079999999999998 1.1156865748776245E-030 + 10.140000000000001 1.6262504877709169E-030 + 10.199999999999996 2.1447383121212361E-030 + 10.259999999999998 2.6340191218216030E-030 + 10.320000000000000 3.0499691436684107E-030 + 10.379999999999995 3.3430814489859372E-030 + 10.439999999999998 3.4608638459522890E-030 + 10.500000000000000 3.3510292894136099E-030 + 10.559999999999995 2.9654285082166365E-030 + 10.619999999999997 2.2646056650791321E-030 + 10.680000000000000 1.2227835923009507E-030 + 10.739999999999995 -1.6698377846807741E-031 + 10.799999999999997 -1.8878412889766234E-030 + 10.859999999999999 -3.8947389894229358E-030 + 10.919999999999995 -6.1110782443029636E-030 + 10.979999999999997 -8.4268704524754737E-030 + 11.039999999999999 -1.0698893412252309E-029 + 11.099999999999994 -1.2753279558910090E-029 + 11.159999999999997 -1.4390905098738157E-029 + 11.219999999999999 -1.5395824232726199E-029 + 11.280000000000001 -1.5546817914992150E-029 + 11.339999999999996 -1.4631945546426562E-029 + 11.399999999999999 -1.2465718859444585E-029 + 11.460000000000001 -8.9082703048353660E-030 + 11.519999999999996 -3.8855899506543573E-030 + 11.579999999999998 2.5903396465976311E-030 + 11.640000000000001 1.0402974419610780E-029 + 11.699999999999996 1.9315840411738803E-029 + 11.759999999999998 2.8962139588802986E-029 + 11.820000000000000 3.8841151785408500E-029 + 11.879999999999995 4.8323142634469185E-029 + 11.939999999999998 5.6664303713378621E-029 + 12.000000000000000 6.3032832443181719E-029 + 12.059999999999995 6.6546791154690026E-029 + 12.119999999999997 6.6323610103297596E-029 + 12.180000000000000 6.1540413924555448E-029 + 12.239999999999995 5.1503259328453436E-029 + 12.299999999999997 3.5722522308784976E-029 + 12.359999999999999 1.3990571455406824E-029 + 12.419999999999995 -1.3543046891917566E-029 + 12.479999999999997 -4.6304589060692096E-029 + 12.539999999999999 -8.3243464755871903E-029 + 12.599999999999994 -1.2280052174889386E-028 + 12.659999999999997 -1.6290387979468337E-028 + 12.719999999999999 -2.0099829065474434E-028 + 12.780000000000001 -2.3411305135845906E-028 + 12.839999999999996 -2.5897201356006908E-028 + 12.899999999999999 -2.7214703302631185E-028 + 12.960000000000001 -2.7025373442212055E-028 + 13.019999999999996 -2.5018519251736769E-028 + 13.079999999999998 -2.0937600119998964E-028 + 13.140000000000001 -1.4608537425063798E-028 + 13.199999999999996 -5.9684604967345595E-029 + 13.259999999999998 4.9069430655675936E-029 + 13.320000000000000 1.7779519821331260E-028 + 13.379999999999995 3.2230519115994024E-028 + 13.439999999999998 4.7650550985243570E-028 + 13.500000000000000 6.3239988923587162E-028 + 13.559999999999995 7.8021878626375353E-028 + 13.619999999999997 9.0869105539462213E-028 + 13.680000000000000 1.0054685657742253E-027 + 13.739999999999995 1.0577082970844434E-027 + 13.799999999999997 1.0528048632584852E-027 + 13.859999999999999 9.7925672049656032E-028 + 13.919999999999995 8.2763683392191694E-028 + 13.979999999999997 5.9162638682503615E-028 + 14.039999999999999 2.6905655652286232E-028 + 14.099999999999994 -1.3710722552251835E-028 + 14.159999999999997 -6.1791268906552040E-028 + 14.219999999999999 -1.1577830080112865E-027 + 14.280000000000001 -1.7341760581187039E-027 + 14.339999999999996 -2.3176242434503288E-027 + 14.399999999999999 -2.8722277168898722E-027 + 14.460000000000001 -3.3566595535259242E-027 + 14.519999999999996 -3.7257226356149101E-027 + 14.579999999999998 -3.9324669085656616E-027 + 14.640000000000001 -3.9308459065329289E-027 + 14.699999999999996 -3.6788477563304371E-027 + 14.759999999999998 -3.1419964461115798E-027 + 14.820000000000000 -2.2970763109562871E-027 + 14.879999999999995 -1.1358813449695832E-027 + 14.939999999999998 3.3124040601901362E-028 + 15.000000000000000 2.0723172231326354E-027 + 15.059999999999995 4.0314454250826323E-027 + 15.119999999999997 6.1275476253265236E-027 + 15.180000000000000 8.2544825702189684E-027 + 15.239999999999995 1.0282776306619701E-026 + 15.299999999999997 1.2063182640970853E-026 + 15.359999999999999 1.3432217912468968E-026 + 15.419999999999995 1.4219711264078715E-026 + 15.479999999999997 1.4258293997988636E-026 + 15.539999999999999 1.3394616394603665E-026 + 15.599999999999994 1.1501930056086813E-026 + 15.659999999999997 8.4935070947678991E-027 + 15.719999999999999 4.3362260700810051E-027 + 15.780000000000001 -9.3651746521904842E-028 + 15.839999999999996 -7.2134992062274893E-027 + 15.899999999999999 -1.4297007308276243E-026 + 15.960000000000001 -2.1897908367195542E-026 + 16.019999999999996 -2.9635490237544071E-026 + 16.079999999999998 -3.7043055123810635E-026 + 16.140000000000001 -4.3580047820152656E-026 + 16.200000000000003 -4.8651305122484055E-026 + 16.259999999999991 -5.1633608464290194E-026 + 16.319999999999993 -5.1909359165656126E-026 + 16.379999999999995 -4.8906717765943191E-026 + 16.439999999999998 -4.2144962964338617E-026 + 16.500000000000000 -3.1283330681947180E-026 + 16.560000000000002 -1.6170931732855658E-026 + 16.620000000000005 3.1050589653556735E-027 + 16.679999999999993 2.6176359174779012E-026 + 16.739999999999995 5.2359339588565652E-026 + 16.799999999999997 8.0633489791822803E-026 + 16.859999999999999 1.0963645085324895E-025 + 16.920000000000002 1.3767927501020636E-025 + 16.980000000000004 1.6278499570370347E-025 + 17.039999999999992 1.8275280117926459E-025 + 17.099999999999994 1.9524904181723779E-025 + 17.159999999999997 1.9792481116409936E-025 + 17.219999999999999 1.8855822813881565E-025 + 17.280000000000001 1.6521774753538148E-025 + 17.340000000000003 1.2644056710768882E-025 + 17.399999999999991 7.1418545041034877E-026 + 17.459999999999994 1.8165550711973304E-028 + 17.519999999999996 -8.6232632991120330E-026 + 17.579999999999998 -1.8563682031866587E-025 + 17.640000000000001 -2.9459203148619660E-025 + 17.700000000000003 -4.0836164821764083E-025 + 17.759999999999991 -5.2093402649196520E-025 + 17.819999999999993 -6.2512625873930341E-025 + 17.879999999999995 -7.1277906630384618E-025 + 17.939999999999998 -7.7504895436490074E-025 + 18.000000000000000 -8.0279979192766627E-025 + 18.060000000000002 -7.8708974153647197E-025 + 18.120000000000005 -7.1974388807351571E-025 + 18.179999999999993 -5.9399544804115248E-025 + 18.239999999999995 -4.0517144371847663E-025 + 18.299999999999997 -1.5139141289323987E-025 + 18.359999999999999 1.6575926438854372E-025 + 18.420000000000002 5.4062522215348044E-025 + 18.480000000000004 9.6299453869742082E-025 + 18.539999999999992 1.4177806756201721E-024 + 18.599999999999994 1.8849241976027901E-024 + 18.659999999999997 2.3395608630821477E-024 + 18.719999999999999 2.7524992316962487E-024 + 18.780000000000001 3.0910379235996699E-024 + 18.840000000000003 3.3201428511685807E-024 + 18.899999999999991 3.4039840499817251E-024 + 18.959999999999994 3.3078159497322506E-024 + 19.019999999999996 3.0001574577018530E-024 + 19.079999999999998 2.4552095923464457E-024 + 19.140000000000001 1.6554174420946644E-024 + 19.200000000000003 5.9406343476214575E-025 + 19.259999999999991 -7.2224894305669170E-025 + 19.319999999999993 -2.2713735603771890E-024 + 19.379999999999995 -4.0138393982512090E-024 + 19.439999999999998 -5.8916779097111249E-024 + 19.500000000000000 -7.8280461363499004E-024 + 19.560000000000002 -9.7278029082534081E-024 + 19.620000000000005 -1.1479187964245962E-023 + 19.679999999999993 -1.2956706857782612E-023 + 19.739999999999995 -1.4025296160584764E-023 + 19.799999999999997 -1.4545767543494444E-023 + 19.859999999999999 -1.4381480152927609E-023 + 19.920000000000002 -1.3406096352187152E-023 + 19.980000000000004 -1.1512222736938814E-023 + 20.039999999999992 -8.6206225815605725E-024 + 20.099999999999994 -4.6896289389470907E-024 + 20.159999999999997 2.7569753514213345E-025 + 20.219999999999999 6.2151897838751735E-024 + 20.280000000000001 1.3006531649935522E-023 + 20.340000000000003 2.0460170172660276E-023 + 20.399999999999991 2.8316756934210130E-023 + 20.459999999999994 3.6247704331953513E-023 + 20.519999999999996 4.3859354368003635E-023 + 20.579999999999998 5.0701185922473178E-023 + 20.640000000000001 5.6278328555892052E-023 + 20.700000000000003 6.0068487201276859E-023 + 20.759999999999991 6.1543186494076629E-023 + 20.819999999999993 6.0193063395734590E-023 + 20.879999999999995 5.5556541426289448E-023 + 20.939999999999998 4.7251145036293115E-023 + 21.000000000000000 3.5006316133179705E-023 + 21.060000000000002 1.8696432401501403E-023 + 21.120000000000005 -1.6276044308453897E-024 + 21.179999999999993 -2.5709902283366920E-023 + 21.239999999999995 -5.3066113515420811E-023 + 21.299999999999997 -8.2966975623720487E-023 + 21.359999999999999 -1.1443070041533561E-022 + 21.420000000000002 -1.4622606915599593E-022 + 21.480000000000004 -1.7688784013358052E-022 + 21.539999999999992 -2.0474566342876862E-022 + 21.599999999999994 -2.2796751357227287E-022 + 21.659999999999997 -2.4461779354875524E-022 + 21.719999999999999 -2.5272986884191301E-022 + 21.780000000000001 -2.5039213858373483E-022 + 21.840000000000003 -2.3584565856879335E-022 + 21.899999999999991 -2.0759103866797043E-022 + 21.959999999999994 -1.6450092949452878E-022 + 22.019999999999996 -1.0593419568936747E-022 + 22.079999999999998 -3.1846998439321561E-023 + 22.140000000000001 5.7105131296019918E-023 + 22.200000000000003 1.5947936615079219E-022 + 22.259999999999991 2.7297887131752065E-022 + 22.319999999999993 3.9441267159189406E-022 + 22.379999999999995 5.1968893489862308E-022 + 22.439999999999998 6.4384638172827482E-022 + 22.500000000000000 7.6112925618256196E-022 + 22.560000000000002 8.6510887841872365E-022 + 22.619999999999990 9.4885448348157199E-022 + 22.679999999999993 1.0051533628151442E-021 + 22.739999999999995 1.0267786485232070E-021 + 22.799999999999997 1.0068014225758310E-021 + 22.859999999999999 9.3894030776868050E-022 + 22.920000000000002 8.1793992098710206E-022 + 22.980000000000004 6.3996692551498825E-022 + 23.039999999999992 4.0300896928615620E-022 + 23.099999999999994 1.0726175578340930E-022 + 23.159999999999997 -2.4451607428696531E-022 + 23.219999999999999 -6.4669794624143930E-022 + 23.280000000000001 -1.0905571691699866E-021 + 23.340000000000003 -1.5641274402820705E-021 + 23.399999999999991 -2.0521771542169988E-021 + 23.459999999999994 -2.5363176976546913E-021 + 23.519999999999996 -2.9952610754570983E-021 + 23.579999999999998 -3.4052419051750024E-021 + 23.640000000000001 -3.7406122898656570E-021 + 23.700000000000003 -3.9746116452854066E-021 + 23.759999999999991 -4.0803096308776225E-021 + 23.819999999999993 -4.0317087198904698E-021 + 23.879999999999995 -3.8049885978594372E-021 + 23.939999999999998 -3.3798609337808526E-021 + 24.000000000000000 -2.7409998406641757E-021 + 24.060000000000002 -1.8794945844700065E-021 + 24.119999999999990 -7.9427398811475321E-022 + 24.179999999999993 5.0656769248948370E-022 + 24.239999999999995 2.0046098815651425E-021 + 24.299999999999997 3.6701879758467321E-021 + 24.359999999999999 5.4617983090179325E-021 + 24.420000000000002 7.3258984495248507E-021 + 24.480000000000004 9.1971786119495749E-021 + 24.539999999999992 1.0999370075620229E-020 + 24.599999999999994 1.2646638686793525E-020 + 24.659999999999997 1.4045598903410642E-020 + 24.719999999999999 1.5097969736259020E-020 + 24.780000000000001 1.5703853993281097E-020 + 24.840000000000003 1.5765600683457560E-020 + 24.899999999999991 1.5192193280353108E-020 + 24.959999999999994 1.3904037268946121E-020 + 25.019999999999996 1.1838031833648422E-020 + 25.079999999999998 8.9527303769238112E-021 + 25.140000000000001 5.2334038971894293E-021 + 25.200000000000003 6.9676387145240176E-022 + 25.259999999999991 -4.6049083872055255E-021 + 25.319999999999993 -1.0580477164093475E-020 + 25.379999999999995 -1.7097811823058563E-020 + 25.439999999999998 -2.3983021310169798E-020 + 25.500000000000000 -3.1021324987554128E-020 + 25.560000000000002 -3.7959772248860537E-020 + 25.619999999999990 -4.4511939896932688E-020 + 25.679999999999993 -5.0364729629374130E-020 + 25.739999999999995 -5.5187270677967190E-020 + 25.799999999999997 -5.8641863232126427E-020 + 25.859999999999999 -6.0396764185565686E-020 + 25.920000000000002 -6.0140586006994639E-020 + 25.980000000000004 -5.7597874781712609E-020 + 26.039999999999992 -5.2545403382850635E-020 + 26.099999999999994 -4.4828604311014227E-020 + 26.159999999999997 -3.4377432593866860E-020 + 26.219999999999999 -2.1220957132310721E-020 + 26.280000000000001 -5.4998726503980739E-021 + 26.340000000000003 1.2523849143789961E-020 + 26.399999999999991 3.2460937297158686E-020 + 26.459999999999994 5.3793163442039161E-020 + 26.519999999999996 7.5876623939997052E-020 + 26.579999999999998 9.7950476102921426E-020 + 26.640000000000001 1.1915143130470561E-019 + 26.700000000000003 1.3853407571339224E-019 + 26.759999999999991 1.5509689763780129E-019 + 26.819999999999993 1.6781359484778832E-019 + 26.879999999999995 1.7566898045274514E-019 + 26.939999999999998 1.7769863307182801E-019 + 27.000000000000000 1.7303090758735000E-019 + 27.060000000000002 1.6093001516549106E-019 + 27.119999999999990 1.4083854924895721E-019 + 27.179999999999993 1.1241755544266179E-019 + 27.239999999999995 7.5582314667295055E-020 + 27.299999999999997 3.0532236428450253E-020 + 27.359999999999999 -2.2227253475383097E-020 + 27.420000000000002 -8.1872319918700067E-020 + 27.480000000000004 -1.4725902987561859E-019 + 27.539999999999992 -2.1693352762796396E-019 + 27.599999999999994 -2.8915448421186615E-019 + 27.659999999999997 -3.6192835183195788E-019 + 27.719999999999999 -4.3305650579422050E-019 + 27.780000000000001 -5.0019336313229229E-019 + 27.840000000000003 -5.6091449398848517E-019 + 27.899999999999991 -6.1279197772119040E-019 + 27.959999999999994 -6.5347493901322052E-019 + 28.019999999999996 -6.8077208038078517E-019 + 28.079999999999998 -6.9273317467416299E-019 + 28.140000000000001 -6.8772587054343113E-019 + 28.200000000000003 -6.6450485667655126E-019 + 28.259999999999991 -6.2226952075729114E-019 + 28.319999999999993 -5.6070773124976130E-019 + 28.379999999999995 -4.8002259736167701E-019 + 28.439999999999998 -3.8094083153957394E-019 + 28.500000000000000 -2.6470124990654020E-019 + 28.560000000000002 -1.3302249671534338E-019 + 28.619999999999990 1.1948014903862976E-020 + 28.679999999999993 1.6770448828091683E-019 + 28.739999999999995 3.3146948014060721E-019 + 28.799999999999997 5.0029375055487931E-019 + 28.859999999999999 6.7116633761991613E-019 + 28.920000000000002 8.4113113987769232E-019 + 28.980000000000004 1.0074052637796850E-018 + 29.039999999999992 1.1674970346931827E-018 + 29.099999999999994 1.3193168730722164E-018 + 29.159999999999997 1.4612829550788486E-018 + 29.219999999999999 1.5924154148306286E-018 + 29.280000000000001 1.7124197830610419E-018 + 29.340000000000003 1.8217638086766853E-018 + 29.399999999999991 1.9217432405833416E-018 + 29.459999999999994 2.0145465119802495E-018 + 29.519999999999996 2.1033180045974905E-018 + 29.579999999999998 2.1922361090375872E-018 + 29.640000000000001 2.2865968639992041E-018 + 29.700000000000003 2.3929313581321067E-018 + 29.759999999999991 2.5191498785239122E-018 + 29.819999999999993 2.6747320050613765E-018 + 29.879999999999995 2.8709677177467666E-018 + 29.939999999999998 3.1212446001079972E-018 + 30.000000000000000 3.4414074328502872E-018 + 30.060000000000002 3.8501712473771757E-018 + 30.119999999999990 4.3695995844007526E-018 + 30.179999999999993 5.0256367407131895E-018 + 30.239999999999995 5.8486826016718867E-018 + 30.299999999999997 6.8742008976122720E-018 + 30.359999999999999 8.1433471174159390E-018 + 30.420000000000002 9.7035826053520856E-018 + 30.480000000000004 1.1609278231991724E-017 + 30.539999999999992 1.3922234788870942E-017 + 30.599999999999994 1.6712163365489723E-017 + 30.659999999999997 2.0057030947412399E-017 + 30.719999999999999 2.4043276729739353E-017 + 30.780000000000001 2.8765876203204481E-017 + 30.840000000000003 3.4328317932099888E-017 + 30.899999999999991 4.0842303186247284E-017 + 30.959999999999994 4.8427358375259522E-017 + 31.019999999999996 5.7210344579108881E-017 + 31.079999999999998 6.7324786578654285E-017 + 31.140000000000001 7.8910159659859564E-017 + 31.200000000000003 9.2111169830335746E-017 + 31.259999999999991 1.0707713464334157E-016 + 31.319999999999993 1.2396143492886253E-016 + 31.379999999999995 1.4292126930836078E-016 + 31.439999999999998 1.6411777378511242E-016 + 31.500000000000000 1.8771636436461374E-016 + 31.560000000000002 2.1388808345724111E-016 + 31.619999999999990 2.4281093385707202E-016 + 31.679999999999993 2.7467283003095546E-016 + 31.739999999999995 3.0967432047106614E-016 + 31.799999999999997 3.4803298069930923E-016 + 31.859999999999999 3.8998830311466889E-016 + 31.920000000000002 4.3580742721854054E-016 + 31.980000000000004 4.8579182187500741E-016 + 32.039999999999992 5.4028445195555775E-016 + 32.099999999999994 5.9967739237923751E-016 + 32.159999999999997 6.6441990144614531E-016 + 32.219999999999999 7.3502598166310641E-016 + 32.280000000000001 8.1208277411374659E-016 + 32.340000000000003 8.9625647938038539E-016 + 32.399999999999991 9.8829826486688665E-016 + 32.459999999999994 1.0890477125693017E-015 + 32.519999999999996 1.1994343137436756E-015 + 32.579999999999998 1.3204758820670671E-015 + 32.640000000000001 1.4532718753077476E-015 + 32.700000000000003 1.5989952780993193E-015 + 32.759999999999991 1.7588751412536420E-015 + 32.819999999999993 1.9341764113248048E-015 + 32.879999999999995 2.1261732231280313E-015 + 32.939999999999998 2.3361118018973415E-015 + 33.000000000000000 2.5651671265919327E-015 + 33.060000000000002 2.8143905744284906E-015 + 33.119999999999990 3.0846509977223570E-015 + 33.179999999999993 3.3765602119888865E-015 + 33.239999999999995 3.6903917916735212E-015 + 33.299999999999997 4.0259882505594673E-015 + 33.359999999999999 4.3826537500443999E-015 + 33.420000000000002 4.7590390632174981E-015 + 33.480000000000004 5.1530094189312171E-015 + 33.539999999999992 5.5615011760084205E-015 + 33.599999999999994 5.9803612912128490E-015 + 33.659999999999997 6.4041733661515384E-015 + 33.719999999999999 6.8260638488373559E-015 + 33.780000000000001 7.2374938318524609E-015 + 33.840000000000003 7.6280239791894664E-015 + 33.899999999999991 7.9850549752424538E-015 + 33.959999999999994 8.2935459168937553E-015 + 34.019999999999996 8.5356891239820584E-015 + 34.079999999999998 8.6905672053510921E-015 + 34.140000000000001 8.7337410492018033E-015 + 34.200000000000003 8.6368071787418131E-015 + 34.259999999999991 8.3668956341383867E-015 + 34.319999999999993 7.8860705451313421E-015 + 34.379999999999995 7.1507138874198844E-015 + 34.439999999999998 6.1107372747943448E-015 + 34.500000000000000 4.7087648311400913E-015 + 34.560000000000002 2.8791190377222197E-015 + 34.619999999999990 5.4671681988943515E-016 + 34.679999999999993 -2.3741504369262588E-015 + 34.739999999999995 -5.9813625759997883E-015 + 34.799999999999997 -1.0386551476152547E-014 + 34.859999999999999 -1.5716989680213842E-014 + 34.920000000000002 -2.2117766860387046E-014 + 34.980000000000004 -2.9754188274485575E-014 + 35.039999999999992 -3.8814535039020025E-014 + 35.099999999999994 -4.9513112587083188E-014 + 35.159999999999997 -6.2093775564302535E-014 + 35.219999999999999 -7.6833787498279881E-014 + 35.280000000000001 -9.4048170152169175E-014 + 35.340000000000003 -1.1409474531322493E-013 + 35.399999999999991 -1.3737947527356070E-013 + 35.459999999999994 -1.6436257478259341E-013 + 35.519999999999996 -1.9556512330765449E-013 + 35.579999999999998 -2.3157651864074059E-013 + 35.640000000000001 -2.7306303963981137E-013 + 35.700000000000003 -3.2077661468954535E-013 + 35.759999999999991 -3.7556511094803321E-013 + 35.819999999999993 -4.3838314079191044E-013 + 35.879999999999995 -5.1030429334684872E-013 + 35.939999999999998 -5.9253385994974654E-013 + 36.000000000000000 -6.8642429110613424E-013 + 36.060000000000002 -7.9349016390762621E-013 + 36.119999999999990 -9.1542567395704076E-013 + 36.179999999999993 -1.0541224665752400E-012 + 36.239999999999995 -1.2116922609017335E-012 + 36.299999999999997 -1.3904866038694957E-012 + 36.359999999999999 -1.5931216956108368E-012 + 36.420000000000002 -1.8225047128555110E-012 + 36.479999999999990 -2.0818604187463163E-012 + 36.539999999999992 -2.3747633471700828E-012 + 36.599999999999994 -2.7051689564004228E-012 + 36.659999999999997 -3.0774469834247734E-012 + 36.719999999999999 -3.4964212999357951E-012 + 36.780000000000001 -3.9674097003879156E-012 + 36.840000000000003 -4.4962627385730661E-012 + 36.899999999999991 -5.0894130816686234E-012 + 36.959999999999994 -5.7539218636146594E-012 + 37.019999999999996 -6.4975286372129478E-012 + 37.079999999999998 -7.3287002773263459E-012 + 37.140000000000001 -8.2566952894144464E-012 + 37.200000000000003 -9.2916150075079754E-012 + 37.259999999999991 -1.0444459736103417E-011 + 37.319999999999993 -1.1727199496093968E-011 + 37.379999999999995 -1.3152825302009983E-011 + 37.439999999999998 -1.4735423186567353E-011 + 37.500000000000000 -1.6490233739675390E-011 + 37.560000000000002 -1.8433711927298720E-011 + 37.619999999999990 -2.0583584164272967E-011 + 37.679999999999993 -2.2958928995355251E-011 + 37.739999999999995 -2.5580203888496779E-011 + 37.799999999999997 -2.8469317855311412E-011 + 37.859999999999999 -3.1649663347136394E-011 + 37.920000000000002 -3.5146151710525235E-011 + 37.979999999999990 -3.8985226640199656E-011 + 38.039999999999992 -4.3194891743309366E-011 + 38.099999999999994 -4.7804673785966082E-011 + 38.159999999999997 -5.2845599041431114E-011 + 38.219999999999999 -5.8350131782122652E-011 + 38.280000000000001 -6.4352048708338071E-011 + 38.340000000000003 -7.0886375972914903E-011 + 38.399999999999991 -7.7989099996070780E-011 + 38.459999999999994 -8.5697012438331866E-011 + 38.519999999999996 -9.4047362190903673E-011 + 38.579999999999998 -1.0307748544381979E-010 + 38.640000000000001 -1.1282439004420291E-010 + 38.700000000000003 -1.2332405751844693E-010 + 38.759999999999991 -1.3461082507932519E-010 + 38.819999999999993 -1.4671656563816404E-010 + 38.879999999999995 -1.5966964688141848E-010 + 38.939999999999998 -1.7349374466874451E-010 + 39.000000000000000 -1.8820651686395106E-010 + 39.060000000000002 -2.0381789717686220E-010 + 39.119999999999990 -2.2032820977430350E-010 + 39.179999999999993 -2.3772590068288687E-010 + 39.239999999999995 -2.5598494216138583E-010 + 39.299999999999997 -2.7506190741996391E-010 + 39.359999999999999 -2.9489231053341352E-010 + 39.420000000000002 -3.1538673269569248E-010 + 39.479999999999990 -3.3642605758995130E-010 + 39.539999999999992 -3.5785637236536856E-010 + 39.599999999999994 -3.7948259712147042E-010 + 39.659999999999997 -4.0106162185344870E-010 + 39.719999999999999 -4.2229467862712845E-010 + 39.780000000000001 -4.4281766996107132E-010 + 39.840000000000003 -4.6219115560995028E-010 + 39.899999999999991 -4.7988856791009181E-010 + 39.959999999999994 -4.9528310511611987E-010 + 40.019999999999996 -5.0763185517801539E-010 + 40.079999999999998 -5.1605990119400455E-010 + 40.140000000000001 -5.1953995797469777E-010 + 40.200000000000003 -5.1687146126204485E-010 + 40.259999999999991 -5.0665511146226095E-010 + 40.319999999999993 -4.8726634583745137E-010 + 40.379999999999995 -4.5682388048522518E-010 + 40.439999999999998 -4.1315446426280315E-010 + 40.500000000000000 -3.5375521176872167E-010 + 40.560000000000002 -2.7574857838313501E-010 + 40.619999999999990 -1.7583417833360837E-010 + 40.679999999999993 -5.0233196756374890E-011 + 40.739999999999995 1.0537042686502550E-010 + 40.799999999999997 2.9590118162009337E-010 + 40.859999999999999 5.2696521922957607E-010 + 40.920000000000002 8.0493459685762321E-010 + 40.979999999999990 1.1370447623311717E-009 + 41.039999999999992 1.5314944753713553E-009 + 41.099999999999994 1.9975642791576182E-009 + 41.159999999999997 2.5457452108159328E-009 + 41.219999999999999 3.1878809418723601E-009 + 41.280000000000001 3.9373236025152698E-009 + 41.340000000000003 4.8091146203562411E-009 + 41.399999999999991 5.8201715261339156E-009 + 41.459999999999994 6.9895059667365328E-009 + 41.519999999999996 8.3384560383336421E-009 + 41.579999999999998 9.8909468342323306E-009 + 41.640000000000001 1.1673779987729146E-008 + 41.700000000000003 1.3716954836810059E-008 + 41.759999999999991 1.6054011086339494E-008 + 41.819999999999993 1.8722404282882469E-008 + 41.879999999999995 2.1763937982151099E-008 + 41.939999999999998 2.5225228889852818E-008 + 42.000000000000000 2.9158193326032346E-008 + 42.060000000000002 3.3620650545628457E-008 + 42.119999999999990 3.8676873300475341E-008 + 42.179999999999993 4.4398322131798136E-008 + 42.239999999999995 5.0864326410598536E-008 + 42.299999999999997 5.8162924253620609E-008 + 42.359999999999999 6.6391706909084525E-008 + 42.420000000000002 7.5658824245510580E-008 + 42.479999999999990 8.6084001351477018E-008 + 42.539999999999992 9.7799687801765526E-008 + 42.599999999999994 1.1095233628810565E-007 + 42.659999999999997 1.2570364420172974E-007 + 42.719999999999999 1.4223233640539405E-007 + 42.780000000000001 1.6073536022642421E-007 + 42.840000000000003 1.8143000241262526E-007 + 42.899999999999991 2.0455561148553195E-007 + 42.959999999999994 2.3037579535629930E-007 + 43.019999999999996 2.5918050692752850E-007 + 43.079999999999998 2.9128877655490872E-007 + 43.140000000000001 3.2705102827271134E-007 + 43.200000000000003 3.6685232958784739E-007 + 43.259999999999991 4.1111522909474545E-007 + 43.319999999999993 4.6030317140163123E-007 + 43.379999999999995 5.1492447055205338E-007 + 43.439999999999998 5.7553586996146660E-007 + 43.500000000000000 6.4274682964487524E-007 + 43.560000000000002 7.1722477739817227E-007 + 43.619999999999990 7.9969938473096438E-007 + 43.679999999999993 8.9096812454626416E-007 + 43.739999999999995 9.9190235094227930E-007 + 43.799999999999997 1.1034534230141967E-006 + 43.859999999999999 1.2266589860007527E-006 + 43.920000000000002 1.3626511280537860E-006 + 43.979999999999990 1.5126633884552824E-006 + 44.039999999999992 1.6780392095648226E-006 + 44.099999999999994 1.8602411542112987E-006 + 44.159999999999997 2.0608607079763019E-006 + 44.219999999999999 2.2816275286052036E-006 + 44.280000000000001 2.5244219633798897E-006 + 44.340000000000003 2.7912858761521448E-006 + 44.399999999999991 3.0844354645194514E-006 + 44.459999999999994 3.4062746731522426E-006 + 44.519999999999996 3.7594094338157819E-006 + 44.579999999999998 4.1466643901088965E-006 + 44.640000000000001 4.5710960760245088E-006 + 44.700000000000003 5.0360143402175507E-006 + 44.759999999999991 5.5449976727266936E-006 + 44.819999999999993 6.1019149156615988E-006 + 44.879999999999995 6.7109434701673220E-006 + 44.939999999999998 7.3765955469994535E-006 + 45.000000000000000 8.1037366271386593E-006 + 45.060000000000002 8.8976158007892448E-006 + 45.119999999999990 9.7638860345752918E-006 + 45.179999999999993 1.0708638090962926E-005 + 45.239999999999995 1.1738424392910564E-005 + 45.299999999999997 1.2860292602383343E-005 + 45.359999999999999 1.4081818150514276E-005 + 45.420000000000002 1.5411138974504802E-005 + 45.479999999999990 1.6856990085096417E-005 + 45.539999999999992 1.8428741852547519E-005 + 45.599999999999994 2.0136436127580337E-005 + 45.659999999999997 2.1990838877834142E-005 + 45.719999999999999 2.4003470392838627E-005 + 45.780000000000001 2.6186653079791692E-005 + 45.840000000000003 2.8553564712884587E-005 + 45.899999999999991 3.1118287786065665E-005 + 45.959999999999994 3.3895851271711528E-005 + 46.019999999999996 3.6902295363643394E-005 + 46.079999999999998 4.0154719417803273E-005 + 46.140000000000001 4.3671344460170642E-005 + 46.200000000000003 4.7471565557852327E-005 + 46.259999999999991 5.1576012319395086E-005 + 46.319999999999993 5.6006626943266926E-005 + 46.379999999999995 6.0786710374932459E-005 + 46.439999999999998 6.5941010154285708E-005 + 46.500000000000000 7.1495755861832454E-005 + 46.560000000000002 7.7478773292105648E-005 + 46.619999999999990 8.3919517744604670E-005 + 46.679999999999993 9.0849153924909355E-005 + 46.739999999999995 9.8300655510726772E-005 + 46.799999999999997 1.0630887999180340E-004 + 46.859999999999999 1.1491058986147136E-004 + 46.920000000000002 1.2414457960919183E-004 + 46.979999999999990 1.3405177366851298E-004 + 47.039999999999992 1.4467524100058142E-004 + 47.099999999999994 1.5606034694455500E-004 + 47.159999999999997 1.6825472686510752E-004 + 47.219999999999999 1.8130847774626646E-004 + 47.280000000000001 1.9527419207353910E-004 + 47.340000000000003 2.1020703190475969E-004 + 47.399999999999991 2.2616478179215673E-004 + 47.459999999999994 2.4320791017958887E-004 + 47.519999999999996 2.6139974204302229E-004 + 47.579999999999998 2.8080637326710406E-004 + 47.640000000000001 3.0149687727011961E-004 + 47.700000000000003 3.2354332840664371E-004 + 47.759999999999991 3.4702076010968116E-004 + 47.819999999999993 3.7200736118365497E-004 + 47.879999999999995 3.9858434659506586E-004 + 47.939999999999998 4.2683628371347892E-004 + 48.000000000000000 4.5685082361821846E-004 + 48.060000000000002 4.8871895619684779E-004 + 48.119999999999990 5.2253486681529614E-004 + 48.179999999999993 5.5839601449135588E-004 + 48.239999999999995 5.9640320513594275E-004 + 48.299999999999997 6.3666043420740543E-004 + 48.359999999999999 6.7927509048719414E-004 + 48.420000000000002 7.2435775081465580E-004 + 48.479999999999990 7.7202212938680154E-004 + 48.539999999999992 8.2238515571740904E-004 + 48.599999999999994 8.7556686068109577E-004 + 48.659999999999997 9.3169024825631957E-004 + 48.719999999999999 9.9088128217140591E-004 + 48.780000000000001 1.0532689981185381E-003 + 48.840000000000003 1.1189847977962453E-003 + 48.899999999999991 1.1881630093345192E-003 + 48.959999999999994 1.2609399257389907E-003 + 49.019999999999996 1.3374545404810268E-003 + 49.079999999999998 1.4178478689250982E-003 + 49.140000000000001 1.5022625927651446E-003 + 49.200000000000003 1.5908433139697070E-003 + 49.259999999999991 1.6837359933162641E-003 + 49.319999999999993 1.7810878379498664E-003 + 49.379999999999995 1.8830468410714033E-003 + 49.439999999999998 1.9897616749623872E-003 + 49.500000000000000 2.1013811003691529E-003 + 49.560000000000002 2.2180544176305934E-003 + 49.619999999999990 2.3399299083023831E-003 + 49.679999999999993 2.4671553525229340E-003 + 49.739999999999995 2.5998774323333930E-003 + 49.799999999999997 2.7382409678255401E-003 + 49.859999999999999 2.8823894409488937E-003 + 49.920000000000002 3.0324631164016236E-003 + 49.979999999999990 3.1885999318691069E-003 + 50.039999999999992 3.3509343444489128E-003 + 50.099999999999994 3.5195968997207916E-003 + 50.159999999999997 3.6947132232115335E-003 + 50.219999999999999 3.8764044159576667E-003 + 50.280000000000001 4.0647862269631583E-003 + 50.340000000000003 4.2599679875897451E-003 + 50.399999999999991 4.4620527917241994E-003 + 50.459999999999994 4.6711363039916541E-003 + 50.519999999999996 4.8873060749973739E-003 + 50.579999999999998 5.1106418801772991E-003 + 50.640000000000001 5.3412141002782392E-003 + 50.700000000000003 5.5790835561688153E-003 + 50.759999999999991 5.8243008869091027E-003 + 50.819999999999993 6.0769060831051920E-003 + 50.879999999999995 6.3369267025026304E-003 + 50.939999999999998 6.6043797961145723E-003 + 51.000000000000000 6.8792689577095835E-003 + 51.060000000000002 7.1615835332757474E-003 + 51.119999999999990 7.4513013042642766E-003 + 51.179999999999993 7.7483834087330641E-003 + 51.239999999999995 8.0527779070915812E-003 + 51.299999999999997 8.3644147621170801E-003 + 51.359999999999999 8.6832107728253543E-003 + 51.420000000000002 9.0090653595964049E-003 + 51.479999999999990 9.3418604200586185E-003 + 51.539999999999992 9.6814605174639998E-003 + 51.599999999999994 1.0027711875170103E-002 + 51.659999999999997 1.0380444044126297E-002 + 51.719999999999999 1.0739466436373288E-002 + 51.780000000000001 1.1104570298792363E-002 + 51.840000000000003 1.1475527833645341E-002 + 51.899999999999991 1.1852091153171264E-002 + 51.959999999999994 1.2233994359287896E-002 + 52.019999999999996 1.2620950786044189E-002 + 52.079999999999998 1.3012655004333587E-002 + 52.140000000000001 1.3408780759495115E-002 + 52.200000000000003 1.3808984381528503E-002 + 52.259999999999991 1.4212898817905063E-002 + 52.319999999999993 1.4620139824031098E-002 + 52.379999999999995 1.5030305023903862E-002 + 52.439999999999998 1.5442971719978070E-002 + 52.500000000000000 1.5857698338255628E-002 + 52.560000000000002 1.6274025009909664E-002 + 52.619999999999990 1.6691474881076564E-002 + 52.679999999999993 1.7109554541410853E-002 + 52.739999999999995 1.7527752484946674E-002 + 52.799999999999997 1.7945542615493529E-002 + 52.859999999999999 1.8362381534223447E-002 + 52.920000000000002 1.8777713275103164E-002 + 52.979999999999990 1.9190966393495761E-002 + 53.039999999999992 1.9601557040292955E-002 + 53.099999999999994 2.0008893106731533E-002 + 53.159999999999997 2.0412368656089162E-002 + 53.219999999999999 2.0811367346772251E-002 + 53.280000000000001 2.1205264834174144E-002 + 53.339999999999989 2.1593430303848728E-002 + 53.399999999999991 2.1975227755391798E-002 + 53.459999999999994 2.2350014181786185E-002 + 53.519999999999996 2.2717146039732235E-002 + 53.579999999999998 2.3075975586190074E-002 + 53.640000000000001 2.3425852866761552E-002 + 53.700000000000003 2.3766129848010468E-002 + 53.759999999999991 2.4096162515859450E-002 + 53.819999999999993 2.4415310107776186E-002 + 53.879999999999995 2.4722937425899486E-002 + 53.939999999999998 2.5018412842149583E-002 + 54.000000000000000 2.5301118114549485E-002 + 54.060000000000002 2.5570442397149656E-002 + 54.119999999999990 2.5825785506560735E-002 + 54.179999999999993 2.6066561369419129E-002 + 54.239999999999995 2.6292200261388669E-002 + 54.299999999999997 2.6502145041942787E-002 + 54.359999999999999 2.6695858904548703E-002 + 54.420000000000002 2.6872825631516571E-002 + 54.479999999999990 2.7032548075771445E-002 + 54.539999999999992 2.7174550001751993E-002 + 54.599999999999994 2.7298381760496326E-002 + 54.659999999999997 2.7403616733736022E-002 + 54.719999999999999 2.7489854570225968E-002 + 54.780000000000001 2.7556724828789556E-002 + 54.839999999999989 2.7603881163704214E-002 + 54.899999999999991 2.7631013870893950E-002 + 54.959999999999994 2.7637838952681168E-002 + 55.019999999999996 2.7624104550088412E-002 + 55.079999999999998 2.7589596167047745E-002 + 55.140000000000001 2.7534130065917369E-002 + 55.200000000000003 2.7457554219241342E-002 + 55.259999999999991 2.7359757658440696E-002 + 55.319999999999993 2.7240660769611621E-002 + 55.379999999999995 2.7100222700429881E-002 + 55.439999999999998 2.6938438900066135E-002 + 55.500000000000000 2.6755342612929625E-002 + 55.560000000000002 2.6550999451654095E-002 + 55.619999999999990 2.6325518514255644E-002 + 55.679999999999993 2.6079043826167540E-002 + 55.739999999999995 2.5811753943673559E-002 + 55.799999999999997 2.5523868209788005E-002 + 55.859999999999999 2.5215641513256577E-002 + 55.920000000000002 2.4887363509221470E-002 + 55.979999999999990 2.4539361565707251E-002 + 56.039999999999992 2.4171996469307570E-002 + 56.099999999999994 2.3785665448252259E-002 + 56.159999999999997 2.3380797360545460E-002 + 56.219999999999999 2.2957853902741431E-002 + 56.280000000000001 2.2517328419346450E-002 + 56.339999999999989 2.2059745962842006E-002 + 56.399999999999991 2.1585660967695729E-002 + 56.459999999999994 2.1095654453631124E-002 + 56.519999999999996 2.0590336394101624E-002 + 56.579999999999998 2.0070340565197943E-002 + 56.640000000000001 1.9536325024336235E-002 + 56.700000000000003 1.8988970707304955E-002 + 56.759999999999991 1.8428978877648543E-002 + 56.819999999999993 1.7857072531930827E-002 + 56.879999999999995 1.7273988824280419E-002 + 56.939999999999998 1.6680482208889250E-002 + 57.000000000000000 1.6077323371380358E-002 + 57.060000000000002 1.5465291767455194E-002 + 57.119999999999990 1.4845179909559960E-002 + 57.179999999999993 1.4217786867503723E-002 + 57.239999999999995 1.3583920172131900E-002 + 57.299999999999997 1.2944391871066302E-002 + 57.359999999999999 1.2300017849129537E-002 + 57.420000000000002 1.1651614473867877E-002 + 57.479999999999990 1.0999997718814335E-002 + 57.539999999999992 1.0345981854471926E-002 + 57.599999999999994 9.6903762865445976E-003 + 57.659999999999997 9.0339847944501291E-003 + 57.719999999999999 8.3776044807685381E-003 + 57.780000000000001 7.7220218077548993E-003 + 57.839999999999989 7.0680138441460653E-003 + 57.899999999999991 6.4163441876041874E-003 + 57.959999999999994 5.7677628030681624E-003 + 58.019999999999996 5.1230050577575140E-003 + 58.079999999999998 4.4827883673528995E-003 + 58.140000000000001 3.8478125920619723E-003 + 58.200000000000003 3.2187581249418706E-003 + 58.259999999999991 2.5962846689919781E-003 + 58.319999999999993 1.9810303542869608E-003 + 58.379999999999995 1.3736103310828824E-003 + 58.439999999999998 7.7461654305957658E-004 + 58.500000000000000 1.8461560489972206E-004 + 58.560000000000002 -3.9585082663203225E-004 + 58.619999999999990 -9.6626701226583595E-004 + 58.679999999999993 -1.5261445718484736E-003 + 58.739999999999995 -2.0750218854388050E-003 + 58.799999999999997 -2.6124655636971215E-003 + 58.859999999999999 -3.1380692149827498E-003 + 58.920000000000002 -3.6514567273351838E-003 + 58.979999999999990 -4.1522786457958531E-003 + 59.039999999999992 -4.6402153728080896E-003 + 59.099999999999994 -5.1149759789819015E-003 + 59.159999999999997 -5.5762977238093987E-003 + 59.219999999999999 -6.0239476078790804E-003 + 59.280000000000001 -6.4577193796932827E-003 + 59.339999999999989 -6.8774357563142416E-003 + 59.399999999999991 -7.2829483480670231E-003 + 59.459999999999994 -7.6741331295520927E-003 + 59.519999999999996 -8.0508957665875892E-003 + 59.579999999999998 -8.4131683639546411E-003 + 59.640000000000001 -8.7609066366397710E-003 + 59.700000000000003 -9.0940944928232566E-003 + 59.759999999999991 -9.4127374157711805E-003 + 59.819999999999993 -9.7168663140167599E-003 + 59.879999999999995 -1.0006533317277862E-002 + 59.939999999999998 -1.0281815547803439E-002 + 60.000000000000000 -1.0542808540804090E-002 + 60.060000000000002 -1.0789630140434893E-002 + 60.119999999999990 -1.1022417460550231E-002 + 60.179999999999993 -1.1241325454238248E-002 + 60.239999999999995 -1.1446528057131486E-002 + 60.299999999999997 -1.1638214299036956E-002 + 60.359999999999999 -1.1816590078477908E-002 + 60.420000000000002 -1.1981875539093431E-002 + 60.479999999999990 -1.2134304493651398E-002 + 60.539999999999992 -1.2274123368385603E-002 + 60.599999999999994 -1.2401591924955699E-002 + 60.659999999999997 -1.2516978326380870E-002 + 60.719999999999999 -1.2620561976332640E-002 + 60.780000000000001 -1.2712631302490278E-002 + 60.839999999999989 -1.2793480917048385E-002 + 60.899999999999991 -1.2863414354058238E-002 + 60.959999999999994 -1.2922740128616817E-002 + 61.019999999999996 -1.2971772202153731E-002 + 61.079999999999998 -1.3010829789116170E-002 + 61.140000000000001 -1.3040233153717586E-002 + 61.200000000000003 -1.3060306995371395E-002 + 61.259999999999991 -1.3071376712446367E-002 + 61.319999999999993 -1.3073769937324111E-002 + 61.379999999999995 -1.3067813428686546E-002 + 61.439999999999998 -1.3053833533144394E-002 + 61.500000000000000 -1.3032157142582872E-002 + 61.560000000000002 -1.3003106732455701E-002 + 61.619999999999990 -1.2967004017572625E-002 + 61.679999999999993 -1.2924168031869776E-002 + 61.739999999999995 -1.2874913697778947E-002 + 61.799999999999997 -1.2819553036163051E-002 + 61.859999999999999 -1.2758392942613838E-002 + 61.920000000000002 -1.2691735602919939E-002 + 61.979999999999990 -1.2619877462679613E-002 + 62.039999999999992 -1.2543109541276860E-002 + 62.099999999999994 -1.2461719392276763E-002 + 62.159999999999997 -1.2375984948766813E-002 + 62.219999999999999 -1.2286179342108459E-002 + 62.280000000000001 -1.2192568466520027E-002 + 62.339999999999989 -1.2095413077185594E-002 + 62.399999999999991 -1.1994964789912110E-002 + 62.459999999999994 -1.1891467682541512E-002 + 62.519999999999996 -1.1785160003690103E-002 + 62.579999999999998 -1.1676272103409279E-002 + 62.640000000000001 -1.1565026061113207E-002 + 62.700000000000003 -1.1451637470293985E-002 + 62.759999999999991 -1.1336313754761495E-002 + 62.819999999999993 -1.1219254945415322E-002 + 62.879999999999995 -1.1100652159689044E-002 + 62.939999999999998 -1.0980691224721563E-002 + 63.000000000000000 -1.0859548822022631E-002 + 63.060000000000002 -1.0737394905779556E-002 + 63.119999999999990 -1.0614390872486593E-002 + 63.179999999999993 -1.0490692661432247E-002 + 63.239999999999995 -1.0366447540597986E-002 + 63.299999999999997 -1.0241796069798149E-002 + 63.359999999999999 -1.0116872899636691E-002 + 63.420000000000002 -9.9918041512010482E-003 + 63.479999999999990 -9.8667111704401692E-003 + 63.539999999999992 -9.7417071619314843E-003 + 63.599999999999994 -9.6169002370108912E-003 + 63.659999999999997 -9.4923920013704303E-003 + 63.719999999999999 -9.3682773768212872E-003 + 63.780000000000001 -9.2446467075407747E-003 + 63.839999999999989 -9.1215836568217072E-003 + 63.899999999999991 -8.9991678163892364E-003 + 63.959999999999994 -8.8774727428728110E-003 + 64.019999999999996 -8.7565661037707875E-003 + 64.079999999999998 -8.6365114164252809E-003 + 64.140000000000001 -8.5173680873908315E-003 + 64.200000000000003 -8.3991904944939293E-003 + 64.259999999999991 -8.2820281117574248E-003 + 64.319999999999993 -8.1659259394345068E-003 + 64.379999999999995 -8.0509266090424917E-003 + 64.439999999999998 -7.9370682773954159E-003 + 64.500000000000000 -7.8243846468092348E-003 + 64.560000000000002 -7.7129066665217981E-003 + 64.619999999999990 -7.6026618318138298E-003 + 64.679999999999993 -7.4936746783283228E-003 + 64.739999999999995 -7.3859665647424185E-003 + 64.799999999999997 -7.2795563035141855E-003 + 64.859999999999999 -7.1744597985968755E-003 + 64.920000000000002 -7.0706902855181188E-003 + 64.979999999999990 -6.9682590018832220E-003 + 65.039999999999992 -6.8671749598937220E-003 + 65.099999999999994 -6.7674458274838553E-003 + 65.159999999999997 -6.6690754956283543E-003 + 65.219999999999999 -6.5720675143912735E-003 + 65.280000000000001 -6.4764236687874814E-003 + 65.339999999999989 -6.3821444225239145E-003 + 65.399999999999991 -6.2892280978435813E-003 + 65.459999999999994 -6.1976713063602341E-003 + 65.519999999999996 -6.1074706697377247E-003 + 65.579999999999998 -6.0186216529933322E-003 + 65.640000000000001 -5.9311173382393875E-003 + 65.700000000000003 -5.8449513854114425E-003 + 65.759999999999991 -5.7601157687776228E-003 + 65.819999999999993 -5.6766015082781625E-003 + 65.879999999999995 -5.5943992261746197E-003 + 65.939999999999998 -5.5134987004026043E-003 + 66.000000000000000 -5.4338897646845890E-003 + 66.060000000000002 -5.3555613563978349E-003 + 66.119999999999990 -5.2785015181598671E-003 + 66.179999999999993 -5.2026986023295443E-003 + 66.239999999999995 -5.1281398714911625E-003 + 66.299999999999997 -5.0548126744302518E-003 + 66.359999999999999 -4.9827044508953325E-003 + 66.420000000000002 -4.9118018047069143E-003 + 66.479999999999990 -4.8420916664806465E-003 + 66.539999999999992 -4.7735607684063347E-003 + 66.599999999999994 -4.7061956063075778E-003 + 66.659999999999997 -4.6399823088095699E-003 + 66.719999999999999 -4.5749076076936684E-003 + 66.780000000000001 -4.5109580276347892E-003 + 66.839999999999989 -4.4481201264759043E-003 + 66.899999999999991 -4.3863805587085938E-003 + 66.959999999999994 -4.3257255671527708E-003 + 67.019999999999996 -4.2661415521522746E-003 + 67.079999999999998 -4.2076155004358963E-003 + 67.140000000000001 -4.1501339050516502E-003 + 67.199999999999989 -4.0936836564494077E-003 + 67.259999999999991 -4.0382513440050290E-003 + 67.319999999999993 -3.9838237841388190E-003 + 67.379999999999995 -3.9303881767392742E-003 + 67.439999999999998 -3.8779313336202181E-003 + 67.500000000000000 -3.8264401445283901E-003 + 67.560000000000002 -3.7759018296655094E-003 + 67.619999999999990 -3.7263033970085912E-003 + 67.679999999999993 -3.6776320961650266E-003 + 67.739999999999995 -3.6298752083814704E-003 + 67.799999999999997 -3.5830202667647181E-003 + 67.859999999999999 -3.5370541891844853E-003 + 67.920000000000002 -3.4919648900899247E-003 + 67.979999999999990 -3.4477397416908446E-003 + 68.039999999999992 -3.4043665800731178E-003 + 68.099999999999994 -3.3618329124355285E-003 + 68.159999999999997 -3.3201266457325248E-003 + 68.219999999999999 -3.2792356594238889E-003 + 68.280000000000001 -3.2391478473451818E-003 + 68.339999999999989 -3.1998510146150436E-003 + 68.399999999999991 -3.1613333132759960E-003 + 68.459999999999994 -3.1235826637712920E-003 + 68.519999999999996 -3.0865875081972000E-003 + 68.579999999999998 -3.0503362882583485E-003 + 68.640000000000001 -3.0148170090589285E-003 + 68.699999999999989 -2.9800180852600664E-003 + 68.759999999999991 -2.9459282968405526E-003 + 68.819999999999993 -2.9125358032583877E-003 + 68.879999999999995 -2.8798295120372186E-003 + 68.939999999999998 -2.8477978874070341E-003 + 69.000000000000000 -2.8164300332826540E-003 + 69.060000000000002 -2.7857145220987383E-003 + 69.119999999999990 -2.7556405533893185E-003 + 69.179999999999993 -2.7261969467244195E-003 + 69.239999999999995 -2.6973727077506675E-003 + 69.299999999999997 -2.6691572835288247E-003 + 69.359999999999999 -2.6415397691567132E-003 + 69.420000000000002 -2.6145093746436387E-003 + 69.479999999999990 -2.5880555402040166E-003 + 69.539999999999992 -2.5621678457139235E-003 + 69.599999999999994 -2.5368358290937159E-003 + 69.659999999999997 -2.5120491835523675E-003 + 69.719999999999999 -2.4877977573570416E-003 + 69.780000000000001 -2.4640713902668861E-003 + 69.839999999999989 -2.4408601768968817E-003 + 69.899999999999991 -2.4181544665297008E-003 + 69.959999999999994 -2.3959442504277555E-003 + 70.019999999999996 -2.3742201254906906E-003 + 70.079999999999998 -2.3529724454925864E-003 + 70.140000000000001 -2.3321921335309860E-003 + 70.199999999999989 -2.3118697110935515E-003 + 70.259999999999991 -2.2919961763890229E-003 + 70.319999999999993 -2.2725627195329849E-003 + 70.379999999999995 -2.2535602995676796E-003 + 70.439999999999998 -2.2349801608862688E-003 + 70.500000000000000 -2.2168137233003911E-003 + 70.560000000000002 -2.1990523889610378E-003 + 70.619999999999990 -2.1816875304027090E-003 + 70.679999999999993 -2.1647109622103355E-003 + 70.739999999999995 -2.1481141150440316E-003 + 70.799999999999997 -2.1318887409510420E-003 + 70.859999999999999 -2.1160267349545413E-003 + 70.920000000000002 -2.1005199804025295E-003 + 70.979999999999990 -2.0853604042546129E-003 + 71.039999999999992 -2.0705398292946374E-003 + 71.099999999999994 -2.0560506822772718E-003 + 71.159999999999997 -2.0418847881554414E-003 + 71.219999999999999 -2.0280343625201213E-003 + 71.280000000000001 -2.0144916339476875E-003 + 71.339999999999989 -2.0012491716521136E-003 + 71.399999999999991 -1.9882993161412696E-003 + 71.459999999999994 -1.9756344198000749E-003 + 71.519999999999996 -1.9632471417481289E-003 + 71.579999999999998 -1.9511299609911333E-003 + 71.640000000000001 -1.9392756627714656E-003 + 71.699999999999989 -1.9276769953502403E-003 + 71.759999999999991 -1.9163265600852250E-003 + 71.819999999999993 -1.9052173180722936E-003 + 71.879999999999995 -1.8943421233796683E-003 + 71.939999999999998 -1.8836939591525717E-003 + 72.000000000000000 -1.8732658727983035E-003 + 72.060000000000002 -1.8630509237809881E-003 + 72.119999999999990 -1.8530421962533925E-003 + 72.179999999999993 -1.8432330094439861E-003 + 72.239999999999995 -1.8336166307089366E-003 + 72.299999999999997 -1.8241864228365392E-003 + 72.359999999999999 -1.8149358348567817E-003 + 72.420000000000002 -1.8058585079359501E-003 + 72.479999999999990 -1.7969478560428478E-003 + 72.539999999999992 -1.7881978342559452E-003 + 72.599999999999994 -1.7796020747245173E-003 + 72.659999999999997 -1.7711544556495626E-003 + 72.719999999999999 -1.7628491037993284E-003 + 72.780000000000001 -1.7546801865834100E-003 + 72.839999999999989 -1.7466418417993942E-003 + 72.899999999999991 -1.7387284986539178E-003 + 72.959999999999994 -1.7309345854584499E-003 + 73.019999999999996 -1.7232549353632248E-003 + 73.079999999999998 -1.7156840933525747E-003 + 73.140000000000001 -1.7082169971402621E-003 + 73.199999999999989 -1.7008486704724072E-003 + 73.259999999999991 -1.6935743779767456E-003 + 73.319999999999993 -1.6863893018287056E-003 + 73.379999999999995 -1.6792891204606287E-003 + 73.439999999999998 -1.6722693698630626E-003 + 73.500000000000000 -1.6653259623920108E-003 + 73.560000000000002 -1.6584548357232482E-003 + 73.619999999999990 -1.6516521311905133E-003 + 73.679999999999993 -1.6449141286706940E-003 + 73.739999999999995 -1.6382373049687480E-003 + 73.799999999999997 -1.6316180394405943E-003 + 73.859999999999999 -1.6250531854364464E-003 + 73.920000000000002 -1.6185394778086455E-003 + 73.979999999999990 -1.6120739327743164E-003 + 74.039999999999992 -1.6056536344636050E-003 + 74.099999999999994 -1.5992757809930210E-003 + 74.159999999999997 -1.5929375146716039E-003 + 74.219999999999999 -1.5866361800688489E-003 + 74.280000000000001 -1.5803694574828948E-003 + 74.339999999999989 -1.5741350277776850E-003 + 74.399999999999991 -1.5679303407101039E-003 + 74.459999999999994 -1.5617534380046778E-003 + 74.519999999999996 -1.5556020558954819E-003 + 74.579999999999998 -1.5494744451431544E-003 + 74.640000000000001 -1.5433686666091509E-003 + 74.699999999999989 -1.5372829571171384E-003 + 74.759999999999991 -1.5312156663021459E-003 + 74.819999999999993 -1.5251653688302615E-003 + 74.879999999999995 -1.5191306353822152E-003 + 74.939999999999998 -1.5131100930635528E-003 + 75.000000000000000 -1.5071024647286711E-003 + 75.060000000000002 -1.5011068747801349E-003 + 75.119999999999990 -1.4951221480538272E-003 + 75.179999999999993 -1.4891473539728668E-003 + 75.239999999999995 -1.4831817209260661E-003 + 75.299999999999997 -1.4772245022069120E-003 + 75.359999999999999 -1.4712749681342185E-003 + 75.420000000000002 -1.4653325310412986E-003 + 75.479999999999990 -1.4593966035002632E-003 + 75.539999999999992 -1.4534668093344710E-003 + 75.599999999999994 -1.4475427732206234E-003 + 75.659999999999997 -1.4416243311725619E-003 + 75.719999999999999 -1.4357111551861670E-003 + 75.780000000000001 -1.4298031354656807E-003 + 75.839999999999989 -1.4239003520984815E-003 + 75.899999999999991 -1.4180028901908885E-003 + 75.959999999999994 -1.4121110164436765E-003 + 76.019999999999996 -1.4062248672469275E-003 + 76.079999999999998 -1.4003448049626148E-003 + 76.140000000000001 -1.3944714731988553E-003 + 76.199999999999989 -1.3886055233113253E-003 + 76.259999999999991 -1.3827476120958839E-003 + 76.319999999999993 -1.3768984831612021E-003 + 76.379999999999995 -1.3710590977765716E-003 + 76.439999999999998 -1.3652304411225068E-003 + 76.500000000000000 -1.3594136650823252E-003 + 76.560000000000002 -1.3536099685223658E-003 + 76.619999999999990 -1.3478204537867612E-003 + 76.679999999999993 -1.3420465938703628E-003 + 76.739999999999995 -1.3362898066437304E-003 + 76.799999999999997 -1.3305513586061061E-003 + 76.859999999999999 -1.3248328085537541E-003 + 76.920000000000002 -1.3191357004295732E-003 + 76.979999999999990 -1.3134614589091112E-003 + 77.039999999999992 -1.3078117824832547E-003 + 77.099999999999994 -1.3021881480478887E-003 + 77.159999999999997 -1.2965922796629012E-003 + 77.219999999999999 -1.2910256619619879E-003 + 77.280000000000001 -1.2854899251601595E-003 + 77.339999999999989 -1.2799866507094478E-003 + 77.399999999999991 -1.2745173586557520E-003 + 77.459999999999994 -1.2690835809431133E-003 + 77.519999999999996 -1.2636866683744695E-003 + 77.579999999999998 -1.2583282031730693E-003 + 77.640000000000001 -1.2530094427097823E-003 + 77.699999999999989 -1.2477317738349900E-003 + 77.759999999999991 -1.2424963731260947E-003 + 77.819999999999993 -1.2373045337501661E-003 + 77.879999999999995 -1.2321573439876602E-003 + 77.939999999999998 -1.2270558960719320E-003 + 78.000000000000000 -1.2220012524172196E-003 + 78.060000000000002 -1.2169941264195225E-003 + 78.119999999999990 -1.2120356242372766E-003 + 78.179999999999993 -1.2071263098380040E-003 + 78.239999999999995 -1.2022669184776678E-003 + 78.299999999999997 -1.1974580796924579E-003 + 78.359999999999999 -1.1927002913849625E-003 + 78.420000000000002 -1.1879938015201190E-003 + 78.479999999999990 -1.1833391452513323E-003 + 78.539999999999992 -1.1787362928969488E-003 + 78.599999999999994 -1.1741852991746940E-003 + 78.659999999999997 -1.1696862130978060E-003 + 78.719999999999999 -1.1652387965886202E-003 + 78.780000000000001 -1.1608429399096508E-003 + 78.839999999999989 -1.1564980649271047E-003 + 78.899999999999991 -1.1522037526884338E-003 + 78.959999999999994 -1.1479594375413840E-003 + 79.019999999999996 -1.1437643784429554E-003 + 79.079999999999998 -1.1396177925507302E-003 + 79.140000000000001 -1.1355188106455792E-003 + 79.199999999999989 -1.1314664605247653E-003 + 79.259999999999991 -1.1274598160593216E-003 + 79.319999999999993 -1.1234977609917794E-003 + 79.379999999999995 -1.1195790727895928E-003 + 79.439999999999998 -1.1157028144614485E-003 + 79.500000000000000 -1.1118676474752870E-003 + 79.560000000000002 -1.1080723102261587E-003 + 79.619999999999990 -1.1043155315077734E-003 + 79.679999999999993 -1.1005960740209787E-003 + 79.739999999999995 -1.0969125621771898E-003 + 79.799999999999997 -1.0932637989469866E-003 + 79.859999999999999 -1.0896483756038617E-003 + 79.920000000000002 -1.0860649466442141E-003 + 79.979999999999990 -1.0825122207838414E-003 + 80.039999999999992 -1.0789888538729215E-003 + 80.099999999999994 -1.0754933578794330E-003 + 80.159999999999997 -1.0720245158973055E-003 + 80.219999999999999 -1.0685811394756401E-003 + 80.280000000000001 -1.0651617720600086E-003 + 80.340000000000003 -1.0617652965834708E-003 + 80.400000000000006 -1.0583903624572727E-003 + 80.460000000000008 -1.0550358117343290E-003 + 80.519999999999982 -1.0517006455817044E-003 + 80.579999999999984 -1.0483836195867985E-003 + 80.639999999999986 -1.0450837414659245E-003 + 80.699999999999989 -1.0418000444623191E-003 + 80.759999999999991 -1.0385315028174891E-003 + 80.819999999999993 -1.0352772958324382E-003 + 80.879999999999995 -1.0320365998191493E-003 + 80.939999999999998 -1.0288085820912920E-003 + 81.000000000000000 -1.0255925026581179E-003 + 81.060000000000002 -1.0223877050249224E-003 + 81.120000000000005 -1.0191935561105390E-003 + 81.180000000000007 -1.0160094080335523E-003 + 81.240000000000009 -1.0128348514975721E-003 + 81.299999999999983 -1.0096693184614611E-003 + 81.359999999999985 -1.0065122696606152E-003 + 81.419999999999987 -1.0033634232367184E-003 + 81.479999999999990 -1.0002223435148679E-003 + 81.539999999999992 -9.9708852933911608E-004 + 81.599999999999994 -9.9396181624721459E-004 + 81.659999999999997 -9.9084191044793938E-004 + 81.719999999999999 -9.8772852348108075E-004 + 81.780000000000001 -9.8462146490072076E-004 + 81.840000000000003 -9.8152049410156852E-004 + 81.900000000000006 -9.7842538681641635E-004 + 81.960000000000008 -9.7533604592316115E-004 + 82.019999999999982 -9.7225231035938105E-004 + 82.079999999999984 -9.6917406009226488E-004 + 82.139999999999986 -9.6610110663352040E-004 + 82.199999999999989 -9.6303339583297975E-004 + 82.259999999999991 -9.5997084465416203E-004 + 82.319999999999993 -9.5691337373195054E-004 + 82.379999999999995 -9.5386086678891664E-004 + 82.439999999999998 -9.5081324657991231E-004 + 82.500000000000000 -9.4777052267043939E-004 + 82.560000000000002 -9.4473265126234320E-004 + 82.620000000000005 -9.4169956900691867E-004 + 82.680000000000007 -9.3867127197551120E-004 + 82.740000000000009 -9.3564775273509556E-004 + 82.799999999999983 -9.3262903041293370E-004 + 82.859999999999985 -9.2961523356531028E-004 + 82.919999999999987 -9.2660633460530685E-004 + 82.979999999999990 -9.2360246206309627E-004 + 83.039999999999992 -9.2060374431107489E-004 + 83.099999999999994 -9.1761020991487207E-004 + 83.159999999999997 -9.1462209759676089E-004 + 83.219999999999999 -9.1163945627898541E-004 + 83.280000000000001 -9.0866252434494471E-004 + 83.340000000000003 -9.0569140841375738E-004 + 83.400000000000006 -9.0272635727603023E-004 + 83.460000000000008 -8.9976743999534137E-004 + 83.519999999999982 -8.9681493628660988E-004 + 83.579999999999984 -8.9386893623728716E-004 + 83.639999999999986 -8.9092963769664532E-004 + 83.699999999999989 -8.8799716721400671E-004 + 83.759999999999991 -8.8507173063510306E-004 + 83.819999999999993 -8.8215347414450924E-004 + 83.879999999999995 -8.7924262825550786E-004 + 83.939999999999998 -8.7633932007947037E-004 + 84.000000000000000 -8.7344378937129891E-004 + 84.060000000000002 -8.7055619911344489E-004 + 84.120000000000005 -8.6767677803698733E-004 + 84.180000000000007 -8.6480571226261603E-004 + 84.240000000000009 -8.6194332898892692E-004 + 84.299999999999983 -8.5908984259828861E-004 + 84.359999999999985 -8.5624552308354127E-004 + 84.419999999999987 -8.5341073634280073E-004 + 84.479999999999990 -8.5058563058142383E-004 + 84.539999999999992 -8.4777064739422262E-004 + 84.599999999999994 -8.4496608576495043E-004 + 84.659999999999997 -8.4217218570095903E-004 + 84.719999999999999 -8.3938936317929833E-004 + 84.780000000000001 -8.3661789086112608E-004 + 84.840000000000003 -8.3385806169795397E-004 + 84.900000000000006 -8.3111026960355631E-004 + 84.960000000000008 -8.2837482609890184E-004 + 85.019999999999982 -8.2565207068128511E-004 + 85.079999999999984 -8.2294219828010903E-004 + 85.139999999999986 -8.2024567840550489E-004 + 85.199999999999989 -8.1756268345875680E-004 + 85.259999999999991 -8.1489360667088195E-004 + 85.319999999999993 -8.1223881779837867E-004 + 85.379999999999995 -8.0959868556700662E-004 + 85.439999999999998 -8.0697349748822564E-004 + 85.500000000000000 -8.0436370843086995E-004 + 85.560000000000002 -8.0176965489823962E-004 + 85.620000000000005 -7.9919178602020312E-004 + 85.680000000000007 -7.9663055219114729E-004 + 85.740000000000009 -7.9408646705193982E-004 + 85.799999999999983 -7.9156009805234897E-004 + 85.859999999999985 -7.8905198193517925E-004 + 85.919999999999987 -7.8656274510008220E-004 + 85.979999999999990 -7.8409310295188370E-004 + 86.039999999999992 -7.8164375386229751E-004 + 86.099999999999994 -7.7921547750252427E-004 + 86.159999999999997 -7.7680911548984940E-004 + 86.219999999999999 -7.7442567470875027E-004 + 86.280000000000001 -7.7206611237309549E-004 + 86.340000000000003 -7.6973156613702469E-004 + 86.400000000000006 -7.6742316195531324E-004 + 86.460000000000008 -7.6514221594305230E-004 + 86.519999999999982 -7.6289011428652101E-004 + 86.579999999999984 -7.6066824788670491E-004 + 86.639999999999986 -7.5847818664741501E-004 + 86.699999999999989 -7.5632165798433066E-004 + 86.759999999999991 -7.5420035549634255E-004 + 86.819999999999993 -7.5211618231060102E-004 + 86.879999999999995 -7.5007119927959667E-004 + 86.939999999999998 -7.4806753492775719E-004 + 87.000000000000000 -7.4610734054713138E-004 + 87.060000000000002 -7.4419309431332764E-004 + 87.120000000000005 -7.4232731847969117E-004 + 87.180000000000007 -7.4051260001530657E-004 + 87.240000000000009 -7.3875188076662917E-004 + 87.299999999999983 -7.3704808462882079E-004 + 87.359999999999985 -7.3540441050563865E-004 + 87.419999999999987 -7.3382414403871303E-004 + 87.479999999999990 -7.3231072483110737E-004 + 87.539999999999992 -7.3086794684559006E-004 + 87.599999999999994 -7.2949952899578651E-004 + 87.659999999999997 -7.2820960983024051E-004 + 87.719999999999999 -7.2700234806652420E-004 + 87.780000000000001 -7.2588210706153158E-004 + 87.840000000000003 -7.2485351557541452E-004 + 87.900000000000006 -7.2392132470841194E-004 + 87.960000000000008 -7.2309045275084898E-004 + 88.019999999999982 -7.2236600587493997E-004 + 88.079999999999984 -7.2175331223946681E-004 + 88.139999999999986 -7.2125778051357380E-004 + 88.199999999999989 -7.2088506874214728E-004 + 88.259999999999991 -7.2064101177410410E-004 + 88.319999999999993 -7.2053157638986916E-004 + 88.379999999999995 -7.2056296715597489E-004 + 88.439999999999998 -7.2074152306369826E-004 + 88.500000000000000 -7.2107377712273674E-004 + 88.560000000000002 -7.2156646089737092E-004 + 88.620000000000005 -7.2222653611198409E-004 + 88.680000000000007 -7.2306107223901641E-004 + 88.740000000000009 -7.2407745262121162E-004 + 88.799999999999983 -7.2528310891514683E-004 + 88.859999999999985 -7.2668578441048191E-004 + 88.919999999999987 -7.2829335720722222E-004 + 88.979999999999990 -7.3011378805557035E-004 + 89.039999999999992 -7.3215545142001136E-004 + 89.099999999999994 -7.3442664095171872E-004 + 89.159999999999997 -7.3693596447912534E-004 + 89.219999999999999 -7.3969208225626204E-004 + 89.280000000000001 -7.4270381926665641E-004 + 89.340000000000003 -7.4598009360165164E-004 + 89.400000000000006 -7.4953004371227131E-004 + 89.460000000000008 -7.5336271838637560E-004 + 89.519999999999982 -7.5748734771392769E-004 + 89.579999999999984 -7.6191314619371503E-004 + 89.639999999999986 -7.6664949885232978E-004 + 89.699999999999989 -7.7170570898047353E-004 + 89.759999999999991 -7.7709120130696637E-004 + 89.819999999999993 -7.8281524818524944E-004 + 89.879999999999995 -7.8888722959369881E-004 + 89.939999999999998 -7.9531644360114856E-004 + 90.000000000000000 -8.0211216370308408E-004 + 90.060000000000002 -8.0928355510648427E-004 + 90.120000000000005 -8.1683966589580820E-004 + 90.180000000000007 -8.2478944994865432E-004 + 90.240000000000009 -8.3314166143120074E-004 + 90.299999999999983 -8.4190484464220284E-004 + 90.359999999999985 -8.5108743910453956E-004 + 90.419999999999987 -8.6069755066574228E-004 + 90.479999999999990 -8.7074301139737956E-004 + 90.539999999999992 -8.8123135410815437E-004 + 90.599999999999994 -8.9216967655201661E-004 + 90.659999999999997 -9.0356482237594722E-004 + 90.719999999999999 -9.1542296864092446E-004 + 90.780000000000001 -9.2775012005174413E-004 + 90.840000000000003 -9.4055152886427375E-004 + 90.900000000000006 -9.5383198187977631E-004 + 90.960000000000008 -9.6759566561572933E-004 + 91.019999999999982 -9.8184611234724954E-004 + 91.079999999999984 -9.9658622092147235E-004 + 91.139999999999986 -1.0118180796125564E-003 + 91.199999999999989 -1.0275430514302885E-003 + 91.259999999999991 -1.0437617692912124E-003 + 91.319999999999993 -1.0604739351561046E-003 + 91.379999999999995 -1.0776783540173756E-003 + 91.439999999999998 -1.0953728726464992E-003 + 91.500000000000000 -1.1135545300135987E-003 + 91.560000000000002 -1.1322191322871657E-003 + 91.620000000000005 -1.1513616878001082E-003 + 91.680000000000007 -1.1709758079752285E-003 + 91.739999999999981 -1.1910541102505764E-003 + 91.799999999999983 -1.2115881543828750E-003 + 91.859999999999985 -1.2325682269243689E-003 + 91.919999999999987 -1.2539834615818667E-003 + 91.979999999999990 -1.2758215055602741E-003 + 92.039999999999992 -1.2980690414481030E-003 + 92.099999999999994 -1.3207113436866536E-003 + 92.159999999999997 -1.3437322633832131E-003 + 92.219999999999999 -1.3671144469646294E-003 + 92.280000000000001 -1.3908391843739762E-003 + 92.340000000000003 -1.4148862958228200E-003 + 92.400000000000006 -1.4392343731194413E-003 + 92.460000000000008 -1.4638605634934275E-003 + 92.519999999999982 -1.4887404680926572E-003 + 92.579999999999984 -1.5138487693956181E-003 + 92.639999999999986 -1.5391582853636833E-003 + 92.699999999999989 -1.5646406446243727E-003 + 92.759999999999991 -1.5902662884217512E-003 + 92.819999999999993 -1.6160042026349868E-003 + 92.879999999999995 -1.6418220375528482E-003 + 92.939999999999998 -1.6676863856456877E-003 + 93.000000000000000 -1.6935625349278386E-003 + 93.060000000000002 -1.7194143466275819E-003 + 93.120000000000005 -1.7452048256979735E-003 + 93.180000000000007 -1.7708956956242121E-003 + 93.239999999999981 -1.7964480067479724E-003 + 93.299999999999983 -1.8218213671851741E-003 + 93.359999999999985 -1.8469748924195850E-003 + 93.419999999999987 -1.8718665465776599E-003 + 93.479999999999990 -1.8964536465980255E-003 + 93.539999999999992 -1.9206927639800061E-003 + 93.599999999999994 -1.9445400005318480E-003 + 93.659999999999997 -1.9679508043007367E-003 + 93.719999999999999 -1.9908801763860342E-003 + 93.780000000000001 -2.0132828508186112E-003 + 93.840000000000003 -2.0351132302416294E-003 + 93.900000000000006 -2.0563256164828274E-003 + 93.960000000000008 -2.0768740603796746E-003 + 94.019999999999982 -2.0967128526493718E-003 + 94.079999999999984 -2.1157964677894262E-003 + 94.139999999999986 -2.1340793168406337E-003 + 94.199999999999989 -2.1515168159102279E-003 + 94.259999999999991 -2.1680638305408176E-003 + 94.319999999999993 -2.1836767626095244E-003 + 94.379999999999995 -2.1983123074273518E-003 + 94.439999999999998 -2.2119280227008743E-003 + 94.500000000000000 -2.2244822751924451E-003 + 94.560000000000002 -2.2359349375332830E-003 + 94.620000000000005 -2.2462465072564737E-003 + 94.680000000000007 -2.2553792968182957E-003 + 94.739999999999981 -2.2632964964005124E-003 + 94.799999999999983 -2.2699633707830447E-003 + 94.859999999999985 -2.2753463980562994E-003 + 94.919999999999987 -2.2794139816374897E-003 + 94.979999999999990 -2.2821361640592650E-003 + 95.039999999999992 -2.2834848095838059E-003 + 95.099999999999994 -2.2834344142407675E-003 + 95.159999999999997 -2.2819611539865599E-003 + 95.219999999999999 -2.2790431559078393E-003 + 95.280000000000001 -2.2746613146877467E-003 + 95.340000000000003 -2.2687985336483779E-003 + 95.400000000000006 -2.2614401589704652E-003 + 95.460000000000008 -2.2525744132398454E-003 + 95.519999999999982 -2.2421913068595956E-003 + 95.579999999999984 -2.2302840782747867E-003 + 95.639999999999986 -2.2168484112670317E-003 + 95.699999999999989 -2.2018828658845356E-003 + 95.759999999999991 -2.1853882595520274E-003 + 95.819999999999993 -2.1673684224543625E-003 + 95.879999999999995 -2.1478297978541313E-003 + 95.939999999999998 -2.1267820520690650E-003 + 96.000000000000000 -2.1042370568302052E-003 + 96.060000000000002 -2.0802098878903927E-003 + 96.120000000000005 -2.0547180623702471E-003 + 96.180000000000007 -2.0277819798932384E-003 + 96.239999999999981 -1.9994245753480102E-003 + 96.299999999999983 -1.9696717258079000E-003 + 96.359999999999985 -1.9385516870169591E-003 + 96.419999999999987 -1.9060953723195506E-003 + 96.479999999999990 -1.8723364108936837E-003 + 96.539999999999992 -1.8373103964324138E-003 + 96.599999999999994 -1.8010555890866937E-003 + 96.659999999999997 -1.7636125250848982E-003 + 96.719999999999999 -1.7250240095574808E-003 + 96.780000000000001 -1.6853347228552233E-003 + 96.840000000000003 -1.6445915829617391E-003 + 96.900000000000006 -1.6028433665751308E-003 + 96.960000000000008 -1.5601406719011378E-003 + 97.019999999999982 -1.5165357544125529E-003 + 97.079999999999984 -1.4720824380102240E-003 + 97.139999999999986 -1.4268360106781395E-003 + 97.199999999999989 -1.3808530506635680E-003 + 97.259999999999991 -1.3341912318962717E-003 + 97.319999999999993 -1.2869096074280529E-003 + 97.379999999999995 -1.2390677511625713E-003 + 97.439999999999998 -1.1907263566960659E-003 + 97.500000000000000 -1.1419465346913073E-003 + 97.560000000000002 -1.0927900955669777E-003 + 97.620000000000005 -1.0433189755280593E-003 + 97.680000000000007 -9.9359545518978507E-004 + 97.739999999999981 -9.4368191811676407E-004 + 97.799999999999983 -8.9364075311263401E-004 + 97.859999999999985 -8.4353393446851346E-004 + 97.919999999999987 -7.9342327543004880E-004 + 97.979999999999990 -7.4336996416945274E-004 + 98.039999999999992 -6.9343477819226002E-004 + 98.099999999999994 -6.4367769093775389E-004 + 98.159999999999997 -5.9415777614116620E-004 + 98.219999999999999 -5.4493312318296681E-004 + 98.280000000000001 -4.9606068378738911E-004 + 98.340000000000003 -4.4759623053255152E-004 + 98.400000000000006 -3.9959413573738246E-004 + 98.460000000000008 -3.5210739551404729E-004 + 98.519999999999982 -3.0518738860926202E-004 + 98.579999999999984 -2.5888381972476138E-004 + 98.639999999999986 -2.1324467965177585E-004 + 98.699999999999989 -1.6831611296088097E-004 + 98.759999999999991 -1.2414232809191872E-004 + 98.819999999999993 -8.0765536644248248E-005 + 98.879999999999995 -3.8225987338864103E-005 + 98.939999999999998 3.4382804488839271E-006 + 99.000000000000000 4.4191325475918689E-005 + 99.060000000000002 8.3999408010692662E-005 + 99.120000000000005 1.2283103009075964E-004 + 99.180000000000007 1.6065697655864343E-004 + 99.239999999999981 1.9745029618153950E-004 + 99.299999999999983 2.3318630489512846E-004 + 99.359999999999985 2.6784272630840726E-004 + 99.419999999999987 3.0139944736513137E-004 + 99.479999999999990 3.3383878683972818E-004 + 99.539999999999992 3.6514533963600366E-004 + 99.599999999999994 3.9530596208922045E-004 + 99.659999999999997 4.2430986920489880E-004 + 99.719999999999999 4.5214849864964814E-004 + 99.780000000000001 4.7881545092003726E-004 + 99.840000000000003 5.0430664023477637E-004 + 99.900000000000006 5.2862002724799069E-004 + 99.960000000000008 5.5175581276618911E-004 + 100.01999999999998 5.7371622238505508E-004 + 100.07999999999998 5.9450544796202929E-004 + 100.13999999999999 6.1412974669307948E-004 + 100.19999999999999 6.3259723628440918E-004 + 100.25999999999999 6.4991775979981461E-004 + 100.31999999999999 6.6610306048832369E-004 + 100.38000000000000 6.8116648240473202E-004 + 100.44000000000000 6.9512303740687075E-004 + 100.50000000000000 7.0798925390227053E-004 + 100.56000000000000 7.1978306363617965E-004 + 100.62000000000000 7.3052379546199820E-004 + 100.68000000000001 7.4023200696874010E-004 + 100.73999999999998 7.4892949269914826E-004 + 100.79999999999998 7.5663912745773233E-004 + 100.85999999999999 7.6338489223206816E-004 + 100.91999999999999 7.6919161721269427E-004 + 100.97999999999999 7.7408499850721698E-004 + 101.03999999999999 7.7809146171291959E-004 + 101.09999999999999 7.8123817171155238E-004 + 101.16000000000000 7.8355280317030898E-004 + 101.22000000000000 7.8506367069162150E-004 + 101.28000000000000 7.8579951346580341E-004 + 101.34000000000000 7.8578933341197539E-004 + 101.40000000000001 7.8506242780943686E-004 + 101.46000000000001 7.8364839347902753E-004 + 101.51999999999998 7.8157692565474120E-004 + 101.57999999999998 7.7887779846262640E-004 + 101.63999999999999 7.7558071982346147E-004 + 101.69999999999999 7.7171538969918901E-004 + 101.75999999999999 7.6731133256004776E-004 + 101.81999999999999 7.6239793856691402E-004 + 101.88000000000000 7.5700431927371861E-004 + 101.94000000000000 7.5115919951040597E-004 + 102.00000000000000 7.4489101188423223E-004 + 102.06000000000000 7.3822767465810146E-004 + 102.12000000000000 7.3119673930038440E-004 + 102.18000000000001 7.2382516794019126E-004 + 102.23999999999998 7.1613933491219224E-004 + 102.29999999999998 7.0816513308312803E-004 + 102.35999999999999 6.9992759307327098E-004 + 102.41999999999999 6.9145123735608654E-004 + 102.47999999999999 6.8275976988171926E-004 + 102.53999999999999 6.7387618123824610E-004 + 102.59999999999999 6.6482276062040089E-004 + 102.66000000000000 6.5562096350866607E-004 + 102.72000000000000 6.4629144769051065E-004 + 102.78000000000000 6.3685404298536154E-004 + 102.84000000000000 6.2732782967727730E-004 + 102.90000000000001 6.1773098958946325E-004 + 102.96000000000001 6.0808093846661062E-004 + 103.01999999999998 5.9839428821139651E-004 + 103.07999999999998 5.8868678222792452E-004 + 103.13999999999999 5.7897341604297751E-004 + 103.19999999999999 5.6926828464782652E-004 + 103.25999999999999 5.5958475809475214E-004 + 103.31999999999999 5.4993543562238787E-004 + 103.38000000000000 5.4033201815593740E-004 + 103.44000000000000 5.3078550711716421E-004 + 103.50000000000000 5.2130616968846047E-004 + 103.56000000000000 5.1190338962587385E-004 + 103.62000000000000 5.0258585883911446E-004 + 103.68000000000001 4.9336159201462915E-004 + 103.73999999999998 4.8423776579666712E-004 + 103.79999999999998 4.7522086104093012E-004 + 103.85999999999999 4.6631671404597007E-004 + 103.91999999999999 4.5753036624230633E-004 + 103.97999999999999 4.4886629118026937E-004 + 104.03999999999999 4.4032824837618667E-004 + 104.09999999999999 4.3191944451180086E-004 + 104.16000000000000 4.2364244557968682E-004 + 104.22000000000000 4.1549925921973720E-004 + 104.28000000000000 4.0749140244082725E-004 + 104.34000000000000 3.9961987836178558E-004 + 104.40000000000001 3.9188517128061032E-004 + 104.46000000000001 3.8428741610341618E-004 + 104.51999999999998 3.7682629522648847E-004 + 104.57999999999998 3.6950113412071220E-004 + 104.63999999999999 3.6231093362061904E-004 + 104.69999999999999 3.5525431992081699E-004 + 104.75999999999999 3.4832966570120979E-004 + 104.81999999999999 3.4153509610448441E-004 + 104.88000000000000 3.3486845376655189E-004 + 104.94000000000000 3.2832736973774628E-004 + 105.00000000000000 3.2190925581358732E-004 + 105.06000000000000 3.1561134411723269E-004 + 105.12000000000000 3.0943068351202147E-004 + 105.18000000000001 3.0336415516346821E-004 + 105.23999999999998 2.9740847114908468E-004 + 105.29999999999998 2.9156025268238755E-004 + 105.35999999999999 2.8581594300656799E-004 + 105.41999999999999 2.8017195366729044E-004 + 105.47999999999999 2.7462458838583772E-004 + 105.53999999999999 2.6917007775212424E-004 + 105.59999999999999 2.6380465547010872E-004 + 105.66000000000000 2.5852449569142963E-004 + 105.72000000000000 2.5332576045481678E-004 + 105.78000000000000 2.4820463420925583E-004 + 105.84000000000000 2.4315738915678661E-004 + 105.90000000000001 2.3818031904392962E-004 + 105.96000000000001 2.3326978180578800E-004 + 106.01999999999998 2.2842226374863902E-004 + 106.07999999999998 2.2363432699012845E-004 + 106.13999999999999 2.1890266019903139E-004 + 106.19999999999999 2.1422409127896421E-004 + 106.25999999999999 2.0959556444781789E-004 + 106.31999999999999 2.0501416096491620E-004 + 106.38000000000000 2.0047714374038067E-004 + 106.44000000000000 1.9598188192129865E-004 + 106.50000000000000 1.9152592576417800E-004 + 106.56000000000000 1.8710696554325985E-004 + 106.62000000000000 1.8272284781216966E-004 + 106.68000000000001 1.7837154566591260E-004 + 106.73999999999998 1.7405119296212381E-004 + 106.79999999999998 1.6976008221916580E-004 + 106.85999999999999 1.6549662152740170E-004 + 106.91999999999999 1.6125939517428926E-004 + 106.97999999999999 1.5704711633762899E-004 + 107.03999999999999 1.5285863884480154E-004 + 107.09999999999999 1.4869295460093884E-004 + 107.16000000000000 1.4454919855816655E-004 + 107.22000000000000 1.4042664122725985E-004 + 107.28000000000000 1.3632472824558943E-004 + 107.34000000000000 1.3224300831405971E-004 + 107.40000000000001 1.2818120217798616E-004 + 107.46000000000001 1.2413914421235782E-004 + 107.51999999999998 1.2011683775064186E-004 + 107.57999999999998 1.1611439787864353E-004 + 107.63999999999999 1.1213208526540273E-004 + 107.69999999999999 1.0817027730572286E-004 + 107.75999999999999 1.0422949673087745E-004 + 107.81999999999999 1.0031035445757926E-004 + 107.88000000000000 9.6413581822805660E-005 + 107.94000000000000 9.2539999433197839E-005 + 108.00000000000000 8.8690506677719020E-005 + 108.06000000000000 8.4866079315531502E-005 + 108.12000000000000 8.1067759729418944E-005 + 108.18000000000001 7.7296625931467085E-005 + 108.23999999999998 7.3553804629720483E-005 + 108.29999999999998 6.9840429919181278E-005 + 108.35999999999999 6.6157664665389009E-005 + 108.41999999999999 6.2506676899076586E-005 + 108.47999999999999 5.8888625490754416E-005 + 108.53999999999999 5.5304663484217123E-005 + 108.59999999999999 5.1755932251790116E-005 + 108.66000000000000 4.8243550043248232E-005 + 108.72000000000000 4.4768613253615806E-005 + 108.78000000000000 4.1332201126093322E-005 + 108.84000000000000 3.7935364043409833E-005 + 108.90000000000001 3.4579136595271737E-005 + 108.96000000000001 3.1264522716194186E-005 + 109.01999999999998 2.7992506533134372E-005 + 109.07999999999998 2.4764051433475103E-005 + 109.13999999999999 2.1580084909021915E-005 + 109.19999999999999 1.8441518252321302E-005 + 109.25999999999999 1.5349229457451417E-005 + 109.31999999999999 1.2304063809167114E-005 + 109.38000000000000 9.3068314905799635E-006 + 109.44000000000000 6.3582977796240577E-006 + 109.50000000000000 3.4591844414400121E-006 + 109.56000000000000 6.1016253031930847E-007 + 109.62000000000000 -2.1881527604989907E-006 + 109.68000000000001 -4.9352033001852007E-006 + 109.73999999999998 -7.6304905893035509E-006 + 109.79999999999998 -1.0273581001079038E-005 + 109.85999999999999 -1.2864099481840089E-005 + 109.91999999999999 -1.5401731254570887E-005 + 109.97999999999999 -1.7886219168415436E-005 + 110.03999999999999 -2.0317353130651838E-005 + 110.09999999999999 -2.2694972883183713E-005 + 110.16000000000000 -2.5018956278694167E-005 + 110.22000000000000 -2.7289208252765302E-005 + 110.28000000000000 -2.9505658659577525E-005 + 110.34000000000000 -3.1668254057146972E-005 + 110.40000000000001 -3.3776941392568577E-005 + 110.46000000000001 -3.5831675545613308E-005 + 110.51999999999998 -3.7832405657175385E-005 + 110.57999999999998 -3.9779067415698695E-005 + 110.63999999999999 -4.1671585566622238E-005 + 110.69999999999999 -4.3509864392773409E-005 + 110.75999999999999 -4.5293791092976779E-005 + 110.81999999999999 -4.7023233527329839E-005 + 110.88000000000000 -4.8698040832016317E-005 + 110.94000000000000 -5.0318040733600197E-005 + 111.00000000000000 -5.1883043913405469E-005 + 111.06000000000000 -5.3392840267111343E-005 + 111.12000000000000 -5.4847192421057548E-005 + 111.18000000000001 -5.6245847695876812E-005 + 111.23999999999998 -5.7588541096300224E-005 + 111.29999999999998 -5.8874963175636449E-005 + 111.35999999999999 -6.0104792161475324E-005 + 111.41999999999999 -6.1277670480832573E-005 + 111.47999999999999 -6.2393210175073374E-005 + 111.53999999999999 -6.3450974952935385E-005 + 111.59999999999999 -6.4450500029548266E-005 + 111.66000000000000 -6.5391271492649838E-005 + 111.72000000000000 -6.6272730900182410E-005 + 111.78000000000000 -6.7094268009011175E-005 + 111.84000000000000 -6.7855229377681352E-005 + 111.90000000000001 -6.8554912197415376E-005 + 111.96000000000001 -6.9192573509815523E-005 + 112.01999999999998 -6.9767411460115868E-005 + 112.07999999999998 -7.0278598160590308E-005 + 112.13999999999999 -7.0725255712721219E-005 + 112.19999999999999 -7.1106479089122290E-005 + 112.25999999999999 -7.1421335347665509E-005 + 112.31999999999999 -7.1668851856432025E-005 + 112.38000000000000 -7.1848043075487073E-005 + 112.44000000000000 -7.1957908560883594E-005 + 112.50000000000000 -7.1997427835415677E-005 + 112.56000000000000 -7.1965567826637320E-005 + 112.62000000000000 -7.1861295552325637E-005 + 112.68000000000001 -7.1683557117260702E-005 + 112.73999999999998 -7.1431302146202820E-005 + 112.79999999999998 -7.1103472865997796E-005 + 112.85999999999999 -7.0699019131099545E-005 + 112.91999999999999 -7.0216888747095401E-005 + 112.97999999999999 -6.9656032313525999E-005 + 113.03999999999999 -6.9015411447964813E-005 + 113.09999999999999 -6.8293995565619939E-005 + 113.16000000000000 -6.7490782865697093E-005 + 113.22000000000000 -6.6604784968976878E-005 + 113.28000000000000 -6.5635037200124089E-005 + 113.34000000000000 -6.4580615933263751E-005 + 113.40000000000001 -6.3440634197794353E-005 + 113.46000000000001 -6.2214259565928658E-005 + 113.51999999999998 -6.0900712307383219E-005 + 113.57999999999998 -5.9499282506395699E-005 + 113.63999999999999 -5.8009322788771487E-005 + 113.69999999999999 -5.6430281561209928E-005 + 113.75999999999999 -5.4761689394797873E-005 + 113.81999999999999 -5.3003174195144577E-005 + 113.88000000000000 -5.1154472753833956E-005 + 113.94000000000000 -4.9215427925721051E-005 + 114.00000000000000 -4.7186003548472217E-005 + 114.06000000000000 -4.5066286297908088E-005 + 114.12000000000000 -4.2856496579823009E-005 + 114.18000000000001 -4.0556982849141858E-005 + 114.23999999999998 -3.8168241682928727E-005 + 114.29999999999998 -3.5690907711415044E-005 + 114.35999999999999 -3.3125760768581241E-005 + 114.41999999999999 -3.0473733354477515E-005 + 114.47999999999999 -2.7735912578388272E-005 + 114.53999999999999 -2.4913540864922656E-005 + 114.59999999999999 -2.2008017796310575E-005 + 114.66000000000000 -1.9020907006476108E-005 + 114.72000000000000 -1.5953934909415981E-005 + 114.78000000000000 -1.2808996655526043E-005 + 114.84000000000000 -9.5881552788215869E-006 + 114.90000000000001 -6.2936453483057704E-006 + 114.96000000000001 -2.9278803612948443E-006 + 115.01999999999998 5.0655022968942143E-007 + 115.07999999999998 4.0068790448287408E-006 + 115.13999999999999 7.5701531391049299E-006 + 115.19999999999999 1.1193237063601604E-005 + 115.25999999999999 1.4872810427230100E-005 + 115.31999999999999 1.8605367953545656E-005 + 115.38000000000000 2.2387220838204756E-005 + 115.44000000000000 2.6214501212799881E-005 + 115.50000000000000 3.0083165254994340E-005 + 115.56000000000000 3.3988999856377774E-005 + 115.62000000000000 3.7927625151246644E-005 + 115.68000000000001 4.1894514548012511E-005 + 115.73999999999998 4.5884991154975080E-005 + 115.79999999999998 4.9894255782947991E-005 + 115.85999999999999 5.3917388992223217E-005 + 115.91999999999999 5.7949372028957022E-005 + 115.97999999999999 6.1985092437663789E-005 + 116.03999999999999 6.6019375309705398E-005 + 116.09999999999999 7.0046985693046919E-005 + 116.16000000000000 7.4062652301959094E-005 + 116.22000000000000 7.8061064345544826E-005 + 116.28000000000000 8.2036918909410910E-005 + 116.34000000000000 8.5984905138905635E-005 + 116.40000000000001 8.9899719801420550E-005 + 116.46000000000001 9.3776096342535002E-005 + 116.51999999999998 9.7608801911844943E-005 + 116.57999999999998 1.0139265004007764E-004 + 116.63999999999999 1.0512250542710687E-004 + 116.69999999999999 1.0879331447901696E-004 + 116.75999999999999 1.1240008560637734E-004 + 116.81999999999999 1.1593793050286202E-004 + 116.88000000000000 1.1940205942415567E-004 + 116.94000000000000 1.2278781075435492E-004 + 117.00000000000000 1.2609063022773313E-004 + 117.06000000000000 1.2930611934898139E-004 + 117.12000000000000 1.3243003673183898E-004 + 117.18000000000001 1.3545833146698686E-004 + 117.23999999999998 1.3838713537224267E-004 + 117.29999999999998 1.4121279653706893E-004 + 117.35999999999999 1.4393187859997327E-004 + 117.41999999999999 1.4654116094579896E-004 + 117.47999999999999 1.4903772650320132E-004 + 117.53999999999999 1.5141886875001797E-004 + 117.59999999999999 1.5368219332907785E-004 + 117.66000000000000 1.5582555079851162E-004 + 117.72000000000000 1.5784707374127447E-004 + 117.78000000000000 1.5974519757387798E-004 + 117.84000000000000 1.6151861588969551E-004 + 117.90000000000001 1.6316631526261413E-004 + 117.96000000000001 1.6468753721727018E-004 + 118.01999999999998 1.6608182455569350E-004 + 118.07999999999998 1.6734895954522374E-004 + 118.13999999999999 1.6848898929744385E-004 + 118.19999999999999 1.6950220790094860E-004 + 118.25999999999999 1.7038914615640548E-004 + 118.31999999999999 1.7115059015061714E-004 + 118.38000000000000 1.7178754664979039E-004 + 118.44000000000000 1.7230126174417728E-004 + 118.50000000000000 1.7269316652201178E-004 + 118.56000000000000 1.7296491130855534E-004 + 118.62000000000000 1.7311839438905109E-004 + 118.68000000000001 1.7315567359571792E-004 + 118.73999999999998 1.7307902218651004E-004 + 118.79999999999998 1.7289088098979276E-004 + 118.85999999999999 1.7259388122367920E-004 + 118.91999999999999 1.7219081741913267E-004 + 118.97999999999999 1.7168463570745737E-004 + 119.03999999999999 1.7107843528740694E-004 + 119.09999999999999 1.7037544193186971E-004 + 119.16000000000000 1.6957899753878636E-004 + 119.22000000000000 1.6869256609339199E-004 + 119.28000000000000 1.6771965384422696E-004 + 119.34000000000000 1.6666389203028181E-004 + 119.40000000000001 1.6552893737026221E-004 + 119.46000000000001 1.6431847504838631E-004 + 119.51999999999998 1.6303623760858179E-004 + 119.57999999999998 1.6168595343710196E-004 + 119.63999999999999 1.6027133136412437E-004 + 119.69999999999999 1.5879608946620355E-004 + 119.75999999999999 1.5726388304533454E-004 + 119.81999999999999 1.5567833213424954E-004 + 119.88000000000000 1.5404301133087683E-004 + 119.94000000000000 1.5236141629337770E-004 + 120.00000000000000 1.5063696980846216E-004 + 120.06000000000000 1.4887300815753893E-004 + 120.12000000000000 1.4707276879940683E-004 + 120.18000000000001 1.4523943174353372E-004 + 120.23999999999998 1.4337605574573763E-004 + 120.29999999999998 1.4148558956325158E-004 + 120.35999999999999 1.3957088061376471E-004 + 120.41999999999999 1.3763467115992872E-004 + 120.47999999999999 1.3567960217473620E-004 + 120.53999999999999 1.3370816040747120E-004 + 120.59999999999999 1.3172276840217039E-004 + 120.66000000000000 1.2972570863206944E-004 + 120.72000000000000 1.2771913715215269E-004 + 120.78000000000000 1.2570507631937046E-004 + 120.84000000000000 1.2368543253565752E-004 + 120.90000000000001 1.2166198154542679E-004 + 120.95999999999998 1.1963635001141816E-004 + 121.01999999999998 1.1761004409120856E-004 + 121.07999999999998 1.1558441357700723E-004 + 121.13999999999999 1.1356066239243890E-004 + 121.19999999999999 1.1153985464069905E-004 + 121.25999999999999 1.0952290584450815E-004 + 121.31999999999999 1.0751057070585244E-004 + 121.38000000000000 1.0550346654048864E-004 + 121.44000000000000 1.0350206451507845E-004 + 121.50000000000000 1.0150669693016363E-004 + 121.56000000000000 9.9517549150679970E-005 + 121.62000000000000 9.7534695163546158E-005 + 121.68000000000001 9.5558063366160283E-005 + 121.73999999999998 9.3587497369389662E-005 + 121.79999999999998 9.1622721023365374E-005 + 121.85999999999999 8.9663370199583958E-005 + 121.91999999999999 8.7709012768136520E-005 + 121.97999999999999 8.5759116585504166E-005 + 122.03999999999999 8.3813101595377122E-005 + 122.09999999999999 8.1870320112812668E-005 + 122.16000000000000 7.9930090704146155E-005 + 122.22000000000000 7.7991662287274873E-005 + 122.28000000000000 7.6054250133196017E-005 + 122.34000000000000 7.4117035271679764E-005 + 122.40000000000001 7.2179154958084655E-005 + 122.45999999999998 7.0239713364833015E-005 + 122.51999999999998 6.8297787657297418E-005 + 122.57999999999998 6.6352419906620872E-005 + 122.63999999999999 6.4402617554460366E-005 + 122.69999999999999 6.2447366693132531E-005 + 122.75999999999999 6.0485628098601837E-005 + 122.81999999999999 5.8516348115858941E-005 + 122.88000000000000 5.6538462803990220E-005 + 122.94000000000000 5.4550905493713496E-005 + 123.00000000000000 5.2552623806154187E-005 + 123.06000000000000 5.0542571794968082E-005 + 123.12000000000000 4.8519741569246725E-005 + 123.18000000000001 4.6483157061501034E-005 + 123.23999999999998 4.4431885890144535E-005 + 123.29999999999998 4.2365065432397346E-005 + 123.35999999999999 4.0281888927109645E-005 + 123.41999999999999 3.8181633596365463E-005 + 123.47999999999999 3.6063653706040779E-005 + 123.53999999999999 3.3927391636846687E-005 + 123.59999999999999 3.1772379804230689E-005 + 123.66000000000000 2.9598246368631473E-005 + 123.72000000000000 2.7404718676311157E-005 + 123.78000000000000 2.5191619318346278E-005 + 123.84000000000000 2.2958871849275093E-005 + 123.90000000000001 2.0706498629207410E-005 + 123.95999999999998 1.8434620098371082E-005 + 124.01999999999998 1.6143464052129085E-005 + 124.07999999999998 1.3833354548908285E-005 + 124.13999999999999 1.1504724093005304E-005 + 124.19999999999999 9.1581126448718419E-006 + 124.25999999999999 6.7941684017029231E-006 + 124.31999999999999 4.4136547542461416E-006 + 124.38000000000000 2.0174524696925121E-006 + 124.44000000000000 -3.9343478803403453E-007 + 124.50000000000000 -2.8178785272712889E-006 + 124.56000000000000 -5.2546206157490511E-006 + 124.62000000000000 -7.7022691112803402E-006 + 124.68000000000001 -1.0159298200953221E-005 + 124.73999999999998 -1.2624046153480278E-005 + 124.79999999999998 -1.5094711542927807E-005 + 124.85999999999999 -1.7569358823979692E-005 + 124.91999999999999 -2.0045914421616459E-005 + 124.97999999999999 -2.2522176690296450E-005 + 125.03999999999999 -2.4995812868054521E-005 + 125.09999999999999 -2.7464368049639908E-005 + 125.16000000000000 -2.9925272752588960E-005 + 125.22000000000000 -3.2375843681955686E-005 + 125.28000000000000 -3.4813300680614637E-005 + 125.34000000000000 -3.7234763916084493E-005 + 125.40000000000001 -3.9637277098877420E-005 + 125.45999999999998 -4.2017805819322329E-005 + 125.51999999999998 -4.4373246925728694E-005 + 125.57999999999998 -4.6700449324315165E-005 + 125.63999999999999 -4.8996207582140377E-005 + 125.69999999999999 -5.1257281314251069E-005 + 125.75999999999999 -5.3480403738623083E-005 + 125.81999999999999 -5.5662290732954641E-005 + 125.88000000000000 -5.7799650696736625E-005 + 125.94000000000000 -5.9889172777064034E-005 + 126.00000000000000 -6.1927568512476196E-005 + 126.06000000000000 -6.3911548507415261E-005 + 126.12000000000000 -6.5837846404518102E-005 + 126.18000000000001 -6.7703215660700993E-005 + 126.23999999999998 -6.9504445755505997E-005 + 126.29999999999998 -7.1238364505835737E-005 + 126.35999999999999 -7.2901822176937059E-005 + 126.41999999999999 -7.4491736771603649E-005 + 126.47999999999999 -7.6005062962351250E-005 + 126.53999999999999 -7.7438848210471369E-005 + 126.59999999999999 -7.8790184699026116E-005 + 126.66000000000000 -8.0056259550656609E-005 + 126.72000000000000 -8.1234351693737489E-005 + 126.78000000000000 -8.2321835021741097E-005 + 126.84000000000000 -8.3316205546647899E-005 + 126.90000000000001 -8.4215089784995837E-005 + 126.95999999999998 -8.5016252108251254E-005 + 127.01999999999998 -8.5717615012289189E-005 + 127.07999999999998 -8.6317257593218546E-005 + 127.13999999999999 -8.6813433989588648E-005 + 127.19999999999999 -8.7204593303343995E-005 + 127.25999999999999 -8.7489371352759526E-005 + 127.31999999999999 -8.7666600497088683E-005 + 127.38000000000000 -8.7735330919712611E-005 + 127.44000000000000 -8.7694810728486505E-005 + 127.50000000000000 -8.7544508453255086E-005 + 127.56000000000000 -8.7284088201711464E-005 + 127.62000000000000 -8.6913441492454885E-005 + 127.68000000000001 -8.6432655580723526E-005 + 127.73999999999998 -8.5842041229533943E-005 + 127.79999999999998 -8.5142105537916912E-005 + 127.85999999999999 -8.4333562708349880E-005 + 127.91999999999999 -8.3417329309904694E-005 + 127.97999999999999 -8.2394523200419984E-005 + 128.03999999999999 -8.1266452785525495E-005 + 128.09999999999999 -8.0034644800767020E-005 + 128.16000000000000 -7.8700821875675117E-005 + 128.22000000000000 -7.7266900813190075E-005 + 128.28000000000000 -7.5735014907333755E-005 + 128.34000000000000 -7.4107489765923279E-005 + 128.40000000000001 -7.2386862327828875E-005 + 128.45999999999998 -7.0575872856382571E-005 + 128.51999999999998 -6.8677464338807252E-005 + 128.57999999999998 -6.6694780538054067E-005 + 128.63999999999999 -6.4631152341059186E-005 + 128.69999999999999 -6.2490107516252391E-005 + 128.75999999999999 -6.0275350297608664E-005 + 128.81999999999999 -5.7990756394396504E-005 + 128.88000000000000 -5.5640354058092051E-005 + 128.94000000000000 -5.3228338201727670E-005 + 129.00000000000000 -5.0759014477023780E-005 + 129.06000000000000 -4.8236822180588941E-005 + 129.12000000000000 -4.5666293540783016E-005 + 129.18000000000001 -4.3052063107714171E-005 + 129.23999999999998 -4.0398829386380309E-005 + 129.29999999999998 -3.7711356244783895E-005 + 129.35999999999999 -3.4994449521584680E-005 + 129.41999999999999 -3.2252948514991270E-005 + 129.47999999999999 -2.9491705113786243E-005 + 129.53999999999999 -2.6715583558169432E-005 + 129.59999999999999 -2.3929432866702119E-005 + 129.66000000000000 -2.1138089144228745E-005 + 129.72000000000000 -1.8346355583109022E-005 + 129.78000000000000 -1.5558989254963420E-005 + 129.84000000000000 -1.2780697486339868E-005 + 129.90000000000001 -1.0016122398713664E-005 + 129.95999999999998 -7.2698312551698935E-006 + 130.01999999999998 -4.5463004082249243E-006 + 130.07999999999998 -1.8499094997250751E-006 + 130.13999999999999 8.1506853899641192E-007 + 130.19999999999999 3.4444868577804145E-006 + 130.25999999999999 6.0343328202198534E-006 + 130.31999999999999 8.5807366868468967E-006 + 130.38000000000000 1.1079989679364395E-005 + 130.44000000000000 1.3528555387899693E-005 + 130.50000000000000 1.5923077903768156E-005 + 130.56000000000000 1.8260396931878348E-005 + 130.62000000000000 2.0537565067918133E-005 + 130.68000000000001 2.2751852513200393E-005 + 130.73999999999998 2.4900762372372533E-005 + 130.79999999999998 2.6982037642668771E-005 + 130.85999999999999 2.8993679690096071E-005 + 130.91999999999999 3.0933948321313190E-005 + 130.97999999999999 3.2801376661405286E-005 + 131.03999999999999 3.4594772755717151E-005 + 131.09999999999999 3.6313234400592661E-005 + 131.16000000000000 3.7956145993764353E-005 + 131.22000000000000 3.9523186039542828E-005 + 131.28000000000000 4.1014318056305330E-005 + 131.34000000000000 4.2429810758892900E-005 + 131.40000000000001 4.3770213422026792E-005 + 131.45999999999998 4.5036374513819635E-005 + 131.51999999999998 4.6229417903249326E-005 + 131.57999999999998 4.7350756804951998E-005 + 131.63999999999999 4.8402081267403629E-005 + 131.69999999999999 4.9385353223863281E-005 + 131.75999999999999 5.0302797446307576E-005 + 131.81999999999999 5.1156901053310750E-005 + 131.88000000000000 5.1950403278664615E-005 + 131.94000000000000 5.2686300089020477E-005 + 132.00000000000000 5.3367831912355280E-005 + 132.06000000000000 5.3998484763007541E-005 + 132.12000000000000 5.4581972248329112E-005 + 132.18000000000001 5.5122252827743962E-005 + 132.23999999999998 5.5623519601877454E-005 + 132.29999999999998 5.6090168944322968E-005 + 132.35999999999999 5.6526837787112973E-005 + 132.41999999999999 5.6938363062006521E-005 + 132.47999999999999 5.7329794872704759E-005 + 132.53999999999999 5.7706366331237906E-005 + 132.59999999999999 5.8073507777862886E-005 + 132.66000000000000 5.8436820765395624E-005 + 132.72000000000000 5.8802064657942226E-005 + 132.78000000000000 5.9175146979634506E-005 + 132.84000000000000 5.9562099727134309E-005 + 132.90000000000001 5.9969069771549725E-005 + 132.95999999999998 6.0402306968994490E-005 + 133.01999999999998 6.0868126951497946E-005 + 133.07999999999998 6.1372918141901043E-005 + 133.13999999999999 6.1923102063379012E-005 + 133.19999999999999 6.2525116256797268E-005 + 133.25999999999999 6.3185424770736392E-005 + 133.31999999999999 6.3910465505827925E-005 + 133.38000000000000 6.4706641064584880E-005 + 133.44000000000000 6.5580324145086619E-005 + 133.50000000000000 6.6537811580227898E-005 + 133.56000000000000 6.7585322705522593E-005 + 133.62000000000000 6.8728986284648960E-005 + 133.68000000000001 6.9974815620760158E-005 + 133.73999999999998 7.1328690471874397E-005 + 133.79999999999998 7.2796343589460606E-005 + 133.85999999999999 7.4383360687562848E-005 + 133.91999999999999 7.6095149526002497E-005 + 133.97999999999999 7.7936894878775771E-005 + 134.03999999999999 7.9913604532849580E-005 + 134.09999999999999 8.2030017750348648E-005 + 134.16000000000000 8.4290660766949018E-005 + 134.22000000000000 8.6699765525782079E-005 + 134.28000000000000 8.9261308352129337E-005 + 134.34000000000000 9.1978917017116694E-005 + 134.40000000000001 9.4855952396987269E-005 + 134.45999999999998 9.7895397730390029E-005 + 134.51999999999998 1.0109990272560494E-004 + 134.57999999999998 1.0447173985656564E-004 + 134.63999999999999 1.0801278836922359E-004 + 134.69999999999999 1.1172453522136791E-004 + 134.75999999999999 1.1560803631870447E-004 + 134.81999999999999 1.1966393039223713E-004 + 134.88000000000000 1.2389237647550381E-004 + 134.94000000000000 1.2829310525071046E-004 + 135.00000000000000 1.3286536936203734E-004 + 135.06000000000000 1.3760793952778300E-004 + 135.12000000000000 1.4251910389206782E-004 + 135.18000000000001 1.4759663604109601E-004 + 135.23999999999998 1.5283784810867141E-004 + 135.29999999999998 1.5823950122672691E-004 + 135.35999999999999 1.6379786081807077E-004 + 135.41999999999999 1.6950871983043386E-004 + 135.47999999999999 1.7536730904325348E-004 + 135.53999999999999 1.8136840852580309E-004 + 135.59999999999999 1.8750627294484169E-004 + 135.66000000000000 1.9377464753414584E-004 + 135.72000000000000 2.0016680362407426E-004 + 135.78000000000000 2.0667554136637593E-004 + 135.84000000000000 2.1329315263658472E-004 + 135.90000000000001 2.2001145879701711E-004 + 135.95999999999998 2.2682187494425343E-004 + 136.01999999999998 2.3371530323330737E-004 + 136.07999999999998 2.4068223589034760E-004 + 136.13999999999999 2.4771277514707807E-004 + 136.19999999999999 2.5479656949406346E-004 + 136.25999999999999 2.6192287815433900E-004 + 136.31999999999999 2.6908061510893866E-004 + 136.38000000000000 2.7625827716830890E-004 + 136.44000000000000 2.8344406620650978E-004 + 136.50000000000000 2.9062585554915830E-004 + 136.56000000000000 2.9779124588541814E-004 + 136.62000000000000 3.0492755759490545E-004 + 136.68000000000001 3.1202182858173203E-004 + 136.73999999999998 3.1906098897932478E-004 + 136.79999999999998 3.2603172619400170E-004 + 136.85999999999999 3.3292058693472511E-004 + 136.91999999999999 3.3971401714178270E-004 + 136.97999999999999 3.4639837027901078E-004 + 137.03999999999999 3.5296000928029727E-004 + 137.09999999999999 3.5938526911547214E-004 + 137.16000000000000 3.6566045411089376E-004 + 137.22000000000000 3.7177202596339108E-004 + 137.28000000000000 3.7770650038605936E-004 + 137.34000000000000 3.8345051718842129E-004 + 137.40000000000001 3.8899087873784023E-004 + 137.45999999999998 3.9431461766880742E-004 + 137.51999999999998 3.9940893557621618E-004 + 137.57999999999998 4.0426136018621923E-004 + 137.63999999999999 4.0885973181208643E-004 + 137.69999999999999 4.1319214407341189E-004 + 137.75999999999999 4.1724707804757766E-004 + 137.81999999999999 4.2101342511764283E-004 + 137.88000000000000 4.2448050215892564E-004 + 137.94000000000000 4.2763800175702859E-004 + 138.00000000000000 4.3047615666061694E-004 + 138.06000000000000 4.3298567540177931E-004 + 138.12000000000000 4.3515781523677341E-004 + 138.18000000000001 4.3698431923588514E-004 + 138.23999999999998 4.3845756261564586E-004 + 138.29999999999998 4.3957051901402975E-004 + 138.35999999999999 4.4031677406883394E-004 + 138.41999999999999 4.4069054554498011E-004 + 138.47999999999999 4.4068672222630283E-004 + 138.53999999999999 4.4030090486845851E-004 + 138.59999999999999 4.3952933874235879E-004 + 138.66000000000000 4.3836896922466902E-004 + 138.72000000000000 4.3681753638391503E-004 + 138.78000000000000 4.3487342265276376E-004 + 138.84000000000000 4.3253579886520256E-004 + 138.90000000000001 4.2980461543497663E-004 + 138.95999999999998 4.2668052083844304E-004 + 139.01999999999998 4.2316495284752057E-004 + 139.07999999999998 4.1926012644896352E-004 + 139.13999999999999 4.1496894174347778E-004 + 139.19999999999999 4.1029509288125431E-004 + 139.25999999999999 4.0524304058645223E-004 + 139.31999999999999 3.9981789097144399E-004 + 139.38000000000000 3.9402554894016665E-004 + 139.44000000000000 3.8787259705881004E-004 + 139.50000000000000 3.8136629924666868E-004 + 139.56000000000000 3.7451454131395845E-004 + 139.62000000000000 3.6732593366785044E-004 + 139.68000000000001 3.5980965370112231E-004 + 139.73999999999998 3.5197549697009770E-004 + 139.79999999999998 3.4383385777816131E-004 + 139.85999999999999 3.3539565076149357E-004 + 139.91999999999999 3.2667233516978317E-004 + 139.97999999999999 3.1767581103553220E-004 + 140.03999999999999 3.0841853573415173E-004 + 140.09999999999999 2.9891334754980549E-004 + 140.16000000000000 2.8917351847432829E-004 + 140.22000000000000 2.7921268749312995E-004 + 140.28000000000000 2.6904487340900958E-004 + 140.34000000000000 2.5868441217294038E-004 + 140.40000000000001 2.4814586262865911E-004 + 140.45999999999998 2.3744411918482766E-004 + 140.51999999999998 2.2659426240427327E-004 + 140.57999999999998 2.1561151947356653E-004 + 140.63999999999999 2.0451130299172727E-004 + 140.69999999999999 1.9330914071962911E-004 + 140.75999999999999 1.8202058975296697E-004 + 140.81999999999999 1.7066129257295801E-004 + 140.88000000000000 1.5924684880069736E-004 + 140.94000000000000 1.4779281961023786E-004 + 141.00000000000000 1.3631471084251201E-004 + 141.06000000000000 1.2482787528999114E-004 + 141.12000000000000 1.1334754631225245E-004 + 141.18000000000001 1.0188874016893990E-004 + 141.23999999999998 9.0466266420227768E-005 + 141.29999999999998 7.9094680266364071E-005 + 141.35999999999999 6.7788263913527529E-005 + 141.41999999999999 5.6560960615869240E-005 + 141.47999999999999 4.5426383059124949E-005 + 141.53999999999999 3.4397777963691693E-005 + 141.59999999999999 2.3487978304044851E-005 + 141.66000000000000 1.2709397147843423E-005 + 141.72000000000000 2.0740284279299599E-006 + 141.78000000000000 -8.4066299585065602E-006 + 141.84000000000000 -1.8721552577300488E-005 + 141.90000000000001 -2.8860216396275117E-005 + 141.95999999999998 -3.8812609759411644E-005 + 142.01999999999998 -4.8569269347045836E-005 + 142.07999999999998 -5.8121277131905560E-005 + 142.13999999999999 -6.7460252615522082E-005 + 142.19999999999999 -7.6578384826237565E-005 + 142.25999999999999 -8.5468447914064822E-005 + 142.31999999999999 -9.4123771142415419E-005 + 142.38000000000000 -1.0253828679729383E-004 + 142.44000000000000 -1.1070648425164388E-004 + 142.50000000000000 -1.1862346638328624E-004 + 142.56000000000000 -1.2628488684273976E-004 + 142.62000000000000 -1.3368700571493093E-004 + 142.68000000000001 -1.4082662575015578E-004 + 142.73999999999998 -1.4770114668998503E-004 + 142.79999999999998 -1.5430852091745818E-004 + 142.85999999999999 -1.6064725865643989E-004 + 142.91999999999999 -1.6671642073096891E-004 + 142.97999999999999 -1.7251559711590504E-004 + 143.03999999999999 -1.7804490915254703E-004 + 143.09999999999999 -1.8330496865674270E-004 + 143.16000000000000 -1.8829689367700410E-004 + 143.22000000000000 -1.9302226376633833E-004 + 143.28000000000000 -1.9748312781447282E-004 + 143.34000000000000 -2.0168194926838086E-004 + 143.40000000000001 -2.0562159756814654E-004 + 143.45999999999998 -2.0930537627951125E-004 + 143.51999999999998 -2.1273690964968760E-004 + 143.57999999999998 -2.1592016723584714E-004 + 143.63999999999999 -2.1885944154687107E-004 + 143.69999999999999 -2.2155931993309605E-004 + 143.75999999999999 -2.2402465754158950E-004 + 143.81999999999999 -2.2626056084352932E-004 + 143.88000000000000 -2.2827235774768452E-004 + 143.94000000000000 -2.3006558399755463E-004 + 144.00000000000000 -2.3164595813969226E-004 + 144.06000000000000 -2.3301937494629341E-004 + 144.12000000000000 -2.3419187778630888E-004 + 144.18000000000001 -2.3516963626992249E-004 + 144.23999999999998 -2.3595895725459949E-004 + 144.29999999999998 -2.3656620407113167E-004 + 144.35999999999999 -2.3699787873787909E-004 + 144.41999999999999 -2.3726051612050055E-004 + 144.47999999999999 -2.3736072237375602E-004 + 144.53999999999999 -2.3730512592037958E-004 + 144.59999999999999 -2.3710036041559138E-004 + 144.66000000000000 -2.3675309213220866E-004 + 144.72000000000000 -2.3626995982227962E-004 + 144.78000000000000 -2.3565755007831963E-004 + 144.84000000000000 -2.3492241317153687E-004 + 144.90000000000001 -2.3407103832447822E-004 + 144.95999999999998 -2.3310984721123347E-004 + 145.01999999999998 -2.3204513478594120E-004 + 145.07999999999998 -2.3088312686569108E-004 + 145.13999999999999 -2.2962989047884086E-004 + 145.19999999999999 -2.2829139821544818E-004 + 145.25999999999999 -2.2687345849076352E-004 + 145.31999999999999 -2.2538176264592111E-004 + 145.38000000000000 -2.2382181561301595E-004 + 145.44000000000000 -2.2219901604311881E-004 + 145.50000000000000 -2.2051854669284313E-004 + 145.56000000000000 -2.1878545797113404E-004 + 145.62000000000000 -2.1700464055123469E-004 + 145.68000000000001 -2.1518081568860724E-004 + 145.73999999999998 -2.1331852419639082E-004 + 145.79999999999998 -2.1142217494669841E-004 + 145.85999999999999 -2.0949596686850878E-004 + 145.91999999999999 -2.0754398682036270E-004 + 145.97999999999999 -2.0557011582703812E-004 + 146.03999999999999 -2.0357810959554119E-004 + 146.09999999999999 -2.0157152509755167E-004 + 146.16000000000000 -1.9955378698358588E-004 + 146.22000000000000 -1.9752814446657519E-004 + 146.28000000000000 -1.9549770463652414E-004 + 146.34000000000000 -1.9346540019178461E-004 + 146.40000000000001 -1.9143404605418069E-004 + 146.45999999999998 -1.8940625924013609E-004 + 146.51999999999998 -1.8738455371686128E-004 + 146.57999999999998 -1.8537125600024356E-004 + 146.63999999999999 -1.8336856248995478E-004 + 146.69999999999999 -1.8137851516163348E-004 + 146.75999999999999 -1.7940300418860548E-004 + 146.81999999999999 -1.7744379403483365E-004 + 146.88000000000000 -1.7550250205118967E-004 + 146.94000000000000 -1.7358063213077600E-004 + 147.00000000000000 -1.7167950876904075E-004 + 147.06000000000000 -1.6980038164722137E-004 + 147.12000000000000 -1.6794434604630723E-004 + 147.18000000000001 -1.6611239143298059E-004 + 147.23999999999998 -1.6430540755308162E-004 + 147.29999999999998 -1.6252418066038833E-004 + 147.35999999999999 -1.6076940852079210E-004 + 147.41999999999999 -1.5904167186951598E-004 + 147.47999999999999 -1.5734153556856988E-004 + 147.53999999999999 -1.5566944680464492E-004 + 147.59999999999999 -1.5402580898977528E-004 + 147.66000000000000 -1.5241099119136863E-004 + 147.72000000000000 -1.5082525908256619E-004 + 147.78000000000000 -1.4926886710154978E-004 + 147.84000000000000 -1.4774204327333923E-004 + 147.90000000000001 -1.4624495423702576E-004 + 147.95999999999998 -1.4477769912927456E-004 + 148.01999999999998 -1.4334037965983148E-004 + 148.07999999999998 -1.4193304050143005E-004 + 148.13999999999999 -1.4055569018984966E-004 + 148.19999999999999 -1.3920829379165137E-004 + 148.25999999999999 -1.3789077109386698E-004 + 148.31999999999999 -1.3660298931721907E-004 + 148.38000000000000 -1.3534480490348276E-004 + 148.44000000000000 -1.3411599743347709E-004 + 148.50000000000000 -1.3291634512727855E-004 + 148.56000000000000 -1.3174556416211802E-004 + 148.62000000000000 -1.3060336392187242E-004 + 148.68000000000001 -1.2948943363728205E-004 + 148.73999999999998 -1.2840342776991907E-004 + 148.79999999999998 -1.2734500760271347E-004 + 148.85999999999999 -1.2631380787433155E-004 + 148.91999999999999 -1.2530948078236541E-004 + 148.97999999999999 -1.2433166644079837E-004 + 149.03999999999999 -1.2338002831820336E-004 + 149.09999999999999 -1.2245421399448145E-004 + 149.16000000000000 -1.2155389369189346E-004 + 149.22000000000000 -1.2067874361268953E-004 + 149.28000000000000 -1.1982842969539077E-004 + 149.34000000000000 -1.1900265614638611E-004 + 149.40000000000001 -1.1820109575577770E-004 + 149.45999999999998 -1.1742343171078500E-004 + 149.51999999999998 -1.1666935179832043E-004 + 149.57999999999998 -1.1593852436383379E-004 + 149.63999999999999 -1.1523060936322833E-004 + 149.69999999999999 -1.1454525843606169E-004 + 149.75999999999999 -1.1388210825798010E-004 + 149.81999999999999 -1.1324077693042022E-004 + 149.88000000000000 -1.1262087765862559E-004 + 149.94000000000000 -1.1202199494922739E-004 + 150.00000000000000 -1.1144372041021965E-004 + 150.06000000000000 -1.1088562158841985E-004 + 150.12000000000000 -1.1034725333991216E-004 + 150.18000000000001 -1.0982817288655137E-004 + 150.23999999999998 -1.0932791980618279E-004 + 150.29999999999998 -1.0884603671080128E-004 + 150.35999999999999 -1.0838206351967505E-004 + 150.41999999999999 -1.0793553830026294E-004 + 150.47999999999999 -1.0750598669344557E-004 + 150.53999999999999 -1.0709293732147341E-004 + 150.59999999999999 -1.0669592892728032E-004 + 150.66000000000000 -1.0631449048598206E-004 + 150.72000000000000 -1.0594817026762015E-004 + 150.78000000000000 -1.0559650611381841E-004 + 150.84000000000000 -1.0525904378021524E-004 + 150.90000000000001 -1.0493533600616042E-004 + 150.95999999999998 -1.0462494784535835E-004 + 151.01999999999998 -1.0432745327567450E-004 + 151.07999999999998 -1.0404242530829537E-004 + 151.13999999999999 -1.0376946668643685E-004 + 151.19999999999999 -1.0350819170444186E-004 + 151.25999999999999 -1.0325821464146868E-004 + 151.31999999999999 -1.0301917901786787E-004 + 151.38000000000000 -1.0279074702735187E-004 + 151.44000000000000 -1.0257258423926921E-004 + 151.50000000000000 -1.0236438361398958E-004 + 151.56000000000000 -1.0216586324020097E-004 + 151.62000000000000 -1.0197675225865011E-004 + 151.68000000000001 -1.0179679563375739E-004 + 151.73999999999998 -1.0162577005793638E-004 + 151.79999999999998 -1.0146346519867768E-004 + 151.85999999999999 -1.0130970464535788E-004 + 151.91999999999999 -1.0116433490327109E-004 + 151.97999999999999 -1.0102723415794272E-004 + 152.03999999999999 -1.0089832012511412E-004 + 152.09999999999999 -1.0077754719190664E-004 + 152.16000000000000 -1.0066491563576806E-004 + 152.22000000000000 -1.0056045959010152E-004 + 152.28000000000000 -1.0046426274411822E-004 + 152.34000000000000 -1.0037647704874781E-004 + 152.40000000000001 -1.0029729865343612E-004 + 152.45999999999998 -1.0022698130777093E-004 + 152.51999999999998 -1.0016583348084351E-004 + 152.57999999999998 -1.0011422132230644E-004 + 152.63999999999999 -1.0007256207125422E-004 + 152.69999999999999 -1.0004133778091257E-004 + 152.75999999999999 -1.0002107065897136E-004 + 152.81999999999999 -1.0001233652903071E-004 + 152.88000000000000 -1.0001575701136932E-004 + 152.94000000000000 -1.0003199614541959E-004 + 153.00000000000000 -1.0006176297477838E-004 + 153.06000000000000 -1.0010580285705725E-004 + 153.12000000000000 -1.0016488913896219E-004 + 153.17999999999998 -1.0023984404127604E-004 + 153.23999999999998 -1.0033151604479289E-004 + 153.29999999999998 -1.0044079655056590E-004 + 153.35999999999999 -1.0056861201022214E-004 + 153.41999999999999 -1.0071590197278105E-004 + 153.47999999999999 -1.0088365691549467E-004 + 153.53999999999999 -1.0107289244941443E-004 + 153.59999999999999 -1.0128466416841107E-004 + 153.66000000000000 -1.0152003710919437E-004 + 153.72000000000000 -1.0178012290419671E-004 + 153.78000000000000 -1.0206604206681834E-004 + 153.84000000000000 -1.0237895100357735E-004 + 153.90000000000001 -1.0272000393396960E-004 + 153.95999999999998 -1.0309038548278311E-004 + 154.01999999999998 -1.0349127999787392E-004 + 154.07999999999998 -1.0392387625919250E-004 + 154.13999999999999 -1.0438936562801801E-004 + 154.19999999999999 -1.0488892525646243E-004 + 154.25999999999999 -1.0542374569300067E-004 + 154.31999999999999 -1.0599497615521760E-004 + 154.38000000000000 -1.0660376151989613E-004 + 154.44000000000000 -1.0725122124883014E-004 + 154.50000000000000 -1.0793844993144779E-004 + 154.56000000000000 -1.0866650612354491E-004 + 154.62000000000000 -1.0943641264739772E-004 + 154.67999999999998 -1.1024914380782473E-004 + 154.73999999999998 -1.1110563027526919E-004 + 154.79999999999998 -1.1200674612301328E-004 + 154.85999999999999 -1.1295330984218263E-004 + 154.91999999999999 -1.1394605944762618E-004 + 154.97999999999999 -1.1498566794806327E-004 + 155.03999999999999 -1.1607271207903668E-004 + 155.09999999999999 -1.1720767960492636E-004 + 155.16000000000000 -1.1839096424400575E-004 + 155.22000000000000 -1.1962285116831183E-004 + 155.28000000000000 -1.2090352191578722E-004 + 155.34000000000000 -1.2223303927725671E-004 + 155.40000000000001 -1.2361132530046393E-004 + 155.45999999999998 -1.2503819143212447E-004 + 155.51999999999998 -1.2651330382204974E-004 + 155.57999999999998 -1.2803622626524874E-004 + 155.63999999999999 -1.2960634114903531E-004 + 155.69999999999999 -1.3122291583657936E-004 + 155.75999999999999 -1.3288504500899337E-004 + 155.81999999999999 -1.3459168115036478E-004 + 155.88000000000000 -1.3634162858030353E-004 + 155.94000000000000 -1.3813350056328622E-004 + 156.00000000000000 -1.3996575427167835E-004 + 156.06000000000000 -1.4183667141251494E-004 + 156.12000000000000 -1.4374433925171774E-004 + 156.17999999999998 -1.4568665091753424E-004 + 156.23999999999998 -1.4766130993731721E-004 + 156.29999999999998 -1.4966578587448425E-004 + 156.35999999999999 -1.5169736135601351E-004 + 156.41999999999999 -1.5375310786959367E-004 + 156.47999999999999 -1.5582984900190723E-004 + 156.53999999999999 -1.5792422995344630E-004 + 156.59999999999999 -1.6003263533423406E-004 + 156.66000000000000 -1.6215126311002107E-004 + 156.72000000000000 -1.6427607459928236E-004 + 156.78000000000000 -1.6640283950495894E-004 + 156.84000000000000 -1.6852713533433981E-004 + 156.90000000000001 -1.7064431800050686E-004 + 156.95999999999998 -1.7274957450848525E-004 + 157.01999999999998 -1.7483792557183595E-004 + 157.07999999999998 -1.7690420462962282E-004 + 157.13999999999999 -1.7894307052781060E-004 + 157.19999999999999 -1.8094907844472486E-004 + 157.25999999999999 -1.8291660629310565E-004 + 157.31999999999999 -1.8483989984037185E-004 + 157.38000000000000 -1.8671307041485420E-004 + 157.44000000000000 -1.8853012916730821E-004 + 157.50000000000000 -1.9028495996334968E-004 + 157.56000000000000 -1.9197136822565516E-004 + 157.62000000000000 -1.9358301771640765E-004 + 157.67999999999998 -1.9511355067589048E-004 + 157.73999999999998 -1.9655651281728752E-004 + 157.79999999999998 -1.9790538791866503E-004 + 157.85999999999999 -1.9915362405436903E-004 + 157.91999999999999 -2.0029463878852683E-004 + 157.97999999999999 -2.0132187320418617E-004 + 158.03999999999999 -2.0222875382786259E-004 + 158.09999999999999 -2.0300875768339331E-004 + 158.16000000000000 -2.0365540237281618E-004 + 158.22000000000000 -2.0416228291786682E-004 + 158.28000000000000 -2.0452308906621688E-004 + 158.34000000000000 -2.0473163497872573E-004 + 158.40000000000001 -2.0478185478544784E-004 + 158.45999999999998 -2.0466786923325656E-004 + 158.51999999999998 -2.0438394922084628E-004 + 158.57999999999998 -2.0392458249191526E-004 + 158.63999999999999 -2.0328447535231754E-004 + 158.69999999999999 -2.0245854143979494E-004 + 158.75999999999999 -2.0144197867392956E-004 + 158.81999999999999 -2.0023024867736537E-004 + 158.88000000000000 -1.9881910231922442E-004 + 158.94000000000000 -1.9720461709721719E-004 + 159.00000000000000 -1.9538316398551189E-004 + 159.06000000000000 -1.9335147516246154E-004 + 159.12000000000000 -1.9110664222282903E-004 + 159.17999999999998 -1.8864612821311975E-004 + 159.23999999999998 -1.8596777075750626E-004 + 159.29999999999998 -1.8306983853818193E-004 + 159.35999999999999 -1.7995100021670087E-004 + 159.41999999999999 -1.7661034132132380E-004 + 159.47999999999999 -1.7304740209475914E-004 + 159.53999999999999 -1.6926216540575652E-004 + 159.59999999999999 -1.6525506011175683E-004 + 159.66000000000000 -1.6102698699257446E-004 + 159.72000000000000 -1.5657929415432178E-004 + 159.78000000000000 -1.5191382298145189E-004 + 159.84000000000000 -1.4703285174576066E-004 + 159.90000000000001 -1.4193916698356489E-004 + 159.95999999999998 -1.3663599903728855E-004 + 160.01999999999998 -1.3112706945610480E-004 + 160.07999999999998 -1.2541656006083369E-004 + 160.13999999999999 -1.1950911235033197E-004 + 160.19999999999999 -1.1340984558218302E-004 + 160.25999999999999 -1.0712433328518000E-004 + 160.31999999999999 -1.0065858866776344E-004 + 160.38000000000000 -9.4019077399350528E-005 + 160.44000000000000 -8.7212702291912034E-005 + 160.50000000000000 -8.0246788220515418E-005 + 160.56000000000000 -7.3129070388775250E-005 + 160.62000000000000 -6.5867690807371347E-005 + 160.67999999999998 -5.8471167584247907E-005 + 160.73999999999998 -5.0948390801734141E-005 + 160.79999999999998 -4.3308599375483219E-005 + 160.85999999999999 -3.5561360942040518E-005 + 160.91999999999999 -2.7716556978214367E-005 + 160.97999999999999 -1.9784358193016513E-005 + 161.03999999999999 -1.1775203029129658E-005 + 161.09999999999999 -3.6997745352186058E-006 + 161.16000000000000 4.4310224549364245E-006 + 161.22000000000000 1.2606089262811865E-005 + 161.28000000000000 2.0814153507600987E-005 + 161.34000000000000 2.9043798377661822E-005 + 161.40000000000001 3.7283477385197842E-005 + 161.45999999999998 4.5521564858923158E-005 + 161.51999999999998 5.3746357010535735E-005 + 161.57999999999998 6.1946112773237207E-005 + 161.63999999999999 7.0109090219221690E-005 + 161.69999999999999 7.8223551753564983E-005 + 161.75999999999999 8.6277827662277799E-005 + 161.81999999999999 9.4260314498525267E-005 + 161.88000000000000 1.0215951835998816E-004 + 161.94000000000000 1.0996410193892057E-004 + 162.00000000000000 1.1766287502427782E-004 + 162.06000000000000 1.2524485364808201E-004 + 162.12000000000000 1.3269928126856528E-004 + 162.17999999999998 1.4001566921496153E-004 + 162.23999999999998 1.4718380157302259E-004 + 162.29999999999998 1.5419377076820182E-004 + 162.35999999999999 1.6103596788335204E-004 + 162.41999999999999 1.6770117045730184E-004 + 162.47999999999999 1.7418049017645671E-004 + 162.53999999999999 1.8046544243836642E-004 + 162.59999999999999 1.8654795801014692E-004 + 162.66000000000000 1.9242036125164685E-004 + 162.72000000000000 1.9807542525449869E-004 + 162.78000000000000 2.0350635946538432E-004 + 162.84000000000000 2.0870685289524137E-004 + 162.90000000000001 2.1367105095881065E-004 + 162.95999999999998 2.1839362206090229E-004 + 163.01999999999998 2.2286969754825391E-004 + 163.07999999999998 2.2709497596132638E-004 + 163.13999999999999 2.3106562209477825E-004 + 163.19999999999999 2.3477840961699283E-004 + 163.25999999999999 2.3823058762290319E-004 + 163.31999999999999 2.4141997436325069E-004 + 163.38000000000000 2.4434495089266308E-004 + 163.44000000000000 2.4700442905007362E-004 + 163.50000000000000 2.4939791155184204E-004 + 163.56000000000000 2.5152540388215185E-004 + 163.62000000000000 2.5338746308732521E-004 + 163.67999999999998 2.5498514262523725E-004 + 163.73999999999998 2.5632000322640269E-004 + 163.79999999999998 2.5739415015018177E-004 + 163.85999999999999 2.5821008865023265E-004 + 163.91999999999999 2.5877080380473752E-004 + 163.97999999999999 2.5907974162777330E-004 + 164.03999999999999 2.5914070111289657E-004 + 164.09999999999999 2.5895791612843015E-004 + 164.16000000000000 2.5853597254411648E-004 + 164.22000000000000 2.5787978568455352E-004 + 164.28000000000000 2.5699463293822275E-004 + 164.34000000000000 2.5588610576322867E-004 + 164.40000000000001 2.5456006111394233E-004 + 164.45999999999998 2.5302265219117687E-004 + 164.51999999999998 2.5128029707778923E-004 + 164.57999999999998 2.4933966872118200E-004 + 164.63999999999999 2.4720760280368581E-004 + 164.69999999999999 2.4489121572287279E-004 + 164.75999999999999 2.4239778364975499E-004 + 164.81999999999999 2.3973473594595827E-004 + 164.88000000000000 2.3690964531410108E-004 + 164.94000000000000 2.3393019052178612E-004 + 165.00000000000000 2.3080416366345002E-004 + 165.06000000000000 2.2753942584152097E-004 + 165.12000000000000 2.2414386019171142E-004 + 165.17999999999998 2.2062536998078964E-004 + 165.23999999999998 2.1699184700419531E-004 + 165.29999999999998 2.1325114793822124E-004 + 165.35999999999999 2.0941107624096613E-004 + 165.41999999999999 2.0547932435465154E-004 + 165.47999999999999 2.0146350459941881E-004 + 165.53999999999999 1.9737107874262451E-004 + 165.59999999999999 1.9320941362834356E-004 + 165.66000000000000 1.8898568672903753E-004 + 165.72000000000000 1.8470693117024489E-004 + 165.78000000000000 1.8037998200328223E-004 + 165.84000000000000 1.7601153284144065E-004 + 165.90000000000001 1.7160803346722537E-004 + 165.95999999999998 1.6717579599211934E-004 + 166.01999999999998 1.6272090536940194E-004 + 166.07999999999998 1.5824924081598240E-004 + 166.13999999999999 1.5376651277508241E-004 + 166.19999999999999 1.4927823054657877E-004 + 166.25999999999999 1.4478968831980882E-004 + 166.31999999999999 1.4030598271016589E-004 + 166.38000000000000 1.3583201717180002E-004 + 166.44000000000000 1.3137250899164396E-004 + 166.50000000000000 1.2693195560976362E-004 + 166.56000000000000 1.2251468429824898E-004 + 166.62000000000000 1.1812480657289121E-004 + 166.67999999999998 1.1376624148803929E-004 + 166.73999999999998 1.0944272600206124E-004 + 166.79999999999998 1.0515779105034278E-004 + 166.85999999999999 1.0091477668610176E-004 + 166.91999999999999 9.6716831438134650E-005 + 166.97999999999999 9.2566909566161302E-005 + 167.03999999999999 8.8467771519936295E-005 + 167.09999999999999 8.4421984990986341E-005 + 167.16000000000000 8.0431946623312143E-005 + 167.22000000000000 7.6499860131401407E-005 + 167.28000000000000 7.2627752076825453E-005 + 167.34000000000000 6.8817490740676816E-005 + 167.40000000000001 6.5070768011943862E-005 + 167.45999999999998 6.1389128796320049E-005 + 167.51999999999998 5.7773978450245174E-005 + 167.57999999999998 5.4226591549923661E-005 + 167.63999999999999 5.0748118193900626E-005 + 167.69999999999999 4.7339615175419647E-005 + 167.75999999999999 4.4002024948206278E-005 + 167.81999999999999 4.0736213078398924E-005 + 167.88000000000000 3.7542969841793315E-005 + 167.94000000000000 3.4423016141328866E-005 + 168.00000000000000 3.1377019780427169E-005 + 168.06000000000000 2.8405591238422953E-005 + 168.12000000000000 2.5509287915079022E-005 + 168.17999999999998 2.2688627643733204E-005 + 168.23999999999998 1.9944073224951490E-005 + 168.29999999999998 1.7276045056971739E-005 + 168.35999999999999 1.4684907615702694E-005 + 168.41999999999999 1.2170972200050806E-005 + 168.47999999999999 9.7344967269463373E-006 + 168.53999999999999 7.3756752508931541E-006 + 168.59999999999999 5.0946435612570282E-006 + 168.66000000000000 2.8914730853488072E-006 + 168.72000000000000 7.6617290260274910E-007 + 168.78000000000000 -1.2813079338134720E-006 + 168.84000000000000 -3.2510785868273091E-006 + 168.90000000000001 -5.1433002851236385E-006 + 168.95999999999998 -6.9581814466139832E-006 + 169.01999999999998 -8.6959687725782296E-006 + 169.07999999999998 -1.0356941773989289E-005 + 169.13999999999999 -1.1941404395982309E-005 + 169.19999999999999 -1.3449677947859820E-005 + 169.25999999999999 -1.4882092440288720E-005 + 169.31999999999999 -1.6238981570604043E-005 + 169.38000000000000 -1.7520678797119677E-005 + 169.44000000000000 -1.8727513194840094E-005 + 169.50000000000000 -1.9859804803032242E-005 + 169.56000000000000 -2.0917863693863895E-005 + 169.62000000000000 -2.1901996311124211E-005 + 169.67999999999998 -2.2812499880750201E-005 + 169.73999999999998 -2.3649663870032247E-005 + 169.79999999999998 -2.4413774385782733E-005 + 169.85999999999999 -2.5105116110500376E-005 + 169.91999999999999 -2.5723972905208142E-005 + 169.97999999999999 -2.6270623763610995E-005 + 170.03999999999999 -2.6745349914075866E-005 + 170.09999999999999 -2.7148427419171309E-005 + 170.16000000000000 -2.7480128510176168E-005 + 170.22000000000000 -2.7740717907065103E-005 + 170.28000000000000 -2.7930446710134065E-005 + 170.34000000000000 -2.8049553725985950E-005 + 170.40000000000001 -2.8098248883134880E-005 + 170.45999999999998 -2.8076720969315611E-005 + 170.51999999999998 -2.7985128727756506E-005 + 170.57999999999998 -2.7823595130192578E-005 + 170.63999999999999 -2.7592201337884410E-005 + 170.69999999999999 -2.7290991160781272E-005 + 170.75999999999999 -2.6919958597339654E-005 + 170.81999999999999 -2.6479053566721464E-005 + 170.88000000000000 -2.5968177480933473E-005 + 170.94000000000000 -2.5387182360892997E-005 + 171.00000000000000 -2.4735871028204102E-005 + 171.06000000000000 -2.4013998888827178E-005 + 171.12000000000000 -2.3221266559309297E-005 + 171.17999999999998 -2.2357330934972720E-005 + 171.23999999999998 -2.1421798998164164E-005 + 171.29999999999998 -2.0414233105490797E-005 + 171.35999999999999 -1.9334151079915209E-005 + 171.41999999999999 -1.8181026517819337E-005 + 171.47999999999999 -1.6954294034536564E-005 + 171.53999999999999 -1.5653349592952813E-005 + 171.59999999999999 -1.4277556677123368E-005 + 171.66000000000000 -1.2826249201682331E-005 + 171.72000000000000 -1.1298737785108261E-005 + 171.78000000000000 -9.6943130789406113E-006 + 171.84000000000000 -8.0122550704663393E-006 + 171.90000000000001 -6.2518373066547840E-006 + 171.95999999999998 -4.4123326361525713E-006 + 172.01999999999998 -2.4930226386290726E-006 + 172.07999999999998 -4.9320143078511176E-007 + 172.13999999999999 1.5878179636275975E-006 + 172.19999999999999 3.7506984365002384E-006 + 172.25999999999999 5.9960742115072218E-006 + 172.31999999999999 8.3245476583026664E-006 + 172.38000000000000 1.0736684282500302E-005 + 172.44000000000000 1.3233013883701679E-005 + 172.50000000000000 1.5814025128878661E-005 + 172.56000000000000 1.8480166480239207E-005 + 172.62000000000000 2.1231841144080183E-005 + 172.67999999999998 2.4069411324530588E-005 + 172.73999999999998 2.6993189533489828E-005 + 172.79999999999998 3.0003437838251841E-005 + 172.85999999999999 3.3100370423436246E-005 + 172.91999999999999 3.6284131995804146E-005 + 172.97999999999999 3.9554813839242939E-005 + 173.03999999999999 4.2912435598046333E-005 + 173.09999999999999 4.6356935046433457E-005 + 173.16000000000000 4.9888170380555904E-005 + 173.22000000000000 5.3505907564562873E-005 + 173.28000000000000 5.7209810439941991E-005 + 173.34000000000000 6.0999431336283290E-005 + 173.40000000000001 6.4874210503660648E-005 + 173.45999999999998 6.8833460436309492E-005 + 173.51999999999998 7.2876364725129911E-005 + 173.57999999999998 7.7001973816766527E-005 + 173.63999999999999 8.1209192164318788E-005 + 173.69999999999999 8.5496786647997050E-005 + 173.75999999999999 8.9863364776748754E-005 + 173.81999999999999 9.4307382323570457E-005 + 173.88000000000000 9.8827149840506072E-005 + 173.94000000000000 1.0342081488199293E-004 + 174.00000000000000 1.0808636753212956E-004 + 174.06000000000000 1.1282163159932202E-004 + 174.12000000000000 1.1762428198219708E-004 + 174.17999999999998 1.2249181836473797E-004 + 174.23999999999998 1.2742158848867946E-004 + 174.29999999999998 1.3241076305395467E-004 + 174.35999999999999 1.3745635123076316E-004 + 174.41999999999999 1.4255519966121984E-004 + 174.47999999999999 1.4770397490316759E-004 + 174.53999999999999 1.5289920547774312E-004 + 174.59999999999999 1.5813720161147690E-004 + 174.66000000000000 1.6341414385139127E-004 + 174.72000000000000 1.6872601164458066E-004 + 174.78000000000000 1.7406862594968563E-004 + 174.84000000000000 1.7943763442656969E-004 + 174.90000000000001 1.8482851693499733E-004 + 174.95999999999998 1.9023656933172747E-004 + 175.01999999999998 1.9565691764343351E-004 + 175.07999999999998 2.0108449990857680E-004 + 175.13999999999999 2.0651409856808781E-004 + 175.19999999999999 2.1194031081144644E-004 + 175.25999999999999 2.1735756233049757E-004 + 175.31999999999999 2.2276009993141434E-004 + 175.38000000000000 2.2814201523020100E-004 + 175.44000000000000 2.3349722062617105E-004 + 175.50000000000000 2.3881949005238979E-004 + 175.56000000000000 2.4410240257869328E-004 + 175.62000000000000 2.4933946196581440E-004 + 175.67999999999998 2.5452399515127940E-004 + 175.73999999999998 2.5964919894488057E-004 + 175.79999999999998 2.6470820942385017E-004 + 175.85999999999999 2.6969405868736314E-004 + 175.91999999999999 2.7459967725337062E-004 + 175.97999999999999 2.7941797923002043E-004 + 176.03999999999999 2.8414180626261181E-004 + 176.09999999999999 2.8876399116877812E-004 + 176.16000000000000 2.9327737987474786E-004 + 176.22000000000000 2.9767477701911707E-004 + 176.28000000000000 3.0194906985518108E-004 + 176.34000000000000 3.0609315047651353E-004 + 176.40000000000001 3.1009996285608061E-004 + 176.45999999999998 3.1396253076073472E-004 + 176.51999999999998 3.1767390849431865E-004 + 176.57999999999998 3.2122728039126304E-004 + 176.63999999999999 3.2461591278784498E-004 + 176.69999999999999 3.2783317637214175E-004 + 176.75999999999999 3.3087253339988531E-004 + 176.81999999999999 3.3372762724723145E-004 + 176.88000000000000 3.3639218590784042E-004 + 176.94000000000000 3.3886016492833300E-004 + 177.00000000000000 3.4112563770448770E-004 + 177.06000000000000 3.4318294143168541E-004 + 177.12000000000000 3.4502658039191477E-004 + 177.17999999999998 3.4665131527299598E-004 + 177.23999999999998 3.4805215935997645E-004 + 177.29999999999998 3.4922441880036307E-004 + 177.35999999999999 3.5016368111053723E-004 + 177.41999999999999 3.5086586263370281E-004 + 177.47999999999999 3.5132724619135638E-004 + 177.53999999999999 3.5154442450117604E-004 + 177.59999999999999 3.5151438535536690E-004 + 177.66000000000000 3.5123447813098919E-004 + 177.72000000000000 3.5070246641282827E-004 + 177.78000000000000 3.4991649501448841E-004 + 177.84000000000000 3.4887509532471363E-004 + 177.90000000000001 3.4757726343310574E-004 + 177.95999999999998 3.4602237082543040E-004 + 178.01999999999998 3.4421016658895857E-004 + 178.07999999999998 3.4214085553741348E-004 + 178.13999999999999 3.3981509366094991E-004 + 178.19999999999999 3.3723386311800484E-004 + 178.25999999999999 3.3439860128750022E-004 + 178.31999999999999 3.3131114923357183E-004 + 178.38000000000000 3.2797374668878666E-004 + 178.44000000000000 3.2438903431258268E-004 + 178.50000000000000 3.2056005176125051E-004 + 178.56000000000000 3.1649026441989137E-004 + 178.62000000000000 3.1218353748166627E-004 + 178.67999999999998 3.0764407043981808E-004 + 178.73999999999998 3.0287646263889398E-004 + 178.79999999999998 2.9788574401531129E-004 + 178.85999999999999 2.9267723506369039E-004 + 178.91999999999999 2.8725666362104896E-004 + 178.97999999999999 2.8163010264303426E-004 + 179.03999999999999 2.7580396740757947E-004 + 179.09999999999999 2.6978496952165493E-004 + 179.16000000000000 2.6358017919595465E-004 + 179.22000000000000 2.5719693215674416E-004 + 179.28000000000000 2.5064280749235231E-004 + 179.34000000000000 2.4392572214077329E-004 + 179.40000000000001 2.3705381929694686E-004 + 179.45999999999998 2.3003542204849285E-004 + 179.51999999999998 2.2287910028381756E-004 + 179.57999999999998 2.1559360100248569E-004 + 179.63999999999999 2.0818786481048920E-004 + 179.69999999999999 2.0067094061142066E-004 + 179.75999999999999 1.9305203759715782E-004 + 179.81999999999999 1.8534042624147656E-004 + 179.88000000000000 1.7754546510868690E-004 + 179.94000000000000 1.6967656902100507E-004 + 180.00000000000000 1.6174320146981343E-004 + 180.06000000000000 1.5375483848461109E-004 + 180.12000000000000 1.4572090935313094E-004 + 180.17999999999998 1.3765086710453020E-004 + 180.23999999999998 1.2955406244158385E-004 + 180.29999999999998 1.2143983023647336E-004 + 180.35999999999999 1.1331738537475629E-004 + 180.41999999999999 1.0519584420354745E-004 + 180.47999999999999 9.7084212793576441E-005 + 180.53999999999999 8.8991369953182755E-005 + 180.59999999999999 8.0926040605078616E-005 + 180.66000000000000 7.2896795961736708E-005 + 180.72000000000000 6.4912041558017842E-005 + 180.78000000000000 5.6979991080734324E-005 + 180.84000000000000 4.9108670424441716E-005 + 180.90000000000001 4.1305894967336465E-005 + 180.95999999999998 3.3579265819726939E-005 + 181.01999999999998 2.5936145120618576E-005 + 181.07999999999998 1.8383670862259695E-005 + 181.13999999999999 1.0928706893098911E-005 + 181.19999999999999 3.5778593588295462E-006 + 181.25999999999999 -3.6625369138622741E-006 + 181.31999999999999 -1.0786436953517770E-005 + 181.38000000000000 -1.7788092451459204E-005 + 181.44000000000000 -2.4662047055525246E-005 + 181.50000000000000 -3.1403163182445364E-005 + 181.56000000000000 -3.8006608996884017E-005 + 181.62000000000000 -4.4467873364409635E-005 + 181.67999999999998 -5.0782755431643621E-005 + 181.73999999999998 -5.6947378028350209E-005 + 181.79999999999998 -6.2958181675350778E-005 + 181.85999999999999 -6.8811916012460656E-005 + 181.91999999999999 -7.4505631931791040E-005 + 181.97999999999999 -8.0036707127743178E-005 + 182.03999999999999 -8.5402801098417359E-005 + 182.09999999999999 -9.0601881956785729E-005 + 182.16000000000000 -9.5632202721798571E-005 + 182.22000000000000 -1.0049229120598897E-004 + 182.28000000000000 -1.0518097094900390E-004 + 182.34000000000000 -1.0969732048905063E-004 + 182.39999999999998 -1.1404070007528335E-004 + 182.45999999999998 -1.1821072382793877E-004 + 182.51999999999998 -1.2220723862829230E-004 + 182.57999999999998 -1.2603036221872277E-004 + 182.63999999999999 -1.2968045263270716E-004 + 182.69999999999999 -1.3315807951540519E-004 + 182.75999999999999 -1.3646404180687289E-004 + 182.81999999999999 -1.3959935530012549E-004 + 182.88000000000000 -1.4256523767093750E-004 + 182.94000000000000 -1.4536308689333790E-004 + 183.00000000000000 -1.4799450597367285E-004 + 183.06000000000000 -1.5046127594152566E-004 + 183.12000000000000 -1.5276533668172419E-004 + 183.17999999999998 -1.5490878247768032E-004 + 183.23999999999998 -1.5689385902915319E-004 + 183.29999999999998 -1.5872294753318413E-004 + 183.35999999999999 -1.6039856993418011E-004 + 183.41999999999999 -1.6192337017706957E-004 + 183.47999999999999 -1.6330009221700775E-004 + 183.53999999999999 -1.6453162109515842E-004 + 183.59999999999999 -1.6562091176588280E-004 + 183.66000000000000 -1.6657100085331028E-004 + 183.72000000000000 -1.6738504703957716E-004 + 183.78000000000000 -1.6806625718039449E-004 + 183.84000000000000 -1.6861792238387997E-004 + 183.89999999999998 -1.6904338756123038E-004 + 183.95999999999998 -1.6934603458843142E-004 + 184.01999999999998 -1.6952931806555116E-004 + 184.07999999999998 -1.6959668901368269E-004 + 184.13999999999999 -1.6955163335681726E-004 + 184.19999999999999 -1.6939766768613243E-004 + 184.25999999999999 -1.6913831510148057E-004 + 184.31999999999999 -1.6877710938756807E-004 + 184.38000000000000 -1.6831754273046086E-004 + 184.44000000000000 -1.6776314437536022E-004 + 184.50000000000000 -1.6711742058845568E-004 + 184.56000000000000 -1.6638386726594199E-004 + 184.62000000000000 -1.6556593873189970E-004 + 184.67999999999998 -1.6466711507500016E-004 + 184.73999999999998 -1.6369082692791265E-004 + 184.79999999999998 -1.6264052627597641E-004 + 184.85999999999999 -1.6151961479333521E-004 + 184.91999999999999 -1.6033151754038413E-004 + 184.97999999999999 -1.5907960656184016E-004 + 185.03999999999999 -1.5776724365696899E-004 + 185.09999999999999 -1.5639780833089738E-004 + 185.16000000000000 -1.5497461365905074E-004 + 185.22000000000000 -1.5350099722697197E-004 + 185.28000000000000 -1.5198023174179434E-004 + 185.34000000000000 -1.5041559922944248E-004 + 185.39999999999998 -1.4881031489897244E-004 + 185.45999999999998 -1.4716757747831074E-004 + 185.51999999999998 -1.4549053449758588E-004 + 185.57999999999998 -1.4378230178459049E-004 + 185.63999999999999 -1.4204593265581387E-004 + 185.69999999999999 -1.4028443468068426E-004 + 185.75999999999999 -1.3850075273022394E-004 + 185.81999999999999 -1.3669777638333444E-004 + 185.88000000000000 -1.3487831352880392E-004 + 185.94000000000000 -1.3304514743896011E-004 + 186.00000000000000 -1.3120094316198703E-004 + 186.06000000000000 -1.2934833905716575E-004 + 186.12000000000000 -1.2748988220659741E-004 + 186.17999999999998 -1.2562805697934382E-004 + 186.23999999999998 -1.2376528660975475E-004 + 186.29999999999998 -1.2190389677198859E-004 + 186.35999999999999 -1.2004617413855915E-004 + 186.41999999999999 -1.1819429279526811E-004 + 186.47999999999999 -1.1635037936775570E-004 + 186.53999999999999 -1.1451649501708471E-004 + 186.59999999999999 -1.1269460422620259E-004 + 186.66000000000000 -1.1088660793919228E-004 + 186.72000000000000 -1.0909432885802399E-004 + 186.78000000000000 -1.0731950082523581E-004 + 186.84000000000000 -1.0556378890572466E-004 + 186.89999999999998 -1.0382877647121134E-004 + 186.95999999999998 -1.0211596098738288E-004 + 187.01999999999998 -1.0042676322210832E-004 + 187.07999999999998 -9.8762513854169407E-005 + 187.13999999999999 -9.7124463908173785E-005 + 187.19999999999999 -9.5513783876655973E-005 + 187.25999999999999 -9.3931538659714292E-005 + 187.31999999999999 -9.2378722119738140E-005 + 187.38000000000000 -9.0856240844421174E-005 + 187.44000000000000 -8.9364915924497305E-005 + 187.50000000000000 -8.7905455876684051E-005 + 187.56000000000000 -8.6478501757421684E-005 + 187.62000000000000 -8.5084601746279135E-005 + 187.67999999999998 -8.3724210833533154E-005 + 187.73999999999998 -8.2397706394543178E-005 + 187.79999999999998 -8.1105371526102923E-005 + 187.85999999999999 -7.9847406572924737E-005 + 187.91999999999999 -7.8623940897699931E-005 + 187.97999999999999 -7.7435022517001765E-005 + 188.03999999999999 -7.6280622479249130E-005 + 188.09999999999999 -7.5160637602388834E-005 + 188.16000000000000 -7.4074919609343234E-005 + 188.22000000000000 -7.3023242905419624E-005 + 188.28000000000000 -7.2005328411033420E-005 + 188.34000000000000 -7.1020836892384665E-005 + 188.39999999999998 -7.0069398557836971E-005 + 188.45999999999998 -6.9150582967516193E-005 + 188.51999999999998 -6.8263921771689461E-005 + 188.57999999999998 -6.7408903066493576E-005 + 188.63999999999999 -6.6584985525039355E-005 + 188.69999999999999 -6.5791593128183024E-005 + 188.75999999999999 -6.5028106145755544E-005 + 188.81999999999999 -6.4293874770107577E-005 + 188.88000000000000 -6.3588223602124855E-005 + 188.94000000000000 -6.2910436931870898E-005 + 189.00000000000000 -6.2259785120569823E-005 + 189.06000000000000 -6.1635489038063695E-005 + 189.12000000000000 -6.1036766959474421E-005 + 189.17999999999998 -6.0462788916689434E-005 + 189.23999999999998 -5.9912720747751770E-005 + 189.29999999999998 -5.9385696405455589E-005 + 189.35999999999999 -5.8880832306290070E-005 + 189.41999999999999 -5.8397232513299430E-005 + 189.47999999999999 -5.7933987413590388E-005 + 189.53999999999999 -5.7490180063135457E-005 + 189.59999999999999 -5.7064890401937688E-005 + 189.66000000000000 -5.6657193267625167E-005 + 189.72000000000000 -5.6266161920918615E-005 + 189.78000000000000 -5.5890875222022618E-005 + 189.84000000000000 -5.5530420725395900E-005 + 189.89999999999998 -5.5183900026948921E-005 + 189.95999999999998 -5.4850423026714744E-005 + 190.01999999999998 -5.4529114326172023E-005 + 190.07999999999998 -5.4219121868816718E-005 + 190.13999999999999 -5.3919601343814882E-005 + 190.19999999999999 -5.3629739771019498E-005 + 190.25999999999999 -5.3348740960104604E-005 + 190.31999999999999 -5.3075832760166071E-005 + 190.38000000000000 -5.2810259686270904E-005 + 190.44000000000000 -5.2551294914884057E-005 + 190.50000000000000 -5.2298231087500446E-005 + 190.56000000000000 -5.2050385168548868E-005 + 190.62000000000000 -5.1807097213375398E-005 + 190.67999999999998 -5.1567728646560694E-005 + 190.73999999999998 -5.1331656212266648E-005 + 190.79999999999998 -5.1098290874525507E-005 + 190.85999999999999 -5.0867063355217481E-005 + 190.91999999999999 -5.0637417212767091E-005 + 190.97999999999999 -5.0408832325378442E-005 + 191.03999999999999 -5.0180806109067678E-005 + 191.09999999999999 -4.9952863897239287E-005 + 191.16000000000000 -4.9724555636266917E-005 + 191.22000000000000 -4.9495462190642739E-005 + 191.28000000000000 -4.9265195401209749E-005 + 191.34000000000000 -4.9033405738022102E-005 + 191.39999999999998 -4.8799772073255295E-005 + 191.45999999999998 -4.8564012340191692E-005 + 191.51999999999998 -4.8325894429936016E-005 + 191.57999999999998 -4.8085219757628061E-005 + 191.63999999999999 -4.7841841071993442E-005 + 191.69999999999999 -4.7595654840975981E-005 + 191.75999999999999 -4.7346610246904662E-005 + 191.81999999999999 -4.7094704051097946E-005 + 191.88000000000000 -4.6839981012574502E-005 + 191.94000000000000 -4.6582541867451864E-005 + 192.00000000000000 -4.6322530928910978E-005 + 192.06000000000000 -4.6060141198673009E-005 + 192.12000000000000 -4.5795606700485936E-005 + 192.17999999999998 -4.5529208235537704E-005 + 192.23999999999998 -4.5261261592104185E-005 + 192.29999999999998 -4.4992121015509414E-005 + 192.35999999999999 -4.4722175993264880E-005 + 192.41999999999999 -4.4451836146072972E-005 + 192.47999999999999 -4.4181541673717290E-005 + 192.53999999999999 -4.3911751371551749E-005 + 192.59999999999999 -4.3642947427613684E-005 + 192.66000000000000 -4.3375623825468500E-005 + 192.72000000000000 -4.3110292092308740E-005 + 192.78000000000000 -4.2847473732936849E-005 + 192.84000000000000 -4.2587705509453712E-005 + 192.89999999999998 -4.2331533988334113E-005 + 192.95999999999998 -4.2079515081368530E-005 + 193.01999999999998 -4.1832222822399016E-005 + 193.07999999999998 -4.1590235135930529E-005 + 193.13999999999999 -4.1354146557089860E-005 + 193.19999999999999 -4.1124563737922644E-005 + 193.25999999999999 -4.0902111390730220E-005 + 193.31999999999999 -4.0687419221429135E-005 + 193.38000000000000 -4.0481130325318897E-005 + 193.44000000000000 -4.0283907447943062E-005 + 193.50000000000000 -4.0096408157949513E-005 + 193.56000000000000 -3.9919306811467388E-005 + 193.62000000000000 -3.9753273386852853E-005 + 193.67999999999998 -3.9598982259180863E-005 + 193.73999999999998 -3.9457098903615344E-005 + 193.79999999999998 -3.9328283383684554E-005 + 193.85999999999999 -3.9213185906906696E-005 + 193.91999999999999 -3.9112433478415056E-005 + 193.97999999999999 -3.9026637660454741E-005 + 194.03999999999999 -3.8956385911303250E-005 + 194.09999999999999 -3.8902247660645695E-005 + 194.16000000000000 -3.8864763590503320E-005 + 194.22000000000000 -3.8844444452581912E-005 + 194.28000000000000 -3.8841783783749379E-005 + 194.34000000000000 -3.8857246869780976E-005 + 194.39999999999998 -3.8891280282102646E-005 + 194.45999999999998 -3.8944313417837966E-005 + 194.51999999999998 -3.9016766454074437E-005 + 194.57999999999998 -3.9109039378802676E-005 + 194.63999999999999 -3.9221534478135289E-005 + 194.69999999999999 -3.9354647516231005E-005 + 194.75999999999999 -3.9508778998767173E-005 + 194.81999999999999 -3.9684334476209223E-005 + 194.88000000000000 -3.9881726579294810E-005 + 194.94000000000000 -4.0101386417902838E-005 + 195.00000000000000 -4.0343752713235257E-005 + 195.06000000000000 -4.0609283680254218E-005 + 195.12000000000000 -4.0898451148865309E-005 + 195.17999999999998 -4.1211752411949757E-005 + 195.23999999999998 -4.1549693444155428E-005 + 195.29999999999998 -4.1912802690196884E-005 + 195.35999999999999 -4.2301638283678936E-005 + 195.41999999999999 -4.2716766025752713E-005 + 195.47999999999999 -4.3158780809735230E-005 + 195.53999999999999 -4.3628293378019208E-005 + 195.59999999999999 -4.4125947124817121E-005 + 195.66000000000000 -4.4652400188788038E-005 + 195.72000000000000 -4.5208342112799215E-005 + 195.78000000000000 -4.5794491315093802E-005 + 195.84000000000000 -4.6411588815119160E-005 + 195.89999999999998 -4.7060408819849528E-005 + 195.95999999999998 -4.7741761313100807E-005 + 196.01999999999998 -4.8456485931768651E-005 + 196.07999999999998 -4.9205465109306904E-005 + 196.13999999999999 -4.9989608582913514E-005 + 196.19999999999999 -5.0809868738688809E-005 + 196.25999999999999 -5.1667235018174171E-005 + 196.31999999999999 -5.2562728441955792E-005 + 196.38000000000000 -5.3497413745363036E-005 + 196.44000000000000 -5.4472385105370922E-005 + 196.50000000000000 -5.5488775282016070E-005 + 196.56000000000000 -5.6547750317641662E-005 + 196.62000000000000 -5.7650502578393865E-005 + 196.67999999999998 -5.8798256943361270E-005 + 196.73999999999998 -5.9992260902270678E-005 + 196.79999999999998 -6.1233775350724788E-005 + 196.85999999999999 -6.2524072550582796E-005 + 196.91999999999999 -6.3864458115373473E-005 + 196.97999999999999 -6.5256208478963327E-005 + 197.03999999999999 -6.6700622788889817E-005 + 197.09999999999999 -6.8198973268681333E-005 + 197.16000000000000 -6.9752528117788100E-005 + 197.22000000000000 -7.1362530597370374E-005 + 197.28000000000000 -7.3030178584335142E-005 + 197.34000000000000 -7.4756650576787606E-005 + 197.39999999999998 -7.6543065495785108E-005 + 197.45999999999998 -7.8390487277886213E-005 + 197.51999999999998 -8.0299925232527961E-005 + 197.57999999999998 -8.2272327507887280E-005 + 197.63999999999999 -8.4308559952207127E-005 + 197.69999999999999 -8.6409410122263020E-005 + 197.75999999999999 -8.8575588154116418E-005 + 197.81999999999999 -9.0807721895985480E-005 + 197.88000000000000 -9.3106332557178341E-005 + 197.94000000000000 -9.5471863994535971E-005 + 198.00000000000000 -9.7904642372286524E-005 + 198.06000000000000 -1.0040490758318732E-004 + 198.12000000000000 -1.0297277044091078E-004 + 198.17999999999998 -1.0560822823678544E-004 + 198.23999999999998 -1.0831117681018752E-004 + 198.29999999999998 -1.1108136684948917E-004 + 198.35999999999999 -1.1391842195612292E-004 + 198.41999999999999 -1.1682183523001785E-004 + 198.47999999999999 -1.1979091990809720E-004 + 198.53999999999999 -1.2282485598975607E-004 + 198.59999999999999 -1.2592265741107845E-004 + 198.66000000000000 -1.2908316181532660E-004 + 198.72000000000000 -1.3230503187970191E-004 + 198.78000000000000 -1.3558670956047303E-004 + 198.84000000000000 -1.3892648680812774E-004 + 198.89999999999998 -1.4232245127026734E-004 + 198.95999999999998 -1.4577245097996823E-004 + 199.01999999999998 -1.4927415197729064E-004 + 199.07999999999998 -1.5282501050376481E-004 + 199.13999999999999 -1.5642227462258170E-004 + 199.19999999999999 -1.6006294852098088E-004 + 199.25999999999999 -1.6374384967016359E-004 + 199.31999999999999 -1.6746156385961117E-004 + 199.38000000000000 -1.7121248469786985E-004 + 199.44000000000000 -1.7499275744607272E-004 + 199.50000000000000 -1.7879833637268928E-004 + 199.56000000000000 -1.8262496969871544E-004 + 199.62000000000000 -1.8646818916741233E-004 + 199.67999999999998 -1.9032332455750343E-004 + 199.73999999999998 -1.9418548862469128E-004 + 199.79999999999998 -1.9804959816646271E-004 + 199.85999999999999 -2.0191037049749555E-004 + 199.91999999999999 -2.0576236249697855E-004 + 199.97999999999999 -2.0959990326822859E-004 + 200.03999999999999 -2.1341718063778178E-004 + 200.09999999999999 -2.1720816782092029E-004 + 200.16000000000000 -2.2096670992629111E-004 + 200.22000000000000 -2.2468647014418989E-004 + 200.28000000000000 -2.2836099600908401E-004 + 200.34000000000000 -2.3198368623396161E-004 + 200.39999999999998 -2.3554777714563215E-004 + 200.45999999999998 -2.3904642957824139E-004 + 200.51999999999998 -2.4247265087817471E-004 + 200.57999999999998 -2.4581942027836358E-004 + 200.63999999999999 -2.4907958322361017E-004 + 200.69999999999999 -2.5224593285107623E-004 + 200.75999999999999 -2.5531121087161605E-004 + 200.81999999999999 -2.5826808545958453E-004 + 200.88000000000000 -2.6110924682970163E-004 + 200.94000000000000 -2.6382733087639693E-004 + 201.00000000000000 -2.6641501260020873E-004 + 201.06000000000000 -2.6886494188608839E-004 + 201.12000000000000 -2.7116986700007534E-004 + 201.17999999999998 -2.7332255485659410E-004 + 201.23999999999998 -2.7531589404882411E-004 + 201.29999999999998 -2.7714289776421179E-004 + 201.35999999999999 -2.7879666630452213E-004 + 201.41999999999999 -2.8027047301728891E-004 + 201.47999999999999 -2.8155776126223537E-004 + 201.53999999999999 -2.8265218591634101E-004 + 201.59999999999999 -2.8354760933563196E-004 + 201.66000000000000 -2.8423813377408721E-004 + 201.72000000000000 -2.8471816045163987E-004 + 201.78000000000000 -2.8498232226520305E-004 + 201.84000000000000 -2.8502555984822345E-004 + 201.89999999999998 -2.8484316456593435E-004 + 201.95999999999998 -2.8443069507454318E-004 + 202.01999999999998 -2.8378413120525405E-004 + 202.07999999999998 -2.8289974387522946E-004 + 202.13999999999999 -2.8177417962829655E-004 + 202.19999999999999 -2.8040450212891147E-004 + 202.25999999999999 -2.7878817580258666E-004 + 202.31999999999999 -2.7692301801877451E-004 + 202.38000000000000 -2.7480734830011440E-004 + 202.44000000000000 -2.7243988277864556E-004 + 202.50000000000000 -2.6981977750067547E-004 + 202.56000000000000 -2.6694666923618578E-004 + 202.62000000000000 -2.6382063790564574E-004 + 202.67999999999998 -2.6044226884433216E-004 + 202.73999999999998 -2.5681263960265516E-004 + 202.79999999999998 -2.5293329673040923E-004 + 202.85999999999999 -2.4880629612349087E-004 + 202.91999999999999 -2.4443422102283298E-004 + 202.97999999999999 -2.3982012038208900E-004 + 203.03999999999999 -2.3496755845251022E-004 + 203.09999999999999 -2.2988060704426700E-004 + 203.16000000000000 -2.2456380142906428E-004 + 203.22000000000000 -2.1902219553698808E-004 + 203.28000000000000 -2.1326129345219710E-004 + 203.34000000000000 -2.0728705707535717E-004 + 203.39999999999998 -2.0110592016833232E-004 + 203.45999999999998 -1.9472471239548290E-004 + 203.51999999999998 -1.8815069895055229E-004 + 203.57999999999998 -1.8139155296653818E-004 + 203.63999999999999 -1.7445530799996896E-004 + 203.69999999999999 -1.6735036677966499E-004 + 203.75999999999999 -1.6008548917010825E-004 + 203.81999999999999 -1.5266973842818115E-004 + 203.88000000000000 -1.4511249412817666E-004 + 203.94000000000000 -1.3742340795520265E-004 + 204.00000000000000 -1.2961239689669303E-004 + 204.06000000000000 -1.2168961595731045E-004 + 204.12000000000000 -1.1366540704897659E-004 + 204.17999999999998 -1.0555033454672018E-004 + 204.23999999999998 -9.7355108463783953E-005 + 204.29999999999998 -8.9090584861027653E-005 + 204.35999999999999 -8.0767732283911847E-005 + 204.41999999999999 -7.2397595242144804E-005 + 204.47999999999999 -6.3991271258128228E-005 + 204.53999999999999 -5.5559918490871760E-005 + 204.59999999999999 -4.7114678093949829E-005 + 204.66000000000000 -3.8666702063406277E-005 + 204.72000000000000 -3.0227073290528137E-005 + 204.78000000000000 -2.1806827039577472E-005 + 204.84000000000000 -1.3416895935538095E-005 + 204.89999999999998 -5.0680927348433093E-006 + 204.95999999999998 3.2289058038880426E-006 + 205.01999999999998 1.1463581546894396E-005 + 205.07999999999998 1.9625609511222610E-005 + 205.13999999999999 2.7704886073352611E-005 + 205.19999999999999 3.5691525254526520E-005 + 205.25999999999999 4.3575915661334558E-005 + 205.31999999999999 5.1348721952820501E-005 + 205.38000000000000 5.9000904269418037E-005 + 205.44000000000000 6.6523754228907058E-005 + 205.50000000000000 7.3908895607412422E-005 + 205.56000000000000 8.1148306757868445E-005 + 205.62000000000000 8.8234336486824904E-005 + 205.67999999999998 9.5159744297161042E-005 + 205.73999999999998 1.0191765910006731E-004 + 205.79999999999998 1.0850161521217020E-004 + 205.85999999999999 1.1490558605247951E-004 + 205.91999999999999 1.2112393639298012E-004 + 205.97999999999999 1.2715147180793871E-004 + 206.03999999999999 1.3298339652547626E-004 + 206.09999999999999 1.3861537307549286E-004 + 206.16000000000000 1.4404346088618491E-004 + 206.22000000000000 1.4926416023652183E-004 + 206.28000000000000 1.5427438751377338E-004 + 206.34000000000000 1.5907147721895237E-004 + 206.39999999999998 1.6365319441943109E-004 + 206.45999999999998 1.6801772354184158E-004 + 206.51999999999998 1.7216364729722694E-004 + 206.57999999999998 1.7609000291290739E-004 + 206.63999999999999 1.7979618366059725E-004 + 206.69999999999999 1.8328201339923663E-004 + 206.75999999999999 1.8654773612586839E-004 + 206.81999999999999 1.8959395990324633E-004 + 206.88000000000000 1.9242169675625314E-004 + 206.94000000000000 1.9503231432617534E-004 + 207.00000000000000 1.9742756303121713E-004 + 207.06000000000000 1.9960956786199661E-004 + 207.12000000000000 2.0158075295222580E-004 + 207.17999999999998 2.0334391038887283E-004 + 207.23999999999998 2.0490209476437104E-004 + 207.29999999999998 2.0625869045436102E-004 + 207.35999999999999 2.0741733987865538E-004 + 207.41999999999999 2.0838194905288833E-004 + 207.47999999999999 2.0915665997087071E-004 + 207.53999999999999 2.0974584516407138E-004 + 207.59999999999999 2.1015407862717836E-004 + 207.66000000000000 2.1038611490313737E-004 + 207.72000000000000 2.1044689516898796E-004 + 207.78000000000000 2.1034149314297327E-004 + 207.84000000000000 2.1007516259770266E-004 + 207.89999999999998 2.0965325245583591E-004 + 207.95999999999998 2.0908123394506296E-004 + 208.01999999999998 2.0836467372693264E-004 + 208.07999999999998 2.0750922463963354E-004 + 208.13999999999999 2.0652061092826194E-004 + 208.19999999999999 2.0540459340973445E-004 + 208.25999999999999 2.0416699156412864E-004 + 208.31999999999999 2.0281365291357332E-004 + 208.38000000000000 2.0135041305373094E-004 + 208.44000000000000 1.9978311179136136E-004 + 208.50000000000000 1.9811758752719561E-004 + 208.56000000000000 1.9635962698290213E-004 + 208.62000000000000 1.9451499824908348E-004 + 208.68000000000001 1.9258939422287454E-004 + 208.74000000000001 1.9058845563984104E-004 + 208.80000000000001 1.8851775114107975E-004 + 208.86000000000001 1.8638275511811614E-004 + 208.92000000000002 1.8418886827906730E-004 + 208.98000000000002 1.8194137794061692E-004 + 209.03999999999996 1.7964548621041287E-004 + 209.09999999999997 1.7730624207864642E-004 + 209.15999999999997 1.7492862445428172E-004 + 209.21999999999997 1.7251745088433328E-004 + 209.27999999999997 1.7007743782246413E-004 + 209.33999999999997 1.6761313431410557E-004 + 209.39999999999998 1.6512897733896313E-004 + 209.45999999999998 1.6262925730087848E-004 + 209.51999999999998 1.6011808448804265E-004 + 209.57999999999998 1.5759944446615281E-004 + 209.63999999999999 1.5507717245766668E-004 + 209.69999999999999 1.5255493194398694E-004 + 209.75999999999999 1.5003623167328799E-004 + 209.81999999999999 1.4752444363007604E-004 + 209.88000000000000 1.4502278012211894E-004 + 209.94000000000000 1.4253430805696141E-004 + 210.00000000000000 1.4006193556528239E-004 + 210.06000000000000 1.3760843866677565E-004 + 210.12000000000000 1.3517645098226692E-004 + 210.18000000000001 1.3276845829403324E-004 + 210.24000000000001 1.3038684285701031E-004 + 210.30000000000001 1.2803383813225495E-004 + 210.36000000000001 1.2571155268106146E-004 + 210.42000000000002 1.2342196997502811E-004 + 210.48000000000002 1.2116696580138468E-004 + 210.53999999999996 1.1894827467258059E-004 + 210.59999999999997 1.1676753290858636E-004 + 210.65999999999997 1.1462622968404476E-004 + 210.71999999999997 1.1252573082979550E-004 + 210.77999999999997 1.1046729717824655E-004 + 210.83999999999997 1.0845205477429417E-004 + 210.89999999999998 1.0648101477157475E-004 + 210.95999999999998 1.0455506150863406E-004 + 211.01999999999998 1.0267496295028754E-004 + 211.07999999999998 1.0084135187779131E-004 + 211.13999999999999 9.9054782623759531E-005 + 211.19999999999999 9.7315684848825544E-005 + 211.25999999999999 9.5624377960971119E-005 + 211.31999999999999 9.3981098383836404E-005 + 211.38000000000000 9.2385966998664672E-005 + 211.44000000000000 9.0839043362869490E-005 + 211.50000000000000 8.9340282868793705E-005 + 211.56000000000000 8.7889563173657419E-005 + 211.62000000000000 8.6486685311986547E-005 + 211.68000000000001 8.5131378853569307E-005 + 211.74000000000001 8.3823290317616247E-005 + 211.80000000000001 8.2561991790486378E-005 + 211.86000000000001 8.1346988805312264E-005 + 211.92000000000002 8.0177709391575201E-005 + 211.98000000000002 7.9053513214452046E-005 + 212.03999999999996 7.7973678372329671E-005 + 212.09999999999997 7.6937426858049530E-005 + 212.15999999999997 7.5943885927738940E-005 + 212.21999999999997 7.4992141347930921E-005 + 212.27999999999997 7.4081188318618171E-005 + 212.33999999999997 7.3209968006788967E-005 + 212.39999999999998 7.2377359492073386E-005 + 212.45999999999998 7.1582183372136601E-005 + 212.51999999999998 7.0823212072216243E-005 + 212.57999999999998 7.0099163783737692E-005 + 212.63999999999999 6.9408719361979324E-005 + 212.69999999999999 6.8750521505653444E-005 + 212.75999999999999 6.8123173623805259E-005 + 212.81999999999999 6.7525257738300945E-005 + 212.88000000000000 6.6955328087905976E-005 + 212.94000000000000 6.6411913539611307E-005 + 213.00000000000000 6.5893539092813088E-005 + 213.06000000000000 6.5398701055324808E-005 + 213.12000000000000 6.4925899535724898E-005 + 213.18000000000001 6.4473629682364767E-005 + 213.24000000000001 6.4040387919373954E-005 + 213.30000000000001 6.3624671910823081E-005 + 213.36000000000001 6.3224985424800776E-005 + 213.42000000000002 6.2839850971003677E-005 + 213.48000000000002 6.2467806278712398E-005 + 213.53999999999996 6.2107411806564862E-005 + 213.59999999999997 6.1757264040729207E-005 + 213.65999999999997 6.1415984858374372E-005 + 213.71999999999997 6.1082227670898988E-005 + 213.77999999999997 6.0754697807512905E-005 + 213.83999999999997 6.0432134681090465E-005 + 213.89999999999998 6.0113335783635874E-005 + 213.95999999999998 5.9797146065236631E-005 + 214.01999999999998 5.9482461303255351E-005 + 214.07999999999998 5.9168234675322232E-005 + 214.13999999999999 5.8853470126924038E-005 + 214.19999999999999 5.8537234813469313E-005 + 214.25999999999999 5.8218659431404742E-005 + 214.31999999999999 5.7896928640040377E-005 + 214.38000000000000 5.7571290243767458E-005 + 214.44000000000000 5.7241059479059268E-005 + 214.50000000000000 5.6905620422786169E-005 + 214.56000000000000 5.6564422865428325E-005 + 214.62000000000000 5.6216981835722918E-005 + 214.68000000000001 5.5862888417175785E-005 + 214.74000000000001 5.5501806552173610E-005 + 214.80000000000001 5.5133473094515632E-005 + 214.86000000000001 5.4757699770638324E-005 + 214.92000000000002 5.4374369120642456E-005 + 214.98000000000002 5.3983441861275550E-005 + 215.03999999999996 5.3584950914983332E-005 + 215.09999999999997 5.3178989837555587E-005 + 215.15999999999997 5.2765726595092104E-005 + 215.21999999999997 5.2345387650805933E-005 + 215.27999999999997 5.1918259788263337E-005 + 215.33999999999997 5.1484677066906417E-005 + 215.39999999999998 5.1045023228266834E-005 + 215.45999999999998 5.0599728141597176E-005 + 215.51999999999998 5.0149261596131893E-005 + 215.57999999999998 4.9694125788159791E-005 + 215.63999999999999 4.9234855602824792E-005 + 215.69999999999999 4.8772013625168851E-005 + 215.75999999999999 4.8306190625225140E-005 + 215.81999999999999 4.7838000530707251E-005 + 215.88000000000000 4.7368082436923157E-005 + 215.94000000000000 4.6897091723790471E-005 + 216.00000000000000 4.6425711520826920E-005 + 216.06000000000000 4.5954639705796717E-005 + 216.12000000000000 4.5484595496240420E-005 + 216.18000000000001 4.5016313528520682E-005 + 216.24000000000001 4.4550544397260743E-005 + 216.30000000000001 4.4088053094619869E-005 + 216.36000000000001 4.3629619171057943E-005 + 216.42000000000002 4.3176027382163615E-005 + 216.48000000000002 4.2728074214894756E-005 + 216.53999999999996 4.2286557516265150E-005 + 216.59999999999997 4.1852280447611916E-005 + 216.65999999999997 4.1426048307696567E-005 + 216.71999999999997 4.1008664577675536E-005 + 216.77999999999997 4.0600933537506146E-005 + 216.83999999999997 4.0203655816979005E-005 + 216.89999999999998 3.9817631219877733E-005 + 216.95999999999998 3.9443661153852256E-005 + 217.01999999999998 3.9082547544438639E-005 + 217.07999999999998 3.8735091330747436E-005 + 217.13999999999999 3.8402097198434681E-005 + 217.19999999999999 3.8084378019415544E-005 + 217.25999999999999 3.7782754171318893E-005 + 217.31999999999999 3.7498051035628400E-005 + 217.38000000000000 3.7231106349441104E-005 + 217.44000000000000 3.6982771210533510E-005 + 217.50000000000000 3.6753905241656312E-005 + 217.56000000000000 3.6545387214450821E-005 + 217.62000000000000 3.6358111905065407E-005 + 217.68000000000001 3.6192983658412145E-005 + 217.74000000000001 3.6050925618931405E-005 + 217.80000000000001 3.5932879122955776E-005 + 217.86000000000001 3.5839804937683511E-005 + 217.92000000000002 3.5772686387914512E-005 + 217.98000000000002 3.5732529901759207E-005 + 218.03999999999996 3.5720358615367874E-005 + 218.09999999999997 3.5737230321861532E-005 + 218.15999999999997 3.5784229083075760E-005 + 218.21999999999997 3.5862465328468388E-005 + 218.27999999999997 3.5973088589393514E-005 + 218.33999999999997 3.6117284328473045E-005 + 218.39999999999998 3.6296268424557056E-005 + 218.45999999999998 3.6511298866708843E-005 + 218.51999999999998 3.6763670283606708E-005 + 218.57999999999998 3.7054707333408026E-005 + 218.63999999999999 3.7385781853284916E-005 + 218.69999999999999 3.7758291170052709E-005 + 218.75999999999999 3.8173661652397797E-005 + 218.81999999999999 3.8633361472426252E-005 + 218.88000000000000 3.9138873727447052E-005 + 218.94000000000000 3.9691702254947075E-005 + 219.00000000000000 4.0293378638955247E-005 + 219.06000000000000 4.0945447803528804E-005 + 219.12000000000000 4.1649469617708098E-005 + 219.18000000000001 4.2407019595613993E-005 + 219.24000000000001 4.3219683027874224E-005 + 219.30000000000001 4.4089057249698218E-005 + 219.36000000000001 4.5016746143190667E-005 + 219.42000000000002 4.6004362830118545E-005 + 219.48000000000002 4.7053531020890649E-005 + 219.53999999999996 4.8165879532428412E-005 + 219.59999999999997 4.9343045441990440E-005 + 219.65999999999997 5.0586666666436011E-005 + 219.71999999999997 5.1898377829682793E-005 + 219.77999999999997 5.3279816899534497E-005 + 219.83999999999997 5.4732616781474883E-005 + 219.89999999999998 5.6258402652484267E-005 + 219.95999999999998 5.7858766604333074E-005 + 220.01999999999998 5.9535299893203463E-005 + 220.07999999999998 6.1289545588495649E-005 + 220.13999999999999 6.3123018200007445E-005 + 220.19999999999999 6.5037185308819404E-005 + 220.25999999999999 6.7033456340411280E-005 + 220.31999999999999 6.9113176044184480E-005 + 220.38000000000000 7.1277629158468503E-005 + 220.44000000000000 7.3528020522097983E-005 + 220.50000000000000 7.5865476747468373E-005 + 220.56000000000000 7.8291015768603057E-005 + 220.62000000000000 8.0805570720794852E-005 + 220.68000000000001 8.3409973722883805E-005 + 220.74000000000001 8.6104962259458463E-005 + 220.80000000000001 8.8891139761462074E-005 + 220.86000000000001 9.1768992905628803E-005 + 220.92000000000002 9.4738888751961457E-005 + 220.98000000000002 9.7801078954212642E-005 + 221.03999999999996 1.0095565691123165E-004 + 221.09999999999997 1.0420261834359127E-004 + 221.15999999999997 1.0754176737360209E-004 + 221.21999999999997 1.1097279835838058E-004 + 221.27999999999997 1.1449524041431733E-004 + 221.33999999999997 1.1810847377307230E-004 + 221.39999999999998 1.2181169286711906E-004 + 221.45999999999998 1.2560391635375303E-004 + 221.51999999999998 1.2948401654624546E-004 + 221.57999999999998 1.3345065088371158E-004 + 221.63999999999999 1.3750231065146366E-004 + 221.69999999999999 1.4163725010364652E-004 + 221.75999999999999 1.4585353983319251E-004 + 221.81999999999999 1.5014905149005753E-004 + 221.88000000000000 1.5452141418035613E-004 + 221.94000000000000 1.5896804144661589E-004 + 222.00000000000000 1.6348611851638205E-004 + 222.06000000000000 1.6807260779460402E-004 + 222.12000000000000 1.7272421328840318E-004 + 222.18000000000001 1.7743740394506914E-004 + 222.24000000000001 1.8220843009911290E-004 + 222.30000000000001 1.8703326097094957E-004 + 222.36000000000001 1.9190764783215468E-004 + 222.42000000000002 1.9682709912895977E-004 + 222.48000000000002 2.0178687195006447E-004 + 222.53999999999996 2.0678200493164187E-004 + 222.59999999999997 2.1180731302453311E-004 + 222.65999999999997 2.1685738583825220E-004 + 222.71999999999997 2.2192656499993784E-004 + 222.77999999999997 2.2700904192199297E-004 + 222.83999999999997 2.3209876967364971E-004 + 222.89999999999998 2.3718952004789300E-004 + 222.95999999999998 2.4227493320057650E-004 + 223.01999999999998 2.4734839400595416E-004 + 223.07999999999998 2.5240318911163315E-004 + 223.13999999999999 2.5743244661907358E-004 + 223.19999999999999 2.6242912775963447E-004 + 223.25999999999999 2.6738608005019552E-004 + 223.31999999999999 2.7229602773178464E-004 + 223.38000000000000 2.7715159121193564E-004 + 223.44000000000000 2.8194523071788276E-004 + 223.50000000000000 2.8666938370672300E-004 + 223.56000000000000 2.9131637977132199E-004 + 223.62000000000000 2.9587847211096590E-004 + 223.68000000000001 3.0034785566791273E-004 + 223.74000000000001 3.0471670624648221E-004 + 223.80000000000001 3.0897715725566074E-004 + 223.86000000000001 3.1312133827565442E-004 + 223.92000000000002 3.1714138171856025E-004 + 223.98000000000002 3.2102949328866677E-004 + 224.03999999999996 3.2477791072181735E-004 + 224.09999999999997 3.2837894376758588E-004 + 224.15999999999997 3.3182500710205094E-004 + 224.21999999999997 3.3510862202200067E-004 + 224.27999999999997 3.3822250128670637E-004 + 224.33999999999997 3.4115945238119235E-004 + 224.39999999999998 3.4391255087847016E-004 + 224.45999999999998 3.4647501565458435E-004 + 224.51999999999998 3.4884035040020711E-004 + 224.57999999999998 3.5100230486720765E-004 + 224.63999999999999 3.5295480262255208E-004 + 224.69999999999999 3.5469212992927642E-004 + 224.75999999999999 3.5620882275542065E-004 + 224.81999999999999 3.5749971582064668E-004 + 224.88000000000000 3.5856000951487642E-004 + 224.94000000000000 3.5938512242274841E-004 + 225.00000000000000 3.5997093236660367E-004 + 225.06000000000000 3.6031356092871625E-004 + 225.12000000000000 3.6040955850905401E-004 + 225.18000000000001 3.6025577340988748E-004 + 225.24000000000001 3.5984946116504526E-004 + 225.30000000000001 3.5918828575694499E-004 + 225.36000000000001 3.5827024930542027E-004 + 225.42000000000002 3.5709382050523966E-004 + 225.48000000000002 3.5565785785338121E-004 + 225.53999999999996 3.5396163895888973E-004 + 225.59999999999997 3.5200489326392772E-004 + 225.65999999999997 3.4978777051442701E-004 + 225.71999999999997 3.4731088593178028E-004 + 225.77999999999997 3.4457529220637695E-004 + 225.83999999999997 3.4158251616581278E-004 + 225.89999999999998 3.3833456466901172E-004 + 225.95999999999998 3.3483382088390868E-004 + 226.01999999999998 3.3108321981530097E-004 + 226.07999999999998 3.2708609524433995E-004 + 226.13999999999999 3.2284625391313450E-004 + 226.19999999999999 3.1836793500089329E-004 + 226.25999999999999 3.1365580569467285E-004 + 226.31999999999999 3.0871493480704614E-004 + 226.38000000000000 3.0355083000133392E-004 + 226.44000000000000 2.9816935792650103E-004 + 226.50000000000000 2.9257676923763015E-004 + 226.56000000000000 2.8677971801226209E-004 + 226.62000000000000 2.8078514030372879E-004 + 226.68000000000001 2.7460032886681774E-004 + 226.74000000000001 2.6823291705249788E-004 + 226.80000000000001 2.6169077798488905E-004 + 226.86000000000001 2.5498210602464843E-004 + 226.92000000000002 2.4811534616875710E-004 + 226.98000000000002 2.4109915106128299E-004 + 227.03999999999996 2.3394242581781984E-004 + 227.09999999999997 2.2665426169795222E-004 + 227.15999999999997 2.1924395504234221E-004 + 227.21999999999997 2.1172096380169247E-004 + 227.27999999999997 2.0409485827928850E-004 + 227.33999999999997 1.9637537818092656E-004 + 227.39999999999998 1.8857237431081484E-004 + 227.45999999999998 1.8069576300061026E-004 + 227.51999999999998 1.7275556278905808E-004 + 227.57999999999998 1.6476180653649729E-004 + 227.63999999999999 1.5672456647263812E-004 + 227.69999999999999 1.4865392983735951E-004 + 227.75999999999999 1.4055996400779479E-004 + 227.81999999999999 1.3245269460398181E-004 + 227.88000000000000 1.2434208782280651E-004 + 227.94000000000000 1.1623801494287483E-004 + 228.00000000000000 1.0815026546228554E-004 + 228.06000000000000 1.0008846569879987E-004 + 228.12000000000000 9.2062090582499333E-005 + 228.18000000000001 8.4080448916987481E-005 + 228.24000000000001 7.6152638913415648E-005 + 228.30000000000001 6.8287559741683442E-005 + 228.36000000000001 6.0493836618163471E-005 + 228.42000000000002 5.2779867767748545E-005 + 228.48000000000002 4.5153769816244651E-005 + 228.53999999999996 3.7623373060925517E-005 + 228.59999999999997 3.0196204860520139E-005 + 228.65999999999997 2.2879493828818789E-005 + 228.71999999999997 1.5680152106961472E-005 + 228.77999999999997 8.6047669307462007E-006 + 228.83999999999997 1.6595972242667284E-006 + 228.89999999999998 -5.1494319853296039E-006 + 228.95999999999998 -1.1816731538021835E-005 + 229.01999999999998 -1.8337046829560741E-005 + 229.07999999999998 -2.4705464779178809E-005 + 229.13999999999999 -3.0917420883281185E-005 + 229.19999999999999 -3.6968681061818015E-005 + 229.25999999999999 -4.2855376212097888E-005 + 229.31999999999999 -4.8573971539875253E-005 + 229.38000000000000 -5.4121278910378726E-005 + 229.44000000000000 -5.9494473149356497E-005 + 229.50000000000000 -6.4691070577988991E-005 + 229.56000000000000 -6.9708941403434527E-005 + 229.62000000000000 -7.4546305881491076E-005 + 229.68000000000001 -7.9201724476419532E-005 + 229.74000000000001 -8.3674107069460203E-005 + 229.80000000000001 -8.7962711696719742E-005 + 229.86000000000001 -9.2067109614034305E-005 + 229.92000000000002 -9.5987213119907492E-005 + 229.97999999999996 -9.9723238485347146E-005 + 230.03999999999996 -1.0327571475302645E-004 + 230.09999999999997 -1.0664547068988395E-004 + 230.15999999999997 -1.0983360638473186E-004 + 230.21999999999997 -1.1284148262404831E-004 + 230.27999999999997 -1.1567073812234394E-004 + 230.33999999999997 -1.1832323026243467E-004 + 230.39999999999998 -1.2080104689158013E-004 + 230.45999999999998 -1.2310648798815644E-004 + 230.51999999999998 -1.2524204105796502E-004 + 230.57999999999998 -1.2721038737032608E-004 + 230.63999999999999 -1.2901437792777734E-004 + 230.69999999999999 -1.3065702735774514E-004 + 230.75999999999999 -1.3214148138104284E-004 + 230.81999999999999 -1.3347102252828362E-004 + 230.88000000000000 -1.3464908293624449E-004 + 230.94000000000000 -1.3567917520304959E-004 + 231.00000000000000 -1.3656495008716513E-004 + 231.06000000000000 -1.3731013490615821E-004 + 231.12000000000000 -1.3791856173906152E-004 + 231.18000000000001 -1.3839411446457621E-004 + 231.24000000000001 -1.3874075714021114E-004 + 231.30000000000001 -1.3896254289449972E-004 + 231.36000000000001 -1.3906351903901409E-004 + 231.42000000000002 -1.3904782851018629E-004 + 231.47999999999996 -1.3891962538450017E-004 + 231.53999999999996 -1.3868307156497453E-004 + 231.59999999999997 -1.3834237597498545E-004 + 231.65999999999997 -1.3790173971528255E-004 + 231.71999999999997 -1.3736537516831251E-004 + 231.77999999999997 -1.3673747956098348E-004 + 231.83999999999997 -1.3602223065768134E-004 + 231.89999999999998 -1.3522378075294007E-004 + 231.95999999999998 -1.3434625573017860E-004 + 232.01999999999998 -1.3339375056949953E-004 + 232.07999999999998 -1.3237029469744785E-004 + 232.13999999999999 -1.3127989310499945E-004 + 232.19999999999999 -1.3012646508165531E-004 + 232.25999999999999 -1.2891388715622666E-004 + 232.31999999999999 -1.2764596211977544E-004 + 232.38000000000000 -1.2632641978079510E-004 + 232.44000000000000 -1.2495892473288607E-004 + 232.50000000000000 -1.2354704333376599E-004 + 232.56000000000000 -1.2209428736079973E-004 + 232.62000000000000 -1.2060406071223254E-004 + 232.68000000000001 -1.1907970861064856E-004 + 232.74000000000001 -1.1752446986675418E-004 + 232.80000000000001 -1.1594150757266483E-004 + 232.86000000000001 -1.1433390162752389E-004 + 232.92000000000002 -1.1270465626215719E-004 + 232.97999999999996 -1.1105667600126246E-004 + 233.03999999999996 -1.0939279769922860E-004 + 233.09999999999997 -1.0771575885663124E-004 + 233.15999999999997 -1.0602822647310531E-004 + 233.21999999999997 -1.0433277631209438E-004 + 233.27999999999997 -1.0263188854487223E-004 + 233.33999999999997 -1.0092796814515835E-004 + 233.39999999999998 -9.9223329709003787E-005 + 233.45999999999998 -9.7520187830507036E-005 + 233.51999999999998 -9.5820667202396712E-005 + 233.57999999999998 -9.4126800717980432E-005 + 233.63999999999999 -9.2440511589327707E-005 + 233.69999999999999 -9.0763642403867594E-005 + 233.75999999999999 -8.9097930833881427E-005 + 233.81999999999999 -8.7445006889429891E-005 + 233.88000000000000 -8.5806416677223349E-005 + 233.94000000000000 -8.4183591982514810E-005 + 234.00000000000000 -8.2577886340543243E-005 + 234.06000000000000 -8.0990558483985439E-005 + 234.12000000000000 -7.9422764989947364E-005 + 234.18000000000001 -7.7875597742232307E-005 + 234.24000000000001 -7.6350053533519603E-005 + 234.30000000000001 -7.4847060834230946E-005 + 234.36000000000001 -7.3367460885874160E-005 + 234.42000000000002 -7.1912036902528680E-005 + 234.47999999999996 -7.0481496700330122E-005 + 234.53999999999996 -6.9076475426776575E-005 + 234.59999999999997 -6.7697566081065729E-005 + 234.65999999999997 -6.6345279238748785E-005 + 234.71999999999997 -6.5020075757501628E-005 + 234.77999999999997 -6.3722352888315084E-005 + 234.83999999999997 -6.2452456305306058E-005 + 234.89999999999998 -6.1210671110899348E-005 + 234.95999999999998 -5.9997229874926984E-005 + 235.01999999999998 -5.8812316643456503E-005 + 235.07999999999998 -5.7656059276507942E-005 + 235.13999999999999 -5.6528544041249176E-005 + 235.19999999999999 -5.5429807356349134E-005 + 235.25999999999999 -5.4359851716607811E-005 + 235.31999999999999 -5.3318643229463257E-005 + 235.38000000000000 -5.2306112961552564E-005 + 235.44000000000000 -5.1322148685415252E-005 + 235.50000000000000 -5.0366628703275603E-005 + 235.56000000000000 -4.9439394852707387E-005 + 235.62000000000000 -4.8540269153500112E-005 + 235.68000000000001 -4.7669048161815512E-005 + 235.74000000000001 -4.6825518118161818E-005 + 235.80000000000001 -4.6009438202710771E-005 + 235.86000000000001 -4.5220549899574231E-005 + 235.92000000000002 -4.4458570423830878E-005 + 235.97999999999996 -4.3723206951834238E-005 + 236.03999999999996 -4.3014139153845800E-005 + 236.09999999999997 -4.2331027481664966E-005 + 236.15999999999997 -4.1673512959969672E-005 + 236.21999999999997 -4.1041217422167322E-005 + 236.27999999999997 -4.0433737719649865E-005 + 236.33999999999997 -3.9850657239689877E-005 + 236.39999999999998 -3.9291536933393696E-005 + 236.45999999999998 -3.8755916260435834E-005 + 236.51999999999998 -3.8243331227597243E-005 + 236.57999999999998 -3.7753294325533383E-005 + 236.63999999999999 -3.7285311170422877E-005 + 236.69999999999999 -3.6838879619817707E-005 + 236.75999999999999 -3.6413483117788611E-005 + 236.81999999999999 -3.6008607184522399E-005 + 236.88000000000000 -3.5623722715395654E-005 + 236.94000000000000 -3.5258299234357013E-005 + 237.00000000000000 -3.4911801104574169E-005 + 237.06000000000000 -3.4583685422025660E-005 + 237.12000000000000 -3.4273407843539420E-005 + 237.18000000000001 -3.3980408450358459E-005 + 237.24000000000001 -3.3704124992605704E-005 + 237.30000000000001 -3.3443984913207881E-005 + 237.36000000000001 -3.3199406124620694E-005 + 237.42000000000002 -3.2969792239409772E-005 + 237.47999999999996 -3.2754537378019170E-005 + 237.53999999999996 -3.2553028370702649E-005 + 237.59999999999997 -3.2364635871305816E-005 + 237.65999999999997 -3.2188721174848373E-005 + 237.71999999999997 -3.2024639361257124E-005 + 237.77999999999997 -3.1871738024365728E-005 + 237.83999999999997 -3.1729358408115876E-005 + 237.89999999999998 -3.1596839732667855E-005 + 237.95999999999998 -3.1473520509941357E-005 + 238.01999999999998 -3.1358740462218877E-005 + 238.07999999999998 -3.1251845231614615E-005 + 238.13999999999999 -3.1152182582065199E-005 + 238.19999999999999 -3.1059114418549303E-005 + 238.25999999999999 -3.0972009339066942E-005 + 238.31999999999999 -3.0890253630813994E-005 + 238.38000000000000 -3.0813245313107628E-005 + 238.44000000000000 -3.0740398365023437E-005 + 238.50000000000000 -3.0671149706182487E-005 + 238.56000000000000 -3.0604949331804337E-005 + 238.62000000000000 -3.0541271557021740E-005 + 238.68000000000001 -3.0479610635022348E-005 + 238.74000000000001 -3.0419481380378458E-005 + 238.80000000000001 -3.0360422683540493E-005 + 238.86000000000001 -3.0301997230913058E-005 + 238.92000000000002 -3.0243784722046961E-005 + 238.97999999999996 -3.0185390602276699E-005 + 239.03999999999996 -3.0126437747828148E-005 + 239.09999999999997 -3.0066576547374519E-005 + 239.15999999999997 -3.0005469580566077E-005 + 239.21999999999997 -2.9942802498804431E-005 + 239.27999999999997 -2.9878278790965778E-005 + 239.33999999999997 -2.9811620037733755E-005 + 239.39999999999998 -2.9742567456671253E-005 + 239.45999999999998 -2.9670873304888856E-005 + 239.51999999999998 -2.9596316858318330E-005 + 239.57999999999998 -2.9518689557361471E-005 + 239.63999999999999 -2.9437802188768231E-005 + 239.69999999999999 -2.9353485800354366E-005 + 239.75999999999999 -2.9265591564780056E-005 + 239.81999999999999 -2.9173992045548326E-005 + 239.88000000000000 -2.9078581883068810E-005 + 239.94000000000000 -2.8979276814401135E-005 + 240.00000000000000 -2.8876015793195269E-005 + 240.06000000000000 -2.8768761352262973E-005 + 240.12000000000000 -2.8657495841108383E-005 + 240.18000000000001 -2.8542223643885714E-005 + 240.24000000000001 -2.8422967837287198E-005 + 240.30000000000001 -2.8299764894597752E-005 + 240.36000000000001 -2.8172668690730521E-005 + 240.42000000000002 -2.8041740759846818E-005 + 240.47999999999996 -2.7907052326506344E-005 + 240.53999999999996 -2.7768675964130077E-005 + 240.59999999999997 -2.7626686696636351E-005 + 240.65999999999997 -2.7481158216244556E-005 + 240.71999999999997 -2.7332158187823888E-005 + 240.77999999999997 -2.7179750698985195E-005 + 240.83999999999997 -2.7023993290743471E-005 + 240.89999999999998 -2.6864931972529080E-005 + 240.95999999999998 -2.6702611030759575E-005 + 241.01999999999998 -2.6537065423852961E-005 + 241.07999999999998 -2.6368325134231776E-005 + 241.13999999999999 -2.6196415748602643E-005 + 241.19999999999999 -2.6021363583025039E-005 + 241.25999999999999 -2.5843193045591563E-005 + 241.31999999999999 -2.5661930085708907E-005 + 241.38000000000000 -2.5477602423782520E-005 + 241.44000000000000 -2.5290239655415332E-005 + 241.50000000000000 -2.5099876821994634E-005 + 241.56000000000000 -2.4906549239962750E-005 + 241.62000000000000 -2.4710292638035297E-005 + 241.68000000000001 -2.4511144297524450E-005 + 241.74000000000001 -2.4309136995845041E-005 + 241.80000000000001 -2.4104298942136743E-005 + 241.86000000000001 -2.3896650635162080E-005 + 241.92000000000002 -2.3686205798125039E-005 + 241.97999999999996 -2.3472962320935827E-005 + 242.03999999999996 -2.3256905461021813E-005 + 242.09999999999997 -2.3038006942141725E-005 + 242.15999999999997 -2.2816220068837939E-005 + 242.21999999999997 -2.2591487279484328E-005 + 242.27999999999997 -2.2363726866159475E-005 + 242.33999999999997 -2.2132848574407181E-005 + 242.39999999999998 -2.1898742088713903E-005 + 242.45999999999998 -2.1661284623300855E-005 + 242.51999999999998 -2.1420343187582212E-005 + 242.57999999999998 -2.1175767192353177E-005 + 242.63999999999999 -2.0927398193337486E-005 + 242.69999999999999 -2.0675063448846154E-005 + 242.75999999999999 -2.0418580178177795E-005 + 242.81999999999999 -2.0157746914384492E-005 + 242.88000000000000 -1.9892352846946111E-005 + 242.94000000000000 -1.9622166785782033E-005 + 243.00000000000000 -1.9346939448363005E-005 + 243.06000000000000 -1.9066395149119819E-005 + 243.12000000000000 -1.8780235055911370E-005 + 243.18000000000001 -1.8488132843112466E-005 + 243.24000000000001 -1.8189729333412855E-005 + 243.30000000000001 -1.7884629446962377E-005 + 243.36000000000001 -1.7572401646981720E-005 + 243.42000000000002 -1.7252574059349769E-005 + 243.47999999999996 -1.6924632193890437E-005 + 243.53999999999996 -1.6588021211898755E-005 + 243.59999999999997 -1.6242140480875676E-005 + 243.65999999999997 -1.5886346455456646E-005 + 243.71999999999997 -1.5519947234003215E-005 + 243.77999999999997 -1.5142209172348925E-005 + 243.83999999999997 -1.4752352805579614E-005 + 243.89999999999998 -1.4349553023702366E-005 + 243.95999999999998 -1.3932938248879695E-005 + 244.01999999999998 -1.3501592479286361E-005 + 244.07999999999998 -1.3054553879527147E-005 + 244.13999999999999 -1.2590812504641629E-005 + 244.19999999999999 -1.2109309270751550E-005 + 244.25999999999999 -1.1608936339239513E-005 + 244.31999999999999 -1.1088535201581891E-005 + 244.38000000000000 -1.0546895663458755E-005 + 244.44000000000000 -9.9827536629126130E-006 + 244.50000000000000 -9.3947884625186587E-006 + 244.56000000000000 -8.7816235626833689E-006 + 244.62000000000000 -8.1418257063314021E-006 + 244.68000000000001 -7.4739016671043264E-006 + 244.74000000000001 -6.7763018627564199E-006 + 244.80000000000001 -6.0474175188781192E-006 + 244.86000000000001 -5.2855824950967222E-006 + 244.92000000000002 -4.4890755094309483E-006 + 244.97999999999996 -3.6561182325115263E-006 + 245.03999999999996 -2.7848815596943755E-006 + 245.09999999999997 -1.8734856210059193E-006 + 245.15999999999997 -9.2000329534324683E-007 + 245.21999999999997 7.7537357988894435E-008 + 245.27999999999997 1.1211480634276510E-006 + 245.33999999999997 2.2128802414221369E-006 + 245.39999999999998 3.3548163659131968E-006 + 245.45999999999998 4.5490715277402068E-006 + 245.51999999999998 5.7977868090554024E-006 + 245.57999999999998 7.1031280586793828E-006 + 245.63999999999999 8.4672777989930991E-006 + 245.69999999999999 9.8924385615060886E-006 + 245.75999999999999 1.1380821819405343E-005 + 245.81999999999999 1.2934653020187433E-005 + 245.88000000000000 1.4556159419520791E-005 + 245.94000000000000 1.6247574775505591E-005 + 246.00000000000000 1.8011129597383813E-005 + 246.06000000000000 1.9849052069119530E-005 + 246.12000000000000 2.1763561375997552E-005 + 246.18000000000001 2.3756865288438558E-005 + 246.24000000000001 2.5831148766164969E-005 + 246.30000000000001 2.7988580543128026E-005 + 246.36000000000001 3.0231301438880227E-005 + 246.42000000000002 3.2561411927783850E-005 + 246.47999999999996 3.4980974181098604E-005 + 246.53999999999996 3.7492004415689310E-005 + 246.59999999999997 4.0096458141698715E-005 + 246.65999999999997 4.2796219972288521E-005 + 246.71999999999997 4.5593112709865789E-005 + 246.77999999999997 4.8488860571337661E-005 + 246.83999999999997 5.1485096419421857E-005 + 246.89999999999998 5.4583358055277345E-005 + 246.95999999999998 5.7785054417960714E-005 + 247.01999999999998 6.1091474732440169E-005 + 247.07999999999998 6.4503779481303534E-005 + 247.13999999999999 6.8022985568764858E-005 + 247.19999999999999 7.1649941577088614E-005 + 247.25999999999999 7.5385362174704206E-005 + 247.31999999999999 7.9229769117445184E-005 + 247.38000000000000 8.3183519951871658E-005 + 247.44000000000000 8.7246797092494532E-005 + 247.50000000000000 9.1419592448393146E-005 + 247.56000000000000 9.5701701109742214E-005 + 247.62000000000000 1.0009271055586198E-004 + 247.68000000000001 1.0459201863898600E-004 + 247.74000000000001 1.0919879731527231E-004 + 247.80000000000001 1.1391200927710708E-004 + 247.86000000000001 1.1873036627144683E-004 + 247.92000000000002 1.2365236972290857E-004 + 247.97999999999996 1.2867627620207275E-004 + 248.03999999999996 1.3380007253325249E-004 + 248.09999999999997 1.3902150776793661E-004 + 248.15999999999997 1.4433803184662287E-004 + 248.21999999999997 1.4974683983152184E-004 + 248.27999999999997 1.5524483752014028E-004 + 248.33999999999997 1.6082860283484743E-004 + 248.39999999999998 1.6649445554513945E-004 + 248.45999999999998 1.7223839152652335E-004 + 248.51999999999998 1.7805607528816359E-004 + 248.57999999999998 1.8394286052388509E-004 + 248.63999999999999 1.8989383997075214E-004 + 248.69999999999999 1.9590374063384867E-004 + 248.75999999999999 2.0196697565747754E-004 + 248.81999999999999 2.0807768299288976E-004 + 248.88000000000000 2.1422969613898047E-004 + 248.94000000000000 2.2041654689934723E-004 + 249.00000000000000 2.2663150006128202E-004 + 249.06000000000000 2.3286751779233488E-004 + 249.12000000000000 2.3911734520083082E-004 + 249.18000000000001 2.4537344998519815E-004 + 249.24000000000001 2.5162807305824776E-004 + 249.30000000000001 2.5787322024691179E-004 + 249.36000000000001 2.6410066534897993E-004 + 249.42000000000002 2.7030199334316486E-004 + 249.47999999999996 2.7646860579847219E-004 + 249.53999999999996 2.8259170538762559E-004 + 249.59999999999997 2.8866231697312610E-004 + 249.65999999999997 2.9467137805501171E-004 + 249.71999999999997 3.0060957236664190E-004 + 249.77999999999997 3.0646752786780718E-004 + 249.83999999999997 3.1223572371302008E-004 + 249.89999999999998 3.1790458982529905E-004 + 249.95999999999998 3.2346442113195437E-004 + 250.01999999999998 3.2890546749966322E-004 + 250.07999999999998 3.3421796023762725E-004 + 250.13999999999999 3.3939213036244273E-004 + 250.19999999999999 3.4441818347624552E-004 + 250.25999999999999 3.4928641085278206E-004 + 250.31999999999999 3.5398706487676948E-004 + 250.38000000000000 3.5851060252955498E-004 + 250.44000000000000 3.6284753906975142E-004 + 250.50000000000000 3.6698852055820511E-004 + 250.56000000000000 3.7092436459260124E-004 + 250.62000000000000 3.7464608320928404E-004 + 250.68000000000001 3.7814490905509185E-004 + 250.74000000000001 3.8141233333303064E-004 + 250.80000000000001 3.8444012026967063E-004 + 250.86000000000001 3.8722027203363322E-004 + 250.92000000000002 3.8974512595775105E-004 + 250.97999999999996 3.9200736716009030E-004 + 251.03999999999996 3.9400003424528676E-004 + 251.09999999999997 3.9571651479240858E-004 + 251.15999999999997 3.9715059531153583E-004 + 251.21999999999997 3.9829648834542792E-004 + 251.27999999999997 3.9914882791840012E-004 + 251.33999999999997 3.9970268622023048E-004 + 251.39999999999998 3.9995363456124408E-004 + 251.45999999999998 3.9989766650698922E-004 + 251.51999999999998 3.9953125806562216E-004 + 251.57999999999998 3.9885144715006928E-004 + 251.63999999999999 3.9785577585512246E-004 + 251.69999999999999 3.9654224554565586E-004 + 251.75999999999999 3.9490945919038053E-004 + 251.81999999999999 3.9295655932987633E-004 + 251.88000000000000 3.9068322351874704E-004 + 251.94000000000000 3.8808964335629255E-004 diff --git a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000003.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000003.BXY.semd new file mode 100644 index 00000000..37899d16 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000003.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 1.4657423179942110E-040 + 10.979999999999997 4.5955796260914526E-040 + 11.039999999999999 9.4432613972559719E-040 + 11.099999999999994 1.5894326367147065E-039 + 11.159999999999997 8.8846812115806181E-040 + 11.219999999999999 -5.3608145714217024E-040 + 11.280000000000001 -2.6898180593346644E-039 + 11.339999999999996 -4.8435544116458337E-039 + 11.399999999999999 -7.8566761827392879E-039 + 11.460000000000001 -1.1953224384963811E-038 + 11.519999999999996 -1.7318495997959393E-038 + 11.579999999999998 -2.2469742352201772E-038 + 11.640000000000001 -2.6629542357734204E-038 + 11.699999999999996 -2.8497717233707912E-038 + 11.759999999999998 -2.9263303398554157E-038 + 11.820000000000000 -2.8754868775815979E-038 + 11.879999999999995 -2.5875069165714663E-038 + 11.939999999999998 -1.9957091613521689E-038 + 12.000000000000000 -1.0965415337724476E-038 + 12.059999999999995 -1.7481270785001542E-041 + 12.119999999999997 1.2442066979936368E-038 + 12.180000000000000 2.8066815691566497E-038 + 12.239999999999995 4.6220365820778141E-038 + 12.299999999999997 5.7635317039713844E-038 + 12.359999999999999 6.0303187626460260E-038 + 12.419999999999995 5.1211292326189066E-038 + 12.479999999999997 3.8013011935383551E-038 + 12.539999999999999 2.0627661607637562E-038 + 12.599999999999994 -2.8056820394765098E-039 + 12.659999999999997 -3.9984986202578849E-038 + 12.719999999999999 -8.9461508603318045E-038 + 12.780000000000001 -1.4273848640750962E-037 + 12.839999999999996 -1.9700718731094858E-037 + 12.899999999999999 -2.5174577496395163E-037 + 12.960000000000001 -3.0525050554399932E-037 + 13.019999999999996 -3.4622877308256292E-037 + 13.079999999999998 -3.7449247080709606E-037 + 13.140000000000001 -3.8647528081234326E-037 + 13.199999999999996 -3.7783282448142148E-037 + 13.259999999999998 -3.4865449498419557E-037 + 13.320000000000000 -2.8962967511837827E-037 + 13.379999999999995 -2.0036724090661675E-037 + 13.439999999999998 -8.0468478291647002E-038 + 13.500000000000000 7.3047857482794738E-038 + 13.559999999999995 2.5167687068339961E-037 + 13.619999999999997 4.2915979487742932E-037 + 13.680000000000000 6.1932462403116720E-037 + 13.739999999999995 7.9556663389452153E-037 + 13.799999999999997 9.4067344695082749E-037 + 13.859999999999999 1.0386448818309479E-036 + 13.919999999999995 1.0602678209499176E-036 + 13.979999999999997 9.8567727155088025E-037 + 14.039999999999999 8.0181943791705558E-037 + 14.099999999999994 4.8366410314880769E-037 + 14.159999999999997 2.4306391095759717E-038 + 14.219999999999999 -5.8350612123284194E-037 + 14.280000000000001 -1.3145732865301056E-036 + 14.339999999999996 -2.1128845906983218E-036 + 14.399999999999999 -3.0191867512630525E-036 + 14.460000000000001 -3.9852551091849899E-036 + 14.519999999999996 -4.9615721377194687E-036 + 14.579999999999998 -5.8675250729206919E-036 + 14.640000000000001 -6.5838480343065511E-036 + 14.699999999999996 -7.0295194681204584E-036 + 14.759999999999998 -7.1128629422897982E-036 + 14.820000000000000 -6.7762886924021952E-036 + 14.879999999999995 -5.9699140338614644E-036 + 14.939999999999998 -4.4627098049915429E-036 + 15.000000000000000 -2.1433912020166796E-036 + 15.059999999999995 8.7253944345146063E-037 + 15.119999999999997 4.4248257003264881E-036 + 15.180000000000000 8.4543610089851264E-036 + 15.239999999999995 1.2757801453833164E-035 + 15.299999999999997 1.7152131747184599E-035 + 15.359999999999999 2.1217591714162383E-035 + 15.419999999999995 2.4507995173796758E-035 + 15.479999999999997 2.6604466718593243E-035 + 15.539999999999999 2.7036758850474331E-035 + 15.599999999999994 2.5345677673527825E-035 + 15.659999999999997 2.1271464887283914E-035 + 15.719999999999999 1.4584243622620960E-035 + 15.780000000000001 4.8998449002789420E-036 + 15.839999999999996 -7.7700051973568249E-036 + 15.899999999999999 -2.3311162704392982E-035 + 15.960000000000001 -4.1318486361532472E-035 + 16.019999999999996 -6.1376563904056643E-035 + 16.079999999999998 -8.2667911107029526E-035 + 16.140000000000001 -1.0421743711607034E-034 + 16.200000000000003 -1.2472322649433956E-034 + 16.259999999999991 -1.4268608025563272E-034 + 16.319999999999993 -1.5644500401592604E-034 + 16.379999999999995 -1.6422708708366439E-034 + 16.439999999999998 -1.6428422101774260E-034 + 16.500000000000000 -1.5489579377376565E-034 + 16.560000000000002 -1.3450571051860369E-034 + 16.620000000000005 -1.0175898760899051E-034 + 16.679999999999993 -5.5749187718328298E-035 + 16.739999999999995 3.6271756559247811E-036 + 16.799999999999997 7.5774722656883112E-035 + 16.859999999999999 1.5935080156141350E-034 + 16.920000000000002 2.5223264423879229E-034 + 16.980000000000004 3.5115653288525527E-034 + 17.039999999999992 4.5177775891005052E-034 + 17.099999999999994 5.4880645906860031E-034 + 17.159999999999997 6.3579628677466401E-034 + 17.219999999999999 7.0570722505532783E-034 + 17.280000000000001 7.5095560876771984E-034 + 17.340000000000003 7.6372953979338686E-034 + 17.399999999999991 7.3637334687701878E-034 + 17.459999999999994 6.6186288750814696E-034 + 17.519999999999996 5.3445233073764865E-034 + 17.579999999999998 3.4996920208058223E-034 + 17.640000000000001 1.0662461315843309E-034 + 17.700000000000003 -1.9427884052916314E-034 + 17.759999999999991 -5.4823686023328045E-034 + 17.819999999999993 -9.4684673455757624E-034 + 17.879999999999995 -1.3774510586777964E-033 + 17.939999999999998 -1.8230915233403767E-033 + 18.000000000000000 -2.2624453087598651E-033 + 18.060000000000002 -2.6701937452512597E-033 + 18.120000000000005 -3.0175344517239166E-033 + 18.179999999999993 -3.2730660053843559E-033 + 18.239999999999995 -3.4039791921721011E-033 + 18.299999999999997 -3.3775190270541627E-033 + 18.359999999999999 -3.1627952925876249E-033 + 18.420000000000002 -2.7327729310600803E-033 + 18.480000000000004 -2.0665517717488978E-033 + 18.539999999999992 -1.1516489253265700E-033 + 18.599999999999994 1.3683830360027365E-035 + 18.659999999999997 1.4179614352437244E-033 + 18.719999999999999 3.0347751992980655E-033 + 18.780000000000001 4.8211361387984350E-033 + 18.840000000000003 6.7164381805215091E-033 + 18.899999999999991 8.6422200645205382E-033 + 18.959999999999994 1.0502787836532037E-032 + 19.019999999999996 1.2186870008719112E-032 + 19.079999999999998 1.3570419463750480E-032 + 19.140000000000001 1.4520653851582455E-032 + 19.200000000000003 1.4901282340110817E-032 + 19.259999999999991 1.4578946534561086E-032 + 19.319999999999993 1.3430766969568593E-032 + 19.379999999999995 1.1352764946063457E-032 + 19.439999999999998 8.2689228484032915E-033 + 19.500000000000000 4.1405210777189348E-033 + 19.560000000000002 -1.0246778562198005E-033 + 19.620000000000005 -7.1639035086709201E-033 + 19.679999999999993 -1.4152074710645164E-032 + 19.739999999999995 -2.1796315679913727E-032 + 19.799999999999997 -2.9832915857038505E-032 + 19.859999999999999 -3.7927352593994753E-032 + 19.920000000000002 -4.5677917934237029E-032 + 19.980000000000004 -5.2623451654417223E-032 + 20.039999999999992 -5.8255547713839232E-032 + 20.099999999999994 -6.2035385640516401E-032 + 20.159999999999997 -6.3415260027182900E-032 + 20.219999999999999 -6.1864532740724131E-032 + 20.280000000000001 -5.6899470908098366E-032 + 20.340000000000003 -4.8116254858058146E-032 + 20.399999999999991 -3.5226027107491836E-032 + 20.459999999999994 -1.8090599323344109E-032 + 20.519999999999996 3.2428014061258855E-033 + 20.579999999999998 2.8509704131594669E-032 + 20.640000000000001 5.7201556621611846E-032 + 20.700000000000003 8.8546028764307042E-032 + 20.759999999999991 1.2149684433675798E-031 + 20.819999999999993 1.5473514207315667E-031 + 20.879999999999995 1.8668448519177696E-031 + 20.939999999999998 2.1554113927626173E-031 + 21.000000000000000 2.3932071356315096E-031 + 21.060000000000002 2.5592200447326018E-031 + 21.120000000000005 2.6320766095154562E-031 + 21.179999999999993 2.5910091049313365E-031 + 21.239999999999995 2.4169640898960040E-031 + 21.299999999999997 2.0938232004028929E-031 + 21.359999999999999 1.6096974701564908E-031 + 21.420000000000002 9.5824571997456116E-032 + 21.480000000000004 1.3995944889764152E-032 + 21.539999999999992 -8.3665304118289922E-032 + 21.599999999999994 -1.9540558510597472E-031 + 21.659999999999997 -3.1849255351924027E-031 + 21.719999999999999 -4.4917197191393872E-031 + 21.780000000000001 -5.8266474208862187E-031 + 21.840000000000003 -7.1321144836328369E-031 + 21.899999999999991 -8.3416978389604052E-031 + 21.959999999999994 -9.3816968486531109E-031 + 22.019999999999996 -1.0173280895214621E-030 + 22.079999999999998 -1.0635239560411748E-030 + 22.140000000000001 -1.0687302868573059E-030 + 22.200000000000003 -1.0253981924497467E-030 + 22.259999999999991 -9.2688337147555396E-031 + 22.319999999999993 -7.6790353772302310E-031 + 22.379999999999995 -5.4501022651477015E-031 + 22.439999999999998 -2.5705768725074966E-031 + 22.500000000000000 9.4354429471608533E-032 + 22.560000000000002 5.0448658720215167E-031 + 22.619999999999990 9.6513921015311454E-031 + 22.679999999999993 1.4644342275824783E-030 + 22.739999999999995 1.9867209709543031E-030 + 22.799999999999997 2.5126345198066755E-030 + 22.859999999999999 3.0193245256834474E-030 + 22.920000000000002 3.4808760219337704E-030 + 22.980000000000004 3.8689304237372123E-030 + 23.039999999999992 4.1535146745407904E-030 + 23.099999999999994 4.3040768195745798E-030 + 23.159999999999997 4.2907131878537868E-030 + 23.219999999999999 4.0855699296399321E-030 + 23.280000000000001 3.6643837003401223E-030 + 23.340000000000003 3.0081220021584264E-030 + 23.399999999999991 2.1046663252399315E-030 + 23.459999999999994 9.5047901924678323E-031 + 23.519999999999996 -4.4782149327943176E-031 + 23.579999999999998 -2.0720540470661977E-030 + 23.640000000000001 -3.8913252250460122E-030 + 23.700000000000003 -5.8612186578158494E-030 + 23.759999999999991 -7.9234160774700346E-030 + 23.819999999999993 -1.0005830249365967E-029 + 23.879999999999995 -1.2023328232857313E-029 + 23.939999999999998 -1.3879106001536975E-029 + 24.000000000000000 -1.5466765746794086E-029 + 24.060000000000002 -1.6673122601912378E-029 + 24.119999999999990 -1.7381745965795387E-029 + 24.179999999999993 -1.7477212336118584E-029 + 24.239999999999995 -1.6850006584726222E-029 + 24.299999999999997 -1.5401998894111932E-029 + 24.359999999999999 -1.3052349782055038E-029 + 24.420000000000002 -9.7436982477010038E-030 + 24.480000000000004 -5.4484280489999450E-030 + 24.539999999999992 -1.7477852178698032E-031 + 24.599999999999994 6.0274792133446704E-030 + 24.659999999999997 1.3062057838125571E-029 + 24.719999999999999 2.0782211809705942E-029 + 24.780000000000001 2.8988140104220206E-029 + 24.840000000000003 3.7426068924226005E-029 + 24.899999999999991 4.5789316369933863E-029 + 24.959999999999994 5.3721645961697520E-029 + 25.019999999999996 6.0823147440968873E-029 + 25.079999999999998 6.6658845407113098E-029 + 25.140000000000001 7.0770171375540146E-029 + 25.200000000000003 7.2689310858507566E-029 + 25.259999999999991 7.1956365118262932E-029 + 25.319999999999993 6.8139181672823534E-029 + 25.379999999999995 6.0855424096098078E-029 + 25.439999999999998 4.9796524791038916E-029 + 25.500000000000000 3.4752795364738151E-029 + 25.560000000000002 1.5639018683484924E-029 + 25.619999999999990 -7.4805469734168510E-030 + 25.679999999999993 -3.4368688978814823E-029 + 25.739999999999995 -6.4594630357293166E-029 + 25.799999999999997 -9.7517473707239564E-029 + 25.859999999999999 -1.3227522594956841E-028 + 25.920000000000002 -1.6778064554756462E-028 + 25.980000000000004 -2.0272552896417799E-028 + 26.039999999999992 -2.3559443094688239E-028 + 26.099999999999994 -2.6468932748314596E-028 + 26.159999999999997 -2.8816585736902484E-028 + 26.219999999999999 -3.0408195198135594E-028 + 26.280000000000001 -3.1045895610860758E-028 + 26.340000000000003 -3.0535514764298154E-028 + 26.399999999999991 -2.8695076032740596E-028 + 26.459999999999994 -2.5364319121228328E-028 + 26.519999999999996 -2.0415029472852906E-028 + 26.579999999999998 -1.3761908853504693E-028 + 26.640000000000001 -5.3736131692223782E-029 + 26.700000000000003 4.7164072155681295E-029 + 26.759999999999991 1.6399826589306248E-028 + 26.819999999999993 2.9484590356504525E-028 + 26.879999999999995 4.3687923740332454E-028 + 26.939999999999998 5.8631807835078974E-028 + 27.000000000000000 7.3841539840844298E-028 + 27.060000000000002 8.8748000402640350E-028 + 27.119999999999990 1.0269420437263279E-027 + 27.179999999999993 1.1494656777733936E-027 + 27.239999999999995 1.2471135157526553E-027 + 27.299999999999997 1.3115643454353968E-027 + 27.359999999999999 1.3343850114488616E-027 + 27.420000000000002 1.3073547701534279E-027 + 27.480000000000004 1.2228376294470539E-027 + 27.539999999999992 1.0741959694489916E-027 + 27.599999999999994 8.5623525971932078E-028 + 27.659999999999997 5.6566718427626285E-028 + 27.719999999999999 2.0157502985028284E-028 + 27.780000000000001 -2.3413708956725435E-028 + 27.840000000000003 -7.3633400232789656E-028 + 27.899999999999991 -1.2962997100758284E-027 + 27.959999999999994 -1.9014746148031523E-027 + 28.019999999999996 -2.5353053975254957E-027 + 28.079999999999998 -3.1772322819256343E-027 + 28.140000000000001 -3.8028384736798824E-027 + 28.200000000000003 -4.3841816216877538E-027 + 28.259999999999991 -4.8903278613381572E-027 + 28.319999999999993 -5.2880970755169871E-027 + 28.379999999999995 -5.5430252654662281E-027 + 28.439999999999998 -5.6205436552534487E-027 + 28.500000000000000 -5.4873575090411068E-027 + 28.560000000000002 -5.1130075291632342E-027 + 28.619999999999990 -4.4715724348839561E-027 + 28.679999999999993 -3.5434756003095658E-027 + 28.739999999999995 -2.3173310281130771E-027 + 28.799999999999997 -7.9176496891349160E-028 + 28.859999999999999 1.0228672275589928E-027 + 28.920000000000002 3.1029562189756922E-027 + 28.980000000000004 5.4103977134024049E-027 + 29.039999999999992 7.8917325727111502E-027 + 29.099999999999994 1.0477763424358023E-026 + 29.159999999999997 1.3083744655356522E-026 + 29.219999999999999 1.5610218889934549E-026 + 29.280000000000001 1.7944587575109873E-026 + 29.340000000000003 1.9963450574783521E-026 + 29.399999999999991 2.1535754681690282E-026 + 29.459999999999994 2.2526749251851886E-026 + 29.519999999999996 2.2802717891128071E-026 + 29.579999999999998 2.2236422873929678E-026 + 29.640000000000001 2.0713144614164848E-026 + 29.700000000000003 1.8137182330886095E-026 + 29.759999999999991 1.4438627816179146E-026 + 29.819999999999993 9.5801760429654231E-027 + 29.879999999999995 3.5637172863845384E-027 + 29.939999999999998 -3.5635864845279009E-027 + 30.000000000000000 -1.1704060253637906E-026 + 30.060000000000002 -2.0705425824835869E-026 + 30.119999999999990 -3.0358234794138928E-026 + 30.179999999999993 -4.0395116193480025E-026 + 30.239999999999995 -5.0492171583445799E-026 + 30.299999999999997 -6.0272762651768138E-026 + 30.359999999999999 -6.9313910321004378E-026 + 30.420000000000002 -7.7155457962362535E-026 + 30.480000000000004 -8.3312033530724158E-026 + 30.539999999999992 -8.7287783616304339E-026 + 30.599999999999994 -8.8593684709228067E-026 + 30.659999999999997 -8.6767186787027589E-026 + 30.719999999999999 -8.1393765844606104E-026 + 30.780000000000001 -7.2129786985508679E-026 + 30.840000000000003 -5.8726099938599414E-026 + 30.899999999999991 -4.1051464150232365E-026 + 30.959999999999994 -1.9114957268765714E-026 + 31.019999999999996 6.9136351335048280E-027 + 31.079999999999998 3.6686538827458303E-026 + 31.140000000000001 6.9664864921360544E-026 + 31.200000000000003 1.0511074280400658E-025 + 31.259999999999991 1.4208577525708250E-025 + 31.319999999999993 1.7945668840029849E-025 + 31.379999999999995 2.1590905157808836E-025 + 31.439999999999998 2.4996958827485454E-025 + 31.500000000000000 2.8003755686238800E-025 + 31.560000000000002 3.0442518066384119E-025 + 31.619999999999990 3.2140694681221212E-025 + 31.679999999999993 3.2927712748772285E-025 + 31.739999999999995 3.2641463105274126E-025 + 31.799999999999997 3.1135364881534929E-025 + 31.859999999999999 2.8285851403265334E-025 + 31.920000000000002 2.4000040837238615E-025 + 31.980000000000004 1.8223359345687151E-025 + 32.039999999999992 1.0946818757716208E-025 + 32.099999999999994 2.2136530826292957E-026 + 32.159999999999997 -7.8750095251641830E-026 + 32.219999999999999 -1.9155788328866852E-025 + 32.280000000000001 -3.1400286087312577E-025 + 32.340000000000003 -4.4314273716455765E-025 + 32.399999999999991 -5.7539080885959538E-025 + 32.459999999999994 -7.0655424362083428E-025 + 32.519999999999996 -8.3189872005221642E-025 + 32.579999999999998 -9.4624036264118934E-025 + 32.640000000000001 -1.0440652197424524E-024 + 32.700000000000003 -1.1196759080484767E-024 + 32.759999999999991 -1.1673634634122545E-024 + 32.819999999999993 -1.1816017902300202E-024 + 32.879999999999995 -1.1572610378744934E-024 + 32.939999999999998 -1.0898347640187923E-024 + 33.000000000000000 -9.7567494371668173E-025 + 33.060000000000002 -8.1222804559042569E-025 + 33.119999999999990 -5.9826396850835366E-025 + 33.179999999999993 -3.3408959228884527E-025 + 33.239999999999995 -2.1738415842048344E-026 + 33.299999999999997 3.3487400345118960E-025 + 33.359999999999999 7.2983759940039789E-025 + 33.420000000000002 1.1551859880940557E-024 + 33.480000000000004 1.6008956270111649E-024 + 33.539999999999992 2.0549513243745884E-024 + 33.599999999999994 2.5034852048454806E-024 + 33.659999999999997 2.9309920032787163E-024 + 33.719999999999999 3.3206243183236384E-024 + 33.780000000000001 3.6545668341488774E-024 + 33.840000000000003 3.9144868409827539E-024 + 33.899999999999991 4.0820571109034676E-024 + 33.959999999999994 4.1395407060494497E-024 + 34.019999999999996 4.0704297547308819E-024 + 34.079999999999998 3.8601227723077824E-024 + 34.140000000000001 3.4966234533989692E-024 + 34.200000000000003 2.9712446230045757E-024 + 34.259999999999991 2.2792946927847845E-024 + 34.319999999999993 1.4207224145519203E-024 + 34.379999999999995 4.0069969343383890E-025 + 34.439999999999998 -7.6988701822586013E-025 + 34.500000000000000 -2.0740570401251331E-024 + 34.560000000000002 -3.4884966017574535E-024 + 34.619999999999990 -4.9834804076716958E-024 + 34.679999999999993 -6.5229775198089162E-024 + 34.739999999999995 -8.0649550128633134E-024 + 34.799999999999997 -9.5619027028646146E-024 + 34.859999999999999 -1.0961578610563989E-023 + 34.920000000000002 -1.2207987106896321E-023 + 34.980000000000004 -1.3242588117745262E-023 + 35.039999999999992 -1.4005726617112080E-023 + 35.099999999999994 -1.4438271317815495E-023 + 35.159999999999997 -1.4483440943006451E-023 + 35.219999999999999 -1.4088783236782962E-023 + 35.280000000000001 -1.3208278135709489E-023 + 35.340000000000003 -1.1804513331226196E-023 + 35.399999999999991 -9.8508787845936331E-024 + 35.459999999999994 -7.3337342535220207E-024 + 35.519999999999996 -4.2544643624621328E-024 + 35.579999999999998 -6.3136539444923536E-025 + 35.640000000000001 3.4987142448553358E-024 + 35.700000000000003 8.0790654652724537E-024 + 35.759999999999991 1.3032201689399261E-023 + 35.819999999999993 1.8259434497318017E-023 + 35.879999999999995 2.3640996614571561E-023 + 35.939999999999998 2.9036787255047380E-023 + 36.000000000000000 3.4287806928492197E-023 + 36.060000000000002 3.9218309806119516E-023 + 36.119999999999990 4.3638739648331151E-023 + 36.179999999999993 4.7349432157818230E-023 + 36.239999999999995 5.0145113003785047E-023 + 36.299999999999997 5.1820139626197087E-023 + 36.359999999999999 5.2174458503930028E-023 + 36.420000000000002 5.1020196146311628E-023 + 36.479999999999990 4.8188763387716860E-023 + 36.539999999999992 4.3538362577976613E-023 + 36.599999999999994 3.6961713908604920E-023 + 36.659999999999997 2.8393804266415573E-023 + 36.719999999999999 1.7819455124316825E-023 + 36.780000000000001 5.2804275746106651E-024 + 36.840000000000003 -9.1181502441424653E-024 + 36.899999999999991 -2.5202398745967576E-023 + 36.959999999999994 -4.2725552978747453E-023 + 37.019999999999996 -6.1365440912570783E-023 + 37.079999999999998 -8.0723861803500246E-023 + 37.140000000000001 -1.0032807540003617E-022 + 37.200000000000003 -1.1963472948749216E-022 + 37.259999999999991 -1.3803638844585383E-022 + 37.319999999999993 -1.5487083712323691E-022 + 37.379999999999995 -1.6943320242969381E-022 + 37.439999999999998 -1.8099099735347265E-022 + 37.500000000000000 -1.8880196242063763E-022 + 37.560000000000002 -1.9213452781338034E-022 + 37.619999999999990 -1.9029066144330971E-022 + 37.679999999999993 -1.8263079654390141E-022 + 37.739999999999995 -1.6860019862220431E-022 + 37.799999999999997 -1.4775631628827240E-022 + 37.859999999999999 -1.1979639559086219E-022 + 37.920000000000002 -8.4584516611426268E-023 + 37.979999999999990 -4.2177290831376800E-023 + 38.039999999999992 7.1528295760745713E-024 + 38.099999999999994 6.2897645486231182E-023 + 38.159999999999997 1.2429737423158742E-022 + 38.219999999999999 1.9033041895010636E-022 + 38.280000000000001 2.5970922928139491E-022 + 38.340000000000003 3.3088334315734961E-022 + 38.399999999999991 4.0205038960808122E-022 + 38.459999999999994 4.7117558748930826E-022 + 38.519999999999996 5.3602024765605228E-022 + 38.579999999999998 5.9417953870852395E-022 + 38.640000000000001 6.4312954046677554E-022 + 38.700000000000003 6.8028337423982457E-022 + 38.759999999999991 7.0305554139197292E-022 + 38.819999999999993 7.0893432315641659E-022 + 38.879999999999995 6.9556031623293615E-022 + 38.939999999999998 6.6081050056173854E-022 + 39.000000000000000 6.0288536850519704E-022 + 39.060000000000002 5.2039779710532090E-022 + 39.119999999999990 4.1246112002944675E-022 + 39.179999999999993 2.7877387847687547E-022 + 39.239999999999995 1.1969943380845665E-022 + 39.299999999999997 -6.3663495677226313E-023 + 39.359999999999999 -2.6942074137856417E-022 + 39.420000000000002 -4.9483635200298602E-022 + 39.479999999999990 -7.3630296254226207E-022 + 39.539999999999992 -9.8933076701536374E-022 + 39.599999999999994 -1.2485573723029639E-021 + 39.659999999999997 -1.5077813651155839E-021 + 39.719999999999999 -1.7600198162117926E-021 + 39.780000000000001 -1.9975929979014266E-021 + 39.840000000000003 -2.2122350581438409E-021 + 39.899999999999991 -2.3952328418041727E-021 + 39.959999999999994 -2.5375913741526188E-021 + 40.019999999999996 -2.6302262392816924E-021 + 40.079999999999998 -2.6641806626760666E-021 + 40.140000000000001 -2.6308664834163417E-021 + 40.200000000000003 -2.5223247346266415E-021 + 40.259999999999991 -2.3315039988153834E-021 + 40.319999999999993 -2.0525519111065949E-021 + 40.379999999999995 -1.6811141787008895E-021 + 40.439999999999998 -1.2146368599424589E-021 + 40.500000000000000 -6.5266451339505569E-022 + 40.560000000000002 2.8724842069391595E-024 + 40.619999999999990 7.4739041256190480E-022 + 40.679999999999993 1.5734104316785601E-021 + 40.739999999999995 2.4703556323636579E-021 + 40.799999999999997 3.4243939737465669E-021 + 40.859999999999999 4.4183403755091221E-021 + 40.920000000000002 5.4316233807708899E-021 + 40.979999999999990 6.4403353950644430E-021 + 41.039999999999992 7.4173688118880655E-021 + 41.099999999999994 8.3326558741394159E-021 + 41.159999999999997 9.1535150778975226E-021 + 41.219999999999999 9.8451183450956210E-021 + 41.280000000000001 1.0371079733070744E-020 + 41.340000000000003 1.0694174921311628E-020 + 41.399999999999991 1.0777191473259556E-020 + 41.459999999999994 1.0583904019392859E-020 + 41.519999999999996 1.0080173609496390E-020 + 41.579999999999998 9.2351606062409285E-021 + 41.640000000000001 8.0226269763084916E-021 + 41.700000000000003 6.4223204708530351E-021 + 41.759999999999991 4.4213994682146477E-021 + 41.819999999999993 2.0158823974535963E-021 + 41.879999999999995 -7.8794225119907223E-022 + 41.939999999999998 -3.9721605588201783E-021 + 42.000000000000000 -7.5060055398308678E-021 + 42.060000000000002 -1.1344798030736673E-020 + 42.119999999999990 -1.5429121432231308E-020 + 42.179999999999993 -1.9684287989571801E-020 + 42.239999999999995 -2.4020151310745701E-020 + 42.299999999999997 -2.8331335935799057E-020 + 42.359999999999999 -3.2497927572830252E-020 + 42.420000000000002 -3.6386675610467961E-020 + 42.479999999999990 -3.9852755307506249E-020 + 42.539999999999992 -4.2742116050044302E-020 + 42.599999999999994 -4.4894421132291864E-020 + 42.659999999999997 -4.6146603327898677E-020 + 42.719999999999999 -4.6336991205759605E-020 + 42.780000000000001 -4.5309978102832617E-020 + 42.840000000000003 -4.2921194496105954E-020 + 42.899999999999991 -3.9043055559613992E-020 + 42.959999999999994 -3.3570631930379593E-020 + 43.019999999999996 -2.6427653548262907E-020 + 43.079999999999998 -1.7572568752319602E-020 + 43.140000000000001 -7.0044203988097251E-021 + 43.200000000000003 5.2316031994992376E-021 + 43.259999999999991 1.9039156078653450E-020 + 43.319999999999993 3.4266494603369569E-020 + 43.379999999999995 5.0703167405409892E-020 + 43.439999999999998 6.8077882763509263E-020 + 43.500000000000000 8.6057795757261870E-020 + 43.560000000000002 1.0424928018041200E-019 + 43.619999999999990 1.2220049981651534E-019 + 43.679999999999993 1.3940579131679164E-019 + 43.739999999999995 1.5531203818148081E-019 + 43.799999999999997 1.6932705221843476E-019 + 43.859999999999999 1.8082999871559246E-019 + 43.920000000000002 1.8918381230374006E-019 + 43.979999999999990 1.9374948485290179E-019 + 44.039999999999992 1.9390211584271472E-019 + 44.099999999999994 1.8904847260788588E-019 + 44.159999999999997 1.7864577685587089E-019 + 44.219999999999999 1.6222142680142500E-019 + 44.280000000000001 1.3939322692569320E-019 + 44.340000000000003 1.0988965435648200E-019 + 44.399999999999991 7.3569717663146697E-020 + 44.459999999999994 3.0441970235680682E-020 + 44.519999999999996 -1.9318169491706896E-020 + 44.579999999999998 -7.5352935645195042E-020 + 44.640000000000001 -1.3710951833153689E-019 + 44.700000000000003 -2.0383056375073469E-019 + 44.759999999999991 -2.7454833907086514E-019 + 44.819999999999993 -3.4808322871870921E-019 + 44.879999999999995 -4.2304694210945427E-019 + 44.939999999999998 -4.9785083059322927E-019 + 45.000000000000000 -5.7071971735922544E-019 + 45.060000000000002 -6.3971121060668230E-019 + 45.119999999999990 -7.0274105620271108E-019 + 45.179999999999993 -7.5761412590524000E-019 + 45.239999999999995 -8.0206104990192100E-019 + 45.299999999999997 -8.3378041864883050E-019 + 45.359999999999999 -8.5048572370214791E-019 + 45.420000000000002 -8.4995714478226814E-019 + 45.479999999999990 -8.3009688096370717E-019 + 45.539999999999992 -7.8898741541509571E-019 + 45.599999999999994 -7.2495190288634845E-019 + 45.659999999999997 -6.3661543734627691E-019 + 45.719999999999999 -5.2296629262994311E-019 + 45.780000000000001 -3.8341515848061176E-019 + 45.840000000000003 -2.1785217837488013E-019 + 45.899999999999991 -2.6699423663623069E-020 + 45.959999999999994 1.8904215464317933E-019 + 46.019999999999996 4.2775258983144374E-019 + 46.079999999999998 6.8716128980828732E-019 + 46.140000000000001 9.6432431902097165E-019 + 46.200000000000003 1.2556128353343503E-018 + 46.259999999999991 1.5567130541179606E-018 + 46.319999999999993 1.8626382779356291E-018 + 46.379999999999995 2.1677547979024917E-018 + 46.439999999999998 2.4658208836541774E-018 + 46.500000000000000 2.7500404713767790E-018 + 46.560000000000002 3.0131298899869436E-018 + 46.619999999999990 3.2474002879301680E-018 + 46.679999999999993 3.4448532581206479E-018 + 46.739999999999995 3.5972903275701587E-018 + 46.799999999999997 3.6964355323380234E-018 + 46.859999999999999 3.7340718410977285E-018 + 46.920000000000002 3.7021880281307236E-018 + 46.979999999999990 3.5931398874648637E-018 + 47.039999999999992 3.3998191649315619E-018 + 47.099999999999994 3.1158353487222963E-018 + 47.159999999999997 2.7357059606864606E-018 + 47.219999999999999 2.2550581808359881E-018 + 47.280000000000001 1.6708351506113877E-018 + 47.340000000000003 9.8151215492476840E-019 + 47.399999999999991 1.8732171574528399E-019 + 47.459999999999994 -7.0951826733065173E-019 + 47.519999999999996 -1.7045733181440573E-018 + 47.579999999999998 -2.7909528458556152E-018 + 47.640000000000001 -3.9590718199244353E-018 + 47.700000000000003 -5.1964154150570298E-018 + 47.759999999999991 -6.4873080902680485E-018 + 47.819999999999993 -7.8126890253565495E-018 + 47.879999999999995 -9.1498987346081200E-018 + 47.939999999999998 -1.0472492018924703E-017 + 48.000000000000000 -1.1750064968137449E-017 + 48.060000000000002 -1.2948127013550762E-017 + 48.119999999999990 -1.4028001158438464E-017 + 48.179999999999993 -1.4946778456330328E-017 + 48.239999999999995 -1.5657335269472559E-017 + 48.299999999999997 -1.6108415189462394E-017 + 48.359999999999999 -1.6244789291215851E-017 + 48.420000000000002 -1.6007501756736898E-017 + 48.479999999999990 -1.5334235244362681E-017 + 48.539999999999992 -1.4159760874669489E-017 + 48.599999999999994 -1.2416517999264577E-017 + 48.659999999999997 -1.0035328636611066E-017 + 48.719999999999999 -6.9462246711934326E-018 + 48.780000000000001 -3.0794226402917465E-018 + 48.840000000000003 1.6335526304772860E-018 + 48.899999999999991 7.2586250234306951E-018 + 48.959999999999994 1.3857777892576862E-017 + 49.019999999999996 2.1487544471349354E-017 + 49.079999999999998 3.0197386397657288E-017 + 49.140000000000001 4.0027921230830740E-017 + 49.200000000000003 5.1009131766709709E-017 + 49.259999999999991 6.3158431762175756E-017 + 49.319999999999993 7.6478747694760516E-017 + 49.379999999999995 9.0956609826806990E-017 + 49.439999999999998 1.0656019184226045E-016 + 49.500000000000000 1.2323740709842191E-016 + 49.560000000000002 1.4091421138441853E-016 + 49.619999999999990 1.5949305564389171E-016 + 49.679999999999993 1.7885150008703721E-016 + 49.739999999999995 1.9884109895482033E-016 + 49.799999999999997 2.1928687599111057E-016 + 49.859999999999999 2.3998689894648814E-016 + 49.920000000000002 2.6071274975748907E-016 + 49.979999999999990 2.8121049497835563E-016 + 50.039999999999992 3.0120233609500009E-016 + 50.099999999999994 3.2038908736460108E-016 + 50.159999999999997 3.3845370104495911E-016 + 50.219999999999999 3.5506638817365026E-016 + 50.280000000000001 3.6988966838835026E-016 + 50.340000000000003 3.8258635496278237E-016 + 50.399999999999991 3.9282733784136506E-016 + 50.459999999999994 4.0030237654252933E-016 + 50.519999999999996 4.0473100405408171E-016 + 50.579999999999998 4.0587640521992225E-016 + 50.640000000000001 4.0355978719782607E-016 + 50.700000000000003 3.9767642269658980E-016 + 50.759999999999991 3.8821357647048411E-016 + 50.819999999999993 3.7527007913290299E-016 + 50.879999999999995 3.5907517633482808E-016 + 50.939999999999998 3.4000982804686200E-016 + 51.000000000000000 3.1862733247762292E-016 + 51.060000000000002 2.9567394731801941E-016 + 51.119999999999990 2.7210837693490890E-016 + 51.179999999999993 2.4911899401757371E-016 + 51.239999999999995 2.2814030493203711E-016 + 51.299999999999997 2.1086373014925407E-016 + 51.359999999999999 1.9924613457862284E-016 + 51.420000000000002 1.9550936773546705E-016 + 51.479999999999990 2.0213551810564326E-016 + 51.539999999999992 2.2185203116791609E-016 + 51.599999999999994 2.5760664422475722E-016 + 51.659999999999997 3.1253598695300486E-016 + 51.719999999999999 3.8991251715979723E-016 + 51.780000000000001 4.9308334182158811E-016 + 51.840000000000003 6.2538975453295829E-016 + 51.899999999999991 7.9007494512494239E-016 + 51.959999999999994 9.9017017673332230E-016 + 52.019999999999996 1.2283563182874297E-015 + 52.079999999999998 1.5068141829779122E-015 + 52.140000000000001 1.8270501358366165E-015 + 52.200000000000003 2.1896944093744947E-015 + 52.259999999999991 2.5942885853928402E-015 + 52.319999999999993 3.0390433565114934E-015 + 52.379999999999995 3.5205741782418637E-015 + 52.439999999999998 4.0336210916891792E-015 + 52.500000000000000 4.5707459147301531E-015 + 52.560000000000002 5.1220032360519857E-015 + 52.619999999999990 5.6746085271177661E-015 + 52.679999999999993 6.2125712393336102E-015 + 52.739999999999995 6.7163358845865222E-015 + 52.799999999999997 7.1623829713443544E-015 + 52.859999999999999 7.5228539861642660E-015 + 52.920000000000002 7.7651367736919081E-015 + 52.979999999999990 7.8514554668030158E-015 + 53.039999999999992 7.7384544684180208E-015 + 53.099999999999994 7.3768107485808715E-015 + 53.159999999999997 6.7107431381320287E-015 + 53.219999999999999 5.6776963813594888E-015 + 53.280000000000001 4.2078462003087837E-015 + 53.339999999999989 2.2236677073091573E-015 + 53.399999999999991 -3.6040738698024396E-016 + 53.459999999999994 -3.6384711446566111E-015 + 53.519999999999996 -7.7135933133272364E-015 + 53.579999999999998 -1.2698165455025730E-014 + 53.640000000000001 -1.8714531583719064E-014 + 53.700000000000003 -2.5895343882157324E-014 + 53.759999999999991 -3.4384045734628515E-014 + 53.819999999999993 -4.4335650285150919E-014 + 53.879999999999995 -5.5917140900603993E-014 + 53.939999999999998 -6.9308406736234612E-014 + 54.000000000000000 -8.4702962382848641E-014 + 54.060000000000002 -1.0230891927835151E-013 + 54.119999999999990 -1.2235013298101566E-013 + 54.179999999999993 -1.4506739378849037E-013 + 54.239999999999995 -1.7072033987945717E-013 + 54.299999999999997 -1.9958861220708609E-013 + 54.359999999999999 -2.3197466730049309E-013 + 54.420000000000002 -2.6820594618270350E-013 + 54.479999999999990 -3.0863776002168359E-013 + 54.539999999999992 -3.5365697145300319E-013 + 54.599999999999994 -4.0368580748310715E-013 + 54.659999999999997 -4.5918645135598041E-013 + 54.719999999999999 -5.2066703310359134E-013 + 54.780000000000001 -5.8868673441922823E-013 + 54.839999999999989 -6.6386403215208243E-013 + 54.899999999999991 -7.4688431738741120E-013 + 54.959999999999994 -8.3850835024967322E-013 + 55.019999999999996 -9.3958369662964233E-013 + 55.079999999999998 -1.0510564745044978E-012 + 55.140000000000001 -1.1739825818539467E-012 + 55.200000000000003 -1.3095451177174153E-012 + 55.259999999999991 -1.4590684400396188E-012 + 55.319999999999993 -1.6240366873363268E-012 + 55.379999999999995 -1.8061121827624239E-012 + 55.439999999999998 -2.0071574874738459E-012 + 55.500000000000000 -2.2292588811499637E-012 + 55.560000000000002 -2.4747512344423499E-012 + 55.619999999999990 -2.7462432504347340E-012 + 55.679999999999993 -3.0466461919355403E-012 + 55.739999999999995 -3.3792086017031222E-012 + 55.799999999999997 -3.7475423215202722E-012 + 55.859999999999999 -4.1556571227719273E-012 + 55.920000000000002 -4.6079987572823138E-012 + 55.979999999999990 -5.1094795747258840E-012 + 56.039999999999992 -5.6655246990857826E-012 + 56.099999999999994 -6.2820993692040530E-012 + 56.159999999999997 -6.9657473633734655E-012 + 56.219999999999999 -7.7236302250250751E-012 + 56.280000000000001 -8.5635722172289472E-012 + 56.339999999999989 -9.4940786260300958E-012 + 56.399999999999991 -1.0524377584986387E-011 + 56.459999999999994 -1.1664457915739229E-011 + 56.519999999999996 -1.2925077638048939E-011 + 56.579999999999998 -1.4317799289512435E-011 + 56.640000000000001 -1.5855006123224501E-011 + 56.700000000000003 -1.7549902856643683E-011 + 56.759999999999991 -1.9416510715747113E-011 + 56.819999999999993 -2.1469687028418008E-011 + 56.879999999999995 -2.3725088073114342E-011 + 56.939999999999998 -2.6199139615115819E-011 + 57.000000000000000 -2.8908994900552684E-011 + 57.060000000000002 -3.1872480149296109E-011 + 57.119999999999990 -3.5108008790059147E-011 + 57.179999999999993 -3.8634480743906597E-011 + 57.239999999999995 -4.2471156804452835E-011 + 57.299999999999997 -4.6637525355245464E-011 + 57.359999999999999 -5.1153093884839548E-011 + 57.420000000000002 -5.6037237100493703E-011 + 57.479999999999990 -6.1308905006844507E-011 + 57.539999999999992 -6.6986376883737867E-011 + 57.599999999999994 -7.3086845646828004E-011 + 57.659999999999997 -7.9626065349177284E-011 + 57.719999999999999 -8.6617955974112533E-011 + 57.780000000000001 -9.4074044548111277E-011 + 57.839999999999989 -1.0200290984188661E-010 + 57.899999999999991 -1.1040945867462955E-010 + 57.959999999999994 -1.1929424031915611E-010 + 58.019999999999996 -1.2865250056148662E-010 + 58.079999999999998 -1.3847328555795523E-010 + 58.140000000000001 -1.4873833676867564E-010 + 58.200000000000003 -1.5942077552149585E-010 + 58.259999999999991 -1.7048357386191618E-010 + 58.319999999999993 -1.8187803883311978E-010 + 58.379999999999995 -1.9354219512344119E-010 + 58.439999999999998 -2.0539838120105884E-010 + 58.500000000000000 -2.1735101337117028E-010 + 58.560000000000002 -2.2928395899403856E-010 + 58.619999999999990 -2.4105786662453510E-010 + 58.679999999999993 -2.5250615288188630E-010 + 58.739999999999995 -2.6343178889968694E-010 + 58.799999999999997 -2.7360275353127789E-010 + 58.859999999999999 -2.8274712304392909E-010 + 58.920000000000002 -2.9054774031661057E-010 + 58.979999999999990 -2.9663570485249428E-010 + 59.039999999999992 -3.0058346295172605E-010 + 59.099999999999994 -3.0189732615292939E-010 + 59.159999999999997 -3.0000795721173591E-010 + 59.219999999999999 -2.9426115072272412E-010 + 59.280000000000001 -2.8390558708855415E-010 + 59.339999999999989 -2.6808088793256556E-010 + 59.399999999999991 -2.4580272638278388E-010 + 59.459999999999994 -2.1594729506711770E-010 + 59.519999999999996 -1.7723314752119700E-010 + 59.579999999999998 -1.2820129708614285E-010 + 59.640000000000001 -6.7190706478427808E-011 + 59.700000000000003 7.6845280948320141E-012 + 59.759999999999991 9.8564639337826213E-011 + 59.819999999999993 2.0787556803479642E-010 + 59.879999999999995 3.3836449271500985E-010 + 59.939999999999998 4.9313986673674111E-010 + 60.000000000000000 6.7571521115952625E-010 + 60.060000000000002 8.9005995485993271E-010 + 60.119999999999990 1.1406489905083265E-009 + 60.179999999999993 1.4325307038363948E-009 + 60.239999999999995 1.7713853703740685E-009 + 60.299999999999997 2.1636091466423042E-009 + 60.359999999999999 2.6163912237630402E-009 + 60.420000000000002 3.1378096240856923E-009 + 60.479999999999990 3.7369225103752858E-009 + 60.539999999999992 4.4238934038092035E-009 + 60.599999999999994 5.2100979250372754E-009 + 60.659999999999997 6.1082818014231474E-009 + 60.719999999999999 7.1326947512869081E-009 + 60.780000000000001 8.2992513411425999E-009 + 60.839999999999989 9.6257330822077327E-009 + 60.899999999999991 1.1131967189095086E-008 + 60.959999999999994 1.2840053377050147E-008 + 61.019999999999996 1.4774601968743234E-008 + 61.079999999999998 1.6962997586878371E-008 + 61.140000000000001 1.9435690392197764E-008 + 61.200000000000003 2.2226508580391607E-008 + 61.259999999999991 2.5372998326523797E-008 + 61.319999999999993 2.8916818710428322E-008 + 61.379999999999995 3.2904113955101309E-008 + 61.439999999999998 3.7386022963999199E-008 + 61.500000000000000 4.2419107835555103E-008 + 61.560000000000002 4.8065930156022191E-008 + 61.619999999999990 5.4395620263917153E-008 + 61.679999999999993 6.1484476295120972E-008 + 61.739999999999995 6.9416722780710217E-008 + 61.799999999999997 7.8285216658780859E-008 + 61.859999999999999 8.8192251100874488E-008 + 61.920000000000002 9.9250451029599593E-008 + 61.979999999999990 1.1158377306820023E-007 + 62.039999999999992 1.2532848047756550E-007 + 62.099999999999994 1.4063434206902552E-007 + 62.159999999999997 1.5766581658256303E-007 + 62.219999999999999 1.7660349477950364E-007 + 62.280000000000001 1.9764531188543089E-007 + 62.339999999999989 2.2100821878113229E-007 + 62.399999999999991 2.4693007889733587E-007 + 62.459999999999994 2.7567128330697737E-007 + 62.519999999999996 3.0751675468599930E-007 + 62.579999999999998 3.4277827123166852E-007 + 62.640000000000001 3.8179649803047327E-007 + 62.700000000000003 4.2494357123880990E-007 + 62.759999999999991 4.7262618597406062E-007 + 62.819999999999993 5.2528789292393188E-007 + 62.879999999999995 5.8341278730352166E-007 + 62.939999999999998 6.4752879573770206E-007 + 63.000000000000000 7.1821111556439737E-007 + 63.060000000000002 7.9608664035355475E-007 + 63.119999999999990 8.8183740102430985E-007 + 63.179999999999993 9.7620621716294189E-007 + 63.239999999999995 1.0800006533168432E-006 + 63.299999999999997 1.1940993753848042E-006 + 63.359999999999999 1.3194568236540583E-006 + 63.420000000000002 1.4571106332348059E-006 + 63.479999999999990 1.6081862608659813E-006 + 63.539999999999992 1.7739063756513639E-006 + 63.599999999999994 1.9555972699734396E-006 + 63.659999999999997 2.1546966732904963E-006 + 63.719999999999999 2.3727642751546734E-006 + 63.780000000000001 2.6114880284960128E-006 + 63.839999999999989 2.8726971153195722E-006 + 63.899999999999991 3.1583708482958900E-006 + 63.959999999999994 3.4706520776677603E-006 + 64.019999999999996 3.8118565486320549E-006 + 64.079999999999998 4.1844878623783007E-006 + 64.140000000000001 4.5912528378023785E-006 + 64.200000000000003 5.0350720778996927E-006 + 64.259999999999991 5.5191008748219140E-006 + 64.319999999999993 6.0467411612719050E-006 + 64.379999999999995 6.6216631020177977E-006 + 64.439999999999998 7.2478218930870970E-006 + 64.500000000000000 7.9294799798887946E-006 + 64.560000000000002 8.6712243602709933E-006 + 64.619999999999990 9.4779927827511200E-006 + 64.679999999999993 1.0355096598051378E-005 + 64.739999999999995 1.1308246565583659E-005 + 64.799999999999997 1.2343576079971416E-005 + 64.859999999999999 1.3467675879328136E-005 + 64.920000000000002 1.4687619430719195E-005 + 64.979999999999990 1.6010987744715200E-005 + 65.039999999999992 1.7445913249856255E-005 + 65.099999999999994 1.9001110284540801E-005 + 65.159999999999997 2.0685899854250239E-005 + 65.219999999999999 2.2510274091596726E-005 + 65.280000000000001 2.4484907658054333E-005 + 65.339999999999989 2.6621211328868340E-005 + 65.399999999999991 2.8931376558391718E-005 + 65.459999999999994 3.1428410590345101E-005 + 65.519999999999996 3.4126192774990603E-005 + 65.579999999999998 3.7039527480211008E-005 + 65.640000000000001 4.0184170358281322E-005 + 65.700000000000003 4.3576902826847812E-005 + 65.759999999999991 4.7235584990613206E-005 + 65.819999999999993 5.1179198344551360E-005 + 65.879999999999995 5.5427903907653184E-005 + 65.939999999999998 6.0003116494699000E-005 + 66.000000000000000 6.4927540248648738E-005 + 66.060000000000002 7.0225228026511260E-005 + 66.119999999999990 7.5921717121096507E-005 + 66.179999999999993 8.2043967542140374E-005 + 66.239999999999995 8.8620527056226654E-005 + 66.299999999999997 9.5681582384096644E-005 + 66.359999999999999 1.0325899029779401E-004 + 66.420000000000002 1.1138635179851989E-004 + 66.479999999999990 1.2009911982595572E-004 + 66.539999999999992 1.2943458695135237E-004 + 66.599999999999994 1.3943208424694638E-004 + 66.659999999999997 1.5013295202058834E-004 + 66.719999999999999 1.6158059176209796E-004 + 66.780000000000001 1.7382058209251697E-004 + 66.839999999999989 1.8690077534489757E-004 + 66.899999999999991 2.0087126756323560E-004 + 66.959999999999994 2.1578456196020765E-004 + 67.019999999999996 2.3169553214303943E-004 + 67.079999999999998 2.4866160349579821E-004 + 67.140000000000001 2.6674266904244735E-004 + 67.199999999999989 2.8600122306043506E-004 + 67.259999999999991 3.0650240369541537E-004 + 67.319999999999993 3.2831406868329279E-004 + 67.379999999999995 3.5150674326318214E-004 + 67.439999999999998 3.7615370550809043E-004 + 67.500000000000000 4.0233109002192358E-004 + 67.560000000000002 4.3011785542540807E-004 + 67.619999999999990 4.5959565016412342E-004 + 67.679999999999993 4.9084905749484744E-004 + 67.739999999999995 5.2396551980934275E-004 + 67.799999999999997 5.5903528985257515E-004 + 67.859999999999999 5.9615138687418552E-004 + 67.920000000000002 6.3540970907754264E-004 + 67.979999999999990 6.7690892831738015E-004 + 68.039999999999992 7.2075031810038353E-004 + 68.099999999999994 7.6703787983293994E-004 + 68.159999999999997 8.1587819484362206E-004 + 68.219999999999999 8.6738030753794027E-004 + 68.280000000000001 9.2165578714644347E-004 + 68.339999999999989 9.7881827248521170E-004 + 68.399999999999991 1.0389841113538341E-003 + 68.459999999999994 1.1022710536383183E-003 + 68.519999999999996 1.1687992634827160E-003 + 68.579999999999998 1.2386904402672768E-003 + 68.640000000000001 1.3120677007676749E-003 + 68.699999999999989 1.3890558851676923E-003 + 68.759999999999991 1.4697806965005820E-003 + 68.819999999999993 1.5543690354818877E-003 + 68.879999999999995 1.6429482047402239E-003 + 68.939999999999998 1.7356461037720439E-003 + 69.000000000000000 1.8325905804008899E-003 + 69.060000000000002 1.9339098780094739E-003 + 69.119999999999990 2.0397312068640748E-003 + 69.179999999999993 2.1501811154277057E-003 + 69.239999999999995 2.2653850890196944E-003 + 69.299999999999997 2.3854671632482340E-003 + 69.359999999999999 2.5105494174966787E-003 + 69.420000000000002 2.6407517672545153E-003 + 69.479999999999990 2.7761912860388470E-003 + 69.539999999999992 2.9169824882750361E-003 + 69.599999999999994 3.0632353282028877E-003 + 69.659999999999997 3.2150566414509162E-003 + 69.719999999999999 3.3725487240403350E-003 + 69.780000000000001 3.5358086903603068E-003 + 69.839999999999989 3.7049280486401151E-003 + 69.899999999999991 3.8799930834686864E-003 + 69.959999999999994 4.0610831606703989E-003 + 70.019999999999996 4.2482709066861604E-003 + 70.079999999999998 4.4416216220379921E-003 + 70.140000000000001 4.6411921741650415E-003 + 70.199999999999989 4.8470318302979076E-003 + 70.259999999999991 5.0591801401093052E-003 + 70.319999999999993 5.2776672724225374E-003 + 70.379999999999995 5.5025139598120472E-003 + 70.439999999999998 5.7337289092393795E-003 + 70.500000000000000 5.9713111785352447E-003 + 70.560000000000002 6.2152481659706622E-003 + 70.619999999999990 6.4655147956302339E-003 + 70.679999999999993 6.7220735572465339E-003 + 70.739999999999995 6.9848737705989171E-003 + 70.799999999999997 7.2538511895278634E-003 + 70.859999999999999 7.5289282838770641E-003 + 70.920000000000002 7.8100130058428576E-003 + 70.979999999999990 8.0969983491540210E-003 + 71.039999999999992 8.3897625460415889E-003 + 71.099999999999994 8.6881684308356358E-003 + 71.159999999999997 8.9920627231463227E-003 + 71.219999999999999 9.3012768460202008E-003 + 71.280000000000001 9.6156260870060711E-003 + 71.339999999999989 9.9349088717582933E-003 + 71.399999999999991 1.0258907187152480E-002 + 71.459999999999994 1.0587386514549721E-002 + 71.519999999999996 1.0920095864957527E-002 + 71.579999999999998 1.1256766931784646E-002 + 71.640000000000001 1.1597113479774095E-002 + 71.699999999999989 1.1940833563516502E-002 + 71.759999999999991 1.2287610014495116E-002 + 71.819999999999993 1.2637107612503452E-002 + 71.879999999999995 1.2988975204414442E-002 + 71.939999999999998 1.3342846204718145E-002 + 72.000000000000000 1.3698336543721563E-002 + 72.060000000000002 1.4055048842787287E-002 + 72.119999999999990 1.4412568992452281E-002 + 72.179999999999993 1.4770469612008900E-002 + 72.239999999999995 1.5128309099171603E-002 + 72.299999999999997 1.5485633106095808E-002 + 72.359999999999999 1.5841973379520258E-002 + 72.420000000000002 1.6196848993575264E-002 + 72.479999999999990 1.6549769144123677E-002 + 72.539999999999992 1.6900232459302732E-002 + 72.599999999999994 1.7247726743604475E-002 + 72.659999999999997 1.7591731626890011E-002 + 72.719999999999999 1.7931720207708151E-002 + 72.780000000000001 1.8267156563276842E-002 + 72.839999999999989 1.8597497887523191E-002 + 72.899999999999991 1.8922199171184151E-002 + 72.959999999999994 1.9240712509503426E-002 + 73.019999999999996 1.9552485253022465E-002 + 73.079999999999998 1.9856960786600049E-002 + 73.140000000000001 2.0153589298977197E-002 + 73.199999999999989 2.0441816063808380E-002 + 73.259999999999991 2.0721091525096852E-002 + 73.319999999999993 2.0990870369875580E-002 + 73.379999999999995 2.1250610431976756E-002 + 73.439999999999998 2.1499775084988213E-002 + 73.500000000000000 2.1737837740264544E-002 + 73.560000000000002 2.1964278838191128E-002 + 73.619999999999990 2.2178590446710410E-002 + 73.679999999999993 2.2380275378221411E-002 + 73.739999999999995 2.2568850195455684E-002 + 73.799999999999997 2.2743842883652918E-002 + 73.859999999999999 2.2904800674184614E-002 + 73.920000000000002 2.3051284743378645E-002 + 73.979999999999990 2.3182876341574413E-002 + 74.039999999999992 2.3299175765715892E-002 + 74.099999999999994 2.3399801863767063E-002 + 74.159999999999997 2.3484399156574558E-002 + 74.219999999999999 2.3552629657607949E-002 + 74.280000000000001 2.3604182631356822E-002 + 74.339999999999989 2.3638770939770022E-002 + 74.399999999999991 2.3656133966384128E-002 + 74.459999999999994 2.3656035953923692E-002 + 74.519999999999996 2.3638271487801215E-002 + 74.579999999999998 2.3602661515869695E-002 + 74.640000000000001 2.3549056809435337E-002 + 74.699999999999989 2.3477337330337352E-002 + 74.759999999999991 2.3387411241138065E-002 + 74.819999999999993 2.3279222555199076E-002 + 74.879999999999995 2.3152740603914226E-002 + 74.939999999999998 2.3007969211196008E-002 + 75.000000000000000 2.2844943981651104E-002 + 75.060000000000002 2.2663730914572518E-002 + 75.119999999999990 2.2464429473119326E-002 + 75.179999999999993 2.2247169087325696E-002 + 75.239999999999995 2.2012114208180663E-002 + 75.299999999999997 2.1759458612144709E-002 + 75.359999999999999 2.1489426301234786E-002 + 75.420000000000002 2.1202273550305403E-002 + 75.479999999999990 2.0898288419192394E-002 + 75.539999999999992 2.0577786697804090E-002 + 75.599999999999994 2.0241114314800496E-002 + 75.659999999999997 1.9888645416914732E-002 + 75.719999999999999 1.9520784899946127E-002 + 75.780000000000001 1.9137960548471666E-002 + 75.839999999999989 1.8740630588830895E-002 + 75.899999999999991 1.8329274026884224E-002 + 75.959999999999994 1.7904397508435119E-002 + 76.019999999999996 1.7466527067291071E-002 + 76.079999999999998 1.7016214729594803E-002 + 76.140000000000001 1.6554030795193134E-002 + 76.199999999999989 1.6080563046035168E-002 + 76.259999999999991 1.5596419297623319E-002 + 76.319999999999993 1.5102226477905527E-002 + 76.379999999999995 1.4598621742057907E-002 + 76.439999999999998 1.4086258129913935E-002 + 76.500000000000000 1.3565800129452976E-002 + 76.560000000000002 1.3037923485446298E-002 + 76.619999999999990 1.2503311710388536E-002 + 76.679999999999993 1.1962656958059436E-002 + 76.739999999999995 1.1416655870257301E-002 + 76.799999999999997 1.0866010492081569E-002 + 76.859999999999999 1.0311425633072208E-002 + 76.920000000000002 9.7536060812322377E-003 + 76.979999999999990 9.1932573163281007E-003 + 77.039999999999992 8.6310817440713120E-003 + 77.099999999999994 8.0677795350453437E-003 + 77.159999999999997 7.5040439693052768E-003 + 77.219999999999999 6.9405632163486285E-003 + 77.280000000000001 6.3780168901446041E-003 + 77.339999999999989 5.8170760243997921E-003 + 77.399999999999991 5.2583993297916120E-003 + 77.459999999999994 4.7026341874895992E-003 + 77.519999999999996 4.1504149331786071E-003 + 77.579999999999998 3.6023608714580903E-003 + 77.640000000000001 3.0590749544502863E-003 + 77.699999999999989 2.5211442457028959E-003 + 77.759999999999991 1.9891377654920397E-003 + 77.819999999999993 1.4636043756060171E-003 + 77.879999999999995 9.4507471345819938E-004 + 77.939999999999998 4.3405760678455691E-004 + 78.000000000000000 -6.8959141385571601E-005 + 78.060000000000002 -5.6350976168505207E-004 + 78.119999999999990 -1.0491511956107343E-003 + 78.179999999999993 -1.5254644403091154E-003 + 78.239999999999995 -1.9920536850114158E-003 + 78.299999999999997 -2.4485477179390829E-003 + 78.359999999999999 -2.8945995456288853E-003 + 78.420000000000002 -3.3298871658855840E-003 + 78.479999999999990 -3.7541137471691125E-003 + 78.539999999999992 -4.1670072197826733E-003 + 78.599999999999994 -4.5683212580080110E-003 + 78.659999999999997 -4.9578339959556548E-003 + 78.719999999999999 -5.3353493121463570E-003 + 78.780000000000001 -5.7006953360919507E-003 + 78.839999999999989 -6.0537255116706211E-003 + 78.899999999999991 -6.3943172752286134E-003 + 78.959999999999994 -6.7223720012223936E-003 + 79.019999999999996 -7.0378154029293941E-003 + 79.079999999999998 -7.3405957753700027E-003 + 79.140000000000001 -7.6306842274647419E-003 + 79.199999999999989 -7.9080732930961843E-003 + 79.259999999999991 -8.1727782873872827E-003 + 79.319999999999993 -8.4248347868549033E-003 + 79.379999999999995 -8.6642985266646398E-003 + 79.439999999999998 -8.8912452265090466E-003 + 79.500000000000000 -9.1057675691671794E-003 + 79.560000000000002 -9.3079784130385233E-003 + 79.619999999999990 -9.4980054465294318E-003 + 79.679999999999993 -9.6759955725443623E-003 + 79.739999999999995 -9.8421080740668868E-003 + 79.799999999999997 -9.9965182591517966E-003 + 79.859999999999999 -1.0139416134259371E-002 + 79.920000000000002 -1.0271002952601286E-002 + 79.979999999999990 -1.0391492896346310E-002 + 80.039999999999992 -1.0501110643436437E-002 + 80.099999999999994 -1.0600091348821694E-002 + 80.159999999999997 -1.0688679399204301E-002 + 80.219999999999999 -1.0767127074449214E-002 + 80.280000000000001 -1.0835695121463079E-002 + 80.340000000000003 -1.0894650531313502E-002 + 80.400000000000006 -1.0944265874568307E-002 + 80.460000000000008 -1.0984819610080227E-002 + 80.519999999999982 -1.1016593108937179E-002 + 80.579999999999984 -1.1039872827162763E-002 + 80.639999999999986 -1.1054947358948937E-002 + 80.699999999999989 -1.1062106119464846E-002 + 80.759999999999991 -1.1061642114284299E-002 + 80.819999999999993 -1.1053846783718501E-002 + 80.879999999999995 -1.1039011328887691E-002 + 80.939999999999998 -1.1017427424111222E-002 + 81.000000000000000 -1.0989386158844223E-002 + 81.060000000000002 -1.0955174607718537E-002 + 81.120000000000005 -1.0915079439514990E-002 + 81.180000000000007 -1.0869382964684132E-002 + 81.240000000000009 -1.0818364951446977E-002 + 81.299999999999983 -1.0762301285910100E-002 + 81.359999999999985 -1.0701463122652360E-002 + 81.419999999999987 -1.0636117145776775E-002 + 81.479999999999990 -1.0566526078146317E-002 + 81.539999999999992 -1.0492945197263338E-002 + 81.599999999999994 -1.0415626660482735E-002 + 81.659999999999997 -1.0334815540938316E-002 + 81.719999999999999 -1.0250750973952470E-002 + 81.780000000000001 -1.0163665995354275E-002 + 81.840000000000003 -1.0073787023867208E-002 + 81.900000000000006 -9.9813341421278630E-003 + 81.960000000000008 -9.8865196488462544E-003 + 82.019999999999982 -9.7895507338577655E-003 + 82.079999999999984 -9.6906274502390321E-003 + 82.139999999999986 -9.5899420956381855E-003 + 82.199999999999989 -9.4876817885218689E-003 + 82.259999999999991 -9.3840245664836008E-003 + 82.319999999999993 -9.2791414407103218E-003 + 82.379999999999995 -9.1731985524713972E-003 + 82.439999999999998 -9.0663539381430017E-003 + 82.500000000000000 -8.9587599241366632E-003 + 82.560000000000002 -8.8505601625294000E-003 + 82.620000000000005 -8.7418942886179143E-003 + 82.680000000000007 -8.6328929414124737E-003 + 82.740000000000009 -8.5236813485153034E-003 + 82.799999999999983 -8.4143790535799942E-003 + 82.859999999999985 -8.3050985727567850E-003 + 82.919999999999987 -8.1959464021332216E-003 + 82.979999999999990 -8.0870228975716101E-003 + 83.039999999999992 -7.9784242829305848E-003 + 83.099999999999994 -7.8702404399939533E-003 + 83.159999999999997 -7.7625548786003987E-003 + 83.219999999999999 -7.6554468087897103E-003 + 83.280000000000001 -7.5489893971892839E-003 + 83.340000000000003 -7.4432522927063635E-003 + 83.400000000000006 -7.3382991730832226E-003 + 83.460000000000008 -7.2341890709705144E-003 + 83.519999999999982 -7.1309779803031045E-003 + 83.579999999999984 -7.0287167834365890E-003 + 83.639999999999986 -6.9274521944193840E-003 + 83.699999999999989 -6.8272269127804836E-003 + 83.759999999999991 -6.7280807082254566E-003 + 83.819999999999993 -6.6300487352256698E-003 + 83.879999999999995 -6.5331629154957507E-003 + 83.939999999999998 -6.4374525290148655E-003 + 84.000000000000000 -6.3429431575250887E-003 + 84.060000000000002 -6.2496577536559636E-003 + 84.120000000000005 -6.1576160537224938E-003 + 84.180000000000007 -6.0668355211482812E-003 + 84.240000000000009 -5.9773310057959139E-003 + 84.299999999999983 -5.8891146874558630E-003 + 84.359999999999985 -5.8021967862318790E-003 + 84.419999999999987 -5.7165855144365278E-003 + 84.479999999999990 -5.6322865393091644E-003 + 84.539999999999992 -5.5493042938979734E-003 + 84.599999999999994 -5.4676415475819759E-003 + 84.659999999999997 -5.3872991912417168E-003 + 84.719999999999999 -5.3082764617218958E-003 + 84.780000000000001 -5.2305711955722249E-003 + 84.840000000000003 -5.1541798483287181E-003 + 84.900000000000006 -5.0790981978353494E-003 + 84.960000000000008 -5.0053207993107501E-003 + 85.019999999999982 -4.9328407630514111E-003 + 85.079999999999984 -4.8616509853966067E-003 + 85.139999999999986 -4.7917431804620023E-003 + 85.199999999999989 -4.7231082336942325E-003 + 85.259999999999991 -4.6557367254825852E-003 + 85.319999999999993 -4.5896177938186799E-003 + 85.379999999999995 -4.5247414040590298E-003 + 85.439999999999998 -4.4610963633243059E-003 + 85.500000000000000 -4.3986711393261347E-003 + 85.560000000000002 -4.3374541746103472E-003 + 85.620000000000005 -4.2774336670351222E-003 + 85.680000000000007 -4.2185975755736609E-003 + 85.740000000000009 -4.1609337368328937E-003 + 85.799999999999983 -4.1044305201751495E-003 + 85.859999999999985 -4.0490755516878309E-003 + 85.919999999999987 -3.9948570707476917E-003 + 85.979999999999990 -3.9417631170265074E-003 + 86.039999999999992 -3.8897824524762748E-003 + 86.099999999999994 -3.8389033493193107E-003 + 86.159999999999997 -3.7891148551439354E-003 + 86.219999999999999 -3.7404059273224875E-003 + 86.280000000000001 -3.6927667624191878E-003 + 86.340000000000003 -3.6461867344662769E-003 + 86.400000000000006 -3.6006564585568564E-003 + 86.460000000000008 -3.5561662899702270E-003 + 86.519999999999982 -3.5127076591054598E-003 + 86.579999999999984 -3.4702719394537323E-003 + 86.639999999999986 -3.4288517222800224E-003 + 86.699999999999989 -3.3884393805609890E-003 + 86.759999999999991 -3.3490285890707882E-003 + 86.819999999999993 -3.3106128897840061E-003 + 86.879999999999995 -3.2731869435249595E-003 + 86.939999999999998 -3.2367460510285399E-003 + 87.000000000000000 -3.2012855028057032E-003 + 87.060000000000002 -3.1668020225141705E-003 + 87.120000000000005 -3.1332923925618569E-003 + 87.180000000000007 -3.1007543658542825E-003 + 87.240000000000009 -3.0691863605331643E-003 + 87.299999999999983 -3.0385872733046299E-003 + 87.359999999999985 -3.0089568536144570E-003 + 87.419999999999987 -2.9802955352855372E-003 + 87.479999999999990 -2.9526040016740630E-003 + 87.539999999999992 -2.9258841948129901E-003 + 87.599999999999994 -2.9001383209499693E-003 + 87.659999999999997 -2.8753694264668332E-003 + 87.719999999999999 -2.8515814356786513E-003 + 87.780000000000001 -2.8287786979986746E-003 + 87.840000000000003 -2.8069662892017755E-003 + 87.900000000000006 -2.7861497511779197E-003 + 87.960000000000008 -2.7663357677574340E-003 + 88.019999999999982 -2.7475314403174549E-003 + 88.079999999999984 -2.7297443591683063E-003 + 88.139999999999986 -2.7129830384575882E-003 + 88.199999999999989 -2.6972563506136621E-003 + 88.259999999999991 -2.6825739962616263E-003 + 88.319999999999993 -2.6689463168290198E-003 + 88.379999999999995 -2.6563841960892966E-003 + 88.439999999999998 -2.6448988531364011E-003 + 88.500000000000000 -2.6345018692962761E-003 + 88.560000000000002 -2.6252060680574175E-003 + 88.620000000000005 -2.6170242084642497E-003 + 88.680000000000007 -2.6099695178726256E-003 + 88.740000000000009 -2.6040557642161223E-003 + 88.799999999999983 -2.5992969471653701E-003 + 88.859999999999985 -2.5957074886161914E-003 + 88.919999999999987 -2.5933025204244726E-003 + 88.979999999999990 -2.5920967618069876E-003 + 89.039999999999992 -2.5921057017137300E-003 + 89.099999999999994 -2.5933448081281235E-003 + 89.159999999999997 -2.5958293613488346E-003 + 89.219999999999999 -2.5995752019601155E-003 + 89.280000000000001 -2.6045978806710332E-003 + 89.340000000000003 -2.6109131864949205E-003 + 89.400000000000006 -2.6185364332513852E-003 + 89.460000000000008 -2.6274830333376698E-003 + 89.519999999999982 -2.6377678563085333E-003 + 89.579999999999984 -2.6494053724749993E-003 + 89.639999999999986 -2.6624099746550755E-003 + 89.699999999999989 -2.6767951853048982E-003 + 89.759999999999991 -2.6925739714335050E-003 + 89.819999999999993 -2.7097587836092717E-003 + 89.879999999999995 -2.7283609502917129E-003 + 89.939999999999998 -2.7483912075404364E-003 + 90.000000000000000 -2.7698592246008405E-003 + 90.060000000000002 -2.7927732788490898E-003 + 90.120000000000005 -2.8171408131574312E-003 + 90.180000000000007 -2.8429679874421997E-003 + 90.240000000000009 -2.8702591534498834E-003 + 90.299999999999983 -2.8990174494051145E-003 + 90.359999999999985 -2.9292444079578790E-003 + 90.419999999999987 -2.9609396781591331E-003 + 90.479999999999990 -2.9941011145202721E-003 + 90.539999999999992 -3.0287245990404275E-003 + 90.599999999999994 -3.0648038538888720E-003 + 90.659999999999997 -3.1023305317874591E-003 + 90.719999999999999 -3.1412941321269415E-003 + 90.780000000000001 -3.1816813149556740E-003 + 90.840000000000003 -3.2234765507727962E-003 + 90.900000000000006 -3.2666619440735521E-003 + 90.960000000000008 -3.3112161890591694E-003 + 91.019999999999982 -3.3571156221698065E-003 + 91.079999999999984 -3.4043335390493657E-003 + 91.139999999999986 -3.4528407234094742E-003 + 91.199999999999989 -3.5026045309163268E-003 + 91.259999999999991 -3.5535891920047162E-003 + 91.319999999999993 -3.6057562141098495E-003 + 91.379999999999995 -3.6590630039039468E-003 + 91.439999999999998 -3.7134647480084235E-003 + 91.500000000000000 -3.7689123198106399E-003 + 91.560000000000002 -3.8253540605381491E-003 + 91.620000000000005 -3.8827341413115598E-003 + 91.680000000000007 -3.9409940927770896E-003 + 91.739999999999981 -4.0000719464532829E-003 + 91.799999999999983 -4.0599016823844331E-003 + 91.859999999999985 -4.1204143694934404E-003 + 91.919999999999987 -4.1815380620509983E-003 + 91.979999999999990 -4.2431967529237410E-003 + 92.039999999999992 -4.3053118022296864E-003 + 92.099999999999994 -4.3678008790778849E-003 + 92.159999999999997 -4.4305786644249622E-003 + 92.219999999999999 -4.4935568745595872E-003 + 92.280000000000001 -4.5566438835992745E-003 + 92.340000000000003 -4.6197461802040462E-003 + 92.400000000000006 -4.6827666575831439E-003 + 92.460000000000008 -4.7456054911423594E-003 + 92.519999999999982 -4.8081614784420568E-003 + 92.579999999999984 -4.8703299052781108E-003 + 92.639999999999986 -4.9320044348891041E-003 + 92.699999999999989 -4.9930767934823223E-003 + 92.759999999999991 -5.0534366889118630E-003 + 92.819999999999993 -5.1129728983553367E-003 + 92.879999999999995 -5.1715717831258643E-003 + 92.939999999999998 -5.2291193952108484E-003 + 93.000000000000000 -5.2855008614560517E-003 + 93.060000000000002 -5.3405994625244577E-003 + 93.120000000000005 -5.3942994360110779E-003 + 93.180000000000007 -5.4464837086603693E-003 + 93.239999999999981 -5.4970358532888570E-003 + 93.299999999999983 -5.5458392857871764E-003 + 93.359999999999985 -5.5927784238779480E-003 + 93.419999999999987 -5.6377383200915867E-003 + 93.479999999999990 -5.6806050574930581E-003 + 93.539999999999992 -5.7212660318556154E-003 + 93.599999999999994 -5.7596104021109913E-003 + 93.659999999999997 -5.7955290619995763E-003 + 93.719999999999999 -5.8289159808708451E-003 + 93.780000000000001 -5.8596671237594348E-003 + 93.840000000000003 -5.8876805595011348E-003 + 93.900000000000006 -5.9128581741567264E-003 + 93.960000000000008 -5.9351052119056185E-003 + 94.019999999999982 -5.9543305985162919E-003 + 94.079999999999984 -5.9704464595032617E-003 + 94.139999999999986 -5.9833694622037871E-003 + 94.199999999999989 -5.9930213746659522E-003 + 94.259999999999991 -5.9993270696198347E-003 + 94.319999999999993 -6.0022174431202816E-003 + 94.379999999999995 -6.0016276155217809E-003 + 94.439999999999998 -5.9974989631539433E-003 + 94.500000000000000 -5.9897775714301688E-003 + 94.560000000000002 -5.9784149135168200E-003 + 94.620000000000005 -5.9633699214248891E-003 + 94.680000000000007 -5.9446060879166530E-003 + 94.739999999999981 -5.9220931059671602E-003 + 94.799999999999983 -5.8958080908808842E-003 + 94.859999999999985 -5.8657336097202905E-003 + 94.919999999999987 -5.8318587946730787E-003 + 94.979999999999990 -5.7941803013436457E-003 + 95.039999999999992 -5.7527004267510836E-003 + 95.099999999999994 -5.7074286439853655E-003 + 95.159999999999997 -5.6583814345237222E-003 + 95.219999999999999 -5.6055816897866888E-003 + 95.280000000000001 -5.5490591444158667E-003 + 95.340000000000003 -5.4888511550595428E-003 + 95.400000000000006 -5.4250005900336792E-003 + 95.460000000000008 -5.3575571108553759E-003 + 95.519999999999982 -5.2865777474062009E-003 + 95.579999999999984 -5.2121257071986839E-003 + 95.639999999999986 -5.1342700186727836E-003 + 95.699999999999989 -5.0530865155113446E-003 + 95.759999999999991 -4.9686575089179534E-003 + 95.819999999999993 -4.8810701145001658E-003 + 95.879999999999995 -4.7904185129933686E-003 + 95.939999999999998 -4.6968016634172235E-003 + 96.000000000000000 -4.6003233947234648E-003 + 96.060000000000002 -4.5010934630276772E-003 + 96.120000000000005 -4.3992262912224316E-003 + 96.180000000000007 -4.2948409152426441E-003 + 96.239999999999981 -4.1880606270324897E-003 + 96.299999999999983 -4.0790132471098814E-003 + 96.359999999999985 -3.9678293678052264E-003 + 96.419999999999987 -3.8546441429190082E-003 + 96.479999999999990 -3.7395950841842213E-003 + 96.539999999999992 -3.6228228408489195E-003 + 96.599999999999994 -3.5044708155710213E-003 + 96.659999999999997 -3.3846844024989688E-003 + 96.719999999999999 -3.2636107520989778E-003 + 96.780000000000001 -3.1413988980382099E-003 + 96.840000000000003 -3.0181990091184725E-003 + 96.900000000000006 -2.8941615103732126E-003 + 96.960000000000008 -2.7694376534791324E-003 + 97.019999999999982 -2.6441790275576194E-003 + 97.079999999999984 -2.5185371745908005E-003 + 97.139999999999986 -2.3926628696512723E-003 + 97.199999999999989 -2.2667062830320898E-003 + 97.259999999999991 -2.1408159249713902E-003 + 97.319999999999993 -2.0151391920692264E-003 + 97.379999999999995 -1.8898215152355065E-003 + 97.439999999999998 -1.7650064304712515E-003 + 97.500000000000000 -1.6408348515799141E-003 + 97.560000000000002 -1.5174450482593410E-003 + 97.620000000000005 -1.3949721826550401E-003 + 97.680000000000007 -1.2735483517511590E-003 + 97.739999999999981 -1.1533022261264582E-003 + 97.799999999999983 -1.0343584127394492E-003 + 97.859999999999985 -9.1683791482688199E-004 + 97.919999999999987 -8.0085739361055786E-004 + 97.979999999999990 -6.8652936012806351E-004 + 98.039999999999992 -5.7396162775898607E-004 + 98.099999999999994 -4.6325732728270431E-004 + 98.159999999999997 -3.5451482934718576E-004 + 98.219999999999999 -2.4782757640996311E-004 + 98.280000000000001 -1.4328393487502398E-004 + 98.340000000000003 -4.0966883844326585E-005 + 98.400000000000006 5.9045656274230084E-005 + 98.460000000000008 1.5668125617768560E-004 + 98.519999999999982 2.5187281663715985E-004 + 98.579999999999984 3.4455879359816376E-004 + 98.639999999999986 4.3468306019056255E-004 + 98.699999999999989 5.2219499612087808E-004 + 98.759999999999991 6.0704952248953115E-004 + 98.819999999999993 6.8920692907740381E-004 + 98.879999999999995 7.6863311934386000E-004 + 98.939999999999998 8.4529922895816394E-004 + 99.000000000000000 9.1918181539116098E-004 + 99.060000000000002 9.9026254758693760E-004 + 99.120000000000005 1.0585284145855503E-003 + 99.180000000000007 1.1239712299642671E-003 + 99.239999999999981 1.1865878285972258E-003 + 99.299999999999983 1.2463798963797184E-003 + 99.359999999999985 1.3033537922831169E-003 + 99.419999999999987 1.3575201584447305E-003 + 99.479999999999990 1.4088942016311295E-003 + 99.539999999999992 1.4574953999799906E-003 + 99.599999999999994 1.5033470603051668E-003 + 99.659999999999997 1.5464765783366507E-003 + 99.719999999999999 1.5869148324444849E-003 + 99.780000000000001 1.6246964963677795E-003 + 99.840000000000003 1.6598594309448114E-003 + 99.900000000000006 1.6924447436658199E-003 + 99.960000000000008 1.7224964072641241E-003 + 100.01999999999998 1.7500613156174272E-003 + 100.07999999999998 1.7751889708173805E-003 + 100.13999999999999 1.7979311452376418E-003 + 100.19999999999999 1.8183419838229517E-003 + 100.25999999999999 1.8364777130318889E-003 + 100.31999999999999 1.8523961324765478E-003 + 100.38000000000000 1.8661568468500993E-003 + 100.44000000000000 1.8778208281484954E-003 + 100.50000000000000 1.8874505471746848E-003 + 100.56000000000000 1.8951093347514454E-003 + 100.62000000000000 1.9008615808472991E-003 + 100.68000000000001 1.9047720975030721E-003 + 100.73999999999998 1.9069065859620381E-003 + 100.79999999999998 1.9073309953888233E-003 + 100.85999999999999 1.9061115374280075E-003 + 100.91999999999999 1.9033145025157976E-003 + 100.97999999999999 1.8990060469568971E-003 + 101.03999999999999 1.8932523625621786E-003 + 101.09999999999999 1.8861192415610749E-003 + 101.16000000000000 1.8776718635995730E-003 + 101.22000000000000 1.8679750431196346E-003 + 101.28000000000000 1.8570926876701065E-003 + 101.34000000000000 1.8450880777895163E-003 + 101.40000000000001 1.8320235655380924E-003 + 101.46000000000001 1.8179606823465885E-003 + 101.51999999999998 1.8029595464023242E-003 + 101.57999999999998 1.7870794867150225E-003 + 101.63999999999999 1.7703782526054296E-003 + 101.69999999999999 1.7529126443927819E-003 + 101.75999999999999 1.7347379511452605E-003 + 101.81999999999999 1.7159080949478130E-003 + 101.88000000000000 1.6964755520606359E-003 + 101.94000000000000 1.6764912666892672E-003 + 102.00000000000000 1.6560048185081783E-003 + 102.06000000000000 1.6350639717721256E-003 + 102.12000000000000 1.6137152480488340E-003 + 102.18000000000001 1.5920033692522915E-003 + 102.23999999999998 1.5699715075030585E-003 + 102.29999999999998 1.5476611461878805E-003 + 102.35999999999999 1.5251121898823045E-003 + 102.41999999999999 1.5023629165777524E-003 + 102.47999999999999 1.4794498374399963E-003 + 102.53999999999999 1.4564079492145603E-003 + 102.59999999999999 1.4332707171465300E-003 + 102.66000000000000 1.4100698926507644E-003 + 102.72000000000000 1.3868356555563938E-003 + 102.78000000000000 1.3635965752211315E-003 + 102.84000000000000 1.3403798496854553E-003 + 102.90000000000001 1.3172110843443718E-003 + 102.96000000000001 1.2941144367957977E-003 + 103.01999999999998 1.2711126592828107E-003 + 103.07999999999998 1.2482269785113482E-003 + 103.13999999999999 1.2254773986016387E-003 + 103.19999999999999 1.2028825113309406E-003 + 103.25999999999999 1.1804598496004449E-003 + 103.31999999999999 1.1582254464253515E-003 + 103.38000000000000 1.1361941400125821E-003 + 103.44000000000000 1.1143797800575621E-003 + 103.50000000000000 1.0927949737340240E-003 + 103.56000000000000 1.0714511895879007E-003 + 103.62000000000000 1.0503589413419347E-003 + 103.68000000000001 1.0295276795148078E-003 + 103.73999999999998 1.0089659752483314E-003 + 103.79999999999998 9.8868132526182891E-004 + 103.85999999999999 9.6868027238924395E-004 + 103.91999999999999 9.4896870182891607E-004 + 103.97999999999999 9.2955144485291712E-004 + 104.03999999999999 9.1043270474238541E-004 + 104.09999999999999 8.9161593439975886E-004 + 104.16000000000000 8.7310372128512133E-004 + 104.22000000000000 8.5489826568211779E-004 + 104.28000000000000 8.3700098787348990E-004 + 104.34000000000000 8.1941267764843535E-004 + 104.40000000000001 8.0213370926159901E-004 + 104.46000000000001 7.8516391573236978E-004 + 104.51999999999998 7.6850266366434246E-004 + 104.57999999999998 7.5214882764218082E-004 + 104.63999999999999 7.3610101591233088E-004 + 104.69999999999999 7.2035730509563758E-004 + 104.75999999999999 7.0491555805107125E-004 + 104.81999999999999 6.8977321078669070E-004 + 104.88000000000000 6.7492745414833436E-004 + 104.94000000000000 6.6037518284678257E-004 + 105.00000000000000 6.4611301878836087E-004 + 105.06000000000000 6.3213733768426625E-004 + 105.12000000000000 6.1844436063369760E-004 + 105.18000000000001 6.0503001950513698E-004 + 105.23999999999998 5.9189012436399097E-004 + 105.29999999999998 5.7902021946567022E-004 + 105.35999999999999 5.6641590217491921E-004 + 105.41999999999999 5.5407249582642404E-004 + 105.47999999999999 5.4198526666448036E-004 + 105.53999999999999 5.3014938351572823E-004 + 105.59999999999999 5.1855998943539465E-004 + 105.66000000000000 5.0721215832304364E-004 + 105.72000000000000 4.9610092960812016E-004 + 105.78000000000000 4.8522130092745785E-004 + 105.84000000000000 4.7456829942527524E-004 + 105.90000000000001 4.6413697986724364E-004 + 105.96000000000001 4.5392233127416993E-004 + 106.01999999999998 4.4391941543428699E-004 + 106.07999999999998 4.3412342414537878E-004 + 106.13999999999999 4.2452946761822614E-004 + 106.19999999999999 4.1513274540742694E-004 + 106.25999999999999 4.0592854274159592E-004 + 106.31999999999999 3.9691223834587751E-004 + 106.38000000000000 3.8807920822283459E-004 + 106.44000000000000 3.7942493404139583E-004 + 106.50000000000000 3.7094503691773983E-004 + 106.56000000000000 3.6263510615623797E-004 + 106.62000000000000 3.5449092347897282E-004 + 106.68000000000001 3.4650833977356506E-004 + 106.73999999999998 3.3868328434928912E-004 + 106.79999999999998 3.3101183442054441E-004 + 106.85999999999999 3.2349010848108643E-004 + 106.91999999999999 3.1611436445514325E-004 + 106.97999999999999 3.0888097848872059E-004 + 107.03999999999999 3.0178642038677754E-004 + 107.09999999999999 2.9482722239418998E-004 + 107.16000000000000 2.8800011502283312E-004 + 107.22000000000000 2.8130186997420782E-004 + 107.28000000000000 2.7472938724231881E-004 + 107.34000000000000 2.6827964636897799E-004 + 107.40000000000001 2.6194980444728443E-004 + 107.46000000000001 2.5573705590951510E-004 + 107.51999999999998 2.4963876636391845E-004 + 107.57999999999998 2.4365233077009119E-004 + 107.63999999999999 2.3777531502461817E-004 + 107.69999999999999 2.3200529739061357E-004 + 107.75999999999999 2.2634003779360175E-004 + 107.81999999999999 2.2077735952962424E-004 + 107.88000000000000 2.1531518443299779E-004 + 107.94000000000000 2.0995147994732054E-004 + 108.00000000000000 2.0468429654974966E-004 + 108.06000000000000 1.9951180229950237E-004 + 108.12000000000000 1.9443215756610057E-004 + 108.18000000000001 1.8944364374446737E-004 + 108.23999999999998 1.8454456780325567E-004 + 108.29999999999998 1.7973328679696704E-004 + 108.35999999999999 1.7500821259409973E-004 + 108.41999999999999 1.7036779336092019E-004 + 108.47999999999999 1.6581050758821380E-004 + 108.53999999999999 1.6133491086363599E-004 + 108.59999999999999 1.5693956095898210E-004 + 108.66000000000000 1.5262307898013098E-004 + 108.72000000000000 1.4838411795509111E-004 + 108.78000000000000 1.4422135090411809E-004 + 108.84000000000000 1.4013351107438899E-004 + 108.90000000000001 1.3611936717173955E-004 + 108.96000000000001 1.3217771446536418E-004 + 109.01999999999998 1.2830740822917383E-004 + 109.07999999999998 1.2450730970094381E-004 + 109.13999999999999 1.2077631206487002E-004 + 109.19999999999999 1.1711334136837147E-004 + 109.25999999999999 1.1351735801323466E-004 + 109.31999999999999 1.0998732105531238E-004 + 109.38000000000000 1.0652219952216797E-004 + 109.44000000000000 1.0312098668757697E-004 + 109.50000000000000 9.9782682340150271E-005 + 109.56000000000000 9.6506273794571000E-005 + 109.62000000000000 9.3290756998152689E-005 + 109.68000000000001 9.0135137217726429E-005 + 109.73999999999998 8.7038400550306115E-005 + 109.79999999999998 8.3999542110640307E-005 + 109.85999999999999 8.1017545724000278E-005 + 109.91999999999999 7.8091406030246488E-005 + 109.97999999999999 7.5220103220023757E-005 + 110.03999999999999 7.2402627912754712E-005 + 110.09999999999999 6.9637976622515508E-005 + 110.16000000000000 6.6925146416103038E-005 + 110.22000000000000 6.4263129927157972E-005 + 110.28000000000000 6.1650933913916247E-005 + 110.34000000000000 5.9087556925752204E-005 + 110.40000000000001 5.6572015787078635E-005 + 110.46000000000001 5.4103320434442103E-005 + 110.51999999999998 5.1680477541109554E-005 + 110.57999999999998 4.9302502494432738E-005 + 110.63999999999999 4.6968400952461718E-005 + 110.69999999999999 4.4677184995308114E-005 + 110.75999999999999 4.2427854972038762E-005 + 110.81999999999999 4.0219407991116513E-005 + 110.88000000000000 3.8050839595661776E-005 + 110.94000000000000 3.5921141596772262E-005 + 111.00000000000000 3.3829300086579545E-005 + 111.06000000000000 3.1774304265948826E-005 + 111.12000000000000 2.9755141683601878E-005 + 111.18000000000001 2.7770798175129147E-005 + 111.23999999999998 2.5820266806664883E-005 + 111.29999999999998 2.3902544263689407E-005 + 111.35999999999999 2.2016628294528587E-005 + 111.41999999999999 2.0161530837124649E-005 + 111.47999999999999 1.8336268459621770E-005 + 111.53999999999999 1.6539866339576872E-005 + 111.59999999999999 1.4771362679984062E-005 + 111.66000000000000 1.3029803041911289E-005 + 111.72000000000000 1.1314243974419210E-005 + 111.78000000000000 9.6237549971194911E-006 + 111.84000000000000 7.9574147078461464E-006 + 111.90000000000001 6.3143171066862100E-006 + 111.96000000000001 4.6935657071152181E-006 + 112.01999999999998 3.0942821706388387E-006 + 112.07999999999998 1.5156017152584771E-006 + 112.13999999999999 -4.3322474469092002E-008 + 112.19999999999999 -1.5833183170021125E-006 + 112.25999999999999 -3.1051891926772817E-006 + 112.31999999999999 -4.6097167170612113E-006 + 112.38000000000000 -6.0976523301054850E-006 + 112.44000000000000 -7.5697202638541693E-006 + 112.50000000000000 -9.0266102949378903E-006 + 112.56000000000000 -1.0468976864355715E-005 + 112.62000000000000 -1.1897435386879075E-005 + 112.68000000000001 -1.3312561694478170E-005 + 112.73999999999998 -1.4714888417837640E-005 + 112.79999999999998 -1.6104903752985921E-005 + 112.85999999999999 -1.7483048949314391E-005 + 112.91999999999999 -1.8849717791820795E-005 + 112.97999999999999 -2.0205254400079104E-005 + 113.03999999999999 -2.1549956282891408E-005 + 113.09999999999999 -2.2884068293750110E-005 + 113.16000000000000 -2.4207790187945896E-005 + 113.22000000000000 -2.5521267275490817E-005 + 113.28000000000000 -2.6824604497207498E-005 + 113.34000000000000 -2.8117854201851832E-005 + 113.40000000000001 -2.9401022822252238E-005 + 113.46000000000001 -3.0674078865671343E-005 + 113.51999999999998 -3.1936939805104311E-005 + 113.57999999999998 -3.3189489812629431E-005 + 113.63999999999999 -3.4431573583178610E-005 + 113.69999999999999 -3.5662995600328537E-005 + 113.75999999999999 -3.6883528204105779E-005 + 113.81999999999999 -3.8092907218029515E-005 + 113.88000000000000 -3.9290841726404375E-005 + 113.94000000000000 -4.0477003083181238E-005 + 114.00000000000000 -4.1651041657564657E-005 + 114.06000000000000 -4.2812580044632405E-005 + 114.12000000000000 -4.3961213665831577E-005 + 114.18000000000001 -4.5096523647956475E-005 + 114.23999999999998 -4.6218061307126731E-005 + 114.29999999999998 -4.7325365800366348E-005 + 114.35999999999999 -4.8417969605385897E-005 + 114.41999999999999 -4.9495392293630848E-005 + 114.47999999999999 -5.0557150305689889E-005 + 114.53999999999999 -5.1602760635980442E-005 + 114.59999999999999 -5.2631746725481638E-005 + 114.66000000000000 -5.3643640384992716E-005 + 114.72000000000000 -5.4637993017270170E-005 + 114.78000000000000 -5.5614378489559179E-005 + 114.84000000000000 -5.6572399602078721E-005 + 114.90000000000001 -5.7511683546043788E-005 + 114.96000000000001 -5.8431904924590811E-005 + 115.01999999999998 -5.9332768231135337E-005 + 115.07999999999998 -6.0214024324252902E-005 + 115.13999999999999 -6.1075471480552727E-005 + 115.19999999999999 -6.1916946382389794E-005 + 115.25999999999999 -6.2738343240832168E-005 + 115.31999999999999 -6.3539584486733660E-005 + 115.38000000000000 -6.4320650566196082E-005 + 115.44000000000000 -6.5081551885446775E-005 + 115.50000000000000 -6.5822350333888873E-005 + 115.56000000000000 -6.6543130574163776E-005 + 115.62000000000000 -6.7244025260281790E-005 + 115.68000000000001 -6.7925190386663016E-005 + 115.73999999999998 -6.8586815054788632E-005 + 115.79999999999998 -6.9229110355652917E-005 + 115.85999999999999 -6.9852313868540528E-005 + 115.91999999999999 -7.0456688649656171E-005 + 115.97999999999999 -7.1042520618284000E-005 + 116.03999999999999 -7.1610114286723640E-005 + 116.09999999999999 -7.2159798080343753E-005 + 116.16000000000000 -7.2691917989549636E-005 + 116.22000000000000 -7.3206854755988757E-005 + 116.28000000000000 -7.3704993946062267E-005 + 116.34000000000000 -7.4186744190631547E-005 + 116.40000000000001 -7.4652540193326190E-005 + 116.46000000000001 -7.5102832494709196E-005 + 116.51999999999998 -7.5538094520954154E-005 + 116.57999999999998 -7.5958794758962994E-005 + 116.63999999999999 -7.6365440793967846E-005 + 116.69999999999999 -7.6758516052614093E-005 + 116.75999999999999 -7.7138538744649457E-005 + 116.81999999999999 -7.7506011765329392E-005 + 116.88000000000000 -7.7861427714768841E-005 + 116.94000000000000 -7.8205284439717183E-005 + 117.00000000000000 -7.8538055869991792E-005 + 117.06000000000000 -7.8860193141882520E-005 + 117.12000000000000 -7.9172135580558791E-005 + 117.18000000000001 -7.9474284014748668E-005 + 117.23999999999998 -7.9767013307901463E-005 + 117.29999999999998 -8.0050672133867085E-005 + 117.35999999999999 -8.0325571722486615E-005 + 117.41999999999999 -8.0591984256153713E-005 + 117.47999999999999 -8.0850163869069288E-005 + 117.53999999999999 -8.1100315143052665E-005 + 117.59999999999999 -8.1342624231621154E-005 + 117.66000000000000 -8.1577242710448848E-005 + 117.72000000000000 -8.1804309772232610E-005 + 117.78000000000000 -8.2023941563693777E-005 + 117.84000000000000 -8.2236231621174433E-005 + 117.90000000000001 -8.2441255965882664E-005 + 117.96000000000001 -8.2639085125222727E-005 + 118.01999999999998 -8.2829780852706065E-005 + 118.07999999999998 -8.3013406368350726E-005 + 118.13999999999999 -8.3190007926906915E-005 + 118.19999999999999 -8.3359626795325413E-005 + 118.25999999999999 -8.3522301042303164E-005 + 118.31999999999999 -8.3678065885957681E-005 + 118.38000000000000 -8.3826946188505469E-005 + 118.44000000000000 -8.3968962435879399E-005 + 118.50000000000000 -8.4104118243562002E-005 + 118.56000000000000 -8.4232399997188749E-005 + 118.62000000000000 -8.4353797701003814E-005 + 118.68000000000001 -8.4468286866099538E-005 + 118.73999999999998 -8.4575813833371241E-005 + 118.79999999999998 -8.4676336442052793E-005 + 118.85999999999999 -8.4769789731729096E-005 + 118.91999999999999 -8.4856106561676924E-005 + 118.97999999999999 -8.4935215335779968E-005 + 119.03999999999999 -8.5007051674833799E-005 + 119.09999999999999 -8.5071561475552656E-005 + 119.16000000000000 -8.5128681973196043E-005 + 119.22000000000000 -8.5178385250702436E-005 + 119.28000000000000 -8.5220649988678428E-005 + 119.34000000000000 -8.5255476497705072E-005 + 119.40000000000001 -8.5282887104819251E-005 + 119.46000000000001 -8.5302932983001339E-005 + 119.51999999999998 -8.5315692003648725E-005 + 119.57999999999998 -8.5321262761743020E-005 + 119.63999999999999 -8.5319773230830060E-005 + 119.69999999999999 -8.5311370276462768E-005 + 119.75999999999999 -8.5296220710361220E-005 + 119.81999999999999 -8.5274503418488384E-005 + 119.88000000000000 -8.5246417384226360E-005 + 119.94000000000000 -8.5212171862887958E-005 + 120.00000000000000 -8.5171980243146516E-005 + 120.06000000000000 -8.5126055431575275E-005 + 120.12000000000000 -8.5074623988702308E-005 + 120.18000000000001 -8.5017909050513022E-005 + 120.23999999999998 -8.4956124744535235E-005 + 120.29999999999998 -8.4889497496070781E-005 + 120.35999999999999 -8.4818242994231331E-005 + 120.41999999999999 -8.4742580220345114E-005 + 120.47999999999999 -8.4662727618198180E-005 + 120.53999999999999 -8.4578914133914590E-005 + 120.59999999999999 -8.4491352343221563E-005 + 120.66000000000000 -8.4400275903764033E-005 + 120.72000000000000 -8.4305913485796486E-005 + 120.78000000000000 -8.4208507645380624E-005 + 120.84000000000000 -8.4108314515645273E-005 + 120.90000000000001 -8.4005598188728728E-005 + 120.95999999999998 -8.3900630543546338E-005 + 121.01999999999998 -8.3793702402661753E-005 + 121.07999999999998 -8.3685130730043228E-005 + 121.13999999999999 -8.3575237710459144E-005 + 121.19999999999999 -8.3464361226993520E-005 + 121.25999999999999 -8.3352863752362004E-005 + 121.31999999999999 -8.3241113710427940E-005 + 121.38000000000000 -8.3129508158609467E-005 + 121.44000000000000 -8.3018459671766766E-005 + 121.50000000000000 -8.2908385557356102E-005 + 121.56000000000000 -8.2799724045226381E-005 + 121.62000000000000 -8.2692928461463732E-005 + 121.68000000000001 -8.2588446723737554E-005 + 121.73999999999998 -8.2486735713097631E-005 + 121.79999999999998 -8.2388276209852433E-005 + 121.85999999999999 -8.2293539766726479E-005 + 121.91999999999999 -8.2202995116809169E-005 + 121.97999999999999 -8.2117119115702558E-005 + 122.03999999999999 -8.2036374803968689E-005 + 122.09999999999999 -8.1961242328467456E-005 + 122.16000000000000 -8.1892166819722025E-005 + 122.22000000000000 -8.1829622162777479E-005 + 122.28000000000000 -8.1774057575185430E-005 + 122.34000000000000 -8.1725916522936356E-005 + 122.40000000000001 -8.1685642814364280E-005 + 122.45999999999998 -8.1653677841495755E-005 + 122.51999999999998 -8.1630451728151185E-005 + 122.57999999999998 -8.1616390072966751E-005 + 122.63999999999999 -8.1611914196781768E-005 + 122.69999999999999 -8.1617426900676418E-005 + 122.75999999999999 -8.1633312301532558E-005 + 122.81999999999999 -8.1659962417070746E-005 + 122.88000000000000 -8.1697735223323643E-005 + 122.94000000000000 -8.1746956101973241E-005 + 123.00000000000000 -8.1807956214932293E-005 + 123.06000000000000 -8.1881001436527110E-005 + 123.12000000000000 -8.1966346925904014E-005 + 123.18000000000001 -8.2064199338797834E-005 + 123.23999999999998 -8.2174731013492919E-005 + 123.29999999999998 -8.2298063751486895E-005 + 123.35999999999999 -8.2434285482070171E-005 + 123.41999999999999 -8.2583434127883482E-005 + 123.47999999999999 -8.2745495839455914E-005 + 123.53999999999999 -8.2920415012777222E-005 + 123.59999999999999 -8.3108093560481917E-005 + 123.66000000000000 -8.3308383589817891E-005 + 123.72000000000000 -8.3521098101097384E-005 + 123.78000000000000 -8.3746013707483276E-005 + 123.84000000000000 -8.3982864713330165E-005 + 123.90000000000001 -8.4231356864628519E-005 + 123.95999999999998 -8.4491148409077414E-005 + 124.01999999999998 -8.4761874455447543E-005 + 124.07999999999998 -8.5043149073960769E-005 + 124.13999999999999 -8.5334550356019472E-005 + 124.19999999999999 -8.5635628911305604E-005 + 124.25999999999999 -8.5945918312820403E-005 + 124.31999999999999 -8.6264927688800588E-005 + 124.38000000000000 -8.6592145875427217E-005 + 124.44000000000000 -8.6927044035218468E-005 + 124.50000000000000 -8.7269091775354929E-005 + 124.56000000000000 -8.7617732531073802E-005 + 124.62000000000000 -8.7972418878992870E-005 + 124.68000000000001 -8.8332594859348500E-005 + 124.73999999999998 -8.8697697621959232E-005 + 124.79999999999998 -8.9067177307802276E-005 + 124.85999999999999 -8.9440482701581476E-005 + 124.91999999999999 -8.9817076162719792E-005 + 124.97999999999999 -9.0196427774274270E-005 + 125.03999999999999 -9.0578033616569597E-005 + 125.09999999999999 -9.0961391192183205E-005 + 125.16000000000000 -9.1346019125930632E-005 + 125.22000000000000 -9.1731460683353925E-005 + 125.28000000000000 -9.2117271348580052E-005 + 125.34000000000000 -9.2503028802575700E-005 + 125.40000000000001 -9.2888337941766133E-005 + 125.45999999999998 -9.3272830655520669E-005 + 125.51999999999998 -9.3656146263718191E-005 + 125.57999999999998 -9.4037963451940902E-005 + 125.63999999999999 -9.4417989246845004E-005 + 125.69999999999999 -9.4795941825953262E-005 + 125.75999999999999 -9.5171598630468954E-005 + 125.81999999999999 -9.5544750139720162E-005 + 125.88000000000000 -9.5915239542682191E-005 + 125.94000000000000 -9.6282921156787320E-005 + 126.00000000000000 -9.6647709404651841E-005 + 126.06000000000000 -9.7009557103763070E-005 + 126.12000000000000 -9.7368434881014683E-005 + 126.18000000000001 -9.7724368301019770E-005 + 126.23999999999998 -9.8077405487995357E-005 + 126.29999999999998 -9.8427634479579063E-005 + 126.35999999999999 -9.8775174911123199E-005 + 126.41999999999999 -9.9120165094774019E-005 + 126.47999999999999 -9.9462759780324204E-005 + 126.53999999999999 -9.9803140414723421E-005 + 126.59999999999999 -1.0014149169594385E-004 + 126.66000000000000 -1.0047801618110936E-004 + 126.72000000000000 -1.0081292647600637E-004 + 126.78000000000000 -1.0114641531003118E-004 + 126.84000000000000 -1.0147870693764909E-004 + 126.90000000000001 -1.0181000355379627E-004 + 126.95999999999998 -1.0214050510751680E-004 + 127.01999999999998 -1.0247041516351664E-004 + 127.07999999999998 -1.0279993504046449E-004 + 127.13999999999999 -1.0312925131332381E-004 + 127.19999999999999 -1.0345855845537390E-004 + 127.25999999999999 -1.0378803477483540E-004 + 127.31999999999999 -1.0411784458787852E-004 + 127.38000000000000 -1.0444815220819100E-004 + 127.44000000000000 -1.0477910996007260E-004 + 127.50000000000000 -1.0511085536344299E-004 + 127.56000000000000 -1.0544350314731606E-004 + 127.62000000000000 -1.0577715120994192E-004 + 127.68000000000001 -1.0611187089094806E-004 + 127.73999999999998 -1.0644771126629050E-004 + 127.79999999999998 -1.0678469213578084E-004 + 127.85999999999999 -1.0712279754922714E-004 + 127.91999999999999 -1.0746198037689874E-004 + 127.97999999999999 -1.0780215586434663E-004 + 128.03999999999999 -1.0814320157117225E-004 + 128.09999999999999 -1.0848495863739459E-004 + 128.16000000000000 -1.0882722951888294E-004 + 128.22000000000000 -1.0916977501757973E-004 + 128.28000000000000 -1.0951233628582519E-004 + 128.34000000000000 -1.0985458665098755E-004 + 128.40000000000001 -1.1019620355951291E-004 + 128.45999999999998 -1.1053680382199474E-004 + 128.51999999999998 -1.1087597591922083E-004 + 128.57999999999998 -1.1121328591300796E-004 + 128.63999999999999 -1.1154826994945684E-004 + 128.69999999999999 -1.1188041621630062E-004 + 128.75999999999999 -1.1220919378197528E-004 + 128.81999999999999 -1.1253405317659268E-004 + 128.88000000000000 -1.1285439374150407E-004 + 128.94000000000000 -1.1316961038665362E-004 + 129.00000000000000 -1.1347904899044841E-004 + 129.06000000000000 -1.1378203596650994E-004 + 129.12000000000000 -1.1407786695931025E-004 + 129.18000000000001 -1.1436583668403468E-004 + 129.23999999999998 -1.1464518488240912E-004 + 129.29999999999998 -1.1491514610549183E-004 + 129.35999999999999 -1.1517493202251932E-004 + 129.41999999999999 -1.1542373633887069E-004 + 129.47999999999999 -1.1566072795808543E-004 + 129.53999999999999 -1.1588506453836889E-004 + 129.59999999999999 -1.1609588825829814E-004 + 129.66000000000000 -1.1629232221499040E-004 + 129.72000000000000 -1.1647346943473111E-004 + 129.78000000000000 -1.1663843217705505E-004 + 129.84000000000000 -1.1678628350969432E-004 + 129.90000000000001 -1.1691608343219353E-004 + 129.95999999999998 -1.1702687691960922E-004 + 130.01999999999998 -1.1711769637974239E-004 + 130.07999999999998 -1.1718755297137340E-004 + 130.13999999999999 -1.1723545423903264E-004 + 130.19999999999999 -1.1726038300246080E-004 + 130.25999999999999 -1.1726131791220494E-004 + 130.31999999999999 -1.1723723614644362E-004 + 130.38000000000000 -1.1718709434700048E-004 + 130.44000000000000 -1.1710985723047511E-004 + 130.50000000000000 -1.1700448085421706E-004 + 130.56000000000000 -1.1686993464844117E-004 + 130.62000000000000 -1.1670519026782881E-004 + 130.68000000000001 -1.1650922657716167E-004 + 130.73999999999998 -1.1628103944669523E-004 + 130.79999999999998 -1.1601964344255548E-004 + 130.85999999999999 -1.1572406395636870E-004 + 130.91999999999999 -1.1539335746942424E-004 + 130.97999999999999 -1.1502660707359019E-004 + 131.03999999999999 -1.1462292087662281E-004 + 131.09999999999999 -1.1418143647362697E-004 + 131.16000000000000 -1.1370131291316194E-004 + 131.22000000000000 -1.1318175638934698E-004 + 131.28000000000000 -1.1262199752071842E-004 + 131.34000000000000 -1.1202131743871300E-004 + 131.40000000000001 -1.1137902016579891E-004 + 131.45999999999998 -1.1069446607232675E-004 + 131.51999999999998 -1.0996704472776790E-004 + 131.57999999999998 -1.0919619667062533E-004 + 131.63999999999999 -1.0838141049204986E-004 + 131.69999999999999 -1.0752220666493802E-004 + 131.75999999999999 -1.0661816600200987E-004 + 131.81999999999999 -1.0566890435407639E-004 + 131.88000000000000 -1.0467408889614348E-004 + 131.94000000000000 -1.0363343385375289E-004 + 132.00000000000000 -1.0254669173126388E-004 + 132.06000000000000 -1.0141366590841760E-004 + 132.12000000000000 -1.0023419105561350E-004 + 132.18000000000001 -9.9008166563425309E-005 + 132.23999999999998 -9.7735510636243533E-005 + 132.29999999999998 -9.6416196503593379E-005 + 132.35999999999999 -9.5050237503917960E-005 + 132.41999999999999 -9.3637676366991709E-005 + 132.47999999999999 -9.2178616155501618E-005 + 132.53999999999999 -9.0673195291036412E-005 + 132.59999999999999 -8.9121601336280523E-005 + 132.66000000000000 -8.7524051636029258E-005 + 132.72000000000000 -8.5880829699279493E-005 + 132.78000000000000 -8.4192248540390305E-005 + 132.84000000000000 -8.2458677389905672E-005 + 132.90000000000001 -8.0680526108040237E-005 + 132.95999999999998 -7.8858240233205232E-005 + 133.01999999999998 -7.6992314871053856E-005 + 133.07999999999998 -7.5083272968386256E-005 + 133.13999999999999 -7.3131682027968337E-005 + 133.19999999999999 -7.1138124415854513E-005 + 133.25999999999999 -6.9103216778706387E-005 + 133.31999999999999 -6.7027591668995204E-005 + 133.38000000000000 -6.4911898884006998E-005 + 133.44000000000000 -6.2756798376576405E-005 + 133.50000000000000 -6.0562956230564654E-005 + 133.56000000000000 -5.8331047262624256E-005 + 133.62000000000000 -5.6061748327023263E-005 + 133.68000000000001 -5.3755746156217016E-005 + 133.73999999999998 -5.1413720082182999E-005 + 133.79999999999998 -4.9036364598090871E-005 + 133.85999999999999 -4.6624384762640266E-005 + 133.91999999999999 -4.4178488144754744E-005 + 133.97999999999999 -4.1699394304661040E-005 + 134.03999999999999 -3.9187847582728432E-005 + 134.09999999999999 -3.6644607534485146E-005 + 134.16000000000000 -3.4070460532501244E-005 + 134.22000000000000 -3.1466207384305549E-005 + 134.28000000000000 -2.8832684260719738E-005 + 134.34000000000000 -2.6170748240123129E-005 + 134.40000000000001 -2.3481282022602460E-005 + 134.45999999999998 -2.0765194843418213E-005 + 134.51999999999998 -1.8023420493920730E-005 + 134.57999999999998 -1.5256911445442277E-005 + 134.63999999999999 -1.2466641939823300E-005 + 134.69999999999999 -9.6536016948944217E-006 + 134.75999999999999 -6.8187971871280467E-006 + 134.81999999999999 -3.9632466225958372E-006 + 134.88000000000000 -1.0879820676178837E-006 + 134.94000000000000 1.8059542457445759E-006 + 135.00000000000000 4.7175097070619942E-006 + 135.06000000000000 7.6456179679586843E-006 + 135.12000000000000 1.0589200496055137E-005 + 135.18000000000001 1.3547162837153318E-005 + 135.23999999999998 1.6518394415426240E-005 + 135.29999999999998 1.9501763273056096E-005 + 135.35999999999999 2.2496117048641141E-005 + 135.41999999999999 2.5500278626738296E-005 + 135.47999999999999 2.8513041184646029E-005 + 135.53999999999999 3.1533172020360410E-005 + 135.59999999999999 3.4559411184850741E-005 + 135.66000000000000 3.7590469698802304E-005 + 135.72000000000000 4.0625025011133387E-005 + 135.78000000000000 4.3661731923942584E-005 + 135.84000000000000 4.6699216673925988E-005 + 135.90000000000001 4.9736087646199915E-005 + 135.95999999999998 5.2770930428445930E-005 + 136.01999999999998 5.5802319369635378E-005 + 136.07999999999998 5.8828815380641356E-005 + 136.13999999999999 6.1848979023401148E-005 + 136.19999999999999 6.4861356338414492E-005 + 136.25999999999999 6.7864514994949178E-005 + 136.31999999999999 7.0857019439978465E-005 + 136.38000000000000 7.3837435801471046E-005 + 136.44000000000000 7.6804355848246667E-005 + 136.50000000000000 7.9756389647850877E-005 + 136.56000000000000 8.2692149084843511E-005 + 136.62000000000000 8.5610286179032676E-005 + 136.68000000000001 8.8509463523147439E-005 + 136.73999999999998 9.1388374065718640E-005 + 136.79999999999998 9.4245722548907441E-005 + 136.85999999999999 9.7080240601824880E-005 + 136.91999999999999 9.9890695214847178E-005 + 136.97999999999999 1.0267586390127861E-004 + 137.03999999999999 1.0543456540453062E-004 + 137.09999999999999 1.0816563604487861E-004 + 137.16000000000000 1.1086793984857495E-004 + 137.22000000000000 1.1354037428263088E-004 + 137.28000000000000 1.1618188304670084E-004 + 137.34000000000000 1.1879142444903268E-004 + 137.40000000000001 1.2136800004818591E-004 + 137.45999999999998 1.2391066882995336E-004 + 137.51999999999998 1.2641850920048977E-004 + 137.57999999999998 1.2889067205086390E-004 + 137.63999999999999 1.3132634991641463E-004 + 137.69999999999999 1.3372476966318537E-004 + 137.75999999999999 1.3608524761555578E-004 + 137.81999999999999 1.3840712584142293E-004 + 137.88000000000000 1.4068981972664645E-004 + 137.94000000000000 1.4293279550921340E-004 + 138.00000000000000 1.4513558881748976E-004 + 138.06000000000000 1.4729776738561567E-004 + 138.12000000000000 1.4941897945225922E-004 + 138.18000000000001 1.5149891798795339E-004 + 138.23999999999998 1.5353732012947472E-004 + 138.29999999999998 1.5553399712356838E-004 + 138.35999999999999 1.5748878775726782E-004 + 138.41999999999999 1.5940157823763059E-004 + 138.47999999999999 1.6127231026363657E-004 + 138.53999999999999 1.6310094776609323E-004 + 138.59999999999999 1.6488752512288030E-004 + 138.66000000000000 1.6663207891299493E-004 + 138.72000000000000 1.6833472720053182E-004 + 138.78000000000000 1.6999561419772655E-004 + 138.84000000000000 1.7161491694017339E-004 + 138.90000000000001 1.7319287530969245E-004 + 138.95999999999998 1.7472977447449147E-004 + 139.01999999999998 1.7622592639732047E-004 + 139.07999999999998 1.7768170403640216E-004 + 139.13999999999999 1.7909754747482402E-004 + 139.19999999999999 1.8047392774013586E-004 + 139.25999999999999 1.8181140609284716E-004 + 139.31999999999999 1.8311056361829681E-004 + 139.38000000000000 1.8437208372544121E-004 + 139.44000000000000 1.8559666307474632E-004 + 139.50000000000000 1.8678508796729151E-004 + 139.56000000000000 1.8793819672955416E-004 + 139.62000000000000 1.8905689001508320E-004 + 139.68000000000001 1.9014214105912090E-004 + 139.73999999999998 1.9119497793230797E-004 + 139.79999999999998 1.9221650099918229E-004 + 139.85999999999999 1.9320785680778467E-004 + 139.91999999999999 1.9417026600291524E-004 + 139.97999999999999 1.9510503090306802E-004 + 140.03999999999999 1.9601350915164232E-004 + 140.09999999999999 1.9689714097357377E-004 + 140.16000000000000 1.9775744800900547E-004 + 140.22000000000000 1.9859603038087457E-004 + 140.28000000000000 1.9941455627306101E-004 + 140.34000000000000 2.0021480572327628E-004 + 140.40000000000001 2.0099862033444655E-004 + 140.45999999999998 2.0176797076268795E-004 + 140.51999999999998 2.0252490939435711E-004 + 140.57999999999998 2.0327159303057990E-004 + 140.63999999999999 2.0401028718027800E-004 + 140.69999999999999 2.0474331984892579E-004 + 140.75999999999999 2.0547314720144815E-004 + 140.81999999999999 2.0620232854632613E-004 + 140.88000000000000 2.0693348138342712E-004 + 140.94000000000000 2.0766934812437254E-004 + 141.00000000000000 2.0841274139879102E-004 + 141.06000000000000 2.0916656889275040E-004 + 141.12000000000000 2.0993378564174438E-004 + 141.18000000000001 2.1071743449689356E-004 + 141.23999999999998 2.1152061998151730E-004 + 141.29999999999998 2.1234652193443746E-004 + 141.35999999999999 2.1319835611791521E-004 + 141.41999999999999 2.1407943423183980E-004 + 141.47999999999999 2.1499305919330306E-004 + 141.53999999999999 2.1594264704138683E-004 + 141.59999999999999 2.1693161298095033E-004 + 141.66000000000000 2.1796343079850313E-004 + 141.72000000000000 2.1904163865646241E-004 + 141.78000000000000 2.2016978588202868E-004 + 141.84000000000000 2.2135144416355663E-004 + 141.90000000000001 2.2259025569642160E-004 + 141.95999999999998 2.2388983054829475E-004 + 142.01999999999998 2.2525379958123000E-004 + 142.07999999999998 2.2668580984677679E-004 + 142.13999999999999 2.2818944035108343E-004 + 142.19999999999999 2.2976828289797944E-004 + 142.25999999999999 2.3142587342382098E-004 + 142.31999999999999 2.3316569729664598E-004 + 142.38000000000000 2.3499112971105333E-004 + 142.44000000000000 2.3690546092911151E-004 + 142.50000000000000 2.3891188353149234E-004 + 142.56000000000000 2.4101345612952414E-004 + 142.62000000000000 2.4321309679170363E-004 + 142.68000000000001 2.4551357523461108E-004 + 142.73999999999998 2.4791751836882037E-004 + 142.79999999999998 2.5042735665418248E-004 + 142.85999999999999 2.5304533881547408E-004 + 142.91999999999999 2.5577354595261140E-004 + 142.97999999999999 2.5861385223498537E-004 + 143.03999999999999 2.6156793969424574E-004 + 143.09999999999999 2.6463732058798440E-004 + 143.16000000000000 2.6782323655978992E-004 + 143.22000000000000 2.7112675652501424E-004 + 143.28000000000000 2.7454874275962068E-004 + 143.34000000000000 2.7808977438346482E-004 + 143.40000000000001 2.8175026097570756E-004 + 143.45999999999998 2.8553034388562320E-004 + 143.51999999999998 2.8942991804153234E-004 + 143.57999999999998 2.9344856296045351E-004 + 143.63999999999999 2.9758565960492456E-004 + 143.69999999999999 3.0184027521188540E-004 + 143.75999999999999 3.0621118445380024E-004 + 143.81999999999999 3.1069684625142739E-004 + 143.88000000000000 3.1529546080382305E-004 + 143.94000000000000 3.2000485939805991E-004 + 144.00000000000000 3.2482261303807967E-004 + 144.06000000000000 3.2974593757918469E-004 + 144.12000000000000 3.3477177278848201E-004 + 144.18000000000001 3.3989672568768986E-004 + 144.23999999999998 3.4511709395342402E-004 + 144.29999999999998 3.5042888099308660E-004 + 144.35999999999999 3.5582777410320159E-004 + 144.41999999999999 3.6130926609149978E-004 + 144.47999999999999 3.6686845701580889E-004 + 144.53999999999999 3.7250025402359215E-004 + 144.59999999999999 3.7819934031954513E-004 + 144.66000000000000 3.8396010120065520E-004 + 144.72000000000000 3.8977669869847775E-004 + 144.78000000000000 3.9564315058386037E-004 + 144.84000000000000 4.0155318641059309E-004 + 144.90000000000001 4.0750040119912485E-004 + 144.95999999999998 4.1347821203463692E-004 + 145.01999999999998 4.1947985831974097E-004 + 145.07999999999998 4.2549840075448028E-004 + 145.13999999999999 4.3152680450712075E-004 + 145.19999999999999 4.3755784857393403E-004 + 145.25999999999999 4.4358421704075420E-004 + 145.31999999999999 4.4959852775924169E-004 + 145.38000000000000 4.5559324563525748E-004 + 145.44000000000000 4.6156081176978108E-004 + 145.50000000000000 4.6749356857883189E-004 + 145.56000000000000 4.7338378192368348E-004 + 145.62000000000000 4.7922374435670282E-004 + 145.68000000000001 4.8500570159448259E-004 + 145.73999999999998 4.9072189627961471E-004 + 145.79999999999998 4.9636456940427428E-004 + 145.85999999999999 5.0192599585120669E-004 + 145.91999999999999 5.0739854433363854E-004 + 145.97999999999999 5.1277460759393645E-004 + 146.03999999999999 5.1804667328215473E-004 + 146.09999999999999 5.2320737025947470E-004 + 146.16000000000000 5.2824934298456821E-004 + 146.22000000000000 5.3316552911573186E-004 + 146.28000000000000 5.3794889653780808E-004 + 146.34000000000000 5.4259253659794224E-004 + 146.40000000000001 5.4708996722539435E-004 + 146.45999999999998 5.5143458528119130E-004 + 146.51999999999998 5.5562018754126252E-004 + 146.57999999999998 5.5964063263661240E-004 + 146.63999999999999 5.6349006467406757E-004 + 146.69999999999999 5.6716283841382737E-004 + 146.75999999999999 5.7065353059550738E-004 + 146.81999999999999 5.7395681833951738E-004 + 146.88000000000000 5.7706782807676765E-004 + 146.94000000000000 5.7998167806903509E-004 + 147.00000000000000 5.8269380699624361E-004 + 147.06000000000000 5.8519981715811277E-004 + 147.12000000000000 5.8749557140582690E-004 + 147.18000000000001 5.8957711215372379E-004 + 147.23999999999998 5.9144084962047146E-004 + 147.29999999999998 5.9308334174445847E-004 + 147.35999999999999 5.9450134489737714E-004 + 147.41999999999999 5.9569196522179840E-004 + 147.47999999999999 5.9665243358391913E-004 + 147.53999999999999 5.9738039413740035E-004 + 147.59999999999999 5.9787361873609682E-004 + 147.66000000000000 5.9813026896486513E-004 + 147.72000000000000 5.9814866751536206E-004 + 147.78000000000000 5.9792741776107622E-004 + 147.84000000000000 5.9746543679052165E-004 + 147.90000000000001 5.9676186896743600E-004 + 147.95999999999998 5.9581601964132241E-004 + 148.01999999999998 5.9462746104652162E-004 + 148.07999999999998 5.9319608633353553E-004 + 148.13999999999999 5.9152185310135010E-004 + 148.19999999999999 5.8960504397215664E-004 + 148.25999999999999 5.8744601810721477E-004 + 148.31999999999999 5.8504546512019081E-004 + 148.38000000000000 5.8240405263682720E-004 + 148.44000000000000 5.7952280456827719E-004 + 148.50000000000000 5.7640280454520645E-004 + 148.56000000000000 5.7304532444810814E-004 + 148.62000000000000 5.6945178173362304E-004 + 148.68000000000001 5.6562383478287533E-004 + 148.73999999999998 5.6156315594419642E-004 + 148.79999999999998 5.5727173568476064E-004 + 148.85999999999999 5.5275163314918161E-004 + 148.91999999999999 5.4800513682497828E-004 + 148.97999999999999 5.4303465241220289E-004 + 149.03999999999999 5.3784272906899958E-004 + 149.09999999999999 5.3243214862087136E-004 + 149.16000000000000 5.2680580428556586E-004 + 149.22000000000000 5.2096672846614926E-004 + 149.28000000000000 5.1491810212918115E-004 + 149.34000000000000 5.0866331113614779E-004 + 149.40000000000001 5.0220574216188461E-004 + 149.45999999999998 4.9554901322306031E-004 + 149.51999999999998 4.8869678312372271E-004 + 149.57999999999998 4.8165293839748651E-004 + 149.63999999999999 4.7442133739217446E-004 + 149.69999999999999 4.6700605449456582E-004 + 149.75999999999999 4.5941128728089846E-004 + 149.81999999999999 4.5164130721255305E-004 + 149.88000000000000 4.4370049036409969E-004 + 149.94000000000000 4.3559335872769475E-004 + 150.00000000000000 4.2732459274922902E-004 + 150.06000000000000 4.1889892536889573E-004 + 150.12000000000000 4.1032124703948956E-004 + 150.18000000000001 4.0159654579340965E-004 + 150.23999999999998 3.9272996957107889E-004 + 150.29999999999998 3.8372677133905982E-004 + 150.35999999999999 3.7459233558811565E-004 + 150.41999999999999 3.6533212138595256E-004 + 150.47999999999999 3.5595175143789500E-004 + 150.53999999999999 3.4645689452794215E-004 + 150.59999999999999 3.3685332418842130E-004 + 150.66000000000000 3.2714690920739595E-004 + 150.72000000000000 3.1734360522219917E-004 + 150.78000000000000 3.0744943079181661E-004 + 150.84000000000000 2.9747053230018471E-004 + 150.90000000000001 2.8741304528298795E-004 + 150.95999999999998 2.7728322998115767E-004 + 151.01999999999998 2.6708737356056421E-004 + 151.07999999999998 2.5683184624950397E-004 + 151.13999999999999 2.4652308080725673E-004 + 151.19999999999999 2.3616752307611673E-004 + 151.25999999999999 2.2577170708833519E-004 + 151.31999999999999 2.1534221310736559E-004 + 151.38000000000000 2.0488565563728012E-004 + 151.44000000000000 1.9440867254613437E-004 + 151.50000000000000 1.8391797796705962E-004 + 151.56000000000000 1.7342026561476074E-004 + 151.62000000000000 1.6292229345990573E-004 + 151.68000000000001 1.5243081188302983E-004 + 151.73999999999998 1.4195260762424057E-004 + 151.79999999999998 1.3149443964645497E-004 + 151.85999999999999 1.2106312289961879E-004 + 151.91999999999999 1.1066539372301936E-004 + 151.97999999999999 1.0030804087048019E-004 + 152.03999999999999 8.9997795432763438E-005 + 152.09999999999999 7.9741378066468073E-005 + 152.16000000000000 6.9545471846733139E-005 + 152.22000000000000 5.9416724759045288E-005 + 152.28000000000000 4.9361731106179236E-005 + 152.34000000000000 3.9387014199475431E-005 + 152.40000000000001 2.9499042019584078E-005 + 152.45999999999998 1.9704188166371129E-005 + 152.51999999999998 1.0008739178948170E-005 + 152.57999999999998 4.1888050336035664E-007 + 152.63999999999999 -9.0593184085441252E-006 + 152.69999999999999 -1.8419909159841786E-005 + 152.75999999999999 -2.7657068781500457E-005 + 152.81999999999999 -3.6765112480426379E-005 + 152.88000000000000 -4.5738498531374427E-005 + 152.94000000000000 -5.4571826081302094E-005 + 153.00000000000000 -6.3259844276953781E-005 + 153.06000000000000 -7.1797452763021794E-005 + 153.12000000000000 -8.0179703163896703E-005 + 153.17999999999998 -8.8401804427757827E-005 + 153.23999999999998 -9.6459112391086583E-005 + 153.29999999999998 -1.0434713864127567E-004 + 153.35999999999999 -1.1206156015960088E-004 + 153.41999999999999 -1.1959822144070809E-004 + 153.47999999999999 -1.2695314256559040E-004 + 153.53999999999999 -1.3412249931668685E-004 + 153.59999999999999 -1.4110270731426268E-004 + 153.66000000000000 -1.4789032784169652E-004 + 153.72000000000000 -1.5448215455349693E-004 + 153.78000000000000 -1.6087520954606951E-004 + 153.84000000000000 -1.6706673421502908E-004 + 153.90000000000001 -1.7305421690435067E-004 + 153.95999999999998 -1.7883537657747238E-004 + 154.01999999999998 -1.8440815304645883E-004 + 154.07999999999998 -1.8977076765795318E-004 + 154.13999999999999 -1.9492169360442167E-004 + 154.19999999999999 -1.9985961708661923E-004 + 154.25999999999999 -2.0458347325060758E-004 + 154.31999999999999 -2.0909241586889268E-004 + 154.38000000000000 -2.1338581871738530E-004 + 154.44000000000000 -2.1746328574403552E-004 + 154.50000000000000 -2.2132460419125791E-004 + 154.56000000000000 -2.2496975800477428E-004 + 154.62000000000000 -2.2839894523230794E-004 + 154.67999999999998 -2.3161251492287861E-004 + 154.73999999999998 -2.3461103548438737E-004 + 154.79999999999998 -2.3739524167231530E-004 + 154.85999999999999 -2.3996608261028042E-004 + 154.91999999999999 -2.4232467671546381E-004 + 154.97999999999999 -2.4447232459360278E-004 + 155.03999999999999 -2.4641056718847579E-004 + 155.09999999999999 -2.4814113276648992E-004 + 155.16000000000000 -2.4966594286379050E-004 + 155.22000000000000 -2.5098709425644454E-004 + 155.28000000000000 -2.5210698372823395E-004 + 155.34000000000000 -2.5302807521200972E-004 + 155.40000000000001 -2.5375311729657822E-004 + 155.45999999999998 -2.5428494215933765E-004 + 155.51999999999998 -2.5462662428254329E-004 + 155.57999999999998 -2.5478136279456277E-004 + 155.63999999999999 -2.5475250380686858E-004 + 155.69999999999999 -2.5454350994424740E-004 + 155.75999999999999 -2.5415795732398628E-004 + 155.81999999999999 -2.5359953985956441E-004 + 155.88000000000000 -2.5287201480522889E-004 + 155.94000000000000 -2.5197923713710628E-004 + 156.00000000000000 -2.5092514729511891E-004 + 156.06000000000000 -2.4971374716454490E-004 + 156.12000000000000 -2.4834911635296928E-004 + 156.17999999999998 -2.4683540292803408E-004 + 156.23999999999998 -2.4517678548757890E-004 + 156.29999999999998 -2.4337754231026334E-004 + 156.35999999999999 -2.4144198915940836E-004 + 156.41999999999999 -2.3937450712628328E-004 + 156.47999999999999 -2.3717954582957518E-004 + 156.53999999999999 -2.3486158343413580E-004 + 156.59999999999999 -2.3242517214389893E-004 + 156.66000000000000 -2.2987485814459361E-004 + 156.72000000000000 -2.2721524251851424E-004 + 156.78000000000000 -2.2445095626022997E-004 + 156.84000000000000 -2.2158664810368245E-004 + 156.90000000000001 -2.1862696718222852E-004 + 156.95999999999998 -2.1557657608079530E-004 + 157.01999999999998 -2.1244014551811884E-004 + 157.07999999999998 -2.0922231356602225E-004 + 157.13999999999999 -2.0592771564168714E-004 + 157.19999999999999 -2.0256099769374897E-004 + 157.25999999999999 -1.9912675307945770E-004 + 157.31999999999999 -1.9562957455341204E-004 + 157.38000000000000 -1.9207403266950152E-004 + 157.44000000000000 -1.8846467202851899E-004 + 157.50000000000000 -1.8480598906173691E-004 + 157.56000000000000 -1.8110247495723092E-004 + 157.62000000000000 -1.7735856055212045E-004 + 157.67999999999998 -1.7357864587259022E-004 + 157.73999999999998 -1.6976707998499460E-004 + 157.79999999999998 -1.6592818142481430E-004 + 157.85999999999999 -1.6206622086197684E-004 + 157.91999999999999 -1.5818538166104815E-004 + 157.97999999999999 -1.5428984163466891E-004 + 158.03999999999999 -1.5038368990314774E-004 + 158.09999999999999 -1.4647098194947919E-004 + 158.16000000000000 -1.4255570859130035E-004 + 158.22000000000000 -1.3864181232215025E-004 + 158.28000000000000 -1.3473318393883964E-004 + 158.34000000000000 -1.3083367073410756E-004 + 158.40000000000001 -1.2694707147578799E-004 + 158.45999999999998 -1.2307713590011901E-004 + 158.51999999999998 -1.1922757880456977E-004 + 158.57999999999998 -1.1540205841765235E-004 + 158.63999999999999 -1.1160416118777994E-004 + 158.69999999999999 -1.0783744863090015E-004 + 158.75999999999999 -1.0410539400129895E-004 + 158.81999999999999 -1.0041141102955398E-004 + 158.88000000000000 -9.6758825859799951E-005 + 158.94000000000000 -9.3150893462647536E-005 + 159.00000000000000 -8.9590758911467199E-005 + 159.06000000000000 -8.6081484261916487E-005 + 159.12000000000000 -8.2626028030157546E-005 + 159.17999999999998 -7.9227248162022662E-005 + 159.23999999999998 -7.5887898178132767E-005 + 159.29999999999998 -7.2610631256538914E-005 + 159.35999999999999 -6.9397991299548076E-005 + 159.41999999999999 -6.6252435299804315E-005 + 159.47999999999999 -6.3176317688335077E-005 + 159.53999999999999 -6.0171902463795646E-005 + 159.59999999999999 -5.7241370552474457E-005 + 159.66000000000000 -5.4386801359873185E-005 + 159.72000000000000 -5.1610193430533291E-005 + 159.78000000000000 -4.8913444903372848E-005 + 159.84000000000000 -4.6298352790300021E-005 + 159.90000000000001 -4.3766609413102847E-005 + 159.95999999999998 -4.1319798979551569E-005 + 160.01999999999998 -3.8959371983859064E-005 + 160.07999999999998 -3.6686651687628721E-005 + 160.13999999999999 -3.4502826011930461E-005 + 160.19999999999999 -3.2408927299888384E-005 + 160.25999999999999 -3.0405833800973840E-005 + 160.31999999999999 -2.8494275280128582E-005 + 160.38000000000000 -2.6674818223934064E-005 + 160.44000000000000 -2.4947876370462141E-005 + 160.50000000000000 -2.3313716631501064E-005 + 160.56000000000000 -2.1772462740699990E-005 + 160.62000000000000 -2.0324103219115032E-005 + 160.67999999999998 -1.8968498123439041E-005 + 160.73999999999998 -1.7705392420208491E-005 + 160.79999999999998 -1.6534423075099928E-005 + 160.85999999999999 -1.5455123454365817E-005 + 160.91999999999999 -1.4466931559458157E-005 + 160.97999999999999 -1.3569192218187153E-005 + 161.03999999999999 -1.2761156226318017E-005 + 161.09999999999999 -1.2041981541196711E-005 + 161.16000000000000 -1.1410728963504557E-005 + 161.22000000000000 -1.0866358704348167E-005 + 161.28000000000000 -1.0407725516730739E-005 + 161.34000000000000 -1.0033573905551715E-005 + 161.40000000000001 -9.7425349995843874E-006 + 161.45999999999998 -9.5331233904011834E-006 + 161.51999999999998 -9.4037375134114372E-006 + 161.57999999999998 -9.3526613366527632E-006 + 161.63999999999999 -9.3780693844728264E-006 + 161.69999999999999 -9.4780303306395737E-006 + 161.75999999999999 -9.6505193203109779E-006 + 161.81999999999999 -9.8934247508420797E-006 + 161.88000000000000 -1.0204562400138674E-005 + 161.94000000000000 -1.0581684644954073E-005 + 162.00000000000000 -1.1022492997335914E-005 + 162.06000000000000 -1.1524644137804827E-005 + 162.12000000000000 -1.2085763945111469E-005 + 162.17999999999998 -1.2703451581476880E-005 + 162.23999999999998 -1.3375284722924623E-005 + 162.29999999999998 -1.4098827528429431E-005 + 162.35999999999999 -1.4871626403732701E-005 + 162.41999999999999 -1.5691213114890731E-005 + 162.47999999999999 -1.6555108330138290E-005 + 162.53999999999999 -1.7460812395458409E-005 + 162.59999999999999 -1.8405813670597551E-005 + 162.66000000000000 -1.9387586695892378E-005 + 162.72000000000000 -2.0403584080636478E-005 + 162.78000000000000 -2.1451250726311757E-005 + 162.84000000000000 -2.2528017807842086E-005 + 162.90000000000001 -2.3631308072142820E-005 + 162.95999999999998 -2.4758539114481450E-005 + 163.01999999999998 -2.5907129072396283E-005 + 163.07999999999998 -2.7074503151880015E-005 + 163.13999999999999 -2.8258094289476244E-005 + 163.19999999999999 -2.9455353367395039E-005 + 163.25999999999999 -3.0663747186728411E-005 + 163.31999999999999 -3.1880769163506276E-005 + 163.38000000000000 -3.3103939591129427E-005 + 163.44000000000000 -3.4330805624955918E-005 + 163.50000000000000 -3.5558952762353706E-005 + 163.56000000000000 -3.6785998836558285E-005 + 163.62000000000000 -3.8009611277736377E-005 + 163.67999999999998 -3.9227490732848707E-005 + 163.73999999999998 -4.0437392485443254E-005 + 163.79999999999998 -4.1637118092069436E-005 + 163.85999999999999 -4.2824532889408756E-005 + 163.91999999999999 -4.3997557408687654E-005 + 163.97999999999999 -4.5154180473555013E-005 + 164.03999999999999 -4.6292456981966852E-005 + 164.09999999999999 -4.7410517349835479E-005 + 164.16000000000000 -4.8506558355966896E-005 + 164.22000000000000 -4.9578862219283796E-005 + 164.28000000000000 -5.0625774102450649E-005 + 164.34000000000000 -5.1645721445729354E-005 + 164.40000000000001 -5.2637193569110215E-005 + 164.45999999999998 -5.3598744366620918E-005 + 164.51999999999998 -5.4528995411485006E-005 + 164.57999999999998 -5.5426618457781902E-005 + 164.63999999999999 -5.6290340274761701E-005 + 164.69999999999999 -5.7118935321801907E-005 + 164.75999999999999 -5.7911236556966190E-005 + 164.81999999999999 -5.8666113111069878E-005 + 164.88000000000000 -5.9382501727817287E-005 + 164.94000000000000 -6.0059391409635513E-005 + 165.00000000000000 -6.0695832152075126E-005 + 165.06000000000000 -6.1290953499879331E-005 + 165.12000000000000 -6.1843965036013283E-005 + 165.17999999999998 -6.2354160085993174E-005 + 165.23999999999998 -6.2820938681400321E-005 + 165.29999999999998 -6.3243806181131852E-005 + 165.35999999999999 -6.3622368139253980E-005 + 165.41999999999999 -6.3956350908066028E-005 + 165.47999999999999 -6.4245588128076654E-005 + 165.53999999999999 -6.4490013060174809E-005 + 165.59999999999999 -6.4689669539229862E-005 + 165.66000000000000 -6.4844686642188452E-005 + 165.72000000000000 -6.4955273544560379E-005 + 165.78000000000000 -6.5021702352193223E-005 + 165.84000000000000 -6.5044311240192550E-005 + 165.90000000000001 -6.5023472693254565E-005 + 165.95999999999998 -6.4959605331627759E-005 + 166.01999999999998 -6.4853157601982162E-005 + 166.07999999999998 -6.4704597975544876E-005 + 166.13999999999999 -6.4514410690568738E-005 + 166.19999999999999 -6.4283113546871701E-005 + 166.25999999999999 -6.4011247047104434E-005 + 166.31999999999999 -6.3699387837242696E-005 + 166.38000000000000 -6.3348149335726176E-005 + 166.44000000000000 -6.2958193479385903E-005 + 166.50000000000000 -6.2530233875650752E-005 + 166.56000000000000 -6.2065043472056517E-005 + 166.62000000000000 -6.1563470640943393E-005 + 166.67999999999998 -6.1026422160222119E-005 + 166.73999999999998 -6.0454872514150801E-005 + 166.79999999999998 -5.9849865722418526E-005 + 166.85999999999999 -5.9212502784582145E-005 + 166.91999999999999 -5.8543940245952323E-005 + 166.97999999999999 -5.7845379256535105E-005 + 167.03999999999999 -5.7118052746235423E-005 + 167.09999999999999 -5.6363224197818028E-005 + 167.16000000000000 -5.5582172354216908E-005 + 167.22000000000000 -5.4776179976867386E-005 + 167.28000000000000 -5.3946539780580688E-005 + 167.34000000000000 -5.3094532609750124E-005 + 167.40000000000001 -5.2221440687514455E-005 + 167.45999999999998 -5.1328533322543274E-005 + 167.51999999999998 -5.0417068038069125E-005 + 167.57999999999998 -4.9488298404323262E-005 + 167.63999999999999 -4.8543470743938560E-005 + 167.69999999999999 -4.7583830728297812E-005 + 167.75999999999999 -4.6610619175543664E-005 + 167.81999999999999 -4.5625081348026742E-005 + 167.88000000000000 -4.4628465873415393E-005 + 167.94000000000000 -4.3622020026477157E-005 + 168.00000000000000 -4.2606999420913458E-005 + 168.06000000000000 -4.1584655558332039E-005 + 168.12000000000000 -4.0556248676639220E-005 + 168.17999999999998 -3.9523037631156222E-005 + 168.23999999999998 -3.8486278720251879E-005 + 168.29999999999998 -3.7447227276141757E-005 + 168.35999999999999 -3.6407133231247987E-005 + 168.41999999999999 -3.5367239793366325E-005 + 168.47999999999999 -3.4328789092067703E-005 + 168.53999999999999 -3.3293012896373864E-005 + 168.59999999999999 -3.2261134139367076E-005 + 168.66000000000000 -3.1234364900959315E-005 + 168.72000000000000 -3.0213908091356712E-005 + 168.78000000000000 -2.9200952033782546E-005 + 168.84000000000000 -2.8196668730124796E-005 + 168.90000000000001 -2.7202206133778258E-005 + 168.95999999999998 -2.6218687265963851E-005 + 169.01999999999998 -2.5247203405701395E-005 + 169.07999999999998 -2.4288807823340873E-005 + 169.13999999999999 -2.3344510475364144E-005 + 169.19999999999999 -2.2415273024299717E-005 + 169.25999999999999 -2.1502009234627279E-005 + 169.31999999999999 -2.0605571047357611E-005 + 169.38000000000000 -1.9726761140859342E-005 + 169.44000000000000 -1.8866323569133149E-005 + 169.50000000000000 -1.8024949995064706E-005 + 169.56000000000000 -1.7203280021233663E-005 + 169.62000000000000 -1.6401907652171221E-005 + 169.67999999999998 -1.5621389908202227E-005 + 169.73999999999998 -1.4862248084555212E-005 + 169.79999999999998 -1.4124972321843131E-005 + 169.85999999999999 -1.3410028563406732E-005 + 169.91999999999999 -1.2717859288571074E-005 + 169.97999999999999 -1.2048887231813531E-005 + 170.03999999999999 -1.1403510162070934E-005 + 170.09999999999999 -1.0782101213093627E-005 + 170.16000000000000 -1.0185002293084296E-005 + 170.22000000000000 -9.6125194351479523E-006 + 170.28000000000000 -9.0649129666393575E-006 + 170.34000000000000 -8.5423928793118138E-006 + 170.40000000000001 -8.0451093603183933E-006 + 170.45999999999998 -7.5731475300065126E-006 + 170.51999999999998 -7.1265224747389036E-006 + 170.57999999999998 -6.7051780502504469E-006 + 170.63999999999999 -6.3089857514835658E-006 + 170.69999999999999 -5.9377464056363441E-006 + 170.75999999999999 -5.5911949113427229E-006 + 170.81999999999999 -5.2690109150564045E-006 + 170.88000000000000 -4.9708201823543076E-006 + 170.94000000000000 -4.6962101400324769E-006 + 171.00000000000000 -4.4447357612525662E-006 + 171.06000000000000 -4.2159292732120805E-006 + 171.12000000000000 -4.0093095309392422E-006 + 171.17999999999998 -3.8243870230545271E-006 + 171.23999999999998 -3.6606693848346187E-006 + 171.29999999999998 -3.5176638510472374E-006 + 171.35999999999999 -3.3948784559023626E-006 + 171.41999999999999 -3.2918202944099187E-006 + 171.47999999999999 -3.2079935115727513E-006 + 171.53999999999999 -3.1428958426637579E-006 + 171.59999999999999 -3.0960162693957136E-006 + 171.66000000000000 -3.0668294916812342E-006 + 171.72000000000000 -3.0547944056623221E-006 + 171.78000000000000 -3.0593518690317117E-006 + 171.84000000000000 -3.0799245628324706E-006 + 171.90000000000001 -3.1159182787506979E-006 + 171.95999999999998 -3.1667232247337661E-006 + 172.01999999999998 -3.2317188227646689E-006 + 172.07999999999998 -3.3102784422933926E-006 + 172.13999999999999 -3.4017727391096057E-006 + 172.19999999999999 -3.5055758505170029E-006 + 172.25999999999999 -3.6210697526861817E-006 + 172.31999999999999 -3.7476487552749141E-006 + 172.38000000000000 -3.8847220569729577E-006 + 172.44000000000000 -4.0317162961666441E-006 + 172.50000000000000 -4.1880764396821363E-006 + 172.56000000000000 -4.3532656723596319E-006 + 172.62000000000000 -4.5267645277020558E-006 + 172.67999999999998 -4.7080707003291069E-006 + 172.73999999999998 -4.8966955881392502E-006 + 172.79999999999998 -5.0921651504936594E-006 + 172.85999999999999 -5.2940175084502497E-006 + 172.91999999999999 -5.5018042256173430E-006 + 172.97999999999999 -5.7150879250087395E-006 + 173.03999999999999 -5.9334465937358350E-006 + 173.09999999999999 -6.1564719181283190E-006 + 173.16000000000000 -6.3837734211964750E-006 + 173.22000000000000 -6.6149787578033787E-006 + 173.28000000000000 -6.8497361649800647E-006 + 173.34000000000000 -7.0877167719664687E-006 + 173.40000000000001 -7.3286119578584735E-006 + 173.45999999999998 -7.5721348824175500E-006 + 173.51999999999998 -7.8180209839347914E-006 + 173.57999999999998 -8.0660227440080340E-006 + 173.63999999999999 -8.3159094041116899E-006 + 173.69999999999999 -8.5674631826591070E-006 + 173.75999999999999 -8.8204752643971718E-006 + 173.81999999999999 -9.0747453204477456E-006 + 173.88000000000000 -9.3300773694767451E-006 + 173.94000000000000 -9.5862794395628785E-006 + 174.00000000000000 -9.8431626407189811E-006 + 174.06000000000000 -1.0100543192025632E-005 + 174.12000000000000 -1.0358245566245122E-005 + 174.17999999999998 -1.0616101567291690E-005 + 174.23999999999998 -1.0873958700110900E-005 + 174.29999999999998 -1.1131682225322683E-005 + 174.35999999999999 -1.1389159303425393E-005 + 174.41999999999999 -1.1646301300158063E-005 + 174.47999999999999 -1.1903048144659554E-005 + 174.53999999999999 -1.2159369406972632E-005 + 174.59999999999999 -1.2415261441509262E-005 + 174.66000000000000 -1.2670749407239229E-005 + 174.72000000000000 -1.2925880256468547E-005 + 174.78000000000000 -1.3180721787814942E-005 + 174.84000000000000 -1.3435355214331586E-005 + 174.90000000000001 -1.3689870114601944E-005 + 174.95999999999998 -1.3944358143417142E-005 + 175.01999999999998 -1.4198909842476196E-005 + 175.07999999999998 -1.4453607448671522E-005 + 175.13999999999999 -1.4708523799732550E-005 + 175.19999999999999 -1.4963718421930716E-005 + 175.25999999999999 -1.5219242262208959E-005 + 175.31999999999999 -1.5475131518825395E-005 + 175.38000000000000 -1.5731416560886349E-005 + 175.44000000000000 -1.5988120969602489E-005 + 175.50000000000000 -1.6245266773354405E-005 + 175.56000000000000 -1.6502876441938917E-005 + 175.62000000000000 -1.6760977978620666E-005 + 175.67999999999998 -1.7019604461114782E-005 + 175.73999999999998 -1.7278795133483777E-005 + 175.79999999999998 -1.7538599595070175E-005 + 175.85999999999999 -1.7799067369517497E-005 + 175.91999999999999 -1.8060252854959030E-005 + 175.97999999999999 -1.8322203756062636E-005 + 176.03999999999999 -1.8584963163248749E-005 + 176.09999999999999 -1.8848560152399779E-005 + 176.16000000000000 -1.9113005617931682E-005 + 176.22000000000000 -1.9378288384051356E-005 + 176.28000000000000 -1.9644370992523628E-005 + 176.34000000000000 -1.9911186345673832E-005 + 176.40000000000001 -2.0178637188940980E-005 + 176.45999999999998 -2.0446598621539058E-005 + 176.51999999999998 -2.0714914348373412E-005 + 176.57999999999998 -2.0983402924167449E-005 + 176.63999999999999 -2.1251860268403182E-005 + 176.69999999999999 -2.1520059294911531E-005 + 176.75999999999999 -2.1787756850913078E-005 + 176.81999999999999 -2.2054697629573077E-005 + 176.88000000000000 -2.2320611415608372E-005 + 176.94000000000000 -2.2585219189610952E-005 + 177.00000000000000 -2.2848234290923731E-005 + 177.06000000000000 -2.3109357722269414E-005 + 177.12000000000000 -2.3368284043629750E-005 + 177.17999999999998 -2.3624697534693877E-005 + 177.23999999999998 -2.3878268901959186E-005 + 177.29999999999998 -2.4128660898113288E-005 + 177.35999999999999 -2.4375523560947326E-005 + 177.41999999999999 -2.4618494806382323E-005 + 177.47999999999999 -2.4857201950621407E-005 + 177.53999999999999 -2.5091264747420598E-005 + 177.59999999999999 -2.5320299804201909E-005 + 177.66000000000000 -2.5543919862938156E-005 + 177.72000000000000 -2.5761740087695212E-005 + 177.78000000000000 -2.5973381250453594E-005 + 177.84000000000000 -2.6178474717436848E-005 + 177.90000000000001 -2.6376663165456295E-005 + 177.95999999999998 -2.6567607051044874E-005 + 178.01999999999998 -2.6750985616266963E-005 + 178.07999999999998 -2.6926497089208553E-005 + 178.13999999999999 -2.7093858299873055E-005 + 178.19999999999999 -2.7252809722131358E-005 + 178.25999999999999 -2.7403110303847702E-005 + 178.31999999999999 -2.7544537456814753E-005 + 178.38000000000000 -2.7676889495244893E-005 + 178.44000000000000 -2.7799982753406390E-005 + 178.50000000000000 -2.7913652169273828E-005 + 178.56000000000000 -2.8017752692157733E-005 + 178.62000000000000 -2.8112160582466749E-005 + 178.67999999999998 -2.8196773240147874E-005 + 178.73999999999998 -2.8271515780415462E-005 + 178.79999999999998 -2.8336342712217689E-005 + 178.85999999999999 -2.8391237527055824E-005 + 178.91999999999999 -2.8436220302501092E-005 + 178.97999999999999 -2.8471346067536650E-005 + 179.03999999999999 -2.8496704982922753E-005 + 179.09999999999999 -2.8512426275091845E-005 + 179.16000000000000 -2.8518674122815668E-005 + 179.22000000000000 -2.8515648836937067E-005 + 179.28000000000000 -2.8503578560560661E-005 + 179.34000000000000 -2.8482721895073202E-005 + 179.40000000000001 -2.8453357075854711E-005 + 179.45999999999998 -2.8415783945817582E-005 + 179.51999999999998 -2.8370315433059441E-005 + 179.57999999999998 -2.8317274511163529E-005 + 179.63999999999999 -2.8256993657921618E-005 + 179.69999999999999 -2.8189812592646556E-005 + 179.75999999999999 -2.8116078017395034E-005 + 179.81999999999999 -2.8036144417770996E-005 + 179.88000000000000 -2.7950377835296303E-005 + 179.94000000000000 -2.7859151164740538E-005 + 180.00000000000000 -2.7762854296054609E-005 + 180.06000000000000 -2.7661896327125553E-005 + 180.12000000000000 -2.7556705126971926E-005 + 180.17999999999998 -2.7447734342625137E-005 + 180.23999999999998 -2.7335459700830362E-005 + 180.29999999999998 -2.7220379874013349E-005 + 180.35999999999999 -2.7103019726096612E-005 + 180.41999999999999 -2.6983925545616062E-005 + 180.47999999999999 -2.6863659278800952E-005 + 180.53999999999999 -2.6742802155966768E-005 + 180.59999999999999 -2.6621943883363160E-005 + 180.66000000000000 -2.6501682747016261E-005 + 180.72000000000000 -2.6382618919832268E-005 + 180.78000000000000 -2.6265353313224872E-005 + 180.84000000000000 -2.6150485231495597E-005 + 180.90000000000001 -2.6038609611642423E-005 + 180.95999999999998 -2.5930320167687471E-005 + 181.01999999999998 -2.5826207639313719E-005 + 181.07999999999998 -2.5726864542397498E-005 + 181.13999999999999 -2.5632885459563840E-005 + 181.19999999999999 -2.5544870925623776E-005 + 181.25999999999999 -2.5463434733811999E-005 + 181.31999999999999 -2.5389202810238344E-005 + 181.38000000000000 -2.5322816687522421E-005 + 181.44000000000000 -2.5264940129681397E-005 + 181.50000000000000 -2.5216255685567703E-005 + 181.56000000000000 -2.5177467599163531E-005 + 181.62000000000000 -2.5149304092635549E-005 + 181.67999999999998 -2.5132513166901848E-005 + 181.73999999999998 -2.5127859303245132E-005 + 181.79999999999998 -2.5136128748888972E-005 + 181.85999999999999 -2.5158118182069063E-005 + 181.91999999999999 -2.5194636968766892E-005 + 181.97999999999999 -2.5246507672026364E-005 + 182.03999999999999 -2.5314553978898245E-005 + 182.09999999999999 -2.5399606718557016E-005 + 182.16000000000000 -2.5502502440663437E-005 + 182.22000000000000 -2.5624077583332002E-005 + 182.28000000000000 -2.5765169011936433E-005 + 182.34000000000000 -2.5926616848987961E-005 + 182.39999999999998 -2.6109256365470014E-005 + 182.45999999999998 -2.6313923587025517E-005 + 182.51999999999998 -2.6541450013282896E-005 + 182.57999999999998 -2.6792665268732877E-005 + 182.63999999999999 -2.7068390294910949E-005 + 182.69999999999999 -2.7369442491060223E-005 + 182.75999999999999 -2.7696629458124584E-005 + 182.81999999999999 -2.8050750749829573E-005 + 182.88000000000000 -2.8432593587273411E-005 + 182.94000000000000 -2.8842933918073951E-005 + 183.00000000000000 -2.9282534152384388E-005 + 183.06000000000000 -2.9752147005924753E-005 + 183.12000000000000 -3.0252506453053534E-005 + 183.17999999999998 -3.0784336990340135E-005 + 183.23999999999998 -3.1348350811789522E-005 + 183.29999999999998 -3.1945243805781519E-005 + 183.35999999999999 -3.2575697743438614E-005 + 183.41999999999999 -3.3240385688536617E-005 + 183.47999999999999 -3.3939962451057607E-005 + 183.53999999999999 -3.4675068895212332E-005 + 183.59999999999999 -3.5446321363961984E-005 + 183.66000000000000 -3.6254320795632898E-005 + 183.72000000000000 -3.7099637861940471E-005 + 183.78000000000000 -3.7982818383083228E-005 + 183.84000000000000 -3.8904372769705605E-005 + 183.89999999999998 -3.9864775436289795E-005 + 183.95999999999998 -4.0864455714275480E-005 + 184.01999999999998 -4.1903800621355605E-005 + 184.07999999999998 -4.2983150980184218E-005 + 184.13999999999999 -4.4102798250249347E-005 + 184.19999999999999 -4.5262978928467823E-005 + 184.25999999999999 -4.6463881933514173E-005 + 184.31999999999999 -4.7705649910672254E-005 + 184.38000000000000 -4.8988375010000191E-005 + 184.44000000000000 -5.0312093828207603E-005 + 184.50000000000000 -5.1676802591836433E-005 + 184.56000000000000 -5.3082458083613323E-005 + 184.62000000000000 -5.4528958431789523E-005 + 184.67999999999998 -5.6016170695726969E-005 + 184.73999999999998 -5.7543901006938758E-005 + 184.79999999999998 -5.9111916313663933E-005 + 184.85999999999999 -6.0719926311327338E-005 + 184.91999999999999 -6.2367577507693110E-005 + 184.97999999999999 -6.4054457913391362E-005 + 185.03999999999999 -6.5780074522890921E-005 + 185.09999999999999 -6.7543860557770633E-005 + 185.16000000000000 -6.9345164923852496E-005 + 185.22000000000000 -7.1183239067736730E-005 + 185.28000000000000 -7.3057235553295851E-005 + 185.34000000000000 -7.4966209044801164E-005 + 185.39999999999998 -7.6909080473667245E-005 + 185.45999999999998 -7.8884688533152462E-005 + 185.51999999999998 -8.0891736665160901E-005 + 185.57999999999998 -8.2928813358117866E-005 + 185.63999999999999 -8.4994391838944205E-005 + 185.69999999999999 -8.7086818120275667E-005 + 185.75999999999999 -8.9204334949534493E-005 + 185.81999999999999 -9.1345051031145740E-005 + 185.88000000000000 -9.3506958175224719E-005 + 185.94000000000000 -9.5687937022063071E-005 + 186.00000000000000 -9.7885728156990544E-005 + 186.06000000000000 -1.0009796811936180E-004 + 186.12000000000000 -1.0232216140227054E-004 + 186.17999999999998 -1.0455568785194765E-004 + 186.23999999999998 -1.0679578954791125E-004 + 186.29999999999998 -1.0903958961518985E-004 + 186.35999999999999 -1.1128406904414402E-004 + 186.41999999999999 -1.1352607882935428E-004 + 186.47999999999999 -1.1576232176705483E-004 + 186.53999999999999 -1.1798938503774633E-004 + 186.59999999999999 -1.2020370638294693E-004 + 186.66000000000000 -1.2240159244440523E-004 + 186.72000000000000 -1.2457921174427369E-004 + 186.78000000000000 -1.2673263305396838E-004 + 186.84000000000000 -1.2885777249112669E-004 + 186.89999999999998 -1.3095046806323356E-004 + 186.95999999999998 -1.3300642892025106E-004 + 187.01999999999998 -1.3502129203880631E-004 + 187.07999999999998 -1.3699057354222459E-004 + 187.13999999999999 -1.3890972774702569E-004 + 187.19999999999999 -1.4077413993698767E-004 + 187.25999999999999 -1.4257914752798589E-004 + 187.31999999999999 -1.4432003223084611E-004 + 187.38000000000000 -1.4599202363030332E-004 + 187.44000000000000 -1.4759034548192444E-004 + 187.50000000000000 -1.4911020587351405E-004 + 187.56000000000000 -1.5054680935701226E-004 + 187.62000000000000 -1.5189536227761186E-004 + 187.67999999999998 -1.5315110895939917E-004 + 187.73999999999998 -1.5430934394808544E-004 + 187.79999999999998 -1.5536536723417384E-004 + 187.85999999999999 -1.5631458691258318E-004 + 187.91999999999999 -1.5715247328947177E-004 + 187.97999999999999 -1.5787457231996305E-004 + 188.03999999999999 -1.5847655621619366E-004 + 188.09999999999999 -1.5895420000178138E-004 + 188.16000000000000 -1.5930340723869550E-004 + 188.22000000000000 -1.5952022461801038E-004 + 188.28000000000000 -1.5960085937013858E-004 + 188.34000000000000 -1.5954168216719556E-004 + 188.39999999999998 -1.5933924223313713E-004 + 188.45999999999998 -1.5899030762937458E-004 + 188.51999999999998 -1.5849179892746100E-004 + 188.57999999999998 -1.5784092324638279E-004 + 188.63999999999999 -1.5703507895691639E-004 + 188.69999999999999 -1.5607193687917971E-004 + 188.75999999999999 -1.5494941888154404E-004 + 188.81999999999999 -1.5366572421228667E-004 + 188.88000000000000 -1.5221933745556733E-004 + 188.94000000000000 -1.5060904803263024E-004 + 189.00000000000000 -1.4883395034505465E-004 + 189.06000000000000 -1.4689344477598776E-004 + 189.12000000000000 -1.4478724390293570E-004 + 189.17999999999998 -1.4251540237915009E-004 + 189.23999999999998 -1.4007828802560925E-004 + 189.29999999999998 -1.3747661973755211E-004 + 189.35999999999999 -1.3471143361248230E-004 + 189.41999999999999 -1.3178409398692035E-004 + 189.47999999999999 -1.2869629982518912E-004 + 189.53999999999999 -1.2545008315635383E-004 + 189.59999999999999 -1.2204778293684378E-004 + 189.66000000000000 -1.1849208096395722E-004 + 189.72000000000000 -1.1478598263033378E-004 + 189.78000000000000 -1.1093280712022328E-004 + 189.84000000000000 -1.0693619875128245E-004 + 189.89999999999998 -1.0280011482460068E-004 + 189.95999999999998 -9.8528835884327130E-005 + 190.01999999999998 -9.4126945188104786E-005 + 190.07999999999998 -8.9599342615745718E-005 + 190.13999999999999 -8.4951244076338005E-005 + 190.19999999999999 -8.0188146860681479E-005 + 190.25999999999999 -7.5315862699145946E-005 + 190.31999999999999 -7.0340478307790612E-005 + 190.38000000000000 -6.5268356303467469E-005 + 190.44000000000000 -6.0106107011236579E-005 + 190.50000000000000 -5.4860595213627748E-005 + 190.56000000000000 -4.9538912870207749E-005 + 190.62000000000000 -4.4148350248297113E-005 + 190.67999999999998 -3.8696400691866585E-005 + 190.73999999999998 -3.3190715795687147E-005 + 190.79999999999998 -2.7639102967997211E-005 + 190.85999999999999 -2.2049490922727815E-005 + 190.91999999999999 -1.6429930631426977E-005 + 190.97999999999999 -1.0788552191717272E-005 + 191.03999999999999 -5.1335702117057630E-006 + 191.09999999999999 5.2675061857983640E-007 + 191.16000000000000 6.1841007454703433E-006 + 191.22000000000000 1.1830148212827201E-005 + 191.28000000000000 1.7456549789236164E-005 + 191.34000000000000 2.3054961008682469E-005 + 191.39999999999998 2.8617062489151834E-005 + 191.45999999999998 3.4134574090711136E-005 + 191.51999999999998 3.9599247104875480E-005 + 191.57999999999998 4.5002916275800236E-005 + 191.63999999999999 5.0337496209615155E-005 + 191.69999999999999 5.5594993467264343E-005 + 191.75999999999999 6.0767548325005514E-005 + 191.81999999999999 6.5847441565102159E-005 + 191.88000000000000 7.0827106668001571E-005 + 191.94000000000000 7.5699154982889838E-005 + 192.00000000000000 8.0456409806704213E-005 + 192.06000000000000 8.5091911411192559E-005 + 192.12000000000000 8.9598941912713955E-005 + 192.17999999999998 9.3971040613020365E-005 + 192.23999999999998 9.8202036507161070E-005 + 192.29999999999998 1.0228603887903511E-004 + 192.35999999999999 1.0621748300888339E-004 + 192.41999999999999 1.0999110877166508E-004 + 192.47999999999999 1.1360200815194989E-004 + 192.53999999999999 1.1704561154180963E-004 + 192.59999999999999 1.2031771635098032E-004 + 192.66000000000000 1.2341445532448652E-004 + 192.72000000000000 1.2633233132554420E-004 + 192.78000000000000 1.2906823661889099E-004 + 192.84000000000000 1.3161941917411184E-004 + 192.89999999999998 1.3398347865418926E-004 + 192.95999999999998 1.3615840842464241E-004 + 193.01999999999998 1.3814254745714362E-004 + 193.07999999999998 1.3993461391428942E-004 + 193.13999999999999 1.4153367551633807E-004 + 193.19999999999999 1.4293915179015558E-004 + 193.25999999999999 1.4415081678612843E-004 + 193.31999999999999 1.4516881400349795E-004 + 193.38000000000000 1.4599360111702640E-004 + 193.44000000000000 1.4662597615217388E-004 + 193.50000000000000 1.4706710506090417E-004 + 193.56000000000000 1.4731848702246423E-004 + 193.62000000000000 1.4738190848261905E-004 + 193.67999999999998 1.4725952774723272E-004 + 193.73999999999998 1.4695383035021205E-004 + 193.79999999999998 1.4646758794826189E-004 + 193.85999999999999 1.4580393001567310E-004 + 193.91999999999999 1.4496625678530735E-004 + 193.97999999999999 1.4395828044312848E-004 + 194.03999999999999 1.4278400053065093E-004 + 194.09999999999999 1.4144766753226588E-004 + 194.16000000000000 1.3995380496050787E-004 + 194.22000000000000 1.3830715293066943E-004 + 194.28000000000000 1.3651267619955903E-004 + 194.34000000000000 1.3457552680256300E-004 + 194.39999999999998 1.3250101165347637E-004 + 194.45999999999998 1.3029459781991245E-004 + 194.51999999999998 1.2796183605145962E-004 + 194.57999999999998 1.2550842221276297E-004 + 194.63999999999999 1.2294008137634860E-004 + 194.69999999999999 1.2026261575477553E-004 + 194.75999999999999 1.1748187408925071E-004 + 194.81999999999999 1.1460372571404004E-004 + 194.88000000000000 1.1163405006203097E-004 + 194.94000000000000 1.0857872927380831E-004 + 195.00000000000000 1.0544364875480214E-004 + 195.06000000000000 1.0223468997909417E-004 + 195.12000000000000 9.8957715703734187E-005 + 195.17999999999998 9.5618585166268338E-005 + 195.23999999999998 9.2223128606019769E-005 + 195.29999999999998 8.8777144961461597E-005 + 195.35999999999999 8.5286419873218750E-005 + 195.41999999999999 8.1756683794922196E-005 + 195.47999999999999 7.8193628298079743E-005 + 195.53999999999999 7.4602877064718949E-005 + 195.59999999999999 7.0989976411445682E-005 + 195.66000000000000 6.7360397293303215E-005 + 195.72000000000000 6.3719492787491590E-005 + 195.78000000000000 6.0072510200197022E-005 + 195.84000000000000 5.6424569456205322E-005 + 195.89999999999998 5.2780630292565698E-005 + 195.95999999999998 4.9145504866680706E-005 + 196.01999999999998 4.5523829474866191E-005 + 196.07999999999998 4.1920072578081632E-005 + 196.13999999999999 3.8338513463787084E-005 + 196.19999999999999 3.4783251059984463E-005 + 196.25999999999999 3.1258205183622308E-005 + 196.31999999999999 2.7767099042868234E-005 + 196.38000000000000 2.4313492167069949E-005 + 196.44000000000000 2.0900763451253201E-005 + 196.50000000000000 1.7532126302337066E-005 + 196.56000000000000 1.4210631264769364E-005 + 196.62000000000000 1.0939183188072489E-005 + 196.67999999999998 7.7205360990923992E-006 + 196.73999999999998 4.5573083111637702E-006 + 196.79999999999998 1.4519847017997741E-006 + 196.85999999999999 -1.5930767857518341E-006 + 196.91999999999999 -4.5756469077546300E-006 + 196.97999999999999 -7.4936205349366667E-006 + 197.03999999999999 -1.0345011989038212E-005 + 197.09999999999999 -1.3127958688522583E-005 + 197.16000000000000 -1.5840730857511552E-005 + 197.22000000000000 -1.8481718399068151E-005 + 197.28000000000000 -2.1049447771480211E-005 + 197.34000000000000 -2.3542575394430665E-005 + 197.39999999999998 -2.5959899164740643E-005 + 197.45999999999998 -2.8300358025531304E-005 + 197.51999999999998 -3.0563031536333676E-005 + 197.57999999999998 -3.2747152516325636E-005 + 197.63999999999999 -3.4852094328168348E-005 + 197.69999999999999 -3.6877387426169474E-005 + 197.75999999999999 -3.8822696141466136E-005 + 197.81999999999999 -4.0687839598966074E-005 + 197.88000000000000 -4.2472771997486705E-005 + 197.94000000000000 -4.4177583783560359E-005 + 198.00000000000000 -4.5802488562771063E-005 + 198.06000000000000 -4.7347814120194245E-005 + 198.12000000000000 -4.8813999287074958E-005 + 198.17999999999998 -5.0201580862901767E-005 + 198.23999999999998 -5.1511178768557515E-005 + 198.29999999999998 -5.2743491019066972E-005 + 198.35999999999999 -5.3899285155552891E-005 + 198.41999999999999 -5.4979388692774293E-005 + 198.47999999999999 -5.5984678258258631E-005 + 198.53999999999999 -5.6916077059779397E-005 + 198.59999999999999 -5.7774558802278260E-005 + 198.66000000000000 -5.8561140975019917E-005 + 198.72000000000000 -5.9276880605531779E-005 + 198.78000000000000 -5.9922895051679284E-005 + 198.84000000000000 -6.0500338342740699E-005 + 198.89999999999998 -6.1010430192730912E-005 + 198.95999999999998 -6.1454462171781299E-005 + 199.01999999999998 -6.1833782649003795E-005 + 199.07999999999998 -6.2149822985611331E-005 + 199.13999999999999 -6.2404078416770955E-005 + 199.19999999999999 -6.2598119819731501E-005 + 199.25999999999999 -6.2733588463875946E-005 + 199.31999999999999 -6.2812202841849255E-005 + 199.38000000000000 -6.2835731401829500E-005 + 199.44000000000000 -6.2806002851007050E-005 + 199.50000000000000 -6.2724871490261064E-005 + 199.56000000000000 -6.2594237378074029E-005 + 199.62000000000000 -6.2416007551911143E-005 + 199.67999999999998 -6.2192095371521908E-005 + 199.73999999999998 -6.1924394253955531E-005 + 199.79999999999998 -6.1614792568588487E-005 + 199.85999999999999 -6.1265141856175424E-005 + 199.91999999999999 -6.0877273327740385E-005 + 199.97999999999999 -6.0452956544191657E-005 + 200.03999999999999 -5.9993939009190018E-005 + 200.09999999999999 -5.9501929309737573E-005 + 200.16000000000000 -5.8978594465067223E-005 + 200.22000000000000 -5.8425579151384833E-005 + 200.28000000000000 -5.7844480572410741E-005 + 200.34000000000000 -5.7236900221586361E-005 + 200.39999999999998 -5.6604409696482437E-005 + 200.45999999999998 -5.5948573495009173E-005 + 200.51999999999998 -5.5270956025121147E-005 + 200.57999999999998 -5.4573109019639379E-005 + 200.63999999999999 -5.3856594010774963E-005 + 200.69999999999999 -5.3122952087138475E-005 + 200.75999999999999 -5.2373730114630051E-005 + 200.81999999999999 -5.1610465834484006E-005 + 200.88000000000000 -5.0834674110081776E-005 + 200.94000000000000 -5.0047859295959451E-005 + 201.00000000000000 -4.9251491914700048E-005 + 201.06000000000000 -4.8447017910032980E-005 + 201.12000000000000 -4.7635835550815468E-005 + 201.17999999999998 -4.6819305664513313E-005 + 201.23999999999998 -4.5998742470929907E-005 + 201.29999999999998 -4.5175400114422768E-005 + 201.35999999999999 -4.4350486784096011E-005 + 201.41999999999999 -4.3525142821849549E-005 + 201.47999999999999 -4.2700460806168012E-005 + 201.53999999999999 -4.1877467756792696E-005 + 201.59999999999999 -4.1057137770873509E-005 + 201.66000000000000 -4.0240381637623807E-005 + 201.72000000000000 -3.9428063692709353E-005 + 201.78000000000000 -3.8620987740314446E-005 + 201.84000000000000 -3.7819909011953829E-005 + 201.89999999999998 -3.7025534820195460E-005 + 201.95999999999998 -3.6238529711194282E-005 + 202.01999999999998 -3.5459518050267825E-005 + 202.07999999999998 -3.4689086240610288E-005 + 202.13999999999999 -3.3927780241790355E-005 + 202.19999999999999 -3.3176119249524665E-005 + 202.25999999999999 -3.2434594226914143E-005 + 202.31999999999999 -3.1703665266368765E-005 + 202.38000000000000 -3.0983770664410453E-005 + 202.44000000000000 -3.0275323502628999E-005 + 202.50000000000000 -2.9578710461322118E-005 + 202.56000000000000 -2.8894291161742711E-005 + 202.62000000000000 -2.8222397254511074E-005 + 202.67999999999998 -2.7563330874784836E-005 + 202.73999999999998 -2.6917358116384074E-005 + 202.79999999999998 -2.6284704511148172E-005 + 202.85999999999999 -2.5665553787003873E-005 + 202.91999999999999 -2.5060035778956448E-005 + 202.97999999999999 -2.4468237073883271E-005 + 203.03999999999999 -2.3890184190651707E-005 + 203.09999999999999 -2.3325848950735033E-005 + 203.16000000000000 -2.2775152452391302E-005 + 203.22000000000000 -2.2237954046337392E-005 + 203.28000000000000 -2.1714068687813327E-005 + 203.34000000000000 -2.1203265977092937E-005 + 203.39999999999998 -2.0705276169448667E-005 + 203.45999999999998 -2.0219798819292585E-005 + 203.51999999999998 -1.9746509810504420E-005 + 203.57999999999998 -1.9285068244904044E-005 + 203.63999999999999 -1.8835134078754181E-005 + 203.69999999999999 -1.8396364716118158E-005 + 203.75999999999999 -1.7968423475377677E-005 + 203.81999999999999 -1.7550990602209198E-005 + 203.88000000000000 -1.7143762985435664E-005 + 203.94000000000000 -1.6746454772903043E-005 + 204.00000000000000 -1.6358799598208692E-005 + 204.06000000000000 -1.5980552150182929E-005 + 204.12000000000000 -1.5611480753228463E-005 + 204.17999999999998 -1.5251368206945267E-005 + 204.23999999999998 -1.4900007917024415E-005 + 204.29999999999998 -1.4557201156895716E-005 + 204.35999999999999 -1.4222750710608920E-005 + 204.41999999999999 -1.3896461197414843E-005 + 204.47999999999999 -1.3578138283452017E-005 + 204.53999999999999 -1.3267587842705718E-005 + 204.59999999999999 -1.2964615213926418E-005 + 204.66000000000000 -1.2669027304016095E-005 + 204.72000000000000 -1.2380634498539233E-005 + 204.78000000000000 -1.2099254440618962E-005 + 204.84000000000000 -1.1824715790897970E-005 + 204.89999999999998 -1.1556860180105364E-005 + 204.95999999999998 -1.1295546443399958E-005 + 205.01999999999998 -1.1040655315246098E-005 + 205.07999999999998 -1.0792088901689397E-005 + 205.13999999999999 -1.0549775244917910E-005 + 205.19999999999999 -1.0313667532247547E-005 + 205.25999999999999 -1.0083746709759448E-005 + 205.31999999999999 -9.8600229114688635E-006 + 205.38000000000000 -9.6425320096287170E-006 + 205.44000000000000 -9.4313379980672855E-006 + 205.50000000000000 -9.2265305708642711E-006 + 205.56000000000000 -9.0282270144670160E-006 + 205.62000000000000 -8.8365668071056468E-006 + 205.67999999999998 -8.6517136291959220E-006 + 205.73999999999998 -8.4738516682266600E-006 + 205.79999999999998 -8.3031859206847992E-006 + 205.85999999999999 -8.1399386854524666E-006 + 205.91999999999999 -7.9843453490950058E-006 + 205.97999999999999 -7.8366543149174442E-006 + 206.03999999999999 -7.6971202817337607E-006 + 206.09999999999999 -7.5660022383780485E-006 + 206.16000000000000 -7.4435559614573097E-006 + 206.22000000000000 -7.3300339551167649E-006 + 206.28000000000000 -7.2256763454733180E-006 + 206.34000000000000 -7.1307083160795663E-006 + 206.39999999999998 -7.0453378757969449E-006 + 206.45999999999998 -6.9697501531589547E-006 + 206.51999999999998 -6.9041061193368705E-006 + 206.57999999999998 -6.8485434395574039E-006 + 206.63999999999999 -6.8031760071384673E-006 + 206.69999999999999 -6.7680948867811278E-006 + 206.75999999999999 -6.7433726861662877E-006 + 206.81999999999999 -6.7290645307661315E-006 + 206.88000000000000 -6.7252152953870455E-006 + 206.94000000000000 -6.7318603200459650E-006 + 207.00000000000000 -6.7490319723786386E-006 + 207.06000000000000 -6.7767626655723178E-006 + 207.12000000000000 -6.8150855572886572E-006 + 207.17999999999998 -6.8640372639911268E-006 + 207.23999999999998 -6.9236567869378383E-006 + 207.29999999999998 -6.9939832497119828E-006 + 207.35999999999999 -7.0750539183710514E-006 + 207.41999999999999 -7.1668993781264298E-006 + 207.47999999999999 -7.2695375239060952E-006 + 207.53999999999999 -7.3829691720943568E-006 + 207.59999999999999 -7.5071696620452648E-006 + 207.66000000000000 -7.6420879443250171E-006 + 207.72000000000000 -7.7876346990151724E-006 + 207.78000000000000 -7.9436852103976517E-006 + 207.84000000000000 -8.1100733333031669E-006 + 207.89999999999998 -8.2865932062192110E-006 + 207.95999999999998 -8.4729959694380305E-006 + 208.01999999999998 -8.6689958432237799E-006 + 208.07999999999998 -8.8742711755914459E-006 + 208.13999999999999 -9.0884704887040233E-006 + 208.19999999999999 -9.3112163285730185E-006 + 208.25999999999999 -9.5421128492911074E-006 + 208.31999999999999 -9.7807484347933865E-006 + 208.38000000000000 -1.0026701197274469E-005 + 208.44000000000000 -1.0279545547255477E-005 + 208.50000000000000 -1.0538852859421380E-005 + 208.56000000000000 -1.0804195856817503E-005 + 208.62000000000000 -1.1075148454381253E-005 + 208.68000000000001 -1.1351287003374386E-005 + 208.74000000000001 -1.1632187642406673E-005 + 208.80000000000001 -1.1917425872729398E-005 + 208.86000000000001 -1.2206576275157630E-005 + 208.92000000000002 -1.2499207366096975E-005 + 208.98000000000002 -1.2794881601496629E-005 + 209.03999999999996 -1.3093150540099590E-005 + 209.09999999999997 -1.3393554874320985E-005 + 209.15999999999997 -1.3695623215091809E-005 + 209.21999999999997 -1.3998869188833386E-005 + 209.27999999999997 -1.4302793580435530E-005 + 209.33999999999997 -1.4606881359593833E-005 + 209.39999999999998 -1.4910604412256116E-005 + 209.45999999999998 -1.5213420954679089E-005 + 209.51999999999998 -1.5514779789127015E-005 + 209.57999999999998 -1.5814119549743848E-005 + 209.63999999999999 -1.6110872247309225E-005 + 209.69999999999999 -1.6404466744833752E-005 + 209.75999999999999 -1.6694331941473254E-005 + 209.81999999999999 -1.6979899518470196E-005 + 209.88000000000000 -1.7260607746164047E-005 + 209.94000000000000 -1.7535907836603947E-005 + 210.00000000000000 -1.7805267106595556E-005 + 210.06000000000000 -1.8068172217558401E-005 + 210.12000000000000 -1.8324136488353832E-005 + 210.18000000000001 -1.8572702955368513E-005 + 210.24000000000001 -1.8813447741814539E-005 + 210.30000000000001 -1.9045983915599980E-005 + 210.36000000000001 -1.9269963159637581E-005 + 210.42000000000002 -1.9485080568821828E-005 + 210.48000000000002 -1.9691070252658873E-005 + 210.53999999999996 -1.9887707623375048E-005 + 210.59999999999997 -2.0074808046092749E-005 + 210.65999999999997 -2.0252223367150807E-005 + 210.71999999999997 -2.0419840164790229E-005 + 210.77999999999997 -2.0577571047798782E-005 + 210.83999999999997 -2.0725359347250936E-005 + 210.89999999999998 -2.0863168063676315E-005 + 210.95999999999998 -2.0990981105452299E-005 + 211.01999999999998 -2.1108798986634404E-005 + 211.07999999999998 -2.1216638278094202E-005 + 211.13999999999999 -2.1314531503693697E-005 + 211.19999999999999 -2.1402528812710146E-005 + 211.25999999999999 -2.1480696318037953E-005 + 211.31999999999999 -2.1549126855841580E-005 + 211.38000000000000 -2.1607936960534097E-005 + 211.44000000000000 -2.1657273235033052E-005 + 211.50000000000000 -2.1697317844333876E-005 + 211.56000000000000 -2.1728291869292863E-005 + 211.62000000000000 -2.1750458064363882E-005 + 211.68000000000001 -2.1764123274586936E-005 + 211.74000000000001 -2.1769640900256329E-005 + 211.80000000000001 -2.1767403071991826E-005 + 211.86000000000001 -2.1757849082680496E-005 + 211.92000000000002 -2.1741455467788631E-005 + 211.98000000000002 -2.1718732054853769E-005 + 212.03999999999996 -2.1690210896651668E-005 + 212.09999999999997 -2.1656452239548897E-005 + 212.15999999999997 -2.1618024884425225E-005 + 212.21999999999997 -2.1575509106498843E-005 + 212.27999999999997 -2.1529481841209320E-005 + 212.33999999999997 -2.1480516035410391E-005 + 212.39999999999998 -2.1429172252078047E-005 + 212.45999999999998 -2.1376000396987253E-005 + 212.51999999999998 -2.1321530475417138E-005 + 212.57999999999998 -2.1266272712015801E-005 + 212.63999999999999 -2.1210720243267007E-005 + 212.69999999999999 -2.1155340688779485E-005 + 212.75999999999999 -2.1100583748991868E-005 + 212.81999999999999 -2.1046880536577403E-005 + 212.88000000000000 -2.0994640779846819E-005 + 212.94000000000000 -2.0944256315781823E-005 + 213.00000000000000 -2.0896101641475436E-005 + 213.06000000000000 -2.0850532790547099E-005 + 213.12000000000000 -2.0807888392352297E-005 + 213.18000000000001 -2.0768486556480505E-005 + 213.24000000000001 -2.0732628352715309E-005 + 213.30000000000001 -2.0700594113713634E-005 + 213.36000000000001 -2.0672644345891375E-005 + 213.42000000000002 -2.0649017874916975E-005 + 213.48000000000002 -2.0629931186277031E-005 + 213.53999999999996 -2.0615578259241894E-005 + 213.59999999999997 -2.0606132440158160E-005 + 213.65999999999997 -2.0601741774190951E-005 + 213.71999999999997 -2.0602530819770450E-005 + 213.77999999999997 -2.0608603386205952E-005 + 213.83999999999997 -2.0620039140677589E-005 + 213.89999999999998 -2.0636892412433251E-005 + 213.95999999999998 -2.0659194050312145E-005 + 214.01999999999998 -2.0686951414972963E-005 + 214.07999999999998 -2.0720143624731548E-005 + 214.13999999999999 -2.0758726017187829E-005 + 214.19999999999999 -2.0802623327625723E-005 + 214.25999999999999 -2.0851733632419382E-005 + 214.31999999999999 -2.0905924599855250E-005 + 214.38000000000000 -2.0965036338358121E-005 + 214.44000000000000 -2.1028879201788358E-005 + 214.50000000000000 -2.1097236833240930E-005 + 214.56000000000000 -2.1169863296456738E-005 + 214.62000000000000 -2.1246490979134698E-005 + 214.68000000000001 -2.1326832190153918E-005 + 214.74000000000001 -2.1410577974647804E-005 + 214.80000000000001 -2.1497404391865017E-005 + 214.86000000000001 -2.1586978213347499E-005 + 214.92000000000002 -2.1678957793170565E-005 + 214.98000000000002 -2.1772994967041134E-005 + 215.03999999999996 -2.1868737389278247E-005 + 215.09999999999997 -2.1965832707818146E-005 + 215.15999999999997 -2.2063931046498540E-005 + 215.21999999999997 -2.2162678972889518E-005 + 215.27999999999997 -2.2261725443615477E-005 + 215.33999999999997 -2.2360716059245707E-005 + 215.39999999999998 -2.2459292209103705E-005 + 215.45999999999998 -2.2557094716511507E-005 + 215.51999999999998 -2.2653752036156555E-005 + 215.57999999999998 -2.2748887141388779E-005 + 215.63999999999999 -2.2842110860614189E-005 + 215.69999999999999 -2.2933026490122042E-005 + 215.75999999999999 -2.3021221345928401E-005 + 215.81999999999999 -2.3106273988299471E-005 + 215.88000000000000 -2.3187751626170239E-005 + 215.94000000000000 -2.3265215609809640E-005 + 216.00000000000000 -2.3338214565973461E-005 + 216.06000000000000 -2.3406301511747717E-005 + 216.12000000000000 -2.3469023681883577E-005 + 216.18000000000001 -2.3525935365439562E-005 + 216.24000000000001 -2.3576594239532468E-005 + 216.30000000000001 -2.3620567509829800E-005 + 216.36000000000001 -2.3657438346250442E-005 + 216.42000000000002 -2.3686805473108601E-005 + 216.48000000000002 -2.3708289220333623E-005 + 216.53999999999996 -2.3721531879806574E-005 + 216.59999999999997 -2.3726200579486237E-005 + 216.65999999999997 -2.3721992457187032E-005 + 216.71999999999997 -2.3708635154868954E-005 + 216.77999999999997 -2.3685893489796433E-005 + 216.83999999999997 -2.3653563597138447E-005 + 216.89999999999998 -2.3611484013377990E-005 + 216.95999999999998 -2.3559530122372489E-005 + 217.01999999999998 -2.3497617833163000E-005 + 217.07999999999998 -2.3425705476655071E-005 + 217.13999999999999 -2.3343791702522445E-005 + 217.19999999999999 -2.3251914541344325E-005 + 217.25999999999999 -2.3150154805454487E-005 + 217.31999999999999 -2.3038629328531384E-005 + 217.38000000000000 -2.2917488823064279E-005 + 217.44000000000000 -2.2786920701400569E-005 + 217.50000000000000 -2.2647140270681919E-005 + 217.56000000000000 -2.2498395434128053E-005 + 217.62000000000000 -2.2340959838018802E-005 + 217.68000000000001 -2.2175131812135005E-005 + 217.74000000000001 -2.2001235822217468E-005 + 217.80000000000001 -2.1819620780672901E-005 + 217.86000000000001 -2.1630661514868583E-005 + 217.92000000000002 -2.1434761714691808E-005 + 217.98000000000002 -2.1232355876095204E-005 + 218.03999999999996 -2.1023913325194603E-005 + 218.09999999999997 -2.0809940069052475E-005 + 218.15999999999997 -2.0590978917402191E-005 + 218.21999999999997 -2.0367619920080574E-005 + 218.27999999999997 -2.0140495484137813E-005 + 218.33999999999997 -1.9910282088594133E-005 + 218.39999999999998 -1.9677703714859017E-005 + 218.45999999999998 -1.9443527018256574E-005 + 218.51999999999998 -1.9208557887248662E-005 + 218.57999999999998 -1.8973637951827550E-005 + 218.63999999999999 -1.8739639120983375E-005 + 218.69999999999999 -1.8507457771267379E-005 + 218.75999999999999 -1.8278004115040072E-005 + 218.81999999999999 -1.8052198792678383E-005 + 218.88000000000000 -1.7830967413387595E-005 + 218.94000000000000 -1.7615230399696954E-005 + 219.00000000000000 -1.7405899107242472E-005 + 219.06000000000000 -1.7203870531306984E-005 + 219.12000000000000 -1.7010030221380043E-005 + 219.18000000000001 -1.6825246369282569E-005 + 219.24000000000001 -1.6650371564687789E-005 + 219.30000000000001 -1.6486245961964389E-005 + 219.36000000000001 -1.6333699438802111E-005 + 219.42000000000002 -1.6193554040749194E-005 + 219.48000000000002 -1.6066632889621744E-005 + 219.53999999999996 -1.5953759785646407E-005 + 219.59999999999997 -1.5855768815834556E-005 + 219.65999999999997 -1.5773502512919639E-005 + 219.71999999999997 -1.5707818663237496E-005 + 219.77999999999997 -1.5659594075225455E-005 + 219.83999999999997 -1.5629721298652936E-005 + 219.89999999999998 -1.5619111559220294E-005 + 219.95999999999998 -1.5628695504940248E-005 + 220.01999999999998 -1.5659419126747598E-005 + 220.07999999999998 -1.5712244309702837E-005 + 220.13999999999999 -1.5788144342263977E-005 + 220.19999999999999 -1.5888098655614464E-005 + 220.25999999999999 -1.6013100614104034E-005 + 220.31999999999999 -1.6164139378682125E-005 + 220.38000000000000 -1.6342210803974622E-005 + 220.44000000000000 -1.6548309475845014E-005 + 220.50000000000000 -1.6783426983761694E-005 + 220.56000000000000 -1.7048556140364104E-005 + 220.62000000000000 -1.7344684599208152E-005 + 220.68000000000001 -1.7672802063974989E-005 + 220.74000000000001 -1.8033897325890358E-005 + 220.80000000000001 -1.8428966684143608E-005 + 220.86000000000001 -1.8859010385851643E-005 + 220.92000000000002 -1.9325038322854925E-005 + 220.98000000000002 -1.9828077966905492E-005 + 221.03999999999996 -2.0369171420370155E-005 + 221.09999999999997 -2.0949386495085795E-005 + 221.15999999999997 -2.1569822801243049E-005 + 221.21999999999997 -2.2231608222601632E-005 + 221.27999999999997 -2.2935911642742585E-005 + 221.33999999999997 -2.3683937107191379E-005 + 221.39999999999998 -2.4476941766780721E-005 + 221.45999999999998 -2.5316216696205260E-005 + 221.51999999999998 -2.6203103473782988E-005 + 221.57999999999998 -2.7138988561243061E-005 + 221.63999999999999 -2.8125297528486541E-005 + 221.69999999999999 -2.9163497928110295E-005 + 221.75999999999999 -3.0255085506914199E-005 + 221.81999999999999 -3.1401589261349025E-005 + 221.88000000000000 -3.2604553771228392E-005 + 221.94000000000000 -3.3865540124918148E-005 + 222.00000000000000 -3.5186119674501677E-005 + 222.06000000000000 -3.6567855418350016E-005 + 222.12000000000000 -3.8012311350523503E-005 + 222.18000000000001 -3.9521038165444969E-005 + 222.24000000000001 -4.1095571911699306E-005 + 222.30000000000001 -4.2737437025374637E-005 + 222.36000000000001 -4.4448136558605927E-005 + 222.42000000000002 -4.6229157454486495E-005 + 222.48000000000002 -4.8081976682320410E-005 + 222.53999999999996 -5.0008051344700348E-005 + 222.59999999999997 -5.2008834846822709E-005 + 222.65999999999997 -5.4085770559350181E-005 + 222.71999999999997 -5.6240300634974614E-005 + 222.77999999999997 -5.8473853198028308E-005 + 222.83999999999997 -6.0787856476055821E-005 + 222.89999999999998 -6.3183735898437722E-005 + 222.95999999999998 -6.5662898776771252E-005 + 223.01999999999998 -6.8226722711688272E-005 + 223.07999999999998 -7.0876565266408039E-005 + 223.13999999999999 -7.3613745235777766E-005 + 223.19999999999999 -7.6439525034085440E-005 + 223.25999999999999 -7.9355091974442726E-005 + 223.31999999999999 -8.2361566669992322E-005 + 223.38000000000000 -8.5459976887501525E-005 + 223.44000000000000 -8.8651241893505716E-005 + 223.50000000000000 -9.1936157475908624E-005 + 223.56000000000000 -9.5315410539314449E-005 + 223.62000000000000 -9.8789530832573609E-005 + 223.68000000000001 -1.0235889040732927E-004 + 223.74000000000001 -1.0602375043315345E-004 + 223.80000000000001 -1.0978418280614051E-004 + 223.86000000000001 -1.1364010674239807E-004 + 223.92000000000002 -1.1759128061417486E-004 + 223.98000000000002 -1.2163730856487785E-004 + 224.03999999999996 -1.2577759272787480E-004 + 224.09999999999997 -1.3001139870031462E-004 + 224.15999999999997 -1.3433779028690281E-004 + 224.21999999999997 -1.3875564795885084E-004 + 224.27999999999997 -1.4326369215652358E-004 + 224.33999999999997 -1.4786042145081984E-004 + 224.39999999999998 -1.5254415297434175E-004 + 224.45999999999998 -1.5731296764087284E-004 + 224.51999999999998 -1.6216475244007730E-004 + 224.57999999999998 -1.6709716552959242E-004 + 224.63999999999999 -1.7210758962750476E-004 + 224.69999999999999 -1.7719321262541071E-004 + 224.75999999999999 -1.8235093260225683E-004 + 224.81999999999999 -1.8757740615835068E-004 + 224.88000000000000 -1.9286900132941339E-004 + 224.94000000000000 -1.9822181623266175E-004 + 225.00000000000000 -2.0363168139285714E-004 + 225.06000000000000 -2.0909411961259958E-004 + 225.12000000000000 -2.1460440782886307E-004 + 225.18000000000001 -2.2015748515578101E-004 + 225.24000000000001 -2.2574804176054777E-004 + 225.30000000000001 -2.3137044978225880E-004 + 225.36000000000001 -2.3701883377375883E-004 + 225.42000000000002 -2.4268699130492333E-004 + 225.48000000000002 -2.4836845590561014E-004 + 225.53999999999996 -2.5405653024187662E-004 + 225.59999999999997 -2.5974420060402136E-004 + 225.65999999999997 -2.6542423011332060E-004 + 225.71999999999997 -2.7108910996348604E-004 + 225.77999999999997 -2.7673110704513377E-004 + 225.83999999999997 -2.8234227206350935E-004 + 225.89999999999998 -2.8791443352977800E-004 + 225.95999999999998 -2.9343922210198843E-004 + 226.01999999999998 -2.9890808703349387E-004 + 226.07999999999998 -3.0431231651341595E-004 + 226.13999999999999 -3.0964303773343071E-004 + 226.19999999999999 -3.1489122965781168E-004 + 226.25999999999999 -3.2004773973143486E-004 + 226.31999999999999 -3.2510332379833258E-004 + 226.38000000000000 -3.3004862479062760E-004 + 226.44000000000000 -3.3487418984968088E-004 + 226.50000000000000 -3.3957054620165501E-004 + 226.56000000000000 -3.4412810492206883E-004 + 226.62000000000000 -3.4853731523286206E-004 + 226.68000000000001 -3.5278854299667208E-004 + 226.74000000000001 -3.5687218837902982E-004 + 226.80000000000001 -3.6077869127904575E-004 + 226.86000000000001 -3.6449854676702016E-004 + 226.92000000000002 -3.6802233294984328E-004 + 226.98000000000002 -3.7134071648012079E-004 + 227.03999999999996 -3.7444454359615630E-004 + 227.09999999999997 -3.7732479051116045E-004 + 227.15999999999997 -3.7997260987794596E-004 + 227.21999999999997 -3.8237945775446830E-004 + 227.27999999999997 -3.8453700944865985E-004 + 227.33999999999997 -3.8643719293901600E-004 + 227.39999999999998 -3.8807233750001220E-004 + 227.45999999999998 -3.8943504545322320E-004 + 227.51999999999998 -3.9051827263917986E-004 + 227.57999999999998 -3.9131539704659421E-004 + 227.63999999999999 -3.9182017798618924E-004 + 227.69999999999999 -3.9202678455287689E-004 + 227.75999999999999 -3.9192981840095135E-004 + 227.81999999999999 -3.9152436819549723E-004 + 227.88000000000000 -3.9080591750841319E-004 + 227.94000000000000 -3.8977044637833333E-004 + 228.00000000000000 -3.8841447352134118E-004 + 228.06000000000000 -3.8673501457039614E-004 + 228.12000000000000 -3.8472953732929276E-004 + 228.18000000000001 -3.8239609475733264E-004 + 228.24000000000001 -3.7973328701958225E-004 + 228.30000000000001 -3.7674023201150037E-004 + 228.36000000000001 -3.7341668970465456E-004 + 228.42000000000002 -3.6976292894131703E-004 + 228.48000000000002 -3.6577987123603660E-004 + 228.53999999999996 -3.6146900345498831E-004 + 228.59999999999997 -3.5683245434002357E-004 + 228.65999999999997 -3.5187295795708180E-004 + 228.71999999999997 -3.4659382644138009E-004 + 228.77999999999997 -3.4099901696666503E-004 + 228.83999999999997 -3.3509305994898351E-004 + 228.89999999999998 -3.2888110225821041E-004 + 228.95999999999998 -3.2236886550277515E-004 + 229.01999999999998 -3.1556261921265275E-004 + 229.07999999999998 -3.0846923961172837E-004 + 229.13999999999999 -3.0109610069308846E-004 + 229.19999999999999 -2.9345114811814418E-004 + 229.25999999999999 -2.8554281234848715E-004 + 229.31999999999999 -2.7738000639997075E-004 + 229.38000000000000 -2.6897214503358911E-004 + 229.44000000000000 -2.6032909051424682E-004 + 229.50000000000000 -2.5146112916504267E-004 + 229.56000000000000 -2.4237900764447097E-004 + 229.62000000000000 -2.3309385291044932E-004 + 229.68000000000001 -2.2361711452331589E-004 + 229.74000000000001 -2.1396064546543370E-004 + 229.80000000000001 -2.0413662063630423E-004 + 229.86000000000001 -1.9415747214849487E-004 + 229.92000000000002 -1.8403591288680208E-004 + 229.97999999999996 -1.7378488782734616E-004 + 230.03999999999996 -1.6341756421777844E-004 + 230.09999999999997 -1.5294723769277677E-004 + 230.15999999999997 -1.4238738217170442E-004 + 230.21999999999997 -1.3175156267815824E-004 + 230.27999999999997 -1.2105342536643880E-004 + 230.33999999999997 -1.1030663939676216E-004 + 230.39999999999998 -9.9524919626845992E-005 + 230.45999999999998 -8.8721936167794767E-005 + 230.51999999999998 -7.7911318690613687E-005 + 230.57999999999998 -6.7106627923128740E-005 + 230.63999999999999 -5.6321307403029794E-005 + 230.69999999999999 -4.5568672563215801E-005 + 230.75999999999999 -3.4861889463005355E-005 + 230.81999999999999 -2.4213934332893667E-005 + 230.88000000000000 -1.3637554879490153E-005 + 230.94000000000000 -3.1452450175448659E-006 + 231.00000000000000 7.2507619743214486E-006 + 231.06000000000000 1.7538518529738624E-005 + 231.12000000000000 2.7706428259589028E-005 + 231.18000000000001 3.7743236971269451E-005 + 231.24000000000001 4.7638076385723071E-005 + 231.30000000000001 5.7380462481070607E-005 + 231.36000000000001 6.6960334135467866E-005 + 231.42000000000002 7.6368066377631661E-005 + 231.47999999999996 8.5594491553579857E-005 + 231.53999999999996 9.4630912396078185E-005 + 231.59999999999997 1.0346908310905566E-004 + 231.65999999999997 1.1210126008631753E-004 + 231.71999999999997 1.2052017654564905E-004 + 231.77999999999997 1.2871908815925156E-004 + 231.83999999999997 1.3669173629785603E-004 + 231.89999999999998 1.4443236176531432E-004 + 231.95999999999998 1.5193571187783350E-004 + 232.01999999999998 1.5919703830628666E-004 + 232.07999999999998 1.6621212858671728E-004 + 232.13999999999999 1.7297725561400107E-004 + 232.19999999999999 1.7948919992373196E-004 + 232.25999999999999 1.8574524737806870E-004 + 232.31999999999999 1.9174321563303261E-004 + 232.38000000000000 1.9748141724008200E-004 + 232.44000000000000 2.0295863943012386E-004 + 232.50000000000000 2.0817417226246757E-004 + 232.56000000000000 2.1312779464494207E-004 + 232.62000000000000 2.1781974906154566E-004 + 232.68000000000001 2.2225071772532303E-004 + 232.74000000000001 2.2642181780461632E-004 + 232.80000000000001 2.3033457783014312E-004 + 232.86000000000001 2.3399095864616549E-004 + 232.92000000000002 2.3739326402042610E-004 + 232.97999999999996 2.4054415870541321E-004 + 233.03999999999996 2.4344665470533294E-004 + 233.09999999999997 2.4610407776131629E-004 + 233.15999999999997 2.4852002593933392E-004 + 233.21999999999997 2.5069842257587836E-004 + 233.27999999999997 2.5264342966047933E-004 + 233.33999999999997 2.5435945942486996E-004 + 233.39999999999998 2.5585114847083879E-004 + 233.45999999999998 2.5712333696546757E-004 + 233.51999999999998 2.5818108422750628E-004 + 233.57999999999998 2.5902961564807346E-004 + 233.63999999999999 2.5967435660562664E-004 + 233.69999999999999 2.6012085421280305E-004 + 233.75999999999999 2.6037479599782441E-004 + 233.81999999999999 2.6044196570237027E-004 + 233.88000000000000 2.6032824530930910E-004 + 233.94000000000000 2.6003961823918196E-004 + 234.00000000000000 2.5958210679902113E-004 + 234.06000000000000 2.5896177477351720E-004 + 234.12000000000000 2.5818467194333296E-004 + 234.18000000000001 2.5725688000734036E-004 + 234.24000000000001 2.5618449675570050E-004 + 234.30000000000001 2.5497348888591013E-004 + 234.36000000000001 2.5362988968732751E-004 + 234.42000000000002 2.5215961319837831E-004 + 234.47999999999996 2.5056855098902736E-004 + 234.53999999999996 2.4886249294236448E-004 + 234.59999999999997 2.4704720346430684E-004 + 234.65999999999997 2.4512832406090295E-004 + 234.71999999999997 2.4311144094320308E-004 + 234.77999999999997 2.4100206222464740E-004 + 234.83999999999997 2.3880561841057332E-004 + 234.89999999999998 2.3652744074019206E-004 + 234.95999999999998 2.3417275911070685E-004 + 235.01999999999998 2.3174673658318297E-004 + 235.07999999999998 2.2925440530189030E-004 + 235.13999999999999 2.2670066761217342E-004 + 235.19999999999999 2.2409037057836433E-004 + 235.25999999999999 2.2142820763086744E-004 + 235.31999999999999 2.1871873344985498E-004 + 235.38000000000000 2.1596638959530702E-004 + 235.44000000000000 2.1317547493201536E-004 + 235.50000000000000 2.1035016280271650E-004 + 235.56000000000000 2.0749452396717985E-004 + 235.62000000000000 2.0461244334735699E-004 + 235.68000000000001 2.0170772792013316E-004 + 235.74000000000001 1.9878403591116057E-004 + 235.80000000000001 1.9584491795532737E-004 + 235.86000000000001 1.9289378960459885E-004 + 235.92000000000002 1.8993399855372147E-004 + 235.97999999999996 1.8696873610568623E-004 + 236.03999999999996 1.8400111874568368E-004 + 236.09999999999997 1.8103417187643583E-004 + 236.15999999999997 1.7807078902269357E-004 + 236.21999999999997 1.7511377567894785E-004 + 236.27999999999997 1.7216586849622722E-004 + 236.33999999999997 1.6922966536913258E-004 + 236.39999999999998 1.6630768547220087E-004 + 236.45999999999998 1.6340233566044463E-004 + 236.51999999999998 1.6051593373496483E-004 + 236.57999999999998 1.5765069571462752E-004 + 236.63999999999999 1.5480875787998635E-004 + 236.69999999999999 1.5199214765365164E-004 + 236.75999999999999 1.4920279813509184E-004 + 236.81999999999999 1.4644259663038376E-004 + 236.88000000000000 1.4371330376818564E-004 + 236.94000000000000 1.4101662535630601E-004 + 237.00000000000000 1.3835418921428783E-004 + 237.06000000000000 1.3572755332926802E-004 + 237.12000000000000 1.3313820954296451E-004 + 237.18000000000001 1.3058757255504319E-004 + 237.24000000000001 1.2807697780439363E-004 + 237.30000000000001 1.2560770627062138E-004 + 237.36000000000001 1.2318094753975919E-004 + 237.42000000000002 1.2079781910452055E-004 + 237.47999999999996 1.1845935050023086E-004 + 237.53999999999996 1.1616648851337056E-004 + 237.59999999999997 1.1392008889781670E-004 + 237.65999999999997 1.1172093817881784E-004 + 237.71999999999997 1.0956969510731015E-004 + 237.77999999999997 1.0746696665525502E-004 + 237.83999999999997 1.0541326653385009E-004 + 237.89999999999998 1.0340902373400415E-004 + 237.95999999999998 1.0145460723396368E-004 + 238.01999999999998 9.9550299599911483E-005 + 238.07999999999998 9.7696322676647684E-005 + 238.13999999999999 9.5892840889318716E-005 + 238.19999999999999 9.4139956632839541E-005 + 238.25999999999999 9.2437727880373646E-005 + 238.31999999999999 9.0786157838797650E-005 + 238.38000000000000 8.9185195939152972E-005 + 238.44000000000000 8.7634730313160893E-005 + 238.50000000000000 8.6134609709607332E-005 + 238.56000000000000 8.4684617405837492E-005 + 238.62000000000000 8.3284463610866613E-005 + 238.68000000000001 8.1933808470012592E-005 + 238.74000000000001 8.0632239970811488E-005 + 238.80000000000001 7.9379276735491321E-005 + 238.86000000000001 7.8174361419982877E-005 + 238.92000000000002 7.7016874355060355E-005 + 238.97999999999996 7.5906117446947690E-005 + 239.03999999999996 7.4841345453232139E-005 + 239.09999999999997 7.3821748736837555E-005 + 239.15999999999997 7.2846459118547894E-005 + 239.21999999999997 7.1914571482372251E-005 + 239.27999999999997 7.1025133672452019E-005 + 239.33999999999997 7.0177163294906421E-005 + 239.39999999999998 6.9369636975816771E-005 + 239.45999999999998 6.8601515547311672E-005 + 239.51999999999998 6.7871724574195539E-005 + 239.57999999999998 6.7179177188746750E-005 + 239.63999999999999 6.6522753339116143E-005 + 239.69999999999999 6.5901315361922901E-005 + 239.75999999999999 6.5313693493232827E-005 + 239.81999999999999 6.4758700314066563E-005 + 239.88000000000000 6.4235102325367510E-005 + 239.94000000000000 6.3741651588269694E-005 + 240.00000000000000 6.3277069581071357E-005 + 240.06000000000000 6.2840048108760100E-005 + 240.12000000000000 6.2429256673958693E-005 + 240.18000000000001 6.2043342775520819E-005 + 240.24000000000001 6.1680933423668429E-005 + 240.30000000000001 6.1340654710721840E-005 + 240.36000000000001 6.1021115910732039E-005 + 240.42000000000002 6.0720932106157742E-005 + 240.47999999999996 6.0438717617664551E-005 + 240.53999999999996 6.0173093689328215E-005 + 240.59999999999997 5.9922697232557659E-005 + 240.65999999999997 5.9686164267431882E-005 + 240.71999999999997 5.9462164260215822E-005 + 240.77999999999997 5.9249355822261515E-005 + 240.83999999999997 5.9046431133579802E-005 + 240.89999999999998 5.8852082516683677E-005 + 240.95999999999998 5.8665018469354350E-005 + 241.01999999999998 5.8483961380305431E-005 + 241.07999999999998 5.8307640742801518E-005 + 241.13999999999999 5.8134801219286998E-005 + 241.19999999999999 5.7964207696502726E-005 + 241.25999999999999 5.7794643933615315E-005 + 241.31999999999999 5.7624915068860410E-005 + 241.38000000000000 5.7453866797857138E-005 + 241.44000000000000 5.7280374358499041E-005 + 241.50000000000000 5.7103357289270793E-005 + 241.56000000000000 5.6921783500693963E-005 + 241.62000000000000 5.6734675125498606E-005 + 241.68000000000001 5.6541108502581946E-005 + 241.74000000000001 5.6340226507777872E-005 + 241.80000000000001 5.6131223616514074E-005 + 241.86000000000001 5.5913355972384488E-005 + 241.92000000000002 5.5685940155626418E-005 + 241.97999999999996 5.5448349630824070E-005 + 242.03999999999996 5.5200011841608335E-005 + 242.09999999999997 5.4940402662788819E-005 + 242.15999999999997 5.4669053218423471E-005 + 242.21999999999997 5.4385538120717266E-005 + 242.27999999999997 5.4089478673365603E-005 + 242.33999999999997 5.3780545934292819E-005 + 242.39999999999998 5.3458461520072663E-005 + 242.45999999999998 5.3123005420821404E-005 + 242.51999999999998 5.2774012434733893E-005 + 242.57999999999998 5.2411379834694490E-005 + 242.63999999999999 5.2035069213155639E-005 + 242.69999999999999 5.1645126875871508E-005 + 242.75999999999999 5.1241667102918736E-005 + 242.81999999999999 5.0824886524936367E-005 + 242.88000000000000 5.0395057849962818E-005 + 242.94000000000000 4.9952536782272771E-005 + 243.00000000000000 4.9497751557993754E-005 + 243.06000000000000 4.9031208765472308E-005 + 243.12000000000000 4.8553483797782747E-005 + 243.18000000000001 4.8065215509310086E-005 + 243.24000000000001 4.7567091857285837E-005 + 243.30000000000001 4.7059847056684138E-005 + 243.36000000000001 4.6544264431892920E-005 + 243.42000000000002 4.6021167279101255E-005 + 243.47999999999996 4.5491399118613879E-005 + 243.53999999999996 4.4955830513340404E-005 + 243.59999999999997 4.4415360131561217E-005 + 243.65999999999997 4.3870909135332892E-005 + 243.71999999999997 4.3323416681729687E-005 + 243.77999999999997 4.2773841397657831E-005 + 243.83999999999997 4.2223166950284481E-005 + 243.89999999999998 4.1672396734047609E-005 + 243.95999999999998 4.1122548344002770E-005 + 244.01999999999998 4.0574656615031059E-005 + 244.07999999999998 4.0029779541960035E-005 + 244.13999999999999 3.9488980556299899E-005 + 244.19999999999999 3.8953338792375079E-005 + 244.25999999999999 3.8423929844135474E-005 + 244.31999999999999 3.7901833047195592E-005 + 244.38000000000000 3.7388121656411570E-005 + 244.44000000000000 3.6883858852669178E-005 + 244.50000000000000 3.6390098503428527E-005 + 244.56000000000000 3.5907872989009309E-005 + 244.62000000000000 3.5438199298186680E-005 + 244.68000000000001 3.4982074942875946E-005 + 244.74000000000001 3.4540474146464283E-005 + 244.80000000000001 3.4114353540203466E-005 + 244.86000000000001 3.3704656189017702E-005 + 244.92000000000002 3.3312307036445079E-005 + 244.97999999999996 3.2938220905476395E-005 + 245.03999999999996 3.2583299695411055E-005 + 245.09999999999997 3.2248431501376900E-005 + 245.15999999999997 3.1934498574831793E-005 + 245.21999999999997 3.1642367148727876E-005 + 245.27999999999997 3.1372891491315567E-005 + 245.33999999999997 3.1126912632676259E-005 + 245.39999999999998 3.0905250320208927E-005 + 245.45999999999998 3.0708707201593434E-005 + 245.51999999999998 3.0538060311056040E-005 + 245.57999999999998 3.0394060793787424E-005 + 245.63999999999999 3.0277437655635604E-005 + 245.69999999999999 3.0188892247188734E-005 + 245.75999999999999 3.0129097891538438E-005 + 245.81999999999999 3.0098719206982532E-005 + 245.88000000000000 3.0098401472389461E-005 + 245.94000000000000 3.0128780590991937E-005 + 246.00000000000000 3.0190491464692707E-005 + 246.06000000000000 3.0284175858240225E-005 + 246.12000000000000 3.0410493019847937E-005 + 246.18000000000001 3.0570120753866989E-005 + 246.24000000000001 3.0763764437200426E-005 + 246.30000000000001 3.0992161019867765E-005 + 246.36000000000001 3.1256081498170063E-005 + 246.42000000000002 3.1556336192563244E-005 + 246.47999999999996 3.1893768225564408E-005 + 246.53999999999996 3.2269265104448816E-005 + 246.59999999999997 3.2683740316609392E-005 + 246.65999999999997 3.3138147391373961E-005 + 246.71999999999997 3.3633463741572624E-005 + 246.77999999999997 3.4170694522463473E-005 + 246.83999999999997 3.4750876956355682E-005 + 246.89999999999998 3.5375068749953788E-005 + 246.95999999999998 3.6044357924309693E-005 + 247.01999999999998 3.6759859883314175E-005 + 247.07999999999998 3.7522724241449897E-005 + 247.13999999999999 3.8334134185504121E-005 + 247.19999999999999 3.9195314105397372E-005 + 247.25999999999999 4.0107541416920568E-005 + 247.31999999999999 4.1072139808308887E-005 + 247.38000000000000 4.2090485502594397E-005 + 247.44000000000000 4.3164017123548309E-005 + 247.50000000000000 4.4294235412466613E-005 + 247.56000000000000 4.5482705099548195E-005 + 247.62000000000000 4.6731044385024353E-005 + 247.68000000000001 4.8040935674117471E-005 + 247.74000000000001 4.9414118426560501E-005 + 247.80000000000001 5.0852388260655946E-005 + 247.86000000000001 5.2357587634629189E-005 + 247.92000000000002 5.3931594576587003E-005 + 247.97999999999996 5.5576334073597153E-005 + 248.03999999999996 5.7293763576853394E-005 + 248.09999999999997 5.9085868544058365E-005 + 248.15999999999997 6.0954667221938845E-005 + 248.21999999999997 6.2902199969834869E-005 + 248.27999999999997 6.4930519228393357E-005 + 248.33999999999997 6.7041702987634315E-005 + 248.39999999999998 6.9237846575102231E-005 + 248.45999999999998 7.1521045125242256E-005 + 248.51999999999998 7.3893404922702118E-005 + 248.57999999999998 7.6357037575607476E-005 + 248.63999999999999 7.8914047066748472E-005 + 248.69999999999999 8.1566520556248455E-005 + 248.75999999999999 8.4316533286999586E-005 + 248.81999999999999 8.7166126632091842E-005 + 248.88000000000000 9.0117311157606264E-005 + 248.94000000000000 9.3172043026760928E-005 + 249.00000000000000 9.6332240180978715E-005 + 249.06000000000000 9.9599740070975280E-005 + 249.12000000000000 1.0297632847209689E-004 + 249.18000000000001 1.0646369710511261E-004 + 249.24000000000001 1.1006348731604210E-004 + 249.30000000000001 1.1377723568886493E-004 + 249.36000000000001 1.1760638685345145E-004 + 249.42000000000002 1.2155230471041267E-004 + 249.47999999999996 1.2561625542596767E-004 + 249.53999999999996 1.2979940992283786E-004 + 249.59999999999997 1.3410285350162326E-004 + 249.65999999999997 1.3852755170889154E-004 + 249.71999999999997 1.4307434280666438E-004 + 249.77999999999997 1.4774396304147991E-004 + 249.83999999999997 1.5253701428044348E-004 + 249.89999999999998 1.5745395157763169E-004 + 249.95999999999998 1.6249507790833307E-004 + 250.01999999999998 1.6766051768200144E-004 + 250.07999999999998 1.7295021799716847E-004 + 250.13999999999999 1.7836393414259811E-004 + 250.19999999999999 1.8390120001935125E-004 + 250.25999999999999 1.8956134431706890E-004 + 250.31999999999999 1.9534345023947160E-004 + 250.38000000000000 2.0124638414951299E-004 + 250.44000000000000 2.0726878556438054E-004 + 250.50000000000000 2.1340900861882136E-004 + 250.56000000000000 2.1966518212218682E-004 + 250.62000000000000 2.2603521896974482E-004 + 250.68000000000001 2.3251676220065404E-004 + 250.74000000000001 2.3910725769017688E-004 + 250.80000000000001 2.4580385324948843E-004 + 250.86000000000001 2.5260350091154321E-004 + 250.92000000000002 2.5950294565174988E-004 + 250.97999999999996 2.6649868035765698E-004 + 251.03999999999996 2.7358698857281105E-004 + 251.09999999999997 2.8076389578947570E-004 + 251.15999999999997 2.8802518194177129E-004 + 251.21999999999997 2.9536642874607253E-004 + 251.27999999999997 3.0278294066160441E-004 + 251.33999999999997 3.1026980552923956E-004 + 251.39999999999998 3.1782181190479457E-004 + 251.45999999999998 3.2543353346763923E-004 + 251.51999999999998 3.3309927705093602E-004 + 251.57999999999998 3.4081303978023908E-004 + 251.63999999999999 3.4856856091591322E-004 + 251.69999999999999 3.5635938524987529E-004 + 251.75999999999999 3.6417876295754105E-004 + 251.81999999999999 3.7201975159619686E-004 + 251.88000000000000 3.7987511118556846E-004 + 251.94000000000000 3.8773737397218284E-004 diff --git a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000004.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000004.BXY.semd new file mode 100644 index 00000000..c02ea643 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000004.BXY.semd @@ -0,0 +1,5000 @@ + -48.000000000000000 0.0000000000000000 + -47.939999999999998 0.0000000000000000 + -47.880000000000003 0.0000000000000000 + -47.820000000000000 0.0000000000000000 + -47.759999999999998 0.0000000000000000 + -47.700000000000003 0.0000000000000000 + -47.640000000000001 0.0000000000000000 + -47.579999999999998 0.0000000000000000 + -47.520000000000003 0.0000000000000000 + -47.460000000000001 0.0000000000000000 + -47.399999999999999 0.0000000000000000 + -47.340000000000003 0.0000000000000000 + -47.280000000000001 0.0000000000000000 + -47.219999999999999 0.0000000000000000 + -47.159999999999997 0.0000000000000000 + -47.100000000000001 0.0000000000000000 + -47.039999999999999 0.0000000000000000 + -46.979999999999997 0.0000000000000000 + -46.920000000000002 0.0000000000000000 + -46.859999999999999 0.0000000000000000 + -46.799999999999997 0.0000000000000000 + -46.740000000000002 0.0000000000000000 + -46.680000000000000 0.0000000000000000 + -46.619999999999997 0.0000000000000000 + -46.560000000000002 0.0000000000000000 + -46.500000000000000 0.0000000000000000 + -46.439999999999998 0.0000000000000000 + -46.380000000000003 0.0000000000000000 + -46.320000000000000 0.0000000000000000 + -46.259999999999998 0.0000000000000000 + -46.200000000000003 0.0000000000000000 + -46.140000000000001 0.0000000000000000 + -46.079999999999998 0.0000000000000000 + -46.020000000000003 0.0000000000000000 + -45.960000000000001 0.0000000000000000 + -45.899999999999999 0.0000000000000000 + -45.840000000000003 0.0000000000000000 + -45.780000000000001 0.0000000000000000 + -45.719999999999999 0.0000000000000000 + -45.659999999999997 0.0000000000000000 + -45.600000000000001 0.0000000000000000 + -45.539999999999999 0.0000000000000000 + -45.479999999999997 0.0000000000000000 + -45.420000000000002 0.0000000000000000 + -45.359999999999999 0.0000000000000000 + -45.299999999999997 0.0000000000000000 + -45.240000000000002 0.0000000000000000 + -45.180000000000000 0.0000000000000000 + -45.119999999999997 0.0000000000000000 + -45.060000000000002 0.0000000000000000 + -45.000000000000000 0.0000000000000000 + -44.939999999999998 0.0000000000000000 + -44.880000000000003 0.0000000000000000 + -44.820000000000000 0.0000000000000000 + -44.759999999999998 0.0000000000000000 + -44.700000000000003 0.0000000000000000 + -44.640000000000001 0.0000000000000000 + -44.579999999999998 0.0000000000000000 + -44.520000000000003 0.0000000000000000 + -44.460000000000001 0.0000000000000000 + -44.399999999999999 0.0000000000000000 + -44.340000000000003 0.0000000000000000 + -44.280000000000001 0.0000000000000000 + -44.219999999999999 0.0000000000000000 + -44.159999999999997 0.0000000000000000 + -44.100000000000001 0.0000000000000000 + -44.039999999999999 0.0000000000000000 + -43.980000000000004 0.0000000000000000 + -43.920000000000002 0.0000000000000000 + -43.859999999999999 0.0000000000000000 + -43.799999999999997 0.0000000000000000 + -43.740000000000002 0.0000000000000000 + -43.680000000000000 0.0000000000000000 + -43.619999999999997 0.0000000000000000 + -43.560000000000002 0.0000000000000000 + -43.500000000000000 0.0000000000000000 + -43.439999999999998 0.0000000000000000 + -43.380000000000003 0.0000000000000000 + -43.320000000000000 0.0000000000000000 + -43.259999999999998 0.0000000000000000 + -43.200000000000003 0.0000000000000000 + -43.140000000000001 0.0000000000000000 + -43.079999999999998 0.0000000000000000 + -43.020000000000003 0.0000000000000000 + -42.960000000000001 0.0000000000000000 + -42.899999999999999 0.0000000000000000 + -42.840000000000003 0.0000000000000000 + -42.780000000000001 0.0000000000000000 + -42.719999999999999 0.0000000000000000 + -42.659999999999997 0.0000000000000000 + -42.600000000000001 0.0000000000000000 + -42.539999999999999 0.0000000000000000 + -42.480000000000004 0.0000000000000000 + -42.420000000000002 0.0000000000000000 + -42.359999999999999 0.0000000000000000 + -42.299999999999997 0.0000000000000000 + -42.240000000000002 0.0000000000000000 + -42.180000000000000 0.0000000000000000 + -42.119999999999997 0.0000000000000000 + -42.060000000000002 0.0000000000000000 + -42.000000000000000 0.0000000000000000 + -41.939999999999998 0.0000000000000000 + -41.880000000000003 0.0000000000000000 + -41.820000000000000 0.0000000000000000 + -41.759999999999998 0.0000000000000000 + -41.700000000000003 0.0000000000000000 + -41.640000000000001 0.0000000000000000 + -41.579999999999998 0.0000000000000000 + -41.520000000000003 0.0000000000000000 + -41.460000000000001 0.0000000000000000 + -41.399999999999999 0.0000000000000000 + -41.340000000000003 0.0000000000000000 + -41.280000000000001 0.0000000000000000 + -41.219999999999999 0.0000000000000000 + -41.159999999999997 0.0000000000000000 + -41.100000000000001 0.0000000000000000 + -41.039999999999999 0.0000000000000000 + -40.980000000000004 0.0000000000000000 + -40.920000000000002 0.0000000000000000 + -40.859999999999999 0.0000000000000000 + -40.799999999999997 0.0000000000000000 + -40.740000000000002 0.0000000000000000 + -40.680000000000000 0.0000000000000000 + -40.619999999999997 0.0000000000000000 + -40.560000000000002 0.0000000000000000 + -40.500000000000000 0.0000000000000000 + -40.439999999999998 0.0000000000000000 + -40.380000000000003 0.0000000000000000 + -40.320000000000000 0.0000000000000000 + -40.259999999999998 0.0000000000000000 + -40.200000000000003 0.0000000000000000 + -40.140000000000001 0.0000000000000000 + -40.079999999999998 0.0000000000000000 + -40.020000000000003 0.0000000000000000 + -39.960000000000001 0.0000000000000000 + -39.899999999999999 0.0000000000000000 + -39.840000000000003 0.0000000000000000 + -39.780000000000001 0.0000000000000000 + -39.719999999999999 0.0000000000000000 + -39.659999999999997 0.0000000000000000 + -39.600000000000001 0.0000000000000000 + -39.539999999999999 0.0000000000000000 + -39.480000000000004 0.0000000000000000 + -39.420000000000002 0.0000000000000000 + -39.359999999999999 0.0000000000000000 + -39.299999999999997 0.0000000000000000 + -39.240000000000002 0.0000000000000000 + -39.180000000000000 0.0000000000000000 + -39.120000000000005 0.0000000000000000 + -39.060000000000002 0.0000000000000000 + -39.000000000000000 0.0000000000000000 + -38.939999999999998 0.0000000000000000 + -38.880000000000003 0.0000000000000000 + -38.820000000000000 0.0000000000000000 + -38.759999999999998 0.0000000000000000 + -38.700000000000003 0.0000000000000000 + -38.640000000000001 0.0000000000000000 + -38.579999999999998 0.0000000000000000 + -38.519999999999996 0.0000000000000000 + -38.460000000000001 0.0000000000000000 + -38.399999999999999 0.0000000000000000 + -38.340000000000003 0.0000000000000000 + -38.280000000000001 0.0000000000000000 + -38.219999999999999 0.0000000000000000 + -38.159999999999997 0.0000000000000000 + -38.100000000000001 0.0000000000000000 + -38.039999999999999 0.0000000000000000 + -37.980000000000004 0.0000000000000000 + -37.920000000000002 0.0000000000000000 + -37.859999999999999 0.0000000000000000 + -37.799999999999997 0.0000000000000000 + -37.740000000000002 0.0000000000000000 + -37.680000000000000 0.0000000000000000 + -37.620000000000005 0.0000000000000000 + -37.560000000000002 0.0000000000000000 + -37.500000000000000 0.0000000000000000 + -37.439999999999998 0.0000000000000000 + -37.380000000000003 0.0000000000000000 + -37.320000000000000 0.0000000000000000 + -37.259999999999998 0.0000000000000000 + -37.200000000000003 0.0000000000000000 + -37.140000000000001 0.0000000000000000 + -37.079999999999998 0.0000000000000000 + -37.019999999999996 0.0000000000000000 + -36.960000000000001 0.0000000000000000 + -36.899999999999999 0.0000000000000000 + -36.840000000000003 0.0000000000000000 + -36.780000000000001 0.0000000000000000 + -36.719999999999999 0.0000000000000000 + -36.659999999999997 0.0000000000000000 + -36.600000000000001 0.0000000000000000 + -36.539999999999999 0.0000000000000000 + -36.480000000000004 0.0000000000000000 + -36.420000000000002 0.0000000000000000 + -36.359999999999999 0.0000000000000000 + -36.299999999999997 0.0000000000000000 + -36.240000000000002 0.0000000000000000 + -36.180000000000000 0.0000000000000000 + -36.120000000000005 0.0000000000000000 + -36.060000000000002 0.0000000000000000 + -36.000000000000000 0.0000000000000000 + -35.939999999999998 0.0000000000000000 + -35.880000000000003 0.0000000000000000 + -35.820000000000000 0.0000000000000000 + -35.759999999999998 0.0000000000000000 + -35.700000000000003 0.0000000000000000 + -35.640000000000001 0.0000000000000000 + -35.579999999999998 0.0000000000000000 + -35.519999999999996 0.0000000000000000 + -35.460000000000001 0.0000000000000000 + -35.399999999999999 0.0000000000000000 + -35.340000000000003 0.0000000000000000 + -35.280000000000001 0.0000000000000000 + -35.219999999999999 0.0000000000000000 + -35.159999999999997 0.0000000000000000 + -35.100000000000001 0.0000000000000000 + -35.039999999999999 0.0000000000000000 + -34.980000000000004 0.0000000000000000 + -34.920000000000002 0.0000000000000000 + -34.859999999999999 0.0000000000000000 + -34.799999999999997 0.0000000000000000 + -34.740000000000002 0.0000000000000000 + -34.680000000000000 0.0000000000000000 + -34.620000000000005 0.0000000000000000 + -34.560000000000002 0.0000000000000000 + -34.500000000000000 0.0000000000000000 + -34.439999999999998 0.0000000000000000 + -34.380000000000003 0.0000000000000000 + -34.320000000000000 0.0000000000000000 + -34.259999999999998 0.0000000000000000 + -34.200000000000003 0.0000000000000000 + -34.140000000000001 0.0000000000000000 + -34.079999999999998 0.0000000000000000 + -34.020000000000003 0.0000000000000000 + -33.960000000000001 0.0000000000000000 + -33.899999999999999 0.0000000000000000 + -33.840000000000003 0.0000000000000000 + -33.780000000000001 0.0000000000000000 + -33.719999999999999 0.0000000000000000 + -33.659999999999997 0.0000000000000000 + -33.600000000000001 0.0000000000000000 + -33.539999999999999 0.0000000000000000 + -33.480000000000004 0.0000000000000000 + -33.420000000000002 0.0000000000000000 + -33.359999999999999 0.0000000000000000 + -33.299999999999997 0.0000000000000000 + -33.240000000000002 0.0000000000000000 + -33.180000000000000 0.0000000000000000 + -33.120000000000005 0.0000000000000000 + -33.060000000000002 0.0000000000000000 + -33.000000000000000 0.0000000000000000 + -32.939999999999998 0.0000000000000000 + -32.880000000000003 0.0000000000000000 + -32.820000000000000 0.0000000000000000 + -32.759999999999998 0.0000000000000000 + -32.700000000000003 0.0000000000000000 + -32.640000000000001 0.0000000000000000 + -32.579999999999998 0.0000000000000000 + -32.520000000000003 0.0000000000000000 + -32.460000000000001 0.0000000000000000 + -32.399999999999999 0.0000000000000000 + -32.340000000000003 0.0000000000000000 + -32.280000000000001 0.0000000000000000 + -32.219999999999999 0.0000000000000000 + -32.159999999999997 0.0000000000000000 + -32.100000000000001 0.0000000000000000 + -32.039999999999999 0.0000000000000000 + -31.980000000000000 0.0000000000000000 + -31.920000000000002 0.0000000000000000 + -31.859999999999999 0.0000000000000000 + -31.800000000000001 0.0000000000000000 + -31.740000000000002 0.0000000000000000 + -31.680000000000000 0.0000000000000000 + -31.620000000000001 0.0000000000000000 + -31.560000000000002 0.0000000000000000 + -31.500000000000000 0.0000000000000000 + -31.440000000000001 0.0000000000000000 + -31.379999999999999 0.0000000000000000 + -31.320000000000000 0.0000000000000000 + -31.260000000000002 0.0000000000000000 + -31.199999999999999 0.0000000000000000 + -31.140000000000001 0.0000000000000000 + -31.080000000000002 0.0000000000000000 + -31.020000000000000 0.0000000000000000 + -30.960000000000001 0.0000000000000000 + -30.900000000000002 0.0000000000000000 + -30.840000000000000 0.0000000000000000 + -30.780000000000001 0.0000000000000000 + -30.719999999999999 0.0000000000000000 + -30.660000000000000 0.0000000000000000 + -30.600000000000001 0.0000000000000000 + -30.539999999999999 0.0000000000000000 + -30.480000000000000 0.0000000000000000 + -30.420000000000002 0.0000000000000000 + -30.359999999999999 0.0000000000000000 + -30.300000000000001 0.0000000000000000 + -30.240000000000002 0.0000000000000000 + -30.180000000000000 0.0000000000000000 + -30.120000000000001 0.0000000000000000 + -30.060000000000002 0.0000000000000000 + -30.000000000000000 0.0000000000000000 + -29.940000000000001 0.0000000000000000 + -29.879999999999999 0.0000000000000000 + -29.820000000000000 0.0000000000000000 + -29.760000000000002 0.0000000000000000 + -29.699999999999999 0.0000000000000000 + -29.640000000000001 0.0000000000000000 + -29.580000000000002 0.0000000000000000 + -29.520000000000000 0.0000000000000000 + -29.460000000000001 0.0000000000000000 + -29.400000000000002 0.0000000000000000 + -29.340000000000000 0.0000000000000000 + -29.280000000000001 0.0000000000000000 + -29.220000000000002 0.0000000000000000 + -29.160000000000000 0.0000000000000000 + -29.100000000000001 0.0000000000000000 + -29.039999999999999 0.0000000000000000 + -28.980000000000000 0.0000000000000000 + -28.920000000000002 0.0000000000000000 + -28.859999999999999 0.0000000000000000 + -28.800000000000001 0.0000000000000000 + -28.740000000000002 0.0000000000000000 + -28.680000000000000 0.0000000000000000 + -28.620000000000001 0.0000000000000000 + -28.560000000000002 0.0000000000000000 + -28.500000000000000 0.0000000000000000 + -28.440000000000001 0.0000000000000000 + -28.379999999999999 0.0000000000000000 + -28.320000000000000 0.0000000000000000 + -28.260000000000002 0.0000000000000000 + -28.199999999999999 0.0000000000000000 + -28.140000000000001 0.0000000000000000 + -28.080000000000002 0.0000000000000000 + -28.020000000000000 0.0000000000000000 + -27.960000000000001 0.0000000000000000 + -27.900000000000002 0.0000000000000000 + -27.840000000000000 0.0000000000000000 + -27.780000000000001 0.0000000000000000 + -27.720000000000002 0.0000000000000000 + -27.660000000000000 0.0000000000000000 + -27.600000000000001 0.0000000000000000 + -27.539999999999999 0.0000000000000000 + -27.480000000000000 0.0000000000000000 + -27.420000000000002 0.0000000000000000 + -27.359999999999999 0.0000000000000000 + -27.300000000000001 0.0000000000000000 + -27.240000000000002 0.0000000000000000 + -27.180000000000000 0.0000000000000000 + -27.120000000000001 0.0000000000000000 + -27.060000000000002 0.0000000000000000 + -27.000000000000000 0.0000000000000000 + -26.940000000000001 0.0000000000000000 + -26.880000000000003 0.0000000000000000 + -26.820000000000000 0.0000000000000000 + -26.760000000000002 0.0000000000000000 + -26.699999999999999 0.0000000000000000 + -26.640000000000001 0.0000000000000000 + -26.580000000000002 0.0000000000000000 + -26.520000000000000 0.0000000000000000 + -26.460000000000001 0.0000000000000000 + -26.400000000000002 0.0000000000000000 + -26.340000000000000 0.0000000000000000 + -26.280000000000001 0.0000000000000000 + -26.220000000000002 0.0000000000000000 + -26.160000000000000 0.0000000000000000 + -26.100000000000001 0.0000000000000000 + -26.039999999999999 0.0000000000000000 + -25.980000000000000 0.0000000000000000 + -25.920000000000002 0.0000000000000000 + -25.859999999999999 0.0000000000000000 + -25.800000000000001 0.0000000000000000 + -25.740000000000002 0.0000000000000000 + -25.680000000000000 0.0000000000000000 + -25.620000000000001 0.0000000000000000 + -25.560000000000002 0.0000000000000000 + -25.500000000000000 0.0000000000000000 + -25.440000000000001 0.0000000000000000 + -25.380000000000003 0.0000000000000000 + -25.320000000000000 0.0000000000000000 + -25.260000000000002 0.0000000000000000 + -25.199999999999999 0.0000000000000000 + -25.140000000000001 0.0000000000000000 + -25.080000000000002 0.0000000000000000 + -25.020000000000000 0.0000000000000000 + -24.960000000000001 0.0000000000000000 + -24.900000000000002 0.0000000000000000 + -24.840000000000000 0.0000000000000000 + -24.780000000000001 0.0000000000000000 + -24.720000000000002 0.0000000000000000 + -24.660000000000000 0.0000000000000000 + -24.600000000000001 0.0000000000000000 + -24.539999999999999 0.0000000000000000 + -24.480000000000000 0.0000000000000000 + -24.420000000000002 0.0000000000000000 + -24.359999999999999 0.0000000000000000 + -24.300000000000001 0.0000000000000000 + -24.240000000000002 0.0000000000000000 + -24.180000000000000 0.0000000000000000 + -24.120000000000001 0.0000000000000000 + -24.060000000000002 0.0000000000000000 + -24.000000000000000 0.0000000000000000 + -23.940000000000001 0.0000000000000000 + -23.880000000000003 0.0000000000000000 + -23.820000000000000 0.0000000000000000 + -23.760000000000002 0.0000000000000000 + -23.699999999999999 0.0000000000000000 + -23.640000000000001 0.0000000000000000 + -23.580000000000002 0.0000000000000000 + -23.520000000000000 0.0000000000000000 + -23.460000000000001 0.0000000000000000 + -23.400000000000002 0.0000000000000000 + -23.340000000000000 0.0000000000000000 + -23.280000000000001 0.0000000000000000 + -23.220000000000002 0.0000000000000000 + -23.160000000000000 0.0000000000000000 + -23.100000000000001 0.0000000000000000 + -23.039999999999999 0.0000000000000000 + -22.980000000000000 0.0000000000000000 + -22.920000000000002 0.0000000000000000 + -22.859999999999999 0.0000000000000000 + -22.800000000000001 0.0000000000000000 + -22.740000000000002 0.0000000000000000 + -22.680000000000000 0.0000000000000000 + -22.620000000000001 0.0000000000000000 + -22.560000000000002 0.0000000000000000 + -22.500000000000000 0.0000000000000000 + -22.440000000000001 0.0000000000000000 + -22.380000000000003 0.0000000000000000 + -22.320000000000000 0.0000000000000000 + -22.260000000000002 0.0000000000000000 + -22.199999999999999 0.0000000000000000 + -22.140000000000001 0.0000000000000000 + -22.080000000000002 0.0000000000000000 + -22.020000000000000 0.0000000000000000 + -21.960000000000001 0.0000000000000000 + -21.900000000000002 0.0000000000000000 + -21.840000000000000 0.0000000000000000 + -21.780000000000001 0.0000000000000000 + -21.720000000000002 0.0000000000000000 + -21.660000000000000 0.0000000000000000 + -21.600000000000001 0.0000000000000000 + -21.540000000000003 0.0000000000000000 + -21.480000000000000 0.0000000000000000 + -21.420000000000002 0.0000000000000000 + -21.359999999999999 0.0000000000000000 + -21.300000000000001 0.0000000000000000 + -21.240000000000002 0.0000000000000000 + -21.180000000000000 0.0000000000000000 + -21.120000000000001 0.0000000000000000 + -21.060000000000002 0.0000000000000000 + -21.000000000000000 0.0000000000000000 + -20.940000000000001 0.0000000000000000 + -20.880000000000003 0.0000000000000000 + -20.820000000000000 0.0000000000000000 + -20.760000000000002 0.0000000000000000 + -20.699999999999999 0.0000000000000000 + -20.640000000000001 0.0000000000000000 + -20.580000000000002 0.0000000000000000 + -20.520000000000000 0.0000000000000000 + -20.460000000000001 0.0000000000000000 + -20.400000000000002 0.0000000000000000 + -20.340000000000000 0.0000000000000000 + -20.280000000000001 0.0000000000000000 + -20.220000000000002 0.0000000000000000 + -20.160000000000000 0.0000000000000000 + -20.100000000000001 0.0000000000000000 + -20.040000000000003 0.0000000000000000 + -19.980000000000000 0.0000000000000000 + -19.920000000000002 0.0000000000000000 + -19.859999999999999 0.0000000000000000 + -19.800000000000001 0.0000000000000000 + -19.740000000000002 0.0000000000000000 + -19.680000000000000 0.0000000000000000 + -19.620000000000001 0.0000000000000000 + -19.560000000000002 0.0000000000000000 + -19.500000000000000 0.0000000000000000 + -19.440000000000001 0.0000000000000000 + -19.380000000000003 0.0000000000000000 + -19.320000000000000 0.0000000000000000 + -19.260000000000002 0.0000000000000000 + -19.200000000000003 0.0000000000000000 + -19.140000000000001 0.0000000000000000 + -19.080000000000002 0.0000000000000000 + -19.020000000000000 0.0000000000000000 + -18.960000000000001 0.0000000000000000 + -18.900000000000002 0.0000000000000000 + -18.840000000000000 0.0000000000000000 + -18.780000000000001 0.0000000000000000 + -18.720000000000002 0.0000000000000000 + -18.660000000000000 0.0000000000000000 + -18.600000000000001 0.0000000000000000 + -18.540000000000003 0.0000000000000000 + -18.480000000000000 0.0000000000000000 + -18.420000000000002 0.0000000000000000 + -18.359999999999999 0.0000000000000000 + -18.300000000000001 0.0000000000000000 + -18.240000000000002 0.0000000000000000 + -18.180000000000000 0.0000000000000000 + -18.120000000000001 0.0000000000000000 + -18.060000000000002 0.0000000000000000 + -18.000000000000000 0.0000000000000000 + -17.940000000000001 0.0000000000000000 + -17.880000000000003 0.0000000000000000 + -17.820000000000000 0.0000000000000000 + -17.760000000000002 0.0000000000000000 + -17.700000000000003 0.0000000000000000 + -17.640000000000001 0.0000000000000000 + -17.580000000000002 0.0000000000000000 + -17.520000000000000 0.0000000000000000 + -17.460000000000001 0.0000000000000000 + -17.400000000000002 0.0000000000000000 + -17.340000000000000 0.0000000000000000 + -17.280000000000001 0.0000000000000000 + -17.220000000000002 0.0000000000000000 + -17.160000000000000 0.0000000000000000 + -17.100000000000001 0.0000000000000000 + -17.040000000000003 0.0000000000000000 + -16.980000000000000 0.0000000000000000 + -16.920000000000002 0.0000000000000000 + -16.859999999999999 0.0000000000000000 + -16.800000000000001 0.0000000000000000 + -16.740000000000002 0.0000000000000000 + -16.680000000000000 0.0000000000000000 + -16.620000000000001 0.0000000000000000 + -16.560000000000002 0.0000000000000000 + -16.500000000000000 0.0000000000000000 + -16.440000000000001 0.0000000000000000 + -16.380000000000003 0.0000000000000000 + -16.320000000000000 0.0000000000000000 + -16.260000000000002 0.0000000000000000 + -16.200000000000003 0.0000000000000000 + -16.140000000000001 0.0000000000000000 + -16.080000000000002 0.0000000000000000 + -16.020000000000000 0.0000000000000000 + -15.960000000000001 0.0000000000000000 + -15.899999999999999 0.0000000000000000 + -15.840000000000003 0.0000000000000000 + -15.780000000000001 0.0000000000000000 + -15.719999999999999 0.0000000000000000 + -15.660000000000004 0.0000000000000000 + -15.600000000000001 0.0000000000000000 + -15.539999999999999 0.0000000000000000 + -15.480000000000004 0.0000000000000000 + -15.420000000000002 0.0000000000000000 + -15.359999999999999 0.0000000000000000 + -15.300000000000004 0.0000000000000000 + -15.240000000000002 0.0000000000000000 + -15.180000000000000 0.0000000000000000 + -15.120000000000005 0.0000000000000000 + -15.060000000000002 0.0000000000000000 + -15.000000000000000 0.0000000000000000 + -14.939999999999998 0.0000000000000000 + -14.880000000000003 0.0000000000000000 + -14.820000000000000 0.0000000000000000 + -14.759999999999998 0.0000000000000000 + -14.700000000000003 0.0000000000000000 + -14.640000000000001 0.0000000000000000 + -14.579999999999998 0.0000000000000000 + -14.520000000000003 0.0000000000000000 + -14.460000000000001 0.0000000000000000 + -14.399999999999999 0.0000000000000000 + -14.340000000000003 0.0000000000000000 + -14.280000000000001 0.0000000000000000 + -14.219999999999999 0.0000000000000000 + -14.160000000000004 0.0000000000000000 + -14.100000000000001 0.0000000000000000 + -14.039999999999999 0.0000000000000000 + -13.980000000000004 0.0000000000000000 + -13.920000000000002 0.0000000000000000 + -13.859999999999999 0.0000000000000000 + -13.800000000000004 0.0000000000000000 + -13.740000000000002 0.0000000000000000 + -13.680000000000000 0.0000000000000000 + -13.620000000000005 0.0000000000000000 + -13.560000000000002 0.0000000000000000 + -13.500000000000000 0.0000000000000000 + -13.439999999999998 0.0000000000000000 + -13.380000000000003 0.0000000000000000 + -13.320000000000000 0.0000000000000000 + -13.259999999999998 0.0000000000000000 + -13.200000000000003 0.0000000000000000 + -13.140000000000001 0.0000000000000000 + -13.079999999999998 0.0000000000000000 + -13.020000000000003 0.0000000000000000 + -12.960000000000001 0.0000000000000000 + -12.899999999999999 0.0000000000000000 + -12.840000000000003 0.0000000000000000 + -12.780000000000001 0.0000000000000000 + -12.719999999999999 0.0000000000000000 + -12.660000000000004 0.0000000000000000 + -12.600000000000001 0.0000000000000000 + -12.539999999999999 0.0000000000000000 + -12.480000000000004 0.0000000000000000 + -12.420000000000002 0.0000000000000000 + -12.359999999999999 0.0000000000000000 + -12.300000000000004 0.0000000000000000 + -12.240000000000002 0.0000000000000000 + -12.180000000000000 0.0000000000000000 + -12.120000000000005 0.0000000000000000 + -12.060000000000002 0.0000000000000000 + -12.000000000000000 0.0000000000000000 + -11.940000000000005 0.0000000000000000 + -11.880000000000003 0.0000000000000000 + -11.820000000000000 0.0000000000000000 + -11.759999999999998 0.0000000000000000 + -11.700000000000003 0.0000000000000000 + -11.640000000000001 0.0000000000000000 + -11.579999999999998 0.0000000000000000 + -11.520000000000003 0.0000000000000000 + -11.460000000000001 0.0000000000000000 + -11.399999999999999 0.0000000000000000 + -11.340000000000003 0.0000000000000000 + -11.280000000000001 0.0000000000000000 + -11.219999999999999 0.0000000000000000 + -11.160000000000004 0.0000000000000000 + -11.100000000000001 0.0000000000000000 + -11.039999999999999 0.0000000000000000 + -10.980000000000004 0.0000000000000000 + -10.920000000000002 0.0000000000000000 + -10.859999999999999 0.0000000000000000 + -10.800000000000004 0.0000000000000000 + -10.740000000000002 0.0000000000000000 + -10.680000000000000 0.0000000000000000 + -10.620000000000005 0.0000000000000000 + -10.560000000000002 0.0000000000000000 + -10.500000000000000 0.0000000000000000 + -10.440000000000005 0.0000000000000000 + -10.380000000000003 0.0000000000000000 + -10.320000000000000 0.0000000000000000 + -10.259999999999998 0.0000000000000000 + -10.200000000000003 0.0000000000000000 + -10.140000000000001 0.0000000000000000 + -10.079999999999998 0.0000000000000000 + -10.020000000000003 0.0000000000000000 + -9.9600000000000009 0.0000000000000000 + -9.8999999999999986 0.0000000000000000 + -9.8400000000000034 0.0000000000000000 + -9.7800000000000011 0.0000000000000000 + -9.7199999999999989 0.0000000000000000 + -9.6600000000000037 0.0000000000000000 + -9.6000000000000014 0.0000000000000000 + -9.5399999999999991 0.0000000000000000 + -9.4800000000000040 0.0000000000000000 + -9.4200000000000017 0.0000000000000000 + -9.3599999999999994 0.0000000000000000 + -9.3000000000000043 0.0000000000000000 + -9.2400000000000020 0.0000000000000000 + -9.1799999999999997 0.0000000000000000 + -9.1200000000000045 0.0000000000000000 + -9.0600000000000023 0.0000000000000000 + -9.0000000000000000 0.0000000000000000 + -8.9400000000000048 0.0000000000000000 + -8.8800000000000026 0.0000000000000000 + -8.8200000000000003 0.0000000000000000 + -8.7599999999999980 0.0000000000000000 + -8.7000000000000028 0.0000000000000000 + -8.6400000000000006 0.0000000000000000 + -8.5799999999999983 0.0000000000000000 + -8.5200000000000031 0.0000000000000000 + -8.4600000000000009 0.0000000000000000 + -8.3999999999999986 0.0000000000000000 + -8.3400000000000034 0.0000000000000000 + -8.2800000000000011 0.0000000000000000 + -8.2199999999999989 0.0000000000000000 + -8.1600000000000037 0.0000000000000000 + -8.1000000000000014 0.0000000000000000 + -8.0399999999999991 0.0000000000000000 + -7.9800000000000040 0.0000000000000000 + -7.9200000000000017 0.0000000000000000 + -7.8599999999999994 0.0000000000000000 + -7.8000000000000043 0.0000000000000000 + -7.7400000000000020 0.0000000000000000 + -7.6799999999999997 0.0000000000000000 + -7.6200000000000045 0.0000000000000000 + -7.5600000000000023 0.0000000000000000 + -7.5000000000000000 0.0000000000000000 + -7.4400000000000048 0.0000000000000000 + -7.3800000000000026 0.0000000000000000 + -7.3200000000000003 0.0000000000000000 + -7.2599999999999980 0.0000000000000000 + -7.2000000000000028 0.0000000000000000 + -7.1400000000000006 0.0000000000000000 + -7.0799999999999983 0.0000000000000000 + -7.0200000000000031 0.0000000000000000 + -6.9600000000000009 0.0000000000000000 + -6.8999999999999986 0.0000000000000000 + -6.8400000000000034 0.0000000000000000 + -6.7800000000000011 0.0000000000000000 + -6.7199999999999989 0.0000000000000000 + -6.6600000000000037 0.0000000000000000 + -6.6000000000000014 0.0000000000000000 + -6.5399999999999991 0.0000000000000000 + -6.4800000000000040 0.0000000000000000 + -6.4200000000000017 0.0000000000000000 + -6.3599999999999994 0.0000000000000000 + -6.3000000000000043 0.0000000000000000 + -6.2400000000000020 0.0000000000000000 + -6.1799999999999997 0.0000000000000000 + -6.1200000000000045 0.0000000000000000 + -6.0600000000000023 0.0000000000000000 + -6.0000000000000000 0.0000000000000000 + -5.9400000000000048 0.0000000000000000 + -5.8800000000000026 0.0000000000000000 + -5.8200000000000003 0.0000000000000000 + -5.7600000000000051 0.0000000000000000 + -5.7000000000000028 0.0000000000000000 + -5.6400000000000006 0.0000000000000000 + -5.5799999999999983 0.0000000000000000 + -5.5200000000000031 0.0000000000000000 + -5.4600000000000009 0.0000000000000000 + -5.3999999999999986 0.0000000000000000 + -5.3400000000000034 0.0000000000000000 + -5.2800000000000011 0.0000000000000000 + -5.2199999999999989 0.0000000000000000 + -5.1600000000000037 0.0000000000000000 + -5.1000000000000014 0.0000000000000000 + -5.0399999999999991 0.0000000000000000 + -4.9800000000000040 0.0000000000000000 + -4.9200000000000017 0.0000000000000000 + -4.8599999999999994 0.0000000000000000 + -4.8000000000000043 0.0000000000000000 + -4.7400000000000020 0.0000000000000000 + -4.6799999999999997 0.0000000000000000 + -4.6200000000000045 0.0000000000000000 + -4.5600000000000023 0.0000000000000000 + -4.5000000000000000 0.0000000000000000 + -4.4400000000000048 0.0000000000000000 + -4.3800000000000026 0.0000000000000000 + -4.3200000000000003 0.0000000000000000 + -4.2600000000000051 0.0000000000000000 + -4.2000000000000028 0.0000000000000000 + -4.1400000000000006 0.0000000000000000 + -4.0799999999999983 0.0000000000000000 + -4.0200000000000031 0.0000000000000000 + -3.9600000000000009 0.0000000000000000 + -3.8999999999999986 0.0000000000000000 + -3.8400000000000034 0.0000000000000000 + -3.7800000000000011 0.0000000000000000 + -3.7199999999999989 0.0000000000000000 + -3.6600000000000037 0.0000000000000000 + -3.6000000000000014 0.0000000000000000 + -3.5399999999999991 0.0000000000000000 + -3.4800000000000040 0.0000000000000000 + -3.4200000000000017 0.0000000000000000 + -3.3599999999999994 0.0000000000000000 + -3.3000000000000043 0.0000000000000000 + -3.2400000000000020 0.0000000000000000 + -3.1799999999999997 0.0000000000000000 + -3.1200000000000045 0.0000000000000000 + -3.0600000000000023 0.0000000000000000 + -3.0000000000000000 0.0000000000000000 + -2.9400000000000048 0.0000000000000000 + -2.8800000000000026 0.0000000000000000 + -2.8200000000000003 0.0000000000000000 + -2.7600000000000051 0.0000000000000000 + -2.7000000000000028 0.0000000000000000 + -2.6400000000000006 0.0000000000000000 + -2.5799999999999983 0.0000000000000000 + -2.5200000000000031 0.0000000000000000 + -2.4600000000000009 0.0000000000000000 + -2.3999999999999986 0.0000000000000000 + -2.3400000000000034 0.0000000000000000 + -2.2800000000000011 0.0000000000000000 + -2.2199999999999989 0.0000000000000000 + -2.1600000000000037 0.0000000000000000 + -2.1000000000000014 0.0000000000000000 + -2.0399999999999991 0.0000000000000000 + -1.9800000000000040 0.0000000000000000 + -1.9200000000000017 0.0000000000000000 + -1.8599999999999994 0.0000000000000000 + -1.8000000000000043 0.0000000000000000 + -1.7400000000000020 0.0000000000000000 + -1.6799999999999997 0.0000000000000000 + -1.6200000000000045 0.0000000000000000 + -1.5600000000000023 0.0000000000000000 + -1.5000000000000000 0.0000000000000000 + -1.4400000000000048 0.0000000000000000 + -1.3800000000000026 0.0000000000000000 + -1.3200000000000003 0.0000000000000000 + -1.2600000000000051 0.0000000000000000 + -1.2000000000000028 0.0000000000000000 + -1.1400000000000006 0.0000000000000000 + -1.0799999999999983 0.0000000000000000 + -1.0200000000000031 0.0000000000000000 + -0.96000000000000085 0.0000000000000000 + -0.89999999999999858 0.0000000000000000 + -0.84000000000000341 0.0000000000000000 + -0.78000000000000114 0.0000000000000000 + -0.71999999999999886 0.0000000000000000 + -0.66000000000000369 0.0000000000000000 + -0.60000000000000142 0.0000000000000000 + -0.53999999999999915 0.0000000000000000 + -0.48000000000000398 0.0000000000000000 + -0.42000000000000171 0.0000000000000000 + -0.35999999999999943 0.0000000000000000 + -0.30000000000000426 0.0000000000000000 + -0.24000000000000199 0.0000000000000000 + -0.17999999999999972 0.0000000000000000 + -0.12000000000000455 0.0000000000000000 + -6.0000000000002274E-002 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 + 5.9999999999995168E-002 0.0000000000000000 + 0.11999999999999744 0.0000000000000000 + 0.17999999999999972 0.0000000000000000 + 0.23999999999999488 0.0000000000000000 + 0.29999999999999716 0.0000000000000000 + 0.35999999999999943 0.0000000000000000 + 0.42000000000000171 0.0000000000000000 + 0.47999999999999687 0.0000000000000000 + 0.53999999999999915 0.0000000000000000 + 0.60000000000000142 0.0000000000000000 + 0.65999999999999659 0.0000000000000000 + 0.71999999999999886 0.0000000000000000 + 0.78000000000000114 0.0000000000000000 + 0.83999999999999631 0.0000000000000000 + 0.89999999999999858 0.0000000000000000 + 0.96000000000000085 0.0000000000000000 + 1.0199999999999960 0.0000000000000000 + 1.0799999999999983 0.0000000000000000 + 1.1400000000000006 0.0000000000000000 + 1.1999999999999957 0.0000000000000000 + 1.2599999999999980 0.0000000000000000 + 1.3200000000000003 0.0000000000000000 + 1.3799999999999955 0.0000000000000000 + 1.4399999999999977 0.0000000000000000 + 1.5000000000000000 0.0000000000000000 + 1.5599999999999952 0.0000000000000000 + 1.6199999999999974 0.0000000000000000 + 1.6799999999999997 0.0000000000000000 + 1.7399999999999949 0.0000000000000000 + 1.7999999999999972 0.0000000000000000 + 1.8599999999999994 0.0000000000000000 + 1.9200000000000017 0.0000000000000000 + 1.9799999999999969 0.0000000000000000 + 2.0399999999999991 0.0000000000000000 + 2.1000000000000014 0.0000000000000000 + 2.1599999999999966 0.0000000000000000 + 2.2199999999999989 0.0000000000000000 + 2.2800000000000011 0.0000000000000000 + 2.3399999999999963 0.0000000000000000 + 2.3999999999999986 0.0000000000000000 + 2.4600000000000009 0.0000000000000000 + 2.5199999999999960 0.0000000000000000 + 2.5799999999999983 0.0000000000000000 + 2.6400000000000006 0.0000000000000000 + 2.6999999999999957 0.0000000000000000 + 2.7599999999999980 0.0000000000000000 + 2.8200000000000003 0.0000000000000000 + 2.8799999999999955 0.0000000000000000 + 2.9399999999999977 0.0000000000000000 + 3.0000000000000000 0.0000000000000000 + 3.0599999999999952 0.0000000000000000 + 3.1199999999999974 0.0000000000000000 + 3.1799999999999997 0.0000000000000000 + 3.2399999999999949 0.0000000000000000 + 3.2999999999999972 0.0000000000000000 + 3.3599999999999994 0.0000000000000000 + 3.4199999999999946 0.0000000000000000 + 3.4799999999999969 0.0000000000000000 + 3.5399999999999991 0.0000000000000000 + 3.6000000000000014 0.0000000000000000 + 3.6599999999999966 0.0000000000000000 + 3.7199999999999989 0.0000000000000000 + 3.7800000000000011 0.0000000000000000 + 3.8399999999999963 0.0000000000000000 + 3.8999999999999986 0.0000000000000000 + 3.9600000000000009 0.0000000000000000 + 4.0199999999999960 0.0000000000000000 + 4.0799999999999983 0.0000000000000000 + 4.1400000000000006 0.0000000000000000 + 4.1999999999999957 0.0000000000000000 + 4.2599999999999980 0.0000000000000000 + 4.3200000000000003 0.0000000000000000 + 4.3799999999999955 0.0000000000000000 + 4.4399999999999977 0.0000000000000000 + 4.5000000000000000 0.0000000000000000 + 4.5599999999999952 0.0000000000000000 + 4.6199999999999974 0.0000000000000000 + 4.6799999999999997 0.0000000000000000 + 4.7399999999999949 0.0000000000000000 + 4.7999999999999972 0.0000000000000000 + 4.8599999999999994 0.0000000000000000 + 4.9199999999999946 0.0000000000000000 + 4.9799999999999969 0.0000000000000000 + 5.0399999999999991 0.0000000000000000 + 5.1000000000000014 0.0000000000000000 + 5.1599999999999966 0.0000000000000000 + 5.2199999999999989 0.0000000000000000 + 5.2800000000000011 0.0000000000000000 + 5.3399999999999963 0.0000000000000000 + 5.3999999999999986 0.0000000000000000 + 5.4600000000000009 0.0000000000000000 + 5.5199999999999960 0.0000000000000000 + 5.5799999999999983 0.0000000000000000 + 5.6400000000000006 0.0000000000000000 + 5.6999999999999957 0.0000000000000000 + 5.7599999999999980 0.0000000000000000 + 5.8200000000000003 0.0000000000000000 + 5.8799999999999955 0.0000000000000000 + 5.9399999999999977 0.0000000000000000 + 6.0000000000000000 0.0000000000000000 + 6.0599999999999952 0.0000000000000000 + 6.1199999999999974 0.0000000000000000 + 6.1799999999999997 0.0000000000000000 + 6.2399999999999949 0.0000000000000000 + 6.2999999999999972 0.0000000000000000 + 6.3599999999999994 0.0000000000000000 + 6.4199999999999946 0.0000000000000000 + 6.4799999999999969 0.0000000000000000 + 6.5399999999999991 0.0000000000000000 + 6.6000000000000014 0.0000000000000000 + 6.6599999999999966 0.0000000000000000 + 6.7199999999999989 0.0000000000000000 + 6.7800000000000011 0.0000000000000000 + 6.8399999999999963 0.0000000000000000 + 6.8999999999999986 0.0000000000000000 + 6.9600000000000009 0.0000000000000000 + 7.0199999999999960 0.0000000000000000 + 7.0799999999999983 0.0000000000000000 + 7.1400000000000006 0.0000000000000000 + 7.1999999999999957 0.0000000000000000 + 7.2599999999999980 0.0000000000000000 + 7.3200000000000003 0.0000000000000000 + 7.3799999999999955 0.0000000000000000 + 7.4399999999999977 0.0000000000000000 + 7.5000000000000000 0.0000000000000000 + 7.5599999999999952 0.0000000000000000 + 7.6199999999999974 0.0000000000000000 + 7.6799999999999997 0.0000000000000000 + 7.7399999999999949 0.0000000000000000 + 7.7999999999999972 0.0000000000000000 + 7.8599999999999994 0.0000000000000000 + 7.9199999999999946 0.0000000000000000 + 7.9799999999999969 0.0000000000000000 + 8.0399999999999991 0.0000000000000000 + 8.1000000000000014 0.0000000000000000 + 8.1599999999999966 0.0000000000000000 + 8.2199999999999989 0.0000000000000000 + 8.2800000000000011 0.0000000000000000 + 8.3399999999999963 0.0000000000000000 + 8.3999999999999986 0.0000000000000000 + 8.4600000000000009 0.0000000000000000 + 8.5199999999999960 0.0000000000000000 + 8.5799999999999983 0.0000000000000000 + 8.6400000000000006 0.0000000000000000 + 8.6999999999999957 0.0000000000000000 + 8.7599999999999980 0.0000000000000000 + 8.8200000000000003 0.0000000000000000 + 8.8799999999999955 0.0000000000000000 + 8.9399999999999977 0.0000000000000000 + 9.0000000000000000 0.0000000000000000 + 9.0599999999999952 0.0000000000000000 + 9.1199999999999974 0.0000000000000000 + 9.1799999999999997 0.0000000000000000 + 9.2399999999999949 0.0000000000000000 + 9.2999999999999972 0.0000000000000000 + 9.3599999999999994 0.0000000000000000 + 9.4199999999999946 0.0000000000000000 + 9.4799999999999969 0.0000000000000000 + 9.5399999999999991 0.0000000000000000 + 9.5999999999999943 0.0000000000000000 + 9.6599999999999966 0.0000000000000000 + 9.7199999999999989 0.0000000000000000 + 9.7800000000000011 0.0000000000000000 + 9.8399999999999963 0.0000000000000000 + 9.8999999999999986 0.0000000000000000 + 9.9600000000000009 0.0000000000000000 + 10.019999999999996 0.0000000000000000 + 10.079999999999998 0.0000000000000000 + 10.140000000000001 0.0000000000000000 + 10.199999999999996 0.0000000000000000 + 10.259999999999998 0.0000000000000000 + 10.320000000000000 0.0000000000000000 + 10.379999999999995 0.0000000000000000 + 10.439999999999998 0.0000000000000000 + 10.500000000000000 0.0000000000000000 + 10.559999999999995 0.0000000000000000 + 10.619999999999997 0.0000000000000000 + 10.680000000000000 0.0000000000000000 + 10.739999999999995 0.0000000000000000 + 10.799999999999997 0.0000000000000000 + 10.859999999999999 0.0000000000000000 + 10.919999999999995 0.0000000000000000 + 10.979999999999997 0.0000000000000000 + 11.039999999999999 0.0000000000000000 + 11.099999999999994 0.0000000000000000 + 11.159999999999997 0.0000000000000000 + 11.219999999999999 0.0000000000000000 + 11.280000000000001 0.0000000000000000 + 11.339999999999996 0.0000000000000000 + 11.399999999999999 0.0000000000000000 + 11.460000000000001 0.0000000000000000 + 11.519999999999996 0.0000000000000000 + 11.579999999999998 -8.7049043676958566E-041 + 11.640000000000001 -1.7409808735391713E-040 + 11.699999999999996 -2.6114712521721245E-040 + 11.759999999999998 -3.4819617470783426E-040 + 11.820000000000000 -4.3524520094380309E-040 + 11.879999999999995 -5.2229425043442490E-040 + 11.939999999999998 -4.6201498076178308E-040 + 12.000000000000000 -2.7162576486971980E-040 + 12.059999999999995 2.1896985879244023E-040 + 12.119999999999997 1.0421382045933942E-039 + 12.180000000000000 2.1913484590442017E-039 + 12.239999999999995 3.6169163584082525E-039 + 12.299999999999997 5.1955984741255202E-039 + 12.359999999999999 6.8856781911921623E-039 + 12.419999999999995 8.3945219330725132E-039 + 12.479999999999997 9.6060246125046539E-039 + 12.539999999999999 1.0283060951510374E-038 + 12.599999999999994 9.5901541490116339E-039 + 12.659999999999997 6.5364074422246616E-039 + 12.719999999999999 2.0167235026449875E-039 + 12.780000000000001 -2.8582400021956304E-039 + 12.839999999999996 -8.1692583884875947E-039 + 12.899999999999999 -1.3601123392765989E-038 + 12.960000000000001 -1.8092857505064366E-038 + 13.019999999999996 -2.0250662784950967E-038 + 13.079999999999998 -1.8715695420865290E-038 + 13.140000000000001 -1.3535510365633597E-038 + 13.199999999999996 -2.3931956227654865E-039 + 13.259999999999998 1.3211967552833956E-038 + 13.320000000000000 3.1612681632465856E-038 + 13.379999999999995 5.1275642652480933E-038 + 13.439999999999998 7.0364795435912916E-038 + 13.500000000000000 8.7625417726545250E-038 + 13.559999999999995 9.7959091626279752E-038 + 13.619999999999997 9.7192581626825262E-038 + 13.680000000000000 6.9117305597098400E-038 + 13.739999999999995 2.2094991144336630E-038 + 13.799999999999997 -3.3810301027654445E-038 + 13.859999999999999 -9.7738110598381760E-038 + 13.919999999999995 -1.6813032719642865E-037 + 13.979999999999997 -2.4122113688744130E-037 + 14.039999999999999 -2.9782451480887961E-037 + 14.099999999999994 -3.2368350150486931E-037 + 14.159999999999997 -3.1595125415497514E-037 + 14.219999999999999 -2.5852925055180140E-037 + 14.280000000000001 -1.4815208759505405E-037 + 14.339999999999996 1.7069246686956890E-039 + 14.399999999999999 1.8238683748018351E-037 + 14.460000000000001 3.7740107952876492E-037 + 14.519999999999996 5.7962426156532781E-037 + 14.579999999999998 7.6561603790336906E-037 + 14.640000000000001 8.8287944571137051E-037 + 14.699999999999996 9.1084761594502887E-037 + 14.759999999999998 8.3231675819453206E-037 + 14.820000000000000 6.4068051754766520E-037 + 14.879999999999995 3.3872693685778466E-037 + 14.939999999999998 -6.6786445295515476E-038 + 15.000000000000000 -5.5717909030066930E-037 + 15.059999999999995 -1.0967270803793652E-036 + 15.119999999999997 -1.6419730902118615E-036 + 15.180000000000000 -2.0890597610423024E-036 + 15.239999999999995 -2.3265535877776778E-036 + 15.299999999999997 -2.2597021352098005E-036 + 15.359999999999999 -1.8165648041379011E-036 + 15.419999999999995 -9.7828233223693296E-037 + 15.479999999999997 2.3781113830729066E-037 + 15.539999999999999 1.8245937513826030E-036 + 15.599999999999994 3.6440529702192639E-036 + 15.659999999999997 5.5400257760076536E-036 + 15.719999999999999 7.3208762600444364E-036 + 15.780000000000001 8.6911131946874188E-036 + 15.839999999999996 9.4004061925282121E-036 + 15.899999999999999 9.1894090868602150E-036 + 15.960000000000001 7.8417316004455682E-036 + 16.019999999999996 5.2829332133529138E-036 + 16.079999999999998 1.4063636416863359E-036 + 16.140000000000001 -3.6544906495171597E-036 + 16.200000000000003 -9.7226091573541640E-036 + 16.259999999999991 -1.6399139074086694E-035 + 16.319999999999993 -2.2910824372336831E-035 + 16.379999999999995 -2.8404833622545475E-035 + 16.439999999999998 -3.2030409887083858E-035 + 16.500000000000000 -3.2916204454080631E-035 + 16.560000000000002 -3.0255339563008350E-035 + 16.620000000000005 -2.3371508274529521E-035 + 16.679999999999993 -1.1876015706204483E-035 + 16.739999999999995 4.1534175450574325E-036 + 16.799999999999997 2.4573216982554731E-035 + 16.859999999999999 4.8518693104326605E-035 + 16.920000000000002 7.4583577654789815E-035 + 16.980000000000004 1.0085987006480895E-034 + 17.039999999999992 1.2497690652769221E-034 + 17.099999999999994 1.4426038496410108E-034 + 17.159999999999997 1.5577703905346025E-034 + 17.219999999999999 1.5659310511662111E-034 + 17.280000000000001 1.4396632177302205E-034 + 17.340000000000003 1.1572010009106034E-034 + 17.399999999999991 7.0531291635963204E-035 + 17.459999999999994 7.9040583061222182E-036 + 17.519999999999996 -7.0863427875762142E-035 + 17.579999999999998 -1.6317801162392956E-034 + 17.640000000000001 -2.6447566987513288E-034 + 17.700000000000003 -3.6847541238235081E-034 + 17.759999999999991 -4.6716625802139433E-034 + 17.819999999999993 -5.5109254651894678E-034 + 17.879999999999995 -6.0979862615875228E-034 + 17.939999999999998 -6.3244943595650888E-034 + 18.000000000000000 -6.0863841856675518E-034 + 18.060000000000002 -5.2933778931744225E-034 + 18.120000000000005 -3.8783538367654691E-034 + 18.179999999999993 -1.8107201425268821E-034 + 18.239999999999995 8.9645371761147203E-035 + 18.299999999999997 4.1748544809387492E-034 + 18.359999999999999 7.8938306487530646E-034 + 18.420000000000002 1.1856967824594561E-033 + 18.480000000000004 1.5802351790334536E-033 + 18.539999999999992 1.9408247245658969E-033 + 18.599999999999994 2.2305065671250862E-033 + 18.659999999999997 2.4093507836013784E-033 + 18.719999999999999 2.4369375215971173E-033 + 18.780000000000001 2.2754241133057773E-033 + 18.840000000000003 1.8931648297662873E-033 + 18.899999999999991 1.2686098881554710E-033 + 18.959999999999994 3.9434638551945341E-034 + 19.019999999999996 -7.1904754329389331E-034 + 19.079999999999998 -2.0396880548895651E-033 + 19.140000000000001 -3.5119417226790155E-033 + 19.200000000000003 -5.0553124048475550E-033 + 19.259999999999991 -6.5650019171330451E-033 + 19.319999999999993 -7.9144926741986805E-033 + 19.379999999999995 -8.9604164542759715E-033 + 19.439999999999998 -9.5498516976962881E-033 + 19.500000000000000 -9.5300384413579966E-033 + 19.560000000000002 -8.7602997629119708E-033 + 19.620000000000005 -7.1257981982864742E-033 + 19.679999999999993 -4.5523419959653393E-033 + 19.739999999999995 -1.0216125026032813E-033 + 19.799999999999997 3.4146951514457308E-033 + 19.859999999999999 8.6227438911993479E-033 + 19.920000000000002 1.4378060035134388E-032 + 19.980000000000004 2.0362102148797175E-032 + 20.039999999999992 2.6165302571951476E-032 + 20.099999999999994 3.1297835634579816E-032 + 20.159999999999997 3.5209016118986816E-032 + 20.219999999999999 3.7315788936504539E-032 + 20.280000000000001 3.7040200396737675E-032 + 20.340000000000003 3.3854939142335900E-032 + 20.399999999999991 2.7335347641772177E-032 + 20.459999999999994 1.7215267641346220E-032 + 20.519999999999996 3.4433896179715605E-033 + 20.579999999999998 -1.3764194851438919E-032 + 20.640000000000001 -3.3880047176092600E-032 + 20.700000000000003 -5.6035376751098748E-032 + 20.759999999999991 -7.9009397343234122E-032 + 20.819999999999993 -1.0124310728188045E-031 + 20.879999999999995 -1.2088200932249276E-031 + 20.939999999999998 -1.3585076986862014E-031 + 21.000000000000000 -1.4396130347043390E-031 + 21.060000000000002 -1.4305343651132388E-031 + 21.120000000000005 -1.3116452313349956E-031 + 21.179999999999993 -1.0672161972021449E-031 + 21.239999999999995 -6.8746437374965044E-032 + 21.299999999999997 -1.7060403600617708E-032 + 21.359999999999999 4.7525679338796174E-032 + 21.420000000000002 1.2305514425729144E-031 + 21.480000000000004 2.0632108109067236E-031 + 21.539999999999992 2.9283311601598841E-031 + 21.599999999999994 3.7687344994140904E-031 + 21.659999999999997 4.5165671133109563E-031 + 21.719999999999999 5.0960419796678335E-031 + 21.780000000000001 5.4273593839542250E-031 + 21.840000000000003 5.4317657176943477E-031 + 21.899999999999991 5.0376110766252197E-031 + 21.959999999999994 4.1871661379942469E-031 + 22.019999999999996 2.8438499779162594E-031 + 22.079999999999998 9.9941608053165854E-032 + 22.140000000000001 -1.3194410956558984E-031 + 22.200000000000003 -4.0456704910252056E-031 + 22.259999999999991 -7.0682836831398159E-031 + 22.319999999999993 -1.0231248625340747E-030 + 22.379999999999995 -1.3335454029847664E-030 + 22.439999999999998 -1.6144208459096076E-030 + 22.500000000000000 -1.8392608056714483E-030 + 22.560000000000002 -1.9800862019666013E-030 + 22.619999999999990 -2.0091397169174998E-030 + 22.679999999999993 -1.9009271144414989E-030 + 22.739999999999995 -1.6345061786912042E-030 + 22.799999999999997 -1.1959079578618633E-030 + 22.859999999999999 -5.8054293001903746E-031 + 22.920000000000002 2.0458527940292235E-031 + 22.980000000000004 1.1390518347187701E-030 + 23.039999999999992 2.1877749476422048E-030 + 23.099999999999994 3.3005756860040072E-030 + 23.159999999999997 4.4127130715313839E-030 + 23.219999999999999 5.4465479835228177E-030 + 23.280000000000001 6.3144282935940589E-030 + 23.340000000000003 6.9228294482305403E-030 + 23.399999999999991 7.1776917837566246E-030 + 23.459999999999994 6.9908095504301218E-030 + 23.519999999999996 6.2870252947771951E-030 + 23.579999999999998 5.0118782435165662E-030 + 23.640000000000001 3.1392725586252505E-030 + 23.700000000000003 6.7863387451447519E-031 + 23.759999999999991 -2.3190191558327390E-030 + 23.819999999999993 -5.7566927424027615E-030 + 23.879999999999995 -9.4893320581284599E-030 + 23.939999999999998 -1.3324571945066252E-029 + 24.000000000000000 -1.7026783965552038E-029 + 24.060000000000002 -2.0324715467288590E-029 + 24.119999999999990 -2.2922860716829605E-029 + 24.179999999999993 -2.4516449273934261E-029 + 24.239999999999995 -2.4809695434161606E-029 + 24.299999999999997 -2.3536681517797517E-029 + 24.359999999999999 -2.0483973139741480E-029 + 24.420000000000002 -1.5513792435571788E-029 + 24.480000000000004 -8.5863712291147376E-030 + 24.539999999999992 2.2007956326046635E-031 + 24.599999999999994 1.0693438868514673E-029 + 24.659999999999997 2.2477466074234293E-029 + 24.719999999999999 3.5068845320792575E-029 + 24.780000000000001 4.7822909850011548E-029 + 24.840000000000003 5.9969049197644262E-029 + 24.899999999999991 7.0636429502961757E-029 + 24.959999999999994 7.8890142827153175E-029 + 25.019999999999996 8.3777238040079221E-029 + 25.079999999999998 8.4381466373567000E-029 + 25.140000000000001 7.9884897976570140E-029 + 25.200000000000003 6.9633805869684942E-029 + 25.259999999999991 5.3205723522180674E-029 + 25.319999999999993 3.0473911918151295E-029 + 25.379999999999995 1.6651825470406635E-030 + 25.439999999999998 -3.2593292912938884E-029 + 25.500000000000000 -7.1242376874150528E-029 + 25.560000000000002 -1.1277900186032581E-028 + 25.619999999999990 -1.5526719832671480E-028 + 25.679999999999993 -1.9637537610361258E-028 + 25.739999999999995 -2.3344163501200326E-028 + 25.799999999999997 -2.6356828817757763E-028 + 25.859999999999999 -2.8374475222491587E-028 + 25.920000000000002 -2.9099705473028436E-028 + 25.980000000000004 -2.8256004292050542E-028 + 26.039999999999992 -2.5606704057773836E-028 + 26.099999999999994 -2.0974985754288308E-028 + 26.159999999999997 -1.4264033236584228E-028 + 26.219999999999999 -5.4763466669067663E-029 + 26.280000000000001 5.2689312020198677E-029 + 26.340000000000003 1.7721897106366533E-028 + 26.399999999999991 3.1492244362963376E-028 + 26.459999999999994 4.6045328834858915E-028 + 26.519999999999996 6.0705237874618346E-028 + 26.579999999999998 7.4665817723037750E-028 + 26.640000000000001 8.7010643286537879E-028 + 26.700000000000003 9.6742482432481205E-028 + 26.759999999999991 1.0282247657922239E-027 + 26.819999999999993 1.0421890176145414E-027 + 26.879999999999995 9.9964717176536192E-028 + 26.939999999999998 8.9222624981903675E-028 + 27.000000000000000 7.1355629590842548E-028 + 27.060000000000002 4.6000473922326229E-028 + 27.119999999999990 1.3140515633056034E-028 + 27.179999999999993 -2.6825945380204569E-028 + 27.239999999999995 -7.3026569720458855E-028 + 27.299999999999997 -1.2407026976062231E-027 + 27.359999999999999 -1.7802234804386158E-027 + 27.420000000000002 -2.3240490890304283E-027 + 27.480000000000004 -2.8422779158177961E-027 + 27.539999999999992 -3.3005486813912406E-027 + 27.599999999999994 -3.6610894570730833E-027 + 27.659999999999997 -3.8841770685272982E-027 + 27.719999999999999 -3.9300074531418341E-027 + 27.780000000000001 -3.7609534217648103E-027 + 27.840000000000003 -3.3441608807271036E-027 + 27.899999999999991 -2.6544021655973149E-027 + 27.959999999999994 -1.6770706242779783E-027 + 28.019999999999996 -4.1116732076634676E-028 + 28.079999999999998 1.1278930324141608E-027 + 28.140000000000001 2.9058737088098799E-027 + 28.200000000000003 4.8679180746022843E-027 + 28.259999999999991 6.9376114458844059E-027 + 28.319999999999993 9.0171227157558161E-027 + 28.379999999999995 1.0988646393397506E-026 + 28.439999999999998 1.2717322195112037E-026 + 28.500000000000000 1.4055755254043256E-026 + 28.560000000000002 1.4850188302942069E-026 + 28.619999999999990 1.4948280056373333E-026 + 28.679999999999993 1.4208344773776313E-026 + 28.739999999999995 1.2509782464419261E-026 + 28.799999999999997 9.7642981072498665E-027 + 28.859999999999999 5.9273952659088494E-027 + 28.920000000000002 1.0094903696489958E-027 + 28.980000000000004 -4.9140937754759513E-027 + 29.039999999999992 -1.1695064946090737E-026 + 29.099999999999994 -1.9106912984894955E-026 + 29.159999999999997 -2.6843300089621453E-026 + 29.219999999999999 -3.4520901600796015E-026 + 29.280000000000001 -4.1687326859923368E-026 + 29.340000000000003 -4.7834661444373386E-026 + 29.399999999999991 -5.2418786280863448E-026 + 29.459999999999994 -5.4884425469915399E-026 + 29.519999999999996 -5.4695498639981407E-026 + 29.579999999999998 -5.1369870867216432E-026 + 29.640000000000001 -4.4517293168370970E-026 + 29.700000000000003 -3.3878811208535111E-026 + 29.759999999999991 -1.9365580543683941E-026 + 29.819999999999993 -1.0946971843601498E-027 + 29.879999999999995 2.0580629434754081E-026 + 29.939999999999998 4.5049317521749146E-026 + 30.000000000000000 7.1431793751676095E-026 + 30.060000000000002 9.8583150676902669E-026 + 30.119999999999990 1.2511218112732746E-025 + 30.179999999999993 1.4941793994461423E-025 + 30.239999999999995 1.6974474146490305E-025 + 30.299999999999997 1.8425549978261048E-025 + 30.359999999999999 1.9112210844254108E-025 + 30.420000000000002 1.8863072721236768E-025 + 30.480000000000004 1.7529820447319895E-025 + 30.539999999999992 1.4999476232420953E-025 + 30.599999999999994 1.1206707078493375E-025 + 30.659999999999997 6.1454470273646026E-026 + 30.719999999999999 -1.2091956653216374E-027 + 30.780000000000001 -7.4516428968386270E-026 + 30.840000000000003 -1.5623776470081130E-025 + 30.899999999999991 -2.4331186335589482E-025 + 30.959999999999994 -3.3188087597399578E-025 + 31.019999999999996 -4.1737585562801437E-025 + 31.079999999999998 -4.9465563203817145E-025 + 31.140000000000001 -5.5819932380504913E-025 + 31.200000000000003 -6.0235008064362206E-025 + 31.259999999999991 -6.2160405379587237E-025 + 31.319999999999993 -6.1093545021726681E-025 + 31.379999999999995 -5.6614460971710687E-025 + 31.439999999999998 -4.8421352593160119E-025 + 31.500000000000000 -3.6364974398985513E-025 + 31.560000000000002 -2.0479781212472443E-025 + 31.619999999999990 -1.0096640019319515E-026 + 31.679999999999993 2.1573993267992466E-025 + 31.739999999999995 4.6563982182910487E-025 + 31.799999999999997 7.3020480985052864E-025 + 31.859999999999999 9.9787414757078208E-025 + 31.920000000000002 1.2552258445825629E-024 + 31.980000000000004 1.4874217984544571E-024 + 32.039999999999992 1.6787888749581157E-024 + 32.099999999999994 1.8135245015167853E-024 + 32.159999999999997 1.8765051499264238E-024 + 32.219999999999999 1.8541655741674202E-024 + 32.280000000000001 1.7354143701968523E-024 + 32.340000000000003 1.5125377216739840E-024 + 32.399999999999991 1.1820448134920900E-024 + 32.459999999999994 7.4540165409481800E-025 + 32.519999999999996 2.0960135607475061E-025 + 32.579999999999998 -4.1247742025115669E-025 + 32.640000000000001 -1.1019679466571898E-024 + 32.700000000000003 -1.8342043356911736E-024 + 32.759999999999991 -2.5792226310972265E-024 + 32.819999999999993 -3.3025851116442913E-024 + 32.879999999999995 -3.9665222424737089E-024 + 32.939999999999998 -4.5313647819673813E-024 + 33.000000000000000 -4.9572323560063301E-024 + 33.060000000000002 -5.2059167608532748E-024 + 33.119999999999990 -5.2428922813602332E-024 + 33.179999999999993 -5.0393689633826420E-024 + 33.239999999999995 -4.5742982002005251E-024 + 33.299999999999997 -3.8362331696119380E-024 + 33.359999999999999 -2.8249470341922500E-024 + 33.420000000000002 -1.5527148994270812E-024 + 33.480000000000004 -4.5174619536978772E-026 + 33.539999999999992 1.6583075005145755E-024 + 33.599999999999994 3.5048299382943827E-024 + 33.659999999999997 5.4287446980634553E-024 + 33.719999999999999 7.3530669572380760E-024 + 33.780000000000001 9.1915061080036806E-024 + 33.840000000000003 1.0851108681763473E-023 + 33.899999999999991 1.2235460123159931E-023 + 33.959999999999994 1.3248401716929828E-023 + 34.019999999999996 1.3798174541539168E-023 + 34.079999999999998 1.3801895209691180E-023 + 34.140000000000001 1.3190244680213887E-023 + 34.200000000000003 1.1912231231576028E-023 + 34.259999999999991 9.9398586154917366E-024 + 34.319999999999993 7.2725194052350472E-024 + 34.379999999999995 3.9408890171023731E-024 + 34.439999999999998 1.0087765967170677E-026 + 34.500000000000000 -4.4181606448290335E-024 + 34.560000000000002 -9.2046578950910154E-024 + 34.619999999999990 -1.4173450603382134E-023 + 34.679999999999993 -1.9114433314130783E-023 + 34.739999999999995 -2.3788117434994318E-023 + 34.799999999999997 -2.7932798313903412E-023 + 34.859999999999999 -3.1274261890986603E-023 + 34.920000000000002 -3.3538121725807336E-023 + 34.980000000000004 -3.4464625540677987E-023 + 35.039999999999992 -3.3825698989560407E-023 + 35.099999999999994 -3.1443675748379273E-023 + 35.159999999999997 -2.7210995605487830E-023 + 35.219999999999999 -2.1109824920431869E-023 + 35.280000000000001 -1.3230336439030450E-023 + 35.340000000000003 -3.7861365222764320E-024 + 35.399999999999991 6.8748621150048796E-024 + 35.459999999999994 1.8265920618603396E-023 + 35.519999999999996 2.9765099778361988E-023 + 35.579999999999998 4.0628721038541269E-023 + 35.640000000000001 5.0015971515851462E-023 + 35.700000000000003 5.7025576497174271E-023 + 35.759999999999991 6.0744730857516692E-023 + 35.819999999999993 6.0309672102502095E-023 + 35.879999999999995 5.4976256798957683E-023 + 35.939999999999998 4.4197832249677958E-023 + 36.000000000000000 2.7706435461575608E-023 + 36.060000000000002 5.5923251108624659E-024 + 36.119999999999990 -2.1624348345631360E-023 + 36.179999999999993 -5.2936606420834188E-023 + 36.239999999999995 -8.6815945035598915E-023 + 36.299999999999997 -1.2120741153769867E-022 + 36.359999999999999 -1.5356154278919618E-022 + 36.420000000000002 -1.8090917661474884E-022 + 36.479999999999990 -1.9998346073971754E-022 + 36.539999999999992 -2.0739102329446736E-022 + 36.599999999999994 -1.9983103625207332E-022 + 36.659999999999997 -1.7435747579084301E-022 + 36.719999999999999 -1.2867582142516359E-022 + 36.780000000000001 -6.1460943783002475E-023 + 36.840000000000003 2.7321059114402748E-023 + 36.899999999999991 1.3610843077480306E-022 + 36.959999999999994 2.6148128764653064E-022 + 37.019999999999996 3.9796838080037371E-022 + 37.079999999999998 5.3795076617972038E-022 + 37.140000000000001 6.7169003899908181E-022 + 37.200000000000003 7.8750607265820403E-022 + 37.259999999999991 8.7212485075915860E-022 + 37.319999999999993 9.1120988735673420E-022 + 37.379999999999995 8.9008328422051760E-022 + 37.439999999999998 7.9462866953343497E-022 + 37.500000000000000 6.1236214598293744E-022 + 37.560000000000002 3.3363602561408176E-022 + 37.619999999999990 -4.7066310138379756E-023 + 37.679999999999993 -5.2980591381328382E-022 + 37.739999999999995 -1.1079003669517519E-021 + 37.799999999999997 -1.7667613393319740E-021 + 37.859999999999999 -2.4829395957890789E-021 + 37.920000000000002 -3.2234757635785625E-021 + 37.979999999999990 -3.9456482142359356E-021 + 38.039999999999992 -4.5972088994936025E-021 + 38.099999999999994 -5.1171752484520828E-021 + 38.159999999999997 -5.4372477625476147E-021 + 38.219999999999999 -5.4838792104814330E-021 + 38.280000000000001 -5.1810061130530012E-021 + 38.340000000000003 -4.4534090161918163E-021 + 38.399999999999991 -3.2306358248262151E-021 + 38.459999999999994 -1.4513745937764947E-021 + 38.519999999999996 9.3189748859975776E-022 + 38.579999999999998 3.9481645554178928E-021 + 38.640000000000001 7.6033058093455055E-021 + 38.700000000000003 1.1875993086880965E-020 + 38.759999999999991 1.6714358329796861E-020 + 38.819999999999993 2.2033828416931085E-020 + 38.879999999999995 2.7716448123037282E-020 + 38.939999999999998 3.3612110267856657E-020 + 39.000000000000000 3.9541956703284374E-020 + 39.060000000000002 4.5304359083383592E-020 + 39.119999999999990 5.0683659200746406E-020 + 39.179999999999993 5.5461818402098053E-020 + 39.239999999999995 5.9433068090101459E-020 + 39.299999999999997 6.2421423958417597E-020 + 39.359999999999999 6.4300846078030908E-020 + 39.420000000000002 6.5017546051815540E-020 + 39.479999999999990 6.4613874123555510E-020 + 39.539999999999992 6.3252873142787222E-020 + 39.599999999999994 6.1242554665615982E-020 + 39.659999999999997 5.9058593040322095E-020 + 39.719999999999999 5.7364105616133975E-020 + 39.780000000000001 5.7025047387206586E-020 + 39.840000000000003 5.9119295258447859E-020 + 39.899999999999991 6.4938674253199137E-020 + 39.959999999999994 7.5981582826180137E-020 + 40.019999999999996 9.3935561261885140E-020 + 40.079999999999998 1.2064844973796067E-019 + 40.140000000000001 1.5808804376579710E-019 + 40.200000000000003 2.0828936379653706E-019 + 40.259999999999991 2.7329125048252413E-019 + 40.319999999999993 3.5506196260278543E-019 + 40.379999999999995 4.5541708823228272E-019 + 40.439999999999998 5.7593140193510089E-019 + 40.500000000000000 7.1784765895197083E-019 + 40.560000000000002 8.8198768384529982E-019 + 40.619999999999990 1.0686674586881918E-018 + 40.679999999999993 1.2776237219530701E-018 + 40.739999999999995 1.5079525704340717E-018 + 40.799999999999997 1.7580688362682233E-018 + 40.859999999999999 2.0256862008942870E-018 + 40.920000000000002 2.3078228996914160E-018 + 40.979999999999990 2.6008328792632535E-018 + 41.039999999999992 2.9004619501357037E-018 + 41.099999999999994 3.2019283444191538E-018 + 41.159999999999997 3.5000208276238508E-018 + 41.219999999999999 3.7892081279570712E-018 + 41.280000000000001 4.0637484710151908E-018 + 41.340000000000003 4.3177845554352342E-018 + 41.399999999999991 4.5454145780396893E-018 + 41.459999999999994 4.7407075969406629E-018 + 41.519999999999996 4.8976486567846014E-018 + 41.579999999999998 5.0099838325407130E-018 + 41.640000000000001 5.0709429232909902E-018 + 41.700000000000003 5.0727962092920960E-018 + 41.759999999999991 5.0062156223022181E-018 + 41.819999999999993 4.8594146274981781E-018 + 41.879999999999995 4.6170058546060599E-018 + 41.939999999999998 4.2585625849546831E-018 + 42.000000000000000 3.7568144263780112E-018 + 42.060000000000002 3.0754513431923402E-018 + 42.119999999999990 2.1664658435591165E-018 + 42.179999999999993 9.6703661746715101E-019 + 42.239999999999995 -6.0417936868899160E-019 + 42.299999999999997 -2.6513282828500262E-018 + 42.359999999999999 -5.3062725072579706E-018 + 42.420000000000002 -8.7343084646481148E-018 + 42.479999999999990 -1.3140620220984393E-017 + 42.539999999999992 -1.8777573068483930E-017 + 42.599999999999994 -2.5953070685494073E-017 + 42.659999999999997 -3.5039807116567892E-017 + 42.719999999999999 -4.6485994095578157E-017 + 42.780000000000001 -6.0826919500880230E-017 + 42.840000000000003 -7.8698442455783581E-017 + 42.899999999999991 -1.0085188224396924E-016 + 42.959999999999994 -1.2817055213917650E-016 + 43.019999999999996 -1.6168900557793629E-016 + 43.079999999999998 -2.0261401389132196E-016 + 43.140000000000001 -2.5234869292245152E-016 + 43.200000000000003 -3.1251941318115507E-016 + 43.259999999999991 -3.8500667488653811E-016 + 43.319999999999993 -4.7197992011064597E-016 + 43.379999999999995 -5.7593695545525548E-016 + 43.439999999999998 -6.9974919942286327E-016 + 43.500000000000000 -8.4671291432195263E-016 + 43.560000000000002 -1.0206080885747214E-015 + 43.619999999999990 -1.2257652519156707E-015 + 43.679999999999993 -1.4671415713843794E-015 + 43.739999999999995 -1.7504092661908040E-015 + 43.799999999999997 -2.0820551733831497E-015 + 43.859999999999999 -2.4694948736246393E-015 + 43.920000000000002 -2.9212008394646215E-015 + 43.979999999999990 -3.4468519592898588E-015 + 44.039999999999992 -4.0574981087576558E-015 + 44.099999999999994 -4.7657501902669613E-015 + 44.159999999999997 -5.5859938972296830E-015 + 44.219999999999999 -6.5346241576337554E-015 + 44.280000000000001 -7.6303131546545477E-015 + 44.340000000000003 -8.8943097018270405E-015 + 44.399999999999991 -1.0350762364625039E-014 + 44.459999999999994 -1.2027083295349493E-014 + 44.519999999999996 -1.3954349130291624E-014 + 44.579999999999998 -1.6167727177542176E-014 + 44.640000000000001 -1.8706943104744463E-014 + 44.700000000000003 -2.1616793393966887E-014 + 44.759999999999991 -2.4947679384266900E-014 + 44.819999999999993 -2.8756186342608123E-014 + 44.879999999999995 -3.3105696539093932E-014 + 44.939999999999998 -3.8067034343662520E-014 + 45.000000000000000 -4.3719103046540117E-014 + 45.060000000000002 -5.0149592616739114E-014 + 45.119999999999990 -5.7455700493662900E-014 + 45.179999999999993 -6.5744779456999413E-014 + 45.239999999999995 -7.5135075808349195E-014 + 45.299999999999997 -8.5756430091176320E-014 + 45.359999999999999 -9.7750870785871622E-014 + 45.420000000000002 -1.1127322999696725E-013 + 45.479999999999990 -1.2649165288515808E-013 + 45.539999999999992 -1.4358795933030090E-013 + 45.599999999999994 -1.6275786213376923E-013 + 45.659999999999997 -1.8421097349336045E-013 + 45.719999999999999 -2.0817056727137329E-013 + 45.780000000000001 -2.3487290070425149E-013 + 45.840000000000003 -2.6456622788692491E-013 + 45.899999999999991 -2.9750907168290612E-013 + 45.959999999999994 -3.3396801800290041E-013 + 46.019999999999996 -3.7421444365052574E-013 + 46.079999999999998 -4.1852012881831103E-013 + 46.140000000000001 -4.6715201681688470E-013 + 46.200000000000003 -5.2036489460672245E-013 + 46.259999999999991 -5.7839230632816699E-013 + 46.319999999999993 -6.4143528445471847E-013 + 46.379999999999995 -7.0964844591440624E-013 + 46.439999999999998 -7.8312220273204322E-013 + 46.500000000000000 -8.6186179728912047E-013 + 46.560000000000002 -9.4576115197065063E-013 + 46.619999999999990 -1.0345719782343552E-012 + 46.679999999999993 -1.1278653277783670E-012 + 46.739999999999995 -1.2249860706052498E-012 + 46.799999999999997 -1.3249990582435202E-012 + 46.859999999999999 -1.4266239171718806E-012 + 46.920000000000002 -1.5281580109705165E-012 + 46.979999999999990 -1.6273858813362322E-012 + 47.039999999999992 -1.7214703699308669E-012 + 47.099999999999994 -1.8068275662165854E-012 + 47.159999999999997 -1.8789768040689954E-012 + 47.219999999999999 -1.9323664163289243E-012 + 47.280000000000001 -1.9601697955819383E-012 + 47.340000000000003 -1.9540466176335251E-012 + 47.399999999999991 -1.9038625715705639E-012 + 47.459999999999994 -1.7973710155458650E-012 + 47.519999999999996 -1.6198339368747878E-012 + 47.579999999999998 -1.3535847222867219E-012 + 47.640000000000001 -9.7752556525544993E-013 + 47.700000000000003 -4.6654652698217232E-013 + 47.759999999999991 2.0915871304705608E-013 + 47.819999999999993 1.0848572116771097E-012 + 47.879999999999995 2.2021844522924502E-012 + 47.939999999999998 3.6101769206392812E-012 + 48.000000000000000 5.3664427560281513E-012 + 48.060000000000002 7.5385389412768898E-012 + 48.119999999999990 1.0205520649295730E-011 + 48.179999999999993 1.3459730747452506E-011 + 48.239999999999995 1.7408847886551799E-011 + 48.299999999999997 2.2178224690836862E-011 + 48.359999999999999 2.7913546532730954E-011 + 48.420000000000002 3.4783872925585231E-011 + 48.479999999999990 4.2985125438683724E-011 + 48.539999999999992 5.2743983147547678E-011 + 48.599999999999994 6.4322443405556637E-011 + 48.659999999999997 7.8022886933625579E-011 + 48.719999999999999 9.4193837852219174E-011 + 48.780000000000001 1.1323662486478065E-010 + 48.840000000000003 1.3561278561972957E-010 + 48.899999999999991 1.6185240951578297E-010 + 48.959999999999994 1.9256389737918399E-010 + 49.019999999999996 2.2844447069535072E-010 + 49.079999999999998 2.7029268711995500E-010 + 49.140000000000001 3.1902182110102940E-010 + 49.200000000000003 3.7567579943610699E-010 + 49.259999999999991 4.4144628414252137E-010 + 49.319999999999993 5.1769298220452726E-010 + 49.379999999999995 6.0596503267355911E-010 + 49.439999999999998 7.0802643291136733E-010 + 49.500000000000000 8.2588395832808611E-010 + 49.560000000000002 9.6181859452383094E-010 + 49.619999999999990 1.1184203389991441E-009 + 49.679999999999993 1.2986288066054575E-009 + 49.739999999999995 1.5057760927346964E-009 + 49.799999999999997 1.7436378827951151E-009 + 49.859999999999999 2.0164869527421230E-009 + 49.920000000000002 2.3291569957815519E-009 + 49.979999999999990 2.6871113675002366E-009 + 50.039999999999992 3.0965188926299841E-009 + 50.099999999999994 3.5643409972668749E-009 + 50.159999999999997 4.0984289292440821E-009 + 50.219999999999999 4.7076270499595568E-009 + 50.280000000000001 5.4018948004907511E-009 + 50.340000000000003 6.1924382196840870E-009 + 50.399999999999991 7.0918569927822981E-009 + 50.459999999999994 8.1143019801680994E-009 + 50.519999999999996 9.2756700580573063E-009 + 50.579999999999998 1.0593785726875320E-008 + 50.640000000000001 1.2088640926975860E-008 + 50.700000000000003 1.3782628322621030E-008 + 50.759999999999991 1.5700818951570396E-008 + 50.819999999999993 1.7871269848688230E-008 + 50.879999999999995 2.0325345445651187E-008 + 50.939999999999998 2.3098086443866325E-008 + 51.000000000000000 2.6228622769864277E-008 + 51.060000000000002 2.9760614450795054E-008 + 51.119999999999990 3.3742749163840024E-008 + 51.179999999999993 3.8229260473990248E-008 + 51.239999999999995 4.3280574692569341E-008 + 51.299999999999997 4.8963924559662696E-008 + 51.359999999999999 5.5354066097643095E-008 + 51.420000000000002 6.2534112728876555E-008 + 51.479999999999990 7.0596366482639926E-008 + 51.539999999999992 7.9643247650463113E-008 + 51.599999999999994 8.9788410912089777E-008 + 51.659999999999997 1.0115782216738572E-007 + 51.719999999999999 1.1389104494391263E-007 + 51.780000000000001 1.2814258960945972E-007 + 51.840000000000003 1.4408336222695017E-007 + 51.899999999999991 1.6190232599862932E-007 + 51.959999999999994 1.8180835753175752E-007 + 52.019999999999996 2.0403207175584480E-007 + 52.079999999999998 2.2882791505561825E-007 + 52.140000000000001 2.5647656043820841E-007 + 52.200000000000003 2.8728734040638307E-007 + 52.259999999999991 3.2160098015772466E-007 + 52.319999999999993 3.5979252582902415E-007 + 52.379999999999995 4.0227455063529329E-007 + 52.439999999999998 4.4950040043180979E-007 + 52.500000000000000 5.0196845262726097E-007 + 52.560000000000002 5.6022564591033798E-007 + 52.619999999999990 6.2487234543584101E-007 + 52.679999999999993 6.9656636266737332E-007 + 52.739999999999995 7.7602920088902567E-007 + 52.799999999999997 8.6405040196711192E-007 + 52.859999999999999 9.6149429197771464E-007 + 52.920000000000002 1.0693061013171087E-006 + 52.979999999999990 1.1885190256161936E-006 + 53.039999999999992 1.3202612989037457E-006 + 53.099999999999994 1.4657650124863021E-006 + 53.159999999999997 1.6263736402100118E-006 + 53.219999999999999 1.8035522833236752E-006 + 53.280000000000001 1.9988965177292589E-006 + 53.339999999999989 2.2141438920460715E-006 + 53.399999999999991 2.4511847731201538E-006 + 53.459999999999994 2.7120736764252322E-006 + 53.519999999999996 2.9990443152081062E-006 + 53.579999999999998 3.3145221151978881E-006 + 53.640000000000001 3.6611380115622227E-006 + 53.700000000000003 4.0417452904307403E-006 + 53.759999999999991 4.4594367930717267E-006 + 53.819999999999993 4.9175612117511244E-006 + 53.879999999999995 5.4197427639832835E-006 + 53.939999999999998 5.9699020306777265E-006 + 54.000000000000000 6.5722743818882096E-006 + 54.060000000000002 7.2314360169627073E-006 + 54.119999999999990 7.9523244117954103E-006 + 54.179999999999993 8.7402674398809669E-006 + 54.239999999999995 9.6010065952146987E-006 + 54.299999999999997 1.0540726124524614E-005 + 54.359999999999999 1.1566081094189785E-005 + 54.420000000000002 1.2684231127995448E-005 + 54.479999999999990 1.3902873368143773E-005 + 54.539999999999992 1.5230272994376425E-005 + 54.599999999999994 1.6675301961050818E-005 + 54.659999999999997 1.8247477661897273E-005 + 54.719999999999999 1.9957002717541452E-005 + 54.780000000000001 2.1814799563722121E-005 + 54.839999999999989 2.3832565182170977E-005 + 54.899999999999991 2.6022806217470682E-005 + 54.959999999999994 2.8398893917800623E-005 + 55.019999999999996 3.0975096724715586E-005 + 55.079999999999998 3.3766660582630326E-005 + 55.140000000000001 3.6789835061423780E-005 + 55.200000000000003 4.0061930491594577E-005 + 55.259999999999991 4.3601393676972048E-005 + 55.319999999999993 4.7427836916404341E-005 + 55.379999999999995 5.1562129392393757E-005 + 55.439999999999998 5.6026431680798639E-005 + 55.500000000000000 6.0844278190462781E-005 + 55.560000000000002 6.6040638842268485E-005 + 55.619999999999990 7.1641975160053917E-005 + 55.679999999999993 7.7676315376449693E-005 + 55.739999999999995 8.4173320552584648E-005 + 55.799999999999997 9.1164369842561792E-005 + 55.859999999999999 9.8682598923631340E-005 + 55.920000000000002 1.0676302547661388E-004 + 55.979999999999990 1.1544256962121331E-004 + 56.039999999999992 1.2476016486721349E-004 + 56.099999999999994 1.3475681253680564E-004 + 56.159999999999997 1.4547565864400896E-004 + 56.219999999999999 1.5696206065466501E-004 + 56.280000000000001 1.6926370231568080E-004 + 56.339999999999989 1.8243062804368412E-004 + 56.399999999999991 1.9651531195567407E-004 + 56.459999999999994 2.1157271418505337E-004 + 56.519999999999996 2.2766044210843482E-004 + 56.579999999999998 2.4483871607581972E-004 + 56.640000000000001 2.6317047669072093E-004 + 56.700000000000003 2.8272143635550462E-004 + 56.759999999999991 3.0356013788792024E-004 + 56.819999999999993 3.2575805734295693E-004 + 56.879999999999995 3.4938958319264015E-004 + 56.939999999999998 3.7453208014951838E-004 + 57.000000000000000 4.0126600064673245E-004 + 57.060000000000002 4.2967481365131343E-004 + 57.119999999999990 4.5984505024513782E-004 + 57.179999999999993 4.9186642334149791E-004 + 57.239999999999995 5.2583181208217303E-004 + 57.299999999999997 5.6183710529068408E-004 + 57.359999999999999 5.9998136156778925E-004 + 57.420000000000002 6.4036689627385273E-004 + 57.479999999999990 6.8309901577023088E-004 + 57.539999999999992 7.2828621401387886E-004 + 57.599999999999994 7.7603973431569100E-004 + 57.659999999999997 8.2647411790220970E-004 + 57.719999999999999 8.7970668481205804E-004 + 57.780000000000001 9.3585745024174711E-004 + 57.839999999999989 9.9504949974616374E-004 + 57.899999999999991 1.0574082707100771E-003 + 57.959999999999994 1.1230617852419922E-003 + 58.019999999999996 1.1921404371128793E-003 + 58.079999999999998 1.2647767933662252E-003 + 58.140000000000001 1.3411056261909634E-003 + 58.200000000000003 1.4212633893221835E-003 + 58.259999999999991 1.5053882697309933E-003 + 58.319999999999993 1.5936199478463378E-003 + 58.379999999999995 1.6860992183672463E-003 + 58.439999999999998 1.7829679436266179E-003 + 58.500000000000000 1.8843685789804239E-003 + 58.560000000000002 1.9904438652705073E-003 + 58.619999999999990 2.1013364016809269E-003 + 58.679999999999993 2.2171891058467646E-003 + 58.739999999999995 2.3381437267559657E-003 + 58.799999999999997 2.4643415627981064E-003 + 58.859999999999999 2.5959216179518769E-003 + 58.920000000000002 2.7330221895526309E-003 + 58.979999999999990 2.8757785380019345E-003 + 59.039999999999992 3.0243237031246459E-003 + 59.099999999999994 3.1787870476409612E-003 + 59.159999999999997 3.3392953548220194E-003 + 59.219999999999999 3.5059702351974025E-003 + 59.280000000000001 3.6789290405747186E-003 + 59.339999999999989 3.8582841811591927E-003 + 59.399999999999991 4.0441424731192275E-003 + 59.459999999999994 4.2366042516049007E-003 + 59.519999999999996 4.4357630457737066E-003 + 59.579999999999998 4.6417055988332871E-003 + 59.640000000000001 4.8545096833724297E-003 + 59.700000000000003 5.0742453708845486E-003 + 59.759999999999991 5.3009737809032453E-003 + 59.819999999999993 5.5347456545155934E-003 + 59.879999999999995 5.7756018512037264E-003 + 59.939999999999998 6.0235725915879518E-003 + 60.000000000000000 6.2786764492952880E-003 + 60.060000000000002 6.5409191715671503E-003 + 60.119999999999990 6.8102962114384991E-003 + 60.179999999999993 7.0867864664408168E-003 + 60.239999999999995 7.3703571998971979E-003 + 60.299999999999997 7.6609621051441455E-003 + 60.359999999999999 7.9585379731082311E-003 + 60.420000000000002 8.2630073099786913E-003 + 60.479999999999990 8.5742763528049420E-003 + 60.539999999999992 8.8922354340458202E-003 + 60.599999999999994 9.2167583773724703E-003 + 60.659999999999997 9.5477025405771871E-003 + 60.719999999999999 9.8849058566347885E-003 + 60.780000000000001 1.0228189303816408E-002 + 60.839999999999989 1.0577356571044550E-002 + 60.899999999999991 1.0932191496691557E-002 + 60.959999999999994 1.1292459621057663E-002 + 61.019999999999996 1.1657908439780595E-002 + 61.079999999999998 1.2028266526848271E-002 + 61.140000000000001 1.2403241670552033E-002 + 61.200000000000003 1.2782523450150973E-002 + 61.259999999999991 1.3165783101586640E-002 + 61.319999999999993 1.3552671402320722E-002 + 61.379999999999995 1.3942821768725206E-002 + 61.439999999999998 1.4335849991896202E-002 + 61.500000000000000 1.4731348188424125E-002 + 61.560000000000002 1.5128896380488772E-002 + 61.619999999999990 1.5528052455225176E-002 + 61.679999999999993 1.5928359416621848E-002 + 61.739999999999995 1.6329342649530055E-002 + 61.799999999999997 1.6730510604978537E-002 + 61.859999999999999 1.7131356154666877E-002 + 61.920000000000002 1.7531356828739506E-002 + 61.979999999999990 1.7929977968252266E-002 + 62.039999999999992 1.8326668997218111E-002 + 62.099999999999994 1.8720868103795987E-002 + 62.159999999999997 1.9112001245205516E-002 + 62.219999999999999 1.9499481994472628E-002 + 62.280000000000001 1.9882718031456099E-002 + 62.339999999999989 2.0261102626630376E-002 + 62.399999999999991 2.0634028643386513E-002 + 62.459999999999994 2.1000878655650208E-002 + 62.519999999999996 2.1361030207231516E-002 + 62.579999999999998 2.1713858341325699E-002 + 62.640000000000001 2.2058734374843715E-002 + 62.700000000000003 2.2395028234667873E-002 + 62.759999999999991 2.2722114232793064E-002 + 62.819999999999993 2.3039365300538524E-002 + 62.879999999999995 2.3346156778207686E-002 + 62.939999999999998 2.3641870198085134E-002 + 63.000000000000000 2.3925894949279481E-002 + 63.060000000000002 2.4197626966497184E-002 + 63.119999999999990 2.4456470804317485E-002 + 63.179999999999993 2.4701843579707818E-002 + 63.239999999999995 2.4933174175520847E-002 + 63.299999999999997 2.5149904094233663E-002 + 63.359999999999999 2.5351492909271727E-002 + 63.420000000000002 2.5537414658601057E-002 + 63.479999999999990 2.5707165847262053E-002 + 63.539999999999992 2.5860259717778430E-002 + 63.599999999999994 2.5996231232852728E-002 + 63.659999999999997 2.6114639115968220E-002 + 63.719999999999999 2.6215065663822007E-002 + 63.780000000000001 2.6297121137580079E-002 + 63.839999999999989 2.6360438727774618E-002 + 63.899999999999991 2.6404680901003948E-002 + 63.959999999999994 2.6429543008223727E-002 + 64.019999999999996 2.6434745071430888E-002 + 64.079999999999998 2.6420039817673182E-002 + 64.140000000000001 2.6385214045714089E-002 + 64.200000000000003 2.6330085819394080E-002 + 64.259999999999991 2.6254508283369320E-002 + 64.319999999999993 2.6158365854274127E-002 + 64.379999999999995 2.6041581785458016E-002 + 64.439999999999998 2.5904114485360317E-002 + 64.500000000000000 2.5745952744897393E-002 + 64.560000000000002 2.5567128095750843E-002 + 64.619999999999990 2.5367705263546942E-002 + 64.679999999999993 2.5147787287084007E-002 + 64.739999999999995 2.4907510798157041E-002 + 64.799999999999997 2.4647052202362386E-002 + 64.859999999999999 2.4366621698160229E-002 + 64.920000000000002 2.4066464854522678E-002 + 64.979999999999990 2.3746866807421066E-002 + 65.039999999999992 2.3408143897859009E-002 + 65.099999999999994 2.3050647029663755E-002 + 65.159999999999997 2.2674762759610122E-002 + 65.219999999999999 2.2280909322901665E-002 + 65.280000000000001 2.1869536234065033E-002 + 65.339999999999989 2.1441126065552908E-002 + 65.399999999999991 2.0996191544642242E-002 + 65.459999999999994 2.0535272572733819E-002 + 65.519999999999996 2.0058938972957630E-002 + 65.579999999999998 1.9567785147984920E-002 + 65.640000000000001 1.9062428822382533E-002 + 65.700000000000003 1.8543513043133883E-002 + 65.759999999999991 1.8011705552388926E-002 + 65.819999999999993 1.7467692722702738E-002 + 65.879999999999995 1.6912176526836596E-002 + 65.939999999999998 1.6345881161793436E-002 + 66.000000000000000 1.5769543688058073E-002 + 66.060000000000002 1.5183916015762758E-002 + 66.119999999999990 1.4589760449928102E-002 + 66.179999999999993 1.3987851598400523E-002 + 66.239999999999995 1.3378971668936831E-002 + 66.299999999999997 1.2763909437663114E-002 + 66.359999999999999 1.2143459430864367E-002 + 66.420000000000002 1.1518418944248446E-002 + 66.479999999999990 1.0889585257834112E-002 + 66.539999999999992 1.0257757146815524E-002 + 66.599999999999994 9.6237292211091684E-003 + 66.659999999999997 8.9882934410150887E-003 + 66.719999999999999 8.3522351715288948E-003 + 66.780000000000001 7.7163322434349582E-003 + 66.839999999999989 7.0813546471712062E-003 + 66.899999999999991 6.4480600941380188E-003 + 66.959999999999994 5.8171946865726272E-003 + 67.019999999999996 5.1894903780350223E-003 + 67.079999999999998 4.5656643975181812E-003 + 67.140000000000001 3.9464173911611701E-003 + 67.199999999999989 3.3324317316168659E-003 + 67.259999999999991 2.7243702261823674E-003 + 67.319999999999993 2.1228759867682372E-003 + 67.379999999999995 1.5285701658411662E-003 + 67.439999999999998 9.4205172035472136E-004 + 67.500000000000000 3.6389566442985503E-004 + 67.560000000000002 -2.0534675013024483E-004 + 67.619999999999990 -7.6514942726088511E-004 + 67.679999999999993 -1.3150121922193276E-003 + 67.739999999999995 -1.8544611535379139E-003 + 67.799999999999997 -2.3830498350339165E-003 + 67.859999999999999 -2.9003588439307387E-003 + 67.920000000000002 -3.4059960644167949E-003 + 67.979999999999990 -3.8995978264391661E-003 + 68.039999999999992 -4.3808287530692821E-003 + 68.099999999999994 -4.8493821060274942E-003 + 68.159999999999997 -5.3049787467150580E-003 + 68.219999999999999 -5.7473676505730899E-003 + 68.280000000000001 -6.1763266772794870E-003 + 68.339999999999989 -6.5916622510639004E-003 + 68.399999999999991 -6.9932066728200922E-003 + 68.459999999999994 -7.3808214291313764E-003 + 68.519999999999996 -7.7543941647432914E-003 + 68.579999999999998 -8.1138390970067805E-003 + 68.640000000000001 -8.4590959699593592E-003 + 68.699999999999989 -8.7901299802968704E-003 + 68.759999999999991 -9.1069324564193380E-003 + 68.819999999999993 -9.4095165755956212E-003 + 68.879999999999995 -9.6979211900150158E-003 + 68.939999999999998 -9.9722053285053215E-003 + 69.000000000000000 -1.0232452041347444E-002 + 69.060000000000002 -1.0478764321728787E-002 + 69.119999999999990 -1.0711265321226477E-002 + 69.179999999999993 -1.0930095800291929E-002 + 69.239999999999995 -1.1135416791683599E-002 + 69.299999999999997 -1.1327406214680362E-002 + 69.359999999999999 -1.1506257894553139E-002 + 69.420000000000002 -1.1672179244540802E-002 + 69.479999999999990 -1.1825395262671711E-002 + 69.539999999999992 -1.1966142598776396E-002 + 69.599999999999994 -1.2094668848438763E-002 + 69.659999999999997 -1.2211235224985701E-002 + 69.719999999999999 -1.2316111468632108E-002 + 69.780000000000001 -1.2409578532160194E-002 + 69.839999999999989 -1.2491925060763678E-002 + 69.899999999999991 -1.2563446763180469E-002 + 69.959999999999994 -1.2624444940807921E-002 + 70.019999999999996 -1.2675227586127394E-002 + 70.079999999999998 -1.2716107653620709E-002 + 70.140000000000001 -1.2747401490432467E-002 + 70.199999999999989 -1.2769429148446526E-002 + 70.259999999999991 -1.2782511723839676E-002 + 70.319999999999993 -1.2786971562015668E-002 + 70.379999999999995 -1.2783132566268738E-002 + 70.439999999999998 -1.2771318237389501E-002 + 70.500000000000000 -1.2751850991204764E-002 + 70.560000000000002 -1.2725051496952395E-002 + 70.619999999999990 -1.2691239265515110E-002 + 70.679999999999993 -1.2650729704061687E-002 + 70.739999999999995 -1.2603837434266990E-002 + 70.799999999999997 -1.2550870376202172E-002 + 70.859999999999999 -1.2492133492392728E-002 + 70.920000000000002 -1.2427926755679197E-002 + 70.979999999999990 -1.2358545845586318E-002 + 71.039999999999992 -1.2284278221298980E-002 + 71.099999999999994 -1.2205408477134571E-002 + 71.159999999999997 -1.2122213058364759E-002 + 71.219999999999999 -1.2034963039218019E-002 + 71.280000000000001 -1.1943921816857259E-002 + 71.339999999999989 -1.1849345154282246E-002 + 71.399999999999991 -1.1751483647704170E-002 + 71.459999999999994 -1.1650579580145853E-002 + 71.519999999999996 -1.1546867701392986E-002 + 71.579999999999998 -1.1440573300439060E-002 + 71.640000000000001 -1.1331916767432781E-002 + 71.699999999999989 -1.1221109892411860E-002 + 71.759999999999991 -1.1108355841984253E-002 + 71.819999999999993 -1.0993850624488389E-002 + 71.879999999999995 -1.0877782276121829E-002 + 71.939999999999998 -1.0760331614585719E-002 + 72.000000000000000 -1.0641670533724732E-002 + 72.060000000000002 -1.0521965549694355E-002 + 72.119999999999990 -1.0401374681608044E-002 + 72.179999999999993 -1.0280047862789774E-002 + 72.239999999999995 -1.0158128332347340E-002 + 72.299999999999997 -1.0035752575209398E-002 + 72.359999999999999 -9.9130502469418381E-003 + 72.420000000000002 -9.7901431281404785E-003 + 72.479999999999990 -9.6671473464703672E-003 + 72.539999999999992 -9.5441711341105635E-003 + 72.599999999999994 -9.4213184423048782E-003 + 72.659999999999997 -9.2986862276469625E-003 + 72.719999999999999 -9.1763645834119362E-003 + 72.780000000000001 -9.0544404520664853E-003 + 72.839999999999989 -8.9329915814231123E-003 + 72.899999999999991 -8.8120934513623780E-003 + 72.959999999999994 -8.6918156434516898E-003 + 73.019999999999996 -8.5722218204904513E-003 + 73.079999999999998 -8.4533730696286745E-003 + 73.140000000000001 -8.3353229284199876E-003 + 73.199999999999989 -8.2181226915629749E-003 + 73.259999999999991 -8.1018200507921457E-003 + 73.319999999999993 -7.9864569906093683E-003 + 73.379999999999995 -7.8720724500531952E-003 + 73.439999999999998 -7.7587029180881248E-003 + 73.500000000000000 -7.6463805828722951E-003 + 73.560000000000002 -7.5351348029025853E-003 + 73.619999999999990 -7.4249917805410430E-003 + 73.679999999999993 -7.3159750177240052E-003 + 73.739999999999995 -7.2081057501026365E-003 + 73.799999999999997 -7.1014023680039690E-003 + 73.859999999999999 -6.9958808151684131E-003 + 73.920000000000002 -6.8915552144249298E-003 + 73.979999999999990 -6.7884378931167000E-003 + 74.039999999999992 -6.6865392125970502E-003 + 74.099999999999994 -6.5858669397754841E-003 + 74.159999999999997 -6.4864284801747912E-003 + 74.219999999999999 -6.3882293109603291E-003 + 74.280000000000001 -6.2912729425400179E-003 + 74.339999999999989 -6.1955628244132590E-003 + 74.399999999999991 -6.1010998338410184E-003 + 74.459999999999994 -6.0078844990442181E-003 + 74.519999999999996 -5.9159166600122950E-003 + 74.579999999999998 -5.8251951311636017E-003 + 74.640000000000001 -5.7357172124265264E-003 + 74.699999999999989 -5.6474804902100556E-003 + 74.759999999999991 -5.5604809248929578E-003 + 74.819999999999993 -5.4747148558207566E-003 + 74.879999999999995 -5.3901773810879610E-003 + 74.939999999999998 -5.3068637445558521E-003 + 75.000000000000000 -5.2247682740145249E-003 + 75.060000000000002 -5.1438850729435279E-003 + 75.119999999999990 -5.0642077298262518E-003 + 75.179999999999993 -4.9857301324189151E-003 + 75.239999999999995 -4.9084454233339885E-003 + 75.299999999999997 -4.8323463047129618E-003 + 75.359999999999999 -4.7574261736216547E-003 + 75.420000000000002 -4.6836775963890005E-003 + 75.479999999999990 -4.6110932514065268E-003 + 75.539999999999992 -4.5396655795728776E-003 + 75.599999999999994 -4.4693864068083254E-003 + 75.659999999999997 -4.4002484901115970E-003 + 75.719999999999999 -4.3322438492684129E-003 + 75.780000000000001 -4.2653642070668140E-003 + 75.839999999999989 -4.1996013699866020E-003 + 75.899999999999991 -4.1349478440972668E-003 + 75.959999999999994 -4.0713945238740170E-003 + 76.019999999999996 -4.0089336400283794E-003 + 76.079999999999998 -3.9475567278942367E-003 + 76.140000000000001 -3.8872553763919073E-003 + 76.199999999999989 -3.8280208603202704E-003 + 76.259999999999991 -3.7698448661566430E-003 + 76.319999999999993 -3.7127185479030244E-003 + 76.379999999999995 -3.6566329415031506E-003 + 76.439999999999998 -3.6015796929796725E-003 + 76.500000000000000 -3.5475499999098126E-003 + 76.560000000000002 -3.4945349288640175E-003 + 76.619999999999990 -3.4425253121253933E-003 + 76.679999999999993 -3.3915122039586071E-003 + 76.739999999999995 -3.3414863719885435E-003 + 76.799999999999997 -3.2924386469178027E-003 + 76.859999999999999 -3.2443597867858687E-003 + 76.920000000000002 -3.1972404119591001E-003 + 76.979999999999990 -3.1510711277407144E-003 + 77.039999999999992 -3.1058424817609568E-003 + 77.099999999999994 -3.0615445390179160E-003 + 77.159999999999997 -3.0181678894708915E-003 + 77.219999999999999 -2.9757021627783873E-003 + 77.280000000000001 -2.9341376572653444E-003 + 77.339999999999989 -2.8934643591419121E-003 + 77.399999999999991 -2.8536719461373784E-003 + 77.459999999999994 -2.8147505303363785E-003 + 77.519999999999996 -2.7766892634843022E-003 + 77.579999999999998 -2.7394778560010085E-003 + 77.640000000000001 -2.7031058787601952E-003 + 77.699999999999989 -2.6675622780829395E-003 + 77.759999999999991 -2.6328361962502365E-003 + 77.819999999999993 -2.5989170710182192E-003 + 77.879999999999995 -2.5657934754883772E-003 + 77.939999999999998 -2.5334544340498873E-003 + 78.000000000000000 -2.5018886655791485E-003 + 78.060000000000002 -2.4710846268536277E-003 + 78.119999999999990 -2.4410311121744652E-003 + 78.179999999999993 -2.4117163494186797E-003 + 78.239999999999995 -2.3831291839652986E-003 + 78.299999999999997 -2.3552576110995628E-003 + 78.359999999999999 -2.3280897971642333E-003 + 78.420000000000002 -2.3016142959908937E-003 + 78.479999999999990 -2.2758190166149743E-003 + 78.539999999999992 -2.2506923093292127E-003 + 78.599999999999994 -2.2262221181302564E-003 + 78.659999999999997 -2.2023965188082838E-003 + 78.719999999999999 -2.1792036636496901E-003 + 78.780000000000001 -2.1566317674326647E-003 + 78.839999999999989 -2.1346685708543865E-003 + 78.899999999999991 -2.1133021322674245E-003 + 78.959999999999994 -2.0925206197900162E-003 + 79.019999999999996 -2.0723123261686105E-003 + 79.079999999999998 -2.0526651793334192E-003 + 79.140000000000001 -2.0335672522179770E-003 + 79.199999999999989 -2.0150067943262313E-003 + 79.259999999999991 -1.9969720579860774E-003 + 79.319999999999993 -1.9794513762289045E-003 + 79.379999999999995 -1.9624329566503402E-003 + 79.439999999999998 -1.9459052229706228E-003 + 79.500000000000000 -1.9298567321835510E-003 + 79.560000000000002 -1.9142760079126487E-003 + 79.619999999999990 -1.8991516255842077E-003 + 79.679999999999993 -1.8844725186417119E-003 + 79.739999999999995 -1.8702273799159456E-003 + 79.799999999999997 -1.8564052132290440E-003 + 79.859999999999999 -1.8429951056623539E-003 + 79.920000000000002 -1.8299861844565514E-003 + 79.979999999999990 -1.8173676945215337E-003 + 80.039999999999992 -1.8051292981129943E-003 + 80.099999999999994 -1.7932603701783772E-003 + 80.159999999999997 -1.7817505970144844E-003 + 80.219999999999999 -1.7705899595379007E-003 + 80.280000000000001 -1.7597682704387902E-003 + 80.340000000000003 -1.7492755592456554E-003 + 80.400000000000006 -1.7391021445379721E-003 + 80.460000000000008 -1.7292384663166306E-003 + 80.519999999999982 -1.7196749049535668E-003 + 80.579999999999984 -1.7104021821868504E-003 + 80.639999999999986 -1.7014110114915056E-003 + 80.699999999999989 -1.6926922213905049E-003 + 80.759999999999991 -1.6842369438504557E-003 + 80.819999999999993 -1.6760362964691154E-003 + 80.879999999999995 -1.6680816274847196E-003 + 80.939999999999998 -1.6603643256812807E-003 + 81.000000000000000 -1.6528759482968046E-003 + 81.060000000000002 -1.6456081731326642E-003 + 81.120000000000005 -1.6385528557099510E-003 + 81.180000000000007 -1.6317018119005539E-003 + 81.240000000000009 -1.6250473672535643E-003 + 81.299999999999983 -1.6185815619484032E-003 + 81.359999999999985 -1.6122967890075514E-003 + 81.419999999999987 -1.6061856750142253E-003 + 81.479999999999990 -1.6002408202043445E-003 + 81.539999999999992 -1.5944551249107433E-003 + 81.599999999999994 -1.5888215067070121E-003 + 81.659999999999997 -1.5833330381637789E-003 + 81.719999999999999 -1.5779830270100581E-003 + 81.780000000000001 -1.5727648524172637E-003 + 81.840000000000003 -1.5676722254352904E-003 + 81.900000000000006 -1.5626986619067661E-003 + 81.960000000000008 -1.5578381303381029E-003 + 82.019999999999982 -1.5530847280682816E-003 + 82.079999999999984 -1.5484324861043083E-003 + 82.139999999999986 -1.5438757002939265E-003 + 82.199999999999989 -1.5394088216095726E-003 + 82.259999999999991 -1.5350263342284070E-003 + 82.319999999999993 -1.5307229352861480E-003 + 82.379999999999995 -1.5264932962135232E-003 + 82.439999999999998 -1.5223324663313762E-003 + 82.500000000000000 -1.5182354222632521E-003 + 82.560000000000002 -1.5141973988243372E-003 + 82.620000000000005 -1.5102136178239487E-003 + 82.680000000000007 -1.5062794303233073E-003 + 82.740000000000009 -1.5023903800399834E-003 + 82.799999999999983 -1.4985421106844851E-003 + 82.859999999999985 -1.4947303741778971E-003 + 82.919999999999987 -1.4909512063955089E-003 + 82.979999999999990 -1.4872006925839493E-003 + 83.039999999999992 -1.4834749529557792E-003 + 83.099999999999994 -1.4797703632484940E-003 + 83.159999999999997 -1.4760834643158902E-003 + 83.219999999999999 -1.4724109096125499E-003 + 83.280000000000001 -1.4687494724416731E-003 + 83.340000000000003 -1.4650961022581630E-003 + 83.400000000000006 -1.4614478655103934E-003 + 83.460000000000008 -1.4578019637389841E-003 + 83.519999999999982 -1.4541558068784468E-003 + 83.579999999999984 -1.4505068696281384E-003 + 83.639999999999986 -1.4468526978971569E-003 + 83.699999999999989 -1.4431909367398795E-003 + 83.759999999999991 -1.4395194701900434E-003 + 83.819999999999993 -1.4358361891201477E-003 + 83.879999999999995 -1.4321390014834659E-003 + 83.939999999999998 -1.4284260311374264E-003 + 84.000000000000000 -1.4246956212999741E-003 + 84.060000000000002 -1.4209459176461243E-003 + 84.120000000000005 -1.4171753908937595E-003 + 84.180000000000007 -1.4133825517038288E-003 + 84.240000000000009 -1.4095659141353108E-003 + 84.299999999999983 -1.4057243097810354E-003 + 84.359999999999985 -1.4018564595692934E-003 + 84.419999999999987 -1.3979613491868592E-003 + 84.479999999999990 -1.3940380433048053E-003 + 84.539999999999992 -1.3900856007168388E-003 + 84.599999999999994 -1.3861034000716987E-003 + 84.659999999999997 -1.3820907012367196E-003 + 84.719999999999999 -1.3780470915557620E-003 + 84.780000000000001 -1.3739721175478222E-003 + 84.840000000000003 -1.3698654731860269E-003 + 84.900000000000006 -1.3657269271202966E-003 + 84.960000000000008 -1.3615563899419146E-003 + 85.019999999999982 -1.3573537864266009E-003 + 85.079999999999984 -1.3531193403670157E-003 + 85.139999999999986 -1.3488530657608233E-003 + 85.199999999999989 -1.3445549911810268E-003 + 85.259999999999991 -1.3402254933681452E-003 + 85.319999999999993 -1.3358649038699537E-003 + 85.379999999999995 -1.3314734609535944E-003 + 85.439999999999998 -1.3270515337707013E-003 + 85.500000000000000 -1.3225996543286089E-003 + 85.560000000000002 -1.3181182098850144E-003 + 85.620000000000005 -1.3136077934574704E-003 + 85.680000000000007 -1.3090689804267476E-003 + 85.740000000000009 -1.3045022780875488E-003 + 85.799999999999983 -1.2999083593034485E-003 + 85.859999999999985 -1.2952880724117870E-003 + 85.919999999999987 -1.2906419711085386E-003 + 85.979999999999990 -1.2859710135768906E-003 + 86.039999999999992 -1.2812760995741055E-003 + 86.099999999999994 -1.2765581501385788E-003 + 86.159999999999997 -1.2718180989631771E-003 + 86.219999999999999 -1.2670568703141163E-003 + 86.280000000000001 -1.2622756624652506E-003 + 86.340000000000003 -1.2574755439363680E-003 + 86.400000000000006 -1.2526577619409128E-003 + 86.460000000000008 -1.2478234939933498E-003 + 86.519999999999982 -1.2429738901150631E-003 + 86.579999999999984 -1.2381101332108273E-003 + 86.639999999999986 -1.2332335688722926E-003 + 86.699999999999989 -1.2283453224842238E-003 + 86.759999999999991 -1.2234468011842006E-003 + 86.819999999999993 -1.2185391209462843E-003 + 86.879999999999995 -1.2136234436377030E-003 + 86.939999999999998 -1.2087010542469092E-003 + 87.000000000000000 -1.2037731697923538E-003 + 87.060000000000002 -1.1988408631911230E-003 + 87.120000000000005 -1.1939053923029415E-003 + 87.180000000000007 -1.1889677144993908E-003 + 87.240000000000009 -1.1840292598414965E-003 + 87.299999999999983 -1.1790909107814995E-003 + 87.359999999999985 -1.1741537751975503E-003 + 87.419999999999987 -1.1692190334199014E-003 + 87.479999999999990 -1.1642878031429976E-003 + 87.539999999999992 -1.1593610941970909E-003 + 87.599999999999994 -1.1544401056982879E-003 + 87.659999999999997 -1.1495257766776588E-003 + 87.719999999999999 -1.1446191985589548E-003 + 87.780000000000001 -1.1397215163170727E-003 + 87.840000000000003 -1.1348336678601851E-003 + 87.900000000000006 -1.1299567872395668E-003 + 87.960000000000008 -1.1250917472480407E-003 + 88.019999999999982 -1.1202397143461366E-003 + 88.079999999999984 -1.1154015356453152E-003 + 88.139999999999986 -1.1105782260337116E-003 + 88.199999999999989 -1.1057705103090856E-003 + 88.259999999999991 -1.1009793444342645E-003 + 88.319999999999993 -1.0962053829103951E-003 + 88.379999999999995 -1.0914493792738050E-003 + 88.439999999999998 -1.0867120179721939E-003 + 88.500000000000000 -1.0819939965109238E-003 + 88.560000000000002 -1.0772957017690194E-003 + 88.620000000000005 -1.0726177754710694E-003 + 88.680000000000007 -1.0679606136877629E-003 + 88.740000000000009 -1.0633246057139140E-003 + 88.799999999999983 -1.0587102166780683E-003 + 88.859999999999985 -1.0541176790645663E-003 + 88.919999999999987 -1.0495472813120497E-003 + 88.979999999999990 -1.0449992516090897E-003 + 89.039999999999992 -1.0404739925840509E-003 + 89.099999999999994 -1.0359715002613331E-003 + 89.159999999999997 -1.0314921406423157E-003 + 89.219999999999999 -1.0270360288922062E-003 + 89.280000000000001 -1.0226031762182479E-003 + 89.340000000000003 -1.0181938620514842E-003 + 89.400000000000006 -1.0138079813493931E-003 + 89.460000000000008 -1.0094457929604890E-003 + 89.519999999999982 -1.0051072379153752E-003 + 89.579999999999984 -1.0007922692474799E-003 + 89.639999999999986 -9.9650077799957903E-004 + 89.699999999999989 -9.9223275851553013E-004 + 89.759999999999991 -9.8798799885807596E-004 + 89.819999999999993 -9.8376629681659329E-004 + 89.879999999999995 -9.7956748730628688E-004 + 89.939999999999998 -9.7539119406212806E-004 + 90.000000000000000 -9.7123716732827874E-004 + 90.060000000000002 -9.6710494537661129E-004 + 90.120000000000005 -9.6299417937192704E-004 + 90.180000000000007 -9.5890443955491461E-004 + 90.240000000000009 -9.5483526383540970E-004 + 90.299999999999983 -9.5078617090322041E-004 + 90.359999999999985 -9.4675672399557789E-004 + 90.419999999999987 -9.4274629494644742E-004 + 90.479999999999990 -9.3875447372941928E-004 + 90.539999999999992 -9.3478075961062241E-004 + 90.599999999999994 -9.3082459367372684E-004 + 90.659999999999997 -9.2688548508389635E-004 + 90.719999999999999 -9.2296293467446374E-004 + 90.780000000000001 -9.1905646379322834E-004 + 90.840000000000003 -9.1516552742643587E-004 + 90.900000000000006 -9.1128968432714250E-004 + 90.960000000000008 -9.0742847649308257E-004 + 91.019999999999982 -9.0358140576022954E-004 + 91.079999999999984 -8.9974802970801959E-004 + 91.139999999999986 -8.9592782802654569E-004 + 91.199999999999989 -8.9212039252882904E-004 + 91.259999999999991 -8.8832524643479090E-004 + 91.319999999999993 -8.8454193881260261E-004 + 91.379999999999995 -8.8076994818435416E-004 + 91.439999999999998 -8.7700883872619264E-004 + 91.500000000000000 -8.7325816888439889E-004 + 91.560000000000002 -8.6951745455970530E-004 + 91.620000000000005 -8.6578627678496139E-004 + 91.680000000000007 -8.6206420686949317E-004 + 91.739999999999981 -8.5835082624631466E-004 + 91.799999999999983 -8.5464592648622207E-004 + 91.859999999999985 -8.5094905982160474E-004 + 91.919999999999987 -8.4725994246927846E-004 + 91.979999999999990 -8.4357836232330048E-004 + 92.039999999999992 -8.3990409771248691E-004 + 92.099999999999994 -8.3623704725620186E-004 + 92.159999999999997 -8.3257705865352066E-004 + 92.219999999999999 -8.2892413968875837E-004 + 92.280000000000001 -8.2527825906189578E-004 + 92.340000000000003 -8.2163943076283121E-004 + 92.400000000000006 -8.1800787249830694E-004 + 92.460000000000008 -8.1438368188991011E-004 + 92.519999999999982 -8.1076712927057851E-004 + 92.579999999999984 -8.0715840803896599E-004 + 92.639999999999986 -8.0355789739289002E-004 + 92.699999999999989 -7.9996593174594345E-004 + 92.759999999999991 -7.9638296575363884E-004 + 92.819999999999993 -7.9280940545935121E-004 + 92.879999999999995 -7.8924576325594634E-004 + 92.939999999999998 -7.8569260049451094E-004 + 93.000000000000000 -7.8215044026457090E-004 + 93.060000000000002 -7.7861986529415982E-004 + 93.120000000000005 -7.7510154490706570E-004 + 93.180000000000007 -7.7159617463530171E-004 + 93.239999999999981 -7.6810451362435575E-004 + 93.299999999999983 -7.6462725988217777E-004 + 93.359999999999985 -7.6116530003698393E-004 + 93.419999999999987 -7.5771938698048543E-004 + 93.479999999999990 -7.5429049590033893E-004 + 93.539999999999992 -7.5087952821899738E-004 + 93.599999999999994 -7.4748751013117029E-004 + 93.659999999999997 -7.4411532994233577E-004 + 93.719999999999999 -7.4076415574784527E-004 + 93.780000000000001 -7.3743497111854628E-004 + 93.840000000000003 -7.3412900016837988E-004 + 93.900000000000006 -7.3084737842621448E-004 + 93.960000000000008 -7.2759118409087989E-004 + 94.019999999999982 -7.2436172679402608E-004 + 94.079999999999984 -7.2116014244783346E-004 + 94.139999999999986 -7.1798775177699776E-004 + 94.199999999999989 -7.1484575534515250E-004 + 94.259999999999991 -7.1173539802506919E-004 + 94.319999999999993 -7.0865797874946539E-004 + 94.379999999999995 -7.0561482372759831E-004 + 94.439999999999998 -7.0260711589491579E-004 + 94.500000000000000 -6.9963614262491449E-004 + 94.560000000000002 -6.9670308579960669E-004 + 94.620000000000005 -6.9380919909776820E-004 + 94.680000000000007 -6.9095566661558385E-004 + 94.739999999999981 -6.8814370922434332E-004 + 94.799999999999983 -6.8537446805737822E-004 + 94.859999999999985 -6.8264908681858120E-004 + 94.919999999999987 -6.7996873065692958E-004 + 94.979999999999990 -6.7733445172452826E-004 + 95.039999999999992 -6.7474738370396580E-004 + 95.099999999999994 -6.7220837620806599E-004 + 95.159999999999997 -6.6971858856601160E-004 + 95.219999999999999 -6.6727891447215435E-004 + 95.280000000000001 -6.6489021322046235E-004 + 95.340000000000003 -6.6255339795267447E-004 + 95.400000000000006 -6.6026926979570141E-004 + 95.460000000000008 -6.5803862432848594E-004 + 95.519999999999982 -6.5586208743265975E-004 + 95.579999999999984 -6.5374036062093804E-004 + 95.639999999999986 -6.5167399636581024E-004 + 95.699999999999989 -6.4966348196198690E-004 + 95.759999999999991 -6.4770925277574142E-004 + 95.819999999999993 -6.4581168496415109E-004 + 95.879999999999995 -6.4397105010268233E-004 + 95.939999999999998 -6.4218751509022808E-004 + 96.000000000000000 -6.4046123986356005E-004 + 96.060000000000002 -6.3879229902883024E-004 + 96.120000000000005 -6.3718059333955327E-004 + 96.180000000000007 -6.3562604500647015E-004 + 96.239999999999981 -6.3412849276578778E-004 + 96.299999999999983 -6.3268760673035123E-004 + 96.359999999999985 -6.3130303650037092E-004 + 96.419999999999987 -6.2997434895084570E-004 + 96.479999999999990 -6.2870102980286705E-004 + 96.539999999999992 -6.2748246933696616E-004 + 96.599999999999994 -6.2631796618494015E-004 + 96.659999999999997 -6.2520674391992534E-004 + 96.719999999999999 -6.2414790364005354E-004 + 96.780000000000001 -6.2314049619763116E-004 + 96.840000000000003 -6.2218342303220660E-004 + 96.900000000000006 -6.2127562766819142E-004 + 96.960000000000008 -6.2041583260868548E-004 + 97.019999999999982 -6.1960274062080190E-004 + 97.079999999999984 -6.1883494208699410E-004 + 97.139999999999986 -6.1811081391056140E-004 + 97.199999999999989 -6.1742887854332419E-004 + 97.259999999999991 -6.1678739598184024E-004 + 97.319999999999993 -6.1618461938140877E-004 + 97.379999999999995 -6.1561876372026006E-004 + 97.439999999999998 -6.1508782655181587E-004 + 97.500000000000000 -6.1458987095961109E-004 + 97.560000000000002 -6.1412287101684506E-004 + 97.620000000000005 -6.1368464010745031E-004 + 97.680000000000007 -6.1327312509124271E-004 + 97.739999999999981 -6.1288611079429679E-004 + 97.799999999999983 -6.1252133361911864E-004 + 97.859999999999985 -6.1217654277370031E-004 + 97.919999999999987 -6.1184944152449983E-004 + 97.979999999999990 -6.1153764763423714E-004 + 98.039999999999992 -6.1123887080977526E-004 + 98.099999999999994 -6.1095071271147108E-004 + 98.159999999999997 -6.1067080056174527E-004 + 98.219999999999999 -6.1039675165708263E-004 + 98.280000000000001 -6.1012608828340251E-004 + 98.340000000000003 -6.0985644440782780E-004 + 98.400000000000006 -6.0958542417813765E-004 + 98.460000000000008 -6.0931060792785569E-004 + 98.519999999999982 -6.0902965568368083E-004 + 98.579999999999984 -6.0874011728403934E-004 + 98.639999999999986 -6.0843966658876618E-004 + 98.699999999999989 -6.0812602774559961E-004 + 98.759999999999991 -6.0779692167165476E-004 + 98.819999999999993 -6.0745011873793674E-004 + 98.879999999999995 -6.0708346620808019E-004 + 98.939999999999998 -6.0669485960336393E-004 + 99.000000000000000 -6.0628221472585567E-004 + 99.060000000000002 -6.0584351586598340E-004 + 99.120000000000005 -6.0537687350704396E-004 + 99.180000000000007 -6.0488048467894880E-004 + 99.239999999999981 -6.0435259574959056E-004 + 99.299999999999983 -6.0379156066511460E-004 + 99.359999999999985 -6.0319566738865763E-004 + 99.419999999999987 -6.0256358615794767E-004 + 99.479999999999990 -6.0189382697366700E-004 + 99.539999999999992 -6.0118514467159465E-004 + 99.599999999999994 -6.0043626414785158E-004 + 99.659999999999997 -5.9964612611259011E-004 + 99.719999999999999 -5.9881373666685774E-004 + 99.780000000000001 -5.9793822665616466E-004 + 99.840000000000003 -5.9701868883820831E-004 + 99.900000000000006 -5.9605455233926736E-004 + 99.960000000000008 -5.9504518284363476E-004 + 100.01999999999998 -5.9399001683484544E-004 + 100.07999999999998 -5.9288875347333328E-004 + 100.13999999999999 -5.9174114400070861E-004 + 100.19999999999999 -5.9054695345203321E-004 + 100.25999999999999 -5.8930617099523029E-004 + 100.31999999999999 -5.8801883900896890E-004 + 100.38000000000000 -5.8668513524102518E-004 + 100.44000000000000 -5.8530533445264033E-004 + 100.50000000000000 -5.8387975342624244E-004 + 100.56000000000000 -5.8240885868015007E-004 + 100.62000000000000 -5.8089324465755579E-004 + 100.68000000000001 -5.7933363563565752E-004 + 100.73999999999998 -5.7773077059729099E-004 + 100.79999999999998 -5.7608552972771704E-004 + 100.85999999999999 -5.7439887243401289E-004 + 100.91999999999999 -5.7267188666373535E-004 + 100.97999999999999 -5.7090573480391338E-004 + 101.03999999999999 -5.6910160800145249E-004 + 101.09999999999999 -5.6726078433192838E-004 + 101.16000000000000 -5.6538468288944892E-004 + 101.22000000000000 -5.6347471592557111E-004 + 101.28000000000000 -5.6153241526543944E-004 + 101.34000000000000 -5.5955939220644457E-004 + 101.40000000000001 -5.5755724582080856E-004 + 101.46000000000001 -5.5552765610722269E-004 + 101.51999999999998 -5.5347237501337610E-004 + 101.57999999999998 -5.5139310296676365E-004 + 101.63999999999999 -5.4929166785161888E-004 + 101.69999999999999 -5.4717002412505128E-004 + 101.75999999999999 -5.4502991114906499E-004 + 101.81999999999999 -5.4287338047993990E-004 + 101.88000000000000 -5.4070230749460389E-004 + 101.94000000000000 -5.3851865331691270E-004 + 102.00000000000000 -5.3632450914235916E-004 + 102.06000000000000 -5.3412192205789329E-004 + 102.12000000000000 -5.3191296117505843E-004 + 102.18000000000001 -5.2969979096938961E-004 + 102.23999999999998 -5.2748452221843998E-004 + 102.29999999999998 -5.2526933368381081E-004 + 102.35999999999999 -5.2305639662475023E-004 + 102.41999999999999 -5.2084798678248261E-004 + 102.47999999999999 -5.1864628851023100E-004 + 102.53999999999999 -5.1645351823085986E-004 + 102.59999999999999 -5.1427191124729546E-004 + 102.66000000000000 -5.1210366943417137E-004 + 102.72000000000000 -5.0995100552469824E-004 + 102.78000000000000 -5.0781619314571819E-004 + 102.84000000000000 -5.0570129981403493E-004 + 102.90000000000001 -5.0360853080801886E-004 + 102.96000000000001 -5.0154000446883630E-004 + 103.01999999999998 -4.9949780371654634E-004 + 103.07999999999998 -4.9748403003268540E-004 + 103.13999999999999 -4.9550066848056610E-004 + 103.19999999999999 -4.9354977077337874E-004 + 103.25999999999999 -4.9163334006619721E-004 + 103.31999999999999 -4.8975338578578916E-004 + 103.38000000000000 -4.8791192034206357E-004 + 103.44000000000000 -4.8611086104059716E-004 + 103.50000000000000 -4.8435222541898552E-004 + 103.56000000000000 -4.8263793715671433E-004 + 103.62000000000000 -4.8097002932945867E-004 + 103.68000000000001 -4.7935048563118508E-004 + 103.73999999999998 -4.7778124868009039E-004 + 103.79999999999998 -4.7626436681510098E-004 + 103.85999999999999 -4.7480182577281581E-004 + 103.91999999999999 -4.7339563894462485E-004 + 103.97999999999999 -4.7204782488916713E-004 + 104.03999999999999 -4.7076046908445810E-004 + 104.09999999999999 -4.6953560301273478E-004 + 104.16000000000000 -4.6837529978901711E-004 + 104.22000000000000 -4.6728167301515896E-004 + 104.28000000000000 -4.6625681979319130E-004 + 104.34000000000000 -4.6530292646684461E-004 + 104.40000000000001 -4.6442216062455471E-004 + 104.46000000000001 -4.6361672752993774E-004 + 104.51999999999998 -4.6288888826720036E-004 + 104.57999999999998 -4.6224106483624136E-004 + 104.63999999999999 -4.6167558230218985E-004 + 104.69999999999999 -4.6119491545202408E-004 + 104.75999999999999 -4.6080163284856212E-004 + 104.81999999999999 -4.6049836415383675E-004 + 104.88000000000000 -4.6028780202613082E-004 + 104.94000000000000 -4.6017279441716303E-004 + 105.00000000000000 -4.6015626424141377E-004 + 105.06000000000000 -4.6024124105125715E-004 + 105.12000000000000 -4.6043084325097144E-004 + 105.18000000000001 -4.6072830827346311E-004 + 105.23999999999998 -4.6113693138611858E-004 + 105.29999999999998 -4.6166021252345719E-004 + 105.35999999999999 -4.6230168134208809E-004 + 105.41999999999999 -4.6306496728321149E-004 + 105.47999999999999 -4.6395386583222208E-004 + 105.53999999999999 -4.6497219013252877E-004 + 105.59999999999999 -4.6612387708047350E-004 + 105.66000000000000 -4.6741301192477352E-004 + 105.72000000000000 -4.6884373312701378E-004 + 105.78000000000000 -4.7042026960675780E-004 + 105.84000000000000 -4.7214697346539825E-004 + 105.90000000000001 -4.7402823649659491E-004 + 105.96000000000001 -4.7606861366025348E-004 + 106.01999999999998 -4.7827257272781007E-004 + 106.07999999999998 -4.8064483567092635E-004 + 106.13999999999999 -4.8319007259310241E-004 + 106.19999999999999 -4.8591305062919813E-004 + 106.25999999999999 -4.8881859515536078E-004 + 106.31999999999999 -4.9191158498688601E-004 + 106.38000000000000 -4.9519687774506917E-004 + 106.44000000000000 -4.9867941465433910E-004 + 106.50000000000000 -5.0236408130822376E-004 + 106.56000000000000 -5.0625576597632691E-004 + 106.62000000000000 -5.1035938017377012E-004 + 106.68000000000001 -5.1467970504631255E-004 + 106.73999999999998 -5.1922160425863320E-004 + 106.79999999999998 -5.2398967269864081E-004 + 106.85999999999999 -5.2898850970315640E-004 + 106.91999999999999 -5.3422253062465912E-004 + 106.97999999999999 -5.3969610321556987E-004 + 107.03999999999999 -5.4541332895980180E-004 + 107.09999999999999 -5.5137815423956648E-004 + 107.16000000000000 -5.5759427930833451E-004 + 107.22000000000000 -5.6406517572122532E-004 + 107.28000000000000 -5.7079413990621954E-004 + 107.34000000000000 -5.7778404329724613E-004 + 107.40000000000001 -5.8503744907123631E-004 + 107.46000000000001 -5.9255660169368603E-004 + 107.51999999999998 -6.0034346092793572E-004 + 107.57999999999998 -6.0839945301882289E-004 + 107.63999999999999 -6.1672571509186836E-004 + 107.69999999999999 -6.2532284122898327E-004 + 107.75999999999999 -6.3419112372472902E-004 + 107.81999999999999 -6.4333020831407065E-004 + 107.88000000000000 -6.5273938174351001E-004 + 107.94000000000000 -6.6241727740135937E-004 + 108.00000000000000 -6.7236211888187074E-004 + 108.06000000000000 -6.8257151014033263E-004 + 108.12000000000000 -6.9304240725314749E-004 + 108.18000000000001 -7.0377124877751699E-004 + 108.23999999999998 -7.1475383532849620E-004 + 108.29999999999998 -7.2598532092920092E-004 + 108.35999999999999 -7.3746012294107041E-004 + 108.41999999999999 -7.4917200153262796E-004 + 108.47999999999999 -7.6111409460873688E-004 + 108.53999999999999 -7.7327867834905343E-004 + 108.59999999999999 -7.8565739868907496E-004 + 108.66000000000000 -7.9824110160334812E-004 + 108.72000000000000 -8.1101985255968871E-004 + 108.78000000000000 -8.2398290274939240E-004 + 108.84000000000000 -8.3711881608056291E-004 + 108.90000000000001 -8.5041525524432587E-004 + 108.96000000000001 -8.6385923095551396E-004 + 109.01999999999998 -8.7743692739648002E-004 + 109.07999999999998 -8.9113367883475762E-004 + 109.13999999999999 -9.0493419046169517E-004 + 109.19999999999999 -9.1882230778787821E-004 + 109.25999999999999 -9.3278114743358459E-004 + 109.31999999999999 -9.4679314573367331E-004 + 109.38000000000000 -9.6084010773886115E-004 + 109.44000000000000 -9.7490298380182596E-004 + 109.50000000000000 -9.8896211710338745E-004 + 109.56000000000000 -1.0029972267582966E-003 + 109.62000000000000 -1.0169875004019393E-003 + 109.68000000000001 -1.0309114411151191E-003 + 109.73999999999998 -1.0447470498368945E-003 + 109.79999999999998 -1.0584716836849913E-003 + 109.85999999999999 -1.0720623566062150E-003 + 109.91999999999999 -1.0854954519936657E-003 + 109.97999999999999 -1.0987471131391989E-003 + 110.03999999999999 -1.1117930230751351E-003 + 110.09999999999999 -1.1246086028327768E-003 + 110.16000000000000 -1.1371689059939385E-003 + 110.22000000000000 -1.1494488799552347E-003 + 110.28000000000000 -1.1614229946031748E-003 + 110.34000000000000 -1.1730660425776803E-003 + 110.40000000000001 -1.1843524113045957E-003 + 110.46000000000001 -1.1952566879209515E-003 + 110.51999999999998 -1.2057535269722616E-003 + 110.57999999999998 -1.2158174251545291E-003 + 110.63999999999999 -1.2254235536700582E-003 + 110.69999999999999 -1.2345468997887379E-003 + 110.75999999999999 -1.2431630103240210E-003 + 110.81999999999999 -1.2512478004009853E-003 + 110.88000000000000 -1.2587776602551489E-003 + 110.94000000000000 -1.2657294838826693E-003 + 111.00000000000000 -1.2720805451856543E-003 + 111.06000000000000 -1.2778089734532376E-003 + 111.12000000000000 -1.2828935835329774E-003 + 111.18000000000001 -1.2873140114266408E-003 + 111.23999999999998 -1.2910504567543014E-003 + 111.29999999999998 -1.2940842734987352E-003 + 111.35999999999999 -1.2963976428688043E-003 + 111.41999999999999 -1.2979737530205695E-003 + 111.47999999999999 -1.2987967873791754E-003 + 111.53999999999999 -1.2988522385681620E-003 + 111.59999999999999 -1.2981265651193115E-003 + 111.66000000000000 -1.2966075591102284E-003 + 111.72000000000000 -1.2942841690480927E-003 + 111.78000000000000 -1.2911465364494102E-003 + 111.84000000000000 -1.2871864860467435E-003 + 111.90000000000001 -1.2823970481386779E-003 + 111.96000000000001 -1.2767726508920818E-003 + 112.01999999999998 -1.2703090795916645E-003 + 112.07999999999998 -1.2630036716011067E-003 + 112.13999999999999 -1.2548553060164685E-003 + 112.19999999999999 -1.2458643790796678E-003 + 112.25999999999999 -1.2360327691303794E-003 + 112.31999999999999 -1.2253639135455052E-003 + 112.38000000000000 -1.2138628913955891E-003 + 112.44000000000000 -1.2015360819444185E-003 + 112.50000000000000 -1.1883916301166227E-003 + 112.56000000000000 -1.1744392272365488E-003 + 112.62000000000000 -1.1596898846640692E-003 + 112.68000000000001 -1.1441563433493606E-003 + 112.73999999999998 -1.1278527700721622E-003 + 112.79999999999998 -1.1107948998175939E-003 + 112.85999999999999 -1.0929997798156479E-003 + 112.91999999999999 -1.0744860524013571E-003 + 112.97999999999999 -1.0552735397721846E-003 + 113.03999999999999 -1.0353836416425732E-003 + 113.09999999999999 -1.0148388009141949E-003 + 113.16000000000000 -9.9366293953589871E-004 + 113.22000000000000 -9.7188106002921170E-004 + 113.28000000000000 -9.4951928378739410E-004 + 113.34000000000000 -9.2660486959025021E-004 + 113.40000000000001 -9.0316610859508047E-004 + 113.46000000000001 -8.7923226818424811E-004 + 113.51999999999998 -8.5483336772445076E-004 + 113.57999999999998 -8.3000039248007904E-004 + 113.63999999999999 -8.0476505740607440E-004 + 113.69999999999999 -7.7915967840578345E-004 + 113.75999999999999 -7.5321718768635922E-004 + 113.81999999999999 -7.2697112778126276E-004 + 113.88000000000000 -7.0045547368036425E-004 + 113.94000000000000 -6.7370444678504441E-004 + 114.00000000000000 -6.4675275888362803E-004 + 114.06000000000000 -6.1963523095249606E-004 + 114.12000000000000 -5.9238690976437590E-004 + 114.18000000000001 -5.6504283533790451E-004 + 114.23999999999998 -5.3763811706842581E-004 + 114.29999999999998 -5.1020769005225084E-004 + 114.35999999999999 -4.8278643322727623E-004 + 114.41999999999999 -4.5540898281949525E-004 + 114.47999999999999 -4.2810954698077082E-004 + 114.53999999999999 -4.0092211179457079E-004 + 114.59999999999999 -3.7388012960418897E-004 + 114.66000000000000 -3.4701654531943621E-004 + 114.72000000000000 -3.2036374889661415E-004 + 114.78000000000000 -2.9395341385510634E-004 + 114.84000000000000 -2.6781656475289716E-004 + 114.90000000000001 -2.4198347310227451E-004 + 114.96000000000001 -2.1648353830911940E-004 + 115.01999999999998 -1.9134531300869185E-004 + 115.07999999999998 -1.6659645333674347E-004 + 115.13999999999999 -1.4226362098334361E-004 + 115.19999999999999 -1.1837248470817911E-004 + 115.25999999999999 -9.4947674514805864E-005 + 115.31999999999999 -7.2012718782110547E-005 + 115.38000000000000 -4.9590059512664210E-005 + 115.44000000000000 -2.7700988740545027E-005 + 115.50000000000000 -6.3656377377090408E-006 + 115.56000000000000 1.4397062582317425E-005 + 115.62000000000000 3.4569382502025917E-005 + 115.68000000000001 5.4134789294489204E-005 + 115.73999999999998 7.3078019208807268E-005 + 115.79999999999998 9.1384997700628186E-005 + 115.85999999999999 1.0904293217126016E-004 + 115.91999999999999 1.2604024237820581E-004 + 115.97999999999999 1.4236655517688851E-004 + 116.03999999999999 1.5801274410717092E-004 + 116.09999999999999 1.7297087670076699E-004 + 116.16000000000000 1.8723423173122692E-004 + 116.22000000000000 2.0079721465333353E-004 + 116.28000000000000 2.1365538563867549E-004 + 116.34000000000000 2.2580547579162727E-004 + 116.40000000000001 2.3724525902056161E-004 + 116.46000000000001 2.4797365105894977E-004 + 116.51999999999998 2.5799054354270828E-004 + 116.57999999999998 2.6729688067874991E-004 + 116.63999999999999 2.7589460977702201E-004 + 116.69999999999999 2.8378662589998924E-004 + 116.75999999999999 2.9097672611768001E-004 + 116.81999999999999 2.9746963579352408E-004 + 116.88000000000000 3.0327087654510941E-004 + 116.94000000000000 3.0838689677204829E-004 + 117.00000000000000 3.1282490019560134E-004 + 117.06000000000000 3.1659279832787986E-004 + 117.12000000000000 3.1969928689907546E-004 + 117.18000000000001 3.2215369327793760E-004 + 117.23999999999998 3.2396598804823650E-004 + 117.29999999999998 3.2514680531451219E-004 + 117.35999999999999 3.2570725702876302E-004 + 117.41999999999999 3.2565905675920189E-004 + 117.47999999999999 3.2501437944517422E-004 + 117.53999999999999 3.2378580679747794E-004 + 117.59999999999999 3.2198640611455731E-004 + 117.66000000000000 3.1962958108984750E-004 + 117.72000000000000 3.1672910702882680E-004 + 117.78000000000000 3.1329905757644449E-004 + 117.84000000000000 3.0935380664744774E-004 + 117.90000000000001 3.0490802065308596E-004 + 117.96000000000001 2.9997655829041377E-004 + 118.01999999999998 2.9457452391251469E-004 + 118.07999999999998 2.8871723336057465E-004 + 118.13999999999999 2.8242014008742920E-004 + 118.19999999999999 2.7569888954068005E-004 + 118.25999999999999 2.6856923278698383E-004 + 118.31999999999999 2.6104708477616984E-004 + 118.38000000000000 2.5314843494198377E-004 + 118.44000000000000 2.4488937226489136E-004 + 118.50000000000000 2.3628606667873501E-004 + 118.56000000000000 2.2735474292073394E-004 + 118.62000000000000 2.1811166620544603E-004 + 118.68000000000001 2.0857315796958057E-004 + 118.73999999999998 1.9875555673735322E-004 + 118.79999999999998 1.8867521324388324E-004 + 118.85999999999999 1.7834849408477745E-004 + 118.91999999999999 1.6779172591695063E-004 + 118.97999999999999 1.5702127461810262E-004 + 119.03999999999999 1.4605346466280077E-004 + 119.09999999999999 1.3490459530884631E-004 + 119.16000000000000 1.2359094460417513E-004 + 119.22000000000000 1.1212874780431437E-004 + 119.28000000000000 1.0053421666673242E-004 + 119.34000000000000 8.8823510938404229E-005 + 119.40000000000001 7.7012764003233562E-005 + 119.46000000000001 6.5118056282808962E-005 + 119.51999999999998 5.3155412796994939E-005 + 119.57999999999998 4.1140812516384567E-005 + 119.63999999999999 2.9090172367102197E-005 + 119.69999999999999 1.7019350834322742E-005 + 119.75999999999999 4.9441455411740701E-006 + 119.81999999999999 -7.1197187421238441E-006 + 119.88000000000000 -1.9156586219250013E-005 + 119.94000000000000 -3.1150886872579592E-005 + 120.00000000000000 -4.3087132641281262E-005 + 120.06000000000000 -5.4949900301231412E-005 + 120.12000000000000 -6.6723882452691274E-005 + 120.18000000000001 -7.8393867870956585E-005 + 120.23999999999998 -8.9944745271564844E-005 + 120.29999999999998 -1.0136150472688557E-004 + 120.35999999999999 -1.1262929282096800E-004 + 120.41999999999999 -1.2373336209171138E-004 + 120.47999999999999 -1.3465911997937084E-004 + 120.53999999999999 -1.4539215117562580E-004 + 120.59999999999999 -1.5591820217466189E-004 + 120.66000000000000 -1.6622322048676885E-004 + 120.72000000000000 -1.7629335718830389E-004 + 120.78000000000000 -1.8611502540174957E-004 + 120.84000000000000 -1.9567485150031580E-004 + 120.90000000000001 -2.0495977609670454E-004 + 120.95999999999998 -2.1395700851290075E-004 + 121.01999999999998 -2.2265409886890761E-004 + 121.07999999999998 -2.3103897795335838E-004 + 121.13999999999999 -2.3909986107374035E-004 + 121.19999999999999 -2.4682541448682523E-004 + 121.25999999999999 -2.5420470851161663E-004 + 121.31999999999999 -2.6122720547364070E-004 + 121.38000000000000 -2.6788287424901611E-004 + 121.44000000000000 -2.7416208378073311E-004 + 121.50000000000000 -2.8005572327736609E-004 + 121.56000000000000 -2.8555514321138893E-004 + 121.62000000000000 -2.9065224839772586E-004 + 121.68000000000001 -2.9533950992882246E-004 + 121.73999999999998 -2.9960988168274499E-004 + 121.79999999999998 -3.0345693246332434E-004 + 121.85999999999999 -3.0687479418130216E-004 + 121.91999999999999 -3.0985820648577345E-004 + 121.97999999999999 -3.1240260260451905E-004 + 122.03999999999999 -3.1450399331325022E-004 + 122.09999999999999 -3.1615905493178915E-004 + 122.16000000000000 -3.1736517537482746E-004 + 122.22000000000000 -3.1812045816674995E-004 + 122.28000000000000 -3.1842369764374466E-004 + 122.34000000000000 -3.1827444918879901E-004 + 122.40000000000001 -3.1767301503449294E-004 + 122.45999999999998 -3.1662043162166586E-004 + 122.51999999999998 -3.1511852037877162E-004 + 122.57999999999998 -3.1316986060052495E-004 + 122.63999999999999 -3.1077783070527972E-004 + 122.69999999999999 -3.0794657144992701E-004 + 122.75999999999999 -3.0468103958241428E-004 + 122.81999999999999 -3.0098690190289671E-004 + 122.88000000000000 -2.9687065814360870E-004 + 122.94000000000000 -2.9233949105418556E-004 + 123.00000000000000 -2.8740139080899688E-004 + 123.06000000000000 -2.8206505677411966E-004 + 123.12000000000000 -2.7633990040747738E-004 + 123.18000000000001 -2.7023602493713545E-004 + 123.23999999999998 -2.6376425488048926E-004 + 123.29999999999998 -2.5693599720893562E-004 + 123.35999999999999 -2.4976335960578711E-004 + 123.41999999999999 -2.4225902154617897E-004 + 123.47999999999999 -2.3443629322908468E-004 + 123.53999999999999 -2.2630899574474319E-004 + 123.59999999999999 -2.1789152055881500E-004 + 123.66000000000000 -2.0919873528023610E-004 + 123.72000000000000 -2.0024596672986347E-004 + 123.78000000000000 -1.9104900678220546E-004 + 123.84000000000000 -1.8162405557573232E-004 + 123.90000000000001 -1.7198763947445090E-004 + 123.95999999999998 -1.6215664772236635E-004 + 124.01999999999998 -1.5214826092832651E-004 + 124.07999999999998 -1.4197990127038268E-004 + 124.13999999999999 -1.3166921892528570E-004 + 124.19999999999999 -1.2123402111096562E-004 + 124.25999999999999 -1.1069227047103569E-004 + 124.31999999999999 -1.0006201225873213E-004 + 124.38000000000000 -8.9361337623952532E-005 + 124.44000000000000 -7.8608353474754299E-005 + 124.50000000000000 -6.7821108003345877E-005 + 124.56000000000000 -5.7017574120317320E-005 + 124.62000000000000 -4.6215603755512738E-005 + 124.68000000000001 -3.5432862002658647E-005 + 124.73999999999998 -2.4686795512258267E-005 + 124.79999999999998 -1.3994593876029471E-005 + 124.85999999999999 -3.3731402011307747E-006 + 124.91999999999999 7.1610448918693303E-006 + 124.97999999999999 1.7591826933062863E-005 + 125.03999999999999 2.7903492655104331E-005 + 125.09999999999999 3.8080809579747453E-005 + 125.16000000000000 4.8109043091885335E-005 + 125.22000000000000 5.7973986674013308E-005 + 125.28000000000000 6.7662023056429315E-005 + 125.34000000000000 7.7160088156337997E-005 + 125.40000000000001 8.6455772745379510E-005 + 125.45999999999998 9.5537277864417839E-005 + 125.51999999999998 1.0439347871841162E-004 + 125.57999999999998 1.1301393454326642E-004 + 125.63999999999999 1.2138888595607890E-004 + 125.69999999999999 1.2950930429564788E-004 + 125.75999999999999 1.3736685487210159E-004 + 125.81999999999999 1.4495398051846977E-004 + 125.88000000000000 1.5226385334319984E-004 + 125.94000000000000 1.5929039575914101E-004 + 126.00000000000000 1.6602830988918135E-004 + 126.06000000000000 1.7247306812589127E-004 + 126.12000000000000 1.7862094475137251E-004 + 126.18000000000001 1.8446899238092084E-004 + 126.23999999999998 1.9001504581918585E-004 + 126.29999999999998 1.9525773895063349E-004 + 126.35999999999999 2.0019649242186428E-004 + 126.41999999999999 2.0483148120636007E-004 + 126.47999999999999 2.0916368704745620E-004 + 126.53999999999999 2.1319481921219536E-004 + 126.59999999999999 2.1692735168564773E-004 + 126.66000000000000 2.2036446161638113E-004 + 126.72000000000000 2.2351004449844535E-004 + 126.78000000000000 2.2636865582942759E-004 + 126.84000000000000 2.2894551479198843E-004 + 126.90000000000001 2.3124644761989249E-004 + 126.95999999999998 2.3327787946946654E-004 + 127.01999999999998 2.3504680119956916E-004 + 127.07999999999998 2.3656072119189968E-004 + 127.13999999999999 2.3782764651274639E-004 + 127.19999999999999 2.3885606215663983E-004 + 127.25999999999999 2.3965487925352381E-004 + 127.31999999999999 2.4023341844246903E-004 + 127.38000000000000 2.4060136364444464E-004 + 127.44000000000000 2.4076874037238662E-004 + 127.50000000000000 2.4074587575456278E-004 + 127.56000000000000 2.4054337949937994E-004 + 127.62000000000000 2.4017210549138099E-004 + 127.68000000000001 2.3964313012185301E-004 + 127.73999999999998 2.3896768784213105E-004 + 127.79999999999998 2.3815715271109436E-004 + 127.85999999999999 2.3722303824175373E-004 + 127.91999999999999 2.3617693434919805E-004 + 127.97999999999999 2.3503046244400936E-004 + 128.03999999999999 2.3379524246189365E-004 + 128.09999999999999 2.3248289925670317E-004 + 128.16000000000000 2.3110495874834912E-004 + 128.22000000000000 2.2967288052200114E-004 + 128.28000000000000 2.2819798164829954E-004 + 128.34000000000000 2.2669143728940250E-004 + 128.40000000000001 2.2516421769348219E-004 + 128.45999999999998 2.2362706355482997E-004 + 128.51999999999998 2.2209048425414642E-004 + 128.57999999999998 2.2056469232897876E-004 + 128.63999999999999 2.1905961103712204E-004 + 128.69999999999999 2.1758482979697801E-004 + 128.75999999999999 2.1614956239080489E-004 + 128.81999999999999 2.1476268293454159E-004 + 128.88000000000000 2.1343264551048716E-004 + 128.94000000000000 2.1216748659239661E-004 + 129.00000000000000 2.1097480680436160E-004 + 129.06000000000000 2.0986174174667091E-004 + 129.12000000000000 2.0883498462542007E-004 + 129.18000000000001 2.0790071759175491E-004 + 129.23999999999998 2.0706462912235918E-004 + 129.29999999999998 2.0633191362306609E-004 + 129.35999999999999 2.0570725277677080E-004 + 129.41999999999999 2.0519475992013511E-004 + 129.47999999999999 2.0479806068841611E-004 + 129.53999999999999 2.0452022712412935E-004 + 129.59999999999999 2.0436379761325848E-004 + 129.66000000000000 2.0433078281845106E-004 + 129.72000000000000 2.0442265635592418E-004 + 129.78000000000000 2.0464033964026409E-004 + 129.84000000000000 2.0498424634629689E-004 + 129.90000000000001 2.0545422869164384E-004 + 129.95999999999998 2.0604966183081547E-004 + 130.01999999999998 2.0676938829358873E-004 + 130.07999999999998 2.0761173373976980E-004 + 130.13999999999999 2.0857456209395783E-004 + 130.19999999999999 2.0965523149304405E-004 + 130.25999999999999 2.1085062166301222E-004 + 130.31999999999999 2.1215715022865198E-004 + 130.38000000000000 2.1357081752280136E-004 + 130.44000000000000 2.1508714112474642E-004 + 130.50000000000000 2.1670128067765587E-004 + 130.56000000000000 2.1840793406974576E-004 + 130.62000000000000 2.2020145773703521E-004 + 130.68000000000001 2.2207582135711895E-004 + 130.73999999999998 2.2402468575256185E-004 + 130.79999999999998 2.2604137080891305E-004 + 130.85999999999999 2.2811890207222613E-004 + 130.91999999999999 2.3025003684684975E-004 + 130.97999999999999 2.3242729888568273E-004 + 131.03999999999999 2.3464296114855259E-004 + 131.09999999999999 2.3688914442375236E-004 + 131.16000000000000 2.3915777869091013E-004 + 131.22000000000000 2.4144065710578661E-004 + 131.28000000000000 2.4372943677728747E-004 + 131.34000000000000 2.4601573109065116E-004 + 131.40000000000001 2.4829106931110697E-004 + 131.45999999999998 2.5054695525735687E-004 + 131.51999999999998 2.5277485114505758E-004 + 131.57999999999998 2.5496627987536000E-004 + 131.63999999999999 2.5711279227126085E-004 + 131.69999999999999 2.5920596341380499E-004 + 131.75999999999999 2.6123752452824798E-004 + 131.81999999999999 2.6319931621433221E-004 + 131.88000000000000 2.6508324999429512E-004 + 131.94000000000000 2.6688149536741897E-004 + 132.00000000000000 2.6858633178104602E-004 + 132.06000000000000 2.7019031055883870E-004 + 132.12000000000000 2.7168617797071264E-004 + 132.18000000000001 2.7306696674059137E-004 + 132.23999999999998 2.7432593519091848E-004 + 132.29999999999998 2.7545663812386526E-004 + 132.35999999999999 2.7645298738453639E-004 + 132.41999999999999 2.7730919457463093E-004 + 132.47999999999999 2.7801978998314786E-004 + 132.53999999999999 2.7857967611035769E-004 + 132.59999999999999 2.7898413581071307E-004 + 132.66000000000000 2.7922879340057177E-004 + 132.72000000000000 2.7930968070805453E-004 + 132.78000000000000 2.7922319626930934E-004 + 132.84000000000000 2.7896618247403747E-004 + 132.90000000000001 2.7853584423634224E-004 + 132.95999999999998 2.7792981765321304E-004 + 133.01999999999998 2.7714617090926887E-004 + 133.07999999999998 2.7618338961971772E-004 + 133.13999999999999 2.7504037690340638E-004 + 133.19999999999999 2.7371645554931341E-004 + 133.25999999999999 2.7221138426877301E-004 + 133.31999999999999 2.7052529190216393E-004 + 133.38000000000000 2.6865878762639224E-004 + 133.44000000000000 2.6661289094741312E-004 + 133.50000000000000 2.6438894902943084E-004 + 133.56000000000000 2.6198879744137839E-004 + 133.62000000000000 2.5941453911756848E-004 + 133.68000000000001 2.5666879714301223E-004 + 133.73999999999998 2.5375445121942697E-004 + 133.79999999999998 2.5067475663851518E-004 + 133.85999999999999 2.4743329955820314E-004 + 133.91999999999999 2.4403396709899727E-004 + 133.97999999999999 2.4048098111966227E-004 + 134.03999999999999 2.3677883456078345E-004 + 134.09999999999999 2.3293227985472225E-004 + 134.16000000000000 2.2894633843336098E-004 + 134.22000000000000 2.2482626934537710E-004 + 134.28000000000000 2.2057756059163118E-004 + 134.34000000000000 2.1620591454392537E-004 + 134.40000000000001 2.1171719969196237E-004 + 134.45999999999998 2.0711748676330478E-004 + 134.51999999999998 2.0241300571151451E-004 + 134.57999999999998 1.9761012805166858E-004 + 134.63999999999999 1.9271535939409178E-004 + 134.69999999999999 1.8773529890346230E-004 + 134.75999999999999 1.8267668237990933E-004 + 134.81999999999999 1.7754626566109373E-004 + 134.88000000000000 1.7235090326902646E-004 + 134.94000000000000 1.6709745851480051E-004 + 135.00000000000000 1.6179282048152011E-004 + 135.06000000000000 1.5644387881328663E-004 + 135.12000000000000 1.5105748357360319E-004 + 135.18000000000001 1.4564044198909831E-004 + 135.23999999999998 1.4019953071758249E-004 + 135.29999999999998 1.3474143103959295E-004 + 135.35999999999999 1.2927275345116058E-004 + 135.41999999999999 1.2379998902271768E-004 + 135.47999999999999 1.1832952253626829E-004 + 135.53999999999999 1.1286760699247071E-004 + 135.59999999999999 1.0742035994860515E-004 + 135.66000000000000 1.0199377775418630E-004 + 135.72000000000000 9.6593682759541803E-005 + 135.78000000000000 9.1225761965067900E-005 + 135.84000000000000 8.5895529369337160E-005 + 135.90000000000001 8.0608328924878841E-005 + 135.95999999999998 7.5369342089917499E-005 + 136.01999999999998 7.0183561079241135E-005 + 136.07999999999998 6.5055807422048553E-005 + 136.13999999999999 5.9990710071998880E-005 + 136.19999999999999 5.4992691913940834E-005 + 136.25999999999999 5.0065991309578779E-005 + 136.31999999999999 4.5214641963718883E-005 + 136.38000000000000 4.0442465233503946E-005 + 136.44000000000000 3.5753072174372810E-005 + 136.50000000000000 3.1149855353459044E-005 + 136.56000000000000 2.6635991316262146E-005 + 136.62000000000000 2.2214437219429221E-005 + 136.68000000000001 1.7887930009021847E-005 + 136.73999999999998 1.3658990309429611E-005 + 136.79999999999998 9.5299185163742300E-006 + 136.85999999999999 5.5028030406984008E-006 + 136.91999999999999 1.5795266532373258E-006 + 136.97999999999999 -2.2382363967679136E-006 + 137.03999999999999 -5.9490091164665480E-006 + 137.09999999999999 -9.5515062751883987E-006 + 137.16000000000000 -1.3044631053484513E-005 + 137.22000000000000 -1.6427462263164088E-005 + 137.28000000000000 -1.9699259748659260E-005 + 137.34000000000000 -2.2859447507015056E-005 + 137.40000000000001 -2.5907608476717899E-005 + 137.45999999999998 -2.8843484773184768E-005 + 137.51999999999998 -3.1666977212260694E-005 + 137.57999999999998 -3.4378124491624517E-005 + 137.63999999999999 -3.6977116783408737E-005 + 137.69999999999999 -3.9464287996946346E-005 + 137.75999999999999 -4.1840100103501740E-005 + 137.81999999999999 -4.4105156071006324E-005 + 137.88000000000000 -4.6260189567969362E-005 + 137.94000000000000 -4.8306055635214820E-005 + 138.00000000000000 -5.0243736099505378E-005 + 138.06000000000000 -5.2074329469060632E-005 + 138.12000000000000 -5.3799049376083610E-005 + 138.18000000000001 -5.5419208840821887E-005 + 138.23999999999998 -5.6936227141413885E-005 + 138.29999999999998 -5.8351617494859266E-005 + 138.35999999999999 -5.9666976425412659E-005 + 138.41999999999999 -6.0883979505662479E-005 + 138.47999999999999 -6.2004375012787708E-005 + 138.53999999999999 -6.3029973804970644E-005 + 138.59999999999999 -6.3962632473627231E-005 + 138.66000000000000 -6.4804262499457838E-005 + 138.72000000000000 -6.5556807349915607E-005 + 138.78000000000000 -6.6222256335566967E-005 + 138.84000000000000 -6.6802606171355517E-005 + 138.90000000000001 -6.7299875262874704E-005 + 138.95999999999998 -6.7716097733764739E-005 + 139.01999999999998 -6.8053323086534977E-005 + 139.07999999999998 -6.8313583064080871E-005 + 139.13999999999999 -6.8498933223071784E-005 + 139.19999999999999 -6.8611410573717695E-005 + 139.25999999999999 -6.8653051654360376E-005 + 139.31999999999999 -6.8625903260748926E-005 + 139.38000000000000 -6.8531981661761344E-005 + 139.44000000000000 -6.8373315640487574E-005 + 139.50000000000000 -6.8151915740529459E-005 + 139.56000000000000 -6.7869789169084353E-005 + 139.62000000000000 -6.7528918745993679E-005 + 139.68000000000001 -6.7131285143390702E-005 + 139.73999999999998 -6.6678844352918327E-005 + 139.79999999999998 -6.6173552369718126E-005 + 139.85999999999999 -6.5617321893327957E-005 + 139.91999999999999 -6.5012046680664224E-005 + 139.97999999999999 -6.4359589453336156E-005 + 140.03999999999999 -6.3661789841290082E-005 + 140.09999999999999 -6.2920423821674371E-005 + 140.16000000000000 -6.2137236779516870E-005 + 140.22000000000000 -6.1313919861743837E-005 + 140.28000000000000 -6.0452106851313858E-005 + 140.34000000000000 -5.9553375938524387E-005 + 140.40000000000001 -5.8619252203088236E-005 + 140.45999999999998 -5.7651190951188253E-005 + 140.51999999999998 -5.6650591169128293E-005 + 140.57999999999998 -5.5618795420449899E-005 + 140.63999999999999 -5.4557086432240061E-005 + 140.69999999999999 -5.3466695364029987E-005 + 140.75999999999999 -5.2348810154889492E-005 + 140.81999999999999 -5.1204573343125207E-005 + 140.88000000000000 -5.0035091926150236E-005 + 140.94000000000000 -4.8841449780753585E-005 + 141.00000000000000 -4.7624695203173407E-005 + 141.06000000000000 -4.6385862621169527E-005 + 141.12000000000000 -4.5125975279065704E-005 + 141.18000000000001 -4.3846040069656638E-005 + 141.23999999999998 -4.2547056624596015E-005 + 141.29999999999998 -4.1230021665998636E-005 + 141.35999999999999 -3.9895916059341172E-005 + 141.41999999999999 -3.8545718728999843E-005 + 141.47999999999999 -3.7180395862282441E-005 + 141.53999999999999 -3.5800903499687192E-005 + 141.59999999999999 -3.4408183203097312E-005 + 141.66000000000000 -3.3003154443241970E-005 + 141.72000000000000 -3.1586724921465072E-005 + 141.78000000000000 -3.0159776475049365E-005 + 141.84000000000000 -2.8723176511862556E-005 + 141.90000000000001 -2.7277766409302023E-005 + 141.95999999999998 -2.5824372846263783E-005 + 142.01999999999998 -2.4363806682513791E-005 + 142.07999999999998 -2.2896872189128923E-005 + 142.13999999999999 -2.1424367014636340E-005 + 142.19999999999999 -1.9947093776467542E-005 + 142.25999999999999 -1.8465860238878889E-005 + 142.31999999999999 -1.6981491782043899E-005 + 142.38000000000000 -1.5494837428248803E-005 + 142.44000000000000 -1.4006775916537424E-005 + 142.50000000000000 -1.2518218281353497E-005 + 142.56000000000000 -1.1030115820056321E-005 + 142.62000000000000 -9.5434607565761456E-006 + 142.68000000000001 -8.0592854095858918E-006 + 142.73999999999998 -6.5786663893641354E-006 + 142.79999999999998 -5.1027191288074598E-006 + 142.85999999999999 -3.6325958791979899E-006 + 142.91999999999999 -2.1694809314367295E-006 + 142.97999999999999 -7.1458587424329127E-007 + 143.03999999999999 7.3085734563129961E-007 + 143.09999999999999 2.1656007452884619E-006 + 143.16000000000000 3.5883871751870884E-006 + 143.22000000000000 4.9979550950227772E-006 + 143.28000000000000 6.3930434208872983E-006 + 143.34000000000000 7.7723974893265363E-006 + 143.40000000000001 9.1347683590439698E-006 + 143.45999999999998 1.0478916208523612E-005 + 143.51999999999998 1.1803610339182071E-005 + 143.57999999999998 1.3107632783024431E-005 + 143.63999999999999 1.4389772899461782E-005 + 143.69999999999999 1.5648828562694275E-005 + 143.75999999999999 1.6883605346867411E-005 + 143.81999999999999 1.8092915399546521E-005 + 143.88000000000000 1.9275577901730695E-005 + 143.94000000000000 2.0430418422927690E-005 + 144.00000000000000 2.1556266935828274E-005 + 144.06000000000000 2.2651966356985860E-005 + 144.12000000000000 2.3716370859921509E-005 + 144.18000000000001 2.4748354591681041E-005 + 144.23999999999998 2.5746817007612816E-005 + 144.29999999999998 2.6710684692453925E-005 + 144.35999999999999 2.7638928575330138E-005 + 144.41999999999999 2.8530563919187011E-005 + 144.47999999999999 2.9384664807962504E-005 + 144.53999999999999 3.0200377048403759E-005 + 144.59999999999999 3.0976918275626460E-005 + 144.66000000000000 3.1713595983237953E-005 + 144.72000000000000 3.2409817317902743E-005 + 144.78000000000000 3.3065086470591215E-005 + 144.84000000000000 3.3679029075382714E-005 + 144.90000000000001 3.4251382329507573E-005 + 144.95999999999998 3.4782009897104708E-005 + 145.01999999999998 3.5270902540598890E-005 + 145.07999999999998 3.5718180930914144E-005 + 145.13999999999999 3.6124101770908088E-005 + 145.19999999999999 3.6489050089231532E-005 + 145.25999999999999 3.6813557323540353E-005 + 145.31999999999999 3.7098271697698495E-005 + 145.38000000000000 3.7343980550063425E-005 + 145.44000000000000 3.7551606550512175E-005 + 145.50000000000000 3.7722194021220784E-005 + 145.56000000000000 3.7856919173652107E-005 + 145.62000000000000 3.7957088689972754E-005 + 145.68000000000001 3.8024132958251539E-005 + 145.73999999999998 3.8059616819594299E-005 + 145.79999999999998 3.8065229271280918E-005 + 145.85999999999999 3.8042795516686324E-005 + 145.91999999999999 3.7994268882578606E-005 + 145.97999999999999 3.7921746682774596E-005 + 146.03999999999999 3.7827468125668236E-005 + 146.09999999999999 3.7713814455521217E-005 + 146.16000000000000 3.7583320288277687E-005 + 146.22000000000000 3.7438669328476395E-005 + 146.28000000000000 3.7282698277585778E-005 + 146.34000000000000 3.7118406402006631E-005 + 146.40000000000001 3.6948941283198046E-005 + 146.45999999999998 3.6777609767854892E-005 + 146.51999999999998 3.6607873332478353E-005 + 146.57999999999998 3.6443334718189007E-005 + 146.63999999999999 3.6287752351485765E-005 + 146.69999999999999 3.6145008179651069E-005 + 146.75999999999999 3.6019118329133555E-005 + 146.81999999999999 3.5914217387022475E-005 + 146.88000000000000 3.5834544170234592E-005 + 146.94000000000000 3.5784442600534539E-005 + 147.00000000000000 3.5768339531193898E-005 + 147.06000000000000 3.5790742126812526E-005 + 147.12000000000000 3.5856231083629679E-005 + 147.18000000000001 3.5969444053810026E-005 + 147.23999999999998 3.6135073703093486E-005 + 147.29999999999998 3.6357858003391416E-005 + 147.35999999999999 3.6642584497203017E-005 + 147.41999999999999 3.6994075659174101E-005 + 147.47999999999999 3.7417187421426602E-005 + 147.53999999999999 3.7916806251724469E-005 + 147.59999999999999 3.8497845457831119E-005 + 147.66000000000000 3.9165247578200652E-005 + 147.72000000000000 3.9923968865687349E-005 + 147.78000000000000 4.0778983350207795E-005 + 147.84000000000000 4.1735265793492609E-005 + 147.90000000000001 4.2797796909516726E-005 + 147.95999999999998 4.3971536967167450E-005 + 148.01999999999998 4.5261432235865642E-005 + 148.07999999999998 4.6672382635931562E-005 + 148.13999999999999 4.8209243681618116E-005 + 148.19999999999999 4.9876790779380747E-005 + 148.25999999999999 5.1679721991558577E-005 + 148.31999999999999 5.3622643110564412E-005 + 148.38000000000000 5.5710017947836434E-005 + 148.44000000000000 5.7946184617199868E-005 + 148.50000000000000 6.0335323802663973E-005 + 148.56000000000000 6.2881434676596512E-005 + 148.62000000000000 6.5588346599169934E-005 + 148.68000000000001 6.8459662975591407E-005 + 148.73999999999998 7.1498794301111970E-005 + 148.79999999999998 7.4708907977732053E-005 + 148.85999999999999 7.8092940568524213E-005 + 148.91999999999999 8.1653561733176019E-005 + 148.97999999999999 8.5393189714766439E-005 + 149.03999999999999 8.9313982227372317E-005 + 149.09999999999999 9.3417797568215536E-005 + 149.16000000000000 9.7706205941704678E-005 + 149.22000000000000 1.0218048793130558E-004 + 149.28000000000000 1.0684158984227622E-004 + 149.34000000000000 1.1169015684263795E-004 + 149.40000000000001 1.1672647717881768E-004 + 149.45999999999998 1.2195049491745187E-004 + 149.51999999999998 1.2736179881755718E-004 + 149.57999999999998 1.3295959892447559E-004 + 149.63999999999999 1.3874272043107731E-004 + 149.69999999999999 1.4470959089428844E-004 + 149.75999999999999 1.5085819733601531E-004 + 149.81999999999999 1.5718613102323509E-004 + 149.88000000000000 1.6369053871286677E-004 + 149.94000000000000 1.7036809916442294E-004 + 150.00000000000000 1.7721504650769154E-004 + 150.06000000000000 1.8422716719400988E-004 + 150.12000000000000 1.9139978558772167E-004 + 150.18000000000001 1.9872770690816251E-004 + 150.23999999999998 2.0620530298462995E-004 + 150.29999999999998 2.1382643276476816E-004 + 150.35999999999999 2.2158451834324990E-004 + 150.41999999999999 2.2947250524532617E-004 + 150.47999999999999 2.3748280915737339E-004 + 150.53999999999999 2.4560746501128150E-004 + 150.59999999999999 2.5383798884533670E-004 + 150.66000000000000 2.6216543229786067E-004 + 150.72000000000000 2.7058043774271109E-004 + 150.78000000000000 2.7907323753205058E-004 + 150.84000000000000 2.8763357630557051E-004 + 150.90000000000001 2.9625085633051259E-004 + 150.95999999999998 3.0491401509224103E-004 + 151.01999999999998 3.1361164133491247E-004 + 151.07999999999998 3.2233192992249776E-004 + 151.13999999999999 3.3106275089511152E-004 + 151.19999999999999 3.3979163234626074E-004 + 151.25999999999999 3.4850573768135284E-004 + 151.31999999999999 3.5719192479234966E-004 + 151.38000000000000 3.6583680355849299E-004 + 151.44000000000000 3.7442671938611467E-004 + 151.50000000000000 3.8294773047057185E-004 + 151.56000000000000 3.9138566855088968E-004 + 151.62000000000000 3.9972622897799427E-004 + 151.68000000000001 4.0795488301268167E-004 + 151.73999999999998 4.1605694612596830E-004 + 151.79999999999998 4.2401765115178923E-004 + 151.85999999999999 4.3182218864639983E-004 + 151.91999999999999 4.3945561175552639E-004 + 151.97999999999999 4.4690301493150331E-004 + 152.03999999999999 4.5414949954973702E-004 + 152.09999999999999 4.6118027418457646E-004 + 152.16000000000000 4.6798050178910539E-004 + 152.22000000000000 4.7453564980063007E-004 + 152.28000000000000 4.8083129814915020E-004 + 152.34000000000000 4.8685315444263553E-004 + 152.40000000000001 4.9258734200388545E-004 + 152.45999999999998 4.9802013402041473E-004 + 152.51999999999998 5.0313823876496058E-004 + 152.57999999999998 5.0792858318876165E-004 + 152.63999999999999 5.1237868121585149E-004 + 152.69999999999999 5.1647634238637867E-004 + 152.75999999999999 5.2020985346885472E-004 + 152.81999999999999 5.2356795458829563E-004 + 152.88000000000000 5.2654003373465562E-004 + 152.94000000000000 5.2911593318692642E-004 + 153.00000000000000 5.3128613070722028E-004 + 153.06000000000000 5.3304159162972833E-004 + 153.12000000000000 5.3437408799334243E-004 + 153.17999999999998 5.3527589588674965E-004 + 153.23999999999998 5.3574001394531630E-004 + 153.29999999999998 5.3576023688206749E-004 + 153.35999999999999 5.3533102627363984E-004 + 153.41999999999999 5.3444756872327839E-004 + 153.47999999999999 5.3310580081758669E-004 + 153.53999999999999 5.3130255535920490E-004 + 153.59999999999999 5.2903541325720988E-004 + 153.66000000000000 5.2630275860048959E-004 + 153.72000000000000 5.2310382729558926E-004 + 153.78000000000000 5.1943869106434919E-004 + 153.84000000000000 5.1530829862102929E-004 + 153.90000000000001 5.1071439222255153E-004 + 153.95999999999998 5.0565961242709438E-004 + 154.01999999999998 5.0014744008945408E-004 + 154.07999999999998 4.9418221889520927E-004 + 154.13999999999999 4.8776911619654640E-004 + 154.19999999999999 4.8091410433500546E-004 + 154.25999999999999 4.7362402134120860E-004 + 154.31999999999999 4.6590648582535801E-004 + 154.38000000000000 4.5776990342963049E-004 + 154.44000000000000 4.4922347453747220E-004 + 154.50000000000000 4.4027714064250571E-004 + 154.56000000000000 4.3094153283369915E-004 + 154.62000000000000 4.2122807826022426E-004 + 154.67999999999998 4.1114881788841586E-004 + 154.73999999999998 4.0071646628372112E-004 + 154.79999999999998 3.8994437025130816E-004 + 154.85999999999999 3.7884646537920155E-004 + 154.91999999999999 3.6743729880513740E-004 + 154.97999999999999 3.5573186270603766E-004 + 155.03999999999999 3.4374570418990632E-004 + 155.09999999999999 3.3149480007384625E-004 + 155.16000000000000 3.1899556899403557E-004 + 155.22000000000000 3.0626472315135249E-004 + 155.28000000000000 2.9331939846253928E-004 + 155.34000000000000 2.8017698124031809E-004 + 155.40000000000001 2.6685509107802347E-004 + 155.45999999999998 2.5337154369602409E-004 + 155.51999999999998 2.3974429764276841E-004 + 155.57999999999998 2.2599145296431188E-004 + 155.63999999999999 2.1213114816673843E-004 + 155.69999999999999 1.9818152359178843E-004 + 155.75999999999999 1.8416075648212808E-004 + 155.81999999999999 1.7008689433269924E-004 + 155.88000000000000 1.5597789544743421E-004 + 155.94000000000000 1.4185157061932178E-004 + 156.00000000000000 1.2772553475817459E-004 + 156.06000000000000 1.1361717528643223E-004 + 156.12000000000000 9.9543606022959279E-005 + 156.17999999999998 8.5521631477251833E-005 + 156.23999999999998 7.1567699200957916E-005 + 156.29999999999998 5.7697880303804339E-005 + 156.35999999999999 4.3927819692934190E-005 + 156.41999999999999 3.0272707606930350E-005 + 156.47999999999999 1.6747246611165964E-005 + 156.53999999999999 3.3656089292683291E-006 + 156.59999999999999 -9.8585747276613018E-006 + 156.66000000000000 -2.2912269984764807E-005 + 156.72000000000000 -3.5783031916735015E-005 + 156.78000000000000 -4.8459049900519946E-005 + 156.84000000000000 -6.0929156669630705E-005 + 156.90000000000001 -7.3182846202736007E-005 + 156.95999999999998 -8.5210310124386762E-005 + 157.01999999999998 -9.7002417489305785E-005 + 157.07999999999998 -1.0855072580973649E-004 + 157.13999999999999 -1.1984752203916962E-004 + 157.19999999999999 -1.3088578025079270E-004 + 157.25999999999999 -1.4165919946360842E-004 + 157.31999999999999 -1.5216216960239364E-004 + 157.38000000000000 -1.6238979514360510E-004 + 157.44000000000000 -1.7233788749362346E-004 + 157.50000000000000 -1.8200293249667402E-004 + 157.56000000000000 -1.9138210565544509E-004 + 157.62000000000000 -2.0047326800798105E-004 + 157.67999999999998 -2.0927491753569842E-004 + 157.73999999999998 -2.1778621378053451E-004 + 157.79999999999998 -2.2600695728798849E-004 + 157.85999999999999 -2.3393757269413569E-004 + 157.91999999999999 -2.4157905225248900E-004 + 157.97999999999999 -2.4893301975228071E-004 + 158.03999999999999 -2.5600164709976549E-004 + 158.09999999999999 -2.6278763558326983E-004 + 158.16000000000000 -2.6929426870075441E-004 + 158.22000000000000 -2.7552530537515332E-004 + 158.28000000000000 -2.8148499166847469E-004 + 158.34000000000000 -2.8717805564102295E-004 + 158.40000000000001 -2.9260963009902628E-004 + 158.45999999999998 -2.9778524926402848E-004 + 158.51999999999998 -3.0271087276791955E-004 + 158.57999999999998 -3.0739275586067437E-004 + 158.63999999999999 -3.1183756721308708E-004 + 158.69999999999999 -3.1605217230039161E-004 + 158.75999999999999 -3.2004373625238046E-004 + 158.81999999999999 -3.2381960674481182E-004 + 158.88000000000000 -3.2738740827678646E-004 + 158.94000000000000 -3.3075486392977814E-004 + 159.00000000000000 -3.3392985416690730E-004 + 159.06000000000000 -3.3692031111096408E-004 + 159.12000000000000 -3.3973425550800051E-004 + 159.17999999999998 -3.4237975783673046E-004 + 159.23999999999998 -3.4486484934497977E-004 + 159.29999999999998 -3.4719755619546982E-004 + 159.35999999999999 -3.4938590086164382E-004 + 159.41999999999999 -3.5143774187642755E-004 + 159.47999999999999 -3.5336090689169444E-004 + 159.53999999999999 -3.5516303052626568E-004 + 159.59999999999999 -3.5685166606975880E-004 + 159.66000000000000 -3.5843414454565510E-004 + 159.72000000000000 -3.5991767195547202E-004 + 159.78000000000000 -3.6130924135845235E-004 + 159.84000000000000 -3.6261558841882505E-004 + 159.90000000000001 -3.6384323960705428E-004 + 159.95999999999998 -3.6499846807007695E-004 + 160.01999999999998 -3.6608729344408887E-004 + 160.07999999999998 -3.6711540730118659E-004 + 160.13999999999999 -3.6808820677425752E-004 + 160.19999999999999 -3.6901081043550632E-004 + 160.25999999999999 -3.6988794827784460E-004 + 160.31999999999999 -3.7072402262803905E-004 + 160.38000000000000 -3.7152307942539612E-004 + 160.44000000000000 -3.7228873965774534E-004 + 160.50000000000000 -3.7302430523037224E-004 + 160.56000000000000 -3.7373257804465380E-004 + 160.62000000000000 -3.7441599846134102E-004 + 160.67999999999998 -3.7507658548707078E-004 + 160.73999999999998 -3.7571594477747629E-004 + 160.79999999999998 -3.7633519179301750E-004 + 160.85999999999999 -3.7693508368466137E-004 + 160.91999999999999 -3.7751592055331558E-004 + 160.97999999999999 -3.7807761715849563E-004 + 161.03999999999999 -3.7861966012687928E-004 + 161.09999999999999 -3.7914112300198706E-004 + 161.16000000000000 -3.7964072237265474E-004 + 161.22000000000000 -3.8011678902330948E-004 + 161.28000000000000 -3.8056731783144416E-004 + 161.34000000000000 -3.8098996143169422E-004 + 161.40000000000001 -3.8138200682868864E-004 + 161.45999999999998 -3.8174048621211223E-004 + 161.51999999999998 -3.8206208063136591E-004 + 161.57999999999998 -3.8234322841578807E-004 + 161.63999999999999 -3.8258003757198631E-004 + 161.69999999999999 -3.8276841115748340E-004 + 161.75999999999999 -3.8290396282024484E-004 + 161.81999999999999 -3.8298210737104616E-004 + 161.88000000000000 -3.8299807366397076E-004 + 161.94000000000000 -3.8294677318799356E-004 + 162.00000000000000 -3.8282305591355906E-004 + 162.06000000000000 -3.8262153949230893E-004 + 162.12000000000000 -3.8233672251784340E-004 + 162.17999999999998 -3.8196289133583848E-004 + 162.23999999999998 -3.8149430073809352E-004 + 162.29999999999998 -3.8092509425711871E-004 + 162.35999999999999 -3.8024934000342004E-004 + 162.41999999999999 -3.7946107686381934E-004 + 162.47999999999999 -3.7855431900675972E-004 + 162.53999999999999 -3.7752315767574155E-004 + 162.59999999999999 -3.7636164239412707E-004 + 162.66000000000000 -3.7506397952029498E-004 + 162.72000000000000 -3.7362441518706227E-004 + 162.78000000000000 -3.7203739157574175E-004 + 162.84000000000000 -3.7029746085453851E-004 + 162.90000000000001 -3.6839936197054023E-004 + 162.95999999999998 -3.6633812058728052E-004 + 163.01999999999998 -3.6410893576924348E-004 + 163.07999999999998 -3.6170723799135661E-004 + 163.13999999999999 -3.5912881663979432E-004 + 163.19999999999999 -3.5636968807262919E-004 + 163.25999999999999 -3.5342622776122405E-004 + 163.31999999999999 -3.5029508909204335E-004 + 163.38000000000000 -3.4697332349309661E-004 + 163.44000000000000 -3.4345828567431102E-004 + 163.50000000000000 -3.3974774064850222E-004 + 163.56000000000000 -3.3583978025171165E-004 + 163.62000000000000 -3.3173293650861426E-004 + 163.67999999999998 -3.2742608522191071E-004 + 163.73999999999998 -3.2291851279685804E-004 + 163.79999999999998 -3.1820991672193904E-004 + 163.85999999999999 -3.1330045952794805E-004 + 163.91999999999999 -3.0819066546259271E-004 + 163.97999999999999 -3.0288154431222107E-004 + 164.03999999999999 -2.9737449376577061E-004 + 164.09999999999999 -2.9167134960806143E-004 + 164.16000000000000 -2.8577447170629390E-004 + 164.22000000000000 -2.7968658382856787E-004 + 164.28000000000000 -2.7341086881793760E-004 + 164.34000000000000 -2.6695099408041278E-004 + 164.40000000000001 -2.6031103608868699E-004 + 164.45999999999998 -2.5349553649000629E-004 + 164.51999999999998 -2.4650946557908929E-004 + 164.57999999999998 -2.3935822974405723E-004 + 164.63999999999999 -2.3204761563542438E-004 + 164.69999999999999 -2.2458388297096643E-004 + 164.75999999999999 -2.1697363501530854E-004 + 164.81999999999999 -2.0922387801754232E-004 + 164.88000000000000 -2.0134194436169587E-004 + 164.94000000000000 -1.9333555189373554E-004 + 165.00000000000000 -1.8521269745229134E-004 + 165.06000000000000 -1.7698171077780241E-004 + 165.12000000000000 -1.6865118897833723E-004 + 165.17999999999998 -1.6022997084163756E-004 + 165.23999999999998 -1.5172711456429343E-004 + 165.29999999999998 -1.4315192061069689E-004 + 165.35999999999999 -1.3451385604102897E-004 + 165.41999999999999 -1.2582251937493563E-004 + 165.47999999999999 -1.1708767967846154E-004 + 165.53999999999999 -1.0831918261260533E-004 + 165.59999999999999 -9.9526992081411524E-005 + 165.66000000000000 -9.0721121855924806E-005 + 165.72000000000000 -8.1911629169887395E-005 + 165.78000000000000 -7.3108587594312432E-005 + 165.84000000000000 -6.4322073456488476E-005 + 165.90000000000001 -5.5562150588529582E-005 + 165.95999999999998 -4.6838826303695817E-005 + 166.01999999999998 -3.8162045945310997E-005 + 166.07999999999998 -2.9541668438463499E-005 + 166.13999999999999 -2.0987443492437514E-005 + 166.19999999999999 -1.2508990531870386E-005 + 166.25999999999999 -4.1157798527043899E-006 + 166.31999999999999 4.1828954475631544E-006 + 166.38000000000000 1.2377945145797555E-005 + 166.44000000000000 2.0460495273785509E-005 + 166.50000000000000 2.8421914088658428E-005 + 166.56000000000000 3.6253836130344683E-005 + 166.62000000000000 4.3948179400066397E-005 + 166.67999999999998 5.1497171855538960E-005 + 166.73999999999998 5.8893358478919367E-005 + 166.79999999999998 6.6129626248771797E-005 + 166.85999999999999 7.3199225310506419E-005 + 166.91999999999999 8.0095781464986293E-005 + 166.97999999999999 8.6813290599262600E-005 + 167.03999999999999 9.3346150988139333E-005 + 167.09999999999999 9.9689161306252590E-005 + 167.16000000000000 1.0583753097980300E-004 + 167.22000000000000 1.1178688484770793E-004 + 167.28000000000000 1.1753327193244690E-004 + 167.34000000000000 1.2307314132781560E-004 + 167.40000000000001 1.2840337386300186E-004 + 167.45999999999998 1.3352125829257968E-004 + 167.51999999999998 1.3842451772962987E-004 + 167.57999999999998 1.4311125319788938E-004 + 167.63999999999999 1.4757999564231971E-004 + 167.69999999999999 1.5182967985326106E-004 + 167.75999999999999 1.5585961287867535E-004 + 167.81999999999999 1.5966949818429813E-004 + 167.88000000000000 1.6325941581241951E-004 + 167.94000000000000 1.6662983180002416E-004 + 168.00000000000000 1.6978157128714027E-004 + 168.06000000000000 1.7271579175062374E-004 + 168.12000000000000 1.7543402078916360E-004 + 168.17999999999998 1.7793810160168604E-004 + 168.23999999999998 1.8023022221329104E-004 + 168.29999999999998 1.8231285789296097E-004 + 168.35999999999999 1.8418878378564948E-004 + 168.41999999999999 1.8586108405193463E-004 + 168.47999999999999 1.8733310905032761E-004 + 168.53999999999999 1.8860846450279820E-004 + 168.59999999999999 1.8969100146973419E-004 + 168.66000000000000 1.9058481746214248E-004 + 168.72000000000000 1.9129420871095838E-004 + 168.78000000000000 1.9182367629550902E-004 + 168.84000000000000 1.9217791535913528E-004 + 168.90000000000001 1.9236176768412696E-004 + 168.95999999999998 1.9238022770475988E-004 + 169.01999999999998 1.9223844923615667E-004 + 169.07999999999998 1.9194165714585870E-004 + 169.13999999999999 1.9149518952053048E-004 + 169.19999999999999 1.9090443943620708E-004 + 169.25999999999999 1.9017485968950910E-004 + 169.31999999999999 1.8931195799852762E-004 + 169.38000000000000 1.8832125275815379E-004 + 169.44000000000000 1.8720825735758044E-004 + 169.50000000000000 1.8597846499396518E-004 + 169.56000000000000 1.8463737792021704E-004 + 169.62000000000000 1.8319042859695151E-004 + 169.67999999999998 1.8164301839422790E-004 + 169.73999999999998 1.8000049008801662E-004 + 169.79999999999998 1.7826813730311477E-004 + 169.85999999999999 1.7645115747133862E-004 + 169.91999999999999 1.7455468895372385E-004 + 169.97999999999999 1.7258380797546943E-004 + 170.03999999999999 1.7054346906051428E-004 + 170.09999999999999 1.6843858899423593E-004 + 170.16000000000000 1.6627396712346696E-004 + 170.22000000000000 1.6405432999247926E-004 + 170.28000000000000 1.6178428848881858E-004 + 170.34000000000000 1.5946836485303991E-004 + 170.40000000000001 1.5711100897189114E-004 + 170.45999999999998 1.5471653156454789E-004 + 170.51999999999998 1.5228915196537790E-004 + 170.57999999999998 1.4983297138716130E-004 + 170.63999999999999 1.4735195559925014E-004 + 170.69999999999999 1.4484994641426131E-004 + 170.75999999999999 1.4233066895285329E-004 + 170.81999999999999 1.3979770102506205E-004 + 170.88000000000000 1.3725449099548213E-004 + 170.94000000000000 1.3470431270025239E-004 + 171.00000000000000 1.3215033239127202E-004 + 171.06000000000000 1.2959555384419174E-004 + 171.12000000000000 1.2704283513067648E-004 + 171.17999999999998 1.2449489049736476E-004 + 171.23999999999998 1.2195429399867750E-004 + 171.29999999999998 1.1942350664949877E-004 + 171.35999999999999 1.1690481791410709E-004 + 171.41999999999999 1.1440041935650256E-004 + 171.47999999999999 1.1191237439756236E-004 + 171.53999999999999 1.0944262507974616E-004 + 171.59999999999999 1.0699300208666875E-004 + 171.66000000000000 1.0456521353786865E-004 + 171.72000000000000 1.0216087509499404E-004 + 171.78000000000000 9.9781484972233270E-005 + 171.84000000000000 9.7428423077487015E-005 + 171.90000000000001 9.5102973726174397E-005 + 171.95999999999998 9.2806302652294548E-005 + 172.01999999999998 9.0539464271885593E-005 + 172.07999999999998 8.8303383075884204E-005 + 172.13999999999999 8.6098874109012577E-005 + 172.19999999999999 8.3926615027674794E-005 + 172.25999999999999 8.1787161940948696E-005 + 172.31999999999999 7.9680929531661829E-005 + 172.38000000000000 7.7608190521726331E-005 + 172.44000000000000 7.5569085262736915E-005 + 172.50000000000000 7.3563601842929836E-005 + 172.56000000000000 7.1591608240977766E-005 + 172.62000000000000 6.9652799277146709E-005 + 172.67999999999998 6.7746755890289243E-005 + 172.73999999999998 6.5872903567016776E-005 + 172.79999999999998 6.4030535099876784E-005 + 172.85999999999999 6.2218812276926269E-005 + 172.91999999999999 6.0436757086241872E-005 + 172.97999999999999 5.8683268534662531E-005 + 173.03999999999999 5.6957122293146073E-005 + 173.09999999999999 5.5256972476418573E-005 + 173.16000000000000 5.3581359008622256E-005 + 173.22000000000000 5.1928708533193679E-005 + 173.28000000000000 5.0297334651099424E-005 + 173.34000000000000 4.8685443094843367E-005 + 173.40000000000001 4.7091140363811096E-005 + 173.45999999999998 4.5512417521561128E-005 + 173.51999999999998 4.3947178504043406E-005 + 173.57999999999998 4.2393215634293501E-005 + 173.63999999999999 4.0848229690009945E-005 + 173.69999999999999 3.9309827310703450E-005 + 173.75999999999999 3.7775520065436689E-005 + 173.81999999999999 3.6242727719336156E-005 + 173.88000000000000 3.4708790027491818E-005 + 173.94000000000000 3.3170960748685045E-005 + 174.00000000000000 3.1626423232682209E-005 + 174.06000000000000 3.0072285839952449E-005 + 174.12000000000000 2.8505602543588502E-005 + 174.17999999999998 2.6923371021468041E-005 + 174.23999999999998 2.5322553818278258E-005 + 174.29999999999998 2.3700078118228771E-005 + 174.35999999999999 2.2052857938892013E-005 + 174.41999999999999 2.0377800630207844E-005 + 174.47999999999999 1.8671819304712410E-005 + 174.53999999999999 1.6931853142096280E-005 + 174.59999999999999 1.5154870335426684E-005 + 174.66000000000000 1.3337889168607747E-005 + 174.72000000000000 1.1477990171880995E-005 + 174.78000000000000 9.5723223126979503E-006 + 174.84000000000000 7.6181156180484864E-006 + 174.90000000000001 5.6126923424196388E-006 + 174.95999999999998 3.5534742747303957E-006 + 175.01999999999998 1.4379915959575103E-006 + 175.07999999999998 -7.3611322241798358E-007 + 175.13999999999999 -2.9710765359056056E-006 + 175.19999999999999 -5.2690115548784308E-006 + 175.25999999999999 -7.6318990633684587E-006 + 175.31999999999999 -1.0061584617702936E-005 + 175.38000000000000 -1.2559772604927285E-005 + 175.44000000000000 -1.5128019059667007E-005 + 175.50000000000000 -1.7767726118540405E-005 + 175.56000000000000 -2.0480132957465195E-005 + 175.62000000000000 -2.3266310983020267E-005 + 175.67999999999998 -2.6127150451650151E-005 + 175.73999999999998 -2.9063354478525779E-005 + 175.79999999999998 -3.2075426038508549E-005 + 175.85999999999999 -3.5163660851516470E-005 + 175.91999999999999 -3.8328129795723014E-005 + 175.97999999999999 -4.1568677755636782E-005 + 176.03999999999999 -4.4884915221440192E-005 + 176.09999999999999 -4.8276202267864096E-005 + 176.16000000000000 -5.1741644220831172E-005 + 176.22000000000000 -5.5280089662990180E-005 + 176.28000000000000 -5.8890127323293896E-005 + 176.34000000000000 -6.2570081669091133E-005 + 176.40000000000001 -6.6318011463417073E-005 + 176.45999999999998 -7.0131711194448869E-005 + 176.51999999999998 -7.4008706177066801E-005 + 176.57999999999998 -7.7946277014724082E-005 + 176.63999999999999 -8.1941431824683914E-005 + 176.69999999999999 -8.5990944052978459E-005 + 176.75999999999999 -9.0091329750480951E-005 + 176.81999999999999 -9.4238862682189656E-005 + 176.88000000000000 -9.8429575612266458E-005 + 176.94000000000000 -1.0265927509017200E-004 + 177.00000000000000 -1.0692351994535288E-004 + 177.06000000000000 -1.1121765391242662E-004 + 177.12000000000000 -1.1553676865503318E-004 + 177.17999999999998 -1.1987575865214580E-004 + 177.23999999999998 -1.2422927210433348E-004 + 177.29999999999998 -1.2859173938739140E-004 + 177.35999999999999 -1.3295738092300978E-004 + 177.41999999999999 -1.3732018704474172E-004 + 177.47999999999999 -1.4167394868793841E-004 + 177.53999999999999 -1.4601222634146461E-004 + 177.59999999999999 -1.5032841200403180E-004 + 177.66000000000000 -1.5461570085193715E-004 + 177.72000000000000 -1.5886709691261355E-004 + 177.78000000000000 -1.6307542914780244E-004 + 177.84000000000000 -1.6723339842640981E-004 + 177.90000000000001 -1.7133355076006453E-004 + 177.95999999999998 -1.7536828922732161E-004 + 178.01999999999998 -1.7932991354771877E-004 + 178.07999999999998 -1.8321063132345462E-004 + 178.13999999999999 -1.8700257916391287E-004 + 178.19999999999999 -1.9069783452521147E-004 + 178.25999999999999 -1.9428840900887460E-004 + 178.31999999999999 -1.9776633010939256E-004 + 178.38000000000000 -2.0112356208314312E-004 + 178.44000000000000 -2.0435210925505331E-004 + 178.50000000000000 -2.0744397324578583E-004 + 178.56000000000000 -2.1039121857380707E-004 + 178.62000000000000 -2.1318593223776681E-004 + 178.67999999999998 -2.1582026467066435E-004 + 178.73999999999998 -2.1828645480954023E-004 + 178.79999999999998 -2.2057681157292908E-004 + 178.85999999999999 -2.2268376556037065E-004 + 178.91999999999999 -2.2459983876863964E-004 + 178.97999999999999 -2.2631771013469483E-004 + 179.03999999999999 -2.2783017328817831E-004 + 179.09999999999999 -2.2913019835380170E-004 + 179.16000000000000 -2.3021092496377566E-004 + 179.22000000000000 -2.3106566397088272E-004 + 179.28000000000000 -2.3168794369159775E-004 + 179.34000000000000 -2.3207153017588766E-004 + 179.40000000000001 -2.3221040876559120E-004 + 179.45999999999998 -2.3209882303833898E-004 + 179.51999999999998 -2.3173131076552407E-004 + 179.57999999999998 -2.3110268703134366E-004 + 179.63999999999999 -2.3020809723893213E-004 + 179.69999999999999 -2.2904299195607077E-004 + 179.75999999999999 -2.2760321190105684E-004 + 179.81999999999999 -2.2588490668434930E-004 + 179.88000000000000 -2.2388463935377615E-004 + 179.94000000000000 -2.2159935509336582E-004 + 180.00000000000000 -2.1902635028257070E-004 + 180.06000000000000 -2.1616339569371939E-004 + 180.12000000000000 -2.1300864056370819E-004 + 180.17999999999998 -2.0956063098614841E-004 + 180.23999999999998 -2.0581835939586301E-004 + 180.29999999999998 -2.0178121062751713E-004 + 180.35999999999999 -1.9744901505199634E-004 + 180.41999999999999 -1.9282200782581713E-004 + 180.47999999999999 -1.8790083056249163E-004 + 180.53999999999999 -1.8268654798069228E-004 + 180.59999999999999 -1.7718062176118001E-004 + 180.66000000000000 -1.7138491698378807E-004 + 180.72000000000000 -1.6530171083159033E-004 + 180.78000000000000 -1.5893368047575248E-004 + 180.84000000000000 -1.5228389981431038E-004 + 180.90000000000001 -1.4535582822642023E-004 + 180.95999999999998 -1.3815330741365957E-004 + 181.01999999999998 -1.3068058552388382E-004 + 181.07999999999998 -1.2294228836545157E-004 + 181.13999999999999 -1.1494343235574044E-004 + 181.19999999999999 -1.0668937673076126E-004 + 181.25999999999999 -9.8185897102176408E-005 + 181.31999999999999 -8.9439116179862519E-005 + 181.38000000000000 -8.0455501450706236E-005 + 181.44000000000000 -7.1241873105123090E-005 + 181.50000000000000 -6.1805382622501657E-005 + 181.56000000000000 -5.2153492346595663E-005 + 181.62000000000000 -4.2293967965154038E-005 + 181.67999999999998 -3.2234855690268063E-005 + 181.73999999999998 -2.1984471607332828E-005 + 181.79999999999998 -1.1551364322928698E-005 + 181.85999999999999 -9.4430962253862653E-007 + 181.91999999999999 9.8277140460645374E-006 + 181.97999999999999 2.0755552557197135E-005 + 182.03999999999999 3.1829883119451485E-005 + 182.09999999999999 4.3041254875541344E-005 + 182.16000000000000 5.4380080345216080E-005 + 182.22000000000000 6.5836679512706233E-005 + 182.28000000000000 7.7401278533780485E-005 + 182.34000000000000 8.9064020026024472E-005 + 182.39999999999998 1.0081500877529522E-004 + 182.45999999999998 1.1264426708247352E-004 + 182.51999999999998 1.2454179900330461E-004 + 182.57999999999998 1.3649758453591174E-004 + 182.63999999999999 1.4850157141544425E-004 + 182.69999999999999 1.6054372614440339E-004 + 182.75999999999999 1.7261397048104224E-004 + 182.81999999999999 1.8470227202075582E-004 + 182.88000000000000 1.9679861449221230E-004 + 182.94000000000000 2.0889299737608202E-004 + 183.00000000000000 2.2097548835557304E-004 + 183.06000000000000 2.3303617807156983E-004 + 183.12000000000000 2.4506522891827511E-004 + 183.17999999999998 2.5705290664166031E-004 + 183.23999999999998 2.6898951824727557E-004 + 183.29999999999998 2.8086551232121035E-004 + 183.35999999999999 2.9267140062253584E-004 + 183.41999999999999 3.0439783851904671E-004 + 183.47999999999999 3.1603563716981430E-004 + 183.53999999999999 3.2757567262605108E-004 + 183.59999999999999 3.3900902919656696E-004 + 183.66000000000000 3.5032692963614165E-004 + 183.72000000000000 3.6152070485745771E-004 + 183.78000000000000 3.7258185810820041E-004 + 183.84000000000000 3.8350206426746828E-004 + 183.89999999999998 3.9427316640419598E-004 + 183.95999999999998 4.0488716715278319E-004 + 184.01999999999998 4.1533620018733766E-004 + 184.07999999999998 4.2561252238315731E-004 + 184.13999999999999 4.3570861661162025E-004 + 184.19999999999999 4.4561709710232926E-004 + 184.25999999999999 4.5533065064669905E-004 + 184.31999999999999 4.6484217315631218E-004 + 184.38000000000000 4.7414466073366507E-004 + 184.44000000000000 4.8323130235797544E-004 + 184.50000000000000 4.9209536322587886E-004 + 184.56000000000000 5.0073025294718936E-004 + 184.62000000000000 5.0912954797449595E-004 + 184.67999999999998 5.1728690215338893E-004 + 184.73999999999998 5.2519622292562991E-004 + 184.79999999999998 5.3285146348199452E-004 + 184.85999999999999 5.4024667817874870E-004 + 184.91999999999999 5.4737622369086328E-004 + 184.97999999999999 5.5423448321402480E-004 + 185.03999999999999 5.6081610174755635E-004 + 185.09999999999999 5.6711580015284956E-004 + 185.16000000000000 5.7312851455659753E-004 + 185.22000000000000 5.7884934935862828E-004 + 185.28000000000000 5.8427354590519372E-004 + 185.34000000000000 5.8939661724459295E-004 + 185.39999999999998 5.9421424301955102E-004 + 185.45999999999998 5.9872226822430560E-004 + 185.51999999999998 6.0291670671130471E-004 + 185.57999999999998 6.0679384168330530E-004 + 185.63999999999999 6.1035016695107705E-004 + 185.69999999999999 6.1358230683552432E-004 + 185.75999999999999 6.1648720850885112E-004 + 185.81999999999999 6.1906194552694891E-004 + 185.88000000000000 6.2130389725325718E-004 + 185.94000000000000 6.2321067874660657E-004 + 186.00000000000000 6.2478014429797723E-004 + 186.06000000000000 6.2601039885426828E-004 + 186.12000000000000 6.2689977340151610E-004 + 186.17999999999998 6.2744703996534619E-004 + 186.23999999999998 6.2765105398807737E-004 + 186.29999999999998 6.2751114239438023E-004 + 186.35999999999999 6.2702688490234751E-004 + 186.41999999999999 6.2619825135130729E-004 + 186.47999999999999 6.2502549895587800E-004 + 186.53999999999999 6.2350930324231706E-004 + 186.59999999999999 6.2165064882191965E-004 + 186.66000000000000 6.1945096549483297E-004 + 186.72000000000000 6.1691191188068299E-004 + 186.78000000000000 6.1403578705061801E-004 + 186.84000000000000 6.1082514259095050E-004 + 186.89999999999998 6.0728293043382417E-004 + 186.95999999999998 6.0341253213602362E-004 + 187.01999999999998 5.9921774531040994E-004 + 187.07999999999998 5.9470282335758373E-004 + 187.13999999999999 5.8987228450407489E-004 + 187.19999999999999 5.8473124171644223E-004 + 187.25999999999999 5.7928506050205879E-004 + 187.31999999999999 5.7353958215869449E-004 + 187.38000000000000 5.6750097773876113E-004 + 187.44000000000000 5.6117579461835280E-004 + 187.50000000000000 5.5457105682309691E-004 + 187.56000000000000 5.4769403101041086E-004 + 187.62000000000000 5.4055246409242738E-004 + 187.67999999999998 5.3315431186358550E-004 + 187.73999999999998 5.2550799293609211E-004 + 187.79999999999998 5.1762220452713972E-004 + 187.85999999999999 5.0950597369351280E-004 + 187.91999999999999 5.0116856656866706E-004 + 187.97999999999999 4.9261965693807319E-004 + 188.03999999999999 4.8386908966353191E-004 + 188.09999999999999 4.7492702909581711E-004 + 188.16000000000000 4.6580387822009554E-004 + 188.22000000000000 4.5651021176144462E-004 + 188.28000000000000 4.4705686457711718E-004 + 188.34000000000000 4.3745482238432485E-004 + 188.39999999999998 4.2771523257136349E-004 + 188.45999999999998 4.1784941813729939E-004 + 188.51999999999998 4.0786878137448029E-004 + 188.57999999999998 3.9778482847865069E-004 + 188.63999999999999 3.8760911316055837E-004 + 188.69999999999999 3.7735327483145710E-004 + 188.75999999999999 3.6702896208269117E-004 + 188.81999999999999 3.5664778507410065E-004 + 188.88000000000000 3.4622135180032451E-004 + 188.94000000000000 3.3576122697268724E-004 + 189.00000000000000 3.2527887953099141E-004 + 189.06000000000000 3.1478570010342178E-004 + 189.12000000000000 3.0429294537779575E-004 + 189.17999999999998 2.9381174246788757E-004 + 189.23999999999998 2.8335304303316408E-004 + 189.29999999999998 2.7292759574679029E-004 + 189.35999999999999 2.6254597799598605E-004 + 189.41999999999999 2.5221856508557525E-004 + 189.47999999999999 2.4195544402102857E-004 + 189.53999999999999 2.3176649086272189E-004 + 189.59999999999999 2.2166125480644995E-004 + 189.66000000000000 2.1164902868337491E-004 + 189.72000000000000 2.0173883594301172E-004 + 189.78000000000000 1.9193932540253380E-004 + 189.84000000000000 1.8225886039360470E-004 + 189.89999999999998 1.7270543229230985E-004 + 189.95999999999998 1.6328671184378214E-004 + 190.01999999999998 1.5401000770571332E-004 + 190.07999999999998 1.4488226932760927E-004 + 190.13999999999999 1.3591007172055229E-004 + 190.19999999999999 1.2709961438919404E-004 + 190.25999999999999 1.1845671112648046E-004 + 190.31999999999999 1.0998679837834163E-004 + 190.38000000000000 1.0169494154425088E-004 + 190.44000000000000 9.3585805495797903E-005 + 190.50000000000000 8.5663672067616995E-005 + 190.56000000000000 7.7932444393971666E-005 + 190.62000000000000 7.0395632815678364E-005 + 190.67999999999998 6.3056370467461518E-005 + 190.73999999999998 5.5917409985288388E-005 + 190.79999999999998 4.8981134230412929E-005 + 190.85999999999999 4.2249548058770975E-005 + 190.91999999999999 3.5724298455367190E-005 + 190.97999999999999 2.9406669043060776E-005 + 191.03999999999999 2.3297593792405532E-005 + 191.09999999999999 1.7397662898987835E-005 + 191.16000000000000 1.1707137092921716E-005 + 191.22000000000000 6.2259488462368824E-006 + 191.28000000000000 9.5371370481258033E-007 + 191.34000000000000 -4.1102539479498587E-006 + 191.39999999999998 -8.9669358138955339E-006 + 191.45999999999998 -1.3617593540236879E-005 + 191.51999999999998 -1.8063760205595634E-005 + 191.57999999999998 -2.2307225356201746E-005 + 191.63999999999999 -2.6350025385958967E-005 + 191.69999999999999 -3.0194432339761393E-005 + 191.75999999999999 -3.3842937914407448E-005 + 191.81999999999999 -3.7298239126654331E-005 + 191.88000000000000 -4.0563231666477185E-005 + 191.94000000000000 -4.3640994076531773E-005 + 192.00000000000000 -4.6534777375976456E-005 + 192.06000000000000 -4.9247986318824443E-005 + 192.12000000000000 -5.1784176393911336E-005 + 192.17999999999998 -5.4147034925169475E-005 + 192.23999999999998 -5.6340373640218198E-005 + 192.29999999999998 -5.8368107486577338E-005 + 192.35999999999999 -6.0234253041656577E-005 + 192.41999999999999 -6.1942917461935780E-005 + 192.47999999999999 -6.3498279887765343E-005 + 192.53999999999999 -6.4904580751720626E-005 + 192.59999999999999 -6.6166125744334111E-005 + 192.66000000000000 -6.7287255171951014E-005 + 192.72000000000000 -6.8272337835833770E-005 + 192.78000000000000 -6.9125779542883505E-005 + 192.84000000000000 -6.9851981998334149E-005 + 192.89999999999998 -7.0455373301453743E-005 + 192.95999999999998 -7.0940359502577699E-005 + 193.01999999999998 -7.1311345982621468E-005 + 193.07999999999998 -7.1572713365471836E-005 + 193.13999999999999 -7.1728806501985789E-005 + 193.19999999999999 -7.1783945311093523E-005 + 193.25999999999999 -7.1742409724325626E-005 + 193.31999999999999 -7.1608422369170112E-005 + 193.38000000000000 -7.1386144542096307E-005 + 193.44000000000000 -7.1079695062394062E-005 + 193.50000000000000 -7.0693113495616601E-005 + 193.56000000000000 -7.0230376861996115E-005 + 193.62000000000000 -6.9695377595453700E-005 + 193.67999999999998 -6.9091939028330686E-005 + 193.73999999999998 -6.8423803457528813E-005 + 193.79999999999998 -6.7694626855446856E-005 + 193.85999999999999 -6.6907977951820465E-005 + 193.91999999999999 -6.6067343281183891E-005 + 193.97999999999999 -6.5176112635024789E-005 + 194.03999999999999 -6.4237602239967966E-005 + 194.09999999999999 -6.3255017253177650E-005 + 194.16000000000000 -6.2231486681242176E-005 + 194.22000000000000 -6.1170030754280171E-005 + 194.28000000000000 -6.0073591018223848E-005 + 194.34000000000000 -5.8945015422011147E-005 + 194.39999999999998 -5.7787045351993707E-005 + 194.45999999999998 -5.6602337557893900E-005 + 194.51999999999998 -5.5393454404512529E-005 + 194.57999999999998 -5.4162856055340907E-005 + 194.63999999999999 -5.2912916006186861E-005 + 194.69999999999999 -5.1645915343361489E-005 + 194.75999999999999 -5.0364032264144740E-005 + 194.81999999999999 -4.9069367351829058E-005 + 194.88000000000000 -4.7763924888304340E-005 + 194.94000000000000 -4.6449620107657499E-005 + 195.00000000000000 -4.5128287468726583E-005 + 195.06000000000000 -4.3801680246105772E-005 + 195.12000000000000 -4.2471476997383168E-005 + 195.17999999999998 -4.1139279091259144E-005 + 195.23999999999998 -3.9806613942239168E-005 + 195.29999999999998 -3.8474952294474936E-005 + 195.35999999999999 -3.7145692310389332E-005 + 195.41999999999999 -3.5820181100159635E-005 + 195.47999999999999 -3.4499700409367558E-005 + 195.53999999999999 -3.3185480169213684E-005 + 195.59999999999999 -3.1878699269881056E-005 + 195.66000000000000 -3.0580485700077117E-005 + 195.72000000000000 -2.9291917743056573E-005 + 195.78000000000000 -2.8014023735232316E-005 + 195.84000000000000 -2.6747780989165042E-005 + 195.89999999999998 -2.5494121236310704E-005 + 195.95999999999998 -2.4253928735930402E-005 + 196.01999999999998 -2.3028033722872446E-005 + 196.07999999999998 -2.1817222335131884E-005 + 196.13999999999999 -2.0622235219443566E-005 + 196.19999999999999 -1.9443761522163420E-005 + 196.25999999999999 -1.8282449167445034E-005 + 196.31999999999999 -1.7138899677349663E-005 + 196.38000000000000 -1.6013679620438845E-005 + 196.44000000000000 -1.4907307552114745E-005 + 196.50000000000000 -1.3820270873343881E-005 + 196.56000000000000 -1.2753022003343395E-005 + 196.62000000000000 -1.1705982358967337E-005 + 196.67999999999998 -1.0679544415688944E-005 + 196.73999999999998 -9.6740720004344308E-006 + 196.79999999999998 -8.6899074985012194E-006 + 196.85999999999999 -7.7273650630708195E-006 + 196.91999999999999 -6.7867387630205413E-006 + 196.97999999999999 -5.8682981761156670E-006 + 197.03999999999999 -4.9722912278609127E-006 + 197.09999999999999 -4.0989393075379153E-006 + 197.16000000000000 -3.2484389904549671E-006 + 197.22000000000000 -2.4209602031078255E-006 + 197.28000000000000 -1.6166425403125368E-006 + 197.34000000000000 -8.3559573737320366E-007 + 197.39999999999998 -7.7895929590139506E-008 + 197.45999999999998 6.5641575671206265E-007 + 197.51999999999998 1.3673337278940410E-006 + 197.57999999999998 2.0548909173694910E-006 + 197.63999999999999 2.7191574515561746E-006 + 197.69999999999999 3.3602431916511033E-006 + 197.75999999999999 3.9782950696498440E-006 + 197.81999999999999 4.5734999660316685E-006 + 197.88000000000000 5.1460815451113146E-006 + 197.94000000000000 5.6962988596027260E-006 + 198.00000000000000 6.2244472482571367E-006 + 198.06000000000000 6.7308550774398132E-006 + 198.12000000000000 7.2158832749438724E-006 + 198.17999999999998 7.6799235744195762E-006 + 198.23999999999998 8.1233972830430687E-006 + 198.29999999999998 8.5467549333851729E-006 + 198.35999999999999 8.9504733971946364E-006 + 198.41999999999999 9.3350561064708178E-006 + 198.47999999999999 9.7010343056693172E-006 + 198.53999999999999 1.0048966938374878E-005 + 198.59999999999999 1.0379438257499297E-005 + 198.66000000000000 1.0693061626547372E-005 + 198.72000000000000 1.0990477351941927E-005 + 198.78000000000000 1.1272355204627525E-005 + 198.84000000000000 1.1539396870396039E-005 + 198.89999999999998 1.1792333885833528E-005 + 198.95999999999998 1.2031930050918050E-005 + 199.01999999999998 1.2258983127788743E-005 + 199.07999999999998 1.2474324445775721E-005 + 199.13999999999999 1.2678819524945042E-005 + 199.19999999999999 1.2873368615424040E-005 + 199.25999999999999 1.3058905169046694E-005 + 199.31999999999999 1.3236398747133297E-005 + 199.38000000000000 1.3406850557014672E-005 + 199.44000000000000 1.3571293791678347E-005 + 199.50000000000000 1.3730792165068638E-005 + 199.56000000000000 1.3886439438627565E-005 + 199.62000000000000 1.4039358343003600E-005 + 199.67999999999998 1.4190696816221694E-005 + 199.73999999999998 1.4341629195757049E-005 + 199.79999999999998 1.4493354778887764E-005 + 199.85999999999999 1.4647095363012333E-005 + 199.91999999999999 1.4804097838778558E-005 + 199.97999999999999 1.4965631465005050E-005 + 200.03999999999999 1.5132991046567284E-005 + 200.09999999999999 1.5307497558497446E-005 + 200.16000000000000 1.5490498705148411E-005 + 200.22000000000000 1.5683372421559153E-005 + 200.28000000000000 1.5887525947432740E-005 + 200.34000000000000 1.6104400594114514E-005 + 200.39999999999998 1.6335473602691067E-005 + 200.45999999999998 1.6582259296841510E-005 + 200.51999999999998 1.6846311396443774E-005 + 200.57999999999998 1.7129223194685449E-005 + 200.63999999999999 1.7432628145605072E-005 + 200.69999999999999 1.7758203160498869E-005 + 200.75999999999999 1.8107661496780385E-005 + 200.81999999999999 1.8482760037506720E-005 + 200.88000000000000 1.8885287345701838E-005 + 200.94000000000000 1.9317073919354068E-005 + 201.00000000000000 1.9779978979598808E-005 + 201.06000000000000 2.0275894977082724E-005 + 201.12000000000000 2.0806736428554077E-005 + 201.17999999999998 2.1374446991584851E-005 + 201.23999999999998 2.1980991819314035E-005 + 201.29999999999998 2.2628358438549293E-005 + 201.35999999999999 2.3318549853002796E-005 + 201.41999999999999 2.4053585436091090E-005 + 201.47999999999999 2.4835506109643698E-005 + 201.53999999999999 2.5666364555234492E-005 + 201.59999999999999 2.6548233728517349E-005 + 201.66000000000000 2.7483197636213114E-005 + 201.72000000000000 2.8473359593708864E-005 + 201.78000000000000 2.9520836183601095E-005 + 201.84000000000000 3.0627762194364416E-005 + 201.89999999999998 3.1796284620123719E-005 + 201.95999999999998 3.3028564454417305E-005 + 202.01999999999998 3.4326770910090596E-005 + 202.07999999999998 3.5693085131839328E-005 + 202.13999999999999 3.7129685026084878E-005 + 202.19999999999999 3.8638754249500210E-005 + 202.25999999999999 4.0222467984446140E-005 + 202.31999999999999 4.1882982481444870E-005 + 202.38000000000000 4.3622437552659134E-005 + 202.44000000000000 4.5442952124107200E-005 + 202.50000000000000 4.7346601733820618E-005 + 202.56000000000000 4.9335427919290369E-005 + 202.62000000000000 5.1411414528252178E-005 + 202.67999999999998 5.3576493678416157E-005 + 202.73999999999998 5.5832533586129359E-005 + 202.79999999999998 5.8181324165127207E-005 + 202.85999999999999 6.0624584047456890E-005 + 202.91999999999999 6.3163940785883921E-005 + 202.97999999999999 6.5800929583975402E-005 + 203.03999999999999 6.8536998379379829E-005 + 203.09999999999999 7.1373480772688177E-005 + 203.16000000000000 7.4311599476138693E-005 + 203.22000000000000 7.7352474951805655E-005 + 203.28000000000000 8.0497085570050163E-005 + 203.34000000000000 8.3746299549286262E-005 + 203.39999999999998 8.7100836524331944E-005 + 203.45999999999998 9.0561271231719948E-005 + 203.51999999999998 9.4128045961681595E-005 + 203.57999999999998 9.7801431904715505E-005 + 203.63999999999999 1.0158153156714805E-004 + 203.69999999999999 1.0546828728777579E-004 + 203.75999999999999 1.0946144048362373E-004 + 203.81999999999999 1.1356056168132708E-004 + 203.88000000000000 1.1776500156747444E-004 + 203.94000000000000 1.2207391786344114E-004 + 204.00000000000000 1.2648623600649308E-004 + 204.06000000000000 1.3100067529928758E-004 + 204.12000000000000 1.3561569378650598E-004 + 204.17999999999998 1.4032954013235035E-004 + 204.23999999999998 1.4514016893251290E-004 + 204.29999999999998 1.5004532141344660E-004 + 204.35999999999999 1.5504246492483082E-004 + 204.41999999999999 1.6012877936279413E-004 + 204.47999999999999 1.6530119295701421E-004 + 204.53999999999999 1.7055635713338120E-004 + 204.59999999999999 1.7589065910012257E-004 + 204.66000000000000 1.8130018195242661E-004 + 204.72000000000000 1.8678074682464618E-004 + 204.78000000000000 1.9232787379692208E-004 + 204.84000000000000 1.9793685369675506E-004 + 204.89999999999998 2.0360265081615050E-004 + 204.95999999999998 2.0931998324141878E-004 + 205.01999999999998 2.1508326974322101E-004 + 205.07999999999998 2.2088670781928791E-004 + 205.13999999999999 2.2672419235563536E-004 + 205.19999999999999 2.3258936863311156E-004 + 205.25999999999999 2.3847564539254885E-004 + 205.31999999999999 2.4437618133637000E-004 + 205.38000000000000 2.5028388174986623E-004 + 205.44000000000000 2.5619143240142664E-004 + 205.50000000000000 2.6209131987521935E-004 + 205.56000000000000 2.6797579848530863E-004 + 205.62000000000000 2.7383691218815792E-004 + 205.67999999999998 2.7966652665601348E-004 + 205.73999999999998 2.8545633414546944E-004 + 205.79999999999998 2.9119783710889168E-004 + 205.85999999999999 2.9688244417725709E-004 + 205.91999999999999 3.0250136703923543E-004 + 205.97999999999999 3.0804574017395523E-004 + 206.03999999999999 3.1350660863766437E-004 + 206.09999999999999 3.1887493983962477E-004 + 206.16000000000000 3.2414165670603841E-004 + 206.22000000000000 3.2929758279725505E-004 + 206.28000000000000 3.3433362430939712E-004 + 206.34000000000000 3.3924058885158803E-004 + 206.39999999999998 3.4400940185258917E-004 + 206.45999999999998 3.4863103090026354E-004 + 206.51999999999998 3.5309646368742766E-004 + 206.57999999999998 3.5739684516005181E-004 + 206.63999999999999 3.6152336790444827E-004 + 206.69999999999999 3.6546741616877058E-004 + 206.75999999999999 3.6922054570986956E-004 + 206.81999999999999 3.7277440829324771E-004 + 206.88000000000000 3.7612096333444799E-004 + 206.94000000000000 3.7925228258590976E-004 + 207.00000000000000 3.8216075426484111E-004 + 207.06000000000000 3.8483899604584387E-004 + 207.12000000000000 3.8727985844846734E-004 + 207.17999999999998 3.8947657484235165E-004 + 207.23999999999998 3.9142259697110189E-004 + 207.29999999999998 3.9311181057532265E-004 + 207.35999999999999 3.9453835399085290E-004 + 207.41999999999999 3.9569683785220012E-004 + 207.47999999999999 3.9658218757355931E-004 + 207.53999999999999 3.9718975700640417E-004 + 207.59999999999999 3.9751535713514121E-004 + 207.66000000000000 3.9755524665629349E-004 + 207.72000000000000 3.9730607836511181E-004 + 207.78000000000000 3.9676502048572118E-004 + 207.84000000000000 3.9592976147566594E-004 + 207.89999999999998 3.9479842786922608E-004 + 207.95999999999998 3.9336967549647762E-004 + 208.01999999999998 3.9164265978854459E-004 + 208.07999999999998 3.8961709932339649E-004 + 208.13999999999999 3.8729314478127907E-004 + 208.19999999999999 3.8467159084843773E-004 + 208.25999999999999 3.8175366532578766E-004 + 208.31999999999999 3.7854118650175418E-004 + 208.38000000000000 3.7503645310018306E-004 + 208.44000000000000 3.7124230957370633E-004 + 208.50000000000000 3.6716208638187797E-004 + 208.56000000000000 3.6279961055455594E-004 + 208.62000000000000 3.5815928466619414E-004 + 208.68000000000001 3.5324589388002878E-004 + 208.74000000000001 3.4806481112010254E-004 + 208.80000000000001 3.4262179826334999E-004 + 208.86000000000001 3.3692313057529937E-004 + 208.92000000000002 3.3097550444554437E-004 + 208.98000000000002 3.2478608483409697E-004 + 209.03999999999996 3.1836242999292531E-004 + 209.09999999999997 3.1171253644780736E-004 + 209.15999999999997 3.0484479281045186E-004 + 209.21999999999997 2.9776790441224718E-004 + 209.27999999999997 2.9049100609499049E-004 + 209.33999999999997 2.8302356343246684E-004 + 209.39999999999998 2.7537532069050162E-004 + 209.45999999999998 2.6755636757571884E-004 + 209.51999999999998 2.5957706131754960E-004 + 209.57999999999998 2.5144799183745057E-004 + 209.63999999999999 2.4317996565099308E-004 + 209.69999999999999 2.3478401772706700E-004 + 209.75999999999999 2.2627135026868461E-004 + 209.81999999999999 2.1765332091774832E-004 + 209.88000000000000 2.0894137580703299E-004 + 209.94000000000000 2.0014706936882245E-004 + 210.00000000000000 1.9128202127046269E-004 + 210.06000000000000 1.8235788901784362E-004 + 210.12000000000000 1.7338632874564581E-004 + 210.18000000000001 1.6437898612984252E-004 + 210.24000000000001 1.5534744994586956E-004 + 210.30000000000001 1.4630324749216790E-004 + 210.36000000000001 1.3725780672157033E-004 + 210.42000000000002 1.2822240734501551E-004 + 210.48000000000002 1.1920821835636248E-004 + 210.53999999999996 1.1022622950041117E-004 + 210.59999999999997 1.0128723406049146E-004 + 210.65999999999997 9.2401818782624151E-005 + 210.71999999999997 8.3580341109055426E-005 + 210.77999999999997 7.4832910135433508E-005 + 210.83999999999997 6.6169376275998799E-005 + 210.89999999999998 5.7599285380078871E-005 + 210.95999999999998 4.9131909487165261E-005 + 211.01999999999998 4.0776182930364152E-005 + 211.07999999999998 3.2540719182854420E-005 + 211.13999999999999 2.4433786508907008E-005 + 211.19999999999999 1.6463306887658418E-005 + 211.25999999999999 8.6368059934900112E-006 + 211.31999999999999 9.6144964117168870E-007 + 211.38000000000000 -6.5560025186609021E-006 + 211.44000000000000 -1.3909187320823563E-005 + 211.50000000000000 -2.1092154964634285E-005 + 211.56000000000000 -2.8099380196851686E-005 + 211.62000000000000 -3.4925755280588440E-005 + 211.68000000000001 -4.1566598126018374E-005 + 211.74000000000001 -4.8017670159606266E-005 + 211.80000000000001 -5.4275149372551645E-005 + 211.86000000000001 -6.0335651930538576E-005 + 211.92000000000002 -6.6196223589467905E-005 + 211.98000000000002 -7.1854331592788878E-005 + 212.03999999999996 -7.7307860246523711E-005 + 212.09999999999997 -8.2555102697652111E-005 + 212.15999999999997 -8.7594760240459576E-005 + 212.21999999999997 -9.2425912416692896E-005 + 212.27999999999997 -9.7048029802765504E-005 + 212.33999999999997 -1.0146095606512616E-004 + 212.39999999999998 -1.0566488450360161E-004 + 212.45999999999998 -1.0966037275291673E-004 + 212.51999999999998 -1.1344828980591615E-004 + 212.57999999999998 -1.1702985795781766E-004 + 212.63999999999999 -1.2040659653207943E-004 + 212.69999999999999 -1.2358032930361476E-004 + 212.75999999999999 -1.2655316365470264E-004 + 212.81999999999999 -1.2932749739456219E-004 + 212.88000000000000 -1.3190598835626324E-004 + 212.94000000000000 -1.3429153433632939E-004 + 213.00000000000000 -1.3648729269131544E-004 + 213.06000000000000 -1.3849663851651792E-004 + 213.12000000000000 -1.4032318227689448E-004 + 213.18000000000001 -1.4197071227063955E-004 + 213.24000000000001 -1.4344322204543758E-004 + 213.30000000000001 -1.4474485720703255E-004 + 213.36000000000001 -1.4587993445541625E-004 + 213.42000000000002 -1.4685291162605578E-004 + 213.48000000000002 -1.4766836799983392E-004 + 213.53999999999996 -1.4833098833701294E-004 + 213.59999999999997 -1.4884555133164003E-004 + 213.65999999999997 -1.4921689621497531E-004 + 213.71999999999997 -1.4944994945439888E-004 + 213.77999999999997 -1.4954966367048542E-004 + 213.83999999999997 -1.4952102773365202E-004 + 213.89999999999998 -1.4936906725265063E-004 + 213.95999999999998 -1.4909881894562341E-004 + 214.01999999999998 -1.4871527236326923E-004 + 214.07999999999998 -1.4822344768299317E-004 + 214.13999999999999 -1.4762833092959229E-004 + 214.19999999999999 -1.4693487307244525E-004 + 214.25999999999999 -1.4614801385314199E-004 + 214.31999999999999 -1.4527264153760871E-004 + 214.38000000000000 -1.4431357895263746E-004 + 214.44000000000000 -1.4327561441115165E-004 + 214.50000000000000 -1.4216348312995396E-004 + 214.56000000000000 -1.4098185225950487E-004 + 214.62000000000000 -1.3973531553273001E-004 + 214.68000000000001 -1.3842840442273289E-004 + 214.74000000000001 -1.3706553656692716E-004 + 214.80000000000001 -1.3565109702639167E-004 + 214.86000000000001 -1.3418935373110547E-004 + 214.92000000000002 -1.3268447979058529E-004 + 214.98000000000002 -1.3114056478516931E-004 + 215.03999999999996 -1.2956157559539219E-004 + 215.09999999999997 -1.2795138475353403E-004 + 215.15999999999997 -1.2631374281985391E-004 + 215.21999999999997 -1.2465231480367426E-004 + 215.27999999999997 -1.2297061489085091E-004 + 215.33999999999997 -1.2127206230746984E-004 + 215.39999999999998 -1.1955995032135236E-004 + 215.45999999999998 -1.1783743246704480E-004 + 215.51999999999998 -1.1610755151209304E-004 + 215.57999999999998 -1.1437323138744996E-004 + 215.63999999999999 -1.1263727471444829E-004 + 215.69999999999999 -1.1090234997027356E-004 + 215.75999999999999 -1.0917101186363180E-004 + 215.81999999999999 -1.0744567898522752E-004 + 215.88000000000000 -1.0572866917808907E-004 + 215.94000000000000 -1.0402215504469575E-004 + 216.00000000000000 -1.0232821204700401E-004 + 216.06000000000000 -1.0064878372798698E-004 + 216.12000000000000 -9.8985694737746581E-005 + 216.18000000000001 -9.7340665190723887E-005 + 216.24000000000001 -9.5715279734811447E-005 + 216.30000000000001 -9.4111017228852778E-005 + 216.36000000000001 -9.2529248900984697E-005 + 216.42000000000002 -9.0971215256005058E-005 + 216.48000000000002 -8.9438063711136268E-005 + 216.53999999999996 -8.7930815714799181E-005 + 216.59999999999997 -8.6450382328190551E-005 + 216.65999999999997 -8.4997573619705053E-005 + 216.71999999999997 -8.3573072596111164E-005 + 216.77999999999997 -8.2177476369006466E-005 + 216.83999999999997 -8.0811268160166133E-005 + 216.89999999999998 -7.9474832947153218E-005 + 216.95999999999998 -7.8168435891051702E-005 + 217.01999999999998 -7.6892273931092851E-005 + 217.07999999999998 -7.5646427489075633E-005 + 217.13999999999999 -7.4430904856580293E-005 + 217.19999999999999 -7.3245629537847871E-005 + 217.25999999999999 -7.2090438917643776E-005 + 217.31999999999999 -7.0965096059396950E-005 + 217.38000000000000 -6.9869318186273083E-005 + 217.44000000000000 -6.8802737651576712E-005 + 217.50000000000000 -6.7764949414352390E-005 + 217.56000000000000 -6.6755495483427908E-005 + 217.62000000000000 -6.5773866826370864E-005 + 217.68000000000001 -6.4819527963208827E-005 + 217.74000000000001 -6.3891892811359649E-005 + 217.80000000000001 -6.2990367783734286E-005 + 217.86000000000001 -6.2114317040402512E-005 + 217.92000000000002 -6.1263075305165938E-005 + 217.98000000000002 -6.0435967823493412E-005 + 218.03999999999996 -5.9632284036078648E-005 + 218.09999999999997 -5.8851303581220861E-005 + 218.15999999999997 -5.8092283421236857E-005 + 218.21999999999997 -5.7354467029813118E-005 + 218.27999999999997 -5.6637074272405554E-005 + 218.33999999999997 -5.5939317600378201E-005 + 218.39999999999998 -5.5260401219148755E-005 + 218.45999999999998 -5.4599511283122702E-005 + 218.51999999999998 -5.3955842538141327E-005 + 218.57999999999998 -5.3328576366474562E-005 + 218.63999999999999 -5.2716909277743894E-005 + 218.69999999999999 -5.2120036872447691E-005 + 218.75999999999999 -5.1537173884733995E-005 + 218.81999999999999 -5.0967551677575226E-005 + 218.88000000000000 -5.0410420972411153E-005 + 218.94000000000000 -4.9865058922908061E-005 + 219.00000000000000 -4.9330772300505357E-005 + 219.06000000000000 -4.8806889505988343E-005 + 219.12000000000000 -4.8292774659600279E-005 + 219.18000000000001 -4.7787822330794999E-005 + 219.24000000000001 -4.7291460116494471E-005 + 219.30000000000001 -4.6803144809945291E-005 + 219.36000000000001 -4.6322355906654884E-005 + 219.42000000000002 -4.5848605237821807E-005 + 219.48000000000002 -4.5381428470860298E-005 + 219.53999999999996 -4.4920378483010324E-005 + 219.59999999999997 -4.4465036089044522E-005 + 219.65999999999997 -4.4014999267785944E-005 + 219.71999999999997 -4.3569879375185668E-005 + 219.77999999999997 -4.3129306899598664E-005 + 219.83999999999997 -4.2692934583467057E-005 + 219.89999999999998 -4.2260436735453187E-005 + 219.95999999999998 -4.1831502517181865E-005 + 220.01999999999998 -4.1405846234341695E-005 + 220.07999999999998 -4.0983202651456444E-005 + 220.13999999999999 -4.0563330136685606E-005 + 220.19999999999999 -4.0146019158526028E-005 + 220.25999999999999 -3.9731083964739522E-005 + 220.31999999999999 -3.9318365784695873E-005 + 220.38000000000000 -3.8907743471103494E-005 + 220.44000000000000 -3.8499120522805140E-005 + 220.50000000000000 -3.8092432700371383E-005 + 220.56000000000000 -3.7687639140459619E-005 + 220.62000000000000 -3.7284731315550019E-005 + 220.68000000000001 -3.6883729575955041E-005 + 220.74000000000001 -3.6484673052094281E-005 + 220.80000000000001 -3.6087626840194153E-005 + 220.86000000000001 -3.5692677725361918E-005 + 220.92000000000002 -3.5299933383275396E-005 + 220.98000000000002 -3.4909514461941283E-005 + 221.03999999999996 -3.4521561493589597E-005 + 221.09999999999997 -3.4136222371787162E-005 + 221.15999999999997 -3.3753661698229501E-005 + 221.21999999999997 -3.3374051100333054E-005 + 221.27999999999997 -3.2997574266266324E-005 + 221.33999999999997 -3.2624415225174141E-005 + 221.39999999999998 -3.2254769645439475E-005 + 221.45999999999998 -3.1888834660806952E-005 + 221.51999999999998 -3.1526812411431330E-005 + 221.57999999999998 -3.1168904146371728E-005 + 221.63999999999999 -3.0815321973199183E-005 + 221.69999999999999 -3.0466269921288126E-005 + 221.75999999999999 -3.0121962418752892E-005 + 221.81999999999999 -2.9782608324195955E-005 + 221.88000000000000 -2.9448425562844546E-005 + 221.94000000000000 -2.9119633202493697E-005 + 222.00000000000000 -2.8796454546015804E-005 + 222.06000000000000 -2.8479115386180885E-005 + 222.12000000000000 -2.8167851116835447E-005 + 222.18000000000001 -2.7862899573780004E-005 + 222.24000000000001 -2.7564500198313984E-005 + 222.30000000000001 -2.7272902926486111E-005 + 222.36000000000001 -2.6988353770539098E-005 + 222.42000000000002 -2.6711100258309527E-005 + 222.48000000000002 -2.6441388811558392E-005 + 222.53999999999996 -2.6179456706630709E-005 + 222.59999999999997 -2.5925533854870311E-005 + 222.65999999999997 -2.5679833718032595E-005 + 222.71999999999997 -2.5442556828418330E-005 + 222.77999999999997 -2.5213876268777652E-005 + 222.83999999999997 -2.4993944153159547E-005 + 222.89999999999998 -2.4782877633950066E-005 + 222.95999999999998 -2.4580768065919817E-005 + 223.01999999999998 -2.4387671004532857E-005 + 223.07999999999998 -2.4203608700040017E-005 + 223.13999999999999 -2.4028569405933290E-005 + 223.19999999999999 -2.3862512551289368E-005 + 223.25999999999999 -2.3705361124032724E-005 + 223.31999999999999 -2.3557016898986606E-005 + 223.38000000000000 -2.3417354299713553E-005 + 223.44000000000000 -2.3286226761610889E-005 + 223.50000000000000 -2.3163468889587088E-005 + 223.56000000000000 -2.3048904726914947E-005 + 223.62000000000000 -2.2942340491666181E-005 + 223.68000000000001 -2.2843576149844872E-005 + 223.74000000000001 -2.2752403015817548E-005 + 223.80000000000001 -2.2668599067586814E-005 + 223.86000000000001 -2.2591940260948790E-005 + 223.92000000000002 -2.2522188201792870E-005 + 223.98000000000002 -2.2459092453571667E-005 + 224.03999999999996 -2.2402389348156621E-005 + 224.09999999999997 -2.2351800946109407E-005 + 224.15999999999997 -2.2307030724122602E-005 + 224.21999999999997 -2.2267760781231655E-005 + 224.27999999999997 -2.2233650797776833E-005 + 224.33999999999997 -2.2204340038157550E-005 + 224.39999999999998 -2.2179442654018958E-005 + 224.45999999999998 -2.2158550514783560E-005 + 224.51999999999998 -2.2141234596719109E-005 + 224.57999999999998 -2.2127042991102672E-005 + 224.63999999999999 -2.2115506847269600E-005 + 224.69999999999999 -2.2106144159868513E-005 + 224.75999999999999 -2.2098459616024508E-005 + 224.81999999999999 -2.2091949266853300E-005 + 224.88000000000000 -2.2086101846483824E-005 + 224.94000000000000 -2.2080402581945013E-005 + 225.00000000000000 -2.2074340933913526E-005 + 225.06000000000000 -2.2067403806601926E-005 + 225.12000000000000 -2.2059086996419532E-005 + 225.18000000000001 -2.2048885475120283E-005 + 225.24000000000001 -2.2036304398994120E-005 + 225.30000000000001 -2.2020858235762527E-005 + 225.36000000000001 -2.2002062086707507E-005 + 225.42000000000002 -2.1979443048428549E-005 + 225.48000000000002 -2.1952530491670339E-005 + 225.53999999999996 -2.1920854649719095E-005 + 225.59999999999997 -2.1883950539953047E-005 + 225.65999999999997 -2.1841349717868647E-005 + 225.71999999999997 -2.1792579049965990E-005 + 225.77999999999997 -2.1737160137119635E-005 + 225.83999999999997 -2.1674599169070888E-005 + 225.89999999999998 -2.1604392072632043E-005 + 225.95999999999998 -2.1526012265855514E-005 + 226.01999999999998 -2.1438913098557790E-005 + 226.07999999999998 -2.1342522675300163E-005 + 226.13999999999999 -2.1236237458299217E-005 + 226.19999999999999 -2.1119424987434752E-005 + 226.25999999999999 -2.0991414290593157E-005 + 226.31999999999999 -2.0851500724283106E-005 + 226.38000000000000 -2.0698940595316502E-005 + 226.44000000000000 -2.0532954525756436E-005 + 226.50000000000000 -2.0352724484506645E-005 + 226.56000000000000 -2.0157391529320125E-005 + 226.62000000000000 -1.9946066011791250E-005 + 226.68000000000001 -1.9717824598823906E-005 + 226.74000000000001 -1.9471706038161347E-005 + 226.80000000000001 -1.9206724030379263E-005 + 226.86000000000001 -1.8921856334000990E-005 + 226.92000000000002 -1.8616057972532214E-005 + 226.98000000000002 -1.8288252723309607E-005 + 227.03999999999996 -1.7937333589586301E-005 + 227.09999999999997 -1.7562164258121294E-005 + 227.15999999999997 -1.7161573837422675E-005 + 227.21999999999997 -1.6734354492211507E-005 + 227.27999999999997 -1.6279260633538692E-005 + 227.33999999999997 -1.5794997603661322E-005 + 227.39999999999998 -1.5280226385106343E-005 + 227.45999999999998 -1.4733551781635346E-005 + 227.51999999999998 -1.4153524858613712E-005 + 227.57999999999998 -1.3538632953954384E-005 + 227.63999999999999 -1.2887303873772069E-005 + 227.69999999999999 -1.2197902458950604E-005 + 227.75999999999999 -1.1468727500729913E-005 + 227.81999999999999 -1.0698017032630382E-005 + 227.88000000000000 -9.8839488852510298E-006 + 227.94000000000000 -9.0246444231841101E-006 + 228.00000000000000 -8.1181725158302100E-006 + 228.06000000000000 -7.1625543730494424E-006 + 228.12000000000000 -6.1557684544575974E-006 + 228.18000000000001 -5.0957563250200334E-006 + 228.24000000000001 -3.9804278107118269E-006 + 228.30000000000001 -2.8076644796302830E-006 + 228.36000000000001 -1.5753260532019478E-006 + 228.42000000000002 -2.8125289502594004E-007 + 228.48000000000002 1.0767321297512371E-006 + 228.53999999999996 2.5008188897713650E-006 + 228.59999999999997 3.9932090247123901E-006 + 228.65999999999997 5.5561156068547546E-006 + 228.71999999999997 7.1917595758112483E-006 + 228.77999999999997 8.9023719429193981E-006 + 228.83999999999997 1.0690189005353089E-005 + 228.89999999999998 1.2557452943674185E-005 + 228.95999999999998 1.4506406888207256E-005 + 229.01999999999998 1.6539293906457316E-005 + 229.07999999999998 1.8658354210713891E-005 + 229.13999999999999 2.0865816723619599E-005 + 229.19999999999999 2.3163896265687401E-005 + 229.25999999999999 2.5554786318659503E-005 + 229.31999999999999 2.8040649713652923E-005 + 229.38000000000000 3.0623615032415304E-005 + 229.44000000000000 3.3305762596393376E-005 + 229.50000000000000 3.6089121931123956E-005 + 229.56000000000000 3.8975654117370104E-005 + 229.62000000000000 4.1967248538385686E-005 + 229.68000000000001 4.5065708452706116E-005 + 229.74000000000001 4.8272744099958944E-005 + 229.80000000000001 5.1589959703211822E-005 + 229.86000000000001 5.5018844038893669E-005 + 229.92000000000002 5.8560769695093050E-005 + 229.97999999999996 6.2216958569063266E-005 + 230.03999999999996 6.5988497542676227E-005 + 230.09999999999997 6.9876314834510452E-005 + 230.15999999999997 7.3881172485906546E-005 + 230.21999999999997 7.8003650297970792E-005 + 230.27999999999997 8.2244166127699170E-005 + 230.33999999999997 8.6602914251949139E-005 + 230.39999999999998 9.1079906365214923E-005 + 230.45999999999998 9.5674932344873281E-005 + 230.51999999999998 1.0038757447647424E-004 + 230.57999999999998 1.0521717433419551E-004 + 230.63999999999999 1.1016285661320437E-004 + 230.69999999999999 1.1522348003021048E-004 + 230.75999999999999 1.2039768346426723E-004 + 230.81999999999999 1.2568383476765943E-004 + 230.88000000000000 1.3108004967701752E-004 + 230.94000000000000 1.3658416822520604E-004 + 231.00000000000000 1.4219375529108227E-004 + 231.06000000000000 1.4790609639857050E-004 + 231.12000000000000 1.5371818688054823E-004 + 231.18000000000001 1.5962674275437231E-004 + 231.24000000000001 1.6562816083220050E-004 + 231.30000000000001 1.7171855090360692E-004 + 231.36000000000001 1.7789366908029433E-004 + 231.42000000000002 1.8414899639842598E-004 + 231.47999999999996 1.9047968199237554E-004 + 231.53999999999996 1.9688051721403503E-004 + 231.59999999999997 2.0334599620240731E-004 + 231.65999999999997 2.0987027548854592E-004 + 231.71999999999997 2.1644721039877315E-004 + 231.77999999999997 2.2307028663795129E-004 + 231.83999999999997 2.2973272562853763E-004 + 231.89999999999998 2.3642738888366316E-004 + 231.95999999999998 2.4314688062130631E-004 + 232.01999999999998 2.4988346675187994E-004 + 232.07999999999998 2.5662915379276723E-004 + 232.13999999999999 2.6337571105244988E-004 + 232.19999999999999 2.7011462004790761E-004 + 232.25999999999999 2.7683711892662440E-004 + 232.31999999999999 2.8353422948899920E-004 + 232.38000000000000 2.9019678868182612E-004 + 232.44000000000000 2.9681539494003258E-004 + 232.50000000000000 3.0338048952530648E-004 + 232.56000000000000 3.0988236378338388E-004 + 232.62000000000000 3.1631114236641347E-004 + 232.68000000000001 3.2265685156936965E-004 + 232.74000000000001 3.2890941348139491E-004 + 232.80000000000001 3.3505861243879662E-004 + 232.86000000000001 3.4109424334804160E-004 + 232.92000000000002 3.4700600022299525E-004 + 232.97999999999996 3.5278350000718709E-004 + 233.03999999999996 3.5841645256141138E-004 + 233.09999999999997 3.6389453244151186E-004 + 233.15999999999997 3.6920748942699896E-004 + 233.21999999999997 3.7434506596745301E-004 + 233.27999999999997 3.7929713429820131E-004 + 233.33999999999997 3.8405369086469404E-004 + 233.39999999999998 3.8860488970144508E-004 + 233.45999999999998 3.9294100403143464E-004 + 233.51999999999998 3.9705249881397093E-004 + 233.57999999999998 4.0093009807688800E-004 + 233.63999999999999 4.0456470473783780E-004 + 233.69999999999999 4.0794756346786300E-004 + 233.75999999999999 4.1107018011685555E-004 + 233.81999999999999 4.1392434859192879E-004 + 233.88000000000000 4.1650223464734725E-004 + 233.94000000000000 4.1879635686697014E-004 + 234.00000000000000 4.2079964988610681E-004 + 234.06000000000000 4.2250542087172256E-004 + 234.12000000000000 4.2390746056279879E-004 + 234.18000000000001 4.2499993113252445E-004 + 234.24000000000001 4.2577751643671974E-004 + 234.30000000000001 4.2623539576097674E-004 + 234.36000000000001 4.2636920982797792E-004 + 234.42000000000002 4.2617521839886382E-004 + 234.47999999999996 4.2565012217842397E-004 + 234.53999999999996 4.2479120177246537E-004 + 234.59999999999997 4.2359634511958844E-004 + 234.65999999999997 4.2206394041506594E-004 + 234.71999999999997 4.2019297487347096E-004 + 234.77999999999997 4.1798304148617249E-004 + 234.83999999999997 4.1543432623327136E-004 + 234.89999999999998 4.1254756821472200E-004 + 234.95999999999998 4.0932414163690254E-004 + 235.01999999999998 4.0576601052866556E-004 + 235.07999999999998 4.0187572535582840E-004 + 235.13999999999999 3.9765639517398975E-004 + 235.19999999999999 3.9311178755333681E-004 + 235.25999999999999 3.8824622720833160E-004 + 235.31999999999999 3.8306456727390067E-004 + 235.38000000000000 3.7757232800331793E-004 + 235.44000000000000 3.7177548980283249E-004 + 235.50000000000000 3.6568069250626003E-004 + 235.56000000000000 3.5929506123339507E-004 + 235.62000000000000 3.5262624143828119E-004 + 235.68000000000001 3.4568245162074453E-004 + 235.74000000000001 3.3847237036089688E-004 + 235.80000000000001 3.3100513454811911E-004 + 235.86000000000001 3.2329035666662576E-004 + 235.92000000000002 3.1533812506330251E-004 + 235.97999999999996 3.0715888660646666E-004 + 236.03999999999996 2.9876354212802261E-004 + 236.09999999999997 2.9016326013977107E-004 + 236.15999999999997 2.8136957653941962E-004 + 236.21999999999997 2.7239437601461210E-004 + 236.27999999999997 2.6324974315175965E-004 + 236.33999999999997 2.5394803421649952E-004 + 236.39999999999998 2.4450177687165115E-004 + 236.45999999999998 2.3492371211951922E-004 + 236.51999999999998 2.2522672102522450E-004 + 236.57999999999998 2.1542380368523421E-004 + 236.63999999999999 2.0552802654956074E-004 + 236.69999999999999 1.9555248052483586E-004 + 236.75999999999999 1.8551033189244289E-004 + 236.81999999999999 1.7541470242282684E-004 + 236.88000000000000 1.6527870966897423E-004 + 236.94000000000000 1.5511537160885460E-004 + 237.00000000000000 1.4493764232248663E-004 + 237.06000000000000 1.3475835751021554E-004 + 237.12000000000000 1.2459018292325599E-004 + 237.18000000000001 1.1444560967808651E-004 + 237.24000000000001 1.0433695335621674E-004 + 237.30000000000001 9.4276283647000734E-005 + 237.36000000000001 8.4275419647369848E-005 + 237.42000000000002 7.4345907319779740E-005 + 237.47999999999996 6.4499000280836437E-005 + 237.53999999999996 5.4745627190094563E-005 + 237.59999999999997 4.5096366885229618E-005 + 237.65999999999997 3.5561448102568757E-005 + 237.71999999999997 2.6150721005922587E-005 + 237.77999999999997 1.6873634421688590E-005 + 237.83999999999997 7.7392412089220647E-006 + 237.89999999999998 -1.2438419813037464E-006 + 237.95999999999998 -1.0067427729380271E-005 + 238.01999999999998 -1.8723777492478104E-005 + 238.07999999999998 -2.7205604317853112E-005 + 238.13999999999999 -3.5506083205236783E-005 + 238.19999999999999 -4.3618851720384523E-005 + 238.25999999999999 -5.1538021149833296E-005 + 238.31999999999999 -5.9258177855507049E-005 + 238.38000000000000 -6.6774372979005003E-005 + 238.44000000000000 -7.4082129631922872E-005 + 238.50000000000000 -8.1177449703375137E-005 + 238.56000000000000 -8.8056799870572092E-005 + 238.62000000000000 -9.4717107273790201E-005 + 238.68000000000001 -1.0115576322037392E-004 + 238.74000000000001 -1.0737059829883297E-004 + 238.80000000000001 -1.1335988879367529E-004 + 238.86000000000001 -1.1912233719693291E-004 + 238.92000000000002 -1.2465708651670596E-004 + 238.97999999999996 -1.2996368166315079E-004 + 239.03999999999996 -1.3504208461499048E-004 + 239.09999999999997 -1.3989262208055850E-004 + 239.15999999999997 -1.4451601915685533E-004 + 239.21999999999997 -1.4891336908106264E-004 + 239.27999999999997 -1.5308610134012656E-004 + 239.33999999999997 -1.5703601168303474E-004 + 239.39999999999998 -1.6076519747476568E-004 + 239.45999999999998 -1.6427607602795318E-004 + 239.51999999999998 -1.6757136247255619E-004 + 239.57999999999998 -1.7065405632238890E-004 + 239.63999999999999 -1.7352741204236592E-004 + 239.69999999999999 -1.7619495049583304E-004 + 239.75999999999999 -1.7866041225670973E-004 + 239.81999999999999 -1.8092779039994867E-004 + 239.88000000000000 -1.8300123228672660E-004 + 239.94000000000000 -1.8488509150781579E-004 + 240.00000000000000 -1.8658389027075811E-004 + 240.06000000000000 -1.8810227680365717E-004 + 240.12000000000000 -1.8944507735996148E-004 + 240.18000000000001 -1.9061718936111977E-004 + 240.24000000000001 -1.9162363887048907E-004 + 240.30000000000001 -1.9246954166807551E-004 + 240.36000000000001 -1.9316005331949045E-004 + 240.42000000000002 -1.9370040062934141E-004 + 240.47999999999996 -1.9409586778039391E-004 + 240.53999999999996 -1.9435175414754535E-004 + 240.59999999999997 -1.9447336053780428E-004 + 240.65999999999997 -1.9446602655764030E-004 + 240.71999999999997 -1.9433507431189772E-004 + 240.77999999999997 -1.9408580625286570E-004 + 240.83999999999997 -1.9372350525878569E-004 + 240.89999999999998 -1.9325339912244422E-004 + 240.95999999999998 -1.9268067793145908E-004 + 241.01999999999998 -1.9201048542080739E-004 + 241.07999999999998 -1.9124789906545101E-004 + 241.13999999999999 -1.9039791407073092E-004 + 241.19999999999999 -1.8946546211166235E-004 + 241.25999999999999 -1.8845535084805116E-004 + 241.31999999999999 -1.8737232903070179E-004 + 241.38000000000000 -1.8622102360100191E-004 + 241.44000000000000 -1.8500592373200362E-004 + 241.50000000000000 -1.8373142782636257E-004 + 241.56000000000000 -1.8240180848450713E-004 + 241.62000000000000 -1.8102120615356458E-004 + 241.68000000000001 -1.7959361189921272E-004 + 241.74000000000001 -1.7812291061608155E-004 + 241.80000000000001 -1.7661280315174290E-004 + 241.86000000000001 -1.7506687995078339E-004 + 241.92000000000002 -1.7348857554724841E-004 + 241.97999999999996 -1.7188119976651274E-004 + 242.03999999999996 -1.7024790607672686E-004 + 242.09999999999997 -1.6859169075303328E-004 + 242.15999999999997 -1.6691543558610333E-004 + 242.21999999999997 -1.6522185193322927E-004 + 242.27999999999997 -1.6351352683693685E-004 + 242.33999999999997 -1.6179289705030888E-004 + 242.39999999999998 -1.6006227599103166E-004 + 242.45999999999998 -1.5832382176354722E-004 + 242.51999999999998 -1.5657957622736580E-004 + 242.57999999999998 -1.5483144126487270E-004 + 242.63999999999999 -1.5308116309063774E-004 + 242.69999999999999 -1.5133039382439367E-004 + 242.75999999999999 -1.4958064604004651E-004 + 242.81999999999999 -1.4783330954588409E-004 + 242.88000000000000 -1.4608963456137661E-004 + 242.94000000000000 -1.4435079819626645E-004 + 243.00000000000000 -1.4261782227854462E-004 + 243.06000000000000 -1.4089164736986418E-004 + 243.12000000000000 -1.3917310881248694E-004 + 243.18000000000001 -1.3746292187962446E-004 + 243.24000000000001 -1.3576172143058796E-004 + 243.30000000000001 -1.3407006355083554E-004 + 243.36000000000001 -1.3238840977510848E-004 + 243.42000000000002 -1.3071716026634352E-004 + 243.47999999999996 -1.2905661650185839E-004 + 243.53999999999996 -1.2740705719474399E-004 + 243.59999999999997 -1.2576866256135477E-004 + 243.65999999999997 -1.2414158006734317E-004 + 243.71999999999997 -1.2252590691492861E-004 + 243.77999999999997 -1.2092169383907925E-004 + 243.83999999999997 -1.1932896049903384E-004 + 243.89999999999998 -1.1774770376501509E-004 + 243.95999999999998 -1.1617788730089337E-004 + 244.01999999999998 -1.1461944241277492E-004 + 244.07999999999998 -1.1307228555175632E-004 + 244.13999999999999 -1.1153632007114603E-004 + 244.19999999999999 -1.1001144255527273E-004 + 244.25999999999999 -1.0849752875487786E-004 + 244.31999999999999 -1.0699444196781526E-004 + 244.38000000000000 -1.0550205726661469E-004 + 244.44000000000000 -1.0402023439132920E-004 + 244.50000000000000 -1.0254882936315249E-004 + 244.56000000000000 -1.0108769547416796E-004 + 244.62000000000000 -9.9636688816038312E-005 + 244.68000000000001 -9.8195664467754667E-005 + 244.74000000000001 -9.6764471347428438E-005 + 244.80000000000001 -9.5342988797149448E-005 + 244.86000000000001 -9.3931077923963606E-005 + 244.92000000000002 -9.2528607383527377E-005 + 244.97999999999996 -9.1135460444153048E-005 + 245.03999999999996 -8.9751532024544728E-005 + 245.09999999999997 -8.8376725378282772E-005 + 245.15999999999997 -8.7010964370594850E-005 + 245.21999999999997 -8.5654190924857647E-005 + 245.27999999999997 -8.4306351606856900E-005 + 245.33999999999997 -8.2967415487440521E-005 + 245.39999999999998 -8.1637391304084761E-005 + 245.45999999999998 -8.0316280974514944E-005 + 245.51999999999998 -7.9004118931927801E-005 + 245.57999999999998 -7.7700960945722034E-005 + 245.63999999999999 -7.6406871413138751E-005 + 245.69999999999999 -7.5121940233740015E-005 + 245.75999999999999 -7.3846262629168437E-005 + 245.81999999999999 -7.2579949584891510E-005 + 245.88000000000000 -7.1323122523344655E-005 + 245.94000000000000 -7.0075917798569860E-005 + 246.00000000000000 -6.8838457801306081E-005 + 246.06000000000000 -6.7610879359567556E-005 + 246.12000000000000 -6.6393331321546017E-005 + 246.18000000000001 -6.5185945945328382E-005 + 246.24000000000001 -6.3988860835706196E-005 + 246.30000000000001 -6.2802221726147994E-005 + 246.36000000000001 -6.1626162494897823E-005 + 246.42000000000002 -6.0460831885664392E-005 + 246.47999999999996 -5.9306379661747608E-005 + 246.53999999999996 -5.8162959081334102E-005 + 246.59999999999997 -5.7030737569862371E-005 + 246.65999999999997 -5.5909878865968536E-005 + 246.71999999999997 -5.4800576664110781E-005 + 246.77999999999997 -5.3703027310168921E-005 + 246.83999999999997 -5.2617456330707936E-005 + 246.89999999999998 -5.1544097996235123E-005 + 246.95999999999998 -5.0483203779212598E-005 + 247.01999999999998 -4.9435045907150345E-005 + 247.07999999999998 -4.8399919539566529E-005 + 247.13999999999999 -4.7378131701540271E-005 + 247.19999999999999 -4.6370001996169036E-005 + 247.25999999999999 -4.5375870175881945E-005 + 247.31999999999999 -4.4396082960808531E-005 + 247.38000000000000 -4.3430994542121396E-005 + 247.44000000000000 -4.2480973080362239E-005 + 247.50000000000000 -4.1546374750256270E-005 + 247.56000000000000 -4.0627567209417038E-005 + 247.62000000000000 -3.9724905639332605E-005 + 247.68000000000001 -3.8838740844667666E-005 + 247.74000000000001 -3.7969418670065971E-005 + 247.80000000000001 -3.7117273005671655E-005 + 247.86000000000001 -3.6282621310196775E-005 + 247.92000000000002 -3.5465778141054332E-005 + 247.97999999999996 -3.4667034302460644E-005 + 248.03999999999996 -3.3886673538498616E-005 + 248.09999999999997 -3.3124960025287074E-005 + 248.15999999999997 -3.2382147756733026E-005 + 248.21999999999997 -3.1658479902816177E-005 + 248.27999999999997 -3.0954179875218875E-005 + 248.33999999999997 -3.0269462234846276E-005 + 248.39999999999998 -2.9604529360667835E-005 + 248.45999999999998 -2.8959573257055711E-005 + 248.51999999999998 -2.8334765809116516E-005 + 248.57999999999998 -2.7730274490421973E-005 + 248.63999999999999 -2.7146246028256955E-005 + 248.69999999999999 -2.6582810169172696E-005 + 248.75999999999999 -2.6040080561790371E-005 + 248.81999999999999 -2.5518143159962104E-005 + 248.88000000000000 -2.5017067034557370E-005 + 248.94000000000000 -2.4536889766126243E-005 + 249.00000000000000 -2.4077616999131681E-005 + 249.06000000000000 -2.3639221919782838E-005 + 249.12000000000000 -2.3221645065111817E-005 + 249.18000000000001 -2.2824782942580452E-005 + 249.24000000000001 -2.2448495091012050E-005 + 249.30000000000001 -2.2092600805419271E-005 + 249.36000000000001 -2.1756875852565343E-005 + 249.42000000000002 -2.1441056071338070E-005 + 249.47999999999996 -2.1144840016873514E-005 + 249.53999999999996 -2.0867886391501114E-005 + 249.59999999999997 -2.0609824267874230E-005 + 249.65999999999997 -2.0370250802352376E-005 + 249.71999999999997 -2.0148738339909941E-005 + 249.77999999999997 -1.9944837371483464E-005 + 249.83999999999997 -1.9758082764648016E-005 + 249.89999999999998 -1.9587992109187708E-005 + 249.95999999999998 -1.9434079827572318E-005 + 250.01999999999998 -1.9295850240143689E-005 + 250.07999999999998 -1.9172803875739069E-005 + 250.13999999999999 -1.9064444805306058E-005 + 250.19999999999999 -1.8970270011824456E-005 + 250.25999999999999 -1.8889783462371013E-005 + 250.31999999999999 -1.8822485231462805E-005 + 250.38000000000000 -1.8767874604025953E-005 + 250.44000000000000 -1.8725449931683214E-005 + 250.50000000000000 -1.8694708662408866E-005 + 250.56000000000000 -1.8675140639402854E-005 + 250.62000000000000 -1.8666235496796126E-005 + 250.68000000000001 -1.8667472655869080E-005 + 250.74000000000001 -1.8678331120604273E-005 + 250.80000000000001 -1.8698284091448713E-005 + 250.86000000000001 -1.8726798426020072E-005 + 250.92000000000002 -1.8763345097147503E-005 + 250.97999999999996 -1.8807396346415819E-005 + 251.03999999999996 -1.8858428896889383E-005 + 251.09999999999997 -1.8915924987252555E-005 + 251.15999999999997 -1.8979383726101576E-005 + 251.21999999999997 -1.9048315380061017E-005 + 251.27999999999997 -1.9122249173533831E-005 + 251.33999999999997 -1.9200734399732321E-005 + 251.39999999999998 -1.9283345586300890E-005 + 251.45999999999998 -1.9369677124872656E-005 + 251.51999999999998 -1.9459350835342034E-005 + 251.57999999999998 -1.9552009617689727E-005 + 251.63999999999999 -1.9647318029717192E-005 + 251.69999999999999 -1.9744961631987635E-005 + 251.75999999999999 -1.9844640330463341E-005 + 251.81999999999999 -1.9946070505376912E-005 + 251.88000000000000 -2.0048978002492361E-005 + 251.94000000000000 -2.0153098669014028E-005 diff --git a/seisflows/tests/test_data/test_solver/mainsolver b/seisflows/tests/test_data/test_solver/mainsolver new file mode 120000 index 00000000..0f301668 --- /dev/null +++ b/seisflows/tests/test_data/test_solver/mainsolver @@ -0,0 +1 @@ +001 \ No newline at end of file diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index 09ba5f66..8f4d6591 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -8,8 +8,9 @@ from glob import glob from pyasdf import ASDFDataSet from seisflows import ROOT_DIR +from seisflows.tools import unix from seisflows.preprocess.default import Default -from seisflows.preprocess.pyatoa import Pyaflowa +from seisflows.preprocess.pyaflowa import Pyaflowa TEST_DATA = os.path.join(ROOT_DIR, "tests", "test_data", "test_preprocess") @@ -108,7 +109,7 @@ def test_pyaflowa_setup(tmpdir): workdir=tmpdir, path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), path_solver=os.path.join(TEST_SOLVER, "mainsolver"), - source_prefix="CMTSOLUTION", + source_prefix="SOURCE", ntask=2, components="Y", ) @@ -118,29 +119,69 @@ def test_pyaflowa_setup(tmpdir): pyaflowa.setup() - assert(len(pyaflowa._station_codes) == 2) - assert(pyaflowa._station_codes[0] == "AA.S0001.*.*") + assert(len(pyaflowa._station_codes) == 5) + assert(pyaflowa._station_codes[0] == "AA.S000000.*.*") assert(len(pyaflowa._source_names) == pyaflowa._ntask) assert(pyaflowa._source_names[0] == "001") assert(pyaflowa._config.component_list == ["Y"]) -def test_pyaflowa_quantify_misfit(tmpdir): +def test_pyaflowa_setup_quantify_misfit(tmpdir): """ - Test misfit quantification for Pyatoa including data gathering. Waveform - data and source and receiver metadata is exposed from the test data + Test Config setup that is used to control `quantify_misfit` function + """ + pyaflowa = Pyaflowa( + workdir=tmpdir, + path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), + path_solver=TEST_SOLVER, source_prefix="SOURCE", ntask=1, + data_case="synthetic", components="Y", fix_windows="ITER", + ) + pyaflowa.setup() + config = pyaflowa._setup_quantify_misfit(source_name="001", iteration=1, + step_count=1) + assert(config.eval_tag == "i01s01") + # Data specific time series values calculated by function + assert(config.start_pad == 48) + assert(config.end_pad == 299.94) + + +def test_pyaflowa_quantify_misfit_station(tmpdir): + """ + Check that the function to quantify misfit that should be run in parallel + works as a serial job + """ + pyaflowa = Pyaflowa( + workdir=tmpdir, + path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), + path_solver=TEST_SOLVER, source_prefix="SOURCE", ntask=2, + data_case="synthetic", components="Y", + ) + pyaflowa.setup() + config = pyaflowa._setup_quantify_misfit(source_name="001", iteration=1, + step_count=1) + misfit, nwin = pyaflowa._quantify_misfit_station( + config=config, station_code=pyaflowa._station_codes[0], + save_adjsrcs=False + ) + assert(misfit == 33.5304) + assert(nwin == 8.) + + +def test_pyaflowa_quantify_misfit_single(tmpdir): + """ + Test misfit quantification for Pyatoa during a single misfit evaluation. + Waveform data and source and receiver metadata is exposed from the test data directory. Data and synthetics are the same so residuals will be 0. Want to check that we can process in parallel and that Pyatoa outputs figures, - and data + and data. """ pyaflowa = Pyaflowa( workdir=tmpdir, path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), - path_solver=TEST_SOLVER, source_prefix="CMTSOLUTION", ntask=2, + path_solver=TEST_SOLVER, source_prefix="SOURCE", ntask=2, data_case="synthetic", components="Y", ) pyaflowa.setup() - save_residuals = os.path.join(tmpdir, "residuals.txt") for source_name in pyaflowa._source_names: save_residuals = os.path.join(tmpdir, f"residuals_{source_name}.txt") pyaflowa.quantify_misfit(source_name=source_name, @@ -148,18 +189,107 @@ def test_pyaflowa_quantify_misfit(tmpdir): save_adjsrcs=tmpdir) residuals = np.loadtxt(save_residuals) # just check one of the file - assert(residuals == 0.) # data and synthetics are the same + assert(residuals == 0.919) # Check that windows and adjoint sources were saved to dataset + nwin = {"001": 45, "002": 48} for source_name in pyaflowa._source_names: with ASDFDataSet(os.path.join(pyaflowa.path._datasets, f"{source_name}.h5")) as ds: - # Pyatoa selects 18 windows for 2 events and 2 stations - assert(len(ds.auxiliary_data.MisfitWindows.i01.s00.list()) == 18) - assert(len(ds.auxiliary_data.AdjointSources.i01.s00.list()) == 2) + # Pyatoa selects N number windows for each source + assert(len(ds.auxiliary_data.MisfitWindows.i01.s00.list()) == + nwin[source_name]) + assert(len(ds.auxiliary_data.AdjointSources.i01.s00.list()) == 5) # Check that adjoint sources are all zero adjsrcs = glob(os.path.join(tmpdir, "*.adj")) for adjsrc in adjsrcs: data = np.loadtxt(adjsrc) - assert(not data[:,1].any()) # assert all zeros + assert(data[:, 1].any()) # assert that adjoint sourcse are not zero + + +def test_pyaflowa_check_fixed_windows(tmpdir): + """ + Test that misfit window bool returner always returns how we want it to. + """ + pf = Pyaflowa(fix_windows=True) + assert(pf._check_fixed_windows(iteration=99, step_count=99)[0]) + pf = Pyaflowa(fix_windows="ITER") + assert(not pf._check_fixed_windows(iteration=1, step_count=0)[0]) + assert(pf._check_fixed_windows(iteration=1, step_count=1)[0]) + pf = Pyaflowa(fix_windows="ONCE", start=5) + assert(not pf._check_fixed_windows(iteration=5, step_count=0)[0]) + assert(pf._check_fixed_windows(iteration=5, step_count=1)[0]) + assert(pf._check_fixed_windows(iteration=6, step_count=0)[0]) + + +def test_pyaflowa_finalize(tmpdir): + """ + Test teardown procedures for the Pyaflowa preprocessing module which + includes creating an Inspector, condensing PDF files, and exporting + files to disk. + """ + pyaflowa = Pyaflowa( + workdir=tmpdir, + path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), + path_output=os.path.join(tmpdir, "output"), + path_solver=TEST_SOLVER, source_prefix="SOURCE", ntask=2, + data_case="synthetic", components="Y", fix_windows="ITER", + export_datasets=True, export_figures=True, export_log_files=True, + ) + pyaflowa.setup() + unix.mkdir(pyaflowa.path.output) # usually done by other modules setup + for source_name in pyaflowa._source_names: + for step_count in range(3): + # Ignore any outputs, just want to run misfit quantification + # misfit will not be reducing but thats okay + pyaflowa.quantify_misfit(source_name=source_name, + iteration=1, + step_count=step_count) + + pyaflowa.finalize() + # Just check file count to see that finalize did what it's supposed to do + # since finalize just moves and collects files + assert(len(glob(os.path.join(pyaflowa.path.output, "figures", "*"))) == 1) + assert(len(glob(os.path.join(pyaflowa.path.output, "logs", "*"))) == 6) + assert(len(glob(os.path.join(pyaflowa.path.output, + "datasets", "*.csv"))) == 2) + + +# def test_pyaflowa_quantify_misfit_inversion(tmpdir): +# """ +# Test misfit quantification for Pyatoa but simulating multiple back-to-back +# evaluations as one would encounter during an inversion This would involve +# re-using misfit windows throughout the evaluation, and reading in already +# gathered data from an ASDFDataSet +# """ +# pyaflowa = Pyaflowa( +# workdir=tmpdir, +# path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), +# path_solver=TEST_SOLVER, source_prefix="SOURCE", ntask=1, +# data_case="synthetic", components="Y", fix_windows="ITER", +# ) +# pyaflowa.setup() +# source_name = pyaflowa._source_names[0] +# for step_count in range(2): +# # Ignore any outputs, just want to run misfit quantification +# # misfit will not be reducing but thats okay +# pyaflowa.quantify_misfit(source_name=source_name, +# iteration=1, +# step_count=step_count) +# +# # Check that correct number of PDFs have been made +# assert(len(glob(os.path.join(pyaflowa.path._figures, "*pdf"))) == 4) +# +# # Check datasets for correct formatting of auxiliary data and rand vals +# fid = os.path.join(pyaflowa.path._datasets, f"{source_name}.h5") +# with ASDFDataSet(fid, mode="r") as ds: +# assert(len(ds.waveforms.list()) == 5) +# sta_0 = ds.waveforms[ds.waveforms.list()[0]] +# assert(len(sta_0.list()) == 5) # 1 observed, 4 synthetics +# assert(len(ds.auxiliary_data.AdjointSources.i01) == 2) +# assert(len(ds.auxiliary_data.MisfitWindows.i01) == 2) +# assert(len(ds.auxiliary_data.MisfitWindows.i01.s01.list()) == 45) +# adjsrc = ds.auxiliary_data.AdjointSources.i01.s00.AA_S000004_BXY +# misfit = adjsrc.parameters["misfit"] +# assert(misfit == pytest.approx(18.3167, 3)) diff --git a/seisflows/tests/test_solver.py b/seisflows/tests/test_solver.py index 76b5f48e..854435d7 100644 --- a/seisflows/tests/test_solver.py +++ b/seisflows/tests/test_solver.py @@ -40,7 +40,7 @@ def test_initialize_working_directory(tmpdir): solver = Specfem(path_specfem_data=specfem_data, path_specfem_bin=specfem_bin, - source_prefix="CMTSOLUTION", workdir=tmpdir + source_prefix="SOURCE", workdir=tmpdir ) assert(not os.path.exists(solver.path.mainsolver)) @@ -57,10 +57,10 @@ def test_initialize_working_directory(tmpdir): assert(os.path.islink(solver.path.mainsolver)) assert(os.path.exists(solver.cwd)) assert(glob(os.path.join(solver.cwd, "*"))) - event_fid = os.path.join(solver.cwd, "DATA", "CMTSOLUTION") + event_fid = os.path.join(solver.cwd, "DATA", "SOURCE") assert(os.path.islink(event_fid)) - event_line = open(event_fid).readlines()[1].strip() - assert(event_line.split(":")[1].strip() == "001") + event_line = open(event_fid).readlines()[0].strip() + assert(event_line == "## Source 1") def test_run_binary(tmpdir): From 11b45062060be015f7b0f4e89b4352192b20ecf8 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 2 Aug 2022 18:03:23 -0800 Subject: [PATCH 100/195] removing test data and slimming down preprocess integration test because tests were taking too long. also condensed pyaflowa test to a single integration line search test that tests all functionality at once --- seisflows/preprocess/pyaflowa.py | 128 +- .../old_test_solver/001/DATA/CMTSOLUTION_001 | 0 .../old_test_solver/001/DATA/CMTSOLUTION_002 | 0 .../old_test_solver/001/DATA/CMTSOLUTION_003 | 0 .../old_test_solver/001/DATA/CMTSOLUTION_004 | 0 .../old_test_solver/001/DATA/CMTSOLUTION_005 | 0 .../old_test_solver/001/DATA/CMTSOLUTION_006 | 0 .../old_test_solver/001/DATA/Par_file | 0 .../old_test_solver/001/DATA/STATIONS | 0 .../old_test_solver/001/bin/xcombine_sem | 0 .../old_test_solver/001/bin/xmeshfem2D | 0 .../old_test_solver/001/bin/xsmooth_sem | 0 .../old_test_solver/001/bin/xspecfem2D | 0 .../001/traces/obs/AA.S0001.BXY.semd | 0 .../001/traces/obs/AA.S0002.BXY.semd | 0 .../001/traces/syn/AA.S0001.BXY.semd | 0 .../001/traces/syn/AA.S0002.BXY.semd | 0 .../old_test_solver/002/DATA/CMTSOLUTION_001 | 0 .../old_test_solver/002/DATA/CMTSOLUTION_002 | 0 .../old_test_solver/002/DATA/CMTSOLUTION_003 | 0 .../old_test_solver/002/DATA/CMTSOLUTION_004 | 0 .../old_test_solver/002/DATA/CMTSOLUTION_005 | 0 .../old_test_solver/002/DATA/CMTSOLUTION_006 | 0 .../old_test_solver/002/DATA/Par_file | 0 .../old_test_solver/002/DATA/STATIONS | 0 .../old_test_solver/002/bin/xcombine_sem | 0 .../old_test_solver/002/bin/xmeshfem2D | 0 .../old_test_solver/002/bin/xsmooth_sem | 0 .../old_test_solver/002/bin/xspecfem2D | 0 .../002/traces/obs/AA.S0001.BXY.semd | 0 .../002/traces/obs/AA.S0002.BXY.semd | 0 .../002/traces/syn/AA.S0001.BXY.semd | 0 .../002/traces/syn/AA.S0002.BXY.semd | 0 .../old_test_solver/sources/CMTSOLUTION_001 | 0 .../old_test_solver/sources/CMTSOLUTION_002 | 0 .../old_test_solver/sources/SOURCE_001 | 0 .../old_test_solver/sources/SOURCE_002 | 0 .../test_data/test_solver/001/DATA/STATIONS | 3 - .../001/traces/obs/AA.S000002.BXY.semd | 5000 ----------------- .../001/traces/obs/AA.S000003.BXY.semd | 5000 ----------------- .../001/traces/obs/AA.S000004.BXY.semd | 5000 ----------------- .../001/traces/syn/AA.S000002.BXY.semd | 5000 ----------------- .../001/traces/syn/AA.S000003.BXY.semd | 5000 ----------------- .../001/traces/syn/AA.S000004.BXY.semd | 5000 ----------------- .../test_data/test_solver/002/DATA/STATIONS | 3 - .../002/traces/obs/AA.S000002.BXY.semd | 5000 ----------------- .../002/traces/obs/AA.S000003.BXY.semd | 5000 ----------------- .../002/traces/obs/AA.S000004.BXY.semd | 5000 ----------------- .../002/traces/syn/AA.S000002.BXY.semd | 5000 ----------------- .../002/traces/syn/AA.S000003.BXY.semd | 5000 ----------------- .../002/traces/syn/AA.S000004.BXY.semd | 5000 ----------------- seisflows/tests/test_preprocess.py | 153 +- 52 files changed, 96 insertions(+), 60191 deletions(-) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/DATA/CMTSOLUTION_001 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/DATA/CMTSOLUTION_002 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/DATA/CMTSOLUTION_003 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/DATA/CMTSOLUTION_004 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/DATA/CMTSOLUTION_005 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/DATA/CMTSOLUTION_006 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/DATA/Par_file (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/DATA/STATIONS (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/bin/xcombine_sem (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/bin/xmeshfem2D (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/bin/xsmooth_sem (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/bin/xspecfem2D (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/traces/obs/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/traces/obs/AA.S0002.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/traces/syn/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/001/traces/syn/AA.S0002.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/DATA/CMTSOLUTION_001 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/DATA/CMTSOLUTION_002 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/DATA/CMTSOLUTION_003 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/DATA/CMTSOLUTION_004 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/DATA/CMTSOLUTION_005 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/DATA/CMTSOLUTION_006 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/DATA/Par_file (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/DATA/STATIONS (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/bin/xcombine_sem (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/bin/xmeshfem2D (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/bin/xsmooth_sem (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/bin/xspecfem2D (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/traces/obs/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/traces/obs/AA.S0002.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/traces/syn/AA.S0001.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/002/traces/syn/AA.S0002.BXY.semd (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/sources/CMTSOLUTION_001 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/sources/CMTSOLUTION_002 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/sources/SOURCE_001 (100%) rename seisflows/tests/test_data/{ => hold}/old_test_solver/sources/SOURCE_002 (100%) delete mode 100644 seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000002.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000003.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000004.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000002.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000003.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000004.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000002.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000003.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000004.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000002.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000003.BXY.semd delete mode 100644 seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000004.BXY.semd diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index a0807397..e6aa4307 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -97,7 +97,7 @@ def __init__(self, min_period=1., max_period=10., filter_corners=4, workdir=os.getcwd(), path_preprocess=None, path_solver=None, path_specfem_data=None, path_data=None, path_output=None, data_format="ascii", - data_case="data", components=None, + data_case="data", components="ZNE", start=None, ntask=1, nproc=1, source_prefix=None, **kwargs): """ @@ -263,55 +263,6 @@ def setup(self): source_prefix=self._source_prefix, ntask=self._ntask ) - def _setup_quantify_misfit(self, source_name, iteration, step_count): - """ - Create an event-specific Config object which contains information about - the current event, and position in the workflow evaluation. Also - provides specific information on event paths and timing to be used by - the Manager - - :type source_name: str - :param source_name: name of the event to quantify misfit for. If not - given, will attempt to gather event id from the given task id which - is assigned by system.run() - :type iteration: int - :param iteration: current iteration of the workflow, information should - be provided by `workflow` module if we are running an inversion. - Defaults to 1 if not given (1st iteration) - :type step_count: int - :param step_count: current step count of the line search. Information - should be provided by the `optimize` module if we are running an - inversion. Defaults to 0 if not given (1st evaluation) - :rtype: pyatoa.core.config.Config - :return: Config object that is specifically crafted for a given event - that can be directly fed to the Manager for misfit quantification - """ - config = self._config.copy() - config.event_id = source_name or self._source_names[get_task_id()] - config.iteration = iteration - config.step_count = step_count - - # Force the Manager to look in the solver directory for data - # note: we are assuming the SeisFlows `solver` directory structure here. - # If we change how the default `solver` directory is named (defined by - # `solver.initialize_solver_directories()`), then this will break - obs_path = os.path.join(self.path.solver, source_name, "traces", "obs") - config.paths["waveforms"].append(obs_path) - - syn_path = os.path.join(self.path.solver, source_name, "traces", "syn") - config.paths["synthetics"].append(syn_path) - - # Extract start and end times from one of the synthetic traces so that - # Pyatoa knows how long seismograms are and when to start them - # NOTE: assuming all synthetic time axes are the same for this source - synthetics = glob(os.path.join(syn_path, "*")) - assert synthetics, f"Pyatoa found no synthetics in: {syn_path}" - tr_syn = read_sem(synthetics[0])[0] - config.start_pad = abs(tr_syn.stats.time_offset) # [s] must be positive - config.end_pad = tr_syn.stats.endtime - tr_syn.stats.starttime # [s] - - return config - @staticmethod def _ftag(config): """ @@ -352,9 +303,11 @@ def quantify_misfit(self, source_name=None, save_residuals=None, should be provided by the `optimize` module if we are running an inversion. Defaults to 0 if not given (1st evaluation) """ + # Generate an event/evaluation specific config object to control Pyatoa config = self._setup_quantify_misfit(source_name, iteration, step_count) - misfit, nwin = self._run_quantify_misfit(config, save_adjsrcs, False) - + # Run misfit quantification for ALL stations and this given event + misfit, nwin = self._run_quantify_misfit(config, save_adjsrcs, + parallel=True) # Calculate misfit based on the raw misfit and total number of windows if save_residuals: # Calculate the misfit based on the number of windows. Equation from @@ -386,6 +339,55 @@ def quantify_misfit(self, source_name=None, save_residuals=None, ) self._collect_tmp_log_files(pyatoa_logger, config.event_id) + def _setup_quantify_misfit(self, source_name, iteration, step_count): + """ + Create an event-specific Config object which contains information about + the current event, and position in the workflow evaluation. Also + provides specific information on event paths and timing to be used by + the Manager + + :type source_name: str + :param source_name: name of the event to quantify misfit for. If not + given, will attempt to gather event id from the given task id which + is assigned by system.run() + :type iteration: int + :param iteration: current iteration of the workflow, information should + be provided by `workflow` module if we are running an inversion. + Defaults to 1 if not given (1st iteration) + :type step_count: int + :param step_count: current step count of the line search. Information + should be provided by the `optimize` module if we are running an + inversion. Defaults to 0 if not given (1st evaluation) + :rtype: pyatoa.core.config.Config + :return: Config object that is specifically crafted for a given event + that can be directly fed to the Manager for misfit quantification + """ + config = self._config.copy() + config.event_id = source_name or self._source_names[get_task_id()] + config.iteration = iteration + config.step_count = step_count + + # Force the Manager to look in the solver directory for data + # note: we are assuming the SeisFlows `solver` directory structure here. + # If we change how the default `solver` directory is named (defined by + # `solver.initialize_solver_directories()`), then this will break + obs_path = os.path.join(self.path.solver, source_name, "traces", "obs") + config.paths["waveforms"].append(obs_path) + + syn_path = os.path.join(self.path.solver, source_name, "traces", "syn") + config.paths["synthetics"].append(syn_path) + + # Extract start and end times from one of the synthetic traces so that + # Pyatoa knows how long seismograms are and when to start them + # NOTE: assuming all synthetic time axes are the same for this source + synthetics = glob(os.path.join(syn_path, "*")) + assert synthetics, f"Pyatoa found no synthetics in: {syn_path}" + tr_syn = read_sem(synthetics[0])[0] + config.start_pad = abs(tr_syn.stats.time_offset) # [s] must be positive + config.end_pad = tr_syn.stats.endtime - tr_syn.stats.starttime # [s] + + return config + def _run_quantify_misfit(self, config, save_adjsrcs, parallel=False): """ Run misfit quantification for each station concurrently or in serial. @@ -396,25 +398,25 @@ def _run_quantify_misfit(self, config, save_adjsrcs, parallel=False): misfit, nwin = 0, 0 # Run processing in parallel if parallel: - with ProcessPoolExecutor(max_workers=2) as executor: - futures = ( - executor.submit(self._quantify_misfit_station, config, - code, save_adjsrcs) - for code in self._station_codes - ) - # We only need to return misfit information. All data/results are - # saved to the ASDFDataSet and status is logged to separate log file + with ProcessPoolExecutor(max_workers=1) as executor: + futures = (executor.submit(self._quantify_misfit_station, + config, code, save_adjsrcs) + for code in self._station_codes) + # We only need to return misfit information. All data/results + # are saved to the ASDFDataSet and status is logged to separate + # log file for future in as_completed(futures): _misfit, _nwin = future.result() - del future # Free up memory otherwise ram lock + del future # Free up memory once future is completed if _misfit is not None: misfit += _misfit nwin += _nwin # Run processing in serial else: for code in self._station_codes: - _misfit, _nwin = self._quantify_misfit_station(config, code, - save_adjsrcs) + _misfit, _nwin = self._quantify_misfit_station( + config=config, station_code=code, save_adjsrcs=save_adjsrcs + ) if _misfit is not None: misfit += _misfit nwin += _nwin diff --git a/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_001 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_001 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_001 rename to seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_001 diff --git a/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_002 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_002 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_002 rename to seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_002 diff --git a/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_003 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_003 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_003 rename to seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_003 diff --git a/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_004 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_004 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_004 rename to seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_004 diff --git a/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_005 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_005 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_005 rename to seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_005 diff --git a/seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_006 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_006 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/DATA/CMTSOLUTION_006 rename to seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_006 diff --git a/seisflows/tests/test_data/old_test_solver/001/DATA/Par_file b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/Par_file similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/DATA/Par_file rename to seisflows/tests/test_data/hold/old_test_solver/001/DATA/Par_file diff --git a/seisflows/tests/test_data/old_test_solver/001/DATA/STATIONS b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/STATIONS similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/DATA/STATIONS rename to seisflows/tests/test_data/hold/old_test_solver/001/DATA/STATIONS diff --git a/seisflows/tests/test_data/old_test_solver/001/bin/xcombine_sem b/seisflows/tests/test_data/hold/old_test_solver/001/bin/xcombine_sem similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/bin/xcombine_sem rename to seisflows/tests/test_data/hold/old_test_solver/001/bin/xcombine_sem diff --git a/seisflows/tests/test_data/old_test_solver/001/bin/xmeshfem2D b/seisflows/tests/test_data/hold/old_test_solver/001/bin/xmeshfem2D similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/bin/xmeshfem2D rename to seisflows/tests/test_data/hold/old_test_solver/001/bin/xmeshfem2D diff --git a/seisflows/tests/test_data/old_test_solver/001/bin/xsmooth_sem b/seisflows/tests/test_data/hold/old_test_solver/001/bin/xsmooth_sem similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/bin/xsmooth_sem rename to seisflows/tests/test_data/hold/old_test_solver/001/bin/xsmooth_sem diff --git a/seisflows/tests/test_data/old_test_solver/001/bin/xspecfem2D b/seisflows/tests/test_data/hold/old_test_solver/001/bin/xspecfem2D similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/bin/xspecfem2D rename to seisflows/tests/test_data/hold/old_test_solver/001/bin/xspecfem2D diff --git a/seisflows/tests/test_data/old_test_solver/001/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/traces/obs/AA.S0001.BXY.semd rename to seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/001/traces/obs/AA.S0002.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0002.BXY.semd similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/traces/obs/AA.S0002.BXY.semd rename to seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0002.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/001/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/traces/syn/AA.S0001.BXY.semd rename to seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/001/traces/syn/AA.S0002.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0002.BXY.semd similarity index 100% rename from seisflows/tests/test_data/old_test_solver/001/traces/syn/AA.S0002.BXY.semd rename to seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0002.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_001 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_001 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_001 rename to seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_001 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_002 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_002 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_002 rename to seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_002 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_003 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_003 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_003 rename to seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_003 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_004 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_004 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_004 rename to seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_004 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_005 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_005 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_005 rename to seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_005 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_006 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_006 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/DATA/CMTSOLUTION_006 rename to seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_006 diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/Par_file b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/Par_file similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/DATA/Par_file rename to seisflows/tests/test_data/hold/old_test_solver/002/DATA/Par_file diff --git a/seisflows/tests/test_data/old_test_solver/002/DATA/STATIONS b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/STATIONS similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/DATA/STATIONS rename to seisflows/tests/test_data/hold/old_test_solver/002/DATA/STATIONS diff --git a/seisflows/tests/test_data/old_test_solver/002/bin/xcombine_sem b/seisflows/tests/test_data/hold/old_test_solver/002/bin/xcombine_sem similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/bin/xcombine_sem rename to seisflows/tests/test_data/hold/old_test_solver/002/bin/xcombine_sem diff --git a/seisflows/tests/test_data/old_test_solver/002/bin/xmeshfem2D b/seisflows/tests/test_data/hold/old_test_solver/002/bin/xmeshfem2D similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/bin/xmeshfem2D rename to seisflows/tests/test_data/hold/old_test_solver/002/bin/xmeshfem2D diff --git a/seisflows/tests/test_data/old_test_solver/002/bin/xsmooth_sem b/seisflows/tests/test_data/hold/old_test_solver/002/bin/xsmooth_sem similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/bin/xsmooth_sem rename to seisflows/tests/test_data/hold/old_test_solver/002/bin/xsmooth_sem diff --git a/seisflows/tests/test_data/old_test_solver/002/bin/xspecfem2D b/seisflows/tests/test_data/hold/old_test_solver/002/bin/xspecfem2D similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/bin/xspecfem2D rename to seisflows/tests/test_data/hold/old_test_solver/002/bin/xspecfem2D diff --git a/seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0001.BXY.semd rename to seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0002.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0002.BXY.semd similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/traces/obs/AA.S0002.BXY.semd rename to seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0002.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0001.BXY.semd similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0001.BXY.semd rename to seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0001.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0002.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0002.BXY.semd similarity index 100% rename from seisflows/tests/test_data/old_test_solver/002/traces/syn/AA.S0002.BXY.semd rename to seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0002.BXY.semd diff --git a/seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_001 b/seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_001 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_001 rename to seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_001 diff --git a/seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_002 b/seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_002 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/sources/CMTSOLUTION_002 rename to seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_002 diff --git a/seisflows/tests/test_data/old_test_solver/sources/SOURCE_001 b/seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_001 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/sources/SOURCE_001 rename to seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_001 diff --git a/seisflows/tests/test_data/old_test_solver/sources/SOURCE_002 b/seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_002 similarity index 100% rename from seisflows/tests/test_data/old_test_solver/sources/SOURCE_002 rename to seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_002 diff --git a/seisflows/tests/test_data/test_solver/001/DATA/STATIONS b/seisflows/tests/test_data/test_solver/001/DATA/STATIONS index 8f979fe1..02d3056f 100644 --- a/seisflows/tests/test_data/test_solver/001/DATA/STATIONS +++ b/seisflows/tests/test_data/test_solver/001/DATA/STATIONS @@ -1,5 +1,2 @@ S000000 AA 2.43610e+05 2.78904e+05 0.0 0.0 S000001 AA 3.38981e+05 1.77849e+05 0.0 0.0 -S000002 AA 1.64438e+05 2.94733e+05 0.0 0.0 -S000003 AA 9.22250e+04 3.68887e+05 0.0 0.0 -S000004 AA 2.90702e+05 2.46865e+05 0.0 0.0 diff --git a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000002.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000002.BXY.semd deleted file mode 100644 index 5a4841c6..00000000 --- a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000002.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 2.8448777843012920E-040 - 31.259999999999991 9.5316967818705756E-040 - 31.319999999999993 2.0663673842513078E-039 - 31.379999999999995 3.6291838206566906E-039 - 31.439999999999998 5.5789939459864446E-039 - 31.500000000000000 7.6626765861820477E-039 - 31.560000000000002 9.7463596849566712E-039 - 31.619999999999990 1.1830042783731295E-038 - 31.679999999999993 1.3559381873391231E-038 - 31.739999999999995 1.4719958244178783E-038 - 31.799999999999997 1.5131694334862930E-038 - 31.859999999999999 1.4700353991053828E-038 - 31.920000000000002 1.3360271448494756E-038 - 31.980000000000004 1.1199874499702326E-038 - 32.039999999999992 8.3917814595606444E-039 - 32.099999999999994 5.2087491679160920E-039 - 32.159999999999997 2.0257168762715396E-039 - 32.219999999999999 -8.0482607178422592E-040 - 32.280000000000001 -2.8978513996861764E-039 - 32.340000000000003 -2.6196656662483760E-039 - 32.399999999999991 4.6125482532678730E-040 - 32.459999999999994 6.1360156629706423E-039 - 32.519999999999996 1.3879496535753793E-038 - 32.579999999999998 2.2989292921823866E-038 - 32.640000000000001 3.3140799655343529E-038 - 32.700000000000003 4.3869111666596522E-038 - 32.759999999999991 5.4597422254484706E-038 - 32.819999999999993 6.1953337693930118E-038 - 32.879999999999995 6.2364254899092391E-038 - 32.939999999999998 5.4687115834290767E-038 - 33.000000000000000 3.8031469785863744E-038 - 33.060000000000002 1.3247376807711185E-038 - 33.119999999999990 -1.6800743270752921E-038 - 33.179999999999993 -4.9255192587028865E-038 - 33.239999999999995 -8.2390917043380973E-038 - 33.299999999999997 -1.0053557147549709E-037 - 33.359999999999999 -9.5000202410706020E-038 - 33.420000000000002 -6.0450841856089031E-038 - 33.480000000000004 6.3377484234901449E-039 - 33.539999999999992 1.0100279138419661E-037 - 33.599999999999994 2.0722199642341719E-037 - 33.659999999999997 3.2172780024025206E-037 - 33.719999999999999 4.4132138654302044E-037 - 33.780000000000001 5.4494882517353924E-037 - 33.840000000000003 6.1781120468664394E-037 - 33.899999999999991 6.4292049499483181E-037 - 33.959999999999994 6.0068673697663256E-037 - 34.019999999999996 4.8321313513251063E-037 - 34.079999999999998 2.8906668843643898E-037 - 34.140000000000001 2.5188205373461687E-038 - 34.200000000000003 -2.8688494531364457E-037 - 34.259999999999991 -6.2445083322573236E-037 - 34.319999999999993 -9.4645190322322267E-037 - 34.379999999999995 -1.2146925344185146E-036 - 34.439999999999998 -1.3558889715930813E-036 - 34.500000000000000 -1.3244792706328302E-036 - 34.560000000000002 -1.0932762556402084E-036 - 34.619999999999990 -6.5794665612495475E-037 - 34.679999999999993 -6.6242616081561760E-038 - 34.739999999999995 6.2150868821539330E-037 - 34.799999999999997 1.3813240571025760E-036 - 34.859999999999999 2.1606235481972667E-036 - 34.920000000000002 2.8549168716078529E-036 - 34.980000000000004 3.3900451455752201E-036 - 35.039999999999992 3.7081405923860407E-036 - 35.099999999999994 3.7342075638661305E-036 - 35.159999999999997 3.4345374690291243E-036 - 35.219999999999999 2.8208339423394814E-036 - 35.280000000000001 1.9082130519186246E-036 - 35.340000000000003 8.3277956068323689E-037 - 35.399999999999991 -3.6993035514028577E-037 - 35.459999999999994 -1.5973732384510871E-036 - 35.519999999999996 -2.7422958352060105E-036 - 35.579999999999998 -3.6900782333701003E-036 - 35.640000000000001 -4.3232646973596571E-036 - 35.700000000000003 -4.4667323683904684E-036 - 35.759999999999991 -4.0794132142946892E-036 - 35.819999999999993 -3.1192422983605502E-036 - 35.879999999999995 -1.6277612266895632E-036 - 35.939999999999998 2.8461983903631589E-037 - 36.000000000000000 2.5265233225668940E-036 - 36.060000000000002 4.9242987257405629E-036 - 36.119999999999990 7.1608706756867734E-036 - 36.179999999999993 9.0628772596433507E-036 - 36.239999999999995 1.0387256753834043E-035 - 36.299999999999997 1.0902438668398107E-035 - 36.359999999999999 1.0417529174616098E-035 - 36.420000000000002 8.7799145970908255E-036 - 36.479999999999990 5.9787580322823684E-036 - 36.539999999999992 1.9850957021817252E-036 - 36.599999999999994 -2.9713516355319243E-036 - 36.659999999999997 -8.7008600903500066E-036 - 36.719999999999999 -1.4860587421393252E-035 - 36.780000000000001 -2.0752442819539347E-035 - 36.840000000000003 -2.5621149096442752E-035 - 36.899999999999991 -2.8785236864993997E-035 - 36.959999999999994 -2.9589449954395555E-035 - 37.019999999999996 -2.7438296433610774E-035 - 37.079999999999998 -2.1828789695023644E-035 - 37.140000000000001 -1.2460776210926349E-035 - 37.200000000000003 8.1810160050744365E-037 - 37.259999999999991 1.7787994183928752E-035 - 37.319999999999993 3.7966475861014476E-035 - 37.379999999999995 6.0435486620764774E-035 - 37.439999999999998 8.4204866308755323E-035 - 37.500000000000000 1.0784687090266801E-034 - 37.560000000000002 1.2963403072412095E-034 - 37.619999999999990 1.4773602920652093E-034 - 37.679999999999993 1.6012267709206189E-034 - 37.739999999999995 1.6474516491320752E-034 - 37.799999999999997 1.5982213632938111E-034 - 37.859999999999999 1.4389256729586375E-034 - 37.920000000000002 1.1589772299919239E-034 - 37.979999999999990 7.5333279616860663E-035 - 38.039999999999992 2.2514893298176665E-035 - 38.099999999999994 -4.1426133931994103E-035 - 38.159999999999997 -1.1433829920211197E-034 - 38.219999999999999 -1.9301252008096431E-034 - 38.280000000000001 -2.7332100955399099E-034 - 38.340000000000003 -3.5008775366644436E-034 - 38.399999999999991 -4.1741564597197955E-034 - 38.459999999999994 -4.6893595961162365E-034 - 38.519999999999996 -4.9813538555100250E-034 - 38.579999999999998 -4.9867382185669278E-034 - 38.640000000000001 -4.6495618341468193E-034 - 38.700000000000003 -3.9252546355517129E-034 - 38.759999999999991 -2.7857524125662715E-034 - 38.819999999999993 -1.2257466718064690E-034 - 38.879999999999995 7.3264127968929192E-035 - 38.939999999999998 3.0377751429930613E-034 - 39.000000000000000 5.6046584844913894E-034 - 39.060000000000002 8.3145799988476621E-034 - 39.119999999999990 1.1016379476706897E-033 - 39.179999999999993 1.3530220935391525E-033 - 39.239999999999995 1.5653659426111713E-033 - 39.299999999999997 1.7170348969990251E-033 - 39.359999999999999 1.7862384052468735E-033 - 39.420000000000002 1.7522539122327846E-033 - 39.479999999999990 1.5971487690758671E-033 - 39.539999999999992 1.3073371636517943E-033 - 39.599999999999994 8.7539466465510781E-034 - 39.659999999999997 3.0165731031579416E-034 - 39.719999999999999 -4.0429515305780799E-034 - 39.780000000000001 -1.2224676725052624E-033 - 39.840000000000003 -2.1217566898437952E-033 - 39.899999999999991 -3.0598166308375091E-033 - 39.959999999999994 -3.9836313824310583E-033 - 40.019999999999996 -4.8308544533517174E-033 - 40.079999999999998 -5.5320250744084228E-033 - 40.140000000000001 -6.0136395183845252E-033 - 40.200000000000003 -6.2020611903649861E-033 - 40.259999999999991 -6.0281751200995495E-033 - 40.319999999999993 -5.4326595345820493E-033 - 40.379999999999995 -4.3715879359238452E-033 - 40.439999999999998 -2.8221436444721200E-033 - 40.500000000000000 -7.8807866919567122E-034 - 40.560000000000002 1.6954793919959040E-033 - 40.619999999999990 4.5582845012737220E-033 - 40.679999999999993 7.6927201465621338E-033 - 40.739999999999995 1.0953464512956325E-032 - 40.799999999999997 1.4159434290095609E-032 - 40.859999999999999 1.7098323738661153E-032 - 40.920000000000002 1.9533932511633078E-032 - 40.979999999999990 2.1216302460668247E-032 - 41.039999999999992 2.1894655263028109E-032 - 41.099999999999994 2.1332725924834627E-032 - 41.159999999999997 1.9326069895310355E-032 - 41.219999999999999 1.5720708209086966E-032 - 41.280000000000001 1.0432028605470623E-032 - 41.340000000000003 3.4630433029316202E-033 - 41.399999999999991 -5.0793269406737954E-033 - 41.459999999999994 -1.4971251382078509E-032 - 41.519999999999996 -2.5863664468419782E-032 - 41.579999999999998 -3.7279992516171747E-032 - 41.640000000000001 -4.8621114740321098E-032 - 41.700000000000003 -5.9178643801290739E-032 - 41.759999999999991 -6.8157241536272673E-032 - 41.819999999999993 -7.4706260013979860E-032 - 41.879999999999995 -7.7960532898477984E-032 - 41.939999999999998 -7.7089627927694634E-032 - 42.000000000000000 -7.1354128151353891E-032 - 42.060000000000002 -6.0166937367726967E-032 - 42.119999999999990 -4.3156912032648045E-032 - 42.179999999999993 -2.0231513991049416E-032 - 42.239999999999995 8.3654254930301390E-033 - 42.299999999999997 4.2004996427954972E-032 - 42.359999999999999 7.9638196558765078E-032 - 42.420000000000002 1.1977911393642069E-031 - 42.479999999999990 1.6051058136044132E-031 - 42.539999999999992 1.9951614793509164E-031 - 42.599999999999994 2.3414150590702500E-031 - 42.659999999999997 2.6148690537036006E-031 - 42.719999999999999 2.7853126581652801E-031 - 42.780000000000001 2.8228641219003088E-031 - 42.840000000000003 2.6997828838956946E-031 - 42.899999999999991 2.3924953158357822E-031 - 42.959999999999994 1.8837567026486372E-031 - 43.019999999999996 1.1648524876496732E-031 - 43.079999999999998 2.3771557578730711E-032 - 43.140000000000001 -8.8317293546095654E-032 - 43.200000000000003 -2.1692560929555823E-031 - 43.259999999999991 -3.5768940805788403E-031 - 43.319999999999993 -5.0470447708420179E-031 - 43.379999999999995 -6.5057667171160976E-031 - 43.439999999999998 -7.8656786956408458E-031 - 43.500000000000000 -9.0284670012511217E-031 - 43.560000000000002 -9.8884937647988259E-031 - 43.619999999999990 -1.0337505764615131E-030 - 43.679999999999993 -1.0270383134968220E-030 - 43.739999999999995 -9.5917921268422934E-031 - 43.799999999999997 -8.2235307211555083E-031 - 43.859999999999999 -6.1122810893745702E-031 - 43.920000000000002 -3.2373987470397667E-031 - 43.979999999999990 3.8169650908395083E-032 - 44.039999999999992 4.6790302507539244E-031 - 44.099999999999994 9.5370137178529124E-031 - 44.159999999999997 1.4783384269495122E-030 - 44.219999999999999 2.0190693650430422E-030 - 44.280000000000001 2.5478843379700591E-030 - 44.340000000000003 3.0321112511200485E-030 - 44.399999999999991 3.4353979251751474E-030 - 44.459999999999994 3.7190906954191741E-030 - 44.519999999999996 3.8440024573186421E-030 - 44.579999999999998 3.7725471797035991E-030 - 44.640000000000001 3.4711850331051498E-030 - 44.700000000000003 2.9130988476046753E-030 - 44.759999999999991 2.0809921421018854E-030 - 44.819999999999993 9.6987621139331035E-031 - 44.879999999999995 -4.1031945523803932E-031 - 44.939999999999998 -2.0324907238192315E-030 - 45.000000000000000 -3.8506504465880245E-030 - 45.060000000000002 -5.7989687702795211E-030 - 45.119999999999990 -7.7917581809243923E-030 - 45.179999999999993 -9.7245763566882189E-030 - 45.239999999999995 -1.1476596954679068E-029 - 45.299999999999997 -1.2914347707769528E-029 - 45.359999999999999 -1.3896865193540614E-029 - 45.420000000000002 -1.4282228250666310E-029 - 45.479999999999990 -1.3935371378788740E-029 - 45.539999999999992 -1.2736968152972472E-029 - 45.599999999999994 -1.0593084446523269E-029 - 45.659999999999997 -7.4452036084649510E-030 - 45.719999999999999 -3.2801290784402456E-030 - 45.780000000000001 1.8608188892378566E-030 - 45.840000000000003 7.8739390524830703E-030 - 45.899999999999991 1.4587325927466023E-029 - 45.959999999999994 2.1757781589699083E-029 - 46.019999999999996 2.9071121935074251E-029 - 46.079999999999998 3.6146500871525616E-029 - 46.140000000000001 4.2545244426227117E-029 - 46.200000000000003 4.7784519296771127E-029 - 46.259999999999991 5.1355980718742777E-029 - 46.319999999999993 5.2749240642936744E-029 - 46.379999999999995 5.1479774219815822E-029 - 46.439999999999998 4.7120489007861428E-029 - 46.500000000000000 3.9335913698670954E-029 - 46.560000000000002 2.7917572698434689E-029 - 46.619999999999990 1.2818814591021923E-029 - 46.679999999999993 -5.8129263998630493E-030 - 46.739999999999995 -2.7608639846898412E-029 - 46.799999999999997 -5.1957430695030554E-029 - 46.859999999999999 -7.7995839544377122E-029 - 46.920000000000002 -1.0460892803295586E-028 - 46.979999999999990 -1.3044547848358083E-028 - 47.039999999999992 -1.5394872819241055E-028 - 47.099999999999994 -1.7340396946597784E-028 - 47.159999999999997 -1.8700325489534772E-028 - 47.219999999999999 -1.9292695092416855E-028 - 47.280000000000001 -1.8944058363675065E-028 - 47.340000000000003 -1.7500445439812372E-028 - 47.399999999999991 -1.4839248489527292E-028 - 47.459999999999994 -1.0881540579112997E-028 - 47.519999999999996 -5.6042406026882811E-029 - 47.579999999999998 9.4855373418949955E-030 - 47.640000000000001 8.6558286857076114E-029 - 47.700000000000003 1.7312306201868261E-028 - 47.759999999999991 2.6624341397887488E-028 - 47.819999999999993 3.6209809090209871E-028 - 47.879999999999995 4.5602727817508376E-028 - 47.939999999999998 5.4263212167581293E-028 - 48.000000000000000 6.1593150585530332E-028 - 48.060000000000002 6.6957785248644472E-028 - 48.119999999999990 6.9713103879184594E-028 - 48.179999999999993 6.9238574363878430E-028 - 48.239999999999995 6.4974481005582307E-028 - 48.299999999999997 5.6462626046525695E-028 - 48.359999999999999 4.3388881011345093E-028 - 48.420000000000002 2.5625615157329634E-028 - 48.479999999999990 3.2717974967762817E-029 - 48.539999999999992 -2.3311892689046295E-028 - 48.599999999999994 -5.3475490155826463E-028 - 48.659999999999997 -8.6262618821256838E-028 - 48.719999999999999 -1.2040660249300289E-027 - 48.780000000000001 -1.5434219064149288E-027 - 48.840000000000003 -1.8623514573281424E-027 - 48.899999999999991 -2.1403124228287129E-027 - 48.959999999999994 -2.3552557548126590E-027 - 49.019999999999996 -2.4845197038025897E-027 - 49.079999999999998 -2.5059152842732684E-027 - 49.140000000000001 -2.3989779172139601E-027 - 49.200000000000003 -2.1463508290394144E-027 - 49.259999999999991 -1.7352487644867060E-027 - 49.319999999999993 -1.1589418147614648E-027 - 49.379999999999995 -4.1818321938671864E-028 - 49.439999999999998 4.7750237387942655E-028 - 49.500000000000000 1.5087613897811086E-027 - 49.560000000000002 2.6456830563072847E-027 - 49.619999999999990 3.8474932330961917E-027 - 49.679999999999993 5.0627646722229765E-027 - 49.739999999999995 6.2302187835666498E-027 - 49.799999999999997 7.2801844984088294E-027 - 49.859999999999999 8.1367569773873950E-027 - 49.920000000000002 8.7206596168681897E-027 - 49.979999999999990 8.9527909056529637E-027 - 50.039999999999992 8.7583876071406817E-027 - 50.099999999999994 8.0717004225815041E-027 - 50.159999999999997 6.8410229200423158E-027 - 50.219999999999999 5.0338810202139819E-027 - 50.280000000000001 2.6421357634235848E-027 - 50.340000000000003 -3.1328377020409416E-028 - 50.399999999999991 -3.7783231610872543E-027 - 50.459999999999994 -7.6627508458876582E-027 - 50.519999999999996 -1.1838464694362104E-026 - 50.579999999999998 -1.6139459540584789E-026 - 50.640000000000001 -2.0363780147915798E-026 - 50.700000000000003 -2.4277682314867050E-026 - 50.759999999999991 -2.7622189357656294E-026 - 50.819999999999993 -3.0122132735871016E-026 - 50.879999999999995 -3.1497622422696690E-026 - 50.939999999999998 -3.1477805423163263E-026 - 51.000000000000000 -2.9816574809361761E-026 - 51.060000000000002 -2.6309778606832316E-026 - 51.119999999999990 -2.0813275746338522E-026 - 51.179999999999993 -1.3261066074431319E-026 - 51.239999999999995 -3.6825380217069466E-027 - 51.299999999999997 7.7821882893022889E-027 - 51.359999999999999 2.0869990336518717E-026 - 51.420000000000002 3.5186705889708584E-026 - 51.479999999999990 5.0204520348727912E-026 - 51.539999999999992 6.5265812618019460E-026 - 51.599999999999994 7.9594521058758950E-026 - 51.659999999999997 9.2315607044038246E-026 - 51.719999999999999 1.0248318231396994E-025 - 51.780000000000001 1.0911723486901387E-025 - 51.840000000000003 1.1124866590190286E-025 - 51.899999999999991 1.0797167633055923E-025 - 51.959999999999994 9.8502123097621082E-026 - 52.019999999999996 8.2239817306288011E-026 - 52.079999999999998 5.8832273482379051E-026 - 52.140000000000001 2.8236755450894449E-026 - 52.200000000000003 -9.2228353647813999E-027 - 52.259999999999991 -5.2808124958837304E-026 - 52.319999999999993 -1.0133158445234671E-025 - 52.379999999999995 -1.5313910372662314E-025 - 52.439999999999998 -2.0611380053022774E-025 - 52.500000000000000 -2.5770456519038901E-025 - 52.560000000000002 -3.0498224347507484E-025 - 52.619999999999990 -3.4472548127417023E-025 - 52.679999999999993 -3.7353673343874914E-025 - 52.739999999999995 -3.8798800173302220E-025 - 52.799999999999997 -3.8479397813758695E-025 - 52.859999999999999 -3.6100793617390048E-025 - 52.920000000000002 -3.1423488032550181E-025 - 52.979999999999990 -2.4285339994374323E-025 - 53.039999999999992 -1.4623642083004172E-025 - 53.099999999999994 -2.4959095949610604E-026 - 53.159999999999997 1.1901908584536593E-025 - 53.219999999999999 2.8221205549613533E-025 - 53.280000000000001 4.5951916796501594E-025 - 53.339999999999989 6.4420588941656807E-025 - 53.399999999999991 8.2796567371876207E-025 - 53.459999999999994 1.0010742396011504E-024 - 53.519999999999996 1.1526451858183404E-024 - 53.579999999999998 1.2709907046587180E-024 - 53.640000000000001 1.3440871641343187E-024 - 53.700000000000003 1.3601403784390051E-024 - 53.759999999999991 1.3082384384775180E-024 - 53.819999999999993 1.1790734028893930E-024 - 53.879999999999995 9.6570706291104494E-025 - 53.939999999999998 6.6434848800301571E-025 - 54.000000000000000 2.7510484015981253E-025 - 54.060000000000002 -1.9733767991117632E-025 - 54.119999999999990 -7.4314972131135746E-025 - 54.179999999999993 -1.3469634887490251E-024 - 54.239999999999995 -1.9876930579756688E-024 - 54.299999999999997 -2.6386198603062680E-024 - 54.359999999999999 -3.2677832167909341E-024 - 54.420000000000002 -3.8387131430245607E-024 - 54.479999999999990 -4.3115204566417298E-024 - 54.539999999999992 -4.6443575698113555E-024 - 54.599999999999994 -4.7952336159912043E-024 - 54.659999999999997 -4.7241559797599034E-024 - 54.719999999999999 -4.3955419948987595E-024 - 54.780000000000001 -3.7808256572438696E-024 - 54.839999999999989 -2.8611570466325635E-024 - 54.899999999999991 -1.6300737689284829E-024 - 54.959999999999994 -9.6000817657417441E-026 - 55.019999999999996 1.7155766397078702E-024 - 55.079999999999998 3.7604413218986080E-024 - 55.140000000000001 5.9746365401965816E-024 - 55.200000000000003 8.2742947187688349E-024 - 55.259999999999991 1.0556455727395630E-023 - 55.319999999999993 1.2701005723074830E-023 - 55.379999999999995 1.4573813197854390E-023 - 55.439999999999998 1.6031138123828298E-023 - 55.500000000000000 1.6925279857612827E-023 - 55.560000000000002 1.7111405389624021E-023 - 55.619999999999990 1.6455407574207343E-023 - 55.679999999999993 1.4842572044930014E-023 - 55.739999999999995 1.2186756772789033E-023 - 55.799999999999997 8.4396981078316894E-024 - 55.859999999999999 3.6000022014821024E-024 - 55.920000000000002 -2.2786807757326972E-024 - 55.979999999999990 -9.0808681825164905E-024 - 56.039999999999992 -1.6624388261454599E-023 - 56.099999999999994 -2.4658052733088475E-023 - 56.159999999999997 -3.2862406973385848E-023 - 56.219999999999999 -4.0854008462890999E-023 - 56.280000000000001 -4.8193647499810826E-023 - 56.339999999999989 -5.4398751881551926E-023 - 56.399999999999991 -5.8960065405364567E-023 - 56.459999999999994 -6.1362507287617916E-023 - 56.519999999999996 -6.1109833130371417E-023 - 56.579999999999998 -5.7752586005352385E-023 - 56.640000000000001 -5.0918429975563339E-023 - 56.700000000000003 -4.0343849778589311E-023 - 56.759999999999991 -2.5905801633983337E-023 - 56.819999999999993 -7.6517876944962317E-024 - 56.879999999999995 1.4173330949128878E-023 - 56.939999999999998 3.9105788374248489E-023 - 57.000000000000000 6.6448374581367887E-023 - 57.060000000000002 9.5264977084114439E-023 - 57.119999999999990 1.2438578481906030E-022 - 57.179999999999993 1.5242484003366119E-022 - 57.239999999999995 1.7781097446715231E-022 - 57.299999999999997 1.9883299256489242E-022 - 57.359999999999999 2.1369914467355882E-022 - 57.420000000000002 2.2061030097316918E-022 - 57.479999999999990 2.1784586529610855E-022 - 57.539999999999992 2.0385989581829010E-022 - 57.599999999999994 1.7738490630986630E-022 - 57.659999999999997 1.3753929438983855E-022 - 57.719999999999999 8.3933994427878511E-023 - 57.780000000000001 1.6772996568660191E-023 - 57.839999999999989 -6.3058027439931087E-023 - 57.899999999999991 -1.5392128669707517E-022 - 57.959999999999994 -2.5338088646129492E-022 - 58.019999999999996 -3.5818765909146460E-022 - 58.079999999999998 -4.6430043917161054E-022 - 58.140000000000001 -5.6694875955873708E-022 - 58.200000000000003 -6.6074088863040186E-022 - 58.259999999999991 -7.3981955720950999E-022 - 58.319999999999993 -7.9806523562841889E-022 - 58.379999999999995 -8.2934617818323223E-022 - 58.439999999999998 -8.2780972837302189E-022 - 58.500000000000000 -7.8820901659629156E-022 - 58.560000000000002 -7.0625475720305966E-022 - 58.619999999999990 -5.7897960545681948E-022 - 58.679999999999993 -4.0510043818254900E-022 - 58.739999999999995 -1.8536073924211675E-022 - 58.799999999999997 7.7166275585313347E-023 - 58.859999999999999 3.7683410387297745E-022 - 58.920000000000002 7.0526054570363138E-022 - 58.979999999999990 1.0512666496595331E-021 - 59.039999999999992 1.4009370237812325E-021 - 59.099999999999994 1.7378187151002594E-021 - 59.159999999999997 2.0432705960828947E-021 - 59.219999999999999 2.2969724654554513E-021 - 59.280000000000001 2.4775967073752570E-021 - 59.339999999999989 2.5636352540961869E-021 - 59.399999999999991 2.5343714194130046E-021 - 59.459999999999994 2.3709730942823715E-021 - 59.519999999999996 2.0576769660540355E-021 - 59.579999999999998 1.5830233622997737E-021 - 59.640000000000001 9.4109349287475568E-022 - 59.700000000000003 1.3269199493492044E-022 - 59.759999999999991 -8.3358706915905134E-022 - 59.819999999999993 -1.9404807180922964E-021 - 59.879999999999995 -3.1614277763314481E-021 - 59.939999999999998 -4.4602648255246620E-021 - 60.000000000000000 -5.7913031709319079E-021 - 60.060000000000002 -7.0998468044324868E-021 - 60.119999999999990 -8.3231955792187989E-021 - 60.179999999999993 -9.3921508704483325E-021 - 60.239999999999995 -1.0233041268611651E-020 - 60.299999999999997 -1.0770239589823338E-020 - 60.359999999999999 -1.0929136742817456E-020 - 60.420000000000002 -1.0639487555220321E-020 - 60.479999999999990 -9.8390281311452026E-021 - 60.539999999999992 -8.4772301890241391E-021 - 60.599999999999994 -6.5190256289597168E-021 - 60.659999999999997 -3.9483086596574976E-021 - 60.719999999999999 -7.7100434693922276E-022 - 60.780000000000001 2.9825317774875502E-021 - 60.839999999999989 7.2560145519243288E-021 - 60.899999999999991 1.1966859807881067E-020 - 60.959999999999994 1.7007184703708609E-020 - 61.019999999999996 2.2246367562772622E-020 - 61.079999999999998 2.7535315600546194E-020 - 61.140000000000001 3.2712568931600031E-020 - 61.200000000000003 3.7612291532769744E-020 - 61.259999999999991 4.2074143458609718E-020 - 61.319999999999993 4.5954838316432056E-020 - 61.379999999999995 4.9141361689330226E-020 - 61.439999999999998 5.1565435842002590E-020 - 61.500000000000000 5.3218902126489762E-020 - 61.560000000000002 5.4169600039263727E-020 - 61.619999999999990 5.4577131914187485E-020 - 61.679999999999993 5.4708100449000230E-020 - 61.739999999999995 5.4949961607637605E-020 - 61.799999999999997 5.5823040825842331E-020 - 61.859999999999999 5.7989974938473965E-020 - 61.920000000000002 6.2262104406669477E-020 - 61.979999999999990 6.9602206739304430E-020 - 62.039999999999992 8.1123293192090448E-020 - 62.099999999999994 9.8083120926897452E-020 - 62.159999999999997 1.2187448683227958E-019 - 62.219999999999999 1.5401157704514277E-019 - 62.280000000000001 1.9611232143037785E-019 - 62.339999999999989 2.4987815128687925E-019 - 62.399999999999991 3.1707142397683109E-019 - 62.459999999999994 3.9949225448753945E-019 - 62.519999999999996 4.9895536286949358E-019 - 62.579999999999998 6.1726995759398065E-019 - 62.640000000000001 7.5622295989885081E-019 - 62.700000000000003 9.1756878550591971E-019 - 62.759999999999991 1.1030269255553194E-018 - 62.819999999999993 1.3142890362185713E-018 - 62.879999999999995 1.5530391324764309E-018 - 62.939999999999998 1.8209849235043847E-018 - 63.000000000000000 2.1199059800755536E-018 - 63.060000000000002 2.4517150962914072E-018 - 63.119999999999990 2.8185367333055110E-018 - 63.179999999999993 3.2227996853673014E-018 - 63.239999999999995 3.6673420876453555E-018 - 63.299999999999997 4.1555300490380944E-018 - 63.359999999999999 4.6913806725383782E-018 - 63.420000000000002 5.2796909744250411E-018 - 63.479999999999990 5.9261628128404758E-018 - 63.539999999999992 6.6375192087857592E-018 - 63.599999999999994 7.4216034422860915E-018 - 63.659999999999997 8.2874465252597121E-018 - 63.719999999999999 9.2453063266367123E-018 - 63.780000000000001 1.0306645797052206E-017 - 63.839999999999989 1.1484057062860252E-017 - 63.899999999999991 1.2791099295724409E-017 - 63.959999999999994 1.4242053992380852E-017 - 64.019999999999996 1.5851556802950004E-017 - 64.079999999999998 1.7634121944910909E-017 - 64.140000000000001 1.9603502864739418E-017 - 64.200000000000003 2.1771883750000450E-017 - 64.259999999999991 2.4148910637032169E-017 - 64.319999999999993 2.6740477895364860E-017 - 64.379999999999995 2.9547307930834983E-017 - 64.439999999999998 3.2563247138803888E-017 - 64.500000000000000 3.5773289344442967E-017 - 64.560000000000002 3.9151243086155599E-017 - 64.619999999999990 4.2657084559710253E-017 - 64.679999999999993 4.6233825060729813E-017 - 64.739999999999995 4.9803997739905086E-017 - 64.799999999999997 5.3265544030877489E-017 - 64.859999999999999 5.6487164692260985E-017 - 64.920000000000002 5.9302959801272509E-017 - 64.979999999999990 6.1506226621291007E-017 - 65.039999999999992 6.2842451922307129E-017 - 65.099999999999994 6.3001228573089401E-017 - 65.159999999999997 6.1606846091112597E-017 - 65.219999999999999 5.8207601711185293E-017 - 65.280000000000001 5.2263318501875171E-017 - 65.339999999999989 4.3131056130810481E-017 - 65.399999999999991 3.0048354885878898E-017 - 65.459999999999994 1.2114023860265397E-017 - 65.519999999999996 -1.1734172462374292E-017 - 65.579999999999998 -4.2745543693771196E-017 - 65.640000000000001 -8.2386520177195691E-017 - 65.700000000000003 -1.3237566280209893E-016 - 65.759999999999991 -1.9472427971643047E-016 - 65.819999999999993 -2.7178298366921227E-016 - 65.879999999999995 -3.6629614789047605E-016 - 65.939999999999998 -4.8146463560080080E-016 - 66.000000000000000 -6.2101785770887900E-016 - 66.060000000000002 -7.8929626531300069E-016 - 66.119999999999990 -9.9134676736156005E-016 - 66.179999999999993 -1.2330327570614010E-015 - 66.239999999999995 -1.5211552525385293E-015 - 66.299999999999997 -1.8635959998871464E-015 - 66.359999999999999 -2.2694786229248152E-015 - 66.420000000000002 -2.7493475602452451E-015 - 66.479999999999990 -3.3153734531096000E-015 - 66.539999999999992 -3.9815849294068510E-015 - 66.599999999999994 -4.7641269330208728E-015 - 66.659999999999997 -5.6815490908094261E-015 - 66.719999999999999 -6.7551337748817047E-015 - 66.780000000000001 -8.0092563600716335E-015 - 66.839999999999989 -9.4717891131451342E-015 - 66.899999999999991 -1.1174548567522708E-014 - 66.959999999999994 -1.3153797886579367E-014 - 67.019999999999996 -1.5450799486184333E-014 - 67.079999999999998 -1.8112427713295177E-014 - 67.140000000000001 -2.1191843430829386E-014 - 67.199999999999989 -2.4749246383097663E-014 - 67.259999999999991 -2.8852690818728145E-014 - 67.319999999999993 -3.3579018179328967E-014 - 67.379999999999995 -3.9014819452449606E-014 - 67.439999999999998 -4.5257582230669354E-014 - 67.500000000000000 -5.2416848302524805E-014 - 67.560000000000002 -6.0615537550800481E-014 - 67.619999999999990 -6.9991371020918849E-014 - 67.679999999999993 -8.0698464711388729E-014 - 67.739999999999995 -9.2908965014865846E-014 - 67.799999999999997 -1.0681491267540011E-013 - 67.859999999999999 -1.2263018208815328E-013 - 67.920000000000002 -1.4059261167249223E-013 - 67.979999999999990 -1.6096617610097937E-013 - 68.039999999999992 -1.8404347921639167E-013 - 68.099999999999994 -2.1014814858583431E-013 - 68.159999999999997 -2.3963757812479294E-013 - 68.219999999999999 -2.7290560242639951E-013 - 68.280000000000001 -3.1038524805783499E-013 - 68.339999999999989 -3.5255166560503548E-013 - 68.399999999999991 -3.9992501285823816E-013 - 68.459999999999994 -4.5307292023444798E-013 - 68.519999999999996 -5.1261370472314313E-013 - 68.579999999999998 -5.7921822188177952E-013 - 68.640000000000001 -6.5361238661402115E-013 - 68.699999999999989 -7.3657848957555399E-013 - 68.759999999999991 -8.2895660173001300E-013 - 68.819999999999993 -9.3164428998564433E-013 - 68.879999999999995 -1.0455962104188026E-012 - 68.939999999999998 -1.1718214171827306E-012 - 69.000000000000000 -1.3113806635261194E-012 - 69.060000000000002 -1.4653789361908065E-012 - 69.119999999999990 -1.6349586937584915E-012 - 69.179999999999993 -1.8212870987116490E-012 - 69.239999999999995 -2.0255415967666095E-012 - 69.299999999999997 -2.2488919472504804E-012 - 69.359999999999999 -2.4924730009051100E-012 - 69.420000000000002 -2.7573554041865554E-012 - 69.479999999999990 -3.0445081139526722E-012 - 69.539999999999992 -3.3547496453619957E-012 - 69.599999999999994 -3.6886923364421497E-012 - 69.659999999999997 -4.0466724539786789E-012 - 69.719999999999999 -4.4286669014417110E-012 - 69.780000000000001 -4.8341931256045452E-012 - 69.839999999999989 -5.2621902535806605E-012 - 69.899999999999991 -5.7108777467396473E-012 - 69.959999999999994 -6.1775880883792064E-012 - 70.019999999999996 -6.6585669323033289E-012 - 70.079999999999998 -7.1487456095138127E-012 - 70.140000000000001 -7.6414613284961257E-012 - 70.199999999999989 -8.1281468416037000E-012 - 70.259999999999991 -8.5979518885788911E-012 - 70.319999999999993 -9.0373139727130620E-012 - 70.379999999999995 -9.4294509451302808E-012 - 70.439999999999998 -9.7537803865976351E-012 - 70.500000000000000 -9.9852456846491770E-012 - 70.560000000000002 -1.0093529675401277E-011 - 70.619999999999990 -1.0042157013365458E-011 - 70.679999999999993 -9.7874529670969209E-012 - 70.739999999999995 -9.2773568118000725E-012 - 70.799999999999997 -8.4500421471857157E-012 - 70.859999999999999 -7.2323523088222840E-012 - 70.920000000000002 -5.5379813005966950E-012 - 70.979999999999990 -3.2654431462333621E-012 - 71.039999999999992 -2.9569419916905782E-013 - 71.099999999999994 3.5105603503131555E-012 - 71.159999999999997 8.3158951047701476E-012 - 71.219999999999999 1.4309688528886047E-011 - 71.280000000000001 2.1712073480632736E-011 - 71.339999999999989 3.0778423929603644E-011 - 71.399999999999991 4.1804492574761081E-011 - 71.459999999999994 5.5132189710588366E-011 - 71.519999999999996 7.1156194919460575E-011 - 71.579999999999998 9.0331277400768316E-011 - 71.640000000000001 1.1318077491970421E-010 - 71.699999999999989 1.4030608273391052E-010 - 71.759999999999991 1.7239726870925513E-010 - 71.819999999999993 2.1024507940640227E-010 - 71.879999999999995 2.5475470677731422E-010 - 71.939999999999998 3.0696097277057185E-010 - 72.000000000000000 3.6804546649291795E-010 - 72.060000000000002 4.3935570324156195E-010 - 72.119999999999990 5.2242714691327643E-010 - 72.179999999999993 6.1900702800451985E-010 - 72.239999999999995 7.3108187184512828E-010 - 72.299999999999997 8.6090780068699945E-010 - 72.359999999999999 1.0110448526448411E-009 - 72.420000000000002 1.1843947845868516E-009 - 72.479999999999990 1.3842434849366424E-009 - 72.539999999999992 1.6143090673297545E-009 - 72.599999999999994 1.8787940963201662E-009 - 72.659999999999997 2.1824456453286426E-009 - 72.719999999999999 2.5306189930000082E-009 - 72.780000000000001 2.9293527258608941E-009 - 72.839999999999989 3.3854505302217938E-009 - 72.899999999999991 3.9065696040116903E-009 - 72.959999999999994 4.5013211791125281E-009 - 73.019999999999996 5.1793842629250996E-009 - 73.079999999999998 5.9516249491248608E-009 - 73.140000000000001 6.8302360481870324E-009 - 73.199999999999989 7.8288918528621951E-009 - 73.259999999999991 8.9629084714124242E-009 - 73.319999999999993 1.0249429325179088E-008 - 73.379999999999995 1.1707640260185118E-008 - 73.439999999999998 1.3358980517519509E-008 - 73.500000000000000 1.5227402950954431E-008 - 73.560000000000002 1.7339644658997401E-008 - 73.619999999999990 1.9725527966389252E-008 - 73.679999999999993 2.2418300798916740E-008 - 73.739999999999995 2.5454991266810888E-008 - 73.799999999999997 2.8876809693191988E-008 - 73.859999999999999 3.2729622296675104E-008 - 73.920000000000002 3.7064392100534995E-008 - 73.979999999999990 4.1937741481511451E-008 - 74.039999999999992 4.7412525682061945E-008 - 74.099999999999994 5.3558462062294195E-008 - 74.159999999999997 6.0452868993616819E-008 - 74.219999999999999 6.8181380088374265E-008 - 74.280000000000001 7.6838816678827859E-008 - 74.339999999999989 8.6530099016463961E-008 - 74.399999999999991 9.7371237700762340E-008 - 74.459999999999994 1.0949042825193075E-007 - 74.519999999999996 1.2302922364559448E-007 - 74.579999999999998 1.3814381764963453E-007 - 74.640000000000001 1.5500650330574512E-007 - 74.699999999999989 1.7380716345254829E-007 - 74.759999999999991 1.9475495691064798E-007 - 74.819999999999993 2.1808011349281300E-007 - 74.879999999999995 2.4403588846966941E-007 - 74.939999999999998 2.7290067554088742E-007 - 75.000000000000000 3.0498038186390757E-007 - 75.060000000000002 3.4061082333819140E-007 - 75.119999999999990 3.8016051065873030E-007 - 75.179999999999993 4.2403349039446364E-007 - 75.239999999999995 4.7267264696327872E-007 - 75.299999999999997 5.2656280134463062E-007 - 75.359999999999999 5.8623480159860340E-007 - 75.420000000000002 6.5226918445856956E-007 - 75.479999999999990 7.2530050078860396E-007 - 75.539999999999992 8.0602193778699912E-007 - 75.599999999999994 8.9519023116844780E-007 - 75.659999999999997 9.9363102570004255E-007 - 75.719999999999999 1.1022444993965628E-006 - 75.780000000000001 1.2220116490823485E-006 - 75.839999999999989 1.3540003531118539E-006 - 75.899999999999991 1.4993730625449197E-006 - 75.959999999999994 1.6593937433378160E-006 - 76.019999999999996 1.8354364898636820E-006 - 76.079999999999998 2.0289932124280400E-006 - 76.140000000000001 2.2416835372400554E-006 - 76.199999999999989 2.4752649195832298E-006 - 76.259999999999991 2.7316416450710601E-006 - 76.319999999999993 3.0128770093090848E-006 - 76.379999999999995 3.3212049509470002E-006 - 76.439999999999998 3.6590426134853329E-006 - 76.500000000000000 4.0290031565283206E-006 - 76.560000000000002 4.4339103673910641E-006 - 76.619999999999990 4.8768138889192451E-006 - 76.679999999999993 5.3610034211819745E-006 - 76.739999999999995 5.8900277612222663E-006 - 76.799999999999997 6.4677103314853196E-006 - 76.859999999999999 7.0981706603284785E-006 - 76.920000000000002 7.7858407755049979E-006 - 76.979999999999990 8.5354890482655549E-006 - 77.039999999999992 9.3522376959843836E-006 - 77.099999999999994 1.0241590869971287E-005 - 77.159999999999997 1.1209456939566666E-005 - 77.219999999999999 1.2262172861897838E-005 - 77.280000000000001 1.3406529841592643E-005 - 77.339999999999989 1.4649800760605864E-005 - 77.399999999999991 1.5999776261246177E-005 - 77.459999999999994 1.7464785427983934E-005 - 77.519999999999996 1.9053735573993851E-005 - 77.579999999999998 2.0776137141121795E-005 - 77.640000000000001 2.2642142670837114E-005 - 77.699999999999989 2.4662584248284601E-005 - 77.759999999999991 2.6849008618800453E-005 - 77.819999999999993 2.9213713264647486E-005 - 77.879999999999995 3.1769783938202927E-005 - 77.939999999999998 3.4531144771442141E-005 - 78.000000000000000 3.7512594483910025E-005 - 78.060000000000002 4.0729846198509290E-005 - 78.119999999999990 4.4199579064136940E-005 - 78.179999999999993 4.7939484409079678E-005 - 78.239999999999995 5.1968301026220153E-005 - 78.299999999999997 5.6305888665528491E-005 - 78.359999999999999 6.0973242312383070E-005 - 78.420000000000002 6.5992573261689218E-005 - 78.479999999999990 7.1387337502016893E-005 - 78.539999999999992 7.7182313055783208E-005 - 78.599999999999994 8.3403623231023024E-005 - 78.659999999999997 9.0078801199084589E-005 - 78.719999999999999 9.7236843838141644E-005 - 78.780000000000001 1.0490826907106051E-004 - 78.839999999999989 1.1312518113635234E-004 - 78.899999999999991 1.2192129351636205E-004 - 78.959999999999994 1.3133199411159046E-004 - 79.019999999999996 1.4139440633151464E-004 - 79.079999999999998 1.5214742548002978E-004 - 79.140000000000001 1.6363183707091607E-004 - 79.199999999999989 1.7589020872030260E-004 - 79.259999999999991 1.8896710716187419E-004 - 79.319999999999993 2.0290903784135028E-004 - 79.379999999999995 2.1776457551635355E-004 - 79.439999999999998 2.3358431432064089E-004 - 79.500000000000000 2.5042096528046011E-004 - 79.560000000000002 2.6832937195484993E-004 - 79.619999999999990 2.8736654888384668E-004 - 79.679999999999993 3.0759170594803084E-004 - 79.739999999999995 3.2906632801459209E-004 - 79.799999999999997 3.5185405021584003E-004 - 79.859999999999999 3.7602080751530096E-004 - 79.920000000000002 4.0163480388858455E-004 - 79.979999999999990 4.2876658249912930E-004 - 80.039999999999992 4.5748887812716309E-004 - 80.099999999999994 4.8787674146050735E-004 - 80.159999999999997 5.2000742435643634E-004 - 80.219999999999999 5.5396039024692325E-004 - 80.280000000000001 5.8981745761996446E-004 - 80.340000000000003 6.2766240503688052E-004 - 80.400000000000006 6.6758121755758533E-004 - 80.460000000000008 7.0966201940897834E-004 - 80.519999999999982 7.5399473099374635E-004 - 80.579999999999984 8.0067122218845175E-004 - 80.639999999999986 8.4978534367764237E-004 - 80.699999999999989 9.0143253848585809E-004 - 80.759999999999991 9.5570992681048644E-004 - 80.819999999999993 1.0127162130166660E-003 - 80.879999999999995 1.0725512302598925E-003 - 80.939999999999998 1.1353161351097384E-003 - 81.000000000000000 1.2011132920859006E-003 - 81.060000000000002 1.2700457833632283E-003 - 81.120000000000005 1.3422175447831168E-003 - 81.180000000000007 1.4177329767029049E-003 - 81.240000000000009 1.4966968339444992E-003 - 81.299999999999983 1.5792138331510034E-003 - 81.359999999999985 1.6653885753935920E-003 - 81.419999999999987 1.7553254287905407E-003 - 81.479999999999990 1.8491278653083281E-003 - 81.539999999999992 1.9468986231400028E-003 - 81.599999999999994 2.0487392268431475E-003 - 81.659999999999997 2.1547496609474795E-003 - 81.719999999999999 2.2650277276775859E-003 - 81.780000000000001 2.3796696604128451E-003 - 81.840000000000003 2.4987686323159697E-003 - 81.900000000000006 2.6224153862105283E-003 - 81.960000000000008 2.7506973951371312E-003 - 82.019999999999982 2.8836984180944450E-003 - 82.079999999999984 3.0214982433725435E-003 - 82.139999999999986 3.1641722529940071E-003 - 82.199999999999989 3.3117912084963085E-003 - 82.259999999999991 3.4644208591584312E-003 - 82.319999999999993 3.6221215944900096E-003 - 82.379999999999995 3.7849467678222407E-003 - 82.439999999999998 3.9529443675346762E-003 - 82.500000000000000 4.1261553415112735E-003 - 82.560000000000002 4.3046137511768764E-003 - 82.620000000000005 4.4883448147486609E-003 - 82.680000000000007 4.6773673642600119E-003 - 82.740000000000009 4.8716902608130202E-003 - 82.799999999999983 5.0713144403865072E-003 - 82.859999999999985 5.2762309294853305E-003 - 82.919999999999987 5.4864213460536129E-003 - 82.979999999999990 5.7018571182132147E-003 - 83.039999999999992 5.9224993382107757E-003 - 83.099999999999994 6.1482979206619361E-003 - 83.159999999999997 6.3791918535016784E-003 - 83.219999999999999 6.6151079569155636E-003 - 83.280000000000001 6.8559630970001333E-003 - 83.340000000000003 7.1016595947059839E-003 - 83.400000000000006 7.3520883505168791E-003 - 83.460000000000008 7.6071273177764388E-003 - 83.519999999999982 7.8666423470450178E-003 - 83.579999999999984 8.1304856556679208E-003 - 83.639999999999986 8.3984959711684536E-003 - 83.699999999999989 8.6704980709568051E-003 - 83.759999999999991 8.9463043783490209E-003 - 83.819999999999993 9.2257125458334432E-003 - 83.879999999999995 9.5085081118341692E-003 - 83.939999999999998 9.7944605537089134E-003 - 84.000000000000000 1.0083328585399762E-002 - 84.060000000000002 1.0374854403156338E-002 - 84.120000000000005 1.0668768244908811E-002 - 84.180000000000007 1.0964788142468714E-002 - 84.240000000000009 1.1262615142228328E-002 - 84.299999999999983 1.1561942089072363E-002 - 84.359999999999985 1.1862446009495181E-002 - 84.419999999999987 1.2163793371404294E-002 - 84.479999999999990 1.2465637130113998E-002 - 84.539999999999992 1.2767619789159395E-002 - 84.599999999999994 1.3069372851119013E-002 - 84.659999999999997 1.3370516591168679E-002 - 84.719999999999999 1.3670661175110659E-002 - 84.780000000000001 1.3969409099483878E-002 - 84.840000000000003 1.4266351730235006E-002 - 84.900000000000006 1.4561072645537580E-002 - 84.960000000000008 1.4853149266329892E-002 - 85.019999999999982 1.5142150365874161E-002 - 85.079999999999984 1.5427640144326998E-002 - 85.139999999999986 1.5709178493940171E-002 - 85.199999999999989 1.5986319158527187E-002 - 85.259999999999991 1.6258613063489347E-002 - 85.319999999999993 1.6525610447391665E-002 - 85.379999999999995 1.6786857605279235E-002 - 85.439999999999998 1.7041902151116041E-002 - 85.500000000000000 1.7290292474504199E-002 - 85.560000000000002 1.7531575828075227E-002 - 85.620000000000005 1.7765305880740091E-002 - 85.680000000000007 1.7991036622811596E-002 - 85.740000000000009 1.8208328027902745E-002 - 85.799999999999983 1.8416747374531302E-002 - 85.859999999999985 1.8615866678572610E-002 - 85.919999999999987 1.8805266007453490E-002 - 85.979999999999990 1.8984537348678675E-002 - 86.039999999999992 1.9153277281908541E-002 - 86.099999999999994 1.9311098495235629E-002 - 86.159999999999997 1.9457625688671119E-002 - 86.219999999999999 1.9592492941892803E-002 - 86.280000000000001 1.9715354243022960E-002 - 86.340000000000003 1.9825875679734466E-002 - 86.400000000000006 1.9923737216839078E-002 - 86.460000000000008 2.0008640891025734E-002 - 86.519999999999982 2.0080302876205929E-002 - 86.579999999999984 2.0138463091596111E-002 - 86.639999999999986 2.0182876456569143E-002 - 86.699999999999989 2.0213319364666742E-002 - 86.759999999999991 2.0229591620744072E-002 - 86.819999999999993 2.0231513904593355E-002 - 86.879999999999995 2.0218929771474284E-002 - 86.939999999999998 2.0191706120590909E-002 - 87.000000000000000 2.0149733763239652E-002 - 87.060000000000002 2.0092926338981576E-002 - 87.120000000000005 2.0021222795240851E-002 - 87.180000000000007 1.9934588794058399E-002 - 87.240000000000009 1.9833013625195579E-002 - 87.299999999999983 1.9716511288547359E-002 - 87.359999999999985 1.9585124690006298E-002 - 87.419999999999987 1.9438919529107146E-002 - 87.479999999999990 1.9277985409185898E-002 - 87.539999999999992 1.9102442743602892E-002 - 87.599999999999994 1.8912432784299701E-002 - 87.659999999999997 1.8708122987282035E-002 - 87.719999999999999 1.8489707677701202E-002 - 87.780000000000001 1.8257402008256558E-002 - 87.840000000000003 1.8011447110571625E-002 - 87.900000000000006 1.7752109508388528E-002 - 87.960000000000008 1.7479677487451630E-002 - 88.019999999999982 1.7194462178007529E-002 - 88.079999999999984 1.6896794291777220E-002 - 88.139999999999986 1.6587027668930301E-002 - 88.199999999999989 1.6265535749214400E-002 - 88.259999999999991 1.5932711942898907E-002 - 88.319999999999993 1.5588966420823467E-002 - 88.379999999999995 1.5234729226245032E-002 - 88.439999999999998 1.4870446423818417E-002 - 88.500000000000000 1.4496578426083092E-002 - 88.560000000000002 1.4113601969652809E-002 - 88.620000000000005 1.3722004093203892E-002 - 88.680000000000007 1.3322287335230335E-002 - 88.740000000000009 1.2914962036656175E-002 - 88.799999999999983 1.2500551685984575E-002 - 88.859999999999985 1.2079585860881660E-002 - 88.919999999999987 1.1652602859063083E-002 - 88.979999999999990 1.1220146080798193E-002 - 89.039999999999992 1.0782764461221981E-002 - 89.099999999999994 1.0341010679534872E-002 - 89.159999999999997 9.8954393639682815E-003 - 89.219999999999999 9.4466066170040552E-003 - 89.280000000000001 8.9950676758757050E-003 - 89.340000000000003 8.5413790017827250E-003 - 89.400000000000006 8.0860911028972776E-003 - 89.460000000000008 7.6297540137092550E-003 - 89.519999999999982 7.1729103101489822E-003 - 89.579999999999984 6.7160984315716415E-003 - 89.639999999999986 6.2598495029910113E-003 - 89.699999999999989 5.8046858383831636E-003 - 89.759999999999991 5.3511216751349622E-003 - 89.819999999999993 4.8996605649465385E-003 - 89.879999999999995 4.4507955526418624E-003 - 89.939999999999998 4.0050075450778766E-003 - 90.000000000000000 3.5627643984329975E-003 - 90.060000000000002 3.1245206838599374E-003 - 90.120000000000005 2.6907171790637977E-003 - 90.180000000000007 2.2617791738807850E-003 - 90.240000000000009 1.8381163364078975E-003 - 90.299999999999983 1.4201222475202033E-003 - 90.359999999999985 1.0081739575687103E-003 - 90.419999999999987 6.0263103413160136E-004 - 90.479999999999990 2.0383558286310834E-004 - 90.539999999999992 -1.8788802988896109E-004 - 90.599999999999994 -5.7223412846862357E-004 - 90.659999999999997 -9.4891508579356902E-004 - 90.719999999999999 -1.3176623012565519E-003 - 90.780000000000001 -1.6782258953884702E-003 - 90.840000000000003 -2.0303750286479734E-003 - 90.900000000000006 -2.3738974369625762E-003 - 90.960000000000008 -2.7085997817702487E-003 - 91.019999999999982 -3.0343080921885262E-003 - 91.079999999999984 -3.3508663586277435E-003 - 91.139999999999986 -3.6581379240478345E-003 - 91.199999999999989 -3.9560039850173772E-003 - 91.259999999999991 -4.2443633932613429E-003 - 91.319999999999993 -4.5231330147720806E-003 - 91.379999999999995 -4.7922477440317818E-003 - 91.439999999999998 -5.0516585253984172E-003 - 91.500000000000000 -5.3013341767187416E-003 - 91.560000000000002 -5.5412582720662396E-003 - 91.620000000000005 -5.7714316965487115E-003 - 91.680000000000007 -5.9918688338075846E-003 - 91.739999999999981 -6.2026006091396042E-003 - 91.799999999999983 -6.4036711667827782E-003 - 91.859999999999985 -6.5951378876066159E-003 - 91.919999999999987 -6.7770721903290055E-003 - 91.979999999999990 -6.9495572489355981E-003 - 92.039999999999992 -7.1126876929892592E-003 - 92.099999999999994 -7.2665708605948931E-003 - 92.159999999999997 -7.4113237201138393E-003 - 92.219999999999999 -7.5470732180596559E-003 - 92.280000000000001 -7.6739561536124795E-003 - 92.340000000000003 -7.7921175337056017E-003 - 92.400000000000006 -7.9017099343738992E-003 - 92.460000000000008 -8.0028954103014312E-003 - 92.519999999999982 -8.0958420239532237E-003 - 92.579999999999984 -8.1807234766046108E-003 - 92.639999999999986 -8.2577194305886118E-003 - 92.699999999999989 -8.3270150360512940E-003 - 92.759999999999991 -8.3888002997554063E-003 - 92.819999999999993 -8.4432694192088931E-003 - 92.879999999999995 -8.4906184485167343E-003 - 92.939999999999998 -8.5310501516005638E-003 - 93.000000000000000 -8.5647665291195378E-003 - 93.060000000000002 -8.5919717815815186E-003 - 93.120000000000005 -8.6128727044404475E-003 - 93.180000000000007 -8.6276775835768937E-003 - 93.239999999999981 -8.6365945293214244E-003 - 93.299999999999983 -8.6398317844767706E-003 - 93.359999999999985 -8.6375985920345601E-003 - 93.419999999999987 -8.6301021587781475E-003 - 93.479999999999990 -8.6175497059586340E-003 - 93.539999999999992 -8.6001475517518550E-003 - 93.599999999999994 -8.5781006854331321E-003 - 93.659999999999997 -8.5516111335436056E-003 - 93.719999999999999 -8.5208801821215624E-003 - 93.780000000000001 -8.4861063322152243E-003 - 93.840000000000003 -8.4474860928041434E-003 - 93.900000000000006 -8.4052131349354325E-003 - 93.960000000000008 -8.3594763418766496E-003 - 94.019999999999982 -8.3104647912404447E-003 - 94.079999999999984 -8.2583617189631135E-003 - 94.139999999999986 -8.2033482093562104E-003 - 94.199999999999989 -8.1456024252893923E-003 - 94.259999999999991 -8.0852972048313584E-003 - 94.319999999999993 -8.0226030101631998E-003 - 94.379999999999995 -7.9576863648702437E-003 - 94.439999999999998 -7.8907089079548048E-003 - 94.500000000000000 -7.8218296860816106E-003 - 94.560000000000002 -7.7512036795010161E-003 - 94.620000000000005 -7.6789804330448371E-003 - 94.680000000000007 -7.6053067445921753E-003 - 94.739999999999981 -7.5303245889138956E-003 - 94.799999999999983 -7.4541722212783891E-003 - 94.859999999999985 -7.3769837047263521E-003 - 94.919999999999987 -7.2988877373382013E-003 - 94.979999999999990 -7.2200113048807475E-003 - 95.039999999999992 -7.1404752896507342E-003 - 95.099999999999994 -7.0603977368141023E-003 - 95.159999999999997 -6.9798919423267134E-003 - 95.219999999999999 -6.8990671793155989E-003 - 95.280000000000001 -6.8180286100790284E-003 - 95.340000000000003 -6.7368775156392991E-003 - 95.400000000000006 -6.6557115171961660E-003 - 95.460000000000008 -6.5746237987347545E-003 - 95.519999999999982 -6.4937043889252482E-003 - 95.579999999999984 -6.4130382201870962E-003 - 95.639999999999986 -6.3327068055951006E-003 - 95.699999999999989 -6.2527883978730041E-003 - 95.759999999999991 -6.1733568457872463E-003 - 95.819999999999993 -6.0944821975157321E-003 - 95.879999999999995 -6.0162307953259457E-003 - 95.939999999999998 -5.9386655178747649E-003 - 96.000000000000000 -5.8618458062162501E-003 - 96.060000000000002 -5.7858268076248671E-003 - 96.120000000000005 -5.7106604100137879E-003 - 96.180000000000007 -5.6363951636791698E-003 - 96.239999999999981 -5.5630758287250233E-003 - 96.299999999999983 -5.4907437082558101E-003 - 96.359999999999985 -5.4194368645002775E-003 - 96.419999999999987 -5.3491897300953850E-003 - 96.479999999999990 -5.2800336249785628E-003 - 96.539999999999992 -5.2119969363345793E-003 - 96.599999999999994 -5.1451043169496100E-003 - 96.659999999999997 -5.0793773934574805E-003 - 96.719999999999999 -5.0148351648699845E-003 - 96.780000000000001 -4.9514924289611696E-003 - 96.840000000000003 -4.8893624625640517E-003 - 96.900000000000006 -4.8284551305960589E-003 - 96.960000000000008 -4.7687766210851423E-003 - 97.019999999999982 -4.7103318758221994E-003 - 97.079999999999984 -4.6531219572365397E-003 - 97.139999999999986 -4.5971449230788365E-003 - 97.199999999999989 -4.5423978002737068E-003 - 97.259999999999991 -4.4888735578588433E-003 - 97.319999999999993 -4.4365635454558525E-003 - 97.379999999999995 -4.3854568527271105E-003 - 97.439999999999998 -4.3355396817791143E-003 - 97.500000000000000 -4.2867968033310569E-003 - 97.560000000000002 -4.2392105486262471E-003 - 97.620000000000005 -4.1927611740821581E-003 - 97.680000000000007 -4.1474272430426168E-003 - 97.739999999999981 -4.1031857240569633E-003 - 97.799999999999983 -4.0600117169652689E-003 - 97.859999999999985 -4.0178786645084300E-003 - 97.919999999999987 -3.9767586457916237E-003 - 97.979999999999990 -3.9366225531195752E-003 - 98.039999999999992 -3.8974398846515048E-003 - 98.099999999999994 -3.8591793391084079E-003 - 98.159999999999997 -3.8218083427375123E-003 - 98.219999999999999 -3.7852932518570512E-003 - 98.280000000000001 -3.7496002846310753E-003 - 98.340000000000003 -3.7146944160001043E-003 - 98.400000000000006 -3.6805405173859912E-003 - 98.460000000000008 -3.6471028596115345E-003 - 98.519999999999982 -3.6143455012731611E-003 - 98.579999999999984 -3.5822322378180850E-003 - 98.639999999999986 -3.5507268078804714E-003 - 98.699999999999989 -3.5197929054666625E-003 - 98.759999999999991 -3.4893944242660496E-003 - 98.819999999999993 -3.4594956242643650E-003 - 98.879999999999995 -3.4300609882057550E-003 - 98.939999999999998 -3.4010555758705570E-003 - 99.000000000000000 -3.3724453929181468E-003 - 99.060000000000002 -3.3441964221468745E-003 - 99.120000000000005 -3.3162758263191577E-003 - 99.180000000000007 -3.2886514413738889E-003 - 99.239999999999981 -3.2612923093829336E-003 - 99.299999999999983 -3.2341685725320837E-003 - 99.359999999999985 -3.2072512333665886E-003 - 99.419999999999987 -3.1805128146831603E-003 - 99.479999999999990 -3.1539266878256307E-003 - 99.539999999999992 -3.1274679143394601E-003 - 99.599999999999994 -3.1011127335389692E-003 - 99.659999999999997 -3.0748390579614926E-003 - 99.719999999999999 -3.0486258897665592E-003 - 99.780000000000001 -3.0224542979943991E-003 - 99.840000000000003 -2.9963064754354291E-003 - 99.900000000000006 -2.9701663739915372E-003 - 99.960000000000008 -2.9440194886808245E-003 - 100.01999999999998 -2.9178530327768331E-003 - 100.07999999999998 -2.8916557518228279E-003 - 100.13999999999999 -2.8654181574065932E-003 - 100.19999999999999 -2.8391323756968251E-003 - 100.25999999999999 -2.8127924042478016E-003 - 100.31999999999999 -2.7863936475378249E-003 - 100.38000000000000 -2.7599332035308259E-003 - 100.44000000000000 -2.7334099141318518E-003 - 100.50000000000000 -2.7068241647804948E-003 - 100.56000000000000 -2.6801779087796871E-003 - 100.62000000000000 -2.6534747391820492E-003 - 100.68000000000001 -2.6267199311845596E-003 - 100.73999999999998 -2.5999198722751449E-003 - 100.79999999999998 -2.5730825001969181E-003 - 100.85999999999999 -2.5462172357662623E-003 - 100.91999999999999 -2.5193346944179427E-003 - 100.97999999999999 -2.4924467665284056E-003 - 101.03999999999999 -2.4655666583471322E-003 - 101.09999999999999 -2.4387086330872085E-003 - 101.16000000000000 -2.4118876402455833E-003 - 101.22000000000000 -2.3851200923537047E-003 - 101.28000000000000 -2.3584232474767840E-003 - 101.34000000000000 -2.3318151135648399E-003 - 101.40000000000001 -2.3053143960338196E-003 - 101.46000000000001 -2.2789405946622753E-003 - 101.51999999999998 -2.2527140225105540E-003 - 101.57999999999998 -2.2266554344498655E-003 - 101.63999999999999 -2.2007857534406062E-003 - 101.69999999999999 -2.1751266437889261E-003 - 101.75999999999999 -2.1497001604078229E-003 - 101.81999999999999 -2.1245282307507558E-003 - 101.88000000000000 -2.0996332776958898E-003 - 101.94000000000000 -2.0750377202189653E-003 - 102.00000000000000 -2.0507640511947217E-003 - 102.06000000000000 -2.0268347728906125E-003 - 102.12000000000000 -2.0032720996110915E-003 - 102.18000000000001 -1.9800981225932246E-003 - 102.23999999999998 -1.9573346044010121E-003 - 102.29999999999998 -1.9350031955132733E-003 - 102.35999999999999 -1.9131248233097361E-003 - 102.41999999999999 -1.8917201675763514E-003 - 102.47999999999999 -1.8708093214047854E-003 - 102.53999999999999 -1.8504117119106228E-003 - 102.59999999999999 -1.8305462352814854E-003 - 102.66000000000000 -1.8112310889070466E-003 - 102.72000000000000 -1.7924837470649074E-003 - 102.78000000000000 -1.7743206468706914E-003 - 102.84000000000000 -1.7567578097236261E-003 - 102.90000000000001 -1.7398099248764262E-003 - 102.96000000000001 -1.7234912678151023E-003 - 103.01999999999998 -1.7078147901298571E-003 - 103.07999999999998 -1.6927928483868762E-003 - 103.13999999999999 -1.6784364407591648E-003 - 103.19999999999999 -1.6647558568990482E-003 - 103.25999999999999 -1.6517602159076762E-003 - 103.31999999999999 -1.6394575300408402E-003 - 103.38000000000000 -1.6278547534392413E-003 - 103.44000000000000 -1.6169578635431290E-003 - 103.50000000000000 -1.6067715619674636E-003 - 103.56000000000000 -1.5972996481759180E-003 - 103.62000000000000 -1.5885444193464197E-003 - 103.68000000000001 -1.5805074158520083E-003 - 103.73999999999998 -1.5731887995537738E-003 - 103.79999999999998 -1.5665876661640921E-003 - 103.85999999999999 -1.5607019810747040E-003 - 103.91999999999999 -1.5555285521342960E-003 - 103.97999999999999 -1.5510630844242188E-003 - 104.03999999999999 -1.5473001589888097E-003 - 104.09999999999999 -1.5442332680794834E-003 - 104.16000000000000 -1.5418548635970930E-003 - 104.22000000000000 -1.5401561917383969E-003 - 104.28000000000000 -1.5391277011180498E-003 - 104.34000000000000 -1.5387588931400605E-003 - 104.40000000000001 -1.5390380497496928E-003 - 104.46000000000001 -1.5399527891138283E-003 - 104.51999999999998 -1.5414894368579117E-003 - 104.57999999999998 -1.5436338541871242E-003 - 104.63999999999999 -1.5463709108712968E-003 - 104.69999999999999 -1.5496844907242021E-003 - 104.75999999999999 -1.5535577904107450E-003 - 104.81999999999999 -1.5579732203763290E-003 - 104.88000000000000 -1.5629124442329704E-003 - 104.94000000000000 -1.5683565022646391E-003 - 105.00000000000000 -1.5742855138152615E-003 - 105.06000000000000 -1.5806791145360701E-003 - 105.12000000000000 -1.5875164144427587E-003 - 105.18000000000001 -1.5947758313560852E-003 - 105.23999999999998 -1.6024350957107032E-003 - 105.29999999999998 -1.6104716852234390E-003 - 105.35999999999999 -1.6188624731116978E-003 - 105.41999999999999 -1.6275839211936202E-003 - 105.47999999999999 -1.6366121253856365E-003 - 105.53999999999999 -1.6459231072001831E-003 - 105.59999999999999 -1.6554921474197651E-003 - 105.66000000000000 -1.6652945849345931E-003 - 105.72000000000000 -1.6753055847566042E-003 - 105.78000000000000 -1.6855001054948875E-003 - 105.84000000000000 -1.6958530410056492E-003 - 105.90000000000001 -1.7063392419810900E-003 - 105.96000000000001 -1.7169335552196432E-003 - 106.01999999999998 -1.7276107206637289E-003 - 106.07999999999998 -1.7383458204861661E-003 - 106.13999999999999 -1.7491136561365262E-003 - 106.19999999999999 -1.7598896696168565E-003 - 106.25999999999999 -1.7706489803743538E-003 - 106.31999999999999 -1.7813671873453771E-003 - 106.38000000000000 -1.7920200345069961E-003 - 106.44000000000000 -1.8025837501514056E-003 - 106.50000000000000 -1.8130347790924330E-003 - 106.56000000000000 -1.8233499110391154E-003 - 106.62000000000000 -1.8335062363112086E-003 - 106.68000000000001 -1.8434815099307783E-003 - 106.73999999999998 -1.8532538633859812E-003 - 106.79999999999998 -1.8628020848335475E-003 - 106.85999999999999 -1.8721052289213398E-003 - 106.91999999999999 -1.8811431803046688E-003 - 106.97999999999999 -1.8898964002305608E-003 - 107.03999999999999 -1.8983461256155743E-003 - 107.09999999999999 -1.9064743138427036E-003 - 107.16000000000000 -1.9142633969031300E-003 - 107.22000000000000 -1.9216968717591554E-003 - 107.28000000000000 -1.9287590121204977E-003 - 107.34000000000000 -1.9354347394743522E-003 - 107.40000000000001 -1.9417101649705723E-003 - 107.46000000000001 -1.9475719501235570E-003 - 107.51999999999998 -1.9530079793500551E-003 - 107.57999999999998 -1.9580067932779867E-003 - 107.63999999999999 -1.9625580313996612E-003 - 107.69999999999999 -1.9666524236489490E-003 - 107.75999999999999 -1.9702813419737787E-003 - 107.81999999999999 -1.9734374496459439E-003 - 107.88000000000000 -1.9761143696740095E-003 - 107.94000000000000 -1.9783068540447559E-003 - 108.00000000000000 -1.9800103222903449E-003 - 108.06000000000000 -1.9812218693565785E-003 - 108.12000000000000 -1.9819390251141367E-003 - 108.18000000000001 -1.9821608898177006E-003 - 108.23999999999998 -1.9818870792395879E-003 - 108.29999999999998 -1.9811188265136353E-003 - 108.35999999999999 -1.9798580055425969E-003 - 108.41999999999999 -1.9781079050334265E-003 - 108.47999999999999 -1.9758726359923972E-003 - 108.53999999999999 -1.9731576829356543E-003 - 108.59999999999999 -1.9699692618251911E-003 - 108.66000000000000 -1.9663145250531726E-003 - 108.72000000000000 -1.9622018646534107E-003 - 108.78000000000000 -1.9576406145690585E-003 - 108.84000000000000 -1.9526410021398644E-003 - 108.90000000000001 -1.9472142246717951E-003 - 108.96000000000001 -1.9413725324627844E-003 - 109.01999999999998 -1.9351288606291428E-003 - 109.07999999999998 -1.9284969769910350E-003 - 109.13999999999999 -1.9214915293598320E-003 - 109.19999999999999 -1.9141279234437690E-003 - 109.25999999999999 -1.9064221804990194E-003 - 109.31999999999999 -1.8983911358609533E-003 - 109.38000000000000 -1.8900521265935893E-003 - 109.44000000000000 -1.8814231933265164E-003 - 109.50000000000000 -1.8725226457959457E-003 - 109.56000000000000 -1.8633693132948334E-003 - 109.62000000000000 -1.8539827086203596E-003 - 109.68000000000001 -1.8443823789449376E-003 - 109.73999999999998 -1.8345883480478291E-003 - 109.79999999999998 -1.8246207263580279E-003 - 109.85999999999999 -1.8144999056483846E-003 - 109.91999999999999 -1.8042463519061447E-003 - 109.97999999999999 -1.7938803832064335E-003 - 110.03999999999999 -1.7834226022142162E-003 - 110.09999999999999 -1.7728932512273460E-003 - 110.16000000000000 -1.7623126075705837E-003 - 110.22000000000000 -1.7517004862135802E-003 - 110.28000000000000 -1.7410765063547605E-003 - 110.34000000000000 -1.7304599053611282E-003 - 110.40000000000001 -1.7198693405221827E-003 - 110.46000000000001 -1.7093230344327366E-003 - 110.51999999999998 -1.6988387948464513E-003 - 110.57999999999998 -1.6884333253352622E-003 - 110.63999999999999 -1.6781230527709036E-003 - 110.69999999999999 -1.6679233232909220E-003 - 110.75999999999999 -1.6578487227235739E-003 - 110.81999999999999 -1.6479129501739572E-003 - 110.88000000000000 -1.6381287252647061E-003 - 110.94000000000000 -1.6285078176688592E-003 - 111.00000000000000 -1.6190606714293599E-003 - 111.06000000000000 -1.6097967825784180E-003 - 111.12000000000000 -1.6007246419224865E-003 - 111.18000000000001 -1.5918512296616573E-003 - 111.23999999999998 -1.5831823583015397E-003 - 111.29999999999998 -1.5747226638125203E-003 - 111.35999999999999 -1.5664753406008463E-003 - 111.41999999999999 -1.5584422377012855E-003 - 111.47999999999999 -1.5506239346603575E-003 - 111.53999999999999 -1.5430194995579044E-003 - 111.59999999999999 -1.5356266197825690E-003 - 111.66000000000000 -1.5284415472867669E-003 - 111.72000000000000 -1.5214590806340404E-003 - 111.78000000000000 -1.5146727291675960E-003 - 111.84000000000000 -1.5080745704028635E-003 - 111.90000000000001 -1.5016552730001103E-003 - 111.96000000000001 -1.4954041887205089E-003 - 112.01999999999998 -1.4893092835450061E-003 - 112.07999999999998 -1.4833571831837080E-003 - 112.13999999999999 -1.4775333325775519E-003 - 112.19999999999999 -1.4718219801791899E-003 - 112.25999999999999 -1.4662060510836218E-003 - 112.31999999999999 -1.4606673098773466E-003 - 112.38000000000000 -1.4551865291985014E-003 - 112.44000000000000 -1.4497435356952974E-003 - 112.50000000000000 -1.4443169609389508E-003 - 112.56000000000000 -1.4388847795931935E-003 - 112.62000000000000 -1.4334237602886776E-003 - 112.68000000000001 -1.4279102997883611E-003 - 112.73999999999998 -1.4223198950687411E-003 - 112.79999999999998 -1.4166274752303427E-003 - 112.85999999999999 -1.4108074352754197E-003 - 112.91999999999999 -1.4048338669654622E-003 - 112.97999999999999 -1.3986803305721855E-003 - 113.03999999999999 -1.3923202323415564E-003 - 113.09999999999999 -1.3857270630711755E-003 - 113.16000000000000 -1.3788738679404052E-003 - 113.22000000000000 -1.3717342577992766E-003 - 113.28000000000000 -1.3642816900704539E-003 - 113.34000000000000 -1.3564900623814239E-003 - 113.40000000000001 -1.3483336070736649E-003 - 113.46000000000001 -1.3397871182100024E-003 - 113.51999999999998 -1.3308259999692579E-003 - 113.57999999999998 -1.3214263559750620E-003 - 113.63999999999999 -1.3115649963922201E-003 - 113.69999999999999 -1.3012198595925748E-003 - 113.75999999999999 -1.2903695925977840E-003 - 113.81999999999999 -1.2789941340739274E-003 - 113.88000000000000 -1.2670744379569738E-003 - 113.94000000000000 -1.2545928241938630E-003 - 114.00000000000000 -1.2415328757455625E-003 - 114.06000000000000 -1.2278796696092587E-003 - 114.12000000000000 -1.2136196598709953E-003 - 114.18000000000001 -1.1987409089927866E-003 - 114.23999999999998 -1.1832331135762236E-003 - 114.29999999999998 -1.1670876654984238E-003 - 114.35999999999999 -1.1502977634375361E-003 - 114.41999999999999 -1.1328583032084692E-003 - 114.47999999999999 -1.1147661309757421E-003 - 114.53999999999999 -1.0960200191606350E-003 - 114.59999999999999 -1.0766205608364022E-003 - 114.66000000000000 -1.0565703863438770E-003 - 114.72000000000000 -1.0358740745161623E-003 - 114.78000000000000 -1.0145382070480100E-003 - 114.84000000000000 -9.9257134959512762E-004 - 114.90000000000001 -9.6998414739786986E-004 - 114.96000000000001 -9.4678913208739947E-004 - 115.01999999999998 -9.2300094839991740E-004 - 115.07999999999998 -8.9863602901473004E-004 - 115.13999999999999 -8.7371288556705416E-004 - 115.19999999999999 -8.4825172262146457E-004 - 115.25999999999999 -8.2227482593534248E-004 - 115.31999999999999 -7.9580603358482787E-004 - 115.38000000000000 -7.6887111607249641E-004 - 115.44000000000000 -7.4149736920125966E-004 - 115.50000000000000 -7.1371374784715827E-004 - 115.56000000000000 -6.8555072338417141E-004 - 115.62000000000000 -6.5704022362029710E-004 - 115.68000000000001 -6.2821554289477525E-004 - 115.73999999999998 -5.9911136503878787E-004 - 115.79999999999998 -5.6976344671757812E-004 - 115.85999999999999 -5.4020871819788325E-004 - 115.91999999999999 -5.1048507135936869E-004 - 115.97999999999999 -4.8063145769332169E-004 - 116.03999999999999 -4.5068753180445937E-004 - 116.09999999999999 -4.2069369347156487E-004 - 116.16000000000000 -3.9069091172266992E-004 - 116.22000000000000 -3.6072073931297415E-004 - 116.28000000000000 -3.3082505583691688E-004 - 116.34000000000000 -3.0104599077059778E-004 - 116.40000000000001 -2.7142588737158658E-004 - 116.46000000000001 -2.4200704082389486E-004 - 116.51999999999998 -2.1283172703454029E-004 - 116.57999999999998 -1.8394198476228346E-004 - 116.63999999999999 -1.5537955044709717E-004 - 116.69999999999999 -1.2718568602946144E-004 - 116.75999999999999 -9.9401121184561076E-005 - 116.81999999999999 -7.2065906675246555E-005 - 116.88000000000000 -4.5219305222419240E-005 - 116.94000000000000 -1.8899711945149857E-005 - 117.00000000000000 6.8554584372768296E-006 - 117.06000000000000 3.2009854059194404E-005 - 117.12000000000000 5.6528359622750143E-005 - 117.18000000000001 8.0377026255166545E-005 - 117.23999999999998 1.0352327279337947E-004 - 117.29999999999998 1.2593587750961137E-004 - 117.35999999999999 1.4758511298303164E-004 - 117.41999999999999 1.6844280213122178E-004 - 117.47999999999999 1.8848234116479175E-004 - 117.53999999999999 2.0767882560026972E-004 - 117.59999999999999 2.2600897169491234E-004 - 117.66000000000000 2.4345131712937156E-004 - 117.72000000000000 2.5998619015693585E-004 - 117.78000000000000 2.7559577349385372E-004 - 117.84000000000000 2.9026410410217147E-004 - 117.90000000000001 3.0397708681271997E-004 - 117.96000000000001 3.1672264537453471E-004 - 118.01999999999998 3.2849059781859559E-004 - 118.07999999999998 3.3927277066534475E-004 - 118.13999999999999 3.4906291752611620E-004 - 118.19999999999999 3.5785678056997870E-004 - 118.25999999999999 3.6565207700644804E-004 - 118.31999999999999 3.7244840254726358E-004 - 118.38000000000000 3.7824734473045334E-004 - 118.44000000000000 3.8305234449878165E-004 - 118.50000000000000 3.8686872950862615E-004 - 118.56000000000000 3.8970356828398642E-004 - 118.62000000000000 3.9156574480659451E-004 - 118.68000000000001 3.9246581955081051E-004 - 118.73999999999998 3.9241612327730479E-004 - 118.79999999999998 3.9143052720560644E-004 - 118.85999999999999 3.8952449221498002E-004 - 118.91999999999999 3.8671495391784616E-004 - 118.97999999999999 3.8302035682590669E-004 - 119.03999999999999 3.7846054378504944E-004 - 119.09999999999999 3.7305663815554520E-004 - 119.16000000000000 3.6683102273804026E-004 - 119.22000000000000 3.5980734089742435E-004 - 119.28000000000000 3.5201035625101272E-004 - 119.34000000000000 3.4346593558003677E-004 - 119.40000000000001 3.3420089682220281E-004 - 119.46000000000001 3.2424302341072355E-004 - 119.51999999999998 3.1362091472496669E-004 - 119.57999999999998 3.0236397954097138E-004 - 119.63999999999999 2.9050233092331663E-004 - 119.69999999999999 2.7806667879793127E-004 - 119.75999999999999 2.6508828833240566E-004 - 119.81999999999999 2.5159890640798958E-004 - 119.88000000000000 2.3763062365655323E-004 - 119.94000000000000 2.2321589106557633E-004 - 120.00000000000000 2.0838735540307447E-004 - 120.06000000000000 1.9317788246267563E-004 - 120.12000000000000 1.7762042469346006E-004 - 120.18000000000001 1.6174797006785689E-004 - 120.23999999999998 1.4559346366383995E-004 - 120.29999999999998 1.2918977120159289E-004 - 120.35999999999999 1.1256964243269469E-004 - 120.41999999999999 9.5765574679922846E-005 - 120.47999999999999 7.8809833346549614E-005 - 120.53999999999999 6.1734401633027158E-005 - 120.59999999999999 4.4570892139150493E-005 - 120.66000000000000 2.7350516755299712E-005 - 120.72000000000000 1.0104042741036559E-005 - 120.78000000000000 -7.1382462298017035E-006 - 120.84000000000000 -2.4346618319758967E-005 - 120.90000000000001 -4.1491866350988737E-005 - 120.95999999999998 -5.8545434564161914E-005 - 121.01999999999998 -7.5479390428071749E-005 - 121.07999999999998 -9.2266491578589196E-005 - 121.13999999999999 -1.0888021821347434E-004 - 121.19999999999999 -1.2529477210563011E-004 - 121.25999999999999 -1.4148516263505156E-004 - 121.31999999999999 -1.5742719441947514E-004 - 121.38000000000000 -1.7309751607289409E-004 - 121.44000000000000 -1.8847359352812125E-004 - 121.50000000000000 -2.0353381466317667E-004 - 121.56000000000000 -2.1825744694713590E-004 - 121.62000000000000 -2.3262466093872347E-004 - 121.68000000000001 -2.4661657553591614E-004 - 121.73999999999998 -2.6021521627029833E-004 - 121.79999999999998 -2.7340355474605765E-004 - 121.85999999999999 -2.8616552454221544E-004 - 121.91999999999999 -2.9848599507976969E-004 - 121.97999999999999 -3.1035079948961300E-004 - 122.03999999999999 -3.2174673194592914E-004 - 122.09999999999999 -3.3266151545681085E-004 - 122.16000000000000 -3.4308382790013218E-004 - 122.22000000000000 -3.5300328910419112E-004 - 122.28000000000000 -3.6241048950747825E-004 - 122.34000000000000 -3.7129693305868025E-004 - 122.40000000000001 -3.7965509587260435E-004 - 122.45999999999998 -3.8747839076870241E-004 - 122.51999999999998 -3.9476114554804626E-004 - 122.57999999999998 -4.0149863197287607E-004 - 122.63999999999999 -4.0768707245715372E-004 - 122.69999999999999 -4.1332360350801342E-004 - 122.75999999999999 -4.1840631925494547E-004 - 122.81999999999999 -4.2293421096731466E-004 - 122.88000000000000 -4.2690718634231877E-004 - 122.94000000000000 -4.3032603223858677E-004 - 123.00000000000000 -4.3319242693973264E-004 - 123.06000000000000 -4.3550892745091216E-004 - 123.12000000000000 -4.3727891845033010E-004 - 123.18000000000001 -4.3850660416701597E-004 - 123.23999999999998 -4.3919701075035157E-004 - 123.29999999999998 -4.3935595483752111E-004 - 123.35999999999999 -4.3898994491727087E-004 - 123.41999999999999 -4.3810626281888792E-004 - 123.47999999999999 -4.3671284580086773E-004 - 123.53999999999999 -4.3481837661204728E-004 - 123.59999999999999 -4.3243218280915812E-004 - 123.66000000000000 -4.2956420723056876E-004 - 123.72000000000000 -4.2622500426717198E-004 - 123.78000000000000 -4.2242575071409379E-004 - 123.84000000000000 -4.1817818874381052E-004 - 123.90000000000001 -4.1349465135464739E-004 - 123.95999999999998 -4.0838797520929246E-004 - 124.01999999999998 -4.0287154345201994E-004 - 124.07999999999998 -3.9695923601863249E-004 - 124.13999999999999 -3.9066539009505099E-004 - 124.19999999999999 -3.8400483157267722E-004 - 124.25999999999999 -3.7699275020057466E-004 - 124.31999999999999 -3.6964469070315496E-004 - 124.38000000000000 -3.6197662593396126E-004 - 124.44000000000000 -3.5400476972135631E-004 - 124.50000000000000 -3.4574564615282418E-004 - 124.56000000000000 -3.3721594045847122E-004 - 124.62000000000000 -3.2843262658628858E-004 - 124.68000000000001 -3.1941275148838247E-004 - 124.73999999999998 -3.1017350519285100E-004 - 124.79999999999998 -3.0073214889185447E-004 - 124.85999999999999 -2.9110601136469110E-004 - 124.91999999999999 -2.8131240901238123E-004 - 124.97999999999999 -2.7136866623219438E-004 - 125.03999999999999 -2.6129203895023767E-004 - 125.09999999999999 -2.5109972037428655E-004 - 125.16000000000000 -2.4080883309118985E-004 - 125.22000000000000 -2.3043636455195138E-004 - 125.28000000000000 -2.1999916825667435E-004 - 125.34000000000000 -2.0951389970586386E-004 - 125.40000000000001 -1.9899705919134916E-004 - 125.45999999999998 -1.8846493113600283E-004 - 125.51999999999998 -1.7793353962592025E-004 - 125.57999999999998 -1.6741868639022847E-004 - 125.63999999999999 -1.5693583203713309E-004 - 125.69999999999999 -1.4650017017659844E-004 - 125.75999999999999 -1.3612651264325061E-004 - 125.81999999999999 -1.2582934351878258E-004 - 125.88000000000000 -1.1562275724519817E-004 - 125.94000000000000 -1.0552038207497927E-004 - 126.00000000000000 -9.5535472179349276E-005 - 126.06000000000000 -8.5680805075392859E-005 - 126.12000000000000 -7.5968680539570947E-005 - 126.18000000000001 -6.6410909842190395E-005 - 126.23999999999998 -5.7018794340341179E-005 - 126.29999999999998 -4.7803127403435569E-005 - 126.35999999999999 -3.8774175656010101E-005 - 126.41999999999999 -2.9941672713917059E-005 - 126.47999999999999 -2.1314806107657624E-005 - 126.53999999999999 -1.2902243618581652E-005 - 126.59999999999999 -4.7120874038861967E-006 - 126.66000000000000 3.2480868792435048E-006 - 126.72000000000000 1.0971236206177966E-005 - 126.78000000000000 1.8450866296212887E-005 - 126.84000000000000 2.5681001111614971E-005 - 126.90000000000001 3.2656188604195799E-005 - 126.95999999999998 3.9371523928774016E-005 - 127.01999999999998 4.5822596987125623E-005 - 127.07999999999998 5.2005539333614133E-005 - 127.13999999999999 5.7916976530480982E-005 - 127.19999999999999 6.3554071606841830E-005 - 127.25999999999999 6.8914472737219648E-005 - 127.31999999999999 7.3996356590692522E-005 - 127.38000000000000 7.8798411196217836E-005 - 127.44000000000000 8.3319815663989564E-005 - 127.50000000000000 8.7560261589739719E-005 - 127.56000000000000 9.1519928608338827E-005 - 127.62000000000000 9.5199482010398928E-005 - 127.68000000000001 9.8600067132625208E-005 - 127.73999999999998 1.0172330523035452E-004 - 127.79999999999998 1.0457125673416356E-004 - 127.85999999999999 1.0714642068708951E-004 - 127.91999999999999 1.0945170263984173E-004 - 127.97999999999999 1.1149041088326576E-004 - 128.03999999999999 1.1326622444090200E-004 - 128.09999999999999 1.1478316777447726E-004 - 128.16000000000000 1.1604559532967995E-004 - 128.22000000000000 1.1705817866568841E-004 - 128.28000000000000 1.1782587054248962E-004 - 128.34000000000000 1.1835389286511451E-004 - 128.40000000000001 1.1864771554157345E-004 - 128.45999999999998 1.1871304720063245E-004 - 128.51999999999998 1.1855583512536476E-004 - 128.57999999999998 1.1818221133376929E-004 - 128.63999999999999 1.1759851683175912E-004 - 128.69999999999999 1.1681129952488228E-004 - 128.75999999999999 1.1582727574659037E-004 - 128.81999999999999 1.1465332929396651E-004 - 128.88000000000000 1.1329649786730663E-004 - 128.94000000000000 1.1176396168720649E-004 - 129.00000000000000 1.1006304249060601E-004 - 129.06000000000000 1.0820115536001193E-004 - 129.12000000000000 1.0618581277359776E-004 - 129.18000000000001 1.0402458955053322E-004 - 129.23999999999998 1.0172511989062434E-004 - 129.29999999999998 9.9295037451806376E-005 - 129.35999999999999 9.6741996534989986E-005 - 129.41999999999999 9.4073613988421105E-005 - 129.47999999999999 9.1297457202969633E-005 - 129.53999999999999 8.8421019844254264E-005 - 129.59999999999999 8.5451720401216619E-005 - 129.66000000000000 8.2396846190284267E-005 - 129.72000000000000 7.9263553341977358E-005 - 129.78000000000000 7.6058857552094273E-005 - 129.84000000000000 7.2789620168072343E-005 - 129.90000000000001 6.9462513489540757E-005 - 129.95999999999998 6.6084039164463948E-005 - 130.01999999999998 6.2660497256075427E-005 - 130.07999999999998 5.9197979510283046E-005 - 130.13999999999999 5.5702358277647130E-005 - 130.19999999999999 5.2179280097865769E-005 - 130.25999999999999 4.8634144676074610E-005 - 130.31999999999999 4.5072104854079803E-005 - 130.38000000000000 4.1498049111732342E-005 - 130.44000000000000 3.7916599506365979E-005 - 130.50000000000000 3.4332077993628607E-005 - 130.56000000000000 3.0748499379758233E-005 - 130.62000000000000 2.7169568453157569E-005 - 130.68000000000001 2.3598663767977384E-005 - 130.73999999999998 2.0038828042576533E-005 - 130.79999999999998 1.6492752324395456E-005 - 130.85999999999999 1.2962775484763734E-005 - 130.91999999999999 9.4508663999678582E-006 - 130.97999999999999 5.9586344688816784E-006 - 131.03999999999999 2.4873139263453461E-006 - 131.09999999999999 -9.6223127025088693E-007 - 131.16000000000000 -4.3895165348354169E-006 - 131.22000000000000 -7.7944204596292685E-006 - 131.28000000000000 -1.1177188274655247E-005 - 131.34000000000000 -1.4538432298919740E-005 - 131.40000000000001 -1.7879108887080683E-005 - 131.45999999999998 -2.1200520737237239E-005 - 131.51999999999998 -2.4504320420030496E-005 - 131.57999999999998 -2.7792467857671585E-005 - 131.63999999999999 -3.1067250292169524E-005 - 131.69999999999999 -3.4331254282162940E-005 - 131.75999999999999 -3.7587348109053252E-005 - 131.81999999999999 -4.0838688948524645E-005 - 131.88000000000000 -4.4088694512021720E-005 - 131.94000000000000 -4.7341031842906668E-005 - 132.00000000000000 -5.0599608058554267E-005 - 132.06000000000000 -5.3868545943536371E-005 - 132.12000000000000 -5.7152171883368931E-005 - 132.18000000000001 -6.0455006525284873E-005 - 132.23999999999998 -6.3781740125369403E-005 - 132.29999999999998 -6.7137223304950788E-005 - 132.35999999999999 -7.0526446218474153E-005 - 132.41999999999999 -7.3954507996549222E-005 - 132.47999999999999 -7.7426613187380172E-005 - 132.53999999999999 -8.0948038050653081E-005 - 132.59999999999999 -8.4524129358046944E-005 - 132.66000000000000 -8.8160247714317560E-005 - 132.72000000000000 -9.1861768590243120E-005 - 132.78000000000000 -9.5634044408479240E-005 - 132.84000000000000 -9.9482406951605966E-005 - 132.90000000000001 -1.0341210514807389E-004 - 132.95999999999998 -1.0742830148599278E-004 - 133.01999999999998 -1.1153605625481568E-004 - 133.07999999999998 -1.1574029984799809E-004 - 133.13999999999999 -1.2004579301186079E-004 - 133.19999999999999 -1.2445714372008693E-004 - 133.25999999999999 -1.2897876244792380E-004 - 133.31999999999999 -1.3361484045851265E-004 - 133.38000000000000 -1.3836938261384903E-004 - 133.44000000000000 -1.4324612921920332E-004 - 133.50000000000000 -1.4824859214109272E-004 - 133.56000000000000 -1.5338003589640808E-004 - 133.62000000000000 -1.5864345277737620E-004 - 133.68000000000001 -1.6404155620821357E-004 - 133.73999999999998 -1.6957682704700597E-004 - 133.79999999999998 -1.7525140658423296E-004 - 133.85999999999999 -1.8106718549618941E-004 - 133.91999999999999 -1.8702574432758948E-004 - 133.97999999999999 -1.9312836326098665E-004 - 134.03999999999999 -1.9937603506054780E-004 - 134.09999999999999 -2.0576946455560808E-004 - 134.16000000000000 -2.1230901354681335E-004 - 134.22000000000000 -2.1899477874047754E-004 - 134.28000000000000 -2.2582654590610969E-004 - 134.34000000000000 -2.3280381183454895E-004 - 134.40000000000001 -2.3992580334852631E-004 - 134.45999999999998 -2.4719144719568924E-004 - 134.51999999999998 -2.5459942290789484E-004 - 134.57999999999998 -2.6214818437150702E-004 - 134.63999999999999 -2.6983588903567706E-004 - 134.69999999999999 -2.7766053350189142E-004 - 134.75999999999999 -2.8561986480196179E-004 - 134.81999999999999 -2.9371147027272006E-004 - 134.88000000000000 -3.0193276744219192E-004 - 134.94000000000000 -3.1028099429541490E-004 - 135.00000000000000 -3.1875330552850627E-004 - 135.06000000000000 -3.2734670692183629E-004 - 135.12000000000000 -3.3605811226363044E-004 - 135.18000000000001 -3.4488436237769968E-004 - 135.23999999999998 -3.5382227339100867E-004 - 135.29999999999998 -3.6286861879197499E-004 - 135.35999999999999 -3.7202013588733771E-004 - 135.41999999999999 -3.8127360946158272E-004 - 135.47999999999999 -3.9062580186908006E-004 - 135.53999999999999 -4.0007358742691118E-004 - 135.59999999999999 -4.0961387852469187E-004 - 135.66000000000000 -4.1924371470217935E-004 - 135.72000000000000 -4.2896010292271840E-004 - 135.78000000000000 -4.3876045348488859E-004 - 135.84000000000000 -4.4864214275954785E-004 - 135.90000000000001 -4.5860276170665902E-004 - 135.95999999999998 -4.6864002427868912E-004 - 136.01999999999998 -4.7875189722728988E-004 - 136.07999999999998 -4.8893658134281865E-004 - 136.13999999999999 -4.9919243906759465E-004 - 136.19999999999999 -5.0951804873724019E-004 - 136.25999999999999 -5.1991225680063119E-004 - 136.31999999999999 -5.3037415189138805E-004 - 136.38000000000000 -5.4090302726874479E-004 - 136.44000000000000 -5.5149832950720178E-004 - 136.50000000000000 -5.6215986045608237E-004 - 136.56000000000000 -5.7288759175689165E-004 - 136.62000000000000 -5.8368167640041795E-004 - 136.68000000000001 -5.9454257375161793E-004 - 136.73999999999998 -6.0547082595693445E-004 - 136.79999999999998 -6.1646721011122344E-004 - 136.85999999999999 -6.2753275568612076E-004 - 136.91999999999999 -6.3866860633772884E-004 - 136.97999999999999 -6.4987602631881580E-004 - 137.03999999999999 -6.6115653241185872E-004 - 137.09999999999999 -6.7251163626102139E-004 - 137.16000000000000 -6.8394293336380258E-004 - 137.22000000000000 -6.9545224876888965E-004 - 137.28000000000000 -7.0704132080663185E-004 - 137.34000000000000 -7.1871193887554873E-004 - 137.40000000000001 -7.3046589152342021E-004 - 137.45999999999998 -7.4230491021225621E-004 - 137.51999999999998 -7.5423072729631057E-004 - 137.57999999999998 -7.6624494638104722E-004 - 137.63999999999999 -7.7834896853768082E-004 - 137.69999999999999 -7.9054408264957134E-004 - 137.75999999999999 -8.0283139737596953E-004 - 137.81999999999999 -8.1521168043799538E-004 - 137.88000000000000 -8.2768549313866921E-004 - 137.94000000000000 -8.4025314070768856E-004 - 138.00000000000000 -8.5291449986193383E-004 - 138.06000000000000 -8.6566903030471393E-004 - 138.12000000000000 -8.7851585221751570E-004 - 138.18000000000001 -8.9145376202865714E-004 - 138.23999999999998 -9.0448083813954056E-004 - 138.29999999999998 -9.1759486636085522E-004 - 138.35999999999999 -9.3079284168311107E-004 - 138.41999999999999 -9.4407160870654708E-004 - 138.47999999999999 -9.5742708892816611E-004 - 138.53999999999999 -9.7085465922137958E-004 - 138.59999999999999 -9.8434925947989593E-004 - 138.66000000000000 -9.9790489528590312E-004 - 138.72000000000000 -1.0115150042424468E-003 - 138.78000000000000 -1.0251723142655391E-003 - 138.84000000000000 -1.0388689597743898E-003 - 138.90000000000001 -1.0525961355609121E-003 - 138.95999999999998 -1.0663442735314309E-003 - 139.01999999999998 -1.0801032354336043E-003 - 139.07999999999998 -1.0938619387203942E-003 - 139.13999999999999 -1.1076086461749256E-003 - 139.19999999999999 -1.1213306430086127E-003 - 139.25999999999999 -1.1350146595916866E-003 - 139.31999999999999 -1.1486466626625157E-003 - 139.38000000000000 -1.1622115313807636E-003 - 139.44000000000000 -1.1756937513452133E-003 - 139.50000000000000 -1.1890767184873376E-003 - 139.56000000000000 -1.2023433492119255E-003 - 139.62000000000000 -1.2154757266085183E-003 - 139.68000000000001 -1.2284552186594881E-003 - 139.73999999999998 -1.2412627735669804E-003 - 139.79999999999998 -1.2538784188551655E-003 - 139.85999999999999 -1.2662816942479675E-003 - 139.91999999999999 -1.2784515551771411E-003 - 139.97999999999999 -1.2903663925452565E-003 - 140.03999999999999 -1.3020041339971923E-003 - 140.09999999999999 -1.3133423130842299E-003 - 140.16000000000000 -1.3243579280444941E-003 - 140.22000000000000 -1.3350275559855641E-003 - 140.28000000000000 -1.3453277005120614E-003 - 140.34000000000000 -1.3552343094082482E-003 - 140.40000000000001 -1.3647233836961269E-003 - 140.45999999999998 -1.3737704699124088E-003 - 140.51999999999998 -1.3823511169943114E-003 - 140.57999999999998 -1.3904407108052774E-003 - 140.63999999999999 -1.3980147844166384E-003 - 140.69999999999999 -1.4050487460675245E-003 - 140.75999999999999 -1.4115182879137498E-003 - 140.81999999999999 -1.4173992286586009E-003 - 140.88000000000000 -1.4226675763802316E-003 - 140.94000000000000 -1.4272996327292392E-003 - 141.00000000000000 -1.4312720981139954E-003 - 141.06000000000000 -1.4345620803515901E-003 - 141.12000000000000 -1.4371474342015401E-003 - 141.18000000000001 -1.4390062195373111E-003 - 141.23999999999998 -1.4401174666804554E-003 - 141.29999999999998 -1.4404607130972422E-003 - 141.35999999999999 -1.4400163512710824E-003 - 141.41999999999999 -1.4387654828939998E-003 - 141.47999999999999 -1.4366901934153658E-003 - 141.53999999999999 -1.4337736236681698E-003 - 141.59999999999999 -1.4299995770593152E-003 - 141.66000000000000 -1.4253531892044172E-003 - 141.72000000000000 -1.4198207377261263E-003 - 141.78000000000000 -1.4133893630974672E-003 - 141.84000000000000 -1.4060475425380027E-003 - 141.90000000000001 -1.3977849670164363E-003 - 141.95999999999998 -1.3885926028878470E-003 - 142.01999999999998 -1.3784628258452572E-003 - 142.07999999999998 -1.3673892545396486E-003 - 142.13999999999999 -1.3553668829912029E-003 - 142.19999999999999 -1.3423922791828296E-003 - 142.25999999999999 -1.3284633049287574E-003 - 142.31999999999999 -1.3135794542727328E-003 - 142.38000000000000 -1.2977416436429294E-003 - 142.44000000000000 -1.2809524544094035E-003 - 142.50000000000000 -1.2632157271953662E-003 - 142.56000000000000 -1.2445372630097101E-003 - 142.62000000000000 -1.2249242172602413E-003 - 142.68000000000001 -1.2043854068674209E-003 - 142.73999999999998 -1.1829312328372531E-003 - 142.79999999999998 -1.1605735714664475E-003 - 142.85999999999999 -1.1373259003878194E-003 - 142.91999999999999 -1.1132033171980422E-003 - 142.97999999999999 -1.0882223533426820E-003 - 143.03999999999999 -1.0624010536321854E-003 - 143.09999999999999 -1.0357589735627665E-003 - 143.16000000000000 -1.0083170098000131E-003 - 143.22000000000000 -9.8009774582343348E-004 - 143.28000000000000 -9.5112483901748767E-004 - 143.34000000000000 -9.2142337658176424E-004 - 143.40000000000001 -8.9101983463848154E-004 - 143.45999999999998 -8.5994183588161384E-004 - 143.51999999999998 -8.2821832279733165E-004 - 143.57999999999998 -7.9587933691792801E-004 - 143.63999999999999 -7.6295598134875611E-004 - 143.69999999999999 -7.2948037815702220E-004 - 143.75999999999999 -6.9548580246620419E-004 - 143.81999999999999 -6.6100638722792833E-004 - 143.88000000000000 -6.2607714455560615E-004 - 143.94000000000000 -5.9073376524671406E-004 - 144.00000000000000 -5.5501281385440587E-004 - 144.06000000000000 -5.1895144342179237E-004 - 144.12000000000000 -4.8258738998929209E-004 - 144.18000000000001 -4.4595888617551029E-004 - 144.23999999999998 -4.0910454115653438E-004 - 144.29999999999998 -3.7206335760422656E-004 - 144.35999999999999 -3.3487456622087301E-004 - 144.41999999999999 -2.9757758238045201E-004 - 144.47999999999999 -2.6021186738707205E-004 - 144.53999999999999 -2.2281698354009496E-004 - 144.59999999999999 -1.8543235544790356E-004 - 144.66000000000000 -1.4809734021376859E-004 - 144.72000000000000 -1.1085105041990806E-004 - 144.78000000000000 -7.3732308980867454E-005 - 144.84000000000000 -3.6779604468344703E-005 - 144.90000000000001 -3.0938778722181825E-008 - 144.95999999999998 3.6476149328294733E-005 - 145.01999999999998 7.2704660699750864E-005 - 145.07999999999998 1.0861829648701812E-004 - 145.13999999999999 1.4418141265885935E-004 - 145.19999999999999 1.7935919367557569E-004 - 145.25999999999999 2.1411758936856160E-004 - 145.31999999999999 2.4842346160916789E-004 - 145.38000000000000 2.8224461173832288E-004 - 145.44000000000000 3.1554991569413563E-004 - 145.50000000000000 3.4830927884467938E-004 - 145.56000000000000 3.8049362831224791E-004 - 145.62000000000000 4.1207518698839821E-004 - 145.68000000000001 4.4302723861736071E-004 - 145.73999999999998 4.7332442230125398E-004 - 145.79999999999998 5.0294263767960610E-004 - 145.85999999999999 5.3185903849982559E-004 - 145.91999999999999 5.6005213626987853E-004 - 145.97999999999999 5.8750183019535282E-004 - 146.03999999999999 6.1418934410165658E-004 - 146.09999999999999 6.4009735728062572E-004 - 146.16000000000000 6.6520993570758438E-004 - 146.22000000000000 6.8951257894715832E-004 - 146.28000000000000 7.1299212983846677E-004 - 146.34000000000000 7.3563681456663269E-004 - 146.40000000000001 7.5743641650059118E-004 - 146.45999999999998 7.7838207968486959E-004 - 146.51999999999998 7.9846631728092718E-004 - 146.57999999999998 8.1768291114447760E-004 - 146.63999999999999 8.3602725215176739E-004 - 146.69999999999999 8.5349585311253148E-004 - 146.75999999999999 8.7008660513159517E-004 - 146.81999999999999 8.8579874069867788E-004 - 146.88000000000000 9.0063278386252822E-004 - 146.94000000000000 9.1459042509539818E-004 - 147.00000000000000 9.2767467813689589E-004 - 147.06000000000000 9.3988975356860374E-004 - 147.12000000000000 9.5124087312289138E-004 - 147.18000000000001 9.6173457119727883E-004 - 147.23999999999998 9.7137818692949723E-004 - 147.29999999999998 9.8018022770129487E-004 - 147.35999999999999 9.8815014938798064E-004 - 147.41999999999999 9.9529845262456449E-004 - 147.47999999999999 1.0016362113536383E-003 - 147.53999999999999 1.0071757573821671E-003 - 147.59999999999999 1.0119298739914991E-003 - 147.66000000000000 1.0159122504218568E-003 - 147.72000000000000 1.0191371831406338E-003 - 147.78000000000000 1.0216195365533442E-003 - 147.84000000000000 1.0233749656182235E-003 - 147.90000000000001 1.0244193445655670E-003 - 147.95999999999998 1.0247693583098464E-003 - 148.01999999999998 1.0244418830094584E-003 - 148.07999999999998 1.0234543663137376E-003 - 148.13999999999999 1.0218245021501682E-003 - 148.19999999999999 1.0195703207102847E-003 - 148.25999999999999 1.0167101631047464E-003 - 148.31999999999999 1.0132624954931660E-003 - 148.38000000000000 1.0092461704881079E-003 - 148.44000000000000 1.0046801010873006E-003 - 148.50000000000000 9.9958315546599561E-004 - 148.56000000000000 9.9397452937109612E-004 - 148.62000000000000 9.8787332552257873E-004 - 148.68000000000001 9.8129868624478238E-004 - 148.73999999999998 9.7426973533024292E-004 - 148.79999999999998 9.6680547829119153E-004 - 148.85999999999999 9.5892490491872263E-004 - 148.91999999999999 9.5064684715458669E-004 - 148.97999999999999 9.4198998044543541E-004 - 149.03999999999999 9.3297284642795898E-004 - 149.09999999999999 9.2361376201124360E-004 - 149.16000000000000 9.1393081753634404E-004 - 149.22000000000000 9.0394200469890937E-004 - 149.28000000000000 8.9366490264024452E-004 - 149.34000000000000 8.8311702847477234E-004 - 149.40000000000001 8.7231551534132194E-004 - 149.45999999999998 8.6127731021470551E-004 - 149.51999999999998 8.5001917405619657E-004 - 149.57999999999998 8.3855751748012253E-004 - 149.63999999999999 8.2690851363081681E-004 - 149.69999999999999 8.1508806430196940E-004 - 149.75999999999999 8.0311183148997324E-004 - 149.81999999999999 7.9099523464925701E-004 - 149.88000000000000 7.7875331512290821E-004 - 149.94000000000000 7.6640097788062086E-004 - 150.00000000000000 7.5395278200704127E-004 - 150.06000000000000 7.4142308208149119E-004 - 150.12000000000000 7.2882587697635059E-004 - 150.18000000000001 7.1617498464040662E-004 - 150.23999999999998 7.0348389460948325E-004 - 150.29999999999998 6.9076582921750963E-004 - 150.35999999999999 6.7803386492836968E-004 - 150.41999999999999 6.6530077727135184E-004 - 150.47999999999999 6.5257904714418854E-004 - 150.53999999999999 6.3988097893586077E-004 - 150.59999999999999 6.2721874007946193E-004 - 150.66000000000000 6.1460417054109138E-004 - 150.72000000000000 6.0204898971784196E-004 - 150.78000000000000 5.8956469042866031E-004 - 150.84000000000000 5.7716257434304989E-004 - 150.90000000000001 5.6485381561987246E-004 - 150.95999999999998 5.5264938417477446E-004 - 151.01999999999998 5.4056005047170477E-004 - 151.07999999999998 5.2859650024768572E-004 - 151.13999999999999 5.1676913956383123E-004 - 151.19999999999999 5.0508825998997866E-004 - 151.25999999999999 4.9356399989864438E-004 - 151.31999999999999 4.8220631575681864E-004 - 151.38000000000000 4.7102487399960973E-004 - 151.44000000000000 4.6002928847869773E-004 - 151.50000000000000 4.4922889450580615E-004 - 151.56000000000000 4.3863284950213985E-004 - 151.62000000000000 4.2825005757334542E-004 - 151.68000000000001 4.1808931964572386E-004 - 151.73999999999998 4.0815909457993406E-004 - 151.79999999999998 3.9846770859166929E-004 - 151.85999999999999 3.8902322505396218E-004 - 151.91999999999999 3.7983343793515379E-004 - 151.97999999999999 3.7090592233238710E-004 - 152.03999999999999 3.6224800894742669E-004 - 152.09999999999999 3.5386675167888314E-004 - 152.16000000000000 3.4576896023508279E-004 - 152.22000000000000 3.3796107776115517E-004 - 152.28000000000000 3.3044934473167769E-004 - 152.34000000000000 3.2323961194810966E-004 - 152.40000000000001 3.1633744913830785E-004 - 152.45999999999998 3.0974804326215361E-004 - 152.51999999999998 3.0347622449611962E-004 - 152.57999999999998 2.9752645168343398E-004 - 152.63999999999999 2.9190277441232872E-004 - 152.69999999999999 2.8660879856435407E-004 - 152.75999999999999 2.8164769765568463E-004 - 152.81999999999999 2.7702223093374563E-004 - 152.88000000000000 2.7273460441235026E-004 - 152.94000000000000 2.6878658011192754E-004 - 153.00000000000000 2.6517940932284454E-004 - 153.06000000000000 2.6191382665499420E-004 - 153.12000000000000 2.5898999970813246E-004 - 153.17999999999998 2.5640760577304224E-004 - 153.23999999999998 2.5416571969650074E-004 - 153.29999999999998 2.5226290606004476E-004 - 153.35999999999999 2.5069715769212919E-004 - 153.41999999999999 2.4946588616672814E-004 - 153.47999999999999 2.4856593090972118E-004 - 153.53999999999999 2.4799357563551566E-004 - 153.59999999999999 2.4774450505395611E-004 - 153.66000000000000 2.4781385541997340E-004 - 153.72000000000000 2.4819615871996827E-004 - 153.78000000000000 2.4888537311274612E-004 - 153.84000000000000 2.4987488679455128E-004 - 153.90000000000001 2.5115748143230825E-004 - 153.95999999999998 2.5272535182003093E-004 - 154.01999999999998 2.5457011129657934E-004 - 154.07999999999998 2.5668278687408363E-004 - 154.13999999999999 2.5905385990013078E-004 - 154.19999999999999 2.6167322034193938E-004 - 154.25999999999999 2.6453016722001872E-004 - 154.31999999999999 2.6761349692254455E-004 - 154.38000000000000 2.7091141238680372E-004 - 154.44000000000000 2.7441164108362500E-004 - 154.50000000000000 2.7810141080511166E-004 - 154.56000000000000 2.8196745035031102E-004 - 154.62000000000000 2.8599604809819861E-004 - 154.67999999999998 2.9017300536415738E-004 - 154.73999999999998 2.9448375240035546E-004 - 154.79999999999998 2.9891332093601256E-004 - 154.85999999999999 3.0344636134282510E-004 - 154.91999999999999 3.0806720226350426E-004 - 154.97999999999999 3.1275982969113710E-004 - 155.03999999999999 3.1750792394212389E-004 - 155.09999999999999 3.2229487226959069E-004 - 155.16000000000000 3.2710383014011710E-004 - 155.22000000000000 3.3191768978773088E-004 - 155.28000000000000 3.3671911383639883E-004 - 155.34000000000000 3.4149057104729415E-004 - 155.40000000000001 3.4621435916545857E-004 - 155.45999999999998 3.5087263639358920E-004 - 155.51999999999998 3.5544740184740984E-004 - 155.57999999999998 3.5992057526999783E-004 - 155.63999999999999 3.6427401645241445E-004 - 155.69999999999999 3.6848950582679950E-004 - 155.75999999999999 3.7254890318107214E-004 - 155.81999999999999 3.7643402025964030E-004 - 155.88000000000000 3.8012678039207702E-004 - 155.94000000000000 3.8360916155568423E-004 - 156.00000000000000 3.8686329702316934E-004 - 156.06000000000000 3.8987146489959437E-004 - 156.12000000000000 3.9261619320460556E-004 - 156.17999999999998 3.9508015941131408E-004 - 156.23999999999998 3.9724634162552634E-004 - 156.29999999999998 3.9909797335128933E-004 - 156.35999999999999 4.0061862400830514E-004 - 156.41999999999999 4.0179219698733388E-004 - 156.47999999999999 4.0260290750447961E-004 - 156.53999999999999 4.0303538609507051E-004 - 156.59999999999999 4.0307465430245863E-004 - 156.66000000000000 4.0270612727628892E-004 - 156.72000000000000 4.0191569343679895E-004 - 156.78000000000000 4.0068971326574142E-004 - 156.84000000000000 3.9901504071652083E-004 - 156.90000000000001 3.9687904785651394E-004 - 156.95999999999998 3.9426956481368133E-004 - 157.01999999999998 3.9117514666747326E-004 - 157.07999999999998 3.8758481370432544E-004 - 157.13999999999999 3.8348828626735544E-004 - 157.19999999999999 3.7887588575449789E-004 - 157.25999999999999 3.7373863514949797E-004 - 157.31999999999999 3.6806820776272249E-004 - 157.38000000000000 3.6185707101432684E-004 - 157.44000000000000 3.5509836421490388E-004 - 157.50000000000000 3.4778602822283774E-004 - 157.56000000000000 3.3991483435326624E-004 - 157.62000000000000 3.3148030455207094E-004 - 157.67999999999998 3.2247879810402049E-004 - 157.73999999999998 3.1290747988399947E-004 - 157.79999999999998 3.0276444723014085E-004 - 157.85999999999999 2.9204862186838577E-004 - 157.91999999999999 2.8075982310957323E-004 - 157.97999999999999 2.6889870785481215E-004 - 158.03999999999999 2.5646690498395958E-004 - 158.09999999999999 2.4346693346821304E-004 - 158.16000000000000 2.2990222113528170E-004 - 158.22000000000000 2.1577716094487557E-004 - 158.28000000000000 2.0109704462666070E-004 - 158.34000000000000 1.8586814984095266E-004 - 158.40000000000001 1.7009771869468677E-004 - 158.45999999999998 1.5379393885068176E-004 - 158.51999999999998 1.3696597860940845E-004 - 158.57999999999998 1.1962397238578447E-004 - 158.63999999999999 1.0177902816920575E-004 - 158.69999999999999 8.3443249891663765E-005 - 158.75999999999999 6.4629727502028164E-005 - 158.81999999999999 4.5352494434132616E-005 - 158.88000000000000 2.5626582477169198E-005 - 158.94000000000000 5.4679642962669383E-006 - 159.00000000000000 -1.5106438733430957E-005 - 159.06000000000000 -3.6078771710031248E-005 - 159.12000000000000 -5.7430275094532173E-005 - 159.17999999999998 -7.9141311118984789E-005 - 159.23999999999998 -1.0119134972902313E-004 - 159.29999999999998 -1.2355905438997682E-004 - 159.35999999999999 -1.4622227548551336E-004 - 159.41999999999999 -1.6915807563524788E-004 - 159.47999999999999 -1.9234277618428337E-004 - 159.53999999999999 -2.1575201428254936E-004 - 159.59999999999999 -2.3936073514282982E-004 - 159.66000000000000 -2.6314324410170936E-004 - 159.72000000000000 -2.8707328316383954E-004 - 159.78000000000000 -3.1112399342976007E-004 - 159.84000000000000 -3.3526801167880566E-004 - 159.90000000000001 -3.5947752962360200E-004 - 159.95999999999998 -3.8372428423315378E-004 - 160.01999999999998 -4.0797963787951195E-004 - 160.07999999999998 -4.3221461998660659E-004 - 160.13999999999999 -4.5639995720947847E-004 - 160.19999999999999 -4.8050624088969942E-004 - 160.25999999999999 -5.0450383590238085E-004 - 160.31999999999999 -5.2836291936132415E-004 - 160.38000000000000 -5.5205374384524088E-004 - 160.44000000000000 -5.7554654336775251E-004 - 160.50000000000000 -5.9881166064872278E-004 - 160.56000000000000 -6.2181949259850096E-004 - 160.62000000000000 -6.4454072985345760E-004 - 160.67999999999998 -6.6694630597433015E-004 - 160.73999999999998 -6.8900751341781981E-004 - 160.79999999999998 -7.1069609985252428E-004 - 160.85999999999999 -7.3198414644068594E-004 - 160.91999999999999 -7.5284434628748829E-004 - 160.97999999999999 -7.7324997274161615E-004 - 161.03999999999999 -7.9317485411268748E-004 - 161.09999999999999 -8.1259353366285047E-004 - 161.16000000000000 -8.3148132156393956E-004 - 161.22000000000000 -8.4981427715271739E-004 - 161.28000000000000 -8.6756928082908471E-004 - 161.34000000000000 -8.8472410743651577E-004 - 161.40000000000001 -9.0125751322527633E-004 - 161.45999999999998 -9.1714915259809597E-004 - 161.51999999999998 -9.3237969987295050E-004 - 161.57999999999998 -9.4693093163702731E-004 - 161.63999999999999 -9.6078567142993446E-004 - 161.69999999999999 -9.7392777832964767E-004 - 161.75999999999999 -9.8634244467116607E-004 - 161.81999999999999 -9.9801600085013811E-004 - 161.88000000000000 -1.0089360495932919E-003 - 161.94000000000000 -1.0190911938192204E-003 - 162.00000000000000 -1.0284715467307898E-003 - 162.06000000000000 -1.0370684437081212E-003 - 162.12000000000000 -1.0448742179529655E-003 - 162.17999999999998 -1.0518827512147855E-003 - 162.23999999999998 -1.0580891833943729E-003 - 162.29999999999998 -1.0634898657388273E-003 - 162.35999999999999 -1.0680823404349881E-003 - 162.41999999999999 -1.0718654081411732E-003 - 162.47999999999999 -1.0748392452776311E-003 - 162.53999999999999 -1.0770052186821655E-003 - 162.59999999999999 -1.0783657597734548E-003 - 162.66000000000000 -1.0789245958374256E-003 - 162.72000000000000 -1.0786864669255218E-003 - 162.78000000000000 -1.0776572800528861E-003 - 162.84000000000000 -1.0758441083018771E-003 - 162.90000000000001 -1.0732551807391244E-003 - 162.95999999999998 -1.0698995259563250E-003 - 163.01999999999998 -1.0657873677345684E-003 - 163.07999999999998 -1.0609298628906673E-003 - 163.13999999999999 -1.0553390398880982E-003 - 163.19999999999999 -1.0490278387800080E-003 - 163.25999999999999 -1.0420099487219374E-003 - 163.31999999999999 -1.0343000220509803E-003 - 163.38000000000000 -1.0259132752292817E-003 - 163.44000000000000 -1.0168656696604695E-003 - 163.50000000000000 -1.0071737759902921E-003 - 163.56000000000000 -9.9685486088589874E-004 - 163.62000000000000 -9.8592652900380238E-004 - 163.67999999999998 -9.7440704612985736E-004 - 163.73999999999998 -9.6231501948560458E-004 - 163.79999999999998 -9.4966937907677625E-004 - 163.85999999999999 -9.3648947328687550E-004 - 163.91999999999999 -9.2279499483431833E-004 - 163.97999999999999 -9.0860572379260034E-004 - 164.03999999999999 -8.9394162914065384E-004 - 164.09999999999999 -8.7882293963602906E-004 - 164.16000000000000 -8.6327002987207472E-004 - 164.22000000000000 -8.4730311108458705E-004 - 164.28000000000000 -8.3094262467131445E-004 - 164.34000000000000 -8.1420896832221990E-004 - 164.40000000000001 -7.9712250513975927E-004 - 164.45999999999998 -7.7970349971244490E-004 - 164.51999999999998 -7.6197209167604780E-004 - 164.57999999999998 -7.4394824625094121E-004 - 164.63999999999999 -7.2565188511717856E-004 - 164.69999999999999 -7.0710265799172256E-004 - 164.75999999999999 -6.8832008027605108E-004 - 164.81999999999999 -6.6932333910189391E-004 - 164.88000000000000 -6.5013143349238595E-004 - 164.94000000000000 -6.3076300613261721E-004 - 165.00000000000000 -6.1123637632642860E-004 - 165.06000000000000 -5.9156959369299907E-004 - 165.12000000000000 -5.7178028104946932E-004 - 165.17999999999998 -5.5188577658119291E-004 - 165.23999999999998 -5.3190296866427629E-004 - 165.29999999999998 -5.1184837066442523E-004 - 165.35999999999999 -4.9173811659632301E-004 - 165.41999999999999 -4.7158795730611229E-004 - 165.47999999999999 -4.5141317324496922E-004 - 165.53999999999999 -4.3122870404966023E-004 - 165.59999999999999 -4.1104908034391634E-004 - 165.66000000000000 -3.9088835341493820E-004 - 165.72000000000000 -3.7076035247977240E-004 - 165.78000000000000 -3.5067838992496487E-004 - 165.84000000000000 -3.3065550336984191E-004 - 165.90000000000001 -3.1070427646474088E-004 - 165.95999999999998 -2.9083704720592874E-004 - 166.01999999999998 -2.7106571483625325E-004 - 166.07999999999998 -2.5140189915964908E-004 - 166.13999999999999 -2.3185684819450580E-004 - 166.19999999999999 -2.1244146877149941E-004 - 166.25999999999999 -1.9316636256817954E-004 - 166.31999999999999 -1.7404178589007879E-004 - 166.38000000000000 -1.5507762576660224E-004 - 166.44000000000000 -1.3628347309188368E-004 - 166.50000000000000 -1.1766856628719391E-004 - 166.56000000000000 -9.9241802547374145E-005 - 166.62000000000000 -8.1011771696597209E-005 - 166.67999999999998 -6.2986713674979272E-005 - 166.73999999999998 -4.5174576660628182E-005 - 166.79999999999998 -2.7582998872263909E-005 - 166.85999999999999 -1.0219326807659339E-005 - 166.91999999999999 6.9093725977792507E-006 - 166.97999999999999 2.3796300348390758E-005 - 167.03999999999999 4.0434913612584972E-005 - 167.09999999999999 5.6818913348948011E-005 - 167.16000000000000 7.2942229494742377E-005 - 167.22000000000000 8.8799049020888763E-005 - 167.28000000000000 1.0438376260377166E-004 - 167.34000000000000 1.1969099941235158E-004 - 167.40000000000001 1.3471560502228692E-004 - 167.45999999999998 1.4945269679337967E-004 - 167.51999999999998 1.6389761380299894E-004 - 167.57999999999998 1.7804595381835063E-004 - 167.63999999999999 1.9189354779290216E-004 - 167.69999999999999 2.0543655159274373E-004 - 167.75999999999999 2.1867138501768183E-004 - 167.81999999999999 2.3159474843582450E-004 - 167.88000000000000 2.4420363552883064E-004 - 167.94000000000000 2.5649537880228102E-004 - 168.00000000000000 2.6846760812999860E-004 - 168.06000000000000 2.8011822670566280E-004 - 168.12000000000000 2.9144545756618707E-004 - 168.17999999999998 3.0244783068607891E-004 - 168.23999999999998 3.1312417819683789E-004 - 168.29999999999998 3.2347358789351085E-004 - 168.35999999999999 3.3349548432073809E-004 - 168.41999999999999 3.4318956401780467E-004 - 168.47999999999999 3.5255581578728598E-004 - 168.53999999999999 3.6159443028606337E-004 - 168.59999999999999 3.7030594543528683E-004 - 168.66000000000000 3.7869110589063042E-004 - 168.72000000000000 3.8675100458194784E-004 - 168.78000000000000 3.9448694306456436E-004 - 168.84000000000000 4.0190049395776332E-004 - 168.90000000000001 4.0899352615696583E-004 - 168.95999999999998 4.1576816890822796E-004 - 169.01999999999998 4.2222685403936559E-004 - 169.07999999999998 4.2837226394961086E-004 - 169.13999999999999 4.3420732670042717E-004 - 169.19999999999999 4.3973528958035266E-004 - 169.25999999999999 4.4495961537110952E-004 - 169.31999999999999 4.4988409157267675E-004 - 169.38000000000000 4.5451273226517668E-004 - 169.44000000000000 4.5884970480370249E-004 - 169.50000000000000 4.6289957888345329E-004 - 169.56000000000000 4.6666706385164645E-004 - 169.62000000000000 4.7015706264131793E-004 - 169.67999999999998 4.7337470431047858E-004 - 169.73999999999998 4.7632524710957297E-004 - 169.79999999999998 4.7901417306534660E-004 - 169.85999999999999 4.8144703833366315E-004 - 169.91999999999999 4.8362951557309112E-004 - 169.97999999999999 4.8556740837965259E-004 - 170.03999999999999 4.8726659985804933E-004 - 170.09999999999999 4.8873305052144714E-004 - 170.16000000000000 4.8997274727627285E-004 - 170.22000000000000 4.9099163003971710E-004 - 170.28000000000000 4.9179578807008039E-004 - 170.34000000000000 4.9239124544289833E-004 - 170.40000000000001 4.9278405747579497E-004 - 170.45999999999998 4.9298024413616838E-004 - 170.51999999999998 4.9298583460935692E-004 - 170.57999999999998 4.9280679262148173E-004 - 170.63999999999999 4.9244913034768171E-004 - 170.69999999999999 4.9191882110070472E-004 - 170.75999999999999 4.9122175820510267E-004 - 170.81999999999999 4.9036387836996894E-004 - 170.88000000000000 4.8935100402148764E-004 - 170.94000000000000 4.8818898785975566E-004 - 171.00000000000000 4.8688353231979129E-004 - 171.06000000000000 4.8544030432452566E-004 - 171.12000000000000 4.8386495937889715E-004 - 171.17999999999998 4.8216295531496267E-004 - 171.23999999999998 4.8033964654230302E-004 - 171.29999999999998 4.7840036211424167E-004 - 171.35999999999999 4.7635024615986225E-004 - 171.41999999999999 4.7419430071261241E-004 - 171.47999999999999 4.7193747428934279E-004 - 171.53999999999999 4.6958448898345832E-004 - 171.59999999999999 4.6713999201909126E-004 - 171.66000000000000 4.6460840714707428E-004 - 171.72000000000000 4.6199421688413822E-004 - 171.78000000000000 4.5930168637328163E-004 - 171.84000000000000 4.5653499636109571E-004 - 171.90000000000001 4.5369819284661340E-004 - 171.95999999999998 4.5079534918365956E-004 - 172.01999999999998 4.4783045626839690E-004 - 172.07999999999998 4.4480739239257609E-004 - 172.13999999999999 4.4173001975292406E-004 - 172.19999999999999 4.3860226962908117E-004 - 172.25999999999999 4.3542793056495420E-004 - 172.31999999999999 4.3221080628590391E-004 - 172.38000000000000 4.2895477096832190E-004 - 172.44000000000000 4.2566365141129844E-004 - 172.50000000000000 4.2234120555920943E-004 - 172.56000000000000 4.1899130330304144E-004 - 172.62000000000000 4.1561774220036585E-004 - 172.67999999999998 4.1222441500445896E-004 - 172.73999999999998 4.0881514263915860E-004 - 172.79999999999998 4.0539380982620196E-004 - 172.85999999999999 4.0196432945629421E-004 - 172.91999999999999 3.9853062539760048E-004 - 172.97999999999999 3.9509668478938931E-004 - 173.03999999999999 3.9166645680625194E-004 - 173.09999999999999 3.8824400337802685E-004 - 173.16000000000000 3.8483341794110361E-004 - 173.22000000000000 3.8143878983771520E-004 - 173.28000000000000 3.7806426609181970E-004 - 173.34000000000000 3.7471405665696000E-004 - 173.40000000000001 3.7139243200847198E-004 - 173.45999999999998 3.6810362978245670E-004 - 173.51999999999998 3.6485198692331740E-004 - 173.57999999999998 3.6164183701020399E-004 - 173.63999999999999 3.5847758350972465E-004 - 173.69999999999999 3.5536365310796737E-004 - 173.75999999999999 3.5230443865607837E-004 - 173.81999999999999 3.4930437642709489E-004 - 173.88000000000000 3.4636792612596898E-004 - 173.94000000000000 3.4349951636705061E-004 - 174.00000000000000 3.4070351886579341E-004 - 174.06000000000000 3.3798435247005899E-004 - 174.12000000000000 3.3534634426558407E-004 - 174.17999999999998 3.3279378510304324E-004 - 174.23999999999998 3.3033081277320582E-004 - 174.29999999999998 3.2796155474446389E-004 - 174.35999999999999 3.2568991351266720E-004 - 174.41999999999999 3.2351972074760762E-004 - 174.47999999999999 3.2145465696086580E-004 - 174.53999999999999 3.1949817886116805E-004 - 174.59999999999999 3.1765357469735783E-004 - 174.66000000000000 3.1592393632771314E-004 - 174.72000000000000 3.1431206961663849E-004 - 174.78000000000000 3.1282058778629772E-004 - 174.84000000000000 3.1145182751252771E-004 - 174.90000000000001 3.1020790602512619E-004 - 174.95999999999998 3.0909064520652193E-004 - 175.01999999999998 3.0810163821025832E-004 - 175.07999999999998 3.0724216025572275E-004 - 175.13999999999999 3.0651326334807930E-004 - 175.19999999999999 3.0591567989450444E-004 - 175.25999999999999 3.0544988672901271E-004 - 175.31999999999999 3.0511603922931372E-004 - 175.38000000000000 3.0491401531894445E-004 - 175.44000000000000 3.0484336592962938E-004 - 175.50000000000000 3.0490337725001837E-004 - 175.56000000000000 3.0509297167945193E-004 - 175.62000000000000 3.0541077975547578E-004 - 175.67999999999998 3.0585509307166101E-004 - 175.73999999999998 3.0642384858084167E-004 - 175.79999999999998 3.0711465802025985E-004 - 175.85999999999999 3.0792480310573697E-004 - 175.91999999999999 3.0885125036215203E-004 - 175.97999999999999 3.0989061287751735E-004 - 176.03999999999999 3.1103916799972561E-004 - 176.09999999999999 3.1229291087254317E-004 - 176.16000000000000 3.1364756191427543E-004 - 176.22000000000000 3.1509848677210942E-004 - 176.28000000000000 3.1664082285357150E-004 - 176.34000000000000 3.1826948402469851E-004 - 176.40000000000001 3.1997913803016582E-004 - 176.45999999999998 3.2176422468632135E-004 - 176.51999999999998 3.2361901251008859E-004 - 176.57999999999998 3.2553756069278553E-004 - 176.63999999999999 3.2751382300808066E-004 - 176.69999999999999 3.2954161799518089E-004 - 176.75999999999999 3.3161461728153268E-004 - 176.81999999999999 3.3372638324993028E-004 - 176.88000000000000 3.3587046408939554E-004 - 176.94000000000000 3.3804027578648659E-004 - 177.00000000000000 3.4022922360853934E-004 - 177.06000000000000 3.4243067403605929E-004 - 177.12000000000000 3.4463797431636876E-004 - 177.17999999999998 3.4684444169663073E-004 - 177.23999999999998 3.4904340864980464E-004 - 177.29999999999998 3.5122826154001787E-004 - 177.35999999999999 3.5339237657502941E-004 - 177.41999999999999 3.5552918253401941E-004 - 177.47999999999999 3.5763216415691292E-004 - 177.53999999999999 3.5969485379958548E-004 - 177.59999999999999 3.6171091982108237E-004 - 177.66000000000000 3.6367406101010569E-004 - 177.72000000000000 3.6557806521855162E-004 - 177.78000000000000 3.6741690349137408E-004 - 177.84000000000000 3.6918461714737476E-004 - 177.90000000000001 3.7087536719319989E-004 - 177.95999999999998 3.7248355688531640E-004 - 178.01999999999998 3.7400367663562310E-004 - 178.07999999999998 3.7543040541142638E-004 - 178.13999999999999 3.7675869774880436E-004 - 178.19999999999999 3.7798364673830584E-004 - 178.25999999999999 3.7910055556119606E-004 - 178.31999999999999 3.8010502468573218E-004 - 178.38000000000000 3.8099278811195317E-004 - 178.44000000000000 3.8175989143470325E-004 - 178.50000000000000 3.8240253533528511E-004 - 178.56000000000000 3.8291718615357116E-004 - 178.62000000000000 3.8330050820191826E-004 - 178.67999999999998 3.8354938199108949E-004 - 178.73999999999998 3.8366093340321575E-004 - 178.79999999999998 3.8363242731128587E-004 - 178.85999999999999 3.8346133980408069E-004 - 178.91999999999999 3.8314531519646804E-004 - 178.97999999999999 3.8268213351677128E-004 - 179.03999999999999 3.8206981729822028E-004 - 179.09999999999999 3.8130649445654996E-004 - 179.16000000000000 3.8039048854742309E-004 - 179.22000000000000 3.7932025794439571E-004 - 179.28000000000000 3.7809448147964179E-004 - 179.34000000000000 3.7671196096076756E-004 - 179.40000000000001 3.7517169526752952E-004 - 179.45999999999998 3.7347285732153485E-004 - 179.51999999999998 3.7161479358676773E-004 - 179.57999999999998 3.6959705665019164E-004 - 179.63999999999999 3.6741930069482935E-004 - 179.69999999999999 3.6508143868694740E-004 - 179.75999999999999 3.6258350212553319E-004 - 179.81999999999999 3.5992571918484913E-004 - 179.88000000000000 3.5710842437544578E-004 - 179.94000000000000 3.5413214903763261E-004 - 180.00000000000000 3.5099751711482305E-004 - 180.06000000000000 3.4770528444898923E-004 - 180.12000000000000 3.4425635975188131E-004 - 180.17999999999998 3.4065170185731855E-004 - 180.23999999999998 3.3689245622470020E-004 - 180.29999999999998 3.3297979934594280E-004 - 180.35999999999999 3.2891500829322114E-004 - 180.41999999999999 3.2469948168079390E-004 - 180.47999999999999 3.2033470044226346E-004 - 180.53999999999999 3.1582223791766463E-004 - 180.59999999999999 3.1116374665831915E-004 - 180.66000000000000 3.0636101425898674E-004 - 180.72000000000000 3.0141593493168798E-004 - 180.78000000000000 2.9633045833268190E-004 - 180.84000000000000 2.9110669381924491E-004 - 180.90000000000001 2.8574679927839680E-004 - 180.95999999999998 2.8025311966437027E-004 - 181.01999999999998 2.7462808173411314E-004 - 181.07999999999998 2.6887418454379138E-004 - 181.13999999999999 2.6299407957342696E-004 - 181.19999999999999 2.5699054647350514E-004 - 181.25999999999999 2.5086647488939894E-004 - 181.31999999999999 2.4462487383271000E-004 - 181.38000000000000 2.3826884884556621E-004 - 181.44000000000000 2.3180164554660143E-004 - 181.50000000000000 2.2522661581237977E-004 - 181.56000000000000 2.1854723871918267E-004 - 181.62000000000000 2.1176709315144578E-004 - 181.67999999999998 2.0488989116253166E-004 - 181.73999999999998 1.9791946893974320E-004 - 181.79999999999998 1.9085971949526291E-004 - 181.85999999999999 1.8371471541424404E-004 - 181.91999999999999 1.7648857583920361E-004 - 181.97999999999999 1.6918558015785413E-004 - 182.03999999999999 1.6181008364205400E-004 - 182.09999999999999 1.5436656006745866E-004 - 182.16000000000000 1.4685958209346712E-004 - 182.22000000000000 1.3929386454562202E-004 - 182.28000000000000 1.3167421660752594E-004 - 182.34000000000000 1.2400558028164213E-004 - 182.39999999999998 1.1629299940952488E-004 - 182.45999999999998 1.0854164686452690E-004 - 182.51999999999998 1.0075681503752362E-004 - 182.57999999999998 9.2943947332725958E-005 - 182.63999999999999 8.5108593684758512E-005 - 182.69999999999999 7.7256419266747683E-005 - 182.75999999999999 6.9393257060112499E-005 - 182.81999999999999 6.1524995971053761E-005 - 182.88000000000000 5.3657666957052607E-005 - 182.94000000000000 4.5797403121557303E-005 - 183.00000000000000 3.7950409582989169E-005 - 183.06000000000000 3.0122992505154106E-005 - 183.12000000000000 2.2321523763130847E-005 - 183.17999999999998 1.4552447710887792E-005 - 183.23999999999998 6.8222355302756622E-006 - 183.29999999999998 -8.6255241099464618E-007 - 183.35999999999999 -8.4953438450554446E-006 - 183.41999999999999 -1.6069525237543120E-005 - 183.47999999999999 -2.3578457739408416E-005 - 183.53999999999999 -3.1015507715751345E-005 - 183.59999999999999 -3.8373982291268189E-005 - 183.66000000000000 -4.5647204313224893E-005 - 183.72000000000000 -5.2828477125205647E-005 - 183.78000000000000 -5.9911102363185775E-005 - 183.84000000000000 -6.6888386767069069E-005 - 183.89999999999998 -7.3753651951004328E-005 - 183.95999999999998 -8.0500252760052829E-005 - 184.01999999999998 -8.7121550128618463E-005 - 184.07999999999998 -9.3610970756326960E-005 - 184.13999999999999 -9.9961964637563852E-005 - 184.19999999999999 -1.0616809785830409E-004 - 184.25999999999999 -1.1222296110406811E-004 - 184.31999999999999 -1.1812029844194175E-004 - 184.38000000000000 -1.2385393257365181E-004 - 184.44000000000000 -1.2941784219335607E-004 - 184.50000000000000 -1.3480612990569656E-004 - 184.56000000000000 -1.4001306157298478E-004 - 184.62000000000000 -1.4503305778652592E-004 - 184.67999999999998 -1.4986074681975822E-004 - 184.73999999999998 -1.5449093468726288E-004 - 184.79999999999998 -1.5891864343059643E-004 - 184.85999999999999 -1.6313913202691845E-004 - 184.91999999999999 -1.6714786720672351E-004 - 184.97999999999999 -1.7094058638641310E-004 - 185.03999999999999 -1.7451324699379822E-004 - 185.09999999999999 -1.7786209008231350E-004 - 185.16000000000000 -1.8098362422709735E-004 - 185.22000000000000 -1.8387462537284874E-004 - 185.28000000000000 -1.8653220338386853E-004 - 185.34000000000000 -1.8895372426162765E-004 - 185.39999999999998 -1.9113688635147400E-004 - 185.45999999999998 -1.9307966487509438E-004 - 185.51999999999998 -1.9478038540298489E-004 - 185.57999999999998 -1.9623766618166795E-004 - 185.63999999999999 -1.9745045467119902E-004 - 185.69999999999999 -1.9841803542698463E-004 - 185.75999999999999 -1.9913999537314684E-004 - 185.81999999999999 -1.9961624005776106E-004 - 185.88000000000000 -1.9984702815736111E-004 - 185.94000000000000 -1.9983293036493976E-004 - 186.00000000000000 -1.9957480557428100E-004 - 186.06000000000000 -1.9907387305973163E-004 - 186.12000000000000 -1.9833168033206236E-004 - 186.17999999999998 -1.9735009343669227E-004 - 186.23999999999998 -1.9613126987593724E-004 - 186.29999999999998 -1.9467773031311549E-004 - 186.35999999999999 -1.9299227876480037E-004 - 186.41999999999999 -1.9107806521184676E-004 - 186.47999999999999 -1.8893851724667514E-004 - 186.53999999999999 -1.8657739186035292E-004 - 186.59999999999999 -1.8399872353015993E-004 - 186.66000000000000 -1.8120684182126612E-004 - 186.72000000000000 -1.7820632222579019E-004 - 186.78000000000000 -1.7500203372351568E-004 - 186.84000000000000 -1.7159908652384902E-004 - 186.89999999999998 -1.6800278653576777E-004 - 186.95999999999998 -1.6421872485165018E-004 - 187.01999999999998 -1.6025266504879457E-004 - 187.07999999999998 -1.5611055107558902E-004 - 187.13999999999999 -1.5179851535330980E-004 - 187.19999999999999 -1.4732286995517663E-004 - 187.25999999999999 -1.4269007496994286E-004 - 187.31999999999999 -1.3790674453483822E-004 - 187.38000000000000 -1.3297959673359307E-004 - 187.44000000000000 -1.2791548480470320E-004 - 187.50000000000000 -1.2272135580930439E-004 - 187.56000000000000 -1.1740426661130962E-004 - 187.62000000000000 -1.1197132929488643E-004 - 187.67999999999998 -1.0642974111580472E-004 - 187.73999999999998 -1.0078674154073144E-004 - 187.79999999999998 -9.5049609414318343E-005 - 187.85999999999999 -8.9225637684059813E-005 - 187.91999999999999 -8.3322141953714340E-005 - 187.97999999999999 -7.7346411205786084E-005 - 188.03999999999999 -7.1305718029340733E-005 - 188.09999999999999 -6.5207294819110356E-005 - 188.16000000000000 -5.9058331024619922E-005 - 188.22000000000000 -5.2865931102304256E-005 - 188.28000000000000 -4.6637134430998540E-005 - 188.34000000000000 -4.0378891895508022E-005 - 188.39999999999998 -3.4098045885801463E-005 - 188.45999999999998 -2.7801345528444720E-005 - 188.51999999999998 -2.1495408778831788E-005 - 188.57999999999998 -1.5186743129192198E-005 - 188.63999999999999 -8.8817141408741491E-006 - 188.69999999999999 -2.5865557054880668E-006 - 188.75999999999999 3.6926399947674983E-006 - 188.81999999999999 9.9499391300926795E-006 - 188.88000000000000 1.6179551585490724E-005 - 188.94000000000000 2.2375849758140415E-005 - 189.00000000000000 2.8533373821592028E-005 - 189.06000000000000 3.4646813607745825E-005 - 189.12000000000000 4.0711047522093896E-005 - 189.17999999999998 4.6721120519891947E-005 - 189.23999999999998 5.2672245255072903E-005 - 189.29999999999998 5.8559804696864880E-005 - 189.35999999999999 6.4379363185190460E-005 - 189.41999999999999 7.0126656154399260E-005 - 189.47999999999999 7.5797604136328860E-005 - 189.53999999999999 8.1388280259857179E-005 - 189.59999999999999 8.6894943943333978E-005 - 189.66000000000000 9.2314018075879061E-005 - 189.72000000000000 9.7642108250025681E-005 - 189.78000000000000 1.0287597244889842E-004 - 189.84000000000000 1.0801255100798476E-004 - 189.89999999999998 1.1304894408199111E-004 - 189.95999999999998 1.1798241841510536E-004 - 190.01999999999998 1.2281041296084304E-004 - 190.07999999999998 1.2753052182473088E-004 - 190.13999999999999 1.3214052101250472E-004 - 190.19999999999999 1.3663833823056916E-004 - 190.25999999999999 1.4102203870869164E-004 - 190.31999999999999 1.4528987329124292E-004 - 190.38000000000000 1.4944021744399039E-004 - 190.44000000000000 1.5347159617698307E-004 - 190.50000000000000 1.5738267473419738E-004 - 190.56000000000000 1.6117225609316976E-004 - 190.62000000000000 1.6483926301380549E-004 - 190.67999999999998 1.6838272398231650E-004 - 190.73999999999998 1.7180182220134313E-004 - 190.79999999999998 1.7509584903250416E-004 - 190.85999999999999 1.7826417053690586E-004 - 190.91999999999999 1.8130625518420328E-004 - 190.97999999999999 1.8422171145399512E-004 - 191.03999999999999 1.8701020837706919E-004 - 191.09999999999999 1.8967152882186134E-004 - 191.16000000000000 1.9220551235117544E-004 - 191.22000000000000 1.9461213108289352E-004 - 191.28000000000000 1.9689141052681646E-004 - 191.34000000000000 1.9904349846407892E-004 - 191.39999999999998 2.0106858060696235E-004 - 191.45999999999998 2.0296695123463575E-004 - 191.51999999999998 2.0473894932616389E-004 - 191.57999999999998 2.0638501069435378E-004 - 191.63999999999999 2.0790561710866032E-004 - 191.69999999999999 2.0930132125430648E-004 - 191.75999999999999 2.1057275109811062E-004 - 191.81999999999999 2.1172056519539736E-004 - 191.88000000000000 2.1274549859386134E-004 - 191.94000000000000 2.1364833514797696E-004 - 192.00000000000000 2.1442990079400910E-004 - 192.06000000000000 2.1509109873817607E-004 - 192.12000000000000 2.1563285973690376E-004 - 192.17999999999998 2.1605617663719920E-004 - 192.23999999999998 2.1636209469179401E-004 - 192.29999999999998 2.1655173279181474E-004 - 192.35999999999999 2.1662624382969361E-004 - 192.41999999999999 2.1658685651171038E-004 - 192.47999999999999 2.1643482225492834E-004 - 192.53999999999999 2.1617147081707210E-004 - 192.59999999999999 2.1579820638637249E-004 - 192.66000000000000 2.1531643259103261E-004 - 192.72000000000000 2.1472765346350277E-004 - 192.78000000000000 2.1403340462202656E-004 - 192.84000000000000 2.1323528333984027E-004 - 192.89999999999998 2.1233491167400802E-004 - 192.95999999999998 2.1133398125185231E-004 - 193.01999999999998 2.1023419618911978E-004 - 193.07999999999998 2.0903734927012427E-004 - 193.13999999999999 2.0774524126367059E-004 - 193.19999999999999 2.0635970110511746E-004 - 193.25999999999999 2.0488264696169137E-004 - 193.31999999999999 2.0331598882188386E-004 - 193.38000000000000 2.0166170546972209E-004 - 193.44000000000000 1.9992179626624184E-004 - 193.50000000000000 1.9809829567736043E-004 - 193.56000000000000 1.9619327112996109E-004 - 193.62000000000000 1.9420883183730229E-004 - 193.67999999999998 1.9214713960722814E-004 - 193.73999999999998 1.9001034249107877E-004 - 193.79999999999998 1.8780064695457521E-004 - 193.85999999999999 1.8552028067347006E-004 - 193.91999999999999 1.8317150595315067E-004 - 193.97999999999999 1.8075661954404220E-004 - 194.03999999999999 1.7827791343625352E-004 - 194.09999999999999 1.7573772954893412E-004 - 194.16000000000000 1.7313843209271153E-004 - 194.22000000000000 1.7048241873313089E-004 - 194.28000000000000 1.6777209189176290E-004 - 194.34000000000000 1.6500986352992853E-004 - 194.39999999999998 1.6219818625078734E-004 - 194.45999999999998 1.5933953732044569E-004 - 194.51999999999998 1.5643637907238972E-004 - 194.57999999999998 1.5349119750438799E-004 - 194.63999999999999 1.5050646857811233E-004 - 194.69999999999999 1.4748469952646410E-004 - 194.75999999999999 1.4442835903560197E-004 - 194.81999999999999 1.4133993670765175E-004 - 194.88000000000000 1.3822186905513754E-004 - 194.94000000000000 1.3507661495331947E-004 - 195.00000000000000 1.3190657597366410E-004 - 195.06000000000000 1.2871415318195439E-004 - 195.12000000000000 1.2550170448529348E-004 - 195.17999999999998 1.2227155072187253E-004 - 195.23999999999998 1.1902598044256845E-004 - 195.29999999999998 1.1576725894976239E-004 - 195.35999999999999 1.1249759330797197E-004 - 195.41999999999999 1.0921915494424199E-004 - 195.47999999999999 1.0593406952930746E-004 - 195.53999999999999 1.0264441581318490E-004 - 195.59999999999999 9.9352230657759270E-005 - 195.66000000000000 9.6059491882041103E-005 - 195.72000000000000 9.2768137320430367E-005 - 195.78000000000000 8.9480028381817828E-005 - 195.84000000000000 8.6196986049807302E-005 - 195.89999999999998 8.2920765272365292E-005 - 195.95999999999998 7.9653047275256861E-005 - 196.01999999999998 7.6395462598529513E-005 - 196.07999999999998 7.3149563593085138E-005 - 196.13999999999999 6.9916830746923617E-005 - 196.19999999999999 6.6698678851202821E-005 - 196.25999999999999 6.3496448300019573E-005 - 196.31999999999999 6.0311416897966675E-005 - 196.38000000000000 5.7144788613946586E-005 - 196.44000000000000 5.3997699741606067E-005 - 196.50000000000000 5.0871229146916585E-005 - 196.56000000000000 4.7766388114448698E-005 - 196.62000000000000 4.4684135112354066E-005 - 196.67999999999998 4.1625370485566070E-005 - 196.73999999999998 3.8590942891903933E-005 - 196.79999999999998 3.5581651499584184E-005 - 196.85999999999999 3.2598259829842594E-005 - 196.91999999999999 2.9641481906350175E-005 - 196.97999999999999 2.6711996963405849E-005 - 197.03999999999999 2.3810445915265769E-005 - 197.09999999999999 2.0937444293473112E-005 - 197.16000000000000 1.8093576293953453E-005 - 197.22000000000000 1.5279399061361071E-005 - 197.28000000000000 1.2495447721764958E-005 - 197.34000000000000 9.7422368643138303E-006 - 197.39999999999998 7.0202664602059072E-006 - 197.45999999999998 4.3300235285082188E-006 - 197.51999999999998 1.6719849732932689E-006 - 197.57999999999998 -9.5338635788519645E-007 - 197.63999999999999 -3.5456244945515816E-006 - 197.69999999999999 -6.1042702630801949E-006 - 197.75999999999999 -8.6288620228723044E-006 - 197.81999999999999 -1.1118930751421257E-005 - 197.88000000000000 -1.3574002246370545E-005 - 197.94000000000000 -1.5993586104671565E-005 - 198.00000000000000 -1.8377182601330182E-005 - 198.06000000000000 -2.0724264753614133E-005 - 198.12000000000000 -2.3034291145515001E-005 - 198.17999999999998 -2.5306689804898197E-005 - 198.23999999999998 -2.7540853369136027E-005 - 198.29999999999998 -2.9736145007545408E-005 - 198.35999999999999 -3.1891892091043394E-005 - 198.41999999999999 -3.4007375443850205E-005 - 198.47999999999999 -3.6081837323140263E-005 - 198.53999999999999 -3.8114471858146307E-005 - 198.59999999999999 -4.0104434018015599E-005 - 198.66000000000000 -4.2050828471416706E-005 - 198.72000000000000 -4.3952718168201173E-005 - 198.78000000000000 -4.5809114162075702E-005 - 198.84000000000000 -4.7618997267655138E-005 - 198.89999999999998 -4.9381300484122251E-005 - 198.95999999999998 -5.1094927001882424E-005 - 199.01999999999998 -5.2758749323601098E-005 - 199.07999999999998 -5.4371598288079857E-005 - 199.13999999999999 -5.5932291352165598E-005 - 199.19999999999999 -5.7439613063486699E-005 - 199.25999999999999 -5.8892331506304671E-005 - 199.31999999999999 -6.0289186732352107E-005 - 199.38000000000000 -6.1628911415016931E-005 - 199.44000000000000 -6.2910212804460488E-005 - 199.50000000000000 -6.4131785875885309E-005 - 199.56000000000000 -6.5292309002600957E-005 - 199.62000000000000 -6.6390456905524096E-005 - 199.67999999999998 -6.7424891137204132E-005 - 199.73999999999998 -6.8394256737402953E-005 - 199.79999999999998 -6.9297216059011594E-005 - 199.85999999999999 -7.0132407347852727E-005 - 199.91999999999999 -7.0898494064641776E-005 - 199.97999999999999 -7.1594144932928634E-005 - 200.03999999999999 -7.2218050658323408E-005 - 200.09999999999999 -7.2768921960490230E-005 - 200.16000000000000 -7.3245499885648901E-005 - 200.22000000000000 -7.3646557472032274E-005 - 200.28000000000000 -7.3970928487627262E-005 - 200.34000000000000 -7.4217476362949477E-005 - 200.39999999999998 -7.4385132876594981E-005 - 200.45999999999998 -7.4472877135716803E-005 - 200.51999999999998 -7.4479772927714700E-005 - 200.57999999999998 -7.4404930099475941E-005 - 200.63999999999999 -7.4247538487763571E-005 - 200.69999999999999 -7.4006867663358448E-005 - 200.75999999999999 -7.3682258624124643E-005 - 200.81999999999999 -7.3273130731148090E-005 - 200.88000000000000 -7.2778986127320793E-005 - 200.94000000000000 -7.2199418131083053E-005 - 201.00000000000000 -7.1534101197603069E-005 - 201.06000000000000 -7.0782805097306437E-005 - 201.12000000000000 -6.9945390340125723E-005 - 201.17999999999998 -6.9021808006646497E-005 - 201.23999999999998 -6.8012114092515897E-005 - 201.29999999999998 -6.6916481820456452E-005 - 201.35999999999999 -6.5735158008469041E-005 - 201.41999999999999 -6.4468525221389404E-005 - 201.47999999999999 -6.3117066312290090E-005 - 201.53999999999999 -6.1681367605107712E-005 - 201.59999999999999 -6.0162136163914180E-005 - 201.66000000000000 -5.8560193494847100E-005 - 201.72000000000000 -5.6876475575745928E-005 - 201.78000000000000 -5.5112026048134709E-005 - 201.84000000000000 -5.3268011490462010E-005 - 201.89999999999998 -5.1345710074208163E-005 - 201.95999999999998 -4.9346511816458808E-005 - 202.01999999999998 -4.7271915232516458E-005 - 202.07999999999998 -4.5123528588455106E-005 - 202.13999999999999 -4.2903072505462211E-005 - 202.19999999999999 -4.0612377873830415E-005 - 202.25999999999999 -3.8253370809806317E-005 - 202.31999999999999 -3.5828083507970866E-005 - 202.38000000000000 -3.3338639998465368E-005 - 202.44000000000000 -3.0787267151861317E-005 - 202.50000000000000 -2.8176277218454886E-005 - 202.56000000000000 -2.5508072803905374E-005 - 202.62000000000000 -2.2785130419269080E-005 - 202.67999999999998 -2.0010007573687493E-005 - 202.73999999999998 -1.7185331852138751E-005 - 202.79999999999998 -1.4313796896113025E-005 - 202.85999999999999 -1.1398155408155754E-005 - 202.91999999999999 -8.4412140603368061E-006 - 202.97999999999999 -5.4458284290423721E-006 - 203.03999999999999 -2.4148939259321634E-006 - 203.09999999999999 6.4866009206066694E-007 - 203.16000000000000 3.7418731241747531E-006 - 203.22000000000000 6.8617664440724551E-006 - 203.28000000000000 1.0005346775104447E-005 - 203.34000000000000 1.3169615241833888E-005 - 203.39999999999998 1.6351577185698978E-005 - 203.45999999999998 1.9548249075504206E-005 - 203.51999999999998 2.2756667478959295E-005 - 203.57999999999998 2.5973896244021798E-005 - 203.63999999999999 2.9197043095226774E-005 - 203.69999999999999 3.2423256500482053E-005 - 203.75999999999999 3.5649750857290078E-005 - 203.81999999999999 3.8873796789884884E-005 - 203.88000000000000 4.2092740575550743E-005 - 203.94000000000000 4.5304008770443646E-005 - 204.00000000000000 4.8505115431701433E-005 - 204.06000000000000 5.1693664476031870E-005 - 204.12000000000000 5.4867359839887286E-005 - 204.17999999999998 5.8024006630449105E-005 - 204.23999999999998 6.1161522001247911E-005 - 204.29999999999998 6.4277932064587357E-005 - 204.35999999999999 6.7371390418585010E-005 - 204.41999999999999 7.0440168336020453E-005 - 204.47999999999999 7.3482666541052602E-005 - 204.53999999999999 7.6497427960095445E-005 - 204.59999999999999 7.9483142141904961E-005 - 204.66000000000000 8.2438643966410266E-005 - 204.72000000000000 8.5362936848077102E-005 - 204.78000000000000 8.8255180475321510E-005 - 204.84000000000000 9.1114714312472611E-005 - 204.89999999999998 9.3941052028409712E-005 - 204.95999999999998 9.6733903180796967E-005 - 205.01999999999998 9.9493171523866458E-005 - 205.07999999999998 1.0221892846371208E-004 - 205.13999999999999 1.0491144730335461E-004 - 205.19999999999999 1.0757120862122716E-004 - 205.25999999999999 1.1019886706829947E-004 - 205.31999999999999 1.1279525569206597E-004 - 205.38000000000000 1.1536140192811223E-004 - 205.44000000000000 1.1789850886787605E-004 - 205.50000000000000 1.2040792724049387E-004 - 205.56000000000000 1.2289119054677706E-004 - 205.62000000000000 1.2534998471949358E-004 - 205.67999999999998 1.2778613016489179E-004 - 205.73999999999998 1.3020157273240169E-004 - 205.79999999999998 1.3259843434189185E-004 - 205.85999999999999 1.3497892929683554E-004 - 205.91999999999999 1.3734539536007948E-004 - 205.97999999999999 1.3970031312696881E-004 - 206.03999999999999 1.4204624839601684E-004 - 206.09999999999999 1.4438588754995730E-004 - 206.16000000000000 1.4672199368812112E-004 - 206.22000000000000 1.4905744110065326E-004 - 206.28000000000000 1.5139516716795238E-004 - 206.34000000000000 1.5373819429007947E-004 - 206.39999999999998 1.5608958255404124E-004 - 206.45999999999998 1.5845246212476156E-004 - 206.51999999999998 1.6083000641417371E-004 - 206.57999999999998 1.6322537939457920E-004 - 206.63999999999999 1.6564175706376645E-004 - 206.69999999999999 1.6808234001029987E-004 - 206.75999999999999 1.7055025520989301E-004 - 206.81999999999999 1.7304862627962481E-004 - 206.88000000000000 1.7558051565722536E-004 - 206.94000000000000 1.7814890209707482E-004 - 207.00000000000000 1.8075668839966810E-004 - 207.06000000000000 1.8340669426114274E-004 - 207.12000000000000 1.8610161834341584E-004 - 207.17999999999998 1.8884403858903019E-004 - 207.23999999999998 1.9163639565331070E-004 - 207.29999999999998 1.9448095507471031E-004 - 207.35999999999999 1.9737986440699891E-004 - 207.41999999999999 2.0033508272927780E-004 - 207.47999999999999 2.0334837893895807E-004 - 207.53999999999999 2.0642133135252911E-004 - 207.59999999999999 2.0955530966253243E-004 - 207.66000000000000 2.1275148495424919E-004 - 207.72000000000000 2.1601078938232452E-004 - 207.78000000000000 2.1933390738494701E-004 - 207.84000000000000 2.2272132573179250E-004 - 207.89999999999998 2.2617321159648440E-004 - 207.95999999999998 2.2968954761275491E-004 - 208.01999999999998 2.3326998109469469E-004 - 208.07999999999998 2.3691391020002901E-004 - 208.13999999999999 2.4062047096914019E-004 - 208.19999999999999 2.4438849486914670E-004 - 208.25999999999999 2.4821653850913420E-004 - 208.31999999999999 2.5210280837519472E-004 - 208.38000000000000 2.5604528668206117E-004 - 208.44000000000000 2.6004158684656817E-004 - 208.50000000000000 2.6408904053848041E-004 - 208.56000000000000 2.6818465431335510E-004 - 208.62000000000000 2.7232515648131734E-004 - 208.68000000000001 2.7650691289061741E-004 - 208.74000000000001 2.8072600893857966E-004 - 208.80000000000001 2.8497827002310177E-004 - 208.86000000000001 2.8925912276819854E-004 - 208.92000000000002 2.9356378904737865E-004 - 208.98000000000002 2.9788716373895928E-004 - 209.03999999999996 3.0222391342280897E-004 - 209.09999999999997 3.0656836964753118E-004 - 209.15999999999997 3.1091467038822646E-004 - 209.21999999999997 3.1525667157539748E-004 - 209.27999999999997 3.1958808013879034E-004 - 209.33999999999997 3.2390232943605986E-004 - 209.39999999999998 3.2819268943426846E-004 - 209.45999999999998 3.3245221842395536E-004 - 209.51999999999998 3.3667382153313775E-004 - 209.57999999999998 3.4085023683784937E-004 - 209.63999999999999 3.4497406331255589E-004 - 209.69999999999999 3.4903781385031555E-004 - 209.75999999999999 3.5303388639266136E-004 - 209.81999999999999 3.5695456520636314E-004 - 209.88000000000000 3.6079207653685023E-004 - 209.94000000000000 3.6453859466926286E-004 - 210.00000000000000 3.6818625175945367E-004 - 210.06000000000000 3.7172724668486939E-004 - 210.12000000000000 3.7515368653769494E-004 - 210.18000000000001 3.7845778736067456E-004 - 210.24000000000001 3.8163181769160318E-004 - 210.30000000000001 3.8466811368237787E-004 - 210.36000000000001 3.8755912796821751E-004 - 210.42000000000002 3.9029746312408564E-004 - 210.48000000000002 3.9287591289204586E-004 - 210.53999999999996 3.9528737870753546E-004 - 210.59999999999997 3.9752500806942645E-004 - 210.65999999999997 3.9958219533758421E-004 - 210.71999999999997 4.0145257617566854E-004 - 210.77999999999997 4.0313001077161393E-004 - 210.83999999999997 4.0460868488422972E-004 - 210.89999999999998 4.0588306451045113E-004 - 210.95999999999998 4.0694797919751561E-004 - 211.01999999999998 4.0779861521301499E-004 - 211.07999999999998 4.0843042507532584E-004 - 211.13999999999999 4.0883931596572009E-004 - 211.19999999999999 4.0902159360725138E-004 - 211.25999999999999 4.0897394560311640E-004 - 211.31999999999999 4.0869345888122101E-004 - 211.38000000000000 4.0817766794825835E-004 - 211.44000000000000 4.0742458925210564E-004 - 211.50000000000000 4.0643264741153928E-004 - 211.56000000000000 4.0520077610507998E-004 - 211.62000000000000 4.0372831980359930E-004 - 211.68000000000001 4.0201514398327586E-004 - 211.74000000000001 4.0006155025748010E-004 - 211.80000000000001 3.9786830186054194E-004 - 211.86000000000001 3.9543664682597742E-004 - 211.92000000000002 3.9276830609259207E-004 - 211.98000000000002 3.8986544379820205E-004 - 212.03999999999996 3.8673074605424925E-004 - 212.09999999999997 3.8336728619931096E-004 - 212.15999999999997 3.7977859743208438E-004 - 212.21999999999997 3.7596863908826334E-004 - 212.27999999999997 3.7194183976177312E-004 - 212.33999999999997 3.6770300067967077E-004 - 212.39999999999998 3.6325737504961948E-004 - 212.45999999999998 3.5861062320535867E-004 - 212.51999999999998 3.5376875327973001E-004 - 212.57999999999998 3.4873818214819325E-004 - 212.63999999999999 3.4352566960663377E-004 - 212.69999999999999 3.3813831106920748E-004 - 212.75999999999999 3.3258354055774474E-004 - 212.81999999999999 3.2686907690471798E-004 - 212.88000000000000 3.2100288824391627E-004 - 212.94000000000000 3.1499320558209883E-004 - 213.00000000000000 3.0884849708144515E-004 - 213.06000000000000 3.0257737542024649E-004 - 213.12000000000000 2.9618865052941594E-004 - 213.18000000000001 2.8969127014792146E-004 - 213.24000000000001 2.8309426928039704E-004 - 213.30000000000001 2.7640677873224756E-004 - 213.36000000000001 2.6963797217311895E-004 - 213.42000000000002 2.6279707139486598E-004 - 213.48000000000002 2.5589329875336697E-004 - 213.53999999999996 2.4893586488884271E-004 - 213.59999999999997 2.4193394203338465E-004 - 213.65999999999997 2.3489670474385898E-004 - 213.71999999999997 2.2783319768417072E-004 - 213.77999999999997 2.2075239951602741E-004 - 213.83999999999997 2.1366321255741641E-004 - 213.89999999999998 2.0657433796920032E-004 - 213.95999999999998 1.9949439810575248E-004 - 214.01999999999998 1.9243185082232301E-004 - 214.07999999999998 1.8539493146162736E-004 - 214.13999999999999 1.7839170427670851E-004 - 214.19999999999999 1.7143000518833731E-004 - 214.25999999999999 1.6451743650931782E-004 - 214.31999999999999 1.5766134404444622E-004 - 214.38000000000000 1.5086879431839434E-004 - 214.44000000000000 1.4414657220927893E-004 - 214.50000000000000 1.3750113584619865E-004 - 214.56000000000000 1.3093865742914233E-004 - 214.62000000000000 1.2446496455348430E-004 - 214.68000000000001 1.1808556761503747E-004 - 214.74000000000001 1.1180561662398541E-004 - 214.80000000000001 1.0562992804052381E-004 - 214.86000000000001 9.9562963764150185E-005 - 214.92000000000002 9.3608844450184219E-005 - 214.98000000000002 8.7771357499763297E-005 - 215.03999999999996 8.2053913915900161E-005 - 215.09999999999997 7.6459625674921101E-005 - 215.15999999999997 7.0991257254312848E-005 - 215.21999999999997 6.5651254457986514E-005 - 215.27999999999997 6.0441752826777384E-005 - 215.33999999999997 5.5364585246507907E-005 - 215.39999999999998 5.0421295673675502E-005 - 215.45999999999998 4.5613137454368517E-005 - 215.51999999999998 4.0941103359508371E-005 - 215.57999999999998 3.6405918986714954E-005 - 215.63999999999999 3.2008054620902245E-005 - 215.69999999999999 2.7747742088849169E-005 - 215.75999999999999 2.3624977645678019E-005 - 215.81999999999999 1.9639531356761894E-005 - 215.88000000000000 1.5790950966011154E-005 - 215.94000000000000 1.2078575832293835E-005 - 216.00000000000000 8.5015430305150963E-006 - 216.06000000000000 5.0587939024394600E-006 - 216.12000000000000 1.7490915305211873E-006 - 216.18000000000001 -1.4289756187300235E-006 - 216.24000000000001 -4.4769803511221515E-006 - 216.30000000000001 -7.3966394489622053E-006 - 216.36000000000001 -1.0189803838552930E-005 - 216.42000000000002 -1.2858435405619529E-005 - 216.48000000000002 -1.5404598670078880E-005 - 216.53999999999996 -1.7830437696326703E-005 - 216.59999999999997 -2.0138161535679194E-005 - 216.65999999999997 -2.2330022989715947E-005 - 216.71999999999997 -2.4408307623290923E-005 - 216.77999999999997 -2.6375316904936806E-005 - 216.83999999999997 -2.8233349090297497E-005 - 216.89999999999998 -2.9984703871519138E-005 - 216.95999999999998 -3.1631657944043644E-005 - 217.01999999999998 -3.3176466351030894E-005 - 217.07999999999998 -3.4621353422207820E-005 - 217.13999999999999 -3.5968513014486257E-005 - 217.19999999999999 -3.7220111065212087E-005 - 217.25999999999999 -3.8378270304475543E-005 - 217.31999999999999 -3.9445087567223749E-005 - 217.38000000000000 -4.0422628122213693E-005 - 217.44000000000000 -4.1312917407864520E-005 - 217.50000000000000 -4.2117949574798285E-005 - 217.56000000000000 -4.2839687277345103E-005 - 217.62000000000000 -4.3480042093268768E-005 - 217.68000000000001 -4.4040889681876380E-005 - 217.74000000000001 -4.4524059066093057E-005 - 217.80000000000001 -4.4931315595044842E-005 - 217.86000000000001 -4.5264377626193660E-005 - 217.92000000000002 -4.5524892623672887E-005 - 217.98000000000002 -4.5714439509281999E-005 - 218.03999999999996 -4.5834527436312204E-005 - 218.09999999999997 -4.5886589529079431E-005 - 218.15999999999997 -4.5871986228324709E-005 - 218.21999999999997 -4.5792008710224394E-005 - 218.27999999999997 -4.5647873843203091E-005 - 218.33999999999997 -4.5440736036028559E-005 - 218.39999999999998 -4.5171692929750266E-005 - 218.45999999999998 -4.4841795842946021E-005 - 218.51999999999998 -4.4452049308756460E-005 - 218.57999999999998 -4.4003423816238213E-005 - 218.63999999999999 -4.3496870345512469E-005 - 218.69999999999999 -4.2933315934858912E-005 - 218.75999999999999 -4.2313681987690828E-005 - 218.81999999999999 -4.1638879633062601E-005 - 218.88000000000000 -4.0909826740828450E-005 - 218.94000000000000 -4.0127441911202371E-005 - 219.00000000000000 -3.9292647048992581E-005 - 219.06000000000000 -3.8406375022531229E-005 - 219.12000000000000 -3.7469558173987679E-005 - 219.18000000000001 -3.6483141574384909E-005 - 219.24000000000001 -3.5448079260887069E-005 - 219.30000000000001 -3.4365325046310696E-005 - 219.36000000000001 -3.3235841229621806E-005 - 219.42000000000002 -3.2060590586589400E-005 - 219.48000000000002 -3.0840543153289634E-005 - 219.53999999999996 -2.9576664982191341E-005 - 219.59999999999997 -2.8269933448187920E-005 - 219.65999999999997 -2.6921324097059728E-005 - 219.71999999999997 -2.5531819270629131E-005 - 219.77999999999997 -2.4102404533189025E-005 - 219.83999999999997 -2.2634072235791981E-005 - 219.89999999999998 -2.1127817667057129E-005 - 219.95999999999998 -1.9584647541854773E-005 - 220.01999999999998 -1.8005577187848604E-005 - 220.07999999999998 -1.6391625080978141E-005 - 220.13999999999999 -1.4743821878461576E-005 - 220.19999999999999 -1.3063203529234609E-005 - 220.25999999999999 -1.1350812300634994E-005 - 220.31999999999999 -9.6076932342272345E-006 - 220.38000000000000 -7.8348933524594855E-006 - 220.44000000000000 -6.0334566070042933E-006 - 220.50000000000000 -4.2044211647509439E-006 - 220.56000000000000 -2.3488135705345428E-006 - 220.62000000000000 -4.6764371785767111E-007 - 220.68000000000001 1.4381005993386539E-006 - 220.74000000000001 3.3674613557992976E-006 - 220.80000000000001 5.3195149089926268E-006 - 220.86000000000001 7.2933811550054107E-006 - 220.92000000000002 9.2882285989235565E-006 - 220.98000000000002 1.1303279923851111E-005 - 221.03999999999996 1.3337819835332739E-005 - 221.09999999999997 1.5391199862263538E-005 - 221.15999999999997 1.7462845495133267E-005 - 221.21999999999997 1.9552256217189987E-005 - 221.27999999999997 2.1659009151547593E-005 - 221.33999999999997 2.3782768499265676E-005 - 221.39999999999998 2.5923279620069811E-005 - 221.45999999999998 2.8080378688332647E-005 - 221.51999999999998 3.0253985598734981E-005 - 221.57999999999998 3.2444116040249346E-005 - 221.63999999999999 3.4650867630335194E-005 - 221.69999999999999 3.6874443779633328E-005 - 221.75999999999999 3.9115133889992030E-005 - 221.81999999999999 4.1373320683409418E-005 - 221.88000000000000 4.3649489811053345E-005 - 221.94000000000000 4.5944224156640507E-005 - 222.00000000000000 4.8258202628301194E-005 - 222.06000000000000 5.0592216400830584E-005 - 222.12000000000000 5.2947149419202190E-005 - 222.18000000000001 5.5323984781272579E-005 - 222.24000000000001 5.7723811925767182E-005 - 222.30000000000001 6.0147817052179730E-005 - 222.36000000000001 6.2597286643504245E-005 - 222.42000000000002 6.5073589251541880E-005 - 222.48000000000002 6.7578191311322384E-005 - 222.53999999999996 7.0112640521207236E-005 - 222.59999999999997 7.2678547035473612E-005 - 222.65999999999997 7.5277610098302192E-005 - 222.71999999999997 7.7911574466775615E-005 - 222.77999999999997 8.0582245115344859E-005 - 222.83999999999997 8.3291479240895231E-005 - 222.89999999999998 8.6041152954057404E-005 - 222.95999999999998 8.8833184664091576E-005 - 223.01999999999998 9.1669489677174412E-005 - 223.07999999999998 9.4552017252060049E-005 - 223.13999999999999 9.7482687198976434E-005 - 223.19999999999999 1.0046342377981540E-004 - 223.25999999999999 1.0349610837975035E-004 - 223.31999999999999 1.0658258133477485E-004 - 223.38000000000000 1.0972462796431130E-004 - 223.44000000000000 1.1292396700833823E-004 - 223.50000000000000 1.1618222545417954E-004 - 223.56000000000000 1.1950091937267561E-004 - 223.62000000000000 1.2288146047044913E-004 - 223.68000000000001 1.2632510548141375E-004 - 223.74000000000001 1.2983298509129719E-004 - 223.80000000000001 1.3340603440902674E-004 - 223.86000000000001 1.3704502861026856E-004 - 223.92000000000002 1.4075052454282173E-004 - 223.98000000000002 1.4452289040442379E-004 - 224.03999999999996 1.4836225976146795E-004 - 224.09999999999997 1.5226855276577375E-004 - 224.15999999999997 1.5624143114524434E-004 - 224.21999999999997 1.6028031468407649E-004 - 224.27999999999997 1.6438437488816495E-004 - 224.33999999999997 1.6855250088531232E-004 - 224.39999999999998 1.7278331613372410E-004 - 224.45999999999998 1.7707514323664312E-004 - 224.51999999999998 1.8142605129615536E-004 - 224.57999999999998 1.8583377927296288E-004 - 224.63999999999999 1.9029576925711622E-004 - 224.69999999999999 1.9480914726494972E-004 - 224.75999999999999 1.9937072505802532E-004 - 224.81999999999999 2.0397700291720591E-004 - 224.88000000000000 2.0862409761066643E-004 - 224.94000000000000 2.1330779898374856E-004 - 225.00000000000000 2.1802359458794507E-004 - 225.06000000000000 2.2276661806083000E-004 - 225.12000000000000 2.2753167371240691E-004 - 225.18000000000001 2.3231322340567487E-004 - 225.24000000000001 2.3710540262740021E-004 - 225.30000000000001 2.4190207437591643E-004 - 225.36000000000001 2.4669674773100089E-004 - 225.42000000000002 2.5148269220475822E-004 - 225.48000000000002 2.5625287309615776E-004 - 225.53999999999996 2.6100006131651149E-004 - 225.59999999999997 2.6571670632493337E-004 - 225.65999999999997 2.7039511757308851E-004 - 225.71999999999997 2.7502734705136368E-004 - 225.77999999999997 2.7960529688084032E-004 - 225.83999999999997 2.8412068376990659E-004 - 225.89999999999998 2.8856507661516935E-004 - 225.95999999999998 2.9292995018683567E-004 - 226.01999999999998 2.9720661515805454E-004 - 226.07999999999998 3.0138632405214542E-004 - 226.13999999999999 3.0546025542291602E-004 - 226.19999999999999 3.0941950935316280E-004 - 226.25999999999999 3.1325519001866565E-004 - 226.31999999999999 3.1695833842698934E-004 - 226.38000000000000 3.2052006717362563E-004 - 226.44000000000000 3.2393151289306977E-004 - 226.50000000000000 3.2718389297732228E-004 - 226.56000000000000 3.3026847938847183E-004 - 226.62000000000000 3.3317671477662674E-004 - 226.68000000000001 3.3590018798618194E-004 - 226.74000000000001 3.3843064707716450E-004 - 226.80000000000001 3.4076013441667078E-004 - 226.86000000000001 3.4288084678150998E-004 - 226.92000000000002 3.4478535596794724E-004 - 226.98000000000002 3.4646648135249749E-004 - 227.03999999999996 3.4791733208760372E-004 - 227.09999999999997 3.4913147905536897E-004 - 227.15999999999997 3.5010280998656521E-004 - 227.21999999999997 3.5082561231535936E-004 - 227.27999999999997 3.5129465030599058E-004 - 227.33999999999997 3.5150506079758274E-004 - 227.39999999999998 3.5145243164978485E-004 - 227.45999999999998 3.5113284895097412E-004 - 227.51999999999998 3.5054290745897279E-004 - 227.57999999999998 3.4967961770252274E-004 - 227.63999999999999 3.4854050641803342E-004 - 227.69999999999999 3.4712363639700190E-004 - 227.75999999999999 3.4542757504437148E-004 - 227.81999999999999 3.4345141499679511E-004 - 227.88000000000000 3.4119473238530210E-004 - 227.94000000000000 3.3865770221124230E-004 - 228.00000000000000 3.3584100056028747E-004 - 228.06000000000000 3.3274585469325526E-004 - 228.12000000000000 3.2937402575610369E-004 - 228.18000000000001 3.2572784144211146E-004 - 228.24000000000001 3.2181021319256127E-004 - 228.30000000000001 3.1762455460610547E-004 - 228.36000000000001 3.1317482225257153E-004 - 228.42000000000002 3.0846560529479200E-004 - 228.48000000000002 3.0350190672807464E-004 - 228.53999999999996 2.9828932239485336E-004 - 228.59999999999997 2.9283394563017290E-004 - 228.65999999999997 2.8714236345736983E-004 - 228.71999999999997 2.8122161481973550E-004 - 228.77999999999997 2.7507921145989415E-004 - 228.83999999999997 2.6872308149295036E-004 - 228.89999999999998 2.6216155631073024E-004 - 228.95999999999998 2.5540332747851720E-004 - 229.01999999999998 2.4845744942945166E-004 - 229.07999999999998 2.4133325381130605E-004 - 229.13999999999999 2.3404045726399403E-004 - 229.19999999999999 2.2658900543944482E-004 - 229.25999999999999 2.1898907826822060E-004 - 229.31999999999999 2.1125106795311506E-004 - 229.38000000000000 2.0338556349921329E-004 - 229.44000000000000 1.9540338004064411E-004 - 229.50000000000000 1.8731546276514816E-004 - 229.56000000000000 1.7913286205713968E-004 - 229.62000000000000 1.7086676316252630E-004 - 229.68000000000001 1.6252842110343299E-004 - 229.74000000000001 1.5412916637903360E-004 - 229.80000000000001 1.4568036471267998E-004 - 229.86000000000001 1.3719338490403524E-004 - 229.92000000000002 1.2867958157642835E-004 - 229.97999999999996 1.2015022146388868E-004 - 230.03999999999996 1.1161653081065587E-004 - 230.09999999999997 1.0308957718280053E-004 - 230.15999999999997 9.4580304502008087E-005 - 230.21999999999997 8.6099498173682391E-005 - 230.27999999999997 7.7657688517801331E-005 - 230.33999999999997 6.9265203524261011E-005 - 230.39999999999998 6.0932083311009958E-005 - 230.45999999999998 5.2668093999802724E-005 - 230.51999999999998 4.4482707893944430E-005 - 230.57999999999998 3.6385058270806499E-005 - 230.63999999999999 2.8383950201993083E-005 - 230.69999999999999 2.0487837728706749E-005 - 230.75999999999999 1.2704822736264153E-005 - 230.81999999999999 5.0426377302070014E-006 - 230.88000000000000 -2.4913737792761449E-006 - 230.94000000000000 -9.8902229938388875E-006 - 231.00000000000000 -1.7147323495175963E-005 - 231.06000000000000 -2.4256474517675705E-005 - 231.12000000000000 -3.1211867881011716E-005 - 231.18000000000001 -3.8008106224317936E-005 - 231.24000000000001 -4.4640212624934267E-005 - 231.30000000000001 -5.1103612484460409E-005 - 231.36000000000001 -5.7394168107237006E-005 - 231.42000000000002 -6.3508172891645542E-005 - 231.47999999999996 -6.9442351483765843E-005 - 231.53999999999996 -7.5193883865225906E-005 - 231.59999999999997 -8.0760392341066109E-005 - 231.65999999999997 -8.6139949349233987E-005 - 231.71999999999997 -9.1331063270156797E-005 - 231.77999999999997 -9.6332691116973396E-005 - 231.83999999999997 -1.0114423274008722E-004 - 231.89999999999998 -1.0576550921623667E-004 - 231.95999999999998 -1.1019675762561094E-004 - 232.01999999999998 -1.1443861574626222E-004 - 232.07999999999998 -1.1849210856927814E-004 - 232.13999999999999 -1.2235863153378288E-004 - 232.19999999999999 -1.2603993210864249E-004 - 232.25999999999999 -1.2953810566790997E-004 - 232.31999999999999 -1.3285556131780048E-004 - 232.38000000000000 -1.3599500268138124E-004 - 232.44000000000000 -1.3895941935685601E-004 - 232.50000000000000 -1.4175206331684315E-004 - 232.56000000000000 -1.4437647314029822E-004 - 232.62000000000000 -1.4683638276182475E-004 - 232.68000000000001 -1.4913579095060444E-004 - 232.74000000000001 -1.5127887794147738E-004 - 232.80000000000001 -1.5327005675903795E-004 - 232.86000000000001 -1.5511390190823168E-004 - 232.92000000000002 -1.5681519614092914E-004 - 232.97999999999996 -1.5837885465291233E-004 - 233.03999999999996 -1.5980997011791489E-004 - 233.09999999999997 -1.6111374883562784E-004 - 233.15999999999997 -1.6229553588113882E-004 - 233.21999999999997 -1.6336077634625528E-004 - 233.27999999999997 -1.6431498644284360E-004 - 233.33999999999997 -1.6516377023570398E-004 - 233.39999999999998 -1.6591275860081172E-004 - 233.45999999999998 -1.6656761748605974E-004 - 233.51999999999998 -1.6713403198305535E-004 - 233.57999999999998 -1.6761765106798043E-004 - 233.63999999999999 -1.6802410289253663E-004 - 233.69999999999999 -1.6835897688217689E-004 - 233.75999999999999 -1.6862778001876255E-004 - 233.81999999999999 -1.6883597498420214E-004 - 233.88000000000000 -1.6898891937793784E-004 - 233.94000000000000 -1.6909184901920654E-004 - 234.00000000000000 -1.6914989693490065E-004 - 234.06000000000000 -1.6916811195938030E-004 - 234.12000000000000 -1.6915138136679647E-004 - 234.18000000000001 -1.6910449200623274E-004 - 234.24000000000001 -1.6903210744793860E-004 - 234.30000000000001 -1.6893872531100336E-004 - 234.36000000000001 -1.6882873172146702E-004 - 234.42000000000002 -1.6870636183407059E-004 - 234.47999999999996 -1.6857570385954418E-004 - 234.53999999999996 -1.6844068562673015E-004 - 234.59999999999997 -1.6830508495566985E-004 - 234.65999999999997 -1.6817250185215376E-004 - 234.71999999999997 -1.6804634843748203E-004 - 234.77999999999997 -1.6792986374271595E-004 - 234.83999999999997 -1.6782607796002138E-004 - 234.89999999999998 -1.6773784107614330E-004 - 234.95999999999998 -1.6766775267829838E-004 - 235.01999999999998 -1.6761822604041273E-004 - 235.07999999999998 -1.6759145390392571E-004 - 235.13999999999999 -1.6758942172539177E-004 - 235.19999999999999 -1.6761387261722468E-004 - 235.25999999999999 -1.6766632964877344E-004 - 235.31999999999999 -1.6774812419461020E-004 - 235.38000000000000 -1.6786035184593174E-004 - 235.44000000000000 -1.6800394245371399E-004 - 235.50000000000000 -1.6817959779697814E-004 - 235.56000000000000 -1.6838784119573084E-004 - 235.62000000000000 -1.6862901166270712E-004 - 235.68000000000001 -1.6890326989095884E-004 - 235.74000000000001 -1.6921060942388041E-004 - 235.80000000000001 -1.6955084050934447E-004 - 235.86000000000001 -1.6992362344120176E-004 - 235.92000000000002 -1.7032843285619032E-004 - 235.97999999999996 -1.7076460441669563E-004 - 236.03999999999996 -1.7123130125175690E-004 - 236.09999999999997 -1.7172752646341720E-004 - 236.15999999999997 -1.7225209663536650E-004 - 236.21999999999997 -1.7280371734442794E-004 - 236.27999999999997 -1.7338089150206943E-004 - 236.33999999999997 -1.7398199733845165E-004 - 236.39999999999998 -1.7460526648854460E-004 - 236.45999999999998 -1.7524877129838370E-004 - 236.51999999999998 -1.7591046012039758E-004 - 236.57999999999998 -1.7658819037758770E-004 - 236.63999999999999 -1.7727964914630729E-004 - 236.69999999999999 -1.7798247226287004E-004 - 236.75999999999999 -1.7869415615919082E-004 - 236.81999999999999 -1.7941215954879171E-004 - 236.88000000000000 -1.8013383599695845E-004 - 236.94000000000000 -1.8085653293914945E-004 - 237.00000000000000 -1.8157749807080242E-004 - 237.06000000000000 -1.8229393020527732E-004 - 237.12000000000000 -1.8300300713306334E-004 - 237.18000000000001 -1.8370188190857772E-004 - 237.24000000000001 -1.8438765349216172E-004 - 237.30000000000001 -1.8505742548448722E-004 - 237.36000000000001 -1.8570824265935835E-004 - 237.42000000000002 -1.8633714990708801E-004 - 237.47999999999996 -1.8694118159532703E-004 - 237.53999999999996 -1.8751735829169021E-004 - 237.59999999999997 -1.8806270242357570E-004 - 237.65999999999997 -1.8857422147804576E-004 - 237.71999999999997 -1.8904894649005244E-004 - 237.77999999999997 -1.8948390510462246E-004 - 237.83999999999997 -1.8987617463272994E-004 - 237.89999999999998 -1.9022284356012093E-004 - 237.95999999999998 -1.9052107042027017E-004 - 238.01999999999998 -1.9076804528394748E-004 - 238.07999999999998 -1.9096101894618744E-004 - 238.13999999999999 -1.9109734088893583E-004 - 238.19999999999999 -1.9117443399751033E-004 - 238.25999999999999 -1.9118979905328914E-004 - 238.31999999999999 -1.9114104024909651E-004 - 238.38000000000000 -1.9102589821619662E-004 - 238.44000000000000 -1.9084220111695180E-004 - 238.50000000000000 -1.9058787811896582E-004 - 238.56000000000000 -1.9026101378678224E-004 - 238.62000000000000 -1.8985980682622905E-004 - 238.68000000000001 -1.8938259143736386E-004 - 238.74000000000001 -1.8882778699685023E-004 - 238.80000000000001 -1.8819398125939865E-004 - 238.86000000000001 -1.8747990540676397E-004 - 238.92000000000002 -1.8668441815540565E-004 - 238.97999999999996 -1.8580647688501293E-004 - 239.03999999999996 -1.8484523700654636E-004 - 239.09999999999997 -1.8379996762014900E-004 - 239.15999999999997 -1.8267010624978703E-004 - 239.21999999999997 -1.8145522452177020E-004 - 239.27999999999997 -1.8015508720120536E-004 - 239.33999999999997 -1.7876958302542433E-004 - 239.39999999999998 -1.7729878620676923E-004 - 239.45999999999998 -1.7574293746229711E-004 - 239.51999999999998 -1.7410245876439570E-004 - 239.57999999999998 -1.7237794134336579E-004 - 239.63999999999999 -1.7057015720676875E-004 - 239.69999999999999 -1.6868004101299730E-004 - 239.75999999999999 -1.6670870275120429E-004 - 239.81999999999999 -1.6465742255175204E-004 - 239.88000000000000 -1.6252763298848648E-004 - 239.94000000000000 -1.6032091151157486E-004 - 240.00000000000000 -1.5803899872169334E-004 - 240.06000000000000 -1.5568377797515917E-004 - 240.12000000000000 -1.5325722764797348E-004 - 240.18000000000001 -1.5076148510468222E-004 - 240.24000000000001 -1.4819880078632787E-004 - 240.30000000000001 -1.4557153563026523E-004 - 240.36000000000001 -1.4288211528937247E-004 - 240.42000000000002 -1.4013310687182603E-004 - 240.47999999999996 -1.3732717541606454E-004 - 240.53999999999996 -1.3446706475924353E-004 - 240.59999999999997 -1.3155562717595711E-004 - 240.65999999999997 -1.2859578039436253E-004 - 240.71999999999997 -1.2559054975393353E-004 - 240.77999999999997 -1.2254306642818492E-004 - 240.83999999999997 -1.1945651911965234E-004 - 240.89999999999998 -1.1633417849857341E-004 - 240.95999999999998 -1.1317940780822119E-004 - 241.01999999999998 -1.0999562796685081E-004 - 241.07999999999998 -1.0678630691887597E-004 - 241.13999999999999 -1.0355496912659906E-004 - 241.19999999999999 -1.0030517831732087E-004 - 241.25999999999999 -9.7040523478724228E-005 - 241.31999999999999 -9.3764606452138310E-005 - 241.38000000000000 -9.0481020535700896E-005 - 241.44000000000000 -8.7193361408478072E-005 - 241.50000000000000 -8.3905202387480883E-005 - 241.56000000000000 -8.0620078366151212E-005 - 241.62000000000000 -7.7341499000694555E-005 - 241.68000000000001 -7.4072918730868880E-005 - 241.74000000000001 -7.0817743951378891E-005 - 241.80000000000001 -6.7579334153283099E-005 - 241.86000000000001 -6.4360979405684850E-005 - 241.92000000000002 -6.1165919463053575E-005 - 241.97999999999996 -5.7997327198229401E-005 - 242.03999999999996 -5.4858319639641770E-005 - 242.09999999999997 -5.1751947313958017E-005 - 242.15999999999997 -4.8681195976081714E-005 - 242.21999999999997 -4.5648978911601099E-005 - 242.27999999999997 -4.2658136647777922E-005 - 242.33999999999997 -3.9711427835006537E-005 - 242.39999999999998 -3.6811526259757340E-005 - 242.45999999999998 -3.3961019085501661E-005 - 242.51999999999998 -3.1162392935991346E-005 - 242.57999999999998 -2.8418027630521499E-005 - 242.63999999999999 -2.5730201906246509E-005 - 242.69999999999999 -2.3101066906293309E-005 - 242.75999999999999 -2.0532664711610149E-005 - 242.81999999999999 -1.8026911756050765E-005 - 242.88000000000000 -1.5585597335761306E-005 - 242.94000000000000 -1.3210389151827130E-005 - 243.00000000000000 -1.0902832855526278E-005 - 243.06000000000000 -8.6643454134466723E-006 - 243.12000000000000 -6.4962250066099468E-006 - 243.18000000000001 -4.3996528504660293E-006 - 243.24000000000001 -2.3756907528722867E-006 - 243.30000000000001 -4.2528918881054111E-007 - 243.36000000000001 1.4507135153584183E-006 - 243.42000000000002 3.2515898683230084E-006 - 243.47999999999996 4.9767212717455049E-006 - 243.53999999999996 6.6255981515828606E-006 - 243.59999999999997 8.1978216318753593E-006 - 243.65999999999997 9.6931024933991745E-006 - 243.71999999999997 1.1111264567859707E-005 - 243.77999999999997 1.2452246067042829E-005 - 243.83999999999997 1.3716099394288724E-005 - 243.89999999999998 1.4902996112242245E-005 - 243.95999999999998 1.6013222835612708E-005 - 244.01999999999998 1.7047186068179007E-005 - 244.07999999999998 1.8005408752196906E-005 - 244.13999999999999 1.8888525773348578E-005 - 244.19999999999999 1.9697289531159428E-005 - 244.25999999999999 2.0432556924734621E-005 - 244.31999999999999 2.1095293007029400E-005 - 244.38000000000000 2.1686560824490521E-005 - 244.44000000000000 2.2207517300302877E-005 - 244.50000000000000 2.2659410971936618E-005 - 244.56000000000000 2.3043571866578874E-005 - 244.62000000000000 2.3361409628380653E-005 - 244.68000000000001 2.3614406870143156E-005 - 244.74000000000001 2.3804112289744409E-005 - 244.80000000000001 2.3932142197487204E-005 - 244.86000000000001 2.4000172388476426E-005 - 244.92000000000002 2.4009937226273905E-005 - 244.97999999999996 2.3963226363186832E-005 - 245.03999999999996 2.3861886027792348E-005 - 245.09999999999997 2.3707810916397991E-005 - 245.15999999999997 2.3502951091757688E-005 - 245.21999999999997 2.3249302304240323E-005 - 245.27999999999997 2.2948911570518327E-005 - 245.33999999999997 2.2603867374607384E-005 - 245.39999999999998 2.2216299187081307E-005 - 245.45999999999998 2.1788380600812909E-005 - 245.51999999999998 2.1322316582669758E-005 - 245.57999999999998 2.0820341055365163E-005 - 245.63999999999999 2.0284710944012080E-005 - 245.69999999999999 1.9717701941262857E-005 - 245.75999999999999 1.9121598758815924E-005 - 245.81999999999999 1.8498688453866809E-005 - 245.88000000000000 1.7851251525703208E-005 - 245.94000000000000 1.7181561193032217E-005 - 246.00000000000000 1.6491868209014002E-005 - 246.06000000000000 1.5784400740466466E-005 - 246.12000000000000 1.5061359553951923E-005 - 246.18000000000001 1.4324906839040269E-005 - 246.24000000000001 1.3577170273556172E-005 - 246.30000000000001 1.2820237461626255E-005 - 246.36000000000001 1.2056152848129120E-005 - 246.42000000000002 1.1286919063333803E-005 - 246.47999999999996 1.0514493484881661E-005 - 246.53999999999996 9.7407919817064496E-006 - 246.59999999999997 8.9676822775377106E-006 - 246.65999999999997 8.1969859132398785E-006 - 246.71999999999997 7.4304770151523173E-006 - 246.77999999999997 6.6698761872946849E-006 - 246.83999999999997 5.9168514274067555E-006 - 246.89999999999998 5.1730072682896649E-006 - 246.95999999999998 4.4398844180510063E-006 - 247.01999999999998 3.7189501223171749E-006 - 247.07999999999998 3.0115945066126427E-006 - 247.13999999999999 2.3191205892827942E-006 - 247.19999999999999 1.6427418576015828E-006 - 247.25999999999999 9.8357366597488735E-007 - 247.31999999999999 3.4263039795285145E-007 - 247.38000000000000 -2.7917776906876568E-007 - 247.44000000000000 -8.8104620792902195E-007 - 247.50000000000000 -1.4622761500892324E-006 - 247.56000000000000 -2.0222726273579214E-006 - 247.62000000000000 -2.5605419746079336E-006 - 247.68000000000001 -3.0766872717259570E-006 - 247.74000000000001 -3.5704039600316482E-006 - 247.80000000000001 -4.0414743017750733E-006 - 247.86000000000001 -4.4897625884898095E-006 - 247.92000000000002 -4.9152106432826665E-006 - 247.97999999999996 -5.3178346512739666E-006 - 248.03999999999996 -5.6977211727393723E-006 - 248.09999999999997 -6.0550278304772133E-006 - 248.15999999999997 -6.3899819633468826E-006 - 248.21999999999997 -6.7028821207476745E-006 - 248.27999999999997 -6.9941007050655883E-006 - 248.33999999999997 -7.2640864828601920E-006 - 248.39999999999998 -7.5133657836261403E-006 - 248.45999999999998 -7.7425465974417314E-006 - 248.51999999999998 -7.9523207612935633E-006 - 248.57999999999998 -8.1434627743693656E-006 - 248.63999999999999 -8.3168298968055255E-006 - 248.69999999999999 -8.4733609373561529E-006 - 248.75999999999999 -8.6140683879810209E-006 - 248.81999999999999 -8.7400373484851421E-006 - 248.88000000000000 -8.8524145179219227E-006 - 248.94000000000000 -8.9524026275420481E-006 - 249.00000000000000 -9.0412488940496341E-006 - 249.06000000000000 -9.1202356615023863E-006 - 249.12000000000000 -9.1906740308161789E-006 - 249.18000000000001 -9.2538926688786193E-006 - 249.24000000000001 -9.3112316968434598E-006 - 249.30000000000001 -9.3640339388074669E-006 - 249.36000000000001 -9.4136429446616249E-006 - 249.42000000000002 -9.4613992147554438E-006 - 249.47999999999996 -9.5086367015147342E-006 - 249.53999999999996 -9.5566839090509239E-006 - 249.59999999999997 -9.6068641777203662E-006 - 249.65999999999997 -9.6604950471441883E-006 - 249.71999999999997 -9.7188912032463178E-006 - 249.77999999999997 -9.7833639231314010E-006 - 249.83999999999997 -9.8552229571283283E-006 - 249.89999999999998 -9.9357743849309426E-006 - 249.95999999999998 -1.0026318056787694E-005 - 250.01999999999998 -1.0128146962026170E-005 - 250.07999999999998 -1.0242540279548620E-005 - 250.13999999999999 -1.0370758693820795E-005 - 250.19999999999999 -1.0514036778282796E-005 - 250.25999999999999 -1.0673574430297878E-005 - 250.31999999999999 -1.0850529145852880E-005 - 250.38000000000000 -1.1046006910601381E-005 - 250.44000000000000 -1.1261053978884502E-005 - 250.50000000000000 -1.1496646947863057E-005 - 250.56000000000000 -1.1753687842144588E-005 - 250.62000000000000 -1.2032997039755146E-005 - 250.68000000000001 -1.2335306710506273E-005 - 250.74000000000001 -1.2661260049535782E-005 - 250.80000000000001 -1.3011406017335649E-005 - 250.86000000000001 -1.3386197882597392E-005 - 250.92000000000002 -1.3785995193474820E-005 - 250.97999999999996 -1.4211066545163938E-005 - 251.03999999999996 -1.4661588600812656E-005 - 251.09999999999997 -1.5137648260481815E-005 - 251.15999999999997 -1.5639245283487617E-005 - 251.21999999999997 -1.6166296358751508E-005 - 251.27999999999997 -1.6718636075096936E-005 - 251.33999999999997 -1.7296017231592887E-005 - 251.39999999999998 -1.7898115457220109E-005 - 251.45999999999998 -1.8524524672193913E-005 - 251.51999999999998 -1.9174763611461257E-005 - 251.57999999999998 -1.9848265699854205E-005 - 251.63999999999999 -2.0544384295055320E-005 - 251.69999999999999 -2.1262388851220484E-005 - 251.75999999999999 -2.2001458340943309E-005 - 251.81999999999999 -2.2760687319579105E-005 - 251.88000000000000 -2.3539079521324454E-005 - 251.94000000000000 -2.4335542390936692E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000003.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000003.BXY.semd deleted file mode 100644 index f0a0b159..00000000 --- a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000003.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 0.0000000000000000 - 44.700000000000003 0.0000000000000000 - 44.759999999999991 0.0000000000000000 - 44.819999999999993 0.0000000000000000 - 44.879999999999995 0.0000000000000000 - 44.939999999999998 0.0000000000000000 - 45.000000000000000 0.0000000000000000 - 45.060000000000002 0.0000000000000000 - 45.119999999999990 0.0000000000000000 - 45.179999999999993 0.0000000000000000 - 45.239999999999995 0.0000000000000000 - 45.299999999999997 0.0000000000000000 - 45.359999999999999 0.0000000000000000 - 45.420000000000002 0.0000000000000000 - 45.479999999999990 0.0000000000000000 - 45.539999999999992 0.0000000000000000 - 45.599999999999994 0.0000000000000000 - 45.659999999999997 0.0000000000000000 - 45.719999999999999 0.0000000000000000 - 45.780000000000001 0.0000000000000000 - 45.840000000000003 0.0000000000000000 - 45.899999999999991 0.0000000000000000 - 45.959999999999994 0.0000000000000000 - 46.019999999999996 0.0000000000000000 - 46.079999999999998 0.0000000000000000 - 46.140000000000001 0.0000000000000000 - 46.200000000000003 0.0000000000000000 - 46.259999999999991 0.0000000000000000 - 46.319999999999993 0.0000000000000000 - 46.379999999999995 0.0000000000000000 - 46.439999999999998 0.0000000000000000 - 46.500000000000000 0.0000000000000000 - 46.560000000000002 0.0000000000000000 - 46.619999999999990 0.0000000000000000 - 46.679999999999993 0.0000000000000000 - 46.739999999999995 0.0000000000000000 - 46.799999999999997 0.0000000000000000 - 46.859999999999999 0.0000000000000000 - 46.920000000000002 0.0000000000000000 - 46.979999999999990 0.0000000000000000 - 47.039999999999992 0.0000000000000000 - 47.099999999999994 0.0000000000000000 - 47.159999999999997 0.0000000000000000 - 47.219999999999999 0.0000000000000000 - 47.280000000000001 0.0000000000000000 - 47.340000000000003 0.0000000000000000 - 47.399999999999991 0.0000000000000000 - 47.459999999999994 0.0000000000000000 - 47.519999999999996 0.0000000000000000 - 47.579999999999998 0.0000000000000000 - 47.640000000000001 0.0000000000000000 - 47.700000000000003 0.0000000000000000 - 47.759999999999991 0.0000000000000000 - 47.819999999999993 0.0000000000000000 - 47.879999999999995 0.0000000000000000 - 47.939999999999998 0.0000000000000000 - 48.000000000000000 0.0000000000000000 - 48.060000000000002 0.0000000000000000 - 48.119999999999990 0.0000000000000000 - 48.179999999999993 0.0000000000000000 - 48.239999999999995 0.0000000000000000 - 48.299999999999997 0.0000000000000000 - 48.359999999999999 0.0000000000000000 - 48.420000000000002 0.0000000000000000 - 48.479999999999990 0.0000000000000000 - 48.539999999999992 0.0000000000000000 - 48.599999999999994 0.0000000000000000 - 48.659999999999997 0.0000000000000000 - 48.719999999999999 0.0000000000000000 - 48.780000000000001 0.0000000000000000 - 48.840000000000003 0.0000000000000000 - 48.899999999999991 0.0000000000000000 - 48.959999999999994 0.0000000000000000 - 49.019999999999996 0.0000000000000000 - 49.079999999999998 0.0000000000000000 - 49.140000000000001 0.0000000000000000 - 49.200000000000003 0.0000000000000000 - 49.259999999999991 0.0000000000000000 - 49.319999999999993 0.0000000000000000 - 49.379999999999995 0.0000000000000000 - 49.439999999999998 0.0000000000000000 - 49.500000000000000 0.0000000000000000 - 49.560000000000002 0.0000000000000000 - 49.619999999999990 0.0000000000000000 - 49.679999999999993 0.0000000000000000 - 49.739999999999995 0.0000000000000000 - 49.799999999999997 0.0000000000000000 - 49.859999999999999 0.0000000000000000 - 49.920000000000002 0.0000000000000000 - 49.979999999999990 0.0000000000000000 - 50.039999999999992 0.0000000000000000 - 50.099999999999994 0.0000000000000000 - 50.159999999999997 0.0000000000000000 - 50.219999999999999 0.0000000000000000 - 50.280000000000001 0.0000000000000000 - 50.340000000000003 0.0000000000000000 - 50.399999999999991 0.0000000000000000 - 50.459999999999994 0.0000000000000000 - 50.519999999999996 0.0000000000000000 - 50.579999999999998 0.0000000000000000 - 50.640000000000001 0.0000000000000000 - 50.700000000000003 0.0000000000000000 - 50.759999999999991 0.0000000000000000 - 50.819999999999993 0.0000000000000000 - 50.879999999999995 0.0000000000000000 - 50.939999999999998 0.0000000000000000 - 51.000000000000000 0.0000000000000000 - 51.060000000000002 0.0000000000000000 - 51.119999999999990 0.0000000000000000 - 51.179999999999993 0.0000000000000000 - 51.239999999999995 0.0000000000000000 - 51.299999999999997 0.0000000000000000 - 51.359999999999999 0.0000000000000000 - 51.420000000000002 0.0000000000000000 - 51.479999999999990 0.0000000000000000 - 51.539999999999992 0.0000000000000000 - 51.599999999999994 0.0000000000000000 - 51.659999999999997 0.0000000000000000 - 51.719999999999999 0.0000000000000000 - 51.780000000000001 0.0000000000000000 - 51.840000000000003 0.0000000000000000 - 51.899999999999991 0.0000000000000000 - 51.959999999999994 0.0000000000000000 - 52.019999999999996 0.0000000000000000 - 52.079999999999998 0.0000000000000000 - 52.140000000000001 0.0000000000000000 - 52.200000000000003 0.0000000000000000 - 52.259999999999991 0.0000000000000000 - 52.319999999999993 0.0000000000000000 - 52.379999999999995 0.0000000000000000 - 52.439999999999998 0.0000000000000000 - 52.500000000000000 0.0000000000000000 - 52.560000000000002 0.0000000000000000 - 52.619999999999990 0.0000000000000000 - 52.679999999999993 0.0000000000000000 - 52.739999999999995 0.0000000000000000 - 52.799999999999997 0.0000000000000000 - 52.859999999999999 0.0000000000000000 - 52.920000000000002 0.0000000000000000 - 52.979999999999990 0.0000000000000000 - 53.039999999999992 0.0000000000000000 - 53.099999999999994 0.0000000000000000 - 53.159999999999997 0.0000000000000000 - 53.219999999999999 0.0000000000000000 - 53.280000000000001 0.0000000000000000 - 53.339999999999989 0.0000000000000000 - 53.399999999999991 0.0000000000000000 - 53.459999999999994 0.0000000000000000 - 53.519999999999996 0.0000000000000000 - 53.579999999999998 0.0000000000000000 - 53.640000000000001 0.0000000000000000 - 53.700000000000003 0.0000000000000000 - 53.759999999999991 0.0000000000000000 - 53.819999999999993 0.0000000000000000 - 53.879999999999995 0.0000000000000000 - 53.939999999999998 0.0000000000000000 - 54.000000000000000 0.0000000000000000 - 54.060000000000002 0.0000000000000000 - 54.119999999999990 0.0000000000000000 - 54.179999999999993 0.0000000000000000 - 54.239999999999995 0.0000000000000000 - 54.299999999999997 0.0000000000000000 - 54.359999999999999 0.0000000000000000 - 54.420000000000002 0.0000000000000000 - 54.479999999999990 0.0000000000000000 - 54.539999999999992 0.0000000000000000 - 54.599999999999994 0.0000000000000000 - 54.659999999999997 0.0000000000000000 - 54.719999999999999 0.0000000000000000 - 54.780000000000001 0.0000000000000000 - 54.839999999999989 0.0000000000000000 - 54.899999999999991 0.0000000000000000 - 54.959999999999994 0.0000000000000000 - 55.019999999999996 0.0000000000000000 - 55.079999999999998 0.0000000000000000 - 55.140000000000001 0.0000000000000000 - 55.200000000000003 0.0000000000000000 - 55.259999999999991 0.0000000000000000 - 55.319999999999993 0.0000000000000000 - 55.379999999999995 0.0000000000000000 - 55.439999999999998 0.0000000000000000 - 55.500000000000000 0.0000000000000000 - 55.560000000000002 0.0000000000000000 - 55.619999999999990 0.0000000000000000 - 55.679999999999993 0.0000000000000000 - 55.739999999999995 0.0000000000000000 - 55.799999999999997 0.0000000000000000 - 55.859999999999999 0.0000000000000000 - 55.920000000000002 0.0000000000000000 - 55.979999999999990 0.0000000000000000 - 56.039999999999992 0.0000000000000000 - 56.099999999999994 0.0000000000000000 - 56.159999999999997 0.0000000000000000 - 56.219999999999999 0.0000000000000000 - 56.280000000000001 0.0000000000000000 - 56.339999999999989 0.0000000000000000 - 56.399999999999991 0.0000000000000000 - 56.459999999999994 0.0000000000000000 - 56.519999999999996 0.0000000000000000 - 56.579999999999998 0.0000000000000000 - 56.640000000000001 0.0000000000000000 - 56.700000000000003 0.0000000000000000 - 56.759999999999991 0.0000000000000000 - 56.819999999999993 0.0000000000000000 - 56.879999999999995 0.0000000000000000 - 56.939999999999998 0.0000000000000000 - 57.000000000000000 0.0000000000000000 - 57.060000000000002 0.0000000000000000 - 57.119999999999990 0.0000000000000000 - 57.179999999999993 0.0000000000000000 - 57.239999999999995 0.0000000000000000 - 57.299999999999997 0.0000000000000000 - 57.359999999999999 0.0000000000000000 - 57.420000000000002 0.0000000000000000 - 57.479999999999990 0.0000000000000000 - 57.539999999999992 0.0000000000000000 - 57.599999999999994 -4.4198558944047668E-040 - 57.659999999999997 -1.2437585564101513E-039 - 57.719999999999999 -2.4151010051309271E-039 - 57.780000000000001 -3.9182691111359022E-039 - 57.839999999999989 -5.5644173121402187E-039 - 57.899999999999991 -7.2105655131445353E-039 - 57.959999999999994 -8.8567137141488518E-039 - 58.019999999999996 -1.0332202965568500E-038 - 58.079999999999998 -1.1388069506829227E-038 - 58.140000000000001 -1.1857672480049129E-038 - 58.200000000000003 -1.1614005204035312E-038 - 58.259999999999991 -1.0588265354817643E-038 - 58.319999999999993 -8.7875095810084415E-039 - 58.379999999999995 -6.2976375865832339E-039 - 58.439999999999998 -3.2867375420571564E-039 - 58.500000000000000 -7.0232355748000797E-041 - 58.560000000000002 3.1462727524732408E-039 - 58.619999999999990 6.0749003703345743E-039 - 58.679999999999993 8.3254565221360135E-039 - 58.739999999999995 8.9013234134818684E-039 - 58.799999999999997 6.1968682820278203E-039 - 58.859999999999999 7.2073128803979867E-041 - 58.920000000000002 -8.2224238204603341E-039 - 58.979999999999990 -1.8211497109747269E-038 - 59.039999999999992 -2.9300747396096222E-038 - 59.099999999999994 -4.1139131069665179E-038 - 59.159999999999997 -5.3337671647721791E-038 - 59.219999999999999 -6.3589796724684560E-038 - 59.280000000000001 -6.8335471425747286E-038 - 59.339999999999989 -6.5966498951202789E-038 - 59.399999999999991 -5.4715108277539969E-038 - 59.459999999999994 -3.4364670447408800E-038 - 59.519999999999996 -5.5221186464654240E-039 - 59.579999999999998 2.7846956512946416E-038 - 59.640000000000001 6.1707063324547420E-038 - 59.700000000000003 9.3888198877115786E-038 - 59.759999999999991 1.1694397126121090E-037 - 59.819999999999993 1.2632325391092602E-037 - 59.879999999999995 1.1713292632771445E-037 - 59.939999999999998 8.5954065209047004E-038 - 60.000000000000000 3.5110181201398679E-038 - 60.060000000000002 -2.7715286905611292E-038 - 60.119999999999990 -9.9380173032461690E-038 - 60.179999999999993 -1.7644125173320586E-037 - 60.239999999999995 -2.5053689876777372E-037 - 60.299999999999997 -3.1019399412017360E-037 - 60.359999999999999 -3.4250706184678870E-037 - 60.420000000000002 -3.3863781921615939E-037 - 60.479999999999990 -2.8883505408128215E-037 - 60.539999999999992 -1.9187954823659699E-037 - 60.599999999999994 -5.1187428376651819E-038 - 60.659999999999997 1.2919298100482492E-037 - 60.719999999999999 3.3704229112931593E-037 - 60.780000000000001 5.6515844987802540E-037 - 60.839999999999989 7.6467924192223916E-037 - 60.899999999999991 9.4837601194759361E-037 - 60.959999999999994 1.0827955967993668E-036 - 61.019999999999996 1.1456180284900436E-036 - 61.079999999999998 1.1379981017166523E-036 - 61.140000000000001 1.0549837544182310E-036 - 61.200000000000003 9.0091713562605217E-037 - 61.259999999999991 6.8566212760095372E-037 - 61.319999999999993 4.0973927862698799E-037 - 61.379999999999995 8.5480006002762145E-038 - 61.439999999999998 -2.5870995973372922E-037 - 61.500000000000000 -5.8607008732829290E-037 - 61.560000000000002 -8.7387003384464108E-037 - 61.619999999999990 -1.0955306998120754E-036 - 61.679999999999993 -1.2350563647534868E-036 - 61.739999999999995 -1.2820691582231933E-036 - 61.799999999999997 -1.2507545696990406E-036 - 61.859999999999999 -1.1340922844333640E-036 - 61.920000000000002 -9.4363392330744828E-037 - 61.979999999999990 -6.5318691239563695E-037 - 62.039999999999992 -2.7585442125043775E-037 - 62.099999999999994 1.9801617932904640E-037 - 62.159999999999997 7.3345309492103512E-037 - 62.219999999999999 1.2872123573168840E-036 - 62.280000000000001 1.7687962703201111E-036 - 62.339999999999989 2.2051534030574675E-036 - 62.399999999999991 2.4924615785962235E-036 - 62.459999999999994 2.5175963411155736E-036 - 62.519999999999996 2.2525758074677098E-036 - 62.579999999999998 1.7178255436519022E-036 - 62.640000000000001 9.0387979596435818E-037 - 62.700000000000003 -2.8229570778788796E-037 - 62.759999999999991 -1.9006467206591734E-036 - 62.819999999999993 -3.8875869368465063E-036 - 62.879999999999995 -6.0647993622059075E-036 - 62.939999999999998 -8.2685650597584463E-036 - 63.000000000000000 -1.0286634197559649E-035 - 63.060000000000002 -1.1926539755843857E-035 - 63.119999999999990 -1.2997019467463429E-035 - 63.179999999999993 -1.3301743713687972E-035 - 63.239999999999995 -1.2754315544907796E-035 - 63.299999999999997 -1.1341788052685129E-035 - 63.359999999999999 -8.8007709232692419E-036 - 63.420000000000002 -5.0384178807642785E-036 - 63.479999999999990 -1.5233415197457760E-037 - 63.539999999999992 5.7576638870050201E-036 - 63.599999999999994 1.2536679232846575E-035 - 63.659999999999997 1.9882735680296853E-035 - 63.719999999999999 2.7497879393016331E-035 - 63.780000000000001 3.4925760166321717E-035 - 63.839999999999989 4.1643666923599449E-035 - 63.899999999999991 4.7101233515282503E-035 - 63.959999999999994 5.0717314765905941E-035 - 64.019999999999996 5.2041084813402222E-035 - 64.079999999999998 5.0466224151614834E-035 - 64.140000000000001 4.5502526119760955E-035 - 64.200000000000003 3.6690756602170504E-035 - 64.259999999999991 2.3910202064535277E-035 - 64.319999999999993 6.9639737716572158E-036 - 64.379999999999995 -1.4311369087673517E-035 - 64.439999999999998 -3.9530733193804822E-035 - 64.500000000000000 -6.8021293614614428E-035 - 64.560000000000002 -9.8847274582859648E-035 - 64.619999999999990 -1.3066587158728870E-034 - 64.679999999999993 -1.6198686345447588E-034 - 64.739999999999995 -1.9113253370783765E-034 - 64.799999999999997 -2.1603355465507455E-034 - 64.859999999999999 -2.3466728441485243E-034 - 64.920000000000002 -2.4474322131419498E-034 - 64.979999999999990 -2.4411709809085750E-034 - 65.039999999999992 -2.3070460716680730E-034 - 65.099999999999994 -2.0290832930353560E-034 - 65.159999999999997 -1.5949034925505000E-034 - 65.219999999999999 -9.9858730540938246E-035 - 65.280000000000001 -2.4155123562985615E-035 - 65.339999999999989 6.6557695265293403E-035 - 65.399999999999991 1.7025118016985369E-034 - 65.459999999999994 2.8370332000476177E-034 - 65.519999999999996 4.0266038999804966E-034 - 65.579999999999998 5.2171723022012171E-034 - 65.640000000000001 6.3450079162624500E-034 - 65.700000000000003 7.3370933088379997E-034 - 65.759999999999991 8.1135654973818155E-034 - 65.819999999999993 8.5914772243347991E-034 - 65.879999999999995 8.6886690073720845E-034 - 65.939999999999998 8.3278976770389836E-034 - 66.000000000000000 7.4420297646245961E-034 - 66.060000000000002 5.9805497810821926E-034 - 66.119999999999990 3.9145766612001630E-034 - 66.179999999999993 1.2430681190579453E-034 - 66.239999999999995 -2.0018790218695137E-034 - 66.299999999999997 -5.7508902718312940E-034 - 66.359999999999999 -9.8938211260938110E-034 - 66.420000000000002 -1.4278270608694552E-033 - 66.479999999999990 -1.8709884072817029E-033 - 66.539999999999992 -2.2954947348260241E-033 - 66.599999999999994 -2.6745539117745120E-033 - 66.659999999999997 -2.9790149953043441E-033 - 66.719999999999999 -3.1782337242018616E-033 - 66.780000000000001 -3.2415965071301732E-033 - 66.839999999999989 -3.1401818768282458E-033 - 66.899999999999991 -2.8486262853217538E-033 - 66.959999999999994 -2.3472134373523981E-033 - 67.019999999999996 -1.6239245053800187E-033 - 67.079999999999998 -6.7652622173204004E-034 - 67.140000000000001 4.8546692595068888E-034 - 67.199999999999989 1.8391889100286352E-033 - 67.259999999999991 3.3471715696008038E-033 - 67.319999999999993 4.9567024393964758E-033 - 67.379999999999995 6.5998457544079862E-033 - 67.439999999999998 8.1942724203813638E-033 - 67.500000000000000 9.6450482308686798E-033 - 67.560000000000002 1.0847513690067496E-032 - 67.619999999999990 1.1691010571352692E-032 - 67.679999999999993 1.2063732029682307E-032 - 67.739999999999995 1.1858521891044077E-032 - 67.799999999999997 1.0979459424289754E-032 - 67.859999999999999 9.3490528579660942E-033 - 67.920000000000002 6.9157601538101875E-033 - 67.979999999999990 3.6614824547631313E-033 - 68.039999999999992 -3.9130732637229242E-034 - 68.099999999999994 -5.1733775471969959E-033 - 68.159999999999997 -1.0563851704835047E-032 - 68.219999999999999 -1.6387224457307472E-032 - 68.280000000000001 -2.2412717865834335E-032 - 68.339999999999989 -2.8356464653393832E-032 - 68.399999999999991 -3.3886927687582881E-032 - 68.459999999999994 -3.8633821121495934E-032 - 68.519999999999996 -4.2200731171727578E-032 - 68.579999999999998 -4.4181413198646018E-032 - 68.640000000000001 -4.4179561617337830E-032 - 68.699999999999989 -4.1831679107622030E-032 - 68.759999999999991 -3.6832318701788253E-032 - 68.819999999999993 -2.8960842201759666E-032 - 68.879999999999995 -1.8108547577974672E-032 - 68.939999999999998 -4.3048030868467020E-033 - 69.000000000000000 1.2259447546399220E-032 - 69.060000000000002 3.1212445930220778E-032 - 69.119999999999990 5.1988437609239513E-032 - 69.179999999999993 7.3822399336156223E-032 - 69.239999999999995 9.5754326260659343E-032 - 69.299999999999997 1.1664460572039352E-031 - 69.359999999999999 1.3520166006826429E-031 - 69.420000000000002 1.5002254213022762E-031 - 69.479999999999990 1.5964680469238196E-031 - 69.539999999999992 1.6262307116213943E-031 - 69.599999999999994 1.5758709862695077E-031 - 69.659999999999997 1.4334937226991840E-031 - 69.719999999999999 1.1898921087506645E-031 - 69.780000000000001 8.3951605667970481E-032 - 69.839999999999989 3.8142354792866165E-032 - 69.899999999999991 -1.7984096741037942E-032 - 69.959999999999994 -8.3349769379324034E-032 - 70.019999999999996 -1.5619765612173659E-031 - 70.079999999999998 -2.3406185718225720E-031 - 70.140000000000001 -3.1376964680252297E-031 - 70.199999999999989 -3.9148095931229834E-031 - 70.259999999999991 -4.6276982966734047E-031 - 70.319999999999993 -5.2275128473181116E-031 - 70.379999999999995 -5.6625466151161679E-031 - 70.439999999999998 -5.8804312697241571E-031 - 70.500000000000000 -5.8307556938211468E-031 - 70.560000000000002 -5.4680511017564324E-031 - 70.619999999999990 -4.7550488249661197E-031 - 70.679999999999993 -3.6660896159654000E-031 - 70.739999999999995 -2.1905322619390612E-031 - 70.799999999999997 -3.3598709945782423E-032 - 70.859999999999999 1.8688311345406689E-031 - 70.920000000000002 4.3718432557321148E-031 - 70.979999999999990 7.0961621959700482E-031 - 71.039999999999992 9.9396877748029697E-031 - 71.099999999999994 1.2775940133969272E-030 - 71.159999999999997 1.5456310665013808E-030 - 71.219999999999999 1.7813865451159073E-030 - 71.280000000000001 1.9668768595516989E-030 - 71.339999999999989 2.0835337790172701E-030 - 71.399999999999991 2.1130651798433546E-030 - 71.459999999999994 2.0384526041712438E-030 - 71.519999999999996 1.8450597602045650E-030 - 71.579999999999998 1.5218117966209920E-030 - 71.640000000000001 1.0623980441728205E-030 - 71.699999999999989 4.6643983982571256E-031 - 71.759999999999991 -2.5944421283406390E-031 - 71.819999999999993 -1.1007465223786493E-030 - 71.879999999999995 -2.0344327359666689E-030 - 71.939999999999998 -3.0286310888674234E-030 - 72.000000000000000 -4.0427235733960923E-030 - 72.060000000000002 -5.0279085550824799E-030 - 72.119999999999990 -5.9282802973828105E-030 - 72.179999999999993 -6.6824663432031017E-030 - 72.239999999999995 -7.2258343764237657E-030 - 72.299999999999997 -7.4932526879778792E-030 - 72.359999999999999 -7.4223584890881146E-030 - 72.420000000000002 -6.9572543234300102E-030 - 72.479999999999990 -6.0525203619082198E-030 - 72.539999999999992 -4.6773832140757458E-030 - 72.599999999999994 -2.8198626351632461E-030 - 72.659999999999997 -4.9067281003801646E-031 - 72.719999999999999 2.2733637472551992E-030 - 72.780000000000001 5.4066437412803589E-030 - 72.839999999999989 8.8131322001064551E-030 - 72.899999999999991 1.2365975540235065E-029 - 72.959999999999994 1.5908637321266568E-029 - 73.019999999999996 1.9257747994008543E-029 - 73.079999999999998 2.2207828330928283E-029 - 73.140000000000001 2.4537964779951390E-029 - 73.199999999999989 2.6020436569263427E-029 - 73.259999999999991 2.6431187890144496E-029 - 73.319999999999993 2.5561925313870502E-029 - 73.379999999999995 2.3233519992534854E-029 - 73.439999999999998 1.9310227818015959E-029 - 73.500000000000000 1.3714170084374965E-029 - 73.560000000000002 6.4393634361479477E-030 - 73.619999999999990 -2.4354862078892852E-030 - 73.679999999999993 -1.2736300125004667E-029 - 73.739999999999995 -2.4185957444374487E-029 - 73.799999999999997 -3.6400542299154441E-029 - 73.859999999999999 -4.8890392881717532E-029 - 73.920000000000002 -6.1066713408375475E-029 - 73.979999999999990 -7.2254373574821332E-029 - 74.039999999999992 -8.1711319482964732E-029 - 74.099999999999994 -8.8654733590785095E-029 - 74.159999999999997 -9.2293801812348355E-029 - 74.219999999999999 -9.1868527217078344E-029 - 74.280000000000001 -8.6693697846204304E-029 - 74.339999999999989 -7.6206641942345733E-029 - 74.399999999999991 -6.0017011426447180E-029 - 74.459999999999994 -3.7956395293635350E-029 - 74.519999999999996 -1.0125257624817816E-029 - 74.579999999999998 2.3065611782771491E-029 - 74.640000000000001 6.0862313942277910E-029 - 74.699999999999989 1.0214670209241418E-028 - 74.759999999999991 1.4543007617654452E-028 - 74.819999999999993 1.8886447680450038E-028 - 74.879999999999995 2.3027414830989139E-028 - 74.939999999999998 2.6720897382278950E-028 - 75.000000000000000 2.9702095522397219E-028 - 75.060000000000002 3.1696391562556983E-028 - 75.119999999999990 3.2431524875432913E-028 - 75.179999999999993 3.1651742796266043E-028 - 75.239999999999995 2.9133571267527338E-028 - 75.299999999999997 2.4702643686309460E-028 - 75.359999999999999 1.8250985464412213E-028 - 75.420000000000002 9.7539082416503179E-029 - 75.479999999999990 -7.1438226814079779E-030 - 75.539999999999992 -1.2967458278962765E-028 - 75.599999999999994 -2.6696697101426306E-028 - 75.659999999999997 -4.1465730782090124E-028 - 75.719999999999999 -5.6710364041116245E-028 - 75.780000000000001 -7.1744884742959678E-028 - 75.839999999999989 -8.5775557575480618E-028 - 75.899999999999991 -9.7921859081668541E-028 - 75.959999999999994 -1.0724570123705050E-027 - 76.019999999999996 -1.1278854580047291E-027 - 76.079999999999998 -1.1361595205398517E-027 - 76.140000000000001 -1.0886851166723514E-027 - 76.199999999999989 -9.7817809938014969E-028 - 76.259999999999991 -7.9925438103326995E-028 - 76.319999999999993 -5.4902598563006298E-028 - 76.379999999999995 -2.2767555021045069E-028 - 76.439999999999998 1.6102505126408094E-028 - 76.500000000000000 6.0928472976937044E-028 - 76.560000000000002 1.1049916063722183E-027 - 76.619999999999990 1.6315725737964736E-027 - 76.679999999999993 2.1680529584403728E-027 - 76.739999999999995 2.6893440242173538E-027 - 76.799999999999997 3.1667840418628572E-027 - 76.859999999999999 3.5689502549293080E-027 - 76.920000000000002 3.8627461009881821E-027 - 76.979999999999990 4.0147570123558924E-027 - 77.039999999999992 3.9928537899856978E-027 - 77.099999999999994 3.7680064783595589E-027 - 77.159999999999997 3.3162541543574841E-027 - 77.219999999999999 2.6207605759443994E-027 - 77.280000000000001 1.6738668768439798E-027 - 77.339999999999989 4.7904456889453618E-028 - 77.399999999999991 -9.4737237138322781E-028 - 77.459999999999994 -2.5747901787868280E-027 - 77.519999999999996 -4.3574248733365209E-027 - 77.579999999999998 -6.2339595841142688E-027 - 77.640000000000001 -8.1279084836653419E-027 - 77.699999999999989 -9.9487863184803502E-027 - 77.759999999999991 -1.1594164101885002E-026 - 77.819999999999993 -1.2952657880303542E-026 - 77.879999999999995 -1.3907865484065770E-026 - 77.939999999999998 -1.4343210963902918E-026 - 78.000000000000000 -1.4147623949757507E-026 - 78.060000000000002 -1.3221906045667658E-026 - 78.119999999999990 -1.1485595837508951E-026 - 78.179999999999993 -8.8840842273583211E-027 - 78.239999999999995 -5.3956654393884090E-027 - 78.299999999999997 -1.0381838712187316E-027 - 78.359999999999999 4.1251197294113660E-027 - 78.420000000000002 9.9809834700975830E-027 - 78.479999999999990 1.6363141389443967E-026 - 78.539999999999992 2.3051402713965388E-026 - 78.599999999999994 2.9773189336466410E-026 - 78.659999999999997 3.6207848634914066E-026 - 78.719999999999999 4.1994017500075964E-026 - 78.780000000000001 4.6740178995980628E-026 - 78.839999999999989 5.0038432273657286E-026 - 78.899999999999991 5.1481345553134260E-026 - 78.959999999999994 5.0681636766134198E-026 - 79.019999999999996 4.7294130311850234E-026 - 79.079999999999998 4.1039391674412757E-026 - 79.140000000000001 3.1728167774882194E-026 - 79.199999999999989 1.9285569678634507E-026 - 79.259999999999991 3.7738696517672282E-027 - 79.319999999999993 -1.4587465221689533E-026 - 79.379999999999995 -3.5405869600579611E-026 - 79.439999999999998 -5.8105313688617014E-026 - 79.500000000000000 -8.1922980616521738E-026 - 79.560000000000002 -1.0591413985092861E-025 - 79.619999999999990 -1.2896647466938545E-025 - 79.679999999999993 -1.4982469594955630E-025 - 79.739999999999995 -1.6712593352756816E-025 - 79.799999999999997 -1.7944606404835471E-025 - 79.859999999999999 -1.8535652002930777E-025 - 79.920000000000002 -1.8349080939281995E-025 - 79.979999999999990 -1.7261901971332013E-025 - 80.039999999999992 -1.5172821430187064E-025 - 80.099999999999994 -1.2010601719194205E-025 - 80.159999999999997 -7.7423914577270155E-026 - 80.219999999999999 -2.3816450749920220E-026 - 80.280000000000001 4.0048169655234948E-026 - 80.340000000000003 1.1291057303108714E-025 - 80.400000000000006 1.9288071603548859E-025 - 80.460000000000008 2.7742107148571068E-025 - 80.519999999999982 3.6335707896482897E-025 - 80.579999999999984 4.4691877763670373E-025 - 80.639999999999986 5.2381662380691694E-025 - 80.699999999999989 5.8935404308508242E-025 - 80.759999999999991 6.3857673969127018E-025 - 80.819999999999993 6.6645896171459483E-025 - 80.879999999999995 6.6812306470801303E-025 - 80.939999999999998 6.3908880808397978E-025 - 81.000000000000000 5.7554490696752569E-025 - 81.060000000000002 4.7463490871255282E-025 - 81.120000000000005 3.3474582584161436E-025 - 81.180000000000007 1.5578769271033351E-025 - 81.240000000000009 -6.0551019793868716E-026 - 81.299999999999983 -3.1058704643352961E-025 - 81.359999999999985 -5.8848123300416998E-025 - 81.419999999999987 -8.8614997900432387E-025 - 81.479999999999990 -1.1932634302613377E-024 - 81.539999999999992 -1.4973463046752421E-024 - 81.599999999999994 -1.7839922111083467E-024 - 81.659999999999997 -2.0372013165893588E-024 - 81.719999999999999 -2.2398454329889598E-024 - 81.780000000000001 -2.3742602429104824E-024 - 81.840000000000003 -2.4229593895704314E-024 - 81.900000000000006 -2.3694568731877228E-024 - 81.960000000000008 -2.1991799075413068E-024 - 82.019999999999982 -1.9004433781317803E-024 - 82.079999999999984 -1.4654542025533891E-024 - 82.139999999999986 -8.9130384899323692E-025 - 82.199999999999989 -1.8090331141748769E-025 - 82.259999999999991 6.5619377859531067E-025 - 82.319999999999993 1.6031296133967208E-024 - 82.379999999999995 2.6353066542738784E-024 - 82.439999999999998 3.7202257109317709E-024 - 82.500000000000000 4.8176565738049199E-024 - 82.560000000000002 5.8801845169037445E-024 - 82.620000000000005 6.8541691545520933E-024 - 82.680000000000007 7.6811403068617856E-024 - 82.740000000000009 8.2996408128135592E-024 - 82.799999999999983 8.6475022947766474E-024 - 82.859999999999985 8.6645274535800553E-024 - 82.919999999999987 8.2955148764706949E-024 - 82.979999999999990 7.4935597303432809E-024 - 83.039999999999992 6.2235112289714893E-024 - 83.099999999999994 4.4654692095586130E-024 - 83.159999999999997 2.2181643769641805E-024 - 83.219999999999999 -4.9795666616608711E-025 - 83.280000000000001 -3.6381106230081939E-024 - 83.340000000000003 -7.1312314450634232E-024 - 83.400000000000006 -1.0878885254089340E-023 - 83.460000000000008 -1.4755240567381042E-023 - 83.519999999999982 -1.8608254182230686E-023 - 83.579999999999984 -2.2262238340173294E-023 - 83.639999999999986 -2.5521885547681280E-023 - 83.699999999999989 -2.8177831971715809E-023 - 83.759999999999991 -3.0013744936261052E-023 - 83.819999999999993 -3.0814859541876239E-023 - 83.879999999999995 -3.0377823120367555E-023 - 83.939999999999998 -2.8521601650519116E-023 - 84.000000000000000 -2.5099153693641327E-023 - 84.060000000000002 -2.0009444915842535E-023 - 84.120000000000005 -1.3209332681425294E-023 - 84.180000000000007 -4.7247770342101362E-024 - 84.240000000000009 5.3392426077602758E-024 - 84.299999999999983 1.6790759303041110E-023 - 84.359999999999985 2.9345425217509412E-023 - 84.419999999999987 4.2624413984826677E-023 - 84.479999999999990 5.6156147719058753E-023 - 84.539999999999992 6.9382442387029859E-023 - 84.599999999999994 8.1669481350758438E-023 - 84.659999999999997 9.2323846784251190E-023 - 84.719999999999999 1.0061379627406512E-022 - 84.780000000000001 1.0579550103597987E-022 - 84.840000000000003 1.0714406807906888E-022 - 84.900000000000006 1.0398853470608437E-022 - 84.960000000000008 9.5750039699504786E-023 - 85.019999999999982 8.1981885694525987E-023 - 85.079999999999984 6.2410086748286800E-023 - 85.139999999999986 3.6972647729571201E-023 - 85.199999999999989 5.8556789545636726E-024 - 85.259999999999991 -3.0475809511527138E-023 - 85.319999999999993 -7.1254559888192593E-023 - 85.379999999999995 -1.1539736795604786E-022 - 85.439999999999998 -1.6150315790519508E-022 - 85.500000000000000 -2.0786465855432643E-022 - 85.560000000000002 -2.5249552189041279E-022 - 85.620000000000005 -2.9317369075356336E-022 - 85.680000000000007 -3.2750208659938379E-022 - 85.740000000000009 -3.5298631528200129E-022 - 85.799999999999983 -3.6712866778850710E-022 - 85.859999999999985 -3.6753707483298130E-022 - 85.919999999999987 -3.5204621875402484E-022 - 85.979999999999990 -3.1884768633301826E-022 - 86.039999999999992 -2.6662468447686785E-022 - 86.099999999999994 -1.9468623985099970E-022 - 86.159999999999997 -1.0309510837801970E-022 - 86.219999999999999 7.2173999609722555E-024 - 86.280000000000001 1.3435660114528631E-022 - 86.340000000000003 2.7539660816230619E-022 - 86.400000000000006 4.2634657626500716E-022 - 86.460000000000008 5.8215825073472798E-022 - 86.519999999999982 7.3678001439963065E-022 - 86.579999999999984 8.8326293400468172E-022 - 86.639999999999986 1.0139216743382143E-021 - 86.699999999999989 1.1205520218497818E-021 - 86.759999999999991 1.1947044191496172E-021 - 86.819999999999993 1.2280098639810434E-021 - 86.879999999999995 1.2125530402951140E-021 - 86.939999999999998 1.1412828912755855E-021 - 87.000000000000000 1.0084496337263421E-021 - 87.060000000000002 8.1005295890827598E-022 - 87.120000000000005 5.4428465153197549E-022 - 87.180000000000007 2.1194527694319366E-022 - 87.240000000000009 -1.8318621670864950E-022 - 87.299999999999983 -6.3405329075875148E-022 - 87.359999999999985 -1.1301155835048496E-021 - 87.419999999999987 -1.6572599674872141E-021 - 87.479999999999990 -2.1978484031234122E-021 - 87.539999999999992 -2.7309229934770797E-021 - 87.599999999999994 -3.2325825834717927E-021 - 87.659999999999997 -3.6765403978075936E-021 - 87.719999999999999 -4.0348674591276566E-021 - 87.780000000000001 -4.2789174607980076E-021 - 87.840000000000003 -4.3804234406794766E-021 - 87.900000000000006 -4.3127411325877943E-021 - 87.960000000000008 -4.0522141792561402E-021 - 88.019999999999982 -3.5796207649068051E-021 - 88.079999999999984 -2.8816465089427995E-021 - 88.139999999999986 -1.9523359722351947E-021 - 88.199999999999989 -7.9444912343790937E-022 - 88.259999999999991 5.7934392891116641E-022 - 88.319999999999993 2.1455061552132094E-021 - 88.379999999999995 3.8689959409950425E-021 - 88.439999999999998 5.7030177462120137E-021 - 88.500000000000000 7.5892354002164276E-021 - 88.560000000000002 9.4585137418321847E-021 - 88.620000000000005 1.1232229033117384E-020 - 88.680000000000007 1.2824202106873128E-020 - 88.740000000000009 1.4143250226136781E-020 - 88.799999999999983 1.5096366174807516E-020 - 88.859999999999985 1.5592477121278299E-020 - 88.919999999999987 1.5546739192797956E-020 - 88.979999999999990 1.4885267689676221E-020 - 89.039999999999992 1.3550172234203971E-020 - 89.099999999999994 1.1504770382412374E-020 - 89.159999999999997 8.7387831853071815E-021 - 89.219999999999999 5.2732917658895339E-021 - 89.280000000000001 1.1652783851520641E-021 - 89.340000000000003 -3.4885265801526307E-021 - 89.400000000000006 -8.5487570570508612E-021 - 89.460000000000008 -1.3831633973123332E-020 - 89.519999999999982 -1.9108666363598883E-020 - 89.579999999999984 -2.4107931311856264E-020 - 89.639999999999986 -2.8517111464402032E-020 - 89.699999999999989 -3.1988485624182980E-020 - 89.759999999999991 -3.4145857263848385E-020 - 89.819999999999993 -3.4593459394445839E-020 - 89.879999999999995 -3.2926678528514440E-020 - 89.939999999999998 -2.8744562577620825E-020 - 90.000000000000000 -2.1663586645913228E-020 - 90.060000000000002 -1.1332449813134551E-020 - 90.120000000000005 2.5525368945001661E-021 - 90.180000000000007 2.0232205460618452E-020 - 90.240000000000009 4.1870146637460720E-020 - 90.299999999999983 6.7539519848608574E-020 - 90.359999999999985 9.7212538089634274E-020 - 90.419999999999987 1.3075276248598112E-019 - 90.479999999999990 1.6791179648266906E-019 - 90.539999999999992 2.0833034953368171E-019 - 90.599999999999994 2.5154488209778969E-019 - 90.659999999999997 2.9700049274194902E-019 - 90.719999999999999 3.4407060720410938E-019 - 90.780000000000001 3.9208244427743585E-019 - 90.840000000000003 4.4035083685264788E-019 - 90.900000000000006 4.8821793949593888E-019 - 90.960000000000008 5.3509878267129654E-019 - 91.019999999999982 5.8053219813958331E-019 - 91.079999999999984 6.2423628422277415E-019 - 91.139999999999986 6.6616608577092107E-019 - 91.199999999999989 7.0657120776613784E-019 - 91.259999999999991 7.4605508389178528E-019 - 91.319999999999993 7.8562522242186560E-019 - 91.379999999999995 8.2674390693855346E-019 - 91.439999999999998 8.7136474966055746E-019 - 91.500000000000000 9.2195892044801859E-019 - 91.560000000000002 9.8152757998977106E-019 - 91.620000000000005 1.0535988571527002E-018 - 91.680000000000007 1.1421991675607936E-018 - 91.739999999999981 1.2518093971612576E-018 - 91.799999999999983 1.3872924049456262E-018 - 91.859999999999985 1.5537938204992732E-018 - 91.919999999999987 1.7566188851519055E-018 - 91.979999999999990 2.0010774262947202E-018 - 92.039999999999992 2.2922993766793226E-018 - 92.099999999999994 2.6350199714688255E-018 - 92.159999999999997 3.0333341739939841E-018 - 92.219999999999999 3.4904265124915490E-018 - 92.280000000000001 4.0082556115946124E-018 - 92.340000000000003 4.5872256124290028E-018 - 92.400000000000006 5.2258168785835490E-018 - 92.460000000000008 5.9201877172085256E-018 - 92.519999999999982 6.6637531575066444E-018 - 92.579999999999984 7.4467132856542533E-018 - 92.639999999999986 8.2555755642378632E-018 - 92.699999999999989 9.0726005969538213E-018 - 92.759999999999991 9.8752491920389510E-018 - 92.819999999999993 1.0635544069992625E-017 - 92.879999999999995 1.1319371330057271E-017 - 92.939999999999998 1.1885741145447581E-017 - 93.000000000000000 1.2285926566831119E-017 - 93.060000000000002 1.2462489794666665E-017 - 93.120000000000005 1.2348175805125296E-017 - 93.180000000000007 1.1864589672451503E-017 - 93.239999999999981 1.0920708042663360E-017 - 93.299999999999983 9.4111034610184335E-018 - 93.359999999999985 7.2137639769182041E-018 - 93.419999999999987 4.1875954229396316E-018 - 93.479999999999990 1.6934132524890116E-019 - 93.539999999999992 -5.0300223593138474E-018 - 93.599999999999994 -1.1629640150457478E-017 - 93.659999999999997 -1.9884000179821928E-017 - 93.719999999999999 -3.0089108380831462E-017 - 93.780000000000001 -4.2589492326314613E-017 - 93.840000000000003 -5.7787042333256721E-017 - 93.900000000000006 -7.6150687955626499E-017 - 93.960000000000008 -9.8228412285233369E-017 - 94.019999999999982 -1.2466026272928059E-016 - 94.079999999999984 -1.5619438991564974E-016 - 94.139999999999986 -1.9370388483212903E-016 - 94.199999999999989 -2.3820847796412992E-016 - 94.259999999999991 -2.9089617278125958E-016 - 94.319999999999993 -3.5315141859123042E-016 - 94.379999999999995 -4.2658253478407887E-016 - 94.439999999999998 -5.1305799288513478E-016 - 94.500000000000000 -6.1474168411899284E-016 - 94.560000000000002 -7.3413639373966089E-016 - 94.620000000000005 -8.7413238680446739E-016 - 94.680000000000007 -1.0380574759226277E-015 - 94.739999999999981 -1.2297424761407137E-015 - 94.799999999999983 -1.4535828964601777E-015 - 94.859999999999985 -1.7146141371924658E-015 - 94.919999999999987 -2.0185973428766280E-015 - 94.979999999999990 -2.3721091062185976E-015 - 95.039999999999992 -2.7826468500287596E-015 - 95.099999999999994 -3.2587438449673935E-015 - 95.159999999999997 -3.8100954217892692E-015 - 95.219999999999999 -4.4476974906194409E-015 - 95.280000000000001 -5.1840122773482945E-015 - 95.340000000000003 -6.0331354163204065E-015 - 95.400000000000006 -7.0109869737837419E-015 - 95.460000000000008 -8.1355195989384561E-015 - 95.519999999999982 -9.4269684759122795E-015 - 95.579999999999984 -1.0908088922086857E-014 - 95.639999999999986 -1.2604440175499825E-014 - 95.699999999999989 -1.4544708951947385E-014 - 95.759999999999991 -1.6761026716749900E-014 - 95.819999999999993 -1.9289345493253791E-014 - 95.879999999999995 -2.2169846392523925E-014 - 95.939999999999998 -2.5447342898584654E-014 - 96.000000000000000 -2.9171791223317583E-014 - 96.060000000000002 -3.3398760660257901E-014 - 96.120000000000005 -3.8190009776207479E-014 - 96.180000000000007 -4.3614028763590046E-014 - 96.239999999999981 -4.9746703893453817E-014 - 96.299999999999983 -5.6671863292340396E-014 - 96.359999999999985 -6.4482083862424359E-014 - 96.419999999999987 -7.3279334719773462E-014 - 96.479999999999990 -8.3175719228494570E-014 - 96.539999999999992 -9.4294236003920073E-014 - 96.599999999999994 -1.0676944148697159E-013 - 96.659999999999997 -1.2074834469505455E-013 - 96.719999999999999 -1.3639092366696976E-013 - 96.780000000000001 -1.5387089562857677E-013 - 96.840000000000003 -1.7337613150954001E-013 - 96.900000000000006 -1.9510928581134883E-013 - 96.960000000000008 -2.1928798459494282E-013 - 97.019999999999982 -2.4614479967921214E-013 - 97.079999999999984 -2.7592737020780623E-013 - 97.139999999999986 -3.0889745698116452E-013 - 97.199999999999989 -3.4533014842674492E-013 - 97.259999999999991 -3.8551274404739123E-013 - 97.319999999999993 -4.2974192354913444E-013 - 97.379999999999995 -4.7832109153502767E-013 - 97.439999999999998 -5.3155660931984898E-013 - 97.500000000000000 -5.8975272981416011E-013 - 97.560000000000002 -6.5320476173725355E-013 - 97.620000000000005 -7.2219129342390466E-013 - 97.680000000000007 -7.9696418371344813E-013 - 97.739999999999981 -8.7773556926733596E-013 - 97.799999999999983 -9.6466374140192524E-013 - 97.859999999999985 -1.0578334204250085E-012 - 97.919999999999987 -1.1572344304700154E-012 - 97.979999999999990 -1.2627350523347123E-012 - 98.039999999999992 -1.3740492431056434E-012 - 98.099999999999994 -1.4906995762560165E-012 - 98.159999999999997 -1.6119733792775109E-012 - 98.219999999999999 -1.7368663860434884E-012 - 98.280000000000001 -1.8640222621097861E-012 - 98.340000000000003 -1.9916574843066347E-012 - 98.400000000000006 -2.1174779577209111E-012 - 98.460000000000008 -2.2385716594739701E-012 - 98.519999999999982 -2.3512988753580743E-012 - 98.579999999999984 -2.4511457093594934E-012 - 98.639999999999986 -2.5325716874426937E-012 - 98.699999999999989 -2.5888180763826198E-012 - 98.759999999999991 -2.6116902527085984E-012 - 98.819999999999993 -2.5913152085898506E-012 - 98.879999999999995 -2.5158494063997814E-012 - 98.939999999999998 -2.3711338703393632E-012 - 99.000000000000000 -2.1403477184930683E-012 - 99.060000000000002 -1.8035206750258595E-012 - 99.120000000000005 -1.3370508854318138E-012 - 99.180000000000007 -7.1313042233484432E-013 - 99.239999999999981 1.0092677701847398E-013 - 99.299999999999983 1.1434687674756621E-012 - 99.359999999999985 2.4593281630875397E-012 - 99.419999999999987 4.1008843012144359E-012 - 99.479999999999990 6.1291188445006539E-012 - 99.539999999999992 8.6150100889409298E-012 - 99.599999999999994 1.1640889002395429E-011 - 99.659999999999997 1.5302194898867401E-011 - 99.719999999999999 1.9709438552571436E-011 - 99.780000000000001 2.4990207575619975E-011 - 99.840000000000003 3.1291740450158176E-011 - 99.900000000000006 3.8783692001205311E-011 - 99.960000000000008 4.7661198046426669E-011 - 100.01999999999998 5.8148778206203202E-011 - 100.07999999999998 7.0503815188027305E-011 - 100.13999999999999 8.5021508897696259E-011 - 100.19999999999999 1.0204002052016945E-010 - 100.25999999999999 1.2194611074193052E-010 - 100.31999999999999 1.4518176995192655E-010 - 100.38000000000000 1.7225139450129688E-010 - 100.44000000000000 2.0373031582913952E-010 - 100.50000000000000 2.4027403303509493E-010 - 100.56000000000000 2.8262866787764248E-010 - 100.62000000000000 3.3164238801157134E-010 - 100.68000000000001 3.8827916137563296E-010 - 100.73999999999998 4.5363330826351419E-010 - 100.79999999999998 5.2894520265298478E-010 - 100.85999999999999 6.1562122608575455E-010 - 100.91999999999999 7.1525330052199481E-010 - 100.97999999999999 8.2964228142909302E-010 - 101.03999999999999 9.6082508179828681E-010 - 101.09999999999999 1.1111009443023199E-009 - 101.16000000000000 1.2830668488842936E-009 - 101.22000000000000 1.4796497095040640E-009 - 101.28000000000000 1.7041494019332265E-009 - 101.34000000000000 1.9602826360708135E-009 - 101.40000000000001 2.2522306737948388E-009 - 101.46000000000001 2.5846958921646511E-009 - 101.51999999999998 2.9629631933108742E-009 - 101.57999999999998 3.3929708071284427E-009 - 101.63999999999999 3.8813744694837517E-009 - 101.69999999999999 4.4356442941452495E-009 - 101.75999999999999 5.0641520991338960E-009 - 101.81999999999999 5.7762689092173087E-009 - 101.88000000000000 6.5824910688290693E-009 - 101.94000000000000 7.4945487142822150E-009 - 102.00000000000000 8.5255551286160107E-009 - 102.06000000000000 9.6901641133247088E-009 - 102.12000000000000 1.1004724923427163E-008 - 102.18000000000001 1.2487481504994850E-008 - 102.23999999999998 1.4158769493607390E-008 - 102.29999999999998 1.6041247180763078E-008 - 102.35999999999999 1.8160142412446478E-008 - 102.41999999999999 2.0543529037900245E-008 - 102.47999999999999 2.3222629034672221E-008 - 102.53999999999999 2.6232128257504571E-008 - 102.59999999999999 2.9610566563562039E-008 - 102.66000000000000 3.3400729112704224E-008 - 102.72000000000000 3.7650056832258166E-008 - 102.78000000000000 4.2411156961807756E-008 - 102.84000000000000 4.7742323948696335E-008 - 102.90000000000001 5.3708099923259482E-008 - 102.96000000000001 6.0379917241589565E-008 - 103.01999999999998 6.7836792219289220E-008 - 103.07999999999998 7.6166029947010107E-008 - 103.13999999999999 8.5464045244470419E-008 - 103.19999999999999 9.5837394969342850E-008 - 103.25999999999999 1.0740351451930843E-007 - 103.31999999999999 1.2029201446937381E-007 - 103.38000000000000 1.3464565321031067E-007 - 103.44000000000000 1.5062168655646725E-007 - 103.50000000000000 1.6839318896622725E-007 - 103.56000000000000 1.8815056566432120E-007 - 103.62000000000000 2.1010316304578202E-007 - 103.68000000000001 2.3448101123633205E-007 - 103.73999999999998 2.6153663760597005E-007 - 103.79999999999998 2.9154732010495491E-007 - 103.85999999999999 3.2481697075053418E-007 - 103.91999999999999 3.6167884005646414E-007 - 103.97999999999999 4.0249802020907132E-007 - 104.03999999999999 4.4767416133740964E-007 - 104.09999999999999 4.9764451323295112E-007 - 104.16000000000000 5.5288730707146729E-007 - 104.22000000000000 6.1392509005188111E-007 - 104.28000000000000 6.8132866272204047E-007 - 104.34000000000000 7.5572118021419492E-007 - 104.40000000000001 8.3778219885968323E-007 - 104.46000000000001 9.2825239558254190E-007 - 104.51999999999998 1.0279392039832280E-006 - 104.57999999999998 1.1377215509760036E-006 - 104.63999999999999 1.2585559324558360E-006 - 104.69999999999999 1.3914827512955426E-006 - 104.75999999999999 1.5376324349401634E-006 - 104.81999999999999 1.6982331718346502E-006 - 104.88000000000000 1.8746181995654185E-006 - 104.94000000000000 2.0682334674925762E-006 - 105.00000000000000 2.2806471349176530E-006 - 105.06000000000000 2.5135577080149834E-006 - 105.12000000000000 2.7688050682639836E-006 - 105.18000000000001 3.0483796413808875E-006 - 105.23999999999998 3.3544343532559679E-006 - 105.29999999999998 3.6892955035086618E-006 - 105.35999999999999 4.0554753203702167E-006 - 105.41999999999999 4.4556863492977243E-006 - 105.47999999999999 4.8928542722201290E-006 - 105.53999999999999 5.3701312737893541E-006 - 105.59999999999999 5.8909156561773075E-006 - 105.66000000000000 6.4588643201546024E-006 - 105.72000000000000 7.0779106585890986E-006 - 105.78000000000000 7.7522865213517084E-006 - 105.84000000000000 8.4865357537076600E-006 - 105.90000000000001 9.2855389015916473E-006 - 105.96000000000001 1.0154528696874701E-005 - 106.01999999999998 1.1099124655166153E-005 - 106.07999999999998 1.2125339690650883E-005 - 106.13999999999999 1.3239617205041261E-005 - 106.19999999999999 1.4448846557085101E-005 - 106.25999999999999 1.5760401913851699E-005 - 106.31999999999999 1.7182161325324311E-005 - 106.38000000000000 1.8722536104811638E-005 - 106.44000000000000 2.0390495448287292E-005 - 106.50000000000000 2.2195614883813161E-005 - 106.56000000000000 2.4148091775135123E-005 - 106.62000000000000 2.6258786435575223E-005 - 106.68000000000001 2.8539252866302657E-005 - 106.73999999999998 3.1001774820556406E-005 - 106.79999999999998 3.3659407565759974E-005 - 106.85999999999999 3.6526009409288136E-005 - 106.91999999999999 3.9616289530204663E-005 - 106.97999999999999 4.2945827978486117E-005 - 107.03999999999999 4.6531143146356753E-005 - 107.09999999999999 5.0389710539056928E-005 - 107.16000000000000 5.4540019626591445E-005 - 107.22000000000000 5.9001606002126640E-005 - 107.28000000000000 6.3795115227059958E-005 - 107.34000000000000 6.8942315502466917E-005 - 107.40000000000001 7.4466180150135222E-005 - 107.46000000000001 8.0390887043031822E-005 - 107.51999999999998 8.6741927077856528E-005 - 107.57999999999998 9.3546068586554542E-005 - 107.63999999999999 1.0083147565287761E-004 - 107.69999999999999 1.0862772237062670E-004 - 107.75999999999999 1.1696582858954260E-004 - 107.81999999999999 1.2587832149041933E-004 - 107.88000000000000 1.3539926272753224E-004 - 107.94000000000000 1.4556430623401557E-004 - 108.00000000000000 1.5641075897428343E-004 - 108.06000000000000 1.6797757025351033E-004 - 108.12000000000000 1.8030539333540566E-004 - 108.18000000000001 1.9343663124363737E-004 - 108.23999999999998 2.0741544378809871E-004 - 108.29999999999998 2.2228784393902621E-004 - 108.35999999999999 2.3810163957705205E-004 - 108.41999999999999 2.5490651749203610E-004 - 108.47999999999999 2.7275402546220764E-004 - 108.53999999999999 2.9169762134623482E-004 - 108.59999999999999 3.1179270963192118E-004 - 108.66000000000000 3.3309657942650944E-004 - 108.72000000000000 3.5566843853088149E-004 - 108.78000000000000 3.7956948414347120E-004 - 108.84000000000000 4.0486279262235303E-004 - 108.90000000000001 4.3161335967730266E-004 - 108.96000000000001 4.5988802415265680E-004 - 109.01999999999998 4.8975556304159439E-004 - 109.07999999999998 5.2128655747180270E-004 - 109.13999999999999 5.5455336544786213E-004 - 109.19999999999999 5.8963013920955323E-004 - 109.25999999999999 6.2659264320210110E-004 - 109.31999999999999 6.6551835717184715E-004 - 109.38000000000000 7.0648631167823182E-004 - 109.44000000000000 7.4957686563243764E-004 - 109.50000000000000 7.9487197644074385E-004 - 109.56000000000000 8.4245471387736528E-004 - 109.62000000000000 8.9240939340851392E-004 - 109.68000000000001 9.4482134271262487E-004 - 109.73999999999998 9.9977683697311166E-004 - 109.79999999999998 1.0573628464344773E-003 - 109.85999999999999 1.1176670838768943E-003 - 109.91999999999999 1.1807776405412644E-003 - 109.97999999999999 1.2467827944938371E-003 - 110.03999999999999 1.3157710512556799E-003 - 110.09999999999999 1.3878307136608635E-003 - 110.16000000000000 1.4630497955663970E-003 - 110.22000000000000 1.5415157785607359E-003 - 110.28000000000000 1.6233151728373531E-003 - 110.34000000000000 1.7085337124046775E-003 - 110.40000000000001 1.7972556393243131E-003 - 110.46000000000001 1.8895639254630453E-003 - 110.51999999999998 1.9855392907044880E-003 - 110.57999999999998 2.0852606871159252E-003 - 110.63999999999999 2.1888042991172396E-003 - 110.69999999999999 2.2962440455685743E-003 - 110.75999999999999 2.4076506860360438E-003 - 110.81999999999999 2.5230912497419293E-003 - 110.88000000000000 2.6426292759020920E-003 - 110.94000000000000 2.7663243986589731E-003 - 111.00000000000000 2.8942319517501498E-003 - 111.06000000000000 3.0264020351676124E-003 - 111.12000000000000 3.1628801757187411E-003 - 111.18000000000001 3.3037062343953226E-003 - 111.23999999999998 3.4489145192726639E-003 - 111.29999999999998 3.5985329057753777E-003 - 111.35999999999999 3.7525824505297164E-003 - 111.41999999999999 3.9110784712226244E-003 - 111.47999999999999 4.0740274990207362E-003 - 111.53999999999999 4.2414300401704737E-003 - 111.59999999999999 4.4132775564671330E-003 - 111.66000000000000 4.5895537568930757E-003 - 111.72000000000000 4.7702336196358327E-003 - 111.78000000000000 4.9552831491136221E-003 - 111.84000000000000 5.1446590081997258E-003 - 111.90000000000001 5.3383082580958814E-003 - 111.96000000000001 5.5361685622526396E-003 - 112.01999999999998 5.7381670820337190E-003 - 112.07999999999998 5.9442212454405164E-003 - 112.13999999999999 6.1542368003608986E-003 - 112.19999999999999 6.3681093718980170E-003 - 112.25999999999999 6.5857237670850447E-003 - 112.31999999999999 6.8069535498512142E-003 - 112.38000000000000 7.0316608446172437E-003 - 112.44000000000000 7.2596956322988088E-003 - 112.50000000000000 7.4908971856269295E-003 - 112.56000000000000 7.7250933963617036E-003 - 112.62000000000000 7.9620999968344781E-003 - 112.68000000000001 8.2017213258044896E-003 - 112.73999999999998 8.4437503882861895E-003 - 112.79999999999998 8.6879675358015000E-003 - 112.85999999999999 8.9341433059067638E-003 - 112.91999999999999 9.1820354149750611E-003 - 112.97999999999999 9.4313920301397364E-003 - 113.03999999999999 9.6819486712122257E-003 - 113.09999999999999 9.9334311602294733E-003 - 113.16000000000000 1.0185555481602616E-002 - 113.22000000000000 1.0438025576703966E-002 - 113.28000000000000 1.0690537522619540E-002 - 113.34000000000000 1.0942778055599182E-002 - 113.40000000000001 1.1194423705492883E-002 - 113.46000000000001 1.1445143165528370E-002 - 113.51999999999998 1.1694597959146858E-002 - 113.57999999999998 1.1942441922351679E-002 - 113.63999999999999 1.2188320433282430E-002 - 113.69999999999999 1.2431875850158196E-002 - 113.75999999999999 1.2672741480673912E-002 - 113.81999999999999 1.2910548534081575E-002 - 113.88000000000000 1.3144922427209693E-002 - 113.94000000000000 1.3375486903248799E-002 - 114.00000000000000 1.3601861897395991E-002 - 114.06000000000000 1.3823665890538638E-002 - 114.12000000000000 1.4040514711537113E-002 - 114.18000000000001 1.4252027827672877E-002 - 114.23999999999998 1.4457822390450939E-002 - 114.29999999999998 1.4657517610738175E-002 - 114.35999999999999 1.4850736423923910E-002 - 114.41999999999999 1.5037104157321747E-002 - 114.47999999999999 1.5216250973765806E-002 - 114.53999999999999 1.5387812588438887E-002 - 114.59999999999999 1.5551428941784734E-002 - 114.66000000000000 1.5706750673661996E-002 - 114.72000000000000 1.5853433149144662E-002 - 114.78000000000000 1.5991142783295421E-002 - 114.84000000000000 1.6119556249694612E-002 - 114.90000000000001 1.6238359158824343E-002 - 114.96000000000001 1.6347249623213028E-002 - 115.01999999999998 1.6445937222384563E-002 - 115.07999999999998 1.6534148770655368E-002 - 115.13999999999999 1.6611623389059079E-002 - 115.19999999999999 1.6678114335951625E-002 - 115.25999999999999 1.6733390157465527E-002 - 115.31999999999999 1.6777238711761566E-002 - 115.38000000000000 1.6809461712349930E-002 - 115.44000000000000 1.6829882989653013E-002 - 115.50000000000000 1.6838340526950643E-002 - 115.56000000000000 1.6834693799404294E-002 - 115.62000000000000 1.6818822516338611E-002 - 115.68000000000001 1.6790626705208957E-002 - 115.73999999999998 1.6750025814614062E-002 - 115.79999999999998 1.6696959214134454E-002 - 115.85999999999999 1.6631390628264457E-002 - 115.91999999999999 1.6553303144300507E-002 - 115.97999999999999 1.6462702801683684E-002 - 116.03999999999999 1.6359616667890015E-002 - 116.09999999999999 1.6244094638702113E-002 - 116.16000000000000 1.6116207587235597E-002 - 116.22000000000000 1.5976050064991611E-002 - 116.28000000000000 1.5823737906455373E-002 - 116.34000000000000 1.5659407526271762E-002 - 116.40000000000001 1.5483218506240648E-002 - 116.46000000000001 1.5295350305577791E-002 - 116.51999999999998 1.5096005509900661E-002 - 116.57999999999998 1.4885406006298788E-002 - 116.63999999999999 1.4663792206051433E-002 - 116.69999999999999 1.4431424199945619E-002 - 116.75999999999999 1.4188585887114814E-002 - 116.81999999999999 1.3935574135437175E-002 - 116.88000000000000 1.3672705191249015E-002 - 116.94000000000000 1.3400313762787379E-002 - 117.00000000000000 1.3118749211550975E-002 - 117.06000000000000 1.2828377075324436E-002 - 117.12000000000000 1.2529576317427783E-002 - 117.18000000000001 1.2222741507171871E-002 - 117.23999999999998 1.1908278870181956E-002 - 117.29999999999998 1.1586606520840757E-002 - 117.35999999999999 1.1258153506740651E-002 - 117.41999999999999 1.0923358736715271E-002 - 117.47999999999999 1.0582669760313617E-002 - 117.53999999999999 1.0236541932892513E-002 - 117.59999999999999 9.8854375570926294E-003 - 117.66000000000000 9.5298237297512488E-003 - 117.72000000000000 9.1701725720150125E-003 - 117.78000000000000 8.8069595627160591E-003 - 117.84000000000000 8.4406611487852674E-003 - 117.90000000000001 8.0717568491563575E-003 - 117.96000000000001 7.7007254993443006E-003 - 118.01999999999998 7.3280447997140672E-003 - 118.07999999999998 6.9541903838907402E-003 - 118.13999999999999 6.5796340820792132E-003 - 118.19999999999999 6.2048454517628013E-003 - 118.25999999999999 5.8302866722014096E-003 - 118.31999999999999 5.4564154816597564E-003 - 118.38000000000000 5.0836819425280908E-003 - 118.44000000000000 4.7125274401678911E-003 - 118.50000000000000 4.3433863881593747E-003 - 118.56000000000000 3.9766814006933129E-003 - 118.62000000000000 3.6128251805038741E-003 - 118.68000000000001 3.2522200567083361E-003 - 118.73999999999998 2.8952551321427536E-003 - 118.79999999999998 2.5423078120421320E-003 - 118.85999999999999 2.1937415140678785E-003 - 118.91999999999999 1.8499062905134927E-003 - 118.97999999999999 1.5111374356698794E-003 - 119.03999999999999 1.1777551196276515E-003 - 119.09999999999999 8.5006426015052134E-004 - 119.16000000000000 5.2835448945140180E-004 - 119.22000000000000 2.1289911077407406E-004 - 119.28000000000000 -9.6044779012152248E-005 - 119.34000000000000 -3.9823693150427476E-004 - 119.40000000000001 -6.9345369836849315E-004 - 119.46000000000001 -9.8148821218011113E-004 - 119.51999999999998 -1.2621503907466777E-003 - 119.57999999999998 -1.5352674347652877E-003 - 119.63999999999999 -1.8006832524925670E-003 - 119.69999999999999 -2.0582588247515434E-003 - 119.75999999999999 -2.3078714698670120E-003 - 119.81999999999999 -2.5494157674751860E-003 - 119.88000000000000 -2.7828021681850054E-003 - 119.94000000000000 -3.0079576203535293E-003 - 120.00000000000000 -3.2248248577441715E-003 - 120.06000000000000 -3.4333617870018966E-003 - 120.12000000000000 -3.6335424549568847E-003 - 120.18000000000001 -3.8253546937566034E-003 - 120.23999999999998 -4.0088016142787418E-003 - 120.29999999999998 -4.1839000741219455E-003 - 120.35999999999999 -4.3506797623787744E-003 - 120.41999999999999 -4.5091847429952914E-003 - 120.47999999999999 -4.6594709909773433E-003 - 120.53999999999999 -4.8016061292952082E-003 - 120.59999999999999 -4.9356699560524379E-003 - 120.66000000000000 -5.0617525690247588E-003 - 120.72000000000000 -5.1799552827379112E-003 - 120.78000000000000 -5.2903883465437087E-003 - 120.84000000000000 -5.3931717633848072E-003 - 120.90000000000001 -5.4884345541006737E-003 - 120.95999999999998 -5.5763131539030321E-003 - 121.01999999999998 -5.6569521408427548E-003 - 121.07999999999998 -5.7305027056183200E-003 - 121.13999999999999 -5.7971226768402141E-003 - 121.19999999999999 -5.8569751569196148E-003 - 121.25999999999999 -5.9102291832673478E-003 - 121.31999999999999 -5.9570582908402966E-003 - 121.38000000000000 -5.9976395835601194E-003 - 121.44000000000000 -6.0321545954649860E-003 - 121.50000000000000 -6.0607872724091939E-003 - 121.56000000000000 -6.0837250200581573E-003 - 121.62000000000000 -6.1011561783777032E-003 - 121.68000000000001 -6.1132721010633360E-003 - 121.73999999999998 -6.1202640404860445E-003 - 121.79999999999998 -6.1223245756809840E-003 - 121.85999999999999 -6.1196464873474275E-003 - 121.91999999999999 -6.1124221795096434E-003 - 121.97999999999999 -6.1008445473078720E-003 - 122.03999999999999 -6.0851049182650994E-003 - 122.09999999999999 -6.0653935924114876E-003 - 122.16000000000000 -6.0418991902196689E-003 - 122.22000000000000 -6.0148093231863877E-003 - 122.28000000000000 -5.9843092005877462E-003 - 122.34000000000000 -5.9505816863911062E-003 - 122.40000000000001 -5.9138067544758071E-003 - 122.45999999999998 -5.8741625413387989E-003 - 122.51999999999998 -5.8318235142102029E-003 - 122.57999999999998 -5.7869611392195553E-003 - 122.63999999999999 -5.7397436882376460E-003 - 122.69999999999999 -5.6903361841317964E-003 - 122.75999999999999 -5.6388997239535726E-003 - 122.81999999999999 -5.5855924889294485E-003 - 122.88000000000000 -5.5305671424978600E-003 - 122.94000000000000 -5.4739739388161967E-003 - 123.00000000000000 -5.4159592420656589E-003 - 123.06000000000000 -5.3566646105427896E-003 - 123.12000000000000 -5.2962280487099484E-003 - 123.18000000000001 -5.2347830621836504E-003 - 123.23999999999998 -5.1724596076906789E-003 - 123.29999999999998 -5.1093829847190806E-003 - 123.35999999999999 -5.0456745104090275E-003 - 123.41999999999999 -4.9814518557165415E-003 - 123.47999999999999 -4.9168276782681417E-003 - 123.53999999999999 -4.8519118155541177E-003 - 123.59999999999999 -4.7868086860774883E-003 - 123.66000000000000 -4.7216194578726875E-003 - 123.72000000000000 -4.6564413788318460E-003 - 123.78000000000000 -4.5913678913523086E-003 - 123.84000000000000 -4.5264881104853938E-003 - 123.90000000000001 -4.4618874365021984E-003 - 123.95999999999998 -4.3976476208860034E-003 - 124.01999999999998 -4.3338464130404809E-003 - 124.07999999999998 -4.2705584947385251E-003 - 124.13999999999999 -4.2078546906023414E-003 - 124.19999999999999 -4.1458025705308670E-003 - 124.25999999999999 -4.0844659306369449E-003 - 124.31999999999999 -4.0239047704702553E-003 - 124.38000000000000 -3.9641769472889840E-003 - 124.44000000000000 -3.9053364299483492E-003 - 124.50000000000000 -3.8474338341246304E-003 - 124.56000000000000 -3.7905168176918524E-003 - 124.62000000000000 -3.7346303183045859E-003 - 124.68000000000001 -3.6798157214810263E-003 - 124.73999999999998 -3.6261121551755052E-003 - 124.79999999999998 -3.5735556117127976E-003 - 124.85999999999999 -3.5221789026797985E-003 - 124.91999999999999 -3.4720128046676867E-003 - 124.97999999999999 -3.4230852940767228E-003 - 125.03999999999999 -3.3754216160872866E-003 - 125.09999999999999 -3.3290445973301183E-003 - 125.16000000000000 -3.2839742536042633E-003 - 125.22000000000000 -3.2402287792699324E-003 - 125.28000000000000 -3.1978237109778272E-003 - 125.34000000000000 -3.1567724902993215E-003 - 125.40000000000001 -3.1170864119793359E-003 - 125.45999999999998 -3.0787744813199664E-003 - 125.51999999999998 -3.0418435987786094E-003 - 125.57999999999998 -3.0062991534620166E-003 - 125.63999999999999 -2.9721441341627858E-003 - 125.69999999999999 -2.9393796744313356E-003 - 125.75999999999999 -2.9080055148286627E-003 - 125.81999999999999 -2.8780193165528849E-003 - 125.88000000000000 -2.8494168601612838E-003 - 125.94000000000000 -2.8221927090332920E-003 - 126.00000000000000 -2.7963398248404834E-003 - 126.06000000000000 -2.7718492634659056E-003 - 126.12000000000000 -2.7487105732969578E-003 - 126.18000000000001 -2.7269123820629760E-003 - 126.23999999999998 -2.7064413708370850E-003 - 126.29999999999998 -2.6872833915092065E-003 - 126.35999999999999 -2.6694226904205227E-003 - 126.41999999999999 -2.6528423825741476E-003 - 126.47999999999999 -2.6375245022659320E-003 - 126.53999999999999 -2.6234499792083675E-003 - 126.59999999999999 -2.6105987111273523E-003 - 126.66000000000000 -2.5989496235229222E-003 - 126.72000000000000 -2.5884810168613397E-003 - 126.78000000000000 -2.5791697060049581E-003 - 126.84000000000000 -2.5709917770503346E-003 - 126.90000000000001 -2.5639235368012559E-003 - 126.95999999999998 -2.5579395845470522E-003 - 127.01999999999998 -2.5530142252834695E-003 - 127.07999999999998 -2.5491210057496400E-003 - 127.13999999999999 -2.5462333442561073E-003 - 127.19999999999999 -2.5443238045466405E-003 - 127.25999999999999 -2.5433645372108533E-003 - 127.31999999999999 -2.5433274212438690E-003 - 127.38000000000000 -2.5441836813189338E-003 - 127.44000000000000 -2.5459043186555753E-003 - 127.50000000000000 -2.5484599941508622E-003 - 127.56000000000000 -2.5518211921608238E-003 - 127.62000000000000 -2.5559581406568921E-003 - 127.68000000000001 -2.5608408841412385E-003 - 127.73999999999998 -2.5664390479440444E-003 - 127.79999999999998 -2.5727221969075280E-003 - 127.85999999999999 -2.5796600571547802E-003 - 127.91999999999999 -2.5872220484588087E-003 - 127.97999999999999 -2.5953776549807735E-003 - 128.03999999999999 -2.6040960612897291E-003 - 128.09999999999999 -2.6133467161460668E-003 - 128.16000000000000 -2.6230990940705801E-003 - 128.22000000000000 -2.6333224999165608E-003 - 128.28000000000000 -2.6439864323574008E-003 - 128.34000000000000 -2.6550604451281794E-003 - 128.40000000000001 -2.6665142734114463E-003 - 128.45999999999998 -2.6783175512932718E-003 - 128.51999999999998 -2.6904399326711163E-003 - 128.57999999999998 -2.7028515258963495E-003 - 128.63999999999999 -2.7155225678707384E-003 - 128.69999999999999 -2.7284232113650190E-003 - 128.75999999999999 -2.7415240039297775E-003 - 128.81999999999999 -2.7547954751965245E-003 - 128.88000000000000 -2.7682085806664805E-003 - 128.94000000000000 -2.7817341549381865E-003 - 129.00000000000000 -2.7953432720681736E-003 - 129.06000000000000 -2.8090073072986571E-003 - 129.12000000000000 -2.8226979090131511E-003 - 129.18000000000001 -2.8363870618269161E-003 - 129.23999999999998 -2.8500465774331236E-003 - 129.29999999999998 -2.8636484897473550E-003 - 129.35999999999999 -2.8771651884311120E-003 - 129.41999999999999 -2.8905696179997195E-003 - 129.47999999999999 -2.9038344741463898E-003 - 129.53999999999999 -2.9169327877666723E-003 - 129.59999999999999 -2.9298381119041090E-003 - 129.66000000000000 -2.9425237238657467E-003 - 129.72000000000000 -2.9549636464226204E-003 - 129.78000000000000 -2.9671320714789091E-003 - 129.84000000000000 -2.9790033757346075E-003 - 129.90000000000001 -2.9905523141199250E-003 - 129.95999999999998 -3.0017541458374273E-003 - 130.01999999999998 -3.0125846381612699E-003 - 130.07999999999998 -3.0230195148534199E-003 - 130.13999999999999 -3.0330350199761803E-003 - 130.19999999999999 -3.0426082352325583E-003 - 130.25999999999999 -3.0517163392817207E-003 - 130.31999999999999 -3.0603369114808382E-003 - 130.38000000000000 -3.0684484035303269E-003 - 130.44000000000000 -3.0760299165746084E-003 - 130.50000000000000 -3.0830603725381309E-003 - 130.56000000000000 -3.0895198194970347E-003 - 130.62000000000000 -3.0953887601800614E-003 - 130.68000000000001 -3.1006486177973776E-003 - 130.73999999999998 -3.1052809777940998E-003 - 130.79999999999998 -3.1092682731544883E-003 - 130.85999999999999 -3.1125935820731261E-003 - 130.91999999999999 -3.1152405854680183E-003 - 130.97999999999999 -3.1171940755146225E-003 - 131.03999999999999 -3.1184394005593203E-003 - 131.09999999999999 -3.1189625869873171E-003 - 131.16000000000000 -3.1187505468526300E-003 - 131.22000000000000 -3.1177911897280488E-003 - 131.28000000000000 -3.1160730630540884E-003 - 131.34000000000000 -3.1135859917864415E-003 - 131.40000000000001 -3.1103205543038344E-003 - 131.45999999999998 -3.1062681498879056E-003 - 131.51999999999998 -3.1014212379973784E-003 - 131.57999999999998 -3.0957734246563695E-003 - 131.63999999999999 -3.0893193188720131E-003 - 131.69999999999999 -3.0820542579217693E-003 - 131.75999999999999 -3.0739751949528378E-003 - 131.81999999999999 -3.0650794575985416E-003 - 131.88000000000000 -3.0553659944745292E-003 - 131.94000000000000 -3.0448345774238511E-003 - 132.00000000000000 -3.0334857855466050E-003 - 132.06000000000000 -3.0213219842204339E-003 - 132.12000000000000 -3.0083458781806132E-003 - 132.18000000000001 -2.9945617792859723E-003 - 132.23999999999998 -2.9799745464686883E-003 - 132.29999999999998 -2.9645904695421769E-003 - 132.35999999999999 -2.9484168533459318E-003 - 132.41999999999999 -2.9314620837077414E-003 - 132.47999999999999 -2.9137354194949889E-003 - 132.53999999999999 -2.8952470938744881E-003 - 132.59999999999999 -2.8760085804506027E-003 - 132.66000000000000 -2.8560321944300555E-003 - 132.72000000000000 -2.8353312841366482E-003 - 132.78000000000000 -2.8139199033815170E-003 - 132.84000000000000 -2.7918135582260979E-003 - 132.90000000000001 -2.7690280175280417E-003 - 132.95999999999998 -2.7455806318911900E-003 - 133.01999999999998 -2.7214888367728014E-003 - 133.07999999999998 -2.6967714187017895E-003 - 133.13999999999999 -2.6714479046734832E-003 - 133.19999999999999 -2.6455384644921299E-003 - 133.25999999999999 -2.6190641428453592E-003 - 133.31999999999999 -2.5920464959419448E-003 - 133.38000000000000 -2.5645078476707198E-003 - 133.44000000000000 -2.5364711771826073E-003 - 133.50000000000000 -2.5079600525327642E-003 - 133.56000000000000 -2.4789983379602358E-003 - 133.62000000000000 -2.4496109106368143E-003 - 133.68000000000001 -2.4198226661344665E-003 - 133.73999999999998 -2.3896590123210024E-003 - 133.79999999999998 -2.3591458503299753E-003 - 133.85999999999999 -2.3283094846756219E-003 - 133.91999999999999 -2.2971762422566077E-003 - 133.97999999999999 -2.2657728943769879E-003 - 134.03999999999999 -2.2341262746511776E-003 - 134.09999999999999 -2.2022635751372242E-003 - 134.16000000000000 -2.1702118700158294E-003 - 134.22000000000000 -2.1379983778284364E-003 - 134.28000000000000 -2.1056506335892415E-003 - 134.34000000000000 -2.0731956366579524E-003 - 134.40000000000001 -2.0406611001472369E-003 - 134.45999999999998 -2.0080741816289977E-003 - 134.51999999999998 -1.9754620249468136E-003 - 134.57999999999998 -1.9428517457036510E-003 - 134.63999999999999 -1.9102702900679939E-003 - 134.69999999999999 -1.8777443494563542E-003 - 134.75999999999999 -1.8453006053641469E-003 - 134.81999999999999 -1.8129655800030483E-003 - 134.88000000000000 -1.7807652685767927E-003 - 134.94000000000000 -1.7487255803737981E-003 - 135.00000000000000 -1.7168722070767526E-003 - 135.06000000000000 -1.6852305072645409E-003 - 135.12000000000000 -1.6538251037128209E-003 - 135.18000000000001 -1.6226807102415687E-003 - 135.23999999999998 -1.5918213918356854E-003 - 135.29999999999998 -1.5612709342743987E-003 - 135.35999999999999 -1.5310525323647690E-003 - 135.41999999999999 -1.5011891159236285E-003 - 135.47999999999999 -1.4717030604683135E-003 - 135.53999999999999 -1.4426161650357564E-003 - 135.59999999999999 -1.4139499902206872E-003 - 135.66000000000000 -1.3857253470425986E-003 - 135.72000000000000 -1.3579626652800566E-003 - 135.78000000000000 -1.3306820270103349E-003 - 135.84000000000000 -1.3039027116552777E-003 - 135.90000000000001 -1.2776437828371254E-003 - 135.95999999999998 -1.2519236380679544E-003 - 136.01999999999998 -1.2267602069850568E-003 - 136.07999999999998 -1.2021710449336034E-003 - 136.13999999999999 -1.1781731024707409E-003 - 136.19999999999999 -1.1547827070938865E-003 - 136.25999999999999 -1.1320158128892246E-003 - 136.31999999999999 -1.1098878855010674E-003 - 136.38000000000000 -1.0884139341423174E-003 - 136.44000000000000 -1.0676082642558861E-003 - 136.50000000000000 -1.0474847220474084E-003 - 136.56000000000000 -1.0280566921191522E-003 - 136.62000000000000 -1.0093370015734583E-003 - 136.68000000000001 -9.9133801859682203E-004 - 136.73999999999998 -9.7407147779881935E-004 - 136.79999999999998 -9.5754867161335641E-004 - 136.85999999999999 -9.4178037678272343E-004 - 136.91999999999999 -9.2677680665420993E-004 - 136.97999999999999 -9.1254760176180520E-004 - 137.03999999999999 -8.9910205184552748E-004 - 137.09999999999999 -8.8644872186908390E-004 - 137.16000000000000 -8.7459580861471342E-004 - 137.22000000000000 -8.6355075394545417E-004 - 137.28000000000000 -8.5332065031034515E-004 - 137.34000000000000 -8.4391186150226452E-004 - 137.40000000000001 -8.3533032213039876E-004 - 137.45999999999998 -8.2758129629047889E-004 - 137.51999999999998 -8.2066945490969954E-004 - 137.57999999999998 -8.1459887596453423E-004 - 137.63999999999999 -8.0937290217681984E-004 - 137.69999999999999 -8.0499435489830124E-004 - 137.75999999999999 -8.0146532598383803E-004 - 137.81999999999999 -7.9878728239353967E-004 - 137.88000000000000 -7.9696101659511320E-004 - 137.94000000000000 -7.9598654288315536E-004 - 138.00000000000000 -7.9586315536350045E-004 - 138.06000000000000 -7.9658937153518489E-004 - 138.12000000000000 -7.9816311957542146E-004 - 138.18000000000001 -8.0058129453669676E-004 - 138.23999999999998 -8.0384014295837669E-004 - 138.29999999999998 -8.0793501586560773E-004 - 138.35999999999999 -8.1286045410054947E-004 - 138.41999999999999 -8.1860998648542718E-004 - 138.47999999999999 -8.2517635687276187E-004 - 138.53999999999999 -8.3255120945292208E-004 - 138.59999999999999 -8.4072539782038813E-004 - 138.66000000000000 -8.4968867997430042E-004 - 138.72000000000000 -8.5942980887846463E-004 - 138.78000000000000 -8.6993643942108294E-004 - 138.84000000000000 -8.8119511543261744E-004 - 138.90000000000001 -8.9319134795052407E-004 - 138.95999999999998 -9.0590950682654589E-004 - 139.01999999999998 -9.1933288246406962E-004 - 139.07999999999998 -9.3344352066987760E-004 - 139.13999999999999 -9.4822229152676180E-004 - 139.19999999999999 -9.6364899309319459E-004 - 139.25999999999999 -9.7970198114034944E-004 - 139.31999999999999 -9.9635875122725545E-004 - 139.38000000000000 -1.0135954503594502E-003 - 139.44000000000000 -1.0313868381656417E-003 - 139.50000000000000 -1.0497067962935847E-003 - 139.56000000000000 -1.0685278298412084E-003 - 139.62000000000000 -1.0878212447078138E-003 - 139.68000000000001 -1.1075572019017725E-003 - 139.73999999999998 -1.1277045876132757E-003 - 139.79999999999998 -1.1482313247387860E-003 - 139.85999999999999 -1.1691040896461189E-003 - 139.91999999999999 -1.1902883749294456E-003 - 139.97999999999999 -1.2117488861183754E-003 - 140.03999999999999 -1.2334488761855868E-003 - 140.09999999999999 -1.2553510192171386E-003 - 140.16000000000000 -1.2774166965621710E-003 - 140.22000000000000 -1.2996064477935347E-003 - 140.28000000000000 -1.3218801445003430E-003 - 140.34000000000000 -1.3441967766781944E-003 - 140.40000000000001 -1.3665144402481249E-003 - 140.45999999999998 -1.3887907471772183E-003 - 140.51999999999998 -1.4109826090608609E-003 - 140.57999999999998 -1.4330464968382471E-003 - 140.63999999999999 -1.4549382929364496E-003 - 140.69999999999999 -1.4766135529988150E-003 - 140.75999999999999 -1.4980275230154806E-003 - 140.81999999999999 -1.5191353218430858E-003 - 140.88000000000000 -1.5398918506542238E-003 - 140.94000000000000 -1.5602520493984587E-003 - 141.00000000000000 -1.5801708524958746E-003 - 141.06000000000000 -1.5996035129544326E-003 - 141.12000000000000 -1.6185054835113110E-003 - 141.18000000000001 -1.6368324752777117E-003 - 141.23999999999998 -1.6545409074123906E-003 - 141.29999999999998 -1.6715877114625933E-003 - 141.35999999999999 -1.6879305021960541E-003 - 141.41999999999999 -1.7035277474103530E-003 - 141.47999999999999 -1.7183389170539688E-003 - 141.53999999999999 -1.7323244715120717E-003 - 141.59999999999999 -1.7454459325437276E-003 - 141.66000000000000 -1.7576661133771221E-003 - 141.72000000000000 -1.7689491139490877E-003 - 141.78000000000000 -1.7792606136623123E-003 - 141.84000000000000 -1.7885677947662155E-003 - 141.90000000000001 -1.7968392915810047E-003 - 141.95999999999998 -1.8040455436445701E-003 - 142.01999999999998 -1.8101589320205745E-003 - 142.07999999999998 -1.8151535514294537E-003 - 142.13999999999999 -1.8190054114937499E-003 - 142.19999999999999 -1.8216927492590669E-003 - 142.25999999999999 -1.8231956940626490E-003 - 142.31999999999999 -1.8234966827797966E-003 - 142.38000000000000 -1.8225803632941854E-003 - 142.44000000000000 -1.8204335436396140E-003 - 142.50000000000000 -1.8170455326041468E-003 - 142.56000000000000 -1.8124079388296735E-003 - 142.62000000000000 -1.8065149201148649E-003 - 142.68000000000001 -1.7993628211026591E-003 - 142.73999999999998 -1.7909507858992792E-003 - 142.79999999999998 -1.7812801627840901E-003 - 142.85999999999999 -1.7703550587790766E-003 - 142.91999999999999 -1.7581819920629914E-003 - 142.97999999999999 -1.7447699326922066E-003 - 143.03999999999999 -1.7301303097580212E-003 - 143.09999999999999 -1.7142771241288590E-003 - 143.16000000000000 -1.6972267103552356E-003 - 143.22000000000000 -1.6789979668893995E-003 - 143.28000000000000 -1.6596117980911779E-003 - 143.34000000000000 -1.6390917390622186E-003 - 143.40000000000001 -1.6174632301537396E-003 - 143.45999999999998 -1.5947540374432519E-003 - 143.51999999999998 -1.5709939751395953E-003 - 143.57999999999998 -1.5462148864481739E-003 - 143.63999999999999 -1.5204506164069303E-003 - 143.69999999999999 -1.4937367826257865E-003 - 143.75999999999999 -1.4661107618676728E-003 - 143.81999999999999 -1.4376114839390278E-003 - 143.88000000000000 -1.4082796950763590E-003 - 143.94000000000000 -1.3781573694865133E-003 - 144.00000000000000 -1.3472879248297941E-003 - 144.06000000000000 -1.3157160326780972E-003 - 144.12000000000000 -1.2834874987362245E-003 - 144.18000000000001 -1.2506491324910374E-003 - 144.23999999999998 -1.2172487301405515E-003 - 144.29999999999998 -1.1833347696500170E-003 - 144.35999999999999 -1.1489563651946194E-003 - 144.41999999999999 -1.1141632044613132E-003 - 144.47999999999999 -1.0790053510040412E-003 - 144.53999999999999 -1.0435332060606600E-003 - 144.59999999999999 -1.0077972977524899E-003 - 144.66000000000000 -9.7184812226371107E-004 - 144.72000000000000 -9.3573630756686840E-004 - 144.78000000000000 -8.9951202920092476E-004 - 144.84000000000000 -8.6322531118421502E-004 - 144.90000000000001 -8.2692554117871409E-004 - 144.95999999999998 -7.9066184436755733E-004 - 145.01999999999998 -7.5448236206060264E-004 - 145.07999999999998 -7.1843479965051334E-004 - 145.13999999999999 -6.8256578932414922E-004 - 145.19999999999999 -6.4692105235055939E-004 - 145.25999999999999 -6.1154525048659448E-004 - 145.31999999999999 -5.7648196664342633E-004 - 145.38000000000000 -5.4177350000305508E-004 - 145.44000000000000 -5.0746088655342935E-004 - 145.50000000000000 -4.7358382248914100E-004 - 145.56000000000000 -4.4018049710284481E-004 - 145.62000000000000 -4.0728766410414076E-004 - 145.68000000000001 -3.7494052162766525E-004 - 145.73999999999998 -3.4317272897108400E-004 - 145.79999999999998 -3.1201627233314521E-004 - 145.85999999999999 -2.8150144819190934E-004 - 145.91999999999999 -2.5165691930159866E-004 - 145.97999999999999 -2.2250959688541785E-004 - 146.03999999999999 -1.9408465522448439E-004 - 146.09999999999999 -1.6640553964588069E-004 - 146.16000000000000 -1.3949386120193624E-004 - 146.22000000000000 -1.1336954958162160E-004 - 146.28000000000000 -8.8050689988326497E-005 - 146.34000000000000 -6.3553631248122248E-005 - 146.40000000000001 -3.9892961854801397E-005 - 146.45999999999998 -1.7081524229142268E-005 - 146.51999999999998 4.8695613071784481E-006 - 146.57999999999998 2.5950887763601354E-005 - 146.63999999999999 4.6154719241721796E-005 - 146.69999999999999 6.5474981957871776E-005 - 146.75999999999999 8.3907206637586052E-005 - 146.81999999999999 1.0144846005306374E-004 - 146.88000000000000 1.1809736694657865E-004 - 146.94000000000000 1.3385401002577113E-004 - 147.00000000000000 1.4871991065997021E-004 - 147.06000000000000 1.6269793413544858E-004 - 147.12000000000000 1.7579228771181263E-004 - 147.18000000000001 1.8800842210705984E-004 - 147.23999999999998 1.9935300566117014E-004 - 147.29999999999998 2.0983383827123415E-004 - 147.35999999999999 2.1945981860446153E-004 - 147.41999999999999 2.2824084786722884E-004 - 147.47999999999999 2.3618785709340233E-004 - 147.53999999999999 2.4331266252230202E-004 - 147.59999999999999 2.4962792944501367E-004 - 147.66000000000000 2.5514709880564417E-004 - 147.72000000000000 2.5988441456147488E-004 - 147.78000000000000 2.6385474744803738E-004 - 147.84000000000000 2.6707364340568257E-004 - 147.90000000000001 2.6955722358980815E-004 - 147.95999999999998 2.7132208624103574E-004 - 148.01999999999998 2.7238528393969271E-004 - 148.07999999999998 2.7276429978199897E-004 - 148.13999999999999 2.7247690667184785E-004 - 148.19999999999999 2.7154122957456268E-004 - 148.25999999999999 2.6997558931386040E-004 - 148.31999999999999 2.6779849391634340E-004 - 148.38000000000000 2.6502859912343830E-004 - 148.44000000000000 2.6168459739823801E-004 - 148.50000000000000 2.5778528081330090E-004 - 148.56000000000000 2.5334938726135172E-004 - 148.62000000000000 2.4839562496513216E-004 - 148.68000000000001 2.4294263542013839E-004 - 148.73999999999998 2.3700891363428631E-004 - 148.79999999999998 2.3061282675184276E-004 - 148.85999999999999 2.2377256227779216E-004 - 148.91999999999999 2.1650606073499331E-004 - 148.97999999999999 2.0883103775425207E-004 - 149.03999999999999 2.0076497664538710E-004 - 149.09999999999999 1.9232500762013383E-004 - 149.16000000000000 1.8352799510039687E-004 - 149.22000000000000 1.7439041419334544E-004 - 149.28000000000000 1.6492842140183804E-004 - 149.34000000000000 1.5515777322565641E-004 - 149.40000000000001 1.4509380231131312E-004 - 149.45999999999998 1.3475143737347656E-004 - 149.51999999999998 1.2414518707558523E-004 - 149.57999999999998 1.1328906628841229E-004 - 149.63999999999999 1.0219666162786069E-004 - 149.69999999999999 9.0881052870298457E-005 - 149.75999999999999 7.9354846911326374E-005 - 149.81999999999999 6.7630139281852505E-005 - 149.88000000000000 5.5718554879553245E-005 - 149.94000000000000 4.3631181785794632E-005 - 150.00000000000000 3.1378622149855651E-005 - 150.06000000000000 1.8970951034768457E-005 - 150.12000000000000 6.4177766042914031E-006 - 150.18000000000001 -6.2718339586460316E-006 - 150.23999999999998 -1.9089304233027212E-005 - 150.29999999999998 -3.2026535515305793E-005 - 150.35999999999999 -4.5075947669295181E-005 - 150.41999999999999 -5.8230415576828229E-005 - 150.47999999999999 -7.1483283621716871E-005 - 150.53999999999999 -8.4828393816992995E-005 - 150.59999999999999 -9.8260013641906531E-005 - 150.66000000000000 -1.1177284434497339E-004 - 150.72000000000000 -1.2536204214414566E-004 - 150.78000000000000 -1.3902316179726116E-004 - 150.84000000000000 -1.5275216817354202E-004 - 150.90000000000001 -1.6654539651058276E-004 - 150.95999999999998 -1.8039957752332260E-004 - 151.01999999999998 -1.9431176762256945E-004 - 151.07999999999998 -2.0827938800832579E-004 - 151.13999999999999 -2.2230012596067758E-004 - 151.19999999999999 -2.3637202580564079E-004 - 151.25999999999999 -2.5049337691726976E-004 - 151.31999999999999 -2.6466271108612784E-004 - 151.38000000000000 -2.7887878473666409E-004 - 151.44000000000000 -2.9314062071550526E-004 - 151.50000000000000 -3.0744731048330115E-004 - 151.56000000000000 -3.2179820313301636E-004 - 151.62000000000000 -3.3619273166344372E-004 - 151.68000000000001 -3.5063043432298718E-004 - 151.73999999999998 -3.6511091793783846E-004 - 151.79999999999998 -3.7963380746698140E-004 - 151.85999999999999 -3.9419872978135645E-004 - 151.91999999999999 -4.0880532212442895E-004 - 151.97999999999999 -4.2345311130776093E-004 - 152.03999999999999 -4.3814159005192157E-004 - 152.09999999999999 -4.5287003823884240E-004 - 152.16000000000000 -4.6763765803360625E-004 - 152.22000000000000 -4.8244337487357992E-004 - 152.28000000000000 -4.9728590384778447E-004 - 152.34000000000000 -5.1216375212252588E-004 - 152.40000000000001 -5.2707515514406156E-004 - 152.45999999999998 -5.4201798237007157E-004 - 152.51999999999998 -5.5698978136323467E-004 - 152.57999999999998 -5.7198770390188257E-004 - 152.63999999999999 -5.8700852759816847E-004 - 152.69999999999999 -6.0204860668964860E-004 - 152.75999999999999 -6.1710390738499595E-004 - 152.81999999999999 -6.3216983973921742E-004 - 152.88000000000000 -6.4724141758266875E-004 - 152.94000000000000 -6.6231305461484605E-004 - 153.00000000000000 -6.7737865455604757E-004 - 153.06000000000000 -6.9243162063530690E-004 - 153.12000000000000 -7.0746473616495136E-004 - 153.17999999999998 -7.2247026460513957E-004 - 153.23999999999998 -7.3743982036799619E-004 - 153.29999999999998 -7.5236442849280303E-004 - 153.35999999999999 -7.6723442466811436E-004 - 153.41999999999999 -7.8203954520834125E-004 - 153.47999999999999 -7.9676893415610739E-004 - 153.53999999999999 -8.1141104926849006E-004 - 153.59999999999999 -8.2595364629081442E-004 - 153.66000000000000 -8.4038399633975982E-004 - 153.72000000000000 -8.5468863245771027E-004 - 153.78000000000000 -8.6885365273880425E-004 - 153.84000000000000 -8.8286430936197866E-004 - 153.90000000000001 -8.9670546218017881E-004 - 153.95999999999998 -9.1036135450078002E-004 - 154.01999999999998 -9.2381572404918533E-004 - 154.07999999999998 -9.3705187706152784E-004 - 154.13999999999999 -9.5005249731357319E-004 - 154.19999999999999 -9.6280001067167349E-004 - 154.25999999999999 -9.7527633030915347E-004 - 154.31999999999999 -9.8746296580279553E-004 - 154.38000000000000 -9.9934128568985973E-004 - 154.44000000000000 -1.0108921706684874E-003 - 154.50000000000000 -1.0220964070184347E-003 - 154.56000000000000 -1.0329345733284768E-003 - 154.62000000000000 -1.0433869834040347E-003 - 154.67999999999998 -1.0534340711504989E-003 - 154.73999999999998 -1.0630559403314057E-003 - 154.79999999999998 -1.0722329399504944E-003 - 154.85999999999999 -1.0809454104691060E-003 - 154.91999999999999 -1.0891737565288434E-003 - 154.97999999999999 -1.0968986229103650E-003 - 155.03999999999999 -1.1041008794583228E-003 - 155.09999999999999 -1.1107617141969928E-003 - 155.16000000000000 -1.1168626791354672E-003 - 155.22000000000000 -1.1223857133499651E-003 - 155.28000000000000 -1.1273133069547034E-003 - 155.34000000000000 -1.1316283879486588E-003 - 155.40000000000001 -1.1353145825321897E-003 - 155.45999999999998 -1.1383562821966748E-003 - 155.51999999999998 -1.1407384754650752E-003 - 155.57999999999998 -1.1424469479424377E-003 - 155.63999999999999 -1.1434683940095753E-003 - 155.69999999999999 -1.1437903689415409E-003 - 155.75999999999999 -1.1434014550485072E-003 - 155.81999999999999 -1.1422911882000915E-003 - 155.88000000000000 -1.1404503093487312E-003 - 155.94000000000000 -1.1378704460270261E-003 - 156.00000000000000 -1.1345446680516612E-003 - 156.06000000000000 -1.1304668771359631E-003 - 156.12000000000000 -1.1256327203400520E-003 - 156.17999999999998 -1.1200386781436448E-003 - 156.23999999999998 -1.1136827784661433E-003 - 156.29999999999998 -1.1065643254944660E-003 - 156.35999999999999 -1.0986840640580247E-003 - 156.41999999999999 -1.0900440379277567E-003 - 156.47999999999999 -1.0806477881022440E-003 - 156.53999999999999 -1.0705000861064350E-003 - 156.59999999999999 -1.0596073928926348E-003 - 156.66000000000000 -1.0479775689807094E-003 - 156.72000000000000 -1.0356197529421032E-003 - 156.78000000000000 -1.0225446349801791E-003 - 156.84000000000000 -1.0087643258117928E-003 - 156.90000000000001 -9.9429238294904544E-004 - 156.95999999999998 -9.7914383195185943E-004 - 157.01999999999998 -9.6333491701266170E-004 - 157.07999999999998 -9.4688339194032647E-004 - 157.13999999999999 -9.2980839724079328E-004 - 157.19999999999999 -9.1213018252744014E-004 - 157.25999999999999 -8.9387048096358076E-004 - 157.31999999999999 -8.7505222343920580E-004 - 157.38000000000000 -8.5569944266130314E-004 - 157.44000000000000 -8.3583733633477500E-004 - 157.50000000000000 -8.1549221333086818E-004 - 157.56000000000000 -7.9469144159052970E-004 - 157.62000000000000 -7.7346328460610599E-004 - 157.67999999999998 -7.5183691857330323E-004 - 157.73999999999998 -7.2984248476851328E-004 - 157.79999999999998 -7.0751066713334993E-004 - 157.85999999999999 -6.8487301832332985E-004 - 157.91999999999999 -6.6196168296419776E-004 - 157.97999999999999 -6.3880932019056346E-004 - 158.03999999999999 -6.1544913405686024E-004 - 158.09999999999999 -5.9191469389344490E-004 - 158.16000000000000 -5.6823991846341037E-004 - 158.22000000000000 -5.4445886853514208E-004 - 158.28000000000000 -5.2060594651716732E-004 - 158.34000000000000 -4.9671552475672072E-004 - 158.40000000000001 -4.7282204134129488E-004 - 158.45999999999998 -4.4895990490716902E-004 - 158.51999999999998 -4.2516328439554032E-004 - 158.57999999999998 -4.0146626608162891E-004 - 158.63999999999999 -3.7790251238365357E-004 - 158.69999999999999 -3.5450530124970386E-004 - 158.75999999999999 -3.3130755221863657E-004 - 158.81999999999999 -3.0834153838465165E-004 - 158.88000000000000 -2.8563903619013945E-004 - 158.94000000000000 -2.6323106495296309E-004 - 159.00000000000000 -2.4114785359009963E-004 - 159.06000000000000 -2.1941894107617828E-004 - 159.12000000000000 -1.9807286418026916E-004 - 159.17999999999998 -1.7713727561001599E-004 - 159.23999999999998 -1.5663886026904438E-004 - 159.29999999999998 -1.3660323151453579E-004 - 159.35999999999999 -1.1705490555302586E-004 - 159.41999999999999 -9.8017272073374186E-005 - 159.47999999999999 -7.9512555505329948E-005 - 159.53999999999999 -6.1561805119818324E-005 - 159.59999999999999 -4.4184786030142568E-005 - 159.66000000000000 -2.7400056424324863E-005 - 159.72000000000000 -1.1224870535591177E-005 - 159.78000000000000 4.3248169397107794E-006 - 159.84000000000000 1.9234346231137835E-005 - 159.90000000000001 3.3490372585142310E-005 - 159.95999999999998 4.7080892731099903E-005 - 160.01999999999998 5.9995280023586537E-005 - 160.07999999999998 7.2224171840807715E-005 - 160.13999999999999 8.3759568012347805E-005 - 160.19999999999999 9.4594814461328847E-005 - 160.25999999999999 1.0472452074052249E-004 - 160.31999999999999 1.1414462842770316E-004 - 160.38000000000000 1.2285234516086940E-004 - 160.44000000000000 1.3084614003372320E-004 - 160.50000000000000 1.3812571237679949E-004 - 160.56000000000000 1.4469196998708047E-004 - 160.62000000000000 1.5054694238400622E-004 - 160.67999999999998 1.5569382881749089E-004 - 160.73999999999998 1.6013686573723083E-004 - 160.79999999999998 1.6388135505213737E-004 - 160.85999999999999 1.6693359714191664E-004 - 160.91999999999999 1.6930080047032630E-004 - 160.97999999999999 1.7099104447809713E-004 - 161.03999999999999 1.7201328035727542E-004 - 161.09999999999999 1.7237716060729369E-004 - 161.16000000000000 1.7209307089855315E-004 - 161.22000000000000 1.7117205075601130E-004 - 161.28000000000000 1.6962570344871886E-004 - 161.34000000000000 1.6746620624863114E-004 - 161.40000000000001 1.6470610870089825E-004 - 161.45999999999998 1.6135844105044127E-004 - 161.51999999999998 1.5743649732648037E-004 - 161.57999999999998 1.5295390754041554E-004 - 161.63999999999999 1.4792448357159023E-004 - 161.69999999999999 1.4236217493018727E-004 - 161.75999999999999 1.3628108237085895E-004 - 161.81999999999999 1.2969531967719979E-004 - 161.88000000000000 1.2261898297517252E-004 - 161.94000000000000 1.1506611072294461E-004 - 162.00000000000000 1.0705063774720804E-004 - 162.06000000000000 9.8586315058096454E-005 - 162.12000000000000 8.9686679889729485E-005 - 162.17999999999998 8.0365000009457408E-005 - 162.23999999999998 7.0634220983889311E-005 - 162.29999999999998 6.0506946000224749E-005 - 162.35999999999999 4.9995337258075632E-005 - 162.41999999999999 3.9111142931349623E-005 - 162.47999999999999 2.7865594213462233E-005 - 162.53999999999999 1.6269391148672157E-005 - 162.59999999999999 4.3326763229964931E-006 - 162.66000000000000 -7.9350517409662320E-006 - 162.72000000000000 -2.0524901230232174E-005 - 162.78000000000000 -3.3428678752628558E-005 - 162.84000000000000 -4.6638858744782840E-005 - 162.90000000000001 -6.0148651618984825E-005 - 162.95999999999998 -7.3951997458886033E-005 - 163.01999999999998 -8.8043569802628756E-005 - 163.07999999999998 -1.0241881849779097E-004 - 163.13999999999999 -1.1707393528007573E-004 - 163.19999999999999 -1.3200587949776697E-004 - 163.25999999999999 -1.4721234702133655E-004 - 163.31999999999999 -1.6269177948037621E-004 - 163.38000000000000 -1.7844336490933219E-004 - 163.44000000000000 -1.9446697731743961E-004 - 163.50000000000000 -2.1076323917774693E-004 - 163.56000000000000 -2.2733339843846373E-004 - 163.62000000000000 -2.4417936201279650E-004 - 163.67999999999998 -2.6130367619511829E-004 - 163.73999999999998 -2.7870948414924742E-004 - 163.79999999999998 -2.9640050909122517E-004 - 163.85999999999999 -3.1438098227058747E-004 - 163.91999999999999 -3.3265567152383985E-004 - 163.97999999999999 -3.5122976749531827E-004 - 164.03999999999999 -3.7010892351817341E-004 - 164.09999999999999 -3.8929919765297180E-004 - 164.16000000000000 -4.0880691112216448E-004 - 164.22000000000000 -4.2863874133324724E-004 - 164.28000000000000 -4.4880156017325715E-004 - 164.34000000000000 -4.6930246338618218E-004 - 164.40000000000001 -4.9014868339000077E-004 - 164.45999999999998 -5.1134749499567238E-004 - 164.51999999999998 -5.3290609204325896E-004 - 164.57999999999998 -5.5483167238567967E-004 - 164.63999999999999 -5.7713129703403597E-004 - 164.69999999999999 -5.9981181660232949E-004 - 164.75999999999999 -6.2287981553549299E-004 - 164.81999999999999 -6.4634141787785421E-004 - 164.88000000000000 -6.7020238082507336E-004 - 164.94000000000000 -6.9446789981982720E-004 - 165.00000000000000 -7.1914257000995653E-004 - 165.06000000000000 -7.4423044210797341E-004 - 165.12000000000000 -7.6973464543906168E-004 - 165.17999999999998 -7.9565763703301191E-004 - 165.23999999999998 -8.2200081096160183E-004 - 165.29999999999998 -8.4876469223769415E-004 - 165.35999999999999 -8.7594883780042093E-004 - 165.41999999999999 -9.0355153708816935E-004 - 165.47999999999999 -9.3156995214146781E-004 - 165.53999999999999 -9.5999996607291395E-004 - 165.59999999999999 -9.8883612030609830E-004 - 165.66000000000000 -1.0180717868921647E-003 - 165.72000000000000 -1.0476985963390223E-003 - 165.78000000000000 -1.0777068844855413E-003 - 165.84000000000000 -1.1080854026904257E-003 - 165.90000000000001 -1.1388212495765898E-003 - 165.95999999999998 -1.1698999165765578E-003 - 166.01999999999998 -1.2013052580850169E-003 - 166.07999999999998 -1.2330191615889344E-003 - 166.13999999999999 -1.2650220504746351E-003 - 166.19999999999999 -1.2972922993971926E-003 - 166.25999999999999 -1.3298063958121715E-003 - 166.31999999999999 -1.3625390920701300E-003 - 166.38000000000000 -1.3954633632587946E-003 - 166.44000000000000 -1.4285500626102477E-003 - 166.50000000000000 -1.4617680817636833E-003 - 166.56000000000000 -1.4950846286182586E-003 - 166.62000000000000 -1.5284648714650518E-003 - 166.67999999999998 -1.5618718672964107E-003 - 166.73999999999998 -1.5952671570249450E-003 - 166.79999999999998 -1.6286102078325951E-003 - 166.85999999999999 -1.6618586260748192E-003 - 166.91999999999999 -1.6949682333278276E-003 - 166.97999999999999 -1.7278932545984936E-003 - 167.03999999999999 -1.7605860050579751E-003 - 167.09999999999999 -1.7929974158173274E-003 - 167.16000000000000 -1.8250767579604745E-003 - 167.22000000000000 -1.8567717019701286E-003 - 167.28000000000000 -1.8880287496155165E-003 - 167.34000000000000 -1.9187928505672461E-003 - 167.40000000000001 -1.9490082958680895E-003 - 167.45999999999998 -1.9786174551418576E-003 - 167.51999999999998 -2.0075625007167741E-003 - 167.57999999999998 -2.0357844129268777E-003 - 167.63999999999999 -2.0632232042779937E-003 - 167.69999999999999 -2.0898186509243498E-003 - 167.75999999999999 -2.1155099848970240E-003 - 167.81999999999999 -2.1402356818912265E-003 - 167.88000000000000 -2.1639343275603054E-003 - 167.94000000000000 -2.1865443779589132E-003 - 168.00000000000000 -2.2080042338864596E-003 - 168.06000000000000 -2.2282526943897952E-003 - 168.12000000000000 -2.2472288428547070E-003 - 168.17999999999998 -2.2648720877045223E-003 - 168.23999999999998 -2.2811227818569689E-003 - 168.29999999999998 -2.2959219446880065E-003 - 168.35999999999999 -2.3092117885873628E-003 - 168.41999999999999 -2.3209354283642127E-003 - 168.47999999999999 -2.3310376206376287E-003 - 168.53999999999999 -2.3394645602418307E-003 - 168.59999999999999 -2.3461639937146098E-003 - 168.66000000000000 -2.3510854441767468E-003 - 168.72000000000000 -2.3541807695795108E-003 - 168.78000000000000 -2.3554037225750391E-003 - 168.84000000000000 -2.3547104274879269E-003 - 168.90000000000001 -2.3520596091491670E-003 - 168.95999999999998 -2.3474122643195620E-003 - 169.01999999999998 -2.3407326963516316E-003 - 169.07999999999998 -2.3319873950702120E-003 - 169.13999999999999 -2.3211466665165126E-003 - 169.19999999999999 -2.3081833679982041E-003 - 169.25999999999999 -2.2930740401167393E-003 - 169.31999999999999 -2.2757981967876945E-003 - 169.38000000000000 -2.2563390442697914E-003 - 169.44000000000000 -2.2346834494845489E-003 - 169.50000000000000 -2.2108216634209111E-003 - 169.56000000000000 -2.1847479071124935E-003 - 169.62000000000000 -2.1564600787538088E-003 - 169.67999999999998 -2.1259598480622179E-003 - 169.73999999999998 -2.0932528504110180E-003 - 169.79999999999998 -2.0583485894791649E-003 - 169.85999999999999 -2.0212607101682389E-003 - 169.91999999999999 -1.9820065007043640E-003 - 169.97999999999999 -1.9406075209919638E-003 - 170.03999999999999 -1.8970892996359610E-003 - 170.09999999999999 -1.8514812488689941E-003 - 170.16000000000000 -1.8038165264644733E-003 - 170.22000000000000 -1.7541325403715199E-003 - 170.28000000000000 -1.7024702797922768E-003 - 170.34000000000000 -1.6488745445960152E-003 - 170.40000000000001 -1.5933938563669442E-003 - 170.45999999999998 -1.5360805306592227E-003 - 170.51999999999998 -1.4769901884481859E-003 - 170.57999999999998 -1.4161821714127674E-003 - 170.63999999999999 -1.3537187384115093E-003 - 170.69999999999999 -1.2896657102866049E-003 - 170.75999999999999 -1.2240920191095785E-003 - 170.81999999999999 -1.1570692235929900E-003 - 170.88000000000000 -1.0886719880409258E-003 - 170.94000000000000 -1.0189773910785932E-003 - 171.00000000000000 -9.4806501919474735E-004 - 171.06000000000000 -8.7601692791882074E-004 - 171.12000000000000 -8.0291726136557219E-004 - 171.17999999999998 -7.2885202418825491E-004 - 171.23999999999998 -6.5390898301480717E-004 - 171.29999999999998 -5.7817771452793251E-004 - 171.35999999999999 -5.0174899871460927E-004 - 171.41999999999999 -4.2471473317966230E-004 - 171.47999999999999 -3.4716801442314635E-004 - 171.53999999999999 -2.6920259253792494E-004 - 171.59999999999999 -1.9091284714580406E-004 - 171.66000000000000 -1.1239361702408321E-004 - 171.72000000000000 -3.3739901200988099E-005 - 171.78000000000000 4.4953361260751079E-005 - 171.84000000000000 1.2359140404234127E-004 - 171.90000000000001 2.0207982868584832E-004 - 171.95999999999998 2.8032481526586836E-004 - 172.01999999999998 3.5823344841794179E-004 - 172.07999999999998 4.3571372449608087E-004 - 172.13999999999999 5.1267473689835252E-004 - 172.19999999999999 5.8902703644623708E-004 - 172.25999999999999 6.6468272478547978E-004 - 172.31999999999999 7.3955555221651278E-004 - 172.38000000000000 8.1356104254907274E-004 - 172.44000000000000 8.8661696546695271E-004 - 172.50000000000000 9.5864311429205663E-004 - 172.56000000000000 1.0295616233148646E-003 - 172.62000000000000 1.0992971501859114E-003 - 172.67999999999998 1.1677770147373431E-003 - 172.73999999999998 1.2349310199998797E-003 - 172.79999999999998 1.3006919693787729E-003 - 172.85999999999999 1.3649955664240519E-003 - 172.91999999999999 1.4277805527745310E-003 - 172.97999999999999 1.4889886906508188E-003 - 173.03999999999999 1.5485650923716440E-003 - 173.09999999999999 1.6064580055187684E-003 - 173.16000000000000 1.6626189952046581E-003 - 173.22000000000000 1.7170030070101170E-003 - 173.28000000000000 1.7695683651624333E-003 - 173.34000000000000 1.8202769170935274E-003 - 173.40000000000001 1.8690938336280625E-003 - 173.45999999999998 1.9159878257358049E-003 - 173.51999999999998 1.9609311443764565E-003 - 173.57999999999998 2.0038994111854793E-003 - 173.63999999999999 2.0448720736825836E-003 - 173.69999999999999 2.0838315594345052E-003 - 173.75999999999999 2.1207641478834453E-003 - 173.81999999999999 2.1556593997148167E-003 - 173.88000000000000 2.1885103289137693E-003 - 173.94000000000000 2.2193126859056064E-003 - 174.00000000000000 2.2480662635442350E-003 - 174.06000000000000 2.2747737557139275E-003 - 174.12000000000000 2.2994411035109782E-003 - 174.17999999999998 2.3220771510688038E-003 - 174.23999999999998 2.3426938565841052E-003 - 174.29999999999998 2.3613062212455944E-003 - 174.35999999999999 2.3779314776807897E-003 - 174.41999999999999 2.3925904715177042E-003 - 174.47999999999999 2.4053060672841490E-003 - 174.53999999999999 2.4161036897528839E-003 - 174.59999999999999 2.4250116598917466E-003 - 174.66000000000000 2.4320604764519051E-003 - 174.72000000000000 2.4372824364500513E-003 - 174.78000000000000 2.4407123572968582E-003 - 174.84000000000000 2.4423870796692255E-003 - 174.90000000000001 2.4423450791692743E-003 - 174.95999999999998 2.4406267539212162E-003 - 175.01999999999998 2.4372743994885205E-003 - 175.07999999999998 2.4323314583092719E-003 - 175.13999999999999 2.4258432122690418E-003 - 175.19999999999999 2.4178561497087935E-003 - 175.25999999999999 2.4084177823656770E-003 - 175.31999999999999 2.3975769359354149E-003 - 175.38000000000000 2.3853831478296787E-003 - 175.44000000000000 2.3718870199318830E-003 - 175.50000000000000 2.3571398266020193E-003 - 175.56000000000000 2.3411936842335028E-003 - 175.62000000000000 2.3241008675803699E-003 - 175.67999999999998 2.3059143663492609E-003 - 175.73999999999998 2.2866873621306422E-003 - 175.79999999999998 2.2664734687034165E-003 - 175.85999999999999 2.2453260943267632E-003 - 175.91999999999999 2.2232986813952630E-003 - 175.97999999999999 2.2004448781708418E-003 - 176.03999999999999 2.1768181809901461E-003 - 176.09999999999999 2.1524713420831973E-003 - 176.16000000000000 2.1274572204967477E-003 - 176.22000000000000 2.1018282286489045E-003 - 176.28000000000000 2.0756360009847184E-003 - 176.34000000000000 2.0489316766539581E-003 - 176.40000000000001 2.0217658478445767E-003 - 176.45999999999998 1.9941883631134430E-003 - 176.51999999999998 1.9662478604080382E-003 - 176.57999999999998 1.9379925651733681E-003 - 176.63999999999999 1.9094695755926521E-003 - 176.69999999999999 1.8807247986322431E-003 - 176.75999999999999 1.8518032739251985E-003 - 176.81999999999999 1.8227487548710393E-003 - 176.88000000000000 1.7936040329837087E-003 - 176.94000000000000 1.7644104643579565E-003 - 177.00000000000000 1.7352082931847855E-003 - 177.06000000000000 1.7060363006271995E-003 - 177.12000000000000 1.6769320480505203E-003 - 177.17999999999998 1.6479317045392100E-003 - 177.23999999999998 1.6190700650237746E-003 - 177.29999999999998 1.5903803654264968E-003 - 177.35999999999999 1.5618945065654726E-003 - 177.41999999999999 1.5336428826284499E-003 - 177.47999999999999 1.5056543225149593E-003 - 177.53999999999999 1.4779562296818166E-003 - 177.59999999999999 1.4505744111733472E-003 - 177.66000000000000 1.4235332691918305E-003 - 177.72000000000000 1.3968555466250688E-003 - 177.78000000000000 1.3705625911582819E-003 - 177.84000000000000 1.3446739445204790E-003 - 177.90000000000001 1.3192079575460301E-003 - 177.95999999999998 1.2941811387752141E-003 - 178.01999999999998 1.2696087390527990E-003 - 178.07999999999998 1.2455044597663785E-003 - 178.13999999999999 1.2218803525035780E-003 - 178.19999999999999 1.1987471873433151E-003 - 178.25999999999999 1.1761142441259859E-003 - 178.31999999999999 1.1539894612716084E-003 - 178.38000000000000 1.1323792828665466E-003 - 178.44000000000000 1.1112888822663427E-003 - 178.50000000000000 1.0907221855289766E-003 - 178.56000000000000 1.0706819268321295E-003 - 178.62000000000000 1.0511693401312214E-003 - 178.67999999999998 1.0321846774939676E-003 - 178.73999999999998 1.0137269959806150E-003 - 178.79999999999998 9.9579423982588218E-004 - 178.85999999999999 9.7838325815976829E-004 - 178.91999999999999 9.6149000887854543E-004 - 178.97999999999999 9.4510948708312272E-004 - 179.03999999999999 9.2923560082961787E-004 - 179.09999999999999 9.1386162382575253E-004 - 179.16000000000000 8.9897993452192995E-004 - 179.22000000000000 8.8458216846365239E-004 - 179.28000000000000 8.7065928768020168E-004 - 179.34000000000000 8.5720146276039395E-004 - 179.40000000000001 8.4419848770318588E-004 - 179.45999999999998 8.3163951129491462E-004 - 179.51999999999998 8.1951315895923370E-004 - 179.57999999999998 8.0780770874969317E-004 - 179.63999999999999 7.9651102454666545E-004 - 179.69999999999999 7.8561066732903823E-004 - 179.75999999999999 7.7509388535957518E-004 - 179.81999999999999 7.6494766433354985E-004 - 179.88000000000000 7.5515883397021236E-004 - 179.94000000000000 7.4571425201572271E-004 - 180.00000000000000 7.3660046000625879E-004 - 180.06000000000000 7.2780412076020097E-004 - 180.12000000000000 7.1931190259571479E-004 - 180.17999999999998 7.1111059989533028E-004 - 180.23999999999998 7.0318701908182756E-004 - 180.29999999999998 6.9552817430142805E-004 - 180.35999999999999 6.8812133732524075E-004 - 180.41999999999999 6.8095394372377684E-004 - 180.47999999999999 6.7401375707587562E-004 - 180.53999999999999 6.6728882677907254E-004 - 180.59999999999999 6.6076762429485500E-004 - 180.66000000000000 6.5443892693423924E-004 - 180.72000000000000 6.4829187638499512E-004 - 180.78000000000000 6.4231616880649209E-004 - 180.84000000000000 6.3650183751867934E-004 - 180.90000000000001 6.3083929209225155E-004 - 180.95999999999998 6.2531951453888236E-004 - 181.01999999999998 6.1993396090024818E-004 - 181.07999999999998 6.1467453581416165E-004 - 181.13999999999999 6.0953360123645905E-004 - 181.19999999999999 6.0450404721704317E-004 - 181.25999999999999 5.9957926398512785E-004 - 181.31999999999999 5.9475315662875516E-004 - 181.38000000000000 5.9002009236154747E-004 - 181.44000000000000 5.8537497349394805E-004 - 181.50000000000000 5.8081328702061204E-004 - 181.56000000000000 5.7633079968633452E-004 - 181.62000000000000 5.7192401141325133E-004 - 181.67999999999998 5.6758978201059925E-004 - 181.73999999999998 5.6332553890937496E-004 - 181.79999999999998 5.5912909774631127E-004 - 181.85999999999999 5.5499875703970969E-004 - 181.91999999999999 5.5093319273752405E-004 - 181.97999999999999 5.4693159223151227E-004 - 182.03999999999999 5.4299351696020259E-004 - 182.09999999999999 5.3911886716872127E-004 - 182.16000000000000 5.3530795090035298E-004 - 182.22000000000000 5.3156133596214477E-004 - 182.28000000000000 5.2787989165573707E-004 - 182.34000000000000 5.2426473942598776E-004 - 182.39999999999998 5.2071729402733218E-004 - 182.45999999999998 5.1723911802618167E-004 - 182.51999999999998 5.1383207949293793E-004 - 182.57999999999998 5.1049805424915331E-004 - 182.63999999999999 5.0723912228820564E-004 - 182.69999999999999 5.0405748089635727E-004 - 182.75999999999999 5.0095544744528089E-004 - 182.81999999999999 4.9793535459890679E-004 - 182.88000000000000 4.9499956398073872E-004 - 182.94000000000000 4.9215045316345469E-004 - 183.00000000000000 4.8939044624400196E-004 - 183.06000000000000 4.8672190893983986E-004 - 183.12000000000000 4.8414714002997745E-004 - 183.17999999999998 4.8166839328936053E-004 - 183.23999999999998 4.7928772872201866E-004 - 183.29999999999998 4.7700717768054177E-004 - 183.35999999999999 4.7482859976866046E-004 - 183.41999999999999 4.7275366048957343E-004 - 183.47999999999999 4.7078394241855650E-004 - 183.53999999999999 4.6892071165829496E-004 - 183.59999999999999 4.6716511770577337E-004 - 183.66000000000000 4.6551803794187268E-004 - 183.72000000000000 4.6398012137873954E-004 - 183.78000000000000 4.6255179175503573E-004 - 183.84000000000000 4.6123317479693823E-004 - 183.89999999999998 4.6002412772954858E-004 - 183.95999999999998 4.5892423016878023E-004 - 184.01999999999998 4.5793281503036924E-004 - 184.07999999999998 4.5704886490898584E-004 - 184.13999999999999 4.5627111409664024E-004 - 184.19999999999999 4.5559796047520845E-004 - 184.25999999999999 4.5502759967114720E-004 - 184.31999999999999 4.5455775289367516E-004 - 184.38000000000000 4.5418596618896175E-004 - 184.44000000000000 4.5390942845281132E-004 - 184.50000000000000 4.5372504252868395E-004 - 184.56000000000000 4.5362943889872448E-004 - 184.62000000000000 4.5361895839121457E-004 - 184.67999999999998 4.5368966476415888E-004 - 184.73999999999998 4.5383734745791651E-004 - 184.79999999999998 4.5405754539495485E-004 - 184.85999999999999 4.5434557427170461E-004 - 184.91999999999999 4.5469652249544821E-004 - 184.97999999999999 4.5510528467043509E-004 - 185.03999999999999 4.5556657653154459E-004 - 185.09999999999999 4.5607492548017600E-004 - 185.16000000000000 4.5662471735833065E-004 - 185.22000000000000 4.5721019386256955E-004 - 185.28000000000000 4.5782552184064500E-004 - 185.34000000000000 4.5846469557824144E-004 - 185.39999999999998 4.5912168561582442E-004 - 185.45999999999998 4.5979039742010617E-004 - 185.51999999999998 4.6046466259421582E-004 - 185.57999999999998 4.6113830189272966E-004 - 185.63999999999999 4.6180510275900430E-004 - 185.69999999999999 4.6245889243271086E-004 - 185.75999999999999 4.6309350822627420E-004 - 185.81999999999999 4.6370286324653727E-004 - 185.88000000000000 4.6428089562971099E-004 - 185.94000000000000 4.6482168885311737E-004 - 186.00000000000000 4.6531937552631800E-004 - 186.06000000000000 4.6576826212458666E-004 - 186.12000000000000 4.6616276995309098E-004 - 186.17999999999998 4.6649753156676062E-004 - 186.23999999999998 4.6676740104703096E-004 - 186.29999999999998 4.6696738503030472E-004 - 186.35999999999999 4.6709271565998408E-004 - 186.41999999999999 4.6713890411946991E-004 - 186.47999999999999 4.6710170459796389E-004 - 186.53999999999999 4.6697716444701800E-004 - 186.59999999999999 4.6676153753167141E-004 - 186.66000000000000 4.6645146784235687E-004 - 186.72000000000000 4.6604376457160652E-004 - 186.78000000000000 4.6553570257862613E-004 - 186.84000000000000 4.6492474044202282E-004 - 186.89999999999998 4.6420868701191808E-004 - 186.95999999999998 4.6338573062788780E-004 - 187.01999999999998 4.6245426970420087E-004 - 187.07999999999998 4.6141316079685341E-004 - 187.13999999999999 4.6026146209087967E-004 - 187.19999999999999 4.5899869704868891E-004 - 187.25999999999999 4.5762461527904484E-004 - 187.31999999999999 4.5613932361024910E-004 - 187.38000000000000 4.5454332610388485E-004 - 187.44000000000000 4.5283735457389530E-004 - 187.50000000000000 4.5102251331137217E-004 - 187.56000000000000 4.4910015493253731E-004 - 187.62000000000000 4.4707194419811862E-004 - 187.67999999999998 4.4493983545032447E-004 - 187.73999999999998 4.4270602956530730E-004 - 187.79999999999998 4.4037299270349554E-004 - 187.85999999999999 4.3794341108976834E-004 - 187.91999999999999 4.3542017388492637E-004 - 187.97999999999999 4.3280640193515897E-004 - 188.03999999999999 4.3010537917805665E-004 - 188.09999999999999 4.2732052729694181E-004 - 188.16000000000000 4.2445544847486934E-004 - 188.22000000000000 4.2151390971557608E-004 - 188.28000000000000 4.1849972956972052E-004 - 188.34000000000000 4.1541690512300741E-004 - 188.39999999999998 4.1226949913168617E-004 - 188.45999999999998 4.0906166988230821E-004 - 188.51999999999998 4.0579759935581363E-004 - 188.57999999999998 4.0248158600666463E-004 - 188.63999999999999 3.9911788294936742E-004 - 188.69999999999999 3.9571079523174272E-004 - 188.75999999999999 3.9226462461897245E-004 - 188.81999999999999 3.8878360643174452E-004 - 188.88000000000000 3.8527197210007932E-004 - 188.94000000000000 3.8173382805487536E-004 - 189.00000000000000 3.7817323523014053E-004 - 189.06000000000000 3.7459411910966594E-004 - 189.12000000000000 3.7100026797080014E-004 - 189.17999999999998 3.6739531226003322E-004 - 189.23999999999998 3.6378273469258373E-004 - 189.29999999999998 3.6016582471718421E-004 - 189.35999999999999 3.5654769382974298E-004 - 189.41999999999999 3.5293122236584667E-004 - 189.47999999999999 3.4931913559816487E-004 - 189.53999999999999 3.4571392190887513E-004 - 189.59999999999999 3.4211785209990801E-004 - 189.66000000000000 3.3853298798509635E-004 - 189.72000000000000 3.3496117068231604E-004 - 189.78000000000000 3.3140403198002018E-004 - 189.84000000000000 3.2786302684697941E-004 - 189.89999999999998 3.2433937133578128E-004 - 189.95999999999998 3.2083408687768309E-004 - 190.01999999999998 3.1734797541497009E-004 - 190.07999999999998 3.1388168003857023E-004 - 190.13999999999999 3.1043560008535073E-004 - 190.19999999999999 3.0700995103438120E-004 - 190.25999999999999 3.0360475940778998E-004 - 190.31999999999999 3.0021991206406545E-004 - 190.38000000000000 2.9685499936501011E-004 - 190.44000000000000 2.9350956284076646E-004 - 190.50000000000000 2.9018293383068519E-004 - 190.56000000000000 2.8687424075086299E-004 - 190.62000000000000 2.8358251837804589E-004 - 190.67999999999998 2.8030664205117706E-004 - 190.73999999999998 2.7704534833662117E-004 - 190.79999999999998 2.7379734155399277E-004 - 190.85999999999999 2.7056117866356750E-004 - 190.91999999999999 2.6733531647170198E-004 - 190.97999999999999 2.6411820781698132E-004 - 191.03999999999999 2.6090822041196018E-004 - 191.09999999999999 2.5770375697742104E-004 - 191.16000000000000 2.5450312878253910E-004 - 191.22000000000000 2.5130473378663615E-004 - 191.28000000000000 2.4810696461791739E-004 - 191.34000000000000 2.4490826791813235E-004 - 191.39999999999998 2.4170716781888289E-004 - 191.45999999999998 2.3850226971511938E-004 - 191.51999999999998 2.3529225965258693E-004 - 191.57999999999998 2.3207596931712281E-004 - 191.63999999999999 2.2885235793523151E-004 - 191.69999999999999 2.2562054369885170E-004 - 191.75999999999999 2.2237982596865695E-004 - 191.81999999999999 2.1912965537595835E-004 - 191.88000000000000 2.1586972779790470E-004 - 191.94000000000000 2.1259990667357883E-004 - 192.00000000000000 2.0932031633091183E-004 - 192.06000000000000 2.0603128531310096E-004 - 192.12000000000000 2.0273338714990840E-004 - 192.17999999999998 1.9942744081863589E-004 - 192.23999999999998 1.9611449129358437E-004 - 192.29999999999998 1.9279582899468610E-004 - 192.35999999999999 1.8947303458433177E-004 - 192.41999999999999 1.8614790681419907E-004 - 192.47999999999999 1.8282249441348440E-004 - 192.53999999999999 1.7949913050332674E-004 - 192.59999999999999 1.7618037186767571E-004 - 192.66000000000000 1.7286904949736500E-004 - 192.72000000000000 1.6956823168081813E-004 - 192.78000000000000 1.6628128850457445E-004 - 192.84000000000000 1.6301181411796788E-004 - 192.89999999999998 1.5976370168126102E-004 - 192.95999999999998 1.5654108266903108E-004 - 193.01999999999998 1.5334835307643114E-004 - 193.07999999999998 1.5019018242958936E-004 - 193.13999999999999 1.4707146959902980E-004 - 193.19999999999999 1.4399736742594368E-004 - 193.25999999999999 1.4097324438274193E-004 - 193.31999999999999 1.3800468481150056E-004 - 193.38000000000000 1.3509748354425871E-004 - 193.44000000000000 1.3225758236421619E-004 - 193.50000000000000 1.2949108179827662E-004 - 193.56000000000000 1.2680421755340124E-004 - 193.62000000000000 1.2420331219067452E-004 - 193.67999999999998 1.2169479356649476E-004 - 193.73999999999998 1.1928510367639468E-004 - 193.79999999999998 1.1698073744093171E-004 - 193.85999999999999 1.1478820825891451E-004 - 193.91999999999999 1.1271400223985508E-004 - 193.97999999999999 1.1076458412346237E-004 - 194.03999999999999 1.0894634927282947E-004 - 194.09999999999999 1.0726565815790217E-004 - 194.16000000000000 1.0572875907531976E-004 - 194.22000000000000 1.0434180644871394E-004 - 194.28000000000000 1.0311084417105269E-004 - 194.34000000000000 1.0204177839453780E-004 - 194.39999999999998 1.0114034758093196E-004 - 194.45999999999998 1.0041212847105794E-004 - 194.51999999999998 9.9862495921490397E-005 - 194.57999999999998 9.9496596343799263E-005 - 194.63999999999999 9.9319342489457044E-005 - 194.69999999999999 9.9335371677786269E-005 - 194.75999999999999 9.9549024599074356E-005 - 194.81999999999999 9.9964293577190275E-005 - 194.88000000000000 1.0058485001268914E-004 - 194.94000000000000 1.0141397400822129E-004 - 195.00000000000000 1.0245456195607752E-004 - 195.06000000000000 1.0370908307753989E-004 - 195.12000000000000 1.0517957843394720E-004 - 195.17999999999998 1.0686762355753733E-004 - 195.23999999999998 1.0877434187908395E-004 - 195.29999999999998 1.1090036523156024E-004 - 195.35999999999999 1.1324585167695713E-004 - 195.41999999999999 1.1581043700091574E-004 - 195.47999999999999 1.1859326858273504E-004 - 195.53999999999999 1.2159299799606056E-004 - 195.59999999999999 1.2480774747422564E-004 - 195.66000000000000 1.2823513909527158E-004 - 195.72000000000000 1.3187226063923529E-004 - 195.78000000000000 1.3571570197766917E-004 - 195.84000000000000 1.3976152725700603E-004 - 195.89999999999998 1.4400527640182978E-004 - 195.95999999999998 1.4844200289321902E-004 - 196.01999999999998 1.5306622641953906E-004 - 196.07999999999998 1.5787195840941966E-004 - 196.13999999999999 1.6285271383857541E-004 - 196.19999999999999 1.6800153079394448E-004 - 196.25999999999999 1.7331093776438365E-004 - 196.31999999999999 1.7877301277143248E-004 - 196.38000000000000 1.8437937850812760E-004 - 196.44000000000000 1.9012121876046891E-004 - 196.50000000000000 1.9598927120713133E-004 - 196.56000000000000 2.0197391199684199E-004 - 196.62000000000000 2.0806507893082494E-004 - 196.67999999999998 2.1425235673278053E-004 - 196.73999999999998 2.2052501887068502E-004 - 196.79999999999998 2.2687195771051893E-004 - 196.85999999999999 2.3328180861882669E-004 - 196.91999999999999 2.3974292594494066E-004 - 196.97999999999999 2.4624339440952874E-004 - 197.03999999999999 2.5277107962981663E-004 - 197.09999999999999 2.5931367971204956E-004 - 197.16000000000000 2.6585871013104999E-004 - 197.22000000000000 2.7239355521292772E-004 - 197.28000000000000 2.7890548747112176E-004 - 197.34000000000000 2.8538174923710359E-004 - 197.39999999999998 2.9180951767517006E-004 - 197.45999999999998 2.9817597675653928E-004 - 197.51999999999998 3.0446835765609258E-004 - 197.57999999999998 3.1067393231684024E-004 - 197.63999999999999 3.1678014732348686E-004 - 197.69999999999999 3.2277452100802081E-004 - 197.75999999999999 3.2864477429723853E-004 - 197.81999999999999 3.3437881681182453E-004 - 197.88000000000000 3.3996479379279300E-004 - 197.94000000000000 3.4539109278705681E-004 - 198.00000000000000 3.5064635871757857E-004 - 198.06000000000000 3.5571960072912698E-004 - 198.12000000000000 3.6060009134229704E-004 - 198.17999999999998 3.6527749548387187E-004 - 198.23999999999998 3.6974186091843001E-004 - 198.29999999999998 3.7398356233377561E-004 - 198.35999999999999 3.7799342922900116E-004 - 198.41999999999999 3.8176274924693984E-004 - 198.47999999999999 3.8528323776135492E-004 - 198.53999999999999 3.8854713066851317E-004 - 198.59999999999999 3.9154712376984042E-004 - 198.66000000000000 3.9427647328547900E-004 - 198.72000000000000 3.9672903578765524E-004 - 198.78000000000000 3.9889913847826187E-004 - 198.84000000000000 4.0078182318459781E-004 - 198.89999999999998 4.0237265753979569E-004 - 198.95999999999998 4.0366783202086667E-004 - 199.01999999999998 4.0466411622784197E-004 - 199.07999999999998 4.0535899029903606E-004 - 199.13999999999999 4.0575051060364148E-004 - 199.19999999999999 4.0583737747103369E-004 - 199.25999999999999 4.0561892377272932E-004 - 199.31999999999999 4.0509503952443051E-004 - 199.38000000000000 4.0426625165236119E-004 - 199.44000000000000 4.0313371658539320E-004 - 199.50000000000000 4.0169910479093888E-004 - 199.56000000000000 3.9996470005315845E-004 - 199.62000000000000 3.9793331612755062E-004 - 199.67999999999998 3.9560832693534071E-004 - 199.73999999999998 3.9299365865748289E-004 - 199.79999999999998 3.9009371640579178E-004 - 199.85999999999999 3.8691348871993162E-004 - 199.91999999999999 3.8345843248744472E-004 - 199.97999999999999 3.7973448851312254E-004 - 200.03999999999999 3.7574808565458214E-004 - 200.09999999999999 3.7150611934458100E-004 - 200.16000000000000 3.6701593813242569E-004 - 200.22000000000000 3.6228530980965911E-004 - 200.28000000000000 3.5732240892549625E-004 - 200.34000000000000 3.5213578900861815E-004 - 200.39999999999998 3.4673435816488937E-004 - 200.45999999999998 3.4112731229376581E-004 - 200.51999999999998 3.3532418224992442E-004 - 200.57999999999998 3.2933475663133737E-004 - 200.63999999999999 3.2316903838080808E-004 - 200.69999999999999 3.1683724230984828E-004 - 200.75999999999999 3.1034975395807855E-004 - 200.81999999999999 3.0371710895102247E-004 - 200.88000000000000 2.9694991515891720E-004 - 200.94000000000000 2.9005892855152462E-004 - 201.00000000000000 2.8305495657160055E-004 - 201.06000000000000 2.7594881619310467E-004 - 201.12000000000000 2.6875135156459901E-004 - 201.17999999999998 2.6147343951813740E-004 - 201.23999999999998 2.5412588423127691E-004 - 201.29999999999998 2.4671948934546899E-004 - 201.35999999999999 2.3926500663455245E-004 - 201.41999999999999 2.3177307795767309E-004 - 201.47999999999999 2.2425424213803061E-004 - 201.53999999999999 2.1671896488052413E-004 - 201.59999999999999 2.0917756064160742E-004 - 201.66000000000000 2.0164019598465212E-004 - 201.72000000000000 1.9411688137972719E-004 - 201.78000000000000 1.8661742014584350E-004 - 201.84000000000000 1.7915145788159319E-004 - 201.89999999999998 1.7172842310838463E-004 - 201.95999999999998 1.6435754052801675E-004 - 202.01999999999998 1.5704778474977574E-004 - 202.07999999999998 1.4980789727670057E-004 - 202.13999999999999 1.4264640522921985E-004 - 202.19999999999999 1.3557154778118970E-004 - 202.25999999999999 1.2859134467435254E-004 - 202.31999999999999 1.2171355216193523E-004 - 202.38000000000000 1.1494567499310509E-004 - 202.44000000000000 1.0829492870301856E-004 - 202.50000000000000 1.0176828193104697E-004 - 202.56000000000000 9.5372432057550240E-005 - 202.62000000000000 8.9113826670830285E-005 - 202.67999999999998 8.2998639472168639E-005 - 202.73999999999998 7.7032779159399615E-005 - 202.79999999999998 7.1221897626948263E-005 - 202.85999999999999 6.5571388941150689E-005 - 202.91999999999999 6.0086391736620661E-005 - 202.97999999999999 5.4771795031086884E-005 - 203.03999999999999 4.9632268767525598E-005 - 203.09999999999999 4.4672242217646339E-005 - 203.16000000000000 3.9895923672643258E-005 - 203.22000000000000 3.5307314270992509E-005 - 203.28000000000000 3.0910221000253993E-005 - 203.34000000000000 2.6708260095695946E-005 - 203.39999999999998 2.2704867928388148E-005 - 203.45999999999998 1.8903311695965830E-005 - 203.51999999999998 1.5306694296429003E-005 - 203.57999999999998 1.1917956479678142E-005 - 203.63999999999999 8.7398910112434539E-006 - 203.69999999999999 5.7751363257142177E-006 - 203.75999999999999 3.0261865685131185E-006 - 203.81999999999999 4.9537100833177627E-007 - 203.88000000000000 -1.8151189566657090E-006 - 203.94000000000000 -3.9032527385304280E-006 - 204.00000000000000 -5.7671491548897357E-006 - 204.06000000000000 -7.4050776577578042E-006 - 204.12000000000000 -8.8154708659244537E-006 - 204.17999999999998 -9.9969095865206260E-006 - 204.23999999999998 -1.0948126183597760E-005 - 204.29999999999998 -1.1668002053059782E-005 - 204.35999999999999 -1.2155565752632847E-005 - 204.41999999999999 -1.2409986115285656E-005 - 204.47999999999999 -1.2430578295637300E-005 - 204.53999999999999 -1.2216792680506984E-005 - 204.59999999999999 -1.1768218080485727E-005 - 204.66000000000000 -1.1084583548167554E-005 - 204.72000000000000 -1.0165758063653401E-005 - 204.78000000000000 -9.0117589796908217E-006 - 204.84000000000000 -7.6227582492010244E-006 - 204.89999999999998 -5.9990921970530923E-006 - 204.95999999999998 -4.1412705714180672E-006 - 205.01999999999998 -2.0499920749540383E-006 - 205.07999999999998 2.7384206344944631E-007 - 205.13999999999999 2.8291190044361166E-006 - 205.19999999999999 5.6144891045556888E-006 - 205.25999999999999 8.6283625556246784E-006 - 205.31999999999999 1.1868886337485274E-005 - 205.38000000000000 1.5333945992671645E-005 - 205.44000000000000 1.9021141266123751E-005 - 205.50000000000000 2.2927788372527023E-005 - 205.56000000000000 2.7050903132847045E-005 - 205.62000000000000 3.1387199723799961E-005 - 205.67999999999998 3.5933085276399518E-005 - 205.73999999999998 4.0684642318624916E-005 - 205.79999999999998 4.5637648424441945E-005 - 205.85999999999999 5.0787552568534156E-005 - 205.91999999999999 5.6129458599445410E-005 - 205.97999999999999 6.1658159519102868E-005 - 206.03999999999999 6.7368081445850413E-005 - 206.09999999999999 7.3253328347773272E-005 - 206.16000000000000 7.9307628008369054E-005 - 206.22000000000000 8.5524338677473236E-005 - 206.28000000000000 9.1896478127806230E-005 - 206.34000000000000 9.8416671937024997E-005 - 206.39999999999998 1.0507718203064227E-004 - 206.45999999999998 1.1186989523173825E-004 - 206.51999999999998 1.1878630946210230E-004 - 206.57999999999998 1.2581756866405944E-004 - 206.63999999999999 1.3295443340504803E-004 - 206.69999999999999 1.4018730546387422E-004 - 206.75999999999999 1.4750625875887104E-004 - 206.81999999999999 1.5490102432648165E-004 - 206.88000000000000 1.6236099975808603E-004 - 206.94000000000000 1.6987529852874705E-004 - 207.00000000000000 1.7743273571081149E-004 - 207.06000000000000 1.8502183137621996E-004 - 207.12000000000000 1.9263087596239393E-004 - 207.17999999999998 2.0024794501512211E-004 - 207.23999999999998 2.0786084029052681E-004 - 207.29999999999998 2.1545720528380195E-004 - 207.35999999999999 2.2302446436298843E-004 - 207.41999999999999 2.3054994123056254E-004 - 207.47999999999999 2.3802077759762288E-004 - 207.53999999999999 2.4542400261817748E-004 - 207.59999999999999 2.5274656353865078E-004 - 207.66000000000000 2.5997535209074666E-004 - 207.72000000000000 2.6709722373773314E-004 - 207.78000000000000 2.7409898965139080E-004 - 207.84000000000000 2.8096749355205770E-004 - 207.89999999999998 2.8768969273146002E-004 - 207.95999999999998 2.9425255878279700E-004 - 208.01999999999998 3.0064322153812217E-004 - 208.07999999999998 3.0684898294217636E-004 - 208.13999999999999 3.1285731013281287E-004 - 208.19999999999999 3.1865591285532837E-004 - 208.25999999999999 3.2423272943984792E-004 - 208.31999999999999 3.2957597904854192E-004 - 208.38000000000000 3.3467426504754606E-004 - 208.44000000000000 3.3951647714232315E-004 - 208.50000000000000 3.4409186623448695E-004 - 208.56000000000000 3.4839017594890623E-004 - 208.62000000000000 3.5240151652587639E-004 - 208.68000000000001 3.5611642979279192E-004 - 208.74000000000001 3.5952600448459459E-004 - 208.80000000000001 3.6262180815102346E-004 - 208.86000000000001 3.6539594073912307E-004 - 208.92000000000002 3.6784106388559656E-004 - 208.98000000000002 3.6995038634959432E-004 - 209.03999999999996 3.7171778847929659E-004 - 209.09999999999997 3.7313768958810618E-004 - 209.15999999999997 3.7420521328281455E-004 - 209.21999999999997 3.7491611232843956E-004 - 209.27999999999997 3.7526680848439377E-004 - 209.33999999999997 3.7525442141633206E-004 - 209.39999999999998 3.7487676204217590E-004 - 209.45999999999998 3.7413233838465390E-004 - 209.51999999999998 3.7302034662245649E-004 - 209.57999999999998 3.7154075156224165E-004 - 209.63999999999999 3.6969413976444172E-004 - 209.69999999999999 3.6748183439487471E-004 - 209.75999999999999 3.6490590693763535E-004 - 209.81999999999999 3.6196906262872715E-004 - 209.88000000000000 3.5867470213035897E-004 - 209.94000000000000 3.5502693673468530E-004 - 210.00000000000000 3.5103052647500368E-004 - 210.06000000000000 3.4669084905205986E-004 - 210.12000000000000 3.4201394971283225E-004 - 210.18000000000001 3.3700654164334448E-004 - 210.24000000000001 3.3167587869672928E-004 - 210.30000000000001 3.2602985745179211E-004 - 210.36000000000001 3.2007688450572509E-004 - 210.42000000000002 3.1382594825962663E-004 - 210.48000000000002 3.0728658143330302E-004 - 210.53999999999996 3.0046871082675219E-004 - 210.59999999999997 2.9338278962178009E-004 - 210.65999999999997 2.8603967539531284E-004 - 210.71999999999997 2.7845060283528963E-004 - 210.77999999999997 2.7062719611591724E-004 - 210.83999999999997 2.6258135856257618E-004 - 210.89999999999998 2.5432524879306472E-004 - 210.95999999999998 2.4587129330288745E-004 - 211.01999999999998 2.3723210966919273E-004 - 211.07999999999998 2.2842049028455185E-004 - 211.13999999999999 2.1944935744724528E-004 - 211.19999999999999 2.1033171620735131E-004 - 211.25999999999999 2.0108067107791103E-004 - 211.31999999999999 1.9170933740887355E-004 - 211.38000000000000 1.8223081805110247E-004 - 211.44000000000000 1.7265822569810266E-004 - 211.50000000000000 1.6300459801270160E-004 - 211.56000000000000 1.5328289615302855E-004 - 211.62000000000000 1.4350596879415047E-004 - 211.68000000000001 1.3368651666901502E-004 - 211.74000000000001 1.2383705490716753E-004 - 211.80000000000001 1.1396991670018488E-004 - 211.86000000000001 1.0409716940414104E-004 - 211.92000000000002 9.4230626354718401E-005 - 211.98000000000002 8.4381801968679877E-005 - 212.03999999999996 7.4561895932350180E-005 - 212.09999999999997 6.4781755628452321E-005 - 212.15999999999997 5.5051847105984952E-005 - 212.21999999999997 4.5382254151365345E-005 - 212.27999999999997 3.5782632566180267E-005 - 212.33999999999997 2.6262232620975939E-005 - 212.39999999999998 1.6829846863720342E-005 - 212.45999999999998 7.4938394183335664E-006 - 212.51999999999998 -1.7378770324551917E-006 - 212.57999999999998 -1.0857850903114741E-005 - 212.63999999999999 -1.9859081388818042E-005 - 212.69999999999999 -2.8735020696485597E-005 - 212.75999999999999 -3.7479545716431067E-005 - 212.81999999999999 -4.6087017957904689E-005 - 212.88000000000000 -5.4552230078322824E-005 - 212.94000000000000 -6.2870384518418570E-005 - 213.00000000000000 -7.1037146246976136E-005 - 213.06000000000000 -7.9048589993999368E-005 - 213.12000000000000 -8.6901219875665798E-005 - 213.18000000000001 -9.4591955815383170E-005 - 213.24000000000001 -1.0211811253579042E-004 - 213.30000000000001 -1.0947739986946444E-004 - 213.36000000000001 -1.1666792710486032E-004 - 213.42000000000002 -1.2368816670456134E-004 - 213.48000000000002 -1.3053696043169611E-004 - 213.53999999999996 -1.3721347782780092E-004 - 213.59999999999997 -1.4371724982859482E-004 - 213.65999999999997 -1.5004807744185088E-004 - 213.71999999999997 -1.5620608659692786E-004 - 213.77999999999997 -1.6219163143815399E-004 - 213.83999999999997 -1.6800535609172337E-004 - 213.89999999999998 -1.7364811191712985E-004 - 213.95999999999998 -1.7912095390679311E-004 - 214.01999999999998 -1.8442513666289099E-004 - 214.07999999999998 -1.8956205743542886E-004 - 214.13999999999999 -1.9453327716169116E-004 - 214.19999999999999 -1.9934046161941422E-004 - 214.25999999999999 -2.0398539944879298E-004 - 214.31999999999999 -2.0846997536241085E-004 - 214.38000000000000 -2.1279613775985757E-004 - 214.44000000000000 -2.1696588109061595E-004 - 214.50000000000000 -2.2098125485991033E-004 - 214.56000000000000 -2.2484430802509418E-004 - 214.62000000000000 -2.2855710235928012E-004 - 214.68000000000001 -2.3212171242559503E-004 - 214.74000000000001 -2.3554016434841716E-004 - 214.80000000000001 -2.3881446797140371E-004 - 214.86000000000001 -2.4194651065694321E-004 - 214.92000000000002 -2.4493819422977397E-004 - 214.98000000000002 -2.4779128080268463E-004 - 215.03999999999996 -2.5050745458070285E-004 - 215.09999999999997 -2.5308833519119343E-004 - 215.15999999999997 -2.5553539784883936E-004 - 215.21999999999997 -2.5784999002381948E-004 - 215.27999999999997 -2.6003339582844230E-004 - 215.33999999999997 -2.6208672382204307E-004 - 215.39999999999998 -2.6401101806233372E-004 - 215.45999999999998 -2.6580718588983495E-004 - 215.51999999999998 -2.6747605337011594E-004 - 215.57999999999998 -2.6901829201270811E-004 - 215.63999999999999 -2.7043450806648044E-004 - 215.69999999999999 -2.7172515669332504E-004 - 215.75999999999999 -2.7289064610980208E-004 - 215.81999999999999 -2.7393128128012624E-004 - 215.88000000000000 -2.7484726075069799E-004 - 215.94000000000000 -2.7563872375304700E-004 - 216.00000000000000 -2.7630573538550078E-004 - 216.06000000000000 -2.7684823701044984E-004 - 216.12000000000000 -2.7726614441107335E-004 - 216.18000000000001 -2.7755930333370909E-004 - 216.24000000000001 -2.7772749789736566E-004 - 216.30000000000001 -2.7777048196861822E-004 - 216.36000000000001 -2.7768800728497070E-004 - 216.42000000000002 -2.7747972948930465E-004 - 216.48000000000002 -2.7714535676086956E-004 - 216.53999999999996 -2.7668459445701928E-004 - 216.59999999999997 -2.7609713111468313E-004 - 216.65999999999997 -2.7538270688958714E-004 - 216.71999999999997 -2.7454112509925984E-004 - 216.77999999999997 -2.7357221014269695E-004 - 216.83999999999997 -2.7247590466158371E-004 - 216.89999999999998 -2.7125217122375543E-004 - 216.95999999999998 -2.6990108211711217E-004 - 217.01999999999998 -2.6842280190515446E-004 - 217.07999999999998 -2.6681760255786670E-004 - 217.13999999999999 -2.6508587221992999E-004 - 217.19999999999999 -2.6322810162495520E-004 - 217.25999999999999 -2.6124492952640820E-004 - 217.31999999999999 -2.5913707056380382E-004 - 217.38000000000000 -2.5690543568693497E-004 - 217.44000000000000 -2.5455103370041474E-004 - 217.50000000000000 -2.5207504668032707E-004 - 217.56000000000000 -2.4947876941195833E-004 - 217.62000000000000 -2.4676370221416366E-004 - 217.68000000000001 -2.4393148344380134E-004 - 217.74000000000001 -2.4098390914400209E-004 - 217.80000000000001 -2.3792300155048689E-004 - 217.86000000000001 -2.3475089161529113E-004 - 217.92000000000002 -2.3146992477067268E-004 - 217.98000000000002 -2.2808264769425823E-004 - 218.03999999999996 -2.2459174227068974E-004 - 218.09999999999997 -2.2100011485673974E-004 - 218.15999999999997 -2.1731082665348695E-004 - 218.21999999999997 -2.1352708867211612E-004 - 218.27999999999997 -2.0965231109719375E-004 - 218.33999999999997 -2.0569007635691961E-004 - 218.39999999999998 -2.0164405123238588E-004 - 218.45999999999998 -1.9751813473068127E-004 - 218.51999999999998 -1.9331631475565431E-004 - 218.57999999999998 -1.8904272756891860E-004 - 218.63999999999999 -1.8470163573910129E-004 - 218.69999999999999 -1.8029739773056761E-004 - 218.75999999999999 -1.7583453061937655E-004 - 218.81999999999999 -1.7131763765535586E-004 - 218.88000000000000 -1.6675142410935850E-004 - 218.94000000000000 -1.6214073146036132E-004 - 219.00000000000000 -1.5749045411134747E-004 - 219.06000000000000 -1.5280558486549265E-004 - 219.12000000000000 -1.4809121369648107E-004 - 219.18000000000001 -1.4335248204795520E-004 - 219.24000000000001 -1.3859461662676161E-004 - 219.30000000000001 -1.3382287023137106E-004 - 219.36000000000001 -1.2904254696996718E-004 - 219.42000000000002 -1.2425897451561431E-004 - 219.48000000000002 -1.1947747794768032E-004 - 219.53999999999996 -1.1470339647955039E-004 - 219.59999999999997 -1.0994204744455394E-004 - 219.65999999999997 -1.0519872792455277E-004 - 219.71999999999997 -1.0047867927915392E-004 - 219.77999999999997 -9.5787106638524342E-005 - 219.83999999999997 -9.1129141072687428E-005 - 219.89999999999998 -8.6509856375046622E-005 - 219.95999999999998 -8.1934232695496503E-005 - 220.01999999999998 -7.7407190251018538E-005 - 220.07999999999998 -7.2933538281865602E-005 - 220.13999999999999 -6.8517999486470443E-005 - 220.19999999999999 -6.4165198763009801E-005 - 220.25999999999999 -5.9879650140454012E-005 - 220.31999999999999 -5.5665757734709034E-005 - 220.38000000000000 -5.1527807827935726E-005 - 220.44000000000000 -4.7469968145647366E-005 - 220.50000000000000 -4.3496273323031110E-005 - 220.56000000000000 -3.9610620263810612E-005 - 220.62000000000000 -3.5816745213964312E-005 - 220.68000000000001 -3.2118248875254687E-005 - 220.74000000000001 -2.8518557463223112E-005 - 220.80000000000001 -2.5020923851552531E-005 - 220.86000000000001 -2.1628427831403595E-005 - 220.92000000000002 -1.8343961183011720E-005 - 220.98000000000002 -1.5170224793482120E-005 - 221.03999999999996 -1.2109714993095565E-005 - 221.09999999999997 -9.1647353678899425E-006 - 221.15999999999997 -6.3373861264706619E-006 - 221.21999999999997 -3.6295571407720569E-006 - 221.27999999999997 -1.0429354870896189E-006 - 221.33999999999997 1.4210053617866089E-006 - 221.39999999999998 3.7610009821144007E-006 - 221.45999999999998 5.9759906245798566E-006 - 221.51999999999998 8.0651294807809774E-006 - 221.57999999999998 1.0027777791920081E-005 - 221.63999999999999 1.1863512797282498E-005 - 221.69999999999999 1.3572118543882702E-005 - 221.75999999999999 1.5153595065696847E-005 - 221.81999999999999 1.6608146851865660E-005 - 221.88000000000000 1.7936190836746978E-005 - 221.94000000000000 1.9138354102108467E-005 - 222.00000000000000 2.0215468396368694E-005 - 222.06000000000000 2.1168567968585430E-005 - 222.12000000000000 2.1998886496481659E-005 - 222.18000000000001 2.2707851708278142E-005 - 222.24000000000001 2.3297078000325034E-005 - 222.30000000000001 2.3768361138296066E-005 - 222.36000000000001 2.4123670819471822E-005 - 222.42000000000002 2.4365142846612253E-005 - 222.48000000000002 2.4495069915268465E-005 - 222.53999999999996 2.4515894771179907E-005 - 222.59999999999997 2.4430208119286244E-005 - 222.65999999999997 2.4240730171480067E-005 - 222.71999999999997 2.3950314115968743E-005 - 222.77999999999997 2.3561934263423755E-005 - 222.83999999999997 2.3078678912319915E-005 - 222.89999999999998 2.2503750561449056E-005 - 222.95999999999998 2.1840452800543270E-005 - 223.01999999999998 2.1092184388565791E-005 - 223.07999999999998 2.0262438638651524E-005 - 223.13999999999999 1.9354788264166791E-005 - 223.19999999999999 1.8372881839332055E-005 - 223.25999999999999 1.7320432385021010E-005 - 223.31999999999999 1.6201211150238414E-005 - 223.38000000000000 1.5019031120530486E-005 - 223.44000000000000 1.3777741570505553E-005 - 223.50000000000000 1.2481211625251104E-005 - 223.56000000000000 1.1133322978715455E-005 - 223.62000000000000 9.7379539202565522E-006 - 223.68000000000001 8.2989714033722551E-006 - 223.74000000000001 6.8202177575108543E-006 - 223.80000000000001 5.3054987000711722E-006 - 223.86000000000001 3.7585773689098624E-006 - 223.92000000000002 2.1831624593401540E-006 - 223.98000000000002 5.8290346583037618E-007 - 224.03999999999996 -1.0386214322106346E-006 - 224.09999999999997 -2.6779105802854392E-006 - 224.15999999999997 -4.3315433792852823E-006 - 224.21999999999997 -5.9961911433666086E-006 - 224.27999999999997 -7.6686165327681759E-006 - 224.33999999999997 -9.3456877162144129E-006 - 224.39999999999998 -1.1024377642039132E-005 - 224.45999999999998 -1.2701775919417004E-005 - 224.51999999999998 -1.4375089410087285E-005 - 224.57999999999998 -1.6041653979205646E-005 - 224.63999999999999 -1.7698935896810366E-005 - 224.69999999999999 -1.9344543087734973E-005 - 224.75999999999999 -2.0976222405187376E-005 - 224.81999999999999 -2.2591867853035761E-005 - 224.88000000000000 -2.4189524371237446E-005 - 224.94000000000000 -2.5767387999847548E-005 - 225.00000000000000 -2.7323803509223596E-005 - 225.06000000000000 -2.8857270612965865E-005 - 225.12000000000000 -3.0366433549982082E-005 - 225.18000000000001 -3.1850092095606011E-005 - 225.24000000000001 -3.3307182062243873E-005 - 225.30000000000001 -3.4736783229188267E-005 - 225.36000000000001 -3.6138110938633793E-005 - 225.42000000000002 -3.7510511052728197E-005 - 225.48000000000002 -3.8853461413648265E-005 - 225.53999999999996 -4.0166564040994108E-005 - 225.59999999999997 -4.1449537510259889E-005 - 225.65999999999997 -4.2702231955999518E-005 - 225.71999999999997 -4.3924598840442019E-005 - 225.77999999999997 -4.5116709597987770E-005 - 225.83999999999997 -4.6278745474446164E-005 - 225.89999999999998 -4.7410993926150796E-005 - 225.95999999999998 -4.8513840854006047E-005 - 226.01999999999998 -4.9587780207601580E-005 - 226.07999999999998 -5.0633389623272632E-005 - 226.13999999999999 -5.1651333306459883E-005 - 226.19999999999999 -5.2642351657109304E-005 - 226.25999999999999 -5.3607261205471610E-005 - 226.31999999999999 -5.4546936037426648E-005 - 226.38000000000000 -5.5462297922621000E-005 - 226.44000000000000 -5.6354310126515935E-005 - 226.50000000000000 -5.7223966706605191E-005 - 226.56000000000000 -5.8072291813815932E-005 - 226.62000000000000 -5.8900315532306455E-005 - 226.68000000000001 -5.9709077473160246E-005 - 226.74000000000001 -6.0499624014372636E-005 - 226.80000000000001 -6.1272994588804495E-005 - 226.86000000000001 -6.2030226023972583E-005 - 226.92000000000002 -6.2772345077641376E-005 - 226.98000000000002 -6.3500364623541279E-005 - 227.03999999999996 -6.4215288629661832E-005 - 227.09999999999997 -6.4918110719369278E-005 - 227.15999999999997 -6.5609807404429544E-005 - 227.21999999999997 -6.6291340385416569E-005 - 227.27999999999997 -6.6963661293756112E-005 - 227.33999999999997 -6.7627686631713856E-005 - 227.39999999999998 -6.8284327671033358E-005 - 227.45999999999998 -6.8934457401304374E-005 - 227.51999999999998 -6.9578908001265434E-005 - 227.57999999999998 -7.0218485777205568E-005 - 227.63999999999999 -7.0853939243643087E-005 - 227.69999999999999 -7.1485968724090742E-005 - 227.75999999999999 -7.2115215466776985E-005 - 227.81999999999999 -7.2742251685050692E-005 - 227.88000000000000 -7.3367586996839459E-005 - 227.94000000000000 -7.3991652579568322E-005 - 228.00000000000000 -7.4614805393266294E-005 - 228.06000000000000 -7.5237315183903023E-005 - 228.12000000000000 -7.5859382845625028E-005 - 228.18000000000001 -7.6481122425093231E-005 - 228.24000000000001 -7.7102579234627949E-005 - 228.30000000000001 -7.7723720592721683E-005 - 228.36000000000001 -7.8344430577359107E-005 - 228.42000000000002 -7.8964541662596624E-005 - 228.48000000000002 -7.9583802778855788E-005 - 228.53999999999996 -8.0201914136624212E-005 - 228.59999999999997 -8.0818501844942363E-005 - 228.65999999999997 -8.1433141001400447E-005 - 228.71999999999997 -8.2045357009768744E-005 - 228.77999999999997 -8.2654599625837995E-005 - 228.83999999999997 -8.3260301505945589E-005 - 228.89999999999998 -8.3861827182462679E-005 - 228.95999999999998 -8.4458491259030075E-005 - 229.01999999999998 -8.5049581723505187E-005 - 229.07999999999998 -8.5634325050050597E-005 - 229.13999999999999 -8.6211923107152341E-005 - 229.19999999999999 -8.6781538663789200E-005 - 229.25999999999999 -8.7342299678504361E-005 - 229.31999999999999 -8.7893293415226666E-005 - 229.38000000000000 -8.8433586930039359E-005 - 229.44000000000000 -8.8962220690491496E-005 - 229.50000000000000 -8.9478199249997618E-005 - 229.56000000000000 -8.9980500403093002E-005 - 229.62000000000000 -9.0468091054734053E-005 - 229.68000000000001 -9.0939906438411382E-005 - 229.74000000000001 -9.1394864721580974E-005 - 229.80000000000001 -9.1831857974852387E-005 - 229.86000000000001 -9.2249768205414812E-005 - 229.92000000000002 -9.2647456103726845E-005 - 229.97999999999996 -9.3023773166917907E-005 - 230.03999999999996 -9.3377559155054870E-005 - 230.09999999999997 -9.3707647068839742E-005 - 230.15999999999997 -9.4012884872326366E-005 - 230.21999999999997 -9.4292114654165635E-005 - 230.27999999999997 -9.4544188764445760E-005 - 230.33999999999997 -9.4767986289286119E-005 - 230.39999999999998 -9.4962406084280544E-005 - 230.45999999999998 -9.5126371558704374E-005 - 230.51999999999998 -9.5258859252419679E-005 - 230.57999999999998 -9.5358874891201075E-005 - 230.63999999999999 -9.5425471144420409E-005 - 230.69999999999999 -9.5457747722003553E-005 - 230.75999999999999 -9.5454846502453851E-005 - 230.81999999999999 -9.5415959012214144E-005 - 230.88000000000000 -9.5340319707637526E-005 - 230.94000000000000 -9.5227206215452159E-005 - 231.00000000000000 -9.5075943483561087E-005 - 231.06000000000000 -9.4885877042524608E-005 - 231.12000000000000 -9.4656397580842959E-005 - 231.18000000000001 -9.4386923233972020E-005 - 231.24000000000001 -9.4076905819773341E-005 - 231.30000000000001 -9.3725817157265995E-005 - 231.36000000000001 -9.3333158375757776E-005 - 231.42000000000002 -9.2898471523331154E-005 - 231.47999999999996 -9.2421318339540372E-005 - 231.53999999999996 -9.1901307273837789E-005 - 231.59999999999997 -9.1338084620485070E-005 - 231.65999999999997 -9.0731343834428535E-005 - 231.71999999999997 -9.0080821975394181E-005 - 231.77999999999997 -8.9386326335614416E-005 - 231.83999999999997 -8.8647714496745142E-005 - 231.89999999999998 -8.7864902318412219E-005 - 231.95999999999998 -8.7037881249171374E-005 - 232.01999999999998 -8.6166697132079048E-005 - 232.07999999999998 -8.5251479315487746E-005 - 232.13999999999999 -8.4292408772298656E-005 - 232.19999999999999 -8.3289733555892077E-005 - 232.25999999999999 -8.2243765956634062E-005 - 232.31999999999999 -8.1154871186977609E-005 - 232.38000000000000 -8.0023473404769869E-005 - 232.44000000000000 -7.8850049272927785E-005 - 232.50000000000000 -7.7635119037214572E-005 - 232.56000000000000 -7.6379252441666781E-005 - 232.62000000000000 -7.5083055772418408E-005 - 232.68000000000001 -7.3747190629459575E-005 - 232.74000000000001 -7.2372346872147871E-005 - 232.80000000000001 -7.0959268216946086E-005 - 232.86000000000001 -6.9508734579987102E-005 - 232.92000000000002 -6.8021563940253482E-005 - 232.97999999999996 -6.6498628789536389E-005 - 233.03999999999996 -6.4940832326792366E-005 - 233.09999999999997 -6.3349137851043005E-005 - 233.15999999999997 -6.1724535904087485E-005 - 233.21999999999997 -6.0068067147298350E-005 - 233.27999999999997 -5.8380815606039561E-005 - 233.33999999999997 -5.6663909195612240E-005 - 233.39999999999998 -5.4918515562409095E-005 - 233.45999999999998 -5.3145838639775890E-005 - 233.51999999999998 -5.1347127399153199E-005 - 233.57999999999998 -4.9523669074076342E-005 - 233.63999999999999 -4.7676777620062799E-005 - 233.69999999999999 -4.5807806193939091E-005 - 233.75999999999999 -4.3918144517489544E-005 - 233.81999999999999 -4.2009206410567014E-005 - 233.88000000000000 -4.0082436802760202E-005 - 233.94000000000000 -3.8139309653046397E-005 - 234.00000000000000 -3.6181324620391187E-005 - 234.06000000000000 -3.4209996318844332E-005 - 234.12000000000000 -3.2226868447164225E-005 - 234.18000000000001 -3.0233491099541238E-005 - 234.24000000000001 -2.8231424036830180E-005 - 234.30000000000001 -2.6222234856302385E-005 - 234.36000000000001 -2.4207494358631912E-005 - 234.42000000000002 -2.2188761486081343E-005 - 234.47999999999996 -2.0167589569645185E-005 - 234.53999999999996 -1.8145515492580239E-005 - 234.59999999999997 -1.6124057540690688E-005 - 234.65999999999997 -1.4104712937264409E-005 - 234.71999999999997 -1.2088951441396478E-005 - 234.77999999999997 -1.0078216581562835E-005 - 234.83999999999997 -8.0739240447311795E-006 - 234.89999999999998 -6.0774592745637548E-006 - 234.95999999999998 -4.0901793103910293E-006 - 235.01999999999998 -2.1134116008398032E-006 - 235.07999999999998 -1.4845537239981632E-007 - 235.13999999999999 1.8034175798131786E-006 - 235.19999999999999 3.7409649574439428E-006 - 235.25999999999999 5.6629725071894069E-006 - 235.31999999999999 7.5682563505431127E-006 - 235.38000000000000 9.4556657843944399E-006 - 235.44000000000000 1.1324087291438023E-005 - 235.50000000000000 1.3172442887515692E-005 - 235.56000000000000 1.4999699801699641E-005 - 235.62000000000000 1.6804875058984875E-005 - 235.68000000000001 1.8587034921483935E-005 - 235.74000000000001 2.0345303180392486E-005 - 235.80000000000001 2.2078861763862853E-005 - 235.86000000000001 2.3786959432492111E-005 - 235.92000000000002 2.5468906516955618E-005 - 235.97999999999996 2.7124080697889255E-005 - 236.03999999999996 2.8751926577701667E-005 - 236.09999999999997 3.0351950731255964E-005 - 236.15999999999997 3.1923723330196757E-005 - 236.21999999999997 3.3466879525218587E-005 - 236.27999999999997 3.4981104526336686E-005 - 236.33999999999997 3.6466147664202575E-005 - 236.39999999999998 3.7921800223714026E-005 - 236.45999999999998 3.9347902935993621E-005 - 236.51999999999998 4.0744342953081971E-005 - 236.57999999999998 4.2111045356553247E-005 - 236.63999999999999 4.3447978818323153E-005 - 236.69999999999999 4.4755148625743902E-005 - 236.75999999999999 4.6032600267831144E-005 - 236.81999999999999 4.7280402844630309E-005 - 236.88000000000000 4.8498668105382956E-005 - 236.94000000000000 4.9687540656455573E-005 - 237.00000000000000 5.0847191909575521E-005 - 237.06000000000000 5.1977814330653135E-005 - 237.12000000000000 5.3079639883547364E-005 - 237.18000000000001 5.4152911569994597E-005 - 237.24000000000001 5.5197898253809719E-005 - 237.30000000000001 5.6214882298757967E-005 - 237.36000000000001 5.7204158373859454E-005 - 237.42000000000002 5.8166026411874110E-005 - 237.47999999999996 5.9100793819400512E-005 - 237.53999999999996 6.0008765110172483E-005 - 237.59999999999997 6.0890249543264709E-005 - 237.65999999999997 6.1745554634761159E-005 - 237.71999999999997 6.2574966418911315E-005 - 237.77999999999997 6.3378777800825661E-005 - 237.83999999999997 6.4157279184476917E-005 - 237.89999999999998 6.4910738155827275E-005 - 237.95999999999998 6.5639430395716963E-005 - 238.01999999999998 6.6343616579948704E-005 - 238.07999999999998 6.7023541358244797E-005 - 238.13999999999999 6.7679447792264844E-005 - 238.19999999999999 6.8311566615432745E-005 - 238.25999999999999 6.8920114596237689E-005 - 238.31999999999999 6.9505299848370125E-005 - 238.38000000000000 7.0067291163410648E-005 - 238.44000000000000 7.0606252131180864E-005 - 238.50000000000000 7.1122321179968947E-005 - 238.56000000000000 7.1615597843128015E-005 - 238.62000000000000 7.2086155952043584E-005 - 238.68000000000001 7.2534033634904439E-005 - 238.74000000000001 7.2959245484231105E-005 - 238.80000000000001 7.3361755182648015E-005 - 238.86000000000001 7.3741503455936795E-005 - 238.92000000000002 7.4098392495062989E-005 - 238.97999999999996 7.4432298120610942E-005 - 239.03999999999996 7.4743070583014855E-005 - 239.09999999999997 7.5030539402761069E-005 - 239.15999999999997 7.5294514925854873E-005 - 239.21999999999997 7.5534795730418988E-005 - 239.27999999999997 7.5751184658286858E-005 - 239.33999999999997 7.5943472149103913E-005 - 239.39999999999998 7.6111441354219532E-005 - 239.45999999999998 7.6254903861191234E-005 - 239.51999999999998 7.6373651347455595E-005 - 239.57999999999998 7.6467503626938057E-005 - 239.63999999999999 7.6536275967416752E-005 - 239.69999999999999 7.6579808664289638E-005 - 239.75999999999999 7.6597936915020595E-005 - 239.81999999999999 7.6590504355198702E-005 - 239.88000000000000 7.6557378349501447E-005 - 239.94000000000000 7.6498429666213346E-005 - 240.00000000000000 7.6413527290833231E-005 - 240.06000000000000 7.6302563988105216E-005 - 240.12000000000000 7.6165443783526217E-005 - 240.18000000000001 7.6002070384893452E-005 - 240.24000000000001 7.5812362184218948E-005 - 240.30000000000001 7.5596255964683977E-005 - 240.36000000000001 7.5353703751988971E-005 - 240.42000000000002 7.5084682934184425E-005 - 240.47999999999996 7.4789180715213808E-005 - 240.53999999999996 7.4467223278361935E-005 - 240.59999999999997 7.4118850220579823E-005 - 240.65999999999997 7.3744139739021167E-005 - 240.71999999999997 7.3343183715815339E-005 - 240.77999999999997 7.2916127911744799E-005 - 240.83999999999997 7.2463141255280490E-005 - 240.89999999999998 7.1984425467096905E-005 - 240.95999999999998 7.1480232966272318E-005 - 241.01999999999998 7.0950845075452910E-005 - 241.07999999999998 7.0396593595360482E-005 - 241.13999999999999 6.9817849277306113E-005 - 241.19999999999999 6.9215029903897562E-005 - 241.25999999999999 6.8588591435667234E-005 - 241.31999999999999 6.7939042484469909E-005 - 241.38000000000000 6.7266932894414472E-005 - 241.44000000000000 6.6572856715385712E-005 - 241.50000000000000 6.5857452681972436E-005 - 241.56000000000000 6.5121390599823687E-005 - 241.62000000000000 6.4365386963195344E-005 - 241.68000000000001 6.3590184741273446E-005 - 241.74000000000001 6.2796548130323275E-005 - 241.80000000000001 6.1985277981938382E-005 - 241.86000000000001 6.1157181389455997E-005 - 241.92000000000002 6.0313082979687341E-005 - 241.97999999999996 5.9453830004765901E-005 - 242.03999999999996 5.8580262625089351E-005 - 242.09999999999997 5.7693241296674832E-005 - 242.15999999999997 5.6793614416892882E-005 - 242.21999999999997 5.5882257740287789E-005 - 242.27999999999997 5.4960038016217401E-005 - 242.33999999999997 5.4027847602243536E-005 - 242.39999999999998 5.3086578238700492E-005 - 242.45999999999998 5.2137134821790585E-005 - 242.51999999999998 5.1180445832716341E-005 - 242.57999999999998 5.0217456035753211E-005 - 242.63999999999999 4.9249124961368776E-005 - 242.69999999999999 4.8276439000153202E-005 - 242.75999999999999 4.7300393752442772E-005 - 242.81999999999999 4.6322006382157669E-005 - 242.88000000000000 4.5342300743910292E-005 - 242.94000000000000 4.4362312920338336E-005 - 243.00000000000000 4.3383071481100689E-005 - 243.06000000000000 4.2405597144479024E-005 - 243.12000000000000 4.1430902304144807E-005 - 243.18000000000001 4.0459968988696343E-005 - 243.24000000000001 3.9493757780758928E-005 - 243.30000000000001 3.8533190507831853E-005 - 243.36000000000001 3.7579147036124867E-005 - 243.42000000000002 3.6632464042354846E-005 - 243.47999999999996 3.5693929431709186E-005 - 243.53999999999996 3.4764285623793844E-005 - 243.59999999999997 3.3844227601075726E-005 - 243.65999999999997 3.2934398526174619E-005 - 243.71999999999997 3.2035401027660807E-005 - 243.77999999999997 3.1147791217303933E-005 - 243.83999999999997 3.0272093188193284E-005 - 243.89999999999998 2.9408790273343558E-005 - 243.95999999999998 2.8558332346030701E-005 - 244.01999999999998 2.7721139083099378E-005 - 244.07999999999998 2.6897602113318192E-005 - 244.13999999999999 2.6088080580247913E-005 - 244.19999999999999 2.5292904812875318E-005 - 244.25999999999999 2.4512377425147913E-005 - 244.31999999999999 2.3746766249581444E-005 - 244.38000000000000 2.2996306647336963E-005 - 244.44000000000000 2.2261199090911169E-005 - 244.50000000000000 2.1541603221463539E-005 - 244.56000000000000 2.0837637628872080E-005 - 244.62000000000000 2.0149380007586999E-005 - 244.68000000000001 1.9476861434999872E-005 - 244.74000000000001 1.8820069549248691E-005 - 244.80000000000001 1.8178942782587988E-005 - 244.86000000000001 1.7553376529495906E-005 - 244.92000000000002 1.6943219005809727E-005 - 244.97999999999996 1.6348278175156785E-005 - 245.03999999999996 1.5768315918674337E-005 - 245.09999999999997 1.5203058810317856E-005 - 245.15999999999997 1.4652193390585916E-005 - 245.21999999999997 1.4115374948474693E-005 - 245.27999999999997 1.3592226626177312E-005 - 245.33999999999997 1.3082344367159437E-005 - 245.39999999999998 1.2585301244585199E-005 - 245.45999999999998 1.2100649257933660E-005 - 245.51999999999998 1.1627924780949483E-005 - 245.57999999999998 1.1166648690181086E-005 - 245.63999999999999 1.0716333506769395E-005 - 245.69999999999999 1.0276485885964204E-005 - 245.75999999999999 9.8466078566438175E-006 - 245.81999999999999 9.4262015369086293E-006 - 245.88000000000000 9.0147714117967541E-006 - 245.94000000000000 8.6118255816671230E-006 - 246.00000000000000 8.2168794105979084E-006 - 246.06000000000000 7.8294532934597907E-006 - 246.12000000000000 7.4490773775398047E-006 - 246.18000000000001 7.0752895454498578E-006 - 246.24000000000001 6.7076357579590479E-006 - 246.30000000000001 6.3456708990057476E-006 - 246.36000000000001 5.9889563867444519E-006 - 246.42000000000002 5.6370617376726875E-006 - 246.47999999999996 5.2895636472599714E-006 - 246.53999999999996 4.9460465200735038E-006 - 246.59999999999997 4.6061031808139385E-006 - 246.65999999999997 4.2693347140367886E-006 - 246.71999999999997 3.9353566952293441E-006 - 246.77999999999997 3.6037961616752954E-006 - 246.83999999999997 3.2742996167685134E-006 - 246.89999999999998 2.9465347340811187E-006 - 246.95999999999998 2.6201949744243924E-006 - 247.01999999999998 2.2950036667781577E-006 - 247.07999999999998 1.9707180143718864E-006 - 247.13999999999999 1.6471337631175720E-006 - 247.19999999999999 1.3240872058941075E-006 - 247.25999999999999 1.0014611536582205E-006 - 247.31999999999999 6.7918240604622186E-007 - 247.38000000000000 3.5722666044889558E-007 - 247.44000000000000 3.5616349808802156E-008 - 247.50000000000000 -2.8557761409189521E-007 - 247.56000000000000 -6.0624012373080751E-007 - 247.62000000000000 -9.2621160430723227E-007 - 247.68000000000001 -1.2452914007480164E-006 - 247.74000000000001 -1.5632405158869001E-006 - 247.80000000000001 -1.8797822692831709E-006 - 247.86000000000001 -2.1946066124088793E-006 - 247.92000000000002 -2.5073716309564333E-006 - 247.97999999999996 -2.8177056179406289E-006 - 248.03999999999996 -3.1252079908101435E-006 - 248.09999999999997 -3.4294494570428021E-006 - 248.15999999999997 -3.7299723362626474E-006 - 248.21999999999997 -4.0262933249965197E-006 - 248.27999999999997 -4.3178986400021632E-006 - 248.33999999999997 -4.6042490857978965E-006 - 248.39999999999998 -4.8847763626287414E-006 - 248.45999999999998 -5.1588846625882554E-006 - 248.51999999999998 -5.4259533005035787E-006 - 248.57999999999998 -5.6853344025564495E-006 - 248.63999999999999 -5.9363568714568451E-006 - 248.69999999999999 -6.1783290212486879E-006 - 248.75999999999999 -6.4105388520887722E-006 - 248.81999999999999 -6.6322589402649169E-006 - 248.88000000000000 -6.8427473859874888E-006 - 248.94000000000000 -7.0412535311870824E-006 - 249.00000000000000 -7.2270188549101458E-006 - 249.06000000000000 -7.3992812436605369E-006 - 249.12000000000000 -7.5572764867241336E-006 - 249.18000000000001 -7.7002421967769068E-006 - 249.24000000000001 -7.8274199003338280E-006 - 249.30000000000001 -7.9380574861838405E-006 - 249.36000000000001 -8.0314111768620608E-006 - 249.42000000000002 -8.1067486476998243E-006 - 249.47999999999996 -8.1633515597994244E-006 - 249.53999999999996 -8.2005162951385382E-006 - 249.59999999999997 -8.2175604502687993E-006 - 249.65999999999997 -8.2138228870587245E-006 - 249.71999999999997 -8.1886703512243203E-006 - 249.77999999999997 -8.1414998120720068E-006 - 249.83999999999997 -8.0717417254890012E-006 - 249.89999999999998 -7.9788675812074765E-006 - 249.95999999999998 -7.8623909237100327E-006 - 250.01999999999998 -7.7218719691210495E-006 - 250.07999999999998 -7.5569231422171029E-006 - 250.13999999999999 -7.3672105398108263E-006 - 250.19999999999999 -7.1524558839877851E-006 - 250.25999999999999 -6.9124393664750169E-006 - 250.31999999999999 -6.6470019034511406E-006 - 250.38000000000000 -6.3560416970313018E-006 - 250.44000000000000 -6.0395195377162718E-006 - 250.50000000000000 -5.6974528622646313E-006 - 250.56000000000000 -5.3299170080569429E-006 - 250.62000000000000 -4.9370464451481115E-006 - 250.68000000000001 -4.5190298457004285E-006 - 250.74000000000001 -4.0761105116171680E-006 - 250.80000000000001 -3.6085859238686403E-006 - 250.86000000000001 -3.1168057388092254E-006 - 250.92000000000002 -2.6011732882973851E-006 - 250.97999999999996 -2.0621465147964330E-006 - 251.03999999999996 -1.5002344185382062E-006 - 251.09999999999997 -9.1600384979777214E-007 - 251.15999999999997 -3.1007497348635484E-007 - 251.21999999999997 3.1687123606065321E-007 - 251.27999999999997 9.6409928464238826E-007 - 251.33999999999997 1.6308163005081266E-006 - 251.39999999999998 2.3161694829757100E-006 - 251.45999999999998 3.0192511140208662E-006 - 251.51999999999998 3.7390932704862103E-006 - 251.57999999999998 4.4746797608715105E-006 - 251.63999999999999 5.2249434261754844E-006 - 251.69999999999999 5.9887677005824202E-006 - 251.75999999999999 6.7649957792461661E-006 - 251.81999999999999 7.5524322661630520E-006 - 251.88000000000000 8.3498508019681511E-006 - 251.94000000000000 9.1559973607028059E-006 diff --git a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000004.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000004.BXY.semd deleted file mode 100644 index 7ff55a75..00000000 --- a/seisflows/tests/test_data/test_solver/001/traces/obs/AA.S000004.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 -3.6744236677553120E-041 - 1.7999999999999972 -9.9491053995370065E-041 - 1.8599999999999994 -1.7508160341017814E-040 - 1.9200000000000017 -2.5067215282498622E-040 - 1.9799999999999969 -3.2626271575540425E-040 - 2.0399999999999991 -4.0185325165460237E-040 - 2.1000000000000014 -4.7744378755380048E-040 - 2.1599999999999966 -5.2165529398979686E-040 - 2.2199999999999989 -5.2178147572440911E-040 - 2.2800000000000011 -4.6832410270021365E-040 - 2.3399999999999963 -3.5661834323222640E-040 - 2.3999999999999986 -1.8847468085300782E-040 - 2.4600000000000009 2.3343825326867406E-041 - 2.5199999999999960 2.6652182753464569E-040 - 2.5799999999999983 5.0969981791626526E-040 - 2.6400000000000006 7.5564250740942553E-040 - 2.6999999999999957 9.9364407323775094E-040 - 2.7599999999999980 7.2903217674711873E-040 - 2.8200000000000003 2.8324132936615560E-040 - 2.8799999999999955 -1.7240237227475305E-040 - 2.9399999999999977 -8.9860018910628354E-040 - 3.0000000000000000 -1.6606468098030174E-039 - 3.0599999999999952 -2.4736879415273712E-039 - 3.1199999999999974 -3.2572082397116873E-039 - 3.1799999999999997 -5.2887979333605837E-039 - 3.2399999999999949 -8.0414685024720268E-039 - 3.2999999999999972 -1.1361047320005509E-038 - 3.3599999999999994 -1.4376019849174457E-038 - 3.4199999999999946 -1.6923180709955741E-038 - 3.4799999999999969 -1.9011215468584539E-038 - 3.5399999999999991 -2.0665428107656105E-038 - 3.6000000000000014 -2.1985574172783370E-038 - 3.6599999999999966 -2.2373036519954279E-038 - 3.7199999999999989 -2.1441641786757258E-038 - 3.7800000000000011 -1.9585784919255081E-038 - 3.8399999999999963 -1.7496410558497248E-038 - 3.8999999999999986 -1.4753392472875311E-038 - 3.9600000000000009 -1.1717041956626813E-038 - 4.0199999999999960 -9.5119162825920666E-039 - 4.0799999999999983 -8.1933007935414573E-039 - 4.1400000000000006 -1.0941552978630173E-038 - 4.1999999999999957 -1.5606522267537621E-038 - 4.2599999999999980 -2.3129439741364050E-038 - 4.3200000000000003 -3.1589361771239637E-038 - 4.3799999999999955 -4.0969010270879503E-038 - 4.4399999999999977 -4.8415952061612853E-038 - 4.5000000000000000 -5.3097209022326409E-038 - 4.5599999999999952 -5.3736457212258991E-038 - 4.6199999999999974 -4.9516791408481783E-038 - 4.6799999999999997 -4.0203125085614536E-038 - 4.7399999999999949 -2.3129912188808348E-038 - 4.7999999999999972 4.6659676977634079E-039 - 4.8599999999999994 5.0977711260226937E-038 - 4.9199999999999946 1.1549362046415868E-037 - 4.9799999999999969 1.9668873428411584E-037 - 5.0399999999999991 2.7879583021847965E-037 - 5.1000000000000014 3.5482778259588658E-037 - 5.1599999999999966 4.1694786411472854E-037 - 5.2199999999999989 4.5815280894877956E-037 - 5.2800000000000011 4.8065883251489621E-037 - 5.3399999999999963 4.7599335372331763E-037 - 5.3999999999999986 4.4547993412117024E-037 - 5.4600000000000009 3.5552578537225134E-037 - 5.5199999999999960 2.1609996740126857E-037 - 5.5799999999999983 3.6916719668675415E-038 - 5.6400000000000006 -1.6316555854853977E-037 - 5.6999999999999957 -3.6583545786187781E-037 - 5.7599999999999980 -5.4481945823189659E-037 - 5.8200000000000003 -6.6776704127217924E-037 - 5.8799999999999955 -7.0278779902897437E-037 - 5.9399999999999977 -6.2070629201662299E-037 - 6.0000000000000000 -4.1981481388950396E-037 - 6.0599999999999952 -4.9382578991414361E-038 - 6.1199999999999974 4.8891333360877576E-037 - 6.1799999999999997 1.1898699466743512E-036 - 6.2399999999999949 1.9996455539418904E-036 - 6.2999999999999972 2.7894436661945065E-036 - 6.3599999999999994 3.4646786379429469E-036 - 6.4199999999999946 3.9649273716552610E-036 - 6.4799999999999969 4.2061547878899836E-036 - 6.5399999999999991 4.0738253499739299E-036 - 6.6000000000000014 3.4372010653575038E-036 - 6.6599999999999966 2.1556265184131820E-036 - 6.7199999999999989 2.6454227970313302E-037 - 6.7800000000000011 -2.2200870535442595E-036 - 6.8399999999999963 -5.2196873339923649E-036 - 6.8999999999999986 -8.6327395788288131E-036 - 6.9600000000000009 -1.2210838889219730E-035 - 7.0199999999999960 -1.5771710170342122E-035 - 7.0799999999999983 -1.8989924176933454E-035 - 7.1400000000000006 -2.1457839181188194E-035 - 7.1999999999999957 -2.2710096688185261E-035 - 7.2599999999999980 -2.2333232756865868E-035 - 7.3200000000000003 -1.9659628731140563E-035 - 7.3799999999999955 -1.4493423766042294E-035 - 7.4399999999999977 -6.6367678889503013E-036 - 7.5000000000000000 3.8366293182747079E-036 - 7.5599999999999952 1.6853610444868486E-035 - 7.6199999999999974 3.1928546882826807E-035 - 7.6799999999999997 4.8194475512488456E-035 - 7.7399999999999949 6.4615419703949526E-035 - 7.7999999999999972 8.0000223263317765E-035 - 7.8599999999999994 9.2758568607134440E-035 - 7.9199999999999946 1.0108186656654524E-034 - 7.9799999999999969 1.0290542000813780E-034 - 8.0399999999999991 9.6366948107223786E-035 - 8.1000000000000014 7.9562179917363342E-035 - 8.1599999999999966 5.0970936090154765E-035 - 8.2199999999999989 9.6113730097937254E-036 - 8.2800000000000011 -4.4734644531544972E-035 - 8.3399999999999963 -1.1132777734661028E-034 - 8.3999999999999986 -1.8824222859269891E-034 - 8.4600000000000009 -2.7216743088121529E-034 - 8.5199999999999960 -3.5834284874267339E-034 - 8.5799999999999983 -4.4052738560487836E-034 - 8.6400000000000006 -5.1110818315236229E-034 - 8.6999999999999957 -5.6136657738620431E-034 - 8.7599999999999980 -5.8176668640754220E-034 - 8.8200000000000003 -5.6253670351292221E-034 - 8.8799999999999955 -4.9446992296105667E-034 - 8.9399999999999977 -3.6972160207536791E-034 - 9.0000000000000000 -1.8287356041892361E-034 - 9.0599999999999952 6.8000910269282459E-035 - 9.1199999999999974 3.8024498503458648E-034 - 9.1799999999999997 7.4561385761254604E-034 - 9.2399999999999949 1.1494108337039380E-033 - 9.2999999999999972 1.5699880546335942E-033 - 9.3599999999999994 1.9786472993913231E-033 - 9.4199999999999946 2.3398098851499299E-033 - 9.4799999999999969 2.6124012406350923E-033 - 9.5399999999999991 2.7514887943627838E-033 - 9.5999999999999943 2.7108423781132380E-033 - 9.6599999999999966 2.4463571126954077E-033 - 9.7199999999999989 1.9201073113797185E-033 - 9.7800000000000011 1.1049979733311800E-033 - 9.8399999999999963 -1.0225391249294031E-035 - 9.8999999999999986 -1.4159646977139299E-033 - 9.9600000000000009 -3.0770834950502437E-033 - 10.019999999999996 -4.9290861158565565E-033 - 10.079999999999998 -6.8756293988122807E-033 - 10.140000000000001 -8.7879679711837584E-033 - 10.199999999999996 -1.0506824164102349E-032 - 10.259999999999998 -1.1847195046922763E-032 - 10.320000000000000 -1.2606446389456155E-032 - 10.379999999999995 -1.2575880188366733E-032 - 10.439999999999998 -1.1555752818009124E-032 - 10.500000000000000 -9.3733908107560810E-033 - 10.559999999999995 -5.9037647211332621E-033 - 10.619999999999997 -1.0914807880673637E-033 - 10.680000000000000 5.0272020330373453E-033 - 10.739999999999995 1.2304092008417120E-032 - 10.799999999999997 2.0462581628552962E-032 - 10.859999999999999 2.9087207013807812E-032 - 10.919999999999995 3.7621631931634039E-032 - 10.979999999999997 4.5377307981607602E-032 - 11.039999999999999 5.1554761675831239E-032 - 11.099999999999994 5.5278988358973732E-032 - 11.159999999999997 5.5649613116052268E-032 - 11.219999999999999 5.1805517741526112E-032 - 11.280000000000001 4.3002300593407342E-032 - 11.339999999999996 2.8699669664865961E-032 - 11.399999999999999 8.6542064486551552E-033 - 11.460000000000001 -1.6988523195357757E-032 - 11.519999999999996 -4.7609973363935713E-032 - 11.579999999999998 -8.2051385862510678E-032 - 11.640000000000001 -1.1857274385116515E-031 - 11.699999999999996 -1.5484755572848162E-031 - 11.759999999999998 -1.8800256565278077E-031 - 11.820000000000000 -2.1471017373816003E-031 - 11.879999999999995 -2.3133901741627659E-031 - 11.939999999999998 -2.3416486230480895E-031 - 12.000000000000000 -2.1963977461092389E-031 - 12.059999999999995 -1.8471216923746996E-031 - 12.119999999999997 -1.2718500723705732E-031 - 12.180000000000000 -4.6092706560586398E-032 - 12.239999999999995 5.7928200992532371E-032 - 12.299999999999997 1.8230547009342784E-031 - 12.359999999999999 3.2226979719090519E-031 - 12.419999999999995 4.7070342304226232E-031 - 12.479999999999997 6.1813676449690914E-031 - 12.539999999999999 7.5292853041390041E-031 - 12.599999999999994 8.6165888107233555E-031 - 12.659999999999997 9.2975506466797178E-031 - 12.719999999999999 9.4235501134587921E-031 - 12.780000000000001 8.8539826252733772E-031 - 12.839999999999996 7.4691123930827672E-031 - 12.899999999999999 5.1843244383608355E-031 - 12.960000000000001 1.9649869657760269E-031 - 13.019999999999996 -2.1590986273418566E-031 - 13.079999999999998 -7.0808887412051489E-031 - 13.140000000000001 -1.2606307643202530E-030 - 13.199999999999996 -1.8448966564101198E-030 - 13.259999999999998 -2.4230842461101992E-030 - 13.320000000000000 -2.9490260747951719E-030 - 13.379999999999995 -3.3698265224364018E-030 - 13.439999999999998 -3.6284052178015927E-030 - 13.500000000000000 -3.6669580323353802E-030 - 13.559999999999995 -3.4312818919141798E-030 - 13.619999999999997 -2.8758244472306022E-030 - 13.680000000000000 -1.9692357645925376E-030 - 13.739999999999995 -7.0010522437539720E-031 - 13.799999999999997 9.1751852379273666E-031 - 13.859999999999999 2.8393032226513804E-030 - 13.919999999999995 4.9870420143483374E-030 - 13.979999999999997 7.2468531759856133E-030 - 14.039999999999999 9.4697304519442826E-030 - 14.099999999999994 1.1474938443665529E-029 - 14.159999999999997 1.3056647238311192E-029 - 14.219999999999999 1.3994037729835442E-029 - 14.280000000000001 1.4064898067988971E-029 - 14.339999999999996 1.3062465028765471E-029 - 14.399999999999999 1.0814948554833382E-029 - 14.460000000000001 7.2068735996574100E-030 - 14.519999999999996 2.2009862764487410E-030 - 14.579999999999998 -4.1408026289932172E-030 - 14.640000000000001 -1.1639273612690577E-029 - 14.699999999999996 -1.9984584864504310E-029 - 14.759999999999998 -2.8729911601313286E-029 - 14.820000000000000 -3.7294099084606373E-029 - 14.879999999999995 -4.4975193960642367E-029 - 14.939999999999998 -5.0976298846813464E-029 - 15.000000000000000 -5.4444578850799024E-029 - 15.059999999999995 -5.4523451618686771E-029 - 15.119999999999997 -5.0416999331599408E-029 - 15.180000000000000 -4.1464486554991157E-029 - 15.239999999999995 -2.7221678633240938E-029 - 15.299999999999997 -7.5442662267048688E-030 - 15.359999999999999 1.7332267001466842E-029 - 15.419999999999995 4.6723287506100934E-029 - 15.479999999999997 7.9443656899315383E-029 - 15.539999999999999 1.1378231230766834E-028 - 15.599999999999994 1.4751053833954742E-028 - 15.659999999999997 1.7793083285685182E-028 - 15.719999999999999 2.0197191852148007E-028 - 15.780000000000001 2.1633310107774748E-028 - 15.839999999999996 2.1767829330555781E-028 - 15.899999999999999 2.0287662788956148E-028 - 15.960000000000001 1.6928189166918202E-028 - 16.019999999999996 1.1503924726117386E-028 - 16.079999999999998 3.9402403869480042E-029 - 16.140000000000001 -5.6959603903861041E-029 - 16.200000000000003 -1.7169084419479393E-028 - 16.259999999999991 -3.0053967817234498E-028 - 16.319999999999993 -4.3724217232306047E-028 - 16.379999999999995 -5.7352605007829639E-028 - 16.439999999999998 -6.9926212406756468E-028 - 16.500000000000000 -8.0278382036800026E-028 - 16.560000000000002 -8.7138954136593335E-028 - 16.620000000000005 -8.9203095368192439E-028 - 16.679999999999993 -8.5217852582503527E-028 - 16.739999999999995 -7.4084115853954131E-028 - 16.799999999999997 -5.4969995997546218E-028 - 16.859999999999999 -2.7430029706705202E-028 - 16.920000000000002 8.4770253798917679E-029 - 16.980000000000004 5.2080495146645085E-028 - 17.039999999999992 1.0200998409497114E-027 - 17.099999999999994 1.5613802013587600E-027 - 17.159999999999997 2.1156366381656837E-027 - 17.219999999999999 2.6464706764941117E-027 - 17.280000000000001 3.1110345266263006E-027 - 17.340000000000003 3.4616260627029422E-027 - 17.399999999999991 3.6479667094792422E-027 - 17.459999999999994 3.6201501453238277E-027 - 17.519999999999996 3.3321966497090150E-027 - 17.579999999999998 2.7460974988165201E-027 - 17.640000000000001 1.8361704696994823E-027 - 17.700000000000003 5.9349490168777354E-028 - 17.759999999999991 -9.6986553532826293E-028 - 17.819999999999993 -2.8171826403082874E-027 - 17.879999999999995 -4.8842949904202228E-027 - 17.939999999999998 -7.0781233907489785E-027 - 18.000000000000000 -9.2768455112277492E-027 - 18.060000000000002 -1.1332053882519043E-026 - 18.120000000000005 -1.3073165218412375E-026 - 18.179999999999993 -1.4314244544996917E-026 - 18.239999999999995 -1.4863280876338033E-026 - 18.299999999999997 -1.4533793035358468E-026 - 18.359999999999999 -1.3158465527575593E-026 - 18.420000000000002 -1.0604313069462997E-026 - 18.480000000000004 -6.7886785292825256E-027 - 18.539999999999992 -1.6951700742628118E-027 - 18.599999999999994 4.6115384939666439E-027 - 18.659999999999997 1.1973234010834332E-026 - 18.719999999999999 2.0129323790078484E-026 - 18.780000000000001 2.8712924586559000E-026 - 18.840000000000003 3.7253119469131193E-026 - 18.899999999999991 4.5184457005684074E-026 - 18.959999999999994 5.1864519034618733E-026 - 19.019999999999996 5.6599994926677848E-026 - 19.079999999999998 5.8681248194769644E-026 - 19.140000000000001 5.7424799524028817E-026 - 19.200000000000003 5.2222545891318346E-026 - 19.259999999999991 4.2595844760571206E-026 - 19.319999999999993 2.8251955204973653E-026 - 19.379999999999995 9.1396582326982172E-027 - 19.439999999999998 -1.4499636703749803E-026 - 19.500000000000000 -4.2089436032912111E-026 - 19.560000000000002 -7.2688690014899027E-026 - 19.620000000000005 -1.0497967550184879E-025 - 19.679999999999993 -1.3727728114318230E-025 - 19.739999999999995 -1.6756319967367688E-025 - 19.799999999999997 -1.9354758290185726E-025 - 19.859999999999999 -2.1275940863592510E-025 - 19.920000000000002 -2.2266540422693254E-025 - 19.980000000000004 -2.2081537198167150E-025 - 20.039999999999992 -2.0500983922981019E-025 - 20.099999999999994 -1.7348377111130756E-025 - 20.159999999999997 -1.2509792510615386E-025 - 20.219999999999999 -5.9527454203410123E-026 - 20.280000000000001 2.2564334665169442E-026 - 20.340000000000003 1.1938054329027126E-025 - 20.399999999999991 2.2788749367957501E-025 - 20.459999999999994 3.4376800807437449E-025 - 20.519999999999996 4.6144408942616676E-025 - 20.579999999999998 5.7418021418347584E-025 - 20.640000000000001 6.7427545991300551E-025 - 20.700000000000003 7.5334877638493875E-025 - 20.759999999999991 8.0271691341701771E-025 - 20.819999999999993 8.1385849758834807E-025 - 20.879999999999995 7.7895209297992895E-025 - 20.939999999999998 6.9146885667587142E-025 - 21.000000000000000 5.4679362527849013E-025 - 21.060000000000002 3.4284315222575034E-025 - 21.120000000000005 8.0643756379332165E-026 - 21.179999999999993 -2.3517275880789136E-025 - 21.239999999999995 -5.9599850708749872E-025 - 21.299999999999997 -9.8904736501048548E-025 - 21.359999999999999 -1.3973625927412186E-024 - 21.420000000000002 -1.8000693363707632E-024 - 21.480000000000004 -2.1728989227996549E-024 - 21.539999999999992 -2.4890006390140169E-024 - 21.599999999999994 -2.7200424670685548E-024 - 21.659999999999997 -2.8375852941730429E-024 - 21.719999999999999 -2.8146970399785571E-024 - 21.780000000000001 -2.6277535215384775E-024 - 21.840000000000003 -2.2583538491707588E-024 - 21.899999999999991 -1.6952590781031567E-024 - 21.959999999999994 -9.3624694183171118E-025 - 22.019999999999996 1.0236282217878353E-026 - 22.079999999999998 1.1237533558883982E-024 - 22.140000000000001 2.3710133560500692E-024 - 22.200000000000003 3.7055896640208501E-024 - 22.259999999999991 5.0683280827059364E-024 - 22.319999999999993 6.3885343329934191E-024 - 22.379999999999995 7.5859963087704469E-024 - 22.439999999999998 8.5738627859012726E-024 - 22.500000000000000 9.2623506591257215E-024 - 22.560000000000002 9.5632099497587354E-024 - 22.619999999999990 9.3948125291317646E-024 - 22.679999999999993 8.6876871899601013E-024 - 22.739999999999995 7.3902609240964531E-024 - 22.799999999999997 5.4745318702386830E-024 - 22.859999999999999 2.9413475449418966E-024 - 22.920000000000002 -1.7505356950696893E-025 - 22.980000000000004 -3.8035948534340013E-024 - 23.039999999999992 -7.8343568584269202E-024 - 23.099999999999994 -1.2118345049433566E-023 - 23.159999999999997 -1.6469290675818549E-023 - 23.219999999999999 -2.0667707193031529E-023 - 23.280000000000001 -2.4467311114498079E-023 - 23.340000000000003 -2.7603809334393473E-023 - 23.399999999999991 -2.9805947828805963E-023 - 23.459999999999994 -3.0808557487099518E-023 - 23.519999999999996 -3.0367213818381282E-023 - 23.579999999999998 -2.8273988075963874E-023 - 23.640000000000001 -2.4373614428789686E-023 - 23.700000000000003 -1.8579325952480459E-023 - 23.759999999999991 -1.0887479515782420E-023 - 23.819999999999993 -1.3900881588694625E-024 - 23.879999999999995 9.7156900465117471E-024 - 23.939999999999998 2.2121987468132060E-023 - 24.000000000000000 3.5409417227418495E-023 - 24.060000000000002 4.9051676435090293E-023 - 24.119999999999990 6.2426095035220473E-023 - 24.179999999999993 7.4830426043068404E-023 - 24.239999999999995 8.5505851339306147E-023 - 24.299999999999997 9.3665921525769837E-023 - 24.359999999999999 9.8530877251161235E-023 - 24.420000000000002 9.9366315579336433E-023 - 24.480000000000004 9.5525005406541496E-023 - 24.539999999999992 8.6490256323300386E-023 - 24.599999999999994 7.1918952136108501E-023 - 24.659999999999997 5.1682284712891182E-023 - 24.719999999999999 2.5901902424466973E-023 - 24.780000000000001 -5.0206889930633789E-024 - 24.840000000000003 -4.0383867767233459E-023 - 24.899999999999991 -7.9176584038945122E-023 - 24.959999999999994 -1.2008210527266244E-022 - 25.019999999999996 -1.6149607973237485E-022 - 25.079999999999998 -2.0156010712407643E-022 - 25.140000000000001 -2.3821110863592217E-022 - 25.200000000000003 -2.6924650485061407E-022 - 25.259999999999991 -2.9240419022207393E-022 - 25.319999999999993 -3.0545586801239455E-022 - 25.379999999999995 -3.0631115107721255E-022 - 25.439999999999998 -2.9312968679707101E-022 - 25.500000000000000 -2.6443719256278293E-022 - 25.560000000000002 -2.1924133108575243E-022 - 25.619999999999990 -1.5714220109599668E-022 - 25.679999999999993 -7.8432367764745481E-023 - 25.739999999999995 1.5819113279609899E-023 - 25.799999999999997 1.2370432511709152E-022 - 25.859999999999999 2.4244106380419117E-022 - 25.920000000000002 3.6836936681345036E-022 - 25.980000000000004 4.9698428604383584E-022 - 26.039999999999992 6.2300844107661129E-022 - 26.099999999999994 7.4050669524613000E-022 - 26.159999999999997 8.4304379789358544E-022 - 26.219999999999999 9.2388453268772064E-022 - 26.280000000000001 9.7623381638020785E-022 - 26.340000000000003 9.9351246317393112E-022 - 26.399999999999991 9.6966241062826722E-022 - 26.459999999999994 8.9947247876138380E-022 - 26.519999999999996 7.7891438829480546E-022 - 26.579999999999998 6.0547615586219402E-022 - 26.640000000000001 3.7847854437757666E-022 - 26.700000000000003 9.9358619598947686E-023 - 26.759999999999991 -2.2809717890486281E-022 - 26.819999999999993 -5.9758698861028859E-022 - 26.879999999999995 -1.0002137877286837E-021 - 26.939999999999998 -1.4245073766118171E-021 - 27.000000000000000 -1.8565637718828801E-021 - 27.060000000000002 -2.2803146881444186E-021 - 27.119999999999990 -2.6779354219932070E-021 - 27.179999999999993 -3.0303959313844422E-021 - 27.239999999999995 -3.3181523953306197E-021 - 27.299999999999997 -3.5219732847490676E-021 - 27.359999999999999 -3.6238806630910640E-021 - 27.420000000000002 -3.6081875438840410E-021 - 27.480000000000004 -3.4625973640459591E-021 - 27.539999999999992 -3.1793235567119988E-021 - 27.599999999999994 -2.7561873396353000E-021 - 27.659999999999997 -2.1976330578902966E-021 - 27.719999999999999 -1.5156089649691220E-021 - 27.780000000000001 -7.3024405053545910E-022 - 27.840000000000003 1.2973707415310353E-022 - 27.899999999999991 1.0269207194458033E-021 - 27.959999999999994 1.9154903555609316E-021 - 28.019999999999996 2.7419294878383193E-021 - 28.079999999999998 3.4461783866734073E-021 - 28.140000000000001 3.9632547814250522E-021 - 28.200000000000003 4.2253196827373362E-021 - 28.259999999999991 4.1641676184551972E-021 - 28.319999999999993 3.7140772583975489E-021 - 28.379999999999995 2.8149160369081620E-021 - 28.439999999999998 1.4154078085591962E-021 - 28.500000000000000 -5.2361429375772539E-022 - 28.560000000000002 -3.0261013890259473E-021 - 28.619999999999990 -6.0980536518501342E-021 - 28.679999999999993 -9.7253404272164054E-021 - 28.739999999999995 -1.3872266113248873E-020 - 28.799999999999997 -1.8481110849046262E-020 - 28.859999999999999 -2.3472779148496976E-020 - 28.920000000000002 -2.8748758195008762E-020 - 28.980000000000004 -3.4194416930574348E-020 - 29.039999999999992 -3.9683738076375573E-020 - 29.099999999999994 -4.5085449049539192E-020 - 29.159999999999997 -5.0270432429865436E-020 - 29.219999999999999 -5.5120175277110888E-020 - 29.280000000000001 -5.9536045275517422E-020 - 29.340000000000003 -6.3448999502723860E-020 - 29.399999999999991 -6.6829240620714742E-020 - 29.459999999999994 -6.9695183964890002E-020 - 29.519999999999996 -7.2121324624750134E-020 - 29.579999999999998 -7.4244272562057783E-020 - 29.640000000000001 -7.6266214127698433E-020 - 29.700000000000003 -7.8455448041492555E-020 - 29.759999999999991 -8.1143006847075066E-020 - 29.819999999999993 -8.4715501215082105E-020 - 29.879999999999995 -8.9603256059374144E-020 - 29.939999999999998 -9.6263974320040876E-020 - 30.000000000000000 -1.0516194661613351E-019 - 30.060000000000002 -1.1674300707979120E-019 - 30.119999999999990 -1.3140587045563933E-019 - 30.179999999999993 -1.4947085790876151E-019 - 30.239999999999995 -1.7114649289430959E-019 - 30.299999999999997 -1.9649639098531220E-019 - 30.359999999999999 -2.2540663810991251E-019 - 30.420000000000002 -2.5755645767082693E-019 - 30.480000000000004 -2.9239335168198779E-019 - 30.539999999999992 -3.2911464433027394E-019 - 30.599999999999994 -3.6665673182806483E-019 - 30.659999999999997 -4.0369355147965449E-019 - 30.719999999999999 -4.3864570170548464E-019 - 30.780000000000001 -4.6969960080538902E-019 - 30.840000000000003 -4.9483788999042416E-019 - 30.899999999999991 -5.1187934461858609E-019 - 30.959999999999994 -5.1852722715911139E-019 - 31.019999999999996 -5.1242271170287663E-019 - 31.079999999999998 -4.9120183167691174E-019 - 31.140000000000001 -4.5254979500929179E-019 - 31.200000000000003 -3.9424805434388209E-019 - 31.259999999999991 -3.1421091749057009E-019 - 31.319999999999993 -2.1049950239757876E-019 - 31.379999999999995 -8.1313809918611433E-020 - 31.439999999999998 7.5049331862009876E-020 - 31.500000000000000 2.6027707488639267E-019 - 31.560000000000002 4.7616539684712796E-019 - 31.619999999999990 7.2479537894993434E-019 - 31.679999999999993 1.0087666824030248E-018 - 31.739999999999995 1.3314782928176513E-018 - 31.799999999999997 1.6974805129177582E-018 - 31.859999999999999 2.1128722822748629E-018 - 31.920000000000002 2.5857613429543102E-018 - 31.980000000000004 3.1267700241103616E-018 - 32.039999999999992 3.7495755287921235E-018 - 32.099999999999994 4.4714981250190043E-018 - 32.159999999999997 5.3140851314549628E-018 - 32.219999999999999 6.3037397501670344E-018 - 32.280000000000001 7.4722999677570437E-018 - 32.340000000000003 8.8576521378381318E-018 - 32.399999999999991 1.0504265556494424E-017 - 32.459999999999994 1.2463706922022909E-017 - 32.519999999999996 1.4795131222001940E-017 - 32.579999999999998 1.7565677552322518E-017 - 32.640000000000001 2.0850821031373535E-017 - 32.700000000000003 2.4734694876022733E-017 - 32.759999999999991 2.9310350697204587E-017 - 32.819999999999993 3.4680010517709976E-017 - 32.879999999999995 4.0955308969360719E-017 - 32.939999999999998 4.8257554545653753E-017 - 33.000000000000000 5.6718066355500609E-017 - 33.060000000000002 6.6478587977340306E-017 - 33.119999999999990 7.7691938958364550E-017 - 33.179999999999993 9.0522747798127325E-017 - 33.239999999999995 1.0514855382175263E-016 - 33.299999999999997 1.2176113027632444E-016 - 33.359999999999999 1.4056819015675045E-016 - 33.420000000000002 1.6179567040019898E-016 - 33.480000000000004 1.8569029161356695E-016 - 33.539999999999992 2.1252266487007995E-016 - 33.599999999999994 2.4259102346734313E-016 - 33.659999999999997 2.7622538842018406E-016 - 33.719999999999999 3.1379237280713844E-016 - 33.780000000000001 3.5570062437672127E-016 - 33.840000000000003 4.0240636162440165E-016 - 33.899999999999991 4.5442014250944392E-016 - 33.959999999999994 5.1231293895682089E-016 - 34.019999999999996 5.7672352917580600E-016 - 34.079999999999998 6.4836570419073600E-016 - 34.140000000000001 7.2803481450020301E-016 - 34.200000000000003 8.1661505002895864E-016 - 34.259999999999991 9.1508628717552013E-016 - 34.319999999999993 1.0245301037935880E-015 - 34.379999999999995 1.1461347590249130E-015 - 34.439999999999998 1.2811995537705463E-015 - 34.500000000000000 1.4311380429408724E-015 - 34.560000000000002 1.5974791600144754E-015 - 34.619999999999990 1.7818672879753995E-015 - 34.679999999999993 1.9860590513670036E-015 - 34.739999999999995 2.2119184042468750E-015 - 34.799999999999997 2.4614074755427836E-015 - 34.859999999999999 2.7365767474785992E-015 - 34.920000000000002 3.0395481030535056E-015 - 34.980000000000004 3.3724972210031226E-015 - 35.039999999999992 3.7376265385620823E-015 - 35.099999999999994 4.1371377328406452E-015 - 35.159999999999997 4.5731945704393336E-015 - 35.219999999999999 5.0478799620962885E-015 - 35.280000000000001 5.5631478773157809E-015 - 35.340000000000003 6.1207606863222062E-015 - 35.399999999999991 6.7222210702721188E-015 - 35.459999999999994 7.3686955090084153E-015 - 35.519999999999996 8.0609172634699527E-015 - 35.579999999999998 8.7990854020237879E-015 - 35.640000000000001 9.5827314673977868E-015 - 35.700000000000003 1.0410589557901404E-014 - 35.759999999999991 1.1280426503917378E-014 - 35.819999999999993 1.2188846224829762E-014 - 35.879999999999995 1.3131088149593769E-014 - 35.939999999999998 1.4100771521327555E-014 - 36.000000000000000 1.5089596754732632E-014 - 36.060000000000002 1.6087042213088897E-014 - 36.119999999999990 1.7079959538056946E-014 - 36.179999999999993 1.8052154717078012E-014 - 36.239999999999995 1.8983874617615420E-014 - 36.299999999999997 1.9851228812149097E-014 - 36.359999999999999 2.0625530440253647E-014 - 36.420000000000002 2.1272543199225143E-014 - 36.479999999999990 2.1751581647411911E-014 - 36.539999999999992 2.2014537852290295E-014 - 36.599999999999994 2.2004725505737466E-014 - 36.659999999999997 2.1655562643759900E-014 - 36.719999999999999 2.0889111053813218E-014 - 36.780000000000001 1.9614335026766991E-014 - 36.840000000000003 1.7725221344818463E-014 - 36.899999999999991 1.5098571030680825E-014 - 36.959999999999994 1.1591511581966309E-014 - 37.019999999999996 7.0387240403707340E-015 - 37.079999999999998 1.2492832250565028E-015 - 37.140000000000001 -5.9968261542301143E-015 - 37.200000000000003 -1.4952858851413484E-014 - 37.259999999999991 -2.5909538426623416E-014 - 37.319999999999993 -3.9200228590294230E-014 - 37.379999999999995 -5.5206556921281483E-014 - 37.439999999999998 -7.4364516994994165E-014 - 37.500000000000000 -9.7171488837989157E-014 - 37.560000000000002 -1.2419398776484053E-013 - 37.619999999999990 -1.5607621957925363E-013 - 37.679999999999993 -1.9354973428275691E-013 - 37.739999999999995 -2.3744395725108969E-013 - 37.799999999999997 -2.8869784587240367E-013 - 37.859999999999999 -3.4837305074178835E-013 - 37.920000000000002 -4.1766792348065747E-013 - 37.979999999999990 -4.9793373816592474E-013 - 38.039999999999992 -5.9069176108874828E-013 - 38.099999999999994 -6.9765262074432737E-013 - 38.159999999999997 -8.2073775083808099E-013 - 38.219999999999999 -9.6210259603289651E-013 - 38.280000000000001 -1.1241612807929925E-012 - 38.340000000000003 -1.3096164220246265E-012 - 38.399999999999991 -1.5214881703726056E-012 - 38.459999999999994 -1.7631485557246557E-012 - 38.519999999999996 -2.0383585697579426E-012 - 38.579999999999998 -2.3513066807056856E-012 - 38.640000000000001 -2.7066546470276503E-012 - 38.700000000000003 -3.1095852468057265E-012 - 38.759999999999991 -3.5658513799018466E-012 - 38.819999999999993 -4.0818336554054345E-012 - 38.879999999999995 -4.6646028142848358E-012 - 38.939999999999998 -5.3219825545793734E-012 - 39.000000000000000 -6.0626212190276402E-012 - 39.060000000000002 -6.8960689115432213E-012 - 39.119999999999990 -7.8328570647363649E-012 - 39.179999999999993 -8.8845871364960545E-012 - 39.239999999999995 -1.0064029161669909E-011 - 39.299999999999997 -1.1385210600274073E-011 - 39.359999999999999 -1.2863535184822638E-011 - 39.420000000000002 -1.4515876411447404E-011 - 39.479999999999990 -1.6360719373798082E-011 - 39.539999999999992 -1.8418275116391959E-011 - 39.599999999999994 -2.0710603675434744E-011 - 39.659999999999997 -2.3261768091351777E-011 - 39.719999999999999 -2.6097955378206914E-011 - 39.780000000000001 -2.9247648074914538E-011 - 39.840000000000003 -3.2741755723135140E-011 - 39.899999999999991 -3.6613779571952277E-011 - 39.959999999999994 -4.0899961871596747E-011 - 40.019999999999996 -4.5639450080790591E-011 - 40.079999999999998 -5.0874433566309976E-011 - 40.140000000000001 -5.6650331940691290E-011 - 40.200000000000003 -6.3015900491662680E-011 - 40.259999999999991 -7.0023385145607818E-011 - 40.319999999999993 -7.7728602208073671E-011 - 40.379999999999995 -8.6191093392431523E-011 - 40.439999999999998 -9.5474204257356766E-011 - 40.500000000000000 -1.0564506264437876E-010 - 40.560000000000002 -1.1677461990990463E-010 - 40.619999999999990 -1.2893764917157761E-010 - 40.679999999999993 -1.4221256985437438E-010 - 40.739999999999995 -1.5668133986692736E-010 - 40.799999999999997 -1.7242916966890133E-010 - 40.859999999999999 -1.8954420835821330E-010 - 40.920000000000002 -2.0811705353084667E-010 - 40.979999999999990 -2.2824018885145176E-010 - 41.039999999999992 -2.5000713722098988E-010 - 41.099999999999994 -2.7351168661383545E-010 - 41.159999999999997 -2.9884652722139952E-010 - 41.219999999999999 -3.2610201566890867E-010 - 41.280000000000001 -3.5536437542645720E-010 - 41.340000000000003 -3.8671381575575697E-010 - 41.399999999999991 -4.2022190499379101E-010 - 41.459999999999994 -4.5594910742553184E-010 - 41.519999999999996 -4.9394100528266807E-010 - 41.579999999999998 -5.3422479748392763E-010 - 41.640000000000001 -5.7680464653835713E-010 - 41.700000000000003 -6.2165638072927997E-010 - 41.759999999999991 -6.6872150481523445E-010 - 41.819999999999993 -7.1790018253106871E-010 - 41.879999999999995 -7.6904322393718454E-010 - 41.939999999999998 -8.2194276927550558E-010 - 42.000000000000000 -8.7632175656886279E-010 - 42.060000000000002 -9.3182185527665416E-010 - 42.119999999999990 -9.8798976785592306E-010 - 42.179999999999993 -1.0442612435947001E-009 - 42.239999999999995 -1.0999435367966741E-009 - 42.299999999999997 -1.1541952901951419E-009 - 42.359999999999999 -1.2060035709286332E-009 - 42.420000000000002 -1.2541582725276378E-009 - 42.479999999999990 -1.2972226016441979E-009 - 42.539999999999992 -1.3335003433423799E-009 - 42.599999999999994 -1.3609994549837057E-009 - 42.659999999999997 -1.3773893214782692E-009 - 42.719999999999999 -1.3799552895922785E-009 - 42.780000000000001 -1.3655462587117876E-009 - 42.840000000000003 -1.3305150345567238E-009 - 42.899999999999991 -1.2706535344124713E-009 - 42.959999999999994 -1.1811207718828418E-009 - 43.019999999999996 -1.0563589119786466E-009 - 43.079999999999998 -8.9000437435992245E-010 - 43.140000000000001 -6.7478472437681916E-010 - 43.200000000000003 -4.0240643235941914E-010 - 43.259999999999991 -6.3429507223157239E-011 - 43.319999999999993 3.5287200217920733E-010 - 43.379999999999995 8.5866539258830225E-010 - 43.439999999999998 1.4677237568014902E-009 - 43.500000000000000 2.1956318981984275E-009 - 43.560000000000002 3.0599798269148168E-009 - 43.619999999999990 4.0806028098292286E-009 - 43.679999999999993 5.2798350109162119E-009 - 43.739999999999995 6.6827920482580702E-009 - 43.799999999999997 8.3176961124874787E-009 - 43.859999999999999 1.0216200557874318E-008 - 43.920000000000002 1.2413776478655535E-008 - 43.979999999999990 1.4950141381872188E-008 - 44.039999999999992 1.7869694438950439E-008 - 44.099999999999994 2.1222050827714706E-008 - 44.159999999999997 2.5062558654781488E-008 - 44.219999999999999 2.9452941648907726E-008 - 44.280000000000001 3.4461939187425083E-008 - 44.340000000000003 4.0166043731216320E-008 - 44.399999999999991 4.6650294475762126E-008 - 44.459999999999994 5.4009155849831138E-008 - 44.519999999999996 6.2347478521599298E-008 - 44.579999999999998 7.1781515746890798E-008 - 44.640000000000001 8.2440093185992509E-008 - 44.700000000000003 9.4465879193325574E-008 - 44.759999999999991 1.0801658742000835E-007 - 44.819999999999993 1.2326667201445522E-007 - 44.879999999999995 1.4040874104933732E-007 - 44.939999999999998 1.5965542259257256E-007 - 45.000000000000000 1.8124124792928845E-007 - 45.060000000000002 2.0542461485738264E-007 - 45.119999999999990 2.3249021242856547E-007 - 45.179999999999993 2.6275118768253942E-007 - 45.239999999999995 2.9655207027653289E-007 - 45.299999999999997 3.3427146015149750E-007 - 45.359999999999999 3.7632508560256372E-007 - 45.420000000000002 4.2316930790028784E-007 - 45.479999999999990 4.7530459550617177E-007 - 45.539999999999992 5.3327931920725741E-007 - 45.599999999999994 5.9769440265156668E-007 - 45.659999999999997 6.6920742721357706E-007 - 45.719999999999999 7.4853781061159289E-007 - 45.780000000000001 8.3647182582555720E-007 - 45.840000000000003 9.3386869934714399E-007 - 45.899999999999991 1.0416663837660141E-006 - 45.959999999999994 1.1608880586939324E-006 - 46.019999999999996 1.2926497666074999E-006 - 46.079999999999998 1.4381674975798502E-006 - 46.140000000000001 1.5987657387849529E-006 - 46.200000000000003 1.7758856533651616E-006 - 46.259999999999991 1.9710951739289510E-006 - 46.319999999999993 2.1860979337385760E-006 - 46.379999999999995 2.4227454264691973E-006 - 46.439999999999998 2.6830474474855945E-006 - 46.500000000000000 2.9691841665426041E-006 - 46.560000000000002 3.2835200340401731E-006 - 46.619999999999990 3.6286173467379214E-006 - 46.679999999999993 4.0072509282821471E-006 - 46.739999999999995 4.4224235914713051E-006 - 46.799999999999997 4.8773828834231166E-006 - 46.859999999999999 5.3756408560171556E-006 - 46.920000000000002 5.9209901146288839E-006 - 46.979999999999990 6.5175245041978032E-006 - 47.039999999999992 7.1696628566559797E-006 - 47.099999999999994 7.8821694265534144E-006 - 47.159999999999997 8.6601750378392950E-006 - 47.219999999999999 9.5092097214334652E-006 - 47.280000000000001 1.0435219499132306E-005 - 47.340000000000003 1.1444603183353355E-005 - 47.399999999999991 1.2544237064277914E-005 - 47.459999999999994 1.3741506488928359E-005 - 47.519999999999996 1.5044338102988925E-005 - 47.579999999999998 1.6461239668058051E-005 - 47.640000000000001 1.8001327367892410E-005 - 47.700000000000003 1.9674366350223468E-005 - 47.759999999999991 2.1490813871910569E-005 - 47.819999999999993 2.3461857573660404E-005 - 47.879999999999995 2.5599458629597631E-005 - 47.939999999999998 2.7916397656093335E-005 - 48.000000000000000 3.0426315251137217E-005 - 48.060000000000002 3.3143774826548982E-005 - 48.119999999999990 3.6084301114909003E-005 - 48.179999999999993 3.9264427974875512E-005 - 48.239999999999995 4.2701778291776252E-005 - 48.299999999999997 4.6415082479964030E-005 - 48.359999999999999 5.0424271309776800E-005 - 48.420000000000002 5.4750513483960859E-005 - 48.479999999999990 5.9416288898472428E-005 - 48.539999999999992 6.4445440664161679E-005 - 48.599999999999994 6.9863261440256005E-005 - 48.659999999999997 7.5696535301562600E-005 - 48.719999999999999 8.1973620686456031E-005 - 48.780000000000001 8.8724511073384811E-005 - 48.840000000000003 9.5980926973038313E-005 - 48.899999999999991 1.0377635989191923E-004 - 48.959999999999994 1.1214615419615183E-004 - 49.019999999999996 1.2112759037956234E-004 - 49.079999999999998 1.3075994875573615E-004 - 49.140000000000001 1.4108460559119306E-004 - 49.200000000000003 1.5214508784388236E-004 - 49.259999999999991 1.6398713834501561E-004 - 49.319999999999993 1.7665881101667477E-004 - 49.379999999999995 1.9021053311119311E-004 - 49.439999999999998 2.0469520596765216E-004 - 49.500000000000000 2.2016824215166620E-004 - 49.560000000000002 2.3668766928679265E-004 - 49.619999999999990 2.5431415354162750E-004 - 49.679999999999993 2.7311111326619014E-004 - 49.739999999999995 2.9314478759222241E-004 - 49.799999999999997 3.1448419159978223E-004 - 49.859999999999999 3.3720132737537824E-004 - 49.920000000000002 3.6137114345350415E-004 - 49.979999999999990 3.8707165979152757E-004 - 50.039999999999992 4.1438384195381027E-004 - 50.099999999999994 4.4339189014753588E-004 - 50.159999999999997 4.7418300319787511E-004 - 50.219999999999999 5.0684769965256868E-004 - 50.280000000000001 5.4147955655767894E-004 - 50.340000000000003 5.7817536866829771E-004 - 50.399999999999991 6.1703509432103193E-004 - 50.459999999999994 6.5816195822687110E-004 - 50.519999999999996 7.0166227853571091E-004 - 50.579999999999998 7.4764558395818250E-004 - 50.640000000000001 7.9622439836319594E-004 - 50.700000000000003 8.4751458665941739E-004 - 50.759999999999991 9.0163460478114455E-004 - 50.819999999999993 9.5870616248743630E-004 - 50.879999999999995 1.0188534758594544E-003 - 50.939999999999998 1.0822039992544039E-003 - 51.000000000000000 1.1488873151283192E-003 - 51.060000000000002 1.2190358104253378E-003 - 51.119999999999990 1.2927841499632234E-003 - 51.179999999999993 1.3702691086407521E-003 - 51.239999999999995 1.4516296226899448E-003 - 51.299999999999997 1.5370061810491718E-003 - 51.359999999999999 1.6265410373594387E-003 - 51.420000000000002 1.7203779499192235E-003 - 51.479999999999990 1.8186617874903781E-003 - 51.539999999999992 1.9215379583761149E-003 - 51.599999999999994 2.0291526998128017E-003 - 51.659999999999997 2.1416521143905664E-003 - 51.719999999999999 2.2591829802573052E-003 - 51.780000000000001 2.3818913178824028E-003 - 51.840000000000003 2.5099224313270257E-003 - 51.899999999999991 2.6434197894957606E-003 - 51.959999999999994 2.7825265385255926E-003 - 52.019999999999996 2.9273828581409698E-003 - 52.079999999999998 3.0781270112394785E-003 - 52.140000000000001 3.2348943819414900E-003 - 52.200000000000003 3.3978169055627807E-003 - 52.259999999999991 3.5670225534234746E-003 - 52.319999999999993 3.7426355881811906E-003 - 52.379999999999995 3.9247747677200020E-003 - 52.439999999999998 4.1135541646974520E-003 - 52.500000000000000 4.3090811921563041E-003 - 52.560000000000002 4.5114572270266119E-003 - 52.619999999999990 4.7207765636911175E-003 - 52.679999999999993 4.9371260275026859E-003 - 52.739999999999995 5.1605838693418414E-003 - 52.799999999999997 5.3912198759148459E-003 - 52.859999999999999 5.6290938308748420E-003 - 52.920000000000002 5.8742567654785681E-003 - 52.979999999999990 6.1267481991841496E-003 - 53.039999999999992 6.3865960037110033E-003 - 53.099999999999994 6.6538175281183939E-003 - 53.159999999999997 6.9284169376735219E-003 - 53.219999999999999 7.2103862466680931E-003 - 53.280000000000001 7.4997027032779068E-003 - 53.339999999999989 7.7963300234478155E-003 - 53.399999999999991 8.1002176620045760E-003 - 53.459999999999994 8.4112991534355305E-003 - 53.519999999999996 8.7294938441155705E-003 - 53.579999999999998 9.0547030935780176E-003 - 53.640000000000001 9.3868126229810084E-003 - 53.700000000000003 9.7256906533970070E-003 - 53.759999999999991 1.0071187263260827E-002 - 53.819999999999993 1.0423137138774480E-002 - 53.879999999999995 1.0781354468350317E-002 - 53.939999999999998 1.1145635098165445E-002 - 54.000000000000000 1.1515756096052264E-002 - 54.060000000000002 1.1891476626991247E-002 - 54.119999999999990 1.2272535145209656E-002 - 54.179999999999993 1.2658652148192931E-002 - 54.239999999999995 1.3049526317934698E-002 - 54.299999999999997 1.3444840272464186E-002 - 54.359999999999999 1.3844254325912648E-002 - 54.420000000000002 1.4247410812094605E-002 - 54.479999999999990 1.4653933193241342E-002 - 54.539999999999992 1.5063421366131180E-002 - 54.599999999999994 1.5475462527284375E-002 - 54.659999999999997 1.5889623220312819E-002 - 54.719999999999999 1.6305450500203562E-002 - 54.780000000000001 1.6722473330066358E-002 - 54.839999999999989 1.7140203622008764E-002 - 54.899999999999991 1.7558138607779532E-002 - 54.959999999999994 1.7975756966252830E-002 - 55.019999999999996 1.8392523178003571E-002 - 55.079999999999998 1.8807887201233942E-002 - 55.140000000000001 1.9221285062195916E-002 - 55.200000000000003 1.9632136805241372E-002 - 55.259999999999991 2.0039853672065157E-002 - 55.319999999999993 2.0443833388540857E-002 - 55.379999999999995 2.0843466076185285E-002 - 55.439999999999998 2.1238130921227796E-002 - 55.500000000000000 2.1627200591105043E-002 - 55.560000000000002 2.2010037919716220E-002 - 55.619999999999990 2.2386002071261110E-002 - 55.679999999999993 2.2754451031782690E-002 - 55.739999999999995 2.3114735175522566E-002 - 55.799999999999997 2.3466205237534926E-002 - 55.859999999999999 2.3808214621141726E-002 - 55.920000000000002 2.4140113024714263E-002 - 55.979999999999990 2.4461255591605828E-002 - 56.039999999999992 2.4771003192773398E-002 - 56.099999999999994 2.5068720497284293E-002 - 56.159999999999997 2.5353782999231866E-002 - 56.219999999999999 2.5625570334883940E-002 - 56.280000000000001 2.5883477633199044E-002 - 56.339999999999989 2.6126906732817392E-002 - 56.399999999999991 2.6355277996985085E-002 - 56.459999999999994 2.6568023250778790E-002 - 56.519999999999996 2.6764593944780247E-002 - 56.579999999999998 2.6944460675977607E-002 - 56.640000000000001 2.7107108734272588E-002 - 56.700000000000003 2.7252048757132791E-002 - 56.759999999999991 2.7378814446127980E-002 - 56.819999999999993 2.7486962638796946E-002 - 56.879999999999995 2.7576075154020011E-002 - 56.939999999999998 2.7645759805660589E-002 - 57.000000000000000 2.7695653505190758E-002 - 57.060000000000002 2.7725421364344926E-002 - 57.119999999999990 2.7734760341703888E-002 - 57.179999999999993 2.7723397002656292E-002 - 57.239999999999995 2.7691090564964854E-002 - 57.299999999999997 2.7637633271020659E-002 - 57.359999999999999 2.7562854377537114E-002 - 57.420000000000002 2.7466613746626806E-002 - 57.479999999999990 2.7348809201180942E-002 - 57.539999999999992 2.7209375445325285E-002 - 57.599999999999994 2.7048280736079393E-002 - 57.659999999999997 2.6865532202213160E-002 - 57.719999999999999 2.6661171812831209E-002 - 57.780000000000001 2.6435282079051475E-002 - 57.839999999999989 2.6187979088470363E-002 - 57.899999999999991 2.5919422038068088E-002 - 57.959999999999994 2.5629804070163069E-002 - 58.019999999999996 2.5319351436398286E-002 - 58.079999999999998 2.4988332443253571E-002 - 58.140000000000001 2.4637051814078680E-002 - 58.200000000000003 2.4265846389794333E-002 - 58.259999999999991 2.3875091100300023E-002 - 58.319999999999993 2.3465195226575961E-002 - 58.379999999999995 2.3036601569420716E-002 - 58.439999999999998 2.2589781460587401E-002 - 58.500000000000000 2.2125244460372420E-002 - 58.560000000000002 2.1643527736280213E-002 - 58.619999999999990 2.1145197431467755E-002 - 58.679999999999993 2.0630849853838003E-002 - 58.739999999999995 2.0101106031439719E-002 - 58.799999999999997 1.9556613182348744E-002 - 58.859999999999999 1.8998044945102967E-002 - 58.920000000000002 1.8426095344458122E-002 - 58.979999999999990 1.7841480239504132E-002 - 59.039999999999992 1.7244935021207140E-002 - 59.099999999999994 1.6637211944862097E-002 - 59.159999999999997 1.6019080003657295E-002 - 59.219999999999999 1.5391322792346444E-002 - 59.280000000000001 1.4754734467242072E-002 - 59.339999999999989 1.4110124564414340E-002 - 59.399999999999991 1.3458306054952410E-002 - 59.459999999999994 1.2800102853014195E-002 - 59.519999999999996 1.2136341819277145E-002 - 59.579999999999998 1.1467855407886082E-002 - 59.640000000000001 1.0795475447389895E-002 - 59.700000000000003 1.0120035713642114E-002 - 59.759999999999991 9.4423658490845955E-003 - 59.819999999999993 8.7632932282316004E-003 - 59.879999999999995 8.0836393597211453E-003 - 59.939999999999998 7.4042187676313844E-003 - 60.000000000000000 6.7258359154250130E-003 - 60.060000000000002 6.0492864486347752E-003 - 60.119999999999990 5.3753526912114352E-003 - 60.179999999999993 4.7048034921800558E-003 - 60.239999999999995 4.0383931190941498E-003 - 60.299999999999997 3.3768588206522436E-003 - 60.359999999999999 2.7209202661650595E-003 - 60.420000000000002 2.0712782455472598E-003 - 60.479999999999990 1.4286126508531284E-003 - 60.539999999999992 7.9358241727209484E-004 - 60.599999999999994 1.6682390133769250E-004 - 60.659999999999997 -4.5104998074164704E-004 - 60.719999999999999 -1.0594511013367572E-003 - 60.780000000000001 -1.6578163484381923E-003 - 60.839999999999989 -2.2456083137620854E-003 - 60.899999999999991 -2.8223162308456309E-003 - 60.959999999999994 -3.3874568548118273E-003 - 61.019999999999996 -3.9405738926178409E-003 - 61.079999999999998 -4.4812400452280358E-003 - 61.140000000000001 -5.0090557368720383E-003 - 61.200000000000003 -5.5236500544344402E-003 - 61.259999999999991 -6.0246815670454259E-003 - 61.319999999999993 -6.5118372401108248E-003 - 61.379999999999995 -6.9848325485594772E-003 - 61.439999999999998 -7.4434109809248606E-003 - 61.500000000000000 -7.8873479189349050E-003 - 61.560000000000002 -8.3164434067034519E-003 - 61.619999999999990 -8.7305280981731497E-003 - 61.679999999999993 -9.1294589827399988E-003 - 61.739999999999995 -9.5131222979187875E-003 - 61.799999999999997 -9.8814281343054707E-003 - 61.859999999999999 -1.0234316185659838E-002 - 61.920000000000002 -1.0571750678272776E-002 - 61.979999999999990 -1.0893720156267361E-002 - 62.039999999999992 -1.1200238342948018E-002 - 62.099999999999994 -1.1491343180138235E-002 - 62.159999999999997 -1.1767094089302437E-002 - 62.219999999999999 -1.2027575041350826E-002 - 62.280000000000001 -1.2272890180170772E-002 - 62.339999999999989 -1.2503164546011143E-002 - 62.399999999999991 -1.2718543111331006E-002 - 62.459999999999994 -1.2919188437771017E-002 - 62.519999999999996 -1.3105281291495260E-002 - 62.579999999999998 -1.3277021473765620E-002 - 62.640000000000001 -1.3434623065205891E-002 - 62.700000000000003 -1.3578315075168530E-002 - 62.759999999999991 -1.3708340994431738E-002 - 62.819999999999993 -1.3824958367566085E-002 - 62.879999999999995 -1.3928435505183757E-002 - 62.939999999999998 -1.4019053310255818E-002 - 63.000000000000000 -1.4097102277661862E-002 - 63.060000000000002 -1.4162883070610990E-002 - 63.119999999999990 -1.4216704815285319E-002 - 63.179999999999993 -1.4258883043028917E-002 - 63.239999999999995 -1.4289743449072989E-002 - 63.299999999999997 -1.4309613454319360E-002 - 63.359999999999999 -1.4318828485710193E-002 - 63.420000000000002 -1.4317727967991661E-002 - 63.479999999999990 -1.4306653139547994E-002 - 63.539999999999992 -1.4285949353072201E-002 - 63.599999999999994 -1.4255965556597704E-002 - 63.659999999999997 -1.4217049063855229E-002 - 63.719999999999999 -1.4169550144499724E-002 - 63.780000000000001 -1.4113818868203539E-002 - 63.839999999999989 -1.4050203110591885E-002 - 63.899999999999991 -1.3979050638882266E-002 - 63.959999999999994 -1.3900708117559026E-002 - 64.019999999999996 -1.3815518793067768E-002 - 64.079999999999998 -1.3723823970555540E-002 - 64.140000000000001 -1.3625962633234220E-002 - 64.200000000000003 -1.3522267685395002E-002 - 64.259999999999991 -1.3413069441735575E-002 - 64.319999999999993 -1.3298693314281327E-002 - 64.379999999999995 -1.3179460050664123E-002 - 64.439999999999998 -1.3055685110891776E-002 - 64.500000000000000 -1.2927678967132821E-002 - 64.560000000000002 -1.2795745355644992E-002 - 64.619999999999990 -1.2660182378355632E-002 - 64.679999999999993 -1.2521283008690754E-002 - 64.739999999999995 -1.2379332948694427E-002 - 64.799999999999997 -1.2234611491341614E-002 - 64.859999999999999 -1.2087389755452808E-002 - 64.920000000000002 -1.1937933149447733E-002 - 64.979999999999990 -1.1786500382965545E-002 - 65.039999999999992 -1.1633342537404933E-002 - 65.099999999999994 -1.1478703499388026E-002 - 65.159999999999997 -1.1322819329846074E-002 - 65.219999999999999 -1.1165919549038785E-002 - 65.280000000000001 -1.1008226696873420E-002 - 65.339999999999989 -1.0849953649280264E-002 - 65.399999999999991 -1.0691308198593952E-002 - 65.459999999999994 -1.0532488969807619E-002 - 65.519999999999996 -1.0373687414463133E-002 - 65.579999999999998 -1.0215089280963895E-002 - 65.640000000000001 -1.0056872151934836E-002 - 65.700000000000003 -9.8992049875764737E-003 - 65.759999999999991 -9.7422512295895110E-003 - 65.819999999999993 -9.5861650492619216E-003 - 65.879999999999995 -9.4310954221568984E-003 - 65.939999999999998 -9.2771843403095904E-003 - 66.000000000000000 -9.1245651060503953E-003 - 66.060000000000002 -8.9733649690187812E-003 - 66.119999999999990 -8.8237042745733900E-003 - 66.179999999999993 -8.6756973602768600E-003 - 66.239999999999995 -8.5294516291093483E-003 - 66.299999999999997 -8.3850671481128635E-003 - 66.359999999999999 -8.2426390259516952E-003 - 66.420000000000002 -8.1022545532024298E-003 - 66.479999999999990 -7.9639962379664149E-003 - 66.539999999999992 -7.8279391123472677E-003 - 66.599999999999994 -7.6941542346866581E-003 - 66.659999999999997 -7.5627047706717382E-003 - 66.719999999999999 -7.4336503846866514E-003 - 66.780000000000001 -7.3070436593065703E-003 - 66.839999999999989 -7.1829329887069856E-003 - 66.899999999999991 -7.0613600227576560E-003 - 66.959999999999994 -6.9423627615944287E-003 - 67.019999999999996 -6.8259735828932709E-003 - 67.079999999999998 -6.7122203839475427E-003 - 67.140000000000001 -6.6011265944405113E-003 - 67.199999999999989 -6.4927100992935886E-003 - 67.259999999999991 -6.3869850781190290E-003 - 67.319999999999993 -6.2839610923255589E-003 - 67.379999999999995 -6.1836443975229541E-003 - 67.439999999999998 -6.0860362679107079E-003 - 67.500000000000000 -5.9911344692129840E-003 - 67.560000000000002 -5.8989329404330474E-003 - 67.619999999999990 -5.8094220765436766E-003 - 67.679999999999993 -5.7225896630732380E-003 - 67.739999999999995 -5.6384190324079526E-003 - 67.799999999999997 -5.5568906246664463E-003 - 67.859999999999999 -5.4779823290265111E-003 - 67.920000000000002 -5.4016683424011501E-003 - 67.979999999999990 -5.3279211646328137E-003 - 68.039999999999992 -5.2567094035498065E-003 - 68.099999999999994 -5.1880002010554647E-003 - 68.159999999999997 -5.1217584747854476E-003 - 68.219999999999999 -5.0579461060276578E-003 - 68.280000000000001 -4.9965231336744813E-003 - 68.339999999999989 -4.9374477515238702E-003 - 68.399999999999991 -4.8806768702960683E-003 - 68.459999999999994 -4.8261644046803023E-003 - 68.519999999999996 -4.7738635188078402E-003 - 68.579999999999998 -4.7237258679096415E-003 - 68.640000000000001 -4.6757015209192244E-003 - 68.699999999999989 -4.6297389441227604E-003 - 68.759999999999991 -4.5857857914045055E-003 - 68.819999999999993 -4.5437879710517187E-003 - 68.879999999999995 -4.5036918137987660E-003 - 68.939999999999998 -4.4654412307374679E-003 - 69.000000000000000 -4.4289801167575792E-003 - 69.060000000000002 -4.3942516128038910E-003 - 69.119999999999990 -4.3611976910886878E-003 - 69.179999999999993 -4.3297606142818296E-003 - 69.239999999999995 -4.2998811538081938E-003 - 69.299999999999997 -4.2715012088334692E-003 - 69.359999999999999 -4.2445608646066299E-003 - 69.420000000000002 -4.2190005570701787E-003 - 69.479999999999990 -4.1947606326673045E-003 - 69.539999999999992 -4.1717817892700099E-003 - 69.599999999999994 -4.1500033167314980E-003 - 69.659999999999997 -4.1293661743264922E-003 - 69.719999999999999 -4.1098101614563103E-003 - 69.780000000000001 -4.0912755996867414E-003 - 69.839999999999989 -4.0737038072740841E-003 - 69.899999999999991 -4.0570352109687534E-003 - 69.959999999999994 -4.0412111606518159E-003 - 70.019999999999996 -4.0261729255219826E-003 - 70.079999999999998 -4.0118624693952273E-003 - 70.140000000000001 -3.9982221300303364E-003 - 70.199999999999989 -3.9851946159980486E-003 - 70.259999999999991 -3.9727232367139454E-003 - 70.319999999999993 -3.9607519676911288E-003 - 70.379999999999995 -3.9492250561848968E-003 - 70.439999999999998 -3.9380875409249566E-003 - 70.500000000000000 -3.9272849751112822E-003 - 70.560000000000002 -3.9167642208882449E-003 - 70.619999999999990 -3.9064719101316436E-003 - 70.679999999999993 -3.8963561254460044E-003 - 70.739999999999995 -3.8863654578217464E-003 - 70.799999999999997 -3.8764495713165831E-003 - 70.859999999999999 -3.8665582946477749E-003 - 70.920000000000002 -3.8566425883991011E-003 - 70.979999999999990 -3.8466546091473494E-003 - 71.039999999999992 -3.8365473730145126E-003 - 71.099999999999994 -3.8262743912854942E-003 - 71.159999999999997 -3.8157908209620235E-003 - 71.219999999999999 -3.8050520065166060E-003 - 71.280000000000001 -3.7940150284721608E-003 - 71.339999999999989 -3.7826371714690149E-003 - 71.399999999999991 -3.7708775118584096E-003 - 71.459999999999994 -3.7586958545376037E-003 - 71.519999999999996 -3.7460530144865843E-003 - 71.579999999999998 -3.7329109795259572E-003 - 71.640000000000001 -3.7192333265244990E-003 - 71.699999999999989 -3.7049841880119300E-003 - 71.759999999999991 -3.6901291948039259E-003 - 71.819999999999993 -3.6746352893520609E-003 - 71.879999999999995 -3.6584703699497770E-003 - 71.939999999999998 -3.6416035238430889E-003 - 72.000000000000000 -3.6240056665053019E-003 - 72.060000000000002 -3.6056483966737038E-003 - 72.119999999999990 -3.5865052891284237E-003 - 72.179999999999993 -3.5665507427125893E-003 - 72.239999999999995 -3.5457606128662432E-003 - 72.299999999999997 -3.5241123894682934E-003 - 72.359999999999999 -3.5015848500895945E-003 - 72.420000000000002 -3.4781583381205969E-003 - 72.479999999999990 -3.4538142509031784E-003 - 72.539999999999992 -3.4285359747443971E-003 - 72.599999999999994 -3.4023081079370024E-003 - 72.659999999999997 -3.3751168351350514E-003 - 72.719999999999999 -3.3469500482088774E-003 - 72.780000000000001 -3.3177967736114002E-003 - 72.839999999999989 -3.2876481314139212E-003 - 72.899999999999991 -3.2564965377614671E-003 - 72.959999999999994 -3.2243359190129790E-003 - 73.019999999999996 -3.1911623435909161E-003 - 73.079999999999998 -3.1569729975531782E-003 - 73.140000000000001 -3.1217673704560605E-003 - 73.199999999999989 -3.0855463519519366E-003 - 73.259999999999991 -3.0483120348220524E-003 - 73.319999999999993 -3.0100688501006247E-003 - 73.379999999999995 -2.9708228241173635E-003 - 73.439999999999998 -2.9305816342170827E-003 - 73.500000000000000 -2.8893548858600548E-003 - 73.560000000000002 -2.8471535082279513E-003 - 73.619999999999990 -2.8039906537082522E-003 - 73.679999999999993 -2.7598807802463486E-003 - 73.739999999999995 -2.7148404674272849E-003 - 73.799999999999997 -2.6688877372596262E-003 - 73.859999999999999 -2.6220421254210032E-003 - 73.920000000000002 -2.5743253226056095E-003 - 73.979999999999990 -2.5257605353576004E-003 - 74.039999999999992 -2.4763723314604759E-003 - 74.099999999999994 -2.4261872071775648E-003 - 74.159999999999997 -2.3752331667071880E-003 - 74.219999999999999 -2.3235399099583291E-003 - 74.280000000000001 -2.2711381933978713E-003 - 74.339999999999989 -2.2180606211746876E-003 - 74.399999999999991 -2.1643413464538601E-003 - 74.459999999999994 -2.1100159000659990E-003 - 74.519999999999996 -2.0551211917564619E-003 - 74.579999999999998 -1.9996949624136824E-003 - 74.640000000000001 -1.9437769581637499E-003 - 74.699999999999989 -1.8874074820871725E-003 - 74.759999999999991 -1.8306284518882839E-003 - 74.819999999999993 -1.7734828842242477E-003 - 74.879999999999995 -1.7160146913097107E-003 - 74.939999999999998 -1.6582688091434598E-003 - 75.000000000000000 -1.6002909853484537E-003 - 75.060000000000002 -1.5421279494190797E-003 - 75.119999999999990 -1.4838273238487855E-003 - 75.179999999999993 -1.4254370960746429E-003 - 75.239999999999995 -1.3670060632897795E-003 - 75.299999999999997 -1.3085833874528590E-003 - 75.359999999999999 -1.2502188692667844E-003 - 75.420000000000002 -1.1919626281304547E-003 - 75.479999999999990 -1.1338647729870238E-003 - 75.539999999999992 -1.0759760161315730E-003 - 75.599999999999994 -1.0183466484266670E-003 - 75.659999999999997 -9.6102733612795971E-004 - 75.719999999999999 -9.0406842338920472E-004 - 75.780000000000001 -8.4752004102174431E-004 - 75.839999999999989 -7.9143220676478553E-004 - 75.899999999999991 -7.3585448181381040E-004 - 75.959999999999994 -6.8083584558366274E-004 - 76.019999999999996 -6.2642489382643744E-004 - 76.079999999999998 -5.7266948117867084E-004 - 76.140000000000001 -5.1961687212252142E-004 - 76.199999999999989 -4.6731342075292265E-004 - 76.259999999999991 -4.1580472777780111E-004 - 76.319999999999993 -3.6513534635044241E-004 - 76.379999999999995 -3.1534893608809443E-004 - 76.439999999999998 -2.6648802326936609E-004 - 76.500000000000000 -2.1859394206708387E-004 - 76.560000000000002 -1.7170687666279505E-004 - 76.619999999999990 -1.2586564370818703E-004 - 76.679999999999993 -8.1107783751317150E-005 - 76.739999999999995 -3.7469389953955706E-005 - 76.799999999999997 5.0149058689433776E-006 - 76.859999999999999 4.6311963635262003E-005 - 76.920000000000002 8.6390232136437478E-005 - 76.979999999999990 1.2521979425369090E-004 - 77.039999999999992 1.6277233583891556E-004 - 77.099999999999994 1.9902124224345163E-004 - 77.159999999999997 2.3394162061818858E-004 - 77.219999999999999 2.6751029217682792E-004 - 77.280000000000001 2.9970583140677447E-004 - 77.339999999999989 3.3050861304433576E-004 - 77.399999999999991 3.5990070054190998E-004 - 77.459999999999994 3.8786596848252967E-004 - 77.519999999999996 4.1439010315645077E-004 - 77.579999999999998 4.3946049175709899E-004 - 77.640000000000001 4.6306629414617274E-004 - 77.699999999999989 4.8519844015042040E-004 - 77.759999999999991 5.0584951914273146E-004 - 77.819999999999993 5.2501392467208430E-004 - 77.879999999999995 5.4268763668425071E-004 - 77.939999999999998 5.5886835096623970E-004 - 78.000000000000000 5.7355537540390101E-004 - 78.060000000000002 5.8674968530582502E-004 - 78.119999999999990 5.9845373798398781E-004 - 78.179999999999993 6.0867159820198532E-004 - 78.239999999999995 6.1740886550821843E-004 - 78.299999999999997 6.2467257819704249E-004 - 78.359999999999999 6.3047131891227025E-004 - 78.420000000000002 6.3481495464168844E-004 - 78.479999999999990 6.3771485376241336E-004 - 78.539999999999992 6.3918364656927293E-004 - 78.599999999999994 6.3923524611987094E-004 - 78.659999999999997 6.3788483679946709E-004 - 78.719999999999999 6.3514884466280615E-004 - 78.780000000000001 6.3104484932425414E-004 - 78.839999999999989 6.2559143169132428E-004 - 78.899999999999991 6.1880840390828647E-004 - 78.959999999999994 6.1071653293122668E-004 - 79.019999999999996 6.0133755400208473E-004 - 79.079999999999998 5.9069418036562554E-004 - 79.140000000000001 5.7880990207324467E-004 - 79.199999999999989 5.6570913858623511E-004 - 79.259999999999991 5.5141699850588561E-004 - 79.319999999999993 5.3595946361947595E-004 - 79.379999999999995 5.1936316297542852E-004 - 79.439999999999998 5.0165530871883798E-004 - 79.500000000000000 4.8286386989931484E-004 - 79.560000000000002 4.6301730440611092E-004 - 79.619999999999990 4.4214468527925153E-004 - 79.679999999999993 4.2027560713036314E-004 - 79.739999999999995 3.9744008273235785E-004 - 79.799999999999997 3.7366867004138377E-004 - 79.859999999999999 3.4899233774206122E-004 - 79.920000000000002 3.2344242477241891E-004 - 79.979999999999990 2.9705069015200064E-004 - 80.039999999999992 2.6984922833111146E-004 - 80.099999999999994 2.4187050014917656E-004 - 80.159999999999997 2.1314724584803205E-004 - 80.219999999999999 1.8371244225949768E-004 - 80.280000000000001 1.5359941662279733E-004 - 80.340000000000003 1.2284166533672560E-004 - 80.400000000000006 9.1472896377161984E-005 - 80.460000000000008 5.9526985627053558E-005 - 80.519999999999982 2.7037995737339308E-005 - 80.579999999999984 -5.9599141830663462E-006 - 80.639999999999986 -3.9432482435863879E-005 - 80.699999999999989 -7.3345401183719732E-005 - 80.759999999999991 -1.0766429419912116E-004 - 80.819999999999993 -1.4235480710778791E-004 - 80.879999999999995 -1.7738257965292539E-004 - 80.939999999999998 -2.1271329251013686E-004 - 81.000000000000000 -2.4831271717332674E-004 - 81.060000000000002 -2.8414667142555918E-004 - 81.120000000000005 -3.2018112863404000E-004 - 81.180000000000007 -3.5638217972161490E-004 - 81.240000000000009 -3.9271604837334590E-004 - 81.299999999999983 -4.2914918999483744E-004 - 81.359999999999985 -4.6564819096225413E-004 - 81.419999999999987 -5.0217987445812533E-004 - 81.479999999999990 -5.3871131718080103E-004 - 81.539999999999992 -5.7520984640734593E-004 - 81.599999999999994 -6.1164307616222555E-004 - 81.659999999999997 -6.4797896536878253E-004 - 81.719999999999999 -6.8418571469799645E-004 - 81.780000000000001 -7.2023199974829738E-004 - 81.840000000000003 -7.5608669495405058E-004 - 81.900000000000006 -7.9171924847077019E-004 - 81.960000000000008 -8.2709955730770755E-004 - 82.019999999999982 -8.6219786896380378E-004 - 82.079999999999984 -8.9698497188896251E-004 - 82.139999999999986 -9.3143215435596946E-004 - 82.199999999999989 -9.6551134502689405E-004 - 82.259999999999991 -9.9919499411311010E-004 - 82.319999999999993 -1.0324561022216645E-003 - 82.379999999999995 -1.0652683415721400E-003 - 82.439999999999998 -1.0976059816179798E-003 - 82.500000000000000 -1.1294440183764599E-003 - 82.560000000000002 -1.1607580186559227E-003 - 82.620000000000005 -1.1915243563017130E-003 - 82.680000000000007 -1.2217200804127189E-003 - 82.740000000000009 -1.2513228267771420E-003 - 82.799999999999983 -1.2803110569933607E-003 - 82.859999999999985 -1.3086640106801072E-003 - 82.919999999999987 -1.3363614868625755E-003 - 82.979999999999990 -1.3633842444922414E-003 - 83.039999999999992 -1.3897136853267156E-003 - 83.099999999999994 -1.4153317792703257E-003 - 83.159999999999997 -1.4402215371386482E-003 - 83.219999999999999 -1.4643665386023853E-003 - 83.280000000000001 -1.4877512480819392E-003 - 83.340000000000003 -1.5103609004270319E-003 - 83.400000000000006 -1.5321813047833946E-003 - 83.460000000000008 -1.5531992082617357E-003 - 83.519999999999982 -1.5734020971832072E-003 - 83.579999999999984 -1.5927783406035343E-003 - 83.639999999999986 -1.6113167864615246E-003 - 83.699999999999989 -1.6290073867182013E-003 - 83.759999999999991 -1.6458404690152541E-003 - 83.819999999999993 -1.6618074236144614E-003 - 83.879999999999995 -1.6769003328114822E-003 - 83.939999999999998 -1.6911118367757766E-003 - 84.000000000000000 -1.7044355709888103E-003 - 84.060000000000002 -1.7168656497051227E-003 - 84.120000000000005 -1.7283972173881290E-003 - 84.180000000000007 -1.7390258674652246E-003 - 84.240000000000009 -1.7487478288306906E-003 - 84.299999999999983 -1.7575602033371945E-003 - 84.359999999999985 -1.7654607465519543E-003 - 84.419999999999987 -1.7724478128677947E-003 - 84.479999999999990 -1.7785204162774852E-003 - 84.539999999999992 -1.7836782071138017E-003 - 84.599999999999994 -1.7879215718919381E-003 - 84.659999999999997 -1.7912513965935325E-003 - 84.719999999999999 -1.7936693067519020E-003 - 84.780000000000001 -1.7951775639660024E-003 - 84.840000000000003 -1.7957791242303579E-003 - 84.900000000000006 -1.7954772748567298E-003 - 84.960000000000008 -1.7942762662726674E-003 - 85.019999999999982 -1.7921808296803364E-003 - 85.079999999999984 -1.7891963672910867E-003 - 85.139999999999986 -1.7853289517843506E-003 - 85.199999999999989 -1.7805850050434358E-003 - 85.259999999999991 -1.7749719915415157E-003 - 85.319999999999993 -1.7684976002151924E-003 - 85.379999999999995 -1.7611705666604120E-003 - 85.439999999999998 -1.7529999502750838E-003 - 85.500000000000000 -1.7439956900892539E-003 - 85.560000000000002 -1.7341683119031809E-003 - 85.620000000000005 -1.7235289846042896E-003 - 85.680000000000007 -1.7120894085455199E-003 - 85.740000000000009 -1.6998621517154760E-003 - 85.799999999999983 -1.6868602413839774E-003 - 85.859999999999985 -1.6730975736501980E-003 - 85.919999999999987 -1.6585884700968613E-003 - 85.979999999999990 -1.6433480776074216E-003 - 86.039999999999992 -1.6273921630664411E-003 - 86.099999999999994 -1.6107370448458893E-003 - 86.159999999999997 -1.5933998690764826E-003 - 86.219999999999999 -1.5753982951993907E-003 - 86.280000000000001 -1.5567507332047551E-003 - 86.340000000000003 -1.5374760139733059E-003 - 86.400000000000006 -1.5175940266981419E-003 - 86.460000000000008 -1.4971248630185807E-003 - 86.519999999999982 -1.4760895193140482E-003 - 86.579999999999984 -1.4545094309833051E-003 - 86.639999999999986 -1.4324068333951539E-003 - 86.699999999999989 -1.4098044811029493E-003 - 86.759999999999991 -1.3867254400665133E-003 - 86.819999999999993 -1.3631938475335041E-003 - 86.879999999999995 -1.3392341275558484E-003 - 86.939999999999998 -1.3148711302917347E-003 - 87.000000000000000 -1.2901305187584201E-003 - 87.060000000000002 -1.2650382955126283E-003 - 87.120000000000005 -1.2396206816984359E-003 - 87.180000000000007 -1.2139047103909908E-003 - 87.240000000000009 -1.1879176671244092E-003 - 87.299999999999983 -1.1616870411245985E-003 - 87.359999999999985 -1.1352410737313333E-003 - 87.419999999999987 -1.1086078404890624E-003 - 87.479999999999990 -1.0818160205227721E-003 - 87.539999999999992 -1.0548943496740868E-003 - 87.599999999999994 -1.0278718509185384E-003 - 87.659999999999997 -1.0007775665549677E-003 - 87.719999999999999 -9.7364069243889182E-004 - 87.780000000000001 -9.4649053218388596E-004 - 87.840000000000003 -9.1935652723557494E-004 - 87.900000000000006 -8.9226783649117795E-004 - 87.960000000000008 -8.6525378074073722E-004 - 88.019999999999982 -8.3834345690316414E-004 - 88.079999999999984 -8.1156576904455871E-004 - 88.139999999999986 -7.8494956917465604E-004 - 88.199999999999989 -7.5852341875787027E-004 - 88.259999999999991 -7.3231546430945242E-004 - 88.319999999999993 -7.0635361074103745E-004 - 88.379999999999995 -6.8066532494785519E-004 - 88.439999999999998 -6.5527772310430756E-004 - 88.500000000000000 -6.3021737845290007E-004 - 88.560000000000002 -6.0551028932934561E-004 - 88.620000000000005 -5.8118196343188045E-004 - 88.680000000000007 -5.5725724298936650E-004 - 88.740000000000009 -5.3376034585100299E-004 - 88.799999999999983 -5.1071477134086824E-004 - 88.859999999999985 -4.8814333435333464E-004 - 88.919999999999987 -4.6606795136647575E-004 - 88.979999999999990 -4.4450989027635892E-004 - 89.039999999999992 -4.2348950154414333E-004 - 89.099999999999994 -4.0302630418556146E-004 - 89.159999999999997 -3.8313888752812417E-004 - 89.219999999999999 -3.6384494702232264E-004 - 89.280000000000001 -3.4516124752842763E-004 - 89.340000000000003 -3.2710359739934736E-004 - 89.400000000000006 -3.0968675232978478E-004 - 89.460000000000008 -2.9292453340087091E-004 - 89.519999999999982 -2.7682967477097014E-004 - 89.579999999999984 -2.6141393383660461E-004 - 89.639999999999986 -2.4668792743560731E-004 - 89.699999999999989 -2.3266133151144319E-004 - 89.759999999999991 -2.1934265820481078E-004 - 89.819999999999993 -2.0673939036048336E-004 - 89.879999999999995 -1.9485790076510074E-004 - 89.939999999999998 -1.8370350337355794E-004 - 90.000000000000000 -1.7328046745399012E-004 - 90.060000000000002 -1.6359193077201937E-004 - 90.120000000000005 -1.5464001858559126E-004 - 90.180000000000007 -1.4642580509310730E-004 - 90.240000000000009 -1.3894935171740124E-004 - 90.299999999999983 -1.3220968567194215E-004 - 90.359999999999985 -1.2620484843549047E-004 - 90.419999999999987 -1.2093191832273143E-004 - 90.479999999999990 -1.1638701791816306E-004 - 90.539999999999992 -1.1256535281109411E-004 - 90.599999999999994 -1.0946121660903279E-004 - 90.659999999999997 -1.0706804015405773E-004 - 90.719999999999999 -1.0537839942546817E-004 - 90.780000000000001 -1.0438404347884629E-004 - 90.840000000000003 -1.0407592598071526E-004 - 90.900000000000006 -1.0444424907111451E-004 - 90.960000000000008 -1.0547844505532580E-004 - 91.019999999999982 -1.0716723067336984E-004 - 91.079999999999984 -1.0949864953822876E-004 - 91.139999999999986 -1.1246008132728721E-004 - 91.199999999999989 -1.1603826782805601E-004 - 91.259999999999991 -1.2021937055409302E-004 - 91.319999999999993 -1.2498894172182246E-004 - 91.379999999999995 -1.3033204306895377E-004 - 91.439999999999998 -1.3623321465045042E-004 - 91.500000000000000 -1.4267649491135189E-004 - 91.560000000000002 -1.4964552137554469E-004 - 91.620000000000005 -1.5712351631791971E-004 - 91.680000000000007 -1.6509332051599829E-004 - 91.739999999999981 -1.7353746469576551E-004 - 91.799999999999983 -1.8243814687610301E-004 - 91.859999999999985 -1.9177730024316967E-004 - 91.919999999999987 -2.0153663944551947E-004 - 91.979999999999990 -2.1169766597784682E-004 - 92.039999999999992 -2.2224170646569332E-004 - 92.099999999999994 -2.3314991739934788E-004 - 92.159999999999997 -2.4440336002847060E-004 - 92.219999999999999 -2.5598301846321511E-004 - 92.280000000000001 -2.6786980481197830E-004 - 92.340000000000003 -2.8004454920705659E-004 - 92.400000000000006 -2.9248811162962821E-004 - 92.460000000000008 -3.0518130303349382E-004 - 92.519999999999982 -3.1810503262417485E-004 - 92.579999999999984 -3.3124018813339337E-004 - 92.639999999999986 -3.4456771913269626E-004 - 92.699999999999989 -3.5806865564958943E-004 - 92.759999999999991 -3.7172414377899347E-004 - 92.819999999999993 -3.8551542297047663E-004 - 92.879999999999995 -3.9942391500805537E-004 - 92.939999999999998 -4.1343109804985011E-004 - 93.000000000000000 -4.2751871054393206E-004 - 93.060000000000002 -4.4166860214933624E-004 - 93.120000000000005 -4.5586284816450322E-004 - 93.180000000000007 -4.7008373361191974E-004 - 93.239999999999981 -4.8431383998564782E-004 - 93.299999999999983 -4.9853590677943348E-004 - 93.359999999999985 -5.1273298064512078E-004 - 93.419999999999987 -5.2688843396735867E-004 - 93.479999999999990 -5.4098588285608035E-004 - 93.539999999999992 -5.5500930251036786E-004 - 93.599999999999994 -5.6894295465338186E-004 - 93.659999999999997 -5.8277148744728376E-004 - 93.719999999999999 -5.9647985796488297E-004 - 93.780000000000001 -6.1005347998712876E-004 - 93.840000000000003 -6.2347800933205510E-004 - 93.900000000000006 -6.3673957146089108E-004 - 93.960000000000008 -6.4982462101512888E-004 - 94.019999999999982 -6.6272004362985244E-004 - 94.079999999999984 -6.7541319817237633E-004 - 94.139999999999986 -6.8789169510248094E-004 - 94.199999999999989 -7.0014365735427981E-004 - 94.259999999999991 -7.1215760918604389E-004 - 94.319999999999993 -7.2392253533370759E-004 - 94.379999999999995 -7.3542778170817744E-004 - 94.439999999999998 -7.4666321691226956E-004 - 94.500000000000000 -7.5761912442171692E-004 - 94.560000000000002 -7.6828616884648917E-004 - 94.620000000000005 -7.7865561904991143E-004 - 94.680000000000007 -7.8871919469390727E-004 - 94.739999999999981 -7.9846918363384912E-004 - 94.799999999999983 -8.0789821698854143E-004 - 94.859999999999985 -8.1699965421363704E-004 - 94.919999999999987 -8.2576712302643803E-004 - 94.979999999999990 -8.3419515434002669E-004 - 95.039999999999992 -8.4227856431361170E-004 - 95.099999999999994 -8.5001280517859712E-004 - 95.159999999999997 -8.5739397002434885E-004 - 95.219999999999999 -8.6441860565533225E-004 - 95.280000000000001 -8.7108393148481304E-004 - 95.340000000000003 -8.7738769592642638E-004 - 95.400000000000006 -8.8332831871688617E-004 - 95.460000000000008 -8.8890460312315140E-004 - 95.519999999999982 -8.9411609487484206E-004 - 95.579999999999984 -8.9896285411862934E-004 - 95.639999999999986 -9.0344539247330376E-004 - 95.699999999999989 -9.0756493090958393E-004 - 95.759999999999991 -9.1132312908748139E-004 - 95.819999999999993 -9.1472225768306789E-004 - 95.879999999999995 -9.1776506727325963E-004 - 95.939999999999998 -9.2045490302168035E-004 - 96.000000000000000 -9.2279556022139978E-004 - 96.060000000000002 -9.2479143251641255E-004 - 96.120000000000005 -9.2644747623696593E-004 - 96.180000000000007 -9.2776916477576492E-004 - 96.239999999999981 -9.2876241131552458E-004 - 96.299999999999983 -9.2943374360154320E-004 - 96.359999999999985 -9.2979024760536048E-004 - 96.419999999999987 -9.2983945485467878E-004 - 96.479999999999990 -9.2958949788049842E-004 - 96.539999999999992 -9.2904895653709262E-004 - 96.599999999999994 -9.2822697959513698E-004 - 96.659999999999997 -9.2713324968326692E-004 - 96.719999999999999 -9.2577780435719979E-004 - 96.780000000000001 -9.2417126320587073E-004 - 96.840000000000003 -9.2232468522373309E-004 - 96.900000000000006 -9.2024962352670926E-004 - 96.960000000000008 -9.1795802746822970E-004 - 97.019999999999982 -9.1546227601346612E-004 - 97.079999999999984 -9.1277520330645186E-004 - 97.139999999999986 -9.0990997390243589E-004 - 97.199999999999989 -9.0688017249975297E-004 - 97.259999999999991 -9.0369978200194258E-004 - 97.319999999999993 -9.0038308158485426E-004 - 97.379999999999995 -8.9694475368363633E-004 - 97.439999999999998 -8.9339975497181663E-004 - 97.500000000000000 -8.8976343748649388E-004 - 97.560000000000002 -8.8605143962459541E-004 - 97.620000000000005 -8.8227961134885601E-004 - 97.680000000000007 -8.7846420097476344E-004 - 97.739999999999981 -8.7462167744753797E-004 - 97.799999999999983 -8.7076879158859855E-004 - 97.859999999999985 -8.6692256491221749E-004 - 97.919999999999987 -8.6310029303622885E-004 - 97.979999999999990 -8.5931945974400783E-004 - 98.039999999999992 -8.5559762076068704E-004 - 98.099999999999994 -8.5195278031255383E-004 - 98.159999999999997 -8.4840297927111163E-004 - 98.219999999999999 -8.4496634824472565E-004 - 98.280000000000001 -8.4166140242670476E-004 - 98.340000000000003 -8.3850648994971159E-004 - 98.400000000000006 -8.3552011412387590E-004 - 98.460000000000008 -8.3272092170981807E-004 - 98.519999999999982 -8.3012747582177332E-004 - 98.579999999999984 -8.2775834800284903E-004 - 98.639999999999986 -8.2563221431049012E-004 - 98.699999999999989 -8.2376747095454900E-004 - 98.759999999999991 -8.2218261326371007E-004 - 98.819999999999993 -8.2089589184195281E-004 - 98.879999999999995 -8.1992538030030958E-004 - 98.939999999999998 -8.1928901823815920E-004 - 99.000000000000000 -8.1900448548729676E-004 - 99.060000000000002 -8.1908914109548399E-004 - 99.120000000000005 -8.1956015025860536E-004 - 99.180000000000007 -8.2043423761192134E-004 - 99.239999999999981 -8.2172778959471835E-004 - 99.299999999999983 -8.2345675012474192E-004 - 99.359999999999985 -8.2563669562590739E-004 - 99.419999999999987 -8.2828255306386864E-004 - 99.479999999999990 -8.3140888480724533E-004 - 99.539999999999992 -8.3502952038711983E-004 - 99.599999999999994 -8.3915781395841704E-004 - 99.659999999999997 -8.4380630397452026E-004 - 99.719999999999999 -8.4898699447482912E-004 - 99.780000000000001 -8.5471101832557356E-004 - 99.840000000000003 -8.6098871648980643E-004 - 99.900000000000006 -8.6782957884315481E-004 - 99.960000000000008 -8.7524220305542407E-004 - 100.01999999999998 -8.8323424769891790E-004 - 100.07999999999998 -8.9181227707579641E-004 - 100.13999999999999 -9.0098187856872572E-004 - 100.19999999999999 -9.1074745352350103E-004 - 100.25999999999999 -9.2111243489312702E-004 - 100.31999999999999 -9.3207892290101172E-004 - 100.38000000000000 -9.4364779113111140E-004 - 100.44000000000000 -9.5581873561873291E-004 - 100.50000000000000 -9.6859007479381184E-004 - 100.56000000000000 -9.8195878223692953E-004 - 100.62000000000000 -9.9592047191598304E-004 - 100.68000000000001 -1.0104694353150116E-003 - 100.73999999999998 -1.0255985253932933E-003 - 100.79999999999998 -1.0412990950792946E-003 - 100.85999999999999 -1.0575611561662488E-003 - 100.91999999999999 -1.0743730093709871E-003 - 100.97999999999999 -1.0917218021265344E-003 - 101.03999999999999 -1.1095928423104082E-003 - 101.09999999999999 -1.1279701330424885E-003 - 101.16000000000000 -1.1468361530603264E-003 - 101.22000000000000 -1.1661719228356060E-003 - 101.28000000000000 -1.1859568388107816E-003 - 101.34000000000000 -1.2061687907908461E-003 - 101.40000000000001 -1.2267841832801203E-003 - 101.46000000000001 -1.2477781586008082E-003 - 101.51999999999998 -1.2691241782876598E-003 - 101.57999999999998 -1.2907941883519595E-003 - 101.63999999999999 -1.3127590118437340E-003 - 101.69999999999999 -1.3349879066281783E-003 - 101.75999999999999 -1.3574487968003673E-003 - 101.81999999999999 -1.3801084932528870E-003 - 101.88000000000000 -1.4029322149233317E-003 - 101.94000000000000 -1.4258843201456221E-003 - 102.00000000000000 -1.4489278871699799E-003 - 102.06000000000000 -1.4720248656591936E-003 - 102.12000000000000 -1.4951362401181092E-003 - 102.18000000000001 -1.5182220661157173E-003 - 102.23999999999998 -1.5412414662330301E-003 - 102.29999999999998 -1.5641530189036451E-003 - 102.35999999999999 -1.5869143110790757E-003 - 102.41999999999999 -1.6094823513441738E-003 - 102.47999999999999 -1.6318135453269316E-003 - 102.53999999999999 -1.6538639067162305E-003 - 102.59999999999999 -1.6755891216509514E-003 - 102.66000000000000 -1.6969446080959156E-003 - 102.72000000000000 -1.7178852972004404E-003 - 102.78000000000000 -1.7383663245263299E-003 - 102.84000000000000 -1.7583426607363129E-003 - 102.90000000000001 -1.7777693951808041E-003 - 102.96000000000001 -1.7966016898756556E-003 - 103.01999999999998 -1.8147950790076198E-003 - 103.07999999999998 -1.8323056538959244E-003 - 103.13999999999999 -1.8490895879858271E-003 - 103.19999999999999 -1.8651038355103739E-003 - 103.25999999999999 -1.8803059540626040E-003 - 103.31999999999999 -1.8946542491818784E-003 - 103.38000000000000 -1.9081078634769679E-003 - 103.44000000000000 -1.9206269105540232E-003 - 103.50000000000000 -1.9321724457476669E-003 - 103.56000000000000 -1.9427066657624985E-003 - 103.62000000000000 -1.9521930609132808E-003 - 103.68000000000001 -1.9605963019393457E-003 - 103.73999999999998 -1.9678826024698915E-003 - 103.79999999999998 -1.9740192967901775E-003 - 103.85999999999999 -1.9789754330637472E-003 - 103.91999999999999 -1.9827218016125157E-003 - 103.97999999999999 -1.9852305149366924E-003 - 104.03999999999999 -1.9864753356386932E-003 - 104.09999999999999 -1.9864324671142663E-003 - 104.16000000000000 -1.9850792808740357E-003 - 104.22000000000000 -1.9823951911603251E-003 - 104.28000000000000 -1.9783616555407871E-003 - 104.34000000000000 -1.9729619371823982E-003 - 104.40000000000001 -1.9661816279563571E-003 - 104.46000000000001 -1.9580081116446178E-003 - 104.51999999999998 -1.9484305379323071E-003 - 104.57999999999998 -1.9374406692502159E-003 - 104.63999999999999 -1.9250319444930276E-003 - 104.69999999999999 -1.9112002229450548E-003 - 104.75999999999999 -1.8959432547993895E-003 - 104.81999999999999 -1.8792610548456034E-003 - 104.88000000000000 -1.8611556775225695E-003 - 104.94000000000000 -1.8416311301067796E-003 - 105.00000000000000 -1.8206937481729435E-003 - 105.06000000000000 -1.7983517093187831E-003 - 105.12000000000000 -1.7746154975346754E-003 - 105.18000000000001 -1.7494974045705240E-003 - 105.23999999999998 -1.7230118090485493E-003 - 105.29999999999998 -1.6951750570019621E-003 - 105.35999999999999 -1.6660052393074603E-003 - 105.41999999999999 -1.6355226783428684E-003 - 105.47999999999999 -1.6037491196346663E-003 - 105.53999999999999 -1.5707082965812698E-003 - 105.59999999999999 -1.5364258246632866E-003 - 105.66000000000000 -1.5009286385275382E-003 - 105.72000000000000 -1.4642455587541216E-003 - 105.78000000000000 -1.4264067436395732E-003 - 105.84000000000000 -1.3874441455071114E-003 - 105.90000000000001 -1.3473908024277128E-003 - 105.96000000000001 -1.3062812391360984E-003 - 106.01999999999998 -1.2641514298429967E-003 - 106.07999999999998 -1.2210385182487369E-003 - 106.13999999999999 -1.1769806008946548E-003 - 106.19999999999999 -1.1320170268668292E-003 - 106.25999999999999 -1.0861881497309289E-003 - 106.31999999999999 -1.0395350179147704E-003 - 106.38000000000000 -9.9209982836987571E-004 - 106.44000000000000 -9.4392556372916467E-004 - 106.50000000000000 -8.9505557931048247E-004 - 106.56000000000000 -8.4553413317442364E-004 - 106.62000000000000 -7.9540600456350519E-004 - 106.68000000000001 -7.4471634905427884E-004 - 106.73999999999998 -6.9351086906871266E-004 - 106.79999999999998 -6.4183548158119072E-004 - 106.85999999999999 -5.8973639495525458E-004 - 106.91999999999999 -5.3725995075745421E-004 - 106.97999999999999 -4.8445262257601918E-004 - 107.03999999999999 -4.3136089784768557E-004 - 107.09999999999999 -3.7803118426185417E-004 - 107.16000000000000 -3.2450984476447393E-004 - 107.22000000000000 -2.7084307436700403E-004 - 107.28000000000000 -2.1707673680063382E-004 - 107.34000000000000 -1.6325646605235006E-004 - 107.40000000000001 -1.0942746562427550E-004 - 107.46000000000001 -5.5634534140149242E-005 - 107.51999999999998 -1.9220194472119881E-006 - 107.57999999999998 5.1666324926308424E-005 - 107.63999999999999 1.0508731139915386E-004 - 107.69999999999999 1.5829837992243777E-004 - 107.75999999999999 2.1125765199928596E-004 - 107.81999999999999 2.6392397783141729E-004 - 107.88000000000000 3.1625697282675308E-004 - 107.94000000000000 3.6821710234544717E-004 - 108.00000000000000 4.1976555660349995E-004 - 108.06000000000000 4.7086456835283863E-004 - 108.12000000000000 5.2147720070497348E-004 - 108.18000000000001 5.7156744630311798E-004 - 108.23999999999998 6.2110024352471198E-004 - 108.29999999999998 6.7004171783867415E-004 - 108.35999999999999 7.1835886104489337E-004 - 108.41999999999999 7.6601976029657185E-004 - 108.47999999999999 8.1299359615117565E-004 - 108.53999999999999 8.5925066690889745E-004 - 108.59999999999999 9.0476226319709751E-004 - 108.66000000000000 9.4950103939266161E-004 - 108.72000000000000 9.9344063743573197E-004 - 108.78000000000000 1.0365558400543613E-003 - 108.84000000000000 1.0788226950540207E-003 - 108.90000000000001 1.1202182901302738E-003 - 108.96000000000001 1.1607208752028527E-003 - 109.01999999999998 1.2003101024740822E-003 - 109.07999999999998 1.2389664796514793E-003 - 109.13999999999999 1.2766718048953529E-003 - 109.19999999999999 1.3134090537214578E-003 - 109.25999999999999 1.3491623059409821E-003 - 109.31999999999999 1.3839166980868763E-003 - 109.38000000000000 1.4176587065716166E-003 - 109.44000000000000 1.4503757801458419E-003 - 109.50000000000000 1.4820564178865058E-003 - 109.56000000000000 1.5126902963260008E-003 - 109.62000000000000 1.5422681932847585E-003 - 109.68000000000001 1.5707819752707485E-003 - 109.73999999999998 1.5982244879551777E-003 - 109.79999999999998 1.6245897419020902E-003 - 109.85999999999999 1.6498725847405619E-003 - 109.91999999999999 1.6740691040627886E-003 - 109.97999999999999 1.6971763063706590E-003 - 110.03999999999999 1.7191920485372253E-003 - 110.09999999999999 1.7401154766034184E-003 - 110.16000000000000 1.7599465063625013E-003 - 110.22000000000000 1.7786858486586216E-003 - 110.28000000000000 1.7963353033525597E-003 - 110.34000000000000 1.8128975624260666E-003 - 110.40000000000001 1.8283760153864103E-003 - 110.46000000000001 1.8427752038827686E-003 - 110.51999999999998 1.8561001799191968E-003 - 110.57999999999998 1.8683570607893162E-003 - 110.63999999999999 1.8795525683224382E-003 - 110.69999999999999 1.8896943766713425E-003 - 110.75999999999999 1.8987905522085302E-003 - 110.81999999999999 1.9068502702146851E-003 - 110.88000000000000 1.9138831796810497E-003 - 110.94000000000000 1.9198996390286573E-003 - 111.00000000000000 1.9249106610958241E-003 - 111.06000000000000 1.9289280861472184E-003 - 111.12000000000000 1.9319642456279659E-003 - 111.18000000000001 1.9340319100099573E-003 - 111.23999999999998 1.9351447217762386E-003 - 111.29999999999998 1.9353165790921625E-003 - 111.35999999999999 1.9345622210672087E-003 - 111.41999999999999 1.9328968438026752E-003 - 111.47999999999999 1.9303360623722035E-003 - 111.53999999999999 1.9268961956887371E-003 - 111.59999999999999 1.9225937647789834E-003 - 111.66000000000000 1.9174460130779276E-003 - 111.72000000000000 1.9114705773362224E-003 - 111.78000000000000 1.9046853846100735E-003 - 111.84000000000000 1.8971088961358144E-003 - 111.90000000000001 1.8887598776962148E-003 - 111.96000000000001 1.8796576060687098E-003 - 112.01999999999998 1.8698217432537919E-003 - 112.07999999999998 1.8592720763957200E-003 - 112.13999999999999 1.8480287617136327E-003 - 112.19999999999999 1.8361123533454744E-003 - 112.25999999999999 1.8235436200696954E-003 - 112.31999999999999 1.8103435716945386E-003 - 112.38000000000000 1.7965334450264138E-003 - 112.44000000000000 1.7821347509400843E-003 - 112.50000000000000 1.7671690967142907E-003 - 112.56000000000000 1.7516583095799928E-003 - 112.62000000000000 1.7356243686166644E-003 - 112.68000000000001 1.7190891872951499E-003 - 112.73999999999998 1.7020749749978232E-003 - 112.79999999999998 1.6846041244578847E-003 - 112.85999999999999 1.6666987502695575E-003 - 112.91999999999999 1.6483813407106784E-003 - 112.97999999999999 1.6296741031937621E-003 - 113.03999999999999 1.6105995602993875E-003 - 113.09999999999999 1.5911798413980143E-003 - 113.16000000000000 1.5714373672845753E-003 - 113.22000000000000 1.5513943448999131E-003 - 113.28000000000000 1.5310729600155021E-003 - 113.34000000000000 1.5104950392456288E-003 - 113.40000000000001 1.4896823863200035E-003 - 113.46000000000001 1.4686569004639693E-003 - 113.51999999999998 1.4474399351175023E-003 - 113.57999999999998 1.4260528570708341E-003 - 113.63999999999999 1.4045167088397039E-003 - 113.69999999999999 1.3828521694252622E-003 - 113.75999999999999 1.3610798508442688E-003 - 113.81999999999999 1.3392199780801254E-003 - 113.88000000000000 1.3172923277354599E-003 - 113.94000000000000 1.2953166352511678E-003 - 114.00000000000000 1.2733119806479446E-003 - 114.06000000000000 1.2512971991041212E-003 - 114.12000000000000 1.2292908306294308E-003 - 114.18000000000001 1.2073108350767370E-003 - 114.23999999999998 1.1853750296541839E-003 - 114.29999999999998 1.1635004912651905E-003 - 114.35999999999999 1.1417039602967991E-003 - 114.41999999999999 1.1200018822445164E-003 - 114.47999999999999 1.0984100472466126E-003 - 114.53999999999999 1.0769440016209599E-003 - 114.59999999999999 1.0556186141849008E-003 - 114.66000000000000 1.0344484979192253E-003 - 114.72000000000000 1.0134474656486371E-003 - 114.78000000000000 9.9262899296449205E-004 - 114.84000000000000 9.7200620888552311E-004 - 114.90000000000001 9.5159141362909116E-004 - 114.96000000000001 9.3139649516934013E-004 - 115.01999999999998 9.1143295614711428E-004 - 115.07999999999998 8.9171164142798711E-004 - 115.13999999999999 8.7224288241429242E-004 - 115.19999999999999 8.5303645806115937E-004 - 115.25999999999999 8.3410157473484084E-004 - 115.31999999999999 8.1544699748642457E-004 - 115.38000000000000 7.9708079524217683E-004 - 115.44000000000000 7.7901069581479078E-004 - 115.50000000000000 7.6124385342370658E-004 - 115.56000000000000 7.4378677614433020E-004 - 115.62000000000000 7.2664559998663453E-004 - 115.68000000000001 7.0982593434573184E-004 - 115.73999999999998 6.9333282168590829E-004 - 115.79999999999998 6.7717090637268833E-004 - 115.85999999999999 6.6134432286341787E-004 - 115.91999999999999 6.4585679203653693E-004 - 115.97999999999999 6.3071152034215538E-004 - 116.03999999999999 6.1591125588481260E-004 - 116.09999999999999 6.0145839194007049E-004 - 116.16000000000000 5.8735488918780488E-004 - 116.22000000000000 5.7360221112866651E-004 - 116.28000000000000 5.6020161871457174E-004 - 116.34000000000000 5.4715379651440292E-004 - 116.40000000000001 5.3445912608210779E-004 - 116.46000000000001 5.2211771547020273E-004 - 116.51999999999998 5.1012919454883408E-004 - 116.57999999999998 4.9849301437097525E-004 - 116.63999999999999 4.8720818460468553E-004 - 116.69999999999999 4.7627352392979054E-004 - 116.75999999999999 4.6568746604980780E-004 - 116.81999999999999 4.5544824362239207E-004 - 116.88000000000000 4.4555383511401061E-004 - 116.94000000000000 4.3600195142863828E-004 - 117.00000000000000 4.2679008460555978E-004 - 117.06000000000000 4.1791557028946071E-004 - 117.12000000000000 4.0937550802121506E-004 - 117.18000000000001 4.0116678363301221E-004 - 117.23999999999998 3.9328620220099934E-004 - 117.29999999999998 3.8573039084594457E-004 - 117.35999999999999 3.7849584241577338E-004 - 117.41999999999999 3.7157888798440114E-004 - 117.47999999999999 3.6497579579513082E-004 - 117.53999999999999 3.5868274427521419E-004 - 117.59999999999999 3.5269578755400252E-004 - 117.66000000000000 3.4701095003926359E-004 - 117.72000000000000 3.4162413900773220E-004 - 117.78000000000000 3.3653121496527566E-004 - 117.84000000000000 3.3172801539858447E-004 - 117.90000000000001 3.2721034725618180E-004 - 117.96000000000001 3.2297392807425769E-004 - 118.01999999999998 3.1901449699900321E-004 - 118.07999999999998 3.1532775107217061E-004 - 118.13999999999999 3.1190939598921893E-004 - 118.19999999999999 3.0875510654197291E-004 - 118.25999999999999 3.0586048161616625E-004 - 118.31999999999999 3.0322123159684137E-004 - 118.38000000000000 3.0083296870864385E-004 - 118.44000000000000 2.9869137460266379E-004 - 118.50000000000000 2.9679206682100797E-004 - 118.56000000000000 2.9513070957181559E-004 - 118.62000000000000 2.9370292881580363E-004 - 118.68000000000001 2.9250435454337531E-004 - 118.73999999999998 2.9153065678151234E-004 - 118.79999999999998 2.9077747774465827E-004 - 118.85999999999999 2.9024044025236547E-004 - 118.91999999999999 2.8991514311087560E-004 - 118.97999999999999 2.8979720535594661E-004 - 119.03999999999999 2.8988218961917115E-004 - 119.09999999999999 2.9016562757786099E-004 - 119.16000000000000 2.9064298371804493E-004 - 119.22000000000000 2.9130971856567659E-004 - 119.28000000000000 2.9216114784681317E-004 - 119.34000000000000 2.9319254092778825E-004 - 119.40000000000001 2.9439912281958305E-004 - 119.46000000000001 2.9577593958369272E-004 - 119.51999999999998 2.9731793678638139E-004 - 119.57999999999998 2.9901995648601689E-004 - 119.63999999999999 3.0087667281508717E-004 - 119.69999999999999 3.0288260123551204E-004 - 119.75999999999999 3.0503208503321013E-004 - 119.81999999999999 3.0731932930347031E-004 - 119.88000000000000 3.0973827376878682E-004 - 119.94000000000000 3.1228275050374925E-004 - 120.00000000000000 3.1494634096438452E-004 - 120.06000000000000 3.1772241562743161E-004 - 120.12000000000000 3.2060409475890878E-004 - 120.18000000000001 3.2358428999588838E-004 - 120.23999999999998 3.2665570016685318E-004 - 120.29999999999998 3.2981071072571021E-004 - 120.35999999999999 3.3304150407556488E-004 - 120.41999999999999 3.3634001258393663E-004 - 120.47999999999999 3.3969779182213425E-004 - 120.53999999999999 3.4310620965378628E-004 - 120.59999999999999 3.4655634180846400E-004 - 120.66000000000000 3.5003886057474514E-004 - 120.72000000000000 3.5354431675690295E-004 - 120.78000000000000 3.5706282130079100E-004 - 120.84000000000000 3.6058424970416181E-004 - 120.90000000000001 3.6409814241194040E-004 - 120.95999999999998 3.6759377045521746E-004 - 121.01999999999998 3.7106011246220149E-004 - 121.07999999999998 3.7448584313636273E-004 - 121.13999999999999 3.7785938236244013E-004 - 121.19999999999999 3.8116888537896343E-004 - 121.25999999999999 3.8440223125443200E-004 - 121.31999999999999 3.8754713050642470E-004 - 121.38000000000000 3.9059100236434269E-004 - 121.44000000000000 3.9352111696705662E-004 - 121.50000000000000 3.9632457700131509E-004 - 121.56000000000000 3.9898831906998134E-004 - 121.62000000000000 4.0149911803091375E-004 - 121.68000000000001 4.0384369156578991E-004 - 121.73999999999998 4.0600868973925629E-004 - 121.79999999999998 4.0798068712302678E-004 - 121.85999999999999 4.0974625477426793E-004 - 121.91999999999999 4.1129195018797831E-004 - 121.97999999999999 4.1260439799636970E-004 - 122.03999999999999 4.1367027301203267E-004 - 122.09999999999999 4.1447641993576909E-004 - 122.16000000000000 4.1500979705953180E-004 - 122.22000000000000 4.1525752038135496E-004 - 122.28000000000000 4.1520695332670360E-004 - 122.34000000000000 4.1484575722118018E-004 - 122.40000000000001 4.1416183726258589E-004 - 122.45999999999998 4.1314351884397531E-004 - 122.51999999999998 4.1177949203604611E-004 - 122.57999999999998 4.1005888471545154E-004 - 122.63999999999999 4.0797128413746928E-004 - 122.69999999999999 4.0550687365298018E-004 - 122.75999999999999 4.0265632128860064E-004 - 122.81999999999999 3.9941095779557581E-004 - 122.88000000000000 3.9576274111138002E-004 - 122.94000000000000 3.9170433671810391E-004 - 123.00000000000000 3.8722916961729048E-004 - 123.06000000000000 3.8233137523875253E-004 - 123.12000000000000 3.7700593590883565E-004 - 123.18000000000001 3.7124865022753503E-004 - 123.23999999999998 3.6505618025082934E-004 - 123.29999999999998 3.5842606567767783E-004 - 123.35999999999999 3.5135684642193627E-004 - 123.41999999999999 3.4384794332966415E-004 - 123.47999999999999 3.3589972556187042E-004 - 123.53999999999999 3.2751361345405836E-004 - 123.59999999999999 3.1869196726915520E-004 - 123.66000000000000 3.0943822153762363E-004 - 123.72000000000000 2.9975678389264950E-004 - 123.78000000000000 2.8965312110713697E-004 - 123.84000000000000 2.7913378191087653E-004 - 123.90000000000001 2.6820634290198290E-004 - 123.95999999999998 2.5687937071087666E-004 - 124.01999999999998 2.4516252923787823E-004 - 124.07999999999998 2.3306652398077525E-004 - 124.13999999999999 2.2060305926701893E-004 - 124.19999999999999 2.0778486969263331E-004 - 124.25999999999999 1.9462566606962960E-004 - 124.31999999999999 1.8114017139580986E-004 - 124.38000000000000 1.6734405676737933E-004 - 124.44000000000000 1.5325389416498558E-004 - 124.50000000000000 1.3888719386460571E-004 - 124.56000000000000 1.2426230363624962E-004 - 124.62000000000000 1.0939838647211887E-004 - 124.68000000000001 9.4315413488941038E-005 - 124.73999999999998 7.9034088128934112E-005 - 124.79999999999998 6.3575791432739372E-005 - 124.85999999999999 4.7962570255708281E-005 - 124.91999999999999 3.2217056219850776E-005 - 124.97999999999999 1.6362420317305541E-005 - 125.03999999999999 4.2231405502122921E-007 - 125.09999999999999 -1.5579196379789520E-005 - 125.16000000000000 -3.1617666738013404E-005 - 125.22000000000000 -4.7668354215225448E-005 - 125.28000000000000 -6.3706257601998912E-005 - 125.34000000000000 -7.9706186357273335E-005 - 125.40000000000001 -9.5642830824108272E-005 - 125.45999999999998 -1.1149080197273975E-004 - 125.51999999999998 -1.2722471445031624E-004 - 125.57999999999998 -1.4281921693318805E-004 - 125.63999999999999 -1.5824909207961028E-004 - 125.69999999999999 -1.7348923516112360E-004 - 125.75999999999999 -1.8851482464176951E-004 - 125.81999999999999 -2.0330125349520364E-004 - 125.88000000000000 -2.1782432643339039E-004 - 125.94000000000000 -2.3206022917591143E-004 - 126.00000000000000 -2.4598558553472948E-004 - 126.06000000000000 -2.5957751737160214E-004 - 126.12000000000000 -2.7281376421666885E-004 - 126.18000000000001 -2.8567266722313438E-004 - 126.23999999999998 -2.9813318749951235E-004 - 126.29999999999998 -3.1017508160650252E-004 - 126.35999999999999 -3.2177884034822525E-004 - 126.41999999999999 -3.3292577553431426E-004 - 126.47999999999999 -3.4359808074818415E-004 - 126.53999999999999 -3.5377881806495124E-004 - 126.59999999999999 -3.6345200622427761E-004 - 126.66000000000000 -3.7260261131414821E-004 - 126.72000000000000 -3.8121657200825920E-004 - 126.78000000000000 -3.8928087893428694E-004 - 126.84000000000000 -3.9678349059360464E-004 - 126.90000000000001 -4.0371346194862946E-004 - 126.95999999999998 -4.1006088478090763E-004 - 127.01999999999998 -4.1581689969801249E-004 - 127.07999999999998 -4.2097383239680193E-004 - 127.13999999999999 -4.2552491583387720E-004 - 127.19999999999999 -4.2946462472087785E-004 - 127.25999999999999 -4.3278838167326112E-004 - 127.31999999999999 -4.3549279963271318E-004 - 127.38000000000000 -4.3757549200919586E-004 - 127.44000000000000 -4.3903514351585979E-004 - 127.50000000000000 -4.3987160077161062E-004 - 127.56000000000000 -4.4008575467223204E-004 - 127.62000000000000 -4.3967950602754111E-004 - 127.68000000000001 -4.3865581542104154E-004 - 127.73999999999998 -4.3701867363799679E-004 - 127.79999999999998 -4.3477311895057954E-004 - 127.85999999999999 -4.3192519901212470E-004 - 127.91999999999999 -4.2848189314979325E-004 - 127.97999999999999 -4.2445119404090802E-004 - 128.03999999999999 -4.1984213636753919E-004 - 128.09999999999999 -4.1466449820182119E-004 - 128.16000000000000 -4.0892908310482612E-004 - 128.22000000000000 -4.0264744837956553E-004 - 128.28000000000000 -3.9583207327841864E-004 - 128.34000000000000 -3.8849615187725654E-004 - 128.40000000000001 -3.8065368184252255E-004 - 128.45999999999998 -3.7231937942090374E-004 - 128.51999999999998 -3.6350859423868394E-004 - 128.57999999999998 -3.5423738036158411E-004 - 128.63999999999999 -3.4452237285187383E-004 - 128.69999999999999 -3.3438082016273277E-004 - 128.75999999999999 -3.2383044407430472E-004 - 128.81999999999999 -3.1288954565635826E-004 - 128.88000000000000 -3.0157683421643444E-004 - 128.94000000000000 -2.8991148932581317E-004 - 129.00000000000000 -2.7791312072616259E-004 - 129.06000000000000 -2.6560170518288097E-004 - 129.12000000000000 -2.5299753837748564E-004 - 129.18000000000001 -2.4012128247076413E-004 - 129.23999999999998 -2.2699383726492386E-004 - 129.29999999999998 -2.1363643276243996E-004 - 129.35999999999999 -2.0007045821567742E-004 - 129.41999999999999 -1.8631752896812901E-004 - 129.47999999999999 -1.7239944658568570E-004 - 129.53999999999999 -1.5833813514965926E-004 - 129.59999999999999 -1.4415560724072440E-004 - 129.66000000000000 -1.2987396621058197E-004 - 129.72000000000000 -1.1551537293444321E-004 - 129.78000000000000 -1.0110196820066957E-004 - 129.84000000000000 -8.6655887393556481E-005 - 129.90000000000001 -7.2199167673015830E-005 - 129.95999999999998 -5.7753799771920268E-005 - 130.01999999999998 -4.3341631516714401E-005 - 130.07999999999998 -2.8984351554328619E-005 - 130.13999999999999 -1.4703442788870776E-005 - 130.19999999999999 -5.2018538856701111E-007 - 130.25999999999999 1.3544401566006797E-005 - 130.31999999999999 2.7469572068392143E-005 - 130.38000000000000 4.1234889930400163E-005 - 130.44000000000000 5.4820250346097653E-005 - 130.50000000000000 6.8205901495839677E-005 - 130.56000000000000 8.1372473942588930E-005 - 130.62000000000000 9.4300997945874620E-005 - 130.68000000000001 1.0697293523594600E-004 - 130.73999999999998 1.1937017505221192E-004 - 130.79999999999998 1.3147507729561905E-004 - 130.85999999999999 1.4327051016208397E-004 - 130.91999999999999 1.5473980188314182E-004 - 130.97999999999999 1.6586682842563083E-004 - 131.03999999999999 1.7663605013158894E-004 - 131.09999999999999 1.8703244720729597E-004 - 131.16000000000000 1.9704160395884269E-004 - 131.22000000000000 2.0664974544527226E-004 - 131.28000000000000 2.1584369953801978E-004 - 131.34000000000000 2.2461098486563569E-004 - 131.40000000000001 2.3293976208541765E-004 - 131.45999999999998 2.4081888741760431E-004 - 131.51999999999998 2.4823798294760640E-004 - 131.57999999999998 2.5518737206460187E-004 - 131.63999999999999 2.6165815195739091E-004 - 131.69999999999999 2.6764213015835237E-004 - 131.75999999999999 2.7313195707519733E-004 - 131.81999999999999 2.7812098182937754E-004 - 131.88000000000000 2.8260338727888591E-004 - 131.94000000000000 2.8657412223600240E-004 - 132.00000000000000 2.9002895915053727E-004 - 132.06000000000000 2.9296438548010026E-004 - 132.12000000000000 2.9537773779881243E-004 - 132.18000000000001 2.9726712892055114E-004 - 132.23999999999998 2.9863141381567199E-004 - 132.29999999999998 2.9947017229929156E-004 - 132.35999999999999 2.9978379971011836E-004 - 132.41999999999999 2.9957343922565538E-004 - 132.47999999999999 2.9884092841473358E-004 - 132.53999999999999 2.9758884055162944E-004 - 132.59999999999999 2.9582045334649421E-004 - 132.66000000000000 2.9353981784211559E-004 - 132.72000000000000 2.9075162513584853E-004 - 132.78000000000000 2.8746124240688870E-004 - 132.84000000000000 2.8367475882270756E-004 - 132.90000000000001 2.7939883244304785E-004 - 132.95999999999998 2.7464082771113871E-004 - 133.01999999999998 2.6940874686459914E-004 - 133.07999999999998 2.6371113842099371E-004 - 133.13999999999999 2.5755712316035003E-004 - 133.19999999999999 2.5095641606569187E-004 - 133.25999999999999 2.4391919482936815E-004 - 133.31999999999999 2.3645619525306704E-004 - 133.38000000000000 2.2857856351904857E-004 - 133.44000000000000 2.2029788504856850E-004 - 133.50000000000000 2.1162615072953483E-004 - 133.56000000000000 2.0257566294139563E-004 - 133.62000000000000 1.9315912930813274E-004 - 133.68000000000001 1.8338943104272503E-004 - 133.73999999999998 1.7327973346625779E-004 - 133.79999999999998 1.6284346751289352E-004 - 133.85999999999999 1.5209417560137337E-004 - 133.91999999999999 1.4104554339788698E-004 - 133.97999999999999 1.2971134119530299E-004 - 134.03999999999999 1.1810543858366340E-004 - 134.09999999999999 1.0624169019461330E-004 - 134.16000000000000 9.4133981347617861E-005 - 134.22000000000000 8.1796159806386143E-005 - 134.28000000000000 6.9242007212226922E-005 - 134.34000000000000 5.6485201102482220E-005 - 134.40000000000001 4.3539301507447126E-005 - 134.45999999999998 3.0417734179898405E-005 - 134.51999999999998 1.7133724923657107E-005 - 134.57999999999998 3.7003345518680627E-006 - 134.63999999999999 -9.8696182749563412E-006 - 134.69999999999999 -2.3563565515425955E-005 - 134.75999999999999 -3.7369193916694498E-005 - 134.81999999999999 -5.1274457844902775E-005 - 134.88000000000000 -6.5267609139190976E-005 - 134.94000000000000 -7.9337234439136089E-005 - 135.00000000000000 -9.3472235398267057E-005 - 135.06000000000000 -1.0766185191623504E-004 - 135.12000000000000 -1.2189565395767153E-004 - 135.18000000000001 -1.3616359273888501E-004 - 135.23999999999998 -1.5045596948402916E-004 - 135.29999999999998 -1.6476344895315450E-004 - 135.35999999999999 -1.7907705892976486E-004 - 135.41999999999999 -1.9338820474723898E-004 - 135.47999999999999 -2.0768864886250746E-004 - 135.53999999999999 -2.2197049669031051E-004 - 135.59999999999999 -2.3622619420525108E-004 - 135.66000000000000 -2.5044856140925021E-004 - 135.72000000000000 -2.6463072600676574E-004 - 135.78000000000000 -2.7876610942695123E-004 - 135.84000000000000 -2.9284844106213805E-004 - 135.90000000000001 -3.0687172320746246E-004 - 135.95999999999998 -3.2083022007664292E-004 - 136.01999999999998 -3.3471840949754982E-004 - 136.07999999999998 -3.4853097369929876E-004 - 136.13999999999999 -3.6226281654648887E-004 - 136.19999999999999 -3.7590893753366804E-004 - 136.25999999999999 -3.8946453290272597E-004 - 136.31999999999999 -4.0292481741582424E-004 - 136.38000000000000 -4.1628514967557588E-004 - 136.44000000000000 -4.2954087944644369E-004 - 136.50000000000000 -4.4268745817109198E-004 - 136.56000000000000 -4.5572019417268185E-004 - 136.62000000000000 -4.6863445854638034E-004 - 136.68000000000001 -4.8142551824157466E-004 - 136.73999999999998 -4.9408853094730875E-004 - 136.79999999999998 -5.0661855924492610E-004 - 136.85999999999999 -5.1901048107507797E-004 - 136.91999999999999 -5.3125902552875724E-004 - 136.97999999999999 -5.4335873893339339E-004 - 137.03999999999999 -5.5530390120443914E-004 - 137.09999999999999 -5.6708860530225080E-004 - 137.16000000000000 -5.7870663603351070E-004 - 137.22000000000000 -5.9015154314141457E-004 - 137.28000000000000 -6.0141656379218418E-004 - 137.34000000000000 -6.1249458412790132E-004 - 137.40000000000001 -6.2337814956761454E-004 - 137.45999999999998 -6.3405955359844884E-004 - 137.51999999999998 -6.4453069414304853E-004 - 137.57999999999998 -6.5478322063330832E-004 - 137.63999999999999 -6.6480825636589728E-004 - 137.69999999999999 -6.7459672928875110E-004 - 137.75999999999999 -6.8413919309012901E-004 - 137.81999999999999 -6.9342576564059401E-004 - 137.88000000000000 -7.0244638350518672E-004 - 137.94000000000000 -7.1119057699635521E-004 - 138.00000000000000 -7.1964764011963819E-004 - 138.06000000000000 -7.2780652677016265E-004 - 138.12000000000000 -7.3565599942703082E-004 - 138.18000000000001 -7.4318457669334144E-004 - 138.23999999999998 -7.5038056202325219E-004 - 138.29999999999998 -7.5723209523994033E-004 - 138.35999999999999 -7.6372716202873934E-004 - 138.41999999999999 -7.6985365997485886E-004 - 138.47999999999999 -7.7559944873605978E-004 - 138.53999999999999 -7.8095231126399593E-004 - 138.59999999999999 -7.8590004359544384E-004 - 138.66000000000000 -7.9043057789843327E-004 - 138.72000000000000 -7.9453187974013644E-004 - 138.78000000000000 -7.9819201731859619E-004 - 138.84000000000000 -8.0139931066341183E-004 - 138.90000000000001 -8.0414242869778982E-004 - 138.95999999999998 -8.0641014942702015E-004 - 139.01999999999998 -8.0819160996279142E-004 - 139.07999999999998 -8.0947646452568804E-004 - 139.13999999999999 -8.1025473330463397E-004 - 139.19999999999999 -8.1051692400661846E-004 - 139.25999999999999 -8.1025408165970379E-004 - 139.31999999999999 -8.0945786050702813E-004 - 139.38000000000000 -8.0812056379317226E-004 - 139.44000000000000 -8.0623507109037315E-004 - 139.50000000000000 -8.0379512757074699E-004 - 139.56000000000000 -8.0079511199005913E-004 - 139.62000000000000 -7.9723028457676320E-004 - 139.68000000000001 -7.9309664691807160E-004 - 139.73999999999998 -7.8839112175598956E-004 - 139.79999999999998 -7.8311162766708602E-004 - 139.85999999999999 -7.7725687369658029E-004 - 139.91999999999999 -7.7082662524594839E-004 - 139.97999999999999 -7.6382160874549328E-004 - 140.03999999999999 -7.5624356324221435E-004 - 140.09999999999999 -7.4809524038301888E-004 - 140.16000000000000 -7.3938052086111497E-004 - 140.22000000000000 -7.3010421492834029E-004 - 140.28000000000000 -7.2027228177549214E-004 - 140.34000000000000 -7.0989177201000056E-004 - 140.40000000000001 -6.9897086237739035E-004 - 140.45999999999998 -6.8751869704039288E-004 - 140.51999999999998 -6.7554561548946457E-004 - 140.57999999999998 -6.6306296183741794E-004 - 140.63999999999999 -6.5008315610778347E-004 - 140.69999999999999 -6.3661965998836566E-004 - 140.75999999999999 -6.2268703843848592E-004 - 140.81999999999999 -6.0830068522108895E-004 - 140.88000000000000 -5.9347709178735389E-004 - 140.94000000000000 -5.7823367017283589E-004 - 141.00000000000000 -5.6258873288529557E-004 - 141.06000000000000 -5.4656144922829767E-004 - 141.12000000000000 -5.3017182432371494E-004 - 141.18000000000001 -5.1344057045633385E-004 - 141.23999999999998 -4.9638930246040619E-004 - 141.29999999999998 -4.7904027010677957E-004 - 141.35999999999999 -4.6141633669772528E-004 - 141.41999999999999 -4.4354108215321472E-004 - 141.47999999999999 -4.2543852169343036E-004 - 141.53999999999999 -4.0713320377512406E-004 - 141.59999999999999 -3.8865019849040509E-004 - 141.66000000000000 -3.7001491619102441E-004 - 141.72000000000000 -3.5125318690961918E-004 - 141.78000000000000 -3.3239103623582052E-004 - 141.84000000000000 -3.1345481376066607E-004 - 141.90000000000001 -2.9447098480991441E-004 - 141.95999999999998 -2.7546617708004234E-004 - 142.01999999999998 -2.5646705233856558E-004 - 142.07999999999998 -2.3750033662388550E-004 - 142.13999999999999 -2.1859261378128576E-004 - 142.19999999999999 -1.9977044357744576E-004 - 142.25999999999999 -1.8106016684284223E-004 - 142.31999999999999 -1.6248793275011687E-004 - 142.38000000000000 -1.4407960549142135E-004 - 142.44000000000000 -1.2586071544523769E-004 - 142.50000000000000 -1.0785641013431627E-004 - 142.56000000000000 -9.0091441374432217E-005 - 142.62000000000000 -7.2590048944513842E-005 - 142.68000000000001 -5.5375981920805961E-005 - 142.73999999999998 -3.8472394840645775E-005 - 142.79999999999998 -2.1901853395126612E-005 - 142.85999999999999 -5.6862693492837058E-006 - 142.91999999999999 1.0153128032338235E-005 - 142.97999999999999 2.5595817464412000E-005 - 143.03999999999999 4.0622045364179208E-005 - 143.09999999999999 5.5212836150589915E-005 - 143.16000000000000 6.9350025505225947E-005 - 143.22000000000000 8.3016294628927354E-005 - 143.28000000000000 9.6195188975085780E-005 - 143.34000000000000 1.0887114640169984E-004 - 143.40000000000001 1.2102949782235490E-004 - 143.45999999999998 1.3265651748420733E-004 - 143.51999999999998 1.4373940602157074E-004 - 143.57999999999998 1.5426632119811944E-004 - 143.63999999999999 1.6422637986377041E-004 - 143.69999999999999 1.7360968554388048E-004 - 143.75999999999999 1.8240730340536273E-004 - 143.81999999999999 1.9061129800529723E-004 - 143.88000000000000 1.9821468951311115E-004 - 143.94000000000000 2.0521150546179334E-004 - 144.00000000000000 2.1159675370997969E-004 - 144.06000000000000 2.1736642122046154E-004 - 144.12000000000000 2.2251749493053865E-004 - 144.18000000000001 2.2704790366347204E-004 - 144.23999999999998 2.3095656585502802E-004 - 144.29999999999998 2.3424335378142673E-004 - 144.35999999999999 2.3690908369856649E-004 - 144.41999999999999 2.3895551902278496E-004 - 144.47999999999999 2.4038536039949838E-004 - 144.53999999999999 2.4120221440393386E-004 - 144.59999999999999 2.4141060547949481E-004 - 144.66000000000000 2.4101592998733575E-004 - 144.72000000000000 2.4002446087626045E-004 - 144.78000000000000 2.3844333092374391E-004 - 144.84000000000000 2.3628053312088658E-004 - 144.90000000000001 2.3354485171742619E-004 - 144.95999999999998 2.3024587522270804E-004 - 145.01999999999998 2.2639396183375807E-004 - 145.07999999999998 2.2200024027495079E-004 - 145.13999999999999 2.1707654294608639E-004 - 145.19999999999999 2.1163544240330613E-004 - 145.25999999999999 2.0569016534000099E-004 - 145.31999999999999 1.9925461091466841E-004 - 145.38000000000000 1.9234329496890766E-004 - 145.44000000000000 1.8497134307989690E-004 - 145.50000000000000 1.7715444656356472E-004 - 145.56000000000000 1.6890883574635778E-004 - 145.62000000000000 1.6025125468875810E-004 - 145.68000000000001 1.5119895065077586E-004 - 145.73999999999998 1.4176959263975379E-004 - 145.79999999999998 1.3198128369491070E-004 - 145.85999999999999 1.2185251993855200E-004 - 145.91999999999999 1.1140213238073868E-004 - 145.97999999999999 1.0064929240993554E-004 - 146.03999999999999 8.9613431948215285E-005 - 146.09999999999999 7.8314269153538808E-005 - 146.16000000000000 6.6771728522484514E-005 - 146.22000000000000 5.5005931960872128E-005 - 146.28000000000000 4.3037162984646817E-005 - 146.34000000000000 3.0885833075903400E-005 - 146.40000000000001 1.8572450939039494E-005 - 146.45999999999998 6.1176086611024279E-006 - 146.51999999999998 -6.4580761393234700E-006 - 146.57999999999998 -1.9133965385229464E-005 - 146.63999999999999 -3.1889440778643124E-005 - 146.69999999999999 -4.4703946082262196E-005 - 146.75999999999999 -5.7556981235674340E-005 - 146.81999999999999 -7.0428181653364575E-005 - 146.88000000000000 -8.3297318531408768E-005 - 146.94000000000000 -9.6144327310796027E-005 - 147.00000000000000 -1.0894935058357327E-004 - 147.06000000000000 -1.2169279755755948E-004 - 147.12000000000000 -1.3435532304290467E-004 - 147.18000000000001 -1.4691789573550301E-004 - 147.23999999999998 -1.5936182548842559E-004 - 147.29999999999998 -1.7166880846435428E-004 - 147.35999999999999 -1.8382092325436479E-004 - 147.41999999999999 -1.9580068194394531E-004 - 147.47999999999999 -2.0759106745984855E-004 - 147.53999999999999 -2.1917551541241688E-004 - 147.59999999999999 -2.3053798848466349E-004 - 147.66000000000000 -2.4166299817460010E-004 - 147.72000000000000 -2.5253559726012137E-004 - 147.78000000000000 -2.6314139989459595E-004 - 147.84000000000000 -2.7346660608648394E-004 - 147.90000000000001 -2.8349802177407899E-004 - 147.95999999999998 -2.9322305260037757E-004 - 148.01999999999998 -3.0262976949987095E-004 - 148.07999999999998 -3.1170685950293359E-004 - 148.13999999999999 -3.2044367407949015E-004 - 148.19999999999999 -3.2883024485925425E-004 - 148.25999999999999 -3.3685727752368007E-004 - 148.31999999999999 -3.4451616545866051E-004 - 148.38000000000000 -3.5179897276611235E-004 - 148.44000000000000 -3.5869852439139799E-004 - 148.50000000000000 -3.6520836887454051E-004 - 148.56000000000000 -3.7132275020874440E-004 - 148.62000000000000 -3.7703665757090547E-004 - 148.68000000000001 -3.8234582083894334E-004 - 148.73999999999998 -3.8724674105439683E-004 - 148.79999999999998 -3.9173657195975718E-004 - 148.85999999999999 -3.9581331434316214E-004 - 148.91999999999999 -3.9947559646757937E-004 - 148.97999999999999 -4.0272284982995386E-004 - 149.03999999999999 -4.0555520099527635E-004 - 149.09999999999999 -4.0797340731498334E-004 - 149.16000000000000 -4.0997900483096580E-004 - 149.22000000000000 -4.1157415556310407E-004 - 149.28000000000000 -4.1276170598150008E-004 - 149.34000000000000 -4.1354510058653392E-004 - 149.40000000000001 -4.1392845523921908E-004 - 149.45999999999998 -4.1391642185398215E-004 - 149.51999999999998 -4.1351428811012026E-004 - 149.57999999999998 -4.1272789230788117E-004 - 149.63999999999999 -4.1156356749868161E-004 - 149.69999999999999 -4.1002824194763673E-004 - 149.75999999999999 -4.0812927455675761E-004 - 149.81999999999999 -4.0587455291910392E-004 - 149.88000000000000 -4.0327236208211259E-004 - 149.94000000000000 -4.0033147290539033E-004 - 150.00000000000000 -3.9706101193712255E-004 - 150.06000000000000 -3.9347051845965952E-004 - 150.12000000000000 -3.8956990495191970E-004 - 150.18000000000001 -3.8536938324160532E-004 - 150.23999999999998 -3.8087945714100738E-004 - 150.29999999999998 -3.7611095791897323E-004 - 150.35999999999999 -3.7107493580440472E-004 - 150.41999999999999 -3.6578264984755900E-004 - 150.47999999999999 -3.6024555762382995E-004 - 150.53999999999999 -3.5447530627306212E-004 - 150.59999999999999 -3.4848360838285952E-004 - 150.66000000000000 -3.4228232296604211E-004 - 150.72000000000000 -3.3588337898416782E-004 - 150.78000000000000 -3.2929871456091972E-004 - 150.84000000000000 -3.2254028776023422E-004 - 150.90000000000001 -3.1562005659739324E-004 - 150.95999999999998 -3.0854986329918288E-004 - 151.01999999999998 -3.0134151033664214E-004 - 151.07999999999998 -2.9400668433152231E-004 - 151.13999999999999 -2.8655697772882665E-004 - 151.19999999999999 -2.7900375287442762E-004 - 151.25999999999999 -2.7135821370465036E-004 - 151.31999999999999 -2.6363140198460935E-004 - 151.38000000000000 -2.5583411510153711E-004 - 151.44000000000000 -2.4797688822172432E-004 - 151.50000000000000 -2.4007000555031988E-004 - 151.56000000000000 -2.3212354175710710E-004 - 151.62000000000000 -2.2414723515308264E-004 - 151.68000000000001 -2.1615054666239433E-004 - 151.73999999999998 -2.0814266095450982E-004 - 151.79999999999998 -2.0013246139106723E-004 - 151.85999999999999 -1.9212851576566931E-004 - 151.91999999999999 -1.8413910335937438E-004 - 151.97999999999999 -1.7617217626104208E-004 - 152.03999999999999 -1.6823537179623611E-004 - 152.09999999999999 -1.6033601197992992E-004 - 152.16000000000000 -1.5248108526024463E-004 - 152.22000000000000 -1.4467727314553439E-004 - 152.28000000000000 -1.3693091676427098E-004 - 152.34000000000000 -1.2924803470168764E-004 - 152.40000000000001 -1.2163432941159309E-004 - 152.45999999999998 -1.1409515044135478E-004 - 152.51999999999998 -1.0663556398653725E-004 - 152.57999999999998 -9.9260274313637487E-005 - 152.63999999999999 -9.1973696279824008E-005 - 152.69999999999999 -8.4779916691211609E-005 - 152.75999999999999 -7.7682747725673295E-005 - 152.81999999999999 -7.0685689673093529E-005 - 152.88000000000000 -6.3791983209462021E-005 - 152.94000000000000 -5.7004604617972576E-005 - 153.00000000000000 -5.0326275712617280E-005 - 153.06000000000000 -4.3759495859513022E-005 - 153.12000000000000 -3.7306561525714807E-005 - 153.17999999999998 -3.0969544284378426E-005 - 153.23999999999998 -2.4750368231602354E-005 - 153.29999999999998 -1.8650758145982415E-005 - 153.35999999999999 -1.2672305526748376E-005 - 153.41999999999999 -6.8164621395021549E-006 - 153.47999999999999 -1.0845396256746469E-006 - 153.53999999999999 4.5222486709375556E-006 - 153.59999999999999 1.0002806261454739E-005 - 153.66000000000000 1.5356135069686308E-005 - 153.72000000000000 2.0581315480511396E-005 - 153.78000000000000 2.5677513182352988E-005 - 153.84000000000000 3.0643972023603708E-005 - 153.90000000000001 3.5480001473658495E-005 - 153.95999999999998 4.0184967383837993E-005 - 154.01999999999998 4.4758298507180258E-005 - 154.07999999999998 4.9199466422213096E-005 - 154.13999999999999 5.3507990666603318E-005 - 154.19999999999999 5.7683424115095362E-005 - 154.25999999999999 6.1725355877493608E-005 - 154.31999999999999 6.5633400473030510E-005 - 154.38000000000000 6.9407206898327743E-005 - 154.44000000000000 7.3046437712675206E-005 - 154.50000000000000 7.6550787655793877E-005 - 154.56000000000000 7.9919978403920780E-005 - 154.62000000000000 8.3153751711510890E-005 - 154.67999999999998 8.6251888378949937E-005 - 154.73999999999998 8.9214203151806267E-005 - 154.79999999999998 9.2040552713396962E-005 - 154.85999999999999 9.4730856759255686E-005 - 154.91999999999999 9.7285085915140983E-005 - 154.97999999999999 9.9703289509759974E-005 - 155.03999999999999 1.0198558201341180E-004 - 155.09999999999999 1.0413219435205441E-004 - 155.16000000000000 1.0614342651974512E-004 - 155.22000000000000 1.0801971516048911E-004 - 155.28000000000000 1.0976160104005354E-004 - 155.34000000000000 1.1136975880194722E-004 - 155.40000000000001 1.1284499501830242E-004 - 155.45999999999998 1.1418827172677301E-004 - 155.51999999999998 1.1540069161333348E-004 - 155.57999999999998 1.1648351879786395E-004 - 155.63999999999999 1.1743818765089147E-004 - 155.69999999999999 1.1826630364789544E-004 - 155.75999999999999 1.1896962665486326E-004 - 155.81999999999999 1.1955012855290978E-004 - 155.88000000000000 1.2000996234448426E-004 - 155.94000000000000 1.2035145647892428E-004 - 156.00000000000000 1.2057714033234837E-004 - 156.06000000000000 1.2068973085076869E-004 - 156.12000000000000 1.2069214947850554E-004 - 156.17999999999998 1.2058751893278643E-004 - 156.23999999999998 1.2037914786178975E-004 - 156.29999999999998 1.2007053012551999E-004 - 156.35999999999999 1.1966536080067344E-004 - 156.41999999999999 1.1916751198476287E-004 - 156.47999999999999 1.1858102121410927E-004 - 156.53999999999999 1.1791011150529527E-004 - 156.59999999999999 1.1715915395694295E-004 - 156.66000000000000 1.1633268027493532E-004 - 156.72000000000000 1.1543534525518747E-004 - 156.78000000000000 1.1447193822726705E-004 - 156.84000000000000 1.1344738215695701E-004 - 156.90000000000001 1.1236668035049732E-004 - 156.95999999999998 1.1123492601066860E-004 - 157.01999999999998 1.1005729437877172E-004 - 157.07999999999998 1.0883901866193375E-004 - 157.13999999999999 1.0758537123647584E-004 - 157.19999999999999 1.0630165008910724E-004 - 157.25999999999999 1.0499314815008571E-004 - 157.31999999999999 1.0366516403027682E-004 - 157.38000000000000 1.0232294947632336E-004 - 157.44000000000000 1.0097169296631082E-004 - 157.50000000000000 9.9616531045356035E-005 - 157.56000000000000 9.8262471563216320E-005 - 157.62000000000000 9.6914423840893698E-005 - 157.67999999999998 9.5577155130198790E-005 - 157.73999999999998 9.4255255044336885E-005 - 157.79999999999998 9.2953140504095652E-005 - 157.85999999999999 9.1675022236891221E-005 - 157.91999999999999 9.0424890134369425E-005 - 157.97999999999999 8.9206489279121056E-005 - 158.03999999999999 8.8023313931750693E-005 - 158.09999999999999 8.6878592844039638E-005 - 158.16000000000000 8.5775266993136948E-005 - 158.22000000000000 8.4715989871423576E-005 - 158.28000000000000 8.3703105830435420E-005 - 158.34000000000000 8.2738655354014023E-005 - 158.40000000000001 8.1824352783923569E-005 - 158.45999999999998 8.0961594357192491E-005 - 158.51999999999998 8.0151430530642386E-005 - 158.57999999999998 7.9394577710224296E-005 - 158.63999999999999 7.8691416676441515E-005 - 158.69999999999999 7.8041972433802638E-005 - 158.75999999999999 7.7445931568416389E-005 - 158.81999999999999 7.6902609768648785E-005 - 158.88000000000000 7.6410995644259362E-005 - 158.94000000000000 7.5969721469768250E-005 - 159.00000000000000 7.5577082126178537E-005 - 159.06000000000000 7.5231016081382725E-005 - 159.12000000000000 7.4929149060266097E-005 - 159.17999999999998 7.4668777506350627E-005 - 159.23999999999998 7.4446897595084182E-005 - 159.29999999999998 7.4260198210395224E-005 - 159.35999999999999 7.4105088889745563E-005 - 159.41999999999999 7.3977718238984401E-005 - 159.47999999999999 7.3873980932923840E-005 - 159.53999999999999 7.3789531112624211E-005 - 159.59999999999999 7.3719835292606543E-005 - 159.66000000000000 7.3660134279204397E-005 - 159.72000000000000 7.3605512590101317E-005 - 159.78000000000000 7.3550878507514875E-005 - 159.84000000000000 7.3491007027911664E-005 - 159.90000000000001 7.3420563535744096E-005 - 159.95999999999998 7.3334080138679465E-005 - 160.01999999999998 7.3226002177188138E-005 - 160.07999999999998 7.3090715385030572E-005 - 160.13999999999999 7.2922530210284563E-005 - 160.19999999999999 7.2715730970365723E-005 - 160.25999999999999 7.2464573661108853E-005 - 160.31999999999999 7.2163292859886942E-005 - 160.38000000000000 7.1806147294182300E-005 - 160.44000000000000 7.1387417003920326E-005 - 160.50000000000000 7.0901428861763625E-005 - 160.56000000000000 7.0342564843590519E-005 - 160.62000000000000 6.9705274659246746E-005 - 160.67999999999998 6.8984118832349358E-005 - 160.73999999999998 6.8173751861061487E-005 - 160.79999999999998 6.7268962368583797E-005 - 160.85999999999999 6.6264647970064257E-005 - 160.91999999999999 6.5155877127880021E-005 - 160.97999999999999 6.3937844369218961E-005 - 161.03999999999999 6.2605922899268280E-005 - 161.09999999999999 6.1155639129432571E-005 - 161.16000000000000 5.9582705744783780E-005 - 161.22000000000000 5.7883000327848894E-005 - 161.28000000000000 5.6052574267453589E-005 - 161.34000000000000 5.4087655547029379E-005 - 161.40000000000001 5.1984665208959391E-005 - 161.45999999999998 4.9740193998782413E-005 - 161.51999999999998 4.7351015920506410E-005 - 161.57999999999998 4.4814090627486196E-005 - 161.63999999999999 4.2126545376896675E-005 - 161.69999999999999 3.9285692333611408E-005 - 161.75999999999999 3.6289034671483001E-005 - 161.81999999999999 3.3134232842674190E-005 - 161.88000000000000 2.9819136923898086E-005 - 161.94000000000000 2.6341768161808458E-005 - 162.00000000000000 2.2700324943739362E-005 - 162.06000000000000 1.8893170316586260E-005 - 162.12000000000000 1.4918844236042509E-005 - 162.17999999999998 1.0776052952134088E-005 - 162.23999999999998 6.4636608857433908E-006 - 162.29999999999998 1.9806981092639814E-006 - 162.35999999999999 -2.6736420584086333E-006 - 162.41999999999999 -7.5000092771447832E-006 - 162.47999999999999 -1.2498894199908219E-005 - 162.53999999999999 -1.7670627168521132E-005 - 162.59999999999999 -2.3015383875736556E-005 - 162.66000000000000 -2.8533172506277119E-005 - 162.72000000000000 -3.4223838080504125E-005 - 162.78000000000000 -4.0087056683378048E-005 - 162.84000000000000 -4.6122326977372671E-005 - 162.90000000000001 -5.2328966613568068E-005 - 162.95999999999998 -5.8706104808920362E-005 - 163.01999999999998 -6.5252674010869108E-005 - 163.07999999999998 -7.1967405587022569E-005 - 163.13999999999999 -7.8848820282138331E-005 - 163.19999999999999 -8.5895206213186653E-005 - 163.25999999999999 -9.3104643527538381E-005 - 163.31999999999999 -1.0047496143686216E-004 - 163.38000000000000 -1.0800375105734308E-004 - 163.44000000000000 -1.1568833878193729E-004 - 163.50000000000000 -1.2352581042272443E-004 - 163.56000000000000 -1.3151296253487935E-004 - 163.62000000000000 -1.3964633289411958E-004 - 163.67999999999998 -1.4792215408555837E-004 - 163.73999999999998 -1.5633637278793315E-004 - 163.79999999999998 -1.6488464129770430E-004 - 163.85999999999999 -1.7356227643546134E-004 - 163.91999999999999 -1.8236429011279221E-004 - 163.97999999999999 -1.9128535810932737E-004 - 164.03999999999999 -2.0031982605482544E-004 - 164.09999999999999 -2.0946170960218033E-004 - 164.16000000000000 -2.1870462559227794E-004 - 164.22000000000000 -2.2804185606439359E-004 - 164.28000000000000 -2.3746632484535134E-004 - 164.34000000000000 -2.4697060318542349E-004 - 164.40000000000001 -2.5654686081659842E-004 - 164.45999999999998 -2.6618690640520438E-004 - 164.51999999999998 -2.7588220924816022E-004 - 164.57999999999998 -2.8562382378762870E-004 - 164.63999999999999 -2.9540246780602135E-004 - 164.69999999999999 -3.0520850225978981E-004 - 164.75999999999999 -3.1503185414352339E-004 - 164.81999999999999 -3.2486223159377246E-004 - 164.88000000000000 -3.3468888664852763E-004 - 164.94000000000000 -3.4450080418584435E-004 - 165.00000000000000 -3.5428663210496905E-004 - 165.06000000000000 -3.6403466213230065E-004 - 165.12000000000000 -3.7373290688657776E-004 - 165.17999999999998 -3.8336906186888902E-004 - 165.23999999999998 -3.9293060657672087E-004 - 165.29999999999998 -4.0240468035963363E-004 - 165.35999999999999 -4.1177822202657910E-004 - 165.41999999999999 -4.2103795617206923E-004 - 165.47999999999999 -4.3017037750454846E-004 - 165.53999999999999 -4.3916179270554712E-004 - 165.59999999999999 -4.4799840200758414E-004 - 165.66000000000000 -4.5666624270553053E-004 - 165.72000000000000 -4.6515126333628596E-004 - 165.78000000000000 -4.7343936067641753E-004 - 165.84000000000000 -4.8151634570779098E-004 - 165.90000000000001 -4.8936807084846361E-004 - 165.95999999999998 -4.9698035826094918E-004 - 166.01999999999998 -5.0433915181018597E-004 - 166.07999999999998 -5.1143044483081877E-004 - 166.13999999999999 -5.1824031081790115E-004 - 166.19999999999999 -5.2475503695610410E-004 - 166.25999999999999 -5.3096101162973758E-004 - 166.31999999999999 -5.3684490001882550E-004 - 166.38000000000000 -5.4239360725507821E-004 - 166.44000000000000 -5.4759418689515906E-004 - 166.50000000000000 -5.5243403619278074E-004 - 166.56000000000000 -5.5690098631099960E-004 - 166.62000000000000 -5.6098298775458908E-004 - 166.67999999999998 -5.6466846999996304E-004 - 166.73999999999998 -5.6794630222587589E-004 - 166.79999999999998 -5.7080561347763574E-004 - 166.85999999999999 -5.7323617110826837E-004 - 166.91999999999999 -5.7522808609821623E-004 - 166.97999999999999 -5.7677194502735304E-004 - 167.03999999999999 -5.7785896719125460E-004 - 167.09999999999999 -5.7848080675529248E-004 - 167.16000000000000 -5.7862973148569113E-004 - 167.22000000000000 -5.7829849584267485E-004 - 167.28000000000000 -5.7748058606147442E-004 - 167.34000000000000 -5.7617002134737665E-004 - 167.40000000000001 -5.7436147914791938E-004 - 167.45999999999998 -5.7205018634187439E-004 - 167.51999999999998 -5.6923208015476773E-004 - 167.57999999999998 -5.6590381689545697E-004 - 167.63999999999999 -5.6206257773226773E-004 - 167.69999999999999 -5.5770624992012479E-004 - 167.75999999999999 -5.5283351296186978E-004 - 167.81999999999999 -5.4744357598165234E-004 - 167.88000000000000 -5.4153637513377096E-004 - 167.94000000000000 -5.3511243074045396E-004 - 168.00000000000000 -5.2817297128337820E-004 - 168.06000000000000 -5.2071995106068409E-004 - 168.12000000000000 -5.1275595396100692E-004 - 168.17999999999998 -5.0428414356497580E-004 - 168.23999999999998 -4.9530851096414097E-004 - 168.29999999999998 -4.8583347040842534E-004 - 168.35999999999999 -4.7586423835542952E-004 - 168.41999999999999 -4.6540660654753450E-004 - 168.47999999999999 -4.5446699463253844E-004 - 168.53999999999999 -4.4305242842865772E-004 - 168.59999999999999 -4.3117053628311230E-004 - 168.66000000000000 -4.1882955850283660E-004 - 168.72000000000000 -4.0603833793807000E-004 - 168.78000000000000 -3.9280629151811281E-004 - 168.84000000000000 -3.7914339355248994E-004 - 168.90000000000001 -3.6506016223730584E-004 - 168.95999999999998 -3.5056765239223657E-004 - 169.01999999999998 -3.3567750272034180E-004 - 169.07999999999998 -3.2040177239493734E-004 - 169.13999999999999 -3.0475312641260451E-004 - 169.19999999999999 -2.8874460946518146E-004 - 169.25999999999999 -2.7238978911056080E-004 - 169.31999999999999 -2.5570273611835178E-004 - 169.38000000000000 -2.3869790288485643E-004 - 169.44000000000000 -2.2139010792107292E-004 - 169.50000000000000 -2.0379468835938884E-004 - 169.56000000000000 -1.8592731750316889E-004 - 169.62000000000000 -1.6780404289014943E-004 - 169.67999999999998 -1.4944123327612562E-004 - 169.73999999999998 -1.3085563370884482E-004 - 169.79999999999998 -1.1206428509507677E-004 - 169.85999999999999 -9.3084514030387081E-005 - 169.91999999999999 -7.3933929944719495E-005 - 169.97999999999999 -5.4630407283342411E-005 - 170.03999999999999 -3.5192059308444580E-005 - 170.09999999999999 -1.5637227108657367E-005 - 170.16000000000000 4.0155266620709300E-006 - 170.22000000000000 2.3747474329439531E-005 - 170.28000000000000 4.3539705725625200E-005 - 170.34000000000000 6.3373142935484715E-005 - 170.40000000000001 8.3228546206886168E-005 - 170.45999999999998 1.0308655127974421E-004 - 170.51999999999998 1.2292768277708644E-004 - 170.57999999999998 1.4273237383882235E-004 - 170.63999999999999 1.6248097479237237E-004 - 170.69999999999999 1.8215376279654292E-004 - 170.75999999999999 2.0173097349497293E-004 - 170.81999999999999 2.2119284314155022E-004 - 170.88000000000000 2.4051957203265249E-004 - 170.94000000000000 2.5969138338749703E-004 - 171.00000000000000 2.7868858343377772E-004 - 171.06000000000000 2.9749150454330957E-004 - 171.12000000000000 3.1608058985774251E-004 - 171.17999999999998 3.3443640522877585E-004 - 171.23999999999998 3.5253961118672289E-004 - 171.29999999999998 3.7037108522284336E-004 - 171.35999999999999 3.8791187157372515E-004 - 171.41999999999999 4.0514316532188634E-004 - 171.47999999999999 4.2204648722073807E-004 - 171.53999999999999 4.3860347402575390E-004 - 171.59999999999999 4.5479617070106248E-004 - 171.66000000000000 4.7060685420417130E-004 - 171.72000000000000 4.8601805389995276E-004 - 171.78000000000000 5.0101271625204065E-004 - 171.84000000000000 5.1557408720497944E-004 - 171.90000000000001 5.2968578601491104E-004 - 171.95999999999998 5.4333180935580696E-004 - 172.01999999999998 5.5649660504516021E-004 - 172.07999999999998 5.6916507817077687E-004 - 172.13999999999999 5.8132248434538216E-004 - 172.19999999999999 5.9295470110083573E-004 - 172.25999999999999 6.0404794611747270E-004 - 172.31999999999999 6.1458912490319751E-004 - 172.38000000000000 6.2456562225435221E-004 - 172.44000000000000 6.3396530497933856E-004 - 172.50000000000000 6.4277672570784154E-004 - 172.56000000000000 6.5098915420192720E-004 - 172.62000000000000 6.5859232526207958E-004 - 172.67999999999998 6.6557665101916812E-004 - 172.73999999999998 6.7193334503782166E-004 - 172.79999999999998 6.7765418794031075E-004 - 172.85999999999999 6.8273170366267512E-004 - 172.91999999999999 6.8715918851441026E-004 - 172.97999999999999 6.9093056005375486E-004 - 173.03999999999999 6.9404064224103611E-004 - 173.09999999999999 6.9648494882470254E-004 - 173.16000000000000 6.9825978244433264E-004 - 173.22000000000000 6.9936210527357537E-004 - 173.28000000000000 6.9978986281367644E-004 - 173.34000000000000 6.9954163493283550E-004 - 173.40000000000001 6.9861681489941910E-004 - 173.45999999999998 6.9701565905710278E-004 - 173.51999999999998 6.9473930444595130E-004 - 173.57999999999998 6.9178947498345301E-004 - 173.63999999999999 6.8816881696309772E-004 - 173.69999999999999 6.8388079281215847E-004 - 173.75999999999999 6.7892965065426093E-004 - 173.81999999999999 6.7332034211243250E-004 - 173.88000000000000 6.6705872669877103E-004 - 173.94000000000000 6.6015138577784000E-004 - 174.00000000000000 6.5260564997222058E-004 - 174.06000000000000 6.4442974038143570E-004 - 174.12000000000000 6.3563245231118537E-004 - 174.17999999999998 6.2622342943223280E-004 - 174.23999999999998 6.1621296904514815E-004 - 174.29999999999998 6.0561223603370392E-004 - 174.35999999999999 5.9443289523952898E-004 - 174.41999999999999 5.8268736407529793E-004 - 174.47999999999999 5.7038876877376059E-004 - 174.53999999999999 5.5755085239194780E-004 - 174.59999999999999 5.4418795809538093E-004 - 174.66000000000000 5.3031504081259956E-004 - 174.72000000000000 5.1594767122172935E-004 - 174.78000000000000 5.0110196674848248E-004 - 174.84000000000000 4.8579453450719383E-004 - 174.90000000000001 4.7004252062152657E-004 - 174.95999999999998 4.5386353936173387E-004 - 175.01999999999998 4.3727573719448779E-004 - 175.07999999999998 4.2029756253899421E-004 - 175.13999999999999 4.0294795282651150E-004 - 175.19999999999999 3.8524617746711805E-004 - 175.25999999999999 3.6721188320355905E-004 - 175.31999999999999 3.4886498861204298E-004 - 175.38000000000000 3.3022576101265612E-004 - 175.44000000000000 3.1131465569295824E-004 - 175.50000000000000 2.9215237451024530E-004 - 175.56000000000000 2.7275987527487029E-004 - 175.62000000000000 2.5315824278566372E-004 - 175.67999999999998 2.3336866345911728E-004 - 175.73999999999998 2.1341251239789065E-004 - 175.79999999999998 1.9331121850471326E-004 - 175.85999999999999 1.7308628475206525E-004 - 175.91999999999999 1.5275924950927162E-004 - 175.97999999999999 1.3235162108301440E-004 - 176.03999999999999 1.1188493524591785E-004 - 176.09999999999999 9.1380673529674236E-005 - 176.16000000000000 7.0860220908880607E-005 - 176.22000000000000 5.0344906219585427E-005 - 176.28000000000000 2.9855896476294049E-005 - 176.34000000000000 9.4142175164362271E-006 - 176.40000000000001 -1.0959264411967366E-005 - 176.45999999999998 -3.1243890603229279E-005 - 176.51999999999998 -5.1419230692953100E-005 - 176.57999999999998 -7.1465071221700488E-005 - 176.63999999999999 -9.1361497902650785E-005 - 176.69999999999999 -1.1108885897206399E-004 - 176.75999999999999 -1.3062782348845450E-004 - 176.81999999999999 -1.4995937305385063E-004 - 176.88000000000000 -1.6906484290691033E-004 - 176.94000000000000 -1.8792592543355778E-004 - 177.00000000000000 -2.0652468681162347E-004 - 177.06000000000000 -2.2484361078495637E-004 - 177.12000000000000 -2.4286555829948280E-004 - 177.17999999999998 -2.6057383967851530E-004 - 177.23999999999998 -2.7795220520884025E-004 - 177.29999999999998 -2.9498482539501707E-004 - 177.35999999999999 -3.1165638076397937E-004 - 177.41999999999999 -3.2795197578971942E-004 - 177.47999999999999 -3.4385728344329302E-004 - 177.53999999999999 -3.5935842986774806E-004 - 177.59999999999999 -3.7444200193896858E-004 - 177.66000000000000 -3.8909523648415648E-004 - 177.72000000000000 -4.0330581990491644E-004 - 177.78000000000000 -4.1706194945188781E-004 - 177.84000000000000 -4.3035243332934604E-004 - 177.90000000000001 -4.4316659951493942E-004 - 177.95999999999998 -4.5549437046301516E-004 - 178.01999999999998 -4.6732623864556978E-004 - 178.07999999999998 -4.7865321662524655E-004 - 178.13999999999999 -4.8946694390568282E-004 - 178.19999999999999 -4.9975964406601310E-004 - 178.25999999999999 -5.0952407593640237E-004 - 178.31999999999999 -5.1875368000852112E-004 - 178.38000000000000 -5.2744244079133337E-004 - 178.44000000000000 -5.3558500485223340E-004 - 178.50000000000000 -5.4317652323413628E-004 - 178.56000000000000 -5.5021288212134646E-004 - 178.62000000000000 -5.5669055538784713E-004 - 178.67999999999998 -5.6260664515237022E-004 - 178.73999999999998 -5.6795896894625420E-004 - 178.79999999999998 -5.7274582887480781E-004 - 178.85999999999999 -5.7696637164687120E-004 - 178.91999999999999 -5.8062027392509052E-004 - 178.97999999999999 -5.8370793669315245E-004 - 179.03999999999999 -5.8623029214368292E-004 - 179.09999999999999 -5.8818910842971521E-004 - 179.16000000000000 -5.8958674193502049E-004 - 179.22000000000000 -5.9042615230610882E-004 - 179.28000000000000 -5.9071109602990175E-004 - 179.34000000000000 -5.9044583669581483E-004 - 179.40000000000001 -5.8963541208923104E-004 - 179.45999999999998 -5.8828540971540941E-004 - 179.51999999999998 -5.8640215128601472E-004 - 179.57999999999998 -5.8399247701747660E-004 - 179.63999999999999 -5.8106397193864073E-004 - 179.69999999999999 -5.7762475364311124E-004 - 179.75999999999999 -5.7368361467878179E-004 - 179.81999999999999 -5.6924985868841212E-004 - 179.88000000000000 -5.6433351623208332E-004 - 179.94000000000000 -5.5894510774107586E-004 - 180.00000000000000 -5.5309579573231953E-004 - 180.06000000000000 -5.4679726416129941E-004 - 180.12000000000000 -5.4006172454663893E-004 - 180.17999999999998 -5.3290201428625168E-004 - 180.23999999999998 -5.2533136749993129E-004 - 180.29999999999998 -5.1736369673282569E-004 - 180.35999999999999 -5.0901336183912995E-004 - 180.41999999999999 -5.0029512986455964E-004 - 180.47999999999999 -4.9122423270628671E-004 - 180.53999999999999 -4.8181651145128539E-004 - 180.59999999999999 -4.7208793224097685E-004 - 180.66000000000000 -4.6205509220762099E-004 - 180.72000000000000 -4.5173477203641800E-004 - 180.78000000000000 -4.4114422145180885E-004 - 180.84000000000000 -4.3030091669604530E-004 - 180.90000000000001 -4.1922255938794907E-004 - 180.95999999999998 -4.0792716545507557E-004 - 181.01999999999998 -3.9643293229046569E-004 - 181.07999999999998 -3.8475820747554821E-004 - 181.13999999999999 -3.7292148926393586E-004 - 181.19999999999999 -3.6094134950229786E-004 - 181.25999999999999 -3.4883652497832637E-004 - 181.31999999999999 -3.3662564871836121E-004 - 181.38000000000000 -3.2432746615583975E-004 - 181.44000000000000 -3.1196061378095359E-004 - 181.50000000000000 -2.9954366197331491E-004 - 181.56000000000000 -2.8709509629651342E-004 - 181.62000000000000 -2.7463325038311505E-004 - 181.67999999999998 -2.6217625766399065E-004 - 181.73999999999998 -2.4974200491067566E-004 - 181.79999999999998 -2.3734820184505515E-004 - 181.85999999999999 -2.2501222331028657E-004 - 181.91999999999999 -2.1275107140952148E-004 - 181.97999999999999 -2.0058145980811413E-004 - 182.03999999999999 -1.8851965680900012E-004 - 182.09999999999999 -1.7658152993658421E-004 - 182.16000000000000 -1.6478245105890698E-004 - 182.22000000000000 -1.5313732516409771E-004 - 182.28000000000000 -1.4166050762965106E-004 - 182.34000000000000 -1.3036582742756916E-004 - 182.39999999999998 -1.1926649914167727E-004 - 182.45999999999998 -1.0837515538225272E-004 - 182.51999999999998 -9.7703765004123467E-005 - 182.57999999999998 -8.7263674516670391E-005 - 182.63999999999999 -7.7065505061650971E-005 - 182.69999999999999 -6.7119226641277271E-005 - 182.75999999999999 -5.7434045971122125E-005 - 182.81999999999999 -4.8018450831391709E-005 - 182.88000000000000 -3.8880185345671693E-005 - 182.94000000000000 -3.0026224586681751E-005 - 183.00000000000000 -2.1462758460859404E-005 - 183.06000000000000 -1.3195214371481830E-005 - 183.12000000000000 -5.2282202106402820E-006 - 183.17999999999998 2.4343700272837668E-006 - 183.23999999999998 9.7895023377036747E-006 - 183.29999999999998 1.6834899568268720E-005 - 183.35999999999999 2.3569068799531692E-005 - 183.41999999999999 2.9991289367437606E-005 - 183.47999999999999 3.6101606387894757E-005 - 183.53999999999999 4.1900808608863876E-005 - 183.59999999999999 4.7390429627697654E-005 - 183.66000000000000 5.2572723369855752E-005 - 183.72000000000000 5.7450649324109672E-005 - 183.78000000000000 6.2027851562217965E-005 - 183.84000000000000 6.6308642130962528E-005 - 183.89999999999998 7.0297967482103079E-005 - 183.95999999999998 7.4001403186024347E-005 - 184.01999999999998 7.7425120563730425E-005 - 184.07999999999998 8.0575858860952457E-005 - 184.13999999999999 8.3460886923803678E-005 - 184.19999999999999 8.6088002417460390E-005 - 184.25999999999999 8.8465459022245060E-005 - 184.31999999999999 9.0601978678821451E-005 - 184.38000000000000 9.2506699693286625E-005 - 184.44000000000000 9.4189135838500349E-005 - 184.50000000000000 9.5659145260595937E-005 - 184.56000000000000 9.6926897831964604E-005 - 184.62000000000000 9.8002843593266261E-005 - 184.67999999999998 9.8897665702847066E-005 - 184.73999999999998 9.9622246489092364E-005 - 184.79999999999998 1.0018764586419360E-004 - 184.85999999999999 1.0060502582943271E-004 - 184.91999999999999 1.0088565923639949E-004 - 184.97999999999999 1.0104086967421750E-004 - 185.03999999999999 1.0108198734033261E-004 - 185.09999999999999 1.0102032296554624E-004 - 185.16000000000000 1.0086714939484993E-004 - 185.22000000000000 1.0063364200471929E-004 - 185.28000000000000 1.0033086004388956E-004 - 185.34000000000000 9.9969697277688149E-005 - 185.39999999999998 9.9560873374396135E-005 - 185.45999999999998 9.9114880615666000E-005 - 185.51999999999998 9.8641976361460817E-005 - 185.57999999999998 9.8152140448119692E-005 - 185.63999999999999 9.7655039094881574E-005 - 185.69999999999999 9.7160012910022835E-005 - 185.75999999999999 9.6676059221405849E-005 - 185.81999999999999 9.6211780385715105E-005 - 185.88000000000000 9.5775394387550623E-005 - 185.94000000000000 9.5374701938318870E-005 - 186.00000000000000 9.5017069750526781E-005 - 186.06000000000000 9.4709419645078917E-005 - 186.12000000000000 9.4458211889212159E-005 - 186.17999999999998 9.4269447186774483E-005 - 186.23999999999998 9.4148647117527282E-005 - 186.29999999999998 9.4100849285828916E-005 - 186.35999999999999 9.4130596246131347E-005 - 186.41999999999999 9.4241961051364583E-005 - 186.47999999999999 9.4438514319547718E-005 - 186.53999999999999 9.4723336179779443E-005 - 186.59999999999999 9.5099018190406598E-005 - 186.66000000000000 9.5567646444038898E-005 - 186.72000000000000 9.6130822660168058E-005 - 186.78000000000000 9.6789665853211379E-005 - 186.84000000000000 9.7544808963595005E-005 - 186.89999999999998 9.8396398413935684E-005 - 186.95999999999998 9.9344100926673651E-005 - 187.01999999999998 1.0038710820788273E-004 - 187.07999999999998 1.0152414851923749E-004 - 187.13999999999999 1.0275348864151698E-004 - 187.19999999999999 1.0407295104215763E-004 - 187.25999999999999 1.0547991421883189E-004 - 187.31999999999999 1.0697134012349263E-004 - 187.38000000000000 1.0854378899810587E-004 - 187.44000000000000 1.1019341631623393E-004 - 187.50000000000000 1.1191601507796949E-004 - 187.56000000000000 1.1370701820724920E-004 - 187.62000000000000 1.1556153366443336E-004 - 187.67999999999998 1.1747436004154440E-004 - 187.73999999999998 1.1944001334968625E-004 - 187.79999999999998 1.2145272511356803E-004 - 187.85999999999999 1.2350651318002119E-004 - 187.91999999999999 1.2559516231597584E-004 - 187.97999999999999 1.2771223538288841E-004 - 188.03999999999999 1.2985114933771499E-004 - 188.09999999999999 1.3200514803220423E-004 - 188.16000000000000 1.3416731230812083E-004 - 188.22000000000000 1.3633062013576426E-004 - 188.28000000000000 1.3848793054043731E-004 - 188.34000000000000 1.4063202549660810E-004 - 188.39999999999998 1.4275559129569676E-004 - 188.45999999999998 1.4485124210283801E-004 - 188.51999999999998 1.4691158542311092E-004 - 188.57999999999998 1.4892916329448100E-004 - 188.63999999999999 1.5089650826224260E-004 - 188.69999999999999 1.5280615442441015E-004 - 188.75999999999999 1.5465066010417379E-004 - 188.81999999999999 1.5642262499338509E-004 - 188.88000000000000 1.5811467146388736E-004 - 188.94000000000000 1.5971950195012288E-004 - 189.00000000000000 1.6122992095439303E-004 - 189.06000000000000 1.6263882552188381E-004 - 189.12000000000000 1.6393923015140902E-004 - 189.17999999999998 1.6512428918947011E-004 - 189.23999999999998 1.6618732171677604E-004 - 189.29999999999998 1.6712179234957118E-004 - 189.35999999999999 1.6792137105592497E-004 - 189.41999999999999 1.6857992907147863E-004 - 189.47999999999999 1.6909152550504924E-004 - 189.53999999999999 1.6945043583418932E-004 - 189.59999999999999 1.6965118790998466E-004 - 189.66000000000000 1.6968854612932431E-004 - 189.72000000000000 1.6955749316453043E-004 - 189.78000000000000 1.6925326652260378E-004 - 189.84000000000000 1.6877136400394232E-004 - 189.89999999999998 1.6810753285067165E-004 - 189.95999999999998 1.6725777458049488E-004 - 190.01999999999998 1.6621832783859114E-004 - 190.07999999999998 1.6498571548710810E-004 - 190.13999999999999 1.6355668078964073E-004 - 190.19999999999999 1.6192824921173270E-004 - 190.25999999999999 1.6009767647370566E-004 - 190.31999999999999 1.5806248531963246E-004 - 190.38000000000000 1.5582041879249619E-004 - 190.44000000000000 1.5336949302590538E-004 - 190.50000000000000 1.5070795013973014E-004 - 190.56000000000000 1.4783429605663234E-004 - 190.62000000000000 1.4474724955020518E-004 - 190.67999999999998 1.4144579001819908E-004 - 190.73999999999998 1.3792914506962175E-004 - 190.79999999999998 1.3419677020813056E-004 - 190.85999999999999 1.3024836820490018E-004 - 190.91999999999999 1.2608387952525450E-004 - 190.97999999999999 1.2170347359250867E-004 - 191.03999999999999 1.1710756026455162E-004 - 191.09999999999999 1.1229677971791390E-004 - 191.16000000000000 1.0727198925569853E-004 - 191.22000000000000 1.0203428107860490E-004 - 191.28000000000000 9.6584937601628507E-005 - 191.34000000000000 9.0925448623948918E-005 - 191.39999999999998 8.5057499281776671E-005 - 191.45999999999998 7.8982961021705910E-005 - 191.51999999999998 7.2703869043336451E-005 - 191.57999999999998 6.6222429807400951E-005 - 191.63999999999999 5.9540996492930478E-005 - 191.69999999999999 5.2662059732851151E-005 - 191.75999999999999 4.5588243655366490E-005 - 191.81999999999999 3.8322296243886630E-005 - 191.88000000000000 3.0867082359792191E-005 - 191.94000000000000 2.3225580596897425E-005 - 192.00000000000000 1.5400875774566949E-005 - 192.06000000000000 7.3961603140910317E-006 - 192.12000000000000 -7.8526785775614515E-007 - 192.17999999999998 -9.1400059602844838E-006 - 192.23999999999998 -1.7664537953460704E-005 - 192.29999999999998 -2.6355244018175337E-005 - 192.35999999999999 -3.5208376614363630E-005 - 192.41999999999999 -4.4220075087966640E-005 - 192.47999999999999 -5.3386355412550546E-005 - 192.53999999999999 -6.2703093020983263E-005 - 192.59999999999999 -7.2166036664734237E-005 - 192.66000000000000 -8.1770791208569892E-005 - 192.72000000000000 -9.1512810542569939E-005 - 192.78000000000000 -1.0138741783905412E-004 - 192.84000000000000 -1.1138975902310683E-004 - 192.89999999999998 -1.2151481946131665E-004 - 192.95999999999998 -1.3175744930886071E-004 - 193.01999999999998 -1.4211231794526594E-004 - 193.07999999999998 -1.5257390262590995E-004 - 193.13999999999999 -1.6313652177411101E-004 - 193.19999999999999 -1.7379427159241250E-004 - 193.25999999999999 -1.8454111941777594E-004 - 193.31999999999999 -1.9537075844428109E-004 - 193.38000000000000 -2.0627670708750289E-004 - 193.44000000000000 -2.1725224081701233E-004 - 193.50000000000000 -2.2829042517691066E-004 - 193.56000000000000 -2.3938404197132259E-004 - 193.62000000000000 -2.5052563500572620E-004 - 193.67999999999998 -2.6170745237573498E-004 - 193.73999999999998 -2.7292151621485355E-004 - 193.79999999999998 -2.8415951140506871E-004 - 193.85999999999999 -2.9541281298098781E-004 - 193.91999999999999 -3.0667249090762805E-004 - 193.97999999999999 -3.1792929393644658E-004 - 194.03999999999999 -3.2917362532180555E-004 - 194.09999999999999 -3.4039556193160179E-004 - 194.16000000000000 -3.5158484036393426E-004 - 194.22000000000000 -3.6273084796748580E-004 - 194.28000000000000 -3.7382258923695827E-004 - 194.34000000000000 -3.8484875305126709E-004 - 194.39999999999998 -3.9579769675598589E-004 - 194.45999999999998 -4.0665736436683211E-004 - 194.51999999999998 -4.1741542328035394E-004 - 194.57999999999998 -4.2805917943806532E-004 - 194.63999999999999 -4.3857558387847055E-004 - 194.69999999999999 -4.4895132903312839E-004 - 194.75999999999999 -4.5917274574785663E-004 - 194.81999999999999 -4.6922594847580612E-004 - 194.88000000000000 -4.7909671346029489E-004 - 194.94000000000000 -4.8877057384739725E-004 - 195.00000000000000 -4.9823291312103433E-004 - 195.06000000000000 -5.0746881315106847E-004 - 195.12000000000000 -5.1646321712615765E-004 - 195.17999999999998 -5.2520090857823280E-004 - 195.23999999999998 -5.3366660313271242E-004 - 195.29999999999998 -5.4184478481557482E-004 - 195.35999999999999 -5.4972002883278844E-004 - 195.41999999999999 -5.5727678476056035E-004 - 195.47999999999999 -5.6449956865696764E-004 - 195.53999999999999 -5.7137287943553666E-004 - 195.59999999999999 -5.7788127327710649E-004 - 195.66000000000000 -5.8400957332602817E-004 - 195.72000000000000 -5.8974257184034090E-004 - 195.78000000000000 -5.9506532702858106E-004 - 195.84000000000000 -5.9996311117528763E-004 - 195.89999999999998 -6.0442153308107912E-004 - 195.95999999999998 -6.0842631925655838E-004 - 196.01999999999998 -6.1196381689278614E-004 - 196.07999999999998 -6.1502059206755501E-004 - 196.13999999999999 -6.1758367896085455E-004 - 196.19999999999999 -6.1964064343195179E-004 - 196.25999999999999 -6.2117954065847559E-004 - 196.31999999999999 -6.2218899799670153E-004 - 196.38000000000000 -6.2265830689032739E-004 - 196.44000000000000 -6.2257741665524787E-004 - 196.50000000000000 -6.2193688236440378E-004 - 196.56000000000000 -6.2072811896070530E-004 - 196.62000000000000 -6.1894320698293714E-004 - 196.67999999999998 -6.1657523348354658E-004 - 196.73999999999998 -6.1361795923178190E-004 - 196.79999999999998 -6.1006609481108502E-004 - 196.85999999999999 -6.0591535716151786E-004 - 196.91999999999999 -6.0116226419625800E-004 - 196.97999999999999 -5.9580446228070830E-004 - 197.03999999999999 -5.8984041377571855E-004 - 197.09999999999999 -5.8326973360863204E-004 - 197.16000000000000 -5.7609306801797652E-004 - 197.22000000000000 -5.6831200901590636E-004 - 197.28000000000000 -5.5992933195706484E-004 - 197.34000000000000 -5.5094873012742109E-004 - 197.39999999999998 -5.4137507866756397E-004 - 197.45999999999998 -5.3121426272865937E-004 - 197.51999999999998 -5.2047326532142892E-004 - 197.57999999999998 -5.0916010310069946E-004 - 197.63999999999999 -4.9728383230060013E-004 - 197.69999999999999 -4.8485457261229173E-004 - 197.75999999999999 -4.7188350131416751E-004 - 197.81999999999999 -4.5838273236678984E-004 - 197.88000000000000 -4.4436541211082041E-004 - 197.94000000000000 -4.2984563292456941E-004 - 198.00000000000000 -4.1483836978135875E-004 - 198.06000000000000 -3.9935961076582735E-004 - 198.12000000000000 -3.8342608962601090E-004 - 198.17999999999998 -3.6705546155499228E-004 - 198.23999999999998 -3.5026614745201589E-004 - 198.29999999999998 -3.3307727981504037E-004 - 198.35999999999999 -3.1550872223486413E-004 - 198.41999999999999 -2.9758097327824145E-004 - 198.47999999999999 -2.7931516809755902E-004 - 198.53999999999999 -2.6073296240679581E-004 - 198.59999999999999 -2.4185652193503405E-004 - 198.66000000000000 -2.2270845710863237E-004 - 198.72000000000000 -2.0331175065557239E-004 - 198.78000000000000 -1.8368969318384234E-004 - 198.84000000000000 -1.6386585527515288E-004 - 198.89999999999998 -1.4386398777729693E-004 - 198.95999999999998 -1.2370799564306680E-004 - 199.01999999999998 -1.0342184632252859E-004 - 199.07999999999998 -8.3029516910285741E-005 - 199.13999999999999 -6.2554923316861943E-005 - 199.19999999999999 -4.2021870402539123E-005 - 199.25999999999999 -2.1453980923506138E-005 - 199.31999999999999 -8.7465308666990876E-007 - 199.38000000000000 1.9693034087652639E-005 - 199.44000000000000 4.0226334731490360E-005 - 199.50000000000000 6.0702934527474390E-005 - 199.56000000000000 8.1100951520252272E-005 - 199.62000000000000 1.0139903183301898E-004 - 199.67999999999998 1.2157637729349463E-004 - 199.73999999999998 1.4161279560581856E-004 - 199.79999999999998 1.6148873326911125E-004 - 199.85999999999999 1.8118532072987860E-004 - 199.91999999999999 2.0068441190613118E-004 - 199.97999999999999 2.1996862233837343E-004 - 200.03999999999999 2.3902132829319066E-004 - 200.09999999999999 2.5782677316175354E-004 - 200.16000000000000 2.7636998983990811E-004 - 200.22000000000000 2.9463690422566079E-004 - 200.28000000000000 3.1261435273493735E-004 - 200.34000000000000 3.3029008023316019E-004 - 200.39999999999998 3.4765270244326956E-004 - 200.45999999999998 3.6469186338598249E-004 - 200.51999999999998 3.8139810370310282E-004 - 200.57999999999998 3.9776298390543772E-004 - 200.63999999999999 4.1377894197649486E-004 - 200.69999999999999 4.2943945052453466E-004 - 200.75999999999999 4.4473890922360198E-004 - 200.81999999999999 4.5967268330528697E-004 - 200.88000000000000 4.7423713290939504E-004 - 200.94000000000000 4.8842947543514901E-004 - 201.00000000000000 5.0224787854844834E-004 - 201.06000000000000 5.1569130796647272E-004 - 201.12000000000000 5.2875971431008445E-004 - 201.17999999999998 5.4145386946806407E-004 - 201.23999999999998 5.5377532808665881E-004 - 201.29999999999998 5.6572641158186864E-004 - 201.35999999999999 5.7731016789923210E-004 - 201.41999999999999 5.8853032553410844E-004 - 201.47999999999999 5.9939132866163752E-004 - 201.53999999999999 6.0989818330901878E-004 - 201.59999999999999 6.2005649266283231E-004 - 201.66000000000000 6.2987238206225430E-004 - 201.72000000000000 6.3935255258162796E-004 - 201.78000000000000 6.4850410458832958E-004 - 201.84000000000000 6.5733454074764542E-004 - 201.89999999999998 6.6585172742012345E-004 - 201.95999999999998 6.7406386474263484E-004 - 202.01999999999998 6.8197945637484805E-004 - 202.07999999999998 6.8960719259794374E-004 - 202.13999999999999 6.9695602171708330E-004 - 202.19999999999999 7.0403496217559384E-004 - 202.25999999999999 7.1085326716463081E-004 - 202.31999999999999 7.1742013080225171E-004 - 202.38000000000000 7.2374481646082908E-004 - 202.44000000000000 7.2983660851157347E-004 - 202.50000000000000 7.3570467304824897E-004 - 202.56000000000000 7.4135810178686454E-004 - 202.62000000000000 7.4680590308898198E-004 - 202.67999999999998 7.5205675182631428E-004 - 202.73999999999998 7.5711933821457147E-004 - 202.79999999999998 7.6200189517808509E-004 - 202.85999999999999 7.6671251725273632E-004 - 202.91999999999999 7.7125886313527574E-004 - 202.97999999999999 7.7564834295831765E-004 - 203.03999999999999 7.7988788510308712E-004 - 203.09999999999999 7.8398409060187620E-004 - 203.16000000000000 7.8794311391042627E-004 - 203.22000000000000 7.9177063756449286E-004 - 203.28000000000000 7.9547189557391197E-004 - 203.34000000000000 7.9905164227974139E-004 - 203.39999999999998 8.0251402059843425E-004 - 203.45999999999998 8.0586267244638164E-004 - 203.51999999999998 8.0910078087281410E-004 - 203.57999999999998 8.1223095579652021E-004 - 203.63999999999999 8.1525523015305815E-004 - 203.69999999999999 8.1817513144233649E-004 - 203.75999999999999 8.2099154101564068E-004 - 203.81999999999999 8.2370493415717867E-004 - 203.88000000000000 8.2631510573103427E-004 - 203.94000000000000 8.2882140903939598E-004 - 204.00000000000000 8.3122260205071403E-004 - 204.06000000000000 8.3351695080188207E-004 - 204.12000000000000 8.3570218755023306E-004 - 204.17999999999998 8.3777563463151663E-004 - 204.23999999999998 8.3973394191790614E-004 - 204.29999999999998 8.4157355120988457E-004 - 204.35999999999999 8.4329037361861186E-004 - 204.41999999999999 8.4487974659159073E-004 - 204.47999999999999 8.4633671035615676E-004 - 204.53999999999999 8.4765591067960595E-004 - 204.59999999999999 8.4883170326688676E-004 - 204.66000000000000 8.4985789401783218E-004 - 204.72000000000000 8.5072812421016898E-004 - 204.78000000000000 8.5143567461837765E-004 - 204.84000000000000 8.5197353989648452E-004 - 204.89999999999998 8.5233444224318538E-004 - 204.95999999999998 8.5251101253213627E-004 - 205.01999999999998 8.5249548745578124E-004 - 205.07999999999998 8.5228007938118432E-004 - 205.13999999999999 8.5185691703454499E-004 - 205.19999999999999 8.5121791941263807E-004 - 205.25999999999999 8.5035494316273400E-004 - 205.31999999999999 8.4925991858964011E-004 - 205.38000000000000 8.4792467120594326E-004 - 205.44000000000000 8.4634113981503728E-004 - 205.50000000000000 8.4450129781247704E-004 - 205.56000000000000 8.4239723559422321E-004 - 205.62000000000000 8.4002126921214144E-004 - 205.67999999999998 8.3736573237879787E-004 - 205.73999999999998 8.3442328279418839E-004 - 205.79999999999998 8.3118677872297839E-004 - 205.85999999999999 8.2764923942551204E-004 - 205.91999999999999 8.2380414967410062E-004 - 205.97999999999999 8.1964519105748594E-004 - 206.03999999999999 8.1516644961608295E-004 - 206.09999999999999 8.1036237042230212E-004 - 206.16000000000000 8.0522764320080722E-004 - 206.22000000000000 7.9975761790781650E-004 - 206.28000000000000 7.9394794187179316E-004 - 206.34000000000000 7.8779475832033272E-004 - 206.39999999999998 7.8129467080561709E-004 - 206.45999999999998 7.7444480874835691E-004 - 206.51999999999998 7.6724274366248013E-004 - 206.57999999999998 7.5968673384193826E-004 - 206.63999999999999 7.5177542234141574E-004 - 206.69999999999999 7.4350821589896910E-004 - 206.75999999999999 7.3488494851850028E-004 - 206.81999999999999 7.2590614283972053E-004 - 206.88000000000000 7.1657292566310222E-004 - 206.94000000000000 7.0688691782565748E-004 - 207.00000000000000 6.9685052160403638E-004 - 207.06000000000000 6.8646663543947203E-004 - 207.12000000000000 6.7573888911984735E-004 - 207.17999999999998 6.6467156604596339E-004 - 207.23999999999998 6.5326949263598338E-004 - 207.29999999999998 6.4153813442533716E-004 - 207.35999999999999 6.2948364489745501E-004 - 207.41999999999999 6.1711270289108828E-004 - 207.47999999999999 6.0443271199592231E-004 - 207.53999999999999 5.9145163783868822E-004 - 207.59999999999999 5.7817793487778481E-004 - 207.66000000000000 5.6462077458266033E-004 - 207.72000000000000 5.5078977415254100E-004 - 207.78000000000000 5.3669518004725598E-004 - 207.84000000000000 5.2234769578398484E-004 - 207.89999999999998 5.0775860217044055E-004 - 207.95999999999998 4.9293967885033843E-004 - 208.01999999999998 4.7790301177172629E-004 - 208.07999999999998 4.6266133116575536E-004 - 208.13999999999999 4.4722767810215724E-004 - 208.19999999999999 4.3161556198148158E-004 - 208.25999999999999 4.1583879755939355E-004 - 208.31999999999999 3.9991159056119134E-004 - 208.38000000000000 3.8384851043381409E-004 - 208.44000000000000 3.6766436228449946E-004 - 208.50000000000000 3.5137427681150221E-004 - 208.56000000000000 3.3499358038519786E-004 - 208.62000000000000 3.1853788172819418E-004 - 208.68000000000001 3.0202297828199387E-004 - 208.74000000000001 2.8546480676176522E-004 - 208.80000000000001 2.6887944352063100E-004 - 208.86000000000001 2.5228307436679501E-004 - 208.92000000000002 2.3569193354145405E-004 - 208.98000000000002 2.1912234895052097E-004 - 209.03999999999996 2.0259062222904484E-004 - 209.09999999999997 1.8611301869273731E-004 - 209.15999999999997 1.6970578211959243E-004 - 209.21999999999997 1.5338504703383567E-004 - 209.27999999999997 1.3716683388669264E-004 - 209.33999999999997 1.2106703056166890E-004 - 209.39999999999998 1.0510131791478145E-004 - 209.45999999999998 8.9285163996118792E-005 - 209.51999999999998 7.3633828233845430E-005 - 209.57999999999998 5.8162272718311343E-005 - 209.63999999999999 4.2885174156457830E-005 - 209.69999999999999 2.7816886938285605E-005 - 209.75999999999999 1.2971418015299917E-005 - 209.81999999999999 -1.6375828689362561E-006 - 209.88000000000000 -1.5996873544301856E-005 - 209.94000000000000 -3.0093613717403135E-005 - 210.00000000000000 -4.3915400461655402E-005 - 210.06000000000000 -5.7450286893078176E-005 - 210.12000000000000 -7.0686800243595761E-005 - 210.18000000000001 -8.3613946890499644E-005 - 210.24000000000001 -9.6221262115921157E-005 - 210.30000000000001 -1.0849879322759340E-004 - 210.36000000000001 -1.2043712911503974E-004 - 210.42000000000002 -1.3202742062266617E-004 - 210.48000000000002 -1.4326140331081050E-004 - 210.53999999999996 -1.5413138443787434E-004 - 210.59999999999997 -1.6463025862697674E-004 - 210.65999999999997 -1.7475153788153381E-004 - 210.71999999999997 -1.8448935805216236E-004 - 210.77999999999997 -1.9383844895862984E-004 - 210.83999999999997 -2.0279418522264886E-004 - 210.89999999999998 -2.1135257133854423E-004 - 210.95999999999998 -2.1951024587355534E-004 - 211.01999999999998 -2.2726445819829251E-004 - 211.07999999999998 -2.3461309894858281E-004 - 211.13999999999999 -2.4155468167287993E-004 - 211.19999999999999 -2.4808835356266535E-004 - 211.25999999999999 -2.5421384391173264E-004 - 211.31999999999999 -2.5993147194834643E-004 - 211.38000000000000 -2.6524221842779609E-004 - 211.44000000000000 -2.7014759661437931E-004 - 211.50000000000000 -2.7464969286391909E-004 - 211.56000000000000 -2.7875117494714909E-004 - 211.62000000000000 -2.8245530093393422E-004 - 211.68000000000001 -2.8576577766209731E-004 - 211.74000000000001 -2.8868691821191917E-004 - 211.80000000000001 -2.9122352728414762E-004 - 211.86000000000001 -2.9338086877323764E-004 - 211.92000000000002 -2.9516471998815047E-004 - 211.98000000000002 -2.9658131262818015E-004 - 212.03999999999996 -2.9763733595057309E-004 - 212.09999999999997 -2.9833989195973747E-004 - 212.15999999999997 -2.9869645639929356E-004 - 212.21999999999997 -2.9871497517861787E-004 - 212.27999999999997 -2.9840365400255554E-004 - 212.33999999999997 -2.9777110523570601E-004 - 212.39999999999998 -2.9682622050302478E-004 - 212.45999999999998 -2.9557817276361299E-004 - 212.51999999999998 -2.9403642081013794E-004 - 212.57999999999998 -2.9221064267625590E-004 - 212.63999999999999 -2.9011076668994146E-004 - 212.69999999999999 -2.8774691154095943E-004 - 212.75999999999999 -2.8512931310489738E-004 - 212.81999999999999 -2.8226836981986664E-004 - 212.88000000000000 -2.7917464075588236E-004 - 212.94000000000000 -2.7585870698802604E-004 - 213.00000000000000 -2.7233128703544978E-004 - 213.06000000000000 -2.6860314789522505E-004 - 213.12000000000000 -2.6468505421814106E-004 - 213.18000000000001 -2.6058779550068161E-004 - 213.24000000000001 -2.5632217592972686E-004 - 213.30000000000001 -2.5189900342667445E-004 - 213.36000000000001 -2.4732893229109236E-004 - 213.42000000000002 -2.4262268402798820E-004 - 213.48000000000002 -2.3779081854558649E-004 - 213.53999999999996 -2.3284380741864279E-004 - 213.59999999999997 -2.2779201634656705E-004 - 213.65999999999997 -2.2264569269052955E-004 - 213.71999999999997 -2.1741489278366698E-004 - 213.77999999999997 -2.1210955933947213E-004 - 213.83999999999997 -2.0673939796004887E-004 - 213.89999999999998 -2.0131395696310834E-004 - 213.95999999999998 -1.9584256125889068E-004 - 214.01999999999998 -1.9033429812746218E-004 - 214.07999999999998 -1.8479804406495545E-004 - 214.13999999999999 -1.7924240241204293E-004 - 214.19999999999999 -1.7367572420671779E-004 - 214.25999999999999 -1.6810609988866327E-004 - 214.31999999999999 -1.6254138334418443E-004 - 214.38000000000000 -1.5698909152598702E-004 - 214.44000000000000 -1.5145649253730452E-004 - 214.50000000000000 -1.4595055875312520E-004 - 214.56000000000000 -1.4047798061640656E-004 - 214.62000000000000 -1.3504515963424420E-004 - 214.68000000000001 -1.2965821719700295E-004 - 214.74000000000001 -1.2432296584106165E-004 - 214.80000000000001 -1.1904495299860005E-004 - 214.86000000000001 -1.1382945031680454E-004 - 214.92000000000002 -1.0868143744394326E-004 - 214.98000000000002 -1.0360561347767630E-004 - 215.03999999999996 -9.8606415023327253E-005 - 215.09999999999997 -9.3688015913014587E-005 - 215.15999999999997 -8.8854315393541226E-005 - 215.21999999999997 -8.4108974522113114E-005 - 215.27999999999997 -7.9455375964443691E-005 - 215.33999999999997 -7.4896670829340477E-005 - 215.39999999999998 -7.0435758487289360E-005 - 215.45999999999998 -6.6075305777061312E-005 - 215.51999999999998 -6.1817737384310412E-005 - 215.57999999999998 -5.7665253111471043E-005 - 215.63999999999999 -5.3619823909633264E-005 - 215.69999999999999 -4.9683213811504138E-005 - 215.75999999999999 -4.5856968501310687E-005 - 215.81999999999999 -4.2142429445651407E-005 - 215.88000000000000 -3.8540746004700336E-005 - 215.94000000000000 -3.5052876854973223E-005 - 216.00000000000000 -3.1679597431611668E-005 - 216.06000000000000 -2.8421515904723833E-005 - 216.12000000000000 -2.5279081714528207E-005 - 216.18000000000001 -2.2252593548644790E-005 - 216.24000000000001 -1.9342207995593309E-005 - 216.30000000000001 -1.6547949155062566E-005 - 216.36000000000001 -1.3869726287922670E-005 - 216.42000000000002 -1.1307333423613191E-005 - 216.48000000000002 -8.8604680165989168E-006 - 216.53999999999996 -6.5287316370186535E-006 - 216.59999999999997 -4.3116425009445459E-006 - 216.65999999999997 -2.2086416451612337E-006 - 216.71999999999997 -2.1909885649729265E-007 - 216.77999999999997 1.6576803017877004E-006 - 216.83999999999997 3.4224519575345142E-006 - 216.89999999999998 5.0760279535216895E-006 - 216.95999999999998 6.6192730442849651E-006 - 217.01999999999998 8.0531013392927794E-006 - 217.07999999999998 9.3784719619079798E-006 - 217.13999999999999 1.0596386420873186E-005 - 217.19999999999999 1.1707887021468468E-005 - 217.25999999999999 1.2714053291717821E-005 - 217.31999999999999 1.3615996356346523E-005 - 217.38000000000000 1.4414857378637562E-005 - 217.44000000000000 1.5111804019742309E-005 - 217.50000000000000 1.5708026449456123E-005 - 217.56000000000000 1.6204731532159947E-005 - 217.62000000000000 1.6603144001619477E-005 - 217.68000000000001 1.6904499740023373E-005 - 217.74000000000001 1.7110045968073620E-005 - 217.80000000000001 1.7221037938582014E-005 - 217.86000000000001 1.7238737860586649E-005 - 217.92000000000002 1.7164421686760441E-005 - 217.98000000000002 1.6999367846225591E-005 - 218.03999999999996 1.6744874174483097E-005 - 218.09999999999997 1.6402251828668470E-005 - 218.15999999999997 1.5972827542111462E-005 - 218.21999999999997 1.5457959214199963E-005 - 218.27999999999997 1.4859028729220786E-005 - 218.33999999999997 1.4177454051894566E-005 - 218.39999999999998 1.3414690974887937E-005 - 218.45999999999998 1.2572237666052365E-005 - 218.51999999999998 1.1651642065064704E-005 - 218.57999999999998 1.0654502371595190E-005 - 218.63999999999999 9.5824688616361029E-006 - 218.69999999999999 8.4372495987777482E-006 - 218.75999999999999 7.2206072553994308E-006 - 218.81999999999999 5.9343652605832627E-006 - 218.88000000000000 4.5804030737231178E-006 - 218.94000000000000 3.1606528647004160E-006 - 219.00000000000000 1.6771054796677784E-006 - 219.06000000000000 1.3180725318520979E-007 - 219.12000000000000 -1.4731409738292874E-006 - 219.18000000000001 -3.1355874102107841E-006 - 219.24000000000001 -4.8533268547806857E-006 - 219.30000000000001 -6.6241009881398312E-006 - 219.36000000000001 -8.4455993798310846E-006 - 219.42000000000002 -1.0315460893451634E-005 - 219.48000000000002 -1.2231267649843913E-005 - 219.53999999999996 -1.4190548474630408E-005 - 219.59999999999997 -1.6190782421746871E-005 - 219.65999999999997 -1.8229390180767271E-005 - 219.71999999999997 -2.0303742386800474E-005 - 219.77999999999997 -2.2411153825295586E-005 - 219.83999999999997 -2.4548889654524057E-005 - 219.89999999999998 -2.6714172440801559E-005 - 219.95999999999998 -2.8904172280464651E-005 - 220.01999999999998 -3.1116020450445229E-005 - 220.07999999999998 -3.3346813519834074E-005 - 220.13999999999999 -3.5593613069505158E-005 - 220.19999999999999 -3.7853463160932592E-005 - 220.25999999999999 -4.0123381096364808E-005 - 220.31999999999999 -4.2400375835472174E-005 - 220.38000000000000 -4.4681455743762324E-005 - 220.44000000000000 -4.6963627221722684E-005 - 220.50000000000000 -4.9243907958433118E-005 - 220.56000000000000 -5.1519331890359297E-005 - 220.62000000000000 -5.3786956516322992E-005 - 220.68000000000001 -5.6043863048282619E-005 - 220.74000000000001 -5.8287178111042448E-005 - 220.80000000000001 -6.0514062248565261E-005 - 220.86000000000001 -6.2721720270087522E-005 - 220.92000000000002 -6.4907420827444934E-005 - 220.98000000000002 -6.7068478488161489E-005 - 221.03999999999996 -6.9202278238210269E-005 - 221.09999999999997 -7.1306258878982797E-005 - 221.15999999999997 -7.3377946089803924E-005 - 221.21999999999997 -7.5414940032369037E-005 - 221.27999999999997 -7.7414912811662141E-005 - 221.33999999999997 -7.9375620828872758E-005 - 221.39999999999998 -8.1294921210858407E-005 - 221.45999999999998 -8.3170753344138202E-005 - 221.51999999999998 -8.5001170060591661E-005 - 221.57999999999998 -8.6784321017716073E-005 - 221.63999999999999 -8.8518458773424993E-005 - 221.69999999999999 -9.0201947925842122E-005 - 221.75999999999999 -9.1833272498749232E-005 - 221.81999999999999 -9.3411036696186336E-005 - 221.88000000000000 -9.4933973431783714E-005 - 221.94000000000000 -9.6400931976361467E-005 - 222.00000000000000 -9.7810898573404432E-005 - 222.06000000000000 -9.9162984817489789E-005 - 222.12000000000000 -1.0045643947644696E-004 - 222.18000000000001 -1.0169065125565793E-004 - 222.24000000000001 -1.0286513140431107E-004 - 222.30000000000001 -1.0397953712455557E-004 - 222.36000000000001 -1.0503365469779158E-004 - 222.42000000000002 -1.0602739937033016E-004 - 222.48000000000002 -1.0696082773264113E-004 - 222.53999999999996 -1.0783411535707311E-004 - 222.59999999999997 -1.0864755020907174E-004 - 222.65999999999997 -1.0940155357452458E-004 - 222.71999999999997 -1.1009665675341894E-004 - 222.77999999999997 -1.1073349136864916E-004 - 222.83999999999997 -1.1131280030438759E-004 - 222.89999999999998 -1.1183542334517669E-004 - 222.95999999999998 -1.1230230009768947E-004 - 223.01999999999998 -1.1271445483464042E-004 - 223.07999999999998 -1.1307301017288843E-004 - 223.13999999999999 -1.1337916656289462E-004 - 223.19999999999999 -1.1363421703536404E-004 - 223.25999999999999 -1.1383952068965743E-004 - 223.31999999999999 -1.1399653138517981E-004 - 223.38000000000000 -1.1410677586053201E-004 - 223.44000000000000 -1.1417184730115943E-004 - 223.50000000000000 -1.1419341492571503E-004 - 223.56000000000000 -1.1417321839748587E-004 - 223.62000000000000 -1.1411305939292105E-004 - 223.68000000000001 -1.1401480538975463E-004 - 223.74000000000001 -1.1388035650560305E-004 - 223.80000000000001 -1.1371168230396244E-004 - 223.86000000000001 -1.1351077419290137E-004 - 223.92000000000002 -1.1327966981905516E-004 - 223.98000000000002 -1.1302039842317886E-004 - 224.03999999999996 -1.1273501299841415E-004 - 224.09999999999997 -1.1242558272595775E-004 - 224.15999999999997 -1.1209414126699218E-004 - 224.21999999999997 -1.1174272355386174E-004 - 224.27999999999997 -1.1137332586898157E-004 - 224.33999999999997 -1.1098790746085902E-004 - 224.39999999999998 -1.1058839697963615E-004 - 224.45999999999998 -1.1017666835566723E-004 - 224.51999999999998 -1.0975454724889510E-004 - 224.57999999999998 -1.0932379585804289E-004 - 224.63999999999999 -1.0888610527472749E-004 - 224.69999999999999 -1.0844311358755752E-004 - 224.75999999999999 -1.0799639584580725E-004 - 224.81999999999999 -1.0754744456305708E-004 - 224.88000000000000 -1.0709768832280825E-004 - 224.94000000000000 -1.0664847650526839E-004 - 225.00000000000000 -1.0620106561152681E-004 - 225.06000000000000 -1.0575665891489282E-004 - 225.12000000000000 -1.0531635770222749E-004 - 225.18000000000001 -1.0488117772313389E-004 - 225.24000000000001 -1.0445203220405170E-004 - 225.30000000000001 -1.0402973733271908E-004 - 225.36000000000001 -1.0361500788971508E-004 - 225.42000000000002 -1.0320845899545309E-004 - 225.48000000000002 -1.0281059156538485E-004 - 225.53999999999996 -1.0242177528734580E-004 - 225.59999999999997 -1.0204229292891524E-004 - 225.65999999999997 -1.0167228303526176E-004 - 225.71999999999997 -1.0131177934100160E-004 - 225.77999999999997 -1.0096068541567244E-004 - 225.83999999999997 -1.0061880095085038E-004 - 225.89999999999998 -1.0028580017794412E-004 - 225.95999999999998 -9.9961237672185834E-005 - 226.01999999999998 -9.9644566833408021E-005 - 226.07999999999998 -9.9335141828605701E-005 - 226.13999999999999 -9.9032193724003469E-005 - 226.19999999999999 -9.8734857209496413E-005 - 226.25999999999999 -9.8442177405127010E-005 - 226.31999999999999 -9.8153106836639193E-005 - 226.38000000000000 -9.7866504253225426E-005 - 226.44000000000000 -9.7581153055137384E-005 - 226.50000000000000 -9.7295756492238287E-005 - 226.56000000000000 -9.7008939591118523E-005 - 226.62000000000000 -9.6719271769985510E-005 - 226.68000000000001 -9.6425258225832101E-005 - 226.74000000000001 -9.6125339690564216E-005 - 226.80000000000001 -9.5817916467366997E-005 - 226.86000000000001 -9.5501354054959402E-005 - 226.92000000000002 -9.5173973504448568E-005 - 226.98000000000002 -9.4834078214173901E-005 - 227.03999999999996 -9.4479949974425554E-005 - 227.09999999999997 -9.4109862229140696E-005 - 227.15999999999997 -9.3722085241968413E-005 - 227.21999999999997 -9.3314900034442193E-005 - 227.27999999999997 -9.2886597638475442E-005 - 227.33999999999997 -9.2435518848511266E-005 - 227.39999999999998 -9.1960001632501704E-005 - 227.45999999999998 -9.1458444274003414E-005 - 227.51999999999998 -9.0929303094585179E-005 - 227.57999999999998 -9.0371076047169368E-005 - 227.63999999999999 -8.9782334668076064E-005 - 227.69999999999999 -8.9161722870117167E-005 - 227.75999999999999 -8.8507959518036977E-005 - 227.81999999999999 -8.7819861725160569E-005 - 227.88000000000000 -8.7096323699468496E-005 - 227.94000000000000 -8.6336368101344742E-005 - 228.00000000000000 -8.5539108188855263E-005 - 228.06000000000000 -8.4703779781010452E-005 - 228.12000000000000 -8.3829732428315101E-005 - 228.18000000000001 -8.2916450504129014E-005 - 228.24000000000001 -8.1963548078943274E-005 - 228.30000000000001 -8.0970767386289786E-005 - 228.36000000000001 -7.9937995185727626E-005 - 228.42000000000002 -7.8865246634926062E-005 - 228.48000000000002 -7.7752696887435044E-005 - 228.53999999999996 -7.6600638562084644E-005 - 228.59999999999997 -7.5409525494415935E-005 - 228.65999999999997 -7.4179933442442613E-005 - 228.71999999999997 -7.2912595256400793E-005 - 228.77999999999997 -7.1608354138169388E-005 - 228.83999999999997 -7.0268196828311366E-005 - 228.89999999999998 -6.8893239652966992E-005 - 228.95999999999998 -6.7484712748204810E-005 - 229.01999999999998 -6.6043978264380572E-005 - 229.07999999999998 -6.4572500345454648E-005 - 229.13999999999999 -6.3071860674906554E-005 - 229.19999999999999 -6.1543740489817904E-005 - 229.25999999999999 -5.9989930293451158E-005 - 229.31999999999999 -5.8412305929022420E-005 - 229.38000000000000 -5.6812839851652386E-005 - 229.44000000000000 -5.5193586858723338E-005 - 229.50000000000000 -5.3556677105075757E-005 - 229.56000000000000 -5.1904307505634742E-005 - 229.62000000000000 -5.0238747305791660E-005 - 229.68000000000001 -4.8562310512316489E-005 - 229.74000000000001 -4.6877365648196425E-005 - 229.80000000000001 -4.5186319309145318E-005 - 229.86000000000001 -4.3491608435287329E-005 - 229.92000000000002 -4.1795685579760933E-005 - 229.97999999999996 -4.0101025818240213E-005 - 230.03999999999996 -3.8410099327613978E-005 - 230.09999999999997 -3.6725379739984552E-005 - 230.15999999999997 -3.5049322756566153E-005 - 230.21999999999997 -3.3384374824461526E-005 - 230.27999999999997 -3.1732938820637571E-005 - 230.33999999999997 -3.0097393998518269E-005 - 230.39999999999998 -2.8480070607706404E-005 - 230.45999999999998 -2.6883251665376520E-005 - 230.51999999999998 -2.5309161856620925E-005 - 230.57999999999998 -2.3759962355465578E-005 - 230.63999999999999 -2.2237743005720576E-005 - 230.69999999999999 -2.0744517111161755E-005 - 230.75999999999999 -1.9282207035777326E-005 - 230.81999999999999 -1.7852649839867692E-005 - 230.88000000000000 -1.6457582823997599E-005 - 230.94000000000000 -1.5098640067070912E-005 - 231.00000000000000 -1.3777348052644206E-005 - 231.06000000000000 -1.2495119042484408E-005 - 231.12000000000000 -1.1253250639527220E-005 - 231.18000000000001 -1.0052919677168911E-005 - 231.24000000000001 -8.8951849447557147E-006 - 231.30000000000001 -7.7809829077625936E-006 - 231.36000000000001 -6.7111296384058357E-006 - 231.42000000000002 -5.6863233204851762E-006 - 231.47999999999996 -4.7071450539664316E-006 - 231.53999999999996 -3.7740612418902082E-006 - 231.59999999999997 -2.8874282301552762E-006 - 231.65999999999997 -2.0474950541889429E-006 - 231.71999999999997 -1.2544055405664520E-006 - 231.77999999999997 -5.0820326716691902E-007 - 231.83999999999997 1.9116747913766006E-007 - 231.89999999999998 8.4385831842135471E-007 - 231.95999999999998 1.4501163689272344E-006 - 232.01999999999998 2.0102825178669971E-006 - 232.07999999999998 2.5247903460159821E-006 - 232.13999999999999 2.9941671252449129E-006 - 232.19999999999999 3.4190327363951273E-006 - 232.25999999999999 3.8000996657369828E-006 - 232.31999999999999 4.1381738845581364E-006 - 232.38000000000000 4.4341524508390614E-006 - 232.44000000000000 4.6890226576970148E-006 - 232.50000000000000 4.9038611558408890E-006 - 232.56000000000000 5.0798292128812985E-006 - 232.62000000000000 5.2181706377355435E-006 - 232.68000000000001 5.3202075006306397E-006 - 232.74000000000001 5.3873337864444395E-006 - 232.80000000000001 5.4210107466689172E-006 - 232.86000000000001 5.4227609306361026E-006 - 232.92000000000002 5.3941624619891507E-006 - 232.97999999999996 5.3368418679802888E-006 - 233.03999999999996 5.2524693618435112E-006 - 233.09999999999997 5.1427534052570834E-006 - 233.15999999999997 5.0094357545202728E-006 - 233.21999999999997 4.8542859215985858E-006 - 233.27999999999997 4.6790982320381277E-006 - 233.33999999999997 4.4856897601570850E-006 - 233.39999999999998 4.2758954556269807E-006 - 233.45999999999998 4.0515670133874295E-006 - 233.51999999999998 3.8145689036370105E-006 - 233.57999999999998 3.5667788466844433E-006 - 233.63999999999999 3.3100829646557842E-006 - 233.69999999999999 3.0463763149741747E-006 - 233.75999999999999 2.7775571615897283E-006 - 233.81999999999999 2.5055248795775881E-006 - 233.88000000000000 2.2321780865448564E-006 - 233.94000000000000 1.9594092066135466E-006 - 234.00000000000000 1.6891010460726700E-006 - 234.06000000000000 1.4231228362342959E-006 - 234.12000000000000 1.1633252657668253E-006 - 234.18000000000001 9.1153586309074396E-007 - 234.24000000000001 6.6955512906118064E-007 - 234.30000000000001 4.3915162167923288E-007 - 234.36000000000001 2.2205719023773599E-007 - 234.42000000000002 1.9963182160540778E-008 - 234.47999999999996 -1.6548280882755198E-007 - 234.53999999999996 -3.3268194514848593E-007 - 234.59999999999997 -4.8008648544336570E-007 - 234.65999999999997 -6.0620410157338801E-007 - 234.71999999999997 -7.0960095352690290E-007 - 234.77999999999997 -7.8890328894647635E-007 - 234.83999999999997 -8.4280232645604823E-007 - 234.89999999999998 -8.7005567139143125E-007 - 234.95999999999998 -8.6949057422657983E-007 - 235.01999999999998 -8.4000589004593437E-007 - 235.07999999999998 -7.8057466346636118E-007 - 235.13999999999999 -6.9024589923702494E-007 - 235.19999999999999 -5.6814650056066511E-007 - 235.25999999999999 -4.1348301362300358E-007 - 235.31999999999999 -2.2554249884117212E-007 - 235.38000000000000 -3.6942151596334627E-009 - 235.44000000000000 2.5261020249159280E-007 - 235.50000000000000 5.4383520690440694E-007 - 235.56000000000000 8.7036224891656908E-007 - 235.62000000000000 1.2324887529445420E-006 - 235.68000000000001 1.6304263141635530E-006 - 235.74000000000001 2.0643036667655851E-006 - 235.80000000000001 2.5341638638390489E-006 - 235.86000000000001 3.0399649304662761E-006 - 235.92000000000002 3.5815789291467619E-006 - 235.97999999999996 4.1587939507471713E-006 - 236.03999999999996 4.7713108991535495E-006 - 236.09999999999997 5.4187470415172180E-006 - 236.15999999999997 6.1006348344249925E-006 - 236.21999999999997 6.8164229853535045E-006 - 236.27999999999997 7.5654786069805757E-006 - 236.33999999999997 8.3470911104886790E-006 - 236.39999999999998 9.1604693889976110E-006 - 236.45999999999998 1.0004753948923783E-005 - 236.51999999999998 1.0879012957828846E-005 - 236.57999999999998 1.1782255603738806E-005 - 236.63999999999999 1.2713428259991435E-005 - 236.69999999999999 1.3671427665940371E-005 - 236.75999999999999 1.4655103333273400E-005 - 236.81999999999999 1.5663265607045573E-005 - 236.88000000000000 1.6694688789813044E-005 - 236.94000000000000 1.7748117670180556E-005 - 237.00000000000000 1.8822271093344788E-005 - 237.06000000000000 1.9915850680460039E-005 - 237.12000000000000 2.1027538463381709E-005 - 237.18000000000001 2.2156004095501698E-005 - 237.24000000000001 2.3299901544925714E-005 - 237.30000000000001 2.4457879399069752E-005 - 237.36000000000001 2.5628570252128866E-005 - 237.42000000000002 2.6810608720606428E-005 - 237.47999999999996 2.8002612681251054E-005 - 237.53999999999996 2.9203197013883006E-005 - 237.59999999999997 3.0410970645352497E-005 - 237.65999999999997 3.1624539522611904E-005 - 237.71999999999997 3.2842504907601536E-005 - 237.77999999999997 3.4063474994026217E-005 - 237.83999999999997 3.5286053114579081E-005 - 237.89999999999998 3.6508847898769903E-005 - 237.95999999999998 3.7730481604713804E-005 - 238.01999999999998 3.8949584991444509E-005 - 238.07999999999998 4.0164800456678483E-005 - 238.13999999999999 4.1374784969654348E-005 - 238.19999999999999 4.2578213941750273E-005 - 238.25999999999999 4.3773784717283709E-005 - 238.31999999999999 4.4960213963252806E-005 - 238.38000000000000 4.6136240432361270E-005 - 238.44000000000000 4.7300623039202483E-005 - 238.50000000000000 4.8452137416885172E-005 - 238.56000000000000 4.9589585980859704E-005 - 238.62000000000000 5.0711781543578257E-005 - 238.68000000000001 5.1817561964481550E-005 - 238.74000000000001 5.2905776910533786E-005 - 238.80000000000001 5.3975293074715379E-005 - 238.86000000000001 5.5024991489355062E-005 - 238.92000000000002 5.6053772030132945E-005 - 238.97999999999996 5.7060547707501666E-005 - 239.03999999999996 5.8044247621175756E-005 - 239.09999999999997 5.9003824204260015E-005 - 239.15999999999997 5.9938245118641897E-005 - 239.21999999999997 6.0846495214722033E-005 - 239.27999999999997 6.1727585475836893E-005 - 239.33999999999997 6.2580548267636302E-005 - 239.39999999999998 6.3404431081291721E-005 - 239.45999999999998 6.4198319237735420E-005 - 239.51999999999998 6.4961320047682438E-005 - 239.57999999999998 6.5692560489350902E-005 - 239.63999999999999 6.6391190388655235E-005 - 239.69999999999999 6.7056388450895016E-005 - 239.75999999999999 6.7687353179607160E-005 - 239.81999999999999 6.8283322883691501E-005 - 239.88000000000000 6.8843543049284812E-005 - 239.94000000000000 6.9367291734733012E-005 - 240.00000000000000 6.9853878013193479E-005 - 240.06000000000000 7.0302637229009013E-005 - 240.12000000000000 7.0712943661275365E-005 - 240.18000000000001 7.1084202475325866E-005 - 240.24000000000001 7.1415845877993971E-005 - 240.30000000000001 7.1707360447828035E-005 - 240.36000000000001 7.1958269365447175E-005 - 240.42000000000002 7.2168148095244392E-005 - 240.47999999999996 7.2336605000542008E-005 - 240.53999999999996 7.2463327716908448E-005 - 240.59999999999997 7.2548044628224914E-005 - 240.65999999999997 7.2590545400755206E-005 - 240.71999999999997 7.2590682021402917E-005 - 240.77999999999997 7.2548375634606045E-005 - 240.83999999999997 7.2463599202870075E-005 - 240.89999999999998 7.2336399180470735E-005 - 240.95999999999998 7.2166882231446561E-005 - 241.01999999999998 7.1955221119960556E-005 - 241.07999999999998 7.1701668280011471E-005 - 241.13999999999999 7.1406528516734325E-005 - 241.19999999999999 7.1070179443616727E-005 - 241.25999999999999 7.0693069278171262E-005 - 241.31999999999999 7.0275705601278537E-005 - 241.38000000000000 6.9818664621753616E-005 - 241.44000000000000 6.9322594380272904E-005 - 241.50000000000000 6.8788198666509058E-005 - 241.56000000000000 6.8216261052748454E-005 - 241.62000000000000 6.7607613490916398E-005 - 241.68000000000001 6.6963148860104001E-005 - 241.74000000000001 6.6283830662327092E-005 - 241.80000000000001 6.5570657060918028E-005 - 241.86000000000001 6.4824694718858776E-005 - 241.92000000000002 6.4047048441031682E-005 - 241.97999999999996 6.3238864344854296E-005 - 242.03999999999996 6.2401339962615379E-005 - 242.09999999999997 6.1535700313361934E-005 - 242.15999999999997 6.0643190733572743E-005 - 242.21999999999997 5.9725104661268308E-005 - 242.27999999999997 5.8782742013476596E-005 - 242.33999999999997 5.7817422838697682E-005 - 242.39999999999998 5.6830495351967198E-005 - 242.45999999999998 5.5823301094268107E-005 - 242.51999999999998 5.4797211576819003E-005 - 242.57999999999998 5.3753590718437461E-005 - 242.63999999999999 5.2693816186097832E-005 - 242.69999999999999 5.1619255737159058E-005 - 242.75999999999999 5.0531285683235099E-005 - 242.81999999999999 4.9431264603427854E-005 - 242.88000000000000 4.8320545751967535E-005 - 242.94000000000000 4.7200467856163047E-005 - 243.00000000000000 4.6072344847231698E-005 - 243.06000000000000 4.4937474242879722E-005 - 243.12000000000000 4.3797121624490279E-005 - 243.18000000000001 4.2652521935692234E-005 - 243.24000000000001 4.1504875105662428E-005 - 243.30000000000001 4.0355345918142244E-005 - 243.36000000000001 3.9205048501919069E-005 - 243.42000000000002 3.8055062929747758E-005 - 243.47999999999996 3.6906422020875279E-005 - 243.53999999999996 3.5760106785238383E-005 - 243.59999999999997 3.4617060062108455E-005 - 243.65999999999997 3.3478172156952058E-005 - 243.71999999999997 3.2344288008517989E-005 - 243.77999999999997 3.1216209179837393E-005 - 243.83999999999997 3.0094685984928689E-005 - 243.89999999999998 2.8980437271190431E-005 - 243.95999999999998 2.7874128803090848E-005 - 244.01999999999998 2.6776386434312734E-005 - 244.07999999999998 2.5687791856136061E-005 - 244.13999999999999 2.4608888035092143E-005 - 244.19999999999999 2.3540172413273476E-005 - 244.25999999999999 2.2482110429171848E-005 - 244.31999999999999 2.1435117092438817E-005 - 244.38000000000000 2.0399575595902602E-005 - 244.44000000000000 1.9375830167181055E-005 - 244.50000000000000 1.8364188700649689E-005 - 244.56000000000000 1.7364922772837588E-005 - 244.62000000000000 1.6378273603148951E-005 - 244.68000000000001 1.5404453997526768E-005 - 244.74000000000001 1.4443647984111667E-005 - 244.80000000000001 1.3496016505713968E-005 - 244.86000000000001 1.2561703880347702E-005 - 244.92000000000002 1.1640833349812863E-005 - 244.97999999999996 1.0733516297041200E-005 - 245.03999999999996 9.8398510443340870E-006 - 245.09999999999997 8.9599281403591602E-006 - 245.15999999999997 8.0938262293545211E-006 - 245.21999999999997 7.2416216629063018E-006 - 245.27999999999997 6.4033820372454358E-006 - 245.33999999999997 5.5791687781369152E-006 - 245.39999999999998 4.7690396509686474E-006 - 245.45999999999998 3.9730450111642691E-006 - 245.51999999999998 3.1912283340877311E-006 - 245.57999999999998 2.4236292227249271E-006 - 245.63999999999999 1.6702793987446391E-006 - 245.69999999999999 9.3120546752631462E-007 - 245.75999999999999 2.0642977888954624E-007 - 245.81999999999999 -5.0402996108793442E-007 - 245.88000000000000 -1.2001584628171838E-006 - 245.94000000000000 -1.8819423329188592E-006 - 246.00000000000000 -2.5493677294581422E-006 - 246.06000000000000 -3.2024214045621048E-006 - 246.12000000000000 -3.8410861340996164E-006 - 246.18000000000001 -4.4653447110915875E-006 - 246.24000000000001 -5.0751768794455611E-006 - 246.30000000000001 -5.6705595264913912E-006 - 246.36000000000001 -6.2514701497628085E-006 - 246.42000000000002 -6.8178862335220255E-006 - 246.47999999999996 -7.3697886915557365E-006 - 246.53999999999996 -7.9071648636127593E-006 - 246.59999999999997 -8.4300079122534353E-006 - 246.65999999999997 -8.9383220692280712E-006 - 246.71999999999997 -9.4321262475933312E-006 - 246.77999999999997 -9.9114527220375830E-006 - 246.83999999999997 -1.0376353386342269E-005 - 246.89999999999998 -1.0826897600370427E-005 - 246.95999999999998 -1.1263173261764172E-005 - 247.01999999999998 -1.1685289307457039E-005 - 247.07999999999998 -1.2093373726089637E-005 - 247.13999999999999 -1.2487573684327500E-005 - 247.19999999999999 -1.2868053196002109E-005 - 247.25999999999999 -1.3234994716585199E-005 - 247.31999999999999 -1.3588596042882257E-005 - 247.38000000000000 -1.3929068816376525E-005 - 247.44000000000000 -1.4256638328175979E-005 - 247.50000000000000 -1.4571544230523609E-005 - 247.56000000000000 -1.4874036513110725E-005 - 247.62000000000000 -1.5164381881813114E-005 - 247.68000000000001 -1.5442857308638812E-005 - 247.74000000000001 -1.5709753324403324E-005 - 247.80000000000001 -1.5965376721597162E-005 - 247.86000000000001 -1.6210049449271584E-005 - 247.92000000000002 -1.6444111344983835E-005 - 247.97999999999996 -1.6667918724731191E-005 - 248.03999999999996 -1.6881844992788014E-005 - 248.09999999999997 -1.7086282735241614E-005 - 248.15999999999997 -1.7281643866801976E-005 - 248.21999999999997 -1.7468353143699389E-005 - 248.27999999999997 -1.7646855139155139E-005 - 248.33999999999997 -1.7817607848296808E-005 - 248.39999999999998 -1.7981084223149548E-005 - 248.45999999999998 -1.8137766263416579E-005 - 248.51999999999998 -1.8288143362268405E-005 - 248.57999999999998 -1.8432716188139802E-005 - 248.63999999999999 -1.8571985783588350E-005 - 248.69999999999999 -1.8706453453873527E-005 - 248.75999999999999 -1.8836621969243548E-005 - 248.81999999999999 -1.8962984735855290E-005 - 248.88000000000000 -1.9086031210880244E-005 - 248.94000000000000 -1.9206240342340487E-005 - 249.00000000000000 -1.9324077599642871E-005 - 249.06000000000000 -1.9439994102797999E-005 - 249.12000000000000 -1.9554423806616743E-005 - 249.18000000000001 -1.9667777997448667E-005 - 249.24000000000001 -1.9780449987348680E-005 - 249.30000000000001 -1.9892806086904696E-005 - 249.36000000000001 -2.0005189770723488E-005 - 249.42000000000002 -2.0117916343219657E-005 - 249.47999999999996 -2.0231276812441489E-005 - 249.53999999999996 -2.0345536521709970E-005 - 249.59999999999997 -2.0460929228923348E-005 - 249.65999999999997 -2.0577668909858974E-005 - 249.71999999999997 -2.0695942580135279E-005 - 249.77999999999997 -2.0815914373802626E-005 - 249.83999999999997 -2.0937725719122732E-005 - 249.89999999999998 -2.1061501758666954E-005 - 249.95999999999998 -2.1187343164124533E-005 - 250.01999999999998 -2.1315335885599843E-005 - 250.07999999999998 -2.1445545438917555E-005 - 250.13999999999999 -2.1578021376457342E-005 - 250.19999999999999 -2.1712792433616889E-005 - 250.25999999999999 -2.1849863628287489E-005 - 250.31999999999999 -2.1989224363071462E-005 - 250.38000000000000 -2.2130832974492059E-005 - 250.44000000000000 -2.2274625301905660E-005 - 250.50000000000000 -2.2420504986862153E-005 - 250.56000000000000 -2.2568344381027555E-005 - 250.62000000000000 -2.2717985845449596E-005 - 250.68000000000001 -2.2869233296391087E-005 - 250.74000000000001 -2.3021859553280225E-005 - 250.80000000000001 -2.3175604501232468E-005 - 250.86000000000001 -2.3330176737615376E-005 - 250.92000000000002 -2.3485253875072704E-005 - 250.97999999999996 -2.3640492372304228E-005 - 251.03999999999996 -2.3795526087686860E-005 - 251.09999999999997 -2.3949973933399166E-005 - 251.15999999999997 -2.4103446798989211E-005 - 251.21999999999997 -2.4255550033872619E-005 - 251.27999999999997 -2.4405891335340410E-005 - 251.33999999999997 -2.4554083285717901E-005 - 251.39999999999998 -2.4699745694700495E-005 - 251.45999999999998 -2.4842511299061331E-005 - 251.51999999999998 -2.4982025531621114E-005 - 251.57999999999998 -2.5117947244555245E-005 - 251.63999999999999 -2.5249954623269406E-005 - 251.69999999999999 -2.5377728525133508E-005 - 251.75999999999999 -2.5500967406913284E-005 - 251.81999999999999 -2.5619374812186221E-005 - 251.88000000000000 -2.5732657559184698E-005 - 251.94000000000000 -2.5840526957494709E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000002.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000002.BXY.semd deleted file mode 100644 index f739686e..00000000 --- a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000002.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 -2.5511736853461428E-040 - 31.920000000000002 -7.7753821252659458E-040 - 31.980000000000004 -1.5821626241865702E-039 - 32.039999999999992 -2.6457700535565625E-039 - 32.099999999999994 -3.8393058742821241E-039 - 32.159999999999997 -5.0328414657181754E-039 - 32.219999999999999 -6.2263772864437369E-039 - 32.280000000000001 -7.2727982059294300E-039 - 32.340000000000003 -8.0976378699367553E-039 - 32.399999999999991 -8.4929650861105594E-039 - 32.459999999999994 -8.3483375174777028E-039 - 32.519999999999996 -7.5945941104874665E-039 - 32.579999999999998 -6.2188873153024529E-039 - 32.640000000000001 -4.2742073134746608E-039 - 32.700000000000003 -1.8838868689530407E-039 - 32.759999999999991 7.0495564358179520E-040 - 32.819999999999993 3.2937981561166311E-039 - 32.879999999999995 5.6558770116628040E-039 - 32.939999999999998 7.5027306439495185E-039 - 33.000000000000000 7.2574600998836122E-039 - 33.060000000000002 5.6767811595797287E-039 - 33.119999999999990 1.5342162981424058E-039 - 33.179999999999993 -5.4059274778753899E-039 - 33.239999999999995 -1.3640526154055483E-038 - 33.299999999999997 -2.2770457949137587E-038 - 33.359999999999999 -3.2464344032772970E-038 - 33.420000000000002 -4.1962500827851348E-038 - 33.480000000000004 -4.8407274175056818E-038 - 33.539999999999992 -4.9846066030675544E-038 - 33.599999999999994 -4.4379537446521621E-038 - 33.659999999999997 -3.1301153823550943E-038 - 33.719999999999999 -1.0836476425663923E-038 - 33.780000000000001 1.1638676300568079E-038 - 33.840000000000003 3.6588428960748082E-038 - 33.899999999999991 6.4551218142387209E-038 - 33.959999999999994 9.3165240835397182E-038 - 34.019999999999996 1.0566295837194844E-037 - 34.079999999999998 9.9913857322008525E-038 - 34.140000000000001 7.0089868494927616E-038 - 34.200000000000003 1.9157814823189177E-038 - 34.259999999999991 -4.1271013471260703E-038 - 34.319999999999993 -1.0904266973349388E-037 - 34.379999999999995 -1.8251848559713160E-037 - 34.439999999999998 -2.6006872487207349E-037 - 34.500000000000000 -3.2443457392434296E-037 - 34.560000000000002 -3.5795750491238332E-037 - 34.619999999999990 -3.5073846006728487E-037 - 34.679999999999993 -2.9434969816608281E-037 - 34.739999999999995 -1.9078039304111922E-037 - 34.799999999999997 -4.3885643262059815E-038 - 34.859999999999999 1.3907737991356460E-037 - 34.920000000000002 3.3607890906184921E-037 - 34.980000000000004 5.4138610889024617E-037 - 35.039999999999992 7.3947179529813600E-037 - 35.099999999999994 9.0854204249176812E-037 - 35.159999999999997 1.0265245018473626E-036 - 35.219999999999999 1.0780311700389222E-036 - 35.280000000000001 1.0451290509157914E-036 - 35.340000000000003 8.7954899375987951E-037 - 35.399999999999991 5.7739471195181277E-037 - 35.459999999999994 1.4490222289930796E-037 - 35.519999999999996 -3.9006884492911042E-037 - 35.579999999999998 -9.9738727995556088E-037 - 35.640000000000001 -1.6155201940103728E-036 - 35.700000000000003 -2.1621649618042212E-036 - 35.759999999999991 -2.5837257001116252E-036 - 35.819999999999993 -2.8355212171396601E-036 - 35.879999999999995 -2.8346545011140729E-036 - 35.939999999999998 -2.4301172568047982E-036 - 36.000000000000000 -1.6322730862778989E-036 - 36.060000000000002 -5.2091163409434444E-037 - 36.119999999999990 7.8568487690227442E-037 - 36.179999999999993 2.2052589334554887E-036 - 36.239999999999995 3.6347906784426779E-036 - 36.299999999999997 4.9407551410760876E-036 - 36.359999999999999 6.0244273720191536E-036 - 36.420000000000002 6.7053410934398043E-036 - 36.479999999999990 6.8468269062694155E-036 - 36.539999999999992 6.2844510406961702E-036 - 36.599999999999994 4.9955042475306595E-036 - 36.659999999999997 2.9899005631100310E-036 - 36.719999999999999 2.9842409573703245E-037 - 36.780000000000001 -2.9619408771566037E-036 - 36.840000000000003 -6.6254275571642194E-036 - 36.899999999999991 -1.0418219364617375E-035 - 36.959999999999994 -1.3887104305074571E-035 - 37.019999999999996 -1.6633111469770714E-035 - 37.079999999999998 -1.8285122970112505E-035 - 37.140000000000001 -1.8441072943899463E-035 - 37.200000000000003 -1.6801474765876814E-035 - 37.259999999999991 -1.3180057436688032E-035 - 37.319999999999993 -7.5088603844099633E-036 - 37.379999999999995 2.3526802822701266E-037 - 37.439999999999998 1.0045010976883597E-035 - 37.500000000000000 2.1460656333220782E-035 - 37.560000000000002 3.3872202479783648E-035 - 37.619999999999990 4.6394771243131659E-035 - 37.679999999999993 5.8016490872182084E-035 - 37.739999999999995 6.7439560933749214E-035 - 37.799999999999997 7.3445077605781445E-035 - 37.859999999999999 7.4821374652985024E-035 - 37.920000000000002 7.0541808301194412E-035 - 37.979999999999990 5.9604815897845022E-035 - 38.039999999999992 4.1222184753341918E-035 - 38.099999999999994 1.4969775160641932E-035 - 38.159999999999997 -1.8896568305083177E-035 - 38.219999999999999 -5.9830780987970941E-035 - 38.280000000000001 -1.0657933018604735E-034 - 38.340000000000003 -1.5719561441322058E-034 - 38.399999999999991 -2.0909059555523675E-034 - 38.459999999999994 -2.5903066445344734E-034 - 38.519999999999996 -3.0323758075661228E-034 - 38.579999999999998 -3.3753291263840610E-034 - 38.640000000000001 -3.5752149154734433E-034 - 38.700000000000003 -3.5891762533894060E-034 - 38.759999999999991 -3.3771748066670968E-034 - 38.819999999999993 -2.9065077623448473E-034 - 38.879999999999995 -2.1540564825207532E-034 - 38.939999999999998 -1.1096923322451322E-034 - 39.000000000000000 2.1905526659258194E-035 - 39.060000000000002 1.8034752252062865E-034 - 39.119999999999990 3.5934939722133595E-034 - 39.179999999999993 5.5147737106241659E-034 - 39.239999999999995 7.4691150072771877E-034 - 39.299999999999997 9.3361562269444271E-034 - 39.359999999999999 1.0976332033795614E-033 - 39.420000000000002 1.2235924885465301E-033 - 39.479999999999990 1.2954487967830276E-033 - 39.539999999999992 1.2973640806559493E-033 - 39.599999999999994 1.2147422579035009E-033 - 39.659999999999997 1.0354359018117466E-033 - 39.719999999999999 7.5105894175566832E-034 - 39.780000000000001 3.5822214127607812E-034 - 39.840000000000003 -1.4019637531415218E-034 - 39.899999999999991 -7.3396593286213167E-034 - 39.959999999999994 -1.4046555763935276E-033 - 40.019999999999996 -2.1251587895653816E-033 - 40.079999999999998 -2.8596393455096239E-033 - 40.140000000000001 -3.5640602166675699E-033 - 40.200000000000003 -4.1873149793287568E-033 - 40.259999999999991 -4.6730370331917270E-033 - 40.319999999999993 -4.9620990342488422E-033 - 40.379999999999995 -4.9957828005077328E-033 - 40.439999999999998 -4.7195211837237174E-033 - 40.500000000000000 -4.0872508326962420E-033 - 40.560000000000002 -3.0659298247934770E-033 - 40.619999999999990 -1.6402583987932459E-033 - 40.679999999999993 1.8282396985554849E-034 - 40.739999999999995 2.3701183881939832E-033 - 40.799999999999997 4.8589847516296677E-033 - 40.859999999999999 7.5553648659044901E-033 - 40.920000000000002 1.0333358511605936E-032 - 40.979999999999990 1.3036684568896345E-032 - 41.039999999999992 1.5482311912430764E-032 - 41.099999999999994 1.7466454233077881E-032 - 41.159999999999997 1.8773040471587710E-032 - 41.219999999999999 1.9184549776159557E-032 - 41.280000000000001 1.8495116915577235E-032 - 41.340000000000003 1.6525474805038957E-032 - 41.399999999999991 1.3139171775853950E-032 - 41.459999999999994 8.2593866773674417E-033 - 41.519999999999996 1.8853586897492006E-033 - 41.579999999999998 -5.8925878309589759E-033 - 41.640000000000001 -1.4880629399882507E-032 - 41.700000000000003 -2.4772899229993557E-032 - 41.759999999999991 -3.5148055358112274E-032 - 41.819999999999993 -4.5472162152741992E-032 - 41.879999999999995 -5.5108914674494753E-032 - 41.939999999999998 -6.3338044475617939E-032 - 42.000000000000000 -6.9382286823140689E-032 - 42.060000000000002 -7.2443015697496524E-032 - 42.119999999999990 -7.1744029375529812E-032 - 42.179999999999993 -6.6582433737573749E-032 - 42.239999999999995 -5.6384944817704998E-032 - 42.299999999999997 -4.0767290954867533E-032 - 42.359999999999999 -1.9593796330394087E-032 - 42.420000000000002 6.9663715146786437E-033 - 42.479999999999990 3.8390266824058251E-032 - 42.539999999999992 7.3763774394906534E-032 - 42.599999999999994 1.1176022174715040E-031 - 42.659999999999997 1.5063921293282811E-031 - 42.719999999999999 1.8826960349128863E-031 - 42.780000000000001 2.2217989129813121E-031 - 42.840000000000003 2.4963818172486850E-031 - 42.899999999999991 2.6776254114304035E-031 - 42.959999999999994 2.7366129225612660E-031 - 43.019999999999996 2.6460035796071619E-031 - 43.079999999999998 2.3819332083996274E-031 - 43.140000000000001 1.9260728661684826E-031 - 43.200000000000003 1.2677550205472557E-031 - 43.259999999999991 4.0605872034818341E-032 - 43.319999999999993 -6.4827577087455629E-032 - 43.379999999999995 -1.8712439921539784E-031 - 43.439999999999998 -3.2244408004221748E-031 - 43.500000000000000 -4.6545341106536131E-031 - 43.560000000000002 -6.0935035628079700E-031 - 43.619999999999990 -7.4597674510232890E-031 - 43.679999999999993 -8.6603003771132025E-031 - 43.739999999999995 -9.5938048847619830E-031 - 43.799999999999997 -1.0154953943788817E-030 - 43.859999999999999 -1.0239662107761322E-030 - 43.920000000000002 -9.7512754582179739E-031 - 43.979999999999990 -8.6075022618695685E-031 - 44.039999999999992 -6.7478223059019900E-031 - 44.099999999999994 -4.1410576525657341E-031 - 44.159999999999997 -7.9268518142729361E-032 - 44.219999999999999 3.2485479225861545E-031 - 44.280000000000001 7.8852254403491030E-031 - 44.340000000000003 1.2967606643410680E-030 - 44.399999999999991 1.8292234619689528E-030 - 44.459999999999994 2.3603328266145795E-030 - 44.519999999999996 2.8597364267326532E-030 - 44.579999999999998 3.2931213818849191E-030 - 44.640000000000001 3.6234022746217973E-030 - 44.700000000000003 3.8122858527614365E-030 - 44.759999999999991 3.8221951001799838E-030 - 44.819999999999993 3.6185108836905371E-030 - 44.879999999999995 3.1720675469395431E-030 - 44.939999999999998 2.4618047947442781E-030 - 45.000000000000000 1.4774620309417740E-030 - 45.060000000000002 2.2217059646323182E-031 - 45.119999999999990 -1.2852206110469449E-030 - 45.179999999999993 -3.0082594185438161E-030 - 45.239999999999995 -4.8916370003830979E-030 - 45.299999999999997 -6.8607468677027182E-030 - 45.359999999999999 -8.8222335180800146E-030 - 45.420000000000002 -1.0665677454133843E-029 - 45.479999999999990 -1.2266542338619308E-029 - 45.539999999999992 -1.3490435787158072E-029 - 45.599999999999994 -1.4198708263334859E-029 - 45.659999999999997 -1.4255308360012160E-029 - 45.719999999999999 -1.3534763473018879E-029 - 45.780000000000001 -1.1931037059427838E-029 - 45.840000000000003 -9.3669444761893348E-030 - 45.899999999999991 -5.8037148449729447E-030 - 45.959999999999994 -1.2501909993385330E-030 - 46.019999999999996 4.2288887641637463E-030 - 46.079999999999998 1.0506156746121943E-029 - 46.140000000000001 1.7387074293773089E-029 - 46.200000000000003 2.4608217095041582E-029 - 46.259999999999991 3.1839012842067678E-029 - 46.319999999999993 3.8687426761103656E-029 - 46.379999999999995 4.4710025810392544E-029 - 46.439999999999998 4.9426659502643241E-029 - 46.500000000000000 5.2339762066180622E-029 - 46.560000000000002 5.2958094950547466E-029 - 46.619999999999990 5.0824418120517178E-029 - 46.679999999999993 4.5546327366498501E-029 - 46.739999999999995 3.6829118113411037E-029 - 46.799999999999997 2.4509307046557567E-029 - 46.859999999999999 8.5871269860715409E-030 - 46.920000000000002 -1.0743921420853340E-029 - 46.979999999999990 -3.3072643147080077E-029 - 47.039999999999992 -5.7752873428106496E-029 - 47.099999999999994 -8.3895773409243663E-029 - 47.159999999999997 -1.1037357512172918E-028 - 47.219999999999999 -1.3583674709285331E-028 - 47.280000000000001 -1.5874589130835379E-028 - 47.340000000000003 -1.7741940939864344E-028 - 47.399999999999991 -1.9009706788652409E-028 - 47.459999999999994 -1.9501894635789953E-028 - 47.519999999999996 -1.9051822498963057E-028 - 47.579999999999998 -1.7512549115375137E-028 - 47.640000000000001 -1.4768093932715634E-028 - 47.700000000000003 -1.0745009541598949E-028 - 47.759999999999991 -5.4237479500544731E-029 - 47.819999999999993 1.1507811758570900E-029 - 47.879999999999995 8.8601737969394711E-029 - 47.939999999999998 1.7505739149290503E-028 - 48.000000000000000 2.6804684384970906E-028 - 48.060000000000002 3.6389989159272082E-028 - 48.119999999999990 4.5814611296620309E-028 - 48.179999999999993 5.4560558323830435E-028 - 48.239999999999995 6.2053163134045766E-028 - 48.299999999999997 6.7680764093275356E-028 - 48.359999999999999 7.0819679804014217E-028 - 48.420000000000002 7.0864099276597424E-028 - 48.479999999999990 6.7260243818175020E-028 - 48.539999999999992 5.9543749043849046E-028 - 48.599999999999994 4.7378931519903349E-028 - 48.659999999999997 3.0598291819059734E-028 - 48.719999999999999 9.2402819169609288E-029 - 48.780000000000001 -1.6416875631776678E-028 - 48.840000000000003 -4.5827664226534713E-028 - 48.899999999999991 -7.8160473997586305E-028 - 48.959999999999994 -1.1229007438109563E-027 - 49.019999999999996 -1.4680338693312419E-027 - 49.079999999999998 -1.8002081161469069E-027 - 49.140000000000001 -2.1003449465950742E-027 - 49.200000000000003 -2.3476450112219808E-027 - 49.259999999999991 -2.5203325032527572E-027 - 49.319999999999993 -2.5965739621672866E-027 - 49.379999999999995 -2.5555581812530597E-027 - 49.439999999999998 -2.3787082325625152E-027 - 49.500000000000000 -2.0509906736369569E-027 - 49.560000000000002 -1.5622713922352308E-027 - 49.619999999999990 -9.0866220576857778E-028 - 49.679999999999993 -9.3787255935528404E-029 - 49.739999999999995 8.7010359231913049E-028 - 49.799999999999997 1.9612543444219910E-027 - 49.859999999999999 3.1478423560388620E-027 - 49.920000000000002 4.3878116940300799E-027 - 49.979999999999990 5.6291804243882187E-027 - 50.039999999999992 6.8108834034911376E-027 - 50.099999999999994 7.8642025519871659E-027 - 50.159999999999997 8.7148105185814923E-027 - 50.219999999999999 9.2854362370695005E-027 - 50.280000000000001 9.4991251884052966E-027 - 50.340000000000003 9.2830370669946305E-027 - 50.399999999999991 8.5726913952950761E-027 - 50.459999999999994 7.3165284757746640E-027 - 50.519999999999996 5.4806250022841984E-027 - 50.579999999999998 3.0533544206805581E-027 - 50.640000000000001 4.9774873098952722E-029 - 50.700000000000003 -3.4845274285640925E-027 - 50.759999999999991 -7.4704026976047536E-027 - 50.819999999999993 -1.1793195733596744E-026 - 50.879999999999995 -1.6302170591653298E-026 - 50.939999999999998 -2.0811566542720193E-026 - 51.000000000000000 -2.5103502153000419E-026 - 51.060000000000002 -2.8932902641992062E-026 - 51.119999999999990 -3.2034563956436280E-026 - 51.179999999999993 -3.4132370227784184E-026 - 51.239999999999995 -3.4950599922004869E-026 - 51.299999999999997 -3.4227139876621354E-026 - 51.359999999999999 -3.1728292994726345E-026 - 51.420000000000002 -2.7264766120440312E-026 - 51.479999999999990 -2.0708294379254316E-026 - 51.539999999999992 -1.2008181519781116E-026 - 51.599999999999994 -1.2070371519807225E-027 - 51.659999999999997 1.1545230849510399E-026 - 51.719999999999999 2.5980085920054114E-026 - 51.780000000000001 4.1702670769910710E-026 - 51.840000000000003 5.8188767867846060E-026 - 51.899999999999991 7.4787298821933347E-026 - 51.959999999999994 9.0729212414591635E-026 - 52.019999999999996 1.0514344365369225E-025 - 52.079999999999998 1.1708038722993481E-025 - 52.140000000000001 1.2554308405587101E-025 - 52.200000000000003 1.2952592902987651E-025 - 52.259999999999991 1.2806048852974307E-025 - 52.319999999999993 1.2026740065468503E-025 - 52.379999999999995 1.0541302408558295E-025 - 52.439999999999998 8.2969024393544784E-026 - 52.500000000000000 5.2672610461017117E-026 - 52.560000000000002 1.4584635782499436E-026 - 52.619999999999990 -3.0857314945415547E-026 - 52.679999999999993 -8.2794342590826643E-026 - 52.739999999999995 -1.3991375058708619E-025 - 52.799999999999997 -2.0043200741406849E-025 - 52.859999999999999 -2.6209690293394197E-025 - 52.920000000000002 -3.2221200498883425E-025 - 52.979999999999990 -3.7768586674333765E-025 - 53.039999999999992 -4.2510847220364403E-025 - 53.099999999999994 -4.6085568646195314E-025 - 53.159999999999997 -4.8122154587990098E-025 - 53.219999999999999 -4.8257743840871545E-025 - 53.280000000000001 -4.6155511582943797E-025 - 53.339999999999989 -4.1524903021039668E-025 - 53.399999999999991 -3.4143198013151396E-025 - 53.459999999999994 -2.3877639638519814E-025 - 53.519999999999996 -1.0707167931766868E-025 - 53.579999999999998 5.2573466378752365E-026 - 53.640000000000001 2.3755499626003770E-025 - 53.700000000000003 4.4363743095632280E-025 - 53.759999999999991 6.6487049039517597E-025 - 53.819999999999993 8.9357131496176562E-025 - 53.879999999999995 1.1203847235947230E-024 - 53.939999999999998 1.3344317095792333E-024 - 54.000000000000000 1.5235547155155740E-024 - 54.060000000000002 1.6746645538874960E-024 - 54.119999999999990 1.7741893041738499E-024 - 54.179999999999993 1.8086236400406734E-024 - 54.239999999999995 1.7651676410044320E-024 - 54.299999999999997 1.6324419011044135E-024 - 54.359999999999999 1.4012579342801323E-024 - 54.420000000000002 1.0654177318683707E-024 - 54.479999999999990 6.2250857879533989E-025 - 54.539999999999992 7.4658668525422868E-026 - 54.599999999999994 -5.7079270853252348E-025 - 54.659999999999997 -1.3007518557927175E-024 - 54.719999999999999 -2.0960041645890994E-024 - 54.780000000000001 -2.9310670399244755E-024 - 54.839999999999989 -3.7743105404973307E-024 - 54.899999999999991 -4.5883801482539231E-024 - 54.959999999999994 -5.3309538269048383E-024 - 55.019999999999996 -5.9558561464835515E-024 - 55.079999999999998 -6.4145325758901197E-024 - 55.140000000000001 -6.6578787430104441E-024 - 55.200000000000003 -6.6383976591956127E-024 - 55.259999999999991 -6.3126407540712977E-024 - 55.319999999999993 -5.6438652532637929E-024 - 55.379999999999995 -4.6048223866791291E-024 - 55.439999999999998 -3.1805730882279561E-024 - 55.500000000000000 -1.3712022571313094E-024 - 55.560000000000002 8.0570220019234898E-025 - 55.619999999999990 3.3129642796629367E-024 - 55.679999999999993 6.0922773604799035E-024 - 55.739999999999995 9.0633736530504863E-024 - 55.799999999999997 1.2124039529580107E-023 - 55.859999999999999 1.5151134484949542E-023 - 55.920000000000002 1.8002710446582176E-023 - 55.979999999999990 2.0521325519148938E-023 - 56.039999999999992 2.2538582721011389E-023 - 56.099999999999994 2.3880896268882776E-023 - 56.159999999999997 2.4376423371316573E-023 - 56.219999999999999 2.3863028631103318E-023 - 56.280000000000001 2.2197104494763184E-023 - 56.339999999999989 1.9262976601650348E-023 - 56.399999999999991 1.4982590853438088E-023 - 56.459999999999994 9.3250731903604885E-024 - 56.519999999999996 2.3157433079995957E-024 - 56.579999999999998 -5.9559275877206864E-024 - 56.640000000000001 -1.5329911866654420E-023 - 56.700000000000003 -2.5571297177894904E-023 - 56.759999999999991 -3.6368605486508550E-023 - 56.819999999999993 -4.7335168118647991E-023 - 56.879999999999995 -5.8014078587330122E-023 - 56.939999999999998 -6.7886965387260010E-023 - 57.000000000000000 -7.6386935964370251E-023 - 57.060000000000002 -8.2915657128122091E-023 - 57.119999999999990 -8.6864561230974256E-023 - 57.179999999999993 -8.7639909905911163E-023 - 57.239999999999995 -8.4691167004950761E-023 - 57.299999999999997 -7.7542038471212165E-023 - 57.359999999999999 -6.5823209851401745E-023 - 57.420000000000002 -4.9305630997439820E-023 - 57.479999999999990 -2.7932996543650990E-023 - 57.539999999999992 -1.8517944615822544E-024 - 57.599999999999994 2.8562552377204545E-023 - 57.659999999999997 6.2685518688898263E-023 - 57.719999999999999 9.9630848335602344E-023 - 57.780000000000001 1.3824738531746593E-022 - 57.839999999999989 1.7712684001439160E-022 - 57.899999999999991 2.1462400198451679E-022 - 57.959999999999994 2.4889042738126907E-022 - 58.019999999999996 2.7792236507108193E-022 - 58.079999999999998 2.9962285614106030E-022 - 58.140000000000001 3.1187775998961770E-022 - 58.200000000000003 3.1264440682318668E-022 - 58.259999999999991 3.0005122112937196E-022 - 58.319999999999993 2.7250546956928475E-022 - 58.379999999999995 2.2880581998698801E-022 - 58.439999999999998 1.6825571245271396E-022 - 58.500000000000000 9.0772528147834153E-023 - 58.560000000000002 -3.0127135250213193E-024 - 58.619999999999990 -1.1167080701367512E-022 - 58.679999999999993 -2.3291115541232250E-022 - 58.739999999999995 -3.6354575215986520E-022 - 58.799999999999997 -4.9948604813909725E-022 - 58.859999999999999 -6.3577837945392606E-022 - 58.920000000000002 -7.6668114618479215E-022 - 58.979999999999990 -8.8578855768500723E-022 - 59.039999999999992 -9.8620108430705608E-022 - 59.099999999999994 -1.0607434767849588E-021 - 59.159999999999997 -1.1022278556799771E-021 - 59.219999999999999 -1.1037577539897561E-021 - 59.280000000000001 -1.0590664474948261E-021 - 59.339999999999989 -9.6288002821931852E-022 - 59.399999999999991 -8.1129456456955642E-022 - 59.459999999999994 -6.0215263275529904E-022 - 59.519999999999996 -3.3540391648924985E-022 - 59.579999999999998 -1.3432744848168475E-023 - 59.640000000000001 3.5866646212643669E-022 - 59.700000000000003 7.7288542297643506E-022 - 59.759999999999991 1.2181875586472795E-021 - 59.819999999999993 1.6805018424607657E-021 - 59.879999999999995 2.1428422223123014E-021 - 59.939999999999998 2.5855638506117838E-021 - 60.000000000000000 2.9867683233187822E-021 - 60.060000000000002 3.3228606954121745E-021 - 60.119999999999990 3.5692615194409045E-021 - 60.179999999999993 3.7012644351114052E-021 - 60.239999999999995 3.6950266726578129E-021 - 60.299999999999997 3.5286728408682099E-021 - 60.359999999999999 3.1834832231926476E-021 - 60.420000000000002 2.6451283560806514E-021 - 60.479999999999990 1.9049105145022393E-021 - 60.539999999999992 9.6095760838007374E-022 - 60.599999999999994 -1.8068077683176827E-022 - 60.659999999999997 -1.5051030539163484E-021 - 60.719999999999999 -2.9878430882728651E-021 - 60.780000000000001 -4.5944501342968406E-021 - 60.839999999999989 -6.2804129433860398E-021 - 60.899999999999991 -7.9914846795522696E-021 - 60.959999999999994 -9.6644636195621197E-021 - 61.019999999999996 -1.1228456942980282E-020 - 61.079999999999998 -1.2606657424228732E-020 - 61.140000000000001 -1.3718635112465459E-020 - 61.200000000000003 -1.4483127257412847E-020 - 61.259999999999991 -1.4821290099023692E-020 - 61.319999999999993 -1.4660350500101243E-020 - 61.379999999999995 -1.3937561978617541E-020 - 61.439999999999998 -1.2604356643478709E-020 - 61.500000000000000 -1.0630545466085153E-020 - 61.560000000000002 -8.0083981936073255E-021 - 61.619999999999990 -4.7564217626161357E-021 - 61.679999999999993 -9.2262244957476332E-022 - 61.739999999999995 3.4129673019315093E-021 - 61.799999999999997 8.1367062815792276E-021 - 61.859999999999999 1.3100942048064790E-020 - 61.920000000000002 1.8124980760010559E-020 - 61.979999999999990 2.2997632702015318E-020 - 62.039999999999992 2.7481450564749038E-020 - 62.099999999999994 3.1318801773324077E-020 - 62.159999999999997 3.4239802675681488E-020 - 62.219999999999999 3.5972088656749725E-020 - 62.280000000000001 3.6252363900373194E-020 - 62.339999999999989 3.4839524243378025E-020 - 62.399999999999991 3.1529081998128024E-020 - 62.459999999999994 2.6168575478575861E-020 - 62.519999999999996 1.8673531738869286E-020 - 62.579999999999998 9.0433912577317127E-021 - 62.640000000000001 -2.6230786127523472E-021 - 62.700000000000003 -1.6113646241179511E-020 - 62.759999999999991 -3.1090346537737178E-020 - 62.819999999999993 -4.7079850623984240E-020 - 62.879999999999995 -6.3467028572730301E-020 - 62.939999999999998 -7.9492465763454666E-020 - 63.000000000000000 -9.4254348481725976E-020 - 63.060000000000002 -1.0671528457610122E-019 - 63.119999999999990 -1.1571392668201236E-019 - 63.179999999999993 -1.1998187927833327E-019 - 63.239999999999995 -1.1816531028567970E-019 - 63.299999999999997 -1.0885106395153624E-019 - 63.359999999999999 -9.0596178484302601E-020 - 63.420000000000002 -6.1959330645948884E-020 - 63.479999999999990 -2.1534016483053471E-020 - 63.539999999999992 3.2019999461129570E-020 - 63.599999999999994 9.9947901637753317E-020 - 63.659999999999997 1.8337673051581389E-019 - 63.719999999999999 2.8330064062412338E-019 - 63.780000000000001 4.0057649325156581E-019 - 63.839999999999989 5.3593448071560221E-019 - 63.899999999999991 6.9000440055972260E-019 - 63.959999999999994 8.6336253187087437E-019 - 64.019999999999996 1.0565997922842780E-018 - 64.079999999999998 1.2704151562337990E-018 - 64.140000000000001 1.5057348638010380E-018 - 64.200000000000003 1.7638583489516188E-018 - 64.259999999999991 2.0466323246889684E-018 - 64.319999999999993 2.3566531394558475E-018 - 64.379999999999995 2.6974920669051451E-018 - 64.439999999999998 3.0739470409145825E-018 - 64.500000000000000 3.4923122043095539E-018 - 64.560000000000002 3.9606650242889404E-018 - 64.619999999999990 4.4891630331843356E-018 - 64.679999999999993 5.0903442291538431E-018 - 64.739999999999995 5.7794282142748808E-018 - 64.799999999999997 6.5745984882595276E-018 - 64.859999999999999 7.4972889486460889E-018 - 64.920000000000002 8.5724147067621833E-018 - 64.979999999999990 9.8285961166382716E-018 - 65.039999999999992 1.1298327042113150E-017 - 65.099999999999994 1.3018100125306963E-017 - 65.159999999999997 1.5028491555610873E-017 - 65.219999999999999 1.7374163889071662E-017 - 65.280000000000001 2.0103842306598378E-017 - 65.339999999999989 2.3270207150639152E-017 - 65.399999999999991 2.6929743605601976E-017 - 65.459999999999994 3.1142516463804807E-017 - 65.519999999999996 3.5971910246653395E-017 - 65.579999999999998 4.1484294728603402E-017 - 65.640000000000001 4.7748654954975944E-017 - 65.700000000000003 5.4836185657405947E-017 - 65.759999999999991 6.2819833648415333E-017 - 65.819999999999993 7.1773806219731257E-017 - 65.879999999999995 8.1772975317477493E-017 - 65.939999999999998 9.2892285828468464E-017 - 66.000000000000000 1.0520595836728744E-016 - 66.060000000000002 1.1878669791915292E-016 - 66.119999999999990 1.3370452219095756E-016 - 66.179999999999993 1.5002557535604019E-016 - 66.239999999999995 1.6781034561478035E-016 - 66.299999999999997 1.8711158437461899E-016 - 66.359999999999999 2.0797154486399670E-016 - 66.420000000000002 2.3041854829258164E-016 - 66.479999999999990 2.5446242469692462E-016 - 66.539999999999992 2.8008859597480418E-016 - 66.599999999999994 3.0725122832943073E-016 - 66.659999999999997 3.3586395621750694E-016 - 66.719999999999999 3.6578849708498269E-016 - 66.780000000000001 3.9682040665961058E-016 - 66.839999999999989 4.2867222086550689E-016 - 66.899999999999991 4.6095229439694858E-016 - 66.959999999999994 4.9313907155971284E-016 - 67.019999999999996 5.2455063833598282E-016 - 67.079999999999998 5.5430735039747428E-016 - 67.140000000000001 5.8128797051273730E-016 - 67.199999999999989 6.0407815988108561E-016 - 67.259999999999991 6.2090800589590916E-016 - 67.319999999999993 6.2958045905043549E-016 - 67.379999999999995 6.2738474712401172E-016 - 67.439999999999998 6.1099788269663379E-016 - 67.500000000000000 5.7637058251616694E-016 - 67.560000000000002 5.1859226008042457E-016 - 67.619999999999990 4.3173302278207109E-016 - 67.679999999999993 3.0866828705259128E-016 - 67.739999999999995 1.4087097520316694E-016 - 67.799999999999997 -8.1828230296134428E-017 - 67.859999999999999 -3.7150866956651693E-016 - 67.920000000000002 -7.4247296423326632E-016 - 67.979999999999990 -1.2116151058740747E-015 - 68.039999999999992 -1.7988099077106595E-015 - 68.099999999999994 -2.5273877338419201E-015 - 68.159999999999997 -3.4246717477643837E-015 - 68.219999999999999 -4.5225702019532594E-015 - 68.280000000000001 -5.8582709364269850E-015 - 68.339999999999989 -7.4750286148317357E-015 - 68.399999999999991 -9.4230475092718731E-015 - 68.459999999999994 -1.1760489230192016E-014 - 68.519999999999996 -1.4554622447434818E-014 - 68.579999999999998 -1.7883134516476599E-014 - 68.640000000000001 -2.1835587837735711E-014 - 68.699999999999989 -2.6515085383897789E-014 - 68.759999999999991 -3.2040201403086658E-014 - 68.819999999999993 -3.8547035889938178E-014 - 68.879999999999995 -4.6191733462925939E-014 - 68.939999999999998 -5.5153069477538558E-014 - 69.000000000000000 -6.5635618746245559E-014 - 69.060000000000002 -7.7873058843591865E-014 - 69.119999999999990 -9.2132226496872294E-014 - 69.179999999999993 -1.0871728399963464E-013 - 69.239999999999995 -1.2797458128740817E-013 - 69.299999999999997 -1.5029810231023620E-013 - 69.359999999999999 -1.7613560154821301E-013 - 69.420000000000002 -2.0599513283420693E-013 - 69.479999999999990 -2.4045271383380021E-013 - 69.539999999999992 -2.8016071938851704E-013 - 69.599999999999994 -3.2585677507354702E-013 - 69.659999999999997 -3.7837464913965173E-013 - 69.719999999999999 -4.3865467626846978E-013 - 69.780000000000001 -5.0775738140524132E-013 - 69.839999999999989 -5.8687641562937296E-013 - 69.899999999999991 -6.7735397626553000E-013 - 69.959999999999994 -7.8069749340591676E-013 - 70.019999999999996 -8.9859798110616253E-013 - 70.079999999999998 -1.0329502059818239E-012 - 70.140000000000001 -1.1858740894958311E-012 - 70.199999999999989 -1.3597388035797319E-012 - 70.259999999999991 -1.5571888395302998E-012 - 70.319999999999993 -1.7811720850127739E-012 - 70.379999999999995 -2.0349688719295325E-012 - 70.439999999999998 -2.3222267855137855E-012 - 70.500000000000000 -2.6469945611440999E-012 - 70.560000000000002 -3.0137595352347316E-012 - 70.619999999999990 -3.4274882877719706E-012 - 70.679999999999993 -3.8936701745295738E-012 - 70.739999999999995 -4.4183593121384859E-012 - 70.799999999999997 -5.0082276192330553E-012 - 70.859999999999999 -5.6706083723004319E-012 - 70.920000000000002 -6.4135539685536621E-012 - 70.979999999999990 -7.2458829677461106E-012 - 71.039999999999992 -8.1772389465405839E-012 - 71.099999999999994 -9.2181438830163305E-012 - 71.159999999999997 -1.0380052754770023E-011 - 71.219999999999999 -1.1675404386491029E-011 - 71.280000000000001 -1.3117679075258589E-011 - 71.339999999999989 -1.4721443737459641E-011 - 71.399999999999991 -1.6502384044083626E-011 - 71.459999999999994 -1.8477349342493843E-011 - 71.519999999999996 -2.0664376518683024E-011 - 71.579999999999998 -2.3082688921610194E-011 - 71.640000000000001 -2.5752701540698563E-011 - 71.699999999999989 -2.8695991181188712E-011 - 71.759999999999991 -3.1935243787358673E-011 - 71.819999999999993 -3.5494157067920111E-011 - 71.879999999999995 -3.9397342487131165E-011 - 71.939999999999998 -4.3670130505487856E-011 - 72.000000000000000 -4.8338360936604027E-011 - 72.060000000000002 -5.3428086563394625E-011 - 72.119999999999990 -5.8965207214199631E-011 - 72.179999999999993 -6.4974975891517240E-011 - 72.239999999999995 -7.1481495296249048E-011 - 72.299999999999997 -7.8506954735010043E-011 - 72.359999999999999 -8.6070833353156054E-011 - 72.420000000000002 -9.4188843990213140E-011 - 72.479999999999990 -1.0287175216656469E-010 - 72.539999999999992 -1.1212386796060938E-010 - 72.599999999999994 -1.2194140082152882E-010 - 72.659999999999997 -1.3231036454174006E-010 - 72.719999999999999 -1.4320422567116968E-010 - 72.780000000000001 -1.5458111379513353E-010 - 72.839999999999989 -1.6638051370005415E-010 - 72.899999999999991 -1.7851949563039511E-010 - 72.959999999999994 -1.9088827483525444E-010 - 73.019999999999996 -2.0334515679746658E-010 - 73.079999999999998 -2.1571053182337615E-010 - 73.140000000000001 -2.2776009826420760E-010 - 73.199999999999989 -2.3921700469346400E-010 - 73.259999999999991 -2.4974293816563396E-010 - 73.319999999999993 -2.5892761836190652E-010 - 73.379999999999995 -2.6627707971583136E-010 - 73.439999999999998 -2.7120030445448459E-010 - 73.500000000000000 -2.7299345046559827E-010 - 73.560000000000002 -2.7082280548052265E-010 - 73.619999999999990 -2.6370436687226199E-010 - 73.679999999999993 -2.5048176816757034E-010 - 73.739999999999995 -2.2980024543465237E-010 - 73.799999999999997 -2.0007743465914016E-010 - 73.859999999999999 -1.5947126317657548E-010 - 73.920000000000002 -1.0584213186949253E-010 - 73.979999999999990 -3.6711005578003226E-011 - 74.039999999999992 5.0786989458445500E-011 - 74.099999999999994 1.5995636786251494E-010 - 74.159999999999997 2.9460095808358613E-010 - 74.219999999999999 4.5909005311166738E-010 - 74.280000000000001 6.5843399715003740E-010 - 74.339999999999989 8.9837005510001204E-010 - 74.399999999999991 1.1854548705960749E-009 - 74.459999999999994 1.5271703325871724E-009 - 74.519999999999996 1.9320422725200490E-009 - 74.579999999999998 2.4097709053184185E-009 - 74.640000000000001 2.9713796757025014E-009 - 74.699999999999989 3.6293757880023131E-009 - 74.759999999999991 4.3979371413320188E-009 - 74.819999999999993 5.2931075330539389E-009 - 74.879999999999995 6.3330322593758986E-009 - 74.939999999999998 7.5381973561249534E-009 - 75.000000000000000 8.9317142327853202E-009 - 75.060000000000002 1.0539622245177840E-008 - 75.119999999999990 1.2391228090194531E-008 - 75.179999999999993 1.4519491271932531E-008 - 75.239999999999995 1.6961426219534342E-008 - 75.299999999999997 1.9758576650339319E-008 - 75.359999999999999 2.2957508623085339E-008 - 75.420000000000002 2.6610381455911329E-008 - 75.479999999999990 3.0775549124504654E-008 - 75.539999999999992 3.5518265236069786E-008 - 75.599999999999994 4.0911390926247713E-008 - 75.659999999999997 4.7036237598209632E-008 - 75.719999999999999 5.3983487908057457E-008 - 75.780000000000001 6.1854110965067671E-008 - 75.839999999999989 7.0760557041089570E-008 - 75.899999999999991 8.0827818434750859E-008 - 75.959999999999994 9.2194803024482904E-008 - 76.019999999999996 1.0501577093232292E-007 - 76.079999999999998 1.1946180791890872E-007 - 76.140000000000001 1.3572258128288279E-007 - 76.199999999999989 1.5400815876074340E-007 - 76.259999999999991 1.7455104416687069E-007 - 76.319999999999993 1.9760839351379804E-007 - 76.379999999999995 2.2346422633309417E-007 - 76.439999999999998 2.5243234483941767E-007 - 76.500000000000000 2.8485875430000875E-007 - 76.560000000000002 3.2112510389082237E-007 - 76.619999999999990 3.6165176164598575E-007 - 76.679999999999993 4.0690151827751856E-007 - 76.739999999999995 4.5738338329287109E-007 - 76.799999999999997 5.1365686436753275E-007 - 76.859999999999999 5.7633675926514167E-007 - 76.920000000000002 6.4609742189406774E-007 - 76.979999999999990 7.2367899091120911E-007 - 77.039999999999992 8.0989226638305982E-007 - 77.099999999999994 9.0562520871686053E-007 - 77.159999999999997 1.0118499450601991E-006 - 77.219999999999999 1.1296292478561827E-006 - 77.280000000000001 1.2601248495954365E-006 - 77.339999999999989 1.4046051066938326E-006 - 77.399999999999991 1.5644542507937771E-006 - 77.459999999999994 1.7411818987263256E-006 - 77.519999999999996 1.9364329141356642E-006 - 77.579999999999998 2.1519982454743636E-006 - 77.640000000000001 2.3898271352302039E-006 - 77.699999999999989 2.6520389528392199E-006 - 77.759999999999991 2.9409358852870596E-006 - 77.819999999999993 3.2590182455297027E-006 - 77.879999999999995 3.6089987176502206E-006 - 77.939999999999998 3.9938191444784887E-006 - 78.000000000000000 4.4166666160219716E-006 - 78.060000000000002 4.8809912515951822E-006 - 78.119999999999990 5.3905261946787845E-006 - 78.179999999999993 5.9493077442259504E-006 - 78.239999999999995 6.5616966123232780E-006 - 78.299999999999997 7.2324005479582729E-006 - 78.359999999999999 7.9664975263921005E-006 - 78.420000000000002 8.7694623946265065E-006 - 78.479999999999990 9.6471947280024853E-006 - 78.539999999999992 1.0606039462765141E-005 - 78.599999999999994 1.1652829520700332E-005 - 78.659999999999997 1.2794904199453760E-005 - 78.719999999999999 1.4040148689774788E-005 - 78.780000000000001 1.5397024440885671E-005 - 78.839999999999989 1.6874608146024978E-005 - 78.899999999999991 1.8482626619515950E-005 - 78.959999999999994 2.0231501102217626E-005 - 79.019999999999996 2.2132381241675034E-005 - 79.079999999999998 2.4197187644864178E-005 - 79.140000000000001 2.6438655931840934E-005 - 79.199999999999989 2.8870389567402218E-005 - 79.259999999999991 3.1506901693346270E-005 - 79.319999999999993 3.4363657751176045E-005 - 79.379999999999995 3.7457146298368552E-005 - 79.439999999999998 4.0804913218668029E-005 - 79.500000000000000 4.4425608631173959E-005 - 79.560000000000002 4.8339073473632207E-005 - 79.619999999999990 5.2566359276425075E-005 - 79.679999999999993 5.7129827571794704E-005 - 79.739999999999995 6.2053166758632670E-005 - 79.799999999999997 6.7361490608631202E-005 - 79.859999999999999 7.3081358136640041E-005 - 79.920000000000002 7.9240898116849859E-005 - 79.979999999999990 8.5869814715472617E-005 - 80.039999999999992 9.2999480696238926E-005 - 80.099999999999994 1.0066300693024118E-004 - 80.159999999999997 1.0889530255480789E-004 - 80.219999999999999 1.1773312646060546E-004 - 80.280000000000001 1.2721515986816642E-004 - 80.340000000000003 1.3738210877456457E-004 - 80.400000000000006 1.4827671820922297E-004 - 80.460000000000008 1.5994382839638343E-004 - 80.519999999999982 1.7243053956135680E-004 - 80.579999999999984 1.8578617364352530E-004 - 80.639999999999986 2.0006236733341261E-004 - 80.699999999999989 2.1531311546146311E-004 - 80.759999999999991 2.3159485276649902E-004 - 80.819999999999993 2.4896651689900319E-004 - 80.879999999999995 2.6748955650889451E-004 - 80.939999999999998 2.8722802564220190E-004 - 81.000000000000000 3.0824857532922898E-004 - 81.060000000000002 3.3062057860651313E-004 - 81.120000000000005 3.5441606262365548E-004 - 81.180000000000007 3.7970978868460525E-004 - 81.240000000000009 4.0657928923046999E-004 - 81.299999999999983 4.3510487964382340E-004 - 81.359999999999985 4.6536963379442789E-004 - 81.419999999999987 4.9745939391304358E-004 - 81.479999999999990 5.3146280969899591E-004 - 81.539999999999992 5.6747131565668281E-004 - 81.599999999999994 6.0557907067664463E-004 - 81.659999999999997 6.4588284008831680E-004 - 81.719999999999999 6.8848223978942684E-004 - 81.780000000000001 7.3347926516992832E-004 - 81.840000000000003 7.8097869188991970E-004 - 81.900000000000006 8.3108772769851841E-004 - 81.960000000000008 8.8391597105040576E-004 - 82.019999999999982 9.3957507969171612E-004 - 82.079999999999984 9.9817909360398445E-004 - 82.139999999999986 1.0598439841876662E-003 - 82.199999999999989 1.1246878138120428E-003 - 82.259999999999991 1.1928301417301866E-003 - 82.319999999999993 1.2643921895758650E-003 - 82.379999999999995 1.3394965814102491E-003 - 82.439999999999998 1.4182672210443982E-003 - 82.500000000000000 1.5008284514599199E-003 - 82.560000000000002 1.5873058255501031E-003 - 82.620000000000005 1.6778254218317531E-003 - 82.680000000000007 1.7725133526338931E-003 - 82.740000000000009 1.8714953331353920E-003 - 82.799999999999983 1.9748972139240427E-003 - 82.859999999999985 2.0828434575896901E-003 - 82.919999999999987 2.1954580742086340E-003 - 82.979999999999990 2.3128636006196786E-003 - 83.039999999999992 2.4351804551575279E-003 - 83.099999999999994 2.5625271407868216E-003 - 83.159999999999997 2.6950194385910817E-003 - 83.219999999999999 2.8327701833465208E-003 - 83.280000000000001 2.9758891087812893E-003 - 83.340000000000003 3.1244814009542990E-003 - 83.400000000000006 3.2786487984697316E-003 - 83.460000000000008 3.4384874432761823E-003 - 83.519999999999982 3.6040886770064080E-003 - 83.579999999999984 3.7755378399802523E-003 - 83.639999999999986 3.9529143750793140E-003 - 83.699999999999989 4.1362907255911383E-003 - 83.759999999999991 4.3257318237075572E-003 - 83.819999999999993 4.5212957733719679E-003 - 83.879999999999995 4.7230310592515316E-003 - 83.939999999999998 4.9309780059586051E-003 - 84.000000000000000 5.1451674907361192E-003 - 84.060000000000002 5.3656207473511347E-003 - 84.120000000000005 5.5923483995409798E-003 - 84.180000000000007 5.8253499030386539E-003 - 84.240000000000009 6.0646135344698234E-003 - 84.299999999999983 6.3101156658744917E-003 - 84.359999999999985 6.5618210448793466E-003 - 84.419999999999987 6.8196809879861710E-003 - 84.479999999999990 7.0836321673941492E-003 - 84.539999999999992 7.3536002130428482E-003 - 84.599999999999994 7.6294943545657436E-003 - 84.659999999999997 7.9112098981306243E-003 - 84.719999999999999 8.1986273480010932E-003 - 84.780000000000001 8.4916125190633192E-003 - 84.840000000000003 8.7900142224994031E-003 - 84.900000000000006 9.0936675989165446E-003 - 84.960000000000008 9.4023898989420828E-003 - 85.019999999999982 9.7159828203642884E-003 - 85.079999999999984 1.0034230117977919E-002 - 85.139999999999986 1.0356901538113458E-002 - 85.199999999999989 1.0683748887820622E-002 - 85.259999999999991 1.1014506256885968E-002 - 85.319999999999993 1.1348892972815305E-002 - 85.379999999999995 1.1686609670256490E-002 - 85.439999999999998 1.2027341704995313E-002 - 85.500000000000000 1.2370757196644731E-002 - 85.560000000000002 1.2716509614955240E-002 - 85.620000000000005 1.3064235499955662E-002 - 85.680000000000007 1.3413554955028030E-002 - 85.740000000000009 1.3764073281872784E-002 - 85.799999999999983 1.4115381737891468E-002 - 85.859999999999985 1.4467054713286982E-002 - 85.919999999999987 1.4818656713666748E-002 - 85.979999999999990 1.5169735786400724E-002 - 86.039999999999992 1.5519828313195580E-002 - 86.099999999999994 1.5868459736739032E-002 - 86.159999999999997 1.6215140600704739E-002 - 86.219999999999999 1.6559374792042864E-002 - 86.280000000000001 1.6900653958287548E-002 - 86.340000000000003 1.7238465621518682E-002 - 86.400000000000006 1.7572284537338560E-002 - 86.460000000000008 1.7901581661926604E-002 - 86.519999999999982 1.8225819153081024E-002 - 86.579999999999984 1.8544459181867250E-002 - 86.639999999999986 1.8856955777041762E-002 - 86.699999999999989 1.9162764159070492E-002 - 86.759999999999991 1.9461336747823067E-002 - 86.819999999999993 1.9752124987659988E-002 - 86.879999999999995 2.0034585234875411E-002 - 86.939999999999998 2.0308174977631235E-002 - 87.000000000000000 2.0572353884874637E-002 - 87.060000000000002 2.0826588055320026E-002 - 87.120000000000005 2.1070350178020739E-002 - 87.180000000000007 2.1303121144492090E-002 - 87.240000000000009 2.1524392545284009E-002 - 87.299999999999983 2.1733663309035107E-002 - 87.359999999999985 2.1930445751368443E-002 - 87.419999999999987 2.2114267967015093E-002 - 87.479999999999990 2.2284668635977074E-002 - 87.539999999999992 2.2441205606016285E-002 - 87.599999999999994 2.2583452592012773E-002 - 87.659999999999997 2.2711000429149780E-002 - 87.719999999999999 2.2823462919811004E-002 - 87.780000000000001 2.2920471347958354E-002 - 87.840000000000003 2.3001681117571240E-002 - 87.900000000000006 2.3066770179605751E-002 - 87.960000000000008 2.3115439491934890E-002 - 88.019999999999982 2.3147416570180171E-002 - 88.079999999999984 2.3162454353598129E-002 - 88.139999999999986 2.3160332556912418E-002 - 88.199999999999989 2.3140858976090830E-002 - 88.259999999999991 2.3103870758450776E-002 - 88.319999999999993 2.3049231473889743E-002 - 88.379999999999995 2.2976837400603078E-002 - 88.439999999999998 2.2886612249574965E-002 - 88.500000000000000 2.2778513195089261E-002 - 88.560000000000002 2.2652525644790530E-002 - 88.620000000000005 2.2508668988529091E-002 - 88.680000000000007 2.2346992191855836E-002 - 88.740000000000009 2.2167577641033075E-002 - 88.799999999999983 2.1970535725588707E-002 - 88.859999999999985 2.1756013300835708E-002 - 88.919999999999987 2.1524182700639292E-002 - 88.979999999999990 2.1275252366905622E-002 - 89.039999999999992 2.1009459477336807E-002 - 89.099999999999994 2.0727070738861635E-002 - 89.159999999999997 2.0428385191941064E-002 - 89.219999999999999 2.0113728013484957E-002 - 89.280000000000001 1.9783454384258797E-002 - 89.340000000000003 1.9437946931982541E-002 - 89.400000000000006 1.9077616364061425E-002 - 89.460000000000008 1.8702895864571169E-002 - 89.519999999999982 1.8314247761766690E-002 - 89.579999999999984 1.7912156324205172E-002 - 89.639999999999986 1.7497128148012062E-002 - 89.699999999999989 1.7069693581282748E-002 - 89.759999999999991 1.6630400216040887E-002 - 89.819999999999993 1.6179816819243298E-002 - 89.879999999999995 1.5718530831281718E-002 - 89.939999999999998 1.5247143444710223E-002 - 90.000000000000000 1.4766273520230773E-002 - 90.060000000000002 1.4276551037794983E-002 - 90.120000000000005 1.3778619702670207E-002 - 90.180000000000007 1.3273132787646094E-002 - 90.240000000000009 1.2760751455257817E-002 - 90.299999999999983 1.2242146509836361E-002 - 90.359999999999985 1.1717992288599127E-002 - 90.419999999999987 1.1188969138657984E-002 - 90.479999999999990 1.0655758853625625E-002 - 90.539999999999992 1.0119044193637114E-002 - 90.599999999999994 9.5795089866885751E-003 - 90.659999999999997 9.0378332226598197E-003 - 90.719999999999999 8.4946943281948139E-003 - 90.780000000000001 7.9507648924360876E-003 - 90.840000000000003 7.4067101469775486E-003 - 90.900000000000006 6.8631879571244749E-003 - 90.960000000000008 6.3208468512441999E-003 - 91.019999999999982 5.7803246445113253E-003 - 91.079999999999984 5.2422475151397419E-003 - 91.139999999999986 4.7072276461354338E-003 - 91.199999999999989 4.1758642092314729E-003 - 91.259999999999991 3.6487397016140804E-003 - 91.319999999999993 3.1264204643618532E-003 - 91.379999999999995 2.6094554496027822E-003 - 91.439999999999998 2.0983748409543735E-003 - 91.500000000000000 1.5936897831932630E-003 - 91.560000000000002 1.0958905593917911E-003 - 91.620000000000005 6.0544694522991207E-004 - 91.680000000000007 1.2280730240889475E-004 - 91.739999999999981 -3.5160299262579153E-004 - 91.799999999999983 -8.1738068198293587E-004 - 91.859999999999985 -1.2741463062020436E-003 - 91.919999999999987 -1.7215431208302285E-003 - 91.979999999999990 -2.1592388704876238E-003 - 92.039999999999992 -2.5869250555123516E-003 - 92.099999999999994 -3.0043183046321695E-003 - 92.159999999999997 -3.4111586801735504E-003 - 92.219999999999999 -3.8072111176822927E-003 - 92.280000000000001 -4.1922647691958756E-003 - 92.340000000000003 -4.5661325759165051E-003 - 92.400000000000006 -4.9286525669227661E-003 - 92.460000000000008 -5.2796854287724543E-003 - 92.519999999999982 -5.6191159507932463E-003 - 92.579999999999984 -5.9468521511382736E-003 - 92.639999999999986 -6.2628245790080266E-003 - 92.699999999999989 -6.5669854197078622E-003 - 92.759999999999991 -6.8593109913768430E-003 - 92.819999999999993 -7.1397945433208827E-003 - 92.879999999999995 -7.4084534876342183E-003 - 92.939999999999998 -7.6653242634151094E-003 - 93.000000000000000 -7.9104617853642603E-003 - 93.060000000000002 -8.1439392411247272E-003 - 93.120000000000005 -8.3658485444368172E-003 - 93.180000000000007 -8.5762976667754249E-003 - 93.239999999999981 -8.7754123330732719E-003 - 93.299999999999983 -8.9633320801397968E-003 - 93.359999999999985 -9.1402112119622833E-003 - 93.419999999999987 -9.3062185447823874E-003 - 93.479999999999990 -9.4615347493455359E-003 - 93.539999999999992 -9.6063534707685107E-003 - 93.599999999999994 -9.7408773851375488E-003 - 93.659999999999997 -9.8653218485922779E-003 - 93.719999999999999 -9.9799105828746633E-003 - 93.780000000000001 -1.0084874776003184E-002 - 93.840000000000003 -1.0180454881132806E-002 - 93.900000000000006 -1.0266897057937336E-002 - 93.960000000000008 -1.0344454089635160E-002 - 94.019999999999982 -1.0413382836258105E-002 - 94.079999999999984 -1.0473944864646596E-002 - 94.139999999999986 -1.0526405837899450E-002 - 94.199999999999989 -1.0571032779760634E-002 - 94.259999999999991 -1.0608096918831170E-002 - 94.319999999999993 -1.0637868174180493E-002 - 94.379999999999995 -1.0660618572721322E-002 - 94.439999999999998 -1.0676619659275880E-002 - 94.500000000000000 -1.0686141467976727E-002 - 94.560000000000002 -1.0689454297875468E-002 - 94.620000000000005 -1.0686824472940306E-002 - 94.680000000000007 -1.0678517479824406E-002 - 94.739999999999981 -1.0664795359335108E-002 - 94.799999999999983 -1.0645916846433014E-002 - 94.859999999999985 -1.0622135341010990E-002 - 94.919999999999987 -1.0593702010519094E-002 - 94.979999999999990 -1.0560860396860338E-002 - 95.039999999999992 -1.0523851903406862E-002 - 95.099999999999994 -1.0482911626434879E-002 - 95.159999999999997 -1.0438266993829694E-002 - 95.219999999999999 -1.0390141809015064E-002 - 95.280000000000001 -1.0338752512083818E-002 - 95.340000000000003 -1.0284309438869212E-002 - 95.400000000000006 -1.0227016926792551E-002 - 95.460000000000008 -1.0167070244201288E-002 - 95.519999999999982 -1.0104660572240954E-002 - 95.579999999999984 -1.0039970329481960E-002 - 95.639999999999986 -9.9731750240682412E-003 - 95.699999999999989 -9.9044441478003259E-003 - 95.759999999999991 -9.8339395792017871E-003 - 95.819999999999993 -9.7618142641254547E-003 - 95.879999999999995 -9.6882176007590387E-003 - 95.939999999999998 -9.6132896368449385E-003 - 96.000000000000000 -9.5371646476713756E-003 - 96.060000000000002 -9.4599680948209280E-003 - 96.120000000000005 -9.3818213593021560E-003 - 96.180000000000007 -9.3028375224433312E-003 - 96.239999999999981 -9.2231238201393815E-003 - 96.299999999999983 -9.1427812366107405E-003 - 96.359999999999985 -9.0619043112534804E-003 - 96.419999999999987 -8.9805823875616711E-003 - 96.479999999999990 -8.8988974960462729E-003 - 96.539999999999992 -8.8169273802720573E-003 - 96.599999999999994 -8.7347445419173868E-003 - 96.659999999999997 -8.6524152852930063E-003 - 96.719999999999999 -8.5700013006949974E-003 - 96.780000000000001 -8.4875604299535119E-003 - 96.840000000000003 -8.4051456501929994E-003 - 96.900000000000006 -8.3228045586787071E-003 - 96.960000000000008 -8.2405820827991284E-003 - 97.019999999999982 -8.1585180667096933E-003 - 97.079999999999984 -8.0766500553739826E-003 - 97.139999999999986 -7.9950102069291460E-003 - 97.199999999999989 -7.9136297342432688E-003 - 97.259999999999991 -7.8325350815882447E-003 - 97.319999999999993 -7.7517503217879400E-003 - 97.379999999999995 -7.6712974904494117E-003 - 97.439999999999998 -7.5911961238300327E-003 - 97.500000000000000 -7.5114625095661263E-003 - 97.560000000000002 -7.4321122705760679E-003 - 97.620000000000005 -7.3531584167297690E-003 - 97.680000000000007 -7.2746122510931634E-003 - 97.739999999999981 -7.1964840393150915E-003 - 97.799999999999983 -7.1187817255035819E-003 - 97.859999999999985 -7.0415133807391573E-003 - 97.919999999999987 -6.9646854622150665E-003 - 97.979999999999990 -6.8883034925154470E-003 - 98.039999999999992 -6.8123718895895750E-003 - 98.099999999999994 -6.7368949208028404E-003 - 98.159999999999997 -6.6618759009635384E-003 - 98.219999999999999 -6.5873175301307992E-003 - 98.280000000000001 -6.5132225699993367E-003 - 98.340000000000003 -6.4395940997669203E-003 - 98.400000000000006 -6.3664332438816773E-003 - 98.460000000000008 -6.2937423492477182E-003 - 98.519999999999982 -6.2215236667094442E-003 - 98.579999999999984 -6.1497788080326779E-003 - 98.639999999999986 -6.0785096364171752E-003 - 98.699999999999989 -6.0077182642694965E-003 - 98.759999999999991 -5.9374066183613475E-003 - 98.819999999999993 -5.8675767714460921E-003 - 98.879999999999995 -5.7982315755980268E-003 - 98.939999999999998 -5.7293726107319979E-003 - 99.000000000000000 -5.6610026660680159E-003 - 99.060000000000002 -5.5931244392187635E-003 - 99.120000000000005 -5.5257405804673134E-003 - 99.180000000000007 -5.4588548971322712E-003 - 99.239999999999981 -5.3924701822879399E-003 - 99.299999999999983 -5.3265897748187305E-003 - 99.359999999999985 -5.2612179547572545E-003 - 99.419999999999987 -5.1963574382974942E-003 - 99.479999999999990 -5.1320120058236714E-003 - 99.539999999999992 -5.0681859092920447E-003 - 99.599999999999994 -5.0048830511861073E-003 - 99.659999999999997 -4.9421074000857764E-003 - 99.719999999999999 -4.8798628094850324E-003 - 99.780000000000001 -4.8181532986577135E-003 - 99.840000000000003 -4.7569831033259921E-003 - 99.900000000000006 -4.6963561070585622E-003 - 99.960000000000008 -4.6362755326499021E-003 - 100.01999999999998 -4.5767455009239726E-003 - 100.07999999999998 -4.5177697981456716E-003 - 100.13999999999999 -4.4593514165549705E-003 - 100.19999999999999 -4.4014938954664243E-003 - 100.25999999999999 -4.3441999301677969E-003 - 100.31999999999999 -4.2874725331214052E-003 - 100.38000000000000 -4.2313139683056592E-003 - 100.44000000000000 -4.1757264396256929E-003 - 100.50000000000000 -4.1207119101841268E-003 - 100.56000000000000 -4.0662719725926867E-003 - 100.62000000000000 -4.0124080948892495E-003 - 100.68000000000001 -3.9591207037261416E-003 - 100.73999999999998 -3.9064108792028632E-003 - 100.79999999999998 -3.8542784677267463E-003 - 100.85999999999999 -3.8027234096471296E-003 - 100.91999999999999 -3.7517459367648913E-003 - 100.97999999999999 -3.7013445152590850E-003 - 101.03999999999999 -3.6515184128938943E-003 - 101.09999999999999 -3.6022660431919828E-003 - 101.16000000000000 -3.5535855325687332E-003 - 101.22000000000000 -3.5054747842493128E-003 - 101.28000000000000 -3.4579317001359336E-003 - 101.34000000000000 -3.4109534101020309E-003 - 101.40000000000001 -3.3645367671320111E-003 - 101.46000000000001 -3.3186784333151410E-003 - 101.51999999999998 -3.2733746555360975E-003 - 101.57999999999998 -3.2286219597885387E-003 - 101.63999999999999 -3.1844159763251300E-003 - 101.69999999999999 -3.1407525723560533E-003 - 101.75999999999999 -3.0976270773387937E-003 - 101.81999999999999 -3.0550349986677426E-003 - 101.88000000000000 -3.0129711520296390E-003 - 101.94000000000000 -2.9714310316422518E-003 - 102.00000000000000 -2.9304092174712460E-003 - 102.06000000000000 -2.8899006871831818E-003 - 102.12000000000000 -2.8498998761916348E-003 - 102.18000000000001 -2.8104020573434811E-003 - 102.23999999999998 -2.7714017773070709E-003 - 102.29999999999998 -2.7328935634154529E-003 - 102.35999999999999 -2.6948723982202541E-003 - 102.41999999999999 -2.6573329359375094E-003 - 102.47999999999999 -2.6202698754500577E-003 - 102.53999999999999 -2.5836785878567419E-003 - 102.59999999999999 -2.5475537766750499E-003 - 102.66000000000000 -2.5118905652338512E-003 - 102.72000000000000 -2.4766843856744085E-003 - 102.78000000000000 -2.4419305272504171E-003 - 102.84000000000000 -2.4076251766056980E-003 - 102.90000000000001 -2.3737636325474867E-003 - 102.96000000000001 -2.3403419700698223E-003 - 103.01999999999998 -2.3073564892970213E-003 - 103.07999999999998 -2.2748037121406496E-003 - 103.13999999999999 -2.2426797744007788E-003 - 103.19999999999999 -2.2109816778366296E-003 - 103.25999999999999 -2.1797063561172078E-003 - 103.31999999999999 -2.1488513297553075E-003 - 103.38000000000000 -2.1184137788042910E-003 - 103.44000000000000 -2.0883913695874095E-003 - 103.50000000000000 -2.0587819765995477E-003 - 103.56000000000000 -2.0295836852367802E-003 - 103.62000000000000 -2.0007945612489676E-003 - 103.68000000000001 -1.9724133051288758E-003 - 103.73999999999998 -1.9444384208744843E-003 - 103.79999999999998 -1.9168687321582014E-003 - 103.85999999999999 -1.8897033337991862E-003 - 103.91999999999999 -1.8629413105327702E-003 - 103.97999999999999 -1.8365821312596644E-003 - 104.03999999999999 -1.8106250697169242E-003 - 104.09999999999999 -1.7850699197449215E-003 - 104.16000000000000 -1.7599161907031998E-003 - 104.22000000000000 -1.7351639372185884E-003 - 104.28000000000000 -1.7108129452083178E-003 - 104.34000000000000 -1.6868632710769456E-003 - 104.40000000000001 -1.6633150894160645E-003 - 104.46000000000001 -1.6401685106747347E-003 - 104.51999999999998 -1.6174238041782344E-003 - 104.57999999999998 -1.5950809925422240E-003 - 104.63999999999999 -1.5731402979597686E-003 - 104.69999999999999 -1.5516019463015494E-003 - 104.75999999999999 -1.5304659353521937E-003 - 104.81999999999999 -1.5097324287163499E-003 - 104.88000000000000 -1.4894013253612568E-003 - 104.94000000000000 -1.4694725889360292E-003 - 105.00000000000000 -1.4499461313300052E-003 - 105.06000000000000 -1.4308214420690995E-003 - 105.12000000000000 -1.4120981585086529E-003 - 105.18000000000001 -1.3937758155723576E-003 - 105.23999999999998 -1.3758535886119875E-003 - 105.29999999999998 -1.3583306298245266E-003 - 105.35999999999999 -1.3412058305969084E-003 - 105.41999999999999 -1.3244780429768777E-003 - 105.47999999999999 -1.3081459407828745E-003 - 105.53999999999999 -1.2922079046311140E-003 - 105.59999999999999 -1.2766622454723861E-003 - 105.66000000000000 -1.2615068832798775E-003 - 105.72000000000000 -1.2467396864988161E-003 - 105.78000000000000 -1.2323585136088944E-003 - 105.84000000000000 -1.2183607585414477E-003 - 105.90000000000001 -1.2047437051642587E-003 - 105.96000000000001 -1.1915045054476550E-003 - 106.01999999999998 -1.1786399659273505E-003 - 106.07999999999998 -1.1661467200906662E-003 - 106.13999999999999 -1.1540214257142062E-003 - 106.19999999999999 -1.1422603244250927E-003 - 106.25999999999999 -1.1308595408547116E-003 - 106.31999999999999 -1.1198149741487421E-003 - 106.38000000000000 -1.1091225115905062E-003 - 106.44000000000000 -1.0987775892077360E-003 - 106.50000000000000 -1.0887757464030270E-003 - 106.56000000000000 -1.0791122206188189E-003 - 106.62000000000000 -1.0697822722614961E-003 - 106.68000000000001 -1.0607808787177404E-003 - 106.73999999999998 -1.0521030604853858E-003 - 106.79999999999998 -1.0437435266265305E-003 - 106.85999999999999 -1.0356971976536989E-003 - 106.91999999999999 -1.0279587375321714E-003 - 106.97999999999999 -1.0205228617161093E-003 - 107.03999999999999 -1.0133841249049442E-003 - 107.09999999999999 -1.0065371212252859E-003 - 107.16000000000000 -9.9997648819816058E-004 - 107.22000000000000 -9.9369687137817325E-004 - 107.28000000000000 -9.8769286798323702E-004 - 107.34000000000000 -9.8195913659849025E-004 - 107.40000000000001 -9.7649038403541750E-004 - 107.46000000000001 -9.7128152740569968E-004 - 107.51999999999998 -9.6632727894685065E-004 - 107.57999999999998 -9.6162269875600898E-004 - 107.63999999999999 -9.5716281782538522E-004 - 107.69999999999999 -9.5294285832290822E-004 - 107.75999999999999 -9.4895806196615222E-004 - 107.81999999999999 -9.4520391737527702E-004 - 107.88000000000000 -9.4167604697920938E-004 - 107.94000000000000 -9.3837021673762839E-004 - 108.00000000000000 -9.3528233762943543E-004 - 108.06000000000000 -9.3240859980371182E-004 - 108.12000000000000 -9.2974529601174099E-004 - 108.18000000000001 -9.2728893681017226E-004 - 108.23999999999998 -9.2503636749599193E-004 - 108.29999999999998 -9.2298453707285229E-004 - 108.35999999999999 -9.2113063575400026E-004 - 108.41999999999999 -9.1947216070919374E-004 - 108.47999999999999 -9.1800689217102734E-004 - 108.53999999999999 -9.1673289283115988E-004 - 108.59999999999999 -9.1564837193101249E-004 - 108.66000000000000 -9.1475197617009495E-004 - 108.72000000000000 -9.1404250312692435E-004 - 108.78000000000000 -9.1351918235450119E-004 - 108.84000000000000 -9.1318150082883684E-004 - 108.90000000000001 -9.1302919747091125E-004 - 108.96000000000001 -9.1306236611539263E-004 - 109.01999999999998 -9.1328135987994502E-004 - 109.07999999999998 -9.1368682716630781E-004 - 109.13999999999999 -9.1427976919910008E-004 - 109.19999999999999 -9.1506141625595852E-004 - 109.25999999999999 -9.1603330976958055E-004 - 109.31999999999999 -9.1719732224668747E-004 - 109.38000000000000 -9.1855549107103555E-004 - 109.44000000000000 -9.2011020983397422E-004 - 109.50000000000000 -9.2186414193804486E-004 - 109.56000000000000 -9.2382010151808430E-004 - 109.62000000000000 -9.2598124734174776E-004 - 109.68000000000001 -9.2835088199260426E-004 - 109.73999999999998 -9.3093263772643241E-004 - 109.79999999999998 -9.3373020452458934E-004 - 109.85999999999999 -9.3674759317784596E-004 - 109.91999999999999 -9.3998901780521695E-004 - 109.97999999999999 -9.4345875162720003E-004 - 110.03999999999999 -9.4716136117558170E-004 - 110.09999999999999 -9.5110134516404989E-004 - 110.16000000000000 -9.5528353365902845E-004 - 110.22000000000000 -9.5971271722550397E-004 - 110.28000000000000 -9.6439388626578019E-004 - 110.34000000000000 -9.6933195234364517E-004 - 110.40000000000001 -9.7453189878486061E-004 - 110.46000000000001 -9.7999877402672351E-004 - 110.51999999999998 -9.8573734127243109E-004 - 110.57999999999998 -9.9175262483836664E-004 - 110.63999999999999 -9.9804933763108388E-004 - 110.69999999999999 -1.0046320796965021E-003 - 110.75999999999999 -1.0115053720159025E-003 - 110.81999999999999 -1.0186736102229302E-003 - 110.88000000000000 -1.0261407680226893E-003 - 110.94000000000000 -1.0339106535456814E-003 - 111.00000000000000 -1.0419867630016484E-003 - 111.06000000000000 -1.0503722704396339E-003 - 111.12000000000000 -1.0590700382822154E-003 - 111.18000000000001 -1.0680826476312023E-003 - 111.23999999999998 -1.0774119564876965E-003 - 111.29999999999998 -1.0870596639217639E-003 - 111.35999999999999 -1.0970268804708868E-003 - 111.41999999999999 -1.1073141106258183E-003 - 111.47999999999999 -1.1179214367775623E-003 - 111.53999999999999 -1.1288484538649135E-003 - 111.59999999999999 -1.1400940443722072E-003 - 111.66000000000000 -1.1516564339053724E-003 - 111.72000000000000 -1.1635332735983920E-003 - 111.78000000000000 -1.1757215886855172E-003 - 111.84000000000000 -1.1882174643543025E-003 - 111.90000000000001 -1.2010164672109837E-003 - 111.96000000000001 -1.2141133570987863E-003 - 112.01999999999998 -1.2275020673399701E-003 - 112.07999999999998 -1.2411756703287532E-003 - 112.13999999999999 -1.2551265703150975E-003 - 112.19999999999999 -1.2693461815580656E-003 - 112.25999999999999 -1.2838250037271878E-003 - 112.31999999999999 -1.2985527469420634E-003 - 112.38000000000000 -1.3135182918417739E-003 - 112.44000000000000 -1.3287094419211292E-003 - 112.50000000000000 -1.3441131066565227E-003 - 112.56000000000000 -1.3597154354934222E-003 - 112.62000000000000 -1.3755015024877696E-003 - 112.68000000000001 -1.3914553958755556E-003 - 112.73999999999998 -1.4075604442072636E-003 - 112.79999999999998 -1.4237991105659137E-003 - 112.85999999999999 -1.4401526718588191E-003 - 112.91999999999999 -1.4566016851434440E-003 - 112.97999999999999 -1.4731257868715883E-003 - 113.03999999999999 -1.4897038107820979E-003 - 113.09999999999999 -1.5063137102007142E-003 - 113.16000000000000 -1.5229326126596076E-003 - 113.22000000000000 -1.5395368101478106E-003 - 113.28000000000000 -1.5561019200970266E-003 - 113.34000000000000 -1.5726028341367395E-003 - 113.40000000000001 -1.5890136462867290E-003 - 113.46000000000001 -1.6053077387555687E-003 - 113.51999999999998 -1.6214579223256286E-003 - 113.57999999999998 -1.6374366080094786E-003 - 113.63999999999999 -1.6532154744765130E-003 - 113.69999999999999 -1.6687658273288023E-003 - 113.75999999999999 -1.6840582759916727E-003 - 113.81999999999999 -1.6990634222488637E-003 - 113.88000000000000 -1.7137512890220087E-003 - 113.94000000000000 -1.7280916858310293E-003 - 114.00000000000000 -1.7420543561684418E-003 - 114.06000000000000 -1.7556086573612684E-003 - 114.12000000000000 -1.7687240284159501E-003 - 114.18000000000001 -1.7813699492351220E-003 - 114.23999999999998 -1.7935157277529778E-003 - 114.29999999999998 -1.8051311126395576E-003 - 114.35999999999999 -1.8161859389901279E-003 - 114.41999999999999 -1.8266503495099613E-003 - 114.47999999999999 -1.8364949292744139E-003 - 114.53999999999999 -1.8456905264013549E-003 - 114.59999999999999 -1.8542086347287600E-003 - 114.66000000000000 -1.8620213306339364E-003 - 114.72000000000000 -1.8691015618428303E-003 - 114.78000000000000 -1.8754226797492802E-003 - 114.84000000000000 -1.8809589597479934E-003 - 114.90000000000001 -1.8856858556439405E-003 - 114.96000000000001 -1.8895794655278864E-003 - 115.01999999999998 -1.8926170446910916E-003 - 115.07999999999998 -1.8947769709582892E-003 - 115.13999999999999 -1.8960387204757232E-003 - 115.19999999999999 -1.8963831941185524E-003 - 115.25999999999999 -1.8957924142696441E-003 - 115.31999999999999 -1.8942497442775820E-003 - 115.38000000000000 -1.8917401998821846E-003 - 115.44000000000000 -1.8882499551163513E-003 - 115.50000000000000 -1.8837669783652046E-003 - 115.56000000000000 -1.8782807171216613E-003 - 115.62000000000000 -1.8717821621009013E-003 - 115.68000000000001 -1.8642640416482925E-003 - 115.73999999999998 -1.8557208087061894E-003 - 115.79999999999998 -1.8461485153005940E-003 - 115.85999999999999 -1.8355452020445394E-003 - 115.91999999999999 -1.8239105020083834E-003 - 115.97999999999999 -1.8112460339172595E-003 - 116.03999999999999 -1.7975550311741251E-003 - 116.09999999999999 -1.7828426209324675E-003 - 116.16000000000000 -1.7671160784713061E-003 - 116.22000000000000 -1.7503840930449830E-003 - 116.28000000000000 -1.7326573458521745E-003 - 116.34000000000000 -1.7139483590784244E-003 - 116.40000000000001 -1.6942714828442624E-003 - 116.46000000000001 -1.6736427942886391E-003 - 116.51999999999998 -1.6520802520045340E-003 - 116.57999999999998 -1.6296032853420398E-003 - 116.63999999999999 -1.6062333395086338E-003 - 116.69999999999999 -1.5819930777869653E-003 - 116.75999999999999 -1.5569071436410686E-003 - 116.81999999999999 -1.5310014968334300E-003 - 116.88000000000000 -1.5043037714249372E-003 - 116.94000000000000 -1.4768430007864549E-003 - 117.00000000000000 -1.4486492866848072E-003 - 117.06000000000000 -1.4197545413335425E-003 - 117.12000000000000 -1.3901915121617417E-003 - 117.18000000000001 -1.3599942155044481E-003 - 117.23999999999998 -1.3291979391440543E-003 - 117.29999999999998 -1.2978386740653473E-003 - 117.35999999999999 -1.2659534622153125E-003 - 117.41999999999999 -1.2335803070798073E-003 - 117.47999999999999 -1.2007578144102734E-003 - 117.53999999999999 -1.1675253452444741E-003 - 117.59999999999999 -1.1339228207044401E-003 - 117.66000000000000 -1.0999905334329431E-003 - 117.72000000000000 -1.0657693884852351E-003 - 117.78000000000000 -1.0313005137373447E-003 - 117.84000000000000 -9.9662506351976747E-004 - 117.90000000000001 -9.6178451875747158E-004 - 117.96000000000001 -9.2682027341737367E-004 - 118.01999999999998 -8.9177374453531903E-004 - 118.07999999999998 -8.5668612297230438E-004 - 118.13999999999999 -8.2159829956926435E-004 - 118.19999999999999 -7.8655088334830402E-004 - 118.25999999999999 -7.5158396117929350E-004 - 118.31999999999999 -7.1673717514784182E-004 - 118.38000000000000 -6.8204957794328741E-004 - 118.44000000000000 -6.4755949363651082E-004 - 118.50000000000000 -6.1330446180821196E-004 - 118.56000000000000 -5.7932117586673810E-004 - 118.62000000000000 -5.4564545533294212E-004 - 118.68000000000001 -5.1231213190125013E-004 - 118.73999999999998 -4.7935505430265807E-004 - 118.79999999999998 -4.4680683927267073E-004 - 118.85999999999999 -4.1469903443388894E-004 - 118.91999999999999 -3.8306197283241643E-004 - 118.97999999999999 -3.5192471479933104E-004 - 119.03999999999999 -3.2131503731363951E-004 - 119.09999999999999 -2.9125934491974721E-004 - 119.16000000000000 -2.6178273665185606E-004 - 119.22000000000000 -2.3290883859786106E-004 - 119.28000000000000 -2.0465986452347109E-004 - 119.34000000000000 -1.7705655786437357E-004 - 119.40000000000001 -1.5011820239791475E-004 - 119.46000000000001 -1.2386258752290636E-004 - 119.51999999999998 -9.8305967154689480E-005 - 119.57999999999998 -7.3463100489106278E-005 - 119.63999999999999 -4.9347241175707078E-005 - 119.69999999999999 -2.5970118373244607E-005 - 119.75999999999999 -3.3419354735394325E-006 - 119.81999999999999 1.8528587855280075E-005 - 119.88000000000000 3.9634203389066325E-005 - 119.94000000000000 5.9969148373889667E-005 - 120.00000000000000 7.9529102758942120E-005 - 120.06000000000000 9.8311152879074486E-005 - 120.12000000000000 1.1631378946187974E-004 - 120.18000000000001 1.3353684550781986E-004 - 120.23999999999998 1.4998149049270476E-004 - 120.29999999999998 1.6565017511337233E-004 - 120.35999999999999 1.8054656902359120E-004 - 120.41999999999999 1.9467556607097788E-004 - 120.47999999999999 2.0804319319682872E-004 - 120.53999999999999 2.2065662073759315E-004 - 120.59999999999999 2.3252403133346968E-004 - 120.66000000000000 2.4365465381605603E-004 - 120.72000000000000 2.5405864538694277E-004 - 120.78000000000000 2.6374708401123492E-004 - 120.84000000000000 2.7273193431139915E-004 - 120.90000000000001 2.8102594905742202E-004 - 120.95999999999998 2.8864262828482177E-004 - 121.01999999999998 2.9559615542286492E-004 - 121.07999999999998 3.0190137425269246E-004 - 121.13999999999999 3.0757372193883402E-004 - 121.19999999999999 3.1262915610949038E-004 - 121.25999999999999 3.1708417103410499E-004 - 121.31999999999999 3.2095563528508760E-004 - 121.38000000000000 3.2426081542847110E-004 - 121.44000000000000 3.2701732483121545E-004 - 121.50000000000000 3.2924306846606594E-004 - 121.56000000000000 3.3095615554931798E-004 - 121.62000000000000 3.3217485690878538E-004 - 121.68000000000001 3.3291760291909368E-004 - 121.73999999999998 3.3320293298084693E-004 - 121.79999999999998 3.3304940984065043E-004 - 121.85999999999999 3.3247558824886899E-004 - 121.91999999999999 3.3149995577447288E-004 - 121.97999999999999 3.3014100494898859E-004 - 122.03999999999999 3.2841704109614814E-004 - 122.09999999999999 3.2634620536253398E-004 - 122.16000000000000 3.2394649316153145E-004 - 122.22000000000000 3.2123564148745204E-004 - 122.28000000000000 3.1823112341221500E-004 - 122.34000000000000 3.1495014115230831E-004 - 122.40000000000001 3.1140955782149094E-004 - 122.45999999999998 3.0762591950358347E-004 - 122.51999999999998 3.0361540811898622E-004 - 122.57999999999998 2.9939379605760103E-004 - 122.63999999999999 2.9497648371304809E-004 - 122.69999999999999 2.9037838341438877E-004 - 122.75999999999999 2.8561405641678943E-004 - 122.81999999999999 2.8069756049512720E-004 - 122.88000000000000 2.7564251455399879E-004 - 122.94000000000000 2.7046201800657617E-004 - 123.00000000000000 2.6516875314961682E-004 - 123.06000000000000 2.5977486132146635E-004 - 123.12000000000000 2.5429203451539313E-004 - 123.18000000000001 2.4873144692756719E-004 - 123.23999999999998 2.4310376636630597E-004 - 123.29999999999998 2.3741919407272311E-004 - 123.35999999999999 2.3168739103023595E-004 - 123.41999999999999 2.2591752600022012E-004 - 123.47999999999999 2.2011829461148990E-004 - 123.53999999999999 2.1429787831631254E-004 - 123.59999999999999 2.0846397772376695E-004 - 123.66000000000000 2.0262384150296673E-004 - 123.72000000000000 1.9678420129727321E-004 - 123.78000000000000 1.9095135690739591E-004 - 123.84000000000000 1.8513114223240326E-004 - 123.90000000000001 1.7932896918937857E-004 - 123.95999999999998 1.7354981657991794E-004 - 124.01999999999998 1.6779825482465729E-004 - 124.07999999999998 1.6207843937361514E-004 - 124.13999999999999 1.5639415948193750E-004 - 124.19999999999999 1.5074885331736184E-004 - 124.25999999999999 1.4514558607103372E-004 - 124.31999999999999 1.3958711089056940E-004 - 124.38000000000000 1.3407584627132143E-004 - 124.44000000000000 1.2861392690693068E-004 - 124.50000000000000 1.2320320695107803E-004 - 124.56000000000000 1.1784525277020487E-004 - 124.62000000000000 1.1254140530260993E-004 - 124.68000000000001 1.0729273726467389E-004 - 124.73999999999998 1.0210012991261563E-004 - 124.79999999999998 9.6964254907051944E-005 - 124.85999999999999 9.1885588422226179E-005 - 124.91999999999999 8.6864451842354128E-005 - 124.97999999999999 8.1900989480045275E-005 - 125.03999999999999 7.6995220102688873E-005 - 125.09999999999999 7.2147030459182281E-005 - 125.16000000000000 6.7356202521806085E-005 - 125.22000000000000 6.2622417276638913E-005 - 125.28000000000000 5.7945279335451581E-005 - 125.34000000000000 5.3324320437522531E-005 - 125.40000000000001 4.8759013358886607E-005 - 125.45999999999998 4.4248799182758274E-005 - 125.51999999999998 3.9793079523656767E-005 - 125.57999999999998 3.5391237601760478E-005 - 125.63999999999999 3.1042651318981745E-005 - 125.69999999999999 2.6746692379235659E-005 - 125.75999999999999 2.2502743997993078E-005 - 125.81999999999999 1.8310209717432554E-005 - 125.88000000000000 1.4168512303781757E-005 - 125.94000000000000 1.0077112723063235E-005 - 126.00000000000000 6.0355056902280621E-006 - 126.06000000000000 2.0432351159791004E-006 - 126.12000000000000 -1.9001046751413630E-006 - 126.18000000000001 -5.7948625349556099E-006 - 126.23999999999998 -9.6413262382350534E-006 - 126.29999999999998 -1.3439714351041815E-005 - 126.35999999999999 -1.7190181648465766E-005 - 126.41999999999999 -2.0892802584080215E-005 - 126.47999999999999 -2.4547581916884698E-005 - 126.53999999999999 -2.8154448817677876E-005 - 126.59999999999999 -3.1713247648031510E-005 - 126.66000000000000 -3.5223756912284116E-005 - 126.72000000000000 -3.8685673167499946E-005 - 126.78000000000000 -4.2098625301249957E-005 - 126.84000000000000 -4.5462168464646441E-005 - 126.90000000000001 -4.8775799080458459E-005 - 126.95999999999998 -5.2038940651889767E-005 - 127.01999999999998 -5.5250973280667297E-005 - 127.07999999999998 -5.8411216353497536E-005 - 127.13999999999999 -6.1518940291862997E-005 - 127.19999999999999 -6.4573377776588217E-005 - 127.25999999999999 -6.7573722974610393E-005 - 127.31999999999999 -7.0519137863436941E-005 - 127.38000000000000 -7.3408773655893282E-005 - 127.44000000000000 -7.6241746307886032E-005 - 127.50000000000000 -7.9017160479469441E-005 - 127.56000000000000 -8.1734116942889211E-005 - 127.62000000000000 -8.4391712809002130E-005 - 127.68000000000001 -8.6989044480510099E-005 - 127.73999999999998 -8.9525234785614650E-005 - 127.79999999999998 -9.1999399206233836E-005 - 127.85999999999999 -9.4410694743250002E-005 - 127.91999999999999 -9.6758293239830636E-005 - 127.97999999999999 -9.9041414484146186E-005 - 128.03999999999999 -1.0125931983368925E-004 - 128.09999999999999 -1.0341129983067491E-004 - 128.16000000000000 -1.0549673093907524E-004 - 128.22000000000000 -1.0751502348980724E-004 - 128.28000000000000 -1.0946567605573247E-004 - 128.34000000000000 -1.1134824459503640E-004 - 128.40000000000001 -1.1316236763080596E-004 - 128.45999999999998 -1.1490777465693019E-004 - 128.51999999999998 -1.1658426214398484E-004 - 128.57999999999998 -1.1819173344271671E-004 - 128.63999999999999 -1.1973019291687911E-004 - 128.69999999999999 -1.2119973077353773E-004 - 128.75999999999999 -1.2260054367804160E-004 - 128.81999999999999 -1.2393293900807254E-004 - 128.88000000000000 -1.2519731994960309E-004 - 128.94000000000000 -1.2639421918842221E-004 - 129.00000000000000 -1.2752428918412931E-004 - 129.06000000000000 -1.2858827513812071E-004 - 129.12000000000000 -1.2958706641262593E-004 - 129.18000000000001 -1.3052166545491958E-004 - 129.23999999999998 -1.3139319108390949E-004 - 129.29999999999998 -1.3220290223106427E-004 - 129.35999999999999 -1.3295215719049137E-004 - 129.41999999999999 -1.3364242222671397E-004 - 129.47999999999999 -1.3427530508335582E-004 - 129.53999999999999 -1.3485250968072964E-004 - 129.59999999999999 -1.3537585124435975E-004 - 129.66000000000000 -1.3584724446906107E-004 - 129.72000000000000 -1.3626870812760651E-004 - 129.78000000000000 -1.3664233509212535E-004 - 129.84000000000000 -1.3697031180317574E-004 - 129.90000000000001 -1.3725490453615432E-004 - 129.95999999999998 -1.3749844926248342E-004 - 130.01999999999998 -1.3770335846860916E-004 - 130.07999999999998 -1.3787208804688406E-004 - 130.13999999999999 -1.3800717019501782E-004 - 130.19999999999999 -1.3811119030450908E-004 - 130.25999999999999 -1.3818678934102136E-004 - 130.31999999999999 -1.3823665733981303E-004 - 130.38000000000000 -1.3826352445921080E-004 - 130.44000000000000 -1.3827015342009156E-004 - 130.50000000000000 -1.3825936570264181E-004 - 130.56000000000000 -1.3823401345648136E-004 - 130.62000000000000 -1.3819697276142468E-004 - 130.68000000000001 -1.3815113598956774E-004 - 130.73999999999998 -1.3809943279953355E-004 - 130.79999999999998 -1.3804480162669583E-004 - 130.85999999999999 -1.3799018367947367E-004 - 130.91999999999999 -1.3793852317403940E-004 - 130.97999999999999 -1.3789276377429229E-004 - 131.03999999999999 -1.3785583746636220E-004 - 131.09999999999999 -1.3783065094292223E-004 - 131.16000000000000 -1.3782008886890860E-004 - 131.22000000000000 -1.3782702333966850E-004 - 131.28000000000000 -1.3785427410645758E-004 - 131.34000000000000 -1.3790464004881896E-004 - 131.40000000000001 -1.3798086768987807E-004 - 131.45999999999998 -1.3808565999472031E-004 - 131.51999999999998 -1.3822172600132482E-004 - 131.57999999999998 -1.3839169842228542E-004 - 131.63999999999999 -1.3859815256520063E-004 - 131.69999999999999 -1.3884367198568437E-004 - 131.75999999999999 -1.3913076911899533E-004 - 131.81999999999999 -1.3946194482500210E-004 - 131.88000000000000 -1.3983967588287590E-004 - 131.94000000000000 -1.4026638934113393E-004 - 132.00000000000000 -1.4074448144844125E-004 - 132.06000000000000 -1.4127634285407569E-004 - 132.12000000000000 -1.4186433039576777E-004 - 132.18000000000001 -1.4251079197967123E-004 - 132.23999999999998 -1.4321803693524536E-004 - 132.29999999999998 -1.4398838160579211E-004 - 132.35999999999999 -1.4482412495433341E-004 - 132.41999999999999 -1.4572757277236937E-004 - 132.47999999999999 -1.4670099204854665E-004 - 132.53999999999999 -1.4774667960420026E-004 - 132.59999999999999 -1.4886693917802620E-004 - 132.66000000000000 -1.5006405520359093E-004 - 132.72000000000000 -1.5134035966681057E-004 - 132.78000000000000 -1.5269820941621087E-004 - 132.84000000000000 -1.5413997291737462E-004 - 132.90000000000001 -1.5566804392401755E-004 - 132.95999999999998 -1.5728489678869882E-004 - 133.01999999999998 -1.5899302509826262E-004 - 133.07999999999998 -1.6079500095065669E-004 - 133.13999999999999 -1.6269343401108076E-004 - 133.19999999999999 -1.6469102603176424E-004 - 133.25999999999999 -1.6679053152218970E-004 - 133.31999999999999 -1.6899481945416582E-004 - 133.38000000000000 -1.7130682734002494E-004 - 133.44000000000000 -1.7372957341018038E-004 - 133.50000000000000 -1.7626621207127713E-004 - 133.56000000000000 -1.7891996669467801E-004 - 133.62000000000000 -1.8169420995521035E-004 - 133.68000000000001 -1.8459239869412871E-004 - 133.73999999999998 -1.8761814386157710E-004 - 133.79999999999998 -1.9077515674051056E-004 - 133.85999999999999 -1.9406725913371150E-004 - 133.91999999999999 -1.9749842714890557E-004 - 133.97999999999999 -2.0107274313410287E-004 - 134.03999999999999 -2.0479441679820164E-004 - 134.09999999999999 -2.0866776459982405E-004 - 134.16000000000000 -2.1269722055051020E-004 - 134.22000000000000 -2.1688732423225758E-004 - 134.28000000000000 -2.2124273087918817E-004 - 134.34000000000000 -2.2576815778257352E-004 - 134.40000000000001 -2.3046845156242811E-004 - 134.45999999999998 -2.3534847024450525E-004 - 134.51999999999998 -2.4041319287547143E-004 - 134.57999999999998 -2.4566763007481901E-004 - 134.63999999999999 -2.5111681586658047E-004 - 134.69999999999999 -2.5676582267008976E-004 - 134.75999999999999 -2.6261977445166579E-004 - 134.81999999999999 -2.6868373792636436E-004 - 134.88000000000000 -2.7496280394829803E-004 - 134.94000000000000 -2.8146202573332504E-004 - 135.00000000000000 -2.8818642041142281E-004 - 135.06000000000000 -2.9514095826482957E-004 - 135.12000000000000 -3.0233047950635055E-004 - 135.18000000000001 -3.0975977097731725E-004 - 135.23999999999998 -3.1743348545893281E-004 - 135.29999999999998 -3.2535609550790769E-004 - 135.35999999999999 -3.3353195666673149E-004 - 135.41999999999999 -3.4196521254151136E-004 - 135.47999999999999 -3.5065975596947313E-004 - 135.53999999999999 -3.5961920984208841E-004 - 135.59999999999999 -3.6884695737009925E-004 - 135.66000000000000 -3.7834602278238665E-004 - 135.72000000000000 -3.8811911950812532E-004 - 135.78000000000000 -3.9816857972133546E-004 - 135.84000000000000 -4.0849631978191151E-004 - 135.90000000000001 -4.1910379790615384E-004 - 135.95999999999998 -4.2999211460376194E-004 - 136.01999999999998 -4.4116180407150840E-004 - 136.07999999999998 -4.5261290809296044E-004 - 136.13999999999999 -4.6434497120364604E-004 - 136.19999999999999 -4.7635686267017980E-004 - 136.25999999999999 -4.8864693937070007E-004 - 136.31999999999999 -5.0121295393357754E-004 - 136.38000000000000 -5.1405204001718908E-004 - 136.44000000000000 -5.2716059077311016E-004 - 136.50000000000000 -5.4053444654957679E-004 - 136.56000000000000 -5.5416858737404465E-004 - 136.62000000000000 -5.6805735006317339E-004 - 136.68000000000001 -5.8219435071029974E-004 - 136.73999999999998 -5.9657238755677776E-004 - 136.79999999999998 -6.1118345104409525E-004 - 136.85999999999999 -6.2601878510876684E-004 - 136.91999999999999 -6.4106885827657075E-004 - 136.97999999999999 -6.5632317782554986E-004 - 137.03999999999999 -6.7177062090419777E-004 - 137.09999999999999 -6.8739896296786342E-004 - 137.16000000000000 -7.0319535726865421E-004 - 137.22000000000000 -7.1914608521441695E-004 - 137.28000000000000 -7.3523641276614299E-004 - 137.34000000000000 -7.5145100740306567E-004 - 137.40000000000001 -7.6777358794665189E-004 - 137.45999999999998 -7.8418703742522068E-004 - 137.51999999999998 -8.0067339061506537E-004 - 137.57999999999998 -8.1721401491760407E-004 - 137.63999999999999 -8.3378943034725938E-004 - 137.69999999999999 -8.5037936333506826E-004 - 137.75999999999999 -8.6696289900753875E-004 - 137.81999999999999 -8.8351832392540703E-004 - 137.88000000000000 -9.0002322027490705E-004 - 137.94000000000000 -9.1645462273668202E-004 - 138.00000000000000 -9.3278890098229803E-004 - 138.06000000000000 -9.4900163986084778E-004 - 138.12000000000000 -9.6506813812395381E-004 - 138.18000000000001 -9.8096314854957201E-004 - 138.23999999999998 -9.9666068332941119E-004 - 138.29999999999998 -1.0121345952798723E-003 - 138.35999999999999 -1.0273583259122836E-003 - 138.41999999999999 -1.0423049318534407E-003 - 138.47999999999999 -1.0569472108579673E-003 - 138.53999999999999 -1.0712576385617778E-003 - 138.59999999999999 -1.0852087372967560E-003 - 138.66000000000000 -1.0987729203862828E-003 - 138.72000000000000 -1.1119225188114651E-003 - 138.78000000000000 -1.1246299334776457E-003 - 138.84000000000000 -1.1368677092447291E-003 - 138.90000000000001 -1.1486085934386998E-003 - 138.95999999999998 -1.1598253400838076E-003 - 139.01999999999998 -1.1704914952175196E-003 - 139.07999999999998 -1.1805806657900551E-003 - 139.13999999999999 -1.1900668363653978E-003 - 139.19999999999999 -1.1989247642072861E-003 - 139.25999999999999 -1.2071296911971170E-003 - 139.31999999999999 -1.2146576223732827E-003 - 139.38000000000000 -1.2214850600014064E-003 - 139.44000000000000 -1.2275895802290908E-003 - 139.50000000000000 -1.2329496100589143E-003 - 139.56000000000000 -1.2375442024756518E-003 - 139.62000000000000 -1.2413538638720723E-003 - 139.68000000000001 -1.2443597829178933E-003 - 139.73999999999998 -1.2465443335590166E-003 - 139.79999999999998 -1.2478913117862480E-003 - 139.85999999999999 -1.2483855257307782E-003 - 139.91999999999999 -1.2480130710134764E-003 - 139.97999999999999 -1.2467615742270738E-003 - 140.03999999999999 -1.2446197098936710E-003 - 140.09999999999999 -1.2415779628861601E-003 - 140.16000000000000 -1.2376279987102521E-003 - 140.22000000000000 -1.2327631280219888E-003 - 140.28000000000000 -1.2269781615170980E-003 - 140.34000000000000 -1.2202695329211789E-003 - 140.40000000000001 -1.2126353006510994E-003 - 140.45999999999998 -1.2040749962799308E-003 - 140.51999999999998 -1.1945899526196744E-003 - 140.57999999999998 -1.1841832447409715E-003 - 140.63999999999999 -1.1728594242142146E-003 - 140.69999999999999 -1.1606247997069615E-003 - 140.75999999999999 -1.1474873734733525E-003 - 140.81999999999999 -1.1334566560865004E-003 - 140.88000000000000 -1.1185441530453541E-003 - 140.94000000000000 -1.1027627444778298E-003 - 141.00000000000000 -1.0861270544812104E-003 - 141.06000000000000 -1.0686532844445507E-003 - 141.12000000000000 -1.0503591384602850E-003 - 141.18000000000001 -1.0312638860463107E-003 - 141.23999999999998 -1.0113884707248265E-003 - 141.29999999999998 -9.9075488863551689E-004 - 141.35999999999999 -9.6938698460926893E-004 - 141.41999999999999 -9.4730964143865178E-004 - 141.47999999999999 -9.2454914715160361E-004 - 141.53999999999999 -9.0113303540969420E-004 - 141.59999999999999 -8.7708990816856146E-004 - 141.66000000000000 -8.5244950270419297E-004 - 141.72000000000000 -8.2724271171337590E-004 - 141.78000000000000 -8.0150135369855767E-004 - 141.84000000000000 -7.7525808146463541E-004 - 141.90000000000001 -7.4854641881140103E-004 - 141.95999999999998 -7.2140075084801037E-004 - 142.01999999999998 -6.9385596975832589E-004 - 142.07999999999998 -6.6594767193265422E-004 - 142.13999999999999 -6.3771196994884271E-004 - 142.19999999999999 -6.0918532924143548E-004 - 142.25999999999999 -5.8040463911021329E-004 - 142.31999999999999 -5.5140704230626988E-004 - 142.38000000000000 -5.2222982879404959E-004 - 142.44000000000000 -4.9291030408327207E-004 - 142.50000000000000 -4.6348585025866916E-004 - 142.56000000000000 -4.3399377572266653E-004 - 142.62000000000000 -4.0447101513834088E-004 - 142.68000000000001 -3.7495438048111871E-004 - 142.73999999999998 -3.4548020563616213E-004 - 142.79999999999998 -3.1608442869431388E-004 - 142.85999999999999 -2.8680247735681581E-004 - 142.91999999999999 -2.5766911519043236E-004 - 142.97999999999999 -2.2871844010875986E-004 - 143.03999999999999 -1.9998379071253845E-004 - 143.09999999999999 -1.7149771521940573E-004 - 143.16000000000000 -1.4329186239575752E-004 - 143.22000000000000 -1.1539692636770617E-004 - 143.28000000000000 -8.7842615908218581E-005 - 143.34000000000000 -6.0657614387901271E-005 - 143.40000000000001 -3.3869519551919062E-005 - 143.45999999999998 -7.5047508864687307E-006 - 143.51999999999998 1.8411405310433701E-005 - 143.57999999999998 4.3854925804522885E-005 - 143.63999999999999 6.8803025330492761E-005 - 143.69999999999999 9.3234189882455986E-005 - 143.75999999999999 1.1712823919824699E-004 - 143.81999999999999 1.4046635368630513E-004 - 143.88000000000000 1.6323103251558659E-004 - 143.94000000000000 1.8540619738395591E-004 - 144.00000000000000 2.0697715824597059E-004 - 144.06000000000000 2.2793059477695186E-004 - 144.12000000000000 2.4825466207184044E-004 - 144.18000000000001 2.6793883326465363E-004 - 144.23999999999998 2.8697402181835903E-004 - 144.29999999999998 3.0535254755592448E-004 - 144.35999999999999 3.2306805384200825E-004 - 144.41999999999999 3.4011557974867224E-004 - 144.47999999999999 3.5649148258545295E-004 - 144.53999999999999 3.7219343336771248E-004 - 144.59999999999999 3.8722035437504702E-004 - 144.66000000000000 4.0157240181985430E-004 - 144.72000000000000 4.1525100391867447E-004 - 144.78000000000000 4.2825873443605965E-004 - 144.84000000000000 4.4059924053429253E-004 - 144.90000000000001 4.5227732914389970E-004 - 144.95999999999998 4.6329877356346622E-004 - 145.01999999999998 4.7367043001495185E-004 - 145.07999999999998 4.8340005905295668E-004 - 145.13999999999999 4.9249632766193722E-004 - 145.19999999999999 5.0096875202266936E-004 - 145.25999999999999 5.0882772153584138E-004 - 145.31999999999999 5.1608423953179326E-004 - 145.38000000000000 5.2275015058984723E-004 - 145.44000000000000 5.2883786755867767E-004 - 145.50000000000000 5.3436046894497920E-004 - 145.56000000000000 5.3933155972136343E-004 - 145.62000000000000 5.4376517355315490E-004 - 145.68000000000001 5.4767585846083775E-004 - 145.73999999999998 5.5107856186537322E-004 - 145.79999999999998 5.5398860982222890E-004 - 145.85999999999999 5.5642156129011939E-004 - 145.91999999999999 5.5839320762719139E-004 - 145.97999999999999 5.5991963555726760E-004 - 146.03999999999999 5.6101705864373811E-004 - 146.09999999999999 5.6170176876256300E-004 - 146.16000000000000 5.6199013015889403E-004 - 146.22000000000000 5.6189854322132959E-004 - 146.28000000000000 5.6144342140384055E-004 - 146.34000000000000 5.6064102287704961E-004 - 146.40000000000001 5.5950763634064955E-004 - 146.45999999999998 5.5805930609687090E-004 - 146.51999999999998 5.5631191795075694E-004 - 146.57999999999998 5.5428122334186172E-004 - 146.63999999999999 5.5198256880134838E-004 - 146.69999999999999 5.4943116884127762E-004 - 146.75999999999999 5.4664192492151552E-004 - 146.81999999999999 5.4362933879394690E-004 - 146.88000000000000 5.4040760361414805E-004 - 146.94000000000000 5.3699054402860829E-004 - 147.00000000000000 5.3339154679876548E-004 - 147.06000000000000 5.2962366049087663E-004 - 147.12000000000000 5.2569950452121313E-004 - 147.18000000000001 5.2163132871199311E-004 - 147.23999999999998 5.1743084519880085E-004 - 147.29999999999998 5.1310944339175298E-004 - 147.35999999999999 5.0867790207935058E-004 - 147.41999999999999 5.0414673549447893E-004 - 147.47999999999999 4.9952590172980195E-004 - 147.53999999999999 4.9482495443817014E-004 - 147.59999999999999 4.9005295201622685E-004 - 147.66000000000000 4.8521849049771318E-004 - 147.72000000000000 4.8032978840238259E-004 - 147.78000000000000 4.7539450652126354E-004 - 147.84000000000000 4.7041993535643594E-004 - 147.90000000000001 4.6541289560848896E-004 - 147.95999999999998 4.6037971844687292E-004 - 148.01999999999998 4.5532639638598061E-004 - 148.07999999999998 4.5025851304566415E-004 - 148.13999999999999 4.4518111470441915E-004 - 148.19999999999999 4.4009892864981350E-004 - 148.25999999999999 4.3501632339741430E-004 - 148.31999999999999 4.2993727910950718E-004 - 148.38000000000000 4.2486540323096670E-004 - 148.44000000000000 4.1980398583962527E-004 - 148.50000000000000 4.1475597910840898E-004 - 148.56000000000000 4.0972401987673940E-004 - 148.62000000000000 4.0471047772288216E-004 - 148.68000000000001 3.9971740630328313E-004 - 148.73999999999998 3.9474660310513605E-004 - 148.79999999999998 3.8979963512485643E-004 - 148.85999999999999 3.8487779025560064E-004 - 148.91999999999999 3.7998216195581341E-004 - 148.97999999999999 3.7511359300059052E-004 - 149.03999999999999 3.7027276627502070E-004 - 149.09999999999999 3.6546018309205732E-004 - 149.16000000000000 3.6067616057692880E-004 - 149.22000000000000 3.5592085734079251E-004 - 149.28000000000000 3.5119429016486521E-004 - 149.34000000000000 3.4649642249451025E-004 - 149.40000000000001 3.4182703705811651E-004 - 149.45999999999998 3.3718588701934940E-004 - 149.51999999999998 3.3257264330919064E-004 - 149.57999999999998 3.2798689656160274E-004 - 149.63999999999999 3.2342826285426836E-004 - 149.69999999999999 3.1889630331359851E-004 - 149.75999999999999 3.1439055930958677E-004 - 149.81999999999999 3.0991058784757568E-004 - 149.88000000000000 3.0545597802223009E-004 - 149.94000000000000 3.0102629482953603E-004 - 150.00000000000000 2.9662115944160998E-004 - 150.06000000000000 2.9224024001162709E-004 - 150.12000000000000 2.8788324874649433E-004 - 150.18000000000001 2.8354987305304318E-004 - 150.23999999999998 2.7923992442745497E-004 - 150.29999999999998 2.7495321025183979E-004 - 150.35999999999999 2.7068963150186936E-004 - 150.41999999999999 2.6644909526200866E-004 - 150.47999999999999 2.6223159463532365E-004 - 150.53999999999999 2.5803719872225531E-004 - 150.59999999999999 2.5386602717765070E-004 - 150.66000000000000 2.4971826660019652E-004 - 150.72000000000000 2.4559416744970386E-004 - 150.78000000000000 2.4149406800363612E-004 - 150.84000000000000 2.3741842130612381E-004 - 150.90000000000001 2.3336768244953246E-004 - 150.95999999999998 2.2934248722837700E-004 - 151.01999999999998 2.2534347087993108E-004 - 151.07999999999998 2.2137140497625364E-004 - 151.13999999999999 2.1742713776479183E-004 - 151.19999999999999 2.1351158863929773E-004 - 151.25999999999999 2.0962577026299804E-004 - 151.31999999999999 2.0577078767933981E-004 - 151.38000000000000 2.0194779408880630E-004 - 151.44000000000000 1.9815802301644762E-004 - 151.50000000000000 1.9440277682041337E-004 - 151.56000000000000 1.9068343872958478E-004 - 151.62000000000000 1.8700142966860244E-004 - 151.68000000000001 1.8335822224251259E-004 - 151.73999999999998 1.7975538780490931E-004 - 151.79999999999998 1.7619449086769910E-004 - 151.85999999999999 1.7267718232465840E-004 - 151.91999999999999 1.6920514153361080E-004 - 151.97999999999999 1.6578008329295050E-004 - 152.03999999999999 1.6240378500990307E-004 - 152.09999999999999 1.5907803439654849E-004 - 152.16000000000000 1.5580467234304585E-004 - 152.22000000000000 1.5258557476732792E-004 - 152.28000000000000 1.4942263032836309E-004 - 152.34000000000000 1.4631778446226319E-004 - 152.40000000000001 1.4327299266705007E-004 - 152.45999999999998 1.4029021985598045E-004 - 152.51999999999998 1.3737146876600611E-004 - 152.57999999999998 1.3451875828235130E-004 - 152.63999999999999 1.3173412658796932E-004 - 152.69999999999999 1.2901961812958351E-004 - 152.75999999999999 1.2637728986133131E-004 - 152.81999999999999 1.2380921782917563E-004 - 152.88000000000000 1.2131747636445766E-004 - 152.94000000000000 1.1890415026947517E-004 - 153.00000000000000 1.1657131376204455E-004 - 153.06000000000000 1.1432105968183684E-004 - 153.12000000000000 1.1215544904721987E-004 - 153.17999999999998 1.1007656183403984E-004 - 153.23999999999998 1.0808645553284591E-004 - 153.29999999999998 1.0618717125615562E-004 - 153.35999999999999 1.0438074516169495E-004 - 153.41999999999999 1.0266918070557584E-004 - 153.47999999999999 1.0105447209403402E-004 - 153.53999999999999 9.9538586213121632E-005 - 153.59999999999999 9.8123468563734317E-005 - 153.66000000000000 9.6811037631921497E-005 - 153.72000000000000 9.5603207150829868E-005 - 153.78000000000000 9.4501841276712500E-005 - 153.84000000000000 9.3508810994703115E-005 - 153.90000000000001 9.2625954372308465E-005 - 153.95999999999998 9.1855112427778615E-005 - 154.01999999999998 9.1198105675957951E-005 - 154.07999999999998 9.0656758500276674E-005 - 154.13999999999999 9.0232882564997971E-005 - 154.19999999999999 8.9928294798860680E-005 - 154.25999999999999 8.9744807165258460E-005 - 154.31999999999999 8.9684227762999396E-005 - 154.38000000000000 8.9748378981719578E-005 - 154.44000000000000 8.9939053218038233E-005 - 154.50000000000000 9.0258050079315182E-005 - 154.56000000000000 9.0707164886968253E-005 - 154.62000000000000 9.1288154871331035E-005 - 154.67999999999998 9.2002761157140969E-005 - 154.73999999999998 9.2852690490287599E-005 - 154.79999999999998 9.3839617518232709E-005 - 154.85999999999999 9.4965169882772939E-005 - 154.91999999999999 9.6230919380044621E-005 - 154.97999999999999 9.7638387141958644E-005 - 155.03999999999999 9.9189034854028519E-005 - 155.09999999999999 1.0088425326173804E-004 - 155.16000000000000 1.0272536826210232E-004 - 155.22000000000000 1.0471364397169083E-004 - 155.28000000000000 1.0685024742859779E-004 - 155.34000000000000 1.0913628414626231E-004 - 155.40000000000001 1.1157275898285470E-004 - 155.45999999999998 1.1416062460475872E-004 - 155.51999999999998 1.1690070960734203E-004 - 155.57999999999998 1.1979374804653504E-004 - 155.63999999999999 1.2284038672293298E-004 - 155.69999999999999 1.2604112353418255E-004 - 155.75999999999999 1.2939636236718437E-004 - 155.81999999999999 1.3290633711327300E-004 - 155.88000000000000 1.3657114675290084E-004 - 155.94000000000000 1.4039072772715645E-004 - 156.00000000000000 1.4436482267057746E-004 - 156.06000000000000 1.4849299433632640E-004 - 156.12000000000000 1.5277458984335807E-004 - 156.17999999999998 1.5720871258181790E-004 - 156.23999999999998 1.6179426644159897E-004 - 156.29999999999998 1.6652986542255784E-004 - 156.35999999999999 1.7141385621660161E-004 - 156.41999999999999 1.7644432160410670E-004 - 156.47999999999999 1.8161902807499979E-004 - 156.53999999999999 1.8693543684930217E-004 - 156.59999999999999 1.9239068039892207E-004 - 156.66000000000000 1.9798156373488832E-004 - 156.72000000000000 2.0370452451998420E-004 - 156.78000000000000 2.0955566688867384E-004 - 156.84000000000000 2.1553069992546122E-004 - 156.90000000000001 2.2162493246429571E-004 - 156.95999999999998 2.2783330001075196E-004 - 157.01999999999998 2.3415032839017500E-004 - 157.07999999999998 2.4057003265377610E-004 - 157.13999999999999 2.4708611279007008E-004 - 157.19999999999999 2.5369173096027772E-004 - 157.25999999999999 2.6037965984136463E-004 - 157.31999999999999 2.6714216856697060E-004 - 157.38000000000000 2.7397108739772309E-004 - 157.44000000000000 2.8085773062525867E-004 - 157.50000000000000 2.8779297264551007E-004 - 157.56000000000000 2.9476721594644945E-004 - 157.62000000000000 3.0177038464618755E-004 - 157.67999999999998 3.0879189926879121E-004 - 157.73999999999998 3.1582074805744294E-004 - 157.79999999999998 3.2284545690486810E-004 - 157.85999999999999 3.2985407893162467E-004 - 157.91999999999999 3.3683420535608668E-004 - 157.97999999999999 3.4377304070839408E-004 - 158.03999999999999 3.5065730732784231E-004 - 158.09999999999999 3.5747334661376462E-004 - 158.16000000000000 3.6420708452769758E-004 - 158.22000000000000 3.7084399950039644E-004 - 158.28000000000000 3.7736929461236528E-004 - 158.34000000000000 3.8376775977752478E-004 - 158.40000000000001 3.9002384306768985E-004 - 158.45999999999998 3.9612169139117590E-004 - 158.51999999999998 4.0204511866459303E-004 - 158.57999999999998 4.0777770891239928E-004 - 158.63999999999999 4.1330279731996216E-004 - 158.69999999999999 4.1860346780996506E-004 - 158.75999999999999 4.2366267051051392E-004 - 158.81999999999999 4.2846314160243368E-004 - 158.88000000000000 4.3298760393363793E-004 - 158.94000000000000 4.3721857013509849E-004 - 159.00000000000000 4.4113864328213713E-004 - 159.06000000000000 4.4473036020652201E-004 - 159.12000000000000 4.4797626745908634E-004 - 159.17999999999998 4.5085902093399397E-004 - 159.23999999999998 4.5336143510787638E-004 - 159.29999999999998 4.5546640789326926E-004 - 159.35999999999999 4.5715718078812945E-004 - 159.41999999999999 4.5841709872220567E-004 - 159.47999999999999 4.5922995459611533E-004 - 159.53999999999999 4.5957984793528622E-004 - 159.59999999999999 4.5945127124336277E-004 - 159.66000000000000 4.5882922752552003E-004 - 159.72000000000000 4.5769912382281246E-004 - 159.78000000000000 4.5604700710250967E-004 - 159.84000000000000 4.5385948330553755E-004 - 159.90000000000001 4.5112382270914614E-004 - 159.95999999999998 4.4782798451222980E-004 - 160.01999999999998 4.4396068893791667E-004 - 160.07999999999998 4.3951142171899280E-004 - 160.13999999999999 4.3447053905670699E-004 - 160.19999999999999 4.2882928513646634E-004 - 160.25999999999999 4.2257978820580273E-004 - 160.31999999999999 4.1571515126051332E-004 - 160.38000000000000 4.0822952138491601E-004 - 160.44000000000000 4.0011802523877470E-004 - 160.50000000000000 3.9137687570206894E-004 - 160.56000000000000 3.8200341516901772E-004 - 160.62000000000000 3.7199610703946083E-004 - 160.67999999999998 3.6135456695632524E-004 - 160.73999999999998 3.5007959359199077E-004 - 160.79999999999998 3.3817324768962553E-004 - 160.85999999999999 3.2563878147977141E-004 - 160.91999999999999 3.1248076934162997E-004 - 160.97999999999999 2.9870499268046680E-004 - 161.03999999999999 2.8431856093129743E-004 - 161.09999999999999 2.6932990911468881E-004 - 161.16000000000000 2.5374876445722152E-004 - 161.22000000000000 2.3758614774080171E-004 - 161.28000000000000 2.2085445805367090E-004 - 161.34000000000000 2.0356735353664455E-004 - 161.40000000000001 1.8573984308110052E-004 - 161.45999999999998 1.6738820070840186E-004 - 161.51999999999998 1.4852996866121729E-004 - 161.57999999999998 1.2918397376844638E-004 - 161.63999999999999 1.0937026004945081E-004 - 161.69999999999999 8.9110067374568021E-005 - 161.75999999999999 6.8425820177723490E-005 - 161.81999999999999 4.7341075316630556E-005 - 161.88000000000000 2.5880487302277173E-005 - 161.94000000000000 4.0697725164332872E-006 - 162.00000000000000 -1.8064346013411884E-005 - 162.06000000000000 -4.0494159826463434E-005 - 162.12000000000000 -6.3191050942427413E-005 - 162.17999999999998 -8.6125519452439768E-005 - 162.23999999999998 -1.0926722783001722E-004 - 162.29999999999998 -1.3258509155131341E-004 - 162.35999999999999 -1.5604730665224923E-004 - 162.41999999999999 -1.7962143907860294E-004 - 162.47999999999999 -2.0327442932338986E-004 - 162.53999999999999 -2.2697273177043763E-004 - 162.59999999999999 -2.5068234588877553E-004 - 162.66000000000000 -2.7436885616918144E-004 - 162.72000000000000 -2.9799756942685581E-004 - 162.78000000000000 -3.2153355205838852E-004 - 162.84000000000000 -3.4494174468757086E-004 - 162.90000000000001 -3.6818699428437321E-004 - 162.95999999999998 -3.9123418203719051E-004 - 163.01999999999998 -4.1404827048734132E-004 - 163.07999999999998 -4.3659440196922782E-004 - 163.13999999999999 -4.5883800232318525E-004 - 163.19999999999999 -4.8074479522710310E-004 - 163.25999999999999 -5.0228087823607991E-004 - 163.31999999999999 -5.2341298429131795E-004 - 163.38000000000000 -5.4410829031688529E-004 - 163.44000000000000 -5.6433474612689713E-004 - 163.50000000000000 -5.8406087443378771E-004 - 163.56000000000000 -6.0325611036956238E-004 - 163.62000000000000 -6.2189063616289531E-004 - 163.67999999999998 -6.3993564612785988E-004 - 163.73999999999998 -6.5736325786273442E-004 - 163.79999999999998 -6.7414667050370706E-004 - 163.85999999999999 -6.9026015941939527E-004 - 163.91999999999999 -7.0567911496171080E-004 - 163.97999999999999 -7.2038018374571402E-004 - 164.03999999999999 -7.3434130592780968E-004 - 164.09999999999999 -7.4754164360113908E-004 - 164.16000000000000 -7.5996175858313963E-004 - 164.22000000000000 -7.7158358069064374E-004 - 164.28000000000000 -7.8239048636705264E-004 - 164.34000000000000 -7.9236730798273229E-004 - 164.40000000000001 -8.0150036402531686E-004 - 164.45999999999998 -8.0977750515865928E-004 - 164.51999999999998 -8.1718816172524913E-004 - 164.57999999999998 -8.2372326983006275E-004 - 164.63999999999999 -8.2937543211303506E-004 - 164.69999999999999 -8.3413873217058577E-004 - 164.75999999999999 -8.3800892282905677E-004 - 164.81999999999999 -8.4098334896913159E-004 - 164.88000000000000 -8.4306100353574579E-004 - 164.94000000000000 -8.4424243185722493E-004 - 165.00000000000000 -8.4452979970519985E-004 - 165.06000000000000 -8.4392680024656590E-004 - 165.12000000000000 -8.4243874504421213E-004 - 165.17999999999998 -8.4007252037568013E-004 - 165.23999999999998 -8.3683644785623071E-004 - 165.29999999999998 -8.3274039734335136E-004 - 165.35999999999999 -8.2779560929924223E-004 - 165.41999999999999 -8.2201479110284548E-004 - 165.47999999999999 -8.1541204106442221E-004 - 165.53999999999999 -8.0800267622186349E-004 - 165.59999999999999 -7.9980339287963190E-004 - 165.66000000000000 -7.9083210671415324E-004 - 165.72000000000000 -7.8110785000727666E-004 - 165.78000000000000 -7.7065088887832479E-004 - 165.84000000000000 -7.5948236698016838E-004 - 165.90000000000001 -7.4762449081897336E-004 - 165.95999999999998 -7.3510053600583198E-004 - 166.01999999999998 -7.2193446642942983E-004 - 166.07999999999998 -7.0815113777614939E-004 - 166.13999999999999 -6.9377627731523816E-004 - 166.19999999999999 -6.7883610818392042E-004 - 166.25999999999999 -6.6335758997851965E-004 - 166.31999999999999 -6.4736823348437132E-004 - 166.38000000000000 -6.3089606634894927E-004 - 166.44000000000000 -6.1396943091342638E-004 - 166.50000000000000 -5.9661721310070768E-004 - 166.56000000000000 -5.7886849490146688E-004 - 166.62000000000000 -5.6075263914319006E-004 - 166.67999999999998 -5.4229914141190085E-004 - 166.73999999999998 -5.2353761758500747E-004 - 166.79999999999998 -5.0449772505393911E-004 - 166.85999999999999 -4.8520907277376933E-004 - 166.91999999999999 -4.6570119136184890E-004 - 166.97999999999999 -4.4600340540164264E-004 - 167.03999999999999 -4.2614482318848617E-004 - 167.09999999999999 -4.0615432283815057E-004 - 167.16000000000000 -3.8606038642787210E-004 - 167.22000000000000 -3.6589112165198376E-004 - 167.28000000000000 -3.4567416461615027E-004 - 167.34000000000000 -3.2543669743486178E-004 - 167.40000000000001 -3.0520530639236413E-004 - 167.45999999999998 -2.8500601541376778E-004 - 167.51999999999998 -2.6486423838682511E-004 - 167.57999999999998 -2.4480468552480993E-004 - 167.63999999999999 -2.2485142597079963E-004 - 167.69999999999999 -2.0502773208272063E-004 - 167.75999999999999 -1.8535619252902123E-004 - 167.81999999999999 -1.6585853806774369E-004 - 167.88000000000000 -1.4655573854536084E-004 - 167.94000000000000 -1.2746793178163411E-004 - 168.00000000000000 -1.0861436445153442E-004 - 168.06000000000000 -9.0013439775959335E-005 - 168.12000000000000 -7.1682662559140848E-005 - 168.17999999999998 -5.3638627109224850E-005 - 168.23999999999998 -3.5897014204571180E-005 - 168.29999999999998 -1.8472576498318574E-005 - 168.35999999999999 -1.3791292210841520E-006 - 168.41999999999999 1.5370437266718206E-005 - 168.47999999999999 3.1764181033434536E-005 - 168.53999999999999 4.7791082668598214E-005 - 168.59999999999999 6.3441071431215439E-005 - 168.66000000000000 7.8704994899080530E-005 - 168.72000000000000 9.3574600131255762E-005 - 168.78000000000000 1.0804255441076952E-004 - 168.84000000000000 1.2210240005891353E-004 - 168.90000000000001 1.3574855634052114E-004 - 168.95999999999998 1.4897628789226677E-004 - 169.01999999999998 1.6178170540313789E-004 - 169.07999999999998 1.7416171615999631E-004 - 169.13999999999999 1.8611402814231096E-004 - 169.19999999999999 1.9763714413101232E-004 - 169.25999999999999 2.0873025220274552E-004 - 169.31999999999999 2.1939330512563788E-004 - 169.38000000000000 2.2962696237586089E-004 - 169.44000000000000 2.3943252842980123E-004 - 169.50000000000000 2.4881194728529777E-004 - 169.56000000000000 2.5776779558954601E-004 - 169.62000000000000 2.6630320155926127E-004 - 169.67999999999998 2.7442192869313846E-004 - 169.73999999999998 2.8212821654954190E-004 - 169.79999999999998 2.8942679494502107E-004 - 169.85999999999999 2.9632289813295403E-004 - 169.91999999999999 3.0282220502430727E-004 - 169.97999999999999 3.0893081077529365E-004 - 170.03999999999999 3.1465515671144401E-004 - 170.09999999999999 3.2000214015658209E-004 - 170.16000000000000 3.2497889318047638E-004 - 170.22000000000000 3.2959291802895621E-004 - 170.28000000000000 3.3385200658720695E-004 - 170.34000000000000 3.3776418775646381E-004 - 170.40000000000001 3.4133771454341748E-004 - 170.45999999999998 3.4458102728433001E-004 - 170.51999999999998 3.4750280082006133E-004 - 170.57999999999998 3.5011184641131415E-004 - 170.63999999999999 3.5241710830167692E-004 - 170.69999999999999 3.5442764683132595E-004 - 170.75999999999999 3.5615257784099797E-004 - 170.81999999999999 3.5760115208415249E-004 - 170.88000000000000 3.5878259925494599E-004 - 170.94000000000000 3.5970620398071763E-004 - 171.00000000000000 3.6038125268675586E-004 - 171.06000000000000 3.6081698654540583E-004 - 171.12000000000000 3.6102265785405120E-004 - 171.17999999999998 3.6100743233281570E-004 - 171.23999999999998 3.6078047719344096E-004 - 171.29999999999998 3.6035078868298183E-004 - 171.35999999999999 3.5972735104604646E-004 - 171.41999999999999 3.5891900996938347E-004 - 171.47999999999999 3.5793450620002202E-004 - 171.53999999999999 3.5678250534157158E-004 - 171.59999999999999 3.5547151308045106E-004 - 171.66000000000000 3.5400992475667224E-004 - 171.72000000000000 3.5240600205999935E-004 - 171.78000000000000 3.5066781823962171E-004 - 171.84000000000000 3.4880336749808959E-004 - 171.90000000000001 3.4682043458250916E-004 - 171.95999999999998 3.4472665999049542E-004 - 172.01999999999998 3.4252946856066374E-004 - 172.07999999999998 3.4023618730695998E-004 - 172.13999999999999 3.3785392772352153E-004 - 172.19999999999999 3.3538958778339787E-004 - 172.25999999999999 3.3284994324677298E-004 - 172.31999999999999 3.3024152690103425E-004 - 172.38000000000000 3.2757070636333231E-004 - 172.44000000000000 3.2484362778015263E-004 - 172.50000000000000 3.2206628118466315E-004 - 172.56000000000000 3.1924451985770056E-004 - 172.62000000000000 3.1638393878683467E-004 - 172.67999999999998 3.1348999304423568E-004 - 172.73999999999998 3.1056796064906527E-004 - 172.79999999999998 3.0762297533115879E-004 - 172.85999999999999 3.0465999349954818E-004 - 172.91999999999999 3.0168381439938481E-004 - 172.97999999999999 2.9869913290653374E-004 - 173.03999999999999 2.9571045405097903E-004 - 173.09999999999999 2.9272216149559883E-004 - 173.16000000000000 2.8973850712273020E-004 - 173.22000000000000 2.8676361768370160E-004 - 173.28000000000000 2.8380142278877093E-004 - 173.34000000000000 2.8085580392809423E-004 - 173.40000000000001 2.7793045911105713E-004 - 173.45999999999998 2.7502896158788828E-004 - 173.51999999999998 2.7215481727271617E-004 - 173.57999999999998 2.6931132287122492E-004 - 173.63999999999999 2.6650172523224886E-004 - 173.69999999999999 2.6372911487728670E-004 - 173.75999999999999 2.6099647862185259E-004 - 173.81999999999999 2.5830670640996571E-004 - 173.88000000000000 2.5566258750078146E-004 - 173.94000000000000 2.5306682071397815E-004 - 174.00000000000000 2.5052196595532839E-004 - 174.06000000000000 2.4803057382519775E-004 - 174.12000000000000 2.4559506686553647E-004 - 174.17999999999998 2.4321779047570003E-004 - 174.23999999999998 2.4090102599620255E-004 - 174.29999999999998 2.3864702002168275E-004 - 174.35999999999999 2.3645792199825853E-004 - 174.41999999999999 2.3433581749640674E-004 - 174.47999999999999 2.3228274856240666E-004 - 174.53999999999999 2.3030067556027299E-004 - 174.59999999999999 2.2839150085323092E-004 - 174.66000000000000 2.2655706809885566E-004 - 174.72000000000000 2.2479914817167561E-004 - 174.78000000000000 2.2311943648825258E-004 - 174.84000000000000 2.2151956921341218E-004 - 174.90000000000001 2.2000106730141780E-004 - 174.95999999999998 2.1856539703841809E-004 - 175.01999999999998 2.1721396766500277E-004 - 175.07999999999998 2.1594803150230195E-004 - 175.13999999999999 2.1476878719595277E-004 - 175.19999999999999 2.1367732611457264E-004 - 175.25999999999999 2.1267463280994146E-004 - 175.31999999999999 2.1176156823368920E-004 - 175.38000000000000 2.1093890010728217E-004 - 175.44000000000000 2.1020726003070927E-004 - 175.50000000000000 2.0956716124224411E-004 - 175.56000000000000 2.0901897326085423E-004 - 175.62000000000000 2.0856296844095796E-004 - 175.67999999999998 2.0819924425253175E-004 - 175.73999999999998 2.0792777030761609E-004 - 175.79999999999998 2.0774834511488592E-004 - 175.85999999999999 2.0766063966843592E-004 - 175.91999999999999 2.0766415779405851E-004 - 175.97999999999999 2.0775824124578236E-004 - 176.03999999999999 2.0794206621563635E-004 - 176.09999999999999 2.0821462070424283E-004 - 176.16000000000000 2.0857471547778460E-004 - 176.22000000000000 2.0902099296426341E-004 - 176.28000000000000 2.0955188563561607E-004 - 176.34000000000000 2.1016560369945680E-004 - 176.40000000000001 2.1086017497921151E-004 - 176.45999999999998 2.1163341263256275E-004 - 176.51999999999998 2.1248285471467325E-004 - 176.57999999999998 2.1340586305549741E-004 - 176.63999999999999 2.1439953195345011E-004 - 176.69999999999999 2.1546067842994520E-004 - 176.75999999999999 2.1658592674105698E-004 - 176.81999999999999 2.1777158163372749E-004 - 176.88000000000000 2.1901372696158178E-004 - 176.94000000000000 2.2030814884629318E-004 - 177.00000000000000 2.2165044014545168E-004 - 177.06000000000000 2.2303586967454604E-004 - 177.12000000000000 2.2445950236109154E-004 - 177.17999999999998 2.2591615104773901E-004 - 177.23999999999998 2.2740033876305000E-004 - 177.29999999999998 2.2890642063779767E-004 - 177.35999999999999 2.3042852124619795E-004 - 177.41999999999999 2.3196052190192437E-004 - 177.47999999999999 2.3349610614387781E-004 - 177.53999999999999 2.3502877246806412E-004 - 177.59999999999999 2.3655184753568635E-004 - 177.66000000000000 2.3805846906360250E-004 - 177.72000000000000 2.3954159100439247E-004 - 177.78000000000000 2.4099403011600652E-004 - 177.84000000000000 2.4240845504950367E-004 - 177.90000000000001 2.4377738307707866E-004 - 177.95999999999998 2.4509322202309467E-004 - 178.01999999999998 2.4634824922975930E-004 - 178.07999999999998 2.4753464558074136E-004 - 178.13999999999999 2.4864451465651268E-004 - 178.19999999999999 2.4966988776050378E-004 - 178.25999999999999 2.5060277163123726E-004 - 178.31999999999999 2.5143512595271879E-004 - 178.38000000000000 2.5215888187475177E-004 - 178.44000000000000 2.5276606510415858E-004 - 178.50000000000000 2.5324868651199062E-004 - 178.56000000000000 2.5359887454059273E-004 - 178.62000000000000 2.5380886080770453E-004 - 178.67999999999998 2.5387102689492078E-004 - 178.73999999999998 2.5377786401970908E-004 - 178.79999999999998 2.5352211908725812E-004 - 178.85999999999999 2.5309672358453947E-004 - 178.91999999999999 2.5249492414546032E-004 - 178.97999999999999 2.5171018626030903E-004 - 179.03999999999999 2.5073633118090003E-004 - 179.09999999999999 2.4956748715316852E-004 - 179.16000000000000 2.4819818577949279E-004 - 179.22000000000000 2.4662332712708281E-004 - 179.28000000000000 2.4483819562036912E-004 - 179.34000000000000 2.4283853534448393E-004 - 179.40000000000001 2.4062055723889764E-004 - 179.45999999999998 2.3818095575259653E-004 - 179.51999999999998 2.3551689442014495E-004 - 179.57999999999998 2.3262606681969316E-004 - 179.63999999999999 2.2950670751881917E-004 - 179.69999999999999 2.2615762344830093E-004 - 179.75999999999999 2.2257816005903780E-004 - 179.81999999999999 2.1876826565531097E-004 - 179.88000000000000 2.1472851091069420E-004 - 179.94000000000000 2.1046005674958188E-004 - 180.00000000000000 2.0596468792864677E-004 - 180.06000000000000 2.0124484904183356E-004 - 180.12000000000000 1.9630362555348051E-004 - 180.17999999999998 1.9114474865665419E-004 - 180.23999999999998 1.8577258848094177E-004 - 180.29999999999998 1.8019221272907353E-004 - 180.35999999999999 1.7440934881325933E-004 - 180.41999999999999 1.6843036841032160E-004 - 180.47999999999999 1.6226232083130595E-004 - 180.53999999999999 1.5591289268599253E-004 - 180.59999999999999 1.4939042524981716E-004 - 180.66000000000000 1.4270389583627332E-004 - 180.72000000000000 1.3586288512273484E-004 - 180.78000000000000 1.2887758129732918E-004 - 180.84000000000000 1.2175877813606602E-004 - 180.90000000000001 1.1451782844058741E-004 - 180.95999999999998 1.0716659068827859E-004 - 181.01999999999998 9.9717453197891061E-005 - 181.07999999999998 9.2183280371619606E-005 - 181.13999999999999 8.4577384628350125E-005 - 181.19999999999999 7.6913474602402490E-005 - 181.25999999999999 6.9205646658100154E-005 - 181.31999999999999 6.1468338035441234E-005 - 181.38000000000000 5.3716270822224325E-005 - 181.44000000000000 4.5964448676763388E-005 - 181.50000000000000 3.8228066243235155E-005 - 181.56000000000000 3.0522505837533051E-005 - 181.62000000000000 2.2863290291357963E-005 - 181.67999999999998 1.5266034014539631E-005 - 181.73999999999998 7.7464052413414330E-006 - 181.79999999999998 3.2007557687565846E-007 - 181.85999999999999 -6.9973048044363270E-006 - 181.91999999999999 -1.4190182848273175E-005 - 181.97999999999999 -2.1243101698344481E-005 - 182.03999999999999 -2.8140790835367385E-005 - 182.09999999999999 -3.4868170577613346E-005 - 182.16000000000000 -4.1410410365689792E-005 - 182.22000000000000 -4.7752992515160044E-005 - 182.28000000000000 -5.3881740565415125E-005 - 182.34000000000000 -5.9782853706404171E-005 - 182.39999999999998 -6.5442970086640386E-005 - 182.45999999999998 -7.0849207107738144E-005 - 182.51999999999998 -7.5989179027773041E-005 - 182.57999999999998 -8.0851083545029051E-005 - 182.63999999999999 -8.5423690568921950E-005 - 182.69999999999999 -8.9696419790847662E-005 - 182.75999999999999 -9.3659382764079254E-005 - 182.81999999999999 -9.7303353314146562E-005 - 182.88000000000000 -1.0061989018650628E-004 - 182.94000000000000 -1.0360128521572995E-004 - 183.00000000000000 -1.0624060598176736E-004 - 183.06000000000000 -1.0853174003950904E-004 - 183.12000000000000 -1.1046939618814478E-004 - 183.17999999999998 -1.1204915167007172E-004 - 183.23999999999998 -1.1326740552255580E-004 - 183.29999999999998 -1.1412144763388450E-004 - 183.35999999999999 -1.1460940341848579E-004 - 183.41999999999999 -1.1473032871878436E-004 - 183.47999999999999 -1.1448412590087830E-004 - 183.53999999999999 -1.1387156574185315E-004 - 183.59999999999999 -1.1289430402606338E-004 - 183.66000000000000 -1.1155485031161310E-004 - 183.72000000000000 -1.0985659345011095E-004 - 183.78000000000000 -1.0780375966958761E-004 - 183.84000000000000 -1.0540138672954748E-004 - 183.89999999999998 -1.0265533010250914E-004 - 183.95999999999998 -9.9572224234872940E-005 - 184.01999999999998 -9.6159526069191232E-005 - 184.07999999999998 -9.2425361031210282E-005 - 184.13999999999999 -8.8378637037356148E-005 - 184.19999999999999 -8.4028909922926370E-005 - 184.25999999999999 -7.9386431910902106E-005 - 184.31999999999999 -7.4462038096723035E-005 - 184.38000000000000 -6.9267196022947710E-005 - 184.44000000000000 -6.3813896397481247E-005 - 184.50000000000000 -5.8114675681843748E-005 - 184.56000000000000 -5.2182532696353522E-005 - 184.62000000000000 -4.6030926169660961E-005 - 184.67999999999998 -3.9673693320011304E-005 - 184.73999999999998 -3.3125030283232389E-005 - 184.79999999999998 -2.6399469484421316E-005 - 184.85999999999999 -1.9511787420246279E-005 - 184.91999999999999 -1.2476972052063394E-005 - 184.97999999999999 -5.3101957407473480E-006 - 185.03999999999999 1.9732399647850451E-006 - 185.09999999999999 9.3579654605315510E-006 - 185.16000000000000 1.6828574479046685E-005 - 185.22000000000000 2.4369681407178671E-005 - 185.28000000000000 3.1965972436141861E-005 - 185.34000000000000 3.9602243096164751E-005 - 185.39999999999998 4.7263441476846940E-005 - 185.45999999999998 5.4934716428493244E-005 - 185.51999999999998 6.2601465959443209E-005 - 185.57999999999998 7.0249354145565180E-005 - 185.63999999999999 7.7864364861143426E-005 - 185.69999999999999 8.5432827890374004E-005 - 185.75999999999999 9.2941457722367024E-005 - 185.81999999999999 1.0037737588502449E-004 - 185.88000000000000 1.0772813499059273E-004 - 185.94000000000000 1.1498174454259093E-004 - 186.00000000000000 1.2212670695544125E-004 - 186.06000000000000 1.2915201821779722E-004 - 186.12000000000000 1.3604718408322792E-004 - 186.17999999999998 1.4280224425125868E-004 - 186.23999999999998 1.4940779342640682E-004 - 186.29999999999998 1.5585498202256193E-004 - 186.35999999999999 1.6213553503388283E-004 - 186.41999999999999 1.6824174997126856E-004 - 186.47999999999999 1.7416650131818844E-004 - 186.53999999999999 1.7990326095274325E-004 - 186.59999999999999 1.8544610167222001E-004 - 186.66000000000000 1.9078968944178485E-004 - 186.72000000000000 1.9592929812806245E-004 - 186.78000000000000 2.0086074644357169E-004 - 186.84000000000000 2.0558049074570050E-004 - 186.89999999999998 2.1008555847963937E-004 - 186.95999999999998 2.1437353442750812E-004 - 187.01999999999998 2.1844256699342574E-004 - 187.07999999999998 2.2229136781976887E-004 - 187.13999999999999 2.2591914137637156E-004 - 187.19999999999999 2.2932564108162082E-004 - 187.25999999999999 2.3251111544904043E-004 - 187.31999999999999 2.3547625207316056E-004 - 187.38000000000000 2.3822224537960787E-004 - 187.44000000000000 2.4075066143618287E-004 - 187.50000000000000 2.4306353606394260E-004 - 187.56000000000000 2.4516323248134674E-004 - 187.62000000000000 2.4705251700722636E-004 - 187.67999999999998 2.4873447291441690E-004 - 187.73999999999998 2.5021249718762623E-004 - 187.79999999999998 2.5149029310331792E-004 - 187.85999999999999 2.5257180133210239E-004 - 187.91999999999999 2.5346123688096771E-004 - 187.97999999999999 2.5416301238240035E-004 - 188.03999999999999 2.5468177698612874E-004 - 188.09999999999999 2.5502230250295166E-004 - 188.16000000000000 2.5518958128070430E-004 - 188.22000000000000 2.5518875107083958E-004 - 188.28000000000000 2.5502501256745286E-004 - 188.34000000000000 2.5470373935890494E-004 - 188.39999999999998 2.5423040738966479E-004 - 188.45999999999998 2.5361047886183206E-004 - 188.51999999999998 2.5284957113719096E-004 - 188.57999999999998 2.5195328617258500E-004 - 188.63999999999999 2.5092731302336289E-004 - 188.69999999999999 2.4977731132211990E-004 - 188.75999999999999 2.4850893900177790E-004 - 188.81999999999999 2.4712788080873984E-004 - 188.88000000000000 2.4563973259014900E-004 - 188.94000000000000 2.4405009791090654E-004 - 189.00000000000000 2.4236450549325908E-004 - 189.06000000000000 2.4058840378952278E-004 - 189.12000000000000 2.3872716690665716E-004 - 189.17999999999998 2.3678607346034204E-004 - 189.23999999999998 2.3477028827274671E-004 - 189.29999999999998 2.3268485210068982E-004 - 189.35999999999999 2.3053470948486743E-004 - 189.41999999999999 2.2832465248142899E-004 - 189.47999999999999 2.2605934600332679E-004 - 189.53999999999999 2.2374331592332999E-004 - 189.59999999999999 2.2138096718708612E-004 - 189.66000000000000 2.1897651017340007E-004 - 189.72000000000000 2.1653408473317531E-004 - 189.78000000000000 2.1405761452186292E-004 - 189.84000000000000 2.1155099399852788E-004 - 189.89999999999998 2.0901789810512188E-004 - 189.95999999999998 2.0646191842683929E-004 - 190.01999999999998 2.0388647674832308E-004 - 190.07999999999998 2.0129491475404232E-004 - 190.13999999999999 1.9869044410116530E-004 - 190.19999999999999 1.9607615803055590E-004 - 190.25999999999999 1.9345500871316841E-004 - 190.31999999999999 1.9082984681777150E-004 - 190.38000000000000 1.8820341065077582E-004 - 190.44000000000000 1.8557828653079230E-004 - 190.50000000000000 1.8295696852708046E-004 - 190.56000000000000 1.8034182679902395E-004 - 190.62000000000000 1.7773509478521610E-004 - 190.67999999999998 1.7513888638968499E-004 - 190.73999999999998 1.7255519048253357E-004 - 190.79999999999998 1.6998587911758509E-004 - 190.85999999999999 1.6743267804431153E-004 - 190.91999999999999 1.6489721908634719E-004 - 190.97999999999999 1.6238100281177354E-004 - 191.03999999999999 1.5988543419417052E-004 - 191.09999999999999 1.5741178080031670E-004 - 191.16000000000000 1.5496122147277736E-004 - 191.22000000000000 1.5253484231425688E-004 - 191.28000000000000 1.5013363463941886E-004 - 191.34000000000000 1.4775850803715824E-004 - 191.39999999999998 1.4541029538351114E-004 - 191.45999999999998 1.4308975894851048E-004 - 191.51999999999998 1.4079757230245745E-004 - 191.57999999999998 1.3853436251227272E-004 - 191.63999999999999 1.3630070867204328E-004 - 191.69999999999999 1.3409712206974641E-004 - 191.75999999999999 1.3192405708811064E-004 - 191.81999999999999 1.2978191682844591E-004 - 191.88000000000000 1.2767109218769535E-004 - 191.94000000000000 1.2559190236083399E-004 - 192.00000000000000 1.2354460120513459E-004 - 192.06000000000000 1.2152943437065042E-004 - 192.12000000000000 1.1954659536983696E-004 - 192.17999999999998 1.1759622066285453E-004 - 192.23999999999998 1.1567841246165223E-004 - 192.29999999999998 1.1379323417099535E-004 - 192.35999999999999 1.1194071266677657E-004 - 192.41999999999999 1.1012082985485970E-004 - 192.47999999999999 1.0833353291514095E-004 - 192.53999999999999 1.0657872925168651E-004 - 192.59999999999999 1.0485630424007819E-004 - 192.66000000000000 1.0316612598926383E-004 - 192.72000000000000 1.0150801519075252E-004 - 192.78000000000000 9.9881785362001250E-005 - 192.84000000000000 9.8287233818633674E-005 - 192.89999999999998 9.6724150671308469E-005 - 192.95999999999998 9.5192298527213115E-005 - 193.01999999999998 9.3691463801662652E-005 - 193.07999999999998 9.2221411502219354E-005 - 193.13999999999999 9.0781916761407887E-005 - 193.19999999999999 8.9372751335845018E-005 - 193.25999999999999 8.7993697178933843E-005 - 193.31999999999999 8.6644552561882730E-005 - 193.38000000000000 8.5325109733248977E-005 - 193.44000000000000 8.4035172480978425E-005 - 193.50000000000000 8.2774542107721171E-005 - 193.56000000000000 8.1543035313986356E-005 - 193.62000000000000 8.0340466711766449E-005 - 193.67999999999998 7.9166655624717962E-005 - 193.73999999999998 7.8021406114723763E-005 - 193.79999999999998 7.6904534650974448E-005 - 193.85999999999999 7.5815837120713641E-005 - 193.91999999999999 7.4755109156277236E-005 - 193.97999999999999 7.3722128227709738E-005 - 194.03999999999999 7.2716674849544790E-005 - 194.09999999999999 7.1738512660510137E-005 - 194.16000000000000 7.0787399209773581E-005 - 194.22000000000000 6.9863087656401389E-005 - 194.28000000000000 6.8965306535981075E-005 - 194.34000000000000 6.8093803214654402E-005 - 194.39999999999998 6.7248309961067749E-005 - 194.45999999999998 6.6428567447142248E-005 - 194.51999999999998 6.5634306963594546E-005 - 194.57999999999998 6.4865275646185114E-005 - 194.63999999999999 6.4121209796265163E-005 - 194.69999999999999 6.3401860353933521E-005 - 194.75999999999999 6.2706984280952159E-005 - 194.81999999999999 6.2036350393408367E-005 - 194.88000000000000 6.1389715279388878E-005 - 194.94000000000000 6.0766842184092850E-005 - 195.00000000000000 6.0167502941866825E-005 - 195.06000000000000 5.9591452782224453E-005 - 195.12000000000000 5.9038455359859153E-005 - 195.17999999999998 5.8508253568080341E-005 - 195.23999999999998 5.8000595561781559E-005 - 195.29999999999998 5.7515205977073668E-005 - 195.35999999999999 5.7051806624261789E-005 - 195.41999999999999 5.6610083461492764E-005 - 195.47999999999999 5.6189722844660362E-005 - 195.53999999999999 5.5790387541298239E-005 - 195.59999999999999 5.5411718396022190E-005 - 195.66000000000000 5.5053337480376323E-005 - 195.72000000000000 5.4714850078939856E-005 - 195.78000000000000 5.4395845221798459E-005 - 195.84000000000000 5.4095895315865069E-005 - 195.89999999999998 5.3814551607325338E-005 - 195.95999999999998 5.3551361085332786E-005 - 196.01999999999998 5.3305846626509125E-005 - 196.07999999999998 5.3077526362639544E-005 - 196.13999999999999 5.2865901209787748E-005 - 196.19999999999999 5.2670474298093837E-005 - 196.25999999999999 5.2490727491044071E-005 - 196.31999999999999 5.2326142615091489E-005 - 196.38000000000000 5.2176188028225263E-005 - 196.44000000000000 5.2040330529752219E-005 - 196.50000000000000 5.1918029135541087E-005 - 196.56000000000000 5.1808736205825275E-005 - 196.62000000000000 5.1711896308257236E-005 - 196.67999999999998 5.1626944186777493E-005 - 196.73999999999998 5.1553314471636766E-005 - 196.79999999999998 5.1490433715392150E-005 - 196.85999999999999 5.1437717634100103E-005 - 196.91999999999999 5.1394572153798382E-005 - 196.97999999999999 5.1360406823062945E-005 - 197.03999999999999 5.1334615281508821E-005 - 197.09999999999999 5.1316589591488046E-005 - 197.16000000000000 5.1305713837747584E-005 - 197.22000000000000 5.1301366762427858E-005 - 197.28000000000000 5.1302925705042281E-005 - 197.34000000000000 5.1309772833563197E-005 - 197.39999999999998 5.1321277655361707E-005 - 197.45999999999998 5.1336822055626937E-005 - 197.51999999999998 5.1355791423848669E-005 - 197.57999999999998 5.1377576070328355E-005 - 197.63999999999999 5.1401585493943392E-005 - 197.69999999999999 5.1427242288408026E-005 - 197.75999999999999 5.1453977240273360E-005 - 197.81999999999999 5.1481249262048695E-005 - 197.88000000000000 5.1508540734817161E-005 - 197.94000000000000 5.1535351900499727E-005 - 198.00000000000000 5.1561207724824446E-005 - 198.06000000000000 5.1585669259368249E-005 - 198.12000000000000 5.1608313793922932E-005 - 198.17999999999998 5.1628749484102020E-005 - 198.23999999999998 5.1646611095779143E-005 - 198.29999999999998 5.1661560449442083E-005 - 198.35999999999999 5.1673273188036359E-005 - 198.41999999999999 5.1681455416073209E-005 - 198.47999999999999 5.1685829001244635E-005 - 198.53999999999999 5.1686134691060239E-005 - 198.59999999999999 5.1682126154969478E-005 - 198.66000000000000 5.1673573855848242E-005 - 198.72000000000000 5.1660257947309532E-005 - 198.78000000000000 5.1641970316498864E-005 - 198.84000000000000 5.1618512155996289E-005 - 198.89999999999998 5.1589691584044234E-005 - 198.95999999999998 5.1555329535771111E-005 - 199.01999999999998 5.1515252141463142E-005 - 199.07999999999998 5.1469297985889481E-005 - 199.13999999999999 5.1417315648508747E-005 - 199.19999999999999 5.1359172475393018E-005 - 199.25999999999999 5.1294738137693601E-005 - 199.31999999999999 5.1223901500301147E-005 - 199.38000000000000 5.1146569154078916E-005 - 199.44000000000000 5.1062665250250408E-005 - 199.50000000000000 5.0972123321268059E-005 - 199.56000000000000 5.0874897787512520E-005 - 199.62000000000000 5.0770964563368010E-005 - 199.67999999999998 5.0660312066495169E-005 - 199.73999999999998 5.0542949259874215E-005 - 199.79999999999998 5.0418896088383621E-005 - 199.85999999999999 5.0288189317482356E-005 - 199.91999999999999 5.0150883187378143E-005 - 199.97999999999999 5.0007031260561262E-005 - 200.03999999999999 4.9856698511466731E-005 - 200.09999999999999 4.9699967125254020E-005 - 200.16000000000000 4.9536914192531756E-005 - 200.22000000000000 4.9367623106878957E-005 - 200.28000000000000 4.9192175459088447E-005 - 200.34000000000000 4.9010660794390573E-005 - 200.39999999999998 4.8823162368028057E-005 - 200.45999999999998 4.8629768158245093E-005 - 200.51999999999998 4.8430566604493666E-005 - 200.57999999999998 4.8225648196746156E-005 - 200.63999999999999 4.8015108065686696E-005 - 200.69999999999999 4.7799046411002531E-005 - 200.75999999999999 4.7577575299587241E-005 - 200.81999999999999 4.7350808723321138E-005 - 200.88000000000000 4.7118885616289591E-005 - 200.94000000000000 4.6881959746065811E-005 - 201.00000000000000 4.6640200643535275E-005 - 201.06000000000000 4.6393811188670388E-005 - 201.12000000000000 4.6143010230831402E-005 - 201.17999999999998 4.5888052170436691E-005 - 201.23999999999998 4.5629217553951260E-005 - 201.29999999999998 4.5366818480227623E-005 - 201.35999999999999 4.5101191014766058E-005 - 201.41999999999999 4.4832708618179916E-005 - 201.47999999999999 4.4561770096778903E-005 - 201.53999999999999 4.4288801202640677E-005 - 201.59999999999999 4.4014252932696742E-005 - 201.66000000000000 4.3738598420687000E-005 - 201.72000000000000 4.3462324381927716E-005 - 201.78000000000000 4.3185934861860844E-005 - 201.84000000000000 4.2909948358804564E-005 - 201.89999999999998 4.2634896941734337E-005 - 201.95999999999998 4.2361311863066990E-005 - 202.01999999999998 4.2089736014559659E-005 - 202.07999999999998 4.1820719056784136E-005 - 202.13999999999999 4.1554810122450266E-005 - 202.19999999999999 4.1292561949373580E-005 - 202.25999999999999 4.1034537340720056E-005 - 202.31999999999999 4.0781301542819192E-005 - 202.38000000000000 4.0533425518875574E-005 - 202.44000000000000 4.0291487255216417E-005 - 202.50000000000000 4.0056077513040905E-005 - 202.56000000000000 3.9827799206001234E-005 - 202.62000000000000 3.9607268054958935E-005 - 202.67999999999998 3.9395107178556718E-005 - 202.73999999999998 3.9191957267958130E-005 - 202.79999999999998 3.8998472947402177E-005 - 202.85999999999999 3.8815318620858281E-005 - 202.91999999999999 3.8643177215035428E-005 - 202.97999999999999 3.8482738835257476E-005 - 203.03999999999999 3.8334697743356408E-005 - 203.09999999999999 3.8199755402619429E-005 - 203.16000000000000 3.8078625983422369E-005 - 203.22000000000000 3.7972018429240611E-005 - 203.28000000000000 3.7880644219338089E-005 - 203.34000000000000 3.7805209720553411E-005 - 203.39999999999998 3.7746425919719267E-005 - 203.45999999999998 3.7704999082775607E-005 - 203.51999999999998 3.7681628276149456E-005 - 203.57999999999998 3.7677022715902535E-005 - 203.63999999999999 3.7691890133495418E-005 - 203.69999999999999 3.7726940592217311E-005 - 203.75999999999999 3.7782897065464011E-005 - 203.81999999999999 3.7860493023875144E-005 - 203.88000000000000 3.7960487101681028E-005 - 203.94000000000000 3.8083658948287565E-005 - 204.00000000000000 3.8230816637178790E-005 - 204.06000000000000 3.8402804187818980E-005 - 204.12000000000000 3.8600504457480294E-005 - 204.17999999999998 3.8824844067013569E-005 - 204.23999999999998 3.9076802569330584E-005 - 204.29999999999998 3.9357402812177869E-005 - 204.35999999999999 3.9667726942603537E-005 - 204.41999999999999 4.0008910398386893E-005 - 204.47999999999999 4.0382139651004377E-005 - 204.53999999999999 4.0788660886861069E-005 - 204.59999999999999 4.1229775391104048E-005 - 204.66000000000000 4.1706833425697755E-005 - 204.72000000000000 4.2221236565579200E-005 - 204.78000000000000 4.2774435611133191E-005 - 204.84000000000000 4.3367924041168845E-005 - 204.89999999999998 4.4003241954033481E-005 - 204.95999999999998 4.4681974674693197E-005 - 205.01999999999998 4.5405739520319998E-005 - 205.07999999999998 4.6176198575291830E-005 - 205.13999999999999 4.6995043140785588E-005 - 205.19999999999999 4.7864004902999543E-005 - 205.25999999999999 4.8784860908404189E-005 - 205.31999999999999 4.9759406670488411E-005 - 205.38000000000000 5.0789482328459566E-005 - 205.44000000000000 5.1876959481137949E-005 - 205.50000000000000 5.3023749128440891E-005 - 205.56000000000000 5.4231796593238438E-005 - 205.62000000000000 5.5503069396574960E-005 - 205.67999999999998 5.6839573929202573E-005 - 205.73999999999998 5.8243346743351091E-005 - 205.79999999999998 5.9716439452569734E-005 - 205.85999999999999 6.1260923098660722E-005 - 205.91999999999999 6.2878890128090096E-005 - 205.97999999999999 6.4572439029500787E-005 - 206.03999999999999 6.6343653296549140E-005 - 206.09999999999999 6.8194623997119876E-005 - 206.16000000000000 7.0127415414370669E-005 - 206.22000000000000 7.2144069165671948E-005 - 206.28000000000000 7.4246573440323851E-005 - 206.34000000000000 7.6436885599989797E-005 - 206.39999999999998 7.8716892083832799E-005 - 206.45999999999998 8.1088418945232557E-005 - 206.51999999999998 8.3553206608566699E-005 - 206.57999999999998 8.6112919647888527E-005 - 206.63999999999999 8.8769111264964083E-005 - 206.69999999999999 9.1523244199547178E-005 - 206.75999999999999 9.4376658955331170E-005 - 206.81999999999999 9.7330583107813030E-005 - 206.88000000000000 1.0038611832393442E-004 - 206.94000000000000 1.0354422833984419E-004 - 207.00000000000000 1.0680573306205769E-004 - 207.06000000000000 1.1017133948671924E-004 - 207.12000000000000 1.1364158286702650E-004 - 207.17999999999998 1.1721684400710476E-004 - 207.23999999999998 1.2089735744707513E-004 - 207.29999999999998 1.2468317669542549E-004 - 207.35999999999999 1.2857420099759699E-004 - 207.41999999999999 1.3257014045421340E-004 - 207.47999999999999 1.3667053182776946E-004 - 207.53999999999999 1.4087469892375484E-004 - 207.59999999999999 1.4518178225614135E-004 - 207.66000000000000 1.4959071455454315E-004 - 207.72000000000000 1.5410019820584687E-004 - 207.78000000000000 1.5870873898371756E-004 - 207.84000000000000 1.6341458166496561E-004 - 207.89999999999998 1.6821576220080344E-004 - 207.95999999999998 1.7311003979587791E-004 - 208.01999999999998 1.7809492669389166E-004 - 208.07999999999998 1.8316768409849121E-004 - 208.13999999999999 1.8832533268479606E-004 - 208.19999999999999 1.9356458757468267E-004 - 208.25999999999999 1.9888193691669121E-004 - 208.31999999999999 2.0427356062354107E-004 - 208.38000000000000 2.0973538293240037E-004 - 208.44000000000000 2.1526305595645257E-004 - 208.50000000000000 2.2085197910606455E-004 - 208.56000000000000 2.2649727131776083E-004 - 208.62000000000000 2.3219379803253828E-004 - 208.68000000000001 2.3793615085464326E-004 - 208.74000000000001 2.4371867635223152E-004 - 208.80000000000001 2.4953548556644290E-004 - 208.86000000000001 2.5538042498989748E-004 - 208.92000000000002 2.6124712756068748E-004 - 208.98000000000002 2.6712895565539010E-004 - 209.03999999999996 2.7301907310772625E-004 - 209.09999999999997 2.7891045087504482E-004 - 209.15999999999997 2.8479578693592345E-004 - 209.21999999999997 2.9066763636988782E-004 - 209.27999999999997 2.9651834499279769E-004 - 209.33999999999997 3.0234003293921723E-004 - 209.39999999999998 3.0812471331625145E-004 - 209.45999999999998 3.1386415954933968E-004 - 209.51999999999998 3.1955008123246909E-004 - 209.57999999999998 3.2517397893755081E-004 - 209.63999999999999 3.3072725958018499E-004 - 209.69999999999999 3.3620119909590963E-004 - 209.75999999999999 3.4158704099293623E-004 - 209.81999999999999 3.4687590133858468E-004 - 209.88000000000000 3.5205886768429435E-004 - 209.94000000000000 3.5712698753372432E-004 - 210.00000000000000 3.6207127458065368E-004 - 210.06000000000000 3.6688280982588936E-004 - 210.12000000000000 3.7155267466086600E-004 - 210.18000000000001 3.7607194415175381E-004 - 210.24000000000001 3.8043190850107361E-004 - 210.30000000000001 3.8462382248860821E-004 - 210.36000000000001 3.8863909869480393E-004 - 210.42000000000002 3.9246933239341330E-004 - 210.48000000000002 3.9610628176853794E-004 - 210.53999999999996 3.9954186963592144E-004 - 210.59999999999997 4.0276824045138088E-004 - 210.65999999999997 4.0577776227658383E-004 - 210.71999999999997 4.0856311408084994E-004 - 210.77999999999997 4.1111715978932496E-004 - 210.83999999999997 4.1343310456621495E-004 - 210.89999999999998 4.1550452742169803E-004 - 210.95999999999998 4.1732523196125930E-004 - 211.01999999999998 4.1888947907708614E-004 - 211.07999999999998 4.2019181636208702E-004 - 211.13999999999999 4.2122720547077764E-004 - 211.19999999999999 4.2199102053882165E-004 - 211.25999999999999 4.2247904068957976E-004 - 211.31999999999999 4.2268744690231050E-004 - 211.38000000000000 4.2261292494697741E-004 - 211.44000000000000 4.2225253841311425E-004 - 211.50000000000000 4.2160385313886424E-004 - 211.56000000000000 4.2066490229196701E-004 - 211.62000000000000 4.1943415912522178E-004 - 211.68000000000001 4.1791063142140216E-004 - 211.74000000000001 4.1609378880756959E-004 - 211.80000000000001 4.1398362977235258E-004 - 211.86000000000001 4.1158063561448036E-004 - 211.92000000000002 4.0888574671495636E-004 - 211.98000000000002 4.0590048242025500E-004 - 212.03999999999996 4.0262684887243670E-004 - 212.09999999999997 3.9906734945483569E-004 - 212.15999999999997 3.9522497649573210E-004 - 212.21999999999997 3.9110324052642968E-004 - 212.27999999999997 3.8670615645699673E-004 - 212.33999999999997 3.8203820351661032E-004 - 212.39999999999998 3.7710431461456244E-004 - 212.45999999999998 3.7190991330943933E-004 - 212.51999999999998 3.6646091843775118E-004 - 212.57999999999998 3.6076359266722026E-004 - 212.63999999999999 3.5482465587482890E-004 - 212.69999999999999 3.4865129614823485E-004 - 212.75999999999999 3.4225097377113436E-004 - 212.81999999999999 3.3563157867975366E-004 - 212.88000000000000 3.2880138026418541E-004 - 212.94000000000000 3.2176889020105913E-004 - 213.00000000000000 3.1454297312221623E-004 - 213.06000000000000 3.0713277110837767E-004 - 213.12000000000000 2.9954766394601703E-004 - 213.18000000000001 2.9179730224854216E-004 - 213.24000000000001 2.8389153700242759E-004 - 213.30000000000001 2.7584041559313539E-004 - 213.36000000000001 2.6765418650999509E-004 - 213.42000000000002 2.5934321018076877E-004 - 213.48000000000002 2.5091800563010748E-004 - 213.53999999999996 2.4238917047637469E-004 - 213.59999999999997 2.3376741945165796E-004 - 213.65999999999997 2.2506353689137360E-004 - 213.71999999999997 2.1628832736738811E-004 - 213.77999999999997 2.0745260622568280E-004 - 213.83999999999997 1.9856718940420139E-004 - 213.89999999999998 1.8964290941994079E-004 - 213.95999999999998 1.8069051110191619E-004 - 214.01999999999998 1.7172067089879262E-004 - 214.07999999999998 1.6274394004088958E-004 - 214.13999999999999 1.5377079404415726E-004 - 214.19999999999999 1.4481154652559668E-004 - 214.25999999999999 1.3587636150016609E-004 - 214.31999999999999 1.2697520900823011E-004 - 214.38000000000000 1.1811784644081508E-004 - 214.44000000000000 1.0931381520946214E-004 - 214.50000000000000 1.0057241058083528E-004 - 214.56000000000000 9.1902674659437056E-005 - 214.62000000000000 8.3313376057436961E-005 - 214.68000000000001 7.4812998225774096E-005 - 214.74000000000001 6.6409710348166513E-005 - 214.80000000000001 5.8111372361043136E-005 - 214.86000000000001 4.9925532907478502E-005 - 214.92000000000002 4.1859417918947014E-005 - 214.98000000000002 3.3919896048867549E-005 - 215.03999999999996 2.6113505218592346E-005 - 215.09999999999997 1.8446431788380332E-005 - 215.15999999999997 1.0924515784951132E-005 - 215.21999999999997 3.5532413723784754E-006 - 215.27999999999997 -3.6622669111712231E-006 - 215.33999999999997 -1.0717236769724936E-005 - 215.39999999999998 -1.7607261702037143E-005 - 215.45999999999998 -2.4328285988518808E-005 - 215.51999999999998 -3.0876620065025964E-005 - 215.57999999999998 -3.7248928322075942E-005 - 215.63999999999999 -4.3442238008834357E-005 - 215.69999999999999 -4.9453931507662349E-005 - 215.75999999999999 -5.5281742833712132E-005 - 215.81999999999999 -6.0923772068136277E-005 - 215.88000000000000 -6.6378451315233144E-005 - 215.94000000000000 -7.1644573030611182E-005 - 216.00000000000000 -7.6721265190323883E-005 - 216.06000000000000 -8.1607993935564190E-005 - 216.12000000000000 -8.6304551545441960E-005 - 216.18000000000001 -9.0811043134102649E-005 - 216.24000000000001 -9.5127888576462870E-005 - 216.30000000000001 -9.9255811700285136E-005 - 216.36000000000001 -1.0319581167658744E-004 - 216.42000000000002 -1.0694916123067208E-004 - 216.48000000000002 -1.1051738386930380E-004 - 216.53999999999996 -1.1390226012437340E-004 - 216.59999999999997 -1.1710577048325376E-004 - 216.65999999999997 -1.2013014259453635E-004 - 216.71999999999997 -1.2297775809483422E-004 - 216.77999999999997 -1.2565120382886796E-004 - 216.83999999999997 -1.2815321977799918E-004 - 216.89999999999998 -1.3048670307147639E-004 - 216.95999999999998 -1.3265469070761839E-004 - 217.01999999999998 -1.3466035222595447E-004 - 217.07999999999998 -1.3650695822013616E-004 - 217.13999999999999 -1.3819789791411863E-004 - 217.19999999999999 -1.3973664045387611E-004 - 217.25999999999999 -1.4112677539515118E-004 - 217.31999999999999 -1.4237194029576123E-004 - 217.38000000000000 -1.4347588235188750E-004 - 217.44000000000000 -1.4444239468420415E-004 - 217.50000000000000 -1.4527532671309098E-004 - 217.56000000000000 -1.4597859352271248E-004 - 217.62000000000000 -1.4655612776198550E-004 - 217.68000000000001 -1.4701191921748331E-004 - 217.74000000000001 -1.4734995393292629E-004 - 217.80000000000001 -1.4757424779696495E-004 - 217.86000000000001 -1.4768883349868022E-004 - 217.92000000000002 -1.4769770647502810E-004 - 217.98000000000002 -1.4760486193851421E-004 - 218.03999999999996 -1.4741426970534138E-004 - 218.09999999999997 -1.4712985299137132E-004 - 218.15999999999997 -1.4675548764471837E-004 - 218.21999999999997 -1.4629499599854733E-004 - 218.27999999999997 -1.4575214387107502E-004 - 218.33999999999997 -1.4513064380217714E-004 - 218.39999999999998 -1.4443411677809550E-004 - 218.45999999999998 -1.4366613685019427E-004 - 218.51999999999998 -1.4283018924474307E-004 - 218.57999999999998 -1.4192969526764744E-004 - 218.63999999999999 -1.4096799245757948E-004 - 218.69999999999999 -1.3994836332659153E-004 - 218.75999999999999 -1.3887398988012101E-004 - 218.81999999999999 -1.3774799906450370E-004 - 218.88000000000000 -1.3657346485778914E-004 - 218.94000000000000 -1.3535335118458922E-004 - 219.00000000000000 -1.3409061009609296E-004 - 219.06000000000000 -1.3278807624487112E-004 - 219.12000000000000 -1.3144854108039421E-004 - 219.18000000000001 -1.3007471734229308E-004 - 219.24000000000001 -1.2866924270092642E-004 - 219.30000000000001 -1.2723468635271224E-004 - 219.36000000000001 -1.2577354764154816E-004 - 219.42000000000002 -1.2428822108483814E-004 - 219.48000000000002 -1.2278104822155942E-004 - 219.53999999999996 -1.2125426353616186E-004 - 219.59999999999997 -1.1971000672820685E-004 - 219.65999999999997 -1.1815035506877246E-004 - 219.71999999999997 -1.1657726811155518E-004 - 219.77999999999997 -1.1499262771776248E-004 - 219.83999999999997 -1.1339822388939356E-004 - 219.89999999999998 -1.1179573177184383E-004 - 219.95999999999998 -1.1018675498918776E-004 - 220.01999999999998 -1.0857279208360738E-004 - 220.07999999999998 -1.0695526599035742E-004 - 220.13999999999999 -1.0533549891507149E-004 - 220.19999999999999 -1.0371472270613072E-004 - 220.25999999999999 -1.0209409553828158E-004 - 220.31999999999999 -1.0047469376738383E-004 - 220.38000000000000 -9.8857504515328270E-005 - 220.44000000000000 -9.7243443385706924E-005 - 220.50000000000000 -9.5633356068207631E-005 - 220.56000000000000 -9.4028001656546551E-005 - 220.62000000000000 -9.2428069972399094E-005 - 220.68000000000001 -9.0834179543995155E-005 - 220.74000000000001 -8.9246875616348897E-005 - 220.80000000000001 -8.7666626207990217E-005 - 220.86000000000001 -8.6093817985100462E-005 - 220.92000000000002 -8.4528771662640593E-005 - 220.98000000000002 -8.2971714307545136E-005 - 221.03999999999996 -8.1422799529754707E-005 - 221.09999999999997 -7.9882096881502636E-005 - 221.15999999999997 -7.8349600604059371E-005 - 221.21999999999997 -7.6825199888902519E-005 - 221.27999999999997 -7.5308717241266452E-005 - 221.33999999999997 -7.3799885192552493E-005 - 221.39999999999998 -7.2298354109819190E-005 - 221.45999999999998 -7.0803691293289369E-005 - 221.51999999999998 -6.9315373925566911E-005 - 221.57999999999998 -6.7832819419811000E-005 - 221.63999999999999 -6.6355367222613169E-005 - 221.69999999999999 -6.4882274859643190E-005 - 221.75999999999999 -6.3412737309840564E-005 - 221.81999999999999 -6.1945902398678816E-005 - 221.88000000000000 -6.0480841793738763E-005 - 221.94000000000000 -5.9016566500930156E-005 - 222.00000000000000 -5.7552040536383760E-005 - 222.06000000000000 -5.6086167511255793E-005 - 222.12000000000000 -5.4617797257097880E-005 - 222.18000000000001 -5.3145721849951422E-005 - 222.24000000000001 -5.1668676316347849E-005 - 222.30000000000001 -5.0185345333548237E-005 - 222.36000000000001 -4.8694348999376190E-005 - 222.42000000000002 -4.7194242345378997E-005 - 222.48000000000002 -4.5683519210514104E-005 - 222.53999999999996 -4.4160602202904754E-005 - 222.59999999999997 -4.2623849149254623E-005 - 222.65999999999997 -4.1071546776805473E-005 - 222.71999999999997 -3.9501910337919555E-005 - 222.77999999999997 -3.7913088535297049E-005 - 222.83999999999997 -3.6303155384700896E-005 - 222.89999999999998 -3.4670117681007346E-005 - 222.95999999999998 -3.3011908902756023E-005 - 223.01999999999998 -3.1326413129522594E-005 - 223.07999999999998 -2.9611439628347457E-005 - 223.13999999999999 -2.7864751158046540E-005 - 223.19999999999999 -2.6084049792517402E-005 - 223.25999999999999 -2.4266990978910715E-005 - 223.31999999999999 -2.2411183810177243E-005 - 223.38000000000000 -2.0514194599656996E-005 - 223.44000000000000 -1.8573549744836848E-005 - 223.50000000000000 -1.6586735189383506E-005 - 223.56000000000000 -1.4551207943831466E-005 - 223.62000000000000 -1.2464389920696686E-005 - 223.68000000000001 -1.0323675026232562E-005 - 223.74000000000001 -8.1264318299252454E-006 - 223.80000000000001 -5.8700041982328120E-006 - 223.86000000000001 -3.5517157170187113E-006 - 223.92000000000002 -1.1688758263927778E-006 - 223.98000000000002 1.2812178403869238E-006 - 224.03999999999996 3.8012736530785889E-006 - 224.09999999999997 6.3940014098222831E-006 - 224.15999999999997 9.0621019975597790E-006 - 224.21999999999997 1.1808263877759818E-005 - 224.27999999999997 1.4635152618978148E-005 - 224.33999999999997 1.7545402195969307E-005 - 224.39999999999998 2.0541608427883242E-005 - 224.45999999999998 2.3626315394029077E-005 - 224.51999999999998 2.6802010143545873E-005 - 224.57999999999998 3.0071115097672587E-005 - 224.63999999999999 3.3435968340411939E-005 - 224.69999999999999 3.6898832752883589E-005 - 224.75999999999999 4.0461860088720186E-005 - 224.81999999999999 4.4127107978913889E-005 - 224.88000000000000 4.7896517731191377E-005 - 224.94000000000000 5.1771906896455627E-005 - 225.00000000000000 5.5754958304352378E-005 - 225.06000000000000 5.9847218125749950E-005 - 225.12000000000000 6.4050074284462369E-005 - 225.18000000000001 6.8364763580393940E-005 - 225.24000000000001 7.2792348229645468E-005 - 225.30000000000001 7.7333712992594991E-005 - 225.36000000000001 8.1989551259516500E-005 - 225.42000000000002 8.6760354759125874E-005 - 225.48000000000002 9.1646403433232767E-005 - 225.53999999999996 9.6647762193728879E-005 - 225.59999999999997 1.0176424519124023E-004 - 225.65999999999997 1.0699544611045073E-004 - 225.71999999999997 1.1234068600615173E-004 - 225.77999999999997 1.1779904692172948E-004 - 225.83999999999997 1.2336932194295284E-004 - 225.89999999999998 1.2905003048346392E-004 - 225.95999999999998 1.3483940967111760E-004 - 226.01999999999998 1.4073541246971871E-004 - 226.07999999999998 1.4673567383253797E-004 - 226.13999999999999 1.5283754665975846E-004 - 226.19999999999999 1.5903806820692231E-004 - 226.25999999999999 1.6533396496776353E-004 - 226.31999999999999 1.7172166387007144E-004 - 226.38000000000000 1.7819726780720816E-004 - 226.44000000000000 1.8475657448694435E-004 - 226.50000000000000 1.9139507950924705E-004 - 226.56000000000000 1.9810792502340021E-004 - 226.62000000000000 2.0488998689738376E-004 - 226.68000000000001 2.1173581704784643E-004 - 226.74000000000001 2.1863966757812220E-004 - 226.80000000000001 2.2559544320094167E-004 - 226.86000000000001 2.3259679198028629E-004 - 226.92000000000002 2.3963705492028841E-004 - 226.98000000000002 2.4670924361416293E-004 - 227.03999999999996 2.5380612114695702E-004 - 227.09999999999997 2.6092010838847494E-004 - 227.15999999999997 2.6804340961871648E-004 - 227.21999999999997 2.7516791327169795E-004 - 227.27999999999997 2.8228526270662117E-004 - 227.33999999999997 2.8938682448216314E-004 - 227.39999999999998 2.9646374641134545E-004 - 227.45999999999998 3.0350695246789339E-004 - 227.51999999999998 3.1050710041998446E-004 - 227.57999999999998 3.1745468911036903E-004 - 227.63999999999999 3.2434000182247295E-004 - 227.69999999999999 3.3115318915155742E-004 - 227.75999999999999 3.3788424940860861E-004 - 227.81999999999999 3.4452300174744324E-004 - 227.88000000000000 3.5105923528914226E-004 - 227.94000000000000 3.5748257217592611E-004 - 228.00000000000000 3.6378261939644304E-004 - 228.06000000000000 3.6994893123975701E-004 - 228.12000000000000 3.7597098471034483E-004 - 228.18000000000001 3.8183835700244194E-004 - 228.24000000000001 3.8754060973739677E-004 - 228.30000000000001 3.9306731511136765E-004 - 228.36000000000001 3.9840814390246823E-004 - 228.42000000000002 4.0355285374780000E-004 - 228.48000000000002 4.0849135828034975E-004 - 228.53999999999996 4.1321363748986098E-004 - 228.59999999999997 4.1770986911054665E-004 - 228.65999999999997 4.2197046556815328E-004 - 228.71999999999997 4.2598595387729088E-004 - 228.77999999999997 4.2974718157252076E-004 - 228.83999999999997 4.3324521584009327E-004 - 228.89999999999998 4.3647137745193816E-004 - 228.95999999999998 4.3941733759905483E-004 - 229.01999999999998 4.4207507515990076E-004 - 229.07999999999998 4.4443694499102850E-004 - 229.13999999999999 4.4649568445961891E-004 - 229.19999999999999 4.4824440427548753E-004 - 229.25999999999999 4.4967669756789454E-004 - 229.31999999999999 4.5078657141096721E-004 - 229.38000000000000 4.5156854243297263E-004 - 229.44000000000000 4.5201764665888061E-004 - 229.50000000000000 4.5212937440552504E-004 - 229.56000000000000 4.5189983916672251E-004 - 229.62000000000000 4.5132568354732159E-004 - 229.68000000000001 4.5040411189767554E-004 - 229.74000000000001 4.4913295332398137E-004 - 229.80000000000001 4.4751057734104788E-004 - 229.86000000000001 4.4553603029968459E-004 - 229.92000000000002 4.4320890225099283E-004 - 229.97999999999996 4.4052945630025425E-004 - 230.03999999999996 4.3749851116563513E-004 - 230.09999999999997 4.3411756021625460E-004 - 230.15999999999997 4.3038866558118568E-004 - 230.21999999999997 4.2631454257487745E-004 - 230.27999999999997 4.2189848150590083E-004 - 230.33999999999997 4.1714440710381164E-004 - 230.39999999999998 4.1205679780562110E-004 - 230.45999999999998 4.0664073971169505E-004 - 230.51999999999998 4.0090193127727627E-004 - 230.57999999999998 3.9484659206557595E-004 - 230.63999999999999 3.8848151661576366E-004 - 230.69999999999999 3.8181409001373324E-004 - 230.75999999999999 3.7485218113972470E-004 - 230.81999999999999 3.6760423277186114E-004 - 230.88000000000000 3.6007916557639566E-004 - 230.94000000000000 3.5228635582044835E-004 - 231.00000000000000 3.4423573766629336E-004 - 231.06000000000000 3.3593761798870417E-004 - 231.12000000000000 3.2740273983671670E-004 - 231.18000000000001 3.1864227002944374E-004 - 231.24000000000001 3.0966772399359209E-004 - 231.30000000000001 3.0049098950585664E-004 - 231.36000000000001 2.9112420560522385E-004 - 231.42000000000002 2.8157984994979035E-004 - 231.47999999999996 2.7187055652244316E-004 - 231.53999999999996 2.6200925862100352E-004 - 231.59999999999997 2.5200899724515247E-004 - 231.65999999999997 2.4188295619970583E-004 - 231.71999999999997 2.3164448001820455E-004 - 231.77999999999997 2.2130688607703808E-004 - 231.83999999999997 2.1088359611898196E-004 - 231.89999999999998 2.0038801731229674E-004 - 231.95999999999998 1.8983354756581472E-004 - 232.01999999999998 1.7923348219130674E-004 - 232.07999999999998 1.6860105961702108E-004 - 232.13999999999999 1.5794941535669305E-004 - 232.19999999999999 1.4729152347929168E-004 - 232.25999999999999 1.3664019396955094E-004 - 232.31999999999999 1.2600805827317555E-004 - 232.38000000000000 1.1540751049702348E-004 - 232.44000000000000 1.0485071709366884E-004 - 232.50000000000000 9.4349586884006725E-005 - 232.56000000000000 8.3915738348051982E-005 - 232.62000000000000 7.3560475864548484E-005 - 232.68000000000001 6.3294802431015048E-005 - 232.74000000000001 5.3129335851057582E-005 - 232.80000000000001 4.3074358561982543E-005 - 232.86000000000001 3.3139760152923960E-005 - 232.92000000000002 2.3335022491968414E-005 - 232.97999999999996 1.3669218582415954E-005 - 233.03999999999996 4.1509918209422303E-006 - 233.09999999999997 -5.2114560320025891E-006 - 233.15999999999997 -1.4410388688110638E-005 - 233.21999999999997 -2.3438517946017660E-005 - 233.27999999999997 -3.2289045566956901E-005 - 233.33999999999997 -4.0955630824183847E-005 - 233.39999999999998 -4.9432427054883627E-005 - 233.45999999999998 -5.7714069872515905E-005 - 233.51999999999998 -6.5795676182759419E-005 - 233.57999999999998 -7.3672861244984640E-005 - 233.63999999999999 -8.1341704594485858E-005 - 233.69999999999999 -8.8798777046461612E-005 - 233.75999999999999 -9.6041119484595867E-005 - 233.81999999999999 -1.0306624634433354E-004 - 233.88000000000000 -1.0987211813247165E-004 - 233.94000000000000 -1.1645715314746540E-004 - 234.00000000000000 -1.2282022107499085E-004 - 234.06000000000000 -1.2896060491574245E-004 - 234.12000000000000 -1.3487800075785055E-004 - 234.18000000000001 -1.4057252872123535E-004 - 234.24000000000001 -1.4604468528645184E-004 - 234.30000000000001 -1.5129535733833798E-004 - 234.36000000000001 -1.5632577723449990E-004 - 234.42000000000002 -1.6113753324593116E-004 - 234.47999999999996 -1.6573256531430484E-004 - 234.53999999999996 -1.7011310453205234E-004 - 234.59999999999997 -1.7428171478256092E-004 - 234.65999999999997 -1.7824121258513048E-004 - 234.71999999999997 -1.8199471070086130E-004 - 234.77999999999997 -1.8554558751438768E-004 - 234.83999999999997 -1.8889742143929743E-004 - 234.89999999999998 -1.9205406147027347E-004 - 234.95999999999998 -1.9501952061489337E-004 - 235.01999999999998 -1.9779803884534421E-004 - 235.07999999999998 -2.0039401714481105E-004 - 235.13999999999999 -2.0281201302951152E-004 - 235.19999999999999 -2.0505671377024236E-004 - 235.25999999999999 -2.0713294195784561E-004 - 235.31999999999999 -2.0904563295571382E-004 - 235.38000000000000 -2.1079978390286871E-004 - 235.44000000000000 -2.1240047972458619E-004 - 235.50000000000000 -2.1385284349508866E-004 - 235.56000000000000 -2.1516205400684424E-004 - 235.62000000000000 -2.1633330478179198E-004 - 235.68000000000001 -2.1737176590535246E-004 - 235.74000000000001 -2.1828262824199869E-004 - 235.80000000000001 -2.1907103224892135E-004 - 235.86000000000001 -2.1974208756139169E-004 - 235.92000000000002 -2.2030083100962232E-004 - 235.97999999999996 -2.2075225914459183E-004 - 236.03999999999996 -2.2110127930900629E-004 - 236.09999999999997 -2.2135267833532681E-004 - 236.15999999999997 -2.2151115854990208E-004 - 236.21999999999997 -2.2158132989333467E-004 - 236.27999999999997 -2.2156766519379495E-004 - 236.33999999999997 -2.2147450731408811E-004 - 236.39999999999998 -2.2130607376721358E-004 - 236.45999999999998 -2.2106643190933291E-004 - 236.51999999999998 -2.2075950113503834E-004 - 236.57999999999998 -2.2038907539975079E-004 - 236.63999999999999 -2.1995877981227904E-004 - 236.69999999999999 -2.1947207641231247E-004 - 236.75999999999999 -2.1893229753016625E-004 - 236.81999999999999 -2.1834259586686508E-004 - 236.88000000000000 -2.1770596017870700E-004 - 236.94000000000000 -2.1702524536790785E-004 - 237.00000000000000 -2.1630312562674335E-004 - 237.06000000000000 -2.1554212733267410E-004 - 237.12000000000000 -2.1474462185021881E-004 - 237.18000000000001 -2.1391280165453390E-004 - 237.24000000000001 -2.1304873133838766E-004 - 237.30000000000001 -2.1215429931433302E-004 - 237.36000000000001 -2.1123124902272685E-004 - 237.42000000000002 -2.1028116440281275E-004 - 237.47999999999996 -2.0930549140528044E-004 - 237.53999999999996 -2.0830550440703095E-004 - 237.59999999999997 -2.0728234062550478E-004 - 237.65999999999997 -2.0623700161799644E-004 - 237.71999999999997 -2.0517035562384042E-004 - 237.77999999999997 -2.0408310716011230E-004 - 237.83999999999997 -2.0297583770921990E-004 - 237.89999999999998 -2.0184902214258281E-004 - 237.95999999999998 -2.0070300127957437E-004 - 238.01999999999998 -1.9953804152700308E-004 - 238.07999999999998 -1.9835426713829828E-004 - 238.13999999999999 -1.9715175398364067E-004 - 238.19999999999999 -1.9593046796522338E-004 - 238.25999999999999 -1.9469033439071813E-004 - 238.31999999999999 -1.9343120548364923E-004 - 238.38000000000000 -1.9215286879927350E-004 - 238.44000000000000 -1.9085509698433536E-004 - 238.50000000000000 -1.8953761834372788E-004 - 238.56000000000000 -1.8820016216365592E-004 - 238.62000000000000 -1.8684239682875380E-004 - 238.68000000000001 -1.8546399059204684E-004 - 238.74000000000001 -1.8406460532025559E-004 - 238.80000000000001 -1.8264390009657873E-004 - 238.86000000000001 -1.8120148928799516E-004 - 238.92000000000002 -1.7973701841468727E-004 - 238.97999999999996 -1.7825012269754735E-004 - 239.03999999999996 -1.7674039393872386E-004 - 239.09999999999997 -1.7520743747855735E-004 - 239.15999999999997 -1.7365087605176780E-004 - 239.21999999999997 -1.7207029146340059E-004 - 239.27999999999997 -1.7046527661630309E-004 - 239.33999999999997 -1.6883544974276743E-004 - 239.39999999999998 -1.6718041961004789E-004 - 239.45999999999998 -1.6549980130440634E-004 - 239.51999999999998 -1.6379323357866801E-004 - 239.57999999999998 -1.6206039977308693E-004 - 239.63999999999999 -1.6030099386581592E-004 - 239.69999999999999 -1.5851476396983049E-004 - 239.75999999999999 -1.5670152081209015E-004 - 239.81999999999999 -1.5486109665112288E-004 - 239.88000000000000 -1.5299341303126075E-004 - 239.94000000000000 -1.5109844690760129E-004 - 240.00000000000000 -1.4917622393000745E-004 - 240.06000000000000 -1.4722686988850230E-004 - 240.12000000000000 -1.4525054930170350E-004 - 240.18000000000001 -1.4324752531449795E-004 - 240.24000000000001 -1.4121809613689838E-004 - 240.30000000000001 -1.3916264908167962E-004 - 240.36000000000001 -1.3708161839535844E-004 - 240.42000000000002 -1.3497552511403595E-004 - 240.47999999999996 -1.3284491864530405E-004 - 240.53999999999996 -1.3069040802243611E-004 - 240.59999999999997 -1.2851264971028227E-004 - 240.65999999999997 -1.2631237446784690E-004 - 240.71999999999997 -1.2409032747910705E-004 - 240.77999999999997 -1.2184730513004859E-004 - 240.83999999999997 -1.1958415447380266E-004 - 240.89999999999998 -1.1730176273692701E-004 - 240.95999999999998 -1.1500107675100763E-004 - 241.01999999999998 -1.1268308973276610E-004 - 241.07999999999998 -1.1034882167539959E-004 - 241.13999999999999 -1.0799937696663408E-004 - 241.19999999999999 -1.0563588494940251E-004 - 241.25999999999999 -1.0325955014765117E-004 - 241.31999999999999 -1.0087162161178191E-004 - 241.38000000000000 -9.8473418979548176E-005 - 241.44000000000000 -9.6066293982875747E-005 - 241.50000000000000 -9.3651674165167608E-005 - 241.56000000000000 -9.1231036888028203E-005 - 241.62000000000000 -8.8805897559852642E-005 - 241.68000000000001 -8.6377827413082416E-005 - 241.74000000000001 -8.3948441003732396E-005 - 241.80000000000001 -8.1519388230527672E-005 - 241.86000000000001 -7.9092338802707997E-005 - 241.92000000000002 -7.6669000139143695E-005 - 241.97999999999996 -7.4251090392755812E-005 - 242.03999999999996 -7.1840334275594784E-005 - 242.09999999999997 -6.9438460287492130E-005 - 242.15999999999997 -6.7047190006028052E-005 - 242.21999999999997 -6.4668236875018161E-005 - 242.27999999999997 -6.2303291916047260E-005 - 242.33999999999997 -5.9954022035723529E-005 - 242.39999999999998 -5.7622073218762018E-005 - 242.45999999999998 -5.5309045668043784E-005 - 242.51999999999998 -5.3016521994858845E-005 - 242.57999999999998 -5.0746038616860176E-005 - 242.63999999999999 -4.8499093875676503E-005 - 242.69999999999999 -4.6277145885799715E-005 - 242.75999999999999 -4.4081611463383392E-005 - 242.81999999999999 -4.1913876246927173E-005 - 242.88000000000000 -3.9775278761886056E-005 - 242.94000000000000 -3.7667121680328103E-005 - 243.00000000000000 -3.5590662322112868E-005 - 243.06000000000000 -3.3547121466349229E-005 - 243.12000000000000 -3.1537671040279908E-005 - 243.18000000000001 -2.9563445192710989E-005 - 243.24000000000001 -2.7625519545955493E-005 - 243.30000000000001 -2.5724925204666030E-005 - 243.36000000000001 -2.3862633442056898E-005 - 243.42000000000002 -2.2039560362412048E-005 - 243.47999999999996 -2.0256548403189028E-005 - 243.53999999999996 -1.8514376541669483E-005 - 243.59999999999997 -1.6813749553854853E-005 - 243.65999999999997 -1.5155292259487085E-005 - 243.71999999999997 -1.3539555269063848E-005 - 243.77999999999997 -1.1967006194310055E-005 - 243.83999999999997 -1.0438029915254055E-005 - 243.89999999999998 -8.9529315058976242E-006 - 243.95999999999998 -7.5119338496366133E-006 - 244.01999999999998 -6.1151861301854653E-006 - 244.07999999999998 -4.7627603897694114E-006 - 244.13999999999999 -3.4546594073473707E-006 - 244.19999999999999 -2.1908187652289738E-006 - 244.25999999999999 -9.7111236815621011E-007 - 244.31999999999999 2.0464225253003741E-007 - 244.38000000000000 1.3366812972217546E-006 - 244.44000000000000 2.4252904063309676E-006 - 244.50000000000000 3.4708010180794656E-006 - 244.56000000000000 4.4735880049017817E-006 - 244.62000000000000 5.4340651015087675E-006 - 244.68000000000001 6.3526860424045177E-006 - 244.74000000000001 7.2299414566742616E-006 - 244.80000000000001 8.0663566115517935E-006 - 244.86000000000001 8.8624923411758232E-006 - 244.92000000000002 9.6189428638771650E-006 - 244.97999999999996 1.0336335610032871E-005 - 245.03999999999996 1.1015327311177164E-005 - 245.09999999999997 1.1656604805537281E-005 - 245.15999999999997 1.2260883743503237E-005 - 245.21999999999997 1.2828902688993795E-005 - 245.27999999999997 1.3361425104456876E-005 - 245.33999999999997 1.3859233818894053E-005 - 245.39999999999998 1.4323128958844205E-005 - 245.45999999999998 1.4753925406364540E-005 - 245.51999999999998 1.5152448665787089E-005 - 245.57999999999998 1.5519536313495538E-005 - 245.63999999999999 1.5856032150883496E-005 - 245.69999999999999 1.6162785011618605E-005 - 245.75999999999999 1.6440648235950088E-005 - 245.81999999999999 1.6690479297356637E-005 - 245.88000000000000 1.6913135115784953E-005 - 245.94000000000000 1.7109473021752334E-005 - 246.00000000000000 1.7280354186264970E-005 - 246.06000000000000 1.7426635354355050E-005 - 246.12000000000000 1.7549172119956719E-005 - 246.18000000000001 1.7648818968414553E-005 - 246.24000000000001 1.7726423403987753E-005 - 246.30000000000001 1.7782829371888726E-005 - 246.36000000000001 1.7818871793216455E-005 - 246.42000000000002 1.7835374814467062E-005 - 246.47999999999996 1.7833154657679462E-005 - 246.53999999999996 1.7813010978576342E-005 - 246.59999999999997 1.7775726631962389E-005 - 246.65999999999997 1.7722066280718141E-005 - 246.71999999999997 1.7652778174297742E-005 - 246.77999999999997 1.7568587413954686E-005 - 246.83999999999997 1.7470196883273001E-005 - 246.89999999999998 1.7358285078033871E-005 - 246.95999999999998 1.7233510525901904E-005 - 247.01999999999998 1.7096508396689470E-005 - 247.07999999999998 1.6947887492384140E-005 - 247.13999999999999 1.6788238041950351E-005 - 247.19999999999999 1.6618126967682871E-005 - 247.25999999999999 1.6438098497079807E-005 - 247.31999999999999 1.6248676386891159E-005 - 247.38000000000000 1.6050364295379507E-005 - 247.44000000000000 1.5843644701571944E-005 - 247.50000000000000 1.5628975737319704E-005 - 247.56000000000000 1.5406794771880572E-005 - 247.62000000000000 1.5177515949964141E-005 - 247.68000000000001 1.4941526289292199E-005 - 247.74000000000001 1.4699189823376369E-005 - 247.80000000000001 1.4450842143398589E-005 - 247.86000000000001 1.4196790487326395E-005 - 247.92000000000002 1.3937312185772388E-005 - 247.97999999999996 1.3672654003211345E-005 - 248.03999999999996 1.3403033501883857E-005 - 248.09999999999997 1.3128636548457625E-005 - 248.15999999999997 1.2849617408737132E-005 - 248.21999999999997 1.2566099997006624E-005 - 248.27999999999997 1.2278181920058961E-005 - 248.33999999999997 1.1985930352373884E-005 - 248.39999999999998 1.1689387529079027E-005 - 248.45999999999998 1.1388570510485150E-005 - 248.51999999999998 1.1083475016028081E-005 - 248.57999999999998 1.0774076346514538E-005 - 248.63999999999999 1.0460331620965361E-005 - 248.69999999999999 1.0142185238589882E-005 - 248.75999999999999 9.8195671160518483E-006 - 248.81999999999999 9.4923972769771895E-006 - 248.88000000000000 9.1605884483169975E-006 - 248.94000000000000 8.8240504850415815E-006 - 249.00000000000000 8.4826882365545112E-006 - 249.06000000000000 8.1364073376203258E-006 - 249.12000000000000 7.7851145480294726E-006 - 249.18000000000001 7.4287207506438278E-006 - 249.24000000000001 7.0671417898634242E-006 - 249.30000000000001 6.7002998722836684E-006 - 249.36000000000001 6.3281242722811349E-006 - 249.42000000000002 5.9505516521708887E-006 - 249.47999999999996 5.5675263291451854E-006 - 249.53999999999996 5.1790003836152518E-006 - 249.59999999999997 4.7849335622430249E-006 - 249.65999999999997 4.3852906261690998E-006 - 249.71999999999997 3.9800428698091058E-006 - 249.77999999999997 3.5691653987031459E-006 - 249.83999999999997 3.1526374147908684E-006 - 249.89999999999998 2.7304409384705634E-006 - 249.95999999999998 2.3025606119986566E-006 - 250.01999999999998 1.8689835927232577E-006 - 250.07999999999998 1.4297000317029283E-006 - 250.13999999999999 9.8470344760903403E-007 - 250.19999999999999 5.3399246583837466E-007 - 250.25999999999999 7.7572216741154799E-008 - 250.31999999999999 -3.8454482408739014E-007 - 250.38000000000000 -8.5233589428229454E-007 - 250.44000000000000 -1.3257664836796374E-006 - 250.50000000000000 -1.8047885376436799E-006 - 250.56000000000000 -2.2893396669354466E-006 - 250.62000000000000 -2.7793416839126589E-006 - 250.68000000000001 -3.2747007142869557E-006 - 250.74000000000001 -3.7753073705426431E-006 - 250.80000000000001 -4.2810378049555519E-006 - 250.86000000000001 -4.7917546621984095E-006 - 250.92000000000002 -5.3073096702523740E-006 - 250.97999999999996 -5.8275466858334622E-006 - 251.03999999999996 -6.3523029244351227E-006 - 251.09999999999997 -6.8814137800734669E-006 - 251.15999999999997 -7.4147138106146794E-006 - 251.21999999999997 -7.9520418527154134E-006 - 251.27999999999997 -8.4932402835612719E-006 - 251.33999999999997 -9.0381575146277556E-006 - 251.39999999999998 -9.5866488467255034E-006 - 251.45999999999998 -1.0138577473744503E-005 - 251.51999999999998 -1.0693813331889043E-005 - 251.57999999999998 -1.1252230259316405E-005 - 251.63999999999999 -1.1813706187154981E-005 - 251.69999999999999 -1.2378120382424494E-005 - 251.75999999999999 -1.2945349687621391E-005 - 251.81999999999999 -1.3515266658057218E-005 - 251.88000000000000 -1.4087736146592380E-005 - 251.94000000000000 -1.4662612860029503E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000003.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000003.BXY.semd deleted file mode 100644 index 1ca2b8cb..00000000 --- a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000003.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 0.0000000000000000 - 44.700000000000003 0.0000000000000000 - 44.759999999999991 0.0000000000000000 - 44.819999999999993 0.0000000000000000 - 44.879999999999995 0.0000000000000000 - 44.939999999999998 0.0000000000000000 - 45.000000000000000 0.0000000000000000 - 45.060000000000002 0.0000000000000000 - 45.119999999999990 0.0000000000000000 - 45.179999999999993 0.0000000000000000 - 45.239999999999995 0.0000000000000000 - 45.299999999999997 0.0000000000000000 - 45.359999999999999 0.0000000000000000 - 45.420000000000002 0.0000000000000000 - 45.479999999999990 0.0000000000000000 - 45.539999999999992 0.0000000000000000 - 45.599999999999994 0.0000000000000000 - 45.659999999999997 0.0000000000000000 - 45.719999999999999 0.0000000000000000 - 45.780000000000001 0.0000000000000000 - 45.840000000000003 0.0000000000000000 - 45.899999999999991 0.0000000000000000 - 45.959999999999994 0.0000000000000000 - 46.019999999999996 0.0000000000000000 - 46.079999999999998 0.0000000000000000 - 46.140000000000001 0.0000000000000000 - 46.200000000000003 0.0000000000000000 - 46.259999999999991 0.0000000000000000 - 46.319999999999993 0.0000000000000000 - 46.379999999999995 0.0000000000000000 - 46.439999999999998 0.0000000000000000 - 46.500000000000000 0.0000000000000000 - 46.560000000000002 0.0000000000000000 - 46.619999999999990 0.0000000000000000 - 46.679999999999993 0.0000000000000000 - 46.739999999999995 0.0000000000000000 - 46.799999999999997 0.0000000000000000 - 46.859999999999999 0.0000000000000000 - 46.920000000000002 0.0000000000000000 - 46.979999999999990 0.0000000000000000 - 47.039999999999992 0.0000000000000000 - 47.099999999999994 0.0000000000000000 - 47.159999999999997 0.0000000000000000 - 47.219999999999999 0.0000000000000000 - 47.280000000000001 0.0000000000000000 - 47.340000000000003 0.0000000000000000 - 47.399999999999991 0.0000000000000000 - 47.459999999999994 0.0000000000000000 - 47.519999999999996 0.0000000000000000 - 47.579999999999998 0.0000000000000000 - 47.640000000000001 0.0000000000000000 - 47.700000000000003 0.0000000000000000 - 47.759999999999991 0.0000000000000000 - 47.819999999999993 0.0000000000000000 - 47.879999999999995 0.0000000000000000 - 47.939999999999998 0.0000000000000000 - 48.000000000000000 0.0000000000000000 - 48.060000000000002 0.0000000000000000 - 48.119999999999990 0.0000000000000000 - 48.179999999999993 0.0000000000000000 - 48.239999999999995 0.0000000000000000 - 48.299999999999997 0.0000000000000000 - 48.359999999999999 0.0000000000000000 - 48.420000000000002 0.0000000000000000 - 48.479999999999990 0.0000000000000000 - 48.539999999999992 0.0000000000000000 - 48.599999999999994 0.0000000000000000 - 48.659999999999997 0.0000000000000000 - 48.719999999999999 0.0000000000000000 - 48.780000000000001 0.0000000000000000 - 48.840000000000003 0.0000000000000000 - 48.899999999999991 0.0000000000000000 - 48.959999999999994 0.0000000000000000 - 49.019999999999996 0.0000000000000000 - 49.079999999999998 0.0000000000000000 - 49.140000000000001 0.0000000000000000 - 49.200000000000003 0.0000000000000000 - 49.259999999999991 0.0000000000000000 - 49.319999999999993 0.0000000000000000 - 49.379999999999995 0.0000000000000000 - 49.439999999999998 0.0000000000000000 - 49.500000000000000 0.0000000000000000 - 49.560000000000002 0.0000000000000000 - 49.619999999999990 0.0000000000000000 - 49.679999999999993 0.0000000000000000 - 49.739999999999995 0.0000000000000000 - 49.799999999999997 0.0000000000000000 - 49.859999999999999 0.0000000000000000 - 49.920000000000002 0.0000000000000000 - 49.979999999999990 0.0000000000000000 - 50.039999999999992 0.0000000000000000 - 50.099999999999994 0.0000000000000000 - 50.159999999999997 0.0000000000000000 - 50.219999999999999 0.0000000000000000 - 50.280000000000001 0.0000000000000000 - 50.340000000000003 0.0000000000000000 - 50.399999999999991 0.0000000000000000 - 50.459999999999994 0.0000000000000000 - 50.519999999999996 0.0000000000000000 - 50.579999999999998 0.0000000000000000 - 50.640000000000001 0.0000000000000000 - 50.700000000000003 0.0000000000000000 - 50.759999999999991 0.0000000000000000 - 50.819999999999993 0.0000000000000000 - 50.879999999999995 0.0000000000000000 - 50.939999999999998 0.0000000000000000 - 51.000000000000000 0.0000000000000000 - 51.060000000000002 0.0000000000000000 - 51.119999999999990 0.0000000000000000 - 51.179999999999993 0.0000000000000000 - 51.239999999999995 0.0000000000000000 - 51.299999999999997 0.0000000000000000 - 51.359999999999999 0.0000000000000000 - 51.420000000000002 0.0000000000000000 - 51.479999999999990 0.0000000000000000 - 51.539999999999992 0.0000000000000000 - 51.599999999999994 0.0000000000000000 - 51.659999999999997 0.0000000000000000 - 51.719999999999999 0.0000000000000000 - 51.780000000000001 0.0000000000000000 - 51.840000000000003 0.0000000000000000 - 51.899999999999991 0.0000000000000000 - 51.959999999999994 0.0000000000000000 - 52.019999999999996 0.0000000000000000 - 52.079999999999998 0.0000000000000000 - 52.140000000000001 0.0000000000000000 - 52.200000000000003 0.0000000000000000 - 52.259999999999991 0.0000000000000000 - 52.319999999999993 0.0000000000000000 - 52.379999999999995 0.0000000000000000 - 52.439999999999998 0.0000000000000000 - 52.500000000000000 0.0000000000000000 - 52.560000000000002 0.0000000000000000 - 52.619999999999990 0.0000000000000000 - 52.679999999999993 0.0000000000000000 - 52.739999999999995 0.0000000000000000 - 52.799999999999997 0.0000000000000000 - 52.859999999999999 0.0000000000000000 - 52.920000000000002 0.0000000000000000 - 52.979999999999990 0.0000000000000000 - 53.039999999999992 0.0000000000000000 - 53.099999999999994 0.0000000000000000 - 53.159999999999997 0.0000000000000000 - 53.219999999999999 0.0000000000000000 - 53.280000000000001 0.0000000000000000 - 53.339999999999989 0.0000000000000000 - 53.399999999999991 0.0000000000000000 - 53.459999999999994 0.0000000000000000 - 53.519999999999996 0.0000000000000000 - 53.579999999999998 0.0000000000000000 - 53.640000000000001 0.0000000000000000 - 53.700000000000003 0.0000000000000000 - 53.759999999999991 0.0000000000000000 - 53.819999999999993 0.0000000000000000 - 53.879999999999995 0.0000000000000000 - 53.939999999999998 0.0000000000000000 - 54.000000000000000 0.0000000000000000 - 54.060000000000002 0.0000000000000000 - 54.119999999999990 0.0000000000000000 - 54.179999999999993 0.0000000000000000 - 54.239999999999995 0.0000000000000000 - 54.299999999999997 0.0000000000000000 - 54.359999999999999 0.0000000000000000 - 54.420000000000002 0.0000000000000000 - 54.479999999999990 0.0000000000000000 - 54.539999999999992 0.0000000000000000 - 54.599999999999994 0.0000000000000000 - 54.659999999999997 0.0000000000000000 - 54.719999999999999 0.0000000000000000 - 54.780000000000001 0.0000000000000000 - 54.839999999999989 0.0000000000000000 - 54.899999999999991 0.0000000000000000 - 54.959999999999994 0.0000000000000000 - 55.019999999999996 0.0000000000000000 - 55.079999999999998 0.0000000000000000 - 55.140000000000001 0.0000000000000000 - 55.200000000000003 0.0000000000000000 - 55.259999999999991 0.0000000000000000 - 55.319999999999993 0.0000000000000000 - 55.379999999999995 0.0000000000000000 - 55.439999999999998 0.0000000000000000 - 55.500000000000000 0.0000000000000000 - 55.560000000000002 0.0000000000000000 - 55.619999999999990 0.0000000000000000 - 55.679999999999993 0.0000000000000000 - 55.739999999999995 0.0000000000000000 - 55.799999999999997 0.0000000000000000 - 55.859999999999999 0.0000000000000000 - 55.920000000000002 0.0000000000000000 - 55.979999999999990 0.0000000000000000 - 56.039999999999992 0.0000000000000000 - 56.099999999999994 0.0000000000000000 - 56.159999999999997 0.0000000000000000 - 56.219999999999999 0.0000000000000000 - 56.280000000000001 0.0000000000000000 - 56.339999999999989 0.0000000000000000 - 56.399999999999991 0.0000000000000000 - 56.459999999999994 0.0000000000000000 - 56.519999999999996 0.0000000000000000 - 56.579999999999998 0.0000000000000000 - 56.640000000000001 0.0000000000000000 - 56.700000000000003 0.0000000000000000 - 56.759999999999991 0.0000000000000000 - 56.819999999999993 0.0000000000000000 - 56.879999999999995 0.0000000000000000 - 56.939999999999998 0.0000000000000000 - 57.000000000000000 0.0000000000000000 - 57.060000000000002 0.0000000000000000 - 57.119999999999990 0.0000000000000000 - 57.179999999999993 0.0000000000000000 - 57.239999999999995 0.0000000000000000 - 57.299999999999997 0.0000000000000000 - 57.359999999999999 0.0000000000000000 - 57.420000000000002 0.0000000000000000 - 57.479999999999990 0.0000000000000000 - 57.539999999999992 0.0000000000000000 - 57.599999999999994 0.0000000000000000 - 57.659999999999997 0.0000000000000000 - 57.719999999999999 0.0000000000000000 - 57.780000000000001 0.0000000000000000 - 57.839999999999989 0.0000000000000000 - 57.899999999999991 0.0000000000000000 - 57.959999999999994 0.0000000000000000 - 58.019999999999996 0.0000000000000000 - 58.079999999999998 0.0000000000000000 - 58.140000000000001 0.0000000000000000 - 58.200000000000003 -1.5431866314066871E-040 - 58.259999999999991 -5.0486644442168476E-040 - 58.319999999999993 -1.2244051228638129E-039 - 58.379999999999995 -2.3562429583624912E-039 - 58.439999999999998 -3.9012641872206863E-039 - 58.500000000000000 -5.8103854953927839E-039 - 58.560000000000002 -7.8993793773575350E-039 - 58.619999999999990 -1.0052133977683277E-038 - 58.679999999999993 -1.2268648296844710E-038 - 58.739999999999995 -1.4269312129068942E-038 - 58.799999999999997 -1.5817878674163384E-038 - 58.859999999999999 -1.6737239045787659E-038 - 58.920000000000002 -1.6889390784932420E-038 - 58.979999999999990 -1.6194232933645425E-038 - 59.039999999999992 -1.4646931787579765E-038 - 59.099999999999994 -1.2324193916771611E-038 - 59.159999999999997 -9.3840552658020911E-039 - 59.219999999999999 -6.1594802011525115E-039 - 59.280000000000001 -2.7737499233443412E-039 - 59.339999999999989 3.5838154519587927E-040 - 59.399999999999991 2.9041849763134779E-039 - 59.459999999999994 3.8116412878771773E-039 - 59.519999999999996 2.7389197493190798E-039 - 59.579999999999998 -1.0164026036457035E-040 - 59.640000000000001 -5.9843893253331621E-039 - 59.700000000000003 -1.3273752925412419E-038 - 59.759999999999991 -2.1451823933452847E-038 - 59.819999999999993 -3.0548878492079753E-038 - 59.879999999999995 -4.0081174343190813E-038 - 59.939999999999998 -4.8923344470247474E-038 - 60.000000000000000 -5.4605125956361033E-038 - 60.060000000000002 -5.4005579230647561E-038 - 60.119999999999990 -4.5977496354742001E-038 - 60.179999999999993 -2.8744025116720930E-038 - 60.239999999999995 -2.9490789868184134E-039 - 60.299999999999997 2.6446041887471878E-038 - 60.359999999999999 5.8441511231332206E-038 - 60.420000000000002 9.1976113357443791E-038 - 60.479999999999990 1.2080530341111311E-037 - 60.539999999999992 1.4281330938396946E-037 - 60.599999999999994 1.5048759975541580E-037 - 60.659999999999997 1.3890814154360509E-037 - 60.719999999999999 1.0750725361266823E-037 - 60.780000000000001 5.6961915962994246E-038 - 60.839999999999989 -3.0977260101590909E-039 - 60.899999999999991 -6.9704602408235222E-038 - 60.959999999999994 -1.3944233049554532E-037 - 61.019999999999996 -2.0328928433069941E-037 - 61.079999999999998 -2.5482788605758377E-037 - 61.140000000000001 -2.8050513282321397E-037 - 61.200000000000003 -2.7201173285514954E-037 - 61.259999999999991 -2.1815457001532992E-037 - 61.319999999999993 -1.2156817880630742E-037 - 61.379999999999995 1.8655732244014680E-038 - 61.439999999999998 1.9951992886893238E-037 - 61.500000000000000 3.9686438003707706E-037 - 61.560000000000002 5.9819341693630872E-037 - 61.619999999999990 7.8012186691289125E-037 - 61.679999999999993 9.1932531712298283E-037 - 61.739999999999995 1.0287040282342747E-036 - 61.799999999999997 1.0876770201400440E-036 - 61.859999999999999 1.0829436740717535E-036 - 61.920000000000002 1.0084301286360173E-036 - 61.979999999999990 8.6843205874569792E-037 - 62.039999999999992 6.6076620923689214E-037 - 62.099999999999994 4.0279190718488737E-037 - 62.159999999999997 1.0451207734888524E-037 - 62.219999999999999 -2.0996500383129267E-037 - 62.280000000000001 -5.1693825385455907E-037 - 62.339999999999989 -7.9469429737450606E-037 - 62.399999999999991 -1.0238133675129861E-036 - 62.459999999999994 -1.2071293009174577E-036 - 62.519999999999996 -1.3088471922860152E-036 - 62.579999999999998 -1.3305255813263051E-036 - 62.640000000000001 -1.2351817075088460E-036 - 62.700000000000003 -1.0516183844925306E-036 - 62.759999999999991 -7.5018063911444268E-037 - 62.819999999999993 -3.2214868067911563E-037 - 62.879999999999995 2.2040903327134098E-037 - 62.939999999999998 8.4534187056959132E-037 - 63.000000000000000 1.6018562938231287E-036 - 63.060000000000002 2.4143655961136109E-036 - 63.119999999999990 3.1791341529955509E-036 - 63.179999999999993 3.7952785612615727E-036 - 63.239999999999995 4.1683310332586655E-036 - 63.299999999999997 4.2123632022708101E-036 - 63.359999999999999 3.9110738847711794E-036 - 63.420000000000002 3.3025832692477811E-036 - 63.479999999999990 2.2138474049431172E-036 - 63.539999999999992 6.1966666814594714E-037 - 63.599999999999994 -1.5581299080283643E-036 - 63.659999999999997 -4.0795012522207552E-036 - 63.719999999999999 -6.8314703135839157E-036 - 63.780000000000001 -9.6107547614978512E-036 - 63.839999999999989 -1.2134822053995872E-035 - 63.899999999999991 -1.4177827948706717E-035 - 63.959999999999994 -1.5405095839020584E-035 - 64.019999999999996 -1.5737172483013832E-035 - 64.079999999999998 -1.5071485297211276E-035 - 64.140000000000001 -1.3171634709842405E-035 - 64.200000000000003 -9.9416663562445430E-036 - 64.259999999999991 -5.1994232907733990E-036 - 64.319999999999993 8.1202384717919964E-037 - 64.379999999999995 7.9497118020272716E-036 - 64.439999999999998 1.6049874374590347E-035 - 64.500000000000000 2.4767940523839934E-035 - 64.560000000000002 3.3794890040448638E-035 - 64.619999999999990 4.2610294364971992E-035 - 64.679999999999993 5.0692824030321835E-035 - 64.739999999999995 5.7276226552897802E-035 - 64.799999999999997 6.1872946995783175E-035 - 64.859999999999999 6.3781981491688290E-035 - 64.920000000000002 6.2507230193361415E-035 - 64.979999999999990 5.7501372011503863E-035 - 65.039999999999992 4.8171956941737584E-035 - 65.099999999999994 3.4254561949902635E-035 - 65.159999999999997 1.5620632477134961E-035 - 65.219999999999999 -7.6989783498871896E-036 - 65.280000000000001 -3.5287820754469683E-035 - 65.339999999999989 -6.6413160241793342E-035 - 65.399999999999991 -1.0009365905410285E-034 - 65.459999999999994 -1.3507074413562407E-034 - 65.519999999999996 -1.6971977083279163E-034 - 65.579999999999998 -2.0231522345405534E-034 - 65.640000000000001 -2.3086564742460814E-034 - 65.700000000000003 -2.5330453577498784E-034 - 65.759999999999991 -2.6723904664524578E-034 - 65.819999999999993 -2.7036545884717890E-034 - 65.879999999999995 -2.6053268245544876E-034 - 65.939999999999998 -2.3589110969870804E-034 - 66.000000000000000 -1.9501528593102454E-034 - 66.060000000000002 -1.3704809056913193E-034 - 66.119999999999990 -6.1920324372235767E-035 - 66.179999999999993 2.9654498603375606E-035 - 66.239999999999995 1.3592914518043281E-034 - 66.299999999999997 2.5406755813624462E-034 - 66.359999999999999 3.8002370023155993E-034 - 66.420000000000002 5.0862231209869568E-034 - 66.479999999999990 6.3359831274910999E-034 - 66.539999999999992 7.4770822306647349E-034 - 66.599999999999994 8.4288980216978457E-034 - 66.659999999999997 9.1061898085950161E-034 - 66.719999999999999 9.4220690045978066E-034 - 66.780000000000001 9.2926240103829412E-034 - 66.839999999999989 8.6415900228895434E-034 - 66.899999999999991 7.4076308217628571E-034 - 66.959999999999994 5.5480167126645862E-034 - 67.019999999999996 3.0453354661216479E-034 - 67.079999999999998 -8.7474500451653699E-036 - 67.140000000000001 -3.8020192795588600E-034 - 67.199999999999989 -8.0108363767834277E-034 - 67.259999999999991 -1.2584314609699631E-033 - 67.319999999999993 -1.7350285411194165E-033 - 67.379999999999995 -2.2094757104952104E-033 - 67.439999999999998 -2.6566754899885034E-033 - 67.500000000000000 -3.0483512167797388E-033 - 67.560000000000002 -3.3539980426827488E-033 - 67.619999999999990 -3.5420518929002060E-033 - 67.679999999999993 -3.5813534488621683E-033 - 67.739999999999995 -3.4427852005672111E-033 - 67.799999999999997 -3.1011483737086139E-033 - 67.859999999999999 -2.5371538748030180E-033 - 67.920000000000002 -1.7394887571510346E-033 - 67.979999999999990 -7.0678241333887102E-034 - 68.039999999999992 5.5052468112155527E-034 - 68.099999999999994 2.0085930608325889E-033 - 68.159999999999997 3.6290420163171739E-033 - 68.219999999999999 5.3582548576925007E-033 - 68.280000000000001 7.1273990301735959E-033 - 68.339999999999989 8.8532191545491700E-033 - 68.399999999999991 1.0439654718948942E-032 - 68.459999999999994 1.1780497390046597E-032 - 68.519999999999996 1.2762881097714058E-032 - 68.579999999999998 1.3271832388368164E-032 - 68.640000000000001 1.3195711830810593E-032 - 68.699999999999989 1.2432468245030529E-032 - 68.759999999999991 1.0896497182957830E-032 - 68.819999999999993 8.5259274074568209E-033 - 68.879999999999995 5.2899790579295612E-033 - 68.939999999999998 1.1960858238836692E-033 - 69.000000000000000 -3.7036416543267534E-033 - 69.060000000000002 -9.3070564600932704E-033 - 69.119999999999990 -1.5458107997979108E-032 - 69.179999999999993 -2.1945096444709063E-032 - 69.239999999999995 -2.8501336579988584E-032 - 69.299999999999997 -3.4808716690806590E-032 - 69.359999999999999 -4.0504449697733263E-032 - 69.420000000000002 -4.5191295626015475E-032 - 69.479999999999990 -4.8451297010745972E-032 - 69.539999999999992 -4.9862997636358559E-032 - 69.599999999999994 -4.9021919745712312E-032 - 69.659999999999997 -4.5563813954305684E-032 - 69.719999999999999 -3.9190051089245663E-032 - 69.780000000000001 -2.9694246750919890E-032 - 69.839999999999989 -1.6989012959971012E-032 - 69.899999999999991 -1.1315726855856189E-033 - 69.959999999999994 1.7653305429810710E-032 - 70.019999999999996 3.8954617908047803E-032 - 70.079999999999998 6.2162373394232306E-032 - 70.140000000000001 8.6462423310513705E-032 - 70.199999999999989 1.1084056290258690E-031 - 70.259999999999991 1.3409720338624594E-031 - 70.319999999999993 1.5487389511575132E-031 - 70.379999999999995 1.7169236664463604E-031 - 70.439999999999998 1.8300637593539637E-031 - 70.500000000000000 1.8726620513178625E-031 - 70.560000000000002 1.8299459940359611E-031 - 70.619999999999990 1.6887269032250669E-031 - 70.679999999999993 1.4383317175639462E-031 - 70.739999999999995 1.0715771156923838E-031 - 70.799999999999997 5.8574221353136805E-032 - 70.859999999999999 -1.6505672629353794E-033 - 70.920000000000002 -7.2628603670586947E-032 - 70.979999999999990 -1.5278419761816542E-031 - 71.039999999999992 -2.3980949033312003E-031 - 71.099999999999994 -3.3064817725350132E-031 - 71.159999999999997 -4.2151293296189214E-031 - 71.219999999999999 -5.0794176820843844E-031 - 71.280000000000001 -5.8489733468381312E-031 - 71.339999999999989 -6.4691176077078112E-031 - 71.399999999999991 -6.8827806379509715E-031 - 71.459999999999994 -7.0328672526962258E-031 - 71.519999999999996 -6.8650429285454803E-031 - 71.579999999999998 -6.3308709216493703E-031 - 71.640000000000001 -5.3912156962168391E-031 - 71.699999999999989 -4.0197892827709132E-031 - 71.759999999999991 -2.2066948434977760E-031 - 71.819999999999993 3.8205495304861003E-033 - 71.879999999999995 2.6822875875187118E-031 - 71.939999999999998 5.6677490786046426E-031 - 72.000000000000000 8.9099796171708098E-031 - 72.060000000000002 1.2296954291238165E-030 - 72.119999999999990 1.5689843428559400E-030 - 72.179999999999993 1.8925025884540751E-030 - 72.239999999999995 2.1817652015923788E-030 - 72.299999999999997 2.4166849523868576E-030 - 72.359999999999999 2.5762623344881805E-030 - 72.420000000000002 2.6394387594218247E-030 - 72.479999999999990 2.5861019225927487E-030 - 72.539999999999992 2.3982204330690899E-030 - 72.599999999999994 2.0610772269611018E-030 - 72.659999999999997 1.5645570983897051E-030 - 72.719999999999999 9.0443806649752705E-031 - 72.780000000000001 8.3625418719304318E-032 - 72.839999999999989 -8.8674354660269272E-031 - 72.899999999999991 -1.9863947822075984E-030 - 72.959999999999994 -3.1852937705683257E-030 - 73.019999999999996 -4.4433817153496576E-030 - 73.079999999999998 -5.7107430829746534E-030 - 73.140000000000001 -6.9282751546739567E-030 - 73.199999999999989 -8.0289105282339047E-030 - 73.259999999999991 -8.9394327200216745E-030 - 73.319999999999993 -9.5828969444454419E-030 - 73.379999999999995 -9.8816544941361337E-030 - 73.439999999999998 -9.7609242865680914E-030 - 73.500000000000000 -9.1528536668195225E-030 - 73.560000000000002 -8.0009499225915990E-030 - 73.619999999999990 -6.2647370004621349E-030 - 73.679999999999993 -3.9244575671353157E-030 - 73.739999999999995 -9.8560688371991046E-031 - 73.799999999999997 2.5169537725691079E-030 - 73.859999999999999 6.5155574529554705E-030 - 73.920000000000002 1.0907252193731984E-029 - 73.979999999999990 1.5552568720888320E-029 - 74.039999999999992 2.0275794300687176E-029 - 74.099999999999994 2.4867005189340363E-029 - 74.159999999999997 2.9086069385796406E-029 - 74.219999999999999 3.2668749213488209E-029 - 74.280000000000001 3.5334998630269043E-029 - 74.339999999999989 3.6799425072472762E-029 - 74.399999999999991 3.6783799240776515E-029 - 74.459999999999994 3.5031369705099632E-029 - 74.519999999999996 3.1322626376823138E-029 - 74.579999999999998 2.5492022459393325E-029 - 74.640000000000001 1.7445009133802908E-029 - 74.699999999999989 7.1746926265145005E-030 - 74.759999999999991 -5.2227928157692518E-030 - 74.819999999999993 -1.9535092846842834E-029 - 74.879999999999995 -3.5423620543004456E-029 - 74.939999999999998 -5.2417730492356838E-029 - 75.000000000000000 -6.9914053371596752E-029 - 75.060000000000002 -8.7181928021877924E-029 - 75.119999999999990 -1.0337564875527997E-028 - 75.179999999999993 -1.1755418449984772E-028 - 75.239999999999995 -1.2870871337060845E-028 - 75.299999999999997 -1.3579792240951461E-028 - 75.359999999999999 -1.3779084358301841E-028 - 75.420000000000002 -1.3371654598819662E-028 - 75.479999999999990 -1.2271935366328828E-028 - 75.539999999999992 -1.0411817501373989E-028 - 75.599999999999994 -7.7467818720547976E-029 - 75.659999999999997 -4.2619751166850827E-029 - 75.719999999999999 2.2061106428470542E-031 - 75.780000000000001 5.0443190549640088E-029 - 75.839999999999989 1.0699268540503591E-028 - 75.899999999999991 1.6834163821987394E-028 - 75.959999999999994 2.3248075777450172E-028 - 76.019999999999996 2.9692975711727556E-028 - 76.079999999999998 3.5877165225238840E-028 - 76.140000000000001 4.1471300640764371E-028 - 76.199999999999989 4.6117145910154126E-028 - 76.259999999999991 4.9439131358514410E-028 - 76.319999999999993 5.1058661243721668E-028 - 76.379999999999995 5.0610933173738137E-028 - 76.439999999999998 4.7763995805938813E-028 - 76.500000000000000 4.2239449539067110E-028 - 76.560000000000002 3.3834217681650168E-028 - 76.619999999999990 2.2442514236617111E-028 - 76.679999999999993 8.0770298312235795E-029 - 76.739999999999995 -9.1117076159380677E-029 - 76.799999999999997 -2.8819007452175683E-028 - 76.859999999999999 -5.0574002609065569E-028 - 76.920000000000002 -7.3733163966049592E-028 - 76.979999999999990 -9.7480551608538268E-028 - 77.039999999999992 -1.2083601147466787E-027 - 77.099999999999994 -1.4267206512563518E-027 - 77.159999999999997 -1.6174038335039057E-027 - 77.219999999999999 -1.7670807719035306E-027 - 77.280000000000001 -1.8620388045638172E-027 - 77.339999999999989 -1.8887375418702178E-027 - 77.399999999999991 -1.8344488017280610E-027 - 77.459999999999994 -1.6879672009811921E-027 - 77.519999999999996 -1.4403689967763720E-027 - 77.579999999999998 -1.0857947497281206E-027 - 77.640000000000001 -6.2222331073003679E-028 - 77.699999999999989 -5.2201744148967656E-029 - 77.759999999999991 6.1650880159741997E-028 - 77.819999999999993 1.3704155608046304E-027 - 77.879999999999995 2.1899455870386143E-027 - 77.939999999999998 3.0493153090234481E-027 - 78.000000000000000 3.9166527304939933E-027 - 78.060000000000002 4.7544161456509152E-027 - 78.119999999999990 5.5201305241034274E-027 - 78.179999999999993 6.1674688240957264E-027 - 78.239999999999995 6.6476825300495784E-027 - 78.299999999999997 6.9113736459375725E-027 - 78.359999999999999 6.9105899382800516E-027 - 78.420000000000002 6.6011970473051606E-027 - 78.479999999999990 5.9454744175341333E-027 - 78.539999999999992 4.9148485314428810E-027 - 78.599999999999994 3.4926737939753542E-027 - 78.659999999999997 1.6769353758175508E-027 - 78.719999999999999 -5.1724745360875804E-028 - 78.780000000000001 -3.0554705806442442E-027 - 78.839999999999989 -5.8823918443929851E-027 - 78.899999999999991 -8.9207335681745975E-027 - 78.959999999999994 -1.2071090059117028E-026 - 79.019999999999996 -1.5212679644602229E-026 - 79.079999999999998 -1.8205162775201087E-026 - 79.140000000000001 -2.0891617444619259E-026 - 79.199999999999989 -2.3102730596107019E-026 - 79.259999999999991 -2.4662222728387997E-026 - 79.319999999999993 -2.5393457212661541E-026 - 79.379999999999995 -2.5127150868640301E-026 - 79.439999999999998 -2.3710013259754829E-026 - 79.500000000000000 -2.1014096898731753E-026 - 79.560000000000002 -1.6946558401913675E-026 - 79.619999999999990 -1.1459469145760000E-026 - 79.679999999999993 -4.5592678321813742E-027 - 79.739999999999995 3.6846404377153394E-027 - 79.799999999999997 1.3132634001313370E-026 - 79.859999999999999 2.3569495290584448E-026 - 79.920000000000002 3.4701489450907741E-026 - 79.979999999999990 4.6156374519516801E-026 - 80.039999999999992 5.7486831062295222E-026 - 80.099999999999994 6.8177724999119345E-026 - 80.159999999999997 7.7657524621701689E-026 - 80.219999999999999 8.5313975700846556E-026 - 80.280000000000001 9.0514139885339854E-026 - 80.340000000000003 9.2628548583867048E-026 - 80.400000000000006 9.1059119248549588E-026 - 80.460000000000008 8.5270245622736402E-026 - 80.519999999999982 7.4822210124548300E-026 - 80.579999999999984 5.9405817093409319E-026 - 80.639999999999986 3.8877007903380918E-026 - 80.699999999999989 1.3289863188983578E-026 - 80.759999999999991 -1.7073571648414072E-026 - 80.819999999999993 -5.1678569802682602E-026 - 80.879999999999995 -8.9719910085858561E-026 - 80.939999999999998 -1.3011287613948320E-025 - 81.000000000000000 -1.7149489963892195E-025 - 81.060000000000002 -2.1223943369024166E-025 - 81.120000000000005 -2.5048351862857083E-025 - 81.180000000000007 -2.8416984453153233E-025 - 81.240000000000009 -3.1110415815158430E-025 - 81.299999999999983 -3.2902754924646926E-025 - 81.359999999999985 -3.3570339859738730E-025 - 81.419999999999987 -3.2901717791458738E-025 - 81.479999999999990 -3.0708710047031818E-025 - 81.539999999999992 -2.6838244350134101E-025 - 81.599999999999994 -2.1184590835422747E-025 - 81.659999999999997 -1.3701523364678734E-025 - 81.719999999999999 -4.4138695717281437E-026 - 81.780000000000001 6.5721309554899741E-026 - 81.840000000000003 1.9060287008715683E-025 - 81.900000000000006 3.2758439640307755E-025 - 81.960000000000008 4.7275546781640510E-025 - 82.019999999999982 6.2122565256585567E-025 - 82.079999999999984 7.6717670642819642E-025 - 82.139999999999986 9.0396263959288420E-025 - 82.199999999999989 1.0242612541215109E-024 - 82.259999999999991 1.1202788218678687E-024 - 82.319999999999993 1.1840075027932345E-024 - 82.379999999999995 1.2075330085059305E-024 - 82.439999999999998 1.1833874638665206E-024 - 82.500000000000000 1.1049392831035876E-024 - 82.560000000000002 9.6680939345043681E-025 - 82.620000000000005 7.6530079110590349E-025 - 82.680000000000007 4.9882413093416811E-025 - 82.740000000000009 1.6830166137424973E-025 - 82.799999999999983 -2.2247216970850011E-025 - 82.859999999999985 -6.6653435848305288E-025 - 82.919999999999987 -1.1535461897223187E-024 - 82.979999999999990 -1.6696953594726315E-024 - 83.039999999999992 -2.1977320501885522E-024 - 83.099999999999994 -2.7171559065445276E-024 - 83.159999999999997 -3.2045715024803198E-024 - 83.219999999999999 -3.6342227597839179E-024 - 83.280000000000001 -3.9787132426101238E-024 - 83.340000000000003 -4.2099090307790835E-024 - 83.400000000000006 -4.3000157481220629E-024 - 83.460000000000008 -4.2228123377033603E-024 - 83.519999999999982 -3.9550101508883193E-024 - 83.579999999999984 -3.4777036107114767E-024 - 83.639999999999986 -2.7778615271614335E-024 - 83.699999999999989 -1.8498055533349304E-024 - 83.759999999999991 -6.9660594163412359E-025 - 83.819999999999993 6.6867138499404636E-025 - 83.879999999999995 2.2219507511908976E-024 - 83.939999999999998 3.9274356745553042E-024 - 84.000000000000000 5.7372855899698576E-024 - 84.060000000000002 7.5917516981233399E-024 - 84.120000000000005 9.4198390868444219E-024 - 84.180000000000007 1.1140544045953602E-023 - 84.240000000000009 1.2664711814461287E-023 - 84.299999999999983 1.3897522015526034E-023 - 84.359999999999985 1.4741604029310446E-023 - 84.419999999999987 1.5100739104174104E-023 - 84.479999999999990 1.4884086560773723E-023 - 84.539999999999992 1.4010842524590020E-023 - 84.599999999999994 1.2415184502240077E-023 - 84.659999999999997 1.0051355492981492E-023 - 84.719999999999999 6.8986898588895881E-024 - 84.780000000000001 2.9663437267743327E-024 - 84.840000000000003 -1.7024834564767000E-024 - 84.900000000000006 -7.0271206021499167E-024 - 84.960000000000008 -1.2887035366144887E-023 - 85.019999999999982 -1.9120754509719195E-023 - 85.079999999999984 -2.5526328616746041E-023 - 85.139999999999986 -3.1863559524144893E-023 - 85.199999999999989 -3.7858175333609736E-023 - 85.259999999999991 -4.3208052609391820E-023 - 85.319999999999993 -4.7591556348805807E-023 - 85.379999999999995 -5.0677950313680246E-023 - 85.439999999999998 -5.2139781402366515E-023 - 85.500000000000000 -5.1666994237813204E-023 - 85.560000000000002 -4.8982466495353799E-023 - 85.620000000000005 -4.3858505711856297E-023 - 85.680000000000007 -3.6133825174516286E-023 - 85.740000000000009 -2.5730278851817489E-023 - 85.799999999999983 -1.2668711989675151E-023 - 85.859999999999985 2.9169379178911601E-024 - 85.919999999999987 2.0768080981611581E-023 - 85.979999999999990 4.0493355643796873E-023 - 86.039999999999992 6.1564776854767176E-023 - 86.099999999999994 8.3318948776233545E-023 - 86.159999999999997 1.0496408236425459E-022 - 86.219999999999999 1.2559333178212176E-022 - 86.280000000000001 1.4420489627604272E-022 - 86.340000000000003 1.5972904016433733E-022 - 86.400000000000006 1.7106193504231249E-022 - 86.460000000000008 1.7710591550116994E-022 - 86.519999999999982 1.7681553900647920E-022 - 86.579999999999984 1.6924822656259548E-022 - 86.639999999999986 1.5361829750742239E-022 - 86.699999999999989 1.2935248846140694E-022 - 86.759999999999991 9.6144936248202171E-023 - 86.819999999999993 5.4009409496955342E-023 - 86.879999999999995 3.3260769512932469E-024 - 86.939999999999998 -5.5119804006293586E-023 - 87.000000000000000 -1.2011011168304904E-022 - 87.060000000000002 -1.8997960824480102E-022 - 87.120000000000005 -2.6261782641405724E-022 - 87.180000000000007 -3.3548936771826441E-022 - 87.240000000000009 -4.0567443898265766E-022 - 87.299999999999983 -4.6993081302267663E-022 - 87.359999999999985 -5.2477790031692362E-022 - 87.419999999999987 -5.6660253943415981E-022 - 87.479999999999990 -5.9178562655634451E-022 - 87.539999999999992 -5.9684715340611578E-022 - 87.599999999999994 -5.7860658064545551E-022 - 87.659999999999997 -5.3435425606675342E-022 - 87.719999999999999 -4.6202866698986908E-022 - 87.780000000000001 -3.6039328706672169E-022 - 87.840000000000003 -2.2920578413265236E-022 - 87.900000000000006 -6.9371853736216045E-023 - 87.960000000000008 1.1692434467337543E-022 - 88.019999999999982 3.2612240630725208E-022 - 88.079999999999984 5.5322735572558665E-022 - 88.139999999999986 7.9180071425746476E-022 - 88.199999999999989 1.0340067325730160E-021 - 88.259999999999991 1.2707199291907795E-021 - 88.319999999999993 1.4916990261562274E-021 - 88.379999999999995 1.6858291843104585E-021 - 88.439999999999998 1.8414329205894961E-021 - 88.500000000000000 1.9466465187211523E-021 - 88.560000000000002 1.9898587531140380E-021 - 88.620000000000005 1.9602004132897837E-021 - 88.680000000000007 1.8480754362258213E-021 - 88.740000000000009 1.6457179630268920E-021 - 88.799999999999983 1.3477571224753019E-021 - 88.859999999999985 9.5177021224781171E-022 - 88.919999999999987 4.5879841335834158E-022 - 88.979999999999990 -1.2619565411555553E-022 - 89.039999999999992 -7.9395963027561948E-022 - 89.099999999999994 -1.5306942510471486E-021 - 89.159999999999997 -2.3179371680545938E-021 - 89.219999999999999 -3.1326088989470531E-021 - 89.280000000000001 -3.9472444022441840E-021 - 89.340000000000003 -4.7304269733110073E-021 - 89.400000000000006 -5.4474364860175215E-021 - 89.460000000000008 -6.0611170370516181E-021 - 89.519999999999982 -6.5329623046797695E-021 - 89.579999999999984 -6.8244100666720025E-021 - 89.639999999999986 -6.8983210841982171E-021 - 89.699999999999989 -6.7206171056101229E-021 - 89.759999999999991 -6.2620346525308742E-021 - 89.819999999999993 -5.4999476299607155E-021 - 89.879999999999995 -4.4201928251795280E-021 - 89.939999999999998 -3.0188379971746699E-021 - 90.000000000000000 -1.3038094855874994E-021 - 90.060000000000002 7.0369327716694671E-022 - 90.120000000000005 2.9680902868810120E-021 - 90.180000000000007 5.4386913228072065E-021 - 90.240000000000009 8.0494394637169835E-021 - 90.299999999999983 1.0719189043859241E-020 - 90.359999999999985 1.3352594381914310E-020 - 90.419999999999987 1.5841645237299458E-020 - 90.479999999999990 1.8067907269874460E-020 - 90.539999999999992 1.9905452692715800E-020 - 90.599999999999994 2.1224498983133609E-020 - 90.659999999999997 2.1895696117319200E-020 - 90.719999999999999 2.1795018452727812E-020 - 90.780000000000001 2.0809152683523863E-020 - 90.840000000000003 1.8841273055843442E-020 - 90.900000000000006 1.5817035296644442E-020 - 90.960000000000008 1.1690613824726118E-020 - 91.019999999999982 6.4505772585986180E-021 - 91.079999999999984 1.2538601484390195E-022 - 91.139999999999986 -7.2117805423191655E-021 - 91.199999999999989 -1.5439048691704401E-020 - 91.259999999999991 -2.4383065645224357E-020 - 91.319999999999993 -3.3817590956061202E-020 - 91.379999999999995 -4.3463759171742233E-020 - 91.439999999999998 -5.2992179257284606E-020 - 91.500000000000000 -6.2027082925685415E-020 - 91.560000000000002 -7.0152592123774719E-020 - 91.620000000000005 -7.6921283973193080E-020 - 91.680000000000007 -8.1864837093576632E-020 - 91.739999999999981 -8.4506877943282880E-020 - 91.799999999999983 -8.4377742627540705E-020 - 91.859999999999985 -8.1030816635137927E-020 - 91.919999999999987 -7.4060130566103525E-020 - 91.979999999999990 -6.3118668092066878E-020 - 92.039999999999992 -4.7936751626074691E-020 - 92.099999999999994 -2.8339955850849788E-020 - 92.159999999999997 -4.2654210829001471E-021 - 92.219999999999999 2.4223970249230489E-020 - 92.280000000000001 5.6928538591083284E-020 - 92.340000000000003 9.3504989357332013E-020 - 92.400000000000006 1.3346475695879841E-019 - 92.460000000000008 1.7617800180755083E-019 - 92.519999999999982 2.2088460226395651E-019 - 92.579999999999984 2.6671246747124600E-019 - 92.639999999999986 3.1270390807372108E-019 - 92.699999999999989 3.5785072008787952E-019 - 92.759999999999991 4.0113711561837722E-019 - 92.819999999999993 4.4159228139613608E-019 - 92.879999999999995 4.7834943612258321E-019 - 92.939999999999998 5.1071489488472937E-019 - 93.000000000000000 5.3824166656673070E-019 - 93.060000000000002 5.6080973268644581E-019 - 93.120000000000005 5.7870962612368746E-019 - 93.180000000000007 5.9273026027925289E-019 - 93.239999999999981 6.0424623058766018E-019 - 93.299999999999983 6.1530478912752883E-019 - 93.359999999999985 6.2870657524983693E-019 - 93.419999999999987 6.4808463025424921E-019 - 93.479999999999990 6.7797379893684719E-019 - 93.539999999999992 7.2386729264386577E-019 - 93.599999999999994 7.9226410516932943E-019 - 93.659999999999997 8.9069984510937897E-019 - 93.719999999999999 1.0277591480118285E-018 - 93.780000000000001 1.2130749644641495E-018 - 93.840000000000003 1.4572972132402822E-018 - 93.900000000000006 1.7720499139383099E-018 - 93.960000000000008 2.1698659669778614E-018 - 94.019999999999982 2.6640932751267734E-018 - 94.079999999999984 3.2687924551779877E-018 - 94.139999999999986 3.9986045044095951E-018 - 94.199999999999989 4.8685986930871361E-018 - 94.259999999999991 5.8941316659172987E-018 - 94.319999999999993 7.0906643271141622E-018 - 94.379999999999995 8.4736086359766990E-018 - 94.439999999999998 1.0058153346473003E-017 - 94.500000000000000 1.1859106607535888E-017 - 94.560000000000002 1.3890762460696353E-017 - 94.620000000000005 1.6166782936800760E-017 - 94.680000000000007 1.8700106309682868E-017 - 94.739999999999981 2.1502914236713103E-017 - 94.799999999999983 2.4586612311308745E-017 - 94.859999999999985 2.7961847295398376E-017 - 94.919999999999987 3.1638624232319636E-017 - 94.979999999999990 3.5626392752937151E-017 - 95.039999999999992 3.9934189138267046E-017 - 95.099999999999994 4.4570804271822312E-017 - 95.159999999999997 4.9545003440571472E-017 - 95.219999999999999 5.4865572433739025E-017 - 95.280000000000001 6.0541431188809854E-017 - 95.340000000000003 6.6581606701998473E-017 - 95.400000000000006 7.2994924958585608E-017 - 95.460000000000008 7.9789677569943879E-017 - 95.519999999999982 8.6972767992267404E-017 - 95.579999999999984 9.4548577589923833E-017 - 95.639999999999986 1.0251725355956719E-016 - 95.699999999999989 1.1087238524874759E-016 - 95.759999999999991 1.1959773353365487E-016 - 95.819999999999993 1.2866328062171405E-016 - 95.879999999999995 1.3801985532898184E-016 - 95.939999999999998 1.4759261853682737E-016 - 96.000000000000000 1.5727270214870650E-016 - 96.060000000000002 1.6690724254484577E-016 - 96.120000000000005 1.7628704820308987E-016 - 96.180000000000007 1.8513223290343738E-016 - 96.239999999999981 1.9307422836437664E-016 - 96.299999999999983 1.9963580454258856E-016 - 96.359999999999985 2.0420605094707528E-016 - 96.419999999999987 2.0601243900242393E-016 - 96.479999999999990 2.0408778714897611E-016 - 96.539999999999992 1.9723271730987615E-016 - 96.599999999999994 1.8397047809681782E-016 - 96.659999999999997 1.6249768820394052E-016 - 96.719999999999999 1.3062652094762382E-016 - 96.780000000000001 8.5720003963195122E-017 - 96.840000000000003 2.4615024554172439E-017 - 96.900000000000006 -5.6463948094394022E-017 - 96.960000000000008 -1.6199641067248506E-016 - 97.019999999999982 -2.9728222829504140E-016 - 97.079999999999984 -4.6856541219786931E-016 - 97.139999999999986 -6.8317415705667147E-016 - 97.199999999999989 -9.4968764981235078E-016 - 97.259999999999991 -1.2781092392287712E-015 - 97.319999999999993 -1.6800921258460999E-015 - 97.379999999999995 -2.1691566299706888E-015 - 97.439999999999998 -2.7609805627108977E-015 - 97.500000000000000 -3.4736832568087574E-015 - 97.560000000000002 -4.3281997406344986E-015 - 97.620000000000005 -5.3486405442906066E-015 - 97.680000000000007 -6.5627716696659171E-015 - 97.739999999999981 -8.0025039130270481E-015 - 97.799999999999983 -9.7044696376328861E-015 - 97.859999999999985 -1.1710686660494074E-014 - 97.919999999999987 -1.4069278462070387E-014 - 97.979999999999990 -1.6835296199304246E-014 - 98.039999999999992 -2.0071676641937377E-014 - 98.099999999999994 -2.3850265777748522E-014 - 98.159999999999997 -2.8253047512392837E-014 - 98.219999999999999 -3.3373430637317874E-014 - 98.280000000000001 -3.9317800624494827E-014 - 98.340000000000003 -4.6207151261695815E-014 - 98.400000000000006 -5.4178988661980759E-014 - 98.460000000000008 -6.3389395505671210E-014 - 98.519999999999982 -7.4015359316974844E-014 - 98.579999999999984 -8.6257465115983971E-014 - 98.639999999999986 -1.0034263247887647E-013 - 98.699999999999989 -1.1652758018469487E-013 - 98.759999999999991 -1.3510203531403477E-013 - 98.819999999999993 -1.5639299574995022E-013 - 98.879999999999995 -1.8076903505693867E-013 - 98.939999999999998 -2.0864481072169132E-013 - 99.000000000000000 -2.4048660420319724E-013 - 99.060000000000002 -2.7681799588512752E-013 - 99.120000000000005 -3.1822621242249593E-013 - 99.180000000000007 -3.6536915285757550E-013 - 99.239999999999981 -4.1898274032322924E-013 - 99.299999999999983 -4.7988885578528235E-013 - 99.359999999999985 -5.4900518566225141E-013 - 99.419999999999987 -6.2735392186290863E-013 - 99.479999999999990 -7.1607230665021831E-013 - 99.539999999999992 -8.1642422987093552E-013 - 99.599999999999994 -9.2981138726573406E-013 - 99.659999999999997 -1.0577876465381847E-012 - 99.719999999999999 -1.2020701514946108E-012 - 99.780000000000001 -1.3645561629748928E-012 - 99.840000000000003 -1.5473365904348730E-012 - 99.900000000000006 -1.7527126669483784E-012 - 99.960000000000008 -1.9832107582904787E-012 - 100.01999999999998 -2.2416025972586333E-012 - 100.07999999999998 -2.5309188304555445E-012 - 100.13999999999999 -2.8544705548199862E-012 - 100.19999999999999 -3.2158612559648954E-012 - 100.25999999999999 -3.6190079434635449E-012 - 100.31999999999999 -4.0681555420699473E-012 - 100.38000000000000 -4.5678945974708659E-012 - 100.44000000000000 -5.1231681669583109E-012 - 100.50000000000000 -5.7392874505401554E-012 - 100.56000000000000 -6.4219378526032040E-012 - 100.62000000000000 -7.1771816609237420E-012 - 100.68000000000001 -8.0114496972782720E-012 - 100.73999999999998 -8.9315424866807672E-012 - 100.79999999999998 -9.9445985048466227E-012 - 100.85999999999999 -1.1058073900968315E-011 - 100.91999999999999 -1.2279696967237655E-011 - 100.97999999999999 -1.3617407831816514E-011 - 101.03999999999999 -1.5079283975009004E-011 - 101.09999999999999 -1.6673439085848236E-011 - 101.16000000000000 -1.8407897818045238E-011 - 101.22000000000000 -2.0290437039286654E-011 - 101.28000000000000 -2.2328389289715201E-011 - 101.34000000000000 -2.4528399342721942E-011 - 101.40000000000001 -2.6896149860691071E-011 - 101.46000000000001 -2.9435993613277481E-011 - 101.51999999999998 -3.2150533879602975E-011 - 101.57999999999998 -3.5040126653185004E-011 - 101.63999999999999 -3.8102285205457819E-011 - 101.69999999999999 -4.1330979189197581E-011 - 101.75999999999999 -4.4715779032420783E-011 - 101.81999999999999 -4.8240907942630450E-011 - 101.88000000000000 -5.1884065801471975E-011 - 101.94000000000000 -5.5615121209751153E-011 - 102.00000000000000 -5.9394562338111999E-011 - 102.06000000000000 -6.3171661798507478E-011 - 102.12000000000000 -6.6882387143976661E-011 - 102.18000000000001 -7.0446972507762851E-011 - 102.23999999999998 -7.3767178548309924E-011 - 102.29999999999998 -7.6722992839532141E-011 - 102.35999999999999 -7.9168913536656566E-011 - 102.41999999999999 -8.0929777775543843E-011 - 102.47999999999999 -8.1795913125999205E-011 - 102.53999999999999 -8.1517458139845222E-011 - 102.59999999999999 -7.9798014935148920E-011 - 102.66000000000000 -7.6287389401856853E-011 - 102.72000000000000 -7.0573459140733403E-011 - 102.78000000000000 -6.2172505694368980E-011 - 102.84000000000000 -5.0518538378677552E-011 - 102.90000000000001 -3.4951574882233066E-011 - 102.96000000000001 -1.4703369427946567E-011 - 103.01999999999998 1.1117851084403755E-011 - 103.07999999999998 4.3545597486826208E-011 - 103.13999999999999 8.3773953821254613E-011 - 103.19999999999999 1.3318093993093972E-010 - 103.25999999999999 1.9335341775824308E-010 - 103.31999999999999 2.6611606216198970E-010 - 103.38000000000000 3.5356284969191285E-010 - 103.44000000000000 4.5809401023271950E-010 - 103.50000000000000 5.8245535890480685E-010 - 103.56000000000000 7.2978367314747377E-010 - 103.62000000000000 9.0365980319031868E-010 - 103.68000000000001 1.1081637389007017E-009 - 103.73999999999998 1.3479377880538991E-009 - 103.79999999999998 1.6282602743422280E-009 - 103.85999999999999 1.9551230024114646E-009 - 103.91999999999999 2.3353195470225878E-009 - 103.97999999999999 2.7765490858651915E-009 - 104.03999999999999 3.2875213970382164E-009 - 104.09999999999999 3.8780821802382381E-009 - 104.16000000000000 4.5593448000345319E-009 - 104.22000000000000 5.3438568397795884E-009 - 104.28000000000000 6.2457532117496953E-009 - 104.34000000000000 7.2809440858894431E-009 - 104.40000000000001 8.4673366400480027E-009 - 104.46000000000001 9.8250433307631076E-009 - 104.51999999999998 1.1376654882849787E-008 - 104.57999999999998 1.3147516093325113E-008 - 104.63999999999999 1.5166031713985656E-008 - 104.69999999999999 1.7464013127629059E-008 - 104.75999999999999 2.0077050648125005E-008 - 104.81999999999999 2.3044941230036629E-008 - 104.88000000000000 2.6412150666391587E-008 - 104.94000000000000 3.0228315275124893E-008 - 105.00000000000000 3.4548795838490016E-008 - 105.06000000000000 3.9435266328994109E-008 - 105.12000000000000 4.4956466758715011E-008 - 105.18000000000001 5.1188817047867718E-008 - 105.23999999999998 5.8217370305996419E-008 - 105.29999999999998 6.6136558269632415E-008 - 105.35999999999999 7.5051277393477456E-008 - 105.41999999999999 8.5077898035140912E-008 - 105.47999999999999 9.6345444153089561E-008 - 105.53999999999999 1.0899683764927722E-007 - 105.59999999999999 1.2319033678455596E-007 - 105.66000000000000 1.3910096854434746E-007 - 105.72000000000000 1.5692226739082899E-007 - 105.78000000000000 1.7686801868647187E-007 - 105.84000000000000 1.9917421289911998E-007 - 105.90000000000001 2.2410133801468629E-007 - 105.96000000000001 2.5193627190022449E-007 - 106.01999999999998 2.8299528662761280E-007 - 106.07999999999998 3.1762638758773979E-007 - 106.13999999999999 3.5621260256381213E-007 - 106.19999999999999 3.9917495062704362E-007 - 106.25999999999999 4.4697577496621516E-007 - 106.31999999999999 5.0012293950291806E-007 - 106.38000000000000 5.5917352191459469E-007 - 106.44000000000000 6.2473822500745472E-007 - 106.50000000000000 6.9748623799221158E-007 - 106.56000000000000 7.7815008016171690E-007 - 106.62000000000000 8.6753131083649980E-007 - 106.68000000000001 9.6650637428067053E-007 - 106.73999999999998 1.0760330722770088E-006 - 106.79999999999998 1.1971567072268091E-006 - 106.85999999999999 1.3310183439304367E-006 - 106.91999999999999 1.4788623033640868E-006 - 106.97999999999999 1.6420441578288860E-006 - 107.03999999999999 1.8220398161079053E-006 - 107.09999999999999 2.0204554561902446E-006 - 107.16000000000000 2.2390384904682611E-006 - 107.22000000000000 2.4796870608930940E-006 - 107.28000000000000 2.7444635957086061E-006 - 107.34000000000000 3.0356039465058467E-006 - 107.40000000000001 3.3555355180097707E-006 - 107.46000000000001 3.7068872837882185E-006 - 107.51999999999998 4.0925078292966264E-006 - 107.57999999999998 4.5154780331476900E-006 - 107.63999999999999 4.9791306451855371E-006 - 107.69999999999999 5.4870677192014819E-006 - 107.75999999999999 6.0431801078331500E-006 - 107.81999999999999 6.6516666378782548E-006 - 107.88000000000000 7.3170545389178829E-006 - 107.94000000000000 8.0442233794238445E-006 - 108.00000000000000 8.8384290005872032E-006 - 108.06000000000000 9.7053271154593869E-006 - 108.12000000000000 1.0650999498318618E-005 - 108.18000000000001 1.1681981933498137E-005 - 108.23999999999998 1.2805296020186743E-005 - 108.29999999999998 1.4028472642160614E-005 - 108.35999999999999 1.5359589368504693E-005 - 108.41999999999999 1.6807301572419492E-005 - 108.47999999999999 1.8380881207345856E-005 - 108.53999999999999 2.0090237878125468E-005 - 108.59999999999999 2.1945980665355949E-005 - 108.66000000000000 2.3959435416793341E-005 - 108.72000000000000 2.6142695569376912E-005 - 108.78000000000000 2.8508665385020149E-005 - 108.84000000000000 3.1071099162266127E-005 - 108.90000000000001 3.3844648607062973E-005 - 108.96000000000001 3.6844903511018120E-005 - 109.01999999999998 4.0088449092018855E-005 - 109.07999999999998 4.3592918669381424E-005 - 109.13999999999999 4.7377023673972725E-005 - 109.19999999999999 5.1460626201594049E-005 - 109.25999999999999 5.5864784026327407E-005 - 109.31999999999999 6.0611808730930388E-005 - 109.38000000000000 6.5725311408129113E-005 - 109.44000000000000 7.1230268452402513E-005 - 109.50000000000000 7.7153075015821203E-005 - 109.56000000000000 8.3521616913714383E-005 - 109.62000000000000 9.0365307283707261E-005 - 109.68000000000001 9.7715144719165629E-005 - 109.73999999999998 1.0560379699129732E-004 - 109.79999999999998 1.1406563500984779E-004 - 109.85999999999999 1.2313681329877729E-004 - 109.91999999999999 1.3285529173192979E-004 - 109.97999999999999 1.4326095234339016E-004 - 110.03999999999999 1.5439560050557559E-004 - 110.09999999999999 1.6630308104750957E-004 - 110.16000000000000 1.7902921214523832E-004 - 110.22000000000000 1.9262200377877231E-004 - 110.28000000000000 2.0713157106737269E-004 - 110.34000000000000 2.2261028647171233E-004 - 110.40000000000001 2.3911270903423387E-004 - 110.46000000000001 2.5669573141235037E-004 - 110.51999999999998 2.7541858508160825E-004 - 110.57999999999998 2.9534285929850424E-004 - 110.63999999999999 3.1653250365570363E-004 - 110.69999999999999 3.3905398275692686E-004 - 110.75999999999999 3.6297615496344240E-004 - 110.81999999999999 3.8837026161271632E-004 - 110.88000000000000 4.1531013475048904E-004 - 110.94000000000000 4.4387198457589730E-004 - 111.00000000000000 4.7413452818469560E-004 - 111.06000000000000 5.0617895684252896E-004 - 111.12000000000000 5.4008882078750392E-004 - 111.18000000000001 5.7595016853179614E-004 - 111.23999999999998 6.1385127384479168E-004 - 111.29999999999998 6.5388282226242964E-004 - 111.35999999999999 6.9613768978659264E-004 - 111.41999999999999 7.4071103906104879E-004 - 111.47999999999999 7.8770007337606988E-004 - 111.53999999999999 8.3720390049850737E-004 - 111.59999999999999 8.8932377116710340E-004 - 111.66000000000000 9.4416251813330169E-004 - 111.72000000000000 1.0018247208924682E-003 - 111.78000000000000 1.0624165691564139E-003 - 111.84000000000000 1.1260453506460933E-003 - 111.90000000000001 1.1928198562364627E-003 - 111.96000000000001 1.2628497433869090E-003 - 112.01999999999998 1.3362454199574957E-003 - 112.07999999999998 1.4131182921364020E-003 - 112.13999999999999 1.4935795569895839E-003 - 112.19999999999999 1.5777407849469544E-003 - 112.25999999999999 1.6657136609627998E-003 - 112.31999999999999 1.7576090743169352E-003 - 112.38000000000000 1.8535375517244065E-003 - 112.44000000000000 1.9536083984176265E-003 - 112.50000000000000 2.0579299897952805E-003 - 112.56000000000000 2.1666085838396502E-003 - 112.62000000000000 2.2797487599919859E-003 - 112.68000000000001 2.3974527638739103E-003 - 112.73999999999998 2.5198200488752509E-003 - 112.79999999999998 2.6469467762511040E-003 - 112.85999999999999 2.7789260948693764E-003 - 112.91999999999999 2.9158469881245853E-003 - 112.97999999999999 3.0577940467787787E-003 - 113.03999999999999 3.2048469742737232E-003 - 113.09999999999999 3.3570808149968765E-003 - 113.16000000000000 3.5145645872074588E-003 - 113.22000000000000 3.6773612867366558E-003 - 113.28000000000000 3.8455275056405356E-003 - 113.34000000000000 4.0191124958253990E-003 - 113.40000000000001 4.1981585166882491E-003 - 113.46000000000001 4.3827001742010362E-003 - 113.51999999999998 4.5727624056232314E-003 - 113.57999999999998 4.7683628039242674E-003 - 113.63999999999999 4.9695084514991619E-003 - 113.69999999999999 5.1761974421492699E-003 - 113.75999999999999 5.3884170871006422E-003 - 113.81999999999999 5.6061446873459974E-003 - 113.88000000000000 5.8293457145006658E-003 - 113.94000000000000 6.0579750112020022E-003 - 114.00000000000000 6.2919745924838863E-003 - 114.06000000000000 6.5312745931271413E-003 - 114.12000000000000 6.7757925054610741E-003 - 114.18000000000001 7.0254333663907799E-003 - 114.23999999999998 7.2800874613090545E-003 - 114.29999999999998 7.5396330216044079E-003 - 114.35999999999999 7.8039331001726886E-003 - 114.41999999999999 8.0728380511537485E-003 - 114.47999999999999 8.3461818737930980E-003 - 114.53999999999999 8.6237870314177460E-003 - 114.59999999999999 8.9054581560623746E-003 - 114.66000000000000 9.1909863049960058E-003 - 114.72000000000000 9.4801483442702381E-003 - 114.78000000000000 9.7727054758378114E-003 - 114.84000000000000 1.0068404524340114E-002 - 114.90000000000001 1.0366976489152512E-002 - 114.96000000000001 1.0668138590136803E-002 - 115.01999999999998 1.0971593286292290E-002 - 115.07999999999998 1.1277028848544153E-002 - 115.13999999999999 1.1584118514130715E-002 - 115.19999999999999 1.1892522958320011E-002 - 115.25999999999999 1.2201887309291726E-002 - 115.31999999999999 1.2511844640178174E-002 - 115.38000000000000 1.2822016527806566E-002 - 115.44000000000000 1.3132009262831746E-002 - 115.50000000000000 1.3441420676742949E-002 - 115.56000000000000 1.3749835031915880E-002 - 115.62000000000000 1.4056827477480455E-002 - 115.68000000000001 1.4361962550563885E-002 - 115.73999999999998 1.4664795709124205E-002 - 115.79999999999998 1.4964874176183971E-002 - 115.85999999999999 1.5261738209091002E-002 - 115.91999999999999 1.5554919964947168E-002 - 115.97999999999999 1.5843947090697717E-002 - 116.03999999999999 1.6128341637112069E-002 - 116.09999999999999 1.6407621096303664E-002 - 116.16000000000000 1.6681302492284528E-002 - 116.22000000000000 1.6948899761481378E-002 - 116.28000000000000 1.7209923784661456E-002 - 116.34000000000000 1.7463888793815042E-002 - 116.40000000000001 1.7710309679780448E-002 - 116.46000000000001 1.7948702507650190E-002 - 116.51999999999998 1.8178589816321051E-002 - 116.57999999999998 1.8399496487358925E-002 - 116.63999999999999 1.8610957690636407E-002 - 116.69999999999999 1.8812509545889276E-002 - 116.75999999999999 1.9003702434656353E-002 - 116.81999999999999 1.9184093768798170E-002 - 116.88000000000000 1.9353252357273015E-002 - 116.94000000000000 1.9510760922275709E-002 - 117.00000000000000 1.9656213768044932E-002 - 117.06000000000000 1.9789218536770764E-002 - 117.12000000000000 1.9909400712589946E-002 - 117.18000000000001 2.0016401555404364E-002 - 117.23999999999998 2.0109880333465582E-002 - 117.29999999999998 2.0189514149291980E-002 - 117.35999999999999 2.0255003441162392E-002 - 117.41999999999999 2.0306066746816964E-002 - 117.47999999999999 2.0342445252630563E-002 - 117.53999999999999 2.0363901473246817E-002 - 117.59999999999999 2.0370222809296477E-002 - 117.66000000000000 2.0361222361411122E-002 - 117.72000000000000 2.0336736265165623E-002 - 117.78000000000000 2.0296625880466497E-002 - 117.84000000000000 2.0240777747451363E-002 - 117.90000000000001 2.0169108921889736E-002 - 117.96000000000001 2.0081562700411199E-002 - 118.01999999999998 1.9978107662998380E-002 - 118.07999999999998 1.9858742058459087E-002 - 118.13999999999999 1.9723493351786778E-002 - 118.19999999999999 1.9572414827755118E-002 - 118.25999999999999 1.9405589188174675E-002 - 118.31999999999999 1.9223127610473321E-002 - 118.38000000000000 1.9025169004341102E-002 - 118.44000000000000 1.8811881054944853E-002 - 118.50000000000000 1.8583459657011244E-002 - 118.56000000000000 1.8340125750158760E-002 - 118.62000000000000 1.8082130721009251E-002 - 118.68000000000001 1.7809752374175456E-002 - 118.73999999999998 1.7523291122668479E-002 - 118.79999999999998 1.7223077024292061E-002 - 118.85999999999999 1.6909462428072172E-002 - 118.91999999999999 1.6582821769844193E-002 - 118.97999999999999 1.6243556605828682E-002 - 119.03999999999999 1.5892091576804580E-002 - 119.09999999999999 1.5528866424264274E-002 - 119.16000000000000 1.5154346030971396E-002 - 119.22000000000000 1.4769012445234318E-002 - 119.28000000000000 1.4373367417786708E-002 - 119.34000000000000 1.3967929488035423E-002 - 119.40000000000001 1.3553231149937043E-002 - 119.46000000000001 1.3129819295162990E-002 - 119.51999999999998 1.2698255252112952E-002 - 119.57999999999998 1.2259111917619752E-002 - 119.63999999999999 1.1812970721860527E-002 - 119.69999999999999 1.1360423773408361E-002 - 119.75999999999999 1.0902070953198126E-002 - 119.81999999999999 1.0438516159613777E-002 - 119.88000000000000 9.9703699000695985E-003 - 119.94000000000000 9.4982452006376512E-003 - 120.00000000000000 9.0227577027791033E-003 - 120.06000000000000 8.5445221732473511E-003 - 120.12000000000000 8.0641536256609806E-003 - 120.18000000000001 7.5822630429403836E-003 - 120.23999999999998 7.0994596039449485E-003 - 120.29999999999998 6.6163458327437733E-003 - 120.35999999999999 6.1335190117409698E-003 - 120.41999999999999 5.6515679909091643E-003 - 120.47999999999999 5.1710726824282750E-003 - 120.53999999999999 4.6926033640359117E-003 - 120.59999999999999 4.2167177820412330E-003 - 120.66000000000000 3.7439626100469236E-003 - 120.72000000000000 3.2748699746718993E-003 - 120.78000000000000 2.8099579934597594E-003 - 120.84000000000000 2.3497288609951807E-003 - 120.90000000000001 1.8946688408406696E-003 - 120.95999999999998 1.4452465620482999E-003 - 121.01999999999998 1.0019123931866145E-003 - 121.07999999999998 5.6509771467603653E-004 - 121.13999999999999 1.3521514385507813E-004 - 121.19999999999999 -2.8734311766399987E-004 - 121.25999999999999 -7.0220549765693488E-004 - 121.31999999999999 -1.1090211245748400E-003 - 121.38000000000000 -1.5074608495039099E-003 - 121.44000000000000 -1.8972172730333530E-003 - 121.50000000000000 -2.2780049437126837E-003 - 121.56000000000000 -2.6495605892447823E-003 - 121.62000000000000 -3.0116432729799685E-003 - 121.68000000000001 -3.3640345951539917E-003 - 121.73999999999998 -3.7065381775465713E-003 - 121.79999999999998 -4.0389798064797344E-003 - 121.85999999999999 -4.3612077348024010E-003 - 121.91999999999999 -4.6730920552080415E-003 - 121.97999999999999 -4.9745252852814101E-003 - 122.03999999999999 -5.2654202058711238E-003 - 122.09999999999999 -5.5457107964841604E-003 - 122.16000000000000 -5.8153524895883518E-003 - 122.22000000000000 -6.0743199217463215E-003 - 122.28000000000000 -6.3226083674397483E-003 - 122.34000000000000 -6.5602312931353707E-003 - 122.40000000000001 -6.7872213147450022E-003 - 122.45999999999998 -7.0036283789985648E-003 - 122.51999999999998 -7.2095206741336843E-003 - 122.57999999999998 -7.4049814155300632E-003 - 122.63999999999999 -7.5901118261442200E-003 - 122.69999999999999 -7.7650259917982634E-003 - 122.75999999999999 -7.9298543347611182E-003 - 122.81999999999999 -8.0847396210398173E-003 - 122.88000000000000 -8.2298380611706898E-003 - 122.94000000000000 -8.3653169453233329E-003 - 123.00000000000000 -8.4913563237029189E-003 - 123.06000000000000 -8.6081451227971988E-003 - 123.12000000000000 -8.7158831288446370E-003 - 123.18000000000001 -8.8147787924813779E-003 - 123.23999999999998 -8.9050478299088388E-003 - 123.29999999999998 -8.9869133299215996E-003 - 123.35999999999999 -9.0606046184901912E-003 - 123.41999999999999 -9.1263578960489224E-003 - 123.47999999999999 -9.1844122648401579E-003 - 123.53999999999999 -9.2350121709887049E-003 - 123.59999999999999 -9.2784038861161225E-003 - 123.66000000000000 -9.3148373755803579E-003 - 123.72000000000000 -9.3445641855333383E-003 - 123.78000000000000 -9.3678368109448209E-003 - 123.84000000000000 -9.3849091690882940E-003 - 123.90000000000001 -9.3960325755429886E-003 - 123.95999999999998 -9.4014611604628182E-003 - 124.01999999999998 -9.4014440382881870E-003 - 124.07999999999998 -9.3962307944488888E-003 - 124.13999999999999 -9.3860675932003652E-003 - 124.19999999999999 -9.3711983821685423E-003 - 124.25999999999999 -9.3518633227633128E-003 - 124.31999999999999 -9.3282987846445425E-003 - 124.38000000000000 -9.3007369462518620E-003 - 124.44000000000000 -9.2694052378396018E-003 - 124.50000000000000 -9.2345263585662026E-003 - 124.56000000000000 -9.1963170680700486E-003 - 124.62000000000000 -9.1549882018912201E-003 - 124.68000000000001 -9.1107466702029186E-003 - 124.73999999999998 -9.0637921718925187E-003 - 124.79999999999998 -9.0143181701834111E-003 - 124.85999999999999 -8.9625111937771257E-003 - 124.91999999999999 -8.9085522964392552E-003 - 124.97999999999999 -8.8526159944700162E-003 - 125.03999999999999 -8.7948691581455733E-003 - 125.09999999999999 -8.7354710618002766E-003 - 125.16000000000000 -8.6745771867632777E-003 - 125.22000000000000 -8.6123331065030648E-003 - 125.28000000000000 -8.5488780132522511E-003 - 125.34000000000000 -8.4843462003820775E-003 - 125.40000000000001 -8.4188627093099867E-003 - 125.45999999999998 -8.3525473123264287E-003 - 125.51999999999998 -8.2855128337181640E-003 - 125.57999999999998 -8.2178649010062124E-003 - 125.63999999999999 -8.1497043076002203E-003 - 125.69999999999999 -8.0811240943925149E-003 - 125.75999999999999 -8.0122112628204130E-003 - 125.81999999999999 -7.9430481789768623E-003 - 125.88000000000000 -7.8737096998053938E-003 - 125.94000000000000 -7.8042651727133483E-003 - 126.00000000000000 -7.7347790915235654E-003 - 126.06000000000000 -7.6653109913050882E-003 - 126.12000000000000 -7.5959155297518292E-003 - 126.18000000000001 -7.5266407441039497E-003 - 126.23999999999998 -7.4575317317271527E-003 - 126.29999999999998 -7.3886279915757868E-003 - 126.35999999999999 -7.3199653960174041E-003 - 126.41999999999999 -7.2515751459752082E-003 - 126.47999999999999 -7.1834854779091826E-003 - 126.53999999999999 -7.1157209317573560E-003 - 126.59999999999999 -7.0483015204019332E-003 - 126.66000000000000 -6.9812451735761461E-003 - 126.72000000000000 -6.9145656729059672E-003 - 126.78000000000000 -6.8482749325060469E-003 - 126.84000000000000 -6.7823825517546567E-003 - 126.90000000000001 -6.7168939698973992E-003 - 126.95999999999998 -6.6518139751399353E-003 - 127.01999999999998 -6.5871445218652867E-003 - 127.07999999999998 -6.5228858219560388E-003 - 127.13999999999999 -6.4590364224137832E-003 - 127.19999999999999 -6.3955936055089067E-003 - 127.25999999999999 -6.3325524381200324E-003 - 127.31999999999999 -6.2699076471715940E-003 - 127.38000000000000 -6.2076522606685156E-003 - 127.44000000000000 -6.1457791314758854E-003 - 127.50000000000000 -6.0842791816850591E-003 - 127.56000000000000 -6.0231434628455803E-003 - 127.62000000000000 -5.9623622973773837E-003 - 127.68000000000001 -5.9019253786951253E-003 - 127.73999999999998 -5.8418221709780780E-003 - 127.79999999999998 -5.7820416430987885E-003 - 127.85999999999999 -5.7225736911215783E-003 - 127.91999999999999 -5.6634068742633719E-003 - 127.97999999999999 -5.6045304824661824E-003 - 128.03999999999999 -5.5459334757009112E-003 - 128.09999999999999 -5.4876049355698986E-003 - 128.16000000000000 -5.4295344702382916E-003 - 128.22000000000000 -5.3717121671856584E-003 - 128.28000000000000 -5.3141279764757649E-003 - 128.34000000000000 -5.2567723438586974E-003 - 128.40000000000001 -5.1996357047585035E-003 - 128.45999999999998 -5.1427096708584318E-003 - 128.51999999999998 -5.0859860132053646E-003 - 128.57999999999998 -5.0294569217695434E-003 - 128.63999999999999 -4.9731149276242281E-003 - 128.69999999999999 -4.9169534010971754E-003 - 128.75999999999999 -4.8609661835987607E-003 - 128.81999999999999 -4.8051484423069484E-003 - 128.88000000000000 -4.7494945100141116E-003 - 128.94000000000000 -4.6940006239090852E-003 - 129.00000000000000 -4.6386626281074515E-003 - 129.06000000000000 -4.5834775573536232E-003 - 129.12000000000000 -4.5284426291412935E-003 - 129.18000000000001 -4.4735564454396540E-003 - 129.23999999999998 -4.4188177383671055E-003 - 129.29999999999998 -4.3642260645847973E-003 - 129.35999999999999 -4.3097812678631843E-003 - 129.41999999999999 -4.2554834199381233E-003 - 129.47999999999999 -4.2013347048465927E-003 - 129.53999999999999 -4.1473361076582145E-003 - 129.59999999999999 -4.0934907022248000E-003 - 129.66000000000000 -4.0398007616582396E-003 - 129.72000000000000 -3.9862706724340504E-003 - 129.78000000000000 -3.9329042531033916E-003 - 129.84000000000000 -3.8797058977805849E-003 - 129.90000000000001 -3.8266808139146972E-003 - 129.95999999999998 -3.7738347190382831E-003 - 130.01999999999998 -3.7211735674919331E-003 - 130.07999999999998 -3.6687038054542746E-003 - 130.13999999999999 -3.6164326781055883E-003 - 130.19999999999999 -3.5643673956589424E-003 - 130.25999999999999 -3.5125155017094057E-003 - 130.31999999999999 -3.4608856456964905E-003 - 130.38000000000000 -3.4094862895683265E-003 - 130.44000000000000 -3.3583262923599913E-003 - 130.50000000000000 -3.3074151155694132E-003 - 130.56000000000000 -3.2567622921785399E-003 - 130.62000000000000 -3.2063777271227815E-003 - 130.68000000000001 -3.1562715814425768E-003 - 130.73999999999998 -3.1064546754681725E-003 - 130.79999999999998 -3.0569378259609355E-003 - 130.85999999999999 -3.0077318474575785E-003 - 130.91999999999999 -2.9588481161192315E-003 - 130.97999999999999 -2.9102980399682023E-003 - 131.03999999999999 -2.8620934095638208E-003 - 131.09999999999999 -2.8142459130446125E-003 - 131.16000000000000 -2.7667673527783897E-003 - 131.22000000000000 -2.7196699977118282E-003 - 131.28000000000000 -2.6729658615664833E-003 - 131.34000000000000 -2.6266671211141730E-003 - 131.40000000000001 -2.5807860502491046E-003 - 131.45999999999998 -2.5353344948823367E-003 - 131.51999999999998 -2.4903246360407569E-003 - 131.57999999999998 -2.4457684750041897E-003 - 131.63999999999999 -2.4016777894985122E-003 - 131.69999999999999 -2.3580646289202232E-003 - 131.75999999999999 -2.3149407299540578E-003 - 131.81999999999999 -2.2723176765692210E-003 - 131.88000000000000 -2.2302066958321005E-003 - 131.94000000000000 -2.1886189652886709E-003 - 132.00000000000000 -2.1475656170705116E-003 - 132.06000000000000 -2.1070573074964856E-003 - 132.12000000000000 -2.0671042736557623E-003 - 132.18000000000001 -2.0277171524060202E-003 - 132.23999999999998 -1.9889055940226197E-003 - 132.29999999999998 -1.9506792152788580E-003 - 132.35999999999999 -1.9130472938226667E-003 - 132.41999999999999 -1.8760186024031024E-003 - 132.47999999999999 -1.8396015950744979E-003 - 132.53999999999999 -1.8038044734999016E-003 - 132.59999999999999 -1.7686347456097398E-003 - 132.66000000000000 -1.7340995795322308E-003 - 132.72000000000000 -1.7002056209279978E-003 - 132.78000000000000 -1.6669593132054457E-003 - 132.84000000000000 -1.6343660393514832E-003 - 132.90000000000001 -1.6024313311170000E-003 - 132.95999999999998 -1.5711595887933773E-003 - 133.01999999999998 -1.5405550801152286E-003 - 133.07999999999998 -1.5106211769113844E-003 - 133.13999999999999 -1.4813608673309427E-003 - 133.19999999999999 -1.4527766417068858E-003 - 133.25999999999999 -1.4248702733313638E-003 - 133.31999999999999 -1.3976431589701687E-003 - 133.38000000000000 -1.3710958024085972E-003 - 133.44000000000000 -1.3452285097847634E-003 - 133.50000000000000 -1.3200406567037692E-003 - 133.56000000000000 -1.2955313090952060E-003 - 133.62000000000000 -1.2716988764900552E-003 - 133.68000000000001 -1.2485411191793842E-003 - 133.73999999999998 -1.2260553175963036E-003 - 133.79999999999998 -1.2042383947946246E-003 - 133.85999999999999 -1.1830863707535089E-003 - 133.91999999999999 -1.1625950651559652E-003 - 133.97999999999999 -1.1427595876169075E-003 - 134.03999999999999 -1.1235747057842924E-003 - 134.09999999999999 -1.1050344289112184E-003 - 134.16000000000000 -1.0871324369496492E-003 - 134.22000000000000 -1.0698620218473256E-003 - 134.28000000000000 -1.0532159149821434E-003 - 134.34000000000000 -1.0371863614706421E-003 - 134.40000000000001 -1.0217654241999313E-003 - 134.45999999999998 -1.0069444529348518E-003 - 134.51999999999998 -9.9271457769562247E-004 - 134.57999999999998 -9.7906642463779824E-004 - 134.63999999999999 -9.6599052526400754E-004 - 134.69999999999999 -9.5347672411559494E-004 - 134.75999999999999 -9.4151492009003320E-004 - 134.81999999999999 -9.3009453862292254E-004 - 134.88000000000000 -9.1920472571143882E-004 - 134.94000000000000 -9.0883445854906988E-004 - 135.00000000000000 -8.9897256491278251E-004 - 135.06000000000000 -8.8960763975649230E-004 - 135.12000000000000 -8.8072814728823760E-004 - 135.18000000000001 -8.7232249552042377E-004 - 135.23999999999998 -8.6437880956625264E-004 - 135.29999999999998 -8.5688545589630567E-004 - 135.35999999999999 -8.4983046736916636E-004 - 135.41999999999999 -8.4320212385432115E-004 - 135.47999999999999 -8.3698853906720916E-004 - 135.53999999999999 -8.3117790655335159E-004 - 135.59999999999999 -8.2575865257887495E-004 - 135.66000000000000 -8.2071904057930210E-004 - 135.72000000000000 -8.1604751065962383E-004 - 135.78000000000000 -8.1173267788662586E-004 - 135.84000000000000 -8.0776331157389513E-004 - 135.90000000000001 -8.0412830730192076E-004 - 135.95999999999998 -8.0081668824855319E-004 - 136.01999999999998 -7.9781773551784502E-004 - 136.07999999999998 -7.9512097613230288E-004 - 136.13999999999999 -7.9271603734280556E-004 - 136.19999999999999 -7.9059301720214034E-004 - 136.25999999999999 -7.8874213322567522E-004 - 136.31999999999999 -7.8715388386360510E-004 - 136.38000000000000 -7.8581914349370064E-004 - 136.44000000000000 -7.8472913164339428E-004 - 136.50000000000000 -7.8387535630498200E-004 - 136.56000000000000 -7.8324967937970470E-004 - 136.62000000000000 -7.8284449917525656E-004 - 136.68000000000001 -7.8265241256514980E-004 - 136.73999999999998 -7.8266651131312238E-004 - 136.79999999999998 -7.8288035581032414E-004 - 136.85999999999999 -7.8328780186607617E-004 - 136.91999999999999 -7.8388325019738460E-004 - 136.97999999999999 -7.8466154107701195E-004 - 137.03999999999999 -7.8561786592562077E-004 - 137.09999999999999 -7.8674800453771177E-004 - 137.16000000000000 -7.8804806830837606E-004 - 137.22000000000000 -7.8951468670257052E-004 - 137.28000000000000 -7.9114490192768805E-004 - 137.34000000000000 -7.9293620923454543E-004 - 137.40000000000001 -7.9488661566298193E-004 - 137.45999999999998 -7.9699442954755072E-004 - 137.51999999999998 -7.9925859028380140E-004 - 137.57999999999998 -8.0167833858694505E-004 - 137.63999999999999 -8.0425341084174311E-004 - 137.69999999999999 -8.0698390161587608E-004 - 137.75999999999999 -8.0987034348417065E-004 - 137.81999999999999 -8.1291370529738849E-004 - 137.88000000000000 -8.1611542452829139E-004 - 137.94000000000000 -8.1947716753683086E-004 - 138.00000000000000 -8.2300110404558732E-004 - 138.06000000000000 -8.2668963838410830E-004 - 138.12000000000000 -8.3054570037653728E-004 - 138.18000000000001 -8.3457249558390627E-004 - 138.23999999999998 -8.3877351121644376E-004 - 138.29999999999998 -8.4315261440547713E-004 - 138.35999999999999 -8.4771389690331566E-004 - 138.41999999999999 -8.5246187836967170E-004 - 138.47999999999999 -8.5740125076957181E-004 - 138.53999999999999 -8.6253689219019597E-004 - 138.59999999999999 -8.6787396826223679E-004 - 138.66000000000000 -8.7341791330353526E-004 - 138.72000000000000 -8.7917420905637630E-004 - 138.78000000000000 -8.8514863499854820E-004 - 138.84000000000000 -8.9134696079901468E-004 - 138.90000000000001 -8.9777512565588084E-004 - 138.95999999999998 -9.0443911729083302E-004 - 139.01999999999998 -9.1134484369464466E-004 - 139.07999999999998 -9.1849835428187046E-004 - 139.13999999999999 -9.2590559048465139E-004 - 139.19999999999999 -9.3357239127056307E-004 - 139.25999999999999 -9.4150453008584102E-004 - 139.31999999999999 -9.4970761465074224E-004 - 139.38000000000000 -9.5818705452895610E-004 - 139.44000000000000 -9.6694802085508082E-004 - 139.50000000000000 -9.7599558808656405E-004 - 139.56000000000000 -9.8533418942984207E-004 - 139.62000000000000 -9.9496829170315484E-004 - 139.68000000000001 -1.0049018547831530E-003 - 139.73999999999998 -1.0151385051593172E-003 - 139.79999999999998 -1.0256813878120636E-003 - 139.85999999999999 -1.0365332899126226E-003 - 139.91999999999999 -1.0476964274741759E-003 - 139.97999999999999 -1.0591724805683060E-003 - 140.03999999999999 -1.0709626927570784E-003 - 140.09999999999999 -1.0830675976421624E-003 - 140.16000000000000 -1.0954872985687138E-003 - 140.22000000000000 -1.1082209126720601E-003 - 140.28000000000000 -1.1212671432889027E-003 - 140.34000000000000 -1.1346238417948781E-003 - 140.40000000000001 -1.1482881672672763E-003 - 140.45999999999998 -1.1622565704258383E-003 - 140.51999999999998 -1.1765244805485785E-003 - 140.57999999999998 -1.1910866505456328E-003 - 140.63999999999999 -1.2059367335589583E-003 - 140.69999999999999 -1.2210676816142082E-003 - 140.75999999999999 -1.2364716084986153E-003 - 140.81999999999999 -1.2521394860436307E-003 - 140.88000000000000 -1.2680614449840661E-003 - 140.94000000000000 -1.2842265895493458E-003 - 141.00000000000000 -1.3006230969643338E-003 - 141.06000000000000 -1.3172381580315296E-003 - 141.12000000000000 -1.3340580723817694E-003 - 141.18000000000001 -1.3510678411235782E-003 - 141.23999999999998 -1.3682518974185503E-003 - 141.29999999999998 -1.3855935197304907E-003 - 141.35999999999999 -1.4030748944251275E-003 - 141.41999999999999 -1.4206772956617162E-003 - 141.47999999999999 -1.4383811369760762E-003 - 141.53999999999999 -1.4561658713761251E-003 - 141.59999999999999 -1.4740100611554750E-003 - 141.66000000000000 -1.4918912346798391E-003 - 141.72000000000000 -1.5097863676765502E-003 - 141.78000000000000 -1.5276712584944823E-003 - 141.84000000000000 -1.5455210367910830E-003 - 141.90000000000001 -1.5633099982998706E-003 - 141.95999999999998 -1.5810118879424112E-003 - 142.01999999999998 -1.5985995735258026E-003 - 142.07999999999998 -1.6160453716090799E-003 - 142.13999999999999 -1.6333210057101818E-003 - 142.19999999999999 -1.6503974780272851E-003 - 142.25999999999999 -1.6672455602098960E-003 - 142.31999999999999 -1.6838353239407610E-003 - 142.38000000000000 -1.7001366644969075E-003 - 142.44000000000000 -1.7161190083941013E-003 - 142.50000000000000 -1.7317515567793075E-003 - 142.56000000000000 -1.7470032688634918E-003 - 142.62000000000000 -1.7618430898556808E-003 - 142.68000000000001 -1.7762396596297790E-003 - 142.73999999999998 -1.7901621109701635E-003 - 142.79999999999998 -1.8035791542485879E-003 - 142.85999999999999 -1.8164599538754080E-003 - 142.91999999999999 -1.8287738110020369E-003 - 142.97999999999999 -1.8404903985367749E-003 - 143.03999999999999 -1.8515797295847402E-003 - 143.09999999999999 -1.8620123657446673E-003 - 143.16000000000000 -1.8717594632803424E-003 - 143.22000000000000 -1.8807928544097065E-003 - 143.28000000000000 -1.8890850906336735E-003 - 143.34000000000000 -1.8966095147961897E-003 - 143.40000000000001 -1.9033401916063104E-003 - 143.45999999999998 -1.9092523736333718E-003 - 143.51999999999998 -1.9143220671703849E-003 - 143.57999999999998 -1.9185267202794455E-003 - 143.63999999999999 -1.9218446788739285E-003 - 143.69999999999999 -1.9242554663554015E-003 - 143.75999999999999 -1.9257400726449740E-003 - 143.81999999999999 -1.9262808498896771E-003 - 143.88000000000000 -1.9258612707994842E-003 - 143.94000000000000 -1.9244664611634886E-003 - 144.00000000000000 -1.9220830051524607E-003 - 144.06000000000000 -1.9186991112360129E-003 - 144.12000000000000 -1.9143045877169521E-003 - 144.18000000000001 -1.9088907865863066E-003 - 144.23999999999998 -1.9024509016601846E-003 - 144.29999999999998 -1.8949797299479942E-003 - 144.35999999999999 -1.8864739529593424E-003 - 144.41999999999999 -1.8769319311309663E-003 - 144.47999999999999 -1.8663539047042261E-003 - 144.53999999999999 -1.8547420039725167E-003 - 144.59999999999999 -1.8420999830385980E-003 - 144.66000000000000 -1.8284336426462840E-003 - 144.72000000000000 -1.8137505617807470E-003 - 144.78000000000000 -1.7980601695825793E-003 - 144.84000000000000 -1.7813736515504301E-003 - 144.90000000000001 -1.7637041295129165E-003 - 144.95999999999998 -1.7450664540950877E-003 - 145.01999999999998 -1.7254770719170149E-003 - 145.07999999999998 -1.7049543914336523E-003 - 145.13999999999999 -1.6835182740437768E-003 - 145.19999999999999 -1.6611903938861081E-003 - 145.25999999999999 -1.6379939655237791E-003 - 145.31999999999999 -1.6139537590795536E-003 - 145.38000000000000 -1.5890959302052587E-003 - 145.44000000000000 -1.5634481100003140E-003 - 145.50000000000000 -1.5370394221532531E-003 - 145.56000000000000 -1.5099001631741424E-003 - 145.62000000000000 -1.4820619154323166E-003 - 145.68000000000001 -1.4535573311709280E-003 - 145.73999999999998 -1.4244201990738030E-003 - 145.79999999999998 -1.3946854774457705E-003 - 145.85999999999999 -1.3643887203246088E-003 - 145.91999999999999 -1.3335665791025528E-003 - 145.97999999999999 -1.3022562899712015E-003 - 146.03999999999999 -1.2704957647910232E-003 - 146.09999999999999 -1.2383236280799092E-003 - 146.16000000000000 -1.2057787704122392E-003 - 146.22000000000000 -1.1729005877766335E-003 - 146.28000000000000 -1.1397287939142148E-003 - 146.34000000000000 -1.1063031915636778E-003 - 146.40000000000001 -1.0726638408248695E-003 - 146.45999999999998 -1.0388506479913487E-003 - 146.51999999999998 -1.0049035648844818E-003 - 146.57999999999998 -9.7086254106068135E-004 - 146.63999999999999 -9.3676710691186133E-004 - 146.69999999999999 -9.0265645785891414E-004 - 146.75999999999999 -8.6856948035768486E-004 - 146.81999999999999 -8.3454453791576087E-004 - 146.88000000000000 -8.0061937663970827E-004 - 146.94000000000000 -7.6683115847227842E-004 - 147.00000000000000 -7.3321629499210634E-004 - 147.06000000000000 -6.9981047545726127E-004 - 147.12000000000000 -6.6664855918319816E-004 - 147.18000000000001 -6.3376425841636099E-004 - 147.23999999999998 -6.0119050985933036E-004 - 147.29999999999998 -5.6895917637132397E-004 - 147.35999999999999 -5.3710101162384903E-004 - 147.41999999999999 -5.0564557633148621E-004 - 147.47999999999999 -4.7462136287627530E-004 - 147.53999999999999 -4.4405568646060500E-004 - 147.59999999999999 -4.1397450798522024E-004 - 147.66000000000000 -3.8440263914026702E-004 - 147.72000000000000 -3.5536353923282840E-004 - 147.78000000000000 -3.2687946207588534E-004 - 147.84000000000000 -2.9897125538837156E-004 - 147.90000000000001 -2.7165848568396855E-004 - 147.95999999999998 -2.4495941845629522E-004 - 148.01999999999998 -2.1889101350142304E-004 - 148.07999999999998 -1.9346886753605203E-004 - 148.13999999999999 -1.6870727275952594E-004 - 148.19999999999999 -1.4461923348301560E-004 - 148.25999999999999 -1.2121645021607349E-004 - 148.31999999999999 -9.8509331630771687E-005 - 148.38000000000000 -7.6507038469395222E-005 - 148.44000000000000 -5.5217560066389259E-005 - 148.50000000000000 -3.4647629716334208E-005 - 148.56000000000000 -1.4802852984396899E-005 - 148.62000000000000 4.3122976264744798E-006 - 148.68000000000001 2.2694448657116433E-005 - 148.73999999999998 4.0341233521000279E-005 - 148.79999999999998 5.7251281517476307E-005 - 148.85999999999999 7.3424184987070089E-005 - 148.91999999999999 8.8860425847121658E-005 - 148.97999999999999 1.0356131911427960E-004 - 149.03999999999999 1.1752899395246348E-004 - 149.09999999999999 1.3076630368705829E-004 - 149.16000000000000 1.4327682443284043E-004 - 149.22000000000000 1.5506477702533411E-004 - 149.28000000000000 1.6613497127064658E-004 - 149.34000000000000 1.7649278478119867E-004 - 149.40000000000001 1.8614405124287809E-004 - 149.45999999999998 1.9509509729488303E-004 - 149.51999999999998 2.0335264320592948E-004 - 149.57999999999998 2.1092375312194812E-004 - 149.63999999999999 2.1781576124591876E-004 - 149.69999999999999 2.2403628034850872E-004 - 149.75999999999999 2.2959309620351276E-004 - 149.81999999999999 2.3449418079415167E-004 - 149.88000000000000 2.3874755614820527E-004 - 149.94000000000000 2.4236133032200520E-004 - 150.00000000000000 2.4534358301671420E-004 - 150.06000000000000 2.4770238280491682E-004 - 150.12000000000000 2.4944576086770944E-004 - 150.18000000000001 2.5058159801987569E-004 - 150.23999999999998 2.5111765387152537E-004 - 150.29999999999998 2.5106152947952355E-004 - 150.35999999999999 2.5042063177946680E-004 - 150.41999999999999 2.4920215324280047E-004 - 150.47999999999999 2.4741308693732532E-004 - 150.53999999999999 2.4506016790825199E-004 - 150.59999999999999 2.4214985911360858E-004 - 150.66000000000000 2.3868837975028068E-004 - 150.72000000000000 2.3468165345156845E-004 - 150.78000000000000 2.3013533273402259E-004 - 150.84000000000000 2.2505476136787454E-004 - 150.90000000000001 2.1944497300281011E-004 - 150.95999999999998 2.1331072541721507E-004 - 151.01999999999998 2.0665643762286578E-004 - 151.07999999999998 1.9948624422108034E-004 - 151.13999999999999 1.9180400687352899E-004 - 151.19999999999999 1.8361323466612779E-004 - 151.25999999999999 1.7491721096720640E-004 - 151.31999999999999 1.6571890441434124E-004 - 151.38000000000000 1.5602106635438339E-004 - 151.44000000000000 1.4582622651949120E-004 - 151.50000000000000 1.3513669934259412E-004 - 151.56000000000000 1.2395460945989619E-004 - 151.62000000000000 1.1228197614856673E-004 - 151.68000000000001 1.0012064163152716E-004 - 151.73999999999998 8.7472399681539877E-005 - 151.79999999999998 7.4338990654255913E-005 - 151.85999999999999 6.0722110525456442E-005 - 151.91999999999999 4.6623497220164487E-005 - 151.97999999999999 3.2044919931114690E-005 - 152.03999999999999 1.6988240234698231E-005 - 152.09999999999999 1.4554155049252310E-006 - 152.16000000000000 -1.4551426637478916E-005 - 152.22000000000000 -3.1030000235247415E-005 - 152.28000000000000 -4.7977768208601581E-005 - 152.34000000000000 -6.5391955621348679E-005 - 152.40000000000001 -8.3269462577869501E-005 - 152.45999999999998 -1.0160687515648836E-004 - 152.51999999999998 -1.2040038768510700E-004 - 152.57999999999998 -1.3964577401878278E-004 - 152.63999999999999 -1.5933833244831733E-004 - 152.69999999999999 -1.7947286908709826E-004 - 152.75999999999999 -2.0004357459489820E-004 - 152.81999999999999 -2.2104413001274460E-004 - 152.88000000000000 -2.4246754768951888E-004 - 152.94000000000000 -2.6430613471266118E-004 - 153.00000000000000 -2.8655152497330432E-004 - 153.06000000000000 -3.0919460069585546E-004 - 153.12000000000000 -3.3222545901694003E-004 - 153.17999999999998 -3.5563336287577430E-004 - 153.23999999999998 -3.7940680742093279E-004 - 153.29999999999998 -4.0353340343855727E-004 - 153.35999999999999 -4.2799979418252810E-004 - 153.41999999999999 -4.5279188587703982E-004 - 153.47999999999999 -4.7789457991934765E-004 - 153.53999999999999 -5.0329186670274170E-004 - 153.59999999999999 -5.2896675705684740E-004 - 153.66000000000000 -5.5490124097137470E-004 - 153.72000000000000 -5.8107648978794374E-004 - 153.78000000000000 -6.0747247738428592E-004 - 153.84000000000000 -6.3406835313253103E-004 - 153.90000000000001 -6.6084217044855243E-004 - 153.95999999999998 -6.8777097454702130E-004 - 154.01999999999998 -7.1483081745157937E-004 - 154.07999999999998 -7.4199672623903622E-004 - 154.13999999999999 -7.6924275694172312E-004 - 154.19999999999999 -7.9654199237480668E-004 - 154.25999999999999 -8.2386652904202300E-004 - 154.31999999999999 -8.5118754410277954E-004 - 154.38000000000000 -8.7847532750403353E-004 - 154.44000000000000 -9.0569932372049978E-004 - 154.50000000000000 -9.3282799373878614E-004 - 154.56000000000000 -9.5982924763743978E-004 - 154.62000000000000 -9.8667011567559111E-004 - 154.67999999999998 -1.0133168661963915E-003 - 154.73999999999998 -1.0397353267666970E-003 - 154.79999999999998 -1.0658906584000961E-003 - 154.85999999999999 -1.0917474273439949E-003 - 154.91999999999999 -1.1172697261091311E-003 - 154.97999999999999 -1.1424213554496456E-003 - 155.03999999999999 -1.1671655981807913E-003 - 155.09999999999999 -1.1914655444818056E-003 - 155.16000000000000 -1.2152840255905293E-003 - 155.22000000000000 -1.2385837736954858E-003 - 155.28000000000000 -1.2613274597945228E-003 - 155.34000000000000 -1.2834776987673967E-003 - 155.40000000000001 -1.3049972338135879E-003 - 155.45999999999998 -1.3258490172660202E-003 - 155.51999999999998 -1.3459962696746959E-003 - 155.57999999999998 -1.3654025183506315E-003 - 155.63999999999999 -1.3840317808757525E-003 - 155.69999999999999 -1.4018484656237906E-003 - 155.75999999999999 -1.4188179627246432E-003 - 155.81999999999999 -1.4349059000323193E-003 - 155.88000000000000 -1.4500789765243460E-003 - 155.94000000000000 -1.4643048334452987E-003 - 156.00000000000000 -1.4775518234843381E-003 - 156.06000000000000 -1.4897896842367962E-003 - 156.12000000000000 -1.5009891672142250E-003 - 156.17999999999998 -1.5111222239003366E-003 - 156.23999999999998 -1.5201621188478591E-003 - 156.29999999999998 -1.5280834195397735E-003 - 156.35999999999999 -1.5348623235891068E-003 - 156.41999999999999 -1.5404766224399466E-003 - 156.47999999999999 -1.5449055543777150E-003 - 156.53999999999999 -1.5481301263142034E-003 - 156.59999999999999 -1.5501331252297413E-003 - 156.66000000000000 -1.5508991506664577E-003 - 156.72000000000000 -1.5504147884642175E-003 - 156.78000000000000 -1.5486685350618642E-003 - 156.84000000000000 -1.5456508475978558E-003 - 156.90000000000001 -1.5413543930326390E-003 - 156.95999999999998 -1.5357738118630968E-003 - 157.01999999999998 -1.5289059342093831E-003 - 157.07999999999998 -1.5207496701081312E-003 - 157.13999999999999 -1.5113061006189427E-003 - 157.19999999999999 -1.5005786222239224E-003 - 157.25999999999999 -1.4885728213865368E-003 - 157.31999999999999 -1.4752962078322276E-003 - 157.38000000000000 -1.4607588462922270E-003 - 157.44000000000000 -1.4449727645867389E-003 - 157.50000000000000 -1.4279521250239796E-003 - 157.56000000000000 -1.4097134074854746E-003 - 157.62000000000000 -1.3902749686442268E-003 - 157.67999999999998 -1.3696575419665025E-003 - 157.73999999999998 -1.3478837981846764E-003 - 157.79999999999998 -1.3249785728818347E-003 - 157.85999999999999 -1.3009683634927882E-003 - 157.91999999999999 -1.2758820421562636E-003 - 157.97999999999999 -1.2497501166402578E-003 - 158.03999999999999 -1.2226050655838397E-003 - 158.09999999999999 -1.1944810391998771E-003 - 158.16000000000000 -1.1654141149272581E-003 - 158.22000000000000 -1.1354418870843472E-003 - 158.28000000000000 -1.1046034923320478E-003 - 158.34000000000000 -1.0729395980339142E-003 - 158.40000000000001 -1.0404922797765193E-003 - 158.45999999999998 -1.0073047550620718E-003 - 158.51999999999998 -9.7342157993643408E-004 - 158.57999999999998 -9.3888840882737400E-004 - 158.63999999999999 -9.0375167633707960E-004 - 158.69999999999999 -8.6805874605143081E-004 - 158.75999999999999 -8.3185788855016734E-004 - 158.81999999999999 -7.9519787076495763E-004 - 158.88000000000000 -7.5812808063816439E-004 - 158.94000000000000 -7.2069831196595576E-004 - 159.00000000000000 -6.8295879307625094E-004 - 159.06000000000000 -6.4495983291710537E-004 - 159.12000000000000 -6.0675200310108689E-004 - 159.17999999999998 -5.6838589314067429E-004 - 159.23999999999998 -5.2991195037827639E-004 - 159.29999999999998 -4.9138053982896162E-004 - 159.35999999999999 -4.5284176385549876E-004 - 159.41999999999999 -4.1434531224170698E-004 - 159.47999999999999 -3.7594048398538607E-004 - 159.53999999999999 -3.3767594471398831E-004 - 159.59999999999999 -2.9959978830681832E-004 - 159.66000000000000 -2.6175932795310947E-004 - 159.72000000000000 -2.2420105068972514E-004 - 159.78000000000000 -1.8697052055718119E-004 - 159.84000000000000 -1.5011231075677897E-004 - 159.90000000000001 -1.1366990709148173E-004 - 159.95999999999998 -7.7685683587164981E-005 - 160.01999999999998 -4.2200742802846354E-005 - 160.07999999999998 -7.2549543007938730E-006 - 160.13999999999999 2.7113172789036737E-005 - 160.19999999999999 6.0866494569635811E-005 - 160.25999999999999 9.3969368945083585E-005 - 160.31999999999999 1.2638754354508339E-004 - 160.38000000000000 1.5808832984308695E-004 - 160.44000000000000 1.8904059451400063E-004 - 160.50000000000000 2.1921478349005719E-004 - 160.56000000000000 2.4858295463167613E-004 - 160.62000000000000 2.7711877014874553E-004 - 160.67999999999998 3.0479756652277367E-004 - 160.73999999999998 3.3159633321694289E-004 - 160.79999999999998 3.5749370882113770E-004 - 160.85999999999999 3.8247001066269635E-004 - 160.91999999999999 4.0650715861721026E-004 - 160.97999999999999 4.2958881103004722E-004 - 161.03999999999999 4.5170016560154845E-004 - 161.09999999999999 4.7282807668584865E-004 - 161.16000000000000 4.9296091300089209E-004 - 161.22000000000000 5.1208869703781230E-004 - 161.28000000000000 5.3020285319552423E-004 - 161.34000000000000 5.4729631132484217E-004 - 161.40000000000001 5.6336348088448229E-004 - 161.45999999999998 5.7840017590784186E-004 - 161.51999999999998 5.9240353127948300E-004 - 161.57999999999998 6.0537197089800213E-004 - 161.63999999999999 6.1730526173797381E-004 - 161.69999999999999 6.2820438365064157E-004 - 161.75999999999999 6.3807162345234979E-004 - 161.81999999999999 6.4691025377824700E-004 - 161.88000000000000 6.5472481206883468E-004 - 161.94000000000000 6.6152080002182339E-004 - 162.00000000000000 6.6730478365398032E-004 - 162.06000000000000 6.7208434225921856E-004 - 162.12000000000000 6.7586796426453532E-004 - 162.17999999999998 6.7866493326094990E-004 - 162.23999999999998 6.8048543453770116E-004 - 162.29999999999998 6.8134035907622059E-004 - 162.35999999999999 6.8124126790946346E-004 - 162.41999999999999 6.8020036435067729E-004 - 162.47999999999999 6.7823044589018625E-004 - 162.53999999999999 6.7534473138879483E-004 - 162.59999999999999 6.7155706450868261E-004 - 162.66000000000000 6.6688147861903137E-004 - 162.72000000000000 6.6133245373042361E-004 - 162.78000000000000 6.5492472912112717E-004 - 162.84000000000000 6.4767334436747234E-004 - 162.90000000000001 6.3959354832108563E-004 - 162.95999999999998 6.3070073326416910E-004 - 163.01999999999998 6.2101043015870268E-004 - 163.07999999999998 6.1053834658414711E-004 - 163.13999999999999 5.9930022852709621E-004 - 163.19999999999999 5.8731192108577393E-004 - 163.25999999999999 5.7458933606417185E-004 - 163.31999999999999 5.6114831176510009E-004 - 163.38000000000000 5.4700481734293598E-004 - 163.44000000000000 5.3217472577491418E-004 - 163.50000000000000 5.1667381229359962E-004 - 163.56000000000000 5.0051789682460635E-004 - 163.62000000000000 4.8372257711113499E-004 - 163.67999999999998 4.6630350797563470E-004 - 163.73999999999998 4.4827610996183857E-004 - 163.79999999999998 4.2965571467970878E-004 - 163.85999999999999 4.1045752866021075E-004 - 163.91999999999999 3.9069661397010599E-004 - 163.97999999999999 3.7038787254451458E-004 - 164.03999999999999 3.4954607288763978E-004 - 164.09999999999999 3.2818588804947070E-004 - 164.16000000000000 3.0632184598914226E-004 - 164.22000000000000 2.8396832059186447E-004 - 164.28000000000000 2.6113961683029297E-004 - 164.34000000000000 2.3784993189203415E-004 - 164.40000000000001 2.1411338114395414E-004 - 164.45999999999998 1.8994402966072569E-004 - 164.51999999999998 1.6535589894366045E-004 - 164.57999999999998 1.4036294168181987E-004 - 164.63999999999999 1.1497909212383975E-004 - 164.69999999999999 8.9218292087445158E-005 - 164.75999999999999 6.3094482764613539E-005 - 164.81999999999999 3.6621633583003784E-005 - 164.88000000000000 9.8137757922431453E-006 - 164.94000000000000 -1.7315009894969988E-005 - 165.00000000000000 -4.4750560642705577E-005 - 165.06000000000000 -7.2478608898246852E-005 - 165.12000000000000 -1.0048472923194867E-004 - 165.17999999999998 -1.2875433921530788E-004 - 165.23999999999998 -1.5727270141326340E-004 - 165.29999999999998 -1.8602483649456179E-004 - 165.35999999999999 -2.1499559435702347E-004 - 165.41999999999999 -2.4416951342478589E-004 - 165.47999999999999 -2.7353088780164618E-004 - 165.53999999999999 -3.0306375193689037E-004 - 165.59999999999999 -3.3275179947894051E-004 - 165.66000000000000 -3.6257846828462918E-004 - 165.72000000000000 -3.9252690619316887E-004 - 165.78000000000000 -4.2257983167907432E-004 - 165.84000000000000 -4.5271980030195673E-004 - 165.90000000000001 -4.8292891327813843E-004 - 165.95999999999998 -5.1318900932867482E-004 - 166.01999999999998 -5.4348153622211766E-004 - 166.07999999999998 -5.7378772344563226E-004 - 166.13999999999999 -6.0408834102921476E-004 - 166.19999999999999 -6.3436389735321732E-004 - 166.25999999999999 -6.6459459009182134E-004 - 166.31999999999999 -6.9476019847879622E-004 - 166.38000000000000 -7.2484013673351842E-004 - 166.44000000000000 -7.5481354734942068E-004 - 166.50000000000000 -7.8465915904478618E-004 - 166.56000000000000 -8.1435538630185943E-004 - 166.62000000000000 -8.4388028646629966E-004 - 166.67999999999998 -8.7321149461434301E-004 - 166.73999999999998 -9.0232641240007390E-004 - 166.79999999999998 -9.3120214571782139E-004 - 166.85999999999999 -9.5981541835653381E-004 - 166.91999999999999 -9.8814267801669358E-004 - 166.97999999999999 -1.0161602618867494E-003 - 167.03999999999999 -1.0438441467918314E-003 - 167.09999999999999 -1.0711701401347070E-003 - 167.16000000000000 -1.0981139088970103E-003 - 167.22000000000000 -1.1246509972799243E-003 - 167.28000000000000 -1.1507569072785170E-003 - 167.34000000000000 -1.1764069217100790E-003 - 167.40000000000001 -1.2015763622915190E-003 - 167.45999999999998 -1.2262406413884343E-003 - 167.51999999999998 -1.2503750717837972E-003 - 167.57999999999998 -1.2739549299408471E-003 - 167.63999999999999 -1.2969557173009071E-003 - 167.69999999999999 -1.3193528720054730E-003 - 167.75999999999999 -1.3411221655234584E-003 - 167.81999999999999 -1.3622394679886009E-003 - 167.88000000000000 -1.3826807101158130E-003 - 167.94000000000000 -1.4024221934747525E-003 - 168.00000000000000 -1.4214403890110340E-003 - 168.06000000000000 -1.4397121340891635E-003 - 168.12000000000000 -1.4572144952315913E-003 - 168.17999999999998 -1.4739249981516448E-003 - 168.23999999999998 -1.4898213612357183E-003 - 168.29999999999998 -1.5048819586088431E-003 - 168.35999999999999 -1.5190855114535300E-003 - 168.41999999999999 -1.5324114400120316E-003 - 168.47999999999999 -1.5448394771145227E-003 - 168.53999999999999 -1.5563501241499067E-003 - 168.59999999999999 -1.5669241688973129E-003 - 168.66000000000000 -1.5765435027379081E-003 - 168.72000000000000 -1.5851902901680369E-003 - 168.78000000000000 -1.5928476527209544E-003 - 168.84000000000000 -1.5994992956421554E-003 - 168.90000000000001 -1.6051295577035741E-003 - 168.95999999999998 -1.6097239296432638E-003 - 169.01999999999998 -1.6132683623090250E-003 - 169.07999999999998 -1.6157498302755847E-003 - 169.13999999999999 -1.6171560473569051E-003 - 169.19999999999999 -1.6174757491120417E-003 - 169.25999999999999 -1.6166986082091581E-003 - 169.31999999999999 -1.6148150825309948E-003 - 169.38000000000000 -1.6118168303962100E-003 - 169.44000000000000 -1.6076961634458212E-003 - 169.50000000000000 -1.6024468460211221E-003 - 169.56000000000000 -1.5960633605148435E-003 - 169.62000000000000 -1.5885411768880244E-003 - 169.67999999999998 -1.5798770581999116E-003 - 169.73999999999998 -1.5700686878379337E-003 - 169.79999999999998 -1.5591147950871464E-003 - 169.85999999999999 -1.5470152379749107E-003 - 169.91999999999999 -1.5337709591713604E-003 - 169.97999999999999 -1.5193838776658920E-003 - 170.03999999999999 -1.5038570944863954E-003 - 170.09999999999999 -1.4871949125969698E-003 - 170.16000000000000 -1.4694025550147304E-003 - 170.22000000000000 -1.4504864750111875E-003 - 170.28000000000000 -1.4304540579376053E-003 - 170.34000000000000 -1.4093140207430542E-003 - 170.40000000000001 -1.3870762671953946E-003 - 170.45999999999998 -1.3637517486335456E-003 - 170.51999999999998 -1.3393525525901041E-003 - 170.57999999999998 -1.3138918671382806E-003 - 170.63999999999999 -1.2873840672901443E-003 - 170.69999999999999 -1.2598445763037612E-003 - 170.75999999999999 -1.2312901855850312E-003 - 170.81999999999999 -1.2017385647717601E-003 - 170.88000000000000 -1.1712085772899411E-003 - 170.94000000000000 -1.1397201721092005E-003 - 171.00000000000000 -1.1072944358533983E-003 - 171.06000000000000 -1.0739532302434889E-003 - 171.12000000000000 -1.0397197287667110E-003 - 171.17999999999998 -1.0046178666320187E-003 - 171.23999999999998 -9.6867261210591702E-004 - 171.29999999999998 -9.3190986511300236E-004 - 171.35999999999999 -8.9435643062147426E-004 - 171.41999999999999 -8.5603997463300468E-004 - 171.47999999999999 -8.1698901524137604E-004 - 171.53999999999999 -7.7723283833531760E-004 - 171.59999999999999 -7.3680177572988921E-004 - 171.66000000000000 -6.9572663393311588E-004 - 171.72000000000000 -6.5403907557070760E-004 - 171.78000000000000 -6.1177153633904554E-004 - 171.84000000000000 -5.6895701396865971E-004 - 171.90000000000001 -5.2562921621150606E-004 - 171.95999999999998 -4.8182242942995142E-004 - 172.01999999999998 -4.3757152198515946E-004 - 172.07999999999998 -3.9291184875702383E-004 - 172.13999999999999 -3.4787922541540530E-004 - 172.19999999999999 -3.0250983908310791E-004 - 172.25999999999999 -2.5684026685649620E-004 - 172.31999999999999 -2.1090740331067786E-004 - 172.38000000000000 -1.6474835065470172E-004 - 172.44000000000000 -1.1840041305757301E-004 - 172.50000000000000 -7.1901053132443732E-005 - 172.56000000000000 -2.5287838633026037E-005 - 172.62000000000000 2.1401649860798984E-005 - 172.67999999999998 6.8129865683132218E-005 - 172.73999999999998 1.1485924280197685E-004 - 172.79999999999998 1.6155239709762835E-004 - 172.85999999999999 2.0817211207302161E-004 - 172.91999999999999 2.5468127035526247E-004 - 172.97999999999999 3.0104314316574551E-004 - 173.03999999999999 3.4722117760477051E-004 - 173.09999999999999 3.9317931038137686E-004 - 173.16000000000000 4.3888178634456424E-004 - 173.22000000000000 4.8429333188985913E-004 - 173.28000000000000 5.2937917181845287E-004 - 173.34000000000000 5.7410518300041093E-004 - 173.40000000000001 6.1843771529907681E-004 - 173.45999999999998 6.6234390133392961E-004 - 173.51999999999998 7.0579146872649630E-004 - 173.57999999999998 7.4874896673087464E-004 - 173.63999999999999 7.9118573262775514E-004 - 173.69999999999999 8.3307182604373830E-004 - 173.75999999999999 8.7437822654094061E-004 - 173.81999999999999 9.1507690556567379E-004 - 173.88000000000000 9.5514057410047066E-004 - 173.94000000000000 9.9454304681960534E-004 - 174.00000000000000 1.0332590337442072E-003 - 174.06000000000000 1.0712643897626678E-003 - 174.12000000000000 1.1085357919688552E-003 - 174.17999999999998 1.1450510078135968E-003 - 174.23999999999998 1.1807890600655136E-003 - 174.29999999999998 1.2157299290703749E-003 - 174.35999999999999 1.2498547865410340E-003 - 174.41999999999999 1.2831455863963768E-003 - 174.47999999999999 1.3155858602067879E-003 - 174.53999999999999 1.3471599300160177E-003 - 174.59999999999999 1.3778535245885740E-003 - 174.66000000000000 1.4076532519004304E-003 - 174.72000000000000 1.4365469808813999E-003 - 174.78000000000000 1.4645237488274136E-003 - 174.84000000000000 1.4915736412372132E-003 - 174.90000000000001 1.5176878236973009E-003 - 174.95999999999998 1.5428586247426535E-003 - 175.01999999999998 1.5670794239220497E-003 - 175.07999999999998 1.5903447362776986E-003 - 175.13999999999999 1.6126499429368316E-003 - 175.19999999999999 1.6339915629072842E-003 - 175.25999999999999 1.6543669220428232E-003 - 175.31999999999999 1.6737745203141430E-003 - 175.38000000000000 1.6922137089468363E-003 - 175.44000000000000 1.7096848098108904E-003 - 175.50000000000000 1.7261891557273331E-003 - 175.56000000000000 1.7417286514807390E-003 - 175.62000000000000 1.7563062510311241E-003 - 175.67999999999998 1.7699257224806674E-003 - 175.73999999999998 1.7825914659325409E-003 - 175.79999999999998 1.7943088440097602E-003 - 175.85999999999999 1.8050836820892556E-003 - 175.91999999999999 1.8149227778080088E-003 - 175.97999999999999 1.8238332796180097E-003 - 176.03999999999999 1.8318231873282673E-003 - 176.09999999999999 1.8389008609744479E-003 - 176.16000000000000 1.8450751457260222E-003 - 176.22000000000000 1.8503556717122565E-003 - 176.28000000000000 1.8547523669266471E-003 - 176.34000000000000 1.8582755953619127E-003 - 176.40000000000001 1.8609360293979436E-003 - 176.45999999999998 1.8627448436259568E-003 - 176.51999999999998 1.8637134813393450E-003 - 176.57999999999998 1.8638536545325002E-003 - 176.63999999999999 1.8631776637761739E-003 - 176.69999999999999 1.8616977031259291E-003 - 176.75999999999999 1.8594265721951562E-003 - 176.81999999999999 1.8563771726945086E-003 - 176.88000000000000 1.8525624511105960E-003 - 176.94000000000000 1.8479959485591013E-003 - 177.00000000000000 1.8426911905119645E-003 - 177.06000000000000 1.8366617675123578E-003 - 177.12000000000000 1.8299216114266812E-003 - 177.17999999999998 1.8224847281278545E-003 - 177.23999999999998 1.8143651541439121E-003 - 177.29999999999998 1.8055774056483307E-003 - 177.35999999999999 1.7961357275276760E-003 - 177.41999999999999 1.7860547055414682E-003 - 177.47999999999999 1.7753487896581309E-003 - 177.53999999999999 1.7640326025839686E-003 - 177.59999999999999 1.7521207993920315E-003 - 177.66000000000000 1.7396281138384708E-003 - 177.72000000000000 1.7265693393651617E-003 - 177.78000000000000 1.7129592365926372E-003 - 177.84000000000000 1.6988127638267491E-003 - 177.90000000000001 1.6841449009056719E-003 - 177.95999999999998 1.6689706024858519E-003 - 178.01999999999998 1.6533049787707194E-003 - 178.07999999999998 1.6371633428742100E-003 - 178.13999999999999 1.6205608573811054E-003 - 178.19999999999999 1.6035130082352441E-003 - 178.25999999999999 1.5860352843335406E-003 - 178.31999999999999 1.5681431011732609E-003 - 178.38000000000000 1.5498523111550882E-003 - 178.44000000000000 1.5311784841338472E-003 - 178.50000000000000 1.5121376698563440E-003 - 178.56000000000000 1.4927456374052167E-003 - 178.62000000000000 1.4730184905268320E-003 - 178.67999999999998 1.4529721656725714E-003 - 178.73999999999998 1.4326229214372966E-003 - 178.79999999999998 1.4119870201208364E-003 - 178.85999999999999 1.3910806997353496E-003 - 178.91999999999999 1.3699203752000923E-003 - 178.97999999999999 1.3485224162974384E-003 - 179.03999999999999 1.3269032685503048E-003 - 179.09999999999999 1.3050795098109983E-003 - 179.16000000000000 1.2830677658300386E-003 - 179.22000000000000 1.2608845074642458E-003 - 179.28000000000000 1.2385466105292629E-003 - 179.34000000000000 1.2160706318567807E-003 - 179.40000000000001 1.1934733964643366E-003 - 179.45999999999998 1.1707716189590513E-003 - 179.51999999999998 1.1479820969685650E-003 - 179.57999999999998 1.1251215869985409E-003 - 179.63999999999999 1.1022067267774909E-003 - 179.69999999999999 1.0792543426923200E-003 - 179.75999999999999 1.0562810816244703E-003 - 179.81999999999999 1.0333034780559333E-003 - 179.88000000000000 1.0103381542471564E-003 - 179.94000000000000 9.8740151692903121E-004 - 180.00000000000000 9.6450978927433914E-004 - 180.06000000000000 9.4167909225092127E-004 - 180.12000000000000 9.1892550031029809E-004 - 180.17999999999998 8.9626482221626482E-004 - 180.23999999999998 8.7371260894829003E-004 - 180.29999999999998 8.5128436897812876E-004 - 180.35999999999999 8.2899519639913872E-004 - 180.41999999999999 8.0686008435655349E-004 - 180.47999999999999 7.8489358690394010E-004 - 180.53999999999999 7.6311013402171073E-004 - 180.59999999999999 7.4152375035281049E-004 - 180.66000000000000 7.2014813950175649E-004 - 180.72000000000000 6.9899670578335679E-004 - 180.78000000000000 6.7808247511005762E-004 - 180.84000000000000 6.5741814335710147E-004 - 180.90000000000001 6.3701598977934225E-004 - 180.95999999999998 6.1688782759786046E-004 - 181.01999999999998 5.9704521802270291E-004 - 181.07999999999998 5.7749921828606336E-004 - 181.13999999999999 5.5826046555453675E-004 - 181.19999999999999 5.3933921123740063E-004 - 181.25999999999999 5.2074518998533148E-004 - 181.31999999999999 5.0248780129781350E-004 - 181.38000000000000 4.8457592450872392E-004 - 181.44000000000000 4.6701799652013943E-004 - 181.50000000000000 4.4982198322962021E-004 - 181.56000000000000 4.3299541970375096E-004 - 181.62000000000000 4.1654527964460569E-004 - 181.67999999999998 4.0047815988354023E-004 - 181.73999999999998 3.8480011151158439E-004 - 181.79999999999998 3.6951677029347437E-004 - 181.85999999999999 3.5463319496715389E-004 - 181.91999999999999 3.4015398990630530E-004 - 181.97999999999999 3.2608331476460751E-004 - 182.03999999999999 3.1242473854902565E-004 - 182.09999999999999 2.9918148127208000E-004 - 182.16000000000000 2.8635620743938596E-004 - 182.22000000000000 2.7395115151840587E-004 - 182.28000000000000 2.6196812813901053E-004 - 182.34000000000000 2.5040843511540582E-004 - 182.39999999999998 2.3927303334161194E-004 - 182.45999999999998 2.2856244671769547E-004 - 182.51999999999998 2.1827681212379903E-004 - 182.57999999999998 2.0841589702874310E-004 - 182.63999999999999 1.9897907385257193E-004 - 182.69999999999999 1.8996539648943073E-004 - 182.75999999999999 1.8137358081713999E-004 - 182.81999999999999 1.7320200726866626E-004 - 182.88000000000000 1.6544876441998836E-004 - 182.94000000000000 1.5811163650606197E-004 - 183.00000000000000 1.5118809912717269E-004 - 183.06000000000000 1.4467537561257414E-004 - 183.12000000000000 1.3857040151957719E-004 - 183.17999999999998 1.3286986799914110E-004 - 183.23999999999998 1.2757021653130230E-004 - 183.29999999999998 1.2266767312684679E-004 - 183.35999999999999 1.1815823429892400E-004 - 183.41999999999999 1.1403773745179480E-004 - 183.47999999999999 1.1030179769025921E-004 - 183.53999999999999 1.0694591280593877E-004 - 183.59999999999999 1.0396542255617107E-004 - 183.66000000000000 1.0135556162817080E-004 - 183.72000000000000 9.9111461504187710E-005 - 183.78000000000000 9.7228165672890051E-005 - 183.84000000000000 9.5700647757446011E-005 - 183.89999999999998 9.4523845603612755E-005 - 183.95999999999998 9.3692654092139403E-005 - 184.01999999999998 9.3201938298922220E-005 - 184.07999999999998 9.3046544004757057E-005 - 184.13999999999999 9.3221301340253742E-005 - 184.19999999999999 9.3721038287613971E-005 - 184.25999999999999 9.4540565650634066E-005 - 184.31999999999999 9.5674703849429497E-005 - 184.38000000000000 9.7118269835437808E-005 - 184.44000000000000 9.8866058745535493E-005 - 184.50000000000000 1.0091288489718322E-004 - 184.56000000000000 1.0325353460055815E-004 - 184.62000000000000 1.0588281811091208E-004 - 184.67999999999998 1.0879552890048159E-004 - 184.73999999999998 1.1198645707983734E-004 - 184.79999999999998 1.1545038398351939E-004 - 184.85999999999999 1.1918210564253389E-004 - 184.91999999999999 1.2317641019401676E-004 - 184.97999999999999 1.2742810593181769E-004 - 185.03999999999999 1.3193198780939538E-004 - 185.09999999999999 1.3668284772345144E-004 - 185.16000000000000 1.4167550237184620E-004 - 185.22000000000000 1.4690473316084348E-004 - 185.28000000000000 1.5236535102057644E-004 - 185.34000000000000 1.5805212510475983E-004 - 185.39999999999998 1.6395983918194557E-004 - 185.45999999999998 1.7008321521632801E-004 - 185.51999999999998 1.7641695912840326E-004 - 185.57999999999998 1.8295568965604896E-004 - 185.63999999999999 1.8969401167878290E-004 - 185.69999999999999 1.9662643296913869E-004 - 185.75999999999999 2.0374736709823175E-004 - 185.81999999999999 2.1105114342846111E-004 - 185.88000000000000 2.1853194204197635E-004 - 185.94000000000000 2.2618384061313533E-004 - 186.00000000000000 2.3400074051349934E-004 - 186.06000000000000 2.4197641671949976E-004 - 186.12000000000000 2.5010445787450894E-004 - 186.17999999999998 2.5837823645214749E-004 - 186.23999999999998 2.6679101083195469E-004 - 186.29999999999998 2.7533577409220037E-004 - 186.35999999999999 2.8400531826347470E-004 - 186.41999999999999 2.9279224091640911E-004 - 186.47999999999999 3.0168889723232873E-004 - 186.53999999999999 3.1068740573696153E-004 - 186.59999999999999 3.1977968624148412E-004 - 186.66000000000000 3.2895738754985804E-004 - 186.72000000000000 3.3821194970942882E-004 - 186.78000000000000 3.4753454290160582E-004 - 186.84000000000000 3.5691614698993328E-004 - 186.89999999999998 3.6634742361097686E-004 - 186.95999999999998 3.7581884638443670E-004 - 187.01999999999998 3.8532062504305147E-004 - 187.07999999999998 3.9484271065090364E-004 - 187.13999999999999 4.0437484739605484E-004 - 187.19999999999999 4.1390649270101043E-004 - 187.25999999999999 4.2342691580607190E-004 - 187.31999999999999 4.3292511982861786E-004 - 187.38000000000000 4.4238983842505303E-004 - 187.44000000000000 4.5180964710074160E-004 - 187.50000000000000 4.6117281609344584E-004 - 187.56000000000000 4.7046746748623757E-004 - 187.62000000000000 4.7968153415804611E-004 - 187.67999999999998 4.8880273748535261E-004 - 187.73999999999998 4.9781861418845804E-004 - 187.79999999999998 5.0671656812782272E-004 - 187.85999999999999 5.1548393545226400E-004 - 187.91999999999999 5.2410786368223619E-004 - 187.97999999999999 5.3257542564787109E-004 - 188.03999999999999 5.4087362390179555E-004 - 188.09999999999999 5.4898952317097025E-004 - 188.16000000000000 5.5691009386394708E-004 - 188.22000000000000 5.6462242434771688E-004 - 188.28000000000000 5.7211358497291176E-004 - 188.34000000000000 5.7937076653241388E-004 - 188.39999999999998 5.8638120224874192E-004 - 188.45999999999998 5.9313241881654092E-004 - 188.51999999999998 5.9961196245156636E-004 - 188.57999999999998 6.0580767194423331E-004 - 188.63999999999999 6.1170753673119678E-004 - 188.69999999999999 6.1729985864401990E-004 - 188.75999999999999 6.2257322769228231E-004 - 188.81999999999999 6.2751648700071390E-004 - 188.88000000000000 6.3211875023021355E-004 - 188.94000000000000 6.3636961680807707E-004 - 189.00000000000000 6.4025896016808154E-004 - 189.06000000000000 6.4377708885979669E-004 - 189.12000000000000 6.4691472920622725E-004 - 189.17999999999998 6.4966309854554453E-004 - 189.23999999999998 6.5201394474467876E-004 - 189.29999999999998 6.5395943357094907E-004 - 189.35999999999999 6.5549234187907944E-004 - 189.41999999999999 6.5660606056954537E-004 - 189.47999999999999 6.5729451085821847E-004 - 189.53999999999999 6.5755231231944824E-004 - 189.59999999999999 6.5737467643242847E-004 - 189.66000000000000 6.5675754143642868E-004 - 189.72000000000000 6.5569757192853850E-004 - 189.78000000000000 6.5419204930264904E-004 - 189.84000000000000 6.5223909401299302E-004 - 189.89999999999998 6.4983750187261281E-004 - 189.95999999999998 6.4698687233863135E-004 - 190.01999999999998 6.4368751356809820E-004 - 190.07999999999998 6.3994059235244973E-004 - 190.13999999999999 6.3574787341301540E-004 - 190.19999999999999 6.3111210635786780E-004 - 190.25999999999999 6.2603669480345962E-004 - 190.31999999999999 6.2052583048427133E-004 - 190.38000000000000 6.1458442213287569E-004 - 190.44000000000000 6.0821817112704482E-004 - 190.50000000000000 6.0143346834982936E-004 - 190.56000000000000 5.9423757044070667E-004 - 190.62000000000000 5.8663828337189279E-004 - 190.67999999999998 5.7864429670270311E-004 - 190.73999999999998 5.7026483796468550E-004 - 190.79999999999998 5.6150993984841868E-004 - 190.85999999999999 5.5239034103865862E-004 - 190.91999999999999 5.4291726178911780E-004 - 190.97999999999999 5.3310269569214965E-004 - 191.03999999999999 5.2295920553019934E-004 - 191.09999999999999 5.1249994801969077E-004 - 191.16000000000000 5.0173863161485617E-004 - 191.22000000000000 4.9068947480505757E-004 - 191.28000000000000 4.7936728321277546E-004 - 191.34000000000000 4.6778724041151453E-004 - 191.39999999999998 4.5596504042917223E-004 - 191.45999999999998 4.4391679061657859E-004 - 191.51999999999998 4.3165895585639411E-004 - 191.57999999999998 4.1920829667464526E-004 - 191.63999999999999 4.0658194402857449E-004 - 191.69999999999999 3.9379726070163312E-004 - 191.75999999999999 3.8087184753355535E-004 - 191.81999999999999 3.6782347394729697E-004 - 191.88000000000000 3.5467006958164434E-004 - 191.94000000000000 3.4142966869870473E-004 - 192.00000000000000 3.2812041843045131E-004 - 192.06000000000000 3.1476047818721820E-004 - 192.12000000000000 3.0136798518259835E-004 - 192.17999999999998 2.8796104962792578E-004 - 192.23999999999998 2.7455774455943595E-004 - 192.29999999999998 2.6117598764047287E-004 - 192.35999999999999 2.4783355676384161E-004 - 192.41999999999999 2.3454807769597848E-004 - 192.47999999999999 2.2133696456062230E-004 - 192.53999999999999 2.0821733942498949E-004 - 192.59999999999999 1.9520606893907476E-004 - 192.66000000000000 1.8231973793131307E-004 - 192.72000000000000 1.6957460413778946E-004 - 192.78000000000000 1.5698652890765134E-004 - 192.84000000000000 1.4457099815024663E-004 - 192.89999999999998 1.3234310344854849E-004 - 192.95999999999998 1.2031747086272523E-004 - 193.01999999999998 1.0850828171385962E-004 - 193.07999999999998 9.6929275769782667E-005 - 193.13999999999999 8.5593657388164797E-005 - 193.19999999999999 7.4514152242236096E-005 - 193.25999999999999 6.3702970191869992E-005 - 193.31999999999999 5.3171769204311645E-005 - 193.38000000000000 4.2931673581804597E-005 - 193.44000000000000 3.2993266419099388E-005 - 193.50000000000000 2.3366556775650025E-005 - 193.56000000000000 1.4060998649993904E-005 - 193.62000000000000 5.0854649082594555E-006 - 193.67999999999998 -3.5517277855920529E-006 - 193.73999999999998 -1.1842845762123509E-005 - 193.79999999999998 -1.9780724507787128E-005 - 193.85999999999999 -2.7358777803985767E-005 - 193.91999999999999 -3.4570992313698032E-005 - 193.97999999999999 -4.1411912505935221E-005 - 194.03999999999999 -4.7876641933020988E-005 - 194.09999999999999 -5.3960863934563813E-005 - 194.16000000000000 -5.9660774891057524E-005 - 194.22000000000000 -6.4973132243286691E-005 - 194.28000000000000 -6.9895208363113419E-005 - 194.34000000000000 -7.4424784700436781E-005 - 194.39999999999998 -7.8560161651471390E-005 - 194.45999999999998 -8.2300111417750211E-005 - 194.51999999999998 -8.5643884546830496E-005 - 194.57999999999998 -8.8591197286128615E-005 - 194.63999999999999 -9.1142199176521809E-005 - 194.69999999999999 -9.3297477239600579E-005 - 194.75999999999999 -9.5058035745889847E-005 - 194.81999999999999 -9.6425262851882241E-005 - 194.88000000000000 -9.7400936371119391E-005 - 194.94000000000000 -9.7987202597786389E-005 - 195.00000000000000 -9.8186558651107143E-005 - 195.06000000000000 -9.8001846631214055E-005 - 195.12000000000000 -9.7436242162115942E-005 - 195.17999999999998 -9.6493226531188474E-005 - 195.23999999999998 -9.5176587584601673E-005 - 195.29999999999998 -9.3490420882389502E-005 - 195.35999999999999 -9.1439083105302794E-005 - 195.41999999999999 -8.9027228975019839E-005 - 195.47999999999999 -8.6259773521663892E-005 - 195.53999999999999 -8.3141891503881929E-005 - 195.59999999999999 -7.9679003694025995E-005 - 195.66000000000000 -7.5876782588159305E-005 - 195.72000000000000 -7.1741137386564612E-005 - 195.78000000000000 -6.7278202847685930E-005 - 195.84000000000000 -6.2494340612492341E-005 - 195.89999999999998 -5.7396121797109749E-005 - 195.95999999999998 -5.1990338289434316E-005 - 196.01999999999998 -4.6283984272209463E-005 - 196.07999999999998 -4.0284246079549366E-005 - 196.13999999999999 -3.3998515755763044E-005 - 196.19999999999999 -2.7434355707437008E-005 - 196.25999999999999 -2.0599523624914723E-005 - 196.31999999999999 -1.3501950797045383E-005 - 196.38000000000000 -6.1497468858496692E-006 - 196.44000000000000 1.4488085386597919E-006 - 196.50000000000000 9.2852658289192340E-006 - 196.56000000000000 1.7351001522580609E-005 - 196.62000000000000 2.5637213408494563E-005 - 196.67999999999998 3.4134932711973833E-005 - 196.73999999999998 4.2835011316083093E-005 - 196.79999999999998 5.1728110556390082E-005 - 196.85999999999999 6.0804725485001890E-005 - 196.91999999999999 7.0055147079890319E-005 - 196.97999999999999 7.9469478623263358E-005 - 197.03999999999999 8.9037628542760518E-005 - 197.09999999999999 9.8749312159112672E-005 - 197.16000000000000 1.0859400777702826E-004 - 197.22000000000000 1.1856103155353086E-004 - 197.28000000000000 1.2863947245499944E-004 - 197.34000000000000 1.3881823682231287E-004 - 197.39999999999998 1.4908600012332471E-004 - 197.45999999999998 1.5943128119665597E-004 - 197.51999999999998 1.6984239254349995E-004 - 197.57999999999998 1.8030748534612990E-004 - 197.63999999999999 1.9081450726789355E-004 - 197.69999999999999 2.0135127886349504E-004 - 197.75999999999999 2.1190544995014718E-004 - 197.81999999999999 2.2246456652484141E-004 - 197.88000000000000 2.3301604272597180E-004 - 197.94000000000000 2.4354714192346066E-004 - 198.00000000000000 2.5404507380816308E-004 - 198.06000000000000 2.6449696045160819E-004 - 198.12000000000000 2.7488983701313795E-004 - 198.17999999999998 2.8521063056761493E-004 - 198.23999999999998 2.9544631372687064E-004 - 198.29999999999998 3.0558376325368416E-004 - 198.35999999999999 3.1560981716586780E-004 - 198.41999999999999 3.2551133965191549E-004 - 198.47999999999999 3.3527517586265089E-004 - 198.53999999999999 3.4488819215541577E-004 - 198.59999999999999 3.5433733709675148E-004 - 198.66000000000000 3.6360958054627488E-004 - 198.72000000000000 3.7269197265243686E-004 - 198.78000000000000 3.8157168666229884E-004 - 198.84000000000000 3.9023603719074963E-004 - 198.89999999999998 3.9867249223338018E-004 - 198.95999999999998 4.0686867576792237E-004 - 199.01999999999998 4.1481246517113032E-004 - 199.07999999999998 4.2249198641108193E-004 - 199.13999999999999 4.2989562762076224E-004 - 199.19999999999999 4.3701208515195691E-004 - 199.25999999999999 4.4383038608759173E-004 - 199.31999999999999 4.5033993690854197E-004 - 199.38000000000000 4.5653054554530421E-004 - 199.44000000000000 4.6239243542180077E-004 - 199.50000000000000 4.6791625115769672E-004 - 199.56000000000000 4.7309315539897397E-004 - 199.62000000000000 4.7791479578439212E-004 - 199.67999999999998 4.8237331514079012E-004 - 199.73999999999998 4.8646139161424200E-004 - 199.79999999999998 4.9017229903199945E-004 - 199.85999999999999 4.9349985777226392E-004 - 199.91999999999999 4.9643853045417026E-004 - 199.97999999999999 4.9898330781357925E-004 - 200.03999999999999 5.0112989683017263E-004 - 200.09999999999999 5.0287464606501436E-004 - 200.16000000000000 5.0421443457423240E-004 - 200.22000000000000 5.0514697053528402E-004 - 200.28000000000000 5.0567052674258201E-004 - 200.34000000000000 5.0578417707439888E-004 - 200.39999999999998 5.0548761188430884E-004 - 200.45999999999998 5.0478130191166856E-004 - 200.51999999999998 5.0366640724774394E-004 - 200.57999999999998 5.0214491527351447E-004 - 200.63999999999999 5.0021946208628080E-004 - 200.69999999999999 4.9789342840981686E-004 - 200.75999999999999 4.9517102929778683E-004 - 200.81999999999999 4.9205716228114963E-004 - 200.88000000000000 4.8855748317831672E-004 - 200.94000000000000 4.8467844733674035E-004 - 201.00000000000000 4.8042715232401772E-004 - 201.06000000000000 4.7581154136456410E-004 - 201.12000000000000 4.7084016203854993E-004 - 201.17999999999998 4.6552230667607565E-004 - 201.23999999999998 4.5986795761178293E-004 - 201.29999999999998 4.5388768903884853E-004 - 201.35999999999999 4.4759280660779219E-004 - 201.41999999999999 4.4099514868758900E-004 - 201.47999999999999 4.3410717830751110E-004 - 201.53999999999999 4.2694191833176091E-004 - 201.59999999999999 4.1951284667014543E-004 - 201.66000000000000 4.1183402007509868E-004 - 201.72000000000000 4.0391995275768317E-004 - 201.78000000000000 3.9578557386627487E-004 - 201.84000000000000 3.8744617050122030E-004 - 201.89999999999998 3.7891746338463252E-004 - 201.95999999999998 3.7021543866666703E-004 - 202.01999999999998 3.6135645371274165E-004 - 202.07999999999998 3.5235715063338259E-004 - 202.13999999999999 3.4323431226206764E-004 - 202.19999999999999 3.3400494184098177E-004 - 202.25999999999999 3.2468628216285393E-004 - 202.31999999999999 3.1529562992955269E-004 - 202.38000000000000 3.0585037702591459E-004 - 202.44000000000000 2.9636800523355494E-004 - 202.50000000000000 2.8686597681600295E-004 - 202.56000000000000 2.7736175772955657E-004 - 202.62000000000000 2.6787272491695790E-004 - 202.67999999999998 2.5841615745592707E-004 - 202.73999999999998 2.4900921599587891E-004 - 202.79999999999998 2.3966884662417377E-004 - 202.85999999999999 2.3041182532973600E-004 - 202.91999999999999 2.2125463081656331E-004 - 202.97999999999999 2.1221344906767071E-004 - 203.03999999999999 2.0330416291991613E-004 - 203.09999999999999 1.9454227348664205E-004 - 203.16000000000000 1.8594287531619710E-004 - 203.22000000000000 1.7752065827737946E-004 - 203.28000000000000 1.6928982306278409E-004 - 203.34000000000000 1.6126408448027653E-004 - 203.39999999999998 1.5345667033970017E-004 - 203.45999999999998 1.4588021918128248E-004 - 203.51999999999998 1.3854681098324139E-004 - 203.57999999999998 1.3146796863113498E-004 - 203.63999999999999 1.2465458038792181E-004 - 203.69999999999999 1.1811689448550360E-004 - 203.75999999999999 1.1186452993532605E-004 - 203.81999999999999 1.0590642729634144E-004 - 203.88000000000000 1.0025086457325321E-004 - 203.94000000000000 9.4905395287458229E-005 - 204.00000000000000 8.9876897190554670E-005 - 204.06000000000000 8.5171521230048450E-005 - 204.12000000000000 8.0794669505448557E-005 - 204.17999999999998 7.6751045885040800E-005 - 204.23999999999998 7.3044601514254707E-005 - 204.29999999999998 6.9678538796952522E-005 - 204.35999999999999 6.6655323538945612E-005 - 204.41999999999999 6.3976668070326841E-005 - 204.47999999999999 6.1643542734026699E-005 - 204.53999999999999 5.9656167688839376E-005 - 204.59999999999999 5.8014027024042838E-005 - 204.66000000000000 5.6715868961180411E-005 - 204.72000000000000 5.5759718167051170E-005 - 204.78000000000000 5.5142870353850400E-005 - 204.84000000000000 5.4861917019084273E-005 - 204.89999999999998 5.4912761865726314E-005 - 204.95999999999998 5.5290607586872423E-005 - 205.01999999999998 5.5989987273466669E-005 - 205.07999999999998 5.7004785732528830E-005 - 205.13999999999999 5.8328259345847709E-005 - 205.19999999999999 5.9953016397563781E-005 - 205.25999999999999 6.1871091137077883E-005 - 205.31999999999999 6.4073923723269731E-005 - 205.38000000000000 6.6552411749326348E-005 - 205.44000000000000 6.9296896072798639E-005 - 205.50000000000000 7.2297215519728070E-005 - 205.56000000000000 7.5542743351788452E-005 - 205.62000000000000 7.9022358803194814E-005 - 205.67999999999998 8.2724515515542122E-005 - 205.73999999999998 8.6637266547291770E-005 - 205.79999999999998 9.0748280071726518E-005 - 205.85999999999999 9.5044887265595542E-005 - 205.91999999999999 9.9514077053781605E-005 - 205.97999999999999 1.0414253776507094E-004 - 206.03999999999999 1.0891672420154235E-004 - 206.09999999999999 1.1382283958590484E-004 - 206.16000000000000 1.1884687133506400E-004 - 206.22000000000000 1.2397465293373752E-004 - 206.28000000000000 1.2919186449956445E-004 - 206.34000000000000 1.3448405315846142E-004 - 206.39999999999998 1.3983671245425722E-004 - 206.45999999999998 1.4523525965472092E-004 - 206.51999999999998 1.5066510091064651E-004 - 206.57999999999998 1.5611161468871584E-004 - 206.63999999999999 1.6156024991591315E-004 - 206.69999999999999 1.6699649448641640E-004 - 206.75999999999999 1.7240593689253110E-004 - 206.81999999999999 1.7777428201613002E-004 - 206.88000000000000 1.8308737528115434E-004 - 206.94000000000000 1.8833126293566743E-004 - 207.00000000000000 1.9349217258306876E-004 - 207.06000000000000 1.9855657812143418E-004 - 207.12000000000000 2.0351121457775359E-004 - 207.17999999999998 2.0834309355535202E-004 - 207.23999999999998 2.1303955597343183E-004 - 207.29999999999998 2.1758827580176457E-004 - 207.35999999999999 2.2197732652693247E-004 - 207.41999999999999 2.2619514375513746E-004 - 207.47999999999999 2.3023060158823346E-004 - 207.53999999999999 2.3407298585226836E-004 - 207.59999999999999 2.3771207784041958E-004 - 207.66000000000000 2.4113814147039010E-004 - 207.72000000000000 2.4434194242750580E-004 - 207.78000000000000 2.4731475022905607E-004 - 207.84000000000000 2.5004838237621408E-004 - 207.89999999999998 2.5253519871862393E-004 - 207.95999999999998 2.5476810252666603E-004 - 208.01999999999998 2.5674056618388698E-004 - 208.07999999999998 2.5844668580162432E-004 - 208.13999999999999 2.5988110436305845E-004 - 208.19999999999999 2.6103908575026639E-004 - 208.25999999999999 2.6191647774376355E-004 - 208.31999999999999 2.6250974461375115E-004 - 208.38000000000000 2.6281591953682094E-004 - 208.44000000000000 2.6283268013241789E-004 - 208.50000000000000 2.6255833426443192E-004 - 208.56000000000000 2.6199177646024044E-004 - 208.62000000000000 2.6113252437321788E-004 - 208.68000000000001 2.5998073708668378E-004 - 208.74000000000001 2.5853715969182409E-004 - 208.80000000000001 2.5680316736400872E-004 - 208.86000000000001 2.5478073301519907E-004 - 208.92000000000002 2.5247244484949622E-004 - 208.98000000000002 2.4988149497161792E-004 - 209.03999999999996 2.4701164046638999E-004 - 209.09999999999997 2.4386722860259507E-004 - 209.15999999999997 2.4045315524637113E-004 - 209.21999999999997 2.3677485927915196E-004 - 209.27999999999997 2.3283832782221777E-004 - 209.33999999999997 2.2865004185224042E-004 - 209.39999999999998 2.2421696607794633E-004 - 209.45999999999998 2.1954655106013637E-004 - 209.51999999999998 2.1464664271249269E-004 - 209.57999999999998 2.0952554894407494E-004 - 209.63999999999999 2.0419195118120942E-004 - 209.69999999999999 1.9865488556286659E-004 - 209.75999999999999 1.9292375540100066E-004 - 209.81999999999999 1.8700826358801208E-004 - 209.88000000000000 1.8091842092212446E-004 - 209.94000000000000 1.7466445296541755E-004 - 210.00000000000000 1.6825688867770828E-004 - 210.06000000000000 1.6170641241894105E-004 - 210.12000000000000 1.5502391557361449E-004 - 210.18000000000001 1.4822047354601882E-004 - 210.24000000000001 1.4130724352358451E-004 - 210.30000000000001 1.3429551585761865E-004 - 210.36000000000001 1.2719665699195839E-004 - 210.42000000000002 1.2002208388810859E-004 - 210.48000000000002 1.1278324072618335E-004 - 210.53999999999996 1.0549156799559404E-004 - 210.59999999999997 9.8158489022660614E-005 - 210.65999999999997 9.0795373588773944E-005 - 210.71999999999997 8.3413504635602141E-005 - 210.77999999999997 7.6024069366275855E-005 - 210.83999999999997 6.8638119603827401E-005 - 210.89999999999998 6.1266567623430876E-005 - 210.95999999999998 5.3920134642171841E-005 - 211.01999999999998 4.6609354305059521E-005 - 211.07999999999998 3.9344539193447772E-005 - 211.13999999999999 3.2135739000273190E-005 - 211.19999999999999 2.4992754800335407E-005 - 211.25999999999999 1.7925087513433249E-005 - 211.31999999999999 1.0941943789713952E-005 - 211.38000000000000 4.0521921893328292E-006 - 211.44000000000000 -2.7356290780923354E-006 - 211.50000000000000 -9.4133488762640388E-006 - 211.56000000000000 -1.5973177469370381E-005 - 211.62000000000000 -2.2407700072432409E-005 - 211.68000000000001 -2.8709905593753922E-005 - 211.74000000000001 -3.4873181601585565E-005 - 211.80000000000001 -4.0891327982072923E-005 - 211.86000000000001 -4.6758559817400988E-005 - 211.92000000000002 -5.2469520204979382E-005 - 211.98000000000002 -5.8019257918337215E-005 - 212.03999999999996 -6.3403249778808167E-005 - 212.09999999999997 -6.8617393924716709E-005 - 212.15999999999997 -7.3658005026643386E-005 - 212.21999999999997 -7.8521793837455639E-005 - 212.27999999999997 -8.3205922438632775E-005 - 212.33999999999997 -8.7707914784813565E-005 - 212.39999999999998 -9.2025729488438257E-005 - 212.45999999999998 -9.6157712339383627E-005 - 212.51999999999998 -1.0010260686784177E-004 - 212.57999999999998 -1.0385954519567698E-004 - 212.63999999999999 -1.0742805111903464E-004 - 212.69999999999999 -1.1080801429872862E-004 - 212.75999999999999 -1.1399971951936186E-004 - 212.81999999999999 -1.1700379050773562E-004 - 212.88000000000000 -1.1982124372724283E-004 - 212.94000000000000 -1.2245341865352432E-004 - 213.00000000000000 -1.2490200162412028E-004 - 213.06000000000000 -1.2716898994395069E-004 - 213.12000000000000 -1.2925670518935823E-004 - 213.18000000000001 -1.3116775619682658E-004 - 213.24000000000001 -1.3290502537902839E-004 - 213.30000000000001 -1.3447167180383955E-004 - 213.36000000000001 -1.3587107067758507E-004 - 213.42000000000002 -1.3710685537267385E-004 - 213.48000000000002 -1.3818284051621979E-004 - 213.53999999999996 -1.3910303450726194E-004 - 213.59999999999997 -1.3987164425585726E-004 - 213.65999999999997 -1.4049302151168994E-004 - 213.71999999999997 -1.4097167255432735E-004 - 213.77999999999997 -1.4131221686500167E-004 - 213.83999999999997 -1.4151939647961268E-004 - 213.89999999999998 -1.4159805459778839E-004 - 213.95999999999998 -1.4155314740901673E-004 - 214.01999999999998 -1.4138969664242421E-004 - 214.07999999999998 -1.4111277995149641E-004 - 214.13999999999999 -1.4072750996999377E-004 - 214.19999999999999 -1.4023906595241338E-004 - 214.25999999999999 -1.3965264607839902E-004 - 214.31999999999999 -1.3897346863437542E-004 - 214.38000000000000 -1.3820674975968580E-004 - 214.44000000000000 -1.3735769028751753E-004 - 214.50000000000000 -1.3643148590618650E-004 - 214.56000000000000 -1.3543328570745112E-004 - 214.62000000000000 -1.3436818636706452E-004 - 214.68000000000001 -1.3324125401015447E-004 - 214.74000000000001 -1.3205748104174359E-004 - 214.80000000000001 -1.3082179089640006E-004 - 214.86000000000001 -1.2953903746066372E-004 - 214.92000000000002 -1.2821395857208031E-004 - 214.98000000000002 -1.2685122862832036E-004 - 215.03999999999996 -1.2545539404226129E-004 - 215.09999999999997 -1.2403091784103583E-004 - 215.15999999999997 -1.2258210812526497E-004 - 215.21999999999997 -1.2111317781157828E-004 - 215.27999999999997 -1.1962819845861407E-004 - 215.33999999999997 -1.1813109946148133E-004 - 215.39999999999998 -1.1662565973278284E-004 - 215.45999999999998 -1.1511550602040132E-004 - 215.51999999999998 -1.1360409217842450E-004 - 215.57999999999998 -1.1209473543228445E-004 - 215.63999999999999 -1.1059055953681361E-004 - 215.69999999999999 -1.0909450809928392E-004 - 215.75999999999999 -1.0760938880230924E-004 - 215.81999999999999 -1.0613781383727524E-004 - 215.88000000000000 -1.0468223155084868E-004 - 215.94000000000000 -1.0324492088235025E-004 - 216.00000000000000 -1.0182800703096179E-004 - 216.06000000000000 -1.0043345916492938E-004 - 216.12000000000000 -9.9063098040841054E-005 - 216.18000000000001 -9.7718586929989773E-005 - 216.24000000000001 -9.6401458961604128E-005 - 216.30000000000001 -9.5113123584358644E-005 - 216.36000000000001 -9.3854829981570613E-005 - 216.42000000000002 -9.2627718416013561E-005 - 216.48000000000002 -9.1432788966684073E-005 - 216.53999999999996 -9.0270919613725490E-005 - 216.59999999999997 -8.9142859560218489E-005 - 216.65999999999997 -8.8049221306041808E-005 - 216.71999999999997 -8.6990497686546020E-005 - 216.77999999999997 -8.5967037403740694E-005 - 216.83999999999997 -8.4979072978438357E-005 - 216.89999999999998 -8.4026699473264857E-005 - 216.95999999999998 -8.3109888340544889E-005 - 217.01999999999998 -8.2228494243941509E-005 - 217.07999999999998 -8.1382252242470510E-005 - 217.13999999999999 -8.0570791076132222E-005 - 217.19999999999999 -7.9793630758449147E-005 - 217.25999999999999 -7.9050218007906809E-005 - 217.31999999999999 -7.8339899904226017E-005 - 217.38000000000000 -7.7661970048526071E-005 - 217.44000000000000 -7.7015643866020091E-005 - 217.50000000000000 -7.6400093530829390E-005 - 217.56000000000000 -7.5814444159964575E-005 - 217.62000000000000 -7.5257781574541267E-005 - 217.68000000000001 -7.4729165745145794E-005 - 217.74000000000001 -7.4227619375972175E-005 - 217.80000000000001 -7.3752145686784218E-005 - 217.86000000000001 -7.3301741332644071E-005 - 217.92000000000002 -7.2875363011682396E-005 - 217.98000000000002 -7.2471961871306879E-005 - 218.03999999999996 -7.2090485689020248E-005 - 218.09999999999997 -7.1729856847930340E-005 - 218.15999999999997 -7.1388989064330005E-005 - 218.21999999999997 -7.1066792230063913E-005 - 218.27999999999997 -7.0762164341847949E-005 - 218.33999999999997 -7.0474019825298294E-005 - 218.39999999999998 -7.0201253109185345E-005 - 218.45999999999998 -6.9942784511577936E-005 - 218.51999999999998 -6.9697542767052040E-005 - 218.57999999999998 -6.9464457070235905E-005 - 218.63999999999999 -6.9242482199246392E-005 - 218.69999999999999 -6.9030590217702709E-005 - 218.75999999999999 -6.8827781353766448E-005 - 218.81999999999999 -6.8633087693620152E-005 - 218.88000000000000 -6.8445555125588577E-005 - 218.94000000000000 -6.8264279515912866E-005 - 219.00000000000000 -6.8088375923187411E-005 - 219.06000000000000 -6.7917012813124443E-005 - 219.12000000000000 -6.7749382649218211E-005 - 219.18000000000001 -6.7584729830363850E-005 - 219.24000000000001 -6.7422348603832954E-005 - 219.30000000000001 -6.7261576977214926E-005 - 219.36000000000001 -6.7101816447389222E-005 - 219.42000000000002 -6.6942520315519874E-005 - 219.48000000000002 -6.6783203297440433E-005 - 219.53999999999996 -6.6623435137711510E-005 - 219.59999999999997 -6.6462857657179463E-005 - 219.65999999999997 -6.6301178485288941E-005 - 219.71999999999997 -6.6138153741310247E-005 - 219.77999999999997 -6.5973615345930244E-005 - 219.83999999999997 -6.5807431123589453E-005 - 219.89999999999998 -6.5639529434654916E-005 - 219.95999999999998 -6.5469876674714966E-005 - 220.01999999999998 -6.5298482067187693E-005 - 220.07999999999998 -6.5125376640687332E-005 - 220.13999999999999 -6.4950618241522978E-005 - 220.19999999999999 -6.4774295319332194E-005 - 220.25999999999999 -6.4596490027259211E-005 - 220.31999999999999 -6.4417318592479441E-005 - 220.38000000000000 -6.4236899697106434E-005 - 220.44000000000000 -6.4055369017740799E-005 - 220.50000000000000 -6.3872878794581065E-005 - 220.56000000000000 -6.3689604600801762E-005 - 220.62000000000000 -6.3505738573443231E-005 - 220.68000000000001 -6.3321505404079372E-005 - 220.74000000000001 -6.3137160068247531E-005 - 220.80000000000001 -6.2952989585822157E-005 - 220.86000000000001 -6.2769319182561154E-005 - 220.92000000000002 -6.2586499330617951E-005 - 220.98000000000002 -6.2404935674909278E-005 - 221.03999999999996 -6.2225044680518692E-005 - 221.09999999999997 -6.2047275801430763E-005 - 221.15999999999997 -6.1872088940928901E-005 - 221.21999999999997 -6.1699955441161971E-005 - 221.27999999999997 -6.1531347596355092E-005 - 221.33999999999997 -6.1366726498681413E-005 - 221.39999999999998 -6.1206538869466528E-005 - 221.45999999999998 -6.1051208581372709E-005 - 221.51999999999998 -6.0901119433882914E-005 - 221.57999999999998 -6.0756636444260499E-005 - 221.63999999999999 -6.0618073132213096E-005 - 221.69999999999999 -6.0485722418079684E-005 - 221.75999999999999 -6.0359829003854180E-005 - 221.81999999999999 -6.0240614792867866E-005 - 221.88000000000000 -6.0128261747224492E-005 - 221.94000000000000 -6.0022924885170650E-005 - 222.00000000000000 -5.9924745801218320E-005 - 222.06000000000000 -5.9833836319582619E-005 - 222.12000000000000 -5.9750294053305938E-005 - 222.18000000000001 -5.9674204304056052E-005 - 222.24000000000001 -5.9605633308507053E-005 - 222.30000000000001 -5.9544628196779153E-005 - 222.36000000000001 -5.9491226589639559E-005 - 222.42000000000002 -5.9445446798043703E-005 - 222.48000000000002 -5.9407278116589351E-005 - 222.53999999999996 -5.9376695412321886E-005 - 222.59999999999997 -5.9353641507763278E-005 - 222.65999999999997 -5.9338031436198093E-005 - 222.71999999999997 -5.9329754469135740E-005 - 222.77999999999997 -5.9328662102042014E-005 - 222.83999999999997 -5.9334583024697231E-005 - 222.89999999999998 -5.9347299085148628E-005 - 222.95999999999998 -5.9366579833206514E-005 - 223.01999999999998 -5.9392160094699328E-005 - 223.07999999999998 -5.9423738026032435E-005 - 223.13999999999999 -5.9460993380159669E-005 - 223.19999999999999 -5.9503571812259071E-005 - 223.25999999999999 -5.9551087785807187E-005 - 223.31999999999999 -5.9603131045327793E-005 - 223.38000000000000 -5.9659259664164308E-005 - 223.44000000000000 -5.9718998533043563E-005 - 223.50000000000000 -5.9781839652038818E-005 - 223.56000000000000 -5.9847249183849063E-005 - 223.62000000000000 -5.9914660333879125E-005 - 223.68000000000001 -5.9983473105955452E-005 - 223.74000000000001 -6.0053061032468808E-005 - 223.80000000000001 -6.0122779763760578E-005 - 223.86000000000001 -6.0191958078868390E-005 - 223.92000000000002 -6.0259923988090772E-005 - 223.98000000000002 -6.0325975434547956E-005 - 224.03999999999996 -6.0389416652764083E-005 - 224.09999999999997 -6.0449556798461548E-005 - 224.15999999999997 -6.0505710600742139E-005 - 224.21999999999997 -6.0557199425263273E-005 - 224.27999999999997 -6.0603357319698124E-005 - 224.33999999999997 -6.0643524394443093E-005 - 224.39999999999998 -6.0677062062188954E-005 - 224.45999999999998 -6.0703338097173296E-005 - 224.51999999999998 -6.0721721515948147E-005 - 224.57999999999998 -6.0731573703309683E-005 - 224.63999999999999 -6.0732266326729415E-005 - 224.69999999999999 -6.0723150371867161E-005 - 224.75999999999999 -6.0703570795002496E-005 - 224.81999999999999 -6.0672859108435614E-005 - 224.88000000000000 -6.0630325241976791E-005 - 224.94000000000000 -6.0575283492467682E-005 - 225.00000000000000 -6.0507027188953341E-005 - 225.06000000000000 -6.0424859383571836E-005 - 225.12000000000000 -6.0328078057362327E-005 - 225.18000000000001 -6.0216008888515772E-005 - 225.24000000000001 -6.0087999901052835E-005 - 225.30000000000001 -5.9943428557974039E-005 - 225.36000000000001 -5.9781729641680885E-005 - 225.42000000000002 -5.9602381171928361E-005 - 225.48000000000002 -5.9404927803332212E-005 - 225.53999999999996 -5.9188976052152354E-005 - 225.59999999999997 -5.8954191525372823E-005 - 225.65999999999997 -5.8700321131067840E-005 - 225.71999999999997 -5.8427163598179954E-005 - 225.77999999999997 -5.8134580402836350E-005 - 225.83999999999997 -5.7822495335926074E-005 - 225.89999999999998 -5.7490880705964916E-005 - 225.95999999999998 -5.7139753878918733E-005 - 226.01999999999998 -5.6769170895081274E-005 - 226.07999999999998 -5.6379225004508078E-005 - 226.13999999999999 -5.5970049006969491E-005 - 226.19999999999999 -5.5541806993107676E-005 - 226.25999999999999 -5.5094696871902826E-005 - 226.31999999999999 -5.4628952485898550E-005 - 226.38000000000000 -5.4144849543221898E-005 - 226.44000000000000 -5.3642699858923065E-005 - 226.50000000000000 -5.3122868744661519E-005 - 226.56000000000000 -5.2585770985101647E-005 - 226.62000000000000 -5.2031880537033767E-005 - 226.68000000000001 -5.1461725007764938E-005 - 226.74000000000001 -5.0875892604272739E-005 - 226.80000000000001 -5.0275034419262940E-005 - 226.86000000000001 -4.9659862139849569E-005 - 226.92000000000002 -4.9031144559617605E-005 - 226.98000000000002 -4.8389709786976407E-005 - 227.03999999999996 -4.7736435649967583E-005 - 227.09999999999997 -4.7072265747852854E-005 - 227.15999999999997 -4.6398174149640149E-005 - 227.21999999999997 -4.5715189787782297E-005 - 227.27999999999997 -4.5024385413866045E-005 - 227.33999999999997 -4.4326867399047989E-005 - 227.39999999999998 -4.3623782743928937E-005 - 227.45999999999998 -4.2916313400512289E-005 - 227.51999999999998 -4.2205674061733886E-005 - 227.57999999999998 -4.1493106325133367E-005 - 227.63999999999999 -4.0779882828041638E-005 - 227.69999999999999 -4.0067296066624526E-005 - 227.75999999999999 -3.9356654741392587E-005 - 227.81999999999999 -3.8649284207874874E-005 - 227.88000000000000 -3.7946507181942995E-005 - 227.94000000000000 -3.7249657238049780E-005 - 228.00000000000000 -3.6560051357336402E-005 - 228.06000000000000 -3.5879000169114803E-005 - 228.12000000000000 -3.5207787580427826E-005 - 228.18000000000001 -3.4547678962332781E-005 - 228.24000000000001 -3.3899906064817624E-005 - 228.30000000000001 -3.3265676375832351E-005 - 228.36000000000001 -3.2646163497567324E-005 - 228.42000000000002 -3.2042513965095827E-005 - 228.48000000000002 -3.1455839690523666E-005 - 228.53999999999996 -3.0887233123996945E-005 - 228.59999999999997 -3.0337760117930693E-005 - 228.65999999999997 -2.9808466538971175E-005 - 228.71999999999997 -2.9300379632909778E-005 - 228.77999999999997 -2.8814510814969885E-005 - 228.83999999999997 -2.8351848555261559E-005 - 228.89999999999998 -2.7913363594707495E-005 - 228.95999999999998 -2.7499995073274168E-005 - 229.01999999999998 -2.7112653873626231E-005 - 229.07999999999998 -2.6752203690618148E-005 - 229.13999999999999 -2.6419457627325881E-005 - 229.19999999999999 -2.6115168049748382E-005 - 229.25999999999999 -2.5840013313396816E-005 - 229.31999999999999 -2.5594595449462296E-005 - 229.38000000000000 -2.5379423440673993E-005 - 229.44000000000000 -2.5194912760442671E-005 - 229.50000000000000 -2.5041379321060639E-005 - 229.56000000000000 -2.4919045589411718E-005 - 229.62000000000000 -2.4828028002555126E-005 - 229.68000000000001 -2.4768350715188808E-005 - 229.74000000000001 -2.4739950180915975E-005 - 229.80000000000001 -2.4742681785721996E-005 - 229.86000000000001 -2.4776316011001371E-005 - 229.92000000000002 -2.4840562696574695E-005 - 229.97999999999996 -2.4935065908578462E-005 - 230.03999999999996 -2.5059409037372819E-005 - 230.09999999999997 -2.5213121543660035E-005 - 230.15999999999997 -2.5395676765856314E-005 - 230.21999999999997 -2.5606497034357789E-005 - 230.27999999999997 -2.5844942887789613E-005 - 230.33999999999997 -2.6110314348843558E-005 - 230.39999999999998 -2.6401850708862577E-005 - 230.45999999999998 -2.6718713769843778E-005 - 230.51999999999998 -2.7059992409888611E-005 - 230.57999999999998 -2.7424697161673121E-005 - 230.63999999999999 -2.7811753434076757E-005 - 230.69999999999999 -2.8220003535199129E-005 - 230.75999999999999 -2.8648207068532094E-005 - 230.81999999999999 -2.9095042798052298E-005 - 230.88000000000000 -2.9559113553194990E-005 - 230.94000000000000 -3.0038954715861373E-005 - 231.00000000000000 -3.0533032221960161E-005 - 231.06000000000000 -3.1039759870908151E-005 - 231.12000000000000 -3.1557502444154915E-005 - 231.18000000000001 -3.2084577944501182E-005 - 231.24000000000001 -3.2619275581370970E-005 - 231.30000000000001 -3.3159847148875347E-005 - 231.36000000000001 -3.3704531938196563E-005 - 231.42000000000002 -3.4251539350247835E-005 - 231.47999999999996 -3.4799064895937362E-005 - 231.53999999999996 -3.5345293770670883E-005 - 231.59999999999997 -3.5888387704302784E-005 - 231.65999999999997 -3.6426512863231626E-005 - 231.71999999999997 -3.6957819794422205E-005 - 231.77999999999997 -3.7480457627758849E-005 - 231.83999999999997 -3.7992576395655751E-005 - 231.89999999999998 -3.8492333212325113E-005 - 231.95999999999998 -3.8977892160394948E-005 - 232.01999999999998 -3.9447431601617581E-005 - 232.07999999999998 -3.9899159166852006E-005 - 232.13999999999999 -4.0331307474547583E-005 - 232.19999999999999 -4.0742139972547242E-005 - 232.25999999999999 -4.1129959762818413E-005 - 232.31999999999999 -4.1493110923790509E-005 - 232.38000000000000 -4.1829985487408274E-005 - 232.44000000000000 -4.2139012817619278E-005 - 232.50000000000000 -4.2418678095593700E-005 - 232.56000000000000 -4.2667500651225911E-005 - 232.62000000000000 -4.2884060014433694E-005 - 232.68000000000001 -4.3066973730734232E-005 - 232.74000000000001 -4.3214907467565925E-005 - 232.80000000000001 -4.3326575756136748E-005 - 232.86000000000001 -4.3400743466063572E-005 - 232.92000000000002 -4.3436237620765968E-005 - 232.97999999999996 -4.3431933173630943E-005 - 233.03999999999996 -4.3386781155806172E-005 - 233.09999999999997 -4.3299807248957377E-005 - 233.15999999999997 -4.3170110715319543E-005 - 233.21999999999997 -4.2996885098440015E-005 - 233.27999999999997 -4.2779421885632100E-005 - 233.33999999999997 -4.2517103501141752E-005 - 233.39999999999998 -4.2209426984761176E-005 - 233.45999999999998 -4.1855994896362964E-005 - 233.51999999999998 -4.1456516956680172E-005 - 233.57999999999998 -4.1010810613839496E-005 - 233.63999999999999 -4.0518790823505132E-005 - 233.69999999999999 -3.9980471800713434E-005 - 233.75999999999999 -3.9395954748296540E-005 - 233.81999999999999 -3.8765429358283396E-005 - 233.88000000000000 -3.8089155217275767E-005 - 233.94000000000000 -3.7367463964596610E-005 - 234.00000000000000 -3.6600746267450120E-005 - 234.06000000000000 -3.5789456490213589E-005 - 234.12000000000000 -3.4934104706656100E-005 - 234.18000000000001 -3.4035260457427776E-005 - 234.24000000000001 -3.3093549415896767E-005 - 234.30000000000001 -3.2109657590637237E-005 - 234.36000000000001 -3.1084336760068015E-005 - 234.42000000000002 -3.0018407435339180E-005 - 234.47999999999996 -2.8912759215550051E-005 - 234.53999999999996 -2.7768365014465636E-005 - 234.59999999999997 -2.6586265959285688E-005 - 234.65999999999997 -2.5367586605144013E-005 - 234.71999999999997 -2.4113526471267166E-005 - 234.77999999999997 -2.2825360472761161E-005 - 234.83999999999997 -2.1504433517639026E-005 - 234.89999999999998 -2.0152155305260009E-005 - 234.95999999999998 -1.8769994649490541E-005 - 235.01999999999998 -1.7359467768500316E-005 - 235.07999999999998 -1.5922139201499392E-005 - 235.13999999999999 -1.4459611428996422E-005 - 235.19999999999999 -1.2973520594713972E-005 - 235.25999999999999 -1.1465529942515883E-005 - 235.31999999999999 -9.9373272787964826E-006 - 235.38000000000000 -8.3906257062055178E-006 - 235.44000000000000 -6.8271580543609277E-006 - 235.50000000000000 -5.2486787915780230E-006 - 235.56000000000000 -3.6569614374695024E-006 - 235.62000000000000 -2.0538001763159995E-006 - 235.68000000000001 -4.4100713102731980E-007 - 235.74000000000001 1.1795894871681256E-006 - 235.80000000000001 2.8061477700919196E-006 - 235.86000000000001 4.4368169841922115E-006 - 235.92000000000002 6.0697419888322488E-006 - 235.97999999999996 7.7030691626278299E-006 - 236.03999999999996 9.3349545605649768E-006 - 236.09999999999997 1.0963569538565645E-005 - 236.15999999999997 1.2587106265756099E-005 - 236.21999999999997 1.4203785370630904E-005 - 236.27999999999997 1.5811859091382730E-005 - 236.33999999999997 1.7409617861431548E-005 - 236.39999999999998 1.8995390915548894E-005 - 236.45999999999998 2.0567546849993959E-005 - 236.51999999999998 2.2124497190825135E-005 - 236.57999999999998 2.3664692365829171E-005 - 236.63999999999999 2.5186624057407325E-005 - 236.69999999999999 2.6688818931325258E-005 - 236.75999999999999 2.8169848213363060E-005 - 236.81999999999999 2.9628315225643157E-005 - 236.88000000000000 3.1062867170064693E-005 - 236.94000000000000 3.2472194358426831E-005 - 237.00000000000000 3.3855035018369186E-005 - 237.06000000000000 3.5210175356264967E-005 - 237.12000000000000 3.6536458751564226E-005 - 237.18000000000001 3.7832795184495283E-005 - 237.24000000000001 3.9098167960602075E-005 - 237.30000000000001 4.0331631758621806E-005 - 237.36000000000001 4.1532327618919124E-005 - 237.42000000000002 4.2699473999682229E-005 - 237.47999999999996 4.3832380655593644E-005 - 237.53999999999996 4.4930435865166603E-005 - 237.59999999999997 4.5993115432336112E-005 - 237.65999999999997 4.7019970831182987E-005 - 237.71999999999997 4.8010619969495157E-005 - 237.77999999999997 4.8964756608793989E-005 - 237.83999999999997 4.9882125842160641E-005 - 237.89999999999998 5.0762523637401180E-005 - 237.95999999999998 5.1605794644456002E-005 - 238.01999999999998 5.2411823564516954E-005 - 238.07999999999998 5.3180528196510275E-005 - 238.13999999999999 5.3911865646105076E-005 - 238.19999999999999 5.4605823515616929E-005 - 238.25999999999999 5.5262430831340086E-005 - 238.31999999999999 5.5881755732768631E-005 - 238.38000000000000 5.6463901316965200E-005 - 238.44000000000000 5.7009030896688768E-005 - 238.50000000000000 5.7517342472192219E-005 - 238.56000000000000 5.7989096560257257E-005 - 238.62000000000000 5.8424612336813614E-005 - 238.68000000000001 5.8824258849724131E-005 - 238.74000000000001 5.9188460836003394E-005 - 238.80000000000001 5.9517699294793112E-005 - 238.86000000000001 5.9812498829068861E-005 - 238.92000000000002 6.0073425496282243E-005 - 238.97999999999996 6.0301087987996410E-005 - 239.03999999999996 6.0496127094794499E-005 - 239.09999999999997 6.0659198467633742E-005 - 239.15999999999997 6.0790987168028046E-005 - 239.21999999999997 6.0892183613497073E-005 - 239.27999999999997 6.0963499305484280E-005 - 239.33999999999997 6.1005636758018549E-005 - 239.39999999999998 6.1019305766899504E-005 - 239.45999999999998 6.1005230377578088E-005 - 239.51999999999998 6.0964129257917718E-005 - 239.57999999999998 6.0896719182098539E-005 - 239.63999999999999 6.0803732358230911E-005 - 239.69999999999999 6.0685893923428464E-005 - 239.75999999999999 6.0543939362421568E-005 - 239.81999999999999 6.0378598477079306E-005 - 239.88000000000000 6.0190603714369177E-005 - 239.94000000000000 5.9980692431968891E-005 - 240.00000000000000 5.9749587361920203E-005 - 240.06000000000000 5.9498008240909662E-005 - 240.12000000000000 5.9226667176178113E-005 - 240.18000000000001 5.8936258327037421E-005 - 240.24000000000001 5.8627464458050382E-005 - 240.30000000000001 5.8300945544222246E-005 - 240.36000000000001 5.7957351803812902E-005 - 240.42000000000002 5.7597314780668963E-005 - 240.47999999999996 5.7221450059196731E-005 - 240.53999999999996 5.6830357923968387E-005 - 240.59999999999997 5.6424625236066338E-005 - 240.65999999999997 5.6004825203264663E-005 - 240.71999999999997 5.5571525272228471E-005 - 240.77999999999997 5.5125285858295759E-005 - 240.83999999999997 5.4666649501447594E-005 - 240.89999999999998 5.4196154219448620E-005 - 240.95999999999998 5.3714315437857612E-005 - 241.01999999999998 5.3221640854159986E-005 - 241.07999999999998 5.2718608012898213E-005 - 241.13999999999999 5.2205670311816476E-005 - 241.19999999999999 5.1683251144891043E-005 - 241.25999999999999 5.1151739799231023E-005 - 241.31999999999999 5.0611479811242943E-005 - 241.38000000000000 5.0062782697903922E-005 - 241.44000000000000 4.9505907389530363E-005 - 241.50000000000000 4.8941080333203812E-005 - 241.56000000000000 4.8368487806167518E-005 - 241.62000000000000 4.7788277204528202E-005 - 241.68000000000001 4.7200567765341417E-005 - 241.74000000000001 4.6605458367914790E-005 - 241.80000000000001 4.6003031123217745E-005 - 241.86000000000001 4.5393349380619071E-005 - 241.92000000000002 4.4776474643522063E-005 - 241.97999999999996 4.4152463223797983E-005 - 242.03999999999996 4.3521367257281341E-005 - 242.09999999999997 4.2883251234694245E-005 - 242.15999999999997 4.2238171114356975E-005 - 242.21999999999997 4.1586183298034009E-005 - 242.27999999999997 4.0927341097578537E-005 - 242.33999999999997 4.0261682452487425E-005 - 242.39999999999998 3.9589242183271514E-005 - 242.45999999999998 3.8910027440890203E-005 - 242.51999999999998 3.8224030358314202E-005 - 242.57999999999998 3.7531220437736529E-005 - 242.63999999999999 3.6831547601269885E-005 - 242.69999999999999 3.6124935657682811E-005 - 242.75999999999999 3.5411292859590898E-005 - 242.81999999999999 3.4690514196005587E-005 - 242.88000000000000 3.3962486563038047E-005 - 242.94000000000000 3.3227093332641304E-005 - 243.00000000000000 3.2484226840860707E-005 - 243.06000000000000 3.1733790006545698E-005 - 243.12000000000000 3.0975713987692300E-005 - 243.18000000000001 3.0209941740532380E-005 - 243.24000000000001 2.9436458023714856E-005 - 243.30000000000001 2.8655274577346241E-005 - 243.36000000000001 2.7866440462162542E-005 - 243.42000000000002 2.7070037680872491E-005 - 243.47999999999996 2.6266183658455200E-005 - 243.53999999999996 2.5455029075782342E-005 - 243.59999999999997 2.4636750882030330E-005 - 243.65999999999997 2.3811554601732133E-005 - 243.71999999999997 2.2979670806035296E-005 - 243.77999999999997 2.2141353199941185E-005 - 243.83999999999997 2.1296876795818239E-005 - 243.89999999999998 2.0446540167506228E-005 - 243.95999999999998 1.9590661044859324E-005 - 244.01999999999998 1.8729583222846679E-005 - 244.07999999999998 1.7863673302737171E-005 - 244.13999999999999 1.6993324576737051E-005 - 244.19999999999999 1.6118961714517705E-005 - 244.25999999999999 1.5241037439491237E-005 - 244.31999999999999 1.4360036839749290E-005 - 244.38000000000000 1.3476479136516251E-005 - 244.44000000000000 1.2590913984201958E-005 - 244.50000000000000 1.1703922418788686E-005 - 244.56000000000000 1.0816117242839817E-005 - 244.62000000000000 9.9281381120999567E-006 - 244.68000000000001 9.0406507593099407E-006 - 244.74000000000001 8.1543460027493910E-006 - 244.80000000000001 7.2699371503491029E-006 - 244.86000000000001 6.3881586256755692E-006 - 244.92000000000002 5.5097638766092411E-006 - 244.97999999999996 4.6355269435056718E-006 - 245.03999999999996 3.7662428444850462E-006 - 245.09999999999997 2.9027257115824554E-006 - 245.15999999999997 2.0458114962266162E-006 - 245.21999999999997 1.1963586660071569E-006 - 245.27999999999997 3.5524843413959923E-007 - 245.33999999999997 -4.7661551835773376E-007 - 245.39999999999998 -1.2983081682970116E-006 - 245.45999999999998 -2.1088842114922539E-006 - 245.51999999999998 -2.9073810920684283E-006 - 245.57999999999998 -3.6928225806342072E-006 - 245.63999999999999 -4.4642232524499401E-006 - 245.69999999999999 -5.2205931669615887E-006 - 245.75999999999999 -5.9609428643102915E-006 - 245.81999999999999 -6.6842884461289247E-006 - 245.88000000000000 -7.3896574970338483E-006 - 245.94000000000000 -8.0760889336770970E-006 - 246.00000000000000 -8.7426417263618829E-006 - 246.06000000000000 -9.3883916528860485E-006 - 246.12000000000000 -1.0012436363237133E-005 - 246.18000000000001 -1.0613891188412927E-005 - 246.24000000000001 -1.1191891253499108E-005 - 246.30000000000001 -1.1745588725634224E-005 - 246.36000000000001 -1.2274152533810659E-005 - 246.42000000000002 -1.2776763367451073E-005 - 246.47999999999996 -1.3252615501928928E-005 - 246.53999999999996 -1.3700916054926951E-005 - 246.59999999999997 -1.4120884765162707E-005 - 246.65999999999997 -1.4511758605108576E-005 - 246.71999999999997 -1.4872790670129622E-005 - 246.77999999999997 -1.5203257133679049E-005 - 246.83999999999997 -1.5502462356835345E-005 - 246.89999999999998 -1.5769742548813945E-005 - 246.95999999999998 -1.6004474764946728E-005 - 247.01999999999998 -1.6206079965883918E-005 - 247.07999999999998 -1.6374030556630315E-005 - 247.13999999999999 -1.6507852658019219E-005 - 247.19999999999999 -1.6607131129009071E-005 - 247.25999999999999 -1.6671513714223765E-005 - 247.31999999999999 -1.6700711124491960E-005 - 247.38000000000000 -1.6694495645044867E-005 - 247.44000000000000 -1.6652703373089298E-005 - 247.50000000000000 -1.6575229843186709E-005 - 247.56000000000000 -1.6462032026163242E-005 - 247.62000000000000 -1.6313122439318871E-005 - 247.68000000000001 -1.6128571698613958E-005 - 247.74000000000001 -1.5908503068225878E-005 - 247.80000000000001 -1.5653095541675053E-005 - 247.86000000000001 -1.5362576991155277E-005 - 247.92000000000002 -1.5037232941499557E-005 - 247.97999999999996 -1.4677402635719525E-005 - 248.03999999999996 -1.4283478729511401E-005 - 248.09999999999997 -1.3855913809845642E-005 - 248.15999999999997 -1.3395218045420959E-005 - 248.21999999999997 -1.2901962141668687E-005 - 248.27999999999997 -1.2376775264367566E-005 - 248.33999999999997 -1.1820347687266555E-005 - 248.39999999999998 -1.1233426842981429E-005 - 248.45999999999998 -1.0616818115944664E-005 - 248.51999999999998 -9.9713799233360299E-006 - 248.57999999999998 -9.2980229389743926E-006 - 248.63999999999999 -8.5977042197301212E-006 - 248.69999999999999 -7.8714256208121656E-006 - 248.75999999999999 -7.1202271267545035E-006 - 248.81999999999999 -6.3451861829989736E-006 - 248.88000000000000 -5.5474127502900032E-006 - 248.94000000000000 -4.7280474051185874E-006 - 249.00000000000000 -3.8882583009805385E-006 - 249.06000000000000 -3.0292410045465715E-006 - 249.12000000000000 -2.1522156916665689E-006 - 249.18000000000001 -1.2584256948013443E-006 - 249.24000000000001 -3.4913652388591240E-007 - 249.30000000000001 5.7436362385547175E-007 - 249.36000000000001 1.5107690458122985E-006 - 249.42000000000002 2.4587568731188728E-006 - 249.47999999999996 3.4169900355634662E-006 - 249.53999999999996 4.3841233447762939E-006 - 249.59999999999997 5.3588057231640770E-006 - 249.65999999999997 6.3396854918103696E-006 - 249.71999999999997 7.3254163685929547E-006 - 249.77999999999997 8.3146634178482670E-006 - 249.83999999999997 9.3061051327567605E-006 - 249.89999999999998 1.0298442388125341E-005 - 249.95999999999998 1.1290397666620182E-005 - 250.01999999999998 1.2280724734589345E-005 - 250.07999999999998 1.3268202636328780E-005 - 250.13999999999999 1.4251645163613634E-005 - 250.19999999999999 1.5229897868003851E-005 - 250.25999999999999 1.6201838041941116E-005 - 250.31999999999999 1.7166371802780524E-005 - 250.38000000000000 1.8122440087793028E-005 - 250.44000000000000 1.9069011148349811E-005 - 250.50000000000000 2.0005081967750864E-005 - 250.56000000000000 2.0929678768137107E-005 - 250.62000000000000 2.1841859626583881E-005 - 250.68000000000001 2.2740712047422620E-005 - 250.74000000000001 2.3625353924297786E-005 - 250.80000000000001 2.4494941416032528E-005 - 250.86000000000001 2.5348665756581746E-005 - 250.92000000000002 2.6185763239335791E-005 - 250.97999999999996 2.7005512095345464E-005 - 251.03999999999996 2.7807236658410367E-005 - 251.09999999999997 2.8590313678919840E-005 - 251.15999999999997 2.9354173454571070E-005 - 251.21999999999997 3.0098295185514462E-005 - 251.27999999999997 3.0822218204160907E-005 - 251.33999999999997 3.1525530901675995E-005 - 251.39999999999998 3.2207877054524938E-005 - 251.45999999999998 3.2868952920688671E-005 - 251.51999999999998 3.3508499244754707E-005 - 251.57999999999998 3.4126306371085909E-005 - 251.63999999999999 3.4722203998266607E-005 - 251.69999999999999 3.5296069560903941E-005 - 251.75999999999999 3.5847818509560928E-005 - 251.81999999999999 3.6377400399805530E-005 - 251.88000000000000 3.6884806144449231E-005 - 251.94000000000000 3.7370059163202850E-005 diff --git a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000004.BXY.semd b/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000004.BXY.semd deleted file mode 100644 index 5ca33714..00000000 --- a/seisflows/tests/test_data/test_solver/001/traces/syn/AA.S000004.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 -5.4834177800978590E-041 - 2.0399999999999991 -1.2334937635723831E-040 - 2.1000000000000014 -2.0554558553207167E-040 - 2.1599999999999966 -2.8774179470690504E-040 - 2.2199999999999989 -3.8391611801741577E-040 - 2.2800000000000011 -5.2377486600659548E-040 - 2.3399999999999963 -6.7736263543983902E-040 - 2.3999999999999986 -8.1303768042748870E-040 - 2.4600000000000009 -9.0270737316244571E-040 - 2.5199999999999960 -9.3452776838459107E-040 - 2.5799999999999983 -9.0183085882514132E-040 - 2.6400000000000006 -7.7124406255138880E-040 - 2.6999999999999957 -5.3245361760075748E-040 - 2.7599999999999980 -1.8479807002167028E-040 - 2.8200000000000003 2.3943281486094099E-040 - 2.8799999999999955 7.4748697210814157E-040 - 2.9399999999999977 1.2903737756011060E-039 - 3.0000000000000000 1.8253112379383782E-039 - 3.0599999999999952 2.3492924062154451E-039 - 3.1199999999999974 2.4121635785405956E-039 - 3.1799999999999997 2.0169222776341192E-039 - 3.2399999999999949 8.5677053510963689E-040 - 3.2999999999999972 -1.1260462190061220E-039 - 3.3599999999999994 -3.6651862797453440E-039 - 3.4199999999999946 -6.6137039040464232E-039 - 3.4799999999999969 -9.5249443010432884E-039 - 3.5399999999999991 -1.3238756828772894E-038 - 3.6000000000000014 -1.7170496021104799E-038 - 3.6599999999999966 -2.0673208843486708E-038 - 3.7199999999999989 -2.3067027699908163E-038 - 3.7800000000000011 -2.3993834212805818E-038 - 3.8399999999999963 -2.2823420347457013E-038 - 3.8999999999999986 -1.9514446573276361E-038 - 3.9600000000000009 -1.4793952310559576E-038 - 4.0199999999999960 -9.1376423092284480E-039 - 4.0799999999999983 -2.8846554214340154E-039 - 4.1400000000000006 3.3775099351536774E-039 - 4.1999999999999957 7.6306846471560179E-039 - 4.2599999999999980 8.9909195030751783E-039 - 4.3200000000000003 6.4881111375933733E-039 - 4.3799999999999955 -2.2726450089616352E-039 - 4.4399999999999977 -1.7633107635823217E-038 - 4.5000000000000000 -3.8646891551845267E-038 - 4.5599999999999952 -6.4403324085412597E-038 - 4.6199999999999974 -9.1501041105191348E-038 - 4.6799999999999997 -1.1710986455380478E-037 - 4.7399999999999949 -1.3729265657774036E-037 - 4.7999999999999972 -1.4844741138691018E-037 - 4.8599999999999994 -1.4688374480124359E-037 - 4.9199999999999946 -1.2982636603337736E-037 - 4.9799999999999969 -9.6902450390157554E-038 - 5.0399999999999991 -4.7007333364671854E-038 - 5.1000000000000014 2.6106279049790164E-038 - 5.1599999999999966 1.2628495573976156E-037 - 5.2199999999999989 2.4137290103592981E-037 - 5.2800000000000011 3.6023599681270805E-037 - 5.3399999999999963 4.6436976725653869E-037 - 5.3999999999999986 5.5065419424171073E-037 - 5.4600000000000009 5.9830331885993153E-037 - 5.5199999999999960 5.9557970982016937E-037 - 5.5799999999999983 5.3600169730045338E-037 - 5.6400000000000006 4.2277887397426881E-037 - 5.6999999999999957 2.5511305208399388E-037 - 5.7599999999999980 2.6992143972028658E-038 - 5.8200000000000003 -2.6072449354688416E-037 - 5.8799999999999955 -5.6651056231468381E-037 - 5.9399999999999977 -8.6096455577238413E-037 - 6.0000000000000000 -1.1096680321210473E-036 - 6.0599999999999952 -1.2750212448810376E-036 - 6.1199999999999974 -1.3171838420749589E-036 - 6.1799999999999997 -1.2044423497644808E-036 - 6.2399999999999949 -9.1932669048090461E-037 - 6.2999999999999972 -3.9090051709915682E-037 - 6.3599999999999994 4.0908047513466517E-037 - 6.4199999999999946 1.4212212977932644E-036 - 6.4799999999999969 2.5848097638014276E-036 - 6.5399999999999991 3.8276524193239889E-036 - 6.6000000000000014 4.9918866518587405E-036 - 6.6599999999999966 5.9718781429833840E-036 - 6.7199999999999989 6.6274626263227763E-036 - 6.7800000000000011 6.7800253172838627E-036 - 6.8399999999999963 6.3153640221417590E-036 - 6.8999999999999986 4.9425092883792554E-036 - 6.9600000000000009 2.6058619505923360E-036 - 7.0199999999999960 -7.2052143195321326E-037 - 7.0799999999999983 -5.0166183105077661E-036 - 7.1400000000000006 -9.9379854889126287E-036 - 7.1999999999999957 -1.5233045567843328E-035 - 7.2599999999999980 -2.0448442959388661E-035 - 7.3200000000000003 -2.5197147054818375E-035 - 7.3799999999999955 -2.9119453155890135E-035 - 7.4399999999999977 -3.1756461326902087E-035 - 7.5000000000000000 -3.2300641095319376E-035 - 7.5599999999999952 -2.9966571885399157E-035 - 7.6199999999999974 -2.4232644472288185E-035 - 7.6799999999999997 -1.4739422320963668E-035 - 7.7399999999999949 -1.2711550080832967E-036 - 7.7999999999999972 1.6141025415467254E-035 - 7.8599999999999994 3.7073782104881188E-035 - 7.9199999999999946 6.0770634590978721E-035 - 7.9799999999999969 8.5899612365001433E-035 - 8.0399999999999991 1.1094242314947914E-034 - 8.1000000000000014 1.3402607227638689E-034 - 8.1599999999999966 1.5271321804131325E-034 - 8.2199999999999989 1.6451668554168776E-034 - 8.2800000000000011 1.6645701722988671E-034 - 8.3399999999999963 1.5584208344955744E-034 - 8.3999999999999986 1.3015709039798313E-034 - 8.4600000000000009 8.7370051189606298E-035 - 8.5199999999999960 2.6183148511702741E-035 - 8.5799999999999983 -5.3624783889177015E-035 - 8.6400000000000006 -1.5091551563726276E-034 - 8.6999999999999957 -2.6299591921307852E-034 - 8.7599999999999980 -3.8539515108888285E-034 - 8.8200000000000003 -5.1171665306768638E-034 - 8.8799999999999955 -6.3363424225755260E-034 - 8.9399999999999977 -7.4103275623833750E-034 - 9.0000000000000000 -8.2224860010433812E-034 - 9.0599999999999952 -8.6458798572310173E-034 - 9.1199999999999974 -8.5499613951693835E-034 - 9.1799999999999997 -7.8088155581238036E-034 - 9.2399999999999949 -6.3121820155644388E-034 - 9.2999999999999972 -3.9771370409979799E-034 - 9.3599999999999994 -7.6086920734587088E-035 - 9.4199999999999946 3.3259477336760587E-034 - 9.4799999999999969 8.2068024521498347E-034 - 9.5399999999999991 1.3728689195063913E-033 - 9.5999999999999943 1.9654203836928403E-033 - 9.6599999999999966 2.5658528411534067E-033 - 9.7199999999999989 3.1331005362893151E-033 - 9.7800000000000011 3.6183848551548703E-033 - 9.8399999999999963 3.9668242715197111E-033 - 9.8999999999999986 4.1199313995906189E-033 - 9.9600000000000009 4.0188227505092851E-033 - 10.019999999999996 3.6083022468489348E-033 - 10.079999999999998 2.8416122948343959E-033 - 10.140000000000001 1.6856934870004727E-033 - 10.199999999999996 1.2670594182981371E-034 - 10.259999999999998 -1.8245305805615800E-033 - 10.320000000000000 -4.1275291171992266E-033 - 10.379999999999995 -6.7080633299759638E-033 - 10.439999999999998 -9.4554395084446597E-033 - 10.500000000000000 -1.2221629853080080E-032 - 10.559999999999995 -1.4822737945054465E-032 - 10.619999999999997 -1.7043157137113809E-032 - 10.680000000000000 -1.8642779421871064E-032 - 10.739999999999995 -1.9367347508853679E-032 - 10.799999999999997 -1.8962024295650974E-032 - 10.859999999999999 -1.7187920703343012E-032 - 10.919999999999995 -1.3841169364397249E-032 - 10.979999999999997 -8.7738662895958371E-033 - 11.039999999999999 -1.9159460975271322E-033 - 11.099999999999994 6.7031488745839718E-033 - 11.159999999999997 1.6934399922460232E-032 - 11.219999999999999 2.8492234622900811E-032 - 11.280000000000001 4.0942325516726975E-032 - 11.339999999999996 5.3695797027543610E-032 - 11.399999999999999 6.6011470183733382E-032 - 11.460000000000001 7.7007655774370605E-032 - 11.519999999999996 8.5684686903690850E-032 - 11.579999999999998 9.0959074316367984E-032 - 11.640000000000001 9.1709777195583093E-032 - 11.699999999999996 8.6836414204683903E-032 - 11.759999999999998 7.5328718545296312E-032 - 11.820000000000000 5.6345855469004188E-032 - 11.879999999999995 2.9303272137083548E-032 - 11.939999999999998 -6.0357436990804115E-033 - 12.000000000000000 -4.9467760716592373E-032 - 12.059999999999995 -1.0026066336042431E-031 - 12.119999999999997 -1.5707432298651640E-031 - 12.180000000000000 -2.1789682178800969E-031 - 12.239999999999995 -2.8000269233968112E-031 - 12.299999999999997 -3.3994071783687700E-031 - 12.359999999999999 -3.9355904796490090E-031 - 12.419999999999995 -4.3607478915114840E-031 - 12.479999999999997 -4.6219600086096998E-031 - 12.539999999999999 -4.6630225449269841E-031 - 12.599999999999994 -4.4268928144054682E-031 - 12.659999999999997 -3.8588073485950279E-031 - 12.719999999999999 -2.9100764592335449E-031 - 12.780000000000001 -1.5425208257464794E-031 - 12.839999999999996 2.6652884479392387E-032 - 12.899999999999999 2.5188122462877406E-031 - 12.960000000000001 5.1895011807716417E-031 - 13.019999999999996 8.2216330682066655E-031 - 13.079999999999998 1.1520978100020709E-030 - 13.140000000000001 1.4951792670121255E-030 - 13.199999999999996 1.8333993739348048E-030 - 13.259999999999998 2.1442348906917838E-030 - 13.320000000000000 2.4008344920505699E-030 - 13.379999999999995 2.5725384676906702E-030 - 13.439999999999998 2.6257977633072796E-030 - 13.500000000000000 2.5255453412883720E-030 - 13.559999999999995 2.2370638277123871E-030 - 13.619999999999997 1.7283651441795602E-030 - 13.680000000000000 9.7307007171519817E-031 - 13.739999999999995 -4.6265016145772434E-032 - 13.799999999999997 -1.3344768147185742E-030 - 13.859999999999999 -2.8799370873334423E-030 - 13.919999999999995 -4.6507236205268838E-030 - 13.979999999999997 -6.5911027643585315E-030 - 14.039999999999999 -8.6186634334890873E-030 - 14.099999999999994 -1.0622494956747870E-029 - 14.159999999999997 -1.2462840238306056E-029 - 14.219999999999999 -1.3972670468328139E-029 - 14.280000000000001 -1.4961616062248242E-029 - 14.339999999999996 -1.5222641342286540E-029 - 14.399999999999999 -1.4541752544039355E-029 - 14.460000000000001 -1.2710904219433925E-029 - 14.519999999999996 -9.5440508939492326E-030 - 14.579999999999998 -4.8960787108941500E-030 - 14.640000000000001 1.3159550621398423E-030 - 14.699999999999996 9.0901711808613580E-030 - 14.759999999999998 1.8317038563523449E-029 - 14.820000000000000 2.8757974729063597E-029 - 14.879999999999995 4.0027281720860786E-029 - 14.939999999999998 5.1579623844093825E-029 - 15.000000000000000 6.2705444895480037E-029 - 15.059999999999995 7.2536745006192543E-029 - 15.119999999999997 8.0065564621732898E-029 - 15.180000000000000 8.4177231824520110E-029 - 15.239999999999995 8.3699834223941151E-029 - 15.299999999999997 7.7470702196326769E-029 - 15.359999999999999 6.4419506644525069E-029 - 15.419999999999995 4.3666476371686607E-029 - 15.479999999999997 1.4632550101498398E-029 - 15.539999999999999 -2.2843190514694196E-029 - 15.599999999999994 -6.8385292283416980E-029 - 15.659999999999997 -1.2097105606190432E-028 - 15.719999999999999 -1.7883667274596106E-028 - 15.780000000000001 -2.3941128044108030E-028 - 15.839999999999996 -2.9929045808989874E-028 - 15.899999999999999 -3.5426102492690428E-028 - 15.960000000000001 -3.9938798196407255E-028 - 16.019999999999996 -4.2917289516689912E-028 - 16.079999999999998 -4.3779015860062617E-028 - 16.140000000000001 -4.1940413338556071E-028 - 16.200000000000003 -3.6856426485719974E-028 - 16.259999999999991 -2.8067010995675737E-028 - 16.319999999999993 -1.5249108140384476E-028 - 16.379999999999995 1.7282205601061453E-029 - 16.439999999999998 2.2748477759306307E-028 - 16.500000000000000 4.7396039376764443E-028 - 16.560000000000002 7.4912453802803712E-028 - 16.620000000000005 1.0416560935788706E-027 - 16.679999999999993 1.3363686300503101E-027 - 16.739999999999995 1.6143129291331978E-027 - 16.799999999999997 1.8531561667770446E-027 - 16.859999999999999 2.0278775381228012E-027 - 16.920000000000002 2.1118053372001634E-027 - 16.980000000000004 2.0780050508836257E-027 - 17.039999999999992 1.9010035829410656E-027 - 17.099999999999994 1.5588129584395067E-027 - 17.159999999999997 1.0351838918984434E-027 - 17.219999999999999 3.2199247793334109E-028 - 17.280000000000001 -5.7837073954928289E-028 - 17.340000000000003 -1.6507661470599459E-027 - 17.399999999999991 -2.8654068671887644E-027 - 17.459999999999994 -4.1764985914775821E-027 - 17.519999999999996 -5.5216244472940703E-027 - 17.579999999999998 -6.8220803218617415E-027 - 17.640000000000001 -7.9843453645825832E-027 - 17.700000000000003 -8.9028404121983811E-027 - 17.759999999999991 -9.4640728753880021E-027 - 17.819999999999993 -9.5521974344299060E-027 - 17.879999999999995 -9.0559422584336699E-027 - 17.939999999999998 -7.8767345022545605E-027 - 18.000000000000000 -5.9377656894315614E-027 - 18.060000000000002 -3.1936081658421060E-027 - 18.120000000000005 3.6011606582018184E-028 - 18.179999999999993 4.6776233840981454E-027 - 18.239999999999995 9.6551146249201607E-027 - 18.299999999999997 1.5124942345793512E-026 - 18.359999999999999 2.0852584200261789E-026 - 18.420000000000002 2.6537213391296021E-026 - 18.480000000000004 3.1816547303476485E-026 - 18.539999999999992 3.6276579379903861E-026 - 18.599999999999994 3.9466551750260552E-026 - 18.659999999999997 4.0919323834182730E-026 - 18.719999999999999 4.0176931215449235E-026 - 18.780000000000001 3.6820832877541511E-026 - 18.840000000000003 3.0505852029209890E-026 - 18.899999999999991 2.0996493853638040E-026 - 18.959999999999994 8.2038371730429041E-027 - 19.019999999999996 -7.7791495908779747E-027 - 19.079999999999998 -2.6646370316840907E-026 - 19.140000000000001 -4.7854136495573592E-026 - 19.200000000000003 -7.0606347655943075E-026 - 19.259999999999991 -9.3852077547217090E-026 - 19.319999999999993 -1.1629813215621975E-025 - 19.379999999999995 -1.3643878921173630E-025 - 19.439999999999998 -1.5260410976276080E-025 - 19.500000000000000 -1.6302763660999696E-025 - 19.560000000000002 -1.6593302157048564E-025 - 19.620000000000005 -1.5963797725208956E-025 - 19.679999999999993 -1.4267274540556600E-025 - 19.739999999999995 -1.1390863420112696E-025 - 19.799999999999997 -7.2690843545301741E-026 - 19.859999999999999 -1.8968631682640001E-026 - 19.920000000000002 4.6585481059894132E-026 - 19.980000000000004 1.2247658971492637E-025 - 20.039999999999992 2.0631786959026706E-025 - 20.099999999999994 2.9480024767960262E-025 - 20.159999999999997 3.8371024477085637E-025 - 20.219999999999999 4.6800379965200169E-025 - 20.280000000000001 5.4194200173560938E-025 - 20.340000000000003 5.9929210719330224E-025 - 20.399999999999991 6.3359423222305182E-025 - 20.459999999999994 6.3848963011224367E-025 - 20.519999999999996 6.0810361475661021E-025 - 20.579999999999998 5.3746999116963809E-025 - 20.640000000000001 4.2298055486771793E-025 - 20.700000000000003 2.6283868927273541E-025 - 20.759999999999991 5.7491457988782798E-026 - 20.819999999999993 -1.8998789288380593E-025 - 20.879999999999995 -4.7359733364691393E-025 - 20.939999999999998 -7.8421478690636652E-025 - 21.000000000000000 -1.1095474303533921E-024 - 21.060000000000002 -1.4342501939300025E-024 - 21.120000000000005 -1.7402348819578911E-024 - 21.179999999999993 -2.0071861435246576E-024 - 21.239999999999995 -2.2132910102561208E-024 - 21.299999999999997 -2.3361778394665045E-024 - 21.359999999999999 -2.3540487436573420E-024 - 21.420000000000002 -2.2469759382164129E-024 - 21.480000000000004 -1.9983177262084115E-024 - 21.539999999999992 -1.5961984924673471E-024 - 21.599999999999994 -1.0349795458343078E-024 - 21.659999999999997 -3.1664300862625179E-025 - 21.719999999999999 5.4800416932258971E-025 - 21.780000000000001 1.5383986221606365E-024 - 21.840000000000003 2.6236588290443334E-024 - 21.899999999999991 3.7624828429303925E-024 - 21.959999999999994 4.9035870538431944E-024 - 22.019999999999996 5.9867512773504372E-024 - 22.079999999999998 6.9445117627575462E-024 - 22.140000000000001 7.7045198533432433E-024 - 22.200000000000003 8.1925481051744313E-024 - 22.259999999999991 8.3360875417541938E-024 - 22.319999999999993 8.0684471970858288E-024 - 22.379999999999995 7.3332143179491789E-024 - 22.439999999999998 6.0889003645670202E-024 - 22.500000000000000 4.3135690648722364E-024 - 22.560000000000002 2.0091919204002445E-024 - 22.619999999999990 -7.9453620916217117E-025 - 22.679999999999993 -4.0371976873280435E-024 - 22.739999999999995 -7.6257587125050391E-024 - 22.799999999999997 -1.1434050339087806E-023 - 22.859999999999999 -1.5303866462101294E-023 - 22.920000000000002 -1.9047874169927648E-023 - 22.980000000000004 -2.2454470503784955E-023 - 23.039999999999992 -2.5294642287767224E-023 - 23.099999999999994 -2.7330788942908447E-023 - 23.159999999999997 -2.8327371955717845E-023 - 23.219999999999999 -2.8063122485490074E-023 - 23.280000000000001 -2.6344444944191770E-023 - 23.340000000000003 -2.3019529700526993E-023 - 23.399999999999991 -1.7992556567485432E-023 - 23.459999999999994 -1.1237320200445231E-023 - 23.519999999999996 -2.8094955018291376E-024 - 23.579999999999998 7.1432763534935279E-024 - 23.640000000000001 1.8374294522956901E-023 - 23.700000000000003 3.0534525979414997E-023 - 23.759999999999991 4.3173873084416175E-023 - 23.819999999999993 5.5747615357721701E-023 - 23.879999999999995 6.7628508092654010E-023 - 23.939999999999998 7.8124740923978638E-023 - 24.000000000000000 8.6503841263730491E-023 - 24.060000000000002 9.2022193042072591E-023 - 24.119999999999990 9.3959582674694775E-023 - 24.179999999999993 9.1657879813583890E-023 - 24.239999999999995 8.4562568299887413E-023 - 24.299999999999997 7.2265563039959642E-023 - 24.359999999999999 5.4547416237355251E-023 - 24.420000000000002 3.1416825455124433E-023 - 24.480000000000004 3.1451211675002326E-024 - 24.539999999999992 -2.9706678409704008E-023 - 24.599999999999994 -6.6270626975057023E-023 - 24.659999999999997 -1.0536672877933023E-022 - 24.719999999999999 -1.4551191765896319E-022 - 24.780000000000001 -1.8494493217183095E-022 - 24.840000000000003 -2.2166804798310925E-022 - 24.899999999999991 -2.5350642069457084E-022 - 24.959999999999994 -2.7818460659211909E-022 - 25.019999999999996 -2.9341932337038892E-022 - 25.079999999999998 -2.9702636100212321E-022 - 25.140000000000001 -2.8703874463860326E-022 - 25.200000000000003 -2.6183216528401592E-022 - 25.259999999999991 -2.2025286897911118E-022 - 25.319999999999993 -1.6174223394723257E-022 - 25.379999999999995 -8.6451950076266291E-023 - 25.439999999999998 4.6573944556773838E-024 - 25.500000000000000 1.0974111257969374E-022 - 25.560000000000002 2.2602567079362483E-022 - 25.619999999999990 3.4980094893967649E-022 - 25.679999999999993 4.7645532321502106E-022 - 25.739999999999995 6.0055832775265803E-022 - 25.799999999999997 7.1599365534222966E-022 - 25.859999999999999 8.1614398545968915E-022 - 25.920000000000002 8.9412678017361156E-022 - 25.980000000000004 9.4307664804242926E-022 - 26.039999999999992 9.5646899506592344E-022 - 26.099999999999994 9.2847504133179403E-022 - 26.159999999999997 8.5433635025646246E-022 - 26.219999999999999 7.3074499195141568E-022 - 26.280000000000001 5.5621123687007273E-022 - 26.340000000000003 3.3140074177139160E-022 - 26.399999999999991 5.9420830383428637E-023 - 26.459999999999994 -2.5396538480662979E-022 - 26.519999999999996 -6.0021653517497981E-022 - 26.579999999999998 -9.6800237436932354E-022 - 26.640000000000001 -1.3433211456876257E-021 - 26.700000000000003 -1.7097578410042417E-021 - 26.759999999999991 -2.0488930273052087E-021 - 26.819999999999993 -2.3408641843041039E-021 - 26.879999999999995 -2.5650751701697678E-021 - 26.939999999999998 -2.7010451507327836E-021 - 27.000000000000000 -2.7293741974611029E-021 - 27.060000000000002 -2.6328013421249113E-021 - 27.119999999999990 -2.3973179828432620E-021 - 27.179999999999993 -2.0132934683304744E-021 - 27.239999999999995 -1.4765629196731371E-021 - 27.299999999999997 -7.8942384581845650E-022 - 27.359999999999999 3.8520568865925372E-023 - 27.420000000000002 9.8972767677201949E-022 - 27.480000000000004 2.0383528402039862E-021 - 27.539999999999992 3.1502119336871307E-021 - 27.599999999999994 4.2831143851279205E-021 - 27.659999999999997 5.3876061158195148E-021 - 27.719999999999999 6.4081442351828332E-021 - 27.780000000000001 7.2847097315609605E-021 - 27.840000000000003 7.9548433084863934E-021 - 27.899999999999991 8.3560735028651810E-021 - 27.959999999999994 8.4286793975212806E-021 - 28.019999999999996 8.1186991495462569E-021 - 28.079999999999998 7.3810950430074544E-021 - 28.140000000000001 6.1829330619151252E-021 - 28.200000000000003 4.5064492809465170E-021 - 28.259999999999991 2.3518263191923039E-021 - 28.319999999999993 -2.6046937207950898E-022 - 28.379999999999995 -3.2879766551367239E-021 - 28.439999999999998 -6.6653110229369045E-021 - 28.500000000000000 -1.0304179508158188E-020 - 28.560000000000002 -1.4094471519249889E-020 - 28.619999999999990 -1.7906540132523351E-020 - 28.679999999999993 -2.1594709076167685E-020 - 28.739999999999995 -2.5002062089823413E-020 - 28.799999999999997 -2.7966443215652910E-020 - 28.859999999999999 -3.0327614076447668E-020 - 28.920000000000002 -3.1935391958182677E-020 - 28.980000000000004 -3.2658508917772923E-020 - 29.039999999999992 -3.2393989843065238E-020 - 29.099999999999994 -3.1076669257345593E-020 - 29.159999999999997 -2.8688419198072575E-020 - 29.219999999999999 -2.5266729621582235E-020 - 29.280000000000001 -2.0912155884938410E-020 - 29.340000000000003 -1.5794191146287677E-020 - 29.399999999999991 -1.0155078160616158E-020 - 29.459999999999994 -4.3112504491487279E-021 - 29.519999999999996 1.3480685806590431E-021 - 29.579999999999998 6.3652850337543325E-021 - 29.640000000000001 1.0222005429574883E-020 - 29.700000000000003 1.2349966568290009E-020 - 29.759999999999991 1.2144999760192531E-020 - 29.819999999999993 8.9839276210487988E-021 - 29.879999999999995 2.2438765579273213E-021 - 29.939999999999998 -8.6765313272451434E-021 - 30.000000000000000 -2.4334770353098870E-020 - 30.060000000000002 -4.5221807216784150E-020 - 30.119999999999990 -7.1740300446833616E-020 - 30.179999999999993 -1.0418450837953540E-019 - 30.239999999999995 -1.4272325022367404E-019 - 30.299999999999997 -1.8738695202690259E-019 - 30.359999999999999 -2.3805961549266997E-019 - 30.420000000000002 -2.9447729803471546E-019 - 30.480000000000004 -3.5623361215997512E-019 - 30.539999999999992 -4.2279231153665251E-019 - 30.599999999999994 -4.9350827258582769E-019 - 30.659999999999997 -5.6765649951521004E-019 - 30.719999999999999 -6.4446838680575580E-019 - 30.780000000000001 -7.2317533029288227E-019 - 30.840000000000003 -8.0305844212441159E-019 - 30.899999999999991 -8.8350196698223177E-019 - 30.959999999999994 -9.6405066162360878E-019 - 31.019999999999996 -1.0444663488357627E-018 - 31.079999999999998 -1.1247840680420411E-018 - 31.140000000000001 -1.2053634098306671E-018 - 31.200000000000003 -1.2869317485588545E-018 - 31.259999999999991 -1.3706193304793383E-018 - 31.319999999999993 -1.4579801606334317E-018 - 31.379999999999995 -1.5509997339800552E-018 - 31.439999999999998 -1.6520842319478288E-018 - 31.500000000000000 -1.7640304514675886E-018 - 31.560000000000002 -1.8899755117243681E-018 - 31.619999999999990 -2.0333253909967282E-018 - 31.679999999999993 -2.1976580147618851E-018 - 31.739999999999995 -2.3866076547971380E-018 - 31.799999999999997 -2.6037239310483173E-018 - 31.859999999999999 -2.8523141073078957E-018 - 31.920000000000002 -3.1352606648769025E-018 - 31.980000000000004 -3.4548255487898877E-018 - 32.039999999999992 -3.8124337469915394E-018 - 32.099999999999994 -4.2084474887118540E-018 - 32.159999999999997 -4.6419280333354940E-018 - 32.219999999999999 -5.1103872239720088E-018 - 32.280000000000001 -5.6095222411995236E-018 - 32.340000000000003 -6.1329663474167216E-018 - 32.399999999999991 -6.6720020185171510E-018 - 32.459999999999994 -7.2152875206600880E-018 - 32.519999999999996 -7.7485698134371752E-018 - 32.579999999999998 -8.2543847980046227E-018 - 32.640000000000001 -8.7117356877561616E-018 - 32.700000000000003 -9.0957618116133034E-018 - 32.759999999999991 -9.3773777178009492E-018 - 32.819999999999993 -9.5228742660138574E-018 - 32.879999999999995 -9.4934667187474880E-018 - 32.939999999999998 -9.2447960882577958E-018 - 33.000000000000000 -8.7263534726658807E-018 - 33.060000000000002 -7.8807897856788018E-018 - 33.119999999999990 -6.6431671687088463E-018 - 33.179999999999993 -4.9400092796835405E-018 - 33.239999999999995 -2.6882990256640541E-018 - 33.299999999999997 2.0584980864016189E-019 - 33.359999999999999 3.8486695494146920E-018 - 33.420000000000002 8.3604229956687886E-018 - 33.480000000000004 1.3877464405756362E-017 - 33.539999999999992 2.0554572764892477E-017 - 33.599999999999994 2.8567870754118987E-017 - 33.659999999999997 3.8117775924118044E-017 - 33.719999999999999 4.9432840918083307E-017 - 33.780000000000001 6.2774204003444457E-017 - 33.840000000000003 7.8440249231755028E-017 - 33.899999999999991 9.6772194316167695E-017 - 33.959999999999994 1.1816079151796561E-016 - 34.019999999999996 1.4305314317351914E-016 - 34.079999999999998 1.7196119894762410E-016 - 34.140000000000001 2.0547065130764280E-016 - 34.200000000000003 2.4425113618977458E-016 - 34.259999999999991 2.8906788960941452E-016 - 34.319999999999993 3.4079378218100848E-016 - 34.379999999999995 4.0042340561260205E-016 - 34.439999999999998 4.6908838027842579E-016 - 34.500000000000000 5.4807384488150555E-016 - 34.560000000000002 6.3883651361924451E-016 - 34.619999999999990 7.4302397277972196E-016 - 34.679999999999993 8.6249625385000103E-016 - 34.739999999999995 9.9934817257542348E-016 - 34.799999999999997 1.1559344482195236E-015 - 34.859999999999999 1.3348962318652474E-015 - 34.920000000000002 1.5391870768805247E-015 - 34.980000000000004 1.7721062488879623E-015 - 35.039999999999992 2.0373278391939434E-015 - 35.099999999999994 2.3389368874367620E-015 - 35.159999999999997 2.6814657956949550E-015 - 35.219999999999999 3.0699308378367643E-015 - 35.280000000000001 3.5098769936429481E-015 - 35.340000000000003 4.0074194426848716E-015 - 35.399999999999991 4.5692912385009256E-015 - 35.459999999999994 5.2028914781002148E-015 - 35.519999999999996 5.9163395153841353E-015 - 35.579999999999998 6.7185283934980477E-015 - 35.640000000000001 7.6191844749648350E-015 - 35.700000000000003 8.6289319526161042E-015 - 35.759999999999991 9.7593463044460581E-015 - 35.819999999999993 1.1023031538523213E-014 - 35.879999999999995 1.2433687766482680E-014 - 35.939999999999998 1.4006167844497928E-014 - 36.000000000000000 1.5756566489608739E-014 - 36.060000000000002 1.7702276448765788E-014 - 36.119999999999990 1.9862062613164158E-014 - 36.179999999999993 2.2256131775315381E-014 - 36.239999999999995 2.4906198545352100E-014 - 36.299999999999997 2.7835526905727369E-014 - 36.359999999999999 3.1068980089980789E-014 - 36.420000000000002 3.4633084901569256E-014 - 36.479999999999990 3.8556016627887835E-014 - 36.539999999999992 4.2867612733335143E-014 - 36.599999999999994 4.7599361884326052E-014 - 36.659999999999997 5.2784341610157983E-014 - 36.719999999999999 5.8457130746071648E-014 - 36.780000000000001 6.4653707468201155E-014 - 36.840000000000003 7.1411255943708952E-014 - 36.899999999999991 7.8767948903022626E-014 - 36.959999999999994 8.6762614985722959E-014 - 37.019999999999996 9.5434384917383168E-014 - 37.079999999999998 1.0482217517660505E-013 - 37.140000000000001 1.1496407171640372E-013 - 37.200000000000003 1.2589666054488324E-013 - 37.259999999999991 1.3765407404489619E-013 - 37.319999999999993 1.5026689390599069E-013 - 37.379999999999995 1.6376088757907916E-013 - 37.439999999999998 1.7815541424223657E-013 - 37.500000000000000 1.9346160750553813E-013 - 37.560000000000002 2.0968023036939884E-013 - 37.619999999999990 2.2679895702086559E-013 - 37.679999999999993 2.4478951138482733E-013 - 37.739999999999995 2.6360399927891398E-013 - 37.799999999999997 2.8317085556415078E-013 - 37.859999999999999 3.0339002034047131E-013 - 37.920000000000002 3.2412721508887949E-013 - 37.979999999999990 3.4520777558202999E-013 - 38.039999999999992 3.6640899826877245E-013 - 38.099999999999994 3.8745160344345262E-013 - 38.159999999999997 4.0799003432446381E-013 - 38.219999999999999 4.2760095449098196E-013 - 38.280000000000001 4.4577055732980285E-013 - 38.340000000000003 4.6187970790682497E-013 - 38.399999999999991 4.7518753940104352E-013 - 38.459999999999994 4.8481251443338420E-013 - 38.519999999999996 4.8971016067752041E-013 - 38.579999999999998 4.8864958285687276E-013 - 38.640000000000001 4.8018590037688604E-013 - 38.700000000000003 4.6262862670917379E-013 - 38.759999999999991 4.3400667023109221E-013 - 38.819999999999993 3.9203027871851068E-013 - 38.879999999999995 3.3404644366755507E-013 - 38.939999999999998 2.5698702448463588E-013 - 39.000000000000000 1.5731735186272144E-013 - 39.060000000000002 3.0971283404204751E-014 - 39.119999999999990 -1.2671618840258068E-013 - 39.179999999999993 -3.2108801840613300E-013 - 39.239999999999995 -5.5824924287070068E-013 - 39.299999999999997 -8.4516313372011226E-013 - 39.359999999999999 -1.1897636757865822E-012 - 39.420000000000002 -1.6010642654884756E-012 - 39.479999999999990 -2.0892982270392383E-012 - 39.539999999999992 -2.6660597653191970E-012 - 39.599999999999994 -3.3444665191903440E-012 - 39.659999999999997 -4.1393365468820570E-012 - 39.719999999999999 -5.0673988965006053E-012 - 39.780000000000001 -6.1474921207161997E-012 - 39.840000000000003 -7.4008218648465812E-012 - 39.899999999999991 -8.8512228572959208E-012 - 39.959999999999994 -1.0525455067974904E-011 - 40.019999999999996 -1.2453515319443151E-011 - 40.079999999999998 -1.4669003365287132E-011 - 40.140000000000001 -1.7209515018416565E-011 - 40.200000000000003 -2.0117051902908123E-011 - 40.259999999999991 -2.3438513186241757E-011 - 40.319999999999993 -2.7226212230670255E-011 - 40.379999999999995 -3.1538404199600431E-011 - 40.439999999999998 -3.6439938239101192E-011 - 40.500000000000000 -4.2002919551313625E-011 - 40.560000000000002 -4.8307451129236529E-011 - 40.619999999999990 -5.5442406392967153E-011 - 40.679999999999993 -6.3506330748439322E-011 - 40.739999999999995 -7.2608391263740428E-011 - 40.799999999999997 -8.2869395576275498E-011 - 40.859999999999999 -9.4422923013788360E-011 - 40.920000000000002 -1.0741651531014478E-010 - 40.979999999999990 -1.2201300772557942E-010 - 41.039999999999992 -1.3839196523286020E-010 - 41.099999999999994 -1.5675121835037204E-010 - 41.159999999999997 -1.7730851856549007E-010 - 41.219999999999999 -2.0030327581001877E-010 - 41.280000000000001 -2.2599850965155335E-010 - 41.340000000000003 -2.5468308916750403E-010 - 41.399999999999991 -2.8667363332023597E-010 - 41.459999999999994 -3.2231716731707022E-010 - 41.519999999999996 -3.6199344496535023E-010 - 41.579999999999998 -4.0611785403969919E-010 - 41.640000000000001 -4.5514394009738823E-010 - 41.700000000000003 -5.0956706186202436E-010 - 41.759999999999991 -5.6992707058395652E-010 - 41.819999999999993 -6.3681192193264036E-010 - 41.879999999999995 -7.1086167044642613E-010 - 41.939999999999998 -7.9277145460589136E-010 - 42.000000000000000 -8.8329620691039305E-010 - 42.060000000000002 -9.8325463655124568E-010 - 42.119999999999990 -1.0935331641541671E-009 - 42.179999999999993 -1.2150911170300649E-009 - 42.239999999999995 -1.3489648873280593E-009 - 42.299999999999997 -1.4962724268368133E-009 - 42.359999999999999 -1.6582192565562098E-009 - 42.420000000000002 -1.8361011059983981E-009 - 42.479999999999990 -2.0313115666281391E-009 - 42.539999999999992 -2.2453449475306958E-009 - 42.599999999999994 -2.4798018934377308E-009 - 42.659999999999997 -2.7363944967468522E-009 - 42.719999999999999 -3.0169490777851780E-009 - 42.780000000000001 -3.3234120205357762E-009 - 42.840000000000003 -3.6578527686304923E-009 - 42.899999999999991 -4.0224661959141737E-009 - 42.959999999999994 -4.4195758506754621E-009 - 43.019999999999996 -4.8516345642713772E-009 - 43.079999999999998 -5.3212263815175992E-009 - 43.140000000000001 -5.8310640694943301E-009 - 43.200000000000003 -6.3839883388752544E-009 - 43.259999999999991 -6.9829621080106361E-009 - 43.319999999999993 -7.6310627258358904E-009 - 43.379999999999995 -8.3314785242210831E-009 - 43.439999999999998 -9.0874909597864904E-009 - 43.500000000000000 -9.9024630312296881E-009 - 43.560000000000002 -1.0779821240874765E-008 - 43.619999999999990 -1.1723027755638842E-008 - 43.679999999999993 -1.2735559930829549E-008 - 43.739999999999995 -1.3820867073636673E-008 - 43.799999999999997 -1.4982337626783423E-008 - 43.859999999999999 -1.6223246965563689E-008 - 43.920000000000002 -1.7546705842860873E-008 - 43.979999999999990 -1.8955589305406821E-008 - 44.039999999999992 -2.0452462985872366E-008 - 44.099999999999994 -2.2039499474208768E-008 - 44.159999999999997 -2.3718376055973653E-008 - 44.219999999999999 -2.5490149418670929E-008 - 44.280000000000001 -2.7355139614626251E-008 - 44.340000000000003 -2.9312762891833760E-008 - 44.399999999999991 -3.1361376069495413E-008 - 44.459999999999994 -3.3498070377116514E-008 - 44.519999999999996 -3.5718460910869556E-008 - 44.579999999999998 -3.8016436401653800E-008 - 44.640000000000001 -4.0383874486039826E-008 - 44.700000000000003 -4.2810335686467405E-008 - 44.759999999999991 -4.5282718592062536E-008 - 44.819999999999993 -4.7784848600396639E-008 - 44.879999999999995 -5.0297071002955056E-008 - 44.939999999999998 -5.2795733566562130E-008 - 45.000000000000000 -5.5252635790372529E-008 - 45.060000000000002 -5.7634463618297461E-008 - 45.119999999999990 -5.9902080654667862E-008 - 45.179999999999993 -6.2009801820282049E-008 - 45.239999999999995 -6.3904540162358231E-008 - 45.299999999999997 -6.5524929802970432E-008 - 45.359999999999999 -6.6800282226510196E-008 - 45.420000000000002 -6.7649485434456551E-008 - 45.479999999999990 -6.7979775446150367E-008 - 45.539999999999992 -6.7685382376645809E-008 - 45.599999999999994 -6.6645992816492722E-008 - 45.659999999999997 -6.4725232994355958E-008 - 45.719999999999999 -6.1768697249368923E-008 - 45.780000000000001 -5.7602115012936789E-008 - 45.840000000000003 -5.2029134258469217E-008 - 45.899999999999991 -4.4828931616039669E-008 - 45.959999999999994 -3.5753701741738087E-008 - 46.019999999999996 -2.4525631929168140E-008 - 46.079999999999998 -1.0834143991729353E-008 - 46.140000000000001 5.6678084257172074E-009 - 46.200000000000003 2.5367231090122839E-008 - 46.259999999999991 4.8695073303432726E-008 - 46.319999999999993 7.6130575950937131E-008 - 46.379999999999995 1.0820614792452361E-007 - 46.439999999999998 1.4551244903984221E-007 - 46.500000000000000 1.8870374739977189E-007 - 46.560000000000002 2.3850407776721104E-007 - 46.619999999999990 2.9571388391453337E-007 - 46.679999999999993 3.6121708482624576E-007 - 46.739999999999995 4.3598815601016568E-007 - 46.799999999999997 5.2110120603402056E-007 - 46.859999999999999 6.1773839446379953E-007 - 46.920000000000002 7.2719934182964944E-007 - 46.979999999999990 8.5091225663648773E-007 - 47.039999999999992 9.9044385057564413E-007 - 47.099999999999994 1.1475120695299661E-006 - 47.159999999999997 1.3239994159028891E-006 - 47.219999999999999 1.5219647961722981E-006 - 47.280000000000001 1.7436605450763491E-006 - 47.340000000000003 1.9915472724430172E-006 - 47.399999999999991 2.2683095027703679E-006 - 47.459999999999994 2.5768756202256542E-006 - 47.519999999999996 2.9204367780009201E-006 - 47.579999999999998 3.3024669927939412E-006 - 47.640000000000001 3.7267444171537787E-006 - 47.700000000000003 4.1973758309072193E-006 - 47.759999999999991 4.7188214730390117E-006 - 47.819999999999993 5.2959218336746739E-006 - 47.879999999999995 5.9339241216335965E-006 - 47.939999999999998 6.6385107750465079E-006 - 48.000000000000000 7.4158357373797780E-006 - 48.060000000000002 8.2725539020088067E-006 - 48.119999999999990 9.2158564982273145E-006 - 48.179999999999993 1.0253511590624581E-005 - 48.239999999999995 1.1393896507723074E-005 - 48.299999999999997 1.2646046956023268E-005 - 48.359999999999999 1.4019696856251669E-005 - 48.420000000000002 1.5525315926367981E-005 - 48.479999999999990 1.7174176863330498E-005 - 48.539999999999992 1.8978388059893722E-005 - 48.599999999999994 2.0950949831534159E-005 - 48.659999999999997 2.3105813794158380E-005 - 48.719999999999999 2.5457947698474740E-005 - 48.780000000000001 2.8023365836293072E-005 - 48.840000000000003 3.0819224344286147E-005 - 48.899999999999991 3.3863874747627060E-005 - 48.959999999999994 3.7176914003954788E-005 - 49.019999999999996 4.0779283716317601E-005 - 49.079999999999998 4.4693321629342734E-005 - 49.140000000000001 4.8942843838510270E-005 - 49.200000000000003 5.3553211226753408E-005 - 49.259999999999991 5.8551433455131314E-005 - 49.319999999999993 6.3966220233254855E-005 - 49.379999999999995 6.9828079461614544E-005 - 49.439999999999998 7.6169418568915810E-005 - 49.500000000000000 8.3024590117805705E-005 - 49.560000000000002 9.0430016223698898E-005 - 49.619999999999990 9.8424281602521458E-005 - 49.679999999999993 1.0704817582863840E-004 - 49.739999999999995 1.1634486569657929E-004 - 49.799999999999997 1.2635992529051761E-004 - 49.859999999999999 1.3714146707084301E-004 - 49.920000000000002 1.4874019604764019E-004 - 49.979999999999990 1.6120954235532926E-004 - 50.039999999999992 1.7460575464344313E-004 - 50.099999999999994 1.8898797683177145E-004 - 50.159999999999997 2.0441835048725380E-004 - 50.219999999999999 2.2096210987039566E-004 - 50.280000000000001 2.3868767321335430E-004 - 50.340000000000003 2.5766669035249092E-004 - 50.399999999999991 2.7797416646887970E-004 - 50.459999999999994 2.9968859447887313E-004 - 50.519999999999996 3.2289196873583575E-004 - 50.579999999999998 3.4766978792694189E-004 - 50.640000000000001 3.7411126161423494E-004 - 50.700000000000003 4.0230935481528349E-004 - 50.759999999999991 4.3236068811772520E-004 - 50.819999999999993 4.6436583946091685E-004 - 50.879999999999995 4.9842907226935510E-004 - 50.939999999999998 5.3465871192463711E-004 - 51.000000000000000 5.7316686951109773E-004 - 51.060000000000002 6.1406966980663623E-004 - 51.119999999999990 6.5748715464854885E-004 - 51.179999999999993 7.0354321770244109E-004 - 51.239999999999995 7.5236577100175957E-004 - 51.299999999999997 8.0408639709692985E-004 - 51.359999999999999 8.5884074847428020E-004 - 51.420000000000002 9.1676802622969570E-004 - 51.479999999999990 9.7801130268375001E-004 - 51.539999999999992 1.0427170032903084E-003 - 51.599999999999994 1.1110352486997572E-003 - 51.659999999999997 1.1831193527680579E-003 - 51.719999999999999 1.2591258552993746E-003 - 51.780000000000001 1.3392144132925497E-003 - 51.840000000000003 1.4235473901838833E-003 - 51.899999999999991 1.5122898271748314E-003 - 51.959999999999994 1.6056091694437466E-003 - 52.019999999999996 1.7036750127572301E-003 - 52.079999999999998 1.8066588799402190E-003 - 52.140000000000001 1.9147341165231485E-003 - 52.200000000000003 2.0280747481085997E-003 - 52.259999999999991 2.1468560187598625E-003 - 52.319999999999993 2.2712541790926130E-003 - 52.379999999999995 2.4014448204001154E-003 - 52.439999999999998 2.5376038162687299E-003 - 52.500000000000000 2.6799065048504480E-003 - 52.560000000000002 2.8285267776140171E-003 - 52.619999999999990 2.9836368072020600E-003 - 52.679999999999993 3.1454071067678166E-003 - 52.739999999999995 3.3140053495210524E-003 - 52.799999999999997 3.4895958156389690E-003 - 52.859999999999999 3.6723394882415550E-003 - 52.920000000000002 3.8623922416237272E-003 - 52.979999999999990 4.0599058584462428E-003 - 53.039999999999992 4.2650258152863805E-003 - 53.099999999999994 4.4778915085803075E-003 - 53.159999999999997 4.6986354383893088E-003 - 53.219999999999999 4.9273826989229335E-003 - 53.280000000000001 5.1642503301096345E-003 - 53.339999999999989 5.4093453241889685E-003 - 53.399999999999991 5.6627662139922524E-003 - 53.459999999999994 5.9246002903511411E-003 - 53.519999999999996 6.1949243038329485E-003 - 53.579999999999998 6.4738029923540937E-003 - 53.640000000000001 6.7612873064285496E-003 - 53.700000000000003 7.0574163855674143E-003 - 53.759999999999991 7.3622149468762924E-003 - 53.819999999999993 7.6756914537962290E-003 - 53.879999999999995 7.9978400718903019E-003 - 53.939999999999998 8.3286397743296773E-003 - 54.000000000000000 8.6680505604064036E-003 - 54.060000000000002 9.0160165852486412E-003 - 54.119999999999990 9.3724621832771034E-003 - 54.179999999999993 9.7372932017356067E-003 - 54.239999999999995 1.0110397507510411E-002 - 54.299999999999997 1.0491640649438042E-002 - 54.359999999999999 1.0880868149225582E-002 - 54.420000000000002 1.1277905412723470E-002 - 54.479999999999990 1.1682556993806012E-002 - 54.539999999999992 1.2094602703770949E-002 - 54.599999999999994 1.2513802104510996E-002 - 54.659999999999997 1.2939891688733319E-002 - 54.719999999999999 1.3372583548903265E-002 - 54.780000000000001 1.3811569249132793E-002 - 54.839999999999989 1.4256514753596374E-002 - 54.899999999999991 1.4707062800438271E-002 - 54.959999999999994 1.5162833133208086E-002 - 55.019999999999996 1.5623421334142037E-002 - 55.079999999999998 1.6088400559599897E-002 - 55.140000000000001 1.6557321590355036E-002 - 55.200000000000003 1.7029710139492647E-002 - 55.259999999999991 1.7505070386752822E-002 - 55.319999999999993 1.7982881235823672E-002 - 55.379999999999995 1.8462602523374019E-002 - 55.439999999999998 1.8943675262454086E-002 - 55.500000000000000 1.9425512829190163E-002 - 55.560000000000002 1.9907514789916404E-002 - 55.619999999999990 2.0389056911110249E-002 - 55.679999999999993 2.0869497509751721E-002 - 55.739999999999995 2.1348180456176438E-002 - 55.799999999999997 2.1824428486258929E-002 - 55.859999999999999 2.2297551310521902E-002 - 55.920000000000002 2.2766843655168748E-002 - 55.979999999999990 2.3231586125153181E-002 - 56.039999999999992 2.3691048086997915E-002 - 56.099999999999994 2.4144488022886077E-002 - 56.159999999999997 2.4591156586360741E-002 - 56.219999999999999 2.5030294780201575E-002 - 56.280000000000001 2.5461136529871867E-002 - 56.339999999999989 2.5882913912537643E-002 - 56.399999999999991 2.6294855317858069E-002 - 56.459999999999994 2.6696186956504424E-002 - 56.519999999999996 2.7086133842379609E-002 - 56.579999999999998 2.7463924207996496E-002 - 56.640000000000001 2.7828790426478109E-002 - 56.700000000000003 2.8179973051005270E-002 - 56.759999999999991 2.8516720258206486E-002 - 56.819999999999993 2.8838285484522618E-002 - 56.879999999999995 2.9143936134909634E-002 - 56.939999999999998 2.9432951608951909E-002 - 57.000000000000000 2.9704629236449346E-002 - 57.060000000000002 2.9958280103950824E-002 - 57.119999999999990 3.0193236099998300E-002 - 57.179999999999993 3.0408848005879511E-002 - 57.239999999999995 3.0604492878593556E-002 - 57.299999999999997 3.0779567490611580E-002 - 57.359999999999999 3.0933500836301184E-002 - 57.420000000000002 3.1065748213905477E-002 - 57.479999999999990 3.1175787303312164E-002 - 57.539999999999992 3.1263131160841125E-002 - 57.599999999999994 3.1327329970770784E-002 - 57.659999999999997 3.1367962694501844E-002 - 57.719999999999999 3.1384647941551255E-002 - 57.780000000000001 3.1377034145011119E-002 - 57.839999999999989 3.1344816876257842E-002 - 57.899999999999991 3.1287726629958074E-002 - 57.959999999999994 3.1205535285429291E-002 - 58.019999999999996 3.1098053999575891E-002 - 58.079999999999998 3.0965138024128380E-002 - 58.140000000000001 3.0806683524515623E-002 - 58.200000000000003 3.0622632025485891E-002 - 58.259999999999991 3.0412970608774129E-002 - 58.319999999999993 3.0177725852672754E-002 - 58.379999999999995 2.9916975121357013E-002 - 58.439999999999998 2.9630836461055212E-002 - 58.500000000000000 2.9319475100454052E-002 - 58.560000000000002 2.8983099265089383E-002 - 58.619999999999990 2.8621962897168330E-002 - 58.679999999999993 2.8236364564155462E-002 - 58.739999999999995 2.7826645693947737E-002 - 58.799999999999997 2.7393194173384205E-002 - 58.859999999999999 2.6936436948073052E-002 - 58.920000000000002 2.6456844743876089E-002 - 58.979999999999990 2.5954930639343388E-002 - 59.039999999999992 2.5431245022465472E-002 - 59.099999999999994 2.4886378152993213E-002 - 59.159999999999997 2.4320958646368823E-002 - 59.219999999999999 2.3735648205460199E-002 - 59.280000000000001 2.3131148919477297E-002 - 59.339999999999989 2.2508191334952226E-002 - 59.399999999999991 2.1867539416432168E-002 - 59.459999999999994 2.1209988756237697E-002 - 59.519999999999996 2.0536359311953738E-002 - 59.579999999999998 1.9847499984138300E-002 - 59.640000000000001 1.9144283922784330E-002 - 59.700000000000003 1.8427602252938696E-002 - 59.759999999999991 1.7698372829463255E-002 - 59.819999999999993 1.6957527679108485E-002 - 59.879999999999995 1.6206016251381440E-002 - 59.939999999999998 1.5444801130135528E-002 - 60.000000000000000 1.4674855887958535E-002 - 60.060000000000002 1.3897165865767613E-002 - 60.119999999999990 1.3112721132441135E-002 - 60.179999999999993 1.2322518373488169E-002 - 60.239999999999995 1.1527555836557577E-002 - 60.299999999999997 1.0728834404137629E-002 - 60.359999999999999 9.9273508854598735E-003 - 60.420000000000002 9.1240993801771746E-003 - 60.479999999999990 8.3200685395429814E-003 - 60.539999999999992 7.5162381136802663E-003 - 60.599999999999994 6.7135777914123142E-003 - 60.659999999999997 5.9130459214485308E-003 - 60.719999999999999 5.1155864353003315E-003 - 60.780000000000001 4.3221265566626040E-003 - 60.839999999999989 3.5335764994371154E-003 - 60.899999999999991 2.7508272115462909E-003 - 60.959999999999994 1.9747482827100738E-003 - 61.019999999999996 1.2061860855036388E-003 - 61.079999999999998 4.4596296555636549E-004 - 61.140000000000001 -3.0512446996282965E-004 - 61.200000000000003 -1.0463061895954887E-003 - 61.259999999999991 -1.7768405631860701E-003 - 61.319999999999993 -2.4960162756956063E-003 - 61.379999999999995 -3.2031513203964893E-003 - 61.439999999999998 -3.8975953711429738E-003 - 61.500000000000000 -4.5787298079159574E-003 - 61.560000000000002 -5.2459695226826000E-003 - 61.619999999999990 -5.8987633640064331E-003 - 61.679999999999993 -6.5365932655745071E-003 - 61.739999999999995 -7.1589766923608848E-003 - 61.799999999999997 -7.7654648082256033E-003 - 61.859999999999999 -8.3556448023157544E-003 - 61.920000000000002 -8.9291396238934465E-003 - 61.979999999999990 -9.4856062311977993E-003 - 62.039999999999992 -1.0024736165331860E-002 - 62.099999999999994 -1.0546258161248209E-002 - 62.159999999999997 -1.1049933461802429E-002 - 62.219999999999999 -1.1535559496616239E-002 - 62.280000000000001 -1.2002966403181492E-002 - 62.339999999999989 -1.2452019688835225E-002 - 62.399999999999991 -1.2882615331042247E-002 - 62.459999999999994 -1.3294683031137827E-002 - 62.519999999999996 -1.3688184623366430E-002 - 62.579999999999998 -1.4063111626356701E-002 - 62.640000000000001 -1.4419485898451297E-002 - 62.700000000000003 -1.4757359389286793E-002 - 62.759999999999991 -1.5076811809652892E-002 - 62.819999999999993 -1.5377947974561112E-002 - 62.879999999999995 -1.5660900534146316E-002 - 62.939999999999998 -1.5925829534924940E-002 - 63.000000000000000 -1.6172914186558324E-002 - 63.060000000000002 -1.6402362091797327E-002 - 63.119999999999990 -1.6614397968505171E-002 - 63.179999999999993 -1.6809268328510547E-002 - 63.239999999999995 -1.6987239296597262E-002 - 63.299999999999997 -1.7148596929174243E-002 - 63.359999999999999 -1.7293641295530536E-002 - 63.420000000000002 -1.7422690279690400E-002 - 63.479999999999990 -1.7536075750594675E-002 - 63.539999999999992 -1.7634142500266573E-002 - 63.599999999999994 -1.7717247722573843E-002 - 63.659999999999997 -1.7785761991603609E-002 - 63.719999999999999 -1.7840061614190439E-002 - 63.780000000000001 -1.7880534720545564E-002 - 63.839999999999989 -1.7907577345317567E-002 - 63.899999999999991 -1.7921589260977519E-002 - 63.959999999999994 -1.7922977898745099E-002 - 64.019999999999996 -1.7912153075441004E-002 - 64.079999999999998 -1.7889531133526981E-002 - 64.140000000000001 -1.7855530195427703E-002 - 64.200000000000003 -1.7810566509816952E-002 - 64.259999999999991 -1.7755060661496441E-002 - 64.319999999999993 -1.7689431519256924E-002 - 64.379999999999995 -1.7614098979384034E-002 - 64.439999999999998 -1.7529478203255029E-002 - 64.500000000000000 -1.7435981282444179E-002 - 64.560000000000002 -1.7334019613422513E-002 - 64.619999999999990 -1.7224001237728246E-002 - 64.679999999999993 -1.7106325359505334E-002 - 64.739999999999995 -1.6981388395483788E-002 - 64.799999999999997 -1.6849582736491772E-002 - 64.859999999999999 -1.6711293841519956E-002 - 64.920000000000002 -1.6566897505425889E-002 - 64.979999999999990 -1.6416764418691818E-002 - 65.039999999999992 -1.6261257327097368E-002 - 65.099999999999994 -1.6100733171103828E-002 - 65.159999999999997 -1.5935536873935337E-002 - 65.219999999999999 -1.5766008843143185E-002 - 65.280000000000001 -1.5592478094376409E-002 - 65.339999999999989 -1.5415264361838980E-002 - 65.399999999999991 -1.5234680614969787E-002 - 65.459999999999994 -1.5051028982998231E-002 - 65.519999999999996 -1.4864603458648349E-002 - 65.579999999999998 -1.4675686854516583E-002 - 65.640000000000001 -1.4484553745591848E-002 - 65.700000000000003 -1.4291468574910747E-002 - 65.759999999999991 -1.4096685601599157E-002 - 65.819999999999993 -1.3900452097623113E-002 - 65.879999999999995 -1.3703003318388354E-002 - 65.939999999999998 -1.3504564752761621E-002 - 66.000000000000000 -1.3305354691913322E-002 - 66.060000000000002 -1.3105580474031400E-002 - 66.119999999999990 -1.2905440674268236E-002 - 66.179999999999993 -1.2705125348301313E-002 - 66.239999999999995 -1.2504814645596439E-002 - 66.299999999999997 -1.2304680898852394E-002 - 66.359999999999999 -1.2104886111321191E-002 - 66.420000000000002 -1.1905587495002281E-002 - 66.479999999999990 -1.1706929446099423E-002 - 66.539999999999992 -1.1509052202792339E-002 - 66.599999999999994 -1.1312085033632058E-002 - 66.659999999999997 -1.1116152394734753E-002 - 66.719999999999999 -1.0921370262564593E-002 - 66.780000000000001 -1.0727845745380918E-002 - 66.839999999999989 -1.0535681543431007E-002 - 66.899999999999991 -1.0344972136122114E-002 - 66.959999999999994 -1.0155805812690306E-002 - 67.019999999999996 -9.9682649946111306E-003 - 67.079999999999998 -9.7824265829106992E-003 - 67.140000000000001 -9.5983596832215756E-003 - 67.199999999999989 -9.4161296500703852E-003 - 67.259999999999991 -9.2357968757018471E-003 - 67.319999999999993 -9.0574154766499566E-003 - 67.379999999999995 -8.8810342418920406E-003 - 67.439999999999998 -8.7066985445610878E-003 - 67.500000000000000 -8.5344494000782357E-003 - 67.560000000000002 -8.3643214622766832E-003 - 67.619999999999990 -8.1963492613432755E-003 - 67.679999999999993 -8.0305600672252904E-003 - 67.739999999999995 -7.8669791555132963E-003 - 67.799999999999997 -7.7056278699491124E-003 - 67.859999999999999 -7.5465247442859538E-003 - 67.920000000000002 -7.3896854733807643E-003 - 67.979999999999990 -7.2351230009112047E-003 - 68.039999999999992 -7.0828464456684607E-003 - 68.099999999999994 -6.9328637806773362E-003 - 68.159999999999997 -6.7851800889967206E-003 - 68.219999999999999 -6.6397983849715127E-003 - 68.280000000000001 -6.4967195950806260E-003 - 68.339999999999989 -6.3559432823711171E-003 - 68.399999999999991 -6.2174665732619271E-003 - 68.459999999999994 -6.0812850824276633E-003 - 68.519999999999996 -5.9473939316449249E-003 - 68.579999999999998 -5.8157858901304819E-003 - 68.640000000000001 -5.6864534950804993E-003 - 68.699999999999989 -5.5593870160892825E-003 - 68.759999999999991 -5.4345766508872885E-003 - 68.819999999999993 -5.3120111862861369E-003 - 68.879999999999995 -5.1916791933703191E-003 - 68.939999999999998 -5.0735684367029348E-003 - 69.000000000000000 -4.9576654064475058E-003 - 69.060000000000002 -4.8439562034379609E-003 - 69.119999999999990 -4.7324268324333701E-003 - 69.179999999999993 -4.6230624436677170E-003 - 69.239999999999995 -4.5158486087973244E-003 - 69.299999999999997 -4.4107692014847275E-003 - 69.359999999999999 -4.3078080923694912E-003 - 69.420000000000002 -4.2069499676345885E-003 - 69.479999999999990 -4.1081777228564017E-003 - 69.539999999999992 -4.0114754930473092E-003 - 69.599999999999994 -3.9168262859474402E-003 - 69.659999999999997 -3.8242129157868582E-003 - 69.719999999999999 -3.7336184885417168E-003 - 69.780000000000001 -3.6450258383310718E-003 - 69.839999999999989 -3.5584171988309265E-003 - 69.899999999999991 -3.4737754167101266E-003 - 69.959999999999994 -3.3910828407673304E-003 - 70.019999999999996 -3.3103215442157538E-003 - 70.079999999999998 -3.2314738557094025E-003 - 70.140000000000001 -3.1545216339829716E-003 - 70.199999999999989 -3.0794473010018119E-003 - 70.259999999999991 -3.0062322614932040E-003 - 70.319999999999993 -2.9348584081646061E-003 - 70.379999999999995 -2.8653074229475282E-003 - 70.439999999999998 -2.7975607437515913E-003 - 70.500000000000000 -2.7315996733838764E-003 - 70.560000000000002 -2.6674054287242140E-003 - 70.619999999999990 -2.6049588401581970E-003 - 70.679999999999993 -2.5442410632833647E-003 - 70.739999999999995 -2.4852325561094497E-003 - 70.799999999999997 -2.4279137531717791E-003 - 70.859999999999999 -2.3722648642645451E-003 - 70.920000000000002 -2.3182660771865213E-003 - 70.979999999999990 -2.2658971975952178E-003 - 71.039999999999992 -2.2151379234158970E-003 - 71.099999999999994 -2.1659677806572936E-003 - 71.159999999999997 -2.1183653881908121E-003 - 71.219999999999999 -2.0723103060052454E-003 - 71.280000000000001 -2.0277809924996010E-003 - 71.339999999999989 -1.9847559253501502E-003 - 71.399999999999991 -1.9432134907714903E-003 - 71.459999999999994 -1.9031318218040952E-003 - 71.519999999999996 -1.8644888718512384E-003 - 71.579999999999998 -1.8272621804147581E-003 - 71.640000000000001 -1.7914293247316779E-003 - 71.699999999999989 -1.7569675705551226E-003 - 71.759999999999991 -1.7238540707177838E-003 - 71.819999999999993 -1.6920656225927386E-003 - 71.879999999999995 -1.6615790317158362E-003 - 71.939999999999998 -1.6323709402992614E-003 - 72.000000000000000 -1.6044178070827001E-003 - 72.060000000000002 -1.5776959860199881E-003 - 72.119999999999990 -1.5521814779493185E-003 - 72.179999999999993 -1.5278504388300941E-003 - 72.239999999999995 -1.5046787712404595E-003 - 72.299999999999997 -1.4826422560271272E-003 - 72.359999999999999 -1.4617168187321607E-003 - 72.420000000000002 -1.4418781050921396E-003 - 72.479999999999990 -1.4231015023117679E-003 - 72.539999999999992 -1.4053627680209817E-003 - 72.599999999999994 -1.3886374390873323E-003 - 72.659999999999997 -1.3729009290809082E-003 - 72.719999999999999 -1.3581286333341329E-003 - 72.780000000000001 -1.3442961020718072E-003 - 72.839999999999989 -1.3313787656584444E-003 - 72.899999999999991 -1.3193519516512483E-003 - 72.959999999999994 -1.3081912629211514E-003 - 73.019999999999996 -1.2978721251579559E-003 - 73.079999999999998 -1.2883701433697122E-003 - 73.140000000000001 -1.2796608464968181E-003 - 73.199999999999989 -1.2717200486581466E-003 - 73.259999999999991 -1.2645235798763022E-003 - 73.319999999999993 -1.2580472008628079E-003 - 73.379999999999995 -1.2522670126542898E-003 - 73.439999999999998 -1.2471590134416537E-003 - 73.500000000000000 -1.2426996401240630E-003 - 73.560000000000002 -1.2388651521718301E-003 - 73.619999999999990 -1.2356323051391220E-003 - 73.679999999999993 -1.2329777112390654E-003 - 73.739999999999995 -1.2308782460473541E-003 - 73.799999999999997 -1.2293110396521547E-003 - 73.859999999999999 -1.2282534433867365E-003 - 73.920000000000002 -1.2276829064998759E-003 - 73.979999999999990 -1.2275771963606778E-003 - 74.039999999999992 -1.2279142107794513E-003 - 74.099999999999994 -1.2286719263399945E-003 - 74.159999999999997 -1.2298288526549207E-003 - 74.219999999999999 -1.2313634610889228E-003 - 74.280000000000001 -1.2332546544113765E-003 - 74.339999999999989 -1.2354814831992203E-003 - 74.399999999999991 -1.2380233493697729E-003 - 74.459999999999994 -1.2408600021594355E-003 - 74.519999999999996 -1.2439712535477685E-003 - 74.579999999999998 -1.2473373189906009E-003 - 74.640000000000001 -1.2509388529687686E-003 - 74.699999999999989 -1.2547566805515722E-003 - 74.759999999999991 -1.2587722186416595E-003 - 74.819999999999993 -1.2629669368649874E-003 - 74.879999999999995 -1.2673230529002591E-003 - 74.939999999999998 -1.2718227477903318E-003 - 75.000000000000000 -1.2764489645306974E-003 - 75.060000000000002 -1.2811849153090700E-003 - 75.119999999999990 -1.2860142537268139E-003 - 75.179999999999993 -1.2909208379831279E-003 - 75.239999999999995 -1.2958893052303648E-003 - 75.299999999999997 -1.3009044493882134E-003 - 75.359999999999999 -1.3059517708139865E-003 - 75.420000000000002 -1.3110170875204933E-003 - 75.479999999999990 -1.3160866279967884E-003 - 75.539999999999992 -1.3211471521569565E-003 - 75.599999999999994 -1.3261857830782972E-003 - 75.659999999999997 -1.3311901419899913E-003 - 75.719999999999999 -1.3361485003212717E-003 - 75.780000000000001 -1.3410494244972880E-003 - 75.839999999999989 -1.3458819157372219E-003 - 75.899999999999991 -1.3506356690473509E-003 - 75.959999999999994 -1.3553007598883083E-003 - 76.019999999999996 -1.3598677223805164E-003 - 76.079999999999998 -1.3643274882026637E-003 - 76.140000000000001 -1.3686716244644312E-003 - 76.199999999999989 -1.3728922232555090E-003 - 76.259999999999991 -1.3769816897476138E-003 - 76.319999999999993 -1.3809329770973556E-003 - 76.379999999999995 -1.3847394646537546E-003 - 76.439999999999998 -1.3883950562996864E-003 - 76.500000000000000 -1.3918940105478431E-003 - 76.560000000000002 -1.3952311384178805E-003 - 76.619999999999990 -1.3984015161379048E-003 - 76.679999999999993 -1.4014009897222535E-003 - 76.739999999999995 -1.4042253162016756E-003 - 76.799999999999997 -1.4068711201395063E-003 - 76.859999999999999 -1.4093351094834016E-003 - 76.920000000000002 -1.4116144620457615E-003 - 76.979999999999990 -1.4137067980682437E-003 - 77.039999999999992 -1.4156099879889523E-003 - 77.099999999999994 -1.4173221551143514E-003 - 77.159999999999997 -1.4188420616171381E-003 - 77.219999999999999 -1.4201683226441929E-003 - 77.280000000000001 -1.4213002220093767E-003 - 77.339999999999989 -1.4222370745462752E-003 - 77.399999999999991 -1.4229785408703022E-003 - 77.459999999999994 -1.4235246423167291E-003 - 77.519999999999996 -1.4238752776338974E-003 - 77.579999999999998 -1.4240309745560539E-003 - 77.640000000000001 -1.4239921981085849E-003 - 77.699999999999989 -1.4237596491181656E-003 - 77.759999999999991 -1.4233342823264804E-003 - 77.819999999999993 -1.4227171911494075E-003 - 77.879999999999995 -1.4219095558457324E-003 - 77.939999999999998 -1.4209128237734809E-003 - 78.000000000000000 -1.4197285862145013E-003 - 78.060000000000002 -1.4183585553866822E-003 - 78.119999999999990 -1.4168044516125211E-003 - 78.179999999999993 -1.4150683950125531E-003 - 78.239999999999995 -1.4131523127524210E-003 - 78.299999999999997 -1.4110585460764371E-003 - 78.359999999999999 -1.4087893528116101E-003 - 78.420000000000002 -1.4063472680659844E-003 - 78.479999999999990 -1.4037346447828526E-003 - 78.539999999999992 -1.4009542400987651E-003 - 78.599999999999994 -1.3980086235771850E-003 - 78.659999999999997 -1.3949004465686069E-003 - 78.719999999999999 -1.3916327159956437E-003 - 78.780000000000001 -1.3882084046489664E-003 - 78.839999999999989 -1.3846303592111215E-003 - 78.899999999999991 -1.3809017131485137E-003 - 78.959999999999994 -1.3770254126874498E-003 - 79.019999999999996 -1.3730048358908667E-003 - 79.079999999999998 -1.3688431361336291E-003 - 79.140000000000001 -1.3645436406168722E-003 - 79.199999999999989 -1.3601095788506137E-003 - 79.259999999999991 -1.3555446926245230E-003 - 79.319999999999993 -1.3508523086063105E-003 - 79.379999999999995 -1.3460362764726726E-003 - 79.439999999999998 -1.3411000942360662E-003 - 79.500000000000000 -1.3360476236179623E-003 - 79.560000000000002 -1.3308826461331401E-003 - 79.619999999999990 -1.3256092494297381E-003 - 79.679999999999993 -1.3202312513550449E-003 - 79.739999999999995 -1.3147529260479547E-003 - 79.799999999999997 -1.3091784274746187E-003 - 79.859999999999999 -1.3035119366627652E-003 - 79.920000000000002 -1.2977577282913156E-003 - 79.979999999999990 -1.2919201925248541E-003 - 80.039999999999992 -1.2860039051824771E-003 - 80.099999999999994 -1.2800131825350585E-003 - 80.159999999999997 -1.2739526037949796E-003 - 80.219999999999999 -1.2678268309988081E-003 - 80.280000000000001 -1.2616403579386636E-003 - 80.340000000000003 -1.2553979186180045E-003 - 80.400000000000006 -1.2491043329323456E-003 - 80.460000000000008 -1.2427642420758348E-003 - 80.519999999999982 -1.2363825074130073E-003 - 80.579999999999984 -1.2299639355569825E-003 - 80.639999999999986 -1.2235134794675807E-003 - 80.699999999999989 -1.2170359868815255E-003 - 80.759999999999991 -1.2105365228342478E-003 - 80.819999999999993 -1.2040199967208757E-003 - 80.879999999999995 -1.1974913326725993E-003 - 80.939999999999998 -1.1909556496961058E-003 - 81.000000000000000 -1.1844179742726954E-003 - 81.060000000000002 -1.1778832892710620E-003 - 81.120000000000005 -1.1713565935484583E-003 - 81.180000000000007 -1.1648430319733927E-003 - 81.240000000000009 -1.1583475195673064E-003 - 81.299999999999983 -1.1518751930914024E-003 - 81.359999999999985 -1.1454310521866941E-003 - 81.419999999999987 -1.1390200081981628E-003 - 81.479999999999990 -1.1326469580212281E-003 - 81.539999999999992 -1.1263170009404029E-003 - 81.599999999999994 -1.1200349249930108E-003 - 81.659999999999997 -1.1138055270429816E-003 - 81.719999999999999 -1.1076336237861785E-003 - 81.780000000000001 -1.1015238187444146E-003 - 81.840000000000003 -1.0954808916700399E-003 - 81.900000000000006 -1.0895092896543643E-003 - 81.960000000000008 -1.0836135270693660E-003 - 82.019999999999982 -1.0777981181344235E-003 - 82.079999999999984 -1.0720674132204187E-003 - 82.139999999999986 -1.0664256067441646E-003 - 82.199999999999989 -1.0608768819498013E-003 - 82.259999999999991 -1.0554252674627564E-003 - 82.319999999999993 -1.0500748413983839E-003 - 82.379999999999995 -1.0448296419365718E-003 - 82.439999999999998 -1.0396934261566642E-003 - 82.500000000000000 -1.0346698355705112E-003 - 82.560000000000002 -1.0297626823599151E-003 - 82.620000000000005 -1.0249753795065011E-003 - 82.680000000000007 -1.0203114456237077E-003 - 82.740000000000009 -1.0157743079597203E-003 - 82.799999999999983 -1.0113671028209946E-003 - 82.859999999999985 -1.0070930817445379E-003 - 82.919999999999987 -1.0029553843196306E-003 - 82.979999999999990 -9.9895673747222701E-004 - 83.039999999999992 -9.9510005283160114E-004 - 83.099999999999994 -9.9138788552312362E-004 - 83.159999999999997 -9.8782284163342958E-004 - 83.219999999999999 -9.8440709822625121E-004 - 83.280000000000001 -9.8114285492742394E-004 - 83.340000000000003 -9.7803220009839271E-004 - 83.400000000000006 -9.7507695404077310E-004 - 83.460000000000008 -9.7227871906913066E-004 - 83.519999999999982 -9.6963903537093448E-004 - 83.579999999999984 -9.6715917933678022E-004 - 83.639999999999986 -9.6484033436060313E-004 - 83.699999999999989 -9.6268331243507096E-004 - 83.759999999999991 -9.6068887721933679E-004 - 83.819999999999993 -9.5885763443753899E-004 - 83.879999999999995 -9.5718985042244243E-004 - 83.939999999999998 -9.5568567834156202E-004 - 84.000000000000000 -9.5434500148840369E-004 - 84.060000000000002 -9.5316756174904592E-004 - 84.120000000000005 -9.5215275107859889E-004 - 84.180000000000007 -9.5129999320571923E-004 - 84.240000000000009 -9.5060819421885034E-004 - 84.299999999999983 -9.5007612110031055E-004 - 84.359999999999985 -9.4970235919238891E-004 - 84.419999999999987 -9.4948504960847794E-004 - 84.479999999999990 -9.4942227146705034E-004 - 84.539999999999992 -9.4951170825211310E-004 - 84.599999999999994 -9.4975083360999708E-004 - 84.659999999999997 -9.5013676233967020E-004 - 84.719999999999999 -9.5066636428979068E-004 - 84.780000000000001 -9.5133617726443111E-004 - 84.840000000000003 -9.5214256232644540E-004 - 84.900000000000006 -9.5308146112590129E-004 - 84.960000000000008 -9.5414859469766865E-004 - 85.019999999999982 -9.5533931791741595E-004 - 85.079999999999984 -9.5664877992625221E-004 - 85.139999999999986 -9.5807179530071136E-004 - 85.199999999999989 -9.5960294140339409E-004 - 85.259999999999991 -9.6123656311908866E-004 - 85.319999999999993 -9.6296665354483218E-004 - 85.379999999999995 -9.6478697756389759E-004 - 85.439999999999998 -9.6669103699403684E-004 - 85.500000000000000 -9.6867214122903981E-004 - 85.560000000000002 -9.7072336877117185E-004 - 85.620000000000005 -9.7283759876422163E-004 - 85.680000000000007 -9.7500749460168042E-004 - 85.740000000000009 -9.7722536692596679E-004 - 85.799999999999983 -9.7948356706611082E-004 - 85.859999999999985 -9.8177414125025925E-004 - 85.919999999999987 -9.8408908332797500E-004 - 85.979999999999990 -9.8642015186897248E-004 - 86.039999999999992 -9.8875889126443114E-004 - 86.099999999999994 -9.9109691595702671E-004 - 86.159999999999997 -9.9342544041801806E-004 - 86.219999999999999 -9.9573595766870365E-004 - 86.280000000000001 -9.9801947724890917E-004 - 86.340000000000003 -1.0002670092979869E-003 - 86.400000000000006 -1.0024695188887032E-003 - 86.460000000000008 -1.0046180936988081E-003 - 86.519999999999982 -1.0067035083015697E-003 - 86.579999999999984 -1.0087165794698330E-003 - 86.639999999999986 -1.0106479988895487E-003 - 86.699999999999989 -1.0124888155957257E-003 - 86.759999999999991 -1.0142296241940345E-003 - 86.819999999999993 -1.0158613191550796E-003 - 86.879999999999995 -1.0173747477745050E-003 - 86.939999999999998 -1.0187609168064377E-003 - 87.000000000000000 -1.0200107372828168E-003 - 87.060000000000002 -1.0211154477789647E-003 - 87.120000000000005 -1.0220663136314447E-003 - 87.180000000000007 -1.0228547205810182E-003 - 87.240000000000009 -1.0234720716293868E-003 - 87.299999999999983 -1.0239103390023722E-003 - 87.359999999999985 -1.0241612570195870E-003 - 87.419999999999987 -1.0242169746772726E-003 - 87.479999999999990 -1.0240698635782671E-003 - 87.539999999999992 -1.0237124928283488E-003 - 87.599999999999994 -1.0231376679520185E-003 - 87.659999999999997 -1.0223382601646893E-003 - 87.719999999999999 -1.0213077496179931E-003 - 87.780000000000001 -1.0200395894122134E-003 - 87.840000000000003 -1.0185276556906844E-003 - 87.900000000000006 -1.0167660405283822E-003 - 87.960000000000008 -1.0147490442135156E-003 - 88.019999999999982 -1.0124713157110248E-003 - 88.079999999999984 -1.0099279655562711E-003 - 88.139999999999986 -1.0071141064744722E-003 - 88.199999999999989 -1.0040254788021134E-003 - 88.259999999999991 -1.0006581181127561E-003 - 88.319999999999993 -9.9700812263650161E-004 - 88.379999999999995 -9.9307229821028980E-004 - 88.439999999999998 -9.8884763305920938E-004 - 88.500000000000000 -9.8433156416908251E-004 - 88.560000000000002 -9.7952185347879688E-004 - 88.620000000000005 -9.7441663668481910E-004 - 88.680000000000007 -9.6901466797198678E-004 - 88.740000000000009 -9.6331487155937442E-004 - 88.799999999999983 -9.5731659561538042E-004 - 88.859999999999985 -9.5101975615252243E-004 - 88.919999999999987 -9.4442453650684841E-004 - 88.979999999999990 -9.3753165566282494E-004 - 89.039999999999992 -9.3034215983899785E-004 - 89.099999999999994 -9.2285755988242766E-004 - 89.159999999999997 -9.1507987297587503E-004 - 89.219999999999999 -9.0701135441066194E-004 - 89.280000000000001 -8.9865485539552138E-004 - 89.340000000000003 -8.9001355949072485E-004 - 89.400000000000006 -8.8109108209216030E-004 - 89.460000000000008 -8.7189142301232739E-004 - 89.519999999999982 -8.6241907930502946E-004 - 89.579999999999984 -8.5267890305531385E-004 - 89.639999999999986 -8.4267607328361149E-004 - 89.699999999999989 -8.3241622327557923E-004 - 89.759999999999991 -8.2190543977248400E-004 - 89.819999999999993 -8.1115010610770526E-004 - 89.879999999999995 -8.0015708410861711E-004 - 89.939999999999998 -7.8893354815282447E-004 - 90.000000000000000 -7.7748702282225113E-004 - 90.060000000000002 -7.6582550048916653E-004 - 90.120000000000005 -7.5395720042669692E-004 - 90.180000000000007 -7.4189078880687544E-004 - 90.240000000000009 -7.2963526940534272E-004 - 90.299999999999983 -7.1719995794451794E-004 - 90.359999999999985 -7.0459452858989387E-004 - 90.419999999999987 -6.9182911216948608E-004 - 90.479999999999990 -6.7891402145166214E-004 - 90.539999999999992 -6.6585980491019837E-004 - 90.599999999999994 -6.5267747916653875E-004 - 90.659999999999997 -6.3937828765839831E-004 - 90.719999999999999 -6.2597365390424102E-004 - 90.780000000000001 -6.1247527922705643E-004 - 90.840000000000003 -5.9889515018137136E-004 - 90.900000000000006 -5.8524541584416864E-004 - 90.960000000000008 -5.7153841882373743E-004 - 91.019999999999982 -5.5778651178768862E-004 - 91.079999999999984 -5.4400241345159731E-004 - 91.139999999999986 -5.3019879555737839E-004 - 91.199999999999989 -5.1638846819278977E-004 - 91.259999999999991 -5.0258430690604337E-004 - 91.319999999999993 -4.8879920841829873E-004 - 91.379999999999995 -4.7504611025277465E-004 - 91.439999999999998 -4.6133798437689009E-004 - 91.500000000000000 -4.4768773305063132E-004 - 91.560000000000002 -4.3410826893006805E-004 - 91.620000000000005 -4.2061245389122539E-004 - 91.680000000000007 -4.0721314676164268E-004 - 91.739999999999981 -3.9392302478848861E-004 - 91.799999999999983 -3.8075476792132236E-004 - 91.859999999999985 -3.6772091602473803E-004 - 91.919999999999987 -3.5483392170597346E-004 - 91.979999999999990 -3.4210607618388847E-004 - 92.039999999999992 -3.2954949828184894E-004 - 92.099999999999994 -3.1717614909211015E-004 - 92.159999999999997 -3.0499784303518983E-004 - 92.219999999999999 -2.9302610942835261E-004 - 92.280000000000001 -2.8127225580211289E-004 - 92.340000000000003 -2.6974738464127589E-004 - 92.400000000000006 -2.5846227108881588E-004 - 92.460000000000008 -2.4742740296283193E-004 - 92.519999999999982 -2.3665293905562711E-004 - 92.579999999999984 -2.2614873699853874E-004 - 92.639999999999986 -2.1592424749636389E-004 - 92.699999999999989 -2.0598859690226844E-004 - 92.759999999999991 -1.9635054313468935E-004 - 92.819999999999993 -1.8701839494230394E-004 - 92.879999999999995 -1.7800013352169404E-004 - 92.939999999999998 -1.6930327166815758E-004 - 93.000000000000000 -1.6093495280943568E-004 - 93.060000000000002 -1.5290188706529499E-004 - 93.120000000000005 -1.4521038517988289E-004 - 93.180000000000007 -1.3786634234651929E-004 - 93.239999999999981 -1.3087525929568822E-004 - 93.299999999999983 -1.2424223051975662E-004 - 93.359999999999985 -1.1797193696480804E-004 - 93.419999999999987 -1.1206868770636752E-004 - 93.479999999999990 -1.0653639722213665E-004 - 93.539999999999992 -1.0137862438972706E-004 - 93.599999999999994 -9.6598535955676350E-005 - 93.659999999999997 -9.2198947640957337E-005 - 93.719999999999999 -8.8182324501457244E-005 - 93.780000000000001 -8.4550793148198752E-005 - 93.840000000000003 -8.1306148880417811E-005 - 93.900000000000006 -7.8449852282943107E-005 - 93.960000000000008 -7.5983051338449761E-005 - 94.019999999999982 -7.3906584798067102E-005 - 94.079999999999984 -7.2221005014213517E-005 - 94.139999999999986 -7.0926566757855306E-005 - 94.199999999999989 -7.0023258160565249E-005 - 94.259999999999991 -6.9510797616322372E-005 - 94.319999999999993 -6.9388661491830096E-005 - 94.379999999999995 -6.9656091277988964E-005 - 94.439999999999998 -7.0312098762197084E-005 - 94.500000000000000 -7.1355492956810433E-005 - 94.560000000000002 -7.2784909322547164E-005 - 94.620000000000005 -7.4598808065496182E-005 - 94.680000000000007 -7.6795508409470853E-005 - 94.739999999999981 -7.9373199969108465E-005 - 94.799999999999983 -8.2329975507072341E-005 - 94.859999999999985 -8.5663835117193168E-005 - 94.919999999999987 -8.9372728083470939E-005 - 94.979999999999990 -9.3454553006291614E-005 - 95.039999999999992 -9.7907215260071117E-005 - 95.099999999999994 -1.0272859288868846E-004 - 95.159999999999997 -1.0791660809566974E-004 - 95.219999999999999 -1.1346918234067899E-004 - 95.280000000000001 -1.1938431549039037E-004 - 95.340000000000003 -1.2566005772106609E-004 - 95.400000000000006 -1.3229452232278610E-004 - 95.460000000000008 -1.3928590273591161E-004 - 95.519999999999982 -1.4663248479950696E-004 - 95.579999999999984 -1.5433260283377473E-004 - 95.639999999999986 -1.6238470818842930E-004 - 95.699999999999989 -1.7078735122452447E-004 - 95.759999999999991 -1.7953911813662764E-004 - 95.819999999999993 -1.8863872037088076E-004 - 95.879999999999995 -1.9808492682448512E-004 - 95.939999999999998 -2.0787657381881721E-004 - 96.000000000000000 -2.1801256085505306E-004 - 96.060000000000002 -2.2849187769655863E-004 - 96.120000000000005 -2.3931354847898925E-004 - 96.180000000000007 -2.5047666681239785E-004 - 96.239999999999981 -2.6198033259675502E-004 - 96.299999999999983 -2.7382369957760681E-004 - 96.359999999999985 -2.8600596726028932E-004 - 96.419999999999987 -2.9852629560134648E-004 - 96.479999999999990 -3.1138389850287121E-004 - 96.539999999999992 -3.2457788533399816E-004 - 96.599999999999994 -3.3810742657878036E-004 - 96.659999999999997 -3.5197156111265522E-004 - 96.719999999999999 -3.6616932438651316E-004 - 96.780000000000001 -3.8069954392816702E-004 - 96.840000000000003 -3.9556104450060069E-004 - 96.900000000000006 -4.1075237261873238E-004 - 96.960000000000008 -4.2627194985192285E-004 - 97.019999999999982 -4.4211794411167437E-004 - 97.079999999999984 -4.5828833833919038E-004 - 97.139999999999986 -4.7478072780161737E-004 - 97.199999999999989 -4.9159240939384327E-004 - 97.259999999999991 -5.0872042158336766E-004 - 97.319999999999993 -5.2616125874566913E-004 - 97.379999999999995 -5.4391111239467213E-004 - 97.439999999999998 -5.6196568840212674E-004 - 97.500000000000000 -5.8032005455447015E-004 - 97.560000000000002 -5.9896896486566400E-004 - 97.620000000000005 -6.1790644616881532E-004 - 97.680000000000007 -6.3712608186844856E-004 - 97.739999999999981 -6.5662072824451765E-004 - 97.799999999999983 -6.7638264353825242E-004 - 97.859999999999985 -6.9640330799355173E-004 - 97.919999999999987 -7.1667356673077605E-004 - 97.979999999999990 -7.3718367356427356E-004 - 98.039999999999992 -7.5792298668902666E-004 - 98.099999999999994 -7.7888007952252054E-004 - 98.159999999999997 -8.0004281411306781E-004 - 98.219999999999999 -8.2139814706461665E-004 - 98.280000000000001 -8.4293230464983478E-004 - 98.340000000000003 -8.6463052315601961E-004 - 98.400000000000006 -8.8647734102713968E-004 - 98.460000000000008 -9.0845639189786938E-004 - 98.519999999999982 -9.3055022687230852E-004 - 98.579999999999984 -9.5274072146571637E-004 - 98.639999999999986 -9.7500882012981874E-004 - 98.699999999999989 -9.9733446709894492E-004 - 98.759999999999991 -1.0196966591333192E-003 - 98.819999999999993 -1.0420737397509343E-003 - 98.879999999999995 -1.0644428952394920E-003 - 98.939999999999998 -1.0867807760601383E-003 - 99.000000000000000 -1.1090628381222446E-003 - 99.060000000000002 -1.1312637000733203E-003 - 99.120000000000005 -1.1533573343398146E-003 - 99.180000000000007 -1.1753169978135415E-003 - 99.239999999999981 -1.1971150400635776E-003 - 99.299999999999983 -1.2187230229190246E-003 - 99.359999999999985 -1.2401119345959576E-003 - 99.419999999999987 -1.2612520596534031E-003 - 99.479999999999990 -1.2821132271501271E-003 - 99.539999999999992 -1.3026645059335843E-003 - 99.599999999999994 -1.3228748101296447E-003 - 99.659999999999997 -1.3427122542705510E-003 - 99.719999999999999 -1.3621448583480001E-003 - 99.780000000000001 -1.3811402588274524E-003 - 99.840000000000003 -1.3996658258194803E-003 - 99.900000000000006 -1.4176888528456472E-003 - 99.960000000000008 -1.4351763729034039E-003 - 100.01999999999998 -1.4520954825463026E-003 - 100.07999999999998 -1.4684133972129147E-003 - 100.13999999999999 -1.4840973473680874E-003 - 100.19999999999999 -1.4991149707748003E-003 - 100.25999999999999 -1.5134341041178020E-003 - 100.31999999999999 -1.5270227677653913E-003 - 100.38000000000000 -1.5398497484669623E-003 - 100.44000000000000 -1.5518841114268227E-003 - 100.50000000000000 -1.5630958559520575E-003 - 100.56000000000000 -1.5734553465752705E-003 - 100.62000000000000 -1.5829341915249877E-003 - 100.68000000000001 -1.5915043130141991E-003 - 100.73999999999998 -1.5991390675582056E-003 - 100.79999999999998 -1.6058127197183789E-003 - 100.85999999999999 -1.6115005105427759E-003 - 100.91999999999999 -1.6161791693748298E-003 - 100.97999999999999 -1.6198263617159742E-003 - 101.03999999999999 -1.6224215170217388E-003 - 101.09999999999999 -1.6239451082658040E-003 - 101.16000000000000 -1.6243794532563151E-003 - 101.22000000000000 -1.6237080997483964E-003 - 101.28000000000000 -1.6219165443406393E-003 - 101.34000000000000 -1.6189918290817370E-003 - 101.40000000000001 -1.6149228942140446E-003 - 101.46000000000001 -1.6097002664778540E-003 - 101.51999999999998 -1.6033165140817941E-003 - 101.57999999999998 -1.5957659773260932E-003 - 101.63999999999999 -1.5870450010637457E-003 - 101.69999999999999 -1.5771519644919997E-003 - 101.75999999999999 -1.5660871619334442E-003 - 101.81999999999999 -1.5538528199361390E-003 - 101.88000000000000 -1.5404534819213609E-003 - 101.94000000000000 -1.5258954038842949E-003 - 102.00000000000000 -1.5101872247322403E-003 - 102.06000000000000 -1.4933393732753653E-003 - 102.12000000000000 -1.4753644217670987E-003 - 102.18000000000001 -1.4562770509616908E-003 - 102.23999999999998 -1.4360939714908006E-003 - 102.29999999999998 -1.4148336187701628E-003 - 102.35999999999999 -1.3925167478800050E-003 - 102.41999999999999 -1.3691657219615492E-003 - 102.47999999999999 -1.3448050096907368E-003 - 102.53999999999999 -1.3194609245548885E-003 - 102.59999999999999 -1.2931614410806749E-003 - 102.66000000000000 -1.2659363272669653E-003 - 102.72000000000000 -1.2378170760519239E-003 - 102.78000000000000 -1.2088367532156717E-003 - 102.84000000000000 -1.1790297527610818E-003 - 102.90000000000001 -1.1484322273573736E-003 - 102.96000000000001 -1.1170814674222127E-003 - 103.01999999999998 -1.0850161927910154E-003 - 103.07999999999998 -1.0522761868025016E-003 - 103.13999999999999 -1.0189024459242441E-003 - 103.19999999999999 -9.8493684413743861E-004 - 103.25999999999999 -9.5042234681754357E-004 - 103.31999999999999 -9.1540256792210458E-004 - 103.38000000000000 -8.7992199922768452E-004 - 103.44000000000000 -8.4402556896831244E-004 - 103.50000000000000 -8.0775876585945300E-004 - 103.56000000000000 -7.7116760924386609E-004 - 103.62000000000000 -7.3429824008379105E-004 - 103.68000000000001 -6.9719714570205035E-004 - 103.73999999999998 -6.5991075692044970E-004 - 103.79999999999998 -6.2248572437739649E-004 - 103.85999999999999 -5.8496841720919769E-004 - 103.91999999999999 -5.4740504199996616E-004 - 103.97999999999999 -5.0984143615856339E-004 - 104.03999999999999 -4.7232317391918518E-004 - 104.09999999999999 -4.3489517780201956E-004 - 104.16000000000000 -3.9760177379439383E-004 - 104.22000000000000 -3.6048658789155117E-004 - 104.28000000000000 -3.2359246277569015E-004 - 104.34000000000000 -2.8696131345411067E-004 - 104.40000000000001 -2.5063406242031112E-004 - 104.46000000000001 -2.1465054444914260E-004 - 104.51999999999998 -1.7904954466078411E-004 - 104.57999999999998 -1.4386851178829524E-004 - 104.63999999999999 -1.0914366255438388E-004 - 104.69999999999999 -7.4909868743224992E-005 - 104.75999999999999 -4.1200594493554928E-005 - 104.81999999999999 -8.0478349653674284E-006 - 104.88000000000000 2.4517903680426858E-005 - 104.94000000000000 5.6467687259598094E-005 - 105.00000000000000 8.7774134591158412E-005 - 105.06000000000000 1.1841147644376011E-004 - 105.12000000000000 1.4835558085985200E-004 - 105.18000000000001 1.7758397576234664E-004 - 105.23999999999998 2.0607588006327953E-004 - 105.29999999999998 2.3381215728777196E-004 - 105.35999999999999 2.6077540908443412E-004 - 105.41999999999999 2.8694990249062546E-004 - 105.47999999999999 3.1232163913739319E-004 - 105.53999999999999 3.3687832186246857E-004 - 105.59999999999999 3.6060928838231257E-004 - 105.66000000000000 3.8350558529978923E-004 - 105.72000000000000 4.0555993180199564E-004 - 105.78000000000000 4.2676666195530321E-004 - 105.84000000000000 4.4712174797743723E-004 - 105.90000000000001 4.6662270160104850E-004 - 105.96000000000001 4.8526863820262293E-004 - 106.01999999999998 5.0306009238029509E-004 - 106.07999999999998 5.1999921564394220E-004 - 106.13999999999999 5.3608950036564910E-004 - 106.19999999999999 5.5133572570088189E-004 - 106.25999999999999 5.6574412114732890E-004 - 106.31999999999999 5.7932209297932406E-004 - 106.38000000000000 5.9207842158900698E-004 - 106.44000000000000 6.0402281583351030E-004 - 106.50000000000000 6.1516627091561774E-004 - 106.56000000000000 6.2552069272700961E-004 - 106.62000000000000 6.3509899045299703E-004 - 106.68000000000001 6.4391496728219422E-004 - 106.73999999999998 6.5198338313578099E-004 - 106.79999999999998 6.5931960100549787E-004 - 106.85999999999999 6.6593978910201837E-004 - 106.91999999999999 6.7186084064603708E-004 - 106.97999999999999 6.7710006375821922E-004 - 107.03999999999999 6.8167545921060712E-004 - 107.09999999999999 6.8560533129585917E-004 - 107.16000000000000 6.8890850303274926E-004 - 107.22000000000000 6.9160415632790197E-004 - 107.28000000000000 6.9371169114874291E-004 - 107.34000000000000 6.9525077064757463E-004 - 107.40000000000001 6.9624122571576976E-004 - 107.46000000000001 6.9670304865467861E-004 - 107.51999999999998 6.9665638782331690E-004 - 107.57999999999998 6.9612126265623916E-004 - 107.63999999999999 6.9511788889788974E-004 - 107.69999999999999 6.9366626078066237E-004 - 107.75999999999999 6.9178638831459923E-004 - 107.81999999999999 6.8949811147829348E-004 - 107.88000000000000 6.8682115603850959E-004 - 107.94000000000000 6.8377502986070404E-004 - 108.00000000000000 6.8037900343771599E-004 - 108.06000000000000 6.7665198392112948E-004 - 108.12000000000000 6.7261261943832773E-004 - 108.18000000000001 6.6827931299724805E-004 - 108.23999999999998 6.6366998714016451E-004 - 108.29999999999998 6.5880206672851572E-004 - 108.35999999999999 6.5369263676149422E-004 - 108.41999999999999 6.4835837991125168E-004 - 108.47999999999999 6.4281537890908047E-004 - 108.53999999999999 6.3707924777105392E-004 - 108.59999999999999 6.3116510422254243E-004 - 108.66000000000000 6.2508750581954161E-004 - 108.72000000000000 6.1886049102994765E-004 - 108.78000000000000 6.1249762708681015E-004 - 108.84000000000000 6.0601182814745593E-004 - 108.90000000000001 5.9941560344505776E-004 - 108.96000000000001 5.9272082006953412E-004 - 109.01999999999998 5.8593890353897437E-004 - 109.07999999999998 5.7908082279742995E-004 - 109.13999999999999 5.7215693768442857E-004 - 109.19999999999999 5.6517722748501524E-004 - 109.25999999999999 5.5815110447750337E-004 - 109.31999999999999 5.5108762338783540E-004 - 109.38000000000000 5.4399524780307691E-004 - 109.44000000000000 5.3688210546191397E-004 - 109.50000000000000 5.2975584696563209E-004 - 109.56000000000000 5.2262370398070191E-004 - 109.62000000000000 5.1549241184832442E-004 - 109.68000000000001 5.0836832335513589E-004 - 109.73999999999998 5.0125742425564598E-004 - 109.79999999999998 4.9416518332882941E-004 - 109.85999999999999 4.8709671796838848E-004 - 109.91999999999999 4.8005676520298146E-004 - 109.97999999999999 4.7304972138066198E-004 - 110.03999999999999 4.6607956393589732E-004 - 110.09999999999999 4.5914992599855936E-004 - 110.16000000000000 4.5226416833324423E-004 - 110.22000000000000 4.4542526524379264E-004 - 110.28000000000000 4.3863596763142571E-004 - 110.34000000000000 4.3189872619641480E-004 - 110.40000000000001 4.2521574017405285E-004 - 110.46000000000001 4.1858896700437963E-004 - 110.51999999999998 4.1202017745646063E-004 - 110.57999999999998 4.0551091154953750E-004 - 110.63999999999999 3.9906260061568256E-004 - 110.69999999999999 3.9267644950266703E-004 - 110.75999999999999 3.8635356157247334E-004 - 110.81999999999999 3.8009483945760530E-004 - 110.88000000000000 3.7390112201935230E-004 - 110.94000000000000 3.6777311906844028E-004 - 111.00000000000000 3.6171144560565602E-004 - 111.06000000000000 3.5571660043052345E-004 - 111.12000000000000 3.4978898639608609E-004 - 111.18000000000001 3.4392892812721524E-004 - 111.23999999999998 3.3813667780805339E-004 - 111.29999999999998 3.3241243869056605E-004 - 111.35999999999999 3.2675626463626585E-004 - 111.41999999999999 3.2116821242324830E-004 - 111.47999999999999 3.1564828205425151E-004 - 111.53999999999999 3.1019636259866187E-004 - 111.59999999999999 3.0481235122237189E-004 - 111.66000000000000 2.9949602763926388E-004 - 111.72000000000000 2.9424720868819691E-004 - 111.78000000000000 2.8906560886426616E-004 - 111.84000000000000 2.8395099391180376E-004 - 111.90000000000001 2.7890300909961320E-004 - 111.96000000000001 2.7392136423778446E-004 - 112.01999999999998 2.6900572719040203E-004 - 112.07999999999998 2.6415576085465187E-004 - 112.13999999999999 2.5937115706453834E-004 - 112.19999999999999 2.5465159121059057E-004 - 112.25999999999999 2.4999680517459214E-004 - 112.31999999999999 2.4540650030288515E-004 - 112.38000000000000 2.4088047366081192E-004 - 112.44000000000000 2.3641851606729663E-004 - 112.50000000000000 2.3202044922189668E-004 - 112.56000000000000 2.2768613092716313E-004 - 112.62000000000000 2.2341546329994041E-004 - 112.68000000000001 2.1920834878885593E-004 - 112.73999999999998 2.1506472919231048E-004 - 112.79999999999998 2.1098453394935296E-004 - 112.85999999999999 2.0696770580195509E-004 - 112.91999999999999 2.0301420738567190E-004 - 112.97999999999999 1.9912397608589836E-004 - 113.03999999999999 1.9529690998511834E-004 - 113.09999999999999 1.9153293016515238E-004 - 113.16000000000000 1.8783192401725628E-004 - 113.22000000000000 1.8419375268876028E-004 - 113.28000000000000 1.8061825504785687E-004 - 113.34000000000000 1.7710523497253751E-004 - 113.40000000000001 1.7365451683962649E-004 - 113.46000000000001 1.7026588305459238E-004 - 113.51999999999998 1.6693912176521879E-004 - 113.57999999999998 1.6367403806878084E-004 - 113.63999999999999 1.6047043493757767E-004 - 113.69999999999999 1.5732810450591917E-004 - 113.75999999999999 1.5424688741597116E-004 - 113.81999999999999 1.5122663594121832E-004 - 113.88000000000000 1.4826722900449714E-004 - 113.94000000000000 1.4536857504073009E-004 - 114.00000000000000 1.4253058992603625E-004 - 114.06000000000000 1.3975321069144940E-004 - 114.12000000000000 1.3703637895843998E-004 - 114.18000000000001 1.3438005954380028E-004 - 114.23999999999998 1.3178418670042202E-004 - 114.29999999999998 1.2924870686062401E-004 - 114.35999999999999 1.2677353330593162E-004 - 114.41999999999999 1.2435856536836747E-004 - 114.47999999999999 1.2200366128663446E-004 - 114.53999999999999 1.1970866511876818E-004 - 114.59999999999999 1.1747338815279541E-004 - 114.66000000000000 1.1529760038296009E-004 - 114.72000000000000 1.1318105297200478E-004 - 114.78000000000000 1.1112347365452367E-004 - 114.84000000000000 1.0912457903837768E-004 - 114.90000000000001 1.0718407453063471E-004 - 114.96000000000001 1.0530167759958170E-004 - 115.01999999999998 1.0347710698366253E-004 - 115.07999999999998 1.0171008836665561E-004 - 115.13999999999999 1.0000039763584888E-004 - 115.19999999999999 9.8347807978023963E-005 - 115.25999999999999 9.6752160832283863E-005 - 115.31999999999999 9.5213325292402713E-005 - 115.38000000000000 9.3731214390604012E-005 - 115.44000000000000 9.2305773983991418E-005 - 115.50000000000000 9.0937006091785334E-005 - 115.56000000000000 8.9624964894315659E-005 - 115.62000000000000 8.8369727927024437E-005 - 115.68000000000001 8.7171429794795168E-005 - 115.73999999999998 8.6030262806426647E-005 - 115.79999999999998 8.4946441797031667E-005 - 115.85999999999999 8.3920235062013145E-005 - 115.91999999999999 8.2951961117111827E-005 - 115.97999999999999 8.2041984948307738E-005 - 116.03999999999999 8.1190731016019866E-005 - 116.09999999999999 8.0398679698913918E-005 - 116.16000000000000 7.9666377715904580E-005 - 116.22000000000000 7.8994429057319197E-005 - 116.28000000000000 7.8383525423014570E-005 - 116.34000000000000 7.7834421875509963E-005 - 116.40000000000001 7.7347973408811973E-005 - 116.46000000000001 7.6925099024878629E-005 - 116.51999999999998 7.6566832892727333E-005 - 116.57999999999998 7.6274283335357382E-005 - 116.63999999999999 7.6048660675251758E-005 - 116.69999999999999 7.5891268943117202E-005 - 116.75999999999999 7.5803511453418590E-005 - 116.81999999999999 7.5786877866103957E-005 - 116.88000000000000 7.5842955057421735E-005 - 116.94000000000000 7.5973437643726217E-005 - 117.00000000000000 7.6180086333806456E-005 - 117.06000000000000 7.6464774657829398E-005 - 117.12000000000000 7.6829450049413934E-005 - 117.18000000000001 7.7276133936974260E-005 - 117.23999999999998 7.7806954562616078E-005 - 117.29999999999998 7.8424089353944850E-005 - 117.35999999999999 7.9129800802403726E-005 - 117.41999999999999 7.9926421711671856E-005 - 117.47999999999999 8.0816357882964454E-005 - 117.53999999999999 8.1802073272048368E-005 - 117.59999999999999 8.2886067700846128E-005 - 117.66000000000000 8.4070927195660717E-005 - 117.72000000000000 8.5359262525556260E-005 - 117.78000000000000 8.6753732843264901E-005 - 117.84000000000000 8.8257019312579265E-005 - 117.90000000000001 8.9871845633623639E-005 - 117.96000000000001 9.1600953363395502E-005 - 118.01999999999998 9.3447079564992915E-005 - 118.07999999999998 9.5412979157943705E-005 - 118.13999999999999 9.7501388548819665E-005 - 118.19999999999999 9.9715033412239179E-005 - 118.25999999999999 1.0205661393199601E-004 - 118.31999999999999 1.0452878428773610E-004 - 118.38000000000000 1.0713415826265093E-004 - 118.44000000000000 1.0987526452455043E-004 - 118.50000000000000 1.1275457668465035E-004 - 118.56000000000000 1.1577445395299068E-004 - 118.62000000000000 1.1893716333410891E-004 - 118.68000000000001 1.2224483232044193E-004 - 118.73999999999998 1.2569947161903135E-004 - 118.79999999999998 1.2930292178587571E-004 - 118.85999999999999 1.3305685242108217E-004 - 118.91999999999999 1.3696274184106963E-004 - 118.97999999999999 1.4102185963491641E-004 - 119.03999999999999 1.4523529259043356E-004 - 119.09999999999999 1.4960385461005462E-004 - 119.16000000000000 1.5412812523964283E-004 - 119.22000000000000 1.5880846324323202E-004 - 119.28000000000000 1.6364492193636152E-004 - 119.34000000000000 1.6863728043488857E-004 - 119.40000000000001 1.7378503298727676E-004 - 119.46000000000001 1.7908737542937468E-004 - 119.51999999999998 1.8454318876821337E-004 - 119.57999999999998 1.9015106925133587E-004 - 119.63999999999999 1.9590923121228423E-004 - 119.69999999999999 2.0181560921778315E-004 - 119.75999999999999 2.0786774879447053E-004 - 119.81999999999999 2.1406284544468084E-004 - 119.88000000000000 2.2039773975224676E-004 - 119.94000000000000 2.2686888623069571E-004 - 120.00000000000000 2.3347236017997317E-004 - 120.06000000000000 2.4020383779930205E-004 - 120.12000000000000 2.4705856639279728E-004 - 120.18000000000001 2.5403140497839413E-004 - 120.23999999999998 2.6111680444776381E-004 - 120.29999999999998 2.6830877004990164E-004 - 120.35999999999999 2.7560092008019121E-004 - 120.41999999999999 2.8298635913692142E-004 - 120.47999999999999 2.9045790896508857E-004 - 120.53999999999999 2.9800786720309751E-004 - 120.59999999999999 3.0562820734942572E-004 - 120.66000000000000 3.1331043575501797E-004 - 120.72000000000000 3.2104573662186089E-004 - 120.78000000000000 3.2882486164396659E-004 - 120.84000000000000 3.3663823201415870E-004 - 120.90000000000001 3.4447592385769836E-004 - 120.95999999999998 3.5232763391532994E-004 - 121.01999999999998 3.6018278020826124E-004 - 121.07999999999998 3.6803047419553590E-004 - 121.13999999999999 3.7585946439213437E-004 - 121.19999999999999 3.8365825500459404E-004 - 121.25999999999999 3.9141510876380720E-004 - 121.31999999999999 3.9911793412672302E-004 - 121.38000000000000 4.0675449218932733E-004 - 121.44000000000000 4.1431224028024434E-004 - 121.50000000000000 4.2177850633049650E-004 - 121.56000000000000 4.2914034498055828E-004 - 121.62000000000000 4.3638469871901987E-004 - 121.68000000000001 4.4349830615498132E-004 - 121.73999999999998 4.5046789817754468E-004 - 121.79999999999998 4.5728003749978530E-004 - 121.85999999999999 4.6392126518130726E-004 - 121.91999999999999 4.7037812282263485E-004 - 121.97999999999999 4.7663717558395864E-004 - 122.03999999999999 4.8268504270767155E-004 - 122.09999999999999 4.8850842964447562E-004 - 122.16000000000000 4.9409425640554040E-004 - 122.22000000000000 4.9942955692312059E-004 - 122.28000000000000 5.0450162860609120E-004 - 122.34000000000000 5.0929803465083313E-004 - 122.40000000000001 5.1380659365859267E-004 - 122.45999999999998 5.1801551195951193E-004 - 122.51999999999998 5.2191324020608510E-004 - 122.57999999999998 5.2548876498833663E-004 - 122.63999999999999 5.2873136569624439E-004 - 122.69999999999999 5.3163076621021133E-004 - 122.75999999999999 5.3417726234826555E-004 - 122.81999999999999 5.3636156659848120E-004 - 122.88000000000000 5.3817491136978952E-004 - 122.94000000000000 5.3960903347829493E-004 - 123.00000000000000 5.4065635719549154E-004 - 123.06000000000000 5.4130978659787680E-004 - 123.12000000000000 5.4156292597562342E-004 - 123.18000000000001 5.4140997610222506E-004 - 123.23999999999998 5.4084586569431005E-004 - 123.29999999999998 5.3986614424924944E-004 - 123.35999999999999 5.3846712757220382E-004 - 123.41999999999999 5.3664588379550269E-004 - 123.47999999999999 5.3440027789350029E-004 - 123.53999999999999 5.3172887428781996E-004 - 123.59999999999999 5.2863102030902660E-004 - 123.66000000000000 5.2510698171751718E-004 - 123.72000000000000 5.2115773576787920E-004 - 123.78000000000000 5.1678504260842348E-004 - 123.84000000000000 5.1199161757007467E-004 - 123.90000000000001 5.0678082396614376E-004 - 123.95999999999998 5.0115696317875192E-004 - 124.01999999999998 4.9512506997144792E-004 - 124.07999999999998 4.8869089928478798E-004 - 124.13999999999999 4.8186104648190598E-004 - 124.19999999999999 4.7464289141714876E-004 - 124.25999999999999 4.6704451027818007E-004 - 124.31999999999999 4.5907472873578527E-004 - 124.38000000000000 4.5074296727862082E-004 - 124.44000000000000 4.4205944481386415E-004 - 124.50000000000000 4.3303500545511305E-004 - 124.56000000000000 4.2368112676130287E-004 - 124.62000000000000 4.1400981529801396E-004 - 124.68000000000001 4.0403378066582792E-004 - 124.73999999999998 3.9376618981463909E-004 - 124.79999999999998 3.8322076853789335E-004 - 124.85999999999999 3.7241176077494804E-004 - 124.91999999999999 3.6135380277715218E-004 - 124.97999999999999 3.5006206291279818E-004 - 125.03999999999999 3.3855202218717380E-004 - 125.09999999999999 3.2683955493799323E-004 - 125.16000000000000 3.1494085848325783E-004 - 125.22000000000000 3.0287247291697488E-004 - 125.28000000000000 2.9065114023896866E-004 - 125.34000000000000 2.7829380279876311E-004 - 125.40000000000001 2.6581764518946778E-004 - 125.45999999999998 2.5323992026746563E-004 - 125.51999999999998 2.4057801898638817E-004 - 125.57999999999998 2.2784939784961354E-004 - 125.63999999999999 2.1507147943113704E-004 - 125.69999999999999 2.0226169573621963E-004 - 125.75999999999999 1.8943736289808391E-004 - 125.81999999999999 1.7661572421425213E-004 - 125.88000000000000 1.6381380353023406E-004 - 125.94000000000000 1.5104846183396241E-004 - 126.00000000000000 1.3833628489597701E-004 - 126.06000000000000 1.2569355728008679E-004 - 126.12000000000000 1.1313625822145748E-004 - 126.18000000000001 1.0067997820018858E-004 - 126.23999999999998 8.8339922573739987E-005 - 126.29999999999998 7.6130853419354843E-005 - 126.35999999999999 6.4067082382121871E-005 - 126.41999999999999 5.2162431276261902E-005 - 126.47999999999999 4.0430219917952803E-005 - 126.53999999999999 2.8883231103453426E-005 - 126.59999999999999 1.7533718919854857E-005 - 126.66000000000000 6.3933707220118432E-006 - 126.72000000000000 -4.5266998884689139E-006 - 126.78000000000000 -1.5215967227718595E-005 - 126.84000000000000 -2.5664505243429227E-005 - 126.90000000000001 -3.5863009704688366E-005 - 126.95999999999998 -4.5802793874823741E-005 - 127.01999999999998 -5.5475821752197830E-005 - 127.07999999999998 -6.4874716787770214E-005 - 127.13999999999999 -7.3992770915746325E-005 - 127.19999999999999 -8.2823953632005519E-005 - 127.25999999999999 -9.1362936229799413E-005 - 127.31999999999999 -9.9605091501993163E-005 - 127.38000000000000 -1.0754651368961129E-004 - 127.44000000000000 -1.1518399041148759E-004 - 127.50000000000000 -1.2251503760355353E-004 - 127.56000000000000 -1.2953789755218198E-004 - 127.62000000000000 -1.3625150254291242E-004 - 127.68000000000001 -1.4265545127136473E-004 - 127.73999999999998 -1.4875007216880566E-004 - 127.79999999999998 -1.5453631578310684E-004 - 127.85999999999999 -1.6001579790337800E-004 - 127.91999999999999 -1.6519071896210983E-004 - 127.97999999999999 -1.7006388354848495E-004 - 128.03999999999999 -1.7463865302986504E-004 - 128.09999999999999 -1.7891893358026219E-004 - 128.16000000000000 -1.8290915547067706E-004 - 128.22000000000000 -1.8661421141715311E-004 - 128.28000000000000 -1.9003949728835527E-004 - 128.34000000000000 -1.9319083337876231E-004 - 128.40000000000001 -1.9607444557953485E-004 - 128.45999999999998 -1.9869700500098434E-004 - 128.51999999999998 -2.0106554328928392E-004 - 128.57999999999998 -2.0318745037553997E-004 - 128.63999999999999 -2.0507048086844246E-004 - 128.69999999999999 -2.0672270021748984E-004 - 128.75999999999999 -2.0815248126291770E-004 - 128.81999999999999 -2.0936846517273017E-004 - 128.88000000000000 -2.1037954081637911E-004 - 128.94000000000000 -2.1119482482770697E-004 - 129.00000000000000 -2.1182364094006229E-004 - 129.06000000000000 -2.1227545940163359E-004 - 129.12000000000000 -2.1255985693316071E-004 - 129.18000000000001 -2.1268655056265134E-004 - 129.23999999999998 -2.1266528687320131E-004 - 129.29999999999998 -2.1250587821379204E-004 - 129.35999999999999 -2.1221810907235967E-004 - 129.41999999999999 -2.1181177703842260E-004 - 129.47999999999999 -2.1129659663074124E-004 - 129.53999999999999 -2.1068220989788755E-004 - 129.59999999999999 -2.0997818483646326E-004 - 129.66000000000000 -2.0919396091081629E-004 - 129.72000000000000 -2.0833884540699438E-004 - 129.78000000000000 -2.0742198950350670E-004 - 129.84000000000000 -2.0645234719148648E-004 - 129.90000000000001 -2.0543873407869497E-004 - 129.95999999999998 -2.0438975584155780E-004 - 130.01999999999998 -2.0331378990845746E-004 - 130.07999999999998 -2.0221900199880727E-004 - 130.13999999999999 -2.0111333369983482E-004 - 130.19999999999999 -2.0000445780052114E-004 - 130.25999999999999 -1.9889980426302488E-004 - 130.31999999999999 -1.9780652104433983E-004 - 130.38000000000000 -1.9673150307578636E-004 - 130.44000000000000 -1.9568132457371519E-004 - 130.50000000000000 -1.9466227312395004E-004 - 130.56000000000000 -1.9368033450980311E-004 - 130.62000000000000 -1.9274119778122983E-004 - 130.68000000000001 -1.9185021401486087E-004 - 130.73999999999998 -1.9101243374013447E-004 - 130.79999999999998 -1.9023253756556878E-004 - 130.85999999999999 -1.8951494421899233E-004 - 130.91999999999999 -1.8886369046352351E-004 - 130.97999999999999 -1.8828248597209003E-004 - 131.03999999999999 -1.8777472297630215E-004 - 131.09999999999999 -1.8734342778346699E-004 - 131.16000000000000 -1.8699130610824087E-004 - 131.22000000000000 -1.8672069671262252E-004 - 131.28000000000000 -1.8653361481673763E-004 - 131.34000000000000 -1.8643172327587922E-004 - 131.40000000000001 -1.8641633155651826E-004 - 131.45999999999998 -1.8648841508128009E-004 - 131.51999999999998 -1.8664859642648497E-004 - 131.57999999999998 -1.8689718233254676E-004 - 131.63999999999999 -1.8723414269854283E-004 - 131.69999999999999 -1.8765913657523001E-004 - 131.75999999999999 -1.8817149406958244E-004 - 131.81999999999999 -1.8877027433212554E-004 - 131.88000000000000 -1.8945422618324532E-004 - 131.94000000000000 -1.9022185663087254E-004 - 132.00000000000000 -1.9107137894259672E-004 - 132.06000000000000 -1.9200075681333550E-004 - 132.12000000000000 -1.9300771996730442E-004 - 132.18000000000001 -1.9408976081677348E-004 - 132.23999999999998 -1.9524412038658635E-004 - 132.29999999999998 -1.9646787689792412E-004 - 132.35999999999999 -1.9775781520966896E-004 - 132.41999999999999 -1.9911055825307353E-004 - 132.47999999999999 -2.0052250387257207E-004 - 132.53999999999999 -2.0198982857312607E-004 - 132.59999999999999 -2.0350851328718793E-004 - 132.66000000000000 -2.0507434437526048E-004 - 132.72000000000000 -2.0668290448524806E-004 - 132.78000000000000 -2.0832960837826518E-004 - 132.84000000000000 -2.1000966043393808E-004 - 132.90000000000001 -2.1171814077704433E-004 - 132.95999999999998 -2.1344996864924905E-004 - 133.01999999999998 -2.1519991546108819E-004 - 133.07999999999998 -2.1696266919995591E-004 - 133.13999999999999 -2.1873279007973495E-004 - 133.19999999999999 -2.2050476925071125E-004 - 133.25999999999999 -2.2227303695945833E-004 - 133.31999999999999 -2.2403199231532116E-004 - 133.38000000000000 -2.2577596688941226E-004 - 133.44000000000000 -2.2749931551878291E-004 - 133.50000000000000 -2.2919635362869529E-004 - 133.56000000000000 -2.3086143817637879E-004 - 133.62000000000000 -2.3248888366528657E-004 - 133.68000000000001 -2.3407305295803865E-004 - 133.73999999999998 -2.3560835484944721E-004 - 133.79999999999998 -2.3708919122173718E-004 - 133.85999999999999 -2.3851001024646374E-004 - 133.91999999999999 -2.3986532037030602E-004 - 133.97999999999999 -2.4114966476791936E-004 - 134.03999999999999 -2.4235764883444655E-004 - 134.09999999999999 -2.4348400153105022E-004 - 134.16000000000000 -2.4452348028384624E-004 - 134.22000000000000 -2.4547099803495624E-004 - 134.28000000000000 -2.4632156523232202E-004 - 134.34000000000000 -2.4707027993408715E-004 - 134.40000000000001 -2.4771249473930088E-004 - 134.45999999999998 -2.4824369942622710E-004 - 134.51999999999998 -2.4865956713701468E-004 - 134.57999999999998 -2.4895595213877611E-004 - 134.63999999999999 -2.4912894872813462E-004 - 134.69999999999999 -2.4917488577334043E-004 - 134.75999999999999 -2.4909034911694471E-004 - 134.81999999999999 -2.4887215866302724E-004 - 134.88000000000000 -2.4851737378425422E-004 - 134.94000000000000 -2.4802334562759365E-004 - 135.00000000000000 -2.4738764619864674E-004 - 135.06000000000000 -2.4660815271312729E-004 - 135.12000000000000 -2.4568296479528506E-004 - 135.18000000000001 -2.4461050938251217E-004 - 135.23999999999998 -2.4338944773541387E-004 - 135.29999999999998 -2.4201872102165282E-004 - 135.35999999999999 -2.4049757792596403E-004 - 135.41999999999999 -2.3882552071420018E-004 - 135.47999999999999 -2.3700235467318231E-004 - 135.53999999999999 -2.3502817616728752E-004 - 135.59999999999999 -2.3290340614050224E-004 - 135.66000000000000 -2.3062873652705246E-004 - 135.72000000000000 -2.2820518318991741E-004 - 135.78000000000000 -2.2563406763349109E-004 - 135.84000000000000 -2.2291704355453852E-004 - 135.90000000000001 -2.2005606145619926E-004 - 135.95999999999998 -2.1705338141277534E-004 - 136.01999999999998 -2.1391160282210108E-004 - 136.07999999999998 -2.1063358968364252E-004 - 136.13999999999999 -2.0722254388966035E-004 - 136.19999999999999 -2.0368196515116140E-004 - 136.25999999999999 -2.0001565918364910E-004 - 136.31999999999999 -1.9622769163852961E-004 - 136.38000000000000 -1.9232245007145095E-004 - 136.44000000000000 -1.8830458528861847E-004 - 136.50000000000000 -1.8417900619339259E-004 - 136.56000000000000 -1.7995092542068711E-004 - 136.62000000000000 -1.7562576912823463E-004 - 136.68000000000001 -1.7120924810951350E-004 - 136.73999999999998 -1.6670727273862039E-004 - 136.79999999999998 -1.6212597807280455E-004 - 136.85999999999999 -1.5747175681923603E-004 - 136.91999999999999 -1.5275117113685340E-004 - 136.97999999999999 -1.4797095147169888E-004 - 137.03999999999999 -1.4313802259176183E-004 - 137.09999999999999 -1.3825942872237697E-004 - 137.16000000000000 -1.3334234996988147E-004 - 137.22000000000000 -1.2839409470437506E-004 - 137.28000000000000 -1.2342206631198117E-004 - 137.34000000000000 -1.1843373033244533E-004 - 137.40000000000001 -1.1343661877539077E-004 - 137.45999999999998 -1.0843832046101839E-004 - 137.51999999999998 -1.0344644208853544E-004 - 137.57999999999998 -9.8468623463296201E-005 - 137.63999999999999 -9.3512488955284500E-005 - 137.69999999999999 -8.8585662880695355E-005 - 137.75999999999999 -8.3695747110061917E-005 - 137.81999999999999 -7.8850292236871088E-005 - 137.88000000000000 -7.4056812525327847E-005 - 137.94000000000000 -6.9322735083852483E-005 - 138.00000000000000 -6.4655413634666202E-005 - 138.06000000000000 -6.0062079202639159E-005 - 138.12000000000000 -5.5549852333272787E-005 - 138.18000000000001 -5.1125698390887855E-005 - 138.23999999999998 -4.6796426168638489E-005 - 138.29999999999998 -4.2568651767885434E-005 - 138.35999999999999 -3.8448783693653905E-005 - 138.41999999999999 -3.4443000646003794E-005 - 138.47999999999999 -3.0557235550584259E-005 - 138.53999999999999 -2.6797150910504228E-005 - 138.59999999999999 -2.3168136486711350E-005 - 138.66000000000000 -1.9675288222412609E-005 - 138.72000000000000 -1.6323395947999203E-005 - 138.78000000000000 -1.3116939053957089E-005 - 138.84000000000000 -1.0060080361643408E-005 - 138.90000000000001 -7.1566601118569477E-006 - 138.95999999999998 -4.4101946873164909E-006 - 139.01999999999998 -1.8238761207983872E-006 - 139.07999999999998 5.9943119375697101E-007 - 139.13999999999999 2.8571919872974036E-006 - 139.19999999999999 4.9471950915938742E-006 - 139.25999999999999 6.8675623061915891E-006 - 139.31999999999999 8.6167434232628543E-006 - 139.38000000000000 1.0193526318360163E-005 - 139.44000000000000 1.1597034266096658E-005 - 139.50000000000000 1.2826730934689886E-005 - 139.56000000000000 1.3882425197060041E-005 - 139.62000000000000 1.4764272482245034E-005 - 139.68000000000001 1.5472778571491702E-005 - 139.73999999999998 1.6008797763183191E-005 - 139.79999999999998 1.6373533944442761E-005 - 139.85999999999999 1.6568539735775782E-005 - 139.91999999999999 1.6595709594303221E-005 - 139.97999999999999 1.6457274421203062E-005 - 140.03999999999999 1.6155791088452582E-005 - 140.09999999999999 1.5694134263458640E-005 - 140.16000000000000 1.5075481447354103E-005 - 140.22000000000000 1.4303299740470900E-005 - 140.28000000000000 1.3381333146399057E-005 - 140.34000000000000 1.2313583744421765E-005 - 140.40000000000001 1.1104299218395928E-005 - 140.45999999999998 9.7579524370939992E-006 - 140.51999999999998 8.2792311131518484E-006 - 140.57999999999998 6.6730185027390598E-006 - 140.63999999999999 4.9443822409270949E-006 - 140.69999999999999 3.0985561596797644E-006 - 140.75999999999999 1.1409296446876543E-006 - 140.81999999999999 -9.2296287390910415E-007 - 140.88000000000000 -3.0874608406886872E-006 - 140.94000000000000 -5.3467848384741754E-006 - 141.00000000000000 -7.6950532481845465E-006 - 141.06000000000000 -1.0126294205512592E-005 - 141.12000000000000 -1.2634452828002893E-005 - 141.18000000000001 -1.5213411666617246E-005 - 141.23999999999998 -1.7857002527009569E-005 - 141.29999999999998 -2.0559014405915240E-005 - 141.35999999999999 -2.3313212299662898E-005 - 141.41999999999999 -2.6113356976933916E-005 - 141.47999999999999 -2.8953199892889420E-005 - 141.53999999999999 -3.1826517981640439E-005 - 141.59999999999999 -3.4727118046154240E-005 - 141.66000000000000 -3.7648848182518601E-005 - 141.72000000000000 -4.0585613552379582E-005 - 141.78000000000000 -4.3531384012871131E-005 - 141.84000000000000 -4.6480210238203537E-005 - 141.90000000000001 -4.9426243839082149E-005 - 141.95999999999998 -5.2363725213334135E-005 - 142.01999999999998 -5.5287018906603287E-005 - 142.07999999999998 -5.8190622512093032E-005 - 142.13999999999999 -6.1069147267757391E-005 - 142.19999999999999 -6.3917371552269249E-005 - 142.25999999999999 -6.6730209224505959E-005 - 142.31999999999999 -6.9502761644111319E-005 - 142.38000000000000 -7.2230283876247438E-005 - 142.44000000000000 -7.4908225562011609E-005 - 142.50000000000000 -7.7532217995848832E-005 - 142.56000000000000 -8.0098078440629403E-005 - 142.62000000000000 -8.2601833647453739E-005 - 142.68000000000001 -8.5039698787653986E-005 - 142.73999999999998 -8.7408109380939081E-005 - 142.79999999999998 -8.9703701342715123E-005 - 142.85999999999999 -9.1923323754238839E-005 - 142.91999999999999 -9.4064031458802359E-005 - 142.97999999999999 -9.6123089863823510E-005 - 143.03999999999999 -9.8097962430185548E-005 - 143.09999999999999 -9.9986331955771235E-005 - 143.16000000000000 -1.0178609699368606E-004 - 143.22000000000000 -1.0349534434388419E-004 - 143.28000000000000 -1.0511237070726258E-004 - 143.34000000000000 -1.0663567649186455E-004 - 143.40000000000001 -1.0806397775848068E-004 - 143.45999999999998 -1.0939618105020108E-004 - 143.51999999999998 -1.1063140611384609E-004 - 143.57999999999998 -1.1176896534262571E-004 - 143.63999999999999 -1.1280837820362210E-004 - 143.69999999999999 -1.1374935869371736E-004 - 143.75999999999999 -1.1459182800136361E-004 - 143.81999999999999 -1.1533588507592473E-004 - 143.88000000000000 -1.1598183039208978E-004 - 143.94000000000000 -1.1653016032701830E-004 - 144.00000000000000 -1.1698152401087452E-004 - 144.06000000000000 -1.1733676877316128E-004 - 144.12000000000000 -1.1759689384300263E-004 - 144.18000000000001 -1.1776306642061955E-004 - 144.23999999999998 -1.1783659283891147E-004 - 144.29999999999998 -1.1781893348182377E-004 - 144.35999999999999 -1.1771168510646331E-004 - 144.41999999999999 -1.1751655653788078E-004 - 144.47999999999999 -1.1723539383812098E-004 - 144.53999999999999 -1.1687013877101025E-004 - 144.59999999999999 -1.1642285622846412E-004 - 144.66000000000000 -1.1589570633327904E-004 - 144.72000000000000 -1.1529094393399597E-004 - 144.78000000000000 -1.1461091370399434E-004 - 144.84000000000000 -1.1385804116198716E-004 - 144.90000000000001 -1.1303483967769634E-004 - 144.95999999999998 -1.1214390599788595E-004 - 145.01999999999998 -1.1118790021314878E-004 - 145.07999999999998 -1.1016954250891820E-004 - 145.13999999999999 -1.0909161497343970E-004 - 145.19999999999999 -1.0795696359351491E-004 - 145.25999999999999 -1.0676846859763500E-004 - 145.31999999999999 -1.0552906158885160E-004 - 145.38000000000000 -1.0424169773168624E-004 - 145.44000000000000 -1.0290936319463591E-004 - 145.50000000000000 -1.0153506961524755E-004 - 145.56000000000000 -1.0012181989954901E-004 - 145.62000000000000 -9.8672645832512096E-005 - 145.68000000000001 -9.7190559938130282E-005 - 145.73999999999998 -9.5678582681653538E-005 - 145.79999999999998 -9.4139712252130811E-005 - 145.85999999999999 -9.2576925150964087E-005 - 145.91999999999999 -9.0993191626209734E-005 - 145.97999999999999 -8.9391452671330147E-005 - 146.03999999999999 -8.7774613235004243E-005 - 146.09999999999999 -8.6145570107345009E-005 - 146.16000000000000 -8.4507180953973034E-005 - 146.22000000000000 -8.2862260440249994E-005 - 146.28000000000000 -8.1213596158134329E-005 - 146.34000000000000 -7.9563938237535133E-005 - 146.40000000000001 -7.7915991499210075E-005 - 146.45999999999998 -7.6272421262200840E-005 - 146.51999999999998 -7.4635837263190859E-005 - 146.57999999999998 -7.3008799112066276E-005 - 146.63999999999999 -7.1393812234040645E-005 - 146.69999999999999 -6.9793316025148122E-005 - 146.75999999999999 -6.8209676569117093E-005 - 146.81999999999999 -6.6645190722063911E-005 - 146.88000000000000 -6.5102070605585168E-005 - 146.94000000000000 -6.3582458735529965E-005 - 147.00000000000000 -6.2088391257351407E-005 - 147.06000000000000 -6.0621825381800099E-005 - 147.12000000000000 -5.9184619737887576E-005 - 147.18000000000001 -5.7778534609129638E-005 - 147.23999999999998 -5.6405233381944907E-005 - 147.29999999999998 -5.5066286069191330E-005 - 147.35999999999999 -5.3763156469870907E-005 - 147.41999999999999 -5.2497221979576331E-005 - 147.47999999999999 -5.1269748442316525E-005 - 147.53999999999999 -5.0081919496866645E-005 - 147.59999999999999 -4.8934820290753294E-005 - 147.66000000000000 -4.7829441249905496E-005 - 147.72000000000000 -4.6766677637882438E-005 - 147.78000000000000 -4.5747335787436818E-005 - 147.84000000000000 -4.4772126225318457E-005 - 147.90000000000001 -4.3841669219907587E-005 - 147.95999999999998 -4.2956485422559970E-005 - 148.01999999999998 -4.2117004963901770E-005 - 148.07999999999998 -4.1323556125566249E-005 - 148.13999999999999 -4.0576366751484168E-005 - 148.19999999999999 -3.9875566073509350E-005 - 148.25999999999999 -3.9221183408372700E-005 - 148.31999999999999 -3.8613141852354418E-005 - 148.38000000000000 -3.8051268347684662E-005 - 148.44000000000000 -3.7535281493760226E-005 - 148.50000000000000 -3.7064810269641059E-005 - 148.56000000000000 -3.6639391230618586E-005 - 148.62000000000000 -3.6258470433338881E-005 - 148.68000000000001 -3.5921415069450006E-005 - 148.73999999999998 -3.5627519639510108E-005 - 148.79999999999998 -3.5376005963344932E-005 - 148.85999999999999 -3.5166044149704890E-005 - 148.91999999999999 -3.4996752794563355E-005 - 148.97999999999999 -3.4867207795282117E-005 - 149.03999999999999 -3.4776451845181253E-005 - 149.09999999999999 -3.4723499287432050E-005 - 149.16000000000000 -3.4707347148577583E-005 - 149.22000000000000 -3.4726973967307270E-005 - 149.28000000000000 -3.4781345253515689E-005 - 149.34000000000000 -3.4869426173951761E-005 - 149.40000000000001 -3.4990164808341679E-005 - 149.45999999999998 -3.5142516450449995E-005 - 149.51999999999998 -3.5325422100690417E-005 - 149.57999999999998 -3.5537820598707971E-005 - 149.63999999999999 -3.5778643983890582E-005 - 149.69999999999999 -3.6046822594672649E-005 - 149.75999999999999 -3.6341278511954002E-005 - 149.81999999999999 -3.6660923758111804E-005 - 149.88000000000000 -3.7004664830679055E-005 - 149.94000000000000 -3.7371399964906320E-005 - 150.00000000000000 -3.7760022149285401E-005 - 150.06000000000000 -3.8169416261390157E-005 - 150.12000000000000 -3.8598472058964772E-005 - 150.18000000000001 -3.9046071950467840E-005 - 150.23999999999998 -3.9511102480345561E-005 - 150.29999999999998 -3.9992460333783617E-005 - 150.35999999999999 -4.0489048649697787E-005 - 150.41999999999999 -4.0999791645194797E-005 - 150.47999999999999 -4.1523623770432844E-005 - 150.53999999999999 -4.2059512602227536E-005 - 150.59999999999999 -4.2606445534579151E-005 - 150.66000000000000 -4.3163446539040079E-005 - 150.72000000000000 -4.3729563243477928E-005 - 150.78000000000000 -4.4303888370289792E-005 - 150.84000000000000 -4.4885549008961381E-005 - 150.90000000000001 -4.5473704157485247E-005 - 150.95999999999998 -4.6067560941284339E-005 - 151.01999999999998 -4.6666355798925177E-005 - 151.07999999999998 -4.7269366938189866E-005 - 151.13999999999999 -4.7875910690718337E-005 - 151.19999999999999 -4.8485321955632023E-005 - 151.25999999999999 -4.9096979952831323E-005 - 151.31999999999999 -4.9710280191996900E-005 - 151.38000000000000 -5.0324649243991388E-005 - 151.44000000000000 -5.0939529251816656E-005 - 151.50000000000000 -5.1554381541192013E-005 - 151.56000000000000 -5.2168674270019090E-005 - 151.62000000000000 -5.2781907454526339E-005 - 151.68000000000001 -5.3393580915848569E-005 - 151.73999999999998 -5.4003215412488890E-005 - 151.79999999999998 -5.4610350139056259E-005 - 151.85999999999999 -5.5214536330495020E-005 - 151.91999999999999 -5.5815353200704212E-005 - 151.97999999999999 -5.6412406183952068E-005 - 152.03999999999999 -5.7005331684941720E-005 - 152.09999999999999 -5.7593802402574427E-005 - 152.16000000000000 -5.8177528205489624E-005 - 152.22000000000000 -5.8756267388189685E-005 - 152.28000000000000 -5.9329824329436383E-005 - 152.34000000000000 -5.9898031844291725E-005 - 152.40000000000001 -6.0460797150804127E-005 - 152.45999999999998 -6.1018053989401021E-005 - 152.51999999999998 -6.1569782175662570E-005 - 152.57999999999998 -6.2115993026418606E-005 - 152.63999999999999 -6.2656747447264473E-005 - 152.69999999999999 -6.3192116916894624E-005 - 152.75999999999999 -6.3722176851561645E-005 - 152.81999999999999 -6.4247033098290381E-005 - 152.88000000000000 -6.4766786532363012E-005 - 152.94000000000000 -6.5281523919212214E-005 - 153.00000000000000 -6.5791337337835855E-005 - 153.06000000000000 -6.6296284692614078E-005 - 153.12000000000000 -6.6796415755275790E-005 - 153.17999999999998 -6.7291750896262341E-005 - 153.23999999999998 -6.7782300717707730E-005 - 153.29999999999998 -6.8268044837818846E-005 - 153.35999999999999 -6.8748965454527549E-005 - 153.41999999999999 -6.9225011882903992E-005 - 153.47999999999999 -6.9696133640410714E-005 - 153.53999999999999 -7.0162267150384534E-005 - 153.59999999999999 -7.0623350667625950E-005 - 153.66000000000000 -7.1079326207635965E-005 - 153.72000000000000 -7.1530137459769669E-005 - 153.78000000000000 -7.1975725111827950E-005 - 153.84000000000000 -7.2416017709322784E-005 - 153.90000000000001 -7.2850962594804114E-005 - 153.95999999999998 -7.3280483632411710E-005 - 154.01999999999998 -7.3704495271930372E-005 - 154.07999999999998 -7.4122890297001451E-005 - 154.13999999999999 -7.4535551124300077E-005 - 154.19999999999999 -7.4942309781923761E-005 - 154.25999999999999 -7.5342984420506738E-005 - 154.31999999999999 -7.5737329357193018E-005 - 154.38000000000000 -7.6125068721719051E-005 - 154.44000000000000 -7.6505892286753084E-005 - 154.50000000000000 -7.6879435804726501E-005 - 154.56000000000000 -7.7245295562030427E-005 - 154.62000000000000 -7.7603028889521765E-005 - 154.67999999999998 -7.7952158454101729E-005 - 154.73999999999998 -7.8292176537806619E-005 - 154.79999999999998 -7.8622553151804899E-005 - 154.85999999999999 -7.8942753660205171E-005 - 154.91999999999999 -7.9252228551270607E-005 - 154.97999999999999 -7.9550426914893786E-005 - 155.03999999999999 -7.9836809204750136E-005 - 155.09999999999999 -8.0110827987036495E-005 - 155.16000000000000 -8.0371979763695325E-005 - 155.22000000000000 -8.0619764011834573E-005 - 155.28000000000000 -8.0853701715316543E-005 - 155.34000000000000 -8.1073348941088089E-005 - 155.40000000000001 -8.1278280568951972E-005 - 155.45999999999998 -8.1468125099439380E-005 - 155.51999999999998 -8.1642502158424843E-005 - 155.57999999999998 -8.1801095532799470E-005 - 155.63999999999999 -8.1943602676056126E-005 - 155.69999999999999 -8.2069762284502179E-005 - 155.75999999999999 -8.2179331640054923E-005 - 155.81999999999999 -8.2272124153489723E-005 - 155.88000000000000 -8.2347958070793249E-005 - 155.94000000000000 -8.2406705186456169E-005 - 156.00000000000000 -8.2448272669810593E-005 - 156.06000000000000 -8.2472589091771761E-005 - 156.12000000000000 -8.2479628468730515E-005 - 156.17999999999998 -8.2469398290263698E-005 - 156.23999999999998 -8.2441927076053450E-005 - 156.29999999999998 -8.2397306563235481E-005 - 156.35999999999999 -8.2335645747296323E-005 - 156.41999999999999 -8.2257092467178712E-005 - 156.47999999999999 -8.2161839609065868E-005 - 156.53999999999999 -8.2050122448553659E-005 - 156.59999999999999 -8.1922205904853598E-005 - 156.66000000000000 -8.1778406723265516E-005 - 156.72000000000000 -8.1619071394849158E-005 - 156.78000000000000 -8.1444612150835354E-005 - 156.84000000000000 -8.1255469220627705E-005 - 156.90000000000001 -8.1052143898111304E-005 - 156.95999999999998 -8.0835170682590221E-005 - 157.01999999999998 -8.0605130514401429E-005 - 157.07999999999998 -8.0362659924691242E-005 - 157.13999999999999 -8.0108435434225907E-005 - 157.19999999999999 -7.9843179780852627E-005 - 157.25999999999999 -7.9567638215321865E-005 - 157.31999999999999 -7.9282605442108168E-005 - 157.38000000000000 -7.8988901479091323E-005 - 157.44000000000000 -7.8687366172361164E-005 - 157.50000000000000 -7.8378858442904015E-005 - 157.56000000000000 -7.8064252224569101E-005 - 157.62000000000000 -7.7744428028190060E-005 - 157.67999999999998 -7.7420273057241532E-005 - 157.73999999999998 -7.7092665355235141E-005 - 157.79999999999998 -7.6762480719305476E-005 - 157.85999999999999 -7.6430598891964366E-005 - 157.91999999999999 -7.6097880609316980E-005 - 157.97999999999999 -7.5765183649788116E-005 - 158.03999999999999 -7.5433353757295261E-005 - 158.09999999999999 -7.5103222305241682E-005 - 158.16000000000000 -7.4775630456748427E-005 - 158.22000000000000 -7.4451399501940016E-005 - 158.28000000000000 -7.4131344507841131E-005 - 158.34000000000000 -7.3816284745075676E-005 - 158.40000000000001 -7.3507022090488780E-005 - 158.45999999999998 -7.3204345130021661E-005 - 158.51999999999998 -7.2909053292289516E-005 - 158.57999999999998 -7.2621916362052382E-005 - 158.63999999999999 -7.2343688512514385E-005 - 158.69999999999999 -7.2075113628662865E-005 - 158.75999999999999 -7.1816912350528369E-005 - 158.81999999999999 -7.1569766624585677E-005 - 158.88000000000000 -7.1334346803631635E-005 - 158.94000000000000 -7.1111277132373925E-005 - 159.00000000000000 -7.0901159717721204E-005 - 159.06000000000000 -7.0704534081904861E-005 - 159.12000000000000 -7.0521928697578893E-005 - 159.17999999999998 -7.0353827011014706E-005 - 159.23999999999998 -7.0200668179499684E-005 - 159.29999999999998 -7.0062842617282637E-005 - 159.35999999999999 -6.9940720005248034E-005 - 159.41999999999999 -6.9834614564571578E-005 - 159.47999999999999 -6.9744806053425912E-005 - 159.53999999999999 -6.9671542042701635E-005 - 159.59999999999999 -6.9615010797189155E-005 - 159.66000000000000 -6.9575380402215584E-005 - 159.72000000000000 -6.9552747360918514E-005 - 159.78000000000000 -6.9547181327813391E-005 - 159.84000000000000 -6.9558688976120310E-005 - 159.90000000000001 -6.9587231347785286E-005 - 159.95999999999998 -6.9632703182401874E-005 - 160.01999999999998 -6.9694953612431886E-005 - 160.07999999999998 -6.9773766250147152E-005 - 160.13999999999999 -6.9868859164138558E-005 - 160.19999999999999 -6.9979894469552939E-005 - 160.25999999999999 -7.0106472891370711E-005 - 160.31999999999999 -7.0248126915395723E-005 - 160.38000000000000 -7.0404355290762941E-005 - 160.44000000000000 -7.0574584236557034E-005 - 160.50000000000000 -7.0758195524377778E-005 - 160.56000000000000 -7.0954519415221770E-005 - 160.62000000000000 -7.1162858109236141E-005 - 160.67999999999998 -7.1382454621585537E-005 - 160.73999999999998 -7.1612533920652866E-005 - 160.79999999999998 -7.1852275198084050E-005 - 160.85999999999999 -7.2100825639607414E-005 - 160.91999999999999 -7.2357302501686039E-005 - 160.97999999999999 -7.2620805600644698E-005 - 161.03999999999999 -7.2890384086821689E-005 - 161.09999999999999 -7.3165069214315575E-005 - 161.16000000000000 -7.3443864097395736E-005 - 161.22000000000000 -7.3725737870229736E-005 - 161.28000000000000 -7.4009633716252545E-005 - 161.34000000000000 -7.4294480256977420E-005 - 161.40000000000001 -7.4579179339628914E-005 - 161.45999999999998 -7.4862630795000600E-005 - 161.51999999999998 -7.5143720322177199E-005 - 161.57999999999998 -7.5421332680130699E-005 - 161.63999999999999 -7.5694373687255047E-005 - 161.69999999999999 -7.5961764682437434E-005 - 161.75999999999999 -7.6222444327111227E-005 - 161.81999999999999 -7.6475398866373052E-005 - 161.88000000000000 -7.6719650456365075E-005 - 161.94000000000000 -7.6954272826159812E-005 - 162.00000000000000 -7.7178398324429700E-005 - 162.06000000000000 -7.7391203776462655E-005 - 162.12000000000000 -7.7591941734891223E-005 - 162.17999999999998 -7.7779925403106509E-005 - 162.23999999999998 -7.7954532968266924E-005 - 162.29999999999998 -7.8115186834112858E-005 - 162.35999999999999 -7.8261382125888171E-005 - 162.41999999999999 -7.8392664312670782E-005 - 162.47999999999999 -7.8508627187675074E-005 - 162.53999999999999 -7.8608907907819946E-005 - 162.59999999999999 -7.8693218519349493E-005 - 162.66000000000000 -7.8761275590851057E-005 - 162.72000000000000 -7.8812866811195159E-005 - 162.78000000000000 -7.8847818306641319E-005 - 162.84000000000000 -7.8865998446209362E-005 - 162.90000000000001 -7.8867309226348387E-005 - 162.95999999999998 -7.8851734700449521E-005 - 163.01999999999998 -7.8819273383363086E-005 - 163.07999999999998 -7.8770004808669826E-005 - 163.13999999999999 -7.8704059479282065E-005 - 163.19999999999999 -7.8621632226383339E-005 - 163.25999999999999 -7.8522974786325109E-005 - 163.31999999999999 -7.8408410955751646E-005 - 163.38000000000000 -7.8278319842074536E-005 - 163.44000000000000 -7.8133149955960632E-005 - 163.50000000000000 -7.7973401430923855E-005 - 163.56000000000000 -7.7799638796878463E-005 - 163.62000000000000 -7.7612472191179821E-005 - 163.67999999999998 -7.7412562491120153E-005 - 163.73999999999998 -7.7200608395374247E-005 - 163.79999999999998 -7.6977353354292378E-005 - 163.85999999999999 -7.6743556491137277E-005 - 163.91999999999999 -7.6500016908312752E-005 - 163.97999999999999 -7.6247540529135235E-005 - 164.03999999999999 -7.5986950165513761E-005 - 164.09999999999999 -7.5719086699128059E-005 - 164.16000000000000 -7.5444788355687458E-005 - 164.22000000000000 -7.5164887147254476E-005 - 164.28000000000000 -7.4880227565919330E-005 - 164.34000000000000 -7.4591650089349856E-005 - 164.40000000000001 -7.4299974541358407E-005 - 164.45999999999998 -7.4006033136235830E-005 - 164.51999999999998 -7.3710630179709384E-005 - 164.57999999999998 -7.3414580866127427E-005 - 164.63999999999999 -7.3118682286981958E-005 - 164.69999999999999 -7.2823730218307916E-005 - 164.75999999999999 -7.2530501443054287E-005 - 164.81999999999999 -7.2239769468303972E-005 - 164.88000000000000 -7.1952310905908174E-005 - 164.94000000000000 -7.1668888543971845E-005 - 165.00000000000000 -7.1390258486159634E-005 - 165.06000000000000 -7.1117175232243094E-005 - 165.12000000000000 -7.0850396157497175E-005 - 165.17999999999998 -7.0590657538664874E-005 - 165.23999999999998 -7.0338710001372666E-005 - 165.29999999999998 -7.0095277099384629E-005 - 165.35999999999999 -6.9861084538340711E-005 - 165.41999999999999 -6.9636839215965189E-005 - 165.47999999999999 -6.9423223688077341E-005 - 165.53999999999999 -6.9220894777872175E-005 - 165.59999999999999 -6.9030488065822032E-005 - 165.66000000000000 -6.8852595804593796E-005 - 165.72000000000000 -6.8687765686602042E-005 - 165.78000000000000 -6.8536497228890273E-005 - 165.84000000000000 -6.8399227724774713E-005 - 165.90000000000001 -6.8276347701075188E-005 - 165.95999999999998 -6.8168179245803206E-005 - 166.01999999999998 -6.8074965719683785E-005 - 166.07999999999998 -6.7996899730422792E-005 - 166.13999999999999 -6.7934099187208391E-005 - 166.19999999999999 -6.7886636497349544E-005 - 166.25999999999999 -6.7854503898192870E-005 - 166.31999999999999 -6.7837642471431248E-005 - 166.38000000000000 -6.7835951680184531E-005 - 166.44000000000000 -6.7849270977367383E-005 - 166.50000000000000 -6.7877413037481510E-005 - 166.56000000000000 -6.7920147431706370E-005 - 166.62000000000000 -6.7977193012091000E-005 - 166.67999999999998 -6.8048249123046177E-005 - 166.73999999999998 -6.8132973130949809E-005 - 166.79999999999998 -6.8230992265019990E-005 - 166.85999999999999 -6.8341886151286480E-005 - 166.91999999999999 -6.8465188327963619E-005 - 166.97999999999999 -6.8600389311201576E-005 - 167.03999999999999 -6.8746928874031249E-005 - 167.09999999999999 -6.8904187459156003E-005 - 167.16000000000000 -6.9071468231340395E-005 - 167.22000000000000 -6.9248042019408323E-005 - 167.28000000000000 -6.9433087006301372E-005 - 167.34000000000000 -6.9625735798125227E-005 - 167.40000000000001 -6.9825051402725328E-005 - 167.45999999999998 -7.0030044906599657E-005 - 167.51999999999998 -7.0239692086947813E-005 - 167.57999999999998 -7.0452914585348070E-005 - 167.63999999999999 -7.0668621160342910E-005 - 167.69999999999999 -7.0885692535017949E-005 - 167.75999999999999 -7.1103010079175518E-005 - 167.81999999999999 -7.1319454593520297E-005 - 167.88000000000000 -7.1533926580558653E-005 - 167.94000000000000 -7.1745349688796418E-005 - 168.00000000000000 -7.1952667282596899E-005 - 168.06000000000000 -7.2154870000254944E-005 - 168.12000000000000 -7.2350981591572927E-005 - 168.17999999999998 -7.2540075695180206E-005 - 168.23999999999998 -7.2721260900805880E-005 - 168.29999999999998 -7.2893684721136908E-005 - 168.35999999999999 -7.3056546493684819E-005 - 168.41999999999999 -7.3209063319898827E-005 - 168.47999999999999 -7.3350500243365375E-005 - 168.53999999999999 -7.3480150457956174E-005 - 168.59999999999999 -7.3597339470519207E-005 - 168.66000000000000 -7.3701431891846686E-005 - 168.72000000000000 -7.3791822432862250E-005 - 168.78000000000000 -7.3867927526442034E-005 - 168.84000000000000 -7.3929213684811832E-005 - 168.90000000000001 -7.3975178345515543E-005 - 168.95999999999998 -7.4005376053313239E-005 - 169.01999999999998 -7.4019392234592229E-005 - 169.07999999999998 -7.4016883280216429E-005 - 169.13999999999999 -7.3997546567523029E-005 - 169.19999999999999 -7.3961150950712141E-005 - 169.25999999999999 -7.3907526881746371E-005 - 169.31999999999999 -7.3836557669700677E-005 - 169.38000000000000 -7.3748206377373049E-005 - 169.44000000000000 -7.3642487778864376E-005 - 169.50000000000000 -7.3519492485596668E-005 - 169.56000000000000 -7.3379374370342564E-005 - 169.62000000000000 -7.3222343562118680E-005 - 169.67999999999998 -7.3048680489989440E-005 - 169.73999999999998 -7.2858703184402633E-005 - 169.79999999999998 -7.2652806617688666E-005 - 169.85999999999999 -7.2431406061362037E-005 - 169.91999999999999 -7.2194982707017818E-005 - 169.97999999999999 -7.1944057334790508E-005 - 170.03999999999999 -7.1679181880603964E-005 - 170.09999999999999 -7.1400950604462430E-005 - 170.16000000000000 -7.1109985802725475E-005 - 170.22000000000000 -7.0806930032228231E-005 - 170.28000000000000 -7.0492446273434794E-005 - 170.34000000000000 -7.0167234890847557E-005 - 170.40000000000001 -6.9831993506308190E-005 - 170.45999999999998 -6.9487440854345238E-005 - 170.51999999999998 -6.9134296749209995E-005 - 170.57999999999998 -6.8773297269566602E-005 - 170.63999999999999 -6.8405175870651775E-005 - 170.69999999999999 -6.8030678473687576E-005 - 170.75999999999999 -6.7650556851081675E-005 - 170.81999999999999 -6.7265556868878647E-005 - 170.88000000000000 -6.6876444035874491E-005 - 170.94000000000000 -6.6483993190989216E-005 - 171.00000000000000 -6.6088989352870890E-005 - 171.06000000000000 -6.5692239768750787E-005 - 171.12000000000000 -6.5294569443789948E-005 - 171.17999999999998 -6.4896809715686872E-005 - 171.23999999999998 -6.4499833546068587E-005 - 171.29999999999998 -6.4104526715322164E-005 - 171.35999999999999 -6.3711787825507509E-005 - 171.41999999999999 -6.3322539906827404E-005 - 171.47999999999999 -6.2937726382628577E-005 - 171.53999999999999 -6.2558280778295518E-005 - 171.59999999999999 -6.2185152481780662E-005 - 171.66000000000000 -6.1819274964615379E-005 - 171.72000000000000 -6.1461576911988288E-005 - 171.78000000000000 -6.1112961176120094E-005 - 171.84000000000000 -6.0774310883942333E-005 - 171.90000000000001 -6.0446465540492051E-005 - 171.95999999999998 -6.0130236818525756E-005 - 172.01999999999998 -5.9826391106959772E-005 - 172.07999999999998 -5.9535660552091417E-005 - 172.13999999999999 -5.9258726321381133E-005 - 172.19999999999999 -5.8996232138854603E-005 - 172.25999999999999 -5.8748787283241827E-005 - 172.31999999999999 -5.8516958193534195E-005 - 172.38000000000000 -5.8301285646060831E-005 - 172.44000000000000 -5.8102268214106992E-005 - 172.50000000000000 -5.7920387906374734E-005 - 172.56000000000000 -5.7756094661322598E-005 - 172.62000000000000 -5.7609810326974592E-005 - 172.67999999999998 -5.7481921777970285E-005 - 172.73999999999998 -5.7372793215659672E-005 - 172.79999999999998 -5.7282739359746121E-005 - 172.85999999999999 -5.7212038256748715E-005 - 172.91999999999999 -5.7160914724439756E-005 - 172.97999999999999 -5.7129535779849145E-005 - 173.03999999999999 -5.7117995926396706E-005 - 173.09999999999999 -5.7126329713570114E-005 - 173.16000000000000 -5.7154490838108712E-005 - 173.22000000000000 -5.7202347341970004E-005 - 173.28000000000000 -5.7269686595086216E-005 - 173.34000000000000 -5.7356220955573016E-005 - 173.40000000000001 -5.7461572239491636E-005 - 173.45999999999998 -5.7585280491500067E-005 - 173.51999999999998 -5.7726813712322535E-005 - 173.57999999999998 -5.7885577029873230E-005 - 173.63999999999999 -5.8060903952368277E-005 - 173.69999999999999 -5.8252075193212033E-005 - 173.75999999999999 -5.8458323727154894E-005 - 173.81999999999999 -5.8678836454180628E-005 - 173.88000000000000 -5.8912764708794573E-005 - 173.94000000000000 -5.9159229152073951E-005 - 174.00000000000000 -5.9417326562516853E-005 - 174.06000000000000 -5.9686124444028220E-005 - 174.12000000000000 -5.9964669634413502E-005 - 174.17999999999998 -6.0251997837223171E-005 - 174.23999999999998 -6.0547113348562837E-005 - 174.29999999999998 -6.0849014678255694E-005 - 174.35999999999999 -6.1156681771775261E-005 - 174.41999999999999 -6.1469076793576601E-005 - 174.47999999999999 -6.1785166550979231E-005 - 174.53999999999999 -6.2103887081799277E-005 - 174.59999999999999 -6.2424176510976012E-005 - 174.66000000000000 -6.2744993206579610E-005 - 174.72000000000000 -6.3065260766258881E-005 - 174.78000000000000 -6.3383934347442975E-005 - 174.84000000000000 -6.3699983582607967E-005 - 174.90000000000001 -6.4012390777207857E-005 - 174.95999999999998 -6.4320146252346653E-005 - 175.01999999999998 -6.4622286052730079E-005 - 175.07999999999998 -6.4917876155155645E-005 - 175.13999999999999 -6.5206011165251746E-005 - 175.19999999999999 -6.5485824899966667E-005 - 175.25999999999999 -6.5756490703275321E-005 - 175.31999999999999 -6.6017225178838739E-005 - 175.38000000000000 -6.6267298948238784E-005 - 175.44000000000000 -6.6506010104489297E-005 - 175.50000000000000 -6.6732729994722396E-005 - 175.56000000000000 -6.6946862379626090E-005 - 175.62000000000000 -6.7147874606894841E-005 - 175.67999999999998 -6.7335275055630783E-005 - 175.73999999999998 -6.7508636514210580E-005 - 175.79999999999998 -6.7667569152097645E-005 - 175.85999999999999 -6.7811762281592373E-005 - 175.91999999999999 -6.7940950203293412E-005 - 175.97999999999999 -6.8054915767887218E-005 - 176.03999999999999 -6.8153492683377029E-005 - 176.09999999999999 -6.8236567719339003E-005 - 176.16000000000000 -6.8304087311707887E-005 - 176.22000000000000 -6.8356036123963244E-005 - 176.28000000000000 -6.8392432691017068E-005 - 176.34000000000000 -6.8413344266031180E-005 - 176.40000000000001 -6.8418879427616173E-005 - 176.45999999999998 -6.8409169405002601E-005 - 176.51999999999998 -6.8384371899075813E-005 - 176.57999999999998 -6.8344687412611542E-005 - 176.63999999999999 -6.8290338084959806E-005 - 176.69999999999999 -6.8221569088059076E-005 - 176.75999999999999 -6.8138660336457908E-005 - 176.81999999999999 -6.8041928269021553E-005 - 176.88000000000000 -6.7931712521692253E-005 - 176.94000000000000 -6.7808390657843922E-005 - 177.00000000000000 -6.7672376171366583E-005 - 177.06000000000000 -6.7524128538320679E-005 - 177.12000000000000 -6.7364144595126184E-005 - 177.17999999999998 -6.7192962804022208E-005 - 177.23999999999998 -6.7011176278014835E-005 - 177.29999999999998 -6.6819413390791093E-005 - 177.35999999999999 -6.6618350110458940E-005 - 177.41999999999999 -6.6408686811101283E-005 - 177.47999999999999 -6.6191169861481546E-005 - 177.53999999999999 -6.5966574506079196E-005 - 177.59999999999999 -6.5735702623094438E-005 - 177.66000000000000 -6.5499366232930298E-005 - 177.72000000000000 -6.5258400439449385E-005 - 177.78000000000000 -6.5013661211653947E-005 - 177.84000000000000 -6.4765996102707419E-005 - 177.90000000000001 -6.4516276891720791E-005 - 177.95999999999998 -6.4265373475285998E-005 - 178.01999999999998 -6.4014149638712378E-005 - 178.07999999999998 -6.3763496262409780E-005 - 178.13999999999999 -6.3514312269667510E-005 - 178.19999999999999 -6.3267495575767180E-005 - 178.25999999999999 -6.3023953796712085E-005 - 178.31999999999999 -6.2784617435299002E-005 - 178.38000000000000 -6.2550436230113016E-005 - 178.44000000000000 -6.2322368503292297E-005 - 178.50000000000000 -6.2101385304575484E-005 - 178.56000000000000 -6.1888469829170754E-005 - 178.62000000000000 -6.1684614571130329E-005 - 178.67999999999998 -6.1490807750842270E-005 - 178.73999999999998 -6.1308040832939287E-005 - 178.79999999999998 -6.1137289594259469E-005 - 178.85999999999999 -6.0979502018664764E-005 - 178.91999999999999 -6.0835617541542414E-005 - 178.97999999999999 -6.0706526703265615E-005 - 179.03999999999999 -6.0593083315779861E-005 - 179.09999999999999 -6.0496101448293679E-005 - 179.16000000000000 -6.0416330162250681E-005 - 179.22000000000000 -6.0354476730216805E-005 - 179.28000000000000 -6.0311184400500145E-005 - 179.34000000000000 -6.0287034408848472E-005 - 179.40000000000001 -6.0282548911322466E-005 - 179.45999999999998 -6.0298191827075916E-005 - 179.51999999999998 -6.0334371997548591E-005 - 179.57999999999998 -6.0391435383377359E-005 - 179.63999999999999 -6.0469668856891178E-005 - 179.69999999999999 -6.0569307958882607E-005 - 179.75999999999999 -6.0690527525949115E-005 - 179.81999999999999 -6.0833447462314345E-005 - 179.88000000000000 -6.0998131703629327E-005 - 179.94000000000000 -6.1184585390682328E-005 - 180.00000000000000 -6.1392751247968128E-005 - 180.06000000000000 -6.1622508770001173E-005 - 180.12000000000000 -6.1873683688995590E-005 - 180.17999999999998 -6.2146019200887148E-005 - 180.23999999999998 -6.2439203788377059E-005 - 180.29999999999998 -6.2752848518421851E-005 - 180.35999999999999 -6.3086516445166673E-005 - 180.41999999999999 -6.3439676208133582E-005 - 180.47999999999999 -6.3811752674802451E-005 - 180.53999999999999 -6.4202080601332120E-005 - 180.59999999999999 -6.4609965126481654E-005 - 180.66000000000000 -6.5034633117349401E-005 - 180.72000000000000 -6.5475263341631060E-005 - 180.78000000000000 -6.5930985594814327E-005 - 180.84000000000000 -6.6400891563218653E-005 - 180.90000000000001 -6.6884022484658184E-005 - 180.95999999999998 -6.7379399757149780E-005 - 181.01999999999998 -6.7886008057323519E-005 - 181.07999999999998 -6.8402799787010369E-005 - 181.13999999999999 -6.8928718864408146E-005 - 181.19999999999999 -6.9462680035536204E-005 - 181.25999999999999 -7.0003591979812433E-005 - 181.31999999999999 -7.0550344754393606E-005 - 181.38000000000000 -7.1101827148017542E-005 - 181.44000000000000 -7.1656910714914485E-005 - 181.50000000000000 -7.2214470303910897E-005 - 181.56000000000000 -7.2773380579842613E-005 - 181.62000000000000 -7.3332517081368048E-005 - 181.67999999999998 -7.3890762850119457E-005 - 181.73999999999998 -7.4446996085335876E-005 - 181.79999999999998 -7.5000112626613012E-005 - 181.85999999999999 -7.5549023175253550E-005 - 181.91999999999999 -7.6092642031567074E-005 - 181.97999999999999 -7.6629912527754167E-005 - 182.03999999999999 -7.7159777513476926E-005 - 182.09999999999999 -7.7681214709765243E-005 - 182.16000000000000 -7.8193214498768507E-005 - 182.22000000000000 -7.8694800111826785E-005 - 182.28000000000000 -7.9185010344367840E-005 - 182.34000000000000 -7.9662900930519258E-005 - 182.39999999999998 -8.0127566095477014E-005 - 182.45999999999998 -8.0578125739131577E-005 - 182.51999999999998 -8.1013724665544184E-005 - 182.57999999999998 -8.1433541650485875E-005 - 182.63999999999999 -8.1836771292159529E-005 - 182.69999999999999 -8.2222661582340086E-005 - 182.75999999999999 -8.2590482373730105E-005 - 182.81999999999999 -8.2939540092086790E-005 - 182.88000000000000 -8.3269178275696782E-005 - 182.94000000000000 -8.3578782355757671E-005 - 183.00000000000000 -8.3867771584485325E-005 - 183.06000000000000 -8.4135598328261590E-005 - 183.12000000000000 -8.4381763586473461E-005 - 183.17999999999998 -8.4605798729699291E-005 - 183.23999999999998 -8.4807280445955741E-005 - 183.29999999999998 -8.4985813652887213E-005 - 183.35999999999999 -8.5141036494438822E-005 - 183.41999999999999 -8.5272629691572667E-005 - 183.47999999999999 -8.5380290226682882E-005 - 183.53999999999999 -8.5463759176240324E-005 - 183.59999999999999 -8.5522785810347469E-005 - 183.66000000000000 -8.5557156271994010E-005 - 183.72000000000000 -8.5566679265734291E-005 - 183.78000000000000 -8.5551181791939515E-005 - 183.84000000000000 -8.5510523708733294E-005 - 183.89999999999998 -8.5444577904917284E-005 - 183.95999999999998 -8.5353236973194669E-005 - 184.01999999999998 -8.5236437562594795E-005 - 184.07999999999998 -8.5094135470312250E-005 - 184.13999999999999 -8.4926307177252350E-005 - 184.19999999999999 -8.4732970123509006E-005 - 184.25999999999999 -8.4514173689359957E-005 - 184.31999999999999 -8.4269998220190971E-005 - 184.38000000000000 -8.4000558373330654E-005 - 184.44000000000000 -8.3706006173624127E-005 - 184.50000000000000 -8.3386524955914531E-005 - 184.56000000000000 -8.3042338576813784E-005 - 184.62000000000000 -8.2673695956758572E-005 - 184.67999999999998 -8.2280880006336063E-005 - 184.73999999999998 -8.1864205675430776E-005 - 184.79999999999998 -8.1424003691424985E-005 - 184.85999999999999 -8.0960636512978647E-005 - 184.91999999999999 -8.0474482717601069E-005 - 184.97999999999999 -7.9965940882974245E-005 - 185.03999999999999 -7.9435420021273703E-005 - 185.09999999999999 -7.8883351655409392E-005 - 185.16000000000000 -7.8310172295474844E-005 - 185.22000000000000 -7.7716334942962715E-005 - 185.28000000000000 -7.7102309064632375E-005 - 185.34000000000000 -7.6468564907559018E-005 - 185.39999999999998 -7.5815585073380482E-005 - 185.45999999999998 -7.5143873883262623E-005 - 185.51999999999998 -7.4453940767256062E-005 - 185.57999999999998 -7.3746303899438039E-005 - 185.63999999999999 -7.3021486656620592E-005 - 185.69999999999999 -7.2280039149939996E-005 - 185.75999999999999 -7.1522498723019680E-005 - 185.81999999999999 -7.0749420306244178E-005 - 185.88000000000000 -6.9961361527974227E-005 - 185.94000000000000 -6.9158879579604644E-005 - 186.00000000000000 -6.8342536800363712E-005 - 186.06000000000000 -6.7512887922240982E-005 - 186.12000000000000 -6.6670493498884034E-005 - 186.17999999999998 -6.5815903464574630E-005 - 186.23999999999998 -6.4949666877680415E-005 - 186.29999999999998 -6.4072332719645420E-005 - 186.35999999999999 -6.3184444877471894E-005 - 186.41999999999999 -6.2286547011294137E-005 - 186.47999999999999 -6.1379202881233606E-005 - 186.53999999999999 -6.0462964059834741E-005 - 186.59999999999999 -5.9538415284846345E-005 - 186.66000000000000 -5.8606165681256923E-005 - 186.72000000000000 -5.7666832227979652E-005 - 186.78000000000000 -5.6721086985702036E-005 - 186.84000000000000 -5.5769639731775943E-005 - 186.89999999999998 -5.4813227901417998E-005 - 186.95999999999998 -5.3852662427725241E-005 - 187.01999999999998 -5.2888799450340860E-005 - 187.07999999999998 -5.1922554558802839E-005 - 187.13999999999999 -5.0954910738308398E-005 - 187.19999999999999 -4.9986919598969617E-005 - 187.25999999999999 -4.9019694511552942E-005 - 187.31999999999999 -4.8054423931173393E-005 - 187.38000000000000 -4.7092367384548906E-005 - 187.44000000000000 -4.6134857313231618E-005 - 187.50000000000000 -4.5183301551377169E-005 - 187.56000000000000 -4.4239184761119877E-005 - 187.62000000000000 -4.3304069599351887E-005 - 187.67999999999998 -4.2379597074810338E-005 - 187.73999999999998 -4.1467493610219194E-005 - 187.79999999999998 -4.0569567499472956E-005 - 187.85999999999999 -3.9687716316736336E-005 - 187.91999999999999 -3.8823925286396633E-005 - 187.97999999999999 -3.7980264050409026E-005 - 188.03999999999999 -3.7158893279648722E-005 - 188.09999999999999 -3.6362065568833771E-005 - 188.16000000000000 -3.5592114223616026E-005 - 188.22000000000000 -3.4851467981154082E-005 - 188.28000000000000 -3.4142625077732758E-005 - 188.34000000000000 -3.3468174994612651E-005 - 188.39999999999998 -3.2830768680086253E-005 - 188.45999999999998 -3.2233128234659593E-005 - 188.51999999999998 -3.1678036050013171E-005 - 188.57999999999998 -3.1168318517594831E-005 - 188.63999999999999 -3.0706855420499159E-005 - 188.69999999999999 -3.0296555140367333E-005 - 188.75999999999999 -2.9940351064760800E-005 - 188.81999999999999 -2.9641198742866202E-005 - 188.88000000000000 -2.9402064061422529E-005 - 188.94000000000000 -2.9225909324009342E-005 - 189.00000000000000 -2.9115692245781878E-005 - 189.06000000000000 -2.9074356423777435E-005 - 189.12000000000000 -2.9104814382936495E-005 - 189.17999999999998 -2.9209945180654621E-005 - 189.23999999999998 -2.9392581279262428E-005 - 189.29999999999998 -2.9655505149325771E-005 - 189.35999999999999 -3.0001420285238794E-005 - 189.41999999999999 -3.0432960402947026E-005 - 189.47999999999999 -3.0952657972871552E-005 - 189.53999999999999 -3.1562947453810903E-005 - 189.59999999999999 -3.2266134778242141E-005 - 189.66000000000000 -3.3064402321970884E-005 - 189.72000000000000 -3.3959777571508129E-005 - 189.78000000000000 -3.4954135851008886E-005 - 189.84000000000000 -3.6049170719623232E-005 - 189.89999999999998 -3.7246396201541853E-005 - 189.95999999999998 -3.8547129921672218E-005 - 190.01999999999998 -3.9952482370440195E-005 - 190.07999999999998 -4.1463346764954810E-005 - 190.13999999999999 -4.3080394184070036E-005 - 190.19999999999999 -4.4804059669917973E-005 - 190.25999999999999 -4.6634540767729987E-005 - 190.31999999999999 -4.8571786747644076E-005 - 190.38000000000000 -5.0615506086194533E-005 - 190.44000000000000 -5.2765134147386640E-005 - 190.50000000000000 -5.5019845258330542E-005 - 190.56000000000000 -5.7378553016227326E-005 - 190.62000000000000 -5.9839887594727888E-005 - 190.67999999999998 -6.2402197736928438E-005 - 190.73999999999998 -6.5063550222484786E-005 - 190.79999999999998 -6.7821716760127623E-005 - 190.85999999999999 -7.0674166252670344E-005 - 190.91999999999999 -7.3618079969465009E-005 - 190.97999999999999 -7.6650324330459536E-005 - 191.03999999999999 -7.9767472316133209E-005 - 191.09999999999999 -8.2965785548512689E-005 - 191.16000000000000 -8.6241212535354038E-005 - 191.22000000000000 -8.9589412766374153E-005 - 191.28000000000000 -9.3005753739000327E-005 - 191.34000000000000 -9.6485297031854701E-005 - 191.39999999999998 -1.0002282018004982E-004 - 191.45999999999998 -1.0361283442167200E-004 - 191.51999999999998 -1.0724957225565605E-004 - 191.57999999999998 -1.1092702231235009E-004 - 191.63999999999999 -1.1463891313809121E-004 - 191.69999999999999 -1.1837872790614200E-004 - 191.75999999999999 -1.2213973569046041E-004 - 191.81999999999999 -1.2591497455136249E-004 - 191.88000000000000 -1.2969729431072145E-004 - 191.94000000000000 -1.3347934045836846E-004 - 192.00000000000000 -1.3725358753143780E-004 - 192.06000000000000 -1.4101233006322711E-004 - 192.12000000000000 -1.4474772462134359E-004 - 192.17999999999998 -1.4845176043458183E-004 - 192.23999999999998 -1.5211633850783916E-004 - 192.29999999999998 -1.5573321430231965E-004 - 192.35999999999999 -1.5929408192312964E-004 - 192.41999999999999 -1.6279054934023631E-004 - 192.47999999999999 -1.6621418013355743E-004 - 192.53999999999999 -1.6955651739110296E-004 - 192.59999999999999 -1.7280907994469784E-004 - 192.66000000000000 -1.7596342862671521E-004 - 192.72000000000000 -1.7901113737852283E-004 - 192.78000000000000 -1.8194385821156066E-004 - 192.84000000000000 -1.8475330669867935E-004 - 192.89999999999998 -1.8743134458192951E-004 - 192.95999999999998 -1.8996994394696037E-004 - 193.01999999999998 -1.9236121121807252E-004 - 193.07999999999998 -1.9459747100035324E-004 - 193.13999999999999 -1.9667120614887321E-004 - 193.19999999999999 -1.9857514643047022E-004 - 193.25999999999999 -2.0030227181703673E-004 - 193.31999999999999 -2.0184578856757276E-004 - 193.38000000000000 -2.0319920645825608E-004 - 193.44000000000000 -2.0435636059486551E-004 - 193.50000000000000 -2.0531136922874134E-004 - 193.56000000000000 -2.0605871525411631E-004 - 193.62000000000000 -2.0659323650499655E-004 - 193.67999999999998 -2.0691015023080689E-004 - 193.73999999999998 -2.0700510192708606E-004 - 193.79999999999998 -2.0687409132282141E-004 - 193.85999999999999 -2.0651359856475865E-004 - 193.91999999999999 -2.0592051783527255E-004 - 193.97999999999999 -2.0509219044354958E-004 - 194.03999999999999 -2.0402643818067626E-004 - 194.09999999999999 -2.0272153653875906E-004 - 194.16000000000000 -2.0117621513261714E-004 - 194.22000000000000 -1.9938971896852795E-004 - 194.28000000000000 -1.9736173712713755E-004 - 194.34000000000000 -1.9509247606324328E-004 - 194.39999999999998 -1.9258256886935115E-004 - 194.45999999999998 -1.8983318506522425E-004 - 194.51999999999998 -1.8684595093688394E-004 - 194.57999999999998 -1.8362295360193319E-004 - 194.63999999999999 -1.8016677568602561E-004 - 194.69999999999999 -1.7648046955591665E-004 - 194.75999999999999 -1.7256755194406756E-004 - 194.81999999999999 -1.6843200179822654E-004 - 194.88000000000000 -1.6407827300730026E-004 - 194.94000000000000 -1.5951124693011428E-004 - 195.00000000000000 -1.5473625501099303E-004 - 195.06000000000000 -1.4975904321409361E-004 - 195.12000000000000 -1.4458578474747926E-004 - 195.17999999999998 -1.3922305820252351E-004 - 195.23999999999998 -1.3367779794315053E-004 - 195.29999999999998 -1.2795732399929990E-004 - 195.35999999999999 -1.2206927006809788E-004 - 195.41999999999999 -1.1602157956586450E-004 - 195.47999999999999 -1.0982248594772678E-004 - 195.53999999999999 -1.0348046137713858E-004 - 195.59999999999999 -9.7004229751160081E-005 - 195.66000000000000 -9.0402683286292787E-005 - 195.72000000000000 -8.3684904824047726E-005 - 195.78000000000000 -7.6860110666410802E-005 - 195.84000000000000 -6.9937643093946481E-005 - 195.89999999999998 -6.2926929641764556E-005 - 195.95999999999998 -5.5837475460547779E-005 - 196.01999999999998 -4.8678826070414374E-005 - 196.07999999999998 -4.1460555085406072E-005 - 196.13999999999999 -3.4192246212955135E-005 - 196.19999999999999 -2.6883471432077468E-005 - 196.25999999999999 -1.9543758940283000E-005 - 196.31999999999999 -1.2182595492997963E-005 - 196.38000000000000 -4.8093878846456498E-006 - 196.44000000000000 2.5665535686575562E-006 - 196.50000000000000 9.9360343063636524E-006 - 196.56000000000000 1.7289999692284652E-005 - 196.62000000000000 2.4619556176988358E-005 - 196.67999999999998 3.1916000061846210E-005 - 196.73999999999998 3.9170839726959320E-005 - 196.79999999999998 4.6375814004067156E-005 - 196.85999999999999 5.3522926362829707E-005 - 196.91999999999999 6.0604464717681089E-005 - 196.97999999999999 6.7613006424496953E-005 - 197.03999999999999 7.4541451144661319E-005 - 197.09999999999999 8.1383046611989987E-005 - 197.16000000000000 8.8131393992352985E-005 - 197.22000000000000 9.4780444479700777E-005 - 197.28000000000000 1.0132456988668159E-004 - 197.34000000000000 1.0775850768397673E-004 - 197.39999999999998 1.1407740116107059E-004 - 197.45999999999998 1.2027678461869110E-004 - 197.51999999999998 1.2635262958420721E-004 - 197.57999999999998 1.3230130297376148E-004 - 197.63999999999999 1.3811960030807584E-004 - 197.69999999999999 1.4380476122507918E-004 - 197.75999999999999 1.4935441205974159E-004 - 197.81999999999999 1.5476662836212321E-004 - 197.88000000000000 1.6003991058847998E-004 - 197.94000000000000 1.6517317538267928E-004 - 198.00000000000000 1.7016577977603661E-004 - 198.06000000000000 1.7501749793934711E-004 - 198.12000000000000 1.7972854082729716E-004 - 198.17999999999998 1.8429953050168429E-004 - 198.23999999999998 1.8873147993486621E-004 - 198.29999999999998 1.9302587637016095E-004 - 198.35999999999999 1.9718455427090341E-004 - 198.41999999999999 2.0120977345098061E-004 - 198.47999999999999 2.0510417877339179E-004 - 198.53999999999999 2.0887080339992929E-004 - 198.59999999999999 2.1251303467748108E-004 - 198.66000000000000 2.1603464081729014E-004 - 198.72000000000000 2.1943971819954870E-004 - 198.78000000000000 2.2273268608754161E-004 - 198.84000000000000 2.2591832137479646E-004 - 198.89999999999998 2.2900166614311061E-004 - 198.95999999999998 2.3198808418659110E-004 - 199.01999999999998 2.3488316494810259E-004 - 199.07999999999998 2.3769281303181382E-004 - 199.13999999999999 2.4042310149147725E-004 - 199.19999999999999 2.4308040625567863E-004 - 199.25999999999999 2.4567121034549416E-004 - 199.31999999999999 2.4820223619025512E-004 - 199.38000000000000 2.5068029662746340E-004 - 199.44000000000000 2.5311238790584037E-004 - 199.50000000000000 2.5550561421391036E-004 - 199.56000000000000 2.5786718209951830E-004 - 199.62000000000000 2.6020431975729100E-004 - 199.67999999999998 2.6252433095539599E-004 - 199.73999999999998 2.6483455681126266E-004 - 199.79999999999998 2.6714231102365475E-004 - 199.85999999999999 2.6945495673737327E-004 - 199.91999999999999 2.7177971673415173E-004 - 199.97999999999999 2.7412388696298920E-004 - 200.03999999999999 2.7649461144821743E-004 - 200.09999999999999 2.7889900317135206E-004 - 200.16000000000000 2.8134404199442990E-004 - 200.22000000000000 2.8383658190471358E-004 - 200.28000000000000 2.8638340068820253E-004 - 200.34000000000000 2.8899101549123552E-004 - 200.39999999999998 2.9166585854463077E-004 - 200.45999999999998 2.9441414659162507E-004 - 200.51999999999998 2.9724188068519823E-004 - 200.57999999999998 3.0015479251934687E-004 - 200.63999999999999 3.0315844959502173E-004 - 200.69999999999999 3.0625808782313755E-004 - 200.75999999999999 3.0945866854616860E-004 - 200.81999999999999 3.1276489843810802E-004 - 200.88000000000000 3.1618103188815001E-004 - 200.94000000000000 3.1971112674805717E-004 - 201.00000000000000 3.2335881988242279E-004 - 201.06000000000000 3.2712737141150537E-004 - 201.12000000000000 3.3101965609680535E-004 - 201.17999999999998 3.3503822790027738E-004 - 201.23999999999998 3.3918517885094294E-004 - 201.29999999999998 3.4346224184606693E-004 - 201.35999999999999 3.4787069700923648E-004 - 201.41999999999999 3.5241147700607495E-004 - 201.47999999999999 3.5708509638964452E-004 - 201.53999999999999 3.6189161731412032E-004 - 201.59999999999999 3.6683067928147380E-004 - 201.66000000000000 3.7190154631513728E-004 - 201.72000000000000 3.7710305725372574E-004 - 201.78000000000000 3.8243358988548595E-004 - 201.84000000000000 3.8789116971690510E-004 - 201.89999999999998 3.9347335621828022E-004 - 201.95999999999998 3.9917726235488057E-004 - 202.01999999999998 4.0499958013268610E-004 - 202.07999999999998 4.1093656549440189E-004 - 202.13999999999999 4.1698406998768266E-004 - 202.19999999999999 4.2313749891974360E-004 - 202.25999999999999 4.2939181649282821E-004 - 202.31999999999999 4.3574154371919197E-004 - 202.38000000000000 4.4218081534623310E-004 - 202.44000000000000 4.4870329259900888E-004 - 202.50000000000000 4.5530229209021463E-004 - 202.56000000000000 4.6197062484012091E-004 - 202.62000000000000 4.6870075867967920E-004 - 202.67999999999998 4.7548484199134240E-004 - 202.73999999999998 4.8231453416983734E-004 - 202.79999999999998 4.8918119546553101E-004 - 202.85999999999999 4.9607585163484707E-004 - 202.91999999999999 5.0298915408731411E-004 - 202.97999999999999 5.0991144419427386E-004 - 203.03999999999999 5.1683277021456644E-004 - 203.09999999999999 5.2374296408985916E-004 - 203.16000000000000 5.3063152236702284E-004 - 203.22000000000000 5.3748768311935190E-004 - 203.28000000000000 5.4430038717180737E-004 - 203.34000000000000 5.5105849413260495E-004 - 203.39999999999998 5.5775060657923582E-004 - 203.45999999999998 5.6436512818433147E-004 - 203.51999999999998 5.7089025688098058E-004 - 203.57999999999998 5.7731405085779204E-004 - 203.63999999999999 5.8362451239642350E-004 - 203.69999999999999 5.8980954827463159E-004 - 203.75999999999999 5.9585698772140051E-004 - 203.81999999999999 6.0175452228776200E-004 - 203.88000000000000 6.0748986268638122E-004 - 203.94000000000000 6.1305081155282881E-004 - 204.00000000000000 6.1842511718069725E-004 - 204.06000000000000 6.2360060997685102E-004 - 204.12000000000000 6.2856527802201479E-004 - 204.17999999999998 6.3330720301789985E-004 - 204.23999999999998 6.3781463780734253E-004 - 204.29999999999998 6.4207602466637712E-004 - 204.35999999999999 6.4607993446459721E-004 - 204.41999999999999 6.4981533711081386E-004 - 204.47999999999999 6.5327138612664539E-004 - 204.53999999999999 6.5643761365444622E-004 - 204.59999999999999 6.5930380449749561E-004 - 204.66000000000000 6.6186011336850036E-004 - 204.72000000000000 6.6409711412321174E-004 - 204.78000000000000 6.6600587061399854E-004 - 204.84000000000000 6.6757776061080300E-004 - 204.89999999999998 6.6880467001021739E-004 - 204.95999999999998 6.6967904114389977E-004 - 205.01999999999998 6.7019379802148366E-004 - 205.07999999999998 6.7034235115420130E-004 - 205.13999999999999 6.7011875833333486E-004 - 205.19999999999999 6.6951763763173138E-004 - 205.25999999999999 6.6853420951727292E-004 - 205.31999999999999 6.6716422335758626E-004 - 205.38000000000000 6.6540428999104732E-004 - 205.44000000000000 6.6325146569860762E-004 - 205.50000000000000 6.6070360149896165E-004 - 205.56000000000000 6.5775912654295727E-004 - 205.62000000000000 6.5441730309850758E-004 - 205.67999999999998 6.5067801276426731E-004 - 205.73999999999998 6.4654184629225420E-004 - 205.79999999999998 6.4201015970794667E-004 - 205.85999999999999 6.3708499024002041E-004 - 205.91999999999999 6.3176906295372905E-004 - 205.97999999999999 6.2606589099280089E-004 - 206.03999999999999 6.1997958804390718E-004 - 206.09999999999999 6.1351505326284772E-004 - 206.16000000000000 6.0667781029979419E-004 - 206.22000000000000 5.9947418436225529E-004 - 206.28000000000000 5.9191093529437793E-004 - 206.34000000000000 5.8399571307820349E-004 - 206.39999999999998 5.7573667334420025E-004 - 206.45999999999998 5.6714265864640833E-004 - 206.51999999999998 5.5822309220996975E-004 - 206.57999999999998 5.4898784239624295E-004 - 206.63999999999999 5.3944744003175471E-004 - 206.69999999999999 5.2961282820358649E-004 - 206.75999999999999 5.1949556594607497E-004 - 206.81999999999999 5.0910757202056965E-004 - 206.88000000000000 4.9846120637506348E-004 - 206.94000000000000 4.8756923702398305E-004 - 207.00000000000000 4.7644470650336804E-004 - 207.06000000000000 4.6510104635443206E-004 - 207.12000000000000 4.5355200092636318E-004 - 207.17999999999998 4.4181149320112091E-004 - 207.23999999999998 4.2989372700769237E-004 - 207.29999999999998 4.1781312352111614E-004 - 207.35999999999999 4.0558417804293945E-004 - 207.41999999999999 3.9322162682279752E-004 - 207.47999999999999 3.8074020013839166E-004 - 207.53999999999999 3.6815477410079403E-004 - 207.59999999999999 3.5548024327596088E-004 - 207.66000000000000 3.4273147221003972E-004 - 207.72000000000000 3.2992332938335049E-004 - 207.78000000000000 3.1707061438094708E-004 - 207.84000000000000 3.0418806589538208E-004 - 207.89999999999998 2.9129022337809335E-004 - 207.95999999999998 2.7839152543014157E-004 - 208.01999999999998 2.6550622700279356E-004 - 208.07999999999998 2.5264834973483724E-004 - 208.13999999999999 2.3983163901782924E-004 - 208.19999999999999 2.2706960338435481E-004 - 208.25999999999999 2.1437539565512964E-004 - 208.31999999999999 2.0176186734480113E-004 - 208.38000000000000 1.8924152978119899E-004 - 208.44000000000000 1.7682647972540365E-004 - 208.50000000000000 1.6452846270556196E-004 - 208.56000000000000 1.5235876452705110E-004 - 208.62000000000000 1.4032828751913277E-004 - 208.68000000000001 1.2844747757035746E-004 - 208.74000000000001 1.1672633684898824E-004 - 208.80000000000001 1.0517440808095170E-004 - 208.86000000000001 9.3800777946028820E-005 - 208.92000000000002 8.2614058812664176E-005 - 208.98000000000002 7.1622399238879803E-005 - 209.03999999999996 6.0833446592212543E-005 - 209.09999999999997 5.0254390065943667E-005 - 209.15999999999997 3.9891902108752107E-005 - 209.21999999999997 2.9752177873988172E-005 - 209.27999999999997 1.9840909634264654E-005 - 209.33999999999997 1.0163296741024169E-005 - 209.39999999999998 7.2403883214365553E-007 - 209.45999999999998 -8.4726653869384691E-006 - 209.51999999999998 -1.7423107163560150E-005 - 209.57999999999998 -2.6124076120093833E-005 - 209.63999999999999 -3.4572847087395495E-005 - 209.69999999999999 -4.2767178809848051E-005 - 209.75999999999999 -5.0705292107308417E-005 - 209.81999999999999 -5.8385881203475441E-005 - 209.88000000000000 -6.5808084660090289E-005 - 209.94000000000000 -7.2971477368488952E-005 - 210.00000000000000 -7.9876060934364277E-005 - 210.06000000000000 -8.6522253951758612E-005 - 210.12000000000000 -9.2910865575236774E-005 - 210.18000000000001 -9.9043070601754132E-005 - 210.24000000000001 -1.0492043119378762E-004 - 210.30000000000001 -1.1054484414032671E-004 - 210.36000000000001 -1.1591855333712618E-004 - 210.42000000000002 -1.2104409642457766E-004 - 210.48000000000002 -1.2592434827372385E-004 - 210.53999999999996 -1.3056243318333564E-004 - 210.59999999999997 -1.3496176844929509E-004 - 210.65999999999997 -1.3912600024905549E-004 - 210.71999999999997 -1.4305906311618872E-004 - 210.77999999999997 -1.4676503013942888E-004 - 210.83999999999997 -1.5024825057708300E-004 - 210.89999999999998 -1.5351319669523747E-004 - 210.95999999999998 -1.5656453787572542E-004 - 211.01999999999998 -1.5940710008777029E-004 - 211.07999999999998 -1.6204579846631166E-004 - 211.13999999999999 -1.6448571122147423E-004 - 211.19999999999999 -1.6673197558044844E-004 - 211.25999999999999 -1.6878985039115070E-004 - 211.31999999999999 -1.7066462967480373E-004 - 211.38000000000000 -1.7236170991802627E-004 - 211.44000000000000 -1.7388648642506239E-004 - 211.50000000000000 -1.7524442327234306E-004 - 211.56000000000000 -1.7644100012353736E-004 - 211.62000000000000 -1.7748172647649471E-004 - 211.68000000000001 -1.7837210287841322E-004 - 211.74000000000001 -1.7911763710506886E-004 - 211.80000000000001 -1.7972381781892493E-004 - 211.86000000000001 -1.8019609146979588E-004 - 211.92000000000002 -1.8053989244866056E-004 - 211.98000000000002 -1.8076060055564175E-004 - 212.03999999999996 -1.8086351545079901E-004 - 212.09999999999997 -1.8085386099136737E-004 - 212.15999999999997 -1.8073677238986563E-004 - 212.21999999999997 -1.8051730059768313E-004 - 212.27999999999997 -1.8020038203721552E-004 - 212.33999999999997 -1.7979081618200735E-004 - 212.39999999999998 -1.7929330417870045E-004 - 212.45999999999998 -1.7871240071224020E-004 - 212.51999999999998 -1.7805252038826953E-004 - 212.57999999999998 -1.7731795821213230E-004 - 212.63999999999999 -1.7651287048920790E-004 - 212.69999999999999 -1.7564128856560537E-004 - 212.75999999999999 -1.7470711637437543E-004 - 212.81999999999999 -1.7371412600856472E-004 - 212.88000000000000 -1.7266598778900580E-004 - 212.94000000000000 -1.7156626365888883E-004 - 213.00000000000000 -1.7041839292829855E-004 - 213.06000000000000 -1.6922570049886292E-004 - 213.12000000000000 -1.6799144172346777E-004 - 213.18000000000001 -1.6671873568353132E-004 - 213.24000000000001 -1.6541062335553617E-004 - 213.30000000000001 -1.6407004103144690E-004 - 213.36000000000001 -1.6269979636782857E-004 - 213.42000000000002 -1.6130261206376750E-004 - 213.48000000000002 -1.5988108984432529E-004 - 213.53999999999996 -1.5843769111869254E-004 - 213.59999999999997 -1.5697479858601670E-004 - 213.65999999999997 -1.5549464446808431E-004 - 213.71999999999997 -1.5399935184649014E-004 - 213.77999999999997 -1.5249090944083785E-004 - 213.83999999999997 -1.5097119941583271E-004 - 213.89999999999998 -1.4944199771597336E-004 - 213.95999999999998 -1.4790494448149551E-004 - 214.01999999999998 -1.4636157276213063E-004 - 214.07999999999998 -1.4481337854619223E-004 - 214.13999999999999 -1.4326169555049930E-004 - 214.19999999999999 -1.4170778980852032E-004 - 214.25999999999999 -1.4015287204752590E-004 - 214.31999999999999 -1.3859804947068507E-004 - 214.38000000000000 -1.3704436176904607E-004 - 214.44000000000000 -1.3549279930023103E-004 - 214.50000000000000 -1.3394426031127242E-004 - 214.56000000000000 -1.3239959993295794E-004 - 214.62000000000000 -1.3085958746884404E-004 - 214.68000000000001 -1.2932495699939899E-004 - 214.74000000000001 -1.2779636105339780E-004 - 214.80000000000001 -1.2627440719185302E-004 - 214.86000000000001 -1.2475962965483554E-004 - 214.92000000000002 -1.2325253020703823E-004 - 214.98000000000002 -1.2175353916527857E-004 - 215.03999999999996 -1.2026302126126416E-004 - 215.09999999999997 -1.1878130421935393E-004 - 215.15999999999997 -1.1730867059193225E-004 - 215.21999999999997 -1.1584534980305147E-004 - 215.27999999999997 -1.1439153672486446E-004 - 215.33999999999997 -1.1294737127693946E-004 - 215.39999999999998 -1.1151297437127291E-004 - 215.45999999999998 -1.1008842564808655E-004 - 215.51999999999998 -1.0867376235812385E-004 - 215.57999999999998 -1.0726899396409871E-004 - 215.63999999999999 -1.0587410167713624E-004 - 215.69999999999999 -1.0448903606298135E-004 - 215.75999999999999 -1.0311372513391365E-004 - 215.81999999999999 -1.0174807231564508E-004 - 215.88000000000000 -1.0039195750850491E-004 - 215.94000000000000 -9.9045251380466964E-005 - 216.00000000000000 -9.7707811661538983E-005 - 216.06000000000000 -9.6379486662551451E-005 - 216.12000000000000 -9.5060122854099440E-005 - 216.18000000000001 -9.3749576392638344E-005 - 216.24000000000001 -9.2447712828632836E-005 - 216.30000000000001 -9.1154411433895567E-005 - 216.36000000000001 -8.9869575061801295E-005 - 216.42000000000002 -8.8593129771208303E-005 - 216.48000000000002 -8.7325021559204652E-005 - 216.53999999999996 -8.6065233759046256E-005 - 216.59999999999997 -8.4813777964606258E-005 - 216.65999999999997 -8.3570675326966292E-005 - 216.71999999999997 -8.2335981579579679E-005 - 216.77999999999997 -8.1109766677657448E-005 - 216.83999999999997 -7.9892126236057252E-005 - 216.89999999999998 -7.8683149530186863E-005 - 216.95999999999998 -7.7482946771618584E-005 - 217.01999999999998 -7.6291628746666851E-005 - 217.07999999999998 -7.5109316716162508E-005 - 217.13999999999999 -7.3936123485767162E-005 - 217.19999999999999 -7.2772176708142477E-005 - 217.25999999999999 -7.1617590457905391E-005 - 217.31999999999999 -7.0472506450347939E-005 - 217.38000000000000 -6.9337059882253077E-005 - 217.44000000000000 -6.8211390864066104E-005 - 217.50000000000000 -6.7095680309422492E-005 - 217.56000000000000 -6.5990103840017541E-005 - 217.62000000000000 -6.4894862417987263E-005 - 217.68000000000001 -6.3810177061114659E-005 - 217.74000000000001 -6.2736294154648424E-005 - 217.80000000000001 -6.1673461579275375E-005 - 217.86000000000001 -6.0621960609428016E-005 - 217.92000000000002 -5.9582067931983057E-005 - 217.98000000000002 -5.8554066676243691E-005 - 218.03999999999996 -5.7538246163526646E-005 - 218.09999999999997 -5.6534881811443721E-005 - 218.15999999999997 -5.5544235479695607E-005 - 218.21999999999997 -5.4566547933160770E-005 - 218.27999999999997 -5.3602044002674598E-005 - 218.33999999999997 -5.2650913619536794E-005 - 218.39999999999998 -5.1713322203341899E-005 - 218.45999999999998 -5.0789405447897388E-005 - 218.51999999999998 -4.9879269793952026E-005 - 218.57999999999998 -4.8982993868016999E-005 - 218.63999999999999 -4.8100627330833836E-005 - 218.69999999999999 -4.7232202633850350E-005 - 218.75999999999999 -4.6377732891489860E-005 - 218.81999999999999 -4.5537204823010780E-005 - 218.88000000000000 -4.4710599115155426E-005 - 218.94000000000000 -4.3897878624862539E-005 - 219.00000000000000 -4.3098990960897568E-005 - 219.06000000000000 -4.2313877392829363E-005 - 219.12000000000000 -4.1542460806555670E-005 - 219.18000000000001 -4.0784655690939005E-005 - 219.24000000000001 -4.0040354415382841E-005 - 219.30000000000001 -3.9309447202080393E-005 - 219.36000000000001 -3.8591799496616341E-005 - 219.42000000000002 -3.7887269665110674E-005 - 219.48000000000002 -3.7195696711081269E-005 - 219.53999999999996 -3.6516908433995929E-005 - 219.59999999999997 -3.5850731244407993E-005 - 219.65999999999997 -3.5196976723418920E-005 - 219.71999999999997 -3.4555458640623673E-005 - 219.77999999999997 -3.3925992547855501E-005 - 219.83999999999997 -3.3308396630866666E-005 - 219.89999999999998 -3.2702509536476718E-005 - 219.95999999999998 -3.2108167659457909E-005 - 220.01999999999998 -3.1525233523924123E-005 - 220.07999999999998 -3.0953579204521726E-005 - 220.13999999999999 -3.0393093103696107E-005 - 220.19999999999999 -2.9843683669147216E-005 - 220.25999999999999 -2.9305266241351172E-005 - 220.31999999999999 -2.8777770220112948E-005 - 220.38000000000000 -2.8261135423576385E-005 - 220.44000000000000 -2.7755302225023461E-005 - 220.50000000000000 -2.7260215097769247E-005 - 220.56000000000000 -2.6775818416494338E-005 - 220.62000000000000 -2.6302051572922172E-005 - 220.68000000000001 -2.5838851709851052E-005 - 220.74000000000001 -2.5386153726442570E-005 - 220.80000000000001 -2.4943882713731711E-005 - 220.86000000000001 -2.4511962599559208E-005 - 220.92000000000002 -2.4090317170273245E-005 - 220.98000000000002 -2.3678865598662872E-005 - 221.03999999999996 -2.3277533600296291E-005 - 221.09999999999997 -2.2886245029762533E-005 - 221.15999999999997 -2.2504925622427813E-005 - 221.21999999999997 -2.2133508910119872E-005 - 221.27999999999997 -2.1771927972270859E-005 - 221.33999999999997 -2.1420120893875461E-005 - 221.39999999999998 -2.1078021795599112E-005 - 221.45999999999998 -2.0745560648825341E-005 - 221.51999999999998 -2.0422666554538664E-005 - 221.57999999999998 -2.0109252856611209E-005 - 221.63999999999999 -1.9805221382501118E-005 - 221.69999999999999 -1.9510459392811164E-005 - 221.75999999999999 -1.9224833114149707E-005 - 221.81999999999999 -1.8948188678849737E-005 - 221.88000000000000 -1.8680351912678706E-005 - 221.94000000000000 -1.8421124717099175E-005 - 222.00000000000000 -1.8170289419718914E-005 - 222.06000000000000 -1.7927610684454102E-005 - 222.12000000000000 -1.7692830194531582E-005 - 222.18000000000001 -1.7465677842814393E-005 - 222.24000000000001 -1.7245871408503547E-005 - 222.30000000000001 -1.7033118527359847E-005 - 222.36000000000001 -1.6827117107402273E-005 - 222.42000000000002 -1.6627561305697301E-005 - 222.48000000000002 -1.6434138113970986E-005 - 222.53999999999996 -1.6246536037535811E-005 - 222.59999999999997 -1.6064443965724234E-005 - 222.65999999999997 -1.5887547026221818E-005 - 222.71999999999997 -1.5715532830150933E-005 - 222.77999999999997 -1.5548092358900490E-005 - 222.83999999999997 -1.5384917186744018E-005 - 222.89999999999998 -1.5225703383969333E-005 - 222.95999999999998 -1.5070153983757860E-005 - 223.01999999999998 -1.4917981045978227E-005 - 223.07999999999998 -1.4768902644320000E-005 - 223.13999999999999 -1.4622652259606806E-005 - 223.19999999999999 -1.4478976538180622E-005 - 223.25999999999999 -1.4337640664425994E-005 - 223.31999999999999 -1.4198426623854750E-005 - 223.38000000000000 -1.4061136646828409E-005 - 223.44000000000000 -1.3925597422427648E-005 - 223.50000000000000 -1.3791654321068321E-005 - 223.56000000000000 -1.3659175405630769E-005 - 223.62000000000000 -1.3528047988251459E-005 - 223.68000000000001 -1.3398179610836725E-005 - 223.74000000000001 -1.3269491770428674E-005 - 223.80000000000001 -1.3141922184041352E-005 - 223.86000000000001 -1.3015417511948347E-005 - 223.92000000000002 -1.2889934798079792E-005 - 223.98000000000002 -1.2765436363297320E-005 - 224.03999999999996 -1.2641890328269180E-005 - 224.09999999999997 -1.2519267438988862E-005 - 224.15999999999997 -1.2397543718763284E-005 - 224.21999999999997 -1.2276696848331220E-005 - 224.27999999999997 -1.2156710241443425E-005 - 224.33999999999997 -1.2037570865281435E-005 - 224.39999999999998 -1.1919273948501683E-005 - 224.45999999999998 -1.1801822612398778E-005 - 224.51999999999998 -1.1685227568056913E-005 - 224.57999999999998 -1.1569509870341750E-005 - 224.63999999999999 -1.1454700098019814E-005 - 224.69999999999999 -1.1340835027524457E-005 - 224.75999999999999 -1.1227958705938470E-005 - 224.81999999999999 -1.1116118972628866E-005 - 224.88000000000000 -1.1005364250898191E-005 - 224.94000000000000 -1.0895738454656217E-005 - 225.00000000000000 -1.0787280307588020E-005 - 225.06000000000000 -1.0680015085795898E-005 - 225.12000000000000 -1.0573954214558675E-005 - 225.18000000000001 -1.0469090488304838E-005 - 225.24000000000001 -1.0365395107668159E-005 - 225.30000000000001 -1.0262817762402332E-005 - 225.36000000000001 -1.0161286417157415E-005 - 225.42000000000002 -1.0060705171830873E-005 - 225.48000000000002 -9.9609584074056191E-006 - 225.53999999999996 -9.8619138252318863E-006 - 225.59999999999997 -9.7634255956175041E-006 - 225.65999999999997 -9.6653376474175240E-006 - 225.71999999999997 -9.5674901465845695E-006 - 225.77999999999997 -9.4697206217360931E-006 - 225.83999999999997 -9.3718722438099035E-006 - 225.89999999999998 -9.2737968111952288E-006 - 225.95999999999998 -9.1753555729915838E-006 - 226.01999999999998 -9.0764271929081510E-006 - 226.07999999999998 -8.9769061716743170E-006 - 226.13999999999999 -8.8767049004228012E-006 - 226.19999999999999 -8.7757567909689270E-006 - 226.25999999999999 -8.6740124297748221E-006 - 226.31999999999999 -8.5714452875635355E-006 - 226.38000000000000 -8.4680468872031003E-006 - 226.44000000000000 -8.3638263748429558E-006 - 226.50000000000000 -8.2588115622140967E-006 - 226.56000000000000 -8.1530494926320264E-006 - 226.62000000000000 -8.0466028759450013E-006 - 226.68000000000001 -7.9395496110217853E-006 - 226.74000000000001 -7.8319856846365375E-006 - 226.80000000000001 -7.7240214834572006E-006 - 226.86000000000001 -7.6157820326634454E-006 - 226.92000000000002 -7.5074085800628394E-006 - 226.98000000000002 -7.3990562352053307E-006 - 227.03999999999996 -7.2908934581773167E-006 - 227.09999999999997 -7.1831023841821926E-006 - 227.15999999999997 -7.0758768114220453E-006 - 227.21999999999997 -6.9694209694196378E-006 - 227.27999999999997 -6.8639487873098807E-006 - 227.33999999999997 -6.7596821169116342E-006 - 227.39999999999998 -6.6568496311977581E-006 - 227.45999999999998 -6.5556845820559660E-006 - 227.51999999999998 -6.4564245796693941E-006 - 227.57999999999998 -6.3593089153165452E-006 - 227.63999999999999 -6.2645782008887813E-006 - 227.69999999999999 -6.1724731542709790E-006 - 227.75999999999999 -6.0832329257160075E-006 - 227.81999999999999 -5.9970958257218348E-006 - 227.88000000000000 -5.9142960517420005E-006 - 227.94000000000000 -5.8350640324009111E-006 - 228.00000000000000 -5.7596246768389048E-006 - 228.06000000000000 -5.6881943613001794E-006 - 228.12000000000000 -5.6209810393016907E-006 - 228.18000000000001 -5.5581802294524526E-006 - 228.24000000000001 -5.4999737727830896E-006 - 228.30000000000001 -5.4465249185611918E-006 - 228.36000000000001 -5.3979779810178083E-006 - 228.42000000000002 -5.3544524691866153E-006 - 228.48000000000002 -5.3160417434569301E-006 - 228.53999999999996 -5.2828105851524560E-006 - 228.59999999999997 -5.2547917760559142E-006 - 228.65999999999997 -5.2319853222939433E-006 - 228.71999999999997 -5.2143567870450686E-006 - 228.77999999999997 -5.2018384899097168E-006 - 228.83999999999997 -5.1943299501642380E-006 - 228.89999999999998 -5.1916982943572316E-006 - 228.95999999999998 -5.1937833099003355E-006 - 229.01999999999998 -5.2003994255668498E-006 - 229.07999999999998 -5.2113402674109296E-006 - 229.13999999999999 -5.2263837000677112E-006 - 229.19999999999999 -5.2452949279857824E-006 - 229.25999999999999 -5.2678340611978114E-006 - 229.31999999999999 -5.2937590445065292E-006 - 229.38000000000000 -5.3228296347430400E-006 - 229.44000000000000 -5.3548126881385130E-006 - 229.50000000000000 -5.3894853066052293E-006 - 229.56000000000000 -5.4266360915687983E-006 - 229.62000000000000 -5.4660687239370516E-006 - 229.68000000000001 -5.5076005379166304E-006 - 229.74000000000001 -5.5510655463943839E-006 - 229.80000000000001 -5.5963122064603223E-006 - 229.86000000000001 -5.6432041025979446E-006 - 229.92000000000002 -5.6916181328782393E-006 - 229.97999999999996 -5.7414437219645802E-006 - 230.03999999999996 -5.7925826082309772E-006 - 230.09999999999997 -5.8449466497372294E-006 - 230.15999999999997 -5.8984585181257412E-006 - 230.21999999999997 -5.9530507134744503E-006 - 230.27999999999997 -6.0086659138385322E-006 - 230.33999999999997 -6.0652576632525332E-006 - 230.39999999999998 -6.1227919691558439E-006 - 230.45999999999998 -6.1812471420477298E-006 - 230.51999999999998 -6.2406160918833394E-006 - 230.57999999999998 -6.3009072599388347E-006 - 230.63999999999999 -6.3621478173148334E-006 - 230.69999999999999 -6.4243810675820072E-006 - 230.75999999999999 -6.4876704210948388E-006 - 230.81999999999999 -6.5520976923878005E-006 - 230.88000000000000 -6.6177634623374844E-006 - 230.94000000000000 -6.6847854489055008E-006 - 231.00000000000000 -6.7532978441914409E-006 - 231.06000000000000 -6.8234476464129565E-006 - 231.12000000000000 -6.8953927576363453E-006 - 231.18000000000001 -6.9692975035085038E-006 - 231.24000000000001 -7.0453296282674215E-006 - 231.30000000000001 -7.1236554781804415E-006 - 231.36000000000001 -7.2044369746283321E-006 - 231.42000000000002 -7.2878266894896575E-006 - 231.47999999999996 -7.3739634316428794E-006 - 231.53999999999996 -7.4629701397712766E-006 - 231.59999999999997 -7.5549493992692553E-006 - 231.65999999999997 -7.6499819838570161E-006 - 231.71999999999997 -7.7481261861020669E-006 - 231.77999999999997 -7.8494156330452409E-006 - 231.83999999999997 -7.9538578585564316E-006 - 231.89999999999998 -8.0614386219882747E-006 - 231.95999999999998 -8.1721203670378030E-006 - 232.01999999999998 -8.2858457994180584E-006 - 232.07999999999998 -8.4025389710153690E-006 - 232.13999999999999 -8.5221092716662350E-006 - 232.19999999999999 -8.6444566586901007E-006 - 232.25999999999999 -8.7694716595976718E-006 - 232.31999999999999 -8.8970394217209278E-006 - 232.38000000000000 -9.0270464644350794E-006 - 232.44000000000000 -9.1593811869680817E-006 - 232.50000000000000 -9.2939349792422396E-006 - 232.56000000000000 -9.4306096117295768E-006 - 232.62000000000000 -9.5693143986015280E-006 - 232.68000000000001 -9.7099706681900768E-006 - 232.74000000000001 -9.8525104635408573E-006 - 232.80000000000001 -9.9968774698666818E-006 - 232.86000000000001 -1.0143028311228483E-005 - 232.92000000000002 -1.0290928996032951E-005 - 232.97999999999996 -1.0440556174788553E-005 - 233.03999999999996 -1.0591894062310997E-005 - 233.09999999999997 -1.0744933705739744E-005 - 233.15999999999997 -1.0899671811238532E-005 - 233.21999999999997 -1.1056106388763539E-005 - 233.27999999999997 -1.1214239690389633E-005 - 233.33999999999997 -1.1374074065302116E-005 - 233.39999999999998 -1.1535611087410807E-005 - 233.45999999999998 -1.1698852216903053E-005 - 233.51999999999998 -1.1863799005023087E-005 - 233.57999999999998 -1.2030454539564265E-005 - 233.63999999999999 -1.2198822211939786E-005 - 233.69999999999999 -1.2368907888037289E-005 - 233.75999999999999 -1.2540719674305233E-005 - 233.81999999999999 -1.2714273167536755E-005 - 233.88000000000000 -1.2889588980996046E-005 - 233.94000000000000 -1.3066694880209004E-005 - 234.00000000000000 -1.3245626146693660E-005 - 234.06000000000000 -1.3426425229634548E-005 - 234.12000000000000 -1.3609141959194252E-005 - 234.18000000000001 -1.3793828571773977E-005 - 234.24000000000001 -1.3980540423788997E-005 - 234.30000000000001 -1.4169331884314560E-005 - 234.36000000000001 -1.4360249023456996E-005 - 234.42000000000002 -1.4553329086685895E-005 - 234.47999999999996 -1.4748590927638301E-005 - 234.53999999999996 -1.4946034238823896E-005 - 234.59999999999997 -1.5145630659902620E-005 - 234.65999999999997 -1.5347317296196032E-005 - 234.71999999999997 -1.5550998953993976E-005 - 234.77999999999997 -1.5756536565224377E-005 - 234.83999999999997 -1.5963751923502903E-005 - 234.89999999999998 -1.6172419743605427E-005 - 234.95999999999998 -1.6382268709699528E-005 - 235.01999999999998 -1.6592986924151933E-005 - 235.07999999999998 -1.6804219747907354E-005 - 235.13999999999999 -1.7015575393854195E-005 - 235.19999999999999 -1.7226627561289387E-005 - 235.25999999999999 -1.7436920648477956E-005 - 235.31999999999999 -1.7645975883448044E-005 - 235.38000000000000 -1.7853295909131176E-005 - 235.44000000000000 -1.8058366137631473E-005 - 235.50000000000000 -1.8260668458070832E-005 - 235.56000000000000 -1.8459677162555864E-005 - 235.62000000000000 -1.8654868759824860E-005 - 235.68000000000001 -1.8845714667655672E-005 - 235.74000000000001 -1.9031696860915738E-005 - 235.80000000000001 -1.9212296933160766E-005 - 235.86000000000001 -1.9387006642320177E-005 - 235.92000000000002 -1.9555318187381850E-005 - 235.97999999999996 -1.9716734515275184E-005 - 236.03999999999996 -1.9870761449574690E-005 - 236.09999999999997 -2.0016912850716935E-005 - 236.15999999999997 -2.0154706671211369E-005 - 236.21999999999997 -2.0283669810741752E-005 - 236.27999999999997 -2.0403335763555462E-005 - 236.33999999999997 -2.0513251737400309E-005 - 236.39999999999998 -2.0612975114077400E-005 - 236.45999999999998 -2.0702082403267823E-005 - 236.51999999999998 -2.0780165438663593E-005 - 236.57999999999998 -2.0846844074328980E-005 - 236.63999999999999 -2.0901761294315127E-005 - 236.69999999999999 -2.0944595236915484E-005 - 236.75999999999999 -2.0975052673252107E-005 - 236.81999999999999 -2.0992879915512260E-005 - 236.88000000000000 -2.0997859394993353E-005 - 236.94000000000000 -2.0989819190197358E-005 - 237.00000000000000 -2.0968622485032324E-005 - 237.06000000000000 -2.0934175794631009E-005 - 237.12000000000000 -2.0886429419961388E-005 - 237.18000000000001 -2.0825371087614563E-005 - 237.24000000000001 -2.0751028778410490E-005 - 237.30000000000001 -2.0663464456954276E-005 - 237.36000000000001 -2.0562777911307813E-005 - 237.42000000000002 -2.0449095676903351E-005 - 237.47999999999996 -2.0322574960756482E-005 - 237.53999999999996 -2.0183399789420359E-005 - 237.59999999999997 -2.0031777755644768E-005 - 237.65999999999997 -1.9867934675165290E-005 - 237.71999999999997 -1.9692116544429889E-005 - 237.77999999999997 -1.9504585244562425E-005 - 237.83999999999997 -1.9305613258805790E-005 - 237.89999999999998 -1.9095485253207153E-005 - 237.95999999999998 -1.8874492394443289E-005 - 238.01999999999998 -1.8642939313703721E-005 - 238.07999999999998 -1.8401129465836789E-005 - 238.13999999999999 -1.8149376673938763E-005 - 238.19999999999999 -1.7887993576331957E-005 - 238.25999999999999 -1.7617301388285599E-005 - 238.31999999999999 -1.7337620770919972E-005 - 238.38000000000000 -1.7049274244090811E-005 - 238.44000000000000 -1.6752592063927373E-005 - 238.50000000000000 -1.6447903560467536E-005 - 238.56000000000000 -1.6135546180314985E-005 - 238.62000000000000 -1.5815861289182553E-005 - 238.68000000000001 -1.5489194028864451E-005 - 238.74000000000001 -1.5155897590718006E-005 - 238.80000000000001 -1.4816334583722117E-005 - 238.86000000000001 -1.4470872902353976E-005 - 238.92000000000002 -1.4119889054121909E-005 - 238.97999999999996 -1.3763765121082140E-005 - 239.03999999999996 -1.3402888926240176E-005 - 239.09999999999997 -1.3037655575080071E-005 - 239.15999999999997 -1.2668466324656195E-005 - 239.21999999999997 -1.2295721331560184E-005 - 239.27999999999997 -1.1919826111870138E-005 - 239.33999999999997 -1.1541186968319673E-005 - 239.39999999999998 -1.1160210457404189E-005 - 239.45999999999998 -1.0777302617055479E-005 - 239.51999999999998 -1.0392870449737307E-005 - 239.57999999999998 -1.0007319636285477E-005 - 239.63999999999999 -9.6210598124183508E-006 - 239.69999999999999 -9.2345009561498705E-006 - 239.75999999999999 -8.8480581343425672E-006 - 239.81999999999999 -8.4621524590563401E-006 - 239.88000000000000 -8.0772131639546942E-006 - 239.94000000000000 -7.6936800122329981E-006 - 240.00000000000000 -7.3120047026678490E-006 - 240.06000000000000 -6.9326505419528890E-006 - 240.12000000000000 -6.5560946537611495E-006 - 240.18000000000001 -6.1828273638309111E-006 - 240.24000000000001 -5.8133518892711746E-006 - 240.30000000000001 -5.4481833965141347E-006 - 240.36000000000001 -5.0878445783880965E-006 - 240.42000000000002 -4.7328646336089082E-006 - 240.47999999999996 -4.3837754804731715E-006 - 240.53999999999996 -4.0411079772028260E-006 - 240.59999999999997 -3.7053867641411178E-006 - 240.65999999999997 -3.3771276911505021E-006 - 240.71999999999997 -3.0568331969119341E-006 - 240.77999999999997 -2.7449878593377113E-006 - 240.83999999999997 -2.4420556077860354E-006 - 240.89999999999998 -2.1484763941145235E-006 - 240.95999999999998 -1.8646627885607009E-006 - 241.01999999999998 -1.5909988704131789E-006 - 241.07999999999998 -1.3278376813539865E-006 - 241.13999999999999 -1.0754996055270758E-006 - 241.19999999999999 -8.3427166628267885E-007 - 241.25999999999999 -6.0440650138302603E-007 - 241.31999999999999 -3.8612188209906560E-007 - 241.38000000000000 -1.7959969867991987E-007 - 241.44000000000000 1.5014134932896969E-008 - 241.50000000000000 1.9761005699370724E-007 - 241.56000000000000 3.6811532121823344E-007 - 241.62000000000000 5.2649372636854664E-007 - 241.68000000000001 6.7274574897435202E-007 - 241.74000000000001 8.0690823957358073E-007 - 241.80000000000001 9.2905369692278521E-007 - 241.86000000000001 1.0392894703930259E-006 - 241.92000000000002 1.1377562566997844E-006 - 241.97999999999996 1.2246267110438150E-006 - 242.03999999999996 1.3001030129098139E-006 - 242.09999999999997 1.3644147597634554E-006 - 242.15999999999997 1.4178162056440756E-006 - 242.21999999999997 1.4605833675185573E-006 - 242.27999999999997 1.4930108932868739E-006 - 242.33999999999997 1.5154089916179754E-006 - 242.39999999999998 1.5281006339959046E-006 - 242.45999999999998 1.5314179842040099E-006 - 242.51999999999998 1.5257000015342427E-006 - 242.57999999999998 1.5112899904700791E-006 - 242.63999999999999 1.4885324814693751E-006 - 242.69999999999999 1.4577716909580288E-006 - 242.75999999999999 1.4193490114141313E-006 - 242.81999999999999 1.3736013829387287E-006 - 242.88000000000000 1.3208595085940877E-006 - 242.94000000000000 1.2614460904063037E-006 - 243.00000000000000 1.1956744429508791E-006 - 243.06000000000000 1.1238466121410751E-006 - 243.12000000000000 1.0462521641088270E-006 - 243.18000000000001 9.6316651952495051E-007 - 243.24000000000001 8.7484971719853235E-007 - 243.30000000000001 7.8154534950379119E-007 - 243.36000000000001 6.8347957641648602E-007 - 243.42000000000002 5.8086050325058443E-007 - 243.47999999999996 4.7387779985100698E-007 - 243.53999999999996 3.6270297321799327E-007 - 243.59999999999997 2.4748974862277540E-007 - 243.65999999999997 1.2837532798242688E-007 - 243.71999999999997 5.4815928960718913E-009 - 243.77999999999997 -1.2108292675179825E-007 - 243.83999999999997 -2.5122092426852926E-007 - 243.89999999999998 -3.8484402467675617E-007 - 243.95999999999998 -5.2187001086213055E-007 - 244.01999999999998 -6.6222049363665728E-007 - 244.07999999999998 -8.0581800993686373E-007 - 244.13999999999999 -9.5258400029198081E-007 - 244.19999999999999 -1.1024362303139034E-006 - 244.25999999999999 -1.2552872661368151E-006 - 244.31999999999999 -1.4110421725701565E-006 - 244.38000000000000 -1.5695978092521121E-006 - 244.44000000000000 -1.7308413864384037E-006 - 244.50000000000000 -1.8946497819156160E-006 - 244.56000000000000 -2.0608885337874843E-006 - 244.62000000000000 -2.2294122191309688E-006 - 244.68000000000001 -2.4000631239701952E-006 - 244.74000000000001 -2.5726716104370276E-006 - 244.80000000000001 -2.7470561347530341E-006 - 244.86000000000001 -2.9230230062963925E-006 - 244.92000000000002 -3.1003660985235291E-006 - 244.97999999999996 -3.2788674639442773E-006 - 245.03999999999996 -3.4582979486798593E-006 - 245.09999999999997 -3.6384167772443071E-006 - 245.15999999999997 -3.8189737835718655E-006 - 245.21999999999997 -3.9997093737801902E-006 - 245.27999999999997 -4.1803563341779024E-006 - 245.33999999999997 -4.3606423765647183E-006 - 245.39999999999998 -4.5402909105895779E-006 - 245.45999999999998 -4.7190240054837920E-006 - 245.51999999999998 -4.8965657214251982E-006 - 245.57999999999998 -5.0726430509757307E-006 - 245.63999999999999 -5.2469906407499433E-006 - 245.69999999999999 -5.4193523638628770E-006 - 245.75999999999999 -5.5894838394010175E-006 - 245.81999999999999 -5.7571548468579872E-006 - 245.88000000000000 -5.9221519955777115E-006 - 245.94000000000000 -6.0842791095613642E-006 - 246.00000000000000 -6.2433591948177470E-006 - 246.06000000000000 -6.3992366082127403E-006 - 246.12000000000000 -6.5517753883481244E-006 - 246.18000000000001 -6.7008611275701410E-006 - 246.24000000000001 -6.8464016194587101E-006 - 246.30000000000001 -6.9883250872065453E-006 - 246.36000000000001 -7.1265812630892815E-006 - 246.42000000000002 -7.2611412879435356E-006 - 246.47999999999996 -7.3919971824503292E-006 - 246.53999999999996 -7.5191617229268012E-006 - 246.59999999999997 -7.6426682556711451E-006 - 246.65999999999997 -7.7625718776286665E-006 - 246.71999999999997 -7.8789455667342153E-006 - 246.77999999999997 -7.9918848155103045E-006 - 246.83999999999997 -8.1015039810987541E-006 - 246.89999999999998 -8.2079360350031062E-006 - 246.95999999999998 -8.3113325233650058E-006 - 247.01999999999998 -8.4118621919117645E-006 - 247.07999999999998 -8.5097081417777666E-006 - 247.13999999999999 -8.6050657850988935E-006 - 247.19999999999999 -8.6981414713412103E-006 - 247.25999999999999 -8.7891507278144274E-006 - 247.31999999999999 -8.8783115236419542E-006 - 247.38000000000000 -8.9658446580349789E-006 - 247.44000000000000 -9.0519688727506140E-006 - 247.50000000000000 -9.1368975584955147E-006 - 247.56000000000000 -9.2208346912744620E-006 - 247.62000000000000 -9.3039724554669607E-006 - 247.68000000000001 -9.3864874952819941E-006 - 247.74000000000001 -9.4685383927780934E-006 - 247.80000000000001 -9.5502631385644286E-006 - 247.86000000000001 -9.6317759210368841E-006 - 247.92000000000002 -9.7131669669458964E-006 - 247.97999999999996 -9.7945010867567756E-006 - 248.03999999999996 -9.8758147650378705E-006 - 248.09999999999997 -9.9571175820035715E-006 - 248.15999999999997 -1.0038392037387706E-005 - 248.21999999999997 -1.0119594717323667E-005 - 248.27999999999997 -1.0200654791359948E-005 - 248.33999999999997 -1.0281477286554062E-005 - 248.39999999999998 -1.0361944923469526E-005 - 248.45999999999998 -1.0441918186733019E-005 - 248.51999999999998 -1.0521240570548201E-005 - 248.57999999999998 -1.0599739188407479E-005 - 248.63999999999999 -1.0677230402348777E-005 - 248.69999999999999 -1.0753520072913751E-005 - 248.75999999999999 -1.0828407712216868E-005 - 248.81999999999999 -1.0901690876467497E-005 - 248.88000000000000 -1.0973166322251102E-005 - 248.94000000000000 -1.1042635379290975E-005 - 249.00000000000000 -1.1109904780194022E-005 - 249.06000000000000 -1.1174787621294426E-005 - 249.12000000000000 -1.1237108503208509E-005 - 249.18000000000001 -1.1296702253255740E-005 - 249.24000000000001 -1.1353414806224628E-005 - 249.30000000000001 -1.1407106404883878E-005 - 249.36000000000001 -1.1457649671768994E-005 - 249.42000000000002 -1.1504930934448959E-005 - 249.47999999999996 -1.1548849256390894E-005 - 249.53999999999996 -1.1589316187326440E-005 - 249.59999999999997 -1.1626259386200000E-005 - 249.65999999999997 -1.1659617829544914E-005 - 249.71999999999997 -1.1689345326531550E-005 - 249.77999999999997 -1.1715411245305988E-005 - 249.83999999999997 -1.1737800388602932E-005 - 249.89999999999998 -1.1756513503932281E-005 - 249.95999999999998 -1.1771572541447012E-005 - 250.01999999999998 -1.1783016702258968E-005 - 250.07999999999998 -1.1790905811030792E-005 - 250.13999999999999 -1.1795321538331569E-005 - 250.19999999999999 -1.1796367408035861E-005 - 250.25999999999999 -1.1794170596980001E-005 - 250.31999999999999 -1.1788878264376265E-005 - 250.38000000000000 -1.1780656641259593E-005 - 250.44000000000000 -1.1769693583174909E-005 - 250.50000000000000 -1.1756191020627841E-005 - 250.56000000000000 -1.1740363844191405E-005 - 250.62000000000000 -1.1722438221709683E-005 - 250.68000000000001 -1.1702644099994502E-005 - 250.74000000000001 -1.1681215319627529E-005 - 250.80000000000001 -1.1658383295969809E-005 - 250.86000000000001 -1.1634372556380652E-005 - 250.92000000000002 -1.1609399556015312E-005 - 250.97999999999996 -1.1583667126058159E-005 - 251.03999999999996 -1.1557364887877903E-005 - 251.09999999999997 -1.1530664451413913E-005 - 251.15999999999997 -1.1503717050582246E-005 - 251.21999999999997 -1.1476654641418827E-005 - 251.27999999999997 -1.1449589820959628E-005 - 251.33999999999997 -1.1422611238449463E-005 - 251.39999999999998 -1.1395790476187365E-005 - 251.45999999999998 -1.1369176419581108E-005 - 251.51999999999998 -1.1342799283254663E-005 - 251.57999999999998 -1.1316667035422404E-005 - 251.63999999999999 -1.1290772647061349E-005 - 251.69999999999999 -1.1265091194031649E-005 - 251.75999999999999 -1.1239578922972854E-005 - 251.81999999999999 -1.1214176257045366E-005 - 251.88000000000000 -1.1188808843014757E-005 - 251.94000000000000 -1.1163390220447231E-005 diff --git a/seisflows/tests/test_data/test_solver/002/DATA/STATIONS b/seisflows/tests/test_data/test_solver/002/DATA/STATIONS index 8f979fe1..02d3056f 100644 --- a/seisflows/tests/test_data/test_solver/002/DATA/STATIONS +++ b/seisflows/tests/test_data/test_solver/002/DATA/STATIONS @@ -1,5 +1,2 @@ S000000 AA 2.43610e+05 2.78904e+05 0.0 0.0 S000001 AA 3.38981e+05 1.77849e+05 0.0 0.0 -S000002 AA 1.64438e+05 2.94733e+05 0.0 0.0 -S000003 AA 9.22250e+04 3.68887e+05 0.0 0.0 -S000004 AA 2.90702e+05 2.46865e+05 0.0 0.0 diff --git a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000002.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000002.BXY.semd deleted file mode 100644 index cb16b234..00000000 --- a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000002.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 -5.2915643675703574E-041 - 0.42000000000000171 -1.6057421509864921E-040 - 0.47999999999999687 -2.6823278652159485E-040 - 0.53999999999999915 -3.7589135794454049E-040 - 0.60000000000000142 -4.8354992936748612E-040 - 0.65999999999999659 -5.9120850079043176E-040 - 0.71999999999999886 -6.2774440624899901E-040 - 0.78000000000000114 -5.9613718784527063E-040 - 0.83999999999999631 -4.6905182381982609E-040 - 0.89999999999999858 -2.1302651640867465E-040 - 0.96000000000000085 2.3938299722775371E-040 - 1.0199999999999960 7.0122825836605193E-040 - 1.0799999999999983 1.0425217873724553E-039 - 1.1400000000000006 1.0610791571353424E-039 - 1.1999999999999957 6.2527349066867408E-040 - 1.2599999999999980 -3.6585679581507211E-040 - 1.3200000000000003 -2.4238554243891911E-039 - 1.3799999999999955 -5.6853875003347901E-039 - 1.4399999999999977 -9.8768792385281358E-039 - 1.5000000000000000 -1.4293320996075573E-038 - 1.5599999999999952 -1.8635994365506231E-038 - 1.6199999999999974 -2.0919028764254788E-038 - 1.6799999999999997 -2.0375068230480415E-038 - 1.7399999999999949 -1.6666878880053797E-038 - 1.7999999999999972 -1.0397015291344122E-038 - 1.8599999999999994 3.8777221784209327E-040 - 1.9200000000000017 1.6298252414110097E-038 - 1.9799999999999969 4.0311147384602035E-038 - 2.0399999999999991 7.1236368409102955E-038 - 2.1000000000000014 1.0464709825555939E-037 - 2.1599999999999966 1.3257594801708835E-037 - 2.2199999999999989 1.5213899166477556E-037 - 2.2800000000000011 1.6259148873637202E-037 - 2.3399999999999963 1.6179360445507958E-037 - 2.3999999999999986 1.4673960583315985E-037 - 2.4600000000000009 1.1595571220591170E-037 - 2.5199999999999960 6.7204637212543549E-038 - 2.5799999999999983 -8.1610960771455464E-039 - 2.6400000000000006 -1.0493711316551359E-037 - 2.6999999999999957 -2.1696192338517343E-037 - 2.7599999999999980 -3.4185026547647752E-037 - 2.8200000000000003 -4.6430488774024783E-037 - 2.8799999999999955 -5.5628809719019335E-037 - 2.9399999999999977 -6.0065022440084261E-037 - 3.0000000000000000 -5.9976900891998709E-037 - 3.0599999999999952 -5.4633715477663153E-037 - 3.1199999999999974 -4.3524688443152088E-037 - 3.1799999999999997 -2.6382538154315498E-037 - 3.2399999999999949 1.0920823687572810E-038 - 3.2999999999999972 3.6843177872755018E-037 - 3.3599999999999994 7.4969445192931041E-037 - 3.4199999999999946 1.1139058144542727E-036 - 3.4799999999999969 1.4182393489760518E-036 - 3.5399999999999991 1.6018650706885575E-036 - 3.6000000000000014 1.5821444302708043E-036 - 3.6599999999999966 1.2911886692686619E-036 - 3.7199999999999989 6.9630972243900800E-037 - 3.7800000000000011 -1.6585567227396164E-037 - 3.8399999999999963 -1.2677598225677206E-036 - 3.8999999999999986 -2.4978831224778349E-036 - 3.9600000000000009 -3.7696831097289985E-036 - 4.0199999999999960 -4.8360328586479510E-036 - 4.0799999999999983 -5.4563581923699358E-036 - 4.1400000000000006 -5.4436502084129433E-036 - 4.1999999999999957 -4.5891710304016809E-036 - 4.2599999999999980 -2.7525203129881873E-036 - 4.3200000000000003 2.4190883649689619E-037 - 4.3799999999999955 4.3122765077851875E-036 - 4.4399999999999977 9.1988363851713389E-036 - 4.5000000000000000 1.4636291583079297E-035 - 4.5599999999999952 2.0215765652892524E-035 - 4.6199999999999974 2.5391409972425025E-035 - 4.6799999999999997 2.9511906275019036E-035 - 4.7399999999999949 3.1967790254183139E-035 - 4.7999999999999972 3.1892801955562674E-035 - 4.8599999999999994 2.8426469508963418E-035 - 4.9199999999999946 2.0720996102711931E-035 - 4.9799999999999969 8.2569521046645255E-036 - 5.0399999999999991 -8.9140378444285972E-036 - 5.1000000000000014 -3.0371811975041318E-035 - 5.1599999999999966 -5.5253580770470763E-035 - 5.2199999999999989 -8.2115209942053588E-035 - 5.2800000000000011 -1.0887374918505915E-034 - 5.3399999999999963 -1.3278664121470963E-034 - 5.3999999999999986 -1.5088363289691724E-034 - 5.4600000000000009 -1.5937220798992196E-034 - 5.5199999999999960 -1.5461341796463771E-034 - 5.5799999999999983 -1.3301672365247736E-034 - 5.6400000000000006 -9.1407810163435380E-035 - 5.6999999999999957 -2.7473084911516730E-035 - 5.7599999999999980 5.9724051632506782E-035 - 5.8200000000000003 1.6930789540574730E-034 - 5.8799999999999955 2.9812796402015360E-034 - 5.9399999999999977 4.4036434535823763E-034 - 6.0000000000000000 5.8723026790590300E-034 - 6.0599999999999952 7.2699716582372601E-034 - 6.1199999999999974 8.4509395560112769E-034 - 6.1799999999999997 9.2456881028055341E-034 - 6.2399999999999949 9.4702031097647393E-034 - 6.2999999999999972 8.9360038798419322E-034 - 6.3599999999999994 7.4679025970623779E-034 - 6.4199999999999946 4.9207013103594188E-034 - 6.4799999999999969 1.2017467384374206E-034 - 6.5399999999999991 -3.7062212774044800E-034 - 6.6000000000000014 -9.7218847209602595E-034 - 6.6599999999999966 -1.6644874428213779E-033 - 6.7199999999999989 -2.4139497148790860E-033 - 6.7800000000000011 -3.1725677385360808E-033 - 6.8399999999999963 -3.8779717565487180E-033 - 6.8999999999999986 -4.4547969291343015E-033 - 6.9600000000000009 -4.8175468596425155E-033 - 7.0199999999999960 -4.8750254996488231E-033 - 7.0799999999999983 -4.5366087187168070E-033 - 7.1400000000000006 -3.7200676513756377E-033 - 7.1999999999999957 -2.3608444533845354E-033 - 7.2599999999999980 -4.2230575271961399E-034 - 7.3200000000000003 2.0935810361189393E-033 - 7.3799999999999955 5.1359803424565053E-033 - 7.4399999999999977 8.5962508272887357E-033 - 7.5000000000000000 1.2301517869685149E-032 - 7.5599999999999952 1.6011864898542229E-032 - 7.6199999999999974 1.9422368995719143E-032 - 7.6799999999999997 2.2171071529963764E-032 - 7.7399999999999949 2.3853730726939667E-032 - 7.7999999999999972 2.4045907602252471E-032 - 7.8599999999999994 2.2332438733480367E-032 - 7.9199999999999946 1.8343773675857837E-032 - 7.9799999999999969 1.1797911675786726E-032 - 8.0399999999999991 2.5459827311206004E-033 - 8.1000000000000014 -9.3813572768583587E-033 - 8.1599999999999966 -2.3730272713073508E-032 - 8.2199999999999989 -3.9987029748215711E-032 - 8.2800000000000011 -5.7352966075762478E-032 - 8.3399999999999963 -7.4735949348331176E-032 - 8.3999999999999986 -9.0763202666376990E-032 - 8.4600000000000009 -1.0381961812995209E-031 - 8.5199999999999960 -1.1211476370432196E-031 - 8.5799999999999983 -1.1378041162211974E-031 - 8.6400000000000006 -1.0699784616469098E-031 - 8.6999999999999957 -9.0152588008826162E-032 - 8.7599999999999980 -6.2010534757245525E-032 - 8.8200000000000003 -2.1907121209013221E-032 - 8.8799999999999955 3.0062413804936220E-032 - 8.9399999999999977 9.2866063618478526E-032 - 9.0000000000000000 1.6438823276449628E-031 - 9.0599999999999952 2.4133162723571350E-031 - 9.1199999999999974 3.1918645823158142E-031 - 9.1799999999999997 3.9228507166092371E-031 - 9.2399999999999949 4.5395758050469922E-031 - 9.2999999999999972 4.9679919959455771E-031 - 9.3599999999999994 5.1305496284041733E-031 - 9.4199999999999946 4.9511910489249509E-031 - 9.4799999999999969 4.3613671449617361E-031 - 9.5399999999999991 3.3068609895201319E-031 - 9.5999999999999943 1.7550821022475872E-031 - 9.6599999999999966 -2.9760540440943989E-032 - 9.7199999999999989 -2.8190592872789966E-031 - 9.7800000000000011 -5.7356489164454825E-031 - 9.8399999999999963 -8.9283220137223878E-031 - 9.8999999999999986 -1.2231118460975841E-030 - 9.9600000000000009 -1.5432747130746859E-030 - 10.019999999999996 -1.8281782932378047E-030 - 10.079999999999998 -2.0495840374177868E-030 - 10.140000000000001 -2.1774899779522666E-030 - 10.199999999999996 -2.1818703162379327E-030 - 10.259999999999998 -2.0347783499404963E-030 - 10.320000000000000 -1.7127412858762303E-030 - 10.379999999999995 -1.1993319476597364E-030 - 10.439999999999998 -4.8777768216466979E-031 - 10.500000000000000 4.1657195943845212E-031 - 10.559999999999995 1.4941164117139115E-030 - 10.619999999999997 2.7094242888219235E-030 - 10.680000000000000 4.0104195521781980E-030 - 10.739999999999995 5.3285270880371377E-030 - 10.799999999999997 6.5799552635547983E-030 - 10.859999999999999 7.6682321661290125E-030 - 10.919999999999995 8.4880541207710444E-030 - 10.979999999999997 8.9304325007575945E-030 - 11.039999999999999 8.8890238777314679E-030 - 11.099999999999994 8.2674368658326359E-030 - 11.159999999999997 6.9872162446008984E-030 - 11.219999999999999 4.9960942958801421E-030 - 11.280000000000001 2.2760426560458528E-030 - 11.339999999999996 -1.1494282472965364E-030 - 11.399999999999999 -5.2092911627068215E-030 - 11.460000000000001 -9.7809147342826914E-030 - 11.519999999999996 -1.4688411750517055E-029 - 11.579999999999998 -1.9703878094420315E-029 - 11.640000000000001 -2.4551872635419396E-029 - 11.699999999999996 -2.8917299239294307E-029 - 11.759999999999998 -3.2456731285235994E-029 - 11.820000000000000 -3.4812947790540727E-029 - 11.879999999999995 -3.5632301594146405E-029 - 11.939999999999998 -3.4584268629231881E-029 - 12.000000000000000 -3.1382408637521644E-029 - 12.059999999999995 -2.5805789195688360E-029 - 12.119999999999997 -1.7719827222903239E-029 - 12.180000000000000 -7.0954924657121036E-030 - 12.239999999999995 5.9741741807725205E-030 - 12.299999999999997 2.1261181696662655E-029 - 12.359999999999999 3.8394064557367733E-029 - 12.419999999999995 5.6854377933669813E-029 - 12.479999999999997 7.5978409288275047E-029 - 12.539999999999999 9.4964328682537126E-029 - 12.599999999999994 1.1288455065748652E-028 - 12.659999999999997 1.2870307672034105E-028 - 12.719999999999999 1.4129744768079244E-028 - 12.780000000000001 1.4948493906544465E-028 - 12.839999999999996 1.5205294199248225E-028 - 12.899999999999999 1.4779344217817783E-028 - 12.960000000000001 1.3554229362429134E-028 - 13.019999999999996 1.1422377276305555E-028 - 13.079999999999998 8.2902324239633537E-029 - 13.140000000000001 4.0842307888128907E-029 - 13.199999999999996 -1.2421679563951475E-029 - 13.259999999999998 -7.7002842925131004E-029 - 13.320000000000000 -1.5256724357369537E-028 - 13.379999999999995 -2.3822570900341256E-028 - 13.439999999999998 -3.3241428721567698E-028 - 13.500000000000000 -4.3276677854272491E-028 - 13.559999999999995 -5.3598567796588039E-028 - 13.619999999999997 -6.3772156691856545E-028 - 13.680000000000000 -7.3247355504788323E-028 - 13.739999999999995 -8.1352857778481645E-028 - 13.799999999999997 -8.7295920958297062E-028 - 13.859999999999999 -9.0170337250536785E-028 - 13.919999999999995 -8.8975019757893500E-028 - 13.979999999999997 -8.2645743062153804E-028 - 14.039999999999999 -7.0102121007782549E-028 - 14.099999999999994 -5.0311589396337145E-028 - 14.159999999999997 -2.2371338271712455E-028 - 14.219999999999999 1.4392315813608641E-028 - 14.280000000000001 6.0308618207151844E-028 - 14.339999999999996 1.1523498022957027E-027 - 14.399999999999999 1.7842310052680480E-027 - 14.460000000000001 2.4838660489424409E-027 - 14.519999999999996 3.2278019845955157E-027 - 14.579999999999998 3.9830292461443484E-027 - 14.640000000000001 4.7063980647300314E-027 - 14.699999999999996 5.3445656345028591E-027 - 14.759999999999998 5.8346381441528468E-027 - 14.820000000000000 6.1056551348790682E-027 - 14.879999999999995 6.0810443187336582E-027 - 14.939999999999998 5.6821427522904227E-027 - 15.000000000000000 4.8328289164442042E-027 - 15.059999999999995 3.4652416603748048E-027 - 15.119999999999997 1.5264718268621453E-027 - 15.180000000000000 -1.0139701235284299E-027 - 15.239999999999995 -4.1562295558928861E-027 - 15.299999999999997 -7.8621457799951320E-027 - 15.359999999999999 -1.2047787214910940E-026 - 15.419999999999995 -1.6577118004198058E-026 - 15.479999999999997 -2.1257500334725590E-026 - 15.539999999999999 -2.5837784583738306E-026 - 15.599999999999994 -3.0009782464483972E-026 - 15.659999999999997 -3.3413801297836829E-026 - 15.719999999999999 -3.5648895143201165E-026 - 15.780000000000001 -3.6288270369756645E-026 - 15.839999999999996 -3.4900046359963623E-026 - 15.899999999999999 -3.1073306749508293E-026 - 15.960000000000001 -2.4448977363900546E-026 - 16.019999999999996 -1.4754607277814068E-026 - 16.079999999999998 -1.8418050426645216E-027 - 16.140000000000001 1.4275578617562808E-026 - 16.200000000000003 3.3384682775345943E-026 - 16.259999999999991 5.5040996317912217E-026 - 16.319999999999993 7.8542804418157384E-026 - 16.379999999999995 1.0291587148526979E-025 - 16.439999999999998 1.2691160694122123E-025 - 16.500000000000000 1.4902165354972582E-025 - 16.560000000000002 1.6751168337036971E-025 - 16.620000000000005 1.8047621159094542E-025 - 16.679999999999993 1.8591561368013324E-025 - 16.739999999999995 1.8183538423324776E-025 - 16.799999999999997 1.6636595426199572E-025 - 16.859999999999999 1.3790031656836690E-025 - 16.920000000000002 9.5244606493097948E-026 - 16.980000000000004 3.7775291228266166E-026 - 17.039999999999992 -3.4405138863092023E-026 - 17.099999999999994 -1.2032359783895370E-025 - 17.159999999999997 -2.1801366933971760E-025 - 17.219999999999999 -3.2442639627917933E-025 - 17.280000000000001 -4.3538632022962399E-025 - 17.340000000000003 -5.4560404344128714E-025 - 17.399999999999991 -6.4875571977675427E-025 - 17.459999999999994 -7.3763738199297180E-025 - 17.519999999999996 -8.0439941466689272E-025 - 17.579999999999998 -8.4086253997073300E-025 - 17.640000000000001 -8.3891293255783566E-025 - 17.700000000000003 -7.9096785209989244E-025 - 17.759999999999991 -6.9049830625547421E-025 - 17.819999999999993 -5.3259012735498360E-025 - 17.879999999999995 -3.1451774189003803E-025 - 17.939999999999998 -3.6302306942567877E-026 - 18.000000000000000 2.9878170927117241E-025 - 18.060000000000002 6.8378766617196098E-025 - 18.120000000000005 1.1078028411509884E-024 - 18.179999999999993 1.5558198740419663E-024 - 18.239999999999995 2.0088060980473800E-024 - 18.299999999999997 2.4440020211052842E-024 - 18.359999999999999 2.8354701420463233E-024 - 18.420000000000002 3.1549073718320080E-024 - 18.480000000000004 3.3727180744814343E-024 - 18.539999999999992 3.4593349688256785E-024 - 18.599999999999994 3.3867574531839560E-024 - 18.659999999999997 3.1302577723627507E-024 - 18.719999999999999 2.6701953476689269E-024 - 18.780000000000001 1.9938580341419351E-024 - 18.840000000000003 1.0972417550102085E-024 - 18.899999999999991 -1.3338194096290770E-026 - 18.959999999999994 -1.3199049285447908E-024 - 19.019999999999996 -2.7918614738992698E-024 - 19.079999999999998 -4.3855188591976839E-024 - 19.140000000000001 -6.0442038791204858E-024 - 19.200000000000003 -7.6990233322986057E-024 - 19.259999999999991 -9.2703407625131466E-024 - 19.319999999999993 -1.0669988537301196E-023 - 19.379999999999995 -1.1804208427686310E-023 - 19.439999999999998 -1.2577271256159748E-023 - 19.500000000000000 -1.2895691737529188E-023 - 19.560000000000002 -1.2672913420064473E-023 - 19.620000000000005 -1.1834292164303988E-023 - 19.679999999999993 -1.0322189064614868E-023 - 19.739999999999995 -8.1009366320747454E-024 - 19.799999999999997 -5.1614403028775493E-024 - 19.859999999999999 -1.5251539210068407E-024 - 19.920000000000002 2.7528277350316151E-024 - 19.980000000000004 7.5817860114471481E-024 - 20.039999999999992 1.2834726476771311E-023 - 20.099999999999994 1.8349217688599616E-023 - 20.159999999999997 2.3929849959806926E-023 - 20.219999999999999 2.9352336037317440E-023 - 20.280000000000001 3.4369279849706906E-023 - 20.340000000000003 3.8717483010497625E-023 - 20.399999999999991 4.2126637077039031E-023 - 20.459999999999994 4.4329169445177482E-023 - 20.519999999999996 4.5070919639893719E-023 - 20.579999999999998 4.4122309685074724E-023 - 20.640000000000001 4.1289591763379425E-023 - 20.700000000000003 3.6425793711991422E-023 - 20.759999999999991 2.9440904144242188E-023 - 20.819999999999993 2.0310927428208345E-023 - 20.879999999999995 9.0854527871815596E-024 - 20.939999999999998 -4.1066143021571662E-024 - 21.000000000000000 -1.9053319139389534E-023 - 21.060000000000002 -3.5458155984012384E-023 - 21.120000000000005 -5.2940838829495071E-023 - 21.179999999999993 -7.1040334416139611E-023 - 21.239999999999995 -8.9220152392226149E-023 - 21.299999999999997 -1.0687571698680687E-022 - 21.359999999999999 -1.2334370297745794E-022 - 21.420000000000002 -1.3791321144440260E-022 - 21.480000000000004 -1.4983860546820769E-022 - 21.539999999999992 -1.5835399194906068E-022 - 21.599999999999994 -1.6268932578624351E-022 - 21.659999999999997 -1.6208822587337801E-022 - 21.719999999999999 -1.5582768960818465E-022 - 21.780000000000001 -1.4323999864137578E-022 - 21.840000000000003 -1.2373710259492459E-022 - 21.899999999999991 -9.6837927271443046E-023 - 21.959999999999994 -6.2198924361095650E-023 - 22.019999999999996 -1.9647922829616455E-023 - 22.079999999999998 3.0778426694288034E-023 - 22.140000000000001 8.8794085691472144E-023 - 22.200000000000003 1.5382053477413539E-022 - 22.259999999999991 2.2494237227748204E-022 - 22.319999999999993 3.0086350692085514E-022 - 22.379999999999995 3.7986600674488255E-022 - 22.439999999999998 4.5977504842455321E-022 - 22.500000000000000 5.3793403086641885E-022 - 22.560000000000002 6.1119367442035349E-022 - 22.619999999999990 6.7592049258556676E-022 - 22.679999999999993 7.2802975390042127E-022 - 22.739999999999995 7.6304824750742296E-022 - 22.799999999999997 7.7621155892803700E-022 - 22.859999999999999 7.6260033468156578E-022 - 22.920000000000002 7.1731833440481938E-022 - 22.980000000000004 6.3571363271876002E-022 - 23.039999999999992 5.1364232385842947E-022 - 23.099999999999994 3.4777054272155527E-022 - 23.159999999999997 1.3590886213527723E-022 - 23.219999999999999 -1.2263092101396007E-022 - 23.280000000000001 -4.2667125027935094E-022 - 23.340000000000003 -7.7281254095144146E-022 - 23.399999999999991 -1.1551073995699826E-021 - 23.459999999999994 -1.5647874038651998E-021 - 23.519999999999996 -1.9900698989992797E-021 - 23.579999999999998 -2.4160715562277693E-021 - 23.640000000000001 -2.8248557548078766E-021 - 23.700000000000003 -3.1956408039794466E-021 - 23.759999999999991 -3.5051908474814383E-021 - 23.819999999999993 -3.7284069235042309E-021 - 23.879999999999995 -3.8391306433672670E-021 - 23.939999999999998 -3.8111584504997386E-021 - 24.000000000000000 -3.6194627729268501E-021 - 24.060000000000002 -3.2415931435638693E-021 - 24.119999999999990 -2.6592255143950551E-021 - 24.179999999999993 -1.8598096470191992E-021 - 24.239999999999995 -8.3825361550351756E-022 - 24.299999999999997 4.0143629411944650E-022 - 24.359999999999999 1.8446418341569306E-021 - 24.420000000000002 3.4648484392605984E-021 - 24.480000000000004 5.2226855423161519E-021 - 24.539999999999992 7.0654098964804226E-021 - 24.599999999999994 8.9269144455076130E-021 - 24.659999999999997 1.0728369278993042E-020 - 24.719999999999999 1.2379562853650398E-020 - 24.780000000000001 1.3780999967023257E-020 - 24.840000000000003 1.4826777476726505E-020 - 24.899999999999991 1.5408237106746502E-020 - 24.959999999999994 1.5418342500255082E-020 - 25.019999999999996 1.4756688950347586E-020 - 25.079999999999998 1.3335017696900352E-020 - 25.140000000000001 1.1083044502091600E-020 - 25.200000000000003 7.9543964886827334E-021 - 25.259999999999991 3.9323713500458545E-021 - 25.319999999999993 -9.6475176067698644E-022 - 25.379999999999995 -6.6791809342892533E-021 - 25.439999999999998 -1.3110174166147337E-020 - 25.500000000000000 -2.0112026711666104E-020 - 25.560000000000002 -2.7493787081769473E-020 - 25.619999999999990 -3.5020960959836633E-020 - 25.679999999999993 -4.2419422044976254E-020 - 25.739999999999995 -4.9381653362400599E-020 - 25.799999999999997 -5.5575414248108086E-020 - 25.859999999999999 -6.0654743341149129E-020 - 25.920000000000002 -6.4273133139190874E-020 - 25.980000000000004 -6.6098636595307870E-020 - 26.039999999999992 -6.5830460878128624E-020 - 26.099999999999994 -6.3216532346933981E-020 - 26.159999999999997 -5.8071393473096168E-020 - 26.219999999999999 -5.0293686153945254E-020 - 26.280000000000001 -3.9882433779756452E-020 - 26.340000000000003 -2.6951196357679658E-020 - 26.399999999999991 -1.1739281771801653E-020 - 26.459999999999994 5.3809041638822171E-021 - 26.519999999999996 2.3901176224433783E-020 - 26.579999999999998 4.3180245926665241E-020 - 26.640000000000001 6.2452334659697524E-020 - 26.700000000000003 8.0842112881629808E-020 - 26.759999999999991 9.7386144952114672E-020 - 26.819999999999993 1.1106065306108974E-019 - 26.879999999999995 1.2081539783575931E-019 - 26.939999999999998 1.2561283216737538E-019 - 27.000000000000000 1.2447160688552197E-019 - 27.060000000000002 1.1651323183240833E-019 - 27.119999999999990 1.0101018783414920E-019 - 27.179999999999993 7.7433916771443907E-020 - 27.239999999999995 4.5500442705851374E-020 - 27.299999999999997 5.2116293415369952E-021 - 27.359999999999999 -4.3110130454402931E-020 - 27.420000000000002 -9.8795790316344266E-020 - 27.480000000000004 -1.6081446755545299E-019 - 27.539999999999992 -2.2777084166889319E-019 - 27.599999999999994 -2.9791644133105694E-019 - 27.659999999999997 -3.6917634105629444E-019 - 27.719999999999999 -4.3919121034198473E-019 - 27.780000000000001 -5.0537530319739662E-019 - 27.840000000000003 -5.6498896767660704E-019 - 27.899999999999991 -6.1522456196499761E-019 - 27.959999999999994 -6.5330348959247733E-019 - 28.019999999999996 -6.7658083255554461E-019 - 28.079999999999998 -6.8265443224977817E-019 - 28.140000000000001 -6.6947287595484056E-019 - 28.200000000000003 -6.3543824461322432E-019 - 28.259999999999991 -5.7949732332086776E-019 - 28.319999999999993 -5.0121534887987797E-019 - 28.379999999999995 -4.0082651325637719E-019 - 28.439999999999998 -2.7925530468656585E-019 - 28.500000000000000 -1.3810223077626092E-019 - 28.560000000000002 2.0409538423311436E-020 - 28.619999999999990 1.9353126936935816E-019 - 28.679999999999993 3.7813325515987074E-019 - 28.739999999999995 5.7089531716155970E-019 - 28.799999999999997 7.6854647029339219E-019 - 28.859999999999999 9.6814947115014565E-019 - 28.920000000000002 1.1674241038497823E-018 - 28.980000000000004 1.3651080176170912E-018 - 29.039999999999992 1.5613399378936217E-018 - 29.099999999999994 1.7580603393716906E-018 - 29.159999999999997 1.9594164231423938E-018 - 29.219999999999999 2.1721560955082493E-018 - 29.280000000000001 2.4060000665808270E-018 - 29.340000000000003 2.6739699958341124E-018 - 29.399999999999991 2.9926773533259742E-018 - 29.459999999999994 3.3825324778275549E-018 - 29.519999999999996 3.8678871404581620E-018 - 29.579999999999998 4.4770935978323377E-018 - 29.640000000000001 5.2424677587322630E-018 - 29.700000000000003 6.2001694805397527E-018 - 29.759999999999991 7.3899928497969242E-018 - 29.819999999999993 8.8550847925904116E-018 - 29.879999999999995 1.0641589821255088E-017 - 29.939999999999998 1.2798279493223337E-017 - 30.000000000000000 1.5376141487234240E-017 - 30.060000000000002 1.8428008429938968E-017 - 30.119999999999990 2.2008228988654288E-017 - 30.179999999999993 2.6172448416595708E-017 - 30.239999999999995 3.0977515020329590E-017 - 30.299999999999997 3.6481599697060216E-017 - 30.359999999999999 4.2744495038843964E-017 - 30.420000000000002 4.9828258735428352E-017 - 30.480000000000004 5.7798091209031861E-017 - 30.539999999999992 6.6723640778935051E-017 - 30.599999999999994 7.6680603282946591E-017 - 30.659999999999997 8.7752726473689729E-017 - 30.719999999999999 1.0003422397356458E-016 - 30.780000000000001 1.1363251036579261E-016 - 30.840000000000003 1.2867136055159980E-016 - 30.899999999999991 1.4529425938714709E-016 - 30.959999999999994 1.6366817122803011E-016 - 31.019999999999996 1.8398730479147216E-016 - 31.079999999999998 2.0647721033108338E-016 - 31.140000000000001 2.3139878475942666E-016 - 31.200000000000003 2.5905198203864883E-016 - 31.259999999999991 2.8977984454876705E-016 - 31.319999999999993 3.2397187397776847E-016 - 31.379999999999995 3.6206682238078060E-016 - 31.439999999999998 4.0455557085553984E-016 - 31.500000000000000 4.5198280020503874E-016 - 31.560000000000002 5.0494825472921370E-016 - 31.619999999999990 5.6410686570354174E-016 - 31.679999999999993 6.3016840219749623E-016 - 31.739999999999995 7.0389576483031014E-016 - 31.799999999999997 7.8610224261621882E-016 - 31.859999999999999 8.7764770254066538E-016 - 31.920000000000002 9.7943325226240005E-016 - 31.980000000000004 1.0923954725449941E-015 - 32.039999999999992 1.2174977983177322E-015 - 32.099999999999994 1.3557216395952583E-015 - 32.159999999999997 1.5080547106764106E-015 - 32.219999999999999 1.6754782954112013E-015 - 32.280000000000001 1.8589522148791256E-015 - 32.340000000000003 2.0593966795863956E-015 - 32.399999999999991 2.2776724898921573E-015 - 32.459999999999994 2.5145566722783563E-015 - 32.519999999999996 2.7707162035893365E-015 - 32.579999999999998 3.0466749345558687E-015 - 32.640000000000001 3.3427759965302259E-015 - 32.700000000000003 3.6591393534752737E-015 - 32.759999999999991 3.9956138349670394E-015 - 32.819999999999993 4.3517149371107864E-015 - 32.879999999999995 4.7265611028200876E-015 - 32.939999999999998 5.1187915097991965E-015 - 33.000000000000000 5.5264784789576758E-015 - 33.060000000000002 5.9470222253617895E-015 - 33.119999999999990 6.3770292744497927E-015 - 33.179999999999993 6.8121731683394248E-015 - 33.239999999999995 7.2470379171288215E-015 - 33.299999999999997 7.6749353194718340E-015 - 33.359999999999999 8.0876940226430015E-015 - 33.420000000000002 8.4754310702530756E-015 - 33.480000000000004 8.8262724158894534E-015 - 33.539999999999992 9.1260596800602129E-015 - 33.599999999999994 9.3579924039342647E-015 - 33.659999999999997 9.5022431968278347E-015 - 33.719999999999999 9.5355058796303202E-015 - 33.780000000000001 9.4304950413675849E-015 - 33.840000000000003 9.1553735361979733E-015 - 33.899999999999991 8.6730956102838058E-015 - 33.959999999999994 7.9406849626646351E-015 - 34.019999999999996 6.9083980967254995E-015 - 34.079999999999998 5.5187594241278100E-015 - 34.140000000000001 3.7055336977872185E-015 - 34.200000000000003 1.3924849777688172E-015 - 34.259999999999991 -1.5080143902576239E-015 - 34.319999999999993 -5.0964858507983454E-015 - 34.379999999999995 -9.4881135128251772E-015 - 34.439999999999998 -1.4814744670698156E-014 - 34.500000000000000 -2.1227091485236293E-014 - 34.560000000000002 -2.8897218093025354E-014 - 34.619999999999990 -3.8021430934290448E-014 - 34.679999999999993 -4.8823388708128801E-014 - 34.739999999999995 -6.1557645898029150E-014 - 34.799999999999997 -7.6513614792176431E-014 - 34.859999999999999 -9.4019979363421628E-014 - 34.920000000000002 -1.1444954105677659E-013 - 34.980000000000004 -1.3822487431827630E-013 - 35.039999999999992 -1.6582427401649325E-013 - 35.099999999999994 -1.9778831007154398E-013 - 35.159999999999997 -2.3472748297215390E-013 - 35.219999999999999 -2.7733024379853005E-013 - 35.280000000000001 -3.2637200234234567E-013 - 35.340000000000003 -3.8272518418944732E-013 - 35.399999999999991 -4.4736973018168795E-013 - 35.459999999999994 -5.2140547037254941E-013 - 35.519999999999996 -6.0606449702355073E-013 - 35.579999999999998 -7.0272614380641476E-013 - 35.640000000000001 -8.1293186723072127E-013 - 35.700000000000003 -9.3840251619818574E-013 - 35.759999999999991 -1.0810562153613329E-012 - 35.819999999999993 -1.2430292035180702E-012 - 35.879999999999995 -1.4266962123803411E-012 - 35.939999999999998 -1.6346947862488454E-012 - 36.000000000000000 -1.8699510699266335E-012 - 36.060000000000002 -2.1357063869996780E-012 - 36.119999999999990 -2.4355462747842633E-012 - 36.179999999999993 -2.7734343430988995E-012 - 36.239999999999995 -3.1537444765223464E-012 - 36.299999999999997 -3.5812995482968713E-012 - 36.359999999999999 -4.0614086562353187E-012 - 36.420000000000002 -4.5999107691786235E-012 - 36.479999999999990 -5.2032182807793311E-012 - 36.539999999999992 -5.8783666515462371E-012 - 36.599999999999994 -6.6330614724518552E-012 - 36.659999999999997 -7.4757371524938132E-012 - 36.719999999999999 -8.4156066280986763E-012 - 36.780000000000001 -9.4627240980538939E-012 - 36.840000000000003 -1.0628043966940257E-011 - 36.899999999999991 -1.1923488882475817E-011 - 36.959999999999994 -1.3362005227419711E-011 - 37.019999999999996 -1.4957642904945925E-011 - 37.079999999999998 -1.6725611149873168E-011 - 37.140000000000001 -1.8682345854473340E-011 - 37.200000000000003 -2.0845590266883642E-011 - 37.259999999999991 -2.3234436093909778E-011 - 37.319999999999993 -2.5869414043638328E-011 - 37.379999999999995 -2.8772520786725304E-011 - 37.439999999999998 -3.1967290622672110E-011 - 37.500000000000000 -3.5478834967209187E-011 - 37.560000000000002 -3.9333861138337913E-011 - 37.619999999999990 -4.3560711162622667E-011 - 37.679999999999993 -4.8189332203777333E-011 - 37.739999999999995 -5.3251277530644270E-011 - 37.799999999999997 -5.8779654924634066E-011 - 37.859999999999999 -6.4809045684611037E-011 - 37.920000000000002 -7.1375398569241021E-011 - 37.979999999999990 -7.8515849830003889E-011 - 38.039999999999992 -8.6268528274993758E-011 - 38.099999999999994 -9.4672294610531981E-011 - 38.159999999999997 -1.0376642144258498E-010 - 38.219999999999999 -1.1359009770605912E-010 - 38.280000000000001 -1.2418199166354591E-010 - 38.340000000000003 -1.3557953857094026E-010 - 38.399999999999991 -1.4781828712372056E-010 - 38.459999999999994 -1.6093096269841013E-010 - 38.519999999999996 -1.7494635245597994E-010 - 38.579999999999998 -1.8988808813866164E-010 - 38.640000000000001 -2.0577314392245309E-010 - 38.700000000000003 -2.2261007230443564E-010 - 38.759999999999991 -2.4039704149496974E-010 - 38.819999999999993 -2.5911940334638434E-010 - 38.879999999999995 -2.7874701549520882E-010 - 38.939999999999998 -2.9923115243248570E-010 - 39.000000000000000 -3.2050068206766580E-010 - 39.060000000000002 -3.4245800654073756E-010 - 39.119999999999990 -3.6497425722478913E-010 - 39.179999999999993 -3.8788371496635982E-010 - 39.239999999999995 -4.1097774393619222E-010 - 39.299999999999997 -4.3399723573733369E-010 - 39.359999999999999 -4.5662479723927256E-010 - 39.420000000000002 -4.7847522680009206E-010 - 39.479999999999990 -4.9908501943726140E-010 - 39.539999999999992 -5.1790044187143176E-010 - 39.599999999999994 -5.3426394207036685E-010 - 39.659999999999997 -5.4739876435896436E-010 - 39.719999999999999 -5.5639169851826941E-010 - 39.780000000000001 -5.6017376461896024E-010 - 39.840000000000003 -5.5749790774490907E-010 - 39.899999999999991 -5.4691477153315898E-010 - 39.959999999999994 -5.2674423082244739E-010 - 40.019999999999996 -4.9504531015071154E-010 - 40.079999999999998 -4.4958002964800941E-010 - 40.140000000000001 -3.8777611823636864E-010 - 40.200000000000003 -3.0668126456386884E-010 - 40.259999999999991 -2.0291648803783816E-010 - 40.319999999999993 -7.2619722644354955E-011 - 40.379999999999995 8.8613921578652491E-011 - 40.439999999999998 2.8579933562295460E-010 - 40.500000000000000 5.2463876499660860E-010 - 40.560000000000002 8.1160159165942504E-010 - 40.619999999999990 1.1540207536217639E-009 - 40.679999999999993 1.5601946941181604E-009 - 40.739999999999995 2.0395031575605098E-009 - 40.799999999999997 2.6025316925590048E-009 - 40.859999999999999 3.2612139601863014E-009 - 40.920000000000002 4.0289875620450759E-009 - 40.979999999999990 4.9209631035952558E-009 - 41.039999999999992 5.9541152644354865E-009 - 41.099999999999994 7.1474999269490496E-009 - 41.159999999999997 8.5224705495245767E-009 - 41.219999999999999 1.0102945824841947E-008 - 41.280000000000001 1.1915683111935937E-008 - 41.340000000000003 1.3990592311959248E-008 - 41.399999999999991 1.6361070048212880E-008 - 41.459999999999994 1.9064383457235552E-008 - 41.519999999999996 2.2142057534439725E-008 - 41.579999999999998 2.5640360232502473E-008 - 41.640000000000001 2.9610755470424977E-008 - 41.700000000000003 3.4110478967945947E-008 - 41.759999999999991 3.9203117657640415E-008 - 41.819999999999993 4.4959237361349859E-008 - 41.879999999999995 5.1457129020392749E-008 - 41.939999999999998 5.8783558252181981E-008 - 42.000000000000000 6.7034620017702634E-008 - 42.060000000000002 7.6316676867539546E-008 - 42.119999999999990 8.6747345535328062E-008 - 42.179999999999993 9.8456606830536629E-008 - 42.239999999999995 1.1158802683813396E-007 - 42.299999999999997 1.2630002718203604E-007 - 42.359999999999999 1.4276733905689561E-007 - 42.420000000000002 1.6118248420832442E-007 - 42.479999999999990 1.8175757442154209E-007 - 42.539999999999992 2.0472605575571778E-007 - 42.599999999999994 2.3034464763778024E-007 - 42.659999999999997 2.5889567012188734E-007 - 42.719999999999999 2.9068910203954669E-007 - 42.780000000000001 3.2606543605389117E-007 - 42.840000000000003 3.6539820563728623E-007 - 42.899999999999991 4.0909696908422471E-007 - 42.959999999999994 4.5761061158908275E-007 - 43.019999999999996 5.1143066065580862E-007 - 43.079999999999998 5.7109524280882967E-007 - 43.140000000000001 6.3719292894073585E-007 - 43.200000000000003 7.1036718899766049E-007 - 43.259999999999991 7.9132115823460424E-007 - 43.319999999999993 8.8082260911997550E-007 - 43.379999999999995 9.7970937246558905E-007 - 43.439999999999998 1.0888954781676437E-006 - 43.500000000000000 1.2093771257775252E-006 - 43.560000000000002 1.3422397542579813E-006 - 43.619999999999990 1.4886651365976893E-006 - 43.679999999999993 1.6499393591977797E-006 - 43.739999999999995 1.8274610626709465E-006 - 43.799999999999997 2.0227510487814902E-006 - 43.859999999999999 2.2374606143830967E-006 - 43.920000000000002 2.4733829430782141E-006 - 43.979999999999990 2.7324636529026029E-006 - 44.039999999999992 3.0168128744950183E-006 - 44.099999999999994 3.3287176564464945E-006 - 44.159999999999997 3.6706551663666654E-006 - 44.219999999999999 4.0453076335764704E-006 - 44.280000000000001 4.4555765439848269E-006 - 44.340000000000003 4.9045987694025470E-006 - 44.399999999999991 5.3957654213289782E-006 - 44.459999999999994 5.9327386483129748E-006 - 44.519999999999996 6.5194709049039751E-006 - 44.579999999999998 7.1602262115189161E-006 - 44.640000000000001 7.8596024308002477E-006 - 44.700000000000003 8.6225516958705263E-006 - 44.759999999999991 9.4544085815316582E-006 - 44.819999999999993 1.0360911539734977E-005 - 44.879999999999995 1.1348233879011048E-005 - 44.939999999999998 1.2423008394323986E-005 - 45.000000000000000 1.3592363533188208E-005 - 45.060000000000002 1.4863950615516630E-005 - 45.119999999999990 1.6245975954613597E-005 - 45.179999999999993 1.7747239175368097E-005 - 45.239999999999995 1.9377167001701026E-005 - 45.299999999999997 2.1145856173840766E-005 - 45.359999999999999 2.3064104732409988E-005 - 45.420000000000002 2.5143464520860467E-005 - 45.479999999999990 2.7396279991661014E-005 - 45.539999999999992 2.9835733240532400E-005 - 45.599999999999994 3.2475889058308950E-005 - 45.659999999999997 3.5331753344378589E-005 - 45.719999999999999 3.8419316768244657E-005 - 45.780000000000001 4.1755605014791185E-005 - 45.840000000000003 4.5358745300690394E-005 - 45.899999999999991 4.9248014105318618E-005 - 45.959999999999994 5.3443892107400108E-005 - 46.019999999999996 5.7968139285381797E-005 - 46.079999999999998 6.2843849306901020E-005 - 46.140000000000001 6.8095499239425859E-005 - 46.200000000000003 7.3749046756158503E-005 - 46.259999999999991 7.9831969536162510E-005 - 46.319999999999993 8.6373345213409949E-005 - 46.379999999999995 9.3403901259455494E-005 - 46.439999999999998 1.0095614180305637E-004 - 46.500000000000000 1.0906437214036012E-004 - 46.560000000000002 1.1776474940310247E-004 - 46.619999999999990 1.2709540735564038E-004 - 46.679999999999993 1.3709652499800464E-004 - 46.739999999999995 1.4781036395726291E-004 - 46.799999999999997 1.5928138941573495E-004 - 46.859999999999999 1.7155630749889289E-004 - 46.920000000000002 1.8468413758558356E-004 - 46.979999999999990 1.9871631602660038E-004 - 47.039999999999992 2.1370674995179850E-004 - 47.099999999999994 2.2971189620412232E-004 - 47.159999999999997 2.4679085540003199E-004 - 47.219999999999999 2.6500531518826201E-004 - 47.280000000000001 2.8441982043288190E-004 - 47.340000000000003 3.0510164307499869E-004 - 47.399999999999991 3.2712088401364763E-004 - 47.459999999999994 3.5055065859704564E-004 - 47.519999999999996 3.7546701109944459E-004 - 47.579999999999998 4.0194895721640066E-004 - 47.640000000000001 4.3007857825555593E-004 - 47.700000000000003 4.5994107316225333E-004 - 47.759999999999991 4.9162471622921230E-004 - 47.819999999999993 5.2522090377408244E-004 - 47.879999999999995 5.6082420543303107E-004 - 47.939999999999998 5.9853236184452920E-004 - 48.000000000000000 6.3844616626933606E-004 - 48.060000000000002 6.8066961416395934E-004 - 48.119999999999990 7.2530968334683934E-004 - 48.179999999999993 7.7247662876632223E-004 - 48.239999999999995 8.2228357612889485E-004 - 48.299999999999997 8.7484666605766495E-004 - 48.359999999999999 9.3028503148018075E-004 - 48.420000000000002 9.8872042155747361E-004 - 48.479999999999990 1.0502774121272746E-003 - 48.539999999999992 1.1150833148299455E-003 - 48.599999999999994 1.1832677063428429E-003 - 48.659999999999997 1.2549625051387371E-003 - 48.719999999999999 1.3303021228912000E-003 - 48.780000000000001 1.4094227677807951E-003 - 48.840000000000003 1.4924623294129493E-003 - 48.899999999999991 1.5795605507340617E-003 - 48.959999999999994 1.6708586090028366E-003 - 49.019999999999996 1.7664986648464436E-003 - 49.079999999999998 1.8666239369398529E-003 - 49.140000000000001 1.9713781475584656E-003 - 49.200000000000003 2.0809052076154410E-003 - 49.259999999999991 2.1953494070208459E-003 - 49.319999999999993 2.3148542719318983E-003 - 49.379999999999995 2.4395632665634597E-003 - 49.439999999999998 2.5696181949182635E-003 - 49.500000000000000 2.7051598859150483E-003 - 49.560000000000002 2.8463266941288843E-003 - 49.619999999999990 2.9932558417961634E-003 - 49.679999999999993 3.1460806271641994E-003 - 49.739999999999995 3.3049321997615944E-003 - 49.799999999999997 3.4699372381275001E-003 - 49.859999999999999 3.6412188560327411E-003 - 49.920000000000002 3.8188952470043832E-003 - 49.979999999999990 4.0030801236436335E-003 - 50.039999999999992 4.1938804968155779E-003 - 50.099999999999994 4.3913977824985746E-003 - 50.159999999999997 4.5957266304743035E-003 - 50.219999999999999 4.8069537736740667E-003 - 50.280000000000001 5.0251594140604443E-003 - 50.340000000000003 5.2504137733517349E-003 - 50.399999999999991 5.4827792257843115E-003 - 50.459999999999994 5.7223077768259797E-003 - 50.519999999999996 5.9690418675697561E-003 - 50.579999999999998 6.2230125288227564E-003 - 50.640000000000001 6.4842386966817425E-003 - 50.700000000000003 6.7527299456950230E-003 - 50.759999999999991 7.0284805627767958E-003 - 50.819999999999993 7.3114732880335178E-003 - 50.879999999999995 7.6016768854563765E-003 - 50.939999999999998 7.8990463993440542E-003 - 51.000000000000000 8.2035220641753399E-003 - 51.060000000000002 8.5150285744572361E-003 - 51.119999999999990 8.8334750270191182E-003 - 51.179999999999993 9.1587553603096512E-003 - 51.239999999999995 9.4907447306515104E-003 - 51.299999999999997 9.8293044693564032E-003 - 51.359999999999999 1.0174275981423658E-002 - 51.420000000000002 1.0525484412874713E-002 - 51.479999999999990 1.0882737350402787E-002 - 51.539999999999992 1.1245821813807190E-002 - 51.599999999999994 1.1614509732092181E-002 - 51.659999999999997 1.1988552890869680E-002 - 51.719999999999999 1.2367684022390028E-002 - 51.780000000000001 1.2751616530650808E-002 - 51.840000000000003 1.3140046907799395E-002 - 51.899999999999991 1.3532652552111377E-002 - 51.959999999999994 1.3929089964811285E-002 - 52.019999999999996 1.4328998743503851E-002 - 52.079999999999998 1.4731999945865220E-002 - 52.140000000000001 1.5137694512549158E-002 - 52.200000000000003 1.5545667062893377E-002 - 52.259999999999991 1.5955483898947069E-002 - 52.319999999999993 1.6366696478853401E-002 - 52.379999999999995 1.6778835603692921E-002 - 52.439999999999998 1.7191419513040079E-002 - 52.500000000000000 1.7603948217387790E-002 - 52.560000000000002 1.8015905811439643E-002 - 52.619999999999990 1.8426766674984000E-002 - 52.679999999999993 1.8835986398467681E-002 - 52.739999999999995 1.9243011983603377E-002 - 52.799999999999997 1.9647274946874335E-002 - 52.859999999999999 2.0048198135387912E-002 - 52.920000000000002 2.0445193844030572E-002 - 52.979999999999990 2.0837665027743518E-002 - 53.039999999999992 2.1225008321427988E-002 - 53.099999999999994 2.1606612642588389E-002 - 53.159999999999997 2.1981860563065749E-002 - 53.219999999999999 2.2350134398537339E-002 - 53.280000000000001 2.2710808903373791E-002 - 53.339999999999989 2.3063260336169282E-002 - 53.399999999999991 2.3406862921638977E-002 - 53.459999999999994 2.3740990825001820E-002 - 53.519999999999996 2.4065022858004513E-002 - 53.579999999999998 2.4378342035363459E-002 - 53.640000000000001 2.4680337006968821E-002 - 53.700000000000003 2.4970402723443429E-002 - 53.759999999999991 2.5247940168333718E-002 - 53.819999999999993 2.5512363353844991E-002 - 53.879999999999995 2.5763098407191536E-002 - 53.939999999999998 2.5999578725308364E-002 - 54.000000000000000 2.6221258096268268E-002 - 54.060000000000002 2.6427603163379419E-002 - 54.119999999999990 2.6618098161764754E-002 - 54.179999999999993 2.6792247629121479E-002 - 54.239999999999995 2.6949572374748376E-002 - 54.299999999999997 2.7089618861880615E-002 - 54.359999999999999 2.7211954494479919E-002 - 54.420000000000002 2.7316170944738850E-002 - 54.479999999999990 2.7401882975154428E-002 - 54.539999999999992 2.7468737054538967E-002 - 54.599999999999994 2.7516401753467236E-002 - 54.659999999999997 2.7544576925248254E-002 - 54.719999999999999 2.7552991904330706E-002 - 54.780000000000001 2.7541407506445140E-002 - 54.839999999999989 2.7509614168149916E-002 - 54.899999999999991 2.7457434592242754E-002 - 54.959999999999994 2.7384725895036901E-002 - 55.019999999999996 2.7291378703530926E-002 - 55.079999999999998 2.7177315461811912E-002 - 55.140000000000001 2.7042498234964376E-002 - 55.200000000000003 2.6886918759556094E-002 - 55.259999999999991 2.6710607321922462E-002 - 55.319999999999993 2.6513627170389686E-002 - 55.379999999999995 2.6296079922747774E-002 - 55.439999999999998 2.6058100495093148E-002 - 55.500000000000000 2.5799861906147487E-002 - 55.560000000000002 2.5521570345005417E-002 - 55.619999999999990 2.5223466286515259E-002 - 55.679999999999993 2.4905828309548191E-002 - 55.739999999999995 2.4568965895485871E-002 - 55.799999999999997 2.4213223214146543E-002 - 55.859999999999999 2.3838977777981302E-002 - 55.920000000000002 2.3446636349705036E-002 - 55.979999999999990 2.3036643356183634E-002 - 56.039999999999992 2.2609467265930376E-002 - 56.099999999999994 2.2165610281439246E-002 - 56.159999999999997 2.1705600795917483E-002 - 56.219999999999999 2.1229993958732280E-002 - 56.280000000000001 2.0739373035799657E-002 - 56.339999999999989 2.0234342926615641E-002 - 56.399999999999991 1.9715532712898783E-002 - 56.459999999999994 1.9183600410563540E-002 - 56.519999999999996 1.8639212877292137E-002 - 56.579999999999998 1.8083061683361469E-002 - 56.640000000000001 1.7515856751701104E-002 - 56.700000000000003 1.6938321038709167E-002 - 56.759999999999991 1.6351194498589901E-002 - 56.819999999999993 1.5755226646978069E-002 - 56.879999999999995 1.5151179990283812E-002 - 56.939999999999998 1.4539824641308253E-002 - 57.000000000000000 1.3921938093997164E-002 - 57.060000000000002 1.3298303940494870E-002 - 57.119999999999990 1.2669710355094909E-002 - 57.179999999999993 1.2036946580466890E-002 - 57.239999999999995 1.1400802138508461E-002 - 57.299999999999997 1.0762065544399086E-002 - 57.359999999999999 1.0121522892562899E-002 - 57.420000000000002 9.4799549070299499E-003 - 57.479999999999990 8.8381357061630104E-003 - 57.539999999999992 8.1968315670066585E-003 - 57.599999999999994 7.5568006745753667E-003 - 57.659999999999997 6.9187881189188812E-003 - 57.719999999999999 6.2835278669525511E-003 - 57.780000000000001 5.6517398082540993E-003 - 57.839999999999989 5.0241281934268476E-003 - 57.899999999999991 4.4013807596115428E-003 - 57.959999999999994 3.7841679568860129E-003 - 58.019999999999996 3.1731412298265701E-003 - 58.079999999999998 2.5689313125805968E-003 - 58.140000000000001 1.9721482872872716E-003 - 58.200000000000003 1.3833800585462256E-003 - 58.259999999999991 8.0319149626300202E-004 - 58.319999999999993 2.3212408888692126E-004 - 58.379999999999995 -3.2930554388052786E-004 - 58.439999999999998 -8.8060605524572220E-004 - 58.500000000000000 -1.4213120856504367E-003 - 58.560000000000002 -1.9509840149310883E-003 - 58.619999999999990 -2.4692092083330617E-003 - 58.679999999999993 -2.9756022785741103E-003 - 58.739999999999995 -3.4698047546171231E-003 - 58.799999999999997 -3.9514866831436464E-003 - 58.859999999999999 -4.4203456699632819E-003 - 58.920000000000002 -4.8761067635992705E-003 - 58.979999999999990 -5.3185219524411464E-003 - 59.039999999999992 -5.7473725535457524E-003 - 59.099999999999994 -6.1624660344860808E-003 - 59.159999999999997 -6.5636378621138176E-003 - 59.219999999999999 -6.9507510960452948E-003 - 59.280000000000001 -7.3236937826607652E-003 - 59.339999999999989 -7.6823813164228595E-003 - 59.399999999999991 -8.0267547320292242E-003 - 59.459999999999994 -8.3567807242068467E-003 - 59.519999999999996 -8.6724502531108742E-003 - 59.579999999999998 -8.9737769606962892E-003 - 59.640000000000001 -9.2608007295633243E-003 - 59.700000000000003 -9.5335811878539470E-003 - 59.759999999999991 -9.7922015320416906E-003 - 59.819999999999993 -1.0036765960196538E-002 - 59.879999999999995 -1.0267399002759305E-002 - 59.939999999999998 -1.0484243593831728E-002 - 60.000000000000000 -1.0687462771338778E-002 - 60.060000000000002 -1.0877236330291432E-002 - 60.119999999999990 -1.1053761271141958E-002 - 60.179999999999993 -1.1217250096743863E-002 - 60.239999999999995 -1.1367932074599350E-002 - 60.299999999999997 -1.1506049297031385E-002 - 60.359999999999999 -1.1631855118139399E-002 - 60.420000000000002 -1.1745617781665031E-002 - 60.479999999999990 -1.1847616356427688E-002 - 60.539999999999992 -1.1938138548311331E-002 - 60.599999999999994 -1.2017483836833499E-002 - 60.659999999999997 -1.2085957408584945E-002 - 60.719999999999999 -1.2143873471165254E-002 - 60.780000000000001 -1.2191552956725884E-002 - 60.839999999999989 -1.2229322823147770E-002 - 60.899999999999991 -1.2257513231892359E-002 - 60.959999999999994 -1.2276459038057901E-002 - 61.019999999999996 -1.2286499587113895E-002 - 61.079999999999998 -1.2287973941666169E-002 - 61.140000000000001 -1.2281226215854993E-002 - 61.200000000000003 -1.2266597346242771E-002 - 61.259999999999991 -1.2244431369597599E-002 - 61.319999999999993 -1.2215070694553331E-002 - 61.379999999999995 -1.2178854945773797E-002 - 61.439999999999998 -1.2136124108257472E-002 - 61.500000000000000 -1.2087213763667554E-002 - 61.560000000000002 -1.2032456737132078E-002 - 61.619999999999990 -1.1972183656405235E-002 - 61.679999999999993 -1.1906718113117129E-002 - 61.739999999999995 -1.1836380450139997E-002 - 61.799999999999997 -1.1761484663005556E-002 - 61.859999999999999 -1.1682340901040490E-002 - 61.920000000000002 -1.1599251603015798E-002 - 61.979999999999990 -1.1512513230816718E-002 - 62.039999999999992 -1.1422414639268821E-002 - 62.099999999999994 -1.1329238926555796E-002 - 62.159999999999997 -1.1233260351069946E-002 - 62.219999999999999 -1.1134746609566780E-002 - 62.280000000000001 -1.1033956486464457E-002 - 62.339999999999989 -1.0931141567265448E-002 - 62.399999999999991 -1.0826545043843682E-002 - 62.459999999999994 -1.0720400789743423E-002 - 62.519999999999996 -1.0612934695712020E-002 - 62.579999999999998 -1.0504364055327786E-002 - 62.640000000000001 -1.0394897007767820E-002 - 62.700000000000003 -1.0284734451162375E-002 - 62.759999999999991 -1.0174066719676736E-002 - 62.819999999999993 -1.0063076156146482E-002 - 62.879999999999995 -9.9519366043352327E-003 - 62.939999999999998 -9.8408124280362948E-003 - 63.000000000000000 -9.7298594948211775E-003 - 63.060000000000002 -9.6192264870742349E-003 - 63.119999999999990 -9.5090512445733643E-003 - 63.179999999999993 -9.3994647805353947E-003 - 63.239999999999995 -9.2905897606667901E-003 - 63.299999999999997 -9.1825415004840316E-003 - 63.359999999999999 -9.0754267627515053E-003 - 63.420000000000002 -8.9693439707219623E-003 - 63.479999999999990 -8.8643840853458687E-003 - 63.539999999999992 -8.7606311807219665E-003 - 63.599999999999994 -8.6581633154923787E-003 - 63.659999999999997 -8.5570488864454130E-003 - 63.719999999999999 -8.4573522824135453E-003 - 63.780000000000001 -8.3591297794983494E-003 - 63.839999999999989 -8.2624324282541094E-003 - 63.899999999999991 -8.1673036769799728E-003 - 63.959999999999994 -8.0737824326702207E-003 - 64.019999999999996 -7.9819018431937349E-003 - 64.079999999999998 -7.8916900058668051E-003 - 64.140000000000001 -7.8031686821063758E-003 - 64.200000000000003 -7.7163564022528358E-003 - 64.259999999999991 -7.6312658921985528E-003 - 64.319999999999993 -7.5479063297053551E-003 - 64.379999999999995 -7.4662818435800356E-003 - 64.439999999999998 -7.3863938854553599E-003 - 64.500000000000000 -7.3082389451232157E-003 - 64.560000000000002 -7.2318110482439205E-003 - 64.619999999999990 -7.1571008995820421E-003 - 64.679999999999993 -7.0840957707536149E-003 - 64.739999999999995 -7.0127811034667881E-003 - 64.799999999999997 -6.9431384984076300E-003 - 64.859999999999999 -6.8751489404671341E-003 - 64.920000000000002 -6.8087895054851216E-003 - 64.979999999999990 -6.7440365356465064E-003 - 65.039999999999992 -6.6808640165128708E-003 - 65.099999999999994 -6.6192451352512036E-003 - 65.159999999999997 -6.5591515466181076E-003 - 65.219999999999999 -6.5005532958584472E-003 - 65.280000000000001 -6.4434197405611252E-003 - 65.339999999999989 -6.3877187800758205E-003 - 65.399999999999991 -6.3334183574858451E-003 - 65.459999999999994 -6.2804848962731341E-003 - 65.519999999999996 -6.2288857781565409E-003 - 65.579999999999998 -6.1785871783312726E-003 - 65.640000000000001 -6.1295541043893580E-003 - 65.700000000000003 -6.0817531335049559E-003 - 65.759999999999991 -6.0351490821908584E-003 - 65.819999999999993 -5.9897083092488096E-003 - 65.879999999999995 -5.9453967193191593E-003 - 65.939999999999998 -5.9021797749470454E-003 - 66.000000000000000 -5.8600241484651856E-003 - 66.060000000000002 -5.8188957193781605E-003 - 66.119999999999990 -5.7787615307042439E-003 - 66.179999999999993 -5.7395891450076550E-003 - 66.239999999999995 -5.7013457752937181E-003 - 66.299999999999997 -5.6639999984888509E-003 - 66.359999999999999 -5.6275205474703091E-003 - 66.420000000000002 -5.5918754602372342E-003 - 66.479999999999990 -5.5570355081560746E-003 - 66.539999999999992 -5.5229704217950037E-003 - 66.599999999999994 -5.4896507952846910E-003 - 66.659999999999997 -5.4570484648136536E-003 - 66.719999999999999 -5.4251353067978503E-003 - 66.780000000000001 -5.3938833118886455E-003 - 66.839999999999989 -5.3632654901242917E-003 - 66.899999999999991 -5.3332555924439726E-003 - 66.959999999999994 -5.3038271115903798E-003 - 67.019999999999996 -5.2749547777666481E-003 - 67.079999999999998 -5.2466128626571301E-003 - 67.140000000000001 -5.2187762912718084E-003 - 67.199999999999989 -5.1914213328925797E-003 - 67.259999999999991 -5.1645235489393426E-003 - 67.319999999999993 -5.1380592810055022E-003 - 67.379999999999995 -5.1120048313305650E-003 - 67.439999999999998 -5.0863372253789046E-003 - 67.500000000000000 -5.0610328898035919E-003 - 67.560000000000002 -5.0360695771483428E-003 - 67.619999999999990 -5.0114244736905351E-003 - 67.679999999999993 -4.9870758294922194E-003 - 67.739999999999995 -4.9630012646965198E-003 - 67.799999999999997 -4.9391792352081942E-003 - 67.859999999999999 -4.9155875237253798E-003 - 67.920000000000002 -4.8922046200311174E-003 - 67.979999999999990 -4.8690094995874770E-003 - 68.039999999999992 -4.8459803591171680E-003 - 68.099999999999994 -4.8230958943482651E-003 - 68.159999999999997 -4.8003355817375463E-003 - 68.219999999999999 -4.7776778687609834E-003 - 68.280000000000001 -4.7551022565770354E-003 - 68.339999999999989 -4.7325876096723785E-003 - 68.399999999999991 -4.7101137025143966E-003 - 68.459999999999994 -4.6876590118800354E-003 - 68.519999999999996 -4.6652035843132936E-003 - 68.579999999999998 -4.6427269997363404E-003 - 68.640000000000001 -4.6202087130151883E-003 - 68.699999999999989 -4.5976281731774345E-003 - 68.759999999999991 -4.5749656582068253E-003 - 68.819999999999993 -4.5522016389477199E-003 - 68.879999999999995 -4.5293157851977314E-003 - 68.939999999999998 -4.5062890770332237E-003 - 69.000000000000000 -4.4831024094343459E-003 - 69.060000000000002 -4.4597367604050867E-003 - 69.119999999999990 -4.4361738746002497E-003 - 69.179999999999993 -4.4123955351637540E-003 - 69.239999999999995 -4.3883834239799024E-003 - 69.299999999999997 -4.3641204492313110E-003 - 69.359999999999999 -4.3395892028271522E-003 - 69.420000000000002 -4.3147740213814196E-003 - 69.479999999999990 -4.2896586360835131E-003 - 69.539999999999992 -4.2642277051817626E-003 - 69.599999999999994 -4.2384662862791191E-003 - 69.659999999999997 -4.2123604374927105E-003 - 69.719999999999999 -4.1858967493737407E-003 - 69.780000000000001 -4.1590617939354941E-003 - 69.839999999999989 -4.1318434351256799E-003 - 69.899999999999991 -4.1042305249849960E-003 - 69.959999999999994 -4.0762125220279548E-003 - 70.019999999999996 -4.0477799194795685E-003 - 70.079999999999998 -4.0189231165022607E-003 - 70.140000000000001 -3.9896341467349087E-003 - 70.199999999999989 -3.9599061268982870E-003 - 70.259999999999991 -3.9297323759058395E-003 - 70.319999999999993 -3.8991079486967581E-003 - 70.379999999999995 -3.8680284125624338E-003 - 70.439999999999998 -3.8364902424877336E-003 - 70.500000000000000 -3.8044914300465384E-003 - 70.560000000000002 -3.7720305789516206E-003 - 70.619999999999990 -3.7391075896339287E-003 - 70.679999999999993 -3.7057235727864877E-003 - 70.739999999999995 -3.6718805379676719E-003 - 70.799999999999997 -3.6375815636973323E-003 - 70.859999999999999 -3.6028307637630420E-003 - 70.920000000000002 -3.5676336049793814E-003 - 70.979999999999990 -3.5319968194890659E-003 - 71.039999999999992 -3.4959279147012828E-003 - 71.099999999999994 -3.4594356459278124E-003 - 71.159999999999997 -3.4225299597725736E-003 - 71.219999999999999 -3.3852219586684657E-003 - 71.280000000000001 -3.3475237649508976E-003 - 71.339999999999989 -3.3094482288153499E-003 - 71.399999999999991 -3.2710099604716181E-003 - 71.459999999999994 -3.2322239557601097E-003 - 71.519999999999996 -3.1931063204333593E-003 - 71.579999999999998 -3.1536744575640487E-003 - 71.640000000000001 -3.1139465403354247E-003 - 71.699999999999989 -3.0739414679729674E-003 - 71.759999999999991 -3.0336790916232637E-003 - 71.819999999999993 -2.9931802122444393E-003 - 71.879999999999995 -2.9524662062222714E-003 - 71.939999999999998 -2.9115597644960621E-003 - 72.000000000000000 -2.8704837434748009E-003 - 72.060000000000002 -2.8292616902409690E-003 - 72.119999999999990 -2.7879180123140590E-003 - 72.179999999999993 -2.7464776099578236E-003 - 72.239999999999995 -2.7049658703498479E-003 - 72.299999999999997 -2.6634086311651105E-003 - 72.359999999999999 -2.6218323134057971E-003 - 72.420000000000002 -2.5802635331494505E-003 - 72.479999999999990 -2.5387293279061319E-003 - 72.539999999999992 -2.4972566900375863E-003 - 72.599999999999994 -2.4558730680058764E-003 - 72.659999999999997 -2.4146058228222056E-003 - 72.719999999999999 -2.3734825454468653E-003 - 72.780000000000001 -2.3325306271084630E-003 - 72.839999999999989 -2.2917773147700170E-003 - 72.899999999999991 -2.2512497872341141E-003 - 72.959999999999994 -2.2109749512132237E-003 - 73.019999999999996 -2.1709797620283505E-003 - 73.079999999999998 -2.1312900246463753E-003 - 73.140000000000001 -2.0919318886891301E-003 - 73.199999999999989 -2.0529304691303081E-003 - 73.259999999999991 -2.0143109012576454E-003 - 73.319999999999993 -1.9760974273950803E-003 - 73.379999999999995 -1.9383137661296815E-003 - 73.439999999999998 -1.9009829803622730E-003 - 73.500000000000000 -1.8641274510617992E-003 - 73.560000000000002 -1.8277687015221577E-003 - 73.619999999999990 -1.7919274389070774E-003 - 73.679999999999993 -1.7566237375157001E-003 - 73.739999999999995 -1.7218763782018722E-003 - 73.799999999999997 -1.6877036366904088E-003 - 73.859999999999999 -1.6541226199959988E-003 - 73.920000000000002 -1.6211493298961240E-003 - 73.979999999999990 -1.5887990558513224E-003 - 74.039999999999992 -1.5570856434146342E-003 - 74.099999999999994 -1.5260222020877143E-003 - 74.159999999999997 -1.4956204298869436E-003 - 74.219999999999999 -1.4658914741763219E-003 - 74.280000000000001 -1.4368446872423915E-003 - 74.339999999999989 -1.4084886605841710E-003 - 74.399999999999991 -1.3808308942100268E-003 - 74.459999999999994 -1.3538776668381301E-003 - 74.519999999999996 -1.3276342851627279E-003 - 74.579999999999998 -1.3021047097754360E-003 - 74.640000000000001 -1.2772919554917769E-003 - 74.699999999999989 -1.2531979341058866E-003 - 74.759999999999991 -1.2298235434894593E-003 - 74.819999999999993 -1.2071685123371846E-003 - 74.879999999999995 -1.1852315504990393E-003 - 74.939999999999998 -1.1640106304704478E-003 - 75.000000000000000 -1.1435023861549156E-003 - 75.060000000000002 -1.1237028243518731E-003 - 75.119999999999990 -1.1046068725526271E-003 - 75.179999999999993 -1.0862085955905499E-003 - 75.239999999999995 -1.0685014998316822E-003 - 75.299999999999997 -1.0514779319180201E-003 - 75.359999999999999 -1.0351296225039499E-003 - 75.420000000000002 -1.0194477142423887E-003 - 75.479999999999990 -1.0044225579531859E-003 - 75.539999999999992 -9.9004401051901538E-004 - 75.599999999999994 -9.7630120633214630E-004 - 75.659999999999997 -9.6318276723318685E-004 - 75.719999999999999 -9.5067683141682722E-004 - 75.780000000000001 -9.3877112734551383E-004 - 75.839999999999989 -9.2745277122440047E-004 - 75.899999999999991 -9.1670862066577270E-004 - 75.959999999999994 -9.0652516345757358E-004 - 76.019999999999996 -8.9688847143998718E-004 - 76.079999999999998 -8.8778449777160450E-004 - 76.140000000000001 -8.7919875838709388E-004 - 76.199999999999989 -8.7111651268746400E-004 - 76.259999999999991 -8.6352308026448879E-004 - 76.319999999999993 -8.5640348300281162E-004 - 76.379999999999995 -8.4974260173581321E-004 - 76.439999999999998 -8.4352533397477928E-004 - 76.500000000000000 -8.3773646340611096E-004 - 76.560000000000002 -8.3236088538805365E-004 - 76.619999999999990 -8.2738345783051309E-004 - 76.679999999999993 -8.2278910591138056E-004 - 76.739999999999995 -8.1856276621380421E-004 - 76.799999999999997 -8.1468950887934237E-004 - 76.859999999999999 -8.1115456513597417E-004 - 76.920000000000002 -8.0794312543360132E-004 - 76.979999999999990 -8.0504068282979578E-004 - 77.039999999999992 -8.0243280347003785E-004 - 77.099999999999994 -8.0010514898926749E-004 - 77.159999999999997 -7.9804363390190863E-004 - 77.219999999999999 -7.9623422246564036E-004 - 77.280000000000001 -7.9466307702852931E-004 - 77.339999999999989 -7.9331655740948605E-004 - 77.399999999999991 -7.9218116386545493E-004 - 77.459999999999994 -7.9124356632363378E-004 - 77.519999999999996 -7.9049058020915462E-004 - 77.579999999999998 -7.8990933000015816E-004 - 77.640000000000001 -7.8948703399434527E-004 - 77.699999999999989 -7.8921107901433127E-004 - 77.759999999999991 -7.8906912885020990E-004 - 77.819999999999993 -7.8904894156198017E-004 - 77.879999999999995 -7.8913852825537346E-004 - 77.939999999999998 -7.8932600268247135E-004 - 78.000000000000000 -7.8959972539481300E-004 - 78.060000000000002 -7.8994815494353517E-004 - 78.119999999999990 -7.9036002100669285E-004 - 78.179999999999993 -7.9082411261962541E-004 - 78.239999999999995 -7.9132935285025651E-004 - 78.299999999999997 -7.9186493771860262E-004 - 78.359999999999999 -7.9242013072685052E-004 - 78.420000000000002 -7.9298428187192234E-004 - 78.479999999999990 -7.9354699753961038E-004 - 78.539999999999992 -7.9409790286821390E-004 - 78.599999999999994 -7.9462691720191380E-004 - 78.659999999999997 -7.9512399117950328E-004 - 78.719999999999999 -7.9557923410551723E-004 - 78.780000000000001 -7.9598302067134408E-004 - 78.839999999999989 -7.9632568084039444E-004 - 78.899999999999991 -7.9659787457083222E-004 - 78.959999999999994 -7.9679040811054961E-004 - 79.019999999999996 -7.9689414048561948E-004 - 79.079999999999998 -7.9690021778160787E-004 - 79.140000000000001 -7.9679998533035892E-004 - 79.199999999999989 -7.9658482387544619E-004 - 79.259999999999991 -7.9624641084492646E-004 - 79.319999999999993 -7.9577664520969838E-004 - 79.379999999999995 -7.9516764406811638E-004 - 79.439999999999998 -7.9441165760940819E-004 - 79.500000000000000 -7.9350123789648837E-004 - 79.560000000000002 -7.9242918658068004E-004 - 79.619999999999990 -7.9118866165319975E-004 - 79.679999999999993 -7.8977288901450112E-004 - 79.739999999999995 -7.8817564770364171E-004 - 79.799999999999997 -7.8639095649435603E-004 - 79.859999999999999 -7.8441306279170269E-004 - 79.920000000000002 -7.8223673189690166E-004 - 79.979999999999990 -7.7985705545699664E-004 - 80.039999999999992 -7.7726940830117361E-004 - 80.099999999999994 -7.7446968547662030E-004 - 80.159999999999997 -7.7145406006987483E-004 - 80.219999999999999 -7.6821923925506433E-004 - 80.280000000000001 -7.6476236984978382E-004 - 80.340000000000003 -7.6108094225060515E-004 - 80.400000000000006 -7.5717295930400274E-004 - 80.460000000000008 -7.5303691700816288E-004 - 80.519999999999982 -7.4867181327052743E-004 - 80.579999999999984 -7.4407712008252574E-004 - 80.639999999999986 -7.3925287791037908E-004 - 80.699999999999989 -7.3419968803237093E-004 - 80.759999999999991 -7.2891865775813274E-004 - 80.819999999999993 -7.2341154257989581E-004 - 80.879999999999995 -7.1768066656302467E-004 - 80.939999999999998 -7.1172901562233939E-004 - 81.000000000000000 -7.0556016030180865E-004 - 81.060000000000002 -6.9917835349581113E-004 - 81.120000000000005 -6.9258841577541101E-004 - 81.180000000000007 -6.8579588858355299E-004 - 81.240000000000009 -6.7880701438037940E-004 - 81.299999999999983 -6.7162857533868323E-004 - 81.359999999999985 -6.6426805045801838E-004 - 81.419999999999987 -6.5673358929241820E-004 - 81.479999999999990 -6.4903404904435250E-004 - 81.539999999999992 -6.4117875640653068E-004 - 81.599999999999994 -6.3317780338715884E-004 - 81.659999999999997 -6.2504191650708280E-004 - 81.719999999999999 -6.1678247616565505E-004 - 81.780000000000001 -6.0841144223244467E-004 - 81.840000000000003 -5.9994138096299639E-004 - 81.900000000000006 -5.9138548600846973E-004 - 81.960000000000008 -5.8275765044793265E-004 - 82.019999999999982 -5.7407220409547361E-004 - 82.079999999999984 -5.6534417822728814E-004 - 82.139999999999986 -5.5658900835172580E-004 - 82.199999999999989 -5.4782274204142885E-004 - 82.259999999999991 -5.3906202253371760E-004 - 82.319999999999993 -5.3032383341518980E-004 - 82.379999999999995 -5.2162567956358093E-004 - 82.439999999999998 -5.1298541219308336E-004 - 82.500000000000000 -5.0442132269527286E-004 - 82.560000000000002 -4.9595198703709660E-004 - 82.620000000000005 -4.8759630728862166E-004 - 82.680000000000007 -4.7937345007603688E-004 - 82.740000000000009 -4.7130284369931657E-004 - 82.799999999999983 -4.6340402398425056E-004 - 82.859999999999985 -4.5569671660447911E-004 - 82.919999999999987 -4.4820074191450699E-004 - 82.979999999999990 -4.4093591280605252E-004 - 83.039999999999992 -4.3392214273296845E-004 - 83.099999999999994 -4.2717922989493878E-004 - 83.159999999999997 -4.2072692104179802E-004 - 83.219999999999999 -4.1458478363461891E-004 - 83.280000000000001 -4.0877219450245717E-004 - 83.340000000000003 -4.0330825749910733E-004 - 83.400000000000006 -3.9821175089721538E-004 - 83.460000000000008 -3.9350111406918692E-004 - 83.519999999999982 -3.8919427609275889E-004 - 83.579999999999984 -3.8530870301465241E-004 - 83.639999999999986 -3.8186126585545407E-004 - 83.699999999999989 -3.7886825968768643E-004 - 83.759999999999991 -3.7634524550748938E-004 - 83.819999999999993 -3.7430709989159922E-004 - 83.879999999999995 -3.7276789889086168E-004 - 83.939999999999998 -3.7174085513872547E-004 - 84.000000000000000 -3.7123832436552150E-004 - 84.060000000000002 -3.7127169996102090E-004 - 84.120000000000005 -3.7185142442018094E-004 - 84.180000000000007 -3.7298689197845226E-004 - 84.240000000000009 -3.7468641574247283E-004 - 84.299999999999983 -3.7695721530585553E-004 - 84.359999999999985 -3.7980534963190024E-004 - 84.419999999999987 -3.8323566280024855E-004 - 84.479999999999990 -3.8725181133842420E-004 - 84.539999999999992 -3.9185614925336216E-004 - 84.599999999999994 -3.9704972209440631E-004 - 84.659999999999997 -4.0283228336800104E-004 - 84.719999999999999 -4.0920221173952913E-004 - 84.780000000000001 -4.1615651555550388E-004 - 84.840000000000003 -4.2369080915525051E-004 - 84.900000000000006 -4.3179929234384668E-004 - 84.960000000000008 -4.4047476467148439E-004 - 85.019999999999982 -4.4970870502553345E-004 - 85.079999999999984 -4.5949109948079992E-004 - 85.139999999999986 -4.6981054731872287E-004 - 85.199999999999989 -4.8065434964635669E-004 - 85.259999999999991 -4.9200835785382529E-004 - 85.319999999999993 -5.0385709404923934E-004 - 85.379999999999995 -5.1618374714408361E-004 - 85.439999999999998 -5.2897026896994844E-004 - 85.500000000000000 -5.4219732374684044E-004 - 85.560000000000002 -5.5584429702643578E-004 - 85.620000000000005 -5.6988945978336781E-004 - 85.680000000000007 -5.8430981645726343E-004 - 85.740000000000009 -5.9908135009923921E-004 - 85.799999999999983 -6.1417898680930425E-004 - 85.859999999999985 -6.2957658058377731E-004 - 85.919999999999987 -6.4524713082908438E-004 - 85.979999999999990 -6.6116265358949228E-004 - 86.039999999999992 -6.7729434133238461E-004 - 86.099999999999994 -6.9361265233808950E-004 - 86.159999999999997 -7.1008744907520040E-004 - 86.219999999999999 -7.2668783376608574E-004 - 86.280000000000001 -7.4338251124386246E-004 - 86.340000000000003 -7.6013962618628713E-004 - 86.400000000000006 -7.7692701539795891E-004 - 86.460000000000008 -7.9371222508382421E-004 - 86.519999999999982 -8.1046253224562981E-004 - 86.579999999999984 -8.2714512741158741E-004 - 86.639999999999986 -8.4372712499331079E-004 - 86.699999999999989 -8.6017568062109369E-004 - 86.759999999999991 -8.7645801948411288E-004 - 86.819999999999993 -8.9254166450027810E-004 - 86.879999999999995 -9.0839439097699587E-004 - 86.939999999999998 -9.2398435774003506E-004 - 87.000000000000000 -9.3928008089414991E-004 - 87.060000000000002 -9.5425072423832721E-004 - 87.120000000000005 -9.6886601719440592E-004 - 87.180000000000007 -9.8309651931725926E-004 - 87.240000000000009 -9.9691333167764833E-004 - 87.299999999999983 -1.0102886222893702E-003 - 87.359999999999985 -1.0231954874436880E-003 - 87.419999999999987 -1.0356080333380666E-003 - 87.479999999999990 -1.0475013653774674E-003 - 87.539999999999992 -1.0588517900274425E-003 - 87.599999999999994 -1.0696368975281470E-003 - 87.659999999999997 -1.0798353704874154E-003 - 87.719999999999999 -1.0894274671819854E-003 - 87.780000000000001 -1.0983947950015298E-003 - 87.840000000000003 -1.1067202721242373E-003 - 87.900000000000006 -1.1143883719397683E-003 - 87.960000000000008 -1.1213850000224826E-003 - 88.019999999999982 -1.1276977730949257E-003 - 88.079999999999984 -1.1333157194421256E-003 - 88.139999999999986 -1.1382297974562891E-003 - 88.199999999999989 -1.1424322987132116E-003 - 88.259999999999991 -1.1459174390142880E-003 - 88.319999999999993 -1.1486810966930318E-003 - 88.379999999999995 -1.1507208641044014E-003 - 88.439999999999998 -1.1520359849323883E-003 - 88.500000000000000 -1.1526277228017161E-003 - 88.560000000000002 -1.1524989252572019E-003 - 88.620000000000005 -1.1516545650131003E-003 - 88.680000000000007 -1.1501008934759471E-003 - 88.740000000000009 -1.1478462866727672E-003 - 88.799999999999983 -1.1449006931127457E-003 - 88.859999999999985 -1.1412758653523575E-003 - 88.919999999999987 -1.1369854060921619E-003 - 88.979999999999990 -1.1320444290402157E-003 - 89.039999999999992 -1.1264696669093094E-003 - 89.099999999999994 -1.1202797474094187E-003 - 89.159999999999997 -1.1134945406022828E-003 - 89.219999999999999 -1.1061356991418012E-003 - 89.280000000000001 -1.0982262332361018E-003 - 89.340000000000003 -1.0897907666389114E-003 - 89.400000000000006 -1.0808552098886814E-003 - 89.460000000000008 -1.0714468329691737E-003 - 89.519999999999982 -1.0615944395058205E-003 - 89.579999999999984 -1.0513277681629065E-003 - 89.639999999999986 -1.0406781936087592E-003 - 89.699999999999989 -1.0296779165573041E-003 - 89.759999999999991 -1.0183602900898853E-003 - 89.819999999999993 -1.0067598400110610E-003 - 89.879999999999995 -9.9491179067330896E-004 - 89.939999999999998 -9.8285266199336571E-004 - 90.000000000000000 -9.7061948219129431E-004 - 90.060000000000002 -9.5825010757453945E-004 - 90.120000000000005 -9.4578310467955046E-004 - 90.180000000000007 -9.3325753625362034E-004 - 90.240000000000009 -9.2071301491023546E-004 - 90.299999999999983 -9.0818958190496085E-004 - 90.359999999999985 -8.9572757590722916E-004 - 90.419999999999987 -8.8336761283483499E-004 - 90.479999999999990 -8.7115035584505005E-004 - 90.539999999999992 -8.5911672383489051E-004 - 90.599999999999994 -8.4730747860270049E-004 - 90.659999999999997 -8.3576339360077437E-004 - 90.719999999999999 -8.2452501553261664E-004 - 90.780000000000001 -8.1363262749126219E-004 - 90.840000000000003 -8.0312625221172149E-004 - 90.900000000000006 -7.9304535604294234E-004 - 90.960000000000008 -7.8342902615595434E-004 - 91.019999999999982 -7.7431572980232331E-004 - 91.079999999999984 -7.6574327811833461E-004 - 91.139999999999986 -7.5774870762133342E-004 - 91.199999999999989 -7.5036836143654536E-004 - 91.259999999999991 -7.4363759946571156E-004 - 91.319999999999993 -7.3759088270742169E-004 - 91.379999999999995 -7.3226151788946428E-004 - 91.439999999999998 -7.2768177257529008E-004 - 91.500000000000000 -7.2388271133644203E-004 - 91.560000000000002 -7.2089421957426331E-004 - 91.620000000000005 -7.1874471137116022E-004 - 91.680000000000007 -7.1746124251443515E-004 - 91.739999999999981 -7.1706950183056894E-004 - 91.799999999999983 -7.1759358430717587E-004 - 91.859999999999985 -7.1905605773396879E-004 - 91.919999999999987 -7.2147778949570686E-004 - 91.979999999999990 -7.2487791085764145E-004 - 92.039999999999992 -7.2927396845041178E-004 - 92.099999999999994 -7.3468159480850101E-004 - 92.159999999999997 -7.4111469892881551E-004 - 92.219999999999999 -7.4858525883838808E-004 - 92.280000000000001 -7.5710330931803046E-004 - 92.340000000000003 -7.6667716087471883E-004 - 92.400000000000006 -7.7731289330283139E-004 - 92.460000000000008 -7.8901480714521936E-004 - 92.519999999999982 -8.0178513301523485E-004 - 92.579999999999984 -8.1562406993534097E-004 - 92.639999999999986 -8.3052983958184132E-004 - 92.699999999999989 -8.4649873001138489E-004 - 92.759999999999991 -8.6352472265361908E-004 - 92.819999999999993 -8.8160012795882687E-004 - 92.879999999999995 -9.0071485921145063E-004 - 92.939999999999998 -9.2085710938991474E-004 - 93.000000000000000 -9.4201271398494679E-004 - 93.060000000000002 -9.6416578998649984E-004 - 93.120000000000005 -9.8729822415866359E-004 - 93.180000000000007 -1.0113899494631983E-003 - 93.239999999999981 -1.0364189349333327E-003 - 93.299999999999983 -1.0623610893946691E-003 - 93.359999999999985 -1.0891904356769989E-003 - 93.419999999999987 -1.1168789890675622E-003 - 93.479999999999990 -1.1453969325564551E-003 - 93.539999999999992 -1.1747125509991626E-003 - 93.599999999999994 -1.2047922451167696E-003 - 93.659999999999997 -1.2356005531429129E-003 - 93.719999999999999 -1.2671005084651213E-003 - 93.780000000000001 -1.2992531854620168E-003 - 93.840000000000003 -1.3320180357257307E-003 - 93.900000000000006 -1.3653532463413856E-003 - 93.960000000000008 -1.3992149499695208E-003 - 94.019999999999982 -1.4335582694485435E-003 - 94.079999999999984 -1.4683368078827542E-003 - 94.139999999999986 -1.5035028024060443E-003 - 94.199999999999989 -1.5390071809754681E-003 - 94.259999999999991 -1.5747995459265850E-003 - 94.319999999999993 -1.6108287772142740E-003 - 94.379999999999995 -1.6470422519126839E-003 - 94.439999999999998 -1.6833864880741588E-003 - 94.500000000000000 -1.7198074589389427E-003 - 94.560000000000002 -1.7562496869055941E-003 - 94.620000000000005 -1.7926573175942435E-003 - 94.680000000000007 -1.8289737955832911E-003 - 94.739999999999981 -1.8651419439592674E-003 - 94.799999999999983 -1.9011038238670053E-003 - 94.859999999999985 -1.9368014742738285E-003 - 94.919999999999987 -1.9721762880688782E-003 - 94.979999999999990 -2.0071699141546604E-003 - 95.039999999999992 -2.0417231282262977E-003 - 95.099999999999994 -2.0757774161507003E-003 - 95.159999999999997 -2.1092738068703128E-003 - 95.219999999999999 -2.1421539282430336E-003 - 95.280000000000001 -2.1743596096948513E-003 - 95.340000000000003 -2.2058331341023424E-003 - 95.400000000000006 -2.2365169410968940E-003 - 95.460000000000008 -2.2663545549357149E-003 - 95.519999999999982 -2.2952903064146699E-003 - 95.579999999999984 -2.3232688826815132E-003 - 95.639999999999986 -2.3502363706286718E-003 - 95.699999999999989 -2.3761394115512629E-003 - 95.759999999999991 -2.4009263446557422E-003 - 95.819999999999993 -2.4245464948665077E-003 - 95.879999999999995 -2.4469504114635440E-003 - 95.939999999999998 -2.4680906113516460E-003 - 96.000000000000000 -2.4879207920070400E-003 - 96.060000000000002 -2.5063957603934095E-003 - 96.120000000000005 -2.5234732385300005E-003 - 96.180000000000007 -2.5391119964704770E-003 - 96.239999999999981 -2.5532727348259749E-003 - 96.299999999999983 -2.5659186118980443E-003 - 96.359999999999985 -2.5770146574276352E-003 - 96.419999999999987 -2.5865280285243008E-003 - 96.479999999999990 -2.5944286465175966E-003 - 96.539999999999992 -2.6006881080478314E-003 - 96.599999999999994 -2.6052810010654195E-003 - 96.659999999999997 -2.6081841141750231E-003 - 96.719999999999999 -2.6093772285515509E-003 - 96.780000000000001 -2.6088423407762910E-003 - 96.840000000000003 -2.6065642195520974E-003 - 96.900000000000006 -2.6025302819029151E-003 - 96.960000000000008 -2.5967311037503574E-003 - 97.019999999999982 -2.5891598426525395E-003 - 97.079999999999984 -2.5798124704072990E-003 - 97.139999999999986 -2.5686879502064630E-003 - 97.199999999999989 -2.5557877193225272E-003 - 97.259999999999991 -2.5411164487966764E-003 - 97.319999999999993 -2.5246815393329004E-003 - 97.379999999999995 -2.5064933931865548E-003 - 97.439999999999998 -2.4865653164553581E-003 - 97.500000000000000 -2.4649131887388718E-003 - 97.560000000000002 -2.4415560444086557E-003 - 97.620000000000005 -2.4165152378993883E-003 - 97.680000000000007 -2.3898153905551485E-003 - 97.739999999999981 -2.3614834053755341E-003 - 97.799999999999983 -2.3315487792166596E-003 - 97.859999999999985 -2.3000437845854069E-003 - 97.919999999999987 -2.2670029630921787E-003 - 97.979999999999990 -2.2324634710749738E-003 - 98.039999999999992 -2.1964646531490890E-003 - 98.099999999999994 -2.1590480743303290E-003 - 98.159999999999997 -2.1202572829796861E-003 - 98.219999999999999 -2.0801380999324638E-003 - 98.280000000000001 -2.0387382859912554E-003 - 98.340000000000003 -1.9961072663414055E-003 - 98.400000000000006 -1.9522960899059434E-003 - 98.460000000000008 -1.9073572596263169E-003 - 98.519999999999982 -1.8613450888335758E-003 - 98.579999999999984 -1.8143149927229236E-003 - 98.639999999999986 -1.7663235488213618E-003 - 98.699999999999989 -1.7174284461246008E-003 - 98.759999999999991 -1.6676882439505289E-003 - 98.819999999999993 -1.6171623431441222E-003 - 98.879999999999995 -1.5659106475269973E-003 - 98.939999999999998 -1.5139936181707155E-003 - 99.000000000000000 -1.4614720426915505E-003 - 99.060000000000002 -1.4084070042147934E-003 - 99.120000000000005 -1.3548594641289474E-003 - 99.180000000000007 -1.3008903170352564E-003 - 99.239999999999981 -1.2465602181441528E-003 - 99.299999999999983 -1.1919295715565235E-003 - 99.359999999999985 -1.1370582713168594E-003 - 99.419999999999987 -1.0820054875553570E-003 - 99.479999999999990 -1.0268295475759214E-003 - 99.539999999999992 -9.7158798650549415E-004 - 99.599999999999994 -9.1633739026159944E-004 - 99.659999999999997 -8.6113323085275644E-004 - 99.719999999999999 -8.0602958815276433E-004 - 99.780000000000001 -7.5107938332928301E-004 - 99.840000000000003 -6.9633417100744698E-004 - 99.900000000000006 -6.4184378205629810E-004 - 99.960000000000008 -5.8765663048631765E-004 - 100.01999999999998 -5.3381925942368050E-004 - 100.07999999999998 -4.8037658504126800E-004 - 100.13999999999999 -4.2737167026786401E-004 - 100.19999999999999 -3.7484562544947347E-004 - 100.25999999999999 -3.2283769630557160E-004 - 100.31999999999999 -2.7138511322754482E-004 - 100.38000000000000 -2.2052301437248208E-004 - 100.44000000000000 -1.7028455684043976E-004 - 100.50000000000000 -1.2070079612942126E-004 - 100.56000000000000 -7.1800740460197996E-005 - 100.62000000000000 -2.3611192774244689E-005 - 100.68000000000001 2.3843035615976133E-005 - 100.73999999999998 7.0539254298464905E-005 - 100.79999999999998 1.1645687489325945E-004 - 100.85999999999999 1.6157735679972143E-004 - 100.91999999999999 2.0588417254105635E-004 - 100.97999999999999 2.4936283773897383E-004 - 101.03999999999999 2.9200083409601426E-004 - 101.09999999999999 3.3378755223708353E-004 - 101.16000000000000 3.7471424230151382E-004 - 101.22000000000000 4.1477407438476974E-004 - 101.28000000000000 4.5396193097727787E-004 - 101.34000000000000 4.9227442451068909E-004 - 101.40000000000001 5.2970986129049840E-004 - 101.46000000000001 5.6626806570444881E-004 - 101.51999999999998 6.0195036559058653E-004 - 101.57999999999998 6.3675961069130978E-004 - 101.63999999999999 6.7069989733031386E-004 - 101.69999999999999 7.0377662075058920E-004 - 101.75999999999999 7.3599641750209251E-004 - 101.81999999999999 7.6736688685406470E-004 - 101.88000000000000 7.9789672534453181E-004 - 101.94000000000000 8.2759558654574923E-004 - 102.00000000000000 8.5647391677600836E-004 - 102.06000000000000 8.8454286906257558E-004 - 102.12000000000000 9.1181437316232173E-004 - 102.18000000000001 9.3830091258515261E-004 - 102.23999999999998 9.6401559513888970E-004 - 102.29999999999998 9.8897181994534529E-004 - 102.35999999999999 1.0131834508376144E-003 - 102.41999999999999 1.0366646141926339E-003 - 102.47999999999999 1.0594296396657641E-003 - 102.53999999999999 1.0814930865565020E-003 - 102.59999999999999 1.1028696542401406E-003 - 102.66000000000000 1.1235737576176753E-003 - 102.72000000000000 1.1436201295019733E-003 - 102.78000000000000 1.1630230528046398E-003 - 102.84000000000000 1.1817966897891060E-003 - 102.90000000000001 1.1999551084167057E-003 - 102.96000000000001 1.2175119181294563E-003 - 103.01999999999998 1.2344803748672152E-003 - 103.07999999999998 1.2508734176333984E-003 - 103.13999999999999 1.2667033746005334E-003 - 103.19999999999999 1.2819823031974085E-003 - 103.25999999999999 1.2967215670197508E-003 - 103.31999999999999 1.3109322233028744E-003 - 103.38000000000000 1.3246246922130800E-003 - 103.44000000000000 1.3378087078125744E-003 - 103.50000000000000 1.3504934747755150E-003 - 103.56000000000000 1.3626876016636254E-003 - 103.62000000000000 1.3743993525224690E-003 - 103.68000000000001 1.3856361898160596E-003 - 103.73999999999998 1.3964048972857127E-003 - 103.79999999999998 1.4067118271545421E-003 - 103.85999999999999 1.4165626241179822E-003 - 103.91999999999999 1.4259625320973714E-003 - 103.97999999999999 1.4349158951531375E-003 - 104.03999999999999 1.4434269071047650E-003 - 104.09999999999999 1.4514987861103338E-003 - 104.16000000000000 1.4591345882596705E-003 - 104.22000000000000 1.4663365493717655E-003 - 104.28000000000000 1.4731065859575649E-003 - 104.34000000000000 1.4794460087375605E-003 - 104.40000000000001 1.4853558449295489E-003 - 104.46000000000001 1.4908366652680678E-003 - 104.51999999999998 1.4958884641346130E-003 - 104.57999999999998 1.5005112566828772E-003 - 104.63999999999999 1.5047044890267299E-003 - 104.69999999999999 1.5084673613249564E-003 - 104.75999999999999 1.5117987935239429E-003 - 104.81999999999999 1.5146977660092302E-003 - 104.88000000000000 1.5171628361599781E-003 - 104.94000000000000 1.5191925732818269E-003 - 105.00000000000000 1.5207854498200139E-003 - 105.06000000000000 1.5219397472302418E-003 - 105.12000000000000 1.5226537695097384E-003 - 105.18000000000001 1.5229259201566489E-003 - 105.23999999999998 1.5227545855945454E-003 - 105.29999999999998 1.5221381866874540E-003 - 105.35999999999999 1.5210753173659068E-003 - 105.41999999999999 1.5195646539480686E-003 - 105.47999999999999 1.5176050012525781E-003 - 105.53999999999999 1.5151954375265825E-003 - 105.59999999999999 1.5123351993199768E-003 - 105.66000000000000 1.5090236126401218E-003 - 105.72000000000000 1.5052604549444972E-003 - 105.78000000000000 1.5010457873213350E-003 - 105.84000000000000 1.4963797657854690E-003 - 105.90000000000001 1.4912632574246951E-003 - 105.96000000000001 1.4856970346346840E-003 - 106.01999999999998 1.4796825434988589E-003 - 106.07999999999998 1.4732212515276596E-003 - 106.13999999999999 1.4663153381562326E-003 - 106.19999999999999 1.4589671148601789E-003 - 106.25999999999999 1.4511793954994031E-003 - 106.31999999999999 1.4429551988594336E-003 - 106.38000000000000 1.4342979828297592E-003 - 106.44000000000000 1.4252118566956727E-003 - 106.50000000000000 1.4157011427786291E-003 - 106.56000000000000 1.4057703230075144E-003 - 106.62000000000000 1.3954246306334022E-003 - 106.68000000000001 1.3846694349307449E-003 - 106.73999999999998 1.3735105603043416E-003 - 106.79999999999998 1.3619541756328517E-003 - 106.85999999999999 1.3500068611540840E-003 - 106.91999999999999 1.3376754804486474E-003 - 106.97999999999999 1.3249672266768169E-003 - 107.03999999999999 1.3118896806222371E-003 - 107.09999999999999 1.2984507072318287E-003 - 107.16000000000000 1.2846583523499588E-003 - 107.22000000000000 1.2705210193260195E-003 - 107.28000000000000 1.2560474478070581E-003 - 107.34000000000000 1.2412463371981874E-003 - 107.40000000000001 1.2261268505503746E-003 - 107.46000000000001 1.2106982778101595E-003 - 107.51999999999998 1.1949700171411176E-003 - 107.57999999999998 1.1789516043416430E-003 - 107.63999999999999 1.1626528836134018E-003 - 107.69999999999999 1.1460839074356867E-003 - 107.75999999999999 1.1292545694672699E-003 - 107.81999999999999 1.1121751318497750E-003 - 107.88000000000000 1.0948559081212022E-003 - 107.94000000000000 1.0773072135177378E-003 - 108.00000000000000 1.0595396844937271E-003 - 108.06000000000000 1.0415637040852869E-003 - 108.12000000000000 1.0233899936954336E-003 - 108.18000000000001 1.0050290934170139E-003 - 108.23999999999998 9.8649163574407277E-004 - 108.29999999999998 9.6778844301179297E-004 - 108.35999999999999 9.4893004296960320E-004 - 108.41999999999999 9.2992714558312302E-004 - 108.47999999999999 9.1079037796355387E-004 - 108.53999999999999 8.9153036036546530E-004 - 108.59999999999999 8.7215760737034079E-004 - 108.66000000000000 8.5268264144568444E-004 - 108.72000000000000 8.3311601041614902E-004 - 108.78000000000000 8.1346812066425606E-004 - 108.84000000000000 7.9374944444924082E-004 - 108.90000000000001 7.7397036924140505E-004 - 108.96000000000001 7.5414121916795446E-004 - 109.01999999999998 7.3427240511004404E-004 - 109.07999999999998 7.1437421223184737E-004 - 109.13999999999999 6.9445694072288477E-004 - 109.19999999999999 6.7453088051461912E-004 - 109.25999999999999 6.5460627112748750E-004 - 109.31999999999999 6.3469328556665092E-004 - 109.38000000000000 6.1480218449216592E-004 - 109.44000000000000 5.9494304399174266E-004 - 109.50000000000000 5.7512608042762682E-004 - 109.56000000000000 5.5536130599126584E-004 - 109.62000000000000 5.3565880956939064E-004 - 109.68000000000001 5.1602864201956303E-004 - 109.73999999999998 4.9648075226024443E-004 - 109.79999999999998 4.7702520421347123E-004 - 109.85999999999999 4.5767186826018509E-004 - 109.91999999999999 4.3843073187385857E-004 - 109.97999999999999 4.1931167560677426E-004 - 110.03999999999999 4.0032459712497476E-004 - 110.09999999999999 3.8147937606881807E-004 - 110.16000000000000 3.6278583226495771E-004 - 110.22000000000000 3.4425374980626513E-004 - 110.28000000000000 3.2589286376901269E-004 - 110.34000000000000 3.0771289834404517E-004 - 110.40000000000001 2.8972344407543835E-004 - 110.46000000000001 2.7193406080253043E-004 - 110.51999999999998 2.5435417790424427E-004 - 110.57999999999998 2.3699311064945576E-004 - 110.63999999999999 2.1986003461647245E-004 - 110.69999999999999 2.0296398911724423E-004 - 110.75999999999999 1.8631389425538940E-004 - 110.81999999999999 1.6991843322594993E-004 - 110.88000000000000 1.5378612941848778E-004 - 110.94000000000000 1.3792530850027757E-004 - 111.00000000000000 1.2234409735589776E-004 - 111.06000000000000 1.0705036862716063E-004 - 111.12000000000000 9.2051756519275816E-005 - 111.18000000000001 7.7355641521723202E-005 - 111.23999999999998 6.2969138834416971E-005 - 111.29999999999998 4.8899063541639548E-005 - 111.35999999999999 3.5151908510158410E-005 - 111.41999999999999 2.1733835498625430E-005 - 111.47999999999999 8.6506522625197359E-006 - 111.53999999999999 -4.0922153577772545E-006 - 111.59999999999999 -1.6489743027411243E-005 - 111.66000000000000 -2.8537339055541010E-005 - 111.72000000000000 -4.0230853724412087E-005 - 111.78000000000000 -5.1566608459622172E-005 - 111.84000000000000 -6.2541414932485367E-005 - 111.90000000000001 -7.3152581420633759E-005 - 111.96000000000001 -8.3397948730384294E-005 - 112.01999999999998 -9.3275883533497792E-005 - 112.07999999999998 -1.0278530551423960E-004 - 112.13999999999999 -1.1192568951845244E-004 - 112.19999999999999 -1.2069705971467074E-004 - 112.25999999999999 -1.2910000776703064E-004 - 112.31999999999999 -1.3713568832771395E-004 - 112.38000000000000 -1.4480585462814575E-004 - 112.44000000000000 -1.5211280087139336E-004 - 112.50000000000000 -1.5905941868821157E-004 - 112.56000000000000 -1.6564915558445962E-004 - 112.62000000000000 -1.7188601942475637E-004 - 112.68000000000001 -1.7777458057417550E-004 - 112.73999999999998 -1.8331997428158747E-004 - 112.79999999999998 -1.8852787917203874E-004 - 112.85999999999999 -1.9340448722691964E-004 - 112.91999999999999 -1.9795655380494754E-004 - 112.97999999999999 -2.0219131903253013E-004 - 113.03999999999999 -2.0611650101159886E-004 - 113.09999999999999 -2.0974034895801662E-004 - 113.16000000000000 -2.1307152534166511E-004 - 113.22000000000000 -2.1611918382413907E-004 - 113.28000000000000 -2.1889284906964019E-004 - 113.34000000000000 -2.2140245646654191E-004 - 113.40000000000001 -2.2365833350334325E-004 - 113.46000000000001 -2.2567114654295687E-004 - 113.51999999999998 -2.2745188759601246E-004 - 113.57999999999998 -2.2901181885690968E-004 - 113.63999999999999 -2.3036248324022804E-004 - 113.69999999999999 -2.3151566185903319E-004 - 113.75999999999999 -2.3248331631566633E-004 - 113.81999999999999 -2.3327758221558992E-004 - 113.88000000000000 -2.3391074437629125E-004 - 113.94000000000000 -2.3439516298660328E-004 - 114.00000000000000 -2.3474327745157567E-004 - 114.06000000000000 -2.3496754459775390E-004 - 114.12000000000000 -2.3508041806892806E-004 - 114.18000000000001 -2.3509430938329081E-004 - 114.23999999999998 -2.3502156954980749E-004 - 114.29999999999998 -2.3487440819782324E-004 - 114.35999999999999 -2.3466492333290760E-004 - 114.41999999999999 -2.3440502970691597E-004 - 114.47999999999999 -2.3410642783521123E-004 - 114.53999999999999 -2.3378068229120845E-004 - 114.59999999999999 -2.3343899593619629E-004 - 114.66000000000000 -2.3309237472102587E-004 - 114.72000000000000 -2.3275150337786907E-004 - 114.78000000000000 -2.3242676151427643E-004 - 114.84000000000000 -2.3212817781638001E-004 - 114.90000000000001 -2.3186542812583371E-004 - 114.96000000000001 -2.3164777517916128E-004 - 115.01999999999998 -2.3148408552475113E-004 - 115.07999999999998 -2.3138280053801844E-004 - 115.13999999999999 -2.3135189554717974E-004 - 115.19999999999999 -2.3139887378968935E-004 - 115.25999999999999 -2.3153072932480549E-004 - 115.31999999999999 -2.3175394125929857E-004 - 115.38000000000000 -2.3207444147061869E-004 - 115.44000000000000 -2.3249759753872631E-004 - 115.50000000000000 -2.3302821804833287E-004 - 115.56000000000000 -2.3367050815417743E-004 - 115.62000000000000 -2.3442811541322646E-004 - 115.68000000000001 -2.3530405548896077E-004 - 115.73999999999998 -2.3630076086355965E-004 - 115.79999999999998 -2.3742007790368504E-004 - 115.85999999999999 -2.3866321130798260E-004 - 115.91999999999999 -2.4003077399271228E-004 - 115.97999999999999 -2.4152279414298779E-004 - 116.03999999999999 -2.4313874977070820E-004 - 116.09999999999999 -2.4487747841129263E-004 - 116.16000000000000 -2.4673724794085087E-004 - 116.22000000000000 -2.4871574136972049E-004 - 116.28000000000000 -2.5081009533612893E-004 - 116.34000000000000 -2.5301686110828402E-004 - 116.40000000000001 -2.5533203155915263E-004 - 116.46000000000001 -2.5775104741966495E-004 - 116.51999999999998 -2.6026878648949031E-004 - 116.57999999999998 -2.6287954832765242E-004 - 116.63999999999999 -2.6557714554457078E-004 - 116.69999999999999 -2.6835483651255286E-004 - 116.75999999999999 -2.7120537698847348E-004 - 116.81999999999999 -2.7412100123912734E-004 - 116.88000000000000 -2.7709347237723754E-004 - 116.94000000000000 -2.8011407903884479E-004 - 117.00000000000000 -2.8317366822438431E-004 - 117.06000000000000 -2.8626264556291109E-004 - 117.12000000000000 -2.8937106655685277E-004 - 117.18000000000001 -2.9248858226244912E-004 - 117.23999999999998 -2.9560453180579128E-004 - 117.29999999999998 -2.9870787708946426E-004 - 117.35999999999999 -3.0178736155951668E-004 - 117.41999999999999 -3.0483141625840679E-004 - 117.47999999999999 -3.0782828562826530E-004 - 117.53999999999999 -3.1076595586564880E-004 - 117.59999999999999 -3.1363231038241481E-004 - 117.66000000000000 -3.1641498089135181E-004 - 117.72000000000000 -3.1910156294218312E-004 - 117.78000000000000 -3.2167954762955640E-004 - 117.84000000000000 -3.2413633040142393E-004 - 117.90000000000001 -3.2645928210832544E-004 - 117.96000000000001 -3.2863576352243459E-004 - 118.01999999999998 -3.3065317661691264E-004 - 118.07999999999998 -3.3249895762215429E-004 - 118.13999999999999 -3.3416064092361736E-004 - 118.19999999999999 -3.3562587218597458E-004 - 118.25999999999999 -3.3688244476906830E-004 - 118.31999999999999 -3.3791835086048432E-004 - 118.38000000000000 -3.3872177278975466E-004 - 118.44000000000000 -3.3928122092466933E-004 - 118.50000000000000 -3.3958537972631094E-004 - 118.56000000000000 -3.3962332789021801E-004 - 118.62000000000000 -3.3938448502563644E-004 - 118.68000000000001 -3.3885863817719906E-004 - 118.73999999999998 -3.3803598060505076E-004 - 118.79999999999998 -3.3690712308711299E-004 - 118.85999999999999 -3.3546319834511468E-004 - 118.91999999999999 -3.3369579890650623E-004 - 118.97999999999999 -3.3159700546141061E-004 - 119.03999999999999 -3.2915949334071576E-004 - 119.09999999999999 -3.2637649242452229E-004 - 119.16000000000000 -3.2324175730172642E-004 - 119.22000000000000 -3.1974969928009171E-004 - 119.28000000000000 -3.1589530852489016E-004 - 119.34000000000000 -3.1167425287026396E-004 - 119.40000000000001 -3.0708283962819431E-004 - 119.46000000000001 -3.0211801021488708E-004 - 119.51999999999998 -2.9677738702346029E-004 - 119.57999999999998 -2.9105926692121140E-004 - 119.63999999999999 -2.8496266652062530E-004 - 119.69999999999999 -2.7848726969862607E-004 - 119.75999999999999 -2.7163344868169045E-004 - 119.81999999999999 -2.6440227066921746E-004 - 119.88000000000000 -2.5679548478362344E-004 - 119.94000000000000 -2.4881555064677481E-004 - 120.00000000000000 -2.4046560048680666E-004 - 120.06000000000000 -2.3174945614721284E-004 - 120.12000000000000 -2.2267158529842330E-004 - 120.18000000000001 -2.1323712338922653E-004 - 120.23999999999998 -2.0345185641055567E-004 - 120.29999999999998 -1.9332221669830782E-004 - 120.35999999999999 -1.8285519596101008E-004 - 120.41999999999999 -1.7205843210558482E-004 - 120.47999999999999 -1.6094015508799850E-004 - 120.53999999999999 -1.4950912548158170E-004 - 120.59999999999999 -1.3777466501190330E-004 - 120.66000000000000 -1.2574661090182268E-004 - 120.72000000000000 -1.1343531672588323E-004 - 120.78000000000000 -1.0085163623056102E-004 - 120.84000000000000 -8.8006840917631126E-005 - 120.90000000000001 -7.4912693170602044E-005 - 120.95999999999998 -6.1581347704918072E-005 - 121.01999999999998 -4.8025379888309505E-005 - 121.07999999999998 -3.4257734047561112E-005 - 121.13999999999999 -2.0291736264212310E-005 - 121.19999999999999 -6.1410427908277805E-006 - 121.25999999999999 8.1803640693482496E-006 - 121.31999999999999 2.2658192941720163E-005 - 121.38000000000000 3.7277864828106693E-005 - 121.44000000000000 5.2024527752722290E-005 - 121.50000000000000 6.6883077472473305E-005 - 121.56000000000000 8.1838168784454591E-005 - 121.62000000000000 9.6874236417630909E-005 - 121.68000000000001 1.1197550987219980E-004 - 121.73999999999998 1.2712602583484937E-004 - 121.79999999999998 1.4230965349863267E-004 - 121.85999999999999 1.5751010436474599E-004 - 121.91999999999999 1.7271093231523144E-004 - 121.97999999999999 1.8789555633374363E-004 - 122.03999999999999 2.0304731879298581E-004 - 122.09999999999999 2.1814940025141803E-004 - 122.16000000000000 2.3318493249816920E-004 - 122.22000000000000 2.4813692999119141E-004 - 122.28000000000000 2.6298833834597013E-004 - 122.34000000000000 2.7772203306111672E-004 - 122.40000000000001 2.9232081897290684E-004 - 122.45999999999998 3.0676745093564798E-004 - 122.51999999999998 3.2104465747885449E-004 - 122.57999999999998 3.3513509334385757E-004 - 122.63999999999999 3.4902141637471875E-004 - 122.69999999999999 3.6268620803435805E-004 - 122.75999999999999 3.7611202822466372E-004 - 122.81999999999999 3.8928146339912225E-004 - 122.88000000000000 4.0217708561160226E-004 - 122.94000000000000 4.1478148917499047E-004 - 123.00000000000000 4.2707727317550489E-004 - 123.06000000000000 4.3904707729295288E-004 - 123.12000000000000 4.5067365137482621E-004 - 123.18000000000001 4.6193980227997875E-004 - 123.23999999999998 4.7282838498168315E-004 - 123.29999999999998 4.8332241107504955E-004 - 123.35999999999999 4.9340508046437695E-004 - 123.41999999999999 5.0305969959126375E-004 - 123.47999999999999 5.1226981363946178E-004 - 123.53999999999999 5.2101911565514188E-004 - 123.59999999999999 5.2929164937882815E-004 - 123.66000000000000 5.3707160026584243E-004 - 123.72000000000000 5.4434351765582107E-004 - 123.78000000000000 5.5109237433935204E-004 - 123.84000000000000 5.5730335936596644E-004 - 123.90000000000001 5.6296216239739671E-004 - 123.95999999999998 5.6805483536813135E-004 - 124.01999999999998 5.7256796075525276E-004 - 124.07999999999998 5.7648853598823979E-004 - 124.13999999999999 5.7980424931498647E-004 - 124.19999999999999 5.8250327157526505E-004 - 124.25999999999999 5.8457439499795137E-004 - 124.31999999999999 5.8600713661577950E-004 - 124.38000000000000 5.8679173375809446E-004 - 124.44000000000000 5.8691924602260527E-004 - 124.50000000000000 5.8638140785163416E-004 - 124.56000000000000 5.8517081353772946E-004 - 124.62000000000000 5.8328099803003051E-004 - 124.68000000000001 5.8070640592883011E-004 - 124.73999999999998 5.7744239117739305E-004 - 124.79999999999998 5.7348528675878522E-004 - 124.85999999999999 5.6883251229655697E-004 - 124.91999999999999 5.6348241367894746E-004 - 124.97999999999999 5.5743444186385181E-004 - 125.03999999999999 5.5068915887146030E-004 - 125.09999999999999 5.4324820527794013E-004 - 125.16000000000000 5.3511437139098345E-004 - 125.22000000000000 5.2629154895702591E-004 - 125.28000000000000 5.1678477311077771E-004 - 125.34000000000000 5.0660028320757518E-004 - 125.40000000000001 4.9574547611231734E-004 - 125.45999999999998 4.8422888058627318E-004 - 125.51999999999998 4.7206035607495712E-004 - 125.57999999999998 4.5925071823759182E-004 - 125.63999999999999 4.4581209493779370E-004 - 125.69999999999999 4.3175774647785144E-004 - 125.75999999999999 4.1710203713834598E-004 - 125.81999999999999 4.0186039994623306E-004 - 125.88000000000000 3.8604946253697228E-004 - 125.94000000000000 3.6968680975492347E-004 - 126.00000000000000 3.5279114568611853E-004 - 126.06000000000000 3.3538209762509525E-004 - 126.12000000000000 3.1748027507236043E-004 - 126.18000000000001 2.9910719972012543E-004 - 126.23999999999998 2.8028519378937226E-004 - 126.29999999999998 2.6103741996260054E-004 - 126.35999999999999 2.4138781642652119E-004 - 126.41999999999999 2.2136098904423598E-004 - 126.47999999999999 2.0098223978618206E-004 - 126.53999999999999 1.8027741135650697E-004 - 126.59999999999999 1.5927293021652080E-004 - 126.66000000000000 1.3799568343479820E-004 - 126.72000000000000 1.1647296234177513E-004 - 126.78000000000000 9.4732417206738192E-005 - 126.84000000000000 7.2801968549479439E-005 - 126.90000000000001 5.0709771238952522E-005 - 126.95999999999998 2.8484121809182417E-005 - 127.01999999999998 6.1534065671554374E-006 - 127.07999999999998 -1.6253975480322971E-005 - 127.13999999999999 -3.8709678012521437E-005 - 127.19999999999999 -6.1185478208669892E-005 - 127.25999999999999 -8.3653344047630277E-005 - 127.31999999999999 -1.0608549529921073E-004 - 127.38000000000000 -1.2845447744150876E-004 - 127.44000000000000 -1.5073319684737662E-004 - 127.50000000000000 -1.7289502347306372E-004 - 127.56000000000000 -1.9491380013742022E-004 - 127.62000000000000 -2.1676392609277015E-004 - 127.68000000000001 -2.3842039196027661E-004 - 127.73999999999998 -2.5985884789250574E-004 - 127.79999999999998 -2.8105562984840515E-004 - 127.85999999999999 -3.0198778706024416E-004 - 127.91999999999999 -3.2263317403388644E-004 - 127.97999999999999 -3.4297038607758283E-004 - 128.03999999999999 -3.6297892724127635E-004 - 128.09999999999999 -3.8263913674408442E-004 - 128.16000000000000 -4.0193225196819341E-004 - 128.22000000000000 -4.2084041884373933E-004 - 128.28000000000000 -4.3934666927415678E-004 - 128.34000000000000 -4.5743508453422848E-004 - 128.40000000000001 -4.7509064846725690E-004 - 128.45999999999998 -4.9229934839262451E-004 - 128.51999999999998 -5.0904808073319553E-004 - 128.57999999999998 -5.2532478641914506E-004 - 128.63999999999999 -5.4111833786111522E-004 - 128.69999999999999 -5.5641856385790366E-004 - 128.75999999999999 -5.7121636623902157E-004 - 128.81999999999999 -5.8550348527716331E-004 - 128.88000000000000 -5.9927265645915286E-004 - 128.94000000000000 -6.1251746897191992E-004 - 129.00000000000000 -6.2523247139470439E-004 - 129.06000000000000 -6.3741309753998789E-004 - 129.12000000000000 -6.4905554478533820E-004 - 129.18000000000001 -6.6015692330962490E-004 - 129.23999999999998 -6.7071512826958582E-004 - 129.29999999999998 -6.8072878512836718E-004 - 129.35999999999999 -6.9019726461353457E-004 - 129.41999999999999 -6.9912075799368162E-004 - 129.47999999999999 -7.0750001894971247E-004 - 129.53999999999999 -7.1533633374983713E-004 - 129.59999999999999 -7.2263180096737364E-004 - 129.66000000000000 -7.2938886198518004E-004 - 129.72000000000000 -7.3561063312230451E-004 - 129.78000000000000 -7.4130068911464520E-004 - 129.84000000000000 -7.4646293909058398E-004 - 129.90000000000001 -7.5110181726176554E-004 - 129.95999999999998 -7.5522211019100991E-004 - 130.01999999999998 -7.5882893589521519E-004 - 130.07999999999998 -7.6192773299110198E-004 - 130.13999999999999 -7.6452408416957890E-004 - 130.19999999999999 -7.6662405854452473E-004 - 130.25999999999999 -7.6823369071371257E-004 - 130.31999999999999 -7.6935940035319488E-004 - 130.38000000000000 -7.7000768421493370E-004 - 130.44000000000000 -7.7018516241127762E-004 - 130.50000000000000 -7.6989868769633681E-004 - 130.56000000000000 -7.6915506645934193E-004 - 130.62000000000000 -7.6796113311560735E-004 - 130.68000000000001 -7.6632387932578337E-004 - 130.73999999999998 -7.6425016406862951E-004 - 130.79999999999998 -7.6174692009576747E-004 - 130.85999999999999 -7.5882108020633617E-004 - 130.91999999999999 -7.5547944140838097E-004 - 130.97999999999999 -7.5172876333197175E-004 - 131.03999999999999 -7.4757566696265893E-004 - 131.09999999999999 -7.4302665063254517E-004 - 131.16000000000000 -7.3808816149425040E-004 - 131.22000000000000 -7.3276651284609885E-004 - 131.28000000000000 -7.2706789874716986E-004 - 131.34000000000000 -7.2099832403454858E-004 - 131.40000000000001 -7.1456369394457984E-004 - 131.45999999999998 -7.0776977014826224E-004 - 131.51999999999998 -7.0062221291023483E-004 - 131.57999999999998 -6.9312649137503828E-004 - 131.63999999999999 -6.8528805342438475E-004 - 131.69999999999999 -6.7711222334517027E-004 - 131.75999999999999 -6.6860418154731868E-004 - 131.81999999999999 -6.5976898991290992E-004 - 131.88000000000000 -6.5061164826520968E-004 - 131.94000000000000 -6.4113708124312698E-004 - 132.00000000000000 -6.3135014722566301E-004 - 132.06000000000000 -6.2125560310831082E-004 - 132.12000000000000 -6.1085817568716939E-004 - 132.18000000000001 -6.0016250849048648E-004 - 132.23999999999998 -5.8917323490197734E-004 - 132.29999999999998 -5.7789497788542402E-004 - 132.35999999999999 -5.6633230770748505E-004 - 132.41999999999999 -5.5448983320574032E-004 - 132.47999999999999 -5.4237217173594703E-004 - 132.53999999999999 -5.2998399418423985E-004 - 132.59999999999999 -5.1733006770844419E-004 - 132.66000000000000 -5.0441514635426738E-004 - 132.72000000000000 -4.9124416199664424E-004 - 132.78000000000000 -4.7782215864530081E-004 - 132.84000000000000 -4.6415421957862480E-004 - 132.90000000000001 -4.5024568829122702E-004 - 132.95999999999998 -4.3610201664555571E-004 - 133.01999999999998 -4.2172885135069937E-004 - 133.07999999999998 -4.0713196126722736E-004 - 133.13999999999999 -3.9231737085591617E-004 - 133.19999999999999 -3.7729129082446415E-004 - 133.25999999999999 -3.6206009426192226E-004 - 133.31999999999999 -3.4663039661907532E-004 - 133.38000000000000 -3.3100904516552101E-004 - 133.44000000000000 -3.1520308671047437E-004 - 133.50000000000000 -2.9921979595085664E-004 - 133.56000000000000 -2.8306669266176150E-004 - 133.62000000000000 -2.6675151119662775E-004 - 133.68000000000001 -2.5028223921455713E-004 - 133.73999999999998 -2.3366712432196105E-004 - 133.79999999999998 -2.1691462077512910E-004 - 133.85999999999999 -2.0003346541353439E-004 - 133.91999999999999 -1.8303263976770655E-004 - 133.97999999999999 -1.6592134097198779E-004 - 134.03999999999999 -1.4870899390938088E-004 - 134.09999999999999 -1.3140528640780293E-004 - 134.16000000000000 -1.1402010279445002E-004 - 134.22000000000000 -9.6563563456900851E-005 - 134.28000000000000 -7.9045953160458194E-005 - 134.34000000000000 -6.1477757701255885E-005 - 134.40000000000001 -4.3869642066908040E-005 - 134.45999999999998 -2.6232427659577329E-005 - 134.51999999999998 -8.5770753793761378E-006 - 134.57999999999998 9.0853212581013880E-006 - 134.63999999999999 2.6743557711769217E-005 - 134.69999999999999 4.4386320050544652E-005 - 134.75999999999999 6.2002219677920948E-005 - 134.81999999999999 7.9579797224430898E-005 - 134.88000000000000 9.7107537108572181E-005 - 134.94000000000000 1.1457387444318108E-004 - 135.00000000000000 1.3196724307981545E-004 - 135.06000000000000 1.4927607408457436E-004 - 135.12000000000000 1.6648877408708223E-004 - 135.18000000000001 1.8359381910270294E-004 - 135.23999999999998 2.0057969785158359E-004 - 135.29999999999998 2.1743496735920816E-004 - 135.35999999999999 2.3414828784147661E-004 - 135.41999999999999 2.5070837217135844E-004 - 135.47999999999999 2.6710410253462862E-004 - 135.53999999999999 2.8332443840266009E-004 - 135.59999999999999 2.9935846107290376E-004 - 135.66000000000000 3.1519546367090901E-004 - 135.72000000000000 3.3082486507860263E-004 - 135.78000000000000 3.4623626219711497E-004 - 135.84000000000000 3.6141944046226381E-004 - 135.90000000000001 3.7636438199440693E-004 - 135.95999999999998 3.9106124342915178E-004 - 136.01999999999998 4.0550042754307824E-004 - 136.07999999999998 4.1967254375228252E-004 - 136.13999999999999 4.3356839635075507E-004 - 136.19999999999999 4.4717902253776183E-004 - 136.25999999999999 4.6049570151774841E-004 - 136.31999999999999 4.7350997609431095E-004 - 136.38000000000000 4.8621356942493845E-004 - 136.44000000000000 4.9859852229349735E-004 - 136.50000000000000 5.1065703478519846E-004 - 136.56000000000000 5.2238170000672710E-004 - 136.62000000000000 5.3376521935673694E-004 - 136.68000000000001 5.4480062927214331E-004 - 136.73999999999998 5.5548114268282967E-004 - 136.79999999999998 5.6580020876403209E-004 - 136.85999999999999 5.7575162939832046E-004 - 136.91999999999999 5.8532936952597036E-004 - 136.97999999999999 5.9452777427961489E-004 - 137.03999999999999 6.0334126011985434E-004 - 137.09999999999999 6.1176455566963053E-004 - 137.16000000000000 6.1979268901344111E-004 - 137.22000000000000 6.2742086683302176E-004 - 137.28000000000000 6.3464460504953171E-004 - 137.34000000000000 6.4145965849568803E-004 - 137.40000000000001 6.4786213118889636E-004 - 137.45999999999998 6.5384823151907589E-004 - 137.51999999999998 6.5941462535735768E-004 - 137.57999999999998 6.6455815342868424E-004 - 137.63999999999999 6.6927599158111072E-004 - 137.69999999999999 6.7356563914146414E-004 - 137.75999999999999 6.7742482101965291E-004 - 137.81999999999999 6.8085161441998852E-004 - 137.88000000000000 6.8384434595027555E-004 - 137.94000000000000 6.8640187304392047E-004 - 138.00000000000000 6.8852310215355126E-004 - 138.06000000000000 6.9020746317188970E-004 - 138.12000000000000 6.9145469145401783E-004 - 138.18000000000001 6.9226481552840506E-004 - 138.23999999999998 6.9263825845296777E-004 - 138.29999999999998 6.9257587826447771E-004 - 138.35999999999999 6.9207893209497298E-004 - 138.41999999999999 6.9114902388060632E-004 - 138.47999999999999 6.8978825485277245E-004 - 138.53999999999999 6.8799908873286861E-004 - 138.59999999999999 6.8578459037371578E-004 - 138.66000000000000 6.8314823487613673E-004 - 138.72000000000000 6.8009398650426163E-004 - 138.78000000000000 6.7662636548161822E-004 - 138.84000000000000 6.7275042989872465E-004 - 138.90000000000001 6.6847176934197437E-004 - 138.95999999999998 6.6379654067227748E-004 - 139.01999999999998 6.5873144417858201E-004 - 139.07999999999998 6.5328385871073354E-004 - 139.13999999999999 6.4746147809000552E-004 - 139.19999999999999 6.4127287711578541E-004 - 139.25999999999999 6.3472698187431466E-004 - 139.31999999999999 6.2783337636637291E-004 - 139.38000000000000 6.2060221198003589E-004 - 139.44000000000000 6.1304423740891532E-004 - 139.50000000000000 6.0517080072159334E-004 - 139.56000000000000 5.9699370649542757E-004 - 139.62000000000000 5.8852533066329385E-004 - 139.68000000000001 5.7977877893215335E-004 - 139.73999999999998 5.7076751978227648E-004 - 139.79999999999998 5.6150569136502264E-004 - 139.85999999999999 5.5200790709523809E-004 - 139.91999999999999 5.4228930646842155E-004 - 139.97999999999999 5.3236558648804230E-004 - 140.03999999999999 5.2225282498340685E-004 - 140.09999999999999 5.1196766963646390E-004 - 140.16000000000000 5.0152708050067892E-004 - 140.22000000000000 4.9094845612741194E-004 - 140.28000000000000 4.8024954560073644E-004 - 140.34000000000000 4.6944845576265366E-004 - 140.40000000000001 4.5856346641917915E-004 - 140.45999999999998 4.4761310523359367E-004 - 140.51999999999998 4.3661609784721104E-004 - 140.57999999999998 4.2559130045988821E-004 - 140.63999999999999 4.1455765619709045E-004 - 140.69999999999999 4.0353413353282790E-004 - 140.75999999999999 3.9253968143059903E-004 - 140.81999999999999 3.8159323989654382E-004 - 140.88000000000000 3.7071363803089130E-004 - 140.94000000000000 3.5991954216491203E-004 - 141.00000000000000 3.4922946028658787E-004 - 141.06000000000000 3.3866171777905524E-004 - 141.12000000000000 3.2823429771097073E-004 - 141.18000000000001 3.1796489618379298E-004 - 141.23999999999998 3.0787083971547697E-004 - 141.29999999999998 2.9796904221715071E-004 - 141.35999999999999 2.8827599444449225E-004 - 141.41999999999999 2.7880764003785003E-004 - 141.47999999999999 2.6957939989095936E-004 - 141.53999999999999 2.6060605924533144E-004 - 141.59999999999999 2.5190179808648629E-004 - 141.66000000000000 2.4348010864258166E-004 - 141.72000000000000 2.3535375007255650E-004 - 141.78000000000000 2.2753470232051343E-004 - 141.84000000000000 2.2003415438711513E-004 - 141.90000000000001 2.1286249091486529E-004 - 141.95999999999998 2.0602920868268020E-004 - 142.01999999999998 1.9954290008357994E-004 - 142.07999999999998 1.9341125080158447E-004 - 142.13999999999999 1.8764100864443909E-004 - 142.19999999999999 1.8223798346303678E-004 - 142.25999999999999 1.7720700773852721E-004 - 142.31999999999999 1.7255192911901635E-004 - 142.38000000000000 1.6827560531994162E-004 - 142.44000000000000 1.6437988730756443E-004 - 142.50000000000000 1.6086563794988370E-004 - 142.56000000000000 1.5773273836263069E-004 - 142.62000000000000 1.5498005304456479E-004 - 142.68000000000001 1.5260545384692320E-004 - 142.73999999999998 1.5060586099596777E-004 - 142.79999999999998 1.4897718789773698E-004 - 142.85999999999999 1.4771440360767423E-004 - 142.91999999999999 1.4681155639847623E-004 - 142.97999999999999 1.4626174175145370E-004 - 143.03999999999999 1.4605715796646708E-004 - 143.09999999999999 1.4618911583324457E-004 - 143.16000000000000 1.4664805846648223E-004 - 143.22000000000000 1.4742360228858816E-004 - 143.28000000000000 1.4850452329065816E-004 - 143.34000000000000 1.4987880552433963E-004 - 143.40000000000001 1.5153368438974776E-004 - 143.45999999999998 1.5345564566162216E-004 - 143.51999999999998 1.5563047122020183E-004 - 143.57999999999998 1.5804327068257435E-004 - 143.63999999999999 1.6067852484408593E-004 - 143.69999999999999 1.6352011816947397E-004 - 143.75999999999999 1.6655138544062513E-004 - 143.81999999999999 1.6975514986001776E-004 - 143.88000000000000 1.7311376351380949E-004 - 143.94000000000000 1.7660918988171646E-004 - 144.00000000000000 1.8022300982616725E-004 - 144.06000000000000 1.8393648665057842E-004 - 144.12000000000000 1.8773061690601658E-004 - 144.18000000000001 1.9158613671800049E-004 - 144.23999999999998 1.9548364166744274E-004 - 144.29999999999998 1.9940357269606951E-004 - 144.35999999999999 2.0332624218709084E-004 - 144.41999999999999 2.0723191854448632E-004 - 144.47999999999999 2.1110080160558609E-004 - 144.53999999999999 2.1491313651576246E-004 - 144.59999999999999 2.1864916548841156E-004 - 144.66000000000000 2.2228919660370505E-004 - 144.72000000000000 2.2581362655109958E-004 - 144.78000000000000 2.2920301313977332E-004 - 144.84000000000000 2.3243800800342872E-004 - 144.90000000000001 2.3549953823468506E-004 - 144.95999999999998 2.3836872183192041E-004 - 145.01999999999998 2.4102697661653117E-004 - 145.07999999999998 2.4345606224126175E-004 - 145.13999999999999 2.4563805703902851E-004 - 145.19999999999999 2.4755545658927030E-004 - 145.25999999999999 2.4919121882067041E-004 - 145.31999999999999 2.5052875566525370E-004 - 145.38000000000000 2.5155203173598737E-004 - 145.44000000000000 2.5224554581332006E-004 - 145.50000000000000 2.5259436843662667E-004 - 145.56000000000000 2.5258418018557168E-004 - 145.62000000000000 2.5220132306725846E-004 - 145.68000000000001 2.5143275399402851E-004 - 145.73999999999998 2.5026611423303489E-004 - 145.79999999999998 2.4868971666993565E-004 - 145.85999999999999 2.4669260821070306E-004 - 145.91999999999999 2.4426449487112244E-004 - 145.97999999999999 2.4139585605974673E-004 - 146.03999999999999 2.3807789422363029E-004 - 146.09999999999999 2.3430250885695707E-004 - 146.16000000000000 2.3006244085491400E-004 - 146.22000000000000 2.2535117901181063E-004 - 146.28000000000000 2.2016302300666341E-004 - 146.34000000000000 2.1449305193778855E-004 - 146.40000000000001 2.0833720197919089E-004 - 146.45999999999998 2.0169219666686940E-004 - 146.51999999999998 1.9455562220889493E-004 - 146.57999999999998 1.8692593859419515E-004 - 146.63999999999999 1.7880241110155375E-004 - 146.69999999999999 1.7018518020989803E-004 - 146.75999999999999 1.6107526942101073E-004 - 146.81999999999999 1.5147448121483674E-004 - 146.88000000000000 1.4138548473527620E-004 - 146.94000000000000 1.3081177250556919E-004 - 147.00000000000000 1.1975765068011932E-004 - 147.06000000000000 1.0822822744368759E-004 - 147.12000000000000 9.6229384203754657E-005 - 147.18000000000001 8.3767784319645566E-005 - 147.23999999999998 7.0850840182666537E-005 - 147.29999999999998 5.7486670446280034E-005 - 147.35999999999999 4.3684159379106467E-005 - 147.41999999999999 2.9452839378642861E-005 - 147.47999999999999 1.4802932054564474E-005 - 147.53999999999999 -2.5468839298718694E-007 - 147.59999999999999 -1.5708513292077983E-005 - 147.66000000000000 -3.1546451870641449E-005 - 147.72000000000000 -4.7755814170037994E-005 - 147.78000000000000 -6.4323380008141830E-005 - 147.84000000000000 -8.1235384679449879E-005 - 147.90000000000001 -9.8477603918573189E-005 - 147.95999999999998 -1.1603532000494914E-004 - 148.01999999999998 -1.3389338004700447E-004 - 148.07999999999998 -1.5203625239698781E-004 - 148.13999999999999 -1.7044800759686557E-004 - 148.19999999999999 -1.8911236517169601E-004 - 148.25999999999999 -2.0801270777372517E-004 - 148.31999999999999 -2.2713213713758908E-004 - 148.38000000000000 -2.4645349373254985E-004 - 148.44000000000000 -2.6595934499708441E-004 - 148.50000000000000 -2.8563207593214362E-004 - 148.56000000000000 -3.0545388169319005E-004 - 148.62000000000000 -3.2540674976539098E-004 - 148.68000000000001 -3.4547255957892615E-004 - 148.73999999999998 -3.6563303959188492E-004 - 148.79999999999998 -3.8586990794922427E-004 - 148.85999999999999 -4.0616476437048106E-004 - 148.91999999999999 -4.2649918138047406E-004 - 148.97999999999999 -4.4685474932792913E-004 - 149.03999999999999 -4.6721300803711813E-004 - 149.09999999999999 -4.8755559998752416E-004 - 149.16000000000000 -5.0786415433178033E-004 - 149.22000000000000 -5.2812034375856565E-004 - 149.28000000000000 -5.4830601138393072E-004 - 149.34000000000000 -5.6840296412569472E-004 - 149.40000000000001 -5.8839306828757209E-004 - 149.45999999999998 -6.0825840411727282E-004 - 149.51999999999998 -6.2798102695864712E-004 - 149.57999999999998 -6.4754313165543470E-004 - 149.63999999999999 -6.6692695785430735E-004 - 149.69999999999999 -6.8611487152161013E-004 - 149.75999999999999 -7.0508930437325132E-004 - 149.81999999999999 -7.2383285074098319E-004 - 149.88000000000000 -7.4232815186669283E-004 - 149.94000000000000 -7.6055790445099254E-004 - 150.00000000000000 -7.7850498106850395E-004 - 150.06000000000000 -7.9615226834972574E-004 - 150.12000000000000 -8.1348294216299034E-004 - 150.18000000000001 -8.3048016165865237E-004 - 150.23999999999998 -8.4712726117431550E-004 - 150.29999999999998 -8.6340764968727887E-004 - 150.35999999999999 -8.7930497250662256E-004 - 150.41999999999999 -8.9480292714071293E-004 - 150.47999999999999 -9.0988530863074643E-004 - 150.53999999999999 -9.2453610211214773E-004 - 150.59999999999999 -9.3873939404766544E-004 - 150.66000000000000 -9.5247926229864515E-004 - 150.72000000000000 -9.6574006325421033E-004 - 150.78000000000000 -9.7850624821747400E-004 - 150.84000000000000 -9.9076246692241204E-004 - 150.90000000000001 -1.0024933351711358E-003 - 150.95999999999998 -1.0136838822591178E-003 - 151.01999999999998 -1.0243189843371422E-003 - 151.07999999999998 -1.0343840528050916E-003 - 151.13999999999999 -1.0438644404980888E-003 - 151.19999999999999 -1.0527459042750562E-003 - 151.25999999999999 -1.0610143967515477E-003 - 151.31999999999999 -1.0686561846342060E-003 - 151.38000000000000 -1.0756578050037592E-003 - 151.44000000000000 -1.0820061943837564E-003 - 151.50000000000000 -1.0876885823184542E-003 - 151.56000000000000 -1.0926927093185682E-003 - 151.62000000000000 -1.0970063890787642E-003 - 151.68000000000001 -1.1006184760229663E-003 - 151.73999999999998 -1.1035178200595741E-003 - 151.79999999999998 -1.1056938881958958E-003 - 151.85999999999999 -1.1071366327771524E-003 - 151.91999999999999 -1.1078367747294165E-003 - 151.97999999999999 -1.1077855235528404E-003 - 152.03999999999999 -1.1069747500678500E-003 - 152.09999999999999 -1.1053970719790839E-003 - 152.16000000000000 -1.1030457935021858E-003 - 152.22000000000000 -1.0999151192044602E-003 - 152.28000000000000 -1.0959999808689890E-003 - 152.34000000000000 -1.0912962625033466E-003 - 152.40000000000001 -1.0858007613968846E-003 - 152.45999999999998 -1.0795110461193531E-003 - 152.51999999999998 -1.0724260229160840E-003 - 152.57999999999998 -1.0645454659151863E-003 - 152.63999999999999 -1.0558703139788503E-003 - 152.69999999999999 -1.0464024744901235E-003 - 152.75999999999999 -1.0361449755130097E-003 - 152.81999999999999 -1.0251020728909636E-003 - 152.88000000000000 -1.0132790860748889E-003 - 152.94000000000000 -1.0006827401913758E-003 - 153.00000000000000 -9.8732077943630226E-004 - 153.06000000000000 -9.7320208470814745E-004 - 153.12000000000000 -9.5833699157699343E-004 - 153.17999999999998 -9.4273691765713030E-004 - 153.23999999999998 -9.2641458237365307E-004 - 153.29999999999998 -9.0938393811196695E-004 - 153.35999999999999 -8.9166018539229305E-004 - 153.41999999999999 -8.7325991783794132E-004 - 153.47999999999999 -8.5420098294142612E-004 - 153.53999999999999 -8.3450231058531895E-004 - 153.59999999999999 -8.1418422402924841E-004 - 153.66000000000000 -7.9326822644466843E-004 - 153.72000000000000 -7.7177707099105436E-004 - 153.78000000000000 -7.4973463229808168E-004 - 153.84000000000000 -7.2716587930001441E-004 - 153.90000000000001 -7.0409699523086048E-004 - 153.95999999999998 -6.8055502889087548E-004 - 154.01999999999998 -6.5656813985144635E-004 - 154.07999999999998 -6.3216546889490550E-004 - 154.13999999999999 -6.0737697395253653E-004 - 154.19999999999999 -5.8223341970674227E-004 - 154.25999999999999 -5.5676639953412778E-004 - 154.31999999999999 -5.3100815096023630E-004 - 154.38000000000000 -5.0499161729408303E-004 - 154.44000000000000 -4.7875029712114530E-004 - 154.50000000000000 -4.5231813986958147E-004 - 154.56000000000000 -4.2572959763128649E-004 - 154.62000000000000 -3.9901947985159853E-004 - 154.67999999999998 -3.7222282838815507E-004 - 154.73999999999998 -3.4537493014025005E-004 - 154.79999999999998 -3.1851118992640040E-004 - 154.85999999999999 -2.9166706475657251E-004 - 154.91999999999999 -2.6487798145971472E-004 - 154.97999999999999 -2.3817919732763623E-004 - 155.03999999999999 -2.1160580600018748E-004 - 155.09999999999999 -1.8519262155990000E-004 - 155.16000000000000 -1.5897406795007096E-004 - 155.22000000000000 -1.3298411529907264E-004 - 155.28000000000000 -1.0725618345952737E-004 - 155.34000000000000 -8.1823101881712396E-005 - 155.40000000000001 -5.6716998551632403E-005 - 155.45999999999998 -3.1969230931889041E-005 - 155.51999999999998 -7.6103009406770447E-006 - 155.57999999999998 1.6330205644845663E-005 - 155.63999999999999 3.9823674819790726E-005 - 155.69999999999999 6.2842570761670056E-005 - 155.75999999999999 8.5360478970234320E-005 - 155.81999999999999 1.0735216474452264E-004 - 155.88000000000000 1.2879365097774403E-004 - 155.94000000000000 1.4966225348203674E-004 - 156.00000000000000 1.6993665781800041E-004 - 156.06000000000000 1.8959693569364615E-004 - 156.12000000000000 2.0862461071321028E-004 - 156.17999999999998 2.2700268390386374E-004 - 156.23999999999998 2.4471565563854736E-004 - 156.29999999999998 2.6174954913992020E-004 - 156.35999999999999 2.7809197081729028E-004 - 156.41999999999999 2.9373205314640850E-004 - 156.47999999999999 3.0866049696139905E-004 - 156.53999999999999 3.2286959300617345E-004 - 156.59999999999999 3.3635318751669429E-004 - 156.66000000000000 3.4910671089248465E-004 - 156.72000000000000 3.6112720522106696E-004 - 156.78000000000000 3.7241319495896834E-004 - 156.84000000000000 3.8296483077113403E-004 - 156.90000000000001 3.9278378551515543E-004 - 156.95999999999998 4.0187323057688616E-004 - 157.01999999999998 4.1023789549787928E-004 - 157.07999999999998 4.1788399264556993E-004 - 157.13999999999999 4.2481917569185055E-004 - 157.19999999999999 4.3105256554599742E-004 - 157.25999999999999 4.3659460732714517E-004 - 157.31999999999999 4.4145714446230434E-004 - 157.38000000000000 4.4565331067014441E-004 - 157.44000000000000 4.4919748617072133E-004 - 157.50000000000000 4.5210522408121654E-004 - 157.56000000000000 4.5439313689853351E-004 - 157.62000000000000 4.5607897269651248E-004 - 157.67999999999998 4.5718138891867079E-004 - 157.73999999999998 4.5771994345266721E-004 - 157.79999999999998 4.5771502207662626E-004 - 157.85999999999999 4.5718778000956628E-004 - 157.91999999999999 4.5616006621954644E-004 - 157.97999999999999 4.5465428754909481E-004 - 158.03999999999999 4.5269346759831499E-004 - 158.09999999999999 4.5030110005001700E-004 - 158.16000000000000 4.4750107372050339E-004 - 158.22000000000000 4.4431764438479629E-004 - 158.28000000000000 4.4077536545795081E-004 - 158.34000000000000 4.3689901045608639E-004 - 158.40000000000001 4.3271350373146061E-004 - 158.45999999999998 4.2824388230067195E-004 - 158.51999999999998 4.2351517364297268E-004 - 158.57999999999998 4.1855237796086127E-004 - 158.63999999999999 4.1338039279858340E-004 - 158.69999999999999 4.0802384759225450E-004 - 158.75999999999999 4.0250720748485712E-004 - 158.81999999999999 3.9685450177598234E-004 - 158.88000000000000 3.9108943626915780E-004 - 158.94000000000000 3.8523517020670240E-004 - 159.00000000000000 3.7931444719846869E-004 - 159.06000000000000 3.7334928115883128E-004 - 159.12000000000000 3.6736114861227523E-004 - 159.17999999999998 3.6137078172144264E-004 - 159.23999999999998 3.5539819514062202E-004 - 159.29999999999998 3.4946261835137242E-004 - 159.35999999999999 3.4358252454313228E-004 - 159.41999999999999 3.3777549229068192E-004 - 159.47999999999999 3.3205827919231698E-004 - 159.53999999999999 3.2644679228351807E-004 - 159.59999999999999 3.2095596278555597E-004 - 159.66000000000000 3.1559980566114089E-004 - 159.72000000000000 3.1039141021278695E-004 - 159.78000000000000 3.0534292969029242E-004 - 159.84000000000000 3.0046549829672303E-004 - 159.90000000000001 2.9576933359807281E-004 - 159.95999999999998 2.9126360278086292E-004 - 160.01999999999998 2.8695648400457540E-004 - 160.07999999999998 2.8285519885623035E-004 - 160.13999999999999 2.7896592896531819E-004 - 160.19999999999999 2.7529386316292348E-004 - 160.25999999999999 2.7184327993400124E-004 - 160.31999999999999 2.6861738280120948E-004 - 160.38000000000000 2.6561849995977087E-004 - 160.44000000000000 2.6284796688403732E-004 - 160.50000000000000 2.6030623947306407E-004 - 160.56000000000000 2.5799280256591723E-004 - 160.62000000000000 2.5590632376306814E-004 - 160.67999999999998 2.5404462264709879E-004 - 160.73999999999998 2.5240470388228684E-004 - 160.79999999999998 2.5098272689922475E-004 - 160.85999999999999 2.4977419042047363E-004 - 160.91999999999999 2.4877379852879125E-004 - 160.97999999999999 2.4797560727086152E-004 - 161.03999999999999 2.4737303756204782E-004 - 161.09999999999999 2.4695890612861661E-004 - 161.16000000000000 2.4672546095554272E-004 - 161.22000000000000 2.4666447698845346E-004 - 161.28000000000000 2.4676722750070106E-004 - 161.34000000000000 2.4702457304253696E-004 - 161.40000000000001 2.4742699671121126E-004 - 161.45999999999998 2.4796464440460415E-004 - 161.51999999999998 2.4862734500246151E-004 - 161.57999999999998 2.4940469910559638E-004 - 161.63999999999999 2.5028604742729599E-004 - 161.69999999999999 2.5126056896714142E-004 - 161.75999999999999 2.5231724307677421E-004 - 161.81999999999999 2.5344497173868628E-004 - 161.88000000000000 2.5463254505417635E-004 - 161.94000000000000 2.5586865206989138E-004 - 162.00000000000000 2.5714198619811147E-004 - 162.06000000000000 2.5844120622728166E-004 - 162.12000000000000 2.5975499841182246E-004 - 162.17999999999998 2.6107214957065935E-004 - 162.23999999999998 2.6238147249580892E-004 - 162.29999999999998 2.6367191291546652E-004 - 162.35999999999999 2.6493262074382478E-004 - 162.41999999999999 2.6615286524953236E-004 - 162.47999999999999 2.6732216012959043E-004 - 162.53999999999999 2.6843024729477451E-004 - 162.59999999999999 2.6946712508995772E-004 - 162.66000000000000 2.7042308495298003E-004 - 162.72000000000000 2.7128869668337116E-004 - 162.78000000000000 2.7205489059147587E-004 - 162.84000000000000 2.7271282797985735E-004 - 162.90000000000001 2.7325406996593019E-004 - 162.95999999999998 2.7367048785822371E-004 - 163.01999999999998 2.7395430932250091E-004 - 163.07999999999998 2.7409802280784791E-004 - 163.13999999999999 2.7409454772662128E-004 - 163.19999999999999 2.7393707024406483E-004 - 163.25999999999999 2.7361914617205087E-004 - 163.31999999999999 2.7313469232348111E-004 - 163.38000000000000 2.7247796424039589E-004 - 163.44000000000000 2.7164357524800788E-004 - 163.50000000000000 2.7062648895097638E-004 - 163.56000000000000 2.6942204219807621E-004 - 163.62000000000000 2.6802604749874667E-004 - 163.67999999999998 2.6643457073122581E-004 - 163.73999999999998 2.6464417193650125E-004 - 163.79999999999998 2.6265178317030370E-004 - 163.85999999999999 2.6045475029518896E-004 - 163.91999999999999 2.5805080491570767E-004 - 163.97999999999999 2.5543811289565531E-004 - 164.03999999999999 2.5261520948742294E-004 - 164.09999999999999 2.4958103735216088E-004 - 164.16000000000000 2.4633495391416626E-004 - 164.22000000000000 2.4287667806170848E-004 - 164.28000000000000 2.3920627575261763E-004 - 164.34000000000000 2.3532425707449548E-004 - 164.40000000000001 2.3123141793249854E-004 - 164.45999999999998 2.2692898057017773E-004 - 164.51999999999998 2.2241851440945684E-004 - 164.57999999999998 2.1770195019181319E-004 - 164.63999999999999 2.1278160689818952E-004 - 164.69999999999999 2.0766012658321575E-004 - 164.75999999999999 2.0234054619659372E-004 - 164.81999999999999 1.9682629396619965E-004 - 164.88000000000000 1.9112116216808678E-004 - 164.94000000000000 1.8522931289528853E-004 - 165.00000000000000 1.7915528996992092E-004 - 165.06000000000000 1.7290401382182474E-004 - 165.12000000000000 1.6648078860875587E-004 - 165.17999999999998 1.5989128150693533E-004 - 165.23999999999998 1.5314154593176632E-004 - 165.29999999999998 1.4623801123348103E-004 - 165.35999999999999 1.3918744141771500E-004 - 165.41999999999999 1.3199696040556541E-004 - 165.47999999999999 1.2467404707790827E-004 - 165.53999999999999 1.1722653688548086E-004 - 165.59999999999999 1.0966256848478154E-004 - 165.66000000000000 1.0199061941143026E-004 - 165.72000000000000 9.4219487659522451E-005 - 165.78000000000000 8.6358274453586419E-005 - 165.84000000000000 7.8416385991401943E-005 - 165.90000000000001 7.0403503620251754E-005 - 165.95999999999998 6.2329598811473855E-005 - 166.01999999999998 5.4204894401831892E-005 - 166.07999999999998 4.6039868279247286E-005 - 166.13999999999999 3.7845232752239819E-005 - 166.19999999999999 2.9631906055044578E-005 - 166.25999999999999 2.1411010658505768E-005 - 166.31999999999999 1.3193851880816004E-005 - 166.38000000000000 4.9918932700461014E-006 - 166.44000000000000 -3.1832581280405909E-006 - 166.50000000000000 -1.1319880827872068E-005 - 166.56000000000000 -1.9406158010966325E-005 - 166.62000000000000 -2.7430186468898350E-005 - 166.67999999999998 -3.5380019779316345E-005 - 166.73999999999998 -4.3243677117150285E-005 - 166.79999999999998 -5.1009173652918961E-005 - 166.85999999999999 -5.8664539898122533E-005 - 166.91999999999999 -6.6197867999248368E-005 - 166.97999999999999 -7.3597300891422001E-005 - 167.03999999999999 -8.0851094730700229E-005 - 167.09999999999999 -8.7947628175893427E-005 - 167.16000000000000 -9.4875430384128390E-005 - 167.22000000000000 -1.0162323585864567E-004 - 167.28000000000000 -1.0817996859125949E-004 - 167.34000000000000 -1.1453478973234678E-004 - 167.40000000000001 -1.2067713568987041E-004 - 167.45999999999998 -1.2659673686198013E-004 - 167.51999999999998 -1.3228362405792238E-004 - 167.57999999999998 -1.3772814885175353E-004 - 167.63999999999999 -1.4292104462056753E-004 - 167.69999999999999 -1.4785339425066882E-004 - 167.75999999999999 -1.5251668981628523E-004 - 167.81999999999999 -1.5690282922117095E-004 - 167.88000000000000 -1.6100411087522048E-004 - 167.94000000000000 -1.6481328500424919E-004 - 168.00000000000000 -1.6832358146057531E-004 - 168.06000000000000 -1.7152865692176276E-004 - 168.12000000000000 -1.7442268975154321E-004 - 168.17999999999998 -1.7700033467808380E-004 - 168.23999999999998 -1.7925675617837624E-004 - 168.29999999999998 -1.8118765658019050E-004 - 168.35999999999999 -1.8278925005529352E-004 - 168.41999999999999 -1.8405833145120266E-004 - 168.47999999999999 -1.8499222192844842E-004 - 168.53999999999999 -1.8558880177248693E-004 - 168.59999999999999 -1.8584652227472584E-004 - 168.66000000000000 -1.8576437645168538E-004 - 168.72000000000000 -1.8534194994102222E-004 - 168.78000000000000 -1.8457931332770860E-004 - 168.84000000000000 -1.8347716635236494E-004 - 168.90000000000001 -1.8203671650876408E-004 - 168.95999999999998 -1.8025967999853605E-004 - 169.01999999999998 -1.7814831104431253E-004 - 169.07999999999998 -1.7570536559559624E-004 - 169.13999999999999 -1.7293409573363301E-004 - 169.19999999999999 -1.6983822238169529E-004 - 169.25999999999999 -1.6642196210264518E-004 - 169.31999999999999 -1.6268997577276805E-004 - 169.38000000000000 -1.5864737345468502E-004 - 169.44000000000000 -1.5429970969230492E-004 - 169.50000000000000 -1.4965294336174629E-004 - 169.56000000000000 -1.4471346632233140E-004 - 169.62000000000000 -1.3948806537198116E-004 - 169.67999999999998 -1.3398391017204841E-004 - 169.73999999999998 -1.2820854421448884E-004 - 169.79999999999998 -1.2216987610651371E-004 - 169.85999999999999 -1.1587614245705876E-004 - 169.91999999999999 -1.0933590359176415E-004 - 169.97999999999999 -1.0255801563517100E-004 - 170.03999999999999 -9.5551614394057677E-005 - 170.09999999999999 -8.8326102533976638E-005 - 170.16000000000000 -8.0891118774403055E-005 - 170.22000000000000 -7.3256512979681673E-005 - 170.28000000000000 -6.5432338718237492E-005 - 170.34000000000000 -5.7428814938544428E-005 - 170.40000000000001 -4.9256320653984949E-005 - 170.45999999999998 -4.0925372284543537E-005 - 170.51999999999998 -3.2446607036832883E-005 - 170.57999999999998 -2.3830761851432706E-005 - 170.63999999999999 -1.5088660058459267E-005 - 170.69999999999999 -6.2311978320351725E-006 - 170.75999999999999 2.7306756467197492E-006 - 170.81999999999999 1.1785970271637273E-005 - 170.88000000000000 2.0923667482809086E-005 - 170.94000000000000 3.0132739795365520E-005 - 171.00000000000000 3.9402162892023498E-005 - 171.06000000000000 4.8720919651537521E-005 - 171.12000000000000 5.8078037563404747E-005 - 171.17999999999998 6.7462583532837406E-005 - 171.23999999999998 7.6863683667063675E-005 - 171.29999999999998 8.6270542914795016E-005 - 171.35999999999999 9.5672467977432835E-005 - 171.41999999999999 1.0505886860244787E-004 - 171.47999999999999 1.1441927927942957E-004 - 171.53999999999999 1.2374335999373014E-004 - 171.59999999999999 1.3302093912069210E-004 - 171.66000000000000 1.4224200505505284E-004 - 171.72000000000000 1.5139674618869914E-004 - 171.78000000000000 1.6047552470052482E-004 - 171.84000000000000 1.6946894450254842E-004 - 171.90000000000001 1.7836781379965290E-004 - 171.95999999999998 1.8716317954547439E-004 - 172.01999999999998 1.9584633247605353E-004 - 172.07999999999998 2.0440885567524057E-004 - 172.13999999999999 2.1284258218918662E-004 - 172.19999999999999 2.2113964585241666E-004 - 172.25999999999999 2.2929244170787847E-004 - 172.31999999999999 2.3729371624827859E-004 - 172.38000000000000 2.4513648328186089E-004 - 172.44000000000000 2.5281408938984912E-004 - 172.50000000000000 2.6032025487694445E-004 - 172.56000000000000 2.6764898373777749E-004 - 172.62000000000000 2.7479465703543352E-004 - 172.67999999999998 2.8175196569856490E-004 - 172.73999999999998 2.8851599109958325E-004 - 172.79999999999998 2.9508218508745166E-004 - 172.85999999999999 3.0144632946117088E-004 - 172.91999999999999 3.0760460799217571E-004 - 172.97999999999999 3.1355355514260056E-004 - 173.03999999999999 3.1929012239966404E-004 - 173.09999999999999 3.2481160407100946E-004 - 173.16000000000000 3.3011565897385841E-004 - 173.22000000000000 3.3520036921816224E-004 - 173.28000000000000 3.4006412068886586E-004 - 173.34000000000000 3.4470579281434656E-004 - 173.40000000000001 3.4912452500112073E-004 - 173.45999999999998 3.5331987688081752E-004 - 173.51999999999998 3.5729175215473517E-004 - 173.57999999999998 3.6104035770932437E-004 - 173.63999999999999 3.6456632692740424E-004 - 173.69999999999999 3.6787056145983177E-004 - 173.75999999999999 3.7095427557212561E-004 - 173.81999999999999 3.7381904210568987E-004 - 173.88000000000000 3.7646669530351192E-004 - 173.94000000000000 3.7889931465429137E-004 - 174.00000000000000 3.8111931535032270E-004 - 174.06000000000000 3.8312930181542938E-004 - 174.12000000000000 3.8493217778492789E-004 - 174.17999999999998 3.8653097831579388E-004 - 174.23999999999998 3.8792903092638409E-004 - 174.29999999999998 3.8912979369254728E-004 - 174.35999999999999 3.9013690924346380E-004 - 174.41999999999999 3.9095419141807692E-004 - 174.47999999999999 3.9158556709309911E-004 - 174.53999999999999 3.9203508001187565E-004 - 174.59999999999999 3.9230692511502124E-004 - 174.66000000000000 3.9240532218738557E-004 - 174.72000000000000 3.9233456535967432E-004 - 174.78000000000000 3.9209907543762276E-004 - 174.84000000000000 3.9170322340441614E-004 - 174.90000000000001 3.9115143898630885E-004 - 174.95999999999998 3.9044811349487284E-004 - 175.01999999999998 3.8959766372146786E-004 - 175.07999999999998 3.8860446419247859E-004 - 175.13999999999999 3.8747285716017263E-004 - 175.19999999999999 3.8620708134185584E-004 - 175.25999999999999 3.8481131793614967E-004 - 175.31999999999999 3.8328963837735893E-004 - 175.38000000000000 3.8164605212622128E-004 - 175.44000000000000 3.7988435537489746E-004 - 175.50000000000000 3.7800825206300560E-004 - 175.56000000000000 3.7602131053635340E-004 - 175.62000000000000 3.7392692404739818E-004 - 175.67999999999998 3.7172836599161331E-004 - 175.73999999999998 3.6942866362198493E-004 - 175.79999999999998 3.6703072864147643E-004 - 175.85999999999999 3.6453724947461085E-004 - 175.91999999999999 3.6195082034147009E-004 - 175.97999999999999 3.5927376353026203E-004 - 176.03999999999999 3.5650824002696506E-004 - 176.09999999999999 3.5365627554758978E-004 - 176.16000000000000 3.5071972277391796E-004 - 176.22000000000000 3.4770020737012654E-004 - 176.28000000000000 3.4459925743883019E-004 - 176.34000000000000 3.4141819123012030E-004 - 176.40000000000001 3.3815823039861715E-004 - 176.45999999999998 3.3482039145918749E-004 - 176.51999999999998 3.3140559165000227E-004 - 176.57999999999998 3.2791458472706864E-004 - 176.63999999999999 3.2434804157182711E-004 - 176.69999999999999 3.2070645855014987E-004 - 176.75999999999999 3.1699020179498790E-004 - 176.81999999999999 3.1319960543100303E-004 - 176.88000000000000 3.0933486827349106E-004 - 176.94000000000000 3.0539605800343147E-004 - 177.00000000000000 3.0138325101739888E-004 - 177.06000000000000 2.9729639672337589E-004 - 177.12000000000000 2.9313542850334764E-004 - 177.17999999999998 2.8890022217320440E-004 - 177.23999999999998 2.8459064020469648E-004 - 177.29999999999998 2.8020651272957648E-004 - 177.35999999999999 2.7574770094377455E-004 - 177.41999999999999 2.7121405891150023E-004 - 177.47999999999999 2.6660547711245404E-004 - 177.53999999999999 2.6192191490248448E-004 - 177.59999999999999 2.5716331129072305E-004 - 177.66000000000000 2.5232976528168874E-004 - 177.72000000000000 2.4742140370518777E-004 - 177.78000000000000 2.4243847179226626E-004 - 177.84000000000000 2.3738128352797353E-004 - 177.90000000000001 2.3225031411711790E-004 - 177.95999999999998 2.2704613502142677E-004 - 178.01999999999998 2.2176945580615302E-004 - 178.07999999999998 2.1642111715009868E-004 - 178.13999999999999 2.1100211618381827E-004 - 178.19999999999999 2.0551358964204366E-004 - 178.25999999999999 1.9995683755783138E-004 - 178.31999999999999 1.9433334735486699E-004 - 178.38000000000000 1.8864473018986229E-004 - 178.44000000000000 1.8289278756870102E-004 - 178.50000000000000 1.7707946889020126E-004 - 178.56000000000000 1.7120692170282772E-004 - 178.62000000000000 1.6527743665698010E-004 - 178.67999999999998 1.5929349129016523E-004 - 178.73999999999998 1.5325774231645794E-004 - 178.79999999999998 1.4717298582253915E-004 - 178.85999999999999 1.4104223232498553E-004 - 178.91999999999999 1.3486864652034503E-004 - 178.97999999999999 1.2865558404087315E-004 - 179.03999999999999 1.2240655446298958E-004 - 179.09999999999999 1.1612524117317205E-004 - 179.16000000000000 1.0981553224824781E-004 - 179.22000000000000 1.0348146215235685E-004 - 179.28000000000000 9.7127234735517110E-005 - 179.34000000000000 9.0757221924864931E-005 - 179.40000000000001 8.4375943837686315E-005 - 179.45999999999998 7.7988049665752223E-005 - 179.51999999999998 7.1598329628583328E-005 - 179.57999999999998 6.5211687265562002E-005 - 179.63999999999999 5.8833116650422670E-005 - 179.69999999999999 5.2467710910627666E-005 - 179.75999999999999 4.6120615802765712E-005 - 179.81999999999999 3.9797036516196010E-005 - 179.88000000000000 3.3502225161174846E-005 - 179.94000000000000 2.7241437499553213E-005 - 180.00000000000000 2.1019962955150687E-005 - 180.06000000000000 1.4843080873424546E-005 - 180.12000000000000 8.7160552375767731E-006 - 180.17999999999998 2.6441416704568773E-006 - 180.23999999999998 -3.3674384841727282E-006 - 180.29999999999998 -9.3134997820977333E-006 - 180.35999999999999 -1.5188898510809704E-005 - 180.41999999999999 -2.0988545718187117E-005 - 180.47999999999999 -2.6707407457405042E-005 - 180.53999999999999 -3.2340531840282608E-005 - 180.59999999999999 -3.7883040367526097E-005 - 180.66000000000000 -4.3330157145458830E-005 - 180.72000000000000 -4.8677217897295844E-005 - 180.78000000000000 -5.3919691087456708E-005 - 180.84000000000000 -5.9053182346262586E-005 - 180.90000000000001 -6.4073466017000130E-005 - 180.95999999999998 -6.8976492548950273E-005 - 181.01999999999998 -7.3758409764884981E-005 - 181.07999999999998 -7.8415572002388896E-005 - 181.13999999999999 -8.2944565895374964E-005 - 181.19999999999999 -8.7342212746543599E-005 - 181.25999999999999 -9.1605580571154927E-005 - 181.31999999999999 -9.5731991540486539E-005 - 181.38000000000000 -9.9719050645721976E-005 - 181.44000000000000 -1.0356461093465500E-004 - 181.50000000000000 -1.0726679910180163E-004 - 181.56000000000000 -1.1082401650284107E-004 - 181.62000000000000 -1.1423495062663854E-004 - 181.67999999999998 -1.1749856252849556E-004 - 181.73999999999998 -1.2061408887497989E-004 - 181.79999999999998 -1.2358104168381845E-004 - 181.85999999999999 -1.2639922160123131E-004 - 181.91999999999999 -1.2906871443937713E-004 - 181.97999999999999 -1.3158985998792052E-004 - 182.03999999999999 -1.3396329744596030E-004 - 182.09999999999999 -1.3618993813258677E-004 - 182.16000000000000 -1.3827098529200075E-004 - 182.22000000000000 -1.4020790813055572E-004 - 182.28000000000000 -1.4200245420295505E-004 - 182.34000000000000 -1.4365666390490163E-004 - 182.39999999999998 -1.4517284789519966E-004 - 182.45999999999998 -1.4655356538002579E-004 - 182.51999999999998 -1.4780165668715683E-004 - 182.57999999999998 -1.4892020237509753E-004 - 182.63999999999999 -1.4991254886339404E-004 - 182.69999999999999 -1.5078227307561959E-004 - 182.75999999999999 -1.5153318261795296E-004 - 182.81999999999999 -1.5216928498920190E-004 - 182.88000000000000 -1.5269480727261571E-004 - 182.94000000000000 -1.5311417096930123E-004 - 183.00000000000000 -1.5343195066870610E-004 - 183.06000000000000 -1.5365288474739674E-004 - 183.12000000000000 -1.5378184071015573E-004 - 183.17999999999998 -1.5382380513958164E-004 - 183.23999999999998 -1.5378384548779515E-004 - 183.29999999999998 -1.5366713559324542E-004 - 183.35999999999999 -1.5347886296271525E-004 - 183.41999999999999 -1.5322426031188629E-004 - 183.47999999999999 -1.5290857391375804E-004 - 183.53999999999999 -1.5253704743313948E-004 - 183.59999999999999 -1.5211490059171282E-004 - 183.66000000000000 -1.5164731232283069E-004 - 183.72000000000000 -1.5113941753500069E-004 - 183.78000000000000 -1.5059626437892386E-004 - 183.84000000000000 -1.5002284577468248E-004 - 183.89999999999998 -1.4942404567197098E-004 - 183.95999999999998 -1.4880465122260359E-004 - 184.01999999999998 -1.4816935876073756E-004 - 184.07999999999998 -1.4752271652778253E-004 - 184.13999999999999 -1.4686914700646385E-004 - 184.19999999999999 -1.4621294029226140E-004 - 184.25999999999999 -1.4555820187303622E-004 - 184.31999999999999 -1.4490887079738864E-004 - 184.38000000000000 -1.4426870106860299E-004 - 184.44000000000000 -1.4364122101378848E-004 - 184.50000000000000 -1.4302973011624199E-004 - 184.56000000000000 -1.4243728464974722E-004 - 184.62000000000000 -1.4186667876419168E-004 - 184.67999999999998 -1.4132044112780600E-004 - 184.73999999999998 -1.4080079175271833E-004 - 184.79999999999998 -1.4030966863204112E-004 - 184.85999999999999 -1.3984868644565044E-004 - 184.91999999999999 -1.3941916826354890E-004 - 184.97999999999999 -1.3902212014385964E-004 - 185.03999999999999 -1.3865823054942119E-004 - 185.09999999999999 -1.3832788900866919E-004 - 185.16000000000000 -1.3803119589275354E-004 - 185.22000000000000 -1.3776793999586894E-004 - 185.28000000000000 -1.3753764241663944E-004 - 185.34000000000000 -1.3733952327829409E-004 - 185.39999999999998 -1.3717256110370611E-004 - 185.45999999999998 -1.3703544778511761E-004 - 185.51999999999998 -1.3692661252682101E-004 - 185.57999999999998 -1.3684423233116015E-004 - 185.63999999999999 -1.3678624931154324E-004 - 185.69999999999999 -1.3675033116900036E-004 - 185.75999999999999 -1.3673390520855866E-004 - 185.81999999999999 -1.3673417818446657E-004 - 185.88000000000000 -1.3674809738712247E-004 - 185.94000000000000 -1.3677240488152030E-004 - 186.00000000000000 -1.3680358166586363E-004 - 186.06000000000000 -1.3683793940753416E-004 - 186.12000000000000 -1.3687156845454317E-004 - 186.17999999999998 -1.3690036323336403E-004 - 186.23999999999998 -1.3692005853303268E-004 - 186.29999999999998 -1.3692622587881733E-004 - 186.35999999999999 -1.3691429245969502E-004 - 186.41999999999999 -1.3687956880933892E-004 - 186.47999999999999 -1.3681725430846840E-004 - 186.53999999999999 -1.3672247565170168E-004 - 186.59999999999999 -1.3659027369731833E-004 - 186.66000000000000 -1.3641565027802715E-004 - 186.72000000000000 -1.3619355157429300E-004 - 186.78000000000000 -1.3591893762954232E-004 - 186.84000000000000 -1.3558675748843213E-004 - 186.89999999999998 -1.3519197751022538E-004 - 186.95999999999998 -1.3472958225820204E-004 - 187.01999999999998 -1.3419463435921004E-004 - 187.07999999999998 -1.3358223191478196E-004 - 187.13999999999999 -1.3288756822197578E-004 - 187.19999999999999 -1.3210591926499486E-004 - 187.25999999999999 -1.3123269562134103E-004 - 187.31999999999999 -1.3026340221078061E-004 - 187.38000000000000 -1.2919368269061790E-004 - 187.44000000000000 -1.2801934356218120E-004 - 187.50000000000000 -1.2673633294195551E-004 - 187.56000000000000 -1.2534077188971056E-004 - 187.62000000000000 -1.2382896025468949E-004 - 187.67999999999998 -1.2219741153115583E-004 - 187.73999999999998 -1.2044282028515334E-004 - 187.79999999999998 -1.1856211400947364E-004 - 187.85999999999999 -1.1655242654170263E-004 - 187.91999999999999 -1.1441114886295994E-004 - 187.97999999999999 -1.1213592979886961E-004 - 188.03999999999999 -1.0972466119459905E-004 - 188.09999999999999 -1.0717553129461125E-004 - 188.16000000000000 -1.0448701546462045E-004 - 188.22000000000000 -1.0165789768974959E-004 - 188.28000000000000 -9.8687288150485988E-005 - 188.34000000000000 -9.5574615816039591E-005 - 188.39999999999998 -9.2319653471430012E-005 - 188.45999999999998 -8.8922535031677911E-005 - 188.51999999999998 -8.5383732390889545E-005 - 188.57999999999998 -8.1704081735431915E-005 - 188.63999999999999 -7.7884781857296220E-005 - 188.69999999999999 -7.3927393929667409E-005 - 188.75999999999999 -6.9833834194917089E-005 - 188.81999999999999 -6.5606374401885100E-005 - 188.88000000000000 -6.1247640135096167E-005 - 188.94000000000000 -5.6760609751851304E-005 - 189.00000000000000 -5.2148607275700337E-005 - 189.06000000000000 -4.7415292491790051E-005 - 189.12000000000000 -4.2564669266524559E-005 - 189.17999999999998 -3.7601080080955011E-005 - 189.23999999999998 -3.2529201167776576E-005 - 189.29999999999998 -2.7354040659317804E-005 - 189.35999999999999 -2.2080942314022621E-005 - 189.41999999999999 -1.6715586249298654E-005 - 189.47999999999999 -1.1263979363827344E-005 - 189.53999999999999 -5.7324524180049472E-006 - 189.59999999999999 -1.2766078875895435E-007 - 189.66000000000000 5.5434300414555718E-006 - 189.72000000000000 1.1273552283133038E-005 - 189.78000000000000 1.7055145176114421E-005 - 189.84000000000000 2.2880374113820819E-005 - 189.89999999999998 2.8741147239891613E-005 - 189.95999999999998 3.4629126124426072E-005 - 190.01999999999998 4.0535757710180736E-005 - 190.07999999999998 4.6452287938484655E-005 - 190.13999999999999 5.2369780767908198E-005 - 190.19999999999999 5.8279146434169304E-005 - 190.25999999999999 6.4171155371121750E-005 - 190.31999999999999 7.0036461702798733E-005 - 190.38000000000000 7.5865623852994267E-005 - 190.44000000000000 8.1649131588816751E-005 - 190.50000000000000 8.7377393993350979E-005 - 190.56000000000000 9.3040796788463622E-005 - 190.62000000000000 9.8629695124594706E-005 - 190.67999999999998 1.0413444481328797E-004 - 190.73999999999998 1.0954540856345654E-004 - 190.79999999999998 1.1485298635608025E-004 - 190.85999999999999 1.2004764391637466E-004 - 190.91999999999999 1.2511990771068456E-004 - 190.97999999999999 1.3006041456915191E-004 - 191.03999999999999 1.3485991186189356E-004 - 191.09999999999999 1.3950927941297746E-004 - 191.16000000000000 1.4399957729767306E-004 - 191.22000000000000 1.4832204424677974E-004 - 191.28000000000000 1.5246810203298336E-004 - 191.34000000000000 1.5642943881721616E-004 - 191.39999999999998 1.6019796490492430E-004 - 191.45999999999998 1.6376585753394269E-004 - 191.51999999999998 1.6712558521619816E-004 - 191.57999999999998 1.7026991001913570E-004 - 191.63999999999999 1.7319190475500719E-004 - 191.69999999999999 1.7588500678483693E-004 - 191.75999999999999 1.7834298246559050E-004 - 191.81999999999999 1.8055996881107835E-004 - 191.88000000000000 1.8253047771590300E-004 - 191.94000000000000 1.8424944291361078E-004 - 192.00000000000000 1.8571218249944713E-004 - 192.06000000000000 1.8691445651342612E-004 - 192.12000000000000 1.8785243267701939E-004 - 192.17999999999998 1.8852272446868155E-004 - 192.23999999999998 1.8892240248863308E-004 - 192.29999999999998 1.8904897748465166E-004 - 192.35999999999999 1.8890039264869533E-004 - 192.41999999999999 1.8847504488850409E-004 - 192.47999999999999 1.8777178257026091E-004 - 192.53999999999999 1.8678992029664654E-004 - 192.59999999999999 1.8552916911441144E-004 - 192.66000000000000 1.8398969404543087E-004 - 192.72000000000000 1.8217208157826064E-004 - 192.78000000000000 1.8007734117546045E-004 - 192.84000000000000 1.7770688992775830E-004 - 192.89999999999998 1.7506252491781025E-004 - 192.95999999999998 1.7214648256837730E-004 - 193.01999999999998 1.6896137203124384E-004 - 193.07999999999998 1.6551019190961174E-004 - 193.13999999999999 1.6179630109752698E-004 - 193.19999999999999 1.5782343954702960E-004 - 193.25999999999999 1.5359571831491961E-004 - 193.31999999999999 1.4911759201573869E-004 - 193.38000000000000 1.4439386585194208E-004 - 193.44000000000000 1.3942966390365023E-004 - 193.50000000000000 1.3423043029424833E-004 - 193.56000000000000 1.2880191125781259E-004 - 193.62000000000000 1.2315011896724948E-004 - 193.67999999999998 1.1728136360637306E-004 - 193.73999999999998 1.1120217353158889E-004 - 193.79999999999998 1.0491930947212579E-004 - 193.85999999999999 9.8439758082442087E-005 - 193.91999999999999 9.1770693985463643E-005 - 193.97999999999999 8.4919453658357331E-005 - 194.03999999999999 7.7893560294643250E-005 - 194.09999999999999 7.0700671958816373E-005 - 194.16000000000000 6.3348590439020461E-005 - 194.22000000000000 5.5845237245273047E-005 - 194.28000000000000 4.8198642312613201E-005 - 194.34000000000000 4.0416943984099955E-005 - 194.39999999999998 3.2508367439421372E-005 - 194.45999999999998 2.4481219905535572E-005 - 194.51999999999998 1.6343869782020817E-005 - 194.57999999999998 8.1047506512605335E-006 - 194.63999999999999 -2.2766979562283791E-007 - 194.69999999999999 -8.6448898571267534E-006 - 194.75999999999999 -1.7138385159373251E-005 - 194.81999999999999 -2.5699635265194289E-005 - 194.88000000000000 -3.4320124357024349E-005 - 194.94000000000000 -4.2991345456290997E-005 - 195.00000000000000 -5.1704841836977215E-005 - 195.06000000000000 -6.0452183738149102E-005 - 195.12000000000000 -6.9225001558227033E-005 - 195.17999999999998 -7.8014974293343773E-005 - 195.23999999999998 -8.6813848738741733E-005 - 195.29999999999998 -9.5613462858528178E-005 - 195.35999999999999 -1.0440570160672511E-004 - 195.41999999999999 -1.1318255930087786E-004 - 195.47999999999999 -1.2193611382606852E-004 - 195.53999999999999 -1.3065854384599758E-004 - 195.59999999999999 -1.3934211869643569E-004 - 195.66000000000000 -1.4797923015509600E-004 - 195.72000000000000 -1.5656238756639679E-004 - 195.78000000000000 -1.6508422855434474E-004 - 195.84000000000000 -1.7353749164664617E-004 - 195.89999999999998 -1.8191509314542607E-004 - 195.95999999999998 -1.9021009762594607E-004 - 196.01999999999998 -1.9841567247332113E-004 - 196.07999999999998 -2.0652521235827663E-004 - 196.13999999999999 -2.1453220903520486E-004 - 196.19999999999999 -2.2243037480606869E-004 - 196.25999999999999 -2.3021356960850186E-004 - 196.31999999999999 -2.3787581318274786E-004 - 196.38000000000000 -2.4541131517323317E-004 - 196.44000000000000 -2.5281449979634507E-004 - 196.50000000000000 -2.6007990823328098E-004 - 196.56000000000000 -2.6720233109583176E-004 - 196.62000000000000 -2.7417672620516490E-004 - 196.67999999999998 -2.8099823734235526E-004 - 196.73999999999998 -2.8766221562081656E-004 - 196.79999999999998 -2.9416419751113724E-004 - 196.85999999999999 -3.0049996632650153E-004 - 196.91999999999999 -3.0666546727582976E-004 - 196.97999999999999 -3.1265691476563571E-004 - 197.03999999999999 -3.1847072039734985E-004 - 197.09999999999999 -3.2410349373312303E-004 - 197.16000000000000 -3.2955208485715059E-004 - 197.22000000000000 -3.3481356638331676E-004 - 197.28000000000000 -3.3988520242729032E-004 - 197.34000000000000 -3.4476455579323544E-004 - 197.39999999999998 -3.4944929315313772E-004 - 197.45999999999998 -3.5393733707671097E-004 - 197.51999999999998 -3.5822683443841703E-004 - 197.57999999999998 -3.6231612315502866E-004 - 197.63999999999999 -3.6620367002162288E-004 - 197.69999999999999 -3.6988819315726380E-004 - 197.75999999999999 -3.7336856219830137E-004 - 197.81999999999999 -3.7664386662092397E-004 - 197.88000000000000 -3.7971330453716719E-004 - 197.94000000000000 -3.8257635110422624E-004 - 198.00000000000000 -3.8523256022973359E-004 - 198.06000000000000 -3.8768169278631840E-004 - 198.12000000000000 -3.8992373566295268E-004 - 198.17999999999998 -3.9195874562528436E-004 - 198.23999999999998 -3.9378696743617465E-004 - 198.29999999999998 -3.9540886674830787E-004 - 198.35999999999999 -3.9682501229676328E-004 - 198.41999999999999 -3.9803614884785141E-004 - 198.47999999999999 -3.9904312675307155E-004 - 198.53999999999999 -3.9984693610918564E-004 - 198.59999999999999 -4.0044875455706860E-004 - 198.66000000000000 -4.0084979422435777E-004 - 198.72000000000000 -4.0105144914856565E-004 - 198.78000000000000 -4.0105512428700646E-004 - 198.84000000000000 -4.0086239525623815E-004 - 198.89999999999998 -4.0047489854334975E-004 - 198.95999999999998 -3.9989434545522143E-004 - 199.01999999999998 -3.9912251441999604E-004 - 199.07999999999998 -3.9816130692493090E-004 - 199.13999999999999 -3.9701265819360484E-004 - 199.19999999999999 -3.9567856718143463E-004 - 199.25999999999999 -3.9416109507507777E-004 - 199.31999999999999 -3.9246236382877537E-004 - 199.38000000000000 -3.9058451746151670E-004 - 199.44000000000000 -3.8852978985829745E-004 - 199.50000000000000 -3.8630044299699440E-004 - 199.56000000000000 -3.8389877825001373E-004 - 199.62000000000000 -3.8132716079970872E-004 - 199.67999999999998 -3.7858795621489172E-004 - 199.73999999999998 -3.7568358491095705E-004 - 199.79999999999998 -3.7261651617276548E-004 - 199.85999999999999 -3.6938918772672373E-004 - 199.91999999999999 -3.6600415248193085E-004 - 199.97999999999999 -3.6246393312796540E-004 - 200.03999999999999 -3.5877113909755950E-004 - 200.09999999999999 -3.5492838588326654E-004 - 200.16000000000000 -3.5093834615177084E-004 - 200.22000000000000 -3.4680373627420151E-004 - 200.28000000000000 -3.4252732393837219E-004 - 200.34000000000000 -3.3811188017845984E-004 - 200.39999999999998 -3.3356028753918647E-004 - 200.45999999999998 -3.2887544868064164E-004 - 200.51999999999998 -3.2406032373190726E-004 - 200.57999999999998 -3.1911793268380850E-004 - 200.63999999999999 -3.1405131666084688E-004 - 200.69999999999999 -3.0886360746429673E-004 - 200.75999999999999 -3.0355794211507788E-004 - 200.81999999999999 -2.9813754164566281E-004 - 200.88000000000000 -2.9260563653668196E-004 - 200.94000000000000 -2.8696551592297370E-004 - 201.00000000000000 -2.8122050468423911E-004 - 201.06000000000000 -2.7537398156891792E-004 - 201.12000000000000 -2.6942936470740410E-004 - 201.17999999999998 -2.6339009742120734E-004 - 201.23999999999998 -2.5725966708850138E-004 - 201.29999999999998 -2.5104162717773669E-004 - 201.35999999999999 -2.4473953191982980E-004 - 201.41999999999999 -2.3835701032596707E-004 - 201.47999999999999 -2.3189771038836739E-004 - 201.53999999999999 -2.2536532128186406E-004 - 201.59999999999999 -2.1876355491609272E-004 - 201.66000000000000 -2.1209616008824900E-004 - 201.72000000000000 -2.0536694147798703E-004 - 201.78000000000000 -1.9857966015780789E-004 - 201.84000000000000 -1.9173814400894149E-004 - 201.89999999999998 -1.8484619766537144E-004 - 201.95999999999998 -1.7790767616840666E-004 - 202.01999999999998 -1.7092639670787579E-004 - 202.07999999999998 -1.6390617653723929E-004 - 202.13999999999999 -1.5685084601785093E-004 - 202.19999999999999 -1.4976421666883021E-004 - 202.25999999999999 -1.4265009436671217E-004 - 202.31999999999999 -1.3551225403267306E-004 - 202.38000000000000 -1.2835446949016795E-004 - 202.44000000000000 -1.2118047568727295E-004 - 202.50000000000000 -1.1399399870097247E-004 - 202.56000000000000 -1.0679872452964577E-004 - 202.62000000000000 -9.9598305114541696E-005 - 202.67999999999998 -9.2396372141424041E-005 - 202.73999999999998 -8.5196495360843560E-005 - 202.79999999999998 -7.8002196697053125E-005 - 202.85999999999999 -7.0816980330910722E-005 - 202.91999999999999 -6.3644270878582927E-005 - 202.97999999999999 -5.6487448018192874E-005 - 203.03999999999999 -4.9349826832023758E-005 - 203.09999999999999 -4.2234690230047125E-005 - 203.16000000000000 -3.5145258300085764E-005 - 203.22000000000000 -2.8084703798480023E-005 - 203.28000000000000 -2.1056151932476413E-005 - 203.34000000000000 -1.4062683159797919E-005 - 203.39999999999998 -7.1073447823312167E-006 - 203.45999999999998 -1.9314781381439043E-007 - 203.51999999999998 6.6769257127607343E-006 - 203.57999999999998 1.3499924061644718E-005 - 203.63999999999999 2.0272903969104471E-005 - 203.69999999999999 2.6992961772906266E-005 - 203.75999999999999 3.3657196134927208E-005 - 203.81999999999999 4.0262736812417660E-005 - 203.88000000000000 4.6806723739240812E-005 - 203.94000000000000 5.3286305871241270E-005 - 204.00000000000000 5.9698652068058508E-005 - 204.06000000000000 6.6040936472575509E-005 - 204.12000000000000 7.2310353700581834E-005 - 204.17999999999998 7.8504093177500674E-005 - 204.23999999999998 8.4619354871130837E-005 - 204.29999999999998 9.0653336165330301E-005 - 204.35999999999999 9.6603228527035074E-005 - 204.41999999999999 1.0246620067321796E-004 - 204.47999999999999 1.0823941581554254E-004 - 204.53999999999999 1.1392001845367969E-004 - 204.59999999999999 1.1950511192655995E-004 - 204.66000000000000 1.2499176976438436E-004 - 204.72000000000000 1.3037702364223603E-004 - 204.78000000000000 1.3565787917897335E-004 - 204.84000000000000 1.4083127956328591E-004 - 204.89999999999998 1.4589413741230260E-004 - 204.95999999999998 1.5084329840098427E-004 - 205.01999999999998 1.5567560505110861E-004 - 205.07999999999998 1.6038783363231748E-004 - 205.13999999999999 1.6497673971719491E-004 - 205.19999999999999 1.6943903431296243E-004 - 205.25999999999999 1.7377141768476847E-004 - 205.31999999999999 1.7797055833083648E-004 - 205.38000000000000 1.8203310855540529E-004 - 205.44000000000000 1.8595571757623391E-004 - 205.50000000000000 1.8973503508318409E-004 - 205.56000000000000 1.9336769477758324E-004 - 205.62000000000000 1.9685035470973829E-004 - 205.67999999999998 2.0017966566218746E-004 - 205.73999999999998 2.0335230958517066E-004 - 205.79999999999998 2.0636498716310403E-004 - 205.85999999999999 2.0921441132554014E-004 - 205.91999999999999 2.1189734364211548E-004 - 205.97999999999999 2.1441057434634013E-004 - 206.03999999999999 2.1675095017427567E-004 - 206.09999999999999 2.1891536053186904E-004 - 206.16000000000000 2.2090075229139021E-004 - 206.22000000000000 2.2270414451814745E-004 - 206.28000000000000 2.2432262895644893E-004 - 206.34000000000000 2.2575336680919620E-004 - 206.39999999999998 2.2699364474100740E-004 - 206.45999999999998 2.2804084359818631E-004 - 206.51999999999998 2.2889246336899502E-004 - 206.57999999999998 2.2954610786281082E-004 - 206.63999999999999 2.2999956846101791E-004 - 206.69999999999999 2.3025074723523589E-004 - 206.75999999999999 2.3029774012034164E-004 - 206.81999999999999 2.3013882368880722E-004 - 206.88000000000000 2.2977247062084557E-004 - 206.94000000000000 2.2919733961623677E-004 - 207.00000000000000 2.2841229845646499E-004 - 207.06000000000000 2.2741645557122471E-004 - 207.12000000000000 2.2620914317475406E-004 - 207.17999999999998 2.2478991770653593E-004 - 207.23999999999998 2.2315857700288551E-004 - 207.29999999999998 2.2131515432923513E-004 - 207.35999999999999 2.1925993845716638E-004 - 207.41999999999999 2.1699345325474484E-004 - 207.47999999999999 2.1451644209436198E-004 - 207.53999999999999 2.1182991922885603E-004 - 207.59999999999999 2.0893511055516663E-004 - 207.66000000000000 2.0583346756313474E-004 - 207.72000000000000 2.0252669211169355E-004 - 207.78000000000000 1.9901671617533360E-004 - 207.84000000000000 1.9530571373025296E-004 - 207.89999999999998 1.9139606929217831E-004 - 207.95999999999998 1.8729045150282477E-004 - 208.01999999999998 1.8299175115468671E-004 - 208.07999999999998 1.7850310754467100E-004 - 208.13999999999999 1.7382791040334542E-004 - 208.19999999999999 1.6896982476263480E-004 - 208.25999999999999 1.6393277912845456E-004 - 208.31999999999999 1.5872096661750229E-004 - 208.38000000000000 1.5333883591507936E-004 - 208.44000000000000 1.4779111749031179E-004 - 208.50000000000000 1.4208279965994560E-004 - 208.56000000000000 1.3621912129295173E-004 - 208.62000000000000 1.3020557451170328E-004 - 208.68000000000001 1.2404788524974440E-004 - 208.74000000000001 1.1775200186959863E-004 - 208.80000000000001 1.1132407802447265E-004 - 208.86000000000001 1.0477048224839781E-004 - 208.92000000000002 9.8097742234501040E-005 - 208.98000000000002 9.1312577701180482E-005 - 209.03999999999996 8.4421847959953892E-005 - 209.09999999999997 7.7432565022968070E-005 - 209.15999999999997 7.0351871615489790E-005 - 209.21999999999997 6.3187017648745234E-005 - 209.27999999999997 5.5945382988596512E-005 - 209.33999999999997 4.8634453759971216E-005 - 209.39999999999998 4.1261815005289097E-005 - 209.45999999999998 3.3835141724077105E-005 - 209.51999999999998 2.6362200434770753E-005 - 209.57999999999998 1.8850847027737799E-005 - 209.63999999999999 1.1309012077905971E-005 - 209.69999999999999 3.7446943039945328E-006 - 209.75999999999999 -3.8340331565654221E-006 - 209.81999999999999 -1.1419059348635856E-005 - 209.88000000000000 -1.9002222030971549E-005 - 209.94000000000000 -2.6575333776461340E-005 - 210.00000000000000 -3.4130197070197882E-005 - 210.06000000000000 -4.1658597038580440E-005 - 210.12000000000000 -4.9152357321924002E-005 - 210.18000000000001 -5.6603330483393134E-005 - 210.24000000000001 -6.4003421626442015E-005 - 210.30000000000001 -7.1344604805739087E-005 - 210.36000000000001 -7.8618960283209990E-005 - 210.42000000000002 -8.5818658362787122E-005 - 210.48000000000002 -9.2936000504310223E-005 - 210.53999999999996 -9.9963436289991241E-005 - 210.59999999999997 -1.0689354820648565E-004 - 210.65999999999997 -1.1371910708693735E-004 - 210.71999999999997 -1.2043303943601316E-004 - 210.77999999999997 -1.2702846842247372E-004 - 210.83999999999997 -1.3349871094626157E-004 - 210.89999999999998 -1.3983727194361275E-004 - 210.95999999999998 -1.4603784929096797E-004 - 211.01999999999998 -1.5209438165951321E-004 - 211.07999999999998 -1.5800099640887080E-004 - 211.13999999999999 -1.6375202738924471E-004 - 211.19999999999999 -1.6934204588722149E-004 - 211.25999999999999 -1.7476583999416587E-004 - 211.31999999999999 -1.8001843466987306E-004 - 211.38000000000000 -1.8509510513325863E-004 - 211.44000000000000 -1.8999134409339102E-004 - 211.50000000000000 -1.9470294063552687E-004 - 211.56000000000000 -1.9922592316164178E-004 - 211.62000000000000 -2.0355661103275844E-004 - 211.68000000000001 -2.0769159419747055E-004 - 211.74000000000001 -2.1162778177282159E-004 - 211.80000000000001 -2.1536237814542272E-004 - 211.86000000000001 -2.1889285891165739E-004 - 211.92000000000002 -2.2221705823372544E-004 - 211.98000000000002 -2.2533308616930642E-004 - 212.03999999999996 -2.2823938588328413E-004 - 212.09999999999997 -2.3093469554615992E-004 - 212.15999999999997 -2.3341805682084062E-004 - 212.21999999999997 -2.3568879517106448E-004 - 212.27999999999997 -2.3774652410524745E-004 - 212.33999999999997 -2.3959112167584953E-004 - 212.39999999999998 -2.4122275658880981E-004 - 212.45999999999998 -2.4264175681410963E-004 - 212.51999999999998 -2.4384876711902993E-004 - 212.57999999999998 -2.4484459184482719E-004 - 212.63999999999999 -2.4563029444202208E-004 - 212.69999999999999 -2.4620709133764114E-004 - 212.75999999999999 -2.4657639026258682E-004 - 212.81999999999999 -2.4673978915905776E-004 - 212.88000000000000 -2.4669905597329161E-004 - 212.94000000000000 -2.4645612094990042E-004 - 213.00000000000000 -2.4601308424820260E-004 - 213.06000000000000 -2.4537218635706682E-004 - 213.12000000000000 -2.4453581977052765E-004 - 213.18000000000001 -2.4350653334992531E-004 - 213.24000000000001 -2.4228699791748495E-004 - 213.30000000000001 -2.4088001346063800E-004 - 213.36000000000001 -2.3928848517977276E-004 - 213.42000000000002 -2.3751541730802819E-004 - 213.48000000000002 -2.3556393890684566E-004 - 213.53999999999996 -2.3343721366909335E-004 - 213.59999999999997 -2.3113849486806599E-004 - 213.65999999999997 -2.2867106756263551E-004 - 213.71999999999997 -2.2603826964726683E-004 - 213.77999999999997 -2.2324341777867648E-004 - 213.83999999999997 -2.2028986432554023E-004 - 213.89999999999998 -2.1718091472800572E-004 - 213.95999999999998 -2.1391984051807511E-004 - 214.01999999999998 -2.1050991415089159E-004 - 214.07999999999998 -2.0695431507715544E-004 - 214.13999999999999 -2.0325618167095654E-004 - 214.19999999999999 -1.9941858220614970E-004 - 214.25999999999999 -1.9544449118789523E-004 - 214.31999999999999 -1.9133682641288096E-004 - 214.38000000000000 -1.8709840038420706E-004 - 214.44000000000000 -1.8273197851641118E-004 - 214.50000000000000 -1.7824021243550295E-004 - 214.56000000000000 -1.7362567835478115E-004 - 214.62000000000000 -1.6889086213074667E-004 - 214.68000000000001 -1.6403818983262255E-004 - 214.74000000000001 -1.5906998663228796E-004 - 214.80000000000001 -1.5398849049339078E-004 - 214.86000000000001 -1.4879588527985497E-004 - 214.92000000000002 -1.4349425570775481E-004 - 214.98000000000002 -1.3808561084151922E-004 - 215.03999999999996 -1.3257187652608969E-004 - 215.09999999999997 -1.2695490837261371E-004 - 215.15999999999997 -1.2123646773706931E-004 - 215.21999999999997 -1.1541824310279678E-004 - 215.27999999999997 -1.0950181389281129E-004 - 215.33999999999997 -1.0348870791465131E-004 - 215.39999999999998 -9.7380349543501124E-005 - 215.45999999999998 -9.1178075457615173E-005 - 215.51999999999998 -8.4883145815926140E-005 - 215.57999999999998 -7.8496739792509047E-005 - 215.63999999999999 -7.2019954346613674E-005 - 215.69999999999999 -6.5453823647760304E-005 - 215.75999999999999 -5.8799316310967623E-005 - 215.81999999999999 -5.2057343132720649E-005 - 215.88000000000000 -4.5228763051447353E-005 - 215.94000000000000 -3.8314409135540354E-005 - 216.00000000000000 -3.1315078105371204E-005 - 216.06000000000000 -2.4231551082569679E-005 - 216.12000000000000 -1.7064609433760369E-005 - 216.18000000000001 -9.8150260803016909E-006 - 216.24000000000001 -2.4835904482109979E-006 - 216.30000000000001 4.9288836150713057E-006 - 216.36000000000001 1.2421571103891373E-005 - 216.42000000000002 1.9993602708282564E-005 - 216.48000000000002 2.7644083770020483E-005 - 216.53999999999996 3.5372079645708993E-005 - 216.59999999999997 4.3176617520165287E-005 - 216.65999999999997 5.1056680819989388E-005 - 216.71999999999997 5.9011206241126372E-005 - 216.77999999999997 6.7039090710998506E-005 - 216.83999999999997 7.5139172749131108E-005 - 216.89999999999998 8.3310261001038789E-005 - 216.95999999999998 9.1551104976158833E-005 - 217.01999999999998 9.9860379486024659E-005 - 217.07999999999998 1.0823672018384892E-004 - 217.13999999999999 1.1667868131964753E-004 - 217.19999999999999 1.2518476726339971E-004 - 217.25999999999999 1.3375339931403466E-004 - 217.31999999999999 1.4238289918772990E-004 - 217.38000000000000 1.5107150961570995E-004 - 217.44000000000000 1.5981738656168078E-004 - 217.50000000000000 1.6861856684308404E-004 - 217.56000000000000 1.7747299024572063E-004 - 217.62000000000000 1.8637847333657359E-004 - 217.68000000000001 1.9533272423964221E-004 - 217.74000000000001 2.0433330603981899E-004 - 217.80000000000001 2.1337765630184273E-004 - 217.86000000000001 2.2246307725691254E-004 - 217.92000000000002 2.3158673093590028E-004 - 217.98000000000002 2.4074566206931051E-004 - 218.03999999999996 2.4993672512525387E-004 - 218.09999999999997 2.5915666610595281E-004 - 218.15999999999997 2.6840208136588565E-004 - 218.21999999999997 2.7766940800411582E-004 - 218.27999999999997 2.8695494662363253E-004 - 218.33999999999997 2.9625486125537683E-004 - 218.39999999999998 3.0556516877651673E-004 - 218.45999999999998 3.1488174887968519E-004 - 218.51999999999998 3.2420030223101091E-004 - 218.57999999999998 3.3351647865516971E-004 - 218.63999999999999 3.4282570625949864E-004 - 218.69999999999999 3.5212330640347229E-004 - 218.75999999999999 3.6140447880791125E-004 - 218.81999999999999 3.7066427333701024E-004 - 218.88000000000000 3.7989759348082191E-004 - 218.94000000000000 3.8909921812070158E-004 - 219.00000000000000 3.9826375845383472E-004 - 219.06000000000000 4.0738571499522163E-004 - 219.12000000000000 4.1645946539933571E-004 - 219.18000000000001 4.2547917256442486E-004 - 219.24000000000001 4.3443888325945184E-004 - 219.30000000000001 4.4333253621601045E-004 - 219.36000000000001 4.5215383466914311E-004 - 219.42000000000002 4.6089642504364744E-004 - 219.48000000000002 4.6955375734968486E-004 - 219.53999999999996 4.7811913209290269E-004 - 219.59999999999997 4.8658580208175186E-004 - 219.65999999999997 4.9494695774792178E-004 - 219.71999999999997 5.0319550711002607E-004 - 219.77999999999997 5.1132444460363165E-004 - 219.83999999999997 5.1932660820700523E-004 - 219.89999999999998 5.2719480476818973E-004 - 219.95999999999998 5.3492177104982528E-004 - 220.01999999999998 5.4250025002114421E-004 - 220.07999999999998 5.4992297830807344E-004 - 220.13999999999999 5.5718259455177850E-004 - 220.19999999999999 5.6427175597039293E-004 - 220.25999999999999 5.7118320077644566E-004 - 220.31999999999999 5.7790957711910916E-004 - 220.38000000000000 5.8444357301077601E-004 - 220.44000000000000 5.9077800689815102E-004 - 220.50000000000000 5.9690550927263459E-004 - 220.56000000000000 6.0281890681324751E-004 - 220.62000000000000 6.0851102468324910E-004 - 220.68000000000001 6.1397462285906466E-004 - 220.74000000000001 6.1920267850919871E-004 - 220.80000000000001 6.2418820676344710E-004 - 220.86000000000001 6.2892416624164837E-004 - 220.92000000000002 6.3340372737393966E-004 - 220.98000000000002 6.3762023911593385E-004 - 221.03999999999996 6.4156705307256805E-004 - 221.09999999999997 6.4523767575957634E-004 - 221.15999999999997 6.4862582589092098E-004 - 221.21999999999997 6.5172537126386202E-004 - 221.27999999999997 6.5453047244483332E-004 - 221.33999999999997 6.5703535401731355E-004 - 221.39999999999998 6.5923454486639145E-004 - 221.45999999999998 6.6112283139947942E-004 - 221.51999999999998 6.6269528514727508E-004 - 221.57999999999998 6.6394720467096845E-004 - 221.63999999999999 6.6487414391869064E-004 - 221.69999999999999 6.6547200457022925E-004 - 221.75999999999999 6.6573694374005507E-004 - 221.81999999999999 6.6566539014879388E-004 - 221.88000000000000 6.6525414266792185E-004 - 221.94000000000000 6.6450021243050770E-004 - 222.00000000000000 6.6340096617243467E-004 - 222.06000000000000 6.6195407862486776E-004 - 222.12000000000000 6.6015755819561297E-004 - 222.18000000000001 6.5800970713584118E-004 - 222.24000000000001 6.5550915538652253E-004 - 222.30000000000001 6.5265487206362760E-004 - 222.36000000000001 6.4944621511606312E-004 - 222.42000000000002 6.4588285769800959E-004 - 222.48000000000002 6.4196484558840037E-004 - 222.53999999999996 6.3769258210288318E-004 - 222.59999999999997 6.3306687529755270E-004 - 222.65999999999997 6.2808895863356940E-004 - 222.71999999999997 6.2276046000823016E-004 - 222.77999999999997 6.1708342746206600E-004 - 222.83999999999997 6.1106034559908046E-004 - 222.89999999999998 6.0469405661433282E-004 - 222.95999999999998 5.9798797927310544E-004 - 223.01999999999998 5.9094581622402137E-004 - 223.07999999999998 5.8357178020893713E-004 - 223.13999999999999 5.7587050901069213E-004 - 223.19999999999999 5.6784701166479100E-004 - 223.25999999999999 5.5950670980682723E-004 - 223.31999999999999 5.5085556393657197E-004 - 223.38000000000000 5.4189976641892570E-004 - 223.44000000000000 5.3264594207007147E-004 - 223.50000000000000 5.2310105286924977E-004 - 223.56000000000000 5.1327248718228925E-004 - 223.62000000000000 5.0316790549747290E-004 - 223.68000000000001 4.9279539152573444E-004 - 223.74000000000001 4.8216325877969220E-004 - 223.80000000000001 4.7128021418704150E-004 - 223.86000000000001 4.6015534095787718E-004 - 223.92000000000002 4.4879794839507381E-004 - 223.98000000000002 4.3721775466960805E-004 - 224.03999999999996 4.2542472741355781E-004 - 224.09999999999997 4.1342924235731335E-004 - 224.15999999999997 4.0124192963098470E-004 - 224.21999999999997 3.8887374004378762E-004 - 224.27999999999997 3.7633591661388689E-004 - 224.33999999999997 3.6364003056348965E-004 - 224.39999999999998 3.5079786019062833E-004 - 224.45999999999998 3.3782147307271656E-004 - 224.51999999999998 3.2472320423176953E-004 - 224.57999999999998 3.1151554792061779E-004 - 224.63999999999999 2.9821118176251801E-004 - 224.69999999999999 2.8482296004995593E-004 - 224.75999999999999 2.7136384993347825E-004 - 224.81999999999999 2.5784690690363097E-004 - 224.88000000000000 2.4428527332056129E-004 - 224.94000000000000 2.3069216417272878E-004 - 225.00000000000000 2.1708076923393751E-004 - 225.06000000000000 2.0346431965103192E-004 - 225.12000000000000 1.8985604748187791E-004 - 225.18000000000001 1.7626911583437747E-004 - 225.24000000000001 1.6271668221552372E-004 - 225.30000000000001 1.4921181936906181E-004 - 225.36000000000001 1.3576756231884705E-004 - 225.42000000000002 1.2239683903932794E-004 - 225.48000000000002 1.0911250154092853E-004 - 225.53999999999996 9.5927279124064619E-005 - 225.59999999999997 8.2853780096359093E-005 - 225.65999999999997 6.9904467780401803E-005 - 225.71999999999997 5.7091651535894768E-005 - 225.77999999999997 4.4427430459086968E-005 - 225.83999999999997 3.1923722306774863E-005 - 225.89999999999998 1.9592173601110715E-005 - 225.95999999999998 7.4442054796320127E-006 - 226.01999999999998 -4.5090748621146258E-006 - 226.07999999999998 -1.6256853074196683E-005 - 226.13999999999999 -2.7788681462460502E-005 - 226.19999999999999 -3.9094460241555962E-005 - 226.25999999999999 -5.0164471564944865E-005 - 226.31999999999999 -6.0989425050606537E-005 - 226.38000000000000 -7.1560442625779737E-005 - 226.44000000000000 -8.1869070366881252E-005 - 226.50000000000000 -9.1907324510369015E-005 - 226.56000000000000 -1.0166767978282950E-004 - 226.62000000000000 -1.1114307120741693E-004 - 226.68000000000001 -1.2032691403655564E-004 - 226.74000000000001 -1.2921308351671401E-004 - 226.80000000000001 -1.3779597424917631E-004 - 226.86000000000001 -1.4607042055913240E-004 - 226.92000000000002 -1.5403175156403231E-004 - 226.98000000000002 -1.6167578084863357E-004 - 227.03999999999996 -1.6899882390601135E-004 - 227.09999999999997 -1.7599766237371916E-004 - 227.15999999999997 -1.8266958298833385E-004 - 227.21999999999997 -1.8901237586865959E-004 - 227.27999999999997 -1.9502430737236822E-004 - 227.33999999999997 -2.0070414766586799E-004 - 227.39999999999998 -2.0605119194097522E-004 - 227.45999999999998 -2.1106520434876515E-004 - 227.51999999999998 -2.1574648912323216E-004 - 227.57999999999998 -2.2009584992328828E-004 - 227.63999999999999 -2.2411459322335602E-004 - 227.69999999999999 -2.2780453853160745E-004 - 227.75999999999999 -2.3116803699383532E-004 - 227.81999999999999 -2.3420786143023373E-004 - 227.88000000000000 -2.3692732315574267E-004 - 227.94000000000000 -2.3933019545870868E-004 - 228.00000000000000 -2.4142071462254848E-004 - 228.06000000000000 -2.4320351506438109E-004 - 228.12000000000000 -2.4468370793274475E-004 - 228.18000000000001 -2.4586675799782268E-004 - 228.24000000000001 -2.4675853132356340E-004 - 228.30000000000001 -2.4736524914178033E-004 - 228.36000000000001 -2.4769346119890383E-004 - 228.42000000000002 -2.4775000699287685E-004 - 228.48000000000002 -2.4754207134021006E-004 - 228.53999999999996 -2.4707707574623492E-004 - 228.59999999999997 -2.4636271743292201E-004 - 228.65999999999997 -2.4540692139244432E-004 - 228.71999999999997 -2.4421782688501280E-004 - 228.77999999999997 -2.4280378669209741E-004 - 228.83999999999997 -2.4117337054551421E-004 - 228.89999999999998 -2.3933529135822403E-004 - 228.95999999999998 -2.3729847341067610E-004 - 229.01999999999998 -2.3507197755218449E-004 - 229.07999999999998 -2.3266501119211075E-004 - 229.13999999999999 -2.3008687731882030E-004 - 229.19999999999999 -2.2734701878711485E-004 - 229.25999999999999 -2.2445493179990835E-004 - 229.31999999999999 -2.2142019109168670E-004 - 229.38000000000000 -2.1825243792940817E-004 - 229.44000000000000 -2.1496130297368572E-004 - 229.50000000000000 -2.1155638800989264E-004 - 229.56000000000000 -2.0804730814141413E-004 - 229.62000000000000 -2.0444359062054562E-004 - 229.68000000000001 -2.0075468439005568E-004 - 229.74000000000001 -1.9698991446393880E-004 - 229.80000000000001 -1.9315851746107260E-004 - 229.86000000000001 -1.8926956321511506E-004 - 229.92000000000002 -1.8533193571028357E-004 - 229.97999999999996 -1.8135436170561937E-004 - 230.03999999999996 -1.7734537024568223E-004 - 230.09999999999997 -1.7331328777119031E-004 - 230.15999999999997 -1.6926621856334562E-004 - 230.21999999999997 -1.6521204055804469E-004 - 230.27999999999997 -1.6115841552636633E-004 - 230.33999999999997 -1.5711275296973956E-004 - 230.39999999999998 -1.5308223564746492E-004 - 230.45999999999998 -1.4907377835352508E-004 - 230.51999999999998 -1.4509404179636226E-004 - 230.57999999999998 -1.4114942190421033E-004 - 230.63999999999999 -1.3724603203822862E-004 - 230.69999999999999 -1.3338972601413754E-004 - 230.75999999999999 -1.2958604248997316E-004 - 230.81999999999999 -1.2584025920657426E-004 - 230.88000000000000 -1.2215732094524745E-004 - 230.94000000000000 -1.1854186427245455E-004 - 231.00000000000000 -1.1499822927329195E-004 - 231.06000000000000 -1.1153041983812143E-004 - 231.12000000000000 -1.0814213735185874E-004 - 231.18000000000001 -1.0483673830727901E-004 - 231.24000000000001 -1.0161726544564764E-004 - 231.30000000000001 -9.8486441423821085E-005 - 231.36000000000001 -9.5446667314798343E-005 - 231.42000000000002 -9.2500016639412774E-005 - 231.47999999999996 -8.9648246896135839E-005 - 231.53999999999996 -8.6892794495528700E-005 - 231.59999999999997 -8.4234808758568911E-005 - 231.65999999999997 -8.1675119393987975E-005 - 231.71999999999997 -7.9214264381659351E-005 - 231.77999999999997 -7.6852489158373938E-005 - 231.83999999999997 -7.4589753185594013E-005 - 231.89999999999998 -7.2425738407771328E-005 - 231.95999999999998 -7.0359873680832903E-005 - 232.01999999999998 -6.8391323705061497E-005 - 232.07999999999998 -6.6518998031048026E-005 - 232.13999999999999 -6.4741581755880620E-005 - 232.19999999999999 -6.3057535684894070E-005 - 232.25999999999999 -6.1465109120625101E-005 - 232.31999999999999 -5.9962351017419286E-005 - 232.38000000000000 -5.8547116189634107E-005 - 232.44000000000000 -5.7217097695417983E-005 - 232.50000000000000 -5.5969817218761668E-005 - 232.56000000000000 -5.4802642671278602E-005 - 232.62000000000000 -5.3712798334774891E-005 - 232.68000000000001 -5.2697376977508922E-005 - 232.74000000000001 -5.1753342518580899E-005 - 232.80000000000001 -5.0877544850282229E-005 - 232.86000000000001 -5.0066728726659905E-005 - 232.92000000000002 -4.9317534514042676E-005 - 232.97999999999996 -4.8626511431832443E-005 - 233.03999999999996 -4.7990133190571724E-005 - 233.09999999999997 -4.7404802044907176E-005 - 233.15999999999997 -4.6866853446919718E-005 - 233.21999999999997 -4.6372585624327449E-005 - 233.27999999999997 -4.5918259784595213E-005 - 233.33999999999997 -4.5500115997663590E-005 - 233.39999999999998 -4.5114395494561080E-005 - 233.45999999999998 -4.4757345201662338E-005 - 233.51999999999998 -4.4425240622426019E-005 - 233.57999999999998 -4.4114397195163300E-005 - 233.63999999999999 -4.3821187240420549E-005 - 233.69999999999999 -4.3542046970235885E-005 - 233.75999999999999 -4.3273492184630031E-005 - 233.81999999999999 -4.3012131879386054E-005 - 233.88000000000000 -4.2754659412511226E-005 - 233.94000000000000 -4.2497879978342124E-005 - 234.00000000000000 -4.2238706983905905E-005 - 234.06000000000000 -4.1974161512128604E-005 - 234.12000000000000 -4.1701378632433877E-005 - 234.18000000000001 -4.1417607913278500E-005 - 234.24000000000001 -4.1120220064384243E-005 - 234.30000000000001 -4.0806696741168383E-005 - 234.36000000000001 -4.0474641532081763E-005 - 234.42000000000002 -4.0121778489337506E-005 - 234.47999999999996 -3.9745957326273911E-005 - 234.53999999999996 -3.9345143682328625E-005 - 234.59999999999997 -3.8917444790121252E-005 - 234.65999999999997 -3.8461095610434429E-005 - 234.71999999999997 -3.7974468804352854E-005 - 234.77999999999997 -3.7456075823511249E-005 - 234.83999999999997 -3.6904589376583146E-005 - 234.89999999999998 -3.6318828138380666E-005 - 234.95999999999998 -3.5697772050309690E-005 - 235.01999999999998 -3.5040565735429467E-005 - 235.07999999999998 -3.4346520002312097E-005 - 235.13999999999999 -3.3615119719123255E-005 - 235.19999999999999 -3.2846020859552296E-005 - 235.25999999999999 -3.2039058945036646E-005 - 235.31999999999999 -3.1194233584975770E-005 - 235.38000000000000 -3.0311717228724886E-005 - 235.44000000000000 -2.9391849302564010E-005 - 235.50000000000000 -2.8435131426246942E-005 - 235.56000000000000 -2.7442217532132023E-005 - 235.62000000000000 -2.6413912225375580E-005 - 235.68000000000001 -2.5351154079681887E-005 - 235.74000000000001 -2.4255013417657611E-005 - 235.80000000000001 -2.3126678148936649E-005 - 235.86000000000001 -2.1967450715775145E-005 - 235.92000000000002 -2.0778729715895660E-005 - 235.97999999999996 -1.9562005971898133E-005 - 236.03999999999996 -1.8318856857725862E-005 - 236.09999999999997 -1.7050940786946946E-005 - 236.15999999999997 -1.5759989385284508E-005 - 236.21999999999997 -1.4447802929090212E-005 - 236.27999999999997 -1.3116255322726867E-005 - 236.33999999999997 -1.1767290628342258E-005 - 236.39999999999998 -1.0402916977296415E-005 - 236.45999999999998 -9.0252198910955164E-006 - 236.51999999999998 -7.6363540624435885E-006 - 236.57999999999998 -6.2385411386401117E-006 - 236.63999999999999 -4.8340795704839838E-006 - 236.69999999999999 -3.4253330959954462E-006 - 236.75999999999999 -2.0147304009822123E-006 - 236.81999999999999 -6.0475643974415039E-007 - 236.88000000000000 8.0205588152858145E-007 - 236.94000000000000 2.2031340012178629E-006 - 237.00000000000000 3.5958848161072205E-006 - 237.06000000000000 4.9777026986971632E-006 - 237.12000000000000 6.3459889380711552E-006 - 237.18000000000001 7.6981654036303757E-006 - 237.24000000000001 9.0316872294531038E-006 - 237.30000000000001 1.0344063113960731E-005 - 237.36000000000001 1.1632856937900344E-005 - 237.42000000000002 1.2895705656840060E-005 - 237.47999999999996 1.4130318710906779E-005 - 237.53999999999996 1.5334484353310300E-005 - 237.59999999999997 1.6506065733573526E-005 - 237.65999999999997 1.7643007567038959E-005 - 237.71999999999997 1.8743320510006759E-005 - 237.77999999999997 1.9805079300088984E-005 - 237.83999999999997 2.0826421228648458E-005 - 237.89999999999998 2.1805533656527980E-005 - 237.95999999999998 2.2740655601641635E-005 - 238.01999999999998 2.3630064288033873E-005 - 238.07999999999998 2.4472087947200709E-005 - 238.13999999999999 2.5265097672684146E-005 - 238.19999999999999 2.6007521590548523E-005 - 238.25999999999999 2.6697839675946844E-005 - 238.31999999999999 2.7334604689101366E-005 - 238.38000000000000 2.7916451341696593E-005 - 238.44000000000000 2.8442101058212223E-005 - 238.50000000000000 2.8910391009482902E-005 - 238.56000000000000 2.9320272042063881E-005 - 238.62000000000000 2.9670823385210503E-005 - 238.68000000000001 2.9961262397587829E-005 - 238.74000000000001 3.0190952127038880E-005 - 238.80000000000001 3.0359401856769519E-005 - 238.86000000000001 3.0466267136705574E-005 - 238.92000000000002 3.0511353161453504E-005 - 238.97999999999996 3.0494600097427022E-005 - 239.03999999999996 3.0416088151652205E-005 - 239.09999999999997 3.0276019554127797E-005 - 239.15999999999997 3.0074713833500431E-005 - 239.21999999999997 2.9812598323286324E-005 - 239.27999999999997 2.9490202754408908E-005 - 239.33999999999997 2.9108144194843901E-005 - 239.39999999999998 2.8667130393376413E-005 - 239.45999999999998 2.8167949703503376E-005 - 239.51999999999998 2.7611473612927529E-005 - 239.57999999999998 2.6998650705865033E-005 - 239.63999999999999 2.6330506895692020E-005 - 239.69999999999999 2.5608155112678801E-005 - 239.75999999999999 2.4832792280564677E-005 - 239.81999999999999 2.4005700412445539E-005 - 239.88000000000000 2.3128257918665334E-005 - 239.94000000000000 2.2201933417652673E-005 - 240.00000000000000 2.1228294185865868E-005 - 240.06000000000000 2.0209006971969032E-005 - 240.12000000000000 1.9145830964995507E-005 - 240.18000000000001 1.8040623103777675E-005 - 240.24000000000001 1.6895334229300757E-005 - 240.30000000000001 1.5712000037866985E-005 - 240.36000000000001 1.4492739150518889E-005 - 240.42000000000002 1.3239745637114789E-005 - 240.47999999999996 1.1955279328171214E-005 - 240.53999999999996 1.0641658474161909E-005 - 240.59999999999997 9.3012488854311967E-006 - 240.65999999999997 7.9364587339241480E-006 - 240.71999999999997 6.5497236093554579E-006 - 240.77999999999997 5.1435019354843621E-006 - 240.83999999999997 3.7202635666448957E-006 - 240.89999999999998 2.2824860355760222E-006 - 240.95999999999998 8.3264493357239429E-007 - 241.01999999999998 -6.2678829337326970E-007 - 241.07999999999998 -2.0933513436783403E-006 - 241.13999999999999 -3.5645918242855142E-006 - 241.19999999999999 -5.0380683318096539E-006 - 241.25999999999999 -6.5113501471797621E-006 - 241.31999999999999 -7.9820151135878350E-006 - 241.38000000000000 -9.4476473588440912E-006 - 241.44000000000000 -1.0905834891184559E-005 - 241.50000000000000 -1.2354167787769968E-005 - 241.56000000000000 -1.3790234947531270E-005 - 241.62000000000000 -1.5211629439432844E-005 - 241.68000000000001 -1.6615939182324287E-005 - 241.74000000000001 -1.8000756342765772E-005 - 241.80000000000001 -1.9363678955878540E-005 - 241.86000000000001 -2.0702315941983485E-005 - 241.92000000000002 -2.2014295601600096E-005 - 241.97999999999996 -2.3297272223364185E-005 - 242.03999999999996 -2.4548931946542005E-005 - 242.09999999999997 -2.5767001604981050E-005 - 242.15999999999997 -2.6949259509855197E-005 - 242.21999999999997 -2.8093537838123291E-005 - 242.27999999999997 -2.9197732422905296E-005 - 242.33999999999997 -3.0259799706612071E-005 - 242.39999999999998 -3.1277762401486573E-005 - 242.45999999999998 -3.2249704424006338E-005 - 242.51999999999998 -3.3173775228584752E-005 - 242.57999999999998 -3.4048173764153250E-005 - 242.63999999999999 -3.4871153791381714E-005 - 242.69999999999999 -3.5641006240781512E-005 - 242.75999999999999 -3.6356056799839784E-005 - 242.81999999999999 -3.7014663538419111E-005 - 242.88000000000000 -3.7615205115891358E-005 - 242.94000000000000 -3.8156073621357144E-005 - 243.00000000000000 -3.8635679282685993E-005 - 243.06000000000000 -3.9052442784134470E-005 - 243.12000000000000 -3.9404797853968905E-005 - 243.18000000000001 -3.9691196174774033E-005 - 243.24000000000001 -3.9910104342736182E-005 - 243.30000000000001 -4.0060006452466781E-005 - 243.36000000000001 -4.0139417301543347E-005 - 243.42000000000002 -4.0146874097433796E-005 - 243.47999999999996 -4.0080947546762911E-005 - 243.53999999999996 -3.9940239041202577E-005 - 243.59999999999997 -3.9723387536352861E-005 - 243.65999999999997 -3.9429052588555341E-005 - 243.71999999999997 -3.9055933433693680E-005 - 243.77999999999997 -3.8602750016083738E-005 - 243.83999999999997 -3.8068248652211243E-005 - 243.89999999999998 -3.7451188954470307E-005 - 243.95999999999998 -3.6750348800315242E-005 - 244.01999999999998 -3.5964519369989476E-005 - 244.07999999999998 -3.5092496123708463E-005 - 244.13999999999999 -3.4133079415108461E-005 - 244.19999999999999 -3.3085077583987174E-005 - 244.25999999999999 -3.1947304639657776E-005 - 244.31999999999999 -3.0718580884997357E-005 - 244.38000000000000 -2.9397736300277554E-005 - 244.44000000000000 -2.7983613484642555E-005 - 244.50000000000000 -2.6475066428852439E-005 - 244.56000000000000 -2.4870965810537269E-005 - 244.62000000000000 -2.3170199428926762E-005 - 244.68000000000001 -2.1371680197879872E-005 - 244.74000000000001 -1.9474342237084216E-005 - 244.80000000000001 -1.7477140534524551E-005 - 244.86000000000001 -1.5379058677275549E-005 - 244.92000000000002 -1.3179105854491558E-005 - 244.97999999999996 -1.0876321839324470E-005 - 245.03999999999996 -8.4697772220297990E-006 - 245.09999999999997 -5.9585804007232019E-006 - 245.15999999999997 -3.3418824549807238E-006 - 245.21999999999997 -6.1888050273822639E-007 - 245.27999999999997 2.2111719855179628E-006 - 245.33999999999997 5.1489573881246030E-006 - 245.39999999999998 8.1950849238185271E-006 - 245.45999999999998 1.1350076730440271E-005 - 245.51999999999998 1.4614365778736601E-005 - 245.57999999999998 1.7988278654077414E-005 - 245.63999999999999 2.1472032145207828E-005 - 245.69999999999999 2.5065723603726425E-005 - 245.75999999999999 2.8769317920994491E-005 - 245.81999999999999 3.2582656976424584E-005 - 245.88000000000000 3.6505435035785570E-005 - 245.94000000000000 4.0537203839186072E-005 - 246.00000000000000 4.4677377111354980E-005 - 246.06000000000000 4.8925208455751809E-005 - 246.12000000000000 5.3279801305785142E-005 - 246.18000000000001 5.7740095538527515E-005 - 246.24000000000001 6.2304861458390684E-005 - 246.30000000000001 6.6972701551796469E-005 - 246.36000000000001 7.1742030150190387E-005 - 246.42000000000002 7.6611065600814388E-005 - 246.47999999999996 8.1577833070108226E-005 - 246.53999999999996 8.6640129327176813E-005 - 246.59999999999997 9.1795547353637158E-005 - 246.65999999999997 9.7041428052988096E-005 - 246.71999999999997 1.0237486000891474E-004 - 246.77999999999997 1.0779269608933374E-004 - 246.83999999999997 1.1329150461864149E-004 - 246.89999999999998 1.1886760862180856E-004 - 246.95999999999998 1.2451704893000131E-004 - 247.01999999999998 1.3023559313032765E-004 - 247.07999999999998 1.3601872321438965E-004 - 247.13999999999999 1.4186165163686715E-004 - 247.19999999999999 1.4775933440232638E-004 - 247.25999999999999 1.5370643015952929E-004 - 247.31999999999999 1.5969733566735420E-004 - 247.38000000000000 1.6572620910622300E-004 - 247.44000000000000 1.7178691240594940E-004 - 247.50000000000000 1.7787306830077234E-004 - 247.56000000000000 1.8397805354345936E-004 - 247.62000000000000 1.9009499790848173E-004 - 247.68000000000001 1.9621677117166145E-004 - 247.74000000000001 2.0233601142044663E-004 - 247.80000000000001 2.0844515137019077E-004 - 247.86000000000001 2.1453636925571962E-004 - 247.92000000000002 2.2060163872107913E-004 - 247.97999999999996 2.2663273022900830E-004 - 248.03999999999996 2.3262120268341958E-004 - 248.09999999999997 2.3855847110820701E-004 - 248.15999999999997 2.4443574460124995E-004 - 248.21999999999997 2.5024408292189813E-004 - 248.27999999999997 2.5597445312503989E-004 - 248.33999999999997 2.6161764975937560E-004 - 248.39999999999998 2.6716436475387876E-004 - 248.45999999999998 2.7260526403671164E-004 - 248.51999999999998 2.7793088782580123E-004 - 248.57999999999998 2.8313174631521741E-004 - 248.63999999999999 2.8819837012716116E-004 - 248.69999999999999 2.9312124269776816E-004 - 248.75999999999999 2.9789089158126583E-004 - 248.81999999999999 3.0249787513847654E-004 - 248.88000000000000 3.0693291049162295E-004 - 248.94000000000000 3.1118671770794979E-004 - 249.00000000000000 3.1525020461711399E-004 - 249.06000000000000 3.1911443860514098E-004 - 249.12000000000000 3.2277067613147682E-004 - 249.18000000000001 3.2621037839358584E-004 - 249.24000000000001 3.2942533493927987E-004 - 249.30000000000001 3.3240751149346402E-004 - 249.36000000000001 3.3514925998961054E-004 - 249.42000000000002 3.3764324440185736E-004 - 249.47999999999996 3.3988244617016446E-004 - 249.53999999999996 3.4186020474148346E-004 - 249.59999999999997 3.4357030541203574E-004 - 249.65999999999997 3.4500693984301409E-004 - 249.71999999999997 3.4616465504261541E-004 - 249.77999999999997 3.4703853006363018E-004 - 249.83999999999997 3.4762401674888038E-004 - 249.89999999999998 3.4791710358242372E-004 - 249.95999999999998 3.4791423925569105E-004 - 250.01999999999998 3.4761241129453892E-004 - 250.07999999999998 3.4700911901797268E-004 - 250.13999999999999 3.4610239539398094E-004 - 250.19999999999999 3.4489089134406885E-004 - 250.25999999999999 3.4337377451251750E-004 - 250.31999999999999 3.4155084403174470E-004 - 250.38000000000000 3.3942250004909868E-004 - 250.44000000000000 3.3698978064826673E-004 - 250.50000000000000 3.3425431459170043E-004 - 250.56000000000000 3.3121836027476975E-004 - 250.62000000000000 3.2788484617644388E-004 - 250.68000000000001 3.2425729461391350E-004 - 250.74000000000001 3.2033980474272775E-004 - 250.80000000000001 3.1613711023507061E-004 - 250.86000000000001 3.1165453072540635E-004 - 250.92000000000002 3.0689795933178479E-004 - 250.97999999999996 3.0187379892274521E-004 - 251.03999999999996 2.9658900537365290E-004 - 251.09999999999997 2.9105105805415303E-004 - 251.15999999999997 2.8526794671930258E-004 - 251.21999999999997 2.7924812810370186E-004 - 251.27999999999997 2.7300049408077930E-004 - 251.33999999999997 2.6653442910522316E-004 - 251.39999999999998 2.5985972797627028E-004 - 251.45999999999998 2.5298656424826982E-004 - 251.51999999999998 2.4592552712686958E-004 - 251.57999999999998 2.3868757342246325E-004 - 251.63999999999999 2.3128398590414547E-004 - 251.69999999999999 2.2372637725334891E-004 - 251.75999999999999 2.1602663662828586E-004 - 251.81999999999999 2.0819688560583491E-004 - 251.88000000000000 2.0024946697918156E-004 - 251.94000000000000 1.9219692202215952E-004 diff --git a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000003.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000003.BXY.semd deleted file mode 100644 index 8e6f31b0..00000000 --- a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000003.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 -1.3878611807908207E-040 - 11.399999999999999 -4.4180314483820787E-040 - 11.460000000000001 -1.2058609987875974E-040 - 11.519999999999996 9.7159398703450947E-040 - 11.579999999999998 2.9321325863309064E-039 - 11.640000000000001 5.8950461712750650E-039 - 11.699999999999996 9.7380763380319790E-039 - 11.759999999999998 1.4549749591582184E-038 - 11.820000000000000 2.0593590500362335E-038 - 11.879999999999995 2.7724607973613967E-038 - 11.939999999999998 3.5190323197306064E-038 - 12.000000000000000 4.2285927657203287E-038 - 12.059999999999995 4.7279137954487271E-038 - 12.119999999999997 4.8982327231724065E-038 - 12.180000000000000 4.9143047210158395E-038 - 12.239999999999995 4.6752052766513243E-038 - 12.299999999999997 3.4674860798280870E-038 - 12.359999999999999 1.8911692615449188E-038 - 12.419999999999995 6.8833964007681900E-040 - 12.479999999999997 -1.9765468045398348E-038 - 12.539999999999999 -4.1534027249228299E-038 - 12.599999999999994 -6.5975544088128006E-038 - 12.659999999999997 -9.3156120436336587E-038 - 12.719999999999999 -1.1269714538716969E-037 - 12.780000000000001 -1.2187266801376175E-037 - 12.839999999999996 -1.1692663430641086E-037 - 12.899999999999999 -1.0632199962491043E-037 - 12.960000000000001 -8.7987324606921547E-038 - 13.019999999999996 -5.2116095314696596E-038 - 13.079999999999998 -8.7782330058308854E-040 - 13.140000000000001 5.8452900930400482E-038 - 13.199999999999996 1.2428129716871427E-037 - 13.259999999999998 1.9246825435348565E-037 - 13.320000000000000 2.5770990283195619E-037 - 13.379999999999995 3.2327007078393673E-037 - 13.439999999999998 3.7856730571290266E-037 - 13.500000000000000 4.2033797131833665E-037 - 13.559999999999995 4.4327931538321721E-037 - 13.619999999999997 4.4544433897556414E-037 - 13.680000000000000 4.2681032138614686E-037 - 13.739999999999995 3.6875175112035249E-037 - 13.799999999999997 2.7648590787598271E-037 - 13.859999999999999 1.5034620038920731E-037 - 13.919999999999995 -1.0406600707636529E-038 - 13.979999999999997 -2.0255353521607390E-037 - 14.039999999999999 -4.1325392457944713E-037 - 14.099999999999994 -6.2421890292952142E-037 - 14.159999999999997 -8.1879045072597130E-037 - 14.219999999999999 -9.7992847017913231E-037 - 14.280000000000001 -1.0673123811099949E-036 - 14.339999999999996 -1.0839755297987958E-036 - 14.399999999999999 -9.9819718669059914E-037 - 14.460000000000001 -7.9738107379018227E-037 - 14.519999999999996 -4.6692042725156733E-037 - 14.579999999999998 1.8624129878627832E-038 - 14.640000000000001 6.4278600076430268E-037 - 14.699999999999996 1.3733992719589946E-036 - 14.759999999999998 2.1858130171645110E-036 - 14.820000000000000 3.0073446496230496E-036 - 14.879999999999995 3.8670821266083555E-036 - 14.939999999999998 4.7021521278472267E-036 - 15.000000000000000 5.4965131145262857E-036 - 15.059999999999995 6.0855703428909581E-036 - 15.119999999999997 6.3969248011595800E-036 - 15.180000000000000 6.3408465866465622E-036 - 15.239999999999995 5.8709113448353522E-036 - 15.299999999999997 4.8774347671567456E-036 - 15.359999999999999 3.2808953586379278E-036 - 15.419999999999995 1.0153294086589831E-036 - 15.479999999999997 -1.8012288835658694E-036 - 15.539999999999999 -5.0628554700073386E-036 - 15.599999999999994 -8.6151009358351465E-036 - 15.659999999999997 -1.2317087447298518E-035 - 15.719999999999999 -1.5862073700298895E-035 - 15.780000000000001 -1.8966279207909924E-035 - 15.839999999999996 -2.1214714239027272E-035 - 15.899999999999999 -2.2240960907096360E-035 - 15.960000000000001 -2.1677525300669622E-035 - 16.019999999999996 -1.9248921820653349E-035 - 16.079999999999998 -1.4819336528514054E-035 - 16.140000000000001 -8.2587237988981694E-036 - 16.200000000000003 6.6464525596258775E-037 - 16.259999999999991 1.1744112558594932E-035 - 16.319999999999993 2.4712415169359864E-035 - 16.379999999999995 3.9106017963832990E-035 - 16.439999999999998 5.4493669156273344E-035 - 16.500000000000000 7.0046136532049175E-035 - 16.560000000000002 8.4829446336917361E-035 - 16.620000000000005 9.7798150604350486E-035 - 16.679999999999993 1.0775601198718680E-034 - 16.739999999999995 1.1349989014517211E-034 - 16.799999999999997 1.1386602344064050E-034 - 16.859999999999999 1.0771810421877267E-034 - 16.920000000000002 9.4245180302270150E-035 - 16.980000000000004 7.2820255387571873E-035 - 17.039999999999992 4.3190617142408298E-035 - 17.099999999999994 5.5601479660024505E-036 - 17.159999999999997 -3.9325740043698902E-035 - 17.219999999999999 -9.0131997711190810E-035 - 17.280000000000001 -1.4492160129176684E-034 - 17.340000000000003 -2.0115581718046329E-034 - 17.399999999999991 -2.5565774755053934E-034 - 17.459999999999994 -3.0482844221660621E-034 - 17.519999999999996 -3.4461850632590630E-034 - 17.579999999999998 -3.7079270344277866E-034 - 17.640000000000001 -3.7906635528028660E-034 - 17.700000000000003 -3.6557311416933383E-034 - 17.759999999999991 -3.2700640344622220E-034 - 17.819999999999993 -2.6088958015565158E-034 - 17.879999999999995 -1.6614426602099281E-034 - 17.939999999999998 -4.3335158894519674E-035 - 18.000000000000000 1.0521589283683903E-034 - 18.060000000000002 2.7519394093690213E-034 - 18.120000000000005 4.5987822263925812E-034 - 18.179999999999993 6.5068769850993309E-034 - 18.239999999999995 8.3686216783174846E-034 - 18.299999999999997 1.0056812003230978E-033 - 18.359999999999999 1.1432186194218253E-033 - 18.420000000000002 1.2349050105277288E-033 - 18.480000000000004 1.2661671710453352E-033 - 18.539999999999992 1.2235703149741423E-033 - 18.599999999999994 1.0956671677682784E-033 - 18.659999999999997 8.7431970260478679E-034 - 18.719999999999999 5.5577892691338199E-034 - 18.780000000000001 1.4177720860691463E-034 - 18.840000000000003 -3.5948473379349199E-034 - 18.899999999999991 -9.3259216770566507E-034 - 18.959999999999994 -1.5543728162974018E-033 - 19.019999999999996 -2.1939238194494360E-033 - 19.079999999999998 -2.8130319585517426E-033 - 19.140000000000001 -3.3670962081022042E-033 - 19.200000000000003 -3.8066911838272315E-033 - 19.259999999999991 -4.0798311147218783E-033 - 19.319999999999993 -4.1346906722802992E-033 - 19.379999999999995 -3.9230304406574132E-033 - 19.439999999999998 -3.4039624961043946E-033 - 19.500000000000000 -2.5481361957774665E-033 - 19.560000000000002 -1.3419842324217532E-033 - 19.620000000000005 2.0811811109384464E-034 - 19.679999999999993 2.0721078481274085E-033 - 19.739999999999995 4.1932177353483970E-033 - 19.799999999999997 6.4859751710898576E-033 - 19.859999999999999 8.8357323791035113E-033 - 19.920000000000002 1.1099441859456814E-032 - 19.980000000000004 1.3109098504545054E-032 - 20.039999999999992 1.4676936848175126E-032 - 20.099999999999994 1.5603094460286918E-032 - 20.159999999999997 1.5685630040440933E-032 - 20.219999999999999 1.4732716191070706E-032 - 20.280000000000001 1.2576968700216984E-032 - 20.340000000000003 9.0909407320359212E-033 - 20.399999999999991 4.2037541187973069E-033 - 20.459999999999994 -2.0826828327181543E-033 - 20.519999999999996 -9.6778929672988898E-033 - 20.579999999999998 -1.8389537868276285E-032 - 20.640000000000001 -2.7913401686659731E-032 - 20.700000000000003 -3.7827981436069610E-032 - 20.759999999999991 -4.7595228053719945E-032 - 20.819999999999993 -5.6568096462953266E-032 - 20.879999999999995 -6.4006452770183289E-032 - 20.939999999999998 -6.9101806723053009E-032 - 21.000000000000000 -7.1011290301123666E-032 - 21.060000000000002 -6.8900804747199376E-032 - 21.120000000000005 -6.1996658177819528E-032 - 21.179999999999993 -4.9644484608456380E-032 - 21.239999999999995 -3.1373422927456289E-032 - 21.299999999999997 -6.9630043261439368E-033 - 21.359999999999999 2.3490602916741244E-032 - 21.420000000000002 5.9512942319076577E-032 - 21.480000000000004 1.0019865569283551E-031 - 21.539999999999992 1.4417273836268979E-031 - 21.599999999999994 1.8957077677995713E-031 - 21.659999999999997 2.3404293629042768E-031 - 21.719999999999999 2.7478647072342255E-031 - 21.780000000000001 3.0861061678484648E-031 - 21.840000000000003 3.3203671538244023E-031 - 21.899999999999991 3.4143499472494888E-031 - 21.959999999999994 3.3319792109394370E-031 - 22.019999999999996 3.0394749943313261E-031 - 22.079999999999998 2.5077223703143514E-031 - 22.140000000000001 1.7148626547411846E-031 - 22.200000000000003 6.4900860771643813E-032 - 22.259999999999991 -6.8903978310816800E-032 - 22.319999999999993 -2.2832272361229715E-031 - 22.379999999999995 -4.0999916746798883E-031 - 22.439999999999998 -6.0865154484078318E-031 - 22.500000000000000 -8.1696685720899325E-031 - 22.560000000000002 -1.0255839997601761E-030 - 22.619999999999990 -1.2231840800342971E-030 - 22.679999999999993 -1.3967033715214331E-030 - 22.739999999999995 -1.5316818336836111E-030 - 22.799999999999997 -1.6127552048772951E-030 - 22.859999999999999 -1.6242917974207344E-030 - 22.920000000000002 -1.5511683764665470E-030 - 22.980000000000004 -1.3796727488630046E-030 - 23.039999999999992 -1.0985062026566903E-030 - 23.099999999999994 -6.9985729961105611E-031 - 23.159999999999997 -1.8050121002966786E-031 - 23.219999999999999 4.5712616579104434E-031 - 23.280000000000001 1.2039396831790651E-030 - 23.340000000000003 2.0433694773687896E-030 - 23.399999999999991 2.9507503789306192E-030 - 23.459999999999994 3.8930098503097031E-030 - 23.519999999999996 4.8287251707259007E-030 - 23.579999999999998 5.7086192915235583E-030 - 23.640000000000001 6.4765467618937441E-030 - 23.700000000000003 7.0710198250546701E-030 - 23.759999999999991 7.4272865393109956E-030 - 23.819999999999993 7.4799681348381796E-030 - 23.879999999999995 7.1662242311802016E-030 - 23.939999999999998 6.4293808487355543E-030 - 24.000000000000000 5.2229338260191156E-030 - 24.060000000000002 3.5147876735038853E-030 - 24.119999999999990 1.2915727369396319E-030 - 24.179999999999993 -1.4371662251695425E-030 - 24.239999999999995 -4.6351325217460253E-030 - 24.299999999999997 -8.2360466808782014E-030 - 24.359999999999999 -1.2141292111416411E-029 - 24.420000000000002 -1.6218702760650508E-029 - 24.480000000000004 -2.0302760034623486E-029 - 24.539999999999992 -2.4196447555725546E-029 - 24.599999999999994 -2.7674961303148154E-029 - 24.659999999999997 -3.0491431957206682E-029 - 24.719999999999999 -3.2384736769733137E-029 - 24.780000000000001 -3.3089411857117691E-029 - 24.840000000000003 -3.2347535161157679E-029 - 24.899999999999991 -2.9922390411315695E-029 - 24.959999999999994 -2.5613560651731706E-029 - 25.019999999999996 -1.9272984857095573E-029 - 25.079999999999998 -1.0821398097892123E-029 - 25.140000000000001 -2.6443385634576616E-031 - 25.200000000000003 1.2292401862637566E-029 - 25.259999999999991 2.6630811487183445E-029 - 25.319999999999993 4.2409780054384879E-029 - 25.379999999999995 5.9159627868481791E-029 - 25.439999999999998 7.6280991587257879E-029 - 25.500000000000000 9.3049640686736042E-029 - 25.560000000000002 1.0862788496176945E-028 - 25.619999999999990 1.2208319722775976E-028 - 25.679999999999993 1.3241439514354447E-028 - 25.739999999999995 1.3858546205031616E-028 - 25.799999999999997 1.3956675655076859E-028 - 25.859999999999999 1.3438304036448422E-028 - 25.920000000000002 1.2216714117038419E-028 - 25.980000000000004 1.0221792025636137E-028 - 26.039999999999992 7.4060507870791210E-029 - 26.099999999999994 3.7506607001775297E-029 - 26.159999999999997 -7.2879833730106099E-030 - 26.219999999999999 -5.9771572000924972E-029 - 26.280000000000001 -1.1895380500825878E-028 - 26.340000000000003 -1.8337526707395437E-028 - 26.399999999999991 -2.5109292905647046E-028 - 26.459999999999994 -3.1968462418521535E-028 - 26.519999999999996 -3.8627549561987159E-028 - 26.579999999999998 -4.4758871297081160E-028 - 26.640000000000001 -5.0002236281473237E-028 - 26.700000000000003 -5.3975317463003132E-028 - 26.759999999999991 -5.6286700832963778E-028 - 26.819999999999993 -5.6551450855801204E-028 - 26.879999999999995 -5.4408943616409305E-028 - 26.939999999999998 -4.9542537502217355E-028 - 27.000000000000000 -4.1700493207800112E-028 - 27.060000000000002 -3.0717519871905774E-028 - 27.119999999999990 -1.6536001389624640E-028 - 27.179999999999993 7.7397797512579828E-030 - 27.239999999999995 2.0996898478105784E-028 - 27.299999999999997 4.3757456790363391E-028 - 27.359999999999999 6.8510770100735779E-028 - 27.420000000000002 9.4538271599008106E-028 - 27.480000000000004 1.2095032022930900E-027 - 27.539999999999992 1.4669647433560466E-027 - 27.599999999999994 1.7058420667484599E-027 - 27.659999999999997 1.9130652231810057E-027 - 27.719999999999999 2.0747868760556358E-027 - 27.780000000000001 2.1768397016918314E-027 - 27.840000000000003 2.2052775433502425E-027 - 27.899999999999991 2.1469917397857365E-027 - 27.959999999999994 1.9903866487031716E-027 - 28.019999999999996 1.7260959743257482E-027 - 28.079999999999998 1.3477166570578032E-027 - 28.140000000000001 8.5253171643364825E-028 - 28.200000000000003 2.4219067073398863E-028 - 28.259999999999991 -4.7668661199272589E-028 - 28.319999999999993 -1.2920191301391662E-027 - 28.379999999999995 -2.1859233503270193E-027 - 28.439999999999998 -3.1345584890565178E-027 - 28.500000000000000 -4.1081904981889728E-027 - 28.560000000000002 -5.0715058174416773E-027 - 28.619999999999990 -5.9841959503923196E-027 - 28.679999999999993 -6.8018329832477523E-027 - 28.739999999999995 -7.4770363617174217E-027 - 28.799999999999997 -7.9609316223634403E-027 - 28.859999999999999 -8.2048805186492698E-027 - 28.920000000000002 -8.1624536749446206E-027 - 28.980000000000004 -7.7915980777394360E-027 - 29.039999999999992 -7.0569457067017603E-027 - 29.099999999999994 -5.9321850457418849E-027 - 29.159999999999997 -4.4024155524071212E-027 - 29.219999999999999 -2.4663843719717162E-027 - 29.280000000000001 -1.3850577307766259E-028 - 29.340000000000003 2.5494534855965880E-027 - 29.399999999999991 5.5471279313959911E-027 - 29.459999999999994 8.7848599221027178E-027 - 29.519999999999996 1.2173659037715403E-026 - 29.579999999999998 1.5605905321628644E-026 - 29.640000000000001 1.8956872623566546E-026 - 29.700000000000003 2.2087113019064927E-026 - 29.759999999999991 2.4845740532061203E-026 - 29.819999999999993 2.7074589098656719E-026 - 29.879999999999995 2.8613216283394972E-026 - 29.939999999999998 2.9304655980552232E-026 - 30.000000000000000 2.9001817934906540E-026 - 30.060000000000002 2.7574347011995830E-026 - 30.119999999999990 2.4915766915076578E-026 - 30.179999999999993 2.0950654768719088E-026 - 30.239999999999995 1.5641600569013876E-026 - 30.299999999999997 8.9956256274883232E-027 - 30.359999999999999 1.0698007488078885E-027 - 30.420000000000002 -8.0242959865879321E-027 - 30.480000000000004 -1.8117545602077583E-026 - 30.539999999999992 -2.8981996744947599E-026 - 30.599999999999994 -4.0331566291422723E-026 - 30.659999999999997 -5.1824940918801031E-026 - 30.719999999999999 -6.3070841146084120E-026 - 30.780000000000001 -7.3635728841959560E-026 - 30.840000000000003 -8.3053969160568388E-026 - 30.899999999999991 -9.0840359560008846E-026 - 30.959999999999994 -9.6504824717139250E-026 - 31.019999999999996 -9.9569069670762385E-026 - 31.079999999999998 -9.9584675584896988E-026 - 31.140000000000001 -9.6152315524304153E-026 - 31.200000000000003 -8.8941402063870156E-026 - 31.259999999999991 -7.7709606733411937E-026 - 31.319999999999993 -6.2321482337668519E-026 - 31.379999999999995 -4.2765535353031667E-026 - 31.439999999999998 -1.9168888295107974E-026 - 31.500000000000000 8.1911011132066517E-027 - 31.560000000000002 3.8879024217201142E-026 - 31.619999999999990 7.2298118244719634E-026 - 31.679999999999993 1.0769178471521136E-025 - 31.739999999999995 1.4415064101907472E-025 - 31.799999999999997 1.8062515451108625E-025 - 31.859999999999999 2.1594397068961298E-025 - 31.920000000000002 2.4883798970875799E-025 - 31.980000000000004 2.7796969523285190E-025 - 32.039999999999992 3.0196738784746386E-025 - 32.099999999999994 3.1946364894228372E-025 - 32.159999999999997 3.2913702497161493E-025 - 32.219999999999999 3.2975611699395757E-025 - 32.280000000000001 3.2022479461539298E-025 - 32.340000000000003 2.9962717419552163E-025 - 32.399999999999991 2.6727142719632067E-025 - 32.459999999999994 2.2273073392342102E-025 - 32.519999999999996 1.6588024134492339E-025 - 32.579999999999998 9.6928818477380615E-026 - 32.640000000000001 1.6444641922232351E-026 - 32.700000000000003 -7.4626693867974262E-026 - 32.759999999999991 -1.7495174597887283E-025 - 32.819999999999993 -2.8280748963287573E-025 - 32.879999999999995 -3.9608828038990273E-025 - 32.939999999999998 -5.1232180830966371E-025 - 33.000000000000000 -6.2869402946711445E-025 - 33.060000000000002 -7.4208241983752254E-025 - 33.119999999999990 -8.4909790798124168E-025 - 33.179999999999993 -9.4613422478772133E-025 - 33.239999999999995 -1.0294245130065993E-024 - 33.299999999999997 -1.0951053066537445E-024 - 33.359999999999999 -1.1392864870345695E-024 - 33.420000000000002 -1.1581275750667687E-024 - 33.480000000000004 -1.1479204442688742E-024 - 33.539999999999992 -1.1051776439227928E-024 - 33.599999999999994 -1.0267276324808072E-024 - 33.659999999999997 -9.0981631177435992E-025 - 33.719999999999999 -7.5221585025698791E-025 - 33.780000000000001 -5.5234051553685142E-025 - 33.840000000000003 -3.0936985215761082E-025 - 33.899999999999991 -2.3379368231995052E-026 - 33.959999999999994 3.0452332819509740E-025 - 34.019999999999996 6.7205701071928895E-025 - 34.079999999999998 1.0756231595259931E-024 - 34.140000000000001 1.5101646438446682E-024 - 34.200000000000003 1.9690299204916366E-024 - 34.259999999999991 2.4438506906296664E-024 - 34.319999999999993 2.9244396434206906E-024 - 34.379999999999995 3.3987184972861447E-024 - 34.439999999999998 3.8526881077405304E-024 - 34.500000000000000 4.2704494883585080E-024 - 34.560000000000002 4.6342919008310898E-024 - 34.619999999999990 4.9248587924552021E-024 - 34.679999999999993 5.1214083972303858E-024 - 34.739999999999995 5.2021758307593647E-024 - 34.799999999999997 5.1448509304053957E-024 - 34.859999999999999 4.9271823335274087E-024 - 34.920000000000002 4.5277047225637519E-024 - 34.980000000000004 3.9265973193774968E-024 - 35.039999999999992 3.1066622158554854E-024 - 35.099999999999994 2.0544160227695226E-024 - 35.159999999999997 7.6126983312364460E-025 - 35.219999999999999 -7.7522656962306251E-025 - 35.280000000000001 -2.5501091513417801E-024 - 35.340000000000003 -4.5497409329237474E-024 - 35.399999999999991 -6.7506233343541414E-024 - 35.459999999999994 -9.1183299586963014E-024 - 35.519999999999996 -1.1606632857854914E-023 - 35.579999999999998 -1.4156895401823457E-023 - 35.640000000000001 -1.6697800897951629E-023 - 35.700000000000003 -1.9145489326529146E-023 - 35.759999999999991 -2.1404176575910156E-023 - 35.819999999999993 -2.3367323290387796E-023 - 35.879999999999995 -2.4919405149964872E-023 - 35.939999999999998 -2.5938323775508884E-023 - 36.000000000000000 -2.6298491199021894E-023 - 36.060000000000002 -2.5874586234186597E-023 - 36.119999999999990 -2.4545962656703882E-023 - 36.179999999999993 -2.2201650211222254E-023 - 36.239999999999995 -1.8745889456527313E-023 - 36.299999999999997 -1.4104065234810298E-023 - 36.359999999999999 -8.2289016766049653E-024 - 36.420000000000002 -1.1067221440826903E-024 - 36.479999999999990 7.2363953685422863E-024 - 36.539999999999992 1.6728873329639715E-023 - 36.599999999999994 2.7248509398532922E-023 - 36.659999999999997 3.8618304130710124E-023 - 36.719999999999999 5.0603491837058903E-023 - 36.780000000000001 6.2910126254767751E-023 - 36.840000000000003 7.5185471910677684E-023 - 36.899999999999991 8.7020492675323144E-023 - 36.959999999999994 9.7954681983838815E-023 - 37.019999999999996 1.0748340172071593E-022 - 37.079999999999998 1.1506792783771828E-022 - 37.140000000000001 1.2014818417695463E-022 - 37.200000000000003 1.2215821989508978E-022 - 37.259999999999991 1.2054424978033093E-022 - 37.319999999999993 1.1478509624895507E-022 - 37.379999999999995 1.0441466299072667E-022 - 37.439999999999998 8.9045961398065656E-023 - 37.500000000000000 6.8396158575774364E-023 - 37.560000000000002 4.2311926396106025E-023 - 37.619999999999990 1.0794334227363329E-023 - 37.679999999999993 -2.5977741519163978E-023 - 37.739999999999995 -6.7626547787260581E-023 - 37.799999999999997 -1.1355774272077984E-022 - 37.859999999999999 -1.6294741489821296E-022 - 37.920000000000002 -2.1473449642225711E-022 - 37.979999999999990 -2.6762000738396632E-022 - 38.039999999999992 -3.2007389578869221E-022 - 38.099999999999994 -3.7035052538464262E-022 - 38.159999999999997 -4.1651334167497155E-022 - 38.219999999999999 -4.5646945859146111E-022 - 38.280000000000001 -4.8801422729075234E-022 - 38.340000000000003 -5.0888599700476567E-022 - 38.399999999999991 -5.1683052828238151E-022 - 38.459999999999994 -5.0967457686816095E-022 - 38.519999999999996 -4.8540744903176166E-022 - 38.579999999999998 -4.4226872968471871E-022 - 38.640000000000001 -3.7884110695824490E-022 - 38.700000000000003 -2.9414489171422498E-022 - 38.759999999999991 -1.8773230096722797E-022 - 38.819999999999993 -5.9778176521452510E-023 - 38.879999999999995 8.8836469175338573E-023 - 38.939999999999998 2.5645128233704186E-022 - 39.000000000000000 4.4056808040908879E-022 - 39.060000000000002 6.3781055159217221E-022 - 39.119999999999990 8.4390643198761864E-022 - 39.179999999999993 1.0536949632223922E-021 - 39.239999999999995 1.2611641208810767E-021 - 39.299999999999997 1.4595195287445569E-021 - 39.359999999999999 1.6412882542700521E-021 - 39.420000000000002 1.7984576433679687E-021 - 39.479999999999990 1.9226515280778767E-021 - 39.539999999999992 2.0053417364928764E-021 - 39.599999999999994 2.0380939826528787E-021 - 39.659999999999997 2.0128450936899963E-021 - 39.719999999999999 1.9222069907550365E-021 - 39.780000000000001 1.7597917995498003E-021 - 39.840000000000003 1.5205499418850802E-021 - 39.899999999999991 1.2011143373391105E-021 - 39.959999999999994 8.0013746079239309E-022 - 40.019999999999996 3.1861337106329165E-022 - 40.079999999999998 -2.3982954912893192E-022 - 40.140000000000001 -8.6867918456820714E-022 - 40.200000000000003 -1.5583452352186401E-021 - 40.259999999999991 -2.2960337814984179E-021 - 40.319999999999993 -3.0657072380352557E-021 - 40.379999999999995 -3.8481373666271021E-021 - 40.439999999999998 -4.6210676964888500E-021 - 40.500000000000000 -5.3594924790520774E-021 - 40.560000000000002 -6.0360586242272559E-021 - 40.619999999999990 -6.6215974930642933E-021 - 40.679999999999993 -7.0857845176489375E-021 - 40.739999999999995 -7.3979267019259987E-021 - 40.799999999999997 -7.5278673746011627E-021 - 40.859999999999999 -7.4469963735243406E-021 - 40.920000000000002 -7.1293516315168917E-021 - 40.979999999999990 -6.5527842161296939E-021 - 41.039999999999992 -5.7001617860600292E-021 - 41.099999999999994 -4.5605792715228947E-021 - 41.159999999999997 -3.1305352444364928E-021 - 41.219999999999999 -1.4150362368544868E-021 - 41.280000000000001 5.7141732962256625E-022 - 41.340000000000003 2.8040132683212217E-021 - 41.399999999999991 5.2470177193012637E-021 - 41.459999999999994 7.8534359920479748E-021 - 41.519999999999996 1.0564972154586150E-020 - 41.579999999999998 1.3312338782687107E-020 - 41.640000000000001 1.6015958009368399E-020 - 41.700000000000003 1.8587077393875710E-020 - 41.759999999999991 2.0929310659340734E-020 - 41.819999999999993 2.2940638247370570E-020 - 41.879999999999995 2.4515832784225696E-020 - 41.939999999999998 2.5549311098557409E-020 - 42.000000000000000 2.5938366088340549E-020 - 42.060000000000002 2.5586741132985933E-020 - 42.119999999999990 2.4408453302729873E-020 - 42.179999999999993 2.2331805393672813E-020 - 42.239999999999995 1.9303464022084104E-020 - 42.299999999999997 1.5292501702691028E-020 - 42.359999999999999 1.0294246954682832E-020 - 42.420000000000002 4.3338343769552075E-021 - 42.479999999999990 -2.5307459114859986E-021 - 42.539999999999992 -1.0206193956041167E-020 - 42.599999999999994 -1.8562256683171322E-020 - 42.659999999999997 -2.7431006435361915E-020 - 42.719999999999999 -3.6607193651650276E-020 - 42.780000000000001 -4.5849801923944982E-020 - 42.840000000000003 -5.4884893763516601E-020 - 42.899999999999991 -6.3409844781020398E-020 - 42.959999999999994 -7.1098978384443024E-020 - 43.019999999999996 -7.7610621781585465E-020 - 43.079999999999998 -8.2595558944249623E-020 - 43.140000000000001 -8.5706754213330513E-020 - 43.200000000000003 -8.6610251794930322E-020 - 43.259999999999991 -8.4997048740618151E-020 - 43.319999999999993 -8.0595697993046586E-020 - 43.379999999999995 -7.3185371593424275E-020 - 43.439999999999998 -6.2609062975036568E-020 - 43.500000000000000 -4.8786511616894272E-020 - 43.560000000000002 -3.1726488792139687E-020 - 43.619999999999990 -1.1537972389645051E-020 - 43.679999999999993 1.1560229498547652E-020 - 43.739999999999995 3.7231888904170511E-020 - 43.799999999999997 6.5018242743167471E-020 - 43.859999999999999 9.4335808249587586E-020 - 43.920000000000002 1.2447760786572944E-019 - 43.979999999999990 1.5461804418218498E-019 - 44.039999999999992 1.8382186873890681E-019 - 44.099999999999994 2.1105739601417829E-019 - 44.159999999999997 2.3521421724023805E-019 - 44.219999999999999 2.5512535991057147E-019 - 44.280000000000001 2.6959387394257096E-019 - 44.340000000000003 2.7742363526822149E-019 - 44.399999999999991 2.7745410771392592E-019 - 44.459999999999994 2.6859849332489689E-019 - 44.519999999999996 2.4988479231072500E-019 - 44.579999999999998 2.2049885965395526E-019 - 44.640000000000001 1.7982862606036215E-019 - 44.700000000000003 1.2750851258965646E-019 - 44.759999999999991 6.3462758067086086E-020 - 44.819999999999993 -1.2053661040641217E-020 - 44.879999999999995 -9.8417816369507208E-020 - 44.939999999999998 -1.9460673338150713E-019 - 45.000000000000000 -2.9917217878466955E-019 - 45.060000000000002 -4.1022356705745287E-019 - 45.119999999999990 -5.2542067767797869E-019 - 45.179999999999993 -6.4197765274828256E-019 - 45.239999999999995 -7.5667942822434642E-019 - 45.299999999999997 -8.6591216799840785E-019 - 45.359999999999999 -9.6570801228090697E-019 - 45.420000000000002 -1.0518058643046104E-018 - 45.479999999999990 -1.1197275285967012E-018 - 45.539999999999992 -1.1648703007804844E-018 - 45.599999999999994 -1.1826148836668365E-018 - 45.659999999999997 -1.1684481775624037E-018 - 45.719999999999999 -1.1180998545498450E-018 - 45.780000000000001 -1.0276905011638735E-018 - 45.840000000000003 -8.9388911470181053E-019 - 45.899999999999991 -7.1407709959211886E-019 - 45.959999999999994 -4.8651564936410190E-019 - 46.019999999999996 -2.1051131774845696E-019 - 46.079999999999998 1.1342294891969364E-019 - 46.140000000000001 4.8341814173709588E-019 - 46.200000000000003 8.9611461216493665E-019 - 46.259999999999991 1.3465496730473533E-018 - 46.319999999999993 1.8280717203449254E-018 - 46.379999999999995 2.3322884960462801E-018 - 46.439999999999998 2.8490535071623706E-018 - 46.500000000000000 3.3664967180582364E-018 - 46.560000000000002 3.8711071190766684E-018 - 46.619999999999990 4.3478674105288578E-018 - 46.679999999999993 4.7804479044505518E-018 - 46.739999999999995 5.1514610667617657E-018 - 46.799999999999997 5.4427802359298638E-018 - 46.859999999999999 5.6359209614795113E-018 - 46.920000000000002 5.7124840980340215E-018 - 46.979999999999990 5.6546613957596395E-018 - 47.039999999999992 5.4457932073926655E-018 - 47.099999999999994 5.0709797186273836E-018 - 47.159999999999997 4.5177320701485485E-018 - 47.219999999999999 3.7766607877788226E-018 - 47.280000000000001 2.8421757300396814E-018 - 47.340000000000003 1.7132104663541088E-018 - 47.399999999999991 3.9392324365644831E-019 - 47.459999999999994 -1.1056067895266157E-018 - 47.519999999999996 -2.7687317745890048E-018 - 47.579999999999998 -4.5716447524630970E-018 - 47.640000000000001 -6.4828550019537573E-018 - 47.700000000000003 -8.4627633565733264E-018 - 47.759999999999991 -1.0463346665597729E-017 - 47.819999999999993 -1.2427977085628153E-017 - 47.879999999999995 -1.4291390914518524E-017 - 47.939999999999998 -1.5979801238358103E-017 - 48.000000000000000 -1.7411236192874389E-017 - 48.060000000000002 -1.8496027408759887E-017 - 48.119999999999990 -1.9137529142357353E-017 - 48.179999999999993 -1.9233053578484329E-017 - 48.239999999999995 -1.8675017644665648E-017 - 48.299999999999997 -1.7352306629320366E-017 - 48.359999999999999 -1.5151898133784555E-017 - 48.420000000000002 -1.1960674642993749E-017 - 48.479999999999990 -7.6674492628356998E-018 - 48.539999999999992 -2.1652250273187600E-018 - 48.599999999999994 4.6463809423055124E-018 - 48.659999999999997 1.2858589757478697E-017 - 48.719999999999999 2.2550688932885642E-017 - 48.780000000000001 3.3787243510949181E-017 - 48.840000000000003 4.6615199609754635E-017 - 48.899999999999991 6.1061008888596702E-017 - 48.959999999999994 7.7127692246722406E-017 - 49.019999999999996 9.4792110044524219E-017 - 49.079999999999998 1.1400233654902364E-016 - 49.140000000000001 1.3467531154211626E-016 - 49.200000000000003 1.5669467552043558E-016 - 49.259999999999991 1.7990920956710446E-016 - 49.319999999999993 2.0413161707029845E-016 - 49.379999999999995 2.2913802082802511E-016 - 49.439999999999998 2.5466802531267539E-016 - 49.500000000000000 2.8042581023026383E-016 - 49.560000000000002 3.0608205809271548E-016 - 49.619999999999990 3.3127683456305592E-016 - 49.679999999999993 3.5562396844816606E-016 - 49.739999999999995 3.7871631521686836E-016 - 49.799999999999997 4.0013258979846890E-016 - 49.859999999999999 4.1944588451376753E-016 - 49.920000000000002 4.3623341667707684E-016 - 49.979999999999990 4.5008800928015205E-016 - 50.039999999999992 4.6063111866044737E-016 - 50.099999999999994 4.6752724250714060E-016 - 50.159999999999997 4.7050029269543970E-016 - 50.219999999999999 4.6935098588675740E-016 - 50.280000000000001 4.6397572165626788E-016 - 50.340000000000003 4.5438554730413854E-016 - 50.399999999999991 4.4072684900458439E-016 - 50.459999999999994 4.2330167604860799E-016 - 50.519999999999996 4.0258766859454128E-016 - 50.579999999999998 3.7925761090073697E-016 - 50.640000000000001 3.5419675290558288E-016 - 50.700000000000003 3.2851864288460924E-016 - 50.759999999999991 3.0357811342210566E-016 - 50.819999999999993 2.8097795169923642E-016 - 50.879999999999995 2.6257204207386771E-016 - 50.939999999999998 2.5046466218495541E-016 - 51.000000000000000 2.4699735651431342E-016 - 51.060000000000002 2.5473228609316605E-016 - 51.119999999999990 2.7642539757920615E-016 - 51.179999999999993 3.1498420014634284E-016 - 51.239999999999995 3.7342163580981351E-016 - 51.299999999999997 4.5479147246534709E-016 - 51.359999999999999 5.6211094832048082E-016 - 51.420000000000002 6.9826875168982558E-016 - 51.479999999999990 8.6592135747785286E-016 - 51.539999999999992 1.0673677623853012E-015 - 51.599999999999994 1.3044116832617029E-015 - 51.659999999999997 1.5782020030168070E-015 - 51.719999999999999 1.8890595607774315E-015 - 51.780000000000001 2.2362871931079447E-015 - 51.840000000000003 2.6179594689212001E-015 - 51.899999999999991 3.0306995204764848E-015 - 51.959999999999994 3.4694311776312955E-015 - 52.019999999999996 3.9271176790534886E-015 - 52.079999999999998 4.3944974726385792E-015 - 52.140000000000001 4.8597731944969228E-015 - 52.200000000000003 5.3083189247923959E-015 - 52.259999999999991 5.7223556851292219E-015 - 52.319999999999993 6.0806200057693569E-015 - 52.379999999999995 6.3580030488204832E-015 - 52.439999999999998 6.5252074731071557E-015 - 52.500000000000000 6.5483664583502144E-015 - 52.560000000000002 6.3886801836540616E-015 - 52.619999999999990 6.0020112654626358E-015 - 52.679999999999993 5.3384970039566092E-015 - 52.739999999999995 4.3421227817038630E-015 - 52.799999999999997 2.9503707548031024E-015 - 52.859999999999999 1.0937274615371383E-015 - 52.920000000000002 -1.3046881195834773E-015 - 52.979999999999990 -4.3295984188801412E-015 - 53.039999999999992 -8.0740296263379223E-015 - 53.099999999999994 -1.2639743327490882E-014 - 53.159999999999997 -1.8137728804189575E-014 - 53.219999999999999 -2.4688785360196200E-014 - 53.280000000000001 -3.2423970936152237E-014 - 53.339999999999989 -4.1485303437334453E-014 - 53.399999999999991 -5.2026327280961046E-014 - 53.459999999999994 -6.4212928290141187E-014 - 53.519999999999996 -7.8224123746190058E-014 - 53.579999999999998 -9.4253051969727162E-014 - 53.640000000000001 -1.1250801530459121E-013 - 53.700000000000003 -1.3321374274734167E-013 - 53.759999999999991 -1.5661304185893533E-013 - 53.819999999999993 -1.8296813118026776E-013 - 53.879999999999995 -2.1256297504973108E-013 - 53.939999999999998 -2.4570563479952033E-013 - 54.000000000000000 -2.8273098144711532E-013 - 54.060000000000002 -3.2400353050568003E-013 - 54.119999999999990 -3.6992196344742389E-013 - 54.179999999999993 -4.2092292322338872E-013 - 54.239999999999995 -4.7748558844415851E-013 - 54.299999999999997 -5.4013841552912505E-013 - 54.359999999999999 -6.0946410287151272E-013 - 54.420000000000002 -6.8610827261124527E-013 - 54.479999999999990 -7.7078733759995554E-013 - 54.539999999999992 -8.6429754062351907E-013 - 54.599999999999994 -9.6752633464016553E-013 - 54.659999999999997 -1.0814621011938170E-012 - 54.719999999999999 -1.2072101150251216E-012 - 54.780000000000001 -1.3460037796454698E-012 - 54.839999999999989 -1.4992221716816040E-012 - 54.899999999999991 -1.6684053839773267E-012 - 54.959999999999994 -1.8552753014457666E-012 - 55.019999999999996 -2.0617547297818306E-012 - 55.079999999999998 -2.2899909501827194E-012 - 55.140000000000001 -2.5423761967445735E-012 - 55.200000000000003 -2.8215732241970103E-012 - 55.259999999999991 -3.1305412485901240E-012 - 55.319999999999993 -3.4725677052887169E-012 - 55.379999999999995 -3.8512948912228579E-012 - 55.439999999999998 -4.2707489741029440E-012 - 55.500000000000000 -4.7353749543581500E-012 - 55.560000000000002 -5.2500626996404651E-012 - 55.619999999999990 -5.8201934605740986E-012 - 55.679999999999993 -6.4516622023717207E-012 - 55.739999999999995 -7.1509102081899988E-012 - 55.799999999999997 -7.9249647018279852E-012 - 55.859999999999999 -8.7814756537483493E-012 - 55.920000000000002 -9.7287421237862353E-012 - 55.979999999999990 -1.0775732413773036E-011 - 56.039999999999992 -1.1932129141757233E-011 - 56.099999999999994 -1.3208345906828785E-011 - 56.159999999999997 -1.4615542608193385E-011 - 56.219999999999999 -1.6165649070728081E-011 - 56.280000000000001 -1.7871373465708407E-011 - 56.339999999999989 -1.9746191931655709E-011 - 56.399999999999991 -2.1804374306190578E-011 - 56.459999999999994 -2.4060911298227431E-011 - 56.519999999999996 -2.6531548949007343E-011 - 56.579999999999998 -2.9232715079144785E-011 - 56.640000000000001 -3.2181449992182771E-011 - 56.700000000000003 -3.5395387936669419E-011 - 56.759999999999991 -3.8892605260375686E-011 - 56.819999999999993 -4.2691515382404666E-011 - 56.879999999999995 -4.6810782077156115E-011 - 56.939999999999998 -5.1269080956369538E-011 - 57.000000000000000 -5.6084970355024247E-011 - 57.060000000000002 -6.1276600720115740E-011 - 57.119999999999990 -6.6861433665190895E-011 - 57.179999999999993 -7.2856021373427241E-011 - 57.239999999999995 -7.9275554661701660E-011 - 57.299999999999997 -8.6133480389577133E-011 - 57.359999999999999 -9.3440983682601314E-011 - 57.420000000000002 -1.0120648021754769E-010 - 57.479999999999990 -1.0943495445170704E-010 - 57.539999999999992 -1.1812728382853403E-010 - 57.599999999999994 -1.2727939410554768E-010 - 57.659999999999997 -1.3688132271034543E-010 - 57.719999999999999 -1.4691612469962063E-010 - 57.780000000000001 -1.5735879558252315E-010 - 57.839999999999989 -1.6817476943513462E-010 - 57.899999999999991 -1.7931857219710012E-010 - 57.959999999999994 -1.9073185109200630E-010 - 58.019999999999996 -2.0234175998027999E-010 - 58.079999999999998 -2.1405822127230161E-010 - 58.140000000000001 -2.2577191390451471E-010 - 58.200000000000003 -2.3735118700595178E-010 - 58.259999999999991 -2.4863892675331989E-010 - 58.319999999999993 -2.5944886865538136E-010 - 58.379999999999995 -2.6956166692778807E-010 - 58.439999999999998 -2.7871998839308389E-010 - 58.500000000000000 -2.8662330259306321E-010 - 58.560000000000002 -2.9292228959607687E-010 - 58.619999999999990 -2.9721190636521984E-010 - 58.679999999999993 -2.9902401081593483E-010 - 58.739999999999995 -2.9781927815634538E-010 - 58.799999999999997 -2.9297689832240591E-010 - 58.859999999999999 -2.8378477017752612E-010 - 58.920000000000002 -2.6942692565799371E-010 - 58.979999999999990 -2.4897010570578733E-010 - 59.039999999999992 -2.2134858240493648E-010 - 59.099999999999994 -1.8534735662660331E-010 - 59.159999999999997 -1.3958291358138608E-010 - 59.219999999999999 -8.2483311942298680E-011 - 59.280000000000001 -1.2261714949837912E-011 - 59.339999999999989 7.3108805935700164E-011 - 59.399999999999991 1.7592466814837250E-010 - 59.459999999999994 2.9878454819099941E-010 - 59.519999999999996 4.4462890282379371E-010 - 59.579999999999998 6.1677828613144403E-010 - 59.640000000000001 8.1898064081713353E-010 - 59.700000000000003 1.0554613938201364E-009 - 59.759999999999991 1.3309802319338220E-009 - 59.819999999999993 1.6508936910678252E-009 - 59.879999999999995 2.0212284446225174E-009 - 59.939999999999998 2.4487527772685452E-009 - 60.000000000000000 2.9410672174487509E-009 - 60.060000000000002 3.5066892250505914E-009 - 60.119999999999990 4.1551669761406272E-009 - 60.179999999999993 4.8971946835615488E-009 - 60.239999999999995 5.7447284243313347E-009 - 60.299999999999997 6.7111333906125580E-009 - 60.359999999999999 7.8113380133015223E-009 - 60.420000000000002 9.0619926727098587E-009 - 60.479999999999990 1.0481667079211081E-008 - 60.539999999999992 1.2091057897158369E-008 - 60.599999999999994 1.3913183607995395E-008 - 60.659999999999997 1.5973651126863839E-008 - 60.719999999999999 1.8300918182494608E-008 - 60.780000000000001 2.0926577947775516E-008 - 60.839999999999989 2.3885686106640001E-008 - 60.899999999999991 2.7217114759679725E-008 - 60.959999999999994 3.0963908331737180E-008 - 61.019999999999996 3.5173740527493485E-008 - 61.079999999999998 3.9899322503502360E-008 - 61.140000000000001 4.5198905707659618E-008 - 61.200000000000003 5.1136858326908413E-008 - 61.259999999999991 5.7784200075087162E-008 - 61.319999999999993 6.5219271265790641E-008 - 61.379999999999995 7.3528414262472020E-008 - 61.439999999999998 8.2806701109441364E-008 - 61.500000000000000 9.3158811897168149E-008 - 61.560000000000002 1.0469983020005050E-007 - 61.619999999999990 1.1755631030104575E-007 - 61.679999999999993 1.3186728005489915E-007 - 61.739999999999995 1.4778528186476943E-007 - 61.799999999999997 1.6547783144588046E-007 - 61.859999999999999 1.8512848956116424E-007 - 61.920000000000002 2.0693850133669590E-007 - 61.979999999999990 2.3112823612837082E-007 - 62.039999999999992 2.5793889323701189E-007 - 62.099999999999994 2.8763444446608508E-007 - 62.159999999999997 3.2050354584869603E-007 - 62.219999999999999 3.5686144048331564E-007 - 62.280000000000001 3.9705269102240168E-007 - 62.339999999999989 4.4145359727767301E-007 - 62.399999999999991 4.9047435396612254E-007 - 62.459999999999994 5.4456264228125597E-007 - 62.519999999999996 6.0420652041643349E-007 - 62.579999999999998 6.6993773419911607E-007 - 62.640000000000001 7.4233547657168828E-007 - 62.700000000000003 8.2202970345870063E-007 - 62.759999999999991 9.0970681573929766E-007 - 62.819999999999993 1.0061127855512330E-006 - 62.879999999999995 1.1120585332719816E-006 - 62.939999999999998 1.2284252944591056E-006 - 63.000000000000000 1.3561699994536447E-006 - 63.060000000000002 1.4963323012652182E-006 - 63.119999999999990 1.6500390072933692E-006 - 63.179999999999993 1.8185141281441860E-006 - 63.239999999999995 2.0030837048672458E-006 - 63.299999999999997 2.2051847465372840E-006 - 63.359999999999999 2.4263744697349135E-006 - 63.420000000000002 2.6683374974687932E-006 - 63.479999999999990 2.9328993883125838E-006 - 63.539999999999992 3.2220339223900682E-006 - 63.599999999999994 3.5378742491212122E-006 - 63.659999999999997 3.8827282414985724E-006 - 63.719999999999999 4.2590867595186090E-006 - 63.780000000000001 4.6696425498401993E-006 - 63.839999999999989 5.1172981879526965E-006 - 63.899999999999991 5.6051887059923992E-006 - 63.959999999999994 6.1366921303848436E-006 - 64.019999999999996 6.7154492623026884E-006 - 64.079999999999998 7.3453829622653592E-006 - 64.140000000000001 8.0307149423856679E-006 - 64.200000000000003 8.7759912555722585E-006 - 64.259999999999991 9.5861013652637535E-006 - 64.319999999999993 1.0466300443024247E-005 - 64.379999999999995 1.1422234098364341E-005 - 64.439999999999998 1.2459965345902740E-005 - 64.500000000000000 1.3586002901011223E-005 - 64.560000000000002 1.4807327108358747E-005 - 64.619999999999990 1.6131422699492384E-005 - 64.679999999999993 1.7566304688406538E-005 - 64.739999999999995 1.9120566403558336E-005 - 64.799999999999997 2.0803390896952720E-005 - 64.859999999999999 2.2624610094252196E-005 - 64.920000000000002 2.4594730307993545E-005 - 64.979999999999990 2.6724969922965515E-005 - 65.039999999999992 2.9027312698334476E-005 - 65.099999999999994 3.1514544457159834E-005 - 65.159999999999997 3.4200290515519144E-005 - 65.219999999999999 3.7099072209265678E-005 - 65.280000000000001 4.0226357889205390E-005 - 65.339999999999989 4.3598596215104751E-005 - 65.399999999999991 4.7233284533353245E-005 - 65.459999999999994 5.1149012472123534E-005 - 65.519999999999996 5.5365521177911899E-005 - 65.579999999999998 5.9903758730191534E-005 - 65.640000000000001 6.4785930012980808E-005 - 65.700000000000003 7.0035584624268392E-005 - 65.759999999999991 7.5677643587923610E-005 - 65.819999999999993 8.1738472414658278E-005 - 65.879999999999995 8.8245934873672988E-005 - 65.939999999999998 9.5229482819496805E-005 - 66.000000000000000 1.0272018923516196E-004 - 66.060000000000002 1.1075085287563923E-004 - 66.119999999999990 1.1935600849119683E-004 - 66.179999999999993 1.2857206295351380E-004 - 66.239999999999995 1.3843727529436376E-004 - 66.299999999999997 1.4899190609052275E-004 - 66.359999999999999 1.6027823032640007E-004 - 66.420000000000002 1.7234062729355466E-004 - 66.479999999999990 1.8522563932426046E-004 - 66.539999999999992 1.9898199271441410E-004 - 66.599999999999994 2.1366074045864780E-004 - 66.659999999999997 2.2931527216133127E-004 - 66.719999999999999 2.4600135544062494E-004 - 66.780000000000001 2.6377720279766563E-004 - 66.839999999999989 2.8270359436663103E-004 - 66.899999999999991 3.0284375426816893E-004 - 66.959999999999994 3.2426360865506844E-004 - 67.019999999999996 3.4703167379136551E-004 - 67.079999999999998 3.7121911369038870E-004 - 67.140000000000001 3.9689982990679642E-004 - 67.199999999999989 4.2415044336569039E-004 - 67.259999999999991 4.5305028583445862E-004 - 67.319999999999993 4.8368145609279100E-004 - 67.379999999999995 5.1612880172024014E-004 - 67.439999999999998 5.5047998490496595E-004 - 67.500000000000000 5.8682535972751841E-004 - 67.560000000000002 6.2525790959284651E-004 - 67.619999999999990 6.6587355061640922E-004 - 67.679999999999993 7.0877056721945354E-004 - 67.739999999999995 7.5405006015054755E-004 - 67.799999999999997 8.0181553426936897E-004 - 67.859999999999999 8.5217302269953140E-004 - 67.920000000000002 9.0523089791175887E-004 - 67.979999999999990 9.6109985168670877E-004 - 68.039999999999992 1.0198927583435296E-003 - 68.099999999999994 1.0817244410502248E-003 - 68.159999999999997 1.1467118861620295E-003 - 68.219999999999999 1.2149734188131927E-003 - 68.280000000000001 1.2866292786196812E-003 - 68.339999999999989 1.3618011031848233E-003 - 68.399999999999991 1.4406115742928880E-003 - 68.459999999999994 1.5231846292739035E-003 - 68.519999999999996 1.6096448087858047E-003 - 68.579999999999998 1.7001172622162308E-003 - 68.640000000000001 1.7947273857707082E-003 - 68.699999999999989 1.8936004155054101E-003 - 68.759999999999991 1.9968616214726172E-003 - 68.819999999999993 2.1046355190059160E-003 - 68.879999999999995 2.2170455956735434E-003 - 68.939999999999998 2.3342141412223062E-003 - 69.000000000000000 2.4562620023028687E-003 - 69.060000000000002 2.5833078613724646E-003 - 69.119999999999990 2.7154680755686455E-003 - 69.179999999999993 2.8528563346051240E-003 - 69.239999999999995 2.9955831738635317E-003 - 69.299999999999997 3.1437554066564852E-003 - 69.359999999999999 3.2974758401442452E-003 - 69.420000000000002 3.4568427877046072E-003 - 69.479999999999990 3.6219496976332291E-003 - 69.539999999999992 3.7928847187385130E-003 - 69.599999999999994 3.9697300328276636E-003 - 69.659999999999997 4.1525613403443082E-003 - 69.719999999999999 4.3414473444819204E-003 - 69.780000000000001 4.5364496967180302E-003 - 69.839999999999989 4.7376223205183362E-003 - 69.899999999999991 4.9450105641861931E-003 - 69.959999999999994 5.1586511085799118E-003 - 70.019999999999996 5.3785709690625065E-003 - 70.079999999999998 5.6047870260438771E-003 - 70.140000000000001 5.8373080812357224E-003 - 70.199999999999989 6.0761287817172457E-003 - 70.259999999999991 6.3212342321981793E-003 - 70.319999999999993 6.5725979126367781E-003 - 70.379999999999995 6.8301806194298702E-003 - 70.439999999999998 7.0939307292809204E-003 - 70.500000000000000 7.3637831645368542E-003 - 70.560000000000002 7.6396596748001368E-003 - 70.619999999999990 7.9214684181747944E-003 - 70.679999999999993 8.2091026613538287E-003 - 70.739999999999995 8.5024421596301813E-003 - 70.799999999999997 8.8013503419747188E-003 - 70.859999999999999 9.1056756620301015E-003 - 70.920000000000002 9.4152528329629840E-003 - 70.979999999999990 9.7298986496406857E-003 - 71.039999999999992 1.0049416279997385E-002 - 71.099999999999994 1.0373591652360081E-002 - 71.159999999999997 1.0702193317800979E-002 - 71.219999999999999 1.1034975828183089E-002 - 71.280000000000001 1.1371677126657102E-002 - 71.339999999999989 1.1712018445211931E-002 - 71.399999999999991 1.2055703422715586E-002 - 71.459999999999994 1.2402422965355486E-002 - 71.519999999999996 1.2751848762452646E-002 - 71.579999999999998 1.3103639787961025E-002 - 71.640000000000001 1.3457436984408560E-002 - 71.699999999999989 1.3812866691983212E-002 - 71.759999999999991 1.4169541137645117E-002 - 71.819999999999993 1.4527057512572165E-002 - 71.879999999999995 1.4884998766881742E-002 - 71.939999999999998 1.5242936297994572E-002 - 72.000000000000000 1.5600425728047934E-002 - 72.060000000000002 1.5957012560842018E-002 - 72.119999999999990 1.6312229204586373E-002 - 72.179999999999993 1.6665597241572783E-002 - 72.239999999999995 1.7016627775696562E-002 - 72.299999999999997 1.7364822462779275E-002 - 72.359999999999999 1.7709675065687019E-002 - 72.420000000000002 1.8050671148695647E-002 - 72.479999999999990 1.8387291200769131E-002 - 72.539999999999992 1.8719006257048885E-002 - 72.599999999999994 1.9045283192059757E-002 - 72.659999999999997 1.9365588438471359E-002 - 72.719999999999999 1.9679382329413977E-002 - 72.780000000000001 1.9986125114378250E-002 - 72.839999999999989 2.0285276702247338E-002 - 72.899999999999991 2.0576296519277192E-002 - 72.959999999999994 2.0858647322289467E-002 - 73.019999999999996 2.1131793558451326E-002 - 73.079999999999998 2.1395204239254912E-002 - 73.140000000000001 2.1648356571013341E-002 - 73.199999999999989 2.1890729491389010E-002 - 73.259999999999991 2.2121816234902923E-002 - 73.319999999999993 2.2341116279521858E-002 - 73.379999999999995 2.2548137838171167E-002 - 73.439999999999998 2.2742404358280673E-002 - 73.500000000000000 2.2923451802104179E-002 - 73.560000000000002 2.3090830279494497E-002 - 73.619999999999990 2.3244104993801307E-002 - 73.679999999999993 2.3382858259010923E-002 - 73.739999999999995 2.3506691627316983E-002 - 73.799999999999997 2.3615224374596167E-002 - 73.859999999999999 2.3708095193156153E-002 - 73.920000000000002 2.3784967919483445E-002 - 73.979999999999990 2.3845525100300614E-002 - 74.039999999999992 2.3889474655947020E-002 - 74.099999999999994 2.3916549288784724E-002 - 74.159999999999997 2.3926503942714190E-002 - 74.219999999999999 2.3919123456842734E-002 - 74.280000000000001 2.3894218128824429E-002 - 74.339999999999989 2.3851622201036309E-002 - 74.399999999999991 2.3791203857550312E-002 - 74.459999999999994 2.3712856715199748E-002 - 74.519999999999996 2.3616506857067610E-002 - 74.579999999999998 2.3502105899107763E-002 - 74.640000000000001 2.3369637202315514E-002 - 74.699999999999989 2.3219117235916326E-002 - 74.759999999999991 2.3050586998678065E-002 - 74.819999999999993 2.2864125182269025E-002 - 74.879999999999995 2.2659838600021832E-002 - 74.939999999999998 2.2437861378724111E-002 - 75.000000000000000 2.2198363840732368E-002 - 75.060000000000002 2.1941543383611286E-002 - 75.119999999999990 2.1667629080206020E-002 - 75.179999999999993 2.1376878231599356E-002 - 75.239999999999995 2.1069579676957880E-002 - 75.299999999999997 2.0746049747266793E-002 - 75.359999999999999 2.0406633099701622E-002 - 75.420000000000002 2.0051702184821208E-002 - 75.479999999999990 1.9681658412868043E-002 - 75.539999999999992 1.9296926236340699E-002 - 75.599999999999994 1.8897956991196289E-002 - 75.659999999999997 1.8485225218250845E-002 - 75.719999999999999 1.8059230273058339E-002 - 75.780000000000001 1.7620493213150634E-002 - 75.839999999999989 1.7169554758913880E-002 - 75.899999999999991 1.6706977552897174E-002 - 75.959999999999994 1.6233343154215232E-002 - 76.019999999999996 1.5749249210897383E-002 - 76.079999999999998 1.5255308702581034E-002 - 76.140000000000001 1.4752152304991526E-002 - 76.199999999999989 1.4240421718974910E-002 - 76.259999999999991 1.3720769496882633E-002 - 76.319999999999993 1.3193860637701456E-002 - 76.379999999999995 1.2660369600928787E-002 - 76.439999999999998 1.2120976747173998E-002 - 76.500000000000000 1.1576368957778990E-002 - 76.560000000000002 1.1027237910378228E-002 - 76.619999999999990 1.0474278424143333E-002 - 76.679999999999993 9.9181861895403303E-003 - 76.739999999999995 9.3596571937492653E-003 - 76.799999999999997 8.7993860133364146E-003 - 76.859999999999999 8.2380632619466036E-003 - 76.920000000000002 7.6763771912874094E-003 - 76.979999999999990 7.1150089709408944E-003 - 77.039999999999992 6.5546313049890479E-003 - 77.099999999999994 5.9959099716383434E-003 - 77.159999999999997 5.4395008916903881E-003 - 77.219999999999999 4.8860476897662590E-003 - 77.280000000000001 4.3361828086008270E-003 - 77.339999999999989 3.7905227015237290E-003 - 77.399999999999991 3.2496712371143360E-003 - 77.459999999999994 2.7142149633022578E-003 - 77.519999999999996 2.1847241055213060E-003 - 77.579999999999998 1.6617510224103170E-003 - 77.640000000000001 1.1458282592466023E-003 - 77.699999999999989 6.3746933922718529E-004 - 77.759999999999991 1.3716717375184700E-004 - 77.819999999999993 -3.5460667250143121E-004 - 77.879999999999995 -8.3740301930538175E-004 - 77.939999999999998 -1.3107945578811999E-003 - 78.000000000000000 -1.7743776363397909E-003 - 78.060000000000002 -2.2277720945642829E-003 - 78.119999999999990 -2.6706215365133621E-003 - 78.179999999999993 -3.1025938578643068E-003 - 78.239999999999995 -3.5233817419149153E-003 - 78.299999999999997 -3.9327023050660936E-003 - 78.359999999999999 -4.3302977115913964E-003 - 78.420000000000002 -4.7159353144617536E-003 - 78.479999999999990 -5.0894065384285260E-003 - 78.539999999999992 -5.4505285047980068E-003 - 78.599999999999994 -5.7991426867044704E-003 - 78.659999999999997 -6.1351146240705579E-003 - 78.719999999999999 -6.4583345125507358E-003 - 78.780000000000001 -6.7687176046675561E-003 - 78.839999999999989 -7.0662007800037299E-003 - 78.899999999999991 -7.3507454495475438E-003 - 78.959999999999994 -7.6223347585175714E-003 - 79.019999999999996 -7.8809748673503120E-003 - 79.079999999999998 -8.1266934841803060E-003 - 79.140000000000001 -8.3595392130336212E-003 - 79.199999999999989 -8.5795806346431851E-003 - 79.259999999999991 -8.7869065390838753E-003 - 79.319999999999993 -8.9816256851083139E-003 - 79.379999999999995 -9.1638628931116559E-003 - 79.439999999999998 -9.3337617600223743E-003 - 79.500000000000000 -9.4914827505122555E-003 - 79.560000000000002 -9.6372023140150857E-003 - 79.619999999999990 -9.7711116419861577E-003 - 79.679999999999993 -9.8934165058461171E-003 - 79.739999999999995 -1.0004336115405271E-002 - 79.799999999999997 -1.0104102007358859E-002 - 79.859999999999999 -1.0192956574830395E-002 - 79.920000000000002 -1.0271155698363673E-002 - 79.979999999999990 -1.0338963008451461E-002 - 80.039999999999992 -1.0396652002727776E-002 - 80.099999999999994 -1.0444504770993051E-002 - 80.159999999999997 -1.0482809823821602E-002 - 80.219999999999999 -1.0511862772970379E-002 - 80.280000000000001 -1.0531964998265671E-002 - 80.340000000000003 -1.0543423681141606E-002 - 80.400000000000006 -1.0546549122465979E-002 - 80.460000000000008 -1.0541654318247188E-002 - 80.519999999999982 -1.0529056953614307E-002 - 80.579999999999984 -1.0509073319075100E-002 - 80.639999999999986 -1.0482024330044063E-002 - 80.699999999999989 -1.0448229483140737E-002 - 80.759999999999991 -1.0408008043453263E-002 - 80.819999999999993 -1.0361678032577414E-002 - 80.879999999999995 -1.0309557144094053E-002 - 80.939999999999998 -1.0251960206280877E-002 - 81.000000000000000 -1.0189199301620152E-002 - 81.060000000000002 -1.0121583153253406E-002 - 81.120000000000005 -1.0049416500309645E-002 - 81.180000000000007 -9.9730003157533203E-003 - 81.240000000000009 -9.8926308045775967E-003 - 81.299999999999983 -9.8085985322295538E-003 - 81.359999999999985 -9.7211898629100627E-003 - 81.419999999999987 -9.6306836681930696E-003 - 81.479999999999990 -9.5373535505970369E-003 - 81.539999999999992 -9.4414656775650176E-003 - 81.599999999999994 -9.3432813632673105E-003 - 81.659999999999997 -9.2430513128460810E-003 - 81.719999999999999 -9.1410224893665754E-003 - 81.780000000000001 -9.0374323419758536E-003 - 81.840000000000003 -8.9325106839223435E-003 - 81.900000000000006 -8.8264811179380887E-003 - 81.960000000000008 -8.7195576480736843E-003 - 82.019999999999982 -8.6119466110553666E-003 - 82.079999999999984 -8.5038470170624211E-003 - 82.139999999999986 -8.3954485962103257E-003 - 82.199999999999989 -8.2869338790900419E-003 - 82.259999999999991 -8.1784763140580648E-003 - 82.319999999999993 -8.0702412852385365E-003 - 82.379999999999995 -7.9623872487101944E-003 - 82.439999999999998 -7.8550624757361218E-003 - 82.500000000000000 -7.7484089449275147E-003 - 82.560000000000002 -7.6425588303554916E-003 - 82.620000000000005 -7.5376383139582701E-003 - 82.680000000000007 -7.4337640715348638E-003 - 82.740000000000009 -7.3310455765224405E-003 - 82.799999999999983 -7.2295851433576089E-003 - 82.859999999999985 -7.1294775186116453E-003 - 82.919999999999987 -7.0308095127542027E-003 - 82.979999999999990 -6.9336610598602164E-003 - 83.039999999999992 -6.8381059380084423E-003 - 83.099999999999994 -6.7442098659842211E-003 - 83.159999999999997 -6.6520325163794952E-003 - 83.219999999999999 -6.5616270575634059E-003 - 83.280000000000001 -6.4730402918787826E-003 - 83.340000000000003 -6.3863131733773934E-003 - 83.400000000000006 -6.3014800774425592E-003 - 83.460000000000008 -6.2185710799386963E-003 - 83.519999999999982 -6.1376095066129205E-003 - 83.579999999999984 -6.0586143248893545E-003 - 83.639999999999986 -5.9815992507379814E-003 - 83.699999999999989 -5.9065725130855286E-003 - 83.759999999999991 -5.8335382970086010E-003 - 83.819999999999993 -5.7624962605736388E-003 - 83.879999999999995 -5.6934422344870174E-003 - 83.939999999999998 -5.6263669913760072E-003 - 84.000000000000000 -5.5612580132186739E-003 - 84.060000000000002 -5.4980998823353344E-003 - 84.120000000000005 -5.4368726150073564E-003 - 84.180000000000007 -5.3775541378308410E-003 - 84.240000000000009 -5.3201183541667883E-003 - 84.299999999999983 -5.2645365089930103E-003 - 84.359999999999985 -5.2107778239703934E-003 - 84.419999999999987 -5.1588095493327654E-003 - 84.479999999999990 -5.1085951522712673E-003 - 84.539999999999992 -5.0600970920564045E-003 - 84.599999999999994 -5.0132757105963649E-003 - 84.659999999999997 -4.9680897960954424E-003 - 84.719999999999999 -4.9244964323818616E-003 - 84.780000000000001 -4.8824513518984751E-003 - 84.840000000000003 -4.8419095750821583E-003 - 84.900000000000006 -4.8028247135456902E-003 - 84.960000000000008 -4.7651494725165500E-003 - 85.019999999999982 -4.7288357864578726E-003 - 85.079999999999984 -4.6938350718201882E-003 - 85.139999999999986 -4.6600985814926610E-003 - 85.199999999999989 -4.6275771779248761E-003 - 85.259999999999991 -4.5962215265179553E-003 - 85.319999999999993 -4.5659821696302904E-003 - 85.379999999999995 -4.5368099513606024E-003 - 85.439999999999998 -4.5086552645853392E-003 - 85.500000000000000 -4.4814694251803094E-003 - 85.560000000000002 -4.4552043693460467E-003 - 85.620000000000005 -4.4298120818399098E-003 - 85.680000000000007 -4.4052449939532036E-003 - 85.740000000000009 -4.3814575901464457E-003 - 85.799999999999983 -4.3584038823783295E-003 - 85.859999999999985 -4.3360392375847651E-003 - 85.919999999999987 -4.3143200705678840E-003 - 85.979999999999990 -4.2932043164850553E-003 - 86.039999999999992 -4.2726501791177469E-003 - 86.099999999999994 -4.2526173359315397E-003 - 86.159999999999997 -4.2330667549946577E-003 - 86.219999999999999 -4.2139619639475507E-003 - 86.280000000000001 -4.1952655906005538E-003 - 86.340000000000003 -4.1769441408269397E-003 - 86.400000000000006 -4.1589643151481058E-003 - 86.460000000000008 -4.1412943341678282E-003 - 86.519999999999982 -4.1239046106501913E-003 - 86.579999999999984 -4.1067666294291065E-003 - 86.639999999999986 -4.0898540087135945E-003 - 86.699999999999989 -4.0731421682978297E-003 - 86.759999999999991 -4.0566077397234676E-003 - 86.819999999999993 -4.0402293904216336E-003 - 86.879999999999995 -4.0239880257284559E-003 - 86.939999999999998 -4.0078654739535207E-003 - 87.000000000000000 -3.9918466531044900E-003 - 87.060000000000002 -3.9759170237978550E-003 - 87.120000000000005 -3.9600646204462605E-003 - 87.180000000000007 -3.9442783156160410E-003 - 87.240000000000009 -3.9285505999261975E-003 - 87.299999999999983 -3.9128743939910128E-003 - 87.359999999999985 -3.8972447956364216E-003 - 87.419999999999987 -3.8816587981556289E-003 - 87.479999999999990 -3.8661150978109432E-003 - 87.539999999999992 -3.8506141571514243E-003 - 87.599999999999994 -3.8351587553626509E-003 - 87.659999999999997 -3.8197527001555334E-003 - 87.719999999999999 -3.8044020718111275E-003 - 87.780000000000001 -3.7891144318771709E-003 - 87.840000000000003 -3.7738992373314460E-003 - 87.900000000000006 -3.7587673133252395E-003 - 87.960000000000008 -3.7437318899209635E-003 - 88.019999999999982 -3.7288067550289338E-003 - 88.079999999999984 -3.7140079252561660E-003 - 88.139999999999986 -3.6993532116335647E-003 - 88.199999999999989 -3.6848618474472870E-003 - 88.259999999999991 -3.6705541088857827E-003 - 88.319999999999993 -3.6564519912830580E-003 - 88.379999999999995 -3.6425789311936418E-003 - 88.439999999999998 -3.6289596606576390E-003 - 88.500000000000000 -3.6156202603189018E-003 - 88.560000000000002 -3.6025882185302741E-003 - 88.620000000000005 -3.5898918391732730E-003 - 88.680000000000007 -3.5775607507140283E-003 - 88.740000000000009 -3.5656257265219470E-003 - 88.799999999999983 -3.5541188828426017E-003 - 88.859999999999985 -3.5430726423692207E-003 - 88.919999999999987 -3.5325205303011913E-003 - 88.979999999999990 -3.5224971225512793E-003 - 89.039999999999992 -3.5130377843341069E-003 - 89.099999999999994 -3.5041782837657728E-003 - 89.159999999999997 -3.4959554014777970E-003 - 89.219999999999999 -3.4884060402959392E-003 - 89.280000000000001 -3.4815678437974478E-003 - 89.340000000000003 -3.4754787130761968E-003 - 89.400000000000006 -3.4701767527897374E-003 - 89.460000000000008 -3.4657003874414317E-003 - 89.519999999999982 -3.4620880306706508E-003 - 89.579999999999984 -3.4593783086543668E-003 - 89.639999999999986 -3.4576096915519250E-003 - 89.699999999999989 -3.4568200707376473E-003 - 89.759999999999991 -3.4570473266084261E-003 - 89.819999999999993 -3.4583289765858327E-003 - 89.879999999999995 -3.4607021298617290E-003 - 89.939999999999998 -3.4642028067636212E-003 - 90.000000000000000 -3.4688668185522725E-003 - 90.060000000000002 -3.4747288654250010E-003 - 90.120000000000005 -3.4818227472180299E-003 - 90.180000000000007 -3.4901810761459027E-003 - 90.240000000000009 -3.4998354722776226E-003 - 90.299999999999983 -3.5108164647461968E-003 - 90.359999999999985 -3.5231525791264207E-003 - 90.419999999999987 -3.5368710220990886E-003 - 90.479999999999990 -3.5519973395535006E-003 - 90.539999999999992 -3.5685553266490921E-003 - 90.599999999999994 -3.5865666362137195E-003 - 90.659999999999997 -3.6060512087074813E-003 - 90.719999999999999 -3.6270266160879985E-003 - 90.780000000000001 -3.6495077991878146E-003 - 90.840000000000003 -3.6735079152079076E-003 - 90.900000000000006 -3.6990370150861152E-003 - 90.960000000000008 -3.7261025041968399E-003 - 91.019999999999982 -3.7547096417832517E-003 - 91.079999999999984 -3.7848596222005873E-003 - 91.139999999999986 -3.8165519362279871E-003 - 91.199999999999989 -3.8497823405613707E-003 - 91.259999999999991 -3.8845428453355389E-003 - 91.319999999999993 -3.9208231902631407E-003 - 91.379999999999995 -3.9586093110090060E-003 - 91.439999999999998 -3.9978838871665059E-003 - 91.500000000000000 -4.0386256866990116E-003 - 91.560000000000002 -4.0808098016536353E-003 - 91.620000000000005 -4.1244077416079236E-003 - 91.680000000000007 -4.1693877101016408E-003 - 91.739999999999981 -4.2157138295636056E-003 - 91.799999999999983 -4.2633464725293935E-003 - 91.859999999999985 -4.3122415215991507E-003 - 91.919999999999987 -4.3623520121124646E-003 - 91.979999999999990 -4.4136266704699481E-003 - 92.039999999999992 -4.4660097543407773E-003 - 92.099999999999994 -4.5194422737332108E-003 - 92.159999999999997 -4.5738609300439194E-003 - 92.219999999999999 -4.6291984657049010E-003 - 92.280000000000001 -4.6853846093468047E-003 - 92.340000000000003 -4.7423445819963286E-003 - 92.400000000000006 -4.8000000301071516E-003 - 92.460000000000008 -4.8582681821600950E-003 - 92.519999999999982 -4.9170641990984179E-003 - 92.579999999999984 -4.9762983680836084E-003 - 92.639999999999986 -5.0358785654400565E-003 - 92.699999999999989 -5.0957090865085463E-003 - 92.759999999999991 -5.1556911452086416E-003 - 92.819999999999993 -5.2157223769883354E-003 - 92.879999999999995 -5.2756985952513453E-003 - 92.939999999999998 -5.3355128956544444E-003 - 93.000000000000000 -5.3950546039705522E-003 - 93.060000000000002 -5.4542118564579484E-003 - 93.120000000000005 -5.5128704300961831E-003 - 93.180000000000007 -5.5709146202313998E-003 - 93.239999999999981 -5.6282261167548836E-003 - 93.299999999999983 -5.6846853762528840E-003 - 93.359999999999985 -5.7401727009535166E-003 - 93.419999999999987 -5.7945656117900724E-003 - 93.479999999999990 -5.8477423604640973E-003 - 93.539999999999992 -5.8995800089265780E-003 - 93.599999999999994 -5.9499555588468705E-003 - 93.659999999999997 -5.9987465835808435E-003 - 93.719999999999999 -6.0458298353483382E-003 - 93.780000000000001 -6.0910835858200224E-003 - 93.840000000000003 -6.1343866983637457E-003 - 93.900000000000006 -6.1756193218881449E-003 - 93.960000000000008 -6.2146633587519436E-003 - 94.019999999999982 -6.2514018154340408E-003 - 94.079999999999984 -6.2857203538296304E-003 - 94.139999999999986 -6.3175067565544342E-003 - 94.199999999999989 -6.3466511352658038E-003 - 94.259999999999991 -6.3730471510969160E-003 - 94.319999999999993 -6.3965920293384488E-003 - 94.379999999999995 -6.4171849929166866E-003 - 94.439999999999998 -6.4347303660159724E-003 - 94.500000000000000 -6.4491364073583878E-003 - 94.560000000000002 -6.4603152216295579E-003 - 94.620000000000005 -6.4681838531292831E-003 - 94.680000000000007 -6.4726641197387514E-003 - 94.739999999999981 -6.4736826280078798E-003 - 94.799999999999983 -6.4711716611512878E-003 - 94.859999999999985 -6.4650686444231780E-003 - 94.919999999999987 -6.4553168780316023E-003 - 94.979999999999990 -6.4418652349315609E-003 - 95.039999999999992 -6.4246695635849400E-003 - 95.099999999999994 -6.4036906178262477E-003 - 95.159999999999997 -6.3788966710705657E-003 - 95.219999999999999 -6.3502621922387759E-003 - 95.280000000000001 -6.3177677348983169E-003 - 95.340000000000003 -6.2814009118671785E-003 - 95.400000000000006 -6.2411564388687862E-003 - 95.460000000000008 -6.1970353387273752E-003 - 95.519999999999982 -6.1490461849305110E-003 - 95.579999999999984 -6.0972033818807213E-003 - 95.639999999999986 -6.0415296422353312E-003 - 95.699999999999989 -5.9820540096061142E-003 - 95.759999999999991 -5.9188121564769268E-003 - 95.819999999999993 -5.8518461148757313E-003 - 95.879999999999995 -5.7812060732723748E-003 - 95.939999999999998 -5.7069479018405566E-003 - 96.000000000000000 -5.6291345076942686E-003 - 96.060000000000002 -5.5478351409821670E-003 - 96.120000000000005 -5.4631257036830217E-003 - 96.180000000000007 -5.3750868961463258E-003 - 96.239999999999981 -5.2838071921360178E-003 - 96.299999999999983 -5.1893797744441538E-003 - 96.359999999999985 -5.0919040011690331E-003 - 96.419999999999987 -4.9914844487085157E-003 - 96.479999999999990 -4.8882308155295999E-003 - 96.539999999999992 -4.7822581700234642E-003 - 96.599999999999994 -4.6736852153164473E-003 - 96.659999999999997 -4.5626356963075565E-003 - 96.719999999999999 -4.4492370078915659E-003 - 96.780000000000001 -4.3336206250153952E-003 - 96.840000000000003 -4.2159216462246850E-003 - 96.900000000000006 -4.0962783703230934E-003 - 96.960000000000008 -3.9748313275908276E-003 - 97.019999999999982 -3.8517240396959513E-003 - 97.079999999999984 -3.7271025522568370E-003 - 97.139999999999986 -3.6011141733462869E-003 - 97.199999999999989 -3.4739080759480191E-003 - 97.259999999999991 -3.3456343634170526E-003 - 97.319999999999993 -3.2164446236199575E-003 - 97.379999999999995 -3.0864901365268657E-003 - 97.439999999999998 -2.9559231223136532E-003 - 97.500000000000000 -2.8248954100413178E-003 - 97.560000000000002 -2.6935576037151088E-003 - 97.620000000000005 -2.5620605941996635E-003 - 97.680000000000007 -2.4305539052176897E-003 - 97.739999999999981 -2.2991852119558166E-003 - 97.799999999999983 -2.1681005849717968E-003 - 97.859999999999985 -2.0374444152433243E-003 - 97.919999999999987 -1.9073583383412205E-003 - 97.979999999999990 -1.7779814785852232E-003 - 98.039999999999992 -1.6494501057220620E-003 - 98.099999999999994 -1.5218974022837867E-003 - 98.159999999999997 -1.3954530674556978E-003 - 98.219999999999999 -1.2702433293669776E-003 - 98.280000000000001 -1.1463900907610486E-003 - 98.340000000000003 -1.0240116050451240E-003 - 98.400000000000006 -9.0322190526774472E-004 - 98.460000000000008 -7.8413033505657132E-004 - 98.519999999999982 -6.6684186955994124E-004 - 98.579999999999984 -5.5145668361964719E-004 - 98.639999999999986 -4.3806998344839729E-004 - 98.699999999999989 -3.2677210219103289E-004 - 98.759999999999991 -2.1764837075104778E-004 - 98.819999999999993 -1.1077865173928674E-004 - 98.879999999999995 -6.2377964585840634E-006 - 98.939999999999998 9.5904735410910942E-005 - 99.000000000000000 1.9558493737745599E-004 - 99.060000000000002 2.9274405307182162E-004 - 99.120000000000005 3.8732884456307945E-004 - 99.180000000000007 4.7929133029075369E-004 - 99.239999999999981 5.6858903031787309E-004 - 99.299999999999983 6.5518484943722808E-004 - 99.359999999999985 7.3904691522692554E-004 - 99.419999999999987 8.2014867803762250E-004 - 99.479999999999990 8.9846874823030273E-004 - 99.539999999999992 9.7399076011192619E-004 - 99.599999999999994 1.0467034549372831E-003 - 99.659999999999997 1.1166003907992477E-003 - 99.719999999999999 1.1836800291491699E-003 - 99.780000000000001 1.2479452246245868E-003 - 99.840000000000003 1.3094036843847628E-003 - 99.900000000000006 1.3680672261826507E-003 - 99.960000000000008 1.4239520427567847E-003 - 100.01999999999998 1.4770783199981262E-003 - 100.07999999999998 1.5274701497462477E-003 - 100.13999999999999 1.5751553412622036E-003 - 100.19999999999999 1.6201652536088915E-003 - 100.25999999999999 1.6625346620094336E-003 - 100.31999999999999 1.7023014272012438E-003 - 100.38000000000000 1.7395066862599200E-003 - 100.44000000000000 1.7741939853607193E-003 - 100.50000000000000 1.8064098774664627E-003 - 100.56000000000000 1.8362031424808555E-003 - 100.62000000000000 1.8636247652731373E-003 - 100.68000000000001 1.8887279830643697E-003 - 100.73999999999998 1.9115677592692281E-003 - 100.79999999999998 1.9322007729935370E-003 - 100.85999999999999 1.9506851142157030E-003 - 100.91999999999999 1.9670801788673900E-003 - 100.97999999999999 1.9814465768380821E-003 - 101.03999999999999 1.9938457887838396E-003 - 101.09999999999999 2.0043400294695972E-003 - 101.16000000000000 2.0129920216668262E-003 - 101.22000000000000 2.0198651445076064E-003 - 101.28000000000000 2.0250231398766813E-003 - 101.34000000000000 2.0285292419973729E-003 - 101.40000000000001 2.0304472849801808E-003 - 101.46000000000001 2.0308405966666726E-003 - 101.51999999999998 2.0297723377425865E-003 - 101.57999999999998 2.0273049864951145E-003 - 101.63999999999999 2.0235006217241783E-003 - 101.69999999999999 2.0184205536888343E-003 - 101.75999999999999 2.0121253471603439E-003 - 101.81999999999999 2.0046743457506123E-003 - 101.88000000000000 1.9961263207377965E-003 - 101.94000000000000 1.9865382946776186E-003 - 102.00000000000000 1.9759665377674573E-003 - 102.06000000000000 1.9644658049201803E-003 - 102.12000000000000 1.9520896860672561E-003 - 102.18000000000001 1.9388901532995150E-003 - 102.23999999999998 1.9249176848673698E-003 - 102.29999999999998 1.9102212866736698E-003 - 102.35999999999999 1.8948483449024258E-003 - 102.41999999999999 1.8788446704076406E-003 - 102.47999999999999 1.8622544334647977E-003 - 102.53999999999999 1.8451201351027155E-003 - 102.59999999999999 1.8274824889730136E-003 - 102.66000000000000 1.8093806114463412E-003 - 102.72000000000000 1.7908520389887982E-003 - 102.78000000000000 1.7719325474592948E-003 - 102.84000000000000 1.7526559648209350E-003 - 102.90000000000001 1.7330548083754802E-003 - 102.96000000000001 1.7131596575215118E-003 - 103.01999999999998 1.6929997346499148E-003 - 103.07999999999998 1.6726023342068224E-003 - 103.13999999999999 1.6519932886210236E-003 - 103.19999999999999 1.6311968544875073E-003 - 103.25999999999999 1.6102357368046247E-003 - 103.31999999999999 1.5891311089475130E-003 - 103.38000000000000 1.5679027558359729E-003 - 103.44000000000000 1.5465690848043673E-003 - 103.50000000000000 1.5251470405418031E-003 - 103.56000000000000 1.5036523792141623E-003 - 103.62000000000000 1.4820996123244721E-003 - 103.68000000000001 1.4605021344678577E-003 - 103.73999999999998 1.4388720502455836E-003 - 103.79999999999998 1.4172206002430259E-003 - 103.85999999999999 1.3955579558895582E-003 - 103.91999999999999 1.3738935338559310E-003 - 103.97999999999999 1.3522356975573487E-003 - 104.03999999999999 1.3305921067310799E-003 - 104.09999999999999 1.3089695710375299E-003 - 104.16000000000000 1.2873745388039962E-003 - 104.22000000000000 1.2658126711618297E-003 - 104.28000000000000 1.2442889742649680E-003 - 104.34000000000000 1.2228081538559498E-003 - 104.40000000000001 1.2013744261085096E-003 - 104.46000000000001 1.1799916646255400E-003 - 104.51999999999998 1.1586635574068534E-003 - 104.57999999999998 1.1373933178344486E-003 - 104.63999999999999 1.1161839848935972E-003 - 104.69999999999999 1.0950386797931202E-003 - 104.75999999999999 1.0739601746204369E-003 - 104.81999999999999 1.0529513466252076E-003 - 104.88000000000000 1.0320149964498948E-003 - 104.94000000000000 1.0111539845711220E-003 - 105.00000000000000 9.9037145693110849E-004 - 105.06000000000000 9.6967041206757793E-004 - 105.12000000000000 9.4905419447480991E-004 - 105.18000000000001 9.2852633124239619E-004 - 105.23999999999998 9.0809051431569687E-004 - 105.29999999999998 8.8775075701117952E-004 - 105.35999999999999 8.6751137210472362E-004 - 105.41999999999999 8.4737698406560499E-004 - 105.47999999999999 8.2735247205660361E-004 - 105.53999999999999 8.0744317883480257E-004 - 105.59999999999999 7.8765467593366629E-004 - 105.66000000000000 7.6799296462606761E-004 - 105.72000000000000 7.4846441802332657E-004 - 105.78000000000000 7.2907585874945309E-004 - 105.84000000000000 7.0983438128538717E-004 - 105.90000000000001 6.9074744125491641E-004 - 105.96000000000001 6.7182294796070633E-004 - 106.01999999999998 6.5306913685910027E-004 - 106.07999999999998 6.3449449424700496E-004 - 106.13999999999999 6.1610789949626270E-004 - 106.19999999999999 5.9791850424404313E-004 - 106.25999999999999 5.7993575075519462E-004 - 106.31999999999999 5.6216923129692275E-004 - 106.38000000000000 5.4462885271262199E-004 - 106.44000000000000 5.2732471136338846E-004 - 106.50000000000000 5.1026698378416231E-004 - 106.56000000000000 4.9346603356992605E-004 - 106.62000000000000 4.7693227246893544E-004 - 106.68000000000001 4.6067614744353788E-004 - 106.73999999999998 4.4470819354144506E-004 - 106.79999999999998 4.2903892766209088E-004 - 106.85999999999999 4.1367881270482272E-004 - 106.91999999999999 3.9863821750616378E-004 - 106.97999999999999 3.8392735959201908E-004 - 107.03999999999999 3.6955637898460048E-004 - 107.09999999999999 3.5553525879285263E-004 - 107.16000000000000 3.4187363591326077E-004 - 107.22000000000000 3.2858097716266521E-004 - 107.28000000000000 3.1566642584209486E-004 - 107.34000000000000 3.0313879630459566E-004 - 107.40000000000001 2.9100649521317717E-004 - 107.46000000000001 2.7927753210514708E-004 - 107.51999999999998 2.6795939154453623E-004 - 107.57999999999998 2.5705907643485792E-004 - 107.63999999999999 2.4658307552914959E-004 - 107.69999999999999 2.3653724445952011E-004 - 107.75999999999999 2.2692685763775738E-004 - 107.81999999999999 2.1775647990307436E-004 - 107.88000000000000 2.0903003016766749E-004 - 107.94000000000000 2.0075069557167705E-004 - 108.00000000000000 1.9292095810462468E-004 - 108.06000000000000 1.8554254962132124E-004 - 108.12000000000000 1.7861639737731723E-004 - 108.18000000000001 1.7214270204589914E-004 - 108.23999999999998 1.6612083740409896E-004 - 108.29999999999998 1.6054938608884775E-004 - 108.35999999999999 1.5542616223358996E-004 - 108.41999999999999 1.5074814435701525E-004 - 108.47999999999999 1.4651151959905849E-004 - 108.53999999999999 1.4271166678949879E-004 - 108.59999999999999 1.3934316904133369E-004 - 108.66000000000000 1.3639983200021145E-004 - 108.72000000000000 1.3387465722853752E-004 - 108.78000000000000 1.3175986616950771E-004 - 108.84000000000000 1.3004691161975761E-004 - 108.90000000000001 1.2872650773786115E-004 - 108.96000000000001 1.2778859768115846E-004 - 109.01999999999998 1.2722241996261915E-004 - 109.07999999999998 1.2701650762972737E-004 - 109.13999999999999 1.2715871612935462E-004 - 109.19999999999999 1.2763625336848224E-004 - 109.25999999999999 1.2843572143473428E-004 - 109.31999999999999 1.2954310862671342E-004 - 109.38000000000000 1.3094387316000950E-004 - 109.44000000000000 1.3262295926341620E-004 - 109.50000000000000 1.3456482006401818E-004 - 109.56000000000000 1.3675349667082270E-004 - 109.62000000000000 1.3917263424952005E-004 - 109.68000000000001 1.4180555931025206E-004 - 109.73999999999998 1.4463526757492652E-004 - 109.79999999999998 1.4764452977299890E-004 - 109.85999999999999 1.5081590576399999E-004 - 109.91999999999999 1.5413179377217308E-004 - 109.97999999999999 1.5757450987955129E-004 - 110.03999999999999 1.6112629543810217E-004 - 110.09999999999999 1.6476941770270955E-004 - 110.16000000000000 1.6848615630463940E-004 - 110.22000000000000 1.7225891819306884E-004 - 110.28000000000000 1.7607024927539965E-004 - 110.34000000000000 1.7990287515457531E-004 - 110.40000000000001 1.8373975919840020E-004 - 110.46000000000001 1.8756420195899346E-004 - 110.51999999999998 1.9135980055062736E-004 - 110.57999999999998 1.9511053297311106E-004 - 110.63999999999999 1.9880083159664081E-004 - 110.69999999999999 2.0241557868711738E-004 - 110.75999999999999 2.0594014736502892E-004 - 110.81999999999999 2.0936046942411139E-004 - 110.88000000000000 2.1266304622348007E-004 - 110.94000000000000 2.1583498277252567E-004 - 111.00000000000000 2.1886405959065387E-004 - 111.06000000000000 2.2173869658425780E-004 - 111.12000000000000 2.2444804325722522E-004 - 111.18000000000001 2.2698195144861050E-004 - 111.23999999999998 2.2933102493548558E-004 - 111.29999999999998 2.3148662491616622E-004 - 111.35999999999999 2.3344091233190557E-004 - 111.41999999999999 2.3518684813490879E-004 - 111.47999999999999 2.3671825297917840E-004 - 111.53999999999999 2.3802970614296648E-004 - 111.59999999999999 2.3911675222935497E-004 - 111.66000000000000 2.3997566977201844E-004 - 111.72000000000000 2.4060363040428903E-004 - 111.78000000000000 2.4099869724897554E-004 - 111.84000000000000 2.4115976393670116E-004 - 111.90000000000001 2.4108653077796230E-004 - 111.96000000000001 2.4077959259412594E-004 - 112.01999999999998 2.4024030526868386E-004 - 112.07999999999998 2.3947086411607154E-004 - 112.13999999999999 2.3847419839047575E-004 - 112.19999999999999 2.3725403856593230E-004 - 112.25999999999999 2.3581481083425490E-004 - 112.31999999999999 2.3416162152134056E-004 - 112.38000000000000 2.3230030042615372E-004 - 112.44000000000000 2.3023725724597696E-004 - 112.50000000000000 2.2797950555243445E-004 - 112.56000000000000 2.2553464348773418E-004 - 112.62000000000000 2.2291078790106415E-004 - 112.68000000000001 2.2011655499565484E-004 - 112.73999999999998 2.1716100074939041E-004 - 112.79999999999998 2.1405362162661907E-004 - 112.85999999999999 2.1080425726959775E-004 - 112.91999999999999 2.0742310633317651E-004 - 112.97999999999999 2.0392067791676679E-004 - 113.03999999999999 2.0030769614100884E-004 - 113.09999999999999 1.9659511909174459E-004 - 113.16000000000000 1.9279404513481888E-004 - 113.22000000000000 1.8891573277355126E-004 - 113.28000000000000 1.8497147384835831E-004 - 113.34000000000000 1.8097263424475942E-004 - 113.40000000000001 1.7693054243721158E-004 - 113.46000000000001 1.7285648472858733E-004 - 113.51999999999998 1.6876164297306687E-004 - 113.57999999999998 1.6465706753655184E-004 - 113.63999999999999 1.6055364832699657E-004 - 113.69999999999999 1.5646205264289648E-004 - 113.75999999999999 1.5239269816168493E-004 - 113.81999999999999 1.4835570801081439E-004 - 113.88000000000000 1.4436092138335696E-004 - 113.94000000000000 1.4041779509934993E-004 - 114.00000000000000 1.3653544364350664E-004 - 114.06000000000000 1.3272255320642459E-004 - 114.12000000000000 1.2898740783238381E-004 - 114.18000000000001 1.2533782223132388E-004 - 114.23999999999998 1.2178113825294122E-004 - 114.29999999999998 1.1832419792331066E-004 - 114.35999999999999 1.1497332368203995E-004 - 114.41999999999999 1.1173432072123700E-004 - 114.47999999999999 1.0861243302680618E-004 - 114.53999999999999 1.0561235000970653E-004 - 114.59999999999999 1.0273819315778163E-004 - 114.66000000000000 9.9993521530314082E-005 - 114.72000000000000 9.7381303684589894E-005 - 114.78000000000000 9.4903946795216253E-005 - 114.84000000000000 9.2563272704256029E-005 - 114.90000000000001 9.0360546803607759E-005 - 114.96000000000001 8.8296471410645189E-005 - 115.01999999999998 8.6371201021638846E-005 - 115.07999999999998 8.4584345666015697E-005 - 115.13999999999999 8.2935006139924294E-005 - 115.19999999999999 8.1421761952251096E-005 - 115.25999999999999 8.0042705786672369E-005 - 115.31999999999999 7.8795451349848670E-005 - 115.38000000000000 7.7677147251363740E-005 - 115.44000000000000 7.6684492563335225E-005 - 115.50000000000000 7.5813764340285089E-005 - 115.56000000000000 7.5060832602101606E-005 - 115.62000000000000 7.4421156812885700E-005 - 115.68000000000001 7.3889838775549000E-005 - 115.73999999999998 7.3461613651428073E-005 - 115.79999999999998 7.3130874892642938E-005 - 115.85999999999999 7.2891706299356353E-005 - 115.91999999999999 7.2737890930185467E-005 - 115.97999999999999 7.2662954873129585E-005 - 116.03999999999999 7.2660163566061234E-005 - 116.09999999999999 7.2722554256362241E-005 - 116.16000000000000 7.2842986154756032E-005 - 116.22000000000000 7.3014138679143733E-005 - 116.28000000000000 7.3228562512584632E-005 - 116.34000000000000 7.3478669052230640E-005 - 116.40000000000001 7.3756806469898475E-005 - 116.46000000000001 7.4055234485572840E-005 - 116.51999999999998 7.4366191519688888E-005 - 116.57999999999998 7.4681893899314946E-005 - 116.63999999999999 7.4994570627964525E-005 - 116.69999999999999 7.5296483464190345E-005 - 116.75999999999999 7.5579935814410612E-005 - 116.81999999999999 7.5837307763643562E-005 - 116.88000000000000 7.6061066431165177E-005 - 116.94000000000000 7.6243783466202960E-005 - 117.00000000000000 7.6378156521358747E-005 - 117.06000000000000 7.6457010994616299E-005 - 117.12000000000000 7.6473332781807561E-005 - 117.18000000000001 7.6420281486324487E-005 - 117.23999999999998 7.6291183776966198E-005 - 117.29999999999998 7.6079574107921238E-005 - 117.35999999999999 7.5779195274998802E-005 - 117.41999999999999 7.5384018151697317E-005 - 117.47999999999999 7.4888249887918617E-005 - 117.53999999999999 7.4286349820239372E-005 - 117.59999999999999 7.3573060013755584E-005 - 117.66000000000000 7.2743371052617063E-005 - 117.72000000000000 7.1792577007739989E-005 - 117.78000000000000 7.0716275465493601E-005 - 117.84000000000000 6.9510381284663066E-005 - 117.90000000000001 6.8171125218062951E-005 - 117.96000000000001 6.6695084469514212E-005 - 118.01999999999998 6.5079177368594819E-005 - 118.07999999999998 6.3320677469178192E-005 - 118.13999999999999 6.1417221661637123E-005 - 118.19999999999999 5.9366830177012367E-005 - 118.25999999999999 5.7167910369493349E-005 - 118.31999999999999 5.4819264048009794E-005 - 118.38000000000000 5.2320075459652511E-005 - 118.44000000000000 4.9669969769944525E-005 - 118.50000000000000 4.6868958067072168E-005 - 118.56000000000000 4.3917473192815816E-005 - 118.62000000000000 4.0816381027290418E-005 - 118.68000000000001 3.7566960914904734E-005 - 118.73999999999998 3.4170931375408499E-005 - 118.79999999999998 3.0630424362255537E-005 - 118.85999999999999 2.6948006811076158E-005 - 118.91999999999999 2.3126647918185245E-005 - 118.97999999999999 1.9169762679353827E-005 - 119.03999999999999 1.5081160510003455E-005 - 119.09999999999999 1.0865070565838083E-005 - 119.16000000000000 6.5261252586086457E-006 - 119.22000000000000 2.0693686030950106E-006 - 119.28000000000000 -2.4997738851526542E-006 - 119.34000000000000 -7.1754633943241927E-006 - 119.40000000000001 -1.1951477335616869E-005 - 119.46000000000001 -1.6821223897520377E-005 - 119.51999999999998 -2.1777720394629250E-005 - 119.57999999999998 -2.6813605590869835E-005 - 119.63999999999999 -3.1921165016372801E-005 - 119.69999999999999 -3.7092329272407290E-005 - 119.75999999999999 -4.2318663272886955E-005 - 119.81999999999999 -4.7591409149975834E-005 - 119.88000000000000 -5.2901469061542822E-005 - 119.94000000000000 -5.8239469104263039E-005 - 120.00000000000000 -6.3595707969238413E-005 - 120.06000000000000 -6.8960242053715197E-005 - 120.12000000000000 -7.4322853430501505E-005 - 120.18000000000001 -7.9673110551045756E-005 - 120.23999999999998 -8.5000374527596009E-005 - 120.29999999999998 -9.0293816913611434E-005 - 120.35999999999999 -9.5542473833462200E-005 - 120.41999999999999 -1.0073523582561287E-004 - 120.47999999999999 -1.0586090441066006E-004 - 120.53999999999999 -1.1090819910712166E-004 - 120.59999999999999 -1.1586579176612715E-004 - 120.66000000000000 -1.2072233972724585E-004 - 120.72000000000000 -1.2546649888661653E-004 - 120.78000000000000 -1.3008696986426050E-004 - 120.84000000000000 -1.3457249038820738E-004 - 120.90000000000001 -1.3891187138606646E-004 - 120.95999999999998 -1.4309404860532245E-004 - 121.01999999999998 -1.4710808450333436E-004 - 121.07999999999998 -1.5094319287917472E-004 - 121.13999999999999 -1.5458877420253324E-004 - 121.19999999999999 -1.5803441922480511E-004 - 121.25999999999999 -1.6126996279399903E-004 - 121.31999999999999 -1.6428548167898130E-004 - 121.38000000000000 -1.6707136113264682E-004 - 121.44000000000000 -1.6961829736575606E-004 - 121.50000000000000 -1.7191729273826261E-004 - 121.56000000000000 -1.7395972167659230E-004 - 121.62000000000000 -1.7573734114596166E-004 - 121.68000000000001 -1.7724233261598405E-004 - 121.73999999999998 -1.7846730255273598E-004 - 121.79999999999998 -1.7940532058157194E-004 - 121.85999999999999 -1.8004989173854937E-004 - 121.91999999999999 -1.8039505516528049E-004 - 121.97999999999999 -1.8043535101976190E-004 - 122.03999999999999 -1.8016585535246665E-004 - 122.09999999999999 -1.7958220319555404E-004 - 122.16000000000000 -1.7868058265751050E-004 - 122.22000000000000 -1.7745776184770873E-004 - 122.28000000000000 -1.7591109923916127E-004 - 122.34000000000000 -1.7403856997574304E-004 - 122.40000000000001 -1.7183876055289568E-004 - 122.45999999999998 -1.6931089194074044E-004 - 122.51999999999998 -1.6645481250866201E-004 - 122.57999999999998 -1.6327100481763570E-004 - 122.63999999999999 -1.5976060833763244E-004 - 122.69999999999999 -1.5592542208697532E-004 - 122.75999999999999 -1.5176787581713287E-004 - 122.81999999999999 -1.4729104894803640E-004 - 122.88000000000000 -1.4249869072361350E-004 - 122.94000000000000 -1.3739520197875033E-004 - 123.00000000000000 -1.3198558382473743E-004 - 123.06000000000000 -1.2627552011923966E-004 - 123.12000000000000 -1.2027129548191185E-004 - 123.18000000000001 -1.1397983238722828E-004 - 123.23999999999998 -1.0740866002369114E-004 - 123.29999999999998 -1.0056590851071369E-004 - 123.35999999999999 -9.3460313569796366E-005 - 123.41999999999999 -8.6101193341093455E-005 - 123.47999999999999 -7.8498430732273951E-005 - 123.53999999999999 -7.0662476326002941E-005 - 123.59999999999999 -6.2604335711929974E-005 - 123.66000000000000 -5.4335547534393382E-005 - 123.72000000000000 -4.5868171800314936E-005 - 123.78000000000000 -3.7214776595945320E-005 - 123.84000000000000 -2.8388425030601294E-005 - 123.90000000000001 -1.9402653141056862E-005 - 123.95999999999998 -1.0271448506619038E-005 - 124.01999999999998 -1.0092352494899669E-006 - 124.07999999999998 8.3691526699602673E-006 - 124.13999999999999 1.7848495835990080E-005 - 124.19999999999999 2.7413209836974402E-005 - 124.25999999999999 3.7047373153859408E-005 - 124.31999999999999 4.6734758525571235E-005 - 124.38000000000000 5.6458849807510996E-005 - 124.44000000000000 6.6202873995632771E-005 - 124.50000000000000 7.5949836417855293E-005 - 124.56000000000000 8.5682545272591223E-005 - 124.62000000000000 9.5383634067592232E-005 - 124.68000000000001 1.0503558753077563E-004 - 124.73999999999998 1.1462078102974417E-004 - 124.79999999999998 1.2412150896448702E-004 - 124.85999999999999 1.3352000259002974E-004 - 124.91999999999999 1.4279846137465609E-004 - 124.97999999999999 1.5193906146910728E-004 - 125.03999999999999 1.6092403093097659E-004 - 125.09999999999999 1.6973564020475671E-004 - 125.16000000000000 1.7835623560650779E-004 - 125.22000000000000 1.8676826164069153E-004 - 125.28000000000000 1.9495432006858755E-004 - 125.34000000000000 2.0289717115029772E-004 - 125.40000000000001 2.1057973965527948E-004 - 125.45999999999998 2.1798522021935230E-004 - 125.51999999999998 2.2509701299490003E-004 - 125.57999999999998 2.3189884114469507E-004 - 125.63999999999999 2.3837471699107487E-004 - 125.69999999999999 2.4450897576120014E-004 - 125.75999999999999 2.5028634730238114E-004 - 125.81999999999999 2.5569188071128369E-004 - 125.88000000000000 2.6071112741489261E-004 - 125.94000000000000 2.6533003740051783E-004 - 126.00000000000000 2.6953503900142340E-004 - 126.06000000000000 2.7331302294917318E-004 - 126.12000000000000 2.7665142847528367E-004 - 126.18000000000001 2.7953823300097476E-004 - 126.23999999999998 2.8196194069441343E-004 - 126.29999999999998 2.8391167244518897E-004 - 126.35999999999999 2.8537713017718984E-004 - 126.41999999999999 2.8634864859079838E-004 - 126.47999999999999 2.8681720229451976E-004 - 126.53999999999999 2.8677443539912604E-004 - 126.59999999999999 2.8621261486537031E-004 - 126.66000000000000 2.8512472230661317E-004 - 126.72000000000000 2.8350447925913960E-004 - 126.78000000000000 2.8134627115541651E-004 - 126.84000000000000 2.7864522777525010E-004 - 126.90000000000001 2.7539721531747401E-004 - 126.95999999999998 2.7159884100191005E-004 - 127.01999999999998 2.6724745524083334E-004 - 127.07999999999998 2.6234117479261108E-004 - 127.13999999999999 2.5687884776721807E-004 - 127.19999999999999 2.5086011416103088E-004 - 127.25999999999999 2.4428539456552496E-004 - 127.31999999999999 2.3715585799426815E-004 - 127.38000000000000 2.2947349878152471E-004 - 127.44000000000000 2.2124104393726488E-004 - 127.50000000000000 2.1246203120026569E-004 - 127.56000000000000 2.0314076469802746E-004 - 127.62000000000000 1.9328236193411091E-004 - 127.68000000000001 1.8289271352264378E-004 - 127.73999999999998 1.7197847520060563E-004 - 127.79999999999998 1.6054712544520203E-004 - 127.85999999999999 1.4860689269923763E-004 - 127.91999999999999 1.3616678734562512E-004 - 127.97999999999999 1.2323657470536379E-004 - 128.03999999999999 1.0982677879068524E-004 - 128.09999999999999 9.5948664985915640E-005 - 128.16000000000000 8.1614219976718815E-005 - 128.22000000000000 6.6836146441322009E-005 - 128.28000000000000 5.1627847089658494E-005 - 128.34000000000000 3.6003398949458038E-005 - 128.40000000000001 1.9977549774319625E-005 - 128.45999999999998 3.5656834437954781E-006 - 128.51999999999998 -1.3216181934623451E-005 - 128.57999999999998 -3.0351437667590925E-005 - 128.63999999999999 -4.7822873643379473E-005 - 128.69999999999999 -6.5612715811780544E-005 - 128.75999999999999 -8.3702645727942775E-005 - 128.81999999999999 -1.0207382142831287E-004 - 128.88000000000000 -1.2070690255868856E-004 - 128.94000000000000 -1.3958202810279179E-004 - 129.00000000000000 -1.5867889502659653E-004 - 129.06000000000000 -1.7797674489614053E-004 - 129.12000000000000 -1.9745441682478900E-004 - 129.18000000000001 -2.1709034763684701E-004 - 129.23999999999998 -2.3686257673965192E-004 - 129.29999999999998 -2.5674880485833433E-004 - 129.35999999999999 -2.7672642941069296E-004 - 129.41999999999999 -2.9677252059963583E-004 - 129.47999999999999 -3.1686392526450062E-004 - 129.53999999999999 -3.3697721136891794E-004 - 129.59999999999999 -3.5708876313175574E-004 - 129.66000000000000 -3.7717478655766696E-004 - 129.72000000000000 -3.9721136308179398E-004 - 129.78000000000000 -4.1717443894564164E-004 - 129.84000000000000 -4.3703994715643560E-004 - 129.90000000000001 -4.5678372717960851E-004 - 129.95999999999998 -4.7638156858093267E-004 - 130.01999999999998 -4.9580942401892853E-004 - 130.07999999999998 -5.1504320852790899E-004 - 130.13999999999999 -5.3405896349449536E-004 - 130.19999999999999 -5.5283291776366287E-004 - 130.25999999999999 -5.7134139443625347E-004 - 130.31999999999999 -5.8956095378306570E-004 - 130.38000000000000 -6.0746844298071657E-004 - 130.44000000000000 -6.2504090386036762E-004 - 130.50000000000000 -6.4225575184808227E-004 - 130.56000000000000 -6.5909067795702470E-004 - 130.62000000000000 -6.7552384743573652E-004 - 130.68000000000001 -6.9153376962672989E-004 - 130.73999999999998 -7.0709943231485220E-004 - 130.79999999999998 -7.2220026866299646E-004 - 130.85999999999999 -7.3681627264067799E-004 - 130.91999999999999 -7.5092792096216436E-004 - 130.97999999999999 -7.6451630291115560E-004 - 131.03999999999999 -7.7756314807068082E-004 - 131.09999999999999 -7.9005086867320925E-004 - 131.16000000000000 -8.0196249018030382E-004 - 131.22000000000000 -8.1328179450963832E-004 - 131.28000000000000 -8.2399332274406712E-004 - 131.34000000000000 -8.3408238707942622E-004 - 131.40000000000001 -8.4353515748317154E-004 - 131.45999999999998 -8.5233861445525871E-004 - 131.51999999999998 -8.6048055239082368E-004 - 131.57999999999998 -8.6794979746836036E-004 - 131.63999999999999 -8.7473604155140802E-004 - 131.69999999999999 -8.8083000670708832E-004 - 131.75999999999999 -8.8622320943420013E-004 - 131.81999999999999 -8.9090834270812505E-004 - 131.88000000000000 -8.9487900022670777E-004 - 131.94000000000000 -8.9812998691095802E-004 - 132.00000000000000 -9.0065685726334896E-004 - 132.06000000000000 -9.0245650682180007E-004 - 132.12000000000000 -9.0352664378320620E-004 - 132.18000000000001 -9.0386623159971827E-004 - 132.23999999999998 -9.0347516339023856E-004 - 132.29999999999998 -9.0235453135643830E-004 - 132.35999999999999 -9.0050639705481169E-004 - 132.41999999999999 -8.9793382195254277E-004 - 132.47999999999999 -8.9464112073198892E-004 - 132.53999999999999 -8.9063352911071037E-004 - 132.59999999999999 -8.8591752272283567E-004 - 132.66000000000000 -8.8050037055100296E-004 - 132.72000000000000 -8.7439059780119793E-004 - 132.78000000000000 -8.6759759339631658E-004 - 132.84000000000000 -8.6013191015432992E-004 - 132.90000000000001 -8.5200511589865328E-004 - 132.95999999999998 -8.4322965380165997E-004 - 133.01999999999998 -8.3381896476344367E-004 - 133.07999999999998 -8.2378742499002156E-004 - 133.13999999999999 -8.1315035638892651E-004 - 133.19999999999999 -8.0192397219928241E-004 - 133.25999999999999 -7.9012532186300611E-004 - 133.31999999999999 -7.7777223583958563E-004 - 133.38000000000000 -7.6488338075253698E-004 - 133.44000000000000 -7.5147815235414176E-004 - 133.50000000000000 -7.3757661788641292E-004 - 133.56000000000000 -7.2319943990050805E-004 - 133.62000000000000 -7.0836793666164083E-004 - 133.68000000000001 -6.9310405458847214E-004 - 133.73999999999998 -6.7743013462644879E-004 - 133.79999999999998 -6.6136903821652411E-004 - 133.85999999999999 -6.4494392092043944E-004 - 133.91999999999999 -6.2817846965326643E-004 - 133.97999999999999 -6.1109658182883630E-004 - 134.03999999999999 -5.9372245294943770E-004 - 134.09999999999999 -5.7608043950345867E-004 - 134.16000000000000 -5.5819516346610745E-004 - 134.22000000000000 -5.4009127183884476E-004 - 134.28000000000000 -5.2179348203893210E-004 - 134.34000000000000 -5.0332659073368681E-004 - 134.40000000000001 -4.8471524075394362E-004 - 134.45999999999998 -4.6598410235643384E-004 - 134.51999999999998 -4.4715760270299743E-004 - 134.57999999999998 -4.2826006171320434E-004 - 134.63999999999999 -4.0931552326449640E-004 - 134.69999999999999 -3.9034771127761670E-004 - 134.75999999999999 -3.7137999220590481E-004 - 134.81999999999999 -3.5243540756110120E-004 - 134.88000000000000 -3.3353648092433280E-004 - 134.94000000000000 -3.1470523039113036E-004 - 135.00000000000000 -2.9596320417415008E-004 - 135.06000000000000 -2.7733128668656139E-004 - 135.12000000000000 -2.5882977011591578E-004 - 135.18000000000001 -2.4047825389360601E-004 - 135.23999999999998 -2.2229567629378477E-004 - 135.29999999999998 -2.0430015459921335E-004 - 135.35999999999999 -1.8650909655578237E-004 - 135.41999999999999 -1.6893905889843141E-004 - 135.47999999999999 -1.5160577557094050E-004 - 135.53999999999999 -1.3452413478713400E-004 - 135.59999999999999 -1.1770810358328956E-004 - 135.66000000000000 -1.0117079374376864E-004 - 135.72000000000000 -8.4924367377882065E-005 - 135.78000000000000 -6.8980094532765330E-005 - 135.84000000000000 -5.3348270166762068E-005 - 135.90000000000001 -3.8038261376608614E-005 - 135.95999999999998 -2.3058473430684238E-005 - 136.01999999999998 -8.4163539365425350E-006 - 136.07999999999998 5.8816018147873355E-006 - 136.13999999999999 1.9829861210143119E-005 - 136.19999999999999 3.3423848354599943E-005 - 136.25999999999999 4.6659941512696611E-005 - 136.31999999999999 5.9535454316677721E-005 - 136.38000000000000 7.2048653666063618E-005 - 136.44000000000000 8.4198724189161176E-005 - 136.50000000000000 9.5985777455493332E-005 - 136.56000000000000 1.0741082362681785E-004 - 136.62000000000000 1.1847574983090920E-004 - 136.68000000000001 1.2918331128960393E-004 - 136.73999999999998 1.3953711713726239E-004 - 136.79999999999998 1.4954159099575466E-004 - 136.85999999999999 1.5920195002970598E-004 - 136.91999999999999 1.6852416174110551E-004 - 136.97999999999999 1.7751493617393469E-004 - 137.03999999999999 1.8618164988847550E-004 - 137.09999999999999 1.9453236702969307E-004 - 137.16000000000000 2.0257577182937209E-004 - 137.22000000000000 2.1032113099304922E-004 - 137.28000000000000 2.1777822684936976E-004 - 137.34000000000000 2.2495736313750143E-004 - 137.40000000000001 2.3186931536900077E-004 - 137.45999999999998 2.3852526233521064E-004 - 137.51999999999998 2.4493675287337878E-004 - 137.57999999999998 2.5111572161925740E-004 - 137.63999999999999 2.5707437209573756E-004 - 137.69999999999999 2.6282519581481961E-004 - 137.75999999999999 2.6838089738131479E-004 - 137.81999999999999 2.7375437156065884E-004 - 137.88000000000000 2.7895867374855878E-004 - 137.94000000000000 2.8400700071150287E-004 - 138.00000000000000 2.8891262563363182E-004 - 138.06000000000000 2.9368888614429012E-004 - 138.12000000000000 2.9834914136947971E-004 - 138.18000000000001 3.0290668044641062E-004 - 138.23999999999998 3.0737482199216061E-004 - 138.29999999999998 3.1176673157740076E-004 - 138.35999999999999 3.1609548122642586E-004 - 138.41999999999999 3.2037394721791911E-004 - 138.47999999999999 3.2461492185343135E-004 - 138.53999999999999 3.2883085722746740E-004 - 138.59999999999999 3.3303401951243616E-004 - 138.66000000000000 3.3723632810445515E-004 - 138.72000000000000 3.4144946863086427E-004 - 138.78000000000000 3.4568476831754752E-004 - 138.84000000000000 3.4995312249331141E-004 - 138.90000000000001 3.5426510541096520E-004 - 138.95999999999998 3.5863091376213131E-004 - 139.01999999999998 3.6306023222907474E-004 - 139.07999999999998 3.6756237391382020E-004 - 139.13999999999999 3.7214617588322548E-004 - 139.19999999999999 3.7682003105022450E-004 - 139.25999999999999 3.8159184518438995E-004 - 139.31999999999999 3.8646903002814953E-004 - 139.38000000000000 3.9145854918797181E-004 - 139.44000000000000 3.9656679292480936E-004 - 139.50000000000000 4.0179970255773551E-004 - 139.56000000000000 4.0716268636553047E-004 - 139.62000000000000 4.1266068400771930E-004 - 139.68000000000001 4.1829808088516640E-004 - 139.73999999999998 4.2407875612300106E-004 - 139.79999999999998 4.3000606657154843E-004 - 139.85999999999999 4.3608287875046239E-004 - 139.91999999999999 4.4231154364927840E-004 - 139.97999999999999 4.4869386634133543E-004 - 140.03999999999999 4.5523119578014942E-004 - 140.09999999999999 4.6192438631554997E-004 - 140.16000000000000 4.6877377612280656E-004 - 140.22000000000000 4.7577923100613725E-004 - 140.28000000000000 4.8294016573872446E-004 - 140.34000000000000 4.9025553031529470E-004 - 140.40000000000001 4.9772379045873779E-004 - 140.45999999999998 5.0534304820966803E-004 - 140.51999999999998 5.1311091126728700E-004 - 140.57999999999998 5.2102467752280438E-004 - 140.63999999999999 5.2908119058817907E-004 - 140.69999999999999 5.3727689445626052E-004 - 140.75999999999999 5.4560795021792261E-004 - 140.81999999999999 5.5407013881838781E-004 - 140.88000000000000 5.6265885722995841E-004 - 140.94000000000000 5.7136927223737301E-004 - 141.00000000000000 5.8019622000728198E-004 - 141.06000000000000 5.8913421528763586E-004 - 141.12000000000000 5.9817751655185823E-004 - 141.18000000000001 6.0732016749606753E-004 - 141.23999999999998 6.1655589825097032E-004 - 141.29999999999998 6.2587834648170451E-004 - 141.35999999999999 6.3528079493965772E-004 - 141.41999999999999 6.4475640982940893E-004 - 141.47999999999999 6.5429811882090016E-004 - 141.53999999999999 6.6389869340103679E-004 - 141.59999999999999 6.7355068214490228E-004 - 141.66000000000000 6.8324653059487195E-004 - 141.72000000000000 6.9297863049794304E-004 - 141.78000000000000 7.0273914050715926E-004 - 141.84000000000000 7.1252008276359894E-004 - 141.90000000000001 7.2231343141815969E-004 - 141.95999999999998 7.3211103593779324E-004 - 142.01999999999998 7.4190464687459766E-004 - 142.07999999999998 7.5168589790520547E-004 - 142.13999999999999 7.6144638285699224E-004 - 142.19999999999999 7.7117764679928032E-004 - 142.25999999999999 7.8087117843587375E-004 - 142.31999999999999 7.9051840878829611E-004 - 142.38000000000000 8.0011067807863928E-004 - 142.44000000000000 8.0963933849713822E-004 - 142.50000000000000 8.1909572156932983E-004 - 142.56000000000000 8.2847104709664039E-004 - 142.62000000000000 8.3775658658899205E-004 - 142.68000000000001 8.4694358131615153E-004 - 142.73999999999998 8.5602326638606167E-004 - 142.79999999999998 8.6498684754575015E-004 - 142.85999999999999 8.7382541063640959E-004 - 142.91999999999999 8.8253020676840998E-004 - 142.97999999999999 8.9109243893093198E-004 - 143.03999999999999 8.9950321258696524E-004 - 143.09999999999999 9.0775380311668239E-004 - 143.16000000000000 9.1583530209224536E-004 - 143.22000000000000 9.2373894776727082E-004 - 143.28000000000000 9.3145597668232321E-004 - 143.34000000000000 9.3897760949654505E-004 - 143.40000000000001 9.4629516463997797E-004 - 143.45999999999998 9.5340006954201318E-004 - 143.51999999999998 9.6028370674018312E-004 - 143.57999999999998 9.6693756448114636E-004 - 143.63999999999999 9.7335319474841861E-004 - 143.69999999999999 9.7952235622465484E-004 - 143.75999999999999 9.8543670133944628E-004 - 143.81999999999999 9.9108812419685353E-004 - 143.88000000000000 9.9646862674929474E-004 - 143.94000000000000 1.0015704074492798E-003 - 144.00000000000000 1.0063856833814903E-003 - 144.06000000000000 1.0109069282636740E-003 - 144.12000000000000 1.0151266194817245E-003 - 144.18000000000001 1.0190376015488172E-003 - 144.23999999999998 1.0226328309113554E-003 - 144.29999999999998 1.0259054601020308E-003 - 144.35999999999999 1.0288488969703174E-003 - 144.41999999999999 1.0314567592555879E-003 - 144.47999999999999 1.0337229126865740E-003 - 144.53999999999999 1.0356415214044588E-003 - 144.59999999999999 1.0372070677809558E-003 - 144.66000000000000 1.0384143237007525E-003 - 144.72000000000000 1.0392584141597115E-003 - 144.78000000000000 1.0397348501580222E-003 - 144.84000000000000 1.0398394481945057E-003 - 144.90000000000001 1.0395685103542895E-003 - 144.95999999999998 1.0389189196521500E-003 - 145.01999999999998 1.0378877277412931E-003 - 145.07999999999998 1.0364726473417437E-003 - 145.13999999999999 1.0346719212735863E-003 - 145.19999999999999 1.0324840804953181E-003 - 145.25999999999999 1.0299083763633864E-003 - 145.31999999999999 1.0269444246269889E-003 - 145.38000000000000 1.0235926726619275E-003 - 145.44000000000000 1.0198537834174386E-003 - 145.50000000000000 1.0157291220632123E-003 - 145.56000000000000 1.0112206785689512E-003 - 145.62000000000000 1.0063309069533329E-003 - 145.68000000000001 1.0010629075842992E-003 - 145.73999999999998 9.9542032136045486E-004 - 145.79999999999998 9.8940745101865372E-004 - 145.85999999999999 9.8302907066181566E-004 - 145.91999999999999 9.7629072430218907E-004 - 145.97999999999999 9.6919850908468489E-004 - 146.03999999999999 9.6175898963078981E-004 - 146.09999999999999 9.5397948145492430E-004 - 146.16000000000000 9.4586782684585608E-004 - 146.22000000000000 9.3743255515210189E-004 - 146.28000000000000 9.2868268187851015E-004 - 146.34000000000000 9.1962790565915163E-004 - 146.40000000000001 9.1027845381079584E-004 - 146.45999999999998 9.0064506421511439E-004 - 146.51999999999998 8.9073908180247168E-004 - 146.57999999999998 8.8057236760725490E-004 - 146.63999999999999 8.7015725962950050E-004 - 146.69999999999999 8.5950658815738738E-004 - 146.75999999999999 8.4863356628574822E-004 - 146.81999999999999 8.3755187884471474E-004 - 146.88000000000000 8.2627563398337926E-004 - 146.94000000000000 8.1481922432657993E-004 - 147.00000000000000 8.0319733136544958E-004 - 147.06000000000000 7.9142501979852708E-004 - 147.12000000000000 7.7951749078508854E-004 - 147.18000000000001 7.6749013541003086E-004 - 147.23999999999998 7.5535861787538305E-004 - 147.29999999999998 7.4313872405072352E-004 - 147.35999999999999 7.3084621998368551E-004 - 147.41999999999999 7.1849705149944578E-004 - 147.47999999999999 7.0610708452330088E-004 - 147.53999999999999 6.9369219890853633E-004 - 147.59999999999999 6.8126817924884326E-004 - 147.66000000000000 6.6885081474902163E-004 - 147.72000000000000 6.5645563406717953E-004 - 147.78000000000000 6.4409804018841820E-004 - 147.84000000000000 6.3179320826889547E-004 - 147.90000000000001 6.1955611285121508E-004 - 147.95999999999998 6.0740136384450610E-004 - 148.01999999999998 5.9534323385622217E-004 - 148.07999999999998 5.8339575140343102E-004 - 148.13999999999999 5.7157239355592603E-004 - 148.19999999999999 5.5988630375636208E-004 - 148.25999999999999 5.4835011696111795E-004 - 148.31999999999999 5.3697594810164805E-004 - 148.38000000000000 5.2577540645796464E-004 - 148.44000000000000 5.1475946468310650E-004 - 148.50000000000000 5.0393850884277564E-004 - 148.56000000000000 4.9332229525200376E-004 - 148.62000000000000 4.8291993997347574E-004 - 148.68000000000001 4.7273982082378374E-004 - 148.73999999999998 4.6278964356890587E-004 - 148.79999999999998 4.5307633393562173E-004 - 148.85999999999999 4.4360616982676813E-004 - 148.91999999999999 4.3438461643516854E-004 - 148.97999999999999 4.2541640492673490E-004 - 149.03999999999999 4.1670548171421356E-004 - 149.09999999999999 4.0825500974246898E-004 - 149.16000000000000 4.0006743001378255E-004 - 149.22000000000000 3.9214438653237607E-004 - 149.28000000000000 3.8448682322936669E-004 - 149.34000000000000 3.7709486580198232E-004 - 149.40000000000001 3.6996800032559077E-004 - 149.45999999999998 3.6310490406491933E-004 - 149.51999999999998 3.5650356557246818E-004 - 149.57999999999998 3.5016129408737916E-004 - 149.63999999999999 3.4407468264561065E-004 - 149.69999999999999 3.3823966316434147E-004 - 149.75999999999999 3.3265151545301100E-004 - 149.81999999999999 3.2730484962174773E-004 - 149.88000000000000 3.2219369833743939E-004 - 149.94000000000000 3.1731143974339027E-004 - 150.00000000000000 3.1265088823120119E-004 - 150.06000000000000 3.0820433210737233E-004 - 150.12000000000000 3.0396343797351090E-004 - 150.18000000000001 2.9991945121886235E-004 - 150.23999999999998 2.9606308721615612E-004 - 150.29999999999998 2.9238465492509411E-004 - 150.35999999999999 2.8887400726561362E-004 - 150.41999999999999 2.8552063822014117E-004 - 150.47999999999999 2.8231374040935098E-004 - 150.53999999999999 2.7924218342725225E-004 - 150.59999999999999 2.7629460802980246E-004 - 150.66000000000000 2.7345939074740149E-004 - 150.72000000000000 2.7072479118187427E-004 - 150.78000000000000 2.6807887686916538E-004 - 150.84000000000000 2.6550970832670603E-004 - 150.90000000000001 2.6300518701949111E-004 - 150.95999999999998 2.6055324773433658E-004 - 151.01999999999998 2.5814183548305376E-004 - 151.07999999999998 2.5575891437183728E-004 - 151.13999999999999 2.5339254788512834E-004 - 151.19999999999999 2.5103088512653892E-004 - 151.25999999999999 2.4866222888666811E-004 - 151.31999999999999 2.4627503666707759E-004 - 151.38000000000000 2.4385799378394722E-004 - 151.44000000000000 2.4139994558548713E-004 - 151.50000000000000 2.3889003885815954E-004 - 151.56000000000000 2.3631769949877444E-004 - 151.62000000000000 2.3367259563951756E-004 - 151.68000000000001 2.3094479307439914E-004 - 151.73999999999998 2.2812466758430418E-004 - 151.79999999999998 2.2520297820268525E-004 - 151.85999999999999 2.2217088675604101E-004 - 151.91999999999999 2.1901997176119331E-004 - 151.97999999999999 2.1574226970373354E-004 - 152.03999999999999 2.1233026543523252E-004 - 152.09999999999999 2.0877691869916414E-004 - 152.16000000000000 2.0507570141988372E-004 - 152.22000000000000 2.0122056624414611E-004 - 152.28000000000000 1.9720599318257182E-004 - 152.34000000000000 1.9302699171114209E-004 - 152.40000000000001 1.8867911490119815E-004 - 152.45999999999998 1.8415843288544634E-004 - 152.51999999999998 1.7946157746144301E-004 - 152.57999999999998 1.7458571808688184E-004 - 152.63999999999999 1.6952855422784627E-004 - 152.69999999999999 1.6428835706386666E-004 - 152.75999999999999 1.5886391071711381E-004 - 152.81999999999999 1.5325454936954497E-004 - 152.88000000000000 1.4746010974352891E-004 - 152.94000000000000 1.4148096948917626E-004 - 153.00000000000000 1.3531802377910975E-004 - 153.06000000000000 1.2897263835249281E-004 - 153.12000000000000 1.2244668396517715E-004 - 153.17999999999998 1.1574248634138773E-004 - 153.23999999999998 1.0886285602659690E-004 - 153.29999999999998 1.0181103177153292E-004 - 153.35999999999999 9.4590690289290518E-005 - 153.41999999999999 8.7205925143305486E-005 - 153.47999999999999 7.9661233394480319E-005 - 153.53999999999999 7.1961489648541817E-005 - 153.59999999999999 6.4111949115954392E-005 - 153.66000000000000 5.6118203060809927E-005 - 153.72000000000000 4.7986188435462625E-005 - 153.78000000000000 3.9722157179022256E-005 - 153.84000000000000 3.1332655431981724E-005 - 153.90000000000001 2.2824517119530455E-005 - 153.95999999999998 1.4204829573067299E-005 - 154.01999999999998 5.4809277232377988E-006 - 154.07999999999998 -3.3396408809916708E-006 - 154.13999999999999 -1.2249116773207265E-005 - 154.19999999999999 -2.1239572563915365E-005 - 154.25999999999999 -3.0302930220215887E-005 - 154.31999999999999 -3.9430972075754641E-005 - 154.38000000000000 -4.8615369224335820E-005 - 154.44000000000000 -5.7847710061101581E-005 - 154.50000000000000 -6.7119518940243755E-005 - 154.56000000000000 -7.6422275028397118E-005 - 154.62000000000000 -8.5747426404287724E-005 - 154.67999999999998 -9.5086412113566421E-005 - 154.73999999999998 -1.0443068472357962E-004 - 154.79999999999998 -1.1377172035892990E-004 - 154.85999999999999 -1.2310104601159086E-004 - 154.91999999999999 -1.3241021128837448E-004 - 154.97999999999999 -1.4169084874938916E-004 - 155.03999999999999 -1.5093466685157182E-004 - 155.09999999999999 -1.6013344842960155E-004 - 155.16000000000000 -1.6927908721256030E-004 - 155.22000000000000 -1.7836355953022954E-004 - 155.28000000000000 -1.8737895048677949E-004 - 155.34000000000000 -1.9631748705745776E-004 - 155.40000000000001 -2.0517150603145169E-004 - 155.45999999999998 -2.1393348295132636E-004 - 155.51999999999998 -2.2259605289601307E-004 - 155.57999999999998 -2.3115200631860806E-004 - 155.63999999999999 -2.3959428996490038E-004 - 155.69999999999999 -2.4791601563543570E-004 - 155.75999999999999 -2.5611054124230172E-004 - 155.81999999999999 -2.6417133115460694E-004 - 155.88000000000000 -2.7209213643303879E-004 - 155.94000000000000 -2.7986684626137275E-004 - 156.00000000000000 -2.8748957764021874E-004 - 156.06000000000000 -2.9495471151539933E-004 - 156.12000000000000 -3.0225677008582821E-004 - 156.17999999999998 -3.0939057998849955E-004 - 156.23999999999998 -3.1635112104729798E-004 - 156.29999999999998 -3.2313360580451714E-004 - 156.35999999999999 -3.2973348144842932E-004 - 156.41999999999999 -3.3614638985371659E-004 - 156.47999999999999 -3.4236822957096853E-004 - 156.53999999999999 -3.4839508152750197E-004 - 156.59999999999999 -3.5422325674385298E-004 - 156.66000000000000 -3.5984927171739503E-004 - 156.72000000000000 -3.6526984517274813E-004 - 156.78000000000000 -3.7048190555615733E-004 - 156.84000000000000 -3.7548262213079806E-004 - 156.90000000000001 -3.8026941109979697E-004 - 156.95999999999998 -3.8483982488698006E-004 - 157.01999999999998 -3.8919172510531726E-004 - 157.07999999999998 -3.9332312650776390E-004 - 157.13999999999999 -3.9723229538465930E-004 - 157.19999999999999 -4.0091774502299445E-004 - 157.25999999999999 -4.0437819878146996E-004 - 157.31999999999999 -4.0761262077106396E-004 - 157.38000000000000 -4.1062021223085615E-004 - 157.44000000000000 -4.1340040347862380E-004 - 157.50000000000000 -4.1595284625278300E-004 - 157.56000000000000 -4.1827745205618485E-004 - 157.62000000000000 -4.2037434061191080E-004 - 157.67999999999998 -4.2224388897207915E-004 - 157.73999999999998 -4.2388669106447214E-004 - 157.79999999999998 -4.2530358943766776E-004 - 157.85999999999999 -4.2649563208835094E-004 - 157.91999999999999 -4.2746411336558343E-004 - 157.97999999999999 -4.2821057411836244E-004 - 158.03999999999999 -4.2873671806631689E-004 - 158.09999999999999 -4.2904455499643060E-004 - 158.16000000000000 -4.2913629873262771E-004 - 158.22000000000000 -4.2901432519150303E-004 - 158.28000000000000 -4.2868131021257658E-004 - 158.34000000000000 -4.2814009158476666E-004 - 158.40000000000001 -4.2739372824572049E-004 - 158.45999999999998 -4.2644553767765523E-004 - 158.51999999999998 -4.2529899172028506E-004 - 158.57999999999998 -4.2395777703412729E-004 - 158.63999999999999 -4.2242576674163105E-004 - 158.69999999999999 -4.2070708132201757E-004 - 158.75999999999999 -4.1880596145199735E-004 - 158.81999999999999 -4.1672689080250340E-004 - 158.88000000000000 -4.1447452465901547E-004 - 158.94000000000000 -4.1205368780294026E-004 - 159.00000000000000 -4.0946937722503320E-004 - 159.06000000000000 -4.0672670565061996E-004 - 159.12000000000000 -4.0383102390665232E-004 - 159.17999999999998 -4.0078776295987588E-004 - 159.23999999999998 -3.9760254769209653E-004 - 159.29999999999998 -3.9428110514854326E-004 - 159.35999999999999 -3.9082924761469587E-004 - 159.41999999999999 -3.8725289672370065E-004 - 159.47999999999999 -3.8355810932121098E-004 - 159.53999999999999 -3.7975098571042169E-004 - 159.59999999999999 -3.7583768529667700E-004 - 159.66000000000000 -3.7182442699900433E-004 - 159.72000000000000 -3.6771748508294678E-004 - 159.78000000000000 -3.6352309672044603E-004 - 159.84000000000000 -3.5924752092146545E-004 - 159.90000000000001 -3.5489704063993701E-004 - 159.95999999999998 -3.5047790688876940E-004 - 160.01999999999998 -3.4599628594220286E-004 - 160.07999999999998 -3.4145836992232942E-004 - 160.13999999999999 -3.3687025443481140E-004 - 160.19999999999999 -3.3223791879214944E-004 - 160.25999999999999 -3.2756734278951771E-004 - 160.31999999999999 -3.2286436009835014E-004 - 160.38000000000000 -3.1813470937612297E-004 - 160.44000000000000 -3.1338404216489142E-004 - 160.50000000000000 -3.0861788366768602E-004 - 160.56000000000000 -3.0384159633613060E-004 - 160.62000000000000 -2.9906044287730186E-004 - 160.67999999999998 -2.9427946356885311E-004 - 160.73999999999998 -2.8950359981746337E-004 - 160.79999999999998 -2.8473759315206151E-004 - 160.85999999999999 -2.7998595803313666E-004 - 160.91999999999999 -2.7525306482196831E-004 - 160.97999999999999 -2.7054301940819558E-004 - 161.03999999999999 -2.6585974076193326E-004 - 161.09999999999999 -2.6120688763147076E-004 - 161.16000000000000 -2.5658789867566293E-004 - 161.22000000000000 -2.5200593799071990E-004 - 161.28000000000000 -2.4746393130907615E-004 - 161.34000000000000 -2.4296455906782396E-004 - 161.40000000000001 -2.3851022736771896E-004 - 161.45999999999998 -2.3410312320403204E-004 - 161.51999999999998 -2.2974512875256696E-004 - 161.57999999999998 -2.2543790807521592E-004 - 161.63999999999999 -2.2118285281394487E-004 - 161.69999999999999 -2.1698110950209442E-004 - 161.75999999999999 -2.1283359005894222E-004 - 161.81999999999999 -2.0874097576557959E-004 - 161.88000000000000 -2.0470370697739715E-004 - 161.94000000000000 -2.0072201025099286E-004 - 162.00000000000000 -1.9679587915501386E-004 - 162.06000000000000 -1.9292509897727358E-004 - 162.12000000000000 -1.8910926769180093E-004 - 162.17999999999998 -1.8534777824220989E-004 - 162.23999999999998 -1.8163983112827261E-004 - 162.29999999999998 -1.7798443914001191E-004 - 162.35999999999999 -1.7438043279672109E-004 - 162.41999999999999 -1.7082648188941125E-004 - 162.47999999999999 -1.6732112401989766E-004 - 162.53999999999999 -1.6386271223751237E-004 - 162.59999999999999 -1.6044950920749915E-004 - 162.66000000000000 -1.5707962540056450E-004 - 162.72000000000000 -1.5375105467392764E-004 - 162.78000000000000 -1.5046171196261452E-004 - 162.84000000000000 -1.4720942699106754E-004 - 162.90000000000001 -1.4399194435821006E-004 - 162.95999999999998 -1.4080696004380804E-004 - 163.01999999999998 -1.3765211014559963E-004 - 163.07999999999998 -1.3452501581056185E-004 - 163.13999999999999 -1.3142326670000489E-004 - 163.19999999999999 -1.2834444764910316E-004 - 163.25999999999999 -1.2528615634200814E-004 - 163.31999999999999 -1.2224600561826227E-004 - 163.38000000000000 -1.1922166375688755E-004 - 163.44000000000000 -1.1621082276531115E-004 - 163.50000000000000 -1.1321124164414744E-004 - 163.56000000000000 -1.1022076458977002E-004 - 163.62000000000000 -1.0723731940025710E-004 - 163.67999999999998 -1.0425892956848235E-004 - 163.73999999999998 -1.0128374980563341E-004 - 163.79999999999998 -9.8310047126176428E-005 - 163.85999999999999 -9.5336225656569721E-005 - 163.91999999999999 -9.2360852294340480E-005 - 163.97999999999999 -8.9382636942040173E-005 - 164.03999999999999 -8.6400449744441165E-005 - 164.09999999999999 -8.3413332737346582E-005 - 164.16000000000000 -8.0420533053665301E-005 - 164.22000000000000 -7.7421448183435408E-005 - 164.28000000000000 -7.4415668364938384E-005 - 164.34000000000000 -7.1402980558811019E-005 - 164.40000000000001 -6.8383333116226049E-005 - 164.45999999999998 -6.5356888328476265E-005 - 164.51999999999998 -6.2323991276339271E-005 - 164.57999999999998 -5.9285168418339420E-005 - 164.63999999999999 -5.6241143983968214E-005 - 164.69999999999999 -5.3192824309201641E-005 - 164.75999999999999 -5.0141313991139268E-005 - 164.81999999999999 -4.7087889748900762E-005 - 164.88000000000000 -4.4034032719016318E-005 - 164.94000000000000 -4.0981405996426914E-005 - 165.00000000000000 -3.7931857183895926E-005 - 165.06000000000000 -3.4887425332722947E-005 - 165.12000000000000 -3.1850325405559623E-005 - 165.17999999999998 -2.8822955979156221E-005 - 165.23999999999998 -2.5807880120199690E-005 - 165.29999999999998 -2.2807830219149383E-005 - 165.35999999999999 -1.9825708175704626E-005 - 165.41999999999999 -1.6864545103953549E-005 - 165.47999999999999 -1.3927531235754477E-005 - 165.53999999999999 -1.1017960441489812E-005 - 165.59999999999999 -8.1392542854149202E-006 - 165.66000000000000 -5.2949308651866788E-006 - 165.72000000000000 -2.4885879810379264E-006 - 165.78000000000000 2.7610662861955261E-007 - 165.84000000000000 2.9954303545669758E-006 - 165.90000000000001 5.6656232995613494E-006 - 165.95999999999998 8.2828981196794242E-006 - 166.01999999999998 1.0843456723605412E-005 - 166.07999999999998 1.3343499721260092E-005 - 166.13999999999999 1.5779244342284628E-005 - 166.19999999999999 1.8146934023107805E-005 - 166.25999999999999 2.0442843421332434E-005 - 166.31999999999999 2.2663297589912991E-005 - 166.38000000000000 2.4804676454322483E-005 - 166.44000000000000 2.6863425111024226E-005 - 166.50000000000000 2.8836068752267591E-005 - 166.56000000000000 3.0719215960993787E-005 - 166.62000000000000 3.2509571421269477E-005 - 166.67999999999998 3.4203944705382157E-005 - 166.73999999999998 3.5799267133087983E-005 - 166.79999999999998 3.7292590580351341E-005 - 166.85999999999999 3.8681101553542266E-005 - 166.91999999999999 3.9962134848020575E-005 - 166.97999999999999 4.1133179408377593E-005 - 167.03999999999999 4.2191893554097572E-005 - 167.09999999999999 4.3136104611043381E-005 - 167.16000000000000 4.3963822798652690E-005 - 167.22000000000000 4.4673249948597197E-005 - 167.28000000000000 4.5262781813607195E-005 - 167.34000000000000 4.5731021742618963E-005 - 167.40000000000001 4.6076785046196836E-005 - 167.45999999999998 4.6299096124924533E-005 - 167.51999999999998 4.6397203364207442E-005 - 167.57999999999998 4.6370581647554046E-005 - 167.63999999999999 4.6218923870105632E-005 - 167.69999999999999 4.5942161851318204E-005 - 167.75999999999999 4.5540449607791401E-005 - 167.81999999999999 4.5014169596843947E-005 - 167.88000000000000 4.4363936941416672E-005 - 167.94000000000000 4.3590582397323192E-005 - 168.00000000000000 4.2695164656384383E-005 - 168.06000000000000 4.1678954819621592E-005 - 168.12000000000000 4.0543432831810142E-005 - 168.17999999999998 3.9290283863062381E-005 - 168.23999999999998 3.7921384827596911E-005 - 168.29999999999998 3.6438802960450387E-005 - 168.35999999999999 3.4844787369647936E-005 - 168.41999999999999 3.3141748830965707E-005 - 168.47999999999999 3.1332272433957288E-005 - 168.53999999999999 2.9419095772312116E-005 - 168.59999999999999 2.7405103647234139E-005 - 168.66000000000000 2.5293324951025618E-005 - 168.72000000000000 2.3086931673191933E-005 - 168.78000000000000 2.0789223125600265E-005 - 168.84000000000000 1.8403633488940920E-005 - 168.90000000000001 1.5933720477928140E-005 - 168.95999999999998 1.3383169546974768E-005 - 169.01999999999998 1.0755784629224651E-005 - 169.07999999999998 8.0554823138438793E-006 - 169.13999999999999 5.2862913304398678E-006 - 169.19999999999999 2.4523480586437652E-006 - 169.25999999999999 -4.4212235618829179E-007 - 169.31999999999999 -3.3927955373135599E-006 - 169.38000000000000 -6.3952787920016159E-006 - 169.44000000000000 -9.4451043264189961E-006 - 169.50000000000000 -1.2537749426754549E-005 - 169.56000000000000 -1.5668657840058383E-005 - 169.62000000000000 -1.8833227447742539E-005 - 169.67999999999998 -2.2026842358372646E-005 - 169.73999999999998 -2.5244885977680419E-005 - 169.79999999999998 -2.8482737987500472E-005 - 169.85999999999999 -3.1735790582373269E-005 - 169.91999999999999 -3.4999465153845774E-005 - 169.97999999999999 -3.8269205971170752E-005 - 170.03999999999999 -4.1540492852101868E-005 - 170.09999999999999 -4.4808825988187876E-005 - 170.16000000000000 -4.8069753811387378E-005 - 170.22000000000000 -5.1318859107710548E-005 - 170.28000000000000 -5.4551754173696760E-005 - 170.34000000000000 -5.7764092474744765E-005 - 170.40000000000001 -6.0951556077543163E-005 - 170.45999999999998 -6.4109870315367428E-005 - 170.51999999999998 -6.7234792951778946E-005 - 170.57999999999998 -7.0322121059136032E-005 - 170.63999999999999 -7.3367700223289241E-005 - 170.69999999999999 -7.6367420954009520E-005 - 170.75999999999999 -7.9317234540097982E-005 - 170.81999999999999 -8.2213157022243075E-005 - 170.88000000000000 -8.5051276323130700E-005 - 170.94000000000000 -8.7827762397389115E-005 - 171.00000000000000 -9.0538870231640363E-005 - 171.06000000000000 -9.3180960225044604E-005 - 171.12000000000000 -9.5750502874916170E-005 - 171.17999999999998 -9.8244076067346164E-005 - 171.23999999999998 -1.0065837674604975E-004 - 171.29999999999998 -1.0299022211926911E-004 - 171.35999999999999 -1.0523656572839476E-004 - 171.41999999999999 -1.0739446018540402E-004 - 171.47999999999999 -1.0946112572445297E-004 - 171.53999999999999 -1.1143389058444614E-004 - 171.59999999999999 -1.1331020141788477E-004 - 171.66000000000000 -1.1508763512997307E-004 - 171.72000000000000 -1.1676390748488195E-004 - 171.78000000000000 -1.1833685026261718E-004 - 171.84000000000000 -1.1980440643424666E-004 - 171.90000000000001 -1.2116466215779032E-004 - 171.95999999999998 -1.2241581013990892E-004 - 172.01999999999998 -1.2355619885569662E-004 - 172.07999999999998 -1.2458427531311528E-004 - 172.13999999999999 -1.2549863743258424E-004 - 172.19999999999999 -1.2629801180243617E-004 - 172.25999999999999 -1.2698128132872445E-004 - 172.31999999999999 -1.2754744623850827E-004 - 172.38000000000000 -1.2799567053547027E-004 - 172.44000000000000 -1.2832527390341041E-004 - 172.50000000000000 -1.2853571196181442E-004 - 172.56000000000000 -1.2862661147213693E-004 - 172.62000000000000 -1.2859773403939379E-004 - 172.67999999999998 -1.2844902204152799E-004 - 172.73999999999998 -1.2818056699271069E-004 - 172.79999999999998 -1.2779261332398272E-004 - 172.85999999999999 -1.2728556241524517E-004 - 172.91999999999999 -1.2665996893048266E-004 - 172.97999999999999 -1.2591655564747633E-004 - 173.03999999999999 -1.2505617009849536E-004 - 173.09999999999999 -1.2407981661130237E-004 - 173.16000000000000 -1.2298864121880238E-004 - 173.22000000000000 -1.2178392570900512E-004 - 173.28000000000000 -1.2046707209225722E-004 - 173.34000000000000 -1.1903962139876846E-004 - 173.40000000000001 -1.1750322881878035E-004 - 173.45999999999998 -1.1585965654425669E-004 - 173.51999999999998 -1.1411077248136485E-004 - 173.57999999999998 -1.1225854951951951E-004 - 173.63999999999999 -1.1030505506378289E-004 - 173.69999999999999 -1.0825243884501760E-004 - 173.75999999999999 -1.0610293779443276E-004 - 173.81999999999999 -1.0385886190212467E-004 - 173.88000000000000 -1.0152260538807289E-004 - 173.94000000000000 -9.9096635626116263E-005 - 174.00000000000000 -9.6583493543642417E-005 - 174.06000000000000 -9.3985787100893674E-005 - 174.12000000000000 -9.1306200368440843E-005 - 174.17999999999998 -8.8547475235579694E-005 - 174.23999999999998 -8.5712424495457552E-005 - 174.29999999999998 -8.2803931414088773E-005 - 174.35999999999999 -7.9824928001432765E-005 - 174.41999999999999 -7.6778412091671268E-005 - 174.47999999999999 -7.3667428254411694E-005 - 174.53999999999999 -7.0495054299616122E-005 - 174.59999999999999 -6.7264412810149262E-005 - 174.66000000000000 -6.3978648867782844E-005 - 174.72000000000000 -6.0640931499641976E-005 - 174.78000000000000 -5.7254426697058435E-005 - 174.84000000000000 -5.3822305941808997E-005 - 174.90000000000001 -5.0347735979001732E-005 - 174.95999999999998 -4.6833860393643908E-005 - 175.01999999999998 -4.3283802960785074E-005 - 175.07999999999998 -3.9700666369003864E-005 - 175.13999999999999 -3.6087522036894624E-005 - 175.19999999999999 -3.2447411028342306E-005 - 175.25999999999999 -2.8783355385877944E-005 - 175.31999999999999 -2.5098344569162478E-005 - 175.38000000000000 -2.1395351889651709E-005 - 175.44000000000000 -1.7677327928248602E-005 - 175.50000000000000 -1.3947212277002475E-005 - 175.56000000000000 -1.0207935853973020E-005 - 175.62000000000000 -6.4624181102658277E-006 - 175.67999999999998 -2.7135766850765055E-006 - 175.73999999999998 1.0356733074991268E-006 - 175.79999999999998 4.7824264343343596E-006 - 175.85999999999999 8.5237821335331335E-006 - 175.91999999999999 1.2256847374382704E-005 - 175.97999999999999 1.5978739071316383E-005 - 176.03999999999999 1.9686592883370295E-005 - 176.09999999999999 2.3377563166737138E-005 - 176.16000000000000 2.7048819394488210E-005 - 176.22000000000000 3.0697560057782297E-005 - 176.28000000000000 3.4321000573638968E-005 - 176.34000000000000 3.7916389304204041E-005 - 176.40000000000001 4.1480994953228417E-005 - 176.45999999999998 4.5012091607334723E-005 - 176.51999999999998 4.8506990207418759E-005 - 176.57999999999998 5.1962994950504589E-005 - 176.63999999999999 5.5377419567986469E-005 - 176.69999999999999 5.8747584996609190E-005 - 176.75999999999999 6.2070807270627672E-005 - 176.81999999999999 6.5344380608654866E-005 - 176.88000000000000 6.8565604314557886E-005 - 176.94000000000000 7.1731761661360537E-005 - 177.00000000000000 7.4840114786592485E-005 - 177.06000000000000 7.7887922840747187E-005 - 177.12000000000000 8.0872429558829487E-005 - 177.17999999999998 8.3790864303366299E-005 - 177.23999999999998 8.6640470687996280E-005 - 177.29999999999998 8.9418474013091084E-005 - 177.35999999999999 9.2122115709511983E-005 - 177.41999999999999 9.4748639601534342E-005 - 177.47999999999999 9.7295309002955137E-005 - 177.53999999999999 9.9759386775198828E-005 - 177.59999999999999 1.0213816827665828E-004 - 177.66000000000000 1.0442895979818285E-004 - 177.72000000000000 1.0662910304270966E-004 - 177.78000000000000 1.0873594810810764E-004 - 177.84000000000000 1.1074688120367112E-004 - 177.90000000000001 1.1265932165402582E-004 - 177.95999999999998 1.1447071640504426E-004 - 178.01999999999998 1.1617853345424579E-004 - 178.07999999999998 1.1778031669900006E-004 - 178.13999999999999 1.1927361286169375E-004 - 178.19999999999999 1.2065604332718694E-004 - 178.25999999999999 1.2192529063800715E-004 - 178.31999999999999 1.2307910500366077E-004 - 178.38000000000000 1.2411531584137110E-004 - 178.44000000000000 1.2503182327775313E-004 - 178.50000000000000 1.2582663003307543E-004 - 178.56000000000000 1.2649784358942823E-004 - 178.62000000000000 1.2704366448631777E-004 - 178.67999999999998 1.2746243757115653E-004 - 178.73999999999998 1.2775260901110071E-004 - 178.79999999999998 1.2791277701747488E-004 - 178.85999999999999 1.2794165546321407E-004 - 178.91999999999999 1.2783811853762158E-004 - 178.97999999999999 1.2760119798787986E-004 - 179.03999999999999 1.2723006431158648E-004 - 179.09999999999999 1.2672406096136631E-004 - 179.16000000000000 1.2608269279003166E-004 - 179.22000000000000 1.2530565062319042E-004 - 179.28000000000000 1.2439279350783940E-004 - 179.34000000000000 1.2334418041291207E-004 - 179.40000000000001 1.2216005977535923E-004 - 179.45999999999998 1.2084086345807016E-004 - 179.51999999999998 1.1938724239443464E-004 - 179.57999999999998 1.1780005528134260E-004 - 179.63999999999999 1.1608036949854847E-004 - 179.69999999999999 1.1422947373808542E-004 - 179.75999999999999 1.1224886743135823E-004 - 179.81999999999999 1.1014027122059111E-004 - 179.88000000000000 1.0790561866256862E-004 - 179.94000000000000 1.0554706994145880E-004 - 180.00000000000000 1.0306699867674565E-004 - 180.06000000000000 1.0046798163049565E-004 - 180.12000000000000 9.7752815007853220E-005 - 180.17999999999998 9.4924504296392746E-005 - 180.23999999999998 9.1986245775354072E-005 - 180.29999999999998 8.8941457407225378E-005 - 180.35999999999999 8.5793734725753108E-005 - 180.41999999999999 8.2546882061100760E-005 - 180.47999999999999 7.9204890024521052E-005 - 180.53999999999999 7.5771928325144814E-005 - 180.59999999999999 7.2252350438557430E-005 - 180.66000000000000 6.8650688706610989E-005 - 180.72000000000000 6.4971642119581911E-005 - 180.78000000000000 6.1220078551153280E-005 - 180.84000000000000 5.7401007124091073E-005 - 180.90000000000001 5.3519578411714338E-005 - 180.95999999999998 4.9581093625467349E-005 - 181.01999999999998 4.5590949288396245E-005 - 181.07999999999998 4.1554663416612717E-005 - 181.13999999999999 3.7477843643408090E-005 - 181.19999999999999 3.3366182682428692E-005 - 181.25999999999999 2.9225448878105342E-005 - 181.31999999999999 2.5061463837805431E-005 - 181.38000000000000 2.0880103979224299E-005 - 181.44000000000000 1.6687281014920262E-005 - 181.50000000000000 1.2488939563678927E-005 - 181.56000000000000 8.2910439321830976E-006 - 181.62000000000000 4.0995748487268567E-006 - 181.67999999999998 -7.9483486164639766E-008 - 181.73999999999998 -4.2401431671195137E-006 - 181.79999999999998 -8.3764298932683721E-006 - 181.85999999999999 -1.2482384723274353E-005 - 181.91999999999999 -1.6552079054133350E-005 - 181.97999999999999 -2.0579626640869220E-005 - 182.03999999999999 -2.4559186151596053E-005 - 182.09999999999999 -2.8484983126520399E-005 - 182.16000000000000 -3.2351326732221881E-005 - 182.22000000000000 -3.6152615824373472E-005 - 182.28000000000000 -3.9883357385466989E-005 - 182.34000000000000 -4.3538180127895132E-005 - 182.39999999999998 -4.7111853251463655E-005 - 182.45999999999998 -5.0599294935665938E-005 - 182.51999999999998 -5.3995582585349680E-005 - 182.57999999999998 -5.7295960371595630E-005 - 182.63999999999999 -6.0495859804179212E-005 - 182.69999999999999 -6.3590888175379102E-005 - 182.75999999999999 -6.6576850924094676E-005 - 182.81999999999999 -6.9449744607628274E-005 - 182.88000000000000 -7.2205754734481838E-005 - 182.94000000000000 -7.4841273576520200E-005 - 183.00000000000000 -7.7352881527101519E-005 - 183.06000000000000 -7.9737366129928661E-005 - 183.12000000000000 -8.1991722646665091E-005 - 183.17999999999998 -8.4113138345554331E-005 - 183.23999999999998 -8.6099010774688071E-005 - 183.29999999999998 -8.7946969678868859E-005 - 183.35999999999999 -8.9654842646261665E-005 - 183.41999999999999 -9.1220699117423293E-005 - 183.47999999999999 -9.2642830567346695E-005 - 183.53999999999999 -9.3919774633213023E-005 - 183.59999999999999 -9.5050319562215821E-005 - 183.66000000000000 -9.6033490329530403E-005 - 183.72000000000000 -9.6868585815346043E-005 - 183.78000000000000 -9.7555159361523134E-005 - 183.84000000000000 -9.8093021256734909E-005 - 183.89999999999998 -9.8482246938715580E-005 - 183.95999999999998 -9.8723177819867117E-005 - 184.01999999999998 -9.8816414257308209E-005 - 184.07999999999998 -9.8762800923113666E-005 - 184.13999999999999 -9.8563459886175756E-005 - 184.19999999999999 -9.8219726964303902E-005 - 184.25999999999999 -9.7733205265258683E-005 - 184.31999999999999 -9.7105724027041581E-005 - 184.38000000000000 -9.6339338646796817E-005 - 184.44000000000000 -9.5436330048559513E-005 - 184.50000000000000 -9.4399210698019580E-005 - 184.56000000000000 -9.3230691248987480E-005 - 184.62000000000000 -9.1933696030003939E-005 - 184.67999999999998 -9.0511357849150053E-005 - 184.73999999999998 -8.8967007426852594E-005 - 184.79999999999998 -8.7304175546906889E-005 - 184.85999999999999 -8.5526571650915116E-005 - 184.91999999999999 -8.3638095556515474E-005 - 184.97999999999999 -8.1642810328035604E-005 - 185.03999999999999 -7.9544973375360724E-005 - 185.09999999999999 -7.7348976795443174E-005 - 185.16000000000000 -7.5059375694707861E-005 - 185.22000000000000 -7.2680864940951519E-005 - 185.28000000000000 -7.0218286399234228E-005 - 185.34000000000000 -6.7676601384902022E-005 - 185.39999999999998 -6.5060878350661034E-005 - 185.45999999999998 -6.2376304399829887E-005 - 185.51999999999998 -5.9628163764856242E-005 - 185.57999999999998 -5.6821821923080063E-005 - 185.63999999999999 -5.3962733333552963E-005 - 185.69999999999999 -5.1056419422384146E-005 - 185.75999999999999 -4.8108459721514106E-005 - 185.81999999999999 -4.5124479917580777E-005 - 185.88000000000000 -4.2110147614815826E-005 - 185.94000000000000 -3.9071155649388404E-005 - 186.00000000000000 -3.6013206884164933E-005 - 186.06000000000000 -3.2942007748190365E-005 - 186.12000000000000 -2.9863253669710473E-005 - 186.17999999999998 -2.6782620277270013E-005 - 186.23999999999998 -2.3705738131802426E-005 - 186.29999999999998 -2.0638185933205960E-005 - 186.35999999999999 -1.7585483058047225E-005 - 186.41999999999999 -1.4553073977046292E-005 - 186.47999999999999 -1.1546318768146234E-005 - 186.53999999999999 -8.5704788174272028E-006 - 186.59999999999999 -5.6307175491874418E-006 - 186.66000000000000 -2.7320838687667622E-006 - 186.72000000000000 1.2048175469662577E-007 - 186.78000000000000 2.9221681718400267E-006 - 186.84000000000000 5.6682855495251066E-006 - 186.89999999999998 8.3542715512956624E-006 - 186.95999999999998 1.0975703267403682E-005 - 187.01999999999998 1.3528289727674404E-005 - 187.07999999999998 1.6007882573380997E-005 - 187.13999999999999 1.8410481617245141E-005 - 187.19999999999999 2.0732236205582621E-005 - 187.25999999999999 2.2969452413333402E-005 - 187.31999999999999 2.5118597477995416E-005 - 187.38000000000000 2.7176308549684960E-005 - 187.44000000000000 2.9139393329761929E-005 - 187.50000000000000 3.1004839189875444E-005 - 187.56000000000000 3.2769814760086314E-005 - 187.62000000000000 3.4431670420694338E-005 - 187.67999999999998 3.5987951541773279E-005 - 187.73999999999998 3.7436388364205492E-005 - 187.79999999999998 3.8774900121810446E-005 - 187.85999999999999 4.0001589960376774E-005 - 187.91999999999999 4.1114746220895514E-005 - 187.97999999999999 4.2112847507474952E-005 - 188.03999999999999 4.2994538555998058E-005 - 188.09999999999999 4.3758638907089815E-005 - 188.16000000000000 4.4404141574831689E-005 - 188.22000000000000 4.4930197754093698E-005 - 188.28000000000000 4.5336114819657716E-005 - 188.34000000000000 4.5621363298659510E-005 - 188.39999999999998 4.5785562399294381E-005 - 188.45999999999998 4.5828479892198295E-005 - 188.51999999999998 4.5750024564245285E-005 - 188.57999999999998 4.5550251727985905E-005 - 188.63999999999999 4.5229355791710103E-005 - 188.69999999999999 4.4787672070263607E-005 - 188.75999999999999 4.4225663171521385E-005 - 188.81999999999999 4.3543925311078830E-005 - 188.88000000000000 4.2743185304988361E-005 - 188.94000000000000 4.1824280349929372E-005 - 189.00000000000000 4.0788175818361460E-005 - 189.06000000000000 3.9635943350746296E-005 - 189.12000000000000 3.8368752042044391E-005 - 189.17999999999998 3.6987874143911976E-005 - 189.23999999999998 3.5494682491015589E-005 - 189.29999999999998 3.3890623906704128E-005 - 189.35999999999999 3.2177238304627496E-005 - 189.41999999999999 3.0356134921608776E-005 - 189.47999999999999 2.8429002652339528E-005 - 189.53999999999999 2.6397602358853265E-005 - 189.59999999999999 2.4263761821465057E-005 - 189.66000000000000 2.2029378769242704E-005 - 189.72000000000000 1.9696421020756292E-005 - 189.78000000000000 1.7266921965390348E-005 - 189.84000000000000 1.4742976243687020E-005 - 189.89999999999998 1.2126748897781122E-005 - 189.95999999999998 9.4204689516870305E-006 - 190.01999999999998 6.6264251969246602E-006 - 190.07999999999998 3.7469684142762868E-006 - 190.13999999999999 7.8450857064374782E-007 - 190.19999999999999 -2.2584942406966320E-006 - 190.25999999999999 -5.3795254633267036E-006 - 190.31999999999999 -8.5760247888733776E-006 - 190.38000000000000 -1.1845386221247088E-005 - 190.44000000000000 -1.5184959004551913E-005 - 190.50000000000000 -1.8592061082214296E-005 - 190.56000000000000 -2.2063967806355370E-005 - 190.62000000000000 -2.5597921041923704E-005 - 190.67999999999998 -2.9191129153659798E-005 - 190.73999999999998 -3.2840770473186876E-005 - 190.79999999999998 -3.6543977293193866E-005 - 190.85999999999999 -4.0297850683678146E-005 - 190.91999999999999 -4.4099464790406750E-005 - 190.97999999999999 -4.7945833939250726E-005 - 191.03999999999999 -5.1833949227520144E-005 - 191.09999999999999 -5.5760752721310773E-005 - 191.16000000000000 -5.9723133705590826E-005 - 191.22000000000000 -6.3717950188795918E-005 - 191.28000000000000 -6.7742010499856792E-005 - 191.34000000000000 -7.1792085804049595E-005 - 191.39999999999998 -7.5864887923825859E-005 - 191.45999999999998 -7.9957098150729264E-005 - 191.51999999999998 -8.4065358461653781E-005 - 191.57999999999998 -8.8186267552888413E-005 - 191.63999999999999 -9.2316387536659042E-005 - 191.69999999999999 -9.6452253234174235E-005 - 191.75999999999999 -1.0059035075134710E-004 - 191.81999999999999 -1.0472715781139481E-004 - 191.88000000000000 -1.0885909591876617E-004 - 191.94000000000000 -1.1298257337324940E-004 - 192.00000000000000 -1.1709397676771703E-004 - 192.06000000000000 -1.2118964884537511E-004 - 192.12000000000000 -1.2526592170377491E-004 - 192.17999999999998 -1.2931908892195782E-004 - 192.23999999999998 -1.3334540966529853E-004 - 192.29999999999998 -1.3734114150386849E-004 - 192.35999999999999 -1.4130251393061835E-004 - 192.41999999999999 -1.4522570102136885E-004 - 192.47999999999999 -1.4910689068217369E-004 - 192.53999999999999 -1.5294223226267428E-004 - 192.59999999999999 -1.5672785652680942E-004 - 192.66000000000000 -1.6045984901493169E-004 - 192.72000000000000 -1.6413429975320750E-004 - 192.78000000000000 -1.6774728388801750E-004 - 192.84000000000000 -1.7129481711558890E-004 - 192.89999999999998 -1.7477294976155549E-004 - 192.95999999999998 -1.7817764710788313E-004 - 193.01999999999998 -1.8150491723724983E-004 - 193.07999999999998 -1.8475072051681680E-004 - 193.13999999999999 -1.8791101704185585E-004 - 193.19999999999999 -1.9098173835694680E-004 - 193.25999999999999 -1.9395883727143482E-004 - 193.31999999999999 -1.9683822779201901E-004 - 193.38000000000000 -1.9961585852255838E-004 - 193.44000000000000 -2.0228767257279403E-004 - 193.50000000000000 -2.0484962768973109E-004 - 193.56000000000000 -2.0729772423848830E-004 - 193.62000000000000 -2.0962796072612121E-004 - 193.67999999999998 -2.1183639930819070E-004 - 193.73999999999998 -2.1391914017792224E-004 - 193.79999999999998 -2.1587233751316304E-004 - 193.85999999999999 -2.1769220417704708E-004 - 193.91999999999999 -2.1937502676858949E-004 - 193.97999999999999 -2.2091716057323803E-004 - 194.03999999999999 -2.2231503163980452E-004 - 194.09999999999999 -2.2356518014441670E-004 - 194.16000000000000 -2.2466419485636579E-004 - 194.22000000000000 -2.2560880375292264E-004 - 194.28000000000000 -2.2639579052792099E-004 - 194.34000000000000 -2.2702208733410079E-004 - 194.39999999999998 -2.2748471110592641E-004 - 194.45999999999998 -2.2778081320653625E-004 - 194.51999999999998 -2.2790766865541433E-004 - 194.57999999999998 -2.2786268655908531E-004 - 194.63999999999999 -2.2764342781357014E-004 - 194.69999999999999 -2.2724760705017277E-004 - 194.75999999999999 -2.2667309249292298E-004 - 194.81999999999999 -2.2591796050091073E-004 - 194.88000000000000 -2.2498045722037661E-004 - 194.94000000000000 -2.2385905457036583E-004 - 195.00000000000000 -2.2255240451188408E-004 - 195.06000000000000 -2.2105942004587743E-004 - 195.12000000000000 -2.1937924525203980E-004 - 195.17999999999998 -2.1751125977269482E-004 - 195.23999999999998 -2.1545512035994239E-004 - 195.29999999999998 -2.1321072625747495E-004 - 195.35999999999999 -2.1077826608639942E-004 - 195.41999999999999 -2.0815819474127279E-004 - 195.47999999999999 -2.0535125897941343E-004 - 195.53999999999999 -2.0235849689571642E-004 - 195.59999999999999 -1.9918122822575109E-004 - 195.66000000000000 -1.9582105053719844E-004 - 195.72000000000000 -1.9227987844146839E-004 - 195.78000000000000 -1.8855989482205183E-004 - 195.84000000000000 -1.8466358985031421E-004 - 195.89999999999998 -1.8059375569349947E-004 - 195.95999999999998 -1.7635345129665084E-004 - 196.01999999999998 -1.7194603501799254E-004 - 196.07999999999998 -1.6737516686716206E-004 - 196.13999999999999 -1.6264479343850764E-004 - 196.19999999999999 -1.5775913162897065E-004 - 196.25999999999999 -1.5272268571115988E-004 - 196.31999999999999 -1.4754023409028100E-004 - 196.38000000000000 -1.4221682756016633E-004 - 196.44000000000000 -1.3675779212862075E-004 - 196.50000000000000 -1.3116870316903908E-004 - 196.56000000000000 -1.2545540467884432E-004 - 196.62000000000000 -1.1962397506195426E-004 - 196.67999999999998 -1.1368071975084391E-004 - 196.73999999999998 -1.0763219652620741E-004 - 196.79999999999998 -1.0148516758758851E-004 - 196.85999999999999 -9.5246591349559072E-005 - 196.91999999999999 -8.8923635043232236E-005 - 196.97999999999999 -8.2523628317253799E-005 - 197.03999999999999 -7.6054076062341905E-005 - 197.09999999999999 -6.9522619781636931E-005 - 197.16000000000000 -6.2937037731100088E-005 - 197.22000000000000 -5.6305227130872782E-005 - 197.28000000000000 -4.9635177572376055E-005 - 197.34000000000000 -4.2934951343918010E-005 - 197.39999999999998 -3.6212677370449843E-005 - 197.45999999999998 -2.9476522159412659E-005 - 197.51999999999998 -2.2734681578876816E-005 - 197.57999999999998 -1.5995342146373166E-005 - 197.63999999999999 -9.2666862147355430E-006 - 197.69999999999999 -2.5568570884323047E-006 - 197.75999999999999 4.1260465034939885E-006 - 197.81999999999999 1.0773994804861121E-005 - 197.88000000000000 1.7379045327167781E-005 - 197.94000000000000 2.3933346095513769E-005 - 198.00000000000000 3.0429154423489034E-005 - 198.06000000000000 3.6858850369905709E-005 - 198.12000000000000 4.3214966497583975E-005 - 198.17999999999998 4.9490165713886761E-005 - 198.23999999999998 5.5677293154219611E-005 - 198.29999999999998 6.1769352982020713E-005 - 198.35999999999999 6.7759548556354610E-005 - 198.41999999999999 7.3641280308377890E-005 - 198.47999999999999 7.9408149998585353E-005 - 198.53999999999999 8.5054001204609982E-005 - 198.59999999999999 9.0572884271609007E-005 - 198.66000000000000 9.5959118736212466E-005 - 198.72000000000000 1.0120725890305700E-004 - 198.78000000000000 1.0631213151477010E-004 - 198.84000000000000 1.1126882809094760E-004 - 198.89999999999998 1.1607272607812619E-004 - 198.95999999999998 1.2071947628146366E-004 - 199.01999999999998 1.2520503579215313E-004 - 199.07999999999998 1.2952563670277692E-004 - 199.13999999999999 1.3367781169956101E-004 - 199.19999999999999 1.3765840958564345E-004 - 199.25999999999999 1.4146455505124002E-004 - 199.31999999999999 1.4509368793935932E-004 - 199.38000000000000 1.4854353059415076E-004 - 199.44000000000000 1.5181210923134196E-004 - 199.50000000000000 1.5489773916796206E-004 - 199.56000000000000 1.5779902338362528E-004 - 199.62000000000000 1.6051486143339275E-004 - 199.67999999999998 1.6304440826293766E-004 - 199.73999999999998 1.6538711588638848E-004 - 199.79999999999998 1.6754269042087332E-004 - 199.85999999999999 1.6951112258055661E-004 - 199.91999999999999 1.7129265855723072E-004 - 199.97999999999999 1.7288778337094969E-004 - 200.03999999999999 1.7429723679785014E-004 - 200.09999999999999 1.7552198949923774E-004 - 200.16000000000000 1.7656325491078367E-004 - 200.22000000000000 1.7742247063630263E-004 - 200.28000000000000 1.7810127862201108E-004 - 200.34000000000000 1.7860152520333961E-004 - 200.39999999999998 1.7892525992524113E-004 - 200.45999999999998 1.7907472679225337E-004 - 200.51999999999998 1.7905234444578024E-004 - 200.57999999999998 1.7886069289946532E-004 - 200.63999999999999 1.7850252766878462E-004 - 200.69999999999999 1.7798074590427384E-004 - 200.75999999999999 1.7729841018261671E-004 - 200.81999999999999 1.7645867514289325E-004 - 200.88000000000000 1.7546486746662434E-004 - 200.94000000000000 1.7432038641951563E-004 - 201.00000000000000 1.7302876588738187E-004 - 201.06000000000000 1.7159364861622317E-004 - 201.12000000000000 1.7001873707828922E-004 - 201.17999999999998 1.6830784234962563E-004 - 201.23999999999998 1.6646482235255282E-004 - 201.29999999999998 1.6449359838931061E-004 - 201.35999999999999 1.6239817524888941E-004 - 201.41999999999999 1.6018256527664120E-004 - 201.47999999999999 1.5785084863283215E-004 - 201.53999999999999 1.5540710473186108E-004 - 201.59999999999999 1.5285542795963523E-004 - 201.66000000000000 1.5019995616218163E-004 - 201.72000000000000 1.4744481197745347E-004 - 201.78000000000000 1.4459411447881437E-004 - 201.84000000000000 1.4165198459309902E-004 - 201.89999999999998 1.3862251471714258E-004 - 201.95999999999998 1.3550979785061383E-004 - 202.01999999999998 1.3231788946104406E-004 - 202.07999999999998 1.2905081873728063E-004 - 202.13999999999999 1.2571257775148927E-004 - 202.19999999999999 1.2230712314724462E-004 - 202.25999999999999 1.1883835499234561E-004 - 202.31999999999999 1.1531014733057852E-004 - 202.38000000000000 1.1172629704673565E-004 - 202.44000000000000 1.0809056320310877E-004 - 202.50000000000000 1.0440664638339775E-004 - 202.56000000000000 1.0067817441397980E-004 - 202.62000000000000 9.6908733417625081E-005 - 202.67999999999998 9.3101809473233765E-005 - 202.73999999999998 8.9260854666581589E-005 - 202.79999999999998 8.5389240956324411E-005 - 202.85999999999999 8.1490281530192937E-005 - 202.91999999999999 7.7567227461455417E-005 - 202.97999999999999 7.3623267865303312E-005 - 203.03999999999999 6.9661525232936648E-005 - 203.09999999999999 6.5685080097167633E-005 - 203.16000000000000 6.1696949434046519E-005 - 203.22000000000000 5.7700089965697577E-005 - 203.28000000000000 5.3697422674381475E-005 - 203.34000000000000 4.9691814320111060E-005 - 203.39999999999998 4.5686078047145613E-005 - 203.45999999999998 4.1682987996771525E-005 - 203.51999999999998 3.7685267258983542E-005 - 203.57999999999998 3.3695602256732869E-005 - 203.63999999999999 2.9716630991971311E-005 - 203.69999999999999 2.5750955470324851E-005 - 203.75999999999999 2.1801142435351552E-005 - 203.81999999999999 1.7869722593376096E-005 - 203.88000000000000 1.3959197324673389E-005 - 203.94000000000000 1.0072043389794027E-005 - 204.00000000000000 6.2107203454132556E-006 - 204.06000000000000 2.3776682034876954E-006 - 204.12000000000000 -1.4246727465507587E-006 - 204.17999999999998 -5.1938656676966994E-006 - 204.23999999999998 -8.9274699716139846E-006 - 204.29999999999998 -1.2623035878401450E-005 - 204.35999999999999 -1.6278093015101439E-005 - 204.41999999999999 -1.9890153434769631E-005 - 204.47999999999999 -2.3456705949596923E-005 - 204.53999999999999 -2.6975212243042692E-005 - 204.59999999999999 -3.0443110100944847E-005 - 204.66000000000000 -3.3857809533016710E-005 - 204.72000000000000 -3.7216696942564225E-005 - 204.78000000000000 -4.0517133051984400E-005 - 204.84000000000000 -4.3756464359664482E-005 - 204.89999999999998 -4.6932015452380509E-005 - 204.95999999999998 -5.0041096094773290E-005 - 205.01999999999998 -5.3081006882653995E-005 - 205.07999999999998 -5.6049046268446002E-005 - 205.13999999999999 -5.8942502625369567E-005 - 205.19999999999999 -6.1758656609906204E-005 - 205.25999999999999 -6.4494805235709650E-005 - 205.31999999999999 -6.7148244579320502E-005 - 205.38000000000000 -6.9716273436916645E-005 - 205.44000000000000 -7.2196200102612809E-005 - 205.50000000000000 -7.4585365911051274E-005 - 205.56000000000000 -7.6881111961989414E-005 - 205.62000000000000 -7.9080809980501543E-005 - 205.67999999999998 -8.1181857291962430E-005 - 205.73999999999998 -8.3181698514545754E-005 - 205.79999999999998 -8.5077816790232738E-005 - 205.85999999999999 -8.6867748470743710E-005 - 205.91999999999999 -8.8549089484168050E-005 - 205.97999999999999 -9.0119518514416403E-005 - 206.03999999999999 -9.1576778242332969E-005 - 206.09999999999999 -9.2918714580113892E-005 - 206.16000000000000 -9.4143273671397091E-005 - 206.22000000000000 -9.5248509986879448E-005 - 206.28000000000000 -9.6232602458942552E-005 - 206.34000000000000 -9.7093855288838478E-005 - 206.39999999999998 -9.7830705627673388E-005 - 206.45999999999998 -9.8441749016497075E-005 - 206.51999999999998 -9.8925737202996245E-005 - 206.57999999999998 -9.9281583345698136E-005 - 206.63999999999999 -9.9508367722186329E-005 - 206.69999999999999 -9.9605364835383766E-005 - 206.75999999999999 -9.9572031322531755E-005 - 206.81999999999999 -9.9408029060458691E-005 - 206.88000000000000 -9.9113211799678190E-005 - 206.94000000000000 -9.8687660125412746E-005 - 207.00000000000000 -9.8131659340187943E-005 - 207.06000000000000 -9.7445729171682954E-005 - 207.12000000000000 -9.6630624316922299E-005 - 207.17999999999998 -9.5687309996314270E-005 - 207.23999999999998 -9.4617000763753175E-005 - 207.29999999999998 -9.3421151959693119E-005 - 207.35999999999999 -9.2101449881444521E-005 - 207.41999999999999 -9.0659821178244761E-005 - 207.47999999999999 -8.9098416968804299E-005 - 207.53999999999999 -8.7419633499492770E-005 - 207.59999999999999 -8.5626088439577516E-005 - 207.66000000000000 -8.3720625771518213E-005 - 207.72000000000000 -8.1706318781974118E-005 - 207.78000000000000 -7.9586446355622297E-005 - 207.84000000000000 -7.7364507116971137E-005 - 207.89999999999998 -7.5044209278747688E-005 - 207.95999999999998 -7.2629474197300769E-005 - 208.01999999999998 -7.0124418915306789E-005 - 208.07999999999998 -6.7533364899520124E-005 - 208.13999999999999 -6.4860818403675272E-005 - 208.19999999999999 -6.2111485548418613E-005 - 208.25999999999999 -5.9290252211818098E-005 - 208.31999999999999 -5.6402176299687292E-005 - 208.38000000000000 -5.3452488252582803E-005 - 208.44000000000000 -5.0446570249325189E-005 - 208.50000000000000 -4.7389956147269476E-005 - 208.56000000000000 -4.4288304459889991E-005 - 208.62000000000000 -4.1147405326192766E-005 - 208.68000000000001 -3.7973142418489901E-005 - 208.74000000000001 -3.4771492029034333E-005 - 208.80000000000001 -3.1548505746273165E-005 - 208.86000000000001 -2.8310294532262283E-005 - 208.92000000000002 -2.5063008470426645E-005 - 208.98000000000002 -2.1812822421477078E-005 - 209.03999999999996 -1.8565927452522526E-005 - 209.09999999999997 -1.5328507791102264E-005 - 209.15999999999997 -1.2106732238779519E-005 - 209.21999999999997 -8.9067471431043267E-006 - 209.27999999999997 -5.7346489255196238E-006 - 209.33999999999997 -2.5964846033176253E-006 - 209.39999999999998 5.0176842864272801E-007 - 209.45999999999998 3.5542101379810162E-006 - 209.51999999999998 6.5550285738815446E-006 - 209.57999999999998 9.4985185484957444E-006 - 209.63999999999999 1.2379092960014392E-005 - 209.69999999999999 1.5191291453950002E-005 - 209.75999999999999 1.7929797596569659E-005 - 209.81999999999999 2.0589457237094404E-005 - 209.88000000000000 2.3165278049119440E-005 - 209.94000000000000 2.5652453630849678E-005 - 210.00000000000000 2.8046368650120490E-005 - 210.06000000000000 3.0342615332104337E-005 - 210.12000000000000 3.2537001675710003E-005 - 210.18000000000001 3.4625552604744700E-005 - 210.24000000000001 3.6604529769903195E-005 - 210.30000000000001 3.8470430483224753E-005 - 210.36000000000001 4.0219993391058393E-005 - 210.42000000000002 4.1850207608867009E-005 - 210.48000000000002 4.3358319621852972E-005 - 210.53999999999996 4.4741826153274146E-005 - 210.59999999999997 4.5998491861921488E-005 - 210.65999999999997 4.7126346976181188E-005 - 210.71999999999997 4.8123694952013762E-005 - 210.77999999999997 4.8989116504001516E-005 - 210.83999999999997 4.9721472039825055E-005 - 210.89999999999998 5.0319904306948853E-005 - 210.95999999999998 5.0783846484245191E-005 - 211.01999999999998 5.1113025387780877E-005 - 211.07999999999998 5.1307451928836790E-005 - 211.13999999999999 5.1367432799084302E-005 - 211.19999999999999 5.1293568131017178E-005 - 211.25999999999999 5.1086737825514422E-005 - 211.31999999999999 5.0748102204202142E-005 - 211.38000000000000 5.0279099216975941E-005 - 211.44000000000000 4.9681432810405185E-005 - 211.50000000000000 4.8957053164353568E-005 - 211.56000000000000 4.8108156376820809E-005 - 211.62000000000000 4.7137172892277012E-005 - 211.68000000000001 4.6046751284019770E-005 - 211.74000000000001 4.4839746529072076E-005 - 211.80000000000001 4.3519215308015382E-005 - 211.86000000000001 4.2088399484288661E-005 - 211.92000000000002 4.0550717492766565E-005 - 211.98000000000002 3.8909754510897611E-005 - 212.03999999999996 3.7169261357483347E-005 - 212.09999999999997 3.5333143664064066E-005 - 212.15999999999997 3.3405448831692444E-005 - 212.21999999999997 3.1390366414133894E-005 - 212.27999999999997 2.9292214693180426E-005 - 212.33999999999997 2.7115436154741945E-005 - 212.39999999999998 2.4864584927023695E-005 - 212.45999999999998 2.2544315156850012E-005 - 212.51999999999998 2.0159372421057021E-005 - 212.57999999999998 1.7714578524248310E-005 - 212.63999999999999 1.5214811382805799E-005 - 212.69999999999999 1.2665003146224229E-005 - 212.75999999999999 1.0070107855739524E-005 - 212.81999999999999 7.4351007510154059E-006 - 212.88000000000000 4.7649477822743317E-006 - 212.94000000000000 2.0646020676699460E-006 - 213.00000000000000 -6.6101273784317052E-007 - 213.06000000000000 -3.4070240358845258E-006 - 213.12000000000000 -6.1686114344632130E-006 - 213.18000000000001 -8.9410257892736042E-006 - 213.24000000000001 -1.1719594998735232E-005 - 213.30000000000001 -1.4499732153407228E-005 - 213.36000000000001 -1.7276951972466472E-005 - 213.42000000000002 -2.0046864185718307E-005 - 213.48000000000002 -2.2805190147182165E-005 - 213.53999999999996 -2.5547769158505643E-005 - 213.59999999999997 -2.8270556880979412E-005 - 213.65999999999997 -3.0969635878623073E-005 - 213.71999999999997 -3.3641226894505224E-005 - 213.77999999999997 -3.6281687664853968E-005 - 213.83999999999997 -3.8887517952323625E-005 - 213.89999999999998 -4.1455370668231909E-005 - 213.95999999999998 -4.3982046969095070E-005 - 214.01999999999998 -4.6464513809962934E-005 - 214.07999999999998 -4.8899894138824796E-005 - 214.13999999999999 -5.1285480052271088E-005 - 214.19999999999999 -5.3618729149784185E-005 - 214.25999999999999 -5.5897260195524317E-005 - 214.31999999999999 -5.8118870640168902E-005 - 214.38000000000000 -6.0281516752608898E-005 - 214.44000000000000 -6.2383331521902367E-005 - 214.50000000000000 -6.4422612371674190E-005 - 214.56000000000000 -6.6397825443183310E-005 - 214.62000000000000 -6.8307600686753073E-005 - 214.68000000000001 -7.0150736578924140E-005 - 214.74000000000001 -7.1926196442207826E-005 - 214.80000000000001 -7.3633110952981630E-005 - 214.86000000000001 -7.5270778345612276E-005 - 214.92000000000002 -7.6838647988182777E-005 - 214.98000000000002 -7.8336340353487801E-005 - 215.03999999999996 -7.9763639362125325E-005 - 215.09999999999997 -8.1120473122772442E-005 - 215.15999999999997 -8.2406919522561429E-005 - 215.21999999999997 -8.3623223152851065E-005 - 215.27999999999997 -8.4769753659864200E-005 - 215.33999999999997 -8.5847005061352575E-005 - 215.39999999999998 -8.6855606678481751E-005 - 215.45999999999998 -8.7796307224794918E-005 - 215.51999999999998 -8.8669952431655544E-005 - 215.57999999999998 -8.9477497534697981E-005 - 215.63999999999999 -9.0219992668314936E-005 - 215.69999999999999 -9.0898564995752057E-005 - 215.75999999999999 -9.1514421379155857E-005 - 215.81999999999999 -9.2068860714474222E-005 - 215.88000000000000 -9.2563248211446691E-005 - 215.94000000000000 -9.2999018149599955E-005 - 216.00000000000000 -9.3377692352222846E-005 - 216.06000000000000 -9.3700849796411612E-005 - 216.12000000000000 -9.3970155810998730E-005 - 216.18000000000001 -9.4187334660710098E-005 - 216.24000000000001 -9.4354189520875445E-005 - 216.30000000000001 -9.4472605580511301E-005 - 216.36000000000001 -9.4544520688525860E-005 - 216.42000000000002 -9.4571946479159207E-005 - 216.48000000000002 -9.4556959711327844E-005 - 216.53999999999996 -9.4501680800719139E-005 - 216.59999999999997 -9.4408292198547471E-005 - 216.65999999999997 -9.4279001417997457E-005 - 216.71999999999997 -9.4116068931514974E-005 - 216.77999999999997 -9.3921763892679781E-005 - 216.83999999999997 -9.3698393847559068E-005 - 216.89999999999998 -9.3448269990496801E-005 - 216.95999999999998 -9.3173726875619113E-005 - 217.01999999999998 -9.2877089490860562E-005 - 217.07999999999998 -9.2560696855571113E-005 - 217.13999999999999 -9.2226903810924046E-005 - 217.19999999999999 -9.1878054496053575E-005 - 217.25999999999999 -9.1516497735878781E-005 - 217.31999999999999 -9.1144602817335484E-005 - 217.38000000000000 -9.0764723881508758E-005 - 217.44000000000000 -9.0379245982348351E-005 - 217.50000000000000 -8.9990538847893156E-005 - 217.56000000000000 -8.9600984867604621E-005 - 217.62000000000000 -8.9212969735062689E-005 - 217.68000000000001 -8.8828875952176906E-005 - 217.74000000000001 -8.8451082904461573E-005 - 217.80000000000001 -8.8081957879031545E-005 - 217.86000000000001 -8.7723851423501256E-005 - 217.92000000000002 -8.7379095486564461E-005 - 217.98000000000002 -8.7049993978099169E-005 - 218.03999999999996 -8.6738832383543598E-005 - 218.09999999999997 -8.6447848725203664E-005 - 218.15999999999997 -8.6179254809274662E-005 - 218.21999999999997 -8.5935218974644688E-005 - 218.27999999999997 -8.5717869796760285E-005 - 218.33999999999997 -8.5529299834939348E-005 - 218.39999999999998 -8.5371567850630117E-005 - 218.45999999999998 -8.5246688891986333E-005 - 218.51999999999998 -8.5156647959632844E-005 - 218.57999999999998 -8.5103385665531250E-005 - 218.63999999999999 -8.5088798344655625E-005 - 218.69999999999999 -8.5114751153479829E-005 - 218.75999999999999 -8.5183066820783594E-005 - 218.81999999999999 -8.5295522130477948E-005 - 218.88000000000000 -8.5453850523416273E-005 - 218.94000000000000 -8.5659726064409104E-005 - 219.00000000000000 -8.5914769363074420E-005 - 219.06000000000000 -8.6220543832479549E-005 - 219.12000000000000 -8.6578553342249418E-005 - 219.18000000000001 -8.6990231393879161E-005 - 219.24000000000001 -8.7456950500545660E-005 - 219.30000000000001 -8.7980011596787788E-005 - 219.36000000000001 -8.8560651719858560E-005 - 219.42000000000002 -8.9200040769702609E-005 - 219.48000000000002 -8.9899283751547894E-005 - 219.53999999999996 -9.0659430555099590E-005 - 219.59999999999997 -9.1481477757043481E-005 - 219.65999999999997 -9.2366352357427432E-005 - 219.71999999999997 -9.3314928629098160E-005 - 219.77999999999997 -9.4328045804913596E-005 - 219.83999999999997 -9.5406476250724730E-005 - 219.89999999999998 -9.6550939468676385E-005 - 219.95999999999998 -9.7762110248629741E-005 - 220.01999999999998 -9.9040606684173304E-005 - 220.07999999999998 -1.0038697595675208E-004 - 220.13999999999999 -1.0180171842875842E-004 - 220.19999999999999 -1.0328525756882056E-004 - 220.25999999999999 -1.0483794308664000E-004 - 220.31999999999999 -1.0646006066748902E-004 - 220.38000000000000 -1.0815180692201806E-004 - 220.44000000000000 -1.0991331405444458E-004 - 220.50000000000000 -1.1174461025390983E-004 - 220.56000000000000 -1.1364565708746194E-004 - 220.62000000000000 -1.1561632820032114E-004 - 220.68000000000001 -1.1765640870863275E-004 - 220.74000000000001 -1.1976557871573267E-004 - 220.80000000000001 -1.2194346618027717E-004 - 220.86000000000001 -1.2418957783107671E-004 - 220.92000000000002 -1.2650336252585355E-004 - 220.98000000000002 -1.2888413806406678E-004 - 221.03999999999996 -1.3133115586909201E-004 - 221.09999999999997 -1.3384356561173345E-004 - 221.15999999999997 -1.3642040842774491E-004 - 221.21999999999997 -1.3906061859482905E-004 - 221.27999999999997 -1.4176300603434877E-004 - 221.33999999999997 -1.4452628178263793E-004 - 221.39999999999998 -1.4734901949253634E-004 - 221.45999999999998 -1.5022968030549297E-004 - 221.51999999999998 -1.5316659051701925E-004 - 221.57999999999998 -1.5615794066626052E-004 - 221.63999999999999 -1.5920177852626923E-004 - 221.69999999999999 -1.6229602911078177E-004 - 221.75999999999999 -1.6543845786611363E-004 - 221.81999999999999 -1.6862670132119031E-004 - 221.88000000000000 -1.7185825534016727E-004 - 221.94000000000000 -1.7513046764650644E-004 - 222.00000000000000 -1.7844054365352436E-004 - 222.06000000000000 -1.8178552687803302E-004 - 222.12000000000000 -1.8516234060226143E-004 - 222.18000000000001 -1.8856772999249172E-004 - 222.24000000000001 -1.9199831689839503E-004 - 222.30000000000001 -1.9545054254997623E-004 - 222.36000000000001 -1.9892071689104750E-004 - 222.42000000000002 -2.0240496964639740E-004 - 222.48000000000002 -2.0589931205704693E-004 - 222.53999999999996 -2.0939958650182595E-004 - 222.59999999999997 -2.1290148521328420E-004 - 222.65999999999997 -2.1640058586478074E-004 - 222.71999999999997 -2.1989228939172739E-004 - 222.77999999999997 -2.2337190504509571E-004 - 222.83999999999997 -2.2683462114142386E-004 - 222.89999999999998 -2.3027551105065768E-004 - 222.95999999999998 -2.3368952824760146E-004 - 223.01999999999998 -2.3707156471921127E-004 - 223.07999999999998 -2.4041644030279777E-004 - 223.13999999999999 -2.4371886965272735E-004 - 223.19999999999999 -2.4697352458991149E-004 - 223.25999999999999 -2.5017504123735202E-004 - 223.31999999999999 -2.5331798642132096E-004 - 223.38000000000000 -2.5639689531654355E-004 - 223.44000000000000 -2.5940627600436617E-004 - 223.50000000000000 -2.6234056616068714E-004 - 223.56000000000000 -2.6519423751643193E-004 - 223.62000000000000 -2.6796175873237976E-004 - 223.68000000000001 -2.7063755123433520E-004 - 223.74000000000001 -2.7321608150978266E-004 - 223.80000000000001 -2.7569183381091593E-004 - 223.86000000000001 -2.7805932529222869E-004 - 223.92000000000002 -2.8031314244022256E-004 - 223.98000000000002 -2.8244795147345776E-004 - 224.03999999999996 -2.8445844553945919E-004 - 224.09999999999997 -2.8633950218907942E-004 - 224.15999999999997 -2.8808604972069285E-004 - 224.21999999999997 -2.8969320653240228E-004 - 224.27999999999997 -2.9115625179114879E-004 - 224.33999999999997 -2.9247060789750493E-004 - 224.39999999999998 -2.9363186699422737E-004 - 224.45999999999998 -2.9463587759094801E-004 - 224.51999999999998 -2.9547860469784936E-004 - 224.57999999999998 -2.9615630888970169E-004 - 224.63999999999999 -2.9666540664747583E-004 - 224.69999999999999 -2.9700256183721812E-004 - 224.75999999999999 -2.9716465356093409E-004 - 224.81999999999999 -2.9714879178138059E-004 - 224.88000000000000 -2.9695232330204422E-004 - 224.94000000000000 -2.9657284334049742E-004 - 225.00000000000000 -2.9600818658688061E-004 - 225.06000000000000 -2.9525644380911802E-004 - 225.12000000000000 -2.9431597657827649E-004 - 225.18000000000001 -2.9318542100433161E-004 - 225.24000000000001 -2.9186363175563420E-004 - 225.30000000000001 -2.9034979821460354E-004 - 225.36000000000001 -2.8864342735295635E-004 - 225.42000000000002 -2.8674424379813464E-004 - 225.48000000000002 -2.8465229972561893E-004 - 225.53999999999996 -2.8236797714141016E-004 - 225.59999999999997 -2.7989189877239363E-004 - 225.65999999999997 -2.7722505343957446E-004 - 225.71999999999997 -2.7436869649647772E-004 - 225.77999999999997 -2.7132434214887253E-004 - 225.83999999999997 -2.6809380418435481E-004 - 225.89999999999998 -2.6467921500029782E-004 - 225.95999999999998 -2.6108292553769997E-004 - 226.01999999999998 -2.5730755846199954E-004 - 226.07999999999998 -2.5335601334654142E-004 - 226.13999999999999 -2.4923139895092767E-004 - 226.19999999999999 -2.4493709131706895E-004 - 226.25999999999999 -2.4047667177357437E-004 - 226.31999999999999 -2.3585396949704943E-004 - 226.38000000000000 -2.3107299737017636E-004 - 226.44000000000000 -2.2613800701187786E-004 - 226.50000000000000 -2.2105342280704887E-004 - 226.56000000000000 -2.1582388242125355E-004 - 226.62000000000000 -2.1045420947396107E-004 - 226.68000000000001 -2.0494940674218421E-004 - 226.74000000000001 -1.9931460989867819E-004 - 226.80000000000001 -1.9355514632094748E-004 - 226.86000000000001 -1.8767648018254996E-004 - 226.92000000000002 -1.8168419988867407E-004 - 226.98000000000002 -1.7558398440290578E-004 - 227.03999999999996 -1.6938166399194259E-004 - 227.09999999999997 -1.6308314225915672E-004 - 227.15999999999997 -1.5669439073127565E-004 - 227.21999999999997 -1.5022144710229054E-004 - 227.27999999999997 -1.4367039191266723E-004 - 227.33999999999997 -1.3704735914887674E-004 - 227.39999999999998 -1.3035852258968362E-004 - 227.45999999999998 -1.2361002540631021E-004 - 227.51999999999998 -1.1680806406922968E-004 - 227.57999999999998 -1.0995882152178146E-004 - 227.63999999999999 -1.0306843763275490E-004 - 227.69999999999999 -9.6143063769953745E-005 - 227.75999999999999 -8.9188797937413383E-005 - 227.81999999999999 -8.2211697292172546E-005 - 227.88000000000000 -7.5217761873669508E-005 - 227.94000000000000 -6.8212922166584756E-005 - 228.00000000000000 -6.1203035183006766E-005 - 228.06000000000000 -5.4193862016586347E-005 - 228.12000000000000 -4.7191081933273862E-005 - 228.18000000000001 -4.0200248836386434E-005 - 228.24000000000001 -3.3226818310062164E-005 - 228.30000000000001 -2.6276107631527840E-005 - 228.36000000000001 -1.9353333486793657E-005 - 228.42000000000002 -1.2463559578705705E-005 - 228.48000000000002 -5.6117348382653216E-006 - 228.53999999999996 1.1973393949404852E-006 - 228.59999999999997 7.9589937944147087E-006 - 228.65999999999997 1.4668686159972898E-005 - 228.71999999999997 2.1322020759290205E-005 - 228.77999999999997 2.7914738373002860E-005 - 228.83999999999997 3.4442704920791085E-005 - 228.89999999999998 4.0901940898220251E-005 - 228.95999999999998 4.7288600821119173E-005 - 229.01999999999998 5.3598972477434271E-005 - 229.07999999999998 5.9829487089548315E-005 - 229.13999999999999 6.5976737033718704E-005 - 229.19999999999999 7.2037439395276025E-005 - 229.25999999999999 7.8008472815040825E-005 - 229.31999999999999 8.3886862505949924E-005 - 229.38000000000000 8.9669793997218408E-005 - 229.44000000000000 9.5354583745882438E-005 - 229.50000000000000 1.0093868504079758E-004 - 229.56000000000000 1.0641972319774907E-004 - 229.62000000000000 1.1179543975847715E-004 - 229.68000000000001 1.1706370273052206E-004 - 229.74000000000001 1.2222252582394849E-004 - 229.80000000000001 1.2727001828643727E-004 - 229.86000000000001 1.3220440880281760E-004 - 229.92000000000002 1.3702400813556210E-004 - 229.97999999999996 1.4172724202268338E-004 - 230.03999999999996 1.4631262124026700E-004 - 230.09999999999997 1.5077873144194213E-004 - 230.15999999999997 1.5512425410158147E-004 - 230.21999999999997 1.5934794421806794E-004 - 230.27999999999997 1.6344861552352141E-004 - 230.33999999999997 1.6742518727303699E-004 - 230.39999999999998 1.7127662832732432E-004 - 230.45999999999998 1.7500198445539526E-004 - 230.51999999999998 1.7860036522483408E-004 - 230.57999999999998 1.8207094716753082E-004 - 230.63999999999999 1.8541296565881155E-004 - 230.69999999999999 1.8862570283171597E-004 - 230.75999999999999 1.9170850076706696E-004 - 230.81999999999999 1.9466075323265492E-004 - 230.88000000000000 1.9748187429937948E-004 - 230.94000000000000 2.0017132634711488E-004 - 231.00000000000000 2.0272858593381191E-004 - 231.06000000000000 2.0515316136643857E-004 - 231.12000000000000 2.0744457171228202E-004 - 231.18000000000001 2.0960234472255777E-004 - 231.24000000000001 2.1162604431886926E-004 - 231.30000000000001 2.1351525477170653E-004 - 231.36000000000001 2.1526956539463980E-004 - 231.42000000000002 2.1688857965112120E-004 - 231.47999999999996 2.1837194755362020E-004 - 231.53999999999996 2.1971934157352362E-004 - 231.59999999999997 2.2093046331069435E-004 - 231.65999999999997 2.2200507736211059E-004 - 231.71999999999997 2.2294295372300062E-004 - 231.77999999999997 2.2374393227306023E-004 - 231.83999999999997 2.2440789440218034E-004 - 231.89999999999998 2.2493473977459611E-004 - 231.95999999999998 2.2532445814760953E-004 - 232.01999999999998 2.2557703719799899E-004 - 232.07999999999998 2.2569251730171055E-004 - 232.13999999999999 2.2567094736718847E-004 - 232.19999999999999 2.2551244628477165E-004 - 232.25999999999999 2.2521715127403241E-004 - 232.31999999999999 2.2478520105997991E-004 - 232.38000000000000 2.2421678740602551E-004 - 232.44000000000000 2.2351214172491843E-004 - 232.50000000000000 2.2267149455212554E-004 - 232.56000000000000 2.2169517182991507E-004 - 232.62000000000000 2.2058351307754307E-004 - 232.68000000000001 2.1933692921863668E-004 - 232.74000000000001 2.1795588551913966E-004 - 232.80000000000001 2.1644092452012811E-004 - 232.86000000000001 2.1479267130166763E-004 - 232.92000000000002 2.1301182219498192E-004 - 232.97999999999996 2.1109917495876253E-004 - 233.03999999999996 2.0905559978919532E-004 - 233.09999999999997 2.0688207637959322E-004 - 233.15999999999997 2.0457966831141690E-004 - 233.21999999999997 2.0214951065013076E-004 - 233.27999999999997 1.9959285186809257E-004 - 233.33999999999997 1.9691098768610129E-004 - 233.39999999999998 1.9410533114720273E-004 - 233.45999999999998 1.9117733672510437E-004 - 233.51999999999998 1.8812854458805824E-004 - 233.57999999999998 1.8496056349403742E-004 - 233.63999999999999 1.8167508380763765E-004 - 233.69999999999999 1.7827383807240101E-004 - 233.75999999999999 1.7475865162589052E-004 - 233.81999999999999 1.7113140049270832E-004 - 233.88000000000000 1.6739406057531309E-004 - 233.94000000000000 1.6354869025390865E-004 - 234.00000000000000 1.5959739888905244E-004 - 234.06000000000000 1.5554239689849768E-004 - 234.12000000000000 1.5138598935312295E-004 - 234.18000000000001 1.4713057105107381E-004 - 234.24000000000001 1.4277862285736392E-004 - 234.30000000000001 1.3833270686250534E-004 - 234.36000000000001 1.3379550245142620E-004 - 234.42000000000002 1.2916977046998308E-004 - 234.47999999999996 1.2445836316304554E-004 - 234.53999999999996 1.1966422430557445E-004 - 234.59999999999997 1.1479037770745119E-004 - 234.65999999999997 1.0983993733949319E-004 - 234.71999999999997 1.0481609546864503E-004 - 234.77999999999997 9.9722139841809185E-005 - 234.83999999999997 9.4561408917488851E-005 - 234.89999999999998 8.9337326034041035E-005 - 234.95999999999998 8.4053394158861274E-005 - 235.01999999999998 7.8713160851093245E-005 - 235.07999999999998 7.3320247206176993E-005 - 235.13999999999999 6.7878326326865001E-005 - 235.19999999999999 6.2391136689736196E-005 - 235.25999999999999 5.6862447145216590E-005 - 235.31999999999999 5.1296082044219866E-005 - 235.38000000000000 4.5695907181448088E-005 - 235.44000000000000 4.0065822776311509E-005 - 235.50000000000000 3.4409767008009679E-005 - 235.56000000000000 2.8731706040119873E-005 - 235.62000000000000 2.3035642247298592E-005 - 235.68000000000001 1.7325602212477779E-005 - 235.74000000000001 1.1605650256057694E-005 - 235.80000000000001 5.8798839094870425E-006 - 235.86000000000001 1.5242895240787644E-007 - 235.92000000000002 -5.5725451923405191E-006 - 235.97999999999996 -1.1290845271166963E-005 - 236.03999999999996 -1.6998236236227122E-005 - 236.09999999999997 -2.2690447724420365E-005 - 236.15999999999997 -2.8363177187907751E-005 - 236.21999999999997 -3.4012099332009739E-005 - 236.27999999999997 -3.9632862912410671E-005 - 236.33999999999997 -4.5221095584670922E-005 - 236.39999999999998 -5.0772436239226879E-005 - 236.45999999999998 -5.6282519659531986E-005 - 236.51999999999998 -6.1747000450004675E-005 - 236.57999999999998 -6.7161560075603967E-005 - 236.63999999999999 -7.2521917268508185E-005 - 236.69999999999999 -7.7823837227921299E-005 - 236.75999999999999 -8.3063158733098172E-005 - 236.81999999999999 -8.8235771430210250E-005 - 236.88000000000000 -9.3337635432680748E-005 - 236.94000000000000 -9.8364781127319384E-005 - 237.00000000000000 -1.0331332999456617E-004 - 237.06000000000000 -1.0817946275208945E-004 - 237.12000000000000 -1.1295943389401757E-004 - 237.18000000000001 -1.1764957597830178E-004 - 237.24000000000001 -1.2224626804735786E-004 - 237.30000000000001 -1.2674595666751920E-004 - 237.36000000000001 -1.3114516207288852E-004 - 237.42000000000002 -1.3544043666061041E-004 - 237.47999999999996 -1.3962842195513136E-004 - 237.53999999999996 -1.4370580407121062E-004 - 237.59999999999997 -1.4766933189394634E-004 - 237.65999999999997 -1.5151584136487877E-004 - 237.71999999999997 -1.5524224223153330E-004 - 237.77999999999997 -1.5884554079905882E-004 - 237.83999999999997 -1.6232285842195535E-004 - 237.89999999999998 -1.6567140669189614E-004 - 237.95999999999998 -1.6888856149211792E-004 - 238.01999999999998 -1.7197180494632534E-004 - 238.07999999999998 -1.7491876399977060E-004 - 238.13999999999999 -1.7772720646345205E-004 - 238.19999999999999 -1.8039507376296402E-004 - 238.25999999999999 -1.8292043583264153E-004 - 238.31999999999999 -1.8530154538870747E-004 - 238.38000000000000 -1.8753677314834382E-004 - 238.44000000000000 -1.8962465847318654E-004 - 238.50000000000000 -1.9156387197533887E-004 - 238.56000000000000 -1.9335323973767248E-004 - 238.62000000000000 -1.9499171790511442E-004 - 238.68000000000001 -1.9647837336667082E-004 - 238.74000000000001 -1.9781242094251905E-004 - 238.80000000000001 -1.9899320988118113E-004 - 238.86000000000001 -2.0002019427185237E-004 - 238.92000000000002 -2.0089296364876201E-004 - 238.97999999999996 -2.0161122915223040E-004 - 239.03999999999996 -2.0217485165611150E-004 - 239.09999999999997 -2.0258380331116647E-004 - 239.15999999999997 -2.0283818953742303E-004 - 239.21999999999997 -2.0293827133094025E-004 - 239.27999999999997 -2.0288444272686433E-004 - 239.33999999999997 -2.0267722398330243E-004 - 239.39999999999998 -2.0231726569814592E-004 - 239.45999999999998 -2.0180537847814026E-004 - 239.51999999999998 -2.0114249094770737E-004 - 239.57999999999998 -2.0032967802809364E-004 - 239.63999999999999 -1.9936814745896150E-004 - 239.69999999999999 -1.9825920188169910E-004 - 239.75999999999999 -1.9700429194142186E-004 - 239.81999999999999 -1.9560496946684772E-004 - 239.88000000000000 -1.9406290194899550E-004 - 239.94000000000000 -1.9237984918541107E-004 - 240.00000000000000 -1.9055769082399602E-004 - 240.06000000000000 -1.8859838279564606E-004 - 240.12000000000000 -1.8650396360658775E-004 - 240.18000000000001 -1.8427658114314829E-004 - 240.24000000000001 -1.8191843301994855E-004 - 240.30000000000001 -1.7943181737301744E-004 - 240.36000000000001 -1.7681906493452110E-004 - 240.42000000000002 -1.7408258029841223E-004 - 240.47999999999996 -1.7122484208281530E-004 - 240.53999999999996 -1.6824834436398624E-004 - 240.59999999999997 -1.6515560058729799E-004 - 240.65999999999997 -1.6194921358474423E-004 - 240.71999999999997 -1.5863177648836846E-004 - 240.77999999999997 -1.5520587781649576E-004 - 240.83999999999997 -1.5167416101907668E-004 - 240.89999999999998 -1.4803924186213767E-004 - 240.95999999999998 -1.4430375745834572E-004 - 241.01999999999998 -1.4047033594032993E-004 - 241.07999999999998 -1.3654160098143259E-004 - 241.13999999999999 -1.3252016958828174E-004 - 241.19999999999999 -1.2840864026462389E-004 - 241.25999999999999 -1.2420960867116497E-004 - 241.31999999999999 -1.1992562726528716E-004 - 241.38000000000000 -1.1555924945681546E-004 - 241.44000000000000 -1.1111299362183976E-004 - 241.50000000000000 -1.0658933259962889E-004 - 241.56000000000000 -1.0199070282425682E-004 - 241.62000000000000 -9.7319504037675944E-005 - 241.68000000000001 -9.2578072466716066E-005 - 241.74000000000001 -8.7768694183551005E-005 - 241.80000000000001 -8.2893574066539267E-005 - 241.86000000000001 -7.7954852510257841E-005 - 241.92000000000002 -7.2954582547306014E-005 - 241.97999999999996 -6.7894747315783323E-005 - 242.03999999999996 -6.2777234449919669E-005 - 242.09999999999997 -5.7603848528511910E-005 - 242.15999999999997 -5.2376309573496701E-005 - 242.21999999999997 -4.7096253781421155E-005 - 242.27999999999997 -4.1765231307505434E-005 - 242.33999999999997 -3.6384719594615384E-005 - 242.39999999999998 -3.0956113602892894E-005 - 242.45999999999998 -2.5480746062813870E-005 - 242.51999999999998 -1.9959873291477957E-005 - 242.57999999999998 -1.4394693811492780E-005 - 242.63999999999999 -8.7863328243480311E-006 - 242.69999999999999 -3.1358675687104955E-006 - 242.75999999999999 2.5556960985089177E-006 - 242.81999999999999 8.2873992733120011E-006 - 242.88000000000000 1.4058350572764425E-005 - 242.94000000000000 1.9867713215516060E-005 - 243.00000000000000 2.5714711270160789E-005 - 243.06000000000000 3.1598622329482745E-005 - 243.12000000000000 3.7518785024917768E-005 - 243.18000000000001 4.3474578870699175E-005 - 243.24000000000001 4.9465435053655646E-005 - 243.30000000000001 5.5490823486923859E-005 - 243.36000000000001 6.1550252584793188E-005 - 243.42000000000002 6.7643247253798452E-005 - 243.47999999999996 7.3769364764060283E-005 - 243.53999999999996 7.9928145487190327E-005 - 243.59999999999997 8.6119142001000605E-005 - 243.65999999999997 9.2341893839049857E-005 - 243.71999999999997 9.8595928255484021E-005 - 243.77999999999997 1.0488074195805698E-004 - 243.83999999999997 1.1119582766883899E-004 - 243.89999999999998 1.1754061706456618E-004 - 243.95999999999998 1.2391452494710578E-004 - 244.01999999999998 1.3031691199505776E-004 - 244.07999999999998 1.3674714355275293E-004 - 244.13999999999999 1.4320451689712677E-004 - 244.19999999999999 1.4968830914971921E-004 - 244.25999999999999 1.5619780581105838E-004 - 244.31999999999999 1.6273220817356266E-004 - 244.38000000000000 1.6929070875123267E-004 - 244.44000000000000 1.7587245794522627E-004 - 244.50000000000000 1.8247660063778597E-004 - 244.56000000000000 1.8910222515806100E-004 - 244.62000000000000 1.9574838563541771E-004 - 244.68000000000001 2.0241408450118187E-004 - 244.74000000000001 2.0909825434180034E-004 - 244.80000000000001 2.1579980672011998E-004 - 244.86000000000001 2.2251758698273627E-004 - 244.92000000000002 2.2925035281203823E-004 - 244.97999999999996 2.3599682382899535E-004 - 245.03999999999996 2.4275567833938248E-004 - 245.09999999999997 2.4952549100888644E-004 - 245.15999999999997 2.5630480018488147E-004 - 245.21999999999997 2.6309206507436141E-004 - 245.27999999999997 2.6988570574640043E-004 - 245.33999999999997 2.7668413070923924E-004 - 245.39999999999998 2.8348566060519255E-004 - 245.45999999999998 2.9028862495420398E-004 - 245.51999999999998 2.9709129122465862E-004 - 245.57999999999998 3.0389192547421986E-004 - 245.63999999999999 3.1068880360544102E-004 - 245.69999999999999 3.1748014767757956E-004 - 245.75999999999999 3.2426415267751494E-004 - 245.81999999999999 3.3103905977150110E-004 - 245.88000000000000 3.3780305114575318E-004 - 245.94000000000000 3.4455431564678742E-004 - 246.00000000000000 3.5129102609565796E-004 - 246.06000000000000 3.5801135034597086E-004 - 246.12000000000000 3.6471344391004979E-004 - 246.18000000000001 3.7139548303199754E-004 - 246.24000000000001 3.7805559936841484E-004 - 246.30000000000001 3.8469191968721039E-004 - 246.36000000000001 3.9130255761293223E-004 - 246.42000000000002 3.9788561248561664E-004 - 246.47999999999996 4.0443920426717623E-004 - 246.53999999999996 4.1096143360841100E-004 - 246.59999999999997 4.1745040117643998E-004 - 246.65999999999997 4.2390419339512556E-004 - 246.71999999999997 4.3032089690139591E-004 - 246.77999999999997 4.3669860830126945E-004 - 246.83999999999997 4.4303537914375804E-004 - 246.89999999999998 4.4932925045991344E-004 - 246.95999999999998 4.5557830714848692E-004 - 247.01999999999998 4.6178054939536689E-004 - 247.07999999999998 4.6793403014647541E-004 - 247.13999999999999 4.7403672397824958E-004 - 247.19999999999999 4.8008658189019771E-004 - 247.25999999999999 4.8608150276168935E-004 - 247.31999999999999 4.9201946025391875E-004 - 247.38000000000000 4.9789829213732863E-004 - 247.44000000000000 5.0371589723000802E-004 - 247.50000000000000 5.0947008227959496E-004 - 247.56000000000000 5.1515858582099820E-004 - 247.62000000000000 5.2077925689164117E-004 - 247.68000000000001 5.2632984980216263E-004 - 247.74000000000001 5.3180797671880406E-004 - 247.80000000000001 5.3721134622152129E-004 - 247.86000000000001 5.4253753542548037E-004 - 247.92000000000002 5.4778416957735362E-004 - 247.97999999999996 5.5294874590569641E-004 - 248.03999999999996 5.5802870627590356E-004 - 248.09999999999997 5.6302141260444977E-004 - 248.15999999999997 5.6792421422083782E-004 - 248.21999999999997 5.7273436750041550E-004 - 248.27999999999997 5.7744904226058648E-004 - 248.33999999999997 5.8206533328832737E-004 - 248.39999999999998 5.8658027767701198E-004 - 248.45999999999998 5.9099076450268805E-004 - 248.51999999999998 5.9529368284045258E-004 - 248.57999999999998 5.9948583395724492E-004 - 248.63999999999999 6.0356388813531919E-004 - 248.69999999999999 6.0752451802653163E-004 - 248.75999999999999 6.1136431681310189E-004 - 248.81999999999999 6.1507980092411299E-004 - 248.88000000000000 6.1866750863344931E-004 - 248.94000000000000 6.2212391083209771E-004 - 249.00000000000000 6.2544537300431957E-004 - 249.06000000000000 6.2862841631019432E-004 - 249.12000000000000 6.3166928315401994E-004 - 249.18000000000001 6.3456440141746709E-004 - 249.24000000000001 6.3731012968689662E-004 - 249.30000000000001 6.3990269070338883E-004 - 249.36000000000001 6.4233845952308300E-004 - 249.42000000000002 6.4461369685981480E-004 - 249.47999999999996 6.4672472100689373E-004 - 249.53999999999996 6.4866771756994337E-004 - 249.59999999999997 6.5043897282968176E-004 - 249.65999999999997 6.5203476515576851E-004 - 249.71999999999997 6.5345137625406338E-004 - 249.77999999999997 6.5468514424388616E-004 - 249.83999999999997 6.5573230304447137E-004 - 249.89999999999998 6.5658926136538806E-004 - 249.95999999999998 6.5725244915829269E-004 - 250.01999999999998 6.5771833398505517E-004 - 250.07999999999998 6.5798347826111431E-004 - 250.13999999999999 6.5804458685185595E-004 - 250.19999999999999 6.5789835071888760E-004 - 250.25999999999999 6.5754162214440044E-004 - 250.31999999999999 6.5697139148518987E-004 - 250.38000000000000 6.5618471978327875E-004 - 250.44000000000000 6.5517888296927633E-004 - 250.50000000000000 6.5395134765159539E-004 - 250.56000000000000 6.5249959408821207E-004 - 250.62000000000000 6.5082134960509606E-004 - 250.68000000000001 6.4891453521314811E-004 - 250.74000000000001 6.4677718147732456E-004 - 250.80000000000001 6.4440758428212794E-004 - 250.86000000000001 6.4180424383741331E-004 - 250.92000000000002 6.3896582426224474E-004 - 250.97999999999996 6.3589124390063816E-004 - 251.03999999999996 6.3257963959070383E-004 - 251.09999999999997 6.2903045389056016E-004 - 251.15999999999997 6.2524326008966274E-004 - 251.21999999999997 6.2121802442510678E-004 - 251.27999999999997 6.1695480901534437E-004 - 251.33999999999997 6.1245405542679891E-004 - 251.39999999999998 6.0771640483541964E-004 - 251.45999999999998 6.0274285107617749E-004 - 251.51999999999998 5.9753458771738175E-004 - 251.57999999999998 5.9209308707952330E-004 - 251.63999999999999 5.8642007476204837E-004 - 251.69999999999999 5.8051767573228709E-004 - 251.75999999999999 5.7438808143277123E-004 - 251.81999999999999 5.6803395329648571E-004 - 251.88000000000000 5.6145815308495967E-004 - 251.94000000000000 5.5466384704170961E-004 diff --git a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000004.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000004.BXY.semd deleted file mode 100644 index d976a597..00000000 --- a/seisflows/tests/test_data/test_solver/002/traces/obs/AA.S000004.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 -1.3141878785323312E-040 - 12.119999999999997 -3.0692565371215403E-040 - 12.180000000000000 -4.8243251957107494E-040 - 12.239999999999995 -6.5793938542999585E-040 - 12.299999999999997 -7.3394638153565132E-040 - 12.359999999999999 -6.6752318603573823E-040 - 12.419999999999995 -3.6976807449117532E-040 - 12.479999999999997 2.0338570658694027E-040 - 12.539999999999999 1.0477460176508079E-039 - 12.599999999999994 2.1199529536435795E-039 - 12.659999999999997 3.3105212363492402E-039 - 12.719999999999999 4.5010895190549010E-039 - 12.780000000000001 5.5432030737161338E-039 - 12.839999999999996 6.3388560025058782E-039 - 12.899999999999999 6.6660002282164062E-039 - 12.960000000000001 6.3541705867740055E-039 - 13.019999999999996 5.3288591700228819E-039 - 13.079999999999998 3.5410779120274139E-039 - 13.140000000000001 1.0484711907494129E-039 - 13.199999999999996 -1.9872436720777379E-039 - 13.259999999999998 -5.2478864683379643E-039 - 13.320000000000000 -7.9905491857565083E-039 - 13.379999999999995 -8.4948937097173870E-039 - 13.439999999999998 -5.1511532641208795E-039 - 13.500000000000000 1.4019485944441106E-039 - 13.559999999999995 1.1080403184446328E-038 - 13.619999999999997 2.2194900252466078E-038 - 13.680000000000000 3.3655885819130707E-038 - 13.739999999999995 4.4076000389131454E-038 - 13.799999999999997 5.4013298563006432E-038 - 13.859999999999999 6.3357395038891392E-038 - 13.919999999999995 6.3927389645938865E-038 - 13.979999999999997 5.2436217921126603E-038 - 14.039999999999999 2.8192838100228248E-038 - 14.099999999999994 -7.1730919322023290E-039 - 14.159999999999997 -5.1481369299352146E-038 - 14.219999999999999 -1.0070986181171248E-037 - 14.280000000000001 -1.5554200137204104E-037 - 14.339999999999996 -2.0503494401282793E-037 - 14.399999999999999 -2.3300910286596695E-037 - 14.460000000000001 -2.1686947096921921E-037 - 14.519999999999996 -1.5288578944745807E-037 - 14.579999999999998 -4.3526198763708098E-038 - 14.640000000000001 1.1130579359325658E-037 - 14.699999999999996 2.9475729797998001E-037 - 14.759999999999998 4.9022670425395400E-037 - 14.820000000000000 6.9437066998344712E-037 - 14.879999999999995 8.8598451057315745E-037 - 14.939999999999998 1.0201614585666907E-036 - 15.000000000000000 1.0611202518294340E-036 - 15.059999999999995 9.8242988518262492E-037 - 15.119999999999997 8.0654460202689949E-037 - 15.180000000000000 5.2964210339114397E-037 - 15.239999999999995 1.6005921298739241E-037 - 15.299999999999997 -2.9217863613537785E-037 - 15.359999999999999 -7.9184692795942857E-037 - 15.419999999999995 -1.3092034889282174E-036 - 15.479999999999997 -1.7873065088397931E-036 - 15.539999999999999 -2.1229463691950170E-036 - 15.599999999999994 -2.2205864646895160E-036 - 15.659999999999997 -2.0076155398814221E-036 - 15.719999999999999 -1.4817325472757805E-036 - 15.780000000000001 -6.1695016332182981E-037 - 15.839999999999996 5.7938921337258492E-037 - 15.899999999999999 1.9824814222905382E-036 - 15.960000000000001 3.4623325641492173E-036 - 16.019999999999996 4.8176691986445347E-036 - 16.079999999999998 5.8220611607824628E-036 - 16.140000000000001 6.3018740464915129E-036 - 16.200000000000003 6.0234130340097390E-036 - 16.259999999999991 4.8100629493357598E-036 - 16.319999999999993 2.5495996284801142E-036 - 16.379999999999995 -8.1293109334959340E-037 - 16.439999999999998 -5.2480511624811411E-036 - 16.500000000000000 -1.0357305071877913E-035 - 16.560000000000002 -1.5588645254581717E-035 - 16.620000000000005 -2.0409656275473334E-035 - 16.679999999999993 -2.3938800242852649E-035 - 16.739999999999995 -2.5406248844194534E-035 - 16.799999999999997 -2.4101785866837376E-035 - 16.859999999999999 -1.9429969668774146E-035 - 16.920000000000002 -1.1119345722783993E-035 - 16.980000000000004 8.5167570845802155E-037 - 17.039999999999992 1.6370593168607862E-035 - 17.099999999999994 3.4961501160300673E-035 - 17.159999999999997 5.5270172755578203E-035 - 17.219999999999999 7.5486702339834994E-035 - 17.280000000000001 9.3441250233522587E-035 - 17.340000000000003 1.0673555326300737E-034 - 17.399999999999991 1.1289501658646234E-034 - 17.459999999999994 1.0950612428190021E-034 - 17.519999999999996 9.4547503723738026E-035 - 17.579999999999998 6.6727622833370581E-035 - 17.640000000000001 2.5365892487741024E-035 - 17.700000000000003 -2.8909112318808000E-035 - 17.759999999999991 -9.4087634451174649E-035 - 17.819999999999993 -1.6683000613864128E-034 - 17.879999999999995 -2.4208334554010637E-034 - 17.939999999999998 -3.1339648443032038E-034 - 18.000000000000000 -3.7316543341275717E-034 - 18.060000000000002 -4.1306019118407926E-034 - 18.120000000000005 -4.2468980985999019E-034 - 18.179999999999993 -4.0034976219228884E-034 - 18.239999999999995 -3.3395514526154052E-034 - 18.299999999999997 -2.2194643841741654E-034 - 18.359999999999999 -6.4223439614329618E-035 - 18.420000000000002 1.3524800013944032E-034 - 18.480000000000004 3.6748872447940741E-034 - 18.539999999999992 6.1844494764659029E-034 - 18.599999999999994 8.6903380711450970E-034 - 18.659999999999997 1.0958218481204972E-033 - 18.719999999999999 1.2721800632985936E-033 - 18.780000000000001 1.3700415039532929E-033 - 18.840000000000003 1.3621852470091868E-033 - 18.899999999999991 1.2249758080324050E-033 - 18.959999999999994 9.4139635881318359E-034 - 19.019999999999996 5.0417596071668372E-034 - 19.079999999999998 -8.1314105850579921E-035 - 19.140000000000001 -7.9462723747497881E-034 - 19.200000000000003 -1.5987006941271656E-033 - 19.259999999999991 -2.4394570199904463E-033 - 19.319999999999993 -3.2469367925713340E-033 - 19.379999999999995 -3.9381715167895837E-033 - 19.439999999999998 -4.4219201108697319E-033 - 19.500000000000000 -4.6052602789202678E-033 - 19.560000000000002 -4.4018699244868122E-033 - 19.620000000000005 -3.7415880981779055E-033 - 19.679999999999993 -2.5806744976326984E-033 - 19.739999999999995 -9.1199003426926975E-034 - 19.799999999999997 1.2260218490665093E-033 - 19.859999999999999 3.7420969454073552E-033 - 19.920000000000002 6.4886865341038128E-033 - 19.980000000000004 9.2625622432079282E-033 - 20.039999999999992 1.1810818165521518E-032 - 20.099999999999994 1.3842828564223469E-032 - 20.159999999999997 1.5048454045501226E-032 - 20.219999999999999 1.5122236970961739E-032 - 20.280000000000001 1.3792752987051381E-032 - 20.340000000000003 1.0855605310577722E-032 - 20.399999999999991 6.2078587993268073E-033 - 20.459999999999994 -1.1888974532637523E-034 - 20.519999999999996 -7.9301130549688919E-033 - 20.579999999999998 -1.6848331654663696E-032 - 20.640000000000001 -2.6305175518554976E-032 - 20.700000000000003 -3.5548997967397805E-032 - 20.759999999999991 -4.3670993716081885E-032 - 20.819999999999993 -4.9651578606940355E-032 - 20.879999999999995 -5.2427596306499034E-032 - 20.939999999999998 -5.0978989236317266E-032 - 21.000000000000000 -4.4431651494770926E-032 - 21.060000000000002 -3.2170887957080932E-032 - 21.120000000000005 -1.3957831884249641E-032 - 21.179999999999993 9.9609715441046197E-033 - 21.239999999999995 3.8762097338067092E-032 - 21.299999999999997 7.0984163664437445E-032 - 21.359999999999999 1.0450955072240551E-031 - 21.420000000000002 1.3660024939500499E-031 - 21.480000000000004 1.6399705137817242E-031 - 21.539999999999992 1.8308792338073640E-031 - 21.599999999999994 1.9014643312420233E-031 - 21.659999999999997 1.8163550498127051E-031 - 21.719999999999999 1.5456471627731237E-031 - 21.780000000000001 1.0688244090707505E-031 - 21.840000000000003 3.7876471585242770E-032 - 21.899999999999991 -5.1449419622491951E-032 - 21.959999999999994 -1.5806109942109768E-031 - 22.019999999999996 -2.7668323556062973E-031 - 22.079999999999998 -3.9973349080546363E-031 - 22.140000000000001 -5.1744049395023327E-031 - 22.200000000000003 -6.1817744395685763E-031 - 22.259999999999991 -6.8903165900587557E-031 - 22.319999999999993 -7.1661560304004507E-031 - 22.379999999999995 -6.8810520412411259E-031 - 22.439999999999998 -5.9246932568699509E-031 - 22.500000000000000 -4.2183039757007602E-031 - 22.560000000000002 -1.7287100324581463E-031 - 22.619999999999990 1.5182081076977714E-031 - 22.679999999999993 5.4259410671471650E-031 - 22.739999999999995 9.8190496820096784E-031 - 22.799999999999997 1.4439559269424811E-030 - 22.859999999999999 1.8949425715250742E-030 - 22.920000000000002 2.2940237625651363E-030 - 22.980000000000004 2.5950982250084201E-030 - 23.039999999999992 2.7494241640870486E-030 - 23.099999999999994 2.7090565440040945E-030 - 23.159999999999997 2.4310053544945955E-030 - 23.219999999999999 1.8819354512680743E-030 - 23.280000000000001 1.0431487500887282E-030 - 23.340000000000003 -8.4494736335337005E-032 - 23.399999999999991 -1.4761331323877909E-030 - 23.459999999999994 -3.0793990964525377E-030 - 23.519999999999996 -4.8123569421605322E-030 - 23.579999999999998 -6.5633680908386345E-030 - 23.640000000000001 -8.1933309922959238E-030 - 23.700000000000003 -9.5406469844166362E-030 - 23.759999999999991 -1.0429126954986636E-029 - 23.819999999999993 -1.0678866244135675E-029 - 23.879999999999995 -1.0119877246479100E-029 - 23.939999999999998 -8.6080188189559784E-030 - 24.000000000000000 -6.0424562888550758E-030 - 24.060000000000002 -2.3836130917888577E-030 - 24.119999999999990 2.3297079498717649E-030 - 24.179999999999993 7.9655710902285392E-030 - 24.239999999999995 1.4288222648882633E-029 - 24.299999999999997 2.0953223037127109E-029 - 24.359999999999999 2.7510078062900614E-029 - 24.420000000000002 3.3413822370692740E-029 - 24.480000000000004 3.8046645790159379E-029 - 24.539999999999992 4.0750075444234386E-029 - 24.599999999999994 4.0867527248324539E-029 - 24.659999999999997 3.7796223891739771E-029 - 24.719999999999999 3.1046440472602948E-029 - 24.780000000000001 2.0305102485392673E-029 - 24.840000000000003 5.4997416444899201E-030 - 24.899999999999991 -1.3142095215949928E-029 - 24.959999999999994 -3.5043612871391564E-029 - 25.019999999999996 -5.9245697816444784E-029 - 25.079999999999998 -8.4396192899948723E-029 - 25.140000000000001 -1.0876709443836278E-028 - 25.200000000000003 -1.3030455041449332E-028 - 25.259999999999991 -1.4671485709498532E-028 - 25.319999999999993 -1.5558762524679477E-028 - 25.379999999999995 -1.5455474998168575E-028 - 25.439999999999998 -1.4148070125425432E-028 - 25.500000000000000 -1.1467631053602815E-028 - 25.560000000000002 -7.3124753424474973E-029 - 25.619999999999990 -1.6705238622743629E-029 - 25.679999999999993 5.3603351081587198E-029 - 25.739999999999995 1.3555825760195337E-028 - 25.799999999999997 2.2554911451898704E-028 - 25.859999999999999 3.1857525628351545E-028 - 25.920000000000002 4.0832284906917954E-028 - 25.980000000000004 4.8735691120494014E-028 - 26.039999999999992 5.4743806769123486E-028 - 26.099999999999994 5.7996612686612055E-028 - 26.159999999999997 5.7654383595505778E-028 - 26.219999999999999 5.2964359142014716E-028 - 26.280000000000001 4.3334869167419950E-028 - 26.340000000000003 2.8412971591855180E-028 - 26.399999999999991 8.1605318504177182E-029 - 26.459999999999994 -1.7077152009525586E-028 - 26.519999999999996 -4.6516778412777950E-028 - 26.579999999999998 -7.8903365034594314E-028 - 26.640000000000001 -1.1250414097445019E-027 - 26.700000000000003 -1.4513608423119644E-027 - 26.759999999999991 -1.7423168737314816E-027 - 26.819999999999993 -1.9694586513897940E-027 - 26.879999999999995 -2.1030454745712371E-027 - 26.939999999999998 -2.1139224562153751E-027 - 27.000000000000000 -1.9757298117608979E-027 - 27.060000000000002 -1.6673507760779843E-027 - 27.119999999999990 -1.1754716608163549E-027 - 27.179999999999993 -4.9709130169025251E-028 - 27.239999999999995 3.5820644230176502E-028 - 27.299999999999997 1.3664244001892538E-027 - 27.359999999999999 2.4879823654229833E-027 - 27.420000000000002 3.6674137059949303E-027 - 27.480000000000004 4.8341113678261096E-027 - 27.539999999999992 5.9042771558656374E-027 - 27.599999999999994 6.7841546383017708E-027 - 27.659999999999997 7.3745702283162013E-027 - 27.719999999999999 7.5767115235130114E-027 - 27.780000000000001 7.2989725618653216E-027 - 27.840000000000003 6.4645965015708128E-027 - 27.899999999999991 5.0197448527941716E-027 - 27.959999999999994 2.9415169280175953E-027 - 28.019999999999996 2.4537525541452331E-028 - 28.079999999999998 -3.0086302458712572E-027 - 28.140000000000001 -6.7114791738826190E-027 - 28.200000000000003 -1.0703250435912521E-026 - 28.259999999999991 -1.4774215820450844E-026 - 28.319999999999993 -1.8669422592674190E-026 - 28.379999999999995 -2.2097081003301840E-026 - 28.439999999999998 -2.4740866442028931E-026 - 28.500000000000000 -2.6276036955949403E-026 - 28.560000000000002 -2.6388978187265662E-026 - 28.619999999999990 -2.4799509872666898E-026 - 28.679999999999993 -2.1285005680521394E-026 - 28.739999999999995 -1.5705103323749243E-026 - 28.799999999999997 -8.0255314192438126E-027 - 28.859999999999999 1.6605715391639224E-027 - 28.920000000000002 1.3115652238105898E-026 - 28.980000000000004 2.5946778516607339E-026 - 29.039999999999992 3.9602442697176715E-026 - 29.099999999999994 5.3378614939027826E-026 - 29.159999999999997 6.6435216547206244E-026 - 29.219999999999999 7.7823705388856682E-026 - 29.280000000000001 8.6525992408053100E-026 - 29.340000000000003 9.1504154982946642E-026 - 29.399999999999991 9.1759771788303721E-026 - 29.459999999999994 8.6400972486571757E-026 - 29.519999999999996 7.4714427193282818E-026 - 29.579999999999998 5.6238948038700935E-026 - 29.640000000000001 3.0836678142051958E-026 - 29.700000000000003 -1.2426450456189251E-027 - 29.759999999999991 -3.9309067377499932E-026 - 29.819999999999993 -8.2196350198170906E-026 - 29.879999999999995 -1.2824710412554836E-025 - 29.939999999999998 -1.7532328285726715E-025 - 30.000000000000000 -2.2084558216131975E-025 - 30.060000000000002 -2.6186406173713103E-025 - 30.119999999999990 -2.9516125322217079E-025 - 30.179999999999993 -3.1738717917352088E-025 - 30.239999999999995 -3.2522421091715481E-025 - 30.299999999999997 -3.1557768558460628E-025 - 30.359999999999999 -2.8578629456777812E-025 - 30.420000000000002 -2.3384436195280580E-025 - 30.480000000000004 -1.5862634380417296E-025 - 30.539999999999992 -6.0102110043682325E-026 - 30.599999999999994 6.0469474264836558E-026 - 30.659999999999997 2.0038230320109993E-025 - 30.719999999999999 3.5537376590787736E-025 - 30.780000000000001 5.1957860262352490E-025 - 30.840000000000003 6.8555857746529012E-025 - 30.899999999999991 8.4441927207117162E-025 - 30.959999999999994 9.8602317577241413E-025 - 31.019999999999996 1.0993050301051556E-024 - 31.079999999999998 1.1726914678589226E-024 - 31.140000000000001 1.1946224241168275E-024 - 31.200000000000003 1.1541663103313455E-024 - 31.259999999999991 1.0417150967375457E-024 - 31.319999999999993 8.4973920057340460E-025 - 31.379999999999995 5.7357507427039476E-025 - 31.439999999999998 2.1221108216750326E-025 - 31.500000000000000 -2.3096687053540051E-025 - 31.560000000000002 -7.4751756873273236E-025 - 31.619999999999990 -1.3234250784340396E-024 - 31.679999999999993 -1.9387691644774719E-024 - 31.739999999999995 -2.5676449501213428E-024 - 31.799999999999997 -3.1783806290785838E-024 - 31.859999999999999 -3.7341059459258196E-024 - 31.920000000000002 -4.1937080729568460E-024 - 31.980000000000004 -4.5132077461108935E-024 - 32.039999999999992 -4.6475643342819482E-024 - 32.099999999999994 -4.5529005024901725E-024 - 32.159999999999997 -4.1891154557087509E-024 - 32.219999999999999 -3.5228203459322456E-024 - 32.280000000000001 -2.5305049319346875E-024 - 32.340000000000003 -1.2018044905706145E-024 - 32.399999999999991 4.5728941420346027E-025 - 32.459999999999994 2.4214686208544209E-024 - 32.519999999999996 4.6436194469537352E-024 - 32.579999999999998 7.0530289626774088E-024 - 32.640000000000001 9.5545549842840954E-024 - 32.700000000000003 1.2028985536663694E-023 - 32.759999999999991 1.4334822646142635E-023 - 32.819999999999993 1.6311676567817192E-023 - 32.879999999999995 1.7785407976291988E-023 - 32.939999999999998 1.8575075393445679E-023 - 33.000000000000000 1.8501661047571941E-023 - 33.060000000000002 1.7398422177924744E-023 - 33.119999999999990 1.5122611692364823E-023 - 33.179999999999993 1.1568151818961010E-023 - 33.239999999999995 6.6787380445386810E-024 - 33.299999999999997 4.6069878947968138E-025 - 33.359999999999999 -7.0051845537523875E-024 - 33.420000000000002 -1.5553741419520697E-023 - 33.480000000000004 -2.4928333193313362E-023 - 33.539999999999992 -3.4777525407776509E-023 - 33.599999999999994 -4.4656456095804694E-023 - 33.659999999999997 -5.4033680325351921E-023 - 33.719999999999999 -6.2304098195500767E-023 - 33.780000000000001 -6.8808402432714058E-023 - 33.840000000000003 -7.2859116981280825E-023 - 33.899999999999991 -7.3772963157547919E-023 - 33.959999999999994 -7.0908899347970254E-023 - 34.019999999999996 -6.3710748468008892E-023 - 34.079999999999998 -5.1752846479268553E-023 - 34.140000000000001 -3.4786789371219394E-023 - 34.200000000000003 -1.2786867951728839E-023 - 34.259999999999991 1.4008423579276653E-023 - 34.319999999999993 4.5061750556570224E-023 - 34.379999999999995 7.9512195829522417E-023 - 34.439999999999998 1.1616329222684536E-022 - 34.500000000000000 1.5348660864674686E-022 - 34.560000000000002 1.8964339489589913E-022 - 34.619999999999990 2.2252596100012612E-022 - 34.679999999999993 2.4981984359794221E-022 - 34.739999999999995 2.6908713598590322E-022 - 34.799999999999997 2.7786993016766199E-022 - 34.859999999999999 2.7381205381645105E-022 - 34.920000000000002 2.5479582454096303E-022 - 34.980000000000004 2.1908953479281207E-022 - 35.039999999999992 1.6550004007845802E-022 - 35.099999999999994 9.3523783741754771E-023 - 35.159999999999997 3.4887915318014942E-024 - 35.219999999999999 -1.0332060593140775E-022 - 35.280000000000001 -2.2456529646779836E-022 - 35.340000000000003 -3.5678745550209173E-022 - 35.399999999999991 -4.9539060791223700E-022 - 35.459999999999994 -6.3467017318792641E-022 - 35.519999999999996 -7.6790309689543444E-022 - 35.579999999999998 -8.8750048968600739E-022 - 35.640000000000001 -9.8522681753472291E-022 - 35.700000000000003 -1.0524867957456931E-021 - 35.759999999999991 -1.0806775715418582E-021 - 35.819999999999993 -1.0616010915150060E-021 - 35.879999999999995 -9.8792705675691974E-022 - 35.939999999999998 -8.5369443195150031E-022 - 36.000000000000000 -6.5483391234916764E-022 - 36.060000000000002 -3.8969149683336602E-022 - 36.119999999999990 -5.9527549270972608E-023 - 36.179999999999993 3.3103512417856584E-022 - 36.239999999999995 7.7364589362299623E-022 - 36.299999999999997 1.2559753431740907E-021 - 36.359999999999999 1.7616106626801370E-021 - 36.420000000000002 2.2701325055922502E-021 - 36.479999999999990 2.7573982256780071E-021 - 36.539999999999992 3.1960606540200474E-021 - 36.599999999999994 3.5563384327031169E-021 - 36.659999999999997 3.8070478904765572E-021 - 36.719999999999999 3.9168936194811990E-021 - 36.780000000000001 3.8560054628174252E-021 - 36.840000000000003 3.5976890597868214E-021 - 36.899999999999991 3.1203447389367084E-021 - 36.959999999999994 2.4094917764420946E-021 - 37.019999999999996 1.4598146689381917E-021 - 37.079999999999998 2.7714058561677907E-022 - 37.140000000000001 -1.1197703524095134E-021 - 37.200000000000003 -2.6977355668692300E-021 - 37.259999999999991 -4.4080915513813926E-021 - 37.319999999999993 -6.1861938121903070E-021 - 37.379999999999995 -7.9515934470444855E-021 - 37.439999999999998 -9.6089940887704325E-021 - 37.500000000000000 -1.1050079666727279E-020 - 37.560000000000002 -1.2156252172442005E-020 - 37.619999999999990 -1.2802299828121257E-020 - 37.679999999999993 -1.2860952100058836E-020 - 37.739999999999995 -1.2208240625245611E-020 - 37.799999999999997 -1.0729501447419456E-020 - 37.859999999999999 -8.3258321455501682E-021 - 37.920000000000002 -4.9207030655688794E-021 - 37.979999999999990 -4.6643482146065236E-022 - 38.039999999999992 5.0498600871001116E-021 - 38.099999999999994 1.1601277861725715E-020 - 38.159999999999997 1.9117453766299687E-020 - 38.219999999999999 2.7482720973420124E-020 - 38.280000000000001 3.6536446913528332E-020 - 38.340000000000003 4.6075960362192401E-020 - 38.399999999999991 5.5862324356491555E-020 - 38.459999999999994 6.5629212073499127E-020 - 38.519999999999996 7.5094902187188415E-020 - 38.579999999999998 8.3977405610132382E-020 - 38.640000000000001 9.2012428976622895E-020 - 38.700000000000003 9.8973902450454030E-020 - 38.759999999999991 1.0469632288231202E-019 - 38.819999999999993 1.0909840530319870E-019 - 38.879999999999995 1.1220688509264697E-019 - 38.939999999999998 1.1417967514033585E-019 - 39.000000000000000 1.1532697742412298E-019 - 39.060000000000002 1.1612931037560015E-019 - 39.119999999999990 1.1725119787376366E-019 - 39.179999999999993 1.1954923436185792E-019 - 39.239999999999995 1.2407340065327294E-019 - 39.299999999999997 1.3206083902570235E-019 - 39.359999999999999 1.4492151392697684E-019 - 39.420000000000002 1.6421489351665577E-019 - 39.479999999999990 1.9161796703052476E-019 - 39.539999999999992 2.2888509293260086E-019 - 39.599999999999994 2.7779958762419259E-019 - 39.659999999999997 3.4011915214315263E-019 - 39.719999999999999 4.1751576713333212E-019 - 39.780000000000001 5.1151206137547080E-019 - 39.840000000000003 6.2341648125393154E-019 - 39.899999999999991 7.5425844904923361E-019 - 39.959999999999994 9.0472654916558033E-019 - 40.019999999999996 1.0751108615892227E-018 - 40.079999999999998 1.2652516491915543E-018 - 40.140000000000001 1.4744945601838216E-018 - 40.200000000000003 1.7016544445313073E-018 - 40.259999999999991 1.9449847404491010E-018 - 40.319999999999993 2.2021538391654149E-018 - 40.379999999999995 2.4702225778610882E-018 - 40.439999999999998 2.7456206946612096E-018 - 40.500000000000000 3.0241166490548879E-018 - 40.560000000000002 3.3007728192460238E-018 - 40.619999999999990 3.5698774009615887E-018 - 40.679999999999993 3.8248414326879816E-018 - 40.739999999999995 4.0580503295591884E-018 - 40.799999999999997 4.2606548095380675E-018 - 40.859999999999999 4.4222839653644904E-018 - 40.920000000000002 4.5306636825854166E-018 - 40.979999999999990 4.5711194486012184E-018 - 41.039999999999992 4.5259482247276983E-018 - 41.099999999999994 4.3736226697272034E-018 - 41.159999999999997 4.0878060255471734E-018 - 41.219999999999999 3.6361774446569395E-018 - 41.280000000000001 2.9789726654534572E-018 - 41.340000000000003 2.0672916061826894E-018 - 41.399999999999991 8.4106000538850785E-019 - 41.459999999999994 -7.7334401882779123E-019 - 41.519999999999996 -2.8658547847438552E-018 - 41.579999999999998 -5.5459397569363177E-018 - 41.640000000000001 -8.9463023146186759E-018 - 41.700000000000003 -1.3227166101440365E-017 - 41.759999999999991 -1.8581150220400188E-017 - 41.819999999999993 -2.5238857590650848E-017 - 41.879999999999995 -3.3475297599888785E-017 - 41.939999999999998 -4.3617205799578916E-017 - 42.000000000000000 -5.6051331985312399E-017 - 42.060000000000002 -7.1234030292968953E-017 - 42.119999999999990 -8.9702017038422338E-017 - 42.179999999999993 -1.1208484194918451E-016 - 42.239999999999995 -1.3911920741617993E-016 - 42.299999999999997 -1.7166494611069087E-016 - 42.359999999999999 -2.1072371502776805E-016 - 42.420000000000002 -2.5745994225894004E-016 - 42.479999999999990 -3.1322565442694822E-016 - 42.539999999999992 -3.7958758334767710E-016 - 42.599999999999994 -4.5835903983162651E-016 - 42.659999999999997 -5.5163590658458635E-016 - 42.719999999999999 -6.6183764419455936E-016 - 42.780000000000001 -7.9175433078735192E-016 - 42.840000000000003 -9.4459905672738132E-016 - 42.899999999999991 -1.1240678088775692E-015 - 42.959999999999994 -1.3344068283964470E-015 - 43.019999999999996 -1.5804881950530043E-015 - 43.079999999999998 -1.8678961249968163E-015 - 43.140000000000001 -2.2030206959135667E-015 - 43.200000000000003 -2.5931646423800786E-015 - 43.259999999999991 -3.0466624016673108E-015 - 43.319999999999993 -3.5730096727699219E-015 - 43.379999999999995 -4.1830124651053497E-015 - 43.439999999999998 -4.8889446895526718E-015 - 43.500000000000000 -5.7047251205425036E-015 - 43.560000000000002 -6.6461180897961216E-015 - 43.619999999999990 -7.7309425294970598E-015 - 43.679999999999993 -8.9793094525221536E-015 - 43.739999999999995 -1.0413872420328837E-014 - 43.799999999999997 -1.2060118587642996E-014 - 43.859999999999999 -1.3946662209791690E-014 - 43.920000000000002 -1.6105574124798233E-014 - 43.979999999999990 -1.8572741819457660E-014 - 44.039999999999992 -2.1388239993351934E-014 - 44.099999999999994 -2.4596742325697523E-014 - 44.159999999999997 -2.8247942353691067E-014 - 44.219999999999999 -3.2397002799801166E-014 - 44.280000000000001 -3.7105033319031705E-014 - 44.340000000000003 -4.2439566621927824E-014 - 44.399999999999991 -4.8475035888014577E-014 - 44.459999999999994 -5.5293297067870926E-014 - 44.519999999999996 -6.2984063969696054E-014 - 44.579999999999998 -7.1645373271476809E-014 - 44.640000000000001 -8.1383982563509237E-014 - 44.700000000000003 -9.2315688553514337E-014 - 44.759999999999991 -1.0456559889543784E-013 - 44.819999999999993 -1.1826817402283635E-013 - 44.879999999999995 -1.3356717247808874E-013 - 44.939999999999998 -1.5061538930303432E-013 - 45.000000000000000 -1.6957391142590639E-013 - 45.060000000000002 -1.9061135258021168E-013 - 45.119999999999990 -2.1390231773390071E-013 - 45.179999999999993 -2.3962540190066377E-013 - 45.239999999999995 -2.6796046830168045E-013 - 45.299999999999997 -2.9908528404440982E-013 - 45.359999999999999 -3.3317074547277595E-013 - 45.420000000000002 -3.7037524782191280E-013 - 45.479999999999990 -4.1083739096544374E-013 - 45.539999999999992 -4.5466701492716846E-013 - 45.599999999999994 -5.0193388016307668E-013 - 45.659999999999997 -5.5265412252748246E-013 - 45.719999999999999 -6.0677382910306427E-013 - 45.780000000000001 -6.6414888205323116E-013 - 45.840000000000003 -7.2452076259164596E-013 - 45.899999999999991 -7.8748791050705787E-013 - 45.959999999999994 -8.5247052816581387E-013 - 46.019999999999996 -9.1866976732577354E-013 - 46.079999999999998 -9.8501926078981111E-013 - 46.140000000000001 -1.0501268329640863E-012 - 46.200000000000003 -1.1122061323756179E-012 - 46.259999999999991 -1.1689968730289815E-012 - 46.319999999999993 -1.2176705205662205E-012 - 46.379999999999995 -1.2547186343833736E-012 - 46.439999999999998 -1.2758250596093457E-012 - 46.500000000000000 -1.2757136775501761E-012 - 46.560000000000002 -1.2479719581318697E-012 - 46.619999999999990 -1.1848458139040443E-012 - 46.679999999999993 -1.0770012720527840E-012 - 46.739999999999995 -9.1324748044710341E-013 - 46.799999999999997 -6.8021370315694046E-013 - 46.859999999999999 -3.6198144867425951E-013 - 46.920000000000002 6.0349005512704203E-014 - 46.979999999999990 6.0915128341593438E-013 - 47.039999999999992 1.3108513435562648E-012 - 47.099999999999994 2.1965765304451385E-012 - 47.159999999999997 3.3029296542154983E-012 - 47.219999999999999 4.6728402538381938E-012 - 47.280000000000001 6.3565843925890761E-012 - 47.340000000000003 8.4129084741098740E-012 - 47.399999999999991 1.0910374837843315E-011 - 47.459999999999994 1.3928830440066483E-011 - 47.519999999999996 1.7561149347067375E-011 - 47.579999999999998 2.1915169356200767E-011 - 47.640000000000001 2.7115962157735964E-011 - 47.700000000000003 3.3308317921662097E-011 - 47.759999999999991 4.0659713729616101E-011 - 47.819999999999993 4.9363586038272038E-011 - 47.879999999999995 5.9643041833943865E-011 - 47.939999999999998 7.1755165292122944E-011 - 48.000000000000000 8.5995827699519814E-011 - 48.060000000000002 1.0270515108554439E-010 - 48.119999999999990 1.2227364067379464E-010 - 48.179999999999993 1.4514932043103684E-010 - 48.239999999999995 1.7184555249894464E-010 - 48.299999999999997 2.0295009335532813E-010 - 48.359999999999999 2.3913501626573397E-010 - 48.420000000000002 2.8116826629848739E-010 - 48.479999999999990 3.2992640555534009E-010 - 48.539999999999992 3.8640933876243680E-010 - 48.599999999999994 4.5175611829202432E-010 - 48.659999999999997 5.2726348688002934E-010 - 48.719999999999999 6.1440679095650164E-010 - 48.780000000000001 7.1486262974775270E-010 - 48.840000000000003 8.3053503878744777E-010 - 48.899999999999991 9.6358428791985808E-010 - 48.959999999999994 1.1164593279412424E-009 - 49.019999999999996 1.2919355067510687E-009 - 49.079999999999998 1.4931538175763980E-009 - 49.140000000000001 1.7236674369043755E-009 - 49.200000000000003 1.9874915727220635E-009 - 49.259999999999991 2.2891624976915477E-009 - 49.319999999999993 2.6337998356977135E-009 - 49.379999999999995 3.0271766826763776E-009 - 49.439999999999998 3.4757995085931842E-009 - 49.500000000000000 3.9869958825275160E-009 - 49.560000000000002 4.5690129908584849E-009 - 49.619999999999990 5.2311241463879468E-009 - 49.679999999999993 5.9837508326114773E-009 - 49.739999999999995 6.8385987361866888E-009 - 49.799999999999997 7.8088033060787079E-009 - 49.859999999999999 8.9090967419779453E-009 - 49.920000000000002 1.0155991066543698E-008 - 49.979999999999990 1.1567977340110257E-008 - 50.039999999999992 1.3165755847447322E-008 - 50.099999999999994 1.4972481445276748E-008 - 50.159999999999997 1.7014033942886885E-008 - 50.219999999999999 1.9319319446507586E-008 - 50.280000000000001 2.1920619015641614E-008 - 50.340000000000003 2.4853930858679554E-008 - 50.399999999999991 2.8159405304606754E-008 - 50.459999999999994 3.1881766672729322E-008 - 50.519999999999996 3.6070824476028721E-008 - 50.579999999999998 4.0781990371239907E-008 - 50.640000000000001 4.6076897153071473E-008 - 50.700000000000003 5.2024039857392715E-008 - 50.759999999999991 5.8699482722566435E-008 - 50.819999999999993 6.6187677375144185E-008 - 50.879999999999995 7.4582289699199389E-008 - 50.939999999999998 8.3987141347407193E-008 - 51.000000000000000 9.4517290640220832E-008 - 51.060000000000002 1.0630010452661550E-007 - 51.119999999999990 1.1947650219148066E-007 - 51.179999999999993 1.3420233017689842E-007 - 51.239999999999995 1.5064982911403009E-007 - 51.299999999999997 1.6900917454475362E-007 - 51.359999999999999 1.8949038184608728E-007 - 51.420000000000002 2.1232500083193614E-007 - 51.479999999999990 2.3776834814391006E-007 - 51.539999999999992 2.6610173106477204E-007 - 51.599999999999994 2.9763480294147225E-007 - 51.659999999999997 3.3270833368990511E-007 - 51.719999999999999 3.7169701308264076E-007 - 51.780000000000001 4.1501268801410412E-007 - 51.840000000000003 4.6310767756912590E-007 - 51.899999999999991 5.1647842012668248E-007 - 51.959999999999994 5.7566941606372945E-007 - 52.019999999999996 6.4127766304418566E-007 - 52.079999999999998 7.1395718894965532E-007 - 52.140000000000001 7.9442408935115508E-007 - 52.200000000000003 8.8346189919268057E-007 - 52.259999999999991 9.8192731901330368E-007 - 52.319999999999993 1.0907565922240769E-006 - 52.379999999999995 1.2109724951032950E-006 - 52.439999999999998 1.3436912903619720E-006 - 52.500000000000000 1.4901303058214814E-006 - 52.560000000000002 1.6516167086976399E-006 - 52.619999999999990 1.8295961643690551E-006 - 52.679999999999993 2.0256426830228179E-006 - 52.739999999999995 2.2414689314053757E-006 - 52.799999999999997 2.4789366589483481E-006 - 52.859999999999999 2.7400694901907708E-006 - 52.920000000000002 3.0270646303912886E-006 - 52.979999999999990 3.3423061565192236E-006 - 53.039999999999992 3.6883801883190301E-006 - 53.099999999999994 4.0680898088075158E-006 - 53.159999999999997 4.4844702803161404E-006 - 53.219999999999999 4.9408078624906702E-006 - 53.280000000000001 5.4406565852628104E-006 - 53.339999999999989 5.9878591894470707E-006 - 53.399999999999991 6.5865651533197582E-006 - 53.459999999999994 7.2412572291183561E-006 - 53.519999999999996 7.9567682919845886E-006 - 53.579999999999998 8.7383122399713900E-006 - 53.640000000000001 9.5915036385057628E-006 - 53.700000000000003 1.0522390181931996E-005 - 53.759999999999991 1.1537477591930706E-005 - 53.819999999999993 1.2643760072011686E-005 - 53.879999999999995 1.3848755691912055E-005 - 53.939999999999998 1.5160536868669904E-005 - 54.000000000000000 1.6587764658199710E-005 - 54.060000000000002 1.8139724848585583E-005 - 54.119999999999990 1.9826371310475574E-005 - 54.179999999999993 2.1658363635751795E-005 - 54.239999999999995 2.3647106027372326E-005 - 54.299999999999997 2.5804789048261485E-005 - 54.359999999999999 2.8144447899998520E-005 - 54.420000000000002 3.0679996582610166E-005 - 54.479999999999990 3.3426281511377158E-005 - 54.539999999999992 3.6399140850980505E-005 - 54.599999999999994 3.9615443915063467E-005 - 54.659999999999997 4.3093155654476581E-005 - 54.719999999999999 4.6851383674802997E-005 - 54.780000000000001 5.0910448930304591E-005 - 54.839999999999989 5.5291944341757003E-005 - 54.899999999999991 6.0018779943932349E-005 - 54.959999999999994 6.5115272993346125E-005 - 55.019999999999996 7.0607198107533182E-005 - 55.079999999999998 7.6521844667764750E-005 - 55.140000000000001 8.2888116324051706E-005 - 55.200000000000003 8.9736566133780598E-005 - 55.259999999999991 9.7099479045035492E-005 - 55.319999999999993 1.0501093600644236E-004 - 55.379999999999995 1.1350693564778421E-004 - 55.439999999999998 1.2262538342152574E-004 - 55.500000000000000 1.3240624834643218E-004 - 55.560000000000002 1.4289158848617385E-004 - 55.619999999999990 1.5412561338470465E-004 - 55.679999999999993 1.6615480795494948E-004 - 55.739999999999995 1.7902795092059016E-004 - 55.799999999999997 1.9279624446752531E-004 - 55.859999999999999 2.0751330162726919E-004 - 55.920000000000002 2.2323532478237798E-004 - 55.979999999999990 2.4002112848091415E-004 - 56.039999999999992 2.5793215666644099E-004 - 56.099999999999994 2.7703258745887454E-004 - 56.159999999999997 2.9738941353127249E-004 - 56.219999999999999 3.1907244025563376E-004 - 56.280000000000001 3.4215442575909861E-004 - 56.339999999999989 3.6671103142391141E-004 - 56.399999999999991 3.9282100175800510E-004 - 56.459999999999994 4.2056601408275356E-004 - 56.519999999999996 4.5003089344670613E-004 - 56.579999999999998 4.8130351511754609E-004 - 56.640000000000001 5.1447485131682574E-004 - 56.700000000000003 5.4963904196998271E-004 - 56.759999999999991 5.8689329118781280E-004 - 56.819999999999993 6.2633806177367292E-004 - 56.879999999999995 6.6807677604407251E-004 - 56.939999999999998 7.1221604429974367E-004 - 57.000000000000000 7.5886544251214819E-004 - 57.060000000000002 8.0813773413868876E-004 - 57.119999999999990 8.6014843713913232E-004 - 57.179999999999993 9.1501589438330389E-004 - 57.239999999999995 9.7286151792201961E-004 - 57.299999999999997 1.0338090838214297E-003 - 57.359999999999999 1.0979852254627211E-003 - 57.420000000000002 1.1655188491754525E-003 - 57.479999999999990 1.2365413461476811E-003 - 57.539999999999992 1.3111861130888549E-003 - 57.599999999999994 1.3895885303265572E-003 - 57.659999999999997 1.4718857844545016E-003 - 57.719999999999999 1.5582168010469229E-003 - 57.780000000000001 1.6487215389961933E-003 - 57.839999999999989 1.7435411997851675E-003 - 57.899999999999991 1.8428181515288836E-003 - 57.959999999999994 1.9466947055176520E-003 - 58.019999999999996 2.0553140086216107E-003 - 58.079999999999998 2.1688186663700150E-003 - 58.140000000000001 2.2873513719824023E-003 - 58.200000000000003 2.4110536772464788E-003 - 58.259999999999991 2.5400662320219074E-003 - 58.319999999999993 2.6745279801945274E-003 - 58.379999999999995 2.8145758440351267E-003 - 58.439999999999998 2.9603443165326297E-003 - 58.500000000000000 3.1119655368955952E-003 - 58.560000000000002 3.2695674750802023E-003 - 58.619999999999990 3.4332752223432484E-003 - 58.679999999999993 3.6032089701315403E-003 - 58.739999999999995 3.7794843405896204E-003 - 58.799999999999997 3.9622119646198087E-003 - 58.859999999999999 4.1514955939992481E-003 - 58.920000000000002 4.3474329656202054E-003 - 58.979999999999990 4.5501148286755467E-003 - 59.039999999999992 4.7596253461911981E-003 - 59.099999999999994 4.9760386263833492E-003 - 59.159999999999997 5.1994214001926126E-003 - 59.219999999999999 5.4298307101213082E-003 - 59.280000000000001 5.6673125616015039E-003 - 59.339999999999989 5.9119037276356111E-003 - 59.399999999999991 6.1636294688011605E-003 - 59.459999999999994 6.4225028506149518E-003 - 59.519999999999996 6.6885246264739000E-003 - 59.579999999999998 6.9616828366954415E-003 - 59.640000000000001 7.2419518181731828E-003 - 59.700000000000003 7.5292911907369189E-003 - 59.759999999999991 7.8236463048656796E-003 - 59.819999999999993 8.1249483357003216E-003 - 59.879999999999995 8.4331116321402638E-003 - 59.939999999999998 8.7480331240879766E-003 - 60.000000000000000 9.0695951183766312E-003 - 60.060000000000002 9.3976621257460535E-003 - 60.119999999999990 9.7320810563921965E-003 - 60.179999999999993 1.0072679613563370E-002 - 60.239999999999995 1.0419269184688737E-002 - 60.299999999999997 1.0771640752359080E-002 - 60.359999999999999 1.1129567048057927E-002 - 60.420000000000002 1.1492801934599070E-002 - 60.479999999999990 1.1861080161753723E-002 - 60.539999999999992 1.2234116169536832E-002 - 60.599999999999994 1.2611604650580111E-002 - 60.659999999999997 1.2993222021757659E-002 - 60.719999999999999 1.3378623397143099E-002 - 60.780000000000001 1.3767444604190654E-002 - 60.839999999999989 1.4159304379815635E-002 - 60.899999999999991 1.4553799409078064E-002 - 60.959999999999994 1.4950508616634462E-002 - 61.019999999999996 1.5348992133651783E-002 - 61.079999999999998 1.5748791921878814E-002 - 61.140000000000001 1.6149431646255357E-002 - 61.200000000000003 1.6550417698451201E-002 - 61.259999999999991 1.6951241815679016E-002 - 61.319999999999993 1.7351375810207192E-002 - 61.379999999999995 1.7750278272789872E-002 - 61.439999999999998 1.8147393451365592E-002 - 61.500000000000000 1.8542151837369972E-002 - 61.560000000000002 1.8933969166017261E-002 - 61.619999999999990 1.9322252722370932E-002 - 61.679999999999993 1.9706394900711473E-002 - 61.739999999999995 2.0085782396892935E-002 - 61.799999999999997 2.0459789237901736E-002 - 61.859999999999999 2.0827781957822211E-002 - 61.920000000000002 2.1189125512358926E-002 - 61.979999999999990 2.1543175548622825E-002 - 62.039999999999992 2.1889285269308903E-002 - 62.099999999999994 2.2226807228765404E-002 - 62.159999999999997 2.2555089923837479E-002 - 62.219999999999999 2.2873485581086858E-002 - 62.280000000000001 2.3181350061380241E-002 - 62.339999999999989 2.3478038381233173E-002 - 62.399999999999991 2.3762914480624897E-002 - 62.459999999999994 2.4035349210584752E-002 - 62.519999999999996 2.4294721046129342E-002 - 62.579999999999998 2.4540417302138580E-002 - 62.640000000000001 2.4771840778108074E-002 - 62.700000000000003 2.4988405906361772E-002 - 62.759999999999991 2.5189541930976396E-002 - 62.819999999999993 2.5374697292150753E-002 - 62.879999999999995 2.5543333386905030E-002 - 62.939999999999998 2.5694937746771569E-002 - 63.000000000000000 2.5829015676302018E-002 - 63.060000000000002 2.5945098794321518E-002 - 63.119999999999990 2.6042740257163050E-002 - 63.179999999999993 2.6121521991552252E-002 - 63.239999999999995 2.6181048718546169E-002 - 63.299999999999997 2.6220959859308786E-002 - 63.359999999999999 2.6240923325826643E-002 - 63.420000000000002 2.6240634984567295E-002 - 63.479999999999990 2.6219825682919633E-002 - 63.539999999999992 2.6178261490197065E-002 - 63.599999999999994 2.6115739330960338E-002 - 63.659999999999997 2.6032094912038069E-002 - 63.719999999999999 2.5927200243474623E-002 - 63.780000000000001 2.5800962186829278E-002 - 63.839999999999989 2.5653328057798630E-002 - 63.899999999999991 2.5484279099115117E-002 - 63.959999999999994 2.5293839225552683E-002 - 64.019999999999996 2.5082070000972800E-002 - 64.079999999999998 2.4849074618786389E-002 - 64.140000000000001 2.4594994124609894E-002 - 64.200000000000003 2.4320005619350597E-002 - 64.259999999999991 2.4024331844374334E-002 - 64.319999999999993 2.3708230615496036E-002 - 64.379999999999995 2.3372000257078501E-002 - 64.439999999999998 2.3015978892536100E-002 - 64.500000000000000 2.2640537798897593E-002 - 64.560000000000002 2.2246091192149139E-002 - 64.619999999999990 2.1833086522851982E-002 - 64.679999999999993 2.1402008738799713E-002 - 64.739999999999995 2.0953377815632349E-002 - 64.799999999999997 2.0487743760125084E-002 - 64.859999999999999 2.0005695584877390E-002 - 64.920000000000002 1.9507846350161992E-002 - 64.979999999999990 1.8994844528790841E-002 - 65.039999999999992 1.8467364663252016E-002 - 65.099999999999994 1.7926109464114919E-002 - 65.159999999999997 1.7371806387346620E-002 - 65.219999999999999 1.6805206748832759E-002 - 65.280000000000001 1.6227084430185987E-002 - 65.339999999999989 1.5638232502108891E-002 - 65.399999999999991 1.5039462037155744E-002 - 65.459999999999994 1.4431601585525066E-002 - 65.519999999999996 1.3815493795689075E-002 - 65.579999999999998 1.3191995198083126E-002 - 65.640000000000001 1.2561970617690066E-002 - 65.700000000000003 1.1926293932770058E-002 - 65.759999999999991 1.1285846986884231E-002 - 65.819999999999993 1.0641515336978423E-002 - 65.879999999999995 9.9941857856176899E-003 - 65.939999999999998 9.3447453045468545E-003 - 66.000000000000000 8.6940795813240570E-003 - 66.060000000000002 8.0430703712516833E-003 - 66.119999999999990 7.3925932122866737E-003 - 66.179999999999993 6.7435156050177532E-003 - 66.239999999999995 6.0966954676707381E-003 - 66.299999999999997 5.4529780685859692E-003 - 66.359999999999999 4.8131954712192825E-003 - 66.420000000000002 4.1781641385353497E-003 - 66.479999999999990 3.5486830903465787E-003 - 66.539999999999992 2.9255323623355181E-003 - 66.599999999999994 2.3094712784853116E-003 - 66.659999999999997 1.7012368337911462E-003 - 66.719999999999999 1.1015421947406015E-003 - 66.780000000000001 5.1107575892968726E-004 - 66.839999999999989 -6.9500979808993931E-005 - 66.899999999999991 -6.3955365228885526E-004 - 66.959999999999994 -1.1984771102154308E-003 - 67.019999999999996 -1.7456958338708027E-003 - 67.079999999999998 -2.2806652644341394E-003 - 67.140000000000001 -2.8028719839471574E-003 - 67.199999999999989 -3.3118356445975576E-003 - 67.259999999999991 -3.8071088395048849E-003 - 67.319999999999993 -4.2882771468020723E-003 - 67.379999999999995 -4.7549599283078668E-003 - 67.439999999999998 -5.2068115469213081E-003 - 67.500000000000000 -5.6435213513263130E-003 - 67.560000000000002 -6.0648122723170276E-003 - 67.619999999999990 -6.4704426646617743E-003 - 67.679999999999993 -6.8602056929182292E-003 - 67.739999999999995 -7.2339292243939653E-003 - 67.799999999999997 -7.5914754373895216E-003 - 67.859999999999999 -7.9327388143171328E-003 - 67.920000000000002 -8.2576486283899176E-003 - 67.979999999999990 -8.5661682961812452E-003 - 68.039999999999992 -8.8582914473646097E-003 - 68.099999999999994 -9.1340457922085751E-003 - 68.159999999999997 -9.3934870680143917E-003 - 68.219999999999999 -9.6367041994226254E-003 - 68.280000000000001 -9.8638135148317700E-003 - 68.339999999999989 -1.0074960411899160E-002 - 68.399999999999991 -1.0270317342274229E-002 - 68.459999999999994 -1.0450083752412742E-002 - 68.519999999999996 -1.0614483217483811E-002 - 68.579999999999998 -1.0763763508416208E-002 - 68.640000000000001 -1.0898195775159431E-002 - 68.699999999999989 -1.1018072492782083E-002 - 68.759999999999991 -1.1123707280218000E-002 - 68.819999999999993 -1.1215431290398849E-002 - 68.879999999999995 -1.1293594336091633E-002 - 68.939999999999998 -1.1358562339448814E-002 - 69.000000000000000 -1.1410716145535267E-002 - 69.060000000000002 -1.1450451787268645E-002 - 69.119999999999990 -1.1478176334086189E-002 - 69.179999999999993 -1.1494306653189085E-002 - 69.239999999999995 -1.1499271596514335E-002 - 69.299999999999997 -1.1493508661172831E-002 - 69.359999999999999 -1.1477461391686086E-002 - 69.420000000000002 -1.1451577820784547E-002 - 69.479999999999990 -1.1416312555433596E-002 - 69.539999999999992 -1.1372123915610141E-002 - 69.599999999999994 -1.1319470178619144E-002 - 69.659999999999997 -1.1258811099582038E-002 - 69.719999999999999 -1.1190608522397413E-002 - 69.780000000000001 -1.1115320259094475E-002 - 69.839999999999989 -1.1033403032504246E-002 - 69.899999999999991 -1.0945308725336302E-002 - 69.959999999999994 -1.0851486749357568E-002 - 70.019999999999996 -1.0752379603436953E-002 - 70.079999999999998 -1.0648425081004456E-002 - 70.140000000000001 -1.0540052058326572E-002 - 70.199999999999989 -1.0427681536409709E-002 - 70.259999999999991 -1.0311726261875306E-002 - 70.319999999999993 -1.0192591350208342E-002 - 70.379999999999995 -1.0070669111510533E-002 - 70.439999999999998 -9.9463431693216815E-003 - 70.500000000000000 -9.8199842687325487E-003 - 70.560000000000002 -9.6919519590521162E-003 - 70.619999999999990 -9.5625947929752972E-003 - 70.679999999999993 -9.4322469317933907E-003 - 70.739999999999995 -9.3012309687281868E-003 - 70.799999999999997 -9.1698567495655907E-003 - 70.859999999999999 -9.0384181128129078E-003 - 70.920000000000002 -8.9071984540195024E-003 - 70.979999999999990 -8.7764647232789900E-003 - 71.039999999999992 -8.6464720566794447E-003 - 71.099999999999994 -8.5174600277925991E-003 - 71.159999999999997 -8.3896548340583778E-003 - 71.219999999999999 -8.2632683382202424E-003 - 71.280000000000001 -8.1384988804299469E-003 - 71.339999999999989 -8.0155309617735565E-003 - 71.399999999999991 -7.8945342023379085E-003 - 71.459999999999994 -7.7756662812528765E-003 - 71.519999999999996 -7.6590698737362501E-003 - 71.579999999999998 -7.5448753573429273E-003 - 71.640000000000001 -7.4331996802597684E-003 - 71.699999999999989 -7.3241475194506592E-003 - 71.759999999999991 -7.2178110290177918E-003 - 71.819999999999993 -7.1142700399406088E-003 - 71.879999999999995 -7.0135923271120934E-003 - 71.939999999999998 -6.9158349964176698E-003 - 72.000000000000000 -6.8210430561942677E-003 - 72.060000000000002 -6.7292520458502054E-003 - 72.119999999999990 -6.6404862573210943E-003 - 72.179999999999993 -6.5547609074542712E-003 - 72.239999999999995 -6.4720811877415213E-003 - 72.299999999999997 -6.3924431496639039E-003 - 72.359999999999999 -6.3158346453540005E-003 - 72.420000000000002 -6.2422346781381231E-003 - 72.479999999999990 -6.1716147505155279E-003 - 72.539999999999992 -6.1039400137669246E-003 - 72.599999999999994 -6.0391676648368425E-003 - 72.659999999999997 -5.9772491783162060E-003 - 72.719999999999999 -5.9181296691988060E-003 - 72.780000000000001 -5.8617488070968034E-003 - 72.839999999999989 -5.8080408684772168E-003 - 72.899999999999991 -5.7569361871778937E-003 - 72.959999999999994 -5.7083599477595927E-003 - 73.019999999999996 -5.6622344088406570E-003 - 73.079999999999998 -5.6184778004036004E-003 - 73.140000000000001 -5.5770051318396498E-003 - 73.199999999999989 -5.5377292565369114E-003 - 73.259999999999991 -5.5005605052125782E-003 - 73.319999999999993 -5.4654068606586718E-003 - 73.379999999999995 -5.4321751781996096E-003 - 73.439999999999998 -5.4007707908829278E-003 - 73.500000000000000 -5.3710977672149071E-003 - 73.560000000000002 -5.3430606167930482E-003 - 73.619999999999990 -5.3165620386723886E-003 - 73.679999999999993 -5.2915052124630334E-003 - 73.739999999999995 -5.2677937418011524E-003 - 73.799999999999997 -5.2453308444986614E-003 - 73.859999999999999 -5.2240216862162996E-003 - 73.920000000000002 -5.2037709732093715E-003 - 73.979999999999990 -5.1844856450888729E-003 - 74.039999999999992 -5.1660727948955468E-003 - 74.099999999999994 -5.1484421078499525E-003 - 74.159999999999997 -5.1315041180583195E-003 - 74.219999999999999 -5.1151722450149036E-003 - 74.280000000000001 -5.0993607730600889E-003 - 74.339999999999989 -5.0839866828047749E-003 - 74.399999999999991 -5.0689693527245358E-003 - 74.459999999999994 -5.0542299243953185E-003 - 74.519999999999996 -5.0396925418821296E-003 - 74.579999999999998 -5.0252840903179091E-003 - 74.640000000000001 -5.0109338035332976E-003 - 74.699999999999989 -4.9965739268470026E-003 - 74.759999999999991 -4.9821392878482912E-003 - 74.819999999999993 -4.9675672740365877E-003 - 74.879999999999995 -4.9527994697717882E-003 - 74.939999999999998 -4.9377789962215882E-003 - 75.000000000000000 -4.9224522321452222E-003 - 75.060000000000002 -4.9067691581937455E-003 - 75.119999999999990 -4.8906818629722007E-003 - 75.179999999999993 -4.8741466087613670E-003 - 75.239999999999995 -4.8571217410738957E-003 - 75.299999999999997 -4.8395684480100993E-003 - 75.359999999999999 -4.8214515649509584E-003 - 75.420000000000002 -4.8027381171514543E-003 - 75.479999999999990 -4.7833992336030421E-003 - 75.539999999999992 -4.7634078016108323E-003 - 75.599999999999994 -4.7427400062297559E-003 - 75.659999999999997 -4.7213751340254052E-003 - 75.719999999999999 -4.6992945283506936E-003 - 75.780000000000001 -4.6764828077135515E-003 - 75.839999999999989 -4.6529271132407964E-003 - 75.899999999999991 -4.6286174614037258E-003 - 75.959999999999994 -4.6035457676521906E-003 - 76.019999999999996 -4.5777072184352780E-003 - 76.079999999999998 -4.5510992894415743E-003 - 76.140000000000001 -4.5237218684425562E-003 - 76.199999999999989 -4.4955763092920644E-003 - 76.259999999999991 -4.4666670137090310E-003 - 76.319999999999993 -4.4370000948410404E-003 - 76.379999999999995 -4.4065840604608037E-003 - 76.439999999999998 -4.3754291423201488E-003 - 76.500000000000000 -4.3435475231825890E-003 - 76.560000000000002 -4.3109535306015759E-003 - 76.619999999999990 -4.2776632169449873E-003 - 76.679999999999993 -4.2436939682911207E-003 - 76.739999999999995 -4.2090647779697852E-003 - 76.799999999999997 -4.1737957716666829E-003 - 76.859999999999999 -4.1379089420159809E-003 - 76.920000000000002 -4.1014281018553296E-003 - 76.979999999999990 -4.0643772041401389E-003 - 77.039999999999992 -4.0267818509026020E-003 - 77.099999999999994 -3.9886691019020808E-003 - 77.159999999999997 -3.9500660027765883E-003 - 77.219999999999999 -3.9110015176899975E-003 - 77.280000000000001 -3.8715050084714583E-003 - 77.339999999999989 -3.8316062097765269E-003 - 77.399999999999991 -3.7913363276488145E-003 - 77.459999999999994 -3.7507264055163534E-003 - 77.519999999999996 -3.7098085688250437E-003 - 77.579999999999998 -3.6686150011980322E-003 - 77.640000000000001 -3.6271782053858238E-003 - 77.699999999999989 -3.5855312751611806E-003 - 77.759999999999991 -3.5437071754236141E-003 - 77.819999999999993 -3.5017391349029228E-003 - 77.879999999999995 -3.4596603963672982E-003 - 77.939999999999998 -3.4175044094500459E-003 - 78.000000000000000 -3.3753042830133319E-003 - 78.060000000000002 -3.3330927473523646E-003 - 78.119999999999990 -3.2909024772546564E-003 - 78.179999999999993 -3.2487662412033760E-003 - 78.239999999999995 -3.2067160013204148E-003 - 78.299999999999997 -3.1647831031837658E-003 - 78.359999999999999 -3.1229986671487140E-003 - 78.420000000000002 -3.0813932071287018E-003 - 78.479999999999990 -3.0399968156443681E-003 - 78.539999999999992 -2.9988386002181714E-003 - 78.599999999999994 -2.9579473556044338E-003 - 78.659999999999997 -2.9173504889184916E-003 - 78.719999999999999 -2.8770753458306018E-003 - 78.780000000000001 -2.8371481187748457E-003 - 78.839999999999989 -2.7975939742408912E-003 - 78.899999999999991 -2.7584374197261018E-003 - 78.959999999999994 -2.7197017980825542E-003 - 79.019999999999996 -2.6814096846606854E-003 - 79.079999999999998 -2.6435829059240686E-003 - 79.140000000000001 -2.6062417708190744E-003 - 79.199999999999989 -2.5694056169404860E-003 - 79.259999999999991 -2.5330930865964984E-003 - 79.319999999999993 -2.4973214985493019E-003 - 79.379999999999995 -2.4621073513840029E-003 - 79.439999999999998 -2.4274656058701715E-003 - 79.500000000000000 -2.3934107174380615E-003 - 79.560000000000002 -2.3599553488389512E-003 - 79.619999999999990 -2.3271116079380347E-003 - 79.679999999999993 -2.2948902544722097E-003 - 79.739999999999995 -2.2633005122162787E-003 - 79.799999999999997 -2.2323513167908458E-003 - 79.859999999999999 -2.2020499546308876E-003 - 79.920000000000002 -2.1724029345864615E-003 - 79.979999999999990 -2.1434155724021769E-003 - 80.039999999999992 -2.1150918148740553E-003 - 80.099999999999994 -2.0874346626297028E-003 - 80.159999999999997 -2.0604464514939014E-003 - 80.219999999999999 -2.0341283716948577E-003 - 80.280000000000001 -2.0084805185307400E-003 - 80.340000000000003 -1.9835021544673741E-003 - 80.400000000000006 -1.9591914870242407E-003 - 80.460000000000008 -1.9355458913017380E-003 - 80.519999999999982 -1.9125619778483523E-003 - 80.579999999999984 -1.8902354359899686E-003 - 80.639999999999986 -1.8685611306888583E-003 - 80.699999999999989 -1.8475333995211594E-003 - 80.759999999999991 -1.8271458298444062E-003 - 80.819999999999993 -1.8073910172570157E-003 - 80.879999999999995 -1.7882612451131461E-003 - 80.939999999999998 -1.7697482152621491E-003 - 81.000000000000000 -1.7518430362132857E-003 - 81.060000000000002 -1.7345361100666822E-003 - 81.120000000000005 -1.7178175818834437E-003 - 81.180000000000007 -1.7016772326190531E-003 - 81.240000000000009 -1.6861044243416229E-003 - 81.299999999999983 -1.6710879515496773E-003 - 81.359999999999985 -1.6566164841146011E-003 - 81.419999999999987 -1.6426784995948636E-003 - 81.479999999999990 -1.6292621873234530E-003 - 81.539999999999992 -1.6163554250848407E-003 - 81.599999999999994 -1.6039462957856941E-003 - 81.659999999999997 -1.5920225106379002E-003 - 81.719999999999999 -1.5805717956469995E-003 - 81.780000000000001 -1.5695819507698656E-003 - 81.840000000000003 -1.5590406427233741E-003 - 81.900000000000006 -1.5489356571488074E-003 - 81.960000000000008 -1.5392550681968156E-003 - 82.019999999999982 -1.5299868061688893E-003 - 82.079999999999984 -1.5211191958159199E-003 - 82.139999999999986 -1.5126406309612392E-003 - 82.199999999999989 -1.5045398144893532E-003 - 82.259999999999991 -1.4968056051191826E-003 - 82.319999999999993 -1.4894271868018745E-003 - 82.379999999999995 -1.4823941240017192E-003 - 82.439999999999998 -1.4756962344631760E-003 - 82.500000000000000 -1.4693237221904802E-003 - 82.560000000000002 -1.4632670394150913E-003 - 82.620000000000005 -1.4575171557661580E-003 - 82.680000000000007 -1.4520653373969574E-003 - 82.740000000000009 -1.4469034519998709E-003 - 82.799999999999983 -1.4420237003658898E-003 - 82.859999999999985 -1.4374185239673959E-003 - 82.919999999999987 -1.4330811097411063E-003 - 82.979999999999990 -1.4290048764705326E-003 - 83.039999999999992 -1.4251837484522967E-003 - 83.099999999999994 -1.4216120955932094E-003 - 83.159999999999997 -1.4182847497582782E-003 - 83.219999999999999 -1.4151969454291897E-003 - 83.280000000000001 -1.4123444928636015E-003 - 83.340000000000003 -1.4097234380312032E-003 - 83.400000000000006 -1.4073305077798555E-003 - 83.460000000000008 -1.4051625483907765E-003 - 83.519999999999982 -1.4032168646325174E-003 - 83.579999999999984 -1.4014912413629497E-003 - 83.639999999999986 -1.3999838803182218E-003 - 83.699999999999989 -1.3986931535910567E-003 - 83.759999999999991 -1.3976177950832324E-003 - 83.819999999999993 -1.3967569001199481E-003 - 83.879999999999995 -1.3961097295041264E-003 - 83.939999999999998 -1.3956758726535686E-003 - 84.000000000000000 -1.3954553433394605E-003 - 84.060000000000002 -1.3954479685118655E-003 - 84.120000000000005 -1.3956540023340345E-003 - 84.180000000000007 -1.3960739460814413E-003 - 84.240000000000009 -1.3967080759328906E-003 - 84.299999999999983 -1.3975572261569183E-003 - 84.359999999999985 -1.3986220882260285E-003 - 84.419999999999987 -1.3999033258993859E-003 - 84.479999999999990 -1.4014018921931326E-003 - 84.539999999999992 -1.4031185256085544E-003 - 84.599999999999994 -1.4050539934686221E-003 - 84.659999999999997 -1.4072090240940971E-003 - 84.719999999999999 -1.4095844980602000E-003 - 84.780000000000001 -1.4121808713372433E-003 - 84.840000000000003 -1.4149987183424443E-003 - 84.900000000000006 -1.4180383291142956E-003 - 84.960000000000008 -1.4212999505025033E-003 - 85.019999999999982 -1.4247834254315678E-003 - 85.079999999999984 -1.4284887033137203E-003 - 85.139999999999986 -1.4324152807695665E-003 - 85.199999999999989 -1.4365626227411518E-003 - 85.259999999999991 -1.4409298291619373E-003 - 85.319999999999993 -1.4455156495389847E-003 - 85.379999999999995 -1.4503186795200736E-003 - 85.439999999999998 -1.4553370075393354E-003 - 85.500000000000000 -1.4605685791473453E-003 - 85.560000000000002 -1.4660110909649512E-003 - 85.620000000000005 -1.4716616533629783E-003 - 85.680000000000007 -1.4775172421803001E-003 - 85.740000000000009 -1.4835743110021976E-003 - 85.799999999999983 -1.4898292109509991E-003 - 85.859999999999985 -1.4962776123452308E-003 - 85.919999999999987 -1.5029150345305369E-003 - 85.979999999999990 -1.5097366924098643E-003 - 86.039999999999992 -1.5167371323987940E-003 - 86.099999999999994 -1.5239108417664507E-003 - 86.159999999999997 -1.5312516514333198E-003 - 86.219999999999999 -1.5387533394988742E-003 - 86.280000000000001 -1.5464090402737697E-003 - 86.340000000000003 -1.5542118581060116E-003 - 86.400000000000006 -1.5621541122973913E-003 - 86.460000000000008 -1.5702280802036329E-003 - 86.519999999999982 -1.5784254773461045E-003 - 86.579999999999984 -1.5867380128922707E-003 - 86.639999999999986 -1.5951568151296072E-003 - 86.699999999999989 -1.6036725825661442E-003 - 86.759999999999991 -1.6122758501059592E-003 - 86.819999999999993 -1.6209568639455538E-003 - 86.879999999999995 -1.6297055392000760E-003 - 86.939999999999998 -1.6385114130223692E-003 - 87.000000000000000 -1.6473637891190017E-003 - 87.060000000000002 -1.6562518613637692E-003 - 87.120000000000005 -1.6651643832617552E-003 - 87.180000000000007 -1.6740898873140238E-003 - 87.240000000000009 -1.6830168007215846E-003 - 87.299999999999983 -1.6919330109379902E-003 - 87.359999999999985 -1.7008266152492330E-003 - 87.419999999999987 -1.7096853754821838E-003 - 87.479999999999990 -1.7184967220602847E-003 - 87.539999999999992 -1.7272482012253491E-003 - 87.599999999999994 -1.7359270969768837E-003 - 87.659999999999997 -1.7445204376367446E-003 - 87.719999999999999 -1.7530151981047968E-003 - 87.780000000000001 -1.7613982198980984E-003 - 87.840000000000003 -1.7696564483123604E-003 - 87.900000000000006 -1.7777765143749860E-003 - 87.960000000000008 -1.7857450816980325E-003 - 88.019999999999982 -1.7935485597790884E-003 - 88.079999999999984 -1.8011733574925079E-003 - 88.139999999999986 -1.8086061361700658E-003 - 88.199999999999989 -1.8158331922567710E-003 - 88.259999999999991 -1.8228407551503813E-003 - 88.319999999999993 -1.8296151397500441E-003 - 88.379999999999995 -1.8361427294158635E-003 - 88.439999999999998 -1.8424097489118472E-003 - 88.500000000000000 -1.8484025336775057E-003 - 88.560000000000002 -1.8541075709866493E-003 - 88.620000000000005 -1.8595112175862779E-003 - 88.680000000000007 -1.8645997868608456E-003 - 88.740000000000009 -1.8693597835566234E-003 - 88.799999999999983 -1.8737779042661939E-003 - 88.859999999999985 -1.8778409384240461E-003 - 88.919999999999987 -1.8815355579366491E-003 - 88.979999999999990 -1.8848489744948023E-003 - 89.039999999999992 -1.8877681921204892E-003 - 89.099999999999994 -1.8902806598562556E-003 - 89.159999999999997 -1.8923737818682823E-003 - 89.219999999999999 -1.8940353013387505E-003 - 89.280000000000001 -1.8952531532188410E-003 - 89.340000000000003 -1.8960155785252189E-003 - 89.400000000000006 -1.8963107989785756E-003 - 89.460000000000008 -1.8961276284971695E-003 - 89.519999999999982 -1.8954551384589792E-003 - 89.579999999999984 -1.8942824894923834E-003 - 89.639999999999986 -1.8925994266537707E-003 - 89.699999999999989 -1.8903959818238046E-003 - 89.759999999999991 -1.8876625473035098E-003 - 89.819999999999993 -1.8843899967594605E-003 - 89.879999999999995 -1.8805694791132412E-003 - 89.939999999999998 -1.8761927088355443E-003 - 90.000000000000000 -1.8712520772892268E-003 - 90.060000000000002 -1.8657403673181029E-003 - 90.120000000000005 -1.8596506754480820E-003 - 90.180000000000007 -1.8529770597090298E-003 - 90.240000000000009 -1.8457140582663800E-003 - 90.299999999999983 -1.8378568553345982E-003 - 90.359999999999985 -1.8294010782396021E-003 - 90.419999999999987 -1.8203433754628304E-003 - 90.479999999999990 -1.8106809337562878E-003 - 90.539999999999992 -1.8004115429637048E-003 - 90.599999999999994 -1.7895340317337616E-003 - 90.659999999999997 -1.7780478588560788E-003 - 90.719999999999999 -1.7659532293035436E-003 - 90.780000000000001 -1.7532512439194636E-003 - 90.840000000000003 -1.7399438922179246E-003 - 90.900000000000006 -1.7260340352020841E-003 - 90.960000000000008 -1.7115252124705652E-003 - 91.019999999999982 -1.6964221078688158E-003 - 91.079999999999984 -1.6807301439829116E-003 - 91.139999999999986 -1.6644558493073729E-003 - 91.199999999999989 -1.6476065072783892E-003 - 91.259999999999991 -1.6301905479537762E-003 - 91.319999999999993 -1.6122171677339600E-003 - 91.379999999999995 -1.5936967506295203E-003 - 91.439999999999998 -1.5746405501073993E-003 - 91.500000000000000 -1.5550607054421657E-003 - 91.560000000000002 -1.5349704109450034E-003 - 91.620000000000005 -1.5143837923541725E-003 - 91.680000000000007 -1.4933161155872192E-003 - 91.739999999999981 -1.4717833742200167E-003 - 91.799999999999983 -1.4498026821753534E-003 - 91.859999999999985 -1.4273917767109662E-003 - 91.919999999999987 -1.4045694839541205E-003 - 91.979999999999990 -1.3813555894144213E-003 - 92.039999999999992 -1.3577706677096091E-003 - 92.099999999999994 -1.3338358783258519E-003 - 92.159999999999997 -1.3095734230588400E-003 - 92.219999999999999 -1.2850060852844100E-003 - 92.280000000000001 -1.2601573456480844E-003 - 92.340000000000003 -1.2350514808441349E-003 - 92.400000000000006 -1.2097131957170553E-003 - 92.460000000000008 -1.1841678033003770E-003 - 92.519999999999982 -1.1584410675743390E-003 - 92.579999999999984 -1.1325593019394303E-003 - 92.639999999999986 -1.1065492340997839E-003 - 92.699999999999989 -1.0804377176290778E-003 - 92.759999999999991 -1.0542521735910134E-003 - 92.819999999999993 -1.0280199177334242E-003 - 92.879999999999995 -1.0017686387830647E-003 - 92.939999999999998 -9.7552619053571784E-004 - 93.000000000000000 -9.4932034784679382E-004 - 93.060000000000002 -9.2317878171643722E-004 - 93.120000000000005 -8.9712924333593136E-004 - 93.180000000000007 -8.7119922028758312E-004 - 93.239999999999981 -8.4541595548586856E-004 - 93.299999999999983 -8.1980644333437265E-004 - 93.359999999999985 -7.9439731137077234E-004 - 93.419999999999987 -7.6921471058655471E-004 - 93.479999999999990 -7.4428430207976919E-004 - 93.539999999999992 -7.1963121223792090E-004 - 93.599999999999994 -6.9527993126417952E-004 - 93.659999999999997 -6.7125421509918362E-004 - 93.719999999999999 -6.4757707801382965E-004 - 93.780000000000001 -6.2427069596601985E-004 - 93.840000000000003 -6.0135638870986708E-004 - 93.900000000000006 -5.7885445339184833E-004 - 93.960000000000008 -5.5678419259972268E-004 - 94.019999999999982 -5.3516405452240338E-004 - 94.079999999999984 -5.1401119788911220E-004 - 94.139999999999986 -4.9334175574613365E-004 - 94.199999999999989 -4.7317060945399467E-004 - 94.259999999999991 -4.5351157899520191E-004 - 94.319999999999993 -4.3437714534039337E-004 - 94.379999999999995 -4.1577864677913405E-004 - 94.439999999999998 -3.9772611008113832E-004 - 94.500000000000000 -3.8022831147452134E-004 - 94.560000000000002 -3.6329269172895513E-004 - 94.620000000000005 -3.4692539862282425E-004 - 94.680000000000007 -3.3113131466830272E-004 - 94.739999999999981 -3.1591391893162293E-004 - 94.799999999999983 -3.0127544390803218E-004 - 94.859999999999985 -2.8721683115586123E-004 - 94.919999999999987 -2.7373763039152416E-004 - 94.979999999999990 -2.6083609627543881E-004 - 95.039999999999992 -2.4850926708184693E-004 - 95.099999999999994 -2.3675282084747881E-004 - 95.159999999999997 -2.2556118561508837E-004 - 95.219999999999999 -2.1492761976981006E-004 - 95.280000000000001 -2.0484410533658389E-004 - 95.340000000000003 -1.9530149715054826E-004 - 95.400000000000006 -1.8628951788479195E-004 - 95.460000000000008 -1.7779682272516485E-004 - 95.519999999999982 -1.6981101095307654E-004 - 95.579999999999984 -1.6231872561514672E-004 - 95.639999999999986 -1.5530567559530754E-004 - 95.699999999999989 -1.4875671915944659E-004 - 95.759999999999991 -1.4265591070865272E-004 - 95.819999999999993 -1.3698659099752676E-004 - 95.879999999999995 -1.3173144953717536E-004 - 95.939999999999998 -1.2687256601028258E-004 - 96.000000000000000 -1.2239147472020535E-004 - 96.060000000000002 -1.1826929195291896E-004 - 96.120000000000005 -1.1448670767259331E-004 - 96.180000000000007 -1.1102410325390312E-004 - 96.239999999999981 -1.0786160355879787E-004 - 96.299999999999983 -1.0497913788405633E-004 - 96.359999999999985 -1.0235650463051921E-004 - 96.419999999999987 -9.9973426833451911E-005 - 96.479999999999990 -9.7809629586076196E-005 - 96.539999999999992 -9.5844900261283638E-005 - 96.599999999999994 -9.4059123158605210E-005 - 96.659999999999997 -9.2432395900158507E-005 - 96.719999999999999 -9.0945018604005900E-005 - 96.780000000000001 -8.9577609177252397E-005 - 96.840000000000003 -8.8311122105601524E-005 - 96.900000000000006 -8.7126937471966001E-005 - 96.960000000000008 -8.6006898431153735E-005 - 97.019999999999982 -8.4933377051000280E-005 - 97.079999999999984 -8.3889305301163835E-005 - 97.139999999999986 -8.2858251620746969E-005 - 97.199999999999989 -8.1824450945014790E-005 - 97.259999999999991 -8.0772841797502505E-005 - 97.319999999999993 -7.9689130960176489E-005 - 97.379999999999995 -7.8559824741357569E-005 - 97.439999999999998 -7.7372238770412937E-005 - 97.500000000000000 -7.6114555740655762E-005 - 97.560000000000002 -7.4775843326082349E-005 - 97.620000000000005 -7.3346068550097441E-005 - 97.680000000000007 -7.1816129238723881E-005 - 97.739999999999981 -7.0177861081079448E-005 - 97.799999999999983 -6.8424058511570325E-005 - 97.859999999999985 -6.6548460973791433E-005 - 97.919999999999987 -6.4545773051750000E-005 - 97.979999999999990 -6.2411668695021416E-005 - 98.039999999999992 -6.0142782766366680E-005 - 98.099999999999994 -5.7736699734533233E-005 - 98.159999999999997 -5.5191953093387491E-005 - 98.219999999999999 -5.2508017788952724E-005 - 98.280000000000001 -4.9685296085656938E-005 - 98.340000000000003 -4.6725095612734944E-005 - 98.400000000000006 -4.3629626076331754E-005 - 98.460000000000008 -4.0401971568659782E-005 - 98.519999999999982 -3.7046075483875556E-005 - 98.579999999999984 -3.3566716730399406E-005 - 98.639999999999986 -2.9969492430688474E-005 - 98.699999999999989 -2.6260794824323219E-005 - 98.759999999999991 -2.2447786831432539E-005 - 98.819999999999993 -1.8538369555342170E-005 - 98.879999999999995 -1.4541163870472871E-005 - 98.939999999999998 -1.0465476093373940E-005 - 99.000000000000000 -6.3212740018174537E-006 - 99.060000000000002 -2.1191538778148172E-006 - 99.120000000000005 2.1296973369269105E-006 - 99.180000000000007 6.4135431135612886E-006 - 99.239999999999981 1.0720108169808603E-005 - 99.299999999999983 1.5036644615313527E-005 - 99.359999999999985 1.9349949822850726E-005 - 99.419999999999987 2.3646426830706213E-005 - 99.479999999999990 2.7912110414574500E-005 - 99.539999999999992 3.2132710202573932E-005 - 99.599999999999994 3.6293667773163276E-005 - 99.659999999999997 4.0380163932063971E-005 - 99.719999999999999 4.4377197237810176E-005 - 99.780000000000001 4.8269611993144267E-005 - 99.840000000000003 5.2042147811377505E-005 - 99.900000000000006 5.5679436530041288E-005 - 99.960000000000008 5.9166087492038492E-005 - 100.01999999999998 6.2486680088550889E-005 - 100.07999999999998 6.5625842750341513E-005 - 100.13999999999999 6.8568259746676504E-005 - 100.19999999999999 7.1298711508242996E-005 - 100.25999999999999 7.3802074149305249E-005 - 100.31999999999999 7.6063409827902998E-005 - 100.38000000000000 7.8067942246671580E-005 - 100.44000000000000 7.9801102636632162E-005 - 100.50000000000000 8.1248565131813977E-005 - 100.56000000000000 8.2396294223108512E-005 - 100.62000000000000 8.3230540662334647E-005 - 100.68000000000001 8.3737865282581576E-005 - 100.73999999999998 8.3905221090516978E-005 - 100.79999999999998 8.3719942562511795E-005 - 100.85999999999999 8.3169792829298025E-005 - 100.91999999999999 8.2242967555760612E-005 - 100.97999999999999 8.0928161303118061E-005 - 101.03999999999999 7.9214568884276577E-005 - 101.09999999999999 7.7091918950832311E-005 - 101.16000000000000 7.4550524102554429E-005 - 101.22000000000000 7.1581234092639022E-005 - 101.28000000000000 6.8175524506873498E-005 - 101.34000000000000 6.4325516616042946E-005 - 101.40000000000001 6.0023979823940894E-005 - 101.46000000000001 5.5264279959829704E-005 - 101.51999999999998 5.0040525620136332E-005 - 101.57999999999998 4.4347497426739732E-005 - 101.63999999999999 3.8180684697749057E-005 - 101.69999999999999 3.1536274328796175E-005 - 101.75999999999999 2.4411197344531376E-005 - 101.81999999999999 1.6803121200789729E-005 - 101.88000000000000 8.7104494537258744E-006 - 101.94000000000000 1.3237278674045329E-007 - 102.00000000000000 -8.9311682416059153E-006 - 102.06000000000000 -1.8479452279988781E-005 - 102.12000000000000 -2.8510979248413338E-005 - 102.18000000000001 -3.9023461680158732E-005 - 102.23999999999998 -5.0013816093554975E-005 - 102.29999999999998 -6.1478174556284883E-005 - 102.35999999999999 -7.3411869420404518E-005 - 102.41999999999999 -8.5809446529100104E-005 - 102.47999999999999 -9.8664685755293861E-005 - 102.53999999999999 -1.1197055780711675E-004 - 102.59999999999999 -1.2571929020104082E-004 - 102.66000000000000 -1.3990234475898762E-004 - 102.72000000000000 -1.5451042446639536E-004 - 102.78000000000000 -1.6953351759047014E-004 - 102.84000000000000 -1.8496086961764842E-004 - 102.90000000000001 -2.0078106998365085E-004 - 102.96000000000001 -2.1698198093451500E-004 - 103.01999999999998 -2.3355080518318644E-004 - 103.07999999999998 -2.5047414258696718E-004 - 103.13999999999999 -2.6773793510022478E-004 - 103.19999999999999 -2.8532752923633362E-004 - 103.25999999999999 -3.0322768703073828E-004 - 103.31999999999999 -3.2142264131219890E-004 - 103.38000000000000 -3.3989607313859329E-004 - 103.44000000000000 -3.5863117317483167E-004 - 103.50000000000000 -3.7761064292636483E-004 - 103.56000000000000 -3.9681675052114017E-004 - 103.62000000000000 -4.1623139318374585E-004 - 103.68000000000001 -4.3583604494389376E-004 - 103.73999999999998 -4.5561188327918761E-004 - 103.79999999999998 -4.7553973990948945E-004 - 103.85999999999999 -4.9560016336987547E-004 - 103.91999999999999 -5.1577356428064984E-004 - 103.97999999999999 -5.3604011851725373E-004 - 104.03999999999999 -5.5637982623902844E-004 - 104.09999999999999 -5.7677261845645220E-004 - 104.16000000000000 -5.9719835086017973E-004 - 104.22000000000000 -6.1763691063628336E-004 - 104.28000000000000 -6.3806813161366278E-004 - 104.34000000000000 -6.5847198275870167E-004 - 104.40000000000001 -6.7882854604645721E-004 - 104.46000000000001 -6.9911793775901429E-004 - 104.51999999999998 -7.1932059871510361E-004 - 104.57999999999998 -7.3941709044063548E-004 - 104.63999999999999 -7.5938825235485679E-004 - 104.69999999999999 -7.7921526961116790E-004 - 104.75999999999999 -7.9887962665139663E-004 - 104.81999999999999 -8.1836318384788235E-004 - 104.88000000000000 -8.3764816741148862E-004 - 104.94000000000000 -8.5671734774954086E-004 - 105.00000000000000 -8.7555385901564057E-004 - 105.06000000000000 -8.9414146485139890E-004 - 105.12000000000000 -9.1246440006416830E-004 - 105.18000000000001 -9.3050749678615921E-004 - 105.23999999999998 -9.4825614643546919E-004 - 105.29999999999998 -9.6569650107974480E-004 - 105.35999999999999 -9.8281515605653179E-004 - 105.41999999999999 -9.9959959549762441E-004 - 105.47999999999999 -1.0160378076860801E-003 - 105.53999999999999 -1.0321187800748730E-003 - 105.59999999999999 -1.0478320413668969E-003 - 105.66000000000000 -1.0631679610672256E-003 - 105.72000000000000 -1.0781175695294366E-003 - 105.78000000000000 -1.0926727118976552E-003 - 105.84000000000000 -1.1068262162419228E-003 - 105.90000000000001 -1.1205714300123622E-003 - 105.96000000000001 -1.1339026611494880E-003 - 106.01999999999998 -1.1468151523620234E-003 - 106.07999999999998 -1.1593048197076198E-003 - 106.13999999999999 -1.1713684345551871E-003 - 106.19999999999999 -1.1830035976336738E-003 - 106.25999999999999 -1.1942085431933026E-003 - 106.31999999999999 -1.2049826055335439E-003 - 106.38000000000000 -1.2153256949673432E-003 - 106.44000000000000 -1.2252386417497298E-003 - 106.50000000000000 -1.2347226348621277E-003 - 106.56000000000000 -1.2437801594325421E-003 - 106.62000000000000 -1.2524140574694282E-003 - 106.68000000000001 -1.2606278995973379E-003 - 106.73999999999998 -1.2684260530283745E-003 - 106.79999999999998 -1.2758132852225006E-003 - 106.85999999999999 -1.2827951905394182E-003 - 106.91999999999999 -1.2893777699024339E-003 - 106.97999999999999 -1.2955676917017112E-003 - 107.03999999999999 -1.3013720881186201E-003 - 107.09999999999999 -1.3067986030819883E-003 - 107.16000000000000 -1.3118551018050219E-003 - 107.22000000000000 -1.3165501434870125E-003 - 107.28000000000000 -1.3208923754618835E-003 - 107.34000000000000 -1.3248909886182465E-003 - 107.40000000000001 -1.3285552666470019E-003 - 107.46000000000001 -1.3318948484662282E-003 - 107.51999999999998 -1.3349197328253839E-003 - 107.57999999999998 -1.3376397708022366E-003 - 107.63999999999999 -1.3400649464112597E-003 - 107.69999999999999 -1.3422054779020109E-003 - 107.75999999999999 -1.3440713082215894E-003 - 107.81999999999999 -1.3456725805321313E-003 - 107.88000000000000 -1.3470192665248027E-003 - 107.94000000000000 -1.3481209038528677E-003 - 108.00000000000000 -1.3489872702345514E-003 - 108.06000000000000 -1.3496275531218911E-003 - 108.12000000000000 -1.3500507253542257E-003 - 108.18000000000001 -1.3502653185227210E-003 - 108.23999999999998 -1.3502794512860327E-003 - 108.29999999999998 -1.3501008019795005E-003 - 108.35999999999999 -1.3497366171445599E-003 - 108.41999999999999 -1.3491933429171292E-003 - 108.47999999999999 -1.3484771397239100E-003 - 108.53999999999999 -1.3475933355130674E-003 - 108.59999999999999 -1.3465465463876956E-003 - 108.66000000000000 -1.3453408375966817E-003 - 108.72000000000000 -1.3439795988051211E-003 - 108.78000000000000 -1.3424653644067835E-003 - 108.84000000000000 -1.3407999345232736E-003 - 108.90000000000001 -1.3389842406966465E-003 - 108.96000000000001 -1.3370184549285245E-003 - 109.01999999999998 -1.3349019836581563E-003 - 109.07999999999998 -1.3326332549305452E-003 - 109.13999999999999 -1.3302098585526842E-003 - 109.19999999999999 -1.3276285193987044E-003 - 109.25999999999999 -1.3248850872760068E-003 - 109.31999999999999 -1.3219747057365465E-003 - 109.38000000000000 -1.3188911520935875E-003 - 109.44000000000000 -1.3156279374201985E-003 - 109.50000000000000 -1.3121773087516680E-003 - 109.56000000000000 -1.3085309081005947E-003 - 109.62000000000000 -1.3046792439147202E-003 - 109.68000000000001 -1.3006122902117980E-003 - 109.73999999999998 -1.2963189655907478E-003 - 109.79999999999998 -1.2917877539771910E-003 - 109.85999999999999 -1.2870060263673302E-003 - 109.91999999999999 -1.2819608206633335E-003 - 109.97999999999999 -1.2766382244654808E-003 - 110.03999999999999 -1.2710239624881550E-003 - 110.09999999999999 -1.2651031469074826E-003 - 110.16000000000000 -1.2588602724577385E-003 - 110.22000000000000 -1.2522794526531843E-003 - 110.28000000000000 -1.2453444440283813E-003 - 110.34000000000000 -1.2380386203867061E-003 - 110.40000000000001 -1.2303450624595008E-003 - 110.46000000000001 -1.2222468601268161E-003 - 110.51999999999998 -1.2137267065796360E-003 - 110.57999999999998 -1.2047673734231572E-003 - 110.63999999999999 -1.1953517837495543E-003 - 110.69999999999999 -1.1854628293078854E-003 - 110.75999999999999 -1.1750834197219956E-003 - 110.81999999999999 -1.1641970290036888E-003 - 110.88000000000000 -1.1527873410931136E-003 - 110.94000000000000 -1.1408384688815559E-003 - 111.00000000000000 -1.1283350098884096E-003 - 111.06000000000000 -1.1152620887642170E-003 - 111.12000000000000 -1.1016055346498104E-003 - 111.18000000000001 -1.0873519833732464E-003 - 111.23999999999998 -1.0724886297089761E-003 - 111.29999999999998 -1.0570038657916510E-003 - 111.35999999999999 -1.0408868717135657E-003 - 111.41999999999999 -1.0241277489501138E-003 - 111.47999999999999 -1.0067179568601530E-003 - 111.53999999999999 -9.8864990133357838E-004 - 111.59999999999999 -9.6991728999078035E-004 - 111.66000000000000 -9.5051508779078818E-004 - 111.72000000000000 -9.3043961020539937E-004 - 111.78000000000000 -9.0968861106462530E-004 - 111.84000000000000 -8.8826132150471423E-004 - 111.90000000000001 -8.6615840940545887E-004 - 111.96000000000001 -8.4338213569595084E-004 - 112.01999999999998 -8.1993640897896187E-004 - 112.07999999999998 -7.9582671309545900E-004 - 112.13999999999999 -7.7106023930567820E-004 - 112.19999999999999 -7.4564587167556037E-004 - 112.25999999999999 -7.1959433142631732E-004 - 112.31999999999999 -6.9291806104716336E-004 - 112.38000000000000 -6.6563115841392745E-004 - 112.44000000000000 -6.3774954847290366E-004 - 112.50000000000000 -6.0929093998199910E-004 - 112.56000000000000 -5.8027477845902118E-004 - 112.62000000000000 -5.5072224107915037E-004 - 112.68000000000001 -5.2065625330848669E-004 - 112.73999999999998 -4.9010139058029516E-004 - 112.79999999999998 -4.5908384110234098E-004 - 112.85999999999999 -4.2763146855280456E-004 - 112.91999999999999 -3.9577367114849521E-004 - 112.97999999999999 -3.6354141079407345E-004 - 113.03999999999999 -3.3096699205633658E-004 - 113.09999999999999 -2.9808419407141199E-004 - 113.16000000000000 -2.6492808515200643E-004 - 113.22000000000000 -2.3153501684454223E-004 - 113.28000000000000 -1.9794249217067896E-004 - 113.34000000000000 -1.6418914823591269E-004 - 113.40000000000001 -1.3031463448344124E-004 - 113.46000000000001 -9.6359531316192503E-005 - 113.51999999999998 -6.2365277189999025E-005 - 113.57999999999998 -2.8374042569304889E-005 - 113.63999999999999 5.5713752542696656E-006 - 113.69999999999999 3.9427588178210171E-005 - 113.75999999999999 7.3150783006555904E-005 - 113.81999999999999 1.0669682975231781E-004 - 113.88000000000000 1.4002130046717457E-004 - 113.94000000000000 1.7307975068152446E-004 - 114.00000000000000 2.0582765702084147E-004 - 114.06000000000000 2.3822066581553181E-004 - 114.12000000000000 2.7021461075534182E-004 - 114.18000000000001 3.0176569185056112E-004 - 114.23999999999998 3.3283053531102445E-004 - 114.29999999999998 3.6336642115983536E-004 - 114.35999999999999 3.9333119757182892E-004 - 114.41999999999999 4.2268357601716754E-004 - 114.47999999999999 4.5138312796564472E-004 - 114.53999999999999 4.7939048911676852E-004 - 114.59999999999999 5.0666728333197597E-004 - 114.66000000000000 5.3317645494546510E-004 - 114.72000000000000 5.5888220015943061E-004 - 114.78000000000000 5.8375012652155849E-004 - 114.84000000000000 6.0774720038548496E-004 - 114.90000000000001 6.3084209515008535E-004 - 114.96000000000001 6.5300500031434112E-004 - 115.01999999999998 6.7420788313588107E-004 - 115.07999999999998 6.9442449859826014E-004 - 115.13999999999999 7.1363030779743244E-004 - 115.19999999999999 7.3180277426122310E-004 - 115.25999999999999 7.4892121169379774E-004 - 115.31999999999999 7.6496693382474351E-004 - 115.38000000000000 7.7992324959789299E-004 - 115.44000000000000 7.9377553460770645E-004 - 115.50000000000000 8.0651114594367239E-004 - 115.56000000000000 8.1811966203802473E-004 - 115.62000000000000 8.2859268833844273E-004 - 115.68000000000001 8.3792385422544664E-004 - 115.73999999999998 8.4610897412173915E-004 - 115.79999999999998 8.5314594050494804E-004 - 115.85999999999999 8.5903481029719192E-004 - 115.91999999999999 8.6377766784298028E-004 - 115.97999999999999 8.6737861683790370E-004 - 116.03999999999999 8.6984391156337060E-004 - 116.09999999999999 8.7118166991884442E-004 - 116.16000000000000 8.7140220980624992E-004 - 116.22000000000000 8.7051757932112505E-004 - 116.28000000000000 8.6854186015753181E-004 - 116.34000000000000 8.6549091437706453E-004 - 116.40000000000001 8.6138227175136290E-004 - 116.46000000000001 8.5623535257742115E-004 - 116.51999999999998 8.5007112083682545E-004 - 116.57999999999998 8.4291216524847248E-004 - 116.63999999999999 8.3478255998771739E-004 - 116.69999999999999 8.2570777339540248E-004 - 116.75999999999999 8.1571460029101366E-004 - 116.81999999999999 8.0483109419029152E-004 - 116.88000000000000 7.9308642110761127E-004 - 116.94000000000000 7.8051092550478099E-004 - 117.00000000000000 7.6713582599503990E-004 - 117.06000000000000 7.5299330913843260E-004 - 117.12000000000000 7.3811631103301155E-004 - 117.18000000000001 7.2253852519629834E-004 - 117.23999999999998 7.0629420558631392E-004 - 117.29999999999998 6.8941826417277287E-004 - 117.35999999999999 6.7194597061563048E-004 - 117.41999999999999 6.5391310991703587E-004 - 117.47999999999999 6.3535560325191272E-004 - 117.53999999999999 6.1630979283380989E-004 - 117.59999999999999 5.9681198483504103E-004 - 117.66000000000000 5.7689861524349521E-004 - 117.72000000000000 5.5660619782895403E-004 - 117.78000000000000 5.3597099259494328E-004 - 117.84000000000000 5.1502926263407819E-004 - 117.90000000000001 4.9381689708651564E-004 - 117.96000000000001 4.7236957416382466E-004 - 118.01999999999998 4.5072254382032002E-004 - 118.07999999999998 4.2891067839737084E-004 - 118.13999999999999 4.0696830418429126E-004 - 118.19999999999999 3.8492918554840916E-004 - 118.25999999999999 3.6282641582895733E-004 - 118.31999999999999 3.4069247489498398E-004 - 118.38000000000000 3.1855904308643242E-004 - 118.44000000000000 2.9645707944727777E-004 - 118.50000000000000 2.7441669395811735E-004 - 118.56000000000000 2.5246710958563980E-004 - 118.62000000000000 2.3063666667973637E-004 - 118.68000000000001 2.0895276085457172E-004 - 118.73999999999998 1.8744182115324455E-004 - 118.79999999999998 1.6612931463791636E-004 - 118.85999999999999 1.4503966622885620E-004 - 118.91999999999999 1.2419628547105644E-004 - 118.97999999999999 1.0362153446648352E-004 - 119.03999999999999 8.3336703911273741E-005 - 119.09999999999999 6.3362055281192039E-005 - 119.16000000000000 4.3716738708359707E-005 - 119.22000000000000 2.4418845663422666E-005 - 119.28000000000000 5.4853952005850283E-006 - 119.34000000000000 -1.3067665765484269E-005 - 119.40000000000001 -3.1225474998600003E-005 - 119.46000000000001 -4.8974227646460279E-005 - 119.51999999999998 -6.6301138229513340E-005 - 119.57999999999998 -8.3194504721209058E-005 - 119.63999999999999 -9.9643630267604269E-005 - 119.69999999999999 -1.1563882915410743E-004 - 119.75999999999999 -1.3117142993308753E-004 - 119.81999999999999 -1.4623373154646111E-004 - 119.88000000000000 -1.6081898015350059E-004 - 119.94000000000000 -1.7492137640774956E-004 - 120.00000000000000 -1.8853601623714672E-004 - 120.06000000000000 -2.0165890840733919E-004 - 120.12000000000000 -2.1428690768893904E-004 - 120.18000000000001 -2.2641774796528050E-004 - 120.23999999999998 -2.3804997245555835E-004 - 120.29999999999998 -2.4918289329772580E-004 - 120.35999999999999 -2.5981661913418696E-004 - 120.41999999999999 -2.6995194522442043E-004 - 120.47999999999999 -2.7959037903498799E-004 - 120.53999999999999 -2.8873408599666380E-004 - 120.59999999999999 -2.9738592241520227E-004 - 120.66000000000000 -3.0554924942492582E-004 - 120.72000000000000 -3.1322802001296224E-004 - 120.78000000000000 -3.2042671739833313E-004 - 120.84000000000000 -3.2715025975271512E-004 - 120.90000000000001 -3.3340404648352350E-004 - 120.95999999999998 -3.3919382416569078E-004 - 121.01999999999998 -3.4452577129142698E-004 - 121.07999999999998 -3.4940633950277926E-004 - 121.13999999999999 -3.5384225750287915E-004 - 121.19999999999999 -3.5784052413453818E-004 - 121.25999999999999 -3.6140836882120732E-004 - 121.31999999999999 -3.6455320765036792E-004 - 121.38000000000000 -3.6728253720513717E-004 - 121.44000000000000 -3.6960405433416292E-004 - 121.50000000000000 -3.7152552217726919E-004 - 121.56000000000000 -3.7305480777016228E-004 - 121.62000000000000 -3.7419971839644143E-004 - 121.68000000000001 -3.7496817620847109E-004 - 121.73999999999998 -3.7536796827153504E-004 - 121.79999999999998 -3.7540690631893202E-004 - 121.85999999999999 -3.7509276106201408E-004 - 121.91999999999999 -3.7443311747359408E-004 - 121.97999999999999 -3.7343548184591460E-004 - 122.03999999999999 -3.7210718317596918E-004 - 122.09999999999999 -3.7045543173817825E-004 - 122.16000000000000 -3.6848723248877587E-004 - 122.22000000000000 -3.6620937646434878E-004 - 122.28000000000000 -3.6362836702815067E-004 - 122.34000000000000 -3.6075056551885442E-004 - 122.40000000000001 -3.5758203128163891E-004 - 122.45999999999998 -3.5412853849810699E-004 - 122.51999999999998 -3.5039568714715903E-004 - 122.57999999999998 -3.4638872257058745E-004 - 122.63999999999999 -3.4211265879776742E-004 - 122.69999999999999 -3.3757222427579505E-004 - 122.75999999999999 -3.3277189044549234E-004 - 122.81999999999999 -3.2771586788434823E-004 - 122.88000000000000 -3.2240812454252299E-004 - 122.94000000000000 -3.1685242132217556E-004 - 123.00000000000000 -3.1105226229339732E-004 - 123.06000000000000 -3.0501099141976739E-004 - 123.12000000000000 -2.9873170634589887E-004 - 123.18000000000001 -2.9221741333454980E-004 - 123.23999999999998 -2.8547088482471514E-004 - 123.29999999999998 -2.7849483213746154E-004 - 123.35999999999999 -2.7129184140320156E-004 - 123.41999999999999 -2.6386442528520906E-004 - 123.47999999999999 -2.5621501359591846E-004 - 123.53999999999999 -2.4834603790737807E-004 - 123.59999999999999 -2.4025994846570541E-004 - 123.66000000000000 -2.3195916699023648E-004 - 123.72000000000000 -2.2344620067443069E-004 - 123.78000000000000 -2.1472364963125780E-004 - 123.84000000000000 -2.0579423299058605E-004 - 123.90000000000001 -1.9666077843941637E-004 - 123.95999999999998 -1.8732632664743211E-004 - 124.01999999999998 -1.7779411642780690E-004 - 124.07999999999998 -1.6806758489293125E-004 - 124.13999999999999 -1.5815047029297697E-004 - 124.19999999999999 -1.4804679932260961E-004 - 124.25999999999999 -1.3776089289690746E-004 - 124.31999999999999 -1.2729745957075072E-004 - 124.38000000000000 -1.1666153279646184E-004 - 124.44000000000000 -1.0585858085559846E-004 - 124.50000000000000 -9.4894476522018028E-005 - 124.56000000000000 -8.3775546555004356E-005 - 124.62000000000000 -7.2508590608431252E-005 - 124.68000000000001 -6.1100891189135476E-005 - 124.73999999999998 -4.9560254678243907E-005 - 124.79999999999998 -3.7894993148363929E-005 - 124.85999999999999 -2.6113980389063659E-005 - 124.91999999999999 -1.4226632186242033E-005 - 124.97999999999999 -2.2429289396171954E-006 - 125.03999999999999 9.8265751514346865E-006 - 125.09999999999999 2.1970764445059372E-005 - 125.16000000000000 3.4177936402974761E-005 - 125.22000000000000 4.6435830331235184E-005 - 125.28000000000000 5.8731626971602840E-005 - 125.34000000000000 7.1051968492310703E-005 - 125.40000000000001 8.3382951693173767E-005 - 125.45999999999998 9.5710176414948232E-005 - 125.51999999999998 1.0801875383848000E-004 - 125.57999999999998 1.2029330999721302E-004 - 125.63999999999999 1.3251804543268868E-004 - 125.69999999999999 1.4467675719200283E-004 - 125.75999999999999 1.5675284338268009E-004 - 125.81999999999999 1.6872935803726423E-004 - 125.88000000000000 1.8058904487166253E-004 - 125.94000000000000 1.9231438885808353E-004 - 126.00000000000000 2.0388763908634014E-004 - 126.06000000000000 2.1529080271103833E-004 - 126.12000000000000 2.2650576280579994E-004 - 126.18000000000001 2.3751424338443983E-004 - 126.23999999999998 2.4829792782253194E-004 - 126.29999999999998 2.5883845329402016E-004 - 126.35999999999999 2.6911744228185028E-004 - 126.41999999999999 2.7911659340106184E-004 - 126.47999999999999 2.8881772493937445E-004 - 126.53999999999999 2.9820281781129797E-004 - 126.59999999999999 3.0725406092354802E-004 - 126.66000000000000 3.1595384161331143E-004 - 126.72000000000000 3.2428496731195188E-004 - 126.78000000000000 3.3223056529028071E-004 - 126.84000000000000 3.3977420434949782E-004 - 126.90000000000001 3.4689996499016895E-004 - 126.95999999999998 3.5359244663187912E-004 - 127.01999999999998 3.5983684130024257E-004 - 127.07999999999998 3.6561897197312965E-004 - 127.13999999999999 3.7092541479908124E-004 - 127.19999999999999 3.7574346323495988E-004 - 127.25999999999999 3.8006118595634039E-004 - 127.31999999999999 3.8386748871463081E-004 - 127.38000000000000 3.8715216641038009E-004 - 127.44000000000000 3.8990589535083169E-004 - 127.50000000000000 3.9212032156813852E-004 - 127.56000000000000 3.9378807578612646E-004 - 127.62000000000000 3.9490275218033872E-004 - 127.68000000000001 3.9545904010889095E-004 - 127.73999999999998 3.9545261355462168E-004 - 127.79999999999998 3.9488028553097399E-004 - 127.85999999999999 3.9373994877488872E-004 - 127.91999999999999 3.9203059303624812E-004 - 127.97999999999999 3.8975233081689308E-004 - 128.03999999999999 3.8690639741752381E-004 - 128.09999999999999 3.8349521371536217E-004 - 128.16000000000000 3.7952231246731112E-004 - 128.22000000000000 3.7499241034180740E-004 - 128.28000000000000 3.6991130247381954E-004 - 128.34000000000000 3.6428595856456545E-004 - 128.40000000000001 3.5812443145706108E-004 - 128.45999999999998 3.5143597030495773E-004 - 128.51999999999998 3.4423078700123556E-004 - 128.57999999999998 3.3652024884423876E-004 - 128.63999999999999 3.2831673637282832E-004 - 128.69999999999999 3.1963365884743586E-004 - 128.75999999999999 3.1048536289090964E-004 - 128.81999999999999 3.0088716549790971E-004 - 128.88000000000000 2.9085531232281515E-004 - 128.94000000000000 2.8040690407377989E-004 - 129.00000000000000 2.6955987753405128E-004 - 129.06000000000000 2.5833293419337002E-004 - 129.12000000000000 2.4674555826796483E-004 - 129.18000000000001 2.3481784435671043E-004 - 129.23999999999998 2.2257058353256770E-004 - 129.29999999999998 2.1002516060280191E-004 - 129.35999999999999 1.9720345691675960E-004 - 129.41999999999999 1.8412785945219238E-004 - 129.47999999999999 1.7082117243839571E-004 - 129.53999999999999 1.5730653380726447E-004 - 129.59999999999999 1.4360741891886875E-004 - 129.66000000000000 1.2974753882134452E-004 - 129.72000000000000 1.1575079281147432E-004 - 129.78000000000000 1.0164121253265484E-004 - 129.84000000000000 8.7442921801447003E-005 - 129.90000000000001 7.3180017735150100E-005 - 129.95999999999998 5.8876586139579916E-005 - 130.01999999999998 4.4556601686140959E-005 - 130.07999999999998 3.0243897450250496E-005 - 130.13999999999999 1.5962095012747436E-005 - 130.19999999999999 1.7345644903060932E-006 - 130.25999999999999 -1.2415633167205978E-005 - 130.31999999999999 -2.6465795970518892E-005 - 130.38000000000000 -4.0393621116375838E-005 - 130.44000000000000 -5.4177258203667763E-005 - 130.50000000000000 -6.7795348413179882E-005 - 130.56000000000000 -8.1227080784908602E-005 - 130.62000000000000 -9.4452209245397901E-005 - 130.68000000000001 -1.0745111377681746E-004 - 130.73999999999998 -1.2020483138694943E-004 - 130.79999999999998 -1.3269510807532338E-004 - 130.85999999999999 -1.4490438190130941E-004 - 130.91999999999999 -1.5681586492115733E-004 - 130.97999999999999 -1.6841356453196587E-004 - 131.03999999999999 -1.7968229191551009E-004 - 131.09999999999999 -1.9060766166418934E-004 - 131.16000000000000 -2.0117617690387679E-004 - 131.22000000000000 -2.1137518094104969E-004 - 131.28000000000000 -2.2119294209879163E-004 - 131.34000000000000 -2.3061855148210549E-004 - 131.40000000000001 -2.3964205541676352E-004 - 131.45999999999998 -2.4825436734490704E-004 - 131.51999999999998 -2.5644733269456740E-004 - 131.57999999999998 -2.6421371386241575E-004 - 131.63999999999999 -2.7154714088697214E-004 - 131.69999999999999 -2.7844214197278786E-004 - 131.75999999999999 -2.8489416478330544E-004 - 131.81999999999999 -2.9089956891510454E-004 - 131.88000000000000 -2.9645558867950309E-004 - 131.94000000000000 -3.0156029970431630E-004 - 132.00000000000000 -3.0621262794131829E-004 - 132.06000000000000 -3.1041238107219749E-004 - 132.12000000000000 -3.1416017694927128E-004 - 132.18000000000001 -3.1745748145488068E-004 - 132.23999999999998 -3.2030653247941339E-004 - 132.29999999999998 -3.2271035153822836E-004 - 132.35999999999999 -3.2467270177053028E-004 - 132.41999999999999 -3.2619811191686871E-004 - 132.47999999999999 -3.2729172766060008E-004 - 132.53999999999999 -3.2795948383923914E-004 - 132.59999999999999 -3.2820789867112228E-004 - 132.66000000000000 -3.2804411592095094E-004 - 132.72000000000000 -3.2747589952255446E-004 - 132.78000000000000 -3.2651155017975319E-004 - 132.84000000000000 -3.2515992238248207E-004 - 132.90000000000001 -3.2343031088051760E-004 - 132.95999999999998 -3.2133255792635791E-004 - 133.01999999999998 -3.1887694105492702E-004 - 133.07999999999998 -3.1607407879971302E-004 - 133.13999999999999 -3.1293506852735032E-004 - 133.19999999999999 -3.0947131435415866E-004 - 133.25999999999999 -3.0569454958806377E-004 - 133.31999999999999 -3.0161686286886679E-004 - 133.38000000000000 -2.9725059319043421E-004 - 133.44000000000000 -2.9260831997695246E-004 - 133.50000000000000 -2.8770281641095650E-004 - 133.56000000000000 -2.8254712889044385E-004 - 133.62000000000000 -2.7715445015348182E-004 - 133.68000000000001 -2.7153810656772214E-004 - 133.73999999999998 -2.6571153110255795E-004 - 133.79999999999998 -2.5968825366499786E-004 - 133.85999999999999 -2.5348193322008721E-004 - 133.91999999999999 -2.4710621704179049E-004 - 133.97999999999999 -2.4057473656535097E-004 - 134.03999999999999 -2.3390115552029118E-004 - 134.09999999999999 -2.2709906718783527E-004 - 134.16000000000000 -2.2018204214608480E-004 - 134.22000000000000 -2.1316353214740645E-004 - 134.28000000000000 -2.0605690451037850E-004 - 134.34000000000000 -1.9887536017048873E-004 - 134.40000000000001 -1.9163199944565910E-004 - 134.45999999999998 -1.8433971182753802E-004 - 134.51999999999998 -1.7701121286144343E-004 - 134.57999999999998 -1.6965898552792933E-004 - 134.63999999999999 -1.6229530242522643E-004 - 134.69999999999999 -1.5493217385636923E-004 - 134.75999999999999 -1.4758137083884852E-004 - 134.81999999999999 -1.4025434279317417E-004 - 134.88000000000000 -1.3296226246520260E-004 - 134.94000000000000 -1.2571599139027010E-004 - 135.00000000000000 -1.1852602855292855E-004 - 135.06000000000000 -1.1140255364509402E-004 - 135.12000000000000 -1.0435536157546988E-004 - 135.18000000000001 -9.7393869829074756E-005 - 135.23999999999998 -9.0527117218706701E-005 - 135.29999999999998 -8.3763751033638076E-005 - 135.35999999999999 -7.7111987264607632E-005 - 135.41999999999999 -7.0579624838180819E-005 - 135.47999999999999 -6.4174024779372130E-005 - 135.53999999999999 -5.7902118774501318E-005 - 135.59999999999999 -5.1770393789545562E-005 - 135.66000000000000 -4.5784881256744100E-005 - 135.72000000000000 -3.9951158166378680E-005 - 135.78000000000000 -3.4274350509765619E-005 - 135.84000000000000 -2.8759104116134900E-005 - 135.90000000000001 -2.3409611373558061E-005 - 135.95999999999998 -1.8229587425745068E-005 - 136.01999999999998 -1.3222277380194275E-005 - 136.07999999999998 -8.3904570498862403E-006 - 136.13999999999999 -3.7364281944133308E-006 - 136.19999999999999 7.3798606857712943E-007 - 136.25999999999999 5.0314323042762946E-006 - 136.31999999999999 9.1430273388028850E-006 - 136.38000000000000 1.3072359414701585E-005 - 136.44000000000000 1.6819484253537195E-005 - 136.50000000000000 2.0384908899140765E-005 - 136.56000000000000 2.3769604937976843E-005 - 136.62000000000000 2.6974979697887919E-005 - 136.68000000000001 3.0002885041160620E-005 - 136.73999999999998 3.2855593751903258E-005 - 136.79999999999998 3.5535799135462385E-005 - 136.85999999999999 3.8046599611507562E-005 - 136.91999999999999 4.0391473238345226E-005 - 136.97999999999999 4.2574283087979310E-005 - 137.03999999999999 4.4599258002247033E-005 - 137.09999999999999 4.6470970516170176E-005 - 137.16000000000000 4.8194322584568540E-005 - 137.22000000000000 4.9774537388186069E-005 - 137.28000000000000 5.1217137075802553E-005 - 137.34000000000000 5.2527925179184030E-005 - 137.40000000000001 5.3712978334145626E-005 - 137.45999999999998 5.4778607419957292E-005 - 137.51999999999998 5.5731360898397869E-005 - 137.57999999999998 5.6578002557228598E-005 - 137.63999999999999 5.7325480743248613E-005 - 137.69999999999999 5.7980925451953851E-005 - 137.75999999999999 5.8551617047622378E-005 - 137.81999999999999 5.9044948569076896E-005 - 137.88000000000000 5.9468455188312533E-005 - 137.94000000000000 5.9829741876110944E-005 - 138.00000000000000 6.0136479531106292E-005 - 138.06000000000000 6.0396402683591301E-005 - 138.12000000000000 6.0617254242208360E-005 - 138.18000000000001 6.0806803954553321E-005 - 138.23999999999998 6.0972790476964089E-005 - 138.29999999999998 6.1122924587414635E-005 - 138.35999999999999 6.1264864892688245E-005 - 138.41999999999999 6.1406208726324894E-005 - 138.47999999999999 6.1554452849962296E-005 - 138.53999999999999 6.1716987716601722E-005 - 138.59999999999999 6.1901092218220950E-005 - 138.66000000000000 6.2113884890458685E-005 - 138.72000000000000 6.2362332954028806E-005 - 138.78000000000000 6.2653234355276719E-005 - 138.84000000000000 6.2993178354949595E-005 - 138.90000000000001 6.3388560277020833E-005 - 138.95999999999998 6.3845527995762613E-005 - 139.01999999999998 6.4369994561105001E-005 - 139.07999999999998 6.4967613341311621E-005 - 139.13999999999999 6.5643766438566064E-005 - 139.19999999999999 6.6403532183610434E-005 - 139.25999999999999 6.7251680623602709E-005 - 139.31999999999999 6.8192691552384680E-005 - 139.38000000000000 6.9230688255239855E-005 - 139.44000000000000 7.0369470511343364E-005 - 139.50000000000000 7.1612491301171002E-005 - 139.56000000000000 7.2962849581017784E-005 - 139.62000000000000 7.4423263841026069E-005 - 139.68000000000001 7.5996121499713186E-005 - 139.73999999999998 7.7683431089371890E-005 - 139.79999999999998 7.9486819380007452E-005 - 139.85999999999999 8.1407557069629116E-005 - 139.91999999999999 8.3446536486478899E-005 - 139.97999999999999 8.5604271054370791E-005 - 140.03999999999999 8.7880901306703485E-005 - 140.09999999999999 9.0276200291085422E-005 - 140.16000000000000 9.2789571256494049E-005 - 140.22000000000000 9.5420041716744647E-005 - 140.28000000000000 9.8166258651983751E-005 - 140.34000000000000 1.0102651098259927E-004 - 140.40000000000001 1.0399872272550145E-004 - 140.45999999999998 1.0708043992919878E-004 - 140.51999999999998 1.1026887163933061E-004 - 140.57999999999998 1.1356085433719688E-004 - 140.63999999999999 1.1695287710050170E-004 - 140.69999999999999 1.2044110164712227E-004 - 140.75999999999999 1.2402135838749306E-004 - 140.81999999999999 1.2768914968671669E-004 - 140.88000000000000 1.3143968435728253E-004 - 140.94000000000000 1.3526786010341243E-004 - 141.00000000000000 1.3916830403366519E-004 - 141.06000000000000 1.4313538703368696E-004 - 141.12000000000000 1.4716320540503224E-004 - 141.18000000000001 1.5124561089577764E-004 - 141.23999999999998 1.5537626681725130E-004 - 141.29999999999998 1.5954860728582457E-004 - 141.35999999999999 1.6375585980390672E-004 - 141.41999999999999 1.6799109998940002E-004 - 141.47999999999999 1.7224722699616193E-004 - 141.53999999999999 1.7651697280193031E-004 - 141.59999999999999 1.8079294450147238E-004 - 141.66000000000000 1.8506760373292758E-004 - 141.72000000000000 1.8933333550898932E-004 - 141.78000000000000 1.9358239665798381E-004 - 141.84000000000000 1.9780696345071452E-004 - 141.90000000000001 2.0199914368591347E-004 - 141.95999999999998 2.0615099769254771E-004 - 142.01999999999998 2.1025453024715946E-004 - 142.07999999999998 2.1430173240044527E-004 - 142.13999999999999 2.1828457825997355E-004 - 142.19999999999999 2.2219506709820978E-004 - 142.25999999999999 2.2602521964874532E-004 - 142.31999999999999 2.2976709241006536E-004 - 142.38000000000000 2.3341278986992051E-004 - 142.44000000000000 2.3695453856715780E-004 - 142.50000000000000 2.4038460757444481E-004 - 142.56000000000000 2.4369542223322258E-004 - 142.62000000000000 2.4687951583235332E-004 - 142.68000000000001 2.4992957069550395E-004 - 142.73999999999998 2.5283842189134518E-004 - 142.79999999999998 2.5559911026068553E-004 - 142.85999999999999 2.5820484788791103E-004 - 142.91999999999999 2.6064905469579288E-004 - 142.97999999999999 2.6292535442034291E-004 - 143.03999999999999 2.6502762636462150E-004 - 143.09999999999999 2.6694999904208874E-004 - 143.16000000000000 2.6868684418216522E-004 - 143.22000000000000 2.7023279875033798E-004 - 143.28000000000000 2.7158282536011378E-004 - 143.34000000000000 2.7273207414038337E-004 - 143.40000000000001 2.7367617094942669E-004 - 143.45999999999998 2.7441088359866092E-004 - 143.51999999999998 2.7493242046671253E-004 - 143.57999999999998 2.7523723794628069E-004 - 143.63999999999999 2.7532223379333857E-004 - 143.69999999999999 2.7518457644208557E-004 - 143.75999999999999 2.7482181069270927E-004 - 143.81999999999999 2.7423191227131301E-004 - 143.88000000000000 2.7341319436616148E-004 - 143.94000000000000 2.7236434876406573E-004 - 144.00000000000000 2.7108449843291684E-004 - 144.06000000000000 2.6957310176808506E-004 - 144.12000000000000 2.6783014341651601E-004 - 144.18000000000001 2.6585595211332227E-004 - 144.23999999999998 2.6365131772374309E-004 - 144.29999999999998 2.6121745410244700E-004 - 144.35999999999999 2.5855607255498118E-004 - 144.41999999999999 2.5566932235873951E-004 - 144.47999999999999 2.5255978340132040E-004 - 144.53999999999999 2.4923051107180963E-004 - 144.59999999999999 2.4568506007007938E-004 - 144.66000000000000 2.4192750413123366E-004 - 144.72000000000000 2.3796229131073360E-004 - 144.78000000000000 2.3379442594635878E-004 - 144.84000000000000 2.2942933979923152E-004 - 144.90000000000001 2.2487296738641992E-004 - 144.95999999999998 2.2013168929890499E-004 - 145.01999999999998 2.1521233718553215E-004 - 145.07999999999998 2.1012221831465919E-004 - 145.13999999999999 2.0486904657654120E-004 - 145.19999999999999 1.9946102828335120E-004 - 145.25999999999999 1.9390675285443226E-004 - 145.31999999999999 1.8821525487576848E-004 - 145.38000000000000 1.8239597190256249E-004 - 145.44000000000000 1.7645877017131000E-004 - 145.50000000000000 1.7041388877794930E-004 - 145.56000000000000 1.6427199854329177E-004 - 145.62000000000000 1.5804411672328892E-004 - 145.68000000000001 1.5174166823292269E-004 - 145.73999999999998 1.4537641641196853E-004 - 145.79999999999998 1.3896049515848863E-004 - 145.85999999999999 1.3250638298254418E-004 - 145.91999999999999 1.2602688189434230E-004 - 145.97999999999999 1.1953511448694330E-004 - 146.03999999999999 1.1304444934174591E-004 - 146.09999999999999 1.0656858326377734E-004 - 146.16000000000000 1.0012144048532192E-004 - 146.22000000000000 9.3717152413061919E-005 - 146.28000000000000 8.7370066252517306E-005 - 146.34000000000000 8.1094691301168904E-005 - 146.40000000000001 7.4905671482864864E-005 - 146.45999999999998 6.8817770128720332E-005 - 146.51999999999998 6.2845827990557979E-005 - 146.57999999999998 5.7004724374916229E-005 - 146.63999999999999 5.1309367690714050E-005 - 146.69999999999999 4.5774651709724841E-005 - 146.75999999999999 4.0415416638003515E-005 - 146.81999999999999 3.5246443217500334E-005 - 146.88000000000000 3.0282392714107879E-005 - 146.94000000000000 2.5537796730590871E-005 - 147.00000000000000 2.1027034560900498E-005 - 147.06000000000000 1.6764265857672883E-005 - 147.12000000000000 1.2763436387646955E-005 - 147.18000000000001 9.0382233786882566E-006 - 147.23999999999998 5.6020198843658975E-006 - 147.29999999999998 2.4678877246311692E-006 - 147.35999999999999 -3.5147446291095370E-007 - 147.41999999999999 -2.8437568875215988E-006 - 147.47999999999999 -4.9970840168244490E-006 - 147.53999999999999 -6.8000397156522970E-006 - 147.59999999999999 -8.2417079123368279E-006 - 147.66000000000000 -9.3117037881894795E-006 - 147.72000000000000 -1.0000214195712717E-005 - 147.78000000000000 -1.0298022272238692E-005 - 147.84000000000000 -1.0196546685543738E-005 - 147.90000000000001 -9.6878682569985325E-006 - 147.95999999999998 -8.7647648103443684E-006 - 148.01999999999998 -7.4207351913853502E-006 - 148.07999999999998 -5.6500293590795715E-006 - 148.13999999999999 -3.4476763183006945E-006 - 148.19999999999999 -8.0950252850021224E-007 - 148.25999999999999 2.2678367689324131E-006 - 148.31999999999999 5.7868409585088626E-006 - 148.38000000000000 9.7491430495158915E-006 - 148.44000000000000 1.4155492191445038E-005 - 148.50000000000000 1.9005733584758472E-005 - 148.56000000000000 2.4298793432348526E-005 - 148.62000000000000 3.0032671638219612E-005 - 148.68000000000001 3.6204423712672615E-005 - 148.73999999999998 4.2810153005872808E-005 - 148.79999999999998 4.9845011065263365E-005 - 148.85999999999999 5.7303178743238692E-005 - 148.91999999999999 6.5177875860944660E-005 - 148.97999999999999 7.3461355218897001E-005 - 149.03999999999999 8.2144913576895223E-005 - 149.09999999999999 9.1218881987690259E-005 - 149.16000000000000 1.0067264331316630E-004 - 149.22000000000000 1.1049465078691909E-004 - 149.28000000000000 1.2067241199753690E-004 - 149.34000000000000 1.3119252964478707E-004 - 149.40000000000001 1.4204071587793336E-004 - 149.45999999999998 1.5320180775270196E-004 - 149.51999999999998 1.6465976441770638E-004 - 149.57999999999998 1.7639771557103121E-004 - 149.63999999999999 1.8839798307453593E-004 - 149.69999999999999 2.0064209025275173E-004 - 149.75999999999999 2.1311083066085431E-004 - 149.81999999999999 2.2578423058835606E-004 - 149.88000000000000 2.3864165043059336E-004 - 149.94000000000000 2.5166178007370613E-004 - 150.00000000000000 2.6482263554979612E-004 - 150.06000000000000 2.7810172497345074E-004 - 150.12000000000000 2.9147598259489490E-004 - 150.18000000000001 3.0492179233912838E-004 - 150.23999999999998 3.1841512996153915E-004 - 150.29999999999998 3.3193145644520974E-004 - 150.35999999999999 3.4544597963102555E-004 - 150.41999999999999 3.5893352412424561E-004 - 150.47999999999999 3.7236864382110584E-004 - 150.53999999999999 3.8572564396583921E-004 - 150.59999999999999 3.9897869895108557E-004 - 150.66000000000000 4.1210178855374498E-004 - 150.72000000000000 4.2506888479526040E-004 - 150.78000000000000 4.3785388177349053E-004 - 150.84000000000000 4.5043069849467647E-004 - 150.90000000000001 4.6277336528710941E-004 - 150.95999999999998 4.7485600300414273E-004 - 151.01999999999998 4.8665292596209716E-004 - 151.07999999999998 4.9813860426283158E-004 - 151.13999999999999 5.0928793907260655E-004 - 151.19999999999999 5.2007602373565197E-004 - 151.25999999999999 5.3047837749871862E-004 - 151.31999999999999 5.4047093887400234E-004 - 151.38000000000000 5.5003016866248585E-004 - 151.44000000000000 5.5913304429954370E-004 - 151.50000000000000 5.6775711688724739E-004 - 151.56000000000000 5.7588059237872872E-004 - 151.62000000000000 5.8348238621084875E-004 - 151.68000000000001 5.9054206825078306E-004 - 151.73999999999998 5.9704006946519701E-004 - 151.79999999999998 6.0295758034275995E-004 - 151.85999999999999 6.0827659800963350E-004 - 151.91999999999999 6.1298010807134479E-004 - 151.97999999999999 6.1705200683071296E-004 - 152.03999999999999 6.2047717400314157E-004 - 152.09999999999999 6.2324133301749419E-004 - 152.16000000000000 6.2533142064295278E-004 - 152.22000000000000 6.2673526612255098E-004 - 152.28000000000000 6.2744185630654169E-004 - 152.34000000000000 6.2744119307793272E-004 - 152.40000000000001 6.2672450927186735E-004 - 152.45999999999998 6.2528401181503987E-004 - 152.51999999999998 6.2311319247359274E-004 - 152.57999999999998 6.2020654514764544E-004 - 152.63999999999999 6.1655977168345859E-004 - 152.69999999999999 6.1216984771578242E-004 - 152.75999999999999 6.0703483483067443E-004 - 152.81999999999999 6.0115406460898885E-004 - 152.88000000000000 5.9452796965311450E-004 - 152.94000000000000 5.8715823224827731E-004 - 153.00000000000000 5.7904768622306629E-004 - 153.06000000000000 5.7020034685280796E-004 - 153.12000000000000 5.6062142482008761E-004 - 153.17999999999998 5.5031726939153180E-004 - 153.23999999999998 5.3929538578921055E-004 - 153.29999999999998 5.2756433410373785E-004 - 153.35999999999999 5.1513380212812464E-004 - 153.41999999999999 5.0201461476485671E-004 - 153.47999999999999 4.8821854015062069E-004 - 153.53999999999999 4.7375844096447686E-004 - 153.59999999999999 4.5864816582253060E-004 - 153.66000000000000 4.4290253343838142E-004 - 153.72000000000000 4.2653726781605037E-004 - 153.78000000000000 4.0956902950067771E-004 - 153.84000000000000 3.9201531163444444E-004 - 153.90000000000001 3.7389446781774764E-004 - 153.95999999999998 3.5522562954813755E-004 - 154.01999999999998 3.3602873467141896E-004 - 154.07999999999998 3.1632439527344797E-004 - 154.13999999999999 2.9613395043606315E-004 - 154.19999999999999 2.7547932788786933E-004 - 154.25999999999999 2.5438311205459635E-004 - 154.31999999999999 2.3286838513801095E-004 - 154.38000000000000 2.1095880643964168E-004 - 154.44000000000000 1.8867843801980479E-004 - 154.50000000000000 1.6605177818550550E-004 - 154.56000000000000 1.4310369121496211E-004 - 154.62000000000000 1.1985934450091582E-004 - 154.67999999999998 9.6344194588436264E-005 - 154.73999999999998 7.2583898313005680E-005 - 154.79999999999998 4.8604305269825928E-005 - 154.85999999999999 2.4431369399639889E-005 - 154.91999999999999 9.1142569791504441E-008 - 154.97999999999999 -2.4390289814953268E-005 - 155.03999999999999 -4.8986859554785863E-005 - 155.09999999999999 -7.3672517392519665E-005 - 155.16000000000000 -9.8421317608874610E-005 - 155.22000000000000 -1.2320741423815340E-004 - 155.28000000000000 -1.4800512254116758E-004 - 155.34000000000000 -1.7278897708102796E-004 - 155.40000000000001 -1.9753370605217195E-004 - 155.45999999999998 -2.2221430974633081E-004 - 155.51999999999998 -2.4680608038964510E-004 - 155.57999999999998 -2.7128464814745102E-004 - 155.63999999999999 -2.9562599612749103E-004 - 155.69999999999999 -3.1980644277938109E-004 - 155.75999999999999 -3.4380281774604057E-004 - 155.81999999999999 -3.6759233133173595E-004 - 155.88000000000000 -3.9115270847313581E-004 - 155.94000000000000 -4.1446210026559519E-004 - 156.00000000000000 -4.3749922340048289E-004 - 156.06000000000000 -4.6024338154241593E-004 - 156.12000000000000 -4.8267443065530449E-004 - 156.17999999999998 -5.0477269620402109E-004 - 156.23999999999998 -5.2651919812872179E-004 - 156.29999999999998 -5.4789563041035517E-004 - 156.35999999999999 -5.6888419155739546E-004 - 156.41999999999999 -5.8946779401878658E-004 - 156.47999999999999 -6.0962990818876094E-004 - 156.53999999999999 -6.2935470466940165E-004 - 156.59999999999999 -6.4862705327232799E-004 - 156.66000000000000 -6.6743242862025629E-004 - 156.72000000000000 -6.8575698069020660E-004 - 156.78000000000000 -7.0358756964379989E-004 - 156.84000000000000 -7.2091171463039053E-004 - 156.90000000000001 -7.3771751877598195E-004 - 156.95999999999998 -7.5399397703654195E-004 - 157.01999999999998 -7.6973056420938163E-004 - 157.07999999999998 -7.8491747719428820E-004 - 157.13999999999999 -7.9954556644123629E-004 - 157.19999999999999 -8.1360641594929435E-004 - 157.25999999999999 -8.2709216220093636E-004 - 157.31999999999999 -8.3999569434935835E-004 - 157.38000000000000 -8.5231048517889034E-004 - 157.44000000000000 -8.6403074419807828E-004 - 157.50000000000000 -8.7515121512077906E-004 - 157.56000000000000 -8.8566724364797108E-004 - 157.62000000000000 -8.9557484657272566E-004 - 157.67999999999998 -9.0487067953793233E-004 - 157.73999999999998 -9.1355189267433654E-004 - 157.79999999999998 -9.2161636350890212E-004 - 157.85999999999999 -9.2906238443772029E-004 - 157.91999999999999 -9.3588896625916432E-004 - 157.97999999999999 -9.4209557719992837E-004 - 158.03999999999999 -9.4768221277778393E-004 - 158.09999999999999 -9.5264947044535787E-004 - 158.16000000000000 -9.5699842940710853E-004 - 158.22000000000000 -9.6073072264125936E-004 - 158.28000000000000 -9.6384842056668424E-004 - 158.34000000000000 -9.6635415975828505E-004 - 158.40000000000001 -9.6825088226975284E-004 - 158.45999999999998 -9.6954223320301560E-004 - 158.51999999999998 -9.7023212174336985E-004 - 158.57999999999998 -9.7032507309183875E-004 - 158.63999999999999 -9.6982594402959268E-004 - 158.69999999999999 -9.6873990515213438E-004 - 158.75999999999999 -9.6707263046833588E-004 - 158.81999999999999 -9.6483007384192711E-004 - 158.88000000000000 -9.6201879722878194E-004 - 158.94000000000000 -9.5864565218060655E-004 - 159.00000000000000 -9.5471764532568818E-004 - 159.06000000000000 -9.5024232519076821E-004 - 159.12000000000000 -9.4522757034633796E-004 - 159.17999999999998 -9.3968148180283389E-004 - 159.23999999999998 -9.3361256183671561E-004 - 159.29999999999998 -9.2702964458639154E-004 - 159.35999999999999 -9.1994164824281399E-004 - 159.41999999999999 -9.1235799200437820E-004 - 159.47999999999999 -9.0428830323733579E-004 - 159.53999999999999 -8.9574226596837866E-004 - 159.59999999999999 -8.8672992627129464E-004 - 159.66000000000000 -8.7726155905268224E-004 - 159.72000000000000 -8.6734753889579656E-004 - 159.78000000000000 -8.5699853731165706E-004 - 159.84000000000000 -8.4622522784060894E-004 - 159.90000000000001 -8.3503841184583497E-004 - 159.95999999999998 -8.2344918046943613E-004 - 160.01999999999998 -8.1146853581642430E-004 - 160.07999999999998 -7.9910774267647768E-004 - 160.13999999999999 -7.8637801345917031E-004 - 160.19999999999999 -7.7329077926052529E-004 - 160.25999999999999 -7.5985737653162821E-004 - 160.31999999999999 -7.4608936909848769E-004 - 160.38000000000000 -7.3199824149954647E-004 - 160.44000000000000 -7.1759555786524414E-004 - 160.50000000000000 -7.0289292584102461E-004 - 160.56000000000000 -6.8790206628031869E-004 - 160.62000000000000 -6.7263463319749766E-004 - 160.67999999999998 -6.5710237214997556E-004 - 160.73999999999998 -6.4131698490008581E-004 - 160.79999999999998 -6.2529022269576713E-004 - 160.85999999999999 -6.0903375740742360E-004 - 160.91999999999999 -5.9255932011954577E-004 - 160.97999999999999 -5.7587857418224552E-004 - 161.03999999999999 -5.5900316317457560E-004 - 161.09999999999999 -5.4194457577433559E-004 - 161.16000000000000 -5.2471433831846983E-004 - 161.22000000000000 -5.0732384588642390E-004 - 161.28000000000000 -4.8978451415030604E-004 - 161.34000000000000 -4.7210753573943175E-004 - 161.40000000000001 -4.5430406565428203E-004 - 161.45999999999998 -4.3638518811796778E-004 - 161.51999999999998 -4.1836186958363060E-004 - 161.57999999999998 -4.0024498723470800E-004 - 161.63999999999999 -3.8204528912960808E-004 - 161.69999999999999 -3.6377354301349898E-004 - 161.75999999999999 -3.4544029015996010E-004 - 161.81999999999999 -3.2705609856842761E-004 - 161.88000000000000 -3.0863142350358731E-004 - 161.94000000000000 -2.9017660524043742E-004 - 162.00000000000000 -2.7170198487650815E-004 - 162.06000000000000 -2.5321779129870833E-004 - 162.12000000000000 -2.3473412770684581E-004 - 162.17999999999998 -2.1626109802595810E-004 - 162.23999999999998 -1.9780868471508850E-004 - 162.29999999999998 -1.7938679988728856E-004 - 162.35999999999999 -1.6100523971531315E-004 - 162.41999999999999 -1.4267373822271653E-004 - 162.47999999999999 -1.2440190248481079E-004 - 162.53999999999999 -1.0619926165647697E-004 - 162.59999999999999 -8.8075241818925953E-005 - 162.66000000000000 -7.0039133324409575E-005 - 162.72000000000000 -5.2100135290161004E-005 - 162.78000000000000 -3.4267343558249716E-005 - 162.84000000000000 -1.6549736192382297E-005 - 162.90000000000001 1.0438161611754202E-006 - 162.95999999999998 1.8504553596261596E-005 - 163.01999999999998 3.5823816833049542E-005 - 163.07999999999998 5.2993056785418584E-005 - 163.13999999999999 7.0003829016970889E-005 - 163.19999999999999 8.6847801091157010E-005 - 163.25999999999999 1.0351672509537781E-004 - 163.31999999999999 1.2000247994856437E-004 - 163.38000000000000 1.3629704041132285E-004 - 163.44000000000000 1.5239249907969698E-004 - 163.50000000000000 1.6828107080333793E-004 - 163.56000000000000 1.8395507034364207E-004 - 163.62000000000000 1.9940695492793120E-004 - 163.67999999999998 2.1462930265180971E-004 - 163.73999999999998 2.2961485197343237E-004 - 163.79999999999998 2.4435648748515678E-004 - 163.85999999999999 2.5884724241339869E-004 - 163.91999999999999 2.7308031474950015E-004 - 163.97999999999999 2.8704908868166731E-004 - 164.03999999999999 3.0074712963312587E-004 - 164.09999999999999 3.1416822072975352E-004 - 164.16000000000000 3.2730631454120702E-004 - 164.22000000000000 3.4015561010290366E-004 - 164.28000000000000 3.5271053460311222E-004 - 164.34000000000000 3.6496574630578732E-004 - 164.40000000000001 3.7691610901817625E-004 - 164.45999999999998 3.8855683247796034E-004 - 164.51999999999998 3.9988329905636932E-004 - 164.57999999999998 4.1089117469975464E-004 - 164.63999999999999 4.2157647451218942E-004 - 164.69999999999999 4.3193537678367689E-004 - 164.75999999999999 4.4196440812702587E-004 - 164.81999999999999 4.5166034731655192E-004 - 164.88000000000000 4.6102025490016275E-004 - 164.94000000000000 4.7004151753176927E-004 - 165.00000000000000 4.7872172521156055E-004 - 165.06000000000000 4.8705878921102180E-004 - 165.12000000000000 4.9505100523384996E-004 - 165.17999999999998 5.0269682357006291E-004 - 165.23999999999998 5.0999500309653926E-004 - 165.29999999999998 5.1694465805778142E-004 - 165.35999999999999 5.2354513939389935E-004 - 165.41999999999999 5.2979608911648212E-004 - 165.47999999999999 5.3569753729030439E-004 - 165.53999999999999 5.4124966920246866E-004 - 165.59999999999999 5.4645312018166694E-004 - 165.66000000000000 5.5130867944880649E-004 - 165.72000000000000 5.5581751011505546E-004 - 165.78000000000000 5.5998100997308798E-004 - 165.84000000000000 5.6380102429285902E-004 - 165.90000000000001 5.6727948859757273E-004 - 165.95999999999998 5.7041877805492274E-004 - 166.01999999999998 5.7322135467059992E-004 - 166.07999999999998 5.7569011467369948E-004 - 166.13999999999999 5.7782799766676989E-004 - 166.19999999999999 5.7963837294888038E-004 - 166.25999999999999 5.8112468292351540E-004 - 166.31999999999999 5.8229050817649444E-004 - 166.38000000000000 5.8313978644467619E-004 - 166.44000000000000 5.8367643662825383E-004 - 166.50000000000000 5.8390465387006746E-004 - 166.56000000000000 5.8382867390217711E-004 - 166.62000000000000 5.8345289243691932E-004 - 166.67999999999998 5.8278180205602456E-004 - 166.73999999999998 5.8181998076360728E-004 - 166.79999999999998 5.8057211839219558E-004 - 166.85999999999999 5.7904292543313842E-004 - 166.91999999999999 5.7723723471280364E-004 - 166.97999999999999 5.7515986939395743E-004 - 167.03999999999999 5.7281579574503623E-004 - 167.09999999999999 5.7020989454374302E-004 - 167.16000000000000 5.6734710931056326E-004 - 167.22000000000000 5.6423243167550590E-004 - 167.28000000000000 5.6087077208426944E-004 - 167.34000000000000 5.5726707951534924E-004 - 167.40000000000001 5.5342632092181775E-004 - 167.45999999999998 5.4935323362092917E-004 - 167.51999999999998 5.4505269871583288E-004 - 167.57999999999998 5.4052942005261898E-004 - 167.63999999999999 5.3578805252237202E-004 - 167.69999999999999 5.3083312337166681E-004 - 167.75999999999999 5.2566910459087750E-004 - 167.81999999999999 5.2030031653331065E-004 - 167.88000000000000 5.1473098622204427E-004 - 167.94000000000000 5.0896513919343575E-004 - 168.00000000000000 5.0300680398138273E-004 - 168.06000000000000 4.9685978712114354E-004 - 168.12000000000000 4.9052781066595574E-004 - 168.17999999999998 4.8401450971946900E-004 - 168.23999999999998 4.7732334657493242E-004 - 168.29999999999998 4.7045765065366942E-004 - 168.35999999999999 4.6342074583942075E-004 - 168.41999999999999 4.5621572527802866E-004 - 168.47999999999999 4.4884565593199358E-004 - 168.53999999999999 4.4131346419404305E-004 - 168.59999999999999 4.3362198018248013E-004 - 168.66000000000000 4.2577397291717104E-004 - 168.72000000000000 4.1777209467157522E-004 - 168.78000000000000 4.0961894926181953E-004 - 168.84000000000000 4.0131705625074814E-004 - 168.90000000000001 3.9286881898478417E-004 - 168.95999999999998 3.8427660756416013E-004 - 169.01999999999998 3.7554277514908964E-004 - 169.07999999999998 3.6666963775005467E-004 - 169.13999999999999 3.5765942518283103E-004 - 169.19999999999999 3.4851436186923945E-004 - 169.25999999999999 3.3923666799704947E-004 - 169.31999999999999 3.2982858231879014E-004 - 169.38000000000000 3.2029234690648115E-004 - 169.44000000000000 3.1063024315260531E-004 - 169.50000000000000 3.0084457518990323E-004 - 169.56000000000000 2.9093769196347470E-004 - 169.62000000000000 2.8091202516027569E-004 - 169.67999999999998 2.7077002449465531E-004 - 169.73999999999998 2.6051426080937355E-004 - 169.79999999999998 2.5014737801155732E-004 - 169.85999999999999 2.3967210579960976E-004 - 169.91999999999999 2.2909123482246196E-004 - 169.97999999999999 2.1840768385071908E-004 - 170.03999999999999 2.0762448236094237E-004 - 170.09999999999999 1.9674474573485857E-004 - 170.16000000000000 1.8577169854574360E-004 - 170.22000000000000 1.7470871744118777E-004 - 170.28000000000000 1.6355927252093388E-004 - 170.34000000000000 1.5232697119179592E-004 - 170.40000000000001 1.4101555633105184E-004 - 170.45999999999998 1.2962889007416776E-004 - 170.51999999999998 1.1817098949759842E-004 - 170.57999999999998 1.0664601755520114E-004 - 170.63999999999999 9.5058283650669898E-005 - 170.69999999999999 8.3412219848278898E-005 - 170.75999999999999 7.1712424763720759E-005 - 170.81999999999999 5.9963642765601888E-005 - 170.88000000000000 4.8170756743163353E-005 - 170.94000000000000 3.6338792556416339E-005 - 171.00000000000000 2.4472911800222601E-005 - 171.06000000000000 1.2578416079715319E-005 - 171.12000000000000 6.6072155159757859E-007 - 171.17999999999998 -1.1274623069839967E-005 - 171.23999999999998 -2.3221959222404187E-005 - 171.29999999999998 -3.5175514587568792E-005 - 171.35999999999999 -4.7129417425799617E-005 - 171.41999999999999 -5.9077701564336041E-005 - 171.47999999999999 -7.1014306922718396E-005 - 171.53999999999999 -8.2933099530801448E-005 - 171.59999999999999 -9.4827865036182244E-005 - 171.66000000000000 -1.0669231458233978E-004 - 171.72000000000000 -1.1852011413713737E-004 - 171.78000000000000 -1.3030486192883178E-004 - 171.84000000000000 -1.4204013540391493E-004 - 171.90000000000001 -1.5371943372344000E-004 - 171.95999999999998 -1.6533623472480682E-004 - 172.01999999999998 -1.7688402673703087E-004 - 172.07999999999998 -1.8835623569624226E-004 - 172.13999999999999 -1.9974630875353123E-004 - 172.19999999999999 -2.1104765728389811E-004 - 172.25999999999999 -2.2225372481445742E-004 - 172.31999999999999 -2.3335793132130185E-004 - 172.38000000000000 -2.4435373816653202E-004 - 172.44000000000000 -2.5523460955299983E-004 - 172.50000000000000 -2.6599401234433880E-004 - 172.56000000000000 -2.7662546681572368E-004 - 172.62000000000000 -2.8712253371378530E-004 - 172.67999999999998 -2.9747876152032878E-004 - 172.73999999999998 -3.0768777870301874E-004 - 172.79999999999998 -3.1774323921313454E-004 - 172.85999999999999 -3.2763879911244516E-004 - 172.91999999999999 -3.3736823636234685E-004 - 172.97999999999999 -3.4692534287670461E-004 - 173.03999999999999 -3.5630396377401207E-004 - 173.09999999999999 -3.6549804260093186E-004 - 173.16000000000000 -3.7450155404099392E-004 - 173.22000000000000 -3.8330861496765179E-004 - 173.28000000000000 -3.9191337206143057E-004 - 173.34000000000000 -4.0031011997699814E-004 - 173.40000000000001 -4.0849316080538182E-004 - 173.45999999999998 -4.1645698849630683E-004 - 173.51999999999998 -4.2419618803401452E-004 - 173.57999999999998 -4.3170540488296011E-004 - 173.63999999999999 -4.3897945256899144E-004 - 173.69999999999999 -4.4601321514592629E-004 - 173.75999999999999 -4.5280174211153657E-004 - 173.81999999999999 -4.5934012493704696E-004 - 173.88000000000000 -4.6562363880835140E-004 - 173.94000000000000 -4.7164764866527227E-004 - 174.00000000000000 -4.7740764695383475E-004 - 174.06000000000000 -4.8289925349129454E-004 - 174.12000000000000 -4.8811819020919188E-004 - 174.17999999999998 -4.9306032864178623E-004 - 174.23999999999998 -4.9772171752462480E-004 - 174.29999999999998 -5.0209848114648428E-004 - 174.35999999999999 -5.0618693587104737E-004 - 174.41999999999999 -5.0998360040162196E-004 - 174.47999999999999 -5.1348513276985495E-004 - 174.53999999999999 -5.1668839180778040E-004 - 174.59999999999999 -5.1959039792390076E-004 - 174.66000000000000 -5.2218845403787417E-004 - 174.72000000000000 -5.2447997978111085E-004 - 174.78000000000000 -5.2646274815943014E-004 - 174.84000000000000 -5.2813470586631612E-004 - 174.90000000000001 -5.2949397518602071E-004 - 174.95999999999998 -5.3053903971667375E-004 - 175.01999999999998 -5.3126863245224834E-004 - 175.07999999999998 -5.3168161935487923E-004 - 175.13999999999999 -5.3177718862691139E-004 - 175.19999999999999 -5.3155482880761623E-004 - 175.25999999999999 -5.3101425755949306E-004 - 175.31999999999999 -5.3015549635538814E-004 - 175.38000000000000 -5.2897869823719077E-004 - 175.44000000000000 -5.2748442627270468E-004 - 175.50000000000000 -5.2567340308339971E-004 - 175.56000000000000 -5.2354669398918096E-004 - 175.62000000000000 -5.2110558184479609E-004 - 175.67999999999998 -5.1835164145542861E-004 - 175.73999999999998 -5.1528665803529650E-004 - 175.79999999999998 -5.1191276374099742E-004 - 175.85999999999999 -5.0823239733653526E-004 - 175.91999999999999 -5.0424816844135483E-004 - 175.97999999999999 -4.9996293502361285E-004 - 176.03999999999999 -4.9537998813133869E-004 - 176.09999999999999 -4.9050275664158313E-004 - 176.16000000000000 -4.8533491831587590E-004 - 176.22000000000000 -4.7988044670429505E-004 - 176.28000000000000 -4.7414356977132951E-004 - 176.34000000000000 -4.6812860941739578E-004 - 176.40000000000001 -4.6184023551843585E-004 - 176.45999999999998 -4.5528323569283635E-004 - 176.51999999999998 -4.4846262531722183E-004 - 176.57999999999998 -4.4138357085951482E-004 - 176.63999999999999 -4.3405140488488622E-004 - 176.69999999999999 -4.2647161205094827E-004 - 176.75999999999999 -4.1864983026920679E-004 - 176.81999999999999 -4.1059170664147919E-004 - 176.88000000000000 -4.0230308596144837E-004 - 176.94000000000000 -3.9378989439838632E-004 - 177.00000000000000 -3.8505809118788588E-004 - 177.06000000000000 -3.7611370929385647E-004 - 177.12000000000000 -3.6696281033871082E-004 - 177.17999999999998 -3.5761156299067662E-004 - 177.23999999999998 -3.4806607781293260E-004 - 177.29999999999998 -3.3833247286287066E-004 - 177.35999999999999 -3.2841687773822650E-004 - 177.41999999999999 -3.1832542227081678E-004 - 177.47999999999999 -3.0806412253672017E-004 - 177.53999999999999 -2.9763898190428214E-004 - 177.59999999999999 -2.8705596545598402E-004 - 177.66000000000000 -2.7632089626788552E-004 - 177.72000000000000 -2.6543953008880853E-004 - 177.78000000000000 -2.5441753672516589E-004 - 177.84000000000000 -2.4326045370372297E-004 - 177.90000000000001 -2.3197370332294991E-004 - 177.95999999999998 -2.2056256746434198E-004 - 178.01999999999998 -2.0903220739204803E-004 - 178.07999999999998 -1.9738762983780277E-004 - 178.13999999999999 -1.8563370799652118E-004 - 178.19999999999999 -1.7377516581685822E-004 - 178.25999999999999 -1.6181658397244417E-004 - 178.31999999999999 -1.4976239315594045E-004 - 178.38000000000000 -1.3761687620397850E-004 - 178.44000000000000 -1.2538417602007680E-004 - 178.50000000000000 -1.1306828935548228E-004 - 178.56000000000000 -1.0067308230534656E-004 - 178.62000000000000 -8.8202282851586276E-005 - 178.67999999999998 -7.5659487507479727E-005 - 178.73999999999998 -6.3048178900747390E-005 - 178.79999999999998 -5.0371720824921158E-005 - 178.85999999999999 -3.7633370838362802E-005 - 178.91999999999999 -2.4836291637672976E-005 - 178.97999999999999 -1.1983566199128124E-005 - 179.03999999999999 9.2180393401480729E-007 - 179.09999999999999 1.3876871752288761E-005 - 179.16000000000000 2.6878742876916374E-005 - 179.22000000000000 3.9924554912707533E-005 - 179.28000000000000 5.3011471141146609E-005 - 179.34000000000000 6.6136655237733556E-005 - 179.40000000000001 7.9297275074331013E-005 - 179.45999999999998 9.2490477111393650E-005 - 179.51999999999998 1.0571337367929046E-004 - 179.57999999999998 1.1896304572889347E-004 - 179.63999999999999 1.3223652447957391E-004 - 179.69999999999999 1.4553076498281320E-004 - 179.75999999999999 1.5884264626726317E-004 - 179.81999999999999 1.7216899215824187E-004 - 179.88000000000000 1.8550652530142971E-004 - 179.94000000000000 1.9885187371090237E-004 - 180.00000000000000 2.1220153455557664E-004 - 180.06000000000000 2.2555191854824804E-004 - 180.12000000000000 2.3889931086943460E-004 - 180.17999999999998 2.5223984580423510E-004 - 180.23999999999998 2.6556958717271096E-004 - 180.29999999999998 2.7888437398679262E-004 - 180.35999999999999 2.9217995892666176E-004 - 180.41999999999999 3.0545193061405862E-004 - 180.47999999999999 3.1869569286177601E-004 - 180.53999999999999 3.3190650917875176E-004 - 180.59999999999999 3.4507952340718742E-004 - 180.66000000000000 3.5820971453420330E-004 - 180.72000000000000 3.7129186576201963E-004 - 180.78000000000000 3.8432068747739262E-004 - 180.84000000000000 3.9729069410246958E-004 - 180.90000000000001 4.1019633900551901E-004 - 180.95999999999998 4.2303191751980713E-004 - 181.01999999999998 4.3579157337406653E-004 - 181.07999999999998 4.4846943545208488E-004 - 181.13999999999999 4.6105949528004993E-004 - 181.19999999999999 4.7355562648027203E-004 - 181.25999999999999 4.8595164467374997E-004 - 181.31999999999999 4.9824141320975273E-004 - 181.38000000000000 5.1041855402237551E-004 - 181.44000000000000 5.2247677734083798E-004 - 181.50000000000000 5.3440962647962709E-004 - 181.56000000000000 5.4621070496681994E-004 - 181.62000000000000 5.5787357771171990E-004 - 181.67999999999998 5.6939170856020621E-004 - 181.73999999999998 5.8075862886980032E-004 - 181.79999999999998 5.9196786608394609E-004 - 181.85999999999999 6.0301291884388411E-004 - 181.91999999999999 6.1388732849991534E-004 - 181.97999999999999 6.2458467854032492E-004 - 182.03999999999999 6.3509853374343558E-004 - 182.09999999999999 6.4542256625364552E-004 - 182.16000000000000 6.5555053626630108E-004 - 182.22000000000000 6.6547627514832136E-004 - 182.28000000000000 6.7519366246744943E-004 - 182.34000000000000 6.8469672714357749E-004 - 182.39999999999998 6.9397967905694181E-004 - 182.45999999999998 7.0303674811141882E-004 - 182.51999999999998 7.1186231875199600E-004 - 182.57999999999998 7.2045088447354386E-004 - 182.63999999999999 7.2879718116768133E-004 - 182.69999999999999 7.3689599688956764E-004 - 182.75999999999999 7.4474224807457169E-004 - 182.81999999999999 7.5233101782658132E-004 - 182.88000000000000 7.5965745275256564E-004 - 182.94000000000000 7.6671691134092240E-004 - 183.00000000000000 7.7350489712884913E-004 - 183.06000000000000 7.8001685035251054E-004 - 183.12000000000000 7.8624851682126766E-004 - 183.17999999999998 7.9219560029052908E-004 - 183.23999999999998 7.9785400860731220E-004 - 183.29999999999998 8.0321978966269557E-004 - 183.35999999999999 8.0828898086119435E-004 - 183.41999999999999 8.1305782638329757E-004 - 183.47999999999999 8.1752263979151501E-004 - 183.53999999999999 8.2167979217325621E-004 - 183.59999999999999 8.2552590254641556E-004 - 183.66000000000000 8.2905763031484862E-004 - 183.72000000000000 8.3227172084357796E-004 - 183.78000000000000 8.3516500502880833E-004 - 183.84000000000000 8.3773454339050254E-004 - 183.89999999999998 8.3997743550535064E-004 - 183.95999999999998 8.4189082136596903E-004 - 184.01999999999998 8.4347206841846193E-004 - 184.07999999999998 8.4471855209447349E-004 - 184.13999999999999 8.4562780210166867E-004 - 184.19999999999999 8.4619744698858019E-004 - 184.25999999999999 8.4642523170111092E-004 - 184.31999999999999 8.4630890870451500E-004 - 184.38000000000000 8.4584648687153151E-004 - 184.44000000000000 8.4503594503066337E-004 - 184.50000000000000 8.4387539846588009E-004 - 184.56000000000000 8.4236315021646931E-004 - 184.62000000000000 8.4049749688065787E-004 - 184.67999999999998 8.3827695064393574E-004 - 184.73999999999998 8.3570011324773225E-004 - 184.79999999999998 8.3276573911719839E-004 - 184.85999999999999 8.2947260311885156E-004 - 184.91999999999999 8.2581986534617090E-004 - 184.97999999999999 8.2180664138788195E-004 - 185.03999999999999 8.1743230809689369E-004 - 185.09999999999999 8.1269631192187506E-004 - 185.16000000000000 8.0759849810500253E-004 - 185.22000000000000 8.0213867814621701E-004 - 185.28000000000000 7.9631701910414421E-004 - 185.34000000000000 7.9013385372055057E-004 - 185.39999999999998 7.8358983469344068E-004 - 185.45999999999998 7.7668573066887300E-004 - 185.51999999999998 7.6942269033049076E-004 - 185.57999999999998 7.6180206023873165E-004 - 185.63999999999999 7.5382557765060656E-004 - 185.69999999999999 7.4549514616771757E-004 - 185.75999999999999 7.3681309667511399E-004 - 185.81999999999999 7.2778204564707754E-004 - 185.88000000000000 7.1840501838014298E-004 - 185.94000000000000 7.0868525747701098E-004 - 186.00000000000000 6.9862651530426675E-004 - 186.06000000000000 6.8823282079818690E-004 - 186.12000000000000 6.7750852474417721E-004 - 186.17999999999998 6.6645850048300615E-004 - 186.23999999999998 6.5508780644961721E-004 - 186.29999999999998 6.4340204375170490E-004 - 186.35999999999999 6.3140715999864189E-004 - 186.41999999999999 6.1910949777579558E-004 - 186.47999999999999 6.0651579750543600E-004 - 186.53999999999999 5.9363316507678350E-004 - 186.59999999999999 5.8046910844342884E-004 - 186.66000000000000 5.6703159433273750E-004 - 186.72000000000000 5.5332892009493184E-004 - 186.78000000000000 5.3936984830790704E-004 - 186.84000000000000 5.2516353938266097E-004 - 186.89999999999998 5.1071953159622882E-004 - 186.95999999999998 4.9604781205924374E-004 - 187.01999999999998 4.8115867329698672E-004 - 187.07999999999998 4.6606286843652847E-004 - 187.13999999999999 4.5077149404145302E-004 - 187.19999999999999 4.3529602175171865E-004 - 187.25999999999999 4.1964827254958273E-004 - 187.31999999999999 4.0384038680090319E-004 - 187.38000000000000 3.8788480081409062E-004 - 187.44000000000000 3.7179430218001078E-004 - 187.50000000000000 3.5558188004886949E-004 - 187.56000000000000 3.3926079729447244E-004 - 187.62000000000000 3.2284457457596794E-004 - 187.67999999999998 3.0634692870985998E-004 - 187.73999999999998 2.8978172831262556E-004 - 187.79999999999998 2.7316304773029431E-004 - 187.85999999999999 2.5650507920915131E-004 - 187.91999999999999 2.3982214705486985E-004 - 187.97999999999999 2.2312868634611789E-004 - 188.03999999999999 2.0643921507992912E-004 - 188.09999999999999 1.8976829509225802E-004 - 188.16000000000000 1.7313053043149264E-004 - 188.22000000000000 1.5654055792248462E-004 - 188.28000000000000 1.4001301310179664E-004 - 188.34000000000000 1.2356246373399952E-004 - 188.39999999999998 1.0720345912550982E-004 - 188.45999999999998 9.0950449732455719E-005 - 188.51999999999998 7.4817793509102812E-005 - 188.57999999999998 5.8819707144995372E-005 - 188.63999999999999 4.2970268717917333E-005 - 188.69999999999999 2.7283352057538185E-005 - 188.75999999999999 1.1772634110547503E-005 - 188.81999999999999 -3.5484518881059384E-006 - 188.88000000000000 -1.8666719196007545E-005 - 188.94000000000000 -3.3569261149035112E-005 - 189.00000000000000 -4.8243468231272282E-005 - 189.06000000000000 -6.2677063629875738E-005 - 189.12000000000000 -7.6858097070691669E-005 - 189.17999999999998 -9.0774979899126314E-005 - 189.23999999999998 -1.0441649574307113E-004 - 189.29999999999998 -1.1777181256582140E-004 - 189.35999999999999 -1.3083049718835127E-004 - 189.41999999999999 -1.4358255187569652E-004 - 189.47999999999999 -1.5601841061408365E-004 - 189.53999999999999 -1.6812893476304323E-004 - 189.59999999999999 -1.7990543971387063E-004 - 189.66000000000000 -1.9133970776227991E-004 - 189.72000000000000 -2.0242401760206327E-004 - 189.78000000000000 -2.1315112553662685E-004 - 189.84000000000000 -2.2351428712503454E-004 - 189.89999999999998 -2.3350727944067851E-004 - 189.95999999999998 -2.4312436187913717E-004 - 190.01999999999998 -2.5236034546536370E-004 - 190.07999999999998 -2.6121053686432904E-004 - 190.13999999999999 -2.6967074819002357E-004 - 190.19999999999999 -2.7773735208415525E-004 - 190.25999999999999 -2.8540717917236965E-004 - 190.31999999999999 -2.9267759126362132E-004 - 190.38000000000000 -2.9954652333022934E-004 - 190.44000000000000 -3.0601234397464931E-004 - 190.50000000000000 -3.1207390391014623E-004 - 190.56000000000000 -3.1773057072913242E-004 - 190.62000000000000 -3.2298216414768121E-004 - 190.67999999999998 -3.2782899827737434E-004 - 190.73999999999998 -3.3227183811281627E-004 - 190.79999999999998 -3.3631189583652204E-004 - 190.85999999999999 -3.3995084171734887E-004 - 190.91999999999999 -3.4319076192854565E-004 - 190.97999999999999 -3.4603415221115270E-004 - 191.03999999999999 -3.4848398775257457E-004 - 191.09999999999999 -3.5054356344463902E-004 - 191.16000000000000 -3.5221664463153547E-004 - 191.22000000000000 -3.5350733276252991E-004 - 191.28000000000000 -3.5442011677179724E-004 - 191.34000000000000 -3.5495980789813095E-004 - 191.39999999999998 -3.5513160189972907E-004 - 191.45999999999998 -3.5494097258635936E-004 - 191.51999999999998 -3.5439371508705548E-004 - 191.57999999999998 -3.5349592788645653E-004 - 191.63999999999999 -3.5225392514404960E-004 - 191.69999999999999 -3.5067435075163849E-004 - 191.75999999999999 -3.4876402904786876E-004 - 191.81999999999999 -3.4653000096619615E-004 - 191.88000000000000 -3.4397956112953569E-004 - 191.94000000000000 -3.4112011549511156E-004 - 192.00000000000000 -3.3795931965527548E-004 - 192.06000000000000 -3.3450492622962399E-004 - 192.12000000000000 -3.3076487069543518E-004 - 192.17999999999998 -3.2674719816834399E-004 - 192.23999999999998 -3.2246006131868315E-004 - 192.29999999999998 -3.1791175379618762E-004 - 192.35999999999999 -3.1311063170110312E-004 - 192.41999999999999 -3.0806514502549519E-004 - 192.47999999999999 -3.0278373884747413E-004 - 192.53999999999999 -2.9727497223260306E-004 - 192.59999999999999 -2.9154746190666409E-004 - 192.66000000000000 -2.8560978530482170E-004 - 192.72000000000000 -2.7947060889628548E-004 - 192.78000000000000 -2.7313853705855824E-004 - 192.84000000000000 -2.6662215719537190E-004 - 192.89999999999998 -2.5993012264683731E-004 - 192.95999999999998 -2.5307097699017999E-004 - 193.01999999999998 -2.4605324604616384E-004 - 193.07999999999998 -2.3888546207833072E-004 - 193.13999999999999 -2.3157603587674205E-004 - 193.19999999999999 -2.2413336502924674E-004 - 193.25999999999999 -2.1656575602681965E-004 - 193.31999999999999 -2.0888145968801398E-004 - 193.38000000000000 -2.0108866052541386E-004 - 193.44000000000000 -1.9319545962758901E-004 - 193.50000000000000 -1.8520984334564588E-004 - 193.56000000000000 -1.7713972105997598E-004 - 193.62000000000000 -1.6899291441713877E-004 - 193.67999999999998 -1.6077711381639912E-004 - 193.73999999999998 -1.5249991414218302E-004 - 193.79999999999998 -1.4416878824570216E-004 - 193.85999999999999 -1.3579109757967875E-004 - 193.91999999999999 -1.2737405997299592E-004 - 193.97999999999999 -1.1892478251892021E-004 - 194.03999999999999 -1.1045021055644872E-004 - 194.09999999999999 -1.0195718383955705E-004 - 194.16000000000000 -9.3452392628588711E-005 - 194.22000000000000 -8.4942408171379916E-005 - 194.28000000000000 -7.6433653963984966E-005 - 194.34000000000000 -6.7932427123800900E-005 - 194.39999999999998 -5.9444901889476772E-005 - 194.45999999999998 -5.0977133199590406E-005 - 194.51999999999998 -4.2535048727711257E-005 - 194.57999999999998 -3.4124466188292418E-005 - 194.63999999999999 -2.5751080319848779E-005 - 194.69999999999999 -1.7420480607029284E-005 - 194.75999999999999 -9.1381439419038111E-006 - 194.81999999999999 -9.0943028485182068E-007 - 194.88000000000000 7.2604071778240301E-006 - 194.94000000000000 1.5366225124217819E-005 - 195.00000000000000 2.3402992583833902E-005 - 195.06000000000000 3.1365797411257775E-005 - 195.12000000000000 3.9249837050823149E-005 - 195.17999999999998 4.7050421852346551E-005 - 195.23999999999998 5.4762985763975230E-005 - 195.29999999999998 6.2383079279603867E-005 - 195.35999999999999 6.9906360734384317E-005 - 195.41999999999999 7.7328609434248145E-005 - 195.47999999999999 8.4645721478357865E-005 - 195.53999999999999 9.1853707357608905E-005 - 195.59999999999999 9.8948691593929547E-005 - 195.66000000000000 1.0592688608916815E-004 - 195.72000000000000 1.1278463763026788E-004 - 195.78000000000000 1.1951837753669272E-004 - 195.84000000000000 1.2612466080332143E-004 - 195.89999999999998 1.3260011776875002E-004 - 195.95999999999998 1.3894150204052738E-004 - 196.01999999999998 1.4514564309581383E-004 - 196.07999999999998 1.5120948796167901E-004 - 196.13999999999999 1.5713010524401875E-004 - 196.19999999999999 1.6290464217191619E-004 - 196.25999999999999 1.6853033485313707E-004 - 196.31999999999999 1.7400454844938146E-004 - 196.38000000000000 1.7932476086401103E-004 - 196.44000000000000 1.8448856849554457E-004 - 196.50000000000000 1.8949365898593334E-004 - 196.56000000000000 1.9433784196472436E-004 - 196.62000000000000 1.9901905968722639E-004 - 196.67999999999998 2.0353537668375067E-004 - 196.73999999999998 2.0788494635328719E-004 - 196.79999999999998 2.1206606838401889E-004 - 196.85999999999999 2.1607716981797865E-004 - 196.91999999999999 2.1991677373010693E-004 - 196.97999999999999 2.2358357441974451E-004 - 197.03999999999999 2.2707637080866512E-004 - 197.09999999999999 2.3039408930067789E-004 - 197.16000000000000 2.3353576819473704E-004 - 197.22000000000000 2.3650060958539936E-004 - 197.28000000000000 2.3928794857112489E-004 - 197.34000000000000 2.4189720051418962E-004 - 197.39999999999998 2.4432795344703375E-004 - 197.45999999999998 2.4657993129700330E-004 - 197.51999999999998 2.4865297906494200E-004 - 197.57999999999998 2.5054704216925349E-004 - 197.63999999999999 2.5226226266820680E-004 - 197.69999999999999 2.5379883424025312E-004 - 197.75999999999999 2.5515712140362277E-004 - 197.81999999999999 2.5633763664269574E-004 - 197.88000000000000 2.5734098031431074E-004 - 197.94000000000000 2.5816787736737294E-004 - 198.00000000000000 2.5881917825955640E-004 - 198.06000000000000 2.5929589770132044E-004 - 198.12000000000000 2.5959912507520411E-004 - 198.17999999999998 2.5973008105543077E-004 - 198.23999999999998 2.5969015271248765E-004 - 198.29999999999998 2.5948082671248127E-004 - 198.35999999999999 2.5910375628100224E-004 - 198.41999999999999 2.5856069589100082E-004 - 198.47999999999999 2.5785356255082900E-004 - 198.53999999999999 2.5698438073568233E-004 - 198.59999999999999 2.5595532343218331E-004 - 198.66000000000000 2.5476871532691472E-004 - 198.72000000000000 2.5342706023133860E-004 - 198.78000000000000 2.5193296346615203E-004 - 198.84000000000000 2.5028912565362894E-004 - 198.89999999999998 2.4849847605667861E-004 - 198.95999999999998 2.4656400920562363E-004 - 199.01999999999998 2.4448888181186014E-004 - 199.07999999999998 2.4227639947599941E-004 - 199.13999999999999 2.3992992999477319E-004 - 199.19999999999999 2.3745296516784691E-004 - 199.25999999999999 2.3484916366250472E-004 - 199.31999999999999 2.3212222797755645E-004 - 199.38000000000000 2.2927606631063184E-004 - 199.44000000000000 2.2631456774611325E-004 - 199.50000000000000 2.2324175336137505E-004 - 199.56000000000000 2.2006180887937675E-004 - 199.62000000000000 2.1677897819881675E-004 - 199.67999999999998 2.1339760215550318E-004 - 199.73999999999998 2.0992213043053730E-004 - 199.79999999999998 2.0635711595611960E-004 - 199.85999999999999 2.0270722432542051E-004 - 199.91999999999999 1.9897720314464672E-004 - 199.97999999999999 1.9517193507974530E-004 - 200.03999999999999 1.9129637627414282E-004 - 200.09999999999999 1.8735559890775455E-004 - 200.16000000000000 1.8335478068641823E-004 - 200.22000000000000 1.7929920573669022E-004 - 200.28000000000000 1.7519422081633697E-004 - 200.34000000000000 1.7104529923626095E-004 - 200.39999999999998 1.6685798340611551E-004 - 200.45999999999998 1.6263790322701955E-004 - 200.51999999999998 1.5839076923695498E-004 - 200.57999999999998 1.5412237780770642E-004 - 200.63999999999999 1.4983856525696630E-004 - 200.69999999999999 1.4554525130192671E-004 - 200.75999999999999 1.4124842290908304E-004 - 200.81999999999999 1.3695411250297715E-004 - 200.88000000000000 1.3266840506000503E-004 - 200.94000000000000 1.2839745047726672E-004 - 201.00000000000000 1.2414740949406671E-004 - 201.06000000000000 1.1992450297574734E-004 - 201.12000000000000 1.1573503091030036E-004 - 201.17999999999998 1.1158527438788822E-004 - 201.23999999999998 1.0748159061993983E-004 - 201.29999999999998 1.0343034494256536E-004 - 201.35999999999999 9.9437934520595745E-005 - 201.41999999999999 9.5510773635616939E-005 - 201.47999999999999 9.1655305501824199E-005 - 201.53999999999999 8.7877972340037072E-005 - 201.59999999999999 8.4185221945183648E-005 - 201.66000000000000 8.0583506528691506E-005 - 201.72000000000000 7.7079246917827397E-005 - 201.78000000000000 7.3678852352798851E-005 - 201.84000000000000 7.0388700327098712E-005 - 201.89999999999998 6.7215129462861112E-005 - 201.95999999999998 6.4164421002329357E-005 - 202.01999999999998 6.1242792706260558E-005 - 202.07999999999998 5.8456402536544256E-005 - 202.13999999999999 5.5811307249147021E-005 - 202.19999999999999 5.3313488159517335E-005 - 202.25999999999999 5.0968796735145046E-005 - 202.31999999999999 4.8782984478335463E-005 - 202.38000000000000 4.6761667352547526E-005 - 202.44000000000000 4.4910317187063726E-005 - 202.50000000000000 4.3234264684614551E-005 - 202.56000000000000 4.1738663504630415E-005 - 202.62000000000000 4.0428503008302599E-005 - 202.67999999999998 3.9308579834925364E-005 - 202.73999999999998 3.8383495490120154E-005 - 202.79999999999998 3.7657638907960353E-005 - 202.85999999999999 3.7135176939326366E-005 - 202.91999999999999 3.6820046932694611E-005 - 202.97999999999999 3.6715934285973805E-005 - 203.03999999999999 3.6826264676706051E-005 - 203.09999999999999 3.7154198327714878E-005 - 203.16000000000000 3.7702606189855141E-005 - 203.22000000000000 3.8474064021496646E-005 - 203.28000000000000 3.9470838132810726E-005 - 203.34000000000000 4.0694877679289083E-005 - 203.39999999999998 4.2147785309007433E-005 - 203.45999999999998 4.3830821594547955E-005 - 203.51999999999998 4.5744889913967625E-005 - 203.57999999999998 4.7890515884783497E-005 - 203.63999999999999 5.0267850033798326E-005 - 203.69999999999999 5.2876643175041743E-005 - 203.75999999999999 5.5716245547714621E-005 - 203.81999999999999 5.8785604317976093E-005 - 203.88000000000000 6.2083231731207433E-005 - 203.94000000000000 6.5607231756616607E-005 - 204.00000000000000 6.9355279839513191E-005 - 204.06000000000000 7.3324614632379407E-005 - 204.12000000000000 7.7512041508408133E-005 - 204.17999999999998 8.1913921143547411E-005 - 204.23999999999998 8.6526197741104433E-005 - 204.29999999999998 9.1344381779954261E-005 - 204.35999999999999 9.6363540614100753E-005 - 204.41999999999999 1.0157831864658023E-004 - 204.47999999999999 1.0698294077470598E-004 - 204.53999999999999 1.1257119233002235E-004 - 204.59999999999999 1.1833647776000228E-004 - 204.66000000000000 1.2427176322268521E-004 - 204.72000000000000 1.3036962905685291E-004 - 204.78000000000000 1.3662224055151545E-004 - 204.84000000000000 1.4302139547345228E-004 - 204.89999999999998 1.4955847827660741E-004 - 204.95999999999998 1.5622452898079135E-004 - 205.01999999999998 1.6301022046052643E-004 - 205.07999999999998 1.6990586971949256E-004 - 205.13999999999999 1.7690145104998749E-004 - 205.19999999999999 1.8398660646287582E-004 - 205.25999999999999 1.9115070625870680E-004 - 205.31999999999999 1.9838281638935365E-004 - 205.38000000000000 2.0567172297622282E-004 - 205.44000000000000 2.1300597381470091E-004 - 205.50000000000000 2.2037387644823414E-004 - 205.56000000000000 2.2776357712663814E-004 - 205.62000000000000 2.3516301634222105E-004 - 205.67999999999998 2.4255997514056830E-004 - 205.73999999999998 2.4994213747906699E-004 - 205.79999999999998 2.5729706626562192E-004 - 205.85999999999999 2.6461228135289997E-004 - 205.91999999999999 2.7187525495286896E-004 - 205.97999999999999 2.7907339540702756E-004 - 206.03999999999999 2.8619420138857588E-004 - 206.09999999999999 2.9322510320131586E-004 - 206.16000000000000 3.0015370521179548E-004 - 206.22000000000000 3.0696761454308353E-004 - 206.28000000000000 3.1365456129400614E-004 - 206.34000000000000 3.2020245375333103E-004 - 206.39999999999998 3.2659931888238860E-004 - 206.45999999999998 3.3283336699703345E-004 - 206.51999999999998 3.3889303346859210E-004 - 206.57999999999998 3.4476695851762111E-004 - 206.63999999999999 3.5044406827138431E-004 - 206.69999999999999 3.5591360925651104E-004 - 206.75999999999999 3.6116506299093705E-004 - 206.81999999999999 3.6618831088607278E-004 - 206.88000000000000 3.7097360614302805E-004 - 206.94000000000000 3.7551154001242760E-004 - 207.00000000000000 3.7979315867830575E-004 - 207.06000000000000 3.8380992050903422E-004 - 207.12000000000000 3.8755376768421812E-004 - 207.17999999999998 3.9101710330459319E-004 - 207.23999999999998 3.9419288966272936E-004 - 207.29999999999998 3.9707454748075087E-004 - 207.35999999999999 3.9965604559359831E-004 - 207.41999999999999 4.0193191433444535E-004 - 207.47999999999999 4.0389721080645683E-004 - 207.53999999999999 4.0554762857757104E-004 - 207.59999999999999 4.0687934727851483E-004 - 207.66000000000000 4.0788917951767285E-004 - 207.72000000000000 4.0857446634857264E-004 - 207.78000000000000 4.0893321003120271E-004 - 207.84000000000000 4.0896395329471729E-004 - 207.89999999999998 4.0866580352370922E-004 - 207.95999999999998 4.0803848889880366E-004 - 208.01999999999998 4.0708229894625313E-004 - 208.07999999999998 4.0579810310101521E-004 - 208.13999999999999 4.0418735583593605E-004 - 208.19999999999999 4.0225209366927337E-004 - 208.25999999999999 3.9999491360260799E-004 - 208.31999999999999 3.9741892620647715E-004 - 208.38000000000000 3.9452784481374591E-004 - 208.44000000000000 3.9132591888815625E-004 - 208.50000000000000 3.8781794946028084E-004 - 208.56000000000000 3.8400922550116385E-004 - 208.62000000000000 3.7990554061056027E-004 - 208.68000000000001 3.7551317495401011E-004 - 208.74000000000001 3.7083891501878667E-004 - 208.80000000000001 3.6588999505721327E-004 - 208.86000000000001 3.6067407252214889E-004 - 208.92000000000002 3.5519920775141476E-004 - 208.98000000000002 3.4947384631625156E-004 - 209.03999999999996 3.4350682284467135E-004 - 209.09999999999997 3.3730724632106382E-004 - 209.15999999999997 3.3088461722852918E-004 - 209.21999999999997 3.2424865932851964E-004 - 209.27999999999997 3.1740935414100005E-004 - 209.33999999999997 3.1037691588973229E-004 - 209.39999999999998 3.0316172046206526E-004 - 209.45999999999998 2.9577434061809878E-004 - 209.51999999999998 2.8822548080786805E-004 - 209.57999999999998 2.8052594442875856E-004 - 209.63999999999999 2.7268664455084538E-004 - 209.69999999999999 2.6471848898404379E-004 - 209.75999999999999 2.5663248686361612E-004 - 209.81999999999999 2.4843959359952022E-004 - 209.88000000000000 2.4015077869911570E-004 - 209.94000000000000 2.3177701735012057E-004 - 210.00000000000000 2.2332914088319986E-004 - 210.06000000000000 2.1481794527044838E-004 - 210.12000000000000 2.0625411976541669E-004 - 210.18000000000001 1.9764822066227250E-004 - 210.24000000000001 1.8901066358254659E-004 - 210.30000000000001 1.8035170948806656E-004 - 210.36000000000001 1.7168142559770207E-004 - 210.42000000000002 1.6300969826154265E-004 - 210.48000000000002 1.5434617266389067E-004 - 210.53999999999996 1.4570028227267894E-004 - 210.59999999999997 1.3708119946009869E-004 - 210.65999999999997 1.2849778947470291E-004 - 210.71999999999997 1.1995866832116769E-004 - 210.77999999999997 1.1147212536397413E-004 - 210.83999999999997 1.0304613233650982E-004 - 210.89999999999998 9.4688345371958163E-005 - 210.95999999999998 8.6406043419192896E-005 - 211.01999999999998 7.8206185092151204E-005 - 211.07999999999998 7.0095327287686507E-005 - 211.13999999999999 6.2079686093187458E-005 - 211.19999999999999 5.4165094589262747E-005 - 211.25999999999999 4.6357004837357203E-005 - 211.31999999999999 3.8660512572488718E-005 - 211.38000000000000 3.1080320179725405E-005 - 211.44000000000000 2.3620767824337376E-005 - 211.50000000000000 1.6285829606002639E-005 - 211.56000000000000 9.0791363278716860E-006 - 211.62000000000000 2.0039576431405719E-006 - 211.68000000000001 -4.9367758334058853E-006 - 211.74000000000001 -1.1740470544421506E-005 - 211.80000000000001 -1.8404849015808113E-005 - 211.86000000000001 -2.4927952961401424E-005 - 211.92000000000002 -3.1308132556371342E-005 - 211.98000000000002 -3.7544026267722730E-005 - 212.03999999999996 -4.3634567823695930E-005 - 212.09999999999997 -4.9578976701762292E-005 - 212.15999999999997 -5.5376732533230329E-005 - 212.21999999999997 -6.1027591215670750E-005 - 212.27999999999997 -6.6531554862619572E-005 - 212.33999999999997 -7.1888878550288116E-005 - 212.39999999999998 -7.7100048757131501E-005 - 212.45999999999998 -8.2165779752309254E-005 - 212.51999999999998 -8.7086990849756098E-005 - 212.57999999999998 -9.1864819100551492E-005 - 212.63999999999999 -9.6500587518040458E-005 - 212.69999999999999 -1.0099579272209548E-004 - 212.75999999999999 -1.0535209296666557E-004 - 212.81999999999999 -1.0957129320214554E-004 - 212.88000000000000 -1.1365534111531916E-004 - 212.94000000000000 -1.1760629548177145E-004 - 213.00000000000000 -1.2142632199704433E-004 - 213.06000000000000 -1.2511766213161652E-004 - 213.12000000000000 -1.2868265176061726E-004 - 213.18000000000001 -1.3212367478423312E-004 - 213.24000000000001 -1.3544317750922277E-004 - 213.30000000000001 -1.3864365404153218E-004 - 213.36000000000001 -1.4172757729459271E-004 - 213.42000000000002 -1.4469749865620105E-004 - 213.48000000000002 -1.4755596472641765E-004 - 213.53999999999996 -1.5030550312005066E-004 - 213.59999999999997 -1.5294864058722769E-004 - 213.65999999999997 -1.5548792998921598E-004 - 213.71999999999997 -1.5792587456479659E-004 - 213.77999999999997 -1.6026494506865584E-004 - 213.83999999999997 -1.6250759837535406E-004 - 213.89999999999998 -1.6465629292862271E-004 - 213.95999999999998 -1.6671339082119846E-004 - 214.01999999999998 -1.6868126129713083E-004 - 214.07999999999998 -1.7056218435682109E-004 - 214.13999999999999 -1.7235842572376042E-004 - 214.19999999999999 -1.7407217245603434E-004 - 214.25999999999999 -1.7570556530243983E-004 - 214.31999999999999 -1.7726066943888136E-004 - 214.38000000000000 -1.7873948368845479E-004 - 214.44000000000000 -1.8014393340704132E-004 - 214.50000000000000 -1.8147589265018492E-004 - 214.56000000000000 -1.8273713094683607E-004 - 214.62000000000000 -1.8392935125460724E-004 - 214.68000000000001 -1.8505416282259138E-004 - 214.74000000000001 -1.8611310026268030E-004 - 214.80000000000001 -1.8710760443514353E-004 - 214.86000000000001 -1.8803906049985586E-004 - 214.92000000000002 -1.8890873117346824E-004 - 214.98000000000002 -1.8971781336768725E-004 - 215.03999999999996 -1.9046745947950226E-004 - 215.09999999999997 -1.9115869894310210E-004 - 215.15999999999997 -1.9179253062552026E-004 - 215.21999999999997 -1.9236984093371921E-004 - 215.27999999999997 -1.9289149316762742E-004 - 215.33999999999997 -1.9335827892211132E-004 - 215.39999999999998 -1.9377091875086628E-004 - 215.45999999999998 -1.9413014405891230E-004 - 215.51999999999998 -1.9443655965347551E-004 - 215.57999999999998 -1.9469079982568734E-004 - 215.63999999999999 -1.9489342223129454E-004 - 215.69999999999999 -1.9504498697757035E-004 - 215.75999999999999 -1.9514600516216116E-004 - 215.81999999999999 -1.9519698010070442E-004 - 215.88000000000000 -1.9519838516286487E-004 - 215.94000000000000 -1.9515070015074191E-004 - 216.00000000000000 -1.9505434314549507E-004 - 216.06000000000000 -1.9490976186238636E-004 - 216.12000000000000 -1.9471737473838641E-004 - 216.18000000000001 -1.9447758417151121E-004 - 216.24000000000001 -1.9419078798890656E-004 - 216.30000000000001 -1.9385735961334206E-004 - 216.36000000000001 -1.9347766414623202E-004 - 216.42000000000002 -1.9305207808730505E-004 - 216.48000000000002 -1.9258093008097285E-004 - 216.53999999999996 -1.9206455851472208E-004 - 216.59999999999997 -1.9150331695185727E-004 - 216.65999999999997 -1.9089753737733597E-004 - 216.71999999999997 -1.9024756985371380E-004 - 216.77999999999997 -1.8955374084225283E-004 - 216.83999999999997 -1.8881642660165801E-004 - 216.89999999999998 -1.8803601936878532E-004 - 216.95999999999998 -1.8721291294427559E-004 - 217.01999999999998 -1.8634753148401314E-004 - 217.07999999999998 -1.8544035122700073E-004 - 217.13999999999999 -1.8449188211746534E-004 - 217.19999999999999 -1.8350267823377100E-004 - 217.25999999999999 -1.8247331248204678E-004 - 217.31999999999999 -1.8140443148465473E-004 - 217.38000000000000 -1.8029673795105138E-004 - 217.44000000000000 -1.7915097554882110E-004 - 217.50000000000000 -1.7796793181493726E-004 - 217.56000000000000 -1.7674843874643684E-004 - 217.62000000000000 -1.7549339171140117E-004 - 217.68000000000001 -1.7420371790381550E-004 - 217.74000000000001 -1.7288039713621498E-004 - 217.80000000000001 -1.7152443129543897E-004 - 217.86000000000001 -1.7013685804573268E-004 - 217.92000000000002 -1.6871876844274584E-004 - 217.98000000000002 -1.6727124003573665E-004 - 218.03999999999996 -1.6579541513333948E-004 - 218.09999999999997 -1.6429243906792264E-004 - 218.15999999999997 -1.6276349010845378E-004 - 218.21999999999997 -1.6120975647914822E-004 - 218.27999999999997 -1.5963244995930798E-004 - 218.33999999999997 -1.5803280544787762E-004 - 218.39999999999998 -1.5641205451173216E-004 - 218.45999999999998 -1.5477147778967783E-004 - 218.51999999999998 -1.5311233591968661E-004 - 218.57999999999998 -1.5143593723199568E-004 - 218.63999999999999 -1.4974359010167757E-004 - 218.69999999999999 -1.4803662786061971E-004 - 218.75999999999999 -1.4631639307061353E-004 - 218.81999999999999 -1.4458421384357093E-004 - 218.88000000000000 -1.4284146251097811E-004 - 218.94000000000000 -1.4108950199055208E-004 - 219.00000000000000 -1.3932970003823324E-004 - 219.06000000000000 -1.3756341927969852E-004 - 219.12000000000000 -1.3579200696764386E-004 - 219.18000000000001 -1.3401680027213880E-004 - 219.24000000000001 -1.3223911304000656E-004 - 219.30000000000001 -1.3046025905549957E-004 - 219.36000000000001 -1.2868150923904257E-004 - 219.42000000000002 -1.2690408204041499E-004 - 219.48000000000002 -1.2512920726968739E-004 - 219.53999999999996 -1.2335802882928356E-004 - 219.59999999999997 -1.2159166653346855E-004 - 219.65999999999997 -1.1983119705843791E-004 - 219.71999999999997 -1.1807765262213168E-004 - 219.77999999999997 -1.1633201060716963E-004 - 219.83999999999997 -1.1459519939384381E-004 - 219.89999999999998 -1.1286810395999575E-004 - 219.95999999999998 -1.1115155995097864E-004 - 220.01999999999998 -1.0944635753330996E-004 - 220.07999999999998 -1.0775324516575209E-004 - 220.13999999999999 -1.0607291317604812E-004 - 220.19999999999999 -1.0440602045790682E-004 - 220.25999999999999 -1.0275317309223665E-004 - 220.31999999999999 -1.0111493621006120E-004 - 220.38000000000000 -9.9491829275845327E-005 - 220.44000000000000 -9.7884331021386259E-005 - 220.50000000000000 -9.6292866584881537E-005 - 220.56000000000000 -9.4717818157776386E-005 - 220.62000000000000 -9.3159509682996011E-005 - 220.68000000000001 -9.1618235446102965E-005 - 220.74000000000001 -9.0094214592063013E-005 - 220.80000000000001 -8.8587616455219523E-005 - 220.86000000000001 -8.7098543728019598E-005 - 220.92000000000002 -8.5627068058687116E-005 - 220.98000000000002 -8.4173178149629877E-005 - 221.03999999999996 -8.2736810918161181E-005 - 221.09999999999997 -8.1317846747779431E-005 - 221.15999999999997 -7.9916111848741286E-005 - 221.21999999999997 -7.8531367589641110E-005 - 221.27999999999997 -7.7163338433350348E-005 - 221.33999999999997 -7.5811701136160913E-005 - 221.39999999999998 -7.4476079186638051E-005 - 221.45999999999998 -7.3156056980878609E-005 - 221.51999999999998 -7.1851206470965922E-005 - 221.57999999999998 -7.0561060812672190E-005 - 221.63999999999999 -6.9285126008021236E-005 - 221.69999999999999 -6.8022911639556061E-005 - 221.75999999999999 -6.6773892827665945E-005 - 221.81999999999999 -6.5537559612926101E-005 - 221.88000000000000 -6.4313383600088616E-005 - 221.94000000000000 -6.3100834042409331E-005 - 222.00000000000000 -6.1899394331974176E-005 - 222.06000000000000 -6.0708532821297719E-005 - 222.12000000000000 -5.9527739124864301E-005 - 222.18000000000001 -5.8356495340376587E-005 - 222.24000000000001 -5.7194292137458587E-005 - 222.30000000000001 -5.6040615870243447E-005 - 222.36000000000001 -5.4894956989367966E-005 - 222.42000000000002 -5.3756808181612377E-005 - 222.48000000000002 -5.2625656921635943E-005 - 222.53999999999996 -5.1501004797805511E-005 - 222.59999999999997 -5.0382343384237535E-005 - 222.65999999999997 -4.9269177776978284E-005 - 222.71999999999997 -4.8161017682768744E-005 - 222.77999999999997 -4.7057381799272706E-005 - 222.83999999999997 -4.5957811665298477E-005 - 222.89999999999998 -4.4861867631542996E-005 - 222.95999999999998 -4.3769131724315572E-005 - 223.01999999999998 -4.2679219145617467E-005 - 223.07999999999998 -4.1591781858108518E-005 - 223.13999999999999 -4.0506517834749840E-005 - 223.19999999999999 -3.9423162852849497E-005 - 223.25999999999999 -3.8341503811969998E-005 - 223.31999999999999 -3.7261379522620668E-005 - 223.38000000000000 -3.6182681585475654E-005 - 223.44000000000000 -3.5105352461879002E-005 - 223.50000000000000 -3.4029384782247435E-005 - 223.56000000000000 -3.2954824184892809E-005 - 223.62000000000000 -3.1881767051859470E-005 - 223.68000000000001 -3.0810348444525279E-005 - 223.74000000000001 -2.9740752327743563E-005 - 223.80000000000001 -2.8673200396103183E-005 - 223.86000000000001 -2.7607951378730826E-005 - 223.92000000000002 -2.6545291206465206E-005 - 223.98000000000002 -2.5485547921735514E-005 - 224.03999999999996 -2.4429073826793091E-005 - 224.09999999999997 -2.3376253434594279E-005 - 224.15999999999997 -2.2327498658655754E-005 - 224.21999999999997 -2.1283256144593765E-005 - 224.27999999999997 -2.0243997814574855E-005 - 224.33999999999997 -1.9210237002657694E-005 - 224.39999999999998 -1.8182514923947160E-005 - 224.45999999999998 -1.7161413391146846E-005 - 224.51999999999998 -1.6147547756047581E-005 - 224.57999999999998 -1.5141570411203175E-005 - 224.63999999999999 -1.4144171237132872E-005 - 224.69999999999999 -1.3156077747310205E-005 - 224.75999999999999 -1.2178049360745159E-005 - 224.81999999999999 -1.1210873150304042E-005 - 224.88000000000000 -1.0255366245133893E-005 - 224.94000000000000 -9.3123656021978418E-006 - 225.00000000000000 -8.3827251274602985E-006 - 225.06000000000000 -7.4673087834134951E-006 - 225.12000000000000 -6.5669863584167926E-006 - 225.18000000000001 -5.6826237826475606E-006 - 225.24000000000001 -4.8150799821948026E-006 - 225.30000000000001 -3.9652000639419554E-006 - 225.36000000000001 -3.1338079441058622E-006 - 225.42000000000002 -2.3217020830808580E-006 - 225.48000000000002 -1.5296504257975527E-006 - 225.53999999999996 -7.5838381406233184E-007 - 225.59999999999997 -8.5937896118542822E-009 - 225.65999999999997 7.1907474695443810E-007 - 225.71999999999997 1.4240247872396500E-006 - 225.77999999999997 2.1057131169164674E-006 - 225.83999999999997 2.7636542132168546E-006 - 225.89999999999998 3.3974239050419130E-006 - 225.95999999999998 4.0066634046867319E-006 - 226.01999999999998 4.5910837042543980E-006 - 226.07999999999998 5.1504697953700991E-006 - 226.13999999999999 5.6846852028266917E-006 - 226.19999999999999 6.1936751991583181E-006 - 226.25999999999999 6.6774719229039625E-006 - 226.31999999999999 7.1361980291454050E-006 - 226.38000000000000 7.5700701340349986E-006 - 226.44000000000000 7.9794035343069348E-006 - 226.50000000000000 8.3646153787376861E-006 - 226.56000000000000 8.7262267786165434E-006 - 226.62000000000000 9.0648670522676367E-006 - 226.68000000000001 9.3812767077846648E-006 - 226.74000000000001 9.6763090914745105E-006 - 226.80000000000001 9.9509317759579888E-006 - 226.86000000000001 1.0206230681274969E-005 - 226.92000000000002 1.0443413174519695E-005 - 226.98000000000002 1.0663806077932179E-005 - 227.03999999999996 1.0868860494262360E-005 - 227.09999999999997 1.1060151198005506E-005 - 227.15999999999997 1.1239381663734768E-005 - 227.21999999999997 1.1408379693865016E-005 - 227.27999999999997 1.1569103195594154E-005 - 227.33999999999997 1.1723639021232887E-005 - 227.39999999999998 1.1874201093307379E-005 - 227.45999999999998 1.2023132737256692E-005 - 227.51999999999998 1.2172905479726112E-005 - 227.57999999999998 1.2326116342053045E-005 - 227.63999999999999 1.2485486192851453E-005 - 227.69999999999999 1.2653859805147538E-005 - 227.75999999999999 1.2834201660876977E-005 - 227.81999999999999 1.3029593138603900E-005 - 227.88000000000000 1.3243230941200352E-005 - 227.94000000000000 1.3478420276031684E-005 - 228.00000000000000 1.3738574694451102E-005 - 228.06000000000000 1.4027210330219283E-005 - 228.12000000000000 1.4347945023057790E-005 - 228.18000000000001 1.4704489702365959E-005 - 228.24000000000001 1.5100648834414362E-005 - 228.30000000000001 1.5540309495829874E-005 - 228.36000000000001 1.6027442731600527E-005 - 228.42000000000002 1.6566097947904362E-005 - 228.48000000000002 1.7160392674431025E-005 - 228.53999999999996 1.7814508640548204E-005 - 228.59999999999997 1.8532690003602349E-005 - 228.65999999999997 1.9319230233817081E-005 - 228.71999999999997 2.0178465780294233E-005 - 228.77999999999997 2.1114771947729231E-005 - 228.83999999999997 2.2132553130825367E-005 - 228.89999999999998 2.3236229067902859E-005 - 228.95999999999998 2.4430237752020536E-005 - 229.01999999999998 2.5719015736795262E-005 - 229.07999999999998 2.7106991485711008E-005 - 229.13999999999999 2.8598582494969112E-005 - 229.19999999999999 3.0198174333691910E-005 - 229.25999999999999 3.1910122546875301E-005 - 229.31999999999999 3.3738734191634993E-005 - 229.38000000000000 3.5688260945142340E-005 - 229.44000000000000 3.7762889266475204E-005 - 229.50000000000000 3.9966725008418213E-005 - 229.56000000000000 4.2303787474430747E-005 - 229.62000000000000 4.4777987969886797E-005 - 229.68000000000001 4.7393127886765548E-005 - 229.74000000000001 5.0152873334875504E-005 - 229.80000000000001 5.3060754681007665E-005 - 229.86000000000001 5.6120138791791751E-005 - 229.92000000000002 5.9334222046834653E-005 - 229.97999999999996 6.2706011872897351E-005 - 230.03999999999996 6.6238306519116307E-005 - 230.09999999999997 6.9933693994552305E-005 - 230.15999999999997 7.3794526161074893E-005 - 230.21999999999997 7.7822905809866473E-005 - 230.27999999999997 8.2020682287613456E-005 - 230.33999999999997 8.6389423726926948E-005 - 230.39999999999998 9.0930414427173363E-005 - 230.45999999999998 9.5644656614554295E-005 - 230.51999999999998 1.0053282969389290E-004 - 230.57999999999998 1.0559529277860395E-004 - 230.63999999999999 1.1083210327083990E-004 - 230.69999999999999 1.1624295223344330E-004 - 230.75999999999999 1.2182719364104561E-004 - 230.81999999999999 1.2758383700947401E-004 - 230.88000000000000 1.3351150026697382E-004 - 230.94000000000000 1.3960842792525125E-004 - 231.00000000000000 1.4587248572330228E-004 - 231.06000000000000 1.5230112422226708E-004 - 231.12000000000000 1.5889139743396308E-004 - 231.18000000000001 1.6563988643218100E-004 - 231.24000000000001 1.7254279323578698E-004 - 231.30000000000001 1.7959585263117650E-004 - 231.36000000000001 1.8679431279875012E-004 - 231.42000000000002 1.9413300093541259E-004 - 231.47999999999996 2.0160625110519586E-004 - 231.53999999999996 2.0920796140135896E-004 - 231.59999999999997 2.1693152379213967E-004 - 231.65999999999997 2.2476988839644822E-004 - 231.71999999999997 2.3271554478425916E-004 - 231.77999999999997 2.4076051763291168E-004 - 231.83999999999997 2.4889640527528747E-004 - 231.89999999999998 2.5711434716218541E-004 - 231.95999999999998 2.6540508915496403E-004 - 232.01999999999998 2.7375893356003969E-004 - 232.07999999999998 2.8216580074956981E-004 - 232.13999999999999 2.9061523438043225E-004 - 232.19999999999999 2.9909643710310371E-004 - 232.25999999999999 3.0759819637435972E-004 - 232.31999999999999 3.1610902707197424E-004 - 232.38000000000000 3.2461705412256491E-004 - 232.44000000000000 3.3311014196025216E-004 - 232.50000000000000 3.4157585961898618E-004 - 232.56000000000000 3.5000146224311923E-004 - 232.62000000000000 3.5837397423111586E-004 - 232.68000000000001 3.6668013280924871E-004 - 232.74000000000001 3.7490647280827744E-004 - 232.80000000000001 3.8303933616884445E-004 - 232.86000000000001 3.9106484626219253E-004 - 232.92000000000002 3.9896898291949041E-004 - 232.97999999999996 4.0673760871539488E-004 - 233.03999999999996 4.1435644449300420E-004 - 233.09999999999997 4.2181117184356143E-004 - 233.15999999999997 4.2908739910388420E-004 - 233.21999999999997 4.3617077611719123E-004 - 233.27999999999997 4.4304693169414984E-004 - 233.33999999999997 4.4970161822258049E-004 - 233.39999999999998 4.5612066038706645E-004 - 233.45999999999998 4.6229001652582950E-004 - 233.51999999999998 4.6819585790701390E-004 - 233.57999999999998 4.7382455301294590E-004 - 233.63999999999999 4.7916274189987686E-004 - 233.69999999999999 4.8419731583247282E-004 - 233.75999999999999 4.8891553587647387E-004 - 233.81999999999999 4.9330499472015267E-004 - 233.88000000000000 4.9735367369011646E-004 - 233.94000000000000 5.0104996732751696E-004 - 234.00000000000000 5.0438272401368044E-004 - 234.06000000000000 5.0734130931129155E-004 - 234.12000000000000 5.0991552262732802E-004 - 234.18000000000001 5.1209578863345916E-004 - 234.24000000000001 5.1387286806765635E-004 - 234.30000000000001 5.1523833392581799E-004 - 234.36000000000001 5.1618433718491393E-004 - 234.42000000000002 5.1670355242716172E-004 - 234.47999999999996 5.1678938531253321E-004 - 234.53999999999996 5.1643583649850370E-004 - 234.59999999999997 5.1563760424791960E-004 - 234.65999999999997 5.1439019940695784E-004 - 234.71999999999997 5.1268967185863848E-004 - 234.77999999999997 5.1053298925400083E-004 - 234.83999999999997 5.0791782439381600E-004 - 234.89999999999998 5.0484258606501838E-004 - 234.95999999999998 5.0130653772199017E-004 - 235.01999999999998 4.9730970506161709E-004 - 235.07999999999998 4.9285293043200770E-004 - 235.13999999999999 4.8793790934378834E-004 - 235.19999999999999 4.8256713543099470E-004 - 235.25999999999999 4.7674392789119076E-004 - 235.31999999999999 4.7047239470679030E-004 - 235.38000000000000 4.6375760157835920E-004 - 235.44000000000000 4.5660526212915260E-004 - 235.50000000000000 4.4902202028325163E-004 - 235.56000000000000 4.4101527864306934E-004 - 235.62000000000000 4.3259317839072168E-004 - 235.68000000000001 4.2376466115035292E-004 - 235.74000000000001 4.1453942907639866E-004 - 235.80000000000001 4.0492788901606109E-004 - 235.86000000000001 3.9494107959222924E-004 - 235.92000000000002 3.8459075571847730E-004 - 235.97999999999996 3.7388935420732344E-004 - 236.03999999999996 3.6284985101752738E-004 - 236.09999999999997 3.5148580107265197E-004 - 236.15999999999997 3.3981138858078482E-004 - 236.21999999999997 3.2784127225404097E-004 - 236.27999999999997 3.1559064431850852E-004 - 236.33999999999997 3.0307512926698593E-004 - 236.39999999999998 2.9031082259813046E-004 - 236.45999999999998 2.7731423009460035E-004 - 236.51999999999998 2.6410225026590219E-004 - 236.57999999999998 2.5069210944538440E-004 - 236.63999999999999 2.3710137197753854E-004 - 236.69999999999999 2.2334788607126011E-004 - 236.75999999999999 2.0944975570424582E-004 - 236.81999999999999 1.9542528302586611E-004 - 236.88000000000000 1.8129296230613053E-004 - 236.94000000000000 1.6707136018105683E-004 - 237.00000000000000 1.5277917812058238E-004 - 237.06000000000000 1.3843513010233877E-004 - 237.12000000000000 1.2405794138185044E-004 - 237.18000000000001 1.0966627996907087E-004 - 237.24000000000001 9.5278741819563342E-005 - 237.30000000000001 8.0913738678660803E-005 - 237.36000000000001 6.6589525916544237E-005 - 237.42000000000002 5.2324136541564529E-005 - 237.47999999999996 3.8135328739912665E-005 - 237.53999999999996 2.4040563030147251E-005 - 237.59999999999997 1.0056977826059831E-005 - 237.65999999999997 -3.7986859663340891E-006 - 237.71999999999997 -1.7510044921966693E-005 - 237.77999999999997 -3.1061160298334861E-005 - 237.83999999999997 -4.4436532830989907E-005 - 237.89999999999998 -5.7621132976155230E-005 - 237.95999999999998 -7.0600429049077091E-005 - 238.01999999999998 -8.3360407310120949E-005 - 238.07999999999998 -9.5887571234505673E-005 - 238.13999999999999 -1.0816897594717335E-004 - 238.19999999999999 -1.2019225396583700E-004 - 238.25999999999999 -1.3194562352430487E-004 - 238.31999999999999 -1.4341789081709241E-004 - 238.38000000000000 -1.5459849932836193E-004 - 238.44000000000000 -1.6547749975009211E-004 - 238.50000000000000 -1.7604560510460602E-004 - 238.56000000000000 -1.8629418137119472E-004 - 238.62000000000000 -1.9621524731695927E-004 - 238.68000000000001 -2.0580153963292442E-004 - 238.74000000000001 -2.1504643081374775E-004 - 238.80000000000001 -2.2394400965677192E-004 - 238.86000000000001 -2.3248907991625924E-004 - 238.92000000000002 -2.4067708494555963E-004 - 238.97999999999996 -2.4850421144547645E-004 - 239.03999999999996 -2.5596731807300669E-004 - 239.09999999999997 -2.6306394438808180E-004 - 239.15999999999997 -2.6979233047749220E-004 - 239.21999999999997 -2.7615135248022115E-004 - 239.27999999999997 -2.8214057910015542E-004 - 239.33999999999997 -2.8776022641611201E-004 - 239.39999999999998 -2.9301106707015090E-004 - 239.45999999999998 -2.9789458071285128E-004 - 239.51999999999998 -3.0241276824430563E-004 - 239.57999999999998 -3.0656827340491493E-004 - 239.63999999999999 -3.1036423518564801E-004 - 239.69999999999999 -3.1380437968671023E-004 - 239.75999999999999 -3.1689288844604643E-004 - 239.81999999999999 -3.1963445207444175E-004 - 239.88000000000000 -3.2203428724423763E-004 - 239.94000000000000 -3.2409800205171929E-004 - 240.00000000000000 -3.2583164499398509E-004 - 240.06000000000000 -3.2724164464143803E-004 - 240.12000000000000 -3.2833485967316334E-004 - 240.18000000000001 -3.2911846935819385E-004 - 240.24000000000001 -3.2960002003232057E-004 - 240.30000000000001 -3.2978735458088934E-004 - 240.36000000000001 -3.2968859161463604E-004 - 240.42000000000002 -3.2931221557894365E-004 - 240.47999999999996 -3.2866685431776630E-004 - 240.53999999999996 -3.2776144940527215E-004 - 240.59999999999997 -3.2660514379330934E-004 - 240.65999999999997 -3.2520720789639248E-004 - 240.71999999999997 -3.2357716267564262E-004 - 240.77999999999997 -3.2172461238929445E-004 - 240.83999999999997 -3.1965926001767181E-004 - 240.89999999999998 -3.1739099410597237E-004 - 240.95999999999998 -3.1492969966065285E-004 - 241.01999999999998 -3.1228527938868578E-004 - 241.07999999999998 -3.0946765814890534E-004 - 241.13999999999999 -3.0648674863272099E-004 - 241.19999999999999 -3.0335246495624739E-004 - 241.25999999999999 -3.0007460513680644E-004 - 241.31999999999999 -2.9666287284744119E-004 - 241.38000000000000 -2.9312686161932027E-004 - 241.44000000000000 -2.8947606378180502E-004 - 241.50000000000000 -2.8571978085420013E-004 - 241.56000000000000 -2.8186719334609959E-004 - 241.62000000000000 -2.7792724948030070E-004 - 241.68000000000001 -2.7390872992260555E-004 - 241.74000000000001 -2.6982024673585916E-004 - 241.80000000000001 -2.6567012712562868E-004 - 241.86000000000001 -2.6146656600072434E-004 - 241.92000000000002 -2.5721749719808556E-004 - 241.97999999999996 -2.5293061818893765E-004 - 242.03999999999996 -2.4861341909784737E-004 - 242.09999999999997 -2.4427310741720554E-004 - 242.15999999999997 -2.3991665186847111E-004 - 242.21999999999997 -2.3555084305900299E-004 - 242.27999999999997 -2.3118211408475797E-004 - 242.33999999999997 -2.2681666334929023E-004 - 242.39999999999998 -2.2246046457125688E-004 - 242.45999999999998 -2.1811912257703746E-004 - 242.51999999999998 -2.1379799283261999E-004 - 242.57999999999998 -2.0950211000771488E-004 - 242.63999999999999 -2.0523623351309967E-004 - 242.69999999999999 -2.0100477854040761E-004 - 242.75999999999999 -1.9681186245238411E-004 - 242.81999999999999 -1.9266127154973013E-004 - 242.88000000000000 -1.8855648560732512E-004 - 242.94000000000000 -1.8450065014430033E-004 - 243.00000000000000 -1.8049662830305128E-004 - 243.06000000000000 -1.7654696369914880E-004 - 243.12000000000000 -1.7265390423956359E-004 - 243.18000000000001 -1.6881941158014636E-004 - 243.24000000000001 -1.6504515989123386E-004 - 243.30000000000001 -1.6133258527391511E-004 - 243.36000000000001 -1.5768284360525073E-004 - 243.42000000000002 -1.5409688148948194E-004 - 243.47999999999996 -1.5057537501132279E-004 - 243.53999999999996 -1.4711881596767332E-004 - 243.59999999999997 -1.4372749246505432E-004 - 243.65999999999997 -1.4040147661881989E-004 - 243.71999999999997 -1.3714069896324208E-004 - 243.77999999999997 -1.3394486271355082E-004 - 243.83999999999997 -1.3081353644080413E-004 - 243.89999999999998 -1.2774614413704278E-004 - 243.95999999999998 -1.2474192707390909E-004 - 244.01999999999998 -1.2180000813546628E-004 - 244.07999999999998 -1.1891936723034095E-004 - 244.13999999999999 -1.1609883891161091E-004 - 244.19999999999999 -1.1333715995123675E-004 - 244.25999999999999 -1.1063294838692374E-004 - 244.31999999999999 -1.0798470227133877E-004 - 244.38000000000000 -1.0539082425267967E-004 - 244.44000000000000 -1.0284963401813643E-004 - 244.50000000000000 -1.0035935568272418E-004 - 244.56000000000000 -9.7918169724551911E-005 - 244.62000000000000 -9.5524180165807555E-005 - 244.68000000000001 -9.3175447182439287E-005 - 244.74000000000001 -9.0870004800568176E-005 - 244.80000000000001 -8.8605870101658349E-005 - 244.86000000000001 -8.6381052964760248E-005 - 244.92000000000002 -8.4193561778871792E-005 - 244.97999999999996 -8.2041423619178279E-005 - 245.03999999999996 -7.9922705795264150E-005 - 245.09999999999997 -7.7835506621001853E-005 - 245.15999999999997 -7.5777982685965088E-005 - 245.21999999999997 -7.3748350330125450E-005 - 245.27999999999997 -7.1744886351212813E-005 - 245.33999999999997 -6.9765952969432594E-005 - 245.39999999999998 -6.7809981242828474E-005 - 245.45999999999998 -6.5875491010993165E-005 - 245.51999999999998 -6.3961087787193062E-005 - 245.57999999999998 -6.2065450540477521E-005 - 245.63999999999999 -6.0187357237580939E-005 - 245.69999999999999 -5.8325668008076678E-005 - 245.75999999999999 -5.6479317351442657E-005 - 245.81999999999999 -5.4647326108519028E-005 - 245.88000000000000 -5.2828799553625717E-005 - 245.94000000000000 -5.1022918344246738E-005 - 246.00000000000000 -4.9228949480079877E-005 - 246.06000000000000 -4.7446235079787274E-005 - 246.12000000000000 -4.5674199806807523E-005 - 246.18000000000001 -4.3912357968969383E-005 - 246.24000000000001 -4.2160307652818656E-005 - 246.30000000000001 -4.0417736756894089E-005 - 246.36000000000001 -3.8684435850159177E-005 - 246.42000000000002 -3.6960288874729664E-005 - 246.47999999999996 -3.5245280920982845E-005 - 246.53999999999996 -3.3539508000182005E-005 - 246.59999999999997 -3.1843172860135446E-005 - 246.65999999999997 -3.0156582235432001E-005 - 246.71999999999997 -2.8480152146010605E-005 - 246.77999999999997 -2.6814404139925401E-005 - 246.83999999999997 -2.5159953415922116E-005 - 246.89999999999998 -2.3517514818670450E-005 - 246.95999999999998 -2.1887886486108308E-005 - 247.01999999999998 -2.0271943734399248E-005 - 247.07999999999998 -1.8670631096715765E-005 - 247.13999999999999 -1.7084950693953924E-005 - 247.19999999999999 -1.5515953448599406E-005 - 247.25999999999999 -1.3964727347842326E-005 - 247.31999999999999 -1.2432390740132093E-005 - 247.38000000000000 -1.0920082478918689E-005 - 247.44000000000000 -9.4289570665689408E-006 - 247.50000000000000 -7.9601812695600279E-006 - 247.56000000000000 -6.5149271729663273E-006 - 247.62000000000000 -5.0943704870070016E-006 - 247.68000000000001 -3.6996930036917333E-006 - 247.74000000000001 -2.3320796553012876E-006 - 247.80000000000001 -9.9272000377654823E-007 - 247.86000000000001 3.1718958454223134E-007 - 247.92000000000002 1.5964464924730255E-006 - 247.97999999999996 2.8438407806196096E-006 - 248.03999999999996 4.0581548579108632E-006 - 248.09999999999997 5.2381664218583139E-006 - 248.15999999999997 6.3826525385027889E-006 - 248.21999999999997 7.4903893708202215E-006 - 248.27999999999997 8.5601627349856291E-006 - 248.33999999999997 9.5907717820586969E-006 - 248.39999999999998 1.0581038308775042E-005 - 248.45999999999998 1.1529816436648601E-005 - 248.51999999999998 1.2435997944068316E-005 - 248.57999999999998 1.3298527591019745E-005 - 248.63999999999999 1.4116401645888491E-005 - 248.69999999999999 1.4888688174336186E-005 - 248.75999999999999 1.5614521569015133E-005 - 248.81999999999999 1.6293121475267811E-005 - 248.88000000000000 1.6923783541990161E-005 - 248.94000000000000 1.7505891140009613E-005 - 249.00000000000000 1.8038918181146405E-005 - 249.06000000000000 1.8522418901076156E-005 - 249.12000000000000 1.8956037514603619E-005 - 249.18000000000001 1.9339502343419567E-005 - 249.24000000000001 1.9672620660087440E-005 - 249.30000000000001 1.9955276501398913E-005 - 249.36000000000001 2.0187428880499238E-005 - 249.42000000000002 2.0369112244795291E-005 - 249.47999999999996 2.0500422724287002E-005 - 249.53999999999996 2.0581521979074254E-005 - 249.59999999999997 2.0612638975132454E-005 - 249.65999999999997 2.0594062054882469E-005 - 249.71999999999997 2.0526139701478833E-005 - 249.77999999999997 2.0409280752322107E-005 - 249.83999999999997 2.0243956778156268E-005 - 249.89999999999998 2.0030699128289630E-005 - 249.95999999999998 1.9770099920502823E-005 - 250.01999999999998 1.9462818629422711E-005 - 250.07999999999998 1.9109574191502463E-005 - 250.13999999999999 1.8711153428176418E-005 - 250.19999999999999 1.8268407532370848E-005 - 250.25999999999999 1.7782256995135107E-005 - 250.31999999999999 1.7253687966185236E-005 - 250.38000000000000 1.6683749664239817E-005 - 250.44000000000000 1.6073557977684771E-005 - 250.50000000000000 1.5424291900461169E-005 - 250.56000000000000 1.4737191436262284E-005 - 250.62000000000000 1.4013552312107968E-005 - 250.68000000000001 1.3254724160409334E-005 - 250.74000000000001 1.2462108379890967E-005 - 250.80000000000001 1.1637151075007145E-005 - 250.86000000000001 1.0781335874342106E-005 - 250.92000000000002 9.8961814522128995E-006 - 250.97999999999996 8.9832345230235939E-006 - 251.03999999999996 8.0440611033704556E-006 - 251.09999999999997 7.0802441479333911E-006 - 251.15999999999997 6.0933716209064429E-006 - 251.21999999999997 5.0850370860333761E-006 - 251.27999999999997 4.0568296068591454E-006 - 251.33999999999997 3.0103299421717065E-006 - 251.39999999999998 1.9471055006541187E-006 - 251.45999999999998 8.6870805985043289E-007 - 251.51999999999998 -2.2333132552776417E-007 - 251.57999999999998 -1.3275028216784437E-006 - 251.63999999999999 -2.4423205910378562E-006 - 251.69999999999999 -3.5663227569302760E-006 - 251.75999999999999 -4.6980723036525982E-006 - 251.81999999999999 -5.8361571795978917E-006 - 251.88000000000000 -6.9791910721118175E-006 - 251.94000000000000 -8.1258115655958061E-006 diff --git a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000002.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000002.BXY.semd deleted file mode 100644 index 882f1ec5..00000000 --- a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000002.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 7.5886722259613579E-041 - 0.53999999999999915 2.5212948569664084E-040 - 0.60000000000000142 5.4277068794660303E-040 - 0.65999999999999659 9.4614443317213183E-040 - 0.71999999999999886 1.4413480473435588E-039 - 0.78000000000000114 1.9613442045632197E-039 - 0.83999999999999631 2.1650740874008250E-039 - 0.89999999999999858 2.0204375643740807E-039 - 0.96000000000000085 1.4049336091198984E-039 - 1.0199999999999960 -8.7107145613100377E-041 - 1.0799999999999983 -2.4748289983846877E-039 - 1.1400000000000006 -5.6675090815012767E-039 - 1.1999999999999957 -9.8422379433704348E-039 - 1.2599999999999980 -1.4483602152448899E-038 - 1.3200000000000003 -1.8173997595028215E-038 - 1.3799999999999955 -2.0916382819013668E-038 - 1.4399999999999977 -2.0827977065134202E-038 - 1.5000000000000000 -1.7008573187315650E-038 - 1.5599999999999952 -9.2450437135210845E-039 - 1.6199999999999974 1.5036337932902958E-039 - 1.6799999999999997 1.3655005451310348E-038 - 1.7399999999999949 2.6600749957627384E-038 - 1.7999999999999972 4.0360080625049018E-038 - 1.8599999999999994 5.2714323923929560E-038 - 1.9200000000000017 6.3680685102581952E-038 - 1.9799999999999969 6.9705449801785464E-038 - 2.0399999999999991 6.9990985541468521E-038 - 2.1000000000000014 6.2752003747242965E-038 - 2.1599999999999966 4.9165518729738187E-038 - 2.2199999999999989 2.8902358961176232E-038 - 2.2800000000000011 1.7521269122838536E-039 - 2.3399999999999963 -3.2110824928944445E-038 - 2.3999999999999986 -7.2280287952531098E-038 - 2.4600000000000009 -1.1687504783949547E-037 - 2.5199999999999960 -1.6753835252512857E-037 - 2.5799999999999983 -2.2254016469734935E-037 - 2.6400000000000006 -2.7657961313122096E-037 - 2.6999999999999957 -3.2011274751212813E-037 - 2.7599999999999980 -3.4118150866206445E-037 - 2.8200000000000003 -3.3716127277632750E-037 - 2.8799999999999955 -3.0028173364558319E-037 - 2.9399999999999977 -2.2639110824039824E-037 - 3.0000000000000000 -1.0963020893910376E-037 - 3.0599999999999952 2.3161242355952228E-038 - 3.1199999999999974 1.6458958022510759E-037 - 3.1799999999999997 2.9516666098452764E-037 - 3.2399999999999949 3.9110878967390301E-037 - 3.2999999999999972 4.3453033698146869E-037 - 3.3599999999999994 3.9844457622716616E-037 - 3.4199999999999946 2.7081194754625323E-037 - 3.4799999999999969 3.5996155219765953E-038 - 3.5399999999999991 -2.8640818448845151E-037 - 3.6000000000000014 -6.5585000560753794E-037 - 3.6599999999999966 -1.0544194522285158E-036 - 3.7199999999999989 -1.4353214999292913E-036 - 3.7800000000000011 -1.7371313962138809E-036 - 3.8399999999999963 -1.8734636124054499E-036 - 3.8999999999999986 -1.7837537070232281E-036 - 3.9600000000000009 -1.3821834696490126E-036 - 4.0199999999999960 -6.3000030819828306E-037 - 4.0799999999999983 5.3205368889286006E-037 - 4.1400000000000006 2.0889445579083383E-036 - 4.1999999999999957 4.0221598357480089E-036 - 4.2599999999999980 6.1915595299307568E-036 - 4.3200000000000003 8.3663062762866538E-036 - 4.3799999999999955 1.0284619280912405E-035 - 4.4399999999999977 1.1615704043226100E-035 - 4.5000000000000000 1.2088992975887950E-035 - 4.5599999999999952 1.1391006015081203E-035 - 4.6199999999999974 9.2354732563310864E-036 - 4.6799999999999997 5.4440655720878152E-036 - 4.7399999999999949 -1.2292798937626712E-038 - 4.7999999999999972 -7.0268563260015213E-036 - 4.8599999999999994 -1.5296034237050073E-035 - 4.9199999999999946 -2.4284525948222908E-035 - 4.9799999999999969 -3.3258399348136678E-035 - 5.0399999999999991 -4.1016051409920680E-035 - 5.1000000000000014 -4.6447951468685300E-035 - 5.1599999999999966 -4.8530406227066389E-035 - 5.2199999999999989 -4.6094289685324353E-035 - 5.2800000000000011 -3.7919470417211185E-035 - 5.3399999999999963 -2.2920752158661842E-035 - 5.3999999999999986 -7.2006644635605953E-037 - 5.4600000000000009 2.8413000142152520E-035 - 5.5199999999999960 6.3647505691658510E-035 - 5.5799999999999983 1.0323659020657237E-034 - 5.6400000000000006 1.4451311036998812E-034 - 5.6999999999999957 1.8390342955709550E-034 - 5.7599999999999980 2.1694882978444878E-034 - 5.8200000000000003 2.3847693057853639E-034 - 5.8799999999999955 2.4325833488283089E-034 - 5.9399999999999977 2.2579565356174213E-034 - 6.0000000000000000 1.8146201877272555E-034 - 6.0599999999999952 1.0657114657934246E-034 - 6.1199999999999974 -5.5541838383396412E-037 - 6.1799999999999997 -1.3897339185366904E-034 - 6.2399999999999949 -3.0451393703531784E-034 - 6.2999999999999972 -4.8922568934490102E-034 - 6.3599999999999994 -6.8102908036657239E-034 - 6.4199999999999946 -8.6366446651432602E-034 - 6.4799999999999969 -1.0170376203410423E-033 - 6.5399999999999991 -1.1180175116625569E-033 - 6.6000000000000014 -1.1416500068053558E-033 - 6.6599999999999966 -1.0629816612105806E-033 - 6.7199999999999989 -8.5948476723557425E-034 - 6.7800000000000011 -5.1372314233799573E-034 - 6.8399999999999963 -1.6474520882491707E-035 - 6.8999999999999986 6.3011264069300296E-034 - 6.9600000000000009 1.4093880623280822E-033 - 7.0199999999999960 2.2875899148832670E-033 - 7.0799999999999983 3.2120786265287240E-033 - 7.1400000000000006 4.1106910588404338E-033 - 7.1999999999999957 4.8927585862980617E-033 - 7.2599999999999980 5.4520858003689721E-033 - 7.3200000000000003 5.6721229725999232E-033 - 7.3799999999999955 5.4334392897564719E-033 - 7.4399999999999977 4.6237264981507601E-033 - 7.5000000000000000 3.1498306223655341E-033 - 7.5599999999999952 9.5146343849440483E-034 - 7.6199999999999974 -1.9841718979511955E-033 - 7.6799999999999997 -5.6078859278954630E-033 - 7.7399999999999949 -9.7954446208709972E-033 - 7.7999999999999972 -1.4337474123310903E-032 - 7.8599999999999994 -1.8934002552597874E-032 - 7.9199999999999946 -2.3195398189036354E-032 - 7.9799999999999969 -2.6651208217216833E-032 - 8.0399999999999991 -2.8768757368726285E-032 - 8.1000000000000014 -2.8981628528169783E-032 - 8.1599999999999966 -2.6729144449303521E-032 - 8.2199999999999989 -2.1505955570507487E-032 - 8.2800000000000011 -1.2920341394226279E-032 - 8.3399999999999963 -7.5857170818887588E-034 - 8.3999999999999986 1.4948478996950335E-032 - 8.4600000000000009 3.3861430023488146E-032 - 8.5199999999999960 5.5277326299610906E-032 - 8.5799999999999983 7.8090274040600802E-032 - 8.6400000000000006 1.0077514787734673E-031 - 8.6999999999999957 1.2140177790204862E-031 - 8.7599999999999980 1.3768634319733815E-031 - 8.8200000000000003 1.4708537254188014E-031 - 8.8799999999999955 1.4693567328908218E-031 - 8.9399999999999977 1.3464051162114776E-031 - 9.0000000000000000 1.0789894479719481E-031 - 9.0599999999999952 6.4970451708547378E-032 - 9.1199999999999974 4.9627996269838767E-033 - 9.1799999999999997 -7.1874434069902867E-032 - 9.2399999999999949 -1.6387249414029012E-031 - 9.2999999999999972 -2.6770874014499387E-031 - 9.3599999999999994 -3.7824394383321011E-031 - 9.4199999999999946 -4.8846226546006799E-031 - 9.4799999999999969 -5.8954481218967441E-031 - 9.5399999999999991 -6.7110346403467621E-031 - 9.5999999999999943 -7.2159704211620732E-031 - 9.6599999999999966 -7.2894176954747134E-031 - 9.7199999999999989 -6.8131631865906374E-031 - 9.7800000000000011 -5.6814666506424380E-031 - 9.8399999999999963 -3.8123807291796524E-031 - 9.8999999999999986 -1.1600313815674925E-031 - 9.9600000000000009 2.2728571250849387E-031 - 10.019999999999996 6.4230926465841969E-031 - 10.079999999999998 1.1156865748776245E-030 - 10.140000000000001 1.6262504877709169E-030 - 10.199999999999996 2.1447383121212361E-030 - 10.259999999999998 2.6340191218216030E-030 - 10.320000000000000 3.0499691436684107E-030 - 10.379999999999995 3.3430814489859372E-030 - 10.439999999999998 3.4608638459522890E-030 - 10.500000000000000 3.3510292894136099E-030 - 10.559999999999995 2.9654285082166365E-030 - 10.619999999999997 2.2646056650791321E-030 - 10.680000000000000 1.2227835923009507E-030 - 10.739999999999995 -1.6698377846807741E-031 - 10.799999999999997 -1.8878412889766234E-030 - 10.859999999999999 -3.8947389894229358E-030 - 10.919999999999995 -6.1110782443029636E-030 - 10.979999999999997 -8.4268704524754737E-030 - 11.039999999999999 -1.0698893412252309E-029 - 11.099999999999994 -1.2753279558910090E-029 - 11.159999999999997 -1.4390905098738157E-029 - 11.219999999999999 -1.5395824232726199E-029 - 11.280000000000001 -1.5546817914992150E-029 - 11.339999999999996 -1.4631945546426562E-029 - 11.399999999999999 -1.2465718859444585E-029 - 11.460000000000001 -8.9082703048353660E-030 - 11.519999999999996 -3.8855899506543573E-030 - 11.579999999999998 2.5903396465976311E-030 - 11.640000000000001 1.0402974419610780E-029 - 11.699999999999996 1.9315840411738803E-029 - 11.759999999999998 2.8962139588802986E-029 - 11.820000000000000 3.8841151785408500E-029 - 11.879999999999995 4.8323142634469185E-029 - 11.939999999999998 5.6664303713378621E-029 - 12.000000000000000 6.3032832443181719E-029 - 12.059999999999995 6.6546791154690026E-029 - 12.119999999999997 6.6323610103297596E-029 - 12.180000000000000 6.1540413924555448E-029 - 12.239999999999995 5.1503259328453436E-029 - 12.299999999999997 3.5722522308784976E-029 - 12.359999999999999 1.3990571455406824E-029 - 12.419999999999995 -1.3543046891917566E-029 - 12.479999999999997 -4.6304589060692096E-029 - 12.539999999999999 -8.3243464755871903E-029 - 12.599999999999994 -1.2280052174889386E-028 - 12.659999999999997 -1.6290387979468337E-028 - 12.719999999999999 -2.0099829065474434E-028 - 12.780000000000001 -2.3411305135845906E-028 - 12.839999999999996 -2.5897201356006908E-028 - 12.899999999999999 -2.7214703302631185E-028 - 12.960000000000001 -2.7025373442212055E-028 - 13.019999999999996 -2.5018519251736769E-028 - 13.079999999999998 -2.0937600119998964E-028 - 13.140000000000001 -1.4608537425063798E-028 - 13.199999999999996 -5.9684604967345595E-029 - 13.259999999999998 4.9069430655675936E-029 - 13.320000000000000 1.7779519821331260E-028 - 13.379999999999995 3.2230519115994024E-028 - 13.439999999999998 4.7650550985243570E-028 - 13.500000000000000 6.3239988923587162E-028 - 13.559999999999995 7.8021878626375353E-028 - 13.619999999999997 9.0869105539462213E-028 - 13.680000000000000 1.0054685657742253E-027 - 13.739999999999995 1.0577082970844434E-027 - 13.799999999999997 1.0528048632584852E-027 - 13.859999999999999 9.7925672049656032E-028 - 13.919999999999995 8.2763683392191694E-028 - 13.979999999999997 5.9162638682503615E-028 - 14.039999999999999 2.6905655652286232E-028 - 14.099999999999994 -1.3710722552251835E-028 - 14.159999999999997 -6.1791268906552040E-028 - 14.219999999999999 -1.1577830080112865E-027 - 14.280000000000001 -1.7341760581187039E-027 - 14.339999999999996 -2.3176242434503288E-027 - 14.399999999999999 -2.8722277168898722E-027 - 14.460000000000001 -3.3566595535259242E-027 - 14.519999999999996 -3.7257226356149101E-027 - 14.579999999999998 -3.9324669085656616E-027 - 14.640000000000001 -3.9308459065329289E-027 - 14.699999999999996 -3.6788477563304371E-027 - 14.759999999999998 -3.1419964461115798E-027 - 14.820000000000000 -2.2970763109562871E-027 - 14.879999999999995 -1.1358813449695832E-027 - 14.939999999999998 3.3124040601901362E-028 - 15.000000000000000 2.0723172231326354E-027 - 15.059999999999995 4.0314454250826323E-027 - 15.119999999999997 6.1275476253265236E-027 - 15.180000000000000 8.2544825702189684E-027 - 15.239999999999995 1.0282776306619701E-026 - 15.299999999999997 1.2063182640970853E-026 - 15.359999999999999 1.3432217912468968E-026 - 15.419999999999995 1.4219711264078715E-026 - 15.479999999999997 1.4258293997988636E-026 - 15.539999999999999 1.3394616394603665E-026 - 15.599999999999994 1.1501930056086813E-026 - 15.659999999999997 8.4935070947678991E-027 - 15.719999999999999 4.3362260700810051E-027 - 15.780000000000001 -9.3651746521904842E-028 - 15.839999999999996 -7.2134992062274893E-027 - 15.899999999999999 -1.4297007308276243E-026 - 15.960000000000001 -2.1897908367195542E-026 - 16.019999999999996 -2.9635490237544071E-026 - 16.079999999999998 -3.7043055123810635E-026 - 16.140000000000001 -4.3580047820152656E-026 - 16.200000000000003 -4.8651305122484055E-026 - 16.259999999999991 -5.1633608464290194E-026 - 16.319999999999993 -5.1909359165656126E-026 - 16.379999999999995 -4.8906717765943191E-026 - 16.439999999999998 -4.2144962964338617E-026 - 16.500000000000000 -3.1283330681947180E-026 - 16.560000000000002 -1.6170931732855658E-026 - 16.620000000000005 3.1050589653556735E-027 - 16.679999999999993 2.6176359174779012E-026 - 16.739999999999995 5.2359339588565652E-026 - 16.799999999999997 8.0633489791822803E-026 - 16.859999999999999 1.0963645085324895E-025 - 16.920000000000002 1.3767927501020636E-025 - 16.980000000000004 1.6278499570370347E-025 - 17.039999999999992 1.8275280117926459E-025 - 17.099999999999994 1.9524904181723779E-025 - 17.159999999999997 1.9792481116409936E-025 - 17.219999999999999 1.8855822813881565E-025 - 17.280000000000001 1.6521774753538148E-025 - 17.340000000000003 1.2644056710768882E-025 - 17.399999999999991 7.1418545041034877E-026 - 17.459999999999994 1.8165550711973304E-028 - 17.519999999999996 -8.6232632991120330E-026 - 17.579999999999998 -1.8563682031866587E-025 - 17.640000000000001 -2.9459203148619660E-025 - 17.700000000000003 -4.0836164821764083E-025 - 17.759999999999991 -5.2093402649196520E-025 - 17.819999999999993 -6.2512625873930341E-025 - 17.879999999999995 -7.1277906630384618E-025 - 17.939999999999998 -7.7504895436490074E-025 - 18.000000000000000 -8.0279979192766627E-025 - 18.060000000000002 -7.8708974153647197E-025 - 18.120000000000005 -7.1974388807351571E-025 - 18.179999999999993 -5.9399544804115248E-025 - 18.239999999999995 -4.0517144371847663E-025 - 18.299999999999997 -1.5139141289323987E-025 - 18.359999999999999 1.6575926438854372E-025 - 18.420000000000002 5.4062522215348044E-025 - 18.480000000000004 9.6299453869742082E-025 - 18.539999999999992 1.4177806756201721E-024 - 18.599999999999994 1.8849241976027901E-024 - 18.659999999999997 2.3395608630821477E-024 - 18.719999999999999 2.7524992316962487E-024 - 18.780000000000001 3.0910379235996699E-024 - 18.840000000000003 3.3201428511685807E-024 - 18.899999999999991 3.4039840499817251E-024 - 18.959999999999994 3.3078159497322506E-024 - 19.019999999999996 3.0001574577018530E-024 - 19.079999999999998 2.4552095923464457E-024 - 19.140000000000001 1.6554174420946644E-024 - 19.200000000000003 5.9406343476214575E-025 - 19.259999999999991 -7.2224894305669170E-025 - 19.319999999999993 -2.2713735603771890E-024 - 19.379999999999995 -4.0138393982512090E-024 - 19.439999999999998 -5.8916779097111249E-024 - 19.500000000000000 -7.8280461363499004E-024 - 19.560000000000002 -9.7278029082534081E-024 - 19.620000000000005 -1.1479187964245962E-023 - 19.679999999999993 -1.2956706857782612E-023 - 19.739999999999995 -1.4025296160584764E-023 - 19.799999999999997 -1.4545767543494444E-023 - 19.859999999999999 -1.4381480152927609E-023 - 19.920000000000002 -1.3406096352187152E-023 - 19.980000000000004 -1.1512222736938814E-023 - 20.039999999999992 -8.6206225815605725E-024 - 20.099999999999994 -4.6896289389470907E-024 - 20.159999999999997 2.7569753514213345E-025 - 20.219999999999999 6.2151897838751735E-024 - 20.280000000000001 1.3006531649935522E-023 - 20.340000000000003 2.0460170172660276E-023 - 20.399999999999991 2.8316756934210130E-023 - 20.459999999999994 3.6247704331953513E-023 - 20.519999999999996 4.3859354368003635E-023 - 20.579999999999998 5.0701185922473178E-023 - 20.640000000000001 5.6278328555892052E-023 - 20.700000000000003 6.0068487201276859E-023 - 20.759999999999991 6.1543186494076629E-023 - 20.819999999999993 6.0193063395734590E-023 - 20.879999999999995 5.5556541426289448E-023 - 20.939999999999998 4.7251145036293115E-023 - 21.000000000000000 3.5006316133179705E-023 - 21.060000000000002 1.8696432401501403E-023 - 21.120000000000005 -1.6276044308453897E-024 - 21.179999999999993 -2.5709902283366920E-023 - 21.239999999999995 -5.3066113515420811E-023 - 21.299999999999997 -8.2966975623720487E-023 - 21.359999999999999 -1.1443070041533561E-022 - 21.420000000000002 -1.4622606915599593E-022 - 21.480000000000004 -1.7688784013358052E-022 - 21.539999999999992 -2.0474566342876862E-022 - 21.599999999999994 -2.2796751357227287E-022 - 21.659999999999997 -2.4461779354875524E-022 - 21.719999999999999 -2.5272986884191301E-022 - 21.780000000000001 -2.5039213858373483E-022 - 21.840000000000003 -2.3584565856879335E-022 - 21.899999999999991 -2.0759103866797043E-022 - 21.959999999999994 -1.6450092949452878E-022 - 22.019999999999996 -1.0593419568936747E-022 - 22.079999999999998 -3.1846998439321561E-023 - 22.140000000000001 5.7105131296019918E-023 - 22.200000000000003 1.5947936615079219E-022 - 22.259999999999991 2.7297887131752065E-022 - 22.319999999999993 3.9441267159189406E-022 - 22.379999999999995 5.1968893489862308E-022 - 22.439999999999998 6.4384638172827482E-022 - 22.500000000000000 7.6112925618256196E-022 - 22.560000000000002 8.6510887841872365E-022 - 22.619999999999990 9.4885448348157199E-022 - 22.679999999999993 1.0051533628151442E-021 - 22.739999999999995 1.0267786485232070E-021 - 22.799999999999997 1.0068014225758310E-021 - 22.859999999999999 9.3894030776868050E-022 - 22.920000000000002 8.1793992098710206E-022 - 22.980000000000004 6.3996692551498825E-022 - 23.039999999999992 4.0300896928615620E-022 - 23.099999999999994 1.0726175578340930E-022 - 23.159999999999997 -2.4451607428696531E-022 - 23.219999999999999 -6.4669794624143930E-022 - 23.280000000000001 -1.0905571691699866E-021 - 23.340000000000003 -1.5641274402820705E-021 - 23.399999999999991 -2.0521771542169988E-021 - 23.459999999999994 -2.5363176976546913E-021 - 23.519999999999996 -2.9952610754570983E-021 - 23.579999999999998 -3.4052419051750024E-021 - 23.640000000000001 -3.7406122898656570E-021 - 23.700000000000003 -3.9746116452854066E-021 - 23.759999999999991 -4.0803096308776225E-021 - 23.819999999999993 -4.0317087198904698E-021 - 23.879999999999995 -3.8049885978594372E-021 - 23.939999999999998 -3.3798609337808526E-021 - 24.000000000000000 -2.7409998406641757E-021 - 24.060000000000002 -1.8794945844700065E-021 - 24.119999999999990 -7.9427398811475321E-022 - 24.179999999999993 5.0656769248948370E-022 - 24.239999999999995 2.0046098815651425E-021 - 24.299999999999997 3.6701879758467321E-021 - 24.359999999999999 5.4617983090179325E-021 - 24.420000000000002 7.3258984495248507E-021 - 24.480000000000004 9.1971786119495749E-021 - 24.539999999999992 1.0999370075620229E-020 - 24.599999999999994 1.2646638686793525E-020 - 24.659999999999997 1.4045598903410642E-020 - 24.719999999999999 1.5097969736259020E-020 - 24.780000000000001 1.5703853993281097E-020 - 24.840000000000003 1.5765600683457560E-020 - 24.899999999999991 1.5192193280353108E-020 - 24.959999999999994 1.3904037268946121E-020 - 25.019999999999996 1.1838031833648422E-020 - 25.079999999999998 8.9527303769238112E-021 - 25.140000000000001 5.2334038971894293E-021 - 25.200000000000003 6.9676387145240176E-022 - 25.259999999999991 -4.6049083872055255E-021 - 25.319999999999993 -1.0580477164093475E-020 - 25.379999999999995 -1.7097811823058563E-020 - 25.439999999999998 -2.3983021310169798E-020 - 25.500000000000000 -3.1021324987554128E-020 - 25.560000000000002 -3.7959772248860537E-020 - 25.619999999999990 -4.4511939896932688E-020 - 25.679999999999993 -5.0364729629374130E-020 - 25.739999999999995 -5.5187270677967190E-020 - 25.799999999999997 -5.8641863232126427E-020 - 25.859999999999999 -6.0396764185565686E-020 - 25.920000000000002 -6.0140586006994639E-020 - 25.980000000000004 -5.7597874781712609E-020 - 26.039999999999992 -5.2545403382850635E-020 - 26.099999999999994 -4.4828604311014227E-020 - 26.159999999999997 -3.4377432593866860E-020 - 26.219999999999999 -2.1220957132310721E-020 - 26.280000000000001 -5.4998726503980739E-021 - 26.340000000000003 1.2523849143789961E-020 - 26.399999999999991 3.2460937297158686E-020 - 26.459999999999994 5.3793163442039161E-020 - 26.519999999999996 7.5876623939997052E-020 - 26.579999999999998 9.7950476102921426E-020 - 26.640000000000001 1.1915143130470561E-019 - 26.700000000000003 1.3853407571339224E-019 - 26.759999999999991 1.5509689763780129E-019 - 26.819999999999993 1.6781359484778832E-019 - 26.879999999999995 1.7566898045274514E-019 - 26.939999999999998 1.7769863307182801E-019 - 27.000000000000000 1.7303090758735000E-019 - 27.060000000000002 1.6093001516549106E-019 - 27.119999999999990 1.4083854924895721E-019 - 27.179999999999993 1.1241755544266179E-019 - 27.239999999999995 7.5582314667295055E-020 - 27.299999999999997 3.0532236428450253E-020 - 27.359999999999999 -2.2227253475383097E-020 - 27.420000000000002 -8.1872319918700067E-020 - 27.480000000000004 -1.4725902987561859E-019 - 27.539999999999992 -2.1693352762796396E-019 - 27.599999999999994 -2.8915448421186615E-019 - 27.659999999999997 -3.6192835183195788E-019 - 27.719999999999999 -4.3305650579422050E-019 - 27.780000000000001 -5.0019336313229229E-019 - 27.840000000000003 -5.6091449398848517E-019 - 27.899999999999991 -6.1279197772119040E-019 - 27.959999999999994 -6.5347493901322052E-019 - 28.019999999999996 -6.8077208038078517E-019 - 28.079999999999998 -6.9273317467416299E-019 - 28.140000000000001 -6.8772587054343113E-019 - 28.200000000000003 -6.6450485667655126E-019 - 28.259999999999991 -6.2226952075729114E-019 - 28.319999999999993 -5.6070773124976130E-019 - 28.379999999999995 -4.8002259736167701E-019 - 28.439999999999998 -3.8094083153957394E-019 - 28.500000000000000 -2.6470124990654020E-019 - 28.560000000000002 -1.3302249671534338E-019 - 28.619999999999990 1.1948014903862976E-020 - 28.679999999999993 1.6770448828091683E-019 - 28.739999999999995 3.3146948014060721E-019 - 28.799999999999997 5.0029375055487931E-019 - 28.859999999999999 6.7116633761991613E-019 - 28.920000000000002 8.4113113987769232E-019 - 28.980000000000004 1.0074052637796850E-018 - 29.039999999999992 1.1674970346931827E-018 - 29.099999999999994 1.3193168730722164E-018 - 29.159999999999997 1.4612829550788486E-018 - 29.219999999999999 1.5924154148306286E-018 - 29.280000000000001 1.7124197830610419E-018 - 29.340000000000003 1.8217638086766853E-018 - 29.399999999999991 1.9217432405833416E-018 - 29.459999999999994 2.0145465119802495E-018 - 29.519999999999996 2.1033180045974905E-018 - 29.579999999999998 2.1922361090375872E-018 - 29.640000000000001 2.2865968639992041E-018 - 29.700000000000003 2.3929313581321067E-018 - 29.759999999999991 2.5191498785239122E-018 - 29.819999999999993 2.6747320050613765E-018 - 29.879999999999995 2.8709677177467666E-018 - 29.939999999999998 3.1212446001079972E-018 - 30.000000000000000 3.4414074328502872E-018 - 30.060000000000002 3.8501712473771757E-018 - 30.119999999999990 4.3695995844007526E-018 - 30.179999999999993 5.0256367407131895E-018 - 30.239999999999995 5.8486826016718867E-018 - 30.299999999999997 6.8742008976122720E-018 - 30.359999999999999 8.1433471174159390E-018 - 30.420000000000002 9.7035826053520856E-018 - 30.480000000000004 1.1609278231991724E-017 - 30.539999999999992 1.3922234788870942E-017 - 30.599999999999994 1.6712163365489723E-017 - 30.659999999999997 2.0057030947412399E-017 - 30.719999999999999 2.4043276729739353E-017 - 30.780000000000001 2.8765876203204481E-017 - 30.840000000000003 3.4328317932099888E-017 - 30.899999999999991 4.0842303186247284E-017 - 30.959999999999994 4.8427358375259522E-017 - 31.019999999999996 5.7210344579108881E-017 - 31.079999999999998 6.7324786578654285E-017 - 31.140000000000001 7.8910159659859564E-017 - 31.200000000000003 9.2111169830335746E-017 - 31.259999999999991 1.0707713464334157E-016 - 31.319999999999993 1.2396143492886253E-016 - 31.379999999999995 1.4292126930836078E-016 - 31.439999999999998 1.6411777378511242E-016 - 31.500000000000000 1.8771636436461374E-016 - 31.560000000000002 2.1388808345724111E-016 - 31.619999999999990 2.4281093385707202E-016 - 31.679999999999993 2.7467283003095546E-016 - 31.739999999999995 3.0967432047106614E-016 - 31.799999999999997 3.4803298069930923E-016 - 31.859999999999999 3.8998830311466889E-016 - 31.920000000000002 4.3580742721854054E-016 - 31.980000000000004 4.8579182187500741E-016 - 32.039999999999992 5.4028445195555775E-016 - 32.099999999999994 5.9967739237923751E-016 - 32.159999999999997 6.6441990144614531E-016 - 32.219999999999999 7.3502598166310641E-016 - 32.280000000000001 8.1208277411374659E-016 - 32.340000000000003 8.9625647938038539E-016 - 32.399999999999991 9.8829826486688665E-016 - 32.459999999999994 1.0890477125693017E-015 - 32.519999999999996 1.1994343137436756E-015 - 32.579999999999998 1.3204758820670671E-015 - 32.640000000000001 1.4532718753077476E-015 - 32.700000000000003 1.5989952780993193E-015 - 32.759999999999991 1.7588751412536420E-015 - 32.819999999999993 1.9341764113248048E-015 - 32.879999999999995 2.1261732231280313E-015 - 32.939999999999998 2.3361118018973415E-015 - 33.000000000000000 2.5651671265919327E-015 - 33.060000000000002 2.8143905744284906E-015 - 33.119999999999990 3.0846509977223570E-015 - 33.179999999999993 3.3765602119888865E-015 - 33.239999999999995 3.6903917916735212E-015 - 33.299999999999997 4.0259882505594673E-015 - 33.359999999999999 4.3826537500443999E-015 - 33.420000000000002 4.7590390632174981E-015 - 33.480000000000004 5.1530094189312171E-015 - 33.539999999999992 5.5615011760084205E-015 - 33.599999999999994 5.9803612912128490E-015 - 33.659999999999997 6.4041733661515384E-015 - 33.719999999999999 6.8260638488373559E-015 - 33.780000000000001 7.2374938318524609E-015 - 33.840000000000003 7.6280239791894664E-015 - 33.899999999999991 7.9850549752424538E-015 - 33.959999999999994 8.2935459168937553E-015 - 34.019999999999996 8.5356891239820584E-015 - 34.079999999999998 8.6905672053510921E-015 - 34.140000000000001 8.7337410492018033E-015 - 34.200000000000003 8.6368071787418131E-015 - 34.259999999999991 8.3668956341383867E-015 - 34.319999999999993 7.8860705451313421E-015 - 34.379999999999995 7.1507138874198844E-015 - 34.439999999999998 6.1107372747943448E-015 - 34.500000000000000 4.7087648311400913E-015 - 34.560000000000002 2.8791190377222197E-015 - 34.619999999999990 5.4671681988943515E-016 - 34.679999999999993 -2.3741504369262588E-015 - 34.739999999999995 -5.9813625759997883E-015 - 34.799999999999997 -1.0386551476152547E-014 - 34.859999999999999 -1.5716989680213842E-014 - 34.920000000000002 -2.2117766860387046E-014 - 34.980000000000004 -2.9754188274485575E-014 - 35.039999999999992 -3.8814535039020025E-014 - 35.099999999999994 -4.9513112587083188E-014 - 35.159999999999997 -6.2093775564302535E-014 - 35.219999999999999 -7.6833787498279881E-014 - 35.280000000000001 -9.4048170152169175E-014 - 35.340000000000003 -1.1409474531322493E-013 - 35.399999999999991 -1.3737947527356070E-013 - 35.459999999999994 -1.6436257478259341E-013 - 35.519999999999996 -1.9556512330765449E-013 - 35.579999999999998 -2.3157651864074059E-013 - 35.640000000000001 -2.7306303963981137E-013 - 35.700000000000003 -3.2077661468954535E-013 - 35.759999999999991 -3.7556511094803321E-013 - 35.819999999999993 -4.3838314079191044E-013 - 35.879999999999995 -5.1030429334684872E-013 - 35.939999999999998 -5.9253385994974654E-013 - 36.000000000000000 -6.8642429110613424E-013 - 36.060000000000002 -7.9349016390762621E-013 - 36.119999999999990 -9.1542567395704076E-013 - 36.179999999999993 -1.0541224665752400E-012 - 36.239999999999995 -1.2116922609017335E-012 - 36.299999999999997 -1.3904866038694957E-012 - 36.359999999999999 -1.5931216956108368E-012 - 36.420000000000002 -1.8225047128555110E-012 - 36.479999999999990 -2.0818604187463163E-012 - 36.539999999999992 -2.3747633471700828E-012 - 36.599999999999994 -2.7051689564004228E-012 - 36.659999999999997 -3.0774469834247734E-012 - 36.719999999999999 -3.4964212999357951E-012 - 36.780000000000001 -3.9674097003879156E-012 - 36.840000000000003 -4.4962627385730661E-012 - 36.899999999999991 -5.0894130816686234E-012 - 36.959999999999994 -5.7539218636146594E-012 - 37.019999999999996 -6.4975286372129478E-012 - 37.079999999999998 -7.3287002773263459E-012 - 37.140000000000001 -8.2566952894144464E-012 - 37.200000000000003 -9.2916150075079754E-012 - 37.259999999999991 -1.0444459736103417E-011 - 37.319999999999993 -1.1727199496093968E-011 - 37.379999999999995 -1.3152825302009983E-011 - 37.439999999999998 -1.4735423186567353E-011 - 37.500000000000000 -1.6490233739675390E-011 - 37.560000000000002 -1.8433711927298720E-011 - 37.619999999999990 -2.0583584164272967E-011 - 37.679999999999993 -2.2958928995355251E-011 - 37.739999999999995 -2.5580203888496779E-011 - 37.799999999999997 -2.8469317855311412E-011 - 37.859999999999999 -3.1649663347136394E-011 - 37.920000000000002 -3.5146151710525235E-011 - 37.979999999999990 -3.8985226640199656E-011 - 38.039999999999992 -4.3194891743309366E-011 - 38.099999999999994 -4.7804673785966082E-011 - 38.159999999999997 -5.2845599041431114E-011 - 38.219999999999999 -5.8350131782122652E-011 - 38.280000000000001 -6.4352048708338071E-011 - 38.340000000000003 -7.0886375972914903E-011 - 38.399999999999991 -7.7989099996070780E-011 - 38.459999999999994 -8.5697012438331866E-011 - 38.519999999999996 -9.4047362190903673E-011 - 38.579999999999998 -1.0307748544381979E-010 - 38.640000000000001 -1.1282439004420291E-010 - 38.700000000000003 -1.2332405751844693E-010 - 38.759999999999991 -1.3461082507932519E-010 - 38.819999999999993 -1.4671656563816404E-010 - 38.879999999999995 -1.5966964688141848E-010 - 38.939999999999998 -1.7349374466874451E-010 - 39.000000000000000 -1.8820651686395106E-010 - 39.060000000000002 -2.0381789717686220E-010 - 39.119999999999990 -2.2032820977430350E-010 - 39.179999999999993 -2.3772590068288687E-010 - 39.239999999999995 -2.5598494216138583E-010 - 39.299999999999997 -2.7506190741996391E-010 - 39.359999999999999 -2.9489231053341352E-010 - 39.420000000000002 -3.1538673269569248E-010 - 39.479999999999990 -3.3642605758995130E-010 - 39.539999999999992 -3.5785637236536856E-010 - 39.599999999999994 -3.7948259712147042E-010 - 39.659999999999997 -4.0106162185344870E-010 - 39.719999999999999 -4.2229467862712845E-010 - 39.780000000000001 -4.4281766996107132E-010 - 39.840000000000003 -4.6219115560995028E-010 - 39.899999999999991 -4.7988856791009181E-010 - 39.959999999999994 -4.9528310511611987E-010 - 40.019999999999996 -5.0763185517801539E-010 - 40.079999999999998 -5.1605990119400455E-010 - 40.140000000000001 -5.1953995797469777E-010 - 40.200000000000003 -5.1687146126204485E-010 - 40.259999999999991 -5.0665511146226095E-010 - 40.319999999999993 -4.8726634583745137E-010 - 40.379999999999995 -4.5682388048522518E-010 - 40.439999999999998 -4.1315446426280315E-010 - 40.500000000000000 -3.5375521176872167E-010 - 40.560000000000002 -2.7574857838313501E-010 - 40.619999999999990 -1.7583417833360837E-010 - 40.679999999999993 -5.0233196756374890E-011 - 40.739999999999995 1.0537042686502550E-010 - 40.799999999999997 2.9590118162009337E-010 - 40.859999999999999 5.2696521922957607E-010 - 40.920000000000002 8.0493459685762321E-010 - 40.979999999999990 1.1370447623311717E-009 - 41.039999999999992 1.5314944753713553E-009 - 41.099999999999994 1.9975642791576182E-009 - 41.159999999999997 2.5457452108159328E-009 - 41.219999999999999 3.1878809418723601E-009 - 41.280000000000001 3.9373236025152698E-009 - 41.340000000000003 4.8091146203562411E-009 - 41.399999999999991 5.8201715261339156E-009 - 41.459999999999994 6.9895059667365328E-009 - 41.519999999999996 8.3384560383336421E-009 - 41.579999999999998 9.8909468342323306E-009 - 41.640000000000001 1.1673779987729146E-008 - 41.700000000000003 1.3716954836810059E-008 - 41.759999999999991 1.6054011086339494E-008 - 41.819999999999993 1.8722404282882469E-008 - 41.879999999999995 2.1763937982151099E-008 - 41.939999999999998 2.5225228889852818E-008 - 42.000000000000000 2.9158193326032346E-008 - 42.060000000000002 3.3620650545628457E-008 - 42.119999999999990 3.8676873300475341E-008 - 42.179999999999993 4.4398322131798136E-008 - 42.239999999999995 5.0864326410598536E-008 - 42.299999999999997 5.8162924253620609E-008 - 42.359999999999999 6.6391706909084525E-008 - 42.420000000000002 7.5658824245510580E-008 - 42.479999999999990 8.6084001351477018E-008 - 42.539999999999992 9.7799687801765526E-008 - 42.599999999999994 1.1095233628810565E-007 - 42.659999999999997 1.2570364420172974E-007 - 42.719999999999999 1.4223233640539405E-007 - 42.780000000000001 1.6073536022642421E-007 - 42.840000000000003 1.8143000241262526E-007 - 42.899999999999991 2.0455561148553195E-007 - 42.959999999999994 2.3037579535629930E-007 - 43.019999999999996 2.5918050692752850E-007 - 43.079999999999998 2.9128877655490872E-007 - 43.140000000000001 3.2705102827271134E-007 - 43.200000000000003 3.6685232958784739E-007 - 43.259999999999991 4.1111522909474545E-007 - 43.319999999999993 4.6030317140163123E-007 - 43.379999999999995 5.1492447055205338E-007 - 43.439999999999998 5.7553586996146660E-007 - 43.500000000000000 6.4274682964487524E-007 - 43.560000000000002 7.1722477739817227E-007 - 43.619999999999990 7.9969938473096438E-007 - 43.679999999999993 8.9096812454626416E-007 - 43.739999999999995 9.9190235094227930E-007 - 43.799999999999997 1.1034534230141967E-006 - 43.859999999999999 1.2266589860007527E-006 - 43.920000000000002 1.3626511280537860E-006 - 43.979999999999990 1.5126633884552824E-006 - 44.039999999999992 1.6780392095648226E-006 - 44.099999999999994 1.8602411542112987E-006 - 44.159999999999997 2.0608607079763019E-006 - 44.219999999999999 2.2816275286052036E-006 - 44.280000000000001 2.5244219633798897E-006 - 44.340000000000003 2.7912858761521448E-006 - 44.399999999999991 3.0844354645194514E-006 - 44.459999999999994 3.4062746731522426E-006 - 44.519999999999996 3.7594094338157819E-006 - 44.579999999999998 4.1466643901088965E-006 - 44.640000000000001 4.5710960760245088E-006 - 44.700000000000003 5.0360143402175507E-006 - 44.759999999999991 5.5449976727266936E-006 - 44.819999999999993 6.1019149156615988E-006 - 44.879999999999995 6.7109434701673220E-006 - 44.939999999999998 7.3765955469994535E-006 - 45.000000000000000 8.1037366271386593E-006 - 45.060000000000002 8.8976158007892448E-006 - 45.119999999999990 9.7638860345752918E-006 - 45.179999999999993 1.0708638090962926E-005 - 45.239999999999995 1.1738424392910564E-005 - 45.299999999999997 1.2860292602383343E-005 - 45.359999999999999 1.4081818150514276E-005 - 45.420000000000002 1.5411138974504802E-005 - 45.479999999999990 1.6856990085096417E-005 - 45.539999999999992 1.8428741852547519E-005 - 45.599999999999994 2.0136436127580337E-005 - 45.659999999999997 2.1990838877834142E-005 - 45.719999999999999 2.4003470392838627E-005 - 45.780000000000001 2.6186653079791692E-005 - 45.840000000000003 2.8553564712884587E-005 - 45.899999999999991 3.1118287786065665E-005 - 45.959999999999994 3.3895851271711528E-005 - 46.019999999999996 3.6902295363643394E-005 - 46.079999999999998 4.0154719417803273E-005 - 46.140000000000001 4.3671344460170642E-005 - 46.200000000000003 4.7471565557852327E-005 - 46.259999999999991 5.1576012319395086E-005 - 46.319999999999993 5.6006626943266926E-005 - 46.379999999999995 6.0786710374932459E-005 - 46.439999999999998 6.5941010154285708E-005 - 46.500000000000000 7.1495755861832454E-005 - 46.560000000000002 7.7478773292105648E-005 - 46.619999999999990 8.3919517744604670E-005 - 46.679999999999993 9.0849153924909355E-005 - 46.739999999999995 9.8300655510726772E-005 - 46.799999999999997 1.0630887999180340E-004 - 46.859999999999999 1.1491058986147136E-004 - 46.920000000000002 1.2414457960919183E-004 - 46.979999999999990 1.3405177366851298E-004 - 47.039999999999992 1.4467524100058142E-004 - 47.099999999999994 1.5606034694455500E-004 - 47.159999999999997 1.6825472686510752E-004 - 47.219999999999999 1.8130847774626646E-004 - 47.280000000000001 1.9527419207353910E-004 - 47.340000000000003 2.1020703190475969E-004 - 47.399999999999991 2.2616478179215673E-004 - 47.459999999999994 2.4320791017958887E-004 - 47.519999999999996 2.6139974204302229E-004 - 47.579999999999998 2.8080637326710406E-004 - 47.640000000000001 3.0149687727011961E-004 - 47.700000000000003 3.2354332840664371E-004 - 47.759999999999991 3.4702076010968116E-004 - 47.819999999999993 3.7200736118365497E-004 - 47.879999999999995 3.9858434659506586E-004 - 47.939999999999998 4.2683628371347892E-004 - 48.000000000000000 4.5685082361821846E-004 - 48.060000000000002 4.8871895619684779E-004 - 48.119999999999990 5.2253486681529614E-004 - 48.179999999999993 5.5839601449135588E-004 - 48.239999999999995 5.9640320513594275E-004 - 48.299999999999997 6.3666043420740543E-004 - 48.359999999999999 6.7927509048719414E-004 - 48.420000000000002 7.2435775081465580E-004 - 48.479999999999990 7.7202212938680154E-004 - 48.539999999999992 8.2238515571740904E-004 - 48.599999999999994 8.7556686068109577E-004 - 48.659999999999997 9.3169024825631957E-004 - 48.719999999999999 9.9088128217140591E-004 - 48.780000000000001 1.0532689981185381E-003 - 48.840000000000003 1.1189847977962453E-003 - 48.899999999999991 1.1881630093345192E-003 - 48.959999999999994 1.2609399257389907E-003 - 49.019999999999996 1.3374545404810268E-003 - 49.079999999999998 1.4178478689250982E-003 - 49.140000000000001 1.5022625927651446E-003 - 49.200000000000003 1.5908433139697070E-003 - 49.259999999999991 1.6837359933162641E-003 - 49.319999999999993 1.7810878379498664E-003 - 49.379999999999995 1.8830468410714033E-003 - 49.439999999999998 1.9897616749623872E-003 - 49.500000000000000 2.1013811003691529E-003 - 49.560000000000002 2.2180544176305934E-003 - 49.619999999999990 2.3399299083023831E-003 - 49.679999999999993 2.4671553525229340E-003 - 49.739999999999995 2.5998774323333930E-003 - 49.799999999999997 2.7382409678255401E-003 - 49.859999999999999 2.8823894409488937E-003 - 49.920000000000002 3.0324631164016236E-003 - 49.979999999999990 3.1885999318691069E-003 - 50.039999999999992 3.3509343444489128E-003 - 50.099999999999994 3.5195968997207916E-003 - 50.159999999999997 3.6947132232115335E-003 - 50.219999999999999 3.8764044159576667E-003 - 50.280000000000001 4.0647862269631583E-003 - 50.340000000000003 4.2599679875897451E-003 - 50.399999999999991 4.4620527917241994E-003 - 50.459999999999994 4.6711363039916541E-003 - 50.519999999999996 4.8873060749973739E-003 - 50.579999999999998 5.1106418801772991E-003 - 50.640000000000001 5.3412141002782392E-003 - 50.700000000000003 5.5790835561688153E-003 - 50.759999999999991 5.8243008869091027E-003 - 50.819999999999993 6.0769060831051920E-003 - 50.879999999999995 6.3369267025026304E-003 - 50.939999999999998 6.6043797961145723E-003 - 51.000000000000000 6.8792689577095835E-003 - 51.060000000000002 7.1615835332757474E-003 - 51.119999999999990 7.4513013042642766E-003 - 51.179999999999993 7.7483834087330641E-003 - 51.239999999999995 8.0527779070915812E-003 - 51.299999999999997 8.3644147621170801E-003 - 51.359999999999999 8.6832107728253543E-003 - 51.420000000000002 9.0090653595964049E-003 - 51.479999999999990 9.3418604200586185E-003 - 51.539999999999992 9.6814605174639998E-003 - 51.599999999999994 1.0027711875170103E-002 - 51.659999999999997 1.0380444044126297E-002 - 51.719999999999999 1.0739466436373288E-002 - 51.780000000000001 1.1104570298792363E-002 - 51.840000000000003 1.1475527833645341E-002 - 51.899999999999991 1.1852091153171264E-002 - 51.959999999999994 1.2233994359287896E-002 - 52.019999999999996 1.2620950786044189E-002 - 52.079999999999998 1.3012655004333587E-002 - 52.140000000000001 1.3408780759495115E-002 - 52.200000000000003 1.3808984381528503E-002 - 52.259999999999991 1.4212898817905063E-002 - 52.319999999999993 1.4620139824031098E-002 - 52.379999999999995 1.5030305023903862E-002 - 52.439999999999998 1.5442971719978070E-002 - 52.500000000000000 1.5857698338255628E-002 - 52.560000000000002 1.6274025009909664E-002 - 52.619999999999990 1.6691474881076564E-002 - 52.679999999999993 1.7109554541410853E-002 - 52.739999999999995 1.7527752484946674E-002 - 52.799999999999997 1.7945542615493529E-002 - 52.859999999999999 1.8362381534223447E-002 - 52.920000000000002 1.8777713275103164E-002 - 52.979999999999990 1.9190966393495761E-002 - 53.039999999999992 1.9601557040292955E-002 - 53.099999999999994 2.0008893106731533E-002 - 53.159999999999997 2.0412368656089162E-002 - 53.219999999999999 2.0811367346772251E-002 - 53.280000000000001 2.1205264834174144E-002 - 53.339999999999989 2.1593430303848728E-002 - 53.399999999999991 2.1975227755391798E-002 - 53.459999999999994 2.2350014181786185E-002 - 53.519999999999996 2.2717146039732235E-002 - 53.579999999999998 2.3075975586190074E-002 - 53.640000000000001 2.3425852866761552E-002 - 53.700000000000003 2.3766129848010468E-002 - 53.759999999999991 2.4096162515859450E-002 - 53.819999999999993 2.4415310107776186E-002 - 53.879999999999995 2.4722937425899486E-002 - 53.939999999999998 2.5018412842149583E-002 - 54.000000000000000 2.5301118114549485E-002 - 54.060000000000002 2.5570442397149656E-002 - 54.119999999999990 2.5825785506560735E-002 - 54.179999999999993 2.6066561369419129E-002 - 54.239999999999995 2.6292200261388669E-002 - 54.299999999999997 2.6502145041942787E-002 - 54.359999999999999 2.6695858904548703E-002 - 54.420000000000002 2.6872825631516571E-002 - 54.479999999999990 2.7032548075771445E-002 - 54.539999999999992 2.7174550001751993E-002 - 54.599999999999994 2.7298381760496326E-002 - 54.659999999999997 2.7403616733736022E-002 - 54.719999999999999 2.7489854570225968E-002 - 54.780000000000001 2.7556724828789556E-002 - 54.839999999999989 2.7603881163704214E-002 - 54.899999999999991 2.7631013870893950E-002 - 54.959999999999994 2.7637838952681168E-002 - 55.019999999999996 2.7624104550088412E-002 - 55.079999999999998 2.7589596167047745E-002 - 55.140000000000001 2.7534130065917369E-002 - 55.200000000000003 2.7457554219241342E-002 - 55.259999999999991 2.7359757658440696E-002 - 55.319999999999993 2.7240660769611621E-002 - 55.379999999999995 2.7100222700429881E-002 - 55.439999999999998 2.6938438900066135E-002 - 55.500000000000000 2.6755342612929625E-002 - 55.560000000000002 2.6550999451654095E-002 - 55.619999999999990 2.6325518514255644E-002 - 55.679999999999993 2.6079043826167540E-002 - 55.739999999999995 2.5811753943673559E-002 - 55.799999999999997 2.5523868209788005E-002 - 55.859999999999999 2.5215641513256577E-002 - 55.920000000000002 2.4887363509221470E-002 - 55.979999999999990 2.4539361565707251E-002 - 56.039999999999992 2.4171996469307570E-002 - 56.099999999999994 2.3785665448252259E-002 - 56.159999999999997 2.3380797360545460E-002 - 56.219999999999999 2.2957853902741431E-002 - 56.280000000000001 2.2517328419346450E-002 - 56.339999999999989 2.2059745962842006E-002 - 56.399999999999991 2.1585660967695729E-002 - 56.459999999999994 2.1095654453631124E-002 - 56.519999999999996 2.0590336394101624E-002 - 56.579999999999998 2.0070340565197943E-002 - 56.640000000000001 1.9536325024336235E-002 - 56.700000000000003 1.8988970707304955E-002 - 56.759999999999991 1.8428978877648543E-002 - 56.819999999999993 1.7857072531930827E-002 - 56.879999999999995 1.7273988824280419E-002 - 56.939999999999998 1.6680482208889250E-002 - 57.000000000000000 1.6077323371380358E-002 - 57.060000000000002 1.5465291767455194E-002 - 57.119999999999990 1.4845179909559960E-002 - 57.179999999999993 1.4217786867503723E-002 - 57.239999999999995 1.3583920172131900E-002 - 57.299999999999997 1.2944391871066302E-002 - 57.359999999999999 1.2300017849129537E-002 - 57.420000000000002 1.1651614473867877E-002 - 57.479999999999990 1.0999997718814335E-002 - 57.539999999999992 1.0345981854471926E-002 - 57.599999999999994 9.6903762865445976E-003 - 57.659999999999997 9.0339847944501291E-003 - 57.719999999999999 8.3776044807685381E-003 - 57.780000000000001 7.7220218077548993E-003 - 57.839999999999989 7.0680138441460653E-003 - 57.899999999999991 6.4163441876041874E-003 - 57.959999999999994 5.7677628030681624E-003 - 58.019999999999996 5.1230050577575140E-003 - 58.079999999999998 4.4827883673528995E-003 - 58.140000000000001 3.8478125920619723E-003 - 58.200000000000003 3.2187581249418706E-003 - 58.259999999999991 2.5962846689919781E-003 - 58.319999999999993 1.9810303542869608E-003 - 58.379999999999995 1.3736103310828824E-003 - 58.439999999999998 7.7461654305957658E-004 - 58.500000000000000 1.8461560489972206E-004 - 58.560000000000002 -3.9585082663203225E-004 - 58.619999999999990 -9.6626701226583595E-004 - 58.679999999999993 -1.5261445718484736E-003 - 58.739999999999995 -2.0750218854388050E-003 - 58.799999999999997 -2.6124655636971215E-003 - 58.859999999999999 -3.1380692149827498E-003 - 58.920000000000002 -3.6514567273351838E-003 - 58.979999999999990 -4.1522786457958531E-003 - 59.039999999999992 -4.6402153728080896E-003 - 59.099999999999994 -5.1149759789819015E-003 - 59.159999999999997 -5.5762977238093987E-003 - 59.219999999999999 -6.0239476078790804E-003 - 59.280000000000001 -6.4577193796932827E-003 - 59.339999999999989 -6.8774357563142416E-003 - 59.399999999999991 -7.2829483480670231E-003 - 59.459999999999994 -7.6741331295520927E-003 - 59.519999999999996 -8.0508957665875892E-003 - 59.579999999999998 -8.4131683639546411E-003 - 59.640000000000001 -8.7609066366397710E-003 - 59.700000000000003 -9.0940944928232566E-003 - 59.759999999999991 -9.4127374157711805E-003 - 59.819999999999993 -9.7168663140167599E-003 - 59.879999999999995 -1.0006533317277862E-002 - 59.939999999999998 -1.0281815547803439E-002 - 60.000000000000000 -1.0542808540804090E-002 - 60.060000000000002 -1.0789630140434893E-002 - 60.119999999999990 -1.1022417460550231E-002 - 60.179999999999993 -1.1241325454238248E-002 - 60.239999999999995 -1.1446528057131486E-002 - 60.299999999999997 -1.1638214299036956E-002 - 60.359999999999999 -1.1816590078477908E-002 - 60.420000000000002 -1.1981875539093431E-002 - 60.479999999999990 -1.2134304493651398E-002 - 60.539999999999992 -1.2274123368385603E-002 - 60.599999999999994 -1.2401591924955699E-002 - 60.659999999999997 -1.2516978326380870E-002 - 60.719999999999999 -1.2620561976332640E-002 - 60.780000000000001 -1.2712631302490278E-002 - 60.839999999999989 -1.2793480917048385E-002 - 60.899999999999991 -1.2863414354058238E-002 - 60.959999999999994 -1.2922740128616817E-002 - 61.019999999999996 -1.2971772202153731E-002 - 61.079999999999998 -1.3010829789116170E-002 - 61.140000000000001 -1.3040233153717586E-002 - 61.200000000000003 -1.3060306995371395E-002 - 61.259999999999991 -1.3071376712446367E-002 - 61.319999999999993 -1.3073769937324111E-002 - 61.379999999999995 -1.3067813428686546E-002 - 61.439999999999998 -1.3053833533144394E-002 - 61.500000000000000 -1.3032157142582872E-002 - 61.560000000000002 -1.3003106732455701E-002 - 61.619999999999990 -1.2967004017572625E-002 - 61.679999999999993 -1.2924168031869776E-002 - 61.739999999999995 -1.2874913697778947E-002 - 61.799999999999997 -1.2819553036163051E-002 - 61.859999999999999 -1.2758392942613838E-002 - 61.920000000000002 -1.2691735602919939E-002 - 61.979999999999990 -1.2619877462679613E-002 - 62.039999999999992 -1.2543109541276860E-002 - 62.099999999999994 -1.2461719392276763E-002 - 62.159999999999997 -1.2375984948766813E-002 - 62.219999999999999 -1.2286179342108459E-002 - 62.280000000000001 -1.2192568466520027E-002 - 62.339999999999989 -1.2095413077185594E-002 - 62.399999999999991 -1.1994964789912110E-002 - 62.459999999999994 -1.1891467682541512E-002 - 62.519999999999996 -1.1785160003690103E-002 - 62.579999999999998 -1.1676272103409279E-002 - 62.640000000000001 -1.1565026061113207E-002 - 62.700000000000003 -1.1451637470293985E-002 - 62.759999999999991 -1.1336313754761495E-002 - 62.819999999999993 -1.1219254945415322E-002 - 62.879999999999995 -1.1100652159689044E-002 - 62.939999999999998 -1.0980691224721563E-002 - 63.000000000000000 -1.0859548822022631E-002 - 63.060000000000002 -1.0737394905779556E-002 - 63.119999999999990 -1.0614390872486593E-002 - 63.179999999999993 -1.0490692661432247E-002 - 63.239999999999995 -1.0366447540597986E-002 - 63.299999999999997 -1.0241796069798149E-002 - 63.359999999999999 -1.0116872899636691E-002 - 63.420000000000002 -9.9918041512010482E-003 - 63.479999999999990 -9.8667111704401692E-003 - 63.539999999999992 -9.7417071619314843E-003 - 63.599999999999994 -9.6169002370108912E-003 - 63.659999999999997 -9.4923920013704303E-003 - 63.719999999999999 -9.3682773768212872E-003 - 63.780000000000001 -9.2446467075407747E-003 - 63.839999999999989 -9.1215836568217072E-003 - 63.899999999999991 -8.9991678163892364E-003 - 63.959999999999994 -8.8774727428728110E-003 - 64.019999999999996 -8.7565661037707875E-003 - 64.079999999999998 -8.6365114164252809E-003 - 64.140000000000001 -8.5173680873908315E-003 - 64.200000000000003 -8.3991904944939293E-003 - 64.259999999999991 -8.2820281117574248E-003 - 64.319999999999993 -8.1659259394345068E-003 - 64.379999999999995 -8.0509266090424917E-003 - 64.439999999999998 -7.9370682773954159E-003 - 64.500000000000000 -7.8243846468092348E-003 - 64.560000000000002 -7.7129066665217981E-003 - 64.619999999999990 -7.6026618318138298E-003 - 64.679999999999993 -7.4936746783283228E-003 - 64.739999999999995 -7.3859665647424185E-003 - 64.799999999999997 -7.2795563035141855E-003 - 64.859999999999999 -7.1744597985968755E-003 - 64.920000000000002 -7.0706902855181188E-003 - 64.979999999999990 -6.9682590018832220E-003 - 65.039999999999992 -6.8671749598937220E-003 - 65.099999999999994 -6.7674458274838553E-003 - 65.159999999999997 -6.6690754956283543E-003 - 65.219999999999999 -6.5720675143912735E-003 - 65.280000000000001 -6.4764236687874814E-003 - 65.339999999999989 -6.3821444225239145E-003 - 65.399999999999991 -6.2892280978435813E-003 - 65.459999999999994 -6.1976713063602341E-003 - 65.519999999999996 -6.1074706697377247E-003 - 65.579999999999998 -6.0186216529933322E-003 - 65.640000000000001 -5.9311173382393875E-003 - 65.700000000000003 -5.8449513854114425E-003 - 65.759999999999991 -5.7601157687776228E-003 - 65.819999999999993 -5.6766015082781625E-003 - 65.879999999999995 -5.5943992261746197E-003 - 65.939999999999998 -5.5134987004026043E-003 - 66.000000000000000 -5.4338897646845890E-003 - 66.060000000000002 -5.3555613563978349E-003 - 66.119999999999990 -5.2785015181598671E-003 - 66.179999999999993 -5.2026986023295443E-003 - 66.239999999999995 -5.1281398714911625E-003 - 66.299999999999997 -5.0548126744302518E-003 - 66.359999999999999 -4.9827044508953325E-003 - 66.420000000000002 -4.9118018047069143E-003 - 66.479999999999990 -4.8420916664806465E-003 - 66.539999999999992 -4.7735607684063347E-003 - 66.599999999999994 -4.7061956063075778E-003 - 66.659999999999997 -4.6399823088095699E-003 - 66.719999999999999 -4.5749076076936684E-003 - 66.780000000000001 -4.5109580276347892E-003 - 66.839999999999989 -4.4481201264759043E-003 - 66.899999999999991 -4.3863805587085938E-003 - 66.959999999999994 -4.3257255671527708E-003 - 67.019999999999996 -4.2661415521522746E-003 - 67.079999999999998 -4.2076155004358963E-003 - 67.140000000000001 -4.1501339050516502E-003 - 67.199999999999989 -4.0936836564494077E-003 - 67.259999999999991 -4.0382513440050290E-003 - 67.319999999999993 -3.9838237841388190E-003 - 67.379999999999995 -3.9303881767392742E-003 - 67.439999999999998 -3.8779313336202181E-003 - 67.500000000000000 -3.8264401445283901E-003 - 67.560000000000002 -3.7759018296655094E-003 - 67.619999999999990 -3.7263033970085912E-003 - 67.679999999999993 -3.6776320961650266E-003 - 67.739999999999995 -3.6298752083814704E-003 - 67.799999999999997 -3.5830202667647181E-003 - 67.859999999999999 -3.5370541891844853E-003 - 67.920000000000002 -3.4919648900899247E-003 - 67.979999999999990 -3.4477397416908446E-003 - 68.039999999999992 -3.4043665800731178E-003 - 68.099999999999994 -3.3618329124355285E-003 - 68.159999999999997 -3.3201266457325248E-003 - 68.219999999999999 -3.2792356594238889E-003 - 68.280000000000001 -3.2391478473451818E-003 - 68.339999999999989 -3.1998510146150436E-003 - 68.399999999999991 -3.1613333132759960E-003 - 68.459999999999994 -3.1235826637712920E-003 - 68.519999999999996 -3.0865875081972000E-003 - 68.579999999999998 -3.0503362882583485E-003 - 68.640000000000001 -3.0148170090589285E-003 - 68.699999999999989 -2.9800180852600664E-003 - 68.759999999999991 -2.9459282968405526E-003 - 68.819999999999993 -2.9125358032583877E-003 - 68.879999999999995 -2.8798295120372186E-003 - 68.939999999999998 -2.8477978874070341E-003 - 69.000000000000000 -2.8164300332826540E-003 - 69.060000000000002 -2.7857145220987383E-003 - 69.119999999999990 -2.7556405533893185E-003 - 69.179999999999993 -2.7261969467244195E-003 - 69.239999999999995 -2.6973727077506675E-003 - 69.299999999999997 -2.6691572835288247E-003 - 69.359999999999999 -2.6415397691567132E-003 - 69.420000000000002 -2.6145093746436387E-003 - 69.479999999999990 -2.5880555402040166E-003 - 69.539999999999992 -2.5621678457139235E-003 - 69.599999999999994 -2.5368358290937159E-003 - 69.659999999999997 -2.5120491835523675E-003 - 69.719999999999999 -2.4877977573570416E-003 - 69.780000000000001 -2.4640713902668861E-003 - 69.839999999999989 -2.4408601768968817E-003 - 69.899999999999991 -2.4181544665297008E-003 - 69.959999999999994 -2.3959442504277555E-003 - 70.019999999999996 -2.3742201254906906E-003 - 70.079999999999998 -2.3529724454925864E-003 - 70.140000000000001 -2.3321921335309860E-003 - 70.199999999999989 -2.3118697110935515E-003 - 70.259999999999991 -2.2919961763890229E-003 - 70.319999999999993 -2.2725627195329849E-003 - 70.379999999999995 -2.2535602995676796E-003 - 70.439999999999998 -2.2349801608862688E-003 - 70.500000000000000 -2.2168137233003911E-003 - 70.560000000000002 -2.1990523889610378E-003 - 70.619999999999990 -2.1816875304027090E-003 - 70.679999999999993 -2.1647109622103355E-003 - 70.739999999999995 -2.1481141150440316E-003 - 70.799999999999997 -2.1318887409510420E-003 - 70.859999999999999 -2.1160267349545413E-003 - 70.920000000000002 -2.1005199804025295E-003 - 70.979999999999990 -2.0853604042546129E-003 - 71.039999999999992 -2.0705398292946374E-003 - 71.099999999999994 -2.0560506822772718E-003 - 71.159999999999997 -2.0418847881554414E-003 - 71.219999999999999 -2.0280343625201213E-003 - 71.280000000000001 -2.0144916339476875E-003 - 71.339999999999989 -2.0012491716521136E-003 - 71.399999999999991 -1.9882993161412696E-003 - 71.459999999999994 -1.9756344198000749E-003 - 71.519999999999996 -1.9632471417481289E-003 - 71.579999999999998 -1.9511299609911333E-003 - 71.640000000000001 -1.9392756627714656E-003 - 71.699999999999989 -1.9276769953502403E-003 - 71.759999999999991 -1.9163265600852250E-003 - 71.819999999999993 -1.9052173180722936E-003 - 71.879999999999995 -1.8943421233796683E-003 - 71.939999999999998 -1.8836939591525717E-003 - 72.000000000000000 -1.8732658727983035E-003 - 72.060000000000002 -1.8630509237809881E-003 - 72.119999999999990 -1.8530421962533925E-003 - 72.179999999999993 -1.8432330094439861E-003 - 72.239999999999995 -1.8336166307089366E-003 - 72.299999999999997 -1.8241864228365392E-003 - 72.359999999999999 -1.8149358348567817E-003 - 72.420000000000002 -1.8058585079359501E-003 - 72.479999999999990 -1.7969478560428478E-003 - 72.539999999999992 -1.7881978342559452E-003 - 72.599999999999994 -1.7796020747245173E-003 - 72.659999999999997 -1.7711544556495626E-003 - 72.719999999999999 -1.7628491037993284E-003 - 72.780000000000001 -1.7546801865834100E-003 - 72.839999999999989 -1.7466418417993942E-003 - 72.899999999999991 -1.7387284986539178E-003 - 72.959999999999994 -1.7309345854584499E-003 - 73.019999999999996 -1.7232549353632248E-003 - 73.079999999999998 -1.7156840933525747E-003 - 73.140000000000001 -1.7082169971402621E-003 - 73.199999999999989 -1.7008486704724072E-003 - 73.259999999999991 -1.6935743779767456E-003 - 73.319999999999993 -1.6863893018287056E-003 - 73.379999999999995 -1.6792891204606287E-003 - 73.439999999999998 -1.6722693698630626E-003 - 73.500000000000000 -1.6653259623920108E-003 - 73.560000000000002 -1.6584548357232482E-003 - 73.619999999999990 -1.6516521311905133E-003 - 73.679999999999993 -1.6449141286706940E-003 - 73.739999999999995 -1.6382373049687480E-003 - 73.799999999999997 -1.6316180394405943E-003 - 73.859999999999999 -1.6250531854364464E-003 - 73.920000000000002 -1.6185394778086455E-003 - 73.979999999999990 -1.6120739327743164E-003 - 74.039999999999992 -1.6056536344636050E-003 - 74.099999999999994 -1.5992757809930210E-003 - 74.159999999999997 -1.5929375146716039E-003 - 74.219999999999999 -1.5866361800688489E-003 - 74.280000000000001 -1.5803694574828948E-003 - 74.339999999999989 -1.5741350277776850E-003 - 74.399999999999991 -1.5679303407101039E-003 - 74.459999999999994 -1.5617534380046778E-003 - 74.519999999999996 -1.5556020558954819E-003 - 74.579999999999998 -1.5494744451431544E-003 - 74.640000000000001 -1.5433686666091509E-003 - 74.699999999999989 -1.5372829571171384E-003 - 74.759999999999991 -1.5312156663021459E-003 - 74.819999999999993 -1.5251653688302615E-003 - 74.879999999999995 -1.5191306353822152E-003 - 74.939999999999998 -1.5131100930635528E-003 - 75.000000000000000 -1.5071024647286711E-003 - 75.060000000000002 -1.5011068747801349E-003 - 75.119999999999990 -1.4951221480538272E-003 - 75.179999999999993 -1.4891473539728668E-003 - 75.239999999999995 -1.4831817209260661E-003 - 75.299999999999997 -1.4772245022069120E-003 - 75.359999999999999 -1.4712749681342185E-003 - 75.420000000000002 -1.4653325310412986E-003 - 75.479999999999990 -1.4593966035002632E-003 - 75.539999999999992 -1.4534668093344710E-003 - 75.599999999999994 -1.4475427732206234E-003 - 75.659999999999997 -1.4416243311725619E-003 - 75.719999999999999 -1.4357111551861670E-003 - 75.780000000000001 -1.4298031354656807E-003 - 75.839999999999989 -1.4239003520984815E-003 - 75.899999999999991 -1.4180028901908885E-003 - 75.959999999999994 -1.4121110164436765E-003 - 76.019999999999996 -1.4062248672469275E-003 - 76.079999999999998 -1.4003448049626148E-003 - 76.140000000000001 -1.3944714731988553E-003 - 76.199999999999989 -1.3886055233113253E-003 - 76.259999999999991 -1.3827476120958839E-003 - 76.319999999999993 -1.3768984831612021E-003 - 76.379999999999995 -1.3710590977765716E-003 - 76.439999999999998 -1.3652304411225068E-003 - 76.500000000000000 -1.3594136650823252E-003 - 76.560000000000002 -1.3536099685223658E-003 - 76.619999999999990 -1.3478204537867612E-003 - 76.679999999999993 -1.3420465938703628E-003 - 76.739999999999995 -1.3362898066437304E-003 - 76.799999999999997 -1.3305513586061061E-003 - 76.859999999999999 -1.3248328085537541E-003 - 76.920000000000002 -1.3191357004295732E-003 - 76.979999999999990 -1.3134614589091112E-003 - 77.039999999999992 -1.3078117824832547E-003 - 77.099999999999994 -1.3021881480478887E-003 - 77.159999999999997 -1.2965922796629012E-003 - 77.219999999999999 -1.2910256619619879E-003 - 77.280000000000001 -1.2854899251601595E-003 - 77.339999999999989 -1.2799866507094478E-003 - 77.399999999999991 -1.2745173586557520E-003 - 77.459999999999994 -1.2690835809431133E-003 - 77.519999999999996 -1.2636866683744695E-003 - 77.579999999999998 -1.2583282031730693E-003 - 77.640000000000001 -1.2530094427097823E-003 - 77.699999999999989 -1.2477317738349900E-003 - 77.759999999999991 -1.2424963731260947E-003 - 77.819999999999993 -1.2373045337501661E-003 - 77.879999999999995 -1.2321573439876602E-003 - 77.939999999999998 -1.2270558960719320E-003 - 78.000000000000000 -1.2220012524172196E-003 - 78.060000000000002 -1.2169941264195225E-003 - 78.119999999999990 -1.2120356242372766E-003 - 78.179999999999993 -1.2071263098380040E-003 - 78.239999999999995 -1.2022669184776678E-003 - 78.299999999999997 -1.1974580796924579E-003 - 78.359999999999999 -1.1927002913849625E-003 - 78.420000000000002 -1.1879938015201190E-003 - 78.479999999999990 -1.1833391452513323E-003 - 78.539999999999992 -1.1787362928969488E-003 - 78.599999999999994 -1.1741852991746940E-003 - 78.659999999999997 -1.1696862130978060E-003 - 78.719999999999999 -1.1652387965886202E-003 - 78.780000000000001 -1.1608429399096508E-003 - 78.839999999999989 -1.1564980649271047E-003 - 78.899999999999991 -1.1522037526884338E-003 - 78.959999999999994 -1.1479594375413840E-003 - 79.019999999999996 -1.1437643784429554E-003 - 79.079999999999998 -1.1396177925507302E-003 - 79.140000000000001 -1.1355188106455792E-003 - 79.199999999999989 -1.1314664605247653E-003 - 79.259999999999991 -1.1274598160593216E-003 - 79.319999999999993 -1.1234977609917794E-003 - 79.379999999999995 -1.1195790727895928E-003 - 79.439999999999998 -1.1157028144614485E-003 - 79.500000000000000 -1.1118676474752870E-003 - 79.560000000000002 -1.1080723102261587E-003 - 79.619999999999990 -1.1043155315077734E-003 - 79.679999999999993 -1.1005960740209787E-003 - 79.739999999999995 -1.0969125621771898E-003 - 79.799999999999997 -1.0932637989469866E-003 - 79.859999999999999 -1.0896483756038617E-003 - 79.920000000000002 -1.0860649466442141E-003 - 79.979999999999990 -1.0825122207838414E-003 - 80.039999999999992 -1.0789888538729215E-003 - 80.099999999999994 -1.0754933578794330E-003 - 80.159999999999997 -1.0720245158973055E-003 - 80.219999999999999 -1.0685811394756401E-003 - 80.280000000000001 -1.0651617720600086E-003 - 80.340000000000003 -1.0617652965834708E-003 - 80.400000000000006 -1.0583903624572727E-003 - 80.460000000000008 -1.0550358117343290E-003 - 80.519999999999982 -1.0517006455817044E-003 - 80.579999999999984 -1.0483836195867985E-003 - 80.639999999999986 -1.0450837414659245E-003 - 80.699999999999989 -1.0418000444623191E-003 - 80.759999999999991 -1.0385315028174891E-003 - 80.819999999999993 -1.0352772958324382E-003 - 80.879999999999995 -1.0320365998191493E-003 - 80.939999999999998 -1.0288085820912920E-003 - 81.000000000000000 -1.0255925026581179E-003 - 81.060000000000002 -1.0223877050249224E-003 - 81.120000000000005 -1.0191935561105390E-003 - 81.180000000000007 -1.0160094080335523E-003 - 81.240000000000009 -1.0128348514975721E-003 - 81.299999999999983 -1.0096693184614611E-003 - 81.359999999999985 -1.0065122696606152E-003 - 81.419999999999987 -1.0033634232367184E-003 - 81.479999999999990 -1.0002223435148679E-003 - 81.539999999999992 -9.9708852933911608E-004 - 81.599999999999994 -9.9396181624721459E-004 - 81.659999999999997 -9.9084191044793938E-004 - 81.719999999999999 -9.8772852348108075E-004 - 81.780000000000001 -9.8462146490072076E-004 - 81.840000000000003 -9.8152049410156852E-004 - 81.900000000000006 -9.7842538681641635E-004 - 81.960000000000008 -9.7533604592316115E-004 - 82.019999999999982 -9.7225231035938105E-004 - 82.079999999999984 -9.6917406009226488E-004 - 82.139999999999986 -9.6610110663352040E-004 - 82.199999999999989 -9.6303339583297975E-004 - 82.259999999999991 -9.5997084465416203E-004 - 82.319999999999993 -9.5691337373195054E-004 - 82.379999999999995 -9.5386086678891664E-004 - 82.439999999999998 -9.5081324657991231E-004 - 82.500000000000000 -9.4777052267043939E-004 - 82.560000000000002 -9.4473265126234320E-004 - 82.620000000000005 -9.4169956900691867E-004 - 82.680000000000007 -9.3867127197551120E-004 - 82.740000000000009 -9.3564775273509556E-004 - 82.799999999999983 -9.3262903041293370E-004 - 82.859999999999985 -9.2961523356531028E-004 - 82.919999999999987 -9.2660633460530685E-004 - 82.979999999999990 -9.2360246206309627E-004 - 83.039999999999992 -9.2060374431107489E-004 - 83.099999999999994 -9.1761020991487207E-004 - 83.159999999999997 -9.1462209759676089E-004 - 83.219999999999999 -9.1163945627898541E-004 - 83.280000000000001 -9.0866252434494471E-004 - 83.340000000000003 -9.0569140841375738E-004 - 83.400000000000006 -9.0272635727603023E-004 - 83.460000000000008 -8.9976743999534137E-004 - 83.519999999999982 -8.9681493628660988E-004 - 83.579999999999984 -8.9386893623728716E-004 - 83.639999999999986 -8.9092963769664532E-004 - 83.699999999999989 -8.8799716721400671E-004 - 83.759999999999991 -8.8507173063510306E-004 - 83.819999999999993 -8.8215347414450924E-004 - 83.879999999999995 -8.7924262825550786E-004 - 83.939999999999998 -8.7633932007947037E-004 - 84.000000000000000 -8.7344378937129891E-004 - 84.060000000000002 -8.7055619911344489E-004 - 84.120000000000005 -8.6767677803698733E-004 - 84.180000000000007 -8.6480571226261603E-004 - 84.240000000000009 -8.6194332898892692E-004 - 84.299999999999983 -8.5908984259828861E-004 - 84.359999999999985 -8.5624552308354127E-004 - 84.419999999999987 -8.5341073634280073E-004 - 84.479999999999990 -8.5058563058142383E-004 - 84.539999999999992 -8.4777064739422262E-004 - 84.599999999999994 -8.4496608576495043E-004 - 84.659999999999997 -8.4217218570095903E-004 - 84.719999999999999 -8.3938936317929833E-004 - 84.780000000000001 -8.3661789086112608E-004 - 84.840000000000003 -8.3385806169795397E-004 - 84.900000000000006 -8.3111026960355631E-004 - 84.960000000000008 -8.2837482609890184E-004 - 85.019999999999982 -8.2565207068128511E-004 - 85.079999999999984 -8.2294219828010903E-004 - 85.139999999999986 -8.2024567840550489E-004 - 85.199999999999989 -8.1756268345875680E-004 - 85.259999999999991 -8.1489360667088195E-004 - 85.319999999999993 -8.1223881779837867E-004 - 85.379999999999995 -8.0959868556700662E-004 - 85.439999999999998 -8.0697349748822564E-004 - 85.500000000000000 -8.0436370843086995E-004 - 85.560000000000002 -8.0176965489823962E-004 - 85.620000000000005 -7.9919178602020312E-004 - 85.680000000000007 -7.9663055219114729E-004 - 85.740000000000009 -7.9408646705193982E-004 - 85.799999999999983 -7.9156009805234897E-004 - 85.859999999999985 -7.8905198193517925E-004 - 85.919999999999987 -7.8656274510008220E-004 - 85.979999999999990 -7.8409310295188370E-004 - 86.039999999999992 -7.8164375386229751E-004 - 86.099999999999994 -7.7921547750252427E-004 - 86.159999999999997 -7.7680911548984940E-004 - 86.219999999999999 -7.7442567470875027E-004 - 86.280000000000001 -7.7206611237309549E-004 - 86.340000000000003 -7.6973156613702469E-004 - 86.400000000000006 -7.6742316195531324E-004 - 86.460000000000008 -7.6514221594305230E-004 - 86.519999999999982 -7.6289011428652101E-004 - 86.579999999999984 -7.6066824788670491E-004 - 86.639999999999986 -7.5847818664741501E-004 - 86.699999999999989 -7.5632165798433066E-004 - 86.759999999999991 -7.5420035549634255E-004 - 86.819999999999993 -7.5211618231060102E-004 - 86.879999999999995 -7.5007119927959667E-004 - 86.939999999999998 -7.4806753492775719E-004 - 87.000000000000000 -7.4610734054713138E-004 - 87.060000000000002 -7.4419309431332764E-004 - 87.120000000000005 -7.4232731847969117E-004 - 87.180000000000007 -7.4051260001530657E-004 - 87.240000000000009 -7.3875188076662917E-004 - 87.299999999999983 -7.3704808462882079E-004 - 87.359999999999985 -7.3540441050563865E-004 - 87.419999999999987 -7.3382414403871303E-004 - 87.479999999999990 -7.3231072483110737E-004 - 87.539999999999992 -7.3086794684559006E-004 - 87.599999999999994 -7.2949952899578651E-004 - 87.659999999999997 -7.2820960983024051E-004 - 87.719999999999999 -7.2700234806652420E-004 - 87.780000000000001 -7.2588210706153158E-004 - 87.840000000000003 -7.2485351557541452E-004 - 87.900000000000006 -7.2392132470841194E-004 - 87.960000000000008 -7.2309045275084898E-004 - 88.019999999999982 -7.2236600587493997E-004 - 88.079999999999984 -7.2175331223946681E-004 - 88.139999999999986 -7.2125778051357380E-004 - 88.199999999999989 -7.2088506874214728E-004 - 88.259999999999991 -7.2064101177410410E-004 - 88.319999999999993 -7.2053157638986916E-004 - 88.379999999999995 -7.2056296715597489E-004 - 88.439999999999998 -7.2074152306369826E-004 - 88.500000000000000 -7.2107377712273674E-004 - 88.560000000000002 -7.2156646089737092E-004 - 88.620000000000005 -7.2222653611198409E-004 - 88.680000000000007 -7.2306107223901641E-004 - 88.740000000000009 -7.2407745262121162E-004 - 88.799999999999983 -7.2528310891514683E-004 - 88.859999999999985 -7.2668578441048191E-004 - 88.919999999999987 -7.2829335720722222E-004 - 88.979999999999990 -7.3011378805557035E-004 - 89.039999999999992 -7.3215545142001136E-004 - 89.099999999999994 -7.3442664095171872E-004 - 89.159999999999997 -7.3693596447912534E-004 - 89.219999999999999 -7.3969208225626204E-004 - 89.280000000000001 -7.4270381926665641E-004 - 89.340000000000003 -7.4598009360165164E-004 - 89.400000000000006 -7.4953004371227131E-004 - 89.460000000000008 -7.5336271838637560E-004 - 89.519999999999982 -7.5748734771392769E-004 - 89.579999999999984 -7.6191314619371503E-004 - 89.639999999999986 -7.6664949885232978E-004 - 89.699999999999989 -7.7170570898047353E-004 - 89.759999999999991 -7.7709120130696637E-004 - 89.819999999999993 -7.8281524818524944E-004 - 89.879999999999995 -7.8888722959369881E-004 - 89.939999999999998 -7.9531644360114856E-004 - 90.000000000000000 -8.0211216370308408E-004 - 90.060000000000002 -8.0928355510648427E-004 - 90.120000000000005 -8.1683966589580820E-004 - 90.180000000000007 -8.2478944994865432E-004 - 90.240000000000009 -8.3314166143120074E-004 - 90.299999999999983 -8.4190484464220284E-004 - 90.359999999999985 -8.5108743910453956E-004 - 90.419999999999987 -8.6069755066574228E-004 - 90.479999999999990 -8.7074301139737956E-004 - 90.539999999999992 -8.8123135410815437E-004 - 90.599999999999994 -8.9216967655201661E-004 - 90.659999999999997 -9.0356482237594722E-004 - 90.719999999999999 -9.1542296864092446E-004 - 90.780000000000001 -9.2775012005174413E-004 - 90.840000000000003 -9.4055152886427375E-004 - 90.900000000000006 -9.5383198187977631E-004 - 90.960000000000008 -9.6759566561572933E-004 - 91.019999999999982 -9.8184611234724954E-004 - 91.079999999999984 -9.9658622092147235E-004 - 91.139999999999986 -1.0118180796125564E-003 - 91.199999999999989 -1.0275430514302885E-003 - 91.259999999999991 -1.0437617692912124E-003 - 91.319999999999993 -1.0604739351561046E-003 - 91.379999999999995 -1.0776783540173756E-003 - 91.439999999999998 -1.0953728726464992E-003 - 91.500000000000000 -1.1135545300135987E-003 - 91.560000000000002 -1.1322191322871657E-003 - 91.620000000000005 -1.1513616878001082E-003 - 91.680000000000007 -1.1709758079752285E-003 - 91.739999999999981 -1.1910541102505764E-003 - 91.799999999999983 -1.2115881543828750E-003 - 91.859999999999985 -1.2325682269243689E-003 - 91.919999999999987 -1.2539834615818667E-003 - 91.979999999999990 -1.2758215055602741E-003 - 92.039999999999992 -1.2980690414481030E-003 - 92.099999999999994 -1.3207113436866536E-003 - 92.159999999999997 -1.3437322633832131E-003 - 92.219999999999999 -1.3671144469646294E-003 - 92.280000000000001 -1.3908391843739762E-003 - 92.340000000000003 -1.4148862958228200E-003 - 92.400000000000006 -1.4392343731194413E-003 - 92.460000000000008 -1.4638605634934275E-003 - 92.519999999999982 -1.4887404680926572E-003 - 92.579999999999984 -1.5138487693956181E-003 - 92.639999999999986 -1.5391582853636833E-003 - 92.699999999999989 -1.5646406446243727E-003 - 92.759999999999991 -1.5902662884217512E-003 - 92.819999999999993 -1.6160042026349868E-003 - 92.879999999999995 -1.6418220375528482E-003 - 92.939999999999998 -1.6676863856456877E-003 - 93.000000000000000 -1.6935625349278386E-003 - 93.060000000000002 -1.7194143466275819E-003 - 93.120000000000005 -1.7452048256979735E-003 - 93.180000000000007 -1.7708956956242121E-003 - 93.239999999999981 -1.7964480067479724E-003 - 93.299999999999983 -1.8218213671851741E-003 - 93.359999999999985 -1.8469748924195850E-003 - 93.419999999999987 -1.8718665465776599E-003 - 93.479999999999990 -1.8964536465980255E-003 - 93.539999999999992 -1.9206927639800061E-003 - 93.599999999999994 -1.9445400005318480E-003 - 93.659999999999997 -1.9679508043007367E-003 - 93.719999999999999 -1.9908801763860342E-003 - 93.780000000000001 -2.0132828508186112E-003 - 93.840000000000003 -2.0351132302416294E-003 - 93.900000000000006 -2.0563256164828274E-003 - 93.960000000000008 -2.0768740603796746E-003 - 94.019999999999982 -2.0967128526493718E-003 - 94.079999999999984 -2.1157964677894262E-003 - 94.139999999999986 -2.1340793168406337E-003 - 94.199999999999989 -2.1515168159102279E-003 - 94.259999999999991 -2.1680638305408176E-003 - 94.319999999999993 -2.1836767626095244E-003 - 94.379999999999995 -2.1983123074273518E-003 - 94.439999999999998 -2.2119280227008743E-003 - 94.500000000000000 -2.2244822751924451E-003 - 94.560000000000002 -2.2359349375332830E-003 - 94.620000000000005 -2.2462465072564737E-003 - 94.680000000000007 -2.2553792968182957E-003 - 94.739999999999981 -2.2632964964005124E-003 - 94.799999999999983 -2.2699633707830447E-003 - 94.859999999999985 -2.2753463980562994E-003 - 94.919999999999987 -2.2794139816374897E-003 - 94.979999999999990 -2.2821361640592650E-003 - 95.039999999999992 -2.2834848095838059E-003 - 95.099999999999994 -2.2834344142407675E-003 - 95.159999999999997 -2.2819611539865599E-003 - 95.219999999999999 -2.2790431559078393E-003 - 95.280000000000001 -2.2746613146877467E-003 - 95.340000000000003 -2.2687985336483779E-003 - 95.400000000000006 -2.2614401589704652E-003 - 95.460000000000008 -2.2525744132398454E-003 - 95.519999999999982 -2.2421913068595956E-003 - 95.579999999999984 -2.2302840782747867E-003 - 95.639999999999986 -2.2168484112670317E-003 - 95.699999999999989 -2.2018828658845356E-003 - 95.759999999999991 -2.1853882595520274E-003 - 95.819999999999993 -2.1673684224543625E-003 - 95.879999999999995 -2.1478297978541313E-003 - 95.939999999999998 -2.1267820520690650E-003 - 96.000000000000000 -2.1042370568302052E-003 - 96.060000000000002 -2.0802098878903927E-003 - 96.120000000000005 -2.0547180623702471E-003 - 96.180000000000007 -2.0277819798932384E-003 - 96.239999999999981 -1.9994245753480102E-003 - 96.299999999999983 -1.9696717258079000E-003 - 96.359999999999985 -1.9385516870169591E-003 - 96.419999999999987 -1.9060953723195506E-003 - 96.479999999999990 -1.8723364108936837E-003 - 96.539999999999992 -1.8373103964324138E-003 - 96.599999999999994 -1.8010555890866937E-003 - 96.659999999999997 -1.7636125250848982E-003 - 96.719999999999999 -1.7250240095574808E-003 - 96.780000000000001 -1.6853347228552233E-003 - 96.840000000000003 -1.6445915829617391E-003 - 96.900000000000006 -1.6028433665751308E-003 - 96.960000000000008 -1.5601406719011378E-003 - 97.019999999999982 -1.5165357544125529E-003 - 97.079999999999984 -1.4720824380102240E-003 - 97.139999999999986 -1.4268360106781395E-003 - 97.199999999999989 -1.3808530506635680E-003 - 97.259999999999991 -1.3341912318962717E-003 - 97.319999999999993 -1.2869096074280529E-003 - 97.379999999999995 -1.2390677511625713E-003 - 97.439999999999998 -1.1907263566960659E-003 - 97.500000000000000 -1.1419465346913073E-003 - 97.560000000000002 -1.0927900955669777E-003 - 97.620000000000005 -1.0433189755280593E-003 - 97.680000000000007 -9.9359545518978507E-004 - 97.739999999999981 -9.4368191811676407E-004 - 97.799999999999983 -8.9364075311263401E-004 - 97.859999999999985 -8.4353393446851346E-004 - 97.919999999999987 -7.9342327543004880E-004 - 97.979999999999990 -7.4336996416945274E-004 - 98.039999999999992 -6.9343477819226002E-004 - 98.099999999999994 -6.4367769093775389E-004 - 98.159999999999997 -5.9415777614116620E-004 - 98.219999999999999 -5.4493312318296681E-004 - 98.280000000000001 -4.9606068378738911E-004 - 98.340000000000003 -4.4759623053255152E-004 - 98.400000000000006 -3.9959413573738246E-004 - 98.460000000000008 -3.5210739551404729E-004 - 98.519999999999982 -3.0518738860926202E-004 - 98.579999999999984 -2.5888381972476138E-004 - 98.639999999999986 -2.1324467965177585E-004 - 98.699999999999989 -1.6831611296088097E-004 - 98.759999999999991 -1.2414232809191872E-004 - 98.819999999999993 -8.0765536644248248E-005 - 98.879999999999995 -3.8225987338864103E-005 - 98.939999999999998 3.4382804488839271E-006 - 99.000000000000000 4.4191325475918689E-005 - 99.060000000000002 8.3999408010692662E-005 - 99.120000000000005 1.2283103009075964E-004 - 99.180000000000007 1.6065697655864343E-004 - 99.239999999999981 1.9745029618153950E-004 - 99.299999999999983 2.3318630489512846E-004 - 99.359999999999985 2.6784272630840726E-004 - 99.419999999999987 3.0139944736513137E-004 - 99.479999999999990 3.3383878683972818E-004 - 99.539999999999992 3.6514533963600366E-004 - 99.599999999999994 3.9530596208922045E-004 - 99.659999999999997 4.2430986920489880E-004 - 99.719999999999999 4.5214849864964814E-004 - 99.780000000000001 4.7881545092003726E-004 - 99.840000000000003 5.0430664023477637E-004 - 99.900000000000006 5.2862002724799069E-004 - 99.960000000000008 5.5175581276618911E-004 - 100.01999999999998 5.7371622238505508E-004 - 100.07999999999998 5.9450544796202929E-004 - 100.13999999999999 6.1412974669307948E-004 - 100.19999999999999 6.3259723628440918E-004 - 100.25999999999999 6.4991775979981461E-004 - 100.31999999999999 6.6610306048832369E-004 - 100.38000000000000 6.8116648240473202E-004 - 100.44000000000000 6.9512303740687075E-004 - 100.50000000000000 7.0798925390227053E-004 - 100.56000000000000 7.1978306363617965E-004 - 100.62000000000000 7.3052379546199820E-004 - 100.68000000000001 7.4023200696874010E-004 - 100.73999999999998 7.4892949269914826E-004 - 100.79999999999998 7.5663912745773233E-004 - 100.85999999999999 7.6338489223206816E-004 - 100.91999999999999 7.6919161721269427E-004 - 100.97999999999999 7.7408499850721698E-004 - 101.03999999999999 7.7809146171291959E-004 - 101.09999999999999 7.8123817171155238E-004 - 101.16000000000000 7.8355280317030898E-004 - 101.22000000000000 7.8506367069162150E-004 - 101.28000000000000 7.8579951346580341E-004 - 101.34000000000000 7.8578933341197539E-004 - 101.40000000000001 7.8506242780943686E-004 - 101.46000000000001 7.8364839347902753E-004 - 101.51999999999998 7.8157692565474120E-004 - 101.57999999999998 7.7887779846262640E-004 - 101.63999999999999 7.7558071982346147E-004 - 101.69999999999999 7.7171538969918901E-004 - 101.75999999999999 7.6731133256004776E-004 - 101.81999999999999 7.6239793856691402E-004 - 101.88000000000000 7.5700431927371861E-004 - 101.94000000000000 7.5115919951040597E-004 - 102.00000000000000 7.4489101188423223E-004 - 102.06000000000000 7.3822767465810146E-004 - 102.12000000000000 7.3119673930038440E-004 - 102.18000000000001 7.2382516794019126E-004 - 102.23999999999998 7.1613933491219224E-004 - 102.29999999999998 7.0816513308312803E-004 - 102.35999999999999 6.9992759307327098E-004 - 102.41999999999999 6.9145123735608654E-004 - 102.47999999999999 6.8275976988171926E-004 - 102.53999999999999 6.7387618123824610E-004 - 102.59999999999999 6.6482276062040089E-004 - 102.66000000000000 6.5562096350866607E-004 - 102.72000000000000 6.4629144769051065E-004 - 102.78000000000000 6.3685404298536154E-004 - 102.84000000000000 6.2732782967727730E-004 - 102.90000000000001 6.1773098958946325E-004 - 102.96000000000001 6.0808093846661062E-004 - 103.01999999999998 5.9839428821139651E-004 - 103.07999999999998 5.8868678222792452E-004 - 103.13999999999999 5.7897341604297751E-004 - 103.19999999999999 5.6926828464782652E-004 - 103.25999999999999 5.5958475809475214E-004 - 103.31999999999999 5.4993543562238787E-004 - 103.38000000000000 5.4033201815593740E-004 - 103.44000000000000 5.3078550711716421E-004 - 103.50000000000000 5.2130616968846047E-004 - 103.56000000000000 5.1190338962587385E-004 - 103.62000000000000 5.0258585883911446E-004 - 103.68000000000001 4.9336159201462915E-004 - 103.73999999999998 4.8423776579666712E-004 - 103.79999999999998 4.7522086104093012E-004 - 103.85999999999999 4.6631671404597007E-004 - 103.91999999999999 4.5753036624230633E-004 - 103.97999999999999 4.4886629118026937E-004 - 104.03999999999999 4.4032824837618667E-004 - 104.09999999999999 4.3191944451180086E-004 - 104.16000000000000 4.2364244557968682E-004 - 104.22000000000000 4.1549925921973720E-004 - 104.28000000000000 4.0749140244082725E-004 - 104.34000000000000 3.9961987836178558E-004 - 104.40000000000001 3.9188517128061032E-004 - 104.46000000000001 3.8428741610341618E-004 - 104.51999999999998 3.7682629522648847E-004 - 104.57999999999998 3.6950113412071220E-004 - 104.63999999999999 3.6231093362061904E-004 - 104.69999999999999 3.5525431992081699E-004 - 104.75999999999999 3.4832966570120979E-004 - 104.81999999999999 3.4153509610448441E-004 - 104.88000000000000 3.3486845376655189E-004 - 104.94000000000000 3.2832736973774628E-004 - 105.00000000000000 3.2190925581358732E-004 - 105.06000000000000 3.1561134411723269E-004 - 105.12000000000000 3.0943068351202147E-004 - 105.18000000000001 3.0336415516346821E-004 - 105.23999999999998 2.9740847114908468E-004 - 105.29999999999998 2.9156025268238755E-004 - 105.35999999999999 2.8581594300656799E-004 - 105.41999999999999 2.8017195366729044E-004 - 105.47999999999999 2.7462458838583772E-004 - 105.53999999999999 2.6917007775212424E-004 - 105.59999999999999 2.6380465547010872E-004 - 105.66000000000000 2.5852449569142963E-004 - 105.72000000000000 2.5332576045481678E-004 - 105.78000000000000 2.4820463420925583E-004 - 105.84000000000000 2.4315738915678661E-004 - 105.90000000000001 2.3818031904392962E-004 - 105.96000000000001 2.3326978180578800E-004 - 106.01999999999998 2.2842226374863902E-004 - 106.07999999999998 2.2363432699012845E-004 - 106.13999999999999 2.1890266019903139E-004 - 106.19999999999999 2.1422409127896421E-004 - 106.25999999999999 2.0959556444781789E-004 - 106.31999999999999 2.0501416096491620E-004 - 106.38000000000000 2.0047714374038067E-004 - 106.44000000000000 1.9598188192129865E-004 - 106.50000000000000 1.9152592576417800E-004 - 106.56000000000000 1.8710696554325985E-004 - 106.62000000000000 1.8272284781216966E-004 - 106.68000000000001 1.7837154566591260E-004 - 106.73999999999998 1.7405119296212381E-004 - 106.79999999999998 1.6976008221916580E-004 - 106.85999999999999 1.6549662152740170E-004 - 106.91999999999999 1.6125939517428926E-004 - 106.97999999999999 1.5704711633762899E-004 - 107.03999999999999 1.5285863884480154E-004 - 107.09999999999999 1.4869295460093884E-004 - 107.16000000000000 1.4454919855816655E-004 - 107.22000000000000 1.4042664122725985E-004 - 107.28000000000000 1.3632472824558943E-004 - 107.34000000000000 1.3224300831405971E-004 - 107.40000000000001 1.2818120217798616E-004 - 107.46000000000001 1.2413914421235782E-004 - 107.51999999999998 1.2011683775064186E-004 - 107.57999999999998 1.1611439787864353E-004 - 107.63999999999999 1.1213208526540273E-004 - 107.69999999999999 1.0817027730572286E-004 - 107.75999999999999 1.0422949673087745E-004 - 107.81999999999999 1.0031035445757926E-004 - 107.88000000000000 9.6413581822805660E-005 - 107.94000000000000 9.2539999433197839E-005 - 108.00000000000000 8.8690506677719020E-005 - 108.06000000000000 8.4866079315531502E-005 - 108.12000000000000 8.1067759729418944E-005 - 108.18000000000001 7.7296625931467085E-005 - 108.23999999999998 7.3553804629720483E-005 - 108.29999999999998 6.9840429919181278E-005 - 108.35999999999999 6.6157664665389009E-005 - 108.41999999999999 6.2506676899076586E-005 - 108.47999999999999 5.8888625490754416E-005 - 108.53999999999999 5.5304663484217123E-005 - 108.59999999999999 5.1755932251790116E-005 - 108.66000000000000 4.8243550043248232E-005 - 108.72000000000000 4.4768613253615806E-005 - 108.78000000000000 4.1332201126093322E-005 - 108.84000000000000 3.7935364043409833E-005 - 108.90000000000001 3.4579136595271737E-005 - 108.96000000000001 3.1264522716194186E-005 - 109.01999999999998 2.7992506533134372E-005 - 109.07999999999998 2.4764051433475103E-005 - 109.13999999999999 2.1580084909021915E-005 - 109.19999999999999 1.8441518252321302E-005 - 109.25999999999999 1.5349229457451417E-005 - 109.31999999999999 1.2304063809167114E-005 - 109.38000000000000 9.3068314905799635E-006 - 109.44000000000000 6.3582977796240577E-006 - 109.50000000000000 3.4591844414400121E-006 - 109.56000000000000 6.1016253031930847E-007 - 109.62000000000000 -2.1881527604989907E-006 - 109.68000000000001 -4.9352033001852007E-006 - 109.73999999999998 -7.6304905893035509E-006 - 109.79999999999998 -1.0273581001079038E-005 - 109.85999999999999 -1.2864099481840089E-005 - 109.91999999999999 -1.5401731254570887E-005 - 109.97999999999999 -1.7886219168415436E-005 - 110.03999999999999 -2.0317353130651838E-005 - 110.09999999999999 -2.2694972883183713E-005 - 110.16000000000000 -2.5018956278694167E-005 - 110.22000000000000 -2.7289208252765302E-005 - 110.28000000000000 -2.9505658659577525E-005 - 110.34000000000000 -3.1668254057146972E-005 - 110.40000000000001 -3.3776941392568577E-005 - 110.46000000000001 -3.5831675545613308E-005 - 110.51999999999998 -3.7832405657175385E-005 - 110.57999999999998 -3.9779067415698695E-005 - 110.63999999999999 -4.1671585566622238E-005 - 110.69999999999999 -4.3509864392773409E-005 - 110.75999999999999 -4.5293791092976779E-005 - 110.81999999999999 -4.7023233527329839E-005 - 110.88000000000000 -4.8698040832016317E-005 - 110.94000000000000 -5.0318040733600197E-005 - 111.00000000000000 -5.1883043913405469E-005 - 111.06000000000000 -5.3392840267111343E-005 - 111.12000000000000 -5.4847192421057548E-005 - 111.18000000000001 -5.6245847695876812E-005 - 111.23999999999998 -5.7588541096300224E-005 - 111.29999999999998 -5.8874963175636449E-005 - 111.35999999999999 -6.0104792161475324E-005 - 111.41999999999999 -6.1277670480832573E-005 - 111.47999999999999 -6.2393210175073374E-005 - 111.53999999999999 -6.3450974952935385E-005 - 111.59999999999999 -6.4450500029548266E-005 - 111.66000000000000 -6.5391271492649838E-005 - 111.72000000000000 -6.6272730900182410E-005 - 111.78000000000000 -6.7094268009011175E-005 - 111.84000000000000 -6.7855229377681352E-005 - 111.90000000000001 -6.8554912197415376E-005 - 111.96000000000001 -6.9192573509815523E-005 - 112.01999999999998 -6.9767411460115868E-005 - 112.07999999999998 -7.0278598160590308E-005 - 112.13999999999999 -7.0725255712721219E-005 - 112.19999999999999 -7.1106479089122290E-005 - 112.25999999999999 -7.1421335347665509E-005 - 112.31999999999999 -7.1668851856432025E-005 - 112.38000000000000 -7.1848043075487073E-005 - 112.44000000000000 -7.1957908560883594E-005 - 112.50000000000000 -7.1997427835415677E-005 - 112.56000000000000 -7.1965567826637320E-005 - 112.62000000000000 -7.1861295552325637E-005 - 112.68000000000001 -7.1683557117260702E-005 - 112.73999999999998 -7.1431302146202820E-005 - 112.79999999999998 -7.1103472865997796E-005 - 112.85999999999999 -7.0699019131099545E-005 - 112.91999999999999 -7.0216888747095401E-005 - 112.97999999999999 -6.9656032313525999E-005 - 113.03999999999999 -6.9015411447964813E-005 - 113.09999999999999 -6.8293995565619939E-005 - 113.16000000000000 -6.7490782865697093E-005 - 113.22000000000000 -6.6604784968976878E-005 - 113.28000000000000 -6.5635037200124089E-005 - 113.34000000000000 -6.4580615933263751E-005 - 113.40000000000001 -6.3440634197794353E-005 - 113.46000000000001 -6.2214259565928658E-005 - 113.51999999999998 -6.0900712307383219E-005 - 113.57999999999998 -5.9499282506395699E-005 - 113.63999999999999 -5.8009322788771487E-005 - 113.69999999999999 -5.6430281561209928E-005 - 113.75999999999999 -5.4761689394797873E-005 - 113.81999999999999 -5.3003174195144577E-005 - 113.88000000000000 -5.1154472753833956E-005 - 113.94000000000000 -4.9215427925721051E-005 - 114.00000000000000 -4.7186003548472217E-005 - 114.06000000000000 -4.5066286297908088E-005 - 114.12000000000000 -4.2856496579823009E-005 - 114.18000000000001 -4.0556982849141858E-005 - 114.23999999999998 -3.8168241682928727E-005 - 114.29999999999998 -3.5690907711415044E-005 - 114.35999999999999 -3.3125760768581241E-005 - 114.41999999999999 -3.0473733354477515E-005 - 114.47999999999999 -2.7735912578388272E-005 - 114.53999999999999 -2.4913540864922656E-005 - 114.59999999999999 -2.2008017796310575E-005 - 114.66000000000000 -1.9020907006476108E-005 - 114.72000000000000 -1.5953934909415981E-005 - 114.78000000000000 -1.2808996655526043E-005 - 114.84000000000000 -9.5881552788215869E-006 - 114.90000000000001 -6.2936453483057704E-006 - 114.96000000000001 -2.9278803612948443E-006 - 115.01999999999998 5.0655022968942143E-007 - 115.07999999999998 4.0068790448287408E-006 - 115.13999999999999 7.5701531391049299E-006 - 115.19999999999999 1.1193237063601604E-005 - 115.25999999999999 1.4872810427230100E-005 - 115.31999999999999 1.8605367953545656E-005 - 115.38000000000000 2.2387220838204756E-005 - 115.44000000000000 2.6214501212799881E-005 - 115.50000000000000 3.0083165254994340E-005 - 115.56000000000000 3.3988999856377774E-005 - 115.62000000000000 3.7927625151246644E-005 - 115.68000000000001 4.1894514548012511E-005 - 115.73999999999998 4.5884991154975080E-005 - 115.79999999999998 4.9894255782947991E-005 - 115.85999999999999 5.3917388992223217E-005 - 115.91999999999999 5.7949372028957022E-005 - 115.97999999999999 6.1985092437663789E-005 - 116.03999999999999 6.6019375309705398E-005 - 116.09999999999999 7.0046985693046919E-005 - 116.16000000000000 7.4062652301959094E-005 - 116.22000000000000 7.8061064345544826E-005 - 116.28000000000000 8.2036918909410910E-005 - 116.34000000000000 8.5984905138905635E-005 - 116.40000000000001 8.9899719801420550E-005 - 116.46000000000001 9.3776096342535002E-005 - 116.51999999999998 9.7608801911844943E-005 - 116.57999999999998 1.0139265004007764E-004 - 116.63999999999999 1.0512250542710687E-004 - 116.69999999999999 1.0879331447901696E-004 - 116.75999999999999 1.1240008560637734E-004 - 116.81999999999999 1.1593793050286202E-004 - 116.88000000000000 1.1940205942415567E-004 - 116.94000000000000 1.2278781075435492E-004 - 117.00000000000000 1.2609063022773313E-004 - 117.06000000000000 1.2930611934898139E-004 - 117.12000000000000 1.3243003673183898E-004 - 117.18000000000001 1.3545833146698686E-004 - 117.23999999999998 1.3838713537224267E-004 - 117.29999999999998 1.4121279653706893E-004 - 117.35999999999999 1.4393187859997327E-004 - 117.41999999999999 1.4654116094579896E-004 - 117.47999999999999 1.4903772650320132E-004 - 117.53999999999999 1.5141886875001797E-004 - 117.59999999999999 1.5368219332907785E-004 - 117.66000000000000 1.5582555079851162E-004 - 117.72000000000000 1.5784707374127447E-004 - 117.78000000000000 1.5974519757387798E-004 - 117.84000000000000 1.6151861588969551E-004 - 117.90000000000001 1.6316631526261413E-004 - 117.96000000000001 1.6468753721727018E-004 - 118.01999999999998 1.6608182455569350E-004 - 118.07999999999998 1.6734895954522374E-004 - 118.13999999999999 1.6848898929744385E-004 - 118.19999999999999 1.6950220790094860E-004 - 118.25999999999999 1.7038914615640548E-004 - 118.31999999999999 1.7115059015061714E-004 - 118.38000000000000 1.7178754664979039E-004 - 118.44000000000000 1.7230126174417728E-004 - 118.50000000000000 1.7269316652201178E-004 - 118.56000000000000 1.7296491130855534E-004 - 118.62000000000000 1.7311839438905109E-004 - 118.68000000000001 1.7315567359571792E-004 - 118.73999999999998 1.7307902218651004E-004 - 118.79999999999998 1.7289088098979276E-004 - 118.85999999999999 1.7259388122367920E-004 - 118.91999999999999 1.7219081741913267E-004 - 118.97999999999999 1.7168463570745737E-004 - 119.03999999999999 1.7107843528740694E-004 - 119.09999999999999 1.7037544193186971E-004 - 119.16000000000000 1.6957899753878636E-004 - 119.22000000000000 1.6869256609339199E-004 - 119.28000000000000 1.6771965384422696E-004 - 119.34000000000000 1.6666389203028181E-004 - 119.40000000000001 1.6552893737026221E-004 - 119.46000000000001 1.6431847504838631E-004 - 119.51999999999998 1.6303623760858179E-004 - 119.57999999999998 1.6168595343710196E-004 - 119.63999999999999 1.6027133136412437E-004 - 119.69999999999999 1.5879608946620355E-004 - 119.75999999999999 1.5726388304533454E-004 - 119.81999999999999 1.5567833213424954E-004 - 119.88000000000000 1.5404301133087683E-004 - 119.94000000000000 1.5236141629337770E-004 - 120.00000000000000 1.5063696980846216E-004 - 120.06000000000000 1.4887300815753893E-004 - 120.12000000000000 1.4707276879940683E-004 - 120.18000000000001 1.4523943174353372E-004 - 120.23999999999998 1.4337605574573763E-004 - 120.29999999999998 1.4148558956325158E-004 - 120.35999999999999 1.3957088061376471E-004 - 120.41999999999999 1.3763467115992872E-004 - 120.47999999999999 1.3567960217473620E-004 - 120.53999999999999 1.3370816040747120E-004 - 120.59999999999999 1.3172276840217039E-004 - 120.66000000000000 1.2972570863206944E-004 - 120.72000000000000 1.2771913715215269E-004 - 120.78000000000000 1.2570507631937046E-004 - 120.84000000000000 1.2368543253565752E-004 - 120.90000000000001 1.2166198154542679E-004 - 120.95999999999998 1.1963635001141816E-004 - 121.01999999999998 1.1761004409120856E-004 - 121.07999999999998 1.1558441357700723E-004 - 121.13999999999999 1.1356066239243890E-004 - 121.19999999999999 1.1153985464069905E-004 - 121.25999999999999 1.0952290584450815E-004 - 121.31999999999999 1.0751057070585244E-004 - 121.38000000000000 1.0550346654048864E-004 - 121.44000000000000 1.0350206451507845E-004 - 121.50000000000000 1.0150669693016363E-004 - 121.56000000000000 9.9517549150679970E-005 - 121.62000000000000 9.7534695163546158E-005 - 121.68000000000001 9.5558063366160283E-005 - 121.73999999999998 9.3587497369389662E-005 - 121.79999999999998 9.1622721023365374E-005 - 121.85999999999999 8.9663370199583958E-005 - 121.91999999999999 8.7709012768136520E-005 - 121.97999999999999 8.5759116585504166E-005 - 122.03999999999999 8.3813101595377122E-005 - 122.09999999999999 8.1870320112812668E-005 - 122.16000000000000 7.9930090704146155E-005 - 122.22000000000000 7.7991662287274873E-005 - 122.28000000000000 7.6054250133196017E-005 - 122.34000000000000 7.4117035271679764E-005 - 122.40000000000001 7.2179154958084655E-005 - 122.45999999999998 7.0239713364833015E-005 - 122.51999999999998 6.8297787657297418E-005 - 122.57999999999998 6.6352419906620872E-005 - 122.63999999999999 6.4402617554460366E-005 - 122.69999999999999 6.2447366693132531E-005 - 122.75999999999999 6.0485628098601837E-005 - 122.81999999999999 5.8516348115858941E-005 - 122.88000000000000 5.6538462803990220E-005 - 122.94000000000000 5.4550905493713496E-005 - 123.00000000000000 5.2552623806154187E-005 - 123.06000000000000 5.0542571794968082E-005 - 123.12000000000000 4.8519741569246725E-005 - 123.18000000000001 4.6483157061501034E-005 - 123.23999999999998 4.4431885890144535E-005 - 123.29999999999998 4.2365065432397346E-005 - 123.35999999999999 4.0281888927109645E-005 - 123.41999999999999 3.8181633596365463E-005 - 123.47999999999999 3.6063653706040779E-005 - 123.53999999999999 3.3927391636846687E-005 - 123.59999999999999 3.1772379804230689E-005 - 123.66000000000000 2.9598246368631473E-005 - 123.72000000000000 2.7404718676311157E-005 - 123.78000000000000 2.5191619318346278E-005 - 123.84000000000000 2.2958871849275093E-005 - 123.90000000000001 2.0706498629207410E-005 - 123.95999999999998 1.8434620098371082E-005 - 124.01999999999998 1.6143464052129085E-005 - 124.07999999999998 1.3833354548908285E-005 - 124.13999999999999 1.1504724093005304E-005 - 124.19999999999999 9.1581126448718419E-006 - 124.25999999999999 6.7941684017029231E-006 - 124.31999999999999 4.4136547542461416E-006 - 124.38000000000000 2.0174524696925121E-006 - 124.44000000000000 -3.9343478803403453E-007 - 124.50000000000000 -2.8178785272712889E-006 - 124.56000000000000 -5.2546206157490511E-006 - 124.62000000000000 -7.7022691112803402E-006 - 124.68000000000001 -1.0159298200953221E-005 - 124.73999999999998 -1.2624046153480278E-005 - 124.79999999999998 -1.5094711542927807E-005 - 124.85999999999999 -1.7569358823979692E-005 - 124.91999999999999 -2.0045914421616459E-005 - 124.97999999999999 -2.2522176690296450E-005 - 125.03999999999999 -2.4995812868054521E-005 - 125.09999999999999 -2.7464368049639908E-005 - 125.16000000000000 -2.9925272752588960E-005 - 125.22000000000000 -3.2375843681955686E-005 - 125.28000000000000 -3.4813300680614637E-005 - 125.34000000000000 -3.7234763916084493E-005 - 125.40000000000001 -3.9637277098877420E-005 - 125.45999999999998 -4.2017805819322329E-005 - 125.51999999999998 -4.4373246925728694E-005 - 125.57999999999998 -4.6700449324315165E-005 - 125.63999999999999 -4.8996207582140377E-005 - 125.69999999999999 -5.1257281314251069E-005 - 125.75999999999999 -5.3480403738623083E-005 - 125.81999999999999 -5.5662290732954641E-005 - 125.88000000000000 -5.7799650696736625E-005 - 125.94000000000000 -5.9889172777064034E-005 - 126.00000000000000 -6.1927568512476196E-005 - 126.06000000000000 -6.3911548507415261E-005 - 126.12000000000000 -6.5837846404518102E-005 - 126.18000000000001 -6.7703215660700993E-005 - 126.23999999999998 -6.9504445755505997E-005 - 126.29999999999998 -7.1238364505835737E-005 - 126.35999999999999 -7.2901822176937059E-005 - 126.41999999999999 -7.4491736771603649E-005 - 126.47999999999999 -7.6005062962351250E-005 - 126.53999999999999 -7.7438848210471369E-005 - 126.59999999999999 -7.8790184699026116E-005 - 126.66000000000000 -8.0056259550656609E-005 - 126.72000000000000 -8.1234351693737489E-005 - 126.78000000000000 -8.2321835021741097E-005 - 126.84000000000000 -8.3316205546647899E-005 - 126.90000000000001 -8.4215089784995837E-005 - 126.95999999999998 -8.5016252108251254E-005 - 127.01999999999998 -8.5717615012289189E-005 - 127.07999999999998 -8.6317257593218546E-005 - 127.13999999999999 -8.6813433989588648E-005 - 127.19999999999999 -8.7204593303343995E-005 - 127.25999999999999 -8.7489371352759526E-005 - 127.31999999999999 -8.7666600497088683E-005 - 127.38000000000000 -8.7735330919712611E-005 - 127.44000000000000 -8.7694810728486505E-005 - 127.50000000000000 -8.7544508453255086E-005 - 127.56000000000000 -8.7284088201711464E-005 - 127.62000000000000 -8.6913441492454885E-005 - 127.68000000000001 -8.6432655580723526E-005 - 127.73999999999998 -8.5842041229533943E-005 - 127.79999999999998 -8.5142105537916912E-005 - 127.85999999999999 -8.4333562708349880E-005 - 127.91999999999999 -8.3417329309904694E-005 - 127.97999999999999 -8.2394523200419984E-005 - 128.03999999999999 -8.1266452785525495E-005 - 128.09999999999999 -8.0034644800767020E-005 - 128.16000000000000 -7.8700821875675117E-005 - 128.22000000000000 -7.7266900813190075E-005 - 128.28000000000000 -7.5735014907333755E-005 - 128.34000000000000 -7.4107489765923279E-005 - 128.40000000000001 -7.2386862327828875E-005 - 128.45999999999998 -7.0575872856382571E-005 - 128.51999999999998 -6.8677464338807252E-005 - 128.57999999999998 -6.6694780538054067E-005 - 128.63999999999999 -6.4631152341059186E-005 - 128.69999999999999 -6.2490107516252391E-005 - 128.75999999999999 -6.0275350297608664E-005 - 128.81999999999999 -5.7990756394396504E-005 - 128.88000000000000 -5.5640354058092051E-005 - 128.94000000000000 -5.3228338201727670E-005 - 129.00000000000000 -5.0759014477023780E-005 - 129.06000000000000 -4.8236822180588941E-005 - 129.12000000000000 -4.5666293540783016E-005 - 129.18000000000001 -4.3052063107714171E-005 - 129.23999999999998 -4.0398829386380309E-005 - 129.29999999999998 -3.7711356244783895E-005 - 129.35999999999999 -3.4994449521584680E-005 - 129.41999999999999 -3.2252948514991270E-005 - 129.47999999999999 -2.9491705113786243E-005 - 129.53999999999999 -2.6715583558169432E-005 - 129.59999999999999 -2.3929432866702119E-005 - 129.66000000000000 -2.1138089144228745E-005 - 129.72000000000000 -1.8346355583109022E-005 - 129.78000000000000 -1.5558989254963420E-005 - 129.84000000000000 -1.2780697486339868E-005 - 129.90000000000001 -1.0016122398713664E-005 - 129.95999999999998 -7.2698312551698935E-006 - 130.01999999999998 -4.5463004082249243E-006 - 130.07999999999998 -1.8499094997250751E-006 - 130.13999999999999 8.1506853899641192E-007 - 130.19999999999999 3.4444868577804145E-006 - 130.25999999999999 6.0343328202198534E-006 - 130.31999999999999 8.5807366868468967E-006 - 130.38000000000000 1.1079989679364395E-005 - 130.44000000000000 1.3528555387899693E-005 - 130.50000000000000 1.5923077903768156E-005 - 130.56000000000000 1.8260396931878348E-005 - 130.62000000000000 2.0537565067918133E-005 - 130.68000000000001 2.2751852513200393E-005 - 130.73999999999998 2.4900762372372533E-005 - 130.79999999999998 2.6982037642668771E-005 - 130.85999999999999 2.8993679690096071E-005 - 130.91999999999999 3.0933948321313190E-005 - 130.97999999999999 3.2801376661405286E-005 - 131.03999999999999 3.4594772755717151E-005 - 131.09999999999999 3.6313234400592661E-005 - 131.16000000000000 3.7956145993764353E-005 - 131.22000000000000 3.9523186039542828E-005 - 131.28000000000000 4.1014318056305330E-005 - 131.34000000000000 4.2429810758892900E-005 - 131.40000000000001 4.3770213422026792E-005 - 131.45999999999998 4.5036374513819635E-005 - 131.51999999999998 4.6229417903249326E-005 - 131.57999999999998 4.7350756804951998E-005 - 131.63999999999999 4.8402081267403629E-005 - 131.69999999999999 4.9385353223863281E-005 - 131.75999999999999 5.0302797446307576E-005 - 131.81999999999999 5.1156901053310750E-005 - 131.88000000000000 5.1950403278664615E-005 - 131.94000000000000 5.2686300089020477E-005 - 132.00000000000000 5.3367831912355280E-005 - 132.06000000000000 5.3998484763007541E-005 - 132.12000000000000 5.4581972248329112E-005 - 132.18000000000001 5.5122252827743962E-005 - 132.23999999999998 5.5623519601877454E-005 - 132.29999999999998 5.6090168944322968E-005 - 132.35999999999999 5.6526837787112973E-005 - 132.41999999999999 5.6938363062006521E-005 - 132.47999999999999 5.7329794872704759E-005 - 132.53999999999999 5.7706366331237906E-005 - 132.59999999999999 5.8073507777862886E-005 - 132.66000000000000 5.8436820765395624E-005 - 132.72000000000000 5.8802064657942226E-005 - 132.78000000000000 5.9175146979634506E-005 - 132.84000000000000 5.9562099727134309E-005 - 132.90000000000001 5.9969069771549725E-005 - 132.95999999999998 6.0402306968994490E-005 - 133.01999999999998 6.0868126951497946E-005 - 133.07999999999998 6.1372918141901043E-005 - 133.13999999999999 6.1923102063379012E-005 - 133.19999999999999 6.2525116256797268E-005 - 133.25999999999999 6.3185424770736392E-005 - 133.31999999999999 6.3910465505827925E-005 - 133.38000000000000 6.4706641064584880E-005 - 133.44000000000000 6.5580324145086619E-005 - 133.50000000000000 6.6537811580227898E-005 - 133.56000000000000 6.7585322705522593E-005 - 133.62000000000000 6.8728986284648960E-005 - 133.68000000000001 6.9974815620760158E-005 - 133.73999999999998 7.1328690471874397E-005 - 133.79999999999998 7.2796343589460606E-005 - 133.85999999999999 7.4383360687562848E-005 - 133.91999999999999 7.6095149526002497E-005 - 133.97999999999999 7.7936894878775771E-005 - 134.03999999999999 7.9913604532849580E-005 - 134.09999999999999 8.2030017750348648E-005 - 134.16000000000000 8.4290660766949018E-005 - 134.22000000000000 8.6699765525782079E-005 - 134.28000000000000 8.9261308352129337E-005 - 134.34000000000000 9.1978917017116694E-005 - 134.40000000000001 9.4855952396987269E-005 - 134.45999999999998 9.7895397730390029E-005 - 134.51999999999998 1.0109990272560494E-004 - 134.57999999999998 1.0447173985656564E-004 - 134.63999999999999 1.0801278836922359E-004 - 134.69999999999999 1.1172453522136791E-004 - 134.75999999999999 1.1560803631870447E-004 - 134.81999999999999 1.1966393039223713E-004 - 134.88000000000000 1.2389237647550381E-004 - 134.94000000000000 1.2829310525071046E-004 - 135.00000000000000 1.3286536936203734E-004 - 135.06000000000000 1.3760793952778300E-004 - 135.12000000000000 1.4251910389206782E-004 - 135.18000000000001 1.4759663604109601E-004 - 135.23999999999998 1.5283784810867141E-004 - 135.29999999999998 1.5823950122672691E-004 - 135.35999999999999 1.6379786081807077E-004 - 135.41999999999999 1.6950871983043386E-004 - 135.47999999999999 1.7536730904325348E-004 - 135.53999999999999 1.8136840852580309E-004 - 135.59999999999999 1.8750627294484169E-004 - 135.66000000000000 1.9377464753414584E-004 - 135.72000000000000 2.0016680362407426E-004 - 135.78000000000000 2.0667554136637593E-004 - 135.84000000000000 2.1329315263658472E-004 - 135.90000000000001 2.2001145879701711E-004 - 135.95999999999998 2.2682187494425343E-004 - 136.01999999999998 2.3371530323330737E-004 - 136.07999999999998 2.4068223589034760E-004 - 136.13999999999999 2.4771277514707807E-004 - 136.19999999999999 2.5479656949406346E-004 - 136.25999999999999 2.6192287815433900E-004 - 136.31999999999999 2.6908061510893866E-004 - 136.38000000000000 2.7625827716830890E-004 - 136.44000000000000 2.8344406620650978E-004 - 136.50000000000000 2.9062585554915830E-004 - 136.56000000000000 2.9779124588541814E-004 - 136.62000000000000 3.0492755759490545E-004 - 136.68000000000001 3.1202182858173203E-004 - 136.73999999999998 3.1906098897932478E-004 - 136.79999999999998 3.2603172619400170E-004 - 136.85999999999999 3.3292058693472511E-004 - 136.91999999999999 3.3971401714178270E-004 - 136.97999999999999 3.4639837027901078E-004 - 137.03999999999999 3.5296000928029727E-004 - 137.09999999999999 3.5938526911547214E-004 - 137.16000000000000 3.6566045411089376E-004 - 137.22000000000000 3.7177202596339108E-004 - 137.28000000000000 3.7770650038605936E-004 - 137.34000000000000 3.8345051718842129E-004 - 137.40000000000001 3.8899087873784023E-004 - 137.45999999999998 3.9431461766880742E-004 - 137.51999999999998 3.9940893557621618E-004 - 137.57999999999998 4.0426136018621923E-004 - 137.63999999999999 4.0885973181208643E-004 - 137.69999999999999 4.1319214407341189E-004 - 137.75999999999999 4.1724707804757766E-004 - 137.81999999999999 4.2101342511764283E-004 - 137.88000000000000 4.2448050215892564E-004 - 137.94000000000000 4.2763800175702859E-004 - 138.00000000000000 4.3047615666061694E-004 - 138.06000000000000 4.3298567540177931E-004 - 138.12000000000000 4.3515781523677341E-004 - 138.18000000000001 4.3698431923588514E-004 - 138.23999999999998 4.3845756261564586E-004 - 138.29999999999998 4.3957051901402975E-004 - 138.35999999999999 4.4031677406883394E-004 - 138.41999999999999 4.4069054554498011E-004 - 138.47999999999999 4.4068672222630283E-004 - 138.53999999999999 4.4030090486845851E-004 - 138.59999999999999 4.3952933874235879E-004 - 138.66000000000000 4.3836896922466902E-004 - 138.72000000000000 4.3681753638391503E-004 - 138.78000000000000 4.3487342265276376E-004 - 138.84000000000000 4.3253579886520256E-004 - 138.90000000000001 4.2980461543497663E-004 - 138.95999999999998 4.2668052083844304E-004 - 139.01999999999998 4.2316495284752057E-004 - 139.07999999999998 4.1926012644896352E-004 - 139.13999999999999 4.1496894174347778E-004 - 139.19999999999999 4.1029509288125431E-004 - 139.25999999999999 4.0524304058645223E-004 - 139.31999999999999 3.9981789097144399E-004 - 139.38000000000000 3.9402554894016665E-004 - 139.44000000000000 3.8787259705881004E-004 - 139.50000000000000 3.8136629924666868E-004 - 139.56000000000000 3.7451454131395845E-004 - 139.62000000000000 3.6732593366785044E-004 - 139.68000000000001 3.5980965370112231E-004 - 139.73999999999998 3.5197549697009770E-004 - 139.79999999999998 3.4383385777816131E-004 - 139.85999999999999 3.3539565076149357E-004 - 139.91999999999999 3.2667233516978317E-004 - 139.97999999999999 3.1767581103553220E-004 - 140.03999999999999 3.0841853573415173E-004 - 140.09999999999999 2.9891334754980549E-004 - 140.16000000000000 2.8917351847432829E-004 - 140.22000000000000 2.7921268749312995E-004 - 140.28000000000000 2.6904487340900958E-004 - 140.34000000000000 2.5868441217294038E-004 - 140.40000000000001 2.4814586262865911E-004 - 140.45999999999998 2.3744411918482766E-004 - 140.51999999999998 2.2659426240427327E-004 - 140.57999999999998 2.1561151947356653E-004 - 140.63999999999999 2.0451130299172727E-004 - 140.69999999999999 1.9330914071962911E-004 - 140.75999999999999 1.8202058975296697E-004 - 140.81999999999999 1.7066129257295801E-004 - 140.88000000000000 1.5924684880069736E-004 - 140.94000000000000 1.4779281961023786E-004 - 141.00000000000000 1.3631471084251201E-004 - 141.06000000000000 1.2482787528999114E-004 - 141.12000000000000 1.1334754631225245E-004 - 141.18000000000001 1.0188874016893990E-004 - 141.23999999999998 9.0466266420227768E-005 - 141.29999999999998 7.9094680266364071E-005 - 141.35999999999999 6.7788263913527529E-005 - 141.41999999999999 5.6560960615869240E-005 - 141.47999999999999 4.5426383059124949E-005 - 141.53999999999999 3.4397777963691693E-005 - 141.59999999999999 2.3487978304044851E-005 - 141.66000000000000 1.2709397147843423E-005 - 141.72000000000000 2.0740284279299599E-006 - 141.78000000000000 -8.4066299585065602E-006 - 141.84000000000000 -1.8721552577300488E-005 - 141.90000000000001 -2.8860216396275117E-005 - 141.95999999999998 -3.8812609759411644E-005 - 142.01999999999998 -4.8569269347045836E-005 - 142.07999999999998 -5.8121277131905560E-005 - 142.13999999999999 -6.7460252615522082E-005 - 142.19999999999999 -7.6578384826237565E-005 - 142.25999999999999 -8.5468447914064822E-005 - 142.31999999999999 -9.4123771142415419E-005 - 142.38000000000000 -1.0253828679729383E-004 - 142.44000000000000 -1.1070648425164388E-004 - 142.50000000000000 -1.1862346638328624E-004 - 142.56000000000000 -1.2628488684273976E-004 - 142.62000000000000 -1.3368700571493093E-004 - 142.68000000000001 -1.4082662575015578E-004 - 142.73999999999998 -1.4770114668998503E-004 - 142.79999999999998 -1.5430852091745818E-004 - 142.85999999999999 -1.6064725865643989E-004 - 142.91999999999999 -1.6671642073096891E-004 - 142.97999999999999 -1.7251559711590504E-004 - 143.03999999999999 -1.7804490915254703E-004 - 143.09999999999999 -1.8330496865674270E-004 - 143.16000000000000 -1.8829689367700410E-004 - 143.22000000000000 -1.9302226376633833E-004 - 143.28000000000000 -1.9748312781447282E-004 - 143.34000000000000 -2.0168194926838086E-004 - 143.40000000000001 -2.0562159756814654E-004 - 143.45999999999998 -2.0930537627951125E-004 - 143.51999999999998 -2.1273690964968760E-004 - 143.57999999999998 -2.1592016723584714E-004 - 143.63999999999999 -2.1885944154687107E-004 - 143.69999999999999 -2.2155931993309605E-004 - 143.75999999999999 -2.2402465754158950E-004 - 143.81999999999999 -2.2626056084352932E-004 - 143.88000000000000 -2.2827235774768452E-004 - 143.94000000000000 -2.3006558399755463E-004 - 144.00000000000000 -2.3164595813969226E-004 - 144.06000000000000 -2.3301937494629341E-004 - 144.12000000000000 -2.3419187778630888E-004 - 144.18000000000001 -2.3516963626992249E-004 - 144.23999999999998 -2.3595895725459949E-004 - 144.29999999999998 -2.3656620407113167E-004 - 144.35999999999999 -2.3699787873787909E-004 - 144.41999999999999 -2.3726051612050055E-004 - 144.47999999999999 -2.3736072237375602E-004 - 144.53999999999999 -2.3730512592037958E-004 - 144.59999999999999 -2.3710036041559138E-004 - 144.66000000000000 -2.3675309213220866E-004 - 144.72000000000000 -2.3626995982227962E-004 - 144.78000000000000 -2.3565755007831963E-004 - 144.84000000000000 -2.3492241317153687E-004 - 144.90000000000001 -2.3407103832447822E-004 - 144.95999999999998 -2.3310984721123347E-004 - 145.01999999999998 -2.3204513478594120E-004 - 145.07999999999998 -2.3088312686569108E-004 - 145.13999999999999 -2.2962989047884086E-004 - 145.19999999999999 -2.2829139821544818E-004 - 145.25999999999999 -2.2687345849076352E-004 - 145.31999999999999 -2.2538176264592111E-004 - 145.38000000000000 -2.2382181561301595E-004 - 145.44000000000000 -2.2219901604311881E-004 - 145.50000000000000 -2.2051854669284313E-004 - 145.56000000000000 -2.1878545797113404E-004 - 145.62000000000000 -2.1700464055123469E-004 - 145.68000000000001 -2.1518081568860724E-004 - 145.73999999999998 -2.1331852419639082E-004 - 145.79999999999998 -2.1142217494669841E-004 - 145.85999999999999 -2.0949596686850878E-004 - 145.91999999999999 -2.0754398682036270E-004 - 145.97999999999999 -2.0557011582703812E-004 - 146.03999999999999 -2.0357810959554119E-004 - 146.09999999999999 -2.0157152509755167E-004 - 146.16000000000000 -1.9955378698358588E-004 - 146.22000000000000 -1.9752814446657519E-004 - 146.28000000000000 -1.9549770463652414E-004 - 146.34000000000000 -1.9346540019178461E-004 - 146.40000000000001 -1.9143404605418069E-004 - 146.45999999999998 -1.8940625924013609E-004 - 146.51999999999998 -1.8738455371686128E-004 - 146.57999999999998 -1.8537125600024356E-004 - 146.63999999999999 -1.8336856248995478E-004 - 146.69999999999999 -1.8137851516163348E-004 - 146.75999999999999 -1.7940300418860548E-004 - 146.81999999999999 -1.7744379403483365E-004 - 146.88000000000000 -1.7550250205118967E-004 - 146.94000000000000 -1.7358063213077600E-004 - 147.00000000000000 -1.7167950876904075E-004 - 147.06000000000000 -1.6980038164722137E-004 - 147.12000000000000 -1.6794434604630723E-004 - 147.18000000000001 -1.6611239143298059E-004 - 147.23999999999998 -1.6430540755308162E-004 - 147.29999999999998 -1.6252418066038833E-004 - 147.35999999999999 -1.6076940852079210E-004 - 147.41999999999999 -1.5904167186951598E-004 - 147.47999999999999 -1.5734153556856988E-004 - 147.53999999999999 -1.5566944680464492E-004 - 147.59999999999999 -1.5402580898977528E-004 - 147.66000000000000 -1.5241099119136863E-004 - 147.72000000000000 -1.5082525908256619E-004 - 147.78000000000000 -1.4926886710154978E-004 - 147.84000000000000 -1.4774204327333923E-004 - 147.90000000000001 -1.4624495423702576E-004 - 147.95999999999998 -1.4477769912927456E-004 - 148.01999999999998 -1.4334037965983148E-004 - 148.07999999999998 -1.4193304050143005E-004 - 148.13999999999999 -1.4055569018984966E-004 - 148.19999999999999 -1.3920829379165137E-004 - 148.25999999999999 -1.3789077109386698E-004 - 148.31999999999999 -1.3660298931721907E-004 - 148.38000000000000 -1.3534480490348276E-004 - 148.44000000000000 -1.3411599743347709E-004 - 148.50000000000000 -1.3291634512727855E-004 - 148.56000000000000 -1.3174556416211802E-004 - 148.62000000000000 -1.3060336392187242E-004 - 148.68000000000001 -1.2948943363728205E-004 - 148.73999999999998 -1.2840342776991907E-004 - 148.79999999999998 -1.2734500760271347E-004 - 148.85999999999999 -1.2631380787433155E-004 - 148.91999999999999 -1.2530948078236541E-004 - 148.97999999999999 -1.2433166644079837E-004 - 149.03999999999999 -1.2338002831820336E-004 - 149.09999999999999 -1.2245421399448145E-004 - 149.16000000000000 -1.2155389369189346E-004 - 149.22000000000000 -1.2067874361268953E-004 - 149.28000000000000 -1.1982842969539077E-004 - 149.34000000000000 -1.1900265614638611E-004 - 149.40000000000001 -1.1820109575577770E-004 - 149.45999999999998 -1.1742343171078500E-004 - 149.51999999999998 -1.1666935179832043E-004 - 149.57999999999998 -1.1593852436383379E-004 - 149.63999999999999 -1.1523060936322833E-004 - 149.69999999999999 -1.1454525843606169E-004 - 149.75999999999999 -1.1388210825798010E-004 - 149.81999999999999 -1.1324077693042022E-004 - 149.88000000000000 -1.1262087765862559E-004 - 149.94000000000000 -1.1202199494922739E-004 - 150.00000000000000 -1.1144372041021965E-004 - 150.06000000000000 -1.1088562158841985E-004 - 150.12000000000000 -1.1034725333991216E-004 - 150.18000000000001 -1.0982817288655137E-004 - 150.23999999999998 -1.0932791980618279E-004 - 150.29999999999998 -1.0884603671080128E-004 - 150.35999999999999 -1.0838206351967505E-004 - 150.41999999999999 -1.0793553830026294E-004 - 150.47999999999999 -1.0750598669344557E-004 - 150.53999999999999 -1.0709293732147341E-004 - 150.59999999999999 -1.0669592892728032E-004 - 150.66000000000000 -1.0631449048598206E-004 - 150.72000000000000 -1.0594817026762015E-004 - 150.78000000000000 -1.0559650611381841E-004 - 150.84000000000000 -1.0525904378021524E-004 - 150.90000000000001 -1.0493533600616042E-004 - 150.95999999999998 -1.0462494784535835E-004 - 151.01999999999998 -1.0432745327567450E-004 - 151.07999999999998 -1.0404242530829537E-004 - 151.13999999999999 -1.0376946668643685E-004 - 151.19999999999999 -1.0350819170444186E-004 - 151.25999999999999 -1.0325821464146868E-004 - 151.31999999999999 -1.0301917901786787E-004 - 151.38000000000000 -1.0279074702735187E-004 - 151.44000000000000 -1.0257258423926921E-004 - 151.50000000000000 -1.0236438361398958E-004 - 151.56000000000000 -1.0216586324020097E-004 - 151.62000000000000 -1.0197675225865011E-004 - 151.68000000000001 -1.0179679563375739E-004 - 151.73999999999998 -1.0162577005793638E-004 - 151.79999999999998 -1.0146346519867768E-004 - 151.85999999999999 -1.0130970464535788E-004 - 151.91999999999999 -1.0116433490327109E-004 - 151.97999999999999 -1.0102723415794272E-004 - 152.03999999999999 -1.0089832012511412E-004 - 152.09999999999999 -1.0077754719190664E-004 - 152.16000000000000 -1.0066491563576806E-004 - 152.22000000000000 -1.0056045959010152E-004 - 152.28000000000000 -1.0046426274411822E-004 - 152.34000000000000 -1.0037647704874781E-004 - 152.40000000000001 -1.0029729865343612E-004 - 152.45999999999998 -1.0022698130777093E-004 - 152.51999999999998 -1.0016583348084351E-004 - 152.57999999999998 -1.0011422132230644E-004 - 152.63999999999999 -1.0007256207125422E-004 - 152.69999999999999 -1.0004133778091257E-004 - 152.75999999999999 -1.0002107065897136E-004 - 152.81999999999999 -1.0001233652903071E-004 - 152.88000000000000 -1.0001575701136932E-004 - 152.94000000000000 -1.0003199614541959E-004 - 153.00000000000000 -1.0006176297477838E-004 - 153.06000000000000 -1.0010580285705725E-004 - 153.12000000000000 -1.0016488913896219E-004 - 153.17999999999998 -1.0023984404127604E-004 - 153.23999999999998 -1.0033151604479289E-004 - 153.29999999999998 -1.0044079655056590E-004 - 153.35999999999999 -1.0056861201022214E-004 - 153.41999999999999 -1.0071590197278105E-004 - 153.47999999999999 -1.0088365691549467E-004 - 153.53999999999999 -1.0107289244941443E-004 - 153.59999999999999 -1.0128466416841107E-004 - 153.66000000000000 -1.0152003710919437E-004 - 153.72000000000000 -1.0178012290419671E-004 - 153.78000000000000 -1.0206604206681834E-004 - 153.84000000000000 -1.0237895100357735E-004 - 153.90000000000001 -1.0272000393396960E-004 - 153.95999999999998 -1.0309038548278311E-004 - 154.01999999999998 -1.0349127999787392E-004 - 154.07999999999998 -1.0392387625919250E-004 - 154.13999999999999 -1.0438936562801801E-004 - 154.19999999999999 -1.0488892525646243E-004 - 154.25999999999999 -1.0542374569300067E-004 - 154.31999999999999 -1.0599497615521760E-004 - 154.38000000000000 -1.0660376151989613E-004 - 154.44000000000000 -1.0725122124883014E-004 - 154.50000000000000 -1.0793844993144779E-004 - 154.56000000000000 -1.0866650612354491E-004 - 154.62000000000000 -1.0943641264739772E-004 - 154.67999999999998 -1.1024914380782473E-004 - 154.73999999999998 -1.1110563027526919E-004 - 154.79999999999998 -1.1200674612301328E-004 - 154.85999999999999 -1.1295330984218263E-004 - 154.91999999999999 -1.1394605944762618E-004 - 154.97999999999999 -1.1498566794806327E-004 - 155.03999999999999 -1.1607271207903668E-004 - 155.09999999999999 -1.1720767960492636E-004 - 155.16000000000000 -1.1839096424400575E-004 - 155.22000000000000 -1.1962285116831183E-004 - 155.28000000000000 -1.2090352191578722E-004 - 155.34000000000000 -1.2223303927725671E-004 - 155.40000000000001 -1.2361132530046393E-004 - 155.45999999999998 -1.2503819143212447E-004 - 155.51999999999998 -1.2651330382204974E-004 - 155.57999999999998 -1.2803622626524874E-004 - 155.63999999999999 -1.2960634114903531E-004 - 155.69999999999999 -1.3122291583657936E-004 - 155.75999999999999 -1.3288504500899337E-004 - 155.81999999999999 -1.3459168115036478E-004 - 155.88000000000000 -1.3634162858030353E-004 - 155.94000000000000 -1.3813350056328622E-004 - 156.00000000000000 -1.3996575427167835E-004 - 156.06000000000000 -1.4183667141251494E-004 - 156.12000000000000 -1.4374433925171774E-004 - 156.17999999999998 -1.4568665091753424E-004 - 156.23999999999998 -1.4766130993731721E-004 - 156.29999999999998 -1.4966578587448425E-004 - 156.35999999999999 -1.5169736135601351E-004 - 156.41999999999999 -1.5375310786959367E-004 - 156.47999999999999 -1.5582984900190723E-004 - 156.53999999999999 -1.5792422995344630E-004 - 156.59999999999999 -1.6003263533423406E-004 - 156.66000000000000 -1.6215126311002107E-004 - 156.72000000000000 -1.6427607459928236E-004 - 156.78000000000000 -1.6640283950495894E-004 - 156.84000000000000 -1.6852713533433981E-004 - 156.90000000000001 -1.7064431800050686E-004 - 156.95999999999998 -1.7274957450848525E-004 - 157.01999999999998 -1.7483792557183595E-004 - 157.07999999999998 -1.7690420462962282E-004 - 157.13999999999999 -1.7894307052781060E-004 - 157.19999999999999 -1.8094907844472486E-004 - 157.25999999999999 -1.8291660629310565E-004 - 157.31999999999999 -1.8483989984037185E-004 - 157.38000000000000 -1.8671307041485420E-004 - 157.44000000000000 -1.8853012916730821E-004 - 157.50000000000000 -1.9028495996334968E-004 - 157.56000000000000 -1.9197136822565516E-004 - 157.62000000000000 -1.9358301771640765E-004 - 157.67999999999998 -1.9511355067589048E-004 - 157.73999999999998 -1.9655651281728752E-004 - 157.79999999999998 -1.9790538791866503E-004 - 157.85999999999999 -1.9915362405436903E-004 - 157.91999999999999 -2.0029463878852683E-004 - 157.97999999999999 -2.0132187320418617E-004 - 158.03999999999999 -2.0222875382786259E-004 - 158.09999999999999 -2.0300875768339331E-004 - 158.16000000000000 -2.0365540237281618E-004 - 158.22000000000000 -2.0416228291786682E-004 - 158.28000000000000 -2.0452308906621688E-004 - 158.34000000000000 -2.0473163497872573E-004 - 158.40000000000001 -2.0478185478544784E-004 - 158.45999999999998 -2.0466786923325656E-004 - 158.51999999999998 -2.0438394922084628E-004 - 158.57999999999998 -2.0392458249191526E-004 - 158.63999999999999 -2.0328447535231754E-004 - 158.69999999999999 -2.0245854143979494E-004 - 158.75999999999999 -2.0144197867392956E-004 - 158.81999999999999 -2.0023024867736537E-004 - 158.88000000000000 -1.9881910231922442E-004 - 158.94000000000000 -1.9720461709721719E-004 - 159.00000000000000 -1.9538316398551189E-004 - 159.06000000000000 -1.9335147516246154E-004 - 159.12000000000000 -1.9110664222282903E-004 - 159.17999999999998 -1.8864612821311975E-004 - 159.23999999999998 -1.8596777075750626E-004 - 159.29999999999998 -1.8306983853818193E-004 - 159.35999999999999 -1.7995100021670087E-004 - 159.41999999999999 -1.7661034132132380E-004 - 159.47999999999999 -1.7304740209475914E-004 - 159.53999999999999 -1.6926216540575652E-004 - 159.59999999999999 -1.6525506011175683E-004 - 159.66000000000000 -1.6102698699257446E-004 - 159.72000000000000 -1.5657929415432178E-004 - 159.78000000000000 -1.5191382298145189E-004 - 159.84000000000000 -1.4703285174576066E-004 - 159.90000000000001 -1.4193916698356489E-004 - 159.95999999999998 -1.3663599903728855E-004 - 160.01999999999998 -1.3112706945610480E-004 - 160.07999999999998 -1.2541656006083369E-004 - 160.13999999999999 -1.1950911235033197E-004 - 160.19999999999999 -1.1340984558218302E-004 - 160.25999999999999 -1.0712433328518000E-004 - 160.31999999999999 -1.0065858866776344E-004 - 160.38000000000000 -9.4019077399350528E-005 - 160.44000000000000 -8.7212702291912034E-005 - 160.50000000000000 -8.0246788220515418E-005 - 160.56000000000000 -7.3129070388775250E-005 - 160.62000000000000 -6.5867690807371347E-005 - 160.67999999999998 -5.8471167584247907E-005 - 160.73999999999998 -5.0948390801734141E-005 - 160.79999999999998 -4.3308599375483219E-005 - 160.85999999999999 -3.5561360942040518E-005 - 160.91999999999999 -2.7716556978214367E-005 - 160.97999999999999 -1.9784358193016513E-005 - 161.03999999999999 -1.1775203029129658E-005 - 161.09999999999999 -3.6997745352186058E-006 - 161.16000000000000 4.4310224549364245E-006 - 161.22000000000000 1.2606089262811865E-005 - 161.28000000000000 2.0814153507600987E-005 - 161.34000000000000 2.9043798377661822E-005 - 161.40000000000001 3.7283477385197842E-005 - 161.45999999999998 4.5521564858923158E-005 - 161.51999999999998 5.3746357010535735E-005 - 161.57999999999998 6.1946112773237207E-005 - 161.63999999999999 7.0109090219221690E-005 - 161.69999999999999 7.8223551753564983E-005 - 161.75999999999999 8.6277827662277799E-005 - 161.81999999999999 9.4260314498525267E-005 - 161.88000000000000 1.0215951835998816E-004 - 161.94000000000000 1.0996410193892057E-004 - 162.00000000000000 1.1766287502427782E-004 - 162.06000000000000 1.2524485364808201E-004 - 162.12000000000000 1.3269928126856528E-004 - 162.17999999999998 1.4001566921496153E-004 - 162.23999999999998 1.4718380157302259E-004 - 162.29999999999998 1.5419377076820182E-004 - 162.35999999999999 1.6103596788335204E-004 - 162.41999999999999 1.6770117045730184E-004 - 162.47999999999999 1.7418049017645671E-004 - 162.53999999999999 1.8046544243836642E-004 - 162.59999999999999 1.8654795801014692E-004 - 162.66000000000000 1.9242036125164685E-004 - 162.72000000000000 1.9807542525449869E-004 - 162.78000000000000 2.0350635946538432E-004 - 162.84000000000000 2.0870685289524137E-004 - 162.90000000000001 2.1367105095881065E-004 - 162.95999999999998 2.1839362206090229E-004 - 163.01999999999998 2.2286969754825391E-004 - 163.07999999999998 2.2709497596132638E-004 - 163.13999999999999 2.3106562209477825E-004 - 163.19999999999999 2.3477840961699283E-004 - 163.25999999999999 2.3823058762290319E-004 - 163.31999999999999 2.4141997436325069E-004 - 163.38000000000000 2.4434495089266308E-004 - 163.44000000000000 2.4700442905007362E-004 - 163.50000000000000 2.4939791155184204E-004 - 163.56000000000000 2.5152540388215185E-004 - 163.62000000000000 2.5338746308732521E-004 - 163.67999999999998 2.5498514262523725E-004 - 163.73999999999998 2.5632000322640269E-004 - 163.79999999999998 2.5739415015018177E-004 - 163.85999999999999 2.5821008865023265E-004 - 163.91999999999999 2.5877080380473752E-004 - 163.97999999999999 2.5907974162777330E-004 - 164.03999999999999 2.5914070111289657E-004 - 164.09999999999999 2.5895791612843015E-004 - 164.16000000000000 2.5853597254411648E-004 - 164.22000000000000 2.5787978568455352E-004 - 164.28000000000000 2.5699463293822275E-004 - 164.34000000000000 2.5588610576322867E-004 - 164.40000000000001 2.5456006111394233E-004 - 164.45999999999998 2.5302265219117687E-004 - 164.51999999999998 2.5128029707778923E-004 - 164.57999999999998 2.4933966872118200E-004 - 164.63999999999999 2.4720760280368581E-004 - 164.69999999999999 2.4489121572287279E-004 - 164.75999999999999 2.4239778364975499E-004 - 164.81999999999999 2.3973473594595827E-004 - 164.88000000000000 2.3690964531410108E-004 - 164.94000000000000 2.3393019052178612E-004 - 165.00000000000000 2.3080416366345002E-004 - 165.06000000000000 2.2753942584152097E-004 - 165.12000000000000 2.2414386019171142E-004 - 165.17999999999998 2.2062536998078964E-004 - 165.23999999999998 2.1699184700419531E-004 - 165.29999999999998 2.1325114793822124E-004 - 165.35999999999999 2.0941107624096613E-004 - 165.41999999999999 2.0547932435465154E-004 - 165.47999999999999 2.0146350459941881E-004 - 165.53999999999999 1.9737107874262451E-004 - 165.59999999999999 1.9320941362834356E-004 - 165.66000000000000 1.8898568672903753E-004 - 165.72000000000000 1.8470693117024489E-004 - 165.78000000000000 1.8037998200328223E-004 - 165.84000000000000 1.7601153284144065E-004 - 165.90000000000001 1.7160803346722537E-004 - 165.95999999999998 1.6717579599211934E-004 - 166.01999999999998 1.6272090536940194E-004 - 166.07999999999998 1.5824924081598240E-004 - 166.13999999999999 1.5376651277508241E-004 - 166.19999999999999 1.4927823054657877E-004 - 166.25999999999999 1.4478968831980882E-004 - 166.31999999999999 1.4030598271016589E-004 - 166.38000000000000 1.3583201717180002E-004 - 166.44000000000000 1.3137250899164396E-004 - 166.50000000000000 1.2693195560976362E-004 - 166.56000000000000 1.2251468429824898E-004 - 166.62000000000000 1.1812480657289121E-004 - 166.67999999999998 1.1376624148803929E-004 - 166.73999999999998 1.0944272600206124E-004 - 166.79999999999998 1.0515779105034278E-004 - 166.85999999999999 1.0091477668610176E-004 - 166.91999999999999 9.6716831438134650E-005 - 166.97999999999999 9.2566909566161302E-005 - 167.03999999999999 8.8467771519936295E-005 - 167.09999999999999 8.4421984990986341E-005 - 167.16000000000000 8.0431946623312143E-005 - 167.22000000000000 7.6499860131401407E-005 - 167.28000000000000 7.2627752076825453E-005 - 167.34000000000000 6.8817490740676816E-005 - 167.40000000000001 6.5070768011943862E-005 - 167.45999999999998 6.1389128796320049E-005 - 167.51999999999998 5.7773978450245174E-005 - 167.57999999999998 5.4226591549923661E-005 - 167.63999999999999 5.0748118193900626E-005 - 167.69999999999999 4.7339615175419647E-005 - 167.75999999999999 4.4002024948206278E-005 - 167.81999999999999 4.0736213078398924E-005 - 167.88000000000000 3.7542969841793315E-005 - 167.94000000000000 3.4423016141328866E-005 - 168.00000000000000 3.1377019780427169E-005 - 168.06000000000000 2.8405591238422953E-005 - 168.12000000000000 2.5509287915079022E-005 - 168.17999999999998 2.2688627643733204E-005 - 168.23999999999998 1.9944073224951490E-005 - 168.29999999999998 1.7276045056971739E-005 - 168.35999999999999 1.4684907615702694E-005 - 168.41999999999999 1.2170972200050806E-005 - 168.47999999999999 9.7344967269463373E-006 - 168.53999999999999 7.3756752508931541E-006 - 168.59999999999999 5.0946435612570282E-006 - 168.66000000000000 2.8914730853488072E-006 - 168.72000000000000 7.6617290260274910E-007 - 168.78000000000000 -1.2813079338134720E-006 - 168.84000000000000 -3.2510785868273091E-006 - 168.90000000000001 -5.1433002851236385E-006 - 168.95999999999998 -6.9581814466139832E-006 - 169.01999999999998 -8.6959687725782296E-006 - 169.07999999999998 -1.0356941773989289E-005 - 169.13999999999999 -1.1941404395982309E-005 - 169.19999999999999 -1.3449677947859820E-005 - 169.25999999999999 -1.4882092440288720E-005 - 169.31999999999999 -1.6238981570604043E-005 - 169.38000000000000 -1.7520678797119677E-005 - 169.44000000000000 -1.8727513194840094E-005 - 169.50000000000000 -1.9859804803032242E-005 - 169.56000000000000 -2.0917863693863895E-005 - 169.62000000000000 -2.1901996311124211E-005 - 169.67999999999998 -2.2812499880750201E-005 - 169.73999999999998 -2.3649663870032247E-005 - 169.79999999999998 -2.4413774385782733E-005 - 169.85999999999999 -2.5105116110500376E-005 - 169.91999999999999 -2.5723972905208142E-005 - 169.97999999999999 -2.6270623763610995E-005 - 170.03999999999999 -2.6745349914075866E-005 - 170.09999999999999 -2.7148427419171309E-005 - 170.16000000000000 -2.7480128510176168E-005 - 170.22000000000000 -2.7740717907065103E-005 - 170.28000000000000 -2.7930446710134065E-005 - 170.34000000000000 -2.8049553725985950E-005 - 170.40000000000001 -2.8098248883134880E-005 - 170.45999999999998 -2.8076720969315611E-005 - 170.51999999999998 -2.7985128727756506E-005 - 170.57999999999998 -2.7823595130192578E-005 - 170.63999999999999 -2.7592201337884410E-005 - 170.69999999999999 -2.7290991160781272E-005 - 170.75999999999999 -2.6919958597339654E-005 - 170.81999999999999 -2.6479053566721464E-005 - 170.88000000000000 -2.5968177480933473E-005 - 170.94000000000000 -2.5387182360892997E-005 - 171.00000000000000 -2.4735871028204102E-005 - 171.06000000000000 -2.4013998888827178E-005 - 171.12000000000000 -2.3221266559309297E-005 - 171.17999999999998 -2.2357330934972720E-005 - 171.23999999999998 -2.1421798998164164E-005 - 171.29999999999998 -2.0414233105490797E-005 - 171.35999999999999 -1.9334151079915209E-005 - 171.41999999999999 -1.8181026517819337E-005 - 171.47999999999999 -1.6954294034536564E-005 - 171.53999999999999 -1.5653349592952813E-005 - 171.59999999999999 -1.4277556677123368E-005 - 171.66000000000000 -1.2826249201682331E-005 - 171.72000000000000 -1.1298737785108261E-005 - 171.78000000000000 -9.6943130789406113E-006 - 171.84000000000000 -8.0122550704663393E-006 - 171.90000000000001 -6.2518373066547840E-006 - 171.95999999999998 -4.4123326361525713E-006 - 172.01999999999998 -2.4930226386290726E-006 - 172.07999999999998 -4.9320143078511176E-007 - 172.13999999999999 1.5878179636275975E-006 - 172.19999999999999 3.7506984365002384E-006 - 172.25999999999999 5.9960742115072218E-006 - 172.31999999999999 8.3245476583026664E-006 - 172.38000000000000 1.0736684282500302E-005 - 172.44000000000000 1.3233013883701679E-005 - 172.50000000000000 1.5814025128878661E-005 - 172.56000000000000 1.8480166480239207E-005 - 172.62000000000000 2.1231841144080183E-005 - 172.67999999999998 2.4069411324530588E-005 - 172.73999999999998 2.6993189533489828E-005 - 172.79999999999998 3.0003437838251841E-005 - 172.85999999999999 3.3100370423436246E-005 - 172.91999999999999 3.6284131995804146E-005 - 172.97999999999999 3.9554813839242939E-005 - 173.03999999999999 4.2912435598046333E-005 - 173.09999999999999 4.6356935046433457E-005 - 173.16000000000000 4.9888170380555904E-005 - 173.22000000000000 5.3505907564562873E-005 - 173.28000000000000 5.7209810439941991E-005 - 173.34000000000000 6.0999431336283290E-005 - 173.40000000000001 6.4874210503660648E-005 - 173.45999999999998 6.8833460436309492E-005 - 173.51999999999998 7.2876364725129911E-005 - 173.57999999999998 7.7001973816766527E-005 - 173.63999999999999 8.1209192164318788E-005 - 173.69999999999999 8.5496786647997050E-005 - 173.75999999999999 8.9863364776748754E-005 - 173.81999999999999 9.4307382323570457E-005 - 173.88000000000000 9.8827149840506072E-005 - 173.94000000000000 1.0342081488199293E-004 - 174.00000000000000 1.0808636753212956E-004 - 174.06000000000000 1.1282163159932202E-004 - 174.12000000000000 1.1762428198219708E-004 - 174.17999999999998 1.2249181836473797E-004 - 174.23999999999998 1.2742158848867946E-004 - 174.29999999999998 1.3241076305395467E-004 - 174.35999999999999 1.3745635123076316E-004 - 174.41999999999999 1.4255519966121984E-004 - 174.47999999999999 1.4770397490316759E-004 - 174.53999999999999 1.5289920547774312E-004 - 174.59999999999999 1.5813720161147690E-004 - 174.66000000000000 1.6341414385139127E-004 - 174.72000000000000 1.6872601164458066E-004 - 174.78000000000000 1.7406862594968563E-004 - 174.84000000000000 1.7943763442656969E-004 - 174.90000000000001 1.8482851693499733E-004 - 174.95999999999998 1.9023656933172747E-004 - 175.01999999999998 1.9565691764343351E-004 - 175.07999999999998 2.0108449990857680E-004 - 175.13999999999999 2.0651409856808781E-004 - 175.19999999999999 2.1194031081144644E-004 - 175.25999999999999 2.1735756233049757E-004 - 175.31999999999999 2.2276009993141434E-004 - 175.38000000000000 2.2814201523020100E-004 - 175.44000000000000 2.3349722062617105E-004 - 175.50000000000000 2.3881949005238979E-004 - 175.56000000000000 2.4410240257869328E-004 - 175.62000000000000 2.4933946196581440E-004 - 175.67999999999998 2.5452399515127940E-004 - 175.73999999999998 2.5964919894488057E-004 - 175.79999999999998 2.6470820942385017E-004 - 175.85999999999999 2.6969405868736314E-004 - 175.91999999999999 2.7459967725337062E-004 - 175.97999999999999 2.7941797923002043E-004 - 176.03999999999999 2.8414180626261181E-004 - 176.09999999999999 2.8876399116877812E-004 - 176.16000000000000 2.9327737987474786E-004 - 176.22000000000000 2.9767477701911707E-004 - 176.28000000000000 3.0194906985518108E-004 - 176.34000000000000 3.0609315047651353E-004 - 176.40000000000001 3.1009996285608061E-004 - 176.45999999999998 3.1396253076073472E-004 - 176.51999999999998 3.1767390849431865E-004 - 176.57999999999998 3.2122728039126304E-004 - 176.63999999999999 3.2461591278784498E-004 - 176.69999999999999 3.2783317637214175E-004 - 176.75999999999999 3.3087253339988531E-004 - 176.81999999999999 3.3372762724723145E-004 - 176.88000000000000 3.3639218590784042E-004 - 176.94000000000000 3.3886016492833300E-004 - 177.00000000000000 3.4112563770448770E-004 - 177.06000000000000 3.4318294143168541E-004 - 177.12000000000000 3.4502658039191477E-004 - 177.17999999999998 3.4665131527299598E-004 - 177.23999999999998 3.4805215935997645E-004 - 177.29999999999998 3.4922441880036307E-004 - 177.35999999999999 3.5016368111053723E-004 - 177.41999999999999 3.5086586263370281E-004 - 177.47999999999999 3.5132724619135638E-004 - 177.53999999999999 3.5154442450117604E-004 - 177.59999999999999 3.5151438535536690E-004 - 177.66000000000000 3.5123447813098919E-004 - 177.72000000000000 3.5070246641282827E-004 - 177.78000000000000 3.4991649501448841E-004 - 177.84000000000000 3.4887509532471363E-004 - 177.90000000000001 3.4757726343310574E-004 - 177.95999999999998 3.4602237082543040E-004 - 178.01999999999998 3.4421016658895857E-004 - 178.07999999999998 3.4214085553741348E-004 - 178.13999999999999 3.3981509366094991E-004 - 178.19999999999999 3.3723386311800484E-004 - 178.25999999999999 3.3439860128750022E-004 - 178.31999999999999 3.3131114923357183E-004 - 178.38000000000000 3.2797374668878666E-004 - 178.44000000000000 3.2438903431258268E-004 - 178.50000000000000 3.2056005176125051E-004 - 178.56000000000000 3.1649026441989137E-004 - 178.62000000000000 3.1218353748166627E-004 - 178.67999999999998 3.0764407043981808E-004 - 178.73999999999998 3.0287646263889398E-004 - 178.79999999999998 2.9788574401531129E-004 - 178.85999999999999 2.9267723506369039E-004 - 178.91999999999999 2.8725666362104896E-004 - 178.97999999999999 2.8163010264303426E-004 - 179.03999999999999 2.7580396740757947E-004 - 179.09999999999999 2.6978496952165493E-004 - 179.16000000000000 2.6358017919595465E-004 - 179.22000000000000 2.5719693215674416E-004 - 179.28000000000000 2.5064280749235231E-004 - 179.34000000000000 2.4392572214077329E-004 - 179.40000000000001 2.3705381929694686E-004 - 179.45999999999998 2.3003542204849285E-004 - 179.51999999999998 2.2287910028381756E-004 - 179.57999999999998 2.1559360100248569E-004 - 179.63999999999999 2.0818786481048920E-004 - 179.69999999999999 2.0067094061142066E-004 - 179.75999999999999 1.9305203759715782E-004 - 179.81999999999999 1.8534042624147656E-004 - 179.88000000000000 1.7754546510868690E-004 - 179.94000000000000 1.6967656902100507E-004 - 180.00000000000000 1.6174320146981343E-004 - 180.06000000000000 1.5375483848461109E-004 - 180.12000000000000 1.4572090935313094E-004 - 180.17999999999998 1.3765086710453020E-004 - 180.23999999999998 1.2955406244158385E-004 - 180.29999999999998 1.2143983023647336E-004 - 180.35999999999999 1.1331738537475629E-004 - 180.41999999999999 1.0519584420354745E-004 - 180.47999999999999 9.7084212793576441E-005 - 180.53999999999999 8.8991369953182755E-005 - 180.59999999999999 8.0926040605078616E-005 - 180.66000000000000 7.2896795961736708E-005 - 180.72000000000000 6.4912041558017842E-005 - 180.78000000000000 5.6979991080734324E-005 - 180.84000000000000 4.9108670424441716E-005 - 180.90000000000001 4.1305894967336465E-005 - 180.95999999999998 3.3579265819726939E-005 - 181.01999999999998 2.5936145120618576E-005 - 181.07999999999998 1.8383670862259695E-005 - 181.13999999999999 1.0928706893098911E-005 - 181.19999999999999 3.5778593588295462E-006 - 181.25999999999999 -3.6625369138622741E-006 - 181.31999999999999 -1.0786436953517770E-005 - 181.38000000000000 -1.7788092451459204E-005 - 181.44000000000000 -2.4662047055525246E-005 - 181.50000000000000 -3.1403163182445364E-005 - 181.56000000000000 -3.8006608996884017E-005 - 181.62000000000000 -4.4467873364409635E-005 - 181.67999999999998 -5.0782755431643621E-005 - 181.73999999999998 -5.6947378028350209E-005 - 181.79999999999998 -6.2958181675350778E-005 - 181.85999999999999 -6.8811916012460656E-005 - 181.91999999999999 -7.4505631931791040E-005 - 181.97999999999999 -8.0036707127743178E-005 - 182.03999999999999 -8.5402801098417359E-005 - 182.09999999999999 -9.0601881956785729E-005 - 182.16000000000000 -9.5632202721798571E-005 - 182.22000000000000 -1.0049229120598897E-004 - 182.28000000000000 -1.0518097094900390E-004 - 182.34000000000000 -1.0969732048905063E-004 - 182.39999999999998 -1.1404070007528335E-004 - 182.45999999999998 -1.1821072382793877E-004 - 182.51999999999998 -1.2220723862829230E-004 - 182.57999999999998 -1.2603036221872277E-004 - 182.63999999999999 -1.2968045263270716E-004 - 182.69999999999999 -1.3315807951540519E-004 - 182.75999999999999 -1.3646404180687289E-004 - 182.81999999999999 -1.3959935530012549E-004 - 182.88000000000000 -1.4256523767093750E-004 - 182.94000000000000 -1.4536308689333790E-004 - 183.00000000000000 -1.4799450597367285E-004 - 183.06000000000000 -1.5046127594152566E-004 - 183.12000000000000 -1.5276533668172419E-004 - 183.17999999999998 -1.5490878247768032E-004 - 183.23999999999998 -1.5689385902915319E-004 - 183.29999999999998 -1.5872294753318413E-004 - 183.35999999999999 -1.6039856993418011E-004 - 183.41999999999999 -1.6192337017706957E-004 - 183.47999999999999 -1.6330009221700775E-004 - 183.53999999999999 -1.6453162109515842E-004 - 183.59999999999999 -1.6562091176588280E-004 - 183.66000000000000 -1.6657100085331028E-004 - 183.72000000000000 -1.6738504703957716E-004 - 183.78000000000000 -1.6806625718039449E-004 - 183.84000000000000 -1.6861792238387997E-004 - 183.89999999999998 -1.6904338756123038E-004 - 183.95999999999998 -1.6934603458843142E-004 - 184.01999999999998 -1.6952931806555116E-004 - 184.07999999999998 -1.6959668901368269E-004 - 184.13999999999999 -1.6955163335681726E-004 - 184.19999999999999 -1.6939766768613243E-004 - 184.25999999999999 -1.6913831510148057E-004 - 184.31999999999999 -1.6877710938756807E-004 - 184.38000000000000 -1.6831754273046086E-004 - 184.44000000000000 -1.6776314437536022E-004 - 184.50000000000000 -1.6711742058845568E-004 - 184.56000000000000 -1.6638386726594199E-004 - 184.62000000000000 -1.6556593873189970E-004 - 184.67999999999998 -1.6466711507500016E-004 - 184.73999999999998 -1.6369082692791265E-004 - 184.79999999999998 -1.6264052627597641E-004 - 184.85999999999999 -1.6151961479333521E-004 - 184.91999999999999 -1.6033151754038413E-004 - 184.97999999999999 -1.5907960656184016E-004 - 185.03999999999999 -1.5776724365696899E-004 - 185.09999999999999 -1.5639780833089738E-004 - 185.16000000000000 -1.5497461365905074E-004 - 185.22000000000000 -1.5350099722697197E-004 - 185.28000000000000 -1.5198023174179434E-004 - 185.34000000000000 -1.5041559922944248E-004 - 185.39999999999998 -1.4881031489897244E-004 - 185.45999999999998 -1.4716757747831074E-004 - 185.51999999999998 -1.4549053449758588E-004 - 185.57999999999998 -1.4378230178459049E-004 - 185.63999999999999 -1.4204593265581387E-004 - 185.69999999999999 -1.4028443468068426E-004 - 185.75999999999999 -1.3850075273022394E-004 - 185.81999999999999 -1.3669777638333444E-004 - 185.88000000000000 -1.3487831352880392E-004 - 185.94000000000000 -1.3304514743896011E-004 - 186.00000000000000 -1.3120094316198703E-004 - 186.06000000000000 -1.2934833905716575E-004 - 186.12000000000000 -1.2748988220659741E-004 - 186.17999999999998 -1.2562805697934382E-004 - 186.23999999999998 -1.2376528660975475E-004 - 186.29999999999998 -1.2190389677198859E-004 - 186.35999999999999 -1.2004617413855915E-004 - 186.41999999999999 -1.1819429279526811E-004 - 186.47999999999999 -1.1635037936775570E-004 - 186.53999999999999 -1.1451649501708471E-004 - 186.59999999999999 -1.1269460422620259E-004 - 186.66000000000000 -1.1088660793919228E-004 - 186.72000000000000 -1.0909432885802399E-004 - 186.78000000000000 -1.0731950082523581E-004 - 186.84000000000000 -1.0556378890572466E-004 - 186.89999999999998 -1.0382877647121134E-004 - 186.95999999999998 -1.0211596098738288E-004 - 187.01999999999998 -1.0042676322210832E-004 - 187.07999999999998 -9.8762513854169407E-005 - 187.13999999999999 -9.7124463908173785E-005 - 187.19999999999999 -9.5513783876655973E-005 - 187.25999999999999 -9.3931538659714292E-005 - 187.31999999999999 -9.2378722119738140E-005 - 187.38000000000000 -9.0856240844421174E-005 - 187.44000000000000 -8.9364915924497305E-005 - 187.50000000000000 -8.7905455876684051E-005 - 187.56000000000000 -8.6478501757421684E-005 - 187.62000000000000 -8.5084601746279135E-005 - 187.67999999999998 -8.3724210833533154E-005 - 187.73999999999998 -8.2397706394543178E-005 - 187.79999999999998 -8.1105371526102923E-005 - 187.85999999999999 -7.9847406572924737E-005 - 187.91999999999999 -7.8623940897699931E-005 - 187.97999999999999 -7.7435022517001765E-005 - 188.03999999999999 -7.6280622479249130E-005 - 188.09999999999999 -7.5160637602388834E-005 - 188.16000000000000 -7.4074919609343234E-005 - 188.22000000000000 -7.3023242905419624E-005 - 188.28000000000000 -7.2005328411033420E-005 - 188.34000000000000 -7.1020836892384665E-005 - 188.39999999999998 -7.0069398557836971E-005 - 188.45999999999998 -6.9150582967516193E-005 - 188.51999999999998 -6.8263921771689461E-005 - 188.57999999999998 -6.7408903066493576E-005 - 188.63999999999999 -6.6584985525039355E-005 - 188.69999999999999 -6.5791593128183024E-005 - 188.75999999999999 -6.5028106145755544E-005 - 188.81999999999999 -6.4293874770107577E-005 - 188.88000000000000 -6.3588223602124855E-005 - 188.94000000000000 -6.2910436931870898E-005 - 189.00000000000000 -6.2259785120569823E-005 - 189.06000000000000 -6.1635489038063695E-005 - 189.12000000000000 -6.1036766959474421E-005 - 189.17999999999998 -6.0462788916689434E-005 - 189.23999999999998 -5.9912720747751770E-005 - 189.29999999999998 -5.9385696405455589E-005 - 189.35999999999999 -5.8880832306290070E-005 - 189.41999999999999 -5.8397232513299430E-005 - 189.47999999999999 -5.7933987413590388E-005 - 189.53999999999999 -5.7490180063135457E-005 - 189.59999999999999 -5.7064890401937688E-005 - 189.66000000000000 -5.6657193267625167E-005 - 189.72000000000000 -5.6266161920918615E-005 - 189.78000000000000 -5.5890875222022618E-005 - 189.84000000000000 -5.5530420725395900E-005 - 189.89999999999998 -5.5183900026948921E-005 - 189.95999999999998 -5.4850423026714744E-005 - 190.01999999999998 -5.4529114326172023E-005 - 190.07999999999998 -5.4219121868816718E-005 - 190.13999999999999 -5.3919601343814882E-005 - 190.19999999999999 -5.3629739771019498E-005 - 190.25999999999999 -5.3348740960104604E-005 - 190.31999999999999 -5.3075832760166071E-005 - 190.38000000000000 -5.2810259686270904E-005 - 190.44000000000000 -5.2551294914884057E-005 - 190.50000000000000 -5.2298231087500446E-005 - 190.56000000000000 -5.2050385168548868E-005 - 190.62000000000000 -5.1807097213375398E-005 - 190.67999999999998 -5.1567728646560694E-005 - 190.73999999999998 -5.1331656212266648E-005 - 190.79999999999998 -5.1098290874525507E-005 - 190.85999999999999 -5.0867063355217481E-005 - 190.91999999999999 -5.0637417212767091E-005 - 190.97999999999999 -5.0408832325378442E-005 - 191.03999999999999 -5.0180806109067678E-005 - 191.09999999999999 -4.9952863897239287E-005 - 191.16000000000000 -4.9724555636266917E-005 - 191.22000000000000 -4.9495462190642739E-005 - 191.28000000000000 -4.9265195401209749E-005 - 191.34000000000000 -4.9033405738022102E-005 - 191.39999999999998 -4.8799772073255295E-005 - 191.45999999999998 -4.8564012340191692E-005 - 191.51999999999998 -4.8325894429936016E-005 - 191.57999999999998 -4.8085219757628061E-005 - 191.63999999999999 -4.7841841071993442E-005 - 191.69999999999999 -4.7595654840975981E-005 - 191.75999999999999 -4.7346610246904662E-005 - 191.81999999999999 -4.7094704051097946E-005 - 191.88000000000000 -4.6839981012574502E-005 - 191.94000000000000 -4.6582541867451864E-005 - 192.00000000000000 -4.6322530928910978E-005 - 192.06000000000000 -4.6060141198673009E-005 - 192.12000000000000 -4.5795606700485936E-005 - 192.17999999999998 -4.5529208235537704E-005 - 192.23999999999998 -4.5261261592104185E-005 - 192.29999999999998 -4.4992121015509414E-005 - 192.35999999999999 -4.4722175993264880E-005 - 192.41999999999999 -4.4451836146072972E-005 - 192.47999999999999 -4.4181541673717290E-005 - 192.53999999999999 -4.3911751371551749E-005 - 192.59999999999999 -4.3642947427613684E-005 - 192.66000000000000 -4.3375623825468500E-005 - 192.72000000000000 -4.3110292092308740E-005 - 192.78000000000000 -4.2847473732936849E-005 - 192.84000000000000 -4.2587705509453712E-005 - 192.89999999999998 -4.2331533988334113E-005 - 192.95999999999998 -4.2079515081368530E-005 - 193.01999999999998 -4.1832222822399016E-005 - 193.07999999999998 -4.1590235135930529E-005 - 193.13999999999999 -4.1354146557089860E-005 - 193.19999999999999 -4.1124563737922644E-005 - 193.25999999999999 -4.0902111390730220E-005 - 193.31999999999999 -4.0687419221429135E-005 - 193.38000000000000 -4.0481130325318897E-005 - 193.44000000000000 -4.0283907447943062E-005 - 193.50000000000000 -4.0096408157949513E-005 - 193.56000000000000 -3.9919306811467388E-005 - 193.62000000000000 -3.9753273386852853E-005 - 193.67999999999998 -3.9598982259180863E-005 - 193.73999999999998 -3.9457098903615344E-005 - 193.79999999999998 -3.9328283383684554E-005 - 193.85999999999999 -3.9213185906906696E-005 - 193.91999999999999 -3.9112433478415056E-005 - 193.97999999999999 -3.9026637660454741E-005 - 194.03999999999999 -3.8956385911303250E-005 - 194.09999999999999 -3.8902247660645695E-005 - 194.16000000000000 -3.8864763590503320E-005 - 194.22000000000000 -3.8844444452581912E-005 - 194.28000000000000 -3.8841783783749379E-005 - 194.34000000000000 -3.8857246869780976E-005 - 194.39999999999998 -3.8891280282102646E-005 - 194.45999999999998 -3.8944313417837966E-005 - 194.51999999999998 -3.9016766454074437E-005 - 194.57999999999998 -3.9109039378802676E-005 - 194.63999999999999 -3.9221534478135289E-005 - 194.69999999999999 -3.9354647516231005E-005 - 194.75999999999999 -3.9508778998767173E-005 - 194.81999999999999 -3.9684334476209223E-005 - 194.88000000000000 -3.9881726579294810E-005 - 194.94000000000000 -4.0101386417902838E-005 - 195.00000000000000 -4.0343752713235257E-005 - 195.06000000000000 -4.0609283680254218E-005 - 195.12000000000000 -4.0898451148865309E-005 - 195.17999999999998 -4.1211752411949757E-005 - 195.23999999999998 -4.1549693444155428E-005 - 195.29999999999998 -4.1912802690196884E-005 - 195.35999999999999 -4.2301638283678936E-005 - 195.41999999999999 -4.2716766025752713E-005 - 195.47999999999999 -4.3158780809735230E-005 - 195.53999999999999 -4.3628293378019208E-005 - 195.59999999999999 -4.4125947124817121E-005 - 195.66000000000000 -4.4652400188788038E-005 - 195.72000000000000 -4.5208342112799215E-005 - 195.78000000000000 -4.5794491315093802E-005 - 195.84000000000000 -4.6411588815119160E-005 - 195.89999999999998 -4.7060408819849528E-005 - 195.95999999999998 -4.7741761313100807E-005 - 196.01999999999998 -4.8456485931768651E-005 - 196.07999999999998 -4.9205465109306904E-005 - 196.13999999999999 -4.9989608582913514E-005 - 196.19999999999999 -5.0809868738688809E-005 - 196.25999999999999 -5.1667235018174171E-005 - 196.31999999999999 -5.2562728441955792E-005 - 196.38000000000000 -5.3497413745363036E-005 - 196.44000000000000 -5.4472385105370922E-005 - 196.50000000000000 -5.5488775282016070E-005 - 196.56000000000000 -5.6547750317641662E-005 - 196.62000000000000 -5.7650502578393865E-005 - 196.67999999999998 -5.8798256943361270E-005 - 196.73999999999998 -5.9992260902270678E-005 - 196.79999999999998 -6.1233775350724788E-005 - 196.85999999999999 -6.2524072550582796E-005 - 196.91999999999999 -6.3864458115373473E-005 - 196.97999999999999 -6.5256208478963327E-005 - 197.03999999999999 -6.6700622788889817E-005 - 197.09999999999999 -6.8198973268681333E-005 - 197.16000000000000 -6.9752528117788100E-005 - 197.22000000000000 -7.1362530597370374E-005 - 197.28000000000000 -7.3030178584335142E-005 - 197.34000000000000 -7.4756650576787606E-005 - 197.39999999999998 -7.6543065495785108E-005 - 197.45999999999998 -7.8390487277886213E-005 - 197.51999999999998 -8.0299925232527961E-005 - 197.57999999999998 -8.2272327507887280E-005 - 197.63999999999999 -8.4308559952207127E-005 - 197.69999999999999 -8.6409410122263020E-005 - 197.75999999999999 -8.8575588154116418E-005 - 197.81999999999999 -9.0807721895985480E-005 - 197.88000000000000 -9.3106332557178341E-005 - 197.94000000000000 -9.5471863994535971E-005 - 198.00000000000000 -9.7904642372286524E-005 - 198.06000000000000 -1.0040490758318732E-004 - 198.12000000000000 -1.0297277044091078E-004 - 198.17999999999998 -1.0560822823678544E-004 - 198.23999999999998 -1.0831117681018752E-004 - 198.29999999999998 -1.1108136684948917E-004 - 198.35999999999999 -1.1391842195612292E-004 - 198.41999999999999 -1.1682183523001785E-004 - 198.47999999999999 -1.1979091990809720E-004 - 198.53999999999999 -1.2282485598975607E-004 - 198.59999999999999 -1.2592265741107845E-004 - 198.66000000000000 -1.2908316181532660E-004 - 198.72000000000000 -1.3230503187970191E-004 - 198.78000000000000 -1.3558670956047303E-004 - 198.84000000000000 -1.3892648680812774E-004 - 198.89999999999998 -1.4232245127026734E-004 - 198.95999999999998 -1.4577245097996823E-004 - 199.01999999999998 -1.4927415197729064E-004 - 199.07999999999998 -1.5282501050376481E-004 - 199.13999999999999 -1.5642227462258170E-004 - 199.19999999999999 -1.6006294852098088E-004 - 199.25999999999999 -1.6374384967016359E-004 - 199.31999999999999 -1.6746156385961117E-004 - 199.38000000000000 -1.7121248469786985E-004 - 199.44000000000000 -1.7499275744607272E-004 - 199.50000000000000 -1.7879833637268928E-004 - 199.56000000000000 -1.8262496969871544E-004 - 199.62000000000000 -1.8646818916741233E-004 - 199.67999999999998 -1.9032332455750343E-004 - 199.73999999999998 -1.9418548862469128E-004 - 199.79999999999998 -1.9804959816646271E-004 - 199.85999999999999 -2.0191037049749555E-004 - 199.91999999999999 -2.0576236249697855E-004 - 199.97999999999999 -2.0959990326822859E-004 - 200.03999999999999 -2.1341718063778178E-004 - 200.09999999999999 -2.1720816782092029E-004 - 200.16000000000000 -2.2096670992629111E-004 - 200.22000000000000 -2.2468647014418989E-004 - 200.28000000000000 -2.2836099600908401E-004 - 200.34000000000000 -2.3198368623396161E-004 - 200.39999999999998 -2.3554777714563215E-004 - 200.45999999999998 -2.3904642957824139E-004 - 200.51999999999998 -2.4247265087817471E-004 - 200.57999999999998 -2.4581942027836358E-004 - 200.63999999999999 -2.4907958322361017E-004 - 200.69999999999999 -2.5224593285107623E-004 - 200.75999999999999 -2.5531121087161605E-004 - 200.81999999999999 -2.5826808545958453E-004 - 200.88000000000000 -2.6110924682970163E-004 - 200.94000000000000 -2.6382733087639693E-004 - 201.00000000000000 -2.6641501260020873E-004 - 201.06000000000000 -2.6886494188608839E-004 - 201.12000000000000 -2.7116986700007534E-004 - 201.17999999999998 -2.7332255485659410E-004 - 201.23999999999998 -2.7531589404882411E-004 - 201.29999999999998 -2.7714289776421179E-004 - 201.35999999999999 -2.7879666630452213E-004 - 201.41999999999999 -2.8027047301728891E-004 - 201.47999999999999 -2.8155776126223537E-004 - 201.53999999999999 -2.8265218591634101E-004 - 201.59999999999999 -2.8354760933563196E-004 - 201.66000000000000 -2.8423813377408721E-004 - 201.72000000000000 -2.8471816045163987E-004 - 201.78000000000000 -2.8498232226520305E-004 - 201.84000000000000 -2.8502555984822345E-004 - 201.89999999999998 -2.8484316456593435E-004 - 201.95999999999998 -2.8443069507454318E-004 - 202.01999999999998 -2.8378413120525405E-004 - 202.07999999999998 -2.8289974387522946E-004 - 202.13999999999999 -2.8177417962829655E-004 - 202.19999999999999 -2.8040450212891147E-004 - 202.25999999999999 -2.7878817580258666E-004 - 202.31999999999999 -2.7692301801877451E-004 - 202.38000000000000 -2.7480734830011440E-004 - 202.44000000000000 -2.7243988277864556E-004 - 202.50000000000000 -2.6981977750067547E-004 - 202.56000000000000 -2.6694666923618578E-004 - 202.62000000000000 -2.6382063790564574E-004 - 202.67999999999998 -2.6044226884433216E-004 - 202.73999999999998 -2.5681263960265516E-004 - 202.79999999999998 -2.5293329673040923E-004 - 202.85999999999999 -2.4880629612349087E-004 - 202.91999999999999 -2.4443422102283298E-004 - 202.97999999999999 -2.3982012038208900E-004 - 203.03999999999999 -2.3496755845251022E-004 - 203.09999999999999 -2.2988060704426700E-004 - 203.16000000000000 -2.2456380142906428E-004 - 203.22000000000000 -2.1902219553698808E-004 - 203.28000000000000 -2.1326129345219710E-004 - 203.34000000000000 -2.0728705707535717E-004 - 203.39999999999998 -2.0110592016833232E-004 - 203.45999999999998 -1.9472471239548290E-004 - 203.51999999999998 -1.8815069895055229E-004 - 203.57999999999998 -1.8139155296653818E-004 - 203.63999999999999 -1.7445530799996896E-004 - 203.69999999999999 -1.6735036677966499E-004 - 203.75999999999999 -1.6008548917010825E-004 - 203.81999999999999 -1.5266973842818115E-004 - 203.88000000000000 -1.4511249412817666E-004 - 203.94000000000000 -1.3742340795520265E-004 - 204.00000000000000 -1.2961239689669303E-004 - 204.06000000000000 -1.2168961595731045E-004 - 204.12000000000000 -1.1366540704897659E-004 - 204.17999999999998 -1.0555033454672018E-004 - 204.23999999999998 -9.7355108463783953E-005 - 204.29999999999998 -8.9090584861027653E-005 - 204.35999999999999 -8.0767732283911847E-005 - 204.41999999999999 -7.2397595242144804E-005 - 204.47999999999999 -6.3991271258128228E-005 - 204.53999999999999 -5.5559918490871760E-005 - 204.59999999999999 -4.7114678093949829E-005 - 204.66000000000000 -3.8666702063406277E-005 - 204.72000000000000 -3.0227073290528137E-005 - 204.78000000000000 -2.1806827039577472E-005 - 204.84000000000000 -1.3416895935538095E-005 - 204.89999999999998 -5.0680927348433093E-006 - 204.95999999999998 3.2289058038880426E-006 - 205.01999999999998 1.1463581546894396E-005 - 205.07999999999998 1.9625609511222610E-005 - 205.13999999999999 2.7704886073352611E-005 - 205.19999999999999 3.5691525254526520E-005 - 205.25999999999999 4.3575915661334558E-005 - 205.31999999999999 5.1348721952820501E-005 - 205.38000000000000 5.9000904269418037E-005 - 205.44000000000000 6.6523754228907058E-005 - 205.50000000000000 7.3908895607412422E-005 - 205.56000000000000 8.1148306757868445E-005 - 205.62000000000000 8.8234336486824904E-005 - 205.67999999999998 9.5159744297161042E-005 - 205.73999999999998 1.0191765910006731E-004 - 205.79999999999998 1.0850161521217020E-004 - 205.85999999999999 1.1490558605247951E-004 - 205.91999999999999 1.2112393639298012E-004 - 205.97999999999999 1.2715147180793871E-004 - 206.03999999999999 1.3298339652547626E-004 - 206.09999999999999 1.3861537307549286E-004 - 206.16000000000000 1.4404346088618491E-004 - 206.22000000000000 1.4926416023652183E-004 - 206.28000000000000 1.5427438751377338E-004 - 206.34000000000000 1.5907147721895237E-004 - 206.39999999999998 1.6365319441943109E-004 - 206.45999999999998 1.6801772354184158E-004 - 206.51999999999998 1.7216364729722694E-004 - 206.57999999999998 1.7609000291290739E-004 - 206.63999999999999 1.7979618366059725E-004 - 206.69999999999999 1.8328201339923663E-004 - 206.75999999999999 1.8654773612586839E-004 - 206.81999999999999 1.8959395990324633E-004 - 206.88000000000000 1.9242169675625314E-004 - 206.94000000000000 1.9503231432617534E-004 - 207.00000000000000 1.9742756303121713E-004 - 207.06000000000000 1.9960956786199661E-004 - 207.12000000000000 2.0158075295222580E-004 - 207.17999999999998 2.0334391038887283E-004 - 207.23999999999998 2.0490209476437104E-004 - 207.29999999999998 2.0625869045436102E-004 - 207.35999999999999 2.0741733987865538E-004 - 207.41999999999999 2.0838194905288833E-004 - 207.47999999999999 2.0915665997087071E-004 - 207.53999999999999 2.0974584516407138E-004 - 207.59999999999999 2.1015407862717836E-004 - 207.66000000000000 2.1038611490313737E-004 - 207.72000000000000 2.1044689516898796E-004 - 207.78000000000000 2.1034149314297327E-004 - 207.84000000000000 2.1007516259770266E-004 - 207.89999999999998 2.0965325245583591E-004 - 207.95999999999998 2.0908123394506296E-004 - 208.01999999999998 2.0836467372693264E-004 - 208.07999999999998 2.0750922463963354E-004 - 208.13999999999999 2.0652061092826194E-004 - 208.19999999999999 2.0540459340973445E-004 - 208.25999999999999 2.0416699156412864E-004 - 208.31999999999999 2.0281365291357332E-004 - 208.38000000000000 2.0135041305373094E-004 - 208.44000000000000 1.9978311179136136E-004 - 208.50000000000000 1.9811758752719561E-004 - 208.56000000000000 1.9635962698290213E-004 - 208.62000000000000 1.9451499824908348E-004 - 208.68000000000001 1.9258939422287454E-004 - 208.74000000000001 1.9058845563984104E-004 - 208.80000000000001 1.8851775114107975E-004 - 208.86000000000001 1.8638275511811614E-004 - 208.92000000000002 1.8418886827906730E-004 - 208.98000000000002 1.8194137794061692E-004 - 209.03999999999996 1.7964548621041287E-004 - 209.09999999999997 1.7730624207864642E-004 - 209.15999999999997 1.7492862445428172E-004 - 209.21999999999997 1.7251745088433328E-004 - 209.27999999999997 1.7007743782246413E-004 - 209.33999999999997 1.6761313431410557E-004 - 209.39999999999998 1.6512897733896313E-004 - 209.45999999999998 1.6262925730087848E-004 - 209.51999999999998 1.6011808448804265E-004 - 209.57999999999998 1.5759944446615281E-004 - 209.63999999999999 1.5507717245766668E-004 - 209.69999999999999 1.5255493194398694E-004 - 209.75999999999999 1.5003623167328799E-004 - 209.81999999999999 1.4752444363007604E-004 - 209.88000000000000 1.4502278012211894E-004 - 209.94000000000000 1.4253430805696141E-004 - 210.00000000000000 1.4006193556528239E-004 - 210.06000000000000 1.3760843866677565E-004 - 210.12000000000000 1.3517645098226692E-004 - 210.18000000000001 1.3276845829403324E-004 - 210.24000000000001 1.3038684285701031E-004 - 210.30000000000001 1.2803383813225495E-004 - 210.36000000000001 1.2571155268106146E-004 - 210.42000000000002 1.2342196997502811E-004 - 210.48000000000002 1.2116696580138468E-004 - 210.53999999999996 1.1894827467258059E-004 - 210.59999999999997 1.1676753290858636E-004 - 210.65999999999997 1.1462622968404476E-004 - 210.71999999999997 1.1252573082979550E-004 - 210.77999999999997 1.1046729717824655E-004 - 210.83999999999997 1.0845205477429417E-004 - 210.89999999999998 1.0648101477157475E-004 - 210.95999999999998 1.0455506150863406E-004 - 211.01999999999998 1.0267496295028754E-004 - 211.07999999999998 1.0084135187779131E-004 - 211.13999999999999 9.9054782623759531E-005 - 211.19999999999999 9.7315684848825544E-005 - 211.25999999999999 9.5624377960971119E-005 - 211.31999999999999 9.3981098383836404E-005 - 211.38000000000000 9.2385966998664672E-005 - 211.44000000000000 9.0839043362869490E-005 - 211.50000000000000 8.9340282868793705E-005 - 211.56000000000000 8.7889563173657419E-005 - 211.62000000000000 8.6486685311986547E-005 - 211.68000000000001 8.5131378853569307E-005 - 211.74000000000001 8.3823290317616247E-005 - 211.80000000000001 8.2561991790486378E-005 - 211.86000000000001 8.1346988805312264E-005 - 211.92000000000002 8.0177709391575201E-005 - 211.98000000000002 7.9053513214452046E-005 - 212.03999999999996 7.7973678372329671E-005 - 212.09999999999997 7.6937426858049530E-005 - 212.15999999999997 7.5943885927738940E-005 - 212.21999999999997 7.4992141347930921E-005 - 212.27999999999997 7.4081188318618171E-005 - 212.33999999999997 7.3209968006788967E-005 - 212.39999999999998 7.2377359492073386E-005 - 212.45999999999998 7.1582183372136601E-005 - 212.51999999999998 7.0823212072216243E-005 - 212.57999999999998 7.0099163783737692E-005 - 212.63999999999999 6.9408719361979324E-005 - 212.69999999999999 6.8750521505653444E-005 - 212.75999999999999 6.8123173623805259E-005 - 212.81999999999999 6.7525257738300945E-005 - 212.88000000000000 6.6955328087905976E-005 - 212.94000000000000 6.6411913539611307E-005 - 213.00000000000000 6.5893539092813088E-005 - 213.06000000000000 6.5398701055324808E-005 - 213.12000000000000 6.4925899535724898E-005 - 213.18000000000001 6.4473629682364767E-005 - 213.24000000000001 6.4040387919373954E-005 - 213.30000000000001 6.3624671910823081E-005 - 213.36000000000001 6.3224985424800776E-005 - 213.42000000000002 6.2839850971003677E-005 - 213.48000000000002 6.2467806278712398E-005 - 213.53999999999996 6.2107411806564862E-005 - 213.59999999999997 6.1757264040729207E-005 - 213.65999999999997 6.1415984858374372E-005 - 213.71999999999997 6.1082227670898988E-005 - 213.77999999999997 6.0754697807512905E-005 - 213.83999999999997 6.0432134681090465E-005 - 213.89999999999998 6.0113335783635874E-005 - 213.95999999999998 5.9797146065236631E-005 - 214.01999999999998 5.9482461303255351E-005 - 214.07999999999998 5.9168234675322232E-005 - 214.13999999999999 5.8853470126924038E-005 - 214.19999999999999 5.8537234813469313E-005 - 214.25999999999999 5.8218659431404742E-005 - 214.31999999999999 5.7896928640040377E-005 - 214.38000000000000 5.7571290243767458E-005 - 214.44000000000000 5.7241059479059268E-005 - 214.50000000000000 5.6905620422786169E-005 - 214.56000000000000 5.6564422865428325E-005 - 214.62000000000000 5.6216981835722918E-005 - 214.68000000000001 5.5862888417175785E-005 - 214.74000000000001 5.5501806552173610E-005 - 214.80000000000001 5.5133473094515632E-005 - 214.86000000000001 5.4757699770638324E-005 - 214.92000000000002 5.4374369120642456E-005 - 214.98000000000002 5.3983441861275550E-005 - 215.03999999999996 5.3584950914983332E-005 - 215.09999999999997 5.3178989837555587E-005 - 215.15999999999997 5.2765726595092104E-005 - 215.21999999999997 5.2345387650805933E-005 - 215.27999999999997 5.1918259788263337E-005 - 215.33999999999997 5.1484677066906417E-005 - 215.39999999999998 5.1045023228266834E-005 - 215.45999999999998 5.0599728141597176E-005 - 215.51999999999998 5.0149261596131893E-005 - 215.57999999999998 4.9694125788159791E-005 - 215.63999999999999 4.9234855602824792E-005 - 215.69999999999999 4.8772013625168851E-005 - 215.75999999999999 4.8306190625225140E-005 - 215.81999999999999 4.7838000530707251E-005 - 215.88000000000000 4.7368082436923157E-005 - 215.94000000000000 4.6897091723790471E-005 - 216.00000000000000 4.6425711520826920E-005 - 216.06000000000000 4.5954639705796717E-005 - 216.12000000000000 4.5484595496240420E-005 - 216.18000000000001 4.5016313528520682E-005 - 216.24000000000001 4.4550544397260743E-005 - 216.30000000000001 4.4088053094619869E-005 - 216.36000000000001 4.3629619171057943E-005 - 216.42000000000002 4.3176027382163615E-005 - 216.48000000000002 4.2728074214894756E-005 - 216.53999999999996 4.2286557516265150E-005 - 216.59999999999997 4.1852280447611916E-005 - 216.65999999999997 4.1426048307696567E-005 - 216.71999999999997 4.1008664577675536E-005 - 216.77999999999997 4.0600933537506146E-005 - 216.83999999999997 4.0203655816979005E-005 - 216.89999999999998 3.9817631219877733E-005 - 216.95999999999998 3.9443661153852256E-005 - 217.01999999999998 3.9082547544438639E-005 - 217.07999999999998 3.8735091330747436E-005 - 217.13999999999999 3.8402097198434681E-005 - 217.19999999999999 3.8084378019415544E-005 - 217.25999999999999 3.7782754171318893E-005 - 217.31999999999999 3.7498051035628400E-005 - 217.38000000000000 3.7231106349441104E-005 - 217.44000000000000 3.6982771210533510E-005 - 217.50000000000000 3.6753905241656312E-005 - 217.56000000000000 3.6545387214450821E-005 - 217.62000000000000 3.6358111905065407E-005 - 217.68000000000001 3.6192983658412145E-005 - 217.74000000000001 3.6050925618931405E-005 - 217.80000000000001 3.5932879122955776E-005 - 217.86000000000001 3.5839804937683511E-005 - 217.92000000000002 3.5772686387914512E-005 - 217.98000000000002 3.5732529901759207E-005 - 218.03999999999996 3.5720358615367874E-005 - 218.09999999999997 3.5737230321861532E-005 - 218.15999999999997 3.5784229083075760E-005 - 218.21999999999997 3.5862465328468388E-005 - 218.27999999999997 3.5973088589393514E-005 - 218.33999999999997 3.6117284328473045E-005 - 218.39999999999998 3.6296268424557056E-005 - 218.45999999999998 3.6511298866708843E-005 - 218.51999999999998 3.6763670283606708E-005 - 218.57999999999998 3.7054707333408026E-005 - 218.63999999999999 3.7385781853284916E-005 - 218.69999999999999 3.7758291170052709E-005 - 218.75999999999999 3.8173661652397797E-005 - 218.81999999999999 3.8633361472426252E-005 - 218.88000000000000 3.9138873727447052E-005 - 218.94000000000000 3.9691702254947075E-005 - 219.00000000000000 4.0293378638955247E-005 - 219.06000000000000 4.0945447803528804E-005 - 219.12000000000000 4.1649469617708098E-005 - 219.18000000000001 4.2407019595613993E-005 - 219.24000000000001 4.3219683027874224E-005 - 219.30000000000001 4.4089057249698218E-005 - 219.36000000000001 4.5016746143190667E-005 - 219.42000000000002 4.6004362830118545E-005 - 219.48000000000002 4.7053531020890649E-005 - 219.53999999999996 4.8165879532428412E-005 - 219.59999999999997 4.9343045441990440E-005 - 219.65999999999997 5.0586666666436011E-005 - 219.71999999999997 5.1898377829682793E-005 - 219.77999999999997 5.3279816899534497E-005 - 219.83999999999997 5.4732616781474883E-005 - 219.89999999999998 5.6258402652484267E-005 - 219.95999999999998 5.7858766604333074E-005 - 220.01999999999998 5.9535299893203463E-005 - 220.07999999999998 6.1289545588495649E-005 - 220.13999999999999 6.3123018200007445E-005 - 220.19999999999999 6.5037185308819404E-005 - 220.25999999999999 6.7033456340411280E-005 - 220.31999999999999 6.9113176044184480E-005 - 220.38000000000000 7.1277629158468503E-005 - 220.44000000000000 7.3528020522097983E-005 - 220.50000000000000 7.5865476747468373E-005 - 220.56000000000000 7.8291015768603057E-005 - 220.62000000000000 8.0805570720794852E-005 - 220.68000000000001 8.3409973722883805E-005 - 220.74000000000001 8.6104962259458463E-005 - 220.80000000000001 8.8891139761462074E-005 - 220.86000000000001 9.1768992905628803E-005 - 220.92000000000002 9.4738888751961457E-005 - 220.98000000000002 9.7801078954212642E-005 - 221.03999999999996 1.0095565691123165E-004 - 221.09999999999997 1.0420261834359127E-004 - 221.15999999999997 1.0754176737360209E-004 - 221.21999999999997 1.1097279835838058E-004 - 221.27999999999997 1.1449524041431733E-004 - 221.33999999999997 1.1810847377307230E-004 - 221.39999999999998 1.2181169286711906E-004 - 221.45999999999998 1.2560391635375303E-004 - 221.51999999999998 1.2948401654624546E-004 - 221.57999999999998 1.3345065088371158E-004 - 221.63999999999999 1.3750231065146366E-004 - 221.69999999999999 1.4163725010364652E-004 - 221.75999999999999 1.4585353983319251E-004 - 221.81999999999999 1.5014905149005753E-004 - 221.88000000000000 1.5452141418035613E-004 - 221.94000000000000 1.5896804144661589E-004 - 222.00000000000000 1.6348611851638205E-004 - 222.06000000000000 1.6807260779460402E-004 - 222.12000000000000 1.7272421328840318E-004 - 222.18000000000001 1.7743740394506914E-004 - 222.24000000000001 1.8220843009911290E-004 - 222.30000000000001 1.8703326097094957E-004 - 222.36000000000001 1.9190764783215468E-004 - 222.42000000000002 1.9682709912895977E-004 - 222.48000000000002 2.0178687195006447E-004 - 222.53999999999996 2.0678200493164187E-004 - 222.59999999999997 2.1180731302453311E-004 - 222.65999999999997 2.1685738583825220E-004 - 222.71999999999997 2.2192656499993784E-004 - 222.77999999999997 2.2700904192199297E-004 - 222.83999999999997 2.3209876967364971E-004 - 222.89999999999998 2.3718952004789300E-004 - 222.95999999999998 2.4227493320057650E-004 - 223.01999999999998 2.4734839400595416E-004 - 223.07999999999998 2.5240318911163315E-004 - 223.13999999999999 2.5743244661907358E-004 - 223.19999999999999 2.6242912775963447E-004 - 223.25999999999999 2.6738608005019552E-004 - 223.31999999999999 2.7229602773178464E-004 - 223.38000000000000 2.7715159121193564E-004 - 223.44000000000000 2.8194523071788276E-004 - 223.50000000000000 2.8666938370672300E-004 - 223.56000000000000 2.9131637977132199E-004 - 223.62000000000000 2.9587847211096590E-004 - 223.68000000000001 3.0034785566791273E-004 - 223.74000000000001 3.0471670624648221E-004 - 223.80000000000001 3.0897715725566074E-004 - 223.86000000000001 3.1312133827565442E-004 - 223.92000000000002 3.1714138171856025E-004 - 223.98000000000002 3.2102949328866677E-004 - 224.03999999999996 3.2477791072181735E-004 - 224.09999999999997 3.2837894376758588E-004 - 224.15999999999997 3.3182500710205094E-004 - 224.21999999999997 3.3510862202200067E-004 - 224.27999999999997 3.3822250128670637E-004 - 224.33999999999997 3.4115945238119235E-004 - 224.39999999999998 3.4391255087847016E-004 - 224.45999999999998 3.4647501565458435E-004 - 224.51999999999998 3.4884035040020711E-004 - 224.57999999999998 3.5100230486720765E-004 - 224.63999999999999 3.5295480262255208E-004 - 224.69999999999999 3.5469212992927642E-004 - 224.75999999999999 3.5620882275542065E-004 - 224.81999999999999 3.5749971582064668E-004 - 224.88000000000000 3.5856000951487642E-004 - 224.94000000000000 3.5938512242274841E-004 - 225.00000000000000 3.5997093236660367E-004 - 225.06000000000000 3.6031356092871625E-004 - 225.12000000000000 3.6040955850905401E-004 - 225.18000000000001 3.6025577340988748E-004 - 225.24000000000001 3.5984946116504526E-004 - 225.30000000000001 3.5918828575694499E-004 - 225.36000000000001 3.5827024930542027E-004 - 225.42000000000002 3.5709382050523966E-004 - 225.48000000000002 3.5565785785338121E-004 - 225.53999999999996 3.5396163895888973E-004 - 225.59999999999997 3.5200489326392772E-004 - 225.65999999999997 3.4978777051442701E-004 - 225.71999999999997 3.4731088593178028E-004 - 225.77999999999997 3.4457529220637695E-004 - 225.83999999999997 3.4158251616581278E-004 - 225.89999999999998 3.3833456466901172E-004 - 225.95999999999998 3.3483382088390868E-004 - 226.01999999999998 3.3108321981530097E-004 - 226.07999999999998 3.2708609524433995E-004 - 226.13999999999999 3.2284625391313450E-004 - 226.19999999999999 3.1836793500089329E-004 - 226.25999999999999 3.1365580569467285E-004 - 226.31999999999999 3.0871493480704614E-004 - 226.38000000000000 3.0355083000133392E-004 - 226.44000000000000 2.9816935792650103E-004 - 226.50000000000000 2.9257676923763015E-004 - 226.56000000000000 2.8677971801226209E-004 - 226.62000000000000 2.8078514030372879E-004 - 226.68000000000001 2.7460032886681774E-004 - 226.74000000000001 2.6823291705249788E-004 - 226.80000000000001 2.6169077798488905E-004 - 226.86000000000001 2.5498210602464843E-004 - 226.92000000000002 2.4811534616875710E-004 - 226.98000000000002 2.4109915106128299E-004 - 227.03999999999996 2.3394242581781984E-004 - 227.09999999999997 2.2665426169795222E-004 - 227.15999999999997 2.1924395504234221E-004 - 227.21999999999997 2.1172096380169247E-004 - 227.27999999999997 2.0409485827928850E-004 - 227.33999999999997 1.9637537818092656E-004 - 227.39999999999998 1.8857237431081484E-004 - 227.45999999999998 1.8069576300061026E-004 - 227.51999999999998 1.7275556278905808E-004 - 227.57999999999998 1.6476180653649729E-004 - 227.63999999999999 1.5672456647263812E-004 - 227.69999999999999 1.4865392983735951E-004 - 227.75999999999999 1.4055996400779479E-004 - 227.81999999999999 1.3245269460398181E-004 - 227.88000000000000 1.2434208782280651E-004 - 227.94000000000000 1.1623801494287483E-004 - 228.00000000000000 1.0815026546228554E-004 - 228.06000000000000 1.0008846569879987E-004 - 228.12000000000000 9.2062090582499333E-005 - 228.18000000000001 8.4080448916987481E-005 - 228.24000000000001 7.6152638913415648E-005 - 228.30000000000001 6.8287559741683442E-005 - 228.36000000000001 6.0493836618163471E-005 - 228.42000000000002 5.2779867767748545E-005 - 228.48000000000002 4.5153769816244651E-005 - 228.53999999999996 3.7623373060925517E-005 - 228.59999999999997 3.0196204860520139E-005 - 228.65999999999997 2.2879493828818789E-005 - 228.71999999999997 1.5680152106961472E-005 - 228.77999999999997 8.6047669307462007E-006 - 228.83999999999997 1.6595972242667284E-006 - 228.89999999999998 -5.1494319853296039E-006 - 228.95999999999998 -1.1816731538021835E-005 - 229.01999999999998 -1.8337046829560741E-005 - 229.07999999999998 -2.4705464779178809E-005 - 229.13999999999999 -3.0917420883281185E-005 - 229.19999999999999 -3.6968681061818015E-005 - 229.25999999999999 -4.2855376212097888E-005 - 229.31999999999999 -4.8573971539875253E-005 - 229.38000000000000 -5.4121278910378726E-005 - 229.44000000000000 -5.9494473149356497E-005 - 229.50000000000000 -6.4691070577988991E-005 - 229.56000000000000 -6.9708941403434527E-005 - 229.62000000000000 -7.4546305881491076E-005 - 229.68000000000001 -7.9201724476419532E-005 - 229.74000000000001 -8.3674107069460203E-005 - 229.80000000000001 -8.7962711696719742E-005 - 229.86000000000001 -9.2067109614034305E-005 - 229.92000000000002 -9.5987213119907492E-005 - 229.97999999999996 -9.9723238485347146E-005 - 230.03999999999996 -1.0327571475302645E-004 - 230.09999999999997 -1.0664547068988395E-004 - 230.15999999999997 -1.0983360638473186E-004 - 230.21999999999997 -1.1284148262404831E-004 - 230.27999999999997 -1.1567073812234394E-004 - 230.33999999999997 -1.1832323026243467E-004 - 230.39999999999998 -1.2080104689158013E-004 - 230.45999999999998 -1.2310648798815644E-004 - 230.51999999999998 -1.2524204105796502E-004 - 230.57999999999998 -1.2721038737032608E-004 - 230.63999999999999 -1.2901437792777734E-004 - 230.69999999999999 -1.3065702735774514E-004 - 230.75999999999999 -1.3214148138104284E-004 - 230.81999999999999 -1.3347102252828362E-004 - 230.88000000000000 -1.3464908293624449E-004 - 230.94000000000000 -1.3567917520304959E-004 - 231.00000000000000 -1.3656495008716513E-004 - 231.06000000000000 -1.3731013490615821E-004 - 231.12000000000000 -1.3791856173906152E-004 - 231.18000000000001 -1.3839411446457621E-004 - 231.24000000000001 -1.3874075714021114E-004 - 231.30000000000001 -1.3896254289449972E-004 - 231.36000000000001 -1.3906351903901409E-004 - 231.42000000000002 -1.3904782851018629E-004 - 231.47999999999996 -1.3891962538450017E-004 - 231.53999999999996 -1.3868307156497453E-004 - 231.59999999999997 -1.3834237597498545E-004 - 231.65999999999997 -1.3790173971528255E-004 - 231.71999999999997 -1.3736537516831251E-004 - 231.77999999999997 -1.3673747956098348E-004 - 231.83999999999997 -1.3602223065768134E-004 - 231.89999999999998 -1.3522378075294007E-004 - 231.95999999999998 -1.3434625573017860E-004 - 232.01999999999998 -1.3339375056949953E-004 - 232.07999999999998 -1.3237029469744785E-004 - 232.13999999999999 -1.3127989310499945E-004 - 232.19999999999999 -1.3012646508165531E-004 - 232.25999999999999 -1.2891388715622666E-004 - 232.31999999999999 -1.2764596211977544E-004 - 232.38000000000000 -1.2632641978079510E-004 - 232.44000000000000 -1.2495892473288607E-004 - 232.50000000000000 -1.2354704333376599E-004 - 232.56000000000000 -1.2209428736079973E-004 - 232.62000000000000 -1.2060406071223254E-004 - 232.68000000000001 -1.1907970861064856E-004 - 232.74000000000001 -1.1752446986675418E-004 - 232.80000000000001 -1.1594150757266483E-004 - 232.86000000000001 -1.1433390162752389E-004 - 232.92000000000002 -1.1270465626215719E-004 - 232.97999999999996 -1.1105667600126246E-004 - 233.03999999999996 -1.0939279769922860E-004 - 233.09999999999997 -1.0771575885663124E-004 - 233.15999999999997 -1.0602822647310531E-004 - 233.21999999999997 -1.0433277631209438E-004 - 233.27999999999997 -1.0263188854487223E-004 - 233.33999999999997 -1.0092796814515835E-004 - 233.39999999999998 -9.9223329709003787E-005 - 233.45999999999998 -9.7520187830507036E-005 - 233.51999999999998 -9.5820667202396712E-005 - 233.57999999999998 -9.4126800717980432E-005 - 233.63999999999999 -9.2440511589327707E-005 - 233.69999999999999 -9.0763642403867594E-005 - 233.75999999999999 -8.9097930833881427E-005 - 233.81999999999999 -8.7445006889429891E-005 - 233.88000000000000 -8.5806416677223349E-005 - 233.94000000000000 -8.4183591982514810E-005 - 234.00000000000000 -8.2577886340543243E-005 - 234.06000000000000 -8.0990558483985439E-005 - 234.12000000000000 -7.9422764989947364E-005 - 234.18000000000001 -7.7875597742232307E-005 - 234.24000000000001 -7.6350053533519603E-005 - 234.30000000000001 -7.4847060834230946E-005 - 234.36000000000001 -7.3367460885874160E-005 - 234.42000000000002 -7.1912036902528680E-005 - 234.47999999999996 -7.0481496700330122E-005 - 234.53999999999996 -6.9076475426776575E-005 - 234.59999999999997 -6.7697566081065729E-005 - 234.65999999999997 -6.6345279238748785E-005 - 234.71999999999997 -6.5020075757501628E-005 - 234.77999999999997 -6.3722352888315084E-005 - 234.83999999999997 -6.2452456305306058E-005 - 234.89999999999998 -6.1210671110899348E-005 - 234.95999999999998 -5.9997229874926984E-005 - 235.01999999999998 -5.8812316643456503E-005 - 235.07999999999998 -5.7656059276507942E-005 - 235.13999999999999 -5.6528544041249176E-005 - 235.19999999999999 -5.5429807356349134E-005 - 235.25999999999999 -5.4359851716607811E-005 - 235.31999999999999 -5.3318643229463257E-005 - 235.38000000000000 -5.2306112961552564E-005 - 235.44000000000000 -5.1322148685415252E-005 - 235.50000000000000 -5.0366628703275603E-005 - 235.56000000000000 -4.9439394852707387E-005 - 235.62000000000000 -4.8540269153500112E-005 - 235.68000000000001 -4.7669048161815512E-005 - 235.74000000000001 -4.6825518118161818E-005 - 235.80000000000001 -4.6009438202710771E-005 - 235.86000000000001 -4.5220549899574231E-005 - 235.92000000000002 -4.4458570423830878E-005 - 235.97999999999996 -4.3723206951834238E-005 - 236.03999999999996 -4.3014139153845800E-005 - 236.09999999999997 -4.2331027481664966E-005 - 236.15999999999997 -4.1673512959969672E-005 - 236.21999999999997 -4.1041217422167322E-005 - 236.27999999999997 -4.0433737719649865E-005 - 236.33999999999997 -3.9850657239689877E-005 - 236.39999999999998 -3.9291536933393696E-005 - 236.45999999999998 -3.8755916260435834E-005 - 236.51999999999998 -3.8243331227597243E-005 - 236.57999999999998 -3.7753294325533383E-005 - 236.63999999999999 -3.7285311170422877E-005 - 236.69999999999999 -3.6838879619817707E-005 - 236.75999999999999 -3.6413483117788611E-005 - 236.81999999999999 -3.6008607184522399E-005 - 236.88000000000000 -3.5623722715395654E-005 - 236.94000000000000 -3.5258299234357013E-005 - 237.00000000000000 -3.4911801104574169E-005 - 237.06000000000000 -3.4583685422025660E-005 - 237.12000000000000 -3.4273407843539420E-005 - 237.18000000000001 -3.3980408450358459E-005 - 237.24000000000001 -3.3704124992605704E-005 - 237.30000000000001 -3.3443984913207881E-005 - 237.36000000000001 -3.3199406124620694E-005 - 237.42000000000002 -3.2969792239409772E-005 - 237.47999999999996 -3.2754537378019170E-005 - 237.53999999999996 -3.2553028370702649E-005 - 237.59999999999997 -3.2364635871305816E-005 - 237.65999999999997 -3.2188721174848373E-005 - 237.71999999999997 -3.2024639361257124E-005 - 237.77999999999997 -3.1871738024365728E-005 - 237.83999999999997 -3.1729358408115876E-005 - 237.89999999999998 -3.1596839732667855E-005 - 237.95999999999998 -3.1473520509941357E-005 - 238.01999999999998 -3.1358740462218877E-005 - 238.07999999999998 -3.1251845231614615E-005 - 238.13999999999999 -3.1152182582065199E-005 - 238.19999999999999 -3.1059114418549303E-005 - 238.25999999999999 -3.0972009339066942E-005 - 238.31999999999999 -3.0890253630813994E-005 - 238.38000000000000 -3.0813245313107628E-005 - 238.44000000000000 -3.0740398365023437E-005 - 238.50000000000000 -3.0671149706182487E-005 - 238.56000000000000 -3.0604949331804337E-005 - 238.62000000000000 -3.0541271557021740E-005 - 238.68000000000001 -3.0479610635022348E-005 - 238.74000000000001 -3.0419481380378458E-005 - 238.80000000000001 -3.0360422683540493E-005 - 238.86000000000001 -3.0301997230913058E-005 - 238.92000000000002 -3.0243784722046961E-005 - 238.97999999999996 -3.0185390602276699E-005 - 239.03999999999996 -3.0126437747828148E-005 - 239.09999999999997 -3.0066576547374519E-005 - 239.15999999999997 -3.0005469580566077E-005 - 239.21999999999997 -2.9942802498804431E-005 - 239.27999999999997 -2.9878278790965778E-005 - 239.33999999999997 -2.9811620037733755E-005 - 239.39999999999998 -2.9742567456671253E-005 - 239.45999999999998 -2.9670873304888856E-005 - 239.51999999999998 -2.9596316858318330E-005 - 239.57999999999998 -2.9518689557361471E-005 - 239.63999999999999 -2.9437802188768231E-005 - 239.69999999999999 -2.9353485800354366E-005 - 239.75999999999999 -2.9265591564780056E-005 - 239.81999999999999 -2.9173992045548326E-005 - 239.88000000000000 -2.9078581883068810E-005 - 239.94000000000000 -2.8979276814401135E-005 - 240.00000000000000 -2.8876015793195269E-005 - 240.06000000000000 -2.8768761352262973E-005 - 240.12000000000000 -2.8657495841108383E-005 - 240.18000000000001 -2.8542223643885714E-005 - 240.24000000000001 -2.8422967837287198E-005 - 240.30000000000001 -2.8299764894597752E-005 - 240.36000000000001 -2.8172668690730521E-005 - 240.42000000000002 -2.8041740759846818E-005 - 240.47999999999996 -2.7907052326506344E-005 - 240.53999999999996 -2.7768675964130077E-005 - 240.59999999999997 -2.7626686696636351E-005 - 240.65999999999997 -2.7481158216244556E-005 - 240.71999999999997 -2.7332158187823888E-005 - 240.77999999999997 -2.7179750698985195E-005 - 240.83999999999997 -2.7023993290743471E-005 - 240.89999999999998 -2.6864931972529080E-005 - 240.95999999999998 -2.6702611030759575E-005 - 241.01999999999998 -2.6537065423852961E-005 - 241.07999999999998 -2.6368325134231776E-005 - 241.13999999999999 -2.6196415748602643E-005 - 241.19999999999999 -2.6021363583025039E-005 - 241.25999999999999 -2.5843193045591563E-005 - 241.31999999999999 -2.5661930085708907E-005 - 241.38000000000000 -2.5477602423782520E-005 - 241.44000000000000 -2.5290239655415332E-005 - 241.50000000000000 -2.5099876821994634E-005 - 241.56000000000000 -2.4906549239962750E-005 - 241.62000000000000 -2.4710292638035297E-005 - 241.68000000000001 -2.4511144297524450E-005 - 241.74000000000001 -2.4309136995845041E-005 - 241.80000000000001 -2.4104298942136743E-005 - 241.86000000000001 -2.3896650635162080E-005 - 241.92000000000002 -2.3686205798125039E-005 - 241.97999999999996 -2.3472962320935827E-005 - 242.03999999999996 -2.3256905461021813E-005 - 242.09999999999997 -2.3038006942141725E-005 - 242.15999999999997 -2.2816220068837939E-005 - 242.21999999999997 -2.2591487279484328E-005 - 242.27999999999997 -2.2363726866159475E-005 - 242.33999999999997 -2.2132848574407181E-005 - 242.39999999999998 -2.1898742088713903E-005 - 242.45999999999998 -2.1661284623300855E-005 - 242.51999999999998 -2.1420343187582212E-005 - 242.57999999999998 -2.1175767192353177E-005 - 242.63999999999999 -2.0927398193337486E-005 - 242.69999999999999 -2.0675063448846154E-005 - 242.75999999999999 -2.0418580178177795E-005 - 242.81999999999999 -2.0157746914384492E-005 - 242.88000000000000 -1.9892352846946111E-005 - 242.94000000000000 -1.9622166785782033E-005 - 243.00000000000000 -1.9346939448363005E-005 - 243.06000000000000 -1.9066395149119819E-005 - 243.12000000000000 -1.8780235055911370E-005 - 243.18000000000001 -1.8488132843112466E-005 - 243.24000000000001 -1.8189729333412855E-005 - 243.30000000000001 -1.7884629446962377E-005 - 243.36000000000001 -1.7572401646981720E-005 - 243.42000000000002 -1.7252574059349769E-005 - 243.47999999999996 -1.6924632193890437E-005 - 243.53999999999996 -1.6588021211898755E-005 - 243.59999999999997 -1.6242140480875676E-005 - 243.65999999999997 -1.5886346455456646E-005 - 243.71999999999997 -1.5519947234003215E-005 - 243.77999999999997 -1.5142209172348925E-005 - 243.83999999999997 -1.4752352805579614E-005 - 243.89999999999998 -1.4349553023702366E-005 - 243.95999999999998 -1.3932938248879695E-005 - 244.01999999999998 -1.3501592479286361E-005 - 244.07999999999998 -1.3054553879527147E-005 - 244.13999999999999 -1.2590812504641629E-005 - 244.19999999999999 -1.2109309270751550E-005 - 244.25999999999999 -1.1608936339239513E-005 - 244.31999999999999 -1.1088535201581891E-005 - 244.38000000000000 -1.0546895663458755E-005 - 244.44000000000000 -9.9827536629126130E-006 - 244.50000000000000 -9.3947884625186587E-006 - 244.56000000000000 -8.7816235626833689E-006 - 244.62000000000000 -8.1418257063314021E-006 - 244.68000000000001 -7.4739016671043264E-006 - 244.74000000000001 -6.7763018627564199E-006 - 244.80000000000001 -6.0474175188781192E-006 - 244.86000000000001 -5.2855824950967222E-006 - 244.92000000000002 -4.4890755094309483E-006 - 244.97999999999996 -3.6561182325115263E-006 - 245.03999999999996 -2.7848815596943755E-006 - 245.09999999999997 -1.8734856210059193E-006 - 245.15999999999997 -9.2000329534324683E-007 - 245.21999999999997 7.7537357988894435E-008 - 245.27999999999997 1.1211480634276510E-006 - 245.33999999999997 2.2128802414221369E-006 - 245.39999999999998 3.3548163659131968E-006 - 245.45999999999998 4.5490715277402068E-006 - 245.51999999999998 5.7977868090554024E-006 - 245.57999999999998 7.1031280586793828E-006 - 245.63999999999999 8.4672777989930991E-006 - 245.69999999999999 9.8924385615060886E-006 - 245.75999999999999 1.1380821819405343E-005 - 245.81999999999999 1.2934653020187433E-005 - 245.88000000000000 1.4556159419520791E-005 - 245.94000000000000 1.6247574775505591E-005 - 246.00000000000000 1.8011129597383813E-005 - 246.06000000000000 1.9849052069119530E-005 - 246.12000000000000 2.1763561375997552E-005 - 246.18000000000001 2.3756865288438558E-005 - 246.24000000000001 2.5831148766164969E-005 - 246.30000000000001 2.7988580543128026E-005 - 246.36000000000001 3.0231301438880227E-005 - 246.42000000000002 3.2561411927783850E-005 - 246.47999999999996 3.4980974181098604E-005 - 246.53999999999996 3.7492004415689310E-005 - 246.59999999999997 4.0096458141698715E-005 - 246.65999999999997 4.2796219972288521E-005 - 246.71999999999997 4.5593112709865789E-005 - 246.77999999999997 4.8488860571337661E-005 - 246.83999999999997 5.1485096419421857E-005 - 246.89999999999998 5.4583358055277345E-005 - 246.95999999999998 5.7785054417960714E-005 - 247.01999999999998 6.1091474732440169E-005 - 247.07999999999998 6.4503779481303534E-005 - 247.13999999999999 6.8022985568764858E-005 - 247.19999999999999 7.1649941577088614E-005 - 247.25999999999999 7.5385362174704206E-005 - 247.31999999999999 7.9229769117445184E-005 - 247.38000000000000 8.3183519951871658E-005 - 247.44000000000000 8.7246797092494532E-005 - 247.50000000000000 9.1419592448393146E-005 - 247.56000000000000 9.5701701109742214E-005 - 247.62000000000000 1.0009271055586198E-004 - 247.68000000000001 1.0459201863898600E-004 - 247.74000000000001 1.0919879731527231E-004 - 247.80000000000001 1.1391200927710708E-004 - 247.86000000000001 1.1873036627144683E-004 - 247.92000000000002 1.2365236972290857E-004 - 247.97999999999996 1.2867627620207275E-004 - 248.03999999999996 1.3380007253325249E-004 - 248.09999999999997 1.3902150776793661E-004 - 248.15999999999997 1.4433803184662287E-004 - 248.21999999999997 1.4974683983152184E-004 - 248.27999999999997 1.5524483752014028E-004 - 248.33999999999997 1.6082860283484743E-004 - 248.39999999999998 1.6649445554513945E-004 - 248.45999999999998 1.7223839152652335E-004 - 248.51999999999998 1.7805607528816359E-004 - 248.57999999999998 1.8394286052388509E-004 - 248.63999999999999 1.8989383997075214E-004 - 248.69999999999999 1.9590374063384867E-004 - 248.75999999999999 2.0196697565747754E-004 - 248.81999999999999 2.0807768299288976E-004 - 248.88000000000000 2.1422969613898047E-004 - 248.94000000000000 2.2041654689934723E-004 - 249.00000000000000 2.2663150006128202E-004 - 249.06000000000000 2.3286751779233488E-004 - 249.12000000000000 2.3911734520083082E-004 - 249.18000000000001 2.4537344998519815E-004 - 249.24000000000001 2.5162807305824776E-004 - 249.30000000000001 2.5787322024691179E-004 - 249.36000000000001 2.6410066534897993E-004 - 249.42000000000002 2.7030199334316486E-004 - 249.47999999999996 2.7646860579847219E-004 - 249.53999999999996 2.8259170538762559E-004 - 249.59999999999997 2.8866231697312610E-004 - 249.65999999999997 2.9467137805501171E-004 - 249.71999999999997 3.0060957236664190E-004 - 249.77999999999997 3.0646752786780718E-004 - 249.83999999999997 3.1223572371302008E-004 - 249.89999999999998 3.1790458982529905E-004 - 249.95999999999998 3.2346442113195437E-004 - 250.01999999999998 3.2890546749966322E-004 - 250.07999999999998 3.3421796023762725E-004 - 250.13999999999999 3.3939213036244273E-004 - 250.19999999999999 3.4441818347624552E-004 - 250.25999999999999 3.4928641085278206E-004 - 250.31999999999999 3.5398706487676948E-004 - 250.38000000000000 3.5851060252955498E-004 - 250.44000000000000 3.6284753906975142E-004 - 250.50000000000000 3.6698852055820511E-004 - 250.56000000000000 3.7092436459260124E-004 - 250.62000000000000 3.7464608320928404E-004 - 250.68000000000001 3.7814490905509185E-004 - 250.74000000000001 3.8141233333303064E-004 - 250.80000000000001 3.8444012026967063E-004 - 250.86000000000001 3.8722027203363322E-004 - 250.92000000000002 3.8974512595775105E-004 - 250.97999999999996 3.9200736716009030E-004 - 251.03999999999996 3.9400003424528676E-004 - 251.09999999999997 3.9571651479240858E-004 - 251.15999999999997 3.9715059531153583E-004 - 251.21999999999997 3.9829648834542792E-004 - 251.27999999999997 3.9914882791840012E-004 - 251.33999999999997 3.9970268622023048E-004 - 251.39999999999998 3.9995363456124408E-004 - 251.45999999999998 3.9989766650698922E-004 - 251.51999999999998 3.9953125806562216E-004 - 251.57999999999998 3.9885144715006928E-004 - 251.63999999999999 3.9785577585512246E-004 - 251.69999999999999 3.9654224554565586E-004 - 251.75999999999999 3.9490945919038053E-004 - 251.81999999999999 3.9295655932987633E-004 - 251.88000000000000 3.9068322351874704E-004 - 251.94000000000000 3.8808964335629255E-004 diff --git a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000003.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000003.BXY.semd deleted file mode 100644 index 37899d16..00000000 --- a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000003.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 1.4657423179942110E-040 - 10.979999999999997 4.5955796260914526E-040 - 11.039999999999999 9.4432613972559719E-040 - 11.099999999999994 1.5894326367147065E-039 - 11.159999999999997 8.8846812115806181E-040 - 11.219999999999999 -5.3608145714217024E-040 - 11.280000000000001 -2.6898180593346644E-039 - 11.339999999999996 -4.8435544116458337E-039 - 11.399999999999999 -7.8566761827392879E-039 - 11.460000000000001 -1.1953224384963811E-038 - 11.519999999999996 -1.7318495997959393E-038 - 11.579999999999998 -2.2469742352201772E-038 - 11.640000000000001 -2.6629542357734204E-038 - 11.699999999999996 -2.8497717233707912E-038 - 11.759999999999998 -2.9263303398554157E-038 - 11.820000000000000 -2.8754868775815979E-038 - 11.879999999999995 -2.5875069165714663E-038 - 11.939999999999998 -1.9957091613521689E-038 - 12.000000000000000 -1.0965415337724476E-038 - 12.059999999999995 -1.7481270785001542E-041 - 12.119999999999997 1.2442066979936368E-038 - 12.180000000000000 2.8066815691566497E-038 - 12.239999999999995 4.6220365820778141E-038 - 12.299999999999997 5.7635317039713844E-038 - 12.359999999999999 6.0303187626460260E-038 - 12.419999999999995 5.1211292326189066E-038 - 12.479999999999997 3.8013011935383551E-038 - 12.539999999999999 2.0627661607637562E-038 - 12.599999999999994 -2.8056820394765098E-039 - 12.659999999999997 -3.9984986202578849E-038 - 12.719999999999999 -8.9461508603318045E-038 - 12.780000000000001 -1.4273848640750962E-037 - 12.839999999999996 -1.9700718731094858E-037 - 12.899999999999999 -2.5174577496395163E-037 - 12.960000000000001 -3.0525050554399932E-037 - 13.019999999999996 -3.4622877308256292E-037 - 13.079999999999998 -3.7449247080709606E-037 - 13.140000000000001 -3.8647528081234326E-037 - 13.199999999999996 -3.7783282448142148E-037 - 13.259999999999998 -3.4865449498419557E-037 - 13.320000000000000 -2.8962967511837827E-037 - 13.379999999999995 -2.0036724090661675E-037 - 13.439999999999998 -8.0468478291647002E-038 - 13.500000000000000 7.3047857482794738E-038 - 13.559999999999995 2.5167687068339961E-037 - 13.619999999999997 4.2915979487742932E-037 - 13.680000000000000 6.1932462403116720E-037 - 13.739999999999995 7.9556663389452153E-037 - 13.799999999999997 9.4067344695082749E-037 - 13.859999999999999 1.0386448818309479E-036 - 13.919999999999995 1.0602678209499176E-036 - 13.979999999999997 9.8567727155088025E-037 - 14.039999999999999 8.0181943791705558E-037 - 14.099999999999994 4.8366410314880769E-037 - 14.159999999999997 2.4306391095759717E-038 - 14.219999999999999 -5.8350612123284194E-037 - 14.280000000000001 -1.3145732865301056E-036 - 14.339999999999996 -2.1128845906983218E-036 - 14.399999999999999 -3.0191867512630525E-036 - 14.460000000000001 -3.9852551091849899E-036 - 14.519999999999996 -4.9615721377194687E-036 - 14.579999999999998 -5.8675250729206919E-036 - 14.640000000000001 -6.5838480343065511E-036 - 14.699999999999996 -7.0295194681204584E-036 - 14.759999999999998 -7.1128629422897982E-036 - 14.820000000000000 -6.7762886924021952E-036 - 14.879999999999995 -5.9699140338614644E-036 - 14.939999999999998 -4.4627098049915429E-036 - 15.000000000000000 -2.1433912020166796E-036 - 15.059999999999995 8.7253944345146063E-037 - 15.119999999999997 4.4248257003264881E-036 - 15.180000000000000 8.4543610089851264E-036 - 15.239999999999995 1.2757801453833164E-035 - 15.299999999999997 1.7152131747184599E-035 - 15.359999999999999 2.1217591714162383E-035 - 15.419999999999995 2.4507995173796758E-035 - 15.479999999999997 2.6604466718593243E-035 - 15.539999999999999 2.7036758850474331E-035 - 15.599999999999994 2.5345677673527825E-035 - 15.659999999999997 2.1271464887283914E-035 - 15.719999999999999 1.4584243622620960E-035 - 15.780000000000001 4.8998449002789420E-036 - 15.839999999999996 -7.7700051973568249E-036 - 15.899999999999999 -2.3311162704392982E-035 - 15.960000000000001 -4.1318486361532472E-035 - 16.019999999999996 -6.1376563904056643E-035 - 16.079999999999998 -8.2667911107029526E-035 - 16.140000000000001 -1.0421743711607034E-034 - 16.200000000000003 -1.2472322649433956E-034 - 16.259999999999991 -1.4268608025563272E-034 - 16.319999999999993 -1.5644500401592604E-034 - 16.379999999999995 -1.6422708708366439E-034 - 16.439999999999998 -1.6428422101774260E-034 - 16.500000000000000 -1.5489579377376565E-034 - 16.560000000000002 -1.3450571051860369E-034 - 16.620000000000005 -1.0175898760899051E-034 - 16.679999999999993 -5.5749187718328298E-035 - 16.739999999999995 3.6271756559247811E-036 - 16.799999999999997 7.5774722656883112E-035 - 16.859999999999999 1.5935080156141350E-034 - 16.920000000000002 2.5223264423879229E-034 - 16.980000000000004 3.5115653288525527E-034 - 17.039999999999992 4.5177775891005052E-034 - 17.099999999999994 5.4880645906860031E-034 - 17.159999999999997 6.3579628677466401E-034 - 17.219999999999999 7.0570722505532783E-034 - 17.280000000000001 7.5095560876771984E-034 - 17.340000000000003 7.6372953979338686E-034 - 17.399999999999991 7.3637334687701878E-034 - 17.459999999999994 6.6186288750814696E-034 - 17.519999999999996 5.3445233073764865E-034 - 17.579999999999998 3.4996920208058223E-034 - 17.640000000000001 1.0662461315843309E-034 - 17.700000000000003 -1.9427884052916314E-034 - 17.759999999999991 -5.4823686023328045E-034 - 17.819999999999993 -9.4684673455757624E-034 - 17.879999999999995 -1.3774510586777964E-033 - 17.939999999999998 -1.8230915233403767E-033 - 18.000000000000000 -2.2624453087598651E-033 - 18.060000000000002 -2.6701937452512597E-033 - 18.120000000000005 -3.0175344517239166E-033 - 18.179999999999993 -3.2730660053843559E-033 - 18.239999999999995 -3.4039791921721011E-033 - 18.299999999999997 -3.3775190270541627E-033 - 18.359999999999999 -3.1627952925876249E-033 - 18.420000000000002 -2.7327729310600803E-033 - 18.480000000000004 -2.0665517717488978E-033 - 18.539999999999992 -1.1516489253265700E-033 - 18.599999999999994 1.3683830360027365E-035 - 18.659999999999997 1.4179614352437244E-033 - 18.719999999999999 3.0347751992980655E-033 - 18.780000000000001 4.8211361387984350E-033 - 18.840000000000003 6.7164381805215091E-033 - 18.899999999999991 8.6422200645205382E-033 - 18.959999999999994 1.0502787836532037E-032 - 19.019999999999996 1.2186870008719112E-032 - 19.079999999999998 1.3570419463750480E-032 - 19.140000000000001 1.4520653851582455E-032 - 19.200000000000003 1.4901282340110817E-032 - 19.259999999999991 1.4578946534561086E-032 - 19.319999999999993 1.3430766969568593E-032 - 19.379999999999995 1.1352764946063457E-032 - 19.439999999999998 8.2689228484032915E-033 - 19.500000000000000 4.1405210777189348E-033 - 19.560000000000002 -1.0246778562198005E-033 - 19.620000000000005 -7.1639035086709201E-033 - 19.679999999999993 -1.4152074710645164E-032 - 19.739999999999995 -2.1796315679913727E-032 - 19.799999999999997 -2.9832915857038505E-032 - 19.859999999999999 -3.7927352593994753E-032 - 19.920000000000002 -4.5677917934237029E-032 - 19.980000000000004 -5.2623451654417223E-032 - 20.039999999999992 -5.8255547713839232E-032 - 20.099999999999994 -6.2035385640516401E-032 - 20.159999999999997 -6.3415260027182900E-032 - 20.219999999999999 -6.1864532740724131E-032 - 20.280000000000001 -5.6899470908098366E-032 - 20.340000000000003 -4.8116254858058146E-032 - 20.399999999999991 -3.5226027107491836E-032 - 20.459999999999994 -1.8090599323344109E-032 - 20.519999999999996 3.2428014061258855E-033 - 20.579999999999998 2.8509704131594669E-032 - 20.640000000000001 5.7201556621611846E-032 - 20.700000000000003 8.8546028764307042E-032 - 20.759999999999991 1.2149684433675798E-031 - 20.819999999999993 1.5473514207315667E-031 - 20.879999999999995 1.8668448519177696E-031 - 20.939999999999998 2.1554113927626173E-031 - 21.000000000000000 2.3932071356315096E-031 - 21.060000000000002 2.5592200447326018E-031 - 21.120000000000005 2.6320766095154562E-031 - 21.179999999999993 2.5910091049313365E-031 - 21.239999999999995 2.4169640898960040E-031 - 21.299999999999997 2.0938232004028929E-031 - 21.359999999999999 1.6096974701564908E-031 - 21.420000000000002 9.5824571997456116E-032 - 21.480000000000004 1.3995944889764152E-032 - 21.539999999999992 -8.3665304118289922E-032 - 21.599999999999994 -1.9540558510597472E-031 - 21.659999999999997 -3.1849255351924027E-031 - 21.719999999999999 -4.4917197191393872E-031 - 21.780000000000001 -5.8266474208862187E-031 - 21.840000000000003 -7.1321144836328369E-031 - 21.899999999999991 -8.3416978389604052E-031 - 21.959999999999994 -9.3816968486531109E-031 - 22.019999999999996 -1.0173280895214621E-030 - 22.079999999999998 -1.0635239560411748E-030 - 22.140000000000001 -1.0687302868573059E-030 - 22.200000000000003 -1.0253981924497467E-030 - 22.259999999999991 -9.2688337147555396E-031 - 22.319999999999993 -7.6790353772302310E-031 - 22.379999999999995 -5.4501022651477015E-031 - 22.439999999999998 -2.5705768725074966E-031 - 22.500000000000000 9.4354429471608533E-032 - 22.560000000000002 5.0448658720215167E-031 - 22.619999999999990 9.6513921015311454E-031 - 22.679999999999993 1.4644342275824783E-030 - 22.739999999999995 1.9867209709543031E-030 - 22.799999999999997 2.5126345198066755E-030 - 22.859999999999999 3.0193245256834474E-030 - 22.920000000000002 3.4808760219337704E-030 - 22.980000000000004 3.8689304237372123E-030 - 23.039999999999992 4.1535146745407904E-030 - 23.099999999999994 4.3040768195745798E-030 - 23.159999999999997 4.2907131878537868E-030 - 23.219999999999999 4.0855699296399321E-030 - 23.280000000000001 3.6643837003401223E-030 - 23.340000000000003 3.0081220021584264E-030 - 23.399999999999991 2.1046663252399315E-030 - 23.459999999999994 9.5047901924678323E-031 - 23.519999999999996 -4.4782149327943176E-031 - 23.579999999999998 -2.0720540470661977E-030 - 23.640000000000001 -3.8913252250460122E-030 - 23.700000000000003 -5.8612186578158494E-030 - 23.759999999999991 -7.9234160774700346E-030 - 23.819999999999993 -1.0005830249365967E-029 - 23.879999999999995 -1.2023328232857313E-029 - 23.939999999999998 -1.3879106001536975E-029 - 24.000000000000000 -1.5466765746794086E-029 - 24.060000000000002 -1.6673122601912378E-029 - 24.119999999999990 -1.7381745965795387E-029 - 24.179999999999993 -1.7477212336118584E-029 - 24.239999999999995 -1.6850006584726222E-029 - 24.299999999999997 -1.5401998894111932E-029 - 24.359999999999999 -1.3052349782055038E-029 - 24.420000000000002 -9.7436982477010038E-030 - 24.480000000000004 -5.4484280489999450E-030 - 24.539999999999992 -1.7477852178698032E-031 - 24.599999999999994 6.0274792133446704E-030 - 24.659999999999997 1.3062057838125571E-029 - 24.719999999999999 2.0782211809705942E-029 - 24.780000000000001 2.8988140104220206E-029 - 24.840000000000003 3.7426068924226005E-029 - 24.899999999999991 4.5789316369933863E-029 - 24.959999999999994 5.3721645961697520E-029 - 25.019999999999996 6.0823147440968873E-029 - 25.079999999999998 6.6658845407113098E-029 - 25.140000000000001 7.0770171375540146E-029 - 25.200000000000003 7.2689310858507566E-029 - 25.259999999999991 7.1956365118262932E-029 - 25.319999999999993 6.8139181672823534E-029 - 25.379999999999995 6.0855424096098078E-029 - 25.439999999999998 4.9796524791038916E-029 - 25.500000000000000 3.4752795364738151E-029 - 25.560000000000002 1.5639018683484924E-029 - 25.619999999999990 -7.4805469734168510E-030 - 25.679999999999993 -3.4368688978814823E-029 - 25.739999999999995 -6.4594630357293166E-029 - 25.799999999999997 -9.7517473707239564E-029 - 25.859999999999999 -1.3227522594956841E-028 - 25.920000000000002 -1.6778064554756462E-028 - 25.980000000000004 -2.0272552896417799E-028 - 26.039999999999992 -2.3559443094688239E-028 - 26.099999999999994 -2.6468932748314596E-028 - 26.159999999999997 -2.8816585736902484E-028 - 26.219999999999999 -3.0408195198135594E-028 - 26.280000000000001 -3.1045895610860758E-028 - 26.340000000000003 -3.0535514764298154E-028 - 26.399999999999991 -2.8695076032740596E-028 - 26.459999999999994 -2.5364319121228328E-028 - 26.519999999999996 -2.0415029472852906E-028 - 26.579999999999998 -1.3761908853504693E-028 - 26.640000000000001 -5.3736131692223782E-029 - 26.700000000000003 4.7164072155681295E-029 - 26.759999999999991 1.6399826589306248E-028 - 26.819999999999993 2.9484590356504525E-028 - 26.879999999999995 4.3687923740332454E-028 - 26.939999999999998 5.8631807835078974E-028 - 27.000000000000000 7.3841539840844298E-028 - 27.060000000000002 8.8748000402640350E-028 - 27.119999999999990 1.0269420437263279E-027 - 27.179999999999993 1.1494656777733936E-027 - 27.239999999999995 1.2471135157526553E-027 - 27.299999999999997 1.3115643454353968E-027 - 27.359999999999999 1.3343850114488616E-027 - 27.420000000000002 1.3073547701534279E-027 - 27.480000000000004 1.2228376294470539E-027 - 27.539999999999992 1.0741959694489916E-027 - 27.599999999999994 8.5623525971932078E-028 - 27.659999999999997 5.6566718427626285E-028 - 27.719999999999999 2.0157502985028284E-028 - 27.780000000000001 -2.3413708956725435E-028 - 27.840000000000003 -7.3633400232789656E-028 - 27.899999999999991 -1.2962997100758284E-027 - 27.959999999999994 -1.9014746148031523E-027 - 28.019999999999996 -2.5353053975254957E-027 - 28.079999999999998 -3.1772322819256343E-027 - 28.140000000000001 -3.8028384736798824E-027 - 28.200000000000003 -4.3841816216877538E-027 - 28.259999999999991 -4.8903278613381572E-027 - 28.319999999999993 -5.2880970755169871E-027 - 28.379999999999995 -5.5430252654662281E-027 - 28.439999999999998 -5.6205436552534487E-027 - 28.500000000000000 -5.4873575090411068E-027 - 28.560000000000002 -5.1130075291632342E-027 - 28.619999999999990 -4.4715724348839561E-027 - 28.679999999999993 -3.5434756003095658E-027 - 28.739999999999995 -2.3173310281130771E-027 - 28.799999999999997 -7.9176496891349160E-028 - 28.859999999999999 1.0228672275589928E-027 - 28.920000000000002 3.1029562189756922E-027 - 28.980000000000004 5.4103977134024049E-027 - 29.039999999999992 7.8917325727111502E-027 - 29.099999999999994 1.0477763424358023E-026 - 29.159999999999997 1.3083744655356522E-026 - 29.219999999999999 1.5610218889934549E-026 - 29.280000000000001 1.7944587575109873E-026 - 29.340000000000003 1.9963450574783521E-026 - 29.399999999999991 2.1535754681690282E-026 - 29.459999999999994 2.2526749251851886E-026 - 29.519999999999996 2.2802717891128071E-026 - 29.579999999999998 2.2236422873929678E-026 - 29.640000000000001 2.0713144614164848E-026 - 29.700000000000003 1.8137182330886095E-026 - 29.759999999999991 1.4438627816179146E-026 - 29.819999999999993 9.5801760429654231E-027 - 29.879999999999995 3.5637172863845384E-027 - 29.939999999999998 -3.5635864845279009E-027 - 30.000000000000000 -1.1704060253637906E-026 - 30.060000000000002 -2.0705425824835869E-026 - 30.119999999999990 -3.0358234794138928E-026 - 30.179999999999993 -4.0395116193480025E-026 - 30.239999999999995 -5.0492171583445799E-026 - 30.299999999999997 -6.0272762651768138E-026 - 30.359999999999999 -6.9313910321004378E-026 - 30.420000000000002 -7.7155457962362535E-026 - 30.480000000000004 -8.3312033530724158E-026 - 30.539999999999992 -8.7287783616304339E-026 - 30.599999999999994 -8.8593684709228067E-026 - 30.659999999999997 -8.6767186787027589E-026 - 30.719999999999999 -8.1393765844606104E-026 - 30.780000000000001 -7.2129786985508679E-026 - 30.840000000000003 -5.8726099938599414E-026 - 30.899999999999991 -4.1051464150232365E-026 - 30.959999999999994 -1.9114957268765714E-026 - 31.019999999999996 6.9136351335048280E-027 - 31.079999999999998 3.6686538827458303E-026 - 31.140000000000001 6.9664864921360544E-026 - 31.200000000000003 1.0511074280400658E-025 - 31.259999999999991 1.4208577525708250E-025 - 31.319999999999993 1.7945668840029849E-025 - 31.379999999999995 2.1590905157808836E-025 - 31.439999999999998 2.4996958827485454E-025 - 31.500000000000000 2.8003755686238800E-025 - 31.560000000000002 3.0442518066384119E-025 - 31.619999999999990 3.2140694681221212E-025 - 31.679999999999993 3.2927712748772285E-025 - 31.739999999999995 3.2641463105274126E-025 - 31.799999999999997 3.1135364881534929E-025 - 31.859999999999999 2.8285851403265334E-025 - 31.920000000000002 2.4000040837238615E-025 - 31.980000000000004 1.8223359345687151E-025 - 32.039999999999992 1.0946818757716208E-025 - 32.099999999999994 2.2136530826292957E-026 - 32.159999999999997 -7.8750095251641830E-026 - 32.219999999999999 -1.9155788328866852E-025 - 32.280000000000001 -3.1400286087312577E-025 - 32.340000000000003 -4.4314273716455765E-025 - 32.399999999999991 -5.7539080885959538E-025 - 32.459999999999994 -7.0655424362083428E-025 - 32.519999999999996 -8.3189872005221642E-025 - 32.579999999999998 -9.4624036264118934E-025 - 32.640000000000001 -1.0440652197424524E-024 - 32.700000000000003 -1.1196759080484767E-024 - 32.759999999999991 -1.1673634634122545E-024 - 32.819999999999993 -1.1816017902300202E-024 - 32.879999999999995 -1.1572610378744934E-024 - 32.939999999999998 -1.0898347640187923E-024 - 33.000000000000000 -9.7567494371668173E-025 - 33.060000000000002 -8.1222804559042569E-025 - 33.119999999999990 -5.9826396850835366E-025 - 33.179999999999993 -3.3408959228884527E-025 - 33.239999999999995 -2.1738415842048344E-026 - 33.299999999999997 3.3487400345118960E-025 - 33.359999999999999 7.2983759940039789E-025 - 33.420000000000002 1.1551859880940557E-024 - 33.480000000000004 1.6008956270111649E-024 - 33.539999999999992 2.0549513243745884E-024 - 33.599999999999994 2.5034852048454806E-024 - 33.659999999999997 2.9309920032787163E-024 - 33.719999999999999 3.3206243183236384E-024 - 33.780000000000001 3.6545668341488774E-024 - 33.840000000000003 3.9144868409827539E-024 - 33.899999999999991 4.0820571109034676E-024 - 33.959999999999994 4.1395407060494497E-024 - 34.019999999999996 4.0704297547308819E-024 - 34.079999999999998 3.8601227723077824E-024 - 34.140000000000001 3.4966234533989692E-024 - 34.200000000000003 2.9712446230045757E-024 - 34.259999999999991 2.2792946927847845E-024 - 34.319999999999993 1.4207224145519203E-024 - 34.379999999999995 4.0069969343383890E-025 - 34.439999999999998 -7.6988701822586013E-025 - 34.500000000000000 -2.0740570401251331E-024 - 34.560000000000002 -3.4884966017574535E-024 - 34.619999999999990 -4.9834804076716958E-024 - 34.679999999999993 -6.5229775198089162E-024 - 34.739999999999995 -8.0649550128633134E-024 - 34.799999999999997 -9.5619027028646146E-024 - 34.859999999999999 -1.0961578610563989E-023 - 34.920000000000002 -1.2207987106896321E-023 - 34.980000000000004 -1.3242588117745262E-023 - 35.039999999999992 -1.4005726617112080E-023 - 35.099999999999994 -1.4438271317815495E-023 - 35.159999999999997 -1.4483440943006451E-023 - 35.219999999999999 -1.4088783236782962E-023 - 35.280000000000001 -1.3208278135709489E-023 - 35.340000000000003 -1.1804513331226196E-023 - 35.399999999999991 -9.8508787845936331E-024 - 35.459999999999994 -7.3337342535220207E-024 - 35.519999999999996 -4.2544643624621328E-024 - 35.579999999999998 -6.3136539444923536E-025 - 35.640000000000001 3.4987142448553358E-024 - 35.700000000000003 8.0790654652724537E-024 - 35.759999999999991 1.3032201689399261E-023 - 35.819999999999993 1.8259434497318017E-023 - 35.879999999999995 2.3640996614571561E-023 - 35.939999999999998 2.9036787255047380E-023 - 36.000000000000000 3.4287806928492197E-023 - 36.060000000000002 3.9218309806119516E-023 - 36.119999999999990 4.3638739648331151E-023 - 36.179999999999993 4.7349432157818230E-023 - 36.239999999999995 5.0145113003785047E-023 - 36.299999999999997 5.1820139626197087E-023 - 36.359999999999999 5.2174458503930028E-023 - 36.420000000000002 5.1020196146311628E-023 - 36.479999999999990 4.8188763387716860E-023 - 36.539999999999992 4.3538362577976613E-023 - 36.599999999999994 3.6961713908604920E-023 - 36.659999999999997 2.8393804266415573E-023 - 36.719999999999999 1.7819455124316825E-023 - 36.780000000000001 5.2804275746106651E-024 - 36.840000000000003 -9.1181502441424653E-024 - 36.899999999999991 -2.5202398745967576E-023 - 36.959999999999994 -4.2725552978747453E-023 - 37.019999999999996 -6.1365440912570783E-023 - 37.079999999999998 -8.0723861803500246E-023 - 37.140000000000001 -1.0032807540003617E-022 - 37.200000000000003 -1.1963472948749216E-022 - 37.259999999999991 -1.3803638844585383E-022 - 37.319999999999993 -1.5487083712323691E-022 - 37.379999999999995 -1.6943320242969381E-022 - 37.439999999999998 -1.8099099735347265E-022 - 37.500000000000000 -1.8880196242063763E-022 - 37.560000000000002 -1.9213452781338034E-022 - 37.619999999999990 -1.9029066144330971E-022 - 37.679999999999993 -1.8263079654390141E-022 - 37.739999999999995 -1.6860019862220431E-022 - 37.799999999999997 -1.4775631628827240E-022 - 37.859999999999999 -1.1979639559086219E-022 - 37.920000000000002 -8.4584516611426268E-023 - 37.979999999999990 -4.2177290831376800E-023 - 38.039999999999992 7.1528295760745713E-024 - 38.099999999999994 6.2897645486231182E-023 - 38.159999999999997 1.2429737423158742E-022 - 38.219999999999999 1.9033041895010636E-022 - 38.280000000000001 2.5970922928139491E-022 - 38.340000000000003 3.3088334315734961E-022 - 38.399999999999991 4.0205038960808122E-022 - 38.459999999999994 4.7117558748930826E-022 - 38.519999999999996 5.3602024765605228E-022 - 38.579999999999998 5.9417953870852395E-022 - 38.640000000000001 6.4312954046677554E-022 - 38.700000000000003 6.8028337423982457E-022 - 38.759999999999991 7.0305554139197292E-022 - 38.819999999999993 7.0893432315641659E-022 - 38.879999999999995 6.9556031623293615E-022 - 38.939999999999998 6.6081050056173854E-022 - 39.000000000000000 6.0288536850519704E-022 - 39.060000000000002 5.2039779710532090E-022 - 39.119999999999990 4.1246112002944675E-022 - 39.179999999999993 2.7877387847687547E-022 - 39.239999999999995 1.1969943380845665E-022 - 39.299999999999997 -6.3663495677226313E-023 - 39.359999999999999 -2.6942074137856417E-022 - 39.420000000000002 -4.9483635200298602E-022 - 39.479999999999990 -7.3630296254226207E-022 - 39.539999999999992 -9.8933076701536374E-022 - 39.599999999999994 -1.2485573723029639E-021 - 39.659999999999997 -1.5077813651155839E-021 - 39.719999999999999 -1.7600198162117926E-021 - 39.780000000000001 -1.9975929979014266E-021 - 39.840000000000003 -2.2122350581438409E-021 - 39.899999999999991 -2.3952328418041727E-021 - 39.959999999999994 -2.5375913741526188E-021 - 40.019999999999996 -2.6302262392816924E-021 - 40.079999999999998 -2.6641806626760666E-021 - 40.140000000000001 -2.6308664834163417E-021 - 40.200000000000003 -2.5223247346266415E-021 - 40.259999999999991 -2.3315039988153834E-021 - 40.319999999999993 -2.0525519111065949E-021 - 40.379999999999995 -1.6811141787008895E-021 - 40.439999999999998 -1.2146368599424589E-021 - 40.500000000000000 -6.5266451339505569E-022 - 40.560000000000002 2.8724842069391595E-024 - 40.619999999999990 7.4739041256190480E-022 - 40.679999999999993 1.5734104316785601E-021 - 40.739999999999995 2.4703556323636579E-021 - 40.799999999999997 3.4243939737465669E-021 - 40.859999999999999 4.4183403755091221E-021 - 40.920000000000002 5.4316233807708899E-021 - 40.979999999999990 6.4403353950644430E-021 - 41.039999999999992 7.4173688118880655E-021 - 41.099999999999994 8.3326558741394159E-021 - 41.159999999999997 9.1535150778975226E-021 - 41.219999999999999 9.8451183450956210E-021 - 41.280000000000001 1.0371079733070744E-020 - 41.340000000000003 1.0694174921311628E-020 - 41.399999999999991 1.0777191473259556E-020 - 41.459999999999994 1.0583904019392859E-020 - 41.519999999999996 1.0080173609496390E-020 - 41.579999999999998 9.2351606062409285E-021 - 41.640000000000001 8.0226269763084916E-021 - 41.700000000000003 6.4223204708530351E-021 - 41.759999999999991 4.4213994682146477E-021 - 41.819999999999993 2.0158823974535963E-021 - 41.879999999999995 -7.8794225119907223E-022 - 41.939999999999998 -3.9721605588201783E-021 - 42.000000000000000 -7.5060055398308678E-021 - 42.060000000000002 -1.1344798030736673E-020 - 42.119999999999990 -1.5429121432231308E-020 - 42.179999999999993 -1.9684287989571801E-020 - 42.239999999999995 -2.4020151310745701E-020 - 42.299999999999997 -2.8331335935799057E-020 - 42.359999999999999 -3.2497927572830252E-020 - 42.420000000000002 -3.6386675610467961E-020 - 42.479999999999990 -3.9852755307506249E-020 - 42.539999999999992 -4.2742116050044302E-020 - 42.599999999999994 -4.4894421132291864E-020 - 42.659999999999997 -4.6146603327898677E-020 - 42.719999999999999 -4.6336991205759605E-020 - 42.780000000000001 -4.5309978102832617E-020 - 42.840000000000003 -4.2921194496105954E-020 - 42.899999999999991 -3.9043055559613992E-020 - 42.959999999999994 -3.3570631930379593E-020 - 43.019999999999996 -2.6427653548262907E-020 - 43.079999999999998 -1.7572568752319602E-020 - 43.140000000000001 -7.0044203988097251E-021 - 43.200000000000003 5.2316031994992376E-021 - 43.259999999999991 1.9039156078653450E-020 - 43.319999999999993 3.4266494603369569E-020 - 43.379999999999995 5.0703167405409892E-020 - 43.439999999999998 6.8077882763509263E-020 - 43.500000000000000 8.6057795757261870E-020 - 43.560000000000002 1.0424928018041200E-019 - 43.619999999999990 1.2220049981651534E-019 - 43.679999999999993 1.3940579131679164E-019 - 43.739999999999995 1.5531203818148081E-019 - 43.799999999999997 1.6932705221843476E-019 - 43.859999999999999 1.8082999871559246E-019 - 43.920000000000002 1.8918381230374006E-019 - 43.979999999999990 1.9374948485290179E-019 - 44.039999999999992 1.9390211584271472E-019 - 44.099999999999994 1.8904847260788588E-019 - 44.159999999999997 1.7864577685587089E-019 - 44.219999999999999 1.6222142680142500E-019 - 44.280000000000001 1.3939322692569320E-019 - 44.340000000000003 1.0988965435648200E-019 - 44.399999999999991 7.3569717663146697E-020 - 44.459999999999994 3.0441970235680682E-020 - 44.519999999999996 -1.9318169491706896E-020 - 44.579999999999998 -7.5352935645195042E-020 - 44.640000000000001 -1.3710951833153689E-019 - 44.700000000000003 -2.0383056375073469E-019 - 44.759999999999991 -2.7454833907086514E-019 - 44.819999999999993 -3.4808322871870921E-019 - 44.879999999999995 -4.2304694210945427E-019 - 44.939999999999998 -4.9785083059322927E-019 - 45.000000000000000 -5.7071971735922544E-019 - 45.060000000000002 -6.3971121060668230E-019 - 45.119999999999990 -7.0274105620271108E-019 - 45.179999999999993 -7.5761412590524000E-019 - 45.239999999999995 -8.0206104990192100E-019 - 45.299999999999997 -8.3378041864883050E-019 - 45.359999999999999 -8.5048572370214791E-019 - 45.420000000000002 -8.4995714478226814E-019 - 45.479999999999990 -8.3009688096370717E-019 - 45.539999999999992 -7.8898741541509571E-019 - 45.599999999999994 -7.2495190288634845E-019 - 45.659999999999997 -6.3661543734627691E-019 - 45.719999999999999 -5.2296629262994311E-019 - 45.780000000000001 -3.8341515848061176E-019 - 45.840000000000003 -2.1785217837488013E-019 - 45.899999999999991 -2.6699423663623069E-020 - 45.959999999999994 1.8904215464317933E-019 - 46.019999999999996 4.2775258983144374E-019 - 46.079999999999998 6.8716128980828732E-019 - 46.140000000000001 9.6432431902097165E-019 - 46.200000000000003 1.2556128353343503E-018 - 46.259999999999991 1.5567130541179606E-018 - 46.319999999999993 1.8626382779356291E-018 - 46.379999999999995 2.1677547979024917E-018 - 46.439999999999998 2.4658208836541774E-018 - 46.500000000000000 2.7500404713767790E-018 - 46.560000000000002 3.0131298899869436E-018 - 46.619999999999990 3.2474002879301680E-018 - 46.679999999999993 3.4448532581206479E-018 - 46.739999999999995 3.5972903275701587E-018 - 46.799999999999997 3.6964355323380234E-018 - 46.859999999999999 3.7340718410977285E-018 - 46.920000000000002 3.7021880281307236E-018 - 46.979999999999990 3.5931398874648637E-018 - 47.039999999999992 3.3998191649315619E-018 - 47.099999999999994 3.1158353487222963E-018 - 47.159999999999997 2.7357059606864606E-018 - 47.219999999999999 2.2550581808359881E-018 - 47.280000000000001 1.6708351506113877E-018 - 47.340000000000003 9.8151215492476840E-019 - 47.399999999999991 1.8732171574528399E-019 - 47.459999999999994 -7.0951826733065173E-019 - 47.519999999999996 -1.7045733181440573E-018 - 47.579999999999998 -2.7909528458556152E-018 - 47.640000000000001 -3.9590718199244353E-018 - 47.700000000000003 -5.1964154150570298E-018 - 47.759999999999991 -6.4873080902680485E-018 - 47.819999999999993 -7.8126890253565495E-018 - 47.879999999999995 -9.1498987346081200E-018 - 47.939999999999998 -1.0472492018924703E-017 - 48.000000000000000 -1.1750064968137449E-017 - 48.060000000000002 -1.2948127013550762E-017 - 48.119999999999990 -1.4028001158438464E-017 - 48.179999999999993 -1.4946778456330328E-017 - 48.239999999999995 -1.5657335269472559E-017 - 48.299999999999997 -1.6108415189462394E-017 - 48.359999999999999 -1.6244789291215851E-017 - 48.420000000000002 -1.6007501756736898E-017 - 48.479999999999990 -1.5334235244362681E-017 - 48.539999999999992 -1.4159760874669489E-017 - 48.599999999999994 -1.2416517999264577E-017 - 48.659999999999997 -1.0035328636611066E-017 - 48.719999999999999 -6.9462246711934326E-018 - 48.780000000000001 -3.0794226402917465E-018 - 48.840000000000003 1.6335526304772860E-018 - 48.899999999999991 7.2586250234306951E-018 - 48.959999999999994 1.3857777892576862E-017 - 49.019999999999996 2.1487544471349354E-017 - 49.079999999999998 3.0197386397657288E-017 - 49.140000000000001 4.0027921230830740E-017 - 49.200000000000003 5.1009131766709709E-017 - 49.259999999999991 6.3158431762175756E-017 - 49.319999999999993 7.6478747694760516E-017 - 49.379999999999995 9.0956609826806990E-017 - 49.439999999999998 1.0656019184226045E-016 - 49.500000000000000 1.2323740709842191E-016 - 49.560000000000002 1.4091421138441853E-016 - 49.619999999999990 1.5949305564389171E-016 - 49.679999999999993 1.7885150008703721E-016 - 49.739999999999995 1.9884109895482033E-016 - 49.799999999999997 2.1928687599111057E-016 - 49.859999999999999 2.3998689894648814E-016 - 49.920000000000002 2.6071274975748907E-016 - 49.979999999999990 2.8121049497835563E-016 - 50.039999999999992 3.0120233609500009E-016 - 50.099999999999994 3.2038908736460108E-016 - 50.159999999999997 3.3845370104495911E-016 - 50.219999999999999 3.5506638817365026E-016 - 50.280000000000001 3.6988966838835026E-016 - 50.340000000000003 3.8258635496278237E-016 - 50.399999999999991 3.9282733784136506E-016 - 50.459999999999994 4.0030237654252933E-016 - 50.519999999999996 4.0473100405408171E-016 - 50.579999999999998 4.0587640521992225E-016 - 50.640000000000001 4.0355978719782607E-016 - 50.700000000000003 3.9767642269658980E-016 - 50.759999999999991 3.8821357647048411E-016 - 50.819999999999993 3.7527007913290299E-016 - 50.879999999999995 3.5907517633482808E-016 - 50.939999999999998 3.4000982804686200E-016 - 51.000000000000000 3.1862733247762292E-016 - 51.060000000000002 2.9567394731801941E-016 - 51.119999999999990 2.7210837693490890E-016 - 51.179999999999993 2.4911899401757371E-016 - 51.239999999999995 2.2814030493203711E-016 - 51.299999999999997 2.1086373014925407E-016 - 51.359999999999999 1.9924613457862284E-016 - 51.420000000000002 1.9550936773546705E-016 - 51.479999999999990 2.0213551810564326E-016 - 51.539999999999992 2.2185203116791609E-016 - 51.599999999999994 2.5760664422475722E-016 - 51.659999999999997 3.1253598695300486E-016 - 51.719999999999999 3.8991251715979723E-016 - 51.780000000000001 4.9308334182158811E-016 - 51.840000000000003 6.2538975453295829E-016 - 51.899999999999991 7.9007494512494239E-016 - 51.959999999999994 9.9017017673332230E-016 - 52.019999999999996 1.2283563182874297E-015 - 52.079999999999998 1.5068141829779122E-015 - 52.140000000000001 1.8270501358366165E-015 - 52.200000000000003 2.1896944093744947E-015 - 52.259999999999991 2.5942885853928402E-015 - 52.319999999999993 3.0390433565114934E-015 - 52.379999999999995 3.5205741782418637E-015 - 52.439999999999998 4.0336210916891792E-015 - 52.500000000000000 4.5707459147301531E-015 - 52.560000000000002 5.1220032360519857E-015 - 52.619999999999990 5.6746085271177661E-015 - 52.679999999999993 6.2125712393336102E-015 - 52.739999999999995 6.7163358845865222E-015 - 52.799999999999997 7.1623829713443544E-015 - 52.859999999999999 7.5228539861642660E-015 - 52.920000000000002 7.7651367736919081E-015 - 52.979999999999990 7.8514554668030158E-015 - 53.039999999999992 7.7384544684180208E-015 - 53.099999999999994 7.3768107485808715E-015 - 53.159999999999997 6.7107431381320287E-015 - 53.219999999999999 5.6776963813594888E-015 - 53.280000000000001 4.2078462003087837E-015 - 53.339999999999989 2.2236677073091573E-015 - 53.399999999999991 -3.6040738698024396E-016 - 53.459999999999994 -3.6384711446566111E-015 - 53.519999999999996 -7.7135933133272364E-015 - 53.579999999999998 -1.2698165455025730E-014 - 53.640000000000001 -1.8714531583719064E-014 - 53.700000000000003 -2.5895343882157324E-014 - 53.759999999999991 -3.4384045734628515E-014 - 53.819999999999993 -4.4335650285150919E-014 - 53.879999999999995 -5.5917140900603993E-014 - 53.939999999999998 -6.9308406736234612E-014 - 54.000000000000000 -8.4702962382848641E-014 - 54.060000000000002 -1.0230891927835151E-013 - 54.119999999999990 -1.2235013298101566E-013 - 54.179999999999993 -1.4506739378849037E-013 - 54.239999999999995 -1.7072033987945717E-013 - 54.299999999999997 -1.9958861220708609E-013 - 54.359999999999999 -2.3197466730049309E-013 - 54.420000000000002 -2.6820594618270350E-013 - 54.479999999999990 -3.0863776002168359E-013 - 54.539999999999992 -3.5365697145300319E-013 - 54.599999999999994 -4.0368580748310715E-013 - 54.659999999999997 -4.5918645135598041E-013 - 54.719999999999999 -5.2066703310359134E-013 - 54.780000000000001 -5.8868673441922823E-013 - 54.839999999999989 -6.6386403215208243E-013 - 54.899999999999991 -7.4688431738741120E-013 - 54.959999999999994 -8.3850835024967322E-013 - 55.019999999999996 -9.3958369662964233E-013 - 55.079999999999998 -1.0510564745044978E-012 - 55.140000000000001 -1.1739825818539467E-012 - 55.200000000000003 -1.3095451177174153E-012 - 55.259999999999991 -1.4590684400396188E-012 - 55.319999999999993 -1.6240366873363268E-012 - 55.379999999999995 -1.8061121827624239E-012 - 55.439999999999998 -2.0071574874738459E-012 - 55.500000000000000 -2.2292588811499637E-012 - 55.560000000000002 -2.4747512344423499E-012 - 55.619999999999990 -2.7462432504347340E-012 - 55.679999999999993 -3.0466461919355403E-012 - 55.739999999999995 -3.3792086017031222E-012 - 55.799999999999997 -3.7475423215202722E-012 - 55.859999999999999 -4.1556571227719273E-012 - 55.920000000000002 -4.6079987572823138E-012 - 55.979999999999990 -5.1094795747258840E-012 - 56.039999999999992 -5.6655246990857826E-012 - 56.099999999999994 -6.2820993692040530E-012 - 56.159999999999997 -6.9657473633734655E-012 - 56.219999999999999 -7.7236302250250751E-012 - 56.280000000000001 -8.5635722172289472E-012 - 56.339999999999989 -9.4940786260300958E-012 - 56.399999999999991 -1.0524377584986387E-011 - 56.459999999999994 -1.1664457915739229E-011 - 56.519999999999996 -1.2925077638048939E-011 - 56.579999999999998 -1.4317799289512435E-011 - 56.640000000000001 -1.5855006123224501E-011 - 56.700000000000003 -1.7549902856643683E-011 - 56.759999999999991 -1.9416510715747113E-011 - 56.819999999999993 -2.1469687028418008E-011 - 56.879999999999995 -2.3725088073114342E-011 - 56.939999999999998 -2.6199139615115819E-011 - 57.000000000000000 -2.8908994900552684E-011 - 57.060000000000002 -3.1872480149296109E-011 - 57.119999999999990 -3.5108008790059147E-011 - 57.179999999999993 -3.8634480743906597E-011 - 57.239999999999995 -4.2471156804452835E-011 - 57.299999999999997 -4.6637525355245464E-011 - 57.359999999999999 -5.1153093884839548E-011 - 57.420000000000002 -5.6037237100493703E-011 - 57.479999999999990 -6.1308905006844507E-011 - 57.539999999999992 -6.6986376883737867E-011 - 57.599999999999994 -7.3086845646828004E-011 - 57.659999999999997 -7.9626065349177284E-011 - 57.719999999999999 -8.6617955974112533E-011 - 57.780000000000001 -9.4074044548111277E-011 - 57.839999999999989 -1.0200290984188661E-010 - 57.899999999999991 -1.1040945867462955E-010 - 57.959999999999994 -1.1929424031915611E-010 - 58.019999999999996 -1.2865250056148662E-010 - 58.079999999999998 -1.3847328555795523E-010 - 58.140000000000001 -1.4873833676867564E-010 - 58.200000000000003 -1.5942077552149585E-010 - 58.259999999999991 -1.7048357386191618E-010 - 58.319999999999993 -1.8187803883311978E-010 - 58.379999999999995 -1.9354219512344119E-010 - 58.439999999999998 -2.0539838120105884E-010 - 58.500000000000000 -2.1735101337117028E-010 - 58.560000000000002 -2.2928395899403856E-010 - 58.619999999999990 -2.4105786662453510E-010 - 58.679999999999993 -2.5250615288188630E-010 - 58.739999999999995 -2.6343178889968694E-010 - 58.799999999999997 -2.7360275353127789E-010 - 58.859999999999999 -2.8274712304392909E-010 - 58.920000000000002 -2.9054774031661057E-010 - 58.979999999999990 -2.9663570485249428E-010 - 59.039999999999992 -3.0058346295172605E-010 - 59.099999999999994 -3.0189732615292939E-010 - 59.159999999999997 -3.0000795721173591E-010 - 59.219999999999999 -2.9426115072272412E-010 - 59.280000000000001 -2.8390558708855415E-010 - 59.339999999999989 -2.6808088793256556E-010 - 59.399999999999991 -2.4580272638278388E-010 - 59.459999999999994 -2.1594729506711770E-010 - 59.519999999999996 -1.7723314752119700E-010 - 59.579999999999998 -1.2820129708614285E-010 - 59.640000000000001 -6.7190706478427808E-011 - 59.700000000000003 7.6845280948320141E-012 - 59.759999999999991 9.8564639337826213E-011 - 59.819999999999993 2.0787556803479642E-010 - 59.879999999999995 3.3836449271500985E-010 - 59.939999999999998 4.9313986673674111E-010 - 60.000000000000000 6.7571521115952625E-010 - 60.060000000000002 8.9005995485993271E-010 - 60.119999999999990 1.1406489905083265E-009 - 60.179999999999993 1.4325307038363948E-009 - 60.239999999999995 1.7713853703740685E-009 - 60.299999999999997 2.1636091466423042E-009 - 60.359999999999999 2.6163912237630402E-009 - 60.420000000000002 3.1378096240856923E-009 - 60.479999999999990 3.7369225103752858E-009 - 60.539999999999992 4.4238934038092035E-009 - 60.599999999999994 5.2100979250372754E-009 - 60.659999999999997 6.1082818014231474E-009 - 60.719999999999999 7.1326947512869081E-009 - 60.780000000000001 8.2992513411425999E-009 - 60.839999999999989 9.6257330822077327E-009 - 60.899999999999991 1.1131967189095086E-008 - 60.959999999999994 1.2840053377050147E-008 - 61.019999999999996 1.4774601968743234E-008 - 61.079999999999998 1.6962997586878371E-008 - 61.140000000000001 1.9435690392197764E-008 - 61.200000000000003 2.2226508580391607E-008 - 61.259999999999991 2.5372998326523797E-008 - 61.319999999999993 2.8916818710428322E-008 - 61.379999999999995 3.2904113955101309E-008 - 61.439999999999998 3.7386022963999199E-008 - 61.500000000000000 4.2419107835555103E-008 - 61.560000000000002 4.8065930156022191E-008 - 61.619999999999990 5.4395620263917153E-008 - 61.679999999999993 6.1484476295120972E-008 - 61.739999999999995 6.9416722780710217E-008 - 61.799999999999997 7.8285216658780859E-008 - 61.859999999999999 8.8192251100874488E-008 - 61.920000000000002 9.9250451029599593E-008 - 61.979999999999990 1.1158377306820023E-007 - 62.039999999999992 1.2532848047756550E-007 - 62.099999999999994 1.4063434206902552E-007 - 62.159999999999997 1.5766581658256303E-007 - 62.219999999999999 1.7660349477950364E-007 - 62.280000000000001 1.9764531188543089E-007 - 62.339999999999989 2.2100821878113229E-007 - 62.399999999999991 2.4693007889733587E-007 - 62.459999999999994 2.7567128330697737E-007 - 62.519999999999996 3.0751675468599930E-007 - 62.579999999999998 3.4277827123166852E-007 - 62.640000000000001 3.8179649803047327E-007 - 62.700000000000003 4.2494357123880990E-007 - 62.759999999999991 4.7262618597406062E-007 - 62.819999999999993 5.2528789292393188E-007 - 62.879999999999995 5.8341278730352166E-007 - 62.939999999999998 6.4752879573770206E-007 - 63.000000000000000 7.1821111556439737E-007 - 63.060000000000002 7.9608664035355475E-007 - 63.119999999999990 8.8183740102430985E-007 - 63.179999999999993 9.7620621716294189E-007 - 63.239999999999995 1.0800006533168432E-006 - 63.299999999999997 1.1940993753848042E-006 - 63.359999999999999 1.3194568236540583E-006 - 63.420000000000002 1.4571106332348059E-006 - 63.479999999999990 1.6081862608659813E-006 - 63.539999999999992 1.7739063756513639E-006 - 63.599999999999994 1.9555972699734396E-006 - 63.659999999999997 2.1546966732904963E-006 - 63.719999999999999 2.3727642751546734E-006 - 63.780000000000001 2.6114880284960128E-006 - 63.839999999999989 2.8726971153195722E-006 - 63.899999999999991 3.1583708482958900E-006 - 63.959999999999994 3.4706520776677603E-006 - 64.019999999999996 3.8118565486320549E-006 - 64.079999999999998 4.1844878623783007E-006 - 64.140000000000001 4.5912528378023785E-006 - 64.200000000000003 5.0350720778996927E-006 - 64.259999999999991 5.5191008748219140E-006 - 64.319999999999993 6.0467411612719050E-006 - 64.379999999999995 6.6216631020177977E-006 - 64.439999999999998 7.2478218930870970E-006 - 64.500000000000000 7.9294799798887946E-006 - 64.560000000000002 8.6712243602709933E-006 - 64.619999999999990 9.4779927827511200E-006 - 64.679999999999993 1.0355096598051378E-005 - 64.739999999999995 1.1308246565583659E-005 - 64.799999999999997 1.2343576079971416E-005 - 64.859999999999999 1.3467675879328136E-005 - 64.920000000000002 1.4687619430719195E-005 - 64.979999999999990 1.6010987744715200E-005 - 65.039999999999992 1.7445913249856255E-005 - 65.099999999999994 1.9001110284540801E-005 - 65.159999999999997 2.0685899854250239E-005 - 65.219999999999999 2.2510274091596726E-005 - 65.280000000000001 2.4484907658054333E-005 - 65.339999999999989 2.6621211328868340E-005 - 65.399999999999991 2.8931376558391718E-005 - 65.459999999999994 3.1428410590345101E-005 - 65.519999999999996 3.4126192774990603E-005 - 65.579999999999998 3.7039527480211008E-005 - 65.640000000000001 4.0184170358281322E-005 - 65.700000000000003 4.3576902826847812E-005 - 65.759999999999991 4.7235584990613206E-005 - 65.819999999999993 5.1179198344551360E-005 - 65.879999999999995 5.5427903907653184E-005 - 65.939999999999998 6.0003116494699000E-005 - 66.000000000000000 6.4927540248648738E-005 - 66.060000000000002 7.0225228026511260E-005 - 66.119999999999990 7.5921717121096507E-005 - 66.179999999999993 8.2043967542140374E-005 - 66.239999999999995 8.8620527056226654E-005 - 66.299999999999997 9.5681582384096644E-005 - 66.359999999999999 1.0325899029779401E-004 - 66.420000000000002 1.1138635179851989E-004 - 66.479999999999990 1.2009911982595572E-004 - 66.539999999999992 1.2943458695135237E-004 - 66.599999999999994 1.3943208424694638E-004 - 66.659999999999997 1.5013295202058834E-004 - 66.719999999999999 1.6158059176209796E-004 - 66.780000000000001 1.7382058209251697E-004 - 66.839999999999989 1.8690077534489757E-004 - 66.899999999999991 2.0087126756323560E-004 - 66.959999999999994 2.1578456196020765E-004 - 67.019999999999996 2.3169553214303943E-004 - 67.079999999999998 2.4866160349579821E-004 - 67.140000000000001 2.6674266904244735E-004 - 67.199999999999989 2.8600122306043506E-004 - 67.259999999999991 3.0650240369541537E-004 - 67.319999999999993 3.2831406868329279E-004 - 67.379999999999995 3.5150674326318214E-004 - 67.439999999999998 3.7615370550809043E-004 - 67.500000000000000 4.0233109002192358E-004 - 67.560000000000002 4.3011785542540807E-004 - 67.619999999999990 4.5959565016412342E-004 - 67.679999999999993 4.9084905749484744E-004 - 67.739999999999995 5.2396551980934275E-004 - 67.799999999999997 5.5903528985257515E-004 - 67.859999999999999 5.9615138687418552E-004 - 67.920000000000002 6.3540970907754264E-004 - 67.979999999999990 6.7690892831738015E-004 - 68.039999999999992 7.2075031810038353E-004 - 68.099999999999994 7.6703787983293994E-004 - 68.159999999999997 8.1587819484362206E-004 - 68.219999999999999 8.6738030753794027E-004 - 68.280000000000001 9.2165578714644347E-004 - 68.339999999999989 9.7881827248521170E-004 - 68.399999999999991 1.0389841113538341E-003 - 68.459999999999994 1.1022710536383183E-003 - 68.519999999999996 1.1687992634827160E-003 - 68.579999999999998 1.2386904402672768E-003 - 68.640000000000001 1.3120677007676749E-003 - 68.699999999999989 1.3890558851676923E-003 - 68.759999999999991 1.4697806965005820E-003 - 68.819999999999993 1.5543690354818877E-003 - 68.879999999999995 1.6429482047402239E-003 - 68.939999999999998 1.7356461037720439E-003 - 69.000000000000000 1.8325905804008899E-003 - 69.060000000000002 1.9339098780094739E-003 - 69.119999999999990 2.0397312068640748E-003 - 69.179999999999993 2.1501811154277057E-003 - 69.239999999999995 2.2653850890196944E-003 - 69.299999999999997 2.3854671632482340E-003 - 69.359999999999999 2.5105494174966787E-003 - 69.420000000000002 2.6407517672545153E-003 - 69.479999999999990 2.7761912860388470E-003 - 69.539999999999992 2.9169824882750361E-003 - 69.599999999999994 3.0632353282028877E-003 - 69.659999999999997 3.2150566414509162E-003 - 69.719999999999999 3.3725487240403350E-003 - 69.780000000000001 3.5358086903603068E-003 - 69.839999999999989 3.7049280486401151E-003 - 69.899999999999991 3.8799930834686864E-003 - 69.959999999999994 4.0610831606703989E-003 - 70.019999999999996 4.2482709066861604E-003 - 70.079999999999998 4.4416216220379921E-003 - 70.140000000000001 4.6411921741650415E-003 - 70.199999999999989 4.8470318302979076E-003 - 70.259999999999991 5.0591801401093052E-003 - 70.319999999999993 5.2776672724225374E-003 - 70.379999999999995 5.5025139598120472E-003 - 70.439999999999998 5.7337289092393795E-003 - 70.500000000000000 5.9713111785352447E-003 - 70.560000000000002 6.2152481659706622E-003 - 70.619999999999990 6.4655147956302339E-003 - 70.679999999999993 6.7220735572465339E-003 - 70.739999999999995 6.9848737705989171E-003 - 70.799999999999997 7.2538511895278634E-003 - 70.859999999999999 7.5289282838770641E-003 - 70.920000000000002 7.8100130058428576E-003 - 70.979999999999990 8.0969983491540210E-003 - 71.039999999999992 8.3897625460415889E-003 - 71.099999999999994 8.6881684308356358E-003 - 71.159999999999997 8.9920627231463227E-003 - 71.219999999999999 9.3012768460202008E-003 - 71.280000000000001 9.6156260870060711E-003 - 71.339999999999989 9.9349088717582933E-003 - 71.399999999999991 1.0258907187152480E-002 - 71.459999999999994 1.0587386514549721E-002 - 71.519999999999996 1.0920095864957527E-002 - 71.579999999999998 1.1256766931784646E-002 - 71.640000000000001 1.1597113479774095E-002 - 71.699999999999989 1.1940833563516502E-002 - 71.759999999999991 1.2287610014495116E-002 - 71.819999999999993 1.2637107612503452E-002 - 71.879999999999995 1.2988975204414442E-002 - 71.939999999999998 1.3342846204718145E-002 - 72.000000000000000 1.3698336543721563E-002 - 72.060000000000002 1.4055048842787287E-002 - 72.119999999999990 1.4412568992452281E-002 - 72.179999999999993 1.4770469612008900E-002 - 72.239999999999995 1.5128309099171603E-002 - 72.299999999999997 1.5485633106095808E-002 - 72.359999999999999 1.5841973379520258E-002 - 72.420000000000002 1.6196848993575264E-002 - 72.479999999999990 1.6549769144123677E-002 - 72.539999999999992 1.6900232459302732E-002 - 72.599999999999994 1.7247726743604475E-002 - 72.659999999999997 1.7591731626890011E-002 - 72.719999999999999 1.7931720207708151E-002 - 72.780000000000001 1.8267156563276842E-002 - 72.839999999999989 1.8597497887523191E-002 - 72.899999999999991 1.8922199171184151E-002 - 72.959999999999994 1.9240712509503426E-002 - 73.019999999999996 1.9552485253022465E-002 - 73.079999999999998 1.9856960786600049E-002 - 73.140000000000001 2.0153589298977197E-002 - 73.199999999999989 2.0441816063808380E-002 - 73.259999999999991 2.0721091525096852E-002 - 73.319999999999993 2.0990870369875580E-002 - 73.379999999999995 2.1250610431976756E-002 - 73.439999999999998 2.1499775084988213E-002 - 73.500000000000000 2.1737837740264544E-002 - 73.560000000000002 2.1964278838191128E-002 - 73.619999999999990 2.2178590446710410E-002 - 73.679999999999993 2.2380275378221411E-002 - 73.739999999999995 2.2568850195455684E-002 - 73.799999999999997 2.2743842883652918E-002 - 73.859999999999999 2.2904800674184614E-002 - 73.920000000000002 2.3051284743378645E-002 - 73.979999999999990 2.3182876341574413E-002 - 74.039999999999992 2.3299175765715892E-002 - 74.099999999999994 2.3399801863767063E-002 - 74.159999999999997 2.3484399156574558E-002 - 74.219999999999999 2.3552629657607949E-002 - 74.280000000000001 2.3604182631356822E-002 - 74.339999999999989 2.3638770939770022E-002 - 74.399999999999991 2.3656133966384128E-002 - 74.459999999999994 2.3656035953923692E-002 - 74.519999999999996 2.3638271487801215E-002 - 74.579999999999998 2.3602661515869695E-002 - 74.640000000000001 2.3549056809435337E-002 - 74.699999999999989 2.3477337330337352E-002 - 74.759999999999991 2.3387411241138065E-002 - 74.819999999999993 2.3279222555199076E-002 - 74.879999999999995 2.3152740603914226E-002 - 74.939999999999998 2.3007969211196008E-002 - 75.000000000000000 2.2844943981651104E-002 - 75.060000000000002 2.2663730914572518E-002 - 75.119999999999990 2.2464429473119326E-002 - 75.179999999999993 2.2247169087325696E-002 - 75.239999999999995 2.2012114208180663E-002 - 75.299999999999997 2.1759458612144709E-002 - 75.359999999999999 2.1489426301234786E-002 - 75.420000000000002 2.1202273550305403E-002 - 75.479999999999990 2.0898288419192394E-002 - 75.539999999999992 2.0577786697804090E-002 - 75.599999999999994 2.0241114314800496E-002 - 75.659999999999997 1.9888645416914732E-002 - 75.719999999999999 1.9520784899946127E-002 - 75.780000000000001 1.9137960548471666E-002 - 75.839999999999989 1.8740630588830895E-002 - 75.899999999999991 1.8329274026884224E-002 - 75.959999999999994 1.7904397508435119E-002 - 76.019999999999996 1.7466527067291071E-002 - 76.079999999999998 1.7016214729594803E-002 - 76.140000000000001 1.6554030795193134E-002 - 76.199999999999989 1.6080563046035168E-002 - 76.259999999999991 1.5596419297623319E-002 - 76.319999999999993 1.5102226477905527E-002 - 76.379999999999995 1.4598621742057907E-002 - 76.439999999999998 1.4086258129913935E-002 - 76.500000000000000 1.3565800129452976E-002 - 76.560000000000002 1.3037923485446298E-002 - 76.619999999999990 1.2503311710388536E-002 - 76.679999999999993 1.1962656958059436E-002 - 76.739999999999995 1.1416655870257301E-002 - 76.799999999999997 1.0866010492081569E-002 - 76.859999999999999 1.0311425633072208E-002 - 76.920000000000002 9.7536060812322377E-003 - 76.979999999999990 9.1932573163281007E-003 - 77.039999999999992 8.6310817440713120E-003 - 77.099999999999994 8.0677795350453437E-003 - 77.159999999999997 7.5040439693052768E-003 - 77.219999999999999 6.9405632163486285E-003 - 77.280000000000001 6.3780168901446041E-003 - 77.339999999999989 5.8170760243997921E-003 - 77.399999999999991 5.2583993297916120E-003 - 77.459999999999994 4.7026341874895992E-003 - 77.519999999999996 4.1504149331786071E-003 - 77.579999999999998 3.6023608714580903E-003 - 77.640000000000001 3.0590749544502863E-003 - 77.699999999999989 2.5211442457028959E-003 - 77.759999999999991 1.9891377654920397E-003 - 77.819999999999993 1.4636043756060171E-003 - 77.879999999999995 9.4507471345819938E-004 - 77.939999999999998 4.3405760678455691E-004 - 78.000000000000000 -6.8959141385571601E-005 - 78.060000000000002 -5.6350976168505207E-004 - 78.119999999999990 -1.0491511956107343E-003 - 78.179999999999993 -1.5254644403091154E-003 - 78.239999999999995 -1.9920536850114158E-003 - 78.299999999999997 -2.4485477179390829E-003 - 78.359999999999999 -2.8945995456288853E-003 - 78.420000000000002 -3.3298871658855840E-003 - 78.479999999999990 -3.7541137471691125E-003 - 78.539999999999992 -4.1670072197826733E-003 - 78.599999999999994 -4.5683212580080110E-003 - 78.659999999999997 -4.9578339959556548E-003 - 78.719999999999999 -5.3353493121463570E-003 - 78.780000000000001 -5.7006953360919507E-003 - 78.839999999999989 -6.0537255116706211E-003 - 78.899999999999991 -6.3943172752286134E-003 - 78.959999999999994 -6.7223720012223936E-003 - 79.019999999999996 -7.0378154029293941E-003 - 79.079999999999998 -7.3405957753700027E-003 - 79.140000000000001 -7.6306842274647419E-003 - 79.199999999999989 -7.9080732930961843E-003 - 79.259999999999991 -8.1727782873872827E-003 - 79.319999999999993 -8.4248347868549033E-003 - 79.379999999999995 -8.6642985266646398E-003 - 79.439999999999998 -8.8912452265090466E-003 - 79.500000000000000 -9.1057675691671794E-003 - 79.560000000000002 -9.3079784130385233E-003 - 79.619999999999990 -9.4980054465294318E-003 - 79.679999999999993 -9.6759955725443623E-003 - 79.739999999999995 -9.8421080740668868E-003 - 79.799999999999997 -9.9965182591517966E-003 - 79.859999999999999 -1.0139416134259371E-002 - 79.920000000000002 -1.0271002952601286E-002 - 79.979999999999990 -1.0391492896346310E-002 - 80.039999999999992 -1.0501110643436437E-002 - 80.099999999999994 -1.0600091348821694E-002 - 80.159999999999997 -1.0688679399204301E-002 - 80.219999999999999 -1.0767127074449214E-002 - 80.280000000000001 -1.0835695121463079E-002 - 80.340000000000003 -1.0894650531313502E-002 - 80.400000000000006 -1.0944265874568307E-002 - 80.460000000000008 -1.0984819610080227E-002 - 80.519999999999982 -1.1016593108937179E-002 - 80.579999999999984 -1.1039872827162763E-002 - 80.639999999999986 -1.1054947358948937E-002 - 80.699999999999989 -1.1062106119464846E-002 - 80.759999999999991 -1.1061642114284299E-002 - 80.819999999999993 -1.1053846783718501E-002 - 80.879999999999995 -1.1039011328887691E-002 - 80.939999999999998 -1.1017427424111222E-002 - 81.000000000000000 -1.0989386158844223E-002 - 81.060000000000002 -1.0955174607718537E-002 - 81.120000000000005 -1.0915079439514990E-002 - 81.180000000000007 -1.0869382964684132E-002 - 81.240000000000009 -1.0818364951446977E-002 - 81.299999999999983 -1.0762301285910100E-002 - 81.359999999999985 -1.0701463122652360E-002 - 81.419999999999987 -1.0636117145776775E-002 - 81.479999999999990 -1.0566526078146317E-002 - 81.539999999999992 -1.0492945197263338E-002 - 81.599999999999994 -1.0415626660482735E-002 - 81.659999999999997 -1.0334815540938316E-002 - 81.719999999999999 -1.0250750973952470E-002 - 81.780000000000001 -1.0163665995354275E-002 - 81.840000000000003 -1.0073787023867208E-002 - 81.900000000000006 -9.9813341421278630E-003 - 81.960000000000008 -9.8865196488462544E-003 - 82.019999999999982 -9.7895507338577655E-003 - 82.079999999999984 -9.6906274502390321E-003 - 82.139999999999986 -9.5899420956381855E-003 - 82.199999999999989 -9.4876817885218689E-003 - 82.259999999999991 -9.3840245664836008E-003 - 82.319999999999993 -9.2791414407103218E-003 - 82.379999999999995 -9.1731985524713972E-003 - 82.439999999999998 -9.0663539381430017E-003 - 82.500000000000000 -8.9587599241366632E-003 - 82.560000000000002 -8.8505601625294000E-003 - 82.620000000000005 -8.7418942886179143E-003 - 82.680000000000007 -8.6328929414124737E-003 - 82.740000000000009 -8.5236813485153034E-003 - 82.799999999999983 -8.4143790535799942E-003 - 82.859999999999985 -8.3050985727567850E-003 - 82.919999999999987 -8.1959464021332216E-003 - 82.979999999999990 -8.0870228975716101E-003 - 83.039999999999992 -7.9784242829305848E-003 - 83.099999999999994 -7.8702404399939533E-003 - 83.159999999999997 -7.7625548786003987E-003 - 83.219999999999999 -7.6554468087897103E-003 - 83.280000000000001 -7.5489893971892839E-003 - 83.340000000000003 -7.4432522927063635E-003 - 83.400000000000006 -7.3382991730832226E-003 - 83.460000000000008 -7.2341890709705144E-003 - 83.519999999999982 -7.1309779803031045E-003 - 83.579999999999984 -7.0287167834365890E-003 - 83.639999999999986 -6.9274521944193840E-003 - 83.699999999999989 -6.8272269127804836E-003 - 83.759999999999991 -6.7280807082254566E-003 - 83.819999999999993 -6.6300487352256698E-003 - 83.879999999999995 -6.5331629154957507E-003 - 83.939999999999998 -6.4374525290148655E-003 - 84.000000000000000 -6.3429431575250887E-003 - 84.060000000000002 -6.2496577536559636E-003 - 84.120000000000005 -6.1576160537224938E-003 - 84.180000000000007 -6.0668355211482812E-003 - 84.240000000000009 -5.9773310057959139E-003 - 84.299999999999983 -5.8891146874558630E-003 - 84.359999999999985 -5.8021967862318790E-003 - 84.419999999999987 -5.7165855144365278E-003 - 84.479999999999990 -5.6322865393091644E-003 - 84.539999999999992 -5.5493042938979734E-003 - 84.599999999999994 -5.4676415475819759E-003 - 84.659999999999997 -5.3872991912417168E-003 - 84.719999999999999 -5.3082764617218958E-003 - 84.780000000000001 -5.2305711955722249E-003 - 84.840000000000003 -5.1541798483287181E-003 - 84.900000000000006 -5.0790981978353494E-003 - 84.960000000000008 -5.0053207993107501E-003 - 85.019999999999982 -4.9328407630514111E-003 - 85.079999999999984 -4.8616509853966067E-003 - 85.139999999999986 -4.7917431804620023E-003 - 85.199999999999989 -4.7231082336942325E-003 - 85.259999999999991 -4.6557367254825852E-003 - 85.319999999999993 -4.5896177938186799E-003 - 85.379999999999995 -4.5247414040590298E-003 - 85.439999999999998 -4.4610963633243059E-003 - 85.500000000000000 -4.3986711393261347E-003 - 85.560000000000002 -4.3374541746103472E-003 - 85.620000000000005 -4.2774336670351222E-003 - 85.680000000000007 -4.2185975755736609E-003 - 85.740000000000009 -4.1609337368328937E-003 - 85.799999999999983 -4.1044305201751495E-003 - 85.859999999999985 -4.0490755516878309E-003 - 85.919999999999987 -3.9948570707476917E-003 - 85.979999999999990 -3.9417631170265074E-003 - 86.039999999999992 -3.8897824524762748E-003 - 86.099999999999994 -3.8389033493193107E-003 - 86.159999999999997 -3.7891148551439354E-003 - 86.219999999999999 -3.7404059273224875E-003 - 86.280000000000001 -3.6927667624191878E-003 - 86.340000000000003 -3.6461867344662769E-003 - 86.400000000000006 -3.6006564585568564E-003 - 86.460000000000008 -3.5561662899702270E-003 - 86.519999999999982 -3.5127076591054598E-003 - 86.579999999999984 -3.4702719394537323E-003 - 86.639999999999986 -3.4288517222800224E-003 - 86.699999999999989 -3.3884393805609890E-003 - 86.759999999999991 -3.3490285890707882E-003 - 86.819999999999993 -3.3106128897840061E-003 - 86.879999999999995 -3.2731869435249595E-003 - 86.939999999999998 -3.2367460510285399E-003 - 87.000000000000000 -3.2012855028057032E-003 - 87.060000000000002 -3.1668020225141705E-003 - 87.120000000000005 -3.1332923925618569E-003 - 87.180000000000007 -3.1007543658542825E-003 - 87.240000000000009 -3.0691863605331643E-003 - 87.299999999999983 -3.0385872733046299E-003 - 87.359999999999985 -3.0089568536144570E-003 - 87.419999999999987 -2.9802955352855372E-003 - 87.479999999999990 -2.9526040016740630E-003 - 87.539999999999992 -2.9258841948129901E-003 - 87.599999999999994 -2.9001383209499693E-003 - 87.659999999999997 -2.8753694264668332E-003 - 87.719999999999999 -2.8515814356786513E-003 - 87.780000000000001 -2.8287786979986746E-003 - 87.840000000000003 -2.8069662892017755E-003 - 87.900000000000006 -2.7861497511779197E-003 - 87.960000000000008 -2.7663357677574340E-003 - 88.019999999999982 -2.7475314403174549E-003 - 88.079999999999984 -2.7297443591683063E-003 - 88.139999999999986 -2.7129830384575882E-003 - 88.199999999999989 -2.6972563506136621E-003 - 88.259999999999991 -2.6825739962616263E-003 - 88.319999999999993 -2.6689463168290198E-003 - 88.379999999999995 -2.6563841960892966E-003 - 88.439999999999998 -2.6448988531364011E-003 - 88.500000000000000 -2.6345018692962761E-003 - 88.560000000000002 -2.6252060680574175E-003 - 88.620000000000005 -2.6170242084642497E-003 - 88.680000000000007 -2.6099695178726256E-003 - 88.740000000000009 -2.6040557642161223E-003 - 88.799999999999983 -2.5992969471653701E-003 - 88.859999999999985 -2.5957074886161914E-003 - 88.919999999999987 -2.5933025204244726E-003 - 88.979999999999990 -2.5920967618069876E-003 - 89.039999999999992 -2.5921057017137300E-003 - 89.099999999999994 -2.5933448081281235E-003 - 89.159999999999997 -2.5958293613488346E-003 - 89.219999999999999 -2.5995752019601155E-003 - 89.280000000000001 -2.6045978806710332E-003 - 89.340000000000003 -2.6109131864949205E-003 - 89.400000000000006 -2.6185364332513852E-003 - 89.460000000000008 -2.6274830333376698E-003 - 89.519999999999982 -2.6377678563085333E-003 - 89.579999999999984 -2.6494053724749993E-003 - 89.639999999999986 -2.6624099746550755E-003 - 89.699999999999989 -2.6767951853048982E-003 - 89.759999999999991 -2.6925739714335050E-003 - 89.819999999999993 -2.7097587836092717E-003 - 89.879999999999995 -2.7283609502917129E-003 - 89.939999999999998 -2.7483912075404364E-003 - 90.000000000000000 -2.7698592246008405E-003 - 90.060000000000002 -2.7927732788490898E-003 - 90.120000000000005 -2.8171408131574312E-003 - 90.180000000000007 -2.8429679874421997E-003 - 90.240000000000009 -2.8702591534498834E-003 - 90.299999999999983 -2.8990174494051145E-003 - 90.359999999999985 -2.9292444079578790E-003 - 90.419999999999987 -2.9609396781591331E-003 - 90.479999999999990 -2.9941011145202721E-003 - 90.539999999999992 -3.0287245990404275E-003 - 90.599999999999994 -3.0648038538888720E-003 - 90.659999999999997 -3.1023305317874591E-003 - 90.719999999999999 -3.1412941321269415E-003 - 90.780000000000001 -3.1816813149556740E-003 - 90.840000000000003 -3.2234765507727962E-003 - 90.900000000000006 -3.2666619440735521E-003 - 90.960000000000008 -3.3112161890591694E-003 - 91.019999999999982 -3.3571156221698065E-003 - 91.079999999999984 -3.4043335390493657E-003 - 91.139999999999986 -3.4528407234094742E-003 - 91.199999999999989 -3.5026045309163268E-003 - 91.259999999999991 -3.5535891920047162E-003 - 91.319999999999993 -3.6057562141098495E-003 - 91.379999999999995 -3.6590630039039468E-003 - 91.439999999999998 -3.7134647480084235E-003 - 91.500000000000000 -3.7689123198106399E-003 - 91.560000000000002 -3.8253540605381491E-003 - 91.620000000000005 -3.8827341413115598E-003 - 91.680000000000007 -3.9409940927770896E-003 - 91.739999999999981 -4.0000719464532829E-003 - 91.799999999999983 -4.0599016823844331E-003 - 91.859999999999985 -4.1204143694934404E-003 - 91.919999999999987 -4.1815380620509983E-003 - 91.979999999999990 -4.2431967529237410E-003 - 92.039999999999992 -4.3053118022296864E-003 - 92.099999999999994 -4.3678008790778849E-003 - 92.159999999999997 -4.4305786644249622E-003 - 92.219999999999999 -4.4935568745595872E-003 - 92.280000000000001 -4.5566438835992745E-003 - 92.340000000000003 -4.6197461802040462E-003 - 92.400000000000006 -4.6827666575831439E-003 - 92.460000000000008 -4.7456054911423594E-003 - 92.519999999999982 -4.8081614784420568E-003 - 92.579999999999984 -4.8703299052781108E-003 - 92.639999999999986 -4.9320044348891041E-003 - 92.699999999999989 -4.9930767934823223E-003 - 92.759999999999991 -5.0534366889118630E-003 - 92.819999999999993 -5.1129728983553367E-003 - 92.879999999999995 -5.1715717831258643E-003 - 92.939999999999998 -5.2291193952108484E-003 - 93.000000000000000 -5.2855008614560517E-003 - 93.060000000000002 -5.3405994625244577E-003 - 93.120000000000005 -5.3942994360110779E-003 - 93.180000000000007 -5.4464837086603693E-003 - 93.239999999999981 -5.4970358532888570E-003 - 93.299999999999983 -5.5458392857871764E-003 - 93.359999999999985 -5.5927784238779480E-003 - 93.419999999999987 -5.6377383200915867E-003 - 93.479999999999990 -5.6806050574930581E-003 - 93.539999999999992 -5.7212660318556154E-003 - 93.599999999999994 -5.7596104021109913E-003 - 93.659999999999997 -5.7955290619995763E-003 - 93.719999999999999 -5.8289159808708451E-003 - 93.780000000000001 -5.8596671237594348E-003 - 93.840000000000003 -5.8876805595011348E-003 - 93.900000000000006 -5.9128581741567264E-003 - 93.960000000000008 -5.9351052119056185E-003 - 94.019999999999982 -5.9543305985162919E-003 - 94.079999999999984 -5.9704464595032617E-003 - 94.139999999999986 -5.9833694622037871E-003 - 94.199999999999989 -5.9930213746659522E-003 - 94.259999999999991 -5.9993270696198347E-003 - 94.319999999999993 -6.0022174431202816E-003 - 94.379999999999995 -6.0016276155217809E-003 - 94.439999999999998 -5.9974989631539433E-003 - 94.500000000000000 -5.9897775714301688E-003 - 94.560000000000002 -5.9784149135168200E-003 - 94.620000000000005 -5.9633699214248891E-003 - 94.680000000000007 -5.9446060879166530E-003 - 94.739999999999981 -5.9220931059671602E-003 - 94.799999999999983 -5.8958080908808842E-003 - 94.859999999999985 -5.8657336097202905E-003 - 94.919999999999987 -5.8318587946730787E-003 - 94.979999999999990 -5.7941803013436457E-003 - 95.039999999999992 -5.7527004267510836E-003 - 95.099999999999994 -5.7074286439853655E-003 - 95.159999999999997 -5.6583814345237222E-003 - 95.219999999999999 -5.6055816897866888E-003 - 95.280000000000001 -5.5490591444158667E-003 - 95.340000000000003 -5.4888511550595428E-003 - 95.400000000000006 -5.4250005900336792E-003 - 95.460000000000008 -5.3575571108553759E-003 - 95.519999999999982 -5.2865777474062009E-003 - 95.579999999999984 -5.2121257071986839E-003 - 95.639999999999986 -5.1342700186727836E-003 - 95.699999999999989 -5.0530865155113446E-003 - 95.759999999999991 -4.9686575089179534E-003 - 95.819999999999993 -4.8810701145001658E-003 - 95.879999999999995 -4.7904185129933686E-003 - 95.939999999999998 -4.6968016634172235E-003 - 96.000000000000000 -4.6003233947234648E-003 - 96.060000000000002 -4.5010934630276772E-003 - 96.120000000000005 -4.3992262912224316E-003 - 96.180000000000007 -4.2948409152426441E-003 - 96.239999999999981 -4.1880606270324897E-003 - 96.299999999999983 -4.0790132471098814E-003 - 96.359999999999985 -3.9678293678052264E-003 - 96.419999999999987 -3.8546441429190082E-003 - 96.479999999999990 -3.7395950841842213E-003 - 96.539999999999992 -3.6228228408489195E-003 - 96.599999999999994 -3.5044708155710213E-003 - 96.659999999999997 -3.3846844024989688E-003 - 96.719999999999999 -3.2636107520989778E-003 - 96.780000000000001 -3.1413988980382099E-003 - 96.840000000000003 -3.0181990091184725E-003 - 96.900000000000006 -2.8941615103732126E-003 - 96.960000000000008 -2.7694376534791324E-003 - 97.019999999999982 -2.6441790275576194E-003 - 97.079999999999984 -2.5185371745908005E-003 - 97.139999999999986 -2.3926628696512723E-003 - 97.199999999999989 -2.2667062830320898E-003 - 97.259999999999991 -2.1408159249713902E-003 - 97.319999999999993 -2.0151391920692264E-003 - 97.379999999999995 -1.8898215152355065E-003 - 97.439999999999998 -1.7650064304712515E-003 - 97.500000000000000 -1.6408348515799141E-003 - 97.560000000000002 -1.5174450482593410E-003 - 97.620000000000005 -1.3949721826550401E-003 - 97.680000000000007 -1.2735483517511590E-003 - 97.739999999999981 -1.1533022261264582E-003 - 97.799999999999983 -1.0343584127394492E-003 - 97.859999999999985 -9.1683791482688199E-004 - 97.919999999999987 -8.0085739361055786E-004 - 97.979999999999990 -6.8652936012806351E-004 - 98.039999999999992 -5.7396162775898607E-004 - 98.099999999999994 -4.6325732728270431E-004 - 98.159999999999997 -3.5451482934718576E-004 - 98.219999999999999 -2.4782757640996311E-004 - 98.280000000000001 -1.4328393487502398E-004 - 98.340000000000003 -4.0966883844326585E-005 - 98.400000000000006 5.9045656274230084E-005 - 98.460000000000008 1.5668125617768560E-004 - 98.519999999999982 2.5187281663715985E-004 - 98.579999999999984 3.4455879359816376E-004 - 98.639999999999986 4.3468306019056255E-004 - 98.699999999999989 5.2219499612087808E-004 - 98.759999999999991 6.0704952248953115E-004 - 98.819999999999993 6.8920692907740381E-004 - 98.879999999999995 7.6863311934386000E-004 - 98.939999999999998 8.4529922895816394E-004 - 99.000000000000000 9.1918181539116098E-004 - 99.060000000000002 9.9026254758693760E-004 - 99.120000000000005 1.0585284145855503E-003 - 99.180000000000007 1.1239712299642671E-003 - 99.239999999999981 1.1865878285972258E-003 - 99.299999999999983 1.2463798963797184E-003 - 99.359999999999985 1.3033537922831169E-003 - 99.419999999999987 1.3575201584447305E-003 - 99.479999999999990 1.4088942016311295E-003 - 99.539999999999992 1.4574953999799906E-003 - 99.599999999999994 1.5033470603051668E-003 - 99.659999999999997 1.5464765783366507E-003 - 99.719999999999999 1.5869148324444849E-003 - 99.780000000000001 1.6246964963677795E-003 - 99.840000000000003 1.6598594309448114E-003 - 99.900000000000006 1.6924447436658199E-003 - 99.960000000000008 1.7224964072641241E-003 - 100.01999999999998 1.7500613156174272E-003 - 100.07999999999998 1.7751889708173805E-003 - 100.13999999999999 1.7979311452376418E-003 - 100.19999999999999 1.8183419838229517E-003 - 100.25999999999999 1.8364777130318889E-003 - 100.31999999999999 1.8523961324765478E-003 - 100.38000000000000 1.8661568468500993E-003 - 100.44000000000000 1.8778208281484954E-003 - 100.50000000000000 1.8874505471746848E-003 - 100.56000000000000 1.8951093347514454E-003 - 100.62000000000000 1.9008615808472991E-003 - 100.68000000000001 1.9047720975030721E-003 - 100.73999999999998 1.9069065859620381E-003 - 100.79999999999998 1.9073309953888233E-003 - 100.85999999999999 1.9061115374280075E-003 - 100.91999999999999 1.9033145025157976E-003 - 100.97999999999999 1.8990060469568971E-003 - 101.03999999999999 1.8932523625621786E-003 - 101.09999999999999 1.8861192415610749E-003 - 101.16000000000000 1.8776718635995730E-003 - 101.22000000000000 1.8679750431196346E-003 - 101.28000000000000 1.8570926876701065E-003 - 101.34000000000000 1.8450880777895163E-003 - 101.40000000000001 1.8320235655380924E-003 - 101.46000000000001 1.8179606823465885E-003 - 101.51999999999998 1.8029595464023242E-003 - 101.57999999999998 1.7870794867150225E-003 - 101.63999999999999 1.7703782526054296E-003 - 101.69999999999999 1.7529126443927819E-003 - 101.75999999999999 1.7347379511452605E-003 - 101.81999999999999 1.7159080949478130E-003 - 101.88000000000000 1.6964755520606359E-003 - 101.94000000000000 1.6764912666892672E-003 - 102.00000000000000 1.6560048185081783E-003 - 102.06000000000000 1.6350639717721256E-003 - 102.12000000000000 1.6137152480488340E-003 - 102.18000000000001 1.5920033692522915E-003 - 102.23999999999998 1.5699715075030585E-003 - 102.29999999999998 1.5476611461878805E-003 - 102.35999999999999 1.5251121898823045E-003 - 102.41999999999999 1.5023629165777524E-003 - 102.47999999999999 1.4794498374399963E-003 - 102.53999999999999 1.4564079492145603E-003 - 102.59999999999999 1.4332707171465300E-003 - 102.66000000000000 1.4100698926507644E-003 - 102.72000000000000 1.3868356555563938E-003 - 102.78000000000000 1.3635965752211315E-003 - 102.84000000000000 1.3403798496854553E-003 - 102.90000000000001 1.3172110843443718E-003 - 102.96000000000001 1.2941144367957977E-003 - 103.01999999999998 1.2711126592828107E-003 - 103.07999999999998 1.2482269785113482E-003 - 103.13999999999999 1.2254773986016387E-003 - 103.19999999999999 1.2028825113309406E-003 - 103.25999999999999 1.1804598496004449E-003 - 103.31999999999999 1.1582254464253515E-003 - 103.38000000000000 1.1361941400125821E-003 - 103.44000000000000 1.1143797800575621E-003 - 103.50000000000000 1.0927949737340240E-003 - 103.56000000000000 1.0714511895879007E-003 - 103.62000000000000 1.0503589413419347E-003 - 103.68000000000001 1.0295276795148078E-003 - 103.73999999999998 1.0089659752483314E-003 - 103.79999999999998 9.8868132526182891E-004 - 103.85999999999999 9.6868027238924395E-004 - 103.91999999999999 9.4896870182891607E-004 - 103.97999999999999 9.2955144485291712E-004 - 104.03999999999999 9.1043270474238541E-004 - 104.09999999999999 8.9161593439975886E-004 - 104.16000000000000 8.7310372128512133E-004 - 104.22000000000000 8.5489826568211779E-004 - 104.28000000000000 8.3700098787348990E-004 - 104.34000000000000 8.1941267764843535E-004 - 104.40000000000001 8.0213370926159901E-004 - 104.46000000000001 7.8516391573236978E-004 - 104.51999999999998 7.6850266366434246E-004 - 104.57999999999998 7.5214882764218082E-004 - 104.63999999999999 7.3610101591233088E-004 - 104.69999999999999 7.2035730509563758E-004 - 104.75999999999999 7.0491555805107125E-004 - 104.81999999999999 6.8977321078669070E-004 - 104.88000000000000 6.7492745414833436E-004 - 104.94000000000000 6.6037518284678257E-004 - 105.00000000000000 6.4611301878836087E-004 - 105.06000000000000 6.3213733768426625E-004 - 105.12000000000000 6.1844436063369760E-004 - 105.18000000000001 6.0503001950513698E-004 - 105.23999999999998 5.9189012436399097E-004 - 105.29999999999998 5.7902021946567022E-004 - 105.35999999999999 5.6641590217491921E-004 - 105.41999999999999 5.5407249582642404E-004 - 105.47999999999999 5.4198526666448036E-004 - 105.53999999999999 5.3014938351572823E-004 - 105.59999999999999 5.1855998943539465E-004 - 105.66000000000000 5.0721215832304364E-004 - 105.72000000000000 4.9610092960812016E-004 - 105.78000000000000 4.8522130092745785E-004 - 105.84000000000000 4.7456829942527524E-004 - 105.90000000000001 4.6413697986724364E-004 - 105.96000000000001 4.5392233127416993E-004 - 106.01999999999998 4.4391941543428699E-004 - 106.07999999999998 4.3412342414537878E-004 - 106.13999999999999 4.2452946761822614E-004 - 106.19999999999999 4.1513274540742694E-004 - 106.25999999999999 4.0592854274159592E-004 - 106.31999999999999 3.9691223834587751E-004 - 106.38000000000000 3.8807920822283459E-004 - 106.44000000000000 3.7942493404139583E-004 - 106.50000000000000 3.7094503691773983E-004 - 106.56000000000000 3.6263510615623797E-004 - 106.62000000000000 3.5449092347897282E-004 - 106.68000000000001 3.4650833977356506E-004 - 106.73999999999998 3.3868328434928912E-004 - 106.79999999999998 3.3101183442054441E-004 - 106.85999999999999 3.2349010848108643E-004 - 106.91999999999999 3.1611436445514325E-004 - 106.97999999999999 3.0888097848872059E-004 - 107.03999999999999 3.0178642038677754E-004 - 107.09999999999999 2.9482722239418998E-004 - 107.16000000000000 2.8800011502283312E-004 - 107.22000000000000 2.8130186997420782E-004 - 107.28000000000000 2.7472938724231881E-004 - 107.34000000000000 2.6827964636897799E-004 - 107.40000000000001 2.6194980444728443E-004 - 107.46000000000001 2.5573705590951510E-004 - 107.51999999999998 2.4963876636391845E-004 - 107.57999999999998 2.4365233077009119E-004 - 107.63999999999999 2.3777531502461817E-004 - 107.69999999999999 2.3200529739061357E-004 - 107.75999999999999 2.2634003779360175E-004 - 107.81999999999999 2.2077735952962424E-004 - 107.88000000000000 2.1531518443299779E-004 - 107.94000000000000 2.0995147994732054E-004 - 108.00000000000000 2.0468429654974966E-004 - 108.06000000000000 1.9951180229950237E-004 - 108.12000000000000 1.9443215756610057E-004 - 108.18000000000001 1.8944364374446737E-004 - 108.23999999999998 1.8454456780325567E-004 - 108.29999999999998 1.7973328679696704E-004 - 108.35999999999999 1.7500821259409973E-004 - 108.41999999999999 1.7036779336092019E-004 - 108.47999999999999 1.6581050758821380E-004 - 108.53999999999999 1.6133491086363599E-004 - 108.59999999999999 1.5693956095898210E-004 - 108.66000000000000 1.5262307898013098E-004 - 108.72000000000000 1.4838411795509111E-004 - 108.78000000000000 1.4422135090411809E-004 - 108.84000000000000 1.4013351107438899E-004 - 108.90000000000001 1.3611936717173955E-004 - 108.96000000000001 1.3217771446536418E-004 - 109.01999999999998 1.2830740822917383E-004 - 109.07999999999998 1.2450730970094381E-004 - 109.13999999999999 1.2077631206487002E-004 - 109.19999999999999 1.1711334136837147E-004 - 109.25999999999999 1.1351735801323466E-004 - 109.31999999999999 1.0998732105531238E-004 - 109.38000000000000 1.0652219952216797E-004 - 109.44000000000000 1.0312098668757697E-004 - 109.50000000000000 9.9782682340150271E-005 - 109.56000000000000 9.6506273794571000E-005 - 109.62000000000000 9.3290756998152689E-005 - 109.68000000000001 9.0135137217726429E-005 - 109.73999999999998 8.7038400550306115E-005 - 109.79999999999998 8.3999542110640307E-005 - 109.85999999999999 8.1017545724000278E-005 - 109.91999999999999 7.8091406030246488E-005 - 109.97999999999999 7.5220103220023757E-005 - 110.03999999999999 7.2402627912754712E-005 - 110.09999999999999 6.9637976622515508E-005 - 110.16000000000000 6.6925146416103038E-005 - 110.22000000000000 6.4263129927157972E-005 - 110.28000000000000 6.1650933913916247E-005 - 110.34000000000000 5.9087556925752204E-005 - 110.40000000000001 5.6572015787078635E-005 - 110.46000000000001 5.4103320434442103E-005 - 110.51999999999998 5.1680477541109554E-005 - 110.57999999999998 4.9302502494432738E-005 - 110.63999999999999 4.6968400952461718E-005 - 110.69999999999999 4.4677184995308114E-005 - 110.75999999999999 4.2427854972038762E-005 - 110.81999999999999 4.0219407991116513E-005 - 110.88000000000000 3.8050839595661776E-005 - 110.94000000000000 3.5921141596772262E-005 - 111.00000000000000 3.3829300086579545E-005 - 111.06000000000000 3.1774304265948826E-005 - 111.12000000000000 2.9755141683601878E-005 - 111.18000000000001 2.7770798175129147E-005 - 111.23999999999998 2.5820266806664883E-005 - 111.29999999999998 2.3902544263689407E-005 - 111.35999999999999 2.2016628294528587E-005 - 111.41999999999999 2.0161530837124649E-005 - 111.47999999999999 1.8336268459621770E-005 - 111.53999999999999 1.6539866339576872E-005 - 111.59999999999999 1.4771362679984062E-005 - 111.66000000000000 1.3029803041911289E-005 - 111.72000000000000 1.1314243974419210E-005 - 111.78000000000000 9.6237549971194911E-006 - 111.84000000000000 7.9574147078461464E-006 - 111.90000000000001 6.3143171066862100E-006 - 111.96000000000001 4.6935657071152181E-006 - 112.01999999999998 3.0942821706388387E-006 - 112.07999999999998 1.5156017152584771E-006 - 112.13999999999999 -4.3322474469092002E-008 - 112.19999999999999 -1.5833183170021125E-006 - 112.25999999999999 -3.1051891926772817E-006 - 112.31999999999999 -4.6097167170612113E-006 - 112.38000000000000 -6.0976523301054850E-006 - 112.44000000000000 -7.5697202638541693E-006 - 112.50000000000000 -9.0266102949378903E-006 - 112.56000000000000 -1.0468976864355715E-005 - 112.62000000000000 -1.1897435386879075E-005 - 112.68000000000001 -1.3312561694478170E-005 - 112.73999999999998 -1.4714888417837640E-005 - 112.79999999999998 -1.6104903752985921E-005 - 112.85999999999999 -1.7483048949314391E-005 - 112.91999999999999 -1.8849717791820795E-005 - 112.97999999999999 -2.0205254400079104E-005 - 113.03999999999999 -2.1549956282891408E-005 - 113.09999999999999 -2.2884068293750110E-005 - 113.16000000000000 -2.4207790187945896E-005 - 113.22000000000000 -2.5521267275490817E-005 - 113.28000000000000 -2.6824604497207498E-005 - 113.34000000000000 -2.8117854201851832E-005 - 113.40000000000001 -2.9401022822252238E-005 - 113.46000000000001 -3.0674078865671343E-005 - 113.51999999999998 -3.1936939805104311E-005 - 113.57999999999998 -3.3189489812629431E-005 - 113.63999999999999 -3.4431573583178610E-005 - 113.69999999999999 -3.5662995600328537E-005 - 113.75999999999999 -3.6883528204105779E-005 - 113.81999999999999 -3.8092907218029515E-005 - 113.88000000000000 -3.9290841726404375E-005 - 113.94000000000000 -4.0477003083181238E-005 - 114.00000000000000 -4.1651041657564657E-005 - 114.06000000000000 -4.2812580044632405E-005 - 114.12000000000000 -4.3961213665831577E-005 - 114.18000000000001 -4.5096523647956475E-005 - 114.23999999999998 -4.6218061307126731E-005 - 114.29999999999998 -4.7325365800366348E-005 - 114.35999999999999 -4.8417969605385897E-005 - 114.41999999999999 -4.9495392293630848E-005 - 114.47999999999999 -5.0557150305689889E-005 - 114.53999999999999 -5.1602760635980442E-005 - 114.59999999999999 -5.2631746725481638E-005 - 114.66000000000000 -5.3643640384992716E-005 - 114.72000000000000 -5.4637993017270170E-005 - 114.78000000000000 -5.5614378489559179E-005 - 114.84000000000000 -5.6572399602078721E-005 - 114.90000000000001 -5.7511683546043788E-005 - 114.96000000000001 -5.8431904924590811E-005 - 115.01999999999998 -5.9332768231135337E-005 - 115.07999999999998 -6.0214024324252902E-005 - 115.13999999999999 -6.1075471480552727E-005 - 115.19999999999999 -6.1916946382389794E-005 - 115.25999999999999 -6.2738343240832168E-005 - 115.31999999999999 -6.3539584486733660E-005 - 115.38000000000000 -6.4320650566196082E-005 - 115.44000000000000 -6.5081551885446775E-005 - 115.50000000000000 -6.5822350333888873E-005 - 115.56000000000000 -6.6543130574163776E-005 - 115.62000000000000 -6.7244025260281790E-005 - 115.68000000000001 -6.7925190386663016E-005 - 115.73999999999998 -6.8586815054788632E-005 - 115.79999999999998 -6.9229110355652917E-005 - 115.85999999999999 -6.9852313868540528E-005 - 115.91999999999999 -7.0456688649656171E-005 - 115.97999999999999 -7.1042520618284000E-005 - 116.03999999999999 -7.1610114286723640E-005 - 116.09999999999999 -7.2159798080343753E-005 - 116.16000000000000 -7.2691917989549636E-005 - 116.22000000000000 -7.3206854755988757E-005 - 116.28000000000000 -7.3704993946062267E-005 - 116.34000000000000 -7.4186744190631547E-005 - 116.40000000000001 -7.4652540193326190E-005 - 116.46000000000001 -7.5102832494709196E-005 - 116.51999999999998 -7.5538094520954154E-005 - 116.57999999999998 -7.5958794758962994E-005 - 116.63999999999999 -7.6365440793967846E-005 - 116.69999999999999 -7.6758516052614093E-005 - 116.75999999999999 -7.7138538744649457E-005 - 116.81999999999999 -7.7506011765329392E-005 - 116.88000000000000 -7.7861427714768841E-005 - 116.94000000000000 -7.8205284439717183E-005 - 117.00000000000000 -7.8538055869991792E-005 - 117.06000000000000 -7.8860193141882520E-005 - 117.12000000000000 -7.9172135580558791E-005 - 117.18000000000001 -7.9474284014748668E-005 - 117.23999999999998 -7.9767013307901463E-005 - 117.29999999999998 -8.0050672133867085E-005 - 117.35999999999999 -8.0325571722486615E-005 - 117.41999999999999 -8.0591984256153713E-005 - 117.47999999999999 -8.0850163869069288E-005 - 117.53999999999999 -8.1100315143052665E-005 - 117.59999999999999 -8.1342624231621154E-005 - 117.66000000000000 -8.1577242710448848E-005 - 117.72000000000000 -8.1804309772232610E-005 - 117.78000000000000 -8.2023941563693777E-005 - 117.84000000000000 -8.2236231621174433E-005 - 117.90000000000001 -8.2441255965882664E-005 - 117.96000000000001 -8.2639085125222727E-005 - 118.01999999999998 -8.2829780852706065E-005 - 118.07999999999998 -8.3013406368350726E-005 - 118.13999999999999 -8.3190007926906915E-005 - 118.19999999999999 -8.3359626795325413E-005 - 118.25999999999999 -8.3522301042303164E-005 - 118.31999999999999 -8.3678065885957681E-005 - 118.38000000000000 -8.3826946188505469E-005 - 118.44000000000000 -8.3968962435879399E-005 - 118.50000000000000 -8.4104118243562002E-005 - 118.56000000000000 -8.4232399997188749E-005 - 118.62000000000000 -8.4353797701003814E-005 - 118.68000000000001 -8.4468286866099538E-005 - 118.73999999999998 -8.4575813833371241E-005 - 118.79999999999998 -8.4676336442052793E-005 - 118.85999999999999 -8.4769789731729096E-005 - 118.91999999999999 -8.4856106561676924E-005 - 118.97999999999999 -8.4935215335779968E-005 - 119.03999999999999 -8.5007051674833799E-005 - 119.09999999999999 -8.5071561475552656E-005 - 119.16000000000000 -8.5128681973196043E-005 - 119.22000000000000 -8.5178385250702436E-005 - 119.28000000000000 -8.5220649988678428E-005 - 119.34000000000000 -8.5255476497705072E-005 - 119.40000000000001 -8.5282887104819251E-005 - 119.46000000000001 -8.5302932983001339E-005 - 119.51999999999998 -8.5315692003648725E-005 - 119.57999999999998 -8.5321262761743020E-005 - 119.63999999999999 -8.5319773230830060E-005 - 119.69999999999999 -8.5311370276462768E-005 - 119.75999999999999 -8.5296220710361220E-005 - 119.81999999999999 -8.5274503418488384E-005 - 119.88000000000000 -8.5246417384226360E-005 - 119.94000000000000 -8.5212171862887958E-005 - 120.00000000000000 -8.5171980243146516E-005 - 120.06000000000000 -8.5126055431575275E-005 - 120.12000000000000 -8.5074623988702308E-005 - 120.18000000000001 -8.5017909050513022E-005 - 120.23999999999998 -8.4956124744535235E-005 - 120.29999999999998 -8.4889497496070781E-005 - 120.35999999999999 -8.4818242994231331E-005 - 120.41999999999999 -8.4742580220345114E-005 - 120.47999999999999 -8.4662727618198180E-005 - 120.53999999999999 -8.4578914133914590E-005 - 120.59999999999999 -8.4491352343221563E-005 - 120.66000000000000 -8.4400275903764033E-005 - 120.72000000000000 -8.4305913485796486E-005 - 120.78000000000000 -8.4208507645380624E-005 - 120.84000000000000 -8.4108314515645273E-005 - 120.90000000000001 -8.4005598188728728E-005 - 120.95999999999998 -8.3900630543546338E-005 - 121.01999999999998 -8.3793702402661753E-005 - 121.07999999999998 -8.3685130730043228E-005 - 121.13999999999999 -8.3575237710459144E-005 - 121.19999999999999 -8.3464361226993520E-005 - 121.25999999999999 -8.3352863752362004E-005 - 121.31999999999999 -8.3241113710427940E-005 - 121.38000000000000 -8.3129508158609467E-005 - 121.44000000000000 -8.3018459671766766E-005 - 121.50000000000000 -8.2908385557356102E-005 - 121.56000000000000 -8.2799724045226381E-005 - 121.62000000000000 -8.2692928461463732E-005 - 121.68000000000001 -8.2588446723737554E-005 - 121.73999999999998 -8.2486735713097631E-005 - 121.79999999999998 -8.2388276209852433E-005 - 121.85999999999999 -8.2293539766726479E-005 - 121.91999999999999 -8.2202995116809169E-005 - 121.97999999999999 -8.2117119115702558E-005 - 122.03999999999999 -8.2036374803968689E-005 - 122.09999999999999 -8.1961242328467456E-005 - 122.16000000000000 -8.1892166819722025E-005 - 122.22000000000000 -8.1829622162777479E-005 - 122.28000000000000 -8.1774057575185430E-005 - 122.34000000000000 -8.1725916522936356E-005 - 122.40000000000001 -8.1685642814364280E-005 - 122.45999999999998 -8.1653677841495755E-005 - 122.51999999999998 -8.1630451728151185E-005 - 122.57999999999998 -8.1616390072966751E-005 - 122.63999999999999 -8.1611914196781768E-005 - 122.69999999999999 -8.1617426900676418E-005 - 122.75999999999999 -8.1633312301532558E-005 - 122.81999999999999 -8.1659962417070746E-005 - 122.88000000000000 -8.1697735223323643E-005 - 122.94000000000000 -8.1746956101973241E-005 - 123.00000000000000 -8.1807956214932293E-005 - 123.06000000000000 -8.1881001436527110E-005 - 123.12000000000000 -8.1966346925904014E-005 - 123.18000000000001 -8.2064199338797834E-005 - 123.23999999999998 -8.2174731013492919E-005 - 123.29999999999998 -8.2298063751486895E-005 - 123.35999999999999 -8.2434285482070171E-005 - 123.41999999999999 -8.2583434127883482E-005 - 123.47999999999999 -8.2745495839455914E-005 - 123.53999999999999 -8.2920415012777222E-005 - 123.59999999999999 -8.3108093560481917E-005 - 123.66000000000000 -8.3308383589817891E-005 - 123.72000000000000 -8.3521098101097384E-005 - 123.78000000000000 -8.3746013707483276E-005 - 123.84000000000000 -8.3982864713330165E-005 - 123.90000000000001 -8.4231356864628519E-005 - 123.95999999999998 -8.4491148409077414E-005 - 124.01999999999998 -8.4761874455447543E-005 - 124.07999999999998 -8.5043149073960769E-005 - 124.13999999999999 -8.5334550356019472E-005 - 124.19999999999999 -8.5635628911305604E-005 - 124.25999999999999 -8.5945918312820403E-005 - 124.31999999999999 -8.6264927688800588E-005 - 124.38000000000000 -8.6592145875427217E-005 - 124.44000000000000 -8.6927044035218468E-005 - 124.50000000000000 -8.7269091775354929E-005 - 124.56000000000000 -8.7617732531073802E-005 - 124.62000000000000 -8.7972418878992870E-005 - 124.68000000000001 -8.8332594859348500E-005 - 124.73999999999998 -8.8697697621959232E-005 - 124.79999999999998 -8.9067177307802276E-005 - 124.85999999999999 -8.9440482701581476E-005 - 124.91999999999999 -8.9817076162719792E-005 - 124.97999999999999 -9.0196427774274270E-005 - 125.03999999999999 -9.0578033616569597E-005 - 125.09999999999999 -9.0961391192183205E-005 - 125.16000000000000 -9.1346019125930632E-005 - 125.22000000000000 -9.1731460683353925E-005 - 125.28000000000000 -9.2117271348580052E-005 - 125.34000000000000 -9.2503028802575700E-005 - 125.40000000000001 -9.2888337941766133E-005 - 125.45999999999998 -9.3272830655520669E-005 - 125.51999999999998 -9.3656146263718191E-005 - 125.57999999999998 -9.4037963451940902E-005 - 125.63999999999999 -9.4417989246845004E-005 - 125.69999999999999 -9.4795941825953262E-005 - 125.75999999999999 -9.5171598630468954E-005 - 125.81999999999999 -9.5544750139720162E-005 - 125.88000000000000 -9.5915239542682191E-005 - 125.94000000000000 -9.6282921156787320E-005 - 126.00000000000000 -9.6647709404651841E-005 - 126.06000000000000 -9.7009557103763070E-005 - 126.12000000000000 -9.7368434881014683E-005 - 126.18000000000001 -9.7724368301019770E-005 - 126.23999999999998 -9.8077405487995357E-005 - 126.29999999999998 -9.8427634479579063E-005 - 126.35999999999999 -9.8775174911123199E-005 - 126.41999999999999 -9.9120165094774019E-005 - 126.47999999999999 -9.9462759780324204E-005 - 126.53999999999999 -9.9803140414723421E-005 - 126.59999999999999 -1.0014149169594385E-004 - 126.66000000000000 -1.0047801618110936E-004 - 126.72000000000000 -1.0081292647600637E-004 - 126.78000000000000 -1.0114641531003118E-004 - 126.84000000000000 -1.0147870693764909E-004 - 126.90000000000001 -1.0181000355379627E-004 - 126.95999999999998 -1.0214050510751680E-004 - 127.01999999999998 -1.0247041516351664E-004 - 127.07999999999998 -1.0279993504046449E-004 - 127.13999999999999 -1.0312925131332381E-004 - 127.19999999999999 -1.0345855845537390E-004 - 127.25999999999999 -1.0378803477483540E-004 - 127.31999999999999 -1.0411784458787852E-004 - 127.38000000000000 -1.0444815220819100E-004 - 127.44000000000000 -1.0477910996007260E-004 - 127.50000000000000 -1.0511085536344299E-004 - 127.56000000000000 -1.0544350314731606E-004 - 127.62000000000000 -1.0577715120994192E-004 - 127.68000000000001 -1.0611187089094806E-004 - 127.73999999999998 -1.0644771126629050E-004 - 127.79999999999998 -1.0678469213578084E-004 - 127.85999999999999 -1.0712279754922714E-004 - 127.91999999999999 -1.0746198037689874E-004 - 127.97999999999999 -1.0780215586434663E-004 - 128.03999999999999 -1.0814320157117225E-004 - 128.09999999999999 -1.0848495863739459E-004 - 128.16000000000000 -1.0882722951888294E-004 - 128.22000000000000 -1.0916977501757973E-004 - 128.28000000000000 -1.0951233628582519E-004 - 128.34000000000000 -1.0985458665098755E-004 - 128.40000000000001 -1.1019620355951291E-004 - 128.45999999999998 -1.1053680382199474E-004 - 128.51999999999998 -1.1087597591922083E-004 - 128.57999999999998 -1.1121328591300796E-004 - 128.63999999999999 -1.1154826994945684E-004 - 128.69999999999999 -1.1188041621630062E-004 - 128.75999999999999 -1.1220919378197528E-004 - 128.81999999999999 -1.1253405317659268E-004 - 128.88000000000000 -1.1285439374150407E-004 - 128.94000000000000 -1.1316961038665362E-004 - 129.00000000000000 -1.1347904899044841E-004 - 129.06000000000000 -1.1378203596650994E-004 - 129.12000000000000 -1.1407786695931025E-004 - 129.18000000000001 -1.1436583668403468E-004 - 129.23999999999998 -1.1464518488240912E-004 - 129.29999999999998 -1.1491514610549183E-004 - 129.35999999999999 -1.1517493202251932E-004 - 129.41999999999999 -1.1542373633887069E-004 - 129.47999999999999 -1.1566072795808543E-004 - 129.53999999999999 -1.1588506453836889E-004 - 129.59999999999999 -1.1609588825829814E-004 - 129.66000000000000 -1.1629232221499040E-004 - 129.72000000000000 -1.1647346943473111E-004 - 129.78000000000000 -1.1663843217705505E-004 - 129.84000000000000 -1.1678628350969432E-004 - 129.90000000000001 -1.1691608343219353E-004 - 129.95999999999998 -1.1702687691960922E-004 - 130.01999999999998 -1.1711769637974239E-004 - 130.07999999999998 -1.1718755297137340E-004 - 130.13999999999999 -1.1723545423903264E-004 - 130.19999999999999 -1.1726038300246080E-004 - 130.25999999999999 -1.1726131791220494E-004 - 130.31999999999999 -1.1723723614644362E-004 - 130.38000000000000 -1.1718709434700048E-004 - 130.44000000000000 -1.1710985723047511E-004 - 130.50000000000000 -1.1700448085421706E-004 - 130.56000000000000 -1.1686993464844117E-004 - 130.62000000000000 -1.1670519026782881E-004 - 130.68000000000001 -1.1650922657716167E-004 - 130.73999999999998 -1.1628103944669523E-004 - 130.79999999999998 -1.1601964344255548E-004 - 130.85999999999999 -1.1572406395636870E-004 - 130.91999999999999 -1.1539335746942424E-004 - 130.97999999999999 -1.1502660707359019E-004 - 131.03999999999999 -1.1462292087662281E-004 - 131.09999999999999 -1.1418143647362697E-004 - 131.16000000000000 -1.1370131291316194E-004 - 131.22000000000000 -1.1318175638934698E-004 - 131.28000000000000 -1.1262199752071842E-004 - 131.34000000000000 -1.1202131743871300E-004 - 131.40000000000001 -1.1137902016579891E-004 - 131.45999999999998 -1.1069446607232675E-004 - 131.51999999999998 -1.0996704472776790E-004 - 131.57999999999998 -1.0919619667062533E-004 - 131.63999999999999 -1.0838141049204986E-004 - 131.69999999999999 -1.0752220666493802E-004 - 131.75999999999999 -1.0661816600200987E-004 - 131.81999999999999 -1.0566890435407639E-004 - 131.88000000000000 -1.0467408889614348E-004 - 131.94000000000000 -1.0363343385375289E-004 - 132.00000000000000 -1.0254669173126388E-004 - 132.06000000000000 -1.0141366590841760E-004 - 132.12000000000000 -1.0023419105561350E-004 - 132.18000000000001 -9.9008166563425309E-005 - 132.23999999999998 -9.7735510636243533E-005 - 132.29999999999998 -9.6416196503593379E-005 - 132.35999999999999 -9.5050237503917960E-005 - 132.41999999999999 -9.3637676366991709E-005 - 132.47999999999999 -9.2178616155501618E-005 - 132.53999999999999 -9.0673195291036412E-005 - 132.59999999999999 -8.9121601336280523E-005 - 132.66000000000000 -8.7524051636029258E-005 - 132.72000000000000 -8.5880829699279493E-005 - 132.78000000000000 -8.4192248540390305E-005 - 132.84000000000000 -8.2458677389905672E-005 - 132.90000000000001 -8.0680526108040237E-005 - 132.95999999999998 -7.8858240233205232E-005 - 133.01999999999998 -7.6992314871053856E-005 - 133.07999999999998 -7.5083272968386256E-005 - 133.13999999999999 -7.3131682027968337E-005 - 133.19999999999999 -7.1138124415854513E-005 - 133.25999999999999 -6.9103216778706387E-005 - 133.31999999999999 -6.7027591668995204E-005 - 133.38000000000000 -6.4911898884006998E-005 - 133.44000000000000 -6.2756798376576405E-005 - 133.50000000000000 -6.0562956230564654E-005 - 133.56000000000000 -5.8331047262624256E-005 - 133.62000000000000 -5.6061748327023263E-005 - 133.68000000000001 -5.3755746156217016E-005 - 133.73999999999998 -5.1413720082182999E-005 - 133.79999999999998 -4.9036364598090871E-005 - 133.85999999999999 -4.6624384762640266E-005 - 133.91999999999999 -4.4178488144754744E-005 - 133.97999999999999 -4.1699394304661040E-005 - 134.03999999999999 -3.9187847582728432E-005 - 134.09999999999999 -3.6644607534485146E-005 - 134.16000000000000 -3.4070460532501244E-005 - 134.22000000000000 -3.1466207384305549E-005 - 134.28000000000000 -2.8832684260719738E-005 - 134.34000000000000 -2.6170748240123129E-005 - 134.40000000000001 -2.3481282022602460E-005 - 134.45999999999998 -2.0765194843418213E-005 - 134.51999999999998 -1.8023420493920730E-005 - 134.57999999999998 -1.5256911445442277E-005 - 134.63999999999999 -1.2466641939823300E-005 - 134.69999999999999 -9.6536016948944217E-006 - 134.75999999999999 -6.8187971871280467E-006 - 134.81999999999999 -3.9632466225958372E-006 - 134.88000000000000 -1.0879820676178837E-006 - 134.94000000000000 1.8059542457445759E-006 - 135.00000000000000 4.7175097070619942E-006 - 135.06000000000000 7.6456179679586843E-006 - 135.12000000000000 1.0589200496055137E-005 - 135.18000000000001 1.3547162837153318E-005 - 135.23999999999998 1.6518394415426240E-005 - 135.29999999999998 1.9501763273056096E-005 - 135.35999999999999 2.2496117048641141E-005 - 135.41999999999999 2.5500278626738296E-005 - 135.47999999999999 2.8513041184646029E-005 - 135.53999999999999 3.1533172020360410E-005 - 135.59999999999999 3.4559411184850741E-005 - 135.66000000000000 3.7590469698802304E-005 - 135.72000000000000 4.0625025011133387E-005 - 135.78000000000000 4.3661731923942584E-005 - 135.84000000000000 4.6699216673925988E-005 - 135.90000000000001 4.9736087646199915E-005 - 135.95999999999998 5.2770930428445930E-005 - 136.01999999999998 5.5802319369635378E-005 - 136.07999999999998 5.8828815380641356E-005 - 136.13999999999999 6.1848979023401148E-005 - 136.19999999999999 6.4861356338414492E-005 - 136.25999999999999 6.7864514994949178E-005 - 136.31999999999999 7.0857019439978465E-005 - 136.38000000000000 7.3837435801471046E-005 - 136.44000000000000 7.6804355848246667E-005 - 136.50000000000000 7.9756389647850877E-005 - 136.56000000000000 8.2692149084843511E-005 - 136.62000000000000 8.5610286179032676E-005 - 136.68000000000001 8.8509463523147439E-005 - 136.73999999999998 9.1388374065718640E-005 - 136.79999999999998 9.4245722548907441E-005 - 136.85999999999999 9.7080240601824880E-005 - 136.91999999999999 9.9890695214847178E-005 - 136.97999999999999 1.0267586390127861E-004 - 137.03999999999999 1.0543456540453062E-004 - 137.09999999999999 1.0816563604487861E-004 - 137.16000000000000 1.1086793984857495E-004 - 137.22000000000000 1.1354037428263088E-004 - 137.28000000000000 1.1618188304670084E-004 - 137.34000000000000 1.1879142444903268E-004 - 137.40000000000001 1.2136800004818591E-004 - 137.45999999999998 1.2391066882995336E-004 - 137.51999999999998 1.2641850920048977E-004 - 137.57999999999998 1.2889067205086390E-004 - 137.63999999999999 1.3132634991641463E-004 - 137.69999999999999 1.3372476966318537E-004 - 137.75999999999999 1.3608524761555578E-004 - 137.81999999999999 1.3840712584142293E-004 - 137.88000000000000 1.4068981972664645E-004 - 137.94000000000000 1.4293279550921340E-004 - 138.00000000000000 1.4513558881748976E-004 - 138.06000000000000 1.4729776738561567E-004 - 138.12000000000000 1.4941897945225922E-004 - 138.18000000000001 1.5149891798795339E-004 - 138.23999999999998 1.5353732012947472E-004 - 138.29999999999998 1.5553399712356838E-004 - 138.35999999999999 1.5748878775726782E-004 - 138.41999999999999 1.5940157823763059E-004 - 138.47999999999999 1.6127231026363657E-004 - 138.53999999999999 1.6310094776609323E-004 - 138.59999999999999 1.6488752512288030E-004 - 138.66000000000000 1.6663207891299493E-004 - 138.72000000000000 1.6833472720053182E-004 - 138.78000000000000 1.6999561419772655E-004 - 138.84000000000000 1.7161491694017339E-004 - 138.90000000000001 1.7319287530969245E-004 - 138.95999999999998 1.7472977447449147E-004 - 139.01999999999998 1.7622592639732047E-004 - 139.07999999999998 1.7768170403640216E-004 - 139.13999999999999 1.7909754747482402E-004 - 139.19999999999999 1.8047392774013586E-004 - 139.25999999999999 1.8181140609284716E-004 - 139.31999999999999 1.8311056361829681E-004 - 139.38000000000000 1.8437208372544121E-004 - 139.44000000000000 1.8559666307474632E-004 - 139.50000000000000 1.8678508796729151E-004 - 139.56000000000000 1.8793819672955416E-004 - 139.62000000000000 1.8905689001508320E-004 - 139.68000000000001 1.9014214105912090E-004 - 139.73999999999998 1.9119497793230797E-004 - 139.79999999999998 1.9221650099918229E-004 - 139.85999999999999 1.9320785680778467E-004 - 139.91999999999999 1.9417026600291524E-004 - 139.97999999999999 1.9510503090306802E-004 - 140.03999999999999 1.9601350915164232E-004 - 140.09999999999999 1.9689714097357377E-004 - 140.16000000000000 1.9775744800900547E-004 - 140.22000000000000 1.9859603038087457E-004 - 140.28000000000000 1.9941455627306101E-004 - 140.34000000000000 2.0021480572327628E-004 - 140.40000000000001 2.0099862033444655E-004 - 140.45999999999998 2.0176797076268795E-004 - 140.51999999999998 2.0252490939435711E-004 - 140.57999999999998 2.0327159303057990E-004 - 140.63999999999999 2.0401028718027800E-004 - 140.69999999999999 2.0474331984892579E-004 - 140.75999999999999 2.0547314720144815E-004 - 140.81999999999999 2.0620232854632613E-004 - 140.88000000000000 2.0693348138342712E-004 - 140.94000000000000 2.0766934812437254E-004 - 141.00000000000000 2.0841274139879102E-004 - 141.06000000000000 2.0916656889275040E-004 - 141.12000000000000 2.0993378564174438E-004 - 141.18000000000001 2.1071743449689356E-004 - 141.23999999999998 2.1152061998151730E-004 - 141.29999999999998 2.1234652193443746E-004 - 141.35999999999999 2.1319835611791521E-004 - 141.41999999999999 2.1407943423183980E-004 - 141.47999999999999 2.1499305919330306E-004 - 141.53999999999999 2.1594264704138683E-004 - 141.59999999999999 2.1693161298095033E-004 - 141.66000000000000 2.1796343079850313E-004 - 141.72000000000000 2.1904163865646241E-004 - 141.78000000000000 2.2016978588202868E-004 - 141.84000000000000 2.2135144416355663E-004 - 141.90000000000001 2.2259025569642160E-004 - 141.95999999999998 2.2388983054829475E-004 - 142.01999999999998 2.2525379958123000E-004 - 142.07999999999998 2.2668580984677679E-004 - 142.13999999999999 2.2818944035108343E-004 - 142.19999999999999 2.2976828289797944E-004 - 142.25999999999999 2.3142587342382098E-004 - 142.31999999999999 2.3316569729664598E-004 - 142.38000000000000 2.3499112971105333E-004 - 142.44000000000000 2.3690546092911151E-004 - 142.50000000000000 2.3891188353149234E-004 - 142.56000000000000 2.4101345612952414E-004 - 142.62000000000000 2.4321309679170363E-004 - 142.68000000000001 2.4551357523461108E-004 - 142.73999999999998 2.4791751836882037E-004 - 142.79999999999998 2.5042735665418248E-004 - 142.85999999999999 2.5304533881547408E-004 - 142.91999999999999 2.5577354595261140E-004 - 142.97999999999999 2.5861385223498537E-004 - 143.03999999999999 2.6156793969424574E-004 - 143.09999999999999 2.6463732058798440E-004 - 143.16000000000000 2.6782323655978992E-004 - 143.22000000000000 2.7112675652501424E-004 - 143.28000000000000 2.7454874275962068E-004 - 143.34000000000000 2.7808977438346482E-004 - 143.40000000000001 2.8175026097570756E-004 - 143.45999999999998 2.8553034388562320E-004 - 143.51999999999998 2.8942991804153234E-004 - 143.57999999999998 2.9344856296045351E-004 - 143.63999999999999 2.9758565960492456E-004 - 143.69999999999999 3.0184027521188540E-004 - 143.75999999999999 3.0621118445380024E-004 - 143.81999999999999 3.1069684625142739E-004 - 143.88000000000000 3.1529546080382305E-004 - 143.94000000000000 3.2000485939805991E-004 - 144.00000000000000 3.2482261303807967E-004 - 144.06000000000000 3.2974593757918469E-004 - 144.12000000000000 3.3477177278848201E-004 - 144.18000000000001 3.3989672568768986E-004 - 144.23999999999998 3.4511709395342402E-004 - 144.29999999999998 3.5042888099308660E-004 - 144.35999999999999 3.5582777410320159E-004 - 144.41999999999999 3.6130926609149978E-004 - 144.47999999999999 3.6686845701580889E-004 - 144.53999999999999 3.7250025402359215E-004 - 144.59999999999999 3.7819934031954513E-004 - 144.66000000000000 3.8396010120065520E-004 - 144.72000000000000 3.8977669869847775E-004 - 144.78000000000000 3.9564315058386037E-004 - 144.84000000000000 4.0155318641059309E-004 - 144.90000000000001 4.0750040119912485E-004 - 144.95999999999998 4.1347821203463692E-004 - 145.01999999999998 4.1947985831974097E-004 - 145.07999999999998 4.2549840075448028E-004 - 145.13999999999999 4.3152680450712075E-004 - 145.19999999999999 4.3755784857393403E-004 - 145.25999999999999 4.4358421704075420E-004 - 145.31999999999999 4.4959852775924169E-004 - 145.38000000000000 4.5559324563525748E-004 - 145.44000000000000 4.6156081176978108E-004 - 145.50000000000000 4.6749356857883189E-004 - 145.56000000000000 4.7338378192368348E-004 - 145.62000000000000 4.7922374435670282E-004 - 145.68000000000001 4.8500570159448259E-004 - 145.73999999999998 4.9072189627961471E-004 - 145.79999999999998 4.9636456940427428E-004 - 145.85999999999999 5.0192599585120669E-004 - 145.91999999999999 5.0739854433363854E-004 - 145.97999999999999 5.1277460759393645E-004 - 146.03999999999999 5.1804667328215473E-004 - 146.09999999999999 5.2320737025947470E-004 - 146.16000000000000 5.2824934298456821E-004 - 146.22000000000000 5.3316552911573186E-004 - 146.28000000000000 5.3794889653780808E-004 - 146.34000000000000 5.4259253659794224E-004 - 146.40000000000001 5.4708996722539435E-004 - 146.45999999999998 5.5143458528119130E-004 - 146.51999999999998 5.5562018754126252E-004 - 146.57999999999998 5.5964063263661240E-004 - 146.63999999999999 5.6349006467406757E-004 - 146.69999999999999 5.6716283841382737E-004 - 146.75999999999999 5.7065353059550738E-004 - 146.81999999999999 5.7395681833951738E-004 - 146.88000000000000 5.7706782807676765E-004 - 146.94000000000000 5.7998167806903509E-004 - 147.00000000000000 5.8269380699624361E-004 - 147.06000000000000 5.8519981715811277E-004 - 147.12000000000000 5.8749557140582690E-004 - 147.18000000000001 5.8957711215372379E-004 - 147.23999999999998 5.9144084962047146E-004 - 147.29999999999998 5.9308334174445847E-004 - 147.35999999999999 5.9450134489737714E-004 - 147.41999999999999 5.9569196522179840E-004 - 147.47999999999999 5.9665243358391913E-004 - 147.53999999999999 5.9738039413740035E-004 - 147.59999999999999 5.9787361873609682E-004 - 147.66000000000000 5.9813026896486513E-004 - 147.72000000000000 5.9814866751536206E-004 - 147.78000000000000 5.9792741776107622E-004 - 147.84000000000000 5.9746543679052165E-004 - 147.90000000000001 5.9676186896743600E-004 - 147.95999999999998 5.9581601964132241E-004 - 148.01999999999998 5.9462746104652162E-004 - 148.07999999999998 5.9319608633353553E-004 - 148.13999999999999 5.9152185310135010E-004 - 148.19999999999999 5.8960504397215664E-004 - 148.25999999999999 5.8744601810721477E-004 - 148.31999999999999 5.8504546512019081E-004 - 148.38000000000000 5.8240405263682720E-004 - 148.44000000000000 5.7952280456827719E-004 - 148.50000000000000 5.7640280454520645E-004 - 148.56000000000000 5.7304532444810814E-004 - 148.62000000000000 5.6945178173362304E-004 - 148.68000000000001 5.6562383478287533E-004 - 148.73999999999998 5.6156315594419642E-004 - 148.79999999999998 5.5727173568476064E-004 - 148.85999999999999 5.5275163314918161E-004 - 148.91999999999999 5.4800513682497828E-004 - 148.97999999999999 5.4303465241220289E-004 - 149.03999999999999 5.3784272906899958E-004 - 149.09999999999999 5.3243214862087136E-004 - 149.16000000000000 5.2680580428556586E-004 - 149.22000000000000 5.2096672846614926E-004 - 149.28000000000000 5.1491810212918115E-004 - 149.34000000000000 5.0866331113614779E-004 - 149.40000000000001 5.0220574216188461E-004 - 149.45999999999998 4.9554901322306031E-004 - 149.51999999999998 4.8869678312372271E-004 - 149.57999999999998 4.8165293839748651E-004 - 149.63999999999999 4.7442133739217446E-004 - 149.69999999999999 4.6700605449456582E-004 - 149.75999999999999 4.5941128728089846E-004 - 149.81999999999999 4.5164130721255305E-004 - 149.88000000000000 4.4370049036409969E-004 - 149.94000000000000 4.3559335872769475E-004 - 150.00000000000000 4.2732459274922902E-004 - 150.06000000000000 4.1889892536889573E-004 - 150.12000000000000 4.1032124703948956E-004 - 150.18000000000001 4.0159654579340965E-004 - 150.23999999999998 3.9272996957107889E-004 - 150.29999999999998 3.8372677133905982E-004 - 150.35999999999999 3.7459233558811565E-004 - 150.41999999999999 3.6533212138595256E-004 - 150.47999999999999 3.5595175143789500E-004 - 150.53999999999999 3.4645689452794215E-004 - 150.59999999999999 3.3685332418842130E-004 - 150.66000000000000 3.2714690920739595E-004 - 150.72000000000000 3.1734360522219917E-004 - 150.78000000000000 3.0744943079181661E-004 - 150.84000000000000 2.9747053230018471E-004 - 150.90000000000001 2.8741304528298795E-004 - 150.95999999999998 2.7728322998115767E-004 - 151.01999999999998 2.6708737356056421E-004 - 151.07999999999998 2.5683184624950397E-004 - 151.13999999999999 2.4652308080725673E-004 - 151.19999999999999 2.3616752307611673E-004 - 151.25999999999999 2.2577170708833519E-004 - 151.31999999999999 2.1534221310736559E-004 - 151.38000000000000 2.0488565563728012E-004 - 151.44000000000000 1.9440867254613437E-004 - 151.50000000000000 1.8391797796705962E-004 - 151.56000000000000 1.7342026561476074E-004 - 151.62000000000000 1.6292229345990573E-004 - 151.68000000000001 1.5243081188302983E-004 - 151.73999999999998 1.4195260762424057E-004 - 151.79999999999998 1.3149443964645497E-004 - 151.85999999999999 1.2106312289961879E-004 - 151.91999999999999 1.1066539372301936E-004 - 151.97999999999999 1.0030804087048019E-004 - 152.03999999999999 8.9997795432763438E-005 - 152.09999999999999 7.9741378066468073E-005 - 152.16000000000000 6.9545471846733139E-005 - 152.22000000000000 5.9416724759045288E-005 - 152.28000000000000 4.9361731106179236E-005 - 152.34000000000000 3.9387014199475431E-005 - 152.40000000000001 2.9499042019584078E-005 - 152.45999999999998 1.9704188166371129E-005 - 152.51999999999998 1.0008739178948170E-005 - 152.57999999999998 4.1888050336035664E-007 - 152.63999999999999 -9.0593184085441252E-006 - 152.69999999999999 -1.8419909159841786E-005 - 152.75999999999999 -2.7657068781500457E-005 - 152.81999999999999 -3.6765112480426379E-005 - 152.88000000000000 -4.5738498531374427E-005 - 152.94000000000000 -5.4571826081302094E-005 - 153.00000000000000 -6.3259844276953781E-005 - 153.06000000000000 -7.1797452763021794E-005 - 153.12000000000000 -8.0179703163896703E-005 - 153.17999999999998 -8.8401804427757827E-005 - 153.23999999999998 -9.6459112391086583E-005 - 153.29999999999998 -1.0434713864127567E-004 - 153.35999999999999 -1.1206156015960088E-004 - 153.41999999999999 -1.1959822144070809E-004 - 153.47999999999999 -1.2695314256559040E-004 - 153.53999999999999 -1.3412249931668685E-004 - 153.59999999999999 -1.4110270731426268E-004 - 153.66000000000000 -1.4789032784169652E-004 - 153.72000000000000 -1.5448215455349693E-004 - 153.78000000000000 -1.6087520954606951E-004 - 153.84000000000000 -1.6706673421502908E-004 - 153.90000000000001 -1.7305421690435067E-004 - 153.95999999999998 -1.7883537657747238E-004 - 154.01999999999998 -1.8440815304645883E-004 - 154.07999999999998 -1.8977076765795318E-004 - 154.13999999999999 -1.9492169360442167E-004 - 154.19999999999999 -1.9985961708661923E-004 - 154.25999999999999 -2.0458347325060758E-004 - 154.31999999999999 -2.0909241586889268E-004 - 154.38000000000000 -2.1338581871738530E-004 - 154.44000000000000 -2.1746328574403552E-004 - 154.50000000000000 -2.2132460419125791E-004 - 154.56000000000000 -2.2496975800477428E-004 - 154.62000000000000 -2.2839894523230794E-004 - 154.67999999999998 -2.3161251492287861E-004 - 154.73999999999998 -2.3461103548438737E-004 - 154.79999999999998 -2.3739524167231530E-004 - 154.85999999999999 -2.3996608261028042E-004 - 154.91999999999999 -2.4232467671546381E-004 - 154.97999999999999 -2.4447232459360278E-004 - 155.03999999999999 -2.4641056718847579E-004 - 155.09999999999999 -2.4814113276648992E-004 - 155.16000000000000 -2.4966594286379050E-004 - 155.22000000000000 -2.5098709425644454E-004 - 155.28000000000000 -2.5210698372823395E-004 - 155.34000000000000 -2.5302807521200972E-004 - 155.40000000000001 -2.5375311729657822E-004 - 155.45999999999998 -2.5428494215933765E-004 - 155.51999999999998 -2.5462662428254329E-004 - 155.57999999999998 -2.5478136279456277E-004 - 155.63999999999999 -2.5475250380686858E-004 - 155.69999999999999 -2.5454350994424740E-004 - 155.75999999999999 -2.5415795732398628E-004 - 155.81999999999999 -2.5359953985956441E-004 - 155.88000000000000 -2.5287201480522889E-004 - 155.94000000000000 -2.5197923713710628E-004 - 156.00000000000000 -2.5092514729511891E-004 - 156.06000000000000 -2.4971374716454490E-004 - 156.12000000000000 -2.4834911635296928E-004 - 156.17999999999998 -2.4683540292803408E-004 - 156.23999999999998 -2.4517678548757890E-004 - 156.29999999999998 -2.4337754231026334E-004 - 156.35999999999999 -2.4144198915940836E-004 - 156.41999999999999 -2.3937450712628328E-004 - 156.47999999999999 -2.3717954582957518E-004 - 156.53999999999999 -2.3486158343413580E-004 - 156.59999999999999 -2.3242517214389893E-004 - 156.66000000000000 -2.2987485814459361E-004 - 156.72000000000000 -2.2721524251851424E-004 - 156.78000000000000 -2.2445095626022997E-004 - 156.84000000000000 -2.2158664810368245E-004 - 156.90000000000001 -2.1862696718222852E-004 - 156.95999999999998 -2.1557657608079530E-004 - 157.01999999999998 -2.1244014551811884E-004 - 157.07999999999998 -2.0922231356602225E-004 - 157.13999999999999 -2.0592771564168714E-004 - 157.19999999999999 -2.0256099769374897E-004 - 157.25999999999999 -1.9912675307945770E-004 - 157.31999999999999 -1.9562957455341204E-004 - 157.38000000000000 -1.9207403266950152E-004 - 157.44000000000000 -1.8846467202851899E-004 - 157.50000000000000 -1.8480598906173691E-004 - 157.56000000000000 -1.8110247495723092E-004 - 157.62000000000000 -1.7735856055212045E-004 - 157.67999999999998 -1.7357864587259022E-004 - 157.73999999999998 -1.6976707998499460E-004 - 157.79999999999998 -1.6592818142481430E-004 - 157.85999999999999 -1.6206622086197684E-004 - 157.91999999999999 -1.5818538166104815E-004 - 157.97999999999999 -1.5428984163466891E-004 - 158.03999999999999 -1.5038368990314774E-004 - 158.09999999999999 -1.4647098194947919E-004 - 158.16000000000000 -1.4255570859130035E-004 - 158.22000000000000 -1.3864181232215025E-004 - 158.28000000000000 -1.3473318393883964E-004 - 158.34000000000000 -1.3083367073410756E-004 - 158.40000000000001 -1.2694707147578799E-004 - 158.45999999999998 -1.2307713590011901E-004 - 158.51999999999998 -1.1922757880456977E-004 - 158.57999999999998 -1.1540205841765235E-004 - 158.63999999999999 -1.1160416118777994E-004 - 158.69999999999999 -1.0783744863090015E-004 - 158.75999999999999 -1.0410539400129895E-004 - 158.81999999999999 -1.0041141102955398E-004 - 158.88000000000000 -9.6758825859799951E-005 - 158.94000000000000 -9.3150893462647536E-005 - 159.00000000000000 -8.9590758911467199E-005 - 159.06000000000000 -8.6081484261916487E-005 - 159.12000000000000 -8.2626028030157546E-005 - 159.17999999999998 -7.9227248162022662E-005 - 159.23999999999998 -7.5887898178132767E-005 - 159.29999999999998 -7.2610631256538914E-005 - 159.35999999999999 -6.9397991299548076E-005 - 159.41999999999999 -6.6252435299804315E-005 - 159.47999999999999 -6.3176317688335077E-005 - 159.53999999999999 -6.0171902463795646E-005 - 159.59999999999999 -5.7241370552474457E-005 - 159.66000000000000 -5.4386801359873185E-005 - 159.72000000000000 -5.1610193430533291E-005 - 159.78000000000000 -4.8913444903372848E-005 - 159.84000000000000 -4.6298352790300021E-005 - 159.90000000000001 -4.3766609413102847E-005 - 159.95999999999998 -4.1319798979551569E-005 - 160.01999999999998 -3.8959371983859064E-005 - 160.07999999999998 -3.6686651687628721E-005 - 160.13999999999999 -3.4502826011930461E-005 - 160.19999999999999 -3.2408927299888384E-005 - 160.25999999999999 -3.0405833800973840E-005 - 160.31999999999999 -2.8494275280128582E-005 - 160.38000000000000 -2.6674818223934064E-005 - 160.44000000000000 -2.4947876370462141E-005 - 160.50000000000000 -2.3313716631501064E-005 - 160.56000000000000 -2.1772462740699990E-005 - 160.62000000000000 -2.0324103219115032E-005 - 160.67999999999998 -1.8968498123439041E-005 - 160.73999999999998 -1.7705392420208491E-005 - 160.79999999999998 -1.6534423075099928E-005 - 160.85999999999999 -1.5455123454365817E-005 - 160.91999999999999 -1.4466931559458157E-005 - 160.97999999999999 -1.3569192218187153E-005 - 161.03999999999999 -1.2761156226318017E-005 - 161.09999999999999 -1.2041981541196711E-005 - 161.16000000000000 -1.1410728963504557E-005 - 161.22000000000000 -1.0866358704348167E-005 - 161.28000000000000 -1.0407725516730739E-005 - 161.34000000000000 -1.0033573905551715E-005 - 161.40000000000001 -9.7425349995843874E-006 - 161.45999999999998 -9.5331233904011834E-006 - 161.51999999999998 -9.4037375134114372E-006 - 161.57999999999998 -9.3526613366527632E-006 - 161.63999999999999 -9.3780693844728264E-006 - 161.69999999999999 -9.4780303306395737E-006 - 161.75999999999999 -9.6505193203109779E-006 - 161.81999999999999 -9.8934247508420797E-006 - 161.88000000000000 -1.0204562400138674E-005 - 161.94000000000000 -1.0581684644954073E-005 - 162.00000000000000 -1.1022492997335914E-005 - 162.06000000000000 -1.1524644137804827E-005 - 162.12000000000000 -1.2085763945111469E-005 - 162.17999999999998 -1.2703451581476880E-005 - 162.23999999999998 -1.3375284722924623E-005 - 162.29999999999998 -1.4098827528429431E-005 - 162.35999999999999 -1.4871626403732701E-005 - 162.41999999999999 -1.5691213114890731E-005 - 162.47999999999999 -1.6555108330138290E-005 - 162.53999999999999 -1.7460812395458409E-005 - 162.59999999999999 -1.8405813670597551E-005 - 162.66000000000000 -1.9387586695892378E-005 - 162.72000000000000 -2.0403584080636478E-005 - 162.78000000000000 -2.1451250726311757E-005 - 162.84000000000000 -2.2528017807842086E-005 - 162.90000000000001 -2.3631308072142820E-005 - 162.95999999999998 -2.4758539114481450E-005 - 163.01999999999998 -2.5907129072396283E-005 - 163.07999999999998 -2.7074503151880015E-005 - 163.13999999999999 -2.8258094289476244E-005 - 163.19999999999999 -2.9455353367395039E-005 - 163.25999999999999 -3.0663747186728411E-005 - 163.31999999999999 -3.1880769163506276E-005 - 163.38000000000000 -3.3103939591129427E-005 - 163.44000000000000 -3.4330805624955918E-005 - 163.50000000000000 -3.5558952762353706E-005 - 163.56000000000000 -3.6785998836558285E-005 - 163.62000000000000 -3.8009611277736377E-005 - 163.67999999999998 -3.9227490732848707E-005 - 163.73999999999998 -4.0437392485443254E-005 - 163.79999999999998 -4.1637118092069436E-005 - 163.85999999999999 -4.2824532889408756E-005 - 163.91999999999999 -4.3997557408687654E-005 - 163.97999999999999 -4.5154180473555013E-005 - 164.03999999999999 -4.6292456981966852E-005 - 164.09999999999999 -4.7410517349835479E-005 - 164.16000000000000 -4.8506558355966896E-005 - 164.22000000000000 -4.9578862219283796E-005 - 164.28000000000000 -5.0625774102450649E-005 - 164.34000000000000 -5.1645721445729354E-005 - 164.40000000000001 -5.2637193569110215E-005 - 164.45999999999998 -5.3598744366620918E-005 - 164.51999999999998 -5.4528995411485006E-005 - 164.57999999999998 -5.5426618457781902E-005 - 164.63999999999999 -5.6290340274761701E-005 - 164.69999999999999 -5.7118935321801907E-005 - 164.75999999999999 -5.7911236556966190E-005 - 164.81999999999999 -5.8666113111069878E-005 - 164.88000000000000 -5.9382501727817287E-005 - 164.94000000000000 -6.0059391409635513E-005 - 165.00000000000000 -6.0695832152075126E-005 - 165.06000000000000 -6.1290953499879331E-005 - 165.12000000000000 -6.1843965036013283E-005 - 165.17999999999998 -6.2354160085993174E-005 - 165.23999999999998 -6.2820938681400321E-005 - 165.29999999999998 -6.3243806181131852E-005 - 165.35999999999999 -6.3622368139253980E-005 - 165.41999999999999 -6.3956350908066028E-005 - 165.47999999999999 -6.4245588128076654E-005 - 165.53999999999999 -6.4490013060174809E-005 - 165.59999999999999 -6.4689669539229862E-005 - 165.66000000000000 -6.4844686642188452E-005 - 165.72000000000000 -6.4955273544560379E-005 - 165.78000000000000 -6.5021702352193223E-005 - 165.84000000000000 -6.5044311240192550E-005 - 165.90000000000001 -6.5023472693254565E-005 - 165.95999999999998 -6.4959605331627759E-005 - 166.01999999999998 -6.4853157601982162E-005 - 166.07999999999998 -6.4704597975544876E-005 - 166.13999999999999 -6.4514410690568738E-005 - 166.19999999999999 -6.4283113546871701E-005 - 166.25999999999999 -6.4011247047104434E-005 - 166.31999999999999 -6.3699387837242696E-005 - 166.38000000000000 -6.3348149335726176E-005 - 166.44000000000000 -6.2958193479385903E-005 - 166.50000000000000 -6.2530233875650752E-005 - 166.56000000000000 -6.2065043472056517E-005 - 166.62000000000000 -6.1563470640943393E-005 - 166.67999999999998 -6.1026422160222119E-005 - 166.73999999999998 -6.0454872514150801E-005 - 166.79999999999998 -5.9849865722418526E-005 - 166.85999999999999 -5.9212502784582145E-005 - 166.91999999999999 -5.8543940245952323E-005 - 166.97999999999999 -5.7845379256535105E-005 - 167.03999999999999 -5.7118052746235423E-005 - 167.09999999999999 -5.6363224197818028E-005 - 167.16000000000000 -5.5582172354216908E-005 - 167.22000000000000 -5.4776179976867386E-005 - 167.28000000000000 -5.3946539780580688E-005 - 167.34000000000000 -5.3094532609750124E-005 - 167.40000000000001 -5.2221440687514455E-005 - 167.45999999999998 -5.1328533322543274E-005 - 167.51999999999998 -5.0417068038069125E-005 - 167.57999999999998 -4.9488298404323262E-005 - 167.63999999999999 -4.8543470743938560E-005 - 167.69999999999999 -4.7583830728297812E-005 - 167.75999999999999 -4.6610619175543664E-005 - 167.81999999999999 -4.5625081348026742E-005 - 167.88000000000000 -4.4628465873415393E-005 - 167.94000000000000 -4.3622020026477157E-005 - 168.00000000000000 -4.2606999420913458E-005 - 168.06000000000000 -4.1584655558332039E-005 - 168.12000000000000 -4.0556248676639220E-005 - 168.17999999999998 -3.9523037631156222E-005 - 168.23999999999998 -3.8486278720251879E-005 - 168.29999999999998 -3.7447227276141757E-005 - 168.35999999999999 -3.6407133231247987E-005 - 168.41999999999999 -3.5367239793366325E-005 - 168.47999999999999 -3.4328789092067703E-005 - 168.53999999999999 -3.3293012896373864E-005 - 168.59999999999999 -3.2261134139367076E-005 - 168.66000000000000 -3.1234364900959315E-005 - 168.72000000000000 -3.0213908091356712E-005 - 168.78000000000000 -2.9200952033782546E-005 - 168.84000000000000 -2.8196668730124796E-005 - 168.90000000000001 -2.7202206133778258E-005 - 168.95999999999998 -2.6218687265963851E-005 - 169.01999999999998 -2.5247203405701395E-005 - 169.07999999999998 -2.4288807823340873E-005 - 169.13999999999999 -2.3344510475364144E-005 - 169.19999999999999 -2.2415273024299717E-005 - 169.25999999999999 -2.1502009234627279E-005 - 169.31999999999999 -2.0605571047357611E-005 - 169.38000000000000 -1.9726761140859342E-005 - 169.44000000000000 -1.8866323569133149E-005 - 169.50000000000000 -1.8024949995064706E-005 - 169.56000000000000 -1.7203280021233663E-005 - 169.62000000000000 -1.6401907652171221E-005 - 169.67999999999998 -1.5621389908202227E-005 - 169.73999999999998 -1.4862248084555212E-005 - 169.79999999999998 -1.4124972321843131E-005 - 169.85999999999999 -1.3410028563406732E-005 - 169.91999999999999 -1.2717859288571074E-005 - 169.97999999999999 -1.2048887231813531E-005 - 170.03999999999999 -1.1403510162070934E-005 - 170.09999999999999 -1.0782101213093627E-005 - 170.16000000000000 -1.0185002293084296E-005 - 170.22000000000000 -9.6125194351479523E-006 - 170.28000000000000 -9.0649129666393575E-006 - 170.34000000000000 -8.5423928793118138E-006 - 170.40000000000001 -8.0451093603183933E-006 - 170.45999999999998 -7.5731475300065126E-006 - 170.51999999999998 -7.1265224747389036E-006 - 170.57999999999998 -6.7051780502504469E-006 - 170.63999999999999 -6.3089857514835658E-006 - 170.69999999999999 -5.9377464056363441E-006 - 170.75999999999999 -5.5911949113427229E-006 - 170.81999999999999 -5.2690109150564045E-006 - 170.88000000000000 -4.9708201823543076E-006 - 170.94000000000000 -4.6962101400324769E-006 - 171.00000000000000 -4.4447357612525662E-006 - 171.06000000000000 -4.2159292732120805E-006 - 171.12000000000000 -4.0093095309392422E-006 - 171.17999999999998 -3.8243870230545271E-006 - 171.23999999999998 -3.6606693848346187E-006 - 171.29999999999998 -3.5176638510472374E-006 - 171.35999999999999 -3.3948784559023626E-006 - 171.41999999999999 -3.2918202944099187E-006 - 171.47999999999999 -3.2079935115727513E-006 - 171.53999999999999 -3.1428958426637579E-006 - 171.59999999999999 -3.0960162693957136E-006 - 171.66000000000000 -3.0668294916812342E-006 - 171.72000000000000 -3.0547944056623221E-006 - 171.78000000000000 -3.0593518690317117E-006 - 171.84000000000000 -3.0799245628324706E-006 - 171.90000000000001 -3.1159182787506979E-006 - 171.95999999999998 -3.1667232247337661E-006 - 172.01999999999998 -3.2317188227646689E-006 - 172.07999999999998 -3.3102784422933926E-006 - 172.13999999999999 -3.4017727391096057E-006 - 172.19999999999999 -3.5055758505170029E-006 - 172.25999999999999 -3.6210697526861817E-006 - 172.31999999999999 -3.7476487552749141E-006 - 172.38000000000000 -3.8847220569729577E-006 - 172.44000000000000 -4.0317162961666441E-006 - 172.50000000000000 -4.1880764396821363E-006 - 172.56000000000000 -4.3532656723596319E-006 - 172.62000000000000 -4.5267645277020558E-006 - 172.67999999999998 -4.7080707003291069E-006 - 172.73999999999998 -4.8966955881392502E-006 - 172.79999999999998 -5.0921651504936594E-006 - 172.85999999999999 -5.2940175084502497E-006 - 172.91999999999999 -5.5018042256173430E-006 - 172.97999999999999 -5.7150879250087395E-006 - 173.03999999999999 -5.9334465937358350E-006 - 173.09999999999999 -6.1564719181283190E-006 - 173.16000000000000 -6.3837734211964750E-006 - 173.22000000000000 -6.6149787578033787E-006 - 173.28000000000000 -6.8497361649800647E-006 - 173.34000000000000 -7.0877167719664687E-006 - 173.40000000000001 -7.3286119578584735E-006 - 173.45999999999998 -7.5721348824175500E-006 - 173.51999999999998 -7.8180209839347914E-006 - 173.57999999999998 -8.0660227440080340E-006 - 173.63999999999999 -8.3159094041116899E-006 - 173.69999999999999 -8.5674631826591070E-006 - 173.75999999999999 -8.8204752643971718E-006 - 173.81999999999999 -9.0747453204477456E-006 - 173.88000000000000 -9.3300773694767451E-006 - 173.94000000000000 -9.5862794395628785E-006 - 174.00000000000000 -9.8431626407189811E-006 - 174.06000000000000 -1.0100543192025632E-005 - 174.12000000000000 -1.0358245566245122E-005 - 174.17999999999998 -1.0616101567291690E-005 - 174.23999999999998 -1.0873958700110900E-005 - 174.29999999999998 -1.1131682225322683E-005 - 174.35999999999999 -1.1389159303425393E-005 - 174.41999999999999 -1.1646301300158063E-005 - 174.47999999999999 -1.1903048144659554E-005 - 174.53999999999999 -1.2159369406972632E-005 - 174.59999999999999 -1.2415261441509262E-005 - 174.66000000000000 -1.2670749407239229E-005 - 174.72000000000000 -1.2925880256468547E-005 - 174.78000000000000 -1.3180721787814942E-005 - 174.84000000000000 -1.3435355214331586E-005 - 174.90000000000001 -1.3689870114601944E-005 - 174.95999999999998 -1.3944358143417142E-005 - 175.01999999999998 -1.4198909842476196E-005 - 175.07999999999998 -1.4453607448671522E-005 - 175.13999999999999 -1.4708523799732550E-005 - 175.19999999999999 -1.4963718421930716E-005 - 175.25999999999999 -1.5219242262208959E-005 - 175.31999999999999 -1.5475131518825395E-005 - 175.38000000000000 -1.5731416560886349E-005 - 175.44000000000000 -1.5988120969602489E-005 - 175.50000000000000 -1.6245266773354405E-005 - 175.56000000000000 -1.6502876441938917E-005 - 175.62000000000000 -1.6760977978620666E-005 - 175.67999999999998 -1.7019604461114782E-005 - 175.73999999999998 -1.7278795133483777E-005 - 175.79999999999998 -1.7538599595070175E-005 - 175.85999999999999 -1.7799067369517497E-005 - 175.91999999999999 -1.8060252854959030E-005 - 175.97999999999999 -1.8322203756062636E-005 - 176.03999999999999 -1.8584963163248749E-005 - 176.09999999999999 -1.8848560152399779E-005 - 176.16000000000000 -1.9113005617931682E-005 - 176.22000000000000 -1.9378288384051356E-005 - 176.28000000000000 -1.9644370992523628E-005 - 176.34000000000000 -1.9911186345673832E-005 - 176.40000000000001 -2.0178637188940980E-005 - 176.45999999999998 -2.0446598621539058E-005 - 176.51999999999998 -2.0714914348373412E-005 - 176.57999999999998 -2.0983402924167449E-005 - 176.63999999999999 -2.1251860268403182E-005 - 176.69999999999999 -2.1520059294911531E-005 - 176.75999999999999 -2.1787756850913078E-005 - 176.81999999999999 -2.2054697629573077E-005 - 176.88000000000000 -2.2320611415608372E-005 - 176.94000000000000 -2.2585219189610952E-005 - 177.00000000000000 -2.2848234290923731E-005 - 177.06000000000000 -2.3109357722269414E-005 - 177.12000000000000 -2.3368284043629750E-005 - 177.17999999999998 -2.3624697534693877E-005 - 177.23999999999998 -2.3878268901959186E-005 - 177.29999999999998 -2.4128660898113288E-005 - 177.35999999999999 -2.4375523560947326E-005 - 177.41999999999999 -2.4618494806382323E-005 - 177.47999999999999 -2.4857201950621407E-005 - 177.53999999999999 -2.5091264747420598E-005 - 177.59999999999999 -2.5320299804201909E-005 - 177.66000000000000 -2.5543919862938156E-005 - 177.72000000000000 -2.5761740087695212E-005 - 177.78000000000000 -2.5973381250453594E-005 - 177.84000000000000 -2.6178474717436848E-005 - 177.90000000000001 -2.6376663165456295E-005 - 177.95999999999998 -2.6567607051044874E-005 - 178.01999999999998 -2.6750985616266963E-005 - 178.07999999999998 -2.6926497089208553E-005 - 178.13999999999999 -2.7093858299873055E-005 - 178.19999999999999 -2.7252809722131358E-005 - 178.25999999999999 -2.7403110303847702E-005 - 178.31999999999999 -2.7544537456814753E-005 - 178.38000000000000 -2.7676889495244893E-005 - 178.44000000000000 -2.7799982753406390E-005 - 178.50000000000000 -2.7913652169273828E-005 - 178.56000000000000 -2.8017752692157733E-005 - 178.62000000000000 -2.8112160582466749E-005 - 178.67999999999998 -2.8196773240147874E-005 - 178.73999999999998 -2.8271515780415462E-005 - 178.79999999999998 -2.8336342712217689E-005 - 178.85999999999999 -2.8391237527055824E-005 - 178.91999999999999 -2.8436220302501092E-005 - 178.97999999999999 -2.8471346067536650E-005 - 179.03999999999999 -2.8496704982922753E-005 - 179.09999999999999 -2.8512426275091845E-005 - 179.16000000000000 -2.8518674122815668E-005 - 179.22000000000000 -2.8515648836937067E-005 - 179.28000000000000 -2.8503578560560661E-005 - 179.34000000000000 -2.8482721895073202E-005 - 179.40000000000001 -2.8453357075854711E-005 - 179.45999999999998 -2.8415783945817582E-005 - 179.51999999999998 -2.8370315433059441E-005 - 179.57999999999998 -2.8317274511163529E-005 - 179.63999999999999 -2.8256993657921618E-005 - 179.69999999999999 -2.8189812592646556E-005 - 179.75999999999999 -2.8116078017395034E-005 - 179.81999999999999 -2.8036144417770996E-005 - 179.88000000000000 -2.7950377835296303E-005 - 179.94000000000000 -2.7859151164740538E-005 - 180.00000000000000 -2.7762854296054609E-005 - 180.06000000000000 -2.7661896327125553E-005 - 180.12000000000000 -2.7556705126971926E-005 - 180.17999999999998 -2.7447734342625137E-005 - 180.23999999999998 -2.7335459700830362E-005 - 180.29999999999998 -2.7220379874013349E-005 - 180.35999999999999 -2.7103019726096612E-005 - 180.41999999999999 -2.6983925545616062E-005 - 180.47999999999999 -2.6863659278800952E-005 - 180.53999999999999 -2.6742802155966768E-005 - 180.59999999999999 -2.6621943883363160E-005 - 180.66000000000000 -2.6501682747016261E-005 - 180.72000000000000 -2.6382618919832268E-005 - 180.78000000000000 -2.6265353313224872E-005 - 180.84000000000000 -2.6150485231495597E-005 - 180.90000000000001 -2.6038609611642423E-005 - 180.95999999999998 -2.5930320167687471E-005 - 181.01999999999998 -2.5826207639313719E-005 - 181.07999999999998 -2.5726864542397498E-005 - 181.13999999999999 -2.5632885459563840E-005 - 181.19999999999999 -2.5544870925623776E-005 - 181.25999999999999 -2.5463434733811999E-005 - 181.31999999999999 -2.5389202810238344E-005 - 181.38000000000000 -2.5322816687522421E-005 - 181.44000000000000 -2.5264940129681397E-005 - 181.50000000000000 -2.5216255685567703E-005 - 181.56000000000000 -2.5177467599163531E-005 - 181.62000000000000 -2.5149304092635549E-005 - 181.67999999999998 -2.5132513166901848E-005 - 181.73999999999998 -2.5127859303245132E-005 - 181.79999999999998 -2.5136128748888972E-005 - 181.85999999999999 -2.5158118182069063E-005 - 181.91999999999999 -2.5194636968766892E-005 - 181.97999999999999 -2.5246507672026364E-005 - 182.03999999999999 -2.5314553978898245E-005 - 182.09999999999999 -2.5399606718557016E-005 - 182.16000000000000 -2.5502502440663437E-005 - 182.22000000000000 -2.5624077583332002E-005 - 182.28000000000000 -2.5765169011936433E-005 - 182.34000000000000 -2.5926616848987961E-005 - 182.39999999999998 -2.6109256365470014E-005 - 182.45999999999998 -2.6313923587025517E-005 - 182.51999999999998 -2.6541450013282896E-005 - 182.57999999999998 -2.6792665268732877E-005 - 182.63999999999999 -2.7068390294910949E-005 - 182.69999999999999 -2.7369442491060223E-005 - 182.75999999999999 -2.7696629458124584E-005 - 182.81999999999999 -2.8050750749829573E-005 - 182.88000000000000 -2.8432593587273411E-005 - 182.94000000000000 -2.8842933918073951E-005 - 183.00000000000000 -2.9282534152384388E-005 - 183.06000000000000 -2.9752147005924753E-005 - 183.12000000000000 -3.0252506453053534E-005 - 183.17999999999998 -3.0784336990340135E-005 - 183.23999999999998 -3.1348350811789522E-005 - 183.29999999999998 -3.1945243805781519E-005 - 183.35999999999999 -3.2575697743438614E-005 - 183.41999999999999 -3.3240385688536617E-005 - 183.47999999999999 -3.3939962451057607E-005 - 183.53999999999999 -3.4675068895212332E-005 - 183.59999999999999 -3.5446321363961984E-005 - 183.66000000000000 -3.6254320795632898E-005 - 183.72000000000000 -3.7099637861940471E-005 - 183.78000000000000 -3.7982818383083228E-005 - 183.84000000000000 -3.8904372769705605E-005 - 183.89999999999998 -3.9864775436289795E-005 - 183.95999999999998 -4.0864455714275480E-005 - 184.01999999999998 -4.1903800621355605E-005 - 184.07999999999998 -4.2983150980184218E-005 - 184.13999999999999 -4.4102798250249347E-005 - 184.19999999999999 -4.5262978928467823E-005 - 184.25999999999999 -4.6463881933514173E-005 - 184.31999999999999 -4.7705649910672254E-005 - 184.38000000000000 -4.8988375010000191E-005 - 184.44000000000000 -5.0312093828207603E-005 - 184.50000000000000 -5.1676802591836433E-005 - 184.56000000000000 -5.3082458083613323E-005 - 184.62000000000000 -5.4528958431789523E-005 - 184.67999999999998 -5.6016170695726969E-005 - 184.73999999999998 -5.7543901006938758E-005 - 184.79999999999998 -5.9111916313663933E-005 - 184.85999999999999 -6.0719926311327338E-005 - 184.91999999999999 -6.2367577507693110E-005 - 184.97999999999999 -6.4054457913391362E-005 - 185.03999999999999 -6.5780074522890921E-005 - 185.09999999999999 -6.7543860557770633E-005 - 185.16000000000000 -6.9345164923852496E-005 - 185.22000000000000 -7.1183239067736730E-005 - 185.28000000000000 -7.3057235553295851E-005 - 185.34000000000000 -7.4966209044801164E-005 - 185.39999999999998 -7.6909080473667245E-005 - 185.45999999999998 -7.8884688533152462E-005 - 185.51999999999998 -8.0891736665160901E-005 - 185.57999999999998 -8.2928813358117866E-005 - 185.63999999999999 -8.4994391838944205E-005 - 185.69999999999999 -8.7086818120275667E-005 - 185.75999999999999 -8.9204334949534493E-005 - 185.81999999999999 -9.1345051031145740E-005 - 185.88000000000000 -9.3506958175224719E-005 - 185.94000000000000 -9.5687937022063071E-005 - 186.00000000000000 -9.7885728156990544E-005 - 186.06000000000000 -1.0009796811936180E-004 - 186.12000000000000 -1.0232216140227054E-004 - 186.17999999999998 -1.0455568785194765E-004 - 186.23999999999998 -1.0679578954791125E-004 - 186.29999999999998 -1.0903958961518985E-004 - 186.35999999999999 -1.1128406904414402E-004 - 186.41999999999999 -1.1352607882935428E-004 - 186.47999999999999 -1.1576232176705483E-004 - 186.53999999999999 -1.1798938503774633E-004 - 186.59999999999999 -1.2020370638294693E-004 - 186.66000000000000 -1.2240159244440523E-004 - 186.72000000000000 -1.2457921174427369E-004 - 186.78000000000000 -1.2673263305396838E-004 - 186.84000000000000 -1.2885777249112669E-004 - 186.89999999999998 -1.3095046806323356E-004 - 186.95999999999998 -1.3300642892025106E-004 - 187.01999999999998 -1.3502129203880631E-004 - 187.07999999999998 -1.3699057354222459E-004 - 187.13999999999999 -1.3890972774702569E-004 - 187.19999999999999 -1.4077413993698767E-004 - 187.25999999999999 -1.4257914752798589E-004 - 187.31999999999999 -1.4432003223084611E-004 - 187.38000000000000 -1.4599202363030332E-004 - 187.44000000000000 -1.4759034548192444E-004 - 187.50000000000000 -1.4911020587351405E-004 - 187.56000000000000 -1.5054680935701226E-004 - 187.62000000000000 -1.5189536227761186E-004 - 187.67999999999998 -1.5315110895939917E-004 - 187.73999999999998 -1.5430934394808544E-004 - 187.79999999999998 -1.5536536723417384E-004 - 187.85999999999999 -1.5631458691258318E-004 - 187.91999999999999 -1.5715247328947177E-004 - 187.97999999999999 -1.5787457231996305E-004 - 188.03999999999999 -1.5847655621619366E-004 - 188.09999999999999 -1.5895420000178138E-004 - 188.16000000000000 -1.5930340723869550E-004 - 188.22000000000000 -1.5952022461801038E-004 - 188.28000000000000 -1.5960085937013858E-004 - 188.34000000000000 -1.5954168216719556E-004 - 188.39999999999998 -1.5933924223313713E-004 - 188.45999999999998 -1.5899030762937458E-004 - 188.51999999999998 -1.5849179892746100E-004 - 188.57999999999998 -1.5784092324638279E-004 - 188.63999999999999 -1.5703507895691639E-004 - 188.69999999999999 -1.5607193687917971E-004 - 188.75999999999999 -1.5494941888154404E-004 - 188.81999999999999 -1.5366572421228667E-004 - 188.88000000000000 -1.5221933745556733E-004 - 188.94000000000000 -1.5060904803263024E-004 - 189.00000000000000 -1.4883395034505465E-004 - 189.06000000000000 -1.4689344477598776E-004 - 189.12000000000000 -1.4478724390293570E-004 - 189.17999999999998 -1.4251540237915009E-004 - 189.23999999999998 -1.4007828802560925E-004 - 189.29999999999998 -1.3747661973755211E-004 - 189.35999999999999 -1.3471143361248230E-004 - 189.41999999999999 -1.3178409398692035E-004 - 189.47999999999999 -1.2869629982518912E-004 - 189.53999999999999 -1.2545008315635383E-004 - 189.59999999999999 -1.2204778293684378E-004 - 189.66000000000000 -1.1849208096395722E-004 - 189.72000000000000 -1.1478598263033378E-004 - 189.78000000000000 -1.1093280712022328E-004 - 189.84000000000000 -1.0693619875128245E-004 - 189.89999999999998 -1.0280011482460068E-004 - 189.95999999999998 -9.8528835884327130E-005 - 190.01999999999998 -9.4126945188104786E-005 - 190.07999999999998 -8.9599342615745718E-005 - 190.13999999999999 -8.4951244076338005E-005 - 190.19999999999999 -8.0188146860681479E-005 - 190.25999999999999 -7.5315862699145946E-005 - 190.31999999999999 -7.0340478307790612E-005 - 190.38000000000000 -6.5268356303467469E-005 - 190.44000000000000 -6.0106107011236579E-005 - 190.50000000000000 -5.4860595213627748E-005 - 190.56000000000000 -4.9538912870207749E-005 - 190.62000000000000 -4.4148350248297113E-005 - 190.67999999999998 -3.8696400691866585E-005 - 190.73999999999998 -3.3190715795687147E-005 - 190.79999999999998 -2.7639102967997211E-005 - 190.85999999999999 -2.2049490922727815E-005 - 190.91999999999999 -1.6429930631426977E-005 - 190.97999999999999 -1.0788552191717272E-005 - 191.03999999999999 -5.1335702117057630E-006 - 191.09999999999999 5.2675061857983640E-007 - 191.16000000000000 6.1841007454703433E-006 - 191.22000000000000 1.1830148212827201E-005 - 191.28000000000000 1.7456549789236164E-005 - 191.34000000000000 2.3054961008682469E-005 - 191.39999999999998 2.8617062489151834E-005 - 191.45999999999998 3.4134574090711136E-005 - 191.51999999999998 3.9599247104875480E-005 - 191.57999999999998 4.5002916275800236E-005 - 191.63999999999999 5.0337496209615155E-005 - 191.69999999999999 5.5594993467264343E-005 - 191.75999999999999 6.0767548325005514E-005 - 191.81999999999999 6.5847441565102159E-005 - 191.88000000000000 7.0827106668001571E-005 - 191.94000000000000 7.5699154982889838E-005 - 192.00000000000000 8.0456409806704213E-005 - 192.06000000000000 8.5091911411192559E-005 - 192.12000000000000 8.9598941912713955E-005 - 192.17999999999998 9.3971040613020365E-005 - 192.23999999999998 9.8202036507161070E-005 - 192.29999999999998 1.0228603887903511E-004 - 192.35999999999999 1.0621748300888339E-004 - 192.41999999999999 1.0999110877166508E-004 - 192.47999999999999 1.1360200815194989E-004 - 192.53999999999999 1.1704561154180963E-004 - 192.59999999999999 1.2031771635098032E-004 - 192.66000000000000 1.2341445532448652E-004 - 192.72000000000000 1.2633233132554420E-004 - 192.78000000000000 1.2906823661889099E-004 - 192.84000000000000 1.3161941917411184E-004 - 192.89999999999998 1.3398347865418926E-004 - 192.95999999999998 1.3615840842464241E-004 - 193.01999999999998 1.3814254745714362E-004 - 193.07999999999998 1.3993461391428942E-004 - 193.13999999999999 1.4153367551633807E-004 - 193.19999999999999 1.4293915179015558E-004 - 193.25999999999999 1.4415081678612843E-004 - 193.31999999999999 1.4516881400349795E-004 - 193.38000000000000 1.4599360111702640E-004 - 193.44000000000000 1.4662597615217388E-004 - 193.50000000000000 1.4706710506090417E-004 - 193.56000000000000 1.4731848702246423E-004 - 193.62000000000000 1.4738190848261905E-004 - 193.67999999999998 1.4725952774723272E-004 - 193.73999999999998 1.4695383035021205E-004 - 193.79999999999998 1.4646758794826189E-004 - 193.85999999999999 1.4580393001567310E-004 - 193.91999999999999 1.4496625678530735E-004 - 193.97999999999999 1.4395828044312848E-004 - 194.03999999999999 1.4278400053065093E-004 - 194.09999999999999 1.4144766753226588E-004 - 194.16000000000000 1.3995380496050787E-004 - 194.22000000000000 1.3830715293066943E-004 - 194.28000000000000 1.3651267619955903E-004 - 194.34000000000000 1.3457552680256300E-004 - 194.39999999999998 1.3250101165347637E-004 - 194.45999999999998 1.3029459781991245E-004 - 194.51999999999998 1.2796183605145962E-004 - 194.57999999999998 1.2550842221276297E-004 - 194.63999999999999 1.2294008137634860E-004 - 194.69999999999999 1.2026261575477553E-004 - 194.75999999999999 1.1748187408925071E-004 - 194.81999999999999 1.1460372571404004E-004 - 194.88000000000000 1.1163405006203097E-004 - 194.94000000000000 1.0857872927380831E-004 - 195.00000000000000 1.0544364875480214E-004 - 195.06000000000000 1.0223468997909417E-004 - 195.12000000000000 9.8957715703734187E-005 - 195.17999999999998 9.5618585166268338E-005 - 195.23999999999998 9.2223128606019769E-005 - 195.29999999999998 8.8777144961461597E-005 - 195.35999999999999 8.5286419873218750E-005 - 195.41999999999999 8.1756683794922196E-005 - 195.47999999999999 7.8193628298079743E-005 - 195.53999999999999 7.4602877064718949E-005 - 195.59999999999999 7.0989976411445682E-005 - 195.66000000000000 6.7360397293303215E-005 - 195.72000000000000 6.3719492787491590E-005 - 195.78000000000000 6.0072510200197022E-005 - 195.84000000000000 5.6424569456205322E-005 - 195.89999999999998 5.2780630292565698E-005 - 195.95999999999998 4.9145504866680706E-005 - 196.01999999999998 4.5523829474866191E-005 - 196.07999999999998 4.1920072578081632E-005 - 196.13999999999999 3.8338513463787084E-005 - 196.19999999999999 3.4783251059984463E-005 - 196.25999999999999 3.1258205183622308E-005 - 196.31999999999999 2.7767099042868234E-005 - 196.38000000000000 2.4313492167069949E-005 - 196.44000000000000 2.0900763451253201E-005 - 196.50000000000000 1.7532126302337066E-005 - 196.56000000000000 1.4210631264769364E-005 - 196.62000000000000 1.0939183188072489E-005 - 196.67999999999998 7.7205360990923992E-006 - 196.73999999999998 4.5573083111637702E-006 - 196.79999999999998 1.4519847017997741E-006 - 196.85999999999999 -1.5930767857518341E-006 - 196.91999999999999 -4.5756469077546300E-006 - 196.97999999999999 -7.4936205349366667E-006 - 197.03999999999999 -1.0345011989038212E-005 - 197.09999999999999 -1.3127958688522583E-005 - 197.16000000000000 -1.5840730857511552E-005 - 197.22000000000000 -1.8481718399068151E-005 - 197.28000000000000 -2.1049447771480211E-005 - 197.34000000000000 -2.3542575394430665E-005 - 197.39999999999998 -2.5959899164740643E-005 - 197.45999999999998 -2.8300358025531304E-005 - 197.51999999999998 -3.0563031536333676E-005 - 197.57999999999998 -3.2747152516325636E-005 - 197.63999999999999 -3.4852094328168348E-005 - 197.69999999999999 -3.6877387426169474E-005 - 197.75999999999999 -3.8822696141466136E-005 - 197.81999999999999 -4.0687839598966074E-005 - 197.88000000000000 -4.2472771997486705E-005 - 197.94000000000000 -4.4177583783560359E-005 - 198.00000000000000 -4.5802488562771063E-005 - 198.06000000000000 -4.7347814120194245E-005 - 198.12000000000000 -4.8813999287074958E-005 - 198.17999999999998 -5.0201580862901767E-005 - 198.23999999999998 -5.1511178768557515E-005 - 198.29999999999998 -5.2743491019066972E-005 - 198.35999999999999 -5.3899285155552891E-005 - 198.41999999999999 -5.4979388692774293E-005 - 198.47999999999999 -5.5984678258258631E-005 - 198.53999999999999 -5.6916077059779397E-005 - 198.59999999999999 -5.7774558802278260E-005 - 198.66000000000000 -5.8561140975019917E-005 - 198.72000000000000 -5.9276880605531779E-005 - 198.78000000000000 -5.9922895051679284E-005 - 198.84000000000000 -6.0500338342740699E-005 - 198.89999999999998 -6.1010430192730912E-005 - 198.95999999999998 -6.1454462171781299E-005 - 199.01999999999998 -6.1833782649003795E-005 - 199.07999999999998 -6.2149822985611331E-005 - 199.13999999999999 -6.2404078416770955E-005 - 199.19999999999999 -6.2598119819731501E-005 - 199.25999999999999 -6.2733588463875946E-005 - 199.31999999999999 -6.2812202841849255E-005 - 199.38000000000000 -6.2835731401829500E-005 - 199.44000000000000 -6.2806002851007050E-005 - 199.50000000000000 -6.2724871490261064E-005 - 199.56000000000000 -6.2594237378074029E-005 - 199.62000000000000 -6.2416007551911143E-005 - 199.67999999999998 -6.2192095371521908E-005 - 199.73999999999998 -6.1924394253955531E-005 - 199.79999999999998 -6.1614792568588487E-005 - 199.85999999999999 -6.1265141856175424E-005 - 199.91999999999999 -6.0877273327740385E-005 - 199.97999999999999 -6.0452956544191657E-005 - 200.03999999999999 -5.9993939009190018E-005 - 200.09999999999999 -5.9501929309737573E-005 - 200.16000000000000 -5.8978594465067223E-005 - 200.22000000000000 -5.8425579151384833E-005 - 200.28000000000000 -5.7844480572410741E-005 - 200.34000000000000 -5.7236900221586361E-005 - 200.39999999999998 -5.6604409696482437E-005 - 200.45999999999998 -5.5948573495009173E-005 - 200.51999999999998 -5.5270956025121147E-005 - 200.57999999999998 -5.4573109019639379E-005 - 200.63999999999999 -5.3856594010774963E-005 - 200.69999999999999 -5.3122952087138475E-005 - 200.75999999999999 -5.2373730114630051E-005 - 200.81999999999999 -5.1610465834484006E-005 - 200.88000000000000 -5.0834674110081776E-005 - 200.94000000000000 -5.0047859295959451E-005 - 201.00000000000000 -4.9251491914700048E-005 - 201.06000000000000 -4.8447017910032980E-005 - 201.12000000000000 -4.7635835550815468E-005 - 201.17999999999998 -4.6819305664513313E-005 - 201.23999999999998 -4.5998742470929907E-005 - 201.29999999999998 -4.5175400114422768E-005 - 201.35999999999999 -4.4350486784096011E-005 - 201.41999999999999 -4.3525142821849549E-005 - 201.47999999999999 -4.2700460806168012E-005 - 201.53999999999999 -4.1877467756792696E-005 - 201.59999999999999 -4.1057137770873509E-005 - 201.66000000000000 -4.0240381637623807E-005 - 201.72000000000000 -3.9428063692709353E-005 - 201.78000000000000 -3.8620987740314446E-005 - 201.84000000000000 -3.7819909011953829E-005 - 201.89999999999998 -3.7025534820195460E-005 - 201.95999999999998 -3.6238529711194282E-005 - 202.01999999999998 -3.5459518050267825E-005 - 202.07999999999998 -3.4689086240610288E-005 - 202.13999999999999 -3.3927780241790355E-005 - 202.19999999999999 -3.3176119249524665E-005 - 202.25999999999999 -3.2434594226914143E-005 - 202.31999999999999 -3.1703665266368765E-005 - 202.38000000000000 -3.0983770664410453E-005 - 202.44000000000000 -3.0275323502628999E-005 - 202.50000000000000 -2.9578710461322118E-005 - 202.56000000000000 -2.8894291161742711E-005 - 202.62000000000000 -2.8222397254511074E-005 - 202.67999999999998 -2.7563330874784836E-005 - 202.73999999999998 -2.6917358116384074E-005 - 202.79999999999998 -2.6284704511148172E-005 - 202.85999999999999 -2.5665553787003873E-005 - 202.91999999999999 -2.5060035778956448E-005 - 202.97999999999999 -2.4468237073883271E-005 - 203.03999999999999 -2.3890184190651707E-005 - 203.09999999999999 -2.3325848950735033E-005 - 203.16000000000000 -2.2775152452391302E-005 - 203.22000000000000 -2.2237954046337392E-005 - 203.28000000000000 -2.1714068687813327E-005 - 203.34000000000000 -2.1203265977092937E-005 - 203.39999999999998 -2.0705276169448667E-005 - 203.45999999999998 -2.0219798819292585E-005 - 203.51999999999998 -1.9746509810504420E-005 - 203.57999999999998 -1.9285068244904044E-005 - 203.63999999999999 -1.8835134078754181E-005 - 203.69999999999999 -1.8396364716118158E-005 - 203.75999999999999 -1.7968423475377677E-005 - 203.81999999999999 -1.7550990602209198E-005 - 203.88000000000000 -1.7143762985435664E-005 - 203.94000000000000 -1.6746454772903043E-005 - 204.00000000000000 -1.6358799598208692E-005 - 204.06000000000000 -1.5980552150182929E-005 - 204.12000000000000 -1.5611480753228463E-005 - 204.17999999999998 -1.5251368206945267E-005 - 204.23999999999998 -1.4900007917024415E-005 - 204.29999999999998 -1.4557201156895716E-005 - 204.35999999999999 -1.4222750710608920E-005 - 204.41999999999999 -1.3896461197414843E-005 - 204.47999999999999 -1.3578138283452017E-005 - 204.53999999999999 -1.3267587842705718E-005 - 204.59999999999999 -1.2964615213926418E-005 - 204.66000000000000 -1.2669027304016095E-005 - 204.72000000000000 -1.2380634498539233E-005 - 204.78000000000000 -1.2099254440618962E-005 - 204.84000000000000 -1.1824715790897970E-005 - 204.89999999999998 -1.1556860180105364E-005 - 204.95999999999998 -1.1295546443399958E-005 - 205.01999999999998 -1.1040655315246098E-005 - 205.07999999999998 -1.0792088901689397E-005 - 205.13999999999999 -1.0549775244917910E-005 - 205.19999999999999 -1.0313667532247547E-005 - 205.25999999999999 -1.0083746709759448E-005 - 205.31999999999999 -9.8600229114688635E-006 - 205.38000000000000 -9.6425320096287170E-006 - 205.44000000000000 -9.4313379980672855E-006 - 205.50000000000000 -9.2265305708642711E-006 - 205.56000000000000 -9.0282270144670160E-006 - 205.62000000000000 -8.8365668071056468E-006 - 205.67999999999998 -8.6517136291959220E-006 - 205.73999999999998 -8.4738516682266600E-006 - 205.79999999999998 -8.3031859206847992E-006 - 205.85999999999999 -8.1399386854524666E-006 - 205.91999999999999 -7.9843453490950058E-006 - 205.97999999999999 -7.8366543149174442E-006 - 206.03999999999999 -7.6971202817337607E-006 - 206.09999999999999 -7.5660022383780485E-006 - 206.16000000000000 -7.4435559614573097E-006 - 206.22000000000000 -7.3300339551167649E-006 - 206.28000000000000 -7.2256763454733180E-006 - 206.34000000000000 -7.1307083160795663E-006 - 206.39999999999998 -7.0453378757969449E-006 - 206.45999999999998 -6.9697501531589547E-006 - 206.51999999999998 -6.9041061193368705E-006 - 206.57999999999998 -6.8485434395574039E-006 - 206.63999999999999 -6.8031760071384673E-006 - 206.69999999999999 -6.7680948867811278E-006 - 206.75999999999999 -6.7433726861662877E-006 - 206.81999999999999 -6.7290645307661315E-006 - 206.88000000000000 -6.7252152953870455E-006 - 206.94000000000000 -6.7318603200459650E-006 - 207.00000000000000 -6.7490319723786386E-006 - 207.06000000000000 -6.7767626655723178E-006 - 207.12000000000000 -6.8150855572886572E-006 - 207.17999999999998 -6.8640372639911268E-006 - 207.23999999999998 -6.9236567869378383E-006 - 207.29999999999998 -6.9939832497119828E-006 - 207.35999999999999 -7.0750539183710514E-006 - 207.41999999999999 -7.1668993781264298E-006 - 207.47999999999999 -7.2695375239060952E-006 - 207.53999999999999 -7.3829691720943568E-006 - 207.59999999999999 -7.5071696620452648E-006 - 207.66000000000000 -7.6420879443250171E-006 - 207.72000000000000 -7.7876346990151724E-006 - 207.78000000000000 -7.9436852103976517E-006 - 207.84000000000000 -8.1100733333031669E-006 - 207.89999999999998 -8.2865932062192110E-006 - 207.95999999999998 -8.4729959694380305E-006 - 208.01999999999998 -8.6689958432237799E-006 - 208.07999999999998 -8.8742711755914459E-006 - 208.13999999999999 -9.0884704887040233E-006 - 208.19999999999999 -9.3112163285730185E-006 - 208.25999999999999 -9.5421128492911074E-006 - 208.31999999999999 -9.7807484347933865E-006 - 208.38000000000000 -1.0026701197274469E-005 - 208.44000000000000 -1.0279545547255477E-005 - 208.50000000000000 -1.0538852859421380E-005 - 208.56000000000000 -1.0804195856817503E-005 - 208.62000000000000 -1.1075148454381253E-005 - 208.68000000000001 -1.1351287003374386E-005 - 208.74000000000001 -1.1632187642406673E-005 - 208.80000000000001 -1.1917425872729398E-005 - 208.86000000000001 -1.2206576275157630E-005 - 208.92000000000002 -1.2499207366096975E-005 - 208.98000000000002 -1.2794881601496629E-005 - 209.03999999999996 -1.3093150540099590E-005 - 209.09999999999997 -1.3393554874320985E-005 - 209.15999999999997 -1.3695623215091809E-005 - 209.21999999999997 -1.3998869188833386E-005 - 209.27999999999997 -1.4302793580435530E-005 - 209.33999999999997 -1.4606881359593833E-005 - 209.39999999999998 -1.4910604412256116E-005 - 209.45999999999998 -1.5213420954679089E-005 - 209.51999999999998 -1.5514779789127015E-005 - 209.57999999999998 -1.5814119549743848E-005 - 209.63999999999999 -1.6110872247309225E-005 - 209.69999999999999 -1.6404466744833752E-005 - 209.75999999999999 -1.6694331941473254E-005 - 209.81999999999999 -1.6979899518470196E-005 - 209.88000000000000 -1.7260607746164047E-005 - 209.94000000000000 -1.7535907836603947E-005 - 210.00000000000000 -1.7805267106595556E-005 - 210.06000000000000 -1.8068172217558401E-005 - 210.12000000000000 -1.8324136488353832E-005 - 210.18000000000001 -1.8572702955368513E-005 - 210.24000000000001 -1.8813447741814539E-005 - 210.30000000000001 -1.9045983915599980E-005 - 210.36000000000001 -1.9269963159637581E-005 - 210.42000000000002 -1.9485080568821828E-005 - 210.48000000000002 -1.9691070252658873E-005 - 210.53999999999996 -1.9887707623375048E-005 - 210.59999999999997 -2.0074808046092749E-005 - 210.65999999999997 -2.0252223367150807E-005 - 210.71999999999997 -2.0419840164790229E-005 - 210.77999999999997 -2.0577571047798782E-005 - 210.83999999999997 -2.0725359347250936E-005 - 210.89999999999998 -2.0863168063676315E-005 - 210.95999999999998 -2.0990981105452299E-005 - 211.01999999999998 -2.1108798986634404E-005 - 211.07999999999998 -2.1216638278094202E-005 - 211.13999999999999 -2.1314531503693697E-005 - 211.19999999999999 -2.1402528812710146E-005 - 211.25999999999999 -2.1480696318037953E-005 - 211.31999999999999 -2.1549126855841580E-005 - 211.38000000000000 -2.1607936960534097E-005 - 211.44000000000000 -2.1657273235033052E-005 - 211.50000000000000 -2.1697317844333876E-005 - 211.56000000000000 -2.1728291869292863E-005 - 211.62000000000000 -2.1750458064363882E-005 - 211.68000000000001 -2.1764123274586936E-005 - 211.74000000000001 -2.1769640900256329E-005 - 211.80000000000001 -2.1767403071991826E-005 - 211.86000000000001 -2.1757849082680496E-005 - 211.92000000000002 -2.1741455467788631E-005 - 211.98000000000002 -2.1718732054853769E-005 - 212.03999999999996 -2.1690210896651668E-005 - 212.09999999999997 -2.1656452239548897E-005 - 212.15999999999997 -2.1618024884425225E-005 - 212.21999999999997 -2.1575509106498843E-005 - 212.27999999999997 -2.1529481841209320E-005 - 212.33999999999997 -2.1480516035410391E-005 - 212.39999999999998 -2.1429172252078047E-005 - 212.45999999999998 -2.1376000396987253E-005 - 212.51999999999998 -2.1321530475417138E-005 - 212.57999999999998 -2.1266272712015801E-005 - 212.63999999999999 -2.1210720243267007E-005 - 212.69999999999999 -2.1155340688779485E-005 - 212.75999999999999 -2.1100583748991868E-005 - 212.81999999999999 -2.1046880536577403E-005 - 212.88000000000000 -2.0994640779846819E-005 - 212.94000000000000 -2.0944256315781823E-005 - 213.00000000000000 -2.0896101641475436E-005 - 213.06000000000000 -2.0850532790547099E-005 - 213.12000000000000 -2.0807888392352297E-005 - 213.18000000000001 -2.0768486556480505E-005 - 213.24000000000001 -2.0732628352715309E-005 - 213.30000000000001 -2.0700594113713634E-005 - 213.36000000000001 -2.0672644345891375E-005 - 213.42000000000002 -2.0649017874916975E-005 - 213.48000000000002 -2.0629931186277031E-005 - 213.53999999999996 -2.0615578259241894E-005 - 213.59999999999997 -2.0606132440158160E-005 - 213.65999999999997 -2.0601741774190951E-005 - 213.71999999999997 -2.0602530819770450E-005 - 213.77999999999997 -2.0608603386205952E-005 - 213.83999999999997 -2.0620039140677589E-005 - 213.89999999999998 -2.0636892412433251E-005 - 213.95999999999998 -2.0659194050312145E-005 - 214.01999999999998 -2.0686951414972963E-005 - 214.07999999999998 -2.0720143624731548E-005 - 214.13999999999999 -2.0758726017187829E-005 - 214.19999999999999 -2.0802623327625723E-005 - 214.25999999999999 -2.0851733632419382E-005 - 214.31999999999999 -2.0905924599855250E-005 - 214.38000000000000 -2.0965036338358121E-005 - 214.44000000000000 -2.1028879201788358E-005 - 214.50000000000000 -2.1097236833240930E-005 - 214.56000000000000 -2.1169863296456738E-005 - 214.62000000000000 -2.1246490979134698E-005 - 214.68000000000001 -2.1326832190153918E-005 - 214.74000000000001 -2.1410577974647804E-005 - 214.80000000000001 -2.1497404391865017E-005 - 214.86000000000001 -2.1586978213347499E-005 - 214.92000000000002 -2.1678957793170565E-005 - 214.98000000000002 -2.1772994967041134E-005 - 215.03999999999996 -2.1868737389278247E-005 - 215.09999999999997 -2.1965832707818146E-005 - 215.15999999999997 -2.2063931046498540E-005 - 215.21999999999997 -2.2162678972889518E-005 - 215.27999999999997 -2.2261725443615477E-005 - 215.33999999999997 -2.2360716059245707E-005 - 215.39999999999998 -2.2459292209103705E-005 - 215.45999999999998 -2.2557094716511507E-005 - 215.51999999999998 -2.2653752036156555E-005 - 215.57999999999998 -2.2748887141388779E-005 - 215.63999999999999 -2.2842110860614189E-005 - 215.69999999999999 -2.2933026490122042E-005 - 215.75999999999999 -2.3021221345928401E-005 - 215.81999999999999 -2.3106273988299471E-005 - 215.88000000000000 -2.3187751626170239E-005 - 215.94000000000000 -2.3265215609809640E-005 - 216.00000000000000 -2.3338214565973461E-005 - 216.06000000000000 -2.3406301511747717E-005 - 216.12000000000000 -2.3469023681883577E-005 - 216.18000000000001 -2.3525935365439562E-005 - 216.24000000000001 -2.3576594239532468E-005 - 216.30000000000001 -2.3620567509829800E-005 - 216.36000000000001 -2.3657438346250442E-005 - 216.42000000000002 -2.3686805473108601E-005 - 216.48000000000002 -2.3708289220333623E-005 - 216.53999999999996 -2.3721531879806574E-005 - 216.59999999999997 -2.3726200579486237E-005 - 216.65999999999997 -2.3721992457187032E-005 - 216.71999999999997 -2.3708635154868954E-005 - 216.77999999999997 -2.3685893489796433E-005 - 216.83999999999997 -2.3653563597138447E-005 - 216.89999999999998 -2.3611484013377990E-005 - 216.95999999999998 -2.3559530122372489E-005 - 217.01999999999998 -2.3497617833163000E-005 - 217.07999999999998 -2.3425705476655071E-005 - 217.13999999999999 -2.3343791702522445E-005 - 217.19999999999999 -2.3251914541344325E-005 - 217.25999999999999 -2.3150154805454487E-005 - 217.31999999999999 -2.3038629328531384E-005 - 217.38000000000000 -2.2917488823064279E-005 - 217.44000000000000 -2.2786920701400569E-005 - 217.50000000000000 -2.2647140270681919E-005 - 217.56000000000000 -2.2498395434128053E-005 - 217.62000000000000 -2.2340959838018802E-005 - 217.68000000000001 -2.2175131812135005E-005 - 217.74000000000001 -2.2001235822217468E-005 - 217.80000000000001 -2.1819620780672901E-005 - 217.86000000000001 -2.1630661514868583E-005 - 217.92000000000002 -2.1434761714691808E-005 - 217.98000000000002 -2.1232355876095204E-005 - 218.03999999999996 -2.1023913325194603E-005 - 218.09999999999997 -2.0809940069052475E-005 - 218.15999999999997 -2.0590978917402191E-005 - 218.21999999999997 -2.0367619920080574E-005 - 218.27999999999997 -2.0140495484137813E-005 - 218.33999999999997 -1.9910282088594133E-005 - 218.39999999999998 -1.9677703714859017E-005 - 218.45999999999998 -1.9443527018256574E-005 - 218.51999999999998 -1.9208557887248662E-005 - 218.57999999999998 -1.8973637951827550E-005 - 218.63999999999999 -1.8739639120983375E-005 - 218.69999999999999 -1.8507457771267379E-005 - 218.75999999999999 -1.8278004115040072E-005 - 218.81999999999999 -1.8052198792678383E-005 - 218.88000000000000 -1.7830967413387595E-005 - 218.94000000000000 -1.7615230399696954E-005 - 219.00000000000000 -1.7405899107242472E-005 - 219.06000000000000 -1.7203870531306984E-005 - 219.12000000000000 -1.7010030221380043E-005 - 219.18000000000001 -1.6825246369282569E-005 - 219.24000000000001 -1.6650371564687789E-005 - 219.30000000000001 -1.6486245961964389E-005 - 219.36000000000001 -1.6333699438802111E-005 - 219.42000000000002 -1.6193554040749194E-005 - 219.48000000000002 -1.6066632889621744E-005 - 219.53999999999996 -1.5953759785646407E-005 - 219.59999999999997 -1.5855768815834556E-005 - 219.65999999999997 -1.5773502512919639E-005 - 219.71999999999997 -1.5707818663237496E-005 - 219.77999999999997 -1.5659594075225455E-005 - 219.83999999999997 -1.5629721298652936E-005 - 219.89999999999998 -1.5619111559220294E-005 - 219.95999999999998 -1.5628695504940248E-005 - 220.01999999999998 -1.5659419126747598E-005 - 220.07999999999998 -1.5712244309702837E-005 - 220.13999999999999 -1.5788144342263977E-005 - 220.19999999999999 -1.5888098655614464E-005 - 220.25999999999999 -1.6013100614104034E-005 - 220.31999999999999 -1.6164139378682125E-005 - 220.38000000000000 -1.6342210803974622E-005 - 220.44000000000000 -1.6548309475845014E-005 - 220.50000000000000 -1.6783426983761694E-005 - 220.56000000000000 -1.7048556140364104E-005 - 220.62000000000000 -1.7344684599208152E-005 - 220.68000000000001 -1.7672802063974989E-005 - 220.74000000000001 -1.8033897325890358E-005 - 220.80000000000001 -1.8428966684143608E-005 - 220.86000000000001 -1.8859010385851643E-005 - 220.92000000000002 -1.9325038322854925E-005 - 220.98000000000002 -1.9828077966905492E-005 - 221.03999999999996 -2.0369171420370155E-005 - 221.09999999999997 -2.0949386495085795E-005 - 221.15999999999997 -2.1569822801243049E-005 - 221.21999999999997 -2.2231608222601632E-005 - 221.27999999999997 -2.2935911642742585E-005 - 221.33999999999997 -2.3683937107191379E-005 - 221.39999999999998 -2.4476941766780721E-005 - 221.45999999999998 -2.5316216696205260E-005 - 221.51999999999998 -2.6203103473782988E-005 - 221.57999999999998 -2.7138988561243061E-005 - 221.63999999999999 -2.8125297528486541E-005 - 221.69999999999999 -2.9163497928110295E-005 - 221.75999999999999 -3.0255085506914199E-005 - 221.81999999999999 -3.1401589261349025E-005 - 221.88000000000000 -3.2604553771228392E-005 - 221.94000000000000 -3.3865540124918148E-005 - 222.00000000000000 -3.5186119674501677E-005 - 222.06000000000000 -3.6567855418350016E-005 - 222.12000000000000 -3.8012311350523503E-005 - 222.18000000000001 -3.9521038165444969E-005 - 222.24000000000001 -4.1095571911699306E-005 - 222.30000000000001 -4.2737437025374637E-005 - 222.36000000000001 -4.4448136558605927E-005 - 222.42000000000002 -4.6229157454486495E-005 - 222.48000000000002 -4.8081976682320410E-005 - 222.53999999999996 -5.0008051344700348E-005 - 222.59999999999997 -5.2008834846822709E-005 - 222.65999999999997 -5.4085770559350181E-005 - 222.71999999999997 -5.6240300634974614E-005 - 222.77999999999997 -5.8473853198028308E-005 - 222.83999999999997 -6.0787856476055821E-005 - 222.89999999999998 -6.3183735898437722E-005 - 222.95999999999998 -6.5662898776771252E-005 - 223.01999999999998 -6.8226722711688272E-005 - 223.07999999999998 -7.0876565266408039E-005 - 223.13999999999999 -7.3613745235777766E-005 - 223.19999999999999 -7.6439525034085440E-005 - 223.25999999999999 -7.9355091974442726E-005 - 223.31999999999999 -8.2361566669992322E-005 - 223.38000000000000 -8.5459976887501525E-005 - 223.44000000000000 -8.8651241893505716E-005 - 223.50000000000000 -9.1936157475908624E-005 - 223.56000000000000 -9.5315410539314449E-005 - 223.62000000000000 -9.8789530832573609E-005 - 223.68000000000001 -1.0235889040732927E-004 - 223.74000000000001 -1.0602375043315345E-004 - 223.80000000000001 -1.0978418280614051E-004 - 223.86000000000001 -1.1364010674239807E-004 - 223.92000000000002 -1.1759128061417486E-004 - 223.98000000000002 -1.2163730856487785E-004 - 224.03999999999996 -1.2577759272787480E-004 - 224.09999999999997 -1.3001139870031462E-004 - 224.15999999999997 -1.3433779028690281E-004 - 224.21999999999997 -1.3875564795885084E-004 - 224.27999999999997 -1.4326369215652358E-004 - 224.33999999999997 -1.4786042145081984E-004 - 224.39999999999998 -1.5254415297434175E-004 - 224.45999999999998 -1.5731296764087284E-004 - 224.51999999999998 -1.6216475244007730E-004 - 224.57999999999998 -1.6709716552959242E-004 - 224.63999999999999 -1.7210758962750476E-004 - 224.69999999999999 -1.7719321262541071E-004 - 224.75999999999999 -1.8235093260225683E-004 - 224.81999999999999 -1.8757740615835068E-004 - 224.88000000000000 -1.9286900132941339E-004 - 224.94000000000000 -1.9822181623266175E-004 - 225.00000000000000 -2.0363168139285714E-004 - 225.06000000000000 -2.0909411961259958E-004 - 225.12000000000000 -2.1460440782886307E-004 - 225.18000000000001 -2.2015748515578101E-004 - 225.24000000000001 -2.2574804176054777E-004 - 225.30000000000001 -2.3137044978225880E-004 - 225.36000000000001 -2.3701883377375883E-004 - 225.42000000000002 -2.4268699130492333E-004 - 225.48000000000002 -2.4836845590561014E-004 - 225.53999999999996 -2.5405653024187662E-004 - 225.59999999999997 -2.5974420060402136E-004 - 225.65999999999997 -2.6542423011332060E-004 - 225.71999999999997 -2.7108910996348604E-004 - 225.77999999999997 -2.7673110704513377E-004 - 225.83999999999997 -2.8234227206350935E-004 - 225.89999999999998 -2.8791443352977800E-004 - 225.95999999999998 -2.9343922210198843E-004 - 226.01999999999998 -2.9890808703349387E-004 - 226.07999999999998 -3.0431231651341595E-004 - 226.13999999999999 -3.0964303773343071E-004 - 226.19999999999999 -3.1489122965781168E-004 - 226.25999999999999 -3.2004773973143486E-004 - 226.31999999999999 -3.2510332379833258E-004 - 226.38000000000000 -3.3004862479062760E-004 - 226.44000000000000 -3.3487418984968088E-004 - 226.50000000000000 -3.3957054620165501E-004 - 226.56000000000000 -3.4412810492206883E-004 - 226.62000000000000 -3.4853731523286206E-004 - 226.68000000000001 -3.5278854299667208E-004 - 226.74000000000001 -3.5687218837902982E-004 - 226.80000000000001 -3.6077869127904575E-004 - 226.86000000000001 -3.6449854676702016E-004 - 226.92000000000002 -3.6802233294984328E-004 - 226.98000000000002 -3.7134071648012079E-004 - 227.03999999999996 -3.7444454359615630E-004 - 227.09999999999997 -3.7732479051116045E-004 - 227.15999999999997 -3.7997260987794596E-004 - 227.21999999999997 -3.8237945775446830E-004 - 227.27999999999997 -3.8453700944865985E-004 - 227.33999999999997 -3.8643719293901600E-004 - 227.39999999999998 -3.8807233750001220E-004 - 227.45999999999998 -3.8943504545322320E-004 - 227.51999999999998 -3.9051827263917986E-004 - 227.57999999999998 -3.9131539704659421E-004 - 227.63999999999999 -3.9182017798618924E-004 - 227.69999999999999 -3.9202678455287689E-004 - 227.75999999999999 -3.9192981840095135E-004 - 227.81999999999999 -3.9152436819549723E-004 - 227.88000000000000 -3.9080591750841319E-004 - 227.94000000000000 -3.8977044637833333E-004 - 228.00000000000000 -3.8841447352134118E-004 - 228.06000000000000 -3.8673501457039614E-004 - 228.12000000000000 -3.8472953732929276E-004 - 228.18000000000001 -3.8239609475733264E-004 - 228.24000000000001 -3.7973328701958225E-004 - 228.30000000000001 -3.7674023201150037E-004 - 228.36000000000001 -3.7341668970465456E-004 - 228.42000000000002 -3.6976292894131703E-004 - 228.48000000000002 -3.6577987123603660E-004 - 228.53999999999996 -3.6146900345498831E-004 - 228.59999999999997 -3.5683245434002357E-004 - 228.65999999999997 -3.5187295795708180E-004 - 228.71999999999997 -3.4659382644138009E-004 - 228.77999999999997 -3.4099901696666503E-004 - 228.83999999999997 -3.3509305994898351E-004 - 228.89999999999998 -3.2888110225821041E-004 - 228.95999999999998 -3.2236886550277515E-004 - 229.01999999999998 -3.1556261921265275E-004 - 229.07999999999998 -3.0846923961172837E-004 - 229.13999999999999 -3.0109610069308846E-004 - 229.19999999999999 -2.9345114811814418E-004 - 229.25999999999999 -2.8554281234848715E-004 - 229.31999999999999 -2.7738000639997075E-004 - 229.38000000000000 -2.6897214503358911E-004 - 229.44000000000000 -2.6032909051424682E-004 - 229.50000000000000 -2.5146112916504267E-004 - 229.56000000000000 -2.4237900764447097E-004 - 229.62000000000000 -2.3309385291044932E-004 - 229.68000000000001 -2.2361711452331589E-004 - 229.74000000000001 -2.1396064546543370E-004 - 229.80000000000001 -2.0413662063630423E-004 - 229.86000000000001 -1.9415747214849487E-004 - 229.92000000000002 -1.8403591288680208E-004 - 229.97999999999996 -1.7378488782734616E-004 - 230.03999999999996 -1.6341756421777844E-004 - 230.09999999999997 -1.5294723769277677E-004 - 230.15999999999997 -1.4238738217170442E-004 - 230.21999999999997 -1.3175156267815824E-004 - 230.27999999999997 -1.2105342536643880E-004 - 230.33999999999997 -1.1030663939676216E-004 - 230.39999999999998 -9.9524919626845992E-005 - 230.45999999999998 -8.8721936167794767E-005 - 230.51999999999998 -7.7911318690613687E-005 - 230.57999999999998 -6.7106627923128740E-005 - 230.63999999999999 -5.6321307403029794E-005 - 230.69999999999999 -4.5568672563215801E-005 - 230.75999999999999 -3.4861889463005355E-005 - 230.81999999999999 -2.4213934332893667E-005 - 230.88000000000000 -1.3637554879490153E-005 - 230.94000000000000 -3.1452450175448659E-006 - 231.00000000000000 7.2507619743214486E-006 - 231.06000000000000 1.7538518529738624E-005 - 231.12000000000000 2.7706428259589028E-005 - 231.18000000000001 3.7743236971269451E-005 - 231.24000000000001 4.7638076385723071E-005 - 231.30000000000001 5.7380462481070607E-005 - 231.36000000000001 6.6960334135467866E-005 - 231.42000000000002 7.6368066377631661E-005 - 231.47999999999996 8.5594491553579857E-005 - 231.53999999999996 9.4630912396078185E-005 - 231.59999999999997 1.0346908310905566E-004 - 231.65999999999997 1.1210126008631753E-004 - 231.71999999999997 1.2052017654564905E-004 - 231.77999999999997 1.2871908815925156E-004 - 231.83999999999997 1.3669173629785603E-004 - 231.89999999999998 1.4443236176531432E-004 - 231.95999999999998 1.5193571187783350E-004 - 232.01999999999998 1.5919703830628666E-004 - 232.07999999999998 1.6621212858671728E-004 - 232.13999999999999 1.7297725561400107E-004 - 232.19999999999999 1.7948919992373196E-004 - 232.25999999999999 1.8574524737806870E-004 - 232.31999999999999 1.9174321563303261E-004 - 232.38000000000000 1.9748141724008200E-004 - 232.44000000000000 2.0295863943012386E-004 - 232.50000000000000 2.0817417226246757E-004 - 232.56000000000000 2.1312779464494207E-004 - 232.62000000000000 2.1781974906154566E-004 - 232.68000000000001 2.2225071772532303E-004 - 232.74000000000001 2.2642181780461632E-004 - 232.80000000000001 2.3033457783014312E-004 - 232.86000000000001 2.3399095864616549E-004 - 232.92000000000002 2.3739326402042610E-004 - 232.97999999999996 2.4054415870541321E-004 - 233.03999999999996 2.4344665470533294E-004 - 233.09999999999997 2.4610407776131629E-004 - 233.15999999999997 2.4852002593933392E-004 - 233.21999999999997 2.5069842257587836E-004 - 233.27999999999997 2.5264342966047933E-004 - 233.33999999999997 2.5435945942486996E-004 - 233.39999999999998 2.5585114847083879E-004 - 233.45999999999998 2.5712333696546757E-004 - 233.51999999999998 2.5818108422750628E-004 - 233.57999999999998 2.5902961564807346E-004 - 233.63999999999999 2.5967435660562664E-004 - 233.69999999999999 2.6012085421280305E-004 - 233.75999999999999 2.6037479599782441E-004 - 233.81999999999999 2.6044196570237027E-004 - 233.88000000000000 2.6032824530930910E-004 - 233.94000000000000 2.6003961823918196E-004 - 234.00000000000000 2.5958210679902113E-004 - 234.06000000000000 2.5896177477351720E-004 - 234.12000000000000 2.5818467194333296E-004 - 234.18000000000001 2.5725688000734036E-004 - 234.24000000000001 2.5618449675570050E-004 - 234.30000000000001 2.5497348888591013E-004 - 234.36000000000001 2.5362988968732751E-004 - 234.42000000000002 2.5215961319837831E-004 - 234.47999999999996 2.5056855098902736E-004 - 234.53999999999996 2.4886249294236448E-004 - 234.59999999999997 2.4704720346430684E-004 - 234.65999999999997 2.4512832406090295E-004 - 234.71999999999997 2.4311144094320308E-004 - 234.77999999999997 2.4100206222464740E-004 - 234.83999999999997 2.3880561841057332E-004 - 234.89999999999998 2.3652744074019206E-004 - 234.95999999999998 2.3417275911070685E-004 - 235.01999999999998 2.3174673658318297E-004 - 235.07999999999998 2.2925440530189030E-004 - 235.13999999999999 2.2670066761217342E-004 - 235.19999999999999 2.2409037057836433E-004 - 235.25999999999999 2.2142820763086744E-004 - 235.31999999999999 2.1871873344985498E-004 - 235.38000000000000 2.1596638959530702E-004 - 235.44000000000000 2.1317547493201536E-004 - 235.50000000000000 2.1035016280271650E-004 - 235.56000000000000 2.0749452396717985E-004 - 235.62000000000000 2.0461244334735699E-004 - 235.68000000000001 2.0170772792013316E-004 - 235.74000000000001 1.9878403591116057E-004 - 235.80000000000001 1.9584491795532737E-004 - 235.86000000000001 1.9289378960459885E-004 - 235.92000000000002 1.8993399855372147E-004 - 235.97999999999996 1.8696873610568623E-004 - 236.03999999999996 1.8400111874568368E-004 - 236.09999999999997 1.8103417187643583E-004 - 236.15999999999997 1.7807078902269357E-004 - 236.21999999999997 1.7511377567894785E-004 - 236.27999999999997 1.7216586849622722E-004 - 236.33999999999997 1.6922966536913258E-004 - 236.39999999999998 1.6630768547220087E-004 - 236.45999999999998 1.6340233566044463E-004 - 236.51999999999998 1.6051593373496483E-004 - 236.57999999999998 1.5765069571462752E-004 - 236.63999999999999 1.5480875787998635E-004 - 236.69999999999999 1.5199214765365164E-004 - 236.75999999999999 1.4920279813509184E-004 - 236.81999999999999 1.4644259663038376E-004 - 236.88000000000000 1.4371330376818564E-004 - 236.94000000000000 1.4101662535630601E-004 - 237.00000000000000 1.3835418921428783E-004 - 237.06000000000000 1.3572755332926802E-004 - 237.12000000000000 1.3313820954296451E-004 - 237.18000000000001 1.3058757255504319E-004 - 237.24000000000001 1.2807697780439363E-004 - 237.30000000000001 1.2560770627062138E-004 - 237.36000000000001 1.2318094753975919E-004 - 237.42000000000002 1.2079781910452055E-004 - 237.47999999999996 1.1845935050023086E-004 - 237.53999999999996 1.1616648851337056E-004 - 237.59999999999997 1.1392008889781670E-004 - 237.65999999999997 1.1172093817881784E-004 - 237.71999999999997 1.0956969510731015E-004 - 237.77999999999997 1.0746696665525502E-004 - 237.83999999999997 1.0541326653385009E-004 - 237.89999999999998 1.0340902373400415E-004 - 237.95999999999998 1.0145460723396368E-004 - 238.01999999999998 9.9550299599911483E-005 - 238.07999999999998 9.7696322676647684E-005 - 238.13999999999999 9.5892840889318716E-005 - 238.19999999999999 9.4139956632839541E-005 - 238.25999999999999 9.2437727880373646E-005 - 238.31999999999999 9.0786157838797650E-005 - 238.38000000000000 8.9185195939152972E-005 - 238.44000000000000 8.7634730313160893E-005 - 238.50000000000000 8.6134609709607332E-005 - 238.56000000000000 8.4684617405837492E-005 - 238.62000000000000 8.3284463610866613E-005 - 238.68000000000001 8.1933808470012592E-005 - 238.74000000000001 8.0632239970811488E-005 - 238.80000000000001 7.9379276735491321E-005 - 238.86000000000001 7.8174361419982877E-005 - 238.92000000000002 7.7016874355060355E-005 - 238.97999999999996 7.5906117446947690E-005 - 239.03999999999996 7.4841345453232139E-005 - 239.09999999999997 7.3821748736837555E-005 - 239.15999999999997 7.2846459118547894E-005 - 239.21999999999997 7.1914571482372251E-005 - 239.27999999999997 7.1025133672452019E-005 - 239.33999999999997 7.0177163294906421E-005 - 239.39999999999998 6.9369636975816771E-005 - 239.45999999999998 6.8601515547311672E-005 - 239.51999999999998 6.7871724574195539E-005 - 239.57999999999998 6.7179177188746750E-005 - 239.63999999999999 6.6522753339116143E-005 - 239.69999999999999 6.5901315361922901E-005 - 239.75999999999999 6.5313693493232827E-005 - 239.81999999999999 6.4758700314066563E-005 - 239.88000000000000 6.4235102325367510E-005 - 239.94000000000000 6.3741651588269694E-005 - 240.00000000000000 6.3277069581071357E-005 - 240.06000000000000 6.2840048108760100E-005 - 240.12000000000000 6.2429256673958693E-005 - 240.18000000000001 6.2043342775520819E-005 - 240.24000000000001 6.1680933423668429E-005 - 240.30000000000001 6.1340654710721840E-005 - 240.36000000000001 6.1021115910732039E-005 - 240.42000000000002 6.0720932106157742E-005 - 240.47999999999996 6.0438717617664551E-005 - 240.53999999999996 6.0173093689328215E-005 - 240.59999999999997 5.9922697232557659E-005 - 240.65999999999997 5.9686164267431882E-005 - 240.71999999999997 5.9462164260215822E-005 - 240.77999999999997 5.9249355822261515E-005 - 240.83999999999997 5.9046431133579802E-005 - 240.89999999999998 5.8852082516683677E-005 - 240.95999999999998 5.8665018469354350E-005 - 241.01999999999998 5.8483961380305431E-005 - 241.07999999999998 5.8307640742801518E-005 - 241.13999999999999 5.8134801219286998E-005 - 241.19999999999999 5.7964207696502726E-005 - 241.25999999999999 5.7794643933615315E-005 - 241.31999999999999 5.7624915068860410E-005 - 241.38000000000000 5.7453866797857138E-005 - 241.44000000000000 5.7280374358499041E-005 - 241.50000000000000 5.7103357289270793E-005 - 241.56000000000000 5.6921783500693963E-005 - 241.62000000000000 5.6734675125498606E-005 - 241.68000000000001 5.6541108502581946E-005 - 241.74000000000001 5.6340226507777872E-005 - 241.80000000000001 5.6131223616514074E-005 - 241.86000000000001 5.5913355972384488E-005 - 241.92000000000002 5.5685940155626418E-005 - 241.97999999999996 5.5448349630824070E-005 - 242.03999999999996 5.5200011841608335E-005 - 242.09999999999997 5.4940402662788819E-005 - 242.15999999999997 5.4669053218423471E-005 - 242.21999999999997 5.4385538120717266E-005 - 242.27999999999997 5.4089478673365603E-005 - 242.33999999999997 5.3780545934292819E-005 - 242.39999999999998 5.3458461520072663E-005 - 242.45999999999998 5.3123005420821404E-005 - 242.51999999999998 5.2774012434733893E-005 - 242.57999999999998 5.2411379834694490E-005 - 242.63999999999999 5.2035069213155639E-005 - 242.69999999999999 5.1645126875871508E-005 - 242.75999999999999 5.1241667102918736E-005 - 242.81999999999999 5.0824886524936367E-005 - 242.88000000000000 5.0395057849962818E-005 - 242.94000000000000 4.9952536782272771E-005 - 243.00000000000000 4.9497751557993754E-005 - 243.06000000000000 4.9031208765472308E-005 - 243.12000000000000 4.8553483797782747E-005 - 243.18000000000001 4.8065215509310086E-005 - 243.24000000000001 4.7567091857285837E-005 - 243.30000000000001 4.7059847056684138E-005 - 243.36000000000001 4.6544264431892920E-005 - 243.42000000000002 4.6021167279101255E-005 - 243.47999999999996 4.5491399118613879E-005 - 243.53999999999996 4.4955830513340404E-005 - 243.59999999999997 4.4415360131561217E-005 - 243.65999999999997 4.3870909135332892E-005 - 243.71999999999997 4.3323416681729687E-005 - 243.77999999999997 4.2773841397657831E-005 - 243.83999999999997 4.2223166950284481E-005 - 243.89999999999998 4.1672396734047609E-005 - 243.95999999999998 4.1122548344002770E-005 - 244.01999999999998 4.0574656615031059E-005 - 244.07999999999998 4.0029779541960035E-005 - 244.13999999999999 3.9488980556299899E-005 - 244.19999999999999 3.8953338792375079E-005 - 244.25999999999999 3.8423929844135474E-005 - 244.31999999999999 3.7901833047195592E-005 - 244.38000000000000 3.7388121656411570E-005 - 244.44000000000000 3.6883858852669178E-005 - 244.50000000000000 3.6390098503428527E-005 - 244.56000000000000 3.5907872989009309E-005 - 244.62000000000000 3.5438199298186680E-005 - 244.68000000000001 3.4982074942875946E-005 - 244.74000000000001 3.4540474146464283E-005 - 244.80000000000001 3.4114353540203466E-005 - 244.86000000000001 3.3704656189017702E-005 - 244.92000000000002 3.3312307036445079E-005 - 244.97999999999996 3.2938220905476395E-005 - 245.03999999999996 3.2583299695411055E-005 - 245.09999999999997 3.2248431501376900E-005 - 245.15999999999997 3.1934498574831793E-005 - 245.21999999999997 3.1642367148727876E-005 - 245.27999999999997 3.1372891491315567E-005 - 245.33999999999997 3.1126912632676259E-005 - 245.39999999999998 3.0905250320208927E-005 - 245.45999999999998 3.0708707201593434E-005 - 245.51999999999998 3.0538060311056040E-005 - 245.57999999999998 3.0394060793787424E-005 - 245.63999999999999 3.0277437655635604E-005 - 245.69999999999999 3.0188892247188734E-005 - 245.75999999999999 3.0129097891538438E-005 - 245.81999999999999 3.0098719206982532E-005 - 245.88000000000000 3.0098401472389461E-005 - 245.94000000000000 3.0128780590991937E-005 - 246.00000000000000 3.0190491464692707E-005 - 246.06000000000000 3.0284175858240225E-005 - 246.12000000000000 3.0410493019847937E-005 - 246.18000000000001 3.0570120753866989E-005 - 246.24000000000001 3.0763764437200426E-005 - 246.30000000000001 3.0992161019867765E-005 - 246.36000000000001 3.1256081498170063E-005 - 246.42000000000002 3.1556336192563244E-005 - 246.47999999999996 3.1893768225564408E-005 - 246.53999999999996 3.2269265104448816E-005 - 246.59999999999997 3.2683740316609392E-005 - 246.65999999999997 3.3138147391373961E-005 - 246.71999999999997 3.3633463741572624E-005 - 246.77999999999997 3.4170694522463473E-005 - 246.83999999999997 3.4750876956355682E-005 - 246.89999999999998 3.5375068749953788E-005 - 246.95999999999998 3.6044357924309693E-005 - 247.01999999999998 3.6759859883314175E-005 - 247.07999999999998 3.7522724241449897E-005 - 247.13999999999999 3.8334134185504121E-005 - 247.19999999999999 3.9195314105397372E-005 - 247.25999999999999 4.0107541416920568E-005 - 247.31999999999999 4.1072139808308887E-005 - 247.38000000000000 4.2090485502594397E-005 - 247.44000000000000 4.3164017123548309E-005 - 247.50000000000000 4.4294235412466613E-005 - 247.56000000000000 4.5482705099548195E-005 - 247.62000000000000 4.6731044385024353E-005 - 247.68000000000001 4.8040935674117471E-005 - 247.74000000000001 4.9414118426560501E-005 - 247.80000000000001 5.0852388260655946E-005 - 247.86000000000001 5.2357587634629189E-005 - 247.92000000000002 5.3931594576587003E-005 - 247.97999999999996 5.5576334073597153E-005 - 248.03999999999996 5.7293763576853394E-005 - 248.09999999999997 5.9085868544058365E-005 - 248.15999999999997 6.0954667221938845E-005 - 248.21999999999997 6.2902199969834869E-005 - 248.27999999999997 6.4930519228393357E-005 - 248.33999999999997 6.7041702987634315E-005 - 248.39999999999998 6.9237846575102231E-005 - 248.45999999999998 7.1521045125242256E-005 - 248.51999999999998 7.3893404922702118E-005 - 248.57999999999998 7.6357037575607476E-005 - 248.63999999999999 7.8914047066748472E-005 - 248.69999999999999 8.1566520556248455E-005 - 248.75999999999999 8.4316533286999586E-005 - 248.81999999999999 8.7166126632091842E-005 - 248.88000000000000 9.0117311157606264E-005 - 248.94000000000000 9.3172043026760928E-005 - 249.00000000000000 9.6332240180978715E-005 - 249.06000000000000 9.9599740070975280E-005 - 249.12000000000000 1.0297632847209689E-004 - 249.18000000000001 1.0646369710511261E-004 - 249.24000000000001 1.1006348731604210E-004 - 249.30000000000001 1.1377723568886493E-004 - 249.36000000000001 1.1760638685345145E-004 - 249.42000000000002 1.2155230471041267E-004 - 249.47999999999996 1.2561625542596767E-004 - 249.53999999999996 1.2979940992283786E-004 - 249.59999999999997 1.3410285350162326E-004 - 249.65999999999997 1.3852755170889154E-004 - 249.71999999999997 1.4307434280666438E-004 - 249.77999999999997 1.4774396304147991E-004 - 249.83999999999997 1.5253701428044348E-004 - 249.89999999999998 1.5745395157763169E-004 - 249.95999999999998 1.6249507790833307E-004 - 250.01999999999998 1.6766051768200144E-004 - 250.07999999999998 1.7295021799716847E-004 - 250.13999999999999 1.7836393414259811E-004 - 250.19999999999999 1.8390120001935125E-004 - 250.25999999999999 1.8956134431706890E-004 - 250.31999999999999 1.9534345023947160E-004 - 250.38000000000000 2.0124638414951299E-004 - 250.44000000000000 2.0726878556438054E-004 - 250.50000000000000 2.1340900861882136E-004 - 250.56000000000000 2.1966518212218682E-004 - 250.62000000000000 2.2603521896974482E-004 - 250.68000000000001 2.3251676220065404E-004 - 250.74000000000001 2.3910725769017688E-004 - 250.80000000000001 2.4580385324948843E-004 - 250.86000000000001 2.5260350091154321E-004 - 250.92000000000002 2.5950294565174988E-004 - 250.97999999999996 2.6649868035765698E-004 - 251.03999999999996 2.7358698857281105E-004 - 251.09999999999997 2.8076389578947570E-004 - 251.15999999999997 2.8802518194177129E-004 - 251.21999999999997 2.9536642874607253E-004 - 251.27999999999997 3.0278294066160441E-004 - 251.33999999999997 3.1026980552923956E-004 - 251.39999999999998 3.1782181190479457E-004 - 251.45999999999998 3.2543353346763923E-004 - 251.51999999999998 3.3309927705093602E-004 - 251.57999999999998 3.4081303978023908E-004 - 251.63999999999999 3.4856856091591322E-004 - 251.69999999999999 3.5635938524987529E-004 - 251.75999999999999 3.6417876295754105E-004 - 251.81999999999999 3.7201975159619686E-004 - 251.88000000000000 3.7987511118556846E-004 - 251.94000000000000 3.8773737397218284E-004 diff --git a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000004.BXY.semd b/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000004.BXY.semd deleted file mode 100644 index c02ea643..00000000 --- a/seisflows/tests/test_data/test_solver/002/traces/syn/AA.S000004.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 -8.7049043676958566E-041 - 11.640000000000001 -1.7409808735391713E-040 - 11.699999999999996 -2.6114712521721245E-040 - 11.759999999999998 -3.4819617470783426E-040 - 11.820000000000000 -4.3524520094380309E-040 - 11.879999999999995 -5.2229425043442490E-040 - 11.939999999999998 -4.6201498076178308E-040 - 12.000000000000000 -2.7162576486971980E-040 - 12.059999999999995 2.1896985879244023E-040 - 12.119999999999997 1.0421382045933942E-039 - 12.180000000000000 2.1913484590442017E-039 - 12.239999999999995 3.6169163584082525E-039 - 12.299999999999997 5.1955984741255202E-039 - 12.359999999999999 6.8856781911921623E-039 - 12.419999999999995 8.3945219330725132E-039 - 12.479999999999997 9.6060246125046539E-039 - 12.539999999999999 1.0283060951510374E-038 - 12.599999999999994 9.5901541490116339E-039 - 12.659999999999997 6.5364074422246616E-039 - 12.719999999999999 2.0167235026449875E-039 - 12.780000000000001 -2.8582400021956304E-039 - 12.839999999999996 -8.1692583884875947E-039 - 12.899999999999999 -1.3601123392765989E-038 - 12.960000000000001 -1.8092857505064366E-038 - 13.019999999999996 -2.0250662784950967E-038 - 13.079999999999998 -1.8715695420865290E-038 - 13.140000000000001 -1.3535510365633597E-038 - 13.199999999999996 -2.3931956227654865E-039 - 13.259999999999998 1.3211967552833956E-038 - 13.320000000000000 3.1612681632465856E-038 - 13.379999999999995 5.1275642652480933E-038 - 13.439999999999998 7.0364795435912916E-038 - 13.500000000000000 8.7625417726545250E-038 - 13.559999999999995 9.7959091626279752E-038 - 13.619999999999997 9.7192581626825262E-038 - 13.680000000000000 6.9117305597098400E-038 - 13.739999999999995 2.2094991144336630E-038 - 13.799999999999997 -3.3810301027654445E-038 - 13.859999999999999 -9.7738110598381760E-038 - 13.919999999999995 -1.6813032719642865E-037 - 13.979999999999997 -2.4122113688744130E-037 - 14.039999999999999 -2.9782451480887961E-037 - 14.099999999999994 -3.2368350150486931E-037 - 14.159999999999997 -3.1595125415497514E-037 - 14.219999999999999 -2.5852925055180140E-037 - 14.280000000000001 -1.4815208759505405E-037 - 14.339999999999996 1.7069246686956890E-039 - 14.399999999999999 1.8238683748018351E-037 - 14.460000000000001 3.7740107952876492E-037 - 14.519999999999996 5.7962426156532781E-037 - 14.579999999999998 7.6561603790336906E-037 - 14.640000000000001 8.8287944571137051E-037 - 14.699999999999996 9.1084761594502887E-037 - 14.759999999999998 8.3231675819453206E-037 - 14.820000000000000 6.4068051754766520E-037 - 14.879999999999995 3.3872693685778466E-037 - 14.939999999999998 -6.6786445295515476E-038 - 15.000000000000000 -5.5717909030066930E-037 - 15.059999999999995 -1.0967270803793652E-036 - 15.119999999999997 -1.6419730902118615E-036 - 15.180000000000000 -2.0890597610423024E-036 - 15.239999999999995 -2.3265535877776778E-036 - 15.299999999999997 -2.2597021352098005E-036 - 15.359999999999999 -1.8165648041379011E-036 - 15.419999999999995 -9.7828233223693296E-037 - 15.479999999999997 2.3781113830729066E-037 - 15.539999999999999 1.8245937513826030E-036 - 15.599999999999994 3.6440529702192639E-036 - 15.659999999999997 5.5400257760076536E-036 - 15.719999999999999 7.3208762600444364E-036 - 15.780000000000001 8.6911131946874188E-036 - 15.839999999999996 9.4004061925282121E-036 - 15.899999999999999 9.1894090868602150E-036 - 15.960000000000001 7.8417316004455682E-036 - 16.019999999999996 5.2829332133529138E-036 - 16.079999999999998 1.4063636416863359E-036 - 16.140000000000001 -3.6544906495171597E-036 - 16.200000000000003 -9.7226091573541640E-036 - 16.259999999999991 -1.6399139074086694E-035 - 16.319999999999993 -2.2910824372336831E-035 - 16.379999999999995 -2.8404833622545475E-035 - 16.439999999999998 -3.2030409887083858E-035 - 16.500000000000000 -3.2916204454080631E-035 - 16.560000000000002 -3.0255339563008350E-035 - 16.620000000000005 -2.3371508274529521E-035 - 16.679999999999993 -1.1876015706204483E-035 - 16.739999999999995 4.1534175450574325E-036 - 16.799999999999997 2.4573216982554731E-035 - 16.859999999999999 4.8518693104326605E-035 - 16.920000000000002 7.4583577654789815E-035 - 16.980000000000004 1.0085987006480895E-034 - 17.039999999999992 1.2497690652769221E-034 - 17.099999999999994 1.4426038496410108E-034 - 17.159999999999997 1.5577703905346025E-034 - 17.219999999999999 1.5659310511662111E-034 - 17.280000000000001 1.4396632177302205E-034 - 17.340000000000003 1.1572010009106034E-034 - 17.399999999999991 7.0531291635963204E-035 - 17.459999999999994 7.9040583061222182E-036 - 17.519999999999996 -7.0863427875762142E-035 - 17.579999999999998 -1.6317801162392956E-034 - 17.640000000000001 -2.6447566987513288E-034 - 17.700000000000003 -3.6847541238235081E-034 - 17.759999999999991 -4.6716625802139433E-034 - 17.819999999999993 -5.5109254651894678E-034 - 17.879999999999995 -6.0979862615875228E-034 - 17.939999999999998 -6.3244943595650888E-034 - 18.000000000000000 -6.0863841856675518E-034 - 18.060000000000002 -5.2933778931744225E-034 - 18.120000000000005 -3.8783538367654691E-034 - 18.179999999999993 -1.8107201425268821E-034 - 18.239999999999995 8.9645371761147203E-035 - 18.299999999999997 4.1748544809387492E-034 - 18.359999999999999 7.8938306487530646E-034 - 18.420000000000002 1.1856967824594561E-033 - 18.480000000000004 1.5802351790334536E-033 - 18.539999999999992 1.9408247245658969E-033 - 18.599999999999994 2.2305065671250862E-033 - 18.659999999999997 2.4093507836013784E-033 - 18.719999999999999 2.4369375215971173E-033 - 18.780000000000001 2.2754241133057773E-033 - 18.840000000000003 1.8931648297662873E-033 - 18.899999999999991 1.2686098881554710E-033 - 18.959999999999994 3.9434638551945341E-034 - 19.019999999999996 -7.1904754329389331E-034 - 19.079999999999998 -2.0396880548895651E-033 - 19.140000000000001 -3.5119417226790155E-033 - 19.200000000000003 -5.0553124048475550E-033 - 19.259999999999991 -6.5650019171330451E-033 - 19.319999999999993 -7.9144926741986805E-033 - 19.379999999999995 -8.9604164542759715E-033 - 19.439999999999998 -9.5498516976962881E-033 - 19.500000000000000 -9.5300384413579966E-033 - 19.560000000000002 -8.7602997629119708E-033 - 19.620000000000005 -7.1257981982864742E-033 - 19.679999999999993 -4.5523419959653393E-033 - 19.739999999999995 -1.0216125026032813E-033 - 19.799999999999997 3.4146951514457308E-033 - 19.859999999999999 8.6227438911993479E-033 - 19.920000000000002 1.4378060035134388E-032 - 19.980000000000004 2.0362102148797175E-032 - 20.039999999999992 2.6165302571951476E-032 - 20.099999999999994 3.1297835634579816E-032 - 20.159999999999997 3.5209016118986816E-032 - 20.219999999999999 3.7315788936504539E-032 - 20.280000000000001 3.7040200396737675E-032 - 20.340000000000003 3.3854939142335900E-032 - 20.399999999999991 2.7335347641772177E-032 - 20.459999999999994 1.7215267641346220E-032 - 20.519999999999996 3.4433896179715605E-033 - 20.579999999999998 -1.3764194851438919E-032 - 20.640000000000001 -3.3880047176092600E-032 - 20.700000000000003 -5.6035376751098748E-032 - 20.759999999999991 -7.9009397343234122E-032 - 20.819999999999993 -1.0124310728188045E-031 - 20.879999999999995 -1.2088200932249276E-031 - 20.939999999999998 -1.3585076986862014E-031 - 21.000000000000000 -1.4396130347043390E-031 - 21.060000000000002 -1.4305343651132388E-031 - 21.120000000000005 -1.3116452313349956E-031 - 21.179999999999993 -1.0672161972021449E-031 - 21.239999999999995 -6.8746437374965044E-032 - 21.299999999999997 -1.7060403600617708E-032 - 21.359999999999999 4.7525679338796174E-032 - 21.420000000000002 1.2305514425729144E-031 - 21.480000000000004 2.0632108109067236E-031 - 21.539999999999992 2.9283311601598841E-031 - 21.599999999999994 3.7687344994140904E-031 - 21.659999999999997 4.5165671133109563E-031 - 21.719999999999999 5.0960419796678335E-031 - 21.780000000000001 5.4273593839542250E-031 - 21.840000000000003 5.4317657176943477E-031 - 21.899999999999991 5.0376110766252197E-031 - 21.959999999999994 4.1871661379942469E-031 - 22.019999999999996 2.8438499779162594E-031 - 22.079999999999998 9.9941608053165854E-032 - 22.140000000000001 -1.3194410956558984E-031 - 22.200000000000003 -4.0456704910252056E-031 - 22.259999999999991 -7.0682836831398159E-031 - 22.319999999999993 -1.0231248625340747E-030 - 22.379999999999995 -1.3335454029847664E-030 - 22.439999999999998 -1.6144208459096076E-030 - 22.500000000000000 -1.8392608056714483E-030 - 22.560000000000002 -1.9800862019666013E-030 - 22.619999999999990 -2.0091397169174998E-030 - 22.679999999999993 -1.9009271144414989E-030 - 22.739999999999995 -1.6345061786912042E-030 - 22.799999999999997 -1.1959079578618633E-030 - 22.859999999999999 -5.8054293001903746E-031 - 22.920000000000002 2.0458527940292235E-031 - 22.980000000000004 1.1390518347187701E-030 - 23.039999999999992 2.1877749476422048E-030 - 23.099999999999994 3.3005756860040072E-030 - 23.159999999999997 4.4127130715313839E-030 - 23.219999999999999 5.4465479835228177E-030 - 23.280000000000001 6.3144282935940589E-030 - 23.340000000000003 6.9228294482305403E-030 - 23.399999999999991 7.1776917837566246E-030 - 23.459999999999994 6.9908095504301218E-030 - 23.519999999999996 6.2870252947771951E-030 - 23.579999999999998 5.0118782435165662E-030 - 23.640000000000001 3.1392725586252505E-030 - 23.700000000000003 6.7863387451447519E-031 - 23.759999999999991 -2.3190191558327390E-030 - 23.819999999999993 -5.7566927424027615E-030 - 23.879999999999995 -9.4893320581284599E-030 - 23.939999999999998 -1.3324571945066252E-029 - 24.000000000000000 -1.7026783965552038E-029 - 24.060000000000002 -2.0324715467288590E-029 - 24.119999999999990 -2.2922860716829605E-029 - 24.179999999999993 -2.4516449273934261E-029 - 24.239999999999995 -2.4809695434161606E-029 - 24.299999999999997 -2.3536681517797517E-029 - 24.359999999999999 -2.0483973139741480E-029 - 24.420000000000002 -1.5513792435571788E-029 - 24.480000000000004 -8.5863712291147376E-030 - 24.539999999999992 2.2007956326046635E-031 - 24.599999999999994 1.0693438868514673E-029 - 24.659999999999997 2.2477466074234293E-029 - 24.719999999999999 3.5068845320792575E-029 - 24.780000000000001 4.7822909850011548E-029 - 24.840000000000003 5.9969049197644262E-029 - 24.899999999999991 7.0636429502961757E-029 - 24.959999999999994 7.8890142827153175E-029 - 25.019999999999996 8.3777238040079221E-029 - 25.079999999999998 8.4381466373567000E-029 - 25.140000000000001 7.9884897976570140E-029 - 25.200000000000003 6.9633805869684942E-029 - 25.259999999999991 5.3205723522180674E-029 - 25.319999999999993 3.0473911918151295E-029 - 25.379999999999995 1.6651825470406635E-030 - 25.439999999999998 -3.2593292912938884E-029 - 25.500000000000000 -7.1242376874150528E-029 - 25.560000000000002 -1.1277900186032581E-028 - 25.619999999999990 -1.5526719832671480E-028 - 25.679999999999993 -1.9637537610361258E-028 - 25.739999999999995 -2.3344163501200326E-028 - 25.799999999999997 -2.6356828817757763E-028 - 25.859999999999999 -2.8374475222491587E-028 - 25.920000000000002 -2.9099705473028436E-028 - 25.980000000000004 -2.8256004292050542E-028 - 26.039999999999992 -2.5606704057773836E-028 - 26.099999999999994 -2.0974985754288308E-028 - 26.159999999999997 -1.4264033236584228E-028 - 26.219999999999999 -5.4763466669067663E-029 - 26.280000000000001 5.2689312020198677E-029 - 26.340000000000003 1.7721897106366533E-028 - 26.399999999999991 3.1492244362963376E-028 - 26.459999999999994 4.6045328834858915E-028 - 26.519999999999996 6.0705237874618346E-028 - 26.579999999999998 7.4665817723037750E-028 - 26.640000000000001 8.7010643286537879E-028 - 26.700000000000003 9.6742482432481205E-028 - 26.759999999999991 1.0282247657922239E-027 - 26.819999999999993 1.0421890176145414E-027 - 26.879999999999995 9.9964717176536192E-028 - 26.939999999999998 8.9222624981903675E-028 - 27.000000000000000 7.1355629590842548E-028 - 27.060000000000002 4.6000473922326229E-028 - 27.119999999999990 1.3140515633056034E-028 - 27.179999999999993 -2.6825945380204569E-028 - 27.239999999999995 -7.3026569720458855E-028 - 27.299999999999997 -1.2407026976062231E-027 - 27.359999999999999 -1.7802234804386158E-027 - 27.420000000000002 -2.3240490890304283E-027 - 27.480000000000004 -2.8422779158177961E-027 - 27.539999999999992 -3.3005486813912406E-027 - 27.599999999999994 -3.6610894570730833E-027 - 27.659999999999997 -3.8841770685272982E-027 - 27.719999999999999 -3.9300074531418341E-027 - 27.780000000000001 -3.7609534217648103E-027 - 27.840000000000003 -3.3441608807271036E-027 - 27.899999999999991 -2.6544021655973149E-027 - 27.959999999999994 -1.6770706242779783E-027 - 28.019999999999996 -4.1116732076634676E-028 - 28.079999999999998 1.1278930324141608E-027 - 28.140000000000001 2.9058737088098799E-027 - 28.200000000000003 4.8679180746022843E-027 - 28.259999999999991 6.9376114458844059E-027 - 28.319999999999993 9.0171227157558161E-027 - 28.379999999999995 1.0988646393397506E-026 - 28.439999999999998 1.2717322195112037E-026 - 28.500000000000000 1.4055755254043256E-026 - 28.560000000000002 1.4850188302942069E-026 - 28.619999999999990 1.4948280056373333E-026 - 28.679999999999993 1.4208344773776313E-026 - 28.739999999999995 1.2509782464419261E-026 - 28.799999999999997 9.7642981072498665E-027 - 28.859999999999999 5.9273952659088494E-027 - 28.920000000000002 1.0094903696489958E-027 - 28.980000000000004 -4.9140937754759513E-027 - 29.039999999999992 -1.1695064946090737E-026 - 29.099999999999994 -1.9106912984894955E-026 - 29.159999999999997 -2.6843300089621453E-026 - 29.219999999999999 -3.4520901600796015E-026 - 29.280000000000001 -4.1687326859923368E-026 - 29.340000000000003 -4.7834661444373386E-026 - 29.399999999999991 -5.2418786280863448E-026 - 29.459999999999994 -5.4884425469915399E-026 - 29.519999999999996 -5.4695498639981407E-026 - 29.579999999999998 -5.1369870867216432E-026 - 29.640000000000001 -4.4517293168370970E-026 - 29.700000000000003 -3.3878811208535111E-026 - 29.759999999999991 -1.9365580543683941E-026 - 29.819999999999993 -1.0946971843601498E-027 - 29.879999999999995 2.0580629434754081E-026 - 29.939999999999998 4.5049317521749146E-026 - 30.000000000000000 7.1431793751676095E-026 - 30.060000000000002 9.8583150676902669E-026 - 30.119999999999990 1.2511218112732746E-025 - 30.179999999999993 1.4941793994461423E-025 - 30.239999999999995 1.6974474146490305E-025 - 30.299999999999997 1.8425549978261048E-025 - 30.359999999999999 1.9112210844254108E-025 - 30.420000000000002 1.8863072721236768E-025 - 30.480000000000004 1.7529820447319895E-025 - 30.539999999999992 1.4999476232420953E-025 - 30.599999999999994 1.1206707078493375E-025 - 30.659999999999997 6.1454470273646026E-026 - 30.719999999999999 -1.2091956653216374E-027 - 30.780000000000001 -7.4516428968386270E-026 - 30.840000000000003 -1.5623776470081130E-025 - 30.899999999999991 -2.4331186335589482E-025 - 30.959999999999994 -3.3188087597399578E-025 - 31.019999999999996 -4.1737585562801437E-025 - 31.079999999999998 -4.9465563203817145E-025 - 31.140000000000001 -5.5819932380504913E-025 - 31.200000000000003 -6.0235008064362206E-025 - 31.259999999999991 -6.2160405379587237E-025 - 31.319999999999993 -6.1093545021726681E-025 - 31.379999999999995 -5.6614460971710687E-025 - 31.439999999999998 -4.8421352593160119E-025 - 31.500000000000000 -3.6364974398985513E-025 - 31.560000000000002 -2.0479781212472443E-025 - 31.619999999999990 -1.0096640019319515E-026 - 31.679999999999993 2.1573993267992466E-025 - 31.739999999999995 4.6563982182910487E-025 - 31.799999999999997 7.3020480985052864E-025 - 31.859999999999999 9.9787414757078208E-025 - 31.920000000000002 1.2552258445825629E-024 - 31.980000000000004 1.4874217984544571E-024 - 32.039999999999992 1.6787888749581157E-024 - 32.099999999999994 1.8135245015167853E-024 - 32.159999999999997 1.8765051499264238E-024 - 32.219999999999999 1.8541655741674202E-024 - 32.280000000000001 1.7354143701968523E-024 - 32.340000000000003 1.5125377216739840E-024 - 32.399999999999991 1.1820448134920900E-024 - 32.459999999999994 7.4540165409481800E-025 - 32.519999999999996 2.0960135607475061E-025 - 32.579999999999998 -4.1247742025115669E-025 - 32.640000000000001 -1.1019679466571898E-024 - 32.700000000000003 -1.8342043356911736E-024 - 32.759999999999991 -2.5792226310972265E-024 - 32.819999999999993 -3.3025851116442913E-024 - 32.879999999999995 -3.9665222424737089E-024 - 32.939999999999998 -4.5313647819673813E-024 - 33.000000000000000 -4.9572323560063301E-024 - 33.060000000000002 -5.2059167608532748E-024 - 33.119999999999990 -5.2428922813602332E-024 - 33.179999999999993 -5.0393689633826420E-024 - 33.239999999999995 -4.5742982002005251E-024 - 33.299999999999997 -3.8362331696119380E-024 - 33.359999999999999 -2.8249470341922500E-024 - 33.420000000000002 -1.5527148994270812E-024 - 33.480000000000004 -4.5174619536978772E-026 - 33.539999999999992 1.6583075005145755E-024 - 33.599999999999994 3.5048299382943827E-024 - 33.659999999999997 5.4287446980634553E-024 - 33.719999999999999 7.3530669572380760E-024 - 33.780000000000001 9.1915061080036806E-024 - 33.840000000000003 1.0851108681763473E-023 - 33.899999999999991 1.2235460123159931E-023 - 33.959999999999994 1.3248401716929828E-023 - 34.019999999999996 1.3798174541539168E-023 - 34.079999999999998 1.3801895209691180E-023 - 34.140000000000001 1.3190244680213887E-023 - 34.200000000000003 1.1912231231576028E-023 - 34.259999999999991 9.9398586154917366E-024 - 34.319999999999993 7.2725194052350472E-024 - 34.379999999999995 3.9408890171023731E-024 - 34.439999999999998 1.0087765967170677E-026 - 34.500000000000000 -4.4181606448290335E-024 - 34.560000000000002 -9.2046578950910154E-024 - 34.619999999999990 -1.4173450603382134E-023 - 34.679999999999993 -1.9114433314130783E-023 - 34.739999999999995 -2.3788117434994318E-023 - 34.799999999999997 -2.7932798313903412E-023 - 34.859999999999999 -3.1274261890986603E-023 - 34.920000000000002 -3.3538121725807336E-023 - 34.980000000000004 -3.4464625540677987E-023 - 35.039999999999992 -3.3825698989560407E-023 - 35.099999999999994 -3.1443675748379273E-023 - 35.159999999999997 -2.7210995605487830E-023 - 35.219999999999999 -2.1109824920431869E-023 - 35.280000000000001 -1.3230336439030450E-023 - 35.340000000000003 -3.7861365222764320E-024 - 35.399999999999991 6.8748621150048796E-024 - 35.459999999999994 1.8265920618603396E-023 - 35.519999999999996 2.9765099778361988E-023 - 35.579999999999998 4.0628721038541269E-023 - 35.640000000000001 5.0015971515851462E-023 - 35.700000000000003 5.7025576497174271E-023 - 35.759999999999991 6.0744730857516692E-023 - 35.819999999999993 6.0309672102502095E-023 - 35.879999999999995 5.4976256798957683E-023 - 35.939999999999998 4.4197832249677958E-023 - 36.000000000000000 2.7706435461575608E-023 - 36.060000000000002 5.5923251108624659E-024 - 36.119999999999990 -2.1624348345631360E-023 - 36.179999999999993 -5.2936606420834188E-023 - 36.239999999999995 -8.6815945035598915E-023 - 36.299999999999997 -1.2120741153769867E-022 - 36.359999999999999 -1.5356154278919618E-022 - 36.420000000000002 -1.8090917661474884E-022 - 36.479999999999990 -1.9998346073971754E-022 - 36.539999999999992 -2.0739102329446736E-022 - 36.599999999999994 -1.9983103625207332E-022 - 36.659999999999997 -1.7435747579084301E-022 - 36.719999999999999 -1.2867582142516359E-022 - 36.780000000000001 -6.1460943783002475E-023 - 36.840000000000003 2.7321059114402748E-023 - 36.899999999999991 1.3610843077480306E-022 - 36.959999999999994 2.6148128764653064E-022 - 37.019999999999996 3.9796838080037371E-022 - 37.079999999999998 5.3795076617972038E-022 - 37.140000000000001 6.7169003899908181E-022 - 37.200000000000003 7.8750607265820403E-022 - 37.259999999999991 8.7212485075915860E-022 - 37.319999999999993 9.1120988735673420E-022 - 37.379999999999995 8.9008328422051760E-022 - 37.439999999999998 7.9462866953343497E-022 - 37.500000000000000 6.1236214598293744E-022 - 37.560000000000002 3.3363602561408176E-022 - 37.619999999999990 -4.7066310138379756E-023 - 37.679999999999993 -5.2980591381328382E-022 - 37.739999999999995 -1.1079003669517519E-021 - 37.799999999999997 -1.7667613393319740E-021 - 37.859999999999999 -2.4829395957890789E-021 - 37.920000000000002 -3.2234757635785625E-021 - 37.979999999999990 -3.9456482142359356E-021 - 38.039999999999992 -4.5972088994936025E-021 - 38.099999999999994 -5.1171752484520828E-021 - 38.159999999999997 -5.4372477625476147E-021 - 38.219999999999999 -5.4838792104814330E-021 - 38.280000000000001 -5.1810061130530012E-021 - 38.340000000000003 -4.4534090161918163E-021 - 38.399999999999991 -3.2306358248262151E-021 - 38.459999999999994 -1.4513745937764947E-021 - 38.519999999999996 9.3189748859975776E-022 - 38.579999999999998 3.9481645554178928E-021 - 38.640000000000001 7.6033058093455055E-021 - 38.700000000000003 1.1875993086880965E-020 - 38.759999999999991 1.6714358329796861E-020 - 38.819999999999993 2.2033828416931085E-020 - 38.879999999999995 2.7716448123037282E-020 - 38.939999999999998 3.3612110267856657E-020 - 39.000000000000000 3.9541956703284374E-020 - 39.060000000000002 4.5304359083383592E-020 - 39.119999999999990 5.0683659200746406E-020 - 39.179999999999993 5.5461818402098053E-020 - 39.239999999999995 5.9433068090101459E-020 - 39.299999999999997 6.2421423958417597E-020 - 39.359999999999999 6.4300846078030908E-020 - 39.420000000000002 6.5017546051815540E-020 - 39.479999999999990 6.4613874123555510E-020 - 39.539999999999992 6.3252873142787222E-020 - 39.599999999999994 6.1242554665615982E-020 - 39.659999999999997 5.9058593040322095E-020 - 39.719999999999999 5.7364105616133975E-020 - 39.780000000000001 5.7025047387206586E-020 - 39.840000000000003 5.9119295258447859E-020 - 39.899999999999991 6.4938674253199137E-020 - 39.959999999999994 7.5981582826180137E-020 - 40.019999999999996 9.3935561261885140E-020 - 40.079999999999998 1.2064844973796067E-019 - 40.140000000000001 1.5808804376579710E-019 - 40.200000000000003 2.0828936379653706E-019 - 40.259999999999991 2.7329125048252413E-019 - 40.319999999999993 3.5506196260278543E-019 - 40.379999999999995 4.5541708823228272E-019 - 40.439999999999998 5.7593140193510089E-019 - 40.500000000000000 7.1784765895197083E-019 - 40.560000000000002 8.8198768384529982E-019 - 40.619999999999990 1.0686674586881918E-018 - 40.679999999999993 1.2776237219530701E-018 - 40.739999999999995 1.5079525704340717E-018 - 40.799999999999997 1.7580688362682233E-018 - 40.859999999999999 2.0256862008942870E-018 - 40.920000000000002 2.3078228996914160E-018 - 40.979999999999990 2.6008328792632535E-018 - 41.039999999999992 2.9004619501357037E-018 - 41.099999999999994 3.2019283444191538E-018 - 41.159999999999997 3.5000208276238508E-018 - 41.219999999999999 3.7892081279570712E-018 - 41.280000000000001 4.0637484710151908E-018 - 41.340000000000003 4.3177845554352342E-018 - 41.399999999999991 4.5454145780396893E-018 - 41.459999999999994 4.7407075969406629E-018 - 41.519999999999996 4.8976486567846014E-018 - 41.579999999999998 5.0099838325407130E-018 - 41.640000000000001 5.0709429232909902E-018 - 41.700000000000003 5.0727962092920960E-018 - 41.759999999999991 5.0062156223022181E-018 - 41.819999999999993 4.8594146274981781E-018 - 41.879999999999995 4.6170058546060599E-018 - 41.939999999999998 4.2585625849546831E-018 - 42.000000000000000 3.7568144263780112E-018 - 42.060000000000002 3.0754513431923402E-018 - 42.119999999999990 2.1664658435591165E-018 - 42.179999999999993 9.6703661746715101E-019 - 42.239999999999995 -6.0417936868899160E-019 - 42.299999999999997 -2.6513282828500262E-018 - 42.359999999999999 -5.3062725072579706E-018 - 42.420000000000002 -8.7343084646481148E-018 - 42.479999999999990 -1.3140620220984393E-017 - 42.539999999999992 -1.8777573068483930E-017 - 42.599999999999994 -2.5953070685494073E-017 - 42.659999999999997 -3.5039807116567892E-017 - 42.719999999999999 -4.6485994095578157E-017 - 42.780000000000001 -6.0826919500880230E-017 - 42.840000000000003 -7.8698442455783581E-017 - 42.899999999999991 -1.0085188224396924E-016 - 42.959999999999994 -1.2817055213917650E-016 - 43.019999999999996 -1.6168900557793629E-016 - 43.079999999999998 -2.0261401389132196E-016 - 43.140000000000001 -2.5234869292245152E-016 - 43.200000000000003 -3.1251941318115507E-016 - 43.259999999999991 -3.8500667488653811E-016 - 43.319999999999993 -4.7197992011064597E-016 - 43.379999999999995 -5.7593695545525548E-016 - 43.439999999999998 -6.9974919942286327E-016 - 43.500000000000000 -8.4671291432195263E-016 - 43.560000000000002 -1.0206080885747214E-015 - 43.619999999999990 -1.2257652519156707E-015 - 43.679999999999993 -1.4671415713843794E-015 - 43.739999999999995 -1.7504092661908040E-015 - 43.799999999999997 -2.0820551733831497E-015 - 43.859999999999999 -2.4694948736246393E-015 - 43.920000000000002 -2.9212008394646215E-015 - 43.979999999999990 -3.4468519592898588E-015 - 44.039999999999992 -4.0574981087576558E-015 - 44.099999999999994 -4.7657501902669613E-015 - 44.159999999999997 -5.5859938972296830E-015 - 44.219999999999999 -6.5346241576337554E-015 - 44.280000000000001 -7.6303131546545477E-015 - 44.340000000000003 -8.8943097018270405E-015 - 44.399999999999991 -1.0350762364625039E-014 - 44.459999999999994 -1.2027083295349493E-014 - 44.519999999999996 -1.3954349130291624E-014 - 44.579999999999998 -1.6167727177542176E-014 - 44.640000000000001 -1.8706943104744463E-014 - 44.700000000000003 -2.1616793393966887E-014 - 44.759999999999991 -2.4947679384266900E-014 - 44.819999999999993 -2.8756186342608123E-014 - 44.879999999999995 -3.3105696539093932E-014 - 44.939999999999998 -3.8067034343662520E-014 - 45.000000000000000 -4.3719103046540117E-014 - 45.060000000000002 -5.0149592616739114E-014 - 45.119999999999990 -5.7455700493662900E-014 - 45.179999999999993 -6.5744779456999413E-014 - 45.239999999999995 -7.5135075808349195E-014 - 45.299999999999997 -8.5756430091176320E-014 - 45.359999999999999 -9.7750870785871622E-014 - 45.420000000000002 -1.1127322999696725E-013 - 45.479999999999990 -1.2649165288515808E-013 - 45.539999999999992 -1.4358795933030090E-013 - 45.599999999999994 -1.6275786213376923E-013 - 45.659999999999997 -1.8421097349336045E-013 - 45.719999999999999 -2.0817056727137329E-013 - 45.780000000000001 -2.3487290070425149E-013 - 45.840000000000003 -2.6456622788692491E-013 - 45.899999999999991 -2.9750907168290612E-013 - 45.959999999999994 -3.3396801800290041E-013 - 46.019999999999996 -3.7421444365052574E-013 - 46.079999999999998 -4.1852012881831103E-013 - 46.140000000000001 -4.6715201681688470E-013 - 46.200000000000003 -5.2036489460672245E-013 - 46.259999999999991 -5.7839230632816699E-013 - 46.319999999999993 -6.4143528445471847E-013 - 46.379999999999995 -7.0964844591440624E-013 - 46.439999999999998 -7.8312220273204322E-013 - 46.500000000000000 -8.6186179728912047E-013 - 46.560000000000002 -9.4576115197065063E-013 - 46.619999999999990 -1.0345719782343552E-012 - 46.679999999999993 -1.1278653277783670E-012 - 46.739999999999995 -1.2249860706052498E-012 - 46.799999999999997 -1.3249990582435202E-012 - 46.859999999999999 -1.4266239171718806E-012 - 46.920000000000002 -1.5281580109705165E-012 - 46.979999999999990 -1.6273858813362322E-012 - 47.039999999999992 -1.7214703699308669E-012 - 47.099999999999994 -1.8068275662165854E-012 - 47.159999999999997 -1.8789768040689954E-012 - 47.219999999999999 -1.9323664163289243E-012 - 47.280000000000001 -1.9601697955819383E-012 - 47.340000000000003 -1.9540466176335251E-012 - 47.399999999999991 -1.9038625715705639E-012 - 47.459999999999994 -1.7973710155458650E-012 - 47.519999999999996 -1.6198339368747878E-012 - 47.579999999999998 -1.3535847222867219E-012 - 47.640000000000001 -9.7752556525544993E-013 - 47.700000000000003 -4.6654652698217232E-013 - 47.759999999999991 2.0915871304705608E-013 - 47.819999999999993 1.0848572116771097E-012 - 47.879999999999995 2.2021844522924502E-012 - 47.939999999999998 3.6101769206392812E-012 - 48.000000000000000 5.3664427560281513E-012 - 48.060000000000002 7.5385389412768898E-012 - 48.119999999999990 1.0205520649295730E-011 - 48.179999999999993 1.3459730747452506E-011 - 48.239999999999995 1.7408847886551799E-011 - 48.299999999999997 2.2178224690836862E-011 - 48.359999999999999 2.7913546532730954E-011 - 48.420000000000002 3.4783872925585231E-011 - 48.479999999999990 4.2985125438683724E-011 - 48.539999999999992 5.2743983147547678E-011 - 48.599999999999994 6.4322443405556637E-011 - 48.659999999999997 7.8022886933625579E-011 - 48.719999999999999 9.4193837852219174E-011 - 48.780000000000001 1.1323662486478065E-010 - 48.840000000000003 1.3561278561972957E-010 - 48.899999999999991 1.6185240951578297E-010 - 48.959999999999994 1.9256389737918399E-010 - 49.019999999999996 2.2844447069535072E-010 - 49.079999999999998 2.7029268711995500E-010 - 49.140000000000001 3.1902182110102940E-010 - 49.200000000000003 3.7567579943610699E-010 - 49.259999999999991 4.4144628414252137E-010 - 49.319999999999993 5.1769298220452726E-010 - 49.379999999999995 6.0596503267355911E-010 - 49.439999999999998 7.0802643291136733E-010 - 49.500000000000000 8.2588395832808611E-010 - 49.560000000000002 9.6181859452383094E-010 - 49.619999999999990 1.1184203389991441E-009 - 49.679999999999993 1.2986288066054575E-009 - 49.739999999999995 1.5057760927346964E-009 - 49.799999999999997 1.7436378827951151E-009 - 49.859999999999999 2.0164869527421230E-009 - 49.920000000000002 2.3291569957815519E-009 - 49.979999999999990 2.6871113675002366E-009 - 50.039999999999992 3.0965188926299841E-009 - 50.099999999999994 3.5643409972668749E-009 - 50.159999999999997 4.0984289292440821E-009 - 50.219999999999999 4.7076270499595568E-009 - 50.280000000000001 5.4018948004907511E-009 - 50.340000000000003 6.1924382196840870E-009 - 50.399999999999991 7.0918569927822981E-009 - 50.459999999999994 8.1143019801680994E-009 - 50.519999999999996 9.2756700580573063E-009 - 50.579999999999998 1.0593785726875320E-008 - 50.640000000000001 1.2088640926975860E-008 - 50.700000000000003 1.3782628322621030E-008 - 50.759999999999991 1.5700818951570396E-008 - 50.819999999999993 1.7871269848688230E-008 - 50.879999999999995 2.0325345445651187E-008 - 50.939999999999998 2.3098086443866325E-008 - 51.000000000000000 2.6228622769864277E-008 - 51.060000000000002 2.9760614450795054E-008 - 51.119999999999990 3.3742749163840024E-008 - 51.179999999999993 3.8229260473990248E-008 - 51.239999999999995 4.3280574692569341E-008 - 51.299999999999997 4.8963924559662696E-008 - 51.359999999999999 5.5354066097643095E-008 - 51.420000000000002 6.2534112728876555E-008 - 51.479999999999990 7.0596366482639926E-008 - 51.539999999999992 7.9643247650463113E-008 - 51.599999999999994 8.9788410912089777E-008 - 51.659999999999997 1.0115782216738572E-007 - 51.719999999999999 1.1389104494391263E-007 - 51.780000000000001 1.2814258960945972E-007 - 51.840000000000003 1.4408336222695017E-007 - 51.899999999999991 1.6190232599862932E-007 - 51.959999999999994 1.8180835753175752E-007 - 52.019999999999996 2.0403207175584480E-007 - 52.079999999999998 2.2882791505561825E-007 - 52.140000000000001 2.5647656043820841E-007 - 52.200000000000003 2.8728734040638307E-007 - 52.259999999999991 3.2160098015772466E-007 - 52.319999999999993 3.5979252582902415E-007 - 52.379999999999995 4.0227455063529329E-007 - 52.439999999999998 4.4950040043180979E-007 - 52.500000000000000 5.0196845262726097E-007 - 52.560000000000002 5.6022564591033798E-007 - 52.619999999999990 6.2487234543584101E-007 - 52.679999999999993 6.9656636266737332E-007 - 52.739999999999995 7.7602920088902567E-007 - 52.799999999999997 8.6405040196711192E-007 - 52.859999999999999 9.6149429197771464E-007 - 52.920000000000002 1.0693061013171087E-006 - 52.979999999999990 1.1885190256161936E-006 - 53.039999999999992 1.3202612989037457E-006 - 53.099999999999994 1.4657650124863021E-006 - 53.159999999999997 1.6263736402100118E-006 - 53.219999999999999 1.8035522833236752E-006 - 53.280000000000001 1.9988965177292589E-006 - 53.339999999999989 2.2141438920460715E-006 - 53.399999999999991 2.4511847731201538E-006 - 53.459999999999994 2.7120736764252322E-006 - 53.519999999999996 2.9990443152081062E-006 - 53.579999999999998 3.3145221151978881E-006 - 53.640000000000001 3.6611380115622227E-006 - 53.700000000000003 4.0417452904307403E-006 - 53.759999999999991 4.4594367930717267E-006 - 53.819999999999993 4.9175612117511244E-006 - 53.879999999999995 5.4197427639832835E-006 - 53.939999999999998 5.9699020306777265E-006 - 54.000000000000000 6.5722743818882096E-006 - 54.060000000000002 7.2314360169627073E-006 - 54.119999999999990 7.9523244117954103E-006 - 54.179999999999993 8.7402674398809669E-006 - 54.239999999999995 9.6010065952146987E-006 - 54.299999999999997 1.0540726124524614E-005 - 54.359999999999999 1.1566081094189785E-005 - 54.420000000000002 1.2684231127995448E-005 - 54.479999999999990 1.3902873368143773E-005 - 54.539999999999992 1.5230272994376425E-005 - 54.599999999999994 1.6675301961050818E-005 - 54.659999999999997 1.8247477661897273E-005 - 54.719999999999999 1.9957002717541452E-005 - 54.780000000000001 2.1814799563722121E-005 - 54.839999999999989 2.3832565182170977E-005 - 54.899999999999991 2.6022806217470682E-005 - 54.959999999999994 2.8398893917800623E-005 - 55.019999999999996 3.0975096724715586E-005 - 55.079999999999998 3.3766660582630326E-005 - 55.140000000000001 3.6789835061423780E-005 - 55.200000000000003 4.0061930491594577E-005 - 55.259999999999991 4.3601393676972048E-005 - 55.319999999999993 4.7427836916404341E-005 - 55.379999999999995 5.1562129392393757E-005 - 55.439999999999998 5.6026431680798639E-005 - 55.500000000000000 6.0844278190462781E-005 - 55.560000000000002 6.6040638842268485E-005 - 55.619999999999990 7.1641975160053917E-005 - 55.679999999999993 7.7676315376449693E-005 - 55.739999999999995 8.4173320552584648E-005 - 55.799999999999997 9.1164369842561792E-005 - 55.859999999999999 9.8682598923631340E-005 - 55.920000000000002 1.0676302547661388E-004 - 55.979999999999990 1.1544256962121331E-004 - 56.039999999999992 1.2476016486721349E-004 - 56.099999999999994 1.3475681253680564E-004 - 56.159999999999997 1.4547565864400896E-004 - 56.219999999999999 1.5696206065466501E-004 - 56.280000000000001 1.6926370231568080E-004 - 56.339999999999989 1.8243062804368412E-004 - 56.399999999999991 1.9651531195567407E-004 - 56.459999999999994 2.1157271418505337E-004 - 56.519999999999996 2.2766044210843482E-004 - 56.579999999999998 2.4483871607581972E-004 - 56.640000000000001 2.6317047669072093E-004 - 56.700000000000003 2.8272143635550462E-004 - 56.759999999999991 3.0356013788792024E-004 - 56.819999999999993 3.2575805734295693E-004 - 56.879999999999995 3.4938958319264015E-004 - 56.939999999999998 3.7453208014951838E-004 - 57.000000000000000 4.0126600064673245E-004 - 57.060000000000002 4.2967481365131343E-004 - 57.119999999999990 4.5984505024513782E-004 - 57.179999999999993 4.9186642334149791E-004 - 57.239999999999995 5.2583181208217303E-004 - 57.299999999999997 5.6183710529068408E-004 - 57.359999999999999 5.9998136156778925E-004 - 57.420000000000002 6.4036689627385273E-004 - 57.479999999999990 6.8309901577023088E-004 - 57.539999999999992 7.2828621401387886E-004 - 57.599999999999994 7.7603973431569100E-004 - 57.659999999999997 8.2647411790220970E-004 - 57.719999999999999 8.7970668481205804E-004 - 57.780000000000001 9.3585745024174711E-004 - 57.839999999999989 9.9504949974616374E-004 - 57.899999999999991 1.0574082707100771E-003 - 57.959999999999994 1.1230617852419922E-003 - 58.019999999999996 1.1921404371128793E-003 - 58.079999999999998 1.2647767933662252E-003 - 58.140000000000001 1.3411056261909634E-003 - 58.200000000000003 1.4212633893221835E-003 - 58.259999999999991 1.5053882697309933E-003 - 58.319999999999993 1.5936199478463378E-003 - 58.379999999999995 1.6860992183672463E-003 - 58.439999999999998 1.7829679436266179E-003 - 58.500000000000000 1.8843685789804239E-003 - 58.560000000000002 1.9904438652705073E-003 - 58.619999999999990 2.1013364016809269E-003 - 58.679999999999993 2.2171891058467646E-003 - 58.739999999999995 2.3381437267559657E-003 - 58.799999999999997 2.4643415627981064E-003 - 58.859999999999999 2.5959216179518769E-003 - 58.920000000000002 2.7330221895526309E-003 - 58.979999999999990 2.8757785380019345E-003 - 59.039999999999992 3.0243237031246459E-003 - 59.099999999999994 3.1787870476409612E-003 - 59.159999999999997 3.3392953548220194E-003 - 59.219999999999999 3.5059702351974025E-003 - 59.280000000000001 3.6789290405747186E-003 - 59.339999999999989 3.8582841811591927E-003 - 59.399999999999991 4.0441424731192275E-003 - 59.459999999999994 4.2366042516049007E-003 - 59.519999999999996 4.4357630457737066E-003 - 59.579999999999998 4.6417055988332871E-003 - 59.640000000000001 4.8545096833724297E-003 - 59.700000000000003 5.0742453708845486E-003 - 59.759999999999991 5.3009737809032453E-003 - 59.819999999999993 5.5347456545155934E-003 - 59.879999999999995 5.7756018512037264E-003 - 59.939999999999998 6.0235725915879518E-003 - 60.000000000000000 6.2786764492952880E-003 - 60.060000000000002 6.5409191715671503E-003 - 60.119999999999990 6.8102962114384991E-003 - 60.179999999999993 7.0867864664408168E-003 - 60.239999999999995 7.3703571998971979E-003 - 60.299999999999997 7.6609621051441455E-003 - 60.359999999999999 7.9585379731082311E-003 - 60.420000000000002 8.2630073099786913E-003 - 60.479999999999990 8.5742763528049420E-003 - 60.539999999999992 8.8922354340458202E-003 - 60.599999999999994 9.2167583773724703E-003 - 60.659999999999997 9.5477025405771871E-003 - 60.719999999999999 9.8849058566347885E-003 - 60.780000000000001 1.0228189303816408E-002 - 60.839999999999989 1.0577356571044550E-002 - 60.899999999999991 1.0932191496691557E-002 - 60.959999999999994 1.1292459621057663E-002 - 61.019999999999996 1.1657908439780595E-002 - 61.079999999999998 1.2028266526848271E-002 - 61.140000000000001 1.2403241670552033E-002 - 61.200000000000003 1.2782523450150973E-002 - 61.259999999999991 1.3165783101586640E-002 - 61.319999999999993 1.3552671402320722E-002 - 61.379999999999995 1.3942821768725206E-002 - 61.439999999999998 1.4335849991896202E-002 - 61.500000000000000 1.4731348188424125E-002 - 61.560000000000002 1.5128896380488772E-002 - 61.619999999999990 1.5528052455225176E-002 - 61.679999999999993 1.5928359416621848E-002 - 61.739999999999995 1.6329342649530055E-002 - 61.799999999999997 1.6730510604978537E-002 - 61.859999999999999 1.7131356154666877E-002 - 61.920000000000002 1.7531356828739506E-002 - 61.979999999999990 1.7929977968252266E-002 - 62.039999999999992 1.8326668997218111E-002 - 62.099999999999994 1.8720868103795987E-002 - 62.159999999999997 1.9112001245205516E-002 - 62.219999999999999 1.9499481994472628E-002 - 62.280000000000001 1.9882718031456099E-002 - 62.339999999999989 2.0261102626630376E-002 - 62.399999999999991 2.0634028643386513E-002 - 62.459999999999994 2.1000878655650208E-002 - 62.519999999999996 2.1361030207231516E-002 - 62.579999999999998 2.1713858341325699E-002 - 62.640000000000001 2.2058734374843715E-002 - 62.700000000000003 2.2395028234667873E-002 - 62.759999999999991 2.2722114232793064E-002 - 62.819999999999993 2.3039365300538524E-002 - 62.879999999999995 2.3346156778207686E-002 - 62.939999999999998 2.3641870198085134E-002 - 63.000000000000000 2.3925894949279481E-002 - 63.060000000000002 2.4197626966497184E-002 - 63.119999999999990 2.4456470804317485E-002 - 63.179999999999993 2.4701843579707818E-002 - 63.239999999999995 2.4933174175520847E-002 - 63.299999999999997 2.5149904094233663E-002 - 63.359999999999999 2.5351492909271727E-002 - 63.420000000000002 2.5537414658601057E-002 - 63.479999999999990 2.5707165847262053E-002 - 63.539999999999992 2.5860259717778430E-002 - 63.599999999999994 2.5996231232852728E-002 - 63.659999999999997 2.6114639115968220E-002 - 63.719999999999999 2.6215065663822007E-002 - 63.780000000000001 2.6297121137580079E-002 - 63.839999999999989 2.6360438727774618E-002 - 63.899999999999991 2.6404680901003948E-002 - 63.959999999999994 2.6429543008223727E-002 - 64.019999999999996 2.6434745071430888E-002 - 64.079999999999998 2.6420039817673182E-002 - 64.140000000000001 2.6385214045714089E-002 - 64.200000000000003 2.6330085819394080E-002 - 64.259999999999991 2.6254508283369320E-002 - 64.319999999999993 2.6158365854274127E-002 - 64.379999999999995 2.6041581785458016E-002 - 64.439999999999998 2.5904114485360317E-002 - 64.500000000000000 2.5745952744897393E-002 - 64.560000000000002 2.5567128095750843E-002 - 64.619999999999990 2.5367705263546942E-002 - 64.679999999999993 2.5147787287084007E-002 - 64.739999999999995 2.4907510798157041E-002 - 64.799999999999997 2.4647052202362386E-002 - 64.859999999999999 2.4366621698160229E-002 - 64.920000000000002 2.4066464854522678E-002 - 64.979999999999990 2.3746866807421066E-002 - 65.039999999999992 2.3408143897859009E-002 - 65.099999999999994 2.3050647029663755E-002 - 65.159999999999997 2.2674762759610122E-002 - 65.219999999999999 2.2280909322901665E-002 - 65.280000000000001 2.1869536234065033E-002 - 65.339999999999989 2.1441126065552908E-002 - 65.399999999999991 2.0996191544642242E-002 - 65.459999999999994 2.0535272572733819E-002 - 65.519999999999996 2.0058938972957630E-002 - 65.579999999999998 1.9567785147984920E-002 - 65.640000000000001 1.9062428822382533E-002 - 65.700000000000003 1.8543513043133883E-002 - 65.759999999999991 1.8011705552388926E-002 - 65.819999999999993 1.7467692722702738E-002 - 65.879999999999995 1.6912176526836596E-002 - 65.939999999999998 1.6345881161793436E-002 - 66.000000000000000 1.5769543688058073E-002 - 66.060000000000002 1.5183916015762758E-002 - 66.119999999999990 1.4589760449928102E-002 - 66.179999999999993 1.3987851598400523E-002 - 66.239999999999995 1.3378971668936831E-002 - 66.299999999999997 1.2763909437663114E-002 - 66.359999999999999 1.2143459430864367E-002 - 66.420000000000002 1.1518418944248446E-002 - 66.479999999999990 1.0889585257834112E-002 - 66.539999999999992 1.0257757146815524E-002 - 66.599999999999994 9.6237292211091684E-003 - 66.659999999999997 8.9882934410150887E-003 - 66.719999999999999 8.3522351715288948E-003 - 66.780000000000001 7.7163322434349582E-003 - 66.839999999999989 7.0813546471712062E-003 - 66.899999999999991 6.4480600941380188E-003 - 66.959999999999994 5.8171946865726272E-003 - 67.019999999999996 5.1894903780350223E-003 - 67.079999999999998 4.5656643975181812E-003 - 67.140000000000001 3.9464173911611701E-003 - 67.199999999999989 3.3324317316168659E-003 - 67.259999999999991 2.7243702261823674E-003 - 67.319999999999993 2.1228759867682372E-003 - 67.379999999999995 1.5285701658411662E-003 - 67.439999999999998 9.4205172035472136E-004 - 67.500000000000000 3.6389566442985503E-004 - 67.560000000000002 -2.0534675013024483E-004 - 67.619999999999990 -7.6514942726088511E-004 - 67.679999999999993 -1.3150121922193276E-003 - 67.739999999999995 -1.8544611535379139E-003 - 67.799999999999997 -2.3830498350339165E-003 - 67.859999999999999 -2.9003588439307387E-003 - 67.920000000000002 -3.4059960644167949E-003 - 67.979999999999990 -3.8995978264391661E-003 - 68.039999999999992 -4.3808287530692821E-003 - 68.099999999999994 -4.8493821060274942E-003 - 68.159999999999997 -5.3049787467150580E-003 - 68.219999999999999 -5.7473676505730899E-003 - 68.280000000000001 -6.1763266772794870E-003 - 68.339999999999989 -6.5916622510639004E-003 - 68.399999999999991 -6.9932066728200922E-003 - 68.459999999999994 -7.3808214291313764E-003 - 68.519999999999996 -7.7543941647432914E-003 - 68.579999999999998 -8.1138390970067805E-003 - 68.640000000000001 -8.4590959699593592E-003 - 68.699999999999989 -8.7901299802968704E-003 - 68.759999999999991 -9.1069324564193380E-003 - 68.819999999999993 -9.4095165755956212E-003 - 68.879999999999995 -9.6979211900150158E-003 - 68.939999999999998 -9.9722053285053215E-003 - 69.000000000000000 -1.0232452041347444E-002 - 69.060000000000002 -1.0478764321728787E-002 - 69.119999999999990 -1.0711265321226477E-002 - 69.179999999999993 -1.0930095800291929E-002 - 69.239999999999995 -1.1135416791683599E-002 - 69.299999999999997 -1.1327406214680362E-002 - 69.359999999999999 -1.1506257894553139E-002 - 69.420000000000002 -1.1672179244540802E-002 - 69.479999999999990 -1.1825395262671711E-002 - 69.539999999999992 -1.1966142598776396E-002 - 69.599999999999994 -1.2094668848438763E-002 - 69.659999999999997 -1.2211235224985701E-002 - 69.719999999999999 -1.2316111468632108E-002 - 69.780000000000001 -1.2409578532160194E-002 - 69.839999999999989 -1.2491925060763678E-002 - 69.899999999999991 -1.2563446763180469E-002 - 69.959999999999994 -1.2624444940807921E-002 - 70.019999999999996 -1.2675227586127394E-002 - 70.079999999999998 -1.2716107653620709E-002 - 70.140000000000001 -1.2747401490432467E-002 - 70.199999999999989 -1.2769429148446526E-002 - 70.259999999999991 -1.2782511723839676E-002 - 70.319999999999993 -1.2786971562015668E-002 - 70.379999999999995 -1.2783132566268738E-002 - 70.439999999999998 -1.2771318237389501E-002 - 70.500000000000000 -1.2751850991204764E-002 - 70.560000000000002 -1.2725051496952395E-002 - 70.619999999999990 -1.2691239265515110E-002 - 70.679999999999993 -1.2650729704061687E-002 - 70.739999999999995 -1.2603837434266990E-002 - 70.799999999999997 -1.2550870376202172E-002 - 70.859999999999999 -1.2492133492392728E-002 - 70.920000000000002 -1.2427926755679197E-002 - 70.979999999999990 -1.2358545845586318E-002 - 71.039999999999992 -1.2284278221298980E-002 - 71.099999999999994 -1.2205408477134571E-002 - 71.159999999999997 -1.2122213058364759E-002 - 71.219999999999999 -1.2034963039218019E-002 - 71.280000000000001 -1.1943921816857259E-002 - 71.339999999999989 -1.1849345154282246E-002 - 71.399999999999991 -1.1751483647704170E-002 - 71.459999999999994 -1.1650579580145853E-002 - 71.519999999999996 -1.1546867701392986E-002 - 71.579999999999998 -1.1440573300439060E-002 - 71.640000000000001 -1.1331916767432781E-002 - 71.699999999999989 -1.1221109892411860E-002 - 71.759999999999991 -1.1108355841984253E-002 - 71.819999999999993 -1.0993850624488389E-002 - 71.879999999999995 -1.0877782276121829E-002 - 71.939999999999998 -1.0760331614585719E-002 - 72.000000000000000 -1.0641670533724732E-002 - 72.060000000000002 -1.0521965549694355E-002 - 72.119999999999990 -1.0401374681608044E-002 - 72.179999999999993 -1.0280047862789774E-002 - 72.239999999999995 -1.0158128332347340E-002 - 72.299999999999997 -1.0035752575209398E-002 - 72.359999999999999 -9.9130502469418381E-003 - 72.420000000000002 -9.7901431281404785E-003 - 72.479999999999990 -9.6671473464703672E-003 - 72.539999999999992 -9.5441711341105635E-003 - 72.599999999999994 -9.4213184423048782E-003 - 72.659999999999997 -9.2986862276469625E-003 - 72.719999999999999 -9.1763645834119362E-003 - 72.780000000000001 -9.0544404520664853E-003 - 72.839999999999989 -8.9329915814231123E-003 - 72.899999999999991 -8.8120934513623780E-003 - 72.959999999999994 -8.6918156434516898E-003 - 73.019999999999996 -8.5722218204904513E-003 - 73.079999999999998 -8.4533730696286745E-003 - 73.140000000000001 -8.3353229284199876E-003 - 73.199999999999989 -8.2181226915629749E-003 - 73.259999999999991 -8.1018200507921457E-003 - 73.319999999999993 -7.9864569906093683E-003 - 73.379999999999995 -7.8720724500531952E-003 - 73.439999999999998 -7.7587029180881248E-003 - 73.500000000000000 -7.6463805828722951E-003 - 73.560000000000002 -7.5351348029025853E-003 - 73.619999999999990 -7.4249917805410430E-003 - 73.679999999999993 -7.3159750177240052E-003 - 73.739999999999995 -7.2081057501026365E-003 - 73.799999999999997 -7.1014023680039690E-003 - 73.859999999999999 -6.9958808151684131E-003 - 73.920000000000002 -6.8915552144249298E-003 - 73.979999999999990 -6.7884378931167000E-003 - 74.039999999999992 -6.6865392125970502E-003 - 74.099999999999994 -6.5858669397754841E-003 - 74.159999999999997 -6.4864284801747912E-003 - 74.219999999999999 -6.3882293109603291E-003 - 74.280000000000001 -6.2912729425400179E-003 - 74.339999999999989 -6.1955628244132590E-003 - 74.399999999999991 -6.1010998338410184E-003 - 74.459999999999994 -6.0078844990442181E-003 - 74.519999999999996 -5.9159166600122950E-003 - 74.579999999999998 -5.8251951311636017E-003 - 74.640000000000001 -5.7357172124265264E-003 - 74.699999999999989 -5.6474804902100556E-003 - 74.759999999999991 -5.5604809248929578E-003 - 74.819999999999993 -5.4747148558207566E-003 - 74.879999999999995 -5.3901773810879610E-003 - 74.939999999999998 -5.3068637445558521E-003 - 75.000000000000000 -5.2247682740145249E-003 - 75.060000000000002 -5.1438850729435279E-003 - 75.119999999999990 -5.0642077298262518E-003 - 75.179999999999993 -4.9857301324189151E-003 - 75.239999999999995 -4.9084454233339885E-003 - 75.299999999999997 -4.8323463047129618E-003 - 75.359999999999999 -4.7574261736216547E-003 - 75.420000000000002 -4.6836775963890005E-003 - 75.479999999999990 -4.6110932514065268E-003 - 75.539999999999992 -4.5396655795728776E-003 - 75.599999999999994 -4.4693864068083254E-003 - 75.659999999999997 -4.4002484901115970E-003 - 75.719999999999999 -4.3322438492684129E-003 - 75.780000000000001 -4.2653642070668140E-003 - 75.839999999999989 -4.1996013699866020E-003 - 75.899999999999991 -4.1349478440972668E-003 - 75.959999999999994 -4.0713945238740170E-003 - 76.019999999999996 -4.0089336400283794E-003 - 76.079999999999998 -3.9475567278942367E-003 - 76.140000000000001 -3.8872553763919073E-003 - 76.199999999999989 -3.8280208603202704E-003 - 76.259999999999991 -3.7698448661566430E-003 - 76.319999999999993 -3.7127185479030244E-003 - 76.379999999999995 -3.6566329415031506E-003 - 76.439999999999998 -3.6015796929796725E-003 - 76.500000000000000 -3.5475499999098126E-003 - 76.560000000000002 -3.4945349288640175E-003 - 76.619999999999990 -3.4425253121253933E-003 - 76.679999999999993 -3.3915122039586071E-003 - 76.739999999999995 -3.3414863719885435E-003 - 76.799999999999997 -3.2924386469178027E-003 - 76.859999999999999 -3.2443597867858687E-003 - 76.920000000000002 -3.1972404119591001E-003 - 76.979999999999990 -3.1510711277407144E-003 - 77.039999999999992 -3.1058424817609568E-003 - 77.099999999999994 -3.0615445390179160E-003 - 77.159999999999997 -3.0181678894708915E-003 - 77.219999999999999 -2.9757021627783873E-003 - 77.280000000000001 -2.9341376572653444E-003 - 77.339999999999989 -2.8934643591419121E-003 - 77.399999999999991 -2.8536719461373784E-003 - 77.459999999999994 -2.8147505303363785E-003 - 77.519999999999996 -2.7766892634843022E-003 - 77.579999999999998 -2.7394778560010085E-003 - 77.640000000000001 -2.7031058787601952E-003 - 77.699999999999989 -2.6675622780829395E-003 - 77.759999999999991 -2.6328361962502365E-003 - 77.819999999999993 -2.5989170710182192E-003 - 77.879999999999995 -2.5657934754883772E-003 - 77.939999999999998 -2.5334544340498873E-003 - 78.000000000000000 -2.5018886655791485E-003 - 78.060000000000002 -2.4710846268536277E-003 - 78.119999999999990 -2.4410311121744652E-003 - 78.179999999999993 -2.4117163494186797E-003 - 78.239999999999995 -2.3831291839652986E-003 - 78.299999999999997 -2.3552576110995628E-003 - 78.359999999999999 -2.3280897971642333E-003 - 78.420000000000002 -2.3016142959908937E-003 - 78.479999999999990 -2.2758190166149743E-003 - 78.539999999999992 -2.2506923093292127E-003 - 78.599999999999994 -2.2262221181302564E-003 - 78.659999999999997 -2.2023965188082838E-003 - 78.719999999999999 -2.1792036636496901E-003 - 78.780000000000001 -2.1566317674326647E-003 - 78.839999999999989 -2.1346685708543865E-003 - 78.899999999999991 -2.1133021322674245E-003 - 78.959999999999994 -2.0925206197900162E-003 - 79.019999999999996 -2.0723123261686105E-003 - 79.079999999999998 -2.0526651793334192E-003 - 79.140000000000001 -2.0335672522179770E-003 - 79.199999999999989 -2.0150067943262313E-003 - 79.259999999999991 -1.9969720579860774E-003 - 79.319999999999993 -1.9794513762289045E-003 - 79.379999999999995 -1.9624329566503402E-003 - 79.439999999999998 -1.9459052229706228E-003 - 79.500000000000000 -1.9298567321835510E-003 - 79.560000000000002 -1.9142760079126487E-003 - 79.619999999999990 -1.8991516255842077E-003 - 79.679999999999993 -1.8844725186417119E-003 - 79.739999999999995 -1.8702273799159456E-003 - 79.799999999999997 -1.8564052132290440E-003 - 79.859999999999999 -1.8429951056623539E-003 - 79.920000000000002 -1.8299861844565514E-003 - 79.979999999999990 -1.8173676945215337E-003 - 80.039999999999992 -1.8051292981129943E-003 - 80.099999999999994 -1.7932603701783772E-003 - 80.159999999999997 -1.7817505970144844E-003 - 80.219999999999999 -1.7705899595379007E-003 - 80.280000000000001 -1.7597682704387902E-003 - 80.340000000000003 -1.7492755592456554E-003 - 80.400000000000006 -1.7391021445379721E-003 - 80.460000000000008 -1.7292384663166306E-003 - 80.519999999999982 -1.7196749049535668E-003 - 80.579999999999984 -1.7104021821868504E-003 - 80.639999999999986 -1.7014110114915056E-003 - 80.699999999999989 -1.6926922213905049E-003 - 80.759999999999991 -1.6842369438504557E-003 - 80.819999999999993 -1.6760362964691154E-003 - 80.879999999999995 -1.6680816274847196E-003 - 80.939999999999998 -1.6603643256812807E-003 - 81.000000000000000 -1.6528759482968046E-003 - 81.060000000000002 -1.6456081731326642E-003 - 81.120000000000005 -1.6385528557099510E-003 - 81.180000000000007 -1.6317018119005539E-003 - 81.240000000000009 -1.6250473672535643E-003 - 81.299999999999983 -1.6185815619484032E-003 - 81.359999999999985 -1.6122967890075514E-003 - 81.419999999999987 -1.6061856750142253E-003 - 81.479999999999990 -1.6002408202043445E-003 - 81.539999999999992 -1.5944551249107433E-003 - 81.599999999999994 -1.5888215067070121E-003 - 81.659999999999997 -1.5833330381637789E-003 - 81.719999999999999 -1.5779830270100581E-003 - 81.780000000000001 -1.5727648524172637E-003 - 81.840000000000003 -1.5676722254352904E-003 - 81.900000000000006 -1.5626986619067661E-003 - 81.960000000000008 -1.5578381303381029E-003 - 82.019999999999982 -1.5530847280682816E-003 - 82.079999999999984 -1.5484324861043083E-003 - 82.139999999999986 -1.5438757002939265E-003 - 82.199999999999989 -1.5394088216095726E-003 - 82.259999999999991 -1.5350263342284070E-003 - 82.319999999999993 -1.5307229352861480E-003 - 82.379999999999995 -1.5264932962135232E-003 - 82.439999999999998 -1.5223324663313762E-003 - 82.500000000000000 -1.5182354222632521E-003 - 82.560000000000002 -1.5141973988243372E-003 - 82.620000000000005 -1.5102136178239487E-003 - 82.680000000000007 -1.5062794303233073E-003 - 82.740000000000009 -1.5023903800399834E-003 - 82.799999999999983 -1.4985421106844851E-003 - 82.859999999999985 -1.4947303741778971E-003 - 82.919999999999987 -1.4909512063955089E-003 - 82.979999999999990 -1.4872006925839493E-003 - 83.039999999999992 -1.4834749529557792E-003 - 83.099999999999994 -1.4797703632484940E-003 - 83.159999999999997 -1.4760834643158902E-003 - 83.219999999999999 -1.4724109096125499E-003 - 83.280000000000001 -1.4687494724416731E-003 - 83.340000000000003 -1.4650961022581630E-003 - 83.400000000000006 -1.4614478655103934E-003 - 83.460000000000008 -1.4578019637389841E-003 - 83.519999999999982 -1.4541558068784468E-003 - 83.579999999999984 -1.4505068696281384E-003 - 83.639999999999986 -1.4468526978971569E-003 - 83.699999999999989 -1.4431909367398795E-003 - 83.759999999999991 -1.4395194701900434E-003 - 83.819999999999993 -1.4358361891201477E-003 - 83.879999999999995 -1.4321390014834659E-003 - 83.939999999999998 -1.4284260311374264E-003 - 84.000000000000000 -1.4246956212999741E-003 - 84.060000000000002 -1.4209459176461243E-003 - 84.120000000000005 -1.4171753908937595E-003 - 84.180000000000007 -1.4133825517038288E-003 - 84.240000000000009 -1.4095659141353108E-003 - 84.299999999999983 -1.4057243097810354E-003 - 84.359999999999985 -1.4018564595692934E-003 - 84.419999999999987 -1.3979613491868592E-003 - 84.479999999999990 -1.3940380433048053E-003 - 84.539999999999992 -1.3900856007168388E-003 - 84.599999999999994 -1.3861034000716987E-003 - 84.659999999999997 -1.3820907012367196E-003 - 84.719999999999999 -1.3780470915557620E-003 - 84.780000000000001 -1.3739721175478222E-003 - 84.840000000000003 -1.3698654731860269E-003 - 84.900000000000006 -1.3657269271202966E-003 - 84.960000000000008 -1.3615563899419146E-003 - 85.019999999999982 -1.3573537864266009E-003 - 85.079999999999984 -1.3531193403670157E-003 - 85.139999999999986 -1.3488530657608233E-003 - 85.199999999999989 -1.3445549911810268E-003 - 85.259999999999991 -1.3402254933681452E-003 - 85.319999999999993 -1.3358649038699537E-003 - 85.379999999999995 -1.3314734609535944E-003 - 85.439999999999998 -1.3270515337707013E-003 - 85.500000000000000 -1.3225996543286089E-003 - 85.560000000000002 -1.3181182098850144E-003 - 85.620000000000005 -1.3136077934574704E-003 - 85.680000000000007 -1.3090689804267476E-003 - 85.740000000000009 -1.3045022780875488E-003 - 85.799999999999983 -1.2999083593034485E-003 - 85.859999999999985 -1.2952880724117870E-003 - 85.919999999999987 -1.2906419711085386E-003 - 85.979999999999990 -1.2859710135768906E-003 - 86.039999999999992 -1.2812760995741055E-003 - 86.099999999999994 -1.2765581501385788E-003 - 86.159999999999997 -1.2718180989631771E-003 - 86.219999999999999 -1.2670568703141163E-003 - 86.280000000000001 -1.2622756624652506E-003 - 86.340000000000003 -1.2574755439363680E-003 - 86.400000000000006 -1.2526577619409128E-003 - 86.460000000000008 -1.2478234939933498E-003 - 86.519999999999982 -1.2429738901150631E-003 - 86.579999999999984 -1.2381101332108273E-003 - 86.639999999999986 -1.2332335688722926E-003 - 86.699999999999989 -1.2283453224842238E-003 - 86.759999999999991 -1.2234468011842006E-003 - 86.819999999999993 -1.2185391209462843E-003 - 86.879999999999995 -1.2136234436377030E-003 - 86.939999999999998 -1.2087010542469092E-003 - 87.000000000000000 -1.2037731697923538E-003 - 87.060000000000002 -1.1988408631911230E-003 - 87.120000000000005 -1.1939053923029415E-003 - 87.180000000000007 -1.1889677144993908E-003 - 87.240000000000009 -1.1840292598414965E-003 - 87.299999999999983 -1.1790909107814995E-003 - 87.359999999999985 -1.1741537751975503E-003 - 87.419999999999987 -1.1692190334199014E-003 - 87.479999999999990 -1.1642878031429976E-003 - 87.539999999999992 -1.1593610941970909E-003 - 87.599999999999994 -1.1544401056982879E-003 - 87.659999999999997 -1.1495257766776588E-003 - 87.719999999999999 -1.1446191985589548E-003 - 87.780000000000001 -1.1397215163170727E-003 - 87.840000000000003 -1.1348336678601851E-003 - 87.900000000000006 -1.1299567872395668E-003 - 87.960000000000008 -1.1250917472480407E-003 - 88.019999999999982 -1.1202397143461366E-003 - 88.079999999999984 -1.1154015356453152E-003 - 88.139999999999986 -1.1105782260337116E-003 - 88.199999999999989 -1.1057705103090856E-003 - 88.259999999999991 -1.1009793444342645E-003 - 88.319999999999993 -1.0962053829103951E-003 - 88.379999999999995 -1.0914493792738050E-003 - 88.439999999999998 -1.0867120179721939E-003 - 88.500000000000000 -1.0819939965109238E-003 - 88.560000000000002 -1.0772957017690194E-003 - 88.620000000000005 -1.0726177754710694E-003 - 88.680000000000007 -1.0679606136877629E-003 - 88.740000000000009 -1.0633246057139140E-003 - 88.799999999999983 -1.0587102166780683E-003 - 88.859999999999985 -1.0541176790645663E-003 - 88.919999999999987 -1.0495472813120497E-003 - 88.979999999999990 -1.0449992516090897E-003 - 89.039999999999992 -1.0404739925840509E-003 - 89.099999999999994 -1.0359715002613331E-003 - 89.159999999999997 -1.0314921406423157E-003 - 89.219999999999999 -1.0270360288922062E-003 - 89.280000000000001 -1.0226031762182479E-003 - 89.340000000000003 -1.0181938620514842E-003 - 89.400000000000006 -1.0138079813493931E-003 - 89.460000000000008 -1.0094457929604890E-003 - 89.519999999999982 -1.0051072379153752E-003 - 89.579999999999984 -1.0007922692474799E-003 - 89.639999999999986 -9.9650077799957903E-004 - 89.699999999999989 -9.9223275851553013E-004 - 89.759999999999991 -9.8798799885807596E-004 - 89.819999999999993 -9.8376629681659329E-004 - 89.879999999999995 -9.7956748730628688E-004 - 89.939999999999998 -9.7539119406212806E-004 - 90.000000000000000 -9.7123716732827874E-004 - 90.060000000000002 -9.6710494537661129E-004 - 90.120000000000005 -9.6299417937192704E-004 - 90.180000000000007 -9.5890443955491461E-004 - 90.240000000000009 -9.5483526383540970E-004 - 90.299999999999983 -9.5078617090322041E-004 - 90.359999999999985 -9.4675672399557789E-004 - 90.419999999999987 -9.4274629494644742E-004 - 90.479999999999990 -9.3875447372941928E-004 - 90.539999999999992 -9.3478075961062241E-004 - 90.599999999999994 -9.3082459367372684E-004 - 90.659999999999997 -9.2688548508389635E-004 - 90.719999999999999 -9.2296293467446374E-004 - 90.780000000000001 -9.1905646379322834E-004 - 90.840000000000003 -9.1516552742643587E-004 - 90.900000000000006 -9.1128968432714250E-004 - 90.960000000000008 -9.0742847649308257E-004 - 91.019999999999982 -9.0358140576022954E-004 - 91.079999999999984 -8.9974802970801959E-004 - 91.139999999999986 -8.9592782802654569E-004 - 91.199999999999989 -8.9212039252882904E-004 - 91.259999999999991 -8.8832524643479090E-004 - 91.319999999999993 -8.8454193881260261E-004 - 91.379999999999995 -8.8076994818435416E-004 - 91.439999999999998 -8.7700883872619264E-004 - 91.500000000000000 -8.7325816888439889E-004 - 91.560000000000002 -8.6951745455970530E-004 - 91.620000000000005 -8.6578627678496139E-004 - 91.680000000000007 -8.6206420686949317E-004 - 91.739999999999981 -8.5835082624631466E-004 - 91.799999999999983 -8.5464592648622207E-004 - 91.859999999999985 -8.5094905982160474E-004 - 91.919999999999987 -8.4725994246927846E-004 - 91.979999999999990 -8.4357836232330048E-004 - 92.039999999999992 -8.3990409771248691E-004 - 92.099999999999994 -8.3623704725620186E-004 - 92.159999999999997 -8.3257705865352066E-004 - 92.219999999999999 -8.2892413968875837E-004 - 92.280000000000001 -8.2527825906189578E-004 - 92.340000000000003 -8.2163943076283121E-004 - 92.400000000000006 -8.1800787249830694E-004 - 92.460000000000008 -8.1438368188991011E-004 - 92.519999999999982 -8.1076712927057851E-004 - 92.579999999999984 -8.0715840803896599E-004 - 92.639999999999986 -8.0355789739289002E-004 - 92.699999999999989 -7.9996593174594345E-004 - 92.759999999999991 -7.9638296575363884E-004 - 92.819999999999993 -7.9280940545935121E-004 - 92.879999999999995 -7.8924576325594634E-004 - 92.939999999999998 -7.8569260049451094E-004 - 93.000000000000000 -7.8215044026457090E-004 - 93.060000000000002 -7.7861986529415982E-004 - 93.120000000000005 -7.7510154490706570E-004 - 93.180000000000007 -7.7159617463530171E-004 - 93.239999999999981 -7.6810451362435575E-004 - 93.299999999999983 -7.6462725988217777E-004 - 93.359999999999985 -7.6116530003698393E-004 - 93.419999999999987 -7.5771938698048543E-004 - 93.479999999999990 -7.5429049590033893E-004 - 93.539999999999992 -7.5087952821899738E-004 - 93.599999999999994 -7.4748751013117029E-004 - 93.659999999999997 -7.4411532994233577E-004 - 93.719999999999999 -7.4076415574784527E-004 - 93.780000000000001 -7.3743497111854628E-004 - 93.840000000000003 -7.3412900016837988E-004 - 93.900000000000006 -7.3084737842621448E-004 - 93.960000000000008 -7.2759118409087989E-004 - 94.019999999999982 -7.2436172679402608E-004 - 94.079999999999984 -7.2116014244783346E-004 - 94.139999999999986 -7.1798775177699776E-004 - 94.199999999999989 -7.1484575534515250E-004 - 94.259999999999991 -7.1173539802506919E-004 - 94.319999999999993 -7.0865797874946539E-004 - 94.379999999999995 -7.0561482372759831E-004 - 94.439999999999998 -7.0260711589491579E-004 - 94.500000000000000 -6.9963614262491449E-004 - 94.560000000000002 -6.9670308579960669E-004 - 94.620000000000005 -6.9380919909776820E-004 - 94.680000000000007 -6.9095566661558385E-004 - 94.739999999999981 -6.8814370922434332E-004 - 94.799999999999983 -6.8537446805737822E-004 - 94.859999999999985 -6.8264908681858120E-004 - 94.919999999999987 -6.7996873065692958E-004 - 94.979999999999990 -6.7733445172452826E-004 - 95.039999999999992 -6.7474738370396580E-004 - 95.099999999999994 -6.7220837620806599E-004 - 95.159999999999997 -6.6971858856601160E-004 - 95.219999999999999 -6.6727891447215435E-004 - 95.280000000000001 -6.6489021322046235E-004 - 95.340000000000003 -6.6255339795267447E-004 - 95.400000000000006 -6.6026926979570141E-004 - 95.460000000000008 -6.5803862432848594E-004 - 95.519999999999982 -6.5586208743265975E-004 - 95.579999999999984 -6.5374036062093804E-004 - 95.639999999999986 -6.5167399636581024E-004 - 95.699999999999989 -6.4966348196198690E-004 - 95.759999999999991 -6.4770925277574142E-004 - 95.819999999999993 -6.4581168496415109E-004 - 95.879999999999995 -6.4397105010268233E-004 - 95.939999999999998 -6.4218751509022808E-004 - 96.000000000000000 -6.4046123986356005E-004 - 96.060000000000002 -6.3879229902883024E-004 - 96.120000000000005 -6.3718059333955327E-004 - 96.180000000000007 -6.3562604500647015E-004 - 96.239999999999981 -6.3412849276578778E-004 - 96.299999999999983 -6.3268760673035123E-004 - 96.359999999999985 -6.3130303650037092E-004 - 96.419999999999987 -6.2997434895084570E-004 - 96.479999999999990 -6.2870102980286705E-004 - 96.539999999999992 -6.2748246933696616E-004 - 96.599999999999994 -6.2631796618494015E-004 - 96.659999999999997 -6.2520674391992534E-004 - 96.719999999999999 -6.2414790364005354E-004 - 96.780000000000001 -6.2314049619763116E-004 - 96.840000000000003 -6.2218342303220660E-004 - 96.900000000000006 -6.2127562766819142E-004 - 96.960000000000008 -6.2041583260868548E-004 - 97.019999999999982 -6.1960274062080190E-004 - 97.079999999999984 -6.1883494208699410E-004 - 97.139999999999986 -6.1811081391056140E-004 - 97.199999999999989 -6.1742887854332419E-004 - 97.259999999999991 -6.1678739598184024E-004 - 97.319999999999993 -6.1618461938140877E-004 - 97.379999999999995 -6.1561876372026006E-004 - 97.439999999999998 -6.1508782655181587E-004 - 97.500000000000000 -6.1458987095961109E-004 - 97.560000000000002 -6.1412287101684506E-004 - 97.620000000000005 -6.1368464010745031E-004 - 97.680000000000007 -6.1327312509124271E-004 - 97.739999999999981 -6.1288611079429679E-004 - 97.799999999999983 -6.1252133361911864E-004 - 97.859999999999985 -6.1217654277370031E-004 - 97.919999999999987 -6.1184944152449983E-004 - 97.979999999999990 -6.1153764763423714E-004 - 98.039999999999992 -6.1123887080977526E-004 - 98.099999999999994 -6.1095071271147108E-004 - 98.159999999999997 -6.1067080056174527E-004 - 98.219999999999999 -6.1039675165708263E-004 - 98.280000000000001 -6.1012608828340251E-004 - 98.340000000000003 -6.0985644440782780E-004 - 98.400000000000006 -6.0958542417813765E-004 - 98.460000000000008 -6.0931060792785569E-004 - 98.519999999999982 -6.0902965568368083E-004 - 98.579999999999984 -6.0874011728403934E-004 - 98.639999999999986 -6.0843966658876618E-004 - 98.699999999999989 -6.0812602774559961E-004 - 98.759999999999991 -6.0779692167165476E-004 - 98.819999999999993 -6.0745011873793674E-004 - 98.879999999999995 -6.0708346620808019E-004 - 98.939999999999998 -6.0669485960336393E-004 - 99.000000000000000 -6.0628221472585567E-004 - 99.060000000000002 -6.0584351586598340E-004 - 99.120000000000005 -6.0537687350704396E-004 - 99.180000000000007 -6.0488048467894880E-004 - 99.239999999999981 -6.0435259574959056E-004 - 99.299999999999983 -6.0379156066511460E-004 - 99.359999999999985 -6.0319566738865763E-004 - 99.419999999999987 -6.0256358615794767E-004 - 99.479999999999990 -6.0189382697366700E-004 - 99.539999999999992 -6.0118514467159465E-004 - 99.599999999999994 -6.0043626414785158E-004 - 99.659999999999997 -5.9964612611259011E-004 - 99.719999999999999 -5.9881373666685774E-004 - 99.780000000000001 -5.9793822665616466E-004 - 99.840000000000003 -5.9701868883820831E-004 - 99.900000000000006 -5.9605455233926736E-004 - 99.960000000000008 -5.9504518284363476E-004 - 100.01999999999998 -5.9399001683484544E-004 - 100.07999999999998 -5.9288875347333328E-004 - 100.13999999999999 -5.9174114400070861E-004 - 100.19999999999999 -5.9054695345203321E-004 - 100.25999999999999 -5.8930617099523029E-004 - 100.31999999999999 -5.8801883900896890E-004 - 100.38000000000000 -5.8668513524102518E-004 - 100.44000000000000 -5.8530533445264033E-004 - 100.50000000000000 -5.8387975342624244E-004 - 100.56000000000000 -5.8240885868015007E-004 - 100.62000000000000 -5.8089324465755579E-004 - 100.68000000000001 -5.7933363563565752E-004 - 100.73999999999998 -5.7773077059729099E-004 - 100.79999999999998 -5.7608552972771704E-004 - 100.85999999999999 -5.7439887243401289E-004 - 100.91999999999999 -5.7267188666373535E-004 - 100.97999999999999 -5.7090573480391338E-004 - 101.03999999999999 -5.6910160800145249E-004 - 101.09999999999999 -5.6726078433192838E-004 - 101.16000000000000 -5.6538468288944892E-004 - 101.22000000000000 -5.6347471592557111E-004 - 101.28000000000000 -5.6153241526543944E-004 - 101.34000000000000 -5.5955939220644457E-004 - 101.40000000000001 -5.5755724582080856E-004 - 101.46000000000001 -5.5552765610722269E-004 - 101.51999999999998 -5.5347237501337610E-004 - 101.57999999999998 -5.5139310296676365E-004 - 101.63999999999999 -5.4929166785161888E-004 - 101.69999999999999 -5.4717002412505128E-004 - 101.75999999999999 -5.4502991114906499E-004 - 101.81999999999999 -5.4287338047993990E-004 - 101.88000000000000 -5.4070230749460389E-004 - 101.94000000000000 -5.3851865331691270E-004 - 102.00000000000000 -5.3632450914235916E-004 - 102.06000000000000 -5.3412192205789329E-004 - 102.12000000000000 -5.3191296117505843E-004 - 102.18000000000001 -5.2969979096938961E-004 - 102.23999999999998 -5.2748452221843998E-004 - 102.29999999999998 -5.2526933368381081E-004 - 102.35999999999999 -5.2305639662475023E-004 - 102.41999999999999 -5.2084798678248261E-004 - 102.47999999999999 -5.1864628851023100E-004 - 102.53999999999999 -5.1645351823085986E-004 - 102.59999999999999 -5.1427191124729546E-004 - 102.66000000000000 -5.1210366943417137E-004 - 102.72000000000000 -5.0995100552469824E-004 - 102.78000000000000 -5.0781619314571819E-004 - 102.84000000000000 -5.0570129981403493E-004 - 102.90000000000001 -5.0360853080801886E-004 - 102.96000000000001 -5.0154000446883630E-004 - 103.01999999999998 -4.9949780371654634E-004 - 103.07999999999998 -4.9748403003268540E-004 - 103.13999999999999 -4.9550066848056610E-004 - 103.19999999999999 -4.9354977077337874E-004 - 103.25999999999999 -4.9163334006619721E-004 - 103.31999999999999 -4.8975338578578916E-004 - 103.38000000000000 -4.8791192034206357E-004 - 103.44000000000000 -4.8611086104059716E-004 - 103.50000000000000 -4.8435222541898552E-004 - 103.56000000000000 -4.8263793715671433E-004 - 103.62000000000000 -4.8097002932945867E-004 - 103.68000000000001 -4.7935048563118508E-004 - 103.73999999999998 -4.7778124868009039E-004 - 103.79999999999998 -4.7626436681510098E-004 - 103.85999999999999 -4.7480182577281581E-004 - 103.91999999999999 -4.7339563894462485E-004 - 103.97999999999999 -4.7204782488916713E-004 - 104.03999999999999 -4.7076046908445810E-004 - 104.09999999999999 -4.6953560301273478E-004 - 104.16000000000000 -4.6837529978901711E-004 - 104.22000000000000 -4.6728167301515896E-004 - 104.28000000000000 -4.6625681979319130E-004 - 104.34000000000000 -4.6530292646684461E-004 - 104.40000000000001 -4.6442216062455471E-004 - 104.46000000000001 -4.6361672752993774E-004 - 104.51999999999998 -4.6288888826720036E-004 - 104.57999999999998 -4.6224106483624136E-004 - 104.63999999999999 -4.6167558230218985E-004 - 104.69999999999999 -4.6119491545202408E-004 - 104.75999999999999 -4.6080163284856212E-004 - 104.81999999999999 -4.6049836415383675E-004 - 104.88000000000000 -4.6028780202613082E-004 - 104.94000000000000 -4.6017279441716303E-004 - 105.00000000000000 -4.6015626424141377E-004 - 105.06000000000000 -4.6024124105125715E-004 - 105.12000000000000 -4.6043084325097144E-004 - 105.18000000000001 -4.6072830827346311E-004 - 105.23999999999998 -4.6113693138611858E-004 - 105.29999999999998 -4.6166021252345719E-004 - 105.35999999999999 -4.6230168134208809E-004 - 105.41999999999999 -4.6306496728321149E-004 - 105.47999999999999 -4.6395386583222208E-004 - 105.53999999999999 -4.6497219013252877E-004 - 105.59999999999999 -4.6612387708047350E-004 - 105.66000000000000 -4.6741301192477352E-004 - 105.72000000000000 -4.6884373312701378E-004 - 105.78000000000000 -4.7042026960675780E-004 - 105.84000000000000 -4.7214697346539825E-004 - 105.90000000000001 -4.7402823649659491E-004 - 105.96000000000001 -4.7606861366025348E-004 - 106.01999999999998 -4.7827257272781007E-004 - 106.07999999999998 -4.8064483567092635E-004 - 106.13999999999999 -4.8319007259310241E-004 - 106.19999999999999 -4.8591305062919813E-004 - 106.25999999999999 -4.8881859515536078E-004 - 106.31999999999999 -4.9191158498688601E-004 - 106.38000000000000 -4.9519687774506917E-004 - 106.44000000000000 -4.9867941465433910E-004 - 106.50000000000000 -5.0236408130822376E-004 - 106.56000000000000 -5.0625576597632691E-004 - 106.62000000000000 -5.1035938017377012E-004 - 106.68000000000001 -5.1467970504631255E-004 - 106.73999999999998 -5.1922160425863320E-004 - 106.79999999999998 -5.2398967269864081E-004 - 106.85999999999999 -5.2898850970315640E-004 - 106.91999999999999 -5.3422253062465912E-004 - 106.97999999999999 -5.3969610321556987E-004 - 107.03999999999999 -5.4541332895980180E-004 - 107.09999999999999 -5.5137815423956648E-004 - 107.16000000000000 -5.5759427930833451E-004 - 107.22000000000000 -5.6406517572122532E-004 - 107.28000000000000 -5.7079413990621954E-004 - 107.34000000000000 -5.7778404329724613E-004 - 107.40000000000001 -5.8503744907123631E-004 - 107.46000000000001 -5.9255660169368603E-004 - 107.51999999999998 -6.0034346092793572E-004 - 107.57999999999998 -6.0839945301882289E-004 - 107.63999999999999 -6.1672571509186836E-004 - 107.69999999999999 -6.2532284122898327E-004 - 107.75999999999999 -6.3419112372472902E-004 - 107.81999999999999 -6.4333020831407065E-004 - 107.88000000000000 -6.5273938174351001E-004 - 107.94000000000000 -6.6241727740135937E-004 - 108.00000000000000 -6.7236211888187074E-004 - 108.06000000000000 -6.8257151014033263E-004 - 108.12000000000000 -6.9304240725314749E-004 - 108.18000000000001 -7.0377124877751699E-004 - 108.23999999999998 -7.1475383532849620E-004 - 108.29999999999998 -7.2598532092920092E-004 - 108.35999999999999 -7.3746012294107041E-004 - 108.41999999999999 -7.4917200153262796E-004 - 108.47999999999999 -7.6111409460873688E-004 - 108.53999999999999 -7.7327867834905343E-004 - 108.59999999999999 -7.8565739868907496E-004 - 108.66000000000000 -7.9824110160334812E-004 - 108.72000000000000 -8.1101985255968871E-004 - 108.78000000000000 -8.2398290274939240E-004 - 108.84000000000000 -8.3711881608056291E-004 - 108.90000000000001 -8.5041525524432587E-004 - 108.96000000000001 -8.6385923095551396E-004 - 109.01999999999998 -8.7743692739648002E-004 - 109.07999999999998 -8.9113367883475762E-004 - 109.13999999999999 -9.0493419046169517E-004 - 109.19999999999999 -9.1882230778787821E-004 - 109.25999999999999 -9.3278114743358459E-004 - 109.31999999999999 -9.4679314573367331E-004 - 109.38000000000000 -9.6084010773886115E-004 - 109.44000000000000 -9.7490298380182596E-004 - 109.50000000000000 -9.8896211710338745E-004 - 109.56000000000000 -1.0029972267582966E-003 - 109.62000000000000 -1.0169875004019393E-003 - 109.68000000000001 -1.0309114411151191E-003 - 109.73999999999998 -1.0447470498368945E-003 - 109.79999999999998 -1.0584716836849913E-003 - 109.85999999999999 -1.0720623566062150E-003 - 109.91999999999999 -1.0854954519936657E-003 - 109.97999999999999 -1.0987471131391989E-003 - 110.03999999999999 -1.1117930230751351E-003 - 110.09999999999999 -1.1246086028327768E-003 - 110.16000000000000 -1.1371689059939385E-003 - 110.22000000000000 -1.1494488799552347E-003 - 110.28000000000000 -1.1614229946031748E-003 - 110.34000000000000 -1.1730660425776803E-003 - 110.40000000000001 -1.1843524113045957E-003 - 110.46000000000001 -1.1952566879209515E-003 - 110.51999999999998 -1.2057535269722616E-003 - 110.57999999999998 -1.2158174251545291E-003 - 110.63999999999999 -1.2254235536700582E-003 - 110.69999999999999 -1.2345468997887379E-003 - 110.75999999999999 -1.2431630103240210E-003 - 110.81999999999999 -1.2512478004009853E-003 - 110.88000000000000 -1.2587776602551489E-003 - 110.94000000000000 -1.2657294838826693E-003 - 111.00000000000000 -1.2720805451856543E-003 - 111.06000000000000 -1.2778089734532376E-003 - 111.12000000000000 -1.2828935835329774E-003 - 111.18000000000001 -1.2873140114266408E-003 - 111.23999999999998 -1.2910504567543014E-003 - 111.29999999999998 -1.2940842734987352E-003 - 111.35999999999999 -1.2963976428688043E-003 - 111.41999999999999 -1.2979737530205695E-003 - 111.47999999999999 -1.2987967873791754E-003 - 111.53999999999999 -1.2988522385681620E-003 - 111.59999999999999 -1.2981265651193115E-003 - 111.66000000000000 -1.2966075591102284E-003 - 111.72000000000000 -1.2942841690480927E-003 - 111.78000000000000 -1.2911465364494102E-003 - 111.84000000000000 -1.2871864860467435E-003 - 111.90000000000001 -1.2823970481386779E-003 - 111.96000000000001 -1.2767726508920818E-003 - 112.01999999999998 -1.2703090795916645E-003 - 112.07999999999998 -1.2630036716011067E-003 - 112.13999999999999 -1.2548553060164685E-003 - 112.19999999999999 -1.2458643790796678E-003 - 112.25999999999999 -1.2360327691303794E-003 - 112.31999999999999 -1.2253639135455052E-003 - 112.38000000000000 -1.2138628913955891E-003 - 112.44000000000000 -1.2015360819444185E-003 - 112.50000000000000 -1.1883916301166227E-003 - 112.56000000000000 -1.1744392272365488E-003 - 112.62000000000000 -1.1596898846640692E-003 - 112.68000000000001 -1.1441563433493606E-003 - 112.73999999999998 -1.1278527700721622E-003 - 112.79999999999998 -1.1107948998175939E-003 - 112.85999999999999 -1.0929997798156479E-003 - 112.91999999999999 -1.0744860524013571E-003 - 112.97999999999999 -1.0552735397721846E-003 - 113.03999999999999 -1.0353836416425732E-003 - 113.09999999999999 -1.0148388009141949E-003 - 113.16000000000000 -9.9366293953589871E-004 - 113.22000000000000 -9.7188106002921170E-004 - 113.28000000000000 -9.4951928378739410E-004 - 113.34000000000000 -9.2660486959025021E-004 - 113.40000000000001 -9.0316610859508047E-004 - 113.46000000000001 -8.7923226818424811E-004 - 113.51999999999998 -8.5483336772445076E-004 - 113.57999999999998 -8.3000039248007904E-004 - 113.63999999999999 -8.0476505740607440E-004 - 113.69999999999999 -7.7915967840578345E-004 - 113.75999999999999 -7.5321718768635922E-004 - 113.81999999999999 -7.2697112778126276E-004 - 113.88000000000000 -7.0045547368036425E-004 - 113.94000000000000 -6.7370444678504441E-004 - 114.00000000000000 -6.4675275888362803E-004 - 114.06000000000000 -6.1963523095249606E-004 - 114.12000000000000 -5.9238690976437590E-004 - 114.18000000000001 -5.6504283533790451E-004 - 114.23999999999998 -5.3763811706842581E-004 - 114.29999999999998 -5.1020769005225084E-004 - 114.35999999999999 -4.8278643322727623E-004 - 114.41999999999999 -4.5540898281949525E-004 - 114.47999999999999 -4.2810954698077082E-004 - 114.53999999999999 -4.0092211179457079E-004 - 114.59999999999999 -3.7388012960418897E-004 - 114.66000000000000 -3.4701654531943621E-004 - 114.72000000000000 -3.2036374889661415E-004 - 114.78000000000000 -2.9395341385510634E-004 - 114.84000000000000 -2.6781656475289716E-004 - 114.90000000000001 -2.4198347310227451E-004 - 114.96000000000001 -2.1648353830911940E-004 - 115.01999999999998 -1.9134531300869185E-004 - 115.07999999999998 -1.6659645333674347E-004 - 115.13999999999999 -1.4226362098334361E-004 - 115.19999999999999 -1.1837248470817911E-004 - 115.25999999999999 -9.4947674514805864E-005 - 115.31999999999999 -7.2012718782110547E-005 - 115.38000000000000 -4.9590059512664210E-005 - 115.44000000000000 -2.7700988740545027E-005 - 115.50000000000000 -6.3656377377090408E-006 - 115.56000000000000 1.4397062582317425E-005 - 115.62000000000000 3.4569382502025917E-005 - 115.68000000000001 5.4134789294489204E-005 - 115.73999999999998 7.3078019208807268E-005 - 115.79999999999998 9.1384997700628186E-005 - 115.85999999999999 1.0904293217126016E-004 - 115.91999999999999 1.2604024237820581E-004 - 115.97999999999999 1.4236655517688851E-004 - 116.03999999999999 1.5801274410717092E-004 - 116.09999999999999 1.7297087670076699E-004 - 116.16000000000000 1.8723423173122692E-004 - 116.22000000000000 2.0079721465333353E-004 - 116.28000000000000 2.1365538563867549E-004 - 116.34000000000000 2.2580547579162727E-004 - 116.40000000000001 2.3724525902056161E-004 - 116.46000000000001 2.4797365105894977E-004 - 116.51999999999998 2.5799054354270828E-004 - 116.57999999999998 2.6729688067874991E-004 - 116.63999999999999 2.7589460977702201E-004 - 116.69999999999999 2.8378662589998924E-004 - 116.75999999999999 2.9097672611768001E-004 - 116.81999999999999 2.9746963579352408E-004 - 116.88000000000000 3.0327087654510941E-004 - 116.94000000000000 3.0838689677204829E-004 - 117.00000000000000 3.1282490019560134E-004 - 117.06000000000000 3.1659279832787986E-004 - 117.12000000000000 3.1969928689907546E-004 - 117.18000000000001 3.2215369327793760E-004 - 117.23999999999998 3.2396598804823650E-004 - 117.29999999999998 3.2514680531451219E-004 - 117.35999999999999 3.2570725702876302E-004 - 117.41999999999999 3.2565905675920189E-004 - 117.47999999999999 3.2501437944517422E-004 - 117.53999999999999 3.2378580679747794E-004 - 117.59999999999999 3.2198640611455731E-004 - 117.66000000000000 3.1962958108984750E-004 - 117.72000000000000 3.1672910702882680E-004 - 117.78000000000000 3.1329905757644449E-004 - 117.84000000000000 3.0935380664744774E-004 - 117.90000000000001 3.0490802065308596E-004 - 117.96000000000001 2.9997655829041377E-004 - 118.01999999999998 2.9457452391251469E-004 - 118.07999999999998 2.8871723336057465E-004 - 118.13999999999999 2.8242014008742920E-004 - 118.19999999999999 2.7569888954068005E-004 - 118.25999999999999 2.6856923278698383E-004 - 118.31999999999999 2.6104708477616984E-004 - 118.38000000000000 2.5314843494198377E-004 - 118.44000000000000 2.4488937226489136E-004 - 118.50000000000000 2.3628606667873501E-004 - 118.56000000000000 2.2735474292073394E-004 - 118.62000000000000 2.1811166620544603E-004 - 118.68000000000001 2.0857315796958057E-004 - 118.73999999999998 1.9875555673735322E-004 - 118.79999999999998 1.8867521324388324E-004 - 118.85999999999999 1.7834849408477745E-004 - 118.91999999999999 1.6779172591695063E-004 - 118.97999999999999 1.5702127461810262E-004 - 119.03999999999999 1.4605346466280077E-004 - 119.09999999999999 1.3490459530884631E-004 - 119.16000000000000 1.2359094460417513E-004 - 119.22000000000000 1.1212874780431437E-004 - 119.28000000000000 1.0053421666673242E-004 - 119.34000000000000 8.8823510938404229E-005 - 119.40000000000001 7.7012764003233562E-005 - 119.46000000000001 6.5118056282808962E-005 - 119.51999999999998 5.3155412796994939E-005 - 119.57999999999998 4.1140812516384567E-005 - 119.63999999999999 2.9090172367102197E-005 - 119.69999999999999 1.7019350834322742E-005 - 119.75999999999999 4.9441455411740701E-006 - 119.81999999999999 -7.1197187421238441E-006 - 119.88000000000000 -1.9156586219250013E-005 - 119.94000000000000 -3.1150886872579592E-005 - 120.00000000000000 -4.3087132641281262E-005 - 120.06000000000000 -5.4949900301231412E-005 - 120.12000000000000 -6.6723882452691274E-005 - 120.18000000000001 -7.8393867870956585E-005 - 120.23999999999998 -8.9944745271564844E-005 - 120.29999999999998 -1.0136150472688557E-004 - 120.35999999999999 -1.1262929282096800E-004 - 120.41999999999999 -1.2373336209171138E-004 - 120.47999999999999 -1.3465911997937084E-004 - 120.53999999999999 -1.4539215117562580E-004 - 120.59999999999999 -1.5591820217466189E-004 - 120.66000000000000 -1.6622322048676885E-004 - 120.72000000000000 -1.7629335718830389E-004 - 120.78000000000000 -1.8611502540174957E-004 - 120.84000000000000 -1.9567485150031580E-004 - 120.90000000000001 -2.0495977609670454E-004 - 120.95999999999998 -2.1395700851290075E-004 - 121.01999999999998 -2.2265409886890761E-004 - 121.07999999999998 -2.3103897795335838E-004 - 121.13999999999999 -2.3909986107374035E-004 - 121.19999999999999 -2.4682541448682523E-004 - 121.25999999999999 -2.5420470851161663E-004 - 121.31999999999999 -2.6122720547364070E-004 - 121.38000000000000 -2.6788287424901611E-004 - 121.44000000000000 -2.7416208378073311E-004 - 121.50000000000000 -2.8005572327736609E-004 - 121.56000000000000 -2.8555514321138893E-004 - 121.62000000000000 -2.9065224839772586E-004 - 121.68000000000001 -2.9533950992882246E-004 - 121.73999999999998 -2.9960988168274499E-004 - 121.79999999999998 -3.0345693246332434E-004 - 121.85999999999999 -3.0687479418130216E-004 - 121.91999999999999 -3.0985820648577345E-004 - 121.97999999999999 -3.1240260260451905E-004 - 122.03999999999999 -3.1450399331325022E-004 - 122.09999999999999 -3.1615905493178915E-004 - 122.16000000000000 -3.1736517537482746E-004 - 122.22000000000000 -3.1812045816674995E-004 - 122.28000000000000 -3.1842369764374466E-004 - 122.34000000000000 -3.1827444918879901E-004 - 122.40000000000001 -3.1767301503449294E-004 - 122.45999999999998 -3.1662043162166586E-004 - 122.51999999999998 -3.1511852037877162E-004 - 122.57999999999998 -3.1316986060052495E-004 - 122.63999999999999 -3.1077783070527972E-004 - 122.69999999999999 -3.0794657144992701E-004 - 122.75999999999999 -3.0468103958241428E-004 - 122.81999999999999 -3.0098690190289671E-004 - 122.88000000000000 -2.9687065814360870E-004 - 122.94000000000000 -2.9233949105418556E-004 - 123.00000000000000 -2.8740139080899688E-004 - 123.06000000000000 -2.8206505677411966E-004 - 123.12000000000000 -2.7633990040747738E-004 - 123.18000000000001 -2.7023602493713545E-004 - 123.23999999999998 -2.6376425488048926E-004 - 123.29999999999998 -2.5693599720893562E-004 - 123.35999999999999 -2.4976335960578711E-004 - 123.41999999999999 -2.4225902154617897E-004 - 123.47999999999999 -2.3443629322908468E-004 - 123.53999999999999 -2.2630899574474319E-004 - 123.59999999999999 -2.1789152055881500E-004 - 123.66000000000000 -2.0919873528023610E-004 - 123.72000000000000 -2.0024596672986347E-004 - 123.78000000000000 -1.9104900678220546E-004 - 123.84000000000000 -1.8162405557573232E-004 - 123.90000000000001 -1.7198763947445090E-004 - 123.95999999999998 -1.6215664772236635E-004 - 124.01999999999998 -1.5214826092832651E-004 - 124.07999999999998 -1.4197990127038268E-004 - 124.13999999999999 -1.3166921892528570E-004 - 124.19999999999999 -1.2123402111096562E-004 - 124.25999999999999 -1.1069227047103569E-004 - 124.31999999999999 -1.0006201225873213E-004 - 124.38000000000000 -8.9361337623952532E-005 - 124.44000000000000 -7.8608353474754299E-005 - 124.50000000000000 -6.7821108003345877E-005 - 124.56000000000000 -5.7017574120317320E-005 - 124.62000000000000 -4.6215603755512738E-005 - 124.68000000000001 -3.5432862002658647E-005 - 124.73999999999998 -2.4686795512258267E-005 - 124.79999999999998 -1.3994593876029471E-005 - 124.85999999999999 -3.3731402011307747E-006 - 124.91999999999999 7.1610448918693303E-006 - 124.97999999999999 1.7591826933062863E-005 - 125.03999999999999 2.7903492655104331E-005 - 125.09999999999999 3.8080809579747453E-005 - 125.16000000000000 4.8109043091885335E-005 - 125.22000000000000 5.7973986674013308E-005 - 125.28000000000000 6.7662023056429315E-005 - 125.34000000000000 7.7160088156337997E-005 - 125.40000000000001 8.6455772745379510E-005 - 125.45999999999998 9.5537277864417839E-005 - 125.51999999999998 1.0439347871841162E-004 - 125.57999999999998 1.1301393454326642E-004 - 125.63999999999999 1.2138888595607890E-004 - 125.69999999999999 1.2950930429564788E-004 - 125.75999999999999 1.3736685487210159E-004 - 125.81999999999999 1.4495398051846977E-004 - 125.88000000000000 1.5226385334319984E-004 - 125.94000000000000 1.5929039575914101E-004 - 126.00000000000000 1.6602830988918135E-004 - 126.06000000000000 1.7247306812589127E-004 - 126.12000000000000 1.7862094475137251E-004 - 126.18000000000001 1.8446899238092084E-004 - 126.23999999999998 1.9001504581918585E-004 - 126.29999999999998 1.9525773895063349E-004 - 126.35999999999999 2.0019649242186428E-004 - 126.41999999999999 2.0483148120636007E-004 - 126.47999999999999 2.0916368704745620E-004 - 126.53999999999999 2.1319481921219536E-004 - 126.59999999999999 2.1692735168564773E-004 - 126.66000000000000 2.2036446161638113E-004 - 126.72000000000000 2.2351004449844535E-004 - 126.78000000000000 2.2636865582942759E-004 - 126.84000000000000 2.2894551479198843E-004 - 126.90000000000001 2.3124644761989249E-004 - 126.95999999999998 2.3327787946946654E-004 - 127.01999999999998 2.3504680119956916E-004 - 127.07999999999998 2.3656072119189968E-004 - 127.13999999999999 2.3782764651274639E-004 - 127.19999999999999 2.3885606215663983E-004 - 127.25999999999999 2.3965487925352381E-004 - 127.31999999999999 2.4023341844246903E-004 - 127.38000000000000 2.4060136364444464E-004 - 127.44000000000000 2.4076874037238662E-004 - 127.50000000000000 2.4074587575456278E-004 - 127.56000000000000 2.4054337949937994E-004 - 127.62000000000000 2.4017210549138099E-004 - 127.68000000000001 2.3964313012185301E-004 - 127.73999999999998 2.3896768784213105E-004 - 127.79999999999998 2.3815715271109436E-004 - 127.85999999999999 2.3722303824175373E-004 - 127.91999999999999 2.3617693434919805E-004 - 127.97999999999999 2.3503046244400936E-004 - 128.03999999999999 2.3379524246189365E-004 - 128.09999999999999 2.3248289925670317E-004 - 128.16000000000000 2.3110495874834912E-004 - 128.22000000000000 2.2967288052200114E-004 - 128.28000000000000 2.2819798164829954E-004 - 128.34000000000000 2.2669143728940250E-004 - 128.40000000000001 2.2516421769348219E-004 - 128.45999999999998 2.2362706355482997E-004 - 128.51999999999998 2.2209048425414642E-004 - 128.57999999999998 2.2056469232897876E-004 - 128.63999999999999 2.1905961103712204E-004 - 128.69999999999999 2.1758482979697801E-004 - 128.75999999999999 2.1614956239080489E-004 - 128.81999999999999 2.1476268293454159E-004 - 128.88000000000000 2.1343264551048716E-004 - 128.94000000000000 2.1216748659239661E-004 - 129.00000000000000 2.1097480680436160E-004 - 129.06000000000000 2.0986174174667091E-004 - 129.12000000000000 2.0883498462542007E-004 - 129.18000000000001 2.0790071759175491E-004 - 129.23999999999998 2.0706462912235918E-004 - 129.29999999999998 2.0633191362306609E-004 - 129.35999999999999 2.0570725277677080E-004 - 129.41999999999999 2.0519475992013511E-004 - 129.47999999999999 2.0479806068841611E-004 - 129.53999999999999 2.0452022712412935E-004 - 129.59999999999999 2.0436379761325848E-004 - 129.66000000000000 2.0433078281845106E-004 - 129.72000000000000 2.0442265635592418E-004 - 129.78000000000000 2.0464033964026409E-004 - 129.84000000000000 2.0498424634629689E-004 - 129.90000000000001 2.0545422869164384E-004 - 129.95999999999998 2.0604966183081547E-004 - 130.01999999999998 2.0676938829358873E-004 - 130.07999999999998 2.0761173373976980E-004 - 130.13999999999999 2.0857456209395783E-004 - 130.19999999999999 2.0965523149304405E-004 - 130.25999999999999 2.1085062166301222E-004 - 130.31999999999999 2.1215715022865198E-004 - 130.38000000000000 2.1357081752280136E-004 - 130.44000000000000 2.1508714112474642E-004 - 130.50000000000000 2.1670128067765587E-004 - 130.56000000000000 2.1840793406974576E-004 - 130.62000000000000 2.2020145773703521E-004 - 130.68000000000001 2.2207582135711895E-004 - 130.73999999999998 2.2402468575256185E-004 - 130.79999999999998 2.2604137080891305E-004 - 130.85999999999999 2.2811890207222613E-004 - 130.91999999999999 2.3025003684684975E-004 - 130.97999999999999 2.3242729888568273E-004 - 131.03999999999999 2.3464296114855259E-004 - 131.09999999999999 2.3688914442375236E-004 - 131.16000000000000 2.3915777869091013E-004 - 131.22000000000000 2.4144065710578661E-004 - 131.28000000000000 2.4372943677728747E-004 - 131.34000000000000 2.4601573109065116E-004 - 131.40000000000001 2.4829106931110697E-004 - 131.45999999999998 2.5054695525735687E-004 - 131.51999999999998 2.5277485114505758E-004 - 131.57999999999998 2.5496627987536000E-004 - 131.63999999999999 2.5711279227126085E-004 - 131.69999999999999 2.5920596341380499E-004 - 131.75999999999999 2.6123752452824798E-004 - 131.81999999999999 2.6319931621433221E-004 - 131.88000000000000 2.6508324999429512E-004 - 131.94000000000000 2.6688149536741897E-004 - 132.00000000000000 2.6858633178104602E-004 - 132.06000000000000 2.7019031055883870E-004 - 132.12000000000000 2.7168617797071264E-004 - 132.18000000000001 2.7306696674059137E-004 - 132.23999999999998 2.7432593519091848E-004 - 132.29999999999998 2.7545663812386526E-004 - 132.35999999999999 2.7645298738453639E-004 - 132.41999999999999 2.7730919457463093E-004 - 132.47999999999999 2.7801978998314786E-004 - 132.53999999999999 2.7857967611035769E-004 - 132.59999999999999 2.7898413581071307E-004 - 132.66000000000000 2.7922879340057177E-004 - 132.72000000000000 2.7930968070805453E-004 - 132.78000000000000 2.7922319626930934E-004 - 132.84000000000000 2.7896618247403747E-004 - 132.90000000000001 2.7853584423634224E-004 - 132.95999999999998 2.7792981765321304E-004 - 133.01999999999998 2.7714617090926887E-004 - 133.07999999999998 2.7618338961971772E-004 - 133.13999999999999 2.7504037690340638E-004 - 133.19999999999999 2.7371645554931341E-004 - 133.25999999999999 2.7221138426877301E-004 - 133.31999999999999 2.7052529190216393E-004 - 133.38000000000000 2.6865878762639224E-004 - 133.44000000000000 2.6661289094741312E-004 - 133.50000000000000 2.6438894902943084E-004 - 133.56000000000000 2.6198879744137839E-004 - 133.62000000000000 2.5941453911756848E-004 - 133.68000000000001 2.5666879714301223E-004 - 133.73999999999998 2.5375445121942697E-004 - 133.79999999999998 2.5067475663851518E-004 - 133.85999999999999 2.4743329955820314E-004 - 133.91999999999999 2.4403396709899727E-004 - 133.97999999999999 2.4048098111966227E-004 - 134.03999999999999 2.3677883456078345E-004 - 134.09999999999999 2.3293227985472225E-004 - 134.16000000000000 2.2894633843336098E-004 - 134.22000000000000 2.2482626934537710E-004 - 134.28000000000000 2.2057756059163118E-004 - 134.34000000000000 2.1620591454392537E-004 - 134.40000000000001 2.1171719969196237E-004 - 134.45999999999998 2.0711748676330478E-004 - 134.51999999999998 2.0241300571151451E-004 - 134.57999999999998 1.9761012805166858E-004 - 134.63999999999999 1.9271535939409178E-004 - 134.69999999999999 1.8773529890346230E-004 - 134.75999999999999 1.8267668237990933E-004 - 134.81999999999999 1.7754626566109373E-004 - 134.88000000000000 1.7235090326902646E-004 - 134.94000000000000 1.6709745851480051E-004 - 135.00000000000000 1.6179282048152011E-004 - 135.06000000000000 1.5644387881328663E-004 - 135.12000000000000 1.5105748357360319E-004 - 135.18000000000001 1.4564044198909831E-004 - 135.23999999999998 1.4019953071758249E-004 - 135.29999999999998 1.3474143103959295E-004 - 135.35999999999999 1.2927275345116058E-004 - 135.41999999999999 1.2379998902271768E-004 - 135.47999999999999 1.1832952253626829E-004 - 135.53999999999999 1.1286760699247071E-004 - 135.59999999999999 1.0742035994860515E-004 - 135.66000000000000 1.0199377775418630E-004 - 135.72000000000000 9.6593682759541803E-005 - 135.78000000000000 9.1225761965067900E-005 - 135.84000000000000 8.5895529369337160E-005 - 135.90000000000001 8.0608328924878841E-005 - 135.95999999999998 7.5369342089917499E-005 - 136.01999999999998 7.0183561079241135E-005 - 136.07999999999998 6.5055807422048553E-005 - 136.13999999999999 5.9990710071998880E-005 - 136.19999999999999 5.4992691913940834E-005 - 136.25999999999999 5.0065991309578779E-005 - 136.31999999999999 4.5214641963718883E-005 - 136.38000000000000 4.0442465233503946E-005 - 136.44000000000000 3.5753072174372810E-005 - 136.50000000000000 3.1149855353459044E-005 - 136.56000000000000 2.6635991316262146E-005 - 136.62000000000000 2.2214437219429221E-005 - 136.68000000000001 1.7887930009021847E-005 - 136.73999999999998 1.3658990309429611E-005 - 136.79999999999998 9.5299185163742300E-006 - 136.85999999999999 5.5028030406984008E-006 - 136.91999999999999 1.5795266532373258E-006 - 136.97999999999999 -2.2382363967679136E-006 - 137.03999999999999 -5.9490091164665480E-006 - 137.09999999999999 -9.5515062751883987E-006 - 137.16000000000000 -1.3044631053484513E-005 - 137.22000000000000 -1.6427462263164088E-005 - 137.28000000000000 -1.9699259748659260E-005 - 137.34000000000000 -2.2859447507015056E-005 - 137.40000000000001 -2.5907608476717899E-005 - 137.45999999999998 -2.8843484773184768E-005 - 137.51999999999998 -3.1666977212260694E-005 - 137.57999999999998 -3.4378124491624517E-005 - 137.63999999999999 -3.6977116783408737E-005 - 137.69999999999999 -3.9464287996946346E-005 - 137.75999999999999 -4.1840100103501740E-005 - 137.81999999999999 -4.4105156071006324E-005 - 137.88000000000000 -4.6260189567969362E-005 - 137.94000000000000 -4.8306055635214820E-005 - 138.00000000000000 -5.0243736099505378E-005 - 138.06000000000000 -5.2074329469060632E-005 - 138.12000000000000 -5.3799049376083610E-005 - 138.18000000000001 -5.5419208840821887E-005 - 138.23999999999998 -5.6936227141413885E-005 - 138.29999999999998 -5.8351617494859266E-005 - 138.35999999999999 -5.9666976425412659E-005 - 138.41999999999999 -6.0883979505662479E-005 - 138.47999999999999 -6.2004375012787708E-005 - 138.53999999999999 -6.3029973804970644E-005 - 138.59999999999999 -6.3962632473627231E-005 - 138.66000000000000 -6.4804262499457838E-005 - 138.72000000000000 -6.5556807349915607E-005 - 138.78000000000000 -6.6222256335566967E-005 - 138.84000000000000 -6.6802606171355517E-005 - 138.90000000000001 -6.7299875262874704E-005 - 138.95999999999998 -6.7716097733764739E-005 - 139.01999999999998 -6.8053323086534977E-005 - 139.07999999999998 -6.8313583064080871E-005 - 139.13999999999999 -6.8498933223071784E-005 - 139.19999999999999 -6.8611410573717695E-005 - 139.25999999999999 -6.8653051654360376E-005 - 139.31999999999999 -6.8625903260748926E-005 - 139.38000000000000 -6.8531981661761344E-005 - 139.44000000000000 -6.8373315640487574E-005 - 139.50000000000000 -6.8151915740529459E-005 - 139.56000000000000 -6.7869789169084353E-005 - 139.62000000000000 -6.7528918745993679E-005 - 139.68000000000001 -6.7131285143390702E-005 - 139.73999999999998 -6.6678844352918327E-005 - 139.79999999999998 -6.6173552369718126E-005 - 139.85999999999999 -6.5617321893327957E-005 - 139.91999999999999 -6.5012046680664224E-005 - 139.97999999999999 -6.4359589453336156E-005 - 140.03999999999999 -6.3661789841290082E-005 - 140.09999999999999 -6.2920423821674371E-005 - 140.16000000000000 -6.2137236779516870E-005 - 140.22000000000000 -6.1313919861743837E-005 - 140.28000000000000 -6.0452106851313858E-005 - 140.34000000000000 -5.9553375938524387E-005 - 140.40000000000001 -5.8619252203088236E-005 - 140.45999999999998 -5.7651190951188253E-005 - 140.51999999999998 -5.6650591169128293E-005 - 140.57999999999998 -5.5618795420449899E-005 - 140.63999999999999 -5.4557086432240061E-005 - 140.69999999999999 -5.3466695364029987E-005 - 140.75999999999999 -5.2348810154889492E-005 - 140.81999999999999 -5.1204573343125207E-005 - 140.88000000000000 -5.0035091926150236E-005 - 140.94000000000000 -4.8841449780753585E-005 - 141.00000000000000 -4.7624695203173407E-005 - 141.06000000000000 -4.6385862621169527E-005 - 141.12000000000000 -4.5125975279065704E-005 - 141.18000000000001 -4.3846040069656638E-005 - 141.23999999999998 -4.2547056624596015E-005 - 141.29999999999998 -4.1230021665998636E-005 - 141.35999999999999 -3.9895916059341172E-005 - 141.41999999999999 -3.8545718728999843E-005 - 141.47999999999999 -3.7180395862282441E-005 - 141.53999999999999 -3.5800903499687192E-005 - 141.59999999999999 -3.4408183203097312E-005 - 141.66000000000000 -3.3003154443241970E-005 - 141.72000000000000 -3.1586724921465072E-005 - 141.78000000000000 -3.0159776475049365E-005 - 141.84000000000000 -2.8723176511862556E-005 - 141.90000000000001 -2.7277766409302023E-005 - 141.95999999999998 -2.5824372846263783E-005 - 142.01999999999998 -2.4363806682513791E-005 - 142.07999999999998 -2.2896872189128923E-005 - 142.13999999999999 -2.1424367014636340E-005 - 142.19999999999999 -1.9947093776467542E-005 - 142.25999999999999 -1.8465860238878889E-005 - 142.31999999999999 -1.6981491782043899E-005 - 142.38000000000000 -1.5494837428248803E-005 - 142.44000000000000 -1.4006775916537424E-005 - 142.50000000000000 -1.2518218281353497E-005 - 142.56000000000000 -1.1030115820056321E-005 - 142.62000000000000 -9.5434607565761456E-006 - 142.68000000000001 -8.0592854095858918E-006 - 142.73999999999998 -6.5786663893641354E-006 - 142.79999999999998 -5.1027191288074598E-006 - 142.85999999999999 -3.6325958791979899E-006 - 142.91999999999999 -2.1694809314367295E-006 - 142.97999999999999 -7.1458587424329127E-007 - 143.03999999999999 7.3085734563129961E-007 - 143.09999999999999 2.1656007452884619E-006 - 143.16000000000000 3.5883871751870884E-006 - 143.22000000000000 4.9979550950227772E-006 - 143.28000000000000 6.3930434208872983E-006 - 143.34000000000000 7.7723974893265363E-006 - 143.40000000000001 9.1347683590439698E-006 - 143.45999999999998 1.0478916208523612E-005 - 143.51999999999998 1.1803610339182071E-005 - 143.57999999999998 1.3107632783024431E-005 - 143.63999999999999 1.4389772899461782E-005 - 143.69999999999999 1.5648828562694275E-005 - 143.75999999999999 1.6883605346867411E-005 - 143.81999999999999 1.8092915399546521E-005 - 143.88000000000000 1.9275577901730695E-005 - 143.94000000000000 2.0430418422927690E-005 - 144.00000000000000 2.1556266935828274E-005 - 144.06000000000000 2.2651966356985860E-005 - 144.12000000000000 2.3716370859921509E-005 - 144.18000000000001 2.4748354591681041E-005 - 144.23999999999998 2.5746817007612816E-005 - 144.29999999999998 2.6710684692453925E-005 - 144.35999999999999 2.7638928575330138E-005 - 144.41999999999999 2.8530563919187011E-005 - 144.47999999999999 2.9384664807962504E-005 - 144.53999999999999 3.0200377048403759E-005 - 144.59999999999999 3.0976918275626460E-005 - 144.66000000000000 3.1713595983237953E-005 - 144.72000000000000 3.2409817317902743E-005 - 144.78000000000000 3.3065086470591215E-005 - 144.84000000000000 3.3679029075382714E-005 - 144.90000000000001 3.4251382329507573E-005 - 144.95999999999998 3.4782009897104708E-005 - 145.01999999999998 3.5270902540598890E-005 - 145.07999999999998 3.5718180930914144E-005 - 145.13999999999999 3.6124101770908088E-005 - 145.19999999999999 3.6489050089231532E-005 - 145.25999999999999 3.6813557323540353E-005 - 145.31999999999999 3.7098271697698495E-005 - 145.38000000000000 3.7343980550063425E-005 - 145.44000000000000 3.7551606550512175E-005 - 145.50000000000000 3.7722194021220784E-005 - 145.56000000000000 3.7856919173652107E-005 - 145.62000000000000 3.7957088689972754E-005 - 145.68000000000001 3.8024132958251539E-005 - 145.73999999999998 3.8059616819594299E-005 - 145.79999999999998 3.8065229271280918E-005 - 145.85999999999999 3.8042795516686324E-005 - 145.91999999999999 3.7994268882578606E-005 - 145.97999999999999 3.7921746682774596E-005 - 146.03999999999999 3.7827468125668236E-005 - 146.09999999999999 3.7713814455521217E-005 - 146.16000000000000 3.7583320288277687E-005 - 146.22000000000000 3.7438669328476395E-005 - 146.28000000000000 3.7282698277585778E-005 - 146.34000000000000 3.7118406402006631E-005 - 146.40000000000001 3.6948941283198046E-005 - 146.45999999999998 3.6777609767854892E-005 - 146.51999999999998 3.6607873332478353E-005 - 146.57999999999998 3.6443334718189007E-005 - 146.63999999999999 3.6287752351485765E-005 - 146.69999999999999 3.6145008179651069E-005 - 146.75999999999999 3.6019118329133555E-005 - 146.81999999999999 3.5914217387022475E-005 - 146.88000000000000 3.5834544170234592E-005 - 146.94000000000000 3.5784442600534539E-005 - 147.00000000000000 3.5768339531193898E-005 - 147.06000000000000 3.5790742126812526E-005 - 147.12000000000000 3.5856231083629679E-005 - 147.18000000000001 3.5969444053810026E-005 - 147.23999999999998 3.6135073703093486E-005 - 147.29999999999998 3.6357858003391416E-005 - 147.35999999999999 3.6642584497203017E-005 - 147.41999999999999 3.6994075659174101E-005 - 147.47999999999999 3.7417187421426602E-005 - 147.53999999999999 3.7916806251724469E-005 - 147.59999999999999 3.8497845457831119E-005 - 147.66000000000000 3.9165247578200652E-005 - 147.72000000000000 3.9923968865687349E-005 - 147.78000000000000 4.0778983350207795E-005 - 147.84000000000000 4.1735265793492609E-005 - 147.90000000000001 4.2797796909516726E-005 - 147.95999999999998 4.3971536967167450E-005 - 148.01999999999998 4.5261432235865642E-005 - 148.07999999999998 4.6672382635931562E-005 - 148.13999999999999 4.8209243681618116E-005 - 148.19999999999999 4.9876790779380747E-005 - 148.25999999999999 5.1679721991558577E-005 - 148.31999999999999 5.3622643110564412E-005 - 148.38000000000000 5.5710017947836434E-005 - 148.44000000000000 5.7946184617199868E-005 - 148.50000000000000 6.0335323802663973E-005 - 148.56000000000000 6.2881434676596512E-005 - 148.62000000000000 6.5588346599169934E-005 - 148.68000000000001 6.8459662975591407E-005 - 148.73999999999998 7.1498794301111970E-005 - 148.79999999999998 7.4708907977732053E-005 - 148.85999999999999 7.8092940568524213E-005 - 148.91999999999999 8.1653561733176019E-005 - 148.97999999999999 8.5393189714766439E-005 - 149.03999999999999 8.9313982227372317E-005 - 149.09999999999999 9.3417797568215536E-005 - 149.16000000000000 9.7706205941704678E-005 - 149.22000000000000 1.0218048793130558E-004 - 149.28000000000000 1.0684158984227622E-004 - 149.34000000000000 1.1169015684263795E-004 - 149.40000000000001 1.1672647717881768E-004 - 149.45999999999998 1.2195049491745187E-004 - 149.51999999999998 1.2736179881755718E-004 - 149.57999999999998 1.3295959892447559E-004 - 149.63999999999999 1.3874272043107731E-004 - 149.69999999999999 1.4470959089428844E-004 - 149.75999999999999 1.5085819733601531E-004 - 149.81999999999999 1.5718613102323509E-004 - 149.88000000000000 1.6369053871286677E-004 - 149.94000000000000 1.7036809916442294E-004 - 150.00000000000000 1.7721504650769154E-004 - 150.06000000000000 1.8422716719400988E-004 - 150.12000000000000 1.9139978558772167E-004 - 150.18000000000001 1.9872770690816251E-004 - 150.23999999999998 2.0620530298462995E-004 - 150.29999999999998 2.1382643276476816E-004 - 150.35999999999999 2.2158451834324990E-004 - 150.41999999999999 2.2947250524532617E-004 - 150.47999999999999 2.3748280915737339E-004 - 150.53999999999999 2.4560746501128150E-004 - 150.59999999999999 2.5383798884533670E-004 - 150.66000000000000 2.6216543229786067E-004 - 150.72000000000000 2.7058043774271109E-004 - 150.78000000000000 2.7907323753205058E-004 - 150.84000000000000 2.8763357630557051E-004 - 150.90000000000001 2.9625085633051259E-004 - 150.95999999999998 3.0491401509224103E-004 - 151.01999999999998 3.1361164133491247E-004 - 151.07999999999998 3.2233192992249776E-004 - 151.13999999999999 3.3106275089511152E-004 - 151.19999999999999 3.3979163234626074E-004 - 151.25999999999999 3.4850573768135284E-004 - 151.31999999999999 3.5719192479234966E-004 - 151.38000000000000 3.6583680355849299E-004 - 151.44000000000000 3.7442671938611467E-004 - 151.50000000000000 3.8294773047057185E-004 - 151.56000000000000 3.9138566855088968E-004 - 151.62000000000000 3.9972622897799427E-004 - 151.68000000000001 4.0795488301268167E-004 - 151.73999999999998 4.1605694612596830E-004 - 151.79999999999998 4.2401765115178923E-004 - 151.85999999999999 4.3182218864639983E-004 - 151.91999999999999 4.3945561175552639E-004 - 151.97999999999999 4.4690301493150331E-004 - 152.03999999999999 4.5414949954973702E-004 - 152.09999999999999 4.6118027418457646E-004 - 152.16000000000000 4.6798050178910539E-004 - 152.22000000000000 4.7453564980063007E-004 - 152.28000000000000 4.8083129814915020E-004 - 152.34000000000000 4.8685315444263553E-004 - 152.40000000000001 4.9258734200388545E-004 - 152.45999999999998 4.9802013402041473E-004 - 152.51999999999998 5.0313823876496058E-004 - 152.57999999999998 5.0792858318876165E-004 - 152.63999999999999 5.1237868121585149E-004 - 152.69999999999999 5.1647634238637867E-004 - 152.75999999999999 5.2020985346885472E-004 - 152.81999999999999 5.2356795458829563E-004 - 152.88000000000000 5.2654003373465562E-004 - 152.94000000000000 5.2911593318692642E-004 - 153.00000000000000 5.3128613070722028E-004 - 153.06000000000000 5.3304159162972833E-004 - 153.12000000000000 5.3437408799334243E-004 - 153.17999999999998 5.3527589588674965E-004 - 153.23999999999998 5.3574001394531630E-004 - 153.29999999999998 5.3576023688206749E-004 - 153.35999999999999 5.3533102627363984E-004 - 153.41999999999999 5.3444756872327839E-004 - 153.47999999999999 5.3310580081758669E-004 - 153.53999999999999 5.3130255535920490E-004 - 153.59999999999999 5.2903541325720988E-004 - 153.66000000000000 5.2630275860048959E-004 - 153.72000000000000 5.2310382729558926E-004 - 153.78000000000000 5.1943869106434919E-004 - 153.84000000000000 5.1530829862102929E-004 - 153.90000000000001 5.1071439222255153E-004 - 153.95999999999998 5.0565961242709438E-004 - 154.01999999999998 5.0014744008945408E-004 - 154.07999999999998 4.9418221889520927E-004 - 154.13999999999999 4.8776911619654640E-004 - 154.19999999999999 4.8091410433500546E-004 - 154.25999999999999 4.7362402134120860E-004 - 154.31999999999999 4.6590648582535801E-004 - 154.38000000000000 4.5776990342963049E-004 - 154.44000000000000 4.4922347453747220E-004 - 154.50000000000000 4.4027714064250571E-004 - 154.56000000000000 4.3094153283369915E-004 - 154.62000000000000 4.2122807826022426E-004 - 154.67999999999998 4.1114881788841586E-004 - 154.73999999999998 4.0071646628372112E-004 - 154.79999999999998 3.8994437025130816E-004 - 154.85999999999999 3.7884646537920155E-004 - 154.91999999999999 3.6743729880513740E-004 - 154.97999999999999 3.5573186270603766E-004 - 155.03999999999999 3.4374570418990632E-004 - 155.09999999999999 3.3149480007384625E-004 - 155.16000000000000 3.1899556899403557E-004 - 155.22000000000000 3.0626472315135249E-004 - 155.28000000000000 2.9331939846253928E-004 - 155.34000000000000 2.8017698124031809E-004 - 155.40000000000001 2.6685509107802347E-004 - 155.45999999999998 2.5337154369602409E-004 - 155.51999999999998 2.3974429764276841E-004 - 155.57999999999998 2.2599145296431188E-004 - 155.63999999999999 2.1213114816673843E-004 - 155.69999999999999 1.9818152359178843E-004 - 155.75999999999999 1.8416075648212808E-004 - 155.81999999999999 1.7008689433269924E-004 - 155.88000000000000 1.5597789544743421E-004 - 155.94000000000000 1.4185157061932178E-004 - 156.00000000000000 1.2772553475817459E-004 - 156.06000000000000 1.1361717528643223E-004 - 156.12000000000000 9.9543606022959279E-005 - 156.17999999999998 8.5521631477251833E-005 - 156.23999999999998 7.1567699200957916E-005 - 156.29999999999998 5.7697880303804339E-005 - 156.35999999999999 4.3927819692934190E-005 - 156.41999999999999 3.0272707606930350E-005 - 156.47999999999999 1.6747246611165964E-005 - 156.53999999999999 3.3656089292683291E-006 - 156.59999999999999 -9.8585747276613018E-006 - 156.66000000000000 -2.2912269984764807E-005 - 156.72000000000000 -3.5783031916735015E-005 - 156.78000000000000 -4.8459049900519946E-005 - 156.84000000000000 -6.0929156669630705E-005 - 156.90000000000001 -7.3182846202736007E-005 - 156.95999999999998 -8.5210310124386762E-005 - 157.01999999999998 -9.7002417489305785E-005 - 157.07999999999998 -1.0855072580973649E-004 - 157.13999999999999 -1.1984752203916962E-004 - 157.19999999999999 -1.3088578025079270E-004 - 157.25999999999999 -1.4165919946360842E-004 - 157.31999999999999 -1.5216216960239364E-004 - 157.38000000000000 -1.6238979514360510E-004 - 157.44000000000000 -1.7233788749362346E-004 - 157.50000000000000 -1.8200293249667402E-004 - 157.56000000000000 -1.9138210565544509E-004 - 157.62000000000000 -2.0047326800798105E-004 - 157.67999999999998 -2.0927491753569842E-004 - 157.73999999999998 -2.1778621378053451E-004 - 157.79999999999998 -2.2600695728798849E-004 - 157.85999999999999 -2.3393757269413569E-004 - 157.91999999999999 -2.4157905225248900E-004 - 157.97999999999999 -2.4893301975228071E-004 - 158.03999999999999 -2.5600164709976549E-004 - 158.09999999999999 -2.6278763558326983E-004 - 158.16000000000000 -2.6929426870075441E-004 - 158.22000000000000 -2.7552530537515332E-004 - 158.28000000000000 -2.8148499166847469E-004 - 158.34000000000000 -2.8717805564102295E-004 - 158.40000000000001 -2.9260963009902628E-004 - 158.45999999999998 -2.9778524926402848E-004 - 158.51999999999998 -3.0271087276791955E-004 - 158.57999999999998 -3.0739275586067437E-004 - 158.63999999999999 -3.1183756721308708E-004 - 158.69999999999999 -3.1605217230039161E-004 - 158.75999999999999 -3.2004373625238046E-004 - 158.81999999999999 -3.2381960674481182E-004 - 158.88000000000000 -3.2738740827678646E-004 - 158.94000000000000 -3.3075486392977814E-004 - 159.00000000000000 -3.3392985416690730E-004 - 159.06000000000000 -3.3692031111096408E-004 - 159.12000000000000 -3.3973425550800051E-004 - 159.17999999999998 -3.4237975783673046E-004 - 159.23999999999998 -3.4486484934497977E-004 - 159.29999999999998 -3.4719755619546982E-004 - 159.35999999999999 -3.4938590086164382E-004 - 159.41999999999999 -3.5143774187642755E-004 - 159.47999999999999 -3.5336090689169444E-004 - 159.53999999999999 -3.5516303052626568E-004 - 159.59999999999999 -3.5685166606975880E-004 - 159.66000000000000 -3.5843414454565510E-004 - 159.72000000000000 -3.5991767195547202E-004 - 159.78000000000000 -3.6130924135845235E-004 - 159.84000000000000 -3.6261558841882505E-004 - 159.90000000000001 -3.6384323960705428E-004 - 159.95999999999998 -3.6499846807007695E-004 - 160.01999999999998 -3.6608729344408887E-004 - 160.07999999999998 -3.6711540730118659E-004 - 160.13999999999999 -3.6808820677425752E-004 - 160.19999999999999 -3.6901081043550632E-004 - 160.25999999999999 -3.6988794827784460E-004 - 160.31999999999999 -3.7072402262803905E-004 - 160.38000000000000 -3.7152307942539612E-004 - 160.44000000000000 -3.7228873965774534E-004 - 160.50000000000000 -3.7302430523037224E-004 - 160.56000000000000 -3.7373257804465380E-004 - 160.62000000000000 -3.7441599846134102E-004 - 160.67999999999998 -3.7507658548707078E-004 - 160.73999999999998 -3.7571594477747629E-004 - 160.79999999999998 -3.7633519179301750E-004 - 160.85999999999999 -3.7693508368466137E-004 - 160.91999999999999 -3.7751592055331558E-004 - 160.97999999999999 -3.7807761715849563E-004 - 161.03999999999999 -3.7861966012687928E-004 - 161.09999999999999 -3.7914112300198706E-004 - 161.16000000000000 -3.7964072237265474E-004 - 161.22000000000000 -3.8011678902330948E-004 - 161.28000000000000 -3.8056731783144416E-004 - 161.34000000000000 -3.8098996143169422E-004 - 161.40000000000001 -3.8138200682868864E-004 - 161.45999999999998 -3.8174048621211223E-004 - 161.51999999999998 -3.8206208063136591E-004 - 161.57999999999998 -3.8234322841578807E-004 - 161.63999999999999 -3.8258003757198631E-004 - 161.69999999999999 -3.8276841115748340E-004 - 161.75999999999999 -3.8290396282024484E-004 - 161.81999999999999 -3.8298210737104616E-004 - 161.88000000000000 -3.8299807366397076E-004 - 161.94000000000000 -3.8294677318799356E-004 - 162.00000000000000 -3.8282305591355906E-004 - 162.06000000000000 -3.8262153949230893E-004 - 162.12000000000000 -3.8233672251784340E-004 - 162.17999999999998 -3.8196289133583848E-004 - 162.23999999999998 -3.8149430073809352E-004 - 162.29999999999998 -3.8092509425711871E-004 - 162.35999999999999 -3.8024934000342004E-004 - 162.41999999999999 -3.7946107686381934E-004 - 162.47999999999999 -3.7855431900675972E-004 - 162.53999999999999 -3.7752315767574155E-004 - 162.59999999999999 -3.7636164239412707E-004 - 162.66000000000000 -3.7506397952029498E-004 - 162.72000000000000 -3.7362441518706227E-004 - 162.78000000000000 -3.7203739157574175E-004 - 162.84000000000000 -3.7029746085453851E-004 - 162.90000000000001 -3.6839936197054023E-004 - 162.95999999999998 -3.6633812058728052E-004 - 163.01999999999998 -3.6410893576924348E-004 - 163.07999999999998 -3.6170723799135661E-004 - 163.13999999999999 -3.5912881663979432E-004 - 163.19999999999999 -3.5636968807262919E-004 - 163.25999999999999 -3.5342622776122405E-004 - 163.31999999999999 -3.5029508909204335E-004 - 163.38000000000000 -3.4697332349309661E-004 - 163.44000000000000 -3.4345828567431102E-004 - 163.50000000000000 -3.3974774064850222E-004 - 163.56000000000000 -3.3583978025171165E-004 - 163.62000000000000 -3.3173293650861426E-004 - 163.67999999999998 -3.2742608522191071E-004 - 163.73999999999998 -3.2291851279685804E-004 - 163.79999999999998 -3.1820991672193904E-004 - 163.85999999999999 -3.1330045952794805E-004 - 163.91999999999999 -3.0819066546259271E-004 - 163.97999999999999 -3.0288154431222107E-004 - 164.03999999999999 -2.9737449376577061E-004 - 164.09999999999999 -2.9167134960806143E-004 - 164.16000000000000 -2.8577447170629390E-004 - 164.22000000000000 -2.7968658382856787E-004 - 164.28000000000000 -2.7341086881793760E-004 - 164.34000000000000 -2.6695099408041278E-004 - 164.40000000000001 -2.6031103608868699E-004 - 164.45999999999998 -2.5349553649000629E-004 - 164.51999999999998 -2.4650946557908929E-004 - 164.57999999999998 -2.3935822974405723E-004 - 164.63999999999999 -2.3204761563542438E-004 - 164.69999999999999 -2.2458388297096643E-004 - 164.75999999999999 -2.1697363501530854E-004 - 164.81999999999999 -2.0922387801754232E-004 - 164.88000000000000 -2.0134194436169587E-004 - 164.94000000000000 -1.9333555189373554E-004 - 165.00000000000000 -1.8521269745229134E-004 - 165.06000000000000 -1.7698171077780241E-004 - 165.12000000000000 -1.6865118897833723E-004 - 165.17999999999998 -1.6022997084163756E-004 - 165.23999999999998 -1.5172711456429343E-004 - 165.29999999999998 -1.4315192061069689E-004 - 165.35999999999999 -1.3451385604102897E-004 - 165.41999999999999 -1.2582251937493563E-004 - 165.47999999999999 -1.1708767967846154E-004 - 165.53999999999999 -1.0831918261260533E-004 - 165.59999999999999 -9.9526992081411524E-005 - 165.66000000000000 -9.0721121855924806E-005 - 165.72000000000000 -8.1911629169887395E-005 - 165.78000000000000 -7.3108587594312432E-005 - 165.84000000000000 -6.4322073456488476E-005 - 165.90000000000001 -5.5562150588529582E-005 - 165.95999999999998 -4.6838826303695817E-005 - 166.01999999999998 -3.8162045945310997E-005 - 166.07999999999998 -2.9541668438463499E-005 - 166.13999999999999 -2.0987443492437514E-005 - 166.19999999999999 -1.2508990531870386E-005 - 166.25999999999999 -4.1157798527043899E-006 - 166.31999999999999 4.1828954475631544E-006 - 166.38000000000000 1.2377945145797555E-005 - 166.44000000000000 2.0460495273785509E-005 - 166.50000000000000 2.8421914088658428E-005 - 166.56000000000000 3.6253836130344683E-005 - 166.62000000000000 4.3948179400066397E-005 - 166.67999999999998 5.1497171855538960E-005 - 166.73999999999998 5.8893358478919367E-005 - 166.79999999999998 6.6129626248771797E-005 - 166.85999999999999 7.3199225310506419E-005 - 166.91999999999999 8.0095781464986293E-005 - 166.97999999999999 8.6813290599262600E-005 - 167.03999999999999 9.3346150988139333E-005 - 167.09999999999999 9.9689161306252590E-005 - 167.16000000000000 1.0583753097980300E-004 - 167.22000000000000 1.1178688484770793E-004 - 167.28000000000000 1.1753327193244690E-004 - 167.34000000000000 1.2307314132781560E-004 - 167.40000000000001 1.2840337386300186E-004 - 167.45999999999998 1.3352125829257968E-004 - 167.51999999999998 1.3842451772962987E-004 - 167.57999999999998 1.4311125319788938E-004 - 167.63999999999999 1.4757999564231971E-004 - 167.69999999999999 1.5182967985326106E-004 - 167.75999999999999 1.5585961287867535E-004 - 167.81999999999999 1.5966949818429813E-004 - 167.88000000000000 1.6325941581241951E-004 - 167.94000000000000 1.6662983180002416E-004 - 168.00000000000000 1.6978157128714027E-004 - 168.06000000000000 1.7271579175062374E-004 - 168.12000000000000 1.7543402078916360E-004 - 168.17999999999998 1.7793810160168604E-004 - 168.23999999999998 1.8023022221329104E-004 - 168.29999999999998 1.8231285789296097E-004 - 168.35999999999999 1.8418878378564948E-004 - 168.41999999999999 1.8586108405193463E-004 - 168.47999999999999 1.8733310905032761E-004 - 168.53999999999999 1.8860846450279820E-004 - 168.59999999999999 1.8969100146973419E-004 - 168.66000000000000 1.9058481746214248E-004 - 168.72000000000000 1.9129420871095838E-004 - 168.78000000000000 1.9182367629550902E-004 - 168.84000000000000 1.9217791535913528E-004 - 168.90000000000001 1.9236176768412696E-004 - 168.95999999999998 1.9238022770475988E-004 - 169.01999999999998 1.9223844923615667E-004 - 169.07999999999998 1.9194165714585870E-004 - 169.13999999999999 1.9149518952053048E-004 - 169.19999999999999 1.9090443943620708E-004 - 169.25999999999999 1.9017485968950910E-004 - 169.31999999999999 1.8931195799852762E-004 - 169.38000000000000 1.8832125275815379E-004 - 169.44000000000000 1.8720825735758044E-004 - 169.50000000000000 1.8597846499396518E-004 - 169.56000000000000 1.8463737792021704E-004 - 169.62000000000000 1.8319042859695151E-004 - 169.67999999999998 1.8164301839422790E-004 - 169.73999999999998 1.8000049008801662E-004 - 169.79999999999998 1.7826813730311477E-004 - 169.85999999999999 1.7645115747133862E-004 - 169.91999999999999 1.7455468895372385E-004 - 169.97999999999999 1.7258380797546943E-004 - 170.03999999999999 1.7054346906051428E-004 - 170.09999999999999 1.6843858899423593E-004 - 170.16000000000000 1.6627396712346696E-004 - 170.22000000000000 1.6405432999247926E-004 - 170.28000000000000 1.6178428848881858E-004 - 170.34000000000000 1.5946836485303991E-004 - 170.40000000000001 1.5711100897189114E-004 - 170.45999999999998 1.5471653156454789E-004 - 170.51999999999998 1.5228915196537790E-004 - 170.57999999999998 1.4983297138716130E-004 - 170.63999999999999 1.4735195559925014E-004 - 170.69999999999999 1.4484994641426131E-004 - 170.75999999999999 1.4233066895285329E-004 - 170.81999999999999 1.3979770102506205E-004 - 170.88000000000000 1.3725449099548213E-004 - 170.94000000000000 1.3470431270025239E-004 - 171.00000000000000 1.3215033239127202E-004 - 171.06000000000000 1.2959555384419174E-004 - 171.12000000000000 1.2704283513067648E-004 - 171.17999999999998 1.2449489049736476E-004 - 171.23999999999998 1.2195429399867750E-004 - 171.29999999999998 1.1942350664949877E-004 - 171.35999999999999 1.1690481791410709E-004 - 171.41999999999999 1.1440041935650256E-004 - 171.47999999999999 1.1191237439756236E-004 - 171.53999999999999 1.0944262507974616E-004 - 171.59999999999999 1.0699300208666875E-004 - 171.66000000000000 1.0456521353786865E-004 - 171.72000000000000 1.0216087509499404E-004 - 171.78000000000000 9.9781484972233270E-005 - 171.84000000000000 9.7428423077487015E-005 - 171.90000000000001 9.5102973726174397E-005 - 171.95999999999998 9.2806302652294548E-005 - 172.01999999999998 9.0539464271885593E-005 - 172.07999999999998 8.8303383075884204E-005 - 172.13999999999999 8.6098874109012577E-005 - 172.19999999999999 8.3926615027674794E-005 - 172.25999999999999 8.1787161940948696E-005 - 172.31999999999999 7.9680929531661829E-005 - 172.38000000000000 7.7608190521726331E-005 - 172.44000000000000 7.5569085262736915E-005 - 172.50000000000000 7.3563601842929836E-005 - 172.56000000000000 7.1591608240977766E-005 - 172.62000000000000 6.9652799277146709E-005 - 172.67999999999998 6.7746755890289243E-005 - 172.73999999999998 6.5872903567016776E-005 - 172.79999999999998 6.4030535099876784E-005 - 172.85999999999999 6.2218812276926269E-005 - 172.91999999999999 6.0436757086241872E-005 - 172.97999999999999 5.8683268534662531E-005 - 173.03999999999999 5.6957122293146073E-005 - 173.09999999999999 5.5256972476418573E-005 - 173.16000000000000 5.3581359008622256E-005 - 173.22000000000000 5.1928708533193679E-005 - 173.28000000000000 5.0297334651099424E-005 - 173.34000000000000 4.8685443094843367E-005 - 173.40000000000001 4.7091140363811096E-005 - 173.45999999999998 4.5512417521561128E-005 - 173.51999999999998 4.3947178504043406E-005 - 173.57999999999998 4.2393215634293501E-005 - 173.63999999999999 4.0848229690009945E-005 - 173.69999999999999 3.9309827310703450E-005 - 173.75999999999999 3.7775520065436689E-005 - 173.81999999999999 3.6242727719336156E-005 - 173.88000000000000 3.4708790027491818E-005 - 173.94000000000000 3.3170960748685045E-005 - 174.00000000000000 3.1626423232682209E-005 - 174.06000000000000 3.0072285839952449E-005 - 174.12000000000000 2.8505602543588502E-005 - 174.17999999999998 2.6923371021468041E-005 - 174.23999999999998 2.5322553818278258E-005 - 174.29999999999998 2.3700078118228771E-005 - 174.35999999999999 2.2052857938892013E-005 - 174.41999999999999 2.0377800630207844E-005 - 174.47999999999999 1.8671819304712410E-005 - 174.53999999999999 1.6931853142096280E-005 - 174.59999999999999 1.5154870335426684E-005 - 174.66000000000000 1.3337889168607747E-005 - 174.72000000000000 1.1477990171880995E-005 - 174.78000000000000 9.5723223126979503E-006 - 174.84000000000000 7.6181156180484864E-006 - 174.90000000000001 5.6126923424196388E-006 - 174.95999999999998 3.5534742747303957E-006 - 175.01999999999998 1.4379915959575103E-006 - 175.07999999999998 -7.3611322241798358E-007 - 175.13999999999999 -2.9710765359056056E-006 - 175.19999999999999 -5.2690115548784308E-006 - 175.25999999999999 -7.6318990633684587E-006 - 175.31999999999999 -1.0061584617702936E-005 - 175.38000000000000 -1.2559772604927285E-005 - 175.44000000000000 -1.5128019059667007E-005 - 175.50000000000000 -1.7767726118540405E-005 - 175.56000000000000 -2.0480132957465195E-005 - 175.62000000000000 -2.3266310983020267E-005 - 175.67999999999998 -2.6127150451650151E-005 - 175.73999999999998 -2.9063354478525779E-005 - 175.79999999999998 -3.2075426038508549E-005 - 175.85999999999999 -3.5163660851516470E-005 - 175.91999999999999 -3.8328129795723014E-005 - 175.97999999999999 -4.1568677755636782E-005 - 176.03999999999999 -4.4884915221440192E-005 - 176.09999999999999 -4.8276202267864096E-005 - 176.16000000000000 -5.1741644220831172E-005 - 176.22000000000000 -5.5280089662990180E-005 - 176.28000000000000 -5.8890127323293896E-005 - 176.34000000000000 -6.2570081669091133E-005 - 176.40000000000001 -6.6318011463417073E-005 - 176.45999999999998 -7.0131711194448869E-005 - 176.51999999999998 -7.4008706177066801E-005 - 176.57999999999998 -7.7946277014724082E-005 - 176.63999999999999 -8.1941431824683914E-005 - 176.69999999999999 -8.5990944052978459E-005 - 176.75999999999999 -9.0091329750480951E-005 - 176.81999999999999 -9.4238862682189656E-005 - 176.88000000000000 -9.8429575612266458E-005 - 176.94000000000000 -1.0265927509017200E-004 - 177.00000000000000 -1.0692351994535288E-004 - 177.06000000000000 -1.1121765391242662E-004 - 177.12000000000000 -1.1553676865503318E-004 - 177.17999999999998 -1.1987575865214580E-004 - 177.23999999999998 -1.2422927210433348E-004 - 177.29999999999998 -1.2859173938739140E-004 - 177.35999999999999 -1.3295738092300978E-004 - 177.41999999999999 -1.3732018704474172E-004 - 177.47999999999999 -1.4167394868793841E-004 - 177.53999999999999 -1.4601222634146461E-004 - 177.59999999999999 -1.5032841200403180E-004 - 177.66000000000000 -1.5461570085193715E-004 - 177.72000000000000 -1.5886709691261355E-004 - 177.78000000000000 -1.6307542914780244E-004 - 177.84000000000000 -1.6723339842640981E-004 - 177.90000000000001 -1.7133355076006453E-004 - 177.95999999999998 -1.7536828922732161E-004 - 178.01999999999998 -1.7932991354771877E-004 - 178.07999999999998 -1.8321063132345462E-004 - 178.13999999999999 -1.8700257916391287E-004 - 178.19999999999999 -1.9069783452521147E-004 - 178.25999999999999 -1.9428840900887460E-004 - 178.31999999999999 -1.9776633010939256E-004 - 178.38000000000000 -2.0112356208314312E-004 - 178.44000000000000 -2.0435210925505331E-004 - 178.50000000000000 -2.0744397324578583E-004 - 178.56000000000000 -2.1039121857380707E-004 - 178.62000000000000 -2.1318593223776681E-004 - 178.67999999999998 -2.1582026467066435E-004 - 178.73999999999998 -2.1828645480954023E-004 - 178.79999999999998 -2.2057681157292908E-004 - 178.85999999999999 -2.2268376556037065E-004 - 178.91999999999999 -2.2459983876863964E-004 - 178.97999999999999 -2.2631771013469483E-004 - 179.03999999999999 -2.2783017328817831E-004 - 179.09999999999999 -2.2913019835380170E-004 - 179.16000000000000 -2.3021092496377566E-004 - 179.22000000000000 -2.3106566397088272E-004 - 179.28000000000000 -2.3168794369159775E-004 - 179.34000000000000 -2.3207153017588766E-004 - 179.40000000000001 -2.3221040876559120E-004 - 179.45999999999998 -2.3209882303833898E-004 - 179.51999999999998 -2.3173131076552407E-004 - 179.57999999999998 -2.3110268703134366E-004 - 179.63999999999999 -2.3020809723893213E-004 - 179.69999999999999 -2.2904299195607077E-004 - 179.75999999999999 -2.2760321190105684E-004 - 179.81999999999999 -2.2588490668434930E-004 - 179.88000000000000 -2.2388463935377615E-004 - 179.94000000000000 -2.2159935509336582E-004 - 180.00000000000000 -2.1902635028257070E-004 - 180.06000000000000 -2.1616339569371939E-004 - 180.12000000000000 -2.1300864056370819E-004 - 180.17999999999998 -2.0956063098614841E-004 - 180.23999999999998 -2.0581835939586301E-004 - 180.29999999999998 -2.0178121062751713E-004 - 180.35999999999999 -1.9744901505199634E-004 - 180.41999999999999 -1.9282200782581713E-004 - 180.47999999999999 -1.8790083056249163E-004 - 180.53999999999999 -1.8268654798069228E-004 - 180.59999999999999 -1.7718062176118001E-004 - 180.66000000000000 -1.7138491698378807E-004 - 180.72000000000000 -1.6530171083159033E-004 - 180.78000000000000 -1.5893368047575248E-004 - 180.84000000000000 -1.5228389981431038E-004 - 180.90000000000001 -1.4535582822642023E-004 - 180.95999999999998 -1.3815330741365957E-004 - 181.01999999999998 -1.3068058552388382E-004 - 181.07999999999998 -1.2294228836545157E-004 - 181.13999999999999 -1.1494343235574044E-004 - 181.19999999999999 -1.0668937673076126E-004 - 181.25999999999999 -9.8185897102176408E-005 - 181.31999999999999 -8.9439116179862519E-005 - 181.38000000000000 -8.0455501450706236E-005 - 181.44000000000000 -7.1241873105123090E-005 - 181.50000000000000 -6.1805382622501657E-005 - 181.56000000000000 -5.2153492346595663E-005 - 181.62000000000000 -4.2293967965154038E-005 - 181.67999999999998 -3.2234855690268063E-005 - 181.73999999999998 -2.1984471607332828E-005 - 181.79999999999998 -1.1551364322928698E-005 - 181.85999999999999 -9.4430962253862653E-007 - 181.91999999999999 9.8277140460645374E-006 - 181.97999999999999 2.0755552557197135E-005 - 182.03999999999999 3.1829883119451485E-005 - 182.09999999999999 4.3041254875541344E-005 - 182.16000000000000 5.4380080345216080E-005 - 182.22000000000000 6.5836679512706233E-005 - 182.28000000000000 7.7401278533780485E-005 - 182.34000000000000 8.9064020026024472E-005 - 182.39999999999998 1.0081500877529522E-004 - 182.45999999999998 1.1264426708247352E-004 - 182.51999999999998 1.2454179900330461E-004 - 182.57999999999998 1.3649758453591174E-004 - 182.63999999999999 1.4850157141544425E-004 - 182.69999999999999 1.6054372614440339E-004 - 182.75999999999999 1.7261397048104224E-004 - 182.81999999999999 1.8470227202075582E-004 - 182.88000000000000 1.9679861449221230E-004 - 182.94000000000000 2.0889299737608202E-004 - 183.00000000000000 2.2097548835557304E-004 - 183.06000000000000 2.3303617807156983E-004 - 183.12000000000000 2.4506522891827511E-004 - 183.17999999999998 2.5705290664166031E-004 - 183.23999999999998 2.6898951824727557E-004 - 183.29999999999998 2.8086551232121035E-004 - 183.35999999999999 2.9267140062253584E-004 - 183.41999999999999 3.0439783851904671E-004 - 183.47999999999999 3.1603563716981430E-004 - 183.53999999999999 3.2757567262605108E-004 - 183.59999999999999 3.3900902919656696E-004 - 183.66000000000000 3.5032692963614165E-004 - 183.72000000000000 3.6152070485745771E-004 - 183.78000000000000 3.7258185810820041E-004 - 183.84000000000000 3.8350206426746828E-004 - 183.89999999999998 3.9427316640419598E-004 - 183.95999999999998 4.0488716715278319E-004 - 184.01999999999998 4.1533620018733766E-004 - 184.07999999999998 4.2561252238315731E-004 - 184.13999999999999 4.3570861661162025E-004 - 184.19999999999999 4.4561709710232926E-004 - 184.25999999999999 4.5533065064669905E-004 - 184.31999999999999 4.6484217315631218E-004 - 184.38000000000000 4.7414466073366507E-004 - 184.44000000000000 4.8323130235797544E-004 - 184.50000000000000 4.9209536322587886E-004 - 184.56000000000000 5.0073025294718936E-004 - 184.62000000000000 5.0912954797449595E-004 - 184.67999999999998 5.1728690215338893E-004 - 184.73999999999998 5.2519622292562991E-004 - 184.79999999999998 5.3285146348199452E-004 - 184.85999999999999 5.4024667817874870E-004 - 184.91999999999999 5.4737622369086328E-004 - 184.97999999999999 5.5423448321402480E-004 - 185.03999999999999 5.6081610174755635E-004 - 185.09999999999999 5.6711580015284956E-004 - 185.16000000000000 5.7312851455659753E-004 - 185.22000000000000 5.7884934935862828E-004 - 185.28000000000000 5.8427354590519372E-004 - 185.34000000000000 5.8939661724459295E-004 - 185.39999999999998 5.9421424301955102E-004 - 185.45999999999998 5.9872226822430560E-004 - 185.51999999999998 6.0291670671130471E-004 - 185.57999999999998 6.0679384168330530E-004 - 185.63999999999999 6.1035016695107705E-004 - 185.69999999999999 6.1358230683552432E-004 - 185.75999999999999 6.1648720850885112E-004 - 185.81999999999999 6.1906194552694891E-004 - 185.88000000000000 6.2130389725325718E-004 - 185.94000000000000 6.2321067874660657E-004 - 186.00000000000000 6.2478014429797723E-004 - 186.06000000000000 6.2601039885426828E-004 - 186.12000000000000 6.2689977340151610E-004 - 186.17999999999998 6.2744703996534619E-004 - 186.23999999999998 6.2765105398807737E-004 - 186.29999999999998 6.2751114239438023E-004 - 186.35999999999999 6.2702688490234751E-004 - 186.41999999999999 6.2619825135130729E-004 - 186.47999999999999 6.2502549895587800E-004 - 186.53999999999999 6.2350930324231706E-004 - 186.59999999999999 6.2165064882191965E-004 - 186.66000000000000 6.1945096549483297E-004 - 186.72000000000000 6.1691191188068299E-004 - 186.78000000000000 6.1403578705061801E-004 - 186.84000000000000 6.1082514259095050E-004 - 186.89999999999998 6.0728293043382417E-004 - 186.95999999999998 6.0341253213602362E-004 - 187.01999999999998 5.9921774531040994E-004 - 187.07999999999998 5.9470282335758373E-004 - 187.13999999999999 5.8987228450407489E-004 - 187.19999999999999 5.8473124171644223E-004 - 187.25999999999999 5.7928506050205879E-004 - 187.31999999999999 5.7353958215869449E-004 - 187.38000000000000 5.6750097773876113E-004 - 187.44000000000000 5.6117579461835280E-004 - 187.50000000000000 5.5457105682309691E-004 - 187.56000000000000 5.4769403101041086E-004 - 187.62000000000000 5.4055246409242738E-004 - 187.67999999999998 5.3315431186358550E-004 - 187.73999999999998 5.2550799293609211E-004 - 187.79999999999998 5.1762220452713972E-004 - 187.85999999999999 5.0950597369351280E-004 - 187.91999999999999 5.0116856656866706E-004 - 187.97999999999999 4.9261965693807319E-004 - 188.03999999999999 4.8386908966353191E-004 - 188.09999999999999 4.7492702909581711E-004 - 188.16000000000000 4.6580387822009554E-004 - 188.22000000000000 4.5651021176144462E-004 - 188.28000000000000 4.4705686457711718E-004 - 188.34000000000000 4.3745482238432485E-004 - 188.39999999999998 4.2771523257136349E-004 - 188.45999999999998 4.1784941813729939E-004 - 188.51999999999998 4.0786878137448029E-004 - 188.57999999999998 3.9778482847865069E-004 - 188.63999999999999 3.8760911316055837E-004 - 188.69999999999999 3.7735327483145710E-004 - 188.75999999999999 3.6702896208269117E-004 - 188.81999999999999 3.5664778507410065E-004 - 188.88000000000000 3.4622135180032451E-004 - 188.94000000000000 3.3576122697268724E-004 - 189.00000000000000 3.2527887953099141E-004 - 189.06000000000000 3.1478570010342178E-004 - 189.12000000000000 3.0429294537779575E-004 - 189.17999999999998 2.9381174246788757E-004 - 189.23999999999998 2.8335304303316408E-004 - 189.29999999999998 2.7292759574679029E-004 - 189.35999999999999 2.6254597799598605E-004 - 189.41999999999999 2.5221856508557525E-004 - 189.47999999999999 2.4195544402102857E-004 - 189.53999999999999 2.3176649086272189E-004 - 189.59999999999999 2.2166125480644995E-004 - 189.66000000000000 2.1164902868337491E-004 - 189.72000000000000 2.0173883594301172E-004 - 189.78000000000000 1.9193932540253380E-004 - 189.84000000000000 1.8225886039360470E-004 - 189.89999999999998 1.7270543229230985E-004 - 189.95999999999998 1.6328671184378214E-004 - 190.01999999999998 1.5401000770571332E-004 - 190.07999999999998 1.4488226932760927E-004 - 190.13999999999999 1.3591007172055229E-004 - 190.19999999999999 1.2709961438919404E-004 - 190.25999999999999 1.1845671112648046E-004 - 190.31999999999999 1.0998679837834163E-004 - 190.38000000000000 1.0169494154425088E-004 - 190.44000000000000 9.3585805495797903E-005 - 190.50000000000000 8.5663672067616995E-005 - 190.56000000000000 7.7932444393971666E-005 - 190.62000000000000 7.0395632815678364E-005 - 190.67999999999998 6.3056370467461518E-005 - 190.73999999999998 5.5917409985288388E-005 - 190.79999999999998 4.8981134230412929E-005 - 190.85999999999999 4.2249548058770975E-005 - 190.91999999999999 3.5724298455367190E-005 - 190.97999999999999 2.9406669043060776E-005 - 191.03999999999999 2.3297593792405532E-005 - 191.09999999999999 1.7397662898987835E-005 - 191.16000000000000 1.1707137092921716E-005 - 191.22000000000000 6.2259488462368824E-006 - 191.28000000000000 9.5371370481258033E-007 - 191.34000000000000 -4.1102539479498587E-006 - 191.39999999999998 -8.9669358138955339E-006 - 191.45999999999998 -1.3617593540236879E-005 - 191.51999999999998 -1.8063760205595634E-005 - 191.57999999999998 -2.2307225356201746E-005 - 191.63999999999999 -2.6350025385958967E-005 - 191.69999999999999 -3.0194432339761393E-005 - 191.75999999999999 -3.3842937914407448E-005 - 191.81999999999999 -3.7298239126654331E-005 - 191.88000000000000 -4.0563231666477185E-005 - 191.94000000000000 -4.3640994076531773E-005 - 192.00000000000000 -4.6534777375976456E-005 - 192.06000000000000 -4.9247986318824443E-005 - 192.12000000000000 -5.1784176393911336E-005 - 192.17999999999998 -5.4147034925169475E-005 - 192.23999999999998 -5.6340373640218198E-005 - 192.29999999999998 -5.8368107486577338E-005 - 192.35999999999999 -6.0234253041656577E-005 - 192.41999999999999 -6.1942917461935780E-005 - 192.47999999999999 -6.3498279887765343E-005 - 192.53999999999999 -6.4904580751720626E-005 - 192.59999999999999 -6.6166125744334111E-005 - 192.66000000000000 -6.7287255171951014E-005 - 192.72000000000000 -6.8272337835833770E-005 - 192.78000000000000 -6.9125779542883505E-005 - 192.84000000000000 -6.9851981998334149E-005 - 192.89999999999998 -7.0455373301453743E-005 - 192.95999999999998 -7.0940359502577699E-005 - 193.01999999999998 -7.1311345982621468E-005 - 193.07999999999998 -7.1572713365471836E-005 - 193.13999999999999 -7.1728806501985789E-005 - 193.19999999999999 -7.1783945311093523E-005 - 193.25999999999999 -7.1742409724325626E-005 - 193.31999999999999 -7.1608422369170112E-005 - 193.38000000000000 -7.1386144542096307E-005 - 193.44000000000000 -7.1079695062394062E-005 - 193.50000000000000 -7.0693113495616601E-005 - 193.56000000000000 -7.0230376861996115E-005 - 193.62000000000000 -6.9695377595453700E-005 - 193.67999999999998 -6.9091939028330686E-005 - 193.73999999999998 -6.8423803457528813E-005 - 193.79999999999998 -6.7694626855446856E-005 - 193.85999999999999 -6.6907977951820465E-005 - 193.91999999999999 -6.6067343281183891E-005 - 193.97999999999999 -6.5176112635024789E-005 - 194.03999999999999 -6.4237602239967966E-005 - 194.09999999999999 -6.3255017253177650E-005 - 194.16000000000000 -6.2231486681242176E-005 - 194.22000000000000 -6.1170030754280171E-005 - 194.28000000000000 -6.0073591018223848E-005 - 194.34000000000000 -5.8945015422011147E-005 - 194.39999999999998 -5.7787045351993707E-005 - 194.45999999999998 -5.6602337557893900E-005 - 194.51999999999998 -5.5393454404512529E-005 - 194.57999999999998 -5.4162856055340907E-005 - 194.63999999999999 -5.2912916006186861E-005 - 194.69999999999999 -5.1645915343361489E-005 - 194.75999999999999 -5.0364032264144740E-005 - 194.81999999999999 -4.9069367351829058E-005 - 194.88000000000000 -4.7763924888304340E-005 - 194.94000000000000 -4.6449620107657499E-005 - 195.00000000000000 -4.5128287468726583E-005 - 195.06000000000000 -4.3801680246105772E-005 - 195.12000000000000 -4.2471476997383168E-005 - 195.17999999999998 -4.1139279091259144E-005 - 195.23999999999998 -3.9806613942239168E-005 - 195.29999999999998 -3.8474952294474936E-005 - 195.35999999999999 -3.7145692310389332E-005 - 195.41999999999999 -3.5820181100159635E-005 - 195.47999999999999 -3.4499700409367558E-005 - 195.53999999999999 -3.3185480169213684E-005 - 195.59999999999999 -3.1878699269881056E-005 - 195.66000000000000 -3.0580485700077117E-005 - 195.72000000000000 -2.9291917743056573E-005 - 195.78000000000000 -2.8014023735232316E-005 - 195.84000000000000 -2.6747780989165042E-005 - 195.89999999999998 -2.5494121236310704E-005 - 195.95999999999998 -2.4253928735930402E-005 - 196.01999999999998 -2.3028033722872446E-005 - 196.07999999999998 -2.1817222335131884E-005 - 196.13999999999999 -2.0622235219443566E-005 - 196.19999999999999 -1.9443761522163420E-005 - 196.25999999999999 -1.8282449167445034E-005 - 196.31999999999999 -1.7138899677349663E-005 - 196.38000000000000 -1.6013679620438845E-005 - 196.44000000000000 -1.4907307552114745E-005 - 196.50000000000000 -1.3820270873343881E-005 - 196.56000000000000 -1.2753022003343395E-005 - 196.62000000000000 -1.1705982358967337E-005 - 196.67999999999998 -1.0679544415688944E-005 - 196.73999999999998 -9.6740720004344308E-006 - 196.79999999999998 -8.6899074985012194E-006 - 196.85999999999999 -7.7273650630708195E-006 - 196.91999999999999 -6.7867387630205413E-006 - 196.97999999999999 -5.8682981761156670E-006 - 197.03999999999999 -4.9722912278609127E-006 - 197.09999999999999 -4.0989393075379153E-006 - 197.16000000000000 -3.2484389904549671E-006 - 197.22000000000000 -2.4209602031078255E-006 - 197.28000000000000 -1.6166425403125368E-006 - 197.34000000000000 -8.3559573737320366E-007 - 197.39999999999998 -7.7895929590139506E-008 - 197.45999999999998 6.5641575671206265E-007 - 197.51999999999998 1.3673337278940410E-006 - 197.57999999999998 2.0548909173694910E-006 - 197.63999999999999 2.7191574515561746E-006 - 197.69999999999999 3.3602431916511033E-006 - 197.75999999999999 3.9782950696498440E-006 - 197.81999999999999 4.5734999660316685E-006 - 197.88000000000000 5.1460815451113146E-006 - 197.94000000000000 5.6962988596027260E-006 - 198.00000000000000 6.2244472482571367E-006 - 198.06000000000000 6.7308550774398132E-006 - 198.12000000000000 7.2158832749438724E-006 - 198.17999999999998 7.6799235744195762E-006 - 198.23999999999998 8.1233972830430687E-006 - 198.29999999999998 8.5467549333851729E-006 - 198.35999999999999 8.9504733971946364E-006 - 198.41999999999999 9.3350561064708178E-006 - 198.47999999999999 9.7010343056693172E-006 - 198.53999999999999 1.0048966938374878E-005 - 198.59999999999999 1.0379438257499297E-005 - 198.66000000000000 1.0693061626547372E-005 - 198.72000000000000 1.0990477351941927E-005 - 198.78000000000000 1.1272355204627525E-005 - 198.84000000000000 1.1539396870396039E-005 - 198.89999999999998 1.1792333885833528E-005 - 198.95999999999998 1.2031930050918050E-005 - 199.01999999999998 1.2258983127788743E-005 - 199.07999999999998 1.2474324445775721E-005 - 199.13999999999999 1.2678819524945042E-005 - 199.19999999999999 1.2873368615424040E-005 - 199.25999999999999 1.3058905169046694E-005 - 199.31999999999999 1.3236398747133297E-005 - 199.38000000000000 1.3406850557014672E-005 - 199.44000000000000 1.3571293791678347E-005 - 199.50000000000000 1.3730792165068638E-005 - 199.56000000000000 1.3886439438627565E-005 - 199.62000000000000 1.4039358343003600E-005 - 199.67999999999998 1.4190696816221694E-005 - 199.73999999999998 1.4341629195757049E-005 - 199.79999999999998 1.4493354778887764E-005 - 199.85999999999999 1.4647095363012333E-005 - 199.91999999999999 1.4804097838778558E-005 - 199.97999999999999 1.4965631465005050E-005 - 200.03999999999999 1.5132991046567284E-005 - 200.09999999999999 1.5307497558497446E-005 - 200.16000000000000 1.5490498705148411E-005 - 200.22000000000000 1.5683372421559153E-005 - 200.28000000000000 1.5887525947432740E-005 - 200.34000000000000 1.6104400594114514E-005 - 200.39999999999998 1.6335473602691067E-005 - 200.45999999999998 1.6582259296841510E-005 - 200.51999999999998 1.6846311396443774E-005 - 200.57999999999998 1.7129223194685449E-005 - 200.63999999999999 1.7432628145605072E-005 - 200.69999999999999 1.7758203160498869E-005 - 200.75999999999999 1.8107661496780385E-005 - 200.81999999999999 1.8482760037506720E-005 - 200.88000000000000 1.8885287345701838E-005 - 200.94000000000000 1.9317073919354068E-005 - 201.00000000000000 1.9779978979598808E-005 - 201.06000000000000 2.0275894977082724E-005 - 201.12000000000000 2.0806736428554077E-005 - 201.17999999999998 2.1374446991584851E-005 - 201.23999999999998 2.1980991819314035E-005 - 201.29999999999998 2.2628358438549293E-005 - 201.35999999999999 2.3318549853002796E-005 - 201.41999999999999 2.4053585436091090E-005 - 201.47999999999999 2.4835506109643698E-005 - 201.53999999999999 2.5666364555234492E-005 - 201.59999999999999 2.6548233728517349E-005 - 201.66000000000000 2.7483197636213114E-005 - 201.72000000000000 2.8473359593708864E-005 - 201.78000000000000 2.9520836183601095E-005 - 201.84000000000000 3.0627762194364416E-005 - 201.89999999999998 3.1796284620123719E-005 - 201.95999999999998 3.3028564454417305E-005 - 202.01999999999998 3.4326770910090596E-005 - 202.07999999999998 3.5693085131839328E-005 - 202.13999999999999 3.7129685026084878E-005 - 202.19999999999999 3.8638754249500210E-005 - 202.25999999999999 4.0222467984446140E-005 - 202.31999999999999 4.1882982481444870E-005 - 202.38000000000000 4.3622437552659134E-005 - 202.44000000000000 4.5442952124107200E-005 - 202.50000000000000 4.7346601733820618E-005 - 202.56000000000000 4.9335427919290369E-005 - 202.62000000000000 5.1411414528252178E-005 - 202.67999999999998 5.3576493678416157E-005 - 202.73999999999998 5.5832533586129359E-005 - 202.79999999999998 5.8181324165127207E-005 - 202.85999999999999 6.0624584047456890E-005 - 202.91999999999999 6.3163940785883921E-005 - 202.97999999999999 6.5800929583975402E-005 - 203.03999999999999 6.8536998379379829E-005 - 203.09999999999999 7.1373480772688177E-005 - 203.16000000000000 7.4311599476138693E-005 - 203.22000000000000 7.7352474951805655E-005 - 203.28000000000000 8.0497085570050163E-005 - 203.34000000000000 8.3746299549286262E-005 - 203.39999999999998 8.7100836524331944E-005 - 203.45999999999998 9.0561271231719948E-005 - 203.51999999999998 9.4128045961681595E-005 - 203.57999999999998 9.7801431904715505E-005 - 203.63999999999999 1.0158153156714805E-004 - 203.69999999999999 1.0546828728777579E-004 - 203.75999999999999 1.0946144048362373E-004 - 203.81999999999999 1.1356056168132708E-004 - 203.88000000000000 1.1776500156747444E-004 - 203.94000000000000 1.2207391786344114E-004 - 204.00000000000000 1.2648623600649308E-004 - 204.06000000000000 1.3100067529928758E-004 - 204.12000000000000 1.3561569378650598E-004 - 204.17999999999998 1.4032954013235035E-004 - 204.23999999999998 1.4514016893251290E-004 - 204.29999999999998 1.5004532141344660E-004 - 204.35999999999999 1.5504246492483082E-004 - 204.41999999999999 1.6012877936279413E-004 - 204.47999999999999 1.6530119295701421E-004 - 204.53999999999999 1.7055635713338120E-004 - 204.59999999999999 1.7589065910012257E-004 - 204.66000000000000 1.8130018195242661E-004 - 204.72000000000000 1.8678074682464618E-004 - 204.78000000000000 1.9232787379692208E-004 - 204.84000000000000 1.9793685369675506E-004 - 204.89999999999998 2.0360265081615050E-004 - 204.95999999999998 2.0931998324141878E-004 - 205.01999999999998 2.1508326974322101E-004 - 205.07999999999998 2.2088670781928791E-004 - 205.13999999999999 2.2672419235563536E-004 - 205.19999999999999 2.3258936863311156E-004 - 205.25999999999999 2.3847564539254885E-004 - 205.31999999999999 2.4437618133637000E-004 - 205.38000000000000 2.5028388174986623E-004 - 205.44000000000000 2.5619143240142664E-004 - 205.50000000000000 2.6209131987521935E-004 - 205.56000000000000 2.6797579848530863E-004 - 205.62000000000000 2.7383691218815792E-004 - 205.67999999999998 2.7966652665601348E-004 - 205.73999999999998 2.8545633414546944E-004 - 205.79999999999998 2.9119783710889168E-004 - 205.85999999999999 2.9688244417725709E-004 - 205.91999999999999 3.0250136703923543E-004 - 205.97999999999999 3.0804574017395523E-004 - 206.03999999999999 3.1350660863766437E-004 - 206.09999999999999 3.1887493983962477E-004 - 206.16000000000000 3.2414165670603841E-004 - 206.22000000000000 3.2929758279725505E-004 - 206.28000000000000 3.3433362430939712E-004 - 206.34000000000000 3.3924058885158803E-004 - 206.39999999999998 3.4400940185258917E-004 - 206.45999999999998 3.4863103090026354E-004 - 206.51999999999998 3.5309646368742766E-004 - 206.57999999999998 3.5739684516005181E-004 - 206.63999999999999 3.6152336790444827E-004 - 206.69999999999999 3.6546741616877058E-004 - 206.75999999999999 3.6922054570986956E-004 - 206.81999999999999 3.7277440829324771E-004 - 206.88000000000000 3.7612096333444799E-004 - 206.94000000000000 3.7925228258590976E-004 - 207.00000000000000 3.8216075426484111E-004 - 207.06000000000000 3.8483899604584387E-004 - 207.12000000000000 3.8727985844846734E-004 - 207.17999999999998 3.8947657484235165E-004 - 207.23999999999998 3.9142259697110189E-004 - 207.29999999999998 3.9311181057532265E-004 - 207.35999999999999 3.9453835399085290E-004 - 207.41999999999999 3.9569683785220012E-004 - 207.47999999999999 3.9658218757355931E-004 - 207.53999999999999 3.9718975700640417E-004 - 207.59999999999999 3.9751535713514121E-004 - 207.66000000000000 3.9755524665629349E-004 - 207.72000000000000 3.9730607836511181E-004 - 207.78000000000000 3.9676502048572118E-004 - 207.84000000000000 3.9592976147566594E-004 - 207.89999999999998 3.9479842786922608E-004 - 207.95999999999998 3.9336967549647762E-004 - 208.01999999999998 3.9164265978854459E-004 - 208.07999999999998 3.8961709932339649E-004 - 208.13999999999999 3.8729314478127907E-004 - 208.19999999999999 3.8467159084843773E-004 - 208.25999999999999 3.8175366532578766E-004 - 208.31999999999999 3.7854118650175418E-004 - 208.38000000000000 3.7503645310018306E-004 - 208.44000000000000 3.7124230957370633E-004 - 208.50000000000000 3.6716208638187797E-004 - 208.56000000000000 3.6279961055455594E-004 - 208.62000000000000 3.5815928466619414E-004 - 208.68000000000001 3.5324589388002878E-004 - 208.74000000000001 3.4806481112010254E-004 - 208.80000000000001 3.4262179826334999E-004 - 208.86000000000001 3.3692313057529937E-004 - 208.92000000000002 3.3097550444554437E-004 - 208.98000000000002 3.2478608483409697E-004 - 209.03999999999996 3.1836242999292531E-004 - 209.09999999999997 3.1171253644780736E-004 - 209.15999999999997 3.0484479281045186E-004 - 209.21999999999997 2.9776790441224718E-004 - 209.27999999999997 2.9049100609499049E-004 - 209.33999999999997 2.8302356343246684E-004 - 209.39999999999998 2.7537532069050162E-004 - 209.45999999999998 2.6755636757571884E-004 - 209.51999999999998 2.5957706131754960E-004 - 209.57999999999998 2.5144799183745057E-004 - 209.63999999999999 2.4317996565099308E-004 - 209.69999999999999 2.3478401772706700E-004 - 209.75999999999999 2.2627135026868461E-004 - 209.81999999999999 2.1765332091774832E-004 - 209.88000000000000 2.0894137580703299E-004 - 209.94000000000000 2.0014706936882245E-004 - 210.00000000000000 1.9128202127046269E-004 - 210.06000000000000 1.8235788901784362E-004 - 210.12000000000000 1.7338632874564581E-004 - 210.18000000000001 1.6437898612984252E-004 - 210.24000000000001 1.5534744994586956E-004 - 210.30000000000001 1.4630324749216790E-004 - 210.36000000000001 1.3725780672157033E-004 - 210.42000000000002 1.2822240734501551E-004 - 210.48000000000002 1.1920821835636248E-004 - 210.53999999999996 1.1022622950041117E-004 - 210.59999999999997 1.0128723406049146E-004 - 210.65999999999997 9.2401818782624151E-005 - 210.71999999999997 8.3580341109055426E-005 - 210.77999999999997 7.4832910135433508E-005 - 210.83999999999997 6.6169376275998799E-005 - 210.89999999999998 5.7599285380078871E-005 - 210.95999999999998 4.9131909487165261E-005 - 211.01999999999998 4.0776182930364152E-005 - 211.07999999999998 3.2540719182854420E-005 - 211.13999999999999 2.4433786508907008E-005 - 211.19999999999999 1.6463306887658418E-005 - 211.25999999999999 8.6368059934900112E-006 - 211.31999999999999 9.6144964117168870E-007 - 211.38000000000000 -6.5560025186609021E-006 - 211.44000000000000 -1.3909187320823563E-005 - 211.50000000000000 -2.1092154964634285E-005 - 211.56000000000000 -2.8099380196851686E-005 - 211.62000000000000 -3.4925755280588440E-005 - 211.68000000000001 -4.1566598126018374E-005 - 211.74000000000001 -4.8017670159606266E-005 - 211.80000000000001 -5.4275149372551645E-005 - 211.86000000000001 -6.0335651930538576E-005 - 211.92000000000002 -6.6196223589467905E-005 - 211.98000000000002 -7.1854331592788878E-005 - 212.03999999999996 -7.7307860246523711E-005 - 212.09999999999997 -8.2555102697652111E-005 - 212.15999999999997 -8.7594760240459576E-005 - 212.21999999999997 -9.2425912416692896E-005 - 212.27999999999997 -9.7048029802765504E-005 - 212.33999999999997 -1.0146095606512616E-004 - 212.39999999999998 -1.0566488450360161E-004 - 212.45999999999998 -1.0966037275291673E-004 - 212.51999999999998 -1.1344828980591615E-004 - 212.57999999999998 -1.1702985795781766E-004 - 212.63999999999999 -1.2040659653207943E-004 - 212.69999999999999 -1.2358032930361476E-004 - 212.75999999999999 -1.2655316365470264E-004 - 212.81999999999999 -1.2932749739456219E-004 - 212.88000000000000 -1.3190598835626324E-004 - 212.94000000000000 -1.3429153433632939E-004 - 213.00000000000000 -1.3648729269131544E-004 - 213.06000000000000 -1.3849663851651792E-004 - 213.12000000000000 -1.4032318227689448E-004 - 213.18000000000001 -1.4197071227063955E-004 - 213.24000000000001 -1.4344322204543758E-004 - 213.30000000000001 -1.4474485720703255E-004 - 213.36000000000001 -1.4587993445541625E-004 - 213.42000000000002 -1.4685291162605578E-004 - 213.48000000000002 -1.4766836799983392E-004 - 213.53999999999996 -1.4833098833701294E-004 - 213.59999999999997 -1.4884555133164003E-004 - 213.65999999999997 -1.4921689621497531E-004 - 213.71999999999997 -1.4944994945439888E-004 - 213.77999999999997 -1.4954966367048542E-004 - 213.83999999999997 -1.4952102773365202E-004 - 213.89999999999998 -1.4936906725265063E-004 - 213.95999999999998 -1.4909881894562341E-004 - 214.01999999999998 -1.4871527236326923E-004 - 214.07999999999998 -1.4822344768299317E-004 - 214.13999999999999 -1.4762833092959229E-004 - 214.19999999999999 -1.4693487307244525E-004 - 214.25999999999999 -1.4614801385314199E-004 - 214.31999999999999 -1.4527264153760871E-004 - 214.38000000000000 -1.4431357895263746E-004 - 214.44000000000000 -1.4327561441115165E-004 - 214.50000000000000 -1.4216348312995396E-004 - 214.56000000000000 -1.4098185225950487E-004 - 214.62000000000000 -1.3973531553273001E-004 - 214.68000000000001 -1.3842840442273289E-004 - 214.74000000000001 -1.3706553656692716E-004 - 214.80000000000001 -1.3565109702639167E-004 - 214.86000000000001 -1.3418935373110547E-004 - 214.92000000000002 -1.3268447979058529E-004 - 214.98000000000002 -1.3114056478516931E-004 - 215.03999999999996 -1.2956157559539219E-004 - 215.09999999999997 -1.2795138475353403E-004 - 215.15999999999997 -1.2631374281985391E-004 - 215.21999999999997 -1.2465231480367426E-004 - 215.27999999999997 -1.2297061489085091E-004 - 215.33999999999997 -1.2127206230746984E-004 - 215.39999999999998 -1.1955995032135236E-004 - 215.45999999999998 -1.1783743246704480E-004 - 215.51999999999998 -1.1610755151209304E-004 - 215.57999999999998 -1.1437323138744996E-004 - 215.63999999999999 -1.1263727471444829E-004 - 215.69999999999999 -1.1090234997027356E-004 - 215.75999999999999 -1.0917101186363180E-004 - 215.81999999999999 -1.0744567898522752E-004 - 215.88000000000000 -1.0572866917808907E-004 - 215.94000000000000 -1.0402215504469575E-004 - 216.00000000000000 -1.0232821204700401E-004 - 216.06000000000000 -1.0064878372798698E-004 - 216.12000000000000 -9.8985694737746581E-005 - 216.18000000000001 -9.7340665190723887E-005 - 216.24000000000001 -9.5715279734811447E-005 - 216.30000000000001 -9.4111017228852778E-005 - 216.36000000000001 -9.2529248900984697E-005 - 216.42000000000002 -9.0971215256005058E-005 - 216.48000000000002 -8.9438063711136268E-005 - 216.53999999999996 -8.7930815714799181E-005 - 216.59999999999997 -8.6450382328190551E-005 - 216.65999999999997 -8.4997573619705053E-005 - 216.71999999999997 -8.3573072596111164E-005 - 216.77999999999997 -8.2177476369006466E-005 - 216.83999999999997 -8.0811268160166133E-005 - 216.89999999999998 -7.9474832947153218E-005 - 216.95999999999998 -7.8168435891051702E-005 - 217.01999999999998 -7.6892273931092851E-005 - 217.07999999999998 -7.5646427489075633E-005 - 217.13999999999999 -7.4430904856580293E-005 - 217.19999999999999 -7.3245629537847871E-005 - 217.25999999999999 -7.2090438917643776E-005 - 217.31999999999999 -7.0965096059396950E-005 - 217.38000000000000 -6.9869318186273083E-005 - 217.44000000000000 -6.8802737651576712E-005 - 217.50000000000000 -6.7764949414352390E-005 - 217.56000000000000 -6.6755495483427908E-005 - 217.62000000000000 -6.5773866826370864E-005 - 217.68000000000001 -6.4819527963208827E-005 - 217.74000000000001 -6.3891892811359649E-005 - 217.80000000000001 -6.2990367783734286E-005 - 217.86000000000001 -6.2114317040402512E-005 - 217.92000000000002 -6.1263075305165938E-005 - 217.98000000000002 -6.0435967823493412E-005 - 218.03999999999996 -5.9632284036078648E-005 - 218.09999999999997 -5.8851303581220861E-005 - 218.15999999999997 -5.8092283421236857E-005 - 218.21999999999997 -5.7354467029813118E-005 - 218.27999999999997 -5.6637074272405554E-005 - 218.33999999999997 -5.5939317600378201E-005 - 218.39999999999998 -5.5260401219148755E-005 - 218.45999999999998 -5.4599511283122702E-005 - 218.51999999999998 -5.3955842538141327E-005 - 218.57999999999998 -5.3328576366474562E-005 - 218.63999999999999 -5.2716909277743894E-005 - 218.69999999999999 -5.2120036872447691E-005 - 218.75999999999999 -5.1537173884733995E-005 - 218.81999999999999 -5.0967551677575226E-005 - 218.88000000000000 -5.0410420972411153E-005 - 218.94000000000000 -4.9865058922908061E-005 - 219.00000000000000 -4.9330772300505357E-005 - 219.06000000000000 -4.8806889505988343E-005 - 219.12000000000000 -4.8292774659600279E-005 - 219.18000000000001 -4.7787822330794999E-005 - 219.24000000000001 -4.7291460116494471E-005 - 219.30000000000001 -4.6803144809945291E-005 - 219.36000000000001 -4.6322355906654884E-005 - 219.42000000000002 -4.5848605237821807E-005 - 219.48000000000002 -4.5381428470860298E-005 - 219.53999999999996 -4.4920378483010324E-005 - 219.59999999999997 -4.4465036089044522E-005 - 219.65999999999997 -4.4014999267785944E-005 - 219.71999999999997 -4.3569879375185668E-005 - 219.77999999999997 -4.3129306899598664E-005 - 219.83999999999997 -4.2692934583467057E-005 - 219.89999999999998 -4.2260436735453187E-005 - 219.95999999999998 -4.1831502517181865E-005 - 220.01999999999998 -4.1405846234341695E-005 - 220.07999999999998 -4.0983202651456444E-005 - 220.13999999999999 -4.0563330136685606E-005 - 220.19999999999999 -4.0146019158526028E-005 - 220.25999999999999 -3.9731083964739522E-005 - 220.31999999999999 -3.9318365784695873E-005 - 220.38000000000000 -3.8907743471103494E-005 - 220.44000000000000 -3.8499120522805140E-005 - 220.50000000000000 -3.8092432700371383E-005 - 220.56000000000000 -3.7687639140459619E-005 - 220.62000000000000 -3.7284731315550019E-005 - 220.68000000000001 -3.6883729575955041E-005 - 220.74000000000001 -3.6484673052094281E-005 - 220.80000000000001 -3.6087626840194153E-005 - 220.86000000000001 -3.5692677725361918E-005 - 220.92000000000002 -3.5299933383275396E-005 - 220.98000000000002 -3.4909514461941283E-005 - 221.03999999999996 -3.4521561493589597E-005 - 221.09999999999997 -3.4136222371787162E-005 - 221.15999999999997 -3.3753661698229501E-005 - 221.21999999999997 -3.3374051100333054E-005 - 221.27999999999997 -3.2997574266266324E-005 - 221.33999999999997 -3.2624415225174141E-005 - 221.39999999999998 -3.2254769645439475E-005 - 221.45999999999998 -3.1888834660806952E-005 - 221.51999999999998 -3.1526812411431330E-005 - 221.57999999999998 -3.1168904146371728E-005 - 221.63999999999999 -3.0815321973199183E-005 - 221.69999999999999 -3.0466269921288126E-005 - 221.75999999999999 -3.0121962418752892E-005 - 221.81999999999999 -2.9782608324195955E-005 - 221.88000000000000 -2.9448425562844546E-005 - 221.94000000000000 -2.9119633202493697E-005 - 222.00000000000000 -2.8796454546015804E-005 - 222.06000000000000 -2.8479115386180885E-005 - 222.12000000000000 -2.8167851116835447E-005 - 222.18000000000001 -2.7862899573780004E-005 - 222.24000000000001 -2.7564500198313984E-005 - 222.30000000000001 -2.7272902926486111E-005 - 222.36000000000001 -2.6988353770539098E-005 - 222.42000000000002 -2.6711100258309527E-005 - 222.48000000000002 -2.6441388811558392E-005 - 222.53999999999996 -2.6179456706630709E-005 - 222.59999999999997 -2.5925533854870311E-005 - 222.65999999999997 -2.5679833718032595E-005 - 222.71999999999997 -2.5442556828418330E-005 - 222.77999999999997 -2.5213876268777652E-005 - 222.83999999999997 -2.4993944153159547E-005 - 222.89999999999998 -2.4782877633950066E-005 - 222.95999999999998 -2.4580768065919817E-005 - 223.01999999999998 -2.4387671004532857E-005 - 223.07999999999998 -2.4203608700040017E-005 - 223.13999999999999 -2.4028569405933290E-005 - 223.19999999999999 -2.3862512551289368E-005 - 223.25999999999999 -2.3705361124032724E-005 - 223.31999999999999 -2.3557016898986606E-005 - 223.38000000000000 -2.3417354299713553E-005 - 223.44000000000000 -2.3286226761610889E-005 - 223.50000000000000 -2.3163468889587088E-005 - 223.56000000000000 -2.3048904726914947E-005 - 223.62000000000000 -2.2942340491666181E-005 - 223.68000000000001 -2.2843576149844872E-005 - 223.74000000000001 -2.2752403015817548E-005 - 223.80000000000001 -2.2668599067586814E-005 - 223.86000000000001 -2.2591940260948790E-005 - 223.92000000000002 -2.2522188201792870E-005 - 223.98000000000002 -2.2459092453571667E-005 - 224.03999999999996 -2.2402389348156621E-005 - 224.09999999999997 -2.2351800946109407E-005 - 224.15999999999997 -2.2307030724122602E-005 - 224.21999999999997 -2.2267760781231655E-005 - 224.27999999999997 -2.2233650797776833E-005 - 224.33999999999997 -2.2204340038157550E-005 - 224.39999999999998 -2.2179442654018958E-005 - 224.45999999999998 -2.2158550514783560E-005 - 224.51999999999998 -2.2141234596719109E-005 - 224.57999999999998 -2.2127042991102672E-005 - 224.63999999999999 -2.2115506847269600E-005 - 224.69999999999999 -2.2106144159868513E-005 - 224.75999999999999 -2.2098459616024508E-005 - 224.81999999999999 -2.2091949266853300E-005 - 224.88000000000000 -2.2086101846483824E-005 - 224.94000000000000 -2.2080402581945013E-005 - 225.00000000000000 -2.2074340933913526E-005 - 225.06000000000000 -2.2067403806601926E-005 - 225.12000000000000 -2.2059086996419532E-005 - 225.18000000000001 -2.2048885475120283E-005 - 225.24000000000001 -2.2036304398994120E-005 - 225.30000000000001 -2.2020858235762527E-005 - 225.36000000000001 -2.2002062086707507E-005 - 225.42000000000002 -2.1979443048428549E-005 - 225.48000000000002 -2.1952530491670339E-005 - 225.53999999999996 -2.1920854649719095E-005 - 225.59999999999997 -2.1883950539953047E-005 - 225.65999999999997 -2.1841349717868647E-005 - 225.71999999999997 -2.1792579049965990E-005 - 225.77999999999997 -2.1737160137119635E-005 - 225.83999999999997 -2.1674599169070888E-005 - 225.89999999999998 -2.1604392072632043E-005 - 225.95999999999998 -2.1526012265855514E-005 - 226.01999999999998 -2.1438913098557790E-005 - 226.07999999999998 -2.1342522675300163E-005 - 226.13999999999999 -2.1236237458299217E-005 - 226.19999999999999 -2.1119424987434752E-005 - 226.25999999999999 -2.0991414290593157E-005 - 226.31999999999999 -2.0851500724283106E-005 - 226.38000000000000 -2.0698940595316502E-005 - 226.44000000000000 -2.0532954525756436E-005 - 226.50000000000000 -2.0352724484506645E-005 - 226.56000000000000 -2.0157391529320125E-005 - 226.62000000000000 -1.9946066011791250E-005 - 226.68000000000001 -1.9717824598823906E-005 - 226.74000000000001 -1.9471706038161347E-005 - 226.80000000000001 -1.9206724030379263E-005 - 226.86000000000001 -1.8921856334000990E-005 - 226.92000000000002 -1.8616057972532214E-005 - 226.98000000000002 -1.8288252723309607E-005 - 227.03999999999996 -1.7937333589586301E-005 - 227.09999999999997 -1.7562164258121294E-005 - 227.15999999999997 -1.7161573837422675E-005 - 227.21999999999997 -1.6734354492211507E-005 - 227.27999999999997 -1.6279260633538692E-005 - 227.33999999999997 -1.5794997603661322E-005 - 227.39999999999998 -1.5280226385106343E-005 - 227.45999999999998 -1.4733551781635346E-005 - 227.51999999999998 -1.4153524858613712E-005 - 227.57999999999998 -1.3538632953954384E-005 - 227.63999999999999 -1.2887303873772069E-005 - 227.69999999999999 -1.2197902458950604E-005 - 227.75999999999999 -1.1468727500729913E-005 - 227.81999999999999 -1.0698017032630382E-005 - 227.88000000000000 -9.8839488852510298E-006 - 227.94000000000000 -9.0246444231841101E-006 - 228.00000000000000 -8.1181725158302100E-006 - 228.06000000000000 -7.1625543730494424E-006 - 228.12000000000000 -6.1557684544575974E-006 - 228.18000000000001 -5.0957563250200334E-006 - 228.24000000000001 -3.9804278107118269E-006 - 228.30000000000001 -2.8076644796302830E-006 - 228.36000000000001 -1.5753260532019478E-006 - 228.42000000000002 -2.8125289502594004E-007 - 228.48000000000002 1.0767321297512371E-006 - 228.53999999999996 2.5008188897713650E-006 - 228.59999999999997 3.9932090247123901E-006 - 228.65999999999997 5.5561156068547546E-006 - 228.71999999999997 7.1917595758112483E-006 - 228.77999999999997 8.9023719429193981E-006 - 228.83999999999997 1.0690189005353089E-005 - 228.89999999999998 1.2557452943674185E-005 - 228.95999999999998 1.4506406888207256E-005 - 229.01999999999998 1.6539293906457316E-005 - 229.07999999999998 1.8658354210713891E-005 - 229.13999999999999 2.0865816723619599E-005 - 229.19999999999999 2.3163896265687401E-005 - 229.25999999999999 2.5554786318659503E-005 - 229.31999999999999 2.8040649713652923E-005 - 229.38000000000000 3.0623615032415304E-005 - 229.44000000000000 3.3305762596393376E-005 - 229.50000000000000 3.6089121931123956E-005 - 229.56000000000000 3.8975654117370104E-005 - 229.62000000000000 4.1967248538385686E-005 - 229.68000000000001 4.5065708452706116E-005 - 229.74000000000001 4.8272744099958944E-005 - 229.80000000000001 5.1589959703211822E-005 - 229.86000000000001 5.5018844038893669E-005 - 229.92000000000002 5.8560769695093050E-005 - 229.97999999999996 6.2216958569063266E-005 - 230.03999999999996 6.5988497542676227E-005 - 230.09999999999997 6.9876314834510452E-005 - 230.15999999999997 7.3881172485906546E-005 - 230.21999999999997 7.8003650297970792E-005 - 230.27999999999997 8.2244166127699170E-005 - 230.33999999999997 8.6602914251949139E-005 - 230.39999999999998 9.1079906365214923E-005 - 230.45999999999998 9.5674932344873281E-005 - 230.51999999999998 1.0038757447647424E-004 - 230.57999999999998 1.0521717433419551E-004 - 230.63999999999999 1.1016285661320437E-004 - 230.69999999999999 1.1522348003021048E-004 - 230.75999999999999 1.2039768346426723E-004 - 230.81999999999999 1.2568383476765943E-004 - 230.88000000000000 1.3108004967701752E-004 - 230.94000000000000 1.3658416822520604E-004 - 231.00000000000000 1.4219375529108227E-004 - 231.06000000000000 1.4790609639857050E-004 - 231.12000000000000 1.5371818688054823E-004 - 231.18000000000001 1.5962674275437231E-004 - 231.24000000000001 1.6562816083220050E-004 - 231.30000000000001 1.7171855090360692E-004 - 231.36000000000001 1.7789366908029433E-004 - 231.42000000000002 1.8414899639842598E-004 - 231.47999999999996 1.9047968199237554E-004 - 231.53999999999996 1.9688051721403503E-004 - 231.59999999999997 2.0334599620240731E-004 - 231.65999999999997 2.0987027548854592E-004 - 231.71999999999997 2.1644721039877315E-004 - 231.77999999999997 2.2307028663795129E-004 - 231.83999999999997 2.2973272562853763E-004 - 231.89999999999998 2.3642738888366316E-004 - 231.95999999999998 2.4314688062130631E-004 - 232.01999999999998 2.4988346675187994E-004 - 232.07999999999998 2.5662915379276723E-004 - 232.13999999999999 2.6337571105244988E-004 - 232.19999999999999 2.7011462004790761E-004 - 232.25999999999999 2.7683711892662440E-004 - 232.31999999999999 2.8353422948899920E-004 - 232.38000000000000 2.9019678868182612E-004 - 232.44000000000000 2.9681539494003258E-004 - 232.50000000000000 3.0338048952530648E-004 - 232.56000000000000 3.0988236378338388E-004 - 232.62000000000000 3.1631114236641347E-004 - 232.68000000000001 3.2265685156936965E-004 - 232.74000000000001 3.2890941348139491E-004 - 232.80000000000001 3.3505861243879662E-004 - 232.86000000000001 3.4109424334804160E-004 - 232.92000000000002 3.4700600022299525E-004 - 232.97999999999996 3.5278350000718709E-004 - 233.03999999999996 3.5841645256141138E-004 - 233.09999999999997 3.6389453244151186E-004 - 233.15999999999997 3.6920748942699896E-004 - 233.21999999999997 3.7434506596745301E-004 - 233.27999999999997 3.7929713429820131E-004 - 233.33999999999997 3.8405369086469404E-004 - 233.39999999999998 3.8860488970144508E-004 - 233.45999999999998 3.9294100403143464E-004 - 233.51999999999998 3.9705249881397093E-004 - 233.57999999999998 4.0093009807688800E-004 - 233.63999999999999 4.0456470473783780E-004 - 233.69999999999999 4.0794756346786300E-004 - 233.75999999999999 4.1107018011685555E-004 - 233.81999999999999 4.1392434859192879E-004 - 233.88000000000000 4.1650223464734725E-004 - 233.94000000000000 4.1879635686697014E-004 - 234.00000000000000 4.2079964988610681E-004 - 234.06000000000000 4.2250542087172256E-004 - 234.12000000000000 4.2390746056279879E-004 - 234.18000000000001 4.2499993113252445E-004 - 234.24000000000001 4.2577751643671974E-004 - 234.30000000000001 4.2623539576097674E-004 - 234.36000000000001 4.2636920982797792E-004 - 234.42000000000002 4.2617521839886382E-004 - 234.47999999999996 4.2565012217842397E-004 - 234.53999999999996 4.2479120177246537E-004 - 234.59999999999997 4.2359634511958844E-004 - 234.65999999999997 4.2206394041506594E-004 - 234.71999999999997 4.2019297487347096E-004 - 234.77999999999997 4.1798304148617249E-004 - 234.83999999999997 4.1543432623327136E-004 - 234.89999999999998 4.1254756821472200E-004 - 234.95999999999998 4.0932414163690254E-004 - 235.01999999999998 4.0576601052866556E-004 - 235.07999999999998 4.0187572535582840E-004 - 235.13999999999999 3.9765639517398975E-004 - 235.19999999999999 3.9311178755333681E-004 - 235.25999999999999 3.8824622720833160E-004 - 235.31999999999999 3.8306456727390067E-004 - 235.38000000000000 3.7757232800331793E-004 - 235.44000000000000 3.7177548980283249E-004 - 235.50000000000000 3.6568069250626003E-004 - 235.56000000000000 3.5929506123339507E-004 - 235.62000000000000 3.5262624143828119E-004 - 235.68000000000001 3.4568245162074453E-004 - 235.74000000000001 3.3847237036089688E-004 - 235.80000000000001 3.3100513454811911E-004 - 235.86000000000001 3.2329035666662576E-004 - 235.92000000000002 3.1533812506330251E-004 - 235.97999999999996 3.0715888660646666E-004 - 236.03999999999996 2.9876354212802261E-004 - 236.09999999999997 2.9016326013977107E-004 - 236.15999999999997 2.8136957653941962E-004 - 236.21999999999997 2.7239437601461210E-004 - 236.27999999999997 2.6324974315175965E-004 - 236.33999999999997 2.5394803421649952E-004 - 236.39999999999998 2.4450177687165115E-004 - 236.45999999999998 2.3492371211951922E-004 - 236.51999999999998 2.2522672102522450E-004 - 236.57999999999998 2.1542380368523421E-004 - 236.63999999999999 2.0552802654956074E-004 - 236.69999999999999 1.9555248052483586E-004 - 236.75999999999999 1.8551033189244289E-004 - 236.81999999999999 1.7541470242282684E-004 - 236.88000000000000 1.6527870966897423E-004 - 236.94000000000000 1.5511537160885460E-004 - 237.00000000000000 1.4493764232248663E-004 - 237.06000000000000 1.3475835751021554E-004 - 237.12000000000000 1.2459018292325599E-004 - 237.18000000000001 1.1444560967808651E-004 - 237.24000000000001 1.0433695335621674E-004 - 237.30000000000001 9.4276283647000734E-005 - 237.36000000000001 8.4275419647369848E-005 - 237.42000000000002 7.4345907319779740E-005 - 237.47999999999996 6.4499000280836437E-005 - 237.53999999999996 5.4745627190094563E-005 - 237.59999999999997 4.5096366885229618E-005 - 237.65999999999997 3.5561448102568757E-005 - 237.71999999999997 2.6150721005922587E-005 - 237.77999999999997 1.6873634421688590E-005 - 237.83999999999997 7.7392412089220647E-006 - 237.89999999999998 -1.2438419813037464E-006 - 237.95999999999998 -1.0067427729380271E-005 - 238.01999999999998 -1.8723777492478104E-005 - 238.07999999999998 -2.7205604317853112E-005 - 238.13999999999999 -3.5506083205236783E-005 - 238.19999999999999 -4.3618851720384523E-005 - 238.25999999999999 -5.1538021149833296E-005 - 238.31999999999999 -5.9258177855507049E-005 - 238.38000000000000 -6.6774372979005003E-005 - 238.44000000000000 -7.4082129631922872E-005 - 238.50000000000000 -8.1177449703375137E-005 - 238.56000000000000 -8.8056799870572092E-005 - 238.62000000000000 -9.4717107273790201E-005 - 238.68000000000001 -1.0115576322037392E-004 - 238.74000000000001 -1.0737059829883297E-004 - 238.80000000000001 -1.1335988879367529E-004 - 238.86000000000001 -1.1912233719693291E-004 - 238.92000000000002 -1.2465708651670596E-004 - 238.97999999999996 -1.2996368166315079E-004 - 239.03999999999996 -1.3504208461499048E-004 - 239.09999999999997 -1.3989262208055850E-004 - 239.15999999999997 -1.4451601915685533E-004 - 239.21999999999997 -1.4891336908106264E-004 - 239.27999999999997 -1.5308610134012656E-004 - 239.33999999999997 -1.5703601168303474E-004 - 239.39999999999998 -1.6076519747476568E-004 - 239.45999999999998 -1.6427607602795318E-004 - 239.51999999999998 -1.6757136247255619E-004 - 239.57999999999998 -1.7065405632238890E-004 - 239.63999999999999 -1.7352741204236592E-004 - 239.69999999999999 -1.7619495049583304E-004 - 239.75999999999999 -1.7866041225670973E-004 - 239.81999999999999 -1.8092779039994867E-004 - 239.88000000000000 -1.8300123228672660E-004 - 239.94000000000000 -1.8488509150781579E-004 - 240.00000000000000 -1.8658389027075811E-004 - 240.06000000000000 -1.8810227680365717E-004 - 240.12000000000000 -1.8944507735996148E-004 - 240.18000000000001 -1.9061718936111977E-004 - 240.24000000000001 -1.9162363887048907E-004 - 240.30000000000001 -1.9246954166807551E-004 - 240.36000000000001 -1.9316005331949045E-004 - 240.42000000000002 -1.9370040062934141E-004 - 240.47999999999996 -1.9409586778039391E-004 - 240.53999999999996 -1.9435175414754535E-004 - 240.59999999999997 -1.9447336053780428E-004 - 240.65999999999997 -1.9446602655764030E-004 - 240.71999999999997 -1.9433507431189772E-004 - 240.77999999999997 -1.9408580625286570E-004 - 240.83999999999997 -1.9372350525878569E-004 - 240.89999999999998 -1.9325339912244422E-004 - 240.95999999999998 -1.9268067793145908E-004 - 241.01999999999998 -1.9201048542080739E-004 - 241.07999999999998 -1.9124789906545101E-004 - 241.13999999999999 -1.9039791407073092E-004 - 241.19999999999999 -1.8946546211166235E-004 - 241.25999999999999 -1.8845535084805116E-004 - 241.31999999999999 -1.8737232903070179E-004 - 241.38000000000000 -1.8622102360100191E-004 - 241.44000000000000 -1.8500592373200362E-004 - 241.50000000000000 -1.8373142782636257E-004 - 241.56000000000000 -1.8240180848450713E-004 - 241.62000000000000 -1.8102120615356458E-004 - 241.68000000000001 -1.7959361189921272E-004 - 241.74000000000001 -1.7812291061608155E-004 - 241.80000000000001 -1.7661280315174290E-004 - 241.86000000000001 -1.7506687995078339E-004 - 241.92000000000002 -1.7348857554724841E-004 - 241.97999999999996 -1.7188119976651274E-004 - 242.03999999999996 -1.7024790607672686E-004 - 242.09999999999997 -1.6859169075303328E-004 - 242.15999999999997 -1.6691543558610333E-004 - 242.21999999999997 -1.6522185193322927E-004 - 242.27999999999997 -1.6351352683693685E-004 - 242.33999999999997 -1.6179289705030888E-004 - 242.39999999999998 -1.6006227599103166E-004 - 242.45999999999998 -1.5832382176354722E-004 - 242.51999999999998 -1.5657957622736580E-004 - 242.57999999999998 -1.5483144126487270E-004 - 242.63999999999999 -1.5308116309063774E-004 - 242.69999999999999 -1.5133039382439367E-004 - 242.75999999999999 -1.4958064604004651E-004 - 242.81999999999999 -1.4783330954588409E-004 - 242.88000000000000 -1.4608963456137661E-004 - 242.94000000000000 -1.4435079819626645E-004 - 243.00000000000000 -1.4261782227854462E-004 - 243.06000000000000 -1.4089164736986418E-004 - 243.12000000000000 -1.3917310881248694E-004 - 243.18000000000001 -1.3746292187962446E-004 - 243.24000000000001 -1.3576172143058796E-004 - 243.30000000000001 -1.3407006355083554E-004 - 243.36000000000001 -1.3238840977510848E-004 - 243.42000000000002 -1.3071716026634352E-004 - 243.47999999999996 -1.2905661650185839E-004 - 243.53999999999996 -1.2740705719474399E-004 - 243.59999999999997 -1.2576866256135477E-004 - 243.65999999999997 -1.2414158006734317E-004 - 243.71999999999997 -1.2252590691492861E-004 - 243.77999999999997 -1.2092169383907925E-004 - 243.83999999999997 -1.1932896049903384E-004 - 243.89999999999998 -1.1774770376501509E-004 - 243.95999999999998 -1.1617788730089337E-004 - 244.01999999999998 -1.1461944241277492E-004 - 244.07999999999998 -1.1307228555175632E-004 - 244.13999999999999 -1.1153632007114603E-004 - 244.19999999999999 -1.1001144255527273E-004 - 244.25999999999999 -1.0849752875487786E-004 - 244.31999999999999 -1.0699444196781526E-004 - 244.38000000000000 -1.0550205726661469E-004 - 244.44000000000000 -1.0402023439132920E-004 - 244.50000000000000 -1.0254882936315249E-004 - 244.56000000000000 -1.0108769547416796E-004 - 244.62000000000000 -9.9636688816038312E-005 - 244.68000000000001 -9.8195664467754667E-005 - 244.74000000000001 -9.6764471347428438E-005 - 244.80000000000001 -9.5342988797149448E-005 - 244.86000000000001 -9.3931077923963606E-005 - 244.92000000000002 -9.2528607383527377E-005 - 244.97999999999996 -9.1135460444153048E-005 - 245.03999999999996 -8.9751532024544728E-005 - 245.09999999999997 -8.8376725378282772E-005 - 245.15999999999997 -8.7010964370594850E-005 - 245.21999999999997 -8.5654190924857647E-005 - 245.27999999999997 -8.4306351606856900E-005 - 245.33999999999997 -8.2967415487440521E-005 - 245.39999999999998 -8.1637391304084761E-005 - 245.45999999999998 -8.0316280974514944E-005 - 245.51999999999998 -7.9004118931927801E-005 - 245.57999999999998 -7.7700960945722034E-005 - 245.63999999999999 -7.6406871413138751E-005 - 245.69999999999999 -7.5121940233740015E-005 - 245.75999999999999 -7.3846262629168437E-005 - 245.81999999999999 -7.2579949584891510E-005 - 245.88000000000000 -7.1323122523344655E-005 - 245.94000000000000 -7.0075917798569860E-005 - 246.00000000000000 -6.8838457801306081E-005 - 246.06000000000000 -6.7610879359567556E-005 - 246.12000000000000 -6.6393331321546017E-005 - 246.18000000000001 -6.5185945945328382E-005 - 246.24000000000001 -6.3988860835706196E-005 - 246.30000000000001 -6.2802221726147994E-005 - 246.36000000000001 -6.1626162494897823E-005 - 246.42000000000002 -6.0460831885664392E-005 - 246.47999999999996 -5.9306379661747608E-005 - 246.53999999999996 -5.8162959081334102E-005 - 246.59999999999997 -5.7030737569862371E-005 - 246.65999999999997 -5.5909878865968536E-005 - 246.71999999999997 -5.4800576664110781E-005 - 246.77999999999997 -5.3703027310168921E-005 - 246.83999999999997 -5.2617456330707936E-005 - 246.89999999999998 -5.1544097996235123E-005 - 246.95999999999998 -5.0483203779212598E-005 - 247.01999999999998 -4.9435045907150345E-005 - 247.07999999999998 -4.8399919539566529E-005 - 247.13999999999999 -4.7378131701540271E-005 - 247.19999999999999 -4.6370001996169036E-005 - 247.25999999999999 -4.5375870175881945E-005 - 247.31999999999999 -4.4396082960808531E-005 - 247.38000000000000 -4.3430994542121396E-005 - 247.44000000000000 -4.2480973080362239E-005 - 247.50000000000000 -4.1546374750256270E-005 - 247.56000000000000 -4.0627567209417038E-005 - 247.62000000000000 -3.9724905639332605E-005 - 247.68000000000001 -3.8838740844667666E-005 - 247.74000000000001 -3.7969418670065971E-005 - 247.80000000000001 -3.7117273005671655E-005 - 247.86000000000001 -3.6282621310196775E-005 - 247.92000000000002 -3.5465778141054332E-005 - 247.97999999999996 -3.4667034302460644E-005 - 248.03999999999996 -3.3886673538498616E-005 - 248.09999999999997 -3.3124960025287074E-005 - 248.15999999999997 -3.2382147756733026E-005 - 248.21999999999997 -3.1658479902816177E-005 - 248.27999999999997 -3.0954179875218875E-005 - 248.33999999999997 -3.0269462234846276E-005 - 248.39999999999998 -2.9604529360667835E-005 - 248.45999999999998 -2.8959573257055711E-005 - 248.51999999999998 -2.8334765809116516E-005 - 248.57999999999998 -2.7730274490421973E-005 - 248.63999999999999 -2.7146246028256955E-005 - 248.69999999999999 -2.6582810169172696E-005 - 248.75999999999999 -2.6040080561790371E-005 - 248.81999999999999 -2.5518143159962104E-005 - 248.88000000000000 -2.5017067034557370E-005 - 248.94000000000000 -2.4536889766126243E-005 - 249.00000000000000 -2.4077616999131681E-005 - 249.06000000000000 -2.3639221919782838E-005 - 249.12000000000000 -2.3221645065111817E-005 - 249.18000000000001 -2.2824782942580452E-005 - 249.24000000000001 -2.2448495091012050E-005 - 249.30000000000001 -2.2092600805419271E-005 - 249.36000000000001 -2.1756875852565343E-005 - 249.42000000000002 -2.1441056071338070E-005 - 249.47999999999996 -2.1144840016873514E-005 - 249.53999999999996 -2.0867886391501114E-005 - 249.59999999999997 -2.0609824267874230E-005 - 249.65999999999997 -2.0370250802352376E-005 - 249.71999999999997 -2.0148738339909941E-005 - 249.77999999999997 -1.9944837371483464E-005 - 249.83999999999997 -1.9758082764648016E-005 - 249.89999999999998 -1.9587992109187708E-005 - 249.95999999999998 -1.9434079827572318E-005 - 250.01999999999998 -1.9295850240143689E-005 - 250.07999999999998 -1.9172803875739069E-005 - 250.13999999999999 -1.9064444805306058E-005 - 250.19999999999999 -1.8970270011824456E-005 - 250.25999999999999 -1.8889783462371013E-005 - 250.31999999999999 -1.8822485231462805E-005 - 250.38000000000000 -1.8767874604025953E-005 - 250.44000000000000 -1.8725449931683214E-005 - 250.50000000000000 -1.8694708662408866E-005 - 250.56000000000000 -1.8675140639402854E-005 - 250.62000000000000 -1.8666235496796126E-005 - 250.68000000000001 -1.8667472655869080E-005 - 250.74000000000001 -1.8678331120604273E-005 - 250.80000000000001 -1.8698284091448713E-005 - 250.86000000000001 -1.8726798426020072E-005 - 250.92000000000002 -1.8763345097147503E-005 - 250.97999999999996 -1.8807396346415819E-005 - 251.03999999999996 -1.8858428896889383E-005 - 251.09999999999997 -1.8915924987252555E-005 - 251.15999999999997 -1.8979383726101576E-005 - 251.21999999999997 -1.9048315380061017E-005 - 251.27999999999997 -1.9122249173533831E-005 - 251.33999999999997 -1.9200734399732321E-005 - 251.39999999999998 -1.9283345586300890E-005 - 251.45999999999998 -1.9369677124872656E-005 - 251.51999999999998 -1.9459350835342034E-005 - 251.57999999999998 -1.9552009617689727E-005 - 251.63999999999999 -1.9647318029717192E-005 - 251.69999999999999 -1.9744961631987635E-005 - 251.75999999999999 -1.9844640330463341E-005 - 251.81999999999999 -1.9946070505376912E-005 - 251.88000000000000 -2.0048978002492361E-005 - 251.94000000000000 -2.0153098669014028E-005 diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index 8f4d6591..f826c95a 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -3,10 +3,8 @@ SPECFEM """ import os -import pytest import numpy as np from glob import glob -from pyasdf import ASDFDataSet from seisflows import ROOT_DIR from seisflows.tools import unix from seisflows.preprocess.default import Default @@ -17,7 +15,7 @@ TEST_SOLVER = os.path.join(ROOT_DIR, "tests", "test_data", "test_solver") -def test_read(): +def test_default_read(): """ Test that we can read SPECFEM generated synthetics with the preprocess mod. """ @@ -35,7 +33,7 @@ def test_read(): assert(st1[0].stats.npts == st2[0].stats.npts) -def test_write(tmpdir): +def test_default_write(tmpdir): """ Make sure we can write both data formats """ @@ -52,7 +50,7 @@ def test_write(tmpdir): preprocess.write(st1, fid=os.path.join(tmpdir, "test_stream_su")) -def test_initialize_adjoint_traces(tmpdir): +def test_default_initialize_adjoint_traces(tmpdir): """ Make sure we can write empty adjoint sources expected by SPECFEM """ @@ -71,7 +69,7 @@ def test_initialize_adjoint_traces(tmpdir): assert(fid.endswith(".adj")) -def test_quantify_misfit(tmpdir): +def test_default_quantify_misfit(tmpdir): """ Quantify misfit with some example data """ @@ -119,7 +117,7 @@ def test_pyaflowa_setup(tmpdir): pyaflowa.setup() - assert(len(pyaflowa._station_codes) == 5) + assert(len(pyaflowa._station_codes) == 2) assert(pyaflowa._station_codes[0] == "AA.S000000.*.*") assert(len(pyaflowa._source_names) == pyaflowa._ntask) assert(pyaflowa._source_names[0] == "001") @@ -145,89 +143,27 @@ def test_pyaflowa_setup_quantify_misfit(tmpdir): assert(config.end_pad == 299.94) -def test_pyaflowa_quantify_misfit_station(tmpdir): - """ - Check that the function to quantify misfit that should be run in parallel - works as a serial job - """ - pyaflowa = Pyaflowa( - workdir=tmpdir, - path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), - path_solver=TEST_SOLVER, source_prefix="SOURCE", ntask=2, - data_case="synthetic", components="Y", - ) - pyaflowa.setup() - config = pyaflowa._setup_quantify_misfit(source_name="001", iteration=1, - step_count=1) - misfit, nwin = pyaflowa._quantify_misfit_station( - config=config, station_code=pyaflowa._station_codes[0], - save_adjsrcs=False - ) - assert(misfit == 33.5304) - assert(nwin == 8.) - - -def test_pyaflowa_quantify_misfit_single(tmpdir): - """ - Test misfit quantification for Pyatoa during a single misfit evaluation. - Waveform data and source and receiver metadata is exposed from the test data - directory. Data and synthetics are the same so residuals will be 0. Want - to check that we can process in parallel and that Pyatoa outputs figures, - and data. - """ - pyaflowa = Pyaflowa( - workdir=tmpdir, - path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), - path_solver=TEST_SOLVER, source_prefix="SOURCE", ntask=2, - data_case="synthetic", components="Y", - ) - pyaflowa.setup() - for source_name in pyaflowa._source_names: - save_residuals = os.path.join(tmpdir, f"residuals_{source_name}.txt") - pyaflowa.quantify_misfit(source_name=source_name, - save_residuals=save_residuals, - save_adjsrcs=tmpdir) - - residuals = np.loadtxt(save_residuals) # just check one of the file - assert(residuals == 0.919) - - # Check that windows and adjoint sources were saved to dataset - nwin = {"001": 45, "002": 48} - for source_name in pyaflowa._source_names: - with ASDFDataSet(os.path.join(pyaflowa.path._datasets, - f"{source_name}.h5")) as ds: - # Pyatoa selects N number windows for each source - assert(len(ds.auxiliary_data.MisfitWindows.i01.s00.list()) == - nwin[source_name]) - assert(len(ds.auxiliary_data.AdjointSources.i01.s00.list()) == 5) - - # Check that adjoint sources are all zero - adjsrcs = glob(os.path.join(tmpdir, "*.adj")) - for adjsrc in adjsrcs: - data = np.loadtxt(adjsrc) - assert(data[:, 1].any()) # assert that adjoint sourcse are not zero - - -def test_pyaflowa_check_fixed_windows(tmpdir): +def test_pyaflowa_check_fixed_windows(): """ Test that misfit window bool returner always returns how we want it to. """ pf = Pyaflowa(fix_windows=True) - assert(pf._check_fixed_windows(iteration=99, step_count=99)[0]) + assert (pf._check_fixed_windows(iteration=99, step_count=99)[0]) pf = Pyaflowa(fix_windows="ITER") - assert(not pf._check_fixed_windows(iteration=1, step_count=0)[0]) - assert(pf._check_fixed_windows(iteration=1, step_count=1)[0]) + assert (not pf._check_fixed_windows(iteration=1, step_count=0)[0]) + assert (pf._check_fixed_windows(iteration=1, step_count=1)[0]) pf = Pyaflowa(fix_windows="ONCE", start=5) - assert(not pf._check_fixed_windows(iteration=5, step_count=0)[0]) - assert(pf._check_fixed_windows(iteration=5, step_count=1)[0]) - assert(pf._check_fixed_windows(iteration=6, step_count=0)[0]) + assert (not pf._check_fixed_windows(iteration=5, step_count=0)[0]) + assert (pf._check_fixed_windows(iteration=5, step_count=1)[0]) + assert (pf._check_fixed_windows(iteration=6, step_count=0)[0]) -def test_pyaflowa_finalize(tmpdir): +def test_pyaflowa_line_search(tmpdir): """ - Test teardown procedures for the Pyaflowa preprocessing module which - includes creating an Inspector, condensing PDF files, and exporting - files to disk. + Test that the Pyaflowa preprocess class can quantify misfit over the course + of a few evaluations (a line search) and run its finalization task + Essentially an integration test testing the entire preprocessing module + works as a whole """ pyaflowa = Pyaflowa( workdir=tmpdir, @@ -239,57 +175,30 @@ def test_pyaflowa_finalize(tmpdir): ) pyaflowa.setup() unix.mkdir(pyaflowa.path.output) # usually done by other modules setup + save_residuals = os.path.join(tmpdir, f"residuals.txt") for source_name in pyaflowa._source_names: for step_count in range(3): # Ignore any outputs, just want to run misfit quantification # misfit will not be reducing but thats okay pyaflowa.quantify_misfit(source_name=source_name, - iteration=1, - step_count=step_count) + iteration=1, step_count=step_count, + save_residuals=save_residuals, + save_adjsrcs=tmpdir) pyaflowa.finalize() + + # Check that final residuals file is the same + residuals = np.loadtxt(save_residuals) + assert(pyaflowa.sum_residuals(residuals) == 6.045) + + # Check that atleast one adjoint sources are not zero + adjsrcs = glob(os.path.join(tmpdir, "*.adj")) + data = np.loadtxt(adjsrcs[0]) + assert(data[:, 1].any()) # assert that adjoint sourcse are not zero + # Just check file count to see that finalize did what it's supposed to do # since finalize just moves and collects files assert(len(glob(os.path.join(pyaflowa.path.output, "figures", "*"))) == 1) assert(len(glob(os.path.join(pyaflowa.path.output, "logs", "*"))) == 6) assert(len(glob(os.path.join(pyaflowa.path.output, "datasets", "*.csv"))) == 2) - - -# def test_pyaflowa_quantify_misfit_inversion(tmpdir): -# """ -# Test misfit quantification for Pyatoa but simulating multiple back-to-back -# evaluations as one would encounter during an inversion This would involve -# re-using misfit windows throughout the evaluation, and reading in already -# gathered data from an ASDFDataSet -# """ -# pyaflowa = Pyaflowa( -# workdir=tmpdir, -# path_specfem_data=os.path.join(TEST_SOLVER, "mainsolver", "DATA"), -# path_solver=TEST_SOLVER, source_prefix="SOURCE", ntask=1, -# data_case="synthetic", components="Y", fix_windows="ITER", -# ) -# pyaflowa.setup() -# source_name = pyaflowa._source_names[0] -# for step_count in range(2): -# # Ignore any outputs, just want to run misfit quantification -# # misfit will not be reducing but thats okay -# pyaflowa.quantify_misfit(source_name=source_name, -# iteration=1, -# step_count=step_count) -# -# # Check that correct number of PDFs have been made -# assert(len(glob(os.path.join(pyaflowa.path._figures, "*pdf"))) == 4) -# -# # Check datasets for correct formatting of auxiliary data and rand vals -# fid = os.path.join(pyaflowa.path._datasets, f"{source_name}.h5") -# with ASDFDataSet(fid, mode="r") as ds: -# assert(len(ds.waveforms.list()) == 5) -# sta_0 = ds.waveforms[ds.waveforms.list()[0]] -# assert(len(sta_0.list()) == 5) # 1 observed, 4 synthetics -# assert(len(ds.auxiliary_data.AdjointSources.i01) == 2) -# assert(len(ds.auxiliary_data.MisfitWindows.i01) == 2) -# assert(len(ds.auxiliary_data.MisfitWindows.i01.s01.list()) == 45) -# adjsrc = ds.auxiliary_data.AdjointSources.i01.s00.AA_S000004_BXY -# misfit = adjsrc.parameters["misfit"] -# assert(misfit == pytest.approx(18.3167, 3)) From 4d62b1bb7d6d74203929a131fb21591058a60600 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 2 Aug 2022 19:59:45 -0800 Subject: [PATCH 101/195] seisflows configure now works thanks to more strict docstring formatting. All docstrings that get put into the parameter file will need some special formatting for seisflows configure to work properly, but now all inherited docstrings are honored and paths are written separately --- seisflows/optimize/LBFGS.py | 10 ++- seisflows/optimize/NLCG.py | 10 ++- seisflows/optimize/gradient.py | 10 ++- seisflows/preprocess/default.py | 15 +++- seisflows/preprocess/pyaflowa.py | 21 +++++- seisflows/seisflows.py | 55 ++++++++++---- seisflows/solver/specfem.py | 11 ++- seisflows/solver/specfem2d.py | 10 ++- seisflows/solver/specfem3d.py | 10 ++- seisflows/solver/specfem3d_globe.py | 12 ++- seisflows/system/cluster.py | 10 ++- seisflows/system/slurm.py | 13 +++- seisflows/system/workstation.py | 10 ++- seisflows/workflow/forward.py | 13 +++- seisflows/workflow/inversion.py | 21 ++++-- seisflows/workflow/migration.py | 17 +++-- seisflows/workflow/thrifty_inversion.py | 97 ------------------------- 17 files changed, 196 insertions(+), 149 deletions(-) delete mode 100644 seisflows/workflow/thrifty_inversion.py diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index c6936f82..13219ad2 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -41,8 +41,12 @@ class LBFGS(Gradient): """ - [optimize.lbfgs] Limited memory BFGS nonlienar optimization algorithm + L-BFGS Optimization + ------------------- + Limited memory BFGS nonlienar optimization algorithm + Parameters + ---------- :type lbfgs_mem: int :param lbfgs_mem: L-BFGS memory. Max number of previous gradients to retain in local memory for approximating the objective function. @@ -51,6 +55,10 @@ class LBFGS(Gradient): :type lbfgs_thresh: L-BFGS angle restart threshold. If the angle between the current and previous search direction exceeds this value, optimization algorithm will be restarted. + + Paths + ----- + *** """ __doc__ = Gradient.__doc__ + __doc__ diff --git a/seisflows/optimize/NLCG.py b/seisflows/optimize/NLCG.py index 8bc88fed..cccce683 100644 --- a/seisflows/optimize/NLCG.py +++ b/seisflows/optimize/NLCG.py @@ -12,8 +12,12 @@ class NLCG(Gradient): """ - [optimize.NLCG] Nonlinear conjugate gradient method + NLCG Optimization + ----------------- + Nonlinear conjugate gradient method + Parameters + ---------- :type nlcg_max: int :param nlcg_max: NLCG periodic restart interval, should be between 1 and infinity @@ -22,6 +26,10 @@ class NLCG(Gradient): :type calc_beta: str :param calc_beta: method to calculate the parameter 'beta' in the NLCG algorithm. Available: 'pollak_ribere', 'fletcher_reeves' + + Paths + ----- + *** """ __doc__ = Gradient.__doc__ + __doc__ diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 8365e652..917c9d9a 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -39,8 +39,12 @@ class Gradient: """ - [optimization.gradient] gradient/steepest descent optimization algorithm. + Gradient Optimization + --------------------- + Gradient/steepest descent optimization algorithm. + Parameters + ---------- :type line_search_method: str :param line_search_method: chosen line_search algorithm. Currently available are 'bracket' and 'backtrack'. See seisflows.plugins.line_search @@ -61,11 +65,13 @@ class Gradient: :param step_len_max: maximum allowable step length during the line search. Set as a fraction of the current model parameters - [path structure] + Paths + ----- :type path_preconditioner: str :param path_preconditioner: optional path to a set of preconditioner files formatted the same as the input model (or output model of solver). Required to exist and contain files if `preconditioner`==True + *** """ def __init__(self, line_search_method="bracket", preconditioner=None, step_count_max=10, step_len_init=0.05, diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index e0380a5c..a26fc323 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -20,9 +20,13 @@ class Default: """ - [preprocess.default] Data processing for seismic traces, with options for - data misfit, filtering, normalization and muting. + Default Preprocess + ------------------ + Data processing for seismic traces, with options for data misfit, + filtering, normalization and muting. + Parameters + ---------- :type data_format: str :param data_format: data format for reading traces into memory. For available see: seisflows.plugins.preprocess.readers @@ -69,6 +73,13 @@ class Default: LATE: mute late arrivals; SHORT: mute short source-receiver distances; LONG: mute long source-receiver distances + + Paths + ----- + :type path_preprocess: str + :param path_preprocess: scratch path for all preprocessing processes, + including saving files + *** """ def __init__(self, data_format="ascii", misfit="waveform", adjoint="waveform", normalize=None, filter=None, diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index e6aa4307..33b45216 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -24,8 +24,13 @@ class Pyaflowa: """ - [preprocess.pyaflowa] preprocessing and misfit quantification using Pyatoa + Preprocess Pyaflowa + ------------------- + Preprocessing and misfit quantification using Python's Adjoint Tomography + Operations Assistance (Pyatoa) + Parameters + ---------- :type min_period: float :param min_period: Minimum filter corner in unit seconds. Bandpass filter if set with `max_period`, highpass filter if set without @@ -84,9 +89,11 @@ class Pyaflowa: :type export_log_files: bool :param export_log_files: periodically save log files created by Pyatoa - [path structure] + Paths + ----- :type path_preprocess: str :param path_preprocess: scratch path for preprocessing related steps + *** """ def __init__(self, min_period=1., max_period=10., filter_corners=4, client=None, rotate=False, pyflex_preset="default", @@ -286,6 +293,12 @@ def quantify_misfit(self, source_name=None, save_residuals=None, .. note:: meant to be run on system using system.run() with access to solver + .. warning:: + parallel processing with concurrent futures currently leads to + computer crashes and I have not been able to figure out why or how + to deal with it. So for the moment misfit quantification on a + per-event basis is run serially + :type source_name: str :param source_name: name of the event to quantify misfit for. If not given, will attempt to gather event id from the given task id which @@ -305,9 +318,11 @@ def quantify_misfit(self, source_name=None, save_residuals=None, """ # Generate an event/evaluation specific config object to control Pyatoa config = self._setup_quantify_misfit(source_name, iteration, step_count) + # Run misfit quantification for ALL stations and this given event + # !!! Do not set parallel == True, see note in docstring !!! misfit, nwin = self._run_quantify_misfit(config, save_adjsrcs, - parallel=True) + parallel=False) # Calculate misfit based on the raw misfit and total number of windows if save_residuals: # Calculate the misfit based on the number of windows. Equation from diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index a8fb0030..7e831444 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -423,11 +423,46 @@ def configure(self, absolute_paths=False, **kwargs): default values for each of the SeisFlows module parameters. This function writes files manually, consistent with the .yaml format. + .. note:: + This function relies on docstrings being formatted the same way + throughout the package. Note the trailing '***' character at the end + of the docstring. This is required for `configure` to know where one + docstring ends and another beings. The formatting looks like: + + Title + ----- + some description + + Parameters + ---------- + :type a: int + :param a: parameter a + + Paths + ----- + :type path_a: str + :param path_a: path for a + *** + :type absolute_paths: bool :param absolute_paths: if True, expand pathnames to absolute paths, else if False, use path names relative to the working directory. Defaults to False, uses relative paths. """ + def split_module_docstring(mod, idx): + """ + Since our docstrings are concatenated, we need to break them + and remove the path docstrings, those come later. + + :type idx: int + :param idx: 0 returns parameter docstrings, 1 returns path docstring + """ + docstring = mod.__doc__.replace("\n", "\n#") + docssplit = docstring.split("***\n#") + docfinal = "".join([_.split("Paths\n# -----\n#")[idx] for _ in + docssplit]) + return docfinal + # Load in a barebones parameter file and instantiate specific classes parameters = load_yaml(os.path.join(self._args.workdir, self._args.parameter_file)) @@ -443,10 +478,8 @@ def configure(self, absolute_paths=False, **kwargs): f = open(self._args.parameter_file, "a") # Write all module parameters and corresponding docstrings for module in modules: - docstring = module.__doc__.replace("\n", "\n#") - docstring = docstring.split("[path structure]")[0] + docstring = split_module_docstring(module, 0) f.write(f"# {'=' * 77}\n#{docstring}\n# {'=' * 77}\n") - # Write the parameters, make sure to not have the same one twice for key, val in vars(module).items(): # Skip already written, hidden vars, and paths @@ -457,20 +490,16 @@ def configure(self, absolute_paths=False, **kwargs): val = "null" f.write(f"{key}: {val}\n") written.append(key) + # Write docstrings for publically accesible path structure f.write(f"# {'=' * 77}\n") f.write("#\n") - f.write("#\t [path structure] SeisFlows internal/external paths") + f.write("#\t Paths\n") + f.write("#\t -----\n") for module in modules: - docstring = module.__doc__.strip().replace("\n", "\n#") - docstring = docstring.split("[path structure]") - try: - # The extra split is to catch any inherited docstrings - f.write(docstring[1].split("[")[0]) - # IndexError means no path docstring to write out - except IndexError as e: - continue - f.write(f"\n# {'=' * 77}\n") + docstring = split_module_docstring(module, -1) + f.write(f"#{docstring}\n") + f.write(f"# {'=' * 77}\n") # Write values for publically accessible path structure written = [] diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 030749e2..a5fefecd 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -30,9 +30,12 @@ class Specfem: """ - [solver.specfem] Generalized SPECFEM interface to manipulate - SPECFEM2D/3D/3D_GLOBE via Python. + Solver SPECFEM + -------------- + Generalized SPECFEM interface to manipulate SPECFEM2D/3D/3D_GLOBE w/ Python + Parameters + ---------- :type data_format: str :param data_format: data format for reading traces into memory. Available: ['SU': seismic unix format, 'ASCII': human-readable ascii] @@ -67,7 +70,8 @@ class Specfem: :param mpiexec: MPI executable used to run parallel processes. Should also be defined for the system module - [path structure] + Paths + ----- :type path_data: str :param path_data: path to any externally stored data required by the solver :type path_specfem_bin: str @@ -77,6 +81,7 @@ class Specfem: :param path_specfem_data: path to SPECFEM DATA/ directory which must contain the CMTSOLUTION, STATIONS and Par_file files used for running SPECFEM + *** """ def __init__(self, data_format="ascii", materials="acoustic", density=False, nproc=1, ntask=1, attenuation=False, diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index e60e902e..b7d98c55 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -13,13 +13,21 @@ class Specfem2D(Specfem): """ - [solver.specfem2d] SPECFEM2D-specific alterations to the base SPECFEM module + Solver SPECFEM2D + ---------------- + SPECFEM2D-specific alterations to the base SPECFEM module + Parameters + ---------- :type source_prefix: str :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults to 'SOURCE' :type multiples: bool :param multiples: set an absorbing top-boundary condition + + Paths + ----- + *** """ __doc__ = Specfem.__doc__ + __doc__ diff --git a/seisflows/solver/specfem3d.py b/seisflows/solver/specfem3d.py index 1715e03f..da449720 100644 --- a/seisflows/solver/specfem3d.py +++ b/seisflows/solver/specfem3d.py @@ -12,13 +12,21 @@ class Specfem3D(Specfem): """ - [solver.specfem3d] SPECFEM3D-specific alterations to the base SPECFEM module + Solver SPECFEM3D + ---------------- + SPECFEM3D-specific alterations to the base SPECFEM module + Parameters + ---------- :type source_prefix: str :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults to 'CMTSOLUTION' :type multiples: bool :param multiples: set an absorbing top-boundary condition + + Paths + ----- + *** """ __doc__ = Specfem.__doc__ + __doc__ diff --git a/seisflows/solver/specfem3d_globe.py b/seisflows/solver/specfem3d_globe.py index 7e8a5561..f1205f86 100644 --- a/seisflows/solver/specfem3d_globe.py +++ b/seisflows/solver/specfem3d_globe.py @@ -11,8 +11,16 @@ class Specfem3DGlobe(Specfem3D): """ - [solver.specfem3d_globe] SPECFEM3D_Globe-specific alterations to the - solver.specfem3d (cartesian) module + Solver SPECFEM3D_GLOBE + ---------------------- + SPECFEM3D_Globe-specific alterations to the solver.specfem3d module + + Parameters + ---------- + + Paths + ----- + *** """ __doc__ = Specfem3D.__doc__ + __doc__ diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index 5f28e6d3..b1a73b9c 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -22,8 +22,12 @@ class Cluster(Workstation): """ - [system.cluster] generic or common HPC/cluster interfacing commands + Cluster System + ------------------ + Generic or common HPC/cluster interfacing commands + Parameters + ---------- :type title: str :param title: The name used to submit jobs to the system, defaults to the name of the current working directory @@ -44,6 +48,10 @@ class Cluster(Workstation): :param environs: Optional environment variables to be provided in the following format VAR1=var1,VAR2=var2... Will be set using os.environs + + Paths + ----- + *** """ __doc__ = Workstation.__doc__ + __doc__ diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index be1cf4fe..17f3af68 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -19,21 +19,28 @@ import time import subprocess -from seisflows import logger +from seisflows import ROOT_DIR, logger from seisflows.system.cluster import Cluster from seisflows.tools import msg -from seisflows.tools.config import ROOT_DIR class Slurm(Cluster): """ - [system.slurm] Interface for submitting jobs to Simple Linux Utility for + System Slurm + ------------------ + Runs tasks in serial on a local machine.Interface for submitting jobs to Simple Linux Utility for Resource Management (SLURM) system. + Parameters + ---------- :type slurm_args: str :param slurm_args: Any (optional) additional SLURM arguments that will be passed to the SBATCH scripts. Should be in the form: '--key1=value1 --key2=value2" + + Paths + ----- + *** """ __doc__ = Cluster.__doc__ + __doc__ diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 74fd1441..1486f682 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -14,8 +14,12 @@ class Workstation: """ - [system.workstation] runs tasks in serial on a local machine. + Workstation System + ------------------ + Runs tasks in serial on a local machine. + Parameters + ---------- :type ntask: int :param ntask: number of individual tasks/events to run during workflow. Must be <= the number of source files in `path_specfem_data` @@ -29,7 +33,8 @@ class Workstation: name, line number and message type. Useful for debugging but also very verbose. - [path structure] + Paths + ----- :type path_output_log: str :param path_output_log: path to a text file used to store the outputs of the package wide logger, which are also written to stdout @@ -39,6 +44,7 @@ class Workstation: :type path_log_files: str :param path_log_files: path to a directory where individual log files are saved whenever a number of parallel tasks are run on the system. + *** """ def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, workdir=os.getcwd(), path_output=None, path_system=None, diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index bee3527e..e249721a 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -16,9 +16,13 @@ class Forward: """ - [workflow.forward] Run forward solver in parallel and (optionally) calculate + Forward Workflow + ---------------- + Run forward solver in parallel and (optionally) calculate data-synthetic misfit and adjoint sources. + Parameters + ---------- :type modules: list of module :param modules: instantiated SeisFlows modules which should have been generated by the function `seisflows.config.import_seisflows` with a @@ -40,8 +44,8 @@ class Forward: are generated by the external solver to `path_output`. If False, residuals stored in scratch may be discarded at any time in the workflow - [path structure] - + Paths + ----- :type workdir: str :param workdir: working directory in which to look for data and store results. Defaults to current working directory @@ -63,6 +67,7 @@ class Forward: :type path_eval_grad: str :param path_eval_grad: scratch path to store files for gradient evaluation, including models, kernels, gradient and residuals. + *** """ def __init__(self, modules=None, data_case="data", export_traces=False, export_residuals=False, workdir=os.getcwd(), path_output=None, @@ -236,7 +241,7 @@ def setup(self): def checkpoint(self): """ - Saves active SeisFlows working state to disk as Pickle files such that + Saves active SeisFlows working state to disk as a text files such that the workflow can be resumed following a crash, pause or termination of workflow. """ diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 6072847c..dedada05 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -30,9 +30,13 @@ class Inversion(Migration): """ - [workflow.inversion] Peforms iterative nonlinear inversion using the - built-in optimization library. + Inversion Workflow + ------------------ + Peforms iterative nonlinear inversion using the machinery of the Forward + and Migration workflows, as well as a built-in optimization library. + Parameters + ---------- :type start: int :param start: start inversion workflow at this iteration. 1 <= start <= inf :type end: int @@ -50,11 +54,12 @@ class Inversion(Migration): :param export_model: export best-fitting model from the line search to disk. If False, new models can be discarded from scratch at any time. - [path structure] - + Paths + ----- :type path_eval_func: str :param path_eval_func: scratch path to store files for line search objective function evaluations, including models, misfit and residuals + *** """ __doc__ = Migration.__doc__ + __doc__ @@ -228,13 +233,15 @@ def evaluate_initial_misfit(self): logger.info(msg.mnr("THRIFTY INVERSION; SKIP MISFIT EVAL")) else: logger.info(msg.mnr("EVALUATING MISFIT FOR MODEL `m_new`")) - # Previous line search will have saved `m_new` as the initial model, - # export in SPECFEM format to a path discoverable by all solvers + # Previous line search will have saved `m_new` as the initial + # model, export in SPECFEM format to a path discoverable by all + # solvers path_model = os.path.join(self.path.eval_grad, "model") m_new = self.optimize.load_vector("m_new") m_new.write(path=path_model) - # Run forward simulation/misfit quantification with previous model + # Run forward simulation/misfit quantification with previous + # model self.system.run( [self.run_forward_simulations, self.evaluate_objective_function], diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 9508c064..cf065dcc 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -27,10 +27,14 @@ class Migration(Forward): """ - [workflow.migration] Run forward and adjoint solver to produce - event-dependent misfit kernels. Sum and postprocess kernels to produce - gradient. In seismic exploration this is 'reverse time migration'. - + Migration Workflow + ------------------ + Run forward and adjoint solver to produce event-dependent misfit kernels. + Sum and postprocess kernels to produce gradient. In seismic exploration + this is 'reverse time migration'. + + Parameters + ---------- :type export_gradient: bool :param export_gradient: export the gradient after it has been generated in the scratch directory. If False, gradient can be discarded from @@ -40,12 +44,13 @@ class Migration(Forward): been generated in the scratch directory. If False, gradient can be discarded from scratch at any time in the workflow - [path structure] - + Paths + ----- :type path_mask: str :param path_mask: optional path to a masking function which is used to mask out or scale parts of the gradient. The user-defined mask must match the file format of the input model (e.g., .bin files). + *** """ __doc__ = Forward.__doc__ + __doc__ diff --git a/seisflows/workflow/thrifty_inversion.py b/seisflows/workflow/thrifty_inversion.py deleted file mode 100644 index 7f7183b8..00000000 --- a/seisflows/workflow/thrifty_inversion.py +++ /dev/null @@ -1,97 +0,0 @@ -#!/usr/bin/env python3 -""" -Thrifty: using resources carefully and not wastefully - -A thrifty inversion skips the costly intialization step (i.e., forward -simulations and misfit quantification) if the final forward simulations from -the previous iteration's line search can be used in the current one. Otherwise -it performs the same as the Inversion workflow -""" -from seisflows import logger -from seisflows.workflow.inversion import Inversion -from seisflows.tools import unix, msg - - -class ThriftyInversion(Inversion): - """ - [workflow.thrifty_inversion] an inversion that attempts to save resources - by re-using previous line search results for the current iteration. - - :type line_search_method: str - :param line_search_method: chosen line_search algorithm. Currently available - are 'bracket' and 'backtrack'. See seisflows.plugins.line_search - for all available options - """ - __doc__ = Inversion.__doc__ + __doc__ - - def __init__(self, line_search_method): - """Thrifty does not require input parameters - - """ - super().__init__() - - self._line_search_method = line_search_method - self._thrifty_status = False - - def check(self): - """ - Checks that we have the correct line search - """ - super().check() - - assert(self._line_search_method.title() == "Backtrack"), ( - "Thrifty inversion requires `line_search_method` == 'backtrack'" - ) - - def evaluate_initial_misfit(self): - """ - If line search can be carried over, skip initialization step - Or if manually starting a new run, start with normal inversion init - """ - if not self._thrifty_status or (self.optimize.iteration == self.start): - super().evaluate_initial_misfit() - else: - logger.info(msg.mnr("THRIFTY INVERSION, SKIPPING INITIAL MISFIT " - "EVALUATION")) - - def clean_scratch_directory(self): - """ - Determine if forward simulation from line search can be carried over. - We assume clean() is the final flow() argument so that we can update - the thrifty status here. - """ - self._thrifty_status = self._update_status() - - if self._thrifty_status: - logger.info( - msg.mnr("THRIFTY CLEANING WORKDIR FOR NEXT ITERATION") - ) - unix.rm(self.path.eval_grad) - # Last line search evaluation becomes the new gradient evaluation - unix.mv(self.path.eval_func, self.path.eval_grad) - unix.mkdir(self.path.eval_func) - else: - super().clean_scratch_directory() - - def _update_status(self): - """ - Determine if line search forward simulation can be carried over based - on a variety of criteria relating to location in the inversion. - """ - logger.info("updating thrifty inversion status") - if self.optimize.iter == self.start: - logger.info("1st iteration, defaulting to inversion workflow") - thrifty = False - elif self.optimize.restarted: - logger.info("optimization has been restarted, defaulting to " - "inversion workflow") - thrifty = False - elif self.optimize.iter == self.end: - logger.info("final iteration, defaulting to inversion workflow") - thrifty = False - else: - logger.info("continuing with thrifty inversion workflow") - thrifty = True - - return thrifty - From 991fcbaaf7eb347bac6944790526357f25f8bc3d Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 3 Aug 2022 21:01:40 -0800 Subject: [PATCH 102/195] changed default preprocess inputs to match pyaflowa call structure both examples 1 and 2 setup and run working properly forward workflow moved model check into initial misfit check rather than setup because inherited setup after iteration 1 doesn't need to check these values anymore bug fix inversion workflow saving residuals but looking for 'residuals.txt' --- ...pecfem2d_workstation_inversion_w_pyatoa.py | 17 ++++--- seisflows/examples/sfexample2d.py | 17 ++++--- seisflows/preprocess/default.py | 46 ++++++++++++++----- seisflows/preprocess/pyaflowa.py | 2 +- seisflows/workflow/forward.py | 20 ++++---- seisflows/workflow/inversion.py | 10 ++-- 6 files changed, 68 insertions(+), 44 deletions(-) diff --git a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py index 9d0ab43c..55415500 100644 --- a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py @@ -83,15 +83,16 @@ def setup_seisflows_working_directory(self): print("> EX2: Setting SeisFlows parameters for Pyatao preprocessing") self.sf.setup(force=True) # Force will delete existing parameter file - self.sf.par("preprocess", "pyatoa") + self.sf.par("workflow", "inversion") + self.sf.par("preprocess", "pyaflowa") self.sf.configure() self.sf.par("end", 1) # only 1 iteration self.sf.par("ntask", self.ntask) # 3 sources for this example self.sf.par("materials", "elastic") # how velocity model parameterized self.sf.par("density", "constant") # update density or keep constant - self.sf.par("format", "ascii") # how to output synthetic seismograms - self.sf.par("case", "synthetic") # synthetic-synthetic inversion + self.sf.par("data_format", "ascii") # output synthetic seismograms + self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion self.sf.par("attenuation", False) self.sf.par("components", "Y") @@ -99,14 +100,12 @@ def setup_seisflows_working_directory(self): self.sf.par("unit_output", "DISP") self.sf.par("min_period", 10) # filter bounds define window selection self.sf.par("max_period", 200) - self.sf.par("start_pad", 48) # T0 set in Par_file - self.sf.par("end_pad", 5000 * .06) # nt * dt defined by Par_file # self.sf.par("pyflex_preset", "") # To turn off windowing completely - self.sf.par("specfem_bin", self.workdir_paths.bin) - self.sf.par("specfem_data", self.workdir_paths.data) - self.sf.par("model_init", self.workdir_paths.model_init) - self.sf.par("model_true", self.workdir_paths.model_true) + self.sf.par("path_specfem_bin", self.workdir_paths.bin) + self.sf.par("path_specfem_data", self.workdir_paths.data) + self.sf.par("path_model_init", self.workdir_paths.model_init) + self.sf.par("path_model_true", self.workdir_paths.model_true) def finalize_specfem2d_par_file(self): """ diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index c4ed3e0e..8dbd9d91 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -287,21 +287,24 @@ def setup_seisflows_working_directory(self): cd(self.cwd) self.sf.setup(force=True) # Force will delete existing parameter file + self.sf.par("workflow", "inversion") self.sf.configure() self.sf.par("ntask", self.ntask) # default 3 sources for this example self.sf.par("materials", "elastic") # how velocity model parameterized self.sf.par("density", "constant") # update density or keep constant - self.sf.par("format", "ascii") # how to output synthetic seismograms - self.sf.par("begin", 1) # first iteration + self.sf.par("data_format", "ascii") # how to output synthetic seismograms + self.sf.par("start", 1) # first iteration self.sf.par("end", self.niter) # final iteration -- we will run 2 - self.sf.par("case", "synthetic") # synthetic-synthetic inversion + self.sf.par("step_count_max", 5) # will cause iteration 2 to fail + self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion + self.sf.par("components", "Y") # only Y component seismograms avail. self.sf.par("attenuation", False) - self.sf.par("specfem_bin", self.workdir_paths.bin) - self.sf.par("specfem_data", self.workdir_paths.data) - self.sf.par("model_init", self.workdir_paths.model_init) - self.sf.par("model_true", self.workdir_paths.model_true) + self.sf.par("path_specfem_bin", self.workdir_paths.bin) + self.sf.par("path_specfem_data", self.workdir_paths.data) + self.sf.par("path_model_init", self.workdir_paths.model_init) + self.sf.par("path_model_true", self.workdir_paths.model_true) def finalize_specfem2d_par_file(self): """ diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index a26fc323..bdb94c9e 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -7,6 +7,7 @@ """ import os import numpy as np +from glob import glob from obspy import read as obspy_read from obspy import Stream, Trace, UTCDateTime @@ -86,7 +87,8 @@ def __init__(self, data_format="ascii", misfit="waveform", min_period=None, max_period=None, min_freq=None, max_freq=None, mute=None, early_slope=None, early_const=None, late_slope=None, late_const=None, short_dist=None, long_dist=None, - workdir=os.getcwd(), path_preprocess=None, **kwargs): + workdir=os.getcwd(), path_preprocess=None, path_solver=None, + **kwargs): """ Preprocessing module parameters @@ -124,7 +126,8 @@ def __init__(self, data_format="ascii", misfit="waveform", self.path = Dict( scratch=path_preprocess or os.path.join(workdir, "scratch", - "preprocess") + "preprocess"), + solver=path_solver or os.path.join(workdir, "scratch", "solver") ) self._acceptable_data_formats = ["SU", "ASCII"] @@ -338,8 +341,21 @@ def _rename_as_adjoint_source(self, fid): fid = fid.replace(og_extension, ".adj") return fid - def quantify_misfit(self, observed, synthetic, - save_residuals=None, save_adjsrcs=None, **kwargs): + def _setup_quantify_misfit(self, source_name): + """ + Gather waveforms from the Solver scratch directory and + """ + obs_path = os.path.join(self.path.solver, source_name, "traces", "obs") + syn_path = os.path.join(self.path.solver, source_name, "traces", "syn") + + observed = sorted(glob(os.path.join(obs_path, "*"))) + synthetic = sorted(glob(os.path.join(syn_path, "*"))) + + return observed, synthetic + + def quantify_misfit(self, source_name=None, save_residuals=None, + save_adjsrcs=None, iteration=1, step_count=0, + **kwargs): """ Prepares solver for gradient evaluation by writing residuals and adjoint traces. Meant to be called by solver.eval_func(). @@ -350,19 +366,25 @@ def quantify_misfit(self, observed, synthetic, TODO use concurrent futures to parallelize this - .. note:: - Meant to be called by solver.eval_func(), may have unused arguments - to keep functions general across subclasses. - - :type observed: list - :param observed: list of observed waveforms - :type synthetic: list - :param synthetic: list of synthetic waveforms + :type source_name: str + :param source_name: name of the event to quantify misfit for. If not + given, will attempt to gather event id from the given task id which + is assigned by system.run() :type save_residuals: str :param save_residuals: if not None, path to write misfit/residuls to :type save_adjsrcs: str :param save_adjsrcs: if not None, path to write adjoint sources to + :type iteration: int + :param iteration: current iteration of the workflow, information should + be provided by `workflow` module if we are running an inversion. + Defaults to 1 if not given (1st iteration) + :type step_count: int + :param step_count: current step count of the line search. Information + should be provided by the `optimize` module if we are running an + inversion. Defaults to 0 if not given (1st evaluation) """ + observed, synthetic = self._setup_quantify_misfit(source_name) + for obs_fid, syn_fid in zip(observed, synthetic): obs = self.read(fid=obs_fid) syn = self.read(fid=syn_fid) diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index 33b45216..604716f6 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -24,7 +24,7 @@ class Pyaflowa: """ - Preprocess Pyaflowa + Pyaflowa Preprocess ------------------- Preprocessing and misfit quantification using Python's Adjoint Tomography Operations Assistance (Pyatoa) diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index e249721a..69c65b5a 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -223,16 +223,6 @@ def setup(self): f.write(f"# Acceptable states: 'completed', 'failed'\n") f.write(f"# =======================================\n") - # Load in the initial model and check its poissons ratio - if self.path.model_init: - logger.info("checking initial model parameters") - _model = Model(os.path.join(self.path.model_init)) - _model.check() - if self.path.model_true: - logger.info("checking true/target model parameters") - _model = Model(os.path.join(self.path.model_true)) - _model.check() - # Distribute modules to the class namespace. We don't do this at init # incase _modules was set as NoneType self.solver = self._modules.solver # NOQA @@ -299,6 +289,16 @@ def evaluate_initial_misfit(self): """ logger.info(msg.mnr("EVALUATING MISFIT FOR INITIAL MODEL")) + # Load in the initial model and check its poissons ratio + if self.path.model_init: + logger.info("checking initial model parameters") + _model = Model(os.path.join(self.path.model_init)) + _model.check() + if self.path.model_true: + logger.info("checking true/target model parameters") + _model = Model(os.path.join(self.path.model_true)) + _model.check() + self.system.run( [self.prepare_data_for_solver, self.run_forward_simulations, diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index dedada05..6cd55ecf 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -182,6 +182,8 @@ def run(self): logger.info(msg.mnr(f"RUNNING ITERATION {self.iteration:0>2}")) super().run() # Runs task list logger.info(msg.mnr(f"COMPLETED ITERATION {self.iteration:0>2}")) + self.iteration += 1 + logger.info(f"setting current iteration to: {self.iteration}") # Clear the state file for new iteration self._states = {} self.checkpoint() @@ -247,7 +249,7 @@ def evaluate_initial_misfit(self): self.evaluate_objective_function], path_model=path_model, save_residuals=os.path.join(self.path.eval_grad, - "residuals") + "residuals.txt") ) # Override function to sum residuals into the optimization library @@ -379,10 +381,10 @@ def _evaluate_line_search_misfit(self): [self.run_forward_simulations, self.evaluate_objective_function], path_model=os.path.join(self.path.eval_func, "model"), - save_residuals=os.path.join(self.path.eval_func, "residuals") + save_residuals=os.path.join(self.path.eval_func, "residuals.txt") ) residuals = np.loadtxt(os.path.join(self.path.eval_func, - "residuals")) + "residuals.txt")) total_misfit = self.preprocess.sum_residuals(residuals) logger.debug(f"misfit for trial model (f_try) == {total_misfit:.2E}") self.optimize.save_vector(name="f_try", m=total_misfit) @@ -403,8 +405,6 @@ def finalize_iteration(self): ) # Update optimization - self.iteration += 1 - logger.info(f"setting current iteration to: {self.iteration}") self.optimize.checkpoint() # Clear out the scratch directory From b7a3d906144814967c1f458d67b57ca24327e03e Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Thu, 4 Aug 2022 10:55:47 -0800 Subject: [PATCH 103/195] unix nproc command was failing on mac, replaced with os.cpu_count() which should work regardless of system --- seisflows/tools/unix.py | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/seisflows/tools/unix.py b/seisflows/tools/unix.py index 0b07e3af..d8841b8c 100644 --- a/seisflows/tools/unix.py +++ b/seisflows/tools/unix.py @@ -266,16 +266,19 @@ def nproc(): Get the number of processors available. Same as calling 'nproc' from Linux command line. - TODO probably replace this with multiprocessing.cpu_count() + TODO replace all instances of nproc() with os.cpu_count() + :rtype: int :return: number of processors :raises EnvironmentError: if nproc cannot be determined """ + _nproc = os.cpu_count() # Method 1 calls 'nproc'. May fail and return '' if 'nproc' not avail. - _nproc = subprocess.run("nproc", shell=True, text=True, - stdout=subprocess.PIPE).stdout.strip() + if not _nproc: + _nproc = subprocess.run("nproc", shell=True, text=True, + stdout=subprocess.PIPE).stdout.strip() # Method 2 checks /proc/cpuinfo if not _nproc: if os.path.exists("/proc/cpuinfo"): From cf80dcf8c9a30c5e5e9b28481b4279b8bf40d3fd Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 11 Aug 2022 11:20:17 -0800 Subject: [PATCH 104/195] hiding specfem2d f0 variable as it should not be set in par file fixing seisflows cli print functions --- seisflows/seisflows.py | 97 +++++++++++++---------------------- seisflows/solver/specfem2d.py | 10 ++-- 2 files changed, 43 insertions(+), 64 deletions(-) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 7e831444..fee6d7f2 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -26,7 +26,7 @@ from seisflows import logger, ROOT_DIR, NAMES from seisflows.tools import unix, msg from seisflows.tools.config import (Dict, load_yaml, custom_import, - import_seisflows, config_logger) + import_seisflows) from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) @@ -938,7 +938,7 @@ def print(self, choice=None, **kwargs): :param choice: underlying sub-function to choose """ acceptable_args = {"modules": self._print_modules, - "flow": self._print_flow, + "tasks": self._print_tasks, "inherit": self._print_inheritance} # Ensure that help message is thrown for empty commands @@ -951,6 +951,8 @@ def print(self, choice=None, **kwargs): def reset(self, choice=None, **kwargs): """ Mid-level function to wrap lower level reset functions + + TODO re-write '_reset_line_search' """ acceptable_args = {"line_search": self._reset_line_search,} @@ -959,12 +961,9 @@ def reset(self, choice=None, **kwargs): self._subparser.print_help() sys.exit(0) - self._register_parameters() - self._load_modules() acceptable_args[choice](*self._args.args, **kwargs) - @staticmethod - def _inspect_class_that_defined_method(name, func, **kwargs): + def _inspect_class_that_defined_method(self, name, func, **kwargs): """ Given a function name and generalized module (e.g. solver), inspect which of the subclasses actually defined the function. Makes it easier @@ -979,17 +978,21 @@ def _inspect_class_that_defined_method(name, func, **kwargs): :param func: Corresponding method/function name for the given module """ # Dynamically get the correct module and function based on names - try: - module = sys.modules[f"seisflows_{name}"] - except KeyError: - print(msg.cli(f"SeisFlows has no module: {name}")) - sys.exit(-1) - try: - method = getattr(module, func) - except AttributeError: - print(msg.cli(f"SeisFlows.{name} has no function: {func}")) - sys.exit(-1) + # try: + # module = sys.modules[f"seisflows_{name}"] + # except KeyError: + # print(msg.cli(f"SeisFlows has no module: {name}")) + # sys.exit(-1) + # try: + # method = getattr(module, func) + # except AttributeError: + # print(msg.cli(f"SeisFlows.{name} has no function: {func}")) + # sys.exit(-1) + parameters = load_yaml(os.path.join(self._args.workdir, + self._args.parameter_file)) + module = custom_import(name, parameters[name])() + method = getattr(module, func) method_name = method.__name__ if method.__self__: classes = [method.__self__.__class__] @@ -1006,8 +1009,7 @@ def _inspect_class_that_defined_method(name, func, **kwargs): print(msg.cli(f"Error matching class for SeisFlows.{name}.{func}")) sys.exit(-1) - @staticmethod - def _inspect_module_hierarchy(name=None, **kwargs): + def _inspect_module_hierarchy(self, name=None, **kwargs): """ Determine the order of class hierarchy for a given SeisFlows module. @@ -1021,48 +1023,25 @@ def _inspect_module_hierarchy(name=None, **kwargs): :param name: choice of module, if None, will print hierarchies for all modules. """ + parameters = load_yaml(os.path.join(self._args.workdir, + self._args.parameter_file)) + items = [] for NAME in NAMES: if name and NAME != name: continue - module = sys.modules[f"seisflows_{NAME}"] + module = custom_import(NAME, parameters[NAME])() item_str = f"{NAME.upper():<12}" for i, cls in enumerate(inspect.getmro(type(module))[::-1]): + # The base inheritance is always 'object', skip printing this. + if i == 0: + continue item_str += f"> {cls.__name__:<10}" items.append(item_str) print(msg.cli(items=items, header="seisflows inheritance")) - def _reset_line_search(self, **kwargs): - """ - TODO Delete me - - Reset the machinery of the line search. This is useful for if a line - search fails or stagnates but the User does not want to re-run the - entire iteration. They can reset the line search and resume the workflow - from the line search step - - The following rubric details how you might use this from command line: - - .. rubric:: - $ seisflows reset line_search - $ seisflows par resume_from line_search - $ seisflows resume_from -f - """ - optimize = sys.modules["seisflows_optimize"] - workflow = sys.modules["seisflows_workflow"] - - current_step = optimize.line_search.step_count - optimize.line_search.reset() - - # Manually set step count back to 0, this usually happens in - # optimize.finalize_search() - optimize.line_search.step_count = 0 - - print(msg.cli(f"resetting line search machinery. step count: " - f"{current_step} -> {optimize.line_search.step_count }")) - workflow.checkpoint() - def _print_modules(self, name=None, package=None, **kwargs): + def _print_modules(self, package=None, **kwargs): """ Print out available modules in the SeisFlows name space for all available packages and modules. @@ -1084,10 +1063,10 @@ def _print_modules(self, name=None, package=None, **kwargs): items.append(f"- {module_}".expandtabs(tabsize=4)) for module_ in module_list: items.append(f"\t* {module_}".expandtabs(tabsize=4)) - print(msg.cli("'+': package, '-': module, '*': class", items=items, + print(msg.cli("'-': module, '*': class", items=items, header="seisflows modules")) - def _print_flow(self, **kwargs): + def _print_tasks(self, **kwargs): """ Simply print out the seisflows.workflow.main() flow variable which describes what order workflow functions will be run. Useful for @@ -1096,14 +1075,12 @@ def _print_flow(self, **kwargs): .. rubric:: $ seisflows print flow """ - self._register_parameters() - self._load_modules() - - workflow = custom_import("workflow")() - flow = workflow.main(return_flow=True) - items = [f"{a+1}: {b.__name__}" for a, b in enumerate(flow)] - print(msg.cli(f"Flow arguments for {type(workflow)}", items=items, - header="seisflows workflow main")) + parameters = load_yaml(os.path.join(self._args.workdir, + self._args.parameter_file)) + wf = custom_import("workflow", parameters["workflow"])() + items = [f"{a+1}: {b.__name__}" for a, b in enumerate(wf.task_list)] + print(msg.cli(f"Task list for {type(wf)}", items=items, + header="seisflows workflow task list")) def _print_inheritance(self, name=None, func=None, **kwargs): """ @@ -1129,8 +1106,6 @@ def _print_inheritance(self, name=None, func=None, **kwargs): seisflows inspect solver eval_func """ - self._register_parameters() - self._load_modules() if func is None: self._inspect_module_hierarchy(name, **kwargs) else: diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index b7d98c55..c0f8b761 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -1,7 +1,11 @@ #!/usr/bin/env python3 """ This class provides utilities for the Seisflows solver interactions with -Specfem2D. +Specfem2D. It builds upon the base Specfem class which generalizes all solver +interactions with various versions of Specfem. + +TODO + Internal paramater f0 is not currently used. Can we remove or integrate? """ import os from glob import glob @@ -36,7 +40,7 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): super().__init__(source_prefix=source_prefix, **kwargs) self.multiples = multiples - self.f0 = None + self._f0 = None # Define parameters based on material type if self.materials.upper() == "ACOUSTIC": @@ -47,7 +51,7 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): def setup(self): """Setup the SPECFEM2D solver interface in a SeisFlows workflow""" source_file = os.path.join(self.path.specfem_data, self.source_prefix) - self.f0 = getpar(key="f0", file=source_file)[1] + self._f0 = getpar(key="f0", file=source_file)[1] par_file = os.path.join(self.path.specfem_data, "Par_file") if self.multiples: From b2ca7a3df568c1b2194fb2008117d044bb92f36f Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 11 Aug 2022 11:42:09 -0800 Subject: [PATCH 105/195] fixed failing seisflows cli tests which was due to changed cli architecture --- seisflows/seisflows.py | 182 ++++++++++++---------- seisflows/tests/test_data/parameters.yaml | 1 + seisflows/tests/test_seisflows.py | 105 +++++-------- 3 files changed, 140 insertions(+), 148 deletions(-) create mode 120000 seisflows/tests/test_data/parameters.yaml diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index fee6d7f2..aafc9984 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -320,16 +320,32 @@ class SeisFlows: any checks we must load the entire SeisFlows environment, which is slow but provides the most flexibility when accessing internal information """ - def __init__(self): + def __init__(self, workdir=None, parameter_file=None): """ Parse user-defined arguments and establish internal parameters used to control which functions execute and how. Instance must be called to execute internal functions + + .. note:: + Normally the `workdir` and `parameter_file` paramters should be + set through the argparser (i.e., command line) but we allow + it to be set in a Python environment through __init__ incase there + is no access to the argparser through the command line (e.g., when + testing functionality using pytest) + + :type workdir: str + :param workdir: the working directory to initiate a SeisFlows workflow. + :type parameter_file: str + :param parameter_file: full path to the parameter file """ self._parser, self._subparser = sfparser() self._paths = None self._parameters = None self._args = self._parser.parse_args() + if workdir is not None: + self._args.workdir = workdir + if parameter_file is not None: + self._args.parameter_file = parameter_file def __call__(self, command=None, **kwargs): """ @@ -1111,88 +1127,88 @@ def _print_inheritance(self, name=None, func=None, **kwargs): else: self._inspect_class_that_defined_method(name, func, **kwargs) - def _check_model_parameters(self, src=None, **kwargs): - """ - Print out the min/max values from one or all of the currently available - models. Useful for checking what models are associated with what part of - the workflow, e.g. evaluate function, evaluate gradient. - - :type src: str - :param src: the name of a specific model to check, e.g. 'm_try', - otherwise will check parameters for all models - """ - optimize = sys.modules["seisflows_optimize"] - PATH = sys.modules["seisflows_paths"] - - avail = glob(os.path.join(PATH.OPTIMIZE, "m_*")) - srcs = [os.path.basename(_) for _ in avail] - if src: - if src not in srcs: - print(msg.cli(f"{src} not in available models: {avail}")) - sys.exit(-1) - srcs = [src] - for tag in srcs: - m = optimize.load(tag) - m.check() - - def _check_current_iteration(self, **kwargs): - """ - Display the current point in the workflow in terms of the iteration - and step count number. Args are not used by allow for a more general - check() function. - """ - optimize = sys.modules["seisflows_optimize"] - try: - items = [] - ln = optimize.line_search - items.append(f"Iteration: {optimize.iter}") - items.append(f"Step Count: {ln.step_count} / {ln.step_count_max}") - print(msg.cli(items=items)) - except AttributeError: - print(msg.cli("OPTIMIZATION module has not been initialized yet, " - "cannot retrieve iteration or step count values.")) - sys.exit(-1) - - def _check_source_names(self, source_name=None, **kwargs): - """ - Sources are tagged by name but also by index in the source names which - can be confusing and usually requires doubling checking. This check - just prints out source names next to their respective index, or if a - source name is requested, provides the index for that - - :type source_name: str - :param source_name: name of source to check index, if None will simply - print out all sources - """ - try: - source_names = sys.modules["seisflows_solver"].source_names - except FileNotFoundError as e: - print(msg.cli(str(e))) - sys.exit(-1) - - if source_name: - print(msg.cli(f"{source_names.index(source_name)}: {source_name}")) - else: - items = [] - for i, source_name in enumerate(source_names): - items.append(f"{i:>3}: {source_name}") - print(msg.cli(items=items, header="source names")) - - def _check_source_index(self, idx=None, **kwargs): - """ - Look up source name by index - - :type idx: int - :param idx: index of source to look up - """ - if idx is None: - self._check_source_names(source_name=None) - else: - solver = sys.modules["seisflows_solver"] - try: - print(msg.cli(f"{idx}: {solver.source_names[int(idx)]}")) - except IndexError: - print(msg.cli(f"idx out of range: {len(solver.source_names)}")) + # def _check_model_parameters(self, src=None, **kwargs): + # """ + # Print out the min/max values from one or all of the currently available + # models. Useful for checking what models are associated with what part of + # the workflow, e.g. evaluate function, evaluate gradient. + # + # :type src: str + # :param src: the name of a specific model to check, e.g. 'm_try', + # otherwise will check parameters for all models + # """ + # optimize = sys.modules["seisflows_optimize"] + # PATH = sys.modules["seisflows_paths"] + # + # avail = glob(os.path.join(PATH.OPTIMIZE, "m_*")) + # srcs = [os.path.basename(_) for _ in avail] + # if src: + # if src not in srcs: + # print(msg.cli(f"{src} not in available models: {avail}")) + # sys.exit(-1) + # srcs = [src] + # for tag in srcs: + # m = optimize.load(tag) + # m.check() + # + # def _check_current_iteration(self, **kwargs): + # """ + # Display the current point in the workflow in terms of the iteration + # and step count number. Args are not used by allow for a more general + # check() function. + # """ + # optimize = sys.modules["seisflows_optimize"] + # try: + # items = [] + # ln = optimize.line_search + # items.append(f"Iteration: {optimize.iter}") + # items.append(f"Step Count: {ln.step_count} / {ln.step_count_max}") + # print(msg.cli(items=items)) + # except AttributeError: + # print(msg.cli("OPTIMIZATION module has not been initialized yet, " + # "cannot retrieve iteration or step count values.")) + # sys.exit(-1) + # + # def _check_source_names(self, source_name=None, **kwargs): + # """ + # Sources are tagged by name but also by index in the source names which + # can be confusing and usually requires doubling checking. This check + # just prints out source names next to their respective index, or if a + # source name is requested, provides the index for that + # + # :type source_name: str + # :param source_name: name of source to check index, if None will simply + # print out all sources + # """ + # try: + # source_names = sys.modules["seisflows_solver"].source_names + # except FileNotFoundError as e: + # print(msg.cli(str(e))) + # sys.exit(-1) + # + # if source_name: + # print(msg.cli(f"{source_names.index(source_name)}: {source_name}")) + # else: + # items = [] + # for i, source_name in enumerate(source_names): + # items.append(f"{i:>3}: {source_name}") + # print(msg.cli(items=items, header="source names")) + # + # def _check_source_index(self, idx=None, **kwargs): + # """ + # Look up source name by index + # + # :type idx: int + # :param idx: index of source to look up + # """ + # if idx is None: + # self._check_source_names(source_name=None) + # else: + # solver = sys.modules["seisflows_solver"] + # try: + # print(msg.cli(f"{idx}: {solver.source_names[int(idx)]}")) + # except IndexError: + # print(msg.cli(f"idx out of range: {len(solver.source_names)}")) def return_modules(): diff --git a/seisflows/tests/test_data/parameters.yaml b/seisflows/tests/test_data/parameters.yaml new file mode 120000 index 00000000..bc0c1173 --- /dev/null +++ b/seisflows/tests/test_data/parameters.yaml @@ -0,0 +1 @@ +../../examples/parameters.yaml \ No newline at end of file diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index 539d96cb..c6c3068a 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -14,102 +14,78 @@ from seisflows.tools.config import Dict from seisflows import ROOT_DIR from seisflows.seisflows import SeisFlows -from seisflows.tools.config import NAMES from seisflows.tools.config import load_yaml TEST_DIR = os.path.join(ROOT_DIR, "tests") @pytest.fixture -def filled_par_file(): - """A parameter file that is completely filled out and can be read in""" - return os.path.join(TEST_DIR, "test_data", "test_filled_parameters.yaml") - - -@pytest.fixture -def conf_par_file(): - """A par file that has been configured but requires user-defined values""" - return os.path.join(TEST_DIR, "test_data", "test_conf_parameters.yaml") - - -@pytest.fixture -def setup_par_file(): - """A barebones par file that only contains module names""" - return os.path.join(TEST_DIR, "test_data", "test_setup_parameters.yaml") - - -@pytest.fixture -def copy_par_file(tmpdir, filled_par_file): +def par_file(): """ - Copy the template parameter file into the temporary test directory - :rtype: str - :return: location of the parameter file + Return the test parameter file as a dictionary object + :rtype: seisflows.config.Dict + :return: dictionary of parameters """ - src = filled_par_file - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) + return os.path.join(TEST_DIR, "test_data", "parameters.yaml") @pytest.fixture -def par_file_dict(filled_par_file): +def par_file_dict(par_file): """ Return the test parameter file as a dictionary object :rtype: seisflows.config.Dict :return: dictionary of parameters """ - return Dict(load_yaml(filled_par_file)) + return Dict(load_yaml(par_file)) -def test_call_seisflows(tmpdir, par_file_dict, copy_par_file): +def test_call_seisflows(par_file, par_file_dict): """ Test calling the 'par' command from command line and inside a python environemnt. Check that case-insensitivity is also honored Check against the actual value coming from the parameter file Also tests the seisflows 'par' command """ - copy_par_file - os.chdir(tmpdir) - check_val = par_file_dict.LINESEARCH + check_val = par_file_dict.workflow # Mock argv to match the actual scenario in which SeisFlows will be called with patch.object(sys, "argv", ["seisflows"]): - for name in ["linesearch", "LINESEARCH", "LineSearch"]: - # From the command line - cmd_line_arg = ["seisflows", "par", name] + for name in ["Workflow", "WORKFLOW", "WorkFlow"]: + # $ seisflows par workflow -p path/to/parameters.yaml + cmd_line_arg = ["seisflows", "-p", par_file, "par", name] out = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) - assert(out.stdout.strip() == f"{name.upper()}: {check_val}") + assert(out.stdout.strip() == f"{name.lower()}: {check_val}") # Test from inside a Python environment; we need to redirect stdout # to make sure the print statement is working as expected f = io.StringIO() with contextlib.redirect_stdout(f): - sf = SeisFlows() + sf = SeisFlows(parameter_file=par_file) sf(command="par", parameter=name) stdout = f.getvalue() - assert(stdout.strip() == f"{name.upper()}: {check_val}") + assert(stdout.strip() == f"{name.lower()}: {check_val}") -def test_edited_parameter_file_name(tmpdir, par_file_dict, filled_par_file): +def test_edited_parameter_file_name(tmpdir, par_file, par_file_dict): """ Similar test as call_seisflows but just make sure that arbitrary naming of the parameter file still works """ + # Copy given parameter file with a weird name par_fid = "CRAZY_PARAMETER_NAME-0x123kd.yaml" - par_name = "linesearch" - - src = filled_par_file + src = par_file dst = os.path.join(tmpdir, par_fid) shutil.copy(src, dst) + check_key = "workflow" + check_val = par_file_dict[check_key] - os.chdir(tmpdir) - check_val = par_file_dict.LINESEARCH - cmd_line_arg = ["seisflows", "-p", par_fid, "par", par_name] + cmd_line_arg = ["seisflows", "-p", dst, "par", check_key] # Mock argv to match the actual scenario in which SeisFlows will be called with patch.object(sys, "argv", ["seisflows"]): out = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) - assert(out.stdout.strip() == f"{par_name.upper()}: {check_val}") + assert(out.stdout.strip() == f"{check_key.lower()}: {check_val}") def test_cmd_setup(tmpdir): @@ -209,55 +185,54 @@ def test_cmd_setup(tmpdir): # # del sys.modules[PATH] -def test_cmd_par(tmpdir, copy_par_file): +def test_cmd_par(tmpdir, par_file): """ Make sure the 'par' command can print and edit the parameter file :param tmpdir: :return: """ - # Run init first to create a working state - os.chdir(tmpdir) - copy_par_file + # Copy given parameter file with a weird name + src = par_file + dst = os.path.join(tmpdir, "parameters.yaml") + shutil.copy(src, dst) - parameter = "begin" - expected_val = "1" - new_val = "2" + parameter = "workflow" + expected_val = "forward" + new_val = "migration" # testing the get option: seisflows par `parameter` with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() # Run this with subprocess so we can capture the print statement - cmd_line_arg = ["seisflows", "par", parameter] + cmd_line_arg = ["seisflows", "-p", dst, "par", parameter] out = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) # Check that we printed out the correct value par, val = out.stdout.strip().split(":") - assert(par.upper() == parameter.upper()) - assert(int(val) == int(expected_val)) + assert(par.strip() == parameter) + assert(val.strip() == expected_val) # testing the set option: seisflows par `parameter` `value` with patch.object(sys, "argv", ["seisflows"]): - sf = SeisFlows() # Run this with subprocess so we can capture the print statement - cmd_line_arg = ["seisflows", "par", parameter, new_val] + cmd_line_arg = ["seisflows","-p", dst, "par", parameter, new_val] out1 = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) # Run this with subprocess so we can capture the print statement - cmd_line_arg = ["seisflows", "par", parameter] + cmd_line_arg = ["seisflows", "-p", dst, "par", parameter] out2 = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) # Check that the changed print statement works par, vals = out1.stdout.strip().split(":") val_old, val_new = vals.strip().split(" -> ") - assert(par.upper() == parameter.upper()) - assert(int(val_old) == int(expected_val)) - assert(int(val_new) == int(new_val)) + assert(par.strip() == parameter) + assert(val_old.strip() == expected_val) + assert(val_new.strip() == new_val) # Check that we printed out the correctly changed value par, val = out2.stdout.strip().split(":") - assert(par.upper() == parameter.upper()) - assert(int(val) == int(new_val)) + assert(par.strip() == parameter) + assert(val.strip() == new_val) From cbed51f991436bbe33e27b4445a16903afcc0adc Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 11 Aug 2022 12:15:09 -0800 Subject: [PATCH 106/195] fixing preprocess tests, all existing tests pass npow --- seisflows/preprocess/default.py | 14 ++++++++++++-- seisflows/preprocess/pyaflowa.py | 2 +- seisflows/tests/test_preprocess.py | 29 ++++++++++++++++------------- 3 files changed, 29 insertions(+), 16 deletions(-) diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index bdb94c9e..38147999 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -13,7 +13,7 @@ from seisflows import logger from seisflows.tools import signal, unix -from seisflows.tools.config import Dict +from seisflows.tools.config import Dict, get_task_id from seisflows.plugins.preprocess import misfit as misfit_functions from seisflows.plugins.preprocess import adjoint as adjoint_sources @@ -345,15 +345,25 @@ def _setup_quantify_misfit(self, source_name): """ Gather waveforms from the Solver scratch directory and """ + source_name = source_name or self._source_names[get_task_id()] + obs_path = os.path.join(self.path.solver, source_name, "traces", "obs") syn_path = os.path.join(self.path.solver, source_name, "traces", "syn") observed = sorted(glob(os.path.join(obs_path, "*"))) synthetic = sorted(glob(os.path.join(syn_path, "*"))) + assert(len(observed) == len(synthetic)), ( + f"number of observed traces does not match length of synthetic for " + f"source: {source_name}" + ) + + assert(len(observed) != 0 and len(synthetic) != 0), \ + f"cannot quantify misfit, missing observed or synthetic traces" + return observed, synthetic - def quantify_misfit(self, source_name=None, save_residuals=None, + def quantify_misfit(self, source_name=None, save_residuals=None, save_adjsrcs=None, iteration=1, step_count=0, **kwargs): """ diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index 604716f6..3dda7d37 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -481,7 +481,7 @@ def _quantify_misfit_station(self, config, station_code, else: ds = None mgmt = Manager(config=config, ds=ds) - # If data gather fails, return because theres nothing else we can do + # If data gather fails, return because there's nothing else we can do try: # `gather` function uses Config path structure and Client attribute # to search for data on disk or via webservices (if requested). diff --git a/seisflows/tests/test_preprocess.py b/seisflows/tests/test_preprocess.py index f826c95a..60ecd18e 100644 --- a/seisflows/tests/test_preprocess.py +++ b/seisflows/tests/test_preprocess.py @@ -4,6 +4,7 @@ """ import os import numpy as np +import pytest from glob import glob from seisflows import ROOT_DIR from seisflows.tools import unix @@ -74,28 +75,30 @@ def test_default_quantify_misfit(tmpdir): Quantify misfit with some example data """ preprocess = Default(data_format="ascii", misfit="waveform", - adjoint="waveform", path_preprocess=tmpdir) + adjoint="waveform", path_preprocess=tmpdir, + path_solver=TEST_SOLVER, source_prefix="SOURCE", + ntask=2, + ) preprocess.setup() - data_filenames = glob(os.path.join(TEST_DATA, "*semd")) preprocess.quantify_misfit( - observed=data_filenames, synthetic=data_filenames, + source_name="001", save_residuals=os.path.join(tmpdir, "residuals_ascii"), save_adjsrcs=tmpdir ) - preprocess.data_format = "SU" - data_filenames = glob(os.path.join(TEST_DATA, "*su")) - preprocess.quantify_misfit( - observed=data_filenames, synthetic=data_filenames, - save_residuals=os.path.join(tmpdir, "residuals_su"), - save_adjsrcs=tmpdir - ) + # !!! throws a segy error because data are not in the right format + # preprocess.data_format = "SU" + # preprocess.quantify_misfit( + # source_name="001", + # save_residuals=os.path.join(tmpdir, "residuals_su"), + # save_adjsrcs=tmpdir + # ) - assert(len(glob(os.path.join(tmpdir, "*"))) == 4) + assert(len(glob(os.path.join(tmpdir, "*"))) == 3) residuals = open(os.path.join(tmpdir, "residuals_ascii")).readlines() - assert(len(residuals) == 1) - assert(float(residuals[0]) == 0) + assert(len(residuals) == 2) + assert(float(residuals[0]) == pytest.approx(0.0269, 3)) def test_pyaflowa_setup(tmpdir): From 56a47457cc8fd866975cab7067e6d9916be099bb Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 12 Aug 2022 15:06:50 -0700 Subject: [PATCH 107/195] fixing example problems and tests, will need to write more tests to cover more of codebase but good base for now --- ...pecfem2d_workstation_inversion_w_pyatoa.py | 3 +- seisflows/examples/sfexample2d.py | 2 +- seisflows/seisflows.py | 2 + seisflows/tests/test_seisflows.py | 83 +++++-------------- 4 files changed, 27 insertions(+), 63 deletions(-) diff --git a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py index 55415500..fa38d25c 100644 --- a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py @@ -26,7 +26,7 @@ class SFPyatoaEx2D(SFExample2D): advantage of the default SPECFEM2D stuff, onyl changes the generation of MODEL TRUE, the number of stations, and the setup of the parameter file. """ - def __init__(self, ntask=2, niter=1, nsta=5): + def __init__(self, ntask=2, niter=2, nsta=5): """ Overload init and attempt to import Pyatoa before running example, overload the default number of tasks to 2, and add a new init parameter @@ -85,6 +85,7 @@ def setup_seisflows_working_directory(self): self.sf.setup(force=True) # Force will delete existing parameter file self.sf.par("workflow", "inversion") self.sf.par("preprocess", "pyaflowa") + self.sf.par("optimize", "LBFGS") self.sf.configure() self.sf.par("end", 1) # only 1 iteration diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 8dbd9d91..010b9630 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -320,7 +320,7 @@ def run_sf_example(self): Use subprocess to run the SeisFlows example we just set up """ cd(self.cwd) - subprocess.run("seisflows submit -f", check=False, shell=True) + subprocess.run("seisflows submit", check=False, shell=True) def main(self): """ diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index aafc9984..cf1a61ff 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -526,6 +526,8 @@ def split_module_docstring(mod, idx): continue if val is None: val = "null" + if absolute_paths: + val = os.path.abspath(val) f.write(f"path_{key}: {val}\n") written.append(key) except Exception: diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index c6c3068a..ecb1b83a 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -123,66 +123,27 @@ def test_cmd_setup(tmpdir): assert(test_phrase not in text) -# def test_cmd_submit(tmpdir): -# """ -# Test submit, also test the functionality of resume and restart which -# are essentially wrappers for this call -# :param tmpdir: -# :return: -# """ -# pass -# -# -# def test_cmd_clean(tmpdir): -# """ -# -# :param tmpdir: -# :return: -# """ - pass - - -# def test_cmd_configure(tmpdir, setup_par_file, conf_par_file): -# """ -# Test configuring a parameter file from a template par file -# -# .. note:: -# I don't know exactly why, but this test needs to be run AFTER any other -# test which runs seisflows.init(), otherwise the parameters are not -# instantiated properly (you will hit a KeyError when trying to access -# PAR). I think this is because of how seisflows.configure() registers -# a relatively empty parameter file (only modules are defined), and this -# gets saved into sys modules, affecting subsequent tests which end up -# accessing sys.modules. I tried flushing sys.modules but it didn't work. -# This behavior shouldn't get encountered in a real run because we -# won't need to run init() and configure() in the same python -# runtime environment, but I leave this warning here -# wondering if I'll have to fix it at some point... -B -# """ -# os.chdir(tmpdir) -# -# # Copy in the setup par file so we can configure it -# src = setup_par_file -# dst = os.path.join(tmpdir, "parameters.yaml") -# shutil.copy(src, dst) -# -# # run seisflows init -# with patch.object(sys, "argv", ["seisflows"]): -# sf = SeisFlows() -# sf.configure(relative_paths=False) -# -# # Simple check that the configuration parameter file has the same number -# # of lines as the one that has been created by configure -# lines_conf = open(conf_par_file, "r").readlines() -# lines_fill = open("parameters.yaml", "r").readlines() -# assert (len(lines_conf) == len(lines_fill)) -# -# # My attempt to flush sys.modules which did NOT work -# # from seisflows.tools.config import NAMES, PAR, PATH -# # for name in NAMES: -# # del sys.modules[f"seisflows_{name}"] -# # del sys.modules[PAR] -# # del sys.modules[PATH] +def test_cmd_configure(tmpdir, par_file): + """ + Test configuring a parameter file from a template par file + """ + os.chdir(tmpdir) + + # Copy in the setup par file so we can configure it + src = par_file + dst = os.path.join(tmpdir, "parameters.yaml") + shutil.copy(src, dst) + + # run seisflows configure + with patch.object(sys, "argv", ["seisflows"]): + sf = SeisFlows(workdir=tmpdir, parameter_file="parameters.yaml") + sf.configure() + + # Check some random values that were not in the template file + parameters = load_yaml(dst) + assert("path_model_init" in parameters.keys()) + assert("smooth_h" in parameters.keys()) + assert("ntask" in parameters.keys()) def test_cmd_par(tmpdir, par_file): @@ -215,7 +176,7 @@ def test_cmd_par(tmpdir, par_file): # testing the set option: seisflows par `parameter` `value` with patch.object(sys, "argv", ["seisflows"]): # Run this with subprocess so we can capture the print statement - cmd_line_arg = ["seisflows","-p", dst, "par", parameter, new_val] + cmd_line_arg = ["seisflows", "-p", dst, "par", parameter, new_val] out1 = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) From 5c3e4293c5d03a8e46fa8697cad213e3bf979908 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 12 Aug 2022 15:29:31 -0700 Subject: [PATCH 108/195] small bugfix optimization wasnt able to access checkpoint for editing --- seisflows/optimize/LBFGS.py | 4 ++-- seisflows/optimize/gradient.py | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/seisflows/optimize/LBFGS.py b/seisflows/optimize/LBFGS.py index 13219ad2..1d68f8e7 100644 --- a/seisflows/optimize/LBFGS.py +++ b/seisflows/optimize/LBFGS.py @@ -103,11 +103,11 @@ def checkpoint(self): Overwrite default checkpointing to store internal L-BFGS Attributes """ super().checkpoint() - checkpoint_dict = np.load(self.path._checkpoint) + checkpoint_dict = dict(np.load(self.path._checkpoint)) checkpoint_dict["LBFGS_iter"] = self._LBFGS_iter checkpoint_dict["memory_used"] = self._memory_used - np.savez(file=self.path._checkpoint, **dict_out) # NOQA + np.savez(file=self.path._checkpoint, **checkpoint_dict) # NOQA def load_checkpoint(self): """ diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 917c9d9a..af119bd9 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -108,7 +108,7 @@ def __init__(self, line_search_method="bracket", # Hidden paths to store checkpoint file in scratch directory self.path["_checkpoint"] = os.path.join(self.path.scratch, - "checkpoint") + "checkpoint.npz") self.path["_stats_file"] = os.path.join(self.path.scratch, "output_optim.txt") From 21d5ddb5cb5ec12a518cd8c61c221e57d187a44a Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 15 Aug 2022 09:35:21 -0700 Subject: [PATCH 109/195] updating docs to match latest version of seisflows, finished command line tool update --- docs/changelog.rst | 52 ++- docs/citeme.rst | 2 +- docs/command_line_tool.rst | 10 +- docs/conf.py | 2 +- docs/design.rst | 10 + docs/index.rst | 13 +- docs/notebooks/command_line_tool.ipynb | 449 +++++++++---------------- docs/overview.rst | 6 +- docs/start_here.rst | 27 +- seisflows/seisflows.py | 24 +- 10 files changed, 240 insertions(+), 355 deletions(-) create mode 100644 docs/design.rst diff --git a/docs/changelog.rst b/docs/changelog.rst index 6e07fee6..cef7e222 100644 --- a/docs/changelog.rst +++ b/docs/changelog.rst @@ -2,10 +2,23 @@ Change Log =============== The following list documents changes made from ``SeisFlows Legacy`` -codebase (Last updated April 18, 2022). +codebase (Last updated Aug. 12, 2022). Major ------ +* Reworks the entire parameter system to take advantage of Python's native init + and internal attributes, rather than setting global parameters in sys.modules. +* Removes reliance on globally accessible sys.modules, which was used so that all + modules had access to one another, but also prevented standalone imports of modules + and efficient unit testing. This has been replaced with explicit I/O for modules to + talk to each other, and shared parameters that are instantiated by a single parameter + file. +* Sys.modules was also used to checkpoint workflows, as all class instances were saved + as pickle files that could be re-loaded. However this required a specific startup + procedure anytime a workflow had to be instantiated. This has been replaced by an + explicit checkpointing system which takes advantage of simpler text files which save + only relevant checkpoint information. +* Implemented a unit/integration test structure using Pytest, for all modules and utilities. * 'seisflows' command line tool which now acts as the main entry point into package. Replaces the old sf* scripts and adds functionality to inspect the package and an active workflow. @@ -24,6 +37,28 @@ Major Moderate -------- +* All modules now have their own setup() and check() functions which help + establish a workflow before anything needs to be submitted to the system. +* System run functions no longer require global pickling into sys modules, but + instead simply pickle the required functions and their keyword arguments. This + greatly simplifies the run capabilities on external systems, and removes the need + to define specific pickling functions (copyreg) within the package. +* Solver has been separated from all model manipulations. Replaced by a new + standalone Model class which completely characterizes a Specfem model and can + read/write models as numpy vectors or as Specfem-readable binary files. +* Postprocess module has been scrapped and its functionalities absorbed by the + Solver and Workflow modules. The reasoning behind this was that the postprocess + really had no agency of its own, and was just a wrapper for solver functionality. + It may be reintroduced in the future if we find need for very complex postprocessing + steps. +* Optimization test suite now runs Rosenbrock problem (from legacy code) for all + optimization schema and tests line search capabilities. +* Optimization also checkpoints itself and the line search during a workflow, allowing + Users to restart workflows from any point effortlessly and with minimal loss of compute time. + Pyatoa preprocessing renamed to 'Pyaflowa'. All of the old Pyaflowa class functions + (previously contained in the Pyatoa package) are now exposed in the SeisFlows Pyaflowa + preprocessing class. This is so that users do not necessarily have to look at the Pyatoa + source code to understand what's going on in SeisFlows * Renamed and restructured SeisFlows working directory structure. - output.logs -> logs - output.stats -> stats @@ -59,6 +94,21 @@ Moderate Minor ------ +* Removed a lot of agency from individual modules (i.e., writing their own files, + manipulating other modules) and gave it mainly to the Workflow module. This is so + that when users need to look at where changes are disk are happening, they only have + to look at the Workflow module, rather than chasing through various other + modules/sub-modules. +* Rearranged directory structure to be more easily navigable, with less top-directory scripts. +* SeisFlows now relies more heavily on inheritance and super() functions throughout, + whereas previously it was used quite sparingly. +* Workflow module now relies more heavily on inheritance. Forward workflows build out most + of the functionality of the forward solver, and the Migration and Inversion workflows build + on top of this. +* Reworked docstring structure to aid in 'seisflows configure' command which now builds new + parameter files directly from init and class docstrings +* Gutted most of the old internal start up procedures such as loading parameters and modules. + The new start up procedure is now more Pythonic and efficient. * reST format docstrings for all classes and functions. * Comments added throughout codebase to explain naming, logic etc. * Replaced all string formatters with f-strings if possible, .format() otherwise diff --git a/docs/citeme.rst b/docs/citeme.rst index 2f19a8be..9ff3e25e 100644 --- a/docs/citeme.rst +++ b/docs/citeme.rst @@ -10,6 +10,6 @@ If you use SeisFlows for your work, please cite: SeisFlows — Flexible waveform inversion software. Computers & geosciences, 115, 88-95. -Publications which have used (and cited) SeisFlows (and SeisFlows3) can be +Publications which have used (and cited) SeisFlows can be found on `Google Scholar `__. diff --git a/docs/command_line_tool.rst b/docs/command_line_tool.rst index 171b7251..45a4afcd 100644 --- a/docs/command_line_tool.rst +++ b/docs/command_line_tool.rst @@ -1,12 +1,10 @@ Commmand Line Tool ================== -``SeisFlows`` is primarily interacted with via command line calls and a -parameter file. In this page we explain how to use this command line -tool to create a SeisFlows parameters file, edit and configure it, and -establish a SeisFlows working directory. We also provide explanation -for other command line options which act as helper utilities for -improved package control. +``SeisFlows`` is primarily interacted with via a parameter file and command line tool. +In this page we explain how to use this command line tool to create a SeisFlows parameters +file, edit and configure it, and run a workflow. We also provide explanation +for other command line options which act as helper utilities for package control. After installing SeisFlows into a Conda environment, the ``seisflows`` command will be available directly from the command line. To access the diff --git a/docs/conf.py b/docs/conf.py index 623839df..7fd4cb47 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -59,5 +59,5 @@ # AutoAPI variables autoapi_type = "python" -autoapi_dirs = ["../seisflows", "../seisflows-super"] +autoapi_dirs = ["../seisflows"] autoapi_add_toctree_entry = True diff --git a/docs/design.rst b/docs/design.rst new file mode 100644 index 00000000..2978e0bd --- /dev/null +++ b/docs/design.rst @@ -0,0 +1,10 @@ +Design Philosophy +================================= +Although SeisFlows was written with 'Pythonic' style in mind, there are some design +choices within the internal structure of the package that may be unique to SeisFlows. +Throughout this documentation page we point out some of these choices, and provide +detail on why and how they were implemented. This page is intended for developers and +super users who want to explore the source code deeply or edit/extend SeisFlows for other +purposes. + +`Page under construction` diff --git a/docs/index.rst b/docs/index.rst index 4301aba4..1d956e32 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -24,6 +24,7 @@ optimization problems. Major backwards-incompatible changes from the legacy codebase include: - > complete shift to Python3.7 source code, abandoning Python2 support + - > reworked internal architecture to be more 'Pythonic' - > richer source code emphasizing readability and standards - > a new command line tool for improved package control - > redesigned, dynamically-generated parameter file @@ -56,7 +57,7 @@ environment. .. code:: bash - $ conda create -n seisflows python=3.7 + $ conda create -n seisflows python=3.10 $ conda activate seisflows $ git clone --branch devel https://github.com/adjtomo/seisflows.git $ cd seisflows @@ -76,16 +77,9 @@ SeisFlows + Pyatoa -------------------- To include the waveform measurement capabilities of Pyatoa, you must install separately. See the `Pyatoa documentation -`__ for the most up to date +`__ for the most up to date install instructions. -.. code:: bash - - $ cd .. - $ git clone --branch devel https://github.com/bch0w/pyatoa.git - $ cd pyatoa - $ pip install . - .. toctree:: :maxdepth: 1 @@ -125,6 +119,7 @@ install instructions. :caption: Development background + design changelog code_dev_plan diff --git a/docs/notebooks/command_line_tool.ipynb b/docs/notebooks/command_line_tool.ipynb index 939de50c..558ebe56 100644 --- a/docs/notebooks/command_line_tool.ipynb +++ b/docs/notebooks/command_line_tool.ipynb @@ -6,14 +6,14 @@ "source": [ "Commmand Line Tool\n", "==========================\n", - "`SeisFlows3` is primarily interacted with via command line calls and a parameter file. In this page we explain how to use this command line tool to create a SeisFlows3 parameters file, edit and configure it, and establish a SeisFlows3 working directory. We also provide explanation for other command line options which act as helper utilities for improved package control.\n", + "`SeisFlows` is primarily interacted with via command line calls and a parameter file. In this page we explain how to use this command line tool to create a SeisFlows parameters file, edit and configure it, and establish a SeisFlows working directory. We also provide explanation for other command line options which act as helper utilities for improved package control.\n", " \n", - "After installing SeisFlows3 into a Conda environment, the `seisflows` command will be available directly from the command line. To access the help dialogue, you can type `seisflows` or `seisflows -h`" + "After installing SeisFlows into a Conda environment, the `seisflows` command will be available directly from the command line. To access the help dialogue, you can type `seisflows` or `seisflows -h`" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -21,12 +21,12 @@ "output_type": "stream", "text": [ "usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]]\r\n", - " {setup,configure,init,submit,resume,restart,clean,par,sempar,check,print,convert,reset,debug,edit,examples}\r\n", + " {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples}\r\n", " ...\r\n", "\r\n", "================================================================================\r\n", "\r\n", - " SeisFlows3: Waveform Inversion Package \r\n", + " SeisFlows: Waveform Inversion Package \r\n", "\r\n", "================================================================================\r\n", "\r\n", @@ -42,19 +42,18 @@ "\r\n", " setup Setup working directory from scratch\r\n", " configure Fill parameter file with defaults\r\n", + " swap Swap module parameters in an existing parameter file\r\n", " init Initiate working environment\r\n", " submit Submit initial workflow to system\r\n", " resume Re-submit previous workflow to system\r\n", " restart Remove current environment and submit new workflow\r\n", " clean Remove files relating to an active working environment\r\n", - " par View and edit SeisFlows3 parameter file\r\n", + " par View and edit SeisFlows parameter file\r\n", " sempar View and edit SPECFEM parameter file\r\n", " check Check state of an active environment\r\n", " print Print information related to an active environment\r\n", - " convert Convert model file format\r\n", " reset Reset modules within an active state\r\n", " debug Start interactive debug environment\r\n", - " edit Open source code file in text editor\r\n", " examples Look at and run pre-configured example problems\r\n", "\r\n", "'seisflows [command] -h' for more detailed descriptions of each command.\r\n" @@ -72,37 +71,38 @@ "### Setting up a parameter file\n", "#### seisflows setup\n", "\n", - "The first step of any SeisFlows3 workflow is to set up a working directory, which begins by establishing a blank parameter file. The `seisflows setup` command copies in a template parameter file. Ideally your working directory will be empty to avoid file conflicts." + "The first step of any SeisFlows workflow is to setting up a parameter file. The `seisflows setup` command copies in a template parameter file." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/home/bchow/Work/scratch\n" + "/Users/Chow/Scratch\n" ] } ], "source": [ - "%cd ~/Work/scratch\n", + "%cd ~/Scratch\n", + "! rm *\n", "! ls" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "usage: seisflows setup [-h] [-s] [-f]\r\n", + "usage: seisflows setup [-h] [-f]\r\n", "\r\n", "In the specified working directory, copy template parameter file containing\r\n", "only module choices, and symlink source code for both the base and super\r\n", @@ -111,9 +111,8 @@ "they want to overwrite.\r\n", "\r\n", "optional arguments:\r\n", - " -h, --help show this help message and exit\r\n", - " -s, --symlink symlink source code into the working directory\r\n", - " -f, --force automatically overwrites existing parameter file\r\n" + " -h, --help show this help message and exit\r\n", + " -f, --force automatically overwrites existing parameter file\r\n" ] } ], @@ -123,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -135,7 +134,7 @@ } ], "source": [ - "# The '-f' flag (force) will overwrite any existing parameter file\n", + "# The '-f' flag (overwrite) will overwrite any existing parameter file\n", "! seisflows setup -f" ] }, @@ -143,20 +142,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Having a look at the template parameters.yaml file that was just generated, we can see that it contains some pre-defined default values for the core SeisFlows3 modules. Each of these modules defines it's own set of unique parameters which make up a workflow." + "Having a look at the template `parameters.yaml` file that was just generated, we can see that it contains some pre-defined default values for the core SeisFlows modules. Each of these modules defines it's own set of unique parameters which make up a workflow." ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "parameters.yaml\n", - "32 parameters.yaml\n" + "parameters.yaml sflog.txt\n", + " 30 parameters.yaml\n" ] } ], @@ -167,7 +166,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -176,12 +175,12 @@ "text": [ "# //////////////////////////////////////////////////////////////////////////////\r\n", "#\r\n", - "# SeisFlows3 YAML Parameter File\r\n", + "# SeisFlows YAML Parameter File\r\n", "#\r\n", "# //////////////////////////////////////////////////////////////////////////////\r\n", "#\r\n", "# Modules correspond to the structure of the source code, and determine\r\n", - "# SeisFlows3' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", "#\r\n", "# .. rubric::\r\n", "# - To determine available options for modules listed below, run:\r\n", @@ -193,19 +192,17 @@ "#\r\n", "# MODULES\r\n", "# ///////\r\n", - "# WORKFLOW (str): The method for running SeisFlows3; equivalent to main()\r\n", - "# SOLVER (str): External numerical solver to use for waveform simulations\r\n", - "# SYSTEM (str): Computer architecture of the system being used\r\n", - "# OPTIMIZE (str): Optimization algorithm for the inverse problem\r\n", - "# PREPROCESS (str): Preprocessing schema for waveform data\r\n", - "# POSTPROCESS (str): Postprocessing schema for kernels and gradients\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", "# ==============================================================================\r\n", - "WORKFLOW: inversion\r\n", - "SOLVER: specfem2d\r\n", - "SYSTEM: workstation\r\n", - "OPTIMIZE: LBFGS \r\n", - "PREPROCESS: base\r\n", - "POSTPROCESS: base\r\n" + "workflow: forward\r\n", + "system: workstation\r\n", + "solver: specfem2d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n" ] } ], @@ -224,14 +221,14 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "usage: seisflows configure [-h] [-r]\r\n", + "usage: seisflows configure [-h] [-a]\r\n", "\r\n", "SeisFlows parameter files will vary depending on chosen modules and their\r\n", "respective required parameters. This function will dynamically traverse the\r\n", @@ -243,7 +240,7 @@ "\r\n", "optional arguments:\r\n", " -h, --help show this help message and exit\r\n", - " -r, --relative_paths Set default paths relative to cwd\r\n" + " -a, --absolute_paths Set default paths relative to cwd\r\n" ] } ], @@ -253,114 +250,106 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "filling parameters.yaml w/ default values\r\n" - ] - } - ], + "outputs": [], "source": [ "! seisflows configure" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "# :param smooth_v: Gaussian half-width for vertical smoothing in units\n", + "# of meters.\n", + "# :type components: str\n", + "# :param components: components to consider and tag data with. Should be\n", + "# string of letters such as 'RTZ'\n", + "# :type solver_io: str\n", + "# :param solver_io: format of model/kernel/gradient files expected by the\n", + "# numerical solver. Available: ['fortran_binary': default .bin files].\n", + "# TODO: ['adios': ADIOS formatted files]\n", + "# :type source_prefix: str\n", + "# :param source_prefix: prefix of source/event/earthquake files. If None,\n", + "# will attempt to guess based on the specific solver chosen.\n", + "# :type mpiexec: str\n", + "# :param mpiexec: MPI executable used to run parallel processes. Should also\n", + "# be defined for the system module\n", + "#\n", + "# \n", + "# Solver SPECFEM2D\n", + "# ----------------\n", + "# SPECFEM2D-specific alterations to the base SPECFEM module\n", + "#\n", + "# Parameters\n", + "# ----------\n", + "# :type source_prefix: str\n", + "# :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults\n", + "# to 'SOURCE'\n", + "# :type multiples: bool\n", + "# :param multiples: set an absorbing top-boundary condition\n", + "#\n", + "# \n", "# =============================================================================\n", - "# SOLVER \n", - "# ////// \n", - "# MATERIALS (str):\n", - "# Material parameters used to define model. Available: ['ELASTIC': Vp, Vs,\n", - "# 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC']\n", - "# DENSITY (str):\n", - "# How to treat density during inversion. Available: ['CONSTANT': Do not\n", - "# update density, 'VARIABLE': Update density]\n", - "# ATTENUATION (str):\n", - "# If True, turn on attenuation during forward simulations, otherwise set\n", - "# attenuation off. Attenuation is always off for adjoint simulations.\n", - "# COMPONENTS (str):\n", - "# Components used to generate data, formatted as a single string, e.g. ZNE\n", - "# or NZ or E\n", - "# SOLVERIO (int):\n", - "# The format external solver files. Available: ['fortran_binary', 'adios']\n", - "# NT (float):\n", - "# Number of time steps set in the SPECFEM Par_file\n", - "# DT (float):\n", - "# Time step or delta set in the SPECFEM Par_file\n", - "# F0 (float):\n", - "# Dominant source frequency\n", - "# FORMAT (float):\n", - "# Format of synthetic waveforms used during workflow, available options:\n", - "# ['ascii', 'su']\n", - "# SOURCE_PREFIX (str):\n", - "# Prefix of SOURCE files in path SPECFEM_DATA. By default, 'SOURCE' for\n", - "# SPECFEM2D\n", + "data_format: ascii\n", + "materials: acoustic\n", + "density: False\n", + "attenuation: False\n", + "smooth_h: 0.0\n", + "smooth_v: 0.0\n", + "components: ZNE\n", + "source_prefix: SOURCE\n", + "multiples: False\n", "# =============================================================================\n", - "MATERIALS: !!! REQUIRED PARAMETER !!!\n", - "DENSITY: !!! REQUIRED PARAMETER !!!\n", - "ATTENUATION: !!! REQUIRED PARAMETER !!!\n", - "COMPONENTS: ZNE\n", - "SOLVERIO: fortran_binary\n", - "NT: !!! REQUIRED PARAMETER !!!\n", - "DT: !!! REQUIRED PARAMETER !!!\n", - "F0: !!! REQUIRED PARAMETER !!!\n", - "FORMAT: !!! REQUIRED PARAMETER !!!\n", - "SOURCE_PREFIX: SOURCE\n", + "#\n", + "# Default Preprocess\n", + "# ------------------\n", + "# Data processing for seismic traces, with options for data misfit,\n", + "# filtering, normalization and muting.\n", + "#\n", + "# Parameters\n", + "# ----------\n", + "# :type data_format: str\n", + "# :param data_format: data format for reading traces into memory. For\n", + "# available see: seisflows.plugins.preprocess.readers\n", + "# :type misfit: str\n", + "# :param misfit: misfit function for waveform comparisons. For available\n", + "# see seisflows.plugins.preprocess.misfit\n", + "# :type backproject: str\n", + "# :param backproject: backprojection function for migration, or the\n", + "# objective function in FWI. For available see\n", + "# seisflows.plugins.preprocess.adjoint\n", + "# :type normalize: str\n", + "# :param normalize: Data normalization parameters used to normalize the\n", + "# amplitudes of waveforms. Choose from two sets:\n", + "# ENORML1: normalize per event by L1 of traces; OR\n", + "# ENORML2: normalize per event by L2 of traces;\n", + "# &\n", + "# TNORML1: normalize per trace by L1 of itself; OR\n", + "# TNORML2: normalize per trace by L2 of itself\n", + "# :type filter: str\n", + "# :param filter: Data filtering type, available options are:\n", + "# BANDPASS (req. MIN/MAX PERIOD/FREQ);\n", + "# LOWPASS (req. MAX_FREQ or MIN_PERIOD);\n", + "# HIGHPASS (req. MIN_FREQ or MAX_PERIOD)\n", + "# :type min_period: float\n", + "# :param min_period: Minimum filter period applied to time series.\n", + "# See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they\n", + "# will overwrite PERIOD parameters.\n", + "# :type max_period: float\n", + "# :param max_period: Maximum filter period applied to time series. See\n", + "# also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will\n", + "# overwrite PERIOD parameters.\n", + "# :type min_freq: float\n", + "# :param min_freq: Maximum filter frequency applied to time series,\n", "\n", - "# =============================================================================\n", - "# POSTPROCESS \n", - "# /////////// \n", - "# SMOOTH_H (float):\n", - "# Gaussian half-width for horizontal smoothing in units of meters. If 0.,\n", - "# no smoothing applied\n", - "# SMOOTH_V (float):\n", - "# Gaussian half-width for vertical smoothing in units of meters\n", - "# TASKTIME_SMOOTH (int):\n", - "# Large radii smoothing may take longer than normal tasks. Allocate\n", - "# additional smoothing task time as a multiple of TASKTIME\n", - "# =============================================================================\n", - "SMOOTH_H: 0.0\n", - "SMOOTH_V: 0.0\n", - "TASKTIME_SMOOTH: 1\n", - "\n", - "# =============================================================================\n", - "# OPTIMIZE \n", - "# //////// \n", - "# LINESEARCH (str):\n", - "# Algorithm to use for line search, see seisflows.plugins.line_search for\n", - "# available choices\n", - "# PRECOND (str):\n", - "# Algorithm to use for preconditioning gradients, see\n", - "# seisflows.plugins.preconds for available choices\n", - "# STEPCOUNTMAX (int):\n", - "# Max number of trial steps in line search before a change in line search\n", - "# behavior\n", - "# STEPLENINIT (float):\n", - "# Initial line search step length, as a fraction of current model\n", - "# parameters\n", - "# STEPLENMAX (float):\n", - "# Max allowable step length, as a fraction of current model parameters\n", - "# LBFGSMEM (int):\n", - "# Max number of previous gradients to retain in local memory\n", - "# LBFGSMAX (int):\n", - "# LBFGS periodic restart interval, between 1 and 'inf'\n", - "# LBFGSTHRESH (float):\n", - "# LBFGS angle restart threshold\n", - "# =============================================================================\n", - "LINESEARCH: Backtrack\n", - "\n", - "306 parameters.yaml\n" + " 337 parameters.yaml\n" ] } ], @@ -374,9 +363,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can see that our parameter file is over 300 lines now, too cumbersome to print on the page. The length of the file mostly arises from the header, as each parameter gets it's own entry with the parameter's type, docstring, and any available options.\n", + "We can see that our parameter file is over 300 lines, a bit too cumbersome to print on the page. The length of the file mostly arises from the header, as each parameter gets it's own entry with the parameter's type, docstring, and any available options. Each set of parameters are separated by their relevant module, and their respective docstrings should help users understand how and when they are used in a SeisFlows workflow.\n", "\n", - "Parameters that are required by the workflow but do not come with pre-set default values will be labelled with `!!! REQUIRED PARAMETER !!!`. Similarly required path definitions, which come at the end of the file, are labelled with the `!!! REQUIRED PATH !!!` value." + ">__NOTE__: Many parameters have sensible default values chosen, but it is up to the user to decide which parameters are relevant to them, and how they would like them set. Internal check functions throughout the package will raise AssertionErrors for incorrectly or improperly set parameters." ] }, { @@ -386,19 +375,19 @@ "### Filling out the parameter file\n", "#### seisflows par\n", "\n", - "It's easy enough to open your favorite text editor to make adjustments to the parameter file, however the `seisflows par` command makes things easier by allowing you to view and edit values from the command line. This makes it convenient to change parameters, and also allows you to script your workflow setup for improved reproducibility. " + "You can always open your favorite text editor to make changes to the parameter file, however the `seisflows par` command makes things easier by allowing you to view and edit values from the command line. This makes it convenient to change parameters quickly and allows you to script your parameter file setup for improved reproducibility. " ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "usage: seisflows par [-h] [-p] [-r] [parameter] [value]\r\n", + "usage: seisflows par [-h] [-p] [parameter] [value]\r\n", "\r\n", "Directly edit values in the parameter file by providing the parameter and\r\n", "corresponding value. If no value is provided, will simply print out the\r\n", @@ -414,10 +403,7 @@ "optional arguments:\r\n", " -h, --help show this help message and exit\r\n", " -p, --skip_print Skip the print statement which is typically sent to stdout\r\n", - " after changing parameters.\r\n", - " -r, --required Only list parameters which have not been set as a default\r\n", - " value, typically set with some attention catching\r\n", - " argument. 'parameter' and 'value' will be ignored.\r\n" + " after changing parameters.\r\n" ] } ], @@ -429,87 +415,52 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The -r (--required) flag tells us which parameters need to be set by the user" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "!!! REQUIRED PARAMETER !!!\r\n", - "==========================\r\n", - "\tMATERIALS\r\n", - "\tDENSITY\r\n", - "\tATTENUATION\r\n", - "\tNT\r\n", - "\tDT\r\n", - "\tF0\r\n", - "\tFORMAT\r\n", - "\tCASE\r\n", - "\tEND\r\n", - "!!! REQUIRED PATH !!!\r\n", - "=====================\r\n", - "\tSPECFEM_BIN\r\n", - "\tSPECFEM_DATA\r\n", - "\tMODEL_INIT\r\n" - ] - } - ], - "source": [ - "! seisflows par -r" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can view (but not modify) parameters by giving a single argument to the par command" + "The call structure of the `par` command is provided in the help message:\n", + "\n", + "> seisflows par [parameter] [value (optional)]\n", + "\n", + "We can view parameters by providing a single 'parameter' argument to the `par` command" ] }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "END: !!! REQUIRED PARAMETER !!!\r\n" + "ntask: 1\r\n" ] } ], "source": [ - "! seisflows par end" + "! seisflows par ntask # ntask is the number of tasks/events to be run during a workflow" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "and we can edit the given parameter by providing a second argument to the par command" + "We can change a given parameter from it's original value by providing a second 'value' argument" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "END: !!! REQUIRED PARAMETER !!! -> 1\r\n" + "ntask: 1 -> 3\r\n" ] } ], "source": [ - "! seisflows par end 1" + "! seisflows par ntask 3" ] }, { @@ -520,71 +471,14 @@ "\n", "The `seisflows sempar` command behaves the same as the `par` command, except is used to edit a SPECFEM2D/3D/3D_GLOBE Par_file. It has the same call structure as `par`.\n", "\n", - "### Setting up an active working state\n", - "\n", - "An active SeisFlows3 working state is simply a Python environment with the SeisFlows3 library defined based on the given parameter file. In order to establish a working state, we need to set all required paths and parameters. We can look at the parameter file header to determine valid options for each parameter." - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "# ////// \r\n", - "# MATERIALS (str):\r\n", - "# Material parameters used to define model. Available: ['ELASTIC': Vp, Vs,\r\n", - "# 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC']\r\n", - "# DENSITY (str):\r\n", - "# How to treat density during inversion. Available: ['CONSTANT': Do not\r\n", - "# update density, 'VARIABLE': Update density]\r\n", - "# ATTENUATION (str):\r\n", - "# If True, turn on attenuation during forward simulations, otherwise set\r\n", - "# attenuation off. Attenuation is always off for adjoint simulations.\r\n" - ] - } - ], - "source": [ - "! head -130 parameters.yaml | tail -n 10 " - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "# We use the `-p` flag to turn off stdout printing\n", - "! seisflows par materials elastic -p\n", - "! seisflows par density constant -p\n", - "! seisflows par attenuation False -p\n", - "! seisflows par nt 100 -p\n", - "! seisflows par dt .01 -p\n", - "! seisflows par f0 .5 -p\n", - "! seisflows par format ascii -p\n", - "! seisflows par case synthetic -p\n", - "\n", - "# Required paths can similarly be set the `par` command\n", - "! seisflows par specfem_bin ./ -p\n", - "! seisflows par specfem_data ./ -p\n", - "! seisflows par model_init ./ -p" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### seisflows init\n", + "#### seisflows check\n", "\n", - "To initiate a working state, we run `seisflows init`. This registers the parameter file into Python's sys.modules. It runs parameter check functions to ensure that parameters have been set correctly, and then saves the active working state as a set of pickle (.p) files which can be used to resume active workflows." + "Each module contains it's own internal set of parameter checks which make sure that reasonable parameter values and types have been chosen. This is especially important when submitting large jobs on clusters as the `check` function will allow the User to catch errors without having to wait on queue times or waste computational resources." ] }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -593,65 +487,34 @@ "text": [ "\r\n", "================================================================================\r\n", - " MODULE CHECK ERROR \r\n", - " ////////////////// \r\n", - "seisflows.config module check failed with:\r\n", - "\r\n", - "workflow: CASE == SYNTHETIC requires PATH.MODEL_TRUE\r\n", + " PARAMETER ERRROR \r\n", + " //////////////// \r\n", + "`path_specfem_bin` must exist and must point to directory containing SPECFEM\r\n", + "executables\r\n", "================================================================================\r\n" ] } ], "source": [ - "! seisflows init" + "! seisflows check" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Oops, as we can see the parameter check has caught that a given parameter requires a certain path to be set which is currently blank. Let's amend and try again" + "Here we can see that a given path has not been set correctly in the parameter file." ] }, { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "instantiating SeisFlows3 working state in directory: output\r\n" - ] - } - ], - "source": [ - "! seisflows par model_true ./ -p\n", - "! seisflows init" - ] - }, - { - "cell_type": "code", - "execution_count": 65, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "output\tparameters.yaml\n", - "\n", - "seisflows_optimize.p\t seisflows_postprocess.p seisflows_system.p\n", - "seisflows_parameters.json seisflows_preprocess.p seisflows_workflow.p\n", - "seisflows_paths.json\t seisflows_solver.p\n" - ] - } - ], "source": [ - "! ls\n", - "! echo\n", - "! ls output" + "#### seisflows submit\n", + "\n", + "To run SeisFlows, we use the `submit` call. This will submit the `workflow` to the `system` and continue until a User-defined stop criteria is met. \n", + "\n", + "Under the hood, the `submit` function will differ depending on the chosen `system`. For Users running on laptops and workstations, `submit` will simply launch a Python process and step through the tasks in the `workflow` task list. On clusters, `submit` will launch a master job on a compute node, which will itself step through tasks in the task list, ensuring that no processing is run on login nodes. " ] } ], @@ -671,7 +534,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/docs/overview.rst b/docs/overview.rst index 25c2cc87..652679df 100644 --- a/docs/overview.rst +++ b/docs/overview.rst @@ -37,12 +37,10 @@ SeisFlows Modules: internal structure makes it relatively seamless to switch between workstation problems, and HPC jobs (Examples: workstation, Slurm) * **Solver**: External numerical solver used to generate models, synthetics, - and kernels (Examples: SPECFEM2D, SPECFEM3D Cartesian, SPECFEM3D Globe) + and kernels (Examples: SPECFEM2D, SPECFEM3D Cartesian, SPECFEM3D Globe), and + to smooth and manipulate kernels and gradients. * **Preprocessing**: Signal processing operations performed on time series, including downsampling, detrending, filtering, etc. - * **Postprocessing**: Regularization and image processing operations - carried out on the gradient computations. Typical tasks involve - smoothing, preconditioning and masking * **Optimization**: Nonlinear optimization algorithms used to find the minimum of a waveform-based objective function (Examples: L-BFGS, NLCG, steepest descent) diff --git a/docs/start_here.rst b/docs/start_here.rst index 9c3d8ca5..d196ccb7 100644 --- a/docs/start_here.rst +++ b/docs/start_here.rst @@ -1,5 +1,5 @@ Getting started -================================= +================ Assuming installation detailed on the `home page `__ has completed successfully, you can start playing around with SeisFlows. @@ -22,8 +22,10 @@ For more information on the SeisFlows command line tool, see the Running tests ~~~~~~~~~~~~~ -SeisFlows has some unit tests that ensure the capabilities of the command line -tool and package organization are working as intended. To run the tests: +SeisFlows has some unit/integration tests that ensure the capabilities of +the package are working as intended. Tests should be run before and after any +edits to the source code are made. To run the tests, from the top level +`seisflows` directory: .. parsed-literal:: @@ -35,25 +37,6 @@ If developing SeisFlows, please ensure that you run these tests before and after any changes are made to ensure that your changes do not break intended package functionality. -Running the test problem -~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -SeisFlows comes with a small test problem that is intended to not only test -the workflow capabilities of the package, but also for users to rapidly develop -new modules without needing to run large, potentially expensive, workflows. - -In order to set up the test problem: - -.. parsed-literal:: - - cd path/to/working/directory # ideally this directory is empty - seisflows setup # this will create a template parameters.yaml file - seisflows par workflow test - seisflows configure - -At this stage, you will have a full SeisFlows parameter file. Certain system or -module specific - Running an example problem ~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index cf1a61ff..a5707c18 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -193,11 +193,6 @@ def _format_action(self, action): par.add_argument("-p", "--skip_print", action="store_true", default=False, help="Skip the print statement which is typically " "sent to stdout after changing parameters.") - par.add_argument("-r", "--required", action="store_true", default=False, - help="Only list parameters which have not been set as a " - "default value, typically set with some attention " - "catching argument. 'parameter' and 'value' will be " - "ignored.") # ========================================================================= sempar = subparser.add_parser( "sempar", help="View and edit SPECFEM parameter file", @@ -628,7 +623,7 @@ def clean(self, force=False, **kwargs): Clean the SeisFlows working directory except for the parameter file. :type force: bool - :param force: ignore the warning check that precedes the clean() + :param force: ignore the warning check that precedes the clean() function, useful if you don't want any input messages popping up """ # Check if the filepaths exist @@ -712,7 +707,7 @@ def sempar(self, parameter, value=None, skip_print=False, seisflows sempar velocity_model to edit the values of a velocity model (SPECFEM2D) - + seisflows sempar velocity_model \ "1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0" @@ -732,8 +727,8 @@ def sempar(self, parameter, value=None, skip_print=False, :type value: str :param value: value to set for parameter. if none, will simply print out the current parameter value. to set as nonetype, set to 'null' - SPECFEM2D: if set to 'velocity_model' allows the user to set and - edit the velocity model defined in the SPECMFE2D Par_file. Not a + SPECFEM2D: if set to 'velocity_model' allows the user to set and + edit the velocity model defined in the SPECMFE2D Par_file. Not a very smart capability, likely easier to do this manually. :type par_file: str :param par_file: name of the SPECFEM parameter file, defaults: Par_file @@ -784,8 +779,7 @@ def sempar(self, parameter, value=None, skip_print=False, if not skip_print: print(msg.cli(f"{key}: {cur_val} -> {value}")) - def par(self, parameter, value=None, skip_print=False, required=False, - **kwargs): + def par(self, parameter, value=None, skip_print=False, **kwargs): """ Check or set parameters in the seisflows parameter file. @@ -814,20 +808,14 @@ def par(self, parameter, value=None, skip_print=False, required=False, :type skip_print: bool :param skip_print: skip the print statement which is typically sent to stdout after changing parameters. - :type required: bool - :param required: Only list parameters which have not been set as a - default value, 'parameter' and 'value' will be ignored. """ if not os.path.exists(self._args.parameter_file): sys.exit(f"\n\tparameter file '{self._args.parameter_file}' " f"does not exist\n") - if parameter is None and not required: + if parameter is None: self._subparser.print_help() sys.exit(0) - elif required: - self._par_required() - sys.exit(0) # SeisFlows parameter file dictates upper-case parameters parameter = parameter.upper() From ced2be3a0df6f80923c9664c433c3aee71a1afa8 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 15 Aug 2022 15:24:14 -0700 Subject: [PATCH 110/195] bugfix inversion was updating all model parameter rather than those chosen by the user. needed to fix parameters when writing model vectors --- seisflows/optimize/gradient.py | 4 ---- seisflows/workflow/forward.py | 22 +++++++++++++++++++--- seisflows/workflow/inversion.py | 24 +++++++++++++++--------- 3 files changed, 34 insertions(+), 16 deletions(-) diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index af119bd9..64497521 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -428,10 +428,6 @@ def finalize_search(self): Removes old model/search parameters, moves current parameters to old, sets up new current parameters and writes statistic outputs - - TODO does moving 'm_try' to 'm_new' actually make sense with bracketing - line search where our last trial model will potentially have a - higher misfit due to the 'bracket'ing nature? """ unix.cd(self.path.scratch) diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 69c65b5a..bab0a073 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -35,6 +35,11 @@ class Forward: synthetic': 'data' will be generated as synthetic seismograms using a target model provided in `path_model_true`. If None, workflow will not attempt to generate data. + :type stop_after: str + :param stop_after: optional name of task in task list (use + `seisflows print tasks` to get task list for given workflow) to stop + workflow after, allowing user to prematurely stop a workflow to explore + intermediate results or debug. :type export_traces: bool :param export_traces: export all waveforms that are generated by the external solver to `path_output`. If False, solver traces stored in @@ -69,9 +74,10 @@ class Forward: including models, kernels, gradient and residuals. *** """ - def __init__(self, modules=None, data_case="data", export_traces=False, - export_residuals=False, workdir=os.getcwd(), path_output=None, - path_data=None, path_state_file=None, path_model_init=None, + def __init__(self, modules=None, data_case="data", stop_after=None, + export_traces=False, export_residuals=False, + workdir=os.getcwd(), path_output=None, path_data=None, + path_state_file=None, path_model_init=None, path_model_true=None, path_eval_grad=None, **kwargs): """ Set default forward workflow parameters @@ -86,6 +92,7 @@ def __init__(self, modules=None, data_case="data", export_traces=False, self._modules = modules self.data_case = data_case + self.stop_after = stop_after self.export_traces = export_traces self.export_residuals = export_residuals @@ -182,6 +189,11 @@ def check(self): f"be able to find data for data-synthetic comparison" ) + if self.stop_after is not None: + _task_names = [task.__name__ for task in self.task_list] + assert(self.stop_after in _task_names), \ + f"workflow parameter `stop_after` must match {_task_names}" + def setup(self): """ Assigns modules as attributes of the workflow. I.e., `self.solver` to @@ -273,6 +285,10 @@ def run(self): self._states[func.__name__] = "failed" self.checkpoint() raise + # Allow user to prematurely stop a workflow after a given task + if self.stop_after and func.__name__ == self.stop_after: + logger.info(f"stop workflow at `stop_after`: {self.stop_after}") + break self.checkpoint() diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 6cd55ecf..219eba2d 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -181,12 +181,16 @@ def run(self): while self.iteration < self.end + 1: logger.info(msg.mnr(f"RUNNING ITERATION {self.iteration:0>2}")) super().run() # Runs task list - logger.info(msg.mnr(f"COMPLETED ITERATION {self.iteration:0>2}")) - self.iteration += 1 - logger.info(f"setting current iteration to: {self.iteration}") - # Clear the state file for new iteration - self._states = {} - self.checkpoint() + # Assuming that if `stop_after` is used, that we are NOT iterating + if self.stop_after is None: + logger.info(msg.mnr(f"COMPLETE ITERATION {self.iteration:0>2}")) + self.iteration += 1 + logger.info(f"setting current iteration to: {self.iteration}") + # Clear the state file for new iteration + self._states = {} + self.checkpoint() + else: + break def checkpoint(self): """ @@ -240,7 +244,7 @@ def evaluate_initial_misfit(self): # solvers path_model = os.path.join(self.path.eval_grad, "model") m_new = self.optimize.load_vector("m_new") - m_new.write(path=path_model) + m_new.write(path=path_model, parameters=self.solver._parameters) # Run forward simulation/misfit quantification with previous # model @@ -305,7 +309,8 @@ def initialize_line_search(self): self.optimize.checkpoint() # Expose model `m_try` to the solver by placing it in eval_func dir. - m_try.write(path=os.path.join(self.path.eval_func, "model")) + m_try.write(path=os.path.join(self.path.eval_func, "model"), + parameters=self.solver._parameters) def perform_line_search(self): """ @@ -401,7 +406,8 @@ def finalize_iteration(self): if self.export_model: model = self.optimize.load_vector("m_new") model.write(path=os.path.join(self.path.output, - f"M{self.iteration:0>2}") + f"M{self.iteration:0>2}"), + parameters=self.solver._parameters ) # Update optimization From e8ea3f70ebf9b1e2a7d1fb3b0fde44ef745cb799 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 15 Aug 2022 17:17:01 -0700 Subject: [PATCH 111/195] updating doc notebooks to reflect change to seisflows (from seisflows3) and new directory structure, weird ls coloring happening, will need to fix or run doc on another machine --- docs/command_line_tool.rst | 623 +++-- docs/notebooks/convert.py | 7 +- docs/notebooks/inheritance.ipynb | 2 +- docs/notebooks/parameter_file.ipynb | 634 ++--- .../notebooks/scratch/specfem2d_example.ipynb | 2047 ++++++++++++++++ docs/notebooks/sflog.txt | 0 docs/notebooks/specfem2d_example.ipynb | 1957 +++++++-------- docs/notebooks/working_directory.ipynb | 77 +- docs/parameter_file.rst | 805 +++---- docs/specfem2d_example.rst | 2094 ++++++++--------- seisflows/solver/specfem.py | 4 + seisflows/tools/specfem.py | 2 +- seisflows/workflow/inversion.py | 23 +- 13 files changed, 4773 insertions(+), 3502 deletions(-) create mode 100644 docs/notebooks/scratch/specfem2d_example.ipynb create mode 100644 docs/notebooks/sflog.txt diff --git a/docs/command_line_tool.rst b/docs/command_line_tool.rst index 45a4afcd..2ec34f47 100644 --- a/docs/command_line_tool.rst +++ b/docs/command_line_tool.rst @@ -1,10 +1,12 @@ Commmand Line Tool ================== -``SeisFlows`` is primarily interacted with via a parameter file and command line tool. -In this page we explain how to use this command line tool to create a SeisFlows parameters -file, edit and configure it, and run a workflow. We also provide explanation -for other command line options which act as helper utilities for package control. +``SeisFlows`` is primarily interacted with via command line calls and a +parameter file. In this page we explain how to use this command line +tool to create a SeisFlows parameters file, edit and configure it, and +establish a SeisFlows working directory. We also provide explanation for +other command line options which act as helper utilities for improved +package control. After installing SeisFlows into a Conda environment, the ``seisflows`` command will be available directly from the command line. To access the @@ -17,44 +19,43 @@ help dialogue, you can type ``seisflows`` or ``seisflows -h`` .. parsed-literal:: - usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]] - {setup,configure,init,submit,resume,restart,clean,par,sempar,check,print,convert,reset,debug,edit,examples} - ... - - ================================================================================ - - SeisFlows: Waveform Inversion Package - - ================================================================================ - - optional arguments: - -h, --help show this help message and exit - -w [WORKDIR], --workdir [WORKDIR] - The SeisFlows working directory, default: cwd - -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE] - Parameters file, default: 'parameters.yaml' - - command: - Available SeisFlows arguments and their intended usages - - setup Setup working directory from scratch - configure Fill parameter file with defaults - init Initiate working environment - submit Submit initial workflow to system - resume Re-submit previous workflow to system - restart Remove current environment and submit new workflow - clean Remove files relating to an active working environment - par View and edit SeisFlows parameter file - sempar View and edit SPECFEM parameter file - check Check state of an active environment - print Print information related to an active environment - convert Convert model file format - reset Reset modules within an active state - debug Start interactive debug environment - edit Open source code file in text editor - examples Look at and run pre-configured example problems - - 'seisflows [command] -h' for more detailed descriptions of each command. + usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]] + {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples} + ... + + ================================================================================ + + SeisFlows: Waveform Inversion Package + + ================================================================================ + + optional arguments: + -h, --help show this help message and exit + -w [WORKDIR], --workdir [WORKDIR] + The SeisFlows working directory, default: cwd + -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE] + Parameters file, default: 'parameters.yaml' + + command: + Available SeisFlows arguments and their intended usages + + setup Setup working directory from scratch + configure Fill parameter file with defaults + swap Swap module parameters in an existing parameter file + init Initiate working environment + submit Submit initial workflow to system + resume Re-submit previous workflow to system + restart Remove current environment and submit new workflow + clean Remove files relating to an active working environment + par View and edit SeisFlows parameter file + sempar View and edit SPECFEM parameter file + check Check state of an active environment + print Print information related to an active environment + reset Reset modules within an active state + debug Start interactive debug environment + examples Look at and run pre-configured example problems + + 'seisflows [command] -h' for more detailed descriptions of each command. Setting up a parameter file @@ -63,20 +64,20 @@ Setting up a parameter file seisflows setup ^^^^^^^^^^^^^^^ -The first step of any SeisFlows workflow is to set up a working -directory, which begins by establishing a blank parameter file. The -``seisflows setup`` command copies in a template parameter file. Ideally -your working directory will be empty to avoid file conflicts. +The first step of any SeisFlows workflow is to setting up a parameter +file. The ``seisflows setup`` command copies in a template parameter +file. .. code:: ipython3 - %cd ~/Work/scratch + %cd ~/Scratch + ! rm * ! ls .. parsed-literal:: - /home/bchow/Work/scratch + /Users/Chow/Scratch .. code:: ipython3 @@ -86,32 +87,31 @@ your working directory will be empty to avoid file conflicts. .. parsed-literal:: - usage: seisflows setup [-h] [-s] [-f] - - In the specified working directory, copy template parameter file containing - only module choices, and symlink source code for both the base and super - repositories for easy edit access. If a parameter file matching the provided - name exists in the working directory, a prompt will appear asking the user if - they want to overwrite. - - optional arguments: - -h, --help show this help message and exit - -s, --symlink symlink source code into the working directory - -f, --force automatically overwrites existing parameter file + usage: seisflows setup [-h] [-f] + + In the specified working directory, copy template parameter file containing + only module choices, and symlink source code for both the base and super + repositories for easy edit access. If a parameter file matching the provided + name exists in the working directory, a prompt will appear asking the user if + they want to overwrite. + + optional arguments: + -h, --help show this help message and exit + -f, --force automatically overwrites existing parameter file .. code:: ipython3 - # The '-f' flag (force) will overwrite any existing parameter file + # The '-f' flag (overwrite) will overwrite any existing parameter file ! seisflows setup -f .. parsed-literal:: - creating parameter file: parameters.yaml + creating parameter file: parameters.yaml -Having a look at the template parameters.yaml file that was just +Having a look at the template ``parameters.yaml`` file that was just generated, we can see that it contains some pre-defined default values for the core SeisFlows modules. Each of these modules defines it’s own set of unique parameters which make up a workflow. @@ -124,8 +124,8 @@ set of unique parameters which make up a workflow. .. parsed-literal:: - parameters.yaml - 32 parameters.yaml + parameters.yaml sflog.txt + 30 parameters.yaml .. code:: ipython3 @@ -135,38 +135,36 @@ set of unique parameters which make up a workflow. .. parsed-literal:: - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print modules - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # WORKFLOW (str): The method for running SeisFlows; equivalent to main() - # SOLVER (str): External numerical solver to use for waveform simulations - # SYSTEM (str): Computer architecture of the system being used - # OPTIMIZE (str): Optimization algorithm for the inverse problem - # PREPROCESS (str): Preprocessing schema for waveform data - # POSTPROCESS (str): Postprocessing schema for kernels and gradients - # ============================================================================== - WORKFLOW: inversion - SOLVER: specfem2d - SYSTEM: workstation - OPTIMIZE: LBFGS - PREPROCESS: base - POSTPROCESS: base + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: forward + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient seisflows configure @@ -183,31 +181,25 @@ file. .. parsed-literal:: - usage: seisflows configure [-h] [-r] - - SeisFlows parameter files will vary depending on chosen modules and their - respective required parameters. This function will dynamically traverse the - source code and generate a template parameter file based on module choices. - The resulting file incldues docstrings and type hints for each parameter. - Optional parameters will be set with default values and required parameters - and paths will be marked appropriately. Required parameters must be set before - a workflow can be submitted. - - optional arguments: - -h, --help show this help message and exit - -r, --relative_paths Set default paths relative to cwd + usage: seisflows configure [-h] [-a] + + SeisFlows parameter files will vary depending on chosen modules and their + respective required parameters. This function will dynamically traverse the + source code and generate a template parameter file based on module choices. + The resulting file incldues docstrings and type hints for each parameter. + Optional parameters will be set with default values and required parameters + and paths will be marked appropriately. Required parameters must be set before + a workflow can be submitted. + + optional arguments: + -h, --help show this help message and exit + -a, --absolute_paths Set default paths relative to cwd .. code:: ipython3 ! seisflows configure - -.. parsed-literal:: - - filling parameters.yaml w/ default values - - .. code:: ipython3 ! head -200 parameters.yaml | tail -n 82 # have a look at the middle of the file @@ -217,102 +209,105 @@ file. .. parsed-literal:: + # :param smooth_v: Gaussian half-width for vertical smoothing in units + # of meters. + # :type components: str + # :param components: components to consider and tag data with. Should be + # string of letters such as 'RTZ' + # :type solver_io: str + # :param solver_io: format of model/kernel/gradient files expected by the + # numerical solver. Available: ['fortran_binary': default .bin files]. + # TODO: ['adios': ADIOS formatted files] + # :type source_prefix: str + # :param source_prefix: prefix of source/event/earthquake files. If None, + # will attempt to guess based on the specific solver chosen. + # :type mpiexec: str + # :param mpiexec: MPI executable used to run parallel processes. Should also + # be defined for the system module + # + # + # Solver SPECFEM2D + # ---------------- + # SPECFEM2D-specific alterations to the base SPECFEM module + # + # Parameters + # ---------- + # :type source_prefix: str + # :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults + # to 'SOURCE' + # :type multiples: bool + # :param multiples: set an absorbing top-boundary condition + # + # # ============================================================================= - # SOLVER - # ////// - # MATERIALS (str): - # Material parameters used to define model. Available: ['ELASTIC': Vp, Vs, - # 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] - # DENSITY (str): - # How to treat density during inversion. Available: ['CONSTANT': Do not - # update density, 'VARIABLE': Update density] - # ATTENUATION (str): - # If True, turn on attenuation during forward simulations, otherwise set - # attenuation off. Attenuation is always off for adjoint simulations. - # COMPONENTS (str): - # Components used to generate data, formatted as a single string, e.g. ZNE - # or NZ or E - # SOLVERIO (int): - # The format external solver files. Available: ['fortran_binary', 'adios'] - # NT (float): - # Number of time steps set in the SPECFEM Par_file - # DT (float): - # Time step or delta set in the SPECFEM Par_file - # F0 (float): - # Dominant source frequency - # FORMAT (float): - # Format of synthetic waveforms used during workflow, available options: - # ['ascii', 'su'] - # SOURCE_PREFIX (str): - # Prefix of SOURCE files in path SPECFEM_DATA. By default, 'SOURCE' for - # SPECFEM2D - # ============================================================================= - MATERIALS: !!! REQUIRED PARAMETER !!! - DENSITY: !!! REQUIRED PARAMETER !!! - ATTENUATION: !!! REQUIRED PARAMETER !!! - COMPONENTS: ZNE - SOLVERIO: fortran_binary - NT: !!! REQUIRED PARAMETER !!! - DT: !!! REQUIRED PARAMETER !!! - F0: !!! REQUIRED PARAMETER !!! - FORMAT: !!! REQUIRED PARAMETER !!! - SOURCE_PREFIX: SOURCE - - # ============================================================================= - # POSTPROCESS - # /////////// - # SMOOTH_H (float): - # Gaussian half-width for horizontal smoothing in units of meters. If 0., - # no smoothing applied - # SMOOTH_V (float): - # Gaussian half-width for vertical smoothing in units of meters - # TASKTIME_SMOOTH (int): - # Large radii smoothing may take longer than normal tasks. Allocate - # additional smoothing task time as a multiple of TASKTIME - # ============================================================================= - SMOOTH_H: 0.0 - SMOOTH_V: 0.0 - TASKTIME_SMOOTH: 1 - - # ============================================================================= - # OPTIMIZE - # //////// - # LINESEARCH (str): - # Algorithm to use for line search, see seisflows.plugins.line_search for - # available choices - # PRECOND (str): - # Algorithm to use for preconditioning gradients, see - # seisflows.plugins.preconds for available choices - # STEPCOUNTMAX (int): - # Max number of trial steps in line search before a change in line search - # behavior - # STEPLENINIT (float): - # Initial line search step length, as a fraction of current model - # parameters - # STEPLENMAX (float): - # Max allowable step length, as a fraction of current model parameters - # LBFGSMEM (int): - # Max number of previous gradients to retain in local memory - # LBFGSMAX (int): - # LBFGS periodic restart interval, between 1 and 'inf' - # LBFGSTHRESH (float): - # LBFGS angle restart threshold + data_format: ascii + materials: acoustic + density: False + attenuation: False + smooth_h: 0.0 + smooth_v: 0.0 + components: ZNE + source_prefix: SOURCE + multiples: False # ============================================================================= - LINESEARCH: Backtrack + # + # Default Preprocess + # ------------------ + # Data processing for seismic traces, with options for data misfit, + # filtering, normalization and muting. + # + # Parameters + # ---------- + # :type data_format: str + # :param data_format: data format for reading traces into memory. For + # available see: seisflows.plugins.preprocess.readers + # :type misfit: str + # :param misfit: misfit function for waveform comparisons. For available + # see seisflows.plugins.preprocess.misfit + # :type backproject: str + # :param backproject: backprojection function for migration, or the + # objective function in FWI. For available see + # seisflows.plugins.preprocess.adjoint + # :type normalize: str + # :param normalize: Data normalization parameters used to normalize the + # amplitudes of waveforms. Choose from two sets: + # ENORML1: normalize per event by L1 of traces; OR + # ENORML2: normalize per event by L2 of traces; + # & + # TNORML1: normalize per trace by L1 of itself; OR + # TNORML2: normalize per trace by L2 of itself + # :type filter: str + # :param filter: Data filtering type, available options are: + # BANDPASS (req. MIN/MAX PERIOD/FREQ); + # LOWPASS (req. MAX_FREQ or MIN_PERIOD); + # HIGHPASS (req. MIN_FREQ or MAX_PERIOD) + # :type min_period: float + # :param min_period: Minimum filter period applied to time series. + # See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they + # will overwrite PERIOD parameters. + # :type max_period: float + # :param max_period: Maximum filter period applied to time series. See + # also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will + # overwrite PERIOD parameters. + # :type min_freq: float + # :param min_freq: Maximum filter frequency applied to time series, - 306 parameters.yaml + 337 parameters.yaml -We can see that our parameter file is over 300 lines now, too cumbersome -to print on the page. The length of the file mostly arises from the -header, as each parameter gets it’s own entry with the parameter’s type, -docstring, and any available options. +We can see that our parameter file is over 300 lines, a bit too +cumbersome to print on the page. The length of the file mostly arises +from the header, as each parameter gets it’s own entry with the +parameter’s type, docstring, and any available options. Each set of +parameters are separated by their relevant module, and their respective +docstrings should help users understand how and when they are used in a +SeisFlows workflow. -Parameters that are required by the workflow but do not come with -pre-set default values will be labelled with -``!!! REQUIRED PARAMETER !!!``. Similarly required path definitions, -which come at the end of the file, are labelled with the -``!!! REQUIRED PATH !!!`` value. + **NOTE**: Many parameters have sensible default values chosen, but it + is up to the user to decide which parameters are relevant to them, + and how they would like them set. Internal check functions throughout + the package will raise AssertionErrors for incorrectly or improperly + set parameters. Filling out the parameter file ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -320,11 +315,11 @@ Filling out the parameter file seisflows par ^^^^^^^^^^^^^ -It’s easy enough to open your favorite text editor to make adjustments -to the parameter file, however the ``seisflows par`` command makes -things easier by allowing you to view and edit values from the command -line. This makes it convenient to change parameters, and also allows you -to script your workflow setup for improved reproducibility. +You can always open your favorite text editor to make changes to the +parameter file, however the ``seisflows par`` command makes things +easier by allowing you to view and edit values from the command line. +This makes it convenient to change parameters quickly and allows you to +script your parameter file setup for improved reproducibility. .. code:: ipython3 @@ -333,80 +328,54 @@ to script your workflow setup for improved reproducibility. .. parsed-literal:: - usage: seisflows par [-h] [-p] [-r] [parameter] [value] - - Directly edit values in the parameter file by providing the parameter and - corresponding value. If no value is provided, will simply print out the - current value of the given parameter. Works also with path names. - - positional arguments: - parameter Parameter to edit or view, (case independent). - value Optional value to set parameter to. If not given, will - print out current parameter. If given, will replace - current parameter with new value. Set as 'null' for - NoneType and set '' for empty string - - optional arguments: - -h, --help show this help message and exit - -p, --skip_print Skip the print statement which is typically sent to stdout - after changing parameters. - -r, --required Only list parameters which have not been set as a default - value, typically set with some attention catching - argument. 'parameter' and 'value' will be ignored. - - -The -r (–required) flag tells us which parameters need to be set by the -user + usage: seisflows par [-h] [-p] [parameter] [value] + + Directly edit values in the parameter file by providing the parameter and + corresponding value. If no value is provided, will simply print out the + current value of the given parameter. Works also with path names. + + positional arguments: + parameter Parameter to edit or view, (case independent). + value Optional value to set parameter to. If not given, will + print out current parameter. If given, will replace + current parameter with new value. Set as 'null' for + NoneType and set '' for empty string + + optional arguments: + -h, --help show this help message and exit + -p, --skip_print Skip the print statement which is typically sent to stdout + after changing parameters. + + +The call structure of the ``par`` command is provided in the help +message: + + seisflows par [parameter] [value (optional)] + +We can view parameters by providing a single ‘parameter’ argument to the +``par`` command .. code:: ipython3 - ! seisflows par -r + ! seisflows par ntask # ntask is the number of tasks/events to be run during a workflow .. parsed-literal:: - !!! REQUIRED PARAMETER !!! - ========================== - MATERIALS - DENSITY - ATTENUATION - NT - DT - F0 - FORMAT - CASE - END - !!! REQUIRED PATH !!! - ===================== - SPECFEM_BIN - SPECFEM_DATA - MODEL_INIT - - -We can view (but not modify) parameters by giving a single argument to -the par command - -.. code:: ipython3 + ntask: 1 - ! seisflows par end - -.. parsed-literal:: - - END: !!! REQUIRED PARAMETER !!! - - -and we can edit the given parameter by providing a second argument to -the par command +We can change a given parameter from it’s original value by providing a +second ‘value’ argument .. code:: ipython3 - ! seisflows par end 1 + ! seisflows par ntask 3 .. parsed-literal:: - END: !!! REQUIRED PARAMETER !!! -> 1 + ntask: 1 -> 3 seisflows sempar @@ -416,104 +385,44 @@ The ``seisflows sempar`` command behaves the same as the ``par`` command, except is used to edit a SPECFEM2D/3D/3D_GLOBE Par_file. It has the same call structure as ``par``. -Setting up an active working state -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -An active SeisFlows working state is simply a Python environment with -the SeisFlows library defined based on the given parameter file. In -order to establish a working state, we need to set all required paths -and parameters. We can look at the parameter file header to determine -valid options for each parameter. - -.. code:: ipython3 - - ! head -130 parameters.yaml | tail -n 10 - - -.. parsed-literal:: - - # ////// - # MATERIALS (str): - # Material parameters used to define model. Available: ['ELASTIC': Vp, Vs, - # 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] - # DENSITY (str): - # How to treat density during inversion. Available: ['CONSTANT': Do not - # update density, 'VARIABLE': Update density] - # ATTENUATION (str): - # If True, turn on attenuation during forward simulations, otherwise set - # attenuation off. Attenuation is always off for adjoint simulations. - - -.. code:: ipython3 - - # We use the `-p` flag to turn off stdout printing - ! seisflows par materials elastic -p - ! seisflows par density constant -p - ! seisflows par attenuation False -p - ! seisflows par nt 100 -p - ! seisflows par dt .01 -p - ! seisflows par f0 .5 -p - ! seisflows par format ascii -p - ! seisflows par case synthetic -p - - # Required paths can similarly be set the `par` command - ! seisflows par specfem_bin ./ -p - ! seisflows par specfem_data ./ -p - ! seisflows par model_init ./ -p - -seisflows init -^^^^^^^^^^^^^^ - -To initiate a working state, we run ``seisflows init``. This registers -the parameter file into Python’s sys.modules. It runs parameter check -functions to ensure that parameters have been set correctly, and then -saves the active working state as a set of pickle (.p) files which can -be used to resume active workflows. - -.. code:: ipython3 - - ! seisflows init - - -.. parsed-literal:: - - - ================================================================================ - MODULE CHECK ERROR - ////////////////// - seisflows.config module check failed with: - - workflow: CASE == SYNTHETIC requires PATH.MODEL_TRUE - ================================================================================ - +seisflows check +^^^^^^^^^^^^^^^ -Oops, as we can see the parameter check has caught that a given -parameter requires a certain path to be set which is currently blank. -Let’s amend and try again +Each module contains it’s own internal set of parameter checks which +make sure that reasonable parameter values and types have been chosen. +This is especially important when submitting large jobs on clusters as +the ``check`` function will allow the User to catch errors without +having to wait on queue times or waste computational resources. .. code:: ipython3 - ! seisflows par model_true ./ -p - ! seisflows init + ! seisflows check .. parsed-literal:: - instantiating SeisFlows working state in directory: output - + + ================================================================================ + PARAMETER ERRROR + //////////////// + `path_specfem_bin` must exist and must point to directory containing SPECFEM + executables + ================================================================================ -.. code:: ipython3 - ! ls - ! echo - ! ls output +Here we can see that a given path has not been set correctly in the +parameter file. +seisflows submit +^^^^^^^^^^^^^^^^ -.. parsed-literal:: - - output parameters.yaml - - seisflows_optimize.p seisflows_postprocess.p seisflows_system.p - seisflows_parameters.json seisflows_preprocess.p seisflows_workflow.p - seisflows_paths.json seisflows_solver.p +To run SeisFlows, we use the ``submit`` call. This will submit the +``workflow`` to the ``system`` and continue until a User-defined stop +criteria is met. +Under the hood, the ``submit`` function will differ depending on the +chosen ``system``. For Users running on laptops and workstations, +``submit`` will simply launch a Python process and step through the +tasks in the ``workflow`` task list. On clusters, ``submit`` will launch +a master job on a compute node, which will itself step through tasks in +the task list, ensuring that no processing is run on login nodes. diff --git a/docs/notebooks/convert.py b/docs/notebooks/convert.py index 7b279e49..9a91ec81 100644 --- a/docs/notebooks/convert.py +++ b/docs/notebooks/convert.py @@ -1,8 +1,13 @@ #! /usr/bin/env python """ -Run an IPython notebook (execute all cells) and then convert the notebook to a \ +Run an IPython notebook (execute all cells) and then convert the notebook to a Sphinx .rst doc page in HTML +.. rubric:: + python convert.py # to convert all .ipynb files + OR + python convert.py {notebook}.ipynb # to convert a given notebook + .. note:: You will not need this if using the nbsphinx extension. diff --git a/docs/notebooks/inheritance.ipynb b/docs/notebooks/inheritance.ipynb index 6827b765..a68e64ff 100644 --- a/docs/notebooks/inheritance.ipynb +++ b/docs/notebooks/inheritance.ipynb @@ -362,7 +362,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/docs/notebooks/parameter_file.ipynb b/docs/notebooks/parameter_file.ipynb index bad3a0bb..5e249fd6 100644 --- a/docs/notebooks/parameter_file.ipynb +++ b/docs/notebooks/parameter_file.ipynb @@ -6,16 +6,43 @@ "source": [ "# Parameter File\n", "\n", - "The parameter file is the central control object for a SeisFlows3 workflow. Here we take a look at the anatomy of a parameter file. Parameter files in SeisFlows3 are formatted in the [YAML format (YAML Ain't Markup Language)](https://pyyaml.org/wiki/PyYAMLDocumentation).\n", + "The parameter file is the central control object for a SeisFlows workflow. Here we take a look at the anatomy of a parameter file. Parameter files in SeisFlows are formatted in the [YAML format (YAML Ain't Markup Language)](https://pyyaml.org/wiki/PyYAMLDocumentation).\n", "\n", "## Template\n", "\n", - "Each workflow starts with the module-only template parameter file which defines the core modules which make up the package. Running `seisflows setup` from the command line will create this file. " + "Each workflow starts with the module-only template parameter file which defines the core modules of the package. Your choices for each of these modules will determine which paths and parameters are included in the full parameter file. Running `seisflows setup` from the command line will create the template file. " ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows setup [-h] [-f]\r\n", + "\r\n", + "In the specified working directory, copy template parameter file containing\r\n", + "only module choices, and symlink source code for both the base and super\r\n", + "repositories for easy edit access. If a parameter file matching the provided\r\n", + "name exists in the working directory, a prompt will appear asking the user if\r\n", + "they want to overwrite.\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n", + " -f, --force automatically overwrites existing parameter file\r\n" + ] + } + ], + "source": [ + "! seisflows setup -h" + ] + }, + { + "cell_type": "code", + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -32,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -41,12 +68,12 @@ "text": [ "# //////////////////////////////////////////////////////////////////////////////\r\n", "#\r\n", - "# SeisFlows3 YAML Parameter File\r\n", + "# SeisFlows YAML Parameter File\r\n", "#\r\n", "# //////////////////////////////////////////////////////////////////////////////\r\n", "#\r\n", "# Modules correspond to the structure of the source code, and determine\r\n", - "# SeisFlows3' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", "#\r\n", "# .. rubric::\r\n", "# - To determine available options for modules listed below, run:\r\n", @@ -58,19 +85,17 @@ "#\r\n", "# MODULES\r\n", "# ///////\r\n", - "# WORKFLOW (str): The method for running SeisFlows3; equivalent to main()\r\n", - "# SOLVER (str): External numerical solver to use for waveform simulations\r\n", - "# SYSTEM (str): Computer architecture of the system being used\r\n", - "# OPTIMIZE (str): Optimization algorithm for the inverse problem\r\n", - "# PREPROCESS (str): Preprocessing schema for waveform data\r\n", - "# POSTPROCESS (str): Postprocessing schema for kernels and gradients\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", "# ==============================================================================\r\n", - "WORKFLOW: inversion\r\n", - "SOLVER: specfem2d\r\n", - "SYSTEM: workstation\r\n", - "OPTIMIZE: LBFGS \r\n", - "PREPROCESS: base\r\n", - "POSTPROCESS: base\r\n" + "workflow: forward\r\n", + "system: workstation\r\n", + "solver: specfem2d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n" ] } ], @@ -82,67 +107,62 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### How do I choose my modules?\n", + "### How do I choose modules?\n", "\n", - "As seen above, each of the modules comes with a default value. But you may want to run a migration, not an inversion. Or run with SPECFEM3D not 2D. As stated in the comments at the top of the file, the `seisflows print modules` command lists out all available options. Don't see an option that works for you? Learn to extend the SeisFlows3 package here: **!!! docs page link here !!!**" + "As seen above, each of the modules comes with a default value which represents the base class* for this module. " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "* For an explanation of base classes and Python inheritance, see the `inheritance page.`__ " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These default values are likely not suitable for all, e.g., if you want to run an inversion and not a forward workflow, or use SPECFEM3D not SPECFEM2D. To see all available module options, use the `seisflows print modules` command." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " SEISFLOWS3 MODULES \r\n", - " ////////////////// \r\n", - "'+': package, '-': module, '*': class\r\n", + " SEISFLOWS MODULES \r\n", + " ///////////////// \r\n", + "'-': module, '*': class\r\n", "\r\n", - "+ SYSTEM\r\n", - " - seisflows\r\n", - " * base\r\n", - " * cluster\r\n", - " * lsf\r\n", - " * slurm\r\n", - " * workstation\r\n", - " - seisflows-super\r\n", - " * chinook\r\n", - " * maui\r\n", - "+ PREPROCESS\r\n", - " - seisflows\r\n", - " * base\r\n", - " * pyatoa\r\n", - " - seisflows-super\r\n", - " * pyatoa_nz\r\n", - "+ SOLVER\r\n", - " - seisflows\r\n", - " * base\r\n", - " * specfem2d\r\n", - " * specfem3d\r\n", - " * specfem3d_globe\r\n", - " - seisflows-super\r\n", - " * specfem3d_maui\r\n", - "+ POSTPROCESS\r\n", - " - seisflows\r\n", - " * base\r\n", - " - seisflows-super\r\n", - "+ OPTIMIZE\r\n", - " - seisflows\r\n", - " * LBFGS\r\n", - " * NLCG\r\n", - " * base\r\n", - " - seisflows-super\r\n", - "+ WORKFLOW\r\n", - " - seisflows\r\n", - " * base\r\n", - " * inversion\r\n", - " * migration\r\n", - " * test\r\n", - " - seisflows-super\r\n", - " * thrifty_inversion\r\n", - " * thrifty_maui\r\n" + "- workflow\r\n", + " * forward\r\n", + " * inversion\r\n", + " * migration\r\n", + "- system\r\n", + " * chinook\r\n", + " * cluster\r\n", + " * frontera\r\n", + " * lsf\r\n", + " * maui\r\n", + " * slurm\r\n", + " * workstation\r\n", + "- solver\r\n", + " * specfem\r\n", + " * specfem2d\r\n", + " * specfem3d\r\n", + " * specfem3d_globe\r\n", + "- preprocess\r\n", + " * default\r\n", + " * pyaflowa\r\n", + "- optimize\r\n", + " * LBFGS\r\n", + " * NLCG\r\n", + " * gradient\r\n" ] } ], @@ -156,7 +176,14 @@ "source": [ "### How do I change modules?\n", "\n", - "Feel free to use any old text editor to edit the YAML file, or you can use the `seisflows par` command to make changes directly from the command line. For example, say we want to use SPECFEM3D" + "Feel free to use any text editor, or use the `seisflows par` command to make changes directly from the command line. For example, say we want to use SPECFEM3D as our solver module. " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "This is also covered in the `command line tool page.`__" ] }, { @@ -168,7 +195,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SOLVER: specfem2d -> specfem3d\r\n" + "solver: specfem2d -> specfem3d\r\n" ] } ], @@ -186,7 +213,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SOLVER: specfem3d\r\n" + "solver: specfem3d\r\n" ] } ], @@ -199,9 +226,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### How do I get to a full parameter file?\n", + "### How do I create a full parameter file?\n", "\n", - "The module-only parameter file serves as as a template for dynamically generating a full parameter file. Since each module requires it's own unique set of parameters and paths, each parameter file will look different. We can use the `seisflows configure` command to complete our parmater file, based on the chosen modules." + "The module-only parameter file serves as as a template for dynamically generating the full parameter file. Since each module requires it's own unique set of parameters and paths, each parameter file will look different. We use the `seisflows configure` command to complete the file." ] }, { @@ -213,10 +240,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "filling parameters.yaml w/ default values\r\n" + "usage: seisflows configure [-h] [-a]\r\n", + "\r\n", + "SeisFlows parameter files will vary depending on chosen modules and their\r\n", + "respective required parameters. This function will dynamically traverse the\r\n", + "source code and generate a template parameter file based on module choices.\r\n", + "The resulting file incldues docstrings and type hints for each parameter.\r\n", + "Optional parameters will be set with default values and required parameters\r\n", + "and paths will be marked appropriately. Required parameters must be set before\r\n", + "a workflow can be submitted.\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n", + " -a, --absolute_paths Set default paths relative to cwd\r\n" ] } ], + "source": [ + "! seisflows configure -h" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], "source": [ "! seisflows configure" ] @@ -225,9 +273,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Anatomy of the parameter file\n", + "Below we will take a look at the parameter file we just created" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Anatomy of a parameter file\n", "\n", - "As we will see below, the parameter file has now been generated. Each module will define its own section, separated by a header of comments. Within each header, parameter names, types and descriptions are listed. At the bottom of the parameter file, there is a section defining paths required by the workflow. Section headers will look something: " + "Each of SeisFlows' modules will define its own section in the parameter file, separated by a header of comments representing the docstring. Within each header, parameter names, types and descriptions are listed. At the bottom of the parameter file, there is a section defining paths required by SeisFlows. Section headers will look something: " ] }, { @@ -237,18 +292,22 @@ "outputs": [], "source": [ "# =============================================================================\n", - "# MODULE\n", - "# ////// \n", - "# PARAMETER_NAME (type):\n", - "# Description\n", + "# MODULE\n", + "# ------\n", + "# Module description \n", + "#\n", + "# Parameters\n", + "# ----------\n", + "# :type parameter: type\n", + "# :param paramter: description\n", "# ...\n", "# =============================================================================\n", - "PARAMETER_NAME: parameter_value" + "parameter: value" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -257,12 +316,12 @@ "text": [ "# //////////////////////////////////////////////////////////////////////////////\r\n", "#\r\n", - "# SeisFlows3 YAML Parameter File\r\n", + "# SeisFlows YAML Parameter File\r\n", "#\r\n", "# //////////////////////////////////////////////////////////////////////////////\r\n", "#\r\n", "# Modules correspond to the structure of the source code, and determine\r\n", - "# SeisFlows3' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", "#\r\n", "# .. rubric::\r\n", "# - To determine available options for modules listed below, run:\r\n", @@ -274,67 +333,67 @@ "#\r\n", "# MODULES\r\n", "# ///////\r\n", - "# WORKFLOW (str): The method for running SeisFlows3; equivalent to main()\r\n", - "# SOLVER (str): External numerical solver to use for waveform simulations\r\n", - "# SYSTEM (str): Computer architecture of the system being used\r\n", - "# OPTIMIZE (str): Optimization algorithm for the inverse problem\r\n", - "# PREPROCESS (str): Preprocessing schema for waveform data\r\n", - "# POSTPROCESS (str): Postprocessing schema for kernels and gradients\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", "# ==============================================================================\r\n", - "WORKFLOW: inversion\r\n", - "SOLVER: specfem3d\r\n", - "SYSTEM: workstation\r\n", - "OPTIMIZE: LBFGS \r\n", - "PREPROCESS: base\r\n", - "POSTPROCESS: base\r\n", - "\r\n", + "workflow: forward\r\n", + "system: workstation\r\n", + "solver: specfem3d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n", "# =============================================================================\r\n", - "# SYSTEM \r\n", - "# ////// \r\n", - "# TITLE (str):\r\n", - "# The name used to submit jobs to the system, defaults to the name of the\r\n", - "# working directory\r\n", - "# PRECHECK (list):\r\n", - "# A list of parameters that will be displayed to stdout before 'submit' or\r\n", - "# 'resume' is run. Useful for manually reviewing important parameters prior\r\n", - "# to system submission\r\n", - "# LOG_LEVEL (str):\r\n", - "# Verbosity output of SF3 logger. Available from least to most verbosity:\r\n", - "# 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG'\r\n", - "# VERBOSE (bool):\r\n", - "# Level of verbosity provided to the output log. If True, log statements\r\n", - "# will declare what module/class/function they are being called from.\r\n", - "# Useful for debugging but also very noisy.\r\n", - "# MPIEXEC (str):\r\n", - "# Function used to invoke executables on the system. For example 'srun' on\r\n", - "# SLURM systems, or './' on a workstation. If left blank, will guess based\r\n", - "# on the system.\r\n", - "# NTASK (int):\r\n", - "# Number of separate, individual tasks. Also equal to the number of desired\r\n", - "# sources in workflow\r\n", - "# NPROC (int):\r\n", - "# Number of processor to use for each simulation\r\n", + "#\r\n", + "# Forward Workflow\r\n", + "# ----------------\r\n", + "# Run forward solver in parallel and (optionally) calculate\r\n", + "# data-synthetic misfit and adjoint sources.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type modules: list of module\r\n", + "# :param modules: instantiated SeisFlows modules which should have been\r\n", + "# generated by the function `seisflows.config.import_seisflows` with a\r\n", + "# parameter file generated by seisflows.configure\r\n", + "# :type data_case: str\r\n", + "# :param data_case: How to address 'data' in the workflow, available options:\r\n", + "# 'data': real data will be provided by the user in\r\n", + "# `path_data/{source_name}` in the same format that the solver will\r\n", + "# produce synthetics (controlled by `solver.format`) OR\r\n", + "# synthetic': 'data' will be generated as synthetic seismograms using\r\n", + "# a target model provided in `path_model_true`. If None, workflow will\r\n", + "# not attempt to generate data.\r\n", + "# :type export_traces: bool\r\n", + "# :param export_traces: export all waveforms that are generated by the\r\n", + "# external solver to `path_output`. If False, solver traces stored in\r\n", + "# scratch may be discarded at any time in the workflow\r\n", + "# :type export_residuals: bool\r\n", + "# :param export_residuals: export all residuals (data-synthetic misfit) that\r\n", + "# are generated by the external solver to `path_output`. If False,\r\n", + "# residuals stored in scratch may be discarded at any time in the workflow\r\n", + "#\r\n", + "# \r\n", "# =============================================================================\r\n", - "TITLE: docs\r\n", - "PRECHECK:\r\n", - " - TITLE\r\n", - "LOG_LEVEL: DEBUG\r\n", - "VERBOSE: False\r\n", - "MPIEXEC:\r\n", - "NTASK: 1\r\n", - "NPROC: 1\r\n", - "\r\n", + "data_case: data\r\n", + "export_traces: False\r\n", + "export_residuals: False\r\n", "# =============================================================================\r\n", - "# PREPROCESS \r\n", - "# ////////// \r\n", - "# MISFIT (str):\r\n", - "# Misfit function for waveform comparisons, for available see\r\n", - "# seisflows.plugins.misfit\r\n", - "# BACKPROJECT (str):\r\n", - "# Backprojection function for migration, for available see\r\n", - "# seisflows.plugins.adjoint\r\n", - "# NORMALIZE (list):\r\n", - "# Data normalization parameters used to normalize the amplitudes of\r\n" + "#\r\n", + "# Workstation System\r\n", + "# ------------------\r\n", + "# Runs tasks in serial on a local machine.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type ntask: int\r\n", + "# :param ntask: number of individual tasks/events to run during workflow.\r\n", + "# Must be <= the number of source files in `path_specfem_data`\r\n", + "# :type nproc: int\r\n", + "# :param nproc: number of processors to use for each simulation\r\n", + "# :type log_level: str\r\n", + "# :param log_level: logger level to pass to logging module.\r\n" ] } ], @@ -344,310 +403,65 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "# =============================================================================\r\n", - "# PATHS \r\n", - "# ///// \r\n", - "# SCRATCH:\r\n", - "# scratch path to hold temporary data during workflow\r\n", - "# OUTPUT:\r\n", - "# directory to save workflow outputs to disk\r\n", - "# SYSTEM:\r\n", - "# scratch path to hold any system related data\r\n", - "# LOCAL:\r\n", - "# path to local data to be used during workflow\r\n", - "# LOGFILE:\r\n", - "# the main output log file where all processes will track their status\r\n", - "# SOLVER:\r\n", - "# scratch path to hold solver working directories\r\n", - "# SPECFEM_BIN:\r\n", - "# path to the SPECFEM binary executables\r\n", - "# SPECFEM_DATA:\r\n", - "# path to the SPECFEM DATA/ directory containing the 'Par_file', 'STATIONS'\r\n", - "# file and 'CMTSOLUTION' files\r\n", - "# DATA:\r\n", - "# path to data available to workflow\r\n", - "# MASK:\r\n", - "# Directory to mask files for gradient masking\r\n", - "# OPTIMIZE:\r\n", - "# scratch path to store data related to nonlinear optimization\r\n", - "# MODEL_INIT:\r\n", - "# location of the initial model to be used for workflow\r\n", - "# MODEL_TRUE:\r\n", - "# Target model to be used for PAR.CASE == 'synthetic'\r\n", - "# FUNC:\r\n", - "# scratch path to store data related to function evaluations\r\n", - "# GRAD:\r\n", - "# scratch path to store data related to gradient evaluations\r\n", - "# HESS:\r\n", - "# scratch path to store data related to Hessian evaluations\r\n", - "# =============================================================================\r\n", - "PATHS:\r\n", - " SCRATCH: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch\r\n", - " OUTPUT: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/output\r\n", - " SYSTEM: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/system\r\n", - " LOCAL:\r\n", - " LOGFILE: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/output_sf3.txt\r\n", - " SOLVER: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/solver\r\n", - " SPECFEM_BIN: !!! REQUIRED PATH !!!\r\n", - " SPECFEM_DATA: !!! REQUIRED PATH !!!\r\n", - " DATA:\r\n", - " MASK:\r\n", - " OPTIMIZE: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/optimize\r\n", - " MODEL_INIT: !!! REQUIRED PATH !!!\r\n", - " MODEL_TRUE:\r\n", - " FUNC: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/scratch\r\n", - " GRAD: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/evalgrad\r\n", - " HESS: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/evalhess\r\n" + "path_model_true: null\r\n", + "path_state_file: /Users/Chow/Repositories/seisflows/docs/notebooks/sfstate.txt\r\n", + "path_data: null\r\n", + "path_par_file: /Users/Chow/Repositories/seisflows/docs/notebooks/parameters.yaml\r\n", + "path_log_files: /Users/Chow/Repositories/seisflows/docs/notebooks/logs\r\n", + "path_output_log: /Users/Chow/Repositories/seisflows/docs/notebooks/sflog.txt\r\n", + "path_specfem_bin: null\r\n", + "path_specfem_data: null\r\n", + "path_solver: /Users/Chow/Repositories/seisflows/docs/notebooks/scratch/solver\r\n", + "path_preconditioner: null\r\n" ] } ], "source": [ - "! tail --lines=54 parameters.yaml" + "! tail parameters.yaml" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### How do I know what parameters need to be set?\n", - "\n", - "> **NOTE**: Required parameters that can not be set to default values will be listed as `!!! REQUIRED PARAMETER !!!`\n", + "### How do I know how parameters need to be set?\n", "\n", - "We can check the required paths and parameters manually by scrolling through the parameter file, or we can use the `seisflows par --required` command to list them out all at once." + "Most SeisFlows parameters come with reasonable default values. The docstrings headers will also list the expected type and available options (if any). You may also run the `seisflows check` command which verifies that parameters are set correctly." ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "!!! REQUIRED PARAMETER !!!\r\n", - "==========================\r\n", - "\tMATERIALS\r\n", - "\tDENSITY\r\n", - "\tATTENUATION\r\n", - "\tNT\r\n", - "\tDT\r\n", - "\tFORMAT\r\n", - "\tCASE\r\n", - "\tEND\r\n", - "!!! REQUIRED PATH !!!\r\n", - "=====================\r\n", - "\tSPECFEM_BIN\r\n", - "\tSPECFEM_DATA\r\n", - "\tMODEL_INIT\r\n" - ] - } - ], - "source": [ - "! seisflows par --required" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Checking parameter validity\n", - "\n", - "You might be asking, how do I know if my parameters are set correctly? SeisFlows3 modules feature check() functions which dictate correct parameter values. You can run `seisflows init` to run these check() functions. Because we have required parameters still left unset in our parameter file, we expect the `seisflows init` function to throw an error." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "================================================================================\r\n", - " PARAMETER FILE READ ERROR \r\n", - " ///////////////////////// \r\n", - "Please check that your parameter file is properly formatted in the YAML format.\r\n", - "If you have just run 'seisflows configure', you may have some required\r\n", - "parameters that will need to be filled out before you can proceed. The error\r\n", - "message is:\r\n", "\r\n", - "could not determine a constructor for the tag 'tag:yaml.org,2002:!'\r\n", - " in \"parameters.yaml\", line 147, column 12\r\n", + "================================================================================\r\n", + " PARAMETER ERRROR \r\n", + " //////////////// \r\n", + "`path_specfem_bin` must exist and must point to directory containing SPECFEM\r\n", + "executables\r\n", "================================================================================\r\n" ] } ], "source": [ - "! seisflows init" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's set some random variables for the required parameters with the `seisflows par` command and try again." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MATERIALS: !!! REQUIRED PARAMETER !!! -> elastic\n", - "DENSITY: !!! REQUIRED PARAMETER !!! -> constant\n", - "ATTENUATION: !!! REQUIRED PARAMETER !!! -> False\n", - "NT: !!! REQUIRED PARAMETER !!! -> 100\n", - "DT: !!! REQUIRED PARAMETER !!! -> .05\n", - "FORMAT: !!! REQUIRED PARAMETER !!! -> ascii\n", - "CASE: !!! REQUIRED PARAMETER !!! -> data\n", - "END: !!! REQUIRED PARAMETER !!! -> 1\n", - "SPECFEM_BIN: !!! REQUIRED PATH !!! -> ./\n", - "SPECFEM_DATA: !!! REQUIRED PATH !!! -> ./\n", - "MODEL_INIT: !!! REQUIRED PATH !!! -> ./\n" - ] - } - ], - "source": [ - "! seisflows par materials elastic\n", - "! seisflows par density constant\n", - "! seisflows par attenuation False\n", - "! seisflows par nt 100\n", - "! seisflows par dt .05\n", - "! seisflows par format ascii\n", - "! seisflows par case data\n", - "! seisflows par end 1\n", - "! seisflows par specfem_bin ./\n", - "! seisflows par specfem_data ./\n", - "! seisflows par model_init ./" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "instantiating SeisFlows3 working state in directory: output\r\n" - ] - } - ], - "source": [ - "! seisflows init" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Of course we knew that the above parameters were acceptable. But what if we input an unacceptable parameter into the parameter file and try again?" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MATERIALS: elastic -> visibily_incorrect_value\n", - "================================================================================\n", - " MODULE CHECK ERROR \n", - " ////////////////// \n", - "seisflows.config module check failed with:\n", - "\n", - "solver: MATERIALS must be in ['ELASTIC', 'ACOUSTIC', 'ISOTROPIC', 'ANISOTROPIC']\n", - "================================================================================\n" - ] - } - ], - "source": [ - "! rm -r output/\n", - "! seisflows par materials visibily_incorrect_value\n", - "! seisflows init" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And voila, the module check has thrown an error, and told us (the User) how to properly set the value of the materials parameter. Hopefully a combination of thorough explanations in the parameter file section headers, and error catching with `seisflows init` makes crafting your own parameter file a smooth process." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", - "# =============================================================================\r\n", - "# SOLVER \r\n", - "# ////// \r\n", - "# MATERIALS (str):\r\n", - "# Material parameters used to define model. Available: ['ELASTIC': Vp, Vs,\r\n", - "# 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC']\r\n", - "# DENSITY (str):\r\n", - "# How to treat density during inversion. Available: ['CONSTANT': Do not\r\n", - "# update density, 'VARIABLE': Update density]\r\n", - "# ATTENUATION (str):\r\n", - "# If True, turn on attenuation during forward simulations, otherwise set\r\n", - "# attenuation off. Attenuation is always off for adjoint simulations.\r\n", - "# COMPONENTS (str):\r\n", - "# Components used to generate data, formatted as a single string, e.g. ZNE\r\n", - "# or NZ or E\r\n", - "# SOLVERIO (int):\r\n", - "# The format external solver files. Available: ['fortran_binary', 'adios']\r\n", - "# NT (float):\r\n", - "# Number of time steps set in the SPECFEM Par_file\r\n", - "# DT (float):\r\n", - "# Time step or delta set in the SPECFEM Par_file\r\n", - "# FORMAT (float):\r\n", - "# Format of synthetic waveforms used during workflow, available options:\r\n", - "# ['ascii', 'su']\r\n", - "# SOURCE_PREFIX (str):\r\n", - "# Prefix of SOURCE files in path SPECFEM_DATA. Available ['CMTSOLUTION',\r\n", - "# FORCESOLUTION']\r\n", - "# =============================================================================\r\n", - "MATERIALS: visibily_incorrect_value\r\n", - "DENSITY: constant\r\n", - "ATTENUATION: False\r\n", - "COMPONENTS: ZNE\r\n", - "SOLVERIO: fortran_binary\r\n", - "NT: 100\r\n", - "DT: .05\r\n", - "FORMAT: ascii\r\n", - "SOURCE_PREFIX: CMTSOLUTION\r\n" - ] - } - ], - "source": [ - "! head -155 parameters.yaml | tail --lines=38" + "! seisflows check" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -657,9 +471,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python (docs)", + "display_name": "Python 3", "language": "python", - "name": "docs" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -671,7 +485,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.12" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/docs/notebooks/scratch/specfem2d_example.ipynb b/docs/notebooks/scratch/specfem2d_example.ipynb new file mode 100644 index 00000000..2778a6a8 --- /dev/null +++ b/docs/notebooks/scratch/specfem2d_example.ipynb @@ -0,0 +1,2047 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Specfem2D workstation example\n", + "\n", + "To demonstrate the inversion capabilities of SeisFlows, we will run a __Specfem2D synthetic-synthetic example__ on a __local machine__ (tested on a Linux workstation running CentOS 7, and an Apple Laptop running macOS 10.14.6). Many of the setup steps here may be unique to our OS and workstation, but hopefully they may serve as templates for new Users wanting to explore SeisFlows. \n", + "\n", + "The numerical solver we will use is: [SPECFEM2D](https://geodynamics.org/cig/software/specfem2d/). We'll also be working in our `seisflows` [Conda](https://docs.conda.io/en/latest/) environment, see the installation documentation page for instructions on how to install and activate the required Conda environment.\n", + "\n", + "-----------------------------------" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Option 1: Automated run\n", + "\n", + "We have set up this example to run using a single command line argument. The following command will run an example script which will (1) download and compile SPECFEM2D, (2) setup a SPECFEM2D working directory to generate initial and target models, and (3) Run a SeisFlows inversion. " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. warning:: \n", + " This example attempts to automatically download and compile SPECFEM2D. This step may fail if you are software required by SPECFEM2D, there are issues with the SPECFEM2D repository itself, or the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem when prompted." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# ! seisflows examples run 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "--------------\n", + "## Option 2: Manual run\n", + "\n", + "The notebook below details a walkthrough of the automated run shown above. This is meant for those who want to understand what is going on under the hood. You are welcome to follow along on your workstation. The following Table of Contents outlines the steps we will take in this tutorial:\n", + "\n" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. warning:: \n", + " Navigation links will not work outside of Jupyter. Please use the navigation bar to the left." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. __[Setup SPECFEM2D](#1.-Setup-SPECFEM2D)__ \n", + " a. [Download and compile codebase](#1a.-Download-and-compile-codebase*) \n", + " b. [Create a separate SPECFEM2D working directory](#1b.-Create-a-separate-SPECFEM2D-working-directory) \n", + " c. [Generate initial and target models](#1c.-Generate-initial-and-target-models) \n", + "\n", + "2. __[Initialize SeisFlows (SF)](#2.-Initialize-SeisFlows-(SF))__ \n", + " a. [SeisFlows working directory and parameter file](#2a.-SF-working-directory-and-parameter-file) \n", + "\n", + "3. __[Run SeisFlows](#2.-Run-SeisFlows)__ \n", + " a. [Forward simulations](#3a.-Forward-simulations) \n", + " b. [Exploring the SeisFlows directory structure](#3b.-Exploring-the-SF-directory-structure) \n", + " c. [Adjoint simulations](#3c.-Adjoint-simulations) \n", + " d. [Line search and model update](#3d.-Line-search-and-model-update) \n", + "\n", + "4. __[Conclusions](#4.-Conclusions)__ " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Setup SPECFEM2D \n", + "#### 1a. Download and compile codebase (optional)\n", + "\n", + "> **NOTE**: If you have already downloaded and compiled SPECFEM2D, you can skip most of this subsection (1a). However you will need to edit the first two paths in the following cell (WORKDIR and SPECFEM2D_ORIGINAL), and execute the path structure defined in the cell.\n", + "\n", + "First we'll download and compile SPECFEM2D to generate the binaries necessary to run our simulations. We will then populate a new SPECFEM2D working directory that will be used by SeisFlows. We'll use to Python OS module to do our filesystem processes just to keep everything in Python, but this can easily be accomplished in bash." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import glob\n", + "import shutil\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# vvv USER MUST EDIT THE FOLLOWING PATHS vvv\n", + "# MAC PATHS\n", + "WORKDIR = \"/Users/Chow/Work/work/sf_specfem2d_example\" \n", + "SPECFEM2D = \"/Users/Chow/Repositories/specfem2d\"\n", + "# LINUX PATHS\n", + "# WORKDIR = \"/home/bchow/Work/work/sf_specfem2d_example\" \n", + "# SPECFEM2D = \"/home/bchow/REPOSITORIES/specfem2d\"\n", + "# where WORKDIR: points to your own working directory\n", + "# and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '')\n", + "# ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^\n", + "# ======================================================================================================\n", + "\n", + "# Distribute the necessary file structure of the SPECFEM2D repository that we will downloaded/reference\n", + "SPECFEM2D_ORIGINAL = os.path.join(WORKDIR, \"specfem2d\")\n", + "SPECFEM2D_BIN_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, \"bin\")\n", + "SPECFEM2D_DATA_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, \"DATA\")\n", + "TAPE_2007_EXAMPLE = os.path.join(SPECFEM2D_ORIGINAL, \"EXAMPLES\", \"Tape2007\")\n", + "\n", + "# The SPECFEM2D working directory that we will create separate from the downloaded repo\n", + "SPECFEM2D_WORKDIR = os.path.join(WORKDIR, \"specfem2d_workdir\")\n", + "SPECFEM2D_BIN = os.path.join(SPECFEM2D_WORKDIR, \"bin\")\n", + "SPECFEM2D_DATA = os.path.join(SPECFEM2D_WORKDIR, \"DATA\")\n", + "SPECFEM2D_OUTPUT = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES\")\n", + "\n", + "# Pre-defined locations of velocity models we will generate using the solver\n", + "SPECFEM2D_MODEL_INIT = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES_INIT\")\n", + "SPECFEM2D_MODEL_TRUE = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES_TRUE\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SPECFEM2D repository already found, you may skip this subsection\n" + ] + } + ], + "source": [ + "# Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo\n", + "if not os.path.exists(WORKDIR):\n", + " os.makedirs(WORKDIR)\n", + "os.chdir(WORKDIR)\n", + "\n", + "if os.path.exists(\"specfem2d\"):\n", + " print(\"SPECFEM2D repository already found, you may skip this subsection\")\n", + " pass\n", + "elif os.path.exists(SPECFEM2D):\n", + " print(\"Existing SPECMFE2D respository found, symlinking to working directory\")\n", + " os.symlink(SPECFEM2D, \"./specfem2d\")\n", + "else:\n", + " print(\"Cloning respository from GitHub\")\n", + " ! git clone --recursive --branch devel https://github.com/geodynamics/specfem2d.git" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Compile SPECFEM2D to generate the Makefile\n", + "os.chdir(SPECFEM2D_ORIGINAL)\n", + "if not os.path.exists(\"./config.log\"):\n", + " os.system(\"./configure\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Run make to generate SPECFEM2D binaries\n", + "if not os.path.exists(\"bin\"):\n", + " os.system(\"make all\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/Chow/Repositories/specfem2d\n", + "\u001b[1m\u001b[34mxadj_seismogram\u001b[m\u001b[m \u001b[1m\u001b[34mxmeshfem2D\u001b[m\u001b[m\n", + "\u001b[1m\u001b[32mxadj_seismogram.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxmeshfem2D.dSYM\u001b[m\u001b[m\n", + "\u001b[1m\u001b[34mxcheck_quality_external_mesh\u001b[m\u001b[m \u001b[1m\u001b[34mxsmooth_sem\u001b[m\u001b[m\n", + "\u001b[1m\u001b[32mxcheck_quality_external_mesh.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxsmooth_sem.dSYM\u001b[m\u001b[m\n", + "\u001b[1m\u001b[34mxcombine_sem\u001b[m\u001b[m \u001b[1m\u001b[34mxspecfem2D\u001b[m\u001b[m\n", + "\u001b[1m\u001b[32mxcombine_sem.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxspecfem2D.dSYM\u001b[m\u001b[m\n", + "\u001b[1m\u001b[34mxconvolve_source_timefunction\u001b[m\u001b[m \u001b[1m\u001b[34mxsum_kernels\u001b[m\u001b[m\n", + "\u001b[1m\u001b[32mxconvolve_source_timefunction.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxsum_kernels.dSYM\u001b[m\u001b[m\n" + ] + } + ], + "source": [ + "# Check out the binary files that have been created\n", + "os.chdir(SPECFEM2D_ORIGINAL)\n", + "! pwd\n", + "! ls bin/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1b. Create a separate SPECFEM2D working directory\n", + "\n", + "Next we'll create a new SPECFEM2D working directory, separate from the original repository. The intent here is to isolate the original SPECFEM2D repository from our working state, to protect it from things like accidental file deletions or manipulations. This is not a mandatory step for using SeisFlows, but it helps keep file structure clean in the long run, and is the SeisFlows3 dev team's preferred method of using SPECFEM. " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " All SPECFEM2D/3D/3D_GLOBE need to run successfully are the bin/, DATA/, and OUTPUT_FILES/ directories. Everything else in the repository is not mandatory for running binaries." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial we will be using the [Tape2007 example problem](https://github.com/geodynamics/specfem2d/tree/devel/EXAMPLES/Tape2007) to define our __DATA/__ directory (last tested 8/15/22, bdba4389)." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/Chow/Work/work/sf_specfem2d_example/specfem2d_workdir\n", + "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\n" + ] + } + ], + "source": [ + "# Incase we've run this docs page before, delete the working directory before remaking\n", + "if os.path.exists(SPECFEM2D_WORKDIR):\n", + " shutil.rmtree(SPECFEM2D_WORKDIR)\n", + "\n", + "os.mkdir(SPECFEM2D_WORKDIR)\n", + "os.chdir(SPECFEM2D_WORKDIR)\n", + "\n", + "# Copy the binary files incase we update the source code. These can also be symlinked.\n", + "shutil.copytree(SPECFEM2D_BIN_ORIGINAL, \"bin\")\n", + "\n", + "# Copy the DATA/ directory because we will be making edits here frequently and it's useful to\n", + "# retain the original files for reference. We will be running one of the example problems: Tape2007\n", + "shutil.copytree(os.path.join(TAPE_2007_EXAMPLE, \"DATA\"), \"DATA\")\n", + "\n", + "! pwd\n", + "! ls" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " -------------------------------------------------------------------------------\r\n", + " -------------------------------------------------------------------------------\r\n", + " D a t e : 15 - 08 - 2022 T i m e : 10:13:31\r\n", + " -------------------------------------------------------------------------------\r\n", + " -------------------------------------------------------------------------------\r\n", + "\r\n", + "see results in directory: OUTPUT_FILES/\r\n", + "\r\n", + "done\r\n", + "Mon Aug 15 10:13:31 PDT 2022\r\n" + ] + } + ], + "source": [ + "# Run the Tape2007 example to make sure SPECFEM2D is working as expected\n", + "os.chdir(TAPE_2007_EXAMPLE)\n", + "! ./run_this_example.sh > output_log.txt\n", + "\n", + "assert(os.path.exists(\"OUTPUT_FILES/forward_image000004800.jpg\")), \\\n", + " (f\"Example did not run, the remainder of this docs page will likely not work.\"\n", + " f\"Please check the following directory: {TAPE_2007_EXAMPLE}\")\n", + "\n", + "! tail output_log.txt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "------------------------------------\n", + "Now we need to manually set up our SPECFEM2D working directory. As mentioned in the previous cell, the only required elements of this working directory are the following (these files will form the basis for how SeisFlows3 operates within the SPECFEM2D framework):\n", + "\n", + "1. __bin/__ directory containing SPECFEM2D binaries\n", + "2. __DATA/__ directory containing SOURCE and STATION files, as well as a SPECFEM2D Par_file\n", + "3. __OUTPUT_FILES/proc??????_*.bin__ files which define the starting (and target) models" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note:: \n", + " This file structure is the same for all versions of SPECFEM (2D/3D/3D_GLOBE)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Par_file SOURCE_013\r\n", + "Par_file_Tape2007_132rec_checker SOURCE_014\r\n", + "Par_file_Tape2007_onerec SOURCE_015\r\n", + "\u001b[1m\u001b[35mSOURCE\u001b[m\u001b[m SOURCE_016\r\n", + "SOURCE_001 SOURCE_017\r\n", + "SOURCE_002 SOURCE_018\r\n", + "SOURCE_003 SOURCE_019\r\n", + "SOURCE_004 SOURCE_020\r\n", + "SOURCE_005 SOURCE_021\r\n", + "SOURCE_006 SOURCE_022\r\n", + "SOURCE_007 SOURCE_023\r\n", + "SOURCE_008 SOURCE_024\r\n", + "SOURCE_009 SOURCE_025\r\n", + "SOURCE_010 STATIONS_checker\r\n", + "SOURCE_011 interfaces_Tape2007.dat\r\n", + "SOURCE_012 model_velocity.dat_checker\r\n" + ] + } + ], + "source": [ + "# First we will set the correct SOURCE and STATION files.\n", + "# This is the same task as shown in ./run_this_example.sh\n", + "os.chdir(SPECFEM2D_DATA)\n", + "\n", + "# Symlink source 001 as our main source\n", + "if os.path.exists(\"SOURCE\"):\n", + " os.remove(\"SOURCE\")\n", + "os.symlink(\"SOURCE_001\", \"SOURCE\")\n", + "\n", + "# Copy the correct Par_file so that edits do not affect the original file\n", + "if os.path.exists(\"Par_file\"):\n", + " os.remove(\"Par_file\")\n", + "shutil.copy(\"Par_file_Tape2007_onerec\", \"Par_file\")\n", + "\n", + "! ls" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1c. Generate initial and target models\n", + "\n", + "Since we're doing a synthetic-synthetic inversion, we need to manually set up the velocity models with which we generate our synthetic waveforms. The naming conventions for these models are:\n", + "\n", + "1. __MODEL_INIT:__ The initial or starting model. Used to generate the actual synthetic seismograms. This is considered M00.\n", + "2. __MODEL_TRUE:__ The target or true model. Used to generate 'data' (also synthetic). This is the reference model that our inversion is trying to resolve.\n", + "\n", + "The starting model is defined as a homogeneous halfspace uin the Tape2007 example problem. We will need to run both `xmeshfem2D` and `xspecfem2D` to generate the required velocity model database files. We will generate our target model by slightly perturbing the parameters of the initial model." + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " We can use the SeisFlows3 command line option `seisflows sempar` to directly edit the SPECFEM2D Par_file in the command line. This will work for the SPECFEM3D Par_file as well." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "setup_with_binary_database: 0 -> 1\n", + "SAVE_MODEL: default -> binary\n", + "save_ASCII_kernels: .true. -> .false.\n" + ] + } + ], + "source": [ + "os.chdir(SPECFEM2D_DATA)\n", + "\n", + "# Ensure that SPECFEM2D outputs the velocity model in the expected binary format\n", + "! seisflows sempar setup_with_binary_database 1 # allow creation of .bin files\n", + "! seisflows sempar save_model binary # output model in .bin database format\n", + "! seisflows sempar save_ascii_kernels .false. # output kernels in .bin format, not ASCII" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\r\n" + ] + } + ], + "source": [ + "# SPECFEM requires that we create the OUTPUT_FILES directory before running\n", + "os.chdir(SPECFEM2D_WORKDIR)\n", + "\n", + "if os.path.exists(SPECFEM2D_OUTPUT):\n", + " shutil.rmtree(SPECFEM2D_OUTPUT)\n", + " \n", + "os.mkdir(SPECFEM2D_OUTPUT)\n", + "\n", + "! ls" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " **********************************************\n", + " **** Specfem 2-D Solver - serial version ****\n", + " **********************************************\n", + "\n", + " Running Git version of the code corresponding to \n", + " dating From \n", + "\n", + "\n", + " NDIM = 2\n", + " -------------------------------------------------------------------------------\n", + " Program SPECFEM2D: \n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n", + " Tape-Liu-Tromp (GJI 2007)\n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n", + " D a t e : 15 - 08 - 2022 T i m e : 10:14:13\n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# GENERATE MODEL_INIT\n", + "os.chdir(SPECFEM2D_WORKDIR)\n", + "\n", + "# Run the mesher and solver to generate our initial model\n", + "! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt\n", + "! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt\n", + "\n", + "# Move the model files (*.bin) into the OUTPUT_FILES directory, where SeisFlows3 expects them\n", + "! mv DATA/*bin OUTPUT_FILES\n", + "\n", + "# Make sure we don't overwrite this initial model when creating our target model in the next step\n", + "! mv OUTPUT_FILES OUTPUT_FILES_INIT\n", + "\n", + "! head OUTPUT_FILES_INIT/solver_log.txt\n", + "! tail OUTPUT_FILES_INIT/solver_log.txt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----------------------------\n", + "\n", + "Now we want to perturb the initial model to create our target model (__MODEL_TRUE__). The seisflows command line subargument `seisflows sempar velocity_model` will let us view and edit the velocity model. You can also do this manually by editing the Par_file directly. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VELOCITY_MODEL:\r\n", + "\r\n", + "1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0\r\n", + "->\r\n", + "1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0\r\n" + ] + } + ], + "source": [ + "# GENERATE MODEL_TRUE\n", + "os.chdir(SPECFEM2D_DATA)\n", + "\n", + "# Edit the Par_file by increasing velocities by ~10% \n", + "! seisflows sempar velocity_model '1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0'" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " **********************************************\n", + " **** Specfem 2-D Solver - serial version ****\n", + " **********************************************\n", + "\n", + " Running Git version of the code corresponding to \n", + " dating From \n", + "\n", + "\n", + " NDIM = 2\n", + " -------------------------------------------------------------------------------\n", + " Program SPECFEM2D: \n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n", + " Tape-Liu-Tromp (GJI 2007)\n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n", + " D a t e : 15 - 08 - 2022 T i m e : 10:14:13\n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Re-run the mesher and solver to generate our target velocity model\n", + "os.chdir(SPECFEM2D_WORKDIR)\n", + "\n", + "# Make sure the ./OUTPUT_FILES directory exists since we moved the old one\n", + "if os.path.exists(SPECFEM2D_OUTPUT):\n", + " shutil.rmtree(SPECFEM2D_OUTPUT)\n", + "os.mkdir(SPECFEM2D_OUTPUT)\n", + "\n", + "# Run the binaries to generate MODEL_TRUE\n", + "! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt\n", + "! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt\n", + "\n", + "# Move all the relevant files into OUTPUT_FILES \n", + "! mv ./DATA/*bin OUTPUT_FILES\n", + "! mv OUTPUT_FILES OUTPUT_FILES_TRUE\n", + "\n", + "! head OUTPUT_FILES_INIT/solver_log.txt\n", + "! tail OUTPUT_FILES_INIT/solver_log.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES_INIT\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES_TRUE\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\r\n" + ] + } + ], + "source": [ + "# Great, we have all the necessary SPECFEM files to run our SeisFlows inversion!\n", + "! ls" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Initialize SeisFlows (SF)\n", + "In this Section we will look at a SeisFlows working directory, parameter file, and working state.\n", + "\n", + "#### 2a. SeisFlows working directory and parameter file\n", + "\n", + "As with SPECFEM, SeisFlows requires a parameter file (__parameters.yaml__) that controls how an automated workflow will proceed. Because SeisFlows is modular, there are a large number of potential parameters which may be present in a SeisFlows parameter file, as each sub-module may have its own set of unique parameters.\n", + "\n", + "In contrast to SPECFEM's method of listing all available parameters and leaving it up the User to determine which ones are relevant to them, SeisFlows dynamically builds its parameter file based on User inputs. In this subsection we will use the built-in SeisFlows command line tools to generate and populate the parameter file. " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the previous section we saw the `sempar` command in action. We can use the `-h` or help flag to list all available SiesFlows3 command line commands." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]]\r\n", + " {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples}\r\n", + " ...\r\n", + "\r\n", + "================================================================================\r\n", + "\r\n", + " SeisFlows: Waveform Inversion Package \r\n", + "\r\n", + "================================================================================\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n", + " -w [WORKDIR], --workdir [WORKDIR]\r\n", + " The SeisFlows working directory, default: cwd\r\n", + " -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE]\r\n", + " Parameters file, default: 'parameters.yaml'\r\n", + "\r\n", + "command:\r\n", + " Available SeisFlows arguments and their intended usages\r\n", + "\r\n", + " setup Setup working directory from scratch\r\n", + " configure Fill parameter file with defaults\r\n", + " swap Swap module parameters in an existing parameter file\r\n", + " init Initiate working environment\r\n", + " submit Submit initial workflow to system\r\n", + " resume Re-submit previous workflow to system\r\n", + " restart Remove current environment and submit new workflow\r\n", + " clean Remove files relating to an active working environment\r\n", + " par View and edit SeisFlows parameter file\r\n", + " sempar View and edit SPECFEM parameter file\r\n", + " check Check state of an active environment\r\n", + " print Print information related to an active environment\r\n", + " reset Reset modules within an active state\r\n", + " debug Start interactive debug environment\r\n", + " examples Look at and run pre-configured example problems\r\n", + "\r\n", + "'seisflows [command] -h' for more detailed descriptions of each command.\r\n" + ] + } + ], + "source": [ + "! seisflows -h" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'os' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mWORKDIR\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' seisflows setup -f'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' ls'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'os' is not defined" + ] + } + ], + "source": [ + "# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\n", + "# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\n", + "os.chdir(WORKDIR)\n", + "! seisflows setup -f\n", + "! ls" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# SeisFlows YAML Parameter File\r\n", + "#\r\n", + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# Modules correspond to the structure of the source code, and determine\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "#\r\n", + "# .. rubric::\r\n", + "# - To determine available options for modules listed below, run:\r\n", + "# > seisflows print modules\r\n", + "# - To auto-fill with docstrings and default values (recommended), run:\r\n", + "# > seisflows configure\r\n", + "# - To set values as NoneType, use: null\r\n", + "# - To set values as infinity, use: inf\r\n", + "#\r\n", + "# MODULES\r\n", + "# ///////\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", + "# ==============================================================================\r\n", + "workflow: forward\r\n", + "system: workstation\r\n", + "solver: specfem2d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n" + ] + } + ], + "source": [ + "# Let's have a look at this file, which has not yet been populated\n", + "! cat parameters.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " SEISFLOWS MODULES \r\n", + " ///////////////// \r\n", + "'-': module, '*': class\r\n", + "\r\n", + "- workflow\r\n", + " * forward\r\n", + " * inversion\r\n", + " * migration\r\n", + "- system\r\n", + " * chinook\r\n", + " * cluster\r\n", + " * frontera\r\n", + " * lsf\r\n", + " * maui\r\n", + " * slurm\r\n", + " * workstation\r\n", + "- solver\r\n", + " * specfem\r\n", + " * specfem2d\r\n", + " * specfem3d\r\n", + " * specfem3d_globe\r\n", + "- preprocess\r\n", + " * default\r\n", + " * pyaflowa\r\n", + "- optimize\r\n", + " * LBFGS\r\n", + " * NLCG\r\n", + " * gradient\r\n" + ] + } + ], + "source": [ + "# We can use the `seisflows print modules` command to list out the available options \n", + "! seisflows print modules" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "workflow: forward -> inversion\n", + "# //////////////////////////////////////////////////////////////////////////////\n", + "#\n", + "# SeisFlows YAML Parameter File\n", + "#\n", + "# //////////////////////////////////////////////////////////////////////////////\n", + "#\n", + "# Modules correspond to the structure of the source code, and determine\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\n", + "#\n", + "# .. rubric::\n", + "# - To determine available options for modules listed below, run:\n", + "# > seisflows print modules\n", + "# - To auto-fill with docstrings and default values (recommended), run:\n", + "# > seisflows configure\n", + "# - To set values as NoneType, use: null\n", + "# - To set values as infinity, use: inf\n", + "#\n", + "# MODULES\n", + "# ///////\n", + "# workflow (str): The types and order of functions for running SeisFlows\n", + "# system (str): Computer architecture of the system being used\n", + "# solver (str): External numerical solver to use for waveform simulations\n", + "# preprocess (str): Preprocessing schema for waveform data\n", + "# optimize (str): Optimization algorithm for the inverse problem\n", + "# ==============================================================================\n", + "workflow: inversion\n", + "system: workstation\n", + "solver: specfem2d\n", + "preprocess: default\n", + "optimize: gradient\n" + ] + } + ], + "source": [ + "# For this example, we can use most of the default modules, however we need to \n", + "# change the SOLVER module to let SeisFlows know we're using SPECFEM2D (as opposed to 3D)\n", + "! seisflows par workflow inversion\n", + "! cat parameters.yaml" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-------------------------\n", + "The `seisflows configure` command populates the parameter file based on the chosen modules. SeisFlows will attempt to fill in all parameters with reasonable default values. Docstrings above each module show descriptions and available options for each of these parameters. \n", + "\n", + "In the follownig cell we will use the `seisflows par` command to edit the parameters.yaml file directly, replacing some default parameters with our own values. Comments next to each evaluation describe the choice for each." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# SeisFlows YAML Parameter File\r\n", + "#\r\n", + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# Modules correspond to the structure of the source code, and determine\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "#\r\n", + "# .. rubric::\r\n", + "# - To determine available options for modules listed below, run:\r\n", + "# > seisflows print modules\r\n", + "# - To auto-fill with docstrings and default values (recommended), run:\r\n", + "# > seisflows configure\r\n", + "# - To set values as NoneType, use: null\r\n", + "# - To set values as infinity, use: inf\r\n", + "#\r\n", + "# MODULES\r\n", + "# ///////\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", + "# ==============================================================================\r\n", + "workflow: inversion\r\n", + "system: workstation\r\n", + "solver: specfem2d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Forward Workflow\r\n", + "# ----------------\r\n", + "# Run forward solver in parallel and (optionally) calculate\r\n", + "# data-synthetic misfit and adjoint sources.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type modules: list of module\r\n", + "# :param modules: instantiated SeisFlows modules which should have been\r\n", + "# generated by the function `seisflows.config.import_seisflows` with a\r\n", + "# parameter file generated by seisflows.configure\r\n", + "# :type data_case: str\r\n", + "# :param data_case: How to address 'data' in the workflow, available options:\r\n", + "# 'data': real data will be provided by the user in\r\n", + "# `path_data/{source_name}` in the same format that the solver will\r\n", + "# produce synthetics (controlled by `solver.format`) OR\r\n", + "# synthetic': 'data' will be generated as synthetic seismograms using\r\n", + "# a target model provided in `path_model_true`. If None, workflow will\r\n", + "# not attempt to generate data.\r\n", + "# :type stop_after: str\r\n", + "# :param stop_after: optional name of task in task list (use\r\n", + "# `seisflows print tasks` to get task list for given workflow) to stop\r\n", + "# workflow after, allowing user to prematurely stop a workflow to explore\r\n", + "# intermediate results or debug.\r\n", + "# :type export_traces: bool\r\n", + "# :param export_traces: export all waveforms that are generated by the\r\n", + "# external solver to `path_output`. If False, solver traces stored in\r\n", + "# scratch may be discarded at any time in the workflow\r\n", + "# :type export_residuals: bool\r\n", + "# :param export_residuals: export all residuals (data-synthetic misfit) that\r\n", + "# are generated by the external solver to `path_output`. If False,\r\n", + "# residuals stored in scratch may be discarded at any time in the workflow\r\n", + "#\r\n", + "# \r\n", + "# Migration Workflow\r\n", + "# ------------------\r\n", + "# Run forward and adjoint solver to produce event-dependent misfit kernels.\r\n", + "# Sum and postprocess kernels to produce gradient. In seismic exploration\r\n", + "# this is 'reverse time migration'.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type export_gradient: bool\r\n", + "# :param export_gradient: export the gradient after it has been generated\r\n", + "# in the scratch directory. If False, gradient can be discarded from\r\n", + "# scratch at any time in the workflow\r\n", + "# :type export_kernels: bool\r\n", + "# :param export_kernels: export each sources event kernels after they have\r\n", + "# been generated in the scratch directory. If False, gradient can be\r\n", + "# discarded from scratch at any time in the workflow\r\n", + "#\r\n", + "# \r\n", + "# Inversion Workflow\r\n", + "# ------------------\r\n", + "# Peforms iterative nonlinear inversion using the machinery of the Forward\r\n", + "# and Migration workflows, as well as a built-in optimization library.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type start: int\r\n", + "# :param start: start inversion workflow at this iteration. 1 <= start <= inf\r\n", + "# :type end: int\r\n", + "# :param end: end inversion workflow at this iteration. start <= end <= inf\r\n", + "# :type iteration: int\r\n", + "# :param iteration: The current iteration of the workflow. If NoneType, takes\r\n", + "# the value of `start` (i.e., first iteration of the workflow). User can\r\n", + "# also set between `start` and `end` to resume a failed workflow.\r\n", + "# :type thrifty: bool\r\n", + "# :param thrifty: a thrifty inversion skips the costly intialization step\r\n", + "# (i.e., forward simulations and misfit quantification) if the final\r\n", + "# forward simulations from the previous iterations line search can be\r\n", + "# used in the current one. Requires L-BFGS optimization.\r\n", + "# :type export_model: bool\r\n", + "# :param export_model: export best-fitting model from the line search to disk.\r\n", + "# If False, new models can be discarded from scratch at any time.\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "data_case: data\r\n", + "stop_after: null\r\n", + "export_traces: False\r\n", + "export_residuals: False\r\n", + "export_gradient: False\r\n", + "export_kernels: False\r\n", + "start: 1\r\n", + "end: 1\r\n", + "export_model: True\r\n", + "thrifty: False\r\n", + "iteration: 1\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Workstation System\r\n", + "# ------------------\r\n", + "# Runs tasks in serial on a local machine.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type ntask: int\r\n", + "# :param ntask: number of individual tasks/events to run during workflow.\r\n", + "# Must be <= the number of source files in `path_specfem_data`\r\n", + "# :type nproc: int\r\n", + "# :param nproc: number of processors to use for each simulation\r\n", + "# :type log_level: str\r\n", + "# :param log_level: logger level to pass to logging module.\r\n", + "# Available: 'debug', 'info', 'warning', 'critical'\r\n", + "# :type verbose: bool\r\n", + "# :param verbose: if True, formats the log messages to include the file\r\n", + "# name, line number and message type. Useful for debugging but\r\n", + "# also very verbose.\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "ntask: 1\r\n", + "nproc: 1\r\n", + "log_level: DEBUG\r\n", + "verbose: False\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Solver SPECFEM\r\n", + "# --------------\r\n", + "# Generalized SPECFEM interface to manipulate SPECFEM2D/3D/3D_GLOBE w/ Python\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type data_format: str\r\n", + "# :param data_format: data format for reading traces into memory.\r\n", + "# Available: ['SU': seismic unix format, 'ASCII': human-readable ascii]\r\n", + "# :type materials: str\r\n", + "# :param materials: Material parameters used to define model. Available:\r\n", + "# ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC']\r\n", + "# :type density: bool\r\n", + "# :param density: How to treat density during inversion. If True, updates\r\n", + "# density during inversion. If False, keeps it constant.\r\n", + "# TODO allow density scaling during an inversion\r\n", + "# :type attenuation: bool\r\n", + "# :param attenuation: How to treat attenuation during inversion.\r\n", + "# if True, turns on attenuation during forward simulations only. If\r\n", + "# False, attenuation is always set to False. Requires underlying\r\n", + "# attenution (Q_mu, Q_kappa) model\r\n", + "# :type smooth_h: float\r\n", + "# :param smooth_h: Gaussian half-width for horizontal smoothing in units\r\n", + "# of meters. If 0., no smoothing applied\r\n", + "# :type smooth_h: float\r\n", + "# :param smooth_v: Gaussian half-width for vertical smoothing in units\r\n", + "# of meters.\r\n", + "# :type components: str\r\n", + "# :param components: components to consider and tag data with. Should be\r\n", + "# string of letters such as 'RTZ'\r\n", + "# :type solver_io: str\r\n", + "# :param solver_io: format of model/kernel/gradient files expected by the\r\n", + "# numerical solver. Available: ['fortran_binary': default .bin files].\r\n", + "# TODO: ['adios': ADIOS formatted files]\r\n", + "# :type source_prefix: str\r\n", + "# :param source_prefix: prefix of source/event/earthquake files. If None,\r\n", + "# will attempt to guess based on the specific solver chosen.\r\n", + "# :type mpiexec: str\r\n", + "# :param mpiexec: MPI executable used to run parallel processes. Should also\r\n", + "# be defined for the system module\r\n", + "#\r\n", + "# \r\n", + "# Solver SPECFEM2D\r\n", + "# ----------------\r\n", + "# SPECFEM2D-specific alterations to the base SPECFEM module\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type source_prefix: str\r\n", + "# :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults\r\n", + "# to 'SOURCE'\r\n", + "# :type multiples: bool\r\n", + "# :param multiples: set an absorbing top-boundary condition\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "data_format: ascii\r\n", + "materials: acoustic\r\n", + "density: False\r\n", + "attenuation: False\r\n", + "smooth_h: 0.0\r\n", + "smooth_v: 0.0\r\n", + "components: ZNE\r\n", + "source_prefix: SOURCE\r\n", + "multiples: False\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Default Preprocess\r\n", + "# ------------------\r\n", + "# Data processing for seismic traces, with options for data misfit,\r\n", + "# filtering, normalization and muting.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type data_format: str\r\n", + "# :param data_format: data format for reading traces into memory. For\r\n", + "# available see: seisflows.plugins.preprocess.readers\r\n", + "# :type misfit: str\r\n", + "# :param misfit: misfit function for waveform comparisons. For available\r\n", + "# see seisflows.plugins.preprocess.misfit\r\n", + "# :type backproject: str\r\n", + "# :param backproject: backprojection function for migration, or the\r\n", + "# objective function in FWI. For available see\r\n", + "# seisflows.plugins.preprocess.adjoint\r\n", + "# :type normalize: str\r\n", + "# :param normalize: Data normalization parameters used to normalize the\r\n", + "# amplitudes of waveforms. Choose from two sets:\r\n", + "# ENORML1: normalize per event by L1 of traces; OR\r\n", + "# ENORML2: normalize per event by L2 of traces;\r\n", + "# &\r\n", + "# TNORML1: normalize per trace by L1 of itself; OR\r\n", + "# TNORML2: normalize per trace by L2 of itself\r\n", + "# :type filter: str\r\n", + "# :param filter: Data filtering type, available options are:\r\n", + "# BANDPASS (req. MIN/MAX PERIOD/FREQ);\r\n", + "# LOWPASS (req. MAX_FREQ or MIN_PERIOD);\r\n", + "# HIGHPASS (req. MIN_FREQ or MAX_PERIOD)\r\n", + "# :type min_period: float\r\n", + "# :param min_period: Minimum filter period applied to time series.\r\n", + "# See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they\r\n", + "# will overwrite PERIOD parameters.\r\n", + "# :type max_period: float\r\n", + "# :param max_period: Maximum filter period applied to time series. See\r\n", + "# also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will\r\n", + "# overwrite PERIOD parameters.\r\n", + "# :type min_freq: float\r\n", + "# :param min_freq: Maximum filter frequency applied to time series,\r\n", + "# See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters,\r\n", + "# they will overwrite PERIOD parameters.\r\n", + "# :type max_freq: float\r\n", + "# :param max_freq: Maximum filter frequency applied to time series,\r\n", + "# See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters,\r\n", + "# they will overwrite PERIOD parameters.\r\n", + "# :type mute: list\r\n", + "# :param mute: Data mute parameters used to zero out early / late\r\n", + "# arrivals or offsets. Choose any number of:\r\n", + "# EARLY: mute early arrivals;\r\n", + "# LATE: mute late arrivals;\r\n", + "# SHORT: mute short source-receiver distances;\r\n", + "# LONG: mute long source-receiver distances\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "misfit: waveform\r\n", + "adjoint: waveform\r\n", + "normalize: []\r\n", + "filter: null\r\n", + "min_period: null\r\n", + "max_period: null\r\n", + "min_freq: null\r\n", + "max_freq: null\r\n", + "mute: []\r\n", + "early_slope: null\r\n", + "early_const: null\r\n", + "late_slope: null\r\n", + "late_const: null\r\n", + "short_dist: null\r\n", + "long_dist: null\r", + "\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Gradient Optimization\r\n", + "# ---------------------\r\n", + "# Gradient/steepest descent optimization algorithm.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type line_search_method: str\r\n", + "# :param line_search_method: chosen line_search algorithm. Currently available\r\n", + "# are 'bracket' and 'backtrack'. See seisflows.plugins.line_search\r\n", + "# for all available options\r\n", + "# :type preconditioner: str\r\n", + "# :param preconditioner: algorithm for preconditioning gradients. Currently\r\n", + "# available: 'diagonal'. Requires `path_preconditioner` to point to a\r\n", + "# set of files that define the preconditioner, formatted the same as the\r\n", + "# input model\r\n", + "# :type step_count_max: int\r\n", + "# :param step_count_max: maximum number of trial steps to perform during\r\n", + "# the line search before a change in line search behavior is\r\n", + "# considered, or a line search is considered to have failed.\r\n", + "# :type step_len_init: float\r\n", + "# :param step_len_init: initial line search step length guess, provided\r\n", + "# as a fraction of current model parameters.\r\n", + "# :type step_len_max: float\r\n", + "# :param step_len_max: maximum allowable step length during the line\r\n", + "# search. Set as a fraction of the current model parameters\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "preconditioner: null\r\n", + "step_count_max: 10\r\n", + "step_len_init: 0.05\r\n", + "step_len_max: 0.5\r\n", + "line_search_method: bracket\r\n", + "# =============================================================================\r\n", + "#\r\n", + "#\t Paths\r\n", + "#\t -----\r\n", + "# :type workdir: str\r\n", + "# :param workdir: working directory in which to look for data and store\r\n", + "# results. Defaults to current working directory\r\n", + "# :type path_output: str\r\n", + "# :param path_output: path to directory used for permanent storage on disk.\r\n", + "# Results and exported scratch files are saved here.\r\n", + "# :type path_data: str\r\n", + "# :param path_data: path to any externally stored data required by the solver\r\n", + "# :type path_state_file: str\r\n", + "# :param path_state_file: path to a text file used to track the current\r\n", + "# status of a workflow (i.e., what functions have already been completed),\r\n", + "# used for checkpointing and resuming workflows\r\n", + "# :type path_model_init: str\r\n", + "# :param path_model_init: path to the starting model used to calculate the\r\n", + "# initial misfit. Must match the expected `solver_io` format.\r\n", + "# :type path_model_true: str\r\n", + "# :param path_model_true: path to a target model if `case`=='synthetic' and\r\n", + "# a set of synthetic 'observations' are required for workflow.\r\n", + "# :type path_eval_grad: str\r\n", + "# :param path_eval_grad: scratch path to store files for gradient evaluation,\r\n", + "# including models, kernels, gradient and residuals.\r\n", + "# :type path_mask: str\r\n", + "# :param path_mask: optional path to a masking function which is used to\r\n", + "# mask out or scale parts of the gradient. The user-defined mask must\r\n", + "# match the file format of the input model (e.g., .bin files).\r\n", + "# :type path_eval_func: str\r\n", + "# :param path_eval_func: scratch path to store files for line search objective\r\n", + "# function evaluations, including models, misfit and residuals\r\n", + "# \r\n", + "# :type path_output_log: str\r\n", + "# :param path_output_log: path to a text file used to store the outputs of\r\n", + "# the package wide logger, which are also written to stdout\r\n", + "# :type path_par_file: str\r\n", + "# :param path_par_file: path to parameter file which is used to instantiate\r\n", + "# the package\r\n", + "# :type path_log_files: str\r\n", + "# :param path_log_files: path to a directory where individual log files are\r\n", + "# saved whenever a number of parallel tasks are run on the system.\r\n", + "# \r\n", + "# :type path_data: str\r\n", + "# :param path_data: path to any externally stored data required by the solver\r\n", + "# :type path_specfem_bin: str\r\n", + "# :param path_specfem_bin: path to SPECFEM bin/ directory which\r\n", + "# contains binary executables for running SPECFEM\r\n", + "# :type path_specfem_data: str\r\n", + "# :param path_specfem_data: path to SPECFEM DATA/ directory which must\r\n", + "# contain the CMTSOLUTION, STATIONS and Par_file files used for\r\n", + "# running SPECFEM\r\n", + "# \r\n", + "# :type path_preprocess: str\r\n", + "# :param path_preprocess: scratch path for all preprocessing processes,\r\n", + "# including saving files\r\n", + "# \r\n", + "# :type path_preconditioner: str\r\n", + "# :param path_preconditioner: optional path to a set of preconditioner files\r\n", + "# formatted the same as the input model (or output model of solver).\r\n", + "# Required to exist and contain files if `preconditioner`==True\r\n", + "# \r\n", + "# =============================================================================\r\n", + "path_workdir: /Users/Chow/Work/work/sf_specfem2d_example\r\n", + "path_scratch: /Users/Chow/Work/work/sf_specfem2d_example/scratch\r\n", + "path_eval_grad: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_grad\r\n", + "path_output: /Users/Chow/Work/work/sf_specfem2d_example/output\r\n", + "path_model_init: null\r\n", + "path_model_true: null\r\n", + "path_state_file: /Users/Chow/Work/work/sf_specfem2d_example/sfstate.txt\r\n", + "path_data: null\r\n", + "path_mask: null\r\n", + "path_eval_func: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_func\r\n", + "path_par_file: /Users/Chow/Work/work/sf_specfem2d_example/parameters.yaml\r\n", + "path_log_files: /Users/Chow/Work/work/sf_specfem2d_example/logs\r\n", + "path_output_log: /Users/Chow/Work/work/sf_specfem2d_example/sflog.txt\r\n", + "path_specfem_bin: null\r\n", + "path_specfem_data: null\r\n", + "path_solver: /Users/Chow/Work/work/sf_specfem2d_example/scratch/solver\r\n", + "path_preconditioner: null\r\n" + ] + } + ], + "source": [ + "! seisflows configure\n", + "! cat parameters.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ntask: 1 -> 3\n", + "materials: acoustic -> elastic\n", + "density: False -> False\n", + "attenuation: False -> False\n", + "start: 1 -> 1\n", + "end: 1 -> 2\n", + "data_case: data -> synthetic\n", + "components: ZNE -> Y\n", + "step_count_max: 10 -> 5\n" + ] + }, + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# EDIT THE SEISFLOWS PARAMETER FILE\n", + "! seisflows par ntask 3 # set the number of sources/events to use\n", + "! seisflows par materials elastic # how the velocity model is parameterized\n", + "! seisflows par density False # update density or keep constant\n", + "! seisflows par attenuation False\n", + "! seisflows par start 1 # first iteration\n", + "! seisflows par end 2 # final iteration -- we will only run 1\n", + "! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models\n", + "! seisflows par components Y # this default example creates Y-component seismograms\n", + "! seisflows par step_count_max 5 # limit the number of steps in the line search\n", + "\n", + "# Use Python syntax here to access path constants\n", + "os.system(f\"seisflows par path_specfem_bin {SPECFEM2D_BIN}\") # set path to SPECFEM2D binaries\n", + "os.system(f\"seisflows par path_specfem_data {SPECFEM2D_DATA}\") # set path to SEPCFEM2D DATA/\n", + "os.system(f\"seisflows par path_model_init {SPECFEM2D_MODEL_INIT}\") # set path to INIT model\n", + "os.system(f\"seisflows par path_model_true {SPECFEM2D_MODEL_TRUE}\") # set path to TRUE model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "------------------------------\n", + "One last thing, we will need to edit the SPECFEM2D Par_file parameter `MODEL` such that `xmeshfem2d` reads our pre-built velocity models (\\*.bin files) rather than the meshing parameters defined in the Par_file." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MODEL: default -> gll\r\n" + ] + } + ], + "source": [ + "os.chdir(SPECFEM2D_DATA)\n", + "! seisflows sempar model gll" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Run SeisFlows\n", + "\n", + "In this Section we will run SeisFlows to generate synthetic seismograms, kernels, a gradient, and an updated velocity model.\n", + "\n", + "#### 3a. Forward simulations\n", + "\n", + "SeisFlows is an automated workflow tool, such that once we run `seisflows submit` we should not need to intervene in the workflow. However the package does allow the User flexibility in how they want the workflow to behave.\n", + "\n", + "For example, we can run our workflow in stages by taking advantage of the `stop_after` parameter. As its name suggests, `stop_after` allows us to stop a workflow prematurely so that we may stop and look at results, or debug a failing workflow.\n", + "\n", + "The `seisflows print flow` command tells us what functions we can use for the `stop_after` parameter. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " SEISFLOWS WORKFLOW TASK LIST \r\n", + " //////////////////////////// \r\n", + "Task list for \r\n", + "\r\n", + "1: evaluate_initial_misfit\r\n", + "2: run_adjoint_simulations\r\n", + "3: postprocess_event_kernels\r\n", + "4: evaluate_gradient_from_kernels\r\n", + "5: initialize_line_search\r\n", + "6: perform_line_search\r\n", + "7: finalize_iteration\r\n" + ] + } + ], + "source": [ + "os.chdir(WORKDIR)\n", + "! seisflows print tasks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----------------------------\n", + "In the Inversion workflow, the tasks listed are described as follows:\n", + "\n", + "1. __evaluate_initial_misfit:__ \n", + " a. Prepare data for inversion by either copying data from disk or generating 'synthetic data' with MODEL_TRUE \n", + " b. Call numerical solver to run forward simulations using MODEL_INIT, generating synthetics \n", + " c. Evaluate the objective function by performing waveform comparisons \n", + " d. Prepare `run_adjoint_simulations` step by generating adjoint sources and auxiliary files\n", + "2. __run_adjoint_simulations:__ Call numerical solver to run adjoint simulation, generating kernels\n", + "3. __postprocess_event_kernels:__ Combine all event kernels into a misfit kernel. \n", + "4. __evaluate_gradient_from_kernels:__ Smooth and mask the misfit kernel to create the gradient\n", + "4. __initialize_line_search:__ Call on the optimization library to scale the gradient by a step length to compute the search direction. Prepare file structure for line search.\n", + "5. __perform_line_search:__ Perform a line search by algorithmically scaling the gradient and evaluating the misfit function (forward simulations and misfit quantification) until misfit is acceptably reduced.\n", + "6. __finalize_iteration:__ Run any finalization steps such as saving traces, kernels, gradients and models to disk, setting up SeisFlows3 for any subsequent iterations. Clean the scratch/ directory in preparation for subsequent iterations\n", + "\n", + "Let's set the `stop_after` argument to __evaluate_initial_misfit__, this will halt the workflow after the intialization step. We'll also set the `verbose` parameter to 'False', to keep the logging format relatively simple. We will explore the `verbose`==True option in a later cell." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stop_after: null -> evaluate_initial_misfit\n", + "verbose: False -> False\n" + ] + } + ], + "source": [ + "! seisflows par stop_after evaluate_initial_misfit\n", + "! seisflows par verbose False" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----------------------\n", + "Now let's run SeisFlows. There are two ways to do this: `submit` and `restart`\n", + "\n", + "1. `seisflows submit` is used to run new workflows and resume stopped or failed workflows.\n", + "2. The `restart` command is simply a convenience function that runs `clean` (to remove an active working state) and `submit` (to submit a fresh workflow). \n", + "\n", + "Since this is our first run, we'll use `seisflows submit`." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2022-08-15 16:11:40 (I) | \n", + "================================================================================\n", + " SETTING UP INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-15 16:11:47 (D) | running setup for module 'system.Workstation'\n", + "2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_001.txt\n", + "2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_001.yaml\n", + "2022-08-15 16:11:50 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-15 16:11:50 (I) | initializing 3 solver directories\n", + "2022-08-15 16:11:50 (D) | initializing solver directory source: 001\n", + "2022-08-15 16:11:58 (D) | linking source '001' as 'mainsolver'\n", + "2022-08-15 16:11:58 (D) | initializing solver directory source: 002\n", + "2022-08-15 16:12:04 (D) | initializing solver directory source: 003\n", + "2022-08-15 16:12:13 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-15 16:12:14 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-15 16:12:15 (I) | no optimization checkpoint found, assuming first run\n", + "2022-08-15 16:12:16 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:12:16 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " RUNNING ITERATION 01 \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-15 16:12:16 (I) | \n", + "================================================================================\n", + " RUNNING INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-15 16:12:16 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " EVALUATING MISFIT FOR INITIAL MODEL \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-15 16:12:16 (I) | checking initial model parameters\n", + "2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00\n", + "2022-08-15 16:12:16 (I) | 3500.00 <= vs <= 3500.00\n", + "2022-08-15 16:12:16 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:12:16 (I) | checking true/target model parameters\n", + "2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00\n", + "2022-08-15 16:12:16 (I) | 3550.00 <= vs <= 3550.00\n", + "2022-08-15 16:12:16 (I) | 5900.00 <= vp <= 5900.00\n", + "2022-08-15 16:12:16 (I) | preparing observation data for source 001\n", + "2022-08-15 16:12:16 (I) | running forward simulation w/ target model for 001\n", + "2022-08-15 16:12:33 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:12:33 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:12:53 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:12:53 (I) | preparing observation data for source 002\n", + "2022-08-15 16:12:53 (I) | running forward simulation w/ target model for 002\n", + "2022-08-15 16:13:09 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:13:09 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:13:31 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:13:31 (I) | preparing observation data for source 003\n", + "2022-08-15 16:13:31 (I) | running forward simulation w/ target model for 003\n", + "2022-08-15 16:14:16 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:14:16 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:14:33 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:14:33 (I) | stop workflow at `stop_after`: evaluate_initial_misfit\n" + ] + } + ], + "source": [ + "! seisflows submit " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " For a detailed exploration of a SeisFlows working directory, see the `working directory `__ documentation page where we explain each of the files and directories that have been generated during this workflow. Below we just look at two files which are required for our adjoint simulation, the adjoint sources (.adj) and STATIONS_ADJOINT file" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " -48.0000000 0.0000000\r\n", + " -47.9400000 0.0000000\r\n", + " -47.8800000 0.0000000\r\n", + " -47.8200000 0.0000000\r\n", + " -47.7600000 0.0000000\r\n", + " -47.7000000 0.0000000\r\n", + " -47.6400000 0.0000000\r\n", + " -47.5800000 0.0000000\r\n", + " -47.5200000 0.0000000\r\n", + " -47.4600000 0.0000000\r\n" + ] + } + ], + "source": [ + "# The adjoint source is created in the same format as the synthetics (two-column ASCII) \n", + "! head scratch/solver/001/traces/adj/AA.S0001.BXY.adj" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3b. Adjoint simulations\n", + "\n", + "Now that we have all the required files for running an adjoint simulation (\\*.adj waveforms and STATIONS_ADJOINT file), we can continue with the SeisFlows3 Inversion workflow. No need to edit the Par_file or anything like that, SeisFlows3 will take care of that under the hood. We simply need to tell the workflow (via the parameters.yaml file) to `resume_from` the correct function. We can have a look at these functions again:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " SEISFLOWS WORKFLOW TASK LIST \r\n", + " //////////////////////////// \r\n", + "Task list for \r\n", + "\r\n", + "1: evaluate_initial_misfit\r\n", + "2: run_adjoint_simulations\r\n", + "3: postprocess_event_kernels\r\n", + "4: evaluate_gradient_from_kernels\r\n", + "5: initialize_line_search\r\n", + "6: perform_line_search\r\n", + "7: finalize_iteration\r\n" + ] + } + ], + "source": [ + "! seisflows print tasks" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stop_after: evaluate_initial_misfit -> evaluate_gradient_from_kernels\r\n" + ] + } + ], + "source": [ + "# We'll stop just before the line search so that we can take a look at the files \n", + "# generated during the middle tasks\n", + "! seisflows par stop_after evaluate_gradient_from_kernels" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2022-08-15 16:15:06 (D) | setting iteration==1 from state file\n", + "2022-08-15 16:15:06 (I) | \n", + "================================================================================\n", + " SETTING UP INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-15 16:15:16 (D) | running setup for module 'system.Workstation'\n", + "2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_002.txt\n", + "2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_002.yaml\n", + "2022-08-15 16:15:20 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-15 16:15:20 (I) | initializing 3 solver directories\n", + "2022-08-15 16:15:22 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-15 16:15:23 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-15 16:15:25 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:15:27 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:15:27 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " RUNNING ITERATION 01 \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-15 16:15:27 (I) | \n", + "================================================================================\n", + " RUNNING INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-15 16:15:27 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", + "2022-08-15 16:15:27 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-15 16:15:27 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-15 16:16:11 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-15 16:16:11 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-15 16:16:12 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-15 16:16:59 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-15 16:16:59 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-15 16:16:59 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-15 16:17:45 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-15 16:17:45 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-15 16:17:45 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " GENERATING/PROCESSING MISFIT KERNEL \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-15 16:17:45 (I) | combining event kernels into single misfit kernel\n", + "2022-08-15 16:17:47 (I) | scaling gradient to absolute model perturbations\n", + "2022-08-15 16:17:49 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels\n" + ] + } + ], + "source": [ + "# We can use the `seisflows submit` command to continue an active workflow\n", + "# The state file created during the first run will tell the workflow to resume from the stopped point in the workflow\n", + "! seisflows submit " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----------------\n", + "The function __run_adjoint_simulations()__ has run adjoint simulations to generate event kernels. The functions __postprocess_event_kernels__ and __evaluate_gradient_from_kernels__ will have summed and (optionally) smoothed the kernels to recover the gradient, which will be used to update our starting model.\n", + "\n", + "> **NOTE**: Since we did not specify any smoothing lenghts (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has occurred. \n", + "\n", + "Using the gradient-descent optimization algorithm, SeisFlows will now compute a search direction that will be used in the line search to search for a best fitting model which optimally reduces the objective function. We can take a look at where SeisFlows has stored the information relating to kernel generation and the optimization computation." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[32mgradient\u001b[m\u001b[m \u001b[1m\u001b[32mkernels\u001b[m\u001b[m \u001b[1m\u001b[32mmisfit_kernel\u001b[m\u001b[m \u001b[1m\u001b[32mmodel\u001b[m\u001b[m residuals.txt\r\n" + ] + } + ], + "source": [ + "# Gradient evaluation files are stored here, the kernels are stored separately from the gradient incase\n", + "# the user wants to manually manipulate them\n", + "! ls scratch/eval_grad" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" + ] + } + ], + "source": [ + "# SeisFlows3 stores all kernels and gradient information as SPECFEM binary (.bin) files\n", + "! ls scratch/eval_grad/gradient" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m\u001b[32m001\u001b[m\u001b[m \u001b[1m\u001b[32m002\u001b[m\u001b[m \u001b[1m\u001b[32m003\u001b[m\u001b[m\r\n" + ] + } + ], + "source": [ + "# Kernels are stored on a per-event basis, and summed together (sum/). If smoothing was performed, \n", + "# we would see both smoothed and unsmoothed versions of the misfit kernel\n", + "! ls scratch/eval_grad/kernels" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "checkpoint.npz f_new.txt g_new.npz m_new.npz\r\n" + ] + } + ], + "source": [ + "# We can see that some new values have been stored in prepartion for the line search,\n", + "# including g_new (current gradient) and p_new (current search direction). These are also\n", + "# stored as vector NumPy arrays (.npy files)\n", + "! ls scratch/optimize" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-1.18126331e-12 2.40273470e-12 3.97045036e-11 ... 9.62017688e-11\n", + " 4.21140102e-11 3.96825021e-12]]\n" + ] + } + ], + "source": [ + "g_new = np.load(\"scratch/optimize/g_new.npz\")\n", + "print(g_new[\"vs_kernel\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "--------------------\n", + "#### 3c. Line search and model update\n", + "\n", + "Let's finish off the inversion by running through the line search, which will generate new models using the\n", + "gradient, evaluate the objective function by running forward simulations, and comparing the evaluated objective function with the value obtained in __evalaute_initial_misfit__. \n", + "\n", + "Satisfactory reduction in the objective function will result in a termination of the line search. We are using a bracketing line search here [(Modrak et al. 2018)](https://academic.oup.com/gji/article/206/3/1864/2583505), which requires finding models which both increase and decrease the misfit with respect to the initial evaluation. Therefore it takes atleast two trial steps to complete the line search." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stop_after: evaluate_gradient_from_kernels -> finalize_iteration\r\n" + ] + } + ], + "source": [ + "! seisflows par stop_after perform_line_search # We don't want to run the finalize_iteration argument so that we can explore the dir" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2022-08-15 16:21:55 (D) | setting iteration==1 from state file\n", + "2022-08-15 16:21:55 (I) | \n", + "================================================================================\n", + " SETTING UP INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-15 16:22:03 (D) | running setup for module 'system.Workstation'\n", + "2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_003.txt\n", + "2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_003.yaml\n", + "2022-08-15 16:22:05 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-15 16:22:05 (I) | initializing 3 solver directories\n", + "2022-08-15 16:22:07 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-15 16:22:08 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-15 16:22:09 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:22:11 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:22:11 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " RUNNING ITERATION 01 \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-15 16:22:11 (I) | \n", + "================================================================================\n", + " RUNNING INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-15 16:22:11 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", + "2022-08-15 16:22:11 (I) | 'run_adjoint_simulations' has already been run, skipping\n", + "2022-08-15 16:22:11 (I) | 'postprocess_event_kernels' has already been run, skipping\n", + "2022-08-15 16:22:11 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping\n", + "2022-08-15 16:22:11 (I) | initializing 'bracket'ing line search\n", + "2022-08-15 16:22:11 (I) | enforcing max step length safeguard\n", + "2022-08-15 16:22:11 (D) | step length(s) = 0.00E+00\n", + "2022-08-15 16:22:11 (D) | misfit val(s) = 1.28E-03\n", + "2022-08-15 16:22:11 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11\n", + "2022-08-15 16:22:11 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10\n", + "2022-08-15 16:22:11 (D) | overwriting initial step length, alpha_new=2.32E+09\n", + "2022-08-15 16:22:11 (I) | trial model 'm_try' parameters: \n", + "2022-08-15 16:22:11 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:22:11 (I) | 3244.51 <= vs <= 3790.00\n", + "2022-08-15 16:22:12 (I) | \n", + "LINE SEARCH STEP COUNT 01\n", + "--------------------------------------------------------------------------------\n", + "2022-08-15 16:22:12 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:22:12 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:22:23 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:22:23 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:22:23 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:22:35 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:22:35 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:22:35 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:22:48 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:22:48 (D) | misfit for trial model (f_try) == 8.65E-04\n", + "2022-08-15 16:22:48 (D) | step length(s) = 0.00E+00, 2.32E+09\n", + "2022-08-15 16:22:48 (D) | misfit val(s) = 1.28E-03, 8.65E-04\n", + "2022-08-15 16:22:48 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09\n", + "2022-08-15 16:22:49 (I) | line search model 'm_try' parameters: \n", + "2022-08-15 16:22:49 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:22:49 (I) | 3086.61 <= vs <= 3969.23\n", + "2022-08-15 16:22:49 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-15 16:22:49 (I) | \n", + "LINE SEARCH STEP COUNT 02\n", + "--------------------------------------------------------------------------------\n", + "2022-08-15 16:22:49 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:22:49 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:01 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:01 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:23:01 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:13 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:13 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:23:13 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:25 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:25 (D) | misfit for trial model (f_try) == 1.73E-03\n", + "2022-08-15 16:23:25 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09\n", + "2022-08-15 16:23:25 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03\n", + "2022-08-15 16:23:25 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09\n", + "2022-08-15 16:23:25 (I) | line search model 'm_try' parameters: \n", + "2022-08-15 16:23:25 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:23:25 (I) | 3325.01 <= vs <= 3698.63\n", + "2022-08-15 16:23:25 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-15 16:23:25 (I) | \n", + "LINE SEARCH STEP COUNT 03\n", + "--------------------------------------------------------------------------------\n", + "2022-08-15 16:23:25 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:23:25 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:37 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:37 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:23:37 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:51 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:51 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:23:51 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:24:03 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:24:04 (D) | misfit for trial model (f_try) == 2.59E-03\n", + "2022-08-15 16:24:04 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09\n", + "2022-08-15 16:24:04 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03\n", + "2022-08-15 16:24:04 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09\n", + "2022-08-15 16:24:04 (I) | line search model 'm_try' parameters: \n", + "2022-08-15 16:24:04 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:24:04 (I) | 3189.77 <= vs <= 3852.13\n", + "2022-08-15 16:24:04 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-15 16:24:04 (I) | \n", + "LINE SEARCH STEP COUNT 04\n", + "--------------------------------------------------------------------------------\n", + "2022-08-15 16:24:04 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:24:04 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:24:15 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:24:15 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:24:15 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:24:27 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:24:27 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:24:27 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:24:39 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:24:39 (D) | misfit for trial model (f_try) == 3.46E-03\n", + "2022-08-15 16:24:39 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09\n", + "2022-08-15 16:24:39 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03\n", + "2022-08-15 16:24:39 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", + "2022-08-15 16:24:39 (I) | line search model 'm_try' parameters: \n", + "2022-08-15 16:24:39 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:24:39 (I) | 3244.51 <= vs <= 3790.00\n", + "2022-08-15 16:24:39 (I) | trial step successful. finalizing line search\n", + "2022-08-15 16:24:39 (I) | \n", + "FINALIZING LINE SEARCH\n", + "--------------------------------------------------------------------------------\n", + "2022-08-15 16:24:39 (I) | writing optimization stats\n", + "2022-08-15 16:24:39 (I) | renaming current (new) optimization vectors as previous model (old)\n", + "2022-08-15 16:24:39 (I) | setting accepted trial model (try) as current model (new)\n", + "2022-08-15 16:24:39 (I) | misfit of accepted trial model is f=8.645E-04\n", + "2022-08-15 16:24:39 (I) | resetting line search step count to 0\n", + "2022-08-15 16:24:39 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " CLEANING WORKDIR FOR NEXT ITERATION \n", + "////////////////////////////////////////////////////////////////////////////////\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2022-08-15 16:24:41 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow\n", + "2022-08-15 16:24:42 (I) | stop workflow at `stop_after`: finalize_iteration\n" + ] + } + ], + "source": [ + "! seisflows submit" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the log statements above, we can see that the SeisFlows line search required 4 trial steps, where it modified values of Vs (shear-wave velocity) until satisfactory reduction in the objective function was met. This was the final step in the iteration, and so the finalization of the line search made preparations for a subsequent iteration. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha.txt f_old.txt m_new.npz p_old.npz\r\n", + "checkpoint.npz f_try.txt m_old.npz\r\n", + "f_new.txt g_old.npz output_optim.txt\r\n" + ] + } + ], + "source": [ + "# We can see that we have 'new' and 'old' values for each of the optimization values,\n", + "# representing the previous model (M00) and the current model (M01).\n", + "! ls scratch/optimize" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "step_count,step_length,gradient_norm_L1,gradient_norm_L2,misfit,if_restarted,slope,theta\r\n", + "04,2.323E+09,9.243E-05,1.049E-06,1.279E-03,0,8.263E-13,0.000E+00\r\n" + ] + } + ], + "source": [ + "# The stats/ directory contains text files describing the optimization/line search\n", + "! cat scratch/optimize/output_optim.txt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Conclusions\n", + "\n", + "We've now seen how SeisFlows runs an __Inversion__ workflow using the __Specfem2D__ solver on a __Workstation__ system. More or less, this is all you need to run SeisFlows with any combination of modules. The specificities of a system or numerical solver are already handled internally by SeisFlows, so if you want to use Specmfe3D_Cartesian as your solver, you would only need to run `seisflows par solver specfem3d` at the beginning of your workflow (you will also need to set up your Specfem3D models, similar to what we did for Specfem2D here). To run on a slurm system like Chinook (University of Alaska Fairbanks), you can run `seisflows par system chinook`. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/notebooks/sflog.txt b/docs/notebooks/sflog.txt new file mode 100644 index 00000000..e69de29b diff --git a/docs/notebooks/specfem2d_example.ipynb b/docs/notebooks/specfem2d_example.ipynb index 9c7482af..6dac591a 100644 --- a/docs/notebooks/specfem2d_example.ipynb +++ b/docs/notebooks/specfem2d_example.ipynb @@ -6,7 +6,7 @@ "source": [ "# Specfem2D workstation example\n", "\n", - "To demonstrate the inversion capabilities of SeisFlows3, we will run a __Specfem2D synthetic-synthetic example__ on a __local machine__ (Linux workstation running CentOS 7). Many of the setup steps here will likely be unique to our OS and workstation, but hopefully they may serve as templates for new Users wanting to explore SeisFlows3. \n", + "To demonstrate the inversion capabilities of SeisFlows, we will run a __Specfem2D synthetic-synthetic example__ on a __local machine__ (tested on a Linux workstation running CentOS 7, and an Apple Laptop running macOS 10.14.6). Many of the setup steps here may be unique to our OS and workstation, but hopefully they may serve as templates for new Users wanting to explore SeisFlows. \n", "\n", "The numerical solver we will use is: [SPECFEM2D](https://geodynamics.org/cig/software/specfem2d/). We'll also be working in our `seisflows` [Conda](https://docs.conda.io/en/latest/) environment, see the installation documentation page for instructions on how to install and activate the required Conda environment.\n", "\n", @@ -19,7 +19,7 @@ "source": [ "## Option 1: Automated run\n", "\n", - "We have set up this example to run using a single command line argument. The following command will run an example script which will (1) download and compile SPECFEM2D, (2) setup a SPECFEM2D working directory to generate initial and target models, and (3) Run a SeisFlows3 inversion. " + "We have set up this example to run using a single command line argument. The following command will run an example script which will (1) download and compile SPECFEM2D, (2) setup a SPECFEM2D working directory to generate initial and target models, and (3) Run a SeisFlows inversion. " ] }, { @@ -34,54 +34,9 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Run example: ex1_specfem2d_workstation_inversion\n", - "\n", - " @@@@@@@@@@ \n", - " .@@@@. .%&( %@. \n", - " @@@@ @@@@ &@@@@@@ ,%@ \n", - " @@@@ @@@, /@@ @ \n", - " @@@ @@@@ @@@ @ \n", - " @@@@ @@@@ @@@ @ @ \n", - " @@@ @@@@ ,@@@ @ @ \n", - " @@@@ @@@@ @@@@ @@ @ @\n", - " @@@@ @@@@@ @@@@@ @@@ @@ @\n", - " @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @\n", - " @@@@ @@@@@@ @@@& @@@ @ \n", - " @@@@@ @@@@@@@@ %@@@@# @@ \n", - " @@@@# @@@@@@@@@@@@@@@@@ @@ \n", - " &@@@@@ @@@@( @@& \n", - " @@@@@@@ /@@@@ \n", - " @@@@@@@@@@@@@@@@@\n", - " @@@@@@@@@@ \n", - "\n", - "================================================================================\n", - " SEISFLOWS3 EXAMPLE 1 \n", - " //////////////////// \n", - "This is a [SPECFEM2D] [WORKSTATION] example, which will run 2 iterations of an\n", - "inversion to assess misfit between two homogeneous halfspace models with\n", - "slightly different velocities, 3 sources and 1 receiver. The tasks involved\n", - "include:\n", - "\n", - "1. (optional) Download, configure, compile SPECFEM2D\n", - "2. Set up a SPECFEM2D working directory\n", - "3. Generate starting model from Tape2007 example\n", - "4. Generate target model w/ perturbed starting model\n", - "5. Set up a SeisFlows3 working directory\n", - "6. Run 2 iterations of an inversion workflow\n", - "================================================================================\n", - "If you have already downloaded SPECMFE2D, please input its path here. If blank,\n", - "this example will pull the latest version from GitHub and attempt to configure\n", - "and make the binaries: >" - ] - } - ], + "outputs": [], "source": [ - "seisflows examples run 1" + "! seisflows examples run 1" ] }, { @@ -112,13 +67,12 @@ " b. [Create a separate SPECFEM2D working directory](#1b.-Create-a-separate-SPECFEM2D-working-directory) \n", " c. [Generate initial and target models](#1c.-Generate-initial-and-target-models) \n", "\n", - "2. __[Initialize SeisFlows3 (SF3)](#2.-Initialize-SeisFlows3-(SF3))__ \n", - " a. [SF3 working directory and parameter file](#2a.-SF3-working-directory-and-parameter-file) \n", - " b. [Initialize SF3 working state](#2b.-Initialize-SF3-working-state) \n", + "2. __[Initialize SeisFlows (SF)](#2.-Initialize-SeisFlows-(SF))__ \n", + " a. [SeisFlows working directory and parameter file](#2a.-SF-working-directory-and-parameter-file) \n", "\n", - "3. __[Run SeisFlows3](#2.-Run-SeisFlows3)__ \n", + "3. __[Run SeisFlows](#2.-Run-SeisFlows)__ \n", " a. [Forward simulations](#3a.-Forward-simulations) \n", - " b. [Exploring the SF3 directory structure](#3b.-Exploring-the-SF3-directory-structure) \n", + " b. [Exploring the SeisFlows directory structure](#3b.-Exploring-the-SF-directory-structure) \n", " c. [Adjoint simulations](#3c.-Adjoint-simulations) \n", " d. [Line search and model update](#3d.-Line-search-and-model-update) \n", "\n", @@ -134,12 +88,12 @@ "\n", "> **NOTE**: If you have already downloaded and compiled SPECFEM2D, you can skip most of this subsection (1a). However you will need to edit the first two paths in the following cell (WORKDIR and SPECFEM2D_ORIGINAL), and execute the path structure defined in the cell.\n", "\n", - "First we'll download and compile SPECFEM2D to generate the binaries necessary to run our simulations. We will then populate a new SPECFEM2D working directory that will be used by SeisFlows3. We'll use to Python OS module to do our filesystem processes just to keep everything in Python, but this can easily be accomplished in bash." + "First we'll download and compile SPECFEM2D to generate the binaries necessary to run our simulations. We will then populate a new SPECFEM2D working directory that will be used by SeisFlows. We'll use to Python OS module to do our filesystem processes just to keep everything in Python, but this can easily be accomplished in bash." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -151,13 +105,17 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# vvv USER MUST EDIT THE FOLLOWING PATHS vvv\n", - "WORKDIR = \"/home/bchow/Work/work/sf3_specfem2d_example\" \n", - "SPECFEM2D = \"/home/bchow/REPOSITORIES/specfem2d\"\n", + "# MAC PATHS\n", + "WORKDIR = \"/Users/Chow/Work/work/sf_specfem2d_example\" \n", + "SPECFEM2D = \"/Users/Chow/Repositories/specfem2d\"\n", + "# LINUX PATHS\n", + "# WORKDIR = \"/home/bchow/Work/work/sf_specfem2d_example\" \n", + "# SPECFEM2D = \"/home/bchow/REPOSITORIES/specfem2d\"\n", "# where WORKDIR: points to your own working directory\n", "# and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '')\n", "# ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^\n", @@ -182,19 +140,21 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Existing SPECMFE2D respository found, symlinking to working directory\n" + "SPECFEM2D repository already found, you may skip this subsection\n" ] } ], "source": [ "# Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo\n", + "if not os.path.exists(WORKDIR):\n", + " os.makedirs(WORKDIR)\n", "os.chdir(WORKDIR)\n", "\n", "if os.path.exists(\"specfem2d\"):\n", @@ -240,10 +200,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "/home/bchow/REPOSITORIES/specfem2d\n", - "xadj_seismogram\t\t xconvolve_source_timefunction xspecfem2D\n", - "xcheck_quality_external_mesh xmeshfem2D\t\t xsum_kernels\n", - "xcombine_sem\t\t xsmooth_sem\n" + "/Users/Chow/Repositories/specfem2d\n", + "\u001b[1m\u001b[34mxadj_seismogram\u001b[m\u001b[m \u001b[1m\u001b[34mxmeshfem2D\u001b[m\u001b[m\n", + "\u001b[1m\u001b[32mxadj_seismogram.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxmeshfem2D.dSYM\u001b[m\u001b[m\n", + "\u001b[1m\u001b[34mxcheck_quality_external_mesh\u001b[m\u001b[m \u001b[1m\u001b[34mxsmooth_sem\u001b[m\u001b[m\n", + "\u001b[1m\u001b[32mxcheck_quality_external_mesh.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxsmooth_sem.dSYM\u001b[m\u001b[m\n", + "\u001b[1m\u001b[34mxcombine_sem\u001b[m\u001b[m \u001b[1m\u001b[34mxspecfem2D\u001b[m\u001b[m\n", + "\u001b[1m\u001b[32mxcombine_sem.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxspecfem2D.dSYM\u001b[m\u001b[m\n", + "\u001b[1m\u001b[34mxconvolve_source_timefunction\u001b[m\u001b[m \u001b[1m\u001b[34mxsum_kernels\u001b[m\u001b[m\n", + "\u001b[1m\u001b[32mxconvolve_source_timefunction.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxsum_kernels.dSYM\u001b[m\u001b[m\n" ] } ], @@ -260,7 +225,7 @@ "source": [ "#### 1b. Create a separate SPECFEM2D working directory\n", "\n", - "Next we'll create a new SPECFEM2D working directory, separate from the original repository. The intent here is to isolate the original SPECFEM2D repository from our working state, to protect it from things like accidental file deletions or manipulations. This is not a mandatory step for using SeisFlows3, but it helps keep file structure clean in the long run, and is the SeisFlows3 dev team's preferred method of using SPECFEM. " + "Next we'll create a new SPECFEM2D working directory, separate from the original repository. The intent here is to isolate the original SPECFEM2D repository from our working state, to protect it from things like accidental file deletions or manipulations. This is not a mandatory step for using SeisFlows, but it helps keep file structure clean in the long run, and is the SeisFlows3 dev team's preferred method of using SPECFEM. " ] }, { @@ -275,20 +240,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In this tutorial we will be using the [Tape2007 example problem](https://github.com/geodynamics/specfem2d/tree/devel/EXAMPLES/Tape2007) to define our __DATA/__ directory (last tested 3/9/22, cf893667)." + "In this tutorial we will be using the [Tape2007 example problem](https://github.com/geodynamics/specfem2d/tree/devel/EXAMPLES/Tape2007) to define our __DATA/__ directory (last tested 8/15/22, bdba4389)." ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/home/bchow/Work/work/sf3_specfem2d_example/specfem2d_workdir\n", - "bin DATA\n" + "/Users/Chow/Work/work/sf_specfem2d_example/specfem2d_workdir\n", + "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\n" ] } ], @@ -313,7 +278,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -322,14 +287,14 @@ "text": [ " -------------------------------------------------------------------------------\r\n", " -------------------------------------------------------------------------------\r\n", - " D a t e : 29 - 04 - 2022 T i m e : 12:24:51\r\n", + " D a t e : 15 - 08 - 2022 T i m e : 10:13:31\r\n", " -------------------------------------------------------------------------------\r\n", " -------------------------------------------------------------------------------\r\n", "\r\n", "see results in directory: OUTPUT_FILES/\r\n", "\r\n", "done\r\n", - "Fri Apr 29 12:24:51 AKDT 2022\r\n" + "Mon Aug 15 10:13:31 PDT 2022\r\n" ] } ], @@ -367,22 +332,29 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "interfaces_Tape2007.dat\t\t SOURCE_003 SOURCE_012 SOURCE_021\r\n", - "model_velocity.dat_checker\t SOURCE_004 SOURCE_013 SOURCE_022\r\n", - "Par_file\t\t\t SOURCE_005 SOURCE_014 SOURCE_023\r\n", - "Par_file_Tape2007_132rec_checker SOURCE_006 SOURCE_015 SOURCE_024\r\n", - "Par_file_Tape2007_onerec\t SOURCE_007 SOURCE_016 SOURCE_025\r\n", - "proc000000_model_velocity.dat_input SOURCE_008 SOURCE_017 STATIONS\r\n", - "SOURCE\t\t\t\t SOURCE_009 SOURCE_018 STATIONS_checker\r\n", - "SOURCE_001\t\t\t SOURCE_010 SOURCE_019\r\n", - "SOURCE_002\t\t\t SOURCE_011 SOURCE_020\r\n" + "Par_file SOURCE_013\r\n", + "Par_file_Tape2007_132rec_checker SOURCE_014\r\n", + "Par_file_Tape2007_onerec SOURCE_015\r\n", + "\u001b[1m\u001b[35mSOURCE\u001b[m\u001b[m SOURCE_016\r\n", + "SOURCE_001 SOURCE_017\r\n", + "SOURCE_002 SOURCE_018\r\n", + "SOURCE_003 SOURCE_019\r\n", + "SOURCE_004 SOURCE_020\r\n", + "SOURCE_005 SOURCE_021\r\n", + "SOURCE_006 SOURCE_022\r\n", + "SOURCE_007 SOURCE_023\r\n", + "SOURCE_008 SOURCE_024\r\n", + "SOURCE_009 SOURCE_025\r\n", + "SOURCE_010 STATIONS_checker\r\n", + "SOURCE_011 interfaces_Tape2007.dat\r\n", + "SOURCE_012 model_velocity.dat_checker\r\n" ] } ], @@ -428,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -452,14 +424,14 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "bin DATA OUTPUT_FILES\r\n" + "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\r\n" ] } ], @@ -477,7 +449,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -489,8 +461,8 @@ " **** Specfem 2-D Solver - serial version ****\n", " **********************************************\n", "\n", - " Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884\n", - " dating From Date: Mon Nov 29 23:20:51 2021 -0800\n", + " Running Git version of the code corresponding to \n", + " dating From \n", "\n", "\n", " NDIM = 2\n", @@ -501,7 +473,7 @@ " Tape-Liu-Tromp (GJI 2007)\n", " -------------------------------------------------------------------------------\n", " -------------------------------------------------------------------------------\n", - " D a t e : 29 - 04 - 2022 T i m e : 12:25:24\n", + " D a t e : 15 - 08 - 2022 T i m e : 10:14:13\n", " -------------------------------------------------------------------------------\n", " -------------------------------------------------------------------------------\n" ] @@ -536,7 +508,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -561,7 +533,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -573,8 +545,8 @@ " **** Specfem 2-D Solver - serial version ****\n", " **********************************************\n", "\n", - " Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884\n", - " dating From Date: Mon Nov 29 23:20:51 2021 -0800\n", + " Running Git version of the code corresponding to \n", + " dating From \n", "\n", "\n", " NDIM = 2\n", @@ -585,7 +557,7 @@ " Tape-Liu-Tromp (GJI 2007)\n", " -------------------------------------------------------------------------------\n", " -------------------------------------------------------------------------------\n", - " D a t e : 29 - 04 - 2022 T i m e : 12:25:24\n", + " D a t e : 15 - 08 - 2022 T i m e : 10:14:13\n", " -------------------------------------------------------------------------------\n", " -------------------------------------------------------------------------------\n" ] @@ -614,19 +586,19 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "bin DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE\r\n" + "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES_INIT\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES_TRUE\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\r\n" ] } ], "source": [ - "# Great, we have all the necessary SPECFEM files to run our SeisFlows3 inversion!\n", + "# Great, we have all the necessary SPECFEM files to run our SeisFlows inversion!\n", "! ls" ] }, @@ -634,14 +606,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 2. Initialize SeisFlows3 (SF3)\n", - "In this Section we will look at a SeisFlows3 working directory, parameter file, and working state.\n", + "### 2. Initialize SeisFlows (SF)\n", + "In this Section we will look at a SeisFlows working directory, parameter file, and working state.\n", "\n", - "#### 2a. SF3 working directory and parameter file\n", + "#### 2a. SeisFlows working directory and parameter file\n", "\n", - "As with SPECFEM, SeisFlows3 requires a parameter file (__parameters.yaml__) that controls how an automated workflow will proceed. Because SeisFlows3 is modular, there are a large number of potential parameters which may be present in SF3 parameter file, as each sub-module may have its own set of unique parameters.\n", + "As with SPECFEM, SeisFlows requires a parameter file (__parameters.yaml__) that controls how an automated workflow will proceed. Because SeisFlows is modular, there are a large number of potential parameters which may be present in a SeisFlows parameter file, as each sub-module may have its own set of unique parameters.\n", "\n", - "In contrast to SPECFEM's method of listing all available parameters and leaving it up the User to determine which ones are relevant to them, SeisFlows3 dynamically builds its parameter file based on User inputs. In this subsection we will use the built-in SeisFlows3 command line tools to generate and populate the parameter file. " + "In contrast to SPECFEM's method of listing all available parameters and leaving it up the User to determine which ones are relevant to them, SeisFlows dynamically builds its parameter file based on User inputs. In this subsection we will use the built-in SeisFlows command line tools to generate and populate the parameter file. " ] }, { @@ -649,7 +621,7 @@ "metadata": {}, "source": [ ".. note::\n", - " See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows3 file." + " See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows file." ] }, { @@ -661,7 +633,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -669,12 +641,12 @@ "output_type": "stream", "text": [ "usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]]\r\n", - " {setup,configure,init,submit,resume,restart,clean,par,sempar,check,print,convert,reset,debug,edit,examples}\r\n", + " {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples}\r\n", " ...\r\n", "\r\n", "================================================================================\r\n", "\r\n", - " SeisFlows3: Waveform Inversion Package \r\n", + " SeisFlows: Waveform Inversion Package \r\n", "\r\n", "================================================================================\r\n", "\r\n", @@ -690,19 +662,18 @@ "\r\n", " setup Setup working directory from scratch\r\n", " configure Fill parameter file with defaults\r\n", + " swap Swap module parameters in an existing parameter file\r\n", " init Initiate working environment\r\n", " submit Submit initial workflow to system\r\n", " resume Re-submit previous workflow to system\r\n", " restart Remove current environment and submit new workflow\r\n", " clean Remove files relating to an active working environment\r\n", - " par View and edit SeisFlows3 parameter file\r\n", + " par View and edit SeisFlows parameter file\r\n", " sempar View and edit SPECFEM parameter file\r\n", " check Check state of an active environment\r\n", " print Print information related to an active environment\r\n", - " convert Convert model file format\r\n", " reset Reset modules within an active state\r\n", " debug Start interactive debug environment\r\n", - " edit Open source code file in text editor\r\n", " examples Look at and run pre-configured example problems\r\n", "\r\n", "'seisflows [command] -h' for more detailed descriptions of each command.\r\n" @@ -715,20 +686,23 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 1, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating parameter file: parameters.yaml\n", - "parameters.yaml specfem2d specfem2d_workdir\n" + "ename": "NameError", + "evalue": "name 'os' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mWORKDIR\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' seisflows setup -f'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' ls'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'os' is not defined" ] } ], "source": [ - "# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows3\n", + "# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\n", "# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\n", "os.chdir(WORKDIR)\n", "! seisflows setup -f\n", @@ -737,7 +711,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -746,16 +720,16 @@ "text": [ "# //////////////////////////////////////////////////////////////////////////////\r\n", "#\r\n", - "# SeisFlows3 YAML Parameter File\r\n", + "# SeisFlows YAML Parameter File\r\n", "#\r\n", "# //////////////////////////////////////////////////////////////////////////////\r\n", "#\r\n", "# Modules correspond to the structure of the source code, and determine\r\n", - "# SeisFlows3' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", "#\r\n", "# .. rubric::\r\n", "# - To determine available options for modules listed below, run:\r\n", - "# > seisflows print module\r\n", + "# > seisflows print modules\r\n", "# - To auto-fill with docstrings and default values (recommended), run:\r\n", "# > seisflows configure\r\n", "# - To set values as NoneType, use: null\r\n", @@ -763,19 +737,17 @@ "#\r\n", "# MODULES\r\n", "# ///////\r\n", - "# WORKFLOW (str): The method for running SeisFlows3; equivalent to main()\r\n", - "# SOLVER (str): External numerical solver to use for waveform simulations\r\n", - "# SYSTEM (str): Computer architecture of the system being used\r\n", - "# OPTIMIZE (str): Optimization algorithm for the inverse problem\r\n", - "# PREPROCESS (str): Preprocessing schema for waveform data\r\n", - "# POSTPROCESS (str): Postprocessing schema for kernels and gradients\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", "# ==============================================================================\r\n", - "WORKFLOW: inversion\r\n", - "SOLVER: specfem2d\r\n", - "SYSTEM: workstation\r\n", - "OPTIMIZE: LBFGS \r\n", - "PREPROCESS: base\r\n", - "POSTPROCESS: base\r\n" + "workflow: forward\r\n", + "system: workstation\r\n", + "solver: specfem2d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n" ] } ], @@ -786,60 +758,41 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " SEISFLOWS3 MODULES \r\n", - " ////////////////// \r\n", - "'+': package, '-': module, '*': class\r\n", + " SEISFLOWS MODULES \r\n", + " ///////////////// \r\n", + "'-': module, '*': class\r\n", "\r\n", - "+ SYSTEM\r\n", - " - seisflows\r\n", - " * base\r\n", - " * cluster\r\n", - " * lsf\r\n", - " * slurm\r\n", - " * workstation\r\n", - " - seisflows-super\r\n", - " * chinook\r\n", - " * maui\r\n", - "+ PREPROCESS\r\n", - " - seisflows\r\n", - " * base\r\n", - " * pyatoa\r\n", - " - seisflows-super\r\n", - " * pyatoa_nz\r\n", - "+ SOLVER\r\n", - " - seisflows\r\n", - " * base\r\n", - " * specfem2d\r\n", - " * specfem3d\r\n", - " * specfem3d_globe\r\n", - " - seisflows-super\r\n", - " * specfem3d_maui\r\n", - "+ POSTPROCESS\r\n", - " - seisflows\r\n", - " * base\r\n", - " - seisflows-super\r\n", - "+ OPTIMIZE\r\n", - " - seisflows\r\n", - " * LBFGS\r\n", - " * NLCG\r\n", - " * base\r\n", - " - seisflows-super\r\n", - "+ WORKFLOW\r\n", - " - seisflows\r\n", - " * base\r\n", - " * inversion\r\n", - " * migration\r\n", - " * test\r\n", - " - seisflows-super\r\n", - " * thrifty_inversion\r\n", - " * thrifty_maui\r\n" + "- workflow\r\n", + " * forward\r\n", + " * inversion\r\n", + " * migration\r\n", + "- system\r\n", + " * chinook\r\n", + " * cluster\r\n", + " * frontera\r\n", + " * lsf\r\n", + " * maui\r\n", + " * slurm\r\n", + " * workstation\r\n", + "- solver\r\n", + " * specfem\r\n", + " * specfem2d\r\n", + " * specfem3d\r\n", + " * specfem3d_globe\r\n", + "- preprocess\r\n", + " * default\r\n", + " * pyaflowa\r\n", + "- optimize\r\n", + " * LBFGS\r\n", + " * NLCG\r\n", + " * gradient\r\n" ] } ], @@ -850,26 +803,26 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "SOLVER: specfem2d -> specfem2d\n", + "workflow: forward -> inversion\n", "# //////////////////////////////////////////////////////////////////////////////\n", "#\n", - "# SeisFlows3 YAML Parameter File\n", + "# SeisFlows YAML Parameter File\n", "#\n", "# //////////////////////////////////////////////////////////////////////////////\n", "#\n", "# Modules correspond to the structure of the source code, and determine\n", - "# SeisFlows3' behavior at runtime. Each module requires its own sub-parameters.\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\n", "#\n", "# .. rubric::\n", "# - To determine available options for modules listed below, run:\n", - "# > seisflows print module\n", + "# > seisflows print modules\n", "# - To auto-fill with docstrings and default values (recommended), run:\n", "# > seisflows configure\n", "# - To set values as NoneType, use: null\n", @@ -877,26 +830,24 @@ "#\n", "# MODULES\n", "# ///////\n", - "# WORKFLOW (str): The method for running SeisFlows3; equivalent to main()\n", - "# SOLVER (str): External numerical solver to use for waveform simulations\n", - "# SYSTEM (str): Computer architecture of the system being used\n", - "# OPTIMIZE (str): Optimization algorithm for the inverse problem\n", - "# PREPROCESS (str): Preprocessing schema for waveform data\n", - "# POSTPROCESS (str): Postprocessing schema for kernels and gradients\n", + "# workflow (str): The types and order of functions for running SeisFlows\n", + "# system (str): Computer architecture of the system being used\n", + "# solver (str): External numerical solver to use for waveform simulations\n", + "# preprocess (str): Preprocessing schema for waveform data\n", + "# optimize (str): Optimization algorithm for the inverse problem\n", "# ==============================================================================\n", - "WORKFLOW: inversion\n", - "SOLVER: specfem2d\n", - "SYSTEM: workstation\n", - "OPTIMIZE: LBFGS \n", - "PREPROCESS: base\n", - "POSTPROCESS: base\n" + "workflow: inversion\n", + "system: workstation\n", + "solver: specfem2d\n", + "preprocess: default\n", + "optimize: gradient\n" ] } ], "source": [ "# For this example, we can use most of the default modules, however we need to \n", - "# change the SOLVER module to let SeisFlows3 know we're using SPECFEM2D (as opposed to 3D)\n", - "! seisflows par solver specfem2d\n", + "# change the SOLVER module to let SeisFlows know we're using SPECFEM2D (as opposed to 3D)\n", + "! seisflows par workflow inversion\n", "! cat parameters.yaml" ] }, @@ -905,326 +856,424 @@ "metadata": {}, "source": [ "-------------------------\n", - "The `seisflows configure` command populates the parameter file based on the chosen modules. SeisFlows3 will attempt to fill in all parameters with default values when possible, but values that the User __MUST__ set will be denoted by the value:\n", + "The `seisflows configure` command populates the parameter file based on the chosen modules. SeisFlows will attempt to fill in all parameters with reasonable default values. Docstrings above each module show descriptions and available options for each of these parameters. \n", "\n", - ">__!!! REQUIRED PARAMETER !!!__\n", - "\n", - "SeisFlows3 will not work until all of these required parameters are set by the User. Docstrings above each module show descriptions and available options for each of these parameters. In the follownig cell we will use the `seisflows par` command to edit the parameters.yaml file directly, replacing each of the required parameters with a chosen value. Comments next to each evaluation describe the choice for each." + "In the follownig cell we will use the `seisflows par` command to edit the parameters.yaml file directly, replacing some default parameters with our own values. Comments next to each evaluation describe the choice for each." ] }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "filling parameters.yaml w/ default values\n", - "# //////////////////////////////////////////////////////////////////////////////\n", - "#\n", - "# SeisFlows3 YAML Parameter File\n", - "#\n", - "# //////////////////////////////////////////////////////////////////////////////\n", - "#\n", - "# Modules correspond to the structure of the source code, and determine\n", - "# SeisFlows3' behavior at runtime. Each module requires its own sub-parameters.\n", - "#\n", - "# .. rubric::\n", - "# - To determine available options for modules listed below, run:\n", - "# > seisflows print module\n", - "# - To auto-fill with docstrings and default values (recommended), run:\n", - "# > seisflows configure\n", - "# - To set values as NoneType, use: null\n", - "# - To set values as infinity, use: inf\n", - "#\n", - "# MODULES\n", - "# ///////\n", - "# WORKFLOW (str): The method for running SeisFlows3; equivalent to main()\n", - "# SOLVER (str): External numerical solver to use for waveform simulations\n", - "# SYSTEM (str): Computer architecture of the system being used\n", - "# OPTIMIZE (str): Optimization algorithm for the inverse problem\n", - "# PREPROCESS (str): Preprocessing schema for waveform data\n", - "# POSTPROCESS (str): Postprocessing schema for kernels and gradients\n", - "# ==============================================================================\n", - "WORKFLOW: inversion\n", - "SOLVER: specfem2d\n", - "SYSTEM: workstation\n", - "OPTIMIZE: LBFGS \n", - "PREPROCESS: base\n", - "POSTPROCESS: base\n", - "\n", - "# =============================================================================\n", - "# SYSTEM \n", - "# ////// \n", - "# TITLE (str):\n", - "# The name used to submit jobs to the system, defaults to the name of the\n", - "# working directory\n", - "# PRECHECK (list):\n", - "# A list of parameters that will be displayed to stdout before 'submit' or\n", - "# 'resume' is run. Useful for manually reviewing important parameters prior\n", - "# to system submission\n", - "# LOG_LEVEL (str):\n", - "# Verbosity output of SF3 logger. Available from least to most verbosity:\n", - "# 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG'\n", - "# VERBOSE (bool):\n", - "# Level of verbosity provided to the output log. If True, log statements\n", - "# will declare what module/class/function they are being called from.\n", - "# Useful for debugging but also very noisy.\n", - "# MPIEXEC (str):\n", - "# Function used to invoke executables on the system. For example 'srun' on\n", - "# SLURM systems, or './' on a workstation. If left blank, will guess based\n", - "# on the system.\n", - "# NTASK (int):\n", - "# Number of separate, individual tasks. Also equal to the number of desired\n", - "# sources in workflow\n", - "# NPROC (int):\n", - "# Number of processor to use for each simulation\n", - "# =============================================================================\n", - "TITLE: sf3_specfem2d_example\n", - "PRECHECK:\n", - " - TITLE\n", - "LOG_LEVEL: DEBUG\n", - "VERBOSE: False\n", - "MPIEXEC:\n", - "NTASK: 1\n", - "NPROC: 1\n", - "\n", - "# =============================================================================\n", - "# PREPROCESS \n", - "# ////////// \n", - "# MISFIT (str):\n", - "# Misfit function for waveform comparisons, for available see\n", - "# seisflows.plugins.misfit\n", - "# BACKPROJECT (str):\n", - "# Backprojection function for migration, for available see\n", - "# seisflows.plugins.adjoint\n", - "# NORMALIZE (list):\n", - "# Data normalization parameters used to normalize the amplitudes of\n", - "# waveforms. Choose from two sets: ENORML1: normalize per event by L1 of\n", - "# traces; OR ENORML2: normalize per event by L2 of traces; AND TNORML1:\n", - "# normalize per trace by L1 of itself; OR TNORML2: normalize per trace by\n", - "# L2 of itself\n", - "# FILTER (str):\n", - "# Data filtering type, available options are:BANDPASS (req. MIN/MAX\n", - "# PERIOD/FREQ);LOWPASS (req. MAX_FREQ or MIN_PERIOD); HIGHPASS (req.\n", - "# MIN_FREQ or MAX_PERIOD)\n", - "# MIN_PERIOD (float):\n", - "# Minimum filter period applied to time series.See also MIN_FREQ, MAX_FREQ,\n", - "# if User defines FREQ parameters, they will overwrite PERIOD parameters.\n", - "# MAX_PERIOD (float):\n", - "# Maximum filter period applied to time series.See also MIN_FREQ, MAX_FREQ,\n", - "# if User defines FREQ parameters, they will overwrite PERIOD parameters.\n", - "# MIN_FREQ (float):\n", - "# Maximum filter frequency applied to time series.See also MIN_PERIOD,\n", - "# MAX_PERIOD, if User defines FREQ parameters, they will overwrite PERIOD\n", - "# parameters.\n", - "# MAX_FREQ (float):\n", - "# Maximum filter frequency applied to time series,See also MIN_PERIOD,\n", - "# MAX_PERIOD, if User defines FREQ parameters, they will overwrite PERIOD\n", - "# parameters.\n", - "# MUTE (list):\n", - "# Data mute parameters used to zero out early / late arrivals or offsets.\n", - "# Choose any number of: EARLY: mute early arrivals; LATE: mute late\n", - "# arrivals; SHORT: mute short source-receiver distances; LONG: mute long\n", - "# source-receiver distances\n", - "# =============================================================================\n", - "MISFIT: waveform\n", - "BACKPROJECT: null\n", - "NORMALIZE: []\n", - "FILTER: null\n", - "MIN_PERIOD:\n", - "MAX_PERIOD:\n", - "MIN_FREQ:\n", - "MAX_FREQ:\n", - "MUTE: []\n", - "\n", - "# =============================================================================\n", - "# SOLVER \n", - "# ////// \n", - "# MATERIALS (str):\n", - "# Material parameters used to define model. Available: ['ELASTIC': Vp, Vs,\n", - "# 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC']\n", - "# DENSITY (str):\n", - "# How to treat density during inversion. Available: ['CONSTANT': Do not\n", - "# update density, 'VARIABLE': Update density]\n", - "# ATTENUATION (str):\n", - "# If True, turn on attenuation during forward simulations, otherwise set\n", - "# attenuation off. Attenuation is always off for adjoint simulations.\n", - "# COMPONENTS (str):\n", - "# Components used to generate data, formatted as a single string, e.g. ZNE\n", - "# or NZ or E\n", - "# SOLVERIO (int):\n", - "# The format external solver files. Available: ['fortran_binary', 'adios']\n", - "# NT (float):\n", - "# Number of time steps set in the SPECFEM Par_file\n", - "# DT (float):\n", - "# Time step or delta set in the SPECFEM Par_file\n", - "# F0 (float):\n", - "# Dominant source frequency\n", - "# FORMAT (float):\n", - "# Format of synthetic waveforms used during workflow, available options:\n", - "# ['ascii', 'su']\n", - "# SOURCE_PREFIX (str):\n", - "# Prefix of SOURCE files in path SPECFEM_DATA. By default, 'SOURCE' for\n", - "# SPECFEM2D\n", - "# =============================================================================\n", - "MATERIALS: !!! REQUIRED PARAMETER !!!\n", - "DENSITY: !!! REQUIRED PARAMETER !!!\n", - "ATTENUATION: !!! REQUIRED PARAMETER !!!\n", - "COMPONENTS: ZNE\n", - "SOLVERIO: fortran_binary\n", - "NT: !!! REQUIRED PARAMETER !!!\n", - "DT: !!! REQUIRED PARAMETER !!!\n", - "F0: !!! REQUIRED PARAMETER !!!\n", - "FORMAT: !!! REQUIRED PARAMETER !!!\n", - "SOURCE_PREFIX: SOURCE\n", - "\n", - "# =============================================================================\n", - "# POSTPROCESS \n", - "# /////////// \n", - "# SMOOTH_H (float):\n", - "# Gaussian half-width for horizontal smoothing in units of meters. If 0.,\n", - "# no smoothing applied\n", - "# SMOOTH_V (float):\n", - "# Gaussian half-width for vertical smoothing in units of meters\n", - "# TASKTIME_SMOOTH (int):\n", - "# Large radii smoothing may take longer than normal tasks. Allocate\n", - "# additional smoothing task time as a multiple of TASKTIME\n", - "# =============================================================================\n", - "SMOOTH_H: 0.0\n", - "SMOOTH_V: 0.0\n", - "TASKTIME_SMOOTH: 1\n", - "\n", - "# =============================================================================\n", - "# OPTIMIZE \n", - "# //////// \n", - "# LINESEARCH (str):\n", - "# Algorithm to use for line search, see seisflows.plugins.line_search for\n", - "# available choices\n", - "# PRECOND (str):\n", - "# Algorithm to use for preconditioning gradients, see\n", - "# seisflows.plugins.preconds for available choices\n", - "# STEPCOUNTMAX (int):\n", - "# Max number of trial steps in line search before a change in line search\n", - "# behavior\n", - "# STEPLENINIT (float):\n", - "# Initial line search step length, as a fraction of current model\n", - "# parameters\n", - "# STEPLENMAX (float):\n", - "# Max allowable step length, as a fraction of current model parameters\n", - "# LBFGSMEM (int):\n", - "# Max number of previous gradients to retain in local memory\n", - "# LBFGSMAX (int):\n", - "# LBFGS periodic restart interval, between 1 and 'inf'\n", - "# LBFGSTHRESH (float):\n", - "# LBFGS angle restart threshold\n", - "# =============================================================================\n", - "LINESEARCH: Backtrack\n", - "PRECOND:\n", - "STEPCOUNTMAX: 10\n", - "STEPLENINIT: 0.05\n", - "STEPLENMAX: 0.5\n", - "LBFGSMEM: 3\n", - "LBFGSMAX: inf\n", - "LBFGSTHRESH: 0.0\n", - "\n", - "# =============================================================================\n", - "# WORKFLOW \n", - "# //////// \n", - "# CASE (str):\n", - "# Type of inversion, available: ['data': real data inversion, 'synthetic':\n", - "# synthetic-synthetic inversion]\n", - "# RESUME_FROM (str):\n", - "# Name of task to resume inversion from\n", - "# STOP_AFTER (str):\n", - "# Name of task to stop inversion after finishing\n", - "# SAVEMODEL (bool):\n", - "# Save final model files after each iteration\n", - "# SAVEGRADIENT (bool):\n", - "# Save gradient files after each iteration\n", - "# SAVEKERNELS (bool):\n", - "# Save event kernel files after each iteration\n", - "# SAVETRACES (bool):\n", - "# Save waveform traces after each iteration\n", - "# SAVERESIDUALS (bool):\n", - "# Save waveform residuals after each iteration\n", - "# SAVEAS (str):\n", - "# Format to save models, gradients, kernels. Available: ['binary': save\n", - "# files in native SPECFEM .bin format, 'vector': save files as NumPy .npy\n", - "# files, 'both': save as both binary and vectors]\n", - "# BEGIN (int):\n", - "# First iteration of workflow, 1 <= BEGIN <= inf\n", - "# END (int):\n", - "# Last iteration of workflow, BEGIN <= END <= inf\n", - "# =============================================================================\n", - "CASE: !!! REQUIRED PARAMETER !!!\n", - "RESUME_FROM:\n", - "STOP_AFTER:\n", - "SAVEMODEL: True\n", - "SAVEGRADIENT: True\n", - "SAVEKERNELS: False\n", - "SAVETRACES: False\n", - "SAVERESIDUALS: False\n", - "SAVEAS: binary\n", - "BEGIN: 1\n", - "END: !!! REQUIRED PARAMETER !!!\n", - "\n", - "# =============================================================================\n", - "# PATHS \n", - "# ///// \n", - "# SCRATCH:\n", - "# scratch path to hold temporary data during workflow\n", - "# OUTPUT:\n", - "# directory to save workflow outputs to disk\n", - "# SYSTEM:\n", - "# scratch path to hold any system related data\n", - "# LOCAL:\n", - "# path to local data to be used during workflow\n", - "# LOGFILE:\n", - "# the main output log file where all processes will track their status\n", - "# SOLVER:\n", - "# scratch path to hold solver working directories\n", - "# SPECFEM_BIN:\n", - "# path to the SPECFEM binary executables\n", - "# SPECFEM_DATA:\n", - "# path to the SPECFEM DATA/ directory containing the 'Par_file', 'STATIONS'\n", - "# file and 'CMTSOLUTION' files\n", - "# DATA:\n", - "# path to data available to workflow\n", - "# MASK:\n", - "# Directory to mask files for gradient masking\n", - "# OPTIMIZE:\n", - "# scratch path to store data related to nonlinear optimization\n", - "# MODEL_INIT:\n", - "# location of the initial model to be used for workflow\n", - "# MODEL_TRUE:\n", - "# Target model to be used for PAR.CASE == 'synthetic'\n", - "# FUNC:\n", - "# scratch path to store data related to function evaluations\n", - "# GRAD:\n", - "# scratch path to store data related to gradient evaluations\n", - "# HESS:\n", - "# scratch path to store data related to Hessian evaluations\n", - "# =============================================================================\n", - "PATHS:\n", - " SCRATCH: /home/bchow/Work/work/sf3_specfem2d_example/scratch\n", - " OUTPUT: /home/bchow/Work/work/sf3_specfem2d_example/output\n", - " SYSTEM: /home/bchow/Work/work/sf3_specfem2d_example/scratch/system\n", - " LOCAL:\n", - " LOGFILE: /home/bchow/Work/work/sf3_specfem2d_example/output_sf3.txt\n", - " SOLVER: /home/bchow/Work/work/sf3_specfem2d_example/scratch/solver\n", - " SPECFEM_BIN: !!! REQUIRED PATH !!!\n", - " SPECFEM_DATA: !!! REQUIRED PATH !!!\n", - " DATA:\n", - " MASK:\n", - " OPTIMIZE: /home/bchow/Work/work/sf3_specfem2d_example/scratch/optimize\n", - " MODEL_INIT: !!! REQUIRED PATH !!!\n", - " MODEL_TRUE:\n", - " FUNC: /home/bchow/Work/work/sf3_specfem2d_example/scratch/scratch\n", - " GRAD: /home/bchow/Work/work/sf3_specfem2d_example/scratch/evalgrad\n", - " HESS: /home/bchow/Work/work/sf3_specfem2d_example/scratch/evalhess\n" + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# SeisFlows YAML Parameter File\r\n", + "#\r\n", + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# Modules correspond to the structure of the source code, and determine\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "#\r\n", + "# .. rubric::\r\n", + "# - To determine available options for modules listed below, run:\r\n", + "# > seisflows print modules\r\n", + "# - To auto-fill with docstrings and default values (recommended), run:\r\n", + "# > seisflows configure\r\n", + "# - To set values as NoneType, use: null\r\n", + "# - To set values as infinity, use: inf\r\n", + "#\r\n", + "# MODULES\r\n", + "# ///////\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", + "# ==============================================================================\r\n", + "workflow: inversion\r\n", + "system: workstation\r\n", + "solver: specfem2d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Forward Workflow\r\n", + "# ----------------\r\n", + "# Run forward solver in parallel and (optionally) calculate\r\n", + "# data-synthetic misfit and adjoint sources.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type modules: list of module\r\n", + "# :param modules: instantiated SeisFlows modules which should have been\r\n", + "# generated by the function `seisflows.config.import_seisflows` with a\r\n", + "# parameter file generated by seisflows.configure\r\n", + "# :type data_case: str\r\n", + "# :param data_case: How to address 'data' in the workflow, available options:\r\n", + "# 'data': real data will be provided by the user in\r\n", + "# `path_data/{source_name}` in the same format that the solver will\r\n", + "# produce synthetics (controlled by `solver.format`) OR\r\n", + "# synthetic': 'data' will be generated as synthetic seismograms using\r\n", + "# a target model provided in `path_model_true`. If None, workflow will\r\n", + "# not attempt to generate data.\r\n", + "# :type stop_after: str\r\n", + "# :param stop_after: optional name of task in task list (use\r\n", + "# `seisflows print tasks` to get task list for given workflow) to stop\r\n", + "# workflow after, allowing user to prematurely stop a workflow to explore\r\n", + "# intermediate results or debug.\r\n", + "# :type export_traces: bool\r\n", + "# :param export_traces: export all waveforms that are generated by the\r\n", + "# external solver to `path_output`. If False, solver traces stored in\r\n", + "# scratch may be discarded at any time in the workflow\r\n", + "# :type export_residuals: bool\r\n", + "# :param export_residuals: export all residuals (data-synthetic misfit) that\r\n", + "# are generated by the external solver to `path_output`. If False,\r\n", + "# residuals stored in scratch may be discarded at any time in the workflow\r\n", + "#\r\n", + "# \r\n", + "# Migration Workflow\r\n", + "# ------------------\r\n", + "# Run forward and adjoint solver to produce event-dependent misfit kernels.\r\n", + "# Sum and postprocess kernels to produce gradient. In seismic exploration\r\n", + "# this is 'reverse time migration'.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type export_gradient: bool\r\n", + "# :param export_gradient: export the gradient after it has been generated\r\n", + "# in the scratch directory. If False, gradient can be discarded from\r\n", + "# scratch at any time in the workflow\r\n", + "# :type export_kernels: bool\r\n", + "# :param export_kernels: export each sources event kernels after they have\r\n", + "# been generated in the scratch directory. If False, gradient can be\r\n", + "# discarded from scratch at any time in the workflow\r\n", + "#\r\n", + "# \r\n", + "# Inversion Workflow\r\n", + "# ------------------\r\n", + "# Peforms iterative nonlinear inversion using the machinery of the Forward\r\n", + "# and Migration workflows, as well as a built-in optimization library.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type start: int\r\n", + "# :param start: start inversion workflow at this iteration. 1 <= start <= inf\r\n", + "# :type end: int\r\n", + "# :param end: end inversion workflow at this iteration. start <= end <= inf\r\n", + "# :type iteration: int\r\n", + "# :param iteration: The current iteration of the workflow. If NoneType, takes\r\n", + "# the value of `start` (i.e., first iteration of the workflow). User can\r\n", + "# also set between `start` and `end` to resume a failed workflow.\r\n", + "# :type thrifty: bool\r\n", + "# :param thrifty: a thrifty inversion skips the costly intialization step\r\n", + "# (i.e., forward simulations and misfit quantification) if the final\r\n", + "# forward simulations from the previous iterations line search can be\r\n", + "# used in the current one. Requires L-BFGS optimization.\r\n", + "# :type export_model: bool\r\n", + "# :param export_model: export best-fitting model from the line search to disk.\r\n", + "# If False, new models can be discarded from scratch at any time.\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "data_case: data\r\n", + "stop_after: null\r\n", + "export_traces: False\r\n", + "export_residuals: False\r\n", + "export_gradient: False\r\n", + "export_kernels: False\r\n", + "start: 1\r\n", + "end: 1\r\n", + "export_model: True\r\n", + "thrifty: False\r\n", + "iteration: 1\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Workstation System\r\n", + "# ------------------\r\n", + "# Runs tasks in serial on a local machine.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type ntask: int\r\n", + "# :param ntask: number of individual tasks/events to run during workflow.\r\n", + "# Must be <= the number of source files in `path_specfem_data`\r\n", + "# :type nproc: int\r\n", + "# :param nproc: number of processors to use for each simulation\r\n", + "# :type log_level: str\r\n", + "# :param log_level: logger level to pass to logging module.\r\n", + "# Available: 'debug', 'info', 'warning', 'critical'\r\n", + "# :type verbose: bool\r\n", + "# :param verbose: if True, formats the log messages to include the file\r\n", + "# name, line number and message type. Useful for debugging but\r\n", + "# also very verbose.\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "ntask: 1\r\n", + "nproc: 1\r\n", + "log_level: DEBUG\r\n", + "verbose: False\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Solver SPECFEM\r\n", + "# --------------\r\n", + "# Generalized SPECFEM interface to manipulate SPECFEM2D/3D/3D_GLOBE w/ Python\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type data_format: str\r\n", + "# :param data_format: data format for reading traces into memory.\r\n", + "# Available: ['SU': seismic unix format, 'ASCII': human-readable ascii]\r\n", + "# :type materials: str\r\n", + "# :param materials: Material parameters used to define model. Available:\r\n", + "# ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC']\r\n", + "# :type density: bool\r\n", + "# :param density: How to treat density during inversion. If True, updates\r\n", + "# density during inversion. If False, keeps it constant.\r\n", + "# TODO allow density scaling during an inversion\r\n", + "# :type attenuation: bool\r\n", + "# :param attenuation: How to treat attenuation during inversion.\r\n", + "# if True, turns on attenuation during forward simulations only. If\r\n", + "# False, attenuation is always set to False. Requires underlying\r\n", + "# attenution (Q_mu, Q_kappa) model\r\n", + "# :type smooth_h: float\r\n", + "# :param smooth_h: Gaussian half-width for horizontal smoothing in units\r\n", + "# of meters. If 0., no smoothing applied\r\n", + "# :type smooth_h: float\r\n", + "# :param smooth_v: Gaussian half-width for vertical smoothing in units\r\n", + "# of meters.\r\n", + "# :type components: str\r\n", + "# :param components: components to consider and tag data with. Should be\r\n", + "# string of letters such as 'RTZ'\r\n", + "# :type solver_io: str\r\n", + "# :param solver_io: format of model/kernel/gradient files expected by the\r\n", + "# numerical solver. Available: ['fortran_binary': default .bin files].\r\n", + "# TODO: ['adios': ADIOS formatted files]\r\n", + "# :type source_prefix: str\r\n", + "# :param source_prefix: prefix of source/event/earthquake files. If None,\r\n", + "# will attempt to guess based on the specific solver chosen.\r\n", + "# :type mpiexec: str\r\n", + "# :param mpiexec: MPI executable used to run parallel processes. Should also\r\n", + "# be defined for the system module\r\n", + "#\r\n", + "# \r\n", + "# Solver SPECFEM2D\r\n", + "# ----------------\r\n", + "# SPECFEM2D-specific alterations to the base SPECFEM module\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type source_prefix: str\r\n", + "# :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults\r\n", + "# to 'SOURCE'\r\n", + "# :type multiples: bool\r\n", + "# :param multiples: set an absorbing top-boundary condition\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "data_format: ascii\r\n", + "materials: acoustic\r\n", + "density: False\r\n", + "attenuation: False\r\n", + "smooth_h: 0.0\r\n", + "smooth_v: 0.0\r\n", + "components: ZNE\r\n", + "source_prefix: SOURCE\r\n", + "multiples: False\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Default Preprocess\r\n", + "# ------------------\r\n", + "# Data processing for seismic traces, with options for data misfit,\r\n", + "# filtering, normalization and muting.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type data_format: str\r\n", + "# :param data_format: data format for reading traces into memory. For\r\n", + "# available see: seisflows.plugins.preprocess.readers\r\n", + "# :type misfit: str\r\n", + "# :param misfit: misfit function for waveform comparisons. For available\r\n", + "# see seisflows.plugins.preprocess.misfit\r\n", + "# :type backproject: str\r\n", + "# :param backproject: backprojection function for migration, or the\r\n", + "# objective function in FWI. For available see\r\n", + "# seisflows.plugins.preprocess.adjoint\r\n", + "# :type normalize: str\r\n", + "# :param normalize: Data normalization parameters used to normalize the\r\n", + "# amplitudes of waveforms. Choose from two sets:\r\n", + "# ENORML1: normalize per event by L1 of traces; OR\r\n", + "# ENORML2: normalize per event by L2 of traces;\r\n", + "# &\r\n", + "# TNORML1: normalize per trace by L1 of itself; OR\r\n", + "# TNORML2: normalize per trace by L2 of itself\r\n", + "# :type filter: str\r\n", + "# :param filter: Data filtering type, available options are:\r\n", + "# BANDPASS (req. MIN/MAX PERIOD/FREQ);\r\n", + "# LOWPASS (req. MAX_FREQ or MIN_PERIOD);\r\n", + "# HIGHPASS (req. MIN_FREQ or MAX_PERIOD)\r\n", + "# :type min_period: float\r\n", + "# :param min_period: Minimum filter period applied to time series.\r\n", + "# See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they\r\n", + "# will overwrite PERIOD parameters.\r\n", + "# :type max_period: float\r\n", + "# :param max_period: Maximum filter period applied to time series. See\r\n", + "# also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will\r\n", + "# overwrite PERIOD parameters.\r\n", + "# :type min_freq: float\r\n", + "# :param min_freq: Maximum filter frequency applied to time series,\r\n", + "# See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters,\r\n", + "# they will overwrite PERIOD parameters.\r\n", + "# :type max_freq: float\r\n", + "# :param max_freq: Maximum filter frequency applied to time series,\r\n", + "# See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters,\r\n", + "# they will overwrite PERIOD parameters.\r\n", + "# :type mute: list\r\n", + "# :param mute: Data mute parameters used to zero out early / late\r\n", + "# arrivals or offsets. Choose any number of:\r\n", + "# EARLY: mute early arrivals;\r\n", + "# LATE: mute late arrivals;\r\n", + "# SHORT: mute short source-receiver distances;\r\n", + "# LONG: mute long source-receiver distances\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "misfit: waveform\r\n", + "adjoint: waveform\r\n", + "normalize: []\r\n", + "filter: null\r\n", + "min_period: null\r\n", + "max_period: null\r\n", + "min_freq: null\r\n", + "max_freq: null\r\n", + "mute: []\r\n", + "early_slope: null\r\n", + "early_const: null\r\n", + "late_slope: null\r\n", + "late_const: null\r\n", + "short_dist: null\r\n", + "long_dist: null\r", + "\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Gradient Optimization\r\n", + "# ---------------------\r\n", + "# Gradient/steepest descent optimization algorithm.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type line_search_method: str\r\n", + "# :param line_search_method: chosen line_search algorithm. Currently available\r\n", + "# are 'bracket' and 'backtrack'. See seisflows.plugins.line_search\r\n", + "# for all available options\r\n", + "# :type preconditioner: str\r\n", + "# :param preconditioner: algorithm for preconditioning gradients. Currently\r\n", + "# available: 'diagonal'. Requires `path_preconditioner` to point to a\r\n", + "# set of files that define the preconditioner, formatted the same as the\r\n", + "# input model\r\n", + "# :type step_count_max: int\r\n", + "# :param step_count_max: maximum number of trial steps to perform during\r\n", + "# the line search before a change in line search behavior is\r\n", + "# considered, or a line search is considered to have failed.\r\n", + "# :type step_len_init: float\r\n", + "# :param step_len_init: initial line search step length guess, provided\r\n", + "# as a fraction of current model parameters.\r\n", + "# :type step_len_max: float\r\n", + "# :param step_len_max: maximum allowable step length during the line\r\n", + "# search. Set as a fraction of the current model parameters\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "preconditioner: null\r\n", + "step_count_max: 10\r\n", + "step_len_init: 0.05\r\n", + "step_len_max: 0.5\r\n", + "line_search_method: bracket\r\n", + "# =============================================================================\r\n", + "#\r\n", + "#\t Paths\r\n", + "#\t -----\r\n", + "# :type workdir: str\r\n", + "# :param workdir: working directory in which to look for data and store\r\n", + "# results. Defaults to current working directory\r\n", + "# :type path_output: str\r\n", + "# :param path_output: path to directory used for permanent storage on disk.\r\n", + "# Results and exported scratch files are saved here.\r\n", + "# :type path_data: str\r\n", + "# :param path_data: path to any externally stored data required by the solver\r\n", + "# :type path_state_file: str\r\n", + "# :param path_state_file: path to a text file used to track the current\r\n", + "# status of a workflow (i.e., what functions have already been completed),\r\n", + "# used for checkpointing and resuming workflows\r\n", + "# :type path_model_init: str\r\n", + "# :param path_model_init: path to the starting model used to calculate the\r\n", + "# initial misfit. Must match the expected `solver_io` format.\r\n", + "# :type path_model_true: str\r\n", + "# :param path_model_true: path to a target model if `case`=='synthetic' and\r\n", + "# a set of synthetic 'observations' are required for workflow.\r\n", + "# :type path_eval_grad: str\r\n", + "# :param path_eval_grad: scratch path to store files for gradient evaluation,\r\n", + "# including models, kernels, gradient and residuals.\r\n", + "# :type path_mask: str\r\n", + "# :param path_mask: optional path to a masking function which is used to\r\n", + "# mask out or scale parts of the gradient. The user-defined mask must\r\n", + "# match the file format of the input model (e.g., .bin files).\r\n", + "# :type path_eval_func: str\r\n", + "# :param path_eval_func: scratch path to store files for line search objective\r\n", + "# function evaluations, including models, misfit and residuals\r\n", + "# \r\n", + "# :type path_output_log: str\r\n", + "# :param path_output_log: path to a text file used to store the outputs of\r\n", + "# the package wide logger, which are also written to stdout\r\n", + "# :type path_par_file: str\r\n", + "# :param path_par_file: path to parameter file which is used to instantiate\r\n", + "# the package\r\n", + "# :type path_log_files: str\r\n", + "# :param path_log_files: path to a directory where individual log files are\r\n", + "# saved whenever a number of parallel tasks are run on the system.\r\n", + "# \r\n", + "# :type path_data: str\r\n", + "# :param path_data: path to any externally stored data required by the solver\r\n", + "# :type path_specfem_bin: str\r\n", + "# :param path_specfem_bin: path to SPECFEM bin/ directory which\r\n", + "# contains binary executables for running SPECFEM\r\n", + "# :type path_specfem_data: str\r\n", + "# :param path_specfem_data: path to SPECFEM DATA/ directory which must\r\n", + "# contain the CMTSOLUTION, STATIONS and Par_file files used for\r\n", + "# running SPECFEM\r\n", + "# \r\n", + "# :type path_preprocess: str\r\n", + "# :param path_preprocess: scratch path for all preprocessing processes,\r\n", + "# including saving files\r\n", + "# \r\n", + "# :type path_preconditioner: str\r\n", + "# :param path_preconditioner: optional path to a set of preconditioner files\r\n", + "# formatted the same as the input model (or output model of solver).\r\n", + "# Required to exist and contain files if `preconditioner`==True\r\n", + "# \r\n", + "# =============================================================================\r\n", + "path_workdir: /Users/Chow/Work/work/sf_specfem2d_example\r\n", + "path_scratch: /Users/Chow/Work/work/sf_specfem2d_example/scratch\r\n", + "path_eval_grad: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_grad\r\n", + "path_output: /Users/Chow/Work/work/sf_specfem2d_example/output\r\n", + "path_model_init: null\r\n", + "path_model_true: null\r\n", + "path_state_file: /Users/Chow/Work/work/sf_specfem2d_example/sfstate.txt\r\n", + "path_data: null\r\n", + "path_mask: null\r\n", + "path_eval_func: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_func\r\n", + "path_par_file: /Users/Chow/Work/work/sf_specfem2d_example/parameters.yaml\r\n", + "path_log_files: /Users/Chow/Work/work/sf_specfem2d_example/logs\r\n", + "path_output_log: /Users/Chow/Work/work/sf_specfem2d_example/sflog.txt\r\n", + "path_specfem_bin: null\r\n", + "path_specfem_data: null\r\n", + "path_solver: /Users/Chow/Work/work/sf_specfem2d_example/scratch/solver\r\n", + "path_preconditioner: null\r\n" ] } ], @@ -1235,56 +1284,22 @@ }, { "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "!!! REQUIRED PARAMETER !!!\r\n", - "==========================\r\n", - "\tMATERIALS\r\n", - "\tDENSITY\r\n", - "\tATTENUATION\r\n", - "\tNT\r\n", - "\tDT\r\n", - "\tF0\r\n", - "\tFORMAT\r\n", - "\tCASE\r\n", - "\tEND\r\n", - "!!! REQUIRED PATH !!!\r\n", - "=====================\r\n", - "\tSPECFEM_BIN\r\n", - "\tSPECFEM_DATA\r\n", - "\tMODEL_INIT\r\n" - ] - } - ], - "source": [ - "# We can check which parameters we will NEED to fill out before running the workflow with the --required flag\n", - "! seisflows par --required" - ] - }, - { - "cell_type": "code", - "execution_count": 47, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "MATERIALS: !!! REQUIRED PARAMETER !!! -> elastic\n", - "DENSITY: !!! REQUIRED PARAMETER !!! -> constant\n", - "ATTENUATION: !!! REQUIRED PARAMETER !!! -> False\n", - "NT: !!! REQUIRED PARAMETER !!! -> 5000\n", - "DT: !!! REQUIRED PARAMETER !!! -> .06\n", - "F0: !!! REQUIRED PARAMETER !!! -> 0.084\n", - "FORMAT: !!! REQUIRED PARAMETER !!! -> ascii\n", - "BEGIN: 1 -> 1\n", - "END: !!! REQUIRED PARAMETER !!! -> 1\n", - "CASE: !!! REQUIRED PARAMETER !!! -> synthetic\n" + "ntask: 1 -> 3\n", + "materials: acoustic -> elastic\n", + "density: False -> False\n", + "attenuation: False -> False\n", + "start: 1 -> 1\n", + "end: 1 -> 2\n", + "data_case: data -> synthetic\n", + "components: ZNE -> Y\n", + "step_count_max: 10 -> 5\n" ] }, { @@ -1293,29 +1308,28 @@ "0" ] }, - "execution_count": 47, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# EDIT THE SEISFLOWS3 PARAMETER FILE\n", + "# EDIT THE SEISFLOWS PARAMETER FILE\n", + "! seisflows par ntask 3 # set the number of sources/events to use\n", "! seisflows par materials elastic # how the velocity model is parameterized\n", - "! seisflows par density constant # update density or keep constant\n", + "! seisflows par density False # update density or keep constant\n", "! seisflows par attenuation False\n", - "! seisflows par nt 5000 # set by SPECFEM2D Par_file\n", - "! seisflows par dt .06 # set by SPECFEM2D Par_file\n", - "! seisflows par f0 0.084 # set by SOURCE file\n", - "! seisflows par format ascii # how to output synthetic seismograms\n", - "! seisflows par begin 1 # first iteration\n", - "! seisflows par end 1 # final iteration -- we will only run 1\n", - "! seisflows par case synthetic # synthetic-synthetic means we need both INIT and TRUE models\n", + "! seisflows par start 1 # first iteration\n", + "! seisflows par end 2 # final iteration -- we will only run 1\n", + "! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models\n", + "! seisflows par components Y # this default example creates Y-component seismograms\n", + "! seisflows par step_count_max 5 # limit the number of steps in the line search\n", "\n", "# Use Python syntax here to access path constants\n", - "os.system(f\"seisflows par specfem_bin {SPECFEM2D_BIN}\") # set path to SPECFEM2D binaries\n", - "os.system(f\"seisflows par specfem_data {SPECFEM2D_DATA}\") # set path to SEPCFEM2D DATA/\n", - "os.system(f\"seisflows par model_init {SPECFEM2D_MODEL_INIT}\") # set path to INIT model\n", - "os.system(f\"seisflows par model_true {SPECFEM2D_MODEL_TRUE}\") # set path to TRUE model" + "os.system(f\"seisflows par path_specfem_bin {SPECFEM2D_BIN}\") # set path to SPECFEM2D binaries\n", + "os.system(f\"seisflows par path_specfem_data {SPECFEM2D_DATA}\") # set path to SEPCFEM2D DATA/\n", + "os.system(f\"seisflows par path_model_init {SPECFEM2D_MODEL_INIT}\") # set path to INIT model\n", + "os.system(f\"seisflows par path_model_true {SPECFEM2D_MODEL_TRUE}\") # set path to TRUE model" ] }, { @@ -1328,7 +1342,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1348,136 +1362,45 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 2b. Initialize SF3 working state\n", - "\n", - "The SeisFlows3 command `seisflows init` will generate the a SeisFlows3 working state without submitting any jobs to the system. This is useful for testing to see if the user has set an acceptable parameter file, and if SeisFlows3 is working as expected. \n", + "### 3. Run SeisFlows\n", "\n", - "The result of running `seisflows init` is a collection of pickle (\\*.p) and JSON files which define the active Python environment. SeisFlows3 relies directly on these files to determine where it is in a workflow. Throughout an active workflow, SeisFlows3 will checkpoint itself to these pickle and JSON files such that if a workflow finishes or crashes, the User can resume a workflow from the last checkpointed state rather than needing to restart the workflow.\n", - "\n", - ">__DEBUG MODE:__ After running `seisflows init` you can explore the SeisFlows3 working state in an interactive iPython environment by running `seisflows debug`. This will open up an iPython environment in which the active working state is loaded and accessible The debug mode is invaluable for exploring the SeisFlows3 working state, debugging errors, and performing manual manipulations to an otherwise automated tool. You can try for yourself by running debug mode and typing 'preprocess' to access the active preprocess module." - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "instantiating SeisFlows3 working state in directory: output\n", - "seisflows_optimize.p\t seisflows_postprocess.p seisflows_system.p\n", - "seisflows_parameters.json seisflows_preprocess.p seisflows_workflow.p\n", - "seisflows_paths.json\t seisflows_solver.p\n" - ] - } - ], - "source": [ - "os.chdir(WORKDIR)\n", - "! seisflows init\n", - "! ls output" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\r\n", - " \"ATTENUATION\": false,\r\n", - " \"BACKPROJECT\": null,\r\n", - " \"BEGIN\": 1,\r\n", - " \"CASE\": \"synthetic\",\r\n", - " \"COMPONENTS\": \"ZNE\",\r\n", - " \"DENSITY\": \"constant\",\r\n", - " \"DT\": 0.06,\r\n", - " \"END\": 1,\r\n", - " \"F0\": 0.084,\r\n" - ] - } - ], - "source": [ - "# All of the parameters defined in parameters.yaml are saved in this \n", - "# internally-used JSON file\n", - "! head output/seisflows_parameters.json" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\r\n", - " \"DATA\": null,\r\n", - " \"FUNC\": \"/home/bchow/Work/work/sf3_specfem2d_example/scratch/scratch\",\r\n", - " \"GRAD\": \"/home/bchow/Work/work/sf3_specfem2d_example/scratch/evalgrad\",\r\n", - " \"HESS\": \"/home/bchow/Work/work/sf3_specfem2d_example/scratch/evalhess\",\r\n", - " \"LOCAL\": null,\r\n", - " \"LOGFILE\": \"/home/bchow/Work/work/sf3_specfem2d_example/output_sf3.txt\",\r\n", - " \"MASK\": null,\r\n", - " \"MODEL_INIT\": \"/home/bchow/Work/work/sf3_specfem2d_example/specfem2d_workdir/OUTPUT_FILES_INIT\",\r\n", - " \"MODEL_TRUE\": \"/home/bchow/Work/work/sf3_specfem2d_example/specfem2d_workdir/OUTPUT_FILES_TRUE\",\r\n" - ] - } - ], - "source": [ - "# Similarly, paths that SeisFlows3 uses to navigate the system are stored\n", - "# in the seisflows_paths.json file\n", - "! head output/seisflows_paths.json" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Run SeisFlows3\n", - "\n", - "In this Section we will run SeisFlows3 to generate synthetic seismograms, kernels, a gradient, and an updated velocity model.\n", + "In this Section we will run SeisFlows to generate synthetic seismograms, kernels, a gradient, and an updated velocity model.\n", "\n", "#### 3a. Forward simulations\n", "\n", - "SeisFlows3 is an automated workflow tool, such that once we run `seisflows submit` we should not need to intervene in the workflow. However the package does allow the User flexibility in how they want the workflow to behave.\n", + "SeisFlows is an automated workflow tool, such that once we run `seisflows submit` we should not need to intervene in the workflow. However the package does allow the User flexibility in how they want the workflow to behave.\n", "\n", - "For example, we can run our workflow in stages by taking advantage of the `stop_after` and `resume_from` parameters. As their names suggest, these parameters allow us to stop and resume the workflow at certain stages (i.e., functions in workflow.main()). \n", + "For example, we can run our workflow in stages by taking advantage of the `stop_after` parameter. As its name suggests, `stop_after` allows us to stop a workflow prematurely so that we may stop and look at results, or debug a failing workflow.\n", "\n", - "The available arguments for `stop_after` and `resume_from` are discovered by running the command: `seisflows print flow`, which tells us what functions will be run from main(). " + "The `seisflows print flow` command tells us what functions we can use for the `stop_after` parameter. " ] }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " SEISFLOWS3 WORKFLOW MAIN \r\n", - " //////////////////////// \r\n", - "Flow arguments for \r\n", + " SEISFLOWS WORKFLOW TASK LIST \r\n", + " //////////////////////////// \r\n", + "Task list for \r\n", "\r\n", - "1: setup\r\n", - "2: initialize\r\n", - "3: evaluate_gradient\r\n", - "4: write_gradient\r\n", - "5: compute_direction\r\n", - "6: line_search\r\n", - "7: finalize\r\n", - "8: clean\r\n" + "1: evaluate_initial_misfit\r\n", + "2: run_adjoint_simulations\r\n", + "3: postprocess_event_kernels\r\n", + "4: evaluate_gradient_from_kernels\r\n", + "5: initialize_line_search\r\n", + "6: perform_line_search\r\n", + "7: finalize_iteration\r\n" ] } ], "source": [ - "! seisflows print flow" + "os.chdir(WORKDIR)\n", + "! seisflows print tasks" ] }, { @@ -1485,39 +1408,39 @@ "metadata": {}, "source": [ "-----------------------------\n", - "In an inversion (the workflow we have selected) the flow arguments are described as:\n", + "In the Inversion workflow, the tasks listed are described as follows:\n", "\n", - "0. __setup:__ Not technically listed in the flow arguments, runs setup() for all SeisFlows3 modules. If running a synthetic-synthetic workflow, solver.setup() will generate \"data\" by running the forward solver using MODEL_TRUE\n", - "1. __initialize:__ \n", - " a. Call numerical solver to run forward simulations using MODEL_INIT, generating synthetics \n", - " b. Evaluate the objective function by performing waveform comparisons \n", - " c. Prepare `evaluate gradient` step by generating adjoint sources and auxiliary files\n", - "2. __evaluate_gradient:__ Call numerical solver to run adjoint simulation, generating kernels\n", - "3. __write_gradient:__ Combine all event kernels into a misfit kernel. Optionally smooth and mask the misfit kernel\n", - "4. __compute_direction:__ Call on the optimization library to scale the misfit kernel into the gradient and compute a search direction\n", - "5. __line_search:__ Perform a line search by algorithmically scaling the gradient and evaluating the misfit function (forward simulations and misfit quantification) until misfit is acceptably reduced\n", - "6. __finalize:__ Run any finalization steps such as saving traces, kernels, gradients and models to disk, setting up SeisFlows3 for any subsequent iterations.\n", - "7. __clean:__ Clean the scratch/ directory in preparation for subsequent i\n", + "1. __evaluate_initial_misfit:__ \n", + " a. Prepare data for inversion by either copying data from disk or generating 'synthetic data' with MODEL_TRUE \n", + " b. Call numerical solver to run forward simulations using MODEL_INIT, generating synthetics \n", + " c. Evaluate the objective function by performing waveform comparisons \n", + " d. Prepare `run_adjoint_simulations` step by generating adjoint sources and auxiliary files\n", + "2. __run_adjoint_simulations:__ Call numerical solver to run adjoint simulation, generating kernels\n", + "3. __postprocess_event_kernels:__ Combine all event kernels into a misfit kernel. \n", + "4. __evaluate_gradient_from_kernels:__ Smooth and mask the misfit kernel to create the gradient\n", + "4. __initialize_line_search:__ Call on the optimization library to scale the gradient by a step length to compute the search direction. Prepare file structure for line search.\n", + "5. __perform_line_search:__ Perform a line search by algorithmically scaling the gradient and evaluating the misfit function (forward simulations and misfit quantification) until misfit is acceptably reduced.\n", + "6. __finalize_iteration:__ Run any finalization steps such as saving traces, kernels, gradients and models to disk, setting up SeisFlows3 for any subsequent iterations. Clean the scratch/ directory in preparation for subsequent iterations\n", "\n", - "Let's set the `stop_after` argument to __initialize__, this will halt the workflow after the intialization step. We'll also set the `verbose` parameter to 'False', to keep the logging format relatively simple. We will explore the `verbose`==True option in a later cell." + "Let's set the `stop_after` argument to __evaluate_initial_misfit__, this will halt the workflow after the intialization step. We'll also set the `verbose` parameter to 'False', to keep the logging format relatively simple. We will explore the `verbose`==True option in a later cell." ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "STOP_AFTER: -> initialize\n", - "VERBOSE: False -> False\n" + "stop_after: null -> evaluate_initial_misfit\n", + "verbose: False -> False\n" ] } ], "source": [ - "! seisflows par stop_after initialize\n", + "! seisflows par stop_after evaluate_initial_misfit\n", "! seisflows par verbose False" ] }, @@ -1526,139 +1449,81 @@ "metadata": {}, "source": [ "-----------------------\n", - "Now let's run SeisFlows3. There are a few ways to do this: `submit`, `resume`, and `restart`\n", + "Now let's run SeisFlows. There are two ways to do this: `submit` and `restart`\n", "\n", - "1. Since we already ran `seisflows init`, the `seisflows submit` option will not work, as SeisFlows3 considers this an active working state and `submit` can only be run on uninitialized working states.\n", - "2. To run a workflow in an active working state `resume` will load the current working state from the output/ directory and submit a workflow given the current parameter file.\n", - "3. The `restart` command is simply a convenience function that runs `clean` (to remove an active working state) and `submit` (to submit a fresh working state). \n", + "1. `seisflows submit` is used to run new workflows and resume stopped or failed workflows.\n", + "2. The `restart` command is simply a convenience function that runs `clean` (to remove an active working state) and `submit` (to submit a fresh workflow). \n", "\n", - "Since we haven't done anything in this working state, we will go with a modified version of Option 3 by running `clean` and then `submit`. We'll use the `-f` flag (stands for __'force'__) to skip over the standard input prompt that asks the User if they are sure they want to clean and submit.\n", - "\n", - "But first we'll try to run `seisflows submit` to show why Option 1 **will not work**." + "Since this is our first run, we'll use `seisflows submit`." ] }, { "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-04-29 12:32:17 | initializing SeisFlows3 in sys.modules\r\n", - "================================================================================\r\n", - " WARNING \r\n", - " /////// \r\n", - "Data from previous workflow found in working directory.\r\n", - "\r\n", - "> seisflows restart: delete data and start new workflow\r\n", - "> seisflows resume: resume existing workflow\r\n", - "================================================================================\r\n" - ] - } - ], - "source": [ - "! seisflows submit -f" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "----------------------------\n", - "__Okay, let's go!__ In the following cell we will run the SeisFlows3 Inversion workflow. In the output cell we will see the logging statements outputted by SeisFlows3, both to stdout and to the output log file (defaults to ./output_seisflows.txt) which details the progress of our inversion" - ] - }, - { - "cell_type": "code", - "execution_count": 58, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "2022-08-15 16:11:40 (I) | \n", "================================================================================\n", - " CLEAN \n", - " ///// \n", - "+ skipping over: /home/bchow/Work/work/sf3_specfem2d_example/parameters.yaml\n", - "- deleting file/folder: /home/bchow/Work/work/sf3_specfem2d_example/scratch\n", - "- deleting file/folder: /home/bchow/Work/work/sf3_specfem2d_example/stats\n", - "- deleting file/folder: /home/bchow/Work/work/sf3_specfem2d_example/output\n", - "- deleting file/folder: /home/bchow/Work/work/sf3_specfem2d_example/output_sf3.txt\n", - "- deleting file/folder: /home/bchow/Work/work/sf3_specfem2d_example/logs\n", + " SETTING UP INVERSION WORKFLOW \n", "================================================================================\n", - "2022-04-29 12:38:37 | initializing SeisFlows3 in sys.modules\n", - "2022-04-29 12:38:42 | copying par/log file to: /home/bchow/Work/work/sf3_specfem2d_example/logs/output_sf3_001.txt\n", - "2022-04-29 12:38:42 | copying par/log file to: /home/bchow/Work/work/sf3_specfem2d_example/logs/parameters_001.yaml\n", - "2022-04-29 12:38:42 | exporting current working environment to disk\n", - "2022-04-29 12:38:42 | \n", + "2022-08-15 16:11:47 (D) | running setup for module 'system.Workstation'\n", + "2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_001.txt\n", + "2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_001.yaml\n", + "2022-08-15 16:11:50 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-15 16:11:50 (I) | initializing 3 solver directories\n", + "2022-08-15 16:11:50 (D) | initializing solver directory source: 001\n", + "2022-08-15 16:11:58 (D) | linking source '001' as 'mainsolver'\n", + "2022-08-15 16:11:58 (D) | initializing solver directory source: 002\n", + "2022-08-15 16:12:04 (D) | initializing solver directory source: 003\n", + "2022-08-15 16:12:13 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-15 16:12:14 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-15 16:12:15 (I) | no optimization checkpoint found, assuming first run\n", + "2022-08-15 16:12:16 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:12:16 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", - " WORKFLOW WILL STOP AFTER FUNC: 'initialize' \n", + " RUNNING ITERATION 01 \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:38:42 | \n", + "2022-08-15 16:12:16 (I) | \n", "================================================================================\n", - " STARTING INVERSION WORKFLOW \n", + " RUNNING INVERSION WORKFLOW \n", "================================================================================\n", - "2022-04-29 12:38:42 | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " ITERATION 1 / 1 \n", + "2022-08-15 16:12:16 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:38:42 | \n", + " EVALUATING MISFIT FOR INITIAL MODEL \n", "////////////////////////////////////////////////////////////////////////////////\n", - " PERFORMING MODULE SETUP \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:38:42 | misfit function is: 'waveform'\n", - "2022-04-29 12:38:43 | writing line search history file:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/stats/line_search.txt\n", - "2022-04-29 12:38:44 | checking poissons ratio for: 'm_new.npy'\n", - "2022-04-29 12:38:44 | model parameters (m_new.npy i01s00):\n", - "2022-04-29 12:38:44 | 5800.00 <= vp <= 5800.00\n", - "2022-04-29 12:38:44 | 3500.00 <= vs <= 3500.00\n", - "2022-04-29 12:38:44 | 0.21 <= pr <= 0.21\n", - "2022-04-29 12:38:46 | setting up solver on system...\n", - "2022-04-29 12:38:46 | checkpointing working environment to disk\n", - "2022-04-29 12:38:47 | exporting current working environment to disk\n", - "2022-04-29 12:38:48 | running task solver.setup 1 times\n", - "2022-04-29 12:38:48 | initializing 1 solver directories\n", - "2022-04-29 12:38:53 | source 001 symlinked as mainsolver\n", - "2022-04-29 12:38:53 | generating 'data' with MODEL_TRUE synthetics\n", - "2022-04-29 12:39:00 | running mesh generation for MODEL_INIT\n", - "2022-04-29 12:39:02 | \n", - "================================================================================\n", - " INITIALIZING INVERSION \n", - "================================================================================\n", - "2022-04-29 12:39:02 | \n", - "EVALUATE OBJECTIVE FUNCTION\n", - "--------------------------------------------------------------------------------\n", - "2022-04-29 12:39:02 | saving model 'm_new.npy' to:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/scratch/evalgrad/model\n", - "2022-04-29 12:39:03 | evaluating objective function 1 times on system...\n", - "2022-04-29 12:39:03 | checkpointing working environment to disk\n", - "2022-04-29 12:39:05 | exporting current working environment to disk\n", - "2022-04-29 12:39:05 | running task solver.eval_func 1 times\n", - "2022-04-29 12:39:05 | running forward simulations\n", - "2022-04-29 12:39:11 | calling preprocess.prepare_eval_grad()\n", - "2022-04-29 12:39:11 | preparing files for gradient evaluation\n", - "2022-04-29 12:39:11 | exporting residuals to:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/scratch/evalgrad\n", - "2022-04-29 12:39:12 | summing residuals with preprocess module\n", - "2022-04-29 12:39:12 | saving misfit 1.748E-03 to tag 'f_new.txt'\n", - "2022-04-29 12:39:12 | \n", - "================================================================================\n", - " FINISHED FLOW EXECUTION \n", - "================================================================================\n", - "2022-04-29 12:39:12 | \n", - "================================================================================\n", - " FINISHED INVERSION WORKFLOW \n", - "================================================================================\n" + "2022-08-15 16:12:16 (I) | checking initial model parameters\n", + "2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00\n", + "2022-08-15 16:12:16 (I) | 3500.00 <= vs <= 3500.00\n", + "2022-08-15 16:12:16 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:12:16 (I) | checking true/target model parameters\n", + "2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00\n", + "2022-08-15 16:12:16 (I) | 3550.00 <= vs <= 3550.00\n", + "2022-08-15 16:12:16 (I) | 5900.00 <= vp <= 5900.00\n", + "2022-08-15 16:12:16 (I) | preparing observation data for source 001\n", + "2022-08-15 16:12:16 (I) | running forward simulation w/ target model for 001\n", + "2022-08-15 16:12:33 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:12:33 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:12:53 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:12:53 (I) | preparing observation data for source 002\n", + "2022-08-15 16:12:53 (I) | running forward simulation w/ target model for 002\n", + "2022-08-15 16:13:09 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:13:09 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:13:31 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:13:31 (I) | preparing observation data for source 003\n", + "2022-08-15 16:13:31 (I) | running forward simulation w/ target model for 003\n", + "2022-08-15 16:14:16 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:14:16 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:14:33 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:14:33 (I) | stop workflow at `stop_after`: evaluate_initial_misfit\n" ] } ], "source": [ - "! seisflows clean -f\n", - "! seisflows submit -f" + "! seisflows submit " ] }, { @@ -1666,12 +1531,12 @@ "metadata": {}, "source": [ ".. note::\n", - " For a detailed exploration of a SeisFlows3 working directory, see the `working directory `__ documentation page where we explain each of the files and directories that have been generated during this workflow. Below we just look at two files which are required for our adjoint simulation, the adjoint sources (.adj) and STATIONS_ADJOINT file" + " For a detailed exploration of a SeisFlows working directory, see the `working directory `__ documentation page where we explain each of the files and directories that have been generated during this workflow. Below we just look at two files which are required for our adjoint simulation, the adjoint sources (.adj) and STATIONS_ADJOINT file" ] }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1696,25 +1561,6 @@ "! head scratch/solver/001/traces/adj/AA.S0001.BXY.adj" ] }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "S0001 AA 180081.4100000 388768.7100000 0.0 0.0\r\n" - ] - } - ], - "source": [ - "# We can also see that we have generated a STATIONS_ADJOINT file, which is required for \n", - "# running the adjoint simulations (i.e., evaluate the gradient)\n", - "! head scratch/solver/001/DATA/STATIONS_ADJOINT" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1726,123 +1572,109 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " SEISFLOWS3 WORKFLOW MAIN \r\n", - " //////////////////////// \r\n", - "Flow arguments for \r\n", + " SEISFLOWS WORKFLOW TASK LIST \r\n", + " //////////////////////////// \r\n", + "Task list for \r\n", "\r\n", - "1: setup\r\n", - "2: initialize\r\n", - "3: evaluate_gradient\r\n", - "4: write_gradient\r\n", - "5: compute_direction\r\n", - "6: line_search\r\n", - "7: finalize\r\n", - "8: clean\r\n" + "1: evaluate_initial_misfit\r\n", + "2: run_adjoint_simulations\r\n", + "3: postprocess_event_kernels\r\n", + "4: evaluate_gradient_from_kernels\r\n", + "5: initialize_line_search\r\n", + "6: perform_line_search\r\n", + "7: finalize_iteration\r\n" ] } ], "source": [ - "! seisflows print flow" + "! seisflows print tasks" ] }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "RESUME_FROM: -> evaluate_gradient\n", - "STOP_AFTER: initialize -> compute_direction\n" + "stop_after: evaluate_initial_misfit -> evaluate_gradient_from_kernels\r\n" ] } ], "source": [ "# We'll stop just before the line search so that we can take a look at the files \n", "# generated during the middle tasks\n", - "! seisflows par resume_from evaluate_gradient\n", - "! seisflows par stop_after compute_direction" + "! seisflows par stop_after evaluate_gradient_from_kernels" ] }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2022-04-29 12:41:21 | copying par/log file to: /home/bchow/Work/work/sf3_specfem2d_example/logs/output_sf3_002.txt\n", - "2022-04-29 12:41:21 | copying par/log file to: /home/bchow/Work/work/sf3_specfem2d_example/logs/parameters_002.yaml\n", - "2022-04-29 12:41:21 | exporting current working environment to disk\n", - "2022-04-29 12:41:21 | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " WORKFLOW WILL RESUME FROM FUNC: 'evaluate_gradient' \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:41:21 | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " WORKFLOW WILL STOP AFTER FUNC: 'compute_direction' \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:41:21 | \n", + "2022-08-15 16:15:06 (D) | setting iteration==1 from state file\n", + "2022-08-15 16:15:06 (I) | \n", "================================================================================\n", - " STARTING INVERSION WORKFLOW \n", + " SETTING UP INVERSION WORKFLOW \n", "================================================================================\n", - "2022-04-29 12:41:21 | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " ITERATION 1 / 1 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:41:21 | \n", + "2022-08-15 16:15:16 (D) | running setup for module 'system.Workstation'\n", + "2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_002.txt\n", + "2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_002.yaml\n", + "2022-08-15 16:15:20 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-15 16:15:20 (I) | initializing 3 solver directories\n", + "2022-08-15 16:15:22 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-15 16:15:23 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-15 16:15:25 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:15:27 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:15:27 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", - " EVALUATING GRADIENT \n", + " RUNNING ITERATION 01 \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:41:21 | evaluating gradient 1 times on system...\n", - "2022-04-29 12:41:21 | checkpointing working environment to disk\n", - "2022-04-29 12:41:22 | exporting current working environment to disk\n", - "2022-04-29 12:41:23 | running task solver.eval_grad 1 times\n", - "2022-04-29 12:41:23 | running adjoint simulations\n", - "2022-04-29 12:41:38 | exporting kernels to:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/scratch/evalgrad\n", - "2022-04-29 12:41:38 | \n", + "2022-08-15 16:15:27 (I) | \n", + "================================================================================\n", + " RUNNING INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-15 16:15:27 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", + "2022-08-15 16:15:27 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", - " POSTPROCESSING KERNELS \n", + " EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:41:38 | processing kernels into gradient on system...\n", - "2022-04-29 12:41:38 | checkpointing working environment to disk\n", - "2022-04-29 12:41:39 | exporting current working environment to disk\n", - "2022-04-29 12:41:39 | running task postprocess.process_kernels 1 times\n", - "2022-04-29 12:41:39 | saving summed kernels to:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/scratch/evalgrad/kernels/sum\n", - "2022-04-29 12:41:41 | \n", + "2022-08-15 16:15:27 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-15 16:16:11 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-15 16:16:11 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-15 16:16:12 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-15 16:16:59 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-15 16:16:59 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-15 16:16:59 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-15 16:17:45 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-15 16:17:45 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-15 16:17:45 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", - " COMPUTING SEARCH DIRECTION \n", + " GENERATING/PROCESSING MISFIT KERNEL \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:41:41 | computing search direction with L-BFGS\n", - "2022-04-29 12:41:41 | first L-BFGS iteration, setting search direction as inverse gradient\n", - "2022-04-29 12:41:41 | \n", - "================================================================================\n", - " FINISHED FLOW EXECUTION \n", - "================================================================================\n", - "2022-04-29 12:41:41 | \n", - "================================================================================\n", - " FINISHED INVERSION WORKFLOW \n", - "================================================================================\n" + "2022-08-15 16:17:45 (I) | combining event kernels into single misfit kernel\n", + "2022-08-15 16:17:47 (I) | scaling gradient to absolute model perturbations\n", + "2022-08-15 16:17:49 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels\n" ] } ], "source": [ - "# We can use the `seisflows resume` command to continue an active workflow\n", - "# again we use the '-f' flag to skip past the user-input stage.\n", - "! seisflows resume -f" + "# We can use the `seisflows submit` command to continue an active workflow\n", + "# The state file created during the first run will tell the workflow to resume from the stopped point in the workflow\n", + "! seisflows submit " ] }, { @@ -1850,79 +1682,79 @@ "metadata": {}, "source": [ "----------------\n", - "The functions __evaluate_gradient()__ through __compute_direction()__ have run adjoint simulations to generate event kernels and sum the kernels into the misfit kernel. \n", + "The function __run_adjoint_simulations()__ has run adjoint simulations to generate event kernels. The functions __postprocess_event_kernels__ and __evaluate_gradient_from_kernels__ will have summed and (optionally) smoothed the kernels to recover the gradient, which will be used to update our starting model.\n", "\n", - "> **NOTE**: Because we only have one event, our misfit kernel is just exactly our event kernel. And since we did not specify any smoothing lenghts (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has occurred. \n", + "> **NOTE**: Since we did not specify any smoothing lenghts (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has occurred. \n", "\n", - "Using the L-BFGS optimization algorithm, SeisFlows3 has computed a search direction that will be used in the line search to search for a best fitting model which optimally reduces the objective function. We can take a look at where SeisFlows3 has stored the information relating to kernel generation and the optimization computation." + "Using the gradient-descent optimization algorithm, SeisFlows will now compute a search direction that will be used in the line search to search for a best fitting model which optimally reduces the objective function. We can take a look at where SeisFlows has stored the information relating to kernel generation and the optimization computation." ] }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "gradient kernels model residuals\r\n" + "\u001b[1m\u001b[32mgradient\u001b[m\u001b[m \u001b[1m\u001b[32mkernels\u001b[m\u001b[m \u001b[1m\u001b[32mmisfit_kernel\u001b[m\u001b[m \u001b[1m\u001b[32mmodel\u001b[m\u001b[m residuals.txt\r\n" ] } ], "source": [ "# Gradient evaluation files are stored here, the kernels are stored separately from the gradient incase\n", "# the user wants to manually manipulate them\n", - "! ls scratch/evalgrad" + "! ls scratch/eval_grad" ] }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" + "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" ] } ], "source": [ "# SeisFlows3 stores all kernels and gradient information as SPECFEM binary (.bin) files\n", - "! ls scratch/evalgrad/gradient" + "! ls scratch/eval_grad/gradient" ] }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "001 sum\r\n" + "\u001b[1m\u001b[32m001\u001b[m\u001b[m \u001b[1m\u001b[32m002\u001b[m\u001b[m \u001b[1m\u001b[32m003\u001b[m\u001b[m\r\n" ] } ], "source": [ "# Kernels are stored on a per-event basis, and summed together (sum/). If smoothing was performed, \n", "# we would see both smoothed and unsmoothed versions of the misfit kernel\n", - "! ls scratch/evalgrad/kernels" + "! ls scratch/eval_grad/kernels" ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "f_new.txt g_new.npy LBFGS m_new.npy\tp_new.npy\r\n" + "checkpoint.npz f_new.txt g_new.npz m_new.npz\r\n" ] } ], @@ -1935,21 +1767,21 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[-0.00000000e+00 -0.00000000e+00 -0.00000000e+00 ... -3.96447909e-11\n", - " -2.00156454e-11 -2.61676726e-12]\n" + "[[-1.18126331e-12 2.40273470e-12 3.97045036e-11 ... 9.62017688e-11\n", + " 4.21140102e-11 3.96825021e-12]]\n" ] } ], "source": [ - "p_new = np.load(\"scratch/optimize/p_new.npy\")\n", - "print(p_new)" + "g_new = np.load(\"scratch/optimize/g_new.npz\")\n", + "print(g_new[\"vs_kernel\"])" ] }, { @@ -1960,188 +1792,199 @@ "#### 3c. Line search and model update\n", "\n", "Let's finish off the inversion by running through the line search, which will generate new models using the\n", - "gradient, evaluate the objective function by running forward simulations, and comparing the evaluated objective function with the value obtained in __initialize__. Satisfactory reduction in the objective function will result in a termination of the line search. We are using a bracketing line search here (CITE RYANS PAPER), which requires finding models which both increase and decrease the misfit with respect to the initial evaluation. Therefore it will likely take more than two trial steps to complete the line search" + "gradient, evaluate the objective function by running forward simulations, and comparing the evaluated objective function with the value obtained in __evalaute_initial_misfit__. \n", + "\n", + "Satisfactory reduction in the objective function will result in a termination of the line search. We are using a bracketing line search here [(Modrak et al. 2018)](https://academic.oup.com/gji/article/206/3/1864/2583505), which requires finding models which both increase and decrease the misfit with respect to the initial evaluation. Therefore it takes atleast two trial steps to complete the line search." ] }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "RESUME_FROM: evaluate_gradient -> line_search\n", - "STOP_AFTER: compute_direction -> finalize\n" + "stop_after: evaluate_gradient_from_kernels -> finalize_iteration\r\n" ] } ], "source": [ - "! seisflows par resume_from line_search # resume from the line search \n", - "! seisflows par stop_after finalize # We don't want to run the clean() argument so that we can explore the dir" + "! seisflows par stop_after perform_line_search # We don't want to run the finalize_iteration argument so that we can explore the dir" ] }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2022-04-29 12:42:40 | copying par/log file to: /home/bchow/Work/work/sf3_specfem2d_example/logs/output_sf3_003.txt\n", - "2022-04-29 12:42:40 | copying par/log file to: /home/bchow/Work/work/sf3_specfem2d_example/logs/parameters_003.yaml\n", - "2022-04-29 12:42:40 | exporting current working environment to disk\n", - "2022-04-29 12:42:42 | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " WORKFLOW WILL RESUME FROM FUNC: 'line_search' \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:42:42 | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " WORKFLOW WILL STOP AFTER FUNC: 'finalize' \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:42:42 | \n", + "2022-08-15 16:21:55 (D) | setting iteration==1 from state file\n", + "2022-08-15 16:21:55 (I) | \n", "================================================================================\n", - " STARTING INVERSION WORKFLOW \n", + " SETTING UP INVERSION WORKFLOW \n", "================================================================================\n", - "2022-04-29 12:42:42 | \n", + "2022-08-15 16:22:03 (D) | running setup for module 'system.Workstation'\n", + "2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_003.txt\n", + "2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_003.yaml\n", + "2022-08-15 16:22:05 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-15 16:22:05 (I) | initializing 3 solver directories\n", + "2022-08-15 16:22:07 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-15 16:22:08 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-15 16:22:09 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:22:11 (I) | re-loading optimization module from checkpoint\n", + "2022-08-15 16:22:11 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", - " ITERATION 1 / 1 \n", + " RUNNING ITERATION 01 \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:42:42 | \n", + "2022-08-15 16:22:11 (I) | \n", "================================================================================\n", - " CONDUCTING LINE SEARCH (i01s00) \n", + " RUNNING INVERSION WORKFLOW \n", "================================================================================\n", - "2022-04-29 12:42:42 | max step length safeguard is: 5.26E+10\n", - "2022-04-29 12:42:42 | \n", - "EVALUATE BRACKETING LINE SEARCH\n", - "--------------------------------------------------------------------------------\n", - "2022-04-29 12:42:42 | step length(s) = 0.00E+00\n", - "2022-04-29 12:42:42 | misfit val(s) = 1.75E-03\n", - "2022-04-29 12:42:42 | first iteration, guessing trial step\n", - "2022-04-29 12:42:42 | initial step length safegaurd, setting manual step length\n", - "2022-04-29 12:42:42 | manually set initial step length: 5.26E+09\n", - "2022-04-29 12:42:42 | checking poissons ratio for: 'm_try.npy'\n", - "2022-04-29 12:42:42 | model parameters (m_try.npy i01s00):\n", - "2022-04-29 12:42:42 | 5800.00 <= vp <= 5800.00\n", - "2022-04-29 12:42:42 | 3278.69 <= vs <= 3790.00\n", - "2022-04-29 12:42:42 | 0.13 <= pr <= 0.27\n", - "2022-04-29 12:42:42 | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " TRIAL STEP COUNT: i01s01 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:42:42 | \n", - "EVALUATE OBJECTIVE FUNCTION\n", + "2022-08-15 16:22:11 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", + "2022-08-15 16:22:11 (I) | 'run_adjoint_simulations' has already been run, skipping\n", + "2022-08-15 16:22:11 (I) | 'postprocess_event_kernels' has already been run, skipping\n", + "2022-08-15 16:22:11 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping\n", + "2022-08-15 16:22:11 (I) | initializing 'bracket'ing line search\n", + "2022-08-15 16:22:11 (I) | enforcing max step length safeguard\n", + "2022-08-15 16:22:11 (D) | step length(s) = 0.00E+00\n", + "2022-08-15 16:22:11 (D) | misfit val(s) = 1.28E-03\n", + "2022-08-15 16:22:11 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11\n", + "2022-08-15 16:22:11 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10\n", + "2022-08-15 16:22:11 (D) | overwriting initial step length, alpha_new=2.32E+09\n", + "2022-08-15 16:22:11 (I) | trial model 'm_try' parameters: \n", + "2022-08-15 16:22:11 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:22:11 (I) | 3244.51 <= vs <= 3790.00\n", + "2022-08-15 16:22:12 (I) | \n", + "LINE SEARCH STEP COUNT 01\n", "--------------------------------------------------------------------------------\n", - "2022-04-29 12:42:42 | saving model 'm_try.npy' to:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/scratch/scratch/model\n", - "2022-04-29 12:42:42 | evaluating objective function 1 times on system...\n", - "2022-04-29 12:42:42 | checkpointing working environment to disk\n", - "2022-04-29 12:42:44 | exporting current working environment to disk\n", - "2022-04-29 12:42:44 | running task solver.eval_func 1 times\n", - "2022-04-29 12:42:44 | running forward simulations\n", - "2022-04-29 12:42:49 | calling preprocess.prepare_eval_grad()\n", - "2022-04-29 12:42:49 | preparing files for gradient evaluation\n", - "2022-04-29 12:42:50 | exporting residuals to:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/scratch/scratch\n", - "2022-04-29 12:42:50 | summing residuals with preprocess module\n", - "2022-04-29 12:42:50 | saving misfit 9.850E-04 to tag 'f_try.txt'\n", - "2022-04-29 12:42:50 | \n", - "EVALUATE BRACKETING LINE SEARCH\n", + "2022-08-15 16:22:12 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:22:12 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:22:23 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:22:23 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:22:23 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:22:35 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:22:35 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:22:35 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:22:48 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:22:48 (D) | misfit for trial model (f_try) == 8.65E-04\n", + "2022-08-15 16:22:48 (D) | step length(s) = 0.00E+00, 2.32E+09\n", + "2022-08-15 16:22:48 (D) | misfit val(s) = 1.28E-03, 8.65E-04\n", + "2022-08-15 16:22:48 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09\n", + "2022-08-15 16:22:49 (I) | line search model 'm_try' parameters: \n", + "2022-08-15 16:22:49 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:22:49 (I) | 3086.61 <= vs <= 3969.23\n", + "2022-08-15 16:22:49 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-15 16:22:49 (I) | \n", + "LINE SEARCH STEP COUNT 02\n", "--------------------------------------------------------------------------------\n", - "2022-04-29 12:42:50 | step length(s) = 0.00E+00, 5.26E+09\n", - "2022-04-29 12:42:50 | misfit val(s) = 1.75E-03, 9.85E-04\n", - "2022-04-29 12:42:50 | misfit not bracketed, increasing step length\n", - "2022-04-29 12:42:50 | checking poissons ratio for: 'm_try.npy'\n", - "2022-04-29 12:42:50 | model parameters (m_try.npy i01s01):\n", - "2022-04-29 12:42:50 | 5800.00 <= vp <= 5800.00\n", - "2022-04-29 12:42:50 | 3141.92 <= vs <= 3969.23\n", - "2022-04-29 12:42:50 | 0.06 <= pr <= 0.29\n", - "2022-04-29 12:42:50 | retrying with new trial step\n", - "2022-04-29 12:42:50 | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " TRIAL STEP COUNT: i01s02 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-04-29 12:42:50 | \n", - "EVALUATE OBJECTIVE FUNCTION\n", + "2022-08-15 16:22:49 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:22:49 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:01 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:01 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:23:01 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:13 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:13 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:23:13 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:25 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:25 (D) | misfit for trial model (f_try) == 1.73E-03\n", + "2022-08-15 16:23:25 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09\n", + "2022-08-15 16:23:25 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03\n", + "2022-08-15 16:23:25 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09\n", + "2022-08-15 16:23:25 (I) | line search model 'm_try' parameters: \n", + "2022-08-15 16:23:25 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:23:25 (I) | 3325.01 <= vs <= 3698.63\n", + "2022-08-15 16:23:25 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-15 16:23:25 (I) | \n", + "LINE SEARCH STEP COUNT 03\n", "--------------------------------------------------------------------------------\n", - "2022-04-29 12:42:50 | saving model 'm_try.npy' to:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/scratch/scratch/model\n", - "2022-04-29 12:42:51 | evaluating objective function 1 times on system...\n", - "2022-04-29 12:42:51 | checkpointing working environment to disk\n", - "2022-04-29 12:42:52 | exporting current working environment to disk\n", - "2022-04-29 12:42:53 | running task solver.eval_func 1 times\n", - "2022-04-29 12:42:53 | running forward simulations\n", - "2022-04-29 12:42:59 | calling preprocess.prepare_eval_grad()\n", - "2022-04-29 12:42:59 | preparing files for gradient evaluation\n", - "2022-04-29 12:42:59 | exporting residuals to:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/scratch/scratch\n", - "2022-04-29 12:43:00 | summing residuals with preprocess module\n", - "2022-04-29 12:43:00 | saving misfit 1.227E-03 to tag 'f_try.txt'\n", - "2022-04-29 12:43:00 | \n", - "EVALUATE BRACKETING LINE SEARCH\n", + "2022-08-15 16:23:25 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:23:25 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:37 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:37 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:23:37 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:23:51 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:23:51 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:23:51 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:24:03 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:24:04 (D) | misfit for trial model (f_try) == 2.59E-03\n", + "2022-08-15 16:24:04 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09\n", + "2022-08-15 16:24:04 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03\n", + "2022-08-15 16:24:04 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09\n", + "2022-08-15 16:24:04 (I) | line search model 'm_try' parameters: \n", + "2022-08-15 16:24:04 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:24:04 (I) | 3189.77 <= vs <= 3852.13\n", + "2022-08-15 16:24:04 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-15 16:24:04 (I) | \n", + "LINE SEARCH STEP COUNT 04\n", "--------------------------------------------------------------------------------\n", - "2022-04-29 12:43:00 | step length(s) = 0.00E+00, 5.26E+09, 8.51E+09\n", - "2022-04-29 12:43:00 | misfit val(s) = 1.75E-03, 9.85E-04, 1.23E-03\n", - "2022-04-29 12:43:00 | bracket okay, step length reasonable, pass\n", - "2022-04-29 12:43:00 | checking poissons ratio for: 'm_try.npy'\n", - "2022-04-29 12:43:00 | model parameters (m_try.npy i01s02):\n", - "2022-04-29 12:43:00 | 5800.00 <= vp <= 5800.00\n", - "2022-04-29 12:43:00 | 3278.69 <= vs <= 3790.00\n", - "2022-04-29 12:43:00 | 0.13 <= pr <= 0.27\n", - "2022-04-29 12:43:00 | trial step successful\n", - "2022-04-29 12:43:00 | \n", + "2022-08-15 16:24:04 (I) | evaluating objective function for source 001\n", + "2022-08-15 16:24:04 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:24:15 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:24:15 (I) | evaluating objective function for source 002\n", + "2022-08-15 16:24:15 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:24:27 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:24:27 (I) | evaluating objective function for source 003\n", + "2022-08-15 16:24:27 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-15 16:24:39 (D) | quantifying misfit with 'Default'\n", + "2022-08-15 16:24:39 (D) | misfit for trial model (f_try) == 3.46E-03\n", + "2022-08-15 16:24:39 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09\n", + "2022-08-15 16:24:39 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03\n", + "2022-08-15 16:24:39 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", + "2022-08-15 16:24:39 (I) | line search model 'm_try' parameters: \n", + "2022-08-15 16:24:39 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-15 16:24:39 (I) | 3244.51 <= vs <= 3790.00\n", + "2022-08-15 16:24:39 (I) | trial step successful. finalizing line search\n", + "2022-08-15 16:24:39 (I) | \n", "FINALIZING LINE SEARCH\n", "--------------------------------------------------------------------------------\n", - "2022-04-29 12:43:00 | shifting current model (new) to previous model (old)\n", - "2022-04-29 12:43:00 | setting accepted line search model as current model\n", - "2022-04-29 12:43:00 | current misfit is f_new.txt=9.850E-04\n", - "2022-04-29 12:43:00 | writing optimization stats to: stats\n", - "2022-04-29 12:43:00 | resetting line search step count to 0\n", - "2022-04-29 12:43:00 | \n", - "================================================================================\n", - " FINALIZING ITERATION 1 \n", - "================================================================================\n", - "2022-04-29 12:43:00 | exporting current working environment to disk\n", - "2022-04-29 12:43:01 | saving model 'm_new.npy' to path:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/output/model_0001\n", - "2022-04-29 12:43:02 | saving gradient to path:\n", - "/home/bchow/Work/work/sf3_specfem2d_example/output/gradient_0001\n", - "2022-04-29 12:43:02 | \n", - "================================================================================\n", - " FINISHED FLOW EXECUTION \n", - "================================================================================\n", - "2022-04-29 12:43:02 | \n", - "================================================================================\n", - " FINISHED INVERSION WORKFLOW \n", - "================================================================================\n" + "2022-08-15 16:24:39 (I) | writing optimization stats\n", + "2022-08-15 16:24:39 (I) | renaming current (new) optimization vectors as previous model (old)\n", + "2022-08-15 16:24:39 (I) | setting accepted trial model (try) as current model (new)\n", + "2022-08-15 16:24:39 (I) | misfit of accepted trial model is f=8.645E-04\n", + "2022-08-15 16:24:39 (I) | resetting line search step count to 0\n", + "2022-08-15 16:24:39 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " CLEANING WORKDIR FOR NEXT ITERATION \n", + "////////////////////////////////////////////////////////////////////////////////\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2022-08-15 16:24:41 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow\n", + "2022-08-15 16:24:42 (I) | stop workflow at `stop_after`: finalize_iteration\n" ] } ], "source": [ - "! seisflows resume -f" + "! seisflows submit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "From the log statements above, we can see that the SeisFlows3 line search required 2 trial steps, where it modified values of Vs until satisfactory reduction in the objective function was met. This was the final step in the iteration, and so the finalization step made last-minute preparations for a subsequent iteration. " + "From the log statements above, we can see that the SeisFlows line search required 4 trial steps, where it modified values of Vs (shear-wave velocity) until satisfactory reduction in the objective function was met. This was the final step in the iteration, and so the finalization of the line search made preparations for a subsequent iteration. " ] }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "alpha.npy f_old.txt g_old.npy m_new.npy p_old.npy\r\n", - "f_new.txt f_try.txt LBFGS\t m_old.npy\r\n" + "alpha.txt f_old.txt m_new.npz p_old.npz\r\n", + "checkpoint.npz f_try.txt m_old.npz\r\n", + "f_new.txt g_old.npz output_optim.txt\r\n" ] } ], @@ -2153,44 +1996,21 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "factor.txt\t line_search.txt slope.txt\ttheta.txt\r\n", - "gradient_norm_L1.txt misfit.txt step_count.txt\r\n", - "gradient_norm_L2.txt restarted.txt step_length.txt\r\n" + "step_count,step_length,gradient_norm_L1,gradient_norm_L2,misfit,if_restarted,slope,theta\r\n", + "04,2.323E+09,9.243E-05,1.049E-06,1.279E-03,0,8.263E-13,0.000E+00\r\n" ] } ], "source": [ "# The stats/ directory contains text files describing the optimization/line search\n", - "! ls stats" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ITER STEPLEN MISFIT\r\n", - "========== ========== ==========\r\n", - " 1 0.000e+00 1.748e-03\r\n", - " 5.261e+09 9.850e-04\r\n", - " 8.512e+09 1.227e-03\r\n" - ] - } - ], - "source": [ - "# For example we can look at the step length chosen for the accepted trial step in the line search\n", - "! cat stats/line_search.txt" + "! cat scratch/optimize/output_optim.txt" ] }, { @@ -2199,15 +2019,8 @@ "source": [ "### 4. Conclusions\n", "\n", - "We've now seen how SeisFlows3 runs an __Inversion__ workflow using the __Specfem2D__ solver on a __serial__ system (local workstation). More or less, this is all you need to run SeisFlows3 with any combination of modules. The specificities of a system or numerical solver are already handled internally by SeisFlows3, so if you want to use Specmfe3D_Cartesian as your solver, you would only need to run `seisflows par solver specfem3d` at the beginning of your workflow (you will also need to setup your Specfem3D models, similar to what we did for Specfem2D here). To run on a slurm system like Chinook, you can run `seisflows par system chinook`. " + "We've now seen how SeisFlows runs an __Inversion__ workflow using the __Specfem2D__ solver on a __Workstation__ system. More or less, this is all you need to run SeisFlows with any combination of modules. The specificities of a system or numerical solver are already handled internally by SeisFlows, so if you want to use Specmfe3D_Cartesian as your solver, you would only need to run `seisflows par solver specfem3d` at the beginning of your workflow (you will also need to set up your Specfem3D models, similar to what we did for Specfem2D here). To run on a slurm system like Chinook (University of Alaska Fairbanks), you can run `seisflows par system chinook`. " ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -2226,7 +2039,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/docs/notebooks/working_directory.ipynb b/docs/notebooks/working_directory.ipynb index 57aa577e..50779626 100644 --- a/docs/notebooks/working_directory.ipynb +++ b/docs/notebooks/working_directory.ipynb @@ -6,26 +6,28 @@ "source": [ "# Working Directory Structure\n", "\n", - "SeisFlows3 hardcodes it's own working directory when executing a workflow. Below we explore the working directory set up by the SPECFEM2D-workstation example. Working directories may change slightly depending on the chosen workflow, but will more or less follow the following structure. The two specfem2d directories listed below are not part of the SeisFlows3 working directory." + "SeisFlows sets it's own working directory when executing a workflow. Below we explore the working directory set up by the SPECFEM2D-workstation example. Working directories may change slightly depending on the chosen workflow, but will more or less follow the same structure. \n", + "\n", + ">__NOTE__: The two SPECFEM2D directories listed below are not part of the standard SeisFlows working directory." ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/home/bchow/Work/official/workshop_pyatoa_sf3/ex1_specfem2d_workstation\n", - "logs\toutput_sf3.txt\t scratch\t stats\r\n", - "output\tparameters.yaml specfem2d_workdir\r\n" + "/Users/Chow/Work/work/sf_specfem2d_example\n", + "\u001b[1m\u001b[32mlogs\u001b[m\u001b[m parameters.yaml sflog.txt \u001b[1m\u001b[35mspecfem2d\u001b[m\u001b[m\r\n", + "\u001b[1m\u001b[32moutput\u001b[m\u001b[m \u001b[1m\u001b[32mscratch\u001b[m\u001b[m sfstate.txt \u001b[1m\u001b[32mspecfem2d_workdir\u001b[m\u001b[m\r\n" ] } ], "source": [ - "%cd ~/Work/official/workshop_pyatoa_sf3/ex1_specfem2d_workstation\n", + "%cd /Users/Chow/Work/work/sf_specfem2d_example\n", "! ls" ] }, @@ -35,19 +37,19 @@ "source": [ "----------------------\n", "## scratch/\n", - "The active working directory of SeisFlows3 where all of the heavy lifting takes place. Each module in the SeisFlows3 package may have it's own sub-directory where it stores temporary work data. Additionally, we have two eval*/ directories where objective function evaluation (evalfunc) and gradient evaluation (evalgrad) files are stored." + "The active working directory of SeisFlows where all of the heavy lifting takes place. Each module in the SeisFlows package may have it's own sub-directory where it stores temporary work data. Additionally, we have two eval*/ directories where objective function evaluation (eval_func) and gradient evaluation (eval_grad) files are stored." ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "evalfunc evalgrad optimize preprocess solver system\r\n" + "\u001b[1m\u001b[32meval_func\u001b[m\u001b[m \u001b[1m\u001b[32meval_grad\u001b[m\u001b[m \u001b[1m\u001b[32moptimize\u001b[m\u001b[m \u001b[1m\u001b[32mpreprocess\u001b[m\u001b[m \u001b[1m\u001b[32msolver\u001b[m\u001b[m \u001b[1m\u001b[32msystem\u001b[m\u001b[m\r\n" ] } ], @@ -82,14 +84,14 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "001 002 003 mainsolver\r\n" + "\u001b[1m\u001b[32m001\u001b[m\u001b[m \u001b[1m\u001b[32m002\u001b[m\u001b[m \u001b[1m\u001b[32m003\u001b[m\u001b[m \u001b[1m\u001b[35mmainsolver\u001b[m\u001b[m\r\n" ] } ], @@ -99,14 +101,16 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "bin DATA kernel_paths mesher.log OUTPUT_FILES SEM\tsolver.log traces\r\n" + "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m adj_solver.log fwd_solver.log solver_vs.log\r\n", + "\u001b[1m\u001b[32mOUTPUT_FILES\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m kernel_paths \u001b[1m\u001b[32mtraces\u001b[m\u001b[m\r\n", + "\u001b[1m\u001b[35mSEM\u001b[m\u001b[m fwd_mesher.log solver_vp.log\r\n" ] } ], @@ -131,14 +135,14 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "adj obs syn\r\n" + "\u001b[1m\u001b[32madj\u001b[m\u001b[m \u001b[1m\u001b[32mobs\u001b[m\u001b[m \u001b[1m\u001b[32msyn\u001b[m\u001b[m\r\n" ] } ], @@ -148,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -165,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -219,15 +223,16 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "alpha.npy f_old.txt g_old.npy m_new.npy p_old.npy\r\n", - "f_new.txt f_try.txt LBFGS\t m_old.npy\r\n" + "alpha.txt f_old.txt m_new.npz p_old.npz\r\n", + "checkpoint.npz f_try.txt m_old.npz\r\n", + "f_new.txt g_old.npz output_optim.txt\r\n" ] } ], @@ -237,34 +242,34 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[5800. 5800. 5800. ... 3499.77655379 3499.9021825\n", - " 3499.99078301]\n" + "[[3500.0027437 3499.99441921 3499.90777902 ... 3499.77655378\n", + " 3499.9021825 3499.99078301]]\n" ] } ], "source": [ "import numpy as np\n", - "m_new = np.load(\"scratch/optimize/m_new.npy\")\n", - "print(m_new)" + "m_new = np.load(\"scratch/optimize/m_new.npz\")\n", + "print(m_new[\"vs\"])" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2.591424e-03\r\n" + "8.645199999999999153e-04\r\n" ] } ], @@ -276,30 +281,28 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### evalfunc/ & evalgrad/\n", + "### eval_func/ & eval_grad/\n", "\n", "Scratch directories containing objective function evaluation and gradient evaluation files. These include (1) the current **model** being used for misfit evaluation, and (2) **residuals** which define the misfit for each event. **evalgrad/** also contains **kernels** which define per-event kernels which are summed and manipulated with the postprocess module." ] }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "model residuals\n", - "\n", - "kernels model\tresiduals\n" + "\r\n" ] } ], "source": [ - "! ls scratch/evalfunc\n", + "! ls scratch/eval_func\n", "! echo\n", - "! ls scratch/evalgrad" + "! ls scratch/eval_grad" ] }, { @@ -609,9 +612,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python (docs)", + "display_name": "Python 3", "language": "python", - "name": "docs" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -623,7 +626,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.12" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/docs/parameter_file.rst b/docs/parameter_file.rst index 920b7ce6..148abdf5 100644 --- a/docs/parameter_file.rst +++ b/docs/parameter_file.rst @@ -1,35 +1,57 @@ -Parameter File -============== - -The parameter file is the central control object for a SeisFlows -workflow. Here we take a look at the anatomy of a parameter file. -Parameter files in SeisFlows are formatted in the `YAML format (YAML -Ain’t Markup Language) `__. - -Template --------- - -Each workflow starts with the module-only template parameter file which -defines the core modules which make up the package. Running -``seisflows setup`` from the command line will create this file. - -.. code:: ipython3 - - ! seisflows setup - - -.. parsed-literal:: - +Parameter File +============== + +The parameter file is the central control object for a SeisFlows +workflow. Here we take a look at the anatomy of a parameter file. +Parameter files in SeisFlows are formatted in the `YAML format (YAML +Ain’t Markup Language) `__. + +Template +-------- + +Each workflow starts with the module-only template parameter file which +defines the core modules of the package. Your choices for each of these +modules will determine which paths and parameters are included in the +full parameter file. Running ``seisflows setup`` from the command line +will create the template file. + +.. code:: ipython3 + + ! seisflows setup -h + + +.. parsed-literal:: + + usage: seisflows setup [-h] [-f] + + In the specified working directory, copy template parameter file containing + only module choices, and symlink source code for both the base and super + repositories for easy edit access. If a parameter file matching the provided + name exists in the working directory, a prompt will appear asking the user if + they want to overwrite. + + optional arguments: + -h, --help show this help message and exit + -f, --force automatically overwrites existing parameter file + + +.. code:: ipython3 + + ! seisflows setup + + +.. parsed-literal:: + creating parameter file: parameters.yaml - - -.. code:: ipython3 - - ! cat parameters.yaml - - -.. parsed-literal:: - + + +.. code:: ipython3 + + ! cat parameters.yaml + + +.. parsed-literal:: + # ////////////////////////////////////////////////////////////////////////////// # # SeisFlows YAML Parameter File @@ -49,162 +71,168 @@ defines the core modules which make up the package. Running # # MODULES # /////// - # WORKFLOW (str): The method for running SeisFlows; equivalent to main() - # SOLVER (str): External numerical solver to use for waveform simulations - # SYSTEM (str): Computer architecture of the system being used - # OPTIMIZE (str): Optimization algorithm for the inverse problem - # PREPROCESS (str): Preprocessing schema for waveform data - # POSTPROCESS (str): Postprocessing schema for kernels and gradients + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem # ============================================================================== - WORKFLOW: inversion - SOLVER: specfem2d - SYSTEM: workstation - OPTIMIZE: LBFGS - PREPROCESS: base - POSTPROCESS: base - - -How do I choose my modules? -~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -As seen above, each of the modules comes with a default value. But you -may want to run a migration, not an inversion. Or run with SPECFEM3D not -2D. As stated in the comments at the top of the file, the -``seisflows print modules`` command lists out all available options. -Don’t see an option that works for you? Learn to extend the SeisFlows -package here: **!!! docs page link here !!!** - -.. code:: ipython3 - - ! seisflows print modules - - -.. parsed-literal:: - - SEISFLOWS3 MODULES - ////////////////// - '+': package, '-': module, '*': class + workflow: forward + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient + + +How do I choose modules? +~~~~~~~~~~~~~~~~~~~~~~~~ + +As seen above, each of the modules comes with a default value which +represents the base class\* for this module. + +* For an explanation of base classes and Python inheritance, see the `inheritance page.`__ + +These default values are likely not suitable for all, e.g., if you want +to run an inversion and not a forward workflow, or use SPECFEM3D not +SPECFEM2D. To see all available module options, use the +``seisflows print modules`` command. + +.. code:: ipython3 + + ! seisflows print modules + + +.. parsed-literal:: + + SEISFLOWS MODULES + ///////////////// + '-': module, '*': class - + SYSTEM - - seisflows - * base - * cluster - * lsf - * slurm - * workstation - - seisflows-super - * chinook - * maui - + PREPROCESS - - seisflows - * base - * pyatoa - - seisflows-super - * pyatoa_nz - + SOLVER - - seisflows - * base - * specfem2d - * specfem3d - * specfem3d_globe - - seisflows-super - * specfem3d_maui - + POSTPROCESS - - seisflows - * base - - seisflows-super - + OPTIMIZE - - seisflows - * LBFGS - * NLCG - * base - - seisflows-super - + WORKFLOW - - seisflows - * base - * inversion - * migration - * test - - seisflows-super - * thrifty_inversion - * thrifty_maui - - -How do I change modules? -~~~~~~~~~~~~~~~~~~~~~~~~ - -Feel free to use any old text editor to edit the YAML file, or you can -use the ``seisflows par`` command to make changes directly from the -command line. For example, say we want to use SPECFEM3D - -.. code:: ipython3 - - # Changes the current parameter to the given value - ! seisflows par solver specfem3d - - -.. parsed-literal:: - - SOLVER: specfem2d -> specfem3d - - -.. code:: ipython3 - - # Prints out the current parameter value - ! seisflows par solver - - -.. parsed-literal:: - - SOLVER: specfem3d - - -How do I get to a full parameter file? -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -The module-only parameter file serves as as a template for dynamically -generating a full parameter file. Since each module requires it’s own -unique set of parameters and paths, each parameter file will look -different. We can use the ``seisflows configure`` command to complete -our parmater file, based on the chosen modules. - -.. code:: ipython3 - - ! seisflows configure - - -.. parsed-literal:: - - filling parameters.yaml w/ default values - - -Anatomy of the parameter file ------------------------------ - -As we will see below, the parameter file has now been generated. Each -module will define its own section, separated by a header of comments. -Within each header, parameter names, types and descriptions are listed. -At the bottom of the parameter file, there is a section defining paths -required by the workflow. Section headers will look something: - -.. code:: ipython3 - - # ============================================================================= - # MODULE - # ////// - # PARAMETER_NAME (type): - # Description - # ... - # ============================================================================= - PARAMETER_NAME: parameter_value - -.. code:: ipython3 - - ! head -80 parameters.yaml - - -.. parsed-literal:: - + - workflow + * forward + * inversion + * migration + - system + * chinook + * cluster + * frontera + * lsf + * maui + * slurm + * workstation + - solver + * specfem + * specfem2d + * specfem3d + * specfem3d_globe + - preprocess + * default + * pyaflowa + - optimize + * LBFGS + * NLCG + * gradient + + +How do I change modules? +~~~~~~~~~~~~~~~~~~~~~~~~ + +Feel free to use any text editor, or use the ``seisflows par`` command +to make changes directly from the command line. For example, say we want +to use SPECFEM3D as our solver module. + +This is also covered in the `command line tool page.`__ + +.. code:: ipython3 + + # Changes the current parameter to the given value + ! seisflows par solver specfem3d + + +.. parsed-literal:: + + solver: specfem2d -> specfem3d + + +.. code:: ipython3 + + # Prints out the current parameter value + ! seisflows par solver + + +.. parsed-literal:: + + solver: specfem3d + + +How do I create a full parameter file? +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The module-only parameter file serves as as a template for dynamically +generating the full parameter file. Since each module requires it’s own +unique set of parameters and paths, each parameter file will look +different. We use the ``seisflows configure`` command to complete the +file. + +.. code:: ipython3 + + ! seisflows configure -h + + +.. parsed-literal:: + + usage: seisflows configure [-h] [-a] + + SeisFlows parameter files will vary depending on chosen modules and their + respective required parameters. This function will dynamically traverse the + source code and generate a template parameter file based on module choices. + The resulting file incldues docstrings and type hints for each parameter. + Optional parameters will be set with default values and required parameters + and paths will be marked appropriately. Required parameters must be set before + a workflow can be submitted. + + optional arguments: + -h, --help show this help message and exit + -a, --absolute_paths Set default paths relative to cwd + + +.. code:: ipython3 + + ! seisflows configure + +Below we will take a look at the parameter file we just created + +Anatomy of a parameter file +--------------------------- + +Each of SeisFlows’ modules will define its own section in the parameter +file, separated by a header of comments representing the docstring. +Within each header, parameter names, types and descriptions are listed. +At the bottom of the parameter file, there is a section defining paths +required by SeisFlows. Section headers will look something: + +.. code:: ipython3 + + # ============================================================================= + # MODULE + # ------ + # Module description + # + # Parameters + # ---------- + # :type parameter: type + # :param paramter: description + # ... + # ============================================================================= + parameter: value + +.. code:: ipython3 + + ! head -80 parameters.yaml + + +.. parsed-literal:: + # ////////////////////////////////////////////////////////////////////////////// # # SeisFlows YAML Parameter File @@ -224,315 +252,112 @@ required by the workflow. Section headers will look something: # # MODULES # /////// - # WORKFLOW (str): The method for running SeisFlows; equivalent to main() - # SOLVER (str): External numerical solver to use for waveform simulations - # SYSTEM (str): Computer architecture of the system being used - # OPTIMIZE (str): Optimization algorithm for the inverse problem - # PREPROCESS (str): Preprocessing schema for waveform data - # POSTPROCESS (str): Postprocessing schema for kernels and gradients + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem # ============================================================================== - WORKFLOW: inversion - SOLVER: specfem3d - SYSTEM: workstation - OPTIMIZE: LBFGS - PREPROCESS: base - POSTPROCESS: base - - # ============================================================================= - # SYSTEM - # ////// - # TITLE (str): - # The name used to submit jobs to the system, defaults to the name of the - # working directory - # PRECHECK (list): - # A list of parameters that will be displayed to stdout before 'submit' or - # 'resume' is run. Useful for manually reviewing important parameters prior - # to system submission - # LOG_LEVEL (str): - # Verbosity output of SF3 logger. Available from least to most verbosity: - # 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG' - # VERBOSE (bool): - # Level of verbosity provided to the output log. If True, log statements - # will declare what module/class/function they are being called from. - # Useful for debugging but also very noisy. - # MPIEXEC (str): - # Function used to invoke executables on the system. For example 'srun' on - # SLURM systems, or './' on a workstation. If left blank, will guess based - # on the system. - # NTASK (int): - # Number of separate, individual tasks. Also equal to the number of desired - # sources in workflow - # NPROC (int): - # Number of processor to use for each simulation + workflow: forward + system: workstation + solver: specfem3d + preprocess: default + optimize: gradient # ============================================================================= - TITLE: docs - PRECHECK: - - TITLE - LOG_LEVEL: DEBUG - VERBOSE: False - MPIEXEC: - NTASK: 1 - NPROC: 1 - - # ============================================================================= - # PREPROCESS - # ////////// - # MISFIT (str): - # Misfit function for waveform comparisons, for available see - # seisflows.plugins.misfit - # BACKPROJECT (str): - # Backprojection function for migration, for available see - # seisflows.plugins.adjoint - # NORMALIZE (list): - # Data normalization parameters used to normalize the amplitudes of - - -.. code:: ipython3 - - ! tail --lines=54 parameters.yaml - - -.. parsed-literal:: - + # + # Forward Workflow + # ---------------- + # Run forward solver in parallel and (optionally) calculate + # data-synthetic misfit and adjoint sources. + # + # Parameters + # ---------- + # :type modules: list of module + # :param modules: instantiated SeisFlows modules which should have been + # generated by the function `seisflows.config.import_seisflows` with a + # parameter file generated by seisflows.configure + # :type data_case: str + # :param data_case: How to address 'data' in the workflow, available options: + # 'data': real data will be provided by the user in + # `path_data/{source_name}` in the same format that the solver will + # produce synthetics (controlled by `solver.format`) OR + # synthetic': 'data' will be generated as synthetic seismograms using + # a target model provided in `path_model_true`. If None, workflow will + # not attempt to generate data. + # :type export_traces: bool + # :param export_traces: export all waveforms that are generated by the + # external solver to `path_output`. If False, solver traces stored in + # scratch may be discarded at any time in the workflow + # :type export_residuals: bool + # :param export_residuals: export all residuals (data-synthetic misfit) that + # are generated by the external solver to `path_output`. If False, + # residuals stored in scratch may be discarded at any time in the workflow + # + # # ============================================================================= - # PATHS - # ///// - # SCRATCH: - # scratch path to hold temporary data during workflow - # OUTPUT: - # directory to save workflow outputs to disk - # SYSTEM: - # scratch path to hold any system related data - # LOCAL: - # path to local data to be used during workflow - # LOGFILE: - # the main output log file where all processes will track their status - # SOLVER: - # scratch path to hold solver working directories - # SPECFEM_BIN: - # path to the SPECFEM binary executables - # SPECFEM_DATA: - # path to the SPECFEM DATA/ directory containing the 'Par_file', 'STATIONS' - # file and 'CMTSOLUTION' files - # DATA: - # path to data available to workflow - # MASK: - # Directory to mask files for gradient masking - # OPTIMIZE: - # scratch path to store data related to nonlinear optimization - # MODEL_INIT: - # location of the initial model to be used for workflow - # MODEL_TRUE: - # Target model to be used for PAR.CASE == 'synthetic' - # FUNC: - # scratch path to store data related to function evaluations - # GRAD: - # scratch path to store data related to gradient evaluations - # HESS: - # scratch path to store data related to Hessian evaluations + data_case: data + export_traces: False + export_residuals: False # ============================================================================= - PATHS: - SCRATCH: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch - OUTPUT: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/output - SYSTEM: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/system - LOCAL: - LOGFILE: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/output_sf3.txt - SOLVER: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/solver - SPECFEM_BIN: !!! REQUIRED PATH !!! - SPECFEM_DATA: !!! REQUIRED PATH !!! - DATA: - MASK: - OPTIMIZE: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/optimize - MODEL_INIT: !!! REQUIRED PATH !!! - MODEL_TRUE: - FUNC: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/scratch - GRAD: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/evalgrad - HESS: /home/bchow/REPOSITORIES/seisflows/seisflows/docs/scratch/evalhess - - -How do I know what parameters need to be set? -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - **NOTE**: Required parameters that can not be set to default values - will be listed as ``!!! REQUIRED PARAMETER !!!`` - -We can check the required paths and parameters manually by scrolling -through the parameter file, or we can use the -``seisflows par --required`` command to list them out all at once. - -.. code:: ipython3 - - ! seisflows par --required - - -.. parsed-literal:: - - !!! REQUIRED PARAMETER !!! - ========================== - MATERIALS - DENSITY - ATTENUATION - NT - DT - FORMAT - CASE - END - !!! REQUIRED PATH !!! - ===================== - SPECFEM_BIN - SPECFEM_DATA - MODEL_INIT - - -Checking parameter validity ---------------------------- - -You might be asking, how do I know if my parameters are set correctly? -SeisFlows modules feature check() functions which dictate correct -parameter values. You can run ``seisflows init`` to run these check() -functions. Because we have required parameters still left unset in our -parameter file, we expect the ``seisflows init`` function to throw an -error. - -.. code:: ipython3 - - ! seisflows init - - -.. parsed-literal:: - - ================================================================================ - PARAMETER FILE READ ERROR - ///////////////////////// - Please check that your parameter file is properly formatted in the YAML format. - If you have just run 'seisflows configure', you may have some required - parameters that will need to be filled out before you can proceed. The error - message is: + # + # Workstation System + # ------------------ + # Runs tasks in serial on a local machine. + # + # Parameters + # ---------- + # :type ntask: int + # :param ntask: number of individual tasks/events to run during workflow. + # Must be <= the number of source files in `path_specfem_data` + # :type nproc: int + # :param nproc: number of processors to use for each simulation + # :type log_level: str + # :param log_level: logger level to pass to logging module. + + +.. code:: ipython3 + + ! tail parameters.yaml + + +.. parsed-literal:: + + path_model_true: null + path_state_file: /Users/Chow/Repositories/seisflows/docs/notebooks/sfstate.txt + path_data: null + path_par_file: /Users/Chow/Repositories/seisflows/docs/notebooks/parameters.yaml + path_log_files: /Users/Chow/Repositories/seisflows/docs/notebooks/logs + path_output_log: /Users/Chow/Repositories/seisflows/docs/notebooks/sflog.txt + path_specfem_bin: null + path_specfem_data: null + path_solver: /Users/Chow/Repositories/seisflows/docs/notebooks/scratch/solver + path_preconditioner: null + + +How do I know how parameters need to be set? +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Most SeisFlows parameters come with reasonable default values. The +docstrings headers will also list the expected type and available +options (if any). You may also run the ``seisflows check`` command which +verifies that parameters are set correctly. + +.. code:: ipython3 + + ! seisflows check + + +.. parsed-literal:: + - could not determine a constructor for the tag 'tag:yaml.org,2002:!' - in "parameters.yaml", line 147, column 12 ================================================================================ - - -Let’s set some random variables for the required parameters with the -``seisflows par`` command and try again. - -.. code:: ipython3 - - ! seisflows par materials elastic - ! seisflows par density constant - ! seisflows par attenuation False - ! seisflows par nt 100 - ! seisflows par dt .05 - ! seisflows par format ascii - ! seisflows par case data - ! seisflows par end 1 - ! seisflows par specfem_bin ./ - ! seisflows par specfem_data ./ - ! seisflows par model_init ./ - - -.. parsed-literal:: - - MATERIALS: !!! REQUIRED PARAMETER !!! -> elastic - DENSITY: !!! REQUIRED PARAMETER !!! -> constant - ATTENUATION: !!! REQUIRED PARAMETER !!! -> False - NT: !!! REQUIRED PARAMETER !!! -> 100 - DT: !!! REQUIRED PARAMETER !!! -> .05 - FORMAT: !!! REQUIRED PARAMETER !!! -> ascii - CASE: !!! REQUIRED PARAMETER !!! -> data - END: !!! REQUIRED PARAMETER !!! -> 1 - SPECFEM_BIN: !!! REQUIRED PATH !!! -> ./ - SPECFEM_DATA: !!! REQUIRED PATH !!! -> ./ - MODEL_INIT: !!! REQUIRED PATH !!! -> ./ - - -.. code:: ipython3 - - ! seisflows init - - -.. parsed-literal:: - - instantiating SeisFlows working state in directory: output - - -Of course we knew that the above parameters were acceptable. But what if -we input an unacceptable parameter into the parameter file and try -again? - -.. code:: ipython3 - - ! rm -r output/ - ! seisflows par materials visibily_incorrect_value - ! seisflows init - - -.. parsed-literal:: - - MATERIALS: elastic -> visibily_incorrect_value + PARAMETER ERRROR + //////////////// + `path_specfem_bin` must exist and must point to directory containing SPECFEM + executables ================================================================================ - MODULE CHECK ERROR - ////////////////// - seisflows.config module check failed with: - - solver: MATERIALS must be in ['ELASTIC', 'ACOUSTIC', 'ISOTROPIC', 'ANISOTROPIC'] - ================================================================================ - - -And voila, the module check has thrown an error, and told us (the User) -how to properly set the value of the materials parameter. Hopefully a -combination of thorough explanations in the parameter file section -headers, and error catching with ``seisflows init`` makes crafting your -own parameter file a smooth process. - -.. code:: ipython3 - - ! head -155 parameters.yaml | tail --lines=38 - - -.. parsed-literal:: - - - # ============================================================================= - # SOLVER - # ////// - # MATERIALS (str): - # Material parameters used to define model. Available: ['ELASTIC': Vp, Vs, - # 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] - # DENSITY (str): - # How to treat density during inversion. Available: ['CONSTANT': Do not - # update density, 'VARIABLE': Update density] - # ATTENUATION (str): - # If True, turn on attenuation during forward simulations, otherwise set - # attenuation off. Attenuation is always off for adjoint simulations. - # COMPONENTS (str): - # Components used to generate data, formatted as a single string, e.g. ZNE - # or NZ or E - # SOLVERIO (int): - # The format external solver files. Available: ['fortran_binary', 'adios'] - # NT (float): - # Number of time steps set in the SPECFEM Par_file - # DT (float): - # Time step or delta set in the SPECFEM Par_file - # FORMAT (float): - # Format of synthetic waveforms used during workflow, available options: - # ['ascii', 'su'] - # SOURCE_PREFIX (str): - # Prefix of SOURCE files in path SPECFEM_DATA. Available ['CMTSOLUTION', - # FORCESOLUTION'] - # ============================================================================= - MATERIALS: visibily_incorrect_value - DENSITY: constant - ATTENUATION: False - COMPONENTS: ZNE - SOLVERIO: fortran_binary - NT: 100 - DT: .05 - FORMAT: ascii - SOURCE_PREFIX: CMTSOLUTION - - -.. code:: ipython3 - - ! rm parameters.yaml # to delete the created file from this working directory + + +.. code:: ipython3 + + ! rm parameters.yaml # to delete the created file from this working directory diff --git a/docs/specfem2d_example.rst b/docs/specfem2d_example.rst index 3f0ced56..6e0f01f6 100644 --- a/docs/specfem2d_example.rst +++ b/docs/specfem2d_example.rst @@ -2,10 +2,11 @@ Specfem2D workstation example ============================= To demonstrate the inversion capabilities of SeisFlows, we will run a -**Specfem2D synthetic-synthetic example** on a **local machine** (Linux -workstation running CentOS 7). Many of the setup steps here will likely -be unique to our OS and workstation, but hopefully they may serve as -templates for new Users wanting to explore SeisFlows. +**Specfem2D synthetic-synthetic example** on a **local machine** (tested +on a Linux workstation running CentOS 7, and an Apple Laptop running +macOS 10.14.6). Many of the setup steps here may be unique to our OS and +workstation, but hopefully they may serve as templates for new Users +wanting to explore SeisFlows. The numerical solver we will use is: `SPECFEM2D `__. We’ll @@ -29,49 +30,7 @@ generate initial and target models, and (3) Run a SeisFlows inversion. .. code:: ipython3 - seisflows examples run 1 - - -.. parsed-literal:: - - Run example: ex1_specfem2d_workstation_inversion - - @@@@@@@@@@ - .@@@@. .%&( %@. - @@@@ @@@@ &@@@@@@ ,%@ - @@@@ @@@, /@@ @ - @@@ @@@@ @@@ @ - @@@@ @@@@ @@@ @ @ - @@@ @@@@ ,@@@ @ @ - @@@@ @@@@ @@@@ @@ @ @ - @@@@ @@@@@ @@@@@ @@@ @@ @ - @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @ - @@@@ @@@@@@ @@@& @@@ @ - @@@@@ @@@@@@@@ %@@@@# @@ - @@@@# @@@@@@@@@@@@@@@@@ @@ - &@@@@@ @@@@( @@& - @@@@@@@ /@@@@ - @@@@@@@@@@@@@@@@@ - @@@@@@@@@@ - - ================================================================================ - SEISFLOWS EXAMPLE 1 - //////////////////// - This is a [SPECFEM2D] [WORKSTATION] example, which will run 2 iterations of an - inversion to assess misfit between two homogeneous halfspace models with - slightly different velocities, 3 sources and 1 receiver. The tasks involved - include: - - 1. (optional) Download, configure, compile SPECFEM2D - 2. Set up a SPECFEM2D working directory - 3. Generate starting model from Tape2007 example - 4. Generate target model w/ perturbed starting model - 5. Set up a SeisFlows working directory - 6. Run 2 iterations of an inversion workflow - ================================================================================ - If you have already downloaded SPECMFE2D, please input its path here. If blank, - this example will pull the latest version from GitHub and attempt to configure - and make the binaries: > + ! seisflows examples run 1 -------------- @@ -98,15 +57,13 @@ tutorial: 2. `Initialize SeisFlows (SF) <#2.-Initialize-SeisFlows-(SF)>`__ - a. `SF working directory and parameter + a. `SeisFlows working directory and parameter file <#2a.-SF-working-directory-and-parameter-file>`__ - b. `Initialize SF working - state <#2b.-Initialize-SF-working-state>`__ 3. `Run SeisFlows <#2.-Run-SeisFlows>`__ a. `Forward simulations <#3a.-Forward-simulations>`__ - b. `Exploring the SF directory + b. `Exploring the SeisFlows directory structure <#3b.-Exploring-the-SF-directory-structure>`__ c. `Adjoint simulations <#3c.-Adjoint-simulations>`__ d. `Line search and model @@ -128,9 +85,9 @@ tutorial: First we’ll download and compile SPECFEM2D to generate the binaries necessary to run our simulations. We will then populate a new SPECFEM2D -working directory that will be used by SeisFlows. We’ll use to Python -OS module to do our filesystem processes just to keep everything in -Python, but this can easily be accomplished in bash. +working directory that will be used by SeisFlows. We’ll use to Python OS +module to do our filesystem processes just to keep everything in Python, +but this can easily be accomplished in bash. .. code:: ipython3 @@ -142,8 +99,12 @@ Python, but this can easily be accomplished in bash. .. code:: ipython3 # vvv USER MUST EDIT THE FOLLOWING PATHS vvv - WORKDIR = "/home/bchow/Work/work/sf_specfem2d_example" - SPECFEM2D = "/home/bchow/REPOSITORIES/specfem2d" + # MAC PATHS + WORKDIR = "/Users/Chow/Work/work/sf_specfem2d_example" + SPECFEM2D = "/Users/Chow/Repositories/specfem2d" + # LINUX PATHS + # WORKDIR = "/home/bchow/Work/work/sf_specfem2d_example" + # SPECFEM2D = "/home/bchow/REPOSITORIES/specfem2d" # where WORKDIR: points to your own working directory # and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '') # ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^ @@ -168,6 +129,7 @@ Python, but this can easily be accomplished in bash. .. code:: ipython3 # Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo + os.makedirs(WORKDIR) os.chdir(WORKDIR) if os.path.exists("specfem2d"): @@ -209,10 +171,15 @@ Python, but this can easily be accomplished in bash. .. parsed-literal:: - /home/bchow/REPOSITORIES/specfem2d - xadj_seismogram xconvolve_source_timefunction xspecfem2D - xcheck_quality_external_mesh xmeshfem2D xsum_kernels - xcombine_sem xsmooth_sem + /Users/Chow/Repositories/specfem2d + xadj_seismogram xmeshfem2D + xadj_seismogram.dSYM xmeshfem2D.dSYM + xcheck_quality_external_mesh xsmooth_sem + xcheck_quality_external_mesh.dSYM xsmooth_sem.dSYM + xcombine_sem xspecfem2D + xcombine_sem.dSYM xspecfem2D.dSYM + xconvolve_source_timefunction xsum_kernels + xconvolve_source_timefunction.dSYM xsum_kernels.dSYM 1b. Create a separate SPECFEM2D working directory @@ -223,7 +190,7 @@ original repository. The intent here is to isolate the original SPECFEM2D repository from our working state, to protect it from things like accidental file deletions or manipulations. This is not a mandatory step for using SeisFlows, but it helps keep file structure clean in the -long run, and is the SeisFlows dev team’s preferred method of using +long run, and is the SeisFlows3 dev team’s preferred method of using SPECFEM. .. note:: @@ -231,7 +198,7 @@ SPECFEM. In this tutorial we will be using the `Tape2007 example problem `__ -to define our **DATA/** directory (last tested 3/9/22, cf893667). +to define our **DATA/** directory (last tested 8/15/22, bdba4389). .. code:: ipython3 @@ -255,8 +222,8 @@ to define our **DATA/** directory (last tested 3/9/22, cf893667). .. parsed-literal:: - /home/bchow/Work/work/sf_specfem2d_example/specfem2d_workdir - bin DATA + /Users/Chow/Work/work/sf_specfem2d_example/specfem2d_workdir + DATA bin .. code:: ipython3 @@ -274,16 +241,16 @@ to define our **DATA/** directory (last tested 3/9/22, cf893667). .. parsed-literal:: - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - D a t e : 29 - 04 - 2022 T i m e : 12:24:51 - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - - see results in directory: OUTPUT_FILES/ - - done - Fri Apr 29 12:24:51 AKDT 2022 + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + D a t e : 15 - 08 - 2022 T i m e : 10:13:31 + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + + see results in directory: OUTPUT_FILES/ + + done + Mon Aug 15 10:13:31 PDT 2022 -------------- @@ -291,7 +258,7 @@ to define our **DATA/** directory (last tested 3/9/22, cf893667). Now we need to manually set up our SPECFEM2D working directory. As mentioned in the previous cell, the only required elements of this working directory are the following (these files will form the basis for -how SeisFlows operates within the SPECFEM2D framework): +how SeisFlows3 operates within the SPECFEM2D framework): 1. **bin/** directory containing SPECFEM2D binaries 2. **DATA/** directory containing SOURCE and STATION files, as well as a @@ -323,15 +290,22 @@ how SeisFlows operates within the SPECFEM2D framework): .. parsed-literal:: - interfaces_Tape2007.dat SOURCE_003 SOURCE_012 SOURCE_021 - model_velocity.dat_checker SOURCE_004 SOURCE_013 SOURCE_022 - Par_file SOURCE_005 SOURCE_014 SOURCE_023 - Par_file_Tape2007_132rec_checker SOURCE_006 SOURCE_015 SOURCE_024 - Par_file_Tape2007_onerec SOURCE_007 SOURCE_016 SOURCE_025 - proc000000_model_velocity.dat_input SOURCE_008 SOURCE_017 STATIONS - SOURCE SOURCE_009 SOURCE_018 STATIONS_checker - SOURCE_001 SOURCE_010 SOURCE_019 - SOURCE_002 SOURCE_011 SOURCE_020 + Par_file SOURCE_013 + Par_file_Tape2007_132rec_checker SOURCE_014 + Par_file_Tape2007_onerec SOURCE_015 + SOURCE SOURCE_016 + SOURCE_001 SOURCE_017 + SOURCE_002 SOURCE_018 + SOURCE_003 SOURCE_019 + SOURCE_004 SOURCE_020 + SOURCE_005 SOURCE_021 + SOURCE_006 SOURCE_022 + SOURCE_007 SOURCE_023 + SOURCE_008 SOURCE_024 + SOURCE_009 SOURCE_025 + SOURCE_010 STATIONS_checker + SOURCE_011 interfaces_Tape2007.dat + SOURCE_012 model_velocity.dat_checker 1c. Generate initial and target models @@ -354,7 +328,7 @@ We will generate our target model by slightly perturbing the parameters of the initial model. .. note:: - We can use the SeisFlows command line option `seisflows sempar` to directly edit the SPECFEM2D Par_file in the command line. This will work for the SPECFEM3D Par_file as well. + We can use the SeisFlows3 command line option `seisflows sempar` to directly edit the SPECFEM2D Par_file in the command line. This will work for the SPECFEM3D Par_file as well. .. code:: ipython3 @@ -388,7 +362,7 @@ of the initial model. .. parsed-literal:: - bin DATA OUTPUT_FILES + DATA OUTPUT_FILES bin .. code:: ipython3 @@ -400,7 +374,7 @@ of the initial model. ! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt ! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt - # Move the model files (*.bin) into the OUTPUT_FILES directory, where SeisFlows expects them + # Move the model files (*.bin) into the OUTPUT_FILES directory, where SeisFlows3 expects them ! mv DATA/*bin OUTPUT_FILES # Make sure we don't overwrite this initial model when creating our target model in the next step @@ -417,8 +391,8 @@ of the initial model. **** Specfem 2-D Solver - serial version **** ********************************************** - Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884 - dating From Date: Mon Nov 29 23:20:51 2021 -0800 + Running Git version of the code corresponding to + dating From NDIM = 2 @@ -429,7 +403,7 @@ of the initial model. Tape-Liu-Tromp (GJI 2007) ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- - D a t e : 29 - 04 - 2022 T i m e : 12:25:24 + D a t e : 15 - 08 - 2022 T i m e : 10:14:13 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- @@ -453,11 +427,11 @@ directly. .. parsed-literal:: - VELOCITY_MODEL: - - 1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0 - -> - 1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0 + VELOCITY_MODEL: + + 1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0 + -> + 1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0 .. code:: ipython3 @@ -489,8 +463,8 @@ directly. **** Specfem 2-D Solver - serial version **** ********************************************** - Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884 - dating From Date: Mon Nov 29 23:20:51 2021 -0800 + Running Git version of the code corresponding to + dating From NDIM = 2 @@ -501,7 +475,7 @@ directly. Tape-Liu-Tromp (GJI 2007) ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- - D a t e : 29 - 04 - 2022 T i m e : 12:25:24 + D a t e : 15 - 08 - 2022 T i m e : 10:14:13 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- @@ -514,29 +488,29 @@ directly. .. parsed-literal:: - bin DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE + DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE bin 2. Initialize SeisFlows (SF) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -In this Section we will look at a SeisFlows working directory, -parameter file, and working state. +In this Section we will look at a SeisFlows working directory, parameter +file, and working state. -2a. SF working directory and parameter file -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +2a. SeisFlows working directory and parameter file +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ As with SPECFEM, SeisFlows requires a parameter file (**parameters.yaml**) that controls how an automated workflow will proceed. Because SeisFlows is modular, there are a large number of -potential parameters which may be present in SF parameter file, as each -sub-module may have its own set of unique parameters. +potential parameters which may be present in a SeisFlows parameter file, +as each sub-module may have its own set of unique parameters. In contrast to SPECFEM’s method of listing all available parameters and leaving it up the User to determine which ones are relevant to them, -SeisFlows dynamically builds its parameter file based on User inputs. -In this subsection we will use the built-in SeisFlows command line -tools to generate and populate the parameter file. +SeisFlows dynamically builds its parameter file based on User inputs. In +this subsection we will use the built-in SeisFlows command line tools to +generate and populate the parameter file. .. note:: See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows file. @@ -552,44 +526,43 @@ line commands. .. parsed-literal:: - usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]] - {setup,configure,init,submit,resume,restart,clean,par,sempar,check,print,convert,reset,debug,edit,examples} - ... - - ================================================================================ - - SeisFlows: Waveform Inversion Package - - ================================================================================ - - optional arguments: - -h, --help show this help message and exit - -w [WORKDIR], --workdir [WORKDIR] - The SeisFlows working directory, default: cwd - -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE] - Parameters file, default: 'parameters.yaml' - - command: - Available SeisFlows arguments and their intended usages - - setup Setup working directory from scratch - configure Fill parameter file with defaults - init Initiate working environment - submit Submit initial workflow to system - resume Re-submit previous workflow to system - restart Remove current environment and submit new workflow - clean Remove files relating to an active working environment - par View and edit SeisFlows parameter file - sempar View and edit SPECFEM parameter file - check Check state of an active environment - print Print information related to an active environment - convert Convert model file format - reset Reset modules within an active state - debug Start interactive debug environment - edit Open source code file in text editor - examples Look at and run pre-configured example problems - - 'seisflows [command] -h' for more detailed descriptions of each command. + usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]] + {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples} + ... + + ================================================================================ + + SeisFlows: Waveform Inversion Package + + ================================================================================ + + optional arguments: + -h, --help show this help message and exit + -w [WORKDIR], --workdir [WORKDIR] + The SeisFlows working directory, default: cwd + -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE] + Parameters file, default: 'parameters.yaml' + + command: + Available SeisFlows arguments and their intended usages + + setup Setup working directory from scratch + configure Fill parameter file with defaults + swap Swap module parameters in an existing parameter file + init Initiate working environment + submit Submit initial workflow to system + resume Re-submit previous workflow to system + restart Remove current environment and submit new workflow + clean Remove files relating to an active working environment + par View and edit SeisFlows parameter file + sempar View and edit SPECFEM parameter file + check Check state of an active environment + print Print information related to an active environment + reset Reset modules within an active state + debug Start interactive debug environment + examples Look at and run pre-configured example problems + + 'seisflows [command] -h' for more detailed descriptions of each command. .. code:: ipython3 @@ -604,7 +577,7 @@ line commands. .. parsed-literal:: creating parameter file: parameters.yaml - parameters.yaml specfem2d specfem2d_workdir + parameters.yaml specfem2d specfem2d_workdir .. code:: ipython3 @@ -615,38 +588,36 @@ line commands. .. parsed-literal:: - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print module - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # WORKFLOW (str): The method for running SeisFlows; equivalent to main() - # SOLVER (str): External numerical solver to use for waveform simulations - # SYSTEM (str): Computer architecture of the system being used - # OPTIMIZE (str): Optimization algorithm for the inverse problem - # PREPROCESS (str): Preprocessing schema for waveform data - # POSTPROCESS (str): Postprocessing schema for kernels and gradients - # ============================================================================== - WORKFLOW: inversion - SOLVER: specfem2d - SYSTEM: workstation - OPTIMIZE: LBFGS - PREPROCESS: base - POSTPROCESS: base + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: forward + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient .. code:: ipython3 @@ -657,66 +628,47 @@ line commands. .. parsed-literal:: - SEISFLOWS MODULES - ////////////////// - '+': package, '-': module, '*': class - - + SYSTEM - - seisflows - * base - * cluster - * lsf - * slurm - * workstation - - seisflows-super - * chinook - * maui - + PREPROCESS - - seisflows - * base - * pyatoa - - seisflows-super - * pyatoa_nz - + SOLVER - - seisflows - * base - * specfem2d - * specfem3d - * specfem3d_globe - - seisflows-super - * specfem3d_maui - + POSTPROCESS - - seisflows - * base - - seisflows-super - + OPTIMIZE - - seisflows - * LBFGS - * NLCG - * base - - seisflows-super - + WORKFLOW - - seisflows - * base - * inversion - * migration - * test - - seisflows-super - * thrifty_inversion - * thrifty_maui + SEISFLOWS MODULES + ///////////////// + '-': module, '*': class + + - workflow + * forward + * inversion + * migration + - system + * chinook + * cluster + * frontera + * lsf + * maui + * slurm + * workstation + - solver + * specfem + * specfem2d + * specfem3d + * specfem3d_globe + - preprocess + * default + * pyaflowa + - optimize + * LBFGS + * NLCG + * gradient .. code:: ipython3 # For this example, we can use most of the default modules, however we need to # change the SOLVER module to let SeisFlows know we're using SPECFEM2D (as opposed to 3D) - ! seisflows par solver specfem2d + ! seisflows par workflow inversion ! cat parameters.yaml .. parsed-literal:: - SOLVER: specfem2d -> specfem2d + workflow: forward -> inversion # ////////////////////////////////////////////////////////////////////////////// # # SeisFlows YAML Parameter File @@ -728,7 +680,7 @@ line commands. # # .. rubric:: # - To determine available options for modules listed below, run: - # > seisflows print module + # > seisflows print modules # - To auto-fill with docstrings and default values (recommended), run: # > seisflows configure # - To set values as NoneType, use: null @@ -736,36 +688,30 @@ line commands. # # MODULES # /////// - # WORKFLOW (str): The method for running SeisFlows; equivalent to main() - # SOLVER (str): External numerical solver to use for waveform simulations - # SYSTEM (str): Computer architecture of the system being used - # OPTIMIZE (str): Optimization algorithm for the inverse problem - # PREPROCESS (str): Preprocessing schema for waveform data - # POSTPROCESS (str): Postprocessing schema for kernels and gradients + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem # ============================================================================== - WORKFLOW: inversion - SOLVER: specfem2d - SYSTEM: workstation - OPTIMIZE: LBFGS - PREPROCESS: base - POSTPROCESS: base + workflow: inversion + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient -------------- The ``seisflows configure`` command populates the parameter file based on the chosen modules. SeisFlows will attempt to fill in all parameters -with default values when possible, but values that the User **MUST** set -will be denoted by the value: +with reasonable default values. Docstrings above each module show +descriptions and available options for each of these parameters. - **!!! REQUIRED PARAMETER !!!** - -SeisFlows will not work until all of these required parameters are set -by the User. Docstrings above each module show descriptions and -available options for each of these parameters. In the follownig cell we -will use the ``seisflows par`` command to edit the parameters.yaml file -directly, replacing each of the required parameters with a chosen value. -Comments next to each evaluation describe the choice for each. +In the follownig cell we will use the ``seisflows par`` command to edit +the parameters.yaml file directly, replacing some default parameters +with our own values. Comments next to each evaluation describe the +choice for each. .. code:: ipython3 @@ -775,371 +721,442 @@ Comments next to each evaluation describe the choice for each. .. parsed-literal:: - filling parameters.yaml w/ default values - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print module - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # WORKFLOW (str): The method for running SeisFlows; equivalent to main() - # SOLVER (str): External numerical solver to use for waveform simulations - # SYSTEM (str): Computer architecture of the system being used - # OPTIMIZE (str): Optimization algorithm for the inverse problem - # PREPROCESS (str): Preprocessing schema for waveform data - # POSTPROCESS (str): Postprocessing schema for kernels and gradients - # ============================================================================== - WORKFLOW: inversion - SOLVER: specfem2d - SYSTEM: workstation - OPTIMIZE: LBFGS - PREPROCESS: base - POSTPROCESS: base - - # ============================================================================= - # SYSTEM - # ////// - # TITLE (str): - # The name used to submit jobs to the system, defaults to the name of the - # working directory - # PRECHECK (list): - # A list of parameters that will be displayed to stdout before 'submit' or - # 'resume' is run. Useful for manually reviewing important parameters prior - # to system submission - # LOG_LEVEL (str): - # Verbosity output of SF logger. Available from least to most verbosity: - # 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG' - # VERBOSE (bool): - # Level of verbosity provided to the output log. If True, log statements - # will declare what module/class/function they are being called from. - # Useful for debugging but also very noisy. - # MPIEXEC (str): - # Function used to invoke executables on the system. For example 'srun' on - # SLURM systems, or './' on a workstation. If left blank, will guess based - # on the system. - # NTASK (int): - # Number of separate, individual tasks. Also equal to the number of desired - # sources in workflow - # NPROC (int): - # Number of processor to use for each simulation - # ============================================================================= - TITLE: sf_specfem2d_example - PRECHECK: - - TITLE - LOG_LEVEL: DEBUG - VERBOSE: False - MPIEXEC: - NTASK: 1 - NPROC: 1 - - # ============================================================================= - # PREPROCESS - # ////////// - # MISFIT (str): - # Misfit function for waveform comparisons, for available see - # seisflows.plugins.misfit - # BACKPROJECT (str): - # Backprojection function for migration, for available see - # seisflows.plugins.adjoint - # NORMALIZE (list): - # Data normalization parameters used to normalize the amplitudes of - # waveforms. Choose from two sets: ENORML1: normalize per event by L1 of - # traces; OR ENORML2: normalize per event by L2 of traces; AND TNORML1: - # normalize per trace by L1 of itself; OR TNORML2: normalize per trace by - # L2 of itself - # FILTER (str): - # Data filtering type, available options are:BANDPASS (req. MIN/MAX - # PERIOD/FREQ);LOWPASS (req. MAX_FREQ or MIN_PERIOD); HIGHPASS (req. - # MIN_FREQ or MAX_PERIOD) - # MIN_PERIOD (float): - # Minimum filter period applied to time series.See also MIN_FREQ, MAX_FREQ, - # if User defines FREQ parameters, they will overwrite PERIOD parameters. - # MAX_PERIOD (float): - # Maximum filter period applied to time series.See also MIN_FREQ, MAX_FREQ, - # if User defines FREQ parameters, they will overwrite PERIOD parameters. - # MIN_FREQ (float): - # Maximum filter frequency applied to time series.See also MIN_PERIOD, - # MAX_PERIOD, if User defines FREQ parameters, they will overwrite PERIOD - # parameters. - # MAX_FREQ (float): - # Maximum filter frequency applied to time series,See also MIN_PERIOD, - # MAX_PERIOD, if User defines FREQ parameters, they will overwrite PERIOD - # parameters. - # MUTE (list): - # Data mute parameters used to zero out early / late arrivals or offsets. - # Choose any number of: EARLY: mute early arrivals; LATE: mute late - # arrivals; SHORT: mute short source-receiver distances; LONG: mute long - # source-receiver distances - # ============================================================================= - MISFIT: waveform - BACKPROJECT: null - NORMALIZE: [] - FILTER: null - MIN_PERIOD: - MAX_PERIOD: - MIN_FREQ: - MAX_FREQ: - MUTE: [] - - # ============================================================================= - # SOLVER - # ////// - # MATERIALS (str): - # Material parameters used to define model. Available: ['ELASTIC': Vp, Vs, - # 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] - # DENSITY (str): - # How to treat density during inversion. Available: ['CONSTANT': Do not - # update density, 'VARIABLE': Update density] - # ATTENUATION (str): - # If True, turn on attenuation during forward simulations, otherwise set - # attenuation off. Attenuation is always off for adjoint simulations. - # COMPONENTS (str): - # Components used to generate data, formatted as a single string, e.g. ZNE - # or NZ or E - # SOLVERIO (int): - # The format external solver files. Available: ['fortran_binary', 'adios'] - # NT (float): - # Number of time steps set in the SPECFEM Par_file - # DT (float): - # Time step or delta set in the SPECFEM Par_file - # F0 (float): - # Dominant source frequency - # FORMAT (float): - # Format of synthetic waveforms used during workflow, available options: - # ['ascii', 'su'] - # SOURCE_PREFIX (str): - # Prefix of SOURCE files in path SPECFEM_DATA. By default, 'SOURCE' for - # SPECFEM2D - # ============================================================================= - MATERIALS: !!! REQUIRED PARAMETER !!! - DENSITY: !!! REQUIRED PARAMETER !!! - ATTENUATION: !!! REQUIRED PARAMETER !!! - COMPONENTS: ZNE - SOLVERIO: fortran_binary - NT: !!! REQUIRED PARAMETER !!! - DT: !!! REQUIRED PARAMETER !!! - F0: !!! REQUIRED PARAMETER !!! - FORMAT: !!! REQUIRED PARAMETER !!! - SOURCE_PREFIX: SOURCE - - # ============================================================================= - # POSTPROCESS - # /////////// - # SMOOTH_H (float): - # Gaussian half-width for horizontal smoothing in units of meters. If 0., - # no smoothing applied - # SMOOTH_V (float): - # Gaussian half-width for vertical smoothing in units of meters - # TASKTIME_SMOOTH (int): - # Large radii smoothing may take longer than normal tasks. Allocate - # additional smoothing task time as a multiple of TASKTIME - # ============================================================================= - SMOOTH_H: 0.0 - SMOOTH_V: 0.0 - TASKTIME_SMOOTH: 1 - - # ============================================================================= - # OPTIMIZE - # //////// - # LINESEARCH (str): - # Algorithm to use for line search, see seisflows.plugins.line_search for - # available choices - # PRECOND (str): - # Algorithm to use for preconditioning gradients, see - # seisflows.plugins.preconds for available choices - # STEPCOUNTMAX (int): - # Max number of trial steps in line search before a change in line search - # behavior - # STEPLENINIT (float): - # Initial line search step length, as a fraction of current model - # parameters - # STEPLENMAX (float): - # Max allowable step length, as a fraction of current model parameters - # LBFGSMEM (int): - # Max number of previous gradients to retain in local memory - # LBFGSMAX (int): - # LBFGS periodic restart interval, between 1 and 'inf' - # LBFGSTHRESH (float): - # LBFGS angle restart threshold - # ============================================================================= - LINESEARCH: Backtrack - PRECOND: - STEPCOUNTMAX: 10 - STEPLENINIT: 0.05 - STEPLENMAX: 0.5 - LBFGSMEM: 3 - LBFGSMAX: inf - LBFGSTHRESH: 0.0 - - # ============================================================================= - # WORKFLOW - # //////// - # CASE (str): - # Type of inversion, available: ['data': real data inversion, 'synthetic': - # synthetic-synthetic inversion] - # RESUME_FROM (str): - # Name of task to resume inversion from - # STOP_AFTER (str): - # Name of task to stop inversion after finishing - # SAVEMODEL (bool): - # Save final model files after each iteration - # SAVEGRADIENT (bool): - # Save gradient files after each iteration - # SAVEKERNELS (bool): - # Save event kernel files after each iteration - # SAVETRACES (bool): - # Save waveform traces after each iteration - # SAVERESIDUALS (bool): - # Save waveform residuals after each iteration - # SAVEAS (str): - # Format to save models, gradients, kernels. Available: ['binary': save - # files in native SPECFEM .bin format, 'vector': save files as NumPy .npy - # files, 'both': save as both binary and vectors] - # BEGIN (int): - # First iteration of workflow, 1 <= BEGIN <= inf - # END (int): - # Last iteration of workflow, BEGIN <= END <= inf - # ============================================================================= - CASE: !!! REQUIRED PARAMETER !!! - RESUME_FROM: - STOP_AFTER: - SAVEMODEL: True - SAVEGRADIENT: True - SAVEKERNELS: False - SAVETRACES: False - SAVERESIDUALS: False - SAVEAS: binary - BEGIN: 1 - END: !!! REQUIRED PARAMETER !!! - - # ============================================================================= - # PATHS - # ///// - # SCRATCH: - # scratch path to hold temporary data during workflow - # OUTPUT: - # directory to save workflow outputs to disk - # SYSTEM: - # scratch path to hold any system related data - # LOCAL: - # path to local data to be used during workflow - # LOGFILE: - # the main output log file where all processes will track their status - # SOLVER: - # scratch path to hold solver working directories - # SPECFEM_BIN: - # path to the SPECFEM binary executables - # SPECFEM_DATA: - # path to the SPECFEM DATA/ directory containing the 'Par_file', 'STATIONS' - # file and 'CMTSOLUTION' files - # DATA: - # path to data available to workflow - # MASK: - # Directory to mask files for gradient masking - # OPTIMIZE: - # scratch path to store data related to nonlinear optimization - # MODEL_INIT: - # location of the initial model to be used for workflow - # MODEL_TRUE: - # Target model to be used for PAR.CASE == 'synthetic' - # FUNC: - # scratch path to store data related to function evaluations - # GRAD: - # scratch path to store data related to gradient evaluations - # HESS: - # scratch path to store data related to Hessian evaluations - # ============================================================================= - PATHS: - SCRATCH: /home/bchow/Work/work/sf_specfem2d_example/scratch - OUTPUT: /home/bchow/Work/work/sf_specfem2d_example/output - SYSTEM: /home/bchow/Work/work/sf_specfem2d_example/scratch/system - LOCAL: - LOGFILE: /home/bchow/Work/work/sf_specfem2d_example/output_sf.txt - SOLVER: /home/bchow/Work/work/sf_specfem2d_example/scratch/solver - SPECFEM_BIN: !!! REQUIRED PATH !!! - SPECFEM_DATA: !!! REQUIRED PATH !!! - DATA: - MASK: - OPTIMIZE: /home/bchow/Work/work/sf_specfem2d_example/scratch/optimize - MODEL_INIT: !!! REQUIRED PATH !!! - MODEL_TRUE: - FUNC: /home/bchow/Work/work/sf_specfem2d_example/scratch/scratch - GRAD: /home/bchow/Work/work/sf_specfem2d_example/scratch/evalgrad - HESS: /home/bchow/Work/work/sf_specfem2d_example/scratch/evalhess - - -.. code:: ipython3 - - # We can check which parameters we will NEED to fill out before running the workflow with the --required flag - ! seisflows par --required - - -.. parsed-literal:: - - !!! REQUIRED PARAMETER !!! - ========================== - MATERIALS - DENSITY - ATTENUATION - NT - DT - F0 - FORMAT - CASE - END - !!! REQUIRED PATH !!! - ===================== - SPECFEM_BIN - SPECFEM_DATA - MODEL_INIT + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: inversion + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient + # ============================================================================= + # + # Forward Workflow + # ---------------- + # Run forward solver in parallel and (optionally) calculate + # data-synthetic misfit and adjoint sources. + # + # Parameters + # ---------- + # :type modules: list of module + # :param modules: instantiated SeisFlows modules which should have been + # generated by the function `seisflows.config.import_seisflows` with a + # parameter file generated by seisflows.configure + # :type data_case: str + # :param data_case: How to address 'data' in the workflow, available options: + # 'data': real data will be provided by the user in + # `path_data/{source_name}` in the same format that the solver will + # produce synthetics (controlled by `solver.format`) OR + # synthetic': 'data' will be generated as synthetic seismograms using + # a target model provided in `path_model_true`. If None, workflow will + # not attempt to generate data. + # :type stop_after: str + # :param stop_after: optional name of task in task list (use + # `seisflows print tasks` to get task list for given workflow) to stop + # workflow after, allowing user to prematurely stop a workflow to explore + # intermediate results or debug. + # :type export_traces: bool + # :param export_traces: export all waveforms that are generated by the + # external solver to `path_output`. If False, solver traces stored in + # scratch may be discarded at any time in the workflow + # :type export_residuals: bool + # :param export_residuals: export all residuals (data-synthetic misfit) that + # are generated by the external solver to `path_output`. If False, + # residuals stored in scratch may be discarded at any time in the workflow + # + # + # Migration Workflow + # ------------------ + # Run forward and adjoint solver to produce event-dependent misfit kernels. + # Sum and postprocess kernels to produce gradient. In seismic exploration + # this is 'reverse time migration'. + # + # Parameters + # ---------- + # :type export_gradient: bool + # :param export_gradient: export the gradient after it has been generated + # in the scratch directory. If False, gradient can be discarded from + # scratch at any time in the workflow + # :type export_kernels: bool + # :param export_kernels: export each sources event kernels after they have + # been generated in the scratch directory. If False, gradient can be + # discarded from scratch at any time in the workflow + # + # + # Inversion Workflow + # ------------------ + # Peforms iterative nonlinear inversion using the machinery of the Forward + # and Migration workflows, as well as a built-in optimization library. + # + # Parameters + # ---------- + # :type start: int + # :param start: start inversion workflow at this iteration. 1 <= start <= inf + # :type end: int + # :param end: end inversion workflow at this iteration. start <= end <= inf + # :type iteration: int + # :param iteration: The current iteration of the workflow. If NoneType, takes + # the value of `start` (i.e., first iteration of the workflow). User can + # also set between `start` and `end` to resume a failed workflow. + # :type thrifty: bool + # :param thrifty: a thrifty inversion skips the costly intialization step + # (i.e., forward simulations and misfit quantification) if the final + # forward simulations from the previous iterations line search can be + # used in the current one. Requires L-BFGS optimization. + # :type export_model: bool + # :param export_model: export best-fitting model from the line search to disk. + # If False, new models can be discarded from scratch at any time. + # + # + # ============================================================================= + data_case: data + stop_after: null + export_traces: False + export_residuals: False + export_gradient: False + export_kernels: False + start: 1 + end: 1 + export_model: True + thrifty: False + iteration: 1 + # ============================================================================= + # + # Workstation System + # ------------------ + # Runs tasks in serial on a local machine. + # + # Parameters + # ---------- + # :type ntask: int + # :param ntask: number of individual tasks/events to run during workflow. + # Must be <= the number of source files in `path_specfem_data` + # :type nproc: int + # :param nproc: number of processors to use for each simulation + # :type log_level: str + # :param log_level: logger level to pass to logging module. + # Available: 'debug', 'info', 'warning', 'critical' + # :type verbose: bool + # :param verbose: if True, formats the log messages to include the file + # name, line number and message type. Useful for debugging but + # also very verbose. + # + # + # ============================================================================= + ntask: 1 + nproc: 1 + log_level: DEBUG + verbose: False + # ============================================================================= + # + # Solver SPECFEM + # -------------- + # Generalized SPECFEM interface to manipulate SPECFEM2D/3D/3D_GLOBE w/ Python + # + # Parameters + # ---------- + # :type data_format: str + # :param data_format: data format for reading traces into memory. + # Available: ['SU': seismic unix format, 'ASCII': human-readable ascii] + # :type materials: str + # :param materials: Material parameters used to define model. Available: + # ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] + # :type density: bool + # :param density: How to treat density during inversion. If True, updates + # density during inversion. If False, keeps it constant. + # TODO allow density scaling during an inversion + # :type attenuation: bool + # :param attenuation: How to treat attenuation during inversion. + # if True, turns on attenuation during forward simulations only. If + # False, attenuation is always set to False. Requires underlying + # attenution (Q_mu, Q_kappa) model + # :type smooth_h: float + # :param smooth_h: Gaussian half-width for horizontal smoothing in units + # of meters. If 0., no smoothing applied + # :type smooth_h: float + # :param smooth_v: Gaussian half-width for vertical smoothing in units + # of meters. + # :type components: str + # :param components: components to consider and tag data with. Should be + # string of letters such as 'RTZ' + # :type solver_io: str + # :param solver_io: format of model/kernel/gradient files expected by the + # numerical solver. Available: ['fortran_binary': default .bin files]. + # TODO: ['adios': ADIOS formatted files] + # :type source_prefix: str + # :param source_prefix: prefix of source/event/earthquake files. If None, + # will attempt to guess based on the specific solver chosen. + # :type mpiexec: str + # :param mpiexec: MPI executable used to run parallel processes. Should also + # be defined for the system module + # + # + # Solver SPECFEM2D + # ---------------- + # SPECFEM2D-specific alterations to the base SPECFEM module + # + # Parameters + # ---------- + # :type source_prefix: str + # :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults + # to 'SOURCE' + # :type multiples: bool + # :param multiples: set an absorbing top-boundary condition + # + # + # ============================================================================= + data_format: ascii + materials: acoustic + density: False + attenuation: False + smooth_h: 0.0 + smooth_v: 0.0 + components: ZNE + source_prefix: SOURCE + multiples: False + # ============================================================================= + # + # Default Preprocess + # ------------------ + # Data processing for seismic traces, with options for data misfit, + # filtering, normalization and muting. + # + # Parameters + # ---------- + # :type data_format: str + # :param data_format: data format for reading traces into memory. For + # available see: seisflows.plugins.preprocess.readers + # :type misfit: str + # :param misfit: misfit function for waveform comparisons. For available + # see seisflows.plugins.preprocess.misfit + # :type backproject: str + # :param backproject: backprojection function for migration, or the + # objective function in FWI. For available see + # seisflows.plugins.preprocess.adjoint + # :type normalize: str + # :param normalize: Data normalization parameters used to normalize the + # amplitudes of waveforms. Choose from two sets: + # ENORML1: normalize per event by L1 of traces; OR + # ENORML2: normalize per event by L2 of traces; + # & + # TNORML1: normalize per trace by L1 of itself; OR + # TNORML2: normalize per trace by L2 of itself + # :type filter: str + # :param filter: Data filtering type, available options are: + # BANDPASS (req. MIN/MAX PERIOD/FREQ); + # LOWPASS (req. MAX_FREQ or MIN_PERIOD); + # HIGHPASS (req. MIN_FREQ or MAX_PERIOD) + # :type min_period: float + # :param min_period: Minimum filter period applied to time series. + # See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they + # will overwrite PERIOD parameters. + # :type max_period: float + # :param max_period: Maximum filter period applied to time series. See + # also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will + # overwrite PERIOD parameters. + # :type min_freq: float + # :param min_freq: Maximum filter frequency applied to time series, + # See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, + # they will overwrite PERIOD parameters. + # :type max_freq: float + # :param max_freq: Maximum filter frequency applied to time series, + # See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, + # they will overwrite PERIOD parameters. + # :type mute: list + # :param mute: Data mute parameters used to zero out early / late + # arrivals or offsets. Choose any number of: + # EARLY: mute early arrivals; + # LATE: mute late arrivals; + # SHORT: mute short source-receiver distances; + # LONG: mute long source-receiver distances + # + # + # ============================================================================= + misfit: waveform + adjoint: waveform + normalize: [] + filter: null + min_period: null + max_period: null + min_freq: null + max_freq: null + mute: [] + early_slope: null + early_const: null + late_slope: null + late_const: null + short_dist: null + + # ============================================================================= + # + # Gradient Optimization + # --------------------- + # Gradient/steepest descent optimization algorithm. + # + # Parameters + # ---------- + # :type line_search_method: str + # :param line_search_method: chosen line_search algorithm. Currently available + # are 'bracket' and 'backtrack'. See seisflows.plugins.line_search + # for all available options + # :type preconditioner: str + # :param preconditioner: algorithm for preconditioning gradients. Currently + # available: 'diagonal'. Requires `path_preconditioner` to point to a + # set of files that define the preconditioner, formatted the same as the + # input model + # :type step_count_max: int + # :param step_count_max: maximum number of trial steps to perform during + # the line search before a change in line search behavior is + # considered, or a line search is considered to have failed. + # :type step_len_init: float + # :param step_len_init: initial line search step length guess, provided + # as a fraction of current model parameters. + # :type step_len_max: float + # :param step_len_max: maximum allowable step length during the line + # search. Set as a fraction of the current model parameters + # + # + # ============================================================================= + preconditioner: null + step_count_max: 10 + step_len_init: 0.05 + step_len_max: 0.5 + line_search_method: bracket + # ============================================================================= + # + # Paths + # ----- + # :type workdir: str + # :param workdir: working directory in which to look for data and store + # results. Defaults to current working directory + # :type path_output: str + # :param path_output: path to directory used for permanent storage on disk. + # Results and exported scratch files are saved here. + # :type path_data: str + # :param path_data: path to any externally stored data required by the solver + # :type path_state_file: str + # :param path_state_file: path to a text file used to track the current + # status of a workflow (i.e., what functions have already been completed), + # used for checkpointing and resuming workflows + # :type path_model_init: str + # :param path_model_init: path to the starting model used to calculate the + # initial misfit. Must match the expected `solver_io` format. + # :type path_model_true: str + # :param path_model_true: path to a target model if `case`=='synthetic' and + # a set of synthetic 'observations' are required for workflow. + # :type path_eval_grad: str + # :param path_eval_grad: scratch path to store files for gradient evaluation, + # including models, kernels, gradient and residuals. + # :type path_mask: str + # :param path_mask: optional path to a masking function which is used to + # mask out or scale parts of the gradient. The user-defined mask must + # match the file format of the input model (e.g., .bin files). + # :type path_eval_func: str + # :param path_eval_func: scratch path to store files for line search objective + # function evaluations, including models, misfit and residuals + # + # :type path_output_log: str + # :param path_output_log: path to a text file used to store the outputs of + # the package wide logger, which are also written to stdout + # :type path_par_file: str + # :param path_par_file: path to parameter file which is used to instantiate + # the package + # :type path_log_files: str + # :param path_log_files: path to a directory where individual log files are + # saved whenever a number of parallel tasks are run on the system. + # + # :type path_data: str + # :param path_data: path to any externally stored data required by the solver + # :type path_specfem_bin: str + # :param path_specfem_bin: path to SPECFEM bin/ directory which + # contains binary executables for running SPECFEM + # :type path_specfem_data: str + # :param path_specfem_data: path to SPECFEM DATA/ directory which must + # contain the CMTSOLUTION, STATIONS and Par_file files used for + # running SPECFEM + # + # :type path_preprocess: str + # :param path_preprocess: scratch path for all preprocessing processes, + # including saving files + # + # :type path_preconditioner: str + # :param path_preconditioner: optional path to a set of preconditioner files + # formatted the same as the input model (or output model of solver). + # Required to exist and contain files if `preconditioner`==True + # + # ============================================================================= + path_workdir: /Users/Chow/Work/work/sf_specfem2d_example + path_scratch: /Users/Chow/Work/work/sf_specfem2d_example/scratch + path_eval_grad: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_grad + path_output: /Users/Chow/Work/work/sf_specfem2d_example/output + path_model_init: null + path_model_true: null + path_state_file: /Users/Chow/Work/work/sf_specfem2d_example/sfstate.txt + path_data: null + path_mask: null + path_eval_func: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_func + path_par_file: /Users/Chow/Work/work/sf_specfem2d_example/parameters.yaml + path_log_files: /Users/Chow/Work/work/sf_specfem2d_example/logs + path_output_log: /Users/Chow/Work/work/sf_specfem2d_example/sflog.txt + path_specfem_bin: null + path_specfem_data: null + path_solver: /Users/Chow/Work/work/sf_specfem2d_example/scratch/solver + path_preconditioner: null .. code:: ipython3 # EDIT THE SEISFLOWS PARAMETER FILE + ! seisflows par ntask 3 # set the number of sources/events to use ! seisflows par materials elastic # how the velocity model is parameterized - ! seisflows par density constant # update density or keep constant + ! seisflows par density False # update density or keep constant ! seisflows par attenuation False - ! seisflows par nt 5000 # set by SPECFEM2D Par_file - ! seisflows par dt .06 # set by SPECFEM2D Par_file - ! seisflows par f0 0.084 # set by SOURCE file - ! seisflows par format ascii # how to output synthetic seismograms - ! seisflows par begin 1 # first iteration - ! seisflows par end 1 # final iteration -- we will only run 1 - ! seisflows par case synthetic # synthetic-synthetic means we need both INIT and TRUE models + ! seisflows par start 1 # first iteration + ! seisflows par end 2 # final iteration -- we will only run 1 + ! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models + ! seisflows par components Y # this default example creates Y-component seismograms + ! seisflows par step_count_max 5 # limit the number of steps in the line search # Use Python syntax here to access path constants - os.system(f"seisflows par specfem_bin {SPECFEM2D_BIN}") # set path to SPECFEM2D binaries - os.system(f"seisflows par specfem_data {SPECFEM2D_DATA}") # set path to SEPCFEM2D DATA/ - os.system(f"seisflows par model_init {SPECFEM2D_MODEL_INIT}") # set path to INIT model - os.system(f"seisflows par model_true {SPECFEM2D_MODEL_TRUE}") # set path to TRUE model + os.system(f"seisflows par path_specfem_bin {SPECFEM2D_BIN}") # set path to SPECFEM2D binaries + os.system(f"seisflows par path_specfem_data {SPECFEM2D_DATA}") # set path to SEPCFEM2D DATA/ + os.system(f"seisflows par path_model_init {SPECFEM2D_MODEL_INIT}") # set path to INIT model + os.system(f"seisflows par path_model_true {SPECFEM2D_MODEL_TRUE}") # set path to TRUE model .. parsed-literal:: - MATERIALS: !!! REQUIRED PARAMETER !!! -> elastic - DENSITY: !!! REQUIRED PARAMETER !!! -> constant - ATTENUATION: !!! REQUIRED PARAMETER !!! -> False - NT: !!! REQUIRED PARAMETER !!! -> 5000 - DT: !!! REQUIRED PARAMETER !!! -> .06 - F0: !!! REQUIRED PARAMETER !!! -> 0.084 - FORMAT: !!! REQUIRED PARAMETER !!! -> ascii - BEGIN: 1 -> 1 - END: !!! REQUIRED PARAMETER !!! -> 1 - CASE: !!! REQUIRED PARAMETER !!! -> synthetic + ntask: 1 -> 3 + materials: acoustic -> elastic + density: False -> False + attenuation: False -> False + start: 1 -> 1 + end: 1 -> 2 + data_case: data -> synthetic + components: ZNE -> Y + step_count_max: 10 -> 5 @@ -1165,96 +1182,14 @@ Par_file. .. parsed-literal:: - MODEL: default -> gll - - -2b. Initialize SF working state -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -The SeisFlows command ``seisflows init`` will generate the a SeisFlows -working state without submitting any jobs to the system. This is useful -for testing to see if the user has set an acceptable parameter file, and -if SeisFlows is working as expected. - -The result of running ``seisflows init`` is a collection of pickle (*.p) -and JSON files which define the active Python environment. SeisFlows -relies directly on these files to determine where it is in a workflow. -Throughout an active workflow, SeisFlows will checkpoint itself to -these pickle and JSON files such that if a workflow finishes or crashes, -the User can resume a workflow from the last checkpointed state rather -than needing to restart the workflow. - - **DEBUG MODE:** After running ``seisflows init`` you can explore the - SeisFlows working state in an interactive iPython environment by - running ``seisflows debug``. This will open up an iPython environment - in which the active working state is loaded and accessible The debug - mode is invaluable for exploring the SeisFlows working state, - debugging errors, and performing manual manipulations to an otherwise - automated tool. You can try for yourself by running debug mode and - typing ‘preprocess’ to access the active preprocess module. - -.. code:: ipython3 - - os.chdir(WORKDIR) - ! seisflows init - ! ls output - - -.. parsed-literal:: - - instantiating SeisFlows working state in directory: output - seisflows_optimize.p seisflows_postprocess.p seisflows_system.p - seisflows_parameters.json seisflows_preprocess.p seisflows_workflow.p - seisflows_paths.json seisflows_solver.p - - -.. code:: ipython3 - - # All of the parameters defined in parameters.yaml are saved in this - # internally-used JSON file - ! head output/seisflows_parameters.json - - -.. parsed-literal:: - - { - "ATTENUATION": false, - "BACKPROJECT": null, - "BEGIN": 1, - "CASE": "synthetic", - "COMPONENTS": "ZNE", - "DENSITY": "constant", - "DT": 0.06, - "END": 1, - "F0": 0.084, - - -.. code:: ipython3 - - # Similarly, paths that SeisFlows uses to navigate the system are stored - # in the seisflows_paths.json file - ! head output/seisflows_paths.json - - -.. parsed-literal:: - - { - "DATA": null, - "FUNC": "/home/bchow/Work/work/sf_specfem2d_example/scratch/scratch", - "GRAD": "/home/bchow/Work/work/sf_specfem2d_example/scratch/evalgrad", - "HESS": "/home/bchow/Work/work/sf_specfem2d_example/scratch/evalhess", - "LOCAL": null, - "LOGFILE": "/home/bchow/Work/work/sf_specfem2d_example/output_sf.txt", - "MASK": null, - "MODEL_INIT": "/home/bchow/Work/work/sf_specfem2d_example/specfem2d_workdir/OUTPUT_FILES_INIT", - "MODEL_TRUE": "/home/bchow/Work/work/sf_specfem2d_example/specfem2d_workdir/OUTPUT_FILES_TRUE", + MODEL: default -> gll 3. Run SeisFlows -~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~ -In this Section we will run SeisFlows to generate synthetic -seismograms, kernels, a gradient, and an updated velocity model. +In this Section we will run SeisFlows to generate synthetic seismograms, +kernels, a gradient, and an updated velocity model. 3a. Forward simulations ^^^^^^^^^^^^^^^^^^^^^^^ @@ -1265,216 +1200,157 @@ However the package does allow the User flexibility in how they want the workflow to behave. For example, we can run our workflow in stages by taking advantage of -the ``stop_after`` and ``resume_from`` parameters. As their names -suggest, these parameters allow us to stop and resume the workflow at -certain stages (i.e., functions in workflow.main()). +the ``stop_after`` parameter. As its name suggests, ``stop_after`` +allows us to stop a workflow prematurely so that we may stop and look at +results, or debug a failing workflow. -The available arguments for ``stop_after`` and ``resume_from`` are -discovered by running the command: ``seisflows print flow``, which tells -us what functions will be run from main(). +The ``seisflows print flow`` command tells us what functions we can use +for the ``stop_after`` parameter. .. code:: ipython3 - ! seisflows print flow + os.chdir(WORKDIR) + ! seisflows print tasks .. parsed-literal:: - SEISFLOWS WORKFLOW MAIN - //////////////////////// - Flow arguments for - - 1: setup - 2: initialize - 3: evaluate_gradient - 4: write_gradient - 5: compute_direction - 6: line_search - 7: finalize - 8: clean + SEISFLOWS WORKFLOW TASK LIST + //////////////////////////// + Task list for + + 1: evaluate_initial_misfit + 2: run_adjoint_simulations + 3: postprocess_event_kernels + 4: evaluate_gradient_from_kernels + 5: initialize_line_search + 6: perform_line_search + 7: finalize_iteration -------------- -In an inversion (the workflow we have selected) the flow arguments are -described as: +In the Inversion workflow, the tasks listed are described as follows: -0. **setup:** Not technically listed in the flow arguments, runs setup() - for all SeisFlows modules. If running a synthetic-synthetic - workflow, solver.setup() will generate “data” by running the forward - solver using MODEL_TRUE -1. **initialize:** +1. **evaluate_initial_misfit:** - a. Call numerical solver to run forward simulations using MODEL_INIT, + a. Prepare data for inversion by either copying data from disk or + generating ‘synthetic data’ with MODEL_TRUE + b. Call numerical solver to run forward simulations using MODEL_INIT, generating synthetics - b. Evaluate the objective function by performing waveform comparisons - c. Prepare ``evaluate gradient`` step by generating adjoint sources - and auxiliary files + c. Evaluate the objective function by performing waveform comparisons + d. Prepare ``run_adjoint_simulations`` step by generating adjoint + sources and auxiliary files -2. **evaluate_gradient:** Call numerical solver to run adjoint +2. **run_adjoint_simulations:** Call numerical solver to run adjoint simulation, generating kernels -3. **write_gradient:** Combine all event kernels into a misfit kernel. - Optionally smooth and mask the misfit kernel -4. **compute_direction:** Call on the optimization library to scale the - misfit kernel into the gradient and compute a search direction -5. **line_search:** Perform a line search by algorithmically scaling the - gradient and evaluating the misfit function (forward simulations and - misfit quantification) until misfit is acceptably reduced -6. **finalize:** Run any finalization steps such as saving traces, - kernels, gradients and models to disk, setting up SeisFlows for any - subsequent iterations. -7. **clean:** Clean the scratch/ directory in preparation for subsequent - i - -Let’s set the ``stop_after`` argument to **initialize**, this will halt -the workflow after the intialization step. We’ll also set the -``verbose`` parameter to ‘False’, to keep the logging format relatively -simple. We will explore the ``verbose``\ ==True option in a later cell. +3. **postprocess_event_kernels:** Combine all event kernels into a + misfit kernel. +4. **evaluate_gradient_from_kernels:** Smooth and mask the misfit kernel + to create the gradient +5. **initialize_line_search:** Call on the optimization library to scale + the gradient by a step length to compute the search direction. + Prepare file structure for line search. +6. **perform_line_search:** Perform a line search by algorithmically + scaling the gradient and evaluating the misfit function (forward + simulations and misfit quantification) until misfit is acceptably + reduced. +7. **finalize_iteration:** Run any finalization steps such as saving + traces, kernels, gradients and models to disk, setting up SeisFlows3 + for any subsequent iterations. Clean the scratch/ directory in + preparation for subsequent iterations + +Let’s set the ``stop_after`` argument to **evaluate_initial_misfit**, +this will halt the workflow after the intialization step. We’ll also set +the ``verbose`` parameter to ‘False’, to keep the logging format +relatively simple. We will explore the ``verbose``\ ==True option in a +later cell. .. code:: ipython3 - ! seisflows par stop_after initialize + ! seisflows par stop_after evaluate_initial_misfit ! seisflows par verbose False .. parsed-literal:: - STOP_AFTER: -> initialize - VERBOSE: False -> False + stop_after: null -> evaluate_initial_misfit + verbose: False -> False -------------- -Now let’s run SeisFlows. There are a few ways to do this: ``submit``, -``resume``, and ``restart`` +Now let’s run SeisFlows. There are two ways to do this: ``submit`` and +``restart`` -1. Since we already ran ``seisflows init``, the ``seisflows submit`` - option will not work, as SeisFlows considers this an active working - state and ``submit`` can only be run on uninitialized working states. -2. To run a workflow in an active working state ``resume`` will load the - current working state from the output/ directory and submit a - workflow given the current parameter file. -3. The ``restart`` command is simply a convenience function that runs +1. ``seisflows submit`` is used to run new workflows and resume stopped + or failed workflows. +2. The ``restart`` command is simply a convenience function that runs ``clean`` (to remove an active working state) and ``submit`` (to - submit a fresh working state). - -Since we haven’t done anything in this working state, we will go with a -modified version of Option 3 by running ``clean`` and then ``submit``. -We’ll use the ``-f`` flag (stands for **‘force’**) to skip over the -standard input prompt that asks the User if they are sure they want to -clean and submit. - -But first we’ll try to run ``seisflows submit`` to show why Option 1 -**will not work**. - -.. code:: ipython3 + submit a fresh workflow). - ! seisflows submit -f - - -.. parsed-literal:: - - 2022-04-29 12:32:17 | initializing SeisFlows in sys.modules - ================================================================================ - WARNING - /////// - Data from previous workflow found in working directory. - - > seisflows restart: delete data and start new workflow - > seisflows resume: resume existing workflow - ================================================================================ - - --------------- - -**Okay, let’s go!** In the following cell we will run the SeisFlows -Inversion workflow. In the output cell we will see the logging -statements outputted by SeisFlows, both to stdout and to the output log -file (defaults to ./output_seisflows.txt) which details the progress of -our inversion +Since this is our first run, we’ll use ``seisflows submit``. .. code:: ipython3 - ! seisflows clean -f - ! seisflows submit -f + ! seisflows submit .. parsed-literal:: + 2022-08-15 16:11:40 (I) | ================================================================================ - CLEAN - ///// - + skipping over: /home/bchow/Work/work/sf_specfem2d_example/parameters.yaml - - deleting file/folder: /home/bchow/Work/work/sf_specfem2d_example/scratch - - deleting file/folder: /home/bchow/Work/work/sf_specfem2d_example/stats - - deleting file/folder: /home/bchow/Work/work/sf_specfem2d_example/output - - deleting file/folder: /home/bchow/Work/work/sf_specfem2d_example/output_sf.txt - - deleting file/folder: /home/bchow/Work/work/sf_specfem2d_example/logs + SETTING UP INVERSION WORKFLOW ================================================================================ - 2022-04-29 12:38:37 | initializing SeisFlows in sys.modules - 2022-04-29 12:38:42 | copying par/log file to: /home/bchow/Work/work/sf_specfem2d_example/logs/output_sf_001.txt - 2022-04-29 12:38:42 | copying par/log file to: /home/bchow/Work/work/sf_specfem2d_example/logs/parameters_001.yaml - 2022-04-29 12:38:42 | exporting current working environment to disk - 2022-04-29 12:38:42 | + 2022-08-15 16:11:47 (D) | running setup for module 'system.Workstation' + 2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_001.txt + 2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_001.yaml + 2022-08-15 16:11:50 (D) | running setup for module 'solver.Specfem2D' + 2022-08-15 16:11:50 (I) | initializing 3 solver directories + 2022-08-15 16:11:50 (D) | initializing solver directory source: 001 + 2022-08-15 16:11:58 (D) | linking source '001' as 'mainsolver' + 2022-08-15 16:11:58 (D) | initializing solver directory source: 002 + 2022-08-15 16:12:04 (D) | initializing solver directory source: 003 + 2022-08-15 16:12:13 (D) | running setup for module 'preprocess.Default' + 2022-08-15 16:12:14 (D) | running setup for module 'optimize.Gradient' + 2022-08-15 16:12:15 (I) | no optimization checkpoint found, assuming first run + 2022-08-15 16:12:16 (I) | re-loading optimization module from checkpoint + 2022-08-15 16:12:16 (I) | //////////////////////////////////////////////////////////////////////////////// - WORKFLOW WILL STOP AFTER FUNC: 'initialize' + RUNNING ITERATION 01 //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:38:42 | + 2022-08-15 16:12:16 (I) | ================================================================================ - STARTING INVERSION WORKFLOW + RUNNING INVERSION WORKFLOW ================================================================================ - 2022-04-29 12:38:42 | - //////////////////////////////////////////////////////////////////////////////// - ITERATION 1 / 1 + 2022-08-15 16:12:16 (I) | //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:38:42 | + EVALUATING MISFIT FOR INITIAL MODEL //////////////////////////////////////////////////////////////////////////////// - PERFORMING MODULE SETUP - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:38:42 | misfit function is: 'waveform' - 2022-04-29 12:38:43 | writing line search history file: - /home/bchow/Work/work/sf_specfem2d_example/stats/line_search.txt - 2022-04-29 12:38:44 | checking poissons ratio for: 'm_new.npy' - 2022-04-29 12:38:44 | model parameters (m_new.npy i01s00): - 2022-04-29 12:38:44 | 5800.00 <= vp <= 5800.00 - 2022-04-29 12:38:44 | 3500.00 <= vs <= 3500.00 - 2022-04-29 12:38:44 | 0.21 <= pr <= 0.21 - 2022-04-29 12:38:46 | setting up solver on system... - 2022-04-29 12:38:46 | checkpointing working environment to disk - 2022-04-29 12:38:47 | exporting current working environment to disk - 2022-04-29 12:38:48 | running task solver.setup 1 times - 2022-04-29 12:38:48 | initializing 1 solver directories - 2022-04-29 12:38:53 | source 001 symlinked as mainsolver - 2022-04-29 12:38:53 | generating 'data' with MODEL_TRUE synthetics - 2022-04-29 12:39:00 | running mesh generation for MODEL_INIT - 2022-04-29 12:39:02 | - ================================================================================ - INITIALIZING INVERSION - ================================================================================ - 2022-04-29 12:39:02 | - EVALUATE OBJECTIVE FUNCTION - -------------------------------------------------------------------------------- - 2022-04-29 12:39:02 | saving model 'm_new.npy' to: - /home/bchow/Work/work/sf_specfem2d_example/scratch/evalgrad/model - 2022-04-29 12:39:03 | evaluating objective function 1 times on system... - 2022-04-29 12:39:03 | checkpointing working environment to disk - 2022-04-29 12:39:05 | exporting current working environment to disk - 2022-04-29 12:39:05 | running task solver.eval_func 1 times - 2022-04-29 12:39:05 | running forward simulations - 2022-04-29 12:39:11 | calling preprocess.prepare_eval_grad() - 2022-04-29 12:39:11 | preparing files for gradient evaluation - 2022-04-29 12:39:11 | exporting residuals to: - /home/bchow/Work/work/sf_specfem2d_example/scratch/evalgrad - 2022-04-29 12:39:12 | summing residuals with preprocess module - 2022-04-29 12:39:12 | saving misfit 1.748E-03 to tag 'f_new.txt' - 2022-04-29 12:39:12 | - ================================================================================ - FINISHED FLOW EXECUTION - ================================================================================ - 2022-04-29 12:39:12 | - ================================================================================ - FINISHED INVERSION WORKFLOW - ================================================================================ + 2022-08-15 16:12:16 (I) | checking initial model parameters + 2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00 + 2022-08-15 16:12:16 (I) | 3500.00 <= vs <= 3500.00 + 2022-08-15 16:12:16 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-15 16:12:16 (I) | checking true/target model parameters + 2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00 + 2022-08-15 16:12:16 (I) | 3550.00 <= vs <= 3550.00 + 2022-08-15 16:12:16 (I) | 5900.00 <= vp <= 5900.00 + 2022-08-15 16:12:16 (I) | preparing observation data for source 001 + 2022-08-15 16:12:16 (I) | running forward simulation w/ target model for 001 + 2022-08-15 16:12:33 (I) | evaluating objective function for source 001 + 2022-08-15 16:12:33 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:12:53 (D) | quantifying misfit with 'Default' + 2022-08-15 16:12:53 (I) | preparing observation data for source 002 + 2022-08-15 16:12:53 (I) | running forward simulation w/ target model for 002 + 2022-08-15 16:13:09 (I) | evaluating objective function for source 002 + 2022-08-15 16:13:09 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:13:31 (D) | quantifying misfit with 'Default' + 2022-08-15 16:13:31 (I) | preparing observation data for source 003 + 2022-08-15 16:13:31 (I) | running forward simulation w/ target model for 003 + 2022-08-15 16:14:16 (I) | evaluating objective function for source 003 + 2022-08-15 16:14:16 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:14:33 (D) | quantifying misfit with 'Default' + 2022-08-15 16:14:33 (I) | stop workflow at `stop_after`: evaluate_initial_misfit .. note:: @@ -1488,28 +1364,16 @@ our inversion .. parsed-literal:: - -48.0000000 0.0000000 - -47.9400000 0.0000000 - -47.8800000 0.0000000 - -47.8200000 0.0000000 - -47.7600000 0.0000000 - -47.7000000 0.0000000 - -47.6400000 0.0000000 - -47.5800000 0.0000000 - -47.5200000 0.0000000 - -47.4600000 0.0000000 - - -.. code:: ipython3 - - # We can also see that we have generated a STATIONS_ADJOINT file, which is required for - # running the adjoint simulations (i.e., evaluate the gradient) - ! head scratch/solver/001/DATA/STATIONS_ADJOINT - - -.. parsed-literal:: - - S0001 AA 180081.4100000 388768.7100000 0.0 0.0 + -48.0000000 0.0000000 + -47.9400000 0.0000000 + -47.8800000 0.0000000 + -47.8200000 0.0000000 + -47.7600000 0.0000000 + -47.7000000 0.0000000 + -47.6400000 0.0000000 + -47.5800000 0.0000000 + -47.5200000 0.0000000 + -47.4600000 0.0000000 3b. Adjoint simulations @@ -1517,162 +1381,150 @@ our inversion Now that we have all the required files for running an adjoint simulation (*.adj waveforms and STATIONS_ADJOINT file), we can continue -with the SeisFlows Inversion workflow. No need to edit the Par_file or -anything like that, SeisFlows will take care of that under the hood. We +with the SeisFlows3 Inversion workflow. No need to edit the Par_file or +anything like that, SeisFlows3 will take care of that under the hood. We simply need to tell the workflow (via the parameters.yaml file) to ``resume_from`` the correct function. We can have a look at these functions again: .. code:: ipython3 - ! seisflows print flow + ! seisflows print tasks .. parsed-literal:: - SEISFLOWS WORKFLOW MAIN - //////////////////////// - Flow arguments for - - 1: setup - 2: initialize - 3: evaluate_gradient - 4: write_gradient - 5: compute_direction - 6: line_search - 7: finalize - 8: clean + SEISFLOWS WORKFLOW TASK LIST + //////////////////////////// + Task list for + + 1: evaluate_initial_misfit + 2: run_adjoint_simulations + 3: postprocess_event_kernels + 4: evaluate_gradient_from_kernels + 5: initialize_line_search + 6: perform_line_search + 7: finalize_iteration .. code:: ipython3 # We'll stop just before the line search so that we can take a look at the files # generated during the middle tasks - ! seisflows par resume_from evaluate_gradient - ! seisflows par stop_after compute_direction + ! seisflows par stop_after evaluate_gradient_from_kernels .. parsed-literal:: - RESUME_FROM: -> evaluate_gradient - STOP_AFTER: initialize -> compute_direction + stop_after: evaluate_initial_misfit -> evaluate_gradient_from_kernels .. code:: ipython3 - # We can use the `seisflows resume` command to continue an active workflow - # again we use the '-f' flag to skip past the user-input stage. - ! seisflows resume -f + # We can use the `seisflows submit` command to continue an active workflow + # The state file created during the first run will tell the workflow to resume from the stopped point in the workflow + ! seisflows submit .. parsed-literal:: - 2022-04-29 12:41:21 | copying par/log file to: /home/bchow/Work/work/sf_specfem2d_example/logs/output_sf_002.txt - 2022-04-29 12:41:21 | copying par/log file to: /home/bchow/Work/work/sf_specfem2d_example/logs/parameters_002.yaml - 2022-04-29 12:41:21 | exporting current working environment to disk - 2022-04-29 12:41:21 | - //////////////////////////////////////////////////////////////////////////////// - WORKFLOW WILL RESUME FROM FUNC: 'evaluate_gradient' - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:41:21 | - //////////////////////////////////////////////////////////////////////////////// - WORKFLOW WILL STOP AFTER FUNC: 'compute_direction' - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:41:21 | + 2022-08-15 16:15:06 (D) | setting iteration==1 from state file + 2022-08-15 16:15:06 (I) | ================================================================================ - STARTING INVERSION WORKFLOW + SETTING UP INVERSION WORKFLOW ================================================================================ - 2022-04-29 12:41:21 | - //////////////////////////////////////////////////////////////////////////////// - ITERATION 1 / 1 - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:41:21 | + 2022-08-15 16:15:16 (D) | running setup for module 'system.Workstation' + 2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_002.txt + 2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_002.yaml + 2022-08-15 16:15:20 (D) | running setup for module 'solver.Specfem2D' + 2022-08-15 16:15:20 (I) | initializing 3 solver directories + 2022-08-15 16:15:22 (D) | running setup for module 'preprocess.Default' + 2022-08-15 16:15:23 (D) | running setup for module 'optimize.Gradient' + 2022-08-15 16:15:25 (I) | re-loading optimization module from checkpoint + 2022-08-15 16:15:27 (I) | re-loading optimization module from checkpoint + 2022-08-15 16:15:27 (I) | //////////////////////////////////////////////////////////////////////////////// - EVALUATING GRADIENT + RUNNING ITERATION 01 //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:41:21 | evaluating gradient 1 times on system... - 2022-04-29 12:41:21 | checkpointing working environment to disk - 2022-04-29 12:41:22 | exporting current working environment to disk - 2022-04-29 12:41:23 | running task solver.eval_grad 1 times - 2022-04-29 12:41:23 | running adjoint simulations - 2022-04-29 12:41:38 | exporting kernels to: - /home/bchow/Work/work/sf_specfem2d_example/scratch/evalgrad - 2022-04-29 12:41:38 | + 2022-08-15 16:15:27 (I) | + ================================================================================ + RUNNING INVERSION WORKFLOW + ================================================================================ + 2022-08-15 16:15:27 (I) | 'evaluate_initial_misfit' has already been run, skipping + 2022-08-15 16:15:27 (I) | //////////////////////////////////////////////////////////////////////////////// - POSTPROCESSING KERNELS + EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:41:38 | processing kernels into gradient on system... - 2022-04-29 12:41:38 | checkpointing working environment to disk - 2022-04-29 12:41:39 | exporting current working environment to disk - 2022-04-29 12:41:39 | running task postprocess.process_kernels 1 times - 2022-04-29 12:41:39 | saving summed kernels to: - /home/bchow/Work/work/sf_specfem2d_example/scratch/evalgrad/kernels/sum - 2022-04-29 12:41:41 | + 2022-08-15 16:15:27 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-15 16:16:11 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-15 16:16:11 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-15 16:16:12 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-15 16:16:59 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-15 16:16:59 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-15 16:16:59 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-15 16:17:45 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-15 16:17:45 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-15 16:17:45 (I) | //////////////////////////////////////////////////////////////////////////////// - COMPUTING SEARCH DIRECTION + GENERATING/PROCESSING MISFIT KERNEL //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:41:41 | computing search direction with L-BFGS - 2022-04-29 12:41:41 | first L-BFGS iteration, setting search direction as inverse gradient - 2022-04-29 12:41:41 | - ================================================================================ - FINISHED FLOW EXECUTION - ================================================================================ - 2022-04-29 12:41:41 | - ================================================================================ - FINISHED INVERSION WORKFLOW - ================================================================================ + 2022-08-15 16:17:45 (I) | combining event kernels into single misfit kernel + 2022-08-15 16:17:47 (I) | scaling gradient to absolute model perturbations + 2022-08-15 16:17:49 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels -------------- -The functions **evaluate_gradient()** through **compute_direction()** -have run adjoint simulations to generate event kernels and sum the -kernels into the misfit kernel. +The function **run_adjoint_simulations()** has run adjoint simulations +to generate event kernels. The functions **postprocess_event_kernels** +and **evaluate_gradient_from_kernels** will have summed and (optionally) +smoothed the kernels to recover the gradient, which will be used to +update our starting model. - **NOTE**: Because we only have one event, our misfit kernel is just - exactly our event kernel. And since we did not specify any smoothing - lenghts (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient - has occurred. + **NOTE**: Since we did not specify any smoothing lenghts + (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has + occurred. -Using the L-BFGS optimization algorithm, SeisFlows has computed a -search direction that will be used in the line search to search for a -best fitting model which optimally reduces the objective function. We -can take a look at where SeisFlows has stored the information relating -to kernel generation and the optimization computation. +Using the gradient-descent optimization algorithm, SeisFlows will now +compute a search direction that will be used in the line search to +search for a best fitting model which optimally reduces the objective +function. We can take a look at where SeisFlows has stored the +information relating to kernel generation and the optimization +computation. .. code:: ipython3 # Gradient evaluation files are stored here, the kernels are stored separately from the gradient incase # the user wants to manually manipulate them - ! ls scratch/evalgrad + ! ls scratch/eval_grad .. parsed-literal:: - gradient kernels model residuals + gradient kernels misfit_kernel model residuals.txt .. code:: ipython3 - # SeisFlows stores all kernels and gradient information as SPECFEM binary (.bin) files - ! ls scratch/evalgrad/gradient + # SeisFlows3 stores all kernels and gradient information as SPECFEM binary (.bin) files + ! ls scratch/eval_grad/gradient .. parsed-literal:: - proc000000_vp_kernel.bin proc000000_vs_kernel.bin + proc000000_vp_kernel.bin proc000000_vs_kernel.bin .. code:: ipython3 # Kernels are stored on a per-event basis, and summed together (sum/). If smoothing was performed, # we would see both smoothed and unsmoothed versions of the misfit kernel - ! ls scratch/evalgrad/kernels + ! ls scratch/eval_grad/kernels .. parsed-literal:: - 001 sum + 001 002 003 .. code:: ipython3 @@ -1685,19 +1537,19 @@ to kernel generation and the optimization computation. .. parsed-literal:: - f_new.txt g_new.npy LBFGS m_new.npy p_new.npy + checkpoint.npz f_new.txt g_new.npz m_new.npz .. code:: ipython3 - p_new = np.load("scratch/optimize/p_new.npy") - print(p_new) + g_new = np.load("scratch/optimize/g_new.npz") + print(g_new["vs_kernel"]) .. parsed-literal:: - [-0.00000000e+00 -0.00000000e+00 -0.00000000e+00 ... -3.96447909e-11 - -2.00156454e-11 -2.61676726e-12] + [[-1.18126331e-12 2.40273470e-12 3.97045036e-11 ... 9.62017688e-11 + 4.21140102e-11 3.96825021e-12]] -------------- @@ -1708,166 +1560,171 @@ to kernel generation and the optimization computation. Let’s finish off the inversion by running through the line search, which will generate new models using the gradient, evaluate the objective function by running forward simulations, and comparing the evaluated -objective function with the value obtained in **initialize**. +objective function with the value obtained in +**evalaute_initial_misfit**. + Satisfactory reduction in the objective function will result in a termination of the line search. We are using a bracketing line search -here (CITE RYANS PAPER), which requires finding models which both -increase and decrease the misfit with respect to the initial evaluation. -Therefore it will likely take more than two trial steps to complete the -line search +here `(Modrak et +al. 2018) `__, +which requires finding models which both increase and decrease the +misfit with respect to the initial evaluation. Therefore it takes +atleast two trial steps to complete the line search. .. code:: ipython3 - ! seisflows par resume_from line_search # resume from the line search - ! seisflows par stop_after finalize # We don't want to run the clean() argument so that we can explore the dir + ! seisflows par stop_after finalize_iteration # We don't want to run the finalize() argument so that we can explore the dir .. parsed-literal:: - RESUME_FROM: evaluate_gradient -> line_search - STOP_AFTER: compute_direction -> finalize + stop_after: evaluate_gradient_from_kernels -> finalize_iteration .. code:: ipython3 - ! seisflows resume -f + ! seisflows submit .. parsed-literal:: - 2022-04-29 12:42:40 | copying par/log file to: /home/bchow/Work/work/sf_specfem2d_example/logs/output_sf_003.txt - 2022-04-29 12:42:40 | copying par/log file to: /home/bchow/Work/work/sf_specfem2d_example/logs/parameters_003.yaml - 2022-04-29 12:42:40 | exporting current working environment to disk - 2022-04-29 12:42:42 | - //////////////////////////////////////////////////////////////////////////////// - WORKFLOW WILL RESUME FROM FUNC: 'line_search' - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:42:42 | - //////////////////////////////////////////////////////////////////////////////// - WORKFLOW WILL STOP AFTER FUNC: 'finalize' - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:42:42 | + 2022-08-15 16:21:55 (D) | setting iteration==1 from state file + 2022-08-15 16:21:55 (I) | ================================================================================ - STARTING INVERSION WORKFLOW + SETTING UP INVERSION WORKFLOW ================================================================================ - 2022-04-29 12:42:42 | + 2022-08-15 16:22:03 (D) | running setup for module 'system.Workstation' + 2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_003.txt + 2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_003.yaml + 2022-08-15 16:22:05 (D) | running setup for module 'solver.Specfem2D' + 2022-08-15 16:22:05 (I) | initializing 3 solver directories + 2022-08-15 16:22:07 (D) | running setup for module 'preprocess.Default' + 2022-08-15 16:22:08 (D) | running setup for module 'optimize.Gradient' + 2022-08-15 16:22:09 (I) | re-loading optimization module from checkpoint + 2022-08-15 16:22:11 (I) | re-loading optimization module from checkpoint + 2022-08-15 16:22:11 (I) | //////////////////////////////////////////////////////////////////////////////// - ITERATION 1 / 1 + RUNNING ITERATION 01 //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:42:42 | + 2022-08-15 16:22:11 (I) | ================================================================================ - CONDUCTING LINE SEARCH (i01s00) + RUNNING INVERSION WORKFLOW ================================================================================ - 2022-04-29 12:42:42 | max step length safeguard is: 5.26E+10 - 2022-04-29 12:42:42 | - EVALUATE BRACKETING LINE SEARCH + 2022-08-15 16:22:11 (I) | 'evaluate_initial_misfit' has already been run, skipping + 2022-08-15 16:22:11 (I) | 'run_adjoint_simulations' has already been run, skipping + 2022-08-15 16:22:11 (I) | 'postprocess_event_kernels' has already been run, skipping + 2022-08-15 16:22:11 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping + 2022-08-15 16:22:11 (I) | initializing 'bracket'ing line search + 2022-08-15 16:22:11 (I) | enforcing max step length safeguard + 2022-08-15 16:22:11 (D) | step length(s) = 0.00E+00 + 2022-08-15 16:22:11 (D) | misfit val(s) = 1.28E-03 + 2022-08-15 16:22:11 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11 + 2022-08-15 16:22:11 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10 + 2022-08-15 16:22:11 (D) | overwriting initial step length, alpha_new=2.32E+09 + 2022-08-15 16:22:11 (I) | trial model 'm_try' parameters: + 2022-08-15 16:22:11 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-15 16:22:11 (I) | 3244.51 <= vs <= 3790.00 + 2022-08-15 16:22:12 (I) | + LINE SEARCH STEP COUNT 01 -------------------------------------------------------------------------------- - 2022-04-29 12:42:42 | step length(s) = 0.00E+00 - 2022-04-29 12:42:42 | misfit val(s) = 1.75E-03 - 2022-04-29 12:42:42 | first iteration, guessing trial step - 2022-04-29 12:42:42 | initial step length safegaurd, setting manual step length - 2022-04-29 12:42:42 | manually set initial step length: 5.26E+09 - 2022-04-29 12:42:42 | checking poissons ratio for: 'm_try.npy' - 2022-04-29 12:42:42 | model parameters (m_try.npy i01s00): - 2022-04-29 12:42:42 | 5800.00 <= vp <= 5800.00 - 2022-04-29 12:42:42 | 3278.69 <= vs <= 3790.00 - 2022-04-29 12:42:42 | 0.13 <= pr <= 0.27 - 2022-04-29 12:42:42 | - //////////////////////////////////////////////////////////////////////////////// - TRIAL STEP COUNT: i01s01 - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:42:42 | - EVALUATE OBJECTIVE FUNCTION - -------------------------------------------------------------------------------- - 2022-04-29 12:42:42 | saving model 'm_try.npy' to: - /home/bchow/Work/work/sf_specfem2d_example/scratch/scratch/model - 2022-04-29 12:42:42 | evaluating objective function 1 times on system... - 2022-04-29 12:42:42 | checkpointing working environment to disk - 2022-04-29 12:42:44 | exporting current working environment to disk - 2022-04-29 12:42:44 | running task solver.eval_func 1 times - 2022-04-29 12:42:44 | running forward simulations - 2022-04-29 12:42:49 | calling preprocess.prepare_eval_grad() - 2022-04-29 12:42:49 | preparing files for gradient evaluation - 2022-04-29 12:42:50 | exporting residuals to: - /home/bchow/Work/work/sf_specfem2d_example/scratch/scratch - 2022-04-29 12:42:50 | summing residuals with preprocess module - 2022-04-29 12:42:50 | saving misfit 9.850E-04 to tag 'f_try.txt' - 2022-04-29 12:42:50 | - EVALUATE BRACKETING LINE SEARCH + 2022-08-15 16:22:12 (I) | evaluating objective function for source 001 + 2022-08-15 16:22:12 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:22:23 (D) | quantifying misfit with 'Default' + 2022-08-15 16:22:23 (I) | evaluating objective function for source 002 + 2022-08-15 16:22:23 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:22:35 (D) | quantifying misfit with 'Default' + 2022-08-15 16:22:35 (I) | evaluating objective function for source 003 + 2022-08-15 16:22:35 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:22:48 (D) | quantifying misfit with 'Default' + 2022-08-15 16:22:48 (D) | misfit for trial model (f_try) == 8.65E-04 + 2022-08-15 16:22:48 (D) | step length(s) = 0.00E+00, 2.32E+09 + 2022-08-15 16:22:48 (D) | misfit val(s) = 1.28E-03, 8.65E-04 + 2022-08-15 16:22:48 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09 + 2022-08-15 16:22:49 (I) | line search model 'm_try' parameters: + 2022-08-15 16:22:49 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-15 16:22:49 (I) | 3086.61 <= vs <= 3969.23 + 2022-08-15 16:22:49 (I) | trial step unsuccessful. re-attempting line search + 2022-08-15 16:22:49 (I) | + LINE SEARCH STEP COUNT 02 -------------------------------------------------------------------------------- - 2022-04-29 12:42:50 | step length(s) = 0.00E+00, 5.26E+09 - 2022-04-29 12:42:50 | misfit val(s) = 1.75E-03, 9.85E-04 - 2022-04-29 12:42:50 | misfit not bracketed, increasing step length - 2022-04-29 12:42:50 | checking poissons ratio for: 'm_try.npy' - 2022-04-29 12:42:50 | model parameters (m_try.npy i01s01): - 2022-04-29 12:42:50 | 5800.00 <= vp <= 5800.00 - 2022-04-29 12:42:50 | 3141.92 <= vs <= 3969.23 - 2022-04-29 12:42:50 | 0.06 <= pr <= 0.29 - 2022-04-29 12:42:50 | retrying with new trial step - 2022-04-29 12:42:50 | - //////////////////////////////////////////////////////////////////////////////// - TRIAL STEP COUNT: i01s02 - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 12:42:50 | - EVALUATE OBJECTIVE FUNCTION + 2022-08-15 16:22:49 (I) | evaluating objective function for source 001 + 2022-08-15 16:22:49 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:23:01 (D) | quantifying misfit with 'Default' + 2022-08-15 16:23:01 (I) | evaluating objective function for source 002 + 2022-08-15 16:23:01 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:23:13 (D) | quantifying misfit with 'Default' + 2022-08-15 16:23:13 (I) | evaluating objective function for source 003 + 2022-08-15 16:23:13 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:23:25 (D) | quantifying misfit with 'Default' + 2022-08-15 16:23:25 (D) | misfit for trial model (f_try) == 1.73E-03 + 2022-08-15 16:23:25 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09 + 2022-08-15 16:23:25 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03 + 2022-08-15 16:23:25 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09 + 2022-08-15 16:23:25 (I) | line search model 'm_try' parameters: + 2022-08-15 16:23:25 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-15 16:23:25 (I) | 3325.01 <= vs <= 3698.63 + 2022-08-15 16:23:25 (I) | trial step unsuccessful. re-attempting line search + 2022-08-15 16:23:25 (I) | + LINE SEARCH STEP COUNT 03 -------------------------------------------------------------------------------- - 2022-04-29 12:42:50 | saving model 'm_try.npy' to: - /home/bchow/Work/work/sf_specfem2d_example/scratch/scratch/model - 2022-04-29 12:42:51 | evaluating objective function 1 times on system... - 2022-04-29 12:42:51 | checkpointing working environment to disk - 2022-04-29 12:42:52 | exporting current working environment to disk - 2022-04-29 12:42:53 | running task solver.eval_func 1 times - 2022-04-29 12:42:53 | running forward simulations - 2022-04-29 12:42:59 | calling preprocess.prepare_eval_grad() - 2022-04-29 12:42:59 | preparing files for gradient evaluation - 2022-04-29 12:42:59 | exporting residuals to: - /home/bchow/Work/work/sf_specfem2d_example/scratch/scratch - 2022-04-29 12:43:00 | summing residuals with preprocess module - 2022-04-29 12:43:00 | saving misfit 1.227E-03 to tag 'f_try.txt' - 2022-04-29 12:43:00 | - EVALUATE BRACKETING LINE SEARCH + 2022-08-15 16:23:25 (I) | evaluating objective function for source 001 + 2022-08-15 16:23:25 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:23:37 (D) | quantifying misfit with 'Default' + 2022-08-15 16:23:37 (I) | evaluating objective function for source 002 + 2022-08-15 16:23:37 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:23:51 (D) | quantifying misfit with 'Default' + 2022-08-15 16:23:51 (I) | evaluating objective function for source 003 + 2022-08-15 16:23:51 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:24:03 (D) | quantifying misfit with 'Default' + 2022-08-15 16:24:04 (D) | misfit for trial model (f_try) == 2.59E-03 + 2022-08-15 16:24:04 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09 + 2022-08-15 16:24:04 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03 + 2022-08-15 16:24:04 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09 + 2022-08-15 16:24:04 (I) | line search model 'm_try' parameters: + 2022-08-15 16:24:04 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-15 16:24:04 (I) | 3189.77 <= vs <= 3852.13 + 2022-08-15 16:24:04 (I) | trial step unsuccessful. re-attempting line search + 2022-08-15 16:24:04 (I) | + LINE SEARCH STEP COUNT 04 -------------------------------------------------------------------------------- - 2022-04-29 12:43:00 | step length(s) = 0.00E+00, 5.26E+09, 8.51E+09 - 2022-04-29 12:43:00 | misfit val(s) = 1.75E-03, 9.85E-04, 1.23E-03 - 2022-04-29 12:43:00 | bracket okay, step length reasonable, pass - 2022-04-29 12:43:00 | checking poissons ratio for: 'm_try.npy' - 2022-04-29 12:43:00 | model parameters (m_try.npy i01s02): - 2022-04-29 12:43:00 | 5800.00 <= vp <= 5800.00 - 2022-04-29 12:43:00 | 3278.69 <= vs <= 3790.00 - 2022-04-29 12:43:00 | 0.13 <= pr <= 0.27 - 2022-04-29 12:43:00 | trial step successful - 2022-04-29 12:43:00 | + 2022-08-15 16:24:04 (I) | evaluating objective function for source 001 + 2022-08-15 16:24:04 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:24:15 (D) | quantifying misfit with 'Default' + 2022-08-15 16:24:15 (I) | evaluating objective function for source 002 + 2022-08-15 16:24:15 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:24:27 (D) | quantifying misfit with 'Default' + 2022-08-15 16:24:27 (I) | evaluating objective function for source 003 + 2022-08-15 16:24:27 (D) | running forward simulation with 'Specfem2D' + 2022-08-15 16:24:39 (D) | quantifying misfit with 'Default' + 2022-08-15 16:24:39 (D) | misfit for trial model (f_try) == 3.46E-03 + 2022-08-15 16:24:39 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09 + 2022-08-15 16:24:39 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03 + 2022-08-15 16:24:39 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit. + 2022-08-15 16:24:39 (I) | line search model 'm_try' parameters: + 2022-08-15 16:24:39 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-15 16:24:39 (I) | 3244.51 <= vs <= 3790.00 + 2022-08-15 16:24:39 (I) | trial step successful. finalizing line search + 2022-08-15 16:24:39 (I) | FINALIZING LINE SEARCH -------------------------------------------------------------------------------- - 2022-04-29 12:43:00 | shifting current model (new) to previous model (old) - 2022-04-29 12:43:00 | setting accepted line search model as current model - 2022-04-29 12:43:00 | current misfit is f_new.txt=9.850E-04 - 2022-04-29 12:43:00 | writing optimization stats to: stats - 2022-04-29 12:43:00 | resetting line search step count to 0 - 2022-04-29 12:43:00 | - ================================================================================ - FINALIZING ITERATION 1 - ================================================================================ - 2022-04-29 12:43:00 | exporting current working environment to disk - 2022-04-29 12:43:01 | saving model 'm_new.npy' to path: - /home/bchow/Work/work/sf_specfem2d_example/output/model_0001 - 2022-04-29 12:43:02 | saving gradient to path: - /home/bchow/Work/work/sf_specfem2d_example/output/gradient_0001 - 2022-04-29 12:43:02 | - ================================================================================ - FINISHED FLOW EXECUTION - ================================================================================ - 2022-04-29 12:43:02 | - ================================================================================ - FINISHED INVERSION WORKFLOW - ================================================================================ + 2022-08-15 16:24:39 (I) | writing optimization stats + 2022-08-15 16:24:39 (I) | renaming current (new) optimization vectors as previous model (old) + 2022-08-15 16:24:39 (I) | setting accepted trial model (try) as current model (new) + 2022-08-15 16:24:39 (I) | misfit of accepted trial model is f=8.645E-04 + 2022-08-15 16:24:39 (I) | resetting line search step count to 0 + 2022-08-15 16:24:39 (I) | + //////////////////////////////////////////////////////////////////////////////// + CLEANING WORKDIR FOR NEXT ITERATION + //////////////////////////////////////////////////////////////////////////////// + 2022-08-15 16:24:41 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow + 2022-08-15 16:24:42 (I) | stop workflow at `stop_after`: finalize_iteration -From the log statements above, we can see that the SeisFlows line -search required 2 trial steps, where it modified values of Vs until -satisfactory reduction in the objective function was met. This was the -final step in the iteration, and so the finalization step made -last-minute preparations for a subsequent iteration. +From the log statements above, we can see that the SeisFlows line search +required 4 trial steps, where it modified values of Vs (shear-wave +velocity) until satisfactory reduction in the objective function was +met. This was the final step in the iteration, and so the finalization +of the line search made preparations for a subsequent iteration. .. code:: ipython3 @@ -1878,49 +1735,34 @@ last-minute preparations for a subsequent iteration. .. parsed-literal:: - alpha.npy f_old.txt g_old.npy m_new.npy p_old.npy - f_new.txt f_try.txt LBFGS m_old.npy + alpha.txt f_old.txt m_new.npz p_old.npz + checkpoint.npz f_try.txt m_old.npz + f_new.txt g_old.npz output_optim.txt .. code:: ipython3 # The stats/ directory contains text files describing the optimization/line search - ! ls stats + ! cat scratch/optimize/output_optim.txt .. parsed-literal:: - factor.txt line_search.txt slope.txt theta.txt - gradient_norm_L1.txt misfit.txt step_count.txt - gradient_norm_L2.txt restarted.txt step_length.txt - - -.. code:: ipython3 - - # For example we can look at the step length chosen for the accepted trial step in the line search - ! cat stats/line_search.txt - - -.. parsed-literal:: - - ITER STEPLEN MISFIT - ========== ========== ========== - 1 0.000e+00 1.748e-03 - 5.261e+09 9.850e-04 - 8.512e+09 1.227e-03 + step_count,step_length,gradient_norm_L1,gradient_norm_L2,misfit,if_restarted,slope,theta + 04,2.323E+09,9.243E-05,1.049E-06,1.279E-03,0,8.263E-13,0.000E+00 4. Conclusions ~~~~~~~~~~~~~~ We’ve now seen how SeisFlows runs an **Inversion** workflow using the -**Specfem2D** solver on a **serial** system (local workstation). More or -less, this is all you need to run SeisFlows with any combination of -modules. The specificities of a system or numerical solver are already -handled internally by SeisFlows, so if you want to use -Specmfe3D_Cartesian as your solver, you would only need to run +**Specfem2D** solver on a **Workstation** system. More or less, this is +all you need to run SeisFlows with any combination of modules. The +specificities of a system or numerical solver are already handled +internally by SeisFlows, so if you want to use Specmfe3D_Cartesian as +your solver, you would only need to run ``seisflows par solver specfem3d`` at the beginning of your workflow -(you will also need to setup your Specfem3D models, similar to what we -did for Specfem2D here). To run on a slurm system like Chinook, you can -run ``seisflows par system chinook``. - +(you will also need to set up your Specfem3D models, similar to what we +did for Specfem2D here). To run on a slurm system like Chinook +(University of Alaska Fairbanks), you can run +``seisflows par system chinook``. diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index a5fefecd..b2fb0f9c 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -45,6 +45,7 @@ class Specfem: :type density: bool :param density: How to treat density during inversion. If True, updates density during inversion. If False, keeps it constant. + TODO allow density scaling during an inversion :type attenuation: bool :param attenuation: How to treat attenuation during inversion. if True, turns on attenuation during forward simulations only. If @@ -232,6 +233,9 @@ def check(self): source_prefix=self.source_prefix, ntask=self.ntask ) + assert(isinstance(self.density, bool)), \ + f"solver `density` must be True (variable) or False (constant)" + @property def source_names(self): """ diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index 992571ff..f285baf8 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -49,7 +49,7 @@ def __init__(self, path=None, fmt="", parameters=None): self.path = path self.fmt = fmt self.model = None - self._parameters = None + self._parameters = parameters self._ngll = None self._nproc = None diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 219eba2d..069023fc 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -197,8 +197,18 @@ def checkpoint(self): Add an additional line in the state file to keep track of iteration, """ super().checkpoint() - with open(self.path.state_file, "a") as f: - f.write(f"iteration: {self.iteration}") + with open(self.path.state_file, "r") as f: + lines = f.readlines() + # Clear out the previous 'iteration' line and add in new + for i, line in enumerate(lines[:]): + if "iteration:" in line: + lines.pop(i) + break + lines.append(f"iteration: {self.iteration}") + + # Rewrite checkpoint file with new iteration line + with open(self.path.state_file, "w") as f: + f.writelines(lines) def evaluate_objective_function(self, save_residuals=False, **kwargs): """ @@ -244,7 +254,7 @@ def evaluate_initial_misfit(self): # solvers path_model = os.path.join(self.path.eval_grad, "model") m_new = self.optimize.load_vector("m_new") - m_new.write(path=path_model, parameters=self.solver._parameters) + m_new.write(path=path_model) # Run forward simulation/misfit quantification with previous # model @@ -270,7 +280,8 @@ def evaluate_gradient_from_kernels(self): """ super().evaluate_gradient_from_kernels() - model = Model(os.path.join(self.path.eval_grad, "model")) + model = Model(os.path.join(self.path.eval_grad, "model"), + parameters=self.solver._parameters) self.optimize.save_vector(name="m_new", m=model) gradient = Model(path=os.path.join(self.path.eval_grad, "gradient")) @@ -309,8 +320,7 @@ def initialize_line_search(self): self.optimize.checkpoint() # Expose model `m_try` to the solver by placing it in eval_func dir. - m_try.write(path=os.path.join(self.path.eval_func, "model"), - parameters=self.solver._parameters) + m_try.write(path=os.path.join(self.path.eval_func, "model")) def perform_line_search(self): """ @@ -407,7 +417,6 @@ def finalize_iteration(self): model = self.optimize.load_vector("m_new") model.write(path=os.path.join(self.path.output, f"M{self.iteration:0>2}"), - parameters=self.solver._parameters ) # Update optimization From 4988dbde3051317a380fc8d717fd4da6f56a07b5 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 16 Aug 2022 15:14:32 -0800 Subject: [PATCH 112/195] finished updating docs notebooks and fixed weird ls coloring issue and replaced all mentions of seisflows3 w/ seisflows. Put under construction tags on docs pages to be created --- docs/design.rst | 17 +- docs/extending.rst | 4 + docs/notebooks/command_line_tool.ipynb | 4 +- docs/notebooks/parameter_file.ipynb | 4 +- .../notebooks/scratch/specfem2d_example.ipynb | 2047 ----------------- docs/notebooks/specfem2d_example.ipynb | 930 +++----- docs/notebooks/working_directory.ipynb | 350 +-- docs/specfem2d_example.rst | 825 ++----- docs/working_directory.rst | 355 +-- 9 files changed, 874 insertions(+), 3662 deletions(-) delete mode 100644 docs/notebooks/scratch/specfem2d_example.ipynb diff --git a/docs/design.rst b/docs/design.rst index 2978e0bd..adac60d2 100644 --- a/docs/design.rst +++ b/docs/design.rst @@ -1,10 +1,13 @@ Design Philosophy ================================= -Although SeisFlows was written with 'Pythonic' style in mind, there are some design -choices within the internal structure of the package that may be unique to SeisFlows. -Throughout this documentation page we point out some of these choices, and provide -detail on why and how they were implemented. This page is intended for developers and -super users who want to explore the source code deeply or edit/extend SeisFlows for other -purposes. -`Page under construction` +.. note:: + Page Under Construction + +Although SeisFlows was written with 'Pythonic' style in mind, there are some +design choices within the internal structure of the package that may be unique +to SeisFlows. Throughout this documentation page we point out some of these +choices, and provide detail on why and how they were implemented. This page is +intended for developers and super users who want to explore the source code +deeply or edit/extend SeisFlows for other purposes. + diff --git a/docs/extending.rst b/docs/extending.rst index 48ece5d8..5e92034d 100644 --- a/docs/extending.rst +++ b/docs/extending.rst @@ -1,5 +1,9 @@ Extending SeisFlows ================================== + +.. note:: + Page Under Construction + The design philosophy of SeisFlows is such that being a user of the codebase more-than-likely requires also becoming a developer, as custom-made subclasses are often required to tailor the functionalities of SeisFlows to a specific diff --git a/docs/notebooks/command_line_tool.ipynb b/docs/notebooks/command_line_tool.ipynb index 558ebe56..4123c3a8 100644 --- a/docs/notebooks/command_line_tool.ipynb +++ b/docs/notebooks/command_line_tool.ipynb @@ -520,7 +520,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -534,7 +534,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.7.12" } }, "nbformat": 4, diff --git a/docs/notebooks/parameter_file.ipynb b/docs/notebooks/parameter_file.ipynb index 5e249fd6..fe727007 100644 --- a/docs/notebooks/parameter_file.ipynb +++ b/docs/notebooks/parameter_file.ipynb @@ -471,7 +471,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -485,7 +485,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.7.12" } }, "nbformat": 4, diff --git a/docs/notebooks/scratch/specfem2d_example.ipynb b/docs/notebooks/scratch/specfem2d_example.ipynb deleted file mode 100644 index 2778a6a8..00000000 --- a/docs/notebooks/scratch/specfem2d_example.ipynb +++ /dev/null @@ -1,2047 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Specfem2D workstation example\n", - "\n", - "To demonstrate the inversion capabilities of SeisFlows, we will run a __Specfem2D synthetic-synthetic example__ on a __local machine__ (tested on a Linux workstation running CentOS 7, and an Apple Laptop running macOS 10.14.6). Many of the setup steps here may be unique to our OS and workstation, but hopefully they may serve as templates for new Users wanting to explore SeisFlows. \n", - "\n", - "The numerical solver we will use is: [SPECFEM2D](https://geodynamics.org/cig/software/specfem2d/). We'll also be working in our `seisflows` [Conda](https://docs.conda.io/en/latest/) environment, see the installation documentation page for instructions on how to install and activate the required Conda environment.\n", - "\n", - "-----------------------------------" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Option 1: Automated run\n", - "\n", - "We have set up this example to run using a single command line argument. The following command will run an example script which will (1) download and compile SPECFEM2D, (2) setup a SPECFEM2D working directory to generate initial and target models, and (3) Run a SeisFlows inversion. " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. warning:: \n", - " This example attempts to automatically download and compile SPECFEM2D. This step may fail if you are software required by SPECFEM2D, there are issues with the SPECFEM2D repository itself, or the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem when prompted." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# ! seisflows examples run 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "--------------\n", - "## Option 2: Manual run\n", - "\n", - "The notebook below details a walkthrough of the automated run shown above. This is meant for those who want to understand what is going on under the hood. You are welcome to follow along on your workstation. The following Table of Contents outlines the steps we will take in this tutorial:\n", - "\n" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. warning:: \n", - " Navigation links will not work outside of Jupyter. Please use the navigation bar to the left." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. __[Setup SPECFEM2D](#1.-Setup-SPECFEM2D)__ \n", - " a. [Download and compile codebase](#1a.-Download-and-compile-codebase*) \n", - " b. [Create a separate SPECFEM2D working directory](#1b.-Create-a-separate-SPECFEM2D-working-directory) \n", - " c. [Generate initial and target models](#1c.-Generate-initial-and-target-models) \n", - "\n", - "2. __[Initialize SeisFlows (SF)](#2.-Initialize-SeisFlows-(SF))__ \n", - " a. [SeisFlows working directory and parameter file](#2a.-SF-working-directory-and-parameter-file) \n", - "\n", - "3. __[Run SeisFlows](#2.-Run-SeisFlows)__ \n", - " a. [Forward simulations](#3a.-Forward-simulations) \n", - " b. [Exploring the SeisFlows directory structure](#3b.-Exploring-the-SF-directory-structure) \n", - " c. [Adjoint simulations](#3c.-Adjoint-simulations) \n", - " d. [Line search and model update](#3d.-Line-search-and-model-update) \n", - "\n", - "4. __[Conclusions](#4.-Conclusions)__ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Setup SPECFEM2D \n", - "#### 1a. Download and compile codebase (optional)\n", - "\n", - "> **NOTE**: If you have already downloaded and compiled SPECFEM2D, you can skip most of this subsection (1a). However you will need to edit the first two paths in the following cell (WORKDIR and SPECFEM2D_ORIGINAL), and execute the path structure defined in the cell.\n", - "\n", - "First we'll download and compile SPECFEM2D to generate the binaries necessary to run our simulations. We will then populate a new SPECFEM2D working directory that will be used by SeisFlows. We'll use to Python OS module to do our filesystem processes just to keep everything in Python, but this can easily be accomplished in bash." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import glob\n", - "import shutil\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# vvv USER MUST EDIT THE FOLLOWING PATHS vvv\n", - "# MAC PATHS\n", - "WORKDIR = \"/Users/Chow/Work/work/sf_specfem2d_example\" \n", - "SPECFEM2D = \"/Users/Chow/Repositories/specfem2d\"\n", - "# LINUX PATHS\n", - "# WORKDIR = \"/home/bchow/Work/work/sf_specfem2d_example\" \n", - "# SPECFEM2D = \"/home/bchow/REPOSITORIES/specfem2d\"\n", - "# where WORKDIR: points to your own working directory\n", - "# and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '')\n", - "# ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^\n", - "# ======================================================================================================\n", - "\n", - "# Distribute the necessary file structure of the SPECFEM2D repository that we will downloaded/reference\n", - "SPECFEM2D_ORIGINAL = os.path.join(WORKDIR, \"specfem2d\")\n", - "SPECFEM2D_BIN_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, \"bin\")\n", - "SPECFEM2D_DATA_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, \"DATA\")\n", - "TAPE_2007_EXAMPLE = os.path.join(SPECFEM2D_ORIGINAL, \"EXAMPLES\", \"Tape2007\")\n", - "\n", - "# The SPECFEM2D working directory that we will create separate from the downloaded repo\n", - "SPECFEM2D_WORKDIR = os.path.join(WORKDIR, \"specfem2d_workdir\")\n", - "SPECFEM2D_BIN = os.path.join(SPECFEM2D_WORKDIR, \"bin\")\n", - "SPECFEM2D_DATA = os.path.join(SPECFEM2D_WORKDIR, \"DATA\")\n", - "SPECFEM2D_OUTPUT = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES\")\n", - "\n", - "# Pre-defined locations of velocity models we will generate using the solver\n", - "SPECFEM2D_MODEL_INIT = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES_INIT\")\n", - "SPECFEM2D_MODEL_TRUE = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES_TRUE\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SPECFEM2D repository already found, you may skip this subsection\n" - ] - } - ], - "source": [ - "# Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo\n", - "if not os.path.exists(WORKDIR):\n", - " os.makedirs(WORKDIR)\n", - "os.chdir(WORKDIR)\n", - "\n", - "if os.path.exists(\"specfem2d\"):\n", - " print(\"SPECFEM2D repository already found, you may skip this subsection\")\n", - " pass\n", - "elif os.path.exists(SPECFEM2D):\n", - " print(\"Existing SPECMFE2D respository found, symlinking to working directory\")\n", - " os.symlink(SPECFEM2D, \"./specfem2d\")\n", - "else:\n", - " print(\"Cloning respository from GitHub\")\n", - " ! git clone --recursive --branch devel https://github.com/geodynamics/specfem2d.git" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Compile SPECFEM2D to generate the Makefile\n", - "os.chdir(SPECFEM2D_ORIGINAL)\n", - "if not os.path.exists(\"./config.log\"):\n", - " os.system(\"./configure\")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Run make to generate SPECFEM2D binaries\n", - "if not os.path.exists(\"bin\"):\n", - " os.system(\"make all\")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/Users/Chow/Repositories/specfem2d\n", - "\u001b[1m\u001b[34mxadj_seismogram\u001b[m\u001b[m \u001b[1m\u001b[34mxmeshfem2D\u001b[m\u001b[m\n", - "\u001b[1m\u001b[32mxadj_seismogram.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxmeshfem2D.dSYM\u001b[m\u001b[m\n", - "\u001b[1m\u001b[34mxcheck_quality_external_mesh\u001b[m\u001b[m \u001b[1m\u001b[34mxsmooth_sem\u001b[m\u001b[m\n", - "\u001b[1m\u001b[32mxcheck_quality_external_mesh.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxsmooth_sem.dSYM\u001b[m\u001b[m\n", - "\u001b[1m\u001b[34mxcombine_sem\u001b[m\u001b[m \u001b[1m\u001b[34mxspecfem2D\u001b[m\u001b[m\n", - "\u001b[1m\u001b[32mxcombine_sem.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxspecfem2D.dSYM\u001b[m\u001b[m\n", - "\u001b[1m\u001b[34mxconvolve_source_timefunction\u001b[m\u001b[m \u001b[1m\u001b[34mxsum_kernels\u001b[m\u001b[m\n", - "\u001b[1m\u001b[32mxconvolve_source_timefunction.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxsum_kernels.dSYM\u001b[m\u001b[m\n" - ] - } - ], - "source": [ - "# Check out the binary files that have been created\n", - "os.chdir(SPECFEM2D_ORIGINAL)\n", - "! pwd\n", - "! ls bin/" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 1b. Create a separate SPECFEM2D working directory\n", - "\n", - "Next we'll create a new SPECFEM2D working directory, separate from the original repository. The intent here is to isolate the original SPECFEM2D repository from our working state, to protect it from things like accidental file deletions or manipulations. This is not a mandatory step for using SeisFlows, but it helps keep file structure clean in the long run, and is the SeisFlows3 dev team's preferred method of using SPECFEM. " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " All SPECFEM2D/3D/3D_GLOBE need to run successfully are the bin/, DATA/, and OUTPUT_FILES/ directories. Everything else in the repository is not mandatory for running binaries." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this tutorial we will be using the [Tape2007 example problem](https://github.com/geodynamics/specfem2d/tree/devel/EXAMPLES/Tape2007) to define our __DATA/__ directory (last tested 8/15/22, bdba4389)." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/Users/Chow/Work/work/sf_specfem2d_example/specfem2d_workdir\n", - "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\n" - ] - } - ], - "source": [ - "# Incase we've run this docs page before, delete the working directory before remaking\n", - "if os.path.exists(SPECFEM2D_WORKDIR):\n", - " shutil.rmtree(SPECFEM2D_WORKDIR)\n", - "\n", - "os.mkdir(SPECFEM2D_WORKDIR)\n", - "os.chdir(SPECFEM2D_WORKDIR)\n", - "\n", - "# Copy the binary files incase we update the source code. These can also be symlinked.\n", - "shutil.copytree(SPECFEM2D_BIN_ORIGINAL, \"bin\")\n", - "\n", - "# Copy the DATA/ directory because we will be making edits here frequently and it's useful to\n", - "# retain the original files for reference. We will be running one of the example problems: Tape2007\n", - "shutil.copytree(os.path.join(TAPE_2007_EXAMPLE, \"DATA\"), \"DATA\")\n", - "\n", - "! pwd\n", - "! ls" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " -------------------------------------------------------------------------------\r\n", - " -------------------------------------------------------------------------------\r\n", - " D a t e : 15 - 08 - 2022 T i m e : 10:13:31\r\n", - " -------------------------------------------------------------------------------\r\n", - " -------------------------------------------------------------------------------\r\n", - "\r\n", - "see results in directory: OUTPUT_FILES/\r\n", - "\r\n", - "done\r\n", - "Mon Aug 15 10:13:31 PDT 2022\r\n" - ] - } - ], - "source": [ - "# Run the Tape2007 example to make sure SPECFEM2D is working as expected\n", - "os.chdir(TAPE_2007_EXAMPLE)\n", - "! ./run_this_example.sh > output_log.txt\n", - "\n", - "assert(os.path.exists(\"OUTPUT_FILES/forward_image000004800.jpg\")), \\\n", - " (f\"Example did not run, the remainder of this docs page will likely not work.\"\n", - " f\"Please check the following directory: {TAPE_2007_EXAMPLE}\")\n", - "\n", - "! tail output_log.txt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "------------------------------------\n", - "Now we need to manually set up our SPECFEM2D working directory. As mentioned in the previous cell, the only required elements of this working directory are the following (these files will form the basis for how SeisFlows3 operates within the SPECFEM2D framework):\n", - "\n", - "1. __bin/__ directory containing SPECFEM2D binaries\n", - "2. __DATA/__ directory containing SOURCE and STATION files, as well as a SPECFEM2D Par_file\n", - "3. __OUTPUT_FILES/proc??????_*.bin__ files which define the starting (and target) models" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note:: \n", - " This file structure is the same for all versions of SPECFEM (2D/3D/3D_GLOBE)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Par_file SOURCE_013\r\n", - "Par_file_Tape2007_132rec_checker SOURCE_014\r\n", - "Par_file_Tape2007_onerec SOURCE_015\r\n", - "\u001b[1m\u001b[35mSOURCE\u001b[m\u001b[m SOURCE_016\r\n", - "SOURCE_001 SOURCE_017\r\n", - "SOURCE_002 SOURCE_018\r\n", - "SOURCE_003 SOURCE_019\r\n", - "SOURCE_004 SOURCE_020\r\n", - "SOURCE_005 SOURCE_021\r\n", - "SOURCE_006 SOURCE_022\r\n", - "SOURCE_007 SOURCE_023\r\n", - "SOURCE_008 SOURCE_024\r\n", - "SOURCE_009 SOURCE_025\r\n", - "SOURCE_010 STATIONS_checker\r\n", - "SOURCE_011 interfaces_Tape2007.dat\r\n", - "SOURCE_012 model_velocity.dat_checker\r\n" - ] - } - ], - "source": [ - "# First we will set the correct SOURCE and STATION files.\n", - "# This is the same task as shown in ./run_this_example.sh\n", - "os.chdir(SPECFEM2D_DATA)\n", - "\n", - "# Symlink source 001 as our main source\n", - "if os.path.exists(\"SOURCE\"):\n", - " os.remove(\"SOURCE\")\n", - "os.symlink(\"SOURCE_001\", \"SOURCE\")\n", - "\n", - "# Copy the correct Par_file so that edits do not affect the original file\n", - "if os.path.exists(\"Par_file\"):\n", - " os.remove(\"Par_file\")\n", - "shutil.copy(\"Par_file_Tape2007_onerec\", \"Par_file\")\n", - "\n", - "! ls" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 1c. Generate initial and target models\n", - "\n", - "Since we're doing a synthetic-synthetic inversion, we need to manually set up the velocity models with which we generate our synthetic waveforms. The naming conventions for these models are:\n", - "\n", - "1. __MODEL_INIT:__ The initial or starting model. Used to generate the actual synthetic seismograms. This is considered M00.\n", - "2. __MODEL_TRUE:__ The target or true model. Used to generate 'data' (also synthetic). This is the reference model that our inversion is trying to resolve.\n", - "\n", - "The starting model is defined as a homogeneous halfspace uin the Tape2007 example problem. We will need to run both `xmeshfem2D` and `xspecfem2D` to generate the required velocity model database files. We will generate our target model by slightly perturbing the parameters of the initial model." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " We can use the SeisFlows3 command line option `seisflows sempar` to directly edit the SPECFEM2D Par_file in the command line. This will work for the SPECFEM3D Par_file as well." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "setup_with_binary_database: 0 -> 1\n", - "SAVE_MODEL: default -> binary\n", - "save_ASCII_kernels: .true. -> .false.\n" - ] - } - ], - "source": [ - "os.chdir(SPECFEM2D_DATA)\n", - "\n", - "# Ensure that SPECFEM2D outputs the velocity model in the expected binary format\n", - "! seisflows sempar setup_with_binary_database 1 # allow creation of .bin files\n", - "! seisflows sempar save_model binary # output model in .bin database format\n", - "! seisflows sempar save_ascii_kernels .false. # output kernels in .bin format, not ASCII" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\r\n" - ] - } - ], - "source": [ - "# SPECFEM requires that we create the OUTPUT_FILES directory before running\n", - "os.chdir(SPECFEM2D_WORKDIR)\n", - "\n", - "if os.path.exists(SPECFEM2D_OUTPUT):\n", - " shutil.rmtree(SPECFEM2D_OUTPUT)\n", - " \n", - "os.mkdir(SPECFEM2D_OUTPUT)\n", - "\n", - "! ls" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " **********************************************\n", - " **** Specfem 2-D Solver - serial version ****\n", - " **********************************************\n", - "\n", - " Running Git version of the code corresponding to \n", - " dating From \n", - "\n", - "\n", - " NDIM = 2\n", - " -------------------------------------------------------------------------------\n", - " Program SPECFEM2D: \n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n", - " Tape-Liu-Tromp (GJI 2007)\n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n", - " D a t e : 15 - 08 - 2022 T i m e : 10:14:13\n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "# GENERATE MODEL_INIT\n", - "os.chdir(SPECFEM2D_WORKDIR)\n", - "\n", - "# Run the mesher and solver to generate our initial model\n", - "! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt\n", - "! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt\n", - "\n", - "# Move the model files (*.bin) into the OUTPUT_FILES directory, where SeisFlows3 expects them\n", - "! mv DATA/*bin OUTPUT_FILES\n", - "\n", - "# Make sure we don't overwrite this initial model when creating our target model in the next step\n", - "! mv OUTPUT_FILES OUTPUT_FILES_INIT\n", - "\n", - "! head OUTPUT_FILES_INIT/solver_log.txt\n", - "! tail OUTPUT_FILES_INIT/solver_log.txt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "-----------------------------\n", - "\n", - "Now we want to perturb the initial model to create our target model (__MODEL_TRUE__). The seisflows command line subargument `seisflows sempar velocity_model` will let us view and edit the velocity model. You can also do this manually by editing the Par_file directly. " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VELOCITY_MODEL:\r\n", - "\r\n", - "1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0\r\n", - "->\r\n", - "1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0\r\n" - ] - } - ], - "source": [ - "# GENERATE MODEL_TRUE\n", - "os.chdir(SPECFEM2D_DATA)\n", - "\n", - "# Edit the Par_file by increasing velocities by ~10% \n", - "! seisflows sempar velocity_model '1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0'" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " **********************************************\n", - " **** Specfem 2-D Solver - serial version ****\n", - " **********************************************\n", - "\n", - " Running Git version of the code corresponding to \n", - " dating From \n", - "\n", - "\n", - " NDIM = 2\n", - " -------------------------------------------------------------------------------\n", - " Program SPECFEM2D: \n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n", - " Tape-Liu-Tromp (GJI 2007)\n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n", - " D a t e : 15 - 08 - 2022 T i m e : 10:14:13\n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "# Re-run the mesher and solver to generate our target velocity model\n", - "os.chdir(SPECFEM2D_WORKDIR)\n", - "\n", - "# Make sure the ./OUTPUT_FILES directory exists since we moved the old one\n", - "if os.path.exists(SPECFEM2D_OUTPUT):\n", - " shutil.rmtree(SPECFEM2D_OUTPUT)\n", - "os.mkdir(SPECFEM2D_OUTPUT)\n", - "\n", - "# Run the binaries to generate MODEL_TRUE\n", - "! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt\n", - "! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt\n", - "\n", - "# Move all the relevant files into OUTPUT_FILES \n", - "! mv ./DATA/*bin OUTPUT_FILES\n", - "! mv OUTPUT_FILES OUTPUT_FILES_TRUE\n", - "\n", - "! head OUTPUT_FILES_INIT/solver_log.txt\n", - "! tail OUTPUT_FILES_INIT/solver_log.txt" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES_INIT\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES_TRUE\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\r\n" - ] - } - ], - "source": [ - "# Great, we have all the necessary SPECFEM files to run our SeisFlows inversion!\n", - "! ls" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Initialize SeisFlows (SF)\n", - "In this Section we will look at a SeisFlows working directory, parameter file, and working state.\n", - "\n", - "#### 2a. SeisFlows working directory and parameter file\n", - "\n", - "As with SPECFEM, SeisFlows requires a parameter file (__parameters.yaml__) that controls how an automated workflow will proceed. Because SeisFlows is modular, there are a large number of potential parameters which may be present in a SeisFlows parameter file, as each sub-module may have its own set of unique parameters.\n", - "\n", - "In contrast to SPECFEM's method of listing all available parameters and leaving it up the User to determine which ones are relevant to them, SeisFlows dynamically builds its parameter file based on User inputs. In this subsection we will use the built-in SeisFlows command line tools to generate and populate the parameter file. " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows file." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the previous section we saw the `sempar` command in action. We can use the `-h` or help flag to list all available SiesFlows3 command line commands." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]]\r\n", - " {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples}\r\n", - " ...\r\n", - "\r\n", - "================================================================================\r\n", - "\r\n", - " SeisFlows: Waveform Inversion Package \r\n", - "\r\n", - "================================================================================\r\n", - "\r\n", - "optional arguments:\r\n", - " -h, --help show this help message and exit\r\n", - " -w [WORKDIR], --workdir [WORKDIR]\r\n", - " The SeisFlows working directory, default: cwd\r\n", - " -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE]\r\n", - " Parameters file, default: 'parameters.yaml'\r\n", - "\r\n", - "command:\r\n", - " Available SeisFlows arguments and their intended usages\r\n", - "\r\n", - " setup Setup working directory from scratch\r\n", - " configure Fill parameter file with defaults\r\n", - " swap Swap module parameters in an existing parameter file\r\n", - " init Initiate working environment\r\n", - " submit Submit initial workflow to system\r\n", - " resume Re-submit previous workflow to system\r\n", - " restart Remove current environment and submit new workflow\r\n", - " clean Remove files relating to an active working environment\r\n", - " par View and edit SeisFlows parameter file\r\n", - " sempar View and edit SPECFEM parameter file\r\n", - " check Check state of an active environment\r\n", - " print Print information related to an active environment\r\n", - " reset Reset modules within an active state\r\n", - " debug Start interactive debug environment\r\n", - " examples Look at and run pre-configured example problems\r\n", - "\r\n", - "'seisflows [command] -h' for more detailed descriptions of each command.\r\n" - ] - } - ], - "source": [ - "! seisflows -h" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'os' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mWORKDIR\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' seisflows setup -f'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' ls'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'os' is not defined" - ] - } - ], - "source": [ - "# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\n", - "# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\n", - "os.chdir(WORKDIR)\n", - "! seisflows setup -f\n", - "! ls" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "# //////////////////////////////////////////////////////////////////////////////\r\n", - "#\r\n", - "# SeisFlows YAML Parameter File\r\n", - "#\r\n", - "# //////////////////////////////////////////////////////////////////////////////\r\n", - "#\r\n", - "# Modules correspond to the structure of the source code, and determine\r\n", - "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", - "#\r\n", - "# .. rubric::\r\n", - "# - To determine available options for modules listed below, run:\r\n", - "# > seisflows print modules\r\n", - "# - To auto-fill with docstrings and default values (recommended), run:\r\n", - "# > seisflows configure\r\n", - "# - To set values as NoneType, use: null\r\n", - "# - To set values as infinity, use: inf\r\n", - "#\r\n", - "# MODULES\r\n", - "# ///////\r\n", - "# workflow (str): The types and order of functions for running SeisFlows\r\n", - "# system (str): Computer architecture of the system being used\r\n", - "# solver (str): External numerical solver to use for waveform simulations\r\n", - "# preprocess (str): Preprocessing schema for waveform data\r\n", - "# optimize (str): Optimization algorithm for the inverse problem\r\n", - "# ==============================================================================\r\n", - "workflow: forward\r\n", - "system: workstation\r\n", - "solver: specfem2d\r\n", - "preprocess: default\r\n", - "optimize: gradient\r\n" - ] - } - ], - "source": [ - "# Let's have a look at this file, which has not yet been populated\n", - "! cat parameters.yaml" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " SEISFLOWS MODULES \r\n", - " ///////////////// \r\n", - "'-': module, '*': class\r\n", - "\r\n", - "- workflow\r\n", - " * forward\r\n", - " * inversion\r\n", - " * migration\r\n", - "- system\r\n", - " * chinook\r\n", - " * cluster\r\n", - " * frontera\r\n", - " * lsf\r\n", - " * maui\r\n", - " * slurm\r\n", - " * workstation\r\n", - "- solver\r\n", - " * specfem\r\n", - " * specfem2d\r\n", - " * specfem3d\r\n", - " * specfem3d_globe\r\n", - "- preprocess\r\n", - " * default\r\n", - " * pyaflowa\r\n", - "- optimize\r\n", - " * LBFGS\r\n", - " * NLCG\r\n", - " * gradient\r\n" - ] - } - ], - "source": [ - "# We can use the `seisflows print modules` command to list out the available options \n", - "! seisflows print modules" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "workflow: forward -> inversion\n", - "# //////////////////////////////////////////////////////////////////////////////\n", - "#\n", - "# SeisFlows YAML Parameter File\n", - "#\n", - "# //////////////////////////////////////////////////////////////////////////////\n", - "#\n", - "# Modules correspond to the structure of the source code, and determine\n", - "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\n", - "#\n", - "# .. rubric::\n", - "# - To determine available options for modules listed below, run:\n", - "# > seisflows print modules\n", - "# - To auto-fill with docstrings and default values (recommended), run:\n", - "# > seisflows configure\n", - "# - To set values as NoneType, use: null\n", - "# - To set values as infinity, use: inf\n", - "#\n", - "# MODULES\n", - "# ///////\n", - "# workflow (str): The types and order of functions for running SeisFlows\n", - "# system (str): Computer architecture of the system being used\n", - "# solver (str): External numerical solver to use for waveform simulations\n", - "# preprocess (str): Preprocessing schema for waveform data\n", - "# optimize (str): Optimization algorithm for the inverse problem\n", - "# ==============================================================================\n", - "workflow: inversion\n", - "system: workstation\n", - "solver: specfem2d\n", - "preprocess: default\n", - "optimize: gradient\n" - ] - } - ], - "source": [ - "# For this example, we can use most of the default modules, however we need to \n", - "# change the SOLVER module to let SeisFlows know we're using SPECFEM2D (as opposed to 3D)\n", - "! seisflows par workflow inversion\n", - "! cat parameters.yaml" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "-------------------------\n", - "The `seisflows configure` command populates the parameter file based on the chosen modules. SeisFlows will attempt to fill in all parameters with reasonable default values. Docstrings above each module show descriptions and available options for each of these parameters. \n", - "\n", - "In the follownig cell we will use the `seisflows par` command to edit the parameters.yaml file directly, replacing some default parameters with our own values. Comments next to each evaluation describe the choice for each." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "# //////////////////////////////////////////////////////////////////////////////\r\n", - "#\r\n", - "# SeisFlows YAML Parameter File\r\n", - "#\r\n", - "# //////////////////////////////////////////////////////////////////////////////\r\n", - "#\r\n", - "# Modules correspond to the structure of the source code, and determine\r\n", - "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", - "#\r\n", - "# .. rubric::\r\n", - "# - To determine available options for modules listed below, run:\r\n", - "# > seisflows print modules\r\n", - "# - To auto-fill with docstrings and default values (recommended), run:\r\n", - "# > seisflows configure\r\n", - "# - To set values as NoneType, use: null\r\n", - "# - To set values as infinity, use: inf\r\n", - "#\r\n", - "# MODULES\r\n", - "# ///////\r\n", - "# workflow (str): The types and order of functions for running SeisFlows\r\n", - "# system (str): Computer architecture of the system being used\r\n", - "# solver (str): External numerical solver to use for waveform simulations\r\n", - "# preprocess (str): Preprocessing schema for waveform data\r\n", - "# optimize (str): Optimization algorithm for the inverse problem\r\n", - "# ==============================================================================\r\n", - "workflow: inversion\r\n", - "system: workstation\r\n", - "solver: specfem2d\r\n", - "preprocess: default\r\n", - "optimize: gradient\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Forward Workflow\r\n", - "# ----------------\r\n", - "# Run forward solver in parallel and (optionally) calculate\r\n", - "# data-synthetic misfit and adjoint sources.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type modules: list of module\r\n", - "# :param modules: instantiated SeisFlows modules which should have been\r\n", - "# generated by the function `seisflows.config.import_seisflows` with a\r\n", - "# parameter file generated by seisflows.configure\r\n", - "# :type data_case: str\r\n", - "# :param data_case: How to address 'data' in the workflow, available options:\r\n", - "# 'data': real data will be provided by the user in\r\n", - "# `path_data/{source_name}` in the same format that the solver will\r\n", - "# produce synthetics (controlled by `solver.format`) OR\r\n", - "# synthetic': 'data' will be generated as synthetic seismograms using\r\n", - "# a target model provided in `path_model_true`. If None, workflow will\r\n", - "# not attempt to generate data.\r\n", - "# :type stop_after: str\r\n", - "# :param stop_after: optional name of task in task list (use\r\n", - "# `seisflows print tasks` to get task list for given workflow) to stop\r\n", - "# workflow after, allowing user to prematurely stop a workflow to explore\r\n", - "# intermediate results or debug.\r\n", - "# :type export_traces: bool\r\n", - "# :param export_traces: export all waveforms that are generated by the\r\n", - "# external solver to `path_output`. If False, solver traces stored in\r\n", - "# scratch may be discarded at any time in the workflow\r\n", - "# :type export_residuals: bool\r\n", - "# :param export_residuals: export all residuals (data-synthetic misfit) that\r\n", - "# are generated by the external solver to `path_output`. If False,\r\n", - "# residuals stored in scratch may be discarded at any time in the workflow\r\n", - "#\r\n", - "# \r\n", - "# Migration Workflow\r\n", - "# ------------------\r\n", - "# Run forward and adjoint solver to produce event-dependent misfit kernels.\r\n", - "# Sum and postprocess kernels to produce gradient. In seismic exploration\r\n", - "# this is 'reverse time migration'.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type export_gradient: bool\r\n", - "# :param export_gradient: export the gradient after it has been generated\r\n", - "# in the scratch directory. If False, gradient can be discarded from\r\n", - "# scratch at any time in the workflow\r\n", - "# :type export_kernels: bool\r\n", - "# :param export_kernels: export each sources event kernels after they have\r\n", - "# been generated in the scratch directory. If False, gradient can be\r\n", - "# discarded from scratch at any time in the workflow\r\n", - "#\r\n", - "# \r\n", - "# Inversion Workflow\r\n", - "# ------------------\r\n", - "# Peforms iterative nonlinear inversion using the machinery of the Forward\r\n", - "# and Migration workflows, as well as a built-in optimization library.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type start: int\r\n", - "# :param start: start inversion workflow at this iteration. 1 <= start <= inf\r\n", - "# :type end: int\r\n", - "# :param end: end inversion workflow at this iteration. start <= end <= inf\r\n", - "# :type iteration: int\r\n", - "# :param iteration: The current iteration of the workflow. If NoneType, takes\r\n", - "# the value of `start` (i.e., first iteration of the workflow). User can\r\n", - "# also set between `start` and `end` to resume a failed workflow.\r\n", - "# :type thrifty: bool\r\n", - "# :param thrifty: a thrifty inversion skips the costly intialization step\r\n", - "# (i.e., forward simulations and misfit quantification) if the final\r\n", - "# forward simulations from the previous iterations line search can be\r\n", - "# used in the current one. Requires L-BFGS optimization.\r\n", - "# :type export_model: bool\r\n", - "# :param export_model: export best-fitting model from the line search to disk.\r\n", - "# If False, new models can be discarded from scratch at any time.\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "data_case: data\r\n", - "stop_after: null\r\n", - "export_traces: False\r\n", - "export_residuals: False\r\n", - "export_gradient: False\r\n", - "export_kernels: False\r\n", - "start: 1\r\n", - "end: 1\r\n", - "export_model: True\r\n", - "thrifty: False\r\n", - "iteration: 1\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Workstation System\r\n", - "# ------------------\r\n", - "# Runs tasks in serial on a local machine.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type ntask: int\r\n", - "# :param ntask: number of individual tasks/events to run during workflow.\r\n", - "# Must be <= the number of source files in `path_specfem_data`\r\n", - "# :type nproc: int\r\n", - "# :param nproc: number of processors to use for each simulation\r\n", - "# :type log_level: str\r\n", - "# :param log_level: logger level to pass to logging module.\r\n", - "# Available: 'debug', 'info', 'warning', 'critical'\r\n", - "# :type verbose: bool\r\n", - "# :param verbose: if True, formats the log messages to include the file\r\n", - "# name, line number and message type. Useful for debugging but\r\n", - "# also very verbose.\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "ntask: 1\r\n", - "nproc: 1\r\n", - "log_level: DEBUG\r\n", - "verbose: False\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Solver SPECFEM\r\n", - "# --------------\r\n", - "# Generalized SPECFEM interface to manipulate SPECFEM2D/3D/3D_GLOBE w/ Python\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type data_format: str\r\n", - "# :param data_format: data format for reading traces into memory.\r\n", - "# Available: ['SU': seismic unix format, 'ASCII': human-readable ascii]\r\n", - "# :type materials: str\r\n", - "# :param materials: Material parameters used to define model. Available:\r\n", - "# ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC']\r\n", - "# :type density: bool\r\n", - "# :param density: How to treat density during inversion. If True, updates\r\n", - "# density during inversion. If False, keeps it constant.\r\n", - "# TODO allow density scaling during an inversion\r\n", - "# :type attenuation: bool\r\n", - "# :param attenuation: How to treat attenuation during inversion.\r\n", - "# if True, turns on attenuation during forward simulations only. If\r\n", - "# False, attenuation is always set to False. Requires underlying\r\n", - "# attenution (Q_mu, Q_kappa) model\r\n", - "# :type smooth_h: float\r\n", - "# :param smooth_h: Gaussian half-width for horizontal smoothing in units\r\n", - "# of meters. If 0., no smoothing applied\r\n", - "# :type smooth_h: float\r\n", - "# :param smooth_v: Gaussian half-width for vertical smoothing in units\r\n", - "# of meters.\r\n", - "# :type components: str\r\n", - "# :param components: components to consider and tag data with. Should be\r\n", - "# string of letters such as 'RTZ'\r\n", - "# :type solver_io: str\r\n", - "# :param solver_io: format of model/kernel/gradient files expected by the\r\n", - "# numerical solver. Available: ['fortran_binary': default .bin files].\r\n", - "# TODO: ['adios': ADIOS formatted files]\r\n", - "# :type source_prefix: str\r\n", - "# :param source_prefix: prefix of source/event/earthquake files. If None,\r\n", - "# will attempt to guess based on the specific solver chosen.\r\n", - "# :type mpiexec: str\r\n", - "# :param mpiexec: MPI executable used to run parallel processes. Should also\r\n", - "# be defined for the system module\r\n", - "#\r\n", - "# \r\n", - "# Solver SPECFEM2D\r\n", - "# ----------------\r\n", - "# SPECFEM2D-specific alterations to the base SPECFEM module\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type source_prefix: str\r\n", - "# :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults\r\n", - "# to 'SOURCE'\r\n", - "# :type multiples: bool\r\n", - "# :param multiples: set an absorbing top-boundary condition\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "data_format: ascii\r\n", - "materials: acoustic\r\n", - "density: False\r\n", - "attenuation: False\r\n", - "smooth_h: 0.0\r\n", - "smooth_v: 0.0\r\n", - "components: ZNE\r\n", - "source_prefix: SOURCE\r\n", - "multiples: False\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Default Preprocess\r\n", - "# ------------------\r\n", - "# Data processing for seismic traces, with options for data misfit,\r\n", - "# filtering, normalization and muting.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type data_format: str\r\n", - "# :param data_format: data format for reading traces into memory. For\r\n", - "# available see: seisflows.plugins.preprocess.readers\r\n", - "# :type misfit: str\r\n", - "# :param misfit: misfit function for waveform comparisons. For available\r\n", - "# see seisflows.plugins.preprocess.misfit\r\n", - "# :type backproject: str\r\n", - "# :param backproject: backprojection function for migration, or the\r\n", - "# objective function in FWI. For available see\r\n", - "# seisflows.plugins.preprocess.adjoint\r\n", - "# :type normalize: str\r\n", - "# :param normalize: Data normalization parameters used to normalize the\r\n", - "# amplitudes of waveforms. Choose from two sets:\r\n", - "# ENORML1: normalize per event by L1 of traces; OR\r\n", - "# ENORML2: normalize per event by L2 of traces;\r\n", - "# &\r\n", - "# TNORML1: normalize per trace by L1 of itself; OR\r\n", - "# TNORML2: normalize per trace by L2 of itself\r\n", - "# :type filter: str\r\n", - "# :param filter: Data filtering type, available options are:\r\n", - "# BANDPASS (req. MIN/MAX PERIOD/FREQ);\r\n", - "# LOWPASS (req. MAX_FREQ or MIN_PERIOD);\r\n", - "# HIGHPASS (req. MIN_FREQ or MAX_PERIOD)\r\n", - "# :type min_period: float\r\n", - "# :param min_period: Minimum filter period applied to time series.\r\n", - "# See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they\r\n", - "# will overwrite PERIOD parameters.\r\n", - "# :type max_period: float\r\n", - "# :param max_period: Maximum filter period applied to time series. See\r\n", - "# also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will\r\n", - "# overwrite PERIOD parameters.\r\n", - "# :type min_freq: float\r\n", - "# :param min_freq: Maximum filter frequency applied to time series,\r\n", - "# See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters,\r\n", - "# they will overwrite PERIOD parameters.\r\n", - "# :type max_freq: float\r\n", - "# :param max_freq: Maximum filter frequency applied to time series,\r\n", - "# See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters,\r\n", - "# they will overwrite PERIOD parameters.\r\n", - "# :type mute: list\r\n", - "# :param mute: Data mute parameters used to zero out early / late\r\n", - "# arrivals or offsets. Choose any number of:\r\n", - "# EARLY: mute early arrivals;\r\n", - "# LATE: mute late arrivals;\r\n", - "# SHORT: mute short source-receiver distances;\r\n", - "# LONG: mute long source-receiver distances\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "misfit: waveform\r\n", - "adjoint: waveform\r\n", - "normalize: []\r\n", - "filter: null\r\n", - "min_period: null\r\n", - "max_period: null\r\n", - "min_freq: null\r\n", - "max_freq: null\r\n", - "mute: []\r\n", - "early_slope: null\r\n", - "early_const: null\r\n", - "late_slope: null\r\n", - "late_const: null\r\n", - "short_dist: null\r\n", - "long_dist: null\r", - "\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Gradient Optimization\r\n", - "# ---------------------\r\n", - "# Gradient/steepest descent optimization algorithm.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type line_search_method: str\r\n", - "# :param line_search_method: chosen line_search algorithm. Currently available\r\n", - "# are 'bracket' and 'backtrack'. See seisflows.plugins.line_search\r\n", - "# for all available options\r\n", - "# :type preconditioner: str\r\n", - "# :param preconditioner: algorithm for preconditioning gradients. Currently\r\n", - "# available: 'diagonal'. Requires `path_preconditioner` to point to a\r\n", - "# set of files that define the preconditioner, formatted the same as the\r\n", - "# input model\r\n", - "# :type step_count_max: int\r\n", - "# :param step_count_max: maximum number of trial steps to perform during\r\n", - "# the line search before a change in line search behavior is\r\n", - "# considered, or a line search is considered to have failed.\r\n", - "# :type step_len_init: float\r\n", - "# :param step_len_init: initial line search step length guess, provided\r\n", - "# as a fraction of current model parameters.\r\n", - "# :type step_len_max: float\r\n", - "# :param step_len_max: maximum allowable step length during the line\r\n", - "# search. Set as a fraction of the current model parameters\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "preconditioner: null\r\n", - "step_count_max: 10\r\n", - "step_len_init: 0.05\r\n", - "step_len_max: 0.5\r\n", - "line_search_method: bracket\r\n", - "# =============================================================================\r\n", - "#\r\n", - "#\t Paths\r\n", - "#\t -----\r\n", - "# :type workdir: str\r\n", - "# :param workdir: working directory in which to look for data and store\r\n", - "# results. Defaults to current working directory\r\n", - "# :type path_output: str\r\n", - "# :param path_output: path to directory used for permanent storage on disk.\r\n", - "# Results and exported scratch files are saved here.\r\n", - "# :type path_data: str\r\n", - "# :param path_data: path to any externally stored data required by the solver\r\n", - "# :type path_state_file: str\r\n", - "# :param path_state_file: path to a text file used to track the current\r\n", - "# status of a workflow (i.e., what functions have already been completed),\r\n", - "# used for checkpointing and resuming workflows\r\n", - "# :type path_model_init: str\r\n", - "# :param path_model_init: path to the starting model used to calculate the\r\n", - "# initial misfit. Must match the expected `solver_io` format.\r\n", - "# :type path_model_true: str\r\n", - "# :param path_model_true: path to a target model if `case`=='synthetic' and\r\n", - "# a set of synthetic 'observations' are required for workflow.\r\n", - "# :type path_eval_grad: str\r\n", - "# :param path_eval_grad: scratch path to store files for gradient evaluation,\r\n", - "# including models, kernels, gradient and residuals.\r\n", - "# :type path_mask: str\r\n", - "# :param path_mask: optional path to a masking function which is used to\r\n", - "# mask out or scale parts of the gradient. The user-defined mask must\r\n", - "# match the file format of the input model (e.g., .bin files).\r\n", - "# :type path_eval_func: str\r\n", - "# :param path_eval_func: scratch path to store files for line search objective\r\n", - "# function evaluations, including models, misfit and residuals\r\n", - "# \r\n", - "# :type path_output_log: str\r\n", - "# :param path_output_log: path to a text file used to store the outputs of\r\n", - "# the package wide logger, which are also written to stdout\r\n", - "# :type path_par_file: str\r\n", - "# :param path_par_file: path to parameter file which is used to instantiate\r\n", - "# the package\r\n", - "# :type path_log_files: str\r\n", - "# :param path_log_files: path to a directory where individual log files are\r\n", - "# saved whenever a number of parallel tasks are run on the system.\r\n", - "# \r\n", - "# :type path_data: str\r\n", - "# :param path_data: path to any externally stored data required by the solver\r\n", - "# :type path_specfem_bin: str\r\n", - "# :param path_specfem_bin: path to SPECFEM bin/ directory which\r\n", - "# contains binary executables for running SPECFEM\r\n", - "# :type path_specfem_data: str\r\n", - "# :param path_specfem_data: path to SPECFEM DATA/ directory which must\r\n", - "# contain the CMTSOLUTION, STATIONS and Par_file files used for\r\n", - "# running SPECFEM\r\n", - "# \r\n", - "# :type path_preprocess: str\r\n", - "# :param path_preprocess: scratch path for all preprocessing processes,\r\n", - "# including saving files\r\n", - "# \r\n", - "# :type path_preconditioner: str\r\n", - "# :param path_preconditioner: optional path to a set of preconditioner files\r\n", - "# formatted the same as the input model (or output model of solver).\r\n", - "# Required to exist and contain files if `preconditioner`==True\r\n", - "# \r\n", - "# =============================================================================\r\n", - "path_workdir: /Users/Chow/Work/work/sf_specfem2d_example\r\n", - "path_scratch: /Users/Chow/Work/work/sf_specfem2d_example/scratch\r\n", - "path_eval_grad: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_grad\r\n", - "path_output: /Users/Chow/Work/work/sf_specfem2d_example/output\r\n", - "path_model_init: null\r\n", - "path_model_true: null\r\n", - "path_state_file: /Users/Chow/Work/work/sf_specfem2d_example/sfstate.txt\r\n", - "path_data: null\r\n", - "path_mask: null\r\n", - "path_eval_func: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_func\r\n", - "path_par_file: /Users/Chow/Work/work/sf_specfem2d_example/parameters.yaml\r\n", - "path_log_files: /Users/Chow/Work/work/sf_specfem2d_example/logs\r\n", - "path_output_log: /Users/Chow/Work/work/sf_specfem2d_example/sflog.txt\r\n", - "path_specfem_bin: null\r\n", - "path_specfem_data: null\r\n", - "path_solver: /Users/Chow/Work/work/sf_specfem2d_example/scratch/solver\r\n", - "path_preconditioner: null\r\n" - ] - } - ], - "source": [ - "! seisflows configure\n", - "! cat parameters.yaml" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ntask: 1 -> 3\n", - "materials: acoustic -> elastic\n", - "density: False -> False\n", - "attenuation: False -> False\n", - "start: 1 -> 1\n", - "end: 1 -> 2\n", - "data_case: data -> synthetic\n", - "components: ZNE -> Y\n", - "step_count_max: 10 -> 5\n" - ] - }, - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# EDIT THE SEISFLOWS PARAMETER FILE\n", - "! seisflows par ntask 3 # set the number of sources/events to use\n", - "! seisflows par materials elastic # how the velocity model is parameterized\n", - "! seisflows par density False # update density or keep constant\n", - "! seisflows par attenuation False\n", - "! seisflows par start 1 # first iteration\n", - "! seisflows par end 2 # final iteration -- we will only run 1\n", - "! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models\n", - "! seisflows par components Y # this default example creates Y-component seismograms\n", - "! seisflows par step_count_max 5 # limit the number of steps in the line search\n", - "\n", - "# Use Python syntax here to access path constants\n", - "os.system(f\"seisflows par path_specfem_bin {SPECFEM2D_BIN}\") # set path to SPECFEM2D binaries\n", - "os.system(f\"seisflows par path_specfem_data {SPECFEM2D_DATA}\") # set path to SEPCFEM2D DATA/\n", - "os.system(f\"seisflows par path_model_init {SPECFEM2D_MODEL_INIT}\") # set path to INIT model\n", - "os.system(f\"seisflows par path_model_true {SPECFEM2D_MODEL_TRUE}\") # set path to TRUE model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "------------------------------\n", - "One last thing, we will need to edit the SPECFEM2D Par_file parameter `MODEL` such that `xmeshfem2d` reads our pre-built velocity models (\\*.bin files) rather than the meshing parameters defined in the Par_file." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MODEL: default -> gll\r\n" - ] - } - ], - "source": [ - "os.chdir(SPECFEM2D_DATA)\n", - "! seisflows sempar model gll" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Run SeisFlows\n", - "\n", - "In this Section we will run SeisFlows to generate synthetic seismograms, kernels, a gradient, and an updated velocity model.\n", - "\n", - "#### 3a. Forward simulations\n", - "\n", - "SeisFlows is an automated workflow tool, such that once we run `seisflows submit` we should not need to intervene in the workflow. However the package does allow the User flexibility in how they want the workflow to behave.\n", - "\n", - "For example, we can run our workflow in stages by taking advantage of the `stop_after` parameter. As its name suggests, `stop_after` allows us to stop a workflow prematurely so that we may stop and look at results, or debug a failing workflow.\n", - "\n", - "The `seisflows print flow` command tells us what functions we can use for the `stop_after` parameter. " - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " SEISFLOWS WORKFLOW TASK LIST \r\n", - " //////////////////////////// \r\n", - "Task list for \r\n", - "\r\n", - "1: evaluate_initial_misfit\r\n", - "2: run_adjoint_simulations\r\n", - "3: postprocess_event_kernels\r\n", - "4: evaluate_gradient_from_kernels\r\n", - "5: initialize_line_search\r\n", - "6: perform_line_search\r\n", - "7: finalize_iteration\r\n" - ] - } - ], - "source": [ - "os.chdir(WORKDIR)\n", - "! seisflows print tasks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "-----------------------------\n", - "In the Inversion workflow, the tasks listed are described as follows:\n", - "\n", - "1. __evaluate_initial_misfit:__ \n", - " a. Prepare data for inversion by either copying data from disk or generating 'synthetic data' with MODEL_TRUE \n", - " b. Call numerical solver to run forward simulations using MODEL_INIT, generating synthetics \n", - " c. Evaluate the objective function by performing waveform comparisons \n", - " d. Prepare `run_adjoint_simulations` step by generating adjoint sources and auxiliary files\n", - "2. __run_adjoint_simulations:__ Call numerical solver to run adjoint simulation, generating kernels\n", - "3. __postprocess_event_kernels:__ Combine all event kernels into a misfit kernel. \n", - "4. __evaluate_gradient_from_kernels:__ Smooth and mask the misfit kernel to create the gradient\n", - "4. __initialize_line_search:__ Call on the optimization library to scale the gradient by a step length to compute the search direction. Prepare file structure for line search.\n", - "5. __perform_line_search:__ Perform a line search by algorithmically scaling the gradient and evaluating the misfit function (forward simulations and misfit quantification) until misfit is acceptably reduced.\n", - "6. __finalize_iteration:__ Run any finalization steps such as saving traces, kernels, gradients and models to disk, setting up SeisFlows3 for any subsequent iterations. Clean the scratch/ directory in preparation for subsequent iterations\n", - "\n", - "Let's set the `stop_after` argument to __evaluate_initial_misfit__, this will halt the workflow after the intialization step. We'll also set the `verbose` parameter to 'False', to keep the logging format relatively simple. We will explore the `verbose`==True option in a later cell." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stop_after: null -> evaluate_initial_misfit\n", - "verbose: False -> False\n" - ] - } - ], - "source": [ - "! seisflows par stop_after evaluate_initial_misfit\n", - "! seisflows par verbose False" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "-----------------------\n", - "Now let's run SeisFlows. There are two ways to do this: `submit` and `restart`\n", - "\n", - "1. `seisflows submit` is used to run new workflows and resume stopped or failed workflows.\n", - "2. The `restart` command is simply a convenience function that runs `clean` (to remove an active working state) and `submit` (to submit a fresh workflow). \n", - "\n", - "Since this is our first run, we'll use `seisflows submit`." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-08-15 16:11:40 (I) | \n", - "================================================================================\n", - " SETTING UP INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-15 16:11:47 (D) | running setup for module 'system.Workstation'\n", - "2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_001.txt\n", - "2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_001.yaml\n", - "2022-08-15 16:11:50 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-15 16:11:50 (I) | initializing 3 solver directories\n", - "2022-08-15 16:11:50 (D) | initializing solver directory source: 001\n", - "2022-08-15 16:11:58 (D) | linking source '001' as 'mainsolver'\n", - "2022-08-15 16:11:58 (D) | initializing solver directory source: 002\n", - "2022-08-15 16:12:04 (D) | initializing solver directory source: 003\n", - "2022-08-15 16:12:13 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-15 16:12:14 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-15 16:12:15 (I) | no optimization checkpoint found, assuming first run\n", - "2022-08-15 16:12:16 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:12:16 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " RUNNING ITERATION 01 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:12:16 (I) | \n", - "================================================================================\n", - " RUNNING INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-15 16:12:16 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " EVALUATING MISFIT FOR INITIAL MODEL \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:12:16 (I) | checking initial model parameters\n", - "2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00\n", - "2022-08-15 16:12:16 (I) | 3500.00 <= vs <= 3500.00\n", - "2022-08-15 16:12:16 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:12:16 (I) | checking true/target model parameters\n", - "2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00\n", - "2022-08-15 16:12:16 (I) | 3550.00 <= vs <= 3550.00\n", - "2022-08-15 16:12:16 (I) | 5900.00 <= vp <= 5900.00\n", - "2022-08-15 16:12:16 (I) | preparing observation data for source 001\n", - "2022-08-15 16:12:16 (I) | running forward simulation w/ target model for 001\n", - "2022-08-15 16:12:33 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:12:33 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:12:53 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:12:53 (I) | preparing observation data for source 002\n", - "2022-08-15 16:12:53 (I) | running forward simulation w/ target model for 002\n", - "2022-08-15 16:13:09 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:13:09 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:13:31 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:13:31 (I) | preparing observation data for source 003\n", - "2022-08-15 16:13:31 (I) | running forward simulation w/ target model for 003\n", - "2022-08-15 16:14:16 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:14:16 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:14:33 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:14:33 (I) | stop workflow at `stop_after`: evaluate_initial_misfit\n" - ] - } - ], - "source": [ - "! seisflows submit " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " For a detailed exploration of a SeisFlows working directory, see the `working directory `__ documentation page where we explain each of the files and directories that have been generated during this workflow. Below we just look at two files which are required for our adjoint simulation, the adjoint sources (.adj) and STATIONS_ADJOINT file" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " -48.0000000 0.0000000\r\n", - " -47.9400000 0.0000000\r\n", - " -47.8800000 0.0000000\r\n", - " -47.8200000 0.0000000\r\n", - " -47.7600000 0.0000000\r\n", - " -47.7000000 0.0000000\r\n", - " -47.6400000 0.0000000\r\n", - " -47.5800000 0.0000000\r\n", - " -47.5200000 0.0000000\r\n", - " -47.4600000 0.0000000\r\n" - ] - } - ], - "source": [ - "# The adjoint source is created in the same format as the synthetics (two-column ASCII) \n", - "! head scratch/solver/001/traces/adj/AA.S0001.BXY.adj" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 3b. Adjoint simulations\n", - "\n", - "Now that we have all the required files for running an adjoint simulation (\\*.adj waveforms and STATIONS_ADJOINT file), we can continue with the SeisFlows3 Inversion workflow. No need to edit the Par_file or anything like that, SeisFlows3 will take care of that under the hood. We simply need to tell the workflow (via the parameters.yaml file) to `resume_from` the correct function. We can have a look at these functions again:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " SEISFLOWS WORKFLOW TASK LIST \r\n", - " //////////////////////////// \r\n", - "Task list for \r\n", - "\r\n", - "1: evaluate_initial_misfit\r\n", - "2: run_adjoint_simulations\r\n", - "3: postprocess_event_kernels\r\n", - "4: evaluate_gradient_from_kernels\r\n", - "5: initialize_line_search\r\n", - "6: perform_line_search\r\n", - "7: finalize_iteration\r\n" - ] - } - ], - "source": [ - "! seisflows print tasks" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stop_after: evaluate_initial_misfit -> evaluate_gradient_from_kernels\r\n" - ] - } - ], - "source": [ - "# We'll stop just before the line search so that we can take a look at the files \n", - "# generated during the middle tasks\n", - "! seisflows par stop_after evaluate_gradient_from_kernels" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-08-15 16:15:06 (D) | setting iteration==1 from state file\n", - "2022-08-15 16:15:06 (I) | \n", - "================================================================================\n", - " SETTING UP INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-15 16:15:16 (D) | running setup for module 'system.Workstation'\n", - "2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_002.txt\n", - "2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_002.yaml\n", - "2022-08-15 16:15:20 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-15 16:15:20 (I) | initializing 3 solver directories\n", - "2022-08-15 16:15:22 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-15 16:15:23 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-15 16:15:25 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:15:27 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:15:27 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " RUNNING ITERATION 01 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:15:27 (I) | \n", - "================================================================================\n", - " RUNNING INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-15 16:15:27 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", - "2022-08-15 16:15:27 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:15:27 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-15 16:16:11 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-15 16:16:11 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-15 16:16:12 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-15 16:16:59 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-15 16:16:59 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-15 16:16:59 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-15 16:17:45 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-15 16:17:45 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-15 16:17:45 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " GENERATING/PROCESSING MISFIT KERNEL \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:17:45 (I) | combining event kernels into single misfit kernel\n", - "2022-08-15 16:17:47 (I) | scaling gradient to absolute model perturbations\n", - "2022-08-15 16:17:49 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels\n" - ] - } - ], - "source": [ - "# We can use the `seisflows submit` command to continue an active workflow\n", - "# The state file created during the first run will tell the workflow to resume from the stopped point in the workflow\n", - "! seisflows submit " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "----------------\n", - "The function __run_adjoint_simulations()__ has run adjoint simulations to generate event kernels. The functions __postprocess_event_kernels__ and __evaluate_gradient_from_kernels__ will have summed and (optionally) smoothed the kernels to recover the gradient, which will be used to update our starting model.\n", - "\n", - "> **NOTE**: Since we did not specify any smoothing lenghts (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has occurred. \n", - "\n", - "Using the gradient-descent optimization algorithm, SeisFlows will now compute a search direction that will be used in the line search to search for a best fitting model which optimally reduces the objective function. We can take a look at where SeisFlows has stored the information relating to kernel generation and the optimization computation." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[32mgradient\u001b[m\u001b[m \u001b[1m\u001b[32mkernels\u001b[m\u001b[m \u001b[1m\u001b[32mmisfit_kernel\u001b[m\u001b[m \u001b[1m\u001b[32mmodel\u001b[m\u001b[m residuals.txt\r\n" - ] - } - ], - "source": [ - "# Gradient evaluation files are stored here, the kernels are stored separately from the gradient incase\n", - "# the user wants to manually manipulate them\n", - "! ls scratch/eval_grad" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" - ] - } - ], - "source": [ - "# SeisFlows3 stores all kernels and gradient information as SPECFEM binary (.bin) files\n", - "! ls scratch/eval_grad/gradient" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1m\u001b[32m001\u001b[m\u001b[m \u001b[1m\u001b[32m002\u001b[m\u001b[m \u001b[1m\u001b[32m003\u001b[m\u001b[m\r\n" - ] - } - ], - "source": [ - "# Kernels are stored on a per-event basis, and summed together (sum/). If smoothing was performed, \n", - "# we would see both smoothed and unsmoothed versions of the misfit kernel\n", - "! ls scratch/eval_grad/kernels" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "checkpoint.npz f_new.txt g_new.npz m_new.npz\r\n" - ] - } - ], - "source": [ - "# We can see that some new values have been stored in prepartion for the line search,\n", - "# including g_new (current gradient) and p_new (current search direction). These are also\n", - "# stored as vector NumPy arrays (.npy files)\n", - "! ls scratch/optimize" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[-1.18126331e-12 2.40273470e-12 3.97045036e-11 ... 9.62017688e-11\n", - " 4.21140102e-11 3.96825021e-12]]\n" - ] - } - ], - "source": [ - "g_new = np.load(\"scratch/optimize/g_new.npz\")\n", - "print(g_new[\"vs_kernel\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "--------------------\n", - "#### 3c. Line search and model update\n", - "\n", - "Let's finish off the inversion by running through the line search, which will generate new models using the\n", - "gradient, evaluate the objective function by running forward simulations, and comparing the evaluated objective function with the value obtained in __evalaute_initial_misfit__. \n", - "\n", - "Satisfactory reduction in the objective function will result in a termination of the line search. We are using a bracketing line search here [(Modrak et al. 2018)](https://academic.oup.com/gji/article/206/3/1864/2583505), which requires finding models which both increase and decrease the misfit with respect to the initial evaluation. Therefore it takes atleast two trial steps to complete the line search." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stop_after: evaluate_gradient_from_kernels -> finalize_iteration\r\n" - ] - } - ], - "source": [ - "! seisflows par stop_after perform_line_search # We don't want to run the finalize_iteration argument so that we can explore the dir" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-08-15 16:21:55 (D) | setting iteration==1 from state file\n", - "2022-08-15 16:21:55 (I) | \n", - "================================================================================\n", - " SETTING UP INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-15 16:22:03 (D) | running setup for module 'system.Workstation'\n", - "2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_003.txt\n", - "2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_003.yaml\n", - "2022-08-15 16:22:05 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-15 16:22:05 (I) | initializing 3 solver directories\n", - "2022-08-15 16:22:07 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-15 16:22:08 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-15 16:22:09 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:22:11 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:22:11 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " RUNNING ITERATION 01 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:22:11 (I) | \n", - "================================================================================\n", - " RUNNING INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-15 16:22:11 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", - "2022-08-15 16:22:11 (I) | 'run_adjoint_simulations' has already been run, skipping\n", - "2022-08-15 16:22:11 (I) | 'postprocess_event_kernels' has already been run, skipping\n", - "2022-08-15 16:22:11 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping\n", - "2022-08-15 16:22:11 (I) | initializing 'bracket'ing line search\n", - "2022-08-15 16:22:11 (I) | enforcing max step length safeguard\n", - "2022-08-15 16:22:11 (D) | step length(s) = 0.00E+00\n", - "2022-08-15 16:22:11 (D) | misfit val(s) = 1.28E-03\n", - "2022-08-15 16:22:11 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11\n", - "2022-08-15 16:22:11 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10\n", - "2022-08-15 16:22:11 (D) | overwriting initial step length, alpha_new=2.32E+09\n", - "2022-08-15 16:22:11 (I) | trial model 'm_try' parameters: \n", - "2022-08-15 16:22:11 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:22:11 (I) | 3244.51 <= vs <= 3790.00\n", - "2022-08-15 16:22:12 (I) | \n", - "LINE SEARCH STEP COUNT 01\n", - "--------------------------------------------------------------------------------\n", - "2022-08-15 16:22:12 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:22:12 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:22:23 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:22:23 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:22:23 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:22:35 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:22:35 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:22:35 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:22:48 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:22:48 (D) | misfit for trial model (f_try) == 8.65E-04\n", - "2022-08-15 16:22:48 (D) | step length(s) = 0.00E+00, 2.32E+09\n", - "2022-08-15 16:22:48 (D) | misfit val(s) = 1.28E-03, 8.65E-04\n", - "2022-08-15 16:22:48 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09\n", - "2022-08-15 16:22:49 (I) | line search model 'm_try' parameters: \n", - "2022-08-15 16:22:49 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:22:49 (I) | 3086.61 <= vs <= 3969.23\n", - "2022-08-15 16:22:49 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-15 16:22:49 (I) | \n", - "LINE SEARCH STEP COUNT 02\n", - "--------------------------------------------------------------------------------\n", - "2022-08-15 16:22:49 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:22:49 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:01 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:01 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:23:01 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:13 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:13 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:23:13 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:25 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:25 (D) | misfit for trial model (f_try) == 1.73E-03\n", - "2022-08-15 16:23:25 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09\n", - "2022-08-15 16:23:25 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03\n", - "2022-08-15 16:23:25 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09\n", - "2022-08-15 16:23:25 (I) | line search model 'm_try' parameters: \n", - "2022-08-15 16:23:25 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:23:25 (I) | 3325.01 <= vs <= 3698.63\n", - "2022-08-15 16:23:25 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-15 16:23:25 (I) | \n", - "LINE SEARCH STEP COUNT 03\n", - "--------------------------------------------------------------------------------\n", - "2022-08-15 16:23:25 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:23:25 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:37 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:37 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:23:37 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:51 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:51 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:23:51 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:24:03 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:24:04 (D) | misfit for trial model (f_try) == 2.59E-03\n", - "2022-08-15 16:24:04 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09\n", - "2022-08-15 16:24:04 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03\n", - "2022-08-15 16:24:04 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09\n", - "2022-08-15 16:24:04 (I) | line search model 'm_try' parameters: \n", - "2022-08-15 16:24:04 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:24:04 (I) | 3189.77 <= vs <= 3852.13\n", - "2022-08-15 16:24:04 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-15 16:24:04 (I) | \n", - "LINE SEARCH STEP COUNT 04\n", - "--------------------------------------------------------------------------------\n", - "2022-08-15 16:24:04 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:24:04 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:24:15 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:24:15 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:24:15 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:24:27 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:24:27 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:24:27 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:24:39 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:24:39 (D) | misfit for trial model (f_try) == 3.46E-03\n", - "2022-08-15 16:24:39 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09\n", - "2022-08-15 16:24:39 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03\n", - "2022-08-15 16:24:39 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", - "2022-08-15 16:24:39 (I) | line search model 'm_try' parameters: \n", - "2022-08-15 16:24:39 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:24:39 (I) | 3244.51 <= vs <= 3790.00\n", - "2022-08-15 16:24:39 (I) | trial step successful. finalizing line search\n", - "2022-08-15 16:24:39 (I) | \n", - "FINALIZING LINE SEARCH\n", - "--------------------------------------------------------------------------------\n", - "2022-08-15 16:24:39 (I) | writing optimization stats\n", - "2022-08-15 16:24:39 (I) | renaming current (new) optimization vectors as previous model (old)\n", - "2022-08-15 16:24:39 (I) | setting accepted trial model (try) as current model (new)\n", - "2022-08-15 16:24:39 (I) | misfit of accepted trial model is f=8.645E-04\n", - "2022-08-15 16:24:39 (I) | resetting line search step count to 0\n", - "2022-08-15 16:24:39 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " CLEANING WORKDIR FOR NEXT ITERATION \n", - "////////////////////////////////////////////////////////////////////////////////\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-08-15 16:24:41 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow\n", - "2022-08-15 16:24:42 (I) | stop workflow at `stop_after`: finalize_iteration\n" - ] - } - ], - "source": [ - "! seisflows submit" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the log statements above, we can see that the SeisFlows line search required 4 trial steps, where it modified values of Vs (shear-wave velocity) until satisfactory reduction in the objective function was met. This was the final step in the iteration, and so the finalization of the line search made preparations for a subsequent iteration. " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "alpha.txt f_old.txt m_new.npz p_old.npz\r\n", - "checkpoint.npz f_try.txt m_old.npz\r\n", - "f_new.txt g_old.npz output_optim.txt\r\n" - ] - } - ], - "source": [ - "# We can see that we have 'new' and 'old' values for each of the optimization values,\n", - "# representing the previous model (M00) and the current model (M01).\n", - "! ls scratch/optimize" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "step_count,step_length,gradient_norm_L1,gradient_norm_L2,misfit,if_restarted,slope,theta\r\n", - "04,2.323E+09,9.243E-05,1.049E-06,1.279E-03,0,8.263E-13,0.000E+00\r\n" - ] - } - ], - "source": [ - "# The stats/ directory contains text files describing the optimization/line search\n", - "! cat scratch/optimize/output_optim.txt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 4. Conclusions\n", - "\n", - "We've now seen how SeisFlows runs an __Inversion__ workflow using the __Specfem2D__ solver on a __Workstation__ system. More or less, this is all you need to run SeisFlows with any combination of modules. The specificities of a system or numerical solver are already handled internally by SeisFlows, so if you want to use Specmfe3D_Cartesian as your solver, you would only need to run `seisflows par solver specfem3d` at the beginning of your workflow (you will also need to set up your Specfem3D models, similar to what we did for Specfem2D here). To run on a slurm system like Chinook (University of Alaska Fairbanks), you can run `seisflows par system chinook`. " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/docs/notebooks/specfem2d_example.ipynb b/docs/notebooks/specfem2d_example.ipynb index 6dac591a..5f5457ca 100644 --- a/docs/notebooks/specfem2d_example.ipynb +++ b/docs/notebooks/specfem2d_example.ipynb @@ -66,16 +66,13 @@ " a. [Download and compile codebase](#1a.-Download-and-compile-codebase*) \n", " b. [Create a separate SPECFEM2D working directory](#1b.-Create-a-separate-SPECFEM2D-working-directory) \n", " c. [Generate initial and target models](#1c.-Generate-initial-and-target-models) \n", - "\n", "2. __[Initialize SeisFlows (SF)](#2.-Initialize-SeisFlows-(SF))__ \n", " a. [SeisFlows working directory and parameter file](#2a.-SF-working-directory-and-parameter-file) \n", - "\n", "3. __[Run SeisFlows](#2.-Run-SeisFlows)__ \n", " a. [Forward simulations](#3a.-Forward-simulations) \n", " b. [Exploring the SeisFlows directory structure](#3b.-Exploring-the-SF-directory-structure) \n", " c. [Adjoint simulations](#3c.-Adjoint-simulations) \n", " d. [Line search and model update](#3d.-Line-search-and-model-update) \n", - "\n", "4. __[Conclusions](#4.-Conclusions)__ " ] }, @@ -93,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -105,17 +102,13 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# vvv USER MUST EDIT THE FOLLOWING PATHS vvv\n", - "# MAC PATHS\n", - "WORKDIR = \"/Users/Chow/Work/work/sf_specfem2d_example\" \n", - "SPECFEM2D = \"/Users/Chow/Repositories/specfem2d\"\n", - "# LINUX PATHS\n", - "# WORKDIR = \"/home/bchow/Work/work/sf_specfem2d_example\" \n", - "# SPECFEM2D = \"/home/bchow/REPOSITORIES/specfem2d\"\n", + "WORKDIR = \"/home/bchow/Work/scratch\" \n", + "SPECFEM2D = \"/home/bchow/REPOSITORIES/specfem2d\"\n", "# where WORKDIR: points to your own working directory\n", "# and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '')\n", "# ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^\n", @@ -140,14 +133,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "SPECFEM2D repository already found, you may skip this subsection\n" + "Existing SPECMFE2D respository found, symlinking to working directory\n" ] } ], @@ -170,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -182,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -193,22 +186,17 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/Users/Chow/Repositories/specfem2d\n", - "\u001b[1m\u001b[34mxadj_seismogram\u001b[m\u001b[m \u001b[1m\u001b[34mxmeshfem2D\u001b[m\u001b[m\n", - "\u001b[1m\u001b[32mxadj_seismogram.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxmeshfem2D.dSYM\u001b[m\u001b[m\n", - "\u001b[1m\u001b[34mxcheck_quality_external_mesh\u001b[m\u001b[m \u001b[1m\u001b[34mxsmooth_sem\u001b[m\u001b[m\n", - "\u001b[1m\u001b[32mxcheck_quality_external_mesh.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxsmooth_sem.dSYM\u001b[m\u001b[m\n", - "\u001b[1m\u001b[34mxcombine_sem\u001b[m\u001b[m \u001b[1m\u001b[34mxspecfem2D\u001b[m\u001b[m\n", - "\u001b[1m\u001b[32mxcombine_sem.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxspecfem2D.dSYM\u001b[m\u001b[m\n", - "\u001b[1m\u001b[34mxconvolve_source_timefunction\u001b[m\u001b[m \u001b[1m\u001b[34mxsum_kernels\u001b[m\u001b[m\n", - "\u001b[1m\u001b[32mxconvolve_source_timefunction.dSYM\u001b[m\u001b[m \u001b[1m\u001b[32mxsum_kernels.dSYM\u001b[m\u001b[m\n" + "/home/bchow/REPOSITORIES/specfem2d\n", + "xadj_seismogram\t\t xconvolve_source_timefunction xspecfem2D\n", + "xcheck_quality_external_mesh xmeshfem2D\t\t xsum_kernels\n", + "xcombine_sem\t\t xsmooth_sem\n" ] } ], @@ -245,15 +233,15 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/Users/Chow/Work/work/sf_specfem2d_example/specfem2d_workdir\n", - "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\n" + "/home/bchow/Work/scratch/specfem2d_workdir\n", + "bin DATA\n" ] } ], @@ -278,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -287,14 +275,14 @@ "text": [ " -------------------------------------------------------------------------------\r\n", " -------------------------------------------------------------------------------\r\n", - " D a t e : 15 - 08 - 2022 T i m e : 10:13:31\r\n", + " D a t e : 16 - 08 - 2022 T i m e : 14:26:37\r\n", " -------------------------------------------------------------------------------\r\n", " -------------------------------------------------------------------------------\r\n", "\r\n", "see results in directory: OUTPUT_FILES/\r\n", "\r\n", "done\r\n", - "Mon Aug 15 10:13:31 PDT 2022\r\n" + "Tue Aug 16 02:26:37 PM AKDT 2022\r\n" ] } ], @@ -332,29 +320,22 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Par_file SOURCE_013\r\n", - "Par_file_Tape2007_132rec_checker SOURCE_014\r\n", - "Par_file_Tape2007_onerec SOURCE_015\r\n", - "\u001b[1m\u001b[35mSOURCE\u001b[m\u001b[m SOURCE_016\r\n", - "SOURCE_001 SOURCE_017\r\n", - "SOURCE_002 SOURCE_018\r\n", - "SOURCE_003 SOURCE_019\r\n", - "SOURCE_004 SOURCE_020\r\n", - "SOURCE_005 SOURCE_021\r\n", - "SOURCE_006 SOURCE_022\r\n", - "SOURCE_007 SOURCE_023\r\n", - "SOURCE_008 SOURCE_024\r\n", - "SOURCE_009 SOURCE_025\r\n", - "SOURCE_010 STATIONS_checker\r\n", - "SOURCE_011 interfaces_Tape2007.dat\r\n", - "SOURCE_012 model_velocity.dat_checker\r\n" + "interfaces_Tape2007.dat\t\t SOURCE_003 SOURCE_012 SOURCE_021\r\n", + "model_velocity.dat_checker\t SOURCE_004 SOURCE_013 SOURCE_022\r\n", + "Par_file\t\t\t SOURCE_005 SOURCE_014 SOURCE_023\r\n", + "Par_file_Tape2007_132rec_checker SOURCE_006 SOURCE_015 SOURCE_024\r\n", + "Par_file_Tape2007_onerec\t SOURCE_007 SOURCE_016 SOURCE_025\r\n", + "proc000000_model_velocity.dat_input SOURCE_008 SOURCE_017 STATIONS\r\n", + "SOURCE\t\t\t\t SOURCE_009 SOURCE_018 STATIONS_checker\r\n", + "SOURCE_001\t\t\t SOURCE_010 SOURCE_019\r\n", + "SOURCE_002\t\t\t SOURCE_011 SOURCE_020\r\n" ] } ], @@ -400,7 +381,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -424,14 +405,14 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\r\n" + "bin DATA OUTPUT_FILES\r\n" ] } ], @@ -449,7 +430,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -461,8 +442,8 @@ " **** Specfem 2-D Solver - serial version ****\n", " **********************************************\n", "\n", - " Running Git version of the code corresponding to \n", - " dating From \n", + " Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884\n", + " dating From Date: Mon Nov 29 23:20:51 2021 -0800\n", "\n", "\n", " NDIM = 2\n", @@ -473,7 +454,7 @@ " Tape-Liu-Tromp (GJI 2007)\n", " -------------------------------------------------------------------------------\n", " -------------------------------------------------------------------------------\n", - " D a t e : 15 - 08 - 2022 T i m e : 10:14:13\n", + " D a t e : 16 - 08 - 2022 T i m e : 14:26:52\n", " -------------------------------------------------------------------------------\n", " -------------------------------------------------------------------------------\n" ] @@ -508,7 +489,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -533,7 +514,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -545,8 +526,8 @@ " **** Specfem 2-D Solver - serial version ****\n", " **********************************************\n", "\n", - " Running Git version of the code corresponding to \n", - " dating From \n", + " Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884\n", + " dating From Date: Mon Nov 29 23:20:51 2021 -0800\n", "\n", "\n", " NDIM = 2\n", @@ -557,7 +538,7 @@ " Tape-Liu-Tromp (GJI 2007)\n", " -------------------------------------------------------------------------------\n", " -------------------------------------------------------------------------------\n", - " D a t e : 15 - 08 - 2022 T i m e : 10:14:13\n", + " D a t e : 16 - 08 - 2022 T i m e : 14:26:52\n", " -------------------------------------------------------------------------------\n", " -------------------------------------------------------------------------------\n" ] @@ -586,14 +567,14 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES_INIT\u001b[m\u001b[m \u001b[1m\u001b[32mOUTPUT_FILES_TRUE\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m\r\n" + "bin DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE\r\n" ] } ], @@ -633,7 +614,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -686,18 +667,15 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 35, "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'os' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mWORKDIR\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' seisflows setup -f'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' ls'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'os' is not defined" + "name": "stdout", + "output_type": "stream", + "text": [ + "creating parameter file: parameters.yaml\n", + "parameters.yaml sflog.txt specfem2d specfem2d_workdir\n" ] } ], @@ -711,7 +689,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -758,7 +736,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -803,7 +781,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -863,7 +841,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -919,372 +897,18 @@ "# `path_data/{source_name}` in the same format that the solver will\r\n", "# produce synthetics (controlled by `solver.format`) OR\r\n", "# synthetic': 'data' will be generated as synthetic seismograms using\r\n", - "# a target model provided in `path_model_true`. If None, workflow will\r\n", - "# not attempt to generate data.\r\n", - "# :type stop_after: str\r\n", - "# :param stop_after: optional name of task in task list (use\r\n", - "# `seisflows print tasks` to get task list for given workflow) to stop\r\n", - "# workflow after, allowing user to prematurely stop a workflow to explore\r\n", - "# intermediate results or debug.\r\n", - "# :type export_traces: bool\r\n", - "# :param export_traces: export all waveforms that are generated by the\r\n", - "# external solver to `path_output`. If False, solver traces stored in\r\n", - "# scratch may be discarded at any time in the workflow\r\n", - "# :type export_residuals: bool\r\n", - "# :param export_residuals: export all residuals (data-synthetic misfit) that\r\n", - "# are generated by the external solver to `path_output`. If False,\r\n", - "# residuals stored in scratch may be discarded at any time in the workflow\r\n", - "#\r\n", - "# \r\n", - "# Migration Workflow\r\n", - "# ------------------\r\n", - "# Run forward and adjoint solver to produce event-dependent misfit kernels.\r\n", - "# Sum and postprocess kernels to produce gradient. In seismic exploration\r\n", - "# this is 'reverse time migration'.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type export_gradient: bool\r\n", - "# :param export_gradient: export the gradient after it has been generated\r\n", - "# in the scratch directory. If False, gradient can be discarded from\r\n", - "# scratch at any time in the workflow\r\n", - "# :type export_kernels: bool\r\n", - "# :param export_kernels: export each sources event kernels after they have\r\n", - "# been generated in the scratch directory. If False, gradient can be\r\n", - "# discarded from scratch at any time in the workflow\r\n", - "#\r\n", - "# \r\n", - "# Inversion Workflow\r\n", - "# ------------------\r\n", - "# Peforms iterative nonlinear inversion using the machinery of the Forward\r\n", - "# and Migration workflows, as well as a built-in optimization library.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type start: int\r\n", - "# :param start: start inversion workflow at this iteration. 1 <= start <= inf\r\n", - "# :type end: int\r\n", - "# :param end: end inversion workflow at this iteration. start <= end <= inf\r\n", - "# :type iteration: int\r\n", - "# :param iteration: The current iteration of the workflow. If NoneType, takes\r\n", - "# the value of `start` (i.e., first iteration of the workflow). User can\r\n", - "# also set between `start` and `end` to resume a failed workflow.\r\n", - "# :type thrifty: bool\r\n", - "# :param thrifty: a thrifty inversion skips the costly intialization step\r\n", - "# (i.e., forward simulations and misfit quantification) if the final\r\n", - "# forward simulations from the previous iterations line search can be\r\n", - "# used in the current one. Requires L-BFGS optimization.\r\n", - "# :type export_model: bool\r\n", - "# :param export_model: export best-fitting model from the line search to disk.\r\n", - "# If False, new models can be discarded from scratch at any time.\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "data_case: data\r\n", - "stop_after: null\r\n", - "export_traces: False\r\n", - "export_residuals: False\r\n", - "export_gradient: False\r\n", - "export_kernels: False\r\n", - "start: 1\r\n", - "end: 1\r\n", - "export_model: True\r\n", - "thrifty: False\r\n", - "iteration: 1\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Workstation System\r\n", - "# ------------------\r\n", - "# Runs tasks in serial on a local machine.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type ntask: int\r\n", - "# :param ntask: number of individual tasks/events to run during workflow.\r\n", - "# Must be <= the number of source files in `path_specfem_data`\r\n", - "# :type nproc: int\r\n", - "# :param nproc: number of processors to use for each simulation\r\n", - "# :type log_level: str\r\n", - "# :param log_level: logger level to pass to logging module.\r\n", - "# Available: 'debug', 'info', 'warning', 'critical'\r\n", - "# :type verbose: bool\r\n", - "# :param verbose: if True, formats the log messages to include the file\r\n", - "# name, line number and message type. Useful for debugging but\r\n", - "# also very verbose.\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "ntask: 1\r\n", - "nproc: 1\r\n", - "log_level: DEBUG\r\n", - "verbose: False\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Solver SPECFEM\r\n", - "# --------------\r\n", - "# Generalized SPECFEM interface to manipulate SPECFEM2D/3D/3D_GLOBE w/ Python\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type data_format: str\r\n", - "# :param data_format: data format for reading traces into memory.\r\n", - "# Available: ['SU': seismic unix format, 'ASCII': human-readable ascii]\r\n", - "# :type materials: str\r\n", - "# :param materials: Material parameters used to define model. Available:\r\n", - "# ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC']\r\n", - "# :type density: bool\r\n", - "# :param density: How to treat density during inversion. If True, updates\r\n", - "# density during inversion. If False, keeps it constant.\r\n", - "# TODO allow density scaling during an inversion\r\n", - "# :type attenuation: bool\r\n", - "# :param attenuation: How to treat attenuation during inversion.\r\n", - "# if True, turns on attenuation during forward simulations only. If\r\n", - "# False, attenuation is always set to False. Requires underlying\r\n", - "# attenution (Q_mu, Q_kappa) model\r\n", - "# :type smooth_h: float\r\n", - "# :param smooth_h: Gaussian half-width for horizontal smoothing in units\r\n", - "# of meters. If 0., no smoothing applied\r\n", - "# :type smooth_h: float\r\n", - "# :param smooth_v: Gaussian half-width for vertical smoothing in units\r\n", - "# of meters.\r\n", - "# :type components: str\r\n", - "# :param components: components to consider and tag data with. Should be\r\n", - "# string of letters such as 'RTZ'\r\n", - "# :type solver_io: str\r\n", - "# :param solver_io: format of model/kernel/gradient files expected by the\r\n", - "# numerical solver. Available: ['fortran_binary': default .bin files].\r\n", - "# TODO: ['adios': ADIOS formatted files]\r\n", - "# :type source_prefix: str\r\n", - "# :param source_prefix: prefix of source/event/earthquake files. If None,\r\n", - "# will attempt to guess based on the specific solver chosen.\r\n", - "# :type mpiexec: str\r\n", - "# :param mpiexec: MPI executable used to run parallel processes. Should also\r\n", - "# be defined for the system module\r\n", - "#\r\n", - "# \r\n", - "# Solver SPECFEM2D\r\n", - "# ----------------\r\n", - "# SPECFEM2D-specific alterations to the base SPECFEM module\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type source_prefix: str\r\n", - "# :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults\r\n", - "# to 'SOURCE'\r\n", - "# :type multiples: bool\r\n", - "# :param multiples: set an absorbing top-boundary condition\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "data_format: ascii\r\n", - "materials: acoustic\r\n", - "density: False\r\n", - "attenuation: False\r\n", - "smooth_h: 0.0\r\n", - "smooth_v: 0.0\r\n", - "components: ZNE\r\n", - "source_prefix: SOURCE\r\n", - "multiples: False\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Default Preprocess\r\n", - "# ------------------\r\n", - "# Data processing for seismic traces, with options for data misfit,\r\n", - "# filtering, normalization and muting.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type data_format: str\r\n", - "# :param data_format: data format for reading traces into memory. For\r\n", - "# available see: seisflows.plugins.preprocess.readers\r\n", - "# :type misfit: str\r\n", - "# :param misfit: misfit function for waveform comparisons. For available\r\n", - "# see seisflows.plugins.preprocess.misfit\r\n", - "# :type backproject: str\r\n", - "# :param backproject: backprojection function for migration, or the\r\n", - "# objective function in FWI. For available see\r\n", - "# seisflows.plugins.preprocess.adjoint\r\n", - "# :type normalize: str\r\n", - "# :param normalize: Data normalization parameters used to normalize the\r\n", - "# amplitudes of waveforms. Choose from two sets:\r\n", - "# ENORML1: normalize per event by L1 of traces; OR\r\n", - "# ENORML2: normalize per event by L2 of traces;\r\n", - "# &\r\n", - "# TNORML1: normalize per trace by L1 of itself; OR\r\n", - "# TNORML2: normalize per trace by L2 of itself\r\n", - "# :type filter: str\r\n", - "# :param filter: Data filtering type, available options are:\r\n", - "# BANDPASS (req. MIN/MAX PERIOD/FREQ);\r\n", - "# LOWPASS (req. MAX_FREQ or MIN_PERIOD);\r\n", - "# HIGHPASS (req. MIN_FREQ or MAX_PERIOD)\r\n", - "# :type min_period: float\r\n", - "# :param min_period: Minimum filter period applied to time series.\r\n", - "# See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they\r\n", - "# will overwrite PERIOD parameters.\r\n", - "# :type max_period: float\r\n", - "# :param max_period: Maximum filter period applied to time series. See\r\n", - "# also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will\r\n", - "# overwrite PERIOD parameters.\r\n", - "# :type min_freq: float\r\n", - "# :param min_freq: Maximum filter frequency applied to time series,\r\n", - "# See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters,\r\n", - "# they will overwrite PERIOD parameters.\r\n", - "# :type max_freq: float\r\n", - "# :param max_freq: Maximum filter frequency applied to time series,\r\n", - "# See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters,\r\n", - "# they will overwrite PERIOD parameters.\r\n", - "# :type mute: list\r\n", - "# :param mute: Data mute parameters used to zero out early / late\r\n", - "# arrivals or offsets. Choose any number of:\r\n", - "# EARLY: mute early arrivals;\r\n", - "# LATE: mute late arrivals;\r\n", - "# SHORT: mute short source-receiver distances;\r\n", - "# LONG: mute long source-receiver distances\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "misfit: waveform\r\n", - "adjoint: waveform\r\n", - "normalize: []\r\n", - "filter: null\r\n", - "min_period: null\r\n", - "max_period: null\r\n", - "min_freq: null\r\n", - "max_freq: null\r\n", - "mute: []\r\n", - "early_slope: null\r\n", - "early_const: null\r\n", - "late_slope: null\r\n", - "late_const: null\r\n", - "short_dist: null\r\n", - "long_dist: null\r", - "\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Gradient Optimization\r\n", - "# ---------------------\r\n", - "# Gradient/steepest descent optimization algorithm.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type line_search_method: str\r\n", - "# :param line_search_method: chosen line_search algorithm. Currently available\r\n", - "# are 'bracket' and 'backtrack'. See seisflows.plugins.line_search\r\n", - "# for all available options\r\n", - "# :type preconditioner: str\r\n", - "# :param preconditioner: algorithm for preconditioning gradients. Currently\r\n", - "# available: 'diagonal'. Requires `path_preconditioner` to point to a\r\n", - "# set of files that define the preconditioner, formatted the same as the\r\n", - "# input model\r\n", - "# :type step_count_max: int\r\n", - "# :param step_count_max: maximum number of trial steps to perform during\r\n", - "# the line search before a change in line search behavior is\r\n", - "# considered, or a line search is considered to have failed.\r\n", - "# :type step_len_init: float\r\n", - "# :param step_len_init: initial line search step length guess, provided\r\n", - "# as a fraction of current model parameters.\r\n", - "# :type step_len_max: float\r\n", - "# :param step_len_max: maximum allowable step length during the line\r\n", - "# search. Set as a fraction of the current model parameters\r\n", - "#\r\n", - "# \r\n", - "# =============================================================================\r\n", - "preconditioner: null\r\n", - "step_count_max: 10\r\n", - "step_len_init: 0.05\r\n", - "step_len_max: 0.5\r\n", - "line_search_method: bracket\r\n", - "# =============================================================================\r\n", - "#\r\n", - "#\t Paths\r\n", - "#\t -----\r\n", - "# :type workdir: str\r\n", - "# :param workdir: working directory in which to look for data and store\r\n", - "# results. Defaults to current working directory\r\n", - "# :type path_output: str\r\n", - "# :param path_output: path to directory used for permanent storage on disk.\r\n", - "# Results and exported scratch files are saved here.\r\n", - "# :type path_data: str\r\n", - "# :param path_data: path to any externally stored data required by the solver\r\n", - "# :type path_state_file: str\r\n", - "# :param path_state_file: path to a text file used to track the current\r\n", - "# status of a workflow (i.e., what functions have already been completed),\r\n", - "# used for checkpointing and resuming workflows\r\n", - "# :type path_model_init: str\r\n", - "# :param path_model_init: path to the starting model used to calculate the\r\n", - "# initial misfit. Must match the expected `solver_io` format.\r\n", - "# :type path_model_true: str\r\n", - "# :param path_model_true: path to a target model if `case`=='synthetic' and\r\n", - "# a set of synthetic 'observations' are required for workflow.\r\n", - "# :type path_eval_grad: str\r\n", - "# :param path_eval_grad: scratch path to store files for gradient evaluation,\r\n", - "# including models, kernels, gradient and residuals.\r\n", - "# :type path_mask: str\r\n", - "# :param path_mask: optional path to a masking function which is used to\r\n", - "# mask out or scale parts of the gradient. The user-defined mask must\r\n", - "# match the file format of the input model (e.g., .bin files).\r\n", - "# :type path_eval_func: str\r\n", - "# :param path_eval_func: scratch path to store files for line search objective\r\n", - "# function evaluations, including models, misfit and residuals\r\n", - "# \r\n", - "# :type path_output_log: str\r\n", - "# :param path_output_log: path to a text file used to store the outputs of\r\n", - "# the package wide logger, which are also written to stdout\r\n", - "# :type path_par_file: str\r\n", - "# :param path_par_file: path to parameter file which is used to instantiate\r\n", - "# the package\r\n", - "# :type path_log_files: str\r\n", - "# :param path_log_files: path to a directory where individual log files are\r\n", - "# saved whenever a number of parallel tasks are run on the system.\r\n", - "# \r\n", - "# :type path_data: str\r\n", - "# :param path_data: path to any externally stored data required by the solver\r\n", - "# :type path_specfem_bin: str\r\n", - "# :param path_specfem_bin: path to SPECFEM bin/ directory which\r\n", - "# contains binary executables for running SPECFEM\r\n", - "# :type path_specfem_data: str\r\n", - "# :param path_specfem_data: path to SPECFEM DATA/ directory which must\r\n", - "# contain the CMTSOLUTION, STATIONS and Par_file files used for\r\n", - "# running SPECFEM\r\n", - "# \r\n", - "# :type path_preprocess: str\r\n", - "# :param path_preprocess: scratch path for all preprocessing processes,\r\n", - "# including saving files\r\n", - "# \r\n", - "# :type path_preconditioner: str\r\n", - "# :param path_preconditioner: optional path to a set of preconditioner files\r\n", - "# formatted the same as the input model (or output model of solver).\r\n", - "# Required to exist and contain files if `preconditioner`==True\r\n", - "# \r\n", - "# =============================================================================\r\n", - "path_workdir: /Users/Chow/Work/work/sf_specfem2d_example\r\n", - "path_scratch: /Users/Chow/Work/work/sf_specfem2d_example/scratch\r\n", - "path_eval_grad: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_grad\r\n", - "path_output: /Users/Chow/Work/work/sf_specfem2d_example/output\r\n", - "path_model_init: null\r\n", - "path_model_true: null\r\n", - "path_state_file: /Users/Chow/Work/work/sf_specfem2d_example/sfstate.txt\r\n", - "path_data: null\r\n", - "path_mask: null\r\n", - "path_eval_func: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_func\r\n", - "path_par_file: /Users/Chow/Work/work/sf_specfem2d_example/parameters.yaml\r\n", - "path_log_files: /Users/Chow/Work/work/sf_specfem2d_example/logs\r\n", - "path_output_log: /Users/Chow/Work/work/sf_specfem2d_example/sflog.txt\r\n", - "path_specfem_bin: null\r\n", - "path_specfem_data: null\r\n", - "path_solver: /Users/Chow/Work/work/sf_specfem2d_example/scratch/solver\r\n", - "path_preconditioner: null\r\n" + "# a target model provided in `path_model_true`. If None, workflow will\r\n" ] } ], "source": [ "! seisflows configure\n", - "! cat parameters.yaml" + "! head --lines=50 parameters.yaml" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -1293,13 +917,16 @@ "text": [ "ntask: 1 -> 3\n", "materials: acoustic -> elastic\n", - "density: False -> False\n", - "attenuation: False -> False\n", - "start: 1 -> 1\n", "end: 1 -> 2\n", "data_case: data -> synthetic\n", "components: ZNE -> Y\n", - "step_count_max: 10 -> 5\n" + "step_count_max: 10 -> 5\n", + "path_specfem_bin: null -> /home/bchow/Work/scratch/specfem2d_workdir/bin\n", + "path_specfem_data: null -> /home/bchow/Work/scratch/specfem2d_workdir/DATA\n", + "path_model_init: null ->\n", + "/home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_INIT\n", + "path_model_true: null ->\n", + "/home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_TRUE\n" ] }, { @@ -1308,7 +935,7 @@ "0" ] }, - "execution_count": 8, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -1316,10 +943,7 @@ "source": [ "# EDIT THE SEISFLOWS PARAMETER FILE\n", "! seisflows par ntask 3 # set the number of sources/events to use\n", - "! seisflows par materials elastic # how the velocity model is parameterized\n", - "! seisflows par density False # update density or keep constant\n", - "! seisflows par attenuation False\n", - "! seisflows par start 1 # first iteration\n", + "! seisflows par materials elastic # update Vp and Vs during inversion\n", "! seisflows par end 2 # final iteration -- we will only run 1\n", "! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models\n", "! seisflows par components Y # this default example creates Y-component seismograms\n", @@ -1342,7 +966,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -1377,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -1422,26 +1046,24 @@ "5. __perform_line_search:__ Perform a line search by algorithmically scaling the gradient and evaluating the misfit function (forward simulations and misfit quantification) until misfit is acceptably reduced.\n", "6. __finalize_iteration:__ Run any finalization steps such as saving traces, kernels, gradients and models to disk, setting up SeisFlows3 for any subsequent iterations. Clean the scratch/ directory in preparation for subsequent iterations\n", "\n", - "Let's set the `stop_after` argument to __evaluate_initial_misfit__, this will halt the workflow after the intialization step. We'll also set the `verbose` parameter to 'False', to keep the logging format relatively simple. We will explore the `verbose`==True option in a later cell." + "Let's set the `stop_after` argument to __evaluate_initial_misfit__, this will halt the workflow after the intialization step. " ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "stop_after: null -> evaluate_initial_misfit\n", - "verbose: False -> False\n" + "stop_after: null -> evaluate_initial_misfit\r\n" ] } ], "source": [ - "! seisflows par stop_after evaluate_initial_misfit\n", - "! seisflows par verbose False" + "! seisflows par stop_after evaluate_initial_misfit" ] }, { @@ -1459,66 +1081,66 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2022-08-15 16:11:40 (I) | \n", + "2022-08-16 14:32:48 (I) | \n", "================================================================================\n", " SETTING UP INVERSION WORKFLOW \n", "================================================================================\n", - "2022-08-15 16:11:47 (D) | running setup for module 'system.Workstation'\n", - "2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_001.txt\n", - "2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_001.yaml\n", - "2022-08-15 16:11:50 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-15 16:11:50 (I) | initializing 3 solver directories\n", - "2022-08-15 16:11:50 (D) | initializing solver directory source: 001\n", - "2022-08-15 16:11:58 (D) | linking source '001' as 'mainsolver'\n", - "2022-08-15 16:11:58 (D) | initializing solver directory source: 002\n", - "2022-08-15 16:12:04 (D) | initializing solver directory source: 003\n", - "2022-08-15 16:12:13 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-15 16:12:14 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-15 16:12:15 (I) | no optimization checkpoint found, assuming first run\n", - "2022-08-15 16:12:16 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:12:16 (I) | \n", + "2022-08-16 14:32:55 (D) | running setup for module 'system.Workstation'\n", + "2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_001.txt\n", + "2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_001.yaml\n", + "2022-08-16 14:32:57 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-16 14:32:57 (I) | initializing 3 solver directories\n", + "2022-08-16 14:32:57 (D) | initializing solver directory source: 001\n", + "2022-08-16 14:33:04 (D) | linking source '001' as 'mainsolver'\n", + "2022-08-16 14:33:04 (D) | initializing solver directory source: 002\n", + "2022-08-16 14:33:09 (D) | initializing solver directory source: 003\n", + "2022-08-16 14:33:16 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-16 14:33:16 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-16 14:33:17 (I) | no optimization checkpoint found, assuming first run\n", + "2022-08-16 14:33:17 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:33:17 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", " RUNNING ITERATION 01 \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:12:16 (I) | \n", + "2022-08-16 14:33:17 (I) | \n", "================================================================================\n", " RUNNING INVERSION WORKFLOW \n", "================================================================================\n", - "2022-08-15 16:12:16 (I) | \n", + "2022-08-16 14:33:17 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", " EVALUATING MISFIT FOR INITIAL MODEL \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:12:16 (I) | checking initial model parameters\n", - "2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00\n", - "2022-08-15 16:12:16 (I) | 3500.00 <= vs <= 3500.00\n", - "2022-08-15 16:12:16 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:12:16 (I) | checking true/target model parameters\n", - "2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00\n", - "2022-08-15 16:12:16 (I) | 3550.00 <= vs <= 3550.00\n", - "2022-08-15 16:12:16 (I) | 5900.00 <= vp <= 5900.00\n", - "2022-08-15 16:12:16 (I) | preparing observation data for source 001\n", - "2022-08-15 16:12:16 (I) | running forward simulation w/ target model for 001\n", - "2022-08-15 16:12:33 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:12:33 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:12:53 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:12:53 (I) | preparing observation data for source 002\n", - "2022-08-15 16:12:53 (I) | running forward simulation w/ target model for 002\n", - "2022-08-15 16:13:09 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:13:09 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:13:31 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:13:31 (I) | preparing observation data for source 003\n", - "2022-08-15 16:13:31 (I) | running forward simulation w/ target model for 003\n", - "2022-08-15 16:14:16 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:14:16 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:14:33 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:14:33 (I) | stop workflow at `stop_after`: evaluate_initial_misfit\n" + "2022-08-16 14:33:17 (I) | checking initial model parameters\n", + "2022-08-16 14:33:17 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00\n", + "2022-08-16 14:33:17 (I) | 3500.00 <= vs <= 3500.00\n", + "2022-08-16 14:33:17 (I) | checking true/target model parameters\n", + "2022-08-16 14:33:17 (I) | 5900.00 <= vp <= 5900.00\n", + "2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00\n", + "2022-08-16 14:33:17 (I) | 3550.00 <= vs <= 3550.00\n", + "2022-08-16 14:33:17 (I) | preparing observation data for source 001\n", + "2022-08-16 14:33:17 (I) | running forward simulation w/ target model for 001\n", + "2022-08-16 14:33:21 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:33:21 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:33:25 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:33:25 (I) | preparing observation data for source 002\n", + "2022-08-16 14:33:25 (I) | running forward simulation w/ target model for 002\n", + "2022-08-16 14:33:29 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:33:29 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:33:33 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:33:33 (I) | preparing observation data for source 003\n", + "2022-08-16 14:33:33 (I) | running forward simulation w/ target model for 003\n", + "2022-08-16 14:33:36 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:33:36 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:33:40 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:33:40 (I) | stop workflow at `stop_after`: evaluate_initial_misfit\n" ] } ], @@ -1536,7 +1158,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -1572,7 +1194,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -1599,7 +1221,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -1618,56 +1240,56 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2022-08-15 16:15:06 (D) | setting iteration==1 from state file\n", - "2022-08-15 16:15:06 (I) | \n", + "2022-08-16 14:36:42 (D) | setting iteration==1 from state file\n", + "2022-08-16 14:36:42 (I) | \n", "================================================================================\n", " SETTING UP INVERSION WORKFLOW \n", "================================================================================\n", - "2022-08-15 16:15:16 (D) | running setup for module 'system.Workstation'\n", - "2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_002.txt\n", - "2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_002.yaml\n", - "2022-08-15 16:15:20 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-15 16:15:20 (I) | initializing 3 solver directories\n", - "2022-08-15 16:15:22 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-15 16:15:23 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-15 16:15:25 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:15:27 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:15:27 (I) | \n", + "2022-08-16 14:36:48 (D) | running setup for module 'system.Workstation'\n", + "2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_002.txt\n", + "2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_002.yaml\n", + "2022-08-16 14:36:51 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-16 14:36:51 (I) | initializing 3 solver directories\n", + "2022-08-16 14:36:51 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-16 14:36:52 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-16 14:36:53 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:36:54 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:36:54 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", " RUNNING ITERATION 01 \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:15:27 (I) | \n", + "2022-08-16 14:36:54 (I) | \n", "================================================================================\n", " RUNNING INVERSION WORKFLOW \n", "================================================================================\n", - "2022-08-15 16:15:27 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", - "2022-08-15 16:15:27 (I) | \n", + "2022-08-16 14:36:54 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", + "2022-08-16 14:36:54 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", " EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:15:27 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-15 16:16:11 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-15 16:16:11 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-15 16:16:12 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-15 16:16:59 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-15 16:16:59 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-15 16:16:59 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-15 16:17:45 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-15 16:17:45 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-15 16:17:45 (I) | \n", + "2022-08-16 14:36:54 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-16 14:37:05 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-16 14:37:05 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-16 14:37:05 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-16 14:37:16 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-16 14:37:16 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-16 14:37:18 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-16 14:37:29 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-16 14:37:29 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-16 14:37:30 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", " GENERATING/PROCESSING MISFIT KERNEL \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:17:45 (I) | combining event kernels into single misfit kernel\n", - "2022-08-15 16:17:47 (I) | scaling gradient to absolute model perturbations\n", - "2022-08-15 16:17:49 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels\n" + "2022-08-16 14:37:30 (I) | combining event kernels into single misfit kernel\n", + "2022-08-16 14:37:31 (I) | scaling gradient to absolute model perturbations\n", + "2022-08-16 14:37:32 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels\n" ] } ], @@ -1691,14 +1313,14 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32mgradient\u001b[m\u001b[m \u001b[1m\u001b[32mkernels\u001b[m\u001b[m \u001b[1m\u001b[32mmisfit_kernel\u001b[m\u001b[m \u001b[1m\u001b[32mmodel\u001b[m\u001b[m residuals.txt\r\n" + "gradient kernels misfit_kernel model residuals.txt\r\n" ] } ], @@ -1710,14 +1332,14 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" + "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" ] } ], @@ -1728,14 +1350,14 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32m001\u001b[m\u001b[m \u001b[1m\u001b[32m002\u001b[m\u001b[m \u001b[1m\u001b[32m003\u001b[m\u001b[m\r\n" + "001 002 003\r\n" ] } ], @@ -1747,14 +1369,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 51, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "checkpoint.npz f_new.txt g_new.npz m_new.npz\r\n" + "checkpoint.npz\tf_new.txt g_new.npz m_new.npz\r\n" ] } ], @@ -1767,7 +1389,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -1799,14 +1421,14 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 53, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "stop_after: evaluate_gradient_from_kernels -> finalize_iteration\r\n" + "stop_after: evaluate_gradient_from_kernels -> perform_line_search\r\n" ] } ], @@ -1816,149 +1438,138 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2022-08-15 16:21:55 (D) | setting iteration==1 from state file\n", - "2022-08-15 16:21:55 (I) | \n", + "2022-08-16 14:41:12 (D) | setting iteration==1 from state file\n", + "2022-08-16 14:41:12 (I) | \n", "================================================================================\n", " SETTING UP INVERSION WORKFLOW \n", "================================================================================\n", - "2022-08-15 16:22:03 (D) | running setup for module 'system.Workstation'\n", - "2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_003.txt\n", - "2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_003.yaml\n", - "2022-08-15 16:22:05 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-15 16:22:05 (I) | initializing 3 solver directories\n", - "2022-08-15 16:22:07 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-15 16:22:08 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-15 16:22:09 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:22:11 (I) | re-loading optimization module from checkpoint\n", - "2022-08-15 16:22:11 (I) | \n", + "2022-08-16 14:41:18 (D) | running setup for module 'system.Workstation'\n", + "2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_003.txt\n", + "2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_003.yaml\n", + "2022-08-16 14:41:21 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-16 14:41:21 (I) | initializing 3 solver directories\n", + "2022-08-16 14:41:22 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-16 14:41:24 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-16 14:41:26 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:41:28 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:41:28 (I) | \n", "////////////////////////////////////////////////////////////////////////////////\n", " RUNNING ITERATION 01 \n", "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-15 16:22:11 (I) | \n", + "2022-08-16 14:41:28 (I) | \n", "================================================================================\n", " RUNNING INVERSION WORKFLOW \n", "================================================================================\n", - "2022-08-15 16:22:11 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", - "2022-08-15 16:22:11 (I) | 'run_adjoint_simulations' has already been run, skipping\n", - "2022-08-15 16:22:11 (I) | 'postprocess_event_kernels' has already been run, skipping\n", - "2022-08-15 16:22:11 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping\n", - "2022-08-15 16:22:11 (I) | initializing 'bracket'ing line search\n", - "2022-08-15 16:22:11 (I) | enforcing max step length safeguard\n", - "2022-08-15 16:22:11 (D) | step length(s) = 0.00E+00\n", - "2022-08-15 16:22:11 (D) | misfit val(s) = 1.28E-03\n", - "2022-08-15 16:22:11 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11\n", - "2022-08-15 16:22:11 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10\n", - "2022-08-15 16:22:11 (D) | overwriting initial step length, alpha_new=2.32E+09\n", - "2022-08-15 16:22:11 (I) | trial model 'm_try' parameters: \n", - "2022-08-15 16:22:11 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:22:11 (I) | 3244.51 <= vs <= 3790.00\n", - "2022-08-15 16:22:12 (I) | \n", + "2022-08-16 14:41:28 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", + "2022-08-16 14:41:28 (I) | 'run_adjoint_simulations' has already been run, skipping\n", + "2022-08-16 14:41:28 (I) | 'postprocess_event_kernels' has already been run, skipping\n", + "2022-08-16 14:41:28 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping\n", + "2022-08-16 14:41:28 (I) | initializing 'bracket'ing line search\n", + "2022-08-16 14:41:28 (I) | enforcing max step length safeguard\n", + "2022-08-16 14:41:28 (D) | step length(s) = 0.00E+00\n", + "2022-08-16 14:41:28 (D) | misfit val(s) = 1.28E-03\n", + "2022-08-16 14:41:28 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11\n", + "2022-08-16 14:41:28 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10\n", + "2022-08-16 14:41:28 (D) | overwriting initial step length, alpha_new=2.32E+09\n", + "2022-08-16 14:41:28 (I) | trial model 'm_try' parameters: \n", + "2022-08-16 14:41:28 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:41:28 (I) | 3244.51 <= vs <= 3790.00\n", + "2022-08-16 14:41:29 (I) | \n", "LINE SEARCH STEP COUNT 01\n", "--------------------------------------------------------------------------------\n", - "2022-08-15 16:22:12 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:22:12 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:22:23 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:22:23 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:22:23 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:22:35 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:22:35 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:22:35 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:22:48 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:22:48 (D) | misfit for trial model (f_try) == 8.65E-04\n", - "2022-08-15 16:22:48 (D) | step length(s) = 0.00E+00, 2.32E+09\n", - "2022-08-15 16:22:48 (D) | misfit val(s) = 1.28E-03, 8.65E-04\n", - "2022-08-15 16:22:48 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09\n", - "2022-08-15 16:22:49 (I) | line search model 'm_try' parameters: \n", - "2022-08-15 16:22:49 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:22:49 (I) | 3086.61 <= vs <= 3969.23\n", - "2022-08-15 16:22:49 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-15 16:22:49 (I) | \n", + "2022-08-16 14:41:29 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:41:29 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:33 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:33 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:41:33 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:36 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:36 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:41:36 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:40 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:40 (D) | misfit for trial model (f_try) == 8.65E-04\n", + "2022-08-16 14:41:40 (D) | step length(s) = 0.00E+00, 2.32E+09\n", + "2022-08-16 14:41:40 (D) | misfit val(s) = 1.28E-03, 8.65E-04\n", + "2022-08-16 14:41:40 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09\n", + "2022-08-16 14:41:40 (I) | line search model 'm_try' parameters: \n", + "2022-08-16 14:41:40 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:41:40 (I) | 3086.61 <= vs <= 3969.23\n", + "2022-08-16 14:41:40 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-16 14:41:40 (I) | \n", "LINE SEARCH STEP COUNT 02\n", "--------------------------------------------------------------------------------\n", - "2022-08-15 16:22:49 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:22:49 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:01 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:01 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:23:01 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:13 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:13 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:23:13 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:25 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:25 (D) | misfit for trial model (f_try) == 1.73E-03\n", - "2022-08-15 16:23:25 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09\n", - "2022-08-15 16:23:25 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03\n", - "2022-08-15 16:23:25 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09\n", - "2022-08-15 16:23:25 (I) | line search model 'm_try' parameters: \n", - "2022-08-15 16:23:25 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:23:25 (I) | 3325.01 <= vs <= 3698.63\n", - "2022-08-15 16:23:25 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-15 16:23:25 (I) | \n", + "2022-08-16 14:41:40 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:41:40 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:44 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:44 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:41:44 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:48 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:48 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:41:48 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:52 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:52 (D) | misfit for trial model (f_try) == 1.73E-03\n", + "2022-08-16 14:41:52 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09\n", + "2022-08-16 14:41:52 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03\n", + "2022-08-16 14:41:52 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09\n", + "2022-08-16 14:41:52 (I) | line search model 'm_try' parameters: \n", + "2022-08-16 14:41:52 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:41:52 (I) | 3325.01 <= vs <= 3698.63\n", + "2022-08-16 14:41:52 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-16 14:41:52 (I) | \n", "LINE SEARCH STEP COUNT 03\n", "--------------------------------------------------------------------------------\n", - "2022-08-15 16:23:25 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:23:25 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:37 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:37 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:23:37 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:23:51 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:23:51 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:23:51 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:24:03 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:24:04 (D) | misfit for trial model (f_try) == 2.59E-03\n", - "2022-08-15 16:24:04 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09\n", - "2022-08-15 16:24:04 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03\n", - "2022-08-15 16:24:04 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09\n", - "2022-08-15 16:24:04 (I) | line search model 'm_try' parameters: \n", - "2022-08-15 16:24:04 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:24:04 (I) | 3189.77 <= vs <= 3852.13\n", - "2022-08-15 16:24:04 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-15 16:24:04 (I) | \n", + "2022-08-16 14:41:52 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:41:52 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:56 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:56 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:41:56 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:00 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:00 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:42:00 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:03 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:03 (D) | misfit for trial model (f_try) == 2.59E-03\n", + "2022-08-16 14:42:03 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09\n", + "2022-08-16 14:42:03 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03\n", + "2022-08-16 14:42:03 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09\n", + "2022-08-16 14:42:03 (I) | line search model 'm_try' parameters: \n", + "2022-08-16 14:42:03 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:42:03 (I) | 3189.77 <= vs <= 3852.13\n", + "2022-08-16 14:42:03 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-16 14:42:03 (I) | \n", "LINE SEARCH STEP COUNT 04\n", "--------------------------------------------------------------------------------\n", - "2022-08-15 16:24:04 (I) | evaluating objective function for source 001\n", - "2022-08-15 16:24:04 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:24:15 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:24:15 (I) | evaluating objective function for source 002\n", - "2022-08-15 16:24:15 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:24:27 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:24:27 (I) | evaluating objective function for source 003\n", - "2022-08-15 16:24:27 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-15 16:24:39 (D) | quantifying misfit with 'Default'\n", - "2022-08-15 16:24:39 (D) | misfit for trial model (f_try) == 3.46E-03\n", - "2022-08-15 16:24:39 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09\n", - "2022-08-15 16:24:39 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03\n", - "2022-08-15 16:24:39 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", - "2022-08-15 16:24:39 (I) | line search model 'm_try' parameters: \n", - "2022-08-15 16:24:39 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-15 16:24:39 (I) | 3244.51 <= vs <= 3790.00\n", - "2022-08-15 16:24:39 (I) | trial step successful. finalizing line search\n", - "2022-08-15 16:24:39 (I) | \n", + "2022-08-16 14:42:03 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:42:03 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:07 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:07 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:42:07 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:11 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:11 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:42:11 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:15 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:15 (D) | misfit for trial model (f_try) == 3.46E-03\n", + "2022-08-16 14:42:15 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09\n", + "2022-08-16 14:42:15 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03\n", + "2022-08-16 14:42:15 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", + "2022-08-16 14:42:15 (I) | line search model 'm_try' parameters: \n", + "2022-08-16 14:42:15 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:42:15 (I) | 3244.51 <= vs <= 3790.00\n", + "2022-08-16 14:42:15 (I) | trial step successful. finalizing line search\n", + "2022-08-16 14:42:15 (I) | \n", "FINALIZING LINE SEARCH\n", "--------------------------------------------------------------------------------\n", - "2022-08-15 16:24:39 (I) | writing optimization stats\n", - "2022-08-15 16:24:39 (I) | renaming current (new) optimization vectors as previous model (old)\n", - "2022-08-15 16:24:39 (I) | setting accepted trial model (try) as current model (new)\n", - "2022-08-15 16:24:39 (I) | misfit of accepted trial model is f=8.645E-04\n", - "2022-08-15 16:24:39 (I) | resetting line search step count to 0\n", - "2022-08-15 16:24:39 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " CLEANING WORKDIR FOR NEXT ITERATION \n", - "////////////////////////////////////////////////////////////////////////////////\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-08-15 16:24:41 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow\n", - "2022-08-15 16:24:42 (I) | stop workflow at `stop_after`: finalize_iteration\n" + "2022-08-16 14:42:15 (I) | writing optimization stats\n", + "2022-08-16 14:42:15 (I) | renaming current (new) optimization vectors as previous model (old)\n", + "2022-08-16 14:42:15 (I) | setting accepted trial model (try) as current model (new)\n", + "2022-08-16 14:42:15 (I) | misfit of accepted trial model is f=8.645E-04\n", + "2022-08-16 14:42:15 (I) | resetting line search step count to 0\n", + "2022-08-16 14:42:15 (I) | stop workflow at `stop_after`: perform_line_search\n" ] } ], @@ -1975,16 +1586,15 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 55, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "alpha.txt f_old.txt m_new.npz p_old.npz\r\n", - "checkpoint.npz f_try.txt m_old.npz\r\n", - "f_new.txt g_old.npz output_optim.txt\r\n" + "alpha.txt\tf_new.txt f_try.txt m_new.npz output_optim.txt\r\n", + "checkpoint.npz\tf_old.txt g_old.npz m_old.npz p_old.npz\r\n" ] } ], @@ -1996,7 +1606,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -2025,7 +1635,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -2039,7 +1649,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.7.12" } }, "nbformat": 4, diff --git a/docs/notebooks/working_directory.ipynb b/docs/notebooks/working_directory.ipynb index 50779626..ec727e6a 100644 --- a/docs/notebooks/working_directory.ipynb +++ b/docs/notebooks/working_directory.ipynb @@ -4,30 +4,40 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Working Directory Structure\n", - "\n", - "SeisFlows sets it's own working directory when executing a workflow. Below we explore the working directory set up by the SPECFEM2D-workstation example. Working directories may change slightly depending on the chosen workflow, but will more or less follow the same structure. \n", - "\n", - ">__NOTE__: The two SPECFEM2D directories listed below are not part of the standard SeisFlows working directory." + "# Working Directory Structure" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "SeisFlows sets it's own working directory when executing a workflow. Below we explore the working directory set up by the `SPECFEM2D-workstation example `__. Working directories may change slightly depending on the chosen workflow, but will more or less follow the same structure." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ">__NOTE__: The two SPECFEM2D directories listed below (specfem2d/ & specfem2d_workdir/) are not part of a standard SeisFlows working directory." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/Users/Chow/Work/work/sf_specfem2d_example\n", - "\u001b[1m\u001b[32mlogs\u001b[m\u001b[m parameters.yaml sflog.txt \u001b[1m\u001b[35mspecfem2d\u001b[m\u001b[m\r\n", - "\u001b[1m\u001b[32moutput\u001b[m\u001b[m \u001b[1m\u001b[32mscratch\u001b[m\u001b[m sfstate.txt \u001b[1m\u001b[32mspecfem2d_workdir\u001b[m\u001b[m\r\n" + "/home/bchow/Work/scratch\n", + "logs\tparameters.yaml sflog.txt specfem2d\r\n", + "output\tscratch\t\t sfstate.txt specfem2d_workdir\r\n" ] } ], "source": [ - "%cd /Users/Chow/Work/work/sf_specfem2d_example\n", + "%cd /home/bchow/Work/scratch\n", "! ls" ] }, @@ -42,14 +52,14 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32meval_func\u001b[m\u001b[m \u001b[1m\u001b[32meval_grad\u001b[m\u001b[m \u001b[1m\u001b[32moptimize\u001b[m\u001b[m \u001b[1m\u001b[32mpreprocess\u001b[m\u001b[m \u001b[1m\u001b[32msolver\u001b[m\u001b[m \u001b[1m\u001b[32msystem\u001b[m\u001b[m\r\n" + "eval_func eval_grad optimize\tpreprocess solver system\r\n" ] } ], @@ -84,14 +94,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32m001\u001b[m\u001b[m \u001b[1m\u001b[32m002\u001b[m\u001b[m \u001b[1m\u001b[32m003\u001b[m\u001b[m \u001b[1m\u001b[35mmainsolver\u001b[m\u001b[m\r\n" + "001 002 003 mainsolver\r\n" ] } ], @@ -101,16 +111,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32mDATA\u001b[m\u001b[m adj_solver.log fwd_solver.log solver_vs.log\r\n", - "\u001b[1m\u001b[32mOUTPUT_FILES\u001b[m\u001b[m \u001b[1m\u001b[32mbin\u001b[m\u001b[m kernel_paths \u001b[1m\u001b[32mtraces\u001b[m\u001b[m\r\n", - "\u001b[1m\u001b[35mSEM\u001b[m\u001b[m fwd_mesher.log solver_vp.log\r\n" + "adj_solver.log\tcombine_vs.log\tfwd_solver.log\tSEM\r\n", + "bin\t\tDATA\t\tkernel_paths\ttraces\r\n", + "combine_vp.log\tfwd_mesher.log\tOUTPUT_FILES\r\n" ] } ], @@ -135,14 +145,14 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m\u001b[32madj\u001b[m\u001b[m \u001b[1m\u001b[32mobs\u001b[m\u001b[m \u001b[1m\u001b[32msyn\u001b[m\u001b[m\r\n" + "adj obs syn\r\n" ] } ], @@ -152,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -169,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -223,16 +233,15 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "alpha.txt f_old.txt m_new.npz p_old.npz\r\n", - "checkpoint.npz f_try.txt m_old.npz\r\n", - "f_new.txt g_old.npz output_optim.txt\r\n" + "alpha.txt\tf_new.txt f_try.txt m_new.npz output_optim.txt\r\n", + "checkpoint.npz\tf_old.txt g_old.npz m_old.npz p_old.npz\r\n" ] } ], @@ -242,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -262,7 +271,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -281,98 +290,121 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### eval_func/ & eval_grad/\n", - "\n", - "Scratch directories containing objective function evaluation and gradient evaluation files. These include (1) the current **model** being used for misfit evaluation, and (2) **residuals** which define the misfit for each event. **evalgrad/** also contains **kernels** which define per-event kernels which are summed and manipulated with the postprocess module." + "The 'checkpoint.npz' file contains information about the state of the line search (controlled by the Optimization module). It is used to resume failed or stopped line searches with minimal redundant use of computational resources." ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\r\n" + "['restarted', 'func_vals', 'step_lens', 'gtg', 'gtp', 'step_count']\n", + "step count: 0\n", + "step lengths: [0.00000000e+00 2.32268310e+09 3.75818023e+09 1.59087505e+09\n", + " 2.82031810e+09]\n", + "misfit: [0.00127902 0.00086452 0.00172904 0.00259356 0.00345808]\n" ] } ], "source": [ - "! ls scratch/eval_func\n", - "! echo\n", - "! ls scratch/eval_grad" + "line_search = np.load(\"scratch/optimize/checkpoint.npz\")\n", + "\n", + "print(vars(line_search)[\"files\"])\n", + "\n", + "print(\"step count: \", line_search[\"step_count\"])\n", + "print(\"step lengths: \", line_search[\"step_lens\"])\n", + "print(\"misfit: \", line_search[\"func_vals\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### eval_func/ & eval_grad/\n", + "\n", + "Scratch directories containing objective function evaluation and gradient evaluation files. These include (1) the current **model** being used for misfit evaluation, and (2) a **residual** file which defines the misfit for each event. **eval_grad/** also contains **kernels** which define per-event kernels which are summed and manipulated with the postprocess module." ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "001 002 003\r\n" + "model residuals.txt\n", + "\n", + "gradient kernels misfit_kernel model residuals.txt\n" ] } ], "source": [ - "! ls scratch/evalgrad/residuals" + "! ls scratch/eval_func\n", + "! echo\n", + "! ls scratch/eval_grad" ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2.413801941841247842e-02\r\n", - "2.413801941841247842e-02\r\n", - "2.413801941841247842e-02\r\n" + "2.41E-02\r\n", + "2.14E-02\r\n", + "1.55E-02\r\n" ] } ], "source": [ - "! cat scratch/evalgrad/residuals/001" + "! cat scratch/eval_grad/residuals.txt" ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "001 002 003 sum\r\n" + "001 002 003\r\n" ] } ], "source": [ - "! ls scratch/evalgrad/kernels" + "! ls scratch/eval_grad/kernels" ] }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" + "proc000000_bulk_beta_kernel.bin proc000000_rhop_kernel.bin\r\n", + "proc000000_bulk_c_kernel.bin\t proc000000_vp_kernel.bin\r\n", + "proc000000_kappa_kernel.bin\t proc000000_vs_kernel.bin\r\n", + "proc000000_mu_kernel.bin\t proc000000_weights_kernel.bin\r\n", + "proc000000_rho_kernel.bin\r\n" ] } ], "source": [ - "! ls scratch/evalgrad/kernels/sum" + "! ls scratch/eval_grad/kernels/001" ] }, { @@ -381,17 +413,9 @@ "source": [ "### system & preprocess\n", "\n", - "These two directories are empty in our example problem, but are catch-all directories where module-specific files can be output. If you are extending SeisFlows3 with other base or subclasses, it is preferable to adhere to this structure where each module only interacts with it's own directory" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "! ls scratch/system\n", - "! ls scratch/preprocess" + "These two directories are empty in our example problem, but are catch-all directories where module-specific files can be output. If you are extending SeisFlows with other base or subclasses, it is preferable to adhere to this structure where each module only interacts with it's own directory.\n", + "\n", + "When `Pyaflowa` is chosen as the preprocess module, it stores figures, log files, and data (in ASDFDataSets) within its scratch directory. It also specifies parameters for exporting these scratch files to disk for more permanent storage." ] }, { @@ -400,23 +424,19 @@ "source": [ "---------------------\n", "## output/\n", - "The current active state of SeisFlows3, containing pickle (.p) and JSON files which describe a Python environment of a current workflow. Additionally files to be permanently saved (e.g., models, graidents, traces) can be located here. These are tagged in ascending order, e.g., model_0001 refers to the updated model derived during the first iteration." + "Output files to be permanently saved (e.g., models, graidents, traces) can be located in this directory. These are tagged in ascending order. Because we did not run the finalization task in our SPECFEM2D problem, the output directory only contains our initial model." ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "gradient_0001 seisflows_optimize.p\t seisflows_solver.p\r\n", - "kwargs\t seisflows_parameters.json seisflows_system.p\r\n", - "model_0001 seisflows_paths.json\t seisflows_workflow.p\r\n", - "model_init seisflows_postprocess.p\r\n", - "model_true seisflows_preprocess.p\r\n" + "MODEL_INIT\r\n" ] } ], @@ -426,7 +446,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -438,24 +458,7 @@ } ], "source": [ - "! ls output/model_0001" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" - ] - } - ], - "source": [ - "! ls output/gradient_0001" + "! ls output/MODEL_INIT" ] }, { @@ -469,14 +472,18 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "output_sf3_001.txt parameters_001.yaml\r\n" + "0001_00.log 0002_02.log 0004_01.log 0006_00.log\t parameters_002.yaml\r\n", + "0001_01.log 0003_00.log 0004_02.log 0006_01.log\t parameters_003.yaml\r\n", + "0001_02.log 0003_01.log 0005_00.log 0006_02.log\t sflog_001.txt\r\n", + "0002_00.log 0003_02.log 0005_01.log 0007_00.log\t sflog_002.txt\r\n", + "0002_01.log 0004_00.log 0005_02.log parameters_001.yaml sflog_003.txt\r\n" ] } ], @@ -488,49 +495,76 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "------------------------------\n", - "## stats/\n", + "----------------------------\n", + "## sflog.txt\n", "\n", - "Text files describing the optimization statistics of the current workflow. This directory is only relevant if you are running an inversion workflow. " + "The main log file for SeisFlows, where all log statements written to stdout are recorded during a workflow. Allows a user to come back to a workflow and understand the tasks completed and any important information collected during the workflow" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "factor.txt\t line_search.txt slope.txt\ttheta.txt\r\n", - "gradient_norm_L1.txt misfit.txt step_count.txt\r\n", - "gradient_norm_L2.txt restarted.txt step_length.txt\r\n" - ] - } - ], - "source": [ - "! ls stats" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ITER STEP_COUNT\r\n", - "==== ==================\r\n", - " 1 0.000000E+00\r\n", - " 1 2.000000E+00\r\n" + "2022-08-16 14:32:48 (I) | \r\n", + "================================================================================\r\n", + " SETTING UP INVERSION WORKFLOW \r\n", + "================================================================================\r\n", + "2022-08-16 14:32:55 (D) | running setup for module 'system.Workstation'\r\n", + "2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_001.txt\r\n", + "2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_001.yaml\r\n", + "2022-08-16 14:32:57 (D) | running setup for module 'solver.Specfem2D'\r\n", + "2022-08-16 14:32:57 (I) | initializing 3 solver directories\r\n", + "2022-08-16 14:32:57 (D) | initializing solver directory source: 001\r\n", + "2022-08-16 14:33:04 (D) | linking source '001' as 'mainsolver'\r\n", + "2022-08-16 14:33:04 (D) | initializing solver directory source: 002\r\n", + "2022-08-16 14:33:09 (D) | initializing solver directory source: 003\r\n", + "2022-08-16 14:33:16 (D) | running setup for module 'preprocess.Default'\r\n", + "2022-08-16 14:33:16 (D) | running setup for module 'optimize.Gradient'\r\n", + "2022-08-16 14:33:17 (I) | no optimization checkpoint found, assuming first run\r\n", + "2022-08-16 14:33:17 (I) | re-loading optimization module from checkpoint\r\n", + "2022-08-16 14:33:17 (I) | \r\n", + "////////////////////////////////////////////////////////////////////////////////\r\n", + " RUNNING ITERATION 01 \r\n", + "////////////////////////////////////////////////////////////////////////////////\r\n", + "2022-08-16 14:33:17 (I) | \r\n", + "================================================================================\r\n", + " RUNNING INVERSION WORKFLOW \r\n", + "================================================================================\r\n", + "2022-08-16 14:33:17 (I) | \r\n", + "////////////////////////////////////////////////////////////////////////////////\r\n", + " EVALUATING MISFIT FOR INITIAL MODEL \r\n", + "////////////////////////////////////////////////////////////////////////////////\r\n", + "2022-08-16 14:33:17 (I) | checking initial model parameters\r\n", + "2022-08-16 14:33:17 (I) | 5800.00 <= vp <= 5800.00\r\n", + "2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00\r\n", + "2022-08-16 14:33:17 (I) | 3500.00 <= vs <= 3500.00\r\n", + "2022-08-16 14:33:17 (I) | checking true/target model parameters\r\n", + "2022-08-16 14:33:17 (I) | 5900.00 <= vp <= 5900.00\r\n", + "2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00\r\n", + "2022-08-16 14:33:17 (I) | 3550.00 <= vs <= 3550.00\r\n", + "2022-08-16 14:33:17 (I) | preparing observation data for source 001\r\n", + "2022-08-16 14:33:17 (I) | running forward simulation w/ target model for 001\r\n", + "2022-08-16 14:33:21 (I) | evaluating objective function for source 001\r\n", + "2022-08-16 14:33:21 (D) | running forward simulation with 'Specfem2D'\r\n", + "2022-08-16 14:33:25 (D) | quantifying misfit with 'Default'\r\n", + "2022-08-16 14:33:25 (I) | preparing observation data for source 002\r\n", + "2022-08-16 14:33:25 (I) | running forward simulation w/ target model for 002\r\n", + "2022-08-16 14:33:29 (I) | evaluating objective function for source 002\r\n", + "2022-08-16 14:33:29 (D) | running forward simulation with 'Specfem2D'\r\n", + "2022-08-16 14:33:33 (D) | quantifying misfit with 'Default'\r\n", + "2022-08-16 14:33:33 (I) | preparing observation data for source 003\r\n", + "2022-08-16 14:33:33 (I) | running forward simulation w/ target model for 003\r\n", + "2022-08-16 14:33:36 (I) | evaluating objective function for source 003\r\n" ] } ], "source": [ - "! cat stats/step_count.txt" + "! head -50 sflog.txt" ] }, { @@ -538,81 +572,51 @@ "metadata": {}, "source": [ "----------------------------\n", - "## output_sf3.txt\n", + "## sfstate.txt\n", "\n", - "The main log file for SeisFlows3, where all log statements written to stdout are recorded during a workflow." + "A state file which tracks the progress of a workflow, allowing the User to quickly resumed stopped or failed workflows without wasting computational resources. The State file simply contains the names of functions contained in the Workflow task list, as well as their respective status, which can be 'completed', 'failed', or not available." ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2022-04-29 16:45:35 | initializing SeisFlows3 in sys.modules\r\n", - "2022-04-29 16:45:39 | copying par/log file to: /home/bchow/Work/official/workshop_pyatoa_sf3/ex1_specfem2d_workstation/logs/output_sf3_001.txt\r\n", - "2022-04-29 16:45:39 | copying par/log file to: /home/bchow/Work/official/workshop_pyatoa_sf3/ex1_specfem2d_workstation/logs/parameters_001.yaml\r\n", - "2022-04-29 16:45:39 | exporting current working environment to disk\r\n", - "2022-04-29 16:45:39 | \r\n", - "////////////////////////////////////////////////////////////////////////////////\r\n", - " WORKFLOW WILL STOP AFTER FUNC: 'finalize' \r\n", - "////////////////////////////////////////////////////////////////////////////////\r\n", - "2022-04-29 16:45:39 | \r\n", - "================================================================================\r\n", - " STARTING INVERSION WORKFLOW \r\n", - "================================================================================\r\n", - "2022-04-29 16:45:39 | \r\n", - "////////////////////////////////////////////////////////////////////////////////\r\n", - " ITERATION 1 / 1 \r\n", - "////////////////////////////////////////////////////////////////////////////////\r\n", - "2022-04-29 16:45:39 | \r\n", - "////////////////////////////////////////////////////////////////////////////////\r\n", - " PERFORMING MODULE SETUP \r\n", - "////////////////////////////////////////////////////////////////////////////////\r\n", - "2022-04-29 16:45:39 | misfit function is: 'waveform'\r\n", - "2022-04-29 16:45:40 | writing line search history file:\r\n", - "/home/bchow/Work/official/workshop_pyatoa_sf3/ex1_specfem2d_workstation/stats/line_search.txt\r\n", - "2022-04-29 16:45:40 | checking poissons ratio for: 'm_new.npy'\r\n", - "2022-04-29 16:45:40 | model parameters (m_new.npy i01s00):\r\n", - "2022-04-29 16:45:40 | 5800.00 <= vp <= 5800.00\r\n", - "2022-04-29 16:45:40 | 3500.00 <= vs <= 3500.00\r\n", - "2022-04-29 16:45:40 | 0.21 <= pr <= 0.21\r\n", - "2022-04-29 16:45:41 | setting up solver on system...\r\n", - "2022-04-29 16:45:41 | checkpointing working environment to disk\r\n", - "2022-04-29 16:45:42 | exporting current working environment to disk\r\n", - "2022-04-29 16:45:43 | running task solver.setup 3 times\r\n", - "2022-04-29 16:45:43 | initializing 3 solver directories\r\n", - "2022-04-29 16:45:50 | source 001 symlinked as mainsolver\r\n", - "2022-04-29 16:45:50 | generating 'data' with MODEL_TRUE synthetics\r\n", - "2022-04-29 16:45:57 | running mesh generation for MODEL_INIT\r\n", - "2022-04-29 16:46:27 | \r\n", - "================================================================================\r\n", - " INITIALIZING INVERSION \r\n", - "================================================================================\r\n", - "2022-04-29 16:46:27 | \r\n", - "EVALUATE OBJECTIVE FUNCTION\r\n", - "--------------------------------------------------------------------------------\r\n", - "2022-04-29 16:46:27 | saving model 'm_new.npy' to:\r\n", - "/home/bchow/Work/official/workshop_pyatoa_sf3/ex1_specfem2d_workstation/scratch/evalgrad/model\r\n", - "2022-04-29 16:46:28 | evaluating objective function 3 times on system...\r\n", - "2022-04-29 16:46:28 | checkpointing working environment to disk\r\n", - "2022-04-29 16:46:29 | exporting current working environment to disk\r\n", - "2022-04-29 16:46:30 | running task solver.eval_func 3 times\r\n", - "2022-04-29 16:46:30 | running forward simulations\r\n" + "# SeisFlows State File\r\n", + "# Tue Aug 16 14:33:17 2022\r\n", + "# Acceptable states: 'completed', 'failed'\r\n", + "# =======================================\r\n", + "evaluate_initial_misfit: completed\r\n", + "run_adjoint_simulations: completed\r\n", + "postprocess_event_kernels: completed\r\n", + "evaluate_gradient_from_kernels: completed\r\n", + "initialize_line_search: completed\r\n", + "perform_line_search: completed\r\n", + "iteration: 1" ] } ], "source": [ - "! head -50 output_sf3.txt" + "! cat sfstate.txt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When submitting a workflow with an existing state file, the workflow will check the status of each function. 'Completed' functions will be skipped over. 'Failed' functions will be re-run. Users can delete lines from the state file or change status' manually to re-run tasks within the list, taking care about the current configuration of the working directory, which is intrinsically tied to the task list.\n", + "\n", + "For 'Inversion' workflows, the current 'Iteration' is also saved, meaning re-submitted workflows will start at the previously checkpointed iteration. " ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -626,7 +630,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.7.12" } }, "nbformat": 4, diff --git a/docs/specfem2d_example.rst b/docs/specfem2d_example.rst index 6e0f01f6..81bc7477 100644 --- a/docs/specfem2d_example.rst +++ b/docs/specfem2d_example.rst @@ -99,12 +99,8 @@ but this can easily be accomplished in bash. .. code:: ipython3 # vvv USER MUST EDIT THE FOLLOWING PATHS vvv - # MAC PATHS - WORKDIR = "/Users/Chow/Work/work/sf_specfem2d_example" - SPECFEM2D = "/Users/Chow/Repositories/specfem2d" - # LINUX PATHS - # WORKDIR = "/home/bchow/Work/work/sf_specfem2d_example" - # SPECFEM2D = "/home/bchow/REPOSITORIES/specfem2d" + WORKDIR = "/home/bchow/Work/scratch" + SPECFEM2D = "/home/bchow/REPOSITORIES/specfem2d" # where WORKDIR: points to your own working directory # and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '') # ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^ @@ -129,7 +125,8 @@ but this can easily be accomplished in bash. .. code:: ipython3 # Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo - os.makedirs(WORKDIR) + if not os.path.exists(WORKDIR): + os.makedirs(WORKDIR) os.chdir(WORKDIR) if os.path.exists("specfem2d"): @@ -171,15 +168,10 @@ but this can easily be accomplished in bash. .. parsed-literal:: - /Users/Chow/Repositories/specfem2d - xadj_seismogram xmeshfem2D - xadj_seismogram.dSYM xmeshfem2D.dSYM - xcheck_quality_external_mesh xsmooth_sem - xcheck_quality_external_mesh.dSYM xsmooth_sem.dSYM - xcombine_sem xspecfem2D - xcombine_sem.dSYM xspecfem2D.dSYM - xconvolve_source_timefunction xsum_kernels - xconvolve_source_timefunction.dSYM xsum_kernels.dSYM + /home/bchow/REPOSITORIES/specfem2d + xadj_seismogram xconvolve_source_timefunction xspecfem2D + xcheck_quality_external_mesh xmeshfem2D xsum_kernels + xcombine_sem xsmooth_sem 1b. Create a separate SPECFEM2D working directory @@ -222,8 +214,8 @@ to define our **DATA/** directory (last tested 8/15/22, bdba4389). .. parsed-literal:: - /Users/Chow/Work/work/sf_specfem2d_example/specfem2d_workdir - DATA bin + /home/bchow/Work/scratch/specfem2d_workdir + bin DATA .. code:: ipython3 @@ -243,14 +235,14 @@ to define our **DATA/** directory (last tested 8/15/22, bdba4389). ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- - D a t e : 15 - 08 - 2022 T i m e : 10:13:31 + D a t e : 16 - 08 - 2022 T i m e : 14:26:37 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- see results in directory: OUTPUT_FILES/ done - Mon Aug 15 10:13:31 PDT 2022 + Tue Aug 16 02:26:37 PM AKDT 2022 -------------- @@ -290,22 +282,15 @@ how SeisFlows3 operates within the SPECFEM2D framework): .. parsed-literal:: - Par_file SOURCE_013 - Par_file_Tape2007_132rec_checker SOURCE_014 - Par_file_Tape2007_onerec SOURCE_015 - SOURCE SOURCE_016 - SOURCE_001 SOURCE_017 - SOURCE_002 SOURCE_018 - SOURCE_003 SOURCE_019 - SOURCE_004 SOURCE_020 - SOURCE_005 SOURCE_021 - SOURCE_006 SOURCE_022 - SOURCE_007 SOURCE_023 - SOURCE_008 SOURCE_024 - SOURCE_009 SOURCE_025 - SOURCE_010 STATIONS_checker - SOURCE_011 interfaces_Tape2007.dat - SOURCE_012 model_velocity.dat_checker + interfaces_Tape2007.dat SOURCE_003 SOURCE_012 SOURCE_021 + model_velocity.dat_checker SOURCE_004 SOURCE_013 SOURCE_022 + Par_file SOURCE_005 SOURCE_014 SOURCE_023 + Par_file_Tape2007_132rec_checker SOURCE_006 SOURCE_015 SOURCE_024 + Par_file_Tape2007_onerec SOURCE_007 SOURCE_016 SOURCE_025 + proc000000_model_velocity.dat_input SOURCE_008 SOURCE_017 STATIONS + SOURCE SOURCE_009 SOURCE_018 STATIONS_checker + SOURCE_001 SOURCE_010 SOURCE_019 + SOURCE_002 SOURCE_011 SOURCE_020 1c. Generate initial and target models @@ -362,7 +347,7 @@ of the initial model. .. parsed-literal:: - DATA OUTPUT_FILES bin + bin DATA OUTPUT_FILES .. code:: ipython3 @@ -391,8 +376,8 @@ of the initial model. **** Specfem 2-D Solver - serial version **** ********************************************** - Running Git version of the code corresponding to - dating From + Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884 + dating From Date: Mon Nov 29 23:20:51 2021 -0800 NDIM = 2 @@ -403,7 +388,7 @@ of the initial model. Tape-Liu-Tromp (GJI 2007) ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- - D a t e : 15 - 08 - 2022 T i m e : 10:14:13 + D a t e : 16 - 08 - 2022 T i m e : 14:26:52 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- @@ -463,8 +448,8 @@ directly. **** Specfem 2-D Solver - serial version **** ********************************************** - Running Git version of the code corresponding to - dating From + Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884 + dating From Date: Mon Nov 29 23:20:51 2021 -0800 NDIM = 2 @@ -475,7 +460,7 @@ directly. Tape-Liu-Tromp (GJI 2007) ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- - D a t e : 15 - 08 - 2022 T i m e : 10:14:13 + D a t e : 16 - 08 - 2022 T i m e : 14:26:52 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- @@ -488,7 +473,7 @@ directly. .. parsed-literal:: - DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE bin + bin DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE 2. Initialize SeisFlows (SF) @@ -577,7 +562,7 @@ line commands. .. parsed-literal:: creating parameter file: parameters.yaml - parameters.yaml specfem2d specfem2d_workdir + parameters.yaml sflog.txt specfem2d specfem2d_workdir .. code:: ipython3 @@ -716,7 +701,7 @@ choice for each. .. code:: ipython3 ! seisflows configure - ! cat parameters.yaml + ! head --lines=50 parameters.yaml .. parsed-literal:: @@ -771,369 +756,13 @@ choice for each. # produce synthetics (controlled by `solver.format`) OR # synthetic': 'data' will be generated as synthetic seismograms using # a target model provided in `path_model_true`. If None, workflow will - # not attempt to generate data. - # :type stop_after: str - # :param stop_after: optional name of task in task list (use - # `seisflows print tasks` to get task list for given workflow) to stop - # workflow after, allowing user to prematurely stop a workflow to explore - # intermediate results or debug. - # :type export_traces: bool - # :param export_traces: export all waveforms that are generated by the - # external solver to `path_output`. If False, solver traces stored in - # scratch may be discarded at any time in the workflow - # :type export_residuals: bool - # :param export_residuals: export all residuals (data-synthetic misfit) that - # are generated by the external solver to `path_output`. If False, - # residuals stored in scratch may be discarded at any time in the workflow - # - # - # Migration Workflow - # ------------------ - # Run forward and adjoint solver to produce event-dependent misfit kernels. - # Sum and postprocess kernels to produce gradient. In seismic exploration - # this is 'reverse time migration'. - # - # Parameters - # ---------- - # :type export_gradient: bool - # :param export_gradient: export the gradient after it has been generated - # in the scratch directory. If False, gradient can be discarded from - # scratch at any time in the workflow - # :type export_kernels: bool - # :param export_kernels: export each sources event kernels after they have - # been generated in the scratch directory. If False, gradient can be - # discarded from scratch at any time in the workflow - # - # - # Inversion Workflow - # ------------------ - # Peforms iterative nonlinear inversion using the machinery of the Forward - # and Migration workflows, as well as a built-in optimization library. - # - # Parameters - # ---------- - # :type start: int - # :param start: start inversion workflow at this iteration. 1 <= start <= inf - # :type end: int - # :param end: end inversion workflow at this iteration. start <= end <= inf - # :type iteration: int - # :param iteration: The current iteration of the workflow. If NoneType, takes - # the value of `start` (i.e., first iteration of the workflow). User can - # also set between `start` and `end` to resume a failed workflow. - # :type thrifty: bool - # :param thrifty: a thrifty inversion skips the costly intialization step - # (i.e., forward simulations and misfit quantification) if the final - # forward simulations from the previous iterations line search can be - # used in the current one. Requires L-BFGS optimization. - # :type export_model: bool - # :param export_model: export best-fitting model from the line search to disk. - # If False, new models can be discarded from scratch at any time. - # - # - # ============================================================================= - data_case: data - stop_after: null - export_traces: False - export_residuals: False - export_gradient: False - export_kernels: False - start: 1 - end: 1 - export_model: True - thrifty: False - iteration: 1 - # ============================================================================= - # - # Workstation System - # ------------------ - # Runs tasks in serial on a local machine. - # - # Parameters - # ---------- - # :type ntask: int - # :param ntask: number of individual tasks/events to run during workflow. - # Must be <= the number of source files in `path_specfem_data` - # :type nproc: int - # :param nproc: number of processors to use for each simulation - # :type log_level: str - # :param log_level: logger level to pass to logging module. - # Available: 'debug', 'info', 'warning', 'critical' - # :type verbose: bool - # :param verbose: if True, formats the log messages to include the file - # name, line number and message type. Useful for debugging but - # also very verbose. - # - # - # ============================================================================= - ntask: 1 - nproc: 1 - log_level: DEBUG - verbose: False - # ============================================================================= - # - # Solver SPECFEM - # -------------- - # Generalized SPECFEM interface to manipulate SPECFEM2D/3D/3D_GLOBE w/ Python - # - # Parameters - # ---------- - # :type data_format: str - # :param data_format: data format for reading traces into memory. - # Available: ['SU': seismic unix format, 'ASCII': human-readable ascii] - # :type materials: str - # :param materials: Material parameters used to define model. Available: - # ['ELASTIC': Vp, Vs, 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] - # :type density: bool - # :param density: How to treat density during inversion. If True, updates - # density during inversion. If False, keeps it constant. - # TODO allow density scaling during an inversion - # :type attenuation: bool - # :param attenuation: How to treat attenuation during inversion. - # if True, turns on attenuation during forward simulations only. If - # False, attenuation is always set to False. Requires underlying - # attenution (Q_mu, Q_kappa) model - # :type smooth_h: float - # :param smooth_h: Gaussian half-width for horizontal smoothing in units - # of meters. If 0., no smoothing applied - # :type smooth_h: float - # :param smooth_v: Gaussian half-width for vertical smoothing in units - # of meters. - # :type components: str - # :param components: components to consider and tag data with. Should be - # string of letters such as 'RTZ' - # :type solver_io: str - # :param solver_io: format of model/kernel/gradient files expected by the - # numerical solver. Available: ['fortran_binary': default .bin files]. - # TODO: ['adios': ADIOS formatted files] - # :type source_prefix: str - # :param source_prefix: prefix of source/event/earthquake files. If None, - # will attempt to guess based on the specific solver chosen. - # :type mpiexec: str - # :param mpiexec: MPI executable used to run parallel processes. Should also - # be defined for the system module - # - # - # Solver SPECFEM2D - # ---------------- - # SPECFEM2D-specific alterations to the base SPECFEM module - # - # Parameters - # ---------- - # :type source_prefix: str - # :param source_prefix: Prefix of source files in path SPECFEM_DATA. Defaults - # to 'SOURCE' - # :type multiples: bool - # :param multiples: set an absorbing top-boundary condition - # - # - # ============================================================================= - data_format: ascii - materials: acoustic - density: False - attenuation: False - smooth_h: 0.0 - smooth_v: 0.0 - components: ZNE - source_prefix: SOURCE - multiples: False - # ============================================================================= - # - # Default Preprocess - # ------------------ - # Data processing for seismic traces, with options for data misfit, - # filtering, normalization and muting. - # - # Parameters - # ---------- - # :type data_format: str - # :param data_format: data format for reading traces into memory. For - # available see: seisflows.plugins.preprocess.readers - # :type misfit: str - # :param misfit: misfit function for waveform comparisons. For available - # see seisflows.plugins.preprocess.misfit - # :type backproject: str - # :param backproject: backprojection function for migration, or the - # objective function in FWI. For available see - # seisflows.plugins.preprocess.adjoint - # :type normalize: str - # :param normalize: Data normalization parameters used to normalize the - # amplitudes of waveforms. Choose from two sets: - # ENORML1: normalize per event by L1 of traces; OR - # ENORML2: normalize per event by L2 of traces; - # & - # TNORML1: normalize per trace by L1 of itself; OR - # TNORML2: normalize per trace by L2 of itself - # :type filter: str - # :param filter: Data filtering type, available options are: - # BANDPASS (req. MIN/MAX PERIOD/FREQ); - # LOWPASS (req. MAX_FREQ or MIN_PERIOD); - # HIGHPASS (req. MIN_FREQ or MAX_PERIOD) - # :type min_period: float - # :param min_period: Minimum filter period applied to time series. - # See also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they - # will overwrite PERIOD parameters. - # :type max_period: float - # :param max_period: Maximum filter period applied to time series. See - # also MIN_FREQ, MAX_FREQ, if User defines FREQ parameters, they will - # overwrite PERIOD parameters. - # :type min_freq: float - # :param min_freq: Maximum filter frequency applied to time series, - # See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, - # they will overwrite PERIOD parameters. - # :type max_freq: float - # :param max_freq: Maximum filter frequency applied to time series, - # See also MIN_PERIOD, MAX_PERIOD, if User defines FREQ parameters, - # they will overwrite PERIOD parameters. - # :type mute: list - # :param mute: Data mute parameters used to zero out early / late - # arrivals or offsets. Choose any number of: - # EARLY: mute early arrivals; - # LATE: mute late arrivals; - # SHORT: mute short source-receiver distances; - # LONG: mute long source-receiver distances - # - # - # ============================================================================= - misfit: waveform - adjoint: waveform - normalize: [] - filter: null - min_period: null - max_period: null - min_freq: null - max_freq: null - mute: [] - early_slope: null - early_const: null - late_slope: null - late_const: null - short_dist: null - - # ============================================================================= - # - # Gradient Optimization - # --------------------- - # Gradient/steepest descent optimization algorithm. - # - # Parameters - # ---------- - # :type line_search_method: str - # :param line_search_method: chosen line_search algorithm. Currently available - # are 'bracket' and 'backtrack'. See seisflows.plugins.line_search - # for all available options - # :type preconditioner: str - # :param preconditioner: algorithm for preconditioning gradients. Currently - # available: 'diagonal'. Requires `path_preconditioner` to point to a - # set of files that define the preconditioner, formatted the same as the - # input model - # :type step_count_max: int - # :param step_count_max: maximum number of trial steps to perform during - # the line search before a change in line search behavior is - # considered, or a line search is considered to have failed. - # :type step_len_init: float - # :param step_len_init: initial line search step length guess, provided - # as a fraction of current model parameters. - # :type step_len_max: float - # :param step_len_max: maximum allowable step length during the line - # search. Set as a fraction of the current model parameters - # - # - # ============================================================================= - preconditioner: null - step_count_max: 10 - step_len_init: 0.05 - step_len_max: 0.5 - line_search_method: bracket - # ============================================================================= - # - # Paths - # ----- - # :type workdir: str - # :param workdir: working directory in which to look for data and store - # results. Defaults to current working directory - # :type path_output: str - # :param path_output: path to directory used for permanent storage on disk. - # Results and exported scratch files are saved here. - # :type path_data: str - # :param path_data: path to any externally stored data required by the solver - # :type path_state_file: str - # :param path_state_file: path to a text file used to track the current - # status of a workflow (i.e., what functions have already been completed), - # used for checkpointing and resuming workflows - # :type path_model_init: str - # :param path_model_init: path to the starting model used to calculate the - # initial misfit. Must match the expected `solver_io` format. - # :type path_model_true: str - # :param path_model_true: path to a target model if `case`=='synthetic' and - # a set of synthetic 'observations' are required for workflow. - # :type path_eval_grad: str - # :param path_eval_grad: scratch path to store files for gradient evaluation, - # including models, kernels, gradient and residuals. - # :type path_mask: str - # :param path_mask: optional path to a masking function which is used to - # mask out or scale parts of the gradient. The user-defined mask must - # match the file format of the input model (e.g., .bin files). - # :type path_eval_func: str - # :param path_eval_func: scratch path to store files for line search objective - # function evaluations, including models, misfit and residuals - # - # :type path_output_log: str - # :param path_output_log: path to a text file used to store the outputs of - # the package wide logger, which are also written to stdout - # :type path_par_file: str - # :param path_par_file: path to parameter file which is used to instantiate - # the package - # :type path_log_files: str - # :param path_log_files: path to a directory where individual log files are - # saved whenever a number of parallel tasks are run on the system. - # - # :type path_data: str - # :param path_data: path to any externally stored data required by the solver - # :type path_specfem_bin: str - # :param path_specfem_bin: path to SPECFEM bin/ directory which - # contains binary executables for running SPECFEM - # :type path_specfem_data: str - # :param path_specfem_data: path to SPECFEM DATA/ directory which must - # contain the CMTSOLUTION, STATIONS and Par_file files used for - # running SPECFEM - # - # :type path_preprocess: str - # :param path_preprocess: scratch path for all preprocessing processes, - # including saving files - # - # :type path_preconditioner: str - # :param path_preconditioner: optional path to a set of preconditioner files - # formatted the same as the input model (or output model of solver). - # Required to exist and contain files if `preconditioner`==True - # - # ============================================================================= - path_workdir: /Users/Chow/Work/work/sf_specfem2d_example - path_scratch: /Users/Chow/Work/work/sf_specfem2d_example/scratch - path_eval_grad: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_grad - path_output: /Users/Chow/Work/work/sf_specfem2d_example/output - path_model_init: null - path_model_true: null - path_state_file: /Users/Chow/Work/work/sf_specfem2d_example/sfstate.txt - path_data: null - path_mask: null - path_eval_func: /Users/Chow/Work/work/sf_specfem2d_example/scratch/eval_func - path_par_file: /Users/Chow/Work/work/sf_specfem2d_example/parameters.yaml - path_log_files: /Users/Chow/Work/work/sf_specfem2d_example/logs - path_output_log: /Users/Chow/Work/work/sf_specfem2d_example/sflog.txt - path_specfem_bin: null - path_specfem_data: null - path_solver: /Users/Chow/Work/work/sf_specfem2d_example/scratch/solver - path_preconditioner: null .. code:: ipython3 # EDIT THE SEISFLOWS PARAMETER FILE ! seisflows par ntask 3 # set the number of sources/events to use - ! seisflows par materials elastic # how the velocity model is parameterized - ! seisflows par density False # update density or keep constant - ! seisflows par attenuation False - ! seisflows par start 1 # first iteration + ! seisflows par materials elastic # update Vp and Vs during inversion ! seisflows par end 2 # final iteration -- we will only run 1 ! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models ! seisflows par components Y # this default example creates Y-component seismograms @@ -1150,13 +779,16 @@ choice for each. ntask: 1 -> 3 materials: acoustic -> elastic - density: False -> False - attenuation: False -> False - start: 1 -> 1 end: 1 -> 2 data_case: data -> synthetic components: ZNE -> Y step_count_max: 10 -> 5 + path_specfem_bin: null -> /home/bchow/Work/scratch/specfem2d_workdir/bin + path_specfem_data: null -> /home/bchow/Work/scratch/specfem2d_workdir/DATA + path_model_init: null -> + /home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_INIT + path_model_true: null -> + /home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_TRUE @@ -1261,21 +893,16 @@ In the Inversion workflow, the tasks listed are described as follows: preparation for subsequent iterations Let’s set the ``stop_after`` argument to **evaluate_initial_misfit**, -this will halt the workflow after the intialization step. We’ll also set -the ``verbose`` parameter to ‘False’, to keep the logging format -relatively simple. We will explore the ``verbose``\ ==True option in a -later cell. +this will halt the workflow after the intialization step. .. code:: ipython3 ! seisflows par stop_after evaluate_initial_misfit - ! seisflows par verbose False .. parsed-literal:: - stop_after: null -> evaluate_initial_misfit - verbose: False -> False + stop_after: null -> evaluate_initial_misfit -------------- @@ -1298,59 +925,59 @@ Since this is our first run, we’ll use ``seisflows submit``. .. parsed-literal:: - 2022-08-15 16:11:40 (I) | + 2022-08-16 14:32:48 (I) | ================================================================================ SETTING UP INVERSION WORKFLOW ================================================================================ - 2022-08-15 16:11:47 (D) | running setup for module 'system.Workstation' - 2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_001.txt - 2022-08-15 16:11:50 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_001.yaml - 2022-08-15 16:11:50 (D) | running setup for module 'solver.Specfem2D' - 2022-08-15 16:11:50 (I) | initializing 3 solver directories - 2022-08-15 16:11:50 (D) | initializing solver directory source: 001 - 2022-08-15 16:11:58 (D) | linking source '001' as 'mainsolver' - 2022-08-15 16:11:58 (D) | initializing solver directory source: 002 - 2022-08-15 16:12:04 (D) | initializing solver directory source: 003 - 2022-08-15 16:12:13 (D) | running setup for module 'preprocess.Default' - 2022-08-15 16:12:14 (D) | running setup for module 'optimize.Gradient' - 2022-08-15 16:12:15 (I) | no optimization checkpoint found, assuming first run - 2022-08-15 16:12:16 (I) | re-loading optimization module from checkpoint - 2022-08-15 16:12:16 (I) | + 2022-08-16 14:32:55 (D) | running setup for module 'system.Workstation' + 2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_001.txt + 2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_001.yaml + 2022-08-16 14:32:57 (D) | running setup for module 'solver.Specfem2D' + 2022-08-16 14:32:57 (I) | initializing 3 solver directories + 2022-08-16 14:32:57 (D) | initializing solver directory source: 001 + 2022-08-16 14:33:04 (D) | linking source '001' as 'mainsolver' + 2022-08-16 14:33:04 (D) | initializing solver directory source: 002 + 2022-08-16 14:33:09 (D) | initializing solver directory source: 003 + 2022-08-16 14:33:16 (D) | running setup for module 'preprocess.Default' + 2022-08-16 14:33:16 (D) | running setup for module 'optimize.Gradient' + 2022-08-16 14:33:17 (I) | no optimization checkpoint found, assuming first run + 2022-08-16 14:33:17 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:33:17 (I) | //////////////////////////////////////////////////////////////////////////////// RUNNING ITERATION 01 //////////////////////////////////////////////////////////////////////////////// - 2022-08-15 16:12:16 (I) | + 2022-08-16 14:33:17 (I) | ================================================================================ RUNNING INVERSION WORKFLOW ================================================================================ - 2022-08-15 16:12:16 (I) | + 2022-08-16 14:33:17 (I) | //////////////////////////////////////////////////////////////////////////////// EVALUATING MISFIT FOR INITIAL MODEL //////////////////////////////////////////////////////////////////////////////// - 2022-08-15 16:12:16 (I) | checking initial model parameters - 2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00 - 2022-08-15 16:12:16 (I) | 3500.00 <= vs <= 3500.00 - 2022-08-15 16:12:16 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-15 16:12:16 (I) | checking true/target model parameters - 2022-08-15 16:12:16 (I) | 2600.00 <= rho <= 2600.00 - 2022-08-15 16:12:16 (I) | 3550.00 <= vs <= 3550.00 - 2022-08-15 16:12:16 (I) | 5900.00 <= vp <= 5900.00 - 2022-08-15 16:12:16 (I) | preparing observation data for source 001 - 2022-08-15 16:12:16 (I) | running forward simulation w/ target model for 001 - 2022-08-15 16:12:33 (I) | evaluating objective function for source 001 - 2022-08-15 16:12:33 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:12:53 (D) | quantifying misfit with 'Default' - 2022-08-15 16:12:53 (I) | preparing observation data for source 002 - 2022-08-15 16:12:53 (I) | running forward simulation w/ target model for 002 - 2022-08-15 16:13:09 (I) | evaluating objective function for source 002 - 2022-08-15 16:13:09 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:13:31 (D) | quantifying misfit with 'Default' - 2022-08-15 16:13:31 (I) | preparing observation data for source 003 - 2022-08-15 16:13:31 (I) | running forward simulation w/ target model for 003 - 2022-08-15 16:14:16 (I) | evaluating objective function for source 003 - 2022-08-15 16:14:16 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:14:33 (D) | quantifying misfit with 'Default' - 2022-08-15 16:14:33 (I) | stop workflow at `stop_after`: evaluate_initial_misfit + 2022-08-16 14:33:17 (I) | checking initial model parameters + 2022-08-16 14:33:17 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00 + 2022-08-16 14:33:17 (I) | 3500.00 <= vs <= 3500.00 + 2022-08-16 14:33:17 (I) | checking true/target model parameters + 2022-08-16 14:33:17 (I) | 5900.00 <= vp <= 5900.00 + 2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00 + 2022-08-16 14:33:17 (I) | 3550.00 <= vs <= 3550.00 + 2022-08-16 14:33:17 (I) | preparing observation data for source 001 + 2022-08-16 14:33:17 (I) | running forward simulation w/ target model for 001 + 2022-08-16 14:33:21 (I) | evaluating objective function for source 001 + 2022-08-16 14:33:21 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:33:25 (D) | quantifying misfit with 'Default' + 2022-08-16 14:33:25 (I) | preparing observation data for source 002 + 2022-08-16 14:33:25 (I) | running forward simulation w/ target model for 002 + 2022-08-16 14:33:29 (I) | evaluating objective function for source 002 + 2022-08-16 14:33:29 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:33:33 (D) | quantifying misfit with 'Default' + 2022-08-16 14:33:33 (I) | preparing observation data for source 003 + 2022-08-16 14:33:33 (I) | running forward simulation w/ target model for 003 + 2022-08-16 14:33:36 (I) | evaluating objective function for source 003 + 2022-08-16 14:33:36 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:33:40 (D) | quantifying misfit with 'Default' + 2022-08-16 14:33:40 (I) | stop workflow at `stop_after`: evaluate_initial_misfit .. note:: @@ -1428,49 +1055,49 @@ functions again: .. parsed-literal:: - 2022-08-15 16:15:06 (D) | setting iteration==1 from state file - 2022-08-15 16:15:06 (I) | + 2022-08-16 14:36:42 (D) | setting iteration==1 from state file + 2022-08-16 14:36:42 (I) | ================================================================================ SETTING UP INVERSION WORKFLOW ================================================================================ - 2022-08-15 16:15:16 (D) | running setup for module 'system.Workstation' - 2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_002.txt - 2022-08-15 16:15:20 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_002.yaml - 2022-08-15 16:15:20 (D) | running setup for module 'solver.Specfem2D' - 2022-08-15 16:15:20 (I) | initializing 3 solver directories - 2022-08-15 16:15:22 (D) | running setup for module 'preprocess.Default' - 2022-08-15 16:15:23 (D) | running setup for module 'optimize.Gradient' - 2022-08-15 16:15:25 (I) | re-loading optimization module from checkpoint - 2022-08-15 16:15:27 (I) | re-loading optimization module from checkpoint - 2022-08-15 16:15:27 (I) | + 2022-08-16 14:36:48 (D) | running setup for module 'system.Workstation' + 2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_002.txt + 2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_002.yaml + 2022-08-16 14:36:51 (D) | running setup for module 'solver.Specfem2D' + 2022-08-16 14:36:51 (I) | initializing 3 solver directories + 2022-08-16 14:36:51 (D) | running setup for module 'preprocess.Default' + 2022-08-16 14:36:52 (D) | running setup for module 'optimize.Gradient' + 2022-08-16 14:36:53 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:36:54 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:36:54 (I) | //////////////////////////////////////////////////////////////////////////////// RUNNING ITERATION 01 //////////////////////////////////////////////////////////////////////////////// - 2022-08-15 16:15:27 (I) | + 2022-08-16 14:36:54 (I) | ================================================================================ RUNNING INVERSION WORKFLOW ================================================================================ - 2022-08-15 16:15:27 (I) | 'evaluate_initial_misfit' has already been run, skipping - 2022-08-15 16:15:27 (I) | + 2022-08-16 14:36:54 (I) | 'evaluate_initial_misfit' has already been run, skipping + 2022-08-16 14:36:54 (I) | //////////////////////////////////////////////////////////////////////////////// EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS //////////////////////////////////////////////////////////////////////////////// - 2022-08-15 16:15:27 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' - 2022-08-15 16:16:11 (D) | renaming output event kernels: 'alpha' -> 'vp' - 2022-08-15 16:16:11 (D) | renaming output event kernels: 'beta' -> 'vs' - 2022-08-15 16:16:12 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' - 2022-08-15 16:16:59 (D) | renaming output event kernels: 'alpha' -> 'vp' - 2022-08-15 16:16:59 (D) | renaming output event kernels: 'beta' -> 'vs' - 2022-08-15 16:16:59 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' - 2022-08-15 16:17:45 (D) | renaming output event kernels: 'alpha' -> 'vp' - 2022-08-15 16:17:45 (D) | renaming output event kernels: 'beta' -> 'vs' - 2022-08-15 16:17:45 (I) | + 2022-08-16 14:36:54 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-16 14:37:05 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-16 14:37:05 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-16 14:37:05 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-16 14:37:16 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-16 14:37:16 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-16 14:37:18 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-16 14:37:29 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-16 14:37:29 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-16 14:37:30 (I) | //////////////////////////////////////////////////////////////////////////////// GENERATING/PROCESSING MISFIT KERNEL //////////////////////////////////////////////////////////////////////////////// - 2022-08-15 16:17:45 (I) | combining event kernels into single misfit kernel - 2022-08-15 16:17:47 (I) | scaling gradient to absolute model perturbations - 2022-08-15 16:17:49 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels + 2022-08-16 14:37:30 (I) | combining event kernels into single misfit kernel + 2022-08-16 14:37:31 (I) | scaling gradient to absolute model perturbations + 2022-08-16 14:37:32 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels -------------- @@ -1501,7 +1128,7 @@ computation. .. parsed-literal:: - gradient kernels misfit_kernel model residuals.txt + gradient kernels misfit_kernel model residuals.txt .. code:: ipython3 @@ -1512,7 +1139,7 @@ computation. .. parsed-literal:: - proc000000_vp_kernel.bin proc000000_vs_kernel.bin + proc000000_vp_kernel.bin proc000000_vs_kernel.bin .. code:: ipython3 @@ -1524,7 +1151,7 @@ computation. .. parsed-literal:: - 001 002 003 + 001 002 003 .. code:: ipython3 @@ -1537,7 +1164,7 @@ computation. .. parsed-literal:: - checkpoint.npz f_new.txt g_new.npz m_new.npz + checkpoint.npz f_new.txt g_new.npz m_new.npz .. code:: ipython3 @@ -1573,12 +1200,12 @@ atleast two trial steps to complete the line search. .. code:: ipython3 - ! seisflows par stop_after finalize_iteration # We don't want to run the finalize() argument so that we can explore the dir + ! seisflows par stop_after perform_line_search # We don't want to run the finalize_iteration argument so that we can explore the dir .. parsed-literal:: - stop_after: evaluate_gradient_from_kernels -> finalize_iteration + stop_after: evaluate_gradient_from_kernels -> perform_line_search .. code:: ipython3 @@ -1588,136 +1215,131 @@ atleast two trial steps to complete the line search. .. parsed-literal:: - 2022-08-15 16:21:55 (D) | setting iteration==1 from state file - 2022-08-15 16:21:55 (I) | + 2022-08-16 14:41:12 (D) | setting iteration==1 from state file + 2022-08-16 14:41:12 (I) | ================================================================================ SETTING UP INVERSION WORKFLOW ================================================================================ - 2022-08-15 16:22:03 (D) | running setup for module 'system.Workstation' - 2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/sflog_003.txt - 2022-08-15 16:22:05 (D) | copying par/log file to: /Users/Chow/Work/work/sf_specfem2d_example/logs/parameters_003.yaml - 2022-08-15 16:22:05 (D) | running setup for module 'solver.Specfem2D' - 2022-08-15 16:22:05 (I) | initializing 3 solver directories - 2022-08-15 16:22:07 (D) | running setup for module 'preprocess.Default' - 2022-08-15 16:22:08 (D) | running setup for module 'optimize.Gradient' - 2022-08-15 16:22:09 (I) | re-loading optimization module from checkpoint - 2022-08-15 16:22:11 (I) | re-loading optimization module from checkpoint - 2022-08-15 16:22:11 (I) | + 2022-08-16 14:41:18 (D) | running setup for module 'system.Workstation' + 2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_003.txt + 2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_003.yaml + 2022-08-16 14:41:21 (D) | running setup for module 'solver.Specfem2D' + 2022-08-16 14:41:21 (I) | initializing 3 solver directories + 2022-08-16 14:41:22 (D) | running setup for module 'preprocess.Default' + 2022-08-16 14:41:24 (D) | running setup for module 'optimize.Gradient' + 2022-08-16 14:41:26 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:41:28 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:41:28 (I) | //////////////////////////////////////////////////////////////////////////////// RUNNING ITERATION 01 //////////////////////////////////////////////////////////////////////////////// - 2022-08-15 16:22:11 (I) | + 2022-08-16 14:41:28 (I) | ================================================================================ RUNNING INVERSION WORKFLOW ================================================================================ - 2022-08-15 16:22:11 (I) | 'evaluate_initial_misfit' has already been run, skipping - 2022-08-15 16:22:11 (I) | 'run_adjoint_simulations' has already been run, skipping - 2022-08-15 16:22:11 (I) | 'postprocess_event_kernels' has already been run, skipping - 2022-08-15 16:22:11 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping - 2022-08-15 16:22:11 (I) | initializing 'bracket'ing line search - 2022-08-15 16:22:11 (I) | enforcing max step length safeguard - 2022-08-15 16:22:11 (D) | step length(s) = 0.00E+00 - 2022-08-15 16:22:11 (D) | misfit val(s) = 1.28E-03 - 2022-08-15 16:22:11 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11 - 2022-08-15 16:22:11 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10 - 2022-08-15 16:22:11 (D) | overwriting initial step length, alpha_new=2.32E+09 - 2022-08-15 16:22:11 (I) | trial model 'm_try' parameters: - 2022-08-15 16:22:11 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-15 16:22:11 (I) | 3244.51 <= vs <= 3790.00 - 2022-08-15 16:22:12 (I) | + 2022-08-16 14:41:28 (I) | 'evaluate_initial_misfit' has already been run, skipping + 2022-08-16 14:41:28 (I) | 'run_adjoint_simulations' has already been run, skipping + 2022-08-16 14:41:28 (I) | 'postprocess_event_kernels' has already been run, skipping + 2022-08-16 14:41:28 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping + 2022-08-16 14:41:28 (I) | initializing 'bracket'ing line search + 2022-08-16 14:41:28 (I) | enforcing max step length safeguard + 2022-08-16 14:41:28 (D) | step length(s) = 0.00E+00 + 2022-08-16 14:41:28 (D) | misfit val(s) = 1.28E-03 + 2022-08-16 14:41:28 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11 + 2022-08-16 14:41:28 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10 + 2022-08-16 14:41:28 (D) | overwriting initial step length, alpha_new=2.32E+09 + 2022-08-16 14:41:28 (I) | trial model 'm_try' parameters: + 2022-08-16 14:41:28 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:41:28 (I) | 3244.51 <= vs <= 3790.00 + 2022-08-16 14:41:29 (I) | LINE SEARCH STEP COUNT 01 -------------------------------------------------------------------------------- - 2022-08-15 16:22:12 (I) | evaluating objective function for source 001 - 2022-08-15 16:22:12 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:22:23 (D) | quantifying misfit with 'Default' - 2022-08-15 16:22:23 (I) | evaluating objective function for source 002 - 2022-08-15 16:22:23 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:22:35 (D) | quantifying misfit with 'Default' - 2022-08-15 16:22:35 (I) | evaluating objective function for source 003 - 2022-08-15 16:22:35 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:22:48 (D) | quantifying misfit with 'Default' - 2022-08-15 16:22:48 (D) | misfit for trial model (f_try) == 8.65E-04 - 2022-08-15 16:22:48 (D) | step length(s) = 0.00E+00, 2.32E+09 - 2022-08-15 16:22:48 (D) | misfit val(s) = 1.28E-03, 8.65E-04 - 2022-08-15 16:22:48 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09 - 2022-08-15 16:22:49 (I) | line search model 'm_try' parameters: - 2022-08-15 16:22:49 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-15 16:22:49 (I) | 3086.61 <= vs <= 3969.23 - 2022-08-15 16:22:49 (I) | trial step unsuccessful. re-attempting line search - 2022-08-15 16:22:49 (I) | + 2022-08-16 14:41:29 (I) | evaluating objective function for source 001 + 2022-08-16 14:41:29 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:33 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:33 (I) | evaluating objective function for source 002 + 2022-08-16 14:41:33 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:36 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:36 (I) | evaluating objective function for source 003 + 2022-08-16 14:41:36 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:40 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:40 (D) | misfit for trial model (f_try) == 8.65E-04 + 2022-08-16 14:41:40 (D) | step length(s) = 0.00E+00, 2.32E+09 + 2022-08-16 14:41:40 (D) | misfit val(s) = 1.28E-03, 8.65E-04 + 2022-08-16 14:41:40 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09 + 2022-08-16 14:41:40 (I) | line search model 'm_try' parameters: + 2022-08-16 14:41:40 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:41:40 (I) | 3086.61 <= vs <= 3969.23 + 2022-08-16 14:41:40 (I) | trial step unsuccessful. re-attempting line search + 2022-08-16 14:41:40 (I) | LINE SEARCH STEP COUNT 02 -------------------------------------------------------------------------------- - 2022-08-15 16:22:49 (I) | evaluating objective function for source 001 - 2022-08-15 16:22:49 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:23:01 (D) | quantifying misfit with 'Default' - 2022-08-15 16:23:01 (I) | evaluating objective function for source 002 - 2022-08-15 16:23:01 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:23:13 (D) | quantifying misfit with 'Default' - 2022-08-15 16:23:13 (I) | evaluating objective function for source 003 - 2022-08-15 16:23:13 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:23:25 (D) | quantifying misfit with 'Default' - 2022-08-15 16:23:25 (D) | misfit for trial model (f_try) == 1.73E-03 - 2022-08-15 16:23:25 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09 - 2022-08-15 16:23:25 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03 - 2022-08-15 16:23:25 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09 - 2022-08-15 16:23:25 (I) | line search model 'm_try' parameters: - 2022-08-15 16:23:25 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-15 16:23:25 (I) | 3325.01 <= vs <= 3698.63 - 2022-08-15 16:23:25 (I) | trial step unsuccessful. re-attempting line search - 2022-08-15 16:23:25 (I) | + 2022-08-16 14:41:40 (I) | evaluating objective function for source 001 + 2022-08-16 14:41:40 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:44 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:44 (I) | evaluating objective function for source 002 + 2022-08-16 14:41:44 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:48 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:48 (I) | evaluating objective function for source 003 + 2022-08-16 14:41:48 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:52 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:52 (D) | misfit for trial model (f_try) == 1.73E-03 + 2022-08-16 14:41:52 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09 + 2022-08-16 14:41:52 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03 + 2022-08-16 14:41:52 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09 + 2022-08-16 14:41:52 (I) | line search model 'm_try' parameters: + 2022-08-16 14:41:52 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:41:52 (I) | 3325.01 <= vs <= 3698.63 + 2022-08-16 14:41:52 (I) | trial step unsuccessful. re-attempting line search + 2022-08-16 14:41:52 (I) | LINE SEARCH STEP COUNT 03 -------------------------------------------------------------------------------- - 2022-08-15 16:23:25 (I) | evaluating objective function for source 001 - 2022-08-15 16:23:25 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:23:37 (D) | quantifying misfit with 'Default' - 2022-08-15 16:23:37 (I) | evaluating objective function for source 002 - 2022-08-15 16:23:37 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:23:51 (D) | quantifying misfit with 'Default' - 2022-08-15 16:23:51 (I) | evaluating objective function for source 003 - 2022-08-15 16:23:51 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:24:03 (D) | quantifying misfit with 'Default' - 2022-08-15 16:24:04 (D) | misfit for trial model (f_try) == 2.59E-03 - 2022-08-15 16:24:04 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09 - 2022-08-15 16:24:04 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03 - 2022-08-15 16:24:04 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09 - 2022-08-15 16:24:04 (I) | line search model 'm_try' parameters: - 2022-08-15 16:24:04 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-15 16:24:04 (I) | 3189.77 <= vs <= 3852.13 - 2022-08-15 16:24:04 (I) | trial step unsuccessful. re-attempting line search - 2022-08-15 16:24:04 (I) | + 2022-08-16 14:41:52 (I) | evaluating objective function for source 001 + 2022-08-16 14:41:52 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:56 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:56 (I) | evaluating objective function for source 002 + 2022-08-16 14:41:56 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:00 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:00 (I) | evaluating objective function for source 003 + 2022-08-16 14:42:00 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:03 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:03 (D) | misfit for trial model (f_try) == 2.59E-03 + 2022-08-16 14:42:03 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09 + 2022-08-16 14:42:03 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03 + 2022-08-16 14:42:03 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09 + 2022-08-16 14:42:03 (I) | line search model 'm_try' parameters: + 2022-08-16 14:42:03 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:42:03 (I) | 3189.77 <= vs <= 3852.13 + 2022-08-16 14:42:03 (I) | trial step unsuccessful. re-attempting line search + 2022-08-16 14:42:03 (I) | LINE SEARCH STEP COUNT 04 -------------------------------------------------------------------------------- - 2022-08-15 16:24:04 (I) | evaluating objective function for source 001 - 2022-08-15 16:24:04 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:24:15 (D) | quantifying misfit with 'Default' - 2022-08-15 16:24:15 (I) | evaluating objective function for source 002 - 2022-08-15 16:24:15 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:24:27 (D) | quantifying misfit with 'Default' - 2022-08-15 16:24:27 (I) | evaluating objective function for source 003 - 2022-08-15 16:24:27 (D) | running forward simulation with 'Specfem2D' - 2022-08-15 16:24:39 (D) | quantifying misfit with 'Default' - 2022-08-15 16:24:39 (D) | misfit for trial model (f_try) == 3.46E-03 - 2022-08-15 16:24:39 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09 - 2022-08-15 16:24:39 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03 - 2022-08-15 16:24:39 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit. - 2022-08-15 16:24:39 (I) | line search model 'm_try' parameters: - 2022-08-15 16:24:39 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-15 16:24:39 (I) | 3244.51 <= vs <= 3790.00 - 2022-08-15 16:24:39 (I) | trial step successful. finalizing line search - 2022-08-15 16:24:39 (I) | + 2022-08-16 14:42:03 (I) | evaluating objective function for source 001 + 2022-08-16 14:42:03 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:07 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:07 (I) | evaluating objective function for source 002 + 2022-08-16 14:42:07 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:11 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:11 (I) | evaluating objective function for source 003 + 2022-08-16 14:42:11 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:15 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:15 (D) | misfit for trial model (f_try) == 3.46E-03 + 2022-08-16 14:42:15 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09 + 2022-08-16 14:42:15 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03 + 2022-08-16 14:42:15 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit. + 2022-08-16 14:42:15 (I) | line search model 'm_try' parameters: + 2022-08-16 14:42:15 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:42:15 (I) | 3244.51 <= vs <= 3790.00 + 2022-08-16 14:42:15 (I) | trial step successful. finalizing line search + 2022-08-16 14:42:15 (I) | FINALIZING LINE SEARCH -------------------------------------------------------------------------------- - 2022-08-15 16:24:39 (I) | writing optimization stats - 2022-08-15 16:24:39 (I) | renaming current (new) optimization vectors as previous model (old) - 2022-08-15 16:24:39 (I) | setting accepted trial model (try) as current model (new) - 2022-08-15 16:24:39 (I) | misfit of accepted trial model is f=8.645E-04 - 2022-08-15 16:24:39 (I) | resetting line search step count to 0 - 2022-08-15 16:24:39 (I) | - //////////////////////////////////////////////////////////////////////////////// - CLEANING WORKDIR FOR NEXT ITERATION - //////////////////////////////////////////////////////////////////////////////// - 2022-08-15 16:24:41 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow - 2022-08-15 16:24:42 (I) | stop workflow at `stop_after`: finalize_iteration + 2022-08-16 14:42:15 (I) | writing optimization stats + 2022-08-16 14:42:15 (I) | renaming current (new) optimization vectors as previous model (old) + 2022-08-16 14:42:15 (I) | setting accepted trial model (try) as current model (new) + 2022-08-16 14:42:15 (I) | misfit of accepted trial model is f=8.645E-04 + 2022-08-16 14:42:15 (I) | resetting line search step count to 0 + 2022-08-16 14:42:15 (I) | stop workflow at `stop_after`: perform_line_search From the log statements above, we can see that the SeisFlows line search @@ -1735,9 +1357,8 @@ of the line search made preparations for a subsequent iteration. .. parsed-literal:: - alpha.txt f_old.txt m_new.npz p_old.npz - checkpoint.npz f_try.txt m_old.npz - f_new.txt g_old.npz output_optim.txt + alpha.txt f_new.txt f_try.txt m_new.npz output_optim.txt + checkpoint.npz f_old.txt g_old.npz m_old.npz p_old.npz .. code:: ipython3 diff --git a/docs/working_directory.rst b/docs/working_directory.rst index 7e67ea05..341e7036 100644 --- a/docs/working_directory.rst +++ b/docs/working_directory.rst @@ -1,24 +1,23 @@ Working Directory Structure =========================== -SeisFlows hardcodes it’s own working directory when executing a -workflow. Below we explore the working directory set up by the -SPECFEM2D-workstation example. Working directories may change slightly -depending on the chosen workflow, but will more or less follow the -following structure. The two specfem2d directories listed below are not -part of the SeisFlows working directory. +SeisFlows sets it's own working directory when executing a workflow. Below we explore the working directory set up by the `SPECFEM2D-workstation example `__. Working directories may change slightly depending on the chosen workflow, but will more or less follow the same structure. + + **NOTE**: The two SPECFEM2D directories listed below (specfem2d/ & + specfem2d_workdir/) are not part of a standard SeisFlows working + directory. .. code:: ipython3 - %cd ~/Work/official/workshop_pyatoa_sf/ex1_specfem2d_workstation + %cd /home/bchow/Work/scratch ! ls .. parsed-literal:: - /home/bchow/Work/official/workshop_pyatoa_sf/ex1_specfem2d_workstation - logs output_sf.txt scratch stats - output parameters.yaml specfem2d_workdir + /home/bchow/Work/scratch + logs parameters.yaml sflog.txt specfem2d + output scratch sfstate.txt specfem2d_workdir -------------- @@ -26,11 +25,11 @@ part of the SeisFlows working directory. scratch/ -------- -The active working directory of SeisFlows where all of the heavy -lifting takes place. Each module in the SeisFlows package may have it’s -own sub-directory where it stores temporary work data. Additionally, we -have two eval*/ directories where objective function evaluation -(evalfunc) and gradient evaluation (evalgrad) files are stored. +The active working directory of SeisFlows where all of the heavy lifting +takes place. Each module in the SeisFlows package may have it’s own +sub-directory where it stores temporary work data. Additionally, we have +two eval*/ directories where objective function evaluation (eval_func) +and gradient evaluation (eval_grad) files are stored. .. code:: ipython3 @@ -39,7 +38,7 @@ have two eval*/ directories where objective function evaluation .. parsed-literal:: - evalfunc evalgrad optimize preprocess solver system + eval_func eval_grad optimize preprocess solver system .. warning:: @@ -62,7 +61,7 @@ contain all the necessary files to run SPECFEM binaries within). .. parsed-literal:: - 001 002 003 mainsolver + 001 002 003 mainsolver .. code:: ipython3 @@ -72,7 +71,9 @@ contain all the necessary files to run SPECFEM binaries within). .. parsed-literal:: - bin DATA kernel_paths mesher.log OUTPUT_FILES SEM solver.log traces + adj_solver.log combine_vs.log fwd_solver.log SEM + bin DATA kernel_paths traces + combine_vp.log fwd_mesher.log OUTPUT_FILES .. warning:: @@ -91,7 +92,7 @@ into observed (obs), synthetic (syn) and adjoint (adj) waveforms. .. parsed-literal:: - adj obs syn + adj obs syn .. code:: ipython3 @@ -101,7 +102,7 @@ into observed (obs), synthetic (syn) and adjoint (adj) waveforms. .. parsed-literal:: - AA.S0001.BXY.semd + AA.S0001.BXY.semd .. code:: ipython3 @@ -112,16 +113,16 @@ into observed (obs), synthetic (syn) and adjoint (adj) waveforms. .. parsed-literal:: - 251.39999999999998 -1.1814422395268879E-005 - 251.45999999999998 -1.1800275583562581E-005 - 251.51999999999998 -1.1769315129746346E-005 - 251.57999999999998 -1.1721248953632887E-005 - 251.63999999999999 -1.1655830825336088E-005 - 251.69999999999999 -1.1572872866742356E-005 - 251.75999999999999 -1.1472248505521453E-005 - 251.81999999999999 -1.1353902449899163E-005 - 251.88000000000000 -1.1217847351013855E-005 - 251.94000000000000 -1.1064166223014224E-005 + 251.39999999999998 -1.1814422395268879E-005 + 251.45999999999998 -1.1800275583562581E-005 + 251.51999999999998 -1.1769315129746346E-005 + 251.57999999999998 -1.1721248953632887E-005 + 251.63999999999999 -1.1655830825336088E-005 + 251.69999999999999 -1.1572872866742356E-005 + 251.75999999999999 -1.1472248505521453E-005 + 251.81999999999999 -1.1353902449899163E-005 + 251.88000000000000 -1.1217847351013855E-005 + 251.94000000000000 -1.1064166223014224E-005 optimize/ @@ -153,21 +154,21 @@ Optimization Variable Names are described as: .. parsed-literal:: - alpha.npy f_old.txt g_old.npy m_new.npy p_old.npy - f_new.txt f_try.txt LBFGS m_old.npy + alpha.txt f_new.txt f_try.txt m_new.npz output_optim.txt + checkpoint.npz f_old.txt g_old.npz m_old.npz p_old.npz .. code:: ipython3 import numpy as np - m_new = np.load("scratch/optimize/m_new.npy") - print(m_new) + m_new = np.load("scratch/optimize/m_new.npz") + print(m_new["vs"]) .. parsed-literal:: - [5800. 5800. 5800. ... 3499.77655379 3499.9021825 - 3499.99078301] + [[3500.0027437 3499.99441921 3499.90777902 ... 3499.77655378 + 3499.9021825 3499.99078301]] .. code:: ipython3 @@ -177,73 +178,92 @@ Optimization Variable Names are described as: .. parsed-literal:: - 2.591424e-03 - + 8.645199999999999153e-04 -evalfunc/ & evalgrad/ -~~~~~~~~~~~~~~~~~~~~~ -Scratch directories containing objective function evaluation and -gradient evaluation files. These include (1) the current **model** being -used for misfit evaluation, and (2) **residuals** which define the -misfit for each event. **evalgrad/** also contains **kernels** which -define per-event kernels which are summed and manipulated with the -postprocess module. +The ‘checkpoint.npz’ file contains information about the state of the +line search (controlled by the Optimization module). It is used to +resume failed or stopped line searches with minimal redundant use of +computational resources. .. code:: ipython3 - ! ls scratch/evalfunc - ! echo - ! ls scratch/evalgrad + line_search = np.load("scratch/optimize/checkpoint.npz") + + print(vars(line_search)["files"]) + + print("step count: ", line_search["step_count"]) + print("step lengths: ", line_search["step_lens"]) + print("misfit: ", line_search["func_vals"]) .. parsed-literal:: - model residuals - - kernels model residuals + ['restarted', 'func_vals', 'step_lens', 'gtg', 'gtp', 'step_count'] + step count: 0 + step lengths: [0.00000000e+00 2.32268310e+09 3.75818023e+09 1.59087505e+09 + 2.82031810e+09] + misfit: [0.00127902 0.00086452 0.00172904 0.00259356 0.00345808] + +eval_func/ & eval_grad/ +~~~~~~~~~~~~~~~~~~~~~~~ + +Scratch directories containing objective function evaluation and +gradient evaluation files. These include (1) the current **model** being +used for misfit evaluation, and (2) a **residual** file which defines +the misfit for each event. **eval_grad/** also contains **kernels** +which define per-event kernels which are summed and manipulated with the +postprocess module. .. code:: ipython3 - ! ls scratch/evalgrad/residuals + ! ls scratch/eval_func + ! echo + ! ls scratch/eval_grad .. parsed-literal:: - 001 002 003 + model residuals.txt + + gradient kernels misfit_kernel model residuals.txt .. code:: ipython3 - ! cat scratch/evalgrad/residuals/001 + ! cat scratch/eval_grad/residuals.txt .. parsed-literal:: - 2.413801941841247842e-02 - 2.413801941841247842e-02 - 2.413801941841247842e-02 + 2.41E-02 + 2.14E-02 + 1.55E-02 .. code:: ipython3 - ! ls scratch/evalgrad/kernels + ! ls scratch/eval_grad/kernels .. parsed-literal:: - 001 002 003 sum + 001 002 003 .. code:: ipython3 - ! ls scratch/evalgrad/kernels/sum + ! ls scratch/eval_grad/kernels/001 .. parsed-literal:: - proc000000_vp_kernel.bin proc000000_vs_kernel.bin + proc000000_bulk_beta_kernel.bin proc000000_rhop_kernel.bin + proc000000_bulk_c_kernel.bin proc000000_vp_kernel.bin + proc000000_kappa_kernel.bin proc000000_vs_kernel.bin + proc000000_mu_kernel.bin proc000000_weights_kernel.bin + proc000000_rho_kernel.bin system & preprocess @@ -253,24 +273,22 @@ These two directories are empty in our example problem, but are catch-all directories where module-specific files can be output. If you are extending SeisFlows with other base or subclasses, it is preferable to adhere to this structure where each module only interacts with it’s -own directory - -.. code:: ipython3 +own directory. - ! ls scratch/system - ! ls scratch/preprocess +When ``Pyaflowa`` is chosen as the preprocess module, it stores figures, +log files, and data (in ASDFDataSets) within its scratch directory. It +also specifies parameters for exporting these scratch files to disk for +more permanent storage. -------------- output/ ------- -The current active state of SeisFlows, containing pickle (.p) and JSON -files which describe a Python environment of a current workflow. -Additionally files to be permanently saved (e.g., models, graidents, -traces) can be located here. These are tagged in ascending order, e.g., -model_0001 refers to the updated model derived during the first -iteration. +Output files to be permanently saved (e.g., models, graidents, traces) +can be located in this directory. These are tagged in ascending order. +Because we did not run the finalization task in our SPECFEM2D problem, +the output directory only contains our initial model. .. code:: ipython3 @@ -279,31 +297,17 @@ iteration. .. parsed-literal:: - gradient_0001 seisflows_optimize.p seisflows_solver.p - kwargs seisflows_parameters.json seisflows_system.p - model_0001 seisflows_paths.json seisflows_workflow.p - model_init seisflows_postprocess.p - model_true seisflows_preprocess.p - - -.. code:: ipython3 - - ! ls output/model_0001 - - -.. parsed-literal:: - - proc000000_vp.bin proc000000_vs.bin + MODEL_INIT .. code:: ipython3 - ! ls output/gradient_0001 + ! ls output/MODEL_INIT .. parsed-literal:: - proc000000_vp_kernel.bin proc000000_vs_kernel.bin + proc000000_vp.bin proc000000_vs.bin -------------- @@ -323,106 +327,119 @@ other directory) copies are saved to this directory. .. parsed-literal:: - output_sf_001.txt parameters_001.yaml + 0001_00.log 0002_02.log 0004_01.log 0006_00.log parameters_002.yaml + 0001_01.log 0003_00.log 0004_02.log 0006_01.log parameters_003.yaml + 0001_02.log 0003_01.log 0005_00.log 0006_02.log sflog_001.txt + 0002_00.log 0003_02.log 0005_01.log 0007_00.log sflog_002.txt + 0002_01.log 0004_00.log 0005_02.log parameters_001.yaml sflog_003.txt -------------- -stats/ ------- - -Text files describing the optimization statistics of the current -workflow. This directory is only relevant if you are running an -inversion workflow. - -.. code:: ipython3 - - ! ls stats - - -.. parsed-literal:: - - factor.txt line_search.txt slope.txt theta.txt - gradient_norm_L1.txt misfit.txt step_count.txt - gradient_norm_L2.txt restarted.txt step_length.txt +sflog.txt +--------- +The main log file for SeisFlows, where all log statements written to +stdout are recorded during a workflow. Allows a user to come back to a +workflow and understand the tasks completed and any important +information collected during the workflow .. code:: ipython3 - ! cat stats/step_count.txt + ! head -50 sflog.txt .. parsed-literal:: - ITER STEP_COUNT - ==== ================== - 1 0.000000E+00 - 1 2.000000E+00 + 2022-08-16 14:32:48 (I) | + ================================================================================ + SETTING UP INVERSION WORKFLOW + ================================================================================ + 2022-08-16 14:32:55 (D) | running setup for module 'system.Workstation' + 2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_001.txt + 2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_001.yaml + 2022-08-16 14:32:57 (D) | running setup for module 'solver.Specfem2D' + 2022-08-16 14:32:57 (I) | initializing 3 solver directories + 2022-08-16 14:32:57 (D) | initializing solver directory source: 001 + 2022-08-16 14:33:04 (D) | linking source '001' as 'mainsolver' + 2022-08-16 14:33:04 (D) | initializing solver directory source: 002 + 2022-08-16 14:33:09 (D) | initializing solver directory source: 003 + 2022-08-16 14:33:16 (D) | running setup for module 'preprocess.Default' + 2022-08-16 14:33:16 (D) | running setup for module 'optimize.Gradient' + 2022-08-16 14:33:17 (I) | no optimization checkpoint found, assuming first run + 2022-08-16 14:33:17 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:33:17 (I) | + //////////////////////////////////////////////////////////////////////////////// + RUNNING ITERATION 01 + //////////////////////////////////////////////////////////////////////////////// + 2022-08-16 14:33:17 (I) | + ================================================================================ + RUNNING INVERSION WORKFLOW + ================================================================================ + 2022-08-16 14:33:17 (I) | + //////////////////////////////////////////////////////////////////////////////// + EVALUATING MISFIT FOR INITIAL MODEL + //////////////////////////////////////////////////////////////////////////////// + 2022-08-16 14:33:17 (I) | checking initial model parameters + 2022-08-16 14:33:17 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00 + 2022-08-16 14:33:17 (I) | 3500.00 <= vs <= 3500.00 + 2022-08-16 14:33:17 (I) | checking true/target model parameters + 2022-08-16 14:33:17 (I) | 5900.00 <= vp <= 5900.00 + 2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00 + 2022-08-16 14:33:17 (I) | 3550.00 <= vs <= 3550.00 + 2022-08-16 14:33:17 (I) | preparing observation data for source 001 + 2022-08-16 14:33:17 (I) | running forward simulation w/ target model for 001 + 2022-08-16 14:33:21 (I) | evaluating objective function for source 001 + 2022-08-16 14:33:21 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:33:25 (D) | quantifying misfit with 'Default' + 2022-08-16 14:33:25 (I) | preparing observation data for source 002 + 2022-08-16 14:33:25 (I) | running forward simulation w/ target model for 002 + 2022-08-16 14:33:29 (I) | evaluating objective function for source 002 + 2022-08-16 14:33:29 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:33:33 (D) | quantifying misfit with 'Default' + 2022-08-16 14:33:33 (I) | preparing observation data for source 003 + 2022-08-16 14:33:33 (I) | running forward simulation w/ target model for 003 + 2022-08-16 14:33:36 (I) | evaluating objective function for source 003 -------------- -output_sf.txt --------------- +sfstate.txt +----------- -The main log file for SeisFlows, where all log statements written to -stdout are recorded during a workflow. +A state file which tracks the progress of a workflow, allowing the User +to quickly resumed stopped or failed workflows without wasting +computational resources. The State file simply contains the names of +functions contained in the Workflow task list, as well as their +respective status, which can be ‘completed’, ‘failed’, or not available. .. code:: ipython3 - ! head -50 output_sf.txt + ! cat sfstate.txt .. parsed-literal:: - 2022-04-29 16:45:35 | initializing SeisFlows in sys.modules - 2022-04-29 16:45:39 | copying par/log file to: /home/bchow/Work/official/workshop_pyatoa_sf/ex1_specfem2d_workstation/logs/output_sf_001.txt - 2022-04-29 16:45:39 | copying par/log file to: /home/bchow/Work/official/workshop_pyatoa_sf/ex1_specfem2d_workstation/logs/parameters_001.yaml - 2022-04-29 16:45:39 | exporting current working environment to disk - 2022-04-29 16:45:39 | - //////////////////////////////////////////////////////////////////////////////// - WORKFLOW WILL STOP AFTER FUNC: 'finalize' - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 16:45:39 | - ================================================================================ - STARTING INVERSION WORKFLOW - ================================================================================ - 2022-04-29 16:45:39 | - //////////////////////////////////////////////////////////////////////////////// - ITERATION 1 / 1 - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 16:45:39 | - //////////////////////////////////////////////////////////////////////////////// - PERFORMING MODULE SETUP - //////////////////////////////////////////////////////////////////////////////// - 2022-04-29 16:45:39 | misfit function is: 'waveform' - 2022-04-29 16:45:40 | writing line search history file: - /home/bchow/Work/official/workshop_pyatoa_sf/ex1_specfem2d_workstation/stats/line_search.txt - 2022-04-29 16:45:40 | checking poissons ratio for: 'm_new.npy' - 2022-04-29 16:45:40 | model parameters (m_new.npy i01s00): - 2022-04-29 16:45:40 | 5800.00 <= vp <= 5800.00 - 2022-04-29 16:45:40 | 3500.00 <= vs <= 3500.00 - 2022-04-29 16:45:40 | 0.21 <= pr <= 0.21 - 2022-04-29 16:45:41 | setting up solver on system... - 2022-04-29 16:45:41 | checkpointing working environment to disk - 2022-04-29 16:45:42 | exporting current working environment to disk - 2022-04-29 16:45:43 | running task solver.setup 3 times - 2022-04-29 16:45:43 | initializing 3 solver directories - 2022-04-29 16:45:50 | source 001 symlinked as mainsolver - 2022-04-29 16:45:50 | generating 'data' with MODEL_TRUE synthetics - 2022-04-29 16:45:57 | running mesh generation for MODEL_INIT - 2022-04-29 16:46:27 | - ================================================================================ - INITIALIZING INVERSION - ================================================================================ - 2022-04-29 16:46:27 | - EVALUATE OBJECTIVE FUNCTION - -------------------------------------------------------------------------------- - 2022-04-29 16:46:27 | saving model 'm_new.npy' to: - /home/bchow/Work/official/workshop_pyatoa_sf/ex1_specfem2d_workstation/scratch/evalgrad/model - 2022-04-29 16:46:28 | evaluating objective function 3 times on system... - 2022-04-29 16:46:28 | checkpointing working environment to disk - 2022-04-29 16:46:29 | exporting current working environment to disk - 2022-04-29 16:46:30 | running task solver.eval_func 3 times - 2022-04-29 16:46:30 | running forward simulations - + # SeisFlows State File + # Tue Aug 16 14:33:17 2022 + # Acceptable states: 'completed', 'failed' + # ======================================= + evaluate_initial_misfit: completed + run_adjoint_simulations: completed + postprocess_event_kernels: completed + evaluate_gradient_from_kernels: completed + initialize_line_search: completed + perform_line_search: completed + iteration: 1 + +When submitting a workflow with an existing state file, the workflow +will check the status of each function. ‘Completed’ functions will be +skipped over. ‘Failed’ functions will be re-run. Users can delete lines +from the state file or change status’ manually to re-run tasks within +the list, taking care about the current configuration of the working +directory, which is intrinsically tied to the task list. + +For ‘Inversion’ workflows, the current ‘Iteration’ is also saved, +meaning re-submitted workflows will start at the previously checkpointed +iteration. From 94b23d1fe3307d4ea19b3ca539b3e7c0ad0ca861 Mon Sep 17 00:00:00 2001 From: bch0w Date: Tue, 16 Aug 2022 15:33:29 -0800 Subject: [PATCH 113/195] updated parameter change in example to match density forced type bool --- .../examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py | 2 +- seisflows/examples/sfexample2d.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py index fa38d25c..f5bd3b51 100644 --- a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py @@ -91,7 +91,7 @@ def setup_seisflows_working_directory(self): self.sf.par("end", 1) # only 1 iteration self.sf.par("ntask", self.ntask) # 3 sources for this example self.sf.par("materials", "elastic") # how velocity model parameterized - self.sf.par("density", "constant") # update density or keep constant + self.sf.par("density", False) # update density or keep constant self.sf.par("data_format", "ascii") # output synthetic seismograms self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion self.sf.par("attenuation", False) diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 010b9630..2951cc8e 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -292,7 +292,7 @@ def setup_seisflows_working_directory(self): self.sf.par("ntask", self.ntask) # default 3 sources for this example self.sf.par("materials", "elastic") # how velocity model parameterized - self.sf.par("density", "constant") # update density or keep constant + self.sf.par("density", False) # update density or keep constant self.sf.par("data_format", "ascii") # how to output synthetic seismograms self.sf.par("start", 1) # first iteration self.sf.par("end", self.niter) # final iteration -- we will run 2 From 6276494660cea935d67dfe87bff5f2442bb29655 Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 17 Aug 2022 12:15:58 -0800 Subject: [PATCH 114/195] created notebook for extending seisflows --- docs/extending.rst | 45 +++++++++---- docs/notebooks/extending.ipynb | 111 +++++++++++++++++++++++++++++++++ 2 files changed, 145 insertions(+), 11 deletions(-) create mode 100644 docs/notebooks/extending.ipynb diff --git a/docs/extending.rst b/docs/extending.rst index 5e92034d..65611c1e 100644 --- a/docs/extending.rst +++ b/docs/extending.rst @@ -1,18 +1,41 @@ Extending SeisFlows -================================== +=================== .. note:: Page Under Construction + +SeisFlows works on the object oriented programming principal of inheritance. +See the `inheritance `__ page for background. This allows +Users to extend the package to work with other systems and solvers, or modify +its behavior to suit the problem at hand. -The design philosophy of SeisFlows is such that being a user of the codebase -more-than-likely requires also becoming a developer, as custom-made subclasses -are often required to tailor the functionalities of SeisFlows to a specific -problem, compute system, dataset, etc. This page is intended to provide an -outline on how to successfully implement your own base- or subclasses within -the SeisFlows framework. +Overriding SeisFlows with your own subclass +------------------------------------------- -Writing your own Base class ---------------------------- +If the existing modules of SeisFlows do not suit your needs, you may +need to override them with your own sub classes. A common example of +when you might need to do this is to override the system subclasses to +tailor SeisFlows to your specific cluster. + +In this example SeisFlows already contains a Slurm system module, and +has overriding sub-classes for Slurm-derived systems including Chinook +(University of Alaska Fairbanks), Maui (New Zealand eScience +Infrastucture) and Frontera (Texas Advanced Computing Center). Any new +Slurm systems will need write new subclasses to take advantage of the +existing structure. + +Below we provide some examples of editing existing SeisFlows modules for +modified performance. + + +Writing your own Base class from scratch +---------------------------------------- + +Less likely, but also still a possibility, is that you will have to +write your own Base class which defines foundational capabilities. One +example of this is extending SeisFlows to interact with other numerical +solvers. Currently SeisFlows is set up to work with +SPECFEM2D/3D/3D_GLOBE. To allow Seisflows to work with other solvers, +one would need to write a new Base class that defines SeisFlows’ +interaction behavior with this solver. -Writing your own subclass -------------------------- diff --git a/docs/notebooks/extending.ipynb b/docs/notebooks/extending.ipynb new file mode 100644 index 00000000..7f5ec958 --- /dev/null +++ b/docs/notebooks/extending.ipynb @@ -0,0 +1,111 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "25c5246a", + "metadata": {}, + "source": [ + "# Extending SeisFlows" + ] + }, + { + "cell_type": "raw", + "id": "e38c3935", + "metadata": {}, + "source": [ + ".. note::\n", + " Page Under Construction\n", + " \n", + "SeisFlows works on the object oriented programming principal of inheritance.\n", + "See the `inheritance `__ page for background. This allows\n", + "Users to extend the package to work with other systems and solvers, or modify\n", + "its behavior to suit the problem at hand." + ] + }, + { + "cell_type": "markdown", + "id": "5f871efa", + "metadata": {}, + "source": [ + "## Overriding SeisFlows with your own subclass\n", + "\n", + "If the existing modules of SeisFlows do not suit your needs, you may need to override them with your own sub classes. A common example of when you might need to do this is to override the system subclasses to tailor SeisFlows to your specific cluster. \n", + "\n", + "In this example SeisFlows already contains a Slurm system module, and has overriding sub-classes for Slurm-derived systems including Chinook (University of Alaska Fairbanks), Maui (New Zealand eScience\n", + "Infrastucture) and Frontera (Texas Advanced Computing Center). Any new Slurm systems will need write new subclasses to take advantage of the existing structure.\n", + "\n", + "Below we provide some examples of editing existing SeisFlows modules for modified performance. We'll first start off with a modified Slurm system which defines SeisFlows interaction with Maui, a New Zealand cluster." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f9ef90e2", + "metadata": {}, + "outputs": [], + "source": [ + "from seisflows.system.slurm import Slurm\n", + "\n", + "\n", + "class Maui(Slurm):\n", + " \"\"\"\n", + " System Maui\n", + " Slurm-based interaction with New Zealand HPC, Maui\n", + " \n", + " Parameters\n", + " ----------\n", + " \n", + " Paths\n", + " -----\n", + " \n", + " ***\n", + " \"\"\"\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "23c9d7c5", + "metadata": {}, + "source": [ + "## Writing your own Base class from scratch\n", + "\n", + "Less likely, but also still a possibility, is that you will have to write your\n", + "own Base class which defines foundational capabilities. One example of this is\n", + "extending SeisFlows to interact with other numerical solvers. Currently\n", + "SeisFlows is set up to work with SPECFEM2D/3D/3D_GLOBE. To allow Seisflows\n", + "to work with other solvers, one would need to write a new Base class that\n", + "defines SeisFlows' interaction behavior with this solver." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1e0e7716", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 23ae5ac95be90b74ff96f84a81a7200c424186f1 Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 17 Aug 2022 13:16:50 -0800 Subject: [PATCH 115/195] updated slurm system design such that run and submit headers are separated out as their own class properties. This allows child classes to overwrite the headers without having to repeat any of the boilerplate for run and submit functions Updated all slurm-derived child classes (maui, chinook, frontera) to match new Seisflows class boilerplate --- seisflows/system/chinook.py | 92 +++++++++---- seisflows/system/cluster.py | 75 +++++++---- seisflows/system/frontera.py | 182 ++++++++++--------------- seisflows/system/lsf.py | 7 +- seisflows/system/maui.py | 230 ++++++++++++++------------------ seisflows/system/slurm.py | 145 +++++++++++++------- seisflows/system/workstation.py | 8 +- 7 files changed, 391 insertions(+), 348 deletions(-) diff --git a/seisflows/system/chinook.py b/seisflows/system/chinook.py index f988f0e5..653f3801 100644 --- a/seisflows/system/chinook.py +++ b/seisflows/system/chinook.py @@ -8,49 +8,83 @@ Information on Chinook can be found here: https://uaf-rcs.gitbook.io/uaf-rcs-hpc-docs/hpc """ +import os from seisflows.system.slurm import Slurm class Chinook(Slurm): """ - System interface for the University of Alaska HPC Chinook, which operates - on a SLURM system. + System Chinook + -------------- + University of Alaska Fairbanks HPC Chinook, SLURM based system + + Parameters + ---------- + :type partition: str + :param partition: Chinook has various partitions which each have their + own number of cores per compute node. Available are: analysis, t1small, + t2small, t1standard, t2standard, gpu + + Paths + ----- + + *** """ - def __init__(self): - """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. + __doc__ = Slurm.__doc__ + __doc__ - :type partitions: dict - :param partitions: Chinook has various partitions which each have their - own number of cores per compute node, defined here - """ - super().__init__() - self.required.par( - "PARTITION", required=False, default="t1small", par_type=int, - docstr="Name of partition on main cluster, available: " - "analysis, t1small, t2small, t1standard, t2standard, gpu") + def __init__(self, partition="t1small", **kwargs): + """Chinook init""" + super().__init__(**kwargs) - self.required.par( - "MPIEXEC", required=False, default="srun", par_type=str, - docstr="Function used to invoke parallel executables") + self.partition = partition - self.partitions = {"debug": 24, "t1small": 28, "t2small": 28, + self._partitions = {"debug": 24, "t1small": 28, "t2small": 28, "t1standard": 40, "t2standard": 40, "analysis": 28 } - def check(self, validate=True): + @property + def submit_call_header(self): """ - Checks parameters and paths - """ - super().check(validate=validate) + The submit call defines the SBATCH header which is used to submit a + workflow task list to the system. It is usually dictated by the + system's required parameters, such as account names and partitions. + Submit calls are modified and called by the `submit` function. - assert(self.par.PARTITION in self.partitions.keys()), \ - f"Chinook partition must be in {self.partitions.keys()}" + :rtype: str + :return: the system-dependent portion of a submit call + """ + _call = " ".join([ + f"sbatch", + f"--job-name={self.title}", + f"--output={self.path.output_log}", + f"--error={self.path.error_log}", + f"--ntasks=1", + f"--partition={self.partition}", + f"--time={self.walltime:d}" + ]) + return _call - assert(self.par.NODESIZE == self.partitions[self.par.PARTITION]), \ - (f"PARTITION {self.par.PARTITION} is expected to have NODESIZE=" - f"{self.partitions[self.par.PARTITION]}, not current " - f"{self.par.NODESIZE}") + @property + def run_call_header(self): + """ + The run call defines the SBATCH header which is used to run tasks during + an executing workflow. Like the submit call its arguments are dictated + by the given system. Run calls are modified and called by the `run` + function + :rtype: str + :return: the system-dependent portion of a run call + """ + _call = " ".join([ + f"sbatch", + f"{self.slurm_args or ''}", + f"--job-name={self.title}", + f"--ntasks={self.nproc:d}", + f"--tasks-per-node={self.nodesize}", + f"--time={self.tasktime:d}", + f"--output={os.path.join(self.path.log_files, '%A_%a')}", + f"--array=0-{self.ntask-1 % self.ntask_max}", + f"--parsable" + ]) + return _call \ No newline at end of file diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index b1a73b9c..e8aa15f6 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -70,8 +70,41 @@ def __init__(self, title=None, mpiexec="", ntask_max=None, walltime=10, self.tasktime = tasktime self.environs = environs or "" - def submit(self, workdir=None, parameter_file="parameters.yaml", - submit_call=None): + @property + def submit_call_header(self): + """ + The submit call defines the SBATCH header which is used to submit a + workflow task list to the system. It is usually dictated by the + system's required parameters, such as account names and partitions. + Submit calls are modified and called by the `submit` function. + + .. note:: + Generalized `cluster` returns empty string but child system + classes will need to overwrite the submit call. + + :rtype: str + :return: the system-dependent portion of a submit call + """ + return "" + + @property + def run_call_header(self): + """ + The run call defines the SBATCH header which is used to run tasks during + an executing workflow. Like the submit call its arguments are dictated + by the given system. Run calls are modified and called by the `run` + function + + .. note:: + Generalized `cluster` returns empty string but child system + classes will need to overwrite the submit call. + + :rtype: str + :return: the system-dependent portion of a run call + """ + return "" + + def submit(self, workdir=None, parameter_file="parameters.yaml"): """ Submits the main workflow job as a separate job submitted directly to the system that is running the master job @@ -81,19 +114,15 @@ def submit(self, workdir=None, parameter_file="parameters.yaml", :type parameter_file: str :param parameter_file: paramter file file name used to instantiate the SeisFlows package - :type submit_call: str - :param submit_call: child classes may require a specific submit call - if the job should be submitted to another system (e.g., on cluster - submitting jobs on compute nodes and not running directly on the - login node) """ - if submit_call is None: - # e.g., submit -w ./ -p parameters.yaml - submit_call = " ".join([ - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", - f"--workdir {workdir}", - f"--parameter_file {parameter_file}", - ]) + # e.g., submit -w ./ -p parameters.yaml + submit_call = " ".join([ + f"{self.submit_call_header}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", + f"--workdir {workdir}", + f"--parameter_file {parameter_file}", + ]) + logger.debug(submit_call) try: subprocess.run(submit_call, shell=True) @@ -101,7 +130,7 @@ def submit(self, workdir=None, parameter_file="parameters.yaml", logger.critical(f"SeisFlows master job has failed with: {e}") sys.exit(-1) - def run(self, funcs, single=False, run_call=None, **kwargs): + def run(self, funcs, single=False, **kwargs): """ Runs tasks multiple times in parallel by submitting NTASK new jobs to system. The list of functions and its kwargs are saved as pickles files, @@ -132,14 +161,14 @@ def run(self, funcs, single=False, run_call=None, **kwargs): f"system {self.ntask} times") # Create the run call which will simply call an external Python script - if run_call is None: - # e.g., run --funcs func.p --kwargs kwargs.p --environment ... - run_call = " ".join([ - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--funcs {funcs_fid}", - f"--kwargs {kwargs_fid}", - f"--environment SEISFLOWS_TASKID={{task_id}},{self.environs}" - ]) + # e.g., run --funcs func.p --kwargs kwargs.p --environment ... + run_call = " ".join([ + f"{self.run_call_header}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", + f"--funcs {funcs_fid}", + f"--kwargs {kwargs_fid}", + f"--environment SEISFLOWS_TASKID={{task_id}},{self.environs}" + ]) logger.debug(run_call) # Don't need to spin up concurrent.futures for a single run diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index 303f613c..6f403c71 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -2,133 +2,93 @@ """ Frontera is one of the Texas Advanced Computing Center (TACC) HPCs. https://frontera-portal.tacc.utexas.edu/ - -TODO we may need to include or create a "singularity" class or run script which -runs jobs through singularity """ import os -import numpy as np -from seisflows.tools.config import ROOT_DIR from seisflows.system.slurm import Slurm class Frontera(Slurm): """ - System interface for TACC Frontera based on SLURM workload manager + System Frontera + -------------- + Texas Advanced Computing Center HPC Frontera, SLURM based system + + Parameters + ---------- + :type partition: str + :param partition: Chinook has various partitions which each have their + own number of cores per compute node. Available are: small, normal, + large, development, flex + :type allocation: str + :param allocation: Name of allocation/project on the Frontera system. + Required if you have more than one active allocation. + + Paths + ----- + + *** """ - def __init__(self): - """ - These parameters should not be set by the user. - Attributes are initialized as NoneTypes for clarity and docstrings. - - :type partitions: dict - :param partitions: Chinook has various partitions which each have their - own number of cores per compute node, defined here - """ - super().__init__() + def __init__(self, partition="small", allocation=None, **kwargs): + """Frontera init""" + super().__init__(**kwargs) - self.required.par( - "PARTITION", required=False, default="small", par_type=str, - docstr="Name of partition on main cluster" - ) - self.required.par( - "ALLOCATION", required=False, default="", par_type=str, - docstr="Name of allocation/project on the Frontera system. " - "Required if you have more than one active allocation." - ) - self.required.par( - "MPIEXEC", required=False, default="ibrun", par_type=str, - docstr="Function used to invoke parallel executables. Defaults to" - "'ibrun' based on TACC user manual.") + self.partition = partition + self.allocation = allocation + self.mpiexec = "ibrun" # TODO find out the cores-per-node values for these partitions - # self.partitions = {"small":, "normal":, "large":, "development:" - # "flex":} - - def check(self, validate=True): - """ - Checks parameters and paths - """ - super().check(validate=validate) - - assert(self.par.PARTITION in self.partitions.keys()), \ - f"Chinook partition must be in {self.partitions.keys()}" + self.partitions = {"small": None, "normal": None, "large": None, + "development": None, "flex": None} - assert(self.par.NODESIZE == self.partitions[self.par.PARTITION]), \ - (f"PARTITION {self.par.PARTITION} is expected to have NODESIZE=" - f"{self.partitions[self.par.PARTITION]}, not current " - f"{self.par.NODESIZE}") - def submit(self, submit_call=None): + @property + def submit_call_header(self): """ - Submits workflow as a serial job on the TACC partition 'small'. - - .. note:: - The SBATCH commands can either be short or full length. TACC's - start up guide uses short length keys so that's what we do here, but - their long names can be substituted + The submit call defines the SBATCH header which is used to submit a + workflow task list to the system. It is usually dictated by the + system's required parameters, such as account names and partitions. + Submit calls are modified and called by the `submit` function. - :type submit_call: str - :param submit_call: SBATCH command line call to submit workflow.main() - to the system. If None, will generate one on the fly with - user-defined parameters + :rtype: str + :return: the system-dependent portion of a submit call """ - if submit_call is None: - submit_call = " ".join([ - "sbatch", - f"{self.par.SLURMARGS or ''}", - f"-J {self.par.TITLE}", # job name - f"-O {self.output_log}", # stdout output file - f"-E {self.error_log}", # stderr error file - f"-P {self.par.PARTITION}", # queue/partition name - f"-A {self.par.ALLOCATION}", # project/allocation name - f"-N 1", # total number of nodes requested - f"-n 1", # number of mpi tasks - f"-t {self.par.WALLTIME}", # job walltime - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", - f"--output {self.path.OUTPUT}" - ]) - super().submit(submit_call=submit_call) - - def run(self, classname, method, single=False, run_call=None, **kwargs): + _call = " ".join([ + f"sbatch", + f"--job-name={self.title}", # -J + f"--partition={self.partition}", # -p + f"--output={self.path.output_log}", # -o + f"--error={self.path.error_log}", + f"--nodes=1", # -N + f"--ntasks=1", # -n + f"--time={self.walltime:d}" # -t + ]) + if self.allocation is not None: + _call = f"{_call} --allocation={self.allocation}" + return _call + + @property + def run_call_header(self): """ - Runs task multiple times in embarrassingly parallel fasion on a SLURM - cluster. + The run call defines the SBATCH header which is used to run tasks during + an executing workflow. Like the submit call its arguments are dictated + by the given system. Run calls are modified and called by the `run` + function - :type classname: str - :param classname: the class to run - :type method: str - :param method: the method from the given `classname` to run - :type single: bool - :param single: run a single-process, non-parallel task, such as - smoothing the gradient, which only needs to be run by once. - This will change how the job array and the number of tasks is - defined, such that the job is submitted as a single-core job to - the system. - :type run_call: str - :param run_call: SBATCH command line run call to be submitted to the - system. If None, will generate one on the fly with user-defined - parameters + :rtype: str + :return: the system-dependent portion of a run call """ - if run_call is None: - _nodes = np.ceil(self.par.NPROC / float(self.par.NODESIZE)) - - run_call = " ".join([ - "sbatch", - f"{self.par.SLURMARGS or ''}", - f"-J {self.par.TITLE}", # job name - f"-O {self.output_log}", # stdout output file - f"-E {self.error_log}", # stderr error file - f"-P {self.par.PARTITION}", # queue/partition name - f"-A {self.par.ALLOCATION}", # project/allocation name - f"-N {_nodes}", # total number of nodes requested - f"-n {self.par.NPROC}", # number of mpi tasks - f"-t {self.par.WALLTIME}", # job walltime - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--output {self.path.OUTPUT}" - f"--classname {classname}", - f"--funcname {method}", - f"--environment {self.par.ENVIRONS or ''}" - ]) - - super().run(classname, method, single, run_call=run_call, **kwargs) + _call = " ".join([ + f"sbatch", + f"{self.slurm_args or ''}", + f"--job-name={self.title}", + f"--partition={self.partition}", + f"--output={os.path.join(self.path.log_files, '%A_%a')}", + f"--ntasks={self.nproc:d}", + f"--nodes={self.nodes}", + f"--array=0-{self.ntask - 1 % self.ntask_max}", + f"--time={self.tasktime:d}", + f"--parsable" + ]) + if self.allocation is not None: + _call = f"{_call} --allocation={self.allocation}" + return _call \ No newline at end of file diff --git a/seisflows/system/lsf.py b/seisflows/system/lsf.py index 3a5fddf9..dd7b4f74 100644 --- a/seisflows/system/lsf.py +++ b/seisflows/system/lsf.py @@ -8,9 +8,9 @@ import os import time import subprocess - +import sys +from seisflows import ROOT_DIR from seisflows.system.cluster import Cluster -from seisflows.tools.config import ROOT_DIR class Lsf(Cluster): @@ -37,6 +37,9 @@ def __init__(self): These parameters should not be set by the user. Attributes are initialized as NoneTypes for clarity and docstrings. """ + raise NotImplementedError("This module is still a work in progress") + sys.exit(-1) + super().__init__() self.logger.warning("system.LSF is underdeveloped and " diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index 3ff3fddc..3eb844a0 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -18,41 +18,46 @@ """ import os -import numpy as np -from seisflows import logger from seisflows.system.slurm import Slurm -from seisflows.tools.config import ROOT_DIR class Maui(Slurm): """ - System interface for Maui, which operates on a SLURM system + System Maui + ----------- + New Zealand Maui-specfic modifications to base SLURM system + + Parameters + ---------- + :type account: str + :param account: Maui account to submit jobs under, will be used for the + '--account' sbatch argument + :type cpus_per_task: int + :param cpus_per_task: allow for multiple cpus per task, i.e,. + multithreaded jobs + :type cluster: str + :param cluster: cluster to submit jobs to. Available are Maui and + Mahuika + :type partition: str + :param partition: partition of the cluster to submit jobs to. + :type ancil_cluster: str + :param ancil_cluster: name of the ancilary cluster used for pre- + post-processing tasks. + :type ancil_partition: name of the partition of the ancilary cluster + :type ancil_tasktime: int + :param ancil_tasktime: Tasktime in minutes for pre and post-processing + jobs submitted to Maui ancil. + + Paths + ----- + *** """ + __doc__ = Slurm.__doc__ + __doc__ + def __init__(self, account=None, cpus_per_task=1, cluster="maui", partition="nesi_research", ancil_cluster="maui_ancil", ancil_partition="nesi_prepost", ancil_tasktime=1, **kwargs): - """ - Maui parameters - - :type account: str - :param account: Maui account to submit jobs under, will be used for the - '--account' sbatch argument - :type cpus_per_task: int - :param cpus_per_task: allow for multiple cpus per task, i.e,. - multithreaded jobs - :type cluster: str - :param cluster: cluster to submit jobs to. Available are Maui and - Mahuika - :type partition: str - :param partition: partition of the cluster to submit jobs to. - :type ancil_cluster: str - :param ancil_cluster: name of the ancilary cluster used for pre- - post-processing tasks. - :type ancil_partition: name of the partition of the ancilary cluster - :type ancil_tasktime: int - :param ancil_tasktime: Tasktime in minutes for pre and post-processing - jobs submitted to Maui ancil. - """ + """Maui init""" super().__init__(**kwargs) self.account = account @@ -64,13 +69,12 @@ def __init__(self, account=None, cpus_per_task=1, cluster="maui", self.ancil_tasktime = ancil_tasktime self._partitions = {"nesi_research": 40} - self.node_size = self._partitions[self.partition] - def check(self, validate=True): + def check(self): """ Checks parameters and paths """ - super().check(validate=validate) + super().check() assert("SLURM_MEM_PER_CPU" in (self.environs or "")), \ ("Maui runs Slurm>=21 which enforces mutually exclusivity of Slurm " @@ -79,13 +83,17 @@ def check(self, validate=True): "running SeisFlows3 on Maui, we must remove one env. variable. " "Please add 'SLURM_MEM_PER_CPU' to self.par.ENVIRONS.") - def submit(self, submit_call=None): + @property + def submit_call_header(self): """ - Submits master job workflow to maui_ancil cluster as a single-core - process + The submit call defines the SBATCH header which is used to submit a + workflow task list to the system. It is usually dictated by the + system's required parameters, such as account names and partitions. + Submit calls are modified and called by the `submit` function. .. note:: - The master job must be run on maui_ancil because Maui does + The master job must be run on `maui_ancil` because Maui does + not have the ability to run the command "sacct", nor can it not have the ability to run the command "sacct", nor can it use the Conda environment that has been set by Ancil @@ -93,104 +101,70 @@ def submit(self, submit_call=None): We do not place SLURMARGS into the sbatch command to avoid the export=None which will not propagate the conda environment - :type submit_call: str - :param submit_call: SBATCH command line call to submit workflow.main() - to the system. If None, will generate one on the fly with - user-defined parameters + :rtype: str + :return: the system-dependent portion of a submit call """ - if submit_call is None: - submit_call = " ".join([ - f"sbatch", - f"--account={self.account}", - f"--cluster={self.ancil_cluster}", - f"--partition={self.ancil_partition}", - f"--job-name={self.title}", - f"--output={self.path_output_log}", - f"--error={self.path_error_log}", - f"--ntasks=1", - f"--cpus-per-task=1", - f"--time={self.walltime:d}", - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", - f"--output {self.path_output}" - ]) - - super().submit(submit_call=submit_call) - - def run(self, classname, method, single=False, run_call=None, **kwargs): - """ - Runs task multiple times in embarrassingly parallel fasion on a SLURM - cluster. Executes classname.method(*args, **kwargs) `NTASK` times, - each time on `NPROC` CPU cores - - :type classname: str - :param classname: the class to run - :type method: str - :param method: the method from the given `classname` to run - :type single: bool - :param single: run a single-process, non-parallel task, such as - smoothing the gradient, which only needs to be run by once. - This will change how the job array and the number of tasks is - defined, such that the job is submitted as a single-core job to - the system. - :type run_call: str - :param run_call: SBATCH command line run call to be submitted to the - system. If None, will generate one on the fly with user-defined - parameters + _call = " ".join([ + f"sbatch", + f"--account={self.account}", + f"--cluster={self.ancil_cluster}", + f"--partition={self.ancil_partition}", + f"--job-name={self.title}", + f"--output={self.path.output_log}", + f"--error={self.path.error_log}", + f"--ntasks=1", + f"--cpus-per-task=1", + f"--time={self.walltime:d}" + ]) + return _call + + @property + def run_call_header(self): """ - if run_call is None: - # Calculate requested number of nodes based on requested proc count - _nodes = np.ceil(self.nproc / float(self.node_size)) - _nodes = _nodes.astype(int) - - run_call = " ".join([ - "sbatch", - f"{self.slurm_args or ''}", - f"--account={self.account}", - f"--job-name={self.title}", - f"--clusters={self.cluster}", - f"--partition={self.partition}", - f"--cpus-per-task={self.cpus_per_task}", - f"--nodes={_nodes:d}", - f"--ntasks={self.nproc:d}", - f"--time={self.tasktime:d}", - f"--output={os.path.join(self.path_log_files, '%A_%a')}", - f"--array=0-{self.ntask-1 % self.ntask_max}", - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--output {self.path_output}", - f"--classname {classname}", - f"--funcname {method}", - f"--environment {self.environs or ''}" - ]) - - super().run(classname, method, single, run_call=run_call, **kwargs) - - def run_ancil(self, classname, method, **kwargs): + The run call defines the SBATCH header which is used to run tasks during + an executing workflow. Like the submit call its arguments are dictated + by the given system. Run calls are modified and called by the `run` + function + + :rtype: str + :return: the system-dependent portion of a run call """ - Runs prepost jobs on Maui ancil, the ancilary cluster which contains - the conda and Python capabilities for Maui. + _call = " ".join([ + f"sbatch", + f"{self.slurm_args or ''}", + f"--account={self.account}", + f"--job-name={self.title}", + f"--clusters={self.cluster}", + f"--partition={self.partition}", + f"--cpus-per-task={self.cpus_per_task}", + f"--nodes={self.nodes:d}", + f"--ntasks={self.nproc:d}", + f"--time={self.tasktime:d}", + f"--output={os.path.join(self.path.log_files, '%A_%a')}", + f"--array=0-{self.ntask-1 % self.ntask_max}", + f"--parsable" + ]) + return _call - :type classname: str - :param classname: the class to run - :type method: str - :param method: the method from the given `classname` to run + @property + def ancil_run_call_header(self): """ - ancil_run_call = " ".join([ - "sbatch", - f"{self.slurm_args or ''}", - f"--account={self.account}", - f"--job-name={self.title}", - f"--clusters={self.ancil_cluster}", - f"--partition={self.ancil_partition}", - f"--cpus-per-task={self.cpus_per_task}", - f"--time={self.ancil_tasktime:d}", - f"--output={os.path.join(self.path_log_files, '%A_%a')}", - f"--array=0-{self.ntask-1 % self.ntask_max}", - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--output {self.path_output}", - f"--classname {classname}", - f"--funcname {method}", - f"--environment {self.environs or ''}" + A modified form of `run_call` which is used to run jobs on the Ancil + pre/postprocessing cluster of Maui. This is used to run Pyaflowa jobs + which require the Conda environment active on Maui Ancil. + """ + _call = " ".join([ + f"sbatch", + f"{self.slurm_args or ''}", + f"--account={self.account}", + f"--job-name={self.title}", + f"--clusters={self.ancil_cluster}", + f"--partition={self.ancil_partition}", + f"--cpus-per-task={self.cpus_per_task}", + f"--nodes={self.nodes:d}", + f"--ntasks={self.nproc:d}", + f"--time={self.ancil_tasktime:d}", + f"--output={os.path.join(self.path.log_files, '%A_%a')}", + f"--array=0-{self.ntask-1 % self.ntask_max}" ]) - logger.debug(ancil_run_call) - super().run(classname, method, single=False, run_call=ancil_run_call, - **kwargs) + return _call diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 17f3af68..fd9b9692 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -12,16 +12,22 @@ system supers will not be up to date until access to those systems are granted. This rosetta stone, for converting from SLURM to other workload management tools will be useful: https://slurm.schedmd.com/rosetta.pdf + +TODO + Create 'slurm_singulairty', a child class for singularity-based runs which + loads and runs programs through singularity, OR add a parameter options + which will change the run and/or submit calls """ import os import sys -import math +import numpy as np import time import subprocess from seisflows import ROOT_DIR, logger from seisflows.system.cluster import Cluster from seisflows.tools import msg +from seisflows.tools.config import pickle_function_list class Slurm(Cluster): @@ -33,6 +39,9 @@ class Slurm(Cluster): Parameters ---------- + :type ntask_max: int + :param ntask_max: set the maximum number of simultaneously running array + job processes that are submitted to a cluster at one time. :type slurm_args: str :param slurm_args: Any (optional) additional SLURM arguments that will be passed to the SBATCH scripts. Should be in the form: @@ -56,47 +65,99 @@ def __init__(self, ntask_max=100, slurm_args="", **kwargs): # Must be overwritten by child class self.node_size = None + self.partition = None + self._partitions = {} - def check(self, validate=True): + def check(self): """ Checks parameters and paths """ + super().check() + assert(self.node_size is not None), ( f"Slurm system child classes require defining the `node_size` or " f"the number of cores per node inherent to the compute system") - def submit(self, submit_call=None): + assert(self.partition in self._partitions), \ + f"Cluster partition name must match {self._partitions}" + + assert("--parsable" in self.run_call_header), ( + f"System `run_call_header` requires SBATCH argument '--parsable' " + f"which is required to keep STDOUT formatted correctly when " + f"submitting jobs to the system." + ) + + @property + def nodes(self): + """Defines the number of nodes which is derived from system node size""" + _nodes = np.ceil(self.nproc / float(self.node_size)) + _nodes = _nodes.astype(int) + return _nodes + + @property + def nodesize(self): + """Defines the node size of a given cluster partition. This is a hard + set number defined by the system architecture""" + return self._partitions[self.partition] + + @property + def submit_call_header(self): + """ + The submit call defines the SBATCH header which is used to submit a + workflow task list to the system. It is usually dictated by the + system's required parameters, such as account names and partitions. + Submit calls are modified and called by the `submit` function. + + :rtype: str + :return: the system-dependent portion of a submit call + """ + _call = " ".join([ + f"sbatch", + f"{self.slurm_args or ''}", + f"--job-name={self.title}", + f"--output={self.path.output_log}", + f"--error={self.path.output_log}", + f"--ntasks-per-node={self.node_size}", + f"--nodes=1", + f"--time={self.walltime:d}" + ]) + return _call + + @property + def run_call_header(self): """ - Submits workflow as a single process master job on a SLURM system + The run call defines the SBATCH header which is used to run tasks during + an executing workflow. Like the submit call its arguments are dictated + by the given system. Run calls are modified and called by the `run` + function - :type submit_call: str - :param submit_call: subclasses (e.g., specific SLURM cluster subclasses) - can overload the sbatch command line input by setting - submit_call. If set to None, default submit_call will be set here. + :rtype: str + :return: the system-dependent portion of a run call """ - if submit_call is None: - submit_call = " ".join([ - f"sbatch", - f"{self.slurm_args or ''}", - f"--job-name={self.title}", - f"--output={self.path.output_log}", - f"--error={self.path.output_log}", - f"--ntasks-per-node={self.node_size}", - f"--nodes=1", - f"--time={self.walltime:d}", - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'submit')}", - f"--output {self.path.output}" - ]) - - logger.debug(submit_call) - super().submit(submit_call=submit_call) - - def run(self, funcs, single=False, run_call=None, **kwargs): + _call = " ".join([ + f"sbatch", + f"{self.slurm_args or ''}", + f"--job-name={self.title}", + f"--nodes={self.nodes}", + f"--ntasks-per-node={self.node_size:d}", + f"--ntasks={self.nproc:d}", + f"--time={self.tasktime:d}", + f"--output={os.path.join(self.path.log_files, '%A_%a')}", + f"--array=0-{self.ntask-1}%{self.ntask_max}", + f"--parsable" + ]) + return _call + + + def run(self, funcs, single=False, **kwargs): """ Runs task multiple times in embarrassingly parallel fasion on a SLURM cluster. Executes classname.method(*args, **kwargs) `NTASK` times, each time on `NPROC` CPU cores + .. note:: + Completely overwrites the `Cluster.run()` command + :type funcs: list of methods :param funcs: a list of functions that should be run in order. All kwargs passed to run() will be passed into the functions. @@ -106,34 +167,22 @@ def run(self, funcs, single=False, run_call=None, **kwargs): This will change how the job array and the number of tasks is defined, such that the job is submitted as a single-core job to the system. - :type run_call: str - :param run_call: subclasses (e.g., specific SLURM cluster subclasses) - can overload the sbatch command line input by setting - run_call. If set to None, default run_call will be set here. """ - funcs_fid, kwargs_fid = self._pickle_func_list(funcs, **kwargs) + funcs_fid, kwargs_fid = pickle_function_list(funcs, + path=self.path.scratch, + **kwargs) logger.info(f"running functions {[_.__name__ for _ in funcs]} on " f"system {self.ntask} times") # Default sbatch command line input, can be overloaded by subclasses # Copy-paste this default run_call and adjust accordingly for subclass - if run_call is None: - run_call = " ".join([ - "sbatch", - f"{self.slurm_args or ''}", - f"--job-name={self.title}", - f"--nodes={math.ceil(self.nproc/float(self.node_size)):d}", - f"--ntasks-per-node={self.node_size:d}", - f"--ntasks={self.nproc:d}", - f"--time={self.tasktime:d}", - f"--output={os.path.join(self.path.log_files, '%A_%a')}", - f"--array=0-{self.ntask-1}%{self.ntask_max}", - f"--parsable", # keeps stdout cleaner - f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", - f"--funcs {funcs_fid}", - f"--kwargs {kwargs_fid}", - f"--environment {self.environs or ''}" - ]) + run_call = " ".join([ + f"{self.run_call_header}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", + f"--funcs {funcs_fid}", + f"--kwargs {kwargs_fid}", + f"--environment {self.environs or ''}" + ]) logger.debug(run_call) # Single-process jobs simply need to replace a few sbatch arguments. diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 1486f682..9edfc28a 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -127,8 +127,7 @@ def setup(self): logger.debug(f"copying par/log file to: {dst}") unix.cp(src=src, dst=dst) - def submit(self, workdir=None, parameter_file="parameters.yaml", - submit_call=None): + def submit(self, workdir=None, parameter_file="parameters.yaml"): """ Submits the main workflow job as a serial job submitted directly to the system that is running the master job @@ -138,11 +137,6 @@ def submit(self, workdir=None, parameter_file="parameters.yaml", :type parameter_file: str :param parameter_file: paramter file file name used to instantiate the SeisFlows package - :type submit_call: str - :param submit_call: child classes may require a specific submit call - if the job should be submitted to another system (e.g., on cluster - submitting jobs on compute nodes and not running directly on the - login node) """ workflow = import_seisflows(workdir=workdir or self.path.workdir, parameter_file=parameter_file) From aa4860973f9d7abc4da0789a30196f3898ceda63 Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 17 Aug 2022 14:59:25 -0800 Subject: [PATCH 116/195] added a test_system workflow which simply attempts to use the 'run' function on a system --- seisflows/workflow/test_system.py | 77 +++++++++++++++++++++++++++++++ 1 file changed, 77 insertions(+) create mode 100644 seisflows/workflow/test_system.py diff --git a/seisflows/workflow/test_system.py b/seisflows/workflow/test_system.py new file mode 100644 index 00000000..f09d73a5 --- /dev/null +++ b/seisflows/workflow/test_system.py @@ -0,0 +1,77 @@ +#!/usr/bin/env python3 +""" +This is a SeisFlows Test workflow class which is used to test out the underlying +machinery for a given set of modules, before submitting a full workflow. Used +for debugging and development, as well as ensuring that SeisFlows is in working +order. +""" +import os +from seisflows import logger +from seisflows.tools import unix +from seisflows.tools.config import Dict, get_task_id + + +class Test: + """ + Test Workflow + ------------- + Test individual sub-modules in a 'live' testing environment + + Parameters + ---------- + + Paths + ----- + *** + """ + def __init__(self, modules=None, workdir=os.getcwd(), path_output=None, + **kwargs): + """Test workflow""" + self._modules = modules + + self.path = Dict( + workdir=workdir, + scratch=os.path.join(workdir, "scratch"), + output=path_output or os.path.join(workdir, "output") + ) + + @property + def task_list(self): + """ + A task list which includes tests for most of the modules depending on + whether they're included in the module list or not. + """ + return [] + + def setup(self): + """ + Creates required directory structure + """ + for path in [self.path.workdir, self.path.scratch, self.path.output]: + unix.mkdir(path) + + for module in self._modules: + module.setup() + + def test_system_run(self): + """ + Use the system sub-module to submit some simple functions to ensure that + we can run jobs on the system and that the job checking works + """ + if not "system" in self._modules: + logger.warning("No `system` module chosen, skipping " + "`test_system_run`") + + system = self._modules["system"] + system.run(funcs=[self.test_function_print_hello_world], single=False) + system.run(funcs=[self.test_function_wait_ten_seconds], single=True) + + def test_function_print_hello_world(self): + """Simple print function to be called by system run""" + print(f"hello world from task id: {get_task_id()}") + + def test_function_wait_ten_seconds(self): + """Simple wait function to be called by system run, used to test + job status check""" + for i in range(11): + print(f"hello world from task id: {get_task_id()} after {i} sec.") From 013bfe4483aa6bf867c6313859b5d63a35feb05b Mon Sep 17 00:00:00 2001 From: bch0w Date: Wed, 17 Aug 2022 23:09:00 +0000 Subject: [PATCH 117/195] bugfix configure was writing docstrings for Null modules which is unncessary, these are now skipped over --- seisflows/seisflows.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index a5707c18..91770f49 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -489,6 +489,8 @@ def split_module_docstring(mod, idx): f = open(self._args.parameter_file, "a") # Write all module parameters and corresponding docstrings for module in modules: + if not module: + continue docstring = split_module_docstring(module, 0) f.write(f"# {'=' * 77}\n#{docstring}\n# {'=' * 77}\n") # Write the parameters, make sure to not have the same one twice @@ -508,6 +510,8 @@ def split_module_docstring(mod, idx): f.write("#\t Paths\n") f.write("#\t -----\n") for module in modules: + if not module: + return docstring = split_module_docstring(module, -1) f.write(f"#{docstring}\n") f.write(f"# {'=' * 77}\n") @@ -515,6 +519,8 @@ def split_module_docstring(mod, idx): # Write values for publically accessible path structure written = [] for module in modules: + if not module: + continue for key, val in module.path.items(): # '_key' means hidden path so don't include in par file if key in written or key.startswith("_"): From 9e9a170689eb4e8a93f14ba486f63ce9b6ca1c9d Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 18 Aug 2022 00:52:14 +0000 Subject: [PATCH 118/195] tempfix logger printing twice as stdout and log statements were both going to the log file, temp turned off stdout bugfix check job status slurm was returning empty strings when running sacct because it was running to quick after job submission, added sleep timer maui now force adds environment variable to internal parameters bugfix seisflows clean was throwing an error for deleting paths that did not exist for test workflow --- seisflows/seisflows.py | 12 ++++++------ seisflows/system/chinook.py | 4 ++-- seisflows/system/frontera.py | 4 ++-- seisflows/system/maui.py | 16 ++++++++++++++-- seisflows/system/slurm.py | 25 ++++++++++++++----------- seisflows/system/workstation.py | 2 +- seisflows/tools/config.py | 8 ++++---- seisflows/workflow/test_system.py | 23 ++++++++++++++++++----- 8 files changed, 61 insertions(+), 33 deletions(-) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 91770f49..1c78cbfe 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -511,7 +511,7 @@ def split_module_docstring(mod, idx): f.write("#\t -----\n") for module in modules: if not module: - return + continue docstring = split_module_docstring(module, -1) f.write(f"#{docstring}\n") f.write(f"# {'=' * 77}\n") @@ -650,11 +650,11 @@ def clean(self, force=False, **kwargs): if check == "y": pars = load_yaml(self._args.parameter_file) - unix.rm(pars.path_scratch) - unix.rm(pars.path_output) - unix.rm(pars.path_log_files) - unix.rm(pars.path_state_file) - unix.rm(pars.path_output_log) + for name in ["scratch", "output", "log_files", "state_file", + "output_log"]: + path = f"path_{name}" + if path in pars: + unix.rm(path) def restart(self, force=False, **kwargs): """ diff --git a/seisflows/system/chinook.py b/seisflows/system/chinook.py index 653f3801..4e17c7b9 100644 --- a/seisflows/system/chinook.py +++ b/seisflows/system/chinook.py @@ -58,7 +58,7 @@ def submit_call_header(self): f"sbatch", f"--job-name={self.title}", f"--output={self.path.output_log}", - f"--error={self.path.error_log}", + f"--error={self.path.output_log}", f"--ntasks=1", f"--partition={self.partition}", f"--time={self.walltime:d}" @@ -87,4 +87,4 @@ def run_call_header(self): f"--array=0-{self.ntask-1 % self.ntask_max}", f"--parsable" ]) - return _call \ No newline at end of file + return _call diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index 6f403c71..604fad1d 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -57,7 +57,7 @@ def submit_call_header(self): f"--job-name={self.title}", # -J f"--partition={self.partition}", # -p f"--output={self.path.output_log}", # -o - f"--error={self.path.error_log}", + f"--error={self.path.output_log}", f"--nodes=1", # -N f"--ntasks=1", # -n f"--time={self.walltime:d}" # -t @@ -91,4 +91,4 @@ def run_call_header(self): ]) if self.allocation is not None: _call = f"{_call} --allocation={self.allocation}" - return _call \ No newline at end of file + return _call diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index 3eb844a0..fd83d473 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -67,8 +67,13 @@ def __init__(self, account=None, cpus_per_task=1, cluster="maui", self.ancil_cluster = ancil_cluster self.ancil_partition = ancil_partition self.ancil_tasktime = ancil_tasktime + if self.environs and "SLURM_MEM_PER_CPU" not in self.environs: + self.environs = f"{self.environs},SLURM_MEM_PER_CPU" + else: + self.environs = "SLURM_MEM_PER_CPU" self._partitions = {"nesi_research": 40} + self._available_clusters = ["maui", "mahuika"] def check(self): """ @@ -80,9 +85,16 @@ def check(self): ("Maui runs Slurm>=21 which enforces mutually exclusivity of Slurm " "memory environment variables SLURM_MEM_PER_CPU and " "SLURM_MEM_PER_NODE. Due to the cross-cluster nature of " - "running SeisFlows3 on Maui, we must remove one env. variable. " + "running SeisFlows on Maui, we must remove one env. variable. " "Please add 'SLURM_MEM_PER_CPU' to self.par.ENVIRONS.") + assert(self.cluster in self._available_clusters), ( + f"System 'Maui' parameter cluster must be in " + f"{self._available_clusters}" + ) + + assert(self.account), f"System 'Maui' requires parameter 'account'" + @property def submit_call_header(self): """ @@ -111,7 +123,7 @@ def submit_call_header(self): f"--partition={self.ancil_partition}", f"--job-name={self.title}", f"--output={self.path.output_log}", - f"--error={self.path.error_log}", + f"--error={self.path.output_log}", f"--ntasks=1", f"--cpus-per-task=1", f"--time={self.walltime:d}" diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index fd9b9692..fb1fe6b7 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -34,8 +34,8 @@ class Slurm(Cluster): """ System Slurm ------------------ - Runs tasks in serial on a local machine.Interface for submitting jobs to Simple Linux Utility for - Resource Management (SLURM) system. + Runs tasks in serial on a local machine. Interface for submitting jobs to + Simple Linux Utility for Resource Management (SLURM) system. Parameters ---------- @@ -64,7 +64,6 @@ def __init__(self, ntask_max=100, slurm_args="", **kwargs): self.slurm_args = slurm_args # Must be overwritten by child class - self.node_size = None self.partition = None self._partitions = {} @@ -75,8 +74,8 @@ def check(self): super().check() assert(self.node_size is not None), ( - f"Slurm system child classes require defining the `node_size` or " - f"the number of cores per node inherent to the compute system") + f"Slurm system child classes require defining the node_size or " + f"the number of cores per node inherent to the compute system.") assert(self.partition in self._partitions), \ f"Cluster partition name must match {self._partitions}" @@ -95,7 +94,7 @@ def nodes(self): return _nodes @property - def nodesize(self): + def node_size(self): """Defines the node size of a given cluster partition. This is a hard set number defined by the system architecture""" return self._partitions[self.partition] @@ -171,8 +170,12 @@ def run(self, funcs, single=False, **kwargs): funcs_fid, kwargs_fid = pickle_function_list(funcs, path=self.path.scratch, **kwargs) - logger.info(f"running functions {[_.__name__ for _ in funcs]} on " - f"system {self.ntask} times") + if single: + logger.info(f"running functions {[_.__name__ for _ in funcs]} on " + f"system 1 time") + else: + logger.info(f"running functions {[_.__name__ for _ in funcs]} on " + f"system {self.ntask} times") # Default sbatch command line input, can be overloaded by subclasses # Copy-paste this default run_call and adjust accordingly for subclass @@ -183,7 +186,6 @@ def run(self, funcs, single=False, **kwargs): f"--kwargs {kwargs_fid}", f"--environment {self.environs or ''}" ]) - logger.debug(run_call) # Single-process jobs simply need to replace a few sbatch arguments. # Do it AFTER `run_call` has been defined so that subclasses submitting @@ -193,6 +195,8 @@ def run(self, funcs, single=False, **kwargs): "process job") run_call = _modify_run_call_single_proc(run_call) + logger.debug(run_call) + # Stdout will be job number (e.g., 1234). Federated clusters will return # job # and cluster name (e.g., 1234;Cluster1). We only want job # job_id = subprocess.run(run_call, stdout=subprocess.PIPE, @@ -229,6 +233,7 @@ def check_job_status(job_id): bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", "CANCELLED"] while True: + time.sleep(5) # give job time to process and also prevent over-query job_ids, states = query_job_states(job_id) if [state == "COMPLETED" for state in states]: return 1 # Pass @@ -238,8 +243,6 @@ def check_job_status(job_id): if state in bad_states: logger.debug(f"{job_id}: {state}") return -1 # Fail - else: - time.sleep(5) # Don't query 'sacct' command too often def query_job_states(job_id): diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 9edfc28a..531316a0 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -48,7 +48,7 @@ class Workstation: """ def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, workdir=os.getcwd(), path_output=None, path_system=None, - path_par_file=None, path_output_log=None, path_log_files=None, + path_par_file=None, path_output_log=None, path_log_files=None, **kwargs): """ Workstation System Class Parameters diff --git a/seisflows/tools/config.py b/seisflows/tools/config.py index 36a91012..6a345733 100755 --- a/seisflows/tools/config.py +++ b/seisflows/tools/config.py @@ -239,9 +239,9 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): formatter = logging.Formatter(fmt_str, datefmt="%Y-%m-%d %H:%M:%S") # Stream handler to print log statements to stdout - st_handler = logging.StreamHandler(sys.stdout) - st_handler.setFormatter(formatter) - logger.addHandler(st_handler) + # st_handler = logging.StreamHandler(sys.stdout) + # st_handler.setFormatter(formatter) + # logger.addHandler(st_handler) # File handler to print log statements to text file `filename` if filename is not None: @@ -400,4 +400,4 @@ def number_fid(fid, i=0): ext = os.path.splitext(fid_only)[-1] # e.g., .txt new_ext = f"_{i:0>3}{ext}" # e.g., _000.txt new_fid = fid_only.replace(ext, new_ext) - return new_fid \ No newline at end of file + return new_fid diff --git a/seisflows/workflow/test_system.py b/seisflows/workflow/test_system.py index f09d73a5..d7d6273a 100644 --- a/seisflows/workflow/test_system.py +++ b/seisflows/workflow/test_system.py @@ -11,9 +11,9 @@ from seisflows.tools.config import Dict, get_task_id -class Test: +class TestSystem: """ - Test Workflow + TestSystem Workflow ------------- Test individual sub-modules in a 'live' testing environment @@ -43,21 +43,34 @@ def task_list(self): """ return [] + def check(self): + """ + Run check functions for all underlying modules + """ + logger.info("running check for test workflow") + for name, module in self._modules.items(): + if module: + module.check() + def setup(self): """ Creates required directory structure """ + logger.info("running setup for test workflow") for path in [self.path.workdir, self.path.scratch, self.path.output]: unix.mkdir(path) - for module in self._modules: - module.setup() + for name, module in self._modules.items(): + if module: + module.setup() - def test_system_run(self): + def run(self): """ Use the system sub-module to submit some simple functions to ensure that we can run jobs on the system and that the job checking works """ + logger.info("running test workflow") + if not "system" in self._modules: logger.warning("No `system` module chosen, skipping " "`test_system_run`") From 238a7045efffd2b68b4b585232abca93c46c89d6 Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 18 Aug 2022 01:00:42 +0000 Subject: [PATCH 119/195] bugfix slurm system not actually replacing single proc calls --- seisflows/system/slurm.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index fb1fe6b7..214873e5 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -291,9 +291,9 @@ def _modify_run_call_single_proc(run_call): """ for part in run_call.split(" "): if "--array" in part: - run_call.replace(part, "--array=0-0") + run_call = run_call.replace(part, "--array=0-0") elif "--ntasks" in part: - run_call.replace(part, "--ntasks=1") + run_call = run_call.replace(part, "--ntasks=1") # Append taskid to environment variable, deal with the case where # self.par.ENVIRONS is an empty string From 1a463c2d77f296dd1c9f90af237f150b9544a6f0 Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 18 Aug 2022 18:49:23 +0000 Subject: [PATCH 120/195] improving test_flow workflow for testing modules in a live environment improvement for slurm systems, setting time as a datettime str rather than an integer, which allows for fractions of a minute walltime and tasktime --- seisflows/system/chinook.py | 4 +- seisflows/system/cluster.py | 9 +- seisflows/system/frontera.py | 4 +- seisflows/system/maui.py | 4 +- seisflows/system/slurm.py | 15 ++- seisflows/workflow/forward.py | 4 +- seisflows/workflow/test_flow.py | 175 ++++++++++++++++++++++++++++++ seisflows/workflow/test_system.py | 90 --------------- 8 files changed, 200 insertions(+), 105 deletions(-) create mode 100644 seisflows/workflow/test_flow.py delete mode 100644 seisflows/workflow/test_system.py diff --git a/seisflows/system/chinook.py b/seisflows/system/chinook.py index 4e17c7b9..ee6d7696 100644 --- a/seisflows/system/chinook.py +++ b/seisflows/system/chinook.py @@ -61,7 +61,7 @@ def submit_call_header(self): f"--error={self.path.output_log}", f"--ntasks=1", f"--partition={self.partition}", - f"--time={self.walltime:d}" + f"--time={self._walltime}" ]) return _call @@ -82,7 +82,7 @@ def run_call_header(self): f"--job-name={self.title}", f"--ntasks={self.nproc:d}", f"--tasks-per-node={self.nodesize}", - f"--time={self.tasktime:d}", + f"--time={self._tasktime}", f"--output={os.path.join(self.path.log_files, '%A_%a')}", f"--array=0-{self.ntask-1 % self.ntask_max}", f"--parsable" diff --git a/seisflows/system/cluster.py b/seisflows/system/cluster.py index e8aa15f6..9e3bd81c 100644 --- a/seisflows/system/cluster.py +++ b/seisflows/system/cluster.py @@ -36,14 +36,15 @@ class Cluster(Workstation): For example 'mpirun', 'mpiexec', 'srun', 'ibrun' :type ntask_max: int :param ntask_max: limit the number of concurrent tasks in a given array job - :type walltime: int + :type walltime: float :param walltime: maximum job time in minutes for the master SeisFlows - job submitted to cluster - :type tasktime: int + job submitted to cluster. Fractions of minutes acceptable. + :type tasktime: float :param tasktime: maximum job time in minutes for each job spawned by the SeisFlows master job during a workflow. These include, e.g., running the forward solver, adjoint solver, smoother, kernel combiner. - All spawned tasks receive the same task time. + All spawned tasks receive the same task time. Fractions of minutes + acceptable. :type environs: str :param environs: Optional environment variables to be provided in the following format VAR1=var1,VAR2=var2... Will be set using diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index 604fad1d..f816cddc 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -60,7 +60,7 @@ def submit_call_header(self): f"--error={self.path.output_log}", f"--nodes=1", # -N f"--ntasks=1", # -n - f"--time={self.walltime:d}" # -t + f"--time={self._walltime}" # -t ]) if self.allocation is not None: _call = f"{_call} --allocation={self.allocation}" @@ -86,7 +86,7 @@ def run_call_header(self): f"--ntasks={self.nproc:d}", f"--nodes={self.nodes}", f"--array=0-{self.ntask - 1 % self.ntask_max}", - f"--time={self.tasktime:d}", + f"--time={self._tasktime}", f"--parsable" ]) if self.allocation is not None: diff --git a/seisflows/system/maui.py b/seisflows/system/maui.py index fd83d473..45da8e92 100644 --- a/seisflows/system/maui.py +++ b/seisflows/system/maui.py @@ -126,7 +126,7 @@ def submit_call_header(self): f"--error={self.path.output_log}", f"--ntasks=1", f"--cpus-per-task=1", - f"--time={self.walltime:d}" + f"--time={self._walltime}" ]) return _call @@ -151,7 +151,7 @@ def run_call_header(self): f"--cpus-per-task={self.cpus_per_task}", f"--nodes={self.nodes:d}", f"--ntasks={self.nproc:d}", - f"--time={self.tasktime:d}", + f"--time={self._tasktime}", f"--output={os.path.join(self.path.log_files, '%A_%a')}", f"--array=0-{self.ntask-1 % self.ntask_max}", f"--parsable" diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 214873e5..e6c61fd9 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -13,6 +13,11 @@ granted. This rosetta stone, for converting from SLURM to other workload management tools will be useful: https://slurm.schedmd.com/rosetta.pdf +.. note:: + SLURM systems expect walltime/tasktime in format: "minutes", + "minutes:seconds", "hours:minutes:seconds". SeisFlows uses the latter + and converts task and walltimes from input of minutes to a time string. + TODO Create 'slurm_singulairty', a child class for singularity-based runs which loads and runs programs through singularity, OR add a parameter options @@ -67,6 +72,10 @@ def __init__(self, ntask_max=100, slurm_args="", **kwargs): self.partition = None self._partitions = {} + # Convert walltime and tasktime to datetime str 'H:MM:SS' + self._tasktime = str(time.timedelta(minutes=self.tasktime)) + self._walltime = str(time.timedelta(minutes=self.walltime)) + def check(self): """ Checks parameters and paths @@ -118,7 +127,7 @@ def submit_call_header(self): f"--error={self.path.output_log}", f"--ntasks-per-node={self.node_size}", f"--nodes=1", - f"--time={self.walltime:d}" + f"--time={self._walltime}" ]) return _call @@ -140,7 +149,7 @@ def run_call_header(self): f"--nodes={self.nodes}", f"--ntasks-per-node={self.node_size:d}", f"--ntasks={self.nproc:d}", - f"--time={self.tasktime:d}", + f"--time={self._tasktime}", f"--output={os.path.join(self.path.log_files, '%A_%a')}", f"--array=0-{self.ntask-1}%{self.ntask_max}", f"--parsable" @@ -214,7 +223,7 @@ def run(self, funcs, single=False, **kwargs): ) sys.exit(-1) else: - logger.info(f"tasks finished successfully") + logger.info(f"task {job_id} finished successfully") def check_job_status(job_id): diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index bab0a073..9a9b9def 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -52,8 +52,8 @@ class Forward: Paths ----- :type workdir: str - :param workdir: working directory in which to look for data and store - results. Defaults to current working directory + :param workdir: working directory in which to perform a SeisFlows workflow. + SeisFlows internal directory structure will be created here. Default cwd :type path_output: str :param path_output: path to directory used for permanent storage on disk. Results and exported scratch files are saved here. diff --git a/seisflows/workflow/test_flow.py b/seisflows/workflow/test_flow.py new file mode 100644 index 00000000..a03bd7ff --- /dev/null +++ b/seisflows/workflow/test_flow.py @@ -0,0 +1,175 @@ +#!/usr/bin/env python3 +""" +This is a SeisFlows Test workflow class which is used to test out the underlying +machinery for a given set of modules, before submitting a full workflow. Used +for debugging and development, as well as ensuring that SeisFlows is in working +order before committing a large number of compute resources. +""" +import os +import time +from glob import glob +from seisflows import logger +from seisflows.tools import unix, msg +from seisflows.tools.config import Dict, get_task_id + + +class TestFlow: + """ + TestFlow Workflow + ------------- + Test individual sub-modules in a 'live' testing environment in order to + ensure SeisFlows works appropriately given an established system and solver. + + .. note:: + You do not need to set System parameters `ntask`, `nproc`, `tasktime`, + `walltime`. These will be overwritten by the setup task. + + Parameters + ---------- + + Paths + ----- + :type workdir: str + :param workdir: working directory in which to perform a SeisFlows workflow. + SeisFlows internal directory structure will be created here. Default cwd + :type path_output: str + :param path_output: path to directory used for permanent storage on disk. + Results and expored scratch files are saved here. + *** + """ + def __init__(self, modules=None, workdir=os.getcwd(), path_output=None, + **kwargs): + """Test workflow""" + self._modules = modules + + self.path = Dict( + workdir=workdir, + scratch=os.path.join(workdir, "scratch"), + output=path_output or os.path.join(workdir, "output") + ) + + @property + def task_list(self): + """ + A task list which includes tests for most of the modules depending on + whether they're included in the module list or not. + """ + _task_list = [] + if not self.system: + logger.warning("No `system` module chosen, skipping system tests") + else: + _task_list.append(self.test_system_print_hello_world) + _task_list.append(self.test_system_wait_ten_seconds_then_fail) + + return _task_list + + def check(self): + """ + Run check functions for all underlying modules + """ + logger.info("running check for test workflow") + for name, module in self._modules.items(): + if module: + module.check() + + def setup(self): + """ + Creates required directory structure + """ + logger.info("running setup for test workflow") + for path in [self.path.workdir, self.path.scratch, self.path.output]: + unix.mkdir(path) + + for name, module in self._modules.items(): + if module: + module.setup() + + # Assign modules to internal attributes, some may be Null + self.system = self._modules["system"] + self.solver = self._modules["solver"] + self.preprocess = self._modules["preprocess"] + self.optimize = self._modules["optimize"] + + # Force some internal module variables to keep testing lightweight + logger.info("overwriting internal System parameters from given values") + self.system.ntask = 3 + self.system.nproc = 1 + self.system.tasktime = .25 # 15 seconds + self.system.walltime = 2.5 # 2.5 minutes + + def run(self): + """ + Run through the task list which should consist of various test functions + which are meant to ensure SeisFlows works in a live working environment + without committing a large number of resources + """ + logger.info(msg.mjr("RUNNING TEST WORKFLOW")) + + for func in self.task_list: + func() + + def test_system_print_hello_world(self): + """ + Use the system to run a simple print function which names the currently + running task id to check that task id printing works. Check that the + output log messages show the correct task id and log statement + """ + logger.info("running system test for job array submission") + + def _test_function(): + print(f"hello world from task id: {get_task_id()}") + + # Clear the log files dir. as this is how we will check results + unix.rm(self.system.path.log_files) + unix.mkdir(self.system.path.log_files) + + # Run an array job + self.system.run(funcs=[_test_function], single=False) + + # Check the results of the run + log_files = glob(os.path.join(self.system.path.log_files, "*_*")) + assert(len(log_files) == self.system.ntask), \ + f"number of log files does not match expected number of tasks" + + for i, fid in enumerate(sorted(log_files)): + with open(fid, "r") as f: + assert(f"hello world from task id: {i}" in f.read()), \ + f"log file '{fid}' does not show correct log message" + + logger.info("job array submission system test finished successfully") + + + def test_system_wait_ten_seconds_then_fail(self): + """ + Simple wait function to be called by system run, used to test + job status check function which monitors job queue. Throw in a job + failure at the end of the function to check that system exit works + """ + logger.info("running system test for job queue monitoring and " + "job failure catching") + + def _test_function(): + for i in range(1, 11): + time.sleep(1) + print(f"Task ID {get_task_id()} waited {i} sec.") + + raise Exception("intentional exception for job failure test") + + # Clear the log files dir. as this is how we will check results + unix.rm(self.system.path.log_files) + unix.mkdir(self.system.path.log_files) + + # Catch the system exit exception that is thrown when job fails + try: + self.system.run(funcs=[_test_function], single=True) + logger.critical("job was expected to fail but did not") + sys.exit(-1) + except SystemExit: + pass + + # Check the log file for job failure + log_files = glob(os.path.join(self.system.path.log_files, "*_*")) + assert(len(log_files) == 1), f"only one log file expected" + + logger.info("job queue and fail system test finished successfully") + diff --git a/seisflows/workflow/test_system.py b/seisflows/workflow/test_system.py deleted file mode 100644 index d7d6273a..00000000 --- a/seisflows/workflow/test_system.py +++ /dev/null @@ -1,90 +0,0 @@ -#!/usr/bin/env python3 -""" -This is a SeisFlows Test workflow class which is used to test out the underlying -machinery for a given set of modules, before submitting a full workflow. Used -for debugging and development, as well as ensuring that SeisFlows is in working -order. -""" -import os -from seisflows import logger -from seisflows.tools import unix -from seisflows.tools.config import Dict, get_task_id - - -class TestSystem: - """ - TestSystem Workflow - ------------- - Test individual sub-modules in a 'live' testing environment - - Parameters - ---------- - - Paths - ----- - *** - """ - def __init__(self, modules=None, workdir=os.getcwd(), path_output=None, - **kwargs): - """Test workflow""" - self._modules = modules - - self.path = Dict( - workdir=workdir, - scratch=os.path.join(workdir, "scratch"), - output=path_output or os.path.join(workdir, "output") - ) - - @property - def task_list(self): - """ - A task list which includes tests for most of the modules depending on - whether they're included in the module list or not. - """ - return [] - - def check(self): - """ - Run check functions for all underlying modules - """ - logger.info("running check for test workflow") - for name, module in self._modules.items(): - if module: - module.check() - - def setup(self): - """ - Creates required directory structure - """ - logger.info("running setup for test workflow") - for path in [self.path.workdir, self.path.scratch, self.path.output]: - unix.mkdir(path) - - for name, module in self._modules.items(): - if module: - module.setup() - - def run(self): - """ - Use the system sub-module to submit some simple functions to ensure that - we can run jobs on the system and that the job checking works - """ - logger.info("running test workflow") - - if not "system" in self._modules: - logger.warning("No `system` module chosen, skipping " - "`test_system_run`") - - system = self._modules["system"] - system.run(funcs=[self.test_function_print_hello_world], single=False) - system.run(funcs=[self.test_function_wait_ten_seconds], single=True) - - def test_function_print_hello_world(self): - """Simple print function to be called by system run""" - print(f"hello world from task id: {get_task_id()}") - - def test_function_wait_ten_seconds(self): - """Simple wait function to be called by system run, used to test - job status check""" - for i in range(11): - print(f"hello world from task id: {get_task_id()} after {i} sec.") From c0f23a04df9a955d0c3b1605b2eb05e59ca07f33 Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 18 Aug 2022 19:04:03 +0000 Subject: [PATCH 121/195] bugfix slurm system not exiting when jobs failed due to incorrect check logic --- seisflows/system/slurm.py | 9 +++++---- seisflows/workflow/test_flow.py | 8 ++++++-- 2 files changed, 11 insertions(+), 6 deletions(-) diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index e6c61fd9..3c5a829f 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -29,6 +29,7 @@ import time import subprocess +from datetime import timedelta from seisflows import ROOT_DIR, logger from seisflows.system.cluster import Cluster from seisflows.tools import msg @@ -73,8 +74,8 @@ def __init__(self, ntask_max=100, slurm_args="", **kwargs): self._partitions = {} # Convert walltime and tasktime to datetime str 'H:MM:SS' - self._tasktime = str(time.timedelta(minutes=self.tasktime)) - self._walltime = str(time.timedelta(minutes=self.walltime)) + self._tasktime = str(timedelta(minutes=self.tasktime)) + self._walltime = str(timedelta(minutes=self.walltime)) def check(self): """ @@ -242,9 +243,9 @@ def check_job_status(job_id): bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", "CANCELLED"] while True: - time.sleep(5) # give job time to process and also prevent over-query + time.sleep(2) # give job time to process and also prevent over-query job_ids, states = query_job_states(job_id) - if [state == "COMPLETED" for state in states]: + if all([state == "COMPLETED" for state in states]): return 1 # Pass elif any([check in states for check in bad_states]): # Any bad states? logger.info("atleast 1 system job returned a failing exit code") diff --git a/seisflows/workflow/test_flow.py b/seisflows/workflow/test_flow.py index a03bd7ff..b7482534 100644 --- a/seisflows/workflow/test_flow.py +++ b/seisflows/workflow/test_flow.py @@ -7,6 +7,7 @@ """ import os import time +import sys from glob import glob from seisflows import logger from seisflows.tools import unix, msg @@ -108,6 +109,8 @@ def run(self): for func in self.task_list: func() + logger.info(msg.mjr("FINISHED TEST WORKFLOW")) + def test_system_print_hello_world(self): """ Use the system to run a simple print function which names the currently @@ -126,6 +129,8 @@ def _test_function(): # Run an array job self.system.run(funcs=[_test_function], single=False) + time.sleep(5) # give the system a second to catch up + # Check the results of the run log_files = glob(os.path.join(self.system.path.log_files, "*_*")) assert(len(log_files) == self.system.ntask), \ @@ -153,7 +158,7 @@ def _test_function(): time.sleep(1) print(f"Task ID {get_task_id()} waited {i} sec.") - raise Exception("intentional exception for job failure test") + sys.exit(-1) # intentional job failure # Clear the log files dir. as this is how we will check results unix.rm(self.system.path.log_files) @@ -163,7 +168,6 @@ def _test_function(): try: self.system.run(funcs=[_test_function], single=True) logger.critical("job was expected to fail but did not") - sys.exit(-1) except SystemExit: pass From 975aecd8eaca63c0742203edae068a67a757621c Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 18 Aug 2022 19:43:08 +0000 Subject: [PATCH 122/195] fixed up 'seisflows swap' command to replace a module in an existing parameter file --- seisflows/seisflows.py | 51 ++++++++++++++++----------------- seisflows/solver/specfem.py | 2 +- seisflows/system/slurm.py | 21 ++++++++++---- seisflows/workflow/test_flow.py | 1 + 4 files changed, 42 insertions(+), 33 deletions(-) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 1c78cbfe..60788047 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -565,33 +565,32 @@ def swap(self, module, classname, **kwargs): # Load in old parameter file and then move it to a hidden file ogpars = load_yaml(self._args.parameter_file) - ogpaths = Dict(ogpars.pop("PATHS")) unix.mv(self._args.parameter_file, f"_{self._args.parameter_file}") - - # Create a new parameter file with updated module - unix.cp(PAR_FILE, self._args.workdir) - for name in NAMES: - setpar(key=name, val=ogpars[name.upper()], - file=self._args.parameter_file, delim=":") - - # Overwrite with new parameters - setpar(key=module, val=classname, file=self._args.parameter_file, - delim=":") - self.configure() - for key, val in ogpars.items(): - try: - setpar(key=key, val=val, file=self._args.parameter_file, - delim=":") - except KeyError: - continue - for key, val in ogpaths.items(): - try: - setpar(key=key, val=val, file=self._args.parameter_file, - delim=":") - except KeyError: - continue - - unix.rm(f"_{self._args.parameter_file}") + try: + # Create a new parameter file with updated module + unix.cp(PAR_FILE, self._args.workdir) + for name in NAMES: + setpar(key=name, val=ogpars[name], + file=self._args.parameter_file, delim=":") + + # Overwrite with new parameters + setpar(key=module, val=classname, file=self._args.parameter_file, + delim=":") + self.configure() + + ogpars.pop(module) # don't edit the parameter were changing + for key, val in ogpars.items(): + try: + setpar(key=key, val=val, file=self._args.parameter_file, + delim=":") + except KeyError: + continue + # Replace parameter file if any errors happen + except Exception as e: + unix.mv(f"_{self._args.parameter_file}", self._args.parameter_file) + raise(e) + finally: + unix.rm(f"_{self._args.parameter_file}") def check(self, **kwargs): """ diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index b2fb0f9c..0d391cdd 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -438,8 +438,8 @@ def forward_simulation(self, executables=None, save_traces=False, """ if executables is None: executables = ["bin/xmeshfem2D", "bin/xspecfem2D"] - unix.cd(self.cwd) + unix.cd(self.cwd) setpar(key="SIMULATION_TYPE", val="1", file="DATA/Par_file") setpar(key="SAVE_FORWARD", val=".true.", file="DATA/Par_file") diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 3c5a829f..dbae9582 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -45,9 +45,6 @@ class Slurm(Cluster): Parameters ---------- - :type ntask_max: int - :param ntask_max: set the maximum number of simultaneously running array - job processes that are submitted to a cluster at one time. :type slurm_args: str :param slurm_args: Any (optional) additional SLURM arguments that will be passed to the SBATCH scripts. Should be in the form: @@ -60,7 +57,13 @@ class Slurm(Cluster): __doc__ = Cluster.__doc__ + __doc__ def __init__(self, ntask_max=100, slurm_args="", **kwargs): - """Slurm-specific setup parameters""" + """ + Slurm-specific setup parameters + + :type ntask_max: int + :param ntask_max: set the maximum number of simultaneously running array + job processes that are submitted to a cluster at one time. + """ super().__init__(**kwargs) # Overwrite the existing 'mpiexec' @@ -218,7 +221,7 @@ def run(self, funcs, single=False, **kwargs): if status == -1: # Failed job logger.critical( msg.cli(f"Stopping workflow. Please check logs for details.", - items=[f"TASKS: {[_.__name_ for _ in funcs]}", + items=[f"TASKS: {[_.__name__ for _ in funcs]}", f"SBATCH: {run_call}"], header="slurm run error", border="=") ) @@ -233,6 +236,12 @@ def check_job_status(job_id): If the job goes into a bad state like 'FAILED', log the failing job's id and their states. If all jobs complete nominally, return + .. note:: + The time.sleep() is critical before querying job status because the + system will likely take a second to intitiate jobs so if we + `query_job_states` before this has happenend, it will return empty + lists and cause the function to error out + :type job_id: str :param job_id: main job id to query, returned from the subprocess.run that ran the jobs @@ -243,7 +252,7 @@ def check_job_status(job_id): bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", "CANCELLED"] while True: - time.sleep(2) # give job time to process and also prevent over-query + time.sleep(5) # give job time to process and also prevent over-query job_ids, states = query_job_states(job_id) if all([state == "COMPLETED" for state in states]): return 1 # Pass diff --git a/seisflows/workflow/test_flow.py b/seisflows/workflow/test_flow.py index b7482534..744a10c2 100644 --- a/seisflows/workflow/test_flow.py +++ b/seisflows/workflow/test_flow.py @@ -169,6 +169,7 @@ def _test_function(): self.system.run(funcs=[_test_function], single=True) logger.critical("job was expected to fail but did not") except SystemExit: + logger.info("job failure catch was successful") pass # Check the log file for job failure From db1d4d97987f6e3c9efdd2283b0a41f7cba2bcdb Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 18 Aug 2022 20:01:09 +0000 Subject: [PATCH 123/195] updating template parameter file docstring --- seisflows/examples/parameters.yaml | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/seisflows/examples/parameters.yaml b/seisflows/examples/parameters.yaml index d637bf70..d0eed426 100644 --- a/seisflows/examples/parameters.yaml +++ b/seisflows/examples/parameters.yaml @@ -8,10 +8,12 @@ # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. # # .. rubric:: -# - To determine available options for modules listed below, run: +# - Determine available options for modules by running: # > seisflows print modules -# - To auto-fill with docstrings and default values (recommended), run: +# - Auto-fill with docstrings and default values (recommended) by running: # > seisflows configure +# - Swap out module parameters for a configured parameter file by running: +# > seisflows swap {module} {name} (e.g., seisflows swap solver specfem3d) # - To set values as NoneType, use: null # - To set values as infinity, use: inf # From 3eeb5642b4913958681903ca82ecb0ac1e9244d7 Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 18 Aug 2022 20:58:13 +0000 Subject: [PATCH 124/195] updated some docstrings to make parameter file more readable --- seisflows/examples/sfexample2d.py | 3 ++- seisflows/optimize/gradient.py | 3 ++- seisflows/solver/specfem.py | 1 + seisflows/system/slurm.py | 4 ++-- seisflows/system/workstation.py | 3 ++- seisflows/tools/config.py | 2 +- seisflows/workflow/forward.py | 8 +++++--- seisflows/workflow/inversion.py | 3 ++- 8 files changed, 17 insertions(+), 10 deletions(-) diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 2951cc8e..4ad89955 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -358,7 +358,8 @@ def main(self): f"This is a [SPECFEM2D] [WORKSTATION] example, which will " f"run an inversion to assess misfit between two homogeneous halfspace " f"models with slightly different velocities. [3 events, 1 station, 2 " - f"iterations]. The tasks involved include: ", + f"iterations]. The inversion is expected to fail after the 5th line " + f"search step count of the 2nd iteration. The tasks involved include: ", items=["1. (optional) Download, configure, compile SPECFEM2D", "2. Set up a SPECFEM2D working directory", "3. Generate starting model from Tape2007 example", diff --git a/seisflows/optimize/gradient.py b/seisflows/optimize/gradient.py index 64497521..72678143 100644 --- a/seisflows/optimize/gradient.py +++ b/seisflows/optimize/gradient.py @@ -41,7 +41,8 @@ class Gradient: """ Gradient Optimization --------------------- - Gradient/steepest descent optimization algorithm. + Defines foundational structure for Optimization module. Applies a + gradient/steepest descent optimization algorithm. Parameters ---------- diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 0d391cdd..9f562bdb 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -32,6 +32,7 @@ class Specfem: """ Solver SPECFEM -------------- + Defines foundational structure for Specfem-based solver module. Generalized SPECFEM interface to manipulate SPECFEM2D/3D/3D_GLOBE w/ Python Parameters diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index dbae9582..1fb9aa3a 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -40,8 +40,8 @@ class Slurm(Cluster): """ System Slurm ------------------ - Runs tasks in serial on a local machine. Interface for submitting jobs to - Simple Linux Utility for Resource Management (SLURM) system. + Interface for submitting and monitoring jobs on HPC systems running the + Simple Linux Utility for Resource Management (SLURM) workload manager. Parameters ---------- diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index 531316a0..c0af8830 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -16,7 +16,8 @@ class Workstation: """ Workstation System ------------------ - Runs tasks in serial on a local machine. + Defines foundational structure for System module. When used standalone, + runs tasks in serial on a local machine. Parameters ---------- diff --git a/seisflows/tools/config.py b/seisflows/tools/config.py index 6a345733..a269a408 100755 --- a/seisflows/tools/config.py +++ b/seisflows/tools/config.py @@ -154,7 +154,7 @@ def set_task_id(task_id): def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): """ Standard SeisFlows workflow setup block which runs a number of setup - tasks including: loading a user-defiend parameter file, configuring the + tasks including: loading a user-defined parameter file, configuring the package-wide logger based on user-input path to log file and desired verbosity, and instantiating all modules in a generic fashion based on user choice. Returns the 'workflow' module, which contains all other submodules diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 9a9b9def..e0f94790 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -18,8 +18,9 @@ class Forward: """ Forward Workflow ---------------- - Run forward solver in parallel and (optionally) calculate - data-synthetic misfit and adjoint sources. + Defines foundational structure for Workflow module. When used standalone + is in charge of running forward solver in parallel and (optionally) + calculating data-synthetic misfit and adjoint sources. Parameters ---------- @@ -47,7 +48,8 @@ class Forward: :type export_residuals: bool :param export_residuals: export all residuals (data-synthetic misfit) that are generated by the external solver to `path_output`. If False, - residuals stored in scratch may be discarded at any time in the workflow + residuals stored in scratch may be discarded at any time in the + workflow Paths ----- diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 069023fc..edc156cf 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -297,6 +297,7 @@ def initialize_line_search(self): direction (p_new) to recover the trial model (m_try). This model is then exposed on disk to the solver. """ + logger.info(msg.mnr("RUNNING LINE SEARCH")) logger.info(f"initializing " f"'{self.optimize.line_search_method}'ing " f"line search") @@ -410,7 +411,7 @@ def finalize_iteration(self): carried out. Contains some logic to consider whether or not to continue with a thrifty inversion. """ - logger.info(msg.mnr("CLEANING WORKDIR FOR NEXT ITERATION")) + logger.info(msg.sub("CLEANING WORKDIR FOR NEXT ITERATION")) # Export scratch files to output if requested if self.export_model: From e6a3e81871f25909f5ae799ba183a0a168f1be29 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 19 Aug 2022 15:34:44 -0500 Subject: [PATCH 125/195] slurm query job status now has an internal recursive check function incase a job is not initiated immediately. gives a ~1m buffer for the system to catch up before error'ing out --- seisflows/system/slurm.py | 22 +++++++++++++++++++++- 1 file changed, 21 insertions(+), 1 deletion(-) diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 1fb9aa3a..f72421b1 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -264,7 +264,7 @@ def check_job_status(job_id): return -1 # Fail -def query_job_states(job_id): +def query_job_states(job_id, _recheck=0): """ Queries completion status of an array job by running the SLURM cmd `sacct` Available job states are listed here: https://slurm.schedmd.com/sacct.html @@ -285,11 +285,31 @@ def query_job_states(job_id): :type job_id: str :param job_id: main job id to query, returned from the subprocess.run that ran the jobs + :type rechecks: int + :param rechecks: Used for recursive calling of the function. It can take + time for jobs to be initiated on a system, which may result in the + stdout of the 'sacct' command to be empty. In this case we wait and call + the function again. Rechecks are used to prevent endless loops by + putting a stop criteria """ job_ids, job_states = [], [] cmd = f"sacct -nLX -o jobid,state -j {job_id}" stdout = subprocess.run(cmd, stdout=subprocess.PIPE, text=True, shell=True).stdout + + # Recursively re-check job state incase the job has not been instantiated + # in which cause 'stdout' is an empty string + if not stdout: + _recheck += 1 + if _recheck > 10: + logger.critical(f"cannot access job information through '{cmd}', " + f"waited 50s with no return, please check job " + f"scheduler and log messages") + sys.exit(-1) + time.sleep(5) + query_job_states(job_id, _recheck) + + # Return the job numbers and respective states for the given job ID for job_line in str(stdout).strip().split("\n"): job_id, job_state = job_line.split() job_ids.append(job_id) From 5bfe9164ae5944f8de29bd72c6b7745bb216d643 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 19 Aug 2022 15:35:14 -0500 Subject: [PATCH 126/195] bugfix seisflows 'swap' sets NoneType as null, before they were input as strings --- seisflows/seisflows.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 60788047..37445f5d 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -580,6 +580,8 @@ def swap(self, module, classname, **kwargs): ogpars.pop(module) # don't edit the parameter were changing for key, val in ogpars.items(): + if val is None: + val = "null" try: setpar(key=key, val=val, file=self._args.parameter_file, delim=":") From d6cf1b30c4e2de38e8407ad43e4983bcca93f4f8 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 19 Aug 2022 16:07:33 -0500 Subject: [PATCH 127/195] slurm system function to evaluate job id from the subprocess.run stdout message. This was hardcoded before but Frontera did not match the expected stdout format. Frontera subclass can now get a job number from its more complicated sbatch stdout message --- seisflows/system/frontera.py | 45 ++++++++++++++++++++++++-- seisflows/system/slurm.py | 61 +++++++++++++++++++++++++++++------- 2 files changed, 92 insertions(+), 14 deletions(-) diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index f816cddc..87649c1f 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -28,7 +28,7 @@ class Frontera(Slurm): *** """ - def __init__(self, partition="small", allocation=None, **kwargs): + def __init__(self, partition="development", allocation=None, **kwargs): """Frontera init""" super().__init__(**kwargs) @@ -37,8 +37,8 @@ def __init__(self, partition="small", allocation=None, **kwargs): self.mpiexec = "ibrun" # TODO find out the cores-per-node values for these partitions - self.partitions = {"small": None, "normal": None, "large": None, - "development": None, "flex": None} + self._partitions = {"small": 28, "normal": 28, "large": 28, + "development": 28, "flex": 28} @property @@ -92,3 +92,42 @@ def run_call_header(self): if self.allocation is not None: _call = f"{_call} --allocation={self.allocation}" return _call + + def _stdout_to_job_id(stdout) + """ + The stdout message after an SBATCH job is submitted. On Frontera, the + standard message is preceded by a log message which looks like: + + ``` + ----------------------------------------------------------------- + Welcome to the Frontera Supercomputer + ----------------------------------------------------------------- + + No reservation for this job + --> Verifying valid submit host (login3)...OK + --> Verifying valid jobname...OK + --> Verifying valid ssh keys...OK + --> Verifying access to desired queue (development)...OK + --> Checking available allocation (EAR21042)...OK + --> Verifying that quota for filesystem ... is at 3.87% allocated...OK + --> Verifying that quota for filesystem ... is at 0.91% allocated...OK + 4738284 + + ``` + :type stdout: str + :param stdout: standard SBATCH response after submitting a job with the + '--parsable' flag + :rtype: str + :return: a matching job ID. We convert str->int->str to ensure that + the job id is an integer value (which it must be) + """ + job_id = stdout.split("OK")[-1].strip().split(";")[0] + try: + int(job_id) + except ValueError: + logger.critical(f"parsed job id '{job_id}' does not evaluate as an " + f"integer, please check that function " + f"`system._stdout_to_job_id()` is set correctly") + sys.exit(-1) + + return job_id diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index f72421b1..3c841c51 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -160,12 +160,45 @@ def run_call_header(self): ]) return _call + def _stdout_to_job_id(stdout) + """ + The stdout message after an SBATCH job is submitted, from which we get + the job number, differs between systems, allow this to vary + + .. note:: Examples + 1) standard example: Submitted batch job 4738244 + 2) (1) with '--parsable' flag: 4738244 + 3) federated cluster: Submitted batch job 4738244; Maui + 4) (3) with '--parsable' flag: 4738244; Maui + + This function deals with cases (2) and (4). Other systems that have more + complicated stdout messages will need to overwrite this function + + :type stdout: str + :param stdout: standard SBATCH response after submitting a job with the + '--parsable' flag + :rtype: str + :return: a matching job ID. We convert str->int->str to ensure that + the job id is an integer value (which it must be) + :raises SystemExit: if the job id does not evaluate as an integer + """ + job_id = str(stdout).split(";")[0] + try: + int(job_id) + except ValueError: + logger.critical(f"parsed job id '{job_id}' does not evaluate as an " + f"integer, please check that function " + f"`system._stdout_to_job_id()` is set correctly") + sys.exit(-1) + + return job_id + def run(self, funcs, single=False, **kwargs): """ Runs task multiple times in embarrassingly parallel fasion on a SLURM - cluster. Executes classname.method(*args, **kwargs) `NTASK` times, - each time on `NPROC` CPU cores + cluster. Executes the list of functions (`funcs`) NTASK times with each + task occupying NPROC cores. .. note:: Completely overwrites the `Cluster.run()` command @@ -210,14 +243,20 @@ def run(self, funcs, single=False, **kwargs): logger.debug(run_call) - # Stdout will be job number (e.g., 1234). Federated clusters will return - # job # and cluster name (e.g., 1234;Cluster1). We only want job # - job_id = subprocess.run(run_call, stdout=subprocess.PIPE, + # Grab the job id (used to monitor job status) from the stdout message + stdout = subprocess.run(run_call, stdout=subprocess.PIPE, text=True, shell=True).stdout - job_id = str(job_id).split(";")[0] + job_id = self._stdout_to_job_id(stdout) # Monitor the job queue until all jobs have completed, or any one fails - status = check_job_status(job_id) + try: + status = check_job_status(job_id) + except FileNotFoundError: + logger.critical(f"cannot access job information through 'sacct', " + f"waited 50s with no return, please check job " + f"scheduler and log messages") + sys.exit(-1) + if status == -1: # Failed job logger.critical( msg.cli(f"Stopping workflow. Please check logs for details.", @@ -249,6 +288,8 @@ def check_job_status(job_id): :return: status of all running jobs. 1 for pass (all jobs COMPLETED). -1 for fail (one or more jobs returned failing status) """ + logger.debug(f"checking job status for submitted job: {job_id}") + bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", "CANCELLED"] while True: @@ -291,6 +332,7 @@ def query_job_states(job_id, _recheck=0): stdout of the 'sacct' command to be empty. In this case we wait and call the function again. Rechecks are used to prevent endless loops by putting a stop criteria + :raises FileNotFoundError: if 'sacct' does not return any output for ~1 min. """ job_ids, job_states = [], [] cmd = f"sacct -nLX -o jobid,state -j {job_id}" @@ -302,10 +344,7 @@ def query_job_states(job_id, _recheck=0): if not stdout: _recheck += 1 if _recheck > 10: - logger.critical(f"cannot access job information through '{cmd}', " - f"waited 50s with no return, please check job " - f"scheduler and log messages") - sys.exit(-1) + raise FileNotFoundError time.sleep(5) query_job_states(job_id, _recheck) From 622c7b44d3d0f693cafe692cbbda83f4b4451fb8 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 19 Aug 2022 18:16:20 -0500 Subject: [PATCH 128/195] bugfix seisflows clean wasn't actually deleting files feature frontera now ssh's into login node (from compute node) before submitting sbatch script to work around compute nodes not being allowed to submit jobs --- seisflows/seisflows.py | 2 +- seisflows/system/frontera.py | 25 ++++++++++++++++++++++--- seisflows/system/slurm.py | 3 ++- 3 files changed, 25 insertions(+), 5 deletions(-) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 37445f5d..906d0e90 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -655,7 +655,7 @@ def clean(self, force=False, **kwargs): "output_log"]: path = f"path_{name}" if path in pars: - unix.rm(path) + unix.rm(pars[path]) def restart(self, force=False, **kwargs): """ diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index 87649c1f..26d6ceb8 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -2,8 +2,17 @@ """ Frontera is one of the Texas Advanced Computing Center (TACC) HPCs. https://frontera-portal.tacc.utexas.edu/ + +.. note:: + One caveat of the TACC Systems is that you cannot submit 'sbatch' from + compute nodes, which is how SeisFlows operates. To work around this, + the run call SSHs from the compute node to the login node to submit the + sbatch script. This requires knowing the User name, and that SSH keys + are available. Thanks to Ian Wang for the suggestion. """ import os +import sys +from seisflows import logger from seisflows.system.slurm import Slurm @@ -15,6 +24,10 @@ class Frontera(Slurm): Parameters ---------- + :type user: str + :param user: User's username on TACC systems. Can be determined by 'whoami' + or will be gathered from the 'USER' environment variable. Used for + internal ssh'ing from compute nodes to login nodes. :type partition: str :param partition: Chinook has various partitions which each have their own number of cores per compute node. Available are: small, normal, @@ -28,15 +41,18 @@ class Frontera(Slurm): *** """ - def __init__(self, partition="development", allocation=None, **kwargs): + def __init__(self, user=None, partition="development", allocation=None, + **kwargs): """Frontera init""" super().__init__(**kwargs) + self.user = user or os.environ["USER"] # alt. getpass.getuser() self.partition = partition self.allocation = allocation self.mpiexec = "ibrun" - # TODO find out the cores-per-node values for these partitions + # See note in file docstring for why we need this SSH call + self._ssh_call = f"ssh {self.user}@frontera.tacc.utexas.edu" self._partitions = {"small": 28, "normal": 28, "large": 28, "development": 28, "flex": 28} @@ -53,6 +69,7 @@ def submit_call_header(self): :return: the system-dependent portion of a submit call """ _call = " ".join([ + f"{self._ssh_call}", f"sbatch", f"--job-name={self.title}", # -J f"--partition={self.partition}", # -p @@ -78,6 +95,7 @@ def run_call_header(self): :return: the system-dependent portion of a run call """ _call = " ".join([ + f"{self._ssh_call}", f"sbatch", f"{self.slurm_args or ''}", f"--job-name={self.title}", @@ -93,7 +111,8 @@ def run_call_header(self): _call = f"{_call} --allocation={self.allocation}" return _call - def _stdout_to_job_id(stdout) + @staticmethod + def _stdout_to_job_id(stdout): """ The stdout message after an SBATCH job is submitted. On Frontera, the standard message is preceded by a log message which looks like: diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 3c841c51..08d01342 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -160,7 +160,8 @@ def run_call_header(self): ]) return _call - def _stdout_to_job_id(stdout) + @staticmethod + def _stdout_to_job_id(stdout): """ The stdout message after an SBATCH job is submitted, from which we get the job number, differs between systems, allow this to vary From 058ff4cdf9dd305fade23251e36868c2be0921f6 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 19 Aug 2022 19:00:34 -0500 Subject: [PATCH 129/195] frontera added more checks for partition and forced partition choices because some of frontera's partitions only allow 1 job per user, which does not work with seisflows --- seisflows/system/frontera.py | 44 +++++++++++++++++++++++++++++++----- seisflows/system/slurm.py | 2 +- 2 files changed, 39 insertions(+), 7 deletions(-) diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index 26d6ceb8..8ad1f015 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -3,12 +3,17 @@ Frontera is one of the Texas Advanced Computing Center (TACC) HPCs. https://frontera-portal.tacc.utexas.edu/ -.. note:: - One caveat of the TACC Systems is that you cannot submit 'sbatch' from +.. note:: Caveat 1 + On TACC Systems is that you cannot submit 'sbatch' from compute nodes, which is how SeisFlows operates. To work around this, the run call SSHs from the compute node to the login node to submit the sbatch script. This requires knowing the User name, and that SSH keys are available. Thanks to Ian Wang for the suggestion. + +.. note:: Caveat 2 + TACC does not allow the '--array' option, which SeisFlows used to submit + multiple jobs in a single SBATCH command. To work around this, the Frontera + module submits jobs one by one. """ import os import sys @@ -53,9 +58,37 @@ def __init__(self, user=None, partition="development", allocation=None, # See note in file docstring for why we need this SSH call self._ssh_call = f"ssh {self.user}@frontera.tacc.utexas.edu" - self._partitions = {"small": 28, "normal": 28, "large": 28, - "development": 28, "flex": 28} + # Internally used check parameters. Because 'development' and 'large' + # partitions do not allow >1 job per user, we cannot use them + self._acceptable_partitions = ["small", "normal", "flex"] + self._partitions = {"small": 28, "normal": 28, "large": 28, "flex": 28, + "development": 28} + self._max_jobs = {"small": 20, "large": 1, "normal": 100, "flex": 15, + "development": 1} + + # Hard set `ntask_max` based on TACCS 'QOSMaxJobsPerUserLimit' + self.ntask_max = self._max_jobs[self.partition] + + def check(self): + """ + Checks parameters and paths + """ + super().check() + + assert(self.partition in self._acceptable_partitions), \ + f"Frontera `partition` must be in {self._acceptable_partitions}" + + assert(self._max_jobs[self.partition] > 1), ( + f"Frontera partition '{self.partition}' does not allow more than 1 " + f"simultaneously running job, meaning SeisFlows will not work. " + f"please choose a different partition" + ) + + if self.tasktime > 60 and self.partition == "flex": + logger.warning("Frontera's 'Flex' partition may cancel jobs that " + "exceed 60 minute wall time. Consider choosing a " + "different partition if this may be a problem") @property def submit_call_header(self): @@ -69,7 +102,6 @@ def submit_call_header(self): :return: the system-dependent portion of a submit call """ _call = " ".join([ - f"{self._ssh_call}", f"sbatch", f"--job-name={self.title}", # -J f"--partition={self.partition}", # -p @@ -103,7 +135,7 @@ def run_call_header(self): f"--output={os.path.join(self.path.log_files, '%A_%a')}", f"--ntasks={self.nproc:d}", f"--nodes={self.nodes}", - f"--array=0-{self.ntask - 1 % self.ntask_max}", + # f"--array=0-{self.ntask - 1 % self.ntask_max}", f"--time={self._tasktime}", f"--parsable" ]) diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 08d01342..4c11a1ac 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -289,7 +289,7 @@ def check_job_status(job_id): :return: status of all running jobs. 1 for pass (all jobs COMPLETED). -1 for fail (one or more jobs returned failing status) """ - logger.debug(f"checking job status for submitted job: {job_id}") + logger.debug(f"monitoring job status for submitted job: {job_id}") bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", "CANCELLED"] From 27b1f035c00d0fc33231a8d5a183cff82cba56f1 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 19 Aug 2022 19:30:04 -0500 Subject: [PATCH 130/195] testflow slightly working on frontera with ssh option, need to find work around for frontera now allowing array job submission --- seisflows/system/frontera.py | 14 +++++++++++--- seisflows/system/slurm.py | 3 ++- seisflows/workflow/test_flow.py | 2 +- 3 files changed, 14 insertions(+), 5 deletions(-) diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index 8ad1f015..e4298355 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -33,6 +33,12 @@ class Frontera(Slurm): :param user: User's username on TACC systems. Can be determined by 'whoami' or will be gathered from the 'USER' environment variable. Used for internal ssh'ing from compute nodes to login nodes. + :type conda_env: str + :param conda_env: name of the Conda environment in which you are running + SeisFlows. Defaults to environment variable 'CONDA_DEFAULT_ENV'. Used + to activate the conda environment AFTER ssh'ing from compute to login + node, to ensure that the newly submitted job has access to the SeisFlows + environment :type partition: str :param partition: Chinook has various partitions which each have their own number of cores per compute node. Available are: small, normal, @@ -46,18 +52,20 @@ class Frontera(Slurm): *** """ - def __init__(self, user=None, partition="development", allocation=None, - **kwargs): + def __init__(self, user=None, conda_env=None, partition="development", + allocation=None, **kwargs): """Frontera init""" super().__init__(**kwargs) self.user = user or os.environ["USER"] # alt. getpass.getuser() + self.conda_env = conda_env or os.environ["CONDA_DEFAULT_ENV"] self.partition = partition self.allocation = allocation self.mpiexec = "ibrun" # See note in file docstring for why we need this SSH call - self._ssh_call = f"ssh {self.user}@frontera.tacc.utexas.edu" + self._ssh_call = (f"ssh {self.user}@frontera.tacc.utexas.edu " + f"'conda activate {self.conda_env}; ") # Internally used check parameters. Because 'development' and 'large' # partitions do not allow >1 job per user, we cannot use them diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index 4c11a1ac..d64bcca6 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -231,7 +231,8 @@ def run(self, funcs, single=False, **kwargs): f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", f"--funcs {funcs_fid}", f"--kwargs {kwargs_fid}", - f"--environment {self.environs or ''}" + f"--environment {self.environs or ''}'" + # f"--environment {self.environs or ''}" ]) # Single-process jobs simply need to replace a few sbatch arguments. diff --git a/seisflows/workflow/test_flow.py b/seisflows/workflow/test_flow.py index 744a10c2..0da33c51 100644 --- a/seisflows/workflow/test_flow.py +++ b/seisflows/workflow/test_flow.py @@ -93,7 +93,7 @@ def setup(self): # Force some internal module variables to keep testing lightweight logger.info("overwriting internal System parameters from given values") - self.system.ntask = 3 + self.system.ntask = 1 self.system.nproc = 1 self.system.tasktime = .25 # 15 seconds self.system.walltime = 2.5 # 2.5 minutes From 07d198133bed311576124333bde1b0880595b43d Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 19 Aug 2022 20:33:00 -0500 Subject: [PATCH 131/195] Frontera module now defines its own run() function which side-steps the fact that Frontera does not allow the '--array' option. Instead we submit jobs one by one, each job must ssh into the login node, activate the conda environment, and sbatch a job. Also had to restructure the job monitoring system since we are no longer looking at a single array job, but a list of unique job ids. --- seisflows/system/frontera.py | 117 +++++++++++++++++++++++++++----- seisflows/system/slurm.py | 109 +++++++++++++++++++---------- seisflows/workflow/test_flow.py | 2 +- 3 files changed, 174 insertions(+), 54 deletions(-) diff --git a/seisflows/system/frontera.py b/seisflows/system/frontera.py index e4298355..2e9682e1 100644 --- a/seisflows/system/frontera.py +++ b/seisflows/system/frontera.py @@ -3,22 +3,29 @@ Frontera is one of the Texas Advanced Computing Center (TACC) HPCs. https://frontera-portal.tacc.utexas.edu/ -.. note:: Caveat 1 - On TACC Systems is that you cannot submit 'sbatch' from - compute nodes, which is how SeisFlows operates. To work around this, - the run call SSHs from the compute node to the login node to submit the - sbatch script. This requires knowing the User name, and that SSH keys - are available. Thanks to Ian Wang for the suggestion. - -.. note:: Caveat 2 - TACC does not allow the '--array' option, which SeisFlows used to submit +.. note:: Frontera Caveat 1 + On TACC Systems you cannot submit 'sbatch' from compute nodes. Work around: + SSHs from compute node to login node, activate conda environemtn, submit + sbatch script. This requires knowing the User name, conda environment name, + and ensuring SSH keys are available. Thanks to Ian Wang for the suggestion + to SSH around the problem. + + Essentially we are running, from the compute node: + $ ssh user@hostname 'conda activate env; sbatch --arg=val run_function.sh' + +.. note:: Frontera Caveat 2 + TACC does not allow the '--array' option, which SeisFlows uses to submit multiple jobs in a single SBATCH command. To work around this, the Frontera module submits jobs one by one. """ import os import sys -from seisflows import logger -from seisflows.system.slurm import Slurm +import subprocess +from seisflows import ROOT_DIR, logger +from seisflows.tools import msg +from seisflows.tools.config import pickle_function_list +from seisflows.system.slurm import (Slurm, query_job_states, BAD_STATES, + check_job_status_list) class Frontera(Slurm): @@ -63,9 +70,9 @@ def __init__(self, user=None, conda_env=None, partition="development", self.allocation = allocation self.mpiexec = "ibrun" - # See note in file docstring for why we need this SSH call - self._ssh_call = (f"ssh {self.user}@frontera.tacc.utexas.edu " - f"'conda activate {self.conda_env}; ") + # See 'Frontera Caveat 1' note for why we need these calls + self._ssh_call = f"ssh {self.user}@frontera.tacc.utexas.edu" + self._conda_activate = f"conda activate {self.conda_env}" # Internally used check parameters. Because 'development' and 'large' # partitions do not allow >1 job per user, we cannot use them @@ -135,15 +142,13 @@ def run_call_header(self): :return: the system-dependent portion of a run call """ _call = " ".join([ - f"{self._ssh_call}", f"sbatch", f"{self.slurm_args or ''}", f"--job-name={self.title}", f"--partition={self.partition}", - f"--output={os.path.join(self.path.log_files, '%A_%a')}", + f"--output={os.path.join(self.path.log_files, '%A')}", f"--ntasks={self.nproc:d}", f"--nodes={self.nodes}", - # f"--array=0-{self.ntask - 1 % self.ntask_max}", f"--time={self._tasktime}", f"--parsable" ]) @@ -190,3 +195,81 @@ def _stdout_to_job_id(stdout): sys.exit(-1) return job_id + + def run(self, funcs, single=False, **kwargs): + """ + Runs task multiple times in embarrassingly parallel fasion on Frontera. + Executes the list of functions (`funcs`) NTASK times with each + task occupying NPROC cores. + + .. note:: + Completely overwrites the `Slurm.run()` command + + TODO + * can we ssh once or do we have to do it for each process? + * the ssh command prints the ssh prompt to the log file, how do + we supress that? + + :type funcs: list of methods + :param funcs: a list of functions that should be run in order. All + kwargs passed to run() will be passed into the functions. + :type single: bool + :param single: run a single-process, non-parallel task, such as + smoothing the gradient, which only needs to be run by once. + This will change how the job array and the number of tasks is + defined, such that the job is submitted as a single-core job to + the system. + """ + funcs_fid, kwargs_fid = pickle_function_list(funcs, + path=self.path.scratch, + **kwargs) + if single: + logger.info(f"running functions {[_.__name__ for _ in funcs]} on " + f"system 1 time") + _ntask = 1 + else: + logger.info(f"running functions {[_.__name__ for _ in funcs]} on " + f"system {self.ntask} times") + _ntask = self.ntask + + # Run call is slightly different for Frontera, which needs ssh and + # cannot run array jobs + job_ids = [] + for taskid in range(_ntask): + run_call = " ".join([ + f"{self.run_call_header}", + f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", + f"--funcs {funcs_fid}", + f"--kwargs {kwargs_fid}", + f"--environment {self.environs or ''},SEISFLOWS_TASKID={taskid}" + ]) + # Need to wrap run call in quotes so it can go through ssh + run_call = f"{self._ssh_call} '{self._conda_activate}; {run_call}'" + if taskid == 0: + logger.debug(run_call) + + stdout = subprocess.run(run_call, stdout=subprocess.PIPE, + text=True, shell=True).stdout + job_ids.append(self._stdout_to_job_id(stdout)) + + # Monitor the job queue until all jobs have completed, or any one fails + try: + status = check_job_status_list(job_ids) + except FileNotFoundError: + logger.critical(f"cannot access job information through 'sacct', " + f"waited 50s with no return, please check job " + f"scheduler and log messages") + sys.exit(-1) + + if status == -1: # Failed job + logger.critical( + msg.cli(f"Stopping workflow. Please check logs for details.", + items=[f"TASKS: {[_.__name__ for _ in funcs]}", + f"SBATCH: {run_call}"], + header="slurm run error", border="=") + ) + sys.exit(-1) + else: + logger.info(f"{self.ntask} tasks finished successfully") + + diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index d64bcca6..ddb1a883 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -36,6 +36,10 @@ from seisflows.tools.config import pickle_function_list +# Define bad states defined by SLURM which signifiy failed jobs +BAD_STATES = ["TIMEOUT", "FAILED", "NODE_FAIL", "OUT_OF_MEMORY", "CANCELLED"] + + class Slurm(Cluster): """ System Slurm @@ -194,6 +198,32 @@ def _stdout_to_job_id(stdout): return job_id + @staticmethod + def _modify_run_call_single_proc(run_call): + """ + Modifies a SLURM SBATCH command to use only 1 processor as a single run + by replacing the --array and --ntasks options + + :type run_call: str + :param run_call: The SBATCH command to modify + :rtype: str + :return: a modified SBATCH command that should only run on 1 processor + """ + for part in run_call.split(" "): + if "--array" in part: + run_call = run_call.replace(part, "--array=0-0") + elif "--ntasks" in part: + run_call = run_call.replace(part, "--ntasks=1") + + # Append taskid to environment variable, deal with the case where + # self.par.ENVIRONS is an empty string + task_id_str = "SEISFLOWS_TASKID=0" + if not run_call.strip().endswith("--environment"): + task_id_str = f",{task_id_str}" # appending to the list of vars + + run_call += task_id_str + + return run_call def run(self, funcs, single=False, **kwargs): """ @@ -231,8 +261,7 @@ def run(self, funcs, single=False, **kwargs): f"{os.path.join(ROOT_DIR, 'system', 'runscripts', 'run')}", f"--funcs {funcs_fid}", f"--kwargs {kwargs_fid}", - f"--environment {self.environs or ''}'" - # f"--environment {self.environs or ''}" + f"--environment {self.environs or ''}" ]) # Single-process jobs simply need to replace a few sbatch arguments. @@ -241,7 +270,7 @@ def run(self, funcs, single=False, **kwargs): if single: logger.info("replacing parts of sbatch run call for single " "process job") - run_call = _modify_run_call_single_proc(run_call) + run_call = self._modify_run_call_single_proc(run_call) logger.debug(run_call) @@ -252,7 +281,7 @@ def run(self, funcs, single=False, **kwargs): # Monitor the job queue until all jobs have completed, or any one fails try: - status = check_job_status(job_id) + status = check_job_status_array(job_id) except FileNotFoundError: logger.critical(f"cannot access job information through 'sacct', " f"waited 50s with no return, please check job " @@ -271,7 +300,7 @@ def run(self, funcs, single=False, **kwargs): logger.info(f"task {job_id} finished successfully") -def check_job_status(job_id): +def check_job_status_array(job_id): """ Repeatedly check the status of a currently running job using 'sacct'. If the job goes into a bad state like 'FAILED', log the failing @@ -289,23 +318,56 @@ def check_job_status(job_id): :rtype: int :return: status of all running jobs. 1 for pass (all jobs COMPLETED). -1 for fail (one or more jobs returned failing status) + :raises FileNotFoundError: if 'sacct' does not return any output for ~1 min. """ - logger.debug(f"monitoring job status for submitted job: {job_id}") - - bad_states = ["TIMEOUT", "FAILED", "NODE_FAIL", - "OUT_OF_MEMORY", "CANCELLED"] + logger.info(f"monitoring job status for submitted job: {job_id}") while True: time.sleep(5) # give job time to process and also prevent over-query job_ids, states = query_job_states(job_id) if all([state == "COMPLETED" for state in states]): return 1 # Pass - elif any([check in states for check in bad_states]): # Any bad states? + elif any([check in states for check in BAD_STATES]): # Any bad states? logger.info("atleast 1 system job returned a failing exit code") for job_id, state in zip(job_ids, states): - if state in bad_states: + if state in BAD_STATES: logger.debug(f"{job_id}: {state}") return -1 # Fail +def check_job_status_list(job_ids): + """ + Check the status of a list of currently running jobs. This is used for + systems that cannot submit array jobs (e.g., Frontera) where we instead + submit jobs one by one and have to check the status of all those jobs + together. + + :type job_ids: list of str + :param job_id: job ID's to query with SACCT. Will be considered one group + of jobs, who all need to finish successfully otherwise the entire group + is considered failed + :rtype: int + :return: status of all running jobs. 1 for pass (all jobs COMPLETED). -1 for + fail (one or more jobs returned failing status) + :raises FileNotFoundError: if 'sacct' does not return any output for ~1 min. + """ + logger.info(f"monitoring job status for {len(job_ids)} submitted jobs") + logger.debug(job_ids) + + while True: + time.sleep(5) + job_id_list, states = [], [] + for job_id in job_ids: + _job_ids, _states = query_job_states(job_id) + job_id_list += _job_ids + states += _states + if all([state == "COMPLETED" for state in states]): + return 1 # Pass + elif any([check in states for check in BAD_STATES]): # Any bad states? + logger.info("atleast 1 system job returned a failing exit code") + for job_id, state in zip(job_ids, states): + if state in BAD_STATES: + logger.debug(f"{job_id}: {state}") + return -1 # Fail + def query_job_states(job_id, _recheck=0): """ @@ -359,29 +421,4 @@ def query_job_states(job_id, _recheck=0): return job_ids, job_states -def _modify_run_call_single_proc(run_call): - """ - Modifies a SLURM SBATCH command to use only 1 processor as a single run - by replacing the --array and --ntasks options - - :type run_call: str - :param run_call: The SBATCH command to modify - :rtype: str - :return: a modified SBATCH command that should only run on 1 processor - """ - for part in run_call.split(" "): - if "--array" in part: - run_call = run_call.replace(part, "--array=0-0") - elif "--ntasks" in part: - run_call = run_call.replace(part, "--ntasks=1") - - # Append taskid to environment variable, deal with the case where - # self.par.ENVIRONS is an empty string - task_id_str = "SEISFLOWS_TASKID=0" - if not run_call.strip().endswith("--environment"): - task_id_str = f",{task_id_str}" # appending to the list of vars - - run_call += task_id_str - - return run_call diff --git a/seisflows/workflow/test_flow.py b/seisflows/workflow/test_flow.py index 0da33c51..744a10c2 100644 --- a/seisflows/workflow/test_flow.py +++ b/seisflows/workflow/test_flow.py @@ -93,7 +93,7 @@ def setup(self): # Force some internal module variables to keep testing lightweight logger.info("overwriting internal System parameters from given values") - self.system.ntask = 1 + self.system.ntask = 3 self.system.nproc = 1 self.system.tasktime = .25 # 15 seconds self.system.walltime = 2.5 # 2.5 minutes From ccf0bc02f87a9730c212e34b9fcb9913b0b87ba8 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 22 Aug 2022 16:00:56 -0800 Subject: [PATCH 132/195] re-instantes logging to stream (stdout) but turns off stream logging on clusters (#128) --- .../system/runscripts/submit_workflow.py | 3 ++- seisflows/tools/config.py | 19 ++++++++++++------- 2 files changed, 14 insertions(+), 8 deletions(-) diff --git a/seisflows/system/runscripts/submit_workflow.py b/seisflows/system/runscripts/submit_workflow.py index 3bb85c47..ecb8210d 100644 --- a/seisflows/system/runscripts/submit_workflow.py +++ b/seisflows/system/runscripts/submit_workflow.py @@ -40,7 +40,8 @@ def parse_args(): """ args = parse_args() workflow = import_seisflows(workdir=args.workdir, - parameter_file=args.parameter_file) + parameter_file=args.parameter_file, + stream_handler=False) workflow.check() workflow.setup() workflow.run() diff --git a/seisflows/tools/config.py b/seisflows/tools/config.py index a269a408..c7a7c0a6 100755 --- a/seisflows/tools/config.py +++ b/seisflows/tools/config.py @@ -151,7 +151,8 @@ def set_task_id(task_id): os.environ["SEISFLOWS_TASKID"] = str(task_id) -def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): +def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml", + **kwargs): """ Standard SeisFlows workflow setup block which runs a number of setup tasks including: loading a user-defined parameter file, configuring the @@ -176,7 +177,7 @@ def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): parameters = load_yaml(os.path.join(workdir, parameter_file)) config_logger(level=parameters.log_level, filename=parameters.path_output_log, - verbose=parameters.verbose) + verbose=parameters.verbose, **kwargs) # Instantiate SeisFlows modules dynamically based on choices and parameters # provided in the input parameter file @@ -194,7 +195,8 @@ def import_seisflows(workdir=os.getcwd(), parameter_file="parameters.yaml"): return workflow -def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): +def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True, + stream_handler=True): """ Explicitely configure the logging module with some parameters defined by the user in the System module. Instantiates a stream logger to write @@ -238,10 +240,13 @@ def config_logger(level="DEBUG", filename=None, filemode="a", verbose=True): logger.setLevel(level) formatter = logging.Formatter(fmt_str, datefmt="%Y-%m-%d %H:%M:%S") - # Stream handler to print log statements to stdout - # st_handler = logging.StreamHandler(sys.stdout) - # st_handler.setFormatter(formatter) - # logger.addHandler(st_handler) + # Stream handler to print log statements to stdout. Sometimes we don't want + # this, e.g., on an HPC system having both stream and file will print + # double log messages to your log file + if stream_handler: + st_handler = logging.StreamHandler(sys.stdout) + st_handler.setFormatter(formatter) + logger.addHandler(st_handler) # File handler to print log statements to text file `filename` if filename is not None: From f6845ba778ed7d98ee10009874913315a85831c5 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 22 Aug 2022 18:32:35 -0800 Subject: [PATCH 133/195] updating 2D examples so that the 'specfem2d' directory can be input from the command line rather than via an input() statement. (#129) --- ...pecfem2d_workstation_inversion_w_pyatoa.py | 14 +++-- seisflows/examples/sfexample2d.py | 21 ++++---- seisflows/seisflows.py | 52 +++++++++---------- 3 files changed, 46 insertions(+), 41 deletions(-) diff --git a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py index f5bd3b51..04f728ed 100644 --- a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py @@ -26,7 +26,7 @@ class SFPyatoaEx2D(SFExample2D): advantage of the default SPECFEM2D stuff, onyl changes the generation of MODEL TRUE, the number of stations, and the setup of the parameter file. """ - def __init__(self, ntask=2, niter=2, nsta=5): + def __init__(self, ntask=2, niter=2, nsta=5, specfem2d_repo=None): """ Overload init and attempt to import Pyatoa before running example, overload the default number of tasks to 2, and add a new init parameter @@ -40,8 +40,13 @@ def __init__(self, ntask=2, niter=2, nsta=5): :type nsta: int :param nsta: number of stations to include in inversion, between 1 and 131 + :type specfem2d_repo: str + :param specfem2d_repo: path to the SPECFEM2D directory which should + contain binary executables. If not given, SPECFEM2D will be + downloaded configured and compiled automatically. """ - super().__init__(ntask=ntask, niter=niter) + super().__init__(ntask=ntask, niter=niter, + specfem2d_repo=specfem2d_repo) self.nsta = nsta # -1 because it represents index but we need to talk in terms of count assert(1 <= self.nsta <= 131), \ @@ -154,5 +159,6 @@ def finalize_specfem2d_par_file(self): # use argparser here because we're being called by SeisFlows CLI tool which # is occupying argparser if len(sys.argv) > 1: - sfex2d = SFPyatoaEx2D() - sfex2d.main() + _, _, specfem2d_repo = sys.argv + sfex2d = SFPyatoaEx2D(specfem2d_repo=specfem2d_repo) + sfex2d.main() \ No newline at end of file diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 4ad89955..c37a7d29 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -44,7 +44,7 @@ class SFExample2D: A class for running SeisFlows examples. Simplifies calls structure so that multiple example runs can benefit from the code written here """ - def __init__(self, ntask=3, niter=2): + def __init__(self, ntask=3, niter=2, specfem2d_repo=None): """ Set path structure which is used to navigate around SPECFEM repositories and the example working directory @@ -54,14 +54,11 @@ def __init__(self, ntask=3, niter=2): defaults to 3 :type niter: int :param niter: number of iterations to run. defaults to 2 + :type specfem2d_repo: str + :param specfem2d_repo: path to the SPECFEM2D directory which should + contain binary executables. If not given, SPECFEM2D will be + downloaded configured and compiled automatically. """ - specfem2d_repo = input( - msg.cli("If you have already downloaded SPECMFE2D, please input " - "the full path to the repo. If left blank, this example " - "will pull the latest version from GitHub and attempt " - "to configure and make the binaries:\n> ") - ) - self.cwd = os.getcwd() self.sem2d_paths, self.workdir_paths = self.define_dir_structures( cwd=self.cwd, specfem2d_repo=specfem2d_repo @@ -365,14 +362,16 @@ def main(self): "3. Generate starting model from Tape2007 example", "4. Generate target model w/ perturbed starting model", "5. Set up a SeisFlows working directory", - f"6. Run an inversion workflow"], + "6. Run an inversion workflow"], header="seisflows example 1", border="=") ) # Dynamically traverse sys.argv to get user-input command line. Cannot # use argparser here because we're being called by SeisFlows CLI tool which - # is occupying argparser + # is occupying argparser. Call looks something like: + # $ python /path/to/example.py run path/to/specfem2d if len(sys.argv) > 1: - sfex2d = SFExample2D() + _, _, specfem2d_repo = sys.argv + sfex2d = SFExample2D(specfem2d_repo=specfem2d_repo) sfex2d.main() diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 906d0e90..48288ecf 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -286,6 +286,15 @@ def _format_action(self, action): help="Run your choice of example problem") examples.add_argument("choice", type=str, nargs="?", default=None, help="Name of the specific example problem to run") + examples.add_argument("-r", "--specfem2d_repo", type=str, nargs="?", + default=None, + help= "path to the SPECFEM2D directory which should " + "contain binary executables. If not given, " + "assumes directory is called 'specfem2d/' in " + "the current working directory. If that dir " + "is not found, SPECFEM2D will be downloaded, " + "configured and compiled automatically in the " + "current working directory.") # ========================================================================= # Defines all arguments/functions that expect a sub-argument subparser_dict = {"check": check, "par": par, "inspect": inspect, @@ -851,7 +860,7 @@ def par(self, parameter, value=None, skip_print=False, **kwargs): if not skip_print: print(msg.cli(f"{key}: {cur_val} -> {value}")) - def examples(self, run=None, choice=None, **kwargs): + def examples(self, run=None, choice=None, specfem2d_repo=None, **kwargs): """ List or run a SeisFlows example problem @@ -872,7 +881,12 @@ def examples(self, run=None, choice=None, **kwargs): :type choice: str :param choice: The choice of example, must match the given tag or file name that is assigned to it + :type specfem2d_repo: str + :param specfem2d_repo: path to the SPECFEM2D directory which should + contain binary executables. If not given, SPECFEM2D will be + downloaded configured and compiled automatically. """ + # Gather all the available examples in the repository examples_dir = os.path.join(ROOT_DIR, "examples") examples_list = [] example_names = sorted(glob(os.path.join(examples_dir, "ex*.py"))) @@ -890,7 +904,7 @@ def examples(self, run=None, choice=None, **kwargs): # Case 2: seisflows examples run 1 OR seisflows examples run ex1_... elif run in ["run", "setup"]: arg1 = choice - arg2 = f" {run}" # space so that we do $ python ex.py run + arg2 = f"{run}" # space so that we do $ python ex.py run if arg1: # Allow for matching against index (int) and name (str) try: @@ -902,8 +916,16 @@ def examples(self, run=None, choice=None, **kwargs): j, exname, fid = ex_tup if arg1 in [j, exname]: print(f"{run.capitalize()} example: {exname}") - subprocess.run(f"python {fid}{arg2}", shell=True, - check=False) + # Set default value for SPECFEM2D repository and make + # sure paths are fully expanded to avoid any pathing error + if specfem2d_repo is None: + specfem2d_repo = os.path.join(os.getcwd(), "specfem2d") + specfem2d_repo = os.path.expanduser( + os.path.abspath(specfem2d_repo) + ) + # $ python /path/to/example.py run path/to/specfem2d + subprocess.run(f"python {fid} {arg2} {specfem2d_repo}", + shell=True, check=False) return # Default behavior is to just print this help dialogue @@ -920,28 +942,6 @@ def examples(self, run=None, choice=None, **kwargs): )) print(msg.cli(items=items)) - # def check(self, choice=None, **kwargs): - # """ - # Check parameters, state or values of an active SeisFlows environment. - # Type 'seisflows check --help' for a detailed help message. - # - # :type choice: str - # :param choice: underlying sub-function to choose - # """ - # acceptable_args = {"model": self._check_model_parameters, - # "iter": self._check_current_iteration, - # "src": self._check_source_names, - # "isrc": self._check_source_index} - # - # # Ensure that help message is thrown for empty commands - # if choice not in acceptable_args.keys(): - # self._subparser.print_help() - # sys.exit(0) - # - # self._register_parameters() - # self._load_modules() - # acceptable_args[choice](*self._args.args, **kwargs) - def print(self, choice=None, **kwargs): """ Print information relating to an active SeisFlows environment. From f510a1a73e563602e7cc797f51a92271025b0d94 Mon Sep 17 00:00:00 2001 From: bch0w Date: Mon, 22 Aug 2022 18:39:25 -0800 Subject: [PATCH 134/195] bugfix seisflows examples print statement was trying to evaluate the example problem --- .../examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py | 2 +- seisflows/examples/sfexample2d.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py index 04f728ed..ea852341 100644 --- a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py @@ -158,7 +158,7 @@ def finalize_specfem2d_par_file(self): # Dynamically traverse sys.argv to get user-input command line. Cannot # use argparser here because we're being called by SeisFlows CLI tool which # is occupying argparser - if len(sys.argv) > 1: + if len(sys.argv) > 2: _, _, specfem2d_repo = sys.argv sfex2d = SFPyatoaEx2D(specfem2d_repo=specfem2d_repo) sfex2d.main() \ No newline at end of file diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index c37a7d29..2d22829d 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -371,7 +371,7 @@ def main(self): # use argparser here because we're being called by SeisFlows CLI tool which # is occupying argparser. Call looks something like: # $ python /path/to/example.py run path/to/specfem2d - if len(sys.argv) > 1: + if len(sys.argv) > 2: _, _, specfem2d_repo = sys.argv sfex2d = SFExample2D(specfem2d_repo=specfem2d_repo) sfex2d.main() From 48817dd53ada1014ac8b9002528bc0676e8a3a9f Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 23 Aug 2022 14:57:24 -0800 Subject: [PATCH 135/195] editing install requirements and pinning deps that werent previously pinned (#130) --- environment.yml | 8 -------- requirements.txt | 5 ++++- setup.py | 11 ++++++----- 3 files changed, 10 insertions(+), 14 deletions(-) delete mode 100644 environment.yml diff --git a/environment.yml b/environment.yml deleted file mode 100644 index 423f2e00..00000000 --- a/environment.yml +++ /dev/null @@ -1,8 +0,0 @@ -name: seisflows -channels: - - conda-forge -dependencies: - - python=3.10 - - obspy>=1.2.2 - - pyyaml>=5.3.1 - - IPython>=7.31.1 diff --git a/requirements.txt b/requirements.txt index 9299cf23..21116deb 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,6 @@ -obspy>=1.2.2 +obspy>=1.3.0 pyyaml>=5.3.1 +scipy>=1.8.0,<1.9.0 # scipy/obspy hanning window rename error IPython>=7.31.1 +dill>=0.3.5.1 +pytest>=7.1.2 diff --git a/setup.py b/setup.py index cee8ca75..9bbb3f84 100644 --- a/setup.py +++ b/setup.py @@ -1,18 +1,19 @@ from setuptools import setup, find_packages setup(name="seisflows", - version="1.0.0", - description="SeisFlows3: A seismic inversion package", - url="https://github.com/seisflows/seisflows", + version="2.0.0", + description="SeisFlows: A seismic inversion package", + url="https://github.com/adjtomo/seisflows", author="Seisflows Development Team", packages=find_packages(), entry_points={ "console_scripts": ["seisflows=seisflows.seisflows:main",]}, license="GPL", install_requires=[ - "obspy>=1.2.2", + "obspy>=1.3.0", "pyyaml>=5.3.1", - "IPython>=7.31.1" + "IPython>=7.31.1", + "dill>=0.3.5.1", ], zip_save=False ) From bd262ae4e41d0bd4cb6d3abb530fe771626e2857 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 23 Aug 2022 15:05:21 -0800 Subject: [PATCH 136/195] remove template parameter file (#131) * seisflows setup now writes template parameter file from a string within the package rather than copying a file from the source directory * removing old test data * fixing tests after removing example parameter file --- seisflows/examples/parameters.yaml | 32 - seisflows/examples/sfexample2d.py | 2 +- seisflows/seisflows.py | 25 +- .../old_test_solver/001/DATA/CMTSOLUTION_001 | 13 - .../old_test_solver/001/DATA/CMTSOLUTION_002 | 13 - .../old_test_solver/001/DATA/CMTSOLUTION_003 | 13 - .../old_test_solver/001/DATA/CMTSOLUTION_004 | 13 - .../old_test_solver/001/DATA/CMTSOLUTION_005 | 13 - .../old_test_solver/001/DATA/CMTSOLUTION_006 | 13 - .../hold/old_test_solver/001/DATA/Par_file | 1 - .../hold/old_test_solver/001/DATA/STATIONS | 2 - .../hold/old_test_solver/001/bin/xcombine_sem | 3 - .../hold/old_test_solver/001/bin/xmeshfem2D | 2 - .../hold/old_test_solver/001/bin/xsmooth_sem | 3 - .../hold/old_test_solver/001/bin/xspecfem2D | 3 - .../001/traces/obs/AA.S0001.BXY.semd | 5000 ----------------- .../001/traces/obs/AA.S0002.BXY.semd | 5000 ----------------- .../001/traces/syn/AA.S0001.BXY.semd | 5000 ----------------- .../001/traces/syn/AA.S0002.BXY.semd | 5000 ----------------- .../old_test_solver/002/DATA/CMTSOLUTION_001 | 13 - .../old_test_solver/002/DATA/CMTSOLUTION_002 | 13 - .../old_test_solver/002/DATA/CMTSOLUTION_003 | 13 - .../old_test_solver/002/DATA/CMTSOLUTION_004 | 13 - .../old_test_solver/002/DATA/CMTSOLUTION_005 | 13 - .../old_test_solver/002/DATA/CMTSOLUTION_006 | 13 - .../hold/old_test_solver/002/DATA/Par_file | 1 - .../hold/old_test_solver/002/DATA/STATIONS | 2 - .../hold/old_test_solver/002/bin/xcombine_sem | 3 - .../hold/old_test_solver/002/bin/xmeshfem2D | 2 - .../hold/old_test_solver/002/bin/xsmooth_sem | 3 - .../hold/old_test_solver/002/bin/xspecfem2D | 3 - .../002/traces/obs/AA.S0001.BXY.semd | 5000 ----------------- .../002/traces/obs/AA.S0002.BXY.semd | 5000 ----------------- .../002/traces/syn/AA.S0001.BXY.semd | 5000 ----------------- .../002/traces/syn/AA.S0002.BXY.semd | 5000 ----------------- .../old_test_solver/sources/CMTSOLUTION_001 | 1 - .../old_test_solver/sources/CMTSOLUTION_002 | 1 - .../hold/old_test_solver/sources/SOURCE_001 | 1 - .../hold/old_test_solver/sources/SOURCE_002 | 1 - .../hold/scripts/make_parameter_files.sh | 26 - .../scripts/make_test_directory_structure.py | 29 - .../hold/specfem/DATA/CMTSOLUTION_c46e1d99 | 13 - .../hold/specfem/DATA/FORCESOLUTION_c46e1d99 | 10 - .../specfem/DATA/Par_file_SPECFEM2D_cf893667 | 439 -- .../specfem/DATA/Par_file_SPECFEM3D_c46e1d99 | 379 -- .../hold/specfem/DATA/SOURCE_cf893667 | 57 - .../specfem/OUTPUT_FILES/AA.S0001.BXY.semd | 5000 ----------------- .../specfem/OUTPUT_FILES/Uy_file_single_d.su | Bin 20240 -> 0 bytes .../test_data/hold/test_conf_parameters.yaml | 301 - .../hold/test_filled_parameters.yaml | 301 - .../test_data/hold/test_setup_parameters.yaml | 32 - seisflows/tests/test_data/parameters.yaml | 1 - seisflows/tests/test_seisflows.py | 43 +- seisflows/tools/msg.py | 37 + 54 files changed, 67 insertions(+), 46848 deletions(-) delete mode 100644 seisflows/examples/parameters.yaml delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_001 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_002 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_003 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_004 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_005 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_006 delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/001/DATA/Par_file delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/001/DATA/STATIONS delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/bin/xcombine_sem delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/bin/xmeshfem2D delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/bin/xsmooth_sem delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/001/bin/xspecfem2D delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0001.BXY.semd delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0002.BXY.semd delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0001.BXY.semd delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0002.BXY.semd delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_001 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_002 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_003 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_004 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_005 delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_006 delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/002/DATA/Par_file delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/002/DATA/STATIONS delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/bin/xcombine_sem delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/bin/xmeshfem2D delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/bin/xsmooth_sem delete mode 100755 seisflows/tests/test_data/hold/old_test_solver/002/bin/xspecfem2D delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0001.BXY.semd delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0002.BXY.semd delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0001.BXY.semd delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0002.BXY.semd delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_001 delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_002 delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_001 delete mode 100644 seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_002 delete mode 100644 seisflows/tests/test_data/hold/scripts/make_parameter_files.sh delete mode 100644 seisflows/tests/test_data/hold/scripts/make_test_directory_structure.py delete mode 100644 seisflows/tests/test_data/hold/specfem/DATA/CMTSOLUTION_c46e1d99 delete mode 100644 seisflows/tests/test_data/hold/specfem/DATA/FORCESOLUTION_c46e1d99 delete mode 100644 seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM2D_cf893667 delete mode 100644 seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 delete mode 100644 seisflows/tests/test_data/hold/specfem/DATA/SOURCE_cf893667 delete mode 100644 seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/AA.S0001.BXY.semd delete mode 100644 seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/Uy_file_single_d.su delete mode 100644 seisflows/tests/test_data/hold/test_conf_parameters.yaml delete mode 100644 seisflows/tests/test_data/hold/test_filled_parameters.yaml delete mode 100644 seisflows/tests/test_data/hold/test_setup_parameters.yaml delete mode 120000 seisflows/tests/test_data/parameters.yaml diff --git a/seisflows/examples/parameters.yaml b/seisflows/examples/parameters.yaml deleted file mode 100644 index d0eed426..00000000 --- a/seisflows/examples/parameters.yaml +++ /dev/null @@ -1,32 +0,0 @@ -# ////////////////////////////////////////////////////////////////////////////// -# -# SeisFlows YAML Parameter File -# -# ////////////////////////////////////////////////////////////////////////////// -# -# Modules correspond to the structure of the source code, and determine -# SeisFlows' behavior at runtime. Each module requires its own sub-parameters. -# -# .. rubric:: -# - Determine available options for modules by running: -# > seisflows print modules -# - Auto-fill with docstrings and default values (recommended) by running: -# > seisflows configure -# - Swap out module parameters for a configured parameter file by running: -# > seisflows swap {module} {name} (e.g., seisflows swap solver specfem3d) -# - To set values as NoneType, use: null -# - To set values as infinity, use: inf -# -# MODULES -# /////// -# workflow (str): The types and order of functions for running SeisFlows -# system (str): Computer architecture of the system being used -# solver (str): External numerical solver to use for waveform simulations -# preprocess (str): Preprocessing schema for waveform data -# optimize (str): Optimization algorithm for the inverse problem -# ============================================================================== -workflow: forward -system: workstation -solver: specfem2d -preprocess: default -optimize: gradient diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 2d22829d..ece6a636 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -127,7 +127,7 @@ def download_specfem2d(self): Last successfully tested 4/28/22 """ if not os.path.exists(self.sem2d_paths.repo): - cmd = ("git clone --recursive --branch devel " + cmd = ("git clone --recursive --branch devel --depth=1" "https://github.com/geodynamics/specfem2d.git") print(f"Downloading SPECFEM2D with command: {cmd}") diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 48288ecf..60e4d7c1 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -25,8 +25,7 @@ from seisflows import logger, ROOT_DIR, NAMES from seisflows.tools import unix, msg -from seisflows.tools.config import (Dict, load_yaml, custom_import, - import_seisflows) +from seisflows.tools.config import load_yaml, custom_import, import_seisflows from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, setpar_vel_model) @@ -413,14 +412,11 @@ def setup(self, force=False, **kwargs): .. note:: Future working directory setup functions can be placed here - :type symlink: bool - :param symlink: flag to turn on source code symlinking :type force: bool :param force: flag to force parameter file overwriting """ - par_file = os.path.join(ROOT_DIR, "examples", "parameters.yaml") - - if os.path.exists(self._args.parameter_file): + par_file = os.path.join(self._args.workdir, self._args.parameter_file) + if os.path.exists(par_file): if force: check = "y" else: @@ -429,13 +425,12 @@ def setup(self, force=False, **kwargs): f"({self._args.parameter_file}) found. Do you " f"wish to overwrite with a blank file? (y/[n])" )) - if check == "y": - unix.rm(self._args.parameter_file) - else: + if check != "y": sys.exit(0) - unix.cp(par_file, self._args.workdir) - print(msg.cli(f"creating parameter file: {self._args.parameter_file}")) + with open(par_file, "w") as f: + f.write(msg.base_parameter_file) + print(msg.cli(f"created parameter file: {self._args.parameter_file}")) def configure(self, absolute_paths=False, **kwargs): """ @@ -469,6 +464,8 @@ def configure(self, absolute_paths=False, **kwargs): else if False, use path names relative to the working directory. Defaults to False, uses relative paths. """ + print("configuring SeisFlows parameter file") + def split_module_docstring(mod, idx): """ Since our docstrings are concatenated, we need to break them @@ -565,8 +562,6 @@ def swap(self, module, classname, **kwargs): .. rubric:: $ seisflows swap system slurm """ - PAR_FILE = os.path.join(ROOT_DIR, "examples", "parameters.yaml") - if module not in NAMES: print(msg.cli(text=f"{module} does not match {NAMES}", header="error")) @@ -577,7 +572,7 @@ def swap(self, module, classname, **kwargs): unix.mv(self._args.parameter_file, f"_{self._args.parameter_file}") try: # Create a new parameter file with updated module - unix.cp(PAR_FILE, self._args.workdir) + self.setup(force=True) for name in NAMES: setpar(key=name, val=ogpars[name], file=self._args.parameter_file, delim=":") diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_001 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_001 deleted file mode 100755 index cacf1f81..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_001 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 001 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_002 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_002 deleted file mode 100755 index 53709cf7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_002 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 002 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_003 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_003 deleted file mode 100755 index 7d46df94..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_003 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 003 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_004 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_004 deleted file mode 100755 index 51d51497..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_004 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 004 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_005 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_005 deleted file mode 100755 index 50b4aeb0..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_005 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 005 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_006 b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_006 deleted file mode 100755 index 8d034437..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/CMTSOLUTION_006 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 006 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/Par_file b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/Par_file deleted file mode 100644 index 8b137891..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/Par_file +++ /dev/null @@ -1 +0,0 @@ - diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/STATIONS b/seisflows/tests/test_data/hold/old_test_solver/001/DATA/STATIONS deleted file mode 100644 index d2383d2e..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/DATA/STATIONS +++ /dev/null @@ -1,2 +0,0 @@ - S0001 AA -99.999 -66.666 0.0 0.0 - S0002 AA -88.888 -55.555 0.0 0.0 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/bin/xcombine_sem b/seisflows/tests/test_data/hold/old_test_solver/001/bin/xcombine_sem deleted file mode 100755 index 969a4d93..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/bin/xcombine_sem +++ /dev/null @@ -1,3 +0,0 @@ -#!/bin/bash -e -echo "xcombine_sem" - diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/bin/xmeshfem2D b/seisflows/tests/test_data/hold/old_test_solver/001/bin/xmeshfem2D deleted file mode 100755 index 149ca704..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/bin/xmeshfem2D +++ /dev/null @@ -1,2 +0,0 @@ -#!/bin/bash -e -echo "xmeshfem2D" diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/bin/xsmooth_sem b/seisflows/tests/test_data/hold/old_test_solver/001/bin/xsmooth_sem deleted file mode 100755 index 376b4aa5..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/bin/xsmooth_sem +++ /dev/null @@ -1,3 +0,0 @@ -#!/bin/bash -e -echo "xsmooth_sem" - diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/bin/xspecfem2D b/seisflows/tests/test_data/hold/old_test_solver/001/bin/xspecfem2D deleted file mode 100755 index e50c2b0b..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/bin/xspecfem2D +++ /dev/null @@ -1,3 +0,0 @@ -#!/bin/bash -e -echo "xspecfem2D" - diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0001.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0001.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0002.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0002.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/traces/obs/AA.S0002.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0001.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0001.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0002.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0002.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/001/traces/syn/AA.S0002.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_001 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_001 deleted file mode 100755 index cacf1f81..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_001 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 001 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_002 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_002 deleted file mode 100755 index 53709cf7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_002 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 002 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_003 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_003 deleted file mode 100755 index 7d46df94..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_003 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 003 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_004 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_004 deleted file mode 100755 index 51d51497..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_004 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 004 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_005 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_005 deleted file mode 100755 index 50b4aeb0..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_005 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 005 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_006 b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_006 deleted file mode 100755 index 8d034437..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/CMTSOLUTION_006 +++ /dev/null @@ -1,13 +0,0 @@ -XXXX 2012 03 30 18 47 38.66 -40.9316 175.4123 17.6 0.0 0.0 NORTH ISLAND, NEW ZEALAND -event name: 006 -time shift: 0.0000 -half duration: 0.0000 -latitude: -40.9316 -longitude: 175.4123 -depth: 17.5977 -Mrr: -1.451500E+22 -Mtt: 2.777100E+22 -Mpp: -1.325600E+22 -Mrt: 1.085300E+22 -Mrp: -2.075000E+21 -Mtp: -1.439600E+22 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/Par_file b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/Par_file deleted file mode 100644 index 8b137891..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/Par_file +++ /dev/null @@ -1 +0,0 @@ - diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/STATIONS b/seisflows/tests/test_data/hold/old_test_solver/002/DATA/STATIONS deleted file mode 100644 index d2383d2e..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/DATA/STATIONS +++ /dev/null @@ -1,2 +0,0 @@ - S0001 AA -99.999 -66.666 0.0 0.0 - S0002 AA -88.888 -55.555 0.0 0.0 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/bin/xcombine_sem b/seisflows/tests/test_data/hold/old_test_solver/002/bin/xcombine_sem deleted file mode 100755 index 969a4d93..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/bin/xcombine_sem +++ /dev/null @@ -1,3 +0,0 @@ -#!/bin/bash -e -echo "xcombine_sem" - diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/bin/xmeshfem2D b/seisflows/tests/test_data/hold/old_test_solver/002/bin/xmeshfem2D deleted file mode 100755 index 149ca704..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/bin/xmeshfem2D +++ /dev/null @@ -1,2 +0,0 @@ -#!/bin/bash -e -echo "xmeshfem2D" diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/bin/xsmooth_sem b/seisflows/tests/test_data/hold/old_test_solver/002/bin/xsmooth_sem deleted file mode 100755 index 376b4aa5..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/bin/xsmooth_sem +++ /dev/null @@ -1,3 +0,0 @@ -#!/bin/bash -e -echo "xsmooth_sem" - diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/bin/xspecfem2D b/seisflows/tests/test_data/hold/old_test_solver/002/bin/xspecfem2D deleted file mode 100755 index e50c2b0b..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/bin/xspecfem2D +++ /dev/null @@ -1,3 +0,0 @@ -#!/bin/bash -e -echo "xspecfem2D" - diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0001.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0001.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0002.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0002.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/traces/obs/AA.S0002.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0001.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0001.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0002.BXY.semd b/seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0002.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/002/traces/syn/AA.S0002.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_001 b/seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_001 deleted file mode 100644 index 8b137891..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_001 +++ /dev/null @@ -1 +0,0 @@ - diff --git a/seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_002 b/seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_002 deleted file mode 100644 index 8b137891..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/sources/CMTSOLUTION_002 +++ /dev/null @@ -1 +0,0 @@ - diff --git a/seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_001 b/seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_001 deleted file mode 100644 index 8b137891..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_001 +++ /dev/null @@ -1 +0,0 @@ - diff --git a/seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_002 b/seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_002 deleted file mode 100644 index 8b137891..00000000 --- a/seisflows/tests/test_data/hold/old_test_solver/sources/SOURCE_002 +++ /dev/null @@ -1 +0,0 @@ - diff --git a/seisflows/tests/test_data/hold/scripts/make_parameter_files.sh b/seisflows/tests/test_data/hold/scripts/make_parameter_files.sh deleted file mode 100644 index d712e063..00000000 --- a/seisflows/tests/test_data/hold/scripts/make_parameter_files.sh +++ /dev/null @@ -1,26 +0,0 @@ -# Run a few SeisFlows commands to generate test data. Useful if the parameter -# file ever changes, at which point we will need to generate new files. -cd .. -rm *yaml - -seisflows setup -cp parameters.yaml test_setup_parameters.yaml - -seisflows configure -cp parameters.yaml test_conf_parameters.yaml - -seisflows par -p materials elastic -seisflows par -p density constant -seisflows par -p format ascii -seisflows par -p begin 1 -seisflows par -p end 1 -seisflows par -p case data -seisflows par -p attenuation False -seisflows par -p specfem_bin ./bin -seisflows par -p specfem_data ./DATA -seisflows par -p model_init ./MODEL_INIT -seisflows par -p model_true ./MODEL_TRUE - -mv parameters.yaml test_filled_parameters.yaml - - diff --git a/seisflows/tests/test_data/hold/scripts/make_test_directory_structure.py b/seisflows/tests/test_data/hold/scripts/make_test_directory_structure.py deleted file mode 100644 index 2527d830..00000000 --- a/seisflows/tests/test_data/hold/scripts/make_test_directory_structure.py +++ /dev/null @@ -1,29 +0,0 @@ -""" -Create a test directory structure with actual data to test individual modules -""" -import os -from seisflows.tools import unix -from seisflows.tools.config import CFGPATHS, ROOT_DIR - - -testdir = os.path.join(ROOT_DIR, "tests", "test_data") -workdir = os.path.join(testdir, "workdir") -for key, path in CFGPATHS.__dict__.items(): - full_path = os.path.join(workdir, path) - if os.path.exists(full_path): - unix.rm(full_path) - # Identify files by the separator between filename and extension - if "." in path: - open(full_path, "w") - else: - unix.mkdir(os.path.join(workdir, path)) - -# Make the scratch solver directory -scratchdir = os.path.join(workdir, CFGPATHS.SCRATCHDIR) -solverdir = os.path.join(scratchdir, "solver", "001") -tracesdir = os.path.join(solverdir, "traces") -for dir_ in [scratchdir, solverdir, tracesdir]: - unix.mkdir(dir_) - -for dir_ in ["obs", "syn", "adj"]: - unix.mkdir(os.path.join(tracesdir, dir_)) diff --git a/seisflows/tests/test_data/hold/specfem/DATA/CMTSOLUTION_c46e1d99 b/seisflows/tests/test_data/hold/specfem/DATA/CMTSOLUTION_c46e1d99 deleted file mode 100644 index 3d78a2e2..00000000 --- a/seisflows/tests/test_data/hold/specfem/DATA/CMTSOLUTION_c46e1d99 +++ /dev/null @@ -1,13 +0,0 @@ -PDE 1999 01 01 00 00 00.00 67000 67000 -25000 4.2 4.2 homog_test -event name: homog_test -time shift: 0.0000 -half duration: 5.0 -latorUTM: 67000.0 -longorUTM: 67000.0 -depth: 30.0 -Mrr: -7.600000e+27 -Mtt: 7.700000e+27 -Mpp: -2.000000e+26 -Mrt: -2.500000e+28 -Mrp: 4.000000e+26 -Mtp: -2.500000e+27 diff --git a/seisflows/tests/test_data/hold/specfem/DATA/FORCESOLUTION_c46e1d99 b/seisflows/tests/test_data/hold/specfem/DATA/FORCESOLUTION_c46e1d99 deleted file mode 100644 index 17c19713..00000000 --- a/seisflows/tests/test_data/hold/specfem/DATA/FORCESOLUTION_c46e1d99 +++ /dev/null @@ -1,10 +0,0 @@ -FORCE 001 -time shift: 0.0000 -f0: 5.0 -latorUTM: 67000.0 -longorUTM: 67000.0 -depth: 30.0 -factor force source: 1.d10 -component dir vect source E: 1.d0 -component dir vect source N: -2.d0 -component dir vect source Z_UP: -1.d0 diff --git a/seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM2D_cf893667 b/seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM2D_cf893667 deleted file mode 100644 index 0746c242..00000000 --- a/seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM2D_cf893667 +++ /dev/null @@ -1,439 +0,0 @@ -#----------------------------------------------------------- -# -# Simulation input parameters -# -#----------------------------------------------------------- - -# title of job -title = Test of SPECFEM2D with curved interfaces - -# forward or adjoint simulation -# 1 = forward, 2 = adjoint, 3 = both simultaneously -# note: 2 is purposely UNUSED (for compatibility with the numbering of our 3D codes) -SIMULATION_TYPE = 1 -# 0 = regular wave propagation simulation, 1/2/3 = noise simulation -NOISE_TOMOGRAPHY = 0 -# save the last frame, needed for adjoint simulation -SAVE_FORWARD = .false. - -# parameters concerning partitioning -NPROC = 1 # number of processes - -# time step parameters -# total number of time steps -NSTEP = 1600 - -# duration of a time step (see section "How to choose the time step" of the manual for how to do this) -DT = 1.1d-3 - -# time stepping -# 1 = Newmark (2nd order), 2 = LDDRK4-6 (4th-order 6-stage low storage Runge-Kutta), 3 = classical RK4 4th-order 4-stage Runge-Kutta -time_stepping_scheme = 1 - -# set the type of calculation (P-SV or SH/membrane waves) -P_SV = .true. - -# axisymmetric (2.5D) or Cartesian planar (2D) simulation -AXISYM = .false. - -#----------------------------------------------------------- -# -# Mesh -# -#----------------------------------------------------------- - -# Partitioning algorithm for decompose_mesh -PARTITIONING_TYPE = 3 # SCOTCH = 3, ascending order (very bad idea) = 1 - -# number of control nodes per element (4 or 9) -NGNOD = 9 - -# creates/reads a binary database that allows to skip all time consuming setup steps in initialization -# 0 = does not read/create database -# 1 = creates database -# 2 = reads database -setup_with_binary_database = 0 - -# available models -# default - define model using nbmodels below -# ascii - read model from ascii database file -# binary - read model from binary databse file -# binary_voigt - read Voigt model from binary database file -# external - define model using define_external_model subroutine -# gll - read GLL model from binary database file -# legacy - read model from model_velocity.dat_input -MODEL = default - -# Output the model with the requested type, does not save if turn to default or .false. -# (available output formats: ascii,binary,gll,legacy) -SAVE_MODEL = default - - -#----------------------------------------------------------- -# -# Attenuation -# -#----------------------------------------------------------- - -# attenuation parameters -ATTENUATION_VISCOELASTIC = .false. # turn attenuation (viscoelasticity) on or off for non-poroelastic solid parts of the model -ATTENUATION_VISCOACOUSTIC = .false. # turn attenuation (viscoacousticity) on or off for non-poroelastic fluid parts of the model - -# for viscoelastic or viscoacoustic attenuation -N_SLS = 3 # number of standard linear solids for attenuation (3 is usually the minimum) -ATTENUATION_f0_REFERENCE = 5.196 # in case of attenuation, reference frequency in Hz at which the velocity values in the velocity model are given (unused otherwise); relevant only if source is a Dirac or a Heaviside, otherwise it is automatically set to f0 the dominant frequency of the source in the DATA/SOURCE file -READ_VELOCITIES_AT_f0 = .false. # read seismic velocities at ATTENUATION_f0_REFERENCE instead of at infinite frequency (see user manual for more information) -USE_SOLVOPT = .false. # use more precise but much more expensive way of determining the Q factor relaxation times, as in https://doi.org/10.1093/gji/ggw024 - -# for poroelastic attenuation -ATTENUATION_PORO_FLUID_PART = .false. # turn viscous attenuation on or off for the fluid part of poroelastic parts of the model -Q0_poroelastic = 1 # quality factor for viscous attenuation (ignore it if you are not using a poroelastic material) -freq0_poroelastic = 10 # frequency for viscous attenuation (ignore it if you are not using a poroelastic material) - -# to undo attenuation and/or PMLs for sensitivity kernel calculations or forward runs with SAVE_FORWARD -# use the flag below. It performs undoing of attenuation and/or of PMLs in an exact way for sensitivity kernel calculations -# but requires disk space for temporary storage, and uses a significant amount of memory used as buffers for temporary storage. -# When that option is on the second parameter indicates how often the code dumps restart files to disk (if in doubt, use something between 100 and 1000). -UNDO_ATTENUATION_AND_OR_PML = .false. -NT_DUMP_ATTENUATION = 500 - -# Instead of reconstructing the forward wavefield, this option reads it from the disk using asynchronous I/O. -# Outperforms conventional mode using a value of NTSTEP_BETWEEN_COMPUTE_KERNELS high enough. -NO_BACKWARD_RECONSTRUCTION = .false. - -#----------------------------------------------------------- -# -# Sources -# -#----------------------------------------------------------- - -# source parameters -NSOURCES = 1 # number of sources (source information is then read from the DATA/SOURCE file) -force_normal_to_surface = .false. # angleforce normal to surface (external mesh and curve file needed) - -# use an existing initial wave field as source or start from zero (medium initially at rest) -initialfield = .false. -add_Bielak_conditions_bottom = .false. # add Bielak conditions or not if initial plane wave -add_Bielak_conditions_right = .false. -add_Bielak_conditions_top = .false. -add_Bielak_conditions_left = .false. - -# acoustic forcing -ACOUSTIC_FORCING = .false. # acoustic forcing of an acoustic medium with a rigid interface - -# noise simulations - type of noise source time function: -# 0=external (S_squared), 1=Ricker(second derivative), 2=Ricker(first derivative), 3=Gaussian, 4=Figure 2a of Tromp et al. 2010 -# (default value 4 is chosen to reproduce the time function from Fig 2a of "Tromp et al., 2010, Noise Cross-Correlation Sensitivity Kernels") -noise_source_time_function_type = 4 - -# moving sources -# Set write_moving_sources_database to .true. if the generation of moving source databases takes -# a long time. Then the simulation is done in two steps: first you run the code and it writes the databases to file -# (in DATA folder by default). Then you rerun the code and it will read the databases in there directly possibly -# saving a lot of time. -# This is only useful for GPU version (for now) -write_moving_sources_database = .false. - -#----------------------------------------------------------- -# -# Receivers -# -#----------------------------------------------------------- - -# receiver set parameters for recording stations (i.e. recording points) -# seismotype : record 1=displ 2=veloc 3=accel 4=pressure 5=curl of displ 6=the fluid potential -seismotype = 1 # several values can be chosen. For example : 1,2,4 - -# interval in time steps for writing of seismograms -# every how many time steps we save the seismograms -# (costly, do not use a very small value; if you use a very large value that is larger than the total number -# of time steps of the run, the seismograms will automatically be saved once at the end of the run anyway) -NTSTEP_BETWEEN_OUTPUT_SEISMOS = 10000 - -# set to n to reduce the sampling rate of output seismograms by a factor of n -# defaults to 1, which means no down-sampling -NTSTEP_BETWEEN_OUTPUT_SAMPLE = 1 - -# so far, this option can only be used if all the receivers are in acoustic elements -USE_TRICK_FOR_BETTER_PRESSURE = .false. - -# use this t0 as earliest starting time rather than the automatically calculated one -USER_T0 = 0.0d0 - -# seismogram formats -save_ASCII_seismograms = .true. # save seismograms in ASCII format or not -save_binary_seismograms_single = .true. # save seismograms in single precision binary format or not (can be used jointly with ASCII above to save both) -save_binary_seismograms_double = .false. # save seismograms in double precision binary format or not (can be used jointly with both flags above to save all) -SU_FORMAT = .false. # output single precision binary seismograms in Seismic Unix format (adjoint traces will be read in the same format) - -# use an existing STATION file found in ./DATA or create a new one from the receiver positions below in this Par_file -use_existing_STATIONS = .false. - -# number of receiver sets (i.e. number of receiver lines to create below) -nreceiversets = 2 - -# orientation -anglerec = 0.d0 # angle to rotate components at receivers -rec_normal_to_surface = .false. # base anglerec normal to surface (external mesh and curve file needed) - -# first receiver set (repeat these 6 lines and adjust nreceiversets accordingly) -nrec = 11 # number of receivers -xdeb = 300. # first receiver x in meters -zdeb = 2200. # first receiver z in meters -xfin = 3700. # last receiver x in meters (ignored if only one receiver) -zfin = 2200. # last receiver z in meters (ignored if only one receiver) -record_at_surface_same_vertical = .true. # receivers inside the medium or at the surface (z values are ignored if this is set to true, they are replaced with the topography height) - -# second receiver set -nrec = 11 # number of receivers -xdeb = 2500. # first receiver x in meters -zdeb = 2500. # first receiver z in meters -xfin = 2500. # last receiver x in meters (ignored if only one receiver) -zfin = 0. # last receiver z in meters (ignored if only one receiver) -record_at_surface_same_vertical = .false. # receivers inside the medium or at the surface (z values are ignored if this is set to true, they are replaced with the topography height) - - -#----------------------------------------------------------- -# -# adjoint kernel outputs -# -#----------------------------------------------------------- - -# save sensitivity kernels in ASCII format (much bigger files, but compatible with current GMT scripts) or in binary format -save_ASCII_kernels = .true. - -# since the accuracy of kernel integration may not need to respect the CFL, this option permits to save computing time, and memory with UNDO_ATTENUATION_AND_OR_PML mode -NTSTEP_BETWEEN_COMPUTE_KERNELS = 1 - -# outputs approximate Hessian for preconditioning -APPROXIMATE_HESS_KL = .false. - -#----------------------------------------------------------- -# -# Boundary conditions -# -#----------------------------------------------------------- - -# Perfectly Matched Layer (PML) boundaries -# absorbing boundary active or not -PML_BOUNDARY_CONDITIONS = .true. -NELEM_PML_THICKNESS = 3 -ROTATE_PML_ACTIVATE = .false. -ROTATE_PML_ANGLE = 30. -# change the four parameters below only if you know what you are doing; they change the damping profiles inside the PMLs -K_MIN_PML = 1.0d0 # from Gedney page 8.11 -K_MAX_PML = 1.0d0 -damping_change_factor_acoustic = 0.5d0 -damping_change_factor_elastic = 1.0d0 -# set the parameter below to .false. unless you know what you are doing; this implements automatic adjustment of the PML parameters for elongated models. -# The goal is to improve the absorbing efficiency of PML for waves with large incidence angles, but this can lead to artefacts. -# In particular, this option is efficient only when the number of sources NSOURCES is equal to one. -PML_PARAMETER_ADJUSTMENT = .false. - -# Stacey ABC -STACEY_ABSORBING_CONDITIONS = .false. - -# periodic boundaries -ADD_PERIODIC_CONDITIONS = .false. -PERIODIC_HORIZ_DIST = 4000.d0 - -#----------------------------------------------------------- -# -# Velocity and density models -# -#----------------------------------------------------------- - -# number of model materials -nbmodels = 4 -# available material types (see user manual for more information) -# acoustic: model_number 1 rho Vp 0 0 0 QKappa 9999 0 0 0 0 0 0 (for QKappa use 9999 to ignore it) -# elastic: model_number 1 rho Vp Vs 0 0 QKappa Qmu 0 0 0 0 0 0 (for QKappa and Qmu use 9999 to ignore them) -# anisotropic: model_number 2 rho c11 c13 c15 c33 c35 c55 c12 c23 c25 0 QKappa Qmu -# anisotropic in AXISYM: model_number 2 rho c11 c13 c15 c33 c35 c55 c12 c23 c25 c22 QKappa Qmu -# poroelastic: model_number 3 rhos rhof phi c kxx kxz kzz Ks Kf Kfr etaf mufr Qmu -# tomo: model_number -1 0 0 A 0 0 0 0 0 0 0 0 0 0 -# -# note: When viscoelasticity or viscoacousticity is turned on, -# the Vp and Vs values that are read here are the UNRELAXED ones i.e. the values at infinite frequency -# unless the READ_VELOCITIES_AT_f0 parameter above is set to true, in which case they are the values at frequency f0. -# -# Please also note that Qmu is always equal to Qs, but Qkappa is in general not equal to Qp. -# To convert one to the other see doc/Qkappa_Qmu_versus_Qp_Qs_relationship_in_2D_plane_strain.pdf and -# utils/attenuation/conversion_from_Qkappa_Qmu_to_Qp_Qs_from_Dahlen_Tromp_959_960.f90. -1 1 2700.d0 3000.d0 1732.051d0 0 0 9999 9999 0 0 0 0 0 0 -2 1 2500.d0 2700.d0 0 0 0 9999 9999 0 0 0 0 0 0 -3 1 2200.d0 2500.d0 1443.375d0 0 0 9999 9999 0 0 0 0 0 0 -4 1 2200.d0 2200.d0 1343.375d0 0 0 9999 9999 0 0 0 0 0 0 - -# external tomography file -TOMOGRAPHY_FILE = ./DATA/tomo_file.xyz - -# use an external mesh created by an external meshing tool or use the internal mesher -read_external_mesh = .false. - -#----------------------------------------------------------- -# -# PARAMETERS FOR EXTERNAL MESHING -# -#----------------------------------------------------------- - -# data concerning mesh, when generated using third-party app (more info in README) -# (see also absorbing_conditions above) -mesh_file = ./DATA/mesh_file # file containing the mesh -nodes_coords_file = ./DATA/nodes_coords_file # file containing the nodes coordinates -materials_file = ./DATA/materials_file # file containing the material number for each element -free_surface_file = ./DATA/free_surface_file # file containing the free surface -axial_elements_file = ./DATA/axial_elements_file # file containing the axial elements if AXISYM is true -absorbing_surface_file = ./DATA/absorbing_surface_file # file containing the absorbing surface -acoustic_forcing_surface_file = ./DATA/MSH/Surf_acforcing_Bottom_enforcing_mesh # file containing the acoustic forcing surface -absorbing_cpml_file = ./DATA/absorbing_cpml_file # file containing the CPML element numbers -tangential_detection_curve_file = ./DATA/courbe_eros_nodes # file containing the curve delimiting the velocity model - -#----------------------------------------------------------- -# -# PARAMETERS FOR INTERNAL MESHING -# -#----------------------------------------------------------- - -# file containing interfaces for internal mesh -interfacesfile = ../EXAMPLES/simple_topography_and_also_a_simple_fluid_layer/DATA/interfaces_simple_topo_curved.dat - -# geometry of the model (origin lower-left corner = 0,0) and mesh description -xmin = 0.d0 # abscissa of left side of the model -xmax = 4000.d0 # abscissa of right side of the model -nx = 80 # number of elements along X - -# absorbing boundary parameters (see absorbing_conditions above) -absorbbottom = .true. -absorbright = .true. -absorbtop = .false. -absorbleft = .true. - -# define the different regions of the model in the (nx,nz) spectral-element mesh -nbregions = 5 # then set below the different regions and model number for each region -# format of each line: nxmin nxmax nzmin nzmax material_number -1 80 1 20 1 -1 59 21 40 2 -71 80 21 40 2 -1 80 41 60 3 -60 70 21 40 4 - -#----------------------------------------------------------- -# -# Display parameters -# -#----------------------------------------------------------- - -# interval at which we output time step info and max of norm of displacement -# (every how many time steps we display information about the simulation. costly, do not use a very small value) -NTSTEP_BETWEEN_OUTPUT_INFO = 100 - -# meshing output -output_grid_Gnuplot = .false. # generate a GNUPLOT file containing the grid, and a script to plot it -output_grid_ASCII = .false. # dump the grid in an ASCII text file consisting of a set of X,Y,Z points or not - -# to plot total energy curves, for instance to monitor how CPML absorbing layers behave; -# should be turned OFF in most cases because a bit expensive -OUTPUT_ENERGY = .false. - -# every how many time steps we compute energy (which is a bit expensive to compute) -NTSTEP_BETWEEN_OUTPUT_ENERGY = 10 - -# Compute the field int_0^t v^2 dt for a set of GLL points and write it to file. Use -# the script utils/visualisation/plotIntegratedEnergyFile.py to watch. It is refreshed at the same time than the seismograms -COMPUTE_INTEGRATED_ENERGY_FIELD = .false. - -#----------------------------------------------------------- -# -# Movies/images/snaphots visualizations -# -#----------------------------------------------------------- - -# every how many time steps we draw JPEG or PostScript pictures of the simulation -# and/or we dump results of the simulation as ASCII or binary files (costly, do not use a very small value) -NTSTEP_BETWEEN_OUTPUT_IMAGES = 100 - -# minimum amplitude kept in % for the JPEG and PostScript snapshots; amplitudes below that are muted -cutsnaps = 1. - -#### for JPEG color images #### -output_color_image = .true. # output JPEG color image of the results every NTSTEP_BETWEEN_OUTPUT_IMAGES time steps or not -imagetype_JPEG = 2 # display 1=displ_Ux 2=displ_Uz 3=displ_norm 4=veloc_Vx 5=veloc_Vz 6=veloc_norm 7=accel_Ax 8=accel_Az 9=accel_norm 10=pressure -factor_subsample_image = 1.0d0 # (double precision) factor to subsample or oversample (if set to e.g. 0.5) color images output by the code (useful for very large models, or to get nicer looking denser pictures) -USE_CONSTANT_MAX_AMPLITUDE = .false. # by default the code normalizes each image independently to its maximum; use this option to use the global maximum below instead -CONSTANT_MAX_AMPLITUDE_TO_USE = 1.17d4 # constant maximum amplitude to use for all color images if the above USE_CONSTANT_MAX_AMPLITUDE option is true -POWER_DISPLAY_COLOR = 0.30d0 # non linear display to enhance small amplitudes in JPEG color images -DRAW_SOURCES_AND_RECEIVERS = .true. # display sources as orange crosses and receivers as green squares in JPEG images or not -DRAW_WATER_IN_BLUE = .true. # display acoustic layers as constant blue in JPEG images, because they likely correspond to water in the case of ocean acoustics or in the case of offshore oil industry experiments (if off, display them as greyscale, as for elastic or poroelastic elements, for instance for acoustic-only oil industry models of solid media) -USE_SNAPSHOT_NUMBER_IN_FILENAME = .false. # use snapshot number in the file name of JPEG color snapshots instead of the time step (for instance to create movies in an easier way later) - -#### for PostScript snapshots #### -output_postscript_snapshot = .true. # output Postscript snapshot of the results every NTSTEP_BETWEEN_OUTPUT_IMAGES time steps or not -imagetype_postscript = 1 # display 1=displ vector 2=veloc vector 3=accel vector; small arrows are displayed for the vectors -meshvect = .true. # display mesh on PostScript plots or not -modelvect = .false. # display velocity model on PostScript plots or not -boundvect = .true. # display boundary conditions on PostScript plots or not -interpol = .true. # interpolation of the PostScript display on a regular grid inside each spectral element, or use the non-evenly spaced GLL points -pointsdisp = 6 # number of points in each direction for interpolation of PostScript snapshots (set to 1 for lower-left corner only) -subsamp_postscript = 1 # subsampling of background velocity model in PostScript snapshots -sizemax_arrows = 1.d0 # maximum size of arrows on PostScript plots in centimeters -US_LETTER = .false. # use US letter or European A4 paper for PostScript plots - -#### for wavefield dumps #### -output_wavefield_dumps = .false. # output wave field to a text file (creates very big files) -imagetype_wavefield_dumps = 1 # display 1=displ vector 2=veloc vector 3=accel vector 4=pressure -use_binary_for_wavefield_dumps = .false. # use ASCII or single-precision binary format for the wave field dumps - -#----------------------------------------------------------- - -# Ability to run several calculations (several earthquakes) -# in an embarrassingly-parallel fashion from within the same run; -# this can be useful when using a very large supercomputer to compute -# many earthquakes in a catalog, in which case it can be better from -# a batch job submission point of view to start fewer and much larger jobs, -# each of them computing several earthquakes in parallel. -# To turn that option on, set parameter NUMBER_OF_SIMULTANEOUS_RUNS to a value greater than 1. -# To implement that, we create NUMBER_OF_SIMULTANEOUS_RUNS MPI sub-communicators, -# each of them being labeled "my_local_mpi_comm_world", and we use them -# in all the routines in "src/shared/parallel.f90", except in MPI_ABORT() because in that case -# we need to kill the entire run. -# When that option is on, of course the number of processor cores used to start -# the code in the batch system must be a multiple of NUMBER_OF_SIMULTANEOUS_RUNS, -# all the individual runs must use the same number of processor cores, -# which as usual is NPROC in the Par_file, -# and thus the total number of processor cores to request from the batch system -# should be NUMBER_OF_SIMULTANEOUS_RUNS * NPROC. -# All the runs to perform must be placed in directories called run0001, run0002, run0003 and so on -# (with exactly four digits). -# -# Imagine you have 10 independent calculations to do, each of them on 100 cores; you have three options: -# -# 1/ submit 10 jobs to the batch system -# -# 2/ submit a single job on 1000 cores to the batch, and in that script create a sub-array of jobs to start 10 jobs, -# each running on 100 cores (see e.g. http://www.schedmd.com/slurmdocs/job_array.html ) -# -# 3/ submit a single job on 1000 cores to the batch, start SPECFEM2D on 1000 cores, create 10 sub-communicators, -# cd into one of 10 subdirectories (called e.g. run0001, run0002,... run0010) depending on the sub-communicator -# your MPI rank belongs to, and run normally on 100 cores using that sub-communicator. -# -# The option below implements 3/. -# -NUMBER_OF_SIMULTANEOUS_RUNS = 1 - -# if we perform simultaneous runs in parallel, if only the source and receivers vary between these runs -# but not the mesh nor the model (velocity and density) then we can also read the mesh and model files -# from a single run in the beginning and broadcast them to all the others; for a large number of simultaneous -# runs for instance when solving inverse problems iteratively this can DRASTICALLY reduce I/Os to disk in the solver -# (by a factor equal to NUMBER_OF_SIMULTANEOUS_RUNS), and reducing I/Os is crucial in the case of huge runs. -# Thus, always set this option to .true. if the mesh and the model are the same for all simultaneous runs. -# In that case there is no need to duplicate the mesh and model file database (the content of the DATABASES_MPI -# directories) in each of the run0001, run0002,... directories, it is sufficient to have one in run0001 -# and the code will broadcast it to the others) -BROADCAST_SAME_MESH_AND_MODEL = .true. - -#----------------------------------------------------------- - -# set to true to use GPUs -GPU_MODE = .false. - diff --git a/seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 b/seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 deleted file mode 100644 index 11f54a77..00000000 --- a/seisflows/tests/test_data/hold/specfem/DATA/Par_file_SPECFEM3D_c46e1d99 +++ /dev/null @@ -1,379 +0,0 @@ -#----------------------------------------------------------- -# -# Simulation input parameters -# -#----------------------------------------------------------- - -# forward or adjoint simulation -# 1 = forward, 2 = adjoint, 3 = both simultaneously -SIMULATION_TYPE = 1 -# 0 = earthquake simulation, 1/2/3 = three steps in noise simulation -NOISE_TOMOGRAPHY = 0 -SAVE_FORWARD = .false. - -# solve a full FWI inverse problem from a single calling program with no I/Os, storing everything in memory, -# or run a classical forward or adjoint problem only and save the seismograms and/or sensitivity kernels to disk (with costlier I/Os) -INVERSE_FWI_FULL_PROBLEM = .false. - -# UTM projection parameters -# Use a negative zone number for the Southern hemisphere: -# The Northern hemisphere corresponds to zones +1 to +60, -# The Southern hemisphere corresponds to zones -1 to -60. -UTM_PROJECTION_ZONE = 11 -SUPPRESS_UTM_PROJECTION = .true. - -# number of MPI processors -NPROC = 4 - -# time step parameters -NSTEP = 5000 -DT = 0.05 - -# set to true to use local-time stepping (LTS) -LTS_MODE = .false. - -# Partitioning algorithm for decompose_mesh -# choose partitioner: 1==SCOTCH (default), 2==METIS, 3==PATOH, 4==ROWS_PART -PARTITIONING_TYPE = 1 - -#----------------------------------------------------------- -# -# LDDRK time scheme -# -#----------------------------------------------------------- -USE_LDDRK = .false. -INCREASE_CFL_FOR_LDDRK = .false. -RATIO_BY_WHICH_TO_INCREASE_IT = 1.4 - -#----------------------------------------------------------- -# -# Mesh -# -#----------------------------------------------------------- - -# Number of nodes for 2D and 3D shape functions for hexahedra. -# We use either 8-node mesh elements (bricks) or 27-node elements. -# If you use our internal mesher, the only option is 8-node bricks (27-node elements are not supported). -NGNOD = 8 - -# models: -# available options are: -# default (model parameters described by mesh properties) -# 1D models available are: -# 1d_prem,1d_socal,1d_cascadia -# 3D models available are: -# aniso,external,gll,salton_trough,tomo,SEP,coupled,... -MODEL = default - -# path for external tomographic models files -TOMOGRAPHY_PATH = DATA/tomo_files/ -# if you are using a SEP model (oil-industry format) -SEP_MODEL_DIRECTORY = DATA/my_SEP_model/ - -#----------------------------------------------------------- - -# parameters describing the model -APPROXIMATE_OCEAN_LOAD = .false. -TOPOGRAPHY = .false. -ATTENUATION = .false. -ANISOTROPY = .false. -GRAVITY = .false. - -# in case of attenuation, reference frequency in Hz at which the velocity values in the velocity model are given (unused otherwise) -ATTENUATION_f0_REFERENCE = 18.d0 - -# attenuation period range over which we try to mimic a constant Q factor -MIN_ATTENUATION_PERIOD = 999999998.d0 -MAX_ATTENUATION_PERIOD = 999999999.d0 -# ignore this range and ask the code to compute it automatically instead based on the estimated resolution of the mesh (use this unless you know what you are doing) -COMPUTE_FREQ_BAND_AUTOMATIC = .true. - -# Olsen's constant for Q_mu = constant * V_s attenuation rule -USE_OLSEN_ATTENUATION = .false. -OLSEN_ATTENUATION_RATIO = 0.05 - -#----------------------------------------------------------- -# -# Absorbing boundary conditions -# -#----------------------------------------------------------- - -# C-PML boundary conditions for a regional simulation -# (if set to .false., and STACEY_ABSORBING_CONDITIONS is also set to .false., you get a free surface instead -# in the case of elastic or viscoelastic mesh elements, and a rigid surface in the case of acoustic (fluid) elements -PML_CONDITIONS = .false. - -# C-PML top surface -PML_INSTEAD_OF_FREE_SURFACE = .false. - -# C-PML dominant frequency -f0_FOR_PML = 0.05555 - -# parameters used to rotate C-PML boundary conditions by a given angle (not completed yet) -# ROTATE_PML_ACTIVATE = .false. -# ROTATE_PML_ANGLE = 0. - -# absorbing boundary conditions for a regional simulation -# (if set to .false., and PML_CONDITIONS is also set to .false., you get a free surface instead -# in the case of elastic or viscoelastic mesh elements, and a rigid surface in the case of acoustic (fluid) elements -STACEY_ABSORBING_CONDITIONS = .true. - -# absorbing top surface (defined in mesh as 'free_surface_file') -STACEY_INSTEAD_OF_FREE_SURFACE = .false. - -# When STACEY_ABSORBING_CONDITIONS is set to .true. : -# absorbing conditions are defined in xmin, xmax, ymin, ymax and zmin -# this option BOTTOM_FREE_SURFACE can be set to .true. to -# make zmin free surface instead of absorbing condition -BOTTOM_FREE_SURFACE = .false. - -#----------------------------------------------------------- -# -# undoing attenuation and/or PMLs for sensitivity kernel calculations -# -#----------------------------------------------------------- - -# to undo attenuation and/or PMLs for sensitivity kernel calculations or forward runs with SAVE_FORWARD -# use the flag below. It performs undoing of attenuation and/or of PMLs in an exact way for sensitivity kernel calculations -# but requires disk space for temporary storage, and uses a significant amount of memory used as buffers for temporary storage. -# When that option is on the second parameter indicates how often the code dumps restart files to disk (if in doubt, use something between 100 and 1000). -UNDO_ATTENUATION_AND_OR_PML = .false. -NT_DUMP_ATTENUATION = 500 - -#----------------------------------------------------------- -# -# Visualization -# -#----------------------------------------------------------- - -# save AVS or OpenDX movies -# MOVIE_TYPE = 1 to show the top surface -# MOVIE_TYPE = 2 to show all the external faces of the mesh -CREATE_SHAKEMAP = .false. -MOVIE_SURFACE = .false. -MOVIE_TYPE = 1 -MOVIE_VOLUME = .false. -SAVE_DISPLACEMENT = .false. -USE_HIGHRES_FOR_MOVIES = .false. -NTSTEP_BETWEEN_FRAMES = 200 -HDUR_MOVIE = 0.0 - -# save AVS or OpenDX mesh files to check the mesh -SAVE_MESH_FILES = .true. - -# path to store the local database file on each node -LOCAL_PATH = OUTPUT_FILES/DATABASES_MPI - -# interval at which we output time step info and max of norm of displacement -NTSTEP_BETWEEN_OUTPUT_INFO = 500 - -#----------------------------------------------------------- -# -# Sources -# -#----------------------------------------------------------- - -# sources and receivers Z coordinates given directly (i.e. as their true position) instead of as their depth -USE_SOURCES_RECEIVERS_Z = .false. - -# use a (tilted) FORCESOLUTION force point source (or several) instead of a CMTSOLUTION moment-tensor source. -# This can be useful e.g. for oil industry foothills simulations or asteroid simulations -# in which the source is a vertical force, normal force, tilted force, impact etc. -# If this flag is turned on, the FORCESOLUTION file must be edited by giving: -# - the corresponding time-shift parameter, -# - the half duration parameter of the source, -# - the coordinates of the source, -# - the magnitude of the force source, -# - the components of a (non necessarily unitary) direction vector for the force source in the E/N/Z_UP basis. -# The direction vector is made unitary internally in the code and thus only its direction matters here; -# its norm is ignored and the norm of the force used is the factor force source times the source time function. -USE_FORCE_POINT_SOURCE = .false. - -# set to true to use a Ricker source time function instead of the source time functions set by default -# to represent a (tilted) FORCESOLUTION force point source or a CMTSOLUTION moment-tensor source. -USE_RICKER_TIME_FUNCTION = .false. - -# Use an external source time function. -# if .true. you must add a file with your source time function and the file name -# path relative to lauching directory at the end of CMTSOLUTION or FORCESOURCE file -# (with multiple sources, one file per source is required). -# This file must have a single column containing the amplitude of the source at that time step, -# and on its first line it must contain the time step used, which must be equal to DT as defined at the beginning of this Par_file (the code will check that). -# Be sure when this option is .false. to remove the name of stf file in CMTSOLUTION or FORCESOURCE -USE_EXTERNAL_SOURCE_FILE = .false. - -# print source time function -PRINT_SOURCE_TIME_FUNCTION = .false. - -# source encoding -# (for acoustic simulations only for now) determines source encoding factor +/-1 depending on sign of moment tensor -# (see e.g. Krebs et al., 2009. Fast full-wavefield seismic inversion using encoded sources, Geophysics, 74 (6), WCC177-WCC188.) -USE_SOURCE_ENCODING = .false. - -#----------------------------------------------------------- -# -# Seismograms -# -#----------------------------------------------------------- - -# interval in time steps for writing of seismograms -NTSTEP_BETWEEN_OUTPUT_SEISMOS = 10000 - -# set to n to reduce the sampling rate of output seismograms by a factor of n -# defaults to 1, which means no down-sampling -NTSTEP_BETWEEN_OUTPUT_SAMPLE = 1 - -# decide if we save displacement, velocity, acceleration and/or pressure in forward runs (they can be set to true simultaneously) -# currently pressure seismograms are implemented in acoustic (i.e. fluid) elements only -SAVE_SEISMOGRAMS_DISPLACEMENT = .true. -SAVE_SEISMOGRAMS_VELOCITY = .false. -SAVE_SEISMOGRAMS_ACCELERATION = .false. -SAVE_SEISMOGRAMS_PRESSURE = .false. # currently implemented in acoustic (i.e. fluid) elements only - -# save seismograms also when running the adjoint runs for an inverse problem -# (usually they are unused and not very meaningful, leave this off in almost all cases) -SAVE_SEISMOGRAMS_IN_ADJOINT_RUN = .true. - -# save seismograms in binary or ASCII format (binary is smaller but may not be portable between machines) -USE_BINARY_FOR_SEISMOGRAMS = .false. - -# output seismograms in Seismic Unix format (binary with 240-byte-headers) -SU_FORMAT = .false. - -# output seismograms in ASDF (requires asdf-library) -ASDF_FORMAT = .false. - -# decide if main process writes all the seismograms or if all processes do it in parallel -WRITE_SEISMOGRAMS_BY_MAIN = .false. - -# save all seismograms in one large combined file instead of one file per seismogram -# to avoid overloading shared non-local file systems such as LUSTRE or GPFS for instance -SAVE_ALL_SEISMOS_IN_ONE_FILE = .false. - -# use a trick to increase accuracy of pressure seismograms in fluid (acoustic) elements: -# use the second derivative of the source for the source time function instead of the source itself, -# and then record -potential_acoustic() as pressure seismograms instead of -potential_dot_dot_acoustic(); -# this is mathematically equivalent, but numerically significantly more accurate because in the explicit -# Newmark time scheme acceleration is accurate at zeroth order while displacement is accurate at second order, -# thus in fluid elements potential_dot_dot_acoustic() is accurate at zeroth order while potential_acoustic() -# is accurate at second order and thus contains significantly less numerical noise. -USE_TRICK_FOR_BETTER_PRESSURE = .false. - -#----------------------------------------------------------- -# -# Energy calculation -# -#----------------------------------------------------------- - -# to plot energy curves, for instance to monitor how CPML absorbing layers behave; -# should be turned OFF in most cases because a bit expensive -OUTPUT_ENERGY = .false. -# every how many time steps we compute energy (which is a bit expensive to compute) -NTSTEP_BETWEEN_OUTPUT_ENERGY = 10 - -#----------------------------------------------------------- -# -# Adjoint kernel outputs -# -#----------------------------------------------------------- - -# interval in time steps for reading adjoint traces -# 0 = read the whole adjoint sources at start time -NTSTEP_BETWEEN_READ_ADJSRC = 0 - -# read adjoint sources using ASDF (requires asdf-library) -READ_ADJSRC_ASDF = .false. - -# this parameter must be set to .true. to compute anisotropic kernels -# in crust and mantle (related to the 21 Cij in geographical coordinates) -# default is .false. to compute isotropic kernels (related to alpha and beta) -ANISOTROPIC_KL = .false. - -# compute transverse isotropic kernels (alpha_v,alpha_h,beta_v,beta_h,eta,rho) -# rather than fully anisotropic kernels in case ANISOTROPIC_KL is set to .true. -SAVE_TRANSVERSE_KL = .false. - -# this parameter must be set to .true. to compute anisotropic kernels for -# cost function using velocity observable rather than displacement -ANISOTROPIC_VELOCITY_KL = .false. - -# outputs approximate Hessian for preconditioning -APPROXIMATE_HESS_KL = .false. - -# save Moho mesh and compute Moho boundary kernels -SAVE_MOHO_MESH = .false. - -#----------------------------------------------------------- -# -# Coupling with an injection technique (DSM, AxiSEM, or FK) -# -#----------------------------------------------------------- -COUPLE_WITH_INJECTION_TECHNIQUE = .false. -INJECTION_TECHNIQUE_TYPE = 3 # 1 = DSM, 2 = AxiSEM, 3 = FK -MESH_A_CHUNK_OF_THE_EARTH = .false. -TRACTION_PATH = DATA/AxiSEM_tractions/3/ -FKMODEL_FILE = FKmodel -RECIPROCITY_AND_KH_INTEGRAL = .false. # does not work yet - -#----------------------------------------------------------- - -# Dimitri Komatitsch, July 2014, CNRS Marseille, France: -# added the ability to run several calculations (several earthquakes) -# in an embarrassingly-parallel fashion from within the same run; -# this can be useful when using a very large supercomputer to compute -# many earthquakes in a catalog, in which case it can be better from -# a batch job submission point of view to start fewer and much larger jobs, -# each of them computing several earthquakes in parallel. -# To turn that option on, set parameter NUMBER_OF_SIMULTANEOUS_RUNS to a value greater than 1. -# To implement that, we create NUMBER_OF_SIMULTANEOUS_RUNS MPI sub-communicators, -# each of them being labeled "my_local_mpi_comm_world", and we use them -# in all the routines in "src/shared/parallel.f90", except in MPI_ABORT() because in that case -# we need to kill the entire run. -# When that option is on, of course the number of processor cores used to start -# the code in the batch system must be a multiple of NUMBER_OF_SIMULTANEOUS_RUNS, -# all the individual runs must use the same number of processor cores, -# which as usual is NPROC in the Par_file, -# and thus the total number of processor cores to request from the batch system -# should be NUMBER_OF_SIMULTANEOUS_RUNS * NPROC. -# All the runs to perform must be placed in directories called run0001, run0002, run0003 and so on -# (with exactly four digits). -# -# Imagine you have 10 independent calculations to do, each of them on 100 cores; you have three options: -# -# 1/ submit 10 jobs to the batch system -# -# 2/ submit a single job on 1000 cores to the batch, and in that script create a sub-array of jobs to start 10 jobs, -# each running on 100 cores (see e.g. http://www.schedmd.com/slurmdocs/job_array.html ) -# -# 3/ submit a single job on 1000 cores to the batch, start SPECFEM3D on 1000 cores, create 10 sub-communicators, -# cd into one of 10 subdirectories (called e.g. run0001, run0002,... run0010) depending on the sub-communicator -# your MPI rank belongs to, and run normally on 100 cores using that sub-communicator. -# -# The option below implements 3/. -# -NUMBER_OF_SIMULTANEOUS_RUNS = 1 - -# if we perform simultaneous runs in parallel, if only the source and receivers vary between these runs -# but not the mesh nor the model (velocity and density) then we can also read the mesh and model files -# from a single run in the beginning and broadcast them to all the others; for a large number of simultaneous -# runs for instance when solving inverse problems iteratively this can DRASTICALLY reduce I/Os to disk in the solver -# (by a factor equal to NUMBER_OF_SIMULTANEOUS_RUNS), and reducing I/Os is crucial in the case of huge runs. -# Thus, always set this option to .true. if the mesh and the model are the same for all simultaneous runs. -# In that case there is no need to duplicate the mesh and model file database (the content of the DATABASES_MPI -# directories) in each of the run0001, run0002,... directories, it is sufficient to have one in run0001 -# and the code will broadcast it to the others) -BROADCAST_SAME_MESH_AND_MODEL = .true. - -#----------------------------------------------------------- - -# set to true to use GPUs -GPU_MODE = .false. - -# ADIOS Options for I/Os -ADIOS_ENABLED = .false. -ADIOS_FOR_DATABASES = .false. -ADIOS_FOR_MESH = .false. -ADIOS_FOR_FORWARD_ARRAYS = .false. -ADIOS_FOR_KERNELS = .false. -ADIOS_FOR_UNDO_ATTENUATION = .false. - diff --git a/seisflows/tests/test_data/hold/specfem/DATA/SOURCE_cf893667 b/seisflows/tests/test_data/hold/specfem/DATA/SOURCE_cf893667 deleted file mode 100644 index 3170a66b..00000000 --- a/seisflows/tests/test_data/hold/specfem/DATA/SOURCE_cf893667 +++ /dev/null @@ -1,57 +0,0 @@ -## Source 1 -source_surf = .false. # source inside the medium, or source automatically moved exactly at the surface by the solver -xs = 2500. # source location x in meters -zs = 2500. # source location z in meters (zs is ignored if source_surf is set to true, it is replaced with the topography height) -## Source type parameters: -# 1 = elastic force or acoustic pressure -# 2 = moment tensor -# or Initial field type (when initialfield set in Par_file): -# For a plane wave including converted and reflected waves at the free surface: -# 1 = P wave, -# 2 = S wave, -# 3 = Rayleigh wave -# For a plane wave without converted nor reflected waves at the free surface, i.e. with the incident wave only: -# 4 = P wave, -# 5 = S wave -# For initial mode displacement: -# 6 = mode (2,3) of a rectangular membrane -source_type = 1 -# Source time function: -# In the case of a source located in an acoustic medium, -# to get pressure for a Ricker in the seismograms, here we need to select a Gaussian for the potential Chi -# used as a source, rather than a Ricker, because pressure = - Chi_dot_dot. -# This is true both when USE_TRICK_FOR_BETTER_PRESSURE is set to .true. or to .false. -# Options: -# 1 = second derivative of a Gaussian (a.k.a. Ricker), -# 2 = first derivative of a Gaussian, -# 3 = Gaussian, -# 4 = Dirac, -# 5 = Heaviside (4 and 5 will produce noisy recordings because of frequencies above the mesh resolution limit), -# 6 = ocean acoustics type I, -# 7 = ocean acoustics type II, -# 8 = external source time function = 8 (source read from file), -# 9 = burst, -# 10 = Sinus source time function, -# 11 = Marmousi Ormsby wavelet -time_function_type = 1 -# If time_function_type == 8, enter below the custom source file to read (two columns file with time and amplitude) : -# (For the moment dt must be equal to the dt of the simulation. File name cannot exceed 150 characters) -# IMPORTANT: do NOT put quote signs around the file name, just put the file name itself otherwise the run will stop -name_of_source_file = YYYYYYYY # Only for option 8 : file containing the source wavelet -burst_band_width = 0. # Only for option 9 : band width of the burst -f0 = 10.0 # dominant source frequency (Hz) if not Dirac or Heaviside -tshift = 0.0 # time shift when multi sources (if one source, must be zero) -## Force source -# angle of the source (for a force only); for a plane wave, this is the incidence angle; for moment tensor sources this is unused -anglesource = 0. -## Moment tensor -# The components of a moment tensor source must be given in N.m, not in dyne.cm as in the DATA/CMTSOLUTION source file of the 3D version of the code. -Mxx = 1. # Mxx component (for a moment tensor source only) -Mzz = 1. # Mzz component (for a moment tensor source only) -Mxz = 0. # Mxz component (for a moment tensor source only) -## Amplification (factor to amplify source time function) -factor = 1.d10 # amplification factor -## Moving source parameters -vx = 0.0 # Horizontal source velocity (m/s) -vz = 0.0 # Vertical source velocity (m/s) - diff --git a/seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/AA.S0001.BXY.semd b/seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/AA.S0001.BXY.semd deleted file mode 100644 index 082a0be7..00000000 --- a/seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/AA.S0001.BXY.semd +++ /dev/null @@ -1,5000 +0,0 @@ - -48.000000000000000 0.0000000000000000 - -47.939999999999998 0.0000000000000000 - -47.880000000000003 0.0000000000000000 - -47.820000000000000 0.0000000000000000 - -47.759999999999998 0.0000000000000000 - -47.700000000000003 0.0000000000000000 - -47.640000000000001 0.0000000000000000 - -47.579999999999998 0.0000000000000000 - -47.520000000000003 0.0000000000000000 - -47.460000000000001 0.0000000000000000 - -47.399999999999999 0.0000000000000000 - -47.340000000000003 0.0000000000000000 - -47.280000000000001 0.0000000000000000 - -47.219999999999999 0.0000000000000000 - -47.159999999999997 0.0000000000000000 - -47.100000000000001 0.0000000000000000 - -47.039999999999999 0.0000000000000000 - -46.979999999999997 0.0000000000000000 - -46.920000000000002 0.0000000000000000 - -46.859999999999999 0.0000000000000000 - -46.799999999999997 0.0000000000000000 - -46.740000000000002 0.0000000000000000 - -46.680000000000000 0.0000000000000000 - -46.619999999999997 0.0000000000000000 - -46.560000000000002 0.0000000000000000 - -46.500000000000000 0.0000000000000000 - -46.439999999999998 0.0000000000000000 - -46.380000000000003 0.0000000000000000 - -46.320000000000000 0.0000000000000000 - -46.259999999999998 0.0000000000000000 - -46.200000000000003 0.0000000000000000 - -46.140000000000001 0.0000000000000000 - -46.079999999999998 0.0000000000000000 - -46.020000000000003 0.0000000000000000 - -45.960000000000001 0.0000000000000000 - -45.899999999999999 0.0000000000000000 - -45.840000000000003 0.0000000000000000 - -45.780000000000001 0.0000000000000000 - -45.719999999999999 0.0000000000000000 - -45.659999999999997 0.0000000000000000 - -45.600000000000001 0.0000000000000000 - -45.539999999999999 0.0000000000000000 - -45.479999999999997 0.0000000000000000 - -45.420000000000002 0.0000000000000000 - -45.359999999999999 0.0000000000000000 - -45.299999999999997 0.0000000000000000 - -45.240000000000002 0.0000000000000000 - -45.180000000000000 0.0000000000000000 - -45.119999999999997 0.0000000000000000 - -45.060000000000002 0.0000000000000000 - -45.000000000000000 0.0000000000000000 - -44.939999999999998 0.0000000000000000 - -44.880000000000003 0.0000000000000000 - -44.820000000000000 0.0000000000000000 - -44.759999999999998 0.0000000000000000 - -44.700000000000003 0.0000000000000000 - -44.640000000000001 0.0000000000000000 - -44.579999999999998 0.0000000000000000 - -44.520000000000003 0.0000000000000000 - -44.460000000000001 0.0000000000000000 - -44.399999999999999 0.0000000000000000 - -44.340000000000003 0.0000000000000000 - -44.280000000000001 0.0000000000000000 - -44.219999999999999 0.0000000000000000 - -44.159999999999997 0.0000000000000000 - -44.100000000000001 0.0000000000000000 - -44.039999999999999 0.0000000000000000 - -43.980000000000004 0.0000000000000000 - -43.920000000000002 0.0000000000000000 - -43.859999999999999 0.0000000000000000 - -43.799999999999997 0.0000000000000000 - -43.740000000000002 0.0000000000000000 - -43.680000000000000 0.0000000000000000 - -43.619999999999997 0.0000000000000000 - -43.560000000000002 0.0000000000000000 - -43.500000000000000 0.0000000000000000 - -43.439999999999998 0.0000000000000000 - -43.380000000000003 0.0000000000000000 - -43.320000000000000 0.0000000000000000 - -43.259999999999998 0.0000000000000000 - -43.200000000000003 0.0000000000000000 - -43.140000000000001 0.0000000000000000 - -43.079999999999998 0.0000000000000000 - -43.020000000000003 0.0000000000000000 - -42.960000000000001 0.0000000000000000 - -42.899999999999999 0.0000000000000000 - -42.840000000000003 0.0000000000000000 - -42.780000000000001 0.0000000000000000 - -42.719999999999999 0.0000000000000000 - -42.659999999999997 0.0000000000000000 - -42.600000000000001 0.0000000000000000 - -42.539999999999999 0.0000000000000000 - -42.480000000000004 0.0000000000000000 - -42.420000000000002 0.0000000000000000 - -42.359999999999999 0.0000000000000000 - -42.299999999999997 0.0000000000000000 - -42.240000000000002 0.0000000000000000 - -42.180000000000000 0.0000000000000000 - -42.119999999999997 0.0000000000000000 - -42.060000000000002 0.0000000000000000 - -42.000000000000000 0.0000000000000000 - -41.939999999999998 0.0000000000000000 - -41.880000000000003 0.0000000000000000 - -41.820000000000000 0.0000000000000000 - -41.759999999999998 0.0000000000000000 - -41.700000000000003 0.0000000000000000 - -41.640000000000001 0.0000000000000000 - -41.579999999999998 0.0000000000000000 - -41.520000000000003 0.0000000000000000 - -41.460000000000001 0.0000000000000000 - -41.399999999999999 0.0000000000000000 - -41.340000000000003 0.0000000000000000 - -41.280000000000001 0.0000000000000000 - -41.219999999999999 0.0000000000000000 - -41.159999999999997 0.0000000000000000 - -41.100000000000001 0.0000000000000000 - -41.039999999999999 0.0000000000000000 - -40.980000000000004 0.0000000000000000 - -40.920000000000002 0.0000000000000000 - -40.859999999999999 0.0000000000000000 - -40.799999999999997 0.0000000000000000 - -40.740000000000002 0.0000000000000000 - -40.680000000000000 0.0000000000000000 - -40.619999999999997 0.0000000000000000 - -40.560000000000002 0.0000000000000000 - -40.500000000000000 0.0000000000000000 - -40.439999999999998 0.0000000000000000 - -40.380000000000003 0.0000000000000000 - -40.320000000000000 0.0000000000000000 - -40.259999999999998 0.0000000000000000 - -40.200000000000003 0.0000000000000000 - -40.140000000000001 0.0000000000000000 - -40.079999999999998 0.0000000000000000 - -40.020000000000003 0.0000000000000000 - -39.960000000000001 0.0000000000000000 - -39.899999999999999 0.0000000000000000 - -39.840000000000003 0.0000000000000000 - -39.780000000000001 0.0000000000000000 - -39.719999999999999 0.0000000000000000 - -39.659999999999997 0.0000000000000000 - -39.600000000000001 0.0000000000000000 - -39.539999999999999 0.0000000000000000 - -39.480000000000004 0.0000000000000000 - -39.420000000000002 0.0000000000000000 - -39.359999999999999 0.0000000000000000 - -39.299999999999997 0.0000000000000000 - -39.240000000000002 0.0000000000000000 - -39.180000000000000 0.0000000000000000 - -39.120000000000005 0.0000000000000000 - -39.060000000000002 0.0000000000000000 - -39.000000000000000 0.0000000000000000 - -38.939999999999998 0.0000000000000000 - -38.880000000000003 0.0000000000000000 - -38.820000000000000 0.0000000000000000 - -38.759999999999998 0.0000000000000000 - -38.700000000000003 0.0000000000000000 - -38.640000000000001 0.0000000000000000 - -38.579999999999998 0.0000000000000000 - -38.519999999999996 0.0000000000000000 - -38.460000000000001 0.0000000000000000 - -38.399999999999999 0.0000000000000000 - -38.340000000000003 0.0000000000000000 - -38.280000000000001 0.0000000000000000 - -38.219999999999999 0.0000000000000000 - -38.159999999999997 0.0000000000000000 - -38.100000000000001 0.0000000000000000 - -38.039999999999999 0.0000000000000000 - -37.980000000000004 0.0000000000000000 - -37.920000000000002 0.0000000000000000 - -37.859999999999999 0.0000000000000000 - -37.799999999999997 0.0000000000000000 - -37.740000000000002 0.0000000000000000 - -37.680000000000000 0.0000000000000000 - -37.620000000000005 0.0000000000000000 - -37.560000000000002 0.0000000000000000 - -37.500000000000000 0.0000000000000000 - -37.439999999999998 0.0000000000000000 - -37.380000000000003 0.0000000000000000 - -37.320000000000000 0.0000000000000000 - -37.259999999999998 0.0000000000000000 - -37.200000000000003 0.0000000000000000 - -37.140000000000001 0.0000000000000000 - -37.079999999999998 0.0000000000000000 - -37.019999999999996 0.0000000000000000 - -36.960000000000001 0.0000000000000000 - -36.899999999999999 0.0000000000000000 - -36.840000000000003 0.0000000000000000 - -36.780000000000001 0.0000000000000000 - -36.719999999999999 0.0000000000000000 - -36.659999999999997 0.0000000000000000 - -36.600000000000001 0.0000000000000000 - -36.539999999999999 0.0000000000000000 - -36.480000000000004 0.0000000000000000 - -36.420000000000002 0.0000000000000000 - -36.359999999999999 0.0000000000000000 - -36.299999999999997 0.0000000000000000 - -36.240000000000002 0.0000000000000000 - -36.180000000000000 0.0000000000000000 - -36.120000000000005 0.0000000000000000 - -36.060000000000002 0.0000000000000000 - -36.000000000000000 0.0000000000000000 - -35.939999999999998 0.0000000000000000 - -35.880000000000003 0.0000000000000000 - -35.820000000000000 0.0000000000000000 - -35.759999999999998 0.0000000000000000 - -35.700000000000003 0.0000000000000000 - -35.640000000000001 0.0000000000000000 - -35.579999999999998 0.0000000000000000 - -35.519999999999996 0.0000000000000000 - -35.460000000000001 0.0000000000000000 - -35.399999999999999 0.0000000000000000 - -35.340000000000003 0.0000000000000000 - -35.280000000000001 0.0000000000000000 - -35.219999999999999 0.0000000000000000 - -35.159999999999997 0.0000000000000000 - -35.100000000000001 0.0000000000000000 - -35.039999999999999 0.0000000000000000 - -34.980000000000004 0.0000000000000000 - -34.920000000000002 0.0000000000000000 - -34.859999999999999 0.0000000000000000 - -34.799999999999997 0.0000000000000000 - -34.740000000000002 0.0000000000000000 - -34.680000000000000 0.0000000000000000 - -34.620000000000005 0.0000000000000000 - -34.560000000000002 0.0000000000000000 - -34.500000000000000 0.0000000000000000 - -34.439999999999998 0.0000000000000000 - -34.380000000000003 0.0000000000000000 - -34.320000000000000 0.0000000000000000 - -34.259999999999998 0.0000000000000000 - -34.200000000000003 0.0000000000000000 - -34.140000000000001 0.0000000000000000 - -34.079999999999998 0.0000000000000000 - -34.020000000000003 0.0000000000000000 - -33.960000000000001 0.0000000000000000 - -33.899999999999999 0.0000000000000000 - -33.840000000000003 0.0000000000000000 - -33.780000000000001 0.0000000000000000 - -33.719999999999999 0.0000000000000000 - -33.659999999999997 0.0000000000000000 - -33.600000000000001 0.0000000000000000 - -33.539999999999999 0.0000000000000000 - -33.480000000000004 0.0000000000000000 - -33.420000000000002 0.0000000000000000 - -33.359999999999999 0.0000000000000000 - -33.299999999999997 0.0000000000000000 - -33.240000000000002 0.0000000000000000 - -33.180000000000000 0.0000000000000000 - -33.120000000000005 0.0000000000000000 - -33.060000000000002 0.0000000000000000 - -33.000000000000000 0.0000000000000000 - -32.939999999999998 0.0000000000000000 - -32.880000000000003 0.0000000000000000 - -32.820000000000000 0.0000000000000000 - -32.759999999999998 0.0000000000000000 - -32.700000000000003 0.0000000000000000 - -32.640000000000001 0.0000000000000000 - -32.579999999999998 0.0000000000000000 - -32.520000000000003 0.0000000000000000 - -32.460000000000001 0.0000000000000000 - -32.399999999999999 0.0000000000000000 - -32.340000000000003 0.0000000000000000 - -32.280000000000001 0.0000000000000000 - -32.219999999999999 0.0000000000000000 - -32.159999999999997 0.0000000000000000 - -32.100000000000001 0.0000000000000000 - -32.039999999999999 0.0000000000000000 - -31.980000000000000 0.0000000000000000 - -31.920000000000002 0.0000000000000000 - -31.859999999999999 0.0000000000000000 - -31.800000000000001 0.0000000000000000 - -31.740000000000002 0.0000000000000000 - -31.680000000000000 0.0000000000000000 - -31.620000000000001 0.0000000000000000 - -31.560000000000002 0.0000000000000000 - -31.500000000000000 0.0000000000000000 - -31.440000000000001 0.0000000000000000 - -31.379999999999999 0.0000000000000000 - -31.320000000000000 0.0000000000000000 - -31.260000000000002 0.0000000000000000 - -31.199999999999999 0.0000000000000000 - -31.140000000000001 0.0000000000000000 - -31.080000000000002 0.0000000000000000 - -31.020000000000000 0.0000000000000000 - -30.960000000000001 0.0000000000000000 - -30.900000000000002 0.0000000000000000 - -30.840000000000000 0.0000000000000000 - -30.780000000000001 0.0000000000000000 - -30.719999999999999 0.0000000000000000 - -30.660000000000000 0.0000000000000000 - -30.600000000000001 0.0000000000000000 - -30.539999999999999 0.0000000000000000 - -30.480000000000000 0.0000000000000000 - -30.420000000000002 0.0000000000000000 - -30.359999999999999 0.0000000000000000 - -30.300000000000001 0.0000000000000000 - -30.240000000000002 0.0000000000000000 - -30.180000000000000 0.0000000000000000 - -30.120000000000001 0.0000000000000000 - -30.060000000000002 0.0000000000000000 - -30.000000000000000 0.0000000000000000 - -29.940000000000001 0.0000000000000000 - -29.879999999999999 0.0000000000000000 - -29.820000000000000 0.0000000000000000 - -29.760000000000002 0.0000000000000000 - -29.699999999999999 0.0000000000000000 - -29.640000000000001 0.0000000000000000 - -29.580000000000002 0.0000000000000000 - -29.520000000000000 0.0000000000000000 - -29.460000000000001 0.0000000000000000 - -29.400000000000002 0.0000000000000000 - -29.340000000000000 0.0000000000000000 - -29.280000000000001 0.0000000000000000 - -29.220000000000002 0.0000000000000000 - -29.160000000000000 0.0000000000000000 - -29.100000000000001 0.0000000000000000 - -29.039999999999999 0.0000000000000000 - -28.980000000000000 0.0000000000000000 - -28.920000000000002 0.0000000000000000 - -28.859999999999999 0.0000000000000000 - -28.800000000000001 0.0000000000000000 - -28.740000000000002 0.0000000000000000 - -28.680000000000000 0.0000000000000000 - -28.620000000000001 0.0000000000000000 - -28.560000000000002 0.0000000000000000 - -28.500000000000000 0.0000000000000000 - -28.440000000000001 0.0000000000000000 - -28.379999999999999 0.0000000000000000 - -28.320000000000000 0.0000000000000000 - -28.260000000000002 0.0000000000000000 - -28.199999999999999 0.0000000000000000 - -28.140000000000001 0.0000000000000000 - -28.080000000000002 0.0000000000000000 - -28.020000000000000 0.0000000000000000 - -27.960000000000001 0.0000000000000000 - -27.900000000000002 0.0000000000000000 - -27.840000000000000 0.0000000000000000 - -27.780000000000001 0.0000000000000000 - -27.720000000000002 0.0000000000000000 - -27.660000000000000 0.0000000000000000 - -27.600000000000001 0.0000000000000000 - -27.539999999999999 0.0000000000000000 - -27.480000000000000 0.0000000000000000 - -27.420000000000002 0.0000000000000000 - -27.359999999999999 0.0000000000000000 - -27.300000000000001 0.0000000000000000 - -27.240000000000002 0.0000000000000000 - -27.180000000000000 0.0000000000000000 - -27.120000000000001 0.0000000000000000 - -27.060000000000002 0.0000000000000000 - -27.000000000000000 0.0000000000000000 - -26.940000000000001 0.0000000000000000 - -26.880000000000003 0.0000000000000000 - -26.820000000000000 0.0000000000000000 - -26.760000000000002 0.0000000000000000 - -26.699999999999999 0.0000000000000000 - -26.640000000000001 0.0000000000000000 - -26.580000000000002 0.0000000000000000 - -26.520000000000000 0.0000000000000000 - -26.460000000000001 0.0000000000000000 - -26.400000000000002 0.0000000000000000 - -26.340000000000000 0.0000000000000000 - -26.280000000000001 0.0000000000000000 - -26.220000000000002 0.0000000000000000 - -26.160000000000000 0.0000000000000000 - -26.100000000000001 0.0000000000000000 - -26.039999999999999 0.0000000000000000 - -25.980000000000000 0.0000000000000000 - -25.920000000000002 0.0000000000000000 - -25.859999999999999 0.0000000000000000 - -25.800000000000001 0.0000000000000000 - -25.740000000000002 0.0000000000000000 - -25.680000000000000 0.0000000000000000 - -25.620000000000001 0.0000000000000000 - -25.560000000000002 0.0000000000000000 - -25.500000000000000 0.0000000000000000 - -25.440000000000001 0.0000000000000000 - -25.380000000000003 0.0000000000000000 - -25.320000000000000 0.0000000000000000 - -25.260000000000002 0.0000000000000000 - -25.199999999999999 0.0000000000000000 - -25.140000000000001 0.0000000000000000 - -25.080000000000002 0.0000000000000000 - -25.020000000000000 0.0000000000000000 - -24.960000000000001 0.0000000000000000 - -24.900000000000002 0.0000000000000000 - -24.840000000000000 0.0000000000000000 - -24.780000000000001 0.0000000000000000 - -24.720000000000002 0.0000000000000000 - -24.660000000000000 0.0000000000000000 - -24.600000000000001 0.0000000000000000 - -24.539999999999999 0.0000000000000000 - -24.480000000000000 0.0000000000000000 - -24.420000000000002 0.0000000000000000 - -24.359999999999999 0.0000000000000000 - -24.300000000000001 0.0000000000000000 - -24.240000000000002 0.0000000000000000 - -24.180000000000000 0.0000000000000000 - -24.120000000000001 0.0000000000000000 - -24.060000000000002 0.0000000000000000 - -24.000000000000000 0.0000000000000000 - -23.940000000000001 0.0000000000000000 - -23.880000000000003 0.0000000000000000 - -23.820000000000000 0.0000000000000000 - -23.760000000000002 0.0000000000000000 - -23.699999999999999 0.0000000000000000 - -23.640000000000001 0.0000000000000000 - -23.580000000000002 0.0000000000000000 - -23.520000000000000 0.0000000000000000 - -23.460000000000001 0.0000000000000000 - -23.400000000000002 0.0000000000000000 - -23.340000000000000 0.0000000000000000 - -23.280000000000001 0.0000000000000000 - -23.220000000000002 0.0000000000000000 - -23.160000000000000 0.0000000000000000 - -23.100000000000001 0.0000000000000000 - -23.039999999999999 0.0000000000000000 - -22.980000000000000 0.0000000000000000 - -22.920000000000002 0.0000000000000000 - -22.859999999999999 0.0000000000000000 - -22.800000000000001 0.0000000000000000 - -22.740000000000002 0.0000000000000000 - -22.680000000000000 0.0000000000000000 - -22.620000000000001 0.0000000000000000 - -22.560000000000002 0.0000000000000000 - -22.500000000000000 0.0000000000000000 - -22.440000000000001 0.0000000000000000 - -22.380000000000003 0.0000000000000000 - -22.320000000000000 0.0000000000000000 - -22.260000000000002 0.0000000000000000 - -22.199999999999999 0.0000000000000000 - -22.140000000000001 0.0000000000000000 - -22.080000000000002 0.0000000000000000 - -22.020000000000000 0.0000000000000000 - -21.960000000000001 0.0000000000000000 - -21.900000000000002 0.0000000000000000 - -21.840000000000000 0.0000000000000000 - -21.780000000000001 0.0000000000000000 - -21.720000000000002 0.0000000000000000 - -21.660000000000000 0.0000000000000000 - -21.600000000000001 0.0000000000000000 - -21.540000000000003 0.0000000000000000 - -21.480000000000000 0.0000000000000000 - -21.420000000000002 0.0000000000000000 - -21.359999999999999 0.0000000000000000 - -21.300000000000001 0.0000000000000000 - -21.240000000000002 0.0000000000000000 - -21.180000000000000 0.0000000000000000 - -21.120000000000001 0.0000000000000000 - -21.060000000000002 0.0000000000000000 - -21.000000000000000 0.0000000000000000 - -20.940000000000001 0.0000000000000000 - -20.880000000000003 0.0000000000000000 - -20.820000000000000 0.0000000000000000 - -20.760000000000002 0.0000000000000000 - -20.699999999999999 0.0000000000000000 - -20.640000000000001 0.0000000000000000 - -20.580000000000002 0.0000000000000000 - -20.520000000000000 0.0000000000000000 - -20.460000000000001 0.0000000000000000 - -20.400000000000002 0.0000000000000000 - -20.340000000000000 0.0000000000000000 - -20.280000000000001 0.0000000000000000 - -20.220000000000002 0.0000000000000000 - -20.160000000000000 0.0000000000000000 - -20.100000000000001 0.0000000000000000 - -20.040000000000003 0.0000000000000000 - -19.980000000000000 0.0000000000000000 - -19.920000000000002 0.0000000000000000 - -19.859999999999999 0.0000000000000000 - -19.800000000000001 0.0000000000000000 - -19.740000000000002 0.0000000000000000 - -19.680000000000000 0.0000000000000000 - -19.620000000000001 0.0000000000000000 - -19.560000000000002 0.0000000000000000 - -19.500000000000000 0.0000000000000000 - -19.440000000000001 0.0000000000000000 - -19.380000000000003 0.0000000000000000 - -19.320000000000000 0.0000000000000000 - -19.260000000000002 0.0000000000000000 - -19.200000000000003 0.0000000000000000 - -19.140000000000001 0.0000000000000000 - -19.080000000000002 0.0000000000000000 - -19.020000000000000 0.0000000000000000 - -18.960000000000001 0.0000000000000000 - -18.900000000000002 0.0000000000000000 - -18.840000000000000 0.0000000000000000 - -18.780000000000001 0.0000000000000000 - -18.720000000000002 0.0000000000000000 - -18.660000000000000 0.0000000000000000 - -18.600000000000001 0.0000000000000000 - -18.540000000000003 0.0000000000000000 - -18.480000000000000 0.0000000000000000 - -18.420000000000002 0.0000000000000000 - -18.359999999999999 0.0000000000000000 - -18.300000000000001 0.0000000000000000 - -18.240000000000002 0.0000000000000000 - -18.180000000000000 0.0000000000000000 - -18.120000000000001 0.0000000000000000 - -18.060000000000002 0.0000000000000000 - -18.000000000000000 0.0000000000000000 - -17.940000000000001 0.0000000000000000 - -17.880000000000003 0.0000000000000000 - -17.820000000000000 0.0000000000000000 - -17.760000000000002 0.0000000000000000 - -17.700000000000003 0.0000000000000000 - -17.640000000000001 0.0000000000000000 - -17.580000000000002 0.0000000000000000 - -17.520000000000000 0.0000000000000000 - -17.460000000000001 0.0000000000000000 - -17.400000000000002 0.0000000000000000 - -17.340000000000000 0.0000000000000000 - -17.280000000000001 0.0000000000000000 - -17.220000000000002 0.0000000000000000 - -17.160000000000000 0.0000000000000000 - -17.100000000000001 0.0000000000000000 - -17.040000000000003 0.0000000000000000 - -16.980000000000000 0.0000000000000000 - -16.920000000000002 0.0000000000000000 - -16.859999999999999 0.0000000000000000 - -16.800000000000001 0.0000000000000000 - -16.740000000000002 0.0000000000000000 - -16.680000000000000 0.0000000000000000 - -16.620000000000001 0.0000000000000000 - -16.560000000000002 0.0000000000000000 - -16.500000000000000 0.0000000000000000 - -16.440000000000001 0.0000000000000000 - -16.380000000000003 0.0000000000000000 - -16.320000000000000 0.0000000000000000 - -16.260000000000002 0.0000000000000000 - -16.200000000000003 0.0000000000000000 - -16.140000000000001 0.0000000000000000 - -16.080000000000002 0.0000000000000000 - -16.020000000000000 0.0000000000000000 - -15.960000000000001 0.0000000000000000 - -15.899999999999999 0.0000000000000000 - -15.840000000000003 0.0000000000000000 - -15.780000000000001 0.0000000000000000 - -15.719999999999999 0.0000000000000000 - -15.660000000000004 0.0000000000000000 - -15.600000000000001 0.0000000000000000 - -15.539999999999999 0.0000000000000000 - -15.480000000000004 0.0000000000000000 - -15.420000000000002 0.0000000000000000 - -15.359999999999999 0.0000000000000000 - -15.300000000000004 0.0000000000000000 - -15.240000000000002 0.0000000000000000 - -15.180000000000000 0.0000000000000000 - -15.120000000000005 0.0000000000000000 - -15.060000000000002 0.0000000000000000 - -15.000000000000000 0.0000000000000000 - -14.939999999999998 0.0000000000000000 - -14.880000000000003 0.0000000000000000 - -14.820000000000000 0.0000000000000000 - -14.759999999999998 0.0000000000000000 - -14.700000000000003 0.0000000000000000 - -14.640000000000001 0.0000000000000000 - -14.579999999999998 0.0000000000000000 - -14.520000000000003 0.0000000000000000 - -14.460000000000001 0.0000000000000000 - -14.399999999999999 0.0000000000000000 - -14.340000000000003 0.0000000000000000 - -14.280000000000001 0.0000000000000000 - -14.219999999999999 0.0000000000000000 - -14.160000000000004 0.0000000000000000 - -14.100000000000001 0.0000000000000000 - -14.039999999999999 0.0000000000000000 - -13.980000000000004 0.0000000000000000 - -13.920000000000002 0.0000000000000000 - -13.859999999999999 0.0000000000000000 - -13.800000000000004 0.0000000000000000 - -13.740000000000002 0.0000000000000000 - -13.680000000000000 0.0000000000000000 - -13.620000000000005 0.0000000000000000 - -13.560000000000002 0.0000000000000000 - -13.500000000000000 0.0000000000000000 - -13.439999999999998 0.0000000000000000 - -13.380000000000003 0.0000000000000000 - -13.320000000000000 0.0000000000000000 - -13.259999999999998 0.0000000000000000 - -13.200000000000003 0.0000000000000000 - -13.140000000000001 0.0000000000000000 - -13.079999999999998 0.0000000000000000 - -13.020000000000003 0.0000000000000000 - -12.960000000000001 0.0000000000000000 - -12.899999999999999 0.0000000000000000 - -12.840000000000003 0.0000000000000000 - -12.780000000000001 0.0000000000000000 - -12.719999999999999 0.0000000000000000 - -12.660000000000004 0.0000000000000000 - -12.600000000000001 0.0000000000000000 - -12.539999999999999 0.0000000000000000 - -12.480000000000004 0.0000000000000000 - -12.420000000000002 0.0000000000000000 - -12.359999999999999 0.0000000000000000 - -12.300000000000004 0.0000000000000000 - -12.240000000000002 0.0000000000000000 - -12.180000000000000 0.0000000000000000 - -12.120000000000005 0.0000000000000000 - -12.060000000000002 0.0000000000000000 - -12.000000000000000 0.0000000000000000 - -11.940000000000005 0.0000000000000000 - -11.880000000000003 0.0000000000000000 - -11.820000000000000 0.0000000000000000 - -11.759999999999998 0.0000000000000000 - -11.700000000000003 0.0000000000000000 - -11.640000000000001 0.0000000000000000 - -11.579999999999998 0.0000000000000000 - -11.520000000000003 0.0000000000000000 - -11.460000000000001 0.0000000000000000 - -11.399999999999999 0.0000000000000000 - -11.340000000000003 0.0000000000000000 - -11.280000000000001 0.0000000000000000 - -11.219999999999999 0.0000000000000000 - -11.160000000000004 0.0000000000000000 - -11.100000000000001 0.0000000000000000 - -11.039999999999999 0.0000000000000000 - -10.980000000000004 0.0000000000000000 - -10.920000000000002 0.0000000000000000 - -10.859999999999999 0.0000000000000000 - -10.800000000000004 0.0000000000000000 - -10.740000000000002 0.0000000000000000 - -10.680000000000000 0.0000000000000000 - -10.620000000000005 0.0000000000000000 - -10.560000000000002 0.0000000000000000 - -10.500000000000000 0.0000000000000000 - -10.440000000000005 0.0000000000000000 - -10.380000000000003 0.0000000000000000 - -10.320000000000000 0.0000000000000000 - -10.259999999999998 0.0000000000000000 - -10.200000000000003 0.0000000000000000 - -10.140000000000001 0.0000000000000000 - -10.079999999999998 0.0000000000000000 - -10.020000000000003 0.0000000000000000 - -9.9600000000000009 0.0000000000000000 - -9.8999999999999986 0.0000000000000000 - -9.8400000000000034 0.0000000000000000 - -9.7800000000000011 0.0000000000000000 - -9.7199999999999989 0.0000000000000000 - -9.6600000000000037 0.0000000000000000 - -9.6000000000000014 0.0000000000000000 - -9.5399999999999991 0.0000000000000000 - -9.4800000000000040 0.0000000000000000 - -9.4200000000000017 0.0000000000000000 - -9.3599999999999994 0.0000000000000000 - -9.3000000000000043 0.0000000000000000 - -9.2400000000000020 0.0000000000000000 - -9.1799999999999997 0.0000000000000000 - -9.1200000000000045 0.0000000000000000 - -9.0600000000000023 0.0000000000000000 - -9.0000000000000000 0.0000000000000000 - -8.9400000000000048 0.0000000000000000 - -8.8800000000000026 0.0000000000000000 - -8.8200000000000003 0.0000000000000000 - -8.7599999999999980 0.0000000000000000 - -8.7000000000000028 0.0000000000000000 - -8.6400000000000006 0.0000000000000000 - -8.5799999999999983 0.0000000000000000 - -8.5200000000000031 0.0000000000000000 - -8.4600000000000009 0.0000000000000000 - -8.3999999999999986 0.0000000000000000 - -8.3400000000000034 0.0000000000000000 - -8.2800000000000011 0.0000000000000000 - -8.2199999999999989 0.0000000000000000 - -8.1600000000000037 0.0000000000000000 - -8.1000000000000014 0.0000000000000000 - -8.0399999999999991 0.0000000000000000 - -7.9800000000000040 0.0000000000000000 - -7.9200000000000017 0.0000000000000000 - -7.8599999999999994 0.0000000000000000 - -7.8000000000000043 0.0000000000000000 - -7.7400000000000020 0.0000000000000000 - -7.6799999999999997 0.0000000000000000 - -7.6200000000000045 0.0000000000000000 - -7.5600000000000023 0.0000000000000000 - -7.5000000000000000 0.0000000000000000 - -7.4400000000000048 0.0000000000000000 - -7.3800000000000026 0.0000000000000000 - -7.3200000000000003 0.0000000000000000 - -7.2599999999999980 0.0000000000000000 - -7.2000000000000028 0.0000000000000000 - -7.1400000000000006 0.0000000000000000 - -7.0799999999999983 0.0000000000000000 - -7.0200000000000031 0.0000000000000000 - -6.9600000000000009 0.0000000000000000 - -6.8999999999999986 0.0000000000000000 - -6.8400000000000034 0.0000000000000000 - -6.7800000000000011 0.0000000000000000 - -6.7199999999999989 0.0000000000000000 - -6.6600000000000037 0.0000000000000000 - -6.6000000000000014 0.0000000000000000 - -6.5399999999999991 0.0000000000000000 - -6.4800000000000040 0.0000000000000000 - -6.4200000000000017 0.0000000000000000 - -6.3599999999999994 0.0000000000000000 - -6.3000000000000043 0.0000000000000000 - -6.2400000000000020 0.0000000000000000 - -6.1799999999999997 0.0000000000000000 - -6.1200000000000045 0.0000000000000000 - -6.0600000000000023 0.0000000000000000 - -6.0000000000000000 0.0000000000000000 - -5.9400000000000048 0.0000000000000000 - -5.8800000000000026 0.0000000000000000 - -5.8200000000000003 0.0000000000000000 - -5.7600000000000051 0.0000000000000000 - -5.7000000000000028 0.0000000000000000 - -5.6400000000000006 0.0000000000000000 - -5.5799999999999983 0.0000000000000000 - -5.5200000000000031 0.0000000000000000 - -5.4600000000000009 0.0000000000000000 - -5.3999999999999986 0.0000000000000000 - -5.3400000000000034 0.0000000000000000 - -5.2800000000000011 0.0000000000000000 - -5.2199999999999989 0.0000000000000000 - -5.1600000000000037 0.0000000000000000 - -5.1000000000000014 0.0000000000000000 - -5.0399999999999991 0.0000000000000000 - -4.9800000000000040 0.0000000000000000 - -4.9200000000000017 0.0000000000000000 - -4.8599999999999994 0.0000000000000000 - -4.8000000000000043 0.0000000000000000 - -4.7400000000000020 0.0000000000000000 - -4.6799999999999997 0.0000000000000000 - -4.6200000000000045 0.0000000000000000 - -4.5600000000000023 0.0000000000000000 - -4.5000000000000000 0.0000000000000000 - -4.4400000000000048 0.0000000000000000 - -4.3800000000000026 0.0000000000000000 - -4.3200000000000003 0.0000000000000000 - -4.2600000000000051 0.0000000000000000 - -4.2000000000000028 0.0000000000000000 - -4.1400000000000006 0.0000000000000000 - -4.0799999999999983 0.0000000000000000 - -4.0200000000000031 0.0000000000000000 - -3.9600000000000009 0.0000000000000000 - -3.8999999999999986 0.0000000000000000 - -3.8400000000000034 0.0000000000000000 - -3.7800000000000011 0.0000000000000000 - -3.7199999999999989 0.0000000000000000 - -3.6600000000000037 0.0000000000000000 - -3.6000000000000014 0.0000000000000000 - -3.5399999999999991 0.0000000000000000 - -3.4800000000000040 0.0000000000000000 - -3.4200000000000017 0.0000000000000000 - -3.3599999999999994 0.0000000000000000 - -3.3000000000000043 0.0000000000000000 - -3.2400000000000020 0.0000000000000000 - -3.1799999999999997 0.0000000000000000 - -3.1200000000000045 0.0000000000000000 - -3.0600000000000023 0.0000000000000000 - -3.0000000000000000 0.0000000000000000 - -2.9400000000000048 0.0000000000000000 - -2.8800000000000026 0.0000000000000000 - -2.8200000000000003 0.0000000000000000 - -2.7600000000000051 0.0000000000000000 - -2.7000000000000028 0.0000000000000000 - -2.6400000000000006 0.0000000000000000 - -2.5799999999999983 0.0000000000000000 - -2.5200000000000031 0.0000000000000000 - -2.4600000000000009 0.0000000000000000 - -2.3999999999999986 0.0000000000000000 - -2.3400000000000034 0.0000000000000000 - -2.2800000000000011 0.0000000000000000 - -2.2199999999999989 0.0000000000000000 - -2.1600000000000037 0.0000000000000000 - -2.1000000000000014 0.0000000000000000 - -2.0399999999999991 0.0000000000000000 - -1.9800000000000040 0.0000000000000000 - -1.9200000000000017 0.0000000000000000 - -1.8599999999999994 0.0000000000000000 - -1.8000000000000043 0.0000000000000000 - -1.7400000000000020 0.0000000000000000 - -1.6799999999999997 0.0000000000000000 - -1.6200000000000045 0.0000000000000000 - -1.5600000000000023 0.0000000000000000 - -1.5000000000000000 0.0000000000000000 - -1.4400000000000048 0.0000000000000000 - -1.3800000000000026 0.0000000000000000 - -1.3200000000000003 0.0000000000000000 - -1.2600000000000051 0.0000000000000000 - -1.2000000000000028 0.0000000000000000 - -1.1400000000000006 0.0000000000000000 - -1.0799999999999983 0.0000000000000000 - -1.0200000000000031 0.0000000000000000 - -0.96000000000000085 0.0000000000000000 - -0.89999999999999858 0.0000000000000000 - -0.84000000000000341 0.0000000000000000 - -0.78000000000000114 0.0000000000000000 - -0.71999999999999886 0.0000000000000000 - -0.66000000000000369 0.0000000000000000 - -0.60000000000000142 0.0000000000000000 - -0.53999999999999915 0.0000000000000000 - -0.48000000000000398 0.0000000000000000 - -0.42000000000000171 0.0000000000000000 - -0.35999999999999943 0.0000000000000000 - -0.30000000000000426 0.0000000000000000 - -0.24000000000000199 0.0000000000000000 - -0.17999999999999972 0.0000000000000000 - -0.12000000000000455 0.0000000000000000 - -6.0000000000002274E-002 0.0000000000000000 - 0.0000000000000000 0.0000000000000000 - 5.9999999999995168E-002 0.0000000000000000 - 0.11999999999999744 0.0000000000000000 - 0.17999999999999972 0.0000000000000000 - 0.23999999999999488 0.0000000000000000 - 0.29999999999999716 0.0000000000000000 - 0.35999999999999943 0.0000000000000000 - 0.42000000000000171 0.0000000000000000 - 0.47999999999999687 0.0000000000000000 - 0.53999999999999915 0.0000000000000000 - 0.60000000000000142 0.0000000000000000 - 0.65999999999999659 0.0000000000000000 - 0.71999999999999886 0.0000000000000000 - 0.78000000000000114 0.0000000000000000 - 0.83999999999999631 0.0000000000000000 - 0.89999999999999858 0.0000000000000000 - 0.96000000000000085 0.0000000000000000 - 1.0199999999999960 0.0000000000000000 - 1.0799999999999983 0.0000000000000000 - 1.1400000000000006 0.0000000000000000 - 1.1999999999999957 0.0000000000000000 - 1.2599999999999980 0.0000000000000000 - 1.3200000000000003 0.0000000000000000 - 1.3799999999999955 0.0000000000000000 - 1.4399999999999977 0.0000000000000000 - 1.5000000000000000 0.0000000000000000 - 1.5599999999999952 0.0000000000000000 - 1.6199999999999974 0.0000000000000000 - 1.6799999999999997 0.0000000000000000 - 1.7399999999999949 0.0000000000000000 - 1.7999999999999972 0.0000000000000000 - 1.8599999999999994 0.0000000000000000 - 1.9200000000000017 0.0000000000000000 - 1.9799999999999969 0.0000000000000000 - 2.0399999999999991 0.0000000000000000 - 2.1000000000000014 0.0000000000000000 - 2.1599999999999966 0.0000000000000000 - 2.2199999999999989 0.0000000000000000 - 2.2800000000000011 0.0000000000000000 - 2.3399999999999963 0.0000000000000000 - 2.3999999999999986 0.0000000000000000 - 2.4600000000000009 0.0000000000000000 - 2.5199999999999960 0.0000000000000000 - 2.5799999999999983 0.0000000000000000 - 2.6400000000000006 0.0000000000000000 - 2.6999999999999957 0.0000000000000000 - 2.7599999999999980 0.0000000000000000 - 2.8200000000000003 0.0000000000000000 - 2.8799999999999955 0.0000000000000000 - 2.9399999999999977 0.0000000000000000 - 3.0000000000000000 0.0000000000000000 - 3.0599999999999952 0.0000000000000000 - 3.1199999999999974 0.0000000000000000 - 3.1799999999999997 0.0000000000000000 - 3.2399999999999949 0.0000000000000000 - 3.2999999999999972 0.0000000000000000 - 3.3599999999999994 0.0000000000000000 - 3.4199999999999946 0.0000000000000000 - 3.4799999999999969 0.0000000000000000 - 3.5399999999999991 0.0000000000000000 - 3.6000000000000014 0.0000000000000000 - 3.6599999999999966 0.0000000000000000 - 3.7199999999999989 0.0000000000000000 - 3.7800000000000011 0.0000000000000000 - 3.8399999999999963 0.0000000000000000 - 3.8999999999999986 0.0000000000000000 - 3.9600000000000009 0.0000000000000000 - 4.0199999999999960 0.0000000000000000 - 4.0799999999999983 0.0000000000000000 - 4.1400000000000006 0.0000000000000000 - 4.1999999999999957 0.0000000000000000 - 4.2599999999999980 0.0000000000000000 - 4.3200000000000003 0.0000000000000000 - 4.3799999999999955 0.0000000000000000 - 4.4399999999999977 0.0000000000000000 - 4.5000000000000000 0.0000000000000000 - 4.5599999999999952 0.0000000000000000 - 4.6199999999999974 0.0000000000000000 - 4.6799999999999997 0.0000000000000000 - 4.7399999999999949 0.0000000000000000 - 4.7999999999999972 0.0000000000000000 - 4.8599999999999994 0.0000000000000000 - 4.9199999999999946 0.0000000000000000 - 4.9799999999999969 0.0000000000000000 - 5.0399999999999991 0.0000000000000000 - 5.1000000000000014 0.0000000000000000 - 5.1599999999999966 0.0000000000000000 - 5.2199999999999989 0.0000000000000000 - 5.2800000000000011 0.0000000000000000 - 5.3399999999999963 0.0000000000000000 - 5.3999999999999986 0.0000000000000000 - 5.4600000000000009 0.0000000000000000 - 5.5199999999999960 0.0000000000000000 - 5.5799999999999983 0.0000000000000000 - 5.6400000000000006 0.0000000000000000 - 5.6999999999999957 0.0000000000000000 - 5.7599999999999980 0.0000000000000000 - 5.8200000000000003 0.0000000000000000 - 5.8799999999999955 0.0000000000000000 - 5.9399999999999977 0.0000000000000000 - 6.0000000000000000 0.0000000000000000 - 6.0599999999999952 0.0000000000000000 - 6.1199999999999974 0.0000000000000000 - 6.1799999999999997 0.0000000000000000 - 6.2399999999999949 0.0000000000000000 - 6.2999999999999972 0.0000000000000000 - 6.3599999999999994 0.0000000000000000 - 6.4199999999999946 0.0000000000000000 - 6.4799999999999969 0.0000000000000000 - 6.5399999999999991 0.0000000000000000 - 6.6000000000000014 0.0000000000000000 - 6.6599999999999966 0.0000000000000000 - 6.7199999999999989 0.0000000000000000 - 6.7800000000000011 0.0000000000000000 - 6.8399999999999963 0.0000000000000000 - 6.8999999999999986 0.0000000000000000 - 6.9600000000000009 0.0000000000000000 - 7.0199999999999960 0.0000000000000000 - 7.0799999999999983 0.0000000000000000 - 7.1400000000000006 0.0000000000000000 - 7.1999999999999957 0.0000000000000000 - 7.2599999999999980 0.0000000000000000 - 7.3200000000000003 0.0000000000000000 - 7.3799999999999955 0.0000000000000000 - 7.4399999999999977 0.0000000000000000 - 7.5000000000000000 0.0000000000000000 - 7.5599999999999952 0.0000000000000000 - 7.6199999999999974 0.0000000000000000 - 7.6799999999999997 0.0000000000000000 - 7.7399999999999949 0.0000000000000000 - 7.7999999999999972 0.0000000000000000 - 7.8599999999999994 0.0000000000000000 - 7.9199999999999946 0.0000000000000000 - 7.9799999999999969 0.0000000000000000 - 8.0399999999999991 0.0000000000000000 - 8.1000000000000014 0.0000000000000000 - 8.1599999999999966 0.0000000000000000 - 8.2199999999999989 0.0000000000000000 - 8.2800000000000011 0.0000000000000000 - 8.3399999999999963 0.0000000000000000 - 8.3999999999999986 0.0000000000000000 - 8.4600000000000009 0.0000000000000000 - 8.5199999999999960 0.0000000000000000 - 8.5799999999999983 0.0000000000000000 - 8.6400000000000006 0.0000000000000000 - 8.6999999999999957 0.0000000000000000 - 8.7599999999999980 0.0000000000000000 - 8.8200000000000003 0.0000000000000000 - 8.8799999999999955 0.0000000000000000 - 8.9399999999999977 0.0000000000000000 - 9.0000000000000000 0.0000000000000000 - 9.0599999999999952 0.0000000000000000 - 9.1199999999999974 0.0000000000000000 - 9.1799999999999997 0.0000000000000000 - 9.2399999999999949 0.0000000000000000 - 9.2999999999999972 0.0000000000000000 - 9.3599999999999994 0.0000000000000000 - 9.4199999999999946 0.0000000000000000 - 9.4799999999999969 0.0000000000000000 - 9.5399999999999991 0.0000000000000000 - 9.5999999999999943 0.0000000000000000 - 9.6599999999999966 0.0000000000000000 - 9.7199999999999989 0.0000000000000000 - 9.7800000000000011 0.0000000000000000 - 9.8399999999999963 0.0000000000000000 - 9.8999999999999986 0.0000000000000000 - 9.9600000000000009 0.0000000000000000 - 10.019999999999996 0.0000000000000000 - 10.079999999999998 0.0000000000000000 - 10.140000000000001 0.0000000000000000 - 10.199999999999996 0.0000000000000000 - 10.259999999999998 0.0000000000000000 - 10.320000000000000 0.0000000000000000 - 10.379999999999995 0.0000000000000000 - 10.439999999999998 0.0000000000000000 - 10.500000000000000 0.0000000000000000 - 10.559999999999995 0.0000000000000000 - 10.619999999999997 0.0000000000000000 - 10.680000000000000 0.0000000000000000 - 10.739999999999995 0.0000000000000000 - 10.799999999999997 0.0000000000000000 - 10.859999999999999 0.0000000000000000 - 10.919999999999995 0.0000000000000000 - 10.979999999999997 0.0000000000000000 - 11.039999999999999 0.0000000000000000 - 11.099999999999994 0.0000000000000000 - 11.159999999999997 0.0000000000000000 - 11.219999999999999 0.0000000000000000 - 11.280000000000001 0.0000000000000000 - 11.339999999999996 0.0000000000000000 - 11.399999999999999 0.0000000000000000 - 11.460000000000001 0.0000000000000000 - 11.519999999999996 0.0000000000000000 - 11.579999999999998 0.0000000000000000 - 11.640000000000001 0.0000000000000000 - 11.699999999999996 0.0000000000000000 - 11.759999999999998 0.0000000000000000 - 11.820000000000000 0.0000000000000000 - 11.879999999999995 0.0000000000000000 - 11.939999999999998 0.0000000000000000 - 12.000000000000000 0.0000000000000000 - 12.059999999999995 0.0000000000000000 - 12.119999999999997 0.0000000000000000 - 12.180000000000000 0.0000000000000000 - 12.239999999999995 0.0000000000000000 - 12.299999999999997 0.0000000000000000 - 12.359999999999999 0.0000000000000000 - 12.419999999999995 0.0000000000000000 - 12.479999999999997 0.0000000000000000 - 12.539999999999999 0.0000000000000000 - 12.599999999999994 0.0000000000000000 - 12.659999999999997 0.0000000000000000 - 12.719999999999999 0.0000000000000000 - 12.780000000000001 0.0000000000000000 - 12.839999999999996 0.0000000000000000 - 12.899999999999999 0.0000000000000000 - 12.960000000000001 0.0000000000000000 - 13.019999999999996 0.0000000000000000 - 13.079999999999998 0.0000000000000000 - 13.140000000000001 0.0000000000000000 - 13.199999999999996 0.0000000000000000 - 13.259999999999998 0.0000000000000000 - 13.320000000000000 0.0000000000000000 - 13.379999999999995 0.0000000000000000 - 13.439999999999998 0.0000000000000000 - 13.500000000000000 0.0000000000000000 - 13.559999999999995 0.0000000000000000 - 13.619999999999997 0.0000000000000000 - 13.680000000000000 0.0000000000000000 - 13.739999999999995 0.0000000000000000 - 13.799999999999997 0.0000000000000000 - 13.859999999999999 0.0000000000000000 - 13.919999999999995 0.0000000000000000 - 13.979999999999997 0.0000000000000000 - 14.039999999999999 0.0000000000000000 - 14.099999999999994 0.0000000000000000 - 14.159999999999997 0.0000000000000000 - 14.219999999999999 0.0000000000000000 - 14.280000000000001 0.0000000000000000 - 14.339999999999996 0.0000000000000000 - 14.399999999999999 0.0000000000000000 - 14.460000000000001 0.0000000000000000 - 14.519999999999996 0.0000000000000000 - 14.579999999999998 0.0000000000000000 - 14.640000000000001 0.0000000000000000 - 14.699999999999996 0.0000000000000000 - 14.759999999999998 0.0000000000000000 - 14.820000000000000 0.0000000000000000 - 14.879999999999995 0.0000000000000000 - 14.939999999999998 0.0000000000000000 - 15.000000000000000 0.0000000000000000 - 15.059999999999995 0.0000000000000000 - 15.119999999999997 0.0000000000000000 - 15.180000000000000 0.0000000000000000 - 15.239999999999995 0.0000000000000000 - 15.299999999999997 0.0000000000000000 - 15.359999999999999 0.0000000000000000 - 15.419999999999995 0.0000000000000000 - 15.479999999999997 0.0000000000000000 - 15.539999999999999 0.0000000000000000 - 15.599999999999994 0.0000000000000000 - 15.659999999999997 0.0000000000000000 - 15.719999999999999 0.0000000000000000 - 15.780000000000001 0.0000000000000000 - 15.839999999999996 0.0000000000000000 - 15.899999999999999 0.0000000000000000 - 15.960000000000001 0.0000000000000000 - 16.019999999999996 0.0000000000000000 - 16.079999999999998 0.0000000000000000 - 16.140000000000001 0.0000000000000000 - 16.200000000000003 0.0000000000000000 - 16.259999999999991 0.0000000000000000 - 16.319999999999993 0.0000000000000000 - 16.379999999999995 0.0000000000000000 - 16.439999999999998 0.0000000000000000 - 16.500000000000000 0.0000000000000000 - 16.560000000000002 0.0000000000000000 - 16.620000000000005 0.0000000000000000 - 16.679999999999993 0.0000000000000000 - 16.739999999999995 0.0000000000000000 - 16.799999999999997 0.0000000000000000 - 16.859999999999999 0.0000000000000000 - 16.920000000000002 0.0000000000000000 - 16.980000000000004 0.0000000000000000 - 17.039999999999992 0.0000000000000000 - 17.099999999999994 0.0000000000000000 - 17.159999999999997 0.0000000000000000 - 17.219999999999999 0.0000000000000000 - 17.280000000000001 0.0000000000000000 - 17.340000000000003 0.0000000000000000 - 17.399999999999991 0.0000000000000000 - 17.459999999999994 0.0000000000000000 - 17.519999999999996 0.0000000000000000 - 17.579999999999998 0.0000000000000000 - 17.640000000000001 0.0000000000000000 - 17.700000000000003 0.0000000000000000 - 17.759999999999991 0.0000000000000000 - 17.819999999999993 0.0000000000000000 - 17.879999999999995 0.0000000000000000 - 17.939999999999998 0.0000000000000000 - 18.000000000000000 0.0000000000000000 - 18.060000000000002 0.0000000000000000 - 18.120000000000005 0.0000000000000000 - 18.179999999999993 0.0000000000000000 - 18.239999999999995 0.0000000000000000 - 18.299999999999997 0.0000000000000000 - 18.359999999999999 0.0000000000000000 - 18.420000000000002 0.0000000000000000 - 18.480000000000004 0.0000000000000000 - 18.539999999999992 0.0000000000000000 - 18.599999999999994 0.0000000000000000 - 18.659999999999997 0.0000000000000000 - 18.719999999999999 0.0000000000000000 - 18.780000000000001 0.0000000000000000 - 18.840000000000003 0.0000000000000000 - 18.899999999999991 0.0000000000000000 - 18.959999999999994 0.0000000000000000 - 19.019999999999996 0.0000000000000000 - 19.079999999999998 0.0000000000000000 - 19.140000000000001 0.0000000000000000 - 19.200000000000003 0.0000000000000000 - 19.259999999999991 0.0000000000000000 - 19.319999999999993 0.0000000000000000 - 19.379999999999995 0.0000000000000000 - 19.439999999999998 0.0000000000000000 - 19.500000000000000 0.0000000000000000 - 19.560000000000002 0.0000000000000000 - 19.620000000000005 0.0000000000000000 - 19.679999999999993 0.0000000000000000 - 19.739999999999995 0.0000000000000000 - 19.799999999999997 0.0000000000000000 - 19.859999999999999 0.0000000000000000 - 19.920000000000002 0.0000000000000000 - 19.980000000000004 0.0000000000000000 - 20.039999999999992 0.0000000000000000 - 20.099999999999994 0.0000000000000000 - 20.159999999999997 0.0000000000000000 - 20.219999999999999 0.0000000000000000 - 20.280000000000001 0.0000000000000000 - 20.340000000000003 0.0000000000000000 - 20.399999999999991 0.0000000000000000 - 20.459999999999994 0.0000000000000000 - 20.519999999999996 0.0000000000000000 - 20.579999999999998 0.0000000000000000 - 20.640000000000001 0.0000000000000000 - 20.700000000000003 0.0000000000000000 - 20.759999999999991 0.0000000000000000 - 20.819999999999993 0.0000000000000000 - 20.879999999999995 0.0000000000000000 - 20.939999999999998 0.0000000000000000 - 21.000000000000000 0.0000000000000000 - 21.060000000000002 0.0000000000000000 - 21.120000000000005 0.0000000000000000 - 21.179999999999993 0.0000000000000000 - 21.239999999999995 0.0000000000000000 - 21.299999999999997 0.0000000000000000 - 21.359999999999999 0.0000000000000000 - 21.420000000000002 0.0000000000000000 - 21.480000000000004 0.0000000000000000 - 21.539999999999992 0.0000000000000000 - 21.599999999999994 0.0000000000000000 - 21.659999999999997 0.0000000000000000 - 21.719999999999999 0.0000000000000000 - 21.780000000000001 0.0000000000000000 - 21.840000000000003 0.0000000000000000 - 21.899999999999991 0.0000000000000000 - 21.959999999999994 0.0000000000000000 - 22.019999999999996 0.0000000000000000 - 22.079999999999998 0.0000000000000000 - 22.140000000000001 0.0000000000000000 - 22.200000000000003 0.0000000000000000 - 22.259999999999991 0.0000000000000000 - 22.319999999999993 0.0000000000000000 - 22.379999999999995 0.0000000000000000 - 22.439999999999998 0.0000000000000000 - 22.500000000000000 0.0000000000000000 - 22.560000000000002 0.0000000000000000 - 22.619999999999990 0.0000000000000000 - 22.679999999999993 0.0000000000000000 - 22.739999999999995 0.0000000000000000 - 22.799999999999997 0.0000000000000000 - 22.859999999999999 0.0000000000000000 - 22.920000000000002 0.0000000000000000 - 22.980000000000004 0.0000000000000000 - 23.039999999999992 0.0000000000000000 - 23.099999999999994 0.0000000000000000 - 23.159999999999997 0.0000000000000000 - 23.219999999999999 0.0000000000000000 - 23.280000000000001 0.0000000000000000 - 23.340000000000003 0.0000000000000000 - 23.399999999999991 0.0000000000000000 - 23.459999999999994 0.0000000000000000 - 23.519999999999996 0.0000000000000000 - 23.579999999999998 0.0000000000000000 - 23.640000000000001 0.0000000000000000 - 23.700000000000003 0.0000000000000000 - 23.759999999999991 0.0000000000000000 - 23.819999999999993 0.0000000000000000 - 23.879999999999995 0.0000000000000000 - 23.939999999999998 0.0000000000000000 - 24.000000000000000 0.0000000000000000 - 24.060000000000002 0.0000000000000000 - 24.119999999999990 0.0000000000000000 - 24.179999999999993 0.0000000000000000 - 24.239999999999995 0.0000000000000000 - 24.299999999999997 0.0000000000000000 - 24.359999999999999 0.0000000000000000 - 24.420000000000002 0.0000000000000000 - 24.480000000000004 0.0000000000000000 - 24.539999999999992 0.0000000000000000 - 24.599999999999994 0.0000000000000000 - 24.659999999999997 0.0000000000000000 - 24.719999999999999 0.0000000000000000 - 24.780000000000001 0.0000000000000000 - 24.840000000000003 0.0000000000000000 - 24.899999999999991 0.0000000000000000 - 24.959999999999994 0.0000000000000000 - 25.019999999999996 0.0000000000000000 - 25.079999999999998 0.0000000000000000 - 25.140000000000001 0.0000000000000000 - 25.200000000000003 0.0000000000000000 - 25.259999999999991 0.0000000000000000 - 25.319999999999993 0.0000000000000000 - 25.379999999999995 0.0000000000000000 - 25.439999999999998 0.0000000000000000 - 25.500000000000000 0.0000000000000000 - 25.560000000000002 0.0000000000000000 - 25.619999999999990 0.0000000000000000 - 25.679999999999993 0.0000000000000000 - 25.739999999999995 0.0000000000000000 - 25.799999999999997 0.0000000000000000 - 25.859999999999999 0.0000000000000000 - 25.920000000000002 0.0000000000000000 - 25.980000000000004 0.0000000000000000 - 26.039999999999992 0.0000000000000000 - 26.099999999999994 0.0000000000000000 - 26.159999999999997 0.0000000000000000 - 26.219999999999999 0.0000000000000000 - 26.280000000000001 0.0000000000000000 - 26.340000000000003 0.0000000000000000 - 26.399999999999991 0.0000000000000000 - 26.459999999999994 0.0000000000000000 - 26.519999999999996 0.0000000000000000 - 26.579999999999998 0.0000000000000000 - 26.640000000000001 0.0000000000000000 - 26.700000000000003 0.0000000000000000 - 26.759999999999991 0.0000000000000000 - 26.819999999999993 0.0000000000000000 - 26.879999999999995 0.0000000000000000 - 26.939999999999998 0.0000000000000000 - 27.000000000000000 0.0000000000000000 - 27.060000000000002 0.0000000000000000 - 27.119999999999990 0.0000000000000000 - 27.179999999999993 0.0000000000000000 - 27.239999999999995 0.0000000000000000 - 27.299999999999997 0.0000000000000000 - 27.359999999999999 0.0000000000000000 - 27.420000000000002 0.0000000000000000 - 27.480000000000004 0.0000000000000000 - 27.539999999999992 0.0000000000000000 - 27.599999999999994 0.0000000000000000 - 27.659999999999997 0.0000000000000000 - 27.719999999999999 0.0000000000000000 - 27.780000000000001 0.0000000000000000 - 27.840000000000003 0.0000000000000000 - 27.899999999999991 0.0000000000000000 - 27.959999999999994 0.0000000000000000 - 28.019999999999996 0.0000000000000000 - 28.079999999999998 0.0000000000000000 - 28.140000000000001 0.0000000000000000 - 28.200000000000003 0.0000000000000000 - 28.259999999999991 0.0000000000000000 - 28.319999999999993 0.0000000000000000 - 28.379999999999995 0.0000000000000000 - 28.439999999999998 0.0000000000000000 - 28.500000000000000 0.0000000000000000 - 28.560000000000002 0.0000000000000000 - 28.619999999999990 0.0000000000000000 - 28.679999999999993 0.0000000000000000 - 28.739999999999995 0.0000000000000000 - 28.799999999999997 0.0000000000000000 - 28.859999999999999 0.0000000000000000 - 28.920000000000002 0.0000000000000000 - 28.980000000000004 0.0000000000000000 - 29.039999999999992 0.0000000000000000 - 29.099999999999994 0.0000000000000000 - 29.159999999999997 0.0000000000000000 - 29.219999999999999 0.0000000000000000 - 29.280000000000001 0.0000000000000000 - 29.340000000000003 0.0000000000000000 - 29.399999999999991 0.0000000000000000 - 29.459999999999994 0.0000000000000000 - 29.519999999999996 0.0000000000000000 - 29.579999999999998 0.0000000000000000 - 29.640000000000001 0.0000000000000000 - 29.700000000000003 0.0000000000000000 - 29.759999999999991 0.0000000000000000 - 29.819999999999993 0.0000000000000000 - 29.879999999999995 0.0000000000000000 - 29.939999999999998 0.0000000000000000 - 30.000000000000000 0.0000000000000000 - 30.060000000000002 0.0000000000000000 - 30.119999999999990 0.0000000000000000 - 30.179999999999993 0.0000000000000000 - 30.239999999999995 0.0000000000000000 - 30.299999999999997 0.0000000000000000 - 30.359999999999999 0.0000000000000000 - 30.420000000000002 0.0000000000000000 - 30.480000000000004 0.0000000000000000 - 30.539999999999992 0.0000000000000000 - 30.599999999999994 0.0000000000000000 - 30.659999999999997 0.0000000000000000 - 30.719999999999999 0.0000000000000000 - 30.780000000000001 0.0000000000000000 - 30.840000000000003 0.0000000000000000 - 30.899999999999991 0.0000000000000000 - 30.959999999999994 0.0000000000000000 - 31.019999999999996 0.0000000000000000 - 31.079999999999998 0.0000000000000000 - 31.140000000000001 0.0000000000000000 - 31.200000000000003 0.0000000000000000 - 31.259999999999991 0.0000000000000000 - 31.319999999999993 0.0000000000000000 - 31.379999999999995 0.0000000000000000 - 31.439999999999998 0.0000000000000000 - 31.500000000000000 0.0000000000000000 - 31.560000000000002 0.0000000000000000 - 31.619999999999990 0.0000000000000000 - 31.679999999999993 0.0000000000000000 - 31.739999999999995 0.0000000000000000 - 31.799999999999997 0.0000000000000000 - 31.859999999999999 0.0000000000000000 - 31.920000000000002 0.0000000000000000 - 31.980000000000004 0.0000000000000000 - 32.039999999999992 0.0000000000000000 - 32.099999999999994 0.0000000000000000 - 32.159999999999997 0.0000000000000000 - 32.219999999999999 0.0000000000000000 - 32.280000000000001 0.0000000000000000 - 32.340000000000003 0.0000000000000000 - 32.399999999999991 0.0000000000000000 - 32.459999999999994 0.0000000000000000 - 32.519999999999996 0.0000000000000000 - 32.579999999999998 0.0000000000000000 - 32.640000000000001 0.0000000000000000 - 32.700000000000003 0.0000000000000000 - 32.759999999999991 0.0000000000000000 - 32.819999999999993 0.0000000000000000 - 32.879999999999995 0.0000000000000000 - 32.939999999999998 0.0000000000000000 - 33.000000000000000 0.0000000000000000 - 33.060000000000002 0.0000000000000000 - 33.119999999999990 0.0000000000000000 - 33.179999999999993 0.0000000000000000 - 33.239999999999995 0.0000000000000000 - 33.299999999999997 0.0000000000000000 - 33.359999999999999 0.0000000000000000 - 33.420000000000002 0.0000000000000000 - 33.480000000000004 0.0000000000000000 - 33.539999999999992 0.0000000000000000 - 33.599999999999994 0.0000000000000000 - 33.659999999999997 0.0000000000000000 - 33.719999999999999 0.0000000000000000 - 33.780000000000001 0.0000000000000000 - 33.840000000000003 0.0000000000000000 - 33.899999999999991 0.0000000000000000 - 33.959999999999994 0.0000000000000000 - 34.019999999999996 0.0000000000000000 - 34.079999999999998 0.0000000000000000 - 34.140000000000001 0.0000000000000000 - 34.200000000000003 0.0000000000000000 - 34.259999999999991 0.0000000000000000 - 34.319999999999993 0.0000000000000000 - 34.379999999999995 0.0000000000000000 - 34.439999999999998 0.0000000000000000 - 34.500000000000000 0.0000000000000000 - 34.560000000000002 0.0000000000000000 - 34.619999999999990 0.0000000000000000 - 34.679999999999993 0.0000000000000000 - 34.739999999999995 0.0000000000000000 - 34.799999999999997 0.0000000000000000 - 34.859999999999999 0.0000000000000000 - 34.920000000000002 0.0000000000000000 - 34.980000000000004 0.0000000000000000 - 35.039999999999992 0.0000000000000000 - 35.099999999999994 0.0000000000000000 - 35.159999999999997 0.0000000000000000 - 35.219999999999999 0.0000000000000000 - 35.280000000000001 0.0000000000000000 - 35.340000000000003 0.0000000000000000 - 35.399999999999991 0.0000000000000000 - 35.459999999999994 0.0000000000000000 - 35.519999999999996 0.0000000000000000 - 35.579999999999998 0.0000000000000000 - 35.640000000000001 0.0000000000000000 - 35.700000000000003 0.0000000000000000 - 35.759999999999991 0.0000000000000000 - 35.819999999999993 0.0000000000000000 - 35.879999999999995 0.0000000000000000 - 35.939999999999998 0.0000000000000000 - 36.000000000000000 0.0000000000000000 - 36.060000000000002 0.0000000000000000 - 36.119999999999990 0.0000000000000000 - 36.179999999999993 0.0000000000000000 - 36.239999999999995 0.0000000000000000 - 36.299999999999997 0.0000000000000000 - 36.359999999999999 0.0000000000000000 - 36.420000000000002 0.0000000000000000 - 36.479999999999990 0.0000000000000000 - 36.539999999999992 0.0000000000000000 - 36.599999999999994 0.0000000000000000 - 36.659999999999997 0.0000000000000000 - 36.719999999999999 0.0000000000000000 - 36.780000000000001 0.0000000000000000 - 36.840000000000003 0.0000000000000000 - 36.899999999999991 0.0000000000000000 - 36.959999999999994 0.0000000000000000 - 37.019999999999996 0.0000000000000000 - 37.079999999999998 0.0000000000000000 - 37.140000000000001 0.0000000000000000 - 37.200000000000003 0.0000000000000000 - 37.259999999999991 0.0000000000000000 - 37.319999999999993 0.0000000000000000 - 37.379999999999995 0.0000000000000000 - 37.439999999999998 0.0000000000000000 - 37.500000000000000 0.0000000000000000 - 37.560000000000002 0.0000000000000000 - 37.619999999999990 0.0000000000000000 - 37.679999999999993 0.0000000000000000 - 37.739999999999995 0.0000000000000000 - 37.799999999999997 0.0000000000000000 - 37.859999999999999 0.0000000000000000 - 37.920000000000002 0.0000000000000000 - 37.979999999999990 0.0000000000000000 - 38.039999999999992 0.0000000000000000 - 38.099999999999994 0.0000000000000000 - 38.159999999999997 0.0000000000000000 - 38.219999999999999 0.0000000000000000 - 38.280000000000001 0.0000000000000000 - 38.340000000000003 0.0000000000000000 - 38.399999999999991 0.0000000000000000 - 38.459999999999994 0.0000000000000000 - 38.519999999999996 0.0000000000000000 - 38.579999999999998 0.0000000000000000 - 38.640000000000001 0.0000000000000000 - 38.700000000000003 0.0000000000000000 - 38.759999999999991 0.0000000000000000 - 38.819999999999993 0.0000000000000000 - 38.879999999999995 0.0000000000000000 - 38.939999999999998 0.0000000000000000 - 39.000000000000000 0.0000000000000000 - 39.060000000000002 0.0000000000000000 - 39.119999999999990 0.0000000000000000 - 39.179999999999993 0.0000000000000000 - 39.239999999999995 0.0000000000000000 - 39.299999999999997 0.0000000000000000 - 39.359999999999999 0.0000000000000000 - 39.420000000000002 0.0000000000000000 - 39.479999999999990 0.0000000000000000 - 39.539999999999992 0.0000000000000000 - 39.599999999999994 0.0000000000000000 - 39.659999999999997 0.0000000000000000 - 39.719999999999999 0.0000000000000000 - 39.780000000000001 0.0000000000000000 - 39.840000000000003 0.0000000000000000 - 39.899999999999991 0.0000000000000000 - 39.959999999999994 0.0000000000000000 - 40.019999999999996 0.0000000000000000 - 40.079999999999998 0.0000000000000000 - 40.140000000000001 0.0000000000000000 - 40.200000000000003 0.0000000000000000 - 40.259999999999991 0.0000000000000000 - 40.319999999999993 0.0000000000000000 - 40.379999999999995 0.0000000000000000 - 40.439999999999998 0.0000000000000000 - 40.500000000000000 0.0000000000000000 - 40.560000000000002 0.0000000000000000 - 40.619999999999990 0.0000000000000000 - 40.679999999999993 0.0000000000000000 - 40.739999999999995 0.0000000000000000 - 40.799999999999997 0.0000000000000000 - 40.859999999999999 0.0000000000000000 - 40.920000000000002 0.0000000000000000 - 40.979999999999990 0.0000000000000000 - 41.039999999999992 0.0000000000000000 - 41.099999999999994 0.0000000000000000 - 41.159999999999997 0.0000000000000000 - 41.219999999999999 0.0000000000000000 - 41.280000000000001 0.0000000000000000 - 41.340000000000003 0.0000000000000000 - 41.399999999999991 0.0000000000000000 - 41.459999999999994 0.0000000000000000 - 41.519999999999996 0.0000000000000000 - 41.579999999999998 0.0000000000000000 - 41.640000000000001 0.0000000000000000 - 41.700000000000003 0.0000000000000000 - 41.759999999999991 0.0000000000000000 - 41.819999999999993 0.0000000000000000 - 41.879999999999995 0.0000000000000000 - 41.939999999999998 0.0000000000000000 - 42.000000000000000 0.0000000000000000 - 42.060000000000002 0.0000000000000000 - 42.119999999999990 0.0000000000000000 - 42.179999999999993 0.0000000000000000 - 42.239999999999995 0.0000000000000000 - 42.299999999999997 0.0000000000000000 - 42.359999999999999 0.0000000000000000 - 42.420000000000002 0.0000000000000000 - 42.479999999999990 0.0000000000000000 - 42.539999999999992 0.0000000000000000 - 42.599999999999994 0.0000000000000000 - 42.659999999999997 0.0000000000000000 - 42.719999999999999 0.0000000000000000 - 42.780000000000001 0.0000000000000000 - 42.840000000000003 0.0000000000000000 - 42.899999999999991 0.0000000000000000 - 42.959999999999994 0.0000000000000000 - 43.019999999999996 0.0000000000000000 - 43.079999999999998 0.0000000000000000 - 43.140000000000001 0.0000000000000000 - 43.200000000000003 0.0000000000000000 - 43.259999999999991 0.0000000000000000 - 43.319999999999993 0.0000000000000000 - 43.379999999999995 0.0000000000000000 - 43.439999999999998 0.0000000000000000 - 43.500000000000000 0.0000000000000000 - 43.560000000000002 0.0000000000000000 - 43.619999999999990 0.0000000000000000 - 43.679999999999993 0.0000000000000000 - 43.739999999999995 0.0000000000000000 - 43.799999999999997 0.0000000000000000 - 43.859999999999999 0.0000000000000000 - 43.920000000000002 0.0000000000000000 - 43.979999999999990 0.0000000000000000 - 44.039999999999992 0.0000000000000000 - 44.099999999999994 0.0000000000000000 - 44.159999999999997 0.0000000000000000 - 44.219999999999999 0.0000000000000000 - 44.280000000000001 0.0000000000000000 - 44.340000000000003 0.0000000000000000 - 44.399999999999991 0.0000000000000000 - 44.459999999999994 0.0000000000000000 - 44.519999999999996 0.0000000000000000 - 44.579999999999998 0.0000000000000000 - 44.640000000000001 2.6269363017434720E-041 - 44.700000000000003 6.6629391554670594E-041 - 44.759999999999991 1.1319196242927816E-040 - 44.819999999999993 1.6595708460886197E-040 - 44.879999999999995 2.1872221874525186E-040 - 44.939999999999998 2.7148734092483567E-040 - 45.000000000000000 3.3025372755744854E-040 - 45.060000000000002 3.9319115033648461E-040 - 45.119999999999990 4.4863830368778567E-040 - 45.179999999999993 4.6970758298956318E-040 - 45.239999999999995 4.5353016784552422E-040 - 45.299999999999997 4.0893434211093646E-040 - 45.359999999999999 3.3319601057029457E-040 - 45.420000000000002 2.3179167737140571E-040 - 45.479999999999990 9.9142607674482055E-041 - 45.539999999999992 -5.2076673199132044E-041 - 45.599999999999994 -2.2502046634768626E-040 - 45.659999999999997 -3.9850791155506817E-040 - 45.719999999999999 -5.5831909022775604E-040 - 45.780000000000001 -6.8816675200106362E-040 - 45.840000000000003 -7.6212409336253549E-040 - 45.899999999999991 -7.7557918289836891E-040 - 45.959999999999994 -7.2884423672891465E-040 - 46.019999999999996 -6.0978285754724729E-040 - 46.079999999999998 -4.1978806108886568E-040 - 46.140000000000001 -1.6751311943845021E-040 - 46.200000000000003 1.2775116735211490E-040 - 46.259999999999991 3.3687177620616859E-040 - 46.319999999999993 4.1835767985494871E-040 - 46.379999999999995 2.5358670705691326E-040 - 46.439999999999998 -2.0417332880688487E-040 - 46.500000000000000 -9.2637703533248289E-040 - 46.560000000000002 -2.0177407324509126E-039 - 46.619999999999990 -5.4064302193241178E-039 - 46.679999999999993 -1.1266895958371392E-038 - 46.739999999999995 -1.9354489281848441E-038 - 46.799999999999997 -2.8261080188341996E-038 - 46.859999999999999 -3.7650939429719580E-038 - 46.920000000000002 -4.6433147749242086E-038 - 46.979999999999990 -5.6763367066405364E-038 - 47.039999999999992 -6.7552472389130400E-038 - 47.099999999999994 -7.6505147999287440E-038 - 47.159999999999997 -8.0308994744526340E-038 - 47.219999999999999 -7.8756912238619946E-038 - 47.280000000000001 -7.1592889815119077E-038 - 47.340000000000003 -5.9119114004307120E-038 - 47.399999999999991 -4.1341343210263354E-038 - 47.459999999999994 -1.9017798111583996E-038 - 47.519999999999996 6.6575700763890982E-039 - 47.579999999999998 3.3475365198057364E-038 - 47.640000000000001 6.1057078487017021E-038 - 47.700000000000003 8.5810182592369452E-038 - 47.759999999999991 1.0466789238651661E-037 - 47.819999999999993 1.1513581431230335E-037 - 47.879999999999995 9.7223259687777017E-038 - 47.939999999999998 5.0349251638370074E-038 - 48.000000000000000 -2.4030040785709353E-038 - 48.060000000000002 -1.0663699734852356E-037 - 48.119999999999990 -1.9525408326851592E-037 - 48.179999999999993 -2.8772637139865308E-037 - 48.239999999999995 -3.8112461733931124E-037 - 48.299999999999997 -4.7208983506603163E-037 - 48.359999999999999 -5.3240548279379720E-037 - 48.420000000000002 -5.5515144712048157E-037 - 48.479999999999990 -5.3359974310729287E-037 - 48.539999999999992 -4.4407943297499729E-037 - 48.599999999999994 -2.8245524054929142E-037 - 48.659999999999997 -4.9139077022268343E-038 - 48.719999999999999 2.4636570745264548E-037 - 48.780000000000001 5.4652147928217140E-037 - 48.840000000000003 8.4024794722277791E-037 - 48.899999999999991 1.0778417295129884E-036 - 48.959999999999994 1.2223327547718167E-036 - 49.019999999999996 1.2333452493613038E-036 - 49.079999999999998 1.0905106111129808E-036 - 49.140000000000001 7.9521390768622137E-037 - 49.200000000000003 3.8144447836792425E-037 - 49.259999999999991 -1.4825226013208182E-037 - 49.319999999999993 -7.5308154883147653E-037 - 49.379999999999995 -1.4062900146071558E-036 - 49.439999999999998 -2.0219183734094904E-036 - 49.500000000000000 -2.5390409979837882E-036 - 49.560000000000002 -2.9231388197593155E-036 - 49.619999999999990 -3.0932523987854724E-036 - 49.679999999999993 -2.9988904095184150E-036 - 49.739999999999995 -2.5658595554527661E-036 - 49.799999999999997 -1.7927014366141519E-036 - 49.859999999999999 -6.7795271979225354E-037 - 49.920000000000002 7.1703477531004136E-037 - 49.979999999999990 2.2881993329242288E-036 - 50.039999999999992 3.8963659808734265E-036 - 50.099999999999994 5.2285559566340565E-036 - 50.159999999999997 6.1938712190340352E-036 - 50.219999999999999 6.7904046085851862E-036 - 50.280000000000001 6.9323337573943099E-036 - 50.340000000000003 6.5263661001748757E-036 - 50.399999999999991 5.4777930681975194E-036 - 50.459999999999994 3.7527097422927016E-036 - 50.519999999999996 1.5511797787314090E-036 - 50.579999999999998 -9.8513330738658116E-037 - 50.640000000000001 -3.6867448968548031E-036 - 50.700000000000003 -6.3311492481169453E-036 - 50.759999999999991 -8.5879434880171085E-036 - 50.819999999999993 -1.0183237821032235E-035 - 50.879999999999995 -1.0859731615144243E-035 - 50.939999999999998 -1.0395913159057949E-035 - 51.000000000000000 -8.6498126273722098E-036 - 51.060000000000002 -5.5978109428030934E-036 - 51.119999999999990 -1.4992635936452791E-036 - 51.179999999999993 3.6245328263340948E-036 - 51.239999999999995 9.3447630146754052E-036 - 51.299999999999997 1.5421465763690989E-035 - 51.359999999999999 2.1894632276121844E-035 - 51.420000000000002 2.8238806703185911E-035 - 51.479999999999990 3.3958220152828880E-035 - 51.539999999999992 3.8663644145933220E-035 - 51.599999999999994 4.1935619734614566E-035 - 51.659999999999997 4.3393282020538484E-035 - 51.719999999999999 4.2627509979920855E-035 - 51.780000000000001 3.9344087641714770E-035 - 51.840000000000003 3.3344774832557462E-035 - 51.899999999999991 2.4425136528173579E-035 - 51.959999999999994 1.2517438536861868E-035 - 52.019999999999996 -2.3016491553918460E-036 - 52.079999999999998 -1.9942536765577704E-035 - 52.140000000000001 -4.0107095931218589E-035 - 52.200000000000003 -6.2225729562324987E-035 - 52.259999999999991 -8.5583250689494440E-035 - 52.319999999999993 -1.0946875588419299E-034 - 52.379999999999995 -1.3295539670528645E-034 - 52.439999999999998 -1.5471125772360649E-034 - 52.500000000000000 -1.7330260440956153E-034 - 52.560000000000002 -1.8724798088340433E-034 - 52.619999999999990 -1.9501710466567110E-034 - 52.679999999999993 -1.9487655710599789E-034 - 52.739999999999995 -1.8525170094642224E-034 - 52.799999999999997 -1.6451455374189131E-034 - 52.859999999999999 -1.3163125261898524E-034 - 52.920000000000002 -8.6048211349168413E-035 - 52.979999999999990 -2.7756264783363934E-035 - 53.039999999999992 4.2494410160067891E-035 - 53.099999999999994 1.2306525822947302E-034 - 53.159999999999997 2.1142545861654679E-034 - 53.219999999999999 3.0400493920405630E-034 - 53.280000000000001 3.9644520511682764E-034 - 53.339999999999989 4.8330534377265470E-034 - 53.399999999999991 5.5847076069294236E-034 - 53.459999999999994 6.1538147562888770E-034 - 53.519999999999996 6.4734068249906411E-034 - 53.579999999999998 6.4781913704380998E-034 - 53.640000000000001 6.1107813397603038E-034 - 53.700000000000003 5.3193039059461600E-034 - 53.759999999999991 4.0688244832900701E-034 - 53.819999999999993 2.3426096314359375E-034 - 53.879999999999995 1.4707185244707836E-035 - 53.939999999999998 -2.4838502844157089E-034 - 54.000000000000000 -5.4857720124604046E-034 - 54.060000000000002 -8.7630676338938017E-034 - 54.119999999999990 -1.2186753785046123E-033 - 54.179999999999993 -1.5596585467053671E-033 - 54.239999999999995 -1.8804076436411006E-033 - 54.299999999999997 -2.1596966937208327E-033 - 54.359999999999999 -2.3746333977582841E-033 - 54.420000000000002 -2.5015841197410842E-033 - 54.479999999999990 -2.5172933480576706E-033 - 54.539999999999992 -2.4002205955843815E-033 - 54.599999999999994 -2.1319067337478369E-033 - 54.659999999999997 -1.6986694487585722E-033 - 54.719999999999999 -1.0930852225887547E-033 - 54.780000000000001 -3.1553951034886255E-034 - 54.839999999999989 6.2435172758872588E-034 - 54.899999999999991 1.7065659067663260E-033 - 54.959999999999994 2.8998279312023268E-033 - 55.019999999999996 4.1612031309052675E-033 - 55.079999999999998 5.4362312981926316E-033 - 55.140000000000001 6.6596911637164733E-033 - 55.200000000000003 7.7570735721217764E-033 - 55.259999999999991 8.6467954010057425E-033 - 55.319999999999993 9.2432037601128359E-033 - 55.379999999999995 9.4603501835610920E-033 - 55.439999999999998 9.2164342312541091E-033 - 55.500000000000000 8.4388590590405305E-033 - 55.560000000000002 7.0697054714240719E-033 - 55.619999999999990 5.0714560307339946E-033 - 55.679999999999993 2.4326678653545327E-033 - 55.739999999999995 -8.2666453799830078E-034 - 55.799999999999997 -4.6504304937744151E-033 - 55.859999999999999 -8.9427647612487286E-033 - 55.920000000000002 -1.3565746386161388E-032 - 55.979999999999990 -1.8338961437820925E-032 - 56.039999999999992 -2.3041115870458641E-032 - 56.099999999999994 -2.7414075907694050E-032 - 56.159999999999997 -3.1169533341634391E-032 - 56.219999999999999 -3.3998427304353574E-032 - 56.280000000000001 -3.5583132916422917E-032 - 56.339999999999989 -3.5612295793561331E-032 - 56.399999999999991 -3.3798004659063331E-032 - 56.459999999999994 -2.9894866921320681E-032 - 56.519999999999996 -2.3720323865787467E-032 - 56.579999999999998 -1.5175423496328638E-032 - 56.640000000000001 -4.2650447507666871E-033 - 56.700000000000003 8.8835462364392074E-033 - 56.759999999999991 2.4005024158588289E-032 - 56.819999999999993 4.0684616423885706E-032 - 56.879999999999995 5.8352214698016321E-032 - 56.939999999999998 7.6283387681504330E-032 - 57.000000000000000 9.3608406538003226E-032 - 57.060000000000002 1.0933029818624234E-031 - 57.119999999999990 1.2235257618587678E-031 - 57.179999999999993 1.3151703673508312E-031 - 57.239999999999995 1.3565144543401151E-031 - 57.299999999999997 1.3362651044120018E-031 - 57.359999999999999 1.2442087660956862E-031 - 57.420000000000002 1.0719232636184946E-031 - 57.479999999999990 8.1352676808145661E-032 - 57.539999999999992 4.6643235074148303E-032 - 57.599999999999994 3.2071578981703283E-033 - 57.659999999999997 -4.8345579036961193E-032 - 57.719999999999999 -1.0688504067781461E-031 - 57.780000000000001 -1.7072495624048207E-031 - 57.839999999999989 -2.3760783960548924E-031 - 57.899999999999991 -3.0471613412318252E-031 - 57.959999999999994 -3.6871345222234341E-031 - 58.019999999999996 -4.2581920381755186E-031 - 58.079999999999998 -4.7191886235689773E-031 - 58.140000000000001 -5.0271026792876772E-031 - 58.200000000000003 -5.1388560814664449E-031 - 58.259999999999991 -5.0134561017521573E-031 - 58.319999999999993 -4.6144153520174271E-031 - 58.379999999999995 -3.9123716495025418E-031 - 58.439999999999998 -2.8878191493143779E-031 - 58.500000000000000 -1.5338261163241064E-031 - 58.560000000000002 1.4138813236979430E-032 - 58.619999999999990 2.1121835627063905E-031 - 58.679999999999993 4.3336853728730155E-031 - 58.739999999999995 6.7406141171556082E-031 - 58.799999999999997 9.2469175745011870E-031 - 58.859999999999999 1.1746364067354588E-030 - 58.920000000000002 1.4114239153792631E-030 - 58.979999999999990 1.6210249663038214E-030 - 59.039999999999992 1.7882701977666652E-030 - 59.099999999999994 1.8973968973887249E-030 - 59.159999999999997 1.9327200487517241E-030 - 59.219999999999999 1.8794153630179142E-030 - 59.280000000000001 1.7243964885828151E-030 - 59.339999999999989 1.4572583984934211E-030 - 59.399999999999991 1.0712532032651209E-030 - 59.459999999999994 5.6425409313359893E-031 - 59.519999999999996 -6.0339073654491810E-032 - 59.579999999999998 -7.9280742991834122E-031 - 59.640000000000001 -1.6164934546606585E-030 - 59.700000000000003 -2.5074115212564373E-030 - 59.759999999999991 -3.4341477101426089E-030 - 59.819999999999993 -4.3581022366879754E-030 - 59.879999999999995 -5.2341195520017703E-030 - 59.939999999999998 -6.0115430196049410E-030 - 60.000000000000000 -6.6357151341495946E-030 - 60.060000000000002 -7.0499210125874610E-030 - 60.119999999999990 -7.1977623443508645E-030 - 60.179999999999993 -7.0259144235905272E-030 - 60.239999999999995 -6.4872037319704003E-030 - 60.299999999999997 -5.5439036035713894E-030 - 60.359999999999999 -4.1711372331056938E-030 - 60.420000000000002 -2.3602368521775851E-030 - 60.479999999999990 -1.2188985727655320E-031 - 60.539999999999992 2.5111005546649276E-030 - 60.599999999999994 5.4816488731581791E-030 - 60.659999999999997 8.7070101972939439E-030 - 60.719999999999999 1.2078375615990695E-029 - 60.780000000000001 1.5461640378390317E-029 - 60.839999999999989 1.8699477033591097E-029 - 60.899999999999991 2.1614846213121711E-029 - 60.959999999999994 2.4016003178116619E-029 - 61.019999999999996 2.5703020609791828E-029 - 61.079999999999998 2.6475749226432694E-029 - 61.140000000000001 2.6143102017743069E-029 - 61.200000000000003 2.4533437923648642E-029 - 61.259999999999991 2.1505717189666761E-029 - 61.319999999999993 1.6961085183307926E-029 - 61.379999999999995 1.0854371646386981E-029 - 61.439999999999998 3.2049971756068649E-030 - 61.500000000000000 -5.8933227711349829E-030 - 61.560000000000002 -1.6264712009123581E-029 - 61.619999999999990 -2.7645741554814927E-029 - 61.679999999999993 -3.9683166395847022E-029 - 61.739999999999995 -5.1935393038094829E-029 - 61.799999999999997 -6.3878165680606543E-029 - 61.859999999999999 -7.4914940502313305E-029 - 61.920000000000002 -8.4392147356225908E-029 - 61.979999999999990 -9.1619499180933686E-029 - 62.039999999999992 -9.5895147762840594E-029 - 62.099999999999994 -9.6535424521888899E-029 - 62.159999999999997 -9.2908466259173945E-029 - 62.219999999999999 -8.4470884223298088E-029 - 62.280000000000001 -7.0806314976832149E-029 - 62.339999999999989 -5.1664475644801192E-029 - 62.399999999999991 -2.6999032824604360E-029 - 62.459999999999994 2.9975908317351437E-030 - 62.519999999999996 3.7864398673528708E-029 - 62.579999999999998 7.6849083441498718E-029 - 62.640000000000001 1.1889453186788677E-028 - 62.700000000000003 1.6263665571010672E-028 - 62.759999999999991 2.0641509003635078E-028 - 62.819999999999993 2.4829872717208228E-028 - 62.879999999999995 2.8612698571489904E-028 - 62.939999999999998 3.1756759425185637E-028 - 63.000000000000000 3.4019082994007301E-028 - 63.060000000000002 3.5155988537535248E-028 - 63.119999999999990 3.4933553012060205E-028 - 63.179999999999993 3.3139324465612367E-028 - 63.239999999999995 2.9594943104890662E-028 - 63.299999999999997 2.4169290380364903E-028 - 63.359999999999999 1.6791680977678004E-028 - 63.420000000000002 7.4645313302833479E-029 - 63.479999999999990 -3.7250960928887040E-029 - 63.539999999999992 -1.6595737104168407E-028 - 63.599999999999994 -3.0864290785399811E-028 - 63.659999999999997 -4.6141942263629724E-028 - 63.719999999999999 -6.1933962251497386E-028 - 63.780000000000001 -7.7643951724538148E-028 - 63.839999999999989 -9.2583124435325072E-028 - 63.899999999999991 -1.0598488796899069E-027 - 63.959999999999994 -1.1702509984068593E-027 - 64.019999999999996 -1.2484789451341659E-027 - 64.079999999999998 -1.2859694646543945E-027 - 64.140000000000001 -1.2745169764213374E-027 - 64.200000000000003 -1.2066777048875014E-027 - 64.259999999999991 -1.0762055541741091E-027 - 64.319999999999993 -8.7850631620592144E-028 - 64.379999999999995 -6.1109428507658613E-028 - 64.439999999999998 -2.7403203500152759E-028 - 64.500000000000000 1.2966727098688268E-028 - 64.560000000000002 5.9369838469214619E-028 - 64.619999999999990 1.1082052978745261E-027 - 64.679999999999993 1.6596326844146074E-027 - 64.739999999999995 2.2307068569613265E-027 - 64.799999999999997 2.8005705233483264E-027 - 64.859999999999999 3.3450884486197433E-027 - 64.920000000000002 3.8373374332958652E-027 - 64.979999999999990 4.2482905344189078E-027 - 65.039999999999992 4.5476960217154605E-027 - 65.099999999999994 4.7051454350823512E-027 - 65.159999999999997 4.6913157122597334E-027 - 65.219999999999999 4.4793602782804612E-027 - 65.280000000000001 4.0464144471145301E-027 - 65.339999999999989 3.3751698051019391E-027 - 65.399999999999991 2.4554657122836084E-027 - 65.459999999999994 1.2858275124534413E-027 - 65.519999999999996 -1.2511237344569276E-028 - 65.579999999999998 -1.7573939026195574E-027 - 65.640000000000001 -3.5787870566797588E-027 - 65.700000000000003 -5.5442125061198479E-027 - 65.759999999999991 -7.5956037084069734E-027 - 65.819999999999993 -9.6622785068827390E-027 - 65.879999999999995 -1.1661893068336069E-026 - 65.939999999999998 -1.3502015063806983E-026 - 66.000000000000000 -1.5082355608946624E-026 - 66.060000000000002 -1.6297659978498734E-026 - 66.119999999999990 -1.7041237185032890E-026 - 66.179999999999993 -1.7209083173525120E-026 - 66.239999999999995 -1.6704520750000151E-026 - 66.299999999999997 -1.5443226635995114E-026 - 66.359999999999999 -1.3358518584281349E-026 - 66.420000000000002 -1.0406711755668398E-026 - 66.479999999999990 -6.5723423504346708E-027 - 66.539999999999992 -1.8730245553335728E-027 - 66.599999999999994 3.6363006103813941E-027 - 66.659999999999997 9.8599987395240180E-027 - 66.719999999999999 1.6659502905703747E-026 - 66.780000000000001 2.3852470060286705E-026 - 66.839999999999989 3.1213546248666884E-026 - 66.899999999999991 3.8476947340155634E-026 - 66.959999999999994 4.5341020243591605E-026 - 67.019999999999996 5.1474857698755037E-026 - 67.079999999999998 5.6527011222929878E-026 - 67.140000000000001 6.0136245050660036E-026 - 67.199999999999989 6.1944175983663077E-026 - 67.259999999999991 6.1609605731496259E-026 - 67.319999999999993 5.8824165019322091E-026 - 67.379999999999995 5.3328906298669781E-026 - 67.439999999999998 4.4931271227769007E-026 - 67.500000000000000 3.3521878386404723E-026 - 67.560000000000002 1.9090480304184334E-026 - 67.619999999999990 1.7403165490621053E-027 - 67.679999999999993 -1.8299833073227204E-026 - 67.739999999999995 -4.0666663094264494E-026 - 67.799999999999997 -6.4857148706178229E-026 - 67.859999999999999 -9.0227867592568371E-026 - 67.920000000000002 -1.1599935944588509E-025 - 67.979999999999990 -1.4126610232500003E-025 - 68.039999999999992 -1.6501236976485087E-025 - 68.099999999999994 -1.8613424192586668E-025 - 68.159999999999997 -2.0346762656241987E-025 - 68.219999999999999 -2.1582213415254566E-025 - 68.280000000000001 -2.2202038868335413E-025 - 68.339999999999989 -2.2094195487029378E-025 - 68.399999999999991 -2.1157094965738947E-025 - 68.459999999999994 -1.9304625634650307E-025 - 68.519999999999996 -1.6471280804671976E-025 - 68.579999999999998 -1.2617242554316604E-025 - 68.640000000000001 -7.7332410865185281E-026 - 68.699999999999989 -1.8449932804267757E-026 - 68.759999999999991 4.9829539187281625E-026 - 68.819999999999993 1.2644219636572564E-025 - 68.879999999999995 2.0988556988218644E-025 - 68.939999999999998 2.9821052084585741E-025 - 69.000000000000000 3.8902671803240327E-025 - 69.060000000000002 4.7952325276849932E-025 - 69.119999999999990 5.6650573083063038E-025 - 69.179999999999993 6.4645047247232112E-025 - 69.239999999999995 7.1557641374042718E-025 - 69.299999999999997 7.6993458890697409E-025 - 69.359999999999999 8.0551444536325224E-025 - 69.420000000000002 8.1836643012694631E-025 - 69.479999999999990 8.0473838348293581E-025 - 69.539999999999992 7.6122409429136680E-025 - 69.599999999999994 6.8492081831195406E-025 - 69.659999999999997 5.7359190954357031E-025 - 69.719999999999999 4.2583137907698049E-025 - 69.780000000000001 2.4122450561254146E-025 - 69.839999999999989 2.0500552936541496E-026 - 69.899999999999991 -2.3432908359079851E-025 - 69.959999999999994 -5.1985182479872380E-025 - 70.019999999999996 -8.3116173141732499E-025 - 70.079999999999998 -1.1617993652502905E-024 - 70.140000000000001 -1.5037296275080654E-024 - 70.199999999999989 -1.8473642033337176E-024 - 70.259999999999991 -2.1816342026937017E-024 - 70.319999999999993 -2.4941176430039259E-024 - 70.379999999999995 -2.7712261983206947E-024 - 70.439999999999998 -2.9984533500012424E-024 - 70.500000000000000 -3.1606885344451374E-024 - 70.560000000000002 -3.2425948556054652E-024 - 70.619999999999990 -3.2290509059691006E-024 - 70.679999999999993 -3.1056524005565205E-024 - 70.739999999999995 -2.8592696004550542E-024 - 70.799999999999997 -2.4786528672685763E-024 - 70.859999999999999 -1.9550726494478618E-024 - 70.920000000000002 -1.2829873477402376E-024 - 70.979999999999990 -4.6071756620350040E-025 - 71.039999999999992 5.0888862366321428E-025 - 71.099999999999994 1.6178207604768113E-024 - 71.159999999999997 2.8523249764272276E-024 - 71.219999999999999 4.1924048733258686E-024 - 71.280000000000001 5.6114317693141345E-024 - 71.339999999999989 7.0758905056431583E-024 - 71.399999999999991 8.5452998560158909E-024 - 71.459999999999994 9.9723326922506888E-024 - 71.519999999999996 1.1303165488088931E-023 - 71.579999999999998 1.2478098144972753E-023 - 71.640000000000001 1.3432456761811415E-023 - 71.699999999999989 1.4097812903173410E-023 - 71.759999999999991 1.4403535675331236E-023 - 71.819999999999993 1.4278683417096451E-023 - 71.879999999999995 1.3654245354828097E-023 - 71.939999999999998 1.2465713253918438E-023 - 72.000000000000000 1.0655980278618322E-023 - 72.060000000000002 8.1785122248203820E-024 - 72.119999999999990 5.0007587975899848E-024 - 72.179999999999993 1.1077216598255437E-024 - 72.239999999999995 -3.4943850177277110E-024 - 72.299999999999997 -8.7745302716719534E-024 - 72.359999999999999 -1.4673391983882197E-023 - 72.420000000000002 -2.1100203713933621E-023 - 72.479999999999990 -2.7930064847186724E-023 - 72.539999999999992 -3.5001912149776603E-023 - 72.599999999999994 -4.2117337163368942E-023 - 72.659999999999997 -4.9040477552815511E-023 - 72.719999999999999 -5.5499169420225508E-023 - 72.780000000000001 -6.1187593044224490E-023 - 72.839999999999989 -6.5770601757011091E-023 - 72.899999999999991 -6.8889910844433106E-023 - 72.959999999999994 -7.0172299263840168E-023 - 73.019999999999996 -6.9239925638168265E-023 - 73.079999999999998 -6.5722788051593542E-023 - 73.140000000000001 -5.9273307230525873E-023 - 73.199999999999989 -4.9582930541906730E-023 - 73.259999999999991 -3.6400521152641327E-023 - 73.319999999999993 -1.9552220365350414E-023 - 73.379999999999995 1.0377173419970620E-024 - 73.439999999999998 2.5325618251849278E-023 - 73.500000000000000 5.3127390985749165E-023 - 73.560000000000002 8.4098680899654383E-023 - 73.619999999999990 1.1771716695497989E-022 - 73.679999999999993 1.5326802059537560E-022 - 73.739999999999995 1.8983387382325911E-022 - 73.799999999999997 2.2629039601007314E-022 - 73.859999999999999 2.6130874054727534E-022 - 73.920000000000002 2.9336634491967218E-022 - 73.979999999999990 3.2076696913063505E-022 - 74.039999999999992 3.4167112239444556E-022 - 74.099999999999994 3.5413785681078569E-022 - 74.159999999999997 3.5617809033429982E-022 - 74.219999999999999 3.4582002288881821E-022 - 74.280000000000001 3.2118613246540977E-022 - 74.339999999999989 2.8058088045412051E-022 - 74.399999999999991 2.2258805305221447E-022 - 74.459999999999994 1.4617543714464290E-022 - 74.519999999999996 5.0804142728555851E-023 - 74.579999999999998 -6.3460530673031386E-023 - 74.640000000000001 -1.9584113919825051E-022 - 74.699999999999989 -3.4474739474279207E-022 - 74.759999999999991 -5.0768857207377942E-022 - 74.819999999999993 -6.8120367837432353E-022 - 74.879999999999995 -8.6081674259174779E-022 - 74.939999999999998 -1.0410223128903934E-021 - 75.000000000000000 -1.2153076478816711E-021 - 75.060000000000002 -1.3762172958915594E-021 - 75.119999999999990 -1.5154647425362179E-021 - 75.179999999999993 -1.6240957503290413E-021 - 75.239999999999995 -1.6927050499204496E-021 - 75.299999999999997 -1.7117089217631453E-021 - 75.359999999999999 -1.6716710694259350E-021 - 75.420000000000002 -1.5636804076566700E-021 - 75.479999999999990 -1.3797740287837292E-021 - 75.539999999999992 -1.1133978458536459E-021 - 75.599999999999994 -7.5989323403817040E-022 - 75.659999999999997 -3.1699641582525759E-022 - 75.719999999999999 2.1466584686927396E-022 - 75.780000000000001 8.3110419232554091E-022 - 75.839999999999989 1.5245384834949134E-021 - 75.899999999999991 2.2830364047075859E-021 - 75.959999999999994 3.0902431906554275E-021 - 76.019999999999996 3.9252291179426562E-021 - 76.079999999999998 4.7624736676707421E-021 - 76.140000000000001 5.5720147870580706E-021 - 76.199999999999989 6.3197795852231721E-021 - 76.259999999999991 6.9681152028043103E-021 - 76.319999999999993 7.4765309194813657E-021 - 76.379999999999995 7.8026586224497923E-021 - 76.439999999999998 7.9034299321098172E-021 - 76.500000000000000 7.7364630947637763E-021 - 76.560000000000002 7.2616421524608424E-021 - 76.619999999999990 6.4428595246015047E-021 - 76.679999999999993 5.2498926487921404E-021 - 76.739999999999995 3.6603607799126392E-021 - 76.799999999999997 1.6617112881619811E-021 - 76.859999999999999 -7.4683006971469639E-022 - 76.920000000000002 -3.5524164695978638E-021 - 76.979999999999990 -6.7269294562292764E-021 - 77.039999999999992 -1.0225597760905380E-020 - 77.099999999999994 -1.3985987850337997E-020 - 77.159999999999997 -1.7927438913704005E-020 - 77.219999999999999 -2.1951039719624991E-020 - 77.280000000000001 -2.5940232684846361E-020 - 77.339999999999989 -2.9762120429661025E-020 - 77.399999999999991 -3.3269532883504603E-020 - 77.459999999999994 -3.6303902595357218E-020 - 77.519999999999996 -3.8698995175393814E-020 - 77.579999999999998 -4.0285491904409670E-020 - 77.640000000000001 -4.0896416688063523E-020 - 77.699999999999989 -4.0373343491142846E-020 - 77.759999999999991 -3.8573353610268452E-020 - 77.819999999999993 -3.5376568471565309E-020 - 77.879999999999995 -3.0694190911953432E-020 - 77.939999999999998 -2.4476813777775043E-020 - 78.000000000000000 -1.6722805204448319E-020 - 78.060000000000002 -7.4865288314376336E-021 - 78.119999999999990 3.1139307830988448E-021 - 78.179999999999993 1.4889809973385642E-020 - 78.239999999999995 2.7575831033336041E-020 - 78.299999999999997 4.0825894881696664E-020 - 78.359999999999999 5.4210614601667853E-020 - 78.420000000000002 6.7217138121368135E-020 - 78.479999999999990 7.9251593469543035E-020 - 78.539999999999992 8.9644489006363771E-020 - 78.599999999999994 9.7659468274909835E-020 - 78.659999999999997 1.0250558540002469E-019 - 78.719999999999999 1.0335329677019285E-019 - 78.780000000000001 9.9354380954346531E-020 - 78.839999999999989 8.9665591058946957E-020 - 78.899999999999991 7.3476065772282418E-020 - 78.959999999999994 5.0038173412034004E-020 - 79.019999999999996 1.8701223079112255E-020 - 79.079999999999998 -2.1052329546611065E-020 - 79.140000000000001 -6.9569267840553787E-020 - 79.199999999999989 -1.2698716527091415E-019 - 79.259999999999991 -1.9319671170681420E-019 - 79.319999999999993 -2.6780570224824044E-019 - 79.379999999999995 -3.5010629558660612E-019 - 79.439999999999998 -4.3904715084238524E-019 - 79.500000000000000 -5.3321185572114578E-019 - 79.560000000000002 -6.3080540529020728E-019 - 79.619999999999990 -7.2965035872233046E-019 - 79.679999999999993 -8.2719381961042103E-019 - 79.739999999999995 -9.2052718887520792E-019 - 79.799999999999997 -1.0064188710488899E-018 - 79.859999999999999 -1.0813612743172396E-018 - 79.920000000000002 -1.1416318909736094E-018 - 79.979999999999990 -1.1833685345735729E-018 - 80.039999999999992 -1.2026574931131446E-018 - 80.099999999999994 -1.1956331262604141E-018 - 80.159999999999997 -1.1585865071712966E-018 - 80.219999999999999 -1.0880806786728969E-018 - 80.280000000000001 -9.8106678746056017E-019 - 80.340000000000003 -8.3499891754129344E-019 - 80.400000000000006 -6.4793941748601503E-019 - 80.460000000000008 -4.1864943312556976E-019 - 80.519999999999982 -1.4665979113389043E-019 - 80.579999999999984 1.6768987783733167E-019 - 80.639999999999986 5.2324730844413921E-019 - 80.699999999999989 9.1808933443459782E-019 - 80.759999999999991 1.3496182220149120E-018 - 80.819999999999993 1.8147169216509580E-018 - 80.879999999999995 2.3099761802587781E-018 - 80.939999999999998 2.8319964457994620E-018 - 81.000000000000000 3.3777677155185357E-018 - 81.060000000000002 3.9451400854055340E-018 - 81.120000000000005 4.5333772223736890E-018 - 81.180000000000007 5.1438084480962581E-018 - 81.240000000000009 5.7805579781355633E-018 - 81.299999999999983 6.4513733249650317E-018 - 81.359999999999985 7.1685260393011362E-018 - 81.419999999999987 7.9497879802862353E-018 - 81.479999999999990 8.8194849793392009E-018 - 81.539999999999992 9.8095821998828535E-018 - 81.599999999999994 1.0960836240570170E-017 - 81.659999999999997 1.2323970106568304E-017 - 81.719999999999999 1.3960840494181608E-017 - 81.780000000000001 1.5945639551627400E-017 - 81.840000000000003 1.8366067309819847E-017 - 81.900000000000006 2.1324462391975102E-017 - 81.960000000000008 2.4938903990094089E-017 - 82.019999999999982 2.9344264622173290E-017 - 82.079999999999984 3.4693184722821058E-017 - 82.139999999999986 4.1157009064801824E-017 - 82.199999999999989 4.8926631057767013E-017 - 82.259999999999991 5.8213313375632359E-017 - 82.319999999999993 6.9249413030039610E-017 - 82.379999999999995 8.2289094645015371E-017 - 82.439999999999998 9.7609009051581688E-017 - 82.500000000000000 1.1550907721203009E-016 - 82.560000000000002 1.3631316041092875E-016 - 82.620000000000005 1.6036990008216615E-016 - 82.680000000000007 1.8805388430746649E-016 - 82.740000000000009 2.1976660482381197E-016 - 82.799999999999983 2.5593809731657152E-016 - 82.859999999999985 2.9702853144759613E-016 - 82.919999999999987 3.4353051063380920E-016 - 82.979999999999990 3.9597142655607152E-016 - 83.039999999999992 4.5491665567740986E-016 - 83.099999999999994 5.2097316364371094E-016 - 83.159999999999997 5.9479350612639349E-016 - 83.219999999999999 6.7708071812353195E-016 - 83.280000000000001 7.6859387563492725E-016 - 83.340000000000003 8.7015363768287264E-016 - 83.400000000000006 9.8264894206696634E-016 - 83.460000000000008 1.1070435327354177E-015 - 83.519999999999982 1.2443832579990915E-015 - 83.579999999999984 1.3958032333093298E-015 - 83.639999999999986 1.5625340446957391E-015 - 83.699999999999989 1.7459081881541060E-015 - 83.759999999999991 1.9473656210919964E-015 - 83.819999999999993 2.1684572942496720E-015 - 83.879999999999995 2.4108465453470222E-015 - 83.939999999999998 2.6763079332307387E-015 - 84.000000000000000 2.9667214801976625E-015 - 84.060000000000002 3.2840646990773498E-015 - 84.120000000000005 3.6303964692032061E-015 - 84.180000000000007 4.0078352599108226E-015 - 84.240000000000009 4.4185296483365319E-015 - 84.299999999999983 4.8646176880379650E-015 - 84.359999999999985 5.3481776084290550E-015 - 84.419999999999987 5.8711611330649695E-015 - 84.479999999999990 6.4353164222244360E-015 - 84.539999999999992 7.0420911145772595E-015 - 84.599999999999994 7.6925148744830413E-015 - 84.659999999999997 8.3870607045421634E-015 - 84.719999999999999 9.1254766424858206E-015 - 84.780000000000001 9.9065938548242805E-015 - 84.840000000000003 1.0728095789320841E-014 - 84.900000000000006 1.1586249497501265E-014 - 84.960000000000008 1.2475598221502510E-014 - 85.019999999999982 1.3388605011606121E-014 - 85.079999999999984 1.4315233669830522E-014 - 85.139999999999986 1.5242476412254792E-014 - 85.199999999999989 1.6153811168559407E-014 - 85.259999999999991 1.7028575093222175E-014 - 85.319999999999993 1.7841251586294616E-014 - 85.379999999999995 1.8560660623186458E-014 - 85.439999999999998 1.9149027929119419E-014 - 85.500000000000000 1.9560935507198507E-014 - 85.560000000000002 1.9742127431579732E-014 - 85.620000000000005 1.9628138326433815E-014 - 85.680000000000007 1.9142773752287708E-014 - 85.740000000000009 1.8196342102023516E-014 - 85.799999999999983 1.6683695031951784E-014 - 85.859999999999985 1.4482018310224841E-014 - 85.919999999999987 1.1448264284821759E-014 - 85.979999999999990 7.4163308710390160E-015 - 86.039999999999992 2.1938927172631529E-015 - 86.099999999999994 -4.4412674140783968E-015 - 86.159999999999997 -1.2745306157925268E-014 - 86.219999999999999 -2.3012831430730332E-014 - 86.280000000000001 -3.5582059717060729E-014 - 86.340000000000003 -5.0840612068487166E-014 - 86.400000000000006 -6.9231820882338284E-014 - 86.460000000000008 -9.1262023545552084E-014 - 86.519999999999982 -1.1750864393624912E-013 - 86.579999999999984 -1.4862902578137651E-013 - 86.639999999999986 -1.8537063534575783E-013 - 86.699999999999989 -2.2858210797813052E-013 - 86.759999999999991 -2.7922558496842736E-013 - 86.819999999999993 -3.3839072145282648E-013 - 86.879999999999995 -4.0730959584481761E-013 - 86.939999999999998 -4.8737397142479387E-013 - 87.000000000000000 -5.8015366296124467E-013 - 87.060000000000002 -6.8741723776602554E-013 - 87.120000000000005 -8.1115485748767526E-013 - 87.180000000000007 -9.5360348770045810E-013 - 87.240000000000009 -1.1172741210011051E-012 - 87.299999999999983 -1.3049812638248120E-012 - 87.359999999999985 -1.5198774024458518E-012 - 87.419999999999987 -1.7654878256691624E-012 - 87.479999999999990 -2.0457511453037375E-012 - 87.539999999999992 -2.3650604744538955E-012 - 87.599999999999994 -2.7283119653561606E-012 - 87.659999999999997 -3.1409536870227067E-012 - 87.719999999999999 -3.6090424519449524E-012 - 87.780000000000001 -4.1393002102857353E-012 - 87.840000000000003 -4.7391799813826439E-012 - 87.900000000000006 -5.4169337325969145E-012 - 87.960000000000008 -6.1816849278316371E-012 - 88.019999999999982 -7.0435071794844152E-012 - 88.079999999999984 -8.0135085479805688E-012 - 88.139999999999986 -9.1039213561343906E-012 - 88.199999999999989 -1.0328196816941271E-011 - 88.259999999999991 -1.1701100691610362E-011 - 88.319999999999993 -1.3238821401425422E-011 - 88.379999999999995 -1.4959082024783742E-011 - 88.439999999999998 -1.6881248838889161E-011 - 88.500000000000000 -1.9026453944345630E-011 - 88.560000000000002 -2.1417716942046882E-011 - 88.620000000000005 -2.4080065525877707E-011 - 88.680000000000007 -2.7040667806880940E-011 - 88.740000000000009 -3.0328947676697382E-011 - 88.799999999999983 -3.3976722760154642E-011 - 88.859999999999985 -3.8018314918431912E-011 - 88.919999999999987 -4.2490660482713732E-011 - 88.979999999999990 -4.7433429204982762E-011 - 89.039999999999992 -5.2889096231538975E-011 - 89.099999999999994 -5.8903032045184951E-011 - 89.159999999999997 -6.5523564865012906E-011 - 89.219999999999999 -7.2801966175842799E-011 - 89.280000000000001 -8.0792464808516368E-011 - 89.340000000000003 -8.9552193816796558E-011 - 89.400000000000006 -9.9141076514645560E-011 - 89.460000000000008 -1.0962167129569612E-010 - 89.519999999999982 -1.2105889012226398E-010 - 89.579999999999984 -1.3351970159404709E-010 - 89.639999999999986 -1.4707267449569687E-010 - 89.699999999999989 -1.6178741916451227E-010 - 89.759999999999991 -1.7773385214574180E-010 - 89.819999999999993 -1.9498135012008574E-010 - 89.879999999999995 -2.1359764562070379E-010 - 89.939999999999998 -2.3364754189902322E-010 - 90.000000000000000 -2.5519126431825974E-010 - 90.060000000000002 -2.7828267622796411E-010 - 90.120000000000005 -3.0296699583911300E-010 - 90.180000000000007 -3.2927815790846705E-010 - 90.240000000000009 -3.5723566972573834E-010 - 90.299999999999983 -3.8684111206064325E-010 - 90.359999999999985 -4.1807379386815350E-010 - 90.419999999999987 -4.5088582954181847E-010 - 90.479999999999990 -4.8519653348333944E-010 - 90.539999999999992 -5.2088574251788256E-010 - 90.599999999999994 -5.5778640847625745E-010 - 90.659999999999997 -5.9567570784813200E-010 - 90.719999999999999 -6.3426511417270769E-010 - 90.780000000000001 -6.7318913521824096E-010 - 90.840000000000003 -7.1199219867653234E-010 - 90.900000000000006 -7.5011380006056800E-010 - 90.960000000000008 -7.8687158917264128E-010 - 91.019999999999982 -8.2144240231893948E-010 - 91.079999999999984 -8.5284059882265234E-010 - 91.139999999999986 -8.7989318092218132E-010 - 91.199999999999989 -9.0121236862363261E-010 - 91.259999999999991 -9.1516417281394161E-010 - 91.319999999999993 -9.1983339460748154E-010 - 91.379999999999995 -9.1298362857855952E-010 - 91.439999999999998 -8.9201283068130958E-010 - 91.500000000000000 -8.5390340486955784E-010 - 91.560000000000002 -7.9516655103852277E-010 - 91.620000000000005 -7.1177781010078106E-010 - 91.680000000000007 -5.9910924155978815E-010 - 91.739999999999981 -4.5184888636963298E-010 - 91.799999999999983 -2.6391442526843364E-010 - 91.859999999999985 -2.8355594745932731E-011 - 91.919999999999987 2.6275487619557992E-010 - 91.979999999999990 6.1844168189587741E-010 - 92.039999999999992 1.0489621879645235E-009 - 92.099999999999994 1.5659548638906352E-009 - 92.159999999999997 2.1826045158268947E-009 - 92.219999999999999 2.9138250354298510E-009 - 92.280000000000001 3.7764657394643434E-009 - 92.340000000000003 4.7895293782104752E-009 - 92.400000000000006 5.9744312469497008E-009 - 92.460000000000008 7.3552588188027088E-009 - 92.519999999999982 8.9590863853864255E-009 - 92.579999999999984 1.0816311776935469E-008 - 92.639999999999986 1.2961006550330760E-008 - 92.699999999999989 1.5431338082922904E-008 - 92.759999999999991 1.8270004769137927E-008 - 92.819999999999993 2.1524734922385171E-008 - 92.879999999999995 2.5248808187648322E-008 - 92.939999999999998 2.9501666345543290E-008 - 93.000000000000000 3.4349529025845740E-008 - 93.060000000000002 3.9866155582508298E-008 - 93.120000000000005 4.6133549942959660E-008 - 93.180000000000007 5.3242865554624246E-008 - 93.239999999999981 6.1295327870471529E-008 - 93.299999999999983 7.0403188404550763E-008 - 93.359999999999985 8.0690913961612993E-008 - 93.419999999999987 9.2296344398775646E-008 - 93.479999999999990 1.0537199591523075E-007 - 93.539999999999992 1.2008653008231781E-007 - 93.599999999999994 1.3662628199380307E-007 - 93.659999999999997 1.5519697961640863E-007 - 93.719999999999999 1.7602557600115481E-007 - 93.780000000000001 1.9936219694366774E-007 - 93.840000000000003 2.2548241132244240E-007 - 93.900000000000006 2.5468947038270727E-007 - 93.960000000000008 2.8731689180209563E-007 - 94.019999999999982 3.2373130374848555E-007 - 94.079999999999984 3.6433529901233967E-007 - 94.139999999999986 4.0957070959150747E-007 - 94.199999999999989 4.5992207704773192E-007 - 94.259999999999991 5.1592039536435808E-007 - 94.319999999999993 5.7814735099133109E-007 - 94.379999999999995 6.4723920860284135E-007 - 94.439999999999998 7.2389214132476222E-007 - 94.500000000000000 8.0886669522172283E-007 - 94.560000000000002 9.0299355257667844E-007 - 94.620000000000005 1.0071795427723812E-006 - 94.680000000000007 1.1224133786137555E-006 - 94.739999999999981 1.2497727386518891E-006 - 94.799999999999983 1.3904313197549377E-006 - 94.859999999999985 1.5456667043444843E-006 - 94.919999999999987 1.7168685058362020E-006 - 94.979999999999990 1.9055473919324487E-006 - 95.039999999999992 2.1133438279727398E-006 - 95.099999999999994 2.3420388089477006E-006 - 95.159999999999997 2.5935645634658244E-006 - 95.219999999999999 2.8700155483248144E-006 - 95.280000000000001 3.1736601879330270E-006 - 95.340000000000003 3.5069549887047380E-006 - 95.400000000000006 3.8725572871571337E-006 - 95.460000000000008 4.2733398888918817E-006 - 95.519999999999982 4.7124073242281838E-006 - 95.579999999999984 5.1931112608389337E-006 - 95.639999999999986 5.7190680193054097E-006 - 95.699999999999989 6.2941754215635847E-006 - 95.759999999999991 6.9226359515894562E-006 - 95.819999999999993 7.6089731827486999E-006 - 95.879999999999995 8.3580549996033928E-006 - 95.939999999999998 9.1751154456772381E-006 - 96.000000000000000 1.0065779319429874E-005 - 96.060000000000002 1.1036088206496653E-005 - 96.120000000000005 1.2092523356123421E-005 - 96.180000000000007 1.3242035127844033E-005 - 96.239999999999981 1.4492070995574836E-005 - 96.299999999999983 1.5850609642336189E-005 - 96.359999999999985 1.7326183290223744E-005 - 96.419999999999987 1.8927923514897751E-005 - 96.479999999999990 2.0665580321579002E-005 - 96.539999999999992 2.2549569525568132E-005 - 96.599999999999994 2.4591005267814023E-005 - 96.659999999999997 2.6801739077722047E-005 - 96.719999999999999 2.9194394908101885E-005 - 96.780000000000001 3.1782416924837660E-005 - 96.840000000000003 3.4580112768682316E-005 - 96.900000000000006 3.7602690698893577E-005 - 96.960000000000008 4.0866307740984285E-005 - 97.019999999999982 4.4388118633163490E-005 - 97.079999999999984 4.8186319333807955E-005 - 97.139999999999986 5.2280197390859565E-005 - 97.199999999999989 5.6690181768593389E-005 - 97.259999999999991 6.1437895505690097E-005 - 97.319999999999993 6.6546213961208651E-005 - 97.379999999999995 7.2039288348357296E-005 - 97.439999999999998 7.7942651740052097E-005 - 97.500000000000000 8.4283211692916132E-005 - 97.560000000000002 9.1089351413904305E-005 - 97.620000000000005 9.8390971330923420E-005 - 97.680000000000007 1.0621953708250802E-004 - 97.739999999999981 1.1460814654624203E-004 - 97.799999999999983 1.2359154309566744E-004 - 97.859999999999985 1.3320626095943616E-004 - 97.919999999999987 1.4349058346639935E-004 - 97.979999999999990 1.5448464902006217E-004 - 98.039999999999992 1.6623048363748435E-004 - 98.099999999999994 1.7877208058988256E-004 - 98.159999999999997 1.9215538542552362E-004 - 98.219999999999999 2.0642842232194026E-004 - 98.280000000000001 2.2164130743314791E-004 - 98.340000000000003 2.3784627610440185E-004 - 98.400000000000006 2.5509767471944918E-004 - 98.460000000000008 2.7345215707324843E-004 - 98.519999999999982 2.9296851979157047E-004 - 98.579999999999984 3.1370789119864161E-004 - 98.639999999999986 3.3573367992736718E-004 - 98.699999999999989 3.5911157686900359E-004 - 98.759999999999991 3.8390962111400028E-004 - 98.819999999999993 4.1019821112655267E-004 - 98.879999999999995 4.3805000643477751E-004 - 98.939999999999998 4.6754007298153787E-004 - 99.000000000000000 4.9874572853436964E-004 - 99.060000000000002 5.3174668346582358E-004 - 99.120000000000005 5.6662481341142725E-004 - 99.180000000000007 6.0346432175625148E-004 - 99.239999999999981 6.4235160350825866E-004 - 99.299999999999983 6.8337510934300444E-004 - 99.359999999999985 7.2662550804406022E-004 - 99.419999999999987 7.7219540806479304E-004 - 99.479999999999990 8.2017936106614571E-004 - 99.539999999999992 8.7067368960838058E-004 - 99.599999999999994 9.2377650056281349E-004 - 99.659999999999997 9.7958749973904623E-004 - 99.719999999999999 1.0382078654630330E-003 - 99.780000000000001 1.0997402496397935E-003 - 99.840000000000003 1.1642882264825394E-003 - 99.900000000000006 1.2319565822651386E-003 - 99.960000000000008 1.3028508012788399E-003 - 100.01999999999998 1.3770772005273833E-003 - 100.07999999999998 1.4547424092523013E-003 - 100.13999999999999 1.5359531643045910E-003 - 100.19999999999999 1.6208161899261635E-003 - 100.25999999999999 1.7094382693741987E-003 - 100.31999999999999 1.8019252150040636E-003 - 100.38000000000000 1.8983823275232391E-003 - 100.44000000000000 1.9989135314442030E-003 - 100.50000000000000 2.1036214655137625E-003 - 100.56000000000000 2.2126069824336052E-003 - 100.62000000000000 2.3259690597115181E-003 - 100.68000000000001 2.4438038634709146E-003 - 100.73999999999998 2.5662051514159334E-003 - 100.79999999999998 2.6932633460110362E-003 - 100.85999999999999 2.8250652923802297E-003 - 100.91999999999999 2.9616942064671940E-003 - 100.97999999999999 3.1032287161087638E-003 - 101.03999999999999 3.2497430268369873E-003 - 101.09999999999999 3.4013058286304731E-003 - 101.16000000000000 3.5579807260512205E-003 - 101.22000000000000 3.7198248399369924E-003 - 101.28000000000000 3.8868888607346283E-003 - 101.34000000000000 4.0592171851120597E-003 - 101.40000000000001 4.2368464402263795E-003 - 101.46000000000001 4.4198053287846841E-003 - 101.51999999999998 4.6081145623591566E-003 - 101.57999999999998 4.8017868131305704E-003 - 101.63999999999999 5.0008246835853342E-003 - 101.69999999999999 5.2052219026807898E-003 - 101.75999999999999 5.4149626415286780E-003 - 101.81999999999999 5.6300194514976058E-003 - 101.88000000000000 5.8503552734603653E-003 - 101.94000000000000 6.0759219733541167E-003 - 102.00000000000000 6.3066589467264175E-003 - 102.06000000000000 6.5424946109632681E-003 - 102.12000000000000 6.7833444947738427E-003 - 102.18000000000001 7.0291123958877971E-003 - 102.23999999999998 7.2796884531605823E-003 - 102.29999999999998 7.5349497859545601E-003 - 102.35999999999999 7.7947613037867335E-003 - 102.41999999999999 8.0589728185852388E-003 - 102.47999999999999 8.3274206654766064E-003 - 102.53999999999999 8.5999269826285592E-003 - 102.59999999999999 8.8763006431165671E-003 - 102.66000000000000 9.1563359298712042E-003 - 102.72000000000000 9.4398123139349394E-003 - 102.78000000000000 9.7264958578436294E-003 - 102.84000000000000 1.0016137112793278E-002 - 102.90000000000001 1.0308473086391021E-002 - 102.96000000000001 1.0603227128405612E-002 - 103.01999999999998 1.0900106159500506E-002 - 103.07999999999998 1.1198806560065241E-002 - 103.13999999999999 1.1499008021171403E-002 - 103.19999999999999 1.1800379339032781E-002 - 103.25999999999999 1.2102574257850458E-002 - 103.31999999999999 1.2405235644466354E-002 - 103.38000000000000 1.2707992916716929E-002 - 103.44000000000000 1.3010463003355781E-002 - 103.50000000000000 1.3312252000187572E-002 - 103.56000000000000 1.3612955977549451E-002 - 103.62000000000000 1.3912161377225936E-002 - 103.68000000000001 1.4209442225764266E-002 - 103.73999999999998 1.4504365279470318E-002 - 103.79999999999998 1.4796490620485879E-002 - 103.85999999999999 1.5085367696666583E-002 - 103.91999999999999 1.5370542206428195E-002 - 103.97999999999999 1.5651552425582943E-002 - 104.03999999999999 1.5927933063801396E-002 - 104.09999999999999 1.6199213792244989E-002 - 104.16000000000000 1.6464921081182679E-002 - 104.22000000000000 1.6724581133969567E-002 - 104.28000000000000 1.6977718907855308E-002 - 104.34000000000000 1.7223858362408757E-002 - 104.40000000000001 1.7462523483467031E-002 - 104.46000000000001 1.7693244462951965E-002 - 104.51999999999998 1.7915552479382701E-002 - 104.57999999999998 1.8128984119674677E-002 - 104.63999999999999 1.8333079015235294E-002 - 104.69999999999999 1.8527388192558898E-002 - 104.75999999999999 1.8711468821029729E-002 - 104.81999999999999 1.8884886342008050E-002 - 104.88000000000000 1.9047217616045539E-002 - 104.94000000000000 1.9198051732875036E-002 - 105.00000000000000 1.9336987895010559E-002 - 105.06000000000000 1.9463641580981184E-002 - 105.12000000000000 1.9577643708902560E-002 - 105.18000000000001 1.9678638286485139E-002 - 105.23999999999998 1.9766290617310545E-002 - 105.29999999999998 1.9840279400604035E-002 - 105.35999999999999 1.9900308073278042E-002 - 105.41999999999999 1.9946095747812843E-002 - 105.47999999999999 1.9977384616096130E-002 - 105.53999999999999 1.9993936349267823E-002 - 105.59999999999999 1.9995539491641370E-002 - 105.66000000000000 1.9982002965041309E-002 - 105.72000000000000 1.9953160900748054E-002 - 105.78000000000000 1.9908871389688519E-002 - 105.84000000000000 1.9849021598264387E-002 - 105.90000000000001 1.9773520917274121E-002 - 105.96000000000001 1.9682309496540158E-002 - 106.01999999999998 1.9575348872578672E-002 - 106.07999999999998 1.9452634164157122E-002 - 106.13999999999999 1.9314184810716343E-002 - 106.19999999999999 1.9160048012197745E-002 - 106.25999999999999 1.8990299456341234E-002 - 106.31999999999999 1.8805043613987597E-002 - 106.38000000000000 1.8604412916257775E-002 - 106.44000000000000 1.8388565429871082E-002 - 106.50000000000000 1.8157688520904644E-002 - 106.56000000000000 1.7911998020509266E-002 - 106.62000000000000 1.7651735015278683E-002 - 106.68000000000001 1.7377169522808263E-002 - 106.73999999999998 1.7088594801020464E-002 - 106.79999999999998 1.6786331733174616E-002 - 106.85999999999999 1.6470724823905439E-002 - 106.91999999999999 1.6142143670927152E-002 - 106.97999999999999 1.5800980013576958E-002 - 107.03999999999999 1.5447651062134806E-002 - 107.09999999999999 1.5082592791635561E-002 - 107.16000000000000 1.4706264142942172E-002 - 107.22000000000000 1.4319144079418148E-002 - 107.28000000000000 1.3921725641388369E-002 - 107.34000000000000 1.3514526451790443E-002 - 107.40000000000001 1.3098074918877217E-002 - 107.46000000000001 1.2672916401873088E-002 - 107.51999999999998 1.2239610418764075E-002 - 107.57999999999998 1.1798727581013004E-002 - 107.63999999999999 1.1350851333921145E-002 - 107.69999999999999 1.0896573705145287E-002 - 107.75999999999999 1.0436496726058758E-002 - 107.81999999999999 9.9712276794132956E-003 - 107.88000000000000 9.5013806599532520E-003 - 107.94000000000000 9.0275739231527857E-003 - 108.00000000000000 8.5504280316926716E-003 - 108.06000000000000 8.0705651879143837E-003 - 108.12000000000000 7.5886071875129009E-003 - 108.18000000000001 7.1051752549384619E-003 - 108.23999999999998 6.6208864164592580E-003 - 108.29999999999998 6.1363543260233126E-003 - 108.35999999999999 5.6521880519054424E-003 - 108.41999999999999 5.1689872484425789E-003 - 108.47999999999999 4.6873452417418755E-003 - 108.53999999999999 4.2078457118858957E-003 - 108.59999999999999 3.7310614637627998E-003 - 108.66000000000000 3.2575536182322786E-003 - 108.72000000000000 2.7878701655713839E-003 - 108.78000000000000 2.3225457549278091E-003 - 108.84000000000000 1.8620999187729977E-003 - 108.90000000000001 1.4070360045932155E-003 - 108.96000000000001 9.5784061493394540E-004 - 109.01999999999998 5.1498280856951753E-004 - 109.07999999999998 7.8913258597823800E-005 - 109.13999999999999 -3.4993710801300201E-004 - 109.19999999999999 -7.7115665104633474E-004 - 109.25999999999999 -1.1843539604033224E-003 - 109.31999999999999 -1.5891593939452210E-003 - 109.38000000000000 -1.9852245286912261E-003 - 109.44000000000000 -2.3722226691687814E-003 - 109.50000000000000 -2.7498494739792898E-003 - 109.56000000000000 -3.1178230668899480E-003 - 109.62000000000000 -3.4758837274572610E-003 - 109.68000000000001 -3.8237950043173187E-003 - 109.73999999999998 -4.1613431641066420E-003 - 109.79999999999998 -4.4883372637064441E-003 - 109.85999999999999 -4.8046088102887581E-003 - 109.91999999999999 -5.1100118576619894E-003 - 109.97999999999999 -5.4044229055243481E-003 - 110.03999999999999 -5.6877408379600132E-003 - 110.09999999999999 -5.9598856748639519E-003 - 110.16000000000000 -6.2207991846110564E-003 - 110.22000000000000 -6.4704438853765631E-003 - 110.28000000000000 -6.7088030660395967E-003 - 110.34000000000000 -6.9358803362134600E-003 - 110.40000000000001 -7.1516978432928603E-003 - 110.46000000000001 -7.3562972354616818E-003 - 110.51999999999998 -7.5497388017693734E-003 - 110.57999999999998 -7.7321003269131697E-003 - 110.63999999999999 -7.9034767019717025E-003 - 110.69999999999999 -8.0639795622792308E-003 - 110.75999999999999 -8.2137350780347018E-003 - 110.81999999999999 -8.3528850554774516E-003 - 110.88000000000000 -8.4815850326277822E-003 - 110.94000000000000 -8.6000038776278005E-003 - 111.00000000000000 -8.7083235332683223E-003 - 111.06000000000000 -8.8067370629263952E-003 - 111.12000000000000 -8.8954488855728688E-003 - 111.18000000000001 -8.9746719531284738E-003 - 111.23999999999998 -9.0446304931235920E-003 - 111.29999999999998 -9.1055548102105081E-003 - 111.35999999999999 -9.1576853635861738E-003 - 111.41999999999999 -9.2012667231280466E-003 - 111.47999999999999 -9.2365512124723236E-003 - 111.53999999999999 -9.2637963008926349E-003 - 111.59999999999999 -9.2832632441509078E-003 - 111.66000000000000 -9.2952168080970739E-003 - 111.72000000000000 -9.2999251309640769E-003 - 111.78000000000000 -9.2976587014728020E-003 - 111.84000000000000 -9.2886896077594479E-003 - 111.90000000000001 -9.2732903038765142E-003 - 111.96000000000001 -9.2517343659796105E-003 - 112.01999999999998 -9.2242937213318880E-003 - 112.07999999999998 -9.1912405433983643E-003 - 112.13999999999999 -9.1528451799353788E-003 - 112.19999999999999 -9.1093748489329066E-003 - 112.25999999999999 -9.0610969549530379E-003 - 112.31999999999999 -9.0082731223260215E-003 - 112.38000000000000 -8.9511627151060754E-003 - 112.44000000000000 -8.8900211072337459E-003 - 112.50000000000000 -8.8250995155743119E-003 - 112.56000000000000 -8.7566436845951875E-003 - 112.62000000000000 -8.6848953369582319E-003 - 112.68000000000001 -8.6100911598243016E-003 - 112.73999999999998 -8.5324615924050155E-003 - 112.79999999999998 -8.4522311484166394E-003 - 112.85999999999999 -8.3696191341119230E-003 - 112.91999999999999 -8.2848377947255698E-003 - 112.97999999999999 -8.1980934892071800E-003 - 113.03999999999999 -8.1095853069736157E-003 - 113.09999999999999 -8.0195064561874620E-003 - 113.16000000000000 -7.9280435787781288E-003 - 113.22000000000000 -7.8353758531338816E-003 - 113.28000000000000 -7.7416753476308000E-003 - 113.34000000000000 -7.6471077228754489E-003 - 113.40000000000001 -7.5518316820439553E-003 - 113.46000000000001 -7.4559990471378245E-003 - 113.51999999999998 -7.3597533206116120E-003 - 113.57999999999998 -7.2632330286573924E-003 - 113.63999999999999 -7.1665688794559004E-003 - 113.69999999999999 -7.0698847828348536E-003 - 113.75999999999999 -6.9732988175379967E-003 - 113.81999999999999 -6.8769222794090971E-003 - 113.88000000000000 -6.7808596899141963E-003 - 113.94000000000000 -6.6852102540023491E-003 - 114.00000000000000 -6.5900662094826364E-003 - 114.06000000000000 -6.4955136729547957E-003 - 114.12000000000000 -6.4016340574745648E-003 - 114.18000000000001 -6.3085017876162606E-003 - 114.23999999999998 -6.2161866741809579E-003 - 114.29999999999998 -6.1247532410012269E-003 - 114.35999999999999 -6.0342598909946827E-003 - 114.41999999999999 -5.9447610603838340E-003 - 114.47999999999999 -5.8563056716177753E-003 - 114.53999999999999 -5.7689380858148504E-003 - 114.59999999999999 -5.6826979323364168E-003 - 114.66000000000000 -5.5976208909567903E-003 - 114.72000000000000 -5.5137382150605889E-003 - 114.78000000000000 -5.4310771631702962E-003 - 114.84000000000000 -5.3496613657587353E-003 - 114.90000000000001 -5.2695108646695051E-003 - 114.96000000000001 -5.1906421139817560E-003 - 115.01999999999998 -5.1130686245595336E-003 - 115.07999999999998 -5.0368004166330095E-003 - 115.13999999999999 -4.9618452365463792E-003 - 115.19999999999999 -4.8882072836783997E-003 - 115.25999999999999 -4.8158895402488910E-003 - 115.31999999999999 -4.7448920857698362E-003 - 115.38000000000000 -4.6752125116253573E-003 - 115.44000000000000 -4.6068462391549783E-003 - 115.50000000000000 -4.5397872731288390E-003 - 115.56000000000000 -4.4740279644578168E-003 - 115.62000000000000 -4.4095588755923435E-003 - 115.68000000000001 -4.3463682254275739E-003 - 115.73999999999998 -4.2844437791680449E-003 - 115.79999999999998 -4.2237716779712558E-003 - 115.85999999999999 -4.1643371292422590E-003 - 115.91999999999999 -4.1061244356735997E-003 - 115.97999999999999 -4.0491160731245977E-003 - 116.03999999999999 -3.9932942029231432E-003 - 116.09999999999999 -3.9386409323510707E-003 - 116.16000000000000 -3.8851370762630691E-003 - 116.22000000000000 -3.8327626632688066E-003 - 116.28000000000000 -3.7814981718316725E-003 - 116.34000000000000 -3.7313223763336774E-003 - 116.40000000000001 -3.6822153565651277E-003 - 116.46000000000001 -3.6341554255830103E-003 - 116.51999999999998 -3.5871218130564143E-003 - 116.57999999999998 -3.5410932043652543E-003 - 116.63999999999999 -3.4960479986695151E-003 - 116.69999999999999 -3.4519653694886172E-003 - 116.75999999999999 -3.4088235631759838E-003 - 116.81999999999999 -3.3666015350373299E-003 - 116.88000000000000 -3.3252779042257713E-003 - 116.94000000000000 -3.2848315561401571E-003 - 117.00000000000000 -3.2452416628416737E-003 - 117.06000000000000 -3.2064877561358042E-003 - 117.12000000000000 -3.1685492809558845E-003 - 117.18000000000001 -3.1314062573721720E-003 - 117.23999999999998 -3.0950385498446972E-003 - 117.29999999999998 -3.0594266349220213E-003 - 117.35999999999999 -3.0245513601070513E-003 - 117.41999999999999 -2.9903940258848177E-003 - 117.47999999999999 -2.9569362134357997E-003 - 117.53999999999999 -2.9241599227902175E-003 - 117.59999999999999 -2.8920473605281924E-003 - 117.66000000000000 -2.8605814242520272E-003 - 117.72000000000000 -2.8297453396017064E-003 - 117.78000000000000 -2.7995225441198057E-003 - 117.84000000000000 -2.7698970801188902E-003 - 117.90000000000001 -2.7408531330402074E-003 - 117.96000000000001 -2.7123751266600296E-003 - 118.01999999999998 -2.6844483589582150E-003 - 118.07999999999998 -2.6570582034850907E-003 - 118.13999999999999 -2.6301901209610269E-003 - 118.19999999999999 -2.6038301519632229E-003 - 118.25999999999999 -2.5779649027219860E-003 - 118.31999999999999 -2.5525806436647097E-003 - 118.38000000000000 -2.5276646228548460E-003 - 118.44000000000000 -2.5032043211777816E-003 - 118.50000000000000 -2.4791872424626648E-003 - 118.56000000000000 -2.4556018367938785E-003 - 118.62000000000000 -2.4324366367995563E-003 - 118.68000000000001 -2.4096804690865257E-003 - 118.73999999999998 -2.3873225032467801E-003 - 118.79999999999998 -2.3653523371725484E-003 - 118.85999999999999 -2.3437598806380325E-003 - 118.91999999999999 -2.3225356503412623E-003 - 118.97999999999999 -2.3016701534074751E-003 - 119.03999999999999 -2.2811541791236700E-003 - 119.09999999999999 -2.2609792200714162E-003 - 119.16000000000000 -2.2411365830402128E-003 - 119.22000000000000 -2.2216181862747052E-003 - 119.28000000000000 -2.2024161214487252E-003 - 119.34000000000000 -2.1835226863417346E-003 - 119.40000000000001 -2.1649300235942769E-003 - 119.46000000000001 -2.1466309349796242E-003 - 119.51999999999998 -2.1286182088365037E-003 - 119.57999999999998 -2.1108849891260605E-003 - 119.63999999999999 -2.0934245350885889E-003 - 119.69999999999999 -2.0762304997695943E-003 - 119.75999999999999 -2.0592965032224532E-003 - 119.81999999999999 -2.0426163845106106E-003 - 119.88000000000000 -2.0261841469029766E-003 - 119.94000000000000 -2.0099941090900857E-003 - 120.00000000000000 -1.9940406975969562E-003 - 120.06000000000000 -1.9783187122590549E-003 - 120.12000000000000 -1.9628229676102540E-003 - 120.18000000000001 -1.9475483174761555E-003 - 120.23999999999998 -1.9324901798702099E-003 - 120.29999999999998 -1.9176439347411416E-003 - 120.35999999999999 -1.9030049447973302E-003 - 120.41999999999999 -1.8885689521782945E-003 - 120.47999999999999 -1.8743316328638656E-003 - 120.53999999999999 -1.8602890928633615E-003 - 120.59999999999999 -1.8464373755801811E-003 - 120.66000000000000 -1.8327728132769327E-003 - 120.72000000000000 -1.8192917613371136E-003 - 120.78000000000000 -1.8059906035950101E-003 - 120.84000000000000 -1.7928658961920590E-003 - 120.90000000000001 -1.7799145536783062E-003 - 120.95999999999998 -1.7671331047740093E-003 - 121.01999999999998 -1.7545184469202543E-003 - 121.07999999999998 -1.7420675631710091E-003 - 121.13999999999999 -1.7297772806100749E-003 - 121.19999999999999 -1.7176444356412463E-003 - 121.25999999999999 -1.7056661793710742E-003 - 121.31999999999999 -1.6938394017251639E-003 - 121.38000000000000 -1.6821612915979380E-003 - 121.44000000000000 -1.6706287585959753E-003 - 121.50000000000000 -1.6592388870050512E-003 - 121.56000000000000 -1.6479887965199674E-003 - 121.62000000000000 -1.6368755101361264E-003 - 121.68000000000001 -1.6258964310537731E-003 - 121.73999999999998 -1.6150488723823474E-003 - 121.79999999999998 -1.6043300934712615E-003 - 121.85999999999999 -1.5937377549041616E-003 - 121.91999999999999 -1.5832692383234235E-003 - 121.97999999999999 -1.5729223595853025E-003 - 122.03999999999999 -1.5626949071953875E-003 - 122.09999999999999 -1.5525847698736597E-003 - 122.16000000000000 -1.5425899391508160E-003 - 122.22000000000000 -1.5327085767766094E-003 - 122.28000000000000 -1.5229387495453524E-003 - 122.34000000000000 -1.5132786242448956E-003 - 122.40000000000001 -1.5037264115806033E-003 - 122.45999999999998 -1.4942802338005542E-003 - 122.51999999999998 -1.4849382884325288E-003 - 122.57999999999998 -1.4756988418171469E-003 - 122.63999999999999 -1.4665597922978132E-003 - 122.69999999999999 -1.4575194116692341E-003 - 122.75999999999999 -1.4485757534002356E-003 - 122.81999999999999 -1.4397270460882290E-003 - 122.88000000000000 -1.4309712453906970E-003 - 122.94000000000000 -1.4223066122986878E-003 - 123.00000000000000 -1.4137314199787671E-003 - 123.06000000000000 -1.4052438333203351E-003 - 123.12000000000000 -1.3968424585323041E-003 - 123.18000000000001 -1.3885257522460814E-003 - 123.23999999999998 -1.3802924351547497E-003 - 123.29999999999998 -1.3721412262176847E-003 - 123.35999999999999 -1.3640710435247551E-003 - 123.41999999999999 -1.3560808008192342E-003 - 123.47999999999999 -1.3481696980467983E-003 - 123.53999999999999 -1.3403368454935846E-003 - 123.59999999999999 -1.3325814903501225E-003 - 123.66000000000000 -1.3249029051797044E-003 - 123.72000000000000 -1.3173002749200594E-003 - 123.78000000000000 -1.3097730178591011E-003 - 123.84000000000000 -1.3023203332792354E-003 - 123.90000000000001 -1.2949413126276989E-003 - 123.95999999999998 -1.2876353212202757E-003 - 124.01999999999998 -1.2804014610437204E-003 - 124.07999999999998 -1.2732388194916418E-003 - 124.13999999999999 -1.2661464071046266E-003 - 124.19999999999999 -1.2591232921902835E-003 - 124.25999999999999 -1.2521686559546147E-003 - 124.31999999999999 -1.2452815135864472E-003 - 124.38000000000000 -1.2384609776677131E-003 - 124.44000000000000 -1.2317060222294812E-003 - 124.50000000000000 -1.2250159411432047E-003 - 124.56000000000000 -1.2183898303304477E-003 - 124.62000000000000 -1.2118269934883906E-003 - 124.68000000000001 -1.2053267140809956E-003 - 124.73999999999998 -1.1988883219463053E-003 - 124.79999999999998 -1.1925111932993028E-003 - 124.85999999999999 -1.1861946963581723E-003 - 124.91999999999999 -1.1799382363055786E-003 - 124.97999999999999 -1.1737412290888196E-003 - 125.03999999999999 -1.1676029361926946E-003 - 125.09999999999999 -1.1615228289275248E-003 - 125.16000000000000 -1.1555002919682730E-003 - 125.22000000000000 -1.1495346979804918E-003 - 125.28000000000000 -1.1436251596167583E-003 - 125.34000000000000 -1.1377711863325001E-003 - 125.40000000000001 -1.1319717908615996E-003 - 125.45999999999998 -1.1262262296991327E-003 - 125.51999999999998 -1.1205336264551240E-003 - 125.57999999999998 -1.1148931809959028E-003 - 125.63999999999999 -1.1093039742767462E-003 - 125.69999999999999 -1.1037650327557534E-003 - 125.75999999999999 -1.0982755064191134E-003 - 125.81999999999999 -1.0928344384655683E-003 - 125.88000000000000 -1.0874409407403236E-003 - 125.94000000000000 -1.0820941456591436E-003 - 126.00000000000000 -1.0767930699000219E-003 - 126.06000000000000 -1.0715368306737770E-003 - 126.12000000000000 -1.0663247348588470E-003 - 126.18000000000001 -1.0611558737603588E-003 - 126.23999999999998 -1.0560296133435565E-003 - 126.29999999999998 -1.0509451887941910E-003 - 126.35999999999999 -1.0459020954465040E-003 - 126.41999999999999 -1.0408997585412490E-003 - 126.47999999999999 -1.0359375430826054E-003 - 126.53999999999999 -1.0310150039153159E-003 - 126.59999999999999 -1.0261317444357162E-003 - 126.66000000000000 -1.0212873765132289E-003 - 126.72000000000000 -1.0164815562017156E-003 - 126.78000000000000 -1.0117139785883727E-003 - 126.84000000000000 -1.0069842272038452E-003 - 126.90000000000001 -1.0022920165928234E-003 - 126.95999999999998 -9.9763694195901869E-004 - 127.01999999999998 -9.9301868382255113E-004 - 127.07999999999998 -9.8843685942288104E-004 - 127.13999999999999 -9.8389108776999849E-004 - 127.19999999999999 -9.7938090045517328E-004 - 127.25999999999999 -9.7490597107841839E-004 - 127.31999999999999 -9.7046595640514399E-004 - 127.38000000000000 -9.6606046988244895E-004 - 127.44000000000000 -9.6168913105873683E-004 - 127.50000000000000 -9.5735181067273288E-004 - 127.56000000000000 -9.5304814494304548E-004 - 127.62000000000000 -9.4877811093602670E-004 - 127.68000000000001 -9.4454158884919349E-004 - 127.73999999999998 -9.4033868268743575E-004 - 127.79999999999998 -9.3616940893791612E-004 - 127.85999999999999 -9.3203394382436965E-004 - 127.91999999999999 -9.2793255193673191E-004 - 127.97999999999999 -9.2386555457566952E-004 - 128.03999999999999 -9.1983315110834600E-004 - 128.09999999999999 -9.1583566124917330E-004 - 128.16000000000000 -9.1187341068130971E-004 - 128.22000000000000 -9.0794669391587395E-004 - 128.28000000000000 -9.0405584738239360E-004 - 128.34000000000000 -9.0020105169906993E-004 - 128.40000000000001 -8.9638250734997663E-004 - 128.45999999999998 -8.9260045994571998E-004 - 128.51999999999998 -8.8885505308505374E-004 - 128.57999999999998 -8.8514645429297884E-004 - 128.63999999999999 -8.8147483626294966E-004 - 128.69999999999999 -8.7784042215476098E-004 - 128.75999999999999 -8.7424349880024885E-004 - 128.81999999999999 -8.7068435235238321E-004 - 128.88000000000000 -8.6716338319691301E-004 - 128.94000000000000 -8.6368106498027966E-004 - 129.00000000000000 -8.6023785375327361E-004 - 129.06000000000000 -8.5683443679590273E-004 - 129.12000000000000 -8.5347154450532599E-004 - 129.18000000000001 -8.5014998400996132E-004 - 129.23999999999998 -8.4687060593604310E-004 - 129.29999999999998 -8.4363427776246657E-004 - 129.35999999999999 -8.4044206882270464E-004 - 129.41999999999999 -8.3729498942786867E-004 - 129.47999999999999 -8.3419405491182066E-004 - 129.53999999999999 -8.3114033155851368E-004 - 129.59999999999999 -8.2813491144026453E-004 - 129.66000000000000 -8.2517891011507508E-004 - 129.72000000000000 -8.2227341783730793E-004 - 129.78000000000000 -8.1941960135709525E-004 - 129.84000000000000 -8.1661856602148941E-004 - 129.90000000000001 -8.1387156993943958E-004 - 129.95999999999998 -8.1117990697408761E-004 - 130.01999999999998 -8.0854483911973031E-004 - 130.07999999999998 -8.0596770317335504E-004 - 130.13999999999999 -8.0345005783192755E-004 - 130.19999999999999 -8.0099348024136215E-004 - 130.25999999999999 -7.9859960352512093E-004 - 130.31999999999999 -7.9627010646443272E-004 - 130.38000000000000 -7.9400688932056195E-004 - 130.44000000000000 -7.9181181427059465E-004 - 130.50000000000000 -7.8968685703822126E-004 - 130.56000000000000 -7.8763415729316282E-004 - 130.62000000000000 -7.8565580496330176E-004 - 130.68000000000001 -7.8375393516017520E-004 - 130.73999999999998 -7.8193084711797366E-004 - 130.79999999999998 -7.8018884833034696E-004 - 130.85999999999999 -7.7853027270620781E-004 - 130.91999999999999 -7.7695750075484590E-004 - 130.97999999999999 -7.7547297415178022E-004 - 131.03999999999999 -7.7407922072941912E-004 - 131.09999999999999 -7.7277880329980309E-004 - 131.16000000000000 -7.7157431036198147E-004 - 131.22000000000000 -7.7046832509444828E-004 - 131.28000000000000 -7.6946361274759275E-004 - 131.34000000000000 -7.6856291464764189E-004 - 131.40000000000001 -7.6776900792200763E-004 - 131.45999999999998 -7.6708466278859941E-004 - 131.51999999999998 -7.6651275238906285E-004 - 131.57999999999998 -7.6605610632909525E-004 - 131.63999999999999 -7.6571759705874615E-004 - 131.69999999999999 -7.6550007979903556E-004 - 131.75999999999999 -7.6540644658235264E-004 - 131.81999999999999 -7.6543954674899452E-004 - 131.88000000000000 -7.6560219148687301E-004 - 131.94000000000000 -7.6589714486176785E-004 - 132.00000000000000 -7.6632723282877679E-004 - 132.06000000000000 -7.6689519020436546E-004 - 132.12000000000000 -7.6760371149851337E-004 - 132.18000000000001 -7.6845544172337091E-004 - 132.23999999999998 -7.6945301908437971E-004 - 132.29999999999998 -7.7059893851758065E-004 - 132.35999999999999 -7.7189575087228339E-004 - 132.41999999999999 -7.7334579611725539E-004 - 132.47999999999999 -7.7495137541086154E-004 - 132.53999999999999 -7.7671476657396627E-004 - 132.59999999999999 -7.7863804187183251E-004 - 132.66000000000000 -7.8072314217439247E-004 - 132.72000000000000 -7.8297183109881827E-004 - 132.78000000000000 -7.8538575170221771E-004 - 132.84000000000000 -7.8796627535965389E-004 - 132.90000000000001 -7.9071456584906604E-004 - 132.95999999999998 -7.9363161803363332E-004 - 133.01999999999998 -7.9671812998376558E-004 - 133.07999999999998 -7.9997461292265377E-004 - 133.13999999999999 -8.0340115735790614E-004 - 133.19999999999999 -8.0699769910687737E-004 - 133.25999999999999 -8.1076391289803596E-004 - 133.31999999999999 -8.1469908380233877E-004 - 133.38000000000000 -8.1880221801212158E-004 - 133.44000000000000 -8.2307197533880937E-004 - 133.50000000000000 -8.2750680134647387E-004 - 133.56000000000000 -8.3210474689472940E-004 - 133.62000000000000 -8.3686349465663865E-004 - 133.68000000000001 -8.4178037627578091E-004 - 133.73999999999998 -8.4685231091355851E-004 - 133.79999999999998 -8.5207587418060181E-004 - 133.85999999999999 -8.5744719086998150E-004 - 133.91999999999999 -8.6296202762075106E-004 - 133.97999999999999 -8.6861559210383893E-004 - 134.03999999999999 -8.7440271499618241E-004 - 134.09999999999999 -8.8031771622091106E-004 - 134.16000000000000 -8.8635452859324199E-004 - 134.22000000000000 -8.9250654147563185E-004 - 134.28000000000000 -8.9876658349858545E-004 - 134.34000000000000 -9.0512704887802471E-004 - 134.40000000000001 -9.1157990567244137E-004 - 134.45999999999998 -9.1811661319249121E-004 - 134.51999999999998 -9.2472806217665704E-004 - 134.57999999999998 -9.3140484588154877E-004 - 134.63999999999999 -9.3813698958019351E-004 - 134.69999999999999 -9.4491406419357920E-004 - 134.75999999999999 -9.5172519294213812E-004 - 134.81999999999999 -9.5855909730163853E-004 - 134.88000000000000 -9.6540402567469512E-004 - 134.94000000000000 -9.7224782542346447E-004 - 135.00000000000000 -9.7907794570963698E-004 - 135.06000000000000 -9.8588141387841296E-004 - 135.12000000000000 -9.9264495624910680E-004 - 135.18000000000001 -9.9935487288449238E-004 - 135.23999999999998 -1.0059971354981253E-003 - 135.29999999999998 -1.0125574329103114E-003 - 135.35999999999999 -1.0190211753932274E-003 - 135.41999999999999 -1.0253734971944230E-003 - 135.47999999999999 -1.0315993946963945E-003 - 135.53999999999999 -1.0376835019185323E-003 - 135.59999999999999 -1.0436105208590431E-003 - 135.66000000000000 -1.0493649391823141E-003 - 135.72000000000000 -1.0549311996768079E-003 - 135.78000000000000 -1.0602936522144393E-003 - 135.84000000000000 -1.0654367863227520E-003 - 135.90000000000001 -1.0703448240592811E-003 - 135.95999999999998 -1.0750024448687963E-003 - 136.01999999999998 -1.0793941373741605E-003 - 136.07999999999998 -1.0835046960918067E-003 - 136.13999999999999 -1.0873189911383330E-003 - 136.19999999999999 -1.0908219732756500E-003 - 136.25999999999999 -1.0939990405318279E-003 - 136.31999999999999 -1.0968356270562320E-003 - 136.38000000000000 -1.0993176818473586E-003 - 136.44000000000000 -1.1014313163955718E-003 - 136.50000000000000 -1.1031631513227648E-003 - 136.56000000000000 -1.1045001481579076E-003 - 136.62000000000000 -1.1054300045467791E-003 - 136.68000000000001 -1.1059405339389268E-003 - 136.73999999999998 -1.1060204048791884E-003 - 136.79999999999998 -1.1056588998320143E-003 - 136.85999999999999 -1.1048458385141298E-003 - 136.91999999999999 -1.1035719542811190E-003 - 136.97999999999999 -1.1018286499151187E-003 - 137.03999999999999 -1.0996079351736276E-003 - 137.09999999999999 -1.0969028794324891E-003 - 137.16000000000000 -1.0937071016939592E-003 - 137.22000000000000 -1.0900153591886514E-003 - 137.28000000000000 -1.0858230874101068E-003 - 137.34000000000000 -1.0811265662369089E-003 - 137.40000000000001 -1.0759228747791014E-003 - 137.45999999999998 -1.0702101883144359E-003 - 137.51999999999998 -1.0639874505748760E-003 - 137.57999999999998 -1.0572543945649175E-003 - 137.63999999999999 -1.0500118444359112E-003 - 137.69999999999999 -1.0422612975102032E-003 - 137.75999999999999 -1.0340053729424247E-003 - 137.81999999999999 -1.0252475168982757E-003 - 137.88000000000000 -1.0159920676411857E-003 - 137.94000000000000 -1.0062444006584666E-003 - 138.00000000000000 -9.9601071964698618E-004 - 138.06000000000000 -9.8529831679799703E-004 - 138.12000000000000 -9.7411544274254175E-004 - 138.18000000000001 -9.6247113079763553E-004 - 138.23999999999998 -9.5037539710424277E-004 - 138.29999999999998 -9.3783933537723303E-004 - 138.35999999999999 -9.2487475699369148E-004 - 138.41999999999999 -9.1149441498767768E-004 - 138.47999999999999 -8.9771196497199579E-004 - 138.53999999999999 -8.8354168665332388E-004 - 138.59999999999999 -8.6899879357807441E-004 - 138.66000000000000 -8.5409908888920186E-004 - 138.72000000000000 -8.3885909677694525E-004 - 138.78000000000000 -8.2329590304009099E-004 - 138.84000000000000 -8.0742727880829383E-004 - 138.90000000000001 -7.9127150111483167E-004 - 138.95999999999998 -7.7484727765799127E-004 - 139.01999999999998 -7.5817372965896271E-004 - 139.07999999999998 -7.4127055337343099E-004 - 139.13999999999999 -7.2415764800210099E-004 - 139.19999999999999 -7.0685522287133699E-004 - 139.25999999999999 -6.8938385058059522E-004 - 139.31999999999999 -6.7176432907801293E-004 - 139.38000000000000 -6.5401765516776044E-004 - 139.44000000000000 -6.3616500864039727E-004 - 139.50000000000000 -6.1822756882424894E-004 - 139.56000000000000 -6.0022670395510128E-004 - 139.62000000000000 -5.8218375208708120E-004 - 139.68000000000001 -5.6412003762365071E-004 - 139.73999999999998 -5.4605687906222693E-004 - 139.79999999999998 -5.2801539994142411E-004 - 139.85999999999999 -5.1001660504781097E-004 - 139.91999999999999 -4.9208129599849937E-004 - 139.97999999999999 -4.7422995000261819E-004 - 140.03999999999999 -4.5648286079567413E-004 - 140.09999999999999 -4.3885986674756483E-004 - 140.16000000000000 -4.2138043386215547E-004 - 140.22000000000000 -4.0406366817842597E-004 - 140.28000000000000 -3.8692802454479440E-004 - 140.34000000000000 -3.6999161142578263E-004 - 140.40000000000001 -3.5327190739296784E-004 - 140.45999999999998 -3.3678580558728984E-004 - 140.51999999999998 -3.2054957945614371E-004 - 140.57999999999998 -3.0457884226039013E-004 - 140.63999999999999 -2.8888853845580116E-004 - 140.69999999999999 -2.7349291775176094E-004 - 140.75999999999999 -2.5840550385594066E-004 - 140.81999999999999 -2.4363909550370201E-004 - 140.88000000000000 -2.2920577129585608E-004 - 140.94000000000000 -2.1511682525551153E-004 - 141.00000000000000 -2.0138283830672707E-004 - 141.06000000000000 -1.8801368996411522E-004 - 141.12000000000000 -1.7501848583725691E-004 - 141.18000000000001 -1.6240566280698688E-004 - 141.23999999999998 -1.5018290427919133E-004 - 141.29999999999998 -1.3835724341310437E-004 - 141.35999999999999 -1.2693499469391766E-004 - 141.41999999999999 -1.1592184397144704E-004 - 141.47999999999999 -1.0532280274975208E-004 - 141.53999999999999 -9.5142237280074974E-005 - 141.59999999999999 -8.5383898559893503E-005 - 141.66000000000000 -7.6050901899507245E-005 - 141.72000000000000 -6.7145759823514391E-005 - 141.78000000000000 -5.8670369647786947E-005 - 141.84000000000000 -5.0626061549461917E-005 - 141.90000000000001 -4.3013574574605549E-005 - 141.95999999999998 -3.5833099661564023E-005 - 142.01999999999998 -2.9084311191614318E-005 - 142.07999999999998 -2.2766360118269252E-005 - 142.13999999999999 -1.6877952511221374E-005 - 142.19999999999999 -1.1417341460925086E-005 - 142.25999999999999 -6.3823911959055490E-006 - 142.31999999999999 -1.7706317005277094E-006 - 142.38000000000000 2.4207125263347028E-006 - 142.44000000000000 6.1946571142225361E-006 - 142.50000000000000 9.5544140647846775E-006 - 142.56000000000000 1.2503342406216054E-005 - 142.62000000000000 1.5044902207981189E-005 - 142.68000000000001 1.7182609104515787E-005 - 142.73999999999998 1.8919994889081813E-005 - 142.79999999999998 2.0260570709193861E-005 - 142.85999999999999 2.1207805122718026E-005 - 142.91999999999999 2.1765093002691420E-005 - 142.97999999999999 2.1935733615535117E-005 - 143.03999999999999 2.1722920798265283E-005 - 143.09999999999999 2.1129722631982794E-005 - 143.16000000000000 2.0159070606699921E-005 - 143.22000000000000 1.8813747938344814E-005 - 143.28000000000000 1.7096375781043371E-005 - 143.34000000000000 1.5009397976425701E-005 - 143.40000000000001 1.2555066950186122E-005 - 143.45999999999998 9.7354204302502633E-006 - 143.51999999999998 6.5522621213888534E-006 - 143.57999999999998 3.0071424361314690E-006 - 143.63999999999999 -8.9866987907904350E-007 - 143.69999999999999 -5.1642109797269852E-006 - 143.75999999999999 -9.7888439271275233E-006 - 143.81999999999999 -1.4772287973177829E-005 - 143.88000000000000 -2.0114627806709374E-005 - 143.94000000000000 -2.5816340059833636E-005 - 144.00000000000000 -3.1878292401120076E-005 - 144.06000000000000 -3.8301764795946243E-005 - 144.12000000000000 -4.5088441518048372E-005 - 144.18000000000001 -5.2240409585717503E-005 - 144.23999999999998 -5.9760144941377772E-005 - 144.29999999999998 -6.7650511971388736E-005 - 144.35999999999999 -7.5914732267477508E-005 - 144.41999999999999 -8.4556377749873490E-005 - 144.47999999999999 -9.3579342944203356E-005 - 144.53999999999999 -1.0298781896246525E-004 - 144.59999999999999 -1.1278626139798148E-004 - 144.66000000000000 -1.2297939152363960E-004 - 144.72000000000000 -1.3357214199804978E-004 - 144.78000000000000 -1.4456965412597516E-004 - 144.84000000000000 -1.5597721983463185E-004 - 144.90000000000001 -1.6780030389756053E-004 - 144.95999999999998 -1.8004447455743951E-004 - 145.01999999999998 -1.9271540789881218E-004 - 145.07999999999998 -2.0581882093380656E-004 - 145.13999999999999 -2.1936051304933052E-004 - 145.19999999999999 -2.3334626513257377E-004 - 145.25999999999999 -2.4778183286686660E-004 - 145.31999999999999 -2.6267292257720943E-004 - 145.38000000000000 -2.7802514352368181E-004 - 145.44000000000000 -2.9384400116024115E-004 - 145.50000000000000 -3.1013484209946334E-004 - 145.56000000000000 -3.2690278091091461E-004 - 145.62000000000000 -3.4415271147281547E-004 - 145.68000000000001 -3.6188925782732210E-004 - 145.73999999999998 -3.8011673843601438E-004 - 145.79999999999998 -3.9883904248299857E-004 - 145.85999999999999 -4.1805971925471176E-004 - 145.91999999999999 -4.3778185311281063E-004 - 145.97999999999999 -4.5800799960307671E-004 - 146.03999999999999 -4.7874021095546020E-004 - 146.09999999999999 -4.9997990408302058E-004 - 146.16000000000000 -5.2172787869375549E-004 - 146.22000000000000 -5.4398422947079942E-004 - 146.28000000000000 -5.6674829985564645E-004 - 146.34000000000000 -5.9001871162638931E-004 - 146.40000000000001 -6.1379301193947118E-004 - 146.45999999999998 -6.3806808869177809E-004 - 146.51999999999998 -6.6283983847726009E-004 - 146.57999999999998 -6.8810304089881799E-004 - 146.63999999999999 -7.1385155544063516E-004 - 146.69999999999999 -7.4007821491887645E-004 - 146.75999999999999 -7.6677459678070299E-004 - 146.81999999999999 -7.9393121232235935E-004 - 146.88000000000000 -8.2153744490666978E-004 - 146.94000000000000 -8.4958137825555521E-004 - 147.00000000000000 -8.7805001622517562E-004 - 147.06000000000000 -9.0692908894053484E-004 - 147.12000000000000 -9.3620309791012644E-004 - 147.18000000000001 -9.6585529377456311E-004 - 147.23999999999998 -9.9586762250933542E-004 - 147.29999999999998 -1.0262208611783903E-003 - 147.35999999999999 -1.0568943444850833E-003 - 147.41999999999999 -1.0878663156551102E-003 - 147.47999999999999 -1.1191135170692840E-003 - 147.53999999999999 -1.1506115160897046E-003 - 147.59999999999999 -1.1823345357067929E-003 - 147.66000000000000 -1.2142555488215132E-003 - 147.72000000000000 -1.2463461774892151E-003 - 147.78000000000000 -1.2785766931225932E-003 - 147.84000000000000 -1.3109162117649550E-003 - 147.90000000000001 -1.3433324252267891E-003 - 147.95999999999998 -1.3757918047980343E-003 - 148.01999999999998 -1.4082598438408794E-003 - 148.07999999999998 -1.4407005833235319E-003 - 148.13999999999999 -1.4730768865484462E-003 - 148.19999999999999 -1.5053508655357801E-003 - 148.25999999999999 -1.5374835233141488E-003 - 148.31999999999999 -1.5694346932994586E-003 - 148.38000000000000 -1.6011635590259499E-003 - 148.44000000000000 -1.6326282900172955E-003 - 148.50000000000000 -1.6637865199427366E-003 - 148.56000000000000 -1.6945951045420286E-003 - 148.62000000000000 -1.7250105472613299E-003 - 148.68000000000001 -1.7549884846401185E-003 - 148.73999999999998 -1.7844843481068075E-003 - 148.79999999999998 -1.8134533312606635E-003 - 148.85999999999999 -1.8418504316943770E-003 - 148.91999999999999 -1.8696301231464353E-003 - 148.97999999999999 -1.8967473799453407E-003 - 149.03999999999999 -1.9231569731813715E-003 - 149.09999999999999 -1.9488136750465811E-003 - 149.16000000000000 -1.9736727103340638E-003 - 149.22000000000000 -1.9976896993270190E-003 - 149.28000000000000 -2.0208204334737378E-003 - 149.34000000000000 -2.0430216855667634E-003 - 149.40000000000001 -2.0642503170484128E-003 - 149.45999999999998 -2.0844644935884638E-003 - 149.51999999999998 -2.1036232183577483E-003 - 149.57999999999998 -2.1216861767390151E-003 - 149.63999999999999 -2.1386141780625071E-003 - 149.69999999999999 -2.1543694932641831E-003 - 149.75999999999999 -2.1689154319813483E-003 - 149.81999999999999 -2.1822170468562556E-003 - 149.88000000000000 -2.1942402760305761E-003 - 149.94000000000000 -2.2049530349343700E-003 - 150.00000000000000 -2.2143248926409708E-003 - 150.06000000000000 -2.2223270633442444E-003 - 150.12000000000000 -2.2289325212220021E-003 - 150.18000000000001 -2.2341162895581474E-003 - 150.23999999999998 -2.2378555379096291E-003 - 150.29999999999998 -2.2401288513273225E-003 - 150.35999999999999 -2.2409179562467465E-003 - 150.41999999999999 -2.2402060080147219E-003 - 150.47999999999999 -2.2379787811056123E-003 - 150.53999999999999 -2.2342242334572738E-003 - 150.59999999999999 -2.2289329074581640E-003 - 150.66000000000000 -2.2220975914890116E-003 - 150.72000000000000 -2.2137133251888155E-003 - 150.78000000000000 -2.2037780537855732E-003 - 150.84000000000000 -2.1922920640806642E-003 - 150.90000000000001 -2.1792576530567471E-003 - 150.95999999999998 -2.1646804481518962E-003 - 151.01999999999998 -2.1485680076066978E-003 - 151.07999999999998 -2.1309304535020086E-003 - 151.13999999999999 -2.1117801293635704E-003 - 151.19999999999999 -2.0911321857515256E-003 - 151.25999999999999 -2.0690040126323437E-003 - 151.31999999999999 -2.0454151829111256E-003 - 151.38000000000000 -2.0203877065255648E-003 - 151.44000000000000 -1.9939456981623782E-003 - 151.50000000000000 -1.9661154164636119E-003 - 151.56000000000000 -1.9369255906690811E-003 - 151.62000000000000 -1.9064069359287772E-003 - 151.68000000000001 -1.8745917852001166E-003 - 151.73999999999998 -1.8415149947909814E-003 - 151.79999999999998 -1.8072131753703641E-003 - 151.85999999999999 -1.7717244127470960E-003 - 151.91999999999999 -1.7350890861220544E-003 - 151.97999999999999 -1.6973487345926146E-003 - 152.03999999999999 -1.6585469449057720E-003 - 152.09999999999999 -1.6187284823991424E-003 - 152.16000000000000 -1.5779394496806050E-003 - 152.22000000000000 -1.5362274797875962E-003 - 152.28000000000000 -1.4936412638278714E-003 - 152.34000000000000 -1.4502304612577473E-003 - 152.40000000000001 -1.4060456868214060E-003 - 152.45999999999998 -1.3611383337808110E-003 - 152.51999999999998 -1.3155605380295468E-003 - 152.57999999999998 -1.2693649740569415E-003 - 152.63999999999999 -1.2226048071637251E-003 - 152.69999999999999 -1.1753333744979656E-003 - 152.75999999999999 -1.1276043824321898E-003 - 152.81999999999999 -1.0794715738461657E-003 - 152.88000000000000 -1.0309887600100311E-003 - 152.94000000000000 -9.8220945848637923E-004 - 153.00000000000000 -9.3318711062682989E-004 - 153.06000000000000 -8.8397493957948501E-004 - 153.12000000000000 -8.3462574416643016E-004 - 153.17999999999998 -7.8519180213785426E-004 - 153.23999999999998 -7.3572481806774331E-004 - 153.29999999999998 -6.8627591958529818E-004 - 153.35999999999999 -6.3689547508960216E-004 - 153.41999999999999 -5.8763305755541264E-004 - 153.47999999999999 -5.3853724713214522E-004 - 153.53999999999999 -4.8965581442124971E-004 - 153.59999999999999 -4.4103535653144764E-004 - 153.66000000000000 -3.9272147301301088E-004 - 153.72000000000000 -3.4475847127074196E-004 - 153.78000000000000 -2.9718948181598533E-004 - 153.84000000000000 -2.5005638973980788E-004 - 153.90000000000001 -2.0339960778859847E-004 - 153.95999999999998 -1.5725815309243892E-004 - 154.01999999999998 -1.1166963418927888E-004 - 154.07999999999998 -6.6670137859722834E-005 - 154.13999999999999 -2.2294184044906943E-005 - 154.19999999999999 2.1425277482467592E-005 - 154.25999999999999 6.4456877482866744E-005 - 154.31999999999999 1.0677089641171936E-004 - 154.38000000000000 1.4833925213656598E-004 - 154.44000000000000 1.8913550817613073E-004 - 154.50000000000000 2.2913491090429473E-004 - 154.56000000000000 2.6831434973365075E-004 - 154.62000000000000 3.0665240131796327E-004 - 154.67999999999998 3.4412927338445254E-004 - 154.73999999999998 3.8072685997761995E-004 - 154.79999999999998 4.1642862823450868E-004 - 154.85999999999999 4.5121967654828061E-004 - 154.91999999999999 4.8508666670901793E-004 - 154.97999999999999 5.1801785517830107E-004 - 155.03999999999999 5.5000288919905918E-004 - 155.09999999999999 5.8103305816243917E-004 - 155.16000000000000 6.1110097602915968E-004 - 155.22000000000000 6.4020083840218291E-004 - 155.28000000000000 6.6832799756844942E-004 - 155.34000000000000 6.9547935451505472E-004 - 155.40000000000001 7.2165300916916624E-004 - 155.45999999999998 7.4684846624306427E-004 - 155.51999999999998 7.7106631231087599E-004 - 155.57999999999998 7.9430851846522699E-004 - 155.63999999999999 8.1657818620942959E-004 - 155.69999999999999 8.3787948078032726E-004 - 155.75999999999999 8.5821785997198326E-004 - 155.81999999999999 8.7759972889286508E-004 - 155.88000000000000 8.9603266251512832E-004 - 155.94000000000000 9.1352508091571173E-004 - 156.00000000000000 9.3008658627836234E-004 - 156.06000000000000 9.4572744312454427E-004 - 156.12000000000000 9.6045885076701052E-004 - 156.17999999999998 9.7429298924211908E-004 - 156.23999999999998 9.8724248431035022E-004 - 156.29999999999998 9.9932092053995432E-004 - 156.35999999999999 1.0105423529982135E-003 - 156.41999999999999 1.0209214688086219E-003 - 156.47999999999999 1.0304733695723199E-003 - 156.53999999999999 1.0392139541599737E-003 - 156.59999999999999 1.0471592375306986E-003 - 156.66000000000000 1.0543257363646538E-003 - 156.72000000000000 1.0607304730557733E-003 - 156.78000000000000 1.0663906376514915E-003 - 156.84000000000000 1.0713237690079208E-003 - 156.90000000000001 1.0755476803073741E-003 - 156.95999999999998 1.0790803797621478E-003 - 157.01999999999998 1.0819400158149839E-003 - 157.07999999999998 1.0841452735285645E-003 - 157.13999999999999 1.0857146534132311E-003 - 157.19999999999999 1.0866669440355728E-003 - 157.25999999999999 1.0870210292481773E-003 - 157.31999999999999 1.0867958234178816E-003 - 157.38000000000000 1.0860104416009471E-003 - 157.44000000000000 1.0846837133330319E-003 - 157.50000000000000 1.0828348584190886E-003 - 157.56000000000000 1.0804826728167691E-003 - 157.62000000000000 1.0776461965182095E-003 - 157.67999999999998 1.0743442526060085E-003 - 157.73999999999998 1.0705954202904447E-003 - 157.79999999999998 1.0664181236183642E-003 - 157.85999999999999 1.0618308201176126E-003 - 157.91999999999999 1.0568517195714052E-003 - 157.97999999999999 1.0514984576375332E-003 - 158.03999999999999 1.0457889716597988E-003 - 158.09999999999999 1.0397406181761439E-003 - 158.16000000000000 1.0333705920438541E-003 - 158.22000000000000 1.0266958397597136E-003 - 158.28000000000000 1.0197329176566412E-003 - 158.34000000000000 1.0124982064980475E-003 - 158.40000000000001 1.0050078718105452E-003 - 158.45999999999998 9.9727758747749241E-004 - 158.51999999999998 9.8932283496974086E-004 - 158.57999999999998 9.8115870695750403E-004 - 158.63999999999999 9.7279986858236434E-004 - 158.69999999999999 9.6426089859975752E-004 - 158.75999999999999 9.5555572167559685E-004 - 158.81999999999999 9.4669800066120638E-004 - 158.88000000000000 9.3770101330266397E-004 - 158.94000000000000 9.2857767778143057E-004 - 159.00000000000000 9.1934053746088563E-004 - 159.06000000000000 9.1000167787274450E-004 - 159.12000000000000 9.0057294549157835E-004 - 159.17999999999998 8.9106563259724273E-004 - 159.23999999999998 8.8149077955696029E-004 - 159.29999999999998 8.7185894285332676E-004 - 159.35999999999999 8.6218038547864590E-004 - 159.41999999999999 8.5246497359565293E-004 - 159.47999999999999 8.4272213051354665E-004 - 159.53999999999999 8.3296105048797633E-004 - 159.59999999999999 8.2319048492268340E-004 - 159.66000000000000 8.1341879435429545E-004 - 159.72000000000000 8.0365395766133325E-004 - 159.78000000000000 7.9390368457623846E-004 - 159.84000000000000 7.8417519316105434E-004 - 159.90000000000001 7.7447544368467629E-004 - 159.95999999999998 7.6481094202651852E-004 - 160.01999999999998 7.5518795485142128E-004 - 160.07999999999998 7.4561223324916650E-004 - 160.13999999999999 7.3608926578527182E-004 - 160.19999999999999 7.2662415365312325E-004 - 160.25999999999999 7.1722168505103997E-004 - 160.31999999999999 7.0788636421505744E-004 - 160.38000000000000 6.9862234127333162E-004 - 160.44000000000000 6.8943349401156487E-004 - 160.50000000000000 6.8032343593920285E-004 - 160.56000000000000 6.7129545442868688E-004 - 160.62000000000000 6.6235257001289035E-004 - 160.67999999999998 6.5349755225340789E-004 - 160.73999999999998 6.4473299824083046E-004 - 160.79999999999998 6.3606133095373376E-004 - 160.85999999999999 6.2748459488186825E-004 - 160.91999999999999 6.1900472578468456E-004 - 160.97999999999999 6.1062348719093378E-004 - 161.03999999999999 6.0234237881347003E-004 - 161.09999999999999 5.9416271278006953E-004 - 161.16000000000000 5.8608566157410200E-004 - 161.22000000000000 5.7811223876767727E-004 - 161.28000000000000 5.7024328190544279E-004 - 161.34000000000000 5.6247945620309056E-004 - 161.40000000000001 5.5482125171553843E-004 - 161.45999999999998 5.4726914648564780E-004 - 161.51999999999998 5.3982332669002826E-004 - 161.57999999999998 5.3248394908344285E-004 - 161.63999999999999 5.2525104281467901E-004 - 161.69999999999999 5.1812448390007367E-004 - 161.75999999999999 5.1110408019251416E-004 - 161.81999999999999 5.0418960818156429E-004 - 161.88000000000000 4.9738069077775538E-004 - 161.94000000000000 4.9067689058302779E-004 - 162.00000000000000 4.8407763954909388E-004 - 162.06000000000000 4.7758237262534643E-004 - 162.12000000000000 4.7119041816700712E-004 - 162.17999999999998 4.6490108651085999E-004 - 162.23999999999998 4.5871356068336521E-004 - 162.29999999999998 4.5262704579367819E-004 - 162.35999999999999 4.4664065020299262E-004 - 162.41999999999999 4.4075348004433376E-004 - 162.47999999999999 4.3496462048010906E-004 - 162.53999999999999 4.2927311283315242E-004 - 162.59999999999999 4.2367802147911046E-004 - 162.66000000000000 4.1817836054181809E-004 - 162.72000000000000 4.1277320699772041E-004 - 162.78000000000000 4.0746154421447456E-004 - 162.84000000000000 4.0224244316003436E-004 - 162.90000000000001 3.9711490892033251E-004 - 162.95999999999998 3.9207796282806110E-004 - 163.01999999999998 3.8713057948659078E-004 - 163.07999999999998 3.8227173012625790E-004 - 163.13999999999999 3.7750039818281968E-004 - 163.19999999999999 3.7281547606780668E-004 - 163.25999999999999 3.6821585295079319E-004 - 163.31999999999999 3.6370033039673959E-004 - 163.38000000000000 3.5926770599933595E-004 - 163.44000000000000 3.5491671856752123E-004 - 163.50000000000000 3.5064604576078311E-004 - 163.56000000000000 3.4645434548234808E-004 - 163.62000000000000 3.4234026712413093E-004 - 163.67999999999998 3.3830241533392395E-004 - 163.73999999999998 3.3433940513851162E-004 - 163.79999999999998 3.3044984724568677E-004 - 163.85999999999999 3.2663235878248044E-004 - 163.91999999999999 3.2288560853576179E-004 - 163.97999999999999 3.1920824193919423E-004 - 164.03999999999999 3.1559900280919907E-004 - 164.09999999999999 3.1205661663228799E-004 - 164.16000000000000 3.0857989838720357E-004 - 164.22000000000000 3.0516766110424580E-004 - 164.28000000000000 3.0181878361100522E-004 - 164.34000000000000 2.9853215912003882E-004 - 164.40000000000001 2.9530666843790134E-004 - 164.45999999999998 2.9214125682580590E-004 - 164.51999999999998 2.8903484157436236E-004 - 164.57999999999998 2.8598633856771055E-004 - 164.63999999999999 2.8299466240536717E-004 - 164.69999999999999 2.8005873107296147E-004 - 164.75999999999999 2.7717743338430433E-004 - 164.81999999999999 2.7434974973609944E-004 - 164.88000000000000 2.7157455339741021E-004 - 164.94000000000000 2.6885079601201179E-004 - 165.00000000000000 2.6617743963887357E-004 - 165.06000000000000 2.6355346848569932E-004 - 165.12000000000000 2.6097793973456774E-004 - 165.17999999999998 2.5844992239227921E-004 - 165.23999999999998 2.5596857887619402E-004 - 165.29999999999998 2.5353312758996530E-004 - 165.35999999999999 2.5114278839964720E-004 - 165.41999999999999 2.4879697264856214E-004 - 165.47999999999999 2.4649508362246394E-004 - 165.53999999999999 2.4423662161840134E-004 - 165.59999999999999 2.4202112000279826E-004 - 165.66000000000000 2.3984820439321717E-004 - 165.72000000000000 2.3771756003655126E-004 - 165.78000000000000 2.3562891351307030E-004 - 165.84000000000000 2.3358207590434084E-004 - 165.90000000000001 2.3157687113659284E-004 - 165.95999999999998 2.2961321522695590E-004 - 166.01999999999998 2.2769103927419991E-004 - 166.07999999999998 2.2581035229652497E-004 - 166.13999999999999 2.2397118127551874E-004 - 166.19999999999999 2.2217364899320370E-004 - 166.25999999999999 2.2041789453993975E-004 - 166.31999999999999 2.1870412509457596E-004 - 166.38000000000000 2.1703261494856788E-004 - 166.44000000000000 2.1540367348635967E-004 - 166.50000000000000 2.1381768743976035E-004 - 166.56000000000000 2.1227510299360683E-004 - 166.62000000000000 2.1077640920693727E-004 - 166.67999999999998 2.0932219641957108E-004 - 166.73999999999998 2.0791307552895053E-004 - 166.79999999999998 2.0654972476440655E-004 - 166.85999999999999 2.0523290486381855E-004 - 166.91999999999999 2.0396343238220137E-004 - 166.97999999999999 2.0274216736674436E-004 - 167.03999999999999 2.0157007788111918E-004 - 167.09999999999999 2.0044817340312770E-004 - 167.16000000000000 1.9937756327679376E-004 - 167.22000000000000 1.9835941168497984E-004 - 167.28000000000000 1.9739497136196619E-004 - 167.34000000000000 1.9648557509621554E-004 - 167.40000000000001 1.9563264928929830E-004 - 167.45999999999998 1.9483768295762278E-004 - 167.51999999999998 1.9410227572467639E-004 - 167.57999999999998 1.9342808944209635E-004 - 167.63999999999999 1.9281685117797875E-004 - 167.69999999999999 1.9227038717036497E-004 - 167.75999999999999 1.9179059327834922E-004 - 167.81999999999999 1.9137940188209107E-004 - 167.88000000000000 1.9103884482311984E-004 - 167.94000000000000 1.9077098728443096E-004 - 168.00000000000000 1.9057794459364689E-004 - 168.06000000000000 1.9046189793410831E-004 - 168.12000000000000 1.9042507387257161E-004 - 168.17999999999998 1.9046974412022184E-004 - 168.23999999999998 1.9059823147647044E-004 - 168.29999999999998 1.9081288540973926E-004 - 168.35999999999999 1.9111613365112401E-004 - 168.41999999999999 1.9151043077711500E-004 - 168.47999999999999 1.9199823092256663E-004 - 168.53999999999999 1.9258208466217704E-004 - 168.59999999999999 1.9326453368277637E-004 - 168.66000000000000 1.9404814198884898E-004 - 168.72000000000000 1.9493549171764379E-004 - 168.78000000000000 1.9592917874639707E-004 - 168.84000000000000 1.9703177272638233E-004 - 168.90000000000001 1.9824585945641882E-004 - 168.95999999999998 1.9957394918896057E-004 - 169.01999999999998 2.0101856071472754E-004 - 169.07999999999998 2.0258213594979841E-004 - 169.13999999999999 2.0426703958656493E-004 - 169.19999999999999 2.0607560841609773E-004 - 169.25999999999999 2.0801003960127266E-004 - 169.31999999999999 2.1007245846416426E-004 - 169.38000000000000 2.1226485105277709E-004 - 169.44000000000000 2.1458915033949639E-004 - 169.50000000000000 2.1704710194384179E-004 - 169.56000000000000 2.1964033415585035E-004 - 169.62000000000000 2.2237029172575068E-004 - 169.67999999999998 2.2523826166688131E-004 - 169.73999999999998 2.2824536537388525E-004 - 169.79999999999998 2.3139248919468462E-004 - 169.85999999999999 2.3468031102778179E-004 - 169.91999999999999 2.3810925832030093E-004 - 169.97999999999999 2.4167951288248744E-004 - 170.03999999999999 2.4539096184743753E-004 - 170.09999999999999 2.4924322275684618E-004 - 170.16000000000000 2.5323561322381676E-004 - 170.22000000000000 2.5736708876928418E-004 - 170.28000000000000 2.6163631332773191E-004 - 170.34000000000000 2.6604160660239289E-004 - 170.40000000000001 2.7058094783144666E-004 - 170.45999999999998 2.7525192730132797E-004 - 170.51999999999998 2.8005182485871737E-004 - 170.57999999999998 2.8497759589658355E-004 - 170.63999999999999 2.9002577256735033E-004 - 170.69999999999999 2.9519255665085540E-004 - 170.75999999999999 3.0047381962815468E-004 - 170.81999999999999 3.0586504104436815E-004 - 170.88000000000000 3.1136129726194354E-004 - 170.94000000000000 3.1695733898634424E-004 - 171.00000000000000 3.2264748356377704E-004 - 171.06000000000000 3.2842570076961234E-004 - 171.12000000000000 3.3428552110856404E-004 - 171.17999999999998 3.4022005737485819E-004 - 171.23999999999998 3.4622197424521550E-004 - 171.29999999999998 3.5228351688894284E-004 - 171.35999999999999 3.5839647186858530E-004 - 171.41999999999999 3.6455216132377549E-004 - 171.47999999999999 3.7074145758490747E-004 - 171.53999999999999 3.7695480790571486E-004 - 171.59999999999999 3.8318216617212514E-004 - 171.66000000000000 3.8941311221986439E-004 - 171.72000000000000 3.9563673677173633E-004 - 171.78000000000000 4.0184179189787069E-004 - 171.84000000000000 4.0801657394899432E-004 - 171.90000000000001 4.1414908295564517E-004 - 171.95999999999998 4.2022693657555040E-004 - 172.01999999999998 4.2623745723015331E-004 - 172.07999999999998 4.3216762202770241E-004 - 172.13999999999999 4.3800413785085489E-004 - 172.19999999999999 4.4373347825567034E-004 - 172.25999999999999 4.4934180382911240E-004 - 172.31999999999999 4.5481506366064822E-004 - 172.38000000000000 4.6013903769665773E-004 - 172.44000000000000 4.6529921465127214E-004 - 172.50000000000000 4.7028089218841419E-004 - 172.56000000000000 4.7506924381982251E-004 - 172.62000000000000 4.7964916679549881E-004 - 172.67999999999998 4.8400549830177763E-004 - 172.73999999999998 4.8812281994353046E-004 - 172.79999999999998 4.9198566726529956E-004 - 172.85999999999999 4.9557843820787265E-004 - 172.91999999999999 4.9888537811778417E-004 - 172.97999999999999 5.0189075813246290E-004 - 173.03999999999999 5.0457881473042223E-004 - 173.09999999999999 5.0693374384755245E-004 - 173.16000000000000 5.0893981769798335E-004 - 173.22000000000000 5.1058136508711144E-004 - 173.28000000000000 5.1184284262481864E-004 - 173.34000000000000 5.1270878841897329E-004 - 173.40000000000001 5.1316396980191701E-004 - 173.45999999999998 5.1319337684637399E-004 - 173.51999999999998 5.1278223682915192E-004 - 173.57999999999998 5.1191613588777679E-004 - 173.63999999999999 5.1058085876447420E-004 - 173.69999999999999 5.0876269333144754E-004 - 173.75999999999999 5.0644818135519708E-004 - 173.81999999999999 5.0362442519648115E-004 - 173.88000000000000 5.0027886974266260E-004 - 173.94000000000000 4.9639951488286119E-004 - 174.00000000000000 4.9197482783719783E-004 - 174.06000000000000 4.8699382712308245E-004 - 174.12000000000000 4.8144602600992464E-004 - 174.17999999999998 4.7532161394351442E-004 - 174.23999999999998 4.6861133824817498E-004 - 174.29999999999998 4.6130655996059013E-004 - 174.35999999999999 4.5339935995521559E-004 - 174.41999999999999 4.4488240913237946E-004 - 174.47999999999999 4.3574911102968954E-004 - 174.53999999999999 4.2599365953543142E-004 - 174.59999999999999 4.1561092821181450E-004 - 174.66000000000000 4.0459665327128994E-004 - 174.72000000000000 3.9294735606154618E-004 - 174.78000000000000 3.8066037177735148E-004 - 174.84000000000000 3.6773394658775547E-004 - 174.90000000000001 3.5416727142431142E-004 - 174.95999999999998 3.3996042545393873E-004 - 175.01999999999998 3.2511445233156336E-004 - 175.07999999999998 3.0963140310147878E-004 - 175.13999999999999 2.9351436461538295E-004 - 175.19999999999999 2.7676738832797424E-004 - 175.25999999999999 2.5939566715871444E-004 - 175.31999999999999 2.4140534768091583E-004 - 175.38000000000000 2.2280370204536551E-004 - 175.44000000000000 2.0359904415979970E-004 - 175.50000000000000 1.8380079051409678E-004 - 175.56000000000000 1.6341935782372249E-004 - 175.62000000000000 1.4246626060624706E-004 - 175.67999999999998 1.2095403469093646E-004 - 175.73999999999998 9.8896245232899183E-005 - 175.79999999999998 7.6307491832393863E-005 - 175.85999999999999 5.3203379355527303E-005 - 175.91999999999999 2.9600526067024846E-005 - 175.97999999999999 5.5165394806189267E-006 - 176.03999999999999 -1.9030007713932546E-005 - 176.09999999999999 -4.4019525575930338E-005 - 176.16000000000000 -6.9431490614289747E-005 - 176.22000000000000 -9.5244380602617305E-005 - 176.28000000000000 -1.2143573936388398E-004 - 176.34000000000000 -1.4798214689376897E-004 - 176.40000000000001 -1.7485925611432563E-004 - 176.45999999999998 -2.0204178253192164E-004 - 176.51999999999998 -2.2950353199317107E-004 - 176.57999999999998 -2.5721744840079210E-004 - 176.63999999999999 -2.8515560120443209E-004 - 176.69999999999999 -3.1328922513895404E-004 - 176.75999999999999 -3.4158878369556546E-004 - 176.81999999999999 -3.7002398349933853E-004 - 176.88000000000000 -3.9856382006293027E-004 - 176.94000000000000 -4.2717666435556262E-004 - 177.00000000000000 -4.5583026598648610E-004 - 177.06000000000000 -4.8449177883176268E-004 - 177.12000000000000 -5.1312789855041750E-004 - 177.17999999999998 -5.4170488148734682E-004 - 177.23999999999998 -5.7018855074688973E-004 - 177.29999999999998 -5.9854435324202548E-004 - 177.35999999999999 -6.2673749474232148E-004 - 177.41999999999999 -6.5473289170687229E-004 - 177.47999999999999 -6.8249525368721173E-004 - 177.53999999999999 -7.0998915351774188E-004 - 177.59999999999999 -7.3717903231828089E-004 - 177.66000000000000 -7.6402924188968704E-004 - 177.72000000000000 -7.9050417616064351E-004 - 177.78000000000000 -8.1656820332749649E-004 - 177.84000000000000 -8.4218590333760000E-004 - 177.90000000000001 -8.6732181657744694E-004 - 177.95999999999998 -8.9194081833857814E-004 - 178.01999999999998 -9.1600802101489453E-004 - 178.07999999999998 -9.3948887349351031E-004 - 178.13999999999999 -9.6234920617150883E-004 - 178.19999999999999 -9.8455529735533569E-004 - 178.25999999999999 -1.0060739622605392E-003 - 178.31999999999999 -1.0268726992158591E-003 - 178.38000000000000 -1.0469196300478807E-003 - 178.44000000000000 -1.0661835021827542E-003 - 178.50000000000000 -1.0846340570457057E-003 - 178.56000000000000 -1.1022417006797667E-003 - 178.62000000000000 -1.1189778772083632E-003 - 178.67999999999998 -1.1348149290015240E-003 - 178.73999999999998 -1.1497264605122633E-003 - 178.79999999999998 -1.1636868426608161E-003 - 178.85999999999999 -1.1766717742782099E-003 - 178.91999999999999 -1.1886582176748033E-003 - 178.97999999999999 -1.1996241878960126E-003 - 179.03999999999999 -1.2095493171804723E-003 - 179.09999999999999 -1.2184142938327907E-003 - 179.16000000000000 -1.2262013516221634E-003 - 179.22000000000000 -1.2328941571778879E-003 - 179.28000000000000 -1.2384777693901256E-003 - 179.34000000000000 -1.2429388988119028E-003 - 179.40000000000001 -1.2462656091517261E-003 - 179.45999999999998 -1.2484477329962357E-003 - 179.51999999999998 -1.2494766556598162E-003 - 179.57999999999998 -1.2493454921886674E-003 - 179.63999999999999 -1.2480488475467119E-003 - 179.69999999999999 -1.2455832144270494E-003 - 179.75999999999999 -1.2419468030313839E-003 - 179.81999999999999 -1.2371393803405353E-003 - 179.88000000000000 -1.2311626304775899E-003 - 179.94000000000000 -1.2240199913406691E-003 - 180.00000000000000 -1.2157166356155540E-003 - 180.06000000000000 -1.2062593660705596E-003 - 180.12000000000000 -1.1956569727671305E-003 - 180.17999999999998 -1.1839197898591072E-003 - 180.23999999999998 -1.1710599981015358E-003 - 180.29999999999998 -1.1570913903640233E-003 - 180.35999999999999 -1.1420294998950194E-003 - 180.41999999999999 -1.1258914400734071E-003 - 180.47999999999999 -1.1086960704826678E-003 - 180.53999999999999 -1.0904635944511941E-003 - 180.59999999999999 -1.0712160446675943E-003 - 180.66000000000000 -1.0509766712127916E-003 - 180.72000000000000 -1.0297702413470330E-003 - 180.78000000000000 -1.0076228523120093E-003 - 180.84000000000000 -9.8456194531490373E-004 - 180.90000000000001 -9.6061628416124745E-004 - 180.95999999999998 -9.3581565666804513E-004 - 181.01999999999998 -9.1019121626912975E-004 - 181.07999999999998 -8.8377493474001460E-004 - 181.13999999999999 -8.5659999047647361E-004 - 181.19999999999999 -8.2870042932168197E-004 - 181.25999999999999 -8.0011116861212843E-004 - 181.31999999999999 -7.7086794690645749E-004 - 181.38000000000000 -7.4100710457039652E-004 - 181.44000000000000 -7.1056585004562267E-004 - 181.50000000000000 -6.7958182823564810E-004 - 181.56000000000000 -6.4809318817941994E-004 - 181.62000000000000 -6.1613847471526603E-004 - 181.67999999999998 -5.8375662898909480E-004 - 181.73999999999998 -5.5098676946176617E-004 - 181.79999999999998 -5.1786813793605786E-004 - 181.85999999999999 -4.8444008040090158E-004 - 181.91999999999999 -4.5074189679052698E-004 - 181.97999999999999 -4.1681274571699333E-004 - 182.03999999999999 -3.8269157027456477E-004 - 182.09999999999999 -3.4841705218852955E-004 - 182.16000000000000 -3.1402752806663234E-004 - 182.22000000000000 -2.7956087145311593E-004 - 182.28000000000000 -2.4505448747091268E-004 - 182.34000000000000 -2.1054516011555701E-004 - 182.39999999999998 -1.7606912901853050E-004 - 182.45999999999998 -1.4166186834657711E-004 - 182.51999999999998 -1.0735816608772902E-004 - 182.57999999999998 -7.3192017506303075E-005 - 182.63999999999999 -3.9196581793772645E-005 - 182.69999999999999 -5.4041655159933259E-006 - 182.75999999999999 2.8153845047267929E-005 - 182.81999999999999 6.1447006886827070E-005 - 182.88000000000000 9.4445857613561989E-005 - 182.94000000000000 1.2712196372191266E-004 - 183.00000000000000 1.5944795595290387E-004 - 183.06000000000000 1.9139753316441610E-004 - 183.12000000000000 2.2294552440589913E-004 - 183.17999999999998 2.5406790022354758E-004 - 183.23999999999998 2.8474180342074516E-004 - 183.29999999999998 3.1494553797062959E-004 - 183.35999999999999 3.4465861722111256E-004 - 183.41999999999999 3.7386177600441352E-004 - 183.47999999999999 4.0253686385991562E-004 - 183.53999999999999 4.3066705871729971E-004 - 183.59999999999999 4.5823663605648146E-004 - 183.66000000000000 4.8523107327201425E-004 - 183.72000000000000 5.1163700623050397E-004 - 183.78000000000000 5.3744219940069936E-004 - 183.84000000000000 5.6263551612048459E-004 - 183.89999999999998 5.8720686808883058E-004 - 183.95999999999998 6.1114724519898875E-004 - 184.01999999999998 6.3444866454506830E-004 - 184.07999999999998 6.5710406119243755E-004 - 184.13999999999999 6.7910734326558499E-004 - 184.19999999999999 7.0045329688579749E-004 - 184.25999999999999 7.2113760077336189E-004 - 184.31999999999999 7.4115683555531296E-004 - 184.38000000000000 7.6050826162689107E-004 - 184.44000000000000 7.7918998556264388E-004 - 184.50000000000000 7.9720084059107122E-004 - 184.56000000000000 8.1454042014171828E-004 - 184.62000000000000 8.3120894121541675E-004 - 184.67999999999998 8.4720725331322911E-004 - 184.73999999999998 8.6253679704469371E-004 - 184.79999999999998 8.7719959743639251E-004 - 184.85999999999999 8.9119824576957315E-004 - 184.91999999999999 9.0453578521277516E-004 - 184.97999999999999 9.1721571578511996E-004 - 185.03999999999999 9.2924203249583647E-004 - 185.09999999999999 9.4061904766548903E-004 - 185.16000000000000 9.5135149520378013E-004 - 185.22000000000000 9.6144434373570916E-004 - 185.28000000000000 9.7090282429721127E-004 - 185.34000000000000 9.7973257790922555E-004 - 185.39999999999998 9.8793933207802953E-004 - 185.45999999999998 9.9552897671583047E-004 - 185.51999999999998 1.0025077193941017E-003 - 185.57999999999998 1.0088818687069069E-003 - 185.63999999999999 1.0146577129868915E-003 - 185.69999999999999 1.0198417846279796E-003 - 185.75999999999999 1.0244406766458519E-003 - 185.81999999999999 1.0284611352098794E-003 - 185.88000000000000 1.0319099448713506E-003 - 185.94000000000000 1.0347938445262770E-003 - 186.00000000000000 1.0371197032493947E-003 - 186.06000000000000 1.0388945559687281E-003 - 186.12000000000000 1.0401253679504852E-003 - 186.17999999999998 1.0408192327949679E-003 - 186.23999999999998 1.0409833232871712E-003 - 186.29999999999998 1.0406246761319785E-003 - 186.35999999999999 1.0397506287471009E-003 - 186.41999999999999 1.0383684219170146E-003 - 186.47999999999999 1.0364855835413836E-003 - 186.53999999999999 1.0341094427290067E-003 - 186.59999999999999 1.0312474384099411E-003 - 186.66000000000000 1.0279073501291256E-003 - 186.72000000000000 1.0240965787561443E-003 - 186.78000000000000 1.0198230749232293E-003 - 186.84000000000000 1.0150946376241774E-003 - 186.89999999999998 1.0099193156972001E-003 - 186.95999999999998 1.0043050082449423E-003 - 187.01999999999998 9.9825979042929064E-004 - 187.07999999999998 9.9179200104109150E-004 - 187.13999999999999 9.8490999720737414E-004 - 187.19999999999999 9.7762231667521192E-004 - 187.25999999999999 9.6993758441506629E-004 - 187.31999999999999 9.6186463294091040E-004 - 187.38000000000000 9.5341248558600256E-004 - 187.44000000000000 9.4459020563791569E-004 - 187.50000000000000 9.3540721993947416E-004 - 187.56000000000000 9.2587302501051917E-004 - 187.62000000000000 9.1599744245641698E-004 - 187.67999999999998 9.0579043010616180E-004 - 187.73999999999998 8.9526226253092860E-004 - 187.79999999999998 8.8442332602538059E-004 - 187.85999999999999 8.7328424411887138E-004 - 187.91999999999999 8.6185598745198619E-004 - 187.97999999999999 8.5014961578152562E-004 - 188.03999999999999 8.3817643444535116E-004 - 188.09999999999999 8.2594801769839479E-004 - 188.16000000000000 8.1347597838272664E-004 - 188.22000000000000 8.0077229086422186E-004 - 188.28000000000000 7.8784894767471047E-004 - 188.34000000000000 7.7471816568183639E-004 - 188.39999999999998 7.6139240182897326E-004 - 188.45999999999998 7.4788410317099517E-004 - 188.51999999999998 7.3420600006065607E-004 - 188.57999999999998 7.2037082850787192E-004 - 188.63999999999999 7.0639151824017203E-004 - 188.69999999999999 6.9228109817099075E-004 - 188.75999999999999 6.7805269903040860E-004 - 188.81999999999999 6.6371961607492340E-004 - 188.88000000000000 6.4929517848139908E-004 - 188.94000000000000 6.3479285746424828E-004 - 189.00000000000000 6.2022606765240525E-004 - 189.06000000000000 6.0560842635188012E-004 - 189.12000000000000 5.9095341594421328E-004 - 189.17999999999998 5.7627458200152813E-004 - 189.23999999999998 5.6158547184634018E-004 - 189.29999999999998 5.4689955684201618E-004 - 189.35999999999999 5.3223026308971176E-004 - 189.41999999999999 5.1759084855643937E-004 - 189.47999999999999 5.0299444451914013E-004 - 189.53999999999999 4.8845400517638551E-004 - 189.59999999999999 4.7398224914237016E-004 - 189.66000000000000 4.5959172782833609E-004 - 189.72000000000000 4.4529474586730937E-004 - 189.78000000000000 4.3110328730220146E-004 - 189.84000000000000 4.1702907044439497E-004 - 189.89999999999998 4.0308357948812365E-004 - 189.95999999999998 3.8927791392940220E-004 - 190.01999999999998 3.7562292859997858E-004 - 190.07999999999998 3.6212909055174160E-004 - 190.13999999999999 3.4880659587431555E-004 - 190.19999999999999 3.3566524337281850E-004 - 190.25999999999999 3.2271455481758596E-004 - 190.31999999999999 3.0996359742373859E-004 - 190.38000000000000 2.9742114452807502E-004 - 190.44000000000000 2.8509555132468216E-004 - 190.50000000000000 2.7299479308661980E-004 - 190.56000000000000 2.6112641043291582E-004 - 190.62000000000000 2.4949752451296111E-004 - 190.67999999999998 2.3811482484745850E-004 - 190.73999999999998 2.2698453812047223E-004 - 190.79999999999998 2.1611242263614176E-004 - 190.85999999999999 2.0550374033815713E-004 - 190.91999999999999 1.9516329055353535E-004 - 190.97999999999999 1.8509537335287837E-004 - 191.03999999999999 1.7530375798269671E-004 - 191.09999999999999 1.6579174788453649E-004 - 191.16000000000000 1.5656214912550679E-004 - 191.22000000000000 1.4761727586084275E-004 - 191.28000000000000 1.3895896254645330E-004 - 191.34000000000000 1.3058859514221573E-004 - 191.39999999999998 1.2250711233040721E-004 - 191.45999999999998 1.1471501724839992E-004 - 191.51999999999998 1.0721240330389271E-004 - 191.57999999999998 9.9998977740381226E-005 - 191.63999999999999 9.3074080778137065E-005 - 191.69999999999999 8.6436695145261880E-005 - 191.75999999999999 8.0085483509986650E-005 - 191.81999999999999 7.4018766833064856E-005 - 191.88000000000000 6.8234589425785440E-005 - 191.94000000000000 6.2730718796364461E-005 - 192.00000000000000 5.7504640556291918E-005 - 192.06000000000000 5.2553593680719002E-005 - 192.12000000000000 4.7874581251248199E-005 - 192.17999999999998 4.3464364670224942E-005 - 192.23999999999998 3.9319495077360734E-005 - 192.29999999999998 3.5436313673602335E-005 - 192.35999999999999 3.1810967586449367E-005 - 192.41999999999999 2.8439411283793867E-005 - 192.47999999999999 2.5317434935367854E-005 - 192.53999999999999 2.2440665208452363E-005 - 192.59999999999999 1.9804590842270575E-005 - 192.66000000000000 1.7404579474731845E-005 - 192.72000000000000 1.5235885399583500E-005 - 192.78000000000000 1.3293687654244929E-005 - 192.84000000000000 1.1573102492359468E-005 - 192.89999999999998 1.0069210660669813E-005 - 192.95999999999998 8.7770852368952982E-006 - 193.01999999999998 7.6918134072563637E-006 - 193.07999999999998 6.8085225971434084E-006 - 193.13999999999999 6.1224051843676837E-006 - 193.19999999999999 5.6287412180863341E-006 - 193.25999999999999 5.3229186040512493E-006 - 193.31999999999999 5.2004481333658371E-006 - 193.38000000000000 5.2569771738386879E-006 - 193.44000000000000 5.4883033701259959E-006 - 193.50000000000000 5.8903735544838879E-006 - 193.56000000000000 6.4592940656316495E-006 - 193.62000000000000 7.1913267114390622E-006 - 193.67999999999998 8.0828811418092072E-006 - 193.73999999999998 9.1305161304602353E-006 - 193.79999999999998 1.0330928634099098E-005 - 193.85999999999999 1.1680947803195510E-005 - 193.91999999999999 1.3177529362316358E-005 - 193.97999999999999 1.4817749020017953E-005 - 194.03999999999999 1.6598794927446364E-005 - 194.09999999999999 1.8517969092265791E-005 - 194.16000000000000 2.0572687340001808E-005 - 194.22000000000000 2.2760480161963550E-005 - 194.28000000000000 2.5078995366665670E-005 - 194.34000000000000 2.7526012003399773E-005 - 194.39999999999998 3.0099434153555254E-005 - 194.45999999999998 3.2797303621358102E-005 - 194.51999999999998 3.5617817138570873E-005 - 194.57999999999998 3.8559310399513717E-005 - 194.63999999999999 4.1620272462457420E-005 - 194.69999999999999 4.4799347132777773E-005 - 194.75999999999999 4.8095323090291398E-005 - 194.81999999999999 5.1507126793028937E-005 - 194.88000000000000 5.5033817800021495E-005 - 194.94000000000000 5.8674570975874519E-005 - 195.00000000000000 6.2428666287236761E-005 - 195.06000000000000 6.6295454776970898E-005 - 195.12000000000000 7.0274358141200261E-005 - 195.17999999999998 7.4364830340477428E-005 - 195.23999999999998 7.8566352171454657E-005 - 195.29999999999998 8.2878411432476265E-005 - 195.35999999999999 8.7300463159424029E-005 - 195.41999999999999 9.1831936445149854E-005 - 195.47999999999999 9.6472226556568083E-005 - 195.53999999999999 1.0122066493127533E-004 - 195.59999999999999 1.0607651276459803E-004 - 195.66000000000000 1.1103895738319195E-004 - 195.72000000000000 1.1610711572367082E-004 - 195.78000000000000 1.2128001523199346E-004 - 195.84000000000000 1.2655658596412000E-004 - 195.89999999999998 1.3193567860225259E-004 - 195.95999999999998 1.3741603793812718E-004 - 196.01999999999998 1.4299630001627709E-004 - 196.07999999999998 1.4867501189585593E-004 - 196.13999999999999 1.5445059506207011E-004 - 196.19999999999999 1.6032133330089749E-004 - 196.25999999999999 1.6628535168464125E-004 - 196.31999999999999 1.7234066493894860E-004 - 196.38000000000000 1.7848509224033037E-004 - 196.44000000000000 1.8471626629061087E-004 - 196.50000000000000 1.9103164115771777E-004 - 196.56000000000000 1.9742845041696759E-004 - 196.62000000000000 2.0390370381369774E-004 - 196.67999999999998 2.1045417558903845E-004 - 196.73999999999998 2.1707638185485638E-004 - 196.79999999999998 2.2376661681518622E-004 - 196.85999999999999 2.3052085929308122E-004 - 196.91999999999999 2.3733485174541000E-004 - 196.97999999999999 2.4420404933571166E-004 - 197.03999999999999 2.5112358613881729E-004 - 197.09999999999999 2.5808835907644361E-004 - 197.16000000000000 2.6509294494782537E-004 - 197.22000000000000 2.7213163833231404E-004 - 197.28000000000000 2.7919847591702013E-004 - 197.34000000000000 2.8628714631025182E-004 - 197.39999999999998 2.9339110449272187E-004 - 197.45999999999998 3.0050354666461438E-004 - 197.51999999999998 3.0761735549025506E-004 - 197.57999999999998 3.1472519899556099E-004 - 197.63999999999999 3.2181944698100255E-004 - 197.69999999999999 3.2889227931679382E-004 - 197.75999999999999 3.3593562589532378E-004 - 197.81999999999999 3.4294118518332189E-004 - 197.88000000000000 3.4990044469835859E-004 - 197.94000000000000 3.5680474554775115E-004 - 198.00000000000000 3.6364523328038015E-004 - 198.06000000000000 3.7041285902815539E-004 - 198.12000000000000 3.7709846678826470E-004 - 198.17999999999998 3.8369274370785429E-004 - 198.23999999999998 3.9018625962897776E-004 - 198.29999999999998 3.9656943429977891E-004 - 198.35999999999999 4.0283266167683972E-004 - 198.41999999999999 4.0896618135246525E-004 - 198.47999999999999 4.1496023220643520E-004 - 198.53999999999999 4.2080500310799174E-004 - 198.59999999999999 4.2649068738768043E-004 - 198.66000000000000 4.3200742061629812E-004 - 198.72000000000000 4.3734538657325557E-004 - 198.78000000000000 4.4249486597618598E-004 - 198.84000000000000 4.4744616147756266E-004 - 198.89999999999998 4.5218972624558486E-004 - 198.95999999999998 4.5671614896602996E-004 - 199.01999999999998 4.6101614098462254E-004 - 199.07999999999998 4.6508068639570892E-004 - 199.13999999999999 4.6890096413422906E-004 - 199.19999999999999 4.7246836452761261E-004 - 199.25999999999999 4.7577464214522148E-004 - 199.31999999999999 4.7881181252217513E-004 - 199.38000000000000 4.8157225386253358E-004 - 199.44000000000000 4.8404870028545701E-004 - 199.50000000000000 4.8623425272658499E-004 - 199.56000000000000 4.8812243359573566E-004 - 199.62000000000000 4.8970718296059831E-004 - 199.67999999999998 4.9098291166995735E-004 - 199.73999999999998 4.9194435794677630E-004 - 199.79999999999998 4.9258686129689886E-004 - 199.85999999999999 4.9290625782546431E-004 - 199.91999999999999 4.9289883481148087E-004 - 199.97999999999999 4.9256138641659629E-004 - 200.03999999999999 4.9189132272926036E-004 - 200.09999999999999 4.9088646038556816E-004 - 200.16000000000000 4.8954525758309990E-004 - 200.22000000000000 4.8786680150374932E-004 - 200.28000000000000 4.8585070141070335E-004 - 200.34000000000000 4.8349708294394831E-004 - 200.39999999999998 4.8080679196876928E-004 - 200.45999999999998 4.7778125245736831E-004 - 200.51999999999998 4.7442237654733612E-004 - 200.57999999999998 4.7073280626546587E-004 - 200.63999999999999 4.6671570959029378E-004 - 200.69999999999999 4.6237486350307844E-004 - 200.75999999999999 4.5771458952523875E-004 - 200.81999999999999 4.5273983177947463E-004 - 200.88000000000000 4.4745604995045430E-004 - 200.94000000000000 4.4186927196550058E-004 - 201.00000000000000 4.3598606874610454E-004 - 201.06000000000000 4.2981348878790428E-004 - 201.12000000000000 4.2335913108272253E-004 - 201.17999999999998 4.1663112296104813E-004 - 201.23999999999998 4.0963796493408253E-004 - 201.29999999999998 4.0238871044195163E-004 - 201.35999999999999 3.9489282055641414E-004 - 201.41999999999999 3.8716020239913608E-004 - 201.47999999999999 3.7920111456301258E-004 - 201.53999999999999 3.7102623204346224E-004 - 201.59999999999999 3.6264659340613396E-004 - 201.66000000000000 3.5407350742996946E-004 - 201.72000000000000 3.4531863888806995E-004 - 201.78000000000000 3.3639392836772248E-004 - 201.84000000000000 3.2731151315373234E-004 - 201.89999999999998 3.1808376769653111E-004 - 201.95999999999998 3.0872323337847096E-004 - 202.01999999999998 2.9924260953563460E-004 - 202.07999999999998 2.8965472938630545E-004 - 202.13999999999999 2.7997248646315727E-004 - 202.19999999999999 2.7020885407628092E-004 - 202.25999999999999 2.6037686905115091E-004 - 202.31999999999999 2.5048957342877734E-004 - 202.38000000000000 2.4055996910851967E-004 - 202.44000000000000 2.3060105377885475E-004 - 202.50000000000000 2.2062576802245611E-004 - 202.56000000000000 2.1064700798641698E-004 - 202.62000000000000 2.0067749145673305E-004 - 202.67999999999998 1.9072990382188850E-004 - 202.73999999999998 1.8081676655700628E-004 - 202.79999999999998 1.7095044053535931E-004 - 202.85999999999999 1.6114309542221374E-004 - 202.91999999999999 1.5140669334332983E-004 - 202.97999999999999 1.4175296709104061E-004 - 203.03999999999999 1.3219339888888109E-004 - 203.09999999999999 1.2273920567881382E-004 - 203.16000000000000 1.1340128079399219E-004 - 203.22000000000000 1.0419023090949678E-004 - 203.28000000000000 9.5116305966900066E-005 - 203.34000000000000 8.6189421216037890E-005 - 203.39999999999998 7.7419115192626812E-005 - 203.45999999999998 6.8814561404916826E-005 - 203.51999999999998 6.0384549630742859E-005 - 203.57999999999998 5.2137466936212852E-005 - 203.63999999999999 4.4081331934202110E-005 - 203.69999999999999 3.6223755946756244E-005 - 203.75999999999999 2.8571956690456278E-005 - 203.81999999999999 2.1132755817530819E-005 - 203.88000000000000 1.3912585552688639E-005 - 203.94000000000000 6.9174805752417074E-006 - 204.00000000000000 1.5307473010638214E-007 - 204.06000000000000 -6.3753896040593981E-006 - 204.12000000000000 -1.2663061838735252E-005 - 204.17999999999998 -1.8705491379956233E-005 - 204.23999999999998 -2.4498619880149304E-005 - 204.29999999999998 -3.0038784796442862E-005 - 204.35999999999999 -3.5322711951370821E-005 - 204.41999999999999 -4.0347519458777532E-005 - 204.47999999999999 -4.5110704662298916E-005 - 204.53999999999999 -4.9610146412560144E-005 - 204.59999999999999 -5.3844091070021826E-005 - 204.66000000000000 -5.7811138691403135E-005 - 204.72000000000000 -6.1510238170775418E-005 - 204.78000000000000 -6.4940680507247597E-005 - 204.84000000000000 -6.8102061399617493E-005 - 204.89999999999998 -7.0994280103369960E-005 - 204.95999999999998 -7.3617536778408177E-005 - 205.01999999999998 -7.5972290886015982E-005 - 205.07999999999998 -7.8059262866503839E-005 - 205.13999999999999 -7.9879411978673519E-005 - 205.19999999999999 -8.1433928962412451E-005 - 205.25999999999999 -8.2724212056726877E-005 - 205.31999999999999 -8.3751861510081662E-005 - 205.38000000000000 -8.4518667816994432E-005 - 205.44000000000000 -8.5026602664880059E-005 - 205.50000000000000 -8.5277793960776861E-005 - 205.56000000000000 -8.5274530493728668E-005 - 205.62000000000000 -8.5019245790117379E-005 - 205.67999999999998 -8.4514508908174022E-005 - 205.73999999999998 -8.3763022465819641E-005 - 205.79999999999998 -8.2767589419933057E-005 - 205.85999999999999 -8.1531110063082498E-005 - 205.91999999999999 -8.0056595918050807E-005 - 205.97999999999999 -7.8347123171430507E-005 - 206.03999999999999 -7.6405837458066582E-005 - 206.09999999999999 -7.4235961622544705E-005 - 206.16000000000000 -7.1840754049582028E-005 - 206.22000000000000 -6.9223524788163620E-005 - 206.28000000000000 -6.6387620008683689E-005 - 206.34000000000000 -6.3336413017085421E-005 - 206.39999999999998 -6.0073304768227188E-005 - 206.45999999999998 -5.6601720504292441E-005 - 206.51999999999998 -5.2925113973599383E-005 - 206.57999999999998 -4.9046947789155472E-005 - 206.63999999999999 -4.4970711007394208E-005 - 206.69999999999999 -4.0699914416607481E-005 - 206.75999999999999 -3.6238087251751771E-005 - 206.81999999999999 -3.1588781097032340E-005 - 206.88000000000000 -2.6755574586218618E-005 - 206.94000000000000 -2.1742072845675289E-005 - 207.00000000000000 -1.6551920139333011E-005 - 207.06000000000000 -1.1188793016884241E-005 - 207.12000000000000 -5.6564159316187195E-006 - 207.17999999999998 4.1441166491827749E-008 - 207.23999999999998 5.9009450380913472E-006 - 207.29999999999998 1.1918194229657152E-005 - 207.35999999999999 1.8089216732863135E-005 - 207.41999999999999 2.4409942695643619E-005 - 207.47999999999999 3.0876209411796830E-005 - 207.53999999999999 3.7483744546878435E-005 - 207.59999999999999 4.4228150924863763E-005 - 207.66000000000000 5.1104902966719311E-005 - 207.72000000000000 5.8109332083519912E-005 - 207.78000000000000 6.5236618453998771E-005 - 207.84000000000000 7.2481785079020415E-005 - 207.89999999999998 7.9839681760877142E-005 - 207.95999999999998 8.7305004394623193E-005 - 208.01999999999998 9.4872265878915221E-005 - 208.07999999999998 1.0253580192204952E-004 - 208.13999999999999 1.1028978625698182E-004 - 208.19999999999999 1.1812819453000539E-004 - 208.25999999999999 1.2604481459892148E-004 - 208.31999999999999 1.3403325534201113E-004 - 208.38000000000000 1.4208695826388931E-004 - 208.44000000000000 1.5019914053209256E-004 - 208.50000000000000 1.5836283931499779E-004 - 208.56000000000000 1.6657084976949693E-004 - 208.62000000000000 1.7481580405770246E-004 - 208.68000000000001 1.8309008712300668E-004 - 208.74000000000001 1.9138588071188043E-004 - 208.80000000000001 1.9969509576563265E-004 - 208.86000000000001 2.0800942787782380E-004 - 208.92000000000002 2.1632034598180472E-004 - 208.98000000000002 2.2461907992499727E-004 - 209.03999999999996 2.3289662780346472E-004 - 209.09999999999997 2.4114378290185766E-004 - 209.15999999999997 2.4935109052766694E-004 - 209.21999999999997 2.5750894215675240E-004 - 209.27999999999997 2.6560751478089207E-004 - 209.33999999999997 2.7363685023420732E-004 - 209.39999999999998 2.8158685519102196E-004 - 209.45999999999998 2.8944729832171468E-004 - 209.51999999999998 2.9720790542609485E-004 - 209.57999999999998 3.0485828755592804E-004 - 209.63999999999999 3.1238800427992855E-004 - 209.69999999999999 3.1978659273959359E-004 - 209.75999999999999 3.2704356884087843E-004 - 209.81999999999999 3.3414850253544722E-004 - 209.88000000000000 3.4109095489393942E-004 - 209.94000000000000 3.4786050549734859E-004 - 210.00000000000000 3.5444679596677764E-004 - 210.06000000000000 3.6083955080879469E-004 - 210.12000000000000 3.6702859187918833E-004 - 210.18000000000001 3.7300379850485518E-004 - 210.24000000000001 3.7875519237186203E-004 - 210.30000000000001 3.8427293880130553E-004 - 210.36000000000001 3.8954737698938076E-004 - 210.42000000000002 3.9456901433960095E-004 - 210.48000000000002 3.9932858823417666E-004 - 210.53999999999996 4.0381708085968803E-004 - 210.59999999999997 4.0802569394492844E-004 - 210.65999999999997 4.1194597235333385E-004 - 210.71999999999997 4.1556980443384383E-004 - 210.77999999999997 4.1888938318605258E-004 - 210.83999999999997 4.2189733428268494E-004 - 210.89999999999998 4.2458664168586294E-004 - 210.95999999999998 4.2695079401621649E-004 - 211.01999999999998 4.2898366102461788E-004 - 211.07999999999998 4.3067959949778838E-004 - 211.13999999999999 4.3203350137049581E-004 - 211.19999999999999 4.3304073029565532E-004 - 211.25999999999999 4.3369718664109340E-004 - 211.31999999999999 4.3399924597767092E-004 - 211.38000000000000 4.3394384481658930E-004 - 211.44000000000000 4.3352853522238424E-004 - 211.50000000000000 4.3275136026441752E-004 - 211.56000000000000 4.3161091644147378E-004 - 211.62000000000000 4.3010641612107979E-004 - 211.68000000000001 4.2823765644425105E-004 - 211.74000000000001 4.2600497307850071E-004 - 211.80000000000001 4.2340933463577750E-004 - 211.86000000000001 4.2045230638449214E-004 - 211.92000000000002 4.1713604157828967E-004 - 211.98000000000002 4.1346327409791476E-004 - 212.03999999999996 4.0943737890934278E-004 - 212.09999999999997 4.0506230107607356E-004 - 212.15999999999997 4.0034255737854006E-004 - 212.21999999999997 3.9528324443989803E-004 - 212.27999999999997 3.8989006992064550E-004 - 212.33999999999997 3.8416927939501750E-004 - 212.39999999999998 3.7812772789147525E-004 - 212.45999999999998 3.7177272374185402E-004 - 212.51999999999998 3.6511218940947466E-004 - 212.57999999999998 3.5815455671018778E-004 - 212.63999999999999 3.5090876376207960E-004 - 212.69999999999999 3.4338421663304681E-004 - 212.75999999999999 3.3559082347427366E-004 - 212.81999999999999 3.2753895714472659E-004 - 212.88000000000000 3.1923943180392234E-004 - 212.94000000000000 3.1070347787721979E-004 - 213.00000000000000 3.0194272288804318E-004 - 213.06000000000000 2.9296918590185464E-004 - 213.12000000000000 2.8379521883844757E-004 - 213.18000000000001 2.7443348190148706E-004 - 213.24000000000001 2.6489693726765339E-004 - 213.30000000000001 2.5519880981133268E-004 - 213.36000000000001 2.4535250738520628E-004 - 213.42000000000002 2.3537166364742700E-004 - 213.48000000000002 2.2527004456158019E-004 - 213.53999999999996 2.1506156313540192E-004 - 213.59999999999997 2.0476020102793070E-004 - 213.65999999999997 1.9437997550429459E-004 - 213.71999999999997 1.8393498049183043E-004 - 213.77999999999997 1.7343928912221562E-004 - 213.83999999999997 1.6290694466089526E-004 - 213.89999999999998 1.5235193274518592E-004 - 213.95999999999998 1.4178816953943331E-004 - 214.01999999999998 1.3122944976496853E-004 - 214.07999999999998 1.2068946296672248E-004 - 214.13999999999999 1.1018172004997220E-004 - 214.19999999999999 9.9719582478307258E-005 - 214.25999999999999 8.9316187227562308E-005 - 214.31999999999999 7.8984446049339555E-005 - 214.38000000000000 6.8737010006298283E-005 - 214.44000000000000 5.8586245123127780E-005 - 214.50000000000000 4.8544211041741450E-005 - 214.56000000000000 3.8622619406313340E-005 - 214.62000000000000 2.8832821649536309E-005 - 214.68000000000001 1.9185780625744943E-005 - 214.74000000000001 9.6920438848784224E-006 - 214.80000000000001 3.6172648711075719E-007 - 214.86000000000001 -8.7955057211901748E-006 - 214.92000000000002 -1.7770451165962894E-005 - 214.98000000000002 -2.6554383500092543E-005 - 215.03999999999996 -3.5139076680682112E-005 - 215.09999999999997 -4.3516791132043558E-005 - 215.15999999999997 -5.1680281447007450E-005 - 215.21999999999997 -5.9622831720385373E-005 - 215.27999999999997 -6.7338218305605687E-005 - 215.33999999999997 -7.4820740211790346E-005 - 215.39999999999998 -8.2065209375416508E-005 - 215.45999999999998 -8.9066950875605716E-005 - 215.51999999999998 -9.5821819362514797E-005 - 215.57999999999998 -1.0232616950072839E-004 - 215.63999999999999 -1.0857687208362295E-004 - 215.69999999999999 -1.1457133615071452E-004 - 215.75999999999999 -1.2030743394999761E-004 - 215.81999999999999 -1.2578360983721059E-004 - 215.88000000000000 -1.3099874242552948E-004 - 215.94000000000000 -1.3595225210309242E-004 - 216.00000000000000 -1.4064400525200626E-004 - 216.06000000000000 -1.4507432998716205E-004 - 216.12000000000000 -1.4924400462774663E-004 - 216.18000000000001 -1.5315426870797711E-004 - 216.24000000000001 -1.5680673928341110E-004 - 216.30000000000001 -1.6020345466120532E-004 - 216.36000000000001 -1.6334682949656337E-004 - 216.42000000000002 -1.6623961968202200E-004 - 216.48000000000002 -1.6888493653095547E-004 - 216.53999999999996 -1.7128621241418730E-004 - 216.59999999999997 -1.7344720532638816E-004 - 216.65999999999997 -1.7537196158845037E-004 - 216.71999999999997 -1.7706481461488290E-004 - 216.77999999999997 -1.7853037045205541E-004 - 216.83999999999997 -1.7977350032196061E-004 - 216.89999999999998 -1.8079930611389973E-004 - 216.95999999999998 -1.8161314034352140E-004 - 217.01999999999998 -1.8222058086108528E-004 - 217.07999999999998 -1.8262738160641198E-004 - 217.13999999999999 -1.8283951788630975E-004 - 217.19999999999999 -1.8286309354616988E-004 - 217.25999999999999 -1.8270436812498246E-004 - 217.31999999999999 -1.8236973564855037E-004 - 217.38000000000000 -1.8186565949321925E-004 - 217.44000000000000 -1.8119871033787211E-004 - 217.50000000000000 -1.8037547431168862E-004 - 217.56000000000000 -1.7940258133095665E-004 - 217.62000000000000 -1.7828666648810038E-004 - 217.68000000000001 -1.7703434059310912E-004 - 217.74000000000001 -1.7565217815307423E-004 - 217.80000000000001 -1.7414673267435713E-004 - 217.86000000000001 -1.7252450079540608E-004 - 217.92000000000002 -1.7079189867808586E-004 - 217.98000000000002 -1.6895529139601621E-004 - 218.03999999999996 -1.6702095952627623E-004 - 218.09999999999997 -1.6499510073360096E-004 - 218.15999999999997 -1.6288383499384626E-004 - 218.21999999999997 -1.6069319015588347E-004 - 218.27999999999997 -1.5842911554019771E-004 - 218.33999999999997 -1.5609745573669180E-004 - 218.39999999999998 -1.5370394359404303E-004 - 218.45999999999998 -1.5125423381681506E-004 - 218.51999999999998 -1.4875384460474059E-004 - 218.57999999999998 -1.4620815102506235E-004 - 218.63999999999999 -1.4362241458137510E-004 - 218.69999999999999 -1.4100173123042487E-004 - 218.75999999999999 -1.3835106007508352E-004 - 218.81999999999999 -1.3567520124523871E-004 - 218.88000000000000 -1.3297876867828494E-004 - 218.94000000000000 -1.3026620952231047E-004 - 219.00000000000000 -1.2754179710266426E-004 - 219.06000000000000 -1.2480961590096080E-004 - 219.12000000000000 -1.2207358177489082E-004 - 219.18000000000001 -1.1933741717724120E-004 - 219.24000000000001 -1.1660467228755296E-004 - 219.30000000000001 -1.1387872894788568E-004 - 219.36000000000001 -1.1116278468882247E-004 - 219.42000000000002 -1.0845987065133708E-004 - 219.48000000000002 -1.0577284589115582E-004 - 219.53999999999996 -1.0310440440114399E-004 - 219.59999999999997 -1.0045708582819716E-004 - 219.65999999999997 -9.7833264695147009E-005 - 219.71999999999997 -9.5235152791413763E-005 - 219.77999999999997 -9.2664812304125635E-005 - 219.83999999999997 -9.0124136549340553E-005 - 219.89999999999998 -8.7614891800025067E-005 - 219.95999999999998 -8.5138677960434561E-005 - 220.01999999999998 -8.2696964595948834E-005 - 220.07999999999998 -8.0291082959547158E-005 - 220.13999999999999 -7.7922224869060591E-005 - 220.19999999999999 -7.5591475206701749E-005 - 220.25999999999999 -7.3299787315310038E-005 - 220.31999999999999 -7.1048019409948910E-005 - 220.38000000000000 -6.8836910245305660E-005 - 220.44000000000000 -6.6667103438935820E-005 - 220.50000000000000 -6.4539139062324793E-005 - 220.56000000000000 -6.2453471611201216E-005 - 220.62000000000000 -6.0410451908213649E-005 - 220.68000000000001 -5.8410340810000689E-005 - 220.74000000000001 -5.6453301582238223E-005 - 220.80000000000001 -5.4539402487028563E-005 - 220.86000000000001 -5.2668606315355478E-005 - 220.92000000000002 -5.0840792923018471E-005 - 220.98000000000002 -4.9055737941455735E-005 - 221.03999999999996 -4.7313125691320788E-005 - 221.09999999999997 -4.5612555322158974E-005 - 221.15999999999997 -4.3953537310231529E-005 - 221.21999999999997 -4.2335521292484955E-005 - 221.27999999999997 -4.0757886607835972E-005 - 221.33999999999997 -3.9219961310824893E-005 - 221.39999999999998 -3.7721038332308221E-005 - 221.45999999999998 -3.6260376379101485E-005 - 221.51999999999998 -3.4837226942671698E-005 - 221.57999999999998 -3.3450829703339907E-005 - 221.63999999999999 -3.2100432853659641E-005 - 221.69999999999999 -3.0785288781785659E-005 - 221.75999999999999 -2.9504666494391216E-005 - 221.81999999999999 -2.8257849572949003E-005 - 221.88000000000000 -2.7044139976112221E-005 - 221.94000000000000 -2.5862847650364759E-005 - 222.00000000000000 -2.4713295077593536E-005 - 222.06000000000000 -2.3594809533061426E-005 - 222.12000000000000 -2.2506720185710375E-005 - 222.18000000000001 -2.1448354246471369E-005 - 222.24000000000001 -2.0419029571534988E-005 - 222.30000000000001 -1.9418060120471602E-005 - 222.36000000000001 -1.8444749652612052E-005 - 222.42000000000002 -1.7498399760314838E-005 - 222.48000000000002 -1.6578308034243332E-005 - 222.53999999999996 -1.5683773511159200E-005 - 222.59999999999997 -1.4814104193999617E-005 - 222.65999999999997 -1.3968619686245883E-005 - 222.71999999999997 -1.3146660763428909E-005 - 222.77999999999997 -1.2347591057034778E-005 - 222.83999999999997 -1.1570804928702809E-005 - 222.89999999999998 -1.0815728555612167E-005 - 222.95999999999998 -1.0081826904642646E-005 - 223.01999999999998 -9.3685987404430428E-006 - 223.07999999999998 -8.6755795063430293E-006 - 223.13999999999999 -8.0023407392221862E-006 - 223.19999999999999 -7.3484852447178201E-006 - 223.25999999999999 -6.7136476714772033E-006 - 223.31999999999999 -6.0974912446964572E-006 - 223.38000000000000 -5.4997040159726868E-006 - 223.44000000000000 -4.9199978783551970E-006 - 223.50000000000000 -4.3581067947294382E-006 - 223.56000000000000 -3.8137849560809195E-006 - 223.62000000000000 -3.2868062067827473E-006 - 223.68000000000001 -2.7769627735574987E-006 - 223.74000000000001 -2.2840641565552410E-006 - 223.80000000000001 -1.8079349437455037E-006 - 223.86000000000001 -1.3484135497748496E-006 - 223.92000000000002 -9.0534854750421813E-007 - 223.98000000000002 -4.7859479524777654E-007 - 224.03999999999996 -6.8008952276389387E-008 - 224.09999999999997 3.2655526993536871E-007 - 224.15999999999997 7.0525274658695460E-007 - 224.21999999999997 1.0682520056084421E-006 - 224.27999999999997 1.4157392867834081E-006 - 224.33999999999997 1.7479223806435982E-006 - 224.39999999999998 2.0650319618780555E-006 - 224.45999999999998 2.3673217932353972E-006 - 224.51999999999998 2.6550664433571351E-006 - 224.57999999999998 2.9285579925795801E-006 - 224.63999999999999 3.1881004133951956E-006 - 224.69999999999999 3.4340019804602574E-006 - 224.75999999999999 3.6665678550559263E-006 - 224.81999999999999 3.8860916756273900E-006 - 224.88000000000000 4.0928496641433050E-006 - 224.94000000000000 4.2870932643227502E-006 - 225.00000000000000 4.4690462524787231E-006 - 225.06000000000000 4.6389021201701357E-006 - 225.12000000000000 4.7968250819367297E-006 - 225.18000000000001 4.9429544331799548E-006 - 225.24000000000001 5.0774110345308388E-006 - 225.30000000000001 5.2003049161329118E-006 - 225.36000000000001 5.3117467007837104E-006 - 225.42000000000002 5.4118580341608802E-006 - 225.48000000000002 5.5007813644632267E-006 - 225.53999999999996 5.5786912835364873E-006 - 225.59999999999997 5.6458022770643143E-006 - 225.65999999999997 5.7023731801493035E-006 - 225.71999999999997 5.7487103019179742E-006 - 225.77999999999997 5.7851675652715538E-006 - 225.83999999999997 5.8121414841319838E-006 - 225.89999999999998 5.8300639189294146E-006 - 225.95999999999998 5.8393939445841770E-006 - 226.01999999999998 5.8406055901570295E-006 - 226.07999999999998 5.8341769816466794E-006 - 226.13999999999999 5.8205773395541712E-006 - 226.19999999999999 5.8002576274063377E-006 - 226.25999999999999 5.7736399870045854E-006 - 226.31999999999999 5.7411118741541368E-006 - 226.38000000000000 5.7030219556597315E-006 - 226.44000000000000 5.6596790709709961E-006 - 226.50000000000000 5.6113551156111860E-006 - 226.56000000000000 5.5582902089456520E-006 - 226.62000000000000 5.5006977393833680E-006 - 226.68000000000001 5.4387748259617728E-006 - 226.74000000000001 5.3727120496736548E-006 - 226.80000000000001 5.3027001574981288E-006 - 226.86000000000001 5.2289412913445086E-006 - 226.92000000000002 5.1516561135513029E-006 - 226.98000000000002 5.0710879366605255E-006 - 227.03999999999996 4.9875076234186608E-006 - 227.09999999999997 4.9012148876695932E-006 - 227.15999999999997 4.8125358705714067E-006 - 227.21999999999997 4.7218216736062287E-006 - 227.27999999999997 4.6294439812219085E-006 - 227.33999999999997 4.5357884774229764E-006 - 227.39999999999998 4.4412489223591523E-006 - 227.45999999999998 4.3462205610225619E-006 - 227.51999999999998 4.2510927238164574E-006 - 227.57999999999998 4.1562432346329098E-006 - 227.63999999999999 4.0620334758904669E-006 - 227.69999999999999 3.9688022989676679E-006 - 227.75999999999999 3.8768643395357649E-006 - 227.81999999999999 3.7865046320787223E-006 - 227.88000000000000 3.6979789853565593E-006 - 227.94000000000000 3.6115115107915634E-006 - 228.00000000000000 3.5272954894415042E-006 - 228.06000000000000 3.4454922071751826E-006 - 228.12000000000000 3.3662336689536484E-006 - 228.18000000000001 3.2896244016041269E-006 - 228.24000000000001 3.2157424167774972E-006 - 228.30000000000001 3.1446442223157722E-006 - 228.36000000000001 3.0763670010032483E-006 - 228.42000000000002 3.0109346721805284E-006 - 228.48000000000002 2.9483615579609438E-006 - 228.53999999999996 2.8886577392299556E-006 - 228.59999999999997 2.8318335399073831E-006 - 228.65999999999997 2.7779052127657940E-006 - 228.71999999999997 2.7268977623112882E-006 - 228.77999999999997 2.6788479819933151E-006 - 228.83999999999997 2.6338041891450924E-006 - 228.89999999999998 2.5918274369630742E-006 - 228.95999999999998 2.5529872510887309E-006 - 229.01999999999998 2.5173569158188923E-006 - 229.07999999999998 2.4850062347865127E-006 - 229.13999999999999 2.4559936220464231E-006 - 229.19999999999999 2.4303551842943280E-006 - 229.25999999999999 2.4080958841233765E-006 - 229.31999999999999 2.3891777606962176E-006 - 229.38000000000000 2.3735118347414267E-006 - 229.44000000000000 2.3609504298959919E-006 - 229.50000000000000 2.3512816264160731E-006 - 229.56000000000000 2.3442280279799037E-006 - 229.62000000000000 2.3394471266096499E-006 - 229.68000000000001 2.3365362045045352E-006 - 229.74000000000001 2.3350398943538922E-006 - 229.80000000000001 2.3344605262493487E-006 - 229.86000000000001 2.3342702742191408E-006 - 229.92000000000002 2.3339250486774350E-006 - 229.97999999999996 2.3328778835840462E-006 - 230.03999999999996 2.3305913255198186E-006 - 230.09999999999997 2.3265487359945581E-006 - 230.15999999999997 2.3202620709179100E-006 - 230.21999999999997 2.3112772381060896E-006 - 230.27999999999997 2.2991749446619915E-006 - 230.33999999999997 2.2835684106999825E-006 - 230.39999999999998 2.2640974504427614E-006 - 230.45999999999998 2.2404203213002191E-006 - 230.51999999999998 2.2122022478867634E-006 - 230.57999999999998 2.1791043336441363E-006 - 230.63999999999999 2.1407720415884160E-006 - 230.69999999999999 2.0968245327904237E-006 - 230.75999999999999 2.0468463194049292E-006 - 230.81999999999999 1.9903820179987708E-006 - 230.88000000000000 1.9269342104066804E-006 - 230.94000000000000 1.8559652674521913E-006 - 231.00000000000000 1.7769024363629168E-006 - 231.06000000000000 1.6891467971247594E-006 - 231.12000000000000 1.5920842013980906E-006 - 231.18000000000001 1.4850980776876596E-006 - 231.24000000000001 1.3675832725493315E-006 - 231.30000000000001 1.2389595890315354E-006 - 231.36000000000001 1.0986840405666846E-006 - 231.42000000000002 9.4626061812203291E-007 - 231.47999999999996 7.8124838370666349E-007 - 231.53999999999996 6.0326562242153106E-007 - 231.59999999999997 4.1199146137399859E-007 - 231.65999999999997 2.0716366673139037E-007 - 231.71999999999997 -1.1425766412635701E-008 - 231.77999999999997 -2.4393656669461443E-007 - 231.83999999999997 -4.9048829985601490E-007 - 231.89999999999998 -7.5116936057623845E-007 - 231.95999999999998 -1.0260434740519330E-006 - 232.01999999999998 -1.3151590446333831E-006 - 232.07999999999998 -1.6185534611938819E-006 - 232.13999999999999 -1.9362569786816637E-006 - 232.19999999999999 -2.2682960249349574E-006 - 232.25999999999999 -2.6146913758954111E-006 - 232.31999999999999 -2.9754582143676534E-006 - 232.38000000000000 -3.3506009817108176E-006 - 232.44000000000000 -3.7401093760870472E-006 - 232.50000000000000 -4.1439541184346832E-006 - 232.56000000000000 -4.5620822895163084E-006 - 232.62000000000000 -4.9944112693538176E-006 - 232.68000000000001 -5.4408267052832049E-006 - 232.74000000000001 -5.9011774937384483E-006 - 232.80000000000001 -6.3752763393822579E-006 - 232.86000000000001 -6.8628954521741195E-006 - 232.92000000000002 -7.3637684947074249E-006 - 232.97999999999996 -7.8775907871317732E-006 - 233.03999999999996 -8.4040187811062931E-006 - 233.09999999999997 -8.9426725387415181E-006 - 233.15999999999997 -9.4931336090884777E-006 - 233.21999999999997 -1.0054949747857498E-005 - 233.27999999999997 -1.0627632941629850E-005 - 233.33999999999997 -1.1210659943546592E-005 - 233.39999999999998 -1.1803473268338699E-005 - 233.45999999999998 -1.2405481357790677E-005 - 233.51999999999998 -1.3016056106797246E-005 - 233.57999999999998 -1.3634538903144371E-005 - 233.63999999999999 -1.4260237271723842E-005 - 233.69999999999999 -1.4892425367828404E-005 - 233.75999999999999 -1.5530353791858120E-005 - 233.81999999999999 -1.6173242691397604E-005 - 233.88000000000000 -1.6820286449085875E-005 - 233.94000000000000 -1.7470659067370076E-005 - 234.00000000000000 -1.8123513195600686E-005 - 234.06000000000000 -1.8777983210394970E-005 - 234.12000000000000 -1.9433181795358242E-005 - 234.18000000000001 -2.0088205853887154E-005 - 234.24000000000001 -2.0742126136466231E-005 - 234.30000000000001 -2.1393990358834867E-005 - 234.36000000000001 -2.2042821416083579E-005 - 234.42000000000002 -2.2687608804585359E-005 - 234.47999999999996 -2.3327308364474667E-005 - 234.53999999999996 -2.3960835150904105E-005 - 234.59999999999997 -2.4587070845782200E-005 - 234.65999999999997 -2.5204853670947738E-005 - 234.71999999999997 -2.5812984946887735E-005 - 234.77999999999997 -2.6410229094580562E-005 - 234.83999999999997 -2.6995321534804192E-005 - 234.89999999999998 -2.7566970218140288E-005 - 234.95999999999998 -2.8123867889530762E-005 - 235.01999999999998 -2.8664698834101276E-005 - 235.07999999999998 -2.9188156104488964E-005 - 235.13999999999999 -2.9692932279703499E-005 - 235.19999999999999 -3.0177746517552865E-005 - 235.25999999999999 -3.0641333256075554E-005 - 235.31999999999999 -3.1082461068996925E-005 - 235.38000000000000 -3.1499927210700896E-005 - 235.44000000000000 -3.1892565621125016E-005 - 235.50000000000000 -3.2259234500311744E-005 - 235.56000000000000 -3.2598819792964966E-005 - 235.62000000000000 -3.2910232013688164E-005 - 235.68000000000001 -3.3192406891341533E-005 - 235.74000000000001 -3.3444293283497952E-005 - 235.80000000000001 -3.3664852293537749E-005 - 235.86000000000001 -3.3853064518355457E-005 - 235.92000000000002 -3.4007929610682934E-005 - 235.97999999999996 -3.4128473573250543E-005 - 236.03999999999996 -3.4213738583145624E-005 - 236.09999999999997 -3.4262813706602097E-005 - 236.15999999999997 -3.4274834141273907E-005 - 236.21999999999997 -3.4248999035659261E-005 - 236.27999999999997 -3.4184577298043987E-005 - 236.33999999999997 -3.4080916834421323E-005 - 236.39999999999998 -3.3937459344578627E-005 - 236.45999999999998 -3.3753744038102228E-005 - 236.51999999999998 -3.3529415719830864E-005 - 236.57999999999998 -3.3264226635301040E-005 - 236.63999999999999 -3.2958027704826618E-005 - 236.69999999999999 -3.2610772573731363E-005 - 236.75999999999999 -3.2222505041939724E-005 - 236.81999999999999 -3.1793362324571386E-005 - 236.88000000000000 -3.1323558936874260E-005 - 236.94000000000000 -3.0813381739270156E-005 - 237.00000000000000 -3.0263183141490503E-005 - 237.06000000000000 -2.9673378169126068E-005 - 237.12000000000000 -2.9044437698544819E-005 - 237.18000000000001 -2.8376891013797240E-005 - 237.24000000000001 -2.7671330259543247E-005 - 237.30000000000001 -2.6928415720721631E-005 - 237.36000000000001 -2.6148876515822157E-005 - 237.42000000000002 -2.5333519321617427E-005 - 237.47999999999996 -2.4483238050692923E-005 - 237.53999999999996 -2.3599021636063386E-005 - 237.59999999999997 -2.2681953894551372E-005 - 237.65999999999997 -2.1733221864258543E-005 - 237.71999999999997 -2.0754112239291918E-005 - 237.77999999999997 -1.9746012624006689E-005 - 237.83999999999997 -1.8710398956088250E-005 - 237.89999999999998 -1.7648836431435152E-005 - 237.95999999999998 -1.6562963400087006E-005 - 238.01999999999998 -1.5454479911604375E-005 - 238.07999999999998 -1.4325135190762167E-005 - 238.13999999999999 -1.3176717358877946E-005 - 238.19999999999999 -1.2011037444212194E-005 - 238.25999999999999 -1.0829920753277788E-005 - 238.31999999999999 -9.6351974015358236E-006 - 238.38000000000000 -8.4286964662223995E-006 - 238.44000000000000 -7.2122434064599222E-006 - 238.50000000000000 -5.9876566984773172E-006 - 238.56000000000000 -4.7567468882146250E-006 - 238.62000000000000 -3.5213213924697130E-006 - 238.68000000000001 -2.2831839037312526E-006 - 238.74000000000001 -1.0441413258488750E-006 - 238.80000000000001 1.9399777433956427E-007 - 238.86000000000001 1.4294183216506813E-006 - 238.92000000000002 2.6603019010641329E-006 - 238.97999999999996 3.8848230631176156E-006 - 239.03999999999996 5.1011545902495488E-006 - 239.09999999999997 6.3074737128954711E-006 - 239.15999999999997 7.5019622122050329E-006 - 239.21999999999997 8.6828203414514687E-006 - 239.27999999999997 9.8482677289320023E-006 - 239.33999999999997 1.0996557433541325E-005 - 239.39999999999998 1.2125979473537994E-005 - 239.45999999999998 1.3234872331706777E-005 - 239.51999999999998 1.4321625602914403E-005 - 239.57999999999998 1.5384690079368869E-005 - 239.63999999999999 1.6422580413632717E-005 - 239.69999999999999 1.7433881994878964E-005 - 239.75999999999999 1.8417252798023281E-005 - 239.81999999999999 1.9371430063288551E-005 - 239.88000000000000 2.0295226261444986E-005 - 239.94000000000000 2.1187537851203088E-005 - 240.00000000000000 2.2047344522775828E-005 - 240.06000000000000 2.2873706431334592E-005 - 240.12000000000000 2.3665768374202855E-005 - 240.18000000000001 2.4422760157021846E-005 - 240.24000000000001 2.5143993215728788E-005 - 240.30000000000001 2.5828861626355893E-005 - 240.36000000000001 2.6476838121185211E-005 - 240.42000000000002 2.7087470380687651E-005 - 240.47999999999996 2.7660377689728474E-005 - 240.53999999999996 2.8195247141310580E-005 - 240.59999999999997 2.8691836186824948E-005 - 240.65999999999997 2.9149949577712344E-005 - 240.71999999999997 2.9569459283644022E-005 - 240.77999999999997 2.9950286324938202E-005 - 240.83999999999997 3.0292404144965788E-005 - 240.89999999999998 3.0595836921263101E-005 - 240.95999999999998 3.0860671917716595E-005 - 241.01999999999998 3.1087050346901380E-005 - 241.07999999999998 3.1275182007331747E-005 - 241.13999999999999 3.1425344909159852E-005 - 241.19999999999999 3.1537895777976128E-005 - 241.25999999999999 3.1613278391622442E-005 - 241.31999999999999 3.1652030527465499E-005 - 241.38000000000000 3.1654784552718607E-005 - 241.44000000000000 3.1622275137104692E-005 - 241.50000000000000 3.1555331584860039E-005 - 241.56000000000000 3.1454879660988495E-005 - 241.62000000000000 3.1321932997155588E-005 - 241.68000000000001 3.1157583868366890E-005 - 241.74000000000001 3.0962990768938442E-005 - 241.80000000000001 3.0739367976129709E-005 - 241.86000000000001 3.0487954312734391E-005 - 241.92000000000002 3.0210018514997258E-005 - 241.97999999999996 2.9906831258089944E-005 - 242.03999999999996 2.9579652344244625E-005 - 242.09999999999997 2.9229724681278847E-005 - 242.15999999999997 2.8858271362942944E-005 - 242.21999999999997 2.8466479491591195E-005 - 242.27999999999997 2.8055518121779779E-005 - 242.33999999999997 2.7626530974573005E-005 - 242.39999999999998 2.7180649448315419E-005 - 242.45999999999998 2.6718996840427695E-005 - 242.51999999999998 2.6242707581565342E-005 - 242.57999999999998 2.5752929159091901E-005 - 242.63999999999999 2.5250835921870932E-005 - 242.69999999999999 2.4737639093693525E-005 - 242.75999999999999 2.4214583478274606E-005 - 242.81999999999999 2.3682952670622068E-005 - 242.88000000000000 2.3144064337358904E-005 - 242.94000000000000 2.2599263533744220E-005 - 243.00000000000000 2.2049905811286186E-005 - 243.06000000000000 2.1497353779140858E-005 - 243.12000000000000 2.0942949135875377E-005 - 243.18000000000001 2.0388002589021095E-005 - 243.24000000000001 1.9833776684444713E-005 - 243.30000000000001 1.9281470969126556E-005 - 243.36000000000001 1.8732208508374113E-005 - 243.42000000000002 1.8187024137273815E-005 - 243.47999999999996 1.7646865337839270E-005 - 243.53999999999996 1.7112583734471653E-005 - 243.59999999999997 1.6584939733301228E-005 - 243.65999999999997 1.6064611255895920E-005 - 243.71999999999997 1.5552197220325997E-005 - 243.77999999999997 1.5048231047188593E-005 - 243.83999999999997 1.4553189737862286E-005 - 243.89999999999998 1.4067508161013112E-005 - 243.95999999999998 1.3591587371266885E-005 - 244.01999999999998 1.3125805466071708E-005 - 244.07999999999998 1.2670525400240139E-005 - 244.13999999999999 1.2226097251823718E-005 - 244.19999999999999 1.1792864044995239E-005 - 244.25999999999999 1.1371160470916056E-005 - 244.31999999999999 1.0961308536704610E-005 - 244.38000000000000 1.0563616300464620E-005 - 244.44000000000000 1.0178372006389545E-005 - 244.50000000000000 9.8058367547165445E-006 - 244.56000000000000 9.4462408317051514E-006 - 244.62000000000000 9.0997746536114027E-006 - 244.68000000000001 8.7665857523171563E-006 - 244.74000000000001 8.4467752352047323E-006 - 244.80000000000001 8.1403935494040705E-006 - 244.86000000000001 7.8474387212366701E-006 - 244.92000000000002 7.5678577368206021E-006 - 244.97999999999996 7.3015460574449328E-006 - 245.03999999999996 7.0483499744777665E-006 - 245.09999999999997 6.8080700903555436E-006 - 245.15999999999997 6.5804656122173429E-006 - 245.21999999999997 6.3652590212693194E-006 - 245.27999999999997 6.1621425867439278E-006 - 245.33999999999997 5.9707832008076202E-006 - 245.39999999999998 5.7908306729643910E-006 - 245.45999999999998 5.6219240361171496E-006 - 245.51999999999998 5.4637001896141248E-006 - 245.57999999999998 5.3157995357859920E-006 - 245.63999999999999 5.1778752124696064E-006 - 245.69999999999999 5.0495985984756989E-006 - 245.75999999999999 4.9306656891120400E-006 - 245.81999999999999 4.8208008295677018E-006 - 245.88000000000000 4.7197601345824882E-006 - 245.94000000000000 4.6273314924729654E-006 - 246.00000000000000 4.5433336788429085E-006 - 246.06000000000000 4.4676121033173008E-006 - 246.12000000000000 4.4000327702367181E-006 - 246.18000000000001 4.3404748801878996E-006 - 246.24000000000001 4.2888208951974692E-006 - 246.30000000000001 4.2449468444963722E-006 - 246.36000000000001 4.2087115177759459E-006 - 246.42000000000002 4.1799469370342980E-006 - 246.47999999999996 4.1584492029869724E-006 - 246.53999999999996 4.1439740279571527E-006 - 246.59999999999997 4.1362314159179605E-006 - 246.65999999999997 4.1348865911506933E-006 - 246.71999999999997 4.1395627887812467E-006 - 246.77999999999997 4.1498477174295497E-006 - 246.83999999999997 4.1653030986473667E-006 - 246.89999999999998 4.1854747303054024E-006 - 246.95999999999998 4.2099073768110457E-006 - 247.01999999999998 4.2381570777166614E-006 - 247.07999999999998 4.2698041296802219E-006 - 247.13999999999999 4.3044643760158484E-006 - 247.19999999999999 4.3417970799588182E-006 - 247.25999999999999 4.3815114039380427E-006 - 247.31999999999999 4.4233679039539209E-006 - 247.38000000000000 4.4671750708959633E-006 - 247.44000000000000 4.5127843886011689E-006 - 247.50000000000000 4.5600805325030104E-006 - 247.56000000000000 4.6089693378650793E-006 - 247.62000000000000 4.6593652438617011E-006 - 247.68000000000001 4.7111762321769215E-006 - 247.74000000000001 4.7642910374435249E-006 - 247.80000000000001 4.8185669972044928E-006 - 247.86000000000001 4.8738225184107038E-006 - 247.92000000000002 4.9298289245169994E-006 - 247.97999999999996 4.9863100943103270E-006 - 248.03999999999996 5.0429431446546449E-006 - 248.09999999999997 5.0993655591419025E-006 - 248.15999999999997 5.1551811811549871E-006 - 248.21999999999997 5.2099722966154181E-006 - 248.27999999999997 5.2633125244697562E-006 - 248.33999999999997 5.3147781337620244E-006 - 248.39999999999998 5.3639614016077587E-006 - 248.45999999999998 5.4104817328359312E-006 - 248.51999999999998 5.4539940028977455E-006 - 248.57999999999998 5.4941949220138158E-006 - 248.63999999999999 5.5308267416083763E-006 - 248.69999999999999 5.5636778536330138E-006 - 248.75999999999999 5.5925800522782822E-006 - 248.81999999999999 5.6174053549631564E-006 - 248.88000000000000 5.6380585810862456E-006 - 248.94000000000000 5.6544699336352052E-006 - 249.00000000000000 5.6665884641132065E-006 - 249.06000000000000 5.6743743368207693E-006 - 249.12000000000000 5.6777902982883260E-006 - 249.18000000000001 5.6767987026080301E-006 - 249.24000000000001 5.6713546528985646E-006 - 249.30000000000001 5.6614050340170262E-006 - 249.36000000000001 5.6468861190868990E-006 - 249.42000000000002 5.6277225244792820E-006 - 249.47999999999996 5.6038286812498745E-006 - 249.53999999999996 5.5751107460482563E-006 - 249.59999999999997 5.5414664943348982E-006 - 249.65999999999997 5.5027884590525023E-006 - 249.71999999999997 5.4589651863052710E-006 - 249.77999999999997 5.4098834586128059E-006 - 249.83999999999997 5.3554282270823685E-006 - 249.89999999999998 5.2954868644089976E-006 - 249.95999999999998 5.2299489999624684E-006 - 250.01999999999998 5.1587089132648552E-006 - 250.07999999999998 5.0816675381173562E-006 - 250.13999999999999 4.9987356157574459E-006 - 250.19999999999999 4.9098356446038550E-006 - 250.25999999999999 4.8149052537300049E-006 - 250.31999999999999 4.7139003874016297E-006 - 250.38000000000000 4.6067983582234319E-006 - 250.44000000000000 4.4935986939985484E-006 - 250.50000000000000 4.3743235471794284E-006 - 250.56000000000000 4.2490195201283763E-006 - 250.62000000000000 4.1177544359241229E-006 - 250.68000000000001 3.9806133081552849E-006 - 250.74000000000001 3.8376935009256125E-006 - 250.80000000000001 3.6890980596949598E-006 - 250.86000000000001 3.5349293608726676E-006 - 250.92000000000002 3.3752797998307629E-006 - 250.97999999999996 3.2102241839782057E-006 - 251.03999999999996 3.0398129790170697E-006 - 251.09999999999997 2.8640667866992128E-006 - 251.15999999999997 2.6829725968778837E-006 - 251.21999999999997 2.4964831152677420E-006 - 251.27999999999997 2.3045182451789918E-006 - 251.33999999999997 2.1069701554149193E-006 - 251.39999999999998 1.9037100176215501E-006 - 251.45999999999998 1.6945978579145355E-006 - 251.51999999999998 1.4794935371542859E-006 - 251.57999999999998 1.2582687932793105E-006 - 251.63999999999999 1.0308193721441524E-006 - 251.69999999999999 7.9707533310012337E-007 - 251.75999999999999 5.5701156701066452E-007 - 251.81999999999999 3.1065398409177109E-007 - 251.88000000000000 5.8084079838092886E-008 - 251.94000000000000 -2.0056016975898630E-007 diff --git a/seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/Uy_file_single_d.su b/seisflows/tests/test_data/hold/specfem/OUTPUT_FILES/Uy_file_single_d.su deleted file mode 100644 index 40625ca0d2036ce2020202f2a28867cad9ff5e8a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 20240 zcmeI%S5(zb7$9(Z?;YtKL6Dl<30J^^QUwJ>5m3YmC`BxYApO#N@4feyWO4xo#f}1E zMHEo5qW(n@6b$)fg&g(YZ^ zjiqvt^Z(F1L7e`7i2e)x6Zj|aPvD=xKY@P&{{;RC{1f;m@K4~Mz(0Y10{;a53H%fI zC-6_;pTIwXe**sm{y!6l{5zii*YkfJ`v2B1=<;}^(X?#T|R zo!jn58J9neN2>iesqD7McPQT~$NQL~cw{^vDVo@_=~vynR19|dn&1J4Pu{p^!x z^K|84a}-HrU46h7m8BsXEj$|=%{n$5UERSNGf|@)Bdlv06Z3{1Ba>|!Ga@e?Q;S`W z{(Lnq>U&c?8}kQX|NbqFz48#wzV638_Tfik?14!n`)PXyd*mHf_Jg-pB)+CV(w7%0NxOpvl5SglN=kPVO7?rClHABJNR}O&L z5)hmma2GV>%M%PQ7!cgd@mlae47<>K2~nZLpJau&?#c@-hRO&z&GQRsgnSTG9B&mo zB996h)|DiGs*X(Etihf(?{Al8wlg_R>1Ico$?gYf0nfgs73FcITdxYGzyB?oUKJ^n z9-hsfZZP*UEz`I$&E%p*+EbchN*rk?)a5ZPbg0lkIOb=FFn*^*xU8yQc%ShzVfoar z!lzu=M8Yk&L^{$rM1t@95ayM6Dtw8xMOaD8L%4t~T4-4KQ(EztnslHqkkN(OWUMvE zWH@}S%*a{n-3nGs_BCL>zuYlisXQU-tO`;30=hZ!GZx--`Qj?TC|&y&G0JS}wh zkA=va$sv(2TuQW5XQ$}!gJ{u_gQcQF?!BV6);C2J%O8n8otPF~^nET`$v-ZdltYQW zGbj{QnsO1%vFI0xnWbk~9Ne9$S23J<3lqz_yM0^M7Ll`AdOcZLIiKsZI0MKm=Lgra z6tCURN?p2{)nqc5C7IBab=o93YpQW`)~1fu%zy*xqKTSxG0mcOG52tGae1bJ`0iOx zaV#cQ9AhsKziHbbuBg=`{@4eK7d#@x<%2uL`um$*N}E1qxGo1=8VCU;#cJ2hK{WGUTPY-bP97%_XD;Zhw{by}}Qq)>{^o*x;l=Ug;Q+A=!%~s*k z{|Sal`{emabFMf`SH&7iKfK8Y{L<^)`O_V5^2Zj1 z3W(d<1=1^)1-DM@DG2{_tY9uVq`-9cLcy2G(1M#bfd$RLv*7xOMS;mS=>pG$k^IqI zp?s$Z1?h`>e@ZKMc*taKtdd!jcp{@P%_F z9g<}oWs+pK3&qL;r6AcUg`KiIMvAhEXRgQ`JkczT>oW=tkn0Q6-=-F3i{2?56y`3n z+Ooc=zsas>gT~3C-3IYRHea%fc(}@oZe`RJr8YGd1)iuc3V2gibkr%msOxG#Q4^;@ z(UMGmAuXpu+UV1g?ADOTbs2kZuj_UclGC;Ya{UoURRHX7{1QKk9x-gk?j? ztHvWG<0XT|i&vuLvNwjwL+^R{eUTd!*1}IHgxlsQjKA+zphb-M;fd>r!b9sM1vmL$^7^=U$#awV(if_KO227sF5{Pp zEt}ibShj!ny|Svcr81)wf%2pB3gs|Rw;a8Uly5LMFJ~%mF86LQFL%~P%Ik!+%2~dO zl<(AADBJp_w5-ZkuuR|DPrBQhb!tO%PKOPMk~(c zvR3Xps8H#sk5x{%yH&2Khg2p$W>lVv%c*S5DX**wZKyn2)mEt()>%0a)KR(qXHz93 ztD>^udPXHP_-y5Sx()@?@p>1 zJyi8}N~UU(WxeYBwSLtHTPIZ`*%wuh(>c`c*NUk<>QGe+S~5|SGPG6OxyMIs-PK67 z9IIPyn>RUH( zY9wnbXgqpF)9AamSEK$wxW=8tY>igXtf9>_q9L~RmBvR!c1_;(Qkoorx|;o3TQzA3 zo|>$q7c}>krfPO4m21|xc54c1-_&&7IHOrx@=G&qw}949OL;9TLQhNgiKUkNh^v-E zjlb5VJJDKKj$~*J7?x}4Z)?{w>$t47z?jh5^=v`w0lunrE}Ks~LP}bD(nno;-B}~; zk}aFHH3%o|=x4s&_7P~XE_BC9i7`UmP- zj^z)uG+%nsvVDBHrD{c>)lXZwRiw+bRs4xVtNZ-%)~TGBR>Sa|)~oyLTTdKjwuaxE zXx;GiW2=V`XWQXZl5JxqT5V=8u{OI>r?v;h$J@>_qT0fxGTNR?SF|ZKb+#S*c(v^u z`_r~q;V*3ha-8iUqhjqldR5xx=M3Ac{I<3qIJBqz@KfLRAHk9BKW$UmM}HTz-%qP+ zzroqte){m$c7f&x?F|oKw=4%%?x1$db}TW~I)e7;JTkcXThcIUn}o3wKx)NdQzWZ`k*$?^m%{1 z>9aCu+7oimR4ZWKRDNj9^vAd$@(uBe_yKYouzyWBF- z*iS1T zIZ2~Ej-X*c$Lrnwie0-IKT@coPw&|Xym z+B@~Z)etkVJKP5JhU^7C$B%=9M?*p7Kpar zK%(h2&{h5hwhXXg?+){0DTxx;sG%Yj?xT${)QvIrFmp`%q%F3S)eZZw=`fbRJ{XHS z5{X@qNWj)>WMDkS1z1sNCFXav3FE)ig9)_`V7$9;Vwph?Ff-woSdRV&Onu@9X2Qa5 z_I8Tb%!gIf%qBp_4AWLNyRN5gb~ehuj8X??zh$QVnCwj@UZ#DH4j+Wk+tEn6eONRd?TMua&BW7JSrh5cB$DZZvZ?e; z!F0O+mkfIKa2A~&lSALUF^_(EB%glUx{!XMr-=TRr-V+oDy0`4FQcQu<#apm3c8GG zCH>upO1fl16@7)Xn!a|VnqFF8O?SRkP4Bo{O}Fo?rr!^#rY}lY(|wDo=n}sx>9^^X z^e~SKy2}1?`VCqcJ>gpkJvpKQ{|lr)F7l;+l|D@8@%N-V7Ve>oR5{Y?60GT` z9XHcI`~dW1h7tYIst(=5OO4*vEJr{5Mw~7qEkHkpanPSO{xC}ze`ChE^w=y^{HEEe zDQQ-6u+hw+pwR5cOrqIDY=~LgMOU-#9>naasf<~#=n`hE{q;gOB+6i zlfhcH(3xHg-R$neq;+hR-8ngG95JB|yVz6pw|%Ipf(z8k{Rz~9ST^-5pp=>ms;Ba# zJ1OiSq%`b?sV9$aQyg3msJO{z)S>Nj)UCbmC>g;o)LoxtD&2FH$_-~_-caOVE@W{r zlb-T0_kHJM@+=52_qPf$Rc%F>v;k3O6rVVAaiawD+(t>JBA*oV?PV$Ef{Qd$|GG5u zfs71u*;a;$d&w|OU1ga08)cX*pQM?2InvAs6=~+PJSpbbH%Vr=g(Pz=M1mQZFV38= z7h|5T7iDVZi!iy*3p1tdgqUukg3SKg{7fv2j|r7|nJWFNZ2I7*10q!q2F% zFOR5Qj~`HXu8vVD_$Z~-d7IMexX%;{6?Zs=$~=}t{Rv5+np5Jb(`~Vo{?lj*7mlKCmPSxg8^b8}iF1@mVhH8DD~Mv( zJw?5j^rJdNk5fwuM<_4s5S4ZG0A*a|LB08~k8;`WMk%$qP@mOyQ-Sr4)DD^hrSj00 zYK*j|Qqk>H_|L7B_RY=I)@lnXDq#~uZwl!E{w+ch{{eqUKR^U|PGE{B(2LF5T z6>4+*2kXIS=x}BcuJ(O^g@4{bF8jAovwQ)*Sbhzq_Pl~!%RFW@-)G+Yjw zf-Eaf;rN9o(1rCeJeBeg^2kp@fsP62V?7R+U)_h@ara=X&M0)7xC7Tk-iDOHEvWPQ z2HabE9h&SLfgLi}Ao*+lF4>cCy#WC? zOX1LPtrsr7>w$hxx?$z5E*Lk^3B`Ilpm|$6TGhZRxWL^NZL-OJ8<~-Q>Iu~wJ$%QRmIdHZ#8@`y%f+Z?hQ1oaf zG;PU%>`Un|a8o)wmyia9CR3rlS}MF3oB}@#C&PvvAvqGqB$|1V&n(hM60K;Wyla31Mhya zhT3D+Fc4b9N6pqSz1A9DueXMsUDhys#2UKKS;KR@Hjo|IzzxARQ1NenPBvR8u+J8H zKwBuMX$ON#>|m^dJq&8JhwhdRaPO=Gj8ESQzwK~@IKLBo^3)0X^zMRg#k*m5iZcvO zbb$$(u5hkq4?H>S2Khhkg~clF@Y})t@MDt)v|satk3A1S$B~2Z80`=o?e>8iXh)#Z zwWH9&{Wx5=d;*#j`$2*2C!x&pDLC932v45~hH>jdpyS6gP`>9JGzt%e_jiOrUGZ=j zJRJd#yF|iHS`@67i~c)TqG8js7KJaN}2) zlAv;3GQ4k_0%aFc;F$}l@DN8DJP?}(->#&=*u&|tYd9VLlFEP!o`2_ZK?ZzzH3N#j z%7CWdGT_{D1{`{y0YmR+K&mza()}_Zp_~DiuBAi5Jsm!oPJ?>8(_mgtD*VNn3hlS2 zz)NS6VOI9vdsigFizNy09D@N1z2hOTZXEnR7X!0XqM@=z6uhzj65PA6QW+RBBM!G{2*Vg(K3Ltw2|3nSplH<( zQpV*IIU+Srk{_nX=*JUe(bO$6;MWz>9VN+%tPV0zxPhE$FDIAJ15Fb26-U# z68UXUAo)APo3zt$CX+O*NZmM;47AfB{VphwtKy>MQ&~<@RPHNr`Q;R`j&Yq(73n5o z!^?@{`zgc&iL=CRHy0xGgb8uUPKuEH`4#v1Ie@F=rsDFc7Pzza!@i)pkG=7yRgvyz z_mJ0i%4qPlU8v`Yi|7Hh4Ai@?47K>yi25#cqWU>~XeAqgmVrK$Y0-&pmup1P@lw>l zHywR>KMXCZ-i5`sDW$Kk6!B5lswTELgH_tNKZVGTo}$I#f6K=g2F0N^KdhHB%p^}qWa0> zw%183xiOM^<1=bn4>uUp=LJ7+I0}CaoP-R&Gcd$39F8!e;g;xl7|uw7 z%)B&6YtMp;_w!)Jk0RKh^|zGdQ4Qba)LffN{uJsdOvB5vv#^GH9(uff3y*ewgciPE;6b5p(7NOY3=;bd z_XMm#=3Z8+_Wb^8b(b&#KzQYql34hV2jVaGYBsTMZs%M%tV z@Z~Bz_HqS2@A(E-y}m&9mmi=hcmo&x=3sW{G%WIY0%LU_z~|$m(0u<*XfrYl8zl#z zh#djJ@h&)bss)Z8tb_L~DqyW(5mdgD4TZu}p}8sphV@56<;oD429Lp;x7?x2qyubt zZV8PSjG^l{P3XhF4wi2agccqwa2Q)4H_qQByD#^UviFNgmUS^?^A19snkZ}5)T zGL}pn;h^vU*o|`OF=z(wUeIEb5E|Jon$aOBV|l$LJMOWZNwfpA()fiCQR$bR_u_9Ev62fuqxp_n0oDg zjQi(7j1)SGG3R`-%FqBzXzVoB_3j+za6Js`I(7;3I2wi3{))!*LSnI?`*GM;5e7y_ z60k|jM9jf32{YwM##Bd=u|~fX?C?qowiu9#&E8AJW@OW_q@8J4#Hlpw;Dt17EI182 zw>J&@Pd5#F`!N;!RhEj4TBKs^V<{MLPQiq(Cu1sl$(V3_5*9F?h&>Za#NO;kz;uEc zm{C?dmfjGD-R+IV&chf?5|74oTB0ye6p2N!U&2C0E@E3EE?^II&tro3&tSLxPGj?H zftY^kDeR<#KXxqd1ol|`7g#T?kzWA6Q$*!6IAtY@1lW+|qO#mp;Uc~|7H zLH5p%Kt}f+Sd>@*%lxl^h{z0Br!oz`nm+?!Cmw^0ib){)Y8*@%-v{^8?}D4lw?M7m z4Pf#98VEi+3}gha0G{>%AmhOViV_gKdx(QwHN8OfVmHwD>IBV9Ps2p7Es=u z35p)31EoW0AbBYTP^rlvMK1|VPb7ehNCt>Ajt4a#V!>E*3|J0~2JG}GFe?xV1h0pK z;Y(p)d}}Ds7C#62K8ApxiD2MzH4yB(dU^|s(xs2wOgW)Iwg9e`8OPC$F<2*_=_ zK=h5>0P}YNu?Bkpi_~6VrQi-;Z}$Kvvc13_c5k4T?*leF9tC0>PJmB({y@_;0DP?s z2C))n!H^2IYF-WO^y&cn`bLmy&;t0kwu6iVT|ham7j$+JVEqCGJXHpP_`xB- zS#=FOdVK?E=-dJ4PTm7{ZR0@r{Up#-eFEO>ngSK)Ux2inS@5CyHJGn?1FCc11B;MF zFlPP*9Q*ne@ML@kxY!Et5B&uchgJde-5MzT!GiU^WyPwlvthe4*|9z=4s39a13Tc$ zi6uVf#0>Sgu${-au%~fc*aYKm9mAgslQ-hRBLBw1y*M$QVGgW`lLOP#V8`w$vtcim zSuhjlHIVQ78|0a+fUoV}K-{x0z^v~hkh6FTHlKL~7TjKd{qs)%zw!eR$uSBJWM2oq zcP;})I|*?5-)9eL0$h8lz~pQpke15?m)02Iib^=}tvCTp!d*cfv;?X9b-~&pNzl`< zN{c;ukG7q=g4U&ZfL6Qn2a2yFk;Ie+pZl*9yPE$H4Z3pV$-fDf{xfHC zt}c*Ne-=-Ej?5*0Sk{nM(%t0swJW6S_xohq_ZMW;??uvw{SSF6h6@_A3c=phG81~i(W-4OP!eTR2wXuc|fg@ZN+5^=`Jm4=6AE-8V0&Y3paQn-ErM`--^oZzCN7MSg{1{X(806&vB zaMUIjY*(rU_T4>ThV3fI<(~jrw`V|@#b;1@^bhb>;=ZkiYKw1L4lZe!D;Me_E}8va3~hYdl55;jrjYnL}CNsQP_!#(OAyW80-u^7TfwK z7DHO%u=wrq*r~hmnAT)gwBlss}LR3#QnefBNr z;hY6sHBZ5JmkF>YeFtp$bQNe!^#ksgeE|F24mgY&K}mEKF#J>uX3pn=0p)aXdm#b* z8I1;K+d@G%+bOWA8(06kki0KstC5t?N*BKU| zo&A{x9=)U`_l?o68Vu9+S@qH~zt+>@v0|F8Y&y+8ErzCM7)1Ny??L-=$C?)HfY4Uo zsnbF#C1_XuIcXa*7t!knAE4jOnJBMn9V*C@g;thcLYKG?pt3q!(8Wb<)NZplDkZ>* zUJZGL2nXCn;-;BMd~p{NeW?wRKGK2cY7@wZ+H1%==3|80;S17N%#B)Ylto#b^-$ZD zt*Ef1CpuVo98$njEdc9S%qEd(;(pwt9fIG9U1|$``EQK|uQXc@V=B2{tvx03Ig> z*zh|EylP1UKHgd2o=hIF9WMk6DW#xiMd4Z0wT(%KuOUHAarRKMA^Lt4SyDZ zY5qGfBmNN_JN*eH^?U*155I!(hu=VD?=m4!nf<5@gg8iq=ig_cf*sLilMpt6Rto~!cCfiuB2^SXZ;EgqKo%{o4!dJl^iQfQ^ z_z7N9KS0Nw?;yT&2`u>j2YgpPfj-ZVAhF;b=xka5!nv}nlQovH*)b0y&JR6ek} znFYq1Qh{Mi0#J8}0TbpILFC;aaNX?~P@eGsOa8k-^Pe4{s&Ernzu6eX{m=#$HN)Jv1?oDq5mb2F=eZoTlIAPWv%OqkUhLrrm4( zgj#IxMA!MAKzrriAkRJ2P4quZ_644H!TaBq;6BlJ@w>l%;h|a*#5lH|ur%F7giAOP z^$)#?O&5X*;k8I&*dT%67*8Xv&gKvbK1GC+b2%~CT}^z7ttXGI3!dmY^+%5mm=d5^sNb5<|EH@u`eX829QB?ti2SqX-USeb7sM@K7KA^KlX$ ziJRf(cl!JIR}GCRmJww0(hk&qARk>CzJp3cvC^KS3be8)KnvZshvpAY(`xS}&^%cS zXhi|_v{-4Jw*LDFEu7~O&D(B)mQO9y=5;v0j${F#w<-ZfA{2nJkS2(4)Ca>mQSjoI z1sH0x2Ifb00lB~Vq~L=?;BRpN^qGc$pla~RRJ`5VOM}YbHn?Q$t z2WU@^f}b8^-~>JatUpYGke`ph!Dj>SE3^e}zr@QY~4tO+^4xY~>0h2p%prI-ftQ$QG&Le;G>}YQ=-?Il?7`Fp0 z)0SZKb5p=Ft^*n`D}j|32~b_c3mVt0(mX^LXvxZBw5^U5Eu^NFwxF3oi-c!rUyJQ% z6j*>uT*EFmn&&jS{uYmNmOg;|h>-R9(a7ISig+9r}ikxrid4~cW&#DmoI6Pf0Q&y={7YoUsr`>DN-ayf69>|j`c(B%NQdkuxkTicdy!KN8so~y#|kVQD-W)@y6nvBWcK7K8k1ypGCGGiAJ1U6OpG+(vh*HTx7bw z81Y@IKpLLaB9&fE$c~6MB;D+9Zjs-MxMvecfdPex2lXTDZi9%x>&pnDIE1|897d+g zhY|MA!-)USVZ?ZN81ddYj7*jfA%@fyXEmy1B|=$uFFJ%f=8eg23XIEI8Qcq6-pJrLeeHzbG08Oc4p z6FDbri=3OXLWZAiMiThU5dnV;8C*kAB!l;l(64T_7 z&Bx@CQ5AXQZm%2?BqxW&+pR;6TgW2wpQRBMcPV7=83_c^#gL6n!pH_(07>=WMWV7e zkqb_&NZ7g+(}nOw)0)0n)57*i(_H84rlYC2sf%r$>7}#TripA3roZ}jnaX}vF>T%W z+yoEwG7+@f*5&g(x<|H&y?43VrZ=xIu{SQZqgQ;>lir%otbN=-rcdbn#=hUJJNo9H z9_-8ibD_^pAh~Ze9|8O#j}+d$ zO$l%7)W-KX7~y`BbUcB3JFceUgeM+w$L9wR@iL1AJmvj+d?n;FF8yQ)my%q;X_~9}Y%B|rWQ<**x=e-rubBy3jXuBAl}XLUtiAK8+{rj<$aGF{rm3HWc&QpQ+j(GoJ@kA z4w_aojF5xw(MX<7Gjg+L0`Vk&A*WhI(N&;YT5o7@TO`&VtkI|vA3A8ol9_p`r8@25^MO}N)nznXyfvXwqJ6MO-4pgEFYNhC&i~@8&PY(JgB^{kpN=Czn;!)|d z(P-nji)iTj5Hy_KANA)xjJ`oU(1>gov_sJWU4CMP4v(0lXXjDW2Qx%RhIP=(G3uy& zm?BDVmO+gr#Ll zB4dfw$Q$2UM8c^aNktkFRIV9m{@H@;9&1BliaU@(*DgfjcQ?|W+>3;;;>d_Qfdu9L zt#!3SWWJt4G{TukntngRp!$&twE-mR=m7F0W&m*s8$dGc2N2oie&o=Fe&pKZ-#sc1 z6L}~~ArC*3NI?yOXl=lel=xocdRI3x*WQV|zu1nf$h0DcF-^#QSdZuq)*xhhB_g|_ z43W(#LWt{mh}QKiHnm}bTyiPs_#kaZ5J04I^@=tGEEfE$v(W{23BSR#so zCdlSQEo687IwbUnAo4SM&Gd87oGE+ui0RFl2Ge%;B-5hruBORxlBVCT*O@4t4>eBT I=hpK-06h&}WB>pF diff --git a/seisflows/tests/test_data/hold/test_conf_parameters.yaml b/seisflows/tests/test_data/hold/test_conf_parameters.yaml deleted file mode 100644 index 36540142..00000000 --- a/seisflows/tests/test_data/hold/test_conf_parameters.yaml +++ /dev/null @@ -1,301 +0,0 @@ -# ////////////////////////////////////////////////////////////////////////////// -# -# SeisFlows YAML Parameter File -# -# ////////////////////////////////////////////////////////////////////////////// -# -# Modules correspond to the structure of the source code, and determine -# SeisFlows' behavior at runtime. Each module requires its own sub-parameters. -# -# .. rubric:: -# - To determine available options for modules listed below, run: -# > seisflows print modules -# - To auto-fill with docstrings and default values (recommended), run: -# > seisflows configure -# - To set values as NoneType, use: null -# - To set values as infinity, use: inf -# -# MODULES -# /////// -# WORKFLOW (str): The method for running SeisFlows; equivalent to main() -# SOLVER (str): External numerical solver to use for waveform simulations -# SYSTEM (str): Computer architecture of the system being used -# OPTIMIZE (str): Optimization algorithm for the inverse problem -# PREPROCESS (str): Preprocessing schema for waveform data -# POSTPROCESS (str): Postprocessing schema for kernels and gradients -# ============================================================================== -WORKFLOW: inversion -SOLVER: specfem2d -SYSTEM: workstation -OPTIMIZE: gradient -PREPROCESS: default -POSTPROCESS: default - -# ============================================================================= -# SYSTEM -# ////// -# TITLE (str): -# The name used to submit jobs to the system, defaults to the name of the -# working directory -# MPIEXEC (str): -# Function used to invoke executables on the system. For example 'srun' on -# SLURM systems, or './' on a workstation. If left blank, will guess based -# on the system. -# NTASK (int): -# Number of separate, individual tasks. Also equal to the number of desired -# sources in workflow -# NPROC (int): -# Number of processor to use for each simulation -# LOG_LEVEL (str): -# Verbosity output of SF logger. Available from least to most verbosity: -# 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG' -# VERBOSE (bool): -# Level of verbosity provided to the output log. If True, log statements -# will declare what module/class/function they are being called from. -# Useful for debugging but also very noisy. -# ============================================================================= -TITLE: test_data -MPIEXEC: -NTASK: 1 -NPROC: 1 -LOG_LEVEL: DEBUG -VERBOSE: False - -# ============================================================================= -# PREPROCESS -# ////////// -# MISFIT (str): -# Misfit function for waveform comparisons, for available see -# seisflows.plugins.misfit -# BACKPROJECT (str): -# Backprojection function for migration, for available see -# seisflows.plugins.adjoint -# NORMALIZE (list): -# Data normalization parameters used to normalize the amplitudes of -# waveforms. Choose from two sets: ENORML1: normalize per event by L1 of -# traces; OR ENORML2: normalize per event by L2 of traces; AND TNORML1: -# normalize per trace by L1 of itself; OR TNORML2: normalize per trace by -# L2 of itself -# FILTER (str): -# Data filtering type, available options are:BANDPASS (req. MIN/MAX -# PERIOD/FREQ);LOWPASS (req. MAX_FREQ or MIN_PERIOD); HIGHPASS (req. -# MIN_FREQ or MAX_PERIOD) -# MIN_PERIOD (float): -# Minimum filter period applied to time series.See also MIN_FREQ, MAX_FREQ, -# if User defines FREQ parameters, they will overwrite PERIOD parameters. -# MAX_PERIOD (float): -# Maximum filter period applied to time series.See also MIN_FREQ, MAX_FREQ, -# if User defines FREQ parameters, they will overwrite PERIOD parameters. -# MIN_FREQ (float): -# Maximum filter frequency applied to time series.See also MIN_PERIOD, -# MAX_PERIOD, if User defines FREQ parameters, they will overwrite PERIOD -# parameters. -# MAX_FREQ (float): -# Maximum filter frequency applied to time series,See also MIN_PERIOD, -# MAX_PERIOD, if User defines FREQ parameters, they will overwrite PERIOD -# parameters. -# MUTE (list): -# Data mute parameters used to zero out early / late arrivals or offsets. -# Choose any number of: EARLY: mute early arrivals; LATE: mute late -# arrivals; SHORT: mute short source-receiver distances; LONG: mute long -# source-receiver distances -# ============================================================================= -MISFIT: waveform -BACKPROJECT: null -NORMALIZE: [] -FILTER: null -MIN_PERIOD: -MAX_PERIOD: -MIN_FREQ: -MAX_FREQ: -MUTE: [] - -# ============================================================================= -# SOLVER -# ////// -# MATERIALS (str): -# Material parameters used to define model. Available: ['ELASTIC': Vp, Vs, -# 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] -# DENSITY (str): -# How to treat density during inversion. Available: ['CONSTANT': Do not -# update density, 'VARIABLE': Update density] -# ATTENUATION (bool): -# If True, turn on attenuation during forward simulations, otherwise set -# attenuation off. Attenuation is always off for adjoint simulations. -# FORMAT (float): -# Format of synthetic waveforms used during workflow, available options: -# ['ASCII', 'SU'] -# COMPONENTS (str): -# Components used to generate data, formatted as a single string, e.g. ZNE -# or NZ or E -# SOLVERIO (str): -# The format external solver files. Available: ['fortran_binary'] -# SOURCE_PREFIX (str): -# Prefix of SOURCE files in path SPECFEM_DATA. By default, 'SOURCE' for -# SPECFEM2D -# ============================================================================= -MATERIALS: ELASTIC -DENSITY: CONSTANT -ATTENUATION: False -FORMAT: ASCII -COMPONENTS: ZNE -SOLVERIO: fortran_binary -SOURCE_PREFIX: SOURCE - -# ============================================================================= -# POSTPROCESS -# /////////// -# SMOOTH_H (float): -# Gaussian half-width for horizontal smoothing in units of meters. If 0., -# no smoothing applied -# SMOOTH_V (float): -# Gaussian half-width for vertical smoothing in units of meters -# TASKTIME_SMOOTH (int): -# Large radii smoothing may take longer than normal tasks. Allocate -# additional smoothing task time as a multiple of TASKTIME -# ============================================================================= -SMOOTH_H: 0.0 -SMOOTH_V: 0.0 -TASKTIME_SMOOTH: 1 - -# ============================================================================= -# OPTIMIZE -# //////// -# LINESEARCH (str): -# Algorithm to use for line search, see seisflows.plugins.line_search for -# available choices -# PRECOND (str): -# Algorithm to use for preconditioning gradients, see -# seisflows.plugins.preconds for available choices -# STEPCOUNTMAX (int): -# Max number of trial steps in line search before a change in line search -# behavior -# STEPLENINIT (float): -# Initial line search step length, as a fraction of current model -# parameters -# STEPLENMAX (float): -# Max allowable step length, as a fraction of current model parameters -# ============================================================================= -LINESEARCH: Bracket -PRECOND: -STEPCOUNTMAX: 10 -STEPLENINIT: 0.05 -STEPLENMAX: 0.5 - -# ============================================================================= -# WORKFLOW -# //////// -# SAVETRACES (bool): -# Save waveform traces to disk after they have been generated by the -# external solver -# SAVERESIDUALS (bool): -# Save data-synthetic residuals each time they are caluclated -# CASE (str): -# How to address 'data' in your workflow, available options: 1) 'data': -# Real data inversion. Observed waveforms must be provided by the user in -# PATH.DATA/{SOURCE_NAME}. OR if PAR.PREPROCESS=='pyatoa' data should be -# discoverable via IRIS webservices based on event ID and station codes2) -# 'synthetic': A synthetic-synthetic workflow. 'Data' will be generated as -# synthetics using PATH.MODEL_TRUE. -# SAVEGRADIENT (bool): -# Save gradient files each time the gradient is evaluated -# SAVEKERNELS (bool): -# Save event kernel files each time they are evaluated -# SAVEAS (str): -# Format to save models, gradients, kernels. Available: ['binary': save -# files in native SPECFEM .bin format, 'vector': save files as NumPy .npy -# files, 'both': save as both binary and vectors] -# BEGIN (int): -# First iteration of an inversion workflow, 1 <= BEGIN <= inf -# END (int): -# Last iteration of the inverison workflow,BEGIN <= END <= inf -# RESUME_FROM (str): -# Name of flow task to resume workflow from. Useful for restarting failed -# workflows or re-trying sections of workflows with new parameters. To -# determine available options for your given workflow: > seisflows print -# flow -# STOP_AFTER (str): -# Name of flow task to stop workflow after. Useful for stopping mid- -# workflow to look at results before proceeding (e.g., to look at waveform -# misfits before evaluating the gradient). To determine available options -# for your given workflow: > seisflows print flow -# SAVEMODEL (bool): -# Save updated model files after each iteration -# ============================================================================= -SAVETRACES: False -SAVERESIDUALS: False -CASE: data -SAVEGRADIENT: True -SAVEKERNELS: False -SAVEAS: binary -BEGIN: 1 -END: 1 -RESUME_FROM: -STOP_AFTER: -SAVEMODEL: True - -# ============================================================================= -# PATHS -# ///// -# SCRATCH: -# scratch path to hold temporary data during workflow -# OUTPUT: -# directory to save workflow outputs to disk -# SYSTEM: -# scratch path to hold any system related data -# LOGFILE: -# the main output log file where all processes will track their status -# PREPROCESS: -# scratch path to store any preprocessing outputs -# SOLVER: -# scratch path to hold solver working directories -# DATA: -# path to observed waveform data available to workflow -# SPECFEM_BIN: -# path to the SPECFEM binary executables -# SPECFEM_DATA: -# path to the SPECFEM DATA/ directory containing the 'Par_file', 'STATIONS' -# file and 'CMTSOLUTION' files -# MASK: -# Directory to mask files for gradient masking -# OPTIMIZE: -# scratch path to store data related to nonlinear optimization library. -# Data stored here include model, gradient, and search direction vectors -# (numpy arrays), andadditional arrays related to specific optimization -# algorithms -# MODEL_INIT: -# Path location of the initial model to be used to generate the the first -# evaluation of synthetic seismograms. -# GRAD: -# scratch path to store any models or kernels related to gradient -# evaluations. Sub-directories will be generated inside PATH.GRAD to save -# various stages of gradient manipulation -# MODEL_TRUE: -# Target model to be used for PAR.CASE == 'synthetic'. The TRUE model will -# be used to evaluate forward simulations ONCE at the beginning of the -# workflow, to generate 'data'. -# FUNC: -# scratch path to store data related to misfit function evaluations that -# take place during the line search. Data stored here include residuals -# from data-synthetic misfit, and a given 'try' model being used to -# generate synthetics. -# HESS: -# scratch path to store data related to Hessian evaluations -# ============================================================================= -PATHS: - SCRATCH: scratch - OUTPUT: output - SYSTEM: scratch/system - LOGFILE: sfoutput.txt - PREPROCESS: scratch/preprocess - SOLVER: scratch/solver - DATA: - SPECFEM_BIN: specfem/bin - SPECFEM_DATA: specfem/DATA - MASK: - OPTIMIZE: scratch/optimize - MODEL_INIT: specfem/MODEL_INIT - GRAD: scratch/evalgrad - MODEL_TRUE: specfem/MODEL_TRUE - FUNC: scratch/evalfunc - HESS: scratch/evalhess diff --git a/seisflows/tests/test_data/hold/test_filled_parameters.yaml b/seisflows/tests/test_data/hold/test_filled_parameters.yaml deleted file mode 100644 index a25f1ebe..00000000 --- a/seisflows/tests/test_data/hold/test_filled_parameters.yaml +++ /dev/null @@ -1,301 +0,0 @@ -# ////////////////////////////////////////////////////////////////////////////// -# -# SeisFlows YAML Parameter File -# -# ////////////////////////////////////////////////////////////////////////////// -# -# Modules correspond to the structure of the source code, and determine -# SeisFlows' behavior at runtime. Each module requires its own sub-parameters. -# -# .. rubric:: -# - To determine available options for modules listed below, run: -# > seisflows print modules -# - To auto-fill with docstrings and default values (recommended), run: -# > seisflows configure -# - To set values as NoneType, use: null -# - To set values as infinity, use: inf -# -# MODULES -# /////// -# WORKFLOW (str): The method for running SeisFlows; equivalent to main() -# SOLVER (str): External numerical solver to use for waveform simulations -# SYSTEM (str): Computer architecture of the system being used -# OPTIMIZE (str): Optimization algorithm for the inverse problem -# PREPROCESS (str): Preprocessing schema for waveform data -# POSTPROCESS (str): Postprocessing schema for kernels and gradients -# ============================================================================== -WORKFLOW: inversion -SOLVER: specfem2d -SYSTEM: workstation -OPTIMIZE: gradient -PREPROCESS: default -POSTPROCESS: default - -# ============================================================================= -# SYSTEM -# ////// -# TITLE (str): -# The name used to submit jobs to the system, defaults to the name of the -# working directory -# MPIEXEC (str): -# Function used to invoke executables on the system. For example 'srun' on -# SLURM systems, or './' on a workstation. If left blank, will guess based -# on the system. -# NTASK (int): -# Number of separate, individual tasks. Also equal to the number of desired -# sources in workflow -# NPROC (int): -# Number of processor to use for each simulation -# LOG_LEVEL (str): -# Verbosity output of SF logger. Available from least to most verbosity: -# 'CRITICAL', 'WARNING', 'INFO', 'DEBUG'; defaults to 'DEBUG' -# VERBOSE (bool): -# Level of verbosity provided to the output log. If True, log statements -# will declare what module/class/function they are being called from. -# Useful for debugging but also very noisy. -# ============================================================================= -TITLE: test_data -MPIEXEC: -NTASK: 1 -NPROC: 1 -LOG_LEVEL: DEBUG -VERBOSE: False - -# ============================================================================= -# PREPROCESS -# ////////// -# MISFIT (str): -# Misfit function for waveform comparisons, for available see -# seisflows.plugins.misfit -# BACKPROJECT (str): -# Backprojection function for migration, for available see -# seisflows.plugins.adjoint -# NORMALIZE (list): -# Data normalization parameters used to normalize the amplitudes of -# waveforms. Choose from two sets: ENORML1: normalize per event by L1 of -# traces; OR ENORML2: normalize per event by L2 of traces; AND TNORML1: -# normalize per trace by L1 of itself; OR TNORML2: normalize per trace by -# L2 of itself -# FILTER (str): -# Data filtering type, available options are:BANDPASS (req. MIN/MAX -# PERIOD/FREQ);LOWPASS (req. MAX_FREQ or MIN_PERIOD); HIGHPASS (req. -# MIN_FREQ or MAX_PERIOD) -# MIN_PERIOD (float): -# Minimum filter period applied to time series.See also MIN_FREQ, MAX_FREQ, -# if User defines FREQ parameters, they will overwrite PERIOD parameters. -# MAX_PERIOD (float): -# Maximum filter period applied to time series.See also MIN_FREQ, MAX_FREQ, -# if User defines FREQ parameters, they will overwrite PERIOD parameters. -# MIN_FREQ (float): -# Maximum filter frequency applied to time series.See also MIN_PERIOD, -# MAX_PERIOD, if User defines FREQ parameters, they will overwrite PERIOD -# parameters. -# MAX_FREQ (float): -# Maximum filter frequency applied to time series,See also MIN_PERIOD, -# MAX_PERIOD, if User defines FREQ parameters, they will overwrite PERIOD -# parameters. -# MUTE (list): -# Data mute parameters used to zero out early / late arrivals or offsets. -# Choose any number of: EARLY: mute early arrivals; LATE: mute late -# arrivals; SHORT: mute short source-receiver distances; LONG: mute long -# source-receiver distances -# ============================================================================= -MISFIT: waveform -BACKPROJECT: null -NORMALIZE: [] -FILTER: null -MIN_PERIOD: -MAX_PERIOD: -MIN_FREQ: -MAX_FREQ: -MUTE: [] - -# ============================================================================= -# SOLVER -# ////// -# MATERIALS (str): -# Material parameters used to define model. Available: ['ELASTIC': Vp, Vs, -# 'ACOUSTIC': Vp, 'ISOTROPIC', 'ANISOTROPIC'] -# DENSITY (str): -# How to treat density during inversion. Available: ['CONSTANT': Do not -# update density, 'VARIABLE': Update density] -# ATTENUATION (bool): -# If True, turn on attenuation during forward simulations, otherwise set -# attenuation off. Attenuation is always off for adjoint simulations. -# FORMAT (float): -# Format of synthetic waveforms used during workflow, available options: -# ['ASCII', 'SU'] -# COMPONENTS (str): -# Components used to generate data, formatted as a single string, e.g. ZNE -# or NZ or E -# SOLVERIO (str): -# The format external solver files. Available: ['fortran_binary'] -# SOURCE_PREFIX (str): -# Prefix of SOURCE files in path SPECFEM_DATA. By default, 'SOURCE' for -# SPECFEM2D -# ============================================================================= -MATERIALS: elastic -DENSITY: constant -ATTENUATION: False -FORMAT: ascii -COMPONENTS: ZNE -SOLVERIO: fortran_binary -SOURCE_PREFIX: SOURCE - -# ============================================================================= -# POSTPROCESS -# /////////// -# SMOOTH_H (float): -# Gaussian half-width for horizontal smoothing in units of meters. If 0., -# no smoothing applied -# SMOOTH_V (float): -# Gaussian half-width for vertical smoothing in units of meters -# TASKTIME_SMOOTH (int): -# Large radii smoothing may take longer than normal tasks. Allocate -# additional smoothing task time as a multiple of TASKTIME -# ============================================================================= -SMOOTH_H: 0.0 -SMOOTH_V: 0.0 -TASKTIME_SMOOTH: 1 - -# ============================================================================= -# OPTIMIZE -# //////// -# LINESEARCH (str): -# Algorithm to use for line search, see seisflows.plugins.line_search for -# available choices -# PRECOND (str): -# Algorithm to use for preconditioning gradients, see -# seisflows.plugins.preconds for available choices -# STEPCOUNTMAX (int): -# Max number of trial steps in line search before a change in line search -# behavior -# STEPLENINIT (float): -# Initial line search step length, as a fraction of current model -# parameters -# STEPLENMAX (float): -# Max allowable step length, as a fraction of current model parameters -# ============================================================================= -LINESEARCH: Bracket -PRECOND: -STEPCOUNTMAX: 10 -STEPLENINIT: 0.05 -STEPLENMAX: 0.5 - -# ============================================================================= -# WORKFLOW -# //////// -# SAVETRACES (bool): -# Save waveform traces to disk after they have been generated by the -# external solver -# SAVERESIDUALS (bool): -# Save data-synthetic residuals each time they are caluclated -# CASE (str): -# How to address 'data' in your workflow, available options: 1) 'data': -# Real data inversion. Observed waveforms must be provided by the user in -# PATH.DATA/{SOURCE_NAME}. OR if PAR.PREPROCESS=='pyatoa' data should be -# discoverable via IRIS webservices based on event ID and station codes2) -# 'synthetic': A synthetic-synthetic workflow. 'Data' will be generated as -# synthetics using PATH.MODEL_TRUE. -# SAVEGRADIENT (bool): -# Save gradient files each time the gradient is evaluated -# SAVEKERNELS (bool): -# Save event kernel files each time they are evaluated -# SAVEAS (str): -# Format to save models, gradients, kernels. Available: ['binary': save -# files in native SPECFEM .bin format, 'vector': save files as NumPy .npy -# files, 'both': save as both binary and vectors] -# BEGIN (int): -# First iteration of an inversion workflow, 1 <= BEGIN <= inf -# END (int): -# Last iteration of the inverison workflow,BEGIN <= END <= inf -# RESUME_FROM (str): -# Name of flow task to resume workflow from. Useful for restarting failed -# workflows or re-trying sections of workflows with new parameters. To -# determine available options for your given workflow: > seisflows print -# flow -# STOP_AFTER (str): -# Name of flow task to stop workflow after. Useful for stopping mid- -# workflow to look at results before proceeding (e.g., to look at waveform -# misfits before evaluating the gradient). To determine available options -# for your given workflow: > seisflows print flow -# SAVEMODEL (bool): -# Save updated model files after each iteration -# ============================================================================= -SAVETRACES: False -SAVERESIDUALS: False -CASE: data -SAVEGRADIENT: True -SAVEKERNELS: False -SAVEAS: binary -BEGIN: 1 -END: 1 -RESUME_FROM: -STOP_AFTER: -SAVEMODEL: True - -# ============================================================================= -# PATHS -# ///// -# SCRATCH: -# scratch path to hold temporary data during workflow -# OUTPUT: -# directory to save workflow outputs to disk -# SYSTEM: -# scratch path to hold any system related data -# LOGFILE: -# the main output log file where all processes will track their status -# PREPROCESS: -# scratch path to store any preprocessing outputs -# SOLVER: -# scratch path to hold solver working directories -# DATA: -# path to observed waveform data available to workflow -# SPECFEM_BIN: -# path to the SPECFEM binary executables -# SPECFEM_DATA: -# path to the SPECFEM DATA/ directory containing the 'Par_file', 'STATIONS' -# file and 'CMTSOLUTION' files -# MASK: -# Directory to mask files for gradient masking -# OPTIMIZE: -# scratch path to store data related to nonlinear optimization library. -# Data stored here include model, gradient, and search direction vectors -# (numpy arrays), andadditional arrays related to specific optimization -# algorithms -# MODEL_INIT: -# Path location of the initial model to be used to generate the the first -# evaluation of synthetic seismograms. -# GRAD: -# scratch path to store any models or kernels related to gradient -# evaluations. Sub-directories will be generated inside PATH.GRAD to save -# various stages of gradient manipulation -# MODEL_TRUE: -# Target model to be used for PAR.CASE == 'synthetic'. The TRUE model will -# be used to evaluate forward simulations ONCE at the beginning of the -# workflow, to generate 'data'. -# FUNC: -# scratch path to store data related to misfit function evaluations that -# take place during the line search. Data stored here include residuals -# from data-synthetic misfit, and a given 'try' model being used to -# generate synthetics. -# HESS: -# scratch path to store data related to Hessian evaluations -# ============================================================================= -PATHS: - SCRATCH: scratch - OUTPUT: output - SYSTEM: scratch/system - LOGFILE: sfoutput.txt - PREPROCESS: scratch/preprocess - SOLVER: scratch/solver - DATA: - SPECFEM_BIN: ./bin - SPECFEM_DATA: ./DATA - MASK: - OPTIMIZE: scratch/optimize - MODEL_INIT: ./MODEL_INIT - GRAD: scratch/evalgrad - MODEL_TRUE: ./MODEL_TRUE - FUNC: scratch/evalfunc - HESS: scratch/evalhess diff --git a/seisflows/tests/test_data/hold/test_setup_parameters.yaml b/seisflows/tests/test_data/hold/test_setup_parameters.yaml deleted file mode 100644 index f32a3cb2..00000000 --- a/seisflows/tests/test_data/hold/test_setup_parameters.yaml +++ /dev/null @@ -1,32 +0,0 @@ -# ////////////////////////////////////////////////////////////////////////////// -# -# SeisFlows YAML Parameter File -# -# ////////////////////////////////////////////////////////////////////////////// -# -# Modules correspond to the structure of the source code, and determine -# SeisFlows' behavior at runtime. Each module requires its own sub-parameters. -# -# .. rubric:: -# - To determine available options for modules listed below, run: -# > seisflows print modules -# - To auto-fill with docstrings and default values (recommended), run: -# > seisflows configure -# - To set values as NoneType, use: null -# - To set values as infinity, use: inf -# -# MODULES -# /////// -# WORKFLOW (str): The method for running SeisFlows; equivalent to main() -# SOLVER (str): External numerical solver to use for waveform simulations -# SYSTEM (str): Computer architecture of the system being used -# OPTIMIZE (str): Optimization algorithm for the inverse problem -# PREPROCESS (str): Preprocessing schema for waveform data -# POSTPROCESS (str): Postprocessing schema for kernels and gradients -# ============================================================================== -WORKFLOW: inversion -SOLVER: specfem2d -SYSTEM: workstation -OPTIMIZE: gradient -PREPROCESS: default -POSTPROCESS: default diff --git a/seisflows/tests/test_data/parameters.yaml b/seisflows/tests/test_data/parameters.yaml deleted file mode 120000 index bc0c1173..00000000 --- a/seisflows/tests/test_data/parameters.yaml +++ /dev/null @@ -1 +0,0 @@ -../../examples/parameters.yaml \ No newline at end of file diff --git a/seisflows/tests/test_seisflows.py b/seisflows/tests/test_seisflows.py index ecb1b83a..49d862f1 100644 --- a/seisflows/tests/test_seisflows.py +++ b/seisflows/tests/test_seisflows.py @@ -11,32 +11,37 @@ import subprocess from unittest.mock import patch -from seisflows.tools.config import Dict from seisflows import ROOT_DIR +from seisflows.tools import msg from seisflows.seisflows import SeisFlows -from seisflows.tools.config import load_yaml +from seisflows.tools.config import load_yaml, Dict TEST_DIR = os.path.join(ROOT_DIR, "tests") @pytest.fixture -def par_file(): +def par_file(tmpdir): """ - Return the test parameter file as a dictionary object - :rtype: seisflows.config.Dict - :return: dictionary of parameters + Create a template parameter file """ - return os.path.join(TEST_DIR, "test_data", "parameters.yaml") + fid = os.path.join(tmpdir, "parameters.yaml") + with open(fid, "w") as f: + f.write(msg.base_parameter_file) + return fid @pytest.fixture -def par_file_dict(par_file): +def par_file_dict(): """ - Return the test parameter file as a dictionary object + Return default parameter file parameters as a dictionary object + :rtype: seisflows.config.Dict :return: dictionary of parameters """ - return Dict(load_yaml(par_file)) + par_file = Dict(workflow="forward", system="workstation", + solver="specfem2d", preprocess="default", + optimize="gradient") + return par_file def test_call_seisflows(par_file, par_file_dict): @@ -129,18 +134,13 @@ def test_cmd_configure(tmpdir, par_file): """ os.chdir(tmpdir) - # Copy in the setup par file so we can configure it - src = par_file - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) - # run seisflows configure with patch.object(sys, "argv", ["seisflows"]): sf = SeisFlows(workdir=tmpdir, parameter_file="parameters.yaml") sf.configure() # Check some random values that were not in the template file - parameters = load_yaml(dst) + parameters = load_yaml(par_file) assert("path_model_init" in parameters.keys()) assert("smooth_h" in parameters.keys()) assert("ntask" in parameters.keys()) @@ -152,11 +152,6 @@ def test_cmd_par(tmpdir, par_file): :param tmpdir: :return: """ - # Copy given parameter file with a weird name - src = par_file - dst = os.path.join(tmpdir, "parameters.yaml") - shutil.copy(src, dst) - parameter = "workflow" expected_val = "forward" new_val = "migration" @@ -164,7 +159,7 @@ def test_cmd_par(tmpdir, par_file): # testing the get option: seisflows par `parameter` with patch.object(sys, "argv", ["seisflows"]): # Run this with subprocess so we can capture the print statement - cmd_line_arg = ["seisflows", "-p", dst, "par", parameter] + cmd_line_arg = ["seisflows", "-p", par_file, "par", parameter] out = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) @@ -176,12 +171,12 @@ def test_cmd_par(tmpdir, par_file): # testing the set option: seisflows par `parameter` `value` with patch.object(sys, "argv", ["seisflows"]): # Run this with subprocess so we can capture the print statement - cmd_line_arg = ["seisflows", "-p", dst, "par", parameter, new_val] + cmd_line_arg = ["seisflows", "-p", par_file, "par", parameter, new_val] out1 = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) # Run this with subprocess so we can capture the print statement - cmd_line_arg = ["seisflows", "-p", dst, "par", parameter] + cmd_line_arg = ["seisflows", "-p", par_file, "par", parameter] out2 = subprocess.run(cmd_line_arg, capture_output=True, universal_newlines=True) diff --git a/seisflows/tools/msg.py b/seisflows/tools/msg.py index f5ccb4aa..c1a647a5 100644 --- a/seisflows/tools/msg.py +++ b/seisflows/tools/msg.py @@ -155,6 +155,43 @@ def cli(text="", items=None, wraplen=80, header=None, border=None, hchar="/"): return output_str +# Template parameter file used for 'seisflows setup' to initiate a workflow +base_parameter_file = """ +# ////////////////////////////////////////////////////////////////////////////// +# +# SeisFlows YAML Parameter File +# +# ////////////////////////////////////////////////////////////////////////////// +# +# Modules correspond to the structure of the source code, and determine +# SeisFlows' behavior at runtime. Each module requires its own sub-parameters. +# +# .. rubric:: +# - Determine available options for modules by running: +# > seisflows print modules +# - Auto-fill with docstrings and default values (recommended) by running: +# > seisflows configure +# - Swap out module parameters for a configured parameter file by running: +# > seisflows swap {module} {name} (e.g., seisflows swap solver specfem3d) +# - To set values as NoneType, use: null +# - To set values as infinity, use: inf +# +# MODULES +# /////// +# workflow (str): The types and order of functions for running SeisFlows +# system (str): Computer architecture of the system being used +# solver (str): External numerical solver to use for waveform simulations +# preprocess (str): Preprocessing schema for waveform data +# optimize (str): Optimization algorithm for the inverse problem +# ============================================================================== +workflow: forward +system: workstation +solver: specfem2d +preprocess: default +optimize: gradient +""" + + # SeisFlows 'Globe' logo in ASCII. Used for CLI print statements ascii_logo = """ From 9c763c5827fd25dc9f69bd5acefe327d2bbffc1b Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 23 Aug 2022 17:14:58 -0800 Subject: [PATCH 137/195] Update documentation (#132) * added more explanation of examples to specfem2d example notebook started in on a cluster-specific notebook * added a 'running examples on cluster' docs page which should help users transition from the 2D example to running ona cluster * updated docs page changelog * added a 'containers' docs page to explain how to use SeisFlows with docker/ singularity' * finished rough outline of container page which shows running with Docker and Singularity * removed '$' from container docs page to match formatting on rest of docs * updated specfem2d example documentation to match the new way examples are called, which removed the input statement and allows users to feed in the location of a specfem2d directory through the command line * adding some more container information, re-arranging docs pages * added additional tool descriptions to CLI docs page * bugfix 2d example problem, update changelog --- docs/changelog.rst | 14 +- docs/command_line_tool.rst | 114 +++- docs/containers.rst | 161 +++++ docs/example_on_cluster.rst | 419 +++++++++++++ docs/extending.rst | 4 +- docs/index.rst | 80 ++- docs/notebooks/command_line_tool.ipynb | 143 ++++- docs/notebooks/example_on_cluster.ipynb | 564 ++++++++++++++++++ docs/notebooks/sflog.txt | 0 docs/notebooks/specfem2d_example.ipynb | 163 ++++- docs/notebooks/working_directory.ipynb | 6 +- docs/specfem2d_example.rst | 140 ++++- docs/working_directory.rst | 4 +- ...pecfem2d_workstation_inversion_w_pyatoa.py | 4 +- seisflows/examples/sfexample2d.py | 4 +- seisflows/system/slurm.py | 2 +- seisflows/workflow/test_flow.py | 2 +- 17 files changed, 1755 insertions(+), 69 deletions(-) create mode 100644 docs/containers.rst create mode 100644 docs/example_on_cluster.rst create mode 100644 docs/notebooks/example_on_cluster.ipynb delete mode 100644 docs/notebooks/sflog.txt diff --git a/docs/changelog.rst b/docs/changelog.rst index cef7e222..0bb80957 100644 --- a/docs/changelog.rst +++ b/docs/changelog.rst @@ -1,8 +1,8 @@ Change Log =============== -The following list documents changes made from ``SeisFlows Legacy`` -codebase (Last updated Aug. 12, 2022). +The following list documents changes made since v2.0.0 +(Last updated Aug. 18, 2022). Major ------ @@ -37,6 +37,7 @@ Major Moderate -------- +* Support added for SLURM-based TACC Frontera system * All modules now have their own setup() and check() functions which help establish a workflow before anything needs to be submitted to the system. * System run functions no longer require global pickling into sys modules, but @@ -90,6 +91,12 @@ Moderate getting and setting values in the SPECFEM Par_file * Separated system mid-tier classes into "Cluster" and "Workstation" to differentiate working on HPC systems +* Added a TestFlow workflow which 'live' tests System abilities directly on + login/compute nodes of a cluster +* Reworked some of the internal system.Cluster architecture to take advantage + of inheritance - Systems now specify headers for their run and submit calls. + e.g., slurm-based systems specify their own SBATCH commands but all use the + same call structure after the SBATCH header Minor @@ -129,5 +136,6 @@ Minor * Enforced package-wide constants at the top of seisflows.config * Added __init__() functions to most of the modules to define any instance-dependent variables, which previously were not explained. - +* New Docs page to describe how to transition from a 2D workstation example + to a 2D cluster example. diff --git a/docs/command_line_tool.rst b/docs/command_line_tool.rst index 2ec34f47..b22c5a34 100644 --- a/docs/command_line_tool.rst +++ b/docs/command_line_tool.rst @@ -58,8 +58,8 @@ help dialogue, you can type ``seisflows`` or ``seisflows -h`` 'seisflows [command] -h' for more detailed descriptions of each command. -Setting up a parameter file -~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Setting up +~~~~~~~~~~ seisflows setup ^^^^^^^^^^^^^^^ @@ -309,8 +309,8 @@ SeisFlows workflow. the package will raise AssertionErrors for incorrectly or improperly set parameters. -Filling out the parameter file -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Editing the parameter file +~~~~~~~~~~~~~~~~~~~~~~~~~~ seisflows par ^^^^^^^^^^^^^ @@ -413,6 +413,40 @@ having to wait on queue times or waste computational resources. Here we can see that a given path has not been set correctly in the parameter file. +seisflows swap +^^^^^^^^^^^^^^ + +The ``seisflows swap`` command allows you to swap out a set of module +parameters without affecting other parts of the parameter file. Some +cases for when this might be useful include switching from a +‘workstation’ system to a ‘cluster’ system, or swapping solvers from +‘specfem2d’ to ‘specfem3d’. + +.. code:: ipython3 + + ! seisflows swap -h + + +.. parsed-literal:: + + usage: seisflows swap [-h] [module] [classname] + + During workflow development, it may be necessary to swap between different + sub-modules (e.g., system.workstation -> system.cluster). However this would + typically involving re-generating and re-filling a parameter file. The 'swap' + function makes it easier to swap parameters between modules. + + positional arguments: + module Module name to swap + classname Classname to swap to + + optional arguments: + -h, --help show this help message and exit + + +Running workflows +~~~~~~~~~~~~~~~~~ + seisflows submit ^^^^^^^^^^^^^^^^ @@ -426,3 +460,75 @@ chosen ``system``. For Users running on laptops and workstations, tasks in the ``workflow`` task list. On clusters, ``submit`` will launch a master job on a compute node, which will itself step through tasks in the task list, ensuring that no processing is run on login nodes. + +.. code:: ipython3 + + ! seisflows submit -h + + +.. parsed-literal:: + + usage: seisflows submit [-h] [-s STOP_AFTER] + + The main SeisFlows execution command. Submit a SeisFlows workflow to the + chosen system, equal to executing seisflows.workflow.main(). This function + will create and fill the working directory with required paths, perform path + and parameter error checking, and establish the active working environment + before executing the workflow. + + optional arguments: + -h, --help show this help message and exit + -s STOP_AFTER, --stop_after STOP_AFTER + Optional override of the 'STOP_AFTER' parameter + + +seisflows clean +^^^^^^^^^^^^^^^ + +The ``clean`` function is used to clear an existing working directory. +It deletes all SeisFlows created files and directories using paths in +the parameter file, but does not delete the parameter file itself. Use +the ``-f/--force`` flag to skip over the ‘are you sure?’ check +statement. + +.. code:: ipython3 + + ! seisflows clean -h + + +.. parsed-literal:: + + usage: seisflows clean [-h] [-f] + + Delete all SeisFlows related files in the working directory, except for the + parameter file. + + optional arguments: + -h, --help show this help message and exit + -f, --force Skip the warning check that precedes the clean function + + +seisflows restart +^^^^^^^^^^^^^^^^^ + +The ``restart`` function is a convenience function which wraps ``clean`` +and ``submit``. It is used to restart workflows using the same parameter +file. It also takes the ``-f/--force`` flag that the clean function +defines. + +.. code:: ipython3 + + ! seisflows restart -h + + +.. parsed-literal:: + + usage: seisflows restart [-h] [-f] + + Akin to running seisflows clean; seisflows submit. Restarts the workflow by + removing the current state and submitting a fresh workflow. + + optional arguments: + -h, --help show this help message and exit + -f, --force Skip the clean warning check statement + diff --git a/docs/containers.rst b/docs/containers.rst new file mode 100644 index 00000000..d725d46e --- /dev/null +++ b/docs/containers.rst @@ -0,0 +1,161 @@ +SeisFlows in Containers +======================= + +As part of the `NSF-funded SCOPED project +`__ SeisFlows has +been containerized using `Docker `__, which removes the +oftentimes troubling task of installing and configuring software. These +containers can be used to run SeisFlows on workstations (using Docker) or +on high performance computers using +`Singularity/Apptainer `__. + +.. note:: + The SeisFlows Docker image can be found here: + https://github.com/SeisSCOPED/pyatoa + +.. note:: + The `Pyatoa` container is shipped with the latest versions of + `SeisFlows `__, + `Pyatoa `__, + `PySEP `__. + +The remainder of this documentation page assumes you are familiar with Docker +and containers. To learn more about Docker and containers you can visit: +https://www.docker.com/resources/what-container/ + +To install Docker on your workstation, visit: +https://docs.docker.com/get-docker/ + + +Workstation example with Docker +------------------------------- + +Here we will step through how running the +`SeisFlows-SPECFEM2D `__ example using the available +Docker image. + +To get the latest version of the `Pyatoa` Docker image, run: + +.. code-block:: bash + + docker pull ghcr.io/seisscoped/pyatoa:nightly + +Their are two methods for running the SeisFlows example using this Docker image, +either through a `JupyterHub interface `__, or through +the command line. The former provides a graphical user interface that mimics +a virtual desktop for easier navigation, while the latter provides more +flexibility for scripting and using SeisFlows as a research tool. + +From JupyterHub +^^^^^^^^^^^^^^^ + +We can run SeisFlows through JupyterHub by running through a port: + +.. code-block:: bash + + docker run -p 8888:8888 ghcr.io/seisscoped/pyatoa:nightly + +To open the running JupyterHub instance, open the URL that is pasted to stdout +in your favorite web browser. This will likely look something like +http://127.0.0.1:8888/lab?token=xxx where xxx is your unique token + +Once you have opened the JupyterHub instance, you should see a graphical +user interface. The Pyatoa, PySEP and SeisFlows repositories will be downloaded +and navigable in the file system on the left hand side of the window. + +From inside the JupyterHub instance, click the 'Terminal' icon to open up a +terminal window, and run the following example command. Note, it's best to run +the example in a new directory to avoid muddling up the home directory. + +.. code-block:: bash + + mkdir sf_sem2d_example + cd sf_sem2d_example + seisflows examples run 2 + +This example will download, configure and compile SPECFEM2D into your +JupyterHub instance, and then run a SeisFlows-Pyatoa-SPECFEM2D inversion +problem. + + +From the command line +^^^^^^^^^^^^^^^^^^^^^ + +.. warning:: + Command line implementation does not currently work. + +To run the SeisFlows SPECFEM2D example from the command line, we simply need +to point Docker to the image we just downloaded, and call the SeisFlows command +line tool. To run the help message: + +.. code-block:: bash + + docker run ghcr.io/seisscoped/pyatoa:nightly seisflows -h + +Running the example should be as easy as: + +.. code-block:: bash + + docker run ghcr.io/seisscoped/pyatoa:nightly seisflows examples run 2 + +In the above example, SeisFlows automatically identifies the SPECFEM2D +installation within the Docker image and uses this as the external numerical +solver. All results will be output to your current working directory. + + +HPC example with Apptainer/Singularity +-------------------------------------- + +.. note:: + Section Under Construction + +Apptainer/Singularity is a container system for high performance computers (HPC) +that allows Users to run container images on HPCs. You might want to use +Apptainer if you cannot download software using Conda on your HPC, or you simply +do not want to go through the trouble of downloading software on your system. + +Relevant Links: + +* Singularity on Chinook: + https://uaf-rcs.gitbook.io/uaf-rcs-hpc-docs/third-party-software/singularity +* Singularity on TACC: + https://containers-at-tacc.readthedocs.io/en/latest/singularity/ +01.singularity_basics.html + + +.. note:: + This section was written working on TACC's Frontera, a SLURM based HPC. + Instructions may differ depending on your Systems setup and workload + manager. Because Singularity cannot be run on the Login nodes, the following + code blocks are run in the `idev `__ interactive + environment. + +To download the required image on your system: + +.. code-block:: bash + + module load tacc-singularity # on TACC Frontera + # module load singularity # on UAF Chinook + singularity pull seisflows.sif docker://ghcr.io/seisscoped/pyatoa:nightly + +To run the SeisFlows help message + +.. code-block:: bash + + singularity run seisflows.sif seisflows -h + +To set your system to use Singularity, you just need to append '-singularity' to +an existing system subclass in the SeisFlows parameter file. For example, since +we are running on Frontera, we set our system to 'frontera-singularity'. + +.. code-block:: bash + + seisflows setup # create the 'parameters.yaml' file + seisflows par system frontera-singularity # set the system + # ... set any other main modules here + seisflows configure # fill out the parameter file + # ... edit your parameters here and then run SeisFlows + singularity run ghcr.io/seisscoped/pyatoa:nightly seisflows submit + + diff --git a/docs/example_on_cluster.rst b/docs/example_on_cluster.rst new file mode 100644 index 00000000..482b8ca0 --- /dev/null +++ b/docs/example_on_cluster.rst @@ -0,0 +1,419 @@ +Running Examples on a Cluster +============================= + +Here we detail how a User might transition from developing a 2D example +problem on their workstation, to performing large-scale inversion on a +cluster. In this notebook we show an example running on the New Zealand +eScience Infrastructure HPC, named Maui, but is meant to provide a +generalizable approach for running SeisFlows on clusters. + +Example Setup +------------- + +We first set up our working directory using the example setup shown in the `SPECFEM2D example page `__. This ensures that we have our initial and final models, and a properly set parameter file that can be used for our inversion. + +.. code:: ipython3 + + # This is an empty working directory + %cd /home/bchow/Work/scratch + + +.. parsed-literal:: + + /home/bchow/Work/scratch + + +.. code:: bash + + ! ln -s /home/bchow/REPOSITORIES/specfem2d . # place SPECFEM2D repository in the working directory + ! seisflows examples setup 2 # run example setup but do not `submit` workflow + +.. code:: ipython3 + + ! ls + + +.. parsed-literal:: + + parameters.yaml specfem2d specfem2d_workdir + + +Module ‘swap’ +------------- + +As we saw in the example tutorial, the ``System`` module for this +example problem is set as ‘Workstation’, which is meant to run the +workflow in serial directly on the system that submits it. For clusters +this means we would run our entire inversion on the login node. + +.. code:: ipython3 + + ! seisflows par system + + +.. parsed-literal:: + + system: workstation + + +To ‘swap’ out the ``System`` module for a cluster-specific class, we can +use the ``seisflows swap`` command, which replaces one module for +another without affecting the other modules. This is very helpful if you +have a completed parameter file and do not want to copy-paste all the +edited parameter just to change out a module. The rubric for running +``seisflows swap`` can be found in the help message: + +.. code:: ipython3 + + ! seisflows swap -h + + +.. parsed-literal:: + + usage: seisflows swap [-h] [module] [classname] + + During workflow development, it may be necessary to swap between different + sub-modules (e.g., system.workstation -> system.cluster). However this would + typically involving re-generating and re-filling a parameter file. The 'swap' + function makes it easier to swap parameters between modules. + + positional arguments: + module Module name to swap + classname Classname to swap to + + optional arguments: + -h, --help show this help message and exit + + +You can check available names by running ``seisflows print modules``. +Here we want to swap out our ``System`` module from ‘Workstation’ to +‘Maui’, which defines how SeisFlows interacts with the SLURM-based +system, Maui. + +.. code:: ipython3 + + ! seisflows print modules + + +.. parsed-literal:: + + SEISFLOWS MODULES + ///////////////// + '-': module, '*': class + + - workflow + * forward + * inversion + * migration + * test_flow + - system + * chinook + * cluster + * frontera + * lsf + * maui + * slurm + * workstation + - solver + * specfem + * specfem2d + * specfem3d + * specfem3d_globe + - preprocess + * default + * pyaflowa + - optimize + * LBFGS + * NLCG + * gradient + + +.. code:: ipython3 + + ! seisflows swap system maui + + +.. parsed-literal:: + + L-BFGS optimization requires 'backtrack'ing line search. Overwriting 'bracket' + + +We can see now that the parameter file has swapped out the ‘Workstation’ +System module for the ‘Maui’ System module, which contains its own set +of parameters that must be filled out by the User. + +.. code:: ipython3 + + ! head -235 parameters.yaml | tail -n 110 + + +.. parsed-literal:: + + # ============================================================================= + # + # Workstation System + # ------------------ + # Defines foundational structure for System module. When used standalone, + # runs tasks in serial on a local machine. + # + # Parameters + # ---------- + # :type ntask: int + # :param ntask: number of individual tasks/events to run during workflow. + # Must be <= the number of source files in `path_specfem_data` + # :type nproc: int + # :param nproc: number of processors to use for each simulation + # :type log_level: str + # :param log_level: logger level to pass to logging module. + # Available: 'debug', 'info', 'warning', 'critical' + # :type verbose: bool + # :param verbose: if True, formats the log messages to include the file + # name, line number and message type. Useful for debugging but + # also very verbose. + # + # + # Cluster System + # ------------------ + # Generic or common HPC/cluster interfacing commands + # + # Parameters + # ---------- + # :type title: str + # :param title: The name used to submit jobs to the system, defaults + # to the name of the current working directory + # :type mpiexec: str + # :param mpiexec: Function used to invoke executables on the system. + # For example 'mpirun', 'mpiexec', 'srun', 'ibrun' + # :type ntask_max: int + # :param ntask_max: limit the number of concurrent tasks in a given array job + # :type walltime: float + # :param walltime: maximum job time in minutes for the master SeisFlows + # job submitted to cluster. Fractions of minutes acceptable. + # :type tasktime: float + # :param tasktime: maximum job time in minutes for each job spawned by + # the SeisFlows master job during a workflow. These include, e.g., + # running the forward solver, adjoint solver, smoother, kernel combiner. + # All spawned tasks receive the same task time. Fractions of minutes + # acceptable. + # :type environs: str + # :param environs: Optional environment variables to be provided in the + # following format VAR1=var1,VAR2=var2... Will be set using + # os.environs + # + # + # System Slurm + # ------------------ + # Interface for submitting and monitoring jobs on HPC systems running the + # Simple Linux Utility for Resource Management (SLURM) workload manager. + # + # Parameters + # ---------- + # :type slurm_args: str + # :param slurm_args: Any (optional) additional SLURM arguments that will + # be passed to the SBATCH scripts. Should be in the form: + # '--key1=value1 --key2=value2" + # + # + # System Maui + # ----------- + # New Zealand Maui-specfic modifications to base SLURM system + # + # Parameters + # ---------- + # :type account: str + # :param account: Maui account to submit jobs under, will be used for the + # '--account' sbatch argument + # :type cpus_per_task: int + # :param cpus_per_task: allow for multiple cpus per task, i.e,. + # multithreaded jobs + # :type cluster: str + # :param cluster: cluster to submit jobs to. Available are Maui and + # Mahuika + # :type partition: str + # :param partition: partition of the cluster to submit jobs to. + # :type ancil_cluster: str + # :param ancil_cluster: name of the ancilary cluster used for pre- + # post-processing tasks. + # :type ancil_partition: name of the partition of the ancilary cluster + # :type ancil_tasktime: int + # :param ancil_tasktime: Tasktime in minutes for pre and post-processing + # jobs submitted to Maui ancil. + # + # + # ============================================================================= + ntask: 1 + nproc: 1 + log_level: DEBUG + verbose: False + title: scratch + mpiexec: None + ntask_max: 100 + walltime: 10 + tasktime: 1 + environs: SLURM_MEM_PER_CPU + slurm_args: None + partition: nesi_research + account: None + cluster: maui + cpus_per_task: 1 + ancil_cluster: maui_ancil + ancil_partition: nesi_prepost + ancil_tasktime: 1 + + +’Check’ing parameter validity +----------------------------- + +Most of the default values should be okay for our purposes, but it’s up +the User to read the docstrings and determine if any of the default +values should be changed. If we run ``seisflows check`` we can check if +any of our parameters are incorrectly set. + +.. code:: ipython3 + + ! seisflows check + + +.. parsed-literal:: + + + ================================================================================ + PARAMETER ERRROR + //////////////// + System 'Maui' requires parameter 'account' + ================================================================================ + + +The ``Maui`` System check function has told us that it requires that the +parameter ``account`` be set. Note that these requirements will change +between different clusters, which dictate different SLURM parameters +when submitting jobs. We can specify the account parameter using the +``seisflows par`` command. + +.. code:: ipython3 + + ! seisflows par account gns03247 + + +.. parsed-literal:: + + account: null -> gns03247 + + +.. code:: ipython3 + + ! seisflows check + +The ``seisflows check`` function has passed and we have succesfully +swapped out our System module with the ``Maui`` child class. Under the +hood, this class should take care of all the required interactions +between SeisFlows and the compute node. Now all that is left to do is to +run ``seisflows submit``, which should submit the master job to the +system and run our inversion on compute nodes. + +TestFlow: Live testing SeisFlows on System +------------------------------------------ + +While developing, debugging or testing SeisFlows on System, it is not +ideal to submit simulation-based workflows, as these eat large amounts +of computational resources and may introduce problems of there own. + +Here we introduce ‘TestFlow’, a SeisFlows workflow that runs simple test +functions on a cluster. This allows Users to check if SeisFlows can +appropriately interact with the HPC system with tasks like submitting +jobs, monitoring the job queue and catching failing jobs. + +Below we show how to set up TestFlow for our test bed HPC, Maui. First +we generate a template parameter file and set the modules appropriately. + +.. code:: ipython3 + + # This is an empty working directory + %rm -r /home/bchow/Work/scratch + %mkdir /home/bchow/Work/scratch + %cd /home/bchow/Work/scratch + + +.. parsed-literal:: + + shell-init: error retrieving current directory: getcwd: cannot access parent directories: No such file or directory + /home/bchow/Work/scratch + + +.. code:: ipython3 + + # Generate a template parameter file + ! seisflows setup -f + + +.. parsed-literal:: + + creating parameter file: parameters.yaml + + +.. code:: ipython3 + + # Set the modules appropriately + ! seisflows par workflow test_flow + ! seisflows par system maui # we want to test SeisFlows on Maui + ! seisflows par solver null # currently test_flow does not test solver + ! seisflows par preprocess null # currently test_flow does not test preprocess + ! seisflows par optimize null # currently test_flow does not test optimize + + +.. parsed-literal:: + + workflow: forward -> test_flow + system: workstation -> maui + solver: specfem2d -> null + preprocess: default -> null + optimize: gradient -> null + + +.. code:: ipython3 + + # Dynamically fill out the parameter file + ! seisflows configure + +.. code:: ipython3 + + ! head -48 parameters.yaml | tail -n 16 + + +.. parsed-literal:: + + # ============================================================================= + # + # TestFlow Workflow + # ------------- + # Test individual sub-modules in a 'live' testing environment in order to + # ensure SeisFlows works appropriately given an established system and solver. + # + # .. note:: + # You do not need to set System parameters `ntask`, `nproc`, `tasktime`, + # `walltime`. These will be overwritten by the setup task. + # + # Parameters + # ---------- + # + # + # ============================================================================= + + +As we can see above, the ``TestFlow`` workflow does not require any +input parameters, and will additionally automatically set some key +``System`` parameters to ensure that these tests are lightweight to +avoid long queue times. Under the hood the ``TestFlow`` workflow will: + +1) Submit an array job to the system to test job submission capabilities +2) Submit a single job to the system which is intended to fail, this + tests job queue monitoring as well as failed job catching. + +Developers who are implementing new ``System`` classes (e.g., for new +clusters), can use TestFlow as foundation for their development and +debugging sessions. To run the ``TestFlow`` workflow you just need to +run ``seisflows submit`` + +.. code:: ipython3 + + ! seisflows submit diff --git a/docs/extending.rst b/docs/extending.rst index 65611c1e..48bccc2a 100644 --- a/docs/extending.rst +++ b/docs/extending.rst @@ -1,5 +1,5 @@ -Extending SeisFlows -=================== +Extending the Codebase +====================== .. note:: Page Under Construction diff --git a/docs/index.rst b/docs/index.rst index 1d956e32..36bdd286 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -1,8 +1,3 @@ -.. SeisFlows documentation master file, created by - sphinx-quickstart on Mon Oct 26 16:35:00 2020. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. - .. image:: images/sf_globe_banner_alpha.png :align: center @@ -23,7 +18,7 @@ optimization problems. .. note:: Major backwards-incompatible changes from the legacy codebase include: - - > complete shift to Python3.7 source code, abandoning Python2 support + - > complete shift to Python>=3.7 source code, abandoning Python2 support - > reworked internal architecture to be more 'Pythonic' - > richer source code emphasizing readability and standards - > a new command line tool for improved package control @@ -45,40 +40,57 @@ optimization problems. Installation ================= -Successful applications of SeisFlows will typically require direct editing of -source code. For this reason, SeisFlows should be installed directly via the -package library using Pip. The ``-e`` flag ensures that SeisFlows is -installed in development mode, allowing source code changes to be immediately -acccessible to Python. +``SeisFlows`` is installed using a combination of Pip and +`Conda `__. In the +future we aim to unify this into a single install command. + +*Preamble: many packages will require the conda-forge channel.* + +.. code:: bash + + conda config --add channels conda-forge + +To install ``SeisFlows`` and it's dependencies, we recommend installing within +a Conda environment to not affect your root environment. The `devel` branch +houses the most up-to-date codebase. + +.. code:: bash + + conda create -n seisflows python=3.10 + conda activate seisflows + git clone --branch devel https://github.com/adjtomo/seisflows.git + cd seisflows + conda install --file requirements.txt + pip install -e . + -The `devel` branch houses the most up-to-date codebase. We recommend installing -SeisFlows within a virtual environment (e.g., Conda) to not affect your root -environment. +SeisFlows requires the waveform measurement capabilities of +`Pyatoa `__, which currently must be +installed manually to the same Conda environment. .. code:: bash - $ conda create -n seisflows python=3.10 - $ conda activate seisflows - $ git clone --branch devel https://github.com/adjtomo/seisflows.git - $ cd seisflows - $ conda install --file requirements.txt - $ pip install -e . + cd .. + git clone --branch devel https://github.com/adjtomo/pyatoa.git + cd pyatoa + conda install --file requirements.txt + pip install -e . --------------------------------- -Requirements -============= +.. note:: + Successful applications of SeisFlows will typically require editing the + source code. For this reason, SeisFlows is installed using the Pip ``-e`` + which enables development mode, where source code changes are immediately + acccessible to Python. + -In most production-scale workflows, SeisFlows must be run on a cluster, or -high performance computing system. However, serially run example problems -making use of 2D solvers like SPECFEM2D are available. +.. note:: + In most production-scale workflows, SeisFlows must be run on high + performance computing systems running external numerical solvers like + SPECFEM3D. The User will need to install and compile these separately. + However, example problems in SeisFlows make use of, and can install, + SPECFEM2D. -SeisFlows + Pyatoa --------------------- -To include the waveform measurement capabilities of Pyatoa, you must install -separately. See the `Pyatoa documentation -`__ for the most up to date -install instructions. .. toctree:: @@ -109,8 +121,10 @@ install instructions. .. toctree:: :maxdepth: 1 :hidden: - :caption: How To + :caption: How To's + example_on_cluster + containers extending .. toctree:: diff --git a/docs/notebooks/command_line_tool.ipynb b/docs/notebooks/command_line_tool.ipynb index 4123c3a8..9f2f4503 100644 --- a/docs/notebooks/command_line_tool.ipynb +++ b/docs/notebooks/command_line_tool.ipynb @@ -68,7 +68,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Setting up a parameter file\n", + "### Setting up \n", "#### seisflows setup\n", "\n", "The first step of any SeisFlows workflow is to setting up a parameter file. The `seisflows setup` command copies in a template parameter file." @@ -372,7 +372,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Filling out the parameter file\n", + "### Editing the parameter file\n", "#### seisflows par\n", "\n", "You can always open your favorite text editor to make changes to the parameter file, however the `seisflows par` command makes things easier by allowing you to view and edit values from the command line. This makes it convenient to change parameters quickly and allows you to script your parameter file setup for improved reproducibility. " @@ -510,17 +510,152 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "#### seisflows swap\n", + "\n", + "The `seisflows swap` command allows you to swap out a set of module parameters without affecting other parts of the parameter file. Some cases for when this might be useful include switching from a 'workstation' system to a 'cluster' system, or swapping solvers from 'specfem2d' to 'specfem3d'." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows swap [-h] [module] [classname]\r\n", + "\r\n", + "During workflow development, it may be necessary to swap between different\r\n", + "sub-modules (e.g., system.workstation -> system.cluster). However this would\r\n", + "typically involving re-generating and re-filling a parameter file. The 'swap'\r\n", + "function makes it easier to swap parameters between modules.\r\n", + "\r\n", + "positional arguments:\r\n", + " module Module name to swap\r\n", + " classname Classname to swap to\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n" + ] + } + ], + "source": [ + "! seisflows swap -h" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running workflows\n", "#### seisflows submit\n", "\n", "To run SeisFlows, we use the `submit` call. This will submit the `workflow` to the `system` and continue until a User-defined stop criteria is met. \n", "\n", "Under the hood, the `submit` function will differ depending on the chosen `system`. For Users running on laptops and workstations, `submit` will simply launch a Python process and step through the tasks in the `workflow` task list. On clusters, `submit` will launch a master job on a compute node, which will itself step through tasks in the task list, ensuring that no processing is run on login nodes. " ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows submit [-h] [-s STOP_AFTER]\r\n", + "\r\n", + "The main SeisFlows execution command. Submit a SeisFlows workflow to the\r\n", + "chosen system, equal to executing seisflows.workflow.main(). This function\r\n", + "will create and fill the working directory with required paths, perform path\r\n", + "and parameter error checking, and establish the active working environment\r\n", + "before executing the workflow.\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n", + " -s STOP_AFTER, --stop_after STOP_AFTER\r\n", + " Optional override of the 'STOP_AFTER' parameter\r\n" + ] + } + ], + "source": [ + "! seisflows submit -h" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### seisflows clean\n", + "\n", + "The `clean` function is used to clear an existing working directory. It deletes all SeisFlows created files and directories using paths in the parameter file, but does not delete the parameter file itself. Use the ``-f/--force`` flag to skip over the 'are you sure?' check statement." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows clean [-h] [-f]\r\n", + "\r\n", + "Delete all SeisFlows related files in the working directory, except for the\r\n", + "parameter file.\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n", + " -f, --force Skip the warning check that precedes the clean function\r\n" + ] + } + ], + "source": [ + "! seisflows clean -h " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### seisflows restart \n", + "\n", + "The `restart` function is a convenience function which wraps `clean` and `submit`. It is used to restart workflows using the same parameter file. It also takes the ``-f/--force`` flag that the clean function defines." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows restart [-h] [-f]\r\n", + "\r\n", + "Akin to running seisflows clean; seisflows submit. Restarts the workflow by\r\n", + "removing the current state and submitting a fresh workflow.\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n", + " -f, --force Skip the clean warning check statement\r\n" + ] + } + ], + "source": [ + "! seisflows restart -h" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -534,7 +669,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.12" + "version": "3.7.6" } }, "nbformat": 4, diff --git a/docs/notebooks/example_on_cluster.ipynb b/docs/notebooks/example_on_cluster.ipynb new file mode 100644 index 00000000..a36fffd7 --- /dev/null +++ b/docs/notebooks/example_on_cluster.ipynb @@ -0,0 +1,564 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Running Examples on a Cluster\n", + "\n", + "Here we detail how a User might transition from developing a 2D example problem on their workstation, to performing large-scale inversion on a cluster. In this notebook we show an example running on the New Zealand eScience Infrastructure HPC, named Maui, but is meant to provide a generalizable approach for running SeisFlows on clusters. \n", + "\n", + "## Example Setup" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "We first set up our working directory using the example setup shown in the `SPECFEM2D example page `__. This ensures that we have our initial and final models, and a properly set parameter file that can be used for our inversion." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/bchow/Work/scratch\n" + ] + } + ], + "source": [ + "# This is an empty working directory\n", + "%cd /home/bchow/Work/scratch " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "! ln -s /home/bchow/REPOSITORIES/specfem2d . # place SPECFEM2D repository in the working directory\n", + "! seisflows examples setup 2 # run example setup but do not `submit` workflow" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "parameters.yaml specfem2d specfem2d_workdir\r\n" + ] + } + ], + "source": [ + "! ls " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Module 'swap'\n", + "\n", + "As we saw in the example tutorial, the `System` module for this example problem is set as 'Workstation', which is meant to run the workflow in serial directly on the system that submits it. For clusters this means we would run our entire inversion on the login node. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "system: workstation\r\n" + ] + } + ], + "source": [ + "! seisflows par system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To 'swap' out the `System` module for a cluster-specific class, we can use the `seisflows swap` command, which replaces one module for another without affecting the other modules. This is very helpful if you have a completed parameter file and do not want to copy-paste all the edited parameter just to change out a module. The rubric for running `seisflows swap` can be found in the help message: " + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows swap [-h] [module] [classname]\r\n", + "\r\n", + "During workflow development, it may be necessary to swap between different\r\n", + "sub-modules (e.g., system.workstation -> system.cluster). However this would\r\n", + "typically involving re-generating and re-filling a parameter file. The 'swap'\r\n", + "function makes it easier to swap parameters between modules.\r\n", + "\r\n", + "positional arguments:\r\n", + " module Module name to swap\r\n", + " classname Classname to swap to\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n" + ] + } + ], + "source": [ + "! seisflows swap -h" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can check available names by running `seisflows print modules`. Here we want to swap out our `System` module from 'Workstation' to 'Maui', which defines how SeisFlows interacts with the SLURM-based system, Maui." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " SEISFLOWS MODULES \r\n", + " ///////////////// \r\n", + "'-': module, '*': class\r\n", + "\r\n", + "- workflow\r\n", + " * forward\r\n", + " * inversion\r\n", + " * migration\r\n", + " * test_flow\r\n", + "- system\r\n", + " * chinook\r\n", + " * cluster\r\n", + " * frontera\r\n", + " * lsf\r\n", + " * maui\r\n", + " * slurm\r\n", + " * workstation\r\n", + "- solver\r\n", + " * specfem\r\n", + " * specfem2d\r\n", + " * specfem3d\r\n", + " * specfem3d_globe\r\n", + "- preprocess\r\n", + " * default\r\n", + " * pyaflowa\r\n", + "- optimize\r\n", + " * LBFGS\r\n", + " * NLCG\r\n", + " * gradient\r\n" + ] + } + ], + "source": [ + "! seisflows print modules" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L-BFGS optimization requires 'backtrack'ing line search. Overwriting 'bracket'\r\n" + ] + } + ], + "source": [ + "! seisflows swap system maui" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see now that the parameter file has swapped out the 'Workstation' System module for the 'Maui' System module, which contains its own set of parameters that must be filled out by the User." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# =============================================================================\r\n", + "#\r\n", + "# Workstation System\r\n", + "# ------------------\r\n", + "# Defines foundational structure for System module. When used standalone, \r\n", + "# runs tasks in serial on a local machine.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type ntask: int\r\n", + "# :param ntask: number of individual tasks/events to run during workflow.\r\n", + "# Must be <= the number of source files in `path_specfem_data`\r\n", + "# :type nproc: int\r\n", + "# :param nproc: number of processors to use for each simulation\r\n", + "# :type log_level: str\r\n", + "# :param log_level: logger level to pass to logging module.\r\n", + "# Available: 'debug', 'info', 'warning', 'critical'\r\n", + "# :type verbose: bool\r\n", + "# :param verbose: if True, formats the log messages to include the file\r\n", + "# name, line number and message type. Useful for debugging but\r\n", + "# also very verbose.\r\n", + "#\r\n", + "# \r\n", + "# Cluster System\r\n", + "# ------------------\r\n", + "# Generic or common HPC/cluster interfacing commands\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type title: str\r\n", + "# :param title: The name used to submit jobs to the system, defaults\r\n", + "# to the name of the current working directory\r\n", + "# :type mpiexec: str\r\n", + "# :param mpiexec: Function used to invoke executables on the system.\r\n", + "# For example 'mpirun', 'mpiexec', 'srun', 'ibrun'\r\n", + "# :type ntask_max: int\r\n", + "# :param ntask_max: limit the number of concurrent tasks in a given array job\r\n", + "# :type walltime: float\r\n", + "# :param walltime: maximum job time in minutes for the master SeisFlows\r\n", + "# job submitted to cluster. Fractions of minutes acceptable.\r\n", + "# :type tasktime: float\r\n", + "# :param tasktime: maximum job time in minutes for each job spawned by\r\n", + "# the SeisFlows master job during a workflow. These include, e.g.,\r\n", + "# running the forward solver, adjoint solver, smoother, kernel combiner.\r\n", + "# All spawned tasks receive the same task time. Fractions of minutes\r\n", + "# acceptable.\r\n", + "# :type environs: str\r\n", + "# :param environs: Optional environment variables to be provided in the\r\n", + "# following format VAR1=var1,VAR2=var2... Will be set using\r\n", + "# os.environs\r\n", + "#\r\n", + "# \r\n", + "# System Slurm\r\n", + "# ------------------\r\n", + "# Interface for submitting and monitoring jobs on HPC systems running the \r\n", + "# Simple Linux Utility for Resource Management (SLURM) workload manager.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type slurm_args: str\r\n", + "# :param slurm_args: Any (optional) additional SLURM arguments that will\r\n", + "# be passed to the SBATCH scripts. Should be in the form:\r\n", + "# '--key1=value1 --key2=value2\"\r\n", + "#\r\n", + "# \r\n", + "# System Maui\r\n", + "# -----------\r\n", + "# New Zealand Maui-specfic modifications to base SLURM system\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type account: str\r\n", + "# :param account: Maui account to submit jobs under, will be used for the\r\n", + "# '--account' sbatch argument\r\n", + "# :type cpus_per_task: int\r\n", + "# :param cpus_per_task: allow for multiple cpus per task, i.e,.\r\n", + "# multithreaded jobs\r\n", + "# :type cluster: str\r\n", + "# :param cluster: cluster to submit jobs to. Available are Maui and\r\n", + "# Mahuika\r\n", + "# :type partition: str\r\n", + "# :param partition: partition of the cluster to submit jobs to.\r\n", + "# :type ancil_cluster: str\r\n", + "# :param ancil_cluster: name of the ancilary cluster used for pre-\r\n", + "# post-processing tasks.\r\n", + "# :type ancil_partition: name of the partition of the ancilary cluster\r\n", + "# :type ancil_tasktime: int\r\n", + "# :param ancil_tasktime: Tasktime in minutes for pre and post-processing\r\n", + "# jobs submitted to Maui ancil.\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n", + "ntask: 1\r\n", + "nproc: 1\r\n", + "log_level: DEBUG\r\n", + "verbose: False\r\n", + "title: scratch\r\n", + "mpiexec: None\r\n", + "ntask_max: 100\r\n", + "walltime: 10\r\n", + "tasktime: 1\r\n", + "environs: SLURM_MEM_PER_CPU\r\n", + "slurm_args: None\r\n", + "partition: nesi_research\r\n", + "account: None\r\n", + "cluster: maui\r\n", + "cpus_per_task: 1\r\n", + "ancil_cluster: maui_ancil\r\n", + "ancil_partition: nesi_prepost\r\n", + "ancil_tasktime: 1\r\n" + ] + } + ], + "source": [ + "! head -235 parameters.yaml | tail -n 110 " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 'Check'ing parameter validity\n", + "\n", + "Most of the default values should be okay for our purposes, but it's up the User to read the docstrings and determine if any of the default values should be changed. If we run `seisflows check` we can check if any of our parameters are incorrectly set." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "================================================================================\r\n", + " PARAMETER ERRROR \r\n", + " //////////////// \r\n", + "System 'Maui' requires parameter 'account'\r\n", + "================================================================================\r\n" + ] + } + ], + "source": [ + "! seisflows check" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `Maui` System check function has told us that it requires that the parameter `account` be set. Note that these requirements will change between different clusters, which dictate different SLURM parameters when submitting jobs. We can specify the account parameter using the `seisflows par` command." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "account: null -> gns03247\r\n" + ] + } + ], + "source": [ + "! seisflows par account gns03247" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "! seisflows check" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `seisflows check` function has passed and we have succesfully swapped out our System module with the `Maui` child class. Under the hood, this class should take care of all the required interactions between SeisFlows and the compute node. Now all that is left to do is to run `seisflows submit`, which should submit the master job to the system and run our inversion on compute nodes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## TestFlow: Live testing SeisFlows on System\n", + "\n", + "While developing, debugging or testing SeisFlows on System, it is not ideal to submit simulation-based workflows, as these eat large amounts of computational resources and may introduce problems of there own. \n", + "\n", + "Here we introduce 'TestFlow', a SeisFlows workflow that runs simple test functions on a cluster. This allows Users to check if SeisFlows can appropriately interact with the HPC system with tasks like submitting jobs, monitoring the job queue and catching failing jobs. \n", + "\n", + "Below we show how to set up TestFlow for our test bed HPC, Maui. First we generate a template parameter file and set the modules appropriately." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shell-init: error retrieving current directory: getcwd: cannot access parent directories: No such file or directory\n", + "/home/bchow/Work/scratch\n" + ] + } + ], + "source": [ + "# This is an empty working directory\n", + "%rm -r /home/bchow/Work/scratch \n", + "%mkdir /home/bchow/Work/scratch \n", + "%cd /home/bchow/Work/scratch " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "creating parameter file: parameters.yaml\r\n" + ] + } + ], + "source": [ + "# Generate a template parameter file\n", + "! seisflows setup -f" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "workflow: forward -> test_flow\n", + "system: workstation -> maui\n", + "solver: specfem2d -> null\n", + "preprocess: default -> null\n", + "optimize: gradient -> null\n" + ] + } + ], + "source": [ + "# Set the modules appropriately\n", + "! seisflows par workflow test_flow\n", + "! seisflows par system maui # we want to test SeisFlows on Maui\n", + "! seisflows par solver null # currently test_flow does not test solver\n", + "! seisflows par preprocess null # currently test_flow does not test preprocess\n", + "! seisflows par optimize null # currently test_flow does not test optimize" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# Dynamically fill out the parameter file\n", + "! seisflows configure" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# =============================================================================\r\n", + "#\r\n", + "# TestFlow Workflow\r\n", + "# -------------\r\n", + "# Test individual sub-modules in a 'live' testing environment in order to\r\n", + "# ensure SeisFlows works appropriately given an established system and solver.\r\n", + "#\r\n", + "# .. note::\r\n", + "# You do not need to set System parameters `ntask`, `nproc`, `tasktime`,\r\n", + "# `walltime`. These will be overwritten by the setup task.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "#\r\n", + "# \r\n", + "# =============================================================================\r\n" + ] + } + ], + "source": [ + "! head -48 parameters.yaml | tail -n 16" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see above, the `TestFlow` workflow does not require any input parameters, and will additionally automatically set some key `System` parameters to ensure that these tests are lightweight to avoid long queue times. Under the hood the `TestFlow` workflow will:\n", + "\n", + "1) Submit an array job to the system to test job submission capabilities \n", + "2) Submit a single job to the system which is intended to fail, this tests job queue monitoring as well as failed job catching.\n", + "\n", + "Developers who are implementing new `System` classes (e.g., for new clusters), can use TestFlow as foundation for their development and debugging sessions. To run the `TestFlow` workflow you just need to run `seisflows submit`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "! seisflows submit" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/notebooks/sflog.txt b/docs/notebooks/sflog.txt deleted file mode 100644 index e69de29b..00000000 diff --git a/docs/notebooks/specfem2d_example.ipynb b/docs/notebooks/specfem2d_example.ipynb index 5f5457ca..3a85c76b 100644 --- a/docs/notebooks/specfem2d_example.ipynb +++ b/docs/notebooks/specfem2d_example.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Specfem2D workstation example\n", + "# Specfem2D Workstation Example\n", "\n", "To demonstrate the inversion capabilities of SeisFlows, we will run a __Specfem2D synthetic-synthetic example__ on a __local machine__ (tested on a Linux workstation running CentOS 7, and an Apple Laptop running macOS 10.14.6). Many of the setup steps here may be unique to our OS and workstation, but hopefully they may serve as templates for new Users wanting to explore SeisFlows. \n", "\n", @@ -27,7 +27,162 @@ "metadata": {}, "source": [ ".. warning:: \n", - " This example attempts to automatically download and compile SPECFEM2D. This step may fail if you are software required by SPECFEM2D, there are issues with the SPECFEM2D repository itself, or the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem when prompted." + " If you do not have a compiled version of SPECFEM2D, then this example will attempt to automatically download and compile SPECFEM2D. This step may fail if you do not have software required by SPECFEM2D, if there are issues with the SPECFEM2D repository itself, or if the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem using the -r or --specfem2d_repo flags (shown below)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example \\#1\n", + "Example \\#1 runs a 2 iteration inversion using SPECFEM2D, the default preprocessing module and a gradient descent optimization algorithm." + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " Example number 1 is meant to FAIL during the line search of Iteration #2, after exceeding the maximum allowable line search step count. This is meant to illustrate line search behavior and allow the User to explore a working directory mid-workflow." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 example: ex1_specfem2d_workstation_inversion\n", + "\n", + " @@@@@@@@@@ \n", + " .@@@@. .%&( %@. \n", + " @@@@ @@@@ &@@@@@@ ,%@ \n", + " @@@@ @@@, /@@ @ \n", + " @@@ @@@@ @@@ @ \n", + " @@@@ @@@@ @@@ @ @ \n", + " @@@ @@@@ ,@@@ @ @ \n", + " @@@@ @@@@ @@@@ @@ @ @\n", + " @@@@ @@@@@ @@@@@ @@@ @@ @\n", + " @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @\n", + " @@@@ @@@@@@ @@@& @@@ @ \n", + " @@@@@ @@@@@@@@ %@@@@# @@ \n", + " @@@@# @@@@@@@@@@@@@@@@@ @@ \n", + " &@@@@@ @@@@( @@& \n", + " @@@@@@@ /@@@@ \n", + " @@@@@@@@@@@@@@@@@\n", + " @@@@@@@@@@ \n", + "\n", + "\n", + "================================================================================\n", + " SEISFLOWS EXAMPLE 1 \n", + " /////////////////// \n", + "This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to\n", + "assess misfit between two homogeneous halfspace models with slightly different\n", + "velocities. [3 events, 1 station, 2 iterations]. The inversion is expected to\n", + "fail after the 5th line search step count of the 2nd iteration. The tasks\n", + "involved include:\n", + "\n", + "1. (optional) Download, configure, compile SPECFEM2D\n", + "2. Set up a SPECFEM2D working directory\n", + "3. Generate starting model from Tape2007 example\n", + "4. Generate target model w/ perturbed starting model\n", + "5. Set up a SeisFlows working directory\n", + "6. Run an inversion workflow\n", + "================================================================================\n" + ] + } + ], + "source": [ + "! seisflows examples 1 # print example help dialogue" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can either setup and run the example in separate tasks using the `examples setup` and `submit` commands. or directly run the example after setup using the `examples run` command. Use the `-r` or `--specfem2d_repo` flag to point SeisFlows at an existing SPECFEM2D/ repository (with compiled binaries). If not given, SeisFlows will automatically download, configure and compile SPECFEM2D in your current working directory." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "! seisflows examples setup 1 -r path/to/specfem2d\n", + "! seisflows submit\n", + "# The above commands are the same as the below\n", + "! seisflows examples run 1 --specfem2d_repo path/to/specfem2d" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example \\#2\n", + "Example \\#2 runs a 1 iteration inversion using SPECFEM2D, the Pyaflowa preprocessing module and an L-BFGS optimization algorithm. It successfully completes the line search and is meant to illustrate the output of the Pyaflowa preprocessing module." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 example: ex2_specfem2d_workstation_inversion_w_pyatoa\n", + "\n", + " @@@@@@@@@@ \n", + " .@@@@. .%&( %@. \n", + " @@@@ @@@@ &@@@@@@ ,%@ \n", + " @@@@ @@@, /@@ @ \n", + " @@@ @@@@ @@@ @ \n", + " @@@@ @@@@ @@@ @ @ \n", + " @@@ @@@@ ,@@@ @ @ \n", + " @@@@ @@@@ @@@@ @@ @ @\n", + " @@@@ @@@@@ @@@@@ @@@ @@ @\n", + " @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @\n", + " @@@@ @@@@@@ @@@& @@@ @ \n", + " @@@@@ @@@@@@@@ %@@@@# @@ \n", + " @@@@# @@@@@@@@@@@@@@@@@ @@ \n", + " &@@@@@ @@@@( @@& \n", + " @@@@@@@ /@@@@ \n", + " @@@@@@@@@@@@@@@@@\n", + " @@@@@@@@@@ \n", + "\n", + "\n", + "================================================================================\n", + " SEISFLOWS EXAMPLE 2 \n", + " /////////////////// \n", + "This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to\n", + "assess misfit between a homogeneous halfspace and checkerboard model using\n", + "Pyatoa for misfit quantification [2 events, 5 stations, 1 iterations]. The tasks\n", + "involved include:\n", + "\n", + "1. (optional) Download, configure, compile SPECFEM2D\n", + "2. Set up a SPECFEM2D working directory\n", + "3. Generate starting model from Tape2007 example\n", + "4. Generate target model w/ perturbed starting model\n", + "5. Set up a SeisFlows working directory\n", + "6. Run an inversion workflow. The line search is expected to attempt 4 evaluations (i01s04)\n", + "================================================================================\n" + ] + } + ], + "source": [ + "! seisflows examples 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can run the example with the same command as shown for Example 1:" ] }, { @@ -36,7 +191,7 @@ "metadata": {}, "outputs": [], "source": [ - "! seisflows examples run 1" + "! seisflows examples run 2 -r path/to/specfem2d" ] }, { @@ -46,7 +201,7 @@ "--------------\n", "## Option 2: Manual run\n", "\n", - "The notebook below details a walkthrough of the automated run shown above. This is meant for those who want to understand what is going on under the hood. You are welcome to follow along on your workstation. The following Table of Contents outlines the steps we will take in this tutorial:\n", + "The notebook below details a walkthrough of Example \\#1 shown above. This is meant for those who want to understand what is going on under the hood. You are welcome to follow along on your workstation. The following Table of Contents outlines the steps we will take in this tutorial:\n", "\n" ] }, diff --git a/docs/notebooks/working_directory.ipynb b/docs/notebooks/working_directory.ipynb index ec727e6a..521d84e8 100644 --- a/docs/notebooks/working_directory.ipynb +++ b/docs/notebooks/working_directory.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Working Directory Structure" + "# Working Directory" ] }, { @@ -616,7 +616,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -630,7 +630,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.12" + "version": "3.7.6" } }, "nbformat": 4, diff --git a/docs/specfem2d_example.rst b/docs/specfem2d_example.rst index 81bc7477..25c9ae46 100644 --- a/docs/specfem2d_example.rst +++ b/docs/specfem2d_example.rst @@ -1,4 +1,4 @@ -Specfem2D workstation example +Specfem2D Workstation Example ============================= To demonstrate the inversion capabilities of SeisFlows, we will run a @@ -26,22 +26,146 @@ and compile SPECFEM2D, (2) setup a SPECFEM2D working directory to generate initial and target models, and (3) Run a SeisFlows inversion. .. warning:: - This example attempts to automatically download and compile SPECFEM2D. This step may fail if you are software required by SPECFEM2D, there are issues with the SPECFEM2D repository itself, or the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem when prompted. + If you do not have a compiled version of SPECFEM2D, then this example will attempt to automatically download and compile SPECFEM2D. This step may fail if you do not have software required by SPECFEM2D, if there are issues with the SPECFEM2D repository itself, or if the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem using the -r or --specfem2d_repo flags (shown below). + +Example #1 +~~~~~~~~~~ + +Example #1 runs a 2 iteration inversion using SPECFEM2D, the default +preprocessing module and a gradient descent optimization algorithm. + +.. note:: + Example number 1 is meant to FAIL during the line search of Iteration #2, after exceeding the maximum allowable line search step count. This is meant to illustrate line search behavior and allow the User to explore a working directory mid-workflow. + +.. code:: ipython3 + + ! seisflows examples 1 # print example help dialogue + + +.. parsed-literal:: + + 1 example: ex1_specfem2d_workstation_inversion + + @@@@@@@@@@ + .@@@@. .%&( %@. + @@@@ @@@@ &@@@@@@ ,%@ + @@@@ @@@, /@@ @ + @@@ @@@@ @@@ @ + @@@@ @@@@ @@@ @ @ + @@@ @@@@ ,@@@ @ @ + @@@@ @@@@ @@@@ @@ @ @ + @@@@ @@@@@ @@@@@ @@@ @@ @ + @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @ + @@@@ @@@@@@ @@@& @@@ @ + @@@@@ @@@@@@@@ %@@@@# @@ + @@@@# @@@@@@@@@@@@@@@@@ @@ + &@@@@@ @@@@( @@& + @@@@@@@ /@@@@ + @@@@@@@@@@@@@@@@@ + @@@@@@@@@@ + + + ================================================================================ + SEISFLOWS EXAMPLE 1 + /////////////////// + This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to + assess misfit between two homogeneous halfspace models with slightly different + velocities. [3 events, 1 station, 2 iterations]. The inversion is expected to + fail after the 5th line search step count of the 2nd iteration. The tasks + involved include: + + 1. (optional) Download, configure, compile SPECFEM2D + 2. Set up a SPECFEM2D working directory + 3. Generate starting model from Tape2007 example + 4. Generate target model w/ perturbed starting model + 5. Set up a SeisFlows working directory + 6. Run an inversion workflow + ================================================================================ + + +You can either setup and run the example in separate tasks using the +``examples setup`` and ``submit`` commands. or directly run the example +after setup using the ``examples run`` command. Use the ``-r`` or +``--specfem2d_repo`` flag to point SeisFlows at an existing SPECFEM2D/ +repository (with compiled binaries). If not given, SeisFlows will +automatically download, configure and compile SPECFEM2D in your current +working directory. + +.. code:: ipython3 + + ! seisflows examples setup 1 -r path/to/specfem2d + ! seisflows submit + # The above commands are the same as the below + ! seisflows examples run 1 --specfem2d_repo path/to/specfem2d + +Example #2 +~~~~~~~~~~ + +Example #2 runs a 1 iteration inversion using SPECFEM2D, the Pyaflowa +preprocessing module and an L-BFGS optimization algorithm. It +successfully completes the line search and is meant to illustrate the +output of the Pyaflowa preprocessing module. + +.. code:: ipython3 + + ! seisflows examples 2 + + +.. parsed-literal:: + + 2 example: ex2_specfem2d_workstation_inversion_w_pyatoa + + @@@@@@@@@@ + .@@@@. .%&( %@. + @@@@ @@@@ &@@@@@@ ,%@ + @@@@ @@@, /@@ @ + @@@ @@@@ @@@ @ + @@@@ @@@@ @@@ @ @ + @@@ @@@@ ,@@@ @ @ + @@@@ @@@@ @@@@ @@ @ @ + @@@@ @@@@@ @@@@@ @@@ @@ @ + @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @ + @@@@ @@@@@@ @@@& @@@ @ + @@@@@ @@@@@@@@ %@@@@# @@ + @@@@# @@@@@@@@@@@@@@@@@ @@ + &@@@@@ @@@@( @@& + @@@@@@@ /@@@@ + @@@@@@@@@@@@@@@@@ + @@@@@@@@@@ + + + ================================================================================ + SEISFLOWS EXAMPLE 2 + /////////////////// + This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to + assess misfit between a homogeneous halfspace and checkerboard model using + Pyatoa for misfit quantification [2 events, 5 stations, 1 iterations]. The tasks + involved include: + + 1. (optional) Download, configure, compile SPECFEM2D + 2. Set up a SPECFEM2D working directory + 3. Generate starting model from Tape2007 example + 4. Generate target model w/ perturbed starting model + 5. Set up a SeisFlows working directory + 6. Run an inversion workflow. The line search is expected to attempt 4 evaluations (i01s04) + ================================================================================ + + +You can run the example with the same command as shown for Example 1: .. code:: ipython3 - ! seisflows examples run 1 + ! seisflows examples run 2 -r path/to/specfem2d -------------- Option 2: Manual run -------------------- -The notebook below details a walkthrough of the automated run shown -above. This is meant for those who want to understand what is going on -under the hood. You are welcome to follow along on your workstation. The -following Table of Contents outlines the steps we will take in this -tutorial: +The notebook below details a walkthrough of Example #1 shown above. This +is meant for those who want to understand what is going on under the +hood. You are welcome to follow along on your workstation. The following +Table of Contents outlines the steps we will take in this tutorial: .. warning:: Navigation links will not work outside of Jupyter. Please use the navigation bar to the left. diff --git a/docs/working_directory.rst b/docs/working_directory.rst index 341e7036..a370b6c5 100644 --- a/docs/working_directory.rst +++ b/docs/working_directory.rst @@ -1,5 +1,5 @@ -Working Directory Structure -=========================== +Working Directory +================= SeisFlows sets it's own working directory when executing a workflow. Below we explore the working directory set up by the `SPECFEM2D-workstation example `__. Working directories may change slightly depending on the chosen workflow, but will more or less follow the same structure. diff --git a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py index ea852341..fcae1abf 100644 --- a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py @@ -150,7 +150,7 @@ def finalize_specfem2d_par_file(self): "4. Generate target model w/ perturbed starting model", "5. Set up a SeisFlows working directory", f"6. Run an inversion workflow. The line search is expected to " - f"attempt 4 evaluations (i01s04)"], + f"attempt 2 evaluations (i01s02)"], header="seisflows example 2", border="=") ) @@ -161,4 +161,4 @@ def finalize_specfem2d_par_file(self): if len(sys.argv) > 2: _, _, specfem2d_repo = sys.argv sfex2d = SFPyatoaEx2D(specfem2d_repo=specfem2d_repo) - sfex2d.main() \ No newline at end of file + sfex2d.main() diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index ece6a636..13fc1985 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -91,7 +91,7 @@ def define_dir_structures(cwd, specfem2d_repo, ex="Tape2007"): :type ex: str :type ex: The name of the example problem inside SPECFEM2D/EXAMPLES """ - if not specfem2d_repo: + if not os.path.exists(specfem2d_repo): print(f"No existing SPECFEM2D repo given, default to: " f"{cwd}/specfem2d") specfem2d_repo = os.path.join(cwd, "specfem2d") @@ -127,7 +127,7 @@ def download_specfem2d(self): Last successfully tested 4/28/22 """ if not os.path.exists(self.sem2d_paths.repo): - cmd = ("git clone --recursive --branch devel --depth=1" + cmd = ("git clone --recursive --branch devel --depth=1 " "https://github.com/geodynamics/specfem2d.git") print(f"Downloading SPECFEM2D with command: {cmd}") diff --git a/seisflows/system/slurm.py b/seisflows/system/slurm.py index ddb1a883..a7d182e1 100644 --- a/seisflows/system/slurm.py +++ b/seisflows/system/slurm.py @@ -43,7 +43,7 @@ class Slurm(Cluster): """ System Slurm - ------------------ + ------------ Interface for submitting and monitoring jobs on HPC systems running the Simple Linux Utility for Resource Management (SLURM) workload manager. diff --git a/seisflows/workflow/test_flow.py b/seisflows/workflow/test_flow.py index 744a10c2..4cea0c73 100644 --- a/seisflows/workflow/test_flow.py +++ b/seisflows/workflow/test_flow.py @@ -17,7 +17,7 @@ class TestFlow: """ TestFlow Workflow - ------------- + ----------------- Test individual sub-modules in a 'live' testing environment in order to ensure SeisFlows works appropriately given an established system and solver. From 32a5d47878b494c7f31be4d1ba177a1c926d0d48 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 24 Aug 2022 10:24:10 -0800 Subject: [PATCH 138/195] unpinning lowest scipy version due to Conda UnsatisfiedError package dependency conflicts during requirements installation --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 21116deb..586b5ccc 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,6 @@ obspy>=1.3.0 pyyaml>=5.3.1 -scipy>=1.8.0,<1.9.0 # scipy/obspy hanning window rename error +scipy<1.9.0 # scipy/obspy hanning window rename error @ 1.9.0 IPython>=7.31.1 dill>=0.3.5.1 pytest>=7.1.2 From a418d41b8d0d041d265645dccd9fd5d50f38bfc0 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 24 Aug 2022 16:48:38 -0800 Subject: [PATCH 139/195] extended the seisflows containers docs page with working examples for running seisflows with docker, including images of the jupyterhub interface. (#133) --- docs/containers.rst | 161 +++++++++++++++++-------- docs/extending.rst | 79 ++++++++++++ docs/images/container_1_jupyterhub.png | Bin 0 -> 144148 bytes docs/images/container_2_example.png | Bin 0 -> 293353 bytes 4 files changed, 188 insertions(+), 52 deletions(-) create mode 100644 docs/images/container_1_jupyterhub.png create mode 100644 docs/images/container_2_example.png diff --git a/docs/containers.rst b/docs/containers.rst index d725d46e..350ab5bc 100644 --- a/docs/containers.rst +++ b/docs/containers.rst @@ -16,91 +16,145 @@ on high performance computers using .. note:: The `Pyatoa` container is shipped with the latest versions of `SeisFlows `__, - `Pyatoa `__, + `Pyatoa `__, and `PySEP `__. The remainder of this documentation page assumes you are familiar with Docker -and containers. To learn more about Docker and containers you can visit: +and containers. + +To learn more about Docker and containers, see: https://www.docker.com/resources/what-container/ -To install Docker on your workstation, visit: +For instructions to install Docker on your workstation, visit: https://docs.docker.com/get-docker/ Workstation example with Docker ------------------------------- -Here we will step through how running the -`SeisFlows-SPECFEM2D `__ example using the available -Docker image. - -To get the latest version of the `Pyatoa` Docker image, run: +Here we will step through how to run the +`SeisFlows-SPECFEM2D `__ example using Docker. +First we need to get the latest version of the `Pyatoa` Docker image: .. code-block:: bash - docker pull ghcr.io/seisscoped/pyatoa:nightly + docker pull ghcr.io/seisscoped/pyatoa:latest + +.. note:: + These docs were run using Docker image ID ``c57883926aae`` (last accessed + Aug. 24, 2022). If you notice that the docs page is out of date with respect + to the latest Docker image, please raise a + `SeisFlows GitHub issue `__. Their are two methods for running the SeisFlows example using this Docker image, -either through a `JupyterHub interface `__, or through -the command line. The former provides a graphical user interface that mimics -a virtual desktop for easier navigation, while the latter provides more -flexibility for scripting and using SeisFlows as a research tool. +either 1) through a `JupyterHub interface `__, or +2) via the command line. The former provides a graphical user interface that +mimics a virtual desktop for easier navigation, while the latter provides a +push-button approach. From JupyterHub ^^^^^^^^^^^^^^^ -We can run SeisFlows through JupyterHub by running through a port: +We can run SeisFlows through JupyterHub by opening the container through a port: .. code-block:: bash - docker run -p 8888:8888 ghcr.io/seisscoped/pyatoa:nightly + docker run -p 8888:8888 ghcr.io/seisscoped/pyatoa:latest -To open the running JupyterHub instance, open the URL that is pasted to stdout -in your favorite web browser. This will likely look something like -http://127.0.0.1:8888/lab?token=xxx where xxx is your unique token +To access the JupyterHub instance, open the URL that was output to the display +in your favorite web browser. The URL will likely look something like +http://127.0.0.1:8888/lab?token=??? where '???' is a unique token -Once you have opened the JupyterHub instance, you should see a graphical -user interface. The Pyatoa, PySEP and SeisFlows repositories will be downloaded -and navigable in the file system on the left hand side of the window. +Within the JupyterHub instance, you will be greeted with a graphical +user interface (see below). The Pyatoa, PySEP and SeisFlows repositories are +navigable in the file system on the left-hand side of the window. -From inside the JupyterHub instance, click the 'Terminal' icon to open up a -terminal window, and run the following example command. Note, it's best to run -the example in a new directory to avoid muddling up the home directory. +.. image:: images/container_1_jupyterhub.png + :align: center +| +From inside the JupyterHub instance, click the `Terminal` icon (highlighted red +above) to open up a terminal window. Using the terminal we will run our example +in an empty directory to avoid muddling up the home directory. .. code-block:: bash + # From inside the JupyterHub terminal mkdir sf_sem2d_example cd sf_sem2d_example seisflows examples run 2 -This example will download, configure and compile SPECFEM2D into your +.. image:: images/container_2_example.png + :align: center +| +This example will download, configure and compile SPECFEM2D within your JupyterHub instance, and then run a SeisFlows-Pyatoa-SPECFEM2D inversion -problem. +problem. See `the SPECFEM2D example docs page `__ +for a more thorough explanation of what's going on under the hood. + +.. warning:: + Once you close the JupyterHub instance, all progress you've made since + opening it will be lost. If you would like to save your progress, you can + use the ``--mount`` command to mount your local filesystem inside the + container. + +Aside: Mounting a local filesystem +""""""""""""""""""""""""""""""""""" + +By default, JupyterHub does not provide explicit access to your local +filesystem. This is not ideal as we would usually like to save/view results. So +we often provide the container access to the local filesystem using the +``--mount`` flag. + +For example, if you already have SPECFEM2D downloaded and compiled on your local +filesystem, you can mount it to the container to avoid having to redo this +action. Or, as in the following code snippet, we bind our local filesystem's +working directory (WORKDIR) into the containers filesystem as +*/home/scoped/work* to save results. + +See the `Docker bind mounts `__ +documentation for more information. + +.. code-block:: bash + + WORKDIR=/Users/Chow/Work/scratch + docker run -p 8888:8888 \ + --mount type=bind,source=${WORKDIR},target=/home/scoped/work \ + ghcr.io/seisscoped/pyatoa:latest From the command line ^^^^^^^^^^^^^^^^^^^^^ -.. warning:: - Command line implementation does not currently work. - -To run the SeisFlows SPECFEM2D example from the command line, we simply need -to point Docker to the image we just downloaded, and call the SeisFlows command -line tool. To run the help message: +Running the container from the command line is much simpler. To print the +SeisFlows help message, we simply have to run the following: .. code-block:: bash - docker run ghcr.io/seisscoped/pyatoa:nightly seisflows -h + docker run ghcr.io/seisscoped/pyatoa:latest seisflows -h -Running the example should be as easy as: +The following code snippet will run a SeisFlows-Pyatoa-Specfem2D example. +The extra fluff in the command allows the container to save files to your +computer while it runs the example. .. code-block:: bash - docker run ghcr.io/seisscoped/pyatoa:nightly seisflows examples run 2 + WORKDIR=/Users/Chow/Work/scratch # choose your own directory here + cd ${WORKDIR} + docker run \ + --workdir $(pwd) \ + --mount type=bind,source=$(pwd),target=$(pwd), + ghcr.io/seisscoped/pyatoa:nightly \ + seisflows examples run 2 -In the above example, SeisFlows automatically identifies the SPECFEM2D -installation within the Docker image and uses this as the external numerical -solver. All results will be output to your current working directory. +In the above example, we set the working directory (-w/--workdir) to the +current working directory (on the local filesystem). We also mount the current +working directory inside the container (--mount), meaning the container has +access to our local filesystem for reading/writing. We then use the Docker +image to run a SeisFlows-Pyatoa-Specfem2D example. Outputs of the example will +be written into the working directory (WORKDIR). + +See `the SPECFEM2D example docs page `__ +for a more thorough explanation of what's going on under the hood. HPC example with Apptainer/Singularity @@ -118,20 +172,21 @@ Relevant Links: * Singularity on Chinook: https://uaf-rcs.gitbook.io/uaf-rcs-hpc-docs/third-party-software/singularity -* Singularity on TACC: - https://containers-at-tacc.readthedocs.io/en/latest/singularity/ -01.singularity_basics.html - +* Singularity at TACC: + https://containers-at-tacc.readthedocs.io/en/latest/singularity/01.singularity_basics.html +* Singularity on Maui: + https://support.nesi.org.nz/hc/en-gb/articles/360001107916-Singularity .. note:: - This section was written working on TACC's Frontera, a SLURM based HPC. + This section was written while working on TACC's Frontera, a SLURM system. Instructions may differ depending on your Systems setup and workload - manager. Because Singularity cannot be run on the Login nodes, the following - code blocks are run in the `idev `__ interactive - environment. + manager. Because Singularity cannot be run on the login nodes at TACC, the + following code blocks are run in the `idev `__ + interactive environment. -To download the required image on your system: +To download the required image on your system, we first need to load the +singularity module, and then use a familiar ``pull`` command. .. code-block:: bash @@ -139,15 +194,17 @@ To download the required image on your system: # module load singularity # on UAF Chinook singularity pull seisflows.sif docker://ghcr.io/seisscoped/pyatoa:nightly -To run the SeisFlows help message +We have now downloaded our image as a `.sif` file. To use the image to run the +SeisFlows help message: .. code-block:: bash singularity run seisflows.sif seisflows -h -To set your system to use Singularity, you just need to append '-singularity' to -an existing system subclass in the SeisFlows parameter file. For example, since -we are running on Frontera, we set our system to 'frontera-singularity'. +To get SeisFlows to use your system's Singularity (if supported), you just need +to append '-singularity' to an existing system subclass in the SeisFlows +parameter file. For example, since we are running on Frontera, we set our +system to 'frontera-singularity'. .. code-block:: bash diff --git a/docs/extending.rst b/docs/extending.rst index 48bccc2a..286a2bfe 100644 --- a/docs/extending.rst +++ b/docs/extending.rst @@ -39,3 +39,82 @@ SPECFEM2D/3D/3D_GLOBE. To allow Seisflows to work with other solvers, one would need to write a new Base class that defines SeisFlows’ interaction behavior with this solver. + +Setting up 'Cluster' System sub-classes +----------------------------------------- + +In this section, we outline how various Cluster-derived System sub-classes +are created. Although the tasks performed here will not translate one-to-one +for other systems, we hope they serve as a roadmap for setting up SeisFlows on +other HPC systems. + +Because many HPC systems have their own unique caveats, it is standard practice +to trial and error our way into a working sub-class. + +.. note:: + It is assumed that SeisFlows has been installed with the + ``pip install -e .`` command (develop mode). This ensures that any changes + to the codebase are immediately propagated into the SeisFlows executable. + +University of Alaska Fairbanks 'Chinook' +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Chinook is University of Alaska Fairbank's high performance computer. At the +time of writing (Aug. 24, 2022), it is running CentOS 6.10 and the SLURM +workload manager. + +Because Chinook is a SLURM-based system, we can derive our 'Chinook' class +based on the SLURM system class. In seisflows/system we create a new +Python file called 'chinook.py', which has a base template of: + +.. code:: python3 + + from seisflows.system.slurm import Slurm + + class Chinook(Slurm): + """ + Chinook System - UAF SLURM-based HPC + + Parameters + ========== + + Paths + ===== + + *** + """ + __doc__ == Slurm.__doc__ + __doc__ + + def __init__(self): + """Chinook intitiation""" + super().__init__() + + +The above code snippet is boilerplate code for any new SeisFlows class. We can +see that `Chinook` inherits base functionalities from `Slurm`, it defines some +boilerplate class docstring and appends it's docstring to the `Slurm` class +(required by ``seisflows configure``), and inherits the SLURM startup +procedure defined in __init__. + +.. note:: + Because of an outdated operating system, we cannot run the + SeisFlows directly from Chinook's Conda installation. We therefore have to + containerize the codebase and run SeisFlows through 'Singularity/Apptainer'. + +We can now set up a TestFlow workflow to see how the Chinook implementation +differs from the bog-standard SLURM impementation. + +.. code:: bash + + mkdir ${CENTER1}/scratch # CENTER1 is the Chinook work filesystem + cd ${CENTER1}/scratch + seisflows setup # create the parameters.yaml file + # Set the core SeisFlows modules + seisflows par workflow test_flow + seisflows par system chinook + seisflows par solver null + seisflows par preprocess null + seisflows par optimize null + + seisflows configure # set up the remainder of the parameter file + diff --git a/docs/images/container_1_jupyterhub.png b/docs/images/container_1_jupyterhub.png new file mode 100644 index 0000000000000000000000000000000000000000..5e9236a1bfc19b297824d67361990934846df3c4 GIT binary patch literal 144148 zcmZs@2O!n^|37|cYu$>Fv{2c}C=^=i5S5u-S(({;-R5mb9ib44?2)}kxd_=So9tco z_IteheDAI9|9?J%j`w+=_xtsF&d1~Nd_TM_dww&`E*cVvw3&S2tQ?6%{JQ4o`nCA+ zF*e2rKi1xmK7W?9Li{HvJIoXBY%sf^Vo4(HWF!7ZMV4dzhBwz)k!8-U>s`-CqF!6F zRH#lO?IV%To>H)D8g6xVDw|p<`raq3_Qg0hg}1E0H!6koDE$tLS5fH~m5ZL?*{&A!FuY9vpp-@h!V`^c+{7OAQ+NBznQmUTQSlq8oW2NkZJ z*27<}oH}(X>-O)bQKOXUaWZndaqoN_;5aI*tEabXLa*GPT}w+#^W1NT=5ZJ3B^K)( zEmq$yE5y!T%)WSteC5iOtVh2c<)-$uSO@3y%w*YMm#y)a`wNTR4Z|v$qk?1B>9J8# zt_mxwe)~X6Rp+uC6{qDwmi&btkqjF*8MMTz6oi zMJpn+Ir8EKUi%a#R{2I6%JB8v<)sCqo)Rxgh&Q)dq+*oP|KI(27GtSm^$y|m3RYH0 ztn5dQT;6f;qM54cN$ZRHJ5NSMYea3#zU5(aN73bzn&cmqH{vf)PMkbxKlR&{l2TdE z4_6o`He#C}>xB8NohXm-e=B~!A?xk8KvrGTEe(4w)hqOdnrW}xUHQ)^MLdgj;z&2~ z*`u#wZxZ*)sTBRJ;Kr4!S6?nJE$NB|#)@l=y}lLI{&D=~v8!~F+`WqbS*LLr!bPR1 zI-7T$;y$7$17m9+j!ag>2deWNvsbD#5oD60m~Ko{4o#qY;XL><;nH4DR*j2`Dnim3 zr6wDwsDHblYx)VozEt$jYqUq}#EV>n_GB&%ZSgXwmwq>xsyHxjqRXMynXvFaKqPeI zLvePaK11CR)h^ogtgF}mb{e-~I+BTy-)FrE#j)X*684hWVO_EuHtEyC8+H!G+!4jG zW0vx1Tz>i1oq0RSas?Z-BCvg$Cx1Ij9(U9y4$`vctf#Dp3G0m8eGYLQ+2^ZQc)XG= zlgoJ=Bg;@xjfjyTpKFmM;#aV`gM%5mb0Q# zl%ht4)s@FPxu573J!P)x3v`XuEAyo@3@j+afwYW_?BrcyPHB-!F%FF;TbM;c=s1-w zP(FVASes_vbt3MJdZS}oO^rMi6;-5KYV59Krk}6TUE4j>5EtjNG~bin1`kPcU2!32 z3}>*ZsH^*X^J?*scZu3Wm-z5%4VUxvWhcKsc=2UWf^O+fL%&t)w)EFr66dbhw#Z(b zs1Sej*I$*>Bh6mVo(1hVBpYs67nw0pE?O6<$Z0)PFJo$IS};BlQ1SBZ%v6JxQANPX z@yW?re9X0RYRC5Nw0rj8t4`Rx$H%OtTN3|WV>iEtWqR_@7r#0LpSCLyL{tfMo_-}K zCr6VM>*3+CjkMV9dFja?>iC|z6caUa_1r|?RPmv}3zXY;?%XONU6Yi&|9$tyuhY%9 zconWz7$zGIRKKIJB7lUEI;45CLq?iYjg}YZnlf$UIFzEV9w>TmHBep1pcJJfb4hHj zTQ^lD{>HudvW^dTCbGAfPmRsh$EX>VykMtUzy4a~IAc*|W#x%8&RQ;W?+QKk@{-4= zrs}?R=HF`ie&ND}BW;0~PJBNbznLU58goz3qWjb7btI3y;+n%n-41^}d{~8jdGYdP zzks-)pyI;JSOc*G*FI2ZPt~i@Y}&-7)K{+mIXT|4Pd4Ui{Ao>1%{4Tn(2x*@v3EQg z8MI{5d)D7p>K+0s!fR&m4Ua}+J%v~*US3{7qk67(Ys30zgNr_#%H;;lYF@dyxr4P4 zo?{~C7=t1&cdq1zyp!^>P@P_07~>QYQu_1HKX(aR=)~_yefI2+x%qhxTpMn$M|YJQ zJ&$_jU|kd&*?pJbQJ2L&k*tgvr&4cj_afNlAzA;+Fd9~aq52qy?&s$x5vV^kH~Ud> zhJ5;T!JX+?Il~YPk~X}WEtWa4F&YNiUw!-I(|x|IYu2nucY2LQ%_nL83FEn08FUKH zailldq*)1{RB~|0$XOT_eHRjPn1@I9%>7MO4O*_;d-nz&5T5QW^PB4N(UPLHxh$9j zhge;&@8l`4@fP?M}vyd7)NUv{j$wl+fkarc++-@nhp#Mv72os|=|1oHiJ z_axF~0c6n66br?X5AI!~qp?CJP2cX!TKA5O#K3g@-f|PZ=sqx(yCT+Z&2r$tlYv-` zOx(vA#YlxJzgsy(t|wQ|PYp4?IDOn)=A(^8Y(lM&Zaxga2S9~YTI^1lAzr6YK<*FC2mS&mXG37+P zvT>8t3`8Sl5vvP`tTk>_t60fK4Y7(hZoGZE=Ojn*9tqX=*ZyQ>7Z6ZbUS2L3pKG`8 zdmX8jn{z{3JK3;~!+p=mCf&zl6MYp-Bd%x8oO#`}kG@;vg!$LIE{osKGoP@#91#&w zXx^M;z;f)^u`ptRCYx{NMyMtm4ps#}s5u%{7r9k@@v@Mg%;sGJml2!&y;tV?0_TSl zD_F^`8P=Rt4GF2KsZB`+!Mr)Mr`g%rMQlg?%{5|G5+(7ENR`A;;tiwb+?8du$Mn43 ztk(UNAJ$J_s9v|%X&=sRGt$JqZ=VDoA74|pW9pVYC&J-@QP=bD(`??%9Us%?y0T<@ za{7z5WI-ZvA^Z35pEI>YvN37RP+Yflj{;VLnwpxHmNo>zIWvnsS}j#}!-fqsG&I#G zXIg@>j+`PQstBL_s#}T*3pqGAq}tlr2nV+M`uB#BwrsUbn~~~*$MlM+rmdxIOf-&~ zskeuRjZMD1KShMB?_EWT8CC{sR<91n{;i?0SLNDCd`i@IR6$OTf{P97=(r|$tL;RE z2{NpZX-oLamkh-ABc37Nd1u&;#o{RXq3op$?n zxgcwv8Ai+G8Ganjt(Ma7qvdi1K??CN7}0Ibx^+Vz?`>3tHM2%s3KW}f$X&LsQKxSh zUs9oM=a!e3Cv1dV4YN{+RA5J{xFl*bT={UvA%!Rq2O5I6c?ZAi~oPmaE@M z_w@AWF7}U=Af_c-4am*S%`sBtp>8$kDs(RtfxQ$O?VzPqFkamTVIa~ zqrRwq!pP4`mhlrRqa(G%YdN3k;cUH*e)wZ(r1L^ z!Ve7%4eX@Z`Jp)Jgms&=oTn5`+H+1eOmiy7*4|#Tk%o?gXG^)iaPX-+YuVY@3etQu zV!eiWa~I!s=09L+?(QBNi?eOBKcxJA7|Fk((4C2H=g!bq{Q4XS>=b{F7b8u{(ulS% z;^N|99lf8k7X4#v7DbY*vu@V5Fa1Uqm_$j+#g@GhciXHx3hD5+59? z5b<_tVa5pV<1pL#U}JJFl5aR-*!*bb*b84@4#arvMJ%^cbkSRcPhSB83aca2HD#(i z)DIUZSy@@NNR`xM3yBqCHQ2XX#?8q_%3j=RN{-XRd>kR0cOSpp?y?Zm(%Q;Kj!{dk z$D(^ZfBq);yho($Ymvfbq*3>Q)=XPb#RAXaH=N}0i3xeccBx6h`3musn|R?9`ogTa^$*`Fe4lIz+o< z#~ITu7x_#Zlat^7-oZ1|8NNv+QBMXDPF=qupbnkp3*5PGsW*{R%jqsKp@80Y!muqX zT{XoxqPtt?+}X2-Sy;}CG4$uUJ!X;J4#HTR ztSf8k+uOCUs@|+7EooN}1?KyMJ*;4vGOv!FqgXX)*bcy&YhV{ozFV&Tio$neR(Wzp zV56}RVe<$Ng;U+(7cxzng+|(Q+aug(-3eUj2W#0`K6N}oa=U%|cI+Sn>VWv~t47|@ z83wq_8=M^f#3Dr|SD`$a%3HNH&6w(H3zt^TiFR{-zcOE8%g`$_+}zw{>sL@=8dkkM zN95%A<@0-;Lkwy{=>~Vt&y4Ysr7m2!tf24$=YO*Ata)EoS8(}jQ6nsxcr(8w;ff_Mi(Mt(fwD>{2=H5DlD(1 z-P5D3L$stPPo7wb6ylu3B{Fz0k8mQqUwu2a=Bc6D)A#c2InHs#=Jz)-ew}m>Ul>l5 zyw;OF(^doPl0Mt9@U`HvL+>m7CzmzG+Oj7$j~zcANtT+9bP>*v^E-B{zVgi(Hu9~U zxls9Q$HU&gKT`IRkEMO)o{x`@*vg`1Scy?w_O$O#Zq<+{Pd33K`o9H;Y2c?qg^XJc1Gpr)^I8R=wi`7sgim-{^ zGQuxe4j)5s3tJ$cs!vy%Nklo#(3y)gX4IBtA9*$YEvutnKMb3xZa=SeqB^~BJ3Y(! zr&+@ev60U;J;uBl85vQ})J3Z#J{cN?(bxX9jU@?=hTNi|mSW6T$o#Jfx*4HEx3IMI z%se}lYh-{J?9l(_!MJ)Gf??PBSx)EusPUM|({8ozMg~y&2pCkex-;+*rPrgUPlZm? z6%f5`srNHsBJr(vidIc7dAU+8%`1Fwh1HQWAGxmEaHAdnP-|vteXK?lR()x<%OhiD zdBI(mNyzv}=!D_cff97&@9-z`biM1-Z-F{nb)W7MltM49jFXEk&uX)f`cYyND}cn( zlx`XJJpk6|j}mr&ahsAbvK`H=kXwreX9x(Zx&H^gZL4t+27JfxWIFm)nT7?tw2 z!>^B<--s>ofwR=0cct62CpIo;Udr>JjNIIKkL8Gdf8`sW&50L%1=y9F>kv8!C#2}8 zr=GLdJmx3&PRam17*@F^{7SIDcdL03GtI`0HNJvI=vTuLmc7{J4>pLQuZ%$dB&;z} z7p2^gWKi>Dp#q6wvV=2^A@J1}+ji&FnjE6hf>X1LiRFAzzCJlUt#tP6U7&~&h>?sF z%yhTVRvs?iqsJ_0s1Q3CfgqH_>UeG0OIefe^wp=%mtKq1tm{Jye_m#cvfOSPNZ#tMi{Br7*S5iSS$BTCr#{pjorB$q-~K&o5D*E9 z&7Mrz^2>Qu!ROf;T@}is=vuox#9gG}x( zJ=&aFaWxgGh3!TQ0n}dmaQlQ$L$r!KniX4`OFO+5#&X+r&0@5Ro=RRj$ju#db~TB4 zadGhlh4PlL**@`=DtaxaPTF0?#pZjT4ZjglZqO&dqxuNAe@0(`qrdmU!UBE&$!*)W zQ;alG_?YLQe&j(EVobhSb(&i>$t<0VpI;upu%vV^nv;x8BtRmbvVm*1peq+TUGQ|l zn^iGJRS}t$h$oA46S_ivb*M~PxO&4ERkzzYIu6w-Yt;egNHXt|9BE0HCu}=1g*@$D zZ&V*$^@xtsKeiFI2~&f1gxos|4NoyKvH$DOrm%5s&-#?VEHomHu{Cnerqc}C+uIKy zR35u+BHVhh;og~3k)H!j*jKOb)T$WsMymGq@llSQgEcDOyctel2I%3Q@y`9T*(3?7 zboz6%6*giTfc0V*ird4xc1ofYp6vCz)w@KUww{N!5OKTwK=JmKA#NGFK zL!vHDv1+NN0otl)J=F%w0LK|j4b+^M_U5W0&^XkUpYrq16c-m4Ze4y#qq3%F{q2yD z5ZZ9-sR;Qng?CbP$*JGHxKA=qSf{E>5rT3HSeVdf{VcVNKxb;&q-^jZuqX3&4cRGLh-FNn}|r0 zF6o=9YwG7Q=OMc#IeB^A_^aIm1I6w2|8B3_i7&=NWJ)7YhOM!7`h7KC>FkRcVt*!X z3}oN7ir6oEN5{T7ElsazniE^}D|Q+>KQ6G4*R0ep_kSMZbmj(PQg%;U|MlzF3nzi} zu@Pv3V6Qb&{N)A9)m$_j{QNa9bB1CwpF9$OD&Ze|K-*8qq#KbQO%|Dwa;trGQlD(N z>Pv>T(Y*%`m{y$U2f_?1gZ^Z7tcx*Hsq5E^?A?W49Bv(<5FzI<6qAaMh__g?Y8a)T zMY@cGgTtGr&%L~?H45h)0+h)VZ|~56la7(+J@ybi2%_)RaPSE}ihuKH*bF#F5$|KS zpC|=WvaM&(fDwHm0cODn*=*FKQ29UD<8XnDEiIrqwDsX|N`P^mlPh(rqz`x&htO-F(L9-?-(8afJ z9#sQRUpvQ}_x=sO!Attcf>XGbDC{pKWS}N2is<)ZAMX-0WT-)xSP*KVV16==3DuGT z;+KgTo-ge|>kc=S1sy3yTEmRjV|37DiIrSsOX?H6yPCOVVuJ zs;sK&i^e4kwQ<$W4_O8^2Vvi!0kW<>RRgB^y#=3|h;|t2?0gdz;2?GBMOXE^KRw^YuXpibt~UU&ZY!DY0zOlF_Tq+f;hhq+dcN@!|3HWaJ_g~x6n`A{sS5d6`EBE^>6qlC^ z#a0l}BBL$vQL}yP&8J5afMU0y&bxR2en~||#rg|7L#Bq&d#RU;qsqEsAfVse@cHva z;2BcLY2G?p83>9KTaOy>k)ikSa zmSonR>*^ZN93bwhiB{-XH1)OX;zPSD2rwqYtn+s1RL;t>qtC=G^ir(OsV!OdiKTNZ zixVDKV$w`oGeEIARjvDXb7=C631aX(s7^2C+~WDZFPEhJYGn;}G_xBu_#SAq1vU8E z;i!abSwFWQn+7<((E0WicGyal<|NtN;bt8HunVglL=)dYiWtap_niMG6k+u94 zCxXGxoC}kEU5$35E>Zsy%O<(2KvTSR;&{?5dZb>XK+?UJ@--4EU-B9&_#6T~%;hvZ z(}eS|T;wOZDc`$QRsACM#4mu!jx$hlYw`KQBBgega_p&H-T;NXCes<-#hyv3FZ(>F|HJO_sX2+*`; ztgj+4uB*s{695Y6m0Fnc)ec7+bn3}^WxEJ|2sxqW&P@q%w)rP8^#p;T)#e23$U%2pT zN|jFM_1kH5kW3W@1d@pw3TRle^MXy8zpy+IvU1C2zs`)q2JPHf?eLybpP|1W?f~>r znPorm#96BP{q_9Wyq|PGPd-!@&{}9Dgi$?yyZJqJ%{cL0q`bUpF;Iy<% zic8wW#C`RB z-mH06ni>EFL>jL#5i}QdAbCwrxF9_XnsrE^IO8~Q;514_*&%UYJg9_a-kezv%WcpP zbUsLSK*DAt69w_oOuN>N*ym_1MHHLoW^z}Y3l&)YD)=V#;X$_i=-0frQeRy~g z&tU}GEn$abd_&MWr!V?jC*@kFfx~bgcqi>c(9;fs5n%$zpr>QxYfHR1!&2K_)WCT@ zXGN)V5p-**bs51Br>A7A#6G5sw~iA~H`?we&pO``$^$7cj_+&s{u8Q5he=?CZ&9f$ zbc&OYdd2K(S7vdSa*I_z{)fS$Pr7i+fVpOg4U@*(kFKe$HhwjM_gZBs^3rF|GpUk! zT%Gp7biju8qe7JtQDbgV3v}TkZ{XcnpPvYt8|Y2fB^@IT1|8;%d;;z zFtM5v6?saSvlCz29zjtc+g0@0GAqZZ)}?s^u$)8-DC#~@wAVG7urHG?0GJ?FZ=zV6 zYg)oOU4tyLCQ``-xL=wAJgOH>lwzWvV9ls>sD4;s0E1a#i1w#NQFINi71bVst1;;9P*)&!i5Zml1m9kD8%15w>D(GdY0W4 zKn@Umya){3yUKzNJ7_iDO;!xQd0BBa3IODvvl6r^ z(1YBFxW`{7TgSl{@~JBGs-=7mA9X}egj6bL+hYFUyT{LUB+)(z9vTzeOp>BNH1t|S z_}r`K(lp7hixY33Xx>b*U15jU<#7_tln*M@Q1Dk$3Cj2VK{eE1O{@?x$Y7ZXO2o=a z;EoM*4;|^Jl*!B*yVSx=&Wl2~OQ`kGjTeItK!-{!Xu5?P$Ko;do(JX6b>)eoqyFA1 zHTBW_Zk1E-hElJ*(#uvj7()L;V5qJH23J74a1#MkAvzP(Euoo#(m?}lWF1^jTVcHu zVj$y@e~pB6Y>j6zt7n~IGTk|n*?4y`+PJ&lzZ4Y_dDJ>lE3WhD4^XX- zo@0^n5NKP3W7N~-(6nAggUCwo--Id!WCe)Z{C%w?cvuxGjvri;cU&Crou2|WbvDTG z2&p9~dA-EBN46;rQ-;n zCpTA|NYIrAjm%$79P;x;%SWtQS=FYr z^{i}cKwz9{wrmNV{~45j9NO@#*f6;X`}DhGd?;m-=CFJM6Gw(ldvO-I_hm_Q4{FY|l?|)*uF(RaBkfEh=bC8MgiN_WyoLk^IUILZITf@tSAx-+%r7 z$IGX$#wfiqpxX4?+Y-e$g#3ESkEn|eZGBynRTf4&bKbjLPlfT1?g(|p#M_ZCs%l0! zqPjHNHmxVAA1dY_y^bv?XoJ#_;on^ff)M1Di4YTuIkS^%NA%izduw95c7AkCi%wKg z8WAzA3i_r!znrJC_TNts*Wk7Tms+(lBl3#g-uD!#Vau-<<`$)Q^cDP9SLoHnCxzDE zh9bDuQmKpndI%}j7dBC*mq;wE0ogI8YMTB(M?AVsSdFo_=zo3au<(gzJ2+$C7=73zF?O}ach8>X9Nl<>$s2IT#pYy1{0Kl$BFUvtA57fpf4bMOUlc= zU%er@eKi8BqMBy5e-%~BjoqEOKxa?^eJU#IiyUJkfFF=;r5zdXo#re6cQ`g>+4JA| z=Z=Y}@~ON$<%cIxh963h(jW!D0=afo$x&V?y9ikWzYJ%Y5+PQIm@&OBj*$Te0*`4Z;Frho>5_lS$ zWZWo6s>3gwF=a3X`|}*Rv_tSWcX+G33niJ1yQ2^@a&d9Y?Y@fee#V4N;{LS zY!$bz4SD(S@ng=*vlaVAM0{}8h0bL!&kylb%z$DmpLmI)s2XjNC3h5% zcd?~Oc|n8fzYTJ_?6)u+ks#nZz8n-g-7-`izNOIUSy)&Elv?sg%gUC|tS~Bo|J$=i z!SWxYYdNtyw^h@$&0SB(4;2H30NA!suQoe#%O61mvcnABqM-LC`WvWvz0nz?{A2V8 zyZA~jsDuKrRt_%vwX2Kqth#MM_Q)8>@EAag{ZLd>La=(AP&N>yDnu$z7L;MCC<2v3 zineUsYAX^7g)G6>-@Ut(A&|Lq$VN%mAGF#!UDAap@n_KHP=1R+E-o*>r= zM9XL9MiHOmWdECH(@Ys`mHg?`x3_QKJ_*=n2wmn2r2KdpW8>%=KF68S7|`H^?gBe- z8OK2{6bYPU;Hl{7C+p9^ZI@;F! zpZlk=>*(njLhaO)VI8%{p?^O}k&Be<%mx4lbznun7-xL(k83nmLa0X~V!@0>+AH83?^v%d@xTJNryouNIrcnk%8K~Yf@v`FZG8mvW&Aah{s%!Od;^j@cL zf5s2@R|QLUbP;1TnVG$hUj}dYWB>|K zBP?ZM7Z5UbR@So=LW4JmbMbgIX4>B3*2t*6Ib#%m6@s5b2*F11tfn02%+cHx7wsi< z8ltT}YDqV*pIC-Wxh~t$mRt>#ix4^b6zx88&5cmPKr}W{_%kk=x{0qW%7e340&K_X zxV955wj6%FvRfB)C$V6KPnp%YBB?adUt+$%!Y4LoUJKC|c^C5&*RJhT-fXsU{iaQ| zcQ@={U2?TsQywd@*e9{RviwFogLY?ES69NwSTciahZNmRiR%_3PN9A8?(GdFG!5KQ z8ks3;H!%beh#U;CA*6c>__#aRH{`9GkS#YsGRaB^!6iv%sPKvK!s>XHPk;6j1r`#D z-cbdBw-QVQCavLe$a!UH=Euh!91P*-h1mzh#M;)A3jhAQA6&iHqB#O+4?o_e>9#NNlS)ghVKEmsrx3ypfQ1sE{fDL&b9L~AyR{{ zh?E5iTk7RB_e2YMS!x9Y1f&jMEi5Qttbt{4RSLn_f?vGAQV_&1Vs^#Ep8EIK&jjBa zxwn!2(d1*(slhrzFswcS^|0Z^Ky=(M#SpgnPFi$d@L6!`yhks9o{wCORz1MT9ua>k z&UJ~iVG)8nZ4qJN#-8jjkb3i27fX}oH)qxnYe5NtZws2Xd@-=cjrvD2Q0Gm}2QsWN zX;#B}s4o6fc$hk%3i>}0!GuN}qGQ2e7W%>LHQ&5I6LMP3UV3|@E+zzJ?%-Sx^V+oL zxF*E#0y&c8+f>t!s4~RrudqdTLeb}9Mbfhpm4EF%&)w(MtAR;B?Se;iin%V%%CDVG=v(HkxSk6k!oZ>9d+U&`OZVg$wys!!OOIttP*c%hM%gi%vc1m+@6>gwtaz)`EAa8LxcMx;J4 zF%_FdZE?00Ou3cD4XcXD`X4t}JhTl&W5EbLlb~V9`}gm+UlClFrnq|TT0<0MJU$vC zu7yt+A<5ORB(+d>@6Y>c3N?=8Y#eZ2Lh)tQ?mQE5qu>!>pJ?zNKKhv&>xyzk(rbbD zJf2iXePMEO1vnv(+TzY+_~Wh`h|F*>7yYq+*ZT79MPyA`0Hef2%(i9EVU28Jt^oq} z=9fPH{?Xmt-AubkFNV*ppwMTNA+poguSC{w642Epw{#b(oVdX^K8~|w%E9v? zhlPas+nuT0IEBU6L4X>2e77mY8)lgpR&sK7W>jyfCe&eMIau%{gm%4=&wP}hWkL%e z+uq1y;`o0cQ^JJ`L4DGZqetZs;46~Lfv6;*FeX<&+keKN+DZ8>p{kukYK}(W>{dM_ zDyl{(7+3+P$&QYWs$c#07A5$+`4{^x$KNQpVH*IH1Cu(V_KLdf8;0 zy%h1&`_g?;bBz}uZSM2<8crEs(X8l8)?*I{Qt~NOH1S2LXtdp&fv#f zCAydGq`$ej_3z!pG>&>_Zb%3#bPt&=Li!A27?gmp-2d1u&F6u)z$v*8tjqD2Qv5!8Z& zA{-48=&LBqF%hE;AclxBAO*zEbCQw(>jSFc{OY4DxM%lcZI!QW+aeISwEj28SqX_i zT(Mm)ROI0DpP;HBBn%)-E@A2AVNn>fGrhY)z_|c2)u;F%gN}wEVF*RrWr$~RwLkO; zs02iy>=RoU=4V-K0Brox^_NYqL9swEg1O7{QA7ntmP56&lUFkuA{I_Gl5mGQE!QQs z;yv?@i{Fcg1mfdG9d{_0I!Gt(o80zhlC;9MRirOxuAtH*=3tRTlkk}A#6y&`hEf%M`e@DIsna5 z?PK1Yo6&vH$zWZtz!plAJ-|i|5CcsReOdwWJGuBRU$%4z^CF-!G8UDODtEy@>XD0* zKG_sQ~L?i^9rpoFj;~va%SR zRMJ{Ezbfcu8Sirbv2&-M!VEzRLYPd`LUWvlr~Kv;q2WN|zm`_H47r1l-x9))+S=Nv zHf2axVvoO6MN>l^=QrWl3Gg)zx?Te2A?%wk7Y0WVXYQ^&76UdE0h1;H#aMNfijy<` zd=<^jY6#E-#YAvXJ&v(HDb?1W<~)>mPU=B2Hwk^60m?r_IPV%^X`-q^iad@xDL2T; z%yi5t`fTL1I}U0vr(pYuUIXx-=n2eJ0kl^bA)uzKKGGVsr_OWl?(BTtx03bGT6O3V z`a4aV*9d_pQmqw9Z2bHazH3NqmBZ6^sVHQ>Rn`AcZT+~GbJqCx0!Xzt)eCU(- z7QMvumU0jdP+8QV@+78^kW(UHi;`|cS;3PEdQvf`uZy@|J~l@QvoG(j?-DY830C37 zvuFD-%YeC=9+mI&prC!2A1ppK5b^^Wau{=DQUr|vNZHBB37U7GKJldVmWiL(l-ZKx zQH4Du(*K?dKxFTdk`fDFWz;Y$x?|n=LkR;F=WT~K ze-v;8wYhxAG&Opcy)&oOh&xwAq3LU?rqA)(rs=iG^ie6P*WzL-4Sn3sDZCYWxWUte zfg*8(`tGwoj`~0A_Fr0HnHlbV=Kt)~>Hv@AtD~J0bHf$O!_H47+w60DY%-T_FH-)(}f=+R&@0ALjX@aSqVysXPrNVazlT0 zba?n>P0awUMy-f#5hi1zBmjrpPxmB3`>llOlZn>{)_4TXHA^i#E9+__OVu zya?8XAdismBch`(0zv}hUCK%(lIh{YmoegnsoDLh&D=hvJq@|R61gQMQs>T{)0n(! zYjJr;@xRSrd85t91xo^vsN9} zK)!HcpWWtc3~ksGx>jN);?=9h>&=8mK#uWlnD-wy!Ow3SmpxS}G;D_sNmFp-!H9RX zWvt&jg>)fcp4(I*|J z(Gr}AjEftqi_ib~5h`Ab0&n%HR@YnZYg_>>B3gPW#i~cNw5Tg8D17O02@VeSf)*RF zQvI(0s(LNrj-sMsol)1wm-sVipGIxiuazd~s3^f=@YDC;r415HfTf@@;d^&wK?44; z$7S~V&bNEpIynVD(f)F4lm5*kqwhc8vNdT;I0wD%fRdKh=e>;o!A{rjLxZt-^JeB0 zvXoRcx;VPMn1m*h6*#x*>$$gYQ!6Sd*>G+Qid+5OK*f9ge_;Ng7^YiUS72FN?OZSf zOh8J^XoCnD2eylL*RCehKw?nGvf^Yb4;2?V)S!fQ_UB9ralLMN1heKinjY5bmV=@^ zskx}f!T?;l$mIf$bBHSzC57i zD%w{}i&>HBkL}-o{c_goVwN*rYU&kXRILuS|J?JBpX$3Tdp}n_WfrAgJ3*E^b?Q%- zanC?2gBB>DP1iuDU)1$Hzw=qmkV&zWzOP2bQEy0F0rZYhcuZAQn}X~%ERV^sBn?h= zIqj;9vHbxjIql@Sns?xzZ{ZO|Al~)f(lT8=qw_vf5@6+{L&L!!yHmH)9l|v;_5FLFYz_|L`=6QYn*dY!-m7@8Q!+U!r#G536prGo_ zR+?aU^xtLp@yjFy)xH>0Gw-T>RBpfj$w~uPO+;Ko``j*6RD+2|LV|+Doo1idA8yb4 z&%rgQz~`qN;I~Jfc>njW*S@{yl0Mk@A0m(8M3&|)X;P4`%7Kmhem~uvJ1`^Gqom(G z_{bNA`}=EBe`c;9A6hGxe?(P^W(4E5t^W#zkKva2jl(y zaShFK)L#;~l>T+6AE$IXm6yOJynBmqwr1QXYCQ5}pN3_bprNU$cTrb-4co-y?LRL! zmX#2nvSO$st0ML~!+q9b0h#nxQ{mULn0if^)##pbU?+IF4m<+mKv)fXT!VDS&v4?# zDW{?FniWc^tctiEPVFJH<5y=*kI2Z&dgEGy?$r#u$nSiAXXV#;YW8l!mMz}36p44d za|tADNn>;WE{`IXFkKa{eTb9Y^uMwL%5Q<8=ekY{KFB|{sJgZO=_WT^{7UJOP0RT| zZzGScOh5)lHB40s=8P8~bS?g!8PDsuuHuc5gwUR)$;*&&d_2II(t@#Fqpf|8j`LRw5Jc-tr1z&RaMB7v~}l+C+W-`X_8N^Oki{ zRUV(5R+G}UKi@$A^Yd~%y>af>&)^o%`g`jZCvY*||6ut0UykJACdiZ;ADZ8S7_Q$5 z&X&OSD(AneeyxLFCb1__=ReO`y7uj+p&{iu!%?;?)W1+u_%=9-KpBEW$;$6HdL-?t z_c@fHzrEJ(h-=_1P3ZnyQi793Mnt5)rPujzdrj6)kveg_8&yT8S<-5fZzy{SSbDQL zNVt_zq5_;7(I#kAX=!;pI0H|vxyt&>`PVY$AL;fdW|ND%zN1i=fJQa`+ArtWv>h8eG*tpyy;!4zg-&~749Sn{V%J{Y zrt%RRBg`{G6;y{7?UInhFCSb>gcn0ddYe^{^@2ud)h(UMUt7snYv17_mBih*H z;cE>*c@RA4hF{C8Yi<*zq`y84LBy$OZEfwd;M~R3{)`p%*dT842j+Yp2?||0^x)Iq zq3i-z(H`e&X_-j$uh5Pk=HoNZi+QZ8LR8fd(eveYVRZ8aYUv+@Gocw|Zm|OaOh6+P z0dyfU0QV%s7ceD=ubDr2iS((WVrJvAG(b|&c1^1-!tf-7#spmg!Y3d@vK*QGkf?sZ zT>0JmCE8viC2~n`d2l9FSLNuYJ9MYQP}dF+4?V$iy)yls-{<177D*eHH`366Zl~S) zN1m<;%wT#N&s>YH*u%7NSI)pw-Kmr=19B|KA(&;&08+_`<* z&YYw!gbrtflEdR8jdp)fA(xl{M@3JNm8=HnJ714({Q0#cp3OA^Jul9#%_}{NYD}F+ z*=PPNSd(H3n@_81ZGC-HGj!E90N9De%=4L9<2H)9ujEufs}86+tTV=-QXVGdp&g+9 zHIy)P5J3qAu2fKkpnyO)m~S;_uveM>=I^bQN^?ra8(JL=jg1v#WZdTm6P1;fu^FLM zGh6VTk?HB_Y85MxCq_m^4JoC_l_n^tsWo43FDxuHJz3h@+xz(G=E*P$WxJy&<_)Et z)l&ENt7!g`H{H6;j;kIeZO^jk5pkYR`rk;skclrqMCz27sHhrLhgOi$EnJnAeY$1$ z@gTID{iRyV30ey%B;X+fc)E?v5i*!PJfKAoR2Eo{w`GFFurndGCZ-^%oiPYvBN<7U zrm(OIYCWpHG|W+Aiw5xYtm%01(oIfE;FZFl&&pw3~^EiFnQe%FD(sg2U$HBM>W3G$r1a8?h|gQFuE!?5ALzPk|8qSDg7xX5Z3KBQg~Jg+#2A~&Pg*Jv?8GNrz=Sa5>fze{5~sU zXDB)q@i{qdIg-jpd#q;y42_JYFesAV`h^!jsgGF;Na%oZ0BBGEr*j1hWeRS1J7&DwsCRE!ASmuP(?&|_=Q84 z0&10W#_2Hg5*ZW}R5lAN35~pAs=zdH+ZbO;U1;+srix@=6JZN_Yo;S^fAsTCO-*TV zPz?`t)zszuvdBRzSBcWPdsvn%tN!X^e!g}7=40VmS?V}1B?J-@LkQemKF9(xarx6i zS;N{3n3%3F8U>Mepzx(A(D?{LoS(Zdw%+N3D>y04$t%KnDW0C9{$23Zy4ug>mN0Fu(cNzj-Q(=@$vB z#nX3+k8JXK@uD9~Ic;59QbN0T@2weOJSU2IvCkr%Kr%rFOV6L*c}^>+3ljo*9*+C9 zzO@6`Be1#$`EQ&TreU;_=yX>m#8k-H&#mcr3oBIA)HFS`-Bb0e7}Bcb)7=q&{k48)#8&JX!n4)!-8w6o7XgxXy;W&) zkb7G@U`0H6Wy^#7Eu`IohA-Of;3M-xS}TTQyqZ~Gc=HG`3*oR}KDf!mA0qGGy=%i? zN#@plSW{iC!*CxDn;?|xR>#k4<&^+@LkNe=YW411e(c#EkD@I%q562)TM>9`T{Ir3 zB}YuGjk(N-3JMBFBqb>zg=4I6Y<#x{${Q|~x8Q}ED%ke#KLsgt%HZIjf~smHa1(Ys z$BhEq%y``_z}BQzQXWRDQdJsaGmfxe4tNLgguE|fm#$xblkM%TI{<}*O|zP5dO_R? zOV9=wJc<)v?A(grBo9l&4-8Lyvxz&2CpBuR<`4o9AOM#rFMNC& z-u*~sj-vbb|5@-$4Pb?8EfU2P6gSUwRb2X@Xd~DHn6nW)2Lp@7$BK7kR47w_0jzRV z#*;366UKa+bT6!0ia-{t5ym56nx1DNTEf4?Aij8i=Oe(6*V{%<<2fM^wcTIp+>0d5 zHg}-E_@u_m>k}WV@v26UBb@8d-E0&>09l7Qo2wq;(6B$s`!XY*If^?+^T!5IWZjiDPfV0~RyB1_bs z)Lv$Lj_Uk{agdr`XJS?=TO7oq<7OvSebeZenB>%`sHhQr5Cmozwhk^61S)8S3u;=( zF}^L~iW)hweF&Kbn6GW5ma}sX!GyCyu9-BKJ*ko*C?@Z2Y{rhbF zsWu?8)9(TqQLV4~a zkxJUBl$JIjM0?*YlJ?S`_wTs!mFM~VU$1|!&+GYwy6^Y>eqYylo#$~J=W(XjTXxrH zXpnGIPO}l*xbdmXYbw?d6Em-TnW}?B8rgqZT6_hGUG9wty5z3Ypr;GIe}Bcq?bjM1 zRe&Tx`P4ts2)_6w_9ZuqCnY{AN=Zx0A7P9vYJ!rs8*s%kPidR2?W)s%EPcfl8-I8h znRb#@WA^RBr?$Dg#X$st!d^qZ^br*cJ~%`h{vd+O!@JRQnFOC7F=$XAy_t3o+W2QJ zP)totL8sgj91(+v|JWVQ*Nw6x%MG~il=(5;la?Ozkgk~&Eln>sHN&U!dndum!()tu z6t-;U99^2Ks-Ynvn_$&wg7X-aTIbJX6f$Ds>p_S4)moUECNi_%VE-!|lrRE;E;%0& zJm8)af)h6*$r5j#y63vx)?k!QO5}9Hf#WpzSybi3D}k^g9af5+x{8Vqo_xAq<(jrz z#PtlH4DlA{RV6-gvg5!7v0@EVK1RL%X$u@+z_4oB|7ekcq9A!(`(TRwZQ^#)@)#e& z>r`0t}TEVG8x5rh-v2F&!LQzWv-+j0I{{D3-+2k}SFbipzBdp$B3Yn+~ZGvpwSwlzP4 z>!YCPi8KUcG0{PxE4DV(DhQT!)xEv$3Sb$~AXWcLNHfAmXrAtJta~T$u|xF6>B>TB zepytnrm3#rUrDDgaynv}p)BX#gu+SlK zg#PHk5ktmbk}eL92T0!^mJ(0$T#7zA^TG7oD_@=@f_`i_omLnSRnMd%gzZC~PEQg; ztMFsnZnM~eHBjN1!5z(|de^o(*w2whRs^Q-$w`+Sk5Z&$Cg4?u?e8g|Oy^nl zZ`a_yGX3ON(`}2Wzt9)gHPPFc?)0SXq{P_fYU28HPp9C@h|ZG>k&~QL5cjZGJ9mAQ zKo~SbPaiOVJBX;y2=QXM9!xc)XYge^g44&3N38gT069O!F!8p=1=rQbba^fy^IujXG#%t;W!?AfghcqZnfA{7>;znmrLx`>by}1(S z9^}MmopcvkpnDPMh1)?FBzI^h1=D!;aSBAQ>PQsVPRjfn>1sNJ)SHWg5x2K6s0mq>Fu=$zh088M!Hn(=B8R;2(w|Fw;cW>nBk2P;wB?)5IjI-UzKw zE?RH^Hk{ndvEg60fZ694#5bPky=?x?LeD#Ql2QTD^nHV0-k`(9+!SWVK@@iNHk?!RJJ{b7#<3u6k^)E}$i9fHkG@C1uO z;%Y_sy}p9erJ=HR?$3I)hEtJ}w_8ys9>c{2DJV3WwHAITR=<5aE2|8sDCdhUNt=*7 zyyRbp8WaVTNoqH+gxVdi*x0trWt!6_SCNxx@Z}w=V2txZuKjw4HL`N^X4N;+IXl@7 zdz=AyH>|NnesJn=w``C!eKkuPyu-FhNa(G18+~eUpb`}aIAah-$7%n}oY*;FFu0R}@AQJS0t`z01upPcW`lWA-jmePr}qMsqEl=Pz#kag$7At;iu*Ju_`qsMIG5Dy0i7t z{ieV5JCLlRqN=K(2hY}-ux|fNv zgFjoUH*pb#Eqi>+QO2n2I>Fx`kaN(bV#l+PkXniLkp#KoM-FmuEv*0Qx4%$#Z9}o7SIH&Tqd#U64<%RMRJte*@}~ zr6D~piwZtP(OCCs8jJWKN9l^)ohb+RwhkPiDyy97ky^~TWyv2>W9q%Iydwk(S__*# zsUWxc{P{tmGXm*wKSIh&1hwGCdAwgr@2%`)tq90cGh98FLi<+}+EheT6biw^r}B25 z*IFeoNB1C--pM)O)5bdhkDj-|JxhPRf$|5JpZXvyzs92kloBl0=IP3MELk510+AHp zTeciSG~<$T6JG?{qgd}gWtK;jmO{pUs!VtRWp3QgUrF-DMYs>eIv*&rh=xrQ3#MTlEAPOdGfWy9gyG4GH^99?# z0M26X$=#IU6uc!AF0bUSP`jfL@{t`5AzYh6l6Ze+Fvw16>YI?cJINKye2se>YF!lJ z&N7(e03kGaA1B*HfXT#I6u5UXY;FUg`=PjBX<2SW5eI-Zb5da+!5_ggVgkqJ$s0@7 zKj6``tx$uC?{ly#+ugf&YvIVu!-vMLD&0$8f~m=Z`OdQ>Nmd@X{`-`kyW8EdBZ*o@ zK%n#G0xB9(aE26v4Tjdh;VQX277w`qraoeao0>Ca;mja?@VF|miV@PK>rI_JCtC{W zItI2C?6vud8X89Nhk=j`_cltk8N?R!2hMy({D;##F)>k9Q!^3@h|AGa;6H@VyqODG zd4xhMFr|}GVe70F24zshqUIpJpLQ9JGgkX-Yz&O3cMF<_mm@-}=C&=G9;iWwa?qCa zOCsDCPjn~^|DD?46k~uq1bNV4rH+*ee4H|81b%|COsgo{WZ}&blx*9n4jH4l^ygOG z$IPw2@6TyPn^(F-UV_hFUR=B(ig$i-w;e#6La)aI7VE_wihF?CMxzJgL(9dXk9DBr zuwL6QiyA(vpD2jNs)IpED{V&~QezZ$xsS*pv}L-D=B8o{w5m9+*9I=lu=5QdsTn1AiZ-wrr9 zMpenR`~7vP={)76yu8}cqkjV>1}Y!Z>)Pu)4$=IM8+j!HQpX?o`nKboK)IxZvkW*x z=;-LE9W~)|w;jF3%{6D`R$0&n!_(lan5Tcx5#w+;o&gKZ52%Q^LLyg9b-M-0(78_^ zKPmx$k4x|1zl&J~ry^dKO$i`hAwR!jg)wAG#2=Upg22})ZzZr+z+F4=?upywP#cs3 zV1nOdL$i?zuyB-C&QxS$=zsq4@;C94Ye>k+aJ~qHru^pipA-nRu<+8q?^jk+3q#-C zmq3Zf5ev!PUA{)-0Oj1-vx9l-rxl5zBu_iItcrNIApzHc$BkVjX%NO&g60iHJ-M$H zmJWlEo136P$}NA`6KV!(8$lY*}YRSpTv`}c<+HQGe5c3%D<#xWKDt zOn7FY#4z1wQlw=Mh6%O9Rj>^H*F3ULKR<3I{_99$?Hr$DXA|FICv?O!r$nKKL6H^# zwWujPQuID~+CPO*^kv@Xc3e1-oMlgSTNw!FK?<1@2Qf4&w-F?mq+cj|B&*lfOpr$I zb~|h)is6cL2~c0kfgGzwNn%U^#BRRG`=IH;t**EN(s&j3>c=C&*eZaQlUEs*X0cj63Vwr$(ic6m4l#{=2;^?~29 z69sF-fdV5Pbk*LohTMfYdsyo3WDh*)ZNqgbBHia{Cl7o*V^juN>SdDve8e)LQ7b4O z$%qmnmnGFBq7IfmEFc;(39B?-MV-=+RR#|YYh<4Isu(NRPMu*+4D`6ZcKd$#1W$~T z4>G4`%c+1!@^1u80QfmbO8M+c2%aNh6L<>Ppp|_C?xtN|qhIzQFY#0HN~G ziMWjv%LVx*d6rlKBCm62|}$2Er!AnTn;Y4ZXdA-79R|7_uUVYR%$h zX~gn$hgRYdqeE(2_!%G;&u3yOVcG_tt)Ds$ zpXCST%a4x|cU4U{d+5Ch|2+mS(+)1;ae+%wS5pqC0MaE%vTIjKls4q#$?m^v6&Vt8 z2%Lx$`ksfL^t!Z$6#c-S2e_(_zRH}T*<1Xi)hrADu0F@6>Z5z@ZVDsxKg z2iugKC*bX>4zw`W%w>Y!n3Bqv9?7B8(FOZ=V}K6pLj5+hB&J^D;*Cm66FE&s_TGjC zHMnTH;KPRvvpQ4vb)Y%$B8dzFCw5fD4FyRva;D!%N<>9>HV-)&avqag&=famsAdp) zplb&(g|&i`n zvN7GjD0%Vs3GfafpxoUp&`D`#wI0R6=?om(_6}e0UqWZnLczpOq{XWy@DR2kZx`?| zE32x?$`0rs&<8#IxC$-GwdYTnVQY!->cTW z@V2-2h@8U<^mv_0Hrugz^RxQVbXWSR8(4Po{k5AmiVSU&hEh<_nF9lu-h5BxA|=!C7EQGvD%a^qC(?nbsi0{xSYDpBj+ zL*2gJS$(XRgDRPvW0@&BsS5`4hQKR!OF|$s^LaF26MMAx9ENCg7q%SAhK`XaY7QS} z{v%J+y#lQn-s5FV3zaOf(>r%w&08Vv7+Ba#FIggW<^ap2QyrS|2v$qP+Oi~4-GA_) z@=Or+yI9k6q`Y}4t1ooz$#}Rj!S==JvuD2@y*A<^`l-0J-$67$rt`pr+ku`p-M8yg zdqpL)Pf}y^A)QKZz{ z`TS9dba}554z-EOvgoniUOD}ul{tdMJ{*|n|7CbG>l}{|QFOH=9QzI&I6%`*{E3h# zc$yB(%-I= zft73HkaoP9%$liMvps0_b?;v1+_j5L5pW)$gzx1@QC7Tg?OZSZGBHtXdckMRQ&USf~#lSp+Hl*?{zn>q)`tMy5>lFOvP+%p_()ESy`z!LS+Qhsb z9(gA|l<=lBXKmV-n+cwdTXddQF@p4SvUeTdO&J%*NUA5FN>kB$m{U44xdg(5ma1?Z zffzEA!dwjl1Cr+^f6PAT}ZGfgC0Le8VYbaUzRuN)oApquVE-m5i zwTj%)+!lfJKX!QPW@sI&esMcx?^Qi~f7I3ohgVhhR!51fJ+}^$JRFeF;G0E4ghX4L zvS{(*O5|@tsM++C<@RNg7CK}VFte*eX%nZ^cgV!tU zwE!Lgf-v*h`@*(Kzw;as3=jbXo(PP;RA7(sNZc{85c--WlB3d)qu5PYVS%~v`tY`= z&@IbQ09djvkpy-!KGjQ&2a}KE04kXdBq_;s1;h{dqRB)AJu7G-M~ZF1j?_rpdN3i{ zsg_SjD?r~n+`5@B>D8}v4Y_n-m@Dl&U z>|=ggR}Nj1vgaR-Pwu0yQypYD8yq`wviGy$JwwWUFcYfiW9SL#hHN69xYRbpqpsm@}0#*&;;XA7t!Z=YYPABb#pa+tEklg(?aX zVW`6=<}pZaigVf_*Rcp@ojIfLgm{wAl^yp81Dci(F&fE_e{o0Lfb!^@c-ibqS1 z@p{x{8E$~@JJ6amv}ig5ftk*}39u-!EM?zccY1vRl6l-E%*gq=dU8K<-K@!<1wg3u zoV;KHM0x?cr|_9N(4E{m@%t2UF9sY&o<3ICKiR&`76p)^M#EVL=`btZq0Lyw_~)=U1@9gTCdy5J3uN zzS48M?P7w1bEi4l7*ht-BuVSH1l;_@v}z^5U6e}ikza0yAglj!>|h0lg7{P54!2Vl z0cMAI5O_#sSbt|{r!QO%k@Vb7xqIhMm+BAC;n5Sj2*sDm2|=_ak}rvlBI**#)U$6B z1LgOFOnPtZ7~jvXGo_qip-@+{@1?%tC*7kGgU89X)<)ozQe)$J{LV1KKXTE#qhML<<`nz(JwpAfBmM zs%ygwdykXT+|v_!OJN-1f=0CiUos%?0uqkdcV{E64hRyRB|gum&LMz8d`%4T-}k6V z`G9T5eIizlt{)&Smfr7k@H8if%}h;sWFc?pu5`dN>GGYBgpLaX+p2}kGU2bd&Tp=r z2savoPQ_Q5MKE`Hg0e!JQcFlTDIHO047Fc{VdKC@BHfRpe3fHJu}@V+@RXG}Ut{@u z+r{ox6=C}EmvWpGe>$a0zTdE&sg48L7Ru&sI|fQ=yYy~k{mw0{_7P=KP{s`#-@)IS z0@s(|+6)R8UK&60W=+hTJ`)7V#7=->4Vft_>df!^mjOIRU>Xp{j&Uz|xQy#*q%F0w zI9{p@3~uc8MyH&!fpwcNwcWHlS^WKvFeJFqAxmHDK?RMeSi>nQhIH9sGLW3pW@JR) zO-P>Wx6A0;ilb8FGX4q86O-BpeX>KB74>SgQ0t<@-_)HN*%SAI&HeZNrT9ID`UAuD zF1h79J=<<=b$`ObJMZhL3`=eg3W!qRe1bJ0MQ8vATAt~OU&}S*?<#04ziD)FoEMBgDD)?$ilE+>qTfrs|lks!p$$;N6n`!TKk(JEC%h6sN6@L^`Blp`UW5Qg*ws#2bh zH9pI8C85G0r!U-_Q2C8t{)VL8ufVn@a|85}goT1{%Z+XvcFEB2NGg$gA${&&j6trU zIh+|t+b6-x0s^?vJp&N(I0VHs;OD~B=}E~QWAsPhT%EEm4kyih;f?bL$vtWiE20x{ z-Q5oKP49srb-#IaFn;TH3dU>RgZK#sV9|2>s-P!m$EX=4INgBF&)@nNuHha}-uYS3 z8%sG`I#-ThA>3XMD7g(E=Cr|B_9CI20YIR(SBt-cV;~A38g^QHqVq<8e_|^qTYdcf z`DFdJ&$q^zOpcdlfUWvX$b*^oJ4o4p|Nr$h?qAhu!N*jmqeXGW6{7846wP2}0CnmY z&&5hq#i#)ET74-qMGtn_;<;USK%EnU42njH>|u-{+$u|q)s~Q@+P91C&o~Uq)F)y2 z17Q!Ga$V10mk??O)GyeYus3fG&5$-*LE3;^FGhPgq?<)59rJ#56kj9A41tiG13)qJ z!(W1S8FPsfU*Ij;R?5#i5M7h#cJIsB9tQJy$|R#EV`Ow&hclzO*T24QgS+(7SDcE{ zBA(n!S4QiGIUMAxh?bdm@b#jL+CuMwEMj9b`=Qw+zark&y`H$8;7?h@`&OnaxI@T&HoxQ-?TIh1KbNj=IvZ;j9hVMe&MbeoD@I&>&yB+ zAl5QMPrfz}hK*4-ktJXg9aECF(a7{rVBWho z{^uuWJ}W(?C1Og*bh#Bn3|h@Ce;y3^Q7Y*0mzb@(Wp=hlV|{1eb!@W`U4TNR-4|K1%IG%A8MM)OlGWxWKv5QYy1jW~2SgtK`!h@(rk&b2jX7_YMS0)CL!bDwyw6KZ{482Gykz-(+O; zPxk+&YJR=B*RuY)prEGpG@L+6SRj{6j;{XLJF@40?(H2kCq6K|b$&H19Rb)D#K`Vt zf36L&JWYf zlvtDfGXfQnIw0krcz*w~S2~K-T?;5~iY}6k(+k~y|NXE35B`d0<`&H$D?CzY^7e_@ ze{SmA!*)2uqTn*OjK`Usn`i%i<{M#3iiOMNc`I(

H_TL9U;iBZ*e8(LtF}`2(-(L&9V$Cgsw!y(Mm(TzG z7!>yFbkYg?zm~ei?hj|<#(!U{SX#tubB+c5^K3-@_3!LQGTVZr^qF2Hurk31=u-p< zrGLJPPd}UqjI(g$uYYo9$xX3X%dc246M_D`Jo%1`QYLIjPnk?&%xaouejxZO+K?rKgew21|B)ihHX}wHlP|ju zvEqL}Pg6DC3Qr!0zA^J`YC7|J(s|!fx8J60nEAu(fAIO6vta`ts9U_-n@1Btu{Cr+_!)Q91xHg)F^w`T>^IWYQh^m5=KvKS8*%|R!83# z)fhA;Efk=ls_XdR*um^V2v6mMB>gwX^4~7Uu z*hX10+XG_XqInC14^^m5UgDN{s(2jvl;^Q$*QeY+8B|WW5r0QuEj=lpy4@GdTICiy z%;XQ}n53~`|Jl3&pBLk-?W#1MYd*z{rnH=5*)28?38tFqvL}Zha~`64(&3SExZxe(~juznv_`F8`Pe=WTp33o#I&z74AR8 zBM`-(f4ElIyq$l7HCMcY(gCTjInRtpCn^#qiGxch#-E80FMqB5aoQ<~AyqOL)>cvj z`317=2%I!i?h{))V!ii91YGpY2zYMV1(II86XPzF;3u_Y+<_vZyj*9xHYFBhhb(D_ zxm;(HkIB-1%g*6HvS}GnAUgK;41gJ3TNeMib-)CM zn_O78Ffop)^I^W?PL?b~d+id6%+CUuNh5IzXX7zkilCbX!YynZ=ys(kwg0!%D8c=S z7Gjli9vZCU)&m`tKGBnbj>(2* zV+a5Q?>3#%)|GdU4RyrCn<6C{2eAoOG}z~qs4VfFg@dRq#_0ZhU-gXSGXNegSFy5j z=7u)in|?8hE?!~`DMv07jU%FVU6C+?G64hB0gC!=zAK1Zv}>!`*d&k{%4Mg-1a;QhYzYMVEunq znDvSw|CB8SVH$%NRFu6$yw4r$!D+DVYxa*0FNGBg|0Y8xO>zIoJwZ=mIB-Wbqd>=S zL9j<-F4?9*jaZ*U@XjK|_(g6RV4HD;5+k}j1C(f&{F@q-r0sI30uD;=m}yvB$(Rlt z&H9I0{yTz7lTN}(+Nj}cB^qiz=$B+mi5C&kNWteWX7TtaaKBDWYgI)*g^}}yrN!to zNW#o}GMb1W#K7;qdaYi$(vd%J3iNp~s{Q7;*6-i9Ax@AXKT?b_1;QPX$xmYXc&uXs zt!9u>JE2xAPqi{A!eo|KGjJJ%mN1(5zcvoSeWcc1yzMqtU{J})f3RM4G2@-z0;Ui_ z5LC8MrkLUL26iLyCXFrnPVKx?KlbO8KzP=+W(mtRBF{$8&nNzTlIKIdTSZhn0K^q& z=#r5n^V-#V4Erq*g<{kwFErxyXRKM<5mMv!Q8<^pSCic0kG{ip1iUJseleNh@J%K| zkjsd>`Io&_s$-Xu(QQXYh_&|f%-E|zw2cc1GhJ_w1=b^uBE6Qq4`68OiOz2hd-E`% zG$a01dNW5668;UHQBh+1V#YjzG3xJ zN|D52&%g7UQCD({1ECxkBl~&jhTr?yIDmL;(D&`JxsMRIwxcYtp)aiVV>6os#jGmvW_Q*&{&;Hg)KVM%p-n2d7 zuZX#-%lySJKYh(f10G(wnA7$rW4e(saGe1tMI$VcPAsZO$H+?yz%hY+n6UgL0$T^N zu!4F!bhH`+te}OWpoqlXR_i%~ovn-k(j-<_bU50#m%d|PZCU-|AV{OQL~jdvU{gJs zI8DV{A*q*`xoCD+P5b-%_oOsV_1HUMHcK@3#D~q^stXvr>WXXkTk6I(KF0n?{*;xB z8VUPCBUx>YfB+v~iJ_m~4-W<+*k0q}4KVfoP)~+CrnfxMQ61}D1ZR1D-@ZoKtxvvZ z=jTAp1nE@X(YeAG`=hD-Eu&L@lnsg#LcRS`w>jeZqQ`!hg2icLE|UJV(J*Ws4Adoq zyeFavz;W2`$6XZfsO zcRGR<@bO@Lo6i)ILOhzWW{U^b=wKc<8Gj5s=+mVje<^BqYc<}tQ7;f#387iZ_9XBi z9!FgQkUlvYR20F0NjqU&c`+ZrZW#Vx26zaD>jtqw)Uy>i4u+XW1k|5fA1+73q#~Ye zj6@ZB>B-0~`zav36=d=f@i)c~6)RB3RqVSUH-ooALaW;o&d}`9Z?|!qpCK4@g5N9y z<)Iic(u((sUe13f^}2WJDam_l_FUMubpCM~gbA=i8b3~jHe(P1Sa}8rueymTtUMx% z8cDMjc@FdHH+sF5v5!f&3TciAqE5d;^U3>pb2sqOQx@!CvR#^EIm+ttd#`LL+<8ZH zWW%ot=$~h#XM!Xo^+N#x0oN9udKexBHbZuQ{be7b-ZGf#&@e3xy~PuSr~nyurV#^~ zfSPk0vIKoXe-QIe_zkq-3>&`Vy=KoboTE{8;{A27X>P1gNpb8pt(JhF+rG-+BQ=Ac08ZS#?mwM1!;faS?3NU_N1{t~9C zmiE@U3Yxsuz!6As;!|6tVEVN`cNlmk`qMw`3FKUuiMId64&84d1~`R>@G2t^PIpiX zyk%Elox=p;s%UMz?%qD~czdhdatw%SvhYA_z~<>`kGwN8*)SDYgLtnDhzwh7kn~Qg z%zlrI0M5Ysp@ctE$+AJ)8qvnRx=B&Jy_6$&@9%vf3clTd1HQ0H?VCB`7 ze~2UnbNu$IXLi)Rdg%rwWkx3<9|`A+W;5vxO$!>2M<>i_I=Wi#yViP4@&Uf+&y~+1 zuzHJ|$2SX}FwI4U7g5v--oXIQRS0WAIb|nKVDuf}WK> zcMcPTQfcRI`O3+cl_M6ls(=0qea=Laia^{M>T`-r>Z^b<)QLKcJ3yWx8Cow}3Y_yY zVzL~K3=>EV(Svq*e5AM6L{Gm43$DK9(?(-iV)+O1yx#fTS+S9~Eu_i4cSPfW8<`UU z#n>`eDq|pskyZd4aUsjKaU9~}6Fe#U)1YwcTHf|Gg2f;zCjQp-xTdX5izyXTu1o(l z<|I<$KNy}&4Ne`BQS46}xot4{rp#%NKU)7g$T0zIw{^j}a&-h8@y=UM*YT;p5>moA zWJ6?=mIAV}Bt zhZ-Y{RX`k9l6?!I*Yk!T1|ib-Q${h0(geMGpm@mHpP}HQV~Yb>Vk8AT*{*gsJb{aT z&??uryrndugFIlc`Yr!0nG@fF{v!D$HoaM0PH?a^q?o2~gO2z~R7yTQjUh)DAw^eP z5Xx+vX&||rI!9#C3{6g3e%I3O$F?`jsYWl_$+FN#xk`38G)$n)91vMH@D3VDe zOQuj6(**p+6OvR|D$=md9${Lv^Z83CLZ&`iJkeQ?_j?A760t{x=%5VQFBy18SlJ#) zKYb^Y*d7bt!=*MT-2$uDAi@11XmtKOk3>p(_YhzIfpyPOB*8{@Fc|$sJwg=m<$2V( zOjizPxXquzmuA8eUu9T{)uSyr;v&Z;+hn9>oLb>8XW$m)r@RWtQlcATe z{({81iPn`Gx?fE$JwDmOABE?u)?-ggLaSYonS!pD2Az%px~2IdTxWXTp73Z5xa75U zh5wy1oIQ=Jk)*d-Dwy*Id`NtLIQrDT0Z3Ee#{jZSm|WOiA?Lt}>CN0Tf^0pb0AOi3 zQE|f@Ari6C6!Skxhr!#RjK*FKKt**!7&xX3^`hFe4vhARu^w8sO(BlUY=`Ox0@I$K zNDw2*00-uXXZ z+POXTT@M+R0Uy0r=OAz#V)EWEuY#+)T(w$AKj3oC+mvqj@!I%t=rDuB6KYSWu!vW< z#qz z%?@uH8v&CWy?8rPN)nfdx^ANY8;=a``E$v@2&d^?uQ9}X z5Ov+9WxoL@><-1ENndJ>_p^9}4ALLD)m%vn^?x!5e%S=O`-orJEbLsN#=>NjW_P5- z2>9U+JZ@_p7k#+zkztN#)g)OH2FI1wLo%kaTJQ2QD-r9tQ|$`Wi}bHs%92b}2q{Yo zC4yPIc=Q>%sv}m2Hs9F;M}O5YcE=Fh8j`nNk(S2)i1h}xz*ADG!d4-f{zI3BqW8xE z=mt{)hoDp@12NLuLT)dPY8k>9h?qK+cnrI~COQ57FROA=8lkgQKuXGhJO$e-J+wJ( zZ~6Y+7+6eCHpIN;3F#;n%7FsBL z2NWoVSTE@3{jrSNfcRQQ^fJUg#MRO_Mo%`OuMw8sP{F-^%+7rfMH~WZjGZ{BOT9p> zS3JMHBie!J25!y%iE~sJb%nX_rO_!j*jyY&V)YLXd4?R*ccJO4B+tqzCE29xJ;wtb z)R080g3-NW_vW}GOQ-^RFog0ojV_3s^O~e23{HupnFvni&0!*)o(L}SiH%^4qR=Z@ z|MJUDHUjjeL)cxfSchyt{NQJU$#1KjfI)bTwm!vh0h0IBS0y6XC3>MxZnz|yYgcVZ zvPj+?2p*4X5FmXHj@+|ZRU1C)H>pr4Z%|kLa6So++~VmkEArQ zTw{kNFA*~n2>flC-FhxNtD_@_ikL~74XCcA`I6m9 zWkkqN5Y@ob_J}UR08;8PxV(ae!qJ$+{N-?BKl55C_$i>bL;)Y!=9-@kVs)8CYJE5% zTR$ZLktxQB6pbjT3iGpcvGqv1()->l!iKUZGj}3~i$LVgekt0|I3KP7l;*{A^jV4M zlQwjwyaWg-L7%ZJ`87HEGM%~d2Fi+W_llOq>t4nv`MuTq_i(bAB4r`2^{CbCPD3Y6%Wu#nzq6-9~2`GEfO~_}JXxgJ}eUH6hiB1xH6U5|1Zh_NEA5rnvD) zEPRA{G_-`d)V8gleUClq@Vt(WBt{K=tH_RHkfyP^nhSGP;19ky!f`yUSBV!`e#;o0 zil`(z;2{^QUxnT=o_BLPWK<#B81+y;$jZ9uT|2z zDQEq}lv@~vr(zZ>LOv2Y+?1VcBeU4#Vn4kMJ6UDl5J{UL*WsFtPZ%;%& z;@98qf^}zdzt_j)(S#1=*%@fz6@iy|e{2QON}e)mp8jJ@?3w@{DsYU7u6-OBs2|~c zzp+>9$5raBkraHMD!#5CBNN^=FXYfglWy0o9dXXvu5VV83J&=F+ZjzcHIvss@0xqW z6T3$db53Iv7^25UzEvk<%ufGK694Z3tFG)_{@r_IPFxI7U9!qa;DUtQ7Gp~@&LNx@ zW2*8)i`nHc^UdNtIq3i7ZoPM^6oFPWmF<6ClvSvqzY5$fcYf5RUu0Tt!e&!3es4|w z1xHoY*Qsqg%XhZMQ`>7hUFmJ&%3In!7llm=64%OlxrFoOn0)Bn(=xE;=VK3LmvEPr zQt~P%1|}+azC^4-aU#6qX!tULU9+Free>49i2;sD5|7kre4r?ni9ytY;~e0p<}l8zU5*qFRw=%{aChl-P@!kQ?_ zu!(b0Ws{O&5o6`zn~z#NGKw7N|56dBrV=*hdZIu7>a{<-4#kTN)R)$S$&)k8m+;Ay z=55PuliDZTQ&!DQI%lPL^xc_mzD4{i5>~Rwtn|`O+%BU;x1-kDWo|nCoa^-DdXJiv zXV&G)8_s{&$rH5E-(zEt$p>McvU|#t;iZ$3dkc;$#cVM#_4AGD=|)n}x;-pn^!tc^ z=C0X?F|>X8tq-jOAFT*KcOcXU?O(*D0zw?$LS$YSX8cttS#2Tsv_; zBjbqJ@O=|26V0%vFL*xMaF0v`HjB`jKirB{J0hPxB2TiNn%CR6r(N!KveghNS#>xiDcD-vST z*~nu8z~j*#qf=Q~H%FVvZ%Ln9p1ihu$L+QO`M<}_1v`w;G@brsgdx_QmoD9-686&?fFU@R;c$B-b`8jz_`L*%=Yz~Cxg${tt}7JTZHHH zFLHl~s6ph*#6u}f$T?fIimHVwb-Oxek##2HzJlw~T+M*K7NwYB2ct zV~vN*^7$tn`G@#cwaGztGxBq-?i$R(WQzQbF|cX}ZB!QU7&@>N!Jc$9!I`2eHQGrTZCts*XI-Ua^lMi7=&A z>axWC;X4{%xQW$m!crnEv(?1BdC|Y4PlvvUH=r{@1&CtYyGfGaDj==8UNw? z9%}0nc-~!gFo|+A+$&ecXYn}3wSZ05%dTfp2Yu~ClCyy#@9XO9Xw{mcj40ElqI&&$ zhqHU7=}HG}6mM6x@NKS$@Y4G7eGmITOtU**WD>kBLotTIzD`^daYND4GLGwJx{dQWZa^#(% zXtrbe1J{h0vy2XHCNax2p@fyzzEg{Z1^Je;nN3j_R%D$Ma5c~ke;{9m{o8tXHYF3e zgG;fXCs1HAf8%l@@?$a`k=^OgDnZ>35pzV2@u;uFmUY)SgI%%u#@RF3p2bg!jG|RK zPfmTm<7L{wqb9jW{bFzEKKY7>OJ>~-I^mhUa_7~!Ra^y5JJwEAnr5Ee&V4I-+wzLx ztL{JTRtm&k3z}hf$$iG>yFgDkwCu-I55~-&WllMkD{nhnU}sL^+tcA4k0Wun!^T~A zbBuR$dEEcDry|Z!#n!xDl}~byiLpWgW8}^OU+sCl>+P3kuxjYAzewBue691Gg&v!K zb!N}J>J5LA9JLnfP#B7X-E@r-W7P+SuiB6QV1W{7LTC>Sf*8;vlWsZC<$rlg8GS9_ zUAypDNTR?YM-T3>h=-q!4}I+2<9m+*gO%NE@7}ApcrM|M?~353(=?_pG4eTVo@%SMysp4L1>O3S((#SQx+@fNfW)kYQ}_IFq(fnqtiMW|>^e z*GO)$RY@<+W&Y;fxN`2H#ON_Wl@;5ndcFm3dY~7UXfV0xY-V~;^cs8W78VvW&Lwm6 zYO}Tm|GfESrVV`NLn|n%?Xdccu)$Yu18Qz(V zt^uAtq7~OCzBTvsSKQHg5NlmdGX!Hha}D?p2AP?B5^BHab|xG1k`X5aPDglH2cM^Vg(&eqpIzGJ zt3hO>T1?#2rcg0oAaDp;jd|A&qT6{JCmTN|f*m}`;(Lu;w=nlgo2=`K`bxpNL9MHd zo8!*zEjsSgEVA(W8~*JJqF?ZQ@6ibBctuaC>i6o6-?h#00mtU6Ka&;?UuTXfUp4#D zbH9Q&fp9PC!_3WKzqUC)HqCF;H4eu?siLOXFz0S|S+DbADIrQR-*P+X=qmpOPzDt{9V1eqbox)#q-1=JVjH54WW^0?GLXv-%s*= zF>F6IB)+6!=J&~KxQ`QI<4mG@VdfTbxpzH3iMWH4E74qLfoyg)Lw#|>t20tE4eKZD z>t3Am&Ymh-=leir#X=dHI^}uPPlL0`QW47Yq@yXbC`54lSHkAm{MIV3;sgnNP3dt8z_a>TIUdC49E}AvpGI2O%Go}drmrGf=A$_RzWbL+^NcVgLq;JPYZ=1 zU<^o(llv&a2l==0RaL%GcFl4P+Sj#RUH@Rzi9<^B@|02yEit6&)FHL3YVQ-xzS_O& zYc;}(1G{@P4C`dgw|DL1jN3JtN)^|)dGTm%{Vn(v;do9g0ln z2B7}`;8+iSZNvT1j@zP9C0r<_r^M*5Y>nxL)4m;!r)ZVwzWF}M&1$rBrj}Km>l&TXPH}t>OxQHJwR;JrHjJjWX-zDT!KIJKTMo~v<+vmY5{FYM z$MO>KxcAR@*m+94|A_p@Jv1ignm8ZiGJYud7pJmGMWHzm^)Ce4iEOl!r4pcF8VVv74)eyTo z^6fqS$=2!I;Ae-YZW#K$q4u{5Y+W_yj+@ZYO1W@_6P@pG%+~+HkjA~`r#!mw+;#cE z-1TvI+$Jc~ow^e8F?7%8SpTE7`6W=QY?c)TG%>oAB9n`$QhTkNa=AuoFwONZ3iqB1 zY(6Z=K3-bL%)4?=-HNZYiauhRAD9@ra%{N{MZ^60(|XHq4nrGXM|(eG)>wN|xy6d{ zbGk3cNQY*6m35S!-YTIC!dYL0T517gW76Qx{ls3*3?Xzag_H89tk7SsKJ^^LWQJ;}Y=7i?$tZRlB648dq(L5Hf zjfMzqs{{iKW;~EUWE4jTka>rUngUE2NC0-Ygxa79}5B%IpNd{=>IvNHaj{~gR6fK^ixfCD1FgVhBg z7YVFM6v|836h8uqCBryn6FR5_NiB0kOB8W~1%Rk5X5XU<-az#14 zc!G{Z(e_XuTFO2_A)zV*#<+%T>5DUY<+1c>yX&M6*PLDn%*7Y1KeoLI1m}d=vi->G zmo@=497sws@wFB$fRG&60)p+N$q6c9>X@0t{u>t!h|~o3iI))lGzf`-md^;csqrYF ztK%d#!gk}yrNRS5z~FoC+UsCoMxi7g5v~XLQZUf~5pa&^2yd*Her8zXW!J^dAOGSc z@6#8XRyJk@oUpju>^l{`Xoy#RT5eUX-19f~O~v{y16Oda2=uG%?}<9$pcwFWwPwlB z{r#`1Ya8`N5_n(mXwi~2_#2nU%xP0-K0I6famCIG!fiI-)(~$9URlUj%826>*mC{} zVlxP>!3#iQTV&DlWA9x6h74SdYRg0HblkxzAj3qbwv{3RLThC7(>m&;4T+;O8kO!P z)X{53L7>J>Ad#9;aAq*&;y2O6Xae>>a0haLv5T7Bk0aQ7gLK45r(_Ng$zs&Pov zLJ02#D?nLh_bbx5S^E+C9p|`vi~qdI!?$8#JC>wf>QA6#8n`g0?4b!OG!iD4smy>&2+p}+B)=> zL!k|XYReo-@iwiLXBI~dYqgguikKFhn$LLkG|Mw3v&T+Br}3IuRR%RRT5Xc1(G~Nw z;syVWiRG8BCNE;Fp}AamKA6cS>)~@xI*CJHC+tDaEj0>9>p`#cEA#o8#&zUOzucG= z9Sdtip$~P?N{W&h@O%|;I|Qa9hKt}YqhJii^NxRvkOV#1P;X>{$$ctP` zZCp1Ep!Bg|TGJc_wHzGQ8DDcS9)xJl(!rn9Ptb|M5zftZ<;~omT-#x%_H65<{p)$F zjo}(Xgp6ptiOc+XVq{vk1~-Ku)cYsxK?j%;QY`m76iS3*uwF(nzHgpiLS0xe7!^V`K13t52)*}bXF@|6ok>`FWGV*(<^)$>@RCtFASPssOwG&)IkWIuTH4Y+fZq`EJCoxEkCOWH-g9)_W9tS!N&LxT{cEDy4ozi89+|u&}by7aFXXwHcFVNG27;GVK^2)|%4L`EX>^~;C z-TnK5hxM1sN=uj@#5OXG?8o(haTRbmXYS_g4y z>E~bza=G^j(I7zWSjQ}ROs`iC;S6frq)LRDHUL*|-S;naP?$io?!6jd+QXZ}4p*-pF{RmIYk;KC% z^t*RkF5WgI)}(C(k%0)T}kTzzFnh_%Xu=zhz(4_M_&3yyB@WxnLaN(cb2e;Mho8e6VbOh zen{j+dTy|on_|TrHCKVJ%*GG?3Ac;g?fcJJxl{hQ% zy{pfF>$5mlGv4+ms~RJT=Hvh76f$QYqBVP$DYhHbogD8Wn{^ z3K?^hAtLkiznAmYd%o}Qy8d17Id7-1_kKRlv!1o?b+7yW0@)wjaWqU!c?Oi@%rGmr z1yTgIh;$zZewsNOP+BKKv!bYMCk2Nd%Tr9^Tqw&fJftkW8=B)ps-`DH0o4XmhY|NSDV-G(v0x8Drx##(6+D0c!A=9 z?v}oQ{iWE)8-@n49j_7Yvn|tO?PYxJEM*e1gB<=(ejKSvv zRZ2=qH)P9$^!GxD{IM>WK-8lJJ=tZZ$M~B_nI5}QJAQwDhE+1K!wWuYEcG?9V~l4Io7^(^eF+j{95cqJblHiTi^dJhZS!^QNZhuqEYas=P%LQsVvkSS z^vB1mrbpji-H_i~%NL|XqBRLBcQU{F(n`=(8UketwWBkW zwtzpoCAvHbH_>V7q|7p;w_iO^tjX%wLF8R+Y;7obV>y<8aUUIak!LWGbdX4^=u6Hh zOJiE%6T#*bVPh@zk_IqpmdNGFx(@8#g3snIX>WdBP<`c$BZ@@Y7)^+ zgsKWjPiLHgR->j262|GtBt9w*Hx*!d+s*N;vg8?(F5NkYhV^^FJti`F%jzD9Zi3gwo|#K0>ib^h+#8A7j*CL-cu2X}3)b1bErh+XoH!iC6kN zFrt?w6crYx24YTYmi29rhd)1kQH(xL(#rUb7Axyp;^Gnv&wI9#te&YUmD3Wd1kAE^ zY+?9(4%M|wHvKp@IOj&f>bb*(5kNC3H+XX^z$A5fRe{90^f|WJP{o8pa zGD4Qf8cXJ?6c=f=C2Fr+XFGBxpHX{|#rhXiq|5t!vO4BLVznz-wVLpDYUO!%{%xq7 z0haa#u`3cQ9I(mIgg3KXXg0c#!>c*RSTymPfWE`sj{**t9%gDNfUzLTgrq_0xsA$O z?OPu-wIlX|qayOA?61|((1$%yiUH&_F

1b%J*_&iW&h_e+_$k$#9Jj%d{MW{QL$ zYh<52(}?mmwAi>f=`G}9Fk?atzDLmQD~vg(WnvY|>C6i5z)QmE$YZ|Ml~ z8rMF2$4GKo>;q+RTEO8bOT8uQ>huDWaYt2D|1Lkhn_oOOnq%J-mu@U{TEbB1XqB`t z%k_u0I4{RD;OX_kHq9e0`Vpcpnwvt3O8LJOsqWD}d*ofV>QA1SBZDk(h`-K*n-`D6(msXccNs;0OKFd|YO29o*}vBJgItoaC9h$MtUk#@&^>@vq*6d6-W zg-*~~%&nE%Ss-$20-xxVi}&po_0)Ti0K+ci&1T`ejHP1i9@ zwCoq^X>j*6M7L__=+rc~om=LslcFvZ=cuevCO_%JCceh*l}kQGZDikG8EeWed}qPA z(_|D|?x@x5a@>o3e@4De(r)o#gEt0?wHj3y$GxE}i zHHZc}64j>L+@+s`8oZli#DL0>iZ0c63r0y?xXCM&#>MtP77ha{s(20`P=PJ8*bLQg zp#v&8c#4E_pr=Hz-fDvlFI?fdaSx&J8|jSWRNH;nznN7TiS!B8 zgN!9F!&{l@7|s2_z-MCa_QU@DX0fftLU|5-_IZ-Rb)WKd`iqVRd0pw@XenlChrft5 zayq-^*k)GR!;Sn+8yh!1@sIkY6m#sHTBeffg{@gDnvzBOV}JO>?l5F6Ja(E}o;h;Q zkfAd4uUuyZ=`uN-)coybJh6W%S9R{DqSJi)!8BG)xI~!o$tfm|g$Wq`XxeWlLHZY3V z9i(H?4cWYOagPhOZ51q zV0CqmW=l(#ey@WJF{^0^0mVc`i_RmHyEFos3HEOr!*IXcUh~0z!T>4rA}5}fha$fm zHvn%4feL7zoo{njhTlI^GgPnA+X5CAiTA9BYCW^wOQIB(4-3Y7kdY6Fo-{av$N$Q% z6|=aQds0Bn;0y65hocM=TSbYXEe?P5VbDdfUgAyAUK@&K3RHL*$l+m(#&J}qtgjC_8a+0vFKYkFtQ@U~KOfI= z78Gb>x$N^xE>ckYIDbmM;(_A%%p|iQKHl-mUpVp2DJvd*9w<6LfG=9*!G6o#MvL3S z)Uve2E0=QnD4gk>%s;xL?up0a_{6ve>kOh-TSX6qR@vN4QmyJQnV+Uq{cBO%;L2Y% z6_65x%pE>IV0JbXx%VIPJp9Sv_jBFk2j0D+s`nQ;c%6K3dbcQF@PZ&LX8s`*nm)m8 zxH-QGKBH)RIEr%oLM&)Lj)?r2fy8W6^!6s7D_0JYx(FuSLLYTmVk8SU@9C;acg#rJ zI~T(kqW>l!6clGDNMb(pV@UR>rz!7ql|6f2O(_Zq3es-4DCE%|n)#$0HYH?Fbi-aB zifJo;NmrZ&ug$#7EYdE!sQZ#^yhnW!I}>kv+B9;mP8I^C_v9)q}?<-r-X?>%TY1 z0%_m8IdRAWhJH?1p@DI3WH7DTn@vl?KYUy|n=$j(+l@sglxiT?8Rk!b;a#`IvKb8T z{g2AkPQ@MA>s4SrxtC?3snl1rO+O`MZT|h>$e)={jGc$W9g|fX?uUE1KK=MuG*oHi zZ2mfZA@`z(!Ttlm{C(qmtYZh#znWCG@V32~H8M55DXl40u)wDy)Qo4;QRKPA!FR&H z-{U4#&%+o?gz2OcQ6=5vPIITAwO!KSE4PLTK5yHUHuIoJOqL*;L}B<7XM7*>{>I30 zxuyXyTSeq=#@BuX**re+$$%n21Clwz)ocgwf-sM&l?kkTxzUu!voUk(e*(r^o zsoVprjBAS|6Pg?RYl;dKKU`?jhM4);`uo!rBb*~T<5m01*`t;D9Cy3PqtZJa>}!j> zW`3KR*eY46f@@zke7ef!4HX&Z@%uxCS@R69exq~n;L|U; z)=Wsyq3L%h%5~1{*)(=$v6SI519GQy;f|lkTYH=#KmPJhN56RsBUbv(N=i1cV!iVp zjqAwwVBgCYemNl1d@UrQOD9S^{<49r`xCXE9M#X$#X3TiW%`=p6z0u+c4gkTsj;s# zjw+~3tL!Z27vxpg<9BS=zqC+H;%JgNsMASC_#gcp`SD)fo$3=A@3eQio;p7o7bHH) znpn@ScNt(_IhInik7b{E;NY2Us{O}fZ0{fQk11U3es0pK2|t3lw(Y%ifFoRL*ugx0Rpf@i7>kCM#Kf<4ZZ6nZk*4A^CtGRI zABA!4+Uw}Y*EDq^gFhxDv2jg+#!gB3f`jWjuD;OhHmOmaFSfq(*2RdD(Fv6!+M+Am z&L-IBa3aPTXsQ&IWp2)T7FyM^G-W8>x=_14Vg`uw1;=J|M{!uJDd{&o)$`v|6voO-nKUDo?+w7%`7i7@%j4t zC+H>USJ*)w{^5rbjM-z#GajC^8m5A2EAGy9V_d*lJfPxW(Y@Tc=w-9NuAe6QqTi2C zAYL<6LtJ`k|5TA!U7u5Kd4?>D1#`n=V;U3rV>+wXYmaEpdgh*B$Bu0_*uUg?1!wjG z_OaRjUD@cbDXXqL9((a=E0^cr_ggO8FXI`^-&<8Dmmxk{R>~ule^h+6>>lQR7ylNX zh}^?){@JQuSC`WfrY~Ri>6UkPy(w4qQjCuq$!kv@`)IVZ)(|ko18wP^sI&b2KSD(dJb@hibS#sRR({7mY8M@? z=Jtkv+#~Uw76Babk&LBh{9E>YP`RO*c;vnWXu}bzVVaU@qbY(rQ&K+LdA17X%+S6* z&h2oWoW`YfDz5rX>v#Hw+}+WXalY_wMewY`n%gU1rUt$}#$3L3%wdGyO0fy#;%KzG zOn;1dQM@k4cE0BZ)!WfVs=@nq{>XQ?e{7I9eO8{tcq^`0&c~34;`-iZlj}d9be71` zt&@{Dbs^WRE~i-5jTJjF`oXnOiJ>NqZZnUO$*V64)yb9XvSr?=wti-BzAW%Z&c&p3 z$jzPg4?|i0dFM^lrX`>vZ~oyFjf`*3XAcwt^p~&sxAUal|ZEUQ=mdZ3pN42GI{I96v;SdU*C< zJmm%JVRi-9pX58kN|Cc3W1rkgCNkz~sislrti<#45)})?)ehDLezoA%J=&PlVJ&o^ zv1c-Nm3-)`H=P>q77cknaGI(=|8QN7d|7Ib%wg8JHlDLwz1FQZQ>6aB&PiK5ea0m9 z4cSkNLlZOjLY7sG{^n_TyeeGB3!n^|eE(=}Ec})ha}}=Ukw=yYma#Pw#-}Y&YvM}7~UXNzE^vNds+Wp&VWGu z|7B}gjr5}AXX736 z=8xRiXe%&xZ{O48vDf_6PD}rWP8wmdU!UipXRvFx56m=^(J0PC7%!O_O7w- z`X{l}e`sj!UdJo&_Bo2ARRtEl=JWjLXtO2W8t>-mDpTuTyW_Uu8=+R4)ENOs<(wDA zXnQ<(W#&=$beHj`wYBL1>pb^%hBMb2Pkipae+&NQ87ROv_WJaqC~9$HMx4f;aFl%P zuL%*$UqtUV%L>}%-2LVKY#}l6L)NAj(9c~}pc=Meow1hvQkC}yh5PTxYzUbmZ|pB8 zq1v52`J~%2&j}J~*F_xp_RUu>JR0rv`ar-jwTZpF63^1lHrzcr?=Ius!Hm#{;|@1& zVF~B06S?)Yea|Dl8_Ps>XY-EkHtrhtdyg@!;M^PttAz4(ypNxakr2BtMl@1vf5m9SzJaJg!W!9zc6X~>iYxl*54O7aP}+H4<}qL z=<7*w#~Y4yzZZ#d-WoT>{u^7z-r|Z|<(vHHwH!JUcR+go9G0&7-RHX_wrFZb)+e9x z|I8&XrZWHLmCl=rX0zi<&wt9FWvpW$5y!cs7QZd=p^;U1Ku!QZZ&iQtIfFYQdp{NR z>mBxuf54iR`q1{O^p2~B&ISjLlm*U;=RC>#^YW98wF0stP5-%BJU%SORq`!d3fE%h z*4{1WH&`Xi&Am&(O2F#s#f#&IS*+gHj?nwhLRaW}nJsx4Eb3U|+a3FrnYqxv$@nI_ zPl*5bPY(O*?lbpl`Ni`8#4o97;QKEzPH%URsvMfQ^wH2X^HFndKHl;&HOXRjepkf( z0JY3R8;(BrIh4^F{K0We&*=iaDaAKL91n$mny#vL=+2+Z)?*?76OK6JKks?bWa9@# zofp+TSrcq04y&=ci&&z?2X{XhS{O6ran`?g-|p#CwSRcr?MhFs>eAt&E5>4VzxKbf z6sakAZ-E_)=&cW3(>(0o=QC^MMoo77!ySeup&kYso=Hsd+;P^wY&^e}TAxkajKt;h zwmivE;o(ynVI24)D=I%81h+Hti{~*m{eGTueClDH1zL`Yo*ehW?!wxz*i)f7r`F5t z(%iXnU3zk-pjyTnmqqSI7j}$9ZT!7*9-eb2PZ(X^AUZUrX(YEeq1ZsPEL&w}(J6Ig z%|n9QWi+JLt@@~M5+Yk$?KElv0Vc~h zjIWZv|M!Wag*@%t&tAn%j(1$k6$!r zLs)~%pIBz43fU#!yq!~P+s|PhnMMcmsw{y0!N3EU_?pera!my=_Y6eW^m|DJVRui4 zdvt)ssT0GC3?SiyD`evXu-u%u9jMl4n(LR#}bOBlXAXe&aV>Tz_Xm-XnFWcc!*D#ASqBV=dmHF|Os@l{y<%(W~0cuNFg6w>IrN(~M&zogd z|5=hKmBlkBr!pdWYQH~(v_%8Y=!I1}sr%UAcT2@%KsABzXt3TAx=FwTBdBA3YDA#e zWTN72lZE#}B(d1GQLv=QXO}dN%24`GlR z%*=0Q9~SCMu8Ug`7Mq>8Wd3{Ak_gos394$D$L6s|qp{<+B&&%JZawfPdCe6=13ydk z!J>6;QkXM8K8eeBFW7>9w{OQ{lG;Mp!$|_pvS^0`CR@(Lz-2ZGN{PcQg&-q<1!Bxh z)WL+QK?sy}y8((QB_OhhF}-|!HAY8<%OdwLjMvZBo+_}$Pvnc$^Jyf!57iJ$i!BU> zvgclQRI;dLm{W?JaaoQ++u3E@<5u5qwhrexQ+@28qq94Wef6dxqxfpzTg{jgzF+qT zj@yfZzR}T1^!bYUYQevSxENCNG1!uIM&4s?uG}f2vVgiK>DYM;CBF4eMri>CrdvB| zXzGl~{|6Zo&mTvk<+5EEZLuW#!5dm@%Wd}aGO zBNZDX*ov{Q-hRr@UHWH}EC|BIAa;3fuD3iyee8c!z42zKSdI=g$%z8zyKr%ItVvD; zD^Vutd&3ghdqaLvqZr`J*dj>jnKEm#a%xuj7wX{5E;;))egI(}sW8+>B|@*6{*NK%tsQxM6!! zLYVrb>4L?O$rt6;u^DiYbsgz%BAqcbVj?yc$sB@SNeMa_t!5J0XzP+x96KC+*=Wo{ z%xW4%PmyMO@dQj^0-lhB<{r5QlJ7fiVUiTVayLUMBDy;mCp#90v;{N$zW7T}Jp}cv zo^sF9VSnr%@OTvtI}}m~5cy8_f%s4gXtiYz;puR|dSr)#^GRBJ?9$YeI(BUplJz4b zNCT$yDzSOwebL_A0@hO$Idh^RzY<=f0FQ~B zORdoIRN|{ZPGA``6AcdkYu8jx$`&O5LI(}=DlIGI`Y)5FK;=;|%CN^vsbS|jX#X-V zuLV#`De0lTefxHfo1602s%5VF37SbeKtokgRb^+|wM3E#3CHB`()MDVXx3*@3p^_s6BI?%#c8|_KFxzg@LBIp@xp(Ua1Ez zq2Z^HIPmFdf37IM7UyNS?tzSfc#RP6q>5211@^s-|I(_pnvKiw!=}b=2N|`|=TjDf z4vbeXgZ7W!sW+nH7?MZavJ{fCl82Mi8R(*Hef-XthQ}eZ1DypGVvnQW(#}(jNi+RB zLLcE3Y2MmRWW&}D0|fLksI|f`p7?!q7n0WtrcAy-1|Xpy-kKvyP@W7F0k=1X^hm-l zOcgML%%c-x0!v*z66;kyIKW7Uf$Lrp^d=GS%yF4DE?wT)x`!l-uVE|>9opU0+5_Il zakbc$3~USrHx<5k>Kyb+b-*Yut$%qX)>T~!?56JlIu=RiPN0QL$B_itK+#lW6RRF_ z6?<~}-&u+;}S9DMk+c0|TSTS2go1TSwwycSKDiwGep0pf0?{;+D^<^RUVir=MC2a+L zFfcJ$@s&CO5lG%Dd`TT^`?-mqeY-k4Z6WMhI`24m?hnV?LW|a#CGiF0Avk8sm?Ul4 zI#bWq_7Ut%7m!8^wZ^9}l8u9#ce(ThSzlM@D+8XSv%R%ps+-|mjWz=R9Drp|ja>w&FS-K4&#x{d^{Adx3N||In35mY@ zlxKq20?(nk{o@$Zo?g9iPg`MqlcIVIpVX@U0+CpmU*i?Zv_}-5%7^mDJTr*i5yojh zI;t{NLH)8?pVm6tc_03o*VnZuK=CwpjuLy;>fMt5LAr}y-VsG5_T*38Rh|v000Jx5 zr7x6P0!yNS_R$f`t%56g&vovh?=&I1Dl_(_vg5c6r6Ar@wvy1wwx zvg6>?v~`5?o!Ger{pe|nWOYfb4u`8X2_lnA185Ldun;(07C&+ z7346(^sFuD7$B!JUueu&C!NtF@3C=}J$kxFg-4-1LTuxI6 z7TMkE#L`MgLVS2!@&(zUnyTs%UulV2Y?DtZHE8aq7#9f-cCCJ)<%p(fkzLyd4oiaW z4ElbdS6c%z?+l`EI7XAm^nu2=Mb5Cj#>z@l(viYNEi#re;IqYbkVLH#k0+@@3Q&U7RE|OE1H_D_qVwY zcDEQC81D~FV|Z-Ya6cmYxazMA)f>X9x|75>5yu=P+$*~#J$DIM_O0o}_!C z+HPgSBZsU8( zgD)wZwAo4iWePm%tyI~;VJF-$y&c)^A%rqW0$HSSjbImuGRat^H0FkR0;ZfPB2juu zH!_x#MXEJm-jpI)ryK!2{GJ|gIPFv7akPm=tsY-q$NQkP7y0A~h{j-l2Z(&f07)6~ zlP{GSflhFEtpGwRQnxs3Wt1dTJa!2pIX7KvY;3%@YB`uEc$tKg&rd>Xl}x(kuF?#{ zl~Mj_!>9i7cCW83p@$kf?ZLz0c5jI3a#otn^Bn2RlWT@FtSUYXjm{v#aB!|@=!rCk z?7o*Yo)5h^XIn3ZsFZlrwQ#}DN`nnVjGX~fGS&Dm-ks224)fBkAv__K3t@v4&^di;#%&pgV6L%*5cWY=B4_b}pxtm+Uqd+qJ0KZQ~) z-}==BY$L6zDZ$q&IMx_2d!bJ@RM|rxLPtsy*!&!?#uKB?xb|67dC{{~rjJQH_s=a@ zh!{|-5=p2Kd<d!iC~qjL zOMsi~Neae8+KLNTNoL4*hX3^Y6DWemA#{2ko}j}xG(2MkCsoDEX4UHW<{2KIhiSN+ z%|T*%kZ{{06hzuNm@av5SUzdf z9x4M+w4!(Z*uD$~v*x^4nW|t#wKYP#HTqQ>PR5veD_ghC-24VCFxMhs&3V-p?B5bh z4x>ob_1VAZu|Veg5z6^UqE#WUBgP?K3fZL<=kMPx2G!6rm2wR z3&|gfM5#$OdRr=3hm@M<*|phi>s7JK3Hota%|>M--?xCXTrYxJtFv`fS>0-k+&6|3 z$2(dZD^1xJ(RWAHrPpxr+8;7vJ%VCAtHidfn8$O~Y|ZWnr8^>T=1AO0*W13*eXJI}8LlT*9BPp**sF7op9wA6w9t*b?QZUhaj(&R3lQ}p4#KoAcsT_C^i zlwG}`a)e6~LpKMOCM2TP0DL0CL;>t?8kF!;<#i$o5lH4fs2oL&TE@S8%DWT@R^wnD z02PJ&!=d>ZT?2n&NZ^h{kcs9Ub6hz+Q@8TXMe%XcyU87f#$Ym?mc+b!OE;JI8H+=&mV6UWn;Iu7ffS>;QDWXdkc8REE_C_kym8 zJDuOhpWB{W+7cd_ru5EjZN#Xy;$vmSkqdsGl)PG2y?o?`J^ zeJuL_W5a%<;TS5sK~^oNnVSV&PT2`w+J*8^gmV>Pf)se!!3QHCCE#yIQAh?w&gGo` zqGHV~=xflln+P$)F!>hPs-Bp~zJ1$#EfMYD$ZqA0u$^9gyKru8%6Hrk*+Up|Wlb$a zer^I6-&wtOBZB*sl@sP(Eh;LaSq8IhBhW0fadt$AvTw}72xD?ZDh>h*^=4VT&Sp%> zy_F2OcCD7<qnZ+#8L%K);}~fk;?S68n?&UZP=&_hXy$nI#|{*=zp9=?DgT-mLgU{ zk>YRI_H$-37N<@nlaB46+YF!=*xB}FIV5xofkrmDlF%$zmLsF~QHR1F+jYF(3g~Xx zD)(urR8pefDaQvJ3j9DIOo* zuH)?=b{pgBiLhdGZIh|A!-}B%IA~_pY??C*;NNvV-W9>q$=Vbn_R4RPAdB9>5x2WX zXcmp1jv2>QJoQn)#T$u>bZPx3h&1c@XC`DeixUVkEA1Tyim_qTS{!NF-TR&|(rv*E zmF-)PYEpQttQkptnmD5`Y4CHATO=NuU~dmiBvZ9lo=MZw07g<$n}sn0F6`EK7!<$; zS#{(y#C(NOz@-LYXKH3<95A5cutd#7;LM{9fH@f1dN;5+t?XT62v? ztfn8KXY!wm!x()$3v60|QoCNeG@J8++m*zTy46Pss$8%$1U1AGtK49{7@LiOGH zjj#Yr)f73u)Bj=L(jbp^4XH4rK8D@LmF$E_x#ZI=AKxX&i!;fK*G#6IE=wl>ZLvaY zZQmkr^rk;^@7~r6X4X4|`{x&Dr1kp#1NL`AD!T<@*wH`J|3jd~l=@GzJY|?z(&Q=T zOWOP{jQ-yI_X@D-(x#0Z96|%k5Ns-%|-W z)bYGK=(*MsOPogg1q8wjU{0LeWN+TQ*$`w7q?smKz#l_UIjy@S6mh^6i6`(e7R25p zjvcxUMk4N@Sj?or4gu8Dt>4Qh)xMydhQO*qnXY}%KHu~yi~b9$5tz<)+~IG{!^5Kn z4l7u*Vq3Nhr1!$oB)M|o3@`!Vk0F;Zj5PQjY)E$R-Afwvo&C+#+CO&{W@R+E4LRM^5*f#?VZHWI5Tj6+~WVNRIP2; zxY`*zqZi-Utj5)GY$79YmDcR_7}+FHJL8m5ilVvq8xYJB0fqq9qUM-caYjRZeJN_t zOZ>kUC<1|{-#1i`;Nqp4Rg?+vq{~{P&+GE#gUZUvA^NQ}o@GP}LDEsnmfe5a1nk){ zq(=#^KZkBR87tKtO<8+dQ9;4vLD8)_(!IEMKJ#lmw*7t&0}GFLoWtOMS!AE4TPs*)VQYLqQDM%%-;Wf4R4`Ar@lV?7&|w(gfKFW9{Qm0%v?2QH zwEzLOtbASC`#+G~XnlP>was9S6ayNjTu{sSVh8LUvWUjbMkpiD zET2Vcl^x;XBGAs!po^^9ZSW+GXhMlW<@oVPpmwpSezk#t{(bq6-~@DxoL`XDAWsAHEEs<VtbG+{dT{cDZ!ZWr()@v}6V zpX+oWASj3fJsDDf!Ay&ao15FYP%BIsp|O2LP9Gg^(kmd%5V$Nf&i|t-H1?4<@d*3w zjSQc7l1p&m!dNK52Pa>7jg%N5_S1)d@R_kMHQ_@Fws_{X@7+!d!^edkLh!`fQ~vyt z96Ld}m5Kd7i|DZkszt}N0^XvL)IU5jQ7$*e;*E1h?e;rkf@pufHrMygn66o5UW2sQ zB&jm~er2PV+yDIa*l&~t9&mc;eKdePX$IrpdK82<51~)oG9s34yfO3c)#Z?n6a~sfxxD zJpjbY|K|aCtGt)9j2>sGch&>TUX1!$`7;w11tu`^ka4E>{Ui|3E82fOmyQCxfkDG} zv2CI7fiOcOoZ_sy`o|dq)xsd`QKL*m$5;15OGV`fwwNSYXU_`ONRIhj@G}+7LPqI$3%z| z%Uk@zZwQaW4vHX=AuPG`7qn-(q2`Xck5FTJf4RQ-@DMIVTZ{Qr+@6}gl)lqY5p|Ae zY!rCr$Ci0`Q)L+W5}{FpgSg<_)OxK@KM*b?!rWZ#aGwxmqvOW`gD={P`7J73NDqRv zRcIV2tAo~;e#zfA#Qe8g&c1?V+vG|{-isIXOcOdnMQ|0;Zy%Y_#_PEMcefLn?hpoh zy2|>Zh$&oT(aqkvIchFRF^HsCe9^{?eA;t&HXn``j1u0tWueJv@n4eVCcKV}uy0n> zz2SBg8~Cz?)~o*dOCA2gB{+odO+v3?+6Cq3J{a&g##f@-W(t5I%L!}gvFHKdf(lmK zlYwRllDS8Bg~k;ygF}uhd#fz*et?B(;A#K@A4R@~oR}OyPGlCc#jZIV_=Q}(AniWj zXem&ABC|v^@l{cQn{BHB)qYHQ36tDMjvgh!=N4qVYQUgkPd)}bG>qmudDE6gC<&1M z#BX6K(xOA(2$xoabxkZb_E>Tb`Ty0vd52DBA)BAcFovw<6p%lfO8PgVARQO zhVihdXk&URxol;>I`GRuZWH85C|~i(_=1WC?bqC}P+y~J> z-IB#N0caDV-}4debjr@Au1P0lmun&<4oX*^h$*ffTu1dc#z}EexeB)==c>v<7g-uq z%&YS0UCyY@TfS}E7yatTrxQg?F``R&nJ5#e5F~z-Q{3}>gtuv9A~X{|Qq)VOX0h$b zF6gKzlDx~0OI*1$vI#|yvX8y(H3mor1It_N;@84C3xf&?0tPPY>+P`2EIi~>@j#ic zlV>6xWiycJ5@^9REI^)|M?OJj*ll@si7?Db#H@6=)Cd;wa{=nu+LwO<`GRRMpPjd7 z9phW?V9O>Z;xcklySHudFl>?hAye)94vhj|km!;z4$L&;Tarr~7G9{k$GLomLZr1( zr8p6Q4e@&rA;>LC!(3;~B?tZ|E18+VZAF#rS0&N| zMp!fgI*#6fR$VvY6NGl0xO*rh1I+Y>r4;*DtiiA%e!$=VT1=tDn)W~> z4iy<_Y9pJDh;1uUIu>{g* z-kP+rh`E znt|=MNRds0%<66aCxqb~y0dX;Zgg|_Y z%MQsDE@hw@y@z$%)XWkM#e*8;s zyKjH|W3A)w=3Sk4$G7EFM!BngXvz=g<9aQU?Y(^D@3(#X_6vV!p;FC>#r;eD2|EB< zdfg-VV72>-0Bgh2xb7VnUl=x4EJ%5d2{wHlhgUE@fr~bA8pG<)ARdD4-*4wLwc2cN zu-TiSrAVd(>`f>ShU;dyTYc<>qr&Xjwn%AKybZ)8BPP(1RulSrp>!f%!IR#;~#L`L&tM-Z_|^KS_6CT zS%nK_9M&b~OWNX_P*O^4*pOTtZ1c1J<#6hp$ExVSpNdS3{4&o&VzXtnjIk3M-Mo_- zwUIr6IYXl5Mq~wnCZWsU zh|)d|`Gpc&Iaum0$!%I&ThmBAC9q^w%HpWidH-o#SxkX)EoK|vsnnjrAyy`5JgBAF z;W=Kocrg}%jjE=z=g!%D`2n~Rw1LE5X#Wty3htsR&<-dIXU>T#QGkobNCvr+`L8^< z1M&#@Nkj0Kp%(@!V+T_Pye^YiFlCu`=ApyHsDa1RA_u)GMXMHq%FAY$9g9!BU5GEPecXOeoQvbqK!)u`7}_0did~R zl3OfFMjdO4mev-Bjxcc3F^OH4ZhaImbl~Qd79>$z0#1ym5o=V!;K>kwTN64<#MeO1 z6^VL++-;m{&rDj=KY}sncK$_+5`k_&)W^o_>eW(;4cPL7YLcDw0r5oCfEeV&d#}|^ z4Qsi>E1nzbbnTy=0U*DQ3$3{-@cjTEGofraZnx6gt{`LxN;;7 z2(S3TQEB_8-&}xuFZhK3M3lHS3BVtu-NllzE^*KyLebw3X9jq)V8N+D-P*N$Hx165 zIit*aap}@ztgZ%nEhJ~;hk6P+O5agE)O!D^qAjM(pFbbR_tZkqC6%f3XMHWe?FXq# z55f2}5mThtG%F31_=#WvdDhT~tMQ#Q@6X`Ag`wLs_(<+XILSi1+gzjO;NSrNI6Oq^ zBjq&Bn?FAW*{Br1vRhx>r2QdV%8Z5D8@_$}<}!%^Xf6WSt;G8E@7p`+=S=9% zj5Zg+&ay2zM27)&QRF*bTphc{HGs&=7}ruS_p&(LkO}@_)~7!4-AC@j&0t2BKKc zo;~|it26rcL>1$oGv`KolCI;c8*z-u$SBxwAHZ%((~$2Eo=AgG?}{M-91I{+gy$$Pti}coBft`g{( zc$9q9fvek&TZ3fe(1{aq2Ub!!;sj~H;5^_fcG_#G7iH`Yikxy^(bkEd@zrmo)q8AQ zU_}(%VSpn;C^L~TaiIkG@jrSioIK8gZ_*6mQlNk#E$xc2&q$$x3>nYOkd6NINfWU< zUkeuOGN3pt$@>eiTil$Hsne&Ed;>AJS3F3wZrDROEc~E#&&XL?_9Y?&5uXn7kk^;( z-BOo>>cbpwl(ZiYttU^d-Wc7WKqP@6W|U7Ez2NCd{tJ{)yZ(4tJ=ga$F2I5nL*;-C zQKv=&?p0J$`moGbrhbA9Pd%RWYaOgm@L(^ZLI?(u?%p*kjeg&5FI*jZW8`e3s=BCd zd(nDJ)|0aVsNV4*@Ke5lo(>5u)duv_(}B{GB>=s_N-Y z=yiRTe8hk3UW!KhewpURLT5bqL7=J-|j=q!3UP9)V2& zA>~fceG@gh&`O7J_Uxr%5{uVCa~9N-19)#v*jSs;@*d~@V??}PNcz-^DI?^$g>2S3 zfX3qY2W`480%cq0ejaC7^?sgGM_c~JiUalmIGNH%laIZbZ5$`^oq&6kli#Z};K32S z^+)>ie$hJgw9C*3;29cwLoZm?d zIAbRiy0Uo~J_0G69KEOh^RTdyM43RYov=qm#qwM~N({DF)1g>{a%^!^F<4np2}NiF zj~7f1KP1qIVAA{QRK89GJ)R(bIL%FsGHXXoLrrZH6o;}cf1tlA9$bhb zZ^8!_brw_}S7*aV(R6H!6u)geMb$oN16ky%9+!5yU7tyLD1yaZ1fNj%0Hg093H$kV zb4R6}wA9avcM~-Q)3qYgE_PMHDW8pC@_8?k(+931ajnS}b(ZlK=d$Om^wV6n51^Re z(uFkD0)JY$!SZ$qcHY*uGD2gFGd3^&1XbeD1_y~VIC)Hxxh~28Tws6;g0lT+m$M7K z(xxTYc9)H2-K}Va6Wxwk5Gs-7`b3#88`VJDW(Sj?$OCpyh+!xn>Wn+BrX@)?<5c0c zqd%%L25Lr!4TeEFDD1=}fC-g%H9782d_Fulyp!H_5t?#}0js`0Y(?%T`}At-5+XAr zH5X4cFE7N4bhl{KBFB=iR`gq0cRnp5PO&26!ZRROF+lqj^Ld`sP@DpilsF)G_Uu{G z`eCX97|cYE2TWculqCTE0z{Cay}$KDoz!s%Sx{BC%En&guwnzKYYva_+$j(Dq78<7 z5N-1R{K{Po4DeR}6kRShA3uMiTA2a_hR}WIM>2Ht<~#~7xRu@}d2jBxj;!tVYlWOq z!XJ%?k?!er%7D@M{X7H0n`0X0c%hHDIUgaI0KVeLho0_fV%^wemi`((G9bi=G);`Wjt%>YpV>`eT>h{sLxLh@ANKuX8+SOrCr#T(`aJ zb5ZXRgk6%<3X%KtlLvP-&KXR8LK=+qQgb$SJuXsOopaMPh`4#klIpsgcOiQTkDFPK zt4tE1TPF069A@sjSL=A;8vz^WdpwIf&4CJMV(GX)NeCm|_HCxw z25%b!(?T@#v9IouB_sHJ?@68m)h$}iWQePcCK^DDI844p1Gwex3`R}fuunitRiwPz zOJMC9ru4W=^ck@1uzIp4=vaW==){&n@9Y;;#8Lj4KnK1s75!z|L5|kLNV>Es z&c)cXgM;I~em$0r+L)u8ksP`2R{bH-S?PD+!PvG>4h5`6c1}URV>bv1TRxF04WD$%Duh3O7K~1>z;8_t@`xo)52sFt0Yg7 zVW9)3c$uQjsFOeeqedR}jy*g)bjSZ-lR7pi8sg=RkZ%mX1EYX~1yj>1<1t?cXK7`i zxPBv0xXMpnMU@h=qWb;+t&o}3J~0;0+|vakO*vR*7|}kSE-Vv`LdP7pz4C=b?Ah2| zmuJ)UC1S+-LRABZ4|6mnCZjR}bLc!75P(Un50lJtoM=8&lc4I5LZ{cIOU1Ya-OKVi zQ`K%H@A#{l$3>tkb$WJsw-r(l5u*!BW(doCo8XF*Dkc`Y-wJsxMynb# zUwHD>4STTl{3!KJ!Bbi(F0P2z25x)}R2UlgY5KGV4+Y=frSr6`KxcPSSi3jFqe?H` z>ZxfC{Fw7xMtK49DBQW*8e3=on0AdpZ;}{`!G-QdkQ#o3 z!trmlWtXvj$j;)@)1{DEKh;9!ZdYiFt45TG!uoYerUAObc*_3m%_bT;reM;S`xxy zNA=#!$i!w-U_SxMsC&)@s+IPU4=+|^aa92e7&w_2qG9qw6;*!}e&lyldhGCP*JhHu z7lFTo9ZR!h(oTG?KlEnZX5yyXi~!xCaRVS>A^C0@Ec?#tM3kT*0c`>WZU@%Bc3#F< z9EB{n8R6p~)v^qGAjI?k^iCLG4J%W1*J!9Sir4Y(nGi@~M$s^SfEITWh4Y7TM_zg< zr!RBXQLyaZ%5*}X+@`e)3^^7)mMw0_Z+9;WXMU9i&H*L9SbQg@Xf1s@U`A>eVrpq# z5Zj$6H}c-}{$G%X&e{G756XC;zV^;9os=9hn@3%MV@&gA!Hr0kZ-`L;kR+rW`IQ6!9E zXq;CXnYO0JTK?j!;Fj-Hz9hw;ek_p$7@raef==)-ltPUVV>ON)3oml*RFx~vR`eGa z4J>GUIE33YL*4M5TMh~cMV~P8ly*5A%&q7CuL8B(2@$EJzQCwm*A66~wQBqb85CPsNv2^J(<3;FS*=nD7 z1sN|?@+An66mT(pX^!NiFteItoZGzt=z{TpliFw((xn`mFIUmc!A`8manGTVA~;uo z&r_k*TR%7BbNdn)rxXLOvK#8NZUZ3*lS%JECIrOmzpZvF&>JE;ZgC&UQVx}kM}Xdi zLJDPdLScMLLg3+f=z%^FF~#1cMk$-k_6rDzMC}#><^BxMvw+pURfXcGM`1?R1b8HX zlya010BEAjo#-iX^d6@Ye2@0!P5|t<#(B^Ei7Otu5QRw-5oatlK;=zuoUUTJS?Q`j z8UjQXh5l>fYCM!u%oPCsHAh1bvs2rB+JGASxAz<;W;l|faNNwqu~}jAwHp*>l858& z8RJFbY&RoHmEsZ`^5jPgB>~Rh)$Khr23FL7Qn*hBxXD38Tgu~^I6EmdQ|&=-D@+1G z#X2XC=6mu3*A^|DTmB9RWw823nyACDn9NsVyoJFY-}1EMG-<6m|M9sDk7txzeRgD!={@k#caw| z@gd%6%>@QSZ3)cnMAe*J0i{TsbFua759*|zcn?g>CBPS*AebZ6OJ-~y$8e$PMp@Rq z-<@iPN0x((@T~x&^|N0GdU!C1ctaJ*ho1G10V@zq6qriatwpnD-KC@ugcd~ z`RbJ!EIbOcs&+UzUg#ym1VlB7yluPLsCTG?G?1;)XG2X%kj$lf=r*C&8nQW?zx4zM zd~u)Q15#ybJP2fqMlz8~9z<@_>2fmRZ$LlC_N9WYcEdFxj zS8iVl52KLT0z^Ub|0C~B{GnX`|M8L1M$1Wyh&rLoQpg@Hr!)ygk_eSG%gDaZwCS`U zgzPOMWQpv{C`I-nCdL@D#n|_;%zR(hjF$8M`~$zo<99#K(ab&fa^2T`U9aW&dcI!Q zp%dVYPC&q!_ZtIN2m+JK31%SzjR7ck=d#Zjx7!TH1K?K1jqauZa{@aaSzMK&;>nL5 zJ)(9W1XnT&&1o>m7wpOlzkyVB?)tPI)b|mH!A$d4E`2oKhT;Vf*MH?j9}DB=@-#4X_B|M1j}X z&tMF}F`?r#P^F`&0}QI)TkERAkMgZ;mHfFr;BdlHDAqushEeo4}6z0toVR7{;`0vYn%fB@jR7hc+e^0S4|2fj(f%UTZXs z=n)^iC;(9)po`X82Li$f1nJ%T_diN%{`n~F@upjRA&sza)Xgqj@(yq{(g0*e%gG@1 zha3rTvG>Z$UkD5g1h#P#P(7X@?mpOISJN@uBLO5x21S7)u)sFxuNFc)YgkVPbZuXL z6bVGlQ$(==^m!K0R9rae1%M~$Xk-vzwE-=He3TTBG5b_hV&uerHY;}zQW=QUeCrF) z0yn`DdLS1(Atff}9fshA)I11c#8m-vQhq!KN0q>W?AUzEX&ZzZPlILG2n%;1mjtcY zbi4Vdm@LsK&$b0AxmY1>Y>$eH5#lF8@a-V1wi0WGg4-Z+tfGB5-N5Vu^}Y?MBVhSK zxN&jIO#~7MP#GWzHmvI7zi97a6|swNPX>Jj`~{4lN(+6^GbaKBQveO%>Q|K3&;hPb zpfE_GN2*@GFkLwj@KqnO)MQsFNDZ_+8CDxqqoWuV*fC&YI>Q1k{V@8Rd(r?ig!S<=8hcNM0ChsQ$io@sv?iTTiOBQ;Qyg(EvDyH&>OxwYKsg$9pl8Lguw4AD zqeqX9DNh5W#A3vNX>C_9C<}Eb8ZF$Rv;zvvK?tsDKQ{t?kxc-S)w%!H^Kq6TI zmcVBKk030$8+o{(-%v;gz?(#H0IU#Q3@igM*Lk;YO@a`U0mNk=UEbnTcMx*85PJvZ zZvZV6!E-292GIg9eSAq1L=Capki39O+(60dQPE$~EV*S+_}L+^D_d+IN%9iw1rVFT zB$OVMJe>_7N(zw70QFPhC;_gx27>VbosfZ~V&KsnD9=X7B_f((wM|T(qWpWLiUGk# z%L4gNB9bTcJ5U&$X`#LD2?+_b(Q+XYd=p+c|M4>oVvt`Tz(R8+gQu>K(hBO7hsWtO zV}6iJ~If>iZ@gk)7Aifty-~SBpjt?@oZB>wLYuf z)SyTkx**Ji8WL?IXk;|UK$Zh%>>w1!S={U!*vrd06;RlOO@bFFj=RDL&H|q@Z(uMM zRvtrqA=o_n6BA@CKW_&EQ#}ZZC8UAgP@<_oa4IMc?$Za!E(%jfOw%2vr0@!JIIi3I+l)g^@X0 zc;ol9ES1sF4?WH^0oBNc`JRBH zwov#4u&O{|R>cvB1x$?s^Is2S=3^8_+e5ngG9iJ*u7{Bt_j<$_g%7&H9BYKNqJ*(1 zkc}XhC_SK(A?p)Fl?Jf#5YcRbG5QUjRu?P-!@6f+kD&zrbD-w1^*}R70E!o?D1^#W z0Fy1s8QAU50m#AX+xl8JCUuLUAP54R0EkBHG?03>#bpJcn}fP?o^Sv8nh#$_oNI?X z(~C&MZds4^=iY|6!>J$$T&7wg69vH-nx8a-VEUqxOV}U?hfhF=@nq$y)I%dBoI!Dr zY555_GKY;VEnjIRcMM2LNyz|f11)8uT?>RjgvCRwEJPTs&(vE81Fq-o5Ct4RF!mh; zb^`Oh4vz8@Jk+w1iPZ*R0W6#CSj~UGSc44}6bF{++-=CFhxK}{wH4;ojn@SXq(NE& z7w*c>=djm-;R+;O2vUjMTeltUHhd4zga{VKU(xeH17IRSB)RuV?4c*FKR)lU$Ol{i zK)PTsZsTDVCY=oYJIKeHNd~~3s7n{_gQ@6xaTALL2vE1bGjJS4%$99fxYM7JBM1by z^B`%xLM_rxJ&6Q0-SdR>^a!W;h4jNgrsQm30E2LIQ~^8!P#t~$LC}jL*tzN9y6Go( zeSH-hpmP2L=uNksKcz9@XdSAn7`PELfx;=M`CU3w_g%tXfODQFk!)0y5B$L14H(1$ zl^(R^oCorNLdZB^aE_E%x%n^>T~OKW49jx@{J+eXTEz>dFMg!6beKuy@{&B!rW}8aoAZ6)0yDKosgntXgXC z20_78xPOoP5Qq+vlTGIGWmm6U8S}EEuN3q!!>7#OS^sltVpi?Ml^cU9&ajQ#RD#-L zzjDWp9T4V=rCxKRzp*As5XS*UPXPul7VOs$uTbFq=tC|{11v-K8eS}_r4bYdv8-|ha}Y;^mcUB@Py8t283<#Mj|I-GcT--czmhN(!iBQ{HaHIK1WXk?C6v3}ATe_> zAJRERuuy5-++S5Y)7AjQgf_?q@ZsKi4UZ!Ocg&9X3!OOg?MZz2r0OwNPtrkPOv7|7 z17a^Q7!ZX3xUz_Y0=6``ErF~IGsFW*I+yr8v$(2T8^jzC63YX^gpr2=62F2p3UV(A zu$DRY5^`q8d92p~$m@1b3gD2auu$=`!PpD_H!xa}6i~(9$TP2}UxC zdB}%w!AnjC)+G|Apv!%7V!`w@lpq}xqJk<$^lap0qtY)$Kort6Fi8W{^A%vq^cE^` zAdqgs<`0m5E%n=e!aM?2cl&gW!v+`-Ec+_#4DdR1Qw{Z573aGy2(DYV9h>JvoQ=h#N!0u*jqv6jFH#FfmXX|5!FXM@Ny5Zg2qwFa`T(PHUdQU8cb%0 z=T0=2dA4nal3Zy-mv~^AmGS=`r#Q9j04jNkpQ4Ob-+HC#-f6s(}K5WCs8*jvwb% zLI;Bsmw>4mYLWDJ<-gBS9fk5mPF4j|{2DLiD>;Y&UEnkAhV@WsEu3`iYJ5wRa9wb5% zq#B1gKLjnC>^AxxqP~HD|NZxt2`?B{O&~bR52K5qjSvYLJVC;8?8>~k*`UW=j+4(8 z{mwdK%$&pgx-a{rJGX4fKnRnvC5K+#!cuJnYtcE2H7aSmWjJ4g8N0uFwo- z?4b`%V8|UMlpF`M20kWM<^O6|NyxRLg(4nLGT9Vbn!*u5)*yWH{(jh^rV$fwDXy9yHrN#;C9WE$oyS{zKf%b@$>WJTxOYfF_Ni_-@S^-rE8-?pCwsAhvs{|2cSpd zS%qH|j^e$}ze{oOGmS0Iy%;}jJoTvkBl+jcBp3w13|qELtm^v%mgXWw$$fLWo|QS! zL40rwe;ac>(|E&X)mp(N6Gl6m)A->I?5!{7r~o{=ICgP_YN&d-C5R|I6CLhdhmTc* z9zCC@A^|F8oJhQnU&`_8hETNsXD*%npgX5}Gnqr(p@pNsP+|$5Ft4|)+V)q`+gxV= z52=dKM2M4&Wpn&;tl2-w$^Ik@zWTk& z8SAIRJ37Q?)%t$P2lnx+0v|p^?ex98pEY3?Zvg-B{-q*LSjoZCw!ikCar>4n4nieC zX#cN$tPi@P^9$t9`uPb|H5izSkPiOwk{X_o!{_Uwf_)Ac+AKZH>jo{z*HtUF|>wxYDLM%Ewyu$ML zIq1`wldL{9%Quub@zX+MA3-?!-il*j)a{Q230OZI-f<-Ymcas6C>KjYvX4f85AV24 z&Td6PgWvnmC*Hr>p5tM_z@%rpLcf2$^RE>-`=@L2d-v|803yQ36ekpQWBxn*O8jbA z#0(Ja4gZs<3N1!{zlhu*{=et!R)$(;0cd-U7;ZfdY&9Hxo6aJ^W zPZw^)ETT-mk7ugU(KOER7{CR4^;Ppg?rPchA7F1W8-`I6~yj=S91pW6Tl^rK1oNs zNL1+{2pogw;I>Ka{@Hi!`Hr5-g3Z}AEWw!j%+F?HJgHbd)woutXkHtItYA$;OYkt< zQ>P)~rw^g)vllLGx#hBw$e2y$S|hL$rMa{ z8Yo_Mt(lOt_w3_3Nq0IF^=Jg2MIDw%?}L0rZJ>=H?~Lo0t^9P|0S)QoW$AJ&SD@?4 zJ=YI7_j#wYIyUH9*uEq)&ZHz7b131jr$Q(n6A^Hv(;x(c>V}_7J};g}u>)SP6(rID z=Iz?VCuRCCV*3N5{J_6In~AwYU>OMx(yW%-o!e<}N1;Pi@+g4;^aOde8MH_!3Psly zg71br=UGU|0-Ev}RPh95-Asb-o(zy7x9HDnmheab4@M$PJsymCG=2&E_14A$q@l;- z3O%032yZzVHHd202e=`?f1+wLk_CWNqF88cCqPFK9J_hrmxr)>DTt>?QR4_C5OPQ7 z9on?R+~+2TN|KT`8hy3k3&G$s0pckFfv+JrOz%62AV9 zCH@p?hi|-LQRV5Z^(;zw9;|DBi9GvSCqRKbrUt@?Z401=HLAQAgz{{F*wMA(Jy`gt zt^umOLG^|lUIXx(Gms~CwHY-DVj8D{;N(O=U;0taU0{1Tz9s{MRRhXsp&+ei6v~Ez zaAFJ4Y5mQ>B;Tsw5C`4$l0d)^$;LI~EL__XvP4 zLzM;BvcyljZ#NG|{hDt?$UL*i2UhA{NH8nT;eiM}%!X+E=DSQl(NHFP&(?_GIAD#V zgn9_3y2O;Da2qPpNQAXdphcMoEr$f(-V2+6xCT!%%frO#i$6p)*}+GKoSmCqf_eH- z+6WQ&<>q@2l>^>w1-_Qy*PkP=JqbD4l}Q*&vg~5}PKcDWEc2kaG`6EaG^_PQY8RgtZfb;(%3@42%*0rs)Sg1sSOH z5zu{I1YtT|LU;+l=uY21tVB#YRB>6@3QfAtPj5i4hi=wYgYrWbz=_7Ylql6e8Lbc?!sqDh(qT!n1g|^{tCE~bJIeETba-rUg`Dp<1jVmlv z#=}_$pd;r?*3KVh3=$V|-0M8sq}$ASd-&Y}nk!Gc4tegxQGQ||aWaQ--e^36)U|Ec zO^wm4I%h$r;TO^Za+r|4?%8Nu{uZ^MlSZBPriN)j`BQgNL0iZ$J!ZHc2WH#eFlW6JhDv4lGWUH5vz!fbFabXPy-|To2$z{pocMvtrRV@0iv{+ zLrc#p7c-_AZB(*z0fai0hP`@~%5zYmYA=#4bu2We+Rz6=Y4=9H!-50S#ch{-U@}3+ z34H?0Qgn#fuSZlATKJ(h{w2UihB&gCXy0h8M$#kBHjYlZ7LP~g!7`5Kb~&(Y>6dde zpLPb!Y-d~hk`=Ew(k+&P)s!A9U?eu)?r9t{hodwvnO2Q8s)JI@#WAaCHO`L8{z9rT z@U*XAzZS+KI_@DWjzTCy2Z7py#oka3>ypbHlp#}Pj;b=sg$tIGA-j=LCHt8Q-Rlk$ zEZBzGcri!-)RgMPG1bRfUf(xhgNzp%jcd{v{b@ayhCTEk(0`*4ika6U#Iwez{OyoS zEWO%7LaAjMs(F5&nFTn%pOY=#3WXuKoRoAKb7u8+Xu8k}W{nF(&U)01XSIX6?(K^C z6iJ=$2`j3DsDYQ)0x(ygeoGjI0gSqB#&{T_7IxCsPB=YX-GbD)kH+&K4Rh^xpu3e- z33`pZQ-(rooxL+L(}lZ+eWnYfRaNo2Fj9wHfH>ylGna#(J1%sU^=1hmEFvZb|8=|jYS94sI^4HxJE%Q+~(t7|76CO{;0 zfkLf8Gx6Rex;CRimA;EUY0RATns^~p1Bv?m)>Df4?><6#1Zg>nQ^V?fDg=x@glrba z)xIjJBH^%Y??45QY}S|=9y@V4N0{zMo$+JMQoz$0H-|i-*xLMr7IVU_Ye;n=fhmJ{ z->9zAs4Nf;E6d7GY}&NRg;EDgmM9c6lJtuDlL~8}?;ZnW_z)yflE>ez_1TYB7#;`i zNjIvlhGvm)#npgAp~f?Jj6VTkbW}J`G_4cjzT1qM_hM)674{w)9(~3RLZ#;Cr|S3@ zcY#iI6Zwl#kRi12MW_bqRn1HhXZ4u<%c#>=h2}0WkYJ#<_Ns(I8mWWw5?3p$J-|{B zz)jzQ&divj-%_2qH984JOL~)tJgP~T~x(|PToi8JT*^wOGX zxj;-UCou==7}a+-vHB}lG%4v+_=goH@UAvuXNK=6z^ds!{RuwT(52>b#;u7{)_R3h z{2Y!cE;Rf3ZdndoCEkR>+UN1F>VriT=E z@Zdi2w~hGDkK-A27Ix!1LGo&VsvTsKqV@pzve z3m;Lyqp5EOf#WqE7~mz0hHH5h@PGq_=HCfLeH%)^&nA?UgpkzxF3GqeD=RCSO%GP3 z2j3g?`El20cbfO0_4Gs*s&Wej8!9R*PcbHm43adb3(UFAyX<1+uYZpy@+TEfWziW> zn|*W;)PuKsSD>0`wiQ`ch%s_^yiW_Shz1e_G^Uhyv+*TE)s}1xa&{jN7blW=ZpUXo z535Eh**&QXDDL~=*8G5nN%1K)v{O}NJ{O$6=NRe!-3D*GEg6ik`7ueRgU{G5yhE$c z^gS)Fzhh@U>~esJSCHUs;Da};oIDO|GSC#DRNjX%BsuZZ!wkyk z$&N3%?Kwq*whBNRC>{$*8?c0;jK4R52Z;%|_zKaXo`Lyk{}3pm-l_ zbjX2>g@9s1=OBKd+(!&bK<37$b@uuU^^V0d8t|ur=KEq9R&AsHu3boIq10z(2$<4= z>Ai68{ClCfH$qh~>xPc89Rrr2604ekad(O251zru{fXiL)fi#=7rAZT*cv>(v!;AZ z8s8nidGd+SY+YUVF(PxISm`{@qakw4lQ`{3N3Fj1h$>e+>gUzTPkrJZ3+8YSEI4kD z^lG&sQ%7}DhmV_!{z*+GNZ5VgP5GD*qZI!nFV>jRZCop!)0)wnMnj>7EaSN>md+09 zaHCS`(bS6J`P$)uZ&Q9aud7IVF(Qcmkb}5WXzpA2Sn+fbPGG_l(he=`=Da~a(_b3T ziU`>)N*?|IOe(E~J(UK%h49L#^?Y-4O9Ws^cjgdvp9N36U%6(@<)1 zjhsm}1^Oe&In9$o8_TQnmQWqtpnAY@0Z29BYkfv;(Nn0iDdB1K?qYus4Et1=!;GQf z+60x!#6sGo;fO6qlpSEE_EMR1_*gt$l4<5q6eG8f^(Z45kIllr1Et0GEN|cR9I5-r z47$B=g;Lw-n&B0gZ@r8vI7O1iU`%5Sl~kwkD&YYO9pTnv7gWdfaK%YH1XaeR^09Y9 z#e*9?Uz4+IAhZ*$Cg?8gd#G zGBc)_p*e+S->1NK4Hic8)>!zlU(ru4Ks`f3&uOIQbyAWrHqGj-1zd$%D5#nlUZ?8S zcbwWAdHgJI9+1r)A)$JxxuOg7Z!`?+ImwCJQ?T}kyMCu{+DDo^%rNIUJS{zTdH;{p_~w ztb@>>k;?PD$3a#gVW%7N2T(G1SU=P%LiAAQZ#2(@`HH5ftIMN?VOuZg{JCRic@t@h zMHynje?oX8m3q9#?>|4OA8PjSH%?7hc&SIq!fZz;vbKQ@FYXbc02!a(?}IQ#&6ODf z{usN66P()@kHcW#$a>Yr-{4q!090xOE7a&L?^eJl3D*5-g;Qtj6kF%w-NdOra~#Ao z>~m8SzpQ9CYLMwvJPhu&bw`>vxnn*Hr!)Xx(N>}k%QZnF)3V=4r%9}3gs3ff4L`;Y z^9xiWEIdm}8ss|6Itl$TVeSSCe@gY&j&G{>pKp=HKv4{~RlNAax8(Y`w-Wdj zQowvuOG?@*i`n{n6;vn5Y}RsRQ&JogVddry^=nXaz? zuP2AT?_6Kve2M?htHPVzQ^h?96Ics4%CnqC_qv-b!1y(SGU3t2K+m8QSb-1`ZXvK5a6Hd&3Rb z<5^*Rj*StPw1FY^KMllQB9Z^-ba;Kc?_cIL(GSJ`r{|yUz7L})L#%2G=P$AcW==gV z)tck*Vo!m~u2mGS#yP{5Hd@kz{IXPO9sOe^I=e$p>w z04^tb0<-#ec%_8#g*61r$A1qJf?jsK6|6(x@q#TT(G^Sf8SCnjc?iF*Ucxxbd;HYk zAF~3_d;EY6#)d3={H**R9ljQ1oA8O>)3(G%>KbN%@6Q*i25gU{N~BO0w{N(Jcs_qj z(~{p~W=;*>daxzt_n`ESOQk*5XpsLMb4U+3r+d%_BlAaeVCwGk-SsjWl}2e{8DiVO zU;KH8<^M5K7WYow%eK`CHLFZY`cIdg*h%nozLX#a5#`QTa3~1~m}{08_I%jJI?qJT zOg~;P^ra+#$pq_b=SQ@*tP?$ke^GbaksaDL3C*@`XqbnPw_#QABYlzuh0C`?^~hoN z*)2ajZ(Zknx_vu@eX|BO>O(t@t$Q>G() zx1AJe_X_8sKb_&}J(0JL9U36e44}9}(lz-d-!{YjN*ZOi%@$~{I5QJKJ2LI%b$({p zfy|bmq_i*7D`BO(F!syww96@jDu$WG#W6r?H{ZWy#oW8ED?QUlRZyob15&}R|3xj5 zSR^l#(lW$!KmZJFz7EgeX_j*y!h#uas-V3xjS$@|X>>XW$mQGB0t9PXTcd6*HJDxS0bDAqv9S@HPE)Aw zS^mm|)mQDa=XpP-bEJbbGVA*n-P+D$00$3DQ@r(VJN7oy#20J;D7`L&mD<9sO`6PI zc4kh9b?PH-PJ%%*v7Xf{x(z&HeoF{1%--YolYeA>$sYU%lRg*Dp3%DtjEkY42k!Ja zK0NEFe~FYxYvH)L`SL_wpDbo*N}t_*scS){S#3qroRDnIduD6&?G>2!52UYQpycd# zX}0@gNJQ#{W5|C!T>9HSN_K|biZhsXMp0+scKQ*GTcq zBKKn5c2>(_RbL@l%%dwi=RwqadKz-+!i7s!R9V+6snXHa4dUkit&BkK z@4o-Ih5f+j7^HWu$S(nM9PjZCbOrWSqVicr<3DP~`2T}yW<=w;v7G)eDKEXHuJVMc zb)@sGb1>s+#Z$XXeG=bS4cX-yTn1INcx=!)vp^$#)6~7vq&?OS8#55pOZ6k&vcK}8`>!sJ}$s1Mg^CzF@L7VQ+o3yk{Ym;WJzu1XicUmf+T9b z<^_99@RlvI3r8aF#u`_=NH{CPM<7b>Ubt0mCPMs?$s<)DqE6o zRWJ0lbNpSrRi?tL%nYNr-9bqwE1#d#-L&UHoLEqvQTQFBkYnnO3N9u)c4>+A9?WTb zB-iTw_X9^=58b}a>>*;$1NJmnh8Iyxe=0EFsv#{hDnB>SqBfR{LDz77sEPXtU9mJ&~P{bR^W+t zEbJShHu;TaY%WwO{cNm9$=27WR+D1;dMg?>kAG%PpJwC`o%GtqQgXU=cLkU})1x1U z`45|+$cuX7qG$#MNX}L$$_Ql6CD(Op2`Yu{sx@rcI!Wf{XNX43N^ws(M=(W?;yWjs zU-H@aE~w23rr=sclQn{Ce4?4X$yydgs-L`uhoTBED=gpKJO7?_2Tbbowi$IabB#uu z<}_kdaza(-XZw_WX0;_!rh|ob11HdUND`|K!A9C}_rFe^&Q!3JdPUpTK^*KMy8JyK zRwc`6?%*AiZzr|oE4^|F32l0Xp01@Da~JcK?-g+SL(Q#G(OYU z7*+H(+|MW4bjt^WC&S$zp55`Ps=4b(<59=9C_DOy8+-SA#V8R&A6S>#N;eM3#LP^8S2HUEMvA@n0CAUemSEJDHA@u?>bH zyD4wdmlOVfSv{TfINH77cwn`znP!{){v09ICwWOxd@WTY)O*f@UthHkPTIP9jHKEU zHlLRp|Joe#+IDK8e(^ajoaHU$Dgmcv3$l^Yg>1MZUQaH!%0B9TyhW@wL_Z>}KDp9q z48I2?P+-Sw-rg6wnUM<_SDOcVh@*JXqcsF=X;S!zxk8n=BE0z$Za(~rODA>N(x>J z8M|=adf`&SN7HMP9dB(8v6)zS!{#KFG}b56E@Hq|2G6BM*0~{G>BjW;i>g{Nd5Qn(?_INPp-UX_{G^`Y`xurbiLi+TZ+j1^idMYIoPj8 zF)N#0GKFwRZniB!?i$;iYY$1YZMi&ZByBTp-69(%8=>rMeh@!Dk{Gw`eDSV|s|gZ4 z52*6d<(kIT@YI%T`+S*YbK4}TYnEo~@Z2zv%N~BCK7(_sSFqVNu^joquzBJh&(T&g zkgk_AxL%~Wd$_vt1Y?AjFxFdV^r_?J9T>nNlQmJrxuFf4N#$e>xoO*g+32mk1(X9% zP8-&lTC`7mYftgknpy=SAGY+c%8b*ONPP+@N;{{fbgeCN)mRD$FDq|pt!Q!WP1u$= zt4MCH$);_tLga$1PEG%`4NGh+pddpwEt%RMW>FC{G2+Rkd!oW|M~tPaI#E@ zmP&exHJ-Mv6GORQaBpWFYVZv-X~%^L7s{@$nh$wheAup-eO8EB`19SqI|)$C`5$P< z)PrnFW$z&OBv1LUxpGsEt*h^BHc9KwthwKkwl^wawi|2`nil1^Gn%scp-Tv;{U45| zRgZl)Y?58xM`}DTic_-JdutmpnlY5`a^+G>T=S|q9xjbp=jeA&v6Q#cYD;q@73X&? zWm`1%Sr6|sp=9ceHn?&ovAKPpt_&5>&)69neKO(ArbRXQ@ni1Fl~u*#aJYu9>W`DC zlQZ|x_`d2)_q9q&tF5%~>>vIxK2pH$+1!gsNiB95US$4%6B<%}6Gb-)nPhB-@fO_0 z&v2ccuoIZFmUe$r)Io|-j7(Fx4r63ipE^)ygDEr|H_jPMi@t_&Dqid(XYjjXB(I|0 z3DBc>$*1MhM`DJ?N9w)KpPzG|9XM6%N}hMQJsaP$lw9$-NnGw@)i06Mwve>#dEaj? z0onpgi=L-~ZO;ZD_HSDTg+DUAcz=*rEzuMgvMnfbupV?XF0FcC9hsM#AMRK4&VR(% zT!uL)uqFw<-Q#6 zc-zoOgDw0TdPD8~w6*;p%MTg5_a9~a=xA`CZM_KE61Zak2RMV>49V(B++%)Ayf@q^ z?8vC-DT?F&5!q^&Ya^496a9uVa^P;jp?&i?*5g#OCN0Z3tmBTvSS>&q<&SNnSn!VR zyURl;iVXfZd~#EQ;~%>#3txXwqG{3_Tdd2-gBPeS%U1_1=Qfs|&nfcxDxXW^ zv#jS1a(QIxI5k^aTrZ2wjFGV}?XEc`#T3U5U+~>=gnjGZ4y!%PqWZVCG0FuIk}4ju zvCNinc>WgusX~`BOG@8lX4$BD8NisSu2RDC#aeRnB>&}Whi6+wZ`~umxNBU`v32*)!p!cBq+0g}vZ@xUJ`Kec5)cSc58|LtdiziIKjj zg131)-^y`+v!!$#_aoPQ@R7=*m|CV$-uTSDv7q8xrJmTG#5v_{+hQ~BzXvQg}V>i7UM53BctoN=~{q<9Ba;34HNPGnRAjAGioBimL>x#SopsM~oG_J;HE| zNbW&fYH!Ai+ZK1`T&x%c1FzcmW&KsW+cwDDWk#~5sjex*{9yC^i46M5`q#p?)X3H7 z;+WjjjmHB4(wXuy7Zp0Dj%l%4Iw1EP&;K2Fw5&=djI;q%L*Y`v~@t(l*z-^F)U z^x};9?WuT9eAwDSKcCdEo8+56kX!_l3ySAjjh+l``Tpe-HKoeMsoANC#OJ#-GLCY( z-?5@>C${K24@f)M3`r-bt0x!HEif74YdS5?kN-#vu~`!#W2+?iLP;>X;9#h0q1Tny z!>jp81x3xZn~2SR-eG(Pqxu3%DN*faC;qBCBb-EB<>-Zk$0losbf>>dYd)RP_(Sduv+oV@MH4a6**5rX zSWu1H-K&cLQR>wf>r09ttQQJ7=GV``-KI*OT4m-R_>|d8a_s+pqCaIkMPJ<8Hh#&C z4bO^CXLFbrxZ^So?hp3!l5~2FGrzlHml~JrMNW%lt6Z;}T$dvKC_HqZ)ey~A)*gG)h{%)%1Ef1xL1<@wl@j1~5PHFm+=mW)+bshd^-%H0D%-t-- z>*||cFAj^elYd0^7q>{v376R%>~hG8tJ%8?CtWa^#=phpM3{j%q1!?GC-MkD#XT;h z9F4O5e1gZ5BTKnT`p!^8S|;PmMqTjcDX|x2Mz=_p)BP{`JRa#~6^-g00i!BWPgBaQ9@|g7uYqhI4bB6Sc0UIt8%77OK8z}+i zB=5(cFe@Pp2hI__(MNXqr2V_qe7%ts(4WtWQ>rNCli89sQN#Y1G!Nw@o_%jC$LqGt z>}=PEz+3c~x#4PSJJkrfgS0+gxYoDViP%Z+Z( zXWh14@f<7Q0LyTQED9Xct7m%Ox0rK9bCnG4CqKMiT)Gc+?up@{zlO+0#D$pxzwzi+ zEm!4{soCZix6@vWJrJvzb|8-)bEnaUDi6s?##u@TFW`h1%7Kz{&xNS@Ic-pOt)^t; zn__*92=y?^$vR;Q9 z@3M<*_I0cdXBNm)tDe22drjw10*Ui2WJkEO{$3%irs5#(7>yP`;mLtB)PHi*hE(3v zdQ0UEzTyCUiS@9#nvKrUNl9P`LZ5$A0=T0#%?>~?mi!rAej(btI1J)zPG4#TM7;8v z-ceeXCS2rHs?0d48>$}#h{OJ{mvkdLWrzK)6fa?BRSqSFL~$2Z+guw@VtQnZhQz4^ zzg;+6)83?_CXRn$rniNzv`xT9LS(Y?ya~Gr?Xx}O%c!~ z>3XtU&b3A@)jcLOL+gEyNq$SRt;#z}9`Y}d-pHt$TF8+|IOci$Y}cn7bOEKePde{z za&WRbpccB>!O}_vfQ}x|Zqw7LgUSyyKc#7qHTGy4I)#`8<{5=>u6EQnil_r)*-lw1 z?8O7?J+sDI&3JhjlYGi@HjKy>^9RW(c&tSi&UN8oAQ8klS$OheT=COIQh4srWPg5) zz%fw0B~|r8GR@xvz(#8B^ib*~knhPBYUbiRZ0yNA+-tTOMpeOmhVn=4hYCl}3@KmV zEhng7siEe3x#XC-?xx<#Lq5*7+HbMaC$)DCZcnV+wUAlS!aONUi~%VSuliyXH!&Zn zsncQUeTcrrwt;VRRE4)pSkTXSm;J(4jrl=vA+l{*0jO^~b@k))HukNRx+;Kkk)3lU zSy+6Qj5f3NO~IQ571$|1#uaqB6?e8pI+Wk*7P#=F>ZqjtkAvZoByBTkK5nD3ea&=b z-y=memw({q9VPgpG$I^JO^kAyhch~eqGS%@X*;69jHGS7ooG#&%f9Wbpw8< zp&NyFe>9rCB^r6lsQ#sx2#VfV|E3Q{@K1bd=<}!nt{Jx_Y7L~&0uwrlv-GiXND)dA;tD8}y0V zlr@{*2K(V(95yEN%xk=^tDQ6mOCyfEwT(p>IF{c#rXQmeX`>uDA*4C0B|O=e(nJii z_b2gm_;KO~A0DPUWl|qbZb-S|?6Qm8RccjL{jqbJf;Bm9K4PxXPwEWEo$8qvGe#}21>s@J zW3DrYqf0KyJteIi6;Zn7L0L!ru$yW(gG@2wk|lZ$4q$y)JhT?GddpDmc`*Vl^&P4(L(Yzejr2S&;?uNolTJ@>2QyOWQP)u3~rm ze9qWE+*qa6j-_BpWjv9mwyfdsPt7TiV>Zwj{&j9Meugmsrsv^%Nop1G)I)f6s6 z$ZITIhxw5!J>#eA z@e+xops$i0&CX=zi6g{5Sz^^~P77aVf8wOhv!Z)}?N}J zaX)_D`y~pz)$GSy2rUzZ<_v^&FRSS11-r!lDEGXSe@9|jekmGB%J*f-i zT&*85EJE8HJbSu+sv&W_;HHapL*jOd-A+7Nzs3_33>n;I4Ka1mi%gf*d`77u>9Atl zPjxqRux4cLaSWopmb6`rN_HrHN3Yg9p6}-w+(A4IPOa=Jx759kUhW6f*3{y}4X_cb zo9!w+pT(Er8;%r-D!sqaEH04i%rvw*H}d0pd<4TqxyNbWWu=|U-`13KZZ1l}fE&Dj zF|?SgqQQ!Wr@QtfOR10RY6=)t@+{x%FjYVM&nujh0w2#n_JpnEpzd*h3CW(%^}8{- zp)z4(H#|{D)Pz8E}={*>@@wBt#_eG!LG5xl+k25^zHnd zaYxOfLlFk^Lsyp-MIFe>5X%6oKwNEYSI-M|1!8`nV)zPm-8h!aQ)W*ZR0YOGxy{LnR4dxbl$_5 zQh)DSH%3uuMSYHF_ZQ*XtE^$f3MoRsokesc6zOg{Zl~n3KSxmEQN}0JajIJ@u6K+a3YXTpmM-#8h$RYcjSmG4~v?IfkjZ)lKfSh1@7Mrq{2%7a?2z7O9ACgu`O6CG+)lhTJIAbMTuwM*&ezY z`+}^qu~-1bl>`wblW-(LifKjJ}hWb==;&@P+>!^N7@#)i;E&*dPyn1&vz*PJ>E7U3-`4(Ow%4`K9h#6Z%(z%!R6=--jpuq&e7?_ ztC5>@sXWprJ>T9#j6wPLh@8#Uff_8i7N!gvFxyKJEMyiXx_Zob?pK6zamo8hn zEBIaU&`i72kX*4=#?HgJ*8J^G``_?SSu3WQojNPhIBGiDc6nyFo!_^E_`H{A5htl# z(f+41oEoI0DNy<5*aHQ38wm7xD7ac3+N>v+nSJ0SpkHL!n)4>9w&nLq#Hw|X%k8p( zKnW$foS$oZcz`HSG|2{Y5`{-F8TLk(?UMa zZG)@;8PTDAjazeg#jfL&>y-*SIy=*{y3Zf`(Cbm*lq9R`9RU7)+rwx5^#Tc0Er> z8)S@<&i|XP7+OtGBw@c!qJ))|OWVgxNSVY|lb;LUFPF%CA@r&t@ zTYbTvzHO6bY%TQU8Bl#>nDE7rzbK=+<0V}HjAaVksikK-cC(c86Z^)){(dIDO-2p$ZI%V$6a~wNjt&Oo0ihaAtxS}&bD^E zT8x=Ju`MZN3w+XPXDtS1~)<6v&rd{&z zS>8SMJkv$%Cz6j)oWH~2XmATb;d`x;>p6}Iijnlg~xaOWRXol00{=#Z)(TD>cMjxs2kto z6L;kd$}aUEYWRvhKoO8%wbCwYd3>MDymP2l&Psnlq7gPCE6ydA4U(smSRN}|NGaK7 zPBz%KkzY=x6%_IdL|G0c=cH=hUE#WN*_zFEhwj>lM;2=pHJHTx&Ldd=mn!v5D8JKP zt)s~N+9jo{GQ+PYHC!I@+F3jtw~dVZmai{(y2nnl<%o8g=q+ggW(UnnYRAD?hOIpb z7;<30auPt^{S7FZ{)c#p;g$t$2Ka_6Pm&`ALE+8dBhaO zJ<+;fKg`ycCINm9_(Si2#6egvwVP>>jmDTr*>Mf{FB7~=2MODWX}5Hz76z5m}G zM>vmsUVUr(r>!^N|9kpy==z~$OaE!+I&(np#EvVuj@#C)>o&3|yMCnX#*J44kB)rj ze*PX~F0pjY0~-z=b>2IV9u4^<4+&`yu}$!`<^zQ6ZDi>()2& z{K8b!eW^pbE5lAr?IUUWJ{*kP&z68C{Lhn<_Z>eQr_X!5-{mEQYBA@n{3e6SxZD$$ zkL+uqi%RNocpc}bstghyOr&g@sWdHl8A?;M59lcr7EzAp|Drmak*EDe`<%wWbxN*y)=ulO}l{f6jS*jR4n<63ZG4S$T_s zofZmKZF}OR62rZXl&M9_i<$g5T@*D>`tgHLXsR|&;l#4TtV$HN{9=X%Lw&8InBZ!)z)#~}Nr=TzUy_^GGL`rV7V5YMN21$Rp zDR}JTI4>zNY2JJ?f`8(ih`@n8`m~~o^p)7=4o`MCTavWeuTd?10n z16z8Ku5KOGH6n-!U$~P0-V;%g?kdU`&K(P{WwgF-K4z*UrFT|zX;YdF=ls@S=KW{b ztI?+4l!Bh&hUt9SSgr5IS0AS>iZG4O2}`!ag>LDF%c$*w(d%(Eqw8MWcwkIu$))k& zA&cPreTktHZE4_xXx;e~x=&S1%C4 z9s7uzEW@Xmny?H8vL0K;jfet!&hNyr)h00K8jpTCeLoO-s3P4jI4eJB_G8@SQLVpB zXw%r~Vb9QlSZ^!(%gHO(wVfx0XEv4wm!-#T34BZwK2|1tjM_Br`H38~RP z{Y~oF+eNC!JdA;NJoTX}xh>VRgxrYSmKdhok7+)H$IU+%siv#I3ILKp;H0~Y7q zEVKFRpO178_?Wu75iLyisD}HLw12slRc|Td@n@BiTfmsN%DM=0C0sag1zS|2MkN;2)O&C&|BQOZ*-;5IX{$t zUTP`uwgY3VYW@?H!`OKX>mHUIHAR7wHyR*-q|Bc>I#!t;faZ}2iL7hW#ZZiNMRX0s z7iNOUyR|=2Mq;-fjToiS(asKiGiu$BQ4b`W-n)&@ z1lYBBmkZtkU0g0IpBlE(rpBF_J&B_&z9Jw>bm%zSkmo#+g zcxjZ~PmO3u zi*InU?*^BlQQByWUBh_27b#Ig*K~O&bfDAsP}rS|mc)L;sI}V86NdJi%_4!L$K$?U zxCg!I)QD;zEBnN-u>3-{It@R0CPLLm=rPA~NFloTdyqudvwYeLeuD?fwr=7 z;|9a1)IQXLZ7RGJQ#?c(cBB4Ot>3@LK|iC|yxy)=56tQvF~(?KFnZg0|lz#^gQ{QzMOP+f?nlV%3JK4Wsnj8mw!KyP6~7s`LJRk2S7`6=%t@OpkgV zl+~--CyJMtf{4HE=g&{5#p*X@4w*Whso9b%zQn@K&K1&V)%B`%>c z26=K1s$}Pz1J-DN0LJZY=rOGVqGhjQhZd35d#_%WnfShVIJq7z))~|)w6*QOzSw~m zJ51jssV$f)O`|8H0bk&wHBjj@_1BgP`V!^50<#Lgn<9nHi*( zOrrVGX$BQ7nvO7z`|S}9@wYx>-QZ{=zKSJF-WY{&ZfQ3*fpQgcC?XbDEzcn@GeXunvrTHo*Ci>+KesOj#qiGbksyIM+f zj00EvpO6NmchGpb&ExsN@Sl;x|s+KI9{M&-WHth`6$EopD&oe+b~uUPlTRKqn<`f#*D?s8JdoRmGs2F1zIpLhU@$h8l&=}}1@V0Ks2G3V@CB(n} zogG=gGz&b#!aZpha~TExlH#;oc%8?)Zg+Qg6MZLvRbvUFd_haX6&+P9%vvTC!@vHq zjmj>I9)y9Wv%>82zB!v|kxA{LPzVdz8^7?9WnxY$bi3(Sp8EcPVJZ#nD9cUeq`b=) zN>52m$y#|f{Lvm!-@+a0Z+PQtEsjl*)s^80v5pfTQ>zTZB6fkWN1Sa0ygB@5N74zc zN@6*_nK$zJw#*~e&Jj#(Vo-C5I9rs^14+?vF0DN@3_V2|;uja88R2D?)+eum+8aM* zmB-j*1%47D`hMnz85dCqTl|9Np?YS=P=hm*nu|tL-emKSRuwyWqJ(rSEdWy70qIx8 zLQcK+WX9R%WcVMUq3y3J>MAOsp-T}^qN`-=?Fjck(RW-WST7O^`0dH$k*z`<9ZzSD z6ID1$>d$5E7NJ9TfkdmH2i05F*=f<9Z*)?Yn}?^^1-fHuZi0DZb^i8zE_t4Zu*SC1 z`cU4yQ=Z5CU|g+5z7ezzOQn*7v}jbOwh)EmOV<0ep#+)YFXda#ieU0{>;vUU6@*6~^N#`8y;?%3iXND&?w zL5Yy-(O}FNTHTRa6fH9z=9+#=!&3rRu_Rg$Jq^3Mh(Ij$_}ljVtW{007qz?f+2*}^ z-6OrK)3biT;0W`0k(_Mrx*!vM`xsQ%cejzqIy(`nf=SC6AEu<3w zQAQs$aa@Be*6*_SYcf`-X+9*H2s{~}UYK0kHJeQEj&mt{)~#E2Ww)>CPlu%B@NaMrqn8D*Vb#HobIR9^fgu$!L}TBIvi%uq0?tH; z+MgAo&BR8s?WlETPO`)r%#Yput;LEAu!96HVFzX?V{Khazo38s&(~E3v8cT{g7Z>t##I}H5fi7#9y^h+v=l?l&SV=>bdEvm31c`w zNs+M>2rb+Bso<-~#hL4`lL5hys0_ADK2}kAJsq?q$8H?d@RUx!`LB0Hne7gL26lS% zws|Gw1lEVX@7a$0fSKUD;`@WWjmhEJ?yUGgRW~c7b=MA>tRE7Y2>qY^jKP|QsUZR1 z(^#H_1_fLbGf=+gIx0v^a+!uhHa0e_<6s&vAqE8GPpq0 zM&2*JgcaW*5?8pp<|1)ZM6WR9QnT`+3pnQRJfJ52e0HzYAa;5Ms2gLGP_G!Usw*yl zHKU;!%@R*A2*LYgHV7aBFM-&}4#)kW>LXJp@z3LzFub4_B|Dxum*!5e0BH$7%K#OH;M=tCp3q|o^Yu+cs zUFd4Q&d3!^9VjKtN)qj_o{v!}PQ)DqXIuZ{D2L5NnpvXF?6BkzS{D|azrD_rO04ZP zY|++-^6PWKi1Gx~^T`cUm710c#C4`h{0zF`DcJ)x=4bZdkHofMUq*^%)|*N&f26m- zVqE*{Yn0Pq*yvAr*=qf>J*_OifcT$Arp(N(G7lGu*X~5)K<6Sj`uEq03lgIc{7g5U zTI=9(_7$2si9jm0#Z0~q3CN>u^?w9oB(*^pE}vx@#0_Cw-#*}o_QEp6ydnbuhl568 z12w8^VgHs~W)Y>nc?M@3S`Nk?5vG+6gr8xw)}gMT#>WRMl;)OoiEi}#_?Jt zOxvL}_$_9Pi}M>Xw%sI|<7k zG%Ti|;`0PqnI77R(irF>CyU=hcT#yD$|xS2fcxqRn~HE0m$L4{G} zJIyGs9-*vKUdE}u0uq6)2F9jgs1F!km5y$N%L84-(*1y~z1W)DMa(wG;W{rkD_fm= zS2;gK4>vtx2NLq5%`})8+85#Zby-UFW-d#F4Z)yd{Wt82D#!jHoJ8mYsLKdwN+(QV zUA?djo40F^9%UOc7d6DY+_ z+*-T=^eY5x0MUgs)c7ZNr-A20?RPnXu&=bhS6qmu==+@zr%1j|;^ev~p}9+^{?iw^nV=1$xw% zCFCT`azkoi1JkZ8t+a+cLCqbk)NW{%O8vtTOmp332DVqUw6r8fn>+}VLY;)e(*zez z1C3oDP$e4gi;NW*q8kE2m5XIYbk@VJaH{-@)#d3s;YCG<2E(n)&AI3w$sz=zRnzXL z3MT!0M$HBJW5d=_AsTV}q=&vfFK*T5I_9i~dzoBdy@yULK?}n}`GJB%DQ1M(ws`9^ zsPJs;v~rw(-Plk7cfQVay!4J8SPX6LN9i*beZnv?2ndyZfA#9!M(PZ&8Yc02W~eqF zV=Ozd=V@K^2yscR0m3+qOToFqYcHE~H1urJ;4f^XXzb;o)!Iq?-=hgeG8xwek9D+u zIL(U+#}cud z8VP3Sv9sc86J;?8lW~JvsDi|J7&BgregziA&SX_V4V-O}*nnm8cuI?H`i1AQ!U(X< z3W4|nH6@U@iH8~Cu@z?|pyx#Zp=ml#4gyZHnCfbn z5}@_r?ZpWJoR?i1A$fsy=Phn}4qP^h&6t2f@Bsxb9I+!Z1j5TY(Xs)PuWDfAbz(X3 zdA-J~RH?mhDoY#6<#JtE6HB>qk`%D-E$r?#A%==N2l^l6VL0~ah^4GBM?b~I36t*5 z6S~CnqGA^-jNR`7ft$C4?aAGEasOXVZNjB*!t*a+* zEm&PzuMaG*s~NkkQ^4IA4bWE#YCbWJtJ;DN3XTVgYEVB*gJ^5p!uAza=d(B!9wGK1 ziYHUeAeIo-uI>*yfzHr;B~=hDqlWrgd`;{1jUX3_0eTVRLla7=tC2}atr9EGU;v3* z>Ht(tkx>hKQvywn@E;s5Dvi7q!Ha&{xDmG#43ov^fm>~|DrJ{3bRvyGRQK!9(1v53 z8v6c^4=k1zZS}J(nitp)b#OF#Vkm!l6ctS8e~T_Rc)8;kLG5iL5!U0B$Y>4U}3S%TlrK+s5`Fehi_)gYKy*UF% zpb&wBjfL5 zUnjaA&ghOGu=0u=IOnNXBs1PQR4a?^_7dhWt*^)?O$5#F@(>XS#Mv^fz5r4&GfBiT zb&MMhu-7PW@-1w!XiP}qAJ888u&NJGIMcW|R(#YH*nxyuH{S zZyoCea=Xsi)7xMzMBTQ#2$ia;u*61GADU1z+`UAsaoq+;i(e%iG& zvlKy1>-C0n3eac+%%u|&hYDEFO)o#eil-IU8!Tf`u(MSQ5LpNSjhA#f2r2tOEE{F^ zS5;}(Uuu~RkkOYAv_X3qp!MM~MN21EyuofsX%f|~J*9`(tij32k{@p`c2=m|17I`;Fu6Xg>O6pJvm9qx!Ds;ELh4*t&ma4&!+LSho~HFsw~ljk{ctiHVZ z*97~oQQ9%(1}y7U)d%)_Wo+hV+Zh2bUpljmdc(-y1AK3G(KI=W7qPziD+K8d2pg-Y zusS!HuDNskn>YJ8rbJT@F&~kPzxw4fHVa!>S^cqKfliSA0X|;VS3ig06T%rJOMcys z2xQmaxS`PGqQ2X*6Z@9(F8K9f3jg{pCe6+P%J6v^Kg%p8G}Kx`4i={P88Smjtxm zoPF$dC_m&g9IiG;eQnjgz>ByzKI$SWDvy&Q?fEGcRswt&u%jhsyQ0J&vXPFfHa4wU ztF#LsO1#hpdpDrTqi~wWCo}Em8Rqquj3)!@X!`U}13Qa&+80NDeMflBF~I-jba$8v zP1nQEkted_n6o;DNcHZ^8s?BH(@=B`&V#)`{2yYMLcGA^0z5)xFxC45JnB~s0-z_? zBWL&&UK+R4NOBx1&0#$?#V``-)dRP|iTkb4c2qrSOgpB^XzQpekHoIROCo@YFl2R0 z6Cw@o(8Gs{4@F@WJ=?YmqH)2xy`luoeX#LBHH{u+G;7*=s`@7nBGveB+@k)Ims@?i zb85Q%v4_KMUVzDCys;Qn!^%S@qnczZUg*CZ4vGJvZThUU6qgB~+Pa#JcvNVn9ui|E zK+qrSwKb*J4<3GAqMsNV3a3G+O_7t=Fi#|Upl^Ga-q6$zf9gnHBkP6eVv2z*E7~;s z*b&qDWiP}01^g$5^M;r8Y!B})&fH$KmdQu3Q)UK5F~2-e#aaGhMBFD;N9Wj$E6{uGoPJn+hzf$D!ique4cb z(5k!WYh7;*Fa4CE!r>*xmdfEEf;%qKD-S>KTjAUAgK|MVB7Fum?0b_?9MBg6Af&wZ zJTcRud3S~gdo!dY;dM`QD1`~&ixIr<*|~I-bIB}k894{9IeFO^!OsOtVF5*Uh{Di4 zgtamKnSFOcV{W_X9QS4C;LR5B_uBaaNgbh#D1DS_yB--VQA<?{k+6B@wX@2X$wf} z6uVCtIfFt{5PkwA{|B979h@H3-y3D<>}-pmeEm=M1^`0D7JeHx`g@EmQa{*TzF1ev z_;wP+WK@>)WnVgj7Xy0=M#KLI&~~~&h9Jx0x15iRZ%WG#VPdO{cAxfq=`#IPkaN6B zWd2XYBqyK!f6E6mYb3hnKRGbTv&_QE|C2-m-a1qOgK6U6e^+iYA#X`dZ#))m zsxgGj^alwzWXJIp)*qK6%IPDTas?1jHFoScVc@kyXlT@eeY)*wgcl(+gO%`Q(_ow> zj&6!E_#XLWbbKi_0NzFE6vdOTNylq@qIR&*tA}qo@yx zv2yNy+vV~w1yq>-P7(Gfa*F05DK=!=yx;SWF#Oc%X4b4*%=SQsBX(GYeM_BR5G>Pa zV$%=7ZG^DU6^`(Eywe9D(bi+}9DnxPK3PC!01-M8$O`Wx$UF&0AvjflQ2plVZ-$rr z&v#c}I0;{X6}cz0;_y(lNoPeMyE}YM)9e6l#oS*fIkYfhE)%8_AKJ(lK$k@WJPIzk zJTko(R7ubd2~p66c-3-)JM%DN2H$`$=OP^Fi8zdqO*#T4&9IpZ;RB4{(j10Gmq)-V z>c4?jFZR&BSqh&XGTGY3<`^+^R5f5|=E7C*K-A@9moW(>5o85!{W1Ev?;*02SKz_) zg_5{45Nw{SpZBrSa1du~?ydo{1u#>sj-4Ate;oCnD0H|5&=e1#CmVsm>7~B~C9XaY zG8W5qzF_hWbf=D>Zyp5|v@bGM2C9ZgVgg(WEmr1;Zy|wMNQ9jPjfZ5k$EzzX0OU2< zH;kV{nwCvHjPO5mcr1@Inh=60sL~G<_{yF<)2G(+zmfDgB$7RTg=1lV3+rY#!5OwI zpXUsWTGb8LzQ0;zOT%QhP36xg(gYx3FpH4f(+R*}MmO`dq9Z>dPDUh=f=XOe3k2&) z*taX*R87sxmpwN+D+t5lziwyPeZ1`XjHYy;Ia^^~wZ}UKIu7NMnDF78PWZcqLIg@f zs8jn=pElz-V*Dgo19O%<6o(gma%TU3-u;h)*^M z%=3W9m&PE209;?6cnILS%2u=v-(L?e{1V9{OTseU z9~coDDh1;|5%5zVT2kl(A}B;_91(!cdh5$1d#H$*8&x1KIYD*;dd~QO7JV1VRYDd* z=Xv&So*evBpY4jed&reMiW`!%u!ipNO2s&j0=!bf>I!vgj8b$%ZR5`eqyPn z2Z>sDHIwebfJV=L*WIe%^9cU75Xo0#G{F`>FUj!>57uMZO(mYA1s-rSZ3q#Xi89&A zvR%cFSu50*0aD8;S2LpxPdRW4h;FB(9dK0*7Z4KhueX&uF0$6!h(%*(f zCWY258a31&KZBO>ahevno4a}mTlZ47Dn|zDzjlev;{iMb@F^^Yo_J#*-G&$Mld#xO z9|;%3JWdI2bjPY3>f7Wl#lZHW(!$EG)mbLB_!#zi7du?SvSPueBxty3PeomwzmQ|w zF^TVgFPnXQ>KFr%&?P{EonApBN6DfJY?5U!r1E{>_`3TH{*Ecj2T>_3HFokEBB>gP z&9ucBD}+yZQ9%qZXFm!q@Jd4&AW*%I6@h4vKr+=NK-z2p`s~(VUz5C-UgvzMRS0%i zpn1$zR-{!gpr4EY<03+*RmSmk(TI~a1DML2wMz5ziT3dp@pNw_o~1YV2_<(%J0P#i zG>V17qPcKP#Tmn9(&vD6?hdk$ECG(`e|dFsMv*QOv}g>h95L`l>q7jc7sCO?XXjU# zD=;&lNolNBS#OTo;&H~q6`$aIqDj&NCr#t0-=>EISyc}@~O zMOP+Z+ZH{B%)2^qJHJA%mtcI(y_M~8>%KBVD(6#6yUb% zFvULYC?e4i7&Smxr82!+#0h9_tj7#Mb*w~KmOP#G}q4R zNK#B?lCx-Cu!mFUi6oEI80Yj*<(|}Y_FblfYE^X|9X({*e|vF?|M4@WZ3lhyyt|z# z6uGR+hKBb@Uj&zC1qFq-SKCSxFzgoqQ=HV+7E>{Y|w&nBEPO|2L z?t%VGC-EFlg0CE8k<=->m4~V2VA-u8;iMIS0HiC#L`5@^t+X669o=PBGx6hDL`1|T zT`{z2S>I?cZd|<_8G9SP2=__3!?%tbAANe$NT*-HgVShffU zmVLkJdz&d&?G-u9#np?1i);Yi8WkO>$RK2}J%(2jS*Knvw+kS-+e+ru)zv=`gm)$R zh(5l)x|j&*q?|)nt!>YuK{Cm1a6xbD@{4};6D{I4tBNKOExS*WXOzZSYtl)|y7TK3 zTAB?VVq%9J z9UT?2n{KT&aY5+9T9!%jM5Bkb-d;Equ9b}0MYzafe?vZ|E@^}8aIIz9clO*}13^=( z+Ect6{~=3DOA;TGo*HaMJXqp_hOVxzLbfq7n$2P4SjjSh$S#9P*g*HM4}^jpDbSZG zo5W-Yxwo{mI1R(FD}IyabwF~e4v>&c@!+*iGpau;&Q!RqYOzoVT~P zcbI70;2vvOnY}$KW$C8F_gxUj9o@ouAd10ZpI|)D@|YbRCUfwRW_%Ia=~FIxg@uJ= zdN+9%`-&@OEE0wRGlE%KLpuNH_O}#bbwWL79a^PDHkCVp{@Xh`p1*v#nPhux8Y0~S zHei=oN9A<$e`=Mm@1RiFya18|J`*JyCQoAeCCs6_7q^XbBL~`{&m-_YiRW^aR2BXr zDI%n=%NK`iwdI0SXjo&leBP`EEPj0C6mt8e?q2cXr{H(~4`|>#~R^@1>J2}=O8GCD|v=*}5-y)yvuIp%6RN5ND%1GBr zZD(l&S(hPqXY8cSUp+s6x;Tyx9YP3?gitdsq&BKdYVIU`x$n zuOa%~^5-*nS#M8%D6NAM+y7LDC6Cv|nKrCP{C@QpnHzO!$DDOzXBz2Dy7_zlrf;VbS(J$mW> zr@a5GR#MuW1iF`_n}2Iv5OfzD=U0eGx^wy8Ysx+Tgk8>lBC}d#(pF9v)6sQ5mk&gJ zE$2|$$P3XWMHJCr(_cHlTi7qvC$;K-c;hQh4bMXis{bZ>a`pef4$5Nz8Uxoaz3`U% z=Kg)ZzX=`%-zb?TQ6SfSwf^O)Kj+=t-}>7~1ns5Lmf|qP(BXrB@0TOzu|BUHFhmS0 zw9T4q3fqUmaXG6$J&$glMQ5LbpBRNLQ|PICxRP7v--AKXFRxTfaPG<9weEkAW6;s7 zVv}XR6*+|-!H&_NlR>5Z28x9qbmz*r``fp!VMZ{db-#C9$nykchu!+DNG#y#k6iQi z<@20>{+5KO4C9QCwQ;6T36;n2t)uiy;SVG;`Jcmbo_btdCs}O}xCKcoMPAll%sv$Q zh#gzPGT$ERX)OP}!$|wXR=ef%ZWeLMY2i`n-@gg*vlp$7?M021c-*J+*%u*KQg#E_CKc`Em}DSyR>=|UG*4A1YY8C&wgf1l`CSerJ^ zgTnd^`{HM`kS+3C?Va-V9r?tX z3B+k%ZNBqE_JJYmh8a8CggMo@c&G19=2)tDlS0`$dm@T5g!|_l=Ivqqk$(R1?`zeu zH+ja-vo94YA4KtL?@P;5d)4ePi}Gs4&HYbfC_5ES%f2JuN^S45neF6Gkv6rkZqB@u z*83;U{mbETlv4iaJc?3SVE$dFBV_3;viaFFe-X3pdc)?7hlnws7nfgYRNo2% z32hFF!KjG3r=I^T^us0Px|GkYu0@eKdxMn17Ny_uZnYbZ{%C5wK5A`X--;%DZ**R) zUlfHBD@X)8<`dtbIM#iWnz$6=8}P;Ffa!(xX`P>=Zp(D%-TR)@_MfN9IM3eeNjy#- zmO;J&PVsUAdj_)gOvNR~YtFHrp1d(9WhakpGL{q(oAhO^%?iFhAZ$%MGd41)cOb#J~{UD=g(jLb9uHD_v2qKt16>pBctqoRz~J%cxFvaj-$Y2UEhka+{$&5)|v42 z)@yhUO6*no{W-s2GhO(5B|_gBy@P$h3S8^fom5j>1*i;><->F5r94HL-nzSXHH@}< zUgE}kH~LeOr}Q*d;*syTJc!yUmxjiv;=s7GtB;ceDvWZjV*xq zGR&=heS7aRS6ne@6)|rAShi*0)8oePzl8N6ymjx)6*&$V%~f9$FFT_ZUkrD5lZkcST5Vd?sq>$tyRjx!}9_#iYGrkB+{CK9^fPI(E38 zr@Hq=l%@y1&w`jl32yn&P@JL*e9B$xhS|9#D^jDIc|D8NB+aXHd2HT-=(g|f$FVuItb zzsT*h0Ee4-MH~KmIWIj82($kxvSSP?Wbr%o9ltk+QsGl5`xL$7Zne<=bn)P}$45_Y zTfX=AE??!yMqUeNxEcK#@fQ8UE0~84 zzUvXl`q>+a$TUSR0$U8m#VhhWIzOdR1l^0?dM9{qy(cAuNKM{86a8^4bZo|jH|TZ^ zYp;ps%!rk>ZF}Ngk`^z`mz}_VC@PI{WCfx2fsDP#R9a4%`u1|;=*RX`_AAqwy}`ON zCvxf+ty+mc2i?N5unVwRNrsb;d_hiOPX$*77uWbXi6y>HqwT^QTC)O8?v!5d{Mt}f ze?xEwIcH&RbWy{fE6PMyu&VEaE-g63p>r^^y2to_nUK`rS2y9Ajn13+7Qs%MtWJ!V zKBH|baIQ8C8O;}_4-4soY$$z^0gFuQ=i}_ z%74Rf$dBH}UY%wy5N6U?;`RXmtk7KLl&9PrJY2oWxZ!qYi-5fJ`OVv#-wxgOz15_- zxB4pO?~f6-2D%O%x6|EK1kPSi^Oh(b`%tvLSS{A*o{Njn!DGYGi_ckIa`+W0Vcxbj z>pJdd#s@2cr5}}uD}b?4<>7wDnc*14<5HMj%_SoE#6fx7)WM?W!HRAyP-n9S8>h9y zlQkl5&v$?sbt>L@V86q-yin$cdy4K+lRd|-U0r|$Pj7_(0;_%@G2!s*8DZs3^i6yf zPR@-bJ(35>I90Ep?C-3tSzlQ@bz`Kd(pkbN%lY=1-Y>_@>u)o~&IB}U9KkpJmcX7` z!zC~MjO7>wRWB%?`_08gKRx;TtD*dUDJPo+SvPKPy9x+MUZ|d+-Pn8E%enU` z&)0IM-EkigL2Ie>SME*uH8W za6W^e1+fkGS3b|8r*GGt=<#L#92lvRE`DSswT|*yPkW@IY-{*PRDP(Z@!L?nW14%N zedd3lo$soSeQQ(|Z3|p-*7F6V0DH&TxE&;K5XrJ@e*lSIz8t$#>mNJ!Bmv7X!p7>__*F?sm+n6`BwRDh&2ii~skOoBtZ-{zrfFOP zuW~BM!R#ev2b|{j34meS{yJnPCk0kts~sG$to=`eSTgL}PJ-F;X3#=w7tuF$$Y;Lm z-t9Oc#92mP+&6Ly9?n^B%iB`qzZU(vS0T6N)}cxeM#5r%X3gJqlB{XlkLzq|H_kO< zw0~7Q7oYNQFzbo+RMTaatv;kXZSe7nAT7M;SA>ZR=@an5N@uY#52yMjJ1bxa!@irfe9_x z)=5#{ww&z)?rH04kWN@c=i(|W4%Dm|>QFUVZ|19z?(ni~%MbQhPhdTWEK9Bt+X-|-z32lT9RN2}6}v*=k5Z)~SXy$Sg^ zD>xY2{0#oDez2~mhi^Fr7f}*}(R}LlMRtQsCCQ;4eq6AUyWYh`*yC{4h)8>WwdrK2 zfMaCM&Ww?UE7%2JU+X3Xt~$(CCvrW2Z-{5jaz2y;gM)+D7gt7UZvYU*IpaVRs_{!{ zgH8w-E?TwX*@U3oro*cceK3Fj`mN!|3}*5AujO1(Q%*L=oyro{L-xA6Dh@PgbSm^n zMC9~;c=diIrJZHMC~b!=1Rp$0v}z> zL!*hRINN;flr|T=NpC5A&HKJ5D|I!@zwpkd)ZC}EG{st)+P_QtRsCRne~5szymi!A zq31@~o;u^Mx1leY6WZm`0^Q?9F>inUC~Lg8L2F4&a7FSr%g~XV~Oio-I&*$NA zu$==fQst#^uR^|J;l!G#*c`)-q0G$e(|mkCbnO4!EmP$@=Z%Q{pA??(8TOFzjzq@0 zJ2l_=`o<~{W=v$HgXEvl4s}$)eWzS+LnIA zv`k35%?TZ{wOvc!r!gt^7afIz)4RT$tK5wK7KZJVBeA0uiv!&aO_&dVq<S<)_;6QTDRtP+%HJ&ijVb5$|a48I?~9Mo)?Yik9vx& z`IpMd#Rlovg~0ajlBgvD3v00#|N4V+(t7h)W?W`NSR#h`p!LgI? zLdDC|y5(NZrz?ba%ft#W-Z8n-%IbIhnSFdsdF$B8#>1IuYC~Rw*X9gi!mUQSJ=V^8 zdR*4-S{SDse>Ng)OTi>@zC3_QiXxhN^atC^djY=Ji33;MdQhz~T@-fiPLC`fkGMHt(ah5JgiiGT+x!wk_x5W22Kn(HP_$La*~8M-y)h#sfJsj#pRa zSbJ&nieKB`aMQ-MC*WL#@VT+7AzO15SVH=Xlqq}8@0>+v(M?jmFv!wjD&66I3e|s9^#;%vD8tsuc~ot3;AVIvAOI= zm2<<+Z^G6lUu$~C#{PWX_$4N1IN5a(T}j$!%~qn4C^-tiP<845VyHp;HO;eDI7XhG z4w%RWK&xNCtTc&H}H1(SiOl}?ZLx4MuIIld92QcL~apllBq-x^^ctt zF+*lRpCo0d(k{xR@8_ODzup`NnHjFkbw8!9Il4>MXkFgJA?RJX#JM*>LVia>`IfEN z;oR$iZ3nah3}&H&uNF+MU>Y~1Nh6H8`@8U9)ItRBX!uVuFX%t+jq{Sd(>UmYPR~Z=A;_WFPq?;Gn75!cdwk}miTqm^Sw32sG;Wj z{*UHgzU?vLE>8KV44w&}*3= z=(j9z>|VdUz|=jLgq{Yc?MIXs4$tGD1nmWQlI8N50H#6v!_US?7F#V`xKJ3GdeD;V ze(gEtCAi}Fp2J|K@#5vVi5x`jC9l-SZM-Tu-uOLBe)lB1;MkfAlg>PKw#6d8Azn6u zH##Y{8FO{GRYlge|ERVJ;EF#dE`CWNqQ|D@w$p??;WE=ve|+@iHiR4jTN0IdQyt5z zAV4~~(u!o4>9&==oV1>I-zEC)Opc%mp06tBY*K{vtm}Lo+XkNVQ~ahpbA>OJzKV`p zCw=})kXytI-h-N!y=~@I6IaZq{O%mEE-)Y5qzi?tXUeo`aM(+1>kAmwo#BX%=+BWe zPQ@bO&uMg*T~A7CqdL~CUE7FC7dMdpC_dakSx|c2LXzTHWo3%hylKk%SF3qTvi_sg zuAjY|W?LD}qJN22bTV_Qy;hg#=+-2C4xS>H_JsAl`Pf1kZ;%cWz2hG69hNDgv=3n| zK!}5N0xzCE-3VE?hA=0Iii^+ZraWrP2iovC4SUo1?lM=_Pt8~bG?0GYtJMy^a~pC)o-6a;fohh!Ih_Eb zpV5Wj{RISWNz``}NlJpySRzIFnKPxOXHDVB{92d2Z+ZWrgI^R^uL}u~PV4OQp#GV> z>HOb|=wAZNt+H%wY5hUj{foRJf23>8Gsl4KSwu|se_=hP^Quwj){)9vjhYHbIAlew zCF!XoV*$%Yieo1I9M4zjck3vd_%3PfwNh#|t8kWd{M;)2gfnBtJj!cf_j<>{KZK@g z092&?iU?^e&Dy@4peJUvS6wNBo=0E8dyn3+43IBi@Ol%h0;>Y$>=0-HkafkgL!ox3g^@b0m6|FOv+XRGWU zXQeFXurqOs+B)J>-fVIj8}L+z(=SM(6TJ<`<0%w&F2GjAG6>MdpmGtKv3c(-n)B3S zE-4V|5!^bjJ}PX98RV6o%~I@ljl?=8-|R|r(}P;DM64`~rpm)+n4IO&a`9dzzF@3& zju>Zx!W=n+j|I1qMh0#d_1O5XijT{xoa*u(8FF`u64|hTx7czYZp1&iL;K4pyn>); zWXA{~Ai5Oc`+J6wiCa))sx*{_v{z$MF|n-Dm&cw*L@4Y$zXavp*8AulpQg0B^h_nM z{dl!+o&AtrSspfvW7fMP^KUS9JKx`@nuv2gS!3Q|WjU@H4{77jdsZ>WvB6F?DCl^z z=={-P5DM9X`M{uEdU2Mp=midnPJ(QiwGBm?up=r}Av585Y^>OtHET#pRY`5FX2s=i zP?_pUS6}nValb&$g#40k)Y3G4+rt$3g9W4Mmol>hjn|qbCsr29gj#M;<_Hqh|KhUv zoLER@vyh4LJ*HEuF0mT+{k3mf$c%3wfzY(#Td}CEs^W~#5-N~h zWa(yt!|Dgf%y`~x*FicAp({he0td&;pe^O%_wU@B>Pf^1aGx&nUn1@>o_Ahyc)p2) zrJoi0eHlwWi~M=PveeMPZ^^Rk^%~sCmZr%+NRp$$VNX3a(rPG;saEnQOFK+0%I(&z zTM1x292c0Wi3-DT^|yS`AzRESU;O@v$;r-QhP~!5cAQu}C_Hul+A6Mkv(eGAYg$v+ zizAdL=E&1NLa4ryVdV0Lr^%c{|`nNMrg3j_JF;wS@Q@Ml<#r!pOh5yOd**!5)j)x;UkSfBGm zn|lpv2>OY~n9g)swSs8wSrF*-bN>l;^Jfy=Nv2W& z#8rf3f!JbJNcM6hWxB+Ln7zd)1_IU`#S4wly=td#51lxSIX1hdVDF6CdybjWYrTr4I4>0{B|M*`6pSA{yaU_HFJ+T zp65QvM-ilmb!7y&jg;RoRIHYDIl-U`CbWffOIZJXPeJ90to|vfYs2MtDbHhm_1sWP z{gVuVKNDBmb{3KC<7LVmyhL3kqOMjKvoXV(b4LzxB7cDMWQj7xp#IhA!%?8H|)&0SF&1tp!U%^eGSb>*{1 zEw>y#nEA3lWc1Rvzjq1Xl`!g!=?H(ze1Z9)97J9Sx$Mi3h4nEgXY%mDaP4#%QlCqZ zf#bl{5_^1CaB(#-8^RQQh950wBn)j3bQ4c)6BMig3GDD)UKUz=0 z&?~?5Ak-2C5_38IGF!A7xNknZqT)V7@cz+8#i`!tJ&o%Y3U0#%jR#Oc^U!8{(s z0SevcRAD21{`1m=slZ4VbkS4YPgU@0AI;SFc$9-9igP;3rlV5&1PQfXpN#sk#et~K+G za_lnfMHYV73%lZ+j!ERGWs7s;=3DZk0ZdJW!aWR1B1pEUz}emK+LErez47nCC~AsQ z`0GbEJXywd^5G%+^K4hvg8^Lrwx45X)0Pu{+va{G6fS=eJCIf;dY8+emDlph7`eWG zQRE6GnKLY(UFE&U97)zzE0AzqBhEK95$LPir_rdzOSzSWa-5Z5*11=gY%@Q5iO(MM z3&#Ux@E14)Na8`=AiI+B+rm|~S5-B8+v1fo(Wz$7soo9BPhs=Ux*iH&kuXAV3TL9| z<>)?QY_9;`wrJXy8~|0ABMtE!7IN&joNU@{v0fM8WLthHdKxp*qb1x{a9VT8t6fAI z%nU6epa@|(LAK%_*-N;=!b#FcSzs$`8Qi<@R{g$IF|j}qU;u?KY62wo(bw2~XG(2d zw0>I_3GA6WcO~UM|8eWK&kE)~?@PPCWMvzV^Z(F{OdPqo>hDld)OsX(_0V?ge42oQ@;&Z~k?e zT$3{JJzBBAJ>F>~ys_`h;A#1sab~lY@b~-IuHW7_^4Y#cIn%DTZ)+SlxjYRGXM@HIe zY7hI|Q&c1Km0|vGQV*;wHZC8upl7PK=2=_urNy~#x9oOvmDLU&S$r!GGVIx4;M5MR zjDhpc5#9@}dOzz&xj3II4JR$0>C1wFgb*o&3H+djSo3^1P`K^xv+d)y3A(UQZ>i#T_+8Se^m9Da1Ts*wA?3C_Zm-I0v(fu{|{wu z?)^~__cg&vaRLAb7gtH&2e+@WA*uE?ThGL2!Q$WZ{Jha{v`Db4tH$Y^?A7?c^U9!b zPXTT3B&4;HFhFDMA@vZPoRn`*h~JHD zl1m!F;~Q{*l5z5ADK&C*{N9`$oPO8pGZVgV%pw*Ag(n%96D}#NQ0BsF^QH3&h>5ri zXtm~L?#x$*L)hw8$NFG6g7;-5zD6rwk zoa?wK0PF+N*SzZ#`kIF;iR$XP-y`T0Ezk9BApV4#tm8Ke_T3jGzQer(TKR}3qnO<< zy|4!Sul~Xv(XY8mG$w2&WwoA?)j*+dMEVu-NUJz@7F)7oNt9c1XO1^2_M}S%OgNv_ zeb1B**he1R+0F%tlkYyc3g4ec*r!#o}IftSo zjd@odmi_m@Dy|4PCB^&u`f-<;aTYQ`sVDP^`e0o8mivIoQ zOVGIUH&t?LeM7)zzf{hrICTsKdz`1iTqU+cs>1|~eN|1*-`pL4!g)E#kro$qItU0cWk`}ctl!}r&T zbNtKjoqw{IDWZxuq(ZA{;ag(@#sB=Mw}o~q?gqE|Q}z4&D_vo;}a_lG~kR*xA`Nd5zl6En0Far@6yPrt0(bMIdEjT zjzw-c<>&%~#+~^N2Ywulw#xAA zhf6X58KulC)z6gx(-&l4vqmd^bOqP$xaZIRq^bj#AZM)Bl&fV`xU8m2_^;C&YZ5dC zBp`p<`lO^e$1bp{YgdnhP@s}>$j&S;Bvx|_gaS9LSkl$!_S$=el#!0ky$25-SY|$b ziaMFhlO-#t>LELAPOUo-HX~a$!7)ltEt*XL(!joYbzEHBA?(VlSFXel4BHysvck~3 zKRo1CnBLqU^S2a)rWxEPPN$CGBb+9@BiOV*mvkni!eKo-M2hmCjHvw{6Z=-n40xjKinD+`fJ0 z%V|zVRn3wcRFno%sCET|zLVej%lA0mW!asAVuvV*4#%nYp~B7z-{xC94N1G8&~21st66UIiykp3HLS zAUXw=jM2}J2O<`!IBlGQj%W{xJrcgnOaQJ-va0#~*?RxJef5oPQK1oP+^O+hm0^iU zjpx3bSj5a)O(b|a#ZLVgsq{u`43;Qs@%!faBV6^8mlC^wa8js)%tE&Cp`oF(8EV4y zokiDHuU>6lO5;KG$*qK$+;3l61ag`M<3|o`x8H1GVbP(rc$bly+MQW+3D|LLbX>0s z)yV-G!AVZz1IL-Ww)+PK#Xo*5g-V?#irIm8?%d~5x@(RLLrYb&`rmnYc-&B>c%C+g zb#UUuiKGbm@%M{(C={I%(pSo-&Mc$x)H>e{zQxCXX7D^_6Jh z-m|VPh_#)EvPS!xwL$dMyuiHNX_T%#Y#L=mAn~#rjUS3H3y6swg|_NtxR$36e6zu_ zP^41tly}rZ1Jk~&58QMsV21&EJNfw)A$Lf_{rlg$_xjv9Hva9~HMF$urWDOivI&hr zEwH?OP~@2N8${<$C>++XY?OzuC-b#n*a;;swdY5+%LpB=t3M(?6ODg0P;nGk(q4nX zk3~jJVE69n%y6Ow=aAnLj9QHw8tl8-q~xQXP?ePG5K~a7Ky+@cVq+W4Z<|qp1#oqB zEqndCI@6-=lS}?6s_c3p0%=-J28aLC047k`?|XhXRKwgn4pHkK=7n(&C&#{4{SjH) z>OD8(x0R_fMDo_Tgf8r?5kNO$znO7_RKy~!!nb3G8XlZGt?#|F%@Gw9bwao&q7WK! z`fh1i8I9un<()1B(~{^bjA(jUmN6*YQ{}pKF!jk~0&tULs8??j7xzC$462G>RhM6M zEsIaAh2HlzXJ#r?>Xr2L^buSyzp(I;WWB6fl=~)d$-4PluoYM_gzy(d6fA1BJ@L%4 zZIQteF-l8I({jEIZjU)?$MT?7Sr1>AJc0HTF}VKvLiaOSc5Ox&nEm_rqYTy$dUDHL zcXOd+Oa--PfptBsZk70@a6_JYwIKuFB+n7 zi(SqeUs;{Ka-&Q%wywsyE>uj`+~0edOogGx;LANHPeb0nw0&^fu3h?#jg2tBmW-4z z+b0vImo8n>>^uDk_SUAgKo^9Ia8lQ1ncKOizadduc>jR|36CCCTdL`+sz$zfbC|0B z=bz^}5mK5KlB+cK91Ym8;xhI^0Bp$l^9vJYyPLACoV%+xN!Ya-3=R%<$c=$>9S|0l zjF7ARgZ;LhJGD?qdCmETUbx+pi38Ho(vz@^tJkdgKF;|rnmD4$w};>zPy*HhVeKeP z(I|vQtx)*b^u#ltEOUHjA`A&#?iI{v^TbK{&6^)QukyeW(xUgH_KQzcH2qb(3@`6N z{cP(R9FeI|)Zby=N{&fvm&3ltw_#)X9@iNrCu59Kpdt-Zq}u5yij86)J3c(Sfig>c zS%v;bW>s7_I3*M@ZYG`1Ut0~U69=~5`)dca_hroHXaK=rd)IT6RT!@MW8zD)H zpF#stUq8o|jxGTbW|bTId=n@Y_jc?>2w00W_X8aLmO%XWR82q`!fJMUVvi)p+;GHP zHzX|rC@oOkZBV}V)RT{&zxMIz_Ob$B*yoCHS^edl;=cyZLQ>Kam6;}YBX*qh#o$Xo zA)du<^8#lc(=e5X*wC47qn5b_DWZa_&@CYWDIW!uhev~gf-pCM>{ed05dh*71sB-E z$kC!-zkaRAyAGX7RIwIMT?+^ewGJy@NZ7Z;PO3_zJ$SHLpvDd_azoj2(z;!`3y&Q?exG?cXY};62iB4$ z@>>lBa1Kxq_b1}wN3k(6F{M3DmZf9)0|J3a!%IE_)u0gXyfR8W!&2SOG|6obGa6N!#HYIyq zT(VKs7mXZ%mdt_yjZ|0FDY7uJ>YL!$P~!JoU~U-nsFd#V*JmFe_%4Ke^$9g4!!(x`$+fDJ09;tG0aA1bC zgU0=$G46eIZDZLFE(yC*W+Kcmukc&e`~Ovh*(gMBA)2B92lLiJyQa+2$uJk>@rHe2 zGw+=b#LSFNpH3s<=6wgotMBiXIR1PwR?s1J3#FLoXi8A5u4xMN=a?amh(O&=l!elP2?$g7T(K?* zk#>v?m}cZUnh_DuxO5doMa7`S&hp+vZAdG`5eFUYy72Sy zsoC15P5hJlGX`h+o9HrQQ;BOPCj>?& ztM;Fp?n;7f(pyUwpO&=C=X;Ro*swF?hI}lnC(~1oY&hl}U0q82HqFgXJl(B~;D?K2 zIpB!jwq?s+kYWTfyl@{zXFvP`ZTYz8UE@=2bGDkCoU(42^b~7YNiy)L@S#xQaMwcP zHd-@Liw}zoqZeT5-Oa$w0qS7n?I67%bmKPp2`j2Mn=8ud=D!GhbU-1RflUk=#MFHrm9QFR$cofa^jD*m_twLat@f@H9k3dVpR= zrDtS7GvX9>SzT>LcrFYS?Dal4M4phD&BInM4|Swq8T3G1rw$#-<^mcIz%SF}5!tk9 z4=I0?5a#2fLfrfgC0RG)0Q@hLhFjOK*CUyHMDKS;oUdft1x$}YMqe=Qd^OZd1#Xo< zts3!6Qr9SVGwEoQ+boOXM08%_kI%GhL4B1ij}U266fEPM0R51Su)`MbpPp;5>c&cN zaCFQ%Ud#-g0?&qT)BWl*skw1+uVsWM*;azXq#a93(a>8k2pg7dr0w94j-D;a0Rr0m zm`<)+UH(n%&~<${iN#bN#z3Q#x`Yibd5qn0o(oTIdvu}!@Zql04Fn9$|=7Ei}6fuz@iyAH6v(F7YDskS~LQLK1?MYIVXRFD24803EYFq#Rx%v6ssCMD}235pOfqsIWfj;7S3bDh-2t10i@h z&n%6<$}fSBA`r(i0Mk8+e7BDL6x+ho{4X-C*4O~`{D_MHhyaVoR40goj~EKk(XRs5 zU#k1SV+ts4N~cesrjbP*kUxvkyCe6e83?T-Luj*>=e$bVUVm*XDjFS!_bU^_pdrZD zV84&1LRu$Y5B76kUcNpSF>^QOYI$Bwuf0@~r7*ju*TUWtZ?+;t)4V`pTqKV7OiWBT zbu}5CSYI^WLBX zH#l`Qjfkjjq$?`=(AMl)bZxIKuj1wi39GxPyN^PR++trb~6G4YsB{bEQH0sVmX7(XXCdd;qv#_RaLcD z{Q4E^f`7Vj5HjOoHC9}q(m3KLan_8Y45qJbZZ=15X5=Wm7=2BlU1z>*SiSe0=Fmd@ zDaDw6&zaL6{H5{d2+K^gbRTg}N2LbdWdL%Z##|}BB{vxtK%r1SeE8soWz9o{1wosb zZNmm|sbG*;g4e8HZ>3p3g`-GXzCFn_qj3ZZ(dO`I@&GC%_u%!A1Yls1B|tDk9nx_c zYHBqcH>~Eq#**Fr#6|nrw8`tHh0&?lrN1aHdfJ73k2hmpu^|p?kpvmAePN?h z^1F65%g7PO`orXk%XE-^mxBsduL+*)HT@YgC~+!yiCHD=cv6`|$+at2YLIF?pHMo%c4_T)oyd_9r^I06V^eKxVNohu zA2l6&FJb0dQaE?Ew>c;E&p-bxOJd;c_&a90+OGgpZHabpK|Q$h+M649IUz2ptnyK0 z>;Bl@K8oCsIYJspInBmgzs}nCI8@d>`^ns_dm;Qvv+XJQ&V8{6P<5}2yX3c6UhxEy z(T#AT?9CeuxV0dW#)O7$z!LR+LC|~4^}s2MMLrQj!$gQtK4RuL8XDT+Ad?Yd7t&XA zzBAOcK+DBT)0;1;;I2hS%k4Xg&Ad8Okin}mfff{^mHdrpgcPCA*K zIu$xJ9P#-b?=RXbS(8-ya-gOW`F4BNAoW5?i9(`QGQWqH_o^z8CN6y2A|#|j0u;an z1WCgIL5*Rbo$iAo884@p>Gj!(DsR2P&qrG2ThWc{Xpf_v3F!zG_fg#@53%Y8hg_$g zn7{<&#Pa~il`G#?I&`QSv3I6v1!sR-kueVN8cU2td;2t5&zlL@dJNndKkw`m6@?3j+J3UEP3=Xyq;$$s--pD5}lZwjzq9hyU zYhm;?v3&aKrN;d>ZQim)0zEw0gxn!*XaBzbD1oR5vV+*V7yOqD0y>~fNmbp#eUhy) z|4b^vMok@^ZSk4UwGgk-qp56{E?>3+OH8Z0uq^=_g4{F9vSp*t<*`5$kv;t)i`csO z6KL8sBhV(&rX{U8$E!Cs?&1qKyHHe2Y~EvlzPi@JPsl*SGIAmaSBD*`PBF|+dU2t> zna#1{Lhw!~iyT#9?SGe>p?Qu#eu$LwYwPNGs6@wXss2Un7>sV>qelZ5=^`^}28Qge zFss%LX(taN5a53XJ9qBrJ+{A(K^uj@BNaGO9gc^VUVYsy6hbLucLNm_lM*l&0 z*|^%B2wRfhO&q+%m9^^TqAEM*-vIz;;*S<+97l^LIQ8>&EW1mzUKW|6)MzR7nEqQdy1s?M#?|fjI)@U7L1n)hrz^AhJuK99mD zD5xwKA#5IQ5gfeRH64z55|Y>rAq)aP_MIm1pIpdYfB)%Nm)i<9w;JJySa}YZIww5j3gOXr*v{dsM960tS8z28qnTk;Ow_j`U2!&QojMhbgASh3$*^TJ z=)WLCttDWjz~Fl*KYa{d;!KmTAyG58$G|yCJmk%R&b2IMB$f$Z7(XepWlOQ;dQNkI z2PTzv&g^7LPyu6(qn>P0(xQ&VZ)#yx->hSI&{Zq%&9iVslfMqi zbDa+_XXTbJ%R zdaDI}{AkfIu89wfO`0w;zdER=7aZ`}FC@e&>(?ZHG~d1FTp$N1W)i+vvMaD|e~sYn zXclNMuxAE~s|JmW_^tPPKqgUl=|V6vYlb??H4O~5M^rsTa?1iobHhZX{DE_zu*)B! z1x&Bk;V3mWF^8)_Q%s!uC0n2qb5jaYvQt^XVd%*gUHh$w{dBGYP0`P7x}>CsbNAUt zSuH>vwgG5FvJcLP9-LhCwXmSpLKidk?c299vaNt9>k#m3);Oby2u-Jtut-lZJ}N4Tj^!-I$q>}bR6Tt7I#!E=gTp6>-1Bz_c|T57)gVGBs3Ef#fbjZo z-S%XrL+g*>cP6O}8RyKP!ENfPY@4}z(Kp#?sq0Z3g90G1OBE0J_)Oa!;&pdext(>I9|=g z2I&Bj{Jgcj#Mf;ey zPD280Nfxg)v_-4?kR0kGX3zyt_%Aaa=uD#VIH|~Uyeq;xMI}r|llrGUY<^M#4K6XK z$T1(dB2jPO>Hs#;Io<7Tz&P!7K$)OKNzqRT{va)_OD+kvn~bD#`0hr%Z>U<*z-LsR zHCUq6dgIoul?eu)kLZ2FYu4KlVA+zVPTVA?`R_coM8yYt|6QKA3peQ25m=3?b>cko zUE_o8qiEX4PoaE@ZeIE+b<)Uabc{{&;>zjJb>mV4(u)}KjZZX246u{v7}}(W7TX-c z(kR3o=D~L?H!O(|f4N*qLvk+dt9+*luc`O!gc&xeA`K0FIWRmCP)#?l*$mLX zF?cP|Hk6y|(3PWW*E9ySj2*qf_OMRZ_KlYK3@|7y03Q&$-D$;9glw=pE)VrPz4A_%o=pMl_ES--ZKW5_d5hLG!GyDtJ1@5`ej5^o^j zBfzf?5zOnj=4L;|L>hdvQpL{Uv%3+XA`=`3?DQo|L4_ZOimQIbL&tu4s&P@|@ZR^X z{byktSSMvyy=8g)z^ca2uu3t8o%k#lyt>A#PNRXInwwi5+(WG|R&tGBL&{#QgO$|= z>R$^NQrx08nx%b;Ksm@{T@&puvXV)eS;#hsBBg0~{Yk=-Qel<+7P^F;ps^Nicr$V% zmcg-nsSJ0m73Yg$R(IqtV2YcXwvqM{NLk{;?{Hpt-9`@4eMN_ZPVl5wHzl7yx(699 z)qVReq6)2drcV%=Bjh+psy+em#|9>n?W6>>{&wwU~b<+R>y~)T*?Ty=RE*wj6=NM(ej={0x}AZRRFT8K!R@{ zUnk1C7hS(5&*YsnFm9)}55DeqA<-9(z1>k$u=YjWzy(-h;49rU~m5~TP%P-DI zDb@8ahFDZ&*v3IZPtZ3C&se`_a++^3QzLLb8|t@QMWC-l2)0 zv&s1@Hb_MhImd?6XP`n5;UFq=x?)s>STdaETd0=Uce%qw80fmD*+JubL{p10)A@zB zMEkUyKFA>)zMC#ngtCe8i@dvZ*|IvKTc6Q6>U;6xHW`^4mu@hA_Ana`M-ks~ zmI3aztd4c^VU$c<_^_!%#RZ3gky<5K_}$D}IlJ#5sivj>=cD2es*rlEyqeZEeO>H6 zf?i8(%o}oDjjI{>CWSvz83LD)`Tu6uLcWBLRI`6=JW`x82uwIa^^jCl zCFD@t9pHYIylFU)BZwRmAvFr6T>4Vfh!&D;FolZb8q4zK$u*wfA1Tbd7g6?8`|%}U zOrg2tl(8%{(VHF}-Dr(&=5P((#aTit(t=k)QGi)yX~E)*Uf*Wg2Xto`%XAI7W2#@<$?9q zH0g?EJBbF*kw93&24^b31VA1OuvMj4_R3#=`Gt4{a+BR#R{Vj_h+Oy&V+cvu>;I0I z>Lr4HoOtmoPE~3x0<4Dw*wia@%W6o{jRI>#7GN#b?6Vf|1sc-LNXMlB8tno6n6NZY z&`qO|RuBhXxnlGD*8p_{2Mc7YpISsPB{ZP_ZE^`Ajw6wQBiU9NA}`e>M`=+@0eEsj zKr89kdwc*>s6V4Gpv5-u!nY#w>-Ut<->;w5*^^@7X?S$ z3P~iByNyUQ?zDaziMeSbJRC&y&LCd&(v*bw&NSlmB%qQa0(5*#B<_F@?h`Op5)Z&b z5Dcj>P4@eqPewRJt%X1PQ$~4DGvIJF&^?~aeADmf=!nPXLd-l*4Sec@@fd>dZ8$;2G-QCdN3n0udx05M$542C|C9={5{xM zE0&A1t2fGdj8g+6q)tD8sQ-Ei^XkYq1<3JlU`^eY{P$(~gzafh0LH1Y^ zAsEcHxb3^gqJ0D%!}4qxu85E~25^zxnTp^P`AiLvo6fId8vEQB1!K*(Yghi8ov_s@ zaE6T58rYwsASufauM6+F3y%b8&!THw=e@_=Djf{+l_Mw$6Nf`S=G~%Y7Bdg#)ndcu&p@61JFqD!J zI+4==r1}Sl;uKg!>bY zg>=sl02ys$8p;nFXIlpaOt0OzF&TPu0^7GA{u^*=J=?w<`ZGsiu(?LD|Uy1wU7u;3}c?2t!-eCgz#J+U^^`u1dIgG z#s~^6;XUhNVqyX$i3(~)TEa4w@ZGwQru9dL9T`uO52Dr*D7@DP_^^L@2d%>NDBN%o z7Xccis^jO;rXvizHu+N#@s5#lsfj5De?I+I8jK_r6BK55{yED ziRyGV0UVV3P_ySxK}6IIGG%5bvWM|UBIIb%*!>#Rg~zoT#>-!jlaB-J{Ud^qFvwoCf z5&zK8?SbVy)JY^njlS%}EGK=Ery@sshcI`jwJuc`ahF51g1{-Jb|?Sk@2dzR<5rkHPk7K%#c=kI0dUj zx6}^^JD5(1BePOrDx{6do@SgPk6JIl&qO>C^d1K_@gla_Ecjft_+J99ssuytYxjYzNL9o00tMWozqnwoFw4mJXFw1Z$Fuxw8Alhb&h|) zywz=2V}}JZtqS*iZsLW&2n#7N=nFSDLY}Qb>NGg9ma>&qRV1_%$U1@+IovoYjZ6vH zW+f}MZQCDb$%Ot2tbNq2@b^c>KB6m&$l_xZnOXb*_w@hNmDFlcwE1{wVt?7GV@@_ogMY5_Mhjzf7 zJ8Jz^bR;JHo;(4v6FT5Ic6K)sL2bbgaVj8#Rw+LOXFilLi zOaJE@nZ}K4Tk*-7pmSmQgxgPG$Mqt$NQ3{21BpTYmt?R_-Sq@%M_yv7Ay)fNGX^^iye|PBI;XXPtnI z6N~;Za~8Q*bIsOaJJOoS4MN{XT#cvORgJP_BC5=?s+WTgYr!)|yaQRckza$0u$1&1 zKO4Y>ZD_~-&MC{DLY^*g*9-_54R1r^nkcw#OK!yW>wNbt{Nta&R=q?VAHWS%ew(0t z)bgiJ1)M@9T5WCZr{Rh7 zok6kjFgsRICk;k-~?K=&e=T{@* zvOMn^4%o^x=^^J@XmsG;EgttLPM2&hUYKTRJF2Ou+$4Di1mE4DK-CaG6R9PtI`C0v zWV3YoNZ}jspFqkD4zUBsl4^slCs_$|&+syfaBaBpKkXha-9(xIpzjwtsuJU8Wk_pT|A z6eL|pCL&I=L>X{XJt64SqHlQ?l1+F6tkK~RNxKGg^?8t#v>j>Inds!0TVvIGS6USN zE(fKXIK_lllgM&%Zgz&A=WMkQRoRg@A2s*WD3=kGEBpOaIFXqm zRs^m?>q|Nk35p;kBO}HpPJpDpb2fy{^6Aqj(LUm_-M@cdGrcNo*O>-5o+F63iMK-d zKCNC;Hb@_mOG4A8f++YZ7LcdW+GRYC^K9DmY|@qFgPaR-KWJC1?Z5EA{%X?zC5r`io8UREv z!8oZ@bZ$I~#ffKxT}y*AL`VUKogltt*-mP`($qGL`TY5FB){LecGAA-_e|_9=j#=w zet#!$=C_)vEXf$2c*#Q0$Q?U&m~`T6$!B6l)v+$h-q_VVxFk0_ev)VF*0LTa<_b8Y zbqFfTGc%o~Ht@bf+LS+35?cm{$m_|8ajmD|p4SnMOyL^up@=zWB34JZh?E)RR6wu- zcRmvoje}OZkUyGd1q5U(Amx%FAq?&p`d~du_+3#Qx%$!Z^UH)(fh}n+txko@7A)`m zg#N0*G(&e7p4KQlL;ZkJN+}>0q(1>aq-V1~zDW@{J~-aP9{<^)MA&`W-310p0FF#f zi;I5HSRp_dlI+3|c`8md!GVLak9#kce)Y)s_*qY&`QR{bJw}eG-$E+3!YDNtc^6r% zJ5arUxRJukTQcc`{o0#dH{&bBSfmi(*%W8raA(urk#c{&hOS#rzwKf=kEn{uU$}Jj zo#2FOmV}EsUhQkA57%YRVr?fT*CXN}dA5)2QZLU!c}5fK2jS!*;4<^2I7!|QFP#15 zFKwT*$=rjzgJ+W%48YIGVUGJZw85JO>HvbKmmDY}=Lu^c}0UJo9<*EZDj7d@?eV(MzMUc#IaHuop!kx8_~1j>;M!e%eBa7R0_m%0;jzhup))4yAF)fueYrX0Ju5C%!;-S}*VyFU`VVJ+f9(o>Bt zXT-aTiz{VdVBlzLXKA*62%;2#dzurE8)A0gGZZEmS4dgVPyHajFXA((KEi=rEUsK8 z_^*qoAp1)8I1KJ&2@GyFQ!L9L->-xGw_YCSss>gWYKAy~B>A|ZG)S8Aq#twt<1wnH zqqFV;ep5XHOHJU6{|0YXq&4@8{@puK;l}-i(yI9AFr5))~vT~5+w^XJ<#e#)q zjs*w_>}O0!4FSQa)-ivtpL(iW>3zX>y@W#lEuN3;e;6(J7;yHNacdM&*}I7SXQ@}* z@81e`GcSnSl2&|!GxE!e760|=p~(QWVEa&;HIF<+z8biE46kGT=XEaxm`;G&5c$o> z8%vSHC^c}+Q*x)3f5C6s@vDO1^&3OBO~0iobhKw}wewhoYsU?|5U}4_A^I&#hy{MPZ^2E3L_5F~Xq#+AIQ}*_LocEZ`!tPXTz-%x)U6v&Q@(%b747%dH?{F$(_h`n!Q%yPH-8GK zZuv7K9Yt=$-yC&&8A$Uvh9v}Y6haulxA%2*C5D!qZ}(nNaC&dS!hmZGwwBLHS3@FR z2q+XRd?A3#uNVaXz-LJMaNViZk( zgQb%Boa6y`(&(HXP1-0C&k#!u2@LjhTf-Y)Zdn93+*m&s$b3aR(qWKu-L7+ef3KGL zFUAljV3r#DztygJYT!W@WgOpq3k!$n*s|uhJHP~2b8_-OtRt%)f##JEUa9{K>`IYqd z-QsH!+8wVKf3QEa%A}lpYyCaPhlgusdq6P&q7O&+c3qD@uHB5SPCWO{dAGS|@2YHb zFg=8$4KuHH=+IxB;^vWfm-Ln?cAfqgAMAC~4i%g~n=EBCBPn~!&hxfqsaCQ#S#QQyJ^)<*romOX-gbY=J>YJn?67vOfFlJ4ee$ zE;cv%FBCOhne)zXv3+@eZfjiehd+$=6mYFgoqgf+G$g!4dslqf|4!!Ipj+Xb)%S`> ziR5QZS(bS&$py)JJ#U>ErOgQe_)&LQ=|L0+rQZGKv`1eW)+hF#gigNJw}JxBw!o($ zVY3naF7DMQk+DEmyUwk=lDkju{I$S><1MGiBiYC~Q#0l4Z9lEeYv0#q-kZO{s_!;T zO6;?%Yx={O9lt3Eek{7<=;3@BA6?S+=~FCkulwN*bB^zok9c2S{A&64%{ad%$t+FD zRG4PKi*)+>rXM$R6yT1PFQVmbs9G`6pGAyy{V_-inH2(t zwfDYXS)@?$LQjIFV9<41oGD9SE3pytZ;=XV$2;CzgLQ!uZv!i-p7pWZt51n+eeb&h zgFtL0`AjCuTd-cGSb^^s0oVHZ;S5(0HGrZXa@=it|KtSbUlF+iVspMEeRHAa=eJ0_Tro-)4%Te{NJ4sBl_+6sT1`4Uwc=e=2dS&wYV}W8h`Te z$&)@ZPrHVxKR1P*e@g({s#OjL8umYmWbyeKbtX@S9wvFw*LlC9sulMAr#9f<-@13< zvHlOk6N>swM}O)BLY}i11x>*3__~J$;Vrh>aOc)NS{qD>qdC3j`B+&gcK^swIEg1 zfu3ov7_d+cgxWH3WoZB#|5d^Kl+RHnj4~0n;QzlAju;X@Ew*O+{<-)0AL911!iNmr z`d>q+u<`xy1kNPP*woMM*2#N(ny|5P3UaKteBt{6{qINC|NcEQvFE4e*YnTz60{M< zy=fsS$yYZu-Ade+ACI_E>+HGI!l{+l(ksX0XM^3DSO30`d9nA!pdf)qLSL>nnDS@e zEs^QHt8P|zG%u*5D#Kko$0q+x9X&h1c~zE>m85`4^Xt@*hCxx;_@#;Gt2Jl()yl&*yPkkNcKR)vhO-)USjZA`TmYw<6T_jK8^;U~THYv=%?4SSWtw2RE z0LY(PbIm_#-ugWrvkpfD`tu`lB112Ej`3et!<4yU&9(h^(Wfwv2RQ=B(f`N8ymNYb z8oZTLk6UbYx3Br~Z-Q(7Wr99{wkh95QvZElH4QQv2rC=k*-HNJ&GfsJTV{#QuZn-) z;&b;^hXegOQ|z)o{{18QNsvU(l>Z&W7d=j8_PGY{{;RrQ@3%xce+aIqJyzQNTM~k4 zO*OUq=nJcX`VEgCcv(+R`hukoqu<#k2;Fy)u z+V*>aj3Oez%a2<2Y~)>DtctQwa5PP_^d{{8V+}zSC{YuU%-z~r^&H9$mUTBO`dtzc z$-oH$qMrO^Sv}}H_@(qj+Q9KeG?G0>Hjt`Ln06;mu75Y*7vS&9@v*{bgI!!j2s0?u!s3A>veAVC)C~)qr%{jxgyj@Aep$Cs(ARY z_yw;~n|aBezd!V8*5Gxfod|nShJG`$28GtWgh!tBp{S`cTs9HyT2%r90z3x(84~h? zEhl0@G1jPxn<79flVI`)?1F6Q;6Cy57+%5xUn^u_F2?Zq@cb9@8>w%Jh~Qqipy_&3 zlqU};KjnQ{5BrQgn|b);J^xw2CyFL~*2s zy7~#*uQgGZ2?ZRg{0a!t5{IAQnC$^mERaI7VF0D9?=r?v9$*E4ALK?OH!2Ec7|NcJ zgo7Q1Nd1{JvDPds>Tn1-3P67g#rgoZR2oF9g#B{*=gyt$MeTUV^7@?;2bkInNM04- z-uez5u;r29VqQriz8{aL>^RCL=Ds;GS@$n^iqMTz?4#h}TW%3%217%*&tQMXq5)x< zmAHeZW&p>!0)wZ?e1-*Q(@HCc!I@g#fV@oug9a@mM=R`-zT|4?eVX`>{PLO!CQ;Q==A|a?VLsGxDUxK zH}GBFjAj-4WEq1(q8Wg7)7R35B&5KKF{jUO)qoPI8yOMh1HF3BZK(Q(m|w`cUko%f zqCsHlM)Ypf?C9Wt#7Povs~5HG>VPcA&l^Mm<|b@W1QbSNvOrTvNrs*Gls-~~J+Tqm z0Q@G)0U{~J@m zMc6gEWk5xTL)Mi$F#ytO6wn6<8Uq|ZgfUB!tSBi(1J2Y>_EIQveb9ymx|VHE3Mr`Z zRm4ToD0#sX_9&`!%RgkKJpQ$I3?`@#+#A8(YtA2EECq;=HCg2j3=K*mGzuxW1a}-& z`wZ}}ZCvVhJ9b_NqSwFk_rI*I!MYYHaaF2Co7X5((lqd)7!Vfu>Je-Y6wwz@=N7F6 zZSKX37gkCj_3<-3e0FUHGke zJ_Rela#%}C3&>hSe$j&mf70o6ZBIdBYEC-aILU+=g}qGal6rU~;#+PiwjhH}Pek5L z?jWg#|YINbPa;2Nq}q$>fJUWp~~qM$SURPhB|^63Divg#f&ow znLsSAC|WD17Y$-A*mt@l$6!1+sr?Hxv*LUWXqeRL^K%J58{5oH@I5d?H-3M*R@g|~ zxa-p=@yFl58dNth2t{P;3{&Lj4(2ey;FV~QZ+ex{6}8-i7WHZ_tbSIe6`zq{{=dz z_03Mh4j?a7b0S<4DKYR(_$ZWUO|J+TsZo>yB6|r+W-oq9X3YBdFbNtJ=wSce1<4Y{ z%+7N&W0DiD!pOZND{b2RuG5-)-@O*Hj{r@NHgUt%MV`&P%%6`I4bcPlOM!M5o7&wn z($j_VWAA^>NWJq6eBDknN7)}8Lced7riBmdCcL-!=;y;~Bd$qA>J=&^gv)|N{2M;n&yu2#YjM5xP2k=o%e?3A2p_<4DJbkJF1KpO`9E3|nc5_}`0a-z0yK1~= z7~ZZMCBZ9l?0i#$)OO*YJ^)&@U~X=5%cqdbr29vIFB%4qNE6aCxeump2L?Wz8152~ zlw?@B!xP_W`z{Vs)_bOCDvUIWPs}Sqc3v*$@})}>iepcZI|Gg3Fpz!A9aRRn$He7K zNECK;_MwYzxyW@HtMeBwkg8{74oPVdRCvtO6^Izco3DppKiL5Q0^2tAyd^*JiEVfk zc@NJN4p2%7{S{gBUNqsZIeJ7k2870zM~;x1cw&8aNU?#kb!)?Vrjf3W+0 z;DRlAAG6nsTh8matB+CzZ@}G|mCx5jsU1kb@{r%=%tPh?mg)b6HS z$A_R<$DvM-R1h_x`~z9L#DoO?(Jw9fI0-c%XVWXI9atWN5+{;Z!3lp9DNBr}@C>+m z42Tb&ZnTm`+5*fEGD-MWqUpjZ?GT*@Nc#O0Q5^t+2jsMk2!Dl3)02I58!qp}=+cjoRy#y9a!@ zyvC2?U?$W9BB%l^Y=k`8E2=wPxMkb%vF=BuguEtpe*_}DtLy(h0> z8z$mxIf{ZgUX{@5raZgMzba!UY58v5dPNyWTILic0{uoA3``O z6+vPLK@RO2jgE~ar>9(7KDr6Zu&t3DBlFXM$?VQ*se56AQgh@aW3{*B0>B@hlx2Jx zOf;TJX!Mvxu(0M@%vPpuCmH>jMe@$Q8WU4fn9)|62HRUw&skw>3TK6|;#aL&C2s%z zsZ0+;;P-Xw;!qA$!pe4YgS0xbF=7V^&F*MvX{l*o3YkR=4I#fE;jL+C*gw30OWgc6 zh5?5(a;uWIp-B6Z8Z_XW+xYlOSr<2Sfyf|M>`lli$fs9$lCmRI;YonYF1=v|(SOp* zb%;sQ>SH%N1J9$X9~m>-%&Jt_Rd`ocJF4_O$D$>qyrv&V2a8zk-Pnb!aK~uz*$nV( ztzg$^mNL$^aFLLJg3(b!;XIt`EacQo&v?T~bl6K#sPdCFw>S;lVfjN+k%O``XA*(W z0U{_Z#jE}+J;m;N&4-_6I@1Lyp&^zzB9?*1$e&vS0|H{ub%Z#MH}rC%qhGMj-N5)@ z8|>KinOcj&sVbhU9IU1?_AYwMXwK3NiQ|NgT2O(!A8Wf%GM}W6WizdP^cqk|@Vl0vQn!hCu)v(4Y8q+@DNP}vZ`I1Mm8|mW)nT% z;WoF4iPe2x({Ot}YyR0KA17p~%+wYX!kLt<7Sv7O2g6rZRmDIZhRc42q4C?~9k1qE z|2o;ink>z97W!0F%SU2il#IS`lKpNS8AdCuM-!86sK9rgopv3*EDLrDOs?(S1y7s8 zgoGK587{BC!3mcfA!1*Jc~V9~)$pOLn3+>eh=%izN1U;%Yc9E6s)TYVaR-pIR-#o# z$fxp#pZyc$8640@PoEw%apck#z+`|aIKX)sJ8Ltn1tfCJ5v{mE)cuVoQ7Yh=RRY5j z`MrwW^+^9qU{P<}eO8tDuV^G*54$QOftsCoh?4|w@kJ#7^vSJV#-KeDrY+P98l6P3 zH}0YVeHxbhvUu?!8lfhk)M*S?QP(#6O%h2_H;McNL22n+-JN1Xho>bFL7K7J>;J~h zoeJT4<({4%H&}HE>|J;$ZB`X<{m2*(-_KWvd_!VJ^0&QT`ZmRH92lfusj}w&U3=gvId3W8U%k8YM+c|hw|3hH z3nLyJ$n^yO2IZxqi_TRj_cI+kbm-6pE31cP*f*{UKY4ZLTd+MxA$-2a6Po(Jb{eXJ@{8 zk4Y!y$?e&*$2ptM#q(Lf0HTTn^QN;1|bBY9}wXs@aE3;4}W6!W#!mR{KBzK$opVT9VN_>jWVAyI^j<+ ztRohHY~>_lVzq3g2a@TC3Xvp^28n3g0GRWGD{Q=$s59Z*<&s3{L5W^o0@M2&zk1@J zF&alnPvcogy4n~lWwc1?ao3@MZK>( z)|bh>?f>RBd>H&51{leO*@lnppRsa*5vK)z#%90`MQsfU?r!i zRi&Y(PcHwNg!tWYONq`jTi+%dP5lrI8=PkCl3Uz%_J;kGGyST~6(o4Y3W3?+hk-=E zjB0yL%nF>DhV3Oxj4yZJR*xAEaV2|1E%NzkAR;I1Wx`0=s~lLUTjP!0`FlI+D`!v> z{~@?{qL=gS?ZmL1O|`Lpihc?#d|a1W!PN_ytO7#3x0p2#miT4C$6*AG5RHzdshy z^8ubfd_lo<-q+(W*V^}zc+8V3FIT9+6XT&rXP_-p-y6rVLrO|w#s?1^*x5K?YGPsm zUMkDVmD;FDBhCr}KR_uV8Lc7fk61O~l|IQ68}bH7QwpKK6! z3Z2Y$&zq&^klgc+NBuZ)fCh}=!jYN4WGBMifcscaJU0|XMn5~Lp{+gj&PZ3cF|Mn( zH29E2#ckVH8c&;+x1l&Mp{MR)PFdGeK%}PY4kWH*x(Q)))-6OR44y+RyuQ9+Uj)dc zJdq|2?sy{SCHJUlbks^7{_P76dm{Hq!NG0#Z5~8TkjDK^29x12CApl)f=`am&i>Yn1$!9JGrj!pm^YXwg{X_3N3Y!Ka{5VTl+s ztOm=f#J+F{>Vp^!Ux-S>xcT3{U2VO{hty+w&vtnS-|s-QkzW~%FC>SgdSVh3m{FESYAr}4o=;L;*d7o<96V9yhI+{rV|sMC z90W5Fxye_rvdjwsLX$6be0;nw!6Hqk9>f`hAfUJ>wmQSp24;awI&86EFUNrRtQauy zP!+R8ulKMo1$na=i1~mMH<}7sGm!zn{RYc<=FJBLeW>{CF+Dwta^mpWp}?ZJf&v2= z6EKA&7M*j+H$;_7{^uRQ_Do%tdVm%`5?D079}#ClN(zZwiS&`!w50ueg_-Vy@_8SJ z0lbgiqzVZOYXiBJFm|`KwY_GQ#=*(il(07o(bFwD!ar&)xfAC>2rOK< zF!+;u1X!3jjTjRj?$#e;yorVNks2NapD6`Kz`g&BOqd(|yNV)iC>qRG{j?x`cJ|f+ zcGJ`(LZTiiS&h~Z1iMVJ0N7!A^LbQK(i>}5x(?30H_T=cUX$_gzWb7N(@tC>TsFc( zN{EXy_sx($PME1}DkJGjf7$7a>S0SD zhO}rnhJ6Ig@S3cPAV~+}+kvUd8^1M&uH&~Ae&lH)HU-Zhc&ANpIQ0I-RzHTWA(;Q~ z45k2R=Daq0gb?tF6 zHf&2dQv`itqI`$?oyO1AyhN(11`aDKS{?Uy@lk;<)B_?OMGqjND(h@HQ(iQE4f;b# zU`ZuDDf062f>CAQ9z4HPK|vE7P#{~vySQ?&ji9@dcke0)+p`6rO?0BMPnmR*l9e@hX(I#AzxcfJ2kZf?QbzfR* zG>~hHaE`!*QT41VRy3f2@j()It5?+5quFFkWgZYYBBvzy#Wf8;Nv?s!f~O6;Q%2O0 zQLjaXJB5m141tcef`Sjx?qu$gI=Fv7^wBaZzZt_CO?C)->wcXg2Mm%14f%8TFLUKt zU(Up`CWr(OW`JE9fL7>G3yruR0m+<*F5M{^q6!96&_iB;f-8iG@JdtM4_iUa0DifK zu5OQ`H;zuSOTd1^0fE#=BkQ8Of%8y4aucDTpVBu+B*T;220hLSk3cAU@aDIq$j?nw zIjgr5o-w>`y3QcxBGXEiJZ6EYUZmOrD&02B zOjZ$X0pc%*l8Q28HR>jy_o@Pg=>uV=d&%TLJLt{e3$7>L z1PAwK3B!Lv&CzwD%8}Yn{N=QeErI2lj#cGlW$$QkU@9aNI9!nv$%GmkV4E5A`#N(? z`YXfl4L@ou0IwpS1bTAjXCl(m)&NjHZs!$jL&XI0*-OaN(Cb-i3;@nST z_t*ti6XpN~J(~9R1DZu+aLM3d74(i7tvoU;itq#o(`f7|Wt^ibp;Gs81cR@yjJVFc zCL+JWbgF2DkHX2pu`zAvdk~4P5Wc#GO3SR?Z_Rdg86V`SEWiG$TI4koJSr`OH32d(!{Y1-_qL%*<>wy!aWgWTGM=ITJcF zJx#1@OMS5Kaq*B?r5n%Y6U*6!zdwCEh;wr_8(S3W39u_Od##qUu++jEZ;CDU7QB>N z>CGj$=|55=O!b{e`HHdb1?p;>GZk#6xF`_Wy}b6DyO4W)0P~QO_j?^OyKqSYK|d;H zo+TJaV+*7uC)1mM3aXgwM=?f8T8Rj{JB}HJ?|KKV_iJl=7Qej?sU=ANBL5tZU|w+c z94gi{P$YAWdztk*UrZZ22S@2xOb~~>mxo`yVWFFZJo&%R){_~H6zUXo zdb8`jtr_wyW6O}o=kTrhxGVF%Yag=Zn`C}|1Jh$>09hLrgx>wOvQgBf|L*a15ZNZ+ zug>;&JWPTsqDXDcKac7r$V?!NEAMcyz{w#xbZY~G{D-eaSP}Q&pD**&%YRZ<(r^L|~g{~PXGlhP!~QnE7!XzHe@wQ-KXVJIfs+qSQH4+B>)n*84uwH6p`KuMs* z&#GhfrdRTuKY6WA{_9Hr+E>Bze_dH_M>I2c=fC^*zkRgBYE~R}?>m*pA71eMoY9)F z$afOI7DVTDYw3raD80Cl`?=TCeE|#QYVJKa1f8d~GBfkm-t6gpa@KmQ p=kI^>&7k$x;gpH4p?TB)+3%kHZ}aOMjo+XM@^tlcS?83{1OOft$L0V4 literal 0 HcmV?d00001 diff --git a/docs/images/container_2_example.png b/docs/images/container_2_example.png new file mode 100644 index 0000000000000000000000000000000000000000..0bab5d34b41afb086b69500815d64b828f51e1da GIT binary patch literal 293353 zcmb4r1z1#T*Y*bKP?Qu9Fj0_DN@5rU1t~#c=%Ks28vzj!6zNoYfT6oV>5>{cr8|a> ze~<4u=l$Y8pYNILVrH1x`-%0eyw_S2B>z%^l!%rH002_S7tdY;0Ol?3V*)(zr4gAM z1pp*3OvJ?GCB?*;Hh z!?`9!LiqICMq%dk=yM$NrFU;`7U`~V|@C@wbO0K_(si~%%M>{?*~gV-_YNRl(uszI`45jwQB2tk$lhh z^Sk%y`8QUx0FSB|uG_DJOvnzT9_#Af911*4P)RNfq)B^6aaGdPZQwJCct z%@=pRrIQ6p+UkAfK7KD_Lqn}wF4}v`28-|2T-CGtS7dvwhguE4wOpQ&xgMCiZSk{B z(I#S_nUY`9ob*EWW0>H#i%ONx(O*zmz`lDGFS6D zr|@*OzT6Q~=?azY`0W4PY|X%B=ZkB>-CK|N#Qm~~o&{Z{O`LE~WbwNFR{hO2$3C)9 zdEp19nN&WUcNF1*LpML)FM10yMi!OXP2SVGAp2Hf(U02aem&MrZ(Is%eedf`bZ^Jp;@oC9&@wdBSl3&zMW?_1 zAaO~}G`zDF3%qMcA|v#1ALdZuVa4&6zc5kBuC4Tz88rXWej8sX;K`L|z8Z(>Uv@r` zNJ!(=iG>`-ExAXVvD3F#SUH$y2K5Zkg!oB2swUL|0$X%7o5?>Xvr9IBLBW4*N z6bDed)4%`Ld`ZXrO6I)rV`Zfao&%`q;n!7K!FQ~UW;XxnI8+ zZzJ4onL-caoP}g%44CJUq(}&oanKI8@z(swRcpf+Ms43zzhYC-)gJjjM81K#Qgn0; zc98<}PS4I_UB4@OFp@1C)j1rs09z0I+H>k0gv@};!g$`>3swne=|krnoM~%(t(&Zh ztJd@WK&A-3@T=x}dX-D~Dxq{+IG#)dZ+r=vsP6bGa*{f#;-HF1I&tjkMdgXw8>I3t zEBbV4(+v~udwV2br^jw-FtNt6_coiptO1#rzP@zHsvhuVy7T4(Cz;+i?1JaLO>efsl>?d9cXmN&12G5ox{gY{jW z*3>)pi{lc_0G&a~N8?)plwG2`KXi+6;2)H}mMmEo6GA>{isXHPFL4z!UW%q_{`T+@ zbtm1Nc7Y0QWKdhai^_E+pF!Oa71q5MxpxM^pAz zf-|}2wK`vD{mE7jjzGibX_>9N)`Z~%s&8W6ycWgP!Jh$UDBNQ!39a5fyA^IMx92OT z$MPudNnH8+@{i?F&hLjM-Jh*7e|*t=$LJIELFBjFlwnembT6tTB_yLHCsLjC*$Qz- zLg>X`-j;3+Zl(MQ|9Sgo$4};;Snt@sN6tzIr4igOy3cxl>_P5l>Ccw!04&s04xMrD zbx{^^R>Xk#%7Yd73M(5M8!H=QZjhR8F0NXH8q_3V&@~yIm@a4c)y7!Cm}t~i?Z!II zI@LO5!ppK0{2%>GxO?+^uE&JO9>;NiTexf65~ zh!V~OqU>EA9#lG3(!&!sgeFWU{3`kEPtY{3dT3qr&R*p5dY@p%fnrjsRR$x1qnG2y zRJxbw#nnrCDqK%Ugy#gC9h)DBmtp;=pY%2hvyivUZ%Lj=?vbCej@K#F`KVJeqtnEG zuen&yHm0JJveTn;we!mDPVsyR0*Qw=emt4od0QraJH+?>8*u}1w-DrY4^G4DfwYS> zd5}=!#0B5gf>Wrx@<~+9mDsaCIeZ#4GBLfbla)Vi zI%3JMZD19lU(#xtHwZC9l$1H7qt#YGzaylv?H2t%^7i*ta@mI+U-xu-|j+v>9I-o_QnS@+2r8k-*NM(w*3? zyBN})kV25+E-ooP_@Qz})J~_0qLRB@h^CAF29N8HrG+0oEyM36>55D{V;&{JAsTk@ zvZ~4J*-*#E;pcklEw%P`wsTdmD!4;NRbWMrla-Cvqi&aY>+y6OJ_rrN4~AgKsF1LW zt4q5O9mK8Lyt=Q(wA#{{&bh^fV^?@pY>RL|X49^9u_iCW%4bt}s_s0Ia{_Z*Iu9(-@I*o3%kl!Zm1z# zmN>@OVAeQJ$b8%6BjHEb$15rEU-e(*{xIHqv&8emNzYvG&ZDjZrbxP~d;6O49vYtG zdE`OlbN7_w-07jbo-a>haKsz;-oOd1uKAHG-4 z`l2Q6nBgyYBq=jWQ$O~7>UT^<%Uw>WwzNH<2z`*IfRrmqQsYLCbBCK$^k0@k#dOEj zLKDIgKh?6H-R6i??pW=aHXP93+vYz-pBnixHK;ue?bRw*JG|2mwR2eLe|V9@qYC*d z^2$F`x$~-Wke0rLzE!tp9C@5V6jyZIrz*bC_^3oD`L7&pALHY7gj0;gGX_-ESk~JQ zy0oIEn1esBhuz-E+KI%zRIXE(X)W)b=PXYnuL3``G~DStd+z%D)7Rjlctf@Xbn26w z!Cw=x^nw!yfmXiVO$VLs#wn@_cD0%%w9|vB zlE~?(?-(@`{;ttsH`-7Ij(Y;Xsy)RH}&-x_!jQYBj+jS8KbtN5-xPs zu0%jd*n2c4Ya8vpr$>B?_!NOs#zl@+s98B|uSl4EMRDgE#&i+2E(RyQpW6OFciWs`(P+~=wYr))vNsNo%Ceckhm`1D68}Q=hgEILtDAB zC5|POV{gZZ${>@8)n}cdlhC0}&XHHOa|#KmNHe3;?r^jw8eJvhlxr+PM?ngy%2?YN zCNIoL`;lg|s<|+^lTyf<{gW9Y1Ue+467gY_r}}eyKIDS!2z%ptgukUFEZqsrccbV7UNp@< zV>tquaHBks-9(*tY-_ny2~}N&61Z4z>ohhAh8~6{p0Qt?={dFO9nZaErjlDps)RrW z$cOs3TYf?-lO&T!_ae`;4vf0&0vGE}Dfdv{Yb8AigY?6Ws@sn?3F?j<)o*7bN;x+T}hZsX-+?YXzhEp4^{rb4KI>c=)j~g!LT) zz*3g=W-k`tPHGOzqQl3BS_HODVo$5o9=m5z+!CTQw|V_l zdafjOn)Qh9Gu+eS$Gn6y7+MfozfiRU0IIu~KP<`DceVfkE6GGr#a=~LMnKQXf?Y@7 zO4oqh*}@vU8UTcx1;Do!2KG8k&KBmDb^^|jTfeRl0N-Oi=D5Z5>k@l2$SoCFc_uL{ zTLUH@c5ZggTf#(4OiV(y`i26ppNao*JNO^uma)CPwEzc)lamv>6BoOctr5o~etv!q z&c_^&AG3j1u-Um-+Uq#8S=!zH*C2n6^UT0b&(_4+-o(n12{W#au9bs5zTtSp&dKrD*x;=~m`?@dO`HwPRi2qx7+BhYa|l1?;pG(i zb;JMq>fclTms?f;ed{AGuK#xHfBEWgA>i$Mb=N> zNqsba^EUH7&QrbH;sxTbQhcuw(+CEMf2Z;D^?y73{Lv2;-D_1?=C9=Sny}x#Q@Qp0 z)op^exNC|Z-8Kb#W+34sHANPs<7{=iN6t=;3!Q77PKLo%S1!o2!3Upa@ORzHFE_mb zYyzhL_(|kC!M7C@54N{~b>Z-H95N9A>py;q_a+4@1;=mw$CLe9nTQL)H&ZjS)i`dG z*9>kQn*Z!}`FZTg`Z~t}EfzrO$iIH(_CJ~YbCNeHmaEr*Ic@&wWgm$6KiDgoNU{KK zyCK1}KQVQzQKCz8jz&e_THVEYy4%6VpiA=;)Bl)kAdP(x)cO7w=0|ncGUS&w$L)G} zvXydo4(#`qex!>9UOxA@_m2*OEE5llZ^bHy9^2b)v73kJ6j!~@^Q==R@CH@3gM$OQKqY4h|8!!ltr>@*Ofs7{eS~T(aHC~0$;&c;l#Z%w?Ps_gugCFT zP+ZH6f3kNh9K>^`NHajbX?N0b%tE}(50CV5f}qpol5BWkeU9@v!|ueIiDB1Rk?4uB z;VwgsOh*!fx!R^(PEd*E>Vezwaz@wT_T2i}gwxan34_qERx{2&+v4CIZB}4G04KlE zt3O?~$a136fvYL-N+_4&*5>M1V9X%b5IRUbdf{b9jhD`7g3#y{Y!>~@Ap|U&+pLi0 zKbH^8LAO)LAIfzp0Rsv5WMiKR^l1aufj1mEK@Lityw4)>_^q zEuQ=H@^vG^kqE3(=&scWQrzpG9URNc`i1iq@R1U5(fEwwTz#j-uWJ;SxRHtuwr5uQ zT)8SoH7ap(tJXqh{gZ#X{!JJ!1SP zXO$d_1ClTEwYO|6ciT~U-F2@l)${sXN5L+)J#IP%k6P-}G1kR(r2B?t(d<#dWLRU- zdg^_fb}xt74ELGiHYLthb_L919^v|?ha!W>C4Rt z#OErw5Hj8m|IA$AU|Idt5?rw|Umq<&)1LED1wS9|tc00HJ>;C~N;FqncXR(~pm?{d_ZQHMqn<8JxAh2{i_uXvyXCYf+BB^zLR%t5W0qA%tDc85feSwP44gG?2i>M| z=Xg^3vlWYpTpZO~z7ug%=lf;pdMzJJ4%QN!CLhf;hZLP1A8cAVj+$hoqI5<>U^an@ zJx5BpYBB8a%IMs($`)UKjAQ0@8z9jb@N%1PTAyuR6XBm#WU3@1u%g3zhCe~^WCLPa>k~|DO_luH7mRFHg z-Sm#bI*yf}&fQP9TX^%smLDb9b@MOm^~?1XR~?<7Y|55dPMBX1vzOPO9;52^QIP#% zJqvG9E={j9hkhhn&`XtHRwj5+0DcpPsD>pMcWUu#)}hlJ8NDvIKY!^hmM9j z*_Yl8A9e9f75DfZ?JhD;_;zbkEZXfB99uRe1{^oWN9@-}2N~Q7p_lMTIEe@iMqlFsl=(kGhfIqM zyWVBLa9GVPiybL48Uy@^XZ4Sxzi(ui${%B0?Djy*1{V@tSF%1=B~O1qK7vJ$gDyp< z*cFKW33JtD1|zY?4!n*eZOp1xSX&F@38hIzTmM7YU>Ye*xm?h zmz_4|u}N1C4^XxSi8+xVaIJY|P#(fN+Un4?ynnQq#78uPn6Pdl zEseLI#p_4UK<>SI2t6PK7Fs^${>GNdzr^OnSvvcIt&P>KR!JsZ7^oN~N~y|y=PU6= zmQ@KZz)|t@S_;Db$UF<%yCaf~OCjSW55#rPSUzU`a4wV&R7qcRUpj*_uxJ-WRLDk} zlCvUZO4Oc;=u8W1o^J57nCjrD8z-UVZhZ-oZC&*I4NYhxrwkvvNenaV}1%Kd#qAa@gc4+b9Jjjt%Kl0a)jOWcih0dXP z6?s&|E)ZukSG@A`=GfFrix1EeGaIaV)qUd*D7a&y<`|kbDRduIcRu)@0Wxa2;&(-u zfD}kyZE}+l?ta!}K?ax`H`4#c3qU+&N(YirqF(j6c;2En^blmypIhz#G|$;Q6BM!P z4->Z!+S!1^Nw>|IOIL(?8NS6BC7N^#pR65TA{tk)e%6$MsM&6&OSc#+^+}U4ydBnN zr}izs)%{b=0$qPC2%Am$pgu}x%b5pf9^@tSNzW4tx@RMxN|NbGgkY?hK`gHY?V2eo zj7_t8*nVZ8jox+Xi%kdjGbFSSCmU6HRt!QvGm<<8*?G056r4l+k_V$<>z*(%Kz0%9+L5aDk+gGL}^herDD!ZP2vR?G18v5t*%&Xs{#RWPf?%wG*E74V}Pa7U}VF ziGQn4nq$Pk6#|Cdjsz~awp`08lm+?_c7nWE5?;!of?c}K^gXXyP+#ag*PnkgWZZrIJW*y58^0X4HOBUK0 zSn^1(d3Z%tr$fp>6Nx1PA3zAC-n1rts9e|v}-rf2b~-b>xITloozTd?pu^i7&hr426eQ3YWD`;vGD{dD9<9s=(kl9#z8U zdFt#&0QzWN??p3AC2lx;b^-miPS7c^vaCTX3341R26NPM?!4;Xij$zXc~dtWqv5)o zwh+XexYfk(iEky^AO(SHWIid+`J7IEqwZ*d&Mbw+&@`qx^1z z^BknU1{+6{bzWY(;95qf!-fXs*AAw<>L%VN9z?+%W0rfr_(AZQliY1*7uL_>EGygS z?R%e+Mm`_On?~o!hZFa64?7cfx29qz`$97kT@jlJ&NQx?8aCf4ZEh|kx7D4aIk?;p zt>=)T)5k<6ro$GvM1B^_eQA!Z8n^;Yv6^{`MDrR{*l`J}qF%l_kNiJV_)40yZ{4BB?a^ozJNpC=R7>X^a9K>qkTgRiE36LXuJewE z9u>NPN?2A_He@}6Ga$P>Q_2j{`ZE>*fjbPsHjtzQcwUE2GY#5L`ZqO1$zy~TQAoI1 z_DR;QgmDLWWn?IjJQjHh3z5zvMHJ2>Px|Gc6M2S<$C0BJz1y*7$Vbfa*1k2R#Yse) zOP+}IElp1M4AXarrSx}th{J_g#Mi9KB(sg9>5bJRWP4DYRc*z^sSTD0N}|kF_7Jqm z#yx3?5~c!Wl?x@LsIME!h{dmCj#-oG!~lzTx?S3$Uu-o+juNE^Y|n1}bhn330E)zw z9bc_vF+$KLvOHvwUqHIx8c;@)^77?WEtuSZ+qqu2?ER29Ln|J^cBM|a?5?gq}m^RRxfM1ih zN}tu3+x=14EbBo&(yLWO>^BgaPbZE!uE?3O6u`-qFXL807ToAedy7L=p*IV}&CX}_ zq4DWNfawz%nDnduE9eb;mkH&i=Q=!RTe*yCJUIrOOKHMseZE*CF{wnuCifNm1!8&3 z44t4f&i$e1L@UNm)KH*R_8Mk+z2OP66bj{!O<^q`QEv6YY@%L)C+>&u*L zRR-i26|iKTYSH6Y@M46)Q0$XujnfCBEd*q@lWTt;baO(94@YBedfA_1f=c)&m9y7* zUVivjN;|HVQIh}&sR-oMH&nYeAm77k0abC49mE=xSP%6&P2pco4PPrhe>Rb)-}Bt7 z>8{X6P^s_Up)T>cgx_2v&We+HGk1_;gE)ZC@17d+rvCi;4s0M-eO_(E1svXQFg`4wBdr=d@gtUDv0hB1TcJZ^R23Zw zV0tnN^{<|A$mqFyJU-i4hj_A_7`h_&TV4ymE-5KVH|b9&!5R;{2es39dv{`JPp>9G z!GUe$N(LB+2z(S=%lFGw`)s}>?_a-{f>4{4&)cw(p5dhdI`zG{?Q>3MRK(I*@>BK~ zp%){2tEjw&dx}2Yq{J$uSR$~|{`~i*P7@AMBYL3__i$~>x*&4qX8*f`4@Mj^fmGrd z|J)2Br$XiVXSke$Ej-kF3d7HuULtV)e26?uYqWdi2EAPmHY`q9-Y0WvXYn4yE8ori zHtpYdw?9MfAlvkTQ2JsTvD`}Z&Q(B$Y6mtCg>Afc0|5&2?*eWaI2TV^zQMy|kkX*+ z5BWApGUIKH3pBKw5Y-l&^f$8;;Q>uZ3kUFpJWyxI7GAe8&iXmM<#mTa-6sh3dVut) zTqTfZNR-C(U@o2e+H{3V zwR6FRTBdcao0a`))=oBp2lN%P)m9=SMsqcx4mZwslP+W`&4`NHhe)$m1uDJEv3Fgy z26kD8eH(QASGYS1&6XQIR-%w{TlDvc0mBp5^xYgYDYk;fjD-i~Nbk7p%hyQ&rFMs_ zB*02^kx2uf&HjhRkw?XK!)6^awvgG+veeIRU;3@Vx4{RVexPp>R{Kk^|(c)3=H4b=G|Q7C%p$L)Dbj055Mote}N6xJ&NN>z4r zF}xPB{1~5n!ju3oeF1^__8lqT6{ZfO@Ft$idY9D56$G->A-l%3@AaV7<=RFM#B2st z&gJ=lW7zahP>Ymwz@PJWDWJJ=sY)yoSWC3uZi8UZ^eX+!5s0@hI|xIRIPr8YmyTJkQbmkgd`&^(`+ppuxHg!-z?q|i$v5S$$9jiFKj-3FHn!5x5VX| zr<-XyvQ5jTnOeAc4(A%u)Ef$Qzm&sv#m~lfBejVS9wK)UyPlw@P&pA&b=IGB{!=-N z6c1pXue9F$Az++PXD{m`sO-Z>1CV$!bnO437cPTXj4{DVe!9V^_*Rjq3UuLj$*%g! zcwbvDM}ldMrz^_t7P`4jfiWEpV_8F1IW4j!a+WbCHgITsm8p@X>Xs5L*jFbKG)VWd zfy12+j3k^4EgWm=$Cxc;7&r(Nly zzc@QOy8Y?d0O+gGR-#CI%8*7Yb(O+=Bl_fH4^(hvXL2yX50MFCD`oXH77w4yR;pyU z`F9q+R78Lsy`ZD{3clITv>)sp{IHtP7J5;86&?a{J}ib)xE9VV`h8 zUE*>XImbe94=-p>C8&qozngM$91IN4>fNo?=ecuxh+S)!D(z-eaZS*bh#oqkz>C8c zX!l{*wLtBc)EoT){b)%CxP%L&e>JE3%jl-(fgqH?+z99V{$BQ~C}b}VG2MAEL%xuB0BK@#>oKeL=iYV zp-XO<$om>0v4TDetV-YK$Z}u5-*jq@3x0ReQ)|lcg9(@QvlN^wTq7>jcv7&Sd**^| zo=;?{0Fuj_bfq=lTo42)Tk;P|wK>_wfMkS4&BghN<5Ic4SaX)tCv0ES!E3;2kJq^# z9tn+hsOn(rPy3b|PKT69pGfiJ)&vxj9nMdW9Nl70ZJt8WgTdW$o;&1p8#Y*_ARIcT zlx-`fz)Em98_Y4Pos6A~^o^zS5SXE>wTPODaf2*pragK;}K zrNC*@WfK(ImrfG3i!FG*U&9zZcN{{`-^bqXB5gjI-{2Ty*^#?k!4^JUvIK(_9mqYI zd6OC#z9w*r&hxTBp+)^AQL-h|U_Q5Gb#;jN+NjBT9G^@9yo=as)WtO(1HWi(;Nriw zD7_Pz=GyHh_VBo67WbRz0gCQj|NeC$XX_P(7f+OPR6dqJnfGwAU>1a`jSwS_#|{vg{+2xn5;gZK z{-x?GEuwaEm5=%kb`U*0!!RoXd9NeTJyy!oL;FsnH^wJC4kpfbtm@8&w4lbb{_oF@ zg2*+?dy!LRR#V@epL=kSC~x{VuGE-jo$D$Bz|I5uMEu=#|bfZGc1-R5WQ*_nI<#qS}r3kF!TrHW+FaW+6>A=v? zz13#--++8%1O(Cb_AkTD7S1xxQ?L?Npb)pREDdBKZ#!p?AOPt2Lbxgi!X}Ma%QuYj9zc$tM^r-#FLVwfi2J|9Nf6pgtJlaJCk5a z2&@eIJ$iLvvl$Z=7;?<+~axE81E(T&_BEmGTrEfn?> zEtl_4U7Vw)YRB+#uMZ*NtCgSEEGiePeLdKRzt+FfJ;6X;QLE0V9M$mhVZ6!l<3SpL z;ss~toeVIp=j>h{F-k&*IOGQMz@;~iNdhv6t^=SBAKw*O6do~CAGV2Xte#$#RRMb8 zJ#OnI%1d@aG&oXJfTFWtPF5ZADkMOew0rX_iY@P}<=LmZ(x)z#qO0XV#*kfuep$7m zCHmCKu?KqL-agR>rLp#KV5@NKeTqMFl;t}u;0aOo-B*JiCcb9D5?PNDyjMe&LA=y{ z=U1dCiub3Kn<;SuH11O<&#H8k{y`|!Yg{L|*Y7YZ5$y!;HX{d8*t`OP`~}-}8|}09 z<+e-WBk|spJ(IADwg)w*7OVs+D{OF@`y=PfCo|k&^g6a3&|D1t$-0(|-~mk`)eDl# zclRwiPe3)P5B_Uz#iJQWP88hOr@-@Rcv5;_{6oFfAMfN zn<&l9p9J`qKDMlrKH>$VC6xl%O`RawP5cJbnl=HO@mI4Mu&_Z^qee4NZbP8rVAAbu zz5(H@1H0qbBZiABU4T2qil*;HQw~wg_Sr7xV{COCA4wGys&drjKv1iBw-#^8bv5_A zvh95znlQ2Hn|Aitl(|-q@1oEeP8mG@pMBNt{sSjti9J{u$uQpX;FDTe~Zu z_nJGA{5#i5ga|7t^j(&m^^0kZjJoob`$ewJ(&vV{Z0gZe&GGF!m#B4_{t&){ zKT`DWd`9n7A#Mm&$Qi#vooUHb$-E|h%zoWTl~>EC%-zO@7>3L8KEmW)Z;QXrUu<&N_q7Om62CIOH>s)Y6)i5W{)Fw62KU7DABDfv{DmUxx(U9hS3o6H$tK3 z&U3g%YXZ!P&R_W#qV;4>_SZwG)AIu+2Nv>S9^W>#-(TL!A}^gJuPS3F2yRKM0Oh>#I3Z)^*12H-zM!poXy6TpbhSDFCo-2k1+9YT_7(XgDa0 zH&@R@E-b3IoA-svUoIcx^yq9AeHaQoc1^d->ml2Su0|jh>Mva>&Leg0>9gY;u3mY& zKW?U(ra_I#5?|-DjE7J+9E?oc;Ai-4lDa|$cz&u4U|iz$9MvM)>Znz;BI=9sQI9jF z<{a`Bq*hqH_jlzdOeNl5y?6m*=5wgfN7slw=~XZyiagz>HeC00fYJx%{-~DV@Nxv@ zm8(RW>gWJf4e3aF8Gk=&D`{U4{`T(n@c7vua2@L`12D+E7Yems zlDBKVZgdEra@&NYB**!N>d5K>%h_HXP~-U+mx7n z;~P#CkqyRXm0EJid=2|+84!6?l% zMCQTlN`6FEvB*r8=h-pOa6IBH3!$#-y#zudrLcz5N!L}p)z5t-FqYSES^Cr4-815C zr8J!QK|lF1QY{uC)FvH4348tu>#0?=#2jhXO5Q4>+aCt(1zhDpRMO-yC|ZKhKLd>N zHCuSQQX5hXe}RetqqOPDL&~CSWs3sNVnlSf>;n|t^8O94ExI2~m}OwsAvWe?u{{LWi^FSHBg#v# zkb)cKO;-pjJrPp;&Rf%X5or|Ku3!~I7qV)@6s$Q~t!$ZKp-4wjm*`Uh@Vl?q<=i& z9SuI80@JxC?yn*$r`?i7y(L~pA8I{lWhFwWn=UHMlocAVE5hlkn zVb1g`DF?zgf>~I>l=DC?l~a{=1GYNkl}^2O|A~L2t_y}ie4 zIEo#hL8E16#A?Jb&inqE=BD(?T2bg3J~rao65`7}5P+Gf>@}jpUER~LS-j`0NuGhO zcy(bdDjOjO!{RA0IQb)pD+xWO|I(g}v@K##MkOF#Rrat3oiuv<&LcOzKdlUym*0ol z)nbb4wuj+1VuyxR2BbH~H#%3VZ@!_!n=G7AD%sO2G7KTD85kIdewiTPucVW0PYhE~ zDBvlUgCG$cgjNOw%D^0}#+8)Ref6fBh)OtEQoEKv zaJR(Hpp=WK&J#?WU@8zwKk3(A+I+doRhdY|p=rM7nxo_Gg-Ll2<*FN1;}d0=dcY6^m9Fb; zsSo5cu7tZj^jIJ;i`gSo=NNNwWwiC#vnU;D4q#A5YFu}E2qGtCr17R>v`Ebs+98(t zN&>;s%w5|v^B52bfws!`FS68#Th$&dq(2X)dgT;~{*6}8l)|Dr-xWVA5d)}SCp)%b z?{*z_bRyd1^wFF|=Ov?yoc)H=1mtEDyx9)R@Be~LcJ7x^#MQ)f&=}CgD~1mA%c?hBu(ck&$r9~D-xx! zANlpHiB&B*u4tR0h4qmyS2B91Tp>=}Y;KIYtmjuxi4An`{gr_f5fQ z%nXIiB6bcM@EM1{jKKXxNWUY$teAW!X984&%oqs&&$7{G-;-VtLR6W0*J@HDD^ig_vRvXy4^CFM2zyK-2B7aN0&@q<-$XJp#Lm6!@$eo#D` zs2=5cW8(nCZ#&Ze@5DPotzHS(J0Dm?Y=O8=ELi(i(_r{g_(&f__ml8;V|@N1zqd#& zZX}z!VRI;>6<8LmzW|nk@J*#jQ}^ep^Vu~LGDjofRSPFKM>O%Ur`&f#T=qwdEaYIO zYrS8@@XUVT{-65?Gjgv9%ZHP4flNWLlvQ#NI$tQk;POo-{z<{pBv7ZvG+h?VX>d3E zOa?|~n#j@AAoHjJLT=$mnvaf)^>{|KU2hs(uOTSy&|6u5^ z#KYrSa5%i?lXnFOcvp2{%KD}{!F0SO-W7(mDI@HEIN%O5re@g8j+mOA+p2myAomzm zVYdi+I_v**zrG?elmLtH zN6O2|i}M7mNumQz_s6WV=UVxt{@Ez)D%zk~DRyJ*C#%=w0vjOSUkQXu{F&l@?*f)< zY5(_m|G)IiyybJlarn!-5Bpw$Y6=Q^o8Q2ad2;~6NEhnu6o0aVd;q9cI<`^^I)3NW zd5c`e9;5~AU7+e%ocK_s=YK9qO57XJZi^>!#QE(>-G3)if(O8`dOw_I6M26EJ6XPJ zSP2pQu^0+@a3Cz3k>59q$opcJVm?`2k(HavQ;MA|i`}ey*V%RW?w_<~vIEQTV$^?- z|8`9vyP1*#h-od*l}F)%-p4arlD}wyC4&6z03ykiI0zmfb4v>>2a^FEU#?Rt2lyU6 z+rPFI!2*iX>z;=#{=XHaH^ho|fP4iM?3j2$YWJt2_u07ynjFo=;F`Zk{{KC33{%)r zW)1<#jb5I(A~#>-a-yVz(0>e*T!2de@a|uq-u`pkzulP6ERmuake{C3Jb*&wWrNXL z^)n{YKQF&;1X6b1eSg^LPg?)U2>)wUOm04=mjS8Zo8CorhAMw*Whq7Qn1d2&9EtxN z@^9Jsei(*d;=pPPka=ZtN=r*M^|1Q?oX5wO8YIkyQP|mE;_>HK|7+wza*#0E;1RP? zPy$6&noA*noW|XUVP?P0&d>NXGG{v0sLPUPL&WO zzC0zsv%?_0d{{WO*)_ECQ`adW7U)*&>mbm~VpVDAIVN||4 z_6Lo9K9PYmyO!aT@au#7`2bcu_N5}1zdK8x!fTjOKs$cbyJO{j#CG>f*F|-^4&tQP zgQy%{RwY!#_Q(8He=6gNuR$ZOb5sk(HD1R1C))x3o=-|c!9^*)2W6-pg!jvIA3h<& z%;VEeX}#(62XR#^n1gQrZB@nnSdj`ZEe1*{F@W`$8q;AIiXm^4>vbX_{zW>w=9*ou zHCaBKb7t%Q0`=%iWfr@2*JXaehIc5fecq7n13bbjqP2E%>Dcq<9xjUe+RQ-sRb{NOEiJ|7 zPSkB6x`GlyNAy=cIg?C1?ybg1gU6vDI3%_A6r-q&&9M$Vl{d7E!K>C-gIfMhb+Cvf zkJoX8x>8X9iW?k;9T(3hh*k|AiU6E?ECKs7X4sKB6?)ZOe`n%R6%3JaqQ&AESQX&BH9b=yHP)d4HTT0eWJyv4}B{0R2O8FIX? z7nJc4)B}mX%V|r(tU=Hax^o?=H>691a1{Y-5cNQtAZ@xHCz?RMoIN zU^??vO6TVX3VlLq#oygFDl)F~+v*obsQyyn$+vL+VvSqu5|{tZTQ;`;m#)MJlcvB1{i{=~l05jklt)sB>jeQ2iC#9_OJD|u zmomI>fGX+nRZv@GR!IY#2>MmbAx7NY0y{e5F5eJ%CXlHy)U}5-@oOcAVEcm^Sh`JB zC5Wl+TLwMd^r}c06x&&{*0&h&2dr$}7E zV59mqq)On1jj=H;BNb=+V_hHsXbu*uhYyO|s`AC*+ip7fA7gY0uaRHv-zY5rJA_R> zbF+i)q`VK}2__rfdy?M+qF=Jeb%5T(#41*@R;p}BbIJ-Hw2n6!uz?`~3wnZ;U{I7(Wu2cCsO{Wn>gjkhZ zN$M_OGczvn?W%(+Q4dga^(H+3`y^od(`5OnsHo$D6EVQ;LA~pGj$!X#vN+#N0wBR| zYfNMaBI&7kG<7WFdz@vY-#pt( z62>Vu9c*_9sTvGD98o$88UvhYpJPs1*!jyPZ!qoi$ZfNxELV}*fe}*!z-9Zh^}UiZ zx*Y2g9(N{CuHSZz3ydhLLe@*iy3I>R3`t9!F!k@H7Gu28S_m$~?s$_@FtJeOrmSJ( z&wp{cOJ|{+f(O){?W=R?w~}dbV1vIE@UPzjNa@wizY36;a)yY^;9m1{k9h;6u(BrX_1@sYXqoC5!cry_IW_VD>ONHjNH%rWm8&3lKFEr%9ov)02 zW1Lku&@3B(9oU?Mt>2*XCDaH)+hBAMEEAXpQ3$iZ&*l@AB@-o-tV+Wy-k5~=P!(9h zY*zR+kL)hs+$YI=6mb(hc@hXcZNPK{EPx$PHvyGBuGUMp@?SD-@4h+7A=_(9mCN_4 zP5+nj0$rgzuJ4Y2>m|Rti4p4Hg3St{07f7uJ9~G>3k^0X1sme6UIR!ZZUHnKpPrP( zV|xdkByQ9OBnYzdrA&M;P{~d&kXj}S5B4kSoNUHj9upQ=$GXifh!D4H_0V|U95&+bAsx+Wx*wH zgiOXeA6luglW}8Du;*oX#Rqz}EJwF?fNACY)fS}H!fQ74aQ7Rz-0&Et!)*_&J-oB8 zTI*in!47tR75zWTz5=SMwd;Cw1S#nTr9l*>y9ET15R~qaZV;qHDQS@gNl~Pvq#FdK zL+Nhm?)aar_r72JpKpx8U?}K0`#ibUTyxH40$!Ti^Yq~Jk4+#S60Qbhb=Ni~CVtnQ zrvr7K?yyENX)au_;GVyzigL|N0L7X>j#+kZmgSJPV;G!W<}?g{wp81Ng_a+md>Azv zH4M2cw>eqc1yq^|JG+I0uD}c+Oq@Me?Niy<@ko!CNjaJ9Q6QJn6`xOaCplz-&UvEI zMR(Aks*+8hq103LAZxf#XcJ50 zgPBfIERXP^VVb;y@R?zG<;ctrWgA(K6lW>%Nf^Xi*d+K}CgaeE-Nf@wI+Caf7*O_M zRC$tSdUmvpRRzKxvB$)m+SIfw-Ndxe(MzhchH;0EyWkMvcV5<89|IZ|vzJCWd+&SI zc=FYe8n`V7b2sKb+3gOwL~D(oYGUdR|c*V z)`A`&@G}eNn?j(W^&&%N|if;qBRx30ZRhGL^_H62oO)}fA zRVzH(pmLqZgR81XW8Yg~-B&m$Q&)@HV_sZ_haYaYQSl1&6l9H(4BgyTrI9_4cr{6& zLkBI>SKLptN5L1>%f?R|1rmgfO?7oAF>eDT#_?74@2p%v2W_m!`(`~cfI5}U;DydO zklGA@seGy<-xhvjPPaPB`I<(W9sfTv-2X2f_0>kn@X||Jv)>nX+j=gzkC_x_b#Bf-MIR*FAA%V*q~*TmCp}j zPNl-gjjz}kc!u*YlAih=&jeCA=Z*w>z=34#r-peTEHVW8+FRb0O+0Sv&+e)$vuryS zApGDfN$E#JAf?;aJ6dI(Hj6JXSqjso%H=0=qS9Xk72E(K^|HrlgO2hN`xmEEm(I_h z1mK-3kjddfozN>5G(s6_c4ShIVZ*@7z2S{>mK756Mhx#pqgNdHLozCAVf|>3l#xmXOhq1YRAbdvks~TN;#Gd<6BP#|-7e z1HCGa0v(Q+Qq2XN>l8nIg@u&Uq!X+DF%>skd;>dQ0tFs96+HKMbaQ=+mA7x#yK8+J$R?TCpUN1{Z z;CFnlQ_wbq+iLOg;EVIuEgXl_X)$h7?`O#tj>lrnmhgXo11?nr2p49 z!u!-KhYO8wPXULlE1un`6P8Y`5#QAuE==8E#$DE|c3uyal69=7s5%a_&z<5<;<2{a z;Xp3TVfl$VCYK~m^kWbW3P`p8ed=^@gNnMMzlu60rRir?AQlk89DSF>h-_v>#HvF3 zWXvoxEDBpA(JY}|)a9J9pzXXL&d9Uf)w7|r1L@{uDu=H$QU+pJB!b=-9*zLkG^x$~ zf(BuevNdFrry^W1UeRNRP+aT!xv%wU+oI7fH6ZkRy&s^UiqJ`ibL9+@StUOI#t=8G zkyG=0<>QB|Bx5sgHmg=y1RtHw1Z2q(RXO_BQJpVKAGiPqElUaVfMJzAOq(YI7??R9 zF=k**=7)*Ydcf{kjDDg}^c=W3Xv`I)Dxb~{cFo8BP8ic%5HW<%_j>*BZ1vv~W95_i z`dBuGKBZo2QVi;SYF4VBPebU(GwuHILMYQf1X;)XTo(ch@ zgGEqj4`1ap@27`D>@inB8!gs*)$2qKSRs9pjTTfMTfTi;EfycepKp|G0DXBEP$uJy zi5>wp?*=EhpoVhuGx&UH=%8j$q8Mp6Py6I<na6Wu<8-3 zD?V-d?u&5hMVSI-!Vi& z{>n5I($7FU{6m(Eg#1v0nrbR87cp%dr?ZHIl=sjZwg?FnHfjy6IL>;Er0A~*>>fs+ zsF5)wy~%24Icemw$bFBi4`A7sL>C#lH*IP&FAnNlJufhxm*?1^L#jW1mJyXdzG1)B zwy1obW3I7vj+Sa6u!|M(1BI5H<(riP4e(;P;5F$a)yf+1KPL=*g6p*0o9?C3(0R}s zFOCX{p0083Hd9@&4NMd@BU|41{A{L9?&KZj+yXwN%(j~m!cu%ne)eXK-O|!BEaz$! zP2kH_dIbVVj&Mc<5krGZe6c$4Awn1k=rKI^z{NwQXXdxgjMTtJ^k=C?bdDIyR9rn^ zB$%vx|L7de`rHHK@@KiW8lUm@>=);GE}|#)`M`2T>IdWwED=nI&ddG>Jg#514pQ_3 z=DMfVHU;NSv%ro;kLO1M8no!v8b$-fR~wXReJyJ@<&k*LSm$NN*SRrKZCV{dG%}?U zBjap`JWk#YqgIde9pS)in}in1_5?w22>(iU=2~HW)hC?SfU{R2dbSB?2BPui8ilZn z1rHNxvf46~CPK2J_bU6RUI8p3Y7BhDuVaoRRy%nc$}R&U=V6}%pb>B^`No(O4_Izf zv6n!)zrOB(@QL*mMN^IzV??T#J0V1TshwKb@t4Xur-kAl1{(iy%VjY}b{sA|65fx7 zL*F^ znxw)K<=57I8TXytGQ)T{ZU{VkFc@>p0K-&D&p#<5iIt0DAmvPWU!L2<)~cvf7rvjd zSn5n5D9;8vO*mfM8i+f%P_Nthz(yc*lv5LMmY@M>9({rBfbG@WT~G>5`ygHEY{n6_ zim(PU1e1`vWp;tKwp4)7<=BEJJ#3EfvF94Um$rsdjDBD|z^lgw7FZlB*W-0eqy}Yy zJAVeUxqY?kSaC3+6yS4%b^FwR-*OGo2f&FO5Q)5Ul}P$geVcV8CAk$FvhY6LUxi7f zg;vjNm(O##p?GWoK1n-nwIkUjWflp@7C-=ivl+gPBTX{_GR(14xXw(@I>D`C<#>;| zD-)6ShW#4SnP_n6he?+?EJs)keQ^a9yVTg3Q7!TH!Hdvo=70+V{}*cJ`v`_Sh(01{&j-RJ zUHjc&*AGB#c`(yng-8n*ySW8ag?HZTylVrwYPZy{D9{E_u?Y?Z`RMJc8rYB;E`KT^ zZFv(XD13BCMYvn!jDJ`uR2l{LN|uB>N>9=XfxJhFr&%D3>DRiVVP7V85(MN8jwkQs zURAlZ?*}U(DN<6v4R)d)v5EAPa!H~jOF5^{Hle;G7Y0!2;O?b(m=Zv}pU5VB1{ zO%wRcQRzMFyMHiDXa|nBlCUNqcjW_`e1e)uG)R;2f?Dwak?MU>c^-IcLu{|Iv$nO; z^_vZWgioe)1dBSi!Qsi94ifTj;S#%GKlB@r{Q(sB5&MWff8u!@r{`r}Pf@>FcX}oP zxa{>^AVi3q2Dh?R+-I}CrhqGgPAgB9Npsngq%2E_pw%Jn)0Z}7g3&C!Z`Kbo_HeF- zX5{JRIe|DtmH@i;TqYUdqDt?IHwmCnXD{38bskRZQLbu-=-WPxE8Z~d1DT1!U?lV>)!!v6I`G;2ePquwjUZr9W5hJT{I z;2{1wbhrSPXJDV1*~d`;C%%4Gsu{+Y&1O)zUbEZ%{`ux)qlRk|s858QX&p#F1W@M~ zcOMf4IQqy0ks3OaZ)XjSS2{kSe0aDq@r32mp#Li(cjfd>tb1>}B^Pu0GvE8w<&=Yq zi)O;&4(mMtT?bWJ0yS1LK%qteDg5pL&|({43vD$h7UPHGX6UR70yN^3)o@mIZ{ywSE=UkhC9vxO7t932{~=>7@OcC)yq4fIzwB}P z2GhH8aF`Dtlbd+;rrmSa^j5A^lqWiu3MDo8@Y4IS@FJKKOXkaO-?&HKdY$|%d-r^- z%zEAGJU6w@^K|qlh;hqaf6LEdX}?H&iCv7;EH{{r1JGw_u~g;^FXFGp6LN=>;4)an z43necojM2Cm{#=quhPcS zk{qkO7buva0b?8B3N;7tS{+r!e0jOYv4a+tB{&RufNvc0@wqW7o>*EjT-K_q>ovP` z7vU4e&@=ZZ)<_IPWW;7iGr|Mo)cpH(-m_0nC^$_*llE*)yAq8zYIYSaz3gc7yzN}S zo7W@Kq@eIBya1?MJDkR+IsbP+e|HGdpS6Ei^$22%!R{!=QyhK*109`r8~)4oC;Z zzZL8J;UER%gq?lQN^u_oM!7=Y`f0^_aB`LOEt_K?V_)a%4ZoA!hw@UMF5uQn+(Bg! zRh%B!hj1y|&DK<4lZ`7uihcF*YJFLgSRt{EZuUBGap+wQh}@F{f1w=O012dxu@~iA zvnr65^x@EDE5g@5>kl~GYlUGJ@1yPj;rJ&kzlw?8=#W&5kudz6zJ?g^2k=Z+>h#1B zAx3IQyE^d4a6<`Y=iIY0=NMKMPu);K(gw!>D7)m^$6OFz9S3nMY(HeZWeePWye?bN z!`R--iGylEXDAuxn)m2p5FVXXJX?|X`@?e#A7qG=p(CFP;MMgoUcHf2AluS?{xn9T zsEVb=D5l361TMqU;nx!!mM1-u$+3upEWT%ZSmorEfwE`e2U(Si=+0CgYt44l$3H}C z`<%i4Hx?z1{av2ZLii{xsN?)9T*ZSz9LtoR8R0JJo;orVa<_Z#Px~k4mSX2-2W#~j z$1VVZ7Ep?9r|K4cu3!h%O3IuSu+2)<$iRc3ssGdQFh9T7$bX;(UADRF-W7}=1S zKx#g?v80-d55QexRy8`>334z% z$8!w4GIIj4aFTzP%?3b&>J6}g!{C*!BfChR&efEpnypKHYkZ_JLLT;(<;irh3QaM zE(}*~P}=<1QTB(V&36TlY4C6%LTD!_LBPp^$?C5F>ASv0PP^}2%~CcH>T%V&?OPP; zGIGM@>mF5LEa6`$f($h)H!Xqk&vOGC6Tlzgbj*Nxf$%&q05tA@Y)(V4IkS!EAay2< zvOm!dmE*+N>scSE{&>`Ur5waUgs^o9H}Ig-8!ryOAvoHg4`fAii>8j!NMfIX^~u{C z2=zH6(=jkDEdRl@#Di&>jR(^r9%KEd)A`3u#kI{2?x&jo)ABU)KMugYu`>1Om$0^S zqiS{5NY+maHq+fS`a>4c0BSokRT7l;2+ukLu>Va! zA+t}FWmXd$1VK8!IQOAK#G~7Reh>oXSJ|23CPb>LOnM%Qri# z({4Uih-afIK%{-oyoMxXH!TK3+h1?W(_L7QPXFRzI^84=F|K6?mr*jTRUR!o3k zkdE#MAH-}RazWFI{U!w1a!h@{i|$46mB?P-%hbY70NwGsJtp~oM(Dsp`B9qsRGjF} zS2{RrPHzCv0oTp9&mO-t2DJC$nTF}e#)2on&m&aa2P{X2lH#h*Goq}!ZMY2@MfW#r z0L8`R%SzQUg??8K5zHS-;CHCb5%$8q4vx^TQXnTO*0?zw2k9%mH2-yLJSO_Oe_o&* z5ppj6hbICwf?zRrgb%FLBe+4QW7Tq(qN{3I)J5SOB@t{ zPN(xi-@^nm;0Er934v8RD3{1}D--pO@&^F<^jvrBWcMHSm@ISui~h4{?QWIr_7D2c z566blUu-qE^Ffu;*uuO$jcAyF)kcVyOEP ziQ#}%NfU~VfHS7!beZ+-GbVl^FjCZ_h{~(9AZl9@DkS>Dx&2=QNUi0YU4KYS2Wm*J z07vZv4peW~4YJm#KA)uWY%FYnA`Hq^r*Im9C zOCrL($*R$1*Pw)#`&1a~w0ghwZl}5XW$)VI99HgpHoqMFP|tm{sn90q2%u;9|At-r z7owmOciSR_Pk#k0rc~4Oj3FUin8fCr_W3%N1InE@7%d8Tf)jq>KgY?0HhXqN2+k4_= zA-tr2Gw$AteaG>$p#t5_(ErRu`2BCe{+z{-Jg+T}M-qF*R1-%!F3T-s$I^WEUf>GL zrYSS@e&y>w66iE-5T6^uIyI+tF&cdR0-gi)$T%(zm_a@B+jpCH2ROG@fIp1=)7hI4rNW;uRw>H1Wb>O zn4wX6{X43WsD_z;Pls61ug`G$AAN=_fPH@lV!ker^^yga!BaI^>)zJYF?56I%yP8! zXB9X{dD{O`_4aKg3_9`cUFZBy){l{}Div4;n z7QFxPx&8?g_}7E+{)eMh2qQ~uMPOW{uCYcn;Nf3cgcZlcS|R14fC%pH%|{3 z%65Qk#sQ>d+<+H$p!d+sw8oqH^?*nb$KU(%kME%P5Fs1K^0|5d(1kMA27$C;eXi7U zsM}jeEl&Z72W3RLYXhLdhjFHyN?k}|{OrhfJZhMpe+8du?@)ku)doPFy^bQL^<+{l zoU#8t%KmTQ4hfkSq6&9fmbG@?#MDU(yp0x;A{}JP zAZ7aZ^^_+0>x}>mS2mk^>N0O5yJt6Y_wV2S*KPH`{zPr*3yP_o1@Kj#HxyRf1Z?%h zsd`k9zUN;gaTq_0?n(j_^cCK95Ps^^Hiy!GefW>V<`vpJfFJ;qgmkA|vYVm$ziFfX zzM=o;B>Cep#X$O7%h7u7!0_f}2}er7FK+Y$h;7c&Km4y3R-6U5F9f3CDST0J=U?gI z|9a^E`PZ-VX@pmN1Tw%S3^p=MyC<%AV<-7BCR1i;Ff9fEsDY9 zM~=#Y=(-W08m@a&*wz$jc%Sb-**E}WzP1CP-w$gf`-hVjfGl2<3PSy#qMyjZGJzoC zuQzGepk6^0f8MG5@9cW9ER3h*&>lud0-%m1JQ6u>QBB0$Ra~@!`8=RgheDz#AdoV~ zoz_%f`1oBqpc-TTHU7OvAhn^myk3a<_e}ravkB<3qlg4#2#6xhfo-&K{j6RUoduv= z!Qg^9_^2-n!0SZL8wVhK+Rwj$MkzH`QDOgB5n;?Ainc#@efF=`D3hnJ9Kr{a_zoMD z_nEya>Ohf^bO|WI@~Q(2mcJ`u=?wOA(2US9C_<$lTe)FZyFH-cMb}~5Pe4_{- zkU+`2wkh_W#lk-FJR>buz_{2x7Y_=Z`#J`SkFJ@WRuattSRHwEwZCtQY<*wQ`ha9_ z8Pss1mekR8ZPzeWUDg3O{k* z1Vxc)9wn7>@@=(ds0~=xXnhjA-S~hx8RXGTKrIVTh3^g?_-GlmB{JN65uCwz zfYBC;{3K4k;q(yCOi6B$H9 zB3}MuMMre194?9K`(ntF;4AGu8rP7gBBFtqzcxqt*N=Yx;-7p^Bf^V>3W?t4VaSJx zLvhMJSnrHp=KVzDirY&687{^U;)50hzQnxX&k_x>UGhIx__sa-uJ6G;F+@X|eF{3# zcyBK?j!&19K$7fHuXbCe8~n83iyG5+u?puQ6u*$il>h5}e!ts4`7Y*8PmQEM#4BNQKFB|L>0iH6 zW&kg*BAHKnkN%f2+Z>7y2GV%xQa*TTd3VCwI)4r84xU-TX&SQ6ad(8ntAF*P@Cf># zl~N(_p|UVXYd6tNq(bZKk3FgGg9%(odZBp}K}(IG?bSv9J%0zI&CkZ+pZptN=I9Tg z_*iAn56xH7BF;ik#S(LH8|2-a62VZHN~ib#wKk}!{u=7dGp4wIbEr>gehu{y;6A0E z0x$ODLufh1=Y~LO7+vl_rWwnO#9PX`M26qb-u>6JJ5TmKJNkDX9Q+#<@a*bDO1Tew zn(IN_a9WROQ0<#lo&36pFH-6tXHoZi9w`|9nnyF#egiPrgtS}0Do1b<;$(L9eSS7W ztjqYXhN|}h?Ey5*)6G9yU%8mr;Y1DEHeK?Z%UFXCF+lao;;)VAyM~;&D#C=Mf8aQv z%wGrS*N31qUImzRL!Mw13P91xW=Q9`HNCh+PL)alT2R9!o(rgAYJ*NA<3(+hs|tKG z$n`MoeFJb+oz_;re;l}EuxYa_Bo%fmJq3LyCP14Iwen7mj#49XfoK18C;65s{MtYP zwTJalBw|#Eihs6dPL>VO%s^e4;t-g}a9JpVj!hGwlgJvey1uW}*c=r(Ir%syYt1y= z*MrydAVKynqGI1ne<>3ApP$mB1c*XuWhm!Def^k!ZK56}QnZXLj3Pg%ME>H|qZTOgiT4 z!G+g}X)x!PMy>wHjoZZ83ww9~pp8lpxAX}E$H5H{put^7Qs90eI>35>**G`JGw1>k z!}xd|<{!YEvMRt1sAPy$Zz{J17gGTsfZQD%gnRdF02WH{%95@d-yhXPHWg54x5&ws1J`?J9?K!agRWgnF+X=LECPj zq-1@M&~E4eW-$#>{+~{nQsZBHzof%9aq^13Ic7VDEP+<=K8< zAG-JLhpJW=54UDN4sc3ZiE51nonXEnes;so?D!mbDBAJ{05neEqtsQ;N6DV;^8rTe z^DgcoE`iC#3pV`*NK{q5Hu-}huGv@#ONlOKG}XZZg-u1{Iw(+U2L z=G~D`fIIy?-vv-sCIGd59{1@?EzTp$VNl^22c@lXuw0knN`(3(aGRM2o-l%Kb)^Wg znv*qfB)(3wj!{wFZu-PMq&*P0`?M19IJ%WYD1ztZ@376aR#4MKK#{j^q2l-i-N5^# zf)C9ubat-;ZP6N_0OE*JDqfwHsKMP)>)t8jx2%PU7g~Ub+`-*!`{6vggF+#FW*?{L zjY-e}u*LaVD}=X5B#|v(Jz6T+6YUZzNgV_PD>gR3z|0<$z|)#bXq|yORyEvF>C@0$ zJ#33v?)pPT%?Y4RTk>!%xaPTnUl~}9o*_J^fmB{whm1l)p2VLS{8CsS*Dbc+~95hk?{FZEVJ}j2*LElS1LnwA#A{a*r-!P zheAqJ(EoI+R#<#Z+r|0Z_c{()#6iAQN#E%q&%<)79!8Snm z4$8(-nzZ~>8>>z^qXN!7UDmJSK4$4J1~4FCu4nrkkRXnV(VZTin@b!MeM@p-Bjeow z>=qk9*}q62v~_ev@lnlxTmKLt)}nyM$u8-v@uk6aEcx@KA{127*EBR*q^b#90oni- z>-Gy}@yDM&4{9pyJW=5P5(b=sy%koL0K8m!7%%;zqSqFPqBek-?$8zeZ4KxdbGq+# zD*fOm%;A6gtY79rz4BlS#B3z7;Lg(1;W~y*-vxo)y2Wj%^op$GUG>p};!ZcLG7=W& z20Cxuo#3fdNUaw;=pOtZK#&?~m)Jnu9_h8WqS$c8V8vcfOLs zag<&noQUkRzMZ!k4@Vto>jcyumi(-iGSWRy_kil|v=fo`t~jbJ0e20YpN~d$N~~oJ z1WE{XS4j{q!%fXGWQIwKky2()njBb4d&R>Q-yH-5WR){aCgSzh0%o7h>-)s^ur38b zIi_cx!21cEFv?G9VI{M`I98+8{RhpnJ8gd38Q*~7`=`IO2cr%-r>Z%!kI(>IcqVZN z8?ZVvT;R4mk%;{38ddb3e&Amm>kiZpXRd2~nSnU$W^MXEqhcdOPO{-ErIruBXb>bU zkuuN&(U99JVrFviq$R!|o@-&V` z=d29)qjX}bH6s(>jgJkZ&R{ZB%uUA_UmUA%wZcf-U zKimE;Aio{fk+zn@Hm~lE7D3ORj&Sr8%YC z5qo3fmzvpN=CWsw%JpDh+`tP8x!l?bWV5K<9}Gc8aw(gop>g=E^9uP>bTWJA)GoXpW?ttiHps{^geU$v~=y zSx+I9qBDzlX;+`0hVJj|ocTQG_EWLf0`b~)0~6qsICNC7 z%-O>XuD$fRL`lDLU};zdeBrBdAlv}B853RTD!5eVJLUwYG6;*~>~f-Cp|({(c7Uuh zIY5oTsJYuOYETArI+E6g{&ns^cgBOCr};w2n&q)A9#Yz8e)CsoU&OC&0umB-qn;Uv z72egi4hIa=vtVce!06m{4Dh!+)u-8PE3jAFDBU|#F~tq(Dy)J{dAkM0?{jvqKY1j) zAevZ_(Bs@qCQ%3*IkN7aNg#jY^HriW^6@m0ql>;h$^A3L#QV5I4~}h&sLnZLAX2x5 z(w3lLJd(iJL(Q~n1vJRX_5d=DrRta+JJt><68<<|I#$u<_z62fQ#anx3$Lbilj45C zJ!a8O4%?)UtgED2xgr`H>bYSQ^UVD>JANdYxT~s0e{=i>xQ*l4M>n32_ti^^>uG{P ztW9H;V*?~+DweS_dn&kf)|rdhnAJCK+2ipyox#a;DQ|d2%`%rqg5%U&TIV%>0=ClD z5Xulz4^#bdm#v4Hdv5tSM=r#Mv*h4pS^dXlUrG;_y;hXh`ijX#a3zyJWV1ly1I)Qh z+K}B89K zP0K0|GpR|v=baEOHK(66%=z=o8z~mXfbdf3Doha**JwyRV7X-y`CW9akisiKJCX>Z z%yn9JtT9{{n!?8Fa57^ZF#TaIGOjxgwvXuAOWe?XgQuCe{GPkqZ0R7erhb?5N*NZi zK8H=r=WBc-rPAV5A+sh43~9SIPrP)3F+3{VlppOFV;yd(4=G18TF6vgVtE_&0<2z}e!Am&=Psp8 zGkbTLn%3-H&NJ-S^iZkYtbs=ICm;*p995pzOp653a!<%Y2I8{3DMS&?=uO`8aEh|Y zsI`H*#R=Z5)kzO#p53v^<*^}Lf3vWXUnY#h z+%8G~eE)|U@9jF!kqS{n+`C7no zZHW=W9I22PiT6C9df_ePuI;)IqpMA2Wm5{A4dUY*Gcoq>{Sgyd@$>1j9=3hHZ89^S z7Gz!gjWMivY|~|7rKH7`u5RYq2VruBW;>U3+y;Eegc#!Z>2HR+DTa0h4{b1secN!- zF3&oMJpQ_r9W_##Qr}~6`RC(_WQyknRHUNY5ZJ%I1Z~w`NqWh>qjH({?GwJPL}(yfMC-bJ zAf2tyDY-2-A1Hp~fPF;N;yV*-{8GutT!iR`OMDyV1Q4(M^mhp|Lvsv`?38r*Obi9k zcx*2c9eV8N>YcZ{*UI9TEOdqFN6m4iQ_U#jz}4sywiGu|`JKUCGXkwxcTdBJWc|*P zZR@rgus=z;80FGK?{xcVavE`u;NB55;_fs4BsC#_g2uRs6cGU=+IGGqWP!62NA{WH|25Y}G;MW-1 zE#u$(y|$Bow1#Q!e|uNOY~9fj%;9PueoDmJI^yZS8bdN$XqPv~A7I~d^7fJ9Ng&BR z$rnNBWScHO{Y>#%`BPL1L1!7ksvbgN>C%LyiIQ%Cj<_yS@$k!y=k>djDr7xm-W4|u zUAXG@`eo1E`s+&(4YbK`R(|mO5mzxYhlAHWvTXTtV#F{WqGE5(O2VAulg&*%C$rkJ?4?Va_iIH12p;YU4)@>wlff!4BLai?|e@}X$7^q4Gxfl?*N zjPy(267~B#@r-KRq~W0hnd@2TtxP!PD-#b5UuW0u zPpW=?1U88)T69weceGIIas5kdfo$I*q5K%3p8Kw{i15;p#~&^Vb!c>&NRUoyMqnlrtsy-lpMQ$Ui%>dGi9r-h%#6k4J~mx_^SR%%ms1cawkFzH1{NA6c>kN4UjU0TGQws2bZa67VTw`;M``gWb*G0 z<5N$G+A2(^zaCr`C;8yjkmO_yP*ck*JAZ4|Gd!)hDmyEX8osNGFU<8&4d3^~li^cj z-$9hLLVei5O$`}(@*nUP>3;1eAS)ikgw+!alF~kqlxnklyFRvC%CGxi&`mZYWZC6m zMoYls<<$Vt0Es7B{F~Gm|0cus!bFG1z*0xywA5uTQeCRWy-#I;MzE>@SnK zuc?bksEH3rSuYBzkb{N);a16G^3@1Xm(emTjM4VN0lB}C^Z))mEen0C zn$Np4kp5hFtKkaP{fk-S*yLfZEw!$l?%guA35vw}e#|wj8@Ny`qgo9KZtQy3*2xP7 zSH6!7A@6rQ2m_$jQ(2)ig-N4qLImk2i7a#^y=S#k!iO#XYW*Bg{x zM+Q`}gDY~HiEV66Lm~jTf4x-WG79e`_m@WQGG7;)MToyq#M;itm$;}h3rD(dItfwj zt&I%0Ulm-4ep1s$-EMOm$H%X>toPe@_^1(Vx-f9LB6POZe0~B#$GL|Y?DaO6JBwdl zX6kUd@M}7c80UYLlC8-sqG~3fnCva=ox|;+c0sg+8pv?X)Gi)}HHz-O_YZu~R6E-* zXyfvxrTPZ(Aw>G#AJgL@E%l~9$9P<6N_p3Iaq*z6m(XJ;&j`o_GBZ+AFi#oo$US*)>U;bkO~vYh#M$wP?A8KgwqiaRj#&G5vggj?=-auC%Bhr^f~&GJlR+ZCCehYe%{|+ z#<1S>l1b_$igd)8TQlIWED9=I+ke8`9d>&N_0OmFJ;V+){9?;eo!b#{7M>4BA&kzs znwU^RB>neCDKb)CemC!^5!=(fSprCCnJ5oq8*HZ0GIx#Fga}#`W@MB^Cn)a~$7E0# z4YbZFRd{f(Y0H2iLQknbiiDKvMR;V}{!_mUEqz~<$8SRlCz8ES=w1?^e;99h5`RpNO~=AQvf`t`3mM9jds)TJWoA0aiHQ(xEE%WCkp=E&Tpo@PJld{nN-}rl5e=6Z z(3>U>M*FgDjC4f?cE&@3R@Kl~){GS)^H^h1(om2hdLQk~Ep!bzJ`q1TzgaC{C2%9% zg}q66w=!|0C|U>-@FQ9Xt$U;{evL+7Tl+qfQoGoh9~x_EjVmwcQqS6e*^yJG>n7VC zXwPsX9UpH!R)~-rKaHklx-Q(zcNN#*3WB`kKCwm%=DUZK12soq%K~LLJcE32AOCm^ z#g}&(jH!S6e3U(p-X6G|WtBqKA$-{A?YobWCA zv6Tg}0V{;Xj-tJVScaal@Le?)Wwv9$*?z)`y_!WPQ7x`zTe!G3Z`%u^Hy!6-?9X8zuXidM{ON`azx-5?b_m`Hk}(4G>ry%2-N# zHpWxkE?HzWHne9EZvTv#!_<2nCYx+bk^ zo}Y(ZLla5=F8@s)Ns2$8tqGt+HQd>dlr6CM<_K#DtT^p+Pzp=T&N*Qzs|6^2zRT|S z#-}ErC+Io4EI!0R#s=twth%Sb`Q1Z6(iNZ__1<%owolS&6kf7Ask=#<|AK)Yz9fmO zh#3#5di;Q^o{Uw_#fhCA^XK*pLxP~~8jts$r6q);yrW&ne4feZ33?YhaT}lm#STF> zeH!+G5dgJZ!(SC|zxQE!ArK$W)2xM>BDHn>O4}V`46r5IFbOBg@;&^B;Mz&*JM5d0 zc=(aTMxrSa?PQ)WcLUc8o3RTLvvGU4I_gPBgBPwj~FQp zeJXe!t0x^Dx+xbwjXUsxePhn0shJLEjvhfMg!Bb#(=zBvZo!!&8uTvAd-s^*oTVnl<)If$&ns zYKOa@3)Om-c`3>w>8J2$xi=Z-f02gWAt?Cl(mo+<-GQMKdhYIOP0)+O_n-yQQO~=2 zKtZQXaeT^D;%lmz0xXW+tifPV5Uy4~ACF%!X-~fp35|=6W&Y>05JFH!iQl{~;7|G_Y z_DmlL-%NQwIHX^5c4RtiV(s{vy^Pp1%IGVH4cGnDP{%umm1wyx2_AlRq$8Vyv(-1H&OMM`hcw3`e_U zs42k*myo8pNDY3RR|Ztm+S5Aei8N0O(M^!E|4?!p3a7{*#{BklDz>1 zS#NdTbJA_Is77*jx^wCcl=gm3^ZW5N6-sTOjI3v0^G;swT^s>!YsYs}yle(vfXFwr z7o3(l;bsgX7r{;lB?Ir1%`UH{e)1(!8W1FjeHLYG99YJut0x&9#w)x@lNusaYo9>Z)ijE`Cw z$`8qJ84kTbr)Ngj59UfEHe@D%94OIWcFHmxbVf9wIx~8GE*sp@OzRw^hUWRBG&y=IlvYI&S~$(M@Kg<4Vbdg%30i8Ck% zV)=#tBi87ji~4u(H7u65-(Tlg(s3PYt$A!#BNrNz+tZ&x_RUCA!6G6+f^89_22~8& za&~tI^_>B5Y=3XlA}2t|-7$g-2q|9iV#eYGnEuZ^7(GY~S!+Vse5jwYg@jayBc){- z6h~|YT)QggJfo4F{F(~KS?dzYFMoZCV?ZE(JxZCE^44-(vNvPa zT7cnxW2gYJu8V=U$QGADK;ersllfZUXSbd?B^@Mt!Z>rXJk(0T`eHjtBU*`>w$~3C z_i#1~MG!P4J&%tp6JT`xW@LguoN7P2g{04eL`{n=X*moEUmLJRTRr8)TwUjpmF_aB z-u9X%y{&rPtJ?S)QBXT-((!t0|GH?%&mdI$qKE>@J>zUg?W~^AG9aOopLVYjjuKbgajzW!SB0l111{C^nvl z;Wmtu;IWdT_G_Z44C39#B4zXW@pYLbXjnc{51i1GJknvOQ^DxsTT+31`9c0e_Z|nC z)@@PigP=9w|!;`8e6&I)dc8rxdzN6#GAg= zq-fGg8OeSb*(`KP>jFE4)v)E6RZP7*AST*Te2)&{S?B_ZH`q?0HF+-^Bix$U-hHki z&VK3GB+IJKt@PoM^2zhXgppR~j=1OMDH;Eq@Js<`_rIJtlN zbkaU^(34|c9R$tH%yF9me#A?Hw+)4L&*pe(TX9++bV`1SZR6Wbs3Y&)37{cz6MY+o?>>Dl*?7MXP7WpDwy5Oav4h@66v zy#eW)?4WmYXhb9~uLC2Cop|_ z?gh7ay;WL8Ohl+{Pyt&@&mtbP{D_MdM<3NJ%x(PeEmlAt&RDU&0)k$QQHs@?V;=*; zU;_oMAI`FzXaZFTjJ)-C8JU9 zNIl%4hk0}_n&T^^g-~y9e3+^I-cJ9N$-tg{h>ecKNu{*%4%SetjV4@*C}wB`li|)9>)sVTz`O zr$-7$crWs>Gb_A$|*H<)R zk^*qD)uh#|1QzB;Xn8Cqa?{*M-DV+nBkd3@d!mY$DKE5ZXeaGwb%@hSFR7U99cmO* zzaD=`zK61S7FXWo+NNH21>o(jZDARn95)R&iHg6T2f1S%s-F zRH~yz8pg7?LUEj`(4O%pXoB5`b}1;`d~>18)i-+7JcdfPiN*-RrAqNn+8wJ77ZcPx+-_l*#f;ll)zaq@@J}1X4iX0;_XdafX2<6 z_!S$)2W=)^8_nCN+*wU)@G+!5AKzqGEk}v##>4Wixfv~k7nvAsZ}zm~h9wi!B1=#+ zCq;Ub(U83bQP^5>^r?EI>OpoTDBMZEDP1#t5x-NU_-=_;`G_QVi;q&$Ba}6reZ+9m zYisZ+O=tX>@e9%!)a$sc3>r+-ejohh6`mY|Qrk?erlJi#=gMMYQ~X&mkKY*H4Ql)# zDiYVG)mxoCA_-_*BuI>+@_u1#Xs>O#=T4f(l3nR7Qije^i zFnV%Gn>d9?6U9&(v1V)Eu}ANPu7>`I3H|0Nw5pj98%u%`KW|D)Rf7JUV7X7#Z(IhE zUE?}a^MzPT5`nt1a6Q59O^=C?r9z5O<(lWDP@0CDR)F}eF{%0t@0b!73O?s>JlQc; zgJV!=kIike?de~n-S4j#e}A27Db3 zSQ6lzBSW$`U%oqh@Ffmy2+jWnc~6Ju$sRf{k?zuQ_!5sg4dVW@Kt6nSR?6GWBs3Um z2lWV-;}+e?LJo8d`L{FiEy6x*`v#(EwTx(`Ab!B{vHAsrB`+NJ+q;-=;UC*|my4hk^#A?t5esFj5v%I!V zX^)6mjr^|__bM5or`M$Hu8WWqO@&U09Bq8tw~0N_q&~k&VTJ4ZWyz7U+q{12NuAsu zGmpeKAoJ*wss6bl{^ZM^zAMf|;^?W@CLHI>DC*O26HJrfZ<-CN-n!$;PD8Q7~ zVhBB8OWIh%dYod$oT?kpe>~Q5MV1}K%xP_4bf4>(r)+p&t0`%}T^Rn;V-!A?{heA# zcXmaf+h~2x9NkbsL^?=0{w>~)S9-{Zk%0B3MckLZO!YCSaaJWX2`j9ewfz_?F&_&a zh6wo7)uZisyrP?0{O2zW%YJNZa~9xayV|(%$03DDS_(m3H(G@^A>7xyHUBQF^HCw6 zRCu^fSjW2M1>9nKw9C3ldo7bL3o-q)c-pCk7E0%}A>-t`4|-VJ%)@ad6O(eA(5u!? zU7>Fqv)IQer>7Wtc{9W2MH|)?HG#I*EVBbdzj?MwYii|{F3j3_@N!8jRhLp@a<4@% z(M!rx21p)TwLsikCMb@CpxIbG##t?X&|Y|ICm%*Xm+?=o9au6tee#z)ZY#sXVdlI+ za(@fa;pWfe^@XiMG zV%L0p8PX2@_>OwhrKDx9NA7`TTr+Y7Z|>NUXSj7~?LTEhX{xM)fq7M!sz5m0eG9 zhJ@m%uN^)P@dVfRB!-!3Q37!XMpQ_66gFahW|Eei%EYrupIkL0V0)oHOY2QpyEvVJb&`~_n`dY>WN!y+-i2K0Ta|~CqKC{g(eK~UQdj1 zjMrNFCte%lO;tQ*RQB7#$d6oa$k%C67vvZ`OWRcWWjo)HT=k(vVTXL|n1cItQ7t|n z0~LBpo|a;<$xnTyI9PYqwBwr}TtIQUTwi+`!aO~c@M?IZ+oy;Z<6w-L-Qnbyk zkjiYTR34iuzz^q`>j^o$4^$-VT2(CVWGm2eCnX&8uz@|@CMN7CnZ6+O<>1LJzgF7> z{31M@I>YBRFP1Pho;Z<|99Bf6eIYEYx9-#JWZh(^eZ&2J{Ps>QCULR#55r1p*{d5# zeuGz5qI~+lgAkNVE>E{yc3t;NNVpGlRAl2$+M4{81(T6{o1=2c5QoDOcG%zc={;So zurYfj3-EkD2jBZXS*k1IyfH;UK=d?;E%%DBy+;o7Ue-YD<^3NHenW&r#Q{G)2le(w z>)TqOIRR`O3)T=$33w@de?wSjY1`q(LbI6v+WK*+bDb6jCfT#)Tpe3cZ_hNjC41G~ zY!O>UzxkXyAvRkQE4DnT`;rLDM>r9Qxj*lEoI#mDMTt)3%2lCxksOW0I}bv*>fXKH zGgZ!?s-Sj@T9vH4O?i~8;bU?OhQkWx+p+nvUq?xrGe!RigB-pD^}t9|d2#tQXB4MO zw2`xT$Lr-YDlAVjgm4Upl8daQh_%^K*H895FKGvGAeffa`u^7jCY-biW|K6ZtJ<9= z#HPjYyFMB}(@u%N*aZZf}_WTE>-1G7Ww_3)Uxua1r@M{cQw0gHR7`#@9JbUOUc! zH}17IKrAG6irAPlGy#PUmjL$-&csGB6sz;Adg@cOH9TU0UmsxsAbpruwf%fTPP-LB z*7M%}(2_wZ?2ba3LbE@A;RiG`ql~UqLF1EM_9688=~W4BM*>ue^ISqpB2{uvtiF?u zrEw#RQTBAy8acoDTl~KG8gSdtANa#Un_S9R>OJvFzgVozhlMxpcj9wfKHz!Ee!GzO z_cD=~QpDla6|hOEVmkm2s&?BsS1ol{+M>PUf8uJQy-Fl&io_v|6Eii5xPk_be70#= z&@z|tZfNT_v)B-Q!k~1|^>SJyu}GHmg@!j2sEc^{QYc&SvAwECM1eP+4ndWo9@Y<+ z20E-EP_XBblsVX(ZKV9EC1#xztSr{o)Ffv z!C?DE)w~>@;zHg2>!^TyqAqu%FR=+rE(kH!m z67Xhi`ZCn89ebSrEGCJNghhwPo?{n9aTH?^v2yd4w#&U<$W-q>NtBL>n#Eajdknf! z*9d1k&j7g(k5_451k9&+j3Z8R9;^o(QrXPXG6C}4Q11)s((;ZE$CdB`~E{{Dzff%L&cp&ozo1wkCrFub#6lp5%%(g>JBGF zvoh!@7o&~SE|{fNLBN3LEDjHuzQ#Ig7l;Bf42)P!|3OiHJty!#4Bh5ci{D1brm)$| z+Af3EB-RFKyW7r-YDiy0$wR;pV&8L`R&0p-(C_GwiEM4AHR_N}ipP<*7q-TRiite; ztt`2F(_^+%4S~dFmHUyGY!Cz7ily9&sl+O+Yjyl)1(zAc+F*inb*oQZ&HOIwqp1}` z;v@NI^YCtyx? z@CF|1F(kIRJ?x5_RB>|Ej7EeWgT z5aGH^69A)2T3=N1(;z`0t^e;|lFqNYxnujQ#f|uJQsE*usTe4?P?)J78Pw5v&sN3?&Q6O^9g44d_Czex_(szMem{Hvo0Mn4lciCZo30CbonWX z#e+s}_egEs%24Ku^ISXyo`xpG0CVR=FcPB}SJG`E6J0)xr}7m+4tQhb0x{2B{rQIt z7t|~7vYRAbarorr$A!a-!XrBGZ!RImL-Jg*FZ+ozit$0ss5yA7&+wnu)8Chum!Q%w z$&@hxPRNQpE$V2C+e0o<^tPEg0Ug-X&$V!TiC~bfq`aU^ak{?i4LNG6b```e$?4C< zw}PagMC_sNyTGuO-mUQzQV>@%2ff2WYySb#&r?f`lGmg_M7 zF;5HyCq)x=p2w!GlzVJpSq-tRcK}(TE)_BDJyvIwj890ZOx?03UtMgkYJRu6;qwo{ z_^8ZPP$@hDM*rn3a<0wm+PtYwL6R>>GhXB8XRbW8_c_{amY7Q9bF*2T_qracX8eEq z_i>2LabaBu;`E(mCz&_V_D4*gy|il%iskuLAE}5>PTa2Zzljot@mXmNE}^MtXsT8r zkJTa=%1y&ose5+-!deyu#~yx`n`NYtnUNPQgai}Js^j)KTWg@AhE`5|af-FfF7P8d zPebwAchWaA>chqmXp1NU8~ljqR&G{4_cbnk;WXUJRnS1rrtht-CHoK2IP^eo_hh)nAgk^*X8yN(rFjj9gNZ@{ls5@cU8x0{;lVs$#8< zumU^Xyx)OOhs>-8KliDmG^*2;0Gd&O(AD!sBMs_#L{qncNn zIYxKJP3n~IE=20K{vfSbGkeU_N7y=iU|1Yg((L%gBv;%^p3bcg z?CI+%DxpfbeDagt{_yQIU?W>H+rf$R0gh+ZxZUvS7*xJM@}uH^on zw{?;RP5$I=-XF9m5oTXh?1`F^p5jMjIs}#A^%NG-I&_jF`zxs0;)?NKQy{nC9nwJs zDG(s9^|BTJtG>wQ?U0?vKXog#R#^Xd+H?(l#!H?22)&;=WtkYQLo38RwvKxAc48PbQ=7BGwKT1yxsH zxdKQv21V7df=}OrGjgZNy)>_X1*MQ9xLi5{mp=Q-qz~yqHRHZ6(;mHpA?-B|&0FTm#~#^8Ak4Vo~G zQqcp?O)Bfpzlb*(9_>%{{lgG?;pM;d4zJ7=_0d zhX_U{D;iy=MU6Bp^j&+!?8!3?0%OP5=&v@AnedP!w=8X`_qB4{sM4=@_=3p5U+5^$ z*IXI;gGlTvWQD{la7MpT3D^NG>o?%>3zjxfSwa}S#Atyv1WSP~5pu;=33xI&eRPnR zYQ!La3?5xFmTN`T9fBh=DI7WU4I#SzcQ0(YBvrwHBfVuEfEp)x z8hamZV_$MjJJ5pNcr#_-vcOUbQZ1o2N3i*bAtzz9n$`m+$xJoc{d|}(R=_SeaFz8E zkU%Y~kWlJ<$lHn4{%CywX<#c5VYAQ}Rnif=*$9*Qk7_CJ-DsHH9E$rj3spj6H|wGQ z{NQmgO&40SG1)CmwB?qQT>s5sdGe45JA)u|u-C0#DxV?o5J!mG`mjei(r8s#wG5}+ zc{irB@2Ff{$g;%caGJHaqIfg(RY_^FHU1oQFh3gVr-WGDG0*;slE04)o{y!CN>l5Y zou67R=SEynp!?bh+ct;Ipt&&D>&9dJyF=+*x32R`G*nIV6#QD57R!ZOc6+VK%3K$~B>ayU_k5ev>f|+fn4Y)V2 zNnL4^d{QRcO32_b%V`T*wS6e>%6%ye%JldToQ74)pX3po&hx+|UzRQ!EHqPHO;`lA zYSu)^%}2vU7JuHYw zBkXtuJd^v<(Wv~K7Z&Hk|Ec7?!vs6rh;X`$aiAD#-HXn0BwZ0TMBDWt?9U_QWjVst z8f^$3^p`I}`qIP0RgcHuYoe@APy2oCr2MY-l~q$#Q>HXQ8E5F^b&Z{Uw5ovDT{SO> z7jX8Xa1P22l$}mU1{-(c&9{9if(M3?m4PRs?57P}muJB|Z?)>ywDqMtRQJ2$4J}}B z(32Xm`nBXfj}zw@iT%5rQ}@b6E-1bnO2OL*bM0bUDX2L)l-%1cye(5pm;2GBcz6IT zvTfQ81vJGTaqQmzRm@o>AW|T1vFB*qbblzmSVBlTYVlnVc zpI?lWbR0VoRrm1zWI?}Xu^TP@tMAb9q6KgYRM-`miY^$5P{62Hp1s#0RmNFUT5<;} z>JJD)@@RE@j1ZIN&5=FRVVM@hY;?PPF@sRm6@$z8OR1Rz9y+!zlf)^CaZMo_R5WRrR4D{)8yS>Q zvF6__w~`j4oSPrkha846f)ROTdyCfXJ@_X&`t)(Rgw@SQ@A9{S z$MF0dU^YjB?6XIexHZ{H>VopE|D(40JDXe*?;;vX9^53&qEB;iSDt_&fcx=Sy7PXdg#8N zd@g*HJ;6;@BVgd^_IJsoEdatjC3Y;T;~@AP33fsYO$wYY=%o9(cA^vxAs<=SYkwGL zV6-(C^#EF{6fW2dSvV$u=q5*zE}LBfH=v9?P0jnrjR&hog@feoEjcreU&BPp7TsiC z9lYzYT$RO;9Yig~R@V--K`vIm$1J%PA<_DmipXGsFMY@uaaqdAI*BsEK-ILzlZy1pcPI&f_gniJL#ewXIYFgfaUue(QBI>bpR6cs#03k!w$6fGMEV1e68^+$?SQSUmT!@ zxCWLZjU&mO{L@|(xTnN$6VwKv?43|Zie}^P^0t7DjGN&m@xG7W+L=`!j91!eADqiZ zE#UXCii8%X9Dv7x3QM;#2kP=9gD+E=bcAk`?H!pBs)6;zYzyj5GDY_XKe0lZYc3iWK<7>~!b?2~iz)bZ%AemLQ;_ zYk9D3*Jl_i`{C9Ak+nw!#uTnFnEa)0WM}CLmI;W1pqf>paGuvbm(QHWVaC-wHDI)B zSdtJY>yy0AlCW%FA3V1R#yt?WcaTzzw-42u70~;8dIh5d9%`4_%Wj04@{} zP6ruXco^FHr>AIj;)g6RMxpXETi)sY##nYGaF^9k=JMef0)`$4e6USCAW^-7kBd$7 zmuHijn-U=`pc>zZj}{`P_(24*Aqq3iGe@8ergTQjkjZMRX2ZQd#P%L{0wMoC%hc1d zh(EmQAboih5$b*(`sJE|g|*+^*)rJmo}Cpy|kIu?)WA9a6R5#yZ< z&3Oit8AX3Ie!b%u;9XC&`(gH5>l((_!?Hh(TZ05>4qg+{(ti{q(SL_ zuF{ZPwhE~$STAybd00k z{;3&mF6q+aCVX!106bz+J}1udnP)$%JL7BJ=&nExOgeAHH<7ds{1;uKOPrS8M5_lC z6NjCy7w=ik=s9}SuAO-T{yB0M(;ODSHV|%J0*3KFdcb)-fs(AfIcMB~xHf1aD3KWt z09%AyZ8Le7=B$(?E7dw?J0Ony2yot{fUCa|0m)^8A~PKN%hIaGn4xPAy#un6h~2}{ zp4!jM_)41Dx`>ZCt&D#0Ux9Vx(9vF@bJmDFm5})A+F;HdA?}8BF8uTPZ%9y#4kM7m z@Z|h9(ImroX!{5WBY8upeS!LTWdJYcYNOP(sQxaJ$g{LK#5e55iOs0~*k&q|iSRW% z$xExLfXoiL_jeC}|+nR*3`*#LqO9-SE^K4eV0IIl=lpbOa%Ag)P3D>UtIK`hi) zrx9x*v+-t1?zP+-i54ECiIX&^Tk~gW4 z=?k1+AA-|DM`RQ_?~3+D_ZprIz*k`Uv?MyBNfgyJl?D^d3>O2_>xV zhhVk8oj#jajISP5C$`^kv>!J|WtCa2<`Z+CiCeM`*GLFS^7`z$XmTLA+rm#A@}AP< zl<||M<1*fe7%RH!o5<7$mWTX)8AAYpg?y1Qo()u80$jS_A~<#1 z=r{c!LII%jBR>*ZyluE!`}swIFMpQyi1`s$Z-bP|f|-hNgQ1CsVG=&>Z?Y<~>wfnj zh~POU)T|^~+|{K^?QN1n(2j%57gqPI;uAFhhlrniaa|mrm_Q?7@-*7(j8i*rvkc>j zkExs7wgzItBsP@NE&1RKzPGh2(V+Id8QnoI(;yXzM;p6#5O7W!F9dTgIMEqZKg~cp zhrM+-y zDyP>Mk?!+9A*MILf1Ey+Y4q_k9n8JXj|3LPxv*|ugyQ+nyyg_^XKQqoZ_VyF{~jh3{u!{#(o~nWWp7qJ@p`SNcy{wCA?!ZqJ8wY%^Yz zc|plIj#Lo-8u~yYu98=&OMs;Nf^5&$#ZRA8xNHYl>hi!~gU=wL>=bwS=tmwrqq*`h z_YMK?oG55+aps)y#`OY`h|k>Plj&+)#x$Ah}F}44E?G?9A4lgacU#~ zCmc%qj@Oxwt(?|V*INQ4$auy#e4lzpq%dv11<$i@1F*Fpd)ZcZdN1YLXD4;XxlOvI zfzVDfDO3Hwz)=z5Fqr#M)_>=cEAfawYEB+AUdL^WfHX)>jw>8z!DQ+J+(vovmzg&8 zxUS>Y=-#}2?)U1snE-!$M2=$heRiGEtPYjzj9!c8uM4}BUxVvj>TGoJnNT)cI0~Ig zk|tXjP5eF{?Tw#+PgjPRyL4Ii@jA|3KN892wipYWg*-B+fNO2%lB4lo2ZYjyIGnNX zN6Py8Oh$Jp9}3;^N-#b#B3r-Anb#{y+qk#Ayc890ep2;eDjU0xE|Pjnp-aCa72@@+ z*$Nzku*OA9VZwE;u|><1&&*tXlmiBU7}Gv7mv5atsLSI^At|+Kj9KQl^>UY9Bf7My zTzSbjU>u|>#_>MvN{F~-x&d*{2whY|C)dU5c^BRqxr(ZSf}&BSjwmV`fWscX`n$G*Tbz6zYpa30e^okHdMOkJg`tuvXfBIC7vW|vrL6z~ja`0RnzH7L!GYmW@bIrwb zQ2DV*>21Y~|7Exx2)8i7?ni^LSuOSt$LkiS*cjSX*Avavb-+by^Zti$t;Ufr&N<}` z9s||7L4Yb>ey97JjxPBbY(#kyQQba7I(VL}PdJ_leaB&4On|uNoiOqhj?$lyTI`~V z!4OZqM$7Okre4QZ`w8bie@%|^OU093_0YWP&0Se-gtg0b-mn4t2{nv-osTA;jP57S z!VrqgFUp)4Mb2T7?_uRc%vp==wm;__kvp*-po@mW;Lq3{1XdeO1;1 z2d28kgFRp>(D^rCFwm}3P#w~mUJ!b-+q^^DnY#7pJ^KBXQ?f~E@z2>NhuTe;Cw&RF zK2a!19g>`VoRHz+feVr`2GUt-ypjwUqhDr;c35S z$vrAYla*9JLQ8gr%VCD)YU>4lFmHCUF(AuzB`VbsL&0dW$=4Sv_#Bo0th66|4RjsC zO4U>TV_K2gF2eek7r@_-fL`QgoM%(^-3>2iv4RP8#zkDyGrb0AIzZ*40#U@MbzFB9 zDHLf_W~TVjxtn(waU0ZS)SwP#zc!1EP2kIG5vfL4QAOSUI#Q?&bZfmyWaVUn9)PND zWwk}d;_H5Cr^Pgg4K~3v@)38{=CdV4>2v_r7{8QG@?3u^odhl@qA-wB=p1==w&|Fs z^F|mYZ(S(0P^ar+A-BT7%H>Zt4{lx%XHbWi=w)veUCN#oZ`fKI>{3bKV;QE+tr-!E z{hMah@FcerpoMvP$B9o*C3LTe`Zr(gHNqFf9%!|a-i?>A5I=P{aP7?G4UuVOin}Kf zTS~enQY^#7z2|M$Uzz-pJq0=i6*Y=U*Lg;~o{Qm8Nhto_WwA*3c@(U-u3GWYN_7Zp zVKir-%MDq$y?I8_tGi=nsr;wzRI3<`nkz?o9Wo>G~i_m>q7ZpF6`CAh!kcCpnGV zBshLk5`5^MWk{IJ)F~RtAbuUw^2b*|UZ~^sI;e5u1GB-JPnfgf%Rs^?pDmp;M+`Jt zBD258nqHfK-gp^|xB2M`(D95R;OAhyN5HZm90o0fW6)O3YU*0BaO<`v3UN*}7~r45 zd||Q?do^9#>2tq?u1iiV-i-K+?)WZW4hpR{0S+Nc;;@&99vy5@li#CldnSdN@7OQ> zc-V0s0)47!#rP%s|Z^CIwD#C(R z(XPoqj-N6V;M;42!j8iEN!Du!rAth2I<#$+;l!j%Cuug+EzvI=Fn+5WnHefDaTCyk zrSQa_`4*D|?bqE~Wzb>1eQ>f)S<2ZM^K;rI#}waS2Li&`2^guXZzl@1n9HBmM2|ZG zknB4u;3i(aDo=|a^ewSGFbXH+Z7f|91hll z<%AW@ax1ZCPz;eZXcDS4Fy1^j{M;0NuQ=;JvR;Dh5x4bXcYarfFF1VieHP>n{I!XQ zqV)dI3l0&ACwRyeZa>HGX8U6{u2kPWFh3DZJnEXLgi??V*k8L!IsSMzC*Ze2=*{=U z9Ap`N{Z5_k@sC_mdRzn^k3T&I2jo1HiZ5dgQntM%n!8MN0-a5&({c(+=g5SeaI^O4 zVF^38%T+CHF;!4xWq1ACJptBu&JfLk%3>v=SGoEXbC+)5){K6OR{M<*-y$^!h6Ioq z`aYU^(Jym*{0Lrxz#gVoHs<)1Q?!NX*OQ0-c5f)ts90wK({w-j0n#_DH?`{@tYi%2 ztxJSQ6CWq*{av{&0%8!5eeKy6lsH$!<`559cWOmswB!Mw7mOJk0M6f7_LvG}JD}z& z$s2xVcB}FfL!0q=Vj908kmx0eI(;8fh&Q~K3@~=&+Bd`z3mHdFko)b5Lm^d}U%NiU zr)ogE0?44-DodmThP8?Cyf;U37WQj{G9Tu-E5P4w8i4M89HX+#HtO#zNCI6A$Sn6O z6?{zCp1g9_d*84bxb_8MzU(Z-X&Vzv#3HtWB)-q)pDAC$&e!jq8ChHNq4afs%1&tO z&HCL?BGm};I%g&*ryN<7Ki~h9QfeS2j7(C0HqznoG~ubS%#$@yE}Q`;nXFFkawkLY z+UV&S6?XoHi+?)AjXp4z$>qwuTkT;Oy#wLzai>pPK0;jF&vaR*YLJHdSrleNQPR4C z7zr}ubzNB%({lOpi3_aes_{Exa?CCi>gwid)!`>nyEa|KbI0J#h&qFnXO+S_%=WOd zzJo?wdyd81F(Y(-MRNHeF9(~9hePpC#!?R29dy(JlC9_3YX!(<@^oE3#j`YelllbI9-29hIT`-|tyk|rBHHc7>fF|N$H2at=)&*5}aXzuyf zoSVFCLL+e-OX69aKtY6l=Rchxz7&zd+b>1q80xcNp69F2-S%bp-9PJU5D#;}7R}-iBx*srwk=dP}`BYrsY~rBI2t+5SV6LSj$f zbt{$rbYx#0A@}#sOn41XQv)BYG5U1lc>AQ(qioaRvV{hzAFY zbKm%sj|ru9qq6Zc)J0nZVN%V0y;yak`4*qVCxYp=DxgiV8u|i9L3m*DS!ssQ7}@_& zrv%z%J-cV&80oTbmq9%&d?S3fGh_+h=)q7aet9`qV(2^zQqE0B9C(zZ-5c`2dpV7w zmcERasfcZ=S1Hwli_2R`%E;d@{&*cqitcHNkxaN$3_ zZXbPA5jH5K<>gA_GZyqwL~!dY@QLbjs&|u zf!V(XA5ZXxqfp(feOZx=%wJ)ziiFO&jAzkMqf-#PnBkPn?Wa3Mpe5%~qRtKZvsAh?dbwE? z7q21E9*3TQ_!{~FIgw{7!(#1IlJ+*8@k$>ZaR_j$VrMlFZ2p-zanN+cuzj-80$Y@1 zR{5hb)V-m)Y*OD2)aX{sAxx(kY={#X$oSOo4Kmi0e0?Wh{|~vwmo>@zv~yD`P4$$F z70gBfzOTaO1Hn>{Tq>^{ozAFq`ZUhPNgHfuOy7z6qLMJ-Uv{|9`*P1K_nNwe!J0TsOg^wy= z9HjqoC(ZVzt)?da{Mr!3$*2qdmUKPLu@A$iX_bZbPT9JSGEMLB_&A0vVO;KwH91vw zI=D6amg;mxis#uKnOfD2&@H+fRbCj`8^%tJAtbx_2Bkl8 z11M_dU?UR6u>46GfNHx%_GPjdYEIOXF9DHnlR(TkK$GPZdxY*=vFKcwbsk(d?kQXk{QWS|GF%PQfqzQvp$eC?I?~ z^=-;$4=DIS1HojElm#;V%Gq55;!qyDhW*nP|Xxmc>apnUVrYT}YY7HtN+ zSGH64?7`@aYyzimzxcK3<`5nD zW!Hv6x3>fWX`wwE7V>gIqe@o!U#9#FZ&oPGUB zP;ct8Wd6F;i%7`9#T!vnzeE(sZ*Q{UA*3eh$A~xR3KZfSIZ_HVL~iD&Vrp zgJ?P28ad(3zf2}|1>h06v$dc;{jaX|d0-8&5m!Knr@sSO3G)D^SCOq82oWqRpXL4w zFg~CPS2N={^x&8$*qbB};T*sL#7d`AH^3=X0nbwJb)P^TuwBY-h&K3(wGanj#+Iv1 zA0P6%=3RI|Pfgxm19zE-E4Hqm*gF@xc44B4FyPwm)Bj0ZUl}~}-!4K0xrhx4cz3X9 zWMS0((o1{X28L(~`X_x=ieVSiGu7v)H2G>6WMSo8v=|e@2ABpLHJ~tP}UScYn1G|FP`;^T(Hu5F}&l$GgWk zhGe)HkaiiMGSD@5USBEv_lw>vg%`~pQBU{#FZ8XyQ(5~6U}Z+BHh{0?BKYkmRu(qh zLHs{IJX+GsxGjYex_lY>Wh4=U$RR6-8O7O`9{m?fbrDf7JhCI{!~5r@^7kj+>jNu1 z>+1^^*0?nw1!|^K_!lYrHLow~hP0x^zy9gpjyw8~{?X&%f64)hSm9o=rsQaHpbmhH zr<9DM)`QQS#=U&ENzok1b|@Kh8hNF!QHnHDD`1V9`Mi?^39>JF?s9?1GgIwC>hA^E zCk`LU(oeEXFW5D>u73ref?wes)S$*DES2epWqDb^YxU#NIAn@EQ4=^=sZXgQrdsX} z`Y*HD3WTt=e&GoC4x>=z0EvL&3xTq(l)?q_v#fRMhqgz2patO(DxV>OO@?ZDwKfigIi98!&Rw7)w zU=KD1@ea}2E%Cf22dnvtS2l!8l`l4zVC#g!jzquWM1)#MqoTGEDlAO?d9pNe%JDqG zI6MJ7sSNwK8%PyUlx%5Tf9>=x(93Jn&4&@}0-L%CssBQ$`XJBrF*yEL96PK1vS)ku z1nsT6n8{<00l2RKveUle;pdWRgefu0&rmUIEJitT0=SK3#{^kOyTUg##f(Pp}tu}Q& z1mhf|2r3ly5N3@)|F^I~rov_xn*6WF%mp9<TkLBAe7sNwM=}LhSvtPi-NqlV>;o*Y!E!xJW_mPYT z!d;<8WOShN8Ozow93@faoLov0cP&{0s3>Y+BFQ%e*a9oikZowJCq>Seriv|h@D22< zPqa8@x2dP#4O@PEH!EIrwJTfqU;EnMcEk>8WdBWC(nl$fQO>=0AV4`+P!$_fed1_O z|IR5@j}UMtsd%##!7o3)_pc%DAwq63|4oY zkwFyd|8K+#Z4R;dKLotA#Nl-Izfz2%nk^uLz>5-BV1R+E0-q|-M}tqarW}4Z3)~uM zN&#||&0KqeftbaJmEv6lJf+^cFw)H1%LbLDz(}9Dq6ByjXDCzMIU~M#b7JthlFVQR zgTU@h7wo5;vZmEnH zSO);JeqzwO=sGuwRS*2PFy37p0QBZD@St~Hc_%;SL8Q|~mZIFT$*OOD)HZe%-`^`o z(Mb*z}6g~HPcdQX+l9wE1t_D*_ zJ~(lT5YYTX-1A>SN$1LHem)WgC|5 z{1CXTw-heG4u6hdSX1X7Iro7s0@Mpj#?I2F1<$-luN4t&V6)o*vT&@!zsbS|&%Xbg zEZp@y+G`ih?Q;-Q_={r?==LlaO-(vr?g*V~_M>)swl8-AZ9 z@}eBK0^;K1yLOHzQAp~dgh9@S#dkI^OR07@=xpHUW&}dWM77|FJ8ZAlzI$byBk~uM zzrBusCyRCd+|pvIZQtUq#*IU?x$5D&%$3wFN5OuQ|K-FsH$ZOuhC8^elg@KQsZ)%! ztv;`8*Ka@{@k$J&lI^|rB6knzG!EE6q@iu3{q7)j!Offw9ezfm##N8$zpd@1*u)fCn!t^)sn4SEI7Q_}vqfh1hXx>g{U{#bbxbz^;+W=G#$#+cKThK1QDo6;-I zL|=I;)L1@ebnC{;oSm#U)&2wfKQ#9L^PohuIRj9{U1uGp0szL}g~$^h^$~Ez8K$g! zfgFmOld@#v8V&n&F`!r4CCfnlzLOc$xLd3!=0Ew!Sfe^|vR9K*&%2)xaur1|ky(`A zOv6~pNjCp6<=(1!~+CHf;KzY-Gk~f3lG+6Yj-glf&`Pf8sU5TyufbGhIkq;Wr(* z3rvu=)*F)%U^OE>OiA5WRh>Cc!#f|DQaI#Qt_Mkki@R*D8PP9Oa_aZ4gW1s|L{&l| z&o~4*V(0k?Pzz=}$w0SCpISbEaHca-T1dHWvi6 zh!1_NDAScnz7S<3l09FwJw0psBPli}rgcb$He}*_oqdq?T9K<%uY0dy^wT)$J=WPC zwkwZU#N-vm(&pJKZJSrW;9CHg|C?59oRpnZKi5r1tb}k!ec3i1#_sZoipUL88-ul;i_z(6@xlM46cLhTj z%?2mrdrjK2g7F1<`y^sk2H-#fY2_I0E~E1Vd{^K6%0zZ1WM zYVlu_|2!j|nfm84q;Q)_}wu`l9Fby;e2gR;IESOBES@a z`eXv3ah$>S5wInFMVBN@#>_V!b&WfFeo~9^*d2}VdE@!gJHS)wl!jOLu?7WVG>?Ls zs8VPE?laUa-|jyG@UI1tT)6eh=VHKZSmi3!-KG zNQ4f*o{+$oss^XeW^3fIxu;OWzi#&sz?=ME%Z9sIhpxj!J zTnjWo4K_&Ys%d zmj;`khSQqf#=p+7P}XyVR$qfaGpE;iQSa3#(D1Vy2Q;~JwumC@h&*OEzt%c1_s z4M7N%5tK7l0g1WMbHz=;4bck%nF>d5K3QxF+rH4aQMjR%rmCZMyPGOopew9VK9_){ zh|H2u{`{lpD>D(&-}6^W-tuNPIM2I}c~h4SadO2boGcx6P#!va_&L#$CpT-w zOZRi{BM3>ls<`~CSU z56Qf4kf0zXbEH-@l7IkDNh%+dLM3w>!J`98Ptw68kEjeG=Ml$!OTsg7!QmuSIJ?RD z5I{7|z^L_CF|*-vz_ZTPd#UsgeM0=8O*FMZ?%mT-+UMx|h?Os7;phikHE9a*!*khQ z|G)+&!9+3Tc#lcGDtv#rK@z~ZGFGT-VDDCZmpMo8V=l<8ZsZ1&GoOl#xS^S5%-e)y z4MVUV<3w5OvS%3G_C#X|Fi-av)>vnordHiEAX5)BoiJQQhoudqXqP^5J+HT%sy-=W!pMfSXhpE=**9xa^Xv@M5F=u8v{o;HKQtg{7Ay9@}ItR8g{X?yC0&E0X#U5)#)i+XdqgY82t8+vhDqfuL8F)Ysu3)Flx+AF^tRyukK zycNMQH0WIHataM~G0A-EYF<^O_w@IY`}gWQbsKlvroQ^FierTRQ%0jufq@Jqn~CCq zi(QQKZW9$CgwQ?9^<{Bi!0qD;wr?*!K}{deW)W`D?kO8r+DYO*oT!D$cm|VVx>4+= z_JcrT#16F-$_0u}FdZ=RG5x*Rzfs~k)8XgfSY)v~RkvtPu@D3zP~|%-Qym3wNu8dk zW2ej8V+5!J`%T4F8SzN%FC416uSdzuuocupDV?B=j%HWNJtPZy6;muxo_o6t@QON3 z@ycZU|5DeZUnCyrJ&dAK~GOZ@FCD&N=!t04HnKkAdhv2xXZZs*+Uy+u1QqdFfuahfLw@|rY3yoRcoI6ieT_+q#QpNYarPtny4ZQS7oC_7rBXy5G1(_Oc z7UCsZa40SAWdDeG+xbpD(!m7h<$Bx6jX3;R|$e*Db7EThjFE%>w76^laW(1Nn@Xd;Kb~KKazaBW$ytdRVMaV@~_H$9|<4Fmg0N?!u0dD38>#DY0 zwGX!*dPMkY2EK#xY{9Oa4a{mqIX3tPKgc!9jn9kf6!jhIU)ymz?5>%MYbqCyTKKSX zVb3clS;ttpKvw(0gji~eo?(ZD9!lG%aIg5hN%}Zuae-Esn``ht_iGgH9|~?T=~$>%)sb?-{IgLGz)9<$l32KCG1Yg=2+52L)r?aQH6j-s9Sv_qK zmZ3xZ8Dn)J#ie%Ga@JzWLm)1pfzavV;=Zs=WuEi7E?50eRD-eQ6n9vhoeKhAbdKuY z0qNmV`;q|}&2Y|Ewn6^3Ab;-Stk$aTxF|)!N8PB#u{-tsuF=I9-_u=aKJY~dHq%l~FLzkklx8h52#%bH)aX4_2D{_g){?XAP2T(|e}0l`91P+$Wp7zmQ0BAp5-C?PN~Gn7)&(gG4<0;1BL zg2d3>rF4S~jY>DtCGcA>+r7{EobCBu=a1hXdU;*K%=gp)L%rOYWUuVpI z)X+=EMk*Wzpm8$`CDsD%OVa@OI!buumxl?x)JOacqWt&ya%g@?w^MwLrARURmXCGc zM^wlxG_O&w&dLvFXMSU``*b+-=1M_}Q*&l=Z#_0Bm93V}H~HD6&jBvFiZTHxsyERz zxg@eTzUwa6u&34zMXQTI%EwZ;*_N7oyS^}7qL=uaG`Gkm8|TolR>*!fzlEIS?P43b z@lKNh87}<&$c;t=H=bg?GEiK+@P;ScS5k_L-Gj@nZ*5mu08^MR|7yb3cg)N=^a z-4W)a7mO8mihi8q#%^El5J6y0A==cEnk&t6D^Nx6HW>8+9EmpB65&Z0P>*Bf!i@C+ z6MRZtRX4u0I2z*xk4|04WR{n z-|6oU_Ut_~hJ|-H^JCnKdWDO-w;JJ|sBt4p?NlV874)lWPg^x|e^=j>|DcoESP+?d zqh$D8^3ap*cjNRzj|i3D^^+*n>l#PG;R0>W|f}5Jnh1&Kz$#m zY6ZqghwlG0ob3m$s81!*Yx_wDc^EjC>~Ll=La;a~CeU%}1OU5awzZ@X$EJ-(_u_Ts*pa`Pyv0JR71Q3f4r zW)3wS^x~YZdPM0bY052LKn0WDa+8Uvb{k1a9%xNU5v{f zEWe@dJnGA{)SI4`XITTQEQ49j`t~z5i|+n(w>RFMj(Bt`Ffhm5)SKVbUCW5{Q2vO( zz56h*Fz{LB>n0)3O;DxeRPKRC4Q%GU0N&y`_=7!CDtCuQyuu4VR3APnNuzP{W@rZL z?t`Q5o)_5Lt_FT)cBnJDA7MXs=s`B*&!PuqXP*>zHYgm*xqxL;0@0afi-Bw{i}i8Jx-1 z`*&4oIY^}{Y%?tYuN~(I^}lC)%DZcyxn@=D3aq|}`dA*g6c~$)LktwkM+o(Bz;tM| zz{SM`72fc!el^HRiw+$fzJ~pjO$fp_t%uA84wMC$6Rw+wdp3TJ_^da@TwsdshECZt z$8H#n(XZAGwi5N!OR>Tt!P9B{NdWNwvlR}nb($X{4 z#_R1-N9y{eJAdplinVBBrI&^Db*dwRm%}cK7x$x}fAiwDQo{p(-R^R^!Gd(C4qG>b z^Tg*)w(g95)XKS*0k3fA0XpVG98lm)4Z{A zQDp~FcPH8!8#Eo=aTiSc#V?}5_$*?4dD5lacu$;R|6XU*4(M;nn-ZA>Kl04dix%4Q z6`Brf7f^mLgtL53;dZlrGOhb`@{*PudCS2tdbbETN%-dL`9~%-hF_Sbh*AdCU1@_l zTDV$9z)BMP^+}-zvaSxA4A6#r{a`!%t$EFL^7@mgvBa!S=0R$zyPxe1cL5eE<9y+Q zv7^?{A({@wO0G!VSt;rUs^t$cvYZ7MzV~p5d!5*%>I$=Jo-|2j>*aD@AY-O@5Krpv zcmeIJ)>?GREWu&ZK#O``32ub(aidHu_a%$yn;$XJGdoSJ=S2eJn#E>_b*G;Fuyl8qIlyg zvtgq{SLglYi7mkE=t#Q*sBy*D}%S%BtJ*K`soXH6w_Zk@2JOjpKQagE@%UF*`LF*^=(LR%`yXn?3fz6Nr zNw>}1`W0lb_=^o5kidV2Np{n`FDV5mvoFL^1r8?Fr0LI13gu~T)AKsOtmn}=DtfBv zOQ!7i+Q{?{%_4+7@eD%jfOV~i2~Pf|0aL~{9Ir9LbTC7Kj>#l(&CF%@4v@g2f_P^U zC_9W`A7@|b5xs?;m&#r6>~dIe`SFZ_gzN$JI7oyVr613O4qFiva_i(&O{@CYv;ARQ z2sfTozws<4#@*UEQ&*2VlZnnpjfH$uRGND0q`bJ>UCa*Nz@1AjGKZn4dAe>OcBjjy z$P6RXWmWL`73KZxE5(5Jz2BVp1~3P`bySb!#UC6mp!Bc0LzYy;?q&4Gn4I>LLrj0> zR@anIP7`kY+)~~V5GO){$d(6~X>|&;MT9)O=O<7;x@&~ENrzm=Xs0@K$Bh^dPovo^{rxmWpO?Bps@%4q_@Cat>`L=fy%37UT zG4=zIx<}>21B__Yw4cUa(#w$fGkT1Apk_5ygyO6(IIZ*PrF?{ALYyAiKSD=WF&-kv zG8NhPuTbeBs_|!nNyWysd{mb0fffwAx-j>R6?)QUqvN8x_Eor;ge}EWRVpE9Lfv91 zFcGqDX0ttByJ2I${2AXiz0);BwOd)FaJA%p)(}V1^LJBs|GFCKh>Ft22Xd2y2XnAh zq9@VCsPyP_#hy*awG5qMqDuecLaH3wV5TbNJit_rEqKIwk!2QdlMSs~XQqwU0H??` z{@l}C-3M(JE5!x<9r3Hv!&PT(mV!i_9ID88B-FVYr>MJ%E|7N>tHhdhEq)XRIzWkt zq{uw6PL8kZpP?|Iwtx;AQt}6N0>&jw7ul*r=^*K&{5g&=<+vq@yjXQE7JT8yeO_c- zH8>&8CyGk9Xw35GJKNhz} zm}7-DWODeF1%Bb7P6uvhn!A*S{^EkaoKB}_q{AK63vPB4r|Z9TuT}QH%*?dEXIyF@ ztr&Hxh>>lp<{-oWN|T1lZRb+=%b|=9?vtm)fmI#mCPh#f#U|aHGhLs z?52Yv?ZxPV&Bqp6OeN&Ta)ulke1k?<^(URBG+Y-Krkbi^!b-X?`JKNwgpV>H?`$Kp z!%r!Xi3^Ttqqj>Gu6|F>Nz$yvjax@Z?q$(!;{x-9#g>*|D)uIA|5z2;mG5(yu&;_?B$^B z@ub}zMqxv#oE#3@e_aY8H;FRcK1N_$+?igE?<6k2rfyD~?z3{cX4*@Ko=^B_I$C3% zgDC2`+d@Nv&};#4iMXw|;B;qJDKE%7$3FeD%H?;rd~Vu4Pp?b5DRrQ$!VDXB4 z1pcjCu72c{akm?FhuntW3Z@QmSTVIB>EQV4xG8j9E=D&jDP^!Ti^|^w zxK6sC2L>4x%hYN!oEX1;&h1P8JyATnlV9Xc;MAqZ)41DovVFb}v*U%PHB=+j_$eiL z=!%OvFNBj6FZ9MPh?w=~j}+canS7t;(y?*PDlD(remsr9;3d7#*`LdxRz)nf>shNC zex*&5{Z6ys#fG4*ru3YAdkn_G+&lZh_JxYq+#NOpU3Z>b_&6wOSc#x`jIRt9SCxBI zhgHY&JvR1pUzeY>7R}zeLF=TuW)dnr$R@7W9($W=epUG3%V7c8YyO&Cvx8|{0TI&d z3{KwqYtE)NY3T}nSxxfub0WHz&Y)ALI+C=V@R=bPUXNVWMxB7c5Y2W?FaLF{(Aej* z=HXuVy>mEQ5bqjquk!%2;_Lh^I*Q?9_aAKp+@b7?7yDw8ecpt0UlO>kX60beWLVSP zdb!^5nCXLqlvMu+@-9a~jAs%aE#ySgjbk{3Dsdc@3Dm^am4v9X9Ql0txH<|~_7-Sc z5Kcnd?q&4k9wikd?aXG&AF&j*s&A8-jFUc-o1^4- ztQfV#<%VyzCzFvg(|mP=_CcGvcXmJ>LNSK~h=Ps%n>6)uE%!jQ>ZavD*+aX?_0PtZ%oz=YX-3sw1Nqwa>8vI?HeRAYNo8@zJT>x=?i3D7H;hnYkzN-N-$z(lP#jVPsUwt4r_vN`sEgOHyRXw!N4k4`K)qN z3Qfd*)ou$CE;CDzn$UlelDpUpnYe(g!dOJVARKj(nBMQj?4E$^JoV zTBO>aWiq^OuV&w-xc>F3@JDN{_he=-V3_Aze)ZdiD|V%t->3-IT!o%osN!zEX>6L6PzAC&(9_M+_9V)2_{SC7k<`E zr)nRm)5m??L!@iv&g(z^?m+#WF+Y_?(Ufn0Xjy5#^Yz3ulcfUjYQSQ8M?E*0_^i*u zDisujI@bZxz`&03pe6eA479qF%#=ph;q*h>sh|Hmuj?O2B?x7@6k}>OG7(GBhZe&r zG$P8ym&=$8Ih42{64f>sZRqu3kM6wEaT@3E-AP+uu*~(x4MC}QXH0wS`s(XL{S}Sb z8r&Q>>kelcamboYW@p--$1AQ#K;h?#F1oaRG-=kT1Hjpsg`paUsspmllgk3D5`K-= z^-4O7;ZkOoR`xOYn|A5iG)TK|#>$IjMt+ls>QNVfl|A{oYb2RI@11D~n1C-Z0|>z!2yC>_d3%E^Bt zlDU<~{yk|xvz3;eDv90c%d5;YAvtrW9)Ej!JF;fBxmUi36a6W4H2GR4AO5F}{AIR+ zOl*P`W-iA6V{$9l&I+1-cq5?dx=3Iy0UO&aNhplb`A~Z`nw^CHgcl8&{w%+g9Iu3ifN>?wN5`DpvGLr0e@QwTaR*IBDYNo!5%aE&^~j?PW^hwE)44Umr4heBuI`>uC1G2X#oS@pk%6 z#@*@n5w23xgxBW`Q&7A2I_)Wx(n&6Q-pV{kPo-3%xgd^WGq7rkaLt+?}Q#0Q|*&PgdT;ZhAq{?&rN30Mc9UM7oR*WWQYH6Bv29p~QrhNC zt%0Ig+rguSeEJNEA|Ru0Z@XP;+y=egWI@XrLGeD|O>(GM5)&BX|zw8;)8 z(Q?b0m#9a&xXlh6$0MMNlSuQ^_)Pi(dXKX4z^Riw3|snjMaJn8$*+^o{&a^GWfE|M zxhl|8M0oy|7*j<+!M?dzfqOIumzjwz_1N?3C}k)ZQBTJXK`kx42fL+pwkS0@@f95l^Y+?BhmkO!F&L zMct~X<`=8$D2e~&jEYor<2EXxm5I!?w}SLC zl#a_aDzv+5`A$`gOYW8`=HLIL~Y**YDT4Nzrr{|e%7 zH;$1WKQDa_mCPd~{qD@HS@D8Y9#8`mL2QzazSex>&!_2?Ljh}Ok?UckjqvcbYjW%O zQGc2BqqxD5eXOU$LZ{~t5jmi%{(w8@^wf>)o0%FPeErD_6Wg6bPp>;phtswsNq@3*=LZ`E{KY~dd_`)|%x4T3sZ(DWK ztyj_@1kF9lw20bd5#*Nr@-CZ72=nYU|A5+G-))Py1oA1rzg$8Y2{Ix7qih)*{tMs2Xr`ps35yBpjx`m<|<@Rk<5gO5LKK@Dhf2l#u7pwaLpCA(e53~pPC8!wL-(sLcQodeUig`!b} zBY=sL9^Lx30F+gGPJZds$@AsvEY)c}Up5)$5j6M-W;tu5V1mqQ-k|p6$PE(QSsxzY zEnV=^&oaUMyi!w*fOdh>bKe>uBrmKWJhKCEbc0VFiw*xoF4!0j6EnAcYu?Zf1GVYy zNKp7D2~u>-15SXKw-B~qdg$G3lQ{jH5;Hb0DkN*3JttrA`{N*mB8u{!=<5@Iw*SR` z>kS$XaTK31A-QxQCM;(jdY}CG!FF9rg&8;pb0;F#pF6^ke)uIR9F`^cmp?m9IdPNd z8*rb_0x7878gw*mjKe>#A^_3j({@F*?wV(R0Cp=MXvUU;^(HqS!)4x3TwOPI=rT=+ z0s6uV_F~xtYq*Vc^*^kPGwiNQkL3)CU{<>yBaQ?a6YV^*onQ#-lpw&XKn~c$c|Pvk zD93y32eX$_`ZYl|VQ=K%)hWx@I2eJ$Vw6<|_52(WgoRrjB1?qmfU4*%=RJE$7_?ns z2=|$rA8}vnn^^KQ?_qIPl1>O&xKR&oFVm6E!MyzLXHp2L*+G zP$V1zZO{)td_Jx)-TPJCiQ;=IcLG&E6*(72?F@{tg-|8rR15H>7k`1M1qlNH%?x z!hZU_kxhjID`Lqng9`J4&FaD;I#`0+c1A%)BYlH`TJuPHj?z zp+UY{4_~buW==bb40xLX-SpwgDi}rSK!hFiCS;H@pQ1(`yeWmK`QpIq9--76v(Y$Bf4I3te;tQ zGz0lO_|xQfxl`wG`ThFwJvz z6ZkIZKf8E+oNaoXa)ur`!}3B4&*^K4#im;jgs2(FH9(bXK{Dz0)z3 zJ9M&K8u}Fo{PJXbCqaRlh{RRT+r(T%LqntD0|wFSbR*MdN1a2N%)gJd{^bQMh{G?U zo&W_0GA%WtyI~H7nr!q9;j}JYui|=Xg>e7)vgM;m+`A)OcI?-HGfg1aRnsUj&aD9_ zd_=mhHOxiP?gz25;0N}wYEr=L}Q=5m^pMZei9+ubTV-ql_+yE*T&JFO3s zs29x63)+*qHd&g*a;CiPFbVg3<7L}I>UGtt3ZVuQfY(vf!hEyW*G=~3m&7lhZJN{L8-<9S`8n1>~$xzbDV40P$tU}l!2IR z^`?FP#^O%l`bJ%uxlOBSD>sBvmr29aZ5m87=e`y)=dz9%nh!!7%A+rNwaVBtCy$VC zVqKE?#H0BCKBKC5H+o1T?yhBZ@%;^pN#L8*4=ve+$7jhCHir>Fhv z&1{=8HjP4|Gkj*|mwWqnn`vD`T9}Sb0V+C9fpK<)X7zrTsN7LsA<-w=04D=2f#ZMu z{KVE?MW8Q~s4V-MqZfOLcj?& z0rT-};i-fV5@!ZA%q1;mdf`GF_OLU>DhjfDr6THS{y?aK_Qy?^lX3X`{OLJ}ZSz^O z=VNvk9bDkjU_*elRb=99z?mphRWx-+`qB!Ye0akj^f`2GQw857AJsih&v<~N7uAdn zRZdH`0Nk*O#L``xOowWmc|mcEeWDeF&&5oK`als&1&YS?Krri5@V)BoceU}EENGXj zd=@?(l49k(5y~kzo$sCTUGntPPjFd;|7fR+y*}llfg>wMUBBw0}!>x+u@eTo#l8Bnz4_bM{1e|mFihl zjV&5GR#!@H%b%6s{kZiVPLw0lnGQm{rdW^CLP6>{VqcLEp#+-%C}m8+jtkhQ2%XL; zycQ2_OYZev8B>fX&|Yc&)YHD|Z=q+!G&qJ~P8skr^XxAI(qBR&w>^+EU92(?R+@G` z^~yFy)xP>=r=WZ|2M6vqSJ0-&Q-tfA%BeW|ZDR`r7n+wAZ;x-meSlt`yfos}BB)?v z4#CdR!ZH9z%ZOza50%BzD~MBzo_s_k6jc~rz1Jca6J=^Oq()8OFNGT8fE2yy$(UNw zk1pPtTnX`uM(CVSxc4i;N0Hi z=G#C)gMT+hSdGEAGlOqEu&1Ijx*5^cX#$k*!svS`v?Y52XQnfYvHsyq2PRLGru`V6 zFH3lu%?p$Mc@ilkM-~?S4|x^X4p2 zd&CSFh__x2oo1uzkHKROyrwuWu`pCvv7eqKRr57ne(HyZazr^LgOP3h~o0j*o}F%)PIMgZiYH zJJ~DoN61_=a)jAhJi99MGj&W$%A3Psm|-FDv*i?0Sw;x(Y0~28%r%pPzNj23QR}de zwtZmHOeW+;)%n<|&j_E=54d{zAvD$MLItASf{byi*Jq+8B%cnjw@wXO!;~)b7OZhn}N9e|-6v<**-aNHY96?d(j#lX4}j#NLI-~(ha3k8ow&388$i1Wc~ zb2TT8?H~gO>?4FX?}sHKR>xA7kaj^H$VJ%U!P*)R{b=#!SCiRC0Piu`DYi(g4)QteQ4!%|*fOPjkNhTNra~JR+Xa~AUUY>uO zS?~50qV8bzK>tg-7idLxm>yP@@!d)7dCOjP$p!Pr6IjVlhM4d7_yY(~4 zB80x~X$_2+y#E|HD&E;p_E)2#OiXUdz;yi+!_ND+==Jh7G`e$WA<1H# z6nn^yD>f-f)7wJjd6x6h@v6exCB^ypp(@kpxy+B$T^OAz&&T*Fj%jbYB@csPnPIJ( z1!-g5Q;URxiJxB6?+51%O%j?jmkq3>0+jW{?^r?IgiDTnw`b)FJF33YZJ(KXg=Hn*Ql3M=jnkTvndK^94 z0~AviDU30MO^C(9e+2mVV51-I8tq_RjPT9`A%#+da2vGc-2fpRMTlwI6trrGrbwNl z?`HA^=jP)#E_hZ{-$2*1k7%T^m*m=yD-IUC=PVL^hmV=oZA|LfKDTBz;G!d&v^nZ1 zFd<^1vj{P%%BE$y*g)ge^eZfxnp7HA%FYoy=*fe>Nl})M5pR;;WN_m3S-JFJTi&q4 z9tr?F5%w#>nbt0wq&D5+sBY1VEGfUj&Lg_S_AgulQhB>U_QzdfnQ{RLky&!o4r$Gd z>S9mnlHLw_5W`pEDo>`mtjSZa2-S z4FEmX;z8Nmli%*pp~P};JZ6a(Z|3#pXo3DU^1&FjJd^C^s%bS^Vlk=*I`z0N*?K=R z^OQKs1Gi5mMqLjoufxS39nTKHgjaE}#a7)Nd|;IKkS;CYUH$u_ZYc?N)EB3gDdw{g zdAHQAk{Me?*y{#|u#IJ^cN2=@)q;D$0!mR=2UkGibxU;`?|+_#Fv%#Mo+^8@r@r-} zqspsu0B;37#cVsM6Ay%pq>#LvcF=T>RPsnxwK!`(rbug5G1ba4UdosHMk&IkeSKtL zti%p4loEISz&nAd1Tz&rm};uD5#}uhe>ITWCD4|%k~GnsprRFSp545%_>Jy2?eTDV zv9F4gzSL7a+@P#`aCN!FD41b#XL<54tJv<*Ko`aDyX3{LWZ#~4jc5N^G1=sLDrZMD z!>}>{4Y1+js-o6InzzP_-=};bUkJGA^RtACe+|&GoL6^|%xAK&5?G;6tFKg3Y(I`Smooo^`pM=l*5JWH0B-?DLbTHftCZ4De|PeA2oG{N`JiI;xnhZIKre_4A5Lt zpLs~s1oI%vhrY<=++Ut(lS>tBAlK{U zpYML%*FkS3K3bKkHoAzNa~*ZYnnm%Pc?p7oW8rq1yntb<>LlB;uTi0B9y7w&_>#?I zIh9KuH`*HqAlXqf*^9zX4Q6Z2IkFN|E21_SY%!zjjfC;&1AW&8u8%bLc%FS$GzJ;X z{Q0HTfVvtS*MtpQa=HW`>nGCmEA7}1859UOb+Rz8l1BY@b*jXuv(rRt^!?LIF-qfA z+;c#wn_BR8FTaFoJtf-;o}B(uH5E8=>p>YKHLh%Z)-ox#0u(_&C-pfm@F>^;c#3J- z6fGh-<~_>$Wc|lCTikRWO=|DtnLPWsOBNsP8@!g@)4zE^jb#Z-8Yfm;OFXyDww8^J zJbCS-Dzrt@&0T=wz4CeZ*loPThgp>k$tiZ;?y;BsWC3_}#Vsx3BB(rdM7vLNE9sVa z1dj$w>ot<%Z+r;b8p>zQl%tC*?kiq1V>5@T605->T{SJ9uPbk&en8bFAIX01f5qk4 zB9O4|ce~504l33r33HOur}845{&6XyNH)(9siW3PL>gdljcJ3yT7Wr_;vR88BIk^( z{mREGhFvD%U-fwuG`RPM9?0<2?1t-s1b02}d8c_tl~jfXRzX{aDF$NS#i`k88X=50 z=i<=M5xS;ioL<#C4U#Ul7BUpxCzO=CfHRj7?-cN=p9}l`g=qL1v6!F=w=q{Hxf)lH zu`bu+MA{TZGFNUIyn%clHZ0}J4wH$0k-nf7A-7S0SMd7K_1dI6=8dHOmt=i1zbK`d zkL;*&l69P&&u6XdN%oJ^pp2jXIGi2VU>&BQp>#1V~M;+0F=mg2~v?JC~JJEsd}vWwQY$7;xT zWi$>;_2I9066}%Eg=zaKpH4Y4kS8?ZOIyLU?6ZK2q-ta2?+s3A*=qmyEtaQF^D3y0 zegR-8K3d<5ExV$@w=4Bi!FDEoiU!7_zm35!5;;l7y~F&JHP1k)rN)(_4JUQiz9+Vqsa3)<16-VuGV*ltdmH^wx=Yhjf)*y#9TnWc@7}&iG~CCTQn&d z)pX58m&q`X?YwNV=%9w0Ze)!pH$m{6h3iMU4~RmW9NK{$(VnyY`g4qT_Hs`>Yna^v zeX`63%|?Y!3s~l<6 zDBPV%Db=ZV;=yX0ZIW5%zRdh-6!!N6JJc^xhQMOPHVb1=Gln}@`cPW>&99xw=N&3E zG(3Z0bV^H{MY7ZhGkn}+uJvlvg~hkH)4h2h)i$*S?`e{l?8N7@m$+d1;Vw|2yb z2oUV-EiSiQ%c;-GxBt493gjaJRj$2LPHBS~d`iT*GKSrg8zC>EN)v112!91dpZDqs z^y4ao(qwCU)o=$T1`$oauBMQ?7`;o8&_%fFcOK6#SqU>m!D@0#ZdD%1yBK;%b46_$ zdPUzbcj-xTu?0zHqA{pDxZ@tvjQB3}E|LZ>#3jM9p#rKfFScGSdeE5eZ@51wY+Y4m zlA5H1IRLHOo{ak|^Rop}mL;uOLy|7&7wJ^oZ7{?)l@l`z!^d*$jscRcMa8_qmLgV{@d&=k@tbl8E+&OR5-@d<8o-yr5OS?a?w;i)Gj}Poa z$fx`hq*KqAsASed4GxEGLn7|Qp?=(PeCRv^-z>QaWmM)!;^^(4vAAWy>ms z*ytn80eR{Vumjmt@eqx*{28pm7SXl7g*|TCHo*4B8y^O$s|S^XxRs5Gks6n~H={%h z_0_4qBlDoKB0yTCuHrN!W|ps_>fUtWP6Aa31>6!@O-?7~6GX6AP3{=a;c6|vhufK` zX+p4LlzGl4g`j#unnf;{xE%Vg=dL!@{MwY@tdfy$36O&>Qm=DzRydWj7Dz>S!v;;cgMibW6TFcqJ}8sn@|+StT{! zRNY-QYt4^uSiixmqu2R^L`uvy?qyK(l)7#o1hG=IHiW>}*SV~ZUAIW9Hb(E=82=U$ zOy$=X{R#=@tnCLajjwQ;K0zjrCLey!*O*rE&QL^$Uw!(B@;60sksC;;s^eC+OiiTy zl>$}29@#-Ni;TTdBQu@_g7ZW|Fy|z-^m#KIPLW{bF8<>$Iz<0AzDst+d_+B zd^mM`k{nu-opJGEwXfx!T@BK86LxcX<4;PvcWwXa5wP^cgw3bw;2c>8mnaK^v@1%G@DPx6~6=PTk_i>jEz zl*%~!-nR^*rAhg~Fvg4~w$V7(k}n6nf}3g#9LKyW_`0!rI#wUNt|wtXWXo0Q2+84d zI@#j^s#)d!f{{+CURtM8!rNZg{+4=zt$Qdz&pnLE%#YC#D9L2-Q237XaG$ZpGAdQZDAI>IJA6 zI9_zG!KN@sL$3Tr(cAuHS6YvwjApZwjryntb4ui*nWkU&8hBJziFAzQ$R0O)Y`KBCn=dLC2H#G@hTUitV1N5gUYehf88Ik zhq|4F=dXurdF!|n57E3@S=Ga&H8Oq|W0%XI3B=gE|3m(PV9CulS|+%Dq>-N(^4!UG zFjv1xp39-bjowoSXZ6mohEn9?bfPhWia(yACS(dd$P-f;P*h>EN%!b!(CpNbXyDT* z=E6&4YSX;pE8{aGls?B;)PCZZGvA`Lk89}g>_I;lvf&iC-pfyuS)E;Nh_w#Z^G~kL zum9AuiQ^2&nhHO2o|5O*>yxjfYOH#%gfG@AK{A{-(Y@Ye?%ZKI_c^TH`0W%9eVIG6 z-nSMb9+R8@6EO1GIE$e$&3NUOW&Q!02N}0NII&e22z<6t*={E;*LlnTF=^1_L{>fB zJ1=MnG$4E`DQ|-O{WrcS$-lT@KYs}wVY=iO+Bs;gF|6a1rhV3YS06*)aVk$6y)a}6 za1PTzEAuLTVCqcHx;byrH$q;bS(~MKsqEa+t;sAko+~sSkI)59rs|2!hZlM~8U;2K zr=GY#rLBW0#8pj4DK*jf1r&Xg??;B5 z=f5^Q>df940ii*#g~xq*h^9AZwF4cq=;tqY{=UM`As$X#B{{~e5Q>E-?A}olg%}s{ zr6#||T%J~3uqnBd$4I6_xl+}Y!}UFk#59wUhU}$sS#sc{r91vOPQus!GAYJ0^XI2S zyEU4tQ<5pY92rr`v55e-JC>Q7aQ)*a(31-qG1wsVhIDf`e}H}wwlDCTtQ)&Oep4S~ zla;S$5}IN~tMfs_sv_UWq(+BpZWsx*GlXcDIIg7n$!CQPXEGIj;d?u6xJ4QI@NI0$ z`X#3s^41{()4X0Ie15)eS&u*O-zNb!8y6W^=IQ#ZQE|Bx4=cNQ}gz2?}H7QNBYsVLYYF@ z{t8v>B^dr*qa(H0l;qy3vn|3*V2(|GZ1{kM66RC`u+dOD1B=>@GRm{@OYbBfWsJ&u z#yfM+d1U7`3dp`WiQ|e8vbTJ9*BDCuFDDDM**p4@?PHhi$0aD5SyiLCyzuXg)DIEV zyiBvEV@KO&2%CH@SML`l14S2Gqijk8-G>zkK>{0IJ|ZJJTd%Wcs)G7Amq@8JAS`y_ z@*vg@EKQ!90)j#3_2^wqvu`h6opE5f)>~%%$78Sfsy|QkQ)j7f2r4a_dZlKZh>Oy4 zuqkGVYoi~TDl68m;Q+voS!w;nBX)h zJwb|KGbkbZ{pX^t!hQoTXA4Lo@5{4HVhr017{QGdLmtKIf=@d_VM z_AC{Ewn7mo^L4$(3{HY{(plXxjfIQBNROhqh}c&1=2(EbW!=aV!rM(%4No1?$vMzCFZm&rOOS=CGy`3W2EcrS(jp*NS85=DyCC1di_`E`QoRolU!Edz);?59Jt4=QR|iStG)@OPpK%pg%@)uA$Nf z&vA^9My0wX0MDT{FFy4r6mOrG*q~!x=?N!j-R|SW=&f)jekzS%L+UtBUwW_pdZ)iy zph!*jvKZ1bWjM`|X1-}%cPzbs_Z)&t+Wn(9n|SXr_FsX=*oR+>{0k6xl{Ug`JKtis zzv2Kxm`D>h$rPowdS}%q$vGGWnZGI2iAcLH^p6)N%PZ$=3@6Xm8aAeTB|dgUYE%;R;S{~t1ZEObq^u?W__Ru(ndM07|MU&vA;S# zVlI2g&*cOsyG|axdcPmGM`+6PQF9D8LeYEcTrLJkyGM*`BBsBIN&dt-{@dr$odwtk zg-keuw3On>bObX(^ckp5DRO`Q1)qzWr+f@R3o;ewkz3Bk6%I1G|J6+TRowsW?!IM) z&mAsGh(3IgxEvuGqbbkQZ!%)J@8YS;=}LiG&5MW=-t(B3j{`vN)aw$t(EsIg|K63; zp!DEN|1A|}z6B4WEQsDzMK+&K{bCYz{4oOHQbMpBPuq2S0m$Ze2POxY_Av?m=1l(E zQtbUR>g!(6R(S38ZegK%7bJm7ioW{IVLhT)f-YMlF(c=02#K`y!E9HE38=-GWDg#> z41m)EYOgxf|Cf(9gdYx-B6uHq`G0|przVh9u^r)yySMKRd^8c^`!yP34n|l-QU$;e z|9QFmv+MV-uyaBc@OG>3=I*GY~9uJ&AWJoYry*%Iz_El+l^Es`d;h#i3?e2~^LCWm~ZlH*GU@u+#^N$oa0 zLVn}E{yGeQzx^y?#=`v#oIHD2+fE#DGM_pM&|x#;QqBl)8RqoeDPVf}797=}iXXv)<9WV;~Kx&I*Ieq%ovUL?WZ0zXOi-G>L9=HCnX zU;f$3g}8N^fr*#or|GV_97HiVuq;m?7_hCH){j(92scn^zvGwF#Np!bsRqmYa{eEO z`0sBM2!!8jo( zb@xyK_Dnz*+VPhQ0AADOzQwWr_%!+6b?ahNIk{L9MHvqvyKX;7P z02)+tK$~;hfXeiL`isk(yY=D^bB zxREc4(x<6zKC3%q%h=k282{Z@a}e6j0dLTuV4xyiFvF+h8r>B)ZC*hzf_*@JG61-l<3lTcrL0*#$FBF8Tm{YTk@wTUzA_4+=`=reiM1KPryErMFYt5}F*h76 zZm-fJQRq~@sJFWtdYwZJbraRSMJ%>be$4sDGgevo$+Is|m+w9w-nj!_!`LB@>ktY+ zSB40(dH-=lc@t`f!*nlws8OuZHwgffe)7)V1ki1BFr{{9$i@ft1CU@gAcm)%&G=V&Zv{r%u+BH96-O16FY<&ZdKakGwazph-$bf z5()ubA#Pm)*ZswUq=` z>u&kfw*(bVS0={yFQT6Qp=&C0f24LbA9Z~Ulvzq4-;v;5(2yqRVFy%kMPPQHw!vE* zT-h9=DVxwul%XzwapTdX^;3SbVnd=BVx{+?lcnc~Z=%%Z_|p454x{uqR}qdv9BaJc&6Wog}q&F{atIJ8V@8fe4HEY3Nufrc3X0~E@i{NQRVWMv^*)_ETh9uxV3y(zw z&Gbjic2!ub&Qh%S8a5>Z5$I8)>D)r1@IC|cd3>cS*ARNomqd%+d- zdz&(ZA9V%+I?e&4|ERGk-}l`;g2%#&=`-4{X3kd>1B>ud*8U2uh5}L~I6&3X>SMYswi6ALtLbJ^u7ICxsd1ryzB%ghuo6S-E>TTy1+C<$!+}9Qg_SUGuAO=ttIp zC)^gs0d85E2vUB4QUcQ)@CsPN??i{E_G-e|q4<$MBK;WkAd9u5q$3=LCW`9u;~|te zXrX3ac}D78%+%giJ`_gJ<-SHK#FPM1n(1|sQRh_DGjdDT^W-2rQrZW(@&NQDXd+X4 zMPb&Ga$yB}Z0Fva0aO=Q zMSG7dY*F`y(bJPPFz21G8jCoyRjfr}$Nq$J-LNZq%;yh0k}PXu}xfD!XJvs{D_ zf7l6LZZn(p2CbcY39kp&#l@lz`}~Hi>0gKRuTW4-9D)}z;+gj&?HZEMy)Aj@jBAh&j;JvOaLlt&JqWbMkSBvd-#S52} z!<$Ug_xn%Tz#cFwGFhuXjD8X3E;dsMLYoZiCwsa3hDb6$y95|(9Va@6${u93!`(!& zR0Jm%Vcx5>BC{kaR_a|BC^dDwc-TV(hhCrW2mJwG9rq+Zv_!Gm`jb5(Xieu0y|oVv z+qIzG8)tO%YDLh^mvC8PeY6O2>?prZfkUfzjs!5F171jUHr)Jz6hS~*{7$WaEGi#* z>A*YTL%=zWJb1jhJbBw+x9$=2lyAMwv6_f}WqabDY>=94dDm;yBZMv`fND5LC14lg z;VA-W6321?mu;5XWM(UJM!lUGoWj&k4rG%tKb4SlV0@{oZJUu?+@=<3n)O{fv2*OH*lbz{01`xe&Thg)@ zXaXroWy+%gU(aGu3s`l7Iyd@efVH+F?eq$!xaX`HJn;zr0P2GmKFgD#nAZ8ex$f)V zPjB*Vq+YQyT&*~InzE`k#xGSipM}kZdJY;+c`#4-@>4dWE)Yvwfy5wrjQ3uK{G{

`ll@Dbm7a7LvWmmQ_k2%HEXhmA!e7FZKNH=e~P?&-1?j zH11p1b)MgGjL-2oK8LZ-C!ORw+Wi$PsmX^8OWQ#=D)U5z1;A_bDEBec&f#C2#yF`+|BKul!;hjUcg0!Z+-CBvdzPP(Ntw@-4^wcX@g;;GZT*vi z!*+$=CIw)_a9&B=(B2|>sri$53aJBC7O5NP!aiRDn(DUiANTq3-ar`6H+9zo`;J^v z6?@D_9Yf}ZhHt*$y{Pf@xSO=f&_O=MHGU zk@NWc7Cxw_Xl-S@?d8LJCqG@Z3*q?kV7^9Z^xAedXtRm7%7NCBp(jW}|D_NjSF{0p zIf0vl@moe!Y=p3svHP7fE+BArt+|O+W5rLZ>JD$84w%+&3S$I=L)O7y2uF&b75*Up zXtL~7jbyRPe)Uv81=(*%{JBjNFZE&#tmBUF7wGLF=D6>?wEyJuGGC6c0EN~@vE)Ea z5rzX#>l}BdJ``i^Pwna4h9y*IFx@=4uN)fA+qb-%MLs^Cg7afSgr)DT<8~U)iL*Y3 zt1U7-Z{ncGP5;lmgTKw&uY@k55HhOlKv#`uwLDBUhSr3p><({yU8sgdckwMP5l39D93y%Byjvl4=ryy}_WeT~|lu~SW!P-BOD zh~il~?+Dk&&Exz9Beb(wx*?aYcugMA_p_}9F~M7=1rS4Z1Qsv%K9yfSxZ`|cVFp!P z8rY8G$*-v_S>Ad*S!)Md;gxmj#n5J)zDclx^MOn5gKYLiT}z#FZw=q)!Oy-c(w0c% zqZ(=g;u6nDx$BQR8meS~_#B}%`7aV%+@?&F@6S#OB-$`Ps*9~GZcqKVA^`sd!aqje zP6lg>*qe>74rHQ!fy6R8P{&s$M#vfdIC?oCvud+JGVZcGb_#fNvk>Ps{}t zC+{Zz&(8L$qqR^EM!ucyWLoqyCvA;hzX$U$$u#DLTsDCkdwtg>f8k;p2emsDM}^Sz3$ni< zl~--TUT#^VogS9^2ORc_?X}Uw!An+qCNyr7Qls0znOZRP< z3-@CFw{Anj+eNkLvGhDe2^jT2YhMDvwO*Q45K++VIKG7U)boETz5gN2`?3UAepX^i z)t?g=@kY?jq4L~@!~sLE&FwG_6E8l2tc2R}!nrV%Jot|E2GsImtruUQQVff#DJGhXgVDv5+qewtJ%WSbc5F7+5b`>hoN=qgS4 z#S1lX$zkmS+&6WeX=!PU`<+$Lx`Bq;TZmu6nE2-`;@8i=5WLN}y`+E3ke|s$PkY;Qhg$_rrH@(JE&rD1`g(ZmULJOzXz z#zA8zDosWM#-VRfYg5plOre;=G6#ncdT#Hdj$uwK)ZCaKt1kZC^w!OvHPloYt2Y|8 zda^%E5Omb%4p48x9+CcuDfyQ)^w%Fp+2Q>Pmn*q-@KX2qLDn#mMH_oU?-}5Ej?~R6 zhs*Lo-a{WAdTPudQJR)PF60Q;<01ayWh;^ERY5e^HXUEGWS1nb@2rBaZ3|DaxeL32# z+*Od>n5DnpLA|uNKYf8K_POt-7mU!PJ>{HGwpyzKX`zs*ey3cZ4>k=0C0P1NPzI_mD+akrt3#@Bi4lF?JmTPBtd}8u~ zJ=6p4JLic5{rmMhm*pGnxt4PLg?!Vn#Hc+S<&|fpzc_&Zwy`!%y5Zrvw$$~F`3eA3 za>m(jA@Ldj^`93}#LE6m;jgHSRJz&b!H>27A9H#*-;=Ba5GI-9@9`1bQ$TVcGj(d1A0}ti^ z(Ve~g;0v3}#D>Hl_~RtLV6+=;oOI#jo55H-y|{V=wfq=r0RKezP(j||r! z6$k>0O2Br4m*5sK5Xufi?@&Y3%K_+{>UhL*{AdtGc7B;En?cS8pb%>|wDR-ZrxkBa zrJhbh`4>me>4m-6k%a$8&ozApJ7zmn-;Gxv)1tUKaD=g>kwW7tQ61yl`|!K^Q-);d z)h~}{UHf@ovU%`Yn-&;^JJ-H(?_iZqid($+i=yL;J}`0a4QEA&gk+aXZkvU)WDrDbC99Sro6{XC7<>d0W}5-XQGNK zB|ZoAWFMaVa!{l{zz!^;eKGVY``)g7D@6IA*X|ZjpQwf}&>k{~4a2?^6v*?gXk5-q z6Mh+4-2l!KIw(uMBO0{c4ns=aV#s5Bhf&+YoiKcjQo*d1?<4*tsTW6Por4CqHVm7* z6J3TRA0j#0I%%;FI~Y}R%YJIUZnzJWxmf5^ANCcC?r4l9>l(VD5!>J_h5s}!5h1e; z@=cn|IRF%-A?Ex}C(-%gEAr8^vL2m>FC*ds=Kd`b#`sit^mG zM}vTfUbKLOTVr9VF{g;Q$;9^p>-dE@YiI{$k9C3zj3<1)q`E4z?5Di1_1V1q9cC}j zP1{ge?a`UMHg&97sX8Q-L%D7<2$VOaiUtxG6dFh9!IC^SIP~K2>pNu+0=2EYv_Q|* zuTtZxsE$9UqHR1Q%)%h@^F3F+O}U4!%vSE<{JO~e=78m)WYY}aIWzzr`L_VmW(jEd zGYizQ8|3hQeZeYq8Pr`Xw&<9{ERAmF8_&O8dz7X7R6!}lryxJy_vR`EsT@q=dBVXc z(WwD~6?dL0jJY!as7K?u`M*jLk0Jxvw}mtQmcwA3(=xw#d~D>28`aN)d4>TM?SM($ zTo((V2Ad0W*Y5WKokld*QHDR@jX^K{r^dU~h2QY%JEBmJcvL=W3r@ompI;dL=;%8{ zxaw!w^C1tM%hE+&FMf8aH(-E$t&z}mnuPGxvIqLxzwoz1GqV{|bi3c$1#FU0U!)w7 zSjL@kJ*(wcKHPG0t4J|2t2BROn1BYTJuFT|YqV)x;_MWk+ z@U=HDu2Q>8AxN0~4r!iMamR%RWNzMi#xGhR1!-?8niWPQqI)J;v&$1tT$8v@ojR3Q zO{8wO`Lf725p=g_5W&J^+jUG-DDgZec?V-jMyxSrfVQUriGtWMwGGJ0rN?c0R%lc)Zin7X^5 z$Z>6;V()3sT+mGZV(XCe;3O8*1ec8BA{#A**Zu=iPYETc=2E0Qv#B8 zNHY!__Q;<)mrnrKWbb4HWgfR`vYI*ms8ct@;R~R{98XkjAdsw{ssYD zdoHyL12S?{MX~Tgy%^g=%Z%CBtcZXM{MG7n?9nPu1=IcRG#pH}@FvJhMAI>PyhPr!Ls}ID0Q~CQ)x)+{xdcm!HTYpq?m{$?gX$N*s!W$q|>v;v<(O= zFVGo0IE}Y;lj=gHZu2?Ttl#7ZHdY)gI{=}j)bE5Ud3&JrAQ@|2Fq*CPQDH|Yfl`p? z=?>Mb59b7h6Ryi?syFQ16-?sk z_ve&ie!7#mZ7JFE7CT0Q*D$rP7f@_D83MSm^0om1EA0&G@F$t<)=6gf#X z(PB_X__C9dGXaoKlJw4y|M!czm#i+0kIP9cT(bx5odTFSen1(4aXBCNJMdgQN}~{@tw5#?|W@=?M;@j48!6VR+i}C zt5@Ph45>+fB|%EuzaL_Bf5f=W4$Yf;ktj_b2qLhK@#rl`$N9JnEWilYJkW3v+RdXY z2K%y;PQzfoxazTAgT(%pCJgAI6yeG0ZkRlL^8(^(^c43e=4!mYKJz3%xP=O;82J5S ze<`5g<97;fT4ov=iH}yvADkUl*g0 zbY0!Uq**YhN~kgys$?b3Gl_b(h#ehQ&k<_!Jq6r$nj|WQLI|s-5|Eiz>-KTyE)|k{ zB!9%U++EfwivzVUPv0m1%!)@Lr?{BakB_TgU&D2A4uT^k(e9wkf@e7ehvmKvX~XZg zifG!j401~L#!2a(TF`pl0n)-h0Gel9KO!J(*o7F3DT#?Z_3W2^oYhn}w7B-@k?yV% zdeVP_(}3Q5*@2>kJB8DyW>&^Q6t52vsdi{%j8HMx^FdQa*W(3LXdWb*5g+1`l?|L@T zVZLy34s62SDSzAg`yc)Faxp2a@6}kqyg4v2Q;d;Z$Y@oFFppZLS@DXUh+%Eifl)N? z8RCAH$9ix-?BQ4(Y^vx?xAOk+5KG%6UVAD+8y>5&_oCT0rU&qGTgr4}KX03NogE{Q z@#bDynrA+c8W(}bbNIS>-(lmtT2d0p8QC48dgeWrPcAbY@;WZ4bhqjiq6$47`E3~{*Mh{;bdYe=pc<@X$`>j#5`-&Akn z4hmTBwjArmhC2#!K>bMWsNINq!8gxcBLIil2{MpjwTwLC7dK%^Epyva_TWgtUj6kK zqZkb5cJI(Q|B{}=4yiz#0?rM17oP?yV0vy(#v0jiG_jyD;v|XEb*aLM=gCM(%TwYA z&g~_oD27+zkiztdidJl-MoI8F!gfP>78~DSlvDzuNLOAQx6hs(ZEFLXohc+)7VK^y z(Q#cZ{-t?WQFR{#HkMC36sF%x*W5o-^Qe33F5&Ob2aoIimW~Ze6YNvg!{!cSLnmX{ z-6%0$pM#`o?otw)wqZeAUzad#dyowe@HI^G+!I(Av^ay*%hPr8*$t{%8n4bhGWi;L zwlUq{yjGfiDLDmVhU!@8TaY-X*G}#IYQ2B{#1-bhF3Yb~iug&o3BF1+S*IYINF=U2 z!zoY)lfx*#T*0ty+GO|zHh6!DD!hRdTPvOvJLj~@B);+Oo1z31G&PMN{jg-|uL(Eb zyz6Kt3he+!Hb6oL@uYV<3mm?C9n`ka|4B3bp1b8gK77&qsqR9|^j_Cbp-6c(}a9gL4rw zLU~_BX1J0KRpTqu4*q)L^%M2$7pZ!9ai3Nn_C2XZyNg^_9C^6;`T3Rj^qq$bIF1Tn zX&k!8n}DOX{>kZh$Z))LO85WXJT^QYWFudrfx%+-VUK0!_CEI$&8^*_Uh&SwH0jEI6QVZ=hg40{UN9S-kTvCkkSGi z=eD1K@E%H?_TZMFXJ7~}S`Lo;%9wbq=FyoN#>Tzqru_Bg;IH(a>&O0yBWp7OOY){I zQRJ8q!ceK1pE|OWiP1+>BlzJXpUK`sb{j86r7FdGEpd?KlJo16#qGDDIrL>pAXcJq z+XiIX(2uz9rjiL3dJl6+r9|$Wd$h9!T)!#R7)l3C=6`;(18Cs@3yX8Q^x_YFl7Bo8 zo14^0s%@A$Q(Z#Mrx^!Pb~nj|vd;scDP*Yolhxhz-o%0ajg>I+bPN1?uDD$$TtdA5 zEFH$={iOQ${u;PL=k@z@K1^2tr;@F@fYcF(yNX?_^5-e0S5A{A&fg$^^2fzjTwnZ# zAleeDTS`B*VoW>VI2?6dy=`0@$GCpIMbv?A z0aGUmFry^(6j!wJ@D^3so`eNDf!o8D>QEG?CdGkriO-w(kwmpj*vNz!Z?OGwH(8` z55$14-uI{(TVV?QvZ+d81nto)FyJf~WQ`U|U9UX3==$qW#<}3g))D8Iax$1cr-azA z2mI&R_?hpDq5YUwvbF@%yz80fo!RJFU;Jt5e;x1jLj?B*jEKJPWv0k*Tv~2! zt_-ua5FZYnm#TFHV!-ufYS;%hCri+p_V;c3=Uv+P%m-<3#QL;h`@zyadi7KG@&eb}yq zSHG`W?Be|4ymEZk!c@N&+FZ9n2!)8&P_2){KMmoqlH{f`koUIzWj%!_)Z2p$>`PB6GY?Y zP0Gv1_o$C}cegOkZ7*){*JtgagyVMJuTNYm)=?(mUdSNz&ba)kpr89&?Jl5dt{qSLBrW9qj z#MOvjwoB?RdV`-o4%z&NH{BMu1NJcSp6Kwwc<@=rDVQ-ZBqyf_Phbz(ZDn#&3*37ENw;jF?V!YY#yQ)|S=WOzHWHZiv6Xjip z&F2P$nE!Alp3=daSijZnJ(#SL7!Xfm@wGPkk`Bhk?q(f`v*@iL9yM(}vNYfGgy;Ey zX?Dv8P;U&Pn!EDLmJrrijxYT1Q)&%-0q4wph_a!pMonc%_4gDJV0H6i4h(^`nxMX{3kme0r*goy&DKeUOH+gIJ^0m;KT*-OOlP z6O!aY1O8TQ8`6J*(n@fryx8=Y)5)%Ds|}VFnbq6ZUpe_?#^HaST?G%=Y+j#FsY
52xVH2f>!~u*TVK`kLA!5Fs=i5HxE)2AxfnwPJ06wJ8m*!eohz z7tk?nRt&U+wrtSfkzPtW{h0xxyuNC2wO=<3I0XCEchs}%rvFp3Jt zCza3uhO~#pyWbbBc58eLDS=NihKI3(S@W-BZAV)hK(f}5ktR-Gi9nQz{v0OW79;n< zh}*mXXg9h2hTJQ6mX;w8ZY;1juM12=>alIW{J0ZpU9`Iq?RGz74fan{;Qj#OO{QmF z3D<&LD7(LZzsiV#i5norRE2VOnW(1uWRN?u-ZDu$?Vh3#lO}B3m}~xac-O)a(rq78 zN>FZkV<>Sz270Iyii0t!@H_XoY2l^4*+gkJmU%nlmo*C1(FhVOema1{tv2v#=YG-5 zGU~~W-N+(u7vKmFv}eP#!ha&d0?QiaUGWED|cyq@`v)2(>=hgn_BqXJszW^14_FqWuT zQf@kRj88BhN~spY~wGjBjRumkt#%9}{{F!frPj z^Q>};0;GgAR0lyS-uATOdeekTGU^@8 zfRQO&$)1GMRZD!OT0YiM&;|wGk&HP$y`pw9vZ49-BScoS#-!l38Bpv^2d>2tqFF<} zJX4}zYN=7-1v$@u^Kt8oaz-1>$OHNAHBY?)JJTHHX^7#8gR&MY@m`~TJ87}FJQX(W z`&(Fy%8m?gHo#-XWy;piw$tSTA955#zARp;ekcjx(^7RLgEJyswgm^)f`o||N{q1K z3a7~`cv#fIVd^Y&5h?>(zQ2E{)7=O_p1~RaLq(t$erPzdS)>nt>#49i)VtcC?aBnW zxmiF^ZMJK-JiklC>^XIb5{HC%lef3GZ`c|zmot>)MBke>6+so!D_J|Qwi6=3wj1Hj zCNK_Bu2m%W8&UygCdnFu`fi5ZXe*gW|9h+TC3us2i`@MWOK=7)fs8WyyJ-@vvdf0| z36cA-G{$I0E+x+TmK;mS{0s(UG)xn2R#HQ)MKe#H|7-&2$te z=JyYVz1lis6OL3fv^A{EpDyOiLFrJC>=nMy&MEU}wDX^W*j@&QSH>?|D4-sZ6^)6|TFrn~@AmkxstNgc{E+4vo6dp2h1$ zA=M7Rt#58lH=r9Uf*)>!#r_f4NI4cI6;mg7{4@A_I_*&bR_L@H6Dwp4DRw6#HA*W1 zb7``uFEa{XA}cD$%Y?;AWkRW>iT>&CF6ALD_v#70x~6>Ha;nyc#RnbA*I>Yb_8`A_ zqqq^ENu3;X-@^ASkD9x_2Af}}ms$=K)W=TC5LblW@ullHpY;yZYVuABX1Yd@QU`Yi zPLCHu`E7b{G@e%YM#h(w1yClMcpY%-^q1nz`7!3jD~(zVQ&Wvv=2`9}6d#f*`$+KE z>-fs_jacA;r(01}Hu7r%H&7cf;yD&+zw8>NKhf)ag-;RFr(Zf}ph{)nzu2J>ysYay zqcW#^ztc~FL(=)Bg5FbQrSAAWB_e=;&IL_|&2~%&W6+&v{xt}dhvs$A>⋘qeAl71VEJ6bPDWjStk*6IaecY_2WXF z$j^o&{A3H9ubX|C4{MY2Bsa})RqDZzgy}EBECqVSE-q;gt5cI)E9BymuIbk0*>r%X z77Xl2kq?&~dtLD}zB^l4OAz}q{0i&HHf_rvc?B{X`8lo5OtDE$r2&JWIfKUvE#r6t z@Awh9zATlHPT$5NGFBYsj7`(0!WE|B_DN5r( z5^l^If>0E%*k6R8D-2 zeeN_F&aw17_pXH6Ftn%C`WqISVSIr_qbaWH$DLMs>WGjO!B*dR8Fxn-)awxgBXi-S! z>?m~BWI|M&J6YK2QehWs3zxcB%RGNDCI&m^Y%HRvL_UGy1Jl~^md~Lg@|jxIP508N zrgl~>+&hf@Gks(`g)oPk8Qe?>o#U#}&mf(pRl`G~?0PLGp@f$wG;${xzd|TG6+}E{ ztGYu*EfbtqKRt!i@hcNmlda5+c#OM&1!1t*nBU}|SHZKkE1X$oiHl9X%V@l-xVY*4 z%5xF(Fhs^NTNrs=b97}wlYn#6J$Gs}oRi6LWpTz1IHgOa_Z<&+E|C|fXfc;h<6)Z5 z>-JsKoencf%+$m@1zA?A`c%Cxz9~k$unJocyBvG7vc!oOJ7_TIe>pt*W~%z(U`kUW z-ht?@JQoAWL3`JpzARk^oZC+M$fVecr%e#(i&P^W0W$d|4}QH{FoU4uz8jxbc6-DR zGYd&`(YhsHp*1d&h!AOp@~#_Mx+iZ_2`W>QW8@xhd&WD=`X`I&bCY>Fjkx7wY6n}) z;7V!*^=w?pr)&5{@v|CUZ8_%StKo41ueki)6qPhaU8Ixrn1Fcn`yPr^PH$(Ao*SZ0 z_yo2HDakAx33=|C$G{qQf@efyoZ|kurAdIaicex)Pb60dI_DIa^+$7VFId5F$V<+H z6B(8K)_OAa72fzIR62z0G-Nn&PP&$F?}(V{JH0DOaCH;E)gB}JL%Jpi8@%I#@{ssj z$RjiqEiEmBcT9h{B5M-<6erkgxRu=L0M*-xEm5Y9blNRZovv%n=2WQv_5PJ8*s<7s5mxP2F*Y-Op}Ib zXNIMi6xj!aY45T@mVQNsi7IKf!sot2vf5cp|8~i15sQvj{)6wRHS6!!is>B{`k`W@ zHz{;@s3^&GE1k1joaoZ9-rA7o9vX}$;HE27ZDa|Ld$fLvJpmqAal6K{i^@U}R+3Qv zLwzH1Iin=i5-@W-7M~0V8VcTtB>AT)7Q#7e@NwZ<0py0W5j#O97pk(QuvHM)(t^xU(rNZTuz15kgTz=vtJ?f zE}Ds|dmmOOZ{}Gm_66?pUWP9^y~3T5!ydv@X6Cib03F~mE5PAE$b5&EP9 zn)!xwq$HT_lV%9GMUHt^=yPpS_)Lw_ENP~CVlOCZt8GQvLFNx-G%~g`H?254dP8DQzGvPNCC8~(qB)o z)#+_2O#c}6J8xTHj}TxOs3cTyX9Kyd4bYKf2$nBW#0&U1=p74{bS+wvj9(2;=%Sk` zi0a(-mGLXgRHbCx&2&P6eu=z1JVhnVTvls~0cw0H7->Yw0(GZSpDS@{rnA0&igUhq zr;30AJF?CB0%s}~{gvb_+3$IbEk?eY+aqmJn3E)M8V!*cd-;L&UOar;abM6U&|`)`I;Imj=~?S{!FpDh+PGiLc?UzWzRQTSj4W~PJ#V|b`X82+qk|p zFl<8v_H3l^yP`MTvIVOb=A4&1X#?W+kBSd4lHP*5r8fU9yNRoA>2g<*vn+dv z2YXwgfup3KDEVvtArIRX{%3IxH8?T{r|7$MqiQO{P>1Bc_!zX5;Oa@OZW>s-r+e<| zBkACk={{wM%Y3(7UejwBC-cf!W*?m{-mEw>tfR!Cs@oMZd)TJ|R9mhr>a2j!W+qDi zW2c0sxu&iOPUSJ?#`dQOwR3$m2Uu{dkkUE$oGApBG5UGlt&|6!>w`(nZHtbIIzY=n zQJYo!{+`2TN0%#oO~=V4HyrX`>rw8fcA#?O^&Ci!V{Y+6(Sw>4qlHLT={OultD~h` z_3t=m$uh6j_k9lS-zQr*3JrWuI)IShN5q9mIOprFs=4o_+BVS&XqN%SZVNZ3IIFiX zjmYvOcWXb0-uew*O!B!r7=SfS6+$*YmU}Sl*40|nM8!MN>6w2R-fRYY#zNxSpy1vuzQ1n7HL~&uCOBf;L5(S&%SFT5JTz#o ze^6qZ14wJxSu@9MG=Qf98yMFvieM{%#b_qGC;|E2YD}28Q!Bs?E9IYd2o(xIi=!bw z-Nmz|4perCw%s1@ak7rv-UTA>{F#c6ua;~gV~WJi36-C5ew(x(6ZF~Rys>;A<#Eo> zcvl~iR_LC%^|L#QWDfunTy*KHHE{wlT&J}X0KX|Tt}Lq<)~a*yOutOTR#?w7uP7I( z>D>k~JKsvVc(&s2-@gaVotk#aVQi0`J4$~f&Zif(Ks&=Bd#t;5{|lpsCIHYj+$o@R zw*+kBZ`s2SPnfo4%jTOGnOta+?%6W6b2{aC)v{xG_wOR%Uw|!zkL&ksgxgL!`DRN7 zA?5leoEv~Lv-MlZr{by}37NeYAsQ*3i%02JYnE~Ujn&E7C4dNZc1Ve3MP~`DQvGi9c7=S})g_?h;J3O|?m8OdBCS ztFvqXolwxTYvIpk6}9}tm8L#g(=#n-+hGgIm}{?p)D$n>3Tm4ES&CyAOi7n!?>lBH+kl{AwD>(zvo1zfwsllgk)6W|NcTN>X8%GaQ!nU1wTa{{0h~{9V$*0pbnWXwQc49+T}AFxnFs$jxvY^v~~c zh@#%6OkOdGmitKD~`KKFFLZav5VOYDx_Zu z=Ow4T`U-jc9(HB&T3vikl>SbwMp$S_;+5)VcA4ay_ z+SXST#hbJ!r7cUyh7{4DRH|H`Lv@r69#xf&xTSH$3`(9k0FPOE2;By3C%CfnWf2Gv zYU(vSf=FgZ@2y{D7hS2~-kE}R7L;_@&_fPr{!6jZ2YrKd)KfSbn`E-san}9pB8wT6 zq+@7iK55b~4QUExN%tvy9Db)cxVE;qqRxylEH{DwXPl3varMH_Pm{exGoiN9`zNom zMs$_VtUW@4zbpn2?Obeeo&QGB2Clwi7O;s{)aW@DD!&V?Z1cM}9rez z7rtmM0GqrOF`~p_J7NYwy4|w!_-Lk|4sd@P0UuK8lO*;`s3 zQ7#ZD@lXsMa`CR$Lz- z`+jTKzfeJghEA9mbXo9GQEBQqOn)DHBSXH_PvOWBUaFncb#FEQGqMCH6+FV#lCH?J)W%&!g?d|# z5qW&Bb}6SkbdKbT5TMHfio#}HjqI5{XI|z&o#9l@x5a!s|2G!8%w)vQ?MJf41+&P-8Bj`3>50udxb`N)KzAKS`#a7o>{KxMAeVwqA37VvjCH<#O8c;@(^OXOrJnhGlu?!D)3 zo&c)l5WgywWPONS3do4#e(D5G&Qs;vS+Rjf=cCJ&PYK*&0oAX2Xsjl`l;8_q@yDX=j_idWzkePwQ74htDz^z^=()n(j1 zm>QRQWa({)urcDHjm;xqW|+3#z9B&+=Ad(i{)s|zo7;rfMlBi94Pbert(ReaVx`D%FJ>nk0F@V2Mj0v*P-EYL0$%=0KrKQJkEA0{|l z_KO*SYzkXB)XG00Ky}geuFG0Opxv*k{$HXgP@p&%8=DsOfh2YYI0YK9cQ z`uzRl6<`tuQfpIMk6gpK4en9uJ*IL>eH0w4Fo7g$ zo#>!k?6%sWc=U9ZSx0`J@4Hg{>%^;Sv+ohbar70h2bFJiKU{Z-nk@$Zvz2k&xWXqk zKc1a$MJ3Kot@wl%LTYJqWT?N$&vq7S%?hN9wjcDJQzE}!7f-&O8X zu2U{-2W#1{+fW@)l%m|czCHH%e95hV^KYHLbi`MpckNuKZIcdAG(FCQP8qS_+#G~i zXvon|u6v08%P*4(@Wm&d`_p(T7ubzT3c)`po+;8-a2Tiz6vzQL)iY=MoHbv$WGVN1xA6r3%PX@9K+U=8q2VU+2Y`YFuhJ85T<6isF@yEG_KJEX>O1x; zgwlj{(XPSzH;66&m(_zWa=(qJF(f69MtBcS%YG$VcibzIo!0@z_Ie@1(e>s3;j~2!KA1KCrT}0~!ozjp46U>kb$s z4XNIz|8emY*7F@30JoFl5S5I2xGA;i$<8K7!7Y`l$<~oeP(r!rJu0AFCywH?-|>6wqMYo`W@HDp{H-vfk(QeqI&Sq zC5o+wi#2xA-aq^IHFL+WC)6A$p&mQ+5u5*Xa7(0oxWv6fuYp3l{vN{WuaO@bOm%CzBlQm<6O3p%}VvBS0$2dszS0zoE_in5x16&OC z^sQR!r^YCy1OOy+amVR2V5a8Ls6dPCqj$N#*feP{H>(~7q%Pc*QXC2Wd1~@Df&Rri zAJLlFS8u=li#gMhk1C8!s`pqbL_E_Y&4=a^EBf~CY6JJHW!#aUb=;;VOgtIR>?~Bz z3-qPPba~zxo#m@qR<+U2{=*GmKxh7$oK1FKcX8xCo^_U=XCWMs0iPnO^U~xc++{yN zXcRe`ALw-Kmd9e(@8m}BrtBc*I5TM6O z?Bx`@&up#S$L{jnk!3L7L$*|JJ$=F$wOO^dz-CAuP|DLI`Or|=q6GE~}wZO7VM3vXuW1QX#*d-YOmPrB#8nTa$@X}6Pg-0bOKc6TszTk%d+qfUX`ZhQf> z9E|{CW^<$7ma}dM$~PlW9ZCaDDzR@DB5xH^3fv|B%aqi9xzvtf8(IJx$7mDVHsBaw z`$Y(p6eEEcaKP=xe=6Z2=eb)$ueuR2ZQF}};)n(f1A5npR?>>KF7rpbMC^K91NpSB zKV%fJE9LGffAWO+9Rxr!T{~z1R^R+slDl&K?c%B~Egxfb9N2ptr5un(>8wn~~ng!l@+vYH=8ZLAe( zDeHQ&D^edW_Ig|{_V@b^0gehhuoAIid_@_rt|!D!(tR*IH+ZP-K31~qQX%x~UvPtc zPqW%TyMFWH9Pm?ppI^iA%&Q_mbM&)OsL0Ghol^9{=`EsVx=_H#dE+=^ln4PE4WP*% zw587MIrCMtDrmnD-!7UdsCZ=Ue|+q1a=5rtw(Ur>rH3-2O^1$bj>o2z-e>!(oxk2DiTAz00ZL)Qw^k4>P{y%DPHOOO~OL-SN0Ax4@W zV|rioGR>-9blrgM@B0#~lX1<<>GOb8q2o*j;_gjvZmZA);~V2roM5siBd;(sv)+I2 zB&>^VZ(~mLRqDXKR)7-BLI72uWDjO?`dBmErJu)mHwtI}2K5Xg(nyNB%h)&t77)nG zRYR(Neci0NNT@I~Y@Ek<r@(0?+A#)z$B$Zh`9$a%o?ON-$ea<2gT!oTe&DC+;LNsvj5 z4RcJG8E!K75E=%wSQ1D5ubcAwcDPBA!_B_#7I0t3s3D>EoC@$itr)R5^MuC#Ef~1F z{T9%%M%+lYqyZAuhGK1C*<>N=3qQ>Fr8ik=zx`mUnu z($v;y8Z%81h^~)=z>+EGhX|9|I&{5hczh*kAarr1BHZ6dSG~Y4nR-#lL67LEib}{Y zZclznxn={d-1jkO)iQ@T=dS-bNx%Q(P7iUC42}y7hw}yYRi4Y_QjY*7yar78serv3 z7hd5dL=6m+Y1`NDyC>CcAoC#B9!h}GY*tj|SHr7oRD~Qdyb6xZRtN@*KXlrC%^T5= zUS;e?@x$YaH>BkYK#L8*=P8rtLcZd%Euz8@!2lqNBcy}{wL&nS>@d~mGAF1yExY2< z>!CLF7Stbx@hdj1P(M`%hcgO*Nj5aKmqVvVAP5|lL6*B5RH9%?bGUe{d->kK2bAcz zUE_o_z|+E^F&UB!{=O$ziM)iRQeEs;2%Kkk6OL_caTFi?RO>aHjmwY2Lz9}HDI&1k zH2iBLk(vttK?U6<-JXB5Xco@_ddmhsm9K(K{O1ti%E#if>T~mPuO4Rrm9HQI(Lw8~ zq0X(Z_A4qlG|(_F#k?04L)$<*9YQfjei%^0nGcM)Hb^>7Jf3F^M1TKWw1EdOLHY1Rnho}jyFY~1GQr*(tvE(cr3?+@ zA@eNPnOI(!N`^27$rH38CNkV9Tk|b%;2CB?g(A1RgiZEuzV%o&iqv#nS8Rt{vl5-5 zHO8zCwc|+_lg}YSs?#GfU?8kV3=s~^y+8^5j9Mz!1Ob~(gY4$L>vNNDkhkU_KGrOV zRxr||U|%VCKzz3Oo$c4#Lz^{H?*;3PGcErid=ot@T<8HxPpYU@87>CXnxrx zC!Fql3WejNzrt~M6plyGRT9>Nk-IyZfxIWXCdW}Rsn$~ZsyQdaxT1V?-B#Rw?&19* z6Uu)DZh}N>mByoFwJE@)%(ovmdwrwEP6z2vQel_sQSkfh=4@lKUU4VVU@fkCT^;3H z1dN8n=_oaA%X>Odys(3d-g=f%=f`+glEz^*2~7=k;xpm@#R{U1w#TZgW5XG1#2Yvp zKx467Pz_pUG2L+fjY@?6MD7NN zBjRb_QVInRU+_&N}PyYFGb$m)q9;)mczE zElZV~S5M_C9Nb~DVG+4+h7C@F!mvr%gY7PJlyn@;AosIU&cMeDfD)ppq5Al_ z4PKk>hQDM(joZ~@>`I@#hetYy$NsjEzyEXr^-R&foV+bkSfi(^I(wd6iflnRLO@AU12Z&EVzX=JZ#>X6?5;oVhi( zfAB7H{TO3aoN#jscWcbtdEwZKAF&{>`J@F(xC)AaR5^L(da(*(>J*fRiy5}udGrTo zjE9p&7jecy<%O873EV?fWo>Qk81wL<%~c`I5(_`*>|2}{QDD>`{wpxzMS+pAMBdKz zz-WY$S3Ru+^=R^GW~M>oYAmsX+uQl|!QjIE=aD0ZKZT!PPaG-&Zx~#kk+{;7qSNtG zE6a#5)nAi?x?FmcFFs+u?&7z{fAb%n5O6j(OSbLKxnIxi%6rC$j57_CA!#wDul+*r zHhKw5AoBbYtN(B5MlHPp*EGUMXLcU9OL_q!u!eiwJN{6;zKJ>%9yuhK_;ce%5F&qU zju}%+(Kdv-+-p<_f9uc&>g^*?H;K1kJ^IU|`++-1`t-Uc>o0NHHaUIhiUyu}d7j5@ z@N)=avY?0(`B&`oFX#F+77jz-U|EzXF9B2T)sx2hPf~UxR<8?44EV>SK~!u9gsa$0 zf#b;fw$LlkFMw6K3DIW?59=II+8|gNO#))U(Q6;KK?AZzbnF^fCT(mQvXud89+V@Y z#YO$AXb=o>w&vP>sOyy#LBxy14wtvu35jlTo>YR9yZoH-++RGulrkwG(KjG9&4Mn} z^MsE+e>(CAh|BymnQA8rcIcq`*`jMN+Blst~XSrGWsg4o2*tj6XY#Ms6t*q#}zE8hc>Z8BR= z7oUJm7eV=ho>%^m7XRCkk?KUwKtyS~5t|En3F*St>hxk8qGm~Hm;cH#Gn9YDbT!GhMnVTU@zJf?K@`o(HpJ@ZQaHYKSEyxHN zLJ(izlnd5X3-}w!VEtlz+|1uhc;UB;RO9YL8rYtDhoHJU3n*yUq=Bp=O>we%Qy@*wtIrA zPsi7mr;;I)S)B#CVH-kS_dt#6J))hthVIxQplecbEg`167=j^*nD%jCg`0uQT1Xol zg0|2-iPxP~fEbY|EhPB_+TC2LsbBr4)d>Ol*a={s{Sm(Vcu@q4f_}46gYN}s*{?04S40ER#8aHdh8oCvKszy!JUAH1TkthoLiXHmDK~lE$JsF{>LXv04JC>#B1$v;Jq=Jh~DVk zm97CTfTUWBhCP2#z~PV0TD&92Rsjacf-!=vEONLb;K8#Hy#rd0#g}0DlHot3)c1oF zKY@ySrWG1w^il7X6Y7p_0Y#l|Q}2a%=gia$`Y?;Pl!w}sRh3V&puQUv(fBhY*^hTZ zM|8pa5yrJ{@P_v6XK&PmjV>a*Yv!V|?~%IUhmr@MZ0Ed&BR(95*e{;uC-@#iD4yxQ zt=t?ikIJNof@N0R<+|2EwjA#Yw|oS$L)qpv*u!i@V>NZIAjw2xhIg0PweoI$-4`lm zo4|7sCDX&e|35yC`ZkDUSPFES#mEF-&3C;GbyWUaiYv%?-|sZVa$+-zLH%UN(#5$)qu>Ky6Ed;M2XP>4Xj<$kflF@{rybFz;dhG z-43=b&zauD26Ua~-S1DZz-C*3a$r3<^GBN#M6N>UQRykjEeE+MZyv1#wsWZjM`vAE zpj?!!Q9_HCG%gV_ZB~t^q2fJ3(mmbUXnaVc?kJhHDJb;u3-YzNObjzTu!9Dzf~AYg z*+_LA1Y=$EN_x+@-=n&&x^SflsPs?t_#AFeK@4@*Cp5Dv`Y*;* zj1c&?nMJIgkLTkA=rGFNVr|%hhJ}-ten~O#Ev{uLuxIMH0eY_dbLCq7E6P&eVbX(4 zQ*y-TGuAOq{UEbu07o~uiLb985G*4IIDIq%KT|*kt`unS7uWS~xWaFfDzz7^srshZ zH)EQ~ezg?~k#9#48$o_l-|hLGQ}i?$AQ#aBB7p`KLo)#B24xJya}C!4#rqqp)vs0s zq`J@V6j7Xh`x`t%28x1{FAvrfIWH|%>M|=3R_YuHjJJU^wX9D^wm2Z4#>LYDO!j_N zQy68Q4VY^IfzYb?=2p6vYQRad=39JKGY;#Fr68wAU_&YucUyhjd&r$YMWt*J(F)9q zJ|TyE3d+@dD3zK3N@?~GKY0gNKxt>6=wB-5{y|sC;oD=DTldy^&-i}d-}&Qw)H!(ebKm#6*SgkqUF%qwfc;0LTVN6L+!e*!Sj3etM(@)HV2;ih|9Bbp$;bt*$UBf3MoQi`}PRh}z& zBGs_GOgCd7#ZPro;h2Y0rrOcPX5@>SACqN`Xj)6`HLDEtGh^A-OhWG!>3=_z8K*bw z@G0LcUlII3+b71EN8M~3YKtGD07|Cb=8}OHc%2$Ma)8V+A5?T_S-U#`$ zc_6r)lJ$jfcw_W9#C1F0x9u7;Z;QvvI>zIby$GpVr2fOEjVY<7hnyBQ^ARTheAs|C zpN-qs@;P}w4GBlxQ_Fi-VaPhj+2&myavgzKFLI!WYF9xRd6zrfl`dlme6)NSi=%6? z+U*CJ=xOI^-b{$OGqP0=1xS|Am=hksB zUw0$!oph*PoyN1uOlAhgx6ErM=2V7HAkpvd3;**giV#$)!4LXB`w%eluG~Kq^L(q| zB3X+md#?6lup{)Vi`@2F-2oW&f~9+P(F`PjMRju`sUYtV`U+zPg03pK8k8H&cK=BA zsP;(c*@AC$VURR9YWh}lR^^B{tNa&JCX$S5nzqQVIECJqNuOLfa>+vz$jSNodV9~V z&>uJDRko?`(<$ACCYQX7t&lFI`i~-yF4N*%)tS41$umj4+%LE_I;4|i`m)$zkU9Iv zlJD36VvyXK#M&BD$rbLAQcLax1{U4 z`!n>J2T8K85d?7D%2y<#J4a2C=^qtuk{uLFDUsrQOk@xL^D9CEeufXH*0*$#-`OGJ zvRxMh50QOawTt*RtagtCjW<=a_-1&XK(@BWr7}qKKLq2o>t?sA=K)?T-ITF!L#s4{f!XyByE-_tUoK;&G^D zER(dB50(lWJYdK?+@ql4%UgIwV*^$KZmO0QJ`8JLKV&!?_N1BRVr!=HaTx4V5mkh8+P8cb^_+gT?Cr6aU2}(!s z(JA~bb4PE5d-18qHi3lN9GMIFMPK^a4c%K` z7{$97bKY=!v&Cl!$=|!#)&vo??OC{1)xbK0p>?=)`N=;`Q^>hc>{AYeM|^U<$^q2X zYNx$EXV0Fs7rW0DL-E}NBvLK8EpWM+){&-5PN;M|oIPs=4TwCr=!;D8&s}t~O1?(| ztH1h#1RzBDHeZE19msK-Z493xa6ca2t6BF@Ben;MC+>3Hw=XOA2N-7v51x7NBk#NJ z188HtE|tL4fF@LQKG{3Y5=-6mqJ>4i{{Y`EO{%=5b8Cn>dUT(Qtjqe0{l&Q5 zC7RDFM=7PioTdC~cbJa9oWNDb$+}HmnUTGl^~hbtcY^3l+y8QI=AZ^Bmru0b8y~i< z?_59ltLt2+4S-qcj9<|_gpKP;GK-eQbz~m&J+xW_`V&oYp(nyYcmL zMuI^Plw$b^4be~Zd%@x}lX!GdV9-$zR5ANx!2o0wmQb}I!|yE=M?+cTj$axpgIU!I zOpN+qlx*+iwt1M3VFDe5b(V|eCr#r3nD5r>$@gO|rEU@-Z`2-z|C~KF-rZf~Fn9rp z1ZvJPm%RId$xnR~?Q}KuDg9oqYn2;}1{a=L#oVGT1arxrntiC0FZs#-&pjJ(py_E0 zBL6oTBl7Mm`IET0qo<%T zs&D(ii?4BfoB8m&wCsQDV@nS>J(`?PomuwqJYxga5#2`eh2ilVRzD*!Za%HcTRSW@ z`ryr9053YokhKpIhj&*}rYeMfWF)=1^+?!oOfDF(BCFhuyoRcZt1Fr>?_%doWDYl= zruA%L$%zltLq0$Z*{Apy7+e$`6u}3&RFj`Cw^>j=%^j>U9vj8J- zX7c^hX~cA4myM6M@H_aTYP%#* zitw;$xX%3u#bFfux9`WSRh==yzyD1NUyC%@X~-#7#gk}(z!dO)s~vrm8tDAhksI*t zFt=uw^@%2fOPeh#d-_3KL*OR!Mu(@Lo!Nya#@N@(Oy`#`9&q7jYt&mB&!`C>Fg-Kn z)HsJGgy3Z@qN?;X)Dxy(JB$?FfdIC6=ogq|ZQ)hnr~9qE+>cKD2L(gka%DPB#<3KH zY=$f^lBgC+j~4fq8HT=O#IC)G7p5;B5eI+=bvfqCO!W7_xv}nfP)8d1$9kH|g0qWi z?M{%Q_TzSa#|A#AJj5Bx0@`foITaiQp;U-;Delc@^C0Hi0gey>qfrEOyL`ds9~r|d zDn!7x=Cm@CVf!_u!n$Nl&0ZYFs!rJo%CY1IHxXOKQl!Bm6*d^HTg`}IO)pz@+ZY&q zAv_Ir%X{cE4B{ArZ(2ZhA$g@Sw#RxJI)3e7>)ZPd`EQRs_wU(=Fb#p4m~hc`)5EO| z2i$e?CwbqnL)AV!E(;VLoZor7={g-_3E*5yLNSWCl!d1C!$)P=70=W5a5U z=+3haVm=HuL0e(i8+`lS>J{4S-BFaWfPMwE_#RVKI*=-g&#b4Ff)?>}rC zZk8B&d^>3Ya9VlBHb2uyf8X|lvXpP&3XsD7@HxG_vgD23KQNc|z%LRQ!MkV1%l)F7 zCznG)4BTEHfHp!qw0;I2m6n5ygVX(?S8rr-+uP->B_nUDZxkZKbuQ)fe*TX}=YRld z1|Cg|RL5O_eEt>7zd17~PG{S4i;uUKxXE{%BQT%MwTDQYFx=?7ywz(U)~H^UD{!2N9bopJqrHqROL;gHg*0Q?t4krr*>ei zHxAE$TI9+biB3a@n43106^Ha^(9|j1XJ9VZ|~y;qa|$k=^y zMlaZ+$%D8?m!YMrlsvHMC*{AM$ds0Ky?P<>eyzcoJ{OCrIxSFJ>1J`Up#`Yes%~4h zWEhwFrTSc|x9n6gNKBicwHWeIdww4Q3%p=BUKBsMb>KtYBLmLwtrnl&d|&_Z^?6v& zHkWf?_?5g4t*6(v>3=j+eJv5Y!s_FYOc{}rxH`UF3?pVYA=fQig}9!~p~8h_*>xP) zazk8Jf{_pO1$JBpdivS+lL}6Rp)<|Z*{baz0vfW>9to}H34mAoevw{$-jCfrvw zONH(bX)Eh;!>0@uREvfu2^7aHjkfuRNCEu#3@-n8cNN2ZU z?6uZOi%!S<2Zi9OR3J|C9O#zgQR)>-O);zU`^}{ zgPTY9E$)=&jB0}5M6~mV19|VCnGR}T5q@nC6V&$FIBr@eX}Y!L`b?#f^eCEfNOF3E zu(8qfP2#L9?A;DyAe)`jnIIAkQ~5oDPm?MfzIq&@)+f(*fLxs2`__{?&ja=QeuZLx zw0gJ2{vyfXy;?@k!Bb)2&TcuZk+T-GMf#84^*FwQ&cr5X20vit%sAD}A!h~E+O?U);9O@@;&Hmbn~l9!%9g6FSU&469dw)$G6~QB*h(k z3fyYVtq8#wT|e@t=Fv|CqXm)29r-UWb9rG#uJXrS*B=WrEoS_RP{?1m9cb^VKA&^N zxcbGTlt;suyncSx$pvtx)7kqTWTE=|(nR=fZn{e{{()R7DJ#Dcj#IsS=-(7jC_}U~c<@&vwIyF-du1CLFrhKWa4i;4L#mwh= zCg6C|t~h%~;J!}UJgHCcW`lff*ygM=;NTV|ghyHrfQEDX!x1erztZ{d0EjOHrW2US z>V{d=`P6h1z%T9l9y}Ngshj!};(A(s*`_h%R(rmU4cJWO)ezIYPoes8rY{dL(L?;E zhl3j2fI6%Z=@^;f{SJJ71}`rlkUwUvNZV;UiBqqup1Z+k(nnd~RQA8v(OyKoIm>n0 z4c{z)W2H(ab360^i$9lNSH)%t4X7FX7>v(!pBX!of7$-H93w`=jwjgl*GE~LPp_sL zptl@MgLf;rqlzYq7Wq90T*6fkLIc_qspB9YUPfSs|z>~zZ;TLa(m9kNaihBt1N7a<%E&$PPr6f$ws(5Wh%yNnQ!X*l2Kp=GGD zJdlwJPz;fitz(OPtQ{(5s_)cu{|!$A>o9%jxN3zsI5ot-kW*UFezM-@5JmDVCb*^- zZboIdlLS>xXDq>OghDHM}AQZBbRNh0k_26jsWG}K0}p)~9B{@{;|>~Xw@}PnMaAv zsgRfPLZ{)OZv8+xAh-i<#+IlyFkbVe#vY+OY+_&}J99Dx0g=#J|CALc_<)X;0z&!A zx{d1%9Dfpuj@f#R=C&#?8&0>wLs=pxC+_~11|)eoG9$t7IZI0L5ww81p}Oifu;oqC zgB_FqJwE%N2naa@qH4?DsLqL`qSy;rw7r-uAm`LgiuZHDHS#^oxPD+&Kja21(18tG zd9}H(6jfelMG}iMWjP|PA;PT{(!gY$!z1%FB+52XJq-5!A)XSKOrzx*7hPZ7-RTu; z7-tN9%9p`n)`0ZJ)w$*dVHG9e8&@NSI7=#W*|(XK;?sCkUM+O!mZxAb)#C%V>19*n zF0epPExF*YHV+f$=EEWugI%+1A+zj&U@}yF0k%O03uA;5AUz49lG6&9?=AeZ5-&kH z(G@cHpS!QIMbJ)46&f6gPK4{Iluwr&UHB>(tG~2b9-^XbSc{_r{-%p5FLWJjI=~)F zQ!ZDopfSRqc)SG0Xdq&R5rO}8;>ad08a#;zUV~&$Prl-I_gn1jj*NX-HQ7cAr4P?-D2m3D^q@Cy`0p|7$w-z-6HzZt-3&qfhBSz%47`;2PAkr5?P>>BHnqv)o`aI;9$v{Z}V ztpLd`LFYdf(`U)NvA7sI_o$dW-{*UN&f6&t$W?Su^<#cvfj1h&jw#>BI_v7S{sGvHPIP zdO+ki^RM|2<0w4=LOXT;AmN6~pB<@7>p`U8cF?tCC#@d*7qVc;RMl(XvA09?9A*mb z-#P`h)Zy`iVZiWl9v&Sg)?+gIU*Br5@+h1qf9m6lr za$r-u511>Us?0_6E=+xHZaf6(_{?LaIIFO9h?*psxs|5SU2nuB>5dfH1(_0vgwep{ zkmOP5N!~21g(<<6b2H;S*+NSSK(RJF&cc1FPG`I>iTT<0zM385&?~zHb7GGfXbOrv z1@l&+`EJyxMf2DcKh?HynTnq~w9`jE5G7-^zAnGN?>~ZT3+hwkKDgZX3r&^$lhSpO z8T)}Q0XfJzQrC;TQ78r)3QWdQj#J^tfJZkubZCV`bJrO?dgntCUi9dSYkp@ERqFvB zHlLG~d-ACb3!enB-tA5toSdKn&?_K|?Gz|sy6yvQb>bbsM;(w=AHQ=D&_%Z%F4%+n zYlqq7{+Tu2hTUIyHDf3n$$Jn+Y=rYI#7p~|Ktzy7H_dzFU1 zX=-5P=Lg=bDxVPFaCk!5`7Ur4+Cf&$J?1m{k1FqH(Z`IaDA-=V6d3hk0#c%U`hjb~ zfm%joUKGfr5rG?j{@}YO5z=;}=JC&NIPWkH>4^Xwu8$gkaFM-w!}g1dk$;jL{-v@s zkA~+AI5>dVtHpPbA5{p$U9952>xICrbXP24!%u<_+bhJh@Q;o~=&s$4uEGFp_ zA4o|q81GmKSoe?u;C@q8?EhpQY)2F?#gYBd)eYD=O-)Ve#KT9At{v(GOS>UIh8XuT z8QoGh$0U=z!w|4Np(&Nn0pOSkq+G#J#LKpg3BZJJk-htze!eGWcxJ^5;p}@>9^}7& z#?MG<$knU;F_{%hdg1+83FF(|0AWQrjDhXI`G;5RgEK7N#04N;01(FSzj+Ex$s4y- zSAO8<1lSC&G6&WZ{sun$>6U9=Q4VH!*A*8(Rn~E2}9PC*3y7CZu--=-8@x zh1IRs1vUWS9IVE~v{L@^UPiAzFna6%WDlHxeG&NT1VywKNI1*)7`_5`N)TxjVBe)Z zIqMdI%r|t49L(IJj*Tqd@m|;+zaN-=*W?ogSKg2-0yCpk);vdd%b#!YzyHyuBIb?neMe1>9xzzv>(J{PhGC1=)r_Im5P8o$dt0+jr%t_zY3wyJyru4J{~-V6We0TMLf zB|i&&x1ym0F?NY%XOSa?8#}$a;+adFE$hmvoj3#k8-Lw46C?(-6V9~jQ>u(8U zgMR`%rKj3Cc7YhkHnK2_VBZBkr9ic-Wpvqasb5j} z@9&GC0Kec^=*evG8=yP7r)3H17T7+%&3&Y(I!L?C_u;G>2PS5A5vx6MTkhvpN`$R6 zD961(-tNoNx}AiO-hv14Up-w1?veJ_l-`WF0x&w56mU)>Y3Uj*;fi*SiQ zKFV#H)4D7H7oQcdW@lQN*z8)sDlBRLKs8Z&;5Jf*gbAjI3~UIB0siCe+-dYA6==Z_P2bPaMJz!AsUI+*RoJYMpYANYD*;R1eZp{|b_B2_&LG}u=4VMW@Em7%*e=!n*A4{Xc#z+?E%Bf zEMzuJ7A;u#U}kooVTIX>en4y$+6$kkk?YX&i86;m!jIZ1h;9C7;aj1}4&W(G!|=Ys zzLpeixI3mU)Za@fJLrGol|M{n9xB-q_9)c2znWO<|N#3v<2=Bu9ZR~X3`)YU(& zK6Tr#fR`Y2;-m(HjF9wt{$H$?CiF;)UDj@wiV};8hn&2}Wkgz9D2_Isw3KuGVcmV) zscf7-6XQQ_aCJ=x`DZ`bwSP6-Wz38^R`%Or-igeBSj}GSeV&!>L{rRC^GI&1!D}xq zAWlPjPA(gyC7+Ahx2?h6QJ=g2JUsH)-G-GVmBc~4A#%ihS{#ZBNk}~hRyLz|Y#Jp`&BA$|oQaR{*s|zjOI~R2yoJH+5th`_F#jS-w*K zG^;bhOmGcG_5HdMPypS6(?YfVN>?((uJ%Rbsr5h=UK#>loG=)MzyVkp2e2nP2P90J zOn#3U?M%e9`pN;QEl?~3ifo$}F7>Maa+wB=p#rjw_Sy)kh7y>(p36J}k?az%jdHD@ zN34AIhuQFn?aJmN(fo$Hr4=6v?duTW449T_k<+L-3|-u24>OS=NveA9-@FYAH18g1 z5R%hXG-aiff4kS=v(1D^b2S-nk_2^ zeHa7TlbZT_$`?m%RG=Gf{=pJjul=-?blSJY9=KlIJ|DsIfu`#IL(X%Kv6E#ng{a~I zY*C#lcNjeu3hg_-6f4i}E3@DG`oWaH7@2|Bf>~-*NK;#m*@G|{dn)2`z8M&c_1`E8 z^wRVr(*Uv8p|bls@XVE=!u$S~k4Yg`kCCMxTuiQK%XL=W=Ij{CbR4ZH)d|@=UJMVd zzu^)6^_w#{mNOw{JUX9f@(+x+w@$>kk9w6X<`1I+-+2)PJbCl^mawJ{LRSrV=xaKA zzF9nvzNSrunJ^YCiw)Ma>(+sPtSM+^VNFdrB`vS0?Ro08I7h6*ry3UKp;^I~fT-^{ z=Jb4nRCD2NoVH^w0(`l^O54%uQPaEz6UJ&;xHLCxzums@7wr0ajteltz{YADq+`g+ z?Ez`7N~t6oTn8^z`r%*aPrAZP_TrIY#HQ;<&s>9ec4kmL*~xB$z+~+UyFCmD2_<72 zq7ESP#sH=NRu{yxRPyr^<;g-kza&PZ$a+h0;iA9~V8fLjjYLQpjIYJ__ zt5xzyEMEK$a!(fXAIM2_12)9lJ@+oZ7Nixm2rz;nChYEd#}psCv~e&@0PMCm<;uG% z(0Hot>E4HhJ~7&<28%zz_}UmA&X<|(eU|C3X3a_Wj?}=F90njk7!=qXi$3oVhm|a9 zc$7sPBwd^v9c1F#TX*;i*J$XRY{?LA{cXo(vX=3jh!(x{{C6=iK(-kFUFy$cddI2cRMbn+N0V}H;tNENoD+3VEz%^rm z%|U%5gM8F5!24Ikqk_wx_MJ^xvTT>v2och+MgFdC@2wrPu5-J+Ql0JNeu%}UREpvP zwx}B|yxM&yheTX(&Bl^)b4@gHAE`{QKP{N)K3?l8`Z60vm3j^A|I&#K?K>D$EMM zFa)@quu}Id0keLeSqZ}oYZl<)@|upKIav-P@83i^yghRX^4#=qdT2;PyqQb4+wg%2 zFdmKo`+_iN(1gd|k!x3d8eA5Cax1C#cP{|y2Q+i5Zh78&xgipI^n*4LaOHPg1!@r! z_0TKx#GxVJ_@FT#q@Y9r#Tbw8XX2HD5d`=0UO;$NT8xWU&Ay9I?7hLDZ?v!+u;)ua z5EG}VyFhs3R3VM#smaa02vQrqxSKEk063tRz|L}NK|=!_NJXPyVJ;dTlnVRrQcs2N zn68u3#Q;5^f>rFJ4HysXP>##W zdaKHyjF-pxw0XQ|(Ubu|%F0LBa~^==I@K7*S39piDK{1G8+&zccfM{0D`D(|?eh(n zpo6RC>J30aKQbHJP!FmI;l9#jQsQe@7YJ8hKobmioVa4RR(%iPoXA-Jv>&MN(Oj|iGio+!_Lo1cVpV&mVD5$ zno~giNtuK44qX+J<8r@L`N2&vbuUw=8WC#SRxA12=ut~vuVdV`ja}?gVAw&EYdd~} zZhyJ{l|1Ul!WpXHm2!|Sh{^e*Oj~zQd{G+M-dQuVpkuwi^vKh*S>sd~Ja+vxtIiEx z-yg)hZ!~~QsE+QdY#LJjqj#M>Z2S&Wd?Cnunmnal;i>ZtTTuVC z7C>~FewhDpx@=tN3&#(bmHk1VGMt5bM{svQGbRb)DJhfLQMlqrXeq1i3R?N6bQmc)&wjc^TuAgg zbra^u5D)NU>Or>!e6q`jXjzFiLCJ10?VG&5uA1l^_iEKjcY{e%BZmS`lIyBBOb8r~ z>$wx&H4Zhs240x*oZu%+i=2XX);>Y&D;?oDpLR847Kt5dEjeU?v)xac+|9v-Mr5Yj zyF9J^G0pHi>iAev_LuVfVovrISuxV%*Nnd<>NQb;PuxrKZIwEBo;}BOXutGDzALALsL)PMH}i__Q&e z=5CF8TCT9rqr@X(lUz+=r%8*0U0S37RnJc*;BJ_cF{LYq^Qo+y3?%WZS9bM;?PkL7 zY+>0Z*L!2PC8Y&Kf$y)4<{0>%O3O$Y42!#L@s&%RSC_I(#)~A0(@Yi`mKW}DNLrq& z{ za~@MmHY0g+hK|;+v@kNJ{?XUYk`aUDC%iYKozI<&jVP1Z_DlT-rE{oS`p6n^ip596 zw9JV30W<(@G(Fnk1S&xf^$%+1(x_N0aXA?m8}6rIeRm96TvAARIxfJN1&yM1(?#mg z4u!p?lQv_6o>CVda<3Tpvpj3Jh7mjcr;g6u+h)~7er5ND{FqREr5h+f?K3Q0h(M&j z4EI}yd|X$fc*N1gLA6oIIhBFfC4cI&#|GLq^Y)7YSDRVBp!qj}&yIw@MYWMrDXxSt z%D)gl8xRCfCgKt4HH}xVfxLI{(GQfjVfD zn>)97#=B3VnJXETFg4aWzegEZY_zGu7isA{s?f%I1qI_He183^!6RDOhOUOm7Eih1 zwm2nk1=1RkH7AME`!iw(g&m8`=h`LdT5*|1Ddki0{{7P!|rx6{zje)*?v|MYIE*U@8#xmp;2un9CXVn&?Oy zN+h}{G!2~kSOjFn_X3`jJ|z{>58^_cr2DjG{4IBD5_Zb?kj$4OR$Fu6P!nPi!`LYs z9InL@E`%I&A*3cHGsh5r!Kalm$g9{S6THkNC_<#ZOkkZhSlhRmhP0VUPd(c(XBJ^} zUY)Xvy!lLJxlxg-)E8%@b<4cyCZZl(;Sdxqsgq|7GkSf~6qDw4SlM90)ks;LDDK|c z0!l9owlS{?+7Z!o?gQ2XZhs}64!wk}f*%rxo)A6?8I(x7df-?2SLjlE9#2yO>SDJi z<4R#RP}cmwZY=3rlBn6-V$#rKauQDZw#a63Ay>0_`%~i79 zpY@9r98tf%%)giKKarn5%Ff@jILr5qNd9m4ujmX5%%>@nTfrj#DSG54BB2hM7}P7%PqtllEAA&J;05SVnr!U`=x zz$GuJ&pM7<6d6)Pm2HZyqdbFC{=SBYN``DphVDo8$EWZ?EG3BSHzNLIj9gCZPi!R5 zHCGU>qR}yV?g3k-1lO=q@7!!%^Wvnuuei#$G)bGTl8da3mM;fZW2}L)P}t^mOaagx zUkIx_>K0(`KcKlee20jUPnvX5XHbivgW6!1roG_x{@s|g%U2`&7K(P8NpX2$!}&i-Gkrofm<@EHtFCOjttD$tx00OtpNrY7Bf_cG*nH> zeV+{nmqiH~7%2YtclyVLhQ4|jM+Z!31dO)#UAn$*0{sO~$t0!Vjkh?coAGY6k@uf*h*P7f3t7zY2pIx_3vB4VC_V;V?JKRa@Cm)dY5AZ!uU=xJk}|a#;JF8cA zJY%jmq{E|=6|Yw%9Jq460U7#4XCJ!;W#7%tV+zLtZi-SAlw}!(x9}%b0LET>hA-;k ze3H%7(NVo_ESB1~2n2Vl`J*tnrw$M@_u|NpR~Wf zMVSQfj>;5Ir%|yyRxAt`O7Lm(dXjQfu>a`t>>V>0m93HV!pizpT@(&^m`fmYg-$Yw z1PNu(n6;Bm%R<@GoJH}-wRh$amwIF5N(e;)?|aecw%YYPav#!*07|Ld8=`mLqZnd1 zg^Of*KtiR3Q~7fEVcV%^pgS;UY1Sa!J$Re65kIw`w zBSQ+vpBJ0~c@7t=m)`Blj>osA>X;bjLrcPxW?0H+K~W$Tqm%@g;3J~tJ2wYcK)GSz zC!*z9|SEL6a4ZooHdhYNP*IHa1L30d@yahU*l)ndc!Uz#R%TlCz zwBhK&$4%3Pv9~{9vGajmKzLQTzH!IfO;&;|G^NMkoLKG4?5oA~-!pgpsBM{1*Pt+_ zkGr(3j4SwCv*Ry+d`0oWjM6WB`(V(9)h*PpR46k%vYR2`-J@Tf{+ z!>v_q0zRzVjbvIMKnohb(t7U@O9iAg>4|7Kcr?Uz=_AW3U>sJBWe{CxIcNYu{PkzR z*1w3VqqZ4xu4>D$ACI8bhI-E%!O4AQv~)%=%qtz;vg5iH1 zF^^dNP=D798hWk(Q&bdShRDQn))o>>F{;({Pybw~ep%)#IBP(L_jSS5061-BrZLp_*pFx^PN3pP?; zcv-15P-IdDb!hhF)4DG;Lq$S&>5Uh|M|a8yjy_0pp%HHob_~m~{Po>?zEY^P-tNb981IYj616E8>P%y+zjDfG*ZQE8!3>HS zNu|S?SNXt;4Vzn69E2I2 zQ}{{4_|JR%Cn-)7NO9-3YoB9~XI(NO7!k4l$(!$BxdF)*Dd2_#X> zk5cYy-hH`YOh6>5q8$LxaOU@KzWJHii&368J$&?lPfZfGbd02mF`Dr-^Jcc}-6>cCvuZZ_?>X%At9GTuu}6Oa(ywv6dBT|3$&M?B z3_2USXX~9m=$q?n^{L?#J52_q+4LRmy>VrvoMr=Cpv0Zdn~?ji81OHL;}==CH|M+{ z=nm_!1nxe9v2*RN%|0ltSXRc2)rRbO`9JA5n&8g_%Ot78kQo;jN4$4h1aBK7cTZnO zg%7#vu;na+GZ^3VgR@^wSF)<;&I3*z2BYIb!DTAK$Y8K2h-W0xQ@rkCD788`Jc#u1 z5%Muqb>--HX&Wmxe!e<>b1zt2YUao_z0AA%NiiF27vcquOLS)7WMNcFlD>R{P-ihs zFLAyq?a=v-=yn5&GFWe1V!>*iNtoIvb4WBc@D#JIw;#2D-lSsr;c#nn?^nw`*tw<_1PJnO_GVaI)MCvT0Kc=z z%Sv~+kDxwO-n_zN<;%UF%EIb*j}3bu1L6Y1JIbHd*_T1@dhqbM>ln^!%`dLjCmgTI z1<4Qv=Mc%~PgeoI6+M1Ve|nmsR^B}7I_|N11*qq&LUs)tL5BbRc!qpfax{4W^QC) zTmY`^hZ{rdJ-O`3T9b4efj>%Kz>N@wdq@flQod-%xwTi)Kpeu11!m%m%sie*ucNOI z4_-WAuJQ5l2MXoN1F^(Hn5z(vhy!A!J5n4OF%w4_b~K0nZg2%^PawoVmUR&Vr13P+ z$BVm>)oNFCu(uH7u7T%`K3%Ilho1LfITy$EmFN9*6OouoR-Tvf|9sv=GDc>$ z1so&c>Lrk(WlEC@Or_$1YWQ5|M|FrSm^0Js8f=qv<`^yLbt_gzU^Ow^{=VwU)e%0 zz^U9QP8XP$csWeF}}wiZlH4!G~r04t{Fqwznc9{OJ=(SizNh z0bc;rFw@hiU$M~i6@_5{=c?FZNI;Sm#*0stP$S3TKULPOrl{c02f4!;Ui&$n+wOKhhEmjD41gqZtP3iiw6VQjCNBR@HjAyD@u*s|4 z>lvRK_Ql(W9(=jvcahyFbmF#o_xi+2BG}uV;H|aaO(RWSt<}(ZLzi9u2L$wyp9M^Vy30oi|{jco9}O%JFqNbcE~AJeVK+U!jH%1?%JYhC2>9h`{wM4z|$} zptZu+ZJ?5i7LV%_b1i50*)zi>-S*qn5KQtB7F*!GW`E!Klx z%jBx6GU#b&7_ahCW>5w&K(0NKKEpy@29XH{QW^^3+}^=~4?Iw|a}FYtI8lwg7qyKY1IQ4Od=6^}k-yeW1vM*I+M-6@X*pkdhDOnt)FjuHfHSBm)OcC@~nq zc@QDBuovRYfFSfP5z-u;7`;HrNpvTeoQRoHe}=MzOP+R?H!$4Ot@KObqR0QbbE8jR zfS)UgB_(gJeyYKc$(3QWP=CJ-LfohTagDTTHOtn87vaPf zKIXMs7gkAjR=)IXYN)*4N{_pnTK9Mc(&KJZgKsM=#GRFe82tCRyO|z$b-L9wK9>JN z#D*S*B6up{+nfIV^wg|c2W|@)L(lph42&MzLd7lz4R+*b90`DmE&}-{ec_w}DM(-; zLZE=AOa3%CTVQjWZ|f&1`Wa?7ytV!MHnc7Bs~&vZ028!ISFVA9e|?;{^g^e#;OeI; z$%#{#Ezspo&QI=ytAWRAB~TOyBz^~hZv;#|O-w!O z{qa-T;6TrF3;IF1ZgF3(N@Reu1^%wW0^;i_dVJ0P_xNf?=l2Y!=sa|KZ_M-{DK#~R zgpoi?0y$BR3_U0EwL{lYy>^WKDa==M%Q>(s*C}#HMwr1MoDRD~J(l$iFFmtmG779d z(L;RQ(TH!qpgX#*zvMlPS?U#_2Mvzde+?Sq=u=iXQhsE>q^Nxw@J~VjoXCe&VSO&! zeuWSl|DOtfgTm*4Q=)HhH27LUtwuwB@`i<^C8^)_JM5ba%Y|0F^EENXcaU6$NzM}<& z754wT<%0feF1+#7&X*z1h%N|>%Ch92tu4>lucE3exq>+}yzvL?hyRw&{HcKW`I&uf z=n(==0O1ykm1FujPtpUH?#o1r$?tlmKhoj9eWku0UhQw{LLNNO4HShe zNsLZ&sKb{4Y3|v~_UGJCyv&(+~SPQS6< zIKw6bnp}0Yk}m8qULfrLxMIJJo*4E)Zjl+8Avdrxw(5@@;2&SLK~7MsD6rIVgRcfuW1^V6y^;`wSdprPg{Sc6ujy% z+~DpVhX1x1{_{-g#qdMgJw05dOc6hpnC&>MWmpy6dR6F_0`?WE97(YL5d-sh^RxkE zY#CAM&(vD9!DfYF^5;AHZwvCbKi&m3TZQGr-g1>JoDs}b3cgkh3-jYn5w<(0RKLw75&zq?tU~o z_}BFYv12S4`QuS47F2-iL8M(s>SLNrrw=j$*-)rO{Jh(qhJ2{2-}s5#WnL8gB*r9FP@lwpSsJ92@}%6D#E zQqdSN*35udddcgnKTjyAyGxdsOd3+*Y+U;7g(9rE{0QTub1%H1E-gi8rdCj>&yU|| zUsC02DI1ga)CoeY0VsE7w_hgL8_(6X7TUvnJpM9y@{AXGahqW%_uo$nDmk)KalB@tlDqH?AQ+6>P@@5tM>sBvnC zDVS@de;&5ecR`3KP?~E2dW*g%--_lCi8FD#7*)+!=*~hjbYEhi7Z7YzX2v=#IwEHv zKfrL1e@Y^k?<3!Bye2sP8t@{jNB1yPIBbD}2*Z72Ybr*j^%gp;c zn)dDVRqRr2W-yR$&%gz~{p^R^ zuvQL(5i`{}Kqr4Mo{|BSn+q3qGZH}mn;Bceu}KvZ*}V=-%`o3{>q@{+s=x90CJB^L zB2%fgUbch4PLV)*8V-Q8!;ZK+RoUM#?+*08Ia^KN;{74J$DjX-wz%u59x%OA7yr4% zx9{Jva(wEV2e@}QPZmg(_Xb;~PEq7;o=v7SdB zm?+=AC3j8Q$p!5FLVG5hK_%2NsL*+p_Pra7I!0-R3%zXpt>sI(^G;DUz-<5uFCzi; zwV6FHIvnLOTUll;bYnbaQ$INZ;}}8_;ch8nFZ);IRsl|Ewcz}58Q4GDQdMWSx0DI^ zfBk%tPH=o}`np3T-fm-)O_yr)D$w)3!N(QN#1G|vsc?Xt?N31vj>Z-^CfgVa*XSp` z3ia9x0G)O&1Tmb?-otp?udcU2(TIzj7X*@fyZY# zQQW;~Eqe>DZFKrRsBTI{{#c#X5$#%V+o@ci*~}jV2c}oLxO6k-AaM@qW_pEV%_pHF zkT?s=T?e5udck<-BBvv$0;s?=o8FV7@Aj*C_vF@+c?eAUUSQiwIF6+OF)+A!YwMm&8GI_DM2&&=jI93aSQIu{O&Id(5 z2t=ac&z!(Q1iI^zR45hupFB_%Mdmd3zrhekDPY|`nT0hn-M0UnQLDvz^Y$f}w~$*i zwP*$IdWs60JWbSD_e+%8LZ7e}tVPMgI}zH72>e|@947(ym#c??ljTBL>lLdWqHncb2FKv|jVblb2(&F2=phMaLvxi~B;Xv7xne}S) zEi04(udey;pti|-xwgx`JQ@sK`q6lwrr0CUDhArG&hqRmlrP((9>|@wJAww>&L-V~ zJEvn5Ob!*AKzcJeeHo8yBV2UvPUIPfh$tDpT5l#|4C=x^*v(%y#f68D4FX2mW`^Zv zP!BGncJxe2+Wq9QwVg3;a$h(S+$UtaXM<)@&wIYExf`1Q)-m|-M;>4Wl^ZPM*qv-h z+3~h?;yKS!=DV-ofw^Zk?x~`iG+49=jCS3H&56fVT+^o`x)-X@NOghZjjo_EYn@KM z92WhUX4hQq?cL#AU8Pf^e(pkjq|9{KS3qvVkx{?>P-k(zCwGg}nj@#gqwd$A9EeS3 zpZc92{Iua{z&$a_)s}(dq>!40PUr4ig^fpab3Nh4uo#vcAK!x2$_mhxtpuVvRH-1d zFiTtp$KEtBu~4gpnR!TOLYnIYB?`y}G^&dLYvTBYPdF~?7R?Y)(ynV9!S@bI`tc==&kWAHK`y z*?{=N%F&10t{F^r!ID@DL6>{7Ze$o>j8N#CH*j>PSR_275#BOZmQ0Sa78HYGLT`W=pYQMbqg$?b&Uw9_<1z2| z`$KR5PGf`~<9<%gxYWz|j|rKeKyFucK2SfiT`GAIjcULC=FN+?lpI!J|IEWS*6N>C zMiEXG+N(hu=yJv^wB<4ZG$yjQCvlo;{NiHd(iBIY(nYGt!H&jBl><_k@6bDFwmWr! zUmZf1usL|bh`}VEVfxIvN$sB`r+Fp;SM+?$+AslYNq4n6OD^IJG&@!hCR9*;j;iSloSrpUeBgU+7E~O3 zN2h^PBJ3wUAE)2YdB1j<#?QPH`Jbf%{$QbCYSWT86zz$Kt~3Az8c`dR_EtO9yz zp{BUc{FG5XFyVY4u$5l^G~012;A>?*l{jFLOAvmB|Hfs%MOX~Ol&H?8*6B%8tv$?u zrMY%hf=~G@zT%b~v+#un*$|st3)FUVSo6f=M>p$x5Iu-UL(`BR$?eS^ZsDBzj%c(W zIGVgLMr>~y^(buf#;$ks2;=!9LZl;MoQ4pR4MwCsOPownqu9cat4mF*pIz^A{ME9;zPViOIE53@A9pq|$Pml`NL0loN7n4)U)N>#X zqqW08-I(fgj*Kv&!~sfBts82KSf~=oy(Dp+c13R1vI@1>TUJyVoGi~h?;Umox0P{A zgMo+Q6uoDSOGt&_1*%<3-%DjO`Ea|&fs>b}e%IWad+_3jT*eC&NvVhsW}z!9p{mS5 zAPPk;X*ei>45ty3(v|qZhq&JT7pV9z=8Re*GV^=re5}{Z?;#03jzQ*=H;U-^OOKu(#Ww*X>u`#w{P$AArBQ z-<}<#b>XZpCb7y2a`9MO3UOnoF2r=V^d94lBUgtI6 zHk-qD{X_`Ng;QBy9B;Ac6de_WC*VZXtfKM#x3SmF37_IWTa4fG*VkTb1*h{ManBW? zJhZqJx2rBBY&TQu6K(piAty#Peg`>*;WTO$J^pat$Pl-rzE@UcRyrR5x{tcDrp9$s zQ}A0iVlP@>RbiMwELgExyTcziUqKMyCMp~28SQ)OOl=muL4(us7sdj9&=xq>d{muv zSo_%wqzQYk*Ajj(Dj6o4X#;gheWsS$`#U|qhTVrZZqoQOsu|2@mhl!$N=K9X2@xsY z)?QcK7VZqK!wyLr%%JGgl~Ij<5zSZe;2j#Hn12(11|4Z1&muB~=P&F;l+yXD_uu-6 zbNBNv-V`^SIg0VRK#I%7bgZ2JNT@Hv-cy_DR0ip3~`$hYy56^2O~#Lk_APz z;B3!(ZPj4-3Jkos*&2p`Logh6WQnjlMm7vTM040tWXHiyAQzUd*?7q4wfca3!8MGk zvN7f1>jYu^kauthVQW52H4@GJUa-7S;J8KXvn^0I_9R@OSoi>};~yhtGUI5sJj?<9PjVotp)&eS=gc?X^;<=mBw@ z>17(Rw(hmpug$W$j0iA~)C}ifJ-5daj4$dKi-_$vIrC#y%-iYO#oM?+9?H*ItrwcZ z1A;-Shc?A-Q`vOB%;?M7N4pv<=TG4ZAVq8)at@g}V+FzsH9sJAd4!W~Uj(q@VW)XJHMjUQ3w+<&{q1%iHLB-h`ZO7oWNs$kPk#7zN65as zkI+MT>Mbq}EBnCE3(+lEx2ql0_pmnSo@e0Ev}`Pgu_uo`QfNDX`5xsFnNK9XOY4Wa z`iP)Q*w>wlM7rhKNg;d_VKrZ`eOeD8HMb|b83Y-96YoF#i z9!-oISsP4uYf|Zow=u7%LAJoigYgw+Zu-=7*-Lm)@9*GT9P@ zuO{uGSY4`(33v7Q8LW9Dn=NP2P{gXH7sjJmZSk(xF;N5uaGM2f)@=X{M+&+NEJ~55 zo1{GPQ?%UIbGovPn7zm7pHW{cc;oDbqg3;!LzT4T>a4{6x7udm=M#cV+X}S@*J9Ge z*UbiZM_k8CHAYgH%P}a%hW4D}r+9s>h3YV4&L+(Mm;9y3WKHlydE8nnlN&9g3bh_n zjdC6TPqWQtth(V4x_9eDvn6kbDf{;1E}gQ+*MPSn*;OIntZ0r8q`b4kkP$_q2jKb5O9foAZQ&GPSk8LN*eyp9gJ) zw`;lD#-o`rG}TWtFGt`NmTUanO8;xR>M+Cti)54;@f${4ydMOuJfKm z(;P>gTOs|Q12WyHvzwi|a_8p}0AA=z!@RC4RBH}w@1&oH!GgM@tVW2xR%`oup`QM3 zeI8ydEMko_?GSUE9B?qkhZ0g$*0yK_$H9o_H@hAi;&!R}Pt>)IhgBcxZpZ_I|7(s{ zjn^7@C=&<0>!(;+KyH1+R=I$pKg#Ud+dyaE?9q)L->=sQodW(;PU8ujDNHQ<{M9tD zJ>DHmqIkkkR0x*YnK$MY8r8)4E>81ImbhEzeEvR+mZ3N?EP1x&LdA+Br!4a3R!M1r;wY&L0)QdO8>`8f{m^HLBMa!0afI?8l#; zLwFGuJ|mR3T~m6EC#v#`qsiO_1i?7->(=UVinyh^x=U(K7C*j!Q}BONhgS(Vr-c!1 zuUUTdX%21&XjpdFP393@ZyHR6(o+^(&1v<|$5U_->B)T&e%M1YbLFb19c#o?Q1GA^ z=!c2I>OxaPWv4ndmHyg|TV^*%seW2>?CZk*1$MQ_g^mq3@2{lEnK;}*Ef~$^ zcpd-2md@2>+2a7>L z9kIV3PUJ7VO`;0fS=itRaEP>e`s+4XKos;&Ec6cH=8Bs*$G;)E0YU3$nv>6q%(4)8 zC|lJsd=vVYU-x*z|_&B4SUh&d~qDvXdpFn7RVf{*EYn@G1uj?wz}$w3v6= zBfnwlN>AL(0XD@qv_uJ;tu$$r>l!-CK^!Gwc<%lwv8&Nu z<~qjuTPUXNI|kJ$Z>`60e~;yV`Zf)QncxJq4nj-H4kiKyA!!Hbs&pEx0ahlR1)6NQ z-57t@Xlp=c?xwggx0DmE@PxTiAJB+dB=LX;NrFtz!T(RX}IS4`5XT_*5hJx@m=Ke4o)v#|5kB}2)}i{eQY?eqJV z;nj`lI~ohP%>N+LTUkPNfj~?Z#cDcn(`zi=czmhLB({~3MqRH0CFRQj(((D0zugDm zn!mNPz1jc<&}Y51RO;G(xn~lo#=y_%0hA2zhYY77C~oCqxvr*)mtsgh#gqz^>hf2U z+c0%ZY9MkF4ze6{klXCAmHwr_B+Yx|l-B1&As~?4EL7;d+5o-Eldz;`wHDkP9;>ic-`fcYk=F^Cy1wR}qiessxr=&Ujn_{;5|qc~ z)onB$xRp?+aa7wQurl*#FAKiY^27a65KD6>)vA~acnWX-wn?yOz>+5`oNq0@sJb|w zMYY^a<++^+h|lU|YBLCDhX&_trEWk<=R6m^M`dvbHS$jG+Ww0Bi7%Qc5(+HXORwX( z!T3AsZcu4`?jfW)JXA~H7Ix6)T-sZ$%QO^q^h=VUl5!o#WhnDw{D|(h{ZeetE((c+ zj|12-JZ%wr%2s<1B;`UJWw}@I%5|i8t9htSf?}espcMwC+%a(wdbRs0R_sk(%-5NW z17;z#I9!QFI}c@=xd)E#2O`VT9vUw+VWnalbZ`sdjtd9Lmp;@eV0dpIUN4*!i=Wl- z7WDRj<_br2#f^|>+Vv&EJBEN3**$MxE-kPn?t@#3`bT#HTdYgbhB7YB#03q1|H#I$|X6Bnp~z4mCcpV zoUeAupskWsEp!1G<`;b(4&k`!=Z4)+IpjqRZahn|UBgRQ$~AWI>iMbgF;|YJ-0BqP z5*TC8+p8tvOV}4rWqx_ALSvtGtyqvqUK)Yhe7{$4uE>2GeqSKZU#7v4`q4*cTd@NEMZ?#!L8w2cQtGdg;tooIrXbf0$-!T zawd`7cq@T5N(*Xl_dU##N5hDY!Kxo=z0qAFwN3BO)*IRX<`%$9m~a3XM>00+QcRV% zpa(f7VcAaqK*go+Fru|lvK%5#PDf``etjun+H z_>}i&3Icv!Of9k9SI6O^UyP26u~EHW?+H?ycQ75FKPFVii|y2E+^1 z;1*#+u)RRZuE^=Y9f}W>uk|BN9ljo81@n*@-7$+v?<*@WI*FiJA5$i8P+Ir zfEzGWirlm5Y8iyCqFZKp(S%`Oi?I)nHuK{!V;UO`c6oXVP({qb^q;=K{o`k9dTi5xGXV2TwWUek;|5L{vLU5(P z2drZ}KN_KZ|2QrpE&T*FAwa|TK#+t;1r-njlI=7fn1G7Ec4R(&5H-isIwCfxQ;e%j ze+HnAD?8$dBMtn8!ymMjyOaK53zT0B5;;E!pb%CUXqLPvkf)(r@f$;QQ3U55vVZhi zR-%%p;7xAs^C>3#9shN=xbUtNB_N%)#>yc7<8^R7NMknKd;vXMz3x={M+Hz3%Zrme zf=Ml@EMs1Ml7Fqu62HikxE-wIE10nP^^>T#SNV-#S55rgWKRMH5af?dK|`Vsn&(0= zw_N~gNJ22}Ko~~zA}vHmF~4a+vO+Dxooi9a>5uRD_5Tw93?tL^dk=2y5(Zra4IIu5 z3@?m3S?KZdKeF{0PbJWx-pxn3|=!I=O6aQ6!8xt207crl50zL|az3kxq z(J~jBp~i%vRLOsZWECT9B~9qkP%$)}_^&z9%l5iXi(mOYFj*C+z>j4L z@Cu?Qz5#9pBQnXSj^W$=HvpO%rx&CkAs|T{iZV|S4haHz#2^4V1_RTtu{p+Xp~302 zKwF_=KfkeW*Iv$n2XD0iRVpVSeh_JNPZ$+$OZ}helE;1O_ekKb-i0 z6Ncy?MI9i#Clmdl``CI+-=@b$P(%ry;syM(+kBXIP>5}&8n{)l8maUWgxStEn4lq# zn~nCd!PndGv@z@_0!tU2dt6-4Cc3tXb-J@`^s=RgI>bg}UA5tYZ9l%AyG% z!<#3%-6$~A9{T`|P9ZBJ{laHOKX^aFhk3o*2Ukv(jNHI^aIYO0rVs@81=>&12;A4q zKxj?ZBNY@=mwo{KgF~IlyGy1+RTGm4SLDQ=%}Qi#v3{&)d{3>csO)`sYK!LxK`a{; zg@tJ|f?M_}@i*#U3C{+E(_^E3v}Rcc@Ll36?fkE+vXUM9VYJn;MZ z54+}o@N^o(#{v#WQ&cCRMI3_0iXr_z9Zy9C zWw#dPlLS;=U>bv`e$mNqY`Tgo1DcyqBoDfO`p2u|po&q{4w64V6!kqfZN}`!aNk-1 zeC~#eyXj5s0gyDwkafU0)ux?4DY-ZXaM<^#+K0&gc-6>=FKGZktcCpGi33nCY_So! z;|S3%mA&7I*_3$BnOW8yj`AU%^9O%D=Rc8{fSU9n0j6RqXvjhA;NTLgt^x^PB|C~X zakfhzZ6X~O&8{14dJ&CyZNJiZEYBdp45z6Y#nA~c2+AOHeflPFu(&urms1nr+>a|C zy*hjI#e_{~?i(96@(L|Bf{P4|6EHKHE(Hmsuj0#Ku>XQ%pZ~)f`^M@(rf`g+5F2HC zjARjZgTH3lbf_JshiFry84Ob+&9zg&7o!1v`7jt6hzB@KAJn-7fFUP(NB-?RjM^Q-auv>&upo0#r1b*!2Dn9F!b@cSYQim%4T`2;w%QJ8 z@O8&23Xk5~FCPi>nYx!>oWDW3a&-t2=*ZfEO0878QUN}TSd}1s#UXU=9iO6I zmz*~|-GdTgtjo+tAhZbqW>E;PnBd7kUXg_naAddof$C#{3XQ-wVsdS3+)=<+Njy}1 zjnK*?87kZEgOpFwiD!KBzn}3JT?O)Q_aGQ$Oc%@x7ALM)JVpznK}#x`$;yLiV80ft z3y9g)F7_%bq66C-;aC07mjJmh#^q zJVCYyzFirKRYGA+{Yh^VggO5){`$hp5A!sI5XKq~)Fd355I{kiN|}Juo$opK@+o3F zv9QlSquJ}@@3*j(!e51s(}w8b68{$-?k5Wjm=f-;_S^Q7qFWJEHg3Lo1;yWosa!$H z4+*Yj>T?qLKD97xd!c2iN84e}X^~x6ebS~=sejX~1JT{Kr6}f?lHBcR={Gt~MdHIW z{P%}xq%Xwba2lBB*eF(3Erpex5QUvcKXr~78EJkjLc~LzK4Tqdcx8(Z#YOw%pIU~A zl|g9OW}AJjvWVkIcfLr3l20ema~QjFQ3<}}*Mx1Olc&8a8;nrXx6T5Wnss4=kSUm= z-($xpQE*flgWo3&)O>akWukE=A5(r$7-A5xStDhCKX3r^DGx!QW(xi6K0u{N^akp76MF3wX5>5zOxCPa-{dFw6ECUKI3GW6L1UVZZx08xU9_LDH$gP||JXI&EQ zXLw~r;=j)^Iv+wo$E%MKEUaF(bi|+oqO!k)W-!wc0P8Y_h>lHr=miK9Fk{*vV2m`| zY+I*+p;=!ByhRi?y@Q!0Mn1f2kNhqB{3mzt(t>#qKE3D5oz#HR@z!HK4pY~GV!pyK znWH152u!vL>}|=&HGY8i|B)m7wp+Ku;Q^cUA31M``^nIvZbJMQXSYX9Bv`x`6M*4; zYKo0GSI2p)!ag>-ld$(Ma`%gG1g(T1G;MDWHxCamFf}lHFhP^CxBnRm5e#1&q)&Gf zO-Nh)A^%2^=s&#J0#5w($z;Ftb~mVqPF92 zu>a*Vp^ttFR$F1~m}bk6M?DT>MIlRp0n&3%`|%#*LQu4MS|&hRxZAhjL9gnqQ&=q- z{l{~EgB+Qu)8cVunJ~rWG;EXs(b@J-keveyh&JI13MqZhcngp+gx}usw>6LrL%TO< zUgxnNGAUuW(488XIxHFJ@lG!ve8E9_yKg8*_8Tq))ZMBJxavo?e7OGIE>^bNVCI1N z9i&%&(F;gPvTn2&NZ!fbFNz61>fTem@6x~yH$hAk#5ae27~)ZT zkBQur+OPAn%$K0b3LN3wLo_SL2fa_|U^nxL}<{6ffXYNl#Wj@ z*dIG34)LTMANe{yT`$|$jL#%G`B_u>jcIH7{!H{J;V65n9as_&p-4?yp&c)k`mJze zIAN?w;oB@*4cJ_$A)z4#ETD^Gij*fpQTeGVOuSYY{LcBjg}47QjWr-`3F)&4BR)rd z6-<>)md$RbJ{6u~5ix8VB+%c&*h=DA|2!T)Icq;DT-3`KqgN*Kte~&$(M@{39%?1Q zUTfBcz?`;VUj3Y)hwO^mlYjvb)NV^kHCwD_AR9N8@XJb>B(BS%PM?b_>3K%QcVahl zzH-?`nA|XVky@yae=+Tk$lDv3gj&bizwD4aPi3^oQ36i*UZabTvyME5U*XL4r=;6V zrvex3pv(-a?+x*cgSuQW8n-MAs*W(Bm)R7db#LWBXZgK1qrru>G)zX&T?qd+4k^nw z`E&W76#L^!SSC*f&vqT{g&fnVwBM6bgZfEp9$o$1&AC(v%!AzjtP~su)42b+^*7(} zM5NrP9b*kbXQy*JjO(@lpHH9WCg2d^5Xv5dt=&b|3?SDVZQT@_3|HA}nQDMF;8(tgHJa(rdCGqd)RjVMcStlfw(#ab7BDaVeY^#&(@4>D zRXy)?wAN;gt)K2x(UVx{${(pcBAdv?MU|e zSI*USADk&9Q4}M*`L|4|K7Ti0Rsa|}+QnqB7IqBAF6aj479wd7Bng73V2GBIb7joB z0~%8*0*I`NjceC2!JBN`DbU+z;oHgXoy@)_Pb z)L+bRT%9fCxY{5_-9~2cwtivqX%JzP0ca7A(Uosf!eoVieL6Hh98Gma%I~1N@*aVZ z&v0rR2z`Fgn=`T@GxGSU^u9ucj z6zS74EW^_9a+|R(9Kgujk}v${Hpcz!HX_pX%gZ*tk*CSjju!%JiaxeKX!i( zS=n9VO$?-~_&?5eVQ<)qG&YRiC;q{)w7FuAgYS$OCWjR?0@Tef5s37OPU^ zf<$?$@{g(%y$%?qr{4GMT%l0r79@`drdvU1Rxd2VxPkiDfMnHU{V!A{CP1+2tl{hS z?^&SSU>M+L?`vL_uUG4OUkEMO`#|whxx$qlba-#44^m2c3+K?${mon7g#acssKtBu zBru)jj~+ehzZJYJp6`4kBscAQ`)?3E^a-Rbv))io1vEI$@uY%i6i6B{*XBCe!Ehq( zT40o>pDVsQS|SOPYGL3<=eUjGl^^;0L0h37)Nb%Z`ls|vD4(70bx$5O>)FE^{lg*s zIlv~#o++ML?WO6};oAfGjpG%rNxpt^rSPRUn@ z5W>}2I%kQV@Y_6ttrGD#?Mhiw%4_&fgb?|+2m!ef@45pWFMv;CL@lrfn%gItF(ydP zZR=RKqUy@ppgQ_lJ#lVWE49Evp!rq-%LK6|s{k5#0cz4ZjlAWvZf#=XSN*oSqJy(j zzaf`Kgm`eM53ZAAQ(igQ_oZS3&z6L#D_RmIC4R;TKyM_vkk_927q{XO2@75R(=tfH zg=m@>Pz1=djkI0auxM2{pHVnWUOy=R%}m#+(_IGXs(qZ21;C74@Kar+*TMJwtNsPg zWm6D9WYEIlx#Z$|%X7t~7rC|o-dm~Q&&u>J^i-!`T`jeS$uuuIZ^eV~0y0NFty|zg+W~#6S*-}Bg;^UtCsddE$)t~9cO|Y( zx^_$?CTkPH!uZtl{3nUnqfrO;X&L(*;}J>A*z?Tj2vei6r!z-Oe-*Jd$N(roGj%XdQG_Mxz5h@c8vCXt;V{0Fz_Od2x zl%~di8J+oBIp*Hi7WnPL>g-B32t7r-Zccvvrouscoy{W{t=M`Cb56|u_6g%Xq`UQY zQxt}u<%~1R>+dpLu(W(KKkvLv+BFMe%k#c#W*ULLH7lfW6 z)lP2Nnks8Xo1Y;ivcA`>+Px$Oiq*eocXCwlme29o`4yFw)1U7&G&H=Fpw?Qn{dVe% zB3aZuCk|8e5MEc&Kl_lo`M;_gkaNhA8C?$8=K}gmq9P&=qvSzbeKDr%WFJ#MdO=EO zC=YvL3)$!g*Q~M~fBg7mKYZ4qG+j+i{F>u0U%ni`7HV)a_?6xDxwZpykGvZOjU#Kl z8~w8zkBjPlvqXP<8U!VqVYL-@Z^-9(>WI-`Ufx?r>q!tJK3!+RU0Tww^TVe_b&>P0 z$ZM=xu3vtXH-OhDi!G}qUziYGxf`_ z|Go{B@@P?xJ%2O1XY-vKQ^Sp_o8P~GKTm1ohO@-mY&{#XwY$5%sDLE%bxVt*;fBGEsEk=Iur87N*k4iYQ zDCa#PAt9fJu3=@VF!d6jNmU2W_i&I}!le2jU9h3MU}5nXBo`{7hS>v*f`_1LT>&;T z#$$OY@1~h?tHJfV%^O7f%Id<51LoC=1pL`c?$6GqTg+{kKB5z4r(R8grytUF|FXg1 zoc-#Kw=63>^vD_=@=%a$KW1hYyXR54iB330*om0k2j7p!YMeO}yDmQdDTd$GN`bV{ zY}FC_L#gA-cXkB&R6L539Ad`xqZAyzC1sm^om{?gB)@Ll_WP2HF~2LmAMe z9!Q4Sa7kCNRgEe4ttN{%^*35pJ&YGGb=pC`BQ%~xz&f`eQor)j$Hz11WHK%cRK&~ri3l)}QoCI%n! zQ(suk{Ls(J6i~$Xjl6ZH=#fg9XBjuDs z{_SO4@RF@BMzfU3-rhba_)gcUVYnn=WH(ppcL&k-ra$L^vs9SiIlo*E>Vf3|^f?c? z(`kMEq)@_g=?_5uod?GHe0I**yIc3IRDE`R{a{7hJGTSm+aiDN-Gj*TbMu0|dQ~jf za~oB2<*Kje|6*T=$CpwE>|oT<_fvt*WU1NN+RHpj-2Q?>TZ*Dj|6=%LJ<*Z6ef$g@ zDNjW&6G1M}534C%29Hw?V|#mm8y)~C+1@Eos1b;diz{<_Uy>7Ji0gYZtiZ9lU+ZQo^mTSC{*%Z=^cNZAv+hqW{#j&Q6**GrJ*d;fB* z$YFnu$clVCZ@R89Ir5wm=#}|mlH&y)ti8E%1ije61<{;-OkC+pSV_l`2QYi766z}^ z0DcpM88X`h&fOSk$v6p8irhoXV)g8XWKj@N#J}t3WwtXhul`o<{QY6jzo-4?^6~dF z*SPwBq_1Db$$YyhBe`ODem+*z7_8PzJMW1Dm6er#W0^1d>E|vks%@7VUO+uR0HJ@KolZTQK$G9a zew{ZJ#>#S7d9U=9<{)-;J73j?BENSUzD!~rogb2W#eS%oFKtp1?~hdeo-%(&>_@Y} zABAu?aMP({j;GAE!AB3Bc@`71x4ouDj*Lwaqj=Fxkdfq1=fU$DMK)bPr}F#et5Bp?-8`+Uo8X5r0BN)^K#mGRirKyl6J6sY%{H1Ew~oxczHCK2UEb4l8a_Wy z*Z;=2)4=H}Qaj)lDGu)R1O#8Wd2M+kc}I+o?B<}AcOgTji*8RliY1Oxx-QN2+cs#M z9Y23Q1_3DrLBjN+rRAacTL6hT&A86A;Ozfj&qTneg}-}p!P;6S;oi*5%%=~#vFxWY zOkR8VDM+h^MQ(uYSPt@8cj?q*lr&GBda4Wdvkat^dw^jc2ywJH07;H6e&~m)X>UxR z!KY%cX8qPCQI{oNy;iiRj%TIF8KQrhFty0ia|;5!dLxIf=X8Pzd++7`hY33ZCX8R> zWM}NW7}NBzJ&(&@<_wICXcUOgMqxf?KiR^M;t^RN6dKytu7{ez?gN*h8+mV@w)$12 z;iWCFURYfcC?0hq-aea3x1ew6_Bnsx)~tCoAzfrNCY&L9?fzSrOYUE$rKzs0j*ZlG zVB1a(?`XKt+uNIC;fUf=IuQ|(v)Z-)6px=AgGbyfCxkSGFJCJJU7ucjsP&_vA#;$w ziiPN4{D!2nySZ^|MD(40Nn&`=osE5ar{d?~4pW5$EyVV#n`u{D7e~isQ+c56{2rx! zhr|7`;4Hm!88H_agga-mmRGuo>|=4_7EnNiMbJZwU}1U(PgrtPTo`=VdLG8GM-_kNv>;Y531>)^5sbm}f_{;5IHgX>M_$0k_kitDQ z^6HvMnjNdxh3)}3elof3UlkTx?@6pZ_zm!#!&q5j{9k18sEZV>jvs(1_tIerqXI!e`Dcj_g+IymB=zS*9htlA zJW%%}{Z_oU?Y+pWM}q0XS3lHebx*8pr01rK$@i9XM9&_BH0ODJ7#K=+!HiET*LT21 zzF+AI-QWT%5R@~8WIm>NQL80BDarr(x{ZBpxsIbc!BDrTw&0L{@nZCjz`Mol`{IHk z{aGpAY~4Z-aY{uLXSvI~4(Mc)d0aeoz9KtFe63ST)clNzvynjLdkK4j72|t zc6jQz5@aGdmwh3I~G%z^x}M0fzXB&K1|r=bqa zmS2oAJ@J=$Ar>02owDN^|4? zkds29Y~EdP17g?d67+NfF1VT%k;0qsrNUvDm4I>e`~7@fuQC*G&e1!C7=g@z!+TZ= zPX~wXiTImXSyi4}p`=y0oeF!tNrhIO1O)ycKJ6GDY~b)*x!Zr=TDA!|OA69QBlgAJU9PC8*z-_nU+vIt{}WE;Os_(R zn#lOAx%QGKwcdgkwm&#`V|A+bGt5}|TLf(F)I0jQ(5bH;`mZrVJ1{u1&yXDMmKo&V zcZ|%4i7-XNgLrO(r+l9!gbI?YH}$tqZDI%8B$drAtPV#RYAVw=*geIuSs$-;Ns*3~ zB^_MKoBIV6;YYRtSzX;w%g%g#kUQSf={kAeXNROFpl-Pq7iK?nvJK;yTTPWa@0^4S z+8q|Ir9``~JOo}W??!dY00rl;m5io#`{mViJI`rYD4oc|J7iZS+CHV9_E8a^A`mT* z_`*9_AW>=-DQ68(&)Ne$nacIXP|bu$Dy6K@YmJ@32lsRT#sZdMFe1FXmr46EuUWz6 zk;MCNrJKj*UsQa(1yZuVZ`&6(FoP^qu$E0%zMF3n2vy(egOquuxK5+=J?BmE*|KOHd#5Kf#bA z17!O8`oSi1sO0%rJz7r`jx9vn9DZEH3-FIV3A7OJ5=EnWYV z`FLR8P1K9t!JB#IVuudqugXQoh6e^7_{l73fmlaOWWs`qYg5zAJEkv7Z6z$t2f-Dx z1M$c~8Od7CYhCd#0PzEPG&I2p;CwMLF-I9Gq@gL99NTc^M`rSdPOsUgYh*Otn0ygX z`?qVTwF_2>;o^|PBlC5#4ikKeFdN}=$~|vp(we6pg_YJ7EIx!>V>cFD*G-yj&-|80 z=evZ(?FSyTfucs5c|C#U88Fw5Lr} zJ5|Md>BXI=;&P!wKM~Ekcx>&)og?-J*C{(1GB(MN6wh>(5}ICQ!OYR$_gxok(96B* z-u=OLp4ykzAe+5Avj%Y{dmVytr4ul-pbW-fM7!+Qz+5nHl@`=) ztwNW@%z}|}%j_Pb;gBDYdYixu@lT&VJ-VYl`WA1n01Du}fJJ@?VsJQ(vzks$PJKIh zbE%thL~|9H+QQuvuZ2<&D_Os;Bi#Ym!f1cL{Az{8_K*&;)QpUb;n|ljU%i^m;7e$= zAy2IzG@c;+Mi2P*prSWhV126=MCONOF9hloEQ@ZbbK7w|C0(2Vjn`6RSD<-2kzg$&q47G#oW}1ylkWCQxMmMk{QAoQ#C2!he?a0cdy?;R3<~R|Qg&LeP#T`0 zC`ed936Z1*_keB9s%vblgyIL!5Jw{j;&JokO+DhJt@>J0 zlG!|YrK^Q_co-WVRSL9Z?c)Hye<^3TWA%zipJag|3ai=MdjvJ=fGVQTMc0dQ(}bH`Q3R znGryn+MhxCqCqmNueCSjRhE@ytFDrbODDJ2!kfe=kk5I2=64XZv=zWZ9(1kxPwE+ zNL#i#aFGU_Dnv7&O^ zQ904q7Q|yF01{ORiZ|^?>T*Yp7G`F2?Zu~l{btP25Vm?u28Qf0Y;Q>2Mr%tbV(uh$ zgoq6n^Bv=)^HOLEx74b7ryZ1k&rsBDdH~sFLs!D#LSQ?~p$_4suP^Q5V+-@fdDo51 zt$p{{t5cx##oW)*FCuTbJ2R<#qs$MrYMEtM)p+&JNh!Bdm!ZOMp_aPL`)YejD|&Lb zF|YDaUa7E#G$%7(E;=r|P(f-|e{n8kJJc^;lW#*4O~8eI21`fN@dV-gyiQYEw!A#P zPbDnw79lb5NkVeY3C3IigdOdx4(EX>9s@SpeH=U%0?L8}jC%m={2}+l(N1!BT(^6IL7HI6g30oJcLu;D+kq_E zV`>?p@_))2>hVt^mlCa@s^5V3y+d+wmmk56<9IlZ%4A0O3xQ=5lbNYWyYo4vC)M_dX zxWdED{X9DQ2x^J`Q-}yCu0-(_vQx*wK17&Y{ja$@-9c1oKBRfLkMgsLU_3QO92rmOzfnFXIwe8+d9ra*BAS(r*}Ga1;>=mM?aT_o#Z0LOKTyV&hF zQ?bf&pdUXIV7b1Pxk4UAyXTie0xBa6uaptaz)|ZC(f;yZ%Lq~E7M=KHDf3$y0eVc1 z#|0%w&$Wb}>(a4}|LwWxE}<`d*a_}($1x~KA7#YgPsd-C*EFGrczh4jtCcnyO0C($ zSn#Wh?0>xKLx`XFH(wl=TA#5ds^vQ$YQE>$kn>Caza{ETAl0ltsYqs|AHFsLI-nnG zE4ucPyzu`45%BQXp67-I?vJ3J+@Od_M?K8^GYmUOcg#o&cD!i4(N)sNuY~!UpFzgt znY(%JLQQis*HECuiJR+4Oa03dzk{@^@M@1b!!kJDbwVWtFw{QrF02awT>sJ@v|%!5j>h=0U>b zy`bkiTh%que~e)fX<`CMl=B`VUjXQnpHPumw6|)UUejX>+9=MBG?UQYq!QXUPkfAD z>_s6eRqm_1&Z-V~v6)Ows*BRd7enhFT(hEk7z4|i`m)0Zol^2$4^(2$1ME5t#z3Iv zTpP^$d1ep_6L-G4gTR9`N1>~6c7tdnSxPS>>A{y0C%Lh^0k8c4=4c(IWt9%=3OeMJ zmizt7y}YkR{qXF?$&SmCSI47J2MvvZC}UmzuDEFSZG%`Fn+GT(3PtSWQ|c`2l!(--LcbuS1vlYqvVjxE3U@qi?zP z1)KFi6c9LA8(WFw?5}K3&Uk;X@SYQeo-T88aj4i}?m%u~!SdoI)IWC28cD0{0nSxG z!H-_P940k}kc1uQsipLmSVo&(9D(5pd{Dui0M&DIJm_Q|9;F_T^&HT^|t^_O$0trO= zYT$cKVCM0*o1i16q2R;x^q%O zeq!!sJd3}eLdj}-8l?e|QNRg_HXCkmHRQF{itHnQA(QhlZxAh{c=> zcZ0T)E^Gv{r%J{5(S6-RUS~Z8Xw2HzLZi*;iiCuO>D;=Fac)1pmF9ex&5Qaf`K?Q* zbxU`@(+6yF(uT$_qvDgf-8qFI62uK6v9I>)WvOlDGe{J#>pwEOzqP4}6V%r|dO$+g z(O_SojN<6%s4bLUPM$n@&lO0!^B+1uwN49SSn2F;UrGD3Mg}i87XWr+FYV*5KlUaV z?M*bTLll%r2bUmu8oG%n{MClfq^wu+3(eo;0AA`ba6{<;jwJQfN2 zV~m#)buzfkoc79Y`a6A(Cwg6uJjLhf~*~MwSyky5OxKeCF zDa2{hWB4UwZbkf;^LoD;Ty*Wj-bfFq^z5qLV z5jm>A_2GA(0|C)A_eE#7_J)Ripqp5>ttBH<{LSR^sFgR`7bzCLRn4Pj?s4RgJ(FgN zq9q_oJ^gS3B%C9sDnXU$gS)QYJc~YL62aFBSZ)|Z#O?U5B>k6r{uAU!>p9e8=nGRR zKYvP+P#~Q`HWP59N7mwruz4ddQ0ORwlHPd`tQE9q*blQqGCQm;0F+kHen4%oBc2ON z8x~e;@O}S%2DjWFukxo4h=VLIifIFp70U6z*(XPs z$-qO$A3i?aPjG&jnK>kLsovqpk?S? z+N|};Ivl}imeCx`Lo-drX)s#F32JfEK2!{toQ4LqyNN6fM31J)dt#rytrw_b4;?N< zbLfL#)K{k!%-5%wKmnO!2hZ40{{Sd?2Y|IRfLwsnW1+QEoqmY+$cm9)j|T^Xx7LyQf&$#+DL?4L3Fg5-&uNmeAC; zjb1Y|j`~xvjwztBA4xj|gw7{OTHLnXp|KnS2N#+;{|^u67dpSTFVmNRw}|pnGJqLp zZQ$-Fz<}w4?4*vH-b93y%gaEC!zJLC&3EH%pKtp92a-nsVHS2C$5B9&Mh3Mr3$G?# zAO*FuQK;-2fO<7Xfryg90d?uqINV++2R&|S(QzXm2Vtw;m$fR7%O7(Ldm_a2;vq?i z#un4kYKOCAjSV*~zHP0R9?RK}L?wp~%bXvtja<@zA<2Ss!-mU*do6Vq5ZTy5m8Jsp z7WYESc_^l;2wqKsHXG0kTV6HZgONH0z$O}BWM_$a>@<()q z^n#L@eNaem!FjQJT40T0h_m2e=lG%f8Fk#P1VsRM8PP0&-o*6kPe->!y3GXp?3B`h z7NqLXKsiTb9rW-o{pml>li`{&;nHV+xyxfx=t<^m)(pAeu#9p3Wcb)^iBFnRNV;>b zeat=ZNN+{|fUo4&2QY<2zH|u`xQ?(+OTy%Ox4JRF)Aha=>#Q4#$3k}kI${jUOXIg> zM%>HG#^AK=(OUZl|CSs%7fd$!kvLZSdPz)XW~Sp}#8wBToA);QVjTZNuFKo}HL7S&l0|8ID6HVdNU*@?e6Y_^!dOsB z&5(X8)yeCT_r5SAGtX&!X_=fDoGcV5*?G&ldx73oIq=c;p!m<5n$gr6jXUU=RvDE@ zaEyBIo;4+Y`sgf3l6-p2?*6Tq@e{=U*)WWx7g+&Lmf6toz!3{|@rsBwjjJE_9b{{T zS4~cbcSO1G&G9WgmeB3Nh3TRE{GSp(qlDF1h>n(ln{f;ydr%7zU+B?e33D_c@du4`Fq!`UeH^8-1(zVY{FxC)}zH3 zMpTD%C#2**`Z{bG$*C7waf<$&8SU!lCI=jX(Z^?|^OX?R;;;l``v0lwRrZiw@ankH zj%VED8b_Jo63%DOpUsfpZFBme!YgpsuejKqh+D3{T_s`n-%Zp=`Fr`PN z7zPf+Us+QB|JeKPK&;#E|F=6OX`&>vX(U9U%!X8ULS&T@GBdNalTi_}OGfsdg%XPF zWRD2RO4;*wuKQLQ^?aVs_xt|3flR1%a;)2GNN-u3jPVvZIeRbCTDY@{E1qM0(LjOXA`mkbW=iHG~ zg$LNS8qlav08?TE?obE{g^$UmKZ;0XCAE|_Vn zlz36pgB!dGkBu)(9}?8G^l3g0fUh_mhP~Mi!p))=vO5RneJI%+%pj}LypTy2911N( zAhxHn0}Mqk=zR4hmvMH;!;uZm>3RXvTfQd;&-4+$(-l1UC{&k)lV+)4nnuWgR?ano zkvNf&ljd|+A1F}$J!V$B5_)SgLumVPvtO3re3?M6gWs4{Z9|u6Tfqy0^;ha|u6CT! z!>M6JY6eU35o;0_`+ECHP32p#EPOzH)%tzz7M{yQxm!p{?WBelv{ZXS$9#()REAK~ z{!(KE;WDHGOst73G-}mto{LGYTj_M`LGq?<6I+klPN#jRD60u!>e<{WSntcl13R zd-qaUtTkx|_5N`s0lqtQuHiTyd)<}<&tkt6{2xoB^X|bH)x4fMda%!m@7h%f`3r?= zLt|r)*_dO#+xf9uPN#hc+u4dXu~A^2Rw&X>a9NgqaykfdT-h_~8U@PuLLd~yd*=Z} ze+jTH+u=gvJTDSfcw%A&jR2$%xgLK&Ta_Tv(1^b0PWT!pWR^mqUCv4-!MnDVTf?)96>%rd^7*A7mT zav3_k^-4;oV(c0T9G&>l@VG>9s_%!u)J%?0YqL1};EcoN>({Tx zCZ2b7cR#V&c*TkpO6gNmQ_*$y_IpH}Fd|$S`FOhHRQlDCqE?cwf^IDw@#>9?`2X{V z4{I2|3BwpGrM+W~#<|qzr=YjHZQ)G+fJ(Myzt^$bw{9g(W!vNoT^}2svuz#A8FN#A zdZyLZ#wKa@W1&+rrjcA9Lz!oNX(d*)+l~qUk^-u_>fDX)V=9=5%4@5Ce0eb|6q&jg z0|N4d-*~*Y4kn?xjhdQ8th}oZDku+KI}`xhAzuCYoCwBQR8V;UJ?w2@9%N`Wp(_+c z|LMIep2ZK7t>FFhTbSdaSniO%ze7nC@0YmOPb}P!+ia zLe{zlbqU)6+7QSGsq_x8c>~B@8*2{UvmUTk2N(+FUd1@qa=R|>p$Nyxi24Bl+cV{i zrpAlf^nu+qHvS}sBS~aa(IXz8Df?sgR1rD%rWL9mMD%{F`*N~F^#*>;vL2qx=h&@lcTn&Mst7+^UIbCC|B) z;(SXnUz`*8FdYBHQlBN-?lJ}4(R4qw$D2c)9?fQ?g(lQWWH2erJLB7HGEK;fo5HBA z_jO;q&wsX(|lSd&|c{7^8HCl07X!wc2o;T2&o_hx=Yb_OYp3 zlk8IVR6YB`L#3-@6DupFGPW)v@y5su#HOo6lyTM?>!tsrn}WD@+(N73wd>23_q`kwa$+i6H5KX}~1CaoN1L9r|3{gTYpkeZene-r(D8nmqJQ+JUS0lHVrIo7)}7^BD@kbz)*LvVB18!WWlvwWy7`_usG7*w{ENOO|Ja zhBEXwl>r7hcAf*tn2=%|&PhHlCx-$)+dB^%x4|48PE>?q4G|zsz%kXo>uD|E$eq5D zCScU?z}??rZ+oWa6sLdyE#!+G*RESvfQA{3jF<&asn~s$3wH6a@6%M`H2FT1MkN+< zr{lDL$xP0ZoO^Pu1y^tP^d*~LHZV`4ii4`yMKnb`u=W{@VyRh0LXtdJxe=qp*#1OP zUG)&P_#!ZJ{Y$NRM~&O9VTe+DQVIJ#{(%h5V$n3?R(gATd%4lg{Y`Lvgx`6O(hVM8 zGi%??-}-J~bZl_k$|NgzG~)4w>ZH7$QNSDMw9X{*;Y4W^Pl@`MOrfQYnO!h#xo~)j zt=XpE>aS~^%il^z=hjfiVW_OPuT3Xe$vvnvkqU%+J$1+2(Eg%oI%tA{_W1cE2t%=g z3QF|(TpJ81aD^U60#JWMCoMQ~me%5f><~DZm-Y$4_?dQS$6ub74)P76TeV(6l>JS? za}&YAtEVM<-Wm-&qYi4?A|0aJ!TL_u>}o6T2dg0mcD9ymiSD51=i_I}M)DplQ60{^ zki<5HhH4LEcGi>U>4{?%Yn?i`HrO0N%aaE&5OZZ@1R4S1`pHnFBoX>;^Fd3d4sie6 zAhagzKQjP+uIq~Re2n_3%9e@Hs6dpT*Zw=l$j)ZS%KMFQ7#cUEu$*5t0WItAaM*n! z8@elPx1-9yxg#CAOWN91kBM$%Zpb*jt3jn@Y~6_Ji(s;Q-$tv3BEEdQoZCTXdIU+& z-$Fsgl!z$r%37xsViTSfAxOxcbKf3Ih5ruYQLKU)ebw2L7y^PY<=;A%Z#26FvnwJki|LvVq z#?_JM-K2lJO&WjRdqAE^eN2!re65mQ2pGQ+_J;HF$PyV{Ef0$V77I@_!xL_%K{XPk+cFrUf0AOGuI5p=|_2m(q0=4lnAZ@!G|B?qn z|G9h+>q{a-W3}pM-YIfaWe(cZW?$6R)xGkgv0-)!25lKAeNJ0%DI-Sgav-jdKc=+P z4pDU`lXF1z*&y61s&^;PlP)-N5j3C|nrg^|HK&_`NIel+dHQz5W1=W)3M}Sg%?R|1 z!V%+bkB`M)so?YBy$KM}=lc?J{US`#9Rhk5ZW5#21O@LcJ*SMI#|#@S--Ppyz^OzJ zdp49P(JDpLT?6-x`0GrGi_hfDj5ZF9#5)Sw_VGG&@b1a-^nmy9M@$f+!`EO=L#M`kN3fP~V&NkLugN5InV^k(myE0}oG?{tTcI(|9E;37tUbr<4xJ|rM6t4}H8RW*eBi+FQ}+}^3CG_PEw zyRyGoat}uIeXR4f%2y=_q2I*z-NA_Q-3(2z+M|QT)b_?I$Lf%_&Cb5wB9~7%5@$Nl z2`6w!bfxSyc}>c6d@^%?HJf90_KC_e$?Zjt_A2Ud)1xqyYnZrC;cbYSj-z|#J=Lt5 zN;Nq2)Gc~fXlcL428Eags<(3wnzxlt_*5QU!j-hZmF*w&)4ai!9PlMFfsO^5+(c;? zt*x!oI>e`ZcRPunSEk#E=(`3nXTp~(3HU5XnE^-F0VA~Bp(Xhnm?KLM7S-jc)1v%i zzf_R$WT>!9?sQ46EA+l8M7m;RObl$RH$|9>?)03 zj#6cuXD3|ZU-F1`Hxi#$q?K@d7JBC9DYSzAnjFMf_v$W~TnFE}uL=90r4p+~pShjW zTWt2Ckx()6EUT@1W7AJeK2ynZb9FuL$C4Wn!IUjL(ed;*^5Q5A& z`Q#SNEMZ2Yc{6&#{VnVJo(4<-gshN6c>EP!41xN3f6Wb9Dck10bIg&e&wN$v;C1}L zYgI3{fh|Wwwy;Kv+K{~!*(S5)H{W%M)(?P~XBKLJ3xIg)CntVqhoy|INv+Lc;l{#u zfnQ=U`2HcC_Nu&xo6lOIuZ2_rBR*o!Ed%33!-E(Crq1Vb9qf6IwR|Q+2{%(PQKVZ^ zt1UN`NzQfI!;EzX_3_tK?HlI4ZAccH9vGZ8LXCfhU@rT6y`GLhtnb`L=N+!mJ#@8Q zbUU=K!toDGtN0G6-Izi$>D39EB{HdHB{YLmdotSKgLBdo4OI@U)D3g{^y$-R8C$(9 z%nsihIe>N}5(eMftLhL4mUZ3>VrVHt3qyQeuWu0I1B3HmBCQEORq0fw9(CLB;Ox8f z$D@)CO_pOTzYE3bkXLolmE0-U;NryLNt2&nnID&{d zAFCFhUUh4?(>|hrLT4I0QJIm|`5-!?|2KhuQTq1>wp&hE+eK!MX|v(cf$@-7YOKin z*y;3H2co>243^9XA;Uigm5i z4|;iacoM87i;WSh>%>{xEMTH#%ObwQ0c9;R+<`~fgZu}MyuG{0|PC(BMX-z5<&-$u=M)w zD4~qYsL_8+R6(9M!4RVits{Xt4VyP&28zX||9Jjq<&ksvXt2M(^zfNRXgswyc4a`$ zU$yL_*DqRGAo)hD&r8cHo_iBU3xE7c6E=HeX~ZU0x1U`i?BWM7NI>qBy^D@|>F#8V z5LrH?!@2jKgtKBM!+88luM8WwzvNueM*E7EU_)PlqxbD-*WHF#QesmbbjU_GI}zlU zHF&4(UqU_Hp^Bax0?LOwGae6|?QeR#wr?k=I#GP+#G1px(l}5;SGg*-EMXlDBakp= zKZ<)R^;YE_7*gK{?&mf=QVnjb%OXJ^85*lM>M8=wR9T9U+bY7l5)Dw}gJB09FbMZ? zl`Fvd4gv^04hDwQd(C(b!kgdOr%Q&&;nc(eADRaWtTw+a(EVhvVd=^CWx_2BYV7QJ zf8e=D@iZy6eyx^8&ma}{z8b3`tTTZLR%iRPixw^8oP_i6sTbU3d^-m~p`CkaW1#{t z()x%W>=|v>VyMx0Mjnbb3B#y{Om6BrF^wEpz$O?Wd>2MjazW083W|v*?M?-@iaHy) zb+cR6%i(V*ev1Tih7O(SMlBx>x#*gU0G5!wd|;bq?p|Ota2QLDRaFzN^aNb#vet^t z_)BE(JZL{?J5*}yz+F{!4|>D7fi}}gXA*{)XZ5BKVD>=h*7b)z-|q_mOv`SlfOySz zALi?hy|)gG3gq8;Es(g2MP{V7a&C5Tt`O8AP3uINRr_A`iPO_%gVSXKqJb@vXvIT9 zgYU{;4Vf*wBUzx*>Qv{X1Z~&MjSLST#|y_3$@P67Qpqd=iMX*XQEJ=7@!YFJ0W2w5 zq>1iG#VP0BxNLUR@sGtv02$ca!4nc_61?1~bdG1)scyBO9=pKsyvM#nRTCQVP)soy z|2}4UM>dY`{JLvW$`Q++_S*vG<_l z%jq@};jM`F$&XWRLCjC44eVC+_p9&gvq$M>k|vPYnt=ORYXTW8u|eyPmJj$@P2rY+rdh|&Z&lqYJEwwv5DC z6@Vi_*E(Lv+wS8y;iHN2s)?^OxxXRTo<^@L*1QGWjV&-9O$jCy(#g3?GgS1#4ArD~ z{cfqA7yQJBcOkApzVW4GuRUdu^%a6Kdf(Q+%aY(F&N>(*r#?2^t-%{0z_ftH(ZO>j z!^L~gF4_oxXnL+ctzYY;2a`~8bq{_}!;@S@!w zjR_W`H9da595s^GarTFKtVJLLHjB|&oZa&J6jLx%#hXF|?^10&2q`qtO)gF;)hxoi zg$_qY9{IiZ3$!44r!yzc{V2R%tQy)?7Hs+Q(OOC$5xTBjd5QU1yc?OHHsL5RQm8}s z_Tv`vzXe9l2{^wi(Vea0m^mW=encWT{LMUV$iM^ua3K_+GXP}6D8O-cA`#kIS$}`W zl&m4;7bx5e*%XETrsj)>o$}~cpPjH6mYy4y9^%ja!T-1c5fa3;Z3b~AOCb}{p-PZvDk+}g5f^_+$lCyZFA9t&cW&_EP#4;SlMtT}f`;%zkIU`$4y@2nfzY+*TK*FiGaGdGq4BAF)lcvy~yV+HSdWTq9oeS0ztE9B<~uUqO9 zKmMuAFY^Px`G!Jo#Fo2F;6@hJ=FW~-BS!{B1}*E5(>e}Q+#%wE_bgj% z2U(`7V$MT^vpxqx$J!pPCi&|Up?5bQAaIkZGwB`1KV`tA_#~6I&z_5p%VD5hRb~$m-G}rK?O&l0TKU$Y*T+HcY=J+fu{k=f9Fasu z0nRN+K_M4D-)C?h+9>H)z)_mxb<_b3yt9K~iz`x0O2;_BG8y;Jo$#lovB!rIt{#Li z0(TIn-ldwdzz-Jw#E19D)YMiYzZZd(xQh~7SL$#-uv}YnGiy(U+mJwO@O9Pv?{5|z z1o&8#umBd?n=d_aPCYAfy)lSuUm!`mMX*nL;Eq>|HX$R_S&D4>6~pwa;~9e}m?>@7 zPLT-sVZPp&P9`3BEGkC3xe zw9(g>C;?nI{Zzl*PE%7QvPv%r-`k9WuqHzmh!gJZ`UYz)D4%I6PaQGXxpQY_bv1Wq zUCM!PaCbfX#gF7cS<^uqTifKRp7G(qA3fc!>LDOr#u}|~fs~P7d%qyt$qo_*Wz5x6 zWe`fJJ*80l^`QuF;SW2<^_F*ws~3l_h;Y^5enmJ_4jWC*-GtB;R4TgL8y9^0W^yE( zD_7?{&f3ADY!7}PS3$zOmphnp6BgRJ86Vr+$uM#91q5Fy0;j{&C&R{jb7y-q04Cb* zcRB7Z(vFV6cv1pFS2Y2#YFc%QNjtmh%xjqIsPb%M5rA+gsZ`Bn(cA&g4Z%sOzcpoh z@0Y38IR_LNd)!8SDPR)-MHFuzPz`UKCv%-4cli=+x%xOtBT!2Gn_!I$m$ObXwH`H~ ztL(Vl`P%Q)0Y0?*Lp}+;HRH#4bq1(4tMd9W00C@1s9lWc^LK~<%VRKiiumw$nS$EN zK`>a0T4(!Pb?jKoUqG1K>RQ#oD~$78dq|_2c(MGD(F3Nv;w2o*?3JT`?AWo`l=t_M zBU!RPW#k%?08!xMoa_ABi$sJAOTyJ3UHHHt=$1q%-@V)E)Yv0gQ)XE7W>Ap+zVcav6T>LpVG0rB_m4`34xxKpcIaN$;w&2xjvK;|Wlm@EROKLOeJXGGc`0kl zd+c06R4+HW{$9v4jCoYU@pIK+8`=$rGPrR#4BbPq;Bk++agWFv{lJWv%L~NfynLjT zfS+ruY!o$)$% z(D>H#n|4*T20C^sI%peFnH*Rwmf)(0umGou%NCx5sS43Gy(0<@3B(DYtN2V%oRA17 z3ipWZ%18=cq9Wm~v7b0+B-XgVcy83VXtScqCVXj{}n1BEB!Jn2af#I!3rFn<`pbJ8mUuR>z6GJamPZM*8l zagsk~bbkG8=?6%k5Mzz9#dG_W#^V+4HB?l{>^*2@ZOu0qtLC)DkH~~bMwQ^Rn4f}^ z75}!(16U;CoL{3Lclg<4o|I*A629I$LyY(xFgt-_A#! zmJ;Zj0s!7`gQ|`@U^p_l1ICIEj4p(S$hKe8&F)@fMD_{8ZQgP+*H;J(cTI?br~#n( zT;`Qd*KP8)xqh2oN&RL3!iw|QK+7e!QGR)H7i)t*brMdo_`5)Mz~SH{Jj1+a28(0o zy+HgA7%8m5oa=x{t~(?Xv|Qdkj|kd^Bq|$(2#ROlSp{St(|i)U$G>rph{h#nJZPdD zBsX#u47TJAshda%CFu_;dQKT3+xR!xfG;cJfSB25CWPW3igQ`Ru#X~H2}`Iq=*li2 z`*4^WW8WB4f>$}t?7$_KM9p&OZz9`?t4QX`_&QuOAPKJt1u>?8oIBoN^=c)RR(~$^ z1xS93UHa;3MpdN0$98J<#_`0wy4$`TmmIn-CDqT(f+KtwMH3i=#~sfDl^RI%@P_X~ zz7+8XDj6Q_oK6@fsvqW0RQ4m{Osyf$)4|?P_|^#Ew~=rj7^Ru~5I#V_%K8m*b#L|; z(NZjoT}ZS;1^T6cX2|%0ghj(OByrLV2qY=%*8Z>ZbvB)_o## z32rD-0iEIekhjEicn-o5TH<>2mUR~r^{T_~&Uo@JJie$r6id;0)d|Du1kdBf<$@
1V@GVHs(3eQw)9h(zG z4_Gi?hf4LoS;!(9LO1}kUZe%fT*;{m?ww1h`(akHs%Mvje#Q!XT7Sk0f{HWmX&zkJ zOot;5UyX7cL&%=0&pB|p=gDpQ!<|Dz{J`tm2GbF`WFf0VW(<^56GiHDprqnQy5s4dMB?e+Fb49}d6N|2C07s$$LW|{& zH7WNA%;$@)fdc&oydV%=`S(md#p8Y07dWh_FBKmQaoL;4Kc?qwhJ_ngHvLTAXP1~o zjXI=?uimhjAaHUG8(|?Uo@2Lv0!z+Aq(=thbeqSY$!Ni0?ogD*XInI$5dU=KlQ)(^ zbe9?|Lo*foks1i^DQZa{f^mFsIH@wJR;oBrs*~b#pjoP~bh5PZHpT)UCo5SmfnsfB zOyEbtg>-YrP)<$`f{Q4>R5K>TMfNMVd{O}YpC7_5hL=5AAg}90?W7?EPlU_dYz>u7 z7Xg2RjK2&h0MvwmmGwz!fSNZ%BQZ^jSt7Iy9l^6rn)2jtNBnF6q8W0xfQIUO!R0BDGrre3po!2sJBwpROk#BDLM~Arjt(&;FQmNBgk_*em_!mOvl*@&9-Q!i?1J+prKMdTg{F~%SAg&e<7Mg|bZ6Oq>y z(62>iiH&k+M)@GLg8*AY$c#zSE@?1&2D&q<{~F(Yk#{Q{z?LrnY*FyY_mAg|-9Wv@ z_tPu(&qNt+CBZA_h3pXy7M9csmM_hBsWBS26MILt@AH)XyMW8V8NVD+fRwyYz4n=n zoHz9e-suYGRAuNZtP$RAI?#TuRLhvbnRN}iPk3Y-gk2n1&#$qD(ee8JPvHI-=JU-< zhu?CIQxeF$?c|X`2!Q&Hmm|&1_GRNo1A^vG1|?CpXB1CCXH#dGmi6WoQ=nI~YL4Ai zG|TeAYpxA~!!j!7m7=E5|H6$StJ(_jr_?vgjgh{nx|M>2)`};LU%006^G{AP9taXMYrJKW2-R`s0WQXseZkC{sZey6pcRfufPz?Ncihv zZ*Rgz*o!#_PYgr4W-=OVao&{*UZ0wY#vgXCnV$|EG57Bc5Ty?5UhzSZOt z8M{jAF%jo(B8WGiXY%f6B!A1HADb;M?`;W>m7)1%EG*myf2iMA!vrh$;&T)3qLbj!O4_A>je@2`c$ zz$G2srGwFKeakpGwGyLpsJps~a0wDX5|H)we*Np-&?YI>!EYHqC?V*(8e6}9y^c7> zJD+7uApZ8}EbB74^mCD!pj6+BQg=1q0k`*L30B(zWjbsSkcO;jneEw30^5E;cmyA^ zww_;({?FepT z$$zAm2tUxGpSg3+7in8+>bn5gc#GHy;)AodW491aupZ3oOJhUKzYhP8A7H-y{#ARt zvAEh^B@7bnFg5*8kV(*UYzg4vSwo#P3UCcUC+;_uVhnT$$HS(YW!`-~qTiG~TJPA! z_PE3cbBX(9*=QD0fN(3g0pV2k_Dn{g9%-9GwDu~%>`)o?>2uvL0xmKT7`5AO@ME6U_Qa88nbGk= zhkMhrqu@nrW267U7io}lQBWr1vzH&*^S6)?C$IDH-J<3BXGRp|?K}E2|Ey@i9(_Rk zvjnf^&N)rZ@T_`*akKF769{r!v}qnYFg2sS7cg_AZ9CR$84`?oPdFo{%XNgm)NHnf zGW&L4P4~Mn1FZd3R9$*E6@%;N)3^2RGsTJh-OI9K2EY9)r zKwS1fRz{cK<#zCLf_1?OdqIv2=KS^iY*1}*Akp#rEi)_K1U~^*O9L932?iQ|#Zr3w z0~TCr%=t00EY7gB-L$J4k$=;M{vBcYSU`tGVMo&Hxd)`Lv-Uqd*UyF-}Ou6&VR7n2for} z{~dx!<~>zxKbSB+&igg7x$0QL$rb0$5v;rzcxv)@%C1++ zv0Gr!0J@o5r!>q;);hrqCF&R32+$eJ-LSsB)KmDCh*%J-0rr#+g+!2p_CZd%Kvs-y zb2;>TT4mCp7f}G^=D~)>jcNN}Rq-sGu>Vyz5;w`dseSE5mCV2VmL;QGRxIaBA~zln zp$dJ?;4g+@Zh+kOEwoB{0$yd`u87M7`5XsdwS3g-Nk}QEto|b~8d@@Mf|^||TF4|l z5Zd(Ei2LS?fRf_6w`%lg5$@ho%Y5wxARgpD4!%gH#vo$4&-lz=%_}F7DI8d<>M`fj z*{75Ew_WHy78#sS_N>SAa4(T62&;%-#Vha+0oDQn8eke72vX^hgEVCG@351 zT;PWU%D|v<4H&Fu8l#>o1c3}VWj6qSa!5h5ftY>sNy+?x5>_`7&7Dv0#NT`uuMM8Z zQnpV@hkrQh+kz$OwpC*<`?TuWHmit(rWKuG4%!LAuC;Fpm3fdjXdgD2=<&_^rg={{@xmxJM#LuZ2U3I>$U;H z)zx2vnwTbnQ>+yzO~{>9F>S9l)Y94o#SEk34-AS@gn@--UK@n_;}x`Aa~~nvzmSY| zO5liG^4u}-7>}VZb|6xF~<@8%OFlLNSKiQ7|VMs3yg?v4w4zpY? z`rcX60THNslx>jCy50Wt9=i*m{Plbc&Do<>*R99vO2yP(!zimYzIEB-gzkhtQ z*2(Qe=%d3`z(GyHf=1a`8-4X5LXQ2j6kH&y-Ia{<`~P~{6 z5Z4aZzZ(ZAD)MeyL9-MQVB&)D1sF}TF`f8rEyTuvT_%A#ed6=a<89Y90YX4gLX@5l zUXD0Za)VMH5=eEK`UDqkkrlEF-f_kCIyjgBhm2N;R>EcE=F&c@Ar$+`T!8<*hDyD5 z`Ndjry?+U{4~>o4nuNqvKU4 zPJnXh$0`gI%sVaRFdoCYnG#a98kH9Kii8DgStN3u4}k++c6V<& z$=ELs2f(Amkb?+ld=&))@8FE*BZ;)j4WtE&5|IZ>s6=++Cq$YJUls?3_NMor@K1pZ z6wc`oyL&iZZ!IG60zSG=2D?}By3pbVsWVW)si?q$CO<#_M~?0$4%qXXC_Q`{aHB6` zbR8<&eRCyB;4d}F?&4L{6Vd1qhza?1=GLqk>1>Ol} zZD{3yNW>FDRhSHl6|gF*x8j*r#A0O-I1C84g|7{QxK!cx+q4fapw8f?FzBNYVkhm; z7xwWcc%$V(9vxavNaQTwCH#qc9R;OAsqNa*(h{>X6)+KLRmyoi(JtxeUEZp}=v^Vt zfO&WCi!qwNe93E60I_5W9W4qD)~ZmzT%3tFi7)}}bj-QL9qak~5}@j*`pxV+nzH66 zuk^o15{kqYZCD0j$*-KX-huJKA07$~fr&Mv zwmAw1{u2rtg4>L^5gWnLW~)|%iPppoR|^*bHiL{8c?an2Try2dE9n3z8i?M0+7DED zW-dz5S-iuC`TkVg2HAQt;(4?3K*5H5+ z8r4NZ{$#~d@Z>r1E&=O0_s4}N4ysGqER$i8?r8h^fev%o0N9K?xXsM~1ya@kjzzZ@ zUsrw>ByvJ=%{-V#=`Ng8y?6n` zqWuAXJD&!%|?GF@9;O+gUbKZ`b2y~p^(_Rm*sOoR8+mCmD#*LcLM*+?0U*sojII2u6b=_j zu6Ko)Rm=~VrS1aR41Vak{JSpD+sPUl`*fr=8kNAC9|e@?D{5+f=Sy71OpG!@h>1TO zScz4~^6>H1ouUQl@~7J%dMVxjg;N8WrRH-N}3z#GHLzEun3|?*kWe-oLsD2cEpADDs$Rd9IOR}b=8-CiBtvoqg* zIp1-?&GinAlJmxlQk5Tg-+10`2-3qvdmfbk9M16+S@e0r1GJp+2A)g14yNk=FknlGNl?rwp?a?ghS;AKO<-yp zP!toa<>j;_{L5L09VF0(1^)|V7S9}k`^rC`Tme80RE?F{hf+Ot z_Qup!%hwX_MKdI~``oiH5kSj-d1eS7oO8kR8iRd-;4dCFfpM4kqE<{pPdpl5ej;-O zZt9vXsy@qke}P%&>j|cBK*kkY6Npzni%0Rw%UW8;Q9wGAE@m4+KL0nBU%^}}G*09G zV~N!Q*I}VpgR}n?{HMfXz@UW^q1crD0s;bq_qGhdo<(E)cnFU7W3b0BStk1YlX*;p z>ww>MkQdAb0g_iC8mf^~_8&g%mm@y_ap=s4z4!pQ7wTy8rl98FGIn2R#~j`P>GMs6 zaq7tsf3 z#)seB+e8q@?)O6f02*DesL$Yta8haeTJ5ZYN~LzZjjURVY~+Cdaki9QHS0hLq2^En z)sPsv(UK4X-~VmF?r+E#z8w-X#y2S2NjUA061d!|>`oC(|3oatG5A&{hwS-v5`>mT zH3--HQ=@=cdM@qZS9}Hw-`VJOL9NB#nF+|+0LF*GJ(e*N?Zpj+%JGsMa-~nc`r)Y? zg0h9preiS+XubR{Q$ivrfiKlBHVoJkqE*#&;us*}(}+31NIl@+FUVTpkDqlf1mWtddI^HzZ)-Dz zO{I}O`jLMIEVn0in#|!Glex1xB}Jf-+ z(*GZ_`wW(#5G@*8shd(&`0d-b7aYoOz$f04sNaBhnTT~Dnif!BFkgZCH*41we&a4q zIc58+3q&F0mL?T4p**YebX-27i_AqhVsa|Q+GU)$kZNDB0DcSavRByg+(`ir&m8n-Lz1zInBw*Nx&sRx{%7tFEZTuqOHE?a2aaxmk?i){VmY*H=X$lT>I=-T|>a!t0+Pz zivKF7ur#vC3xQ3A`M@U1*K5bdI4t*<7YLL2iWSST!xTh$uU@@Me2ksHK&l~*Sy`R5 zu_R~>M_`W$nk;-bp#?u(yt__(DA^u0sdPtYm4v!f{;$LLCn3>%cTOKvfcZgj%%8}l zCA4@Y{*Xm{K$>K$VA4zL#}=(nWB|Tprv5Z-TgGp=gfjxArX9ROdmMj97d56>^y`J% z>9^PP8~*SX!IDC-|3yaO<{Vs;{KE{En-I?KyL zrU6i?HJDLrjv!u=1M=-g)MY}pb^tDcWl?kTKkJuYZJhud{X5WBzsj|UKzTx&uib{r zgG>wVN(idkX#N02n_~+Rwb1)~2!7a5V&1!%f==zOxG( z=-tm>^$2yj3zo1*0^dWm*ISFp=4het797-V_}J-XA^_3dbo@vwl%JO;@-Yh4iqU$D zdEz$;u@&eN^`=wfAB|O3W_Z2(Qx2u1UA-qkIcTBC?_XoTi!aS@IkQkC0G?zYN*GLU zP~1nLaX)yyY2BZh|8XHv$o_C|hyVk(7z%13e|G3Z3cfcD=DeSX=vQ3oZxs54v55Eu zT4pvJ)a6H@<*z*#@oSww)v>1EEB}MYr91*=%xd`tdm3OL0|+meTPN2y%_!{_IEp3Q z5Us%ASAHoY}p3!Ux{qrA5WsL5>{gml4&%S_SB-2Ua~Zi zgCGJ*WXJw5P5pmq>inPPNwv|K&;#e3jQQ*h*7as72&>>6_K9cO4hLrzOe;ChpH1_zj?n+KmK} z&Dh9D|M=V&1XEB)O_5nAMxa$|T9pr>+Zm&bo%2v|uk9qX0APStIMuh=x`szOIUEmN zzGh}MSg1dCqNBrObM#Om=S+6u1p^5NijFZiSdbl?#GDbVqPpnKxV>h6-Bt#&>RcLF z)bRfO4y|>ZJcUKChX)G_+uhxyX4&7T{t{3wyHQR^VX^_ncDky=+)0zmLh9A=Q;-fy zsj3|?vYniJAz%6u1uy)j1Y8&;B{)G~Yz}cb_nb zI%^f#7BBU~u&oGimC$p4m2=fe&sa?pMldrJfGF@ZH+?g`vUOO9m2g*}rmW&ieQiT1y8} z-d0*#gD`EU=&UW@#~UiM&ucc!%YBjAm4%LRgFRzXqu&4?Dw)hy-qQ;`WJ>(nnwql{ z8(vn9k82j_|I0&%1=&luw(|10x)Jy$F+(%dGndTl7u3!9A}LJ&411IVU514^Y5|AW z2VF#tx@uHwMiL8_Sy+v-}vFtLG=H`nEDiGKPdQg%rr=R9B^=$^(K9RS8yq z|1ijFmJ-!s^Hs1)b1? zc`DyMTTRu1#`p3%zp!_#Ul*N2UC+2CMngO2zDhgI_=zee1De)6-uF}w#qCzKo}9d4 z*g-RXYvSmYyT)xar-Bm<;a@q`PqGiW&5pR)I8dEXBD{uZwFribg+T#rmkggg^6Zj+ zHJ3HaG3iu5nRo2=niZr!SF>eLg@ha?7C&wTGo2snN$oG7Gy>r6NVjLYl|jPmc>SxZ zbDZH-t>kUW^Z(f=eUx{Ce;Pk=(#dL73-wXQ)wM%zWkYTWtxC7i7V+=i_=OE8LDWP) zBM7Z%ZAuw%c@K8ld#o45>gaD4sUA0WSk~DyPuu%yt281oyp@kR>!V-3Yxg!f4H8AQEGlAe|*|6GKE;- zR%5o^)i5k=mga!&{oZZdIufFLDVU@THaGU_GvV^G+MjVEa&C0Wb0QbP_(H~?|2)m5 zYy9<8__i(#S;EeTcyjrE37r#_#q5biNUi96B4Q_dtex}MN&J2P6+`f_ zwA*BB=>_WKSsxki#PnAZG2-$@O$?QZ@OulC0HQOE2^lUp*}pz72?kL3-aPXocqdWF znOc}>wO9EFb_bJj5V=O+ixe(cTWphU-THqb-2C&0(MD#DWDZ%Nakr8|0`(Sd)ZF1u zGo6^E0_w(<{S$6I*ePZceG4(wjppm8<}Vn`h{L*G7ra||7Jpf?2nnJ*eV|YQrQG-} za|)+I*FAYUqsa1<4Z@JvgC+G-QR?fJ(iGwy`brap3TLXR9{ z{l*}NQ4l4(Q{DVy{yNu_GGgz`T)6+u4Jq5@ge3@03c6!_Fum%uq9TmcpZ5Jnu*jHad>a-rVyQUe zWKPu#w0f}uEOrcPe%yp3V{21TF%=z)R-Y+eN6q!@>bfGXKb>a94kSrVij7>*ktY^m zAwpMF%zIQof;exqPf>X#L71EZvR@kIkHs^YGxU|IQB==_BAqJ0G|Cx$h?F(*(+f8h z-DFpZG%Jf<|M~@LL*morq0%y=EZ0b;ihUmW08sjsEKA z2SSct_^KtiGgCh*m#m`~;48bl_o{(H5VX`QONR-1sb`x3{g&p>dEuJzAmIKU`-!Tz zOhd!NE6HVtFMk~}>CQ0iXoA*%J;Q=Up3*`+KVq`JMoBrs@~&7%L2K`+CNy;|)!17} z$Mo2B1~CUHC>wz0eP*q8KO}3e`Wxq5t+7;7kbi7u;5Fg~_Gg74bo`1t^L$)+_YR6i zn5b264DA(u3_Ma)ySvZt!Yyin4L>$aJp0ZxrJvOkZU&f6qbP>Efs>yBDLC56o>q6! z2nu=JdJ`TEbrfX-U_8%$b^>}%Pb)dZ=GZ}dV%rt@)a?ODjrf6AB1SzGxGHQ;yx{Gr+1%mw=mUfyc)y6UrzJMhk;W+Fg54~Pt>I69&sCBESfGYL0LMAx z62BqOM6lhVt1);pVwoWPyweHeWQf;+ULYc2ar-q3$Ag8Wg9I{_3=JbyS7S6TKCkBm z-^^*aLb>hX^OsO0o_P4`c{xkgQxz!%Th5P1I=Yf;s`jC>mQ5}JYy%>v(*sX`f-)Po+c7U=qMZfnFH$J2hKM@9kx zq-zAVA7fL)@pnp#nJ)M~&1d-@a>Ge~@buo;XU7Dq1jm{>#+qTUppZ*FjB&PY9XPH#;@6|8D--v9ofLozM`}#0t=g zlQZNpsL`v?!zSpW@ztZ(>H8@RMm}goKTUity!*u&*5cwz?BArXWpL#TrRUC+_QTCf z+$!&2Q7KB5iRMSNY$M&ZL1?_Kj_dAMz$**z)~c9I*aMU;qkB&-`E{9Z&zbFvb0)%* zIT~X&iiV=*#LdtK-Z0ya`pJEn_G6;fDc?VrlN&(AchG>-iuK=K^WuS=gOgnEZ+Fgx zig~#I=m{ZJ-h412QvFdUEpJL&G0c%`hYlf3j_XeCqB$XfO3<3Weag3gr>J6jvr)(2 zaLvb~Jbx0GFtN+2|I>=mofmgtCsvT3{&ax1zp@|&N4S#}SBWKaS3;?|vLzv4T zB)(OfBX(_L#B)s_l`E%&C1b+RC=4Hvq`Q2oT~O4U`_L;AfQ6c?y+Y@3a0^E zMw}2HCJA*cJT}AhAgl`N6+eAcceKx?pOsTTZK8kb;t^7{*mb9fx}l|FKTH5Rz~9VK zV+Y+%ds%;jS?2DcYl}$^)FeKNeJ?s)%$k0sSnaxkns?Zn7g@Z_-&;|8%_uf< zCDeq-LEZbUul(csKN~fXJHTXEBUWPc2A7wpSv1MwG!k}!Y0tW?%=_C~@4l4w$6vpY z=G9=|q|=895`$#!D5v~>kNpoLp$DzTHx$8cQ-eb3_;=U}K*?+(n%+8Ej_e3$gDxE$)nbDF2s zcy2gCc;x6o(LI#Whq`?8#k5dm=S#+l@U0F2YqoPNg>KqHhl5CK-zdG<_c~zBz7p1& z3RnJ;@j_tWUQ0mnt9uehx+IMO4%j-e9y;K5Qc}xYlTSP?K6%j`xP0{Xfxtn9^M;+2 zbTV?BdndKH?4eH*(!fL6@@dC?TqrZ4t?Q(Hk|1qO{dsd&jaY#~d3Z`vDG(@nRfq|1$Vrpd4rzx(|nZ4gHRsDgLyiS6< z^s}gi%jfx|)x=KZcTY80KfEcO zUU#;%LDBnBF|*(MAWkk-h1UCbBrXby9ynWNp5r)Cq8@OU5#XPC9Bi@LjZjJPi89RC z?chg~4FcbsJgz*~y>lAEZ)zSrQK1YiS;!h-sP(G$^HY?g4hF2M)F#@4D^rQDxx_FZ zd206s>X*m58*_7ro%HjejJZ!*`os>lc0~na>N15Bf<7)Lda~T59=%FJ+CTlih2DU( z6yj$=o5p){PZ@%&L~}FZBTpfF)x*2fVC5#v4A)^kFIFfJ-QNUW*CVjBDe*4dEKsKQ z+38JJ#M4W88Z$tI7fFKldVJ1z{EM{Xq#TgSCR&!yBc0X>m4cCF*Mbt(H?3lgm#1!^C3wLt!B?YlDA-1ep&^xt#gZt$&rZX zHoLc+-E~s*k{6@QwT~z~H1pjj*Bo?(q&&4fDTaFHjKLh^hHhC(G0DvaEb;0}Lia%8f_3cRhj=_%WE^QUmr41XsB9L>p9TSb*t!mMxBJ3S^s5dS6mW7T%Zzt3&KzvgW6%H)5ZJ z&MO|zhSHU49$VF}O_+CTJ+YJCDmoavff{Iu^M4-e+^o-H)BfT|S?`Zo7#csiBj4|) z7)ckDK17Tff}uG8bCt%bE8=n{zY5)Rpqzx+8`jP>Ps=Z$s!s2{>M1-kEGN7;ozh-Kg$VDLiEqu;-O}EoR7>UiH5dvo-(B*VEA}AxlM6W5G@jVm_ zhAEXNjPCCC{&stJ7Y$4!FWD(nyc0XSTiXDb`RP|ZebwFdduhJz!@RZ{Ki2jhvbZw@ z^RC-#FVCEJnCN`zYy73+iJILg7_1pcR0qesHHYz!a~+|SYB02R;Qq1oLk~V4po_cV zAPguqHRN^y=wdFkp&E$$QpK@4&H%d zi;>akWwM?ly2W;*^q z-rhPas%UK+9}pE(R1ic-r5i*V31jH)kd#h?kOswIK#^{S9J)(7L}}?78l_8t0U7GI zw&Hn@=kuKR{I2V}zCRs@J$vuBvNRSQEqx~qmnI^qA1nsB z`(Jqil;s)=K$12R59H9qp3Q9aDXj-AX4}T|ehIwkRyYbMTvLF#MvUy*9tYZNUTr3D zR3Djldc1QCncdqfHyS&E_SPB*AajvuO|>yp8f{K*TWe*0j>E#)8}N66eWZ+D`@KZ<+fee*3M)t0Ee3T?D$j0n{XJaTR8?$Qe zW&gPtmO{ALx6>euetedrwDKNp8M)=F5N0iLf$QpKI-A4H;{U~=1kinr9aNi8PE z8HjM5E!NDnAcYNnnB&Ds^m{-&W>?T~O0jQgP*%rJ7btbT7XjqMaUf8%a?%atkda8N z2F3swe<{NGLGxQD5Q`LxQ%m08pT6L|03~xSKo11V;s@ej_zsY?tOV@H{(x4JR^^!@ zFc4}&9|%6#gGJde>wm7H@ZcsT^D+fvnVJT$loX_!mdZZ;iaT)SUoyk*s`0MoG`aK1yNx9P4Fc?aHFnO2ill@E91wj*jL8>K+ZAKAfsMiiRnxoojby z@E4ztwxBlb0+GVj`b~FE#Eaf2~Zu zy9N?8oK(2L1016*hKF0v(TE3UjA&tH8C(zee-#F=F@mp1Hk|qOFCz&8>HYFgb$o- zrRX0;Z_AWqWW0eYB|*X&JWCC-vm^>;9(UE|tc6V(Vz+ldbQnMT~W`cTG;St19h)qy=S}ArY{CHVxV=_!lQ72V!4Pb#s5|L%Szpm^V5V26DEiznIvbl?96iF`Ct@F;Lf8ghGcp{R^6p z8cu2=u%CbeJXer{jEU+>IVqwQq4B^@+y~D%Lg>|(y&j8&%lZep7T+}Kb8PZm!`tI(2tulSa zIun?l{>2=mmp_JIQrKUaFAayP8oA(v$$XXx=9Tm=DlG!i+Y>-hu0c*{1h24nf{G4j zAhYHtb9e`czq>s8c@$PzuMb(J$IoSl)XS^256TkrX4ZgGfcvd*ASmG-=T?b=Y4VB( zz%oL4sfysTqo4>e4s>K@QPJk)NW*706$G*u?ZW#d;VH$YGt#5fK;Yum$0ev#w~M|p zV%6Bdlao_T+s;#)R2^di;%PQfFdWk!=&!u(RHm_(wT7>#^{V%QSD$xOE3bB~T?;Ij zB8}bSK^+T>nsRe=3Mm{0>4P7rccHm%XZz)XgEm(UPlNzQDx}hfiHYjm2*^eGYxau_ zKywU*cjx^GF70o15}QCLiqvU!D%qs~9rNgqh=oG-FIr}TJKXg1=l!*3CuL2NT3*k& zpwsc+BE|%5hq=W)i?@T1qmkbp{@A`ZKqMZ8)VVp=?J|ZHyMSXvazjE!t@_>XZ(G_y z{iLd+0_tCD`N{`=>Z~69jjkZ?{Riom){I5H-wFAL>!r5Hc}!osL%drn^$*oGxlD90 zU6Qhijp0I2Dr8K+mS%La+JGXU3xZXPO%#OkYe2xX&W-Xs-6BSCxc#j%><2jJs=z9v z&*F0gpx|q3YuhSEwv#|~nN;e1u_q8-4M`*NS--2Dl+zz=jJGOz za%Rpv&I|iaNU->o3GwU-BLOSlY++L}m?>25VDt3832$thz*xSM!hAMQIK67$R!wW_ zm!t*t=2E3TEj^OE1mfPBI;oq|j_h-n`@*7e`b;<`W z0Kq_gR3Fr!cL8@|AsiX{`&Ip!6xe;!XTa52@*=Z;5?JR z@Yo8sN%?C!izSqIvGsE8j9AdPfa!UA_=xLYcyh8>TMAV^2{c(iwN%``f;KS3=@TK1 z*q9Vr?h-yLIvMX7jpvq1RHxE+cOXSn1;4D*w65hRr*IUvrKgZiiO_f2u+Gk%qr-`T zDXZYvp=S$-M{@9A5Q`1UBF<$jJ`T+cG~}q;-}w1$bikQ?dRmN$7nKSlUhzlZlGX|AR9J4JcWGbf;r468We!5I5<9C4U+Y7?32uW$2|K?(`P@YXqb?fOj zBdtvJ+BdKaQasRV9Q{ygb@Jx}IYPbB__4i`-;&zvi0E;-jfAEuojZ~ zdoWusmydUjOC0>re?OY}6&(NP%OyU63?!&l3s0hRzn!EWLNHJt-yaN@2&~Y1oPT3} zf83ex1oSNNO4*dTF}UwlGvCXEGL|A%ol2k313baTKkx(+z%>cJ+sgcVGv-%E@%M!- zPeT4bDH2d|bb05r7m{M6@WtRLBBCk?>#3BGC-FyFz`X563No|74xMfnep$ z@dm!8gKB%dw>%E$*D<bMbUO(jC)1rbq8nD zf@c~WxbbrorGf>2FNPfFFOTr*L1RN5U^f6_VWE3_LFX7^aB;y1JebJ)O)KG_ueO8| z$FreiAvvHD=twlyfFVux!SKtiW2ZJ6vm%Ni+zH2|k@#O%q23#8+5HOvng$eLqm>iE zpt2zxH|IUUCB~A+?q^0nlhnWH2`2iL;dVQMhv(OiG`jffVu_5tAbRVd^4#iy#zSqY zz%X$5;5`HFfelgsv&opHSov#p^Wu*Sz%Y)Cd)jP38#nuUD3g-?>^4am6^@ayqv`K= zM+Ls4FvM^L@7KPTX5e;S(G~#xz`X@;kPeoOdhU#?b;*s&7-*;MzSy4rPtPgA2QD^n zOV`P!JMp%nw|oC(ZQ<@mFmE$IU6L`K)%-X)ktHt zz^JA3fyY0XO8f)Vv3~ZD!9)c*@sr;mkry`uwBkl1YbRI91psWa-aWPVcRT&ZsT~Yv zP5f>|@)$SzY1&Fz#e&M$KOCN>bNt4iFv$6JMu01|nz2MxomX7Syxmjp&_iwABA zxcXEV$o@u9;mZ9kT>Rc&ztW0YXyeAJu*F@6Ff36w9R4EH1ZjDDrq z4}i&zzJFpx{>x-f`hwSAkrtub_J*9VZ54Ej*Fe_$d5rUaw^<2cu$GJWb?w%t8lKm* z-h)vJ^*+BM>}Z*dxxRf2D!BG5|MXKh_GqC*??E?r3`FfSxo#l#8Gm+`Giv0{|BoMY zV24qPIOia7pF&GH__A_X4zIq_DD~p;FQ`Gt1d?$dqF>&_HwI4=NQvyU&;`8*1~g&S zHh9awdc>;XjAkjmV~j)pOug6N-e>nBFu}4{r_Yh|wpfu*bf+}0{(AKlrx}To`+*zr|^Mk+pv{JBkIi0BRw@<$tYDF$%!Tdi~9*;&p zf?QMYaa#slqj6=`MN%ZZBmG?#`vvu)=I|ZyC{X3Uh z{&NMHEYD2Irrp7lK*8)Uyh4#4F8~MtUeo-}&x0VPs#Pdgb{K|$2fX2y|Bd%tfC`7T zS4$hOK0ke7+uRu_Vdnvm7iP$x06@>Sh3$T!MVuMHCf9e5_?7=kuwD8AkSgnn!i)6f z!zKY0K!mbqk<4G`lB=;syVf^CkCX_9zaK~vi4I`%?wR+WvG~>PlMIHjy=C!<#(hsp zNk(zJx;5a@hAF7t9)~(uWIb@wbD+t|Z}|OZ+jrRbRfps|GR@MslmF3=6+uDL8?|C2 zpJn$o2a_RiqthpSAb6p3EQJXT5sczl_?_b)JpsbHDIcSB)qfZz$PaQT#5~@|KKU#Z zkFt%o&dRh-h`l9Ypv~afSoWRJ>jDGg|PGxB;Fr;E_$)eFSv0>my*yU!tHM zMCV-U@Nt!^1?tNgn8aQ9btYL-`hxyPTPLVcabl;FfO7z%_3ihsLa$WkKfcmykiCuQ z@NGteBPMNV|2pKwK$9T}SmlUuA>pqB_ZS{0c>4JK6~{Ahoh2=AB9{BH;0=B`EB4W+ zt2ede|M%ml1zHirKq zf&p_CfQ4F9=T^{{QmK=0Al0pvb3;qI#8xU&_o}vVJGAWZemWA{eAEL`DrH< z72n*J^@{b_s$)Kr7zAU+nfmel%VuQnDIwrFZ!`7c{j!DnI^eLHNdGvj{#}N!1-+eh z58c@e6zna)bUy!S+!}FYBFFbw3S~C%m;c6%9`Ehn{=632c%rwAzfCm&Fp~!bjxyW- z6^JAOEWGm5TPnStGq@6XJ{u>9f0=P&ICxOo*@+L%zi;3_JaeKrc#@S1ZEx})w7k1+ zzwxy-&jvU|($15&Kn?NJ5ZaF~5LlufpCdDFJ>v?s{4o&qE9j4MlW{8kH)u!UcVP9m z7q(bXQH=trP%}>o3@dz=0l$Nldv_X{{o?U|476SEunbCE@F#r(P_7#=Oy|Bp`m z7cUWpTLay{2vSo>m+$1mG}T9;j0)Be_<3F$&&O$2#`yTwd;zfX;k89IfxkMOKT%EH zXP|TA4j0Dm0VPgBRaI4TAA|{X$>YCu0>_BLnN{KEQuw|F*2P`3Z0LR9Bw*5nzXQM$ zm7tr@*9o9Si%k4I6PhIz{@;v`%j&?#S(4*c51Fl>(KfUA7=3UThV*-KbTRSrAJ1uY z4VVQb{t_l%4Oimi;m=b2;A9o^ap2D_fro~}-cNe%Rn+azawW`w2Gq*d^B15-S;jp8 zkP-t>1SfU`0mAsl9s3&1Fj}9$ebfyrD_L9w?Pjhq&it$p)QHT%IozPTfT&zcwp?_e`bDrLF#v!^eaBq1W>Vp0XO#X2|?T`C_KeJ z3k6ULRHzBp?^WTrn;4Df0|tIXxPvYXPjM_bH1>VA0R3VWR6ME3%4Pw)@e$Ndm@5il zg0%4L!8qidDgZ#y-3c(vnx;TJc08a!s|d%&-Y6WHlVpS0svt7aj#bs^p4qF zK!LR~J;Ci~$g6O(lh-~oE#k5GZmUw9hbfqKxTQkJk$*1(h(N!z)8w#-GCm~$F7>EYbto+MW|XQJoy6iDB_3jLx!fyF)0`fGWbZhgciK&n5vJa}i)LH2@P)hLEDmrBU4Q}|5UY&DJ4>u*3mTSUhB^R!!VR`s)zPzqxF??rR`FG!K+!lZIyj{LfRHPv&lhxadq!Th zQZo$>e+N7`w?Y+_SW@GgEZpvx0j+V`0CrW4FTXLRANT0VmqAT^6oDqz!!G zjL!OTSifo6vOUZaq}sSBz@%0D+->QaUHFI_>8fhu1iQ?M)+{c0*FAww z3wm@|z4jvXAp7^vF9*Z8NlZoydA--(M9w}Kd5TMnzpT_%4#naSFriizDvM11baK1m zyjT~G^V5=OXVp1Vb>Im3A{RMYs~-x2=_Mpvlx2QDDVw6iX0ciOIKx5 ze`9Jb86SnxcImhQLCbM4g>GHog5VU4OCt1jD@uWvM)O{APl}Y5|Ehdo3cgEBh?3a| zCNtxy)pjPOf=jmLQ!o>vGJ2ZsKqk&+=q;*Xunfp1UW1R6Z_aTh_7+I6>?! zfYJ0H1t(W^4Ke*oB0L5XC|wX&TAcv7%6{b`)YV)A_Z%ej6Wd9gq|FFV_Vj;8@2FY= zPXnT%!(0s7>ZxxfQ8|a~C@^_4RREs+3BpxLJrDClpt9(3%J6)!aoJwsEw^j)_i{t_ zReF-yS!R;=fA$NZJ|6p2M3ly1(&K?TrnraCc3i47zXl;Bn63vWtHvO+?_;v@0%a>d zIZwD+IJ}BavAL~sY6rC5C%cH}bSv6Yie>}E0dAmlk+5SZ%xXuTP6%d(5j zL3v9_Wdj;tqrG6cSIVxJf9fTqE}QNa-kXqwc$m4@@6VL506LV;-U)}Ki-!IV5cM_P zu(ZuEZ0lU)dnH=S@szJj8$@3cm$eR6Y|&O4YwCG z%g5d~$%mj9WGTK=${whAem)HzStJ^~T7hO2N_w{g0JYS=lG!=vL?xXQCC{iRe+I^& z+F#Nn3m`b*qW~Y4UG(w}jlUB#2P^9fFw$J)nsy@HK zHEu2-RDI}1%0^Jvn2EDBqP-gaTAk(U3*}_lfF+?s& z0~D`HimBZ5(nl^arKNIN8}=-huWU*?>G4EVD$<9kS3<+FGs{5x44|`M6uQE>O4ohHMO)dT#);+_T}>+Z67_aMr2alNa5L)HWdypUoY4SEACz zHLKEFV*@f1jr7;)Yc{2CM_YA}&spWnSXnAj$z_X&`8Emt?z}IG^0>x_F!u{m zm;1~Mln)E^V^E{_>Ycp|+mn;itK;^HQYM-|cxjAmywL5V2(b7OpLm0E!9`_+<1;qc z7xg;wsX=YxjuC@s*NPOsm(*51HNT#YP6TGk7L$?7+NGMX%m=c#__ zb(NXrb$dZPkou$%l{TuwGkL##jzv9L}!x<9Q@P`HOY*X*c%#$3-|sX$QjZ{bSQvxS>_t~yM9Yoh8SEvPJUwPT~8JIqNhkr zi2hM0j-b4}9)x$-3)%LXR!4)jL8Cg?la-D*sA--_3yQX~Hp8X7-R76s;Emz3B+;yV zbxRsT!Gf9jCXZ4H;ccwsB{>jhphD#Tb>}!M69n7uhukY`Hs76Brk>ejPd<7Ff4H{ zXtXd@|GPg6ThWj$BDobKNEgF7K%+&2N@J#dFjlwp!Lt6wYDt!-rXl_7Z1m)7!p$1? z!~J%{!`^Z}Vw;bs1-Af{;?7RL3atB zy#5!YPUJi~w5;cwa9|5oz9~lSuW9E}U9y)k{(-LN&POzzNJ>k@_ljx6_g41<-P+_X zy5j4^m`|&SCbREPSYo!(ikZ5D*#>MSgE#x%juzP-E$yPbxc3GORp<@aCb*o&m*S*h z+NE`aFFy|$(&eXkA1oV&GvBcslLAOk>wvWjttFuJyCo=&pk7ky+mzV(Qb3t2MWmRG zXx*da&103@X?UoYlhTqdI&nKtk5@n6`{+h&@9pblZd)lQZw_&_ zqwi~IzkHKwhyL8IGZ5x_`g~`{au=qJBBF1!axHE99Ix{>b*hcwP~Pg0>b#_QM%F#? zqRck3gZFfKl3niZpY>0++wC+sbvb7^w<1+e09807QADu>u?XhUXby<5SN*)iN{-ZvmeyQ7~78~GI5Q|M; z?{D8{XdieV_=Z43PqjwFF|J(A$w9>kH-GO5R#kx}N0`)4NU>C;@E1-9P?Xt-3+CN= z%tS|RpOf_P`aUWwZ8{6Zlt(jSF||Bm0+jXV>N=G2Y!bOR;5`AVr%&)IPw0izXud*U zGk$ey#MWs1?EtaImZq~|vu@{{@`Bm@5EFtM9UI0dE`Hz^VX~JS!rBVF0+ZPXSbHxN zN%pOxsMqCSSKzk(2T~^ljd>)KV9Lo_tC2>s&xLg(7utG3n7%LeC@}fn$QpIKWu>n7 zgsx5Qz!z*Bc2_zPds=az$Ykof7!S;W4*=)fj9 zMf_k&1Y%iU6Hd#3gg%ak|!#qhF0SywzYxX@5mRq$RYdr7

9Oj=)q)rw2v@0axORIZ$LZq?mrOKC1e#;bu?9562RvdY_po;nl|JKIaA)v2Siy9%Xj?7pB;V+`j z5!jz)a5wM6ZBPelHnVxS3WBWH?L9{NbgJ1SIlfQ)UFfs0fPW=QT%(5sSf3l&me_8| z#0@iay^<%c#sTxHLxvMwT5q!Uy|GL*(JM=TB!cXscXZVk(t85si+xruDcMejMaGW|J1DRURLF{X2j&gfyItH+)-ZAbih+ie2v?Xz&lPYXzvLTk|f2=!x@|{Vm8R&rn^X+ruvY) zXzmzu!FHd|ENCfBui&&iy8~r8@4;8r&sU4nCIUX}TpZ9StAVdDT=-q?gEoTjPwdl0 z*pkTk10txVEV6hA*ZWzGPV6LzdY8XYl<*V^pm!Tm3p#XXPAY_Fam{^TQTxC(*XMOI zKZ75;asTmqq-k)=F;sm{}C zgJs62ZLBc$qtU6DUB8GTjT4;2F{~Skx%~jZPsH6p&GEsPIh<@T^1jj~87uCN&+X`1 z-YNx{rP&KP_%txRdB&kWTTPwm(rmj}6U7~dOAoDY0x+jJc=xMl5pR_pRt zdt6XUjd^*?TJ-LRCrdqbV71NU*f|W;+Y=Ko3+=nf9&n%(?<&2w}QgDSjgB-M%CyPbFMwIBVJV z!g!iyk-Oh#g@{XYnWyIqst>ix_mXHcbV8;K4zl(_;Sw5Ex%o%yM~7XCxo!zBJWZH* zXY|$8>aVoM@h`qcVQxq3!Ht%{`ajtWztJMR|87h!lUAw(_ z)%Jk-sIN-Jur)c2;iON*I?#c_n4t(@A87EjP0icW)8O|?cV2zdP8oEsQp);lUMLi# z6j8Vfy8MBjGXMj+?yKMPboM5=gRVliab&=cRQ)5&kCnLa;x#+x)dkm>h>&DyxL&zB zDkvwAM@}DEB)%LrYBs9(Nps_ml=%|=LhJQ6!oLd*t7o!_Lt?IOt4+vX`_f}=CS|qs&qvUvH8O+2d0b?iEt4={L z567%My>^l9YPRw|>6!4HoUf`wpFlY+Sl1)hMrr7Y1MYoN%{eULo7T-+s$!QuGSF$( zerr5?qpQS<>w|D)+Cg3Dl&K>Zy!505CH{VpSJj86L!MhQxvhnnNyc73r zS9;qUD$#_343We>mTkq7D9r+)IPx2<%wzU|Q-+B>waf4>#7LI*6E`+=MawVVl&42` zxb~sGO0TuT1MB%0YR)npr~|7Lb%^`Mt|UVFmOLP!@b5X*#CxFU(7M!RUEJmdIK0*4 zm2boD5Fy$`fYii+S1j&L67wG?8pH{gtlHR%@8Twyntq(x>L7yURzq`vI}$4G=OKR8 zri$Uz%q|G_8%fxVLc8ruDvG&h3Hw3Qx`mZ#7FBb(u)0ezGIBFy5lnSu%#W<*$vn?*Gr-Py|4795wpIcG zd=HMhT;=8P@^a~HU~$(YYk#1>>&CekS0psE^JJ~`kY!hLjg;niGCmW)DQ$8wCV%as za_J@g$4^Q6WeMBQ!`#ren5|Owb|D?F1eYn(iJZf@j`UR?*S@x88>D}3(N<}=1{Zjt zgq>}gj`CH`c7~!6@b%Cvy-B@Tg#)W6MdPj>MLC@aR1W{LLE1uT#8zI~ft!nLEz`jA z;r%A2<=qh>Hj7Pv(e2?6-%>gGoGRlfB=2#IN@a%64qNT)=HN=$-0j((<9?&|&mH0J zV7x7zd)_ih33e8w*a6|Lwn7Hn`cL>I9N&KT8}G zZ|H))B_*7Q(m8!8=Ro)fM55o+8qs8Ht!eizVu@r@REtM*BCROy4XIWGy1Xb2m5K=g zT&q`Id1jCuSAsB%4ISi>t=ao%*#=%B&3Flxb>vXF$as{#tnjS6cE6#G@S`IlB7O0Y z_Z^e*vnG5X;GlCq7jD>BWGQ44l;z8bt z4LU+c9kKAF3#~P2>_jlokb3^U1B}EgE}z-IkzIH7qz~ho5MXY3#s;P(hqu`ia<`?I zcmdspk9K^)PjVMkSMTkXl!^x;uAYH8jq9D+%N8(jUVryvFa*x3?m2xemny#*V`F9& zJ@1;D>G9^SVf#BNZDj6z=FrA4kIh8UK`bLI4FC2}37U)O4zRJi-^&t2Y7S(k(lWUi zOyuPd5?1>;`8MNBZMRM@Gr(4scdd8u;TN*Pix3G*trZa*mqpjw7fw za~Kg*y=oRRKF`-K5usjIqq8(c`OmFvfC~4#+=C?83TfAEtj*aAoxKjT4dhgc5f@J| zeuCqY{6oo(-&caku>Uu1yqgnmrNY2*#PYn($FoH#zidW*9k7e_RU8|*t&G&3vA`3C zLC0X`b~JmR=*!u!Iu6dUe4BF%)(fEB_~X)@8B3|zf_3NUJT`U(Pu4lO@ls-09G8K)?^-V?Lp(20SxHx zYSLdjJ8Fa*RZwFd*<>(X%6MCe2kjqE!C8zCQ@EI3#-eLr*m`A)(Q-LEFsFI*M{yhP zQGo|UIn0-xkr}n4%h(rSk3*k*?>_2THi2a+S?j({qSmP8=_Y zl5^NO?&9QQOElY9-Ll9mitow;3f{txb->pxy6dFBR(Eumke$GSkYM`+u~TkoR3^V8 z-}!p*@Y)32?u-!unR`I0?pak)yF3jk^dV1N=Zby>bML>$I*-+FvRNG zJtecX&?4_^wu+DYoT-sHuR6CW%Psu;Oq`LbyRGV=bVG#9nYWnFiCd+j?;@#(X1@jI zQhSn+X&S+Y^08_|Hvitj3{^8MMs;3zm3}UMYzvgZZs1CIk}ajf1`&r_)A^T<>`Vfo1wqTBP2Q6h2?@)(91SblgjhNpu zt0mPaF&MX=Hk#11Z3%ishFKbr(T)24FSx_4z1qzDfKFz&t(O5{zd9;yKAfw8*f;>x2~prq}=vgDd#4cTr^t%}mS2 z#i!onAZH^l6W!m*E%{|!C41JQVj$qkk?#2vLgvi|^yI z%j~nb_SxXK1Jw1GP?<)~+NkSc81?{Da3!68fb1K&-$2>nmTE){v4&P>Cb?NQl!oh)q?KuU zzY4sPA{q=c45sJ^`Z`&|fXQtubJNJ1C5$9aTZmHz!T#OYuj?_Nl>3I4gx?7+0`jZB z5OW=2!BULM?h?&vWMbP=pGD$?>eW~UzjU12r6ScYa}-xa0281_f9b(P)NZG8FBu*khV~6B! zCc`F^2uh4l?TWF=iMHvmjLLakN8(xFkM_Rg%$Td4TaG$~`cN(W9aOD?bmZ!3jgcXE zparvAxRF)YSUV&H5hLTYf}eMIx81K}9a06cUDODM$uMkny11oH{hrEhdSQeFU-U*l z#T=3iB?bAP7ox({>=uE0Zmn@ki z+uV63J~^X;uw z1}}^EZ*Em}i(}m!BIDuvBWNwg{P18GD<`y5H2`X8mKw6Jj6|}FkUW)3%%Ra=5Z1s` z3m|8j?5Q%{&{q=2Pkf3Zy-Sm3VT`|{Q(2rD(4C5Ce<+kcqW*p^vDh$8!4 zQq;WmY2Di=kl;g0!-=lXaG_-?Loxfq9G6b+%DoJg6xQwMoS;?CA&*%~Dd@Ph47FR! z^}85Fi!sz3zR9(d!(cA^7w2g1T3h$c;ZGI+Tn$~g2a2H-bS-@rorn83$B})nmJqs`koT8 z`0;J}u;5fj@7qyVE4i9j9ohEmh8ciLVmst9Fzd&DtPKyf7|G(-+j_=}LX(~EuoO`! z2!Ex9u5iWkA-|`H&f4F|eaNjpFD-A}c$&Z@C&AQfG>p7M zTuZG?x9Bxx=?2tgbG9BR3hZnZ(;5etq_yE@>twuo{klB5u*8%6$9c7)3w;}w$j@if zht9Q2>y%%hK-nu+Og$-U&VRburx%zqUmMq$8lvr3VWVKBEKKc>I=Aex$N0yPc zeXbM1jSuRn-XHJ-Tiu!_RV}q{;={}$*YxJr&D|HI%9P~%alcw%IhhyNh4V5pBjhEh z=E^h5Ha2Oy8dBp~_rN&$jc3S$gcIil>tl`8JeQ*wE}d^ZoJde29%QLBj%wU!#P$w` z_KlNGQx4iKPjAg+mFKs-iO65*y%&}xC$6d-GDU0q{&Z(?559qJw}Rg4O>+DZeeNc|@&-I)VY!C}r=6PzOWtj`oYix61UV|z zw=nfvQ?0a;p7pzHad+BJ4bVr)P^4;IC8p4AqAt$tC?d7fbSL%X4CFWQ_-IHZPNKnL zdS%=As)4Zq#n)D1oNp;XVu%CQz{_UNqpCBo0Buxdzxd@BA3n=)l76SsqHHR*@ zS}N$-7Q)BsrYo$ou}aMhgR%ir=1%DxxjE(}u$Q!TB`jh9#puwL8lmL>5qY?ku1+(+ z7g8-?Gy2p|PX84`n3NH&MQ~CZp&RYYVL1tvK+JQ;z|MXo$|wQZX8Em+w4=7 zPH(g;frz!*s9AGqhhF|HVYrO#HA8_9M#3okBl_d&-xD`{-qle1cojju`*IoXa+}Pn8>~vi7-1)h31-6(avFq2R=|a6M zO)xCaVi*E|?pcW9^4>R5RPcIokrJ*3CVPa66LUYji=OU%c;QG?n9k+t``c9S1H~g- z^}<5+tBk!-xy$isnyRVu58WQO=etY(*zfnM*UH5pjw!?H5A#_HtM7^PQoqI!8%Yr-OY27|?* z7IZd8x;t`vSGCIl&Z9~4*%Y)#O|RPi$yybKQ0IZy@`-5cCffQ1^A9TzMc>Z@sj}oQ z|M*CV{z^gRS-(>Ksn6tBcp?!?^cp3{K0rHhIxe8r)+PAi$J~-$S#m2Em3~$-PuRnr zk~{XGBjD6iUlZ%LlqvTp&t=ZHY!@IGcRC>Ts|W)(D}mLLzQHPgzV=u^ce+n6`Kaew zUcf0an*@u~wAWwkd4m#g1*A^NMb{J9#WhN%Yk3`_OT3RZk7-qOXfxY7!AM4k>t-0< z*#nD=1<6co@1QR)E4d(M=o_TE(H5AO$B7gt=BxnYZ%fp5Jk35YcX@_KVxIEiFDEk_ zLt=+d017n#5;8jAu{k^x&Zo+oJTxI4?0bDU;K_^S{0O0&IotULkwd|?qyDJgC&3F% z5Zw2$BG(4uA6}2B%-h*{@(sukr1Xih5EoQf>h4ySG1wTxg`{xhy}g5vnBi)A0F5-t zX;b>5E5J`h%zyamIE9L|G~V_a))%rdNNJKk9D#ludeR4)l%m_yq3gG zqVAnISx6T)O9w)*E*<8GfOHCzrM4C0_EugQp5mTUP} z=DTk)m*1xoIEleVBdmC*WVr`eJqn6%`5uyRPIt}j1rW!CN_ZPcb;=~xYVtjY6<7vr zQK^$)S}Y=mug9p0guX7Z^!$2E#{H8y0($Zs;Fz}ww#q%g23PWW~sHWcNzDD z6BVD_9)(piAmA+kAu2pFg-c5S8f{`2elOzSs&BdF9t5N;hk%DGJtV!HF=b_zD*yHd zS-=g-P20qDVC~h5=^%M+n`8@GK#F_VC&={j_<0b3uB;tKxvLxQ14=i0L?nK^+FW;x zAbpAy$v0VTXe4fZfyus5YJ(da(UpwljPNV7r5b&nUPpVAJAGW~v!VdjItElX`_A)q z)`GHAA0$LOksvVX(Wlfm#{0<_|DQW$|KMUsNI?uQ>T!;L<@C6huv@T2;R-TwD<0E* zd2axAlfsx#)Zj&2sMf!?H+e)IDGI3kGz1S{kZQi(Da7@y#sg>~5*L7^Zyte!OI%v6 zzj_ZCp{x@_uSxeSh}2o0B;udzcj8rET@7+GJSIN%=g6v^2)c43dG5QpP~xH>qkPm9 zD#2~Z{06~qCHsF4?VwiQFFK0j|HvE&dhP$%wgiH|Kq8wU@Rxuh3|9ftxW43a9`z4^ zm2U{%*7(4Xq4#(S3Bi<}@tG;=m>JTjYOWMZnUW05qm4m~Z}*(imL9x3CPt1Kf&B zmw;s5iWBx+(b_!G!TB$J^po7{=DA*p?g5*=|D(@fEDbHUp{*r z;{T%d(7gTUcHF-(1^;KEpxYBmJZ2L~(ZXymME-;7Ie!s0bMl1D6aYiG&`Ab9H1yg{ z69FS;#vz%GcXOs$Rit*G`?(eW)f#+X5=|AGe&|;HV;}(*lEU}8JKl}R`iCq%VQzuW zSsGA$(y2OCb-cC};PrOA2|VXS|L~_$Gl0-UJ_UMIRe;4&@-}UVQ`We~q3*!h1*nBp zfj)f|kS1zJR!==UTM2<(b8EKId^azIb@CCOIS)zv*n_`yL3(WXPgVhH<$E9ic}wuQ z20jU0!EZK@7}XzT8L+O-;~4;N|u+F zvH*2OGTK7NVfOJkT-tXY>D{#uHuYfYw0QTDPnvJFR{%d2IvRmz+MHQAP5ICV(l`3D zYOW`VJu;Osf5H87_{IqEXzjM2n>faJsSYp9t5N0G5vsH4MA~n{h6$?*T8%b;W0byT3)~ z*~{eG0R4ua%$}titL!G5Zv-Y5AYE>kg``)N0AHJHK4NyE8uV=JTNxq)14e+tb4|;Q zi5?}kgMkSz>+=Km@Bo!4KI?TMaWsE#r0;oON#ZNg-d@1_jl0xt#`n)HiZJfYS}hSY zd@kxLN@Ui&{!aGVu3}Os1VX3)vZCym{X?|SyCH`j{zD*v>jD@pYH^-GO(>Tb@6+iR zQ-+b96Bw}(dcpf4uU4#I+9auXkdIHeiJqnyIFyXk`&w+8VwddkyHfPiTCULmH@*9m zZ+Qeut?7I8i|o3TGJFhTYf%7h!rs(0gU%N$ea9-8LSrE92#8AW*FD$Wo!CWdnBnA* zlKMe|@rRc}gx0Jf(Wg>=N?H!;+U(YCjeRC9bOmUW zAqn0FNXpYQqEt$$7a@76yDE5X2ZDj_jF?{(CEUX3`RxM5sWFINO+xSul6$mq#z{mE zpIZ-wYYVU{-84A+#yY#r&e47OJEg7Z9)*r`FfgE!S4IEaeuDY#0~*Dg#bBV&48G5U zPl1`1x|dNfYINX%pTcj?@)gn%JI$_WcNUkJ5(pYr)N%kx_ByN?c^{B;8-wHxAnJlW zklwQrlp^G&aq3q&!3bMf-{z-eCIt+T7ETZ^dQpM#D?LkiF&~i(=OZn3S%Ls@Fu^Q$ zVt&{#4s^6)Z^JS)dD}6ukqeM)xJ$1LQ>hVjH$|T%tGWg#(?jmGbD#ml656S`Rtjt?tD(;gaTtzbl+KM4F^FgPjQRF5+^ar zBHlptJ_7qBVY`iS;DL;na=YX%`fF?Gs=B~{y4uI(GSz8*N-NW_LrWFAF)RtEm8k}oV|HGl z1=kjDb8~6Qp89C&u$LuS_N>MV31Uud*8ymGZWL}ms`ijQ1FRSeHHu5~sv{4PCp;>$ z=QbrC#%1kYlzsb^4@YuIqI`+oE-?Udx9z6}QHKh{U>#fSFEBY&QW-f+ktYKoQ2ZpH9v-u{wf9$6hs*$|2zynu=~{J0;~EdY;j5%0mE)y%k0) z8-uvV`i9(F=V_W}EG5@`CxzoHc7NnvQeH7t)Rx*G#3!)E2~VrdF^66Vzguck%QVU4HEGo0otA9k)oTA5I@!O^DFDC=|E zx7lgP#6eScAY4LloVze*c=uG)<%{X=rj>y0ZL9%G(+RMKM}hacn)jPb$vNJ_%aIfV zLIJ5aavK7GuRmX9YL5-GRgu~h@GH#LmOJInKRD7sg_2w>tOJ(pJvBC84xh;U}x-PLx_?H6V` z`qubv=Ycf(6qWaOk-46%p5*R;OWAWjBz(TY=>=%wj9nP}U4tt3i=5^Gqg|6u zZo6cGtXp@(XOQ<9WLUq^59~9-jSKcCN6Vb9JUSJXWQJGo|JZ~pBah@-_UCf)IY{1n zv|p!=b&G4+R`TWv(D2ctMiR5OwpVq`-flz-F7k~B8?q5yVoC8+jfJSUPNA3LID$9c zCdLW-RMt-$w)}eoe4PTg`xwf(cLtU{+y@u?h(biw(^ANtT+ZDsC2^u6CeyXs$zUt? zUeME%z=vxAn5EqOBcbCsa>ngq(F?Nm(=(ol78ev=tErtS&2&2#t>8*<0|cCjRr>%+ z1l{F<_>|+%%-sb;8=2*JGv$>`rn0P$E9B+Zo%QTDjb;3I6;84B2NbPAU?Yft$&kU^;buBL3 zh)A4~$v@e*BCq$MqH10zRQf7;x?JP#pkM{*Oh!Kn%K~&*NZKmJtVi3xpO>du=jvQA zayQcqFIaITYo(>kkCKwsnW+4&9;e@D`8kDFPv zHvt7cJ?%{cM*>nZ^Iax74|D|}Kl+Mgc8O*{E~PfUN^c}ACB?)|aLJ7&)s9|EcUpn+Vt zpm?oxg=26h)0B;)7xZTt~DU82BGfn{D$JgX%z_phRxYKa$VF(Cn5VVDR+Xaa;Hn{&(q2`FD}V? zmpLp#*&us_kTcB{KmZ?>6QYv&o}HA9fdq#iANGimBXTDIc8Htl&!l?;rLpWeN5Vd~ z;PoBOJhK6{b_wz!OuT-;-ZJ*n~9Yx1H1E8{fVc!iczlces3>NCRt4OUz zr!QPdbOUo|Q%&D|g^#($%$;z5sy3~2EsDxQyC?6%UNoul)ZJkX_HOsR)j0aiDRoW# z-idqH$#k%=Sp@k(0bV{Sh?PRrYyzD1hR+uJ%!4bb_O6l!N`3#%6R|=gXwSoBq4Q`*C<7k9}0;{{Cj03C*cv zL8ofpD;Qr@^vMrNEVx4`xD(_P!Y94mWyDi1bD!gm+!4?B!xx@1&ui^n5;CTVI2*T* zX2IKR*i~(;?qZfCH@0_C?W@i&s+`1|w*cSBY!X0wQTb z-6S^4d!boVcc`dm^AVG1!Sz_d_xi8>4=L&vRpy+d&T(n;&ahE;>l(~laO>#0QC=)o zvZbBUVA@z<=PCvO=K&Km-M^gI@zCaM;|Of(&^2dRPu^LwVJ73g&W|ruSk9Akf5vPk z1qw$5yqx72agAajJt^SW__5PFvvQ%{GixgfGQp_#X-8c1Q{ZJ}jw%WB2FqXr+eSt8 z^_1c%HIW>Hx7rb)H^(dji~06lMfhb=WYZZQoCZ!0c`{f;ApTnbKKVnxEVauI8ycmM z6ibVPG1A{&9^|#CvI=6npx#@OZg$Di{!|p7mD=s-6rS>8M%=j@Dhj&bI|i&09ymj;?H6^RLdo5VZnd2D7O^am zh|!5If_+rq(eTdI2l_W~NX2CADhuNqbf6V@#FoWlPYqu4f$o6&m(2tKl z-qSCH8X_qyS~*uL`nbZK8iC%H-!S;Oj!jmbOjfL&(VVV&ToI1jm91#4)tWfp$a9u|JKWS7(j-H;`X*% zv8QQY8myU7co?wu^!)K=?ck$as5EfY74`xerK{*hGxcGc=5I|^E@1O0=iXX(-A#^%1q z#(DJ#IrxvQ%$&0l#n~BKS+&04Av$$#rPdyzn`>g$+nV|b&_TumTuSyD-H41|tAM#W zW-BEcoh?*e6v`+YMcYL(-Y}kS3@_+@~I0AqC59B?&`n>pqD$fNFKSB*GI!}bIBfhU0Ol1iC>3f@xI0ss( z31_aLKks*aK?k}+L4D8nQr?IIH}T;#>0NWkXiikp746}_Y9#0cMIr59YSIU7$}Vc- z5{(mB8kB)e!T?%8p=w?%K@gB1rAojivQHl#>_^IiZtwCqp33`}8^<)&T_{8t(HTHhrMT z37IIU-6*YXzzC>)SA==t8vTEc2CMhNU;-5Ob*e?4`)-aE9o^DeV!)tkibo9maJ0Hw9Yh}`^q74I{!;Bb1B zrtE;pP=(;fH&WA*4L7Sol2;XH#Fj<7a{vcV*)9y>(t^&5OgJYXQlG3o2E>E~P^`&o zmdH2&bB&eSuU;(ess}jIy&4I-%tzr&{i|R|Q6O%l87#e_biz$ChG4r-l|J+C0mCv z=4i&6rlresH(Zu@=)i3jWSi;7T%+I^Qp%Q51x#|q9@k6{-E}Asm9d)u_CzCGI^862 zp?QYi4I+I%W5oUFS#aA}#f(4@7AZyrR4K9Ja2 z0JpV-#IQ53d;uj9`Sk~4i(O5pH_xca-!R1|N|VKZ zw<5k&MPlkU4|8TDv2gQ*qaIFLQ}S@Lixl_&bUuu0ED`=^;fIf_8EFx0v-a*WSM#6@ zBK+HG{XFlYPmnj6G{CL2E5BMW_`vQ~(uL)=KAbul=4Xx|XgluIt@&$3Axk9Z8x(P0 zz+&+I$6nK@im6;<)Ctd>4TM^tvqISK%WdguzH#-O-hc0Ltgxogf}pu=QJ_7)b%p(3 zBcMwJj1^X1b1?q={wCX{zP0(5$i20T*^K*d$35NQDkuMQ%l+grx@UJddeOf&}mx!g;GZRG+vZM)dj71BDWae5|u*ZH1s5x^4t~Pk1i>PUgpec3QW~~q&u@5Dr9baw7TndMYfeNuCTh!HNw?N zB=1r^a=Vaxzt}CpG&I{E=}9ZMj1-9O-Z=GNSI^?>o&{pr~$sTMt;%&(BsCgui{Z1iz;e#Uotfpma>y_z;e{Rdm z|G6!3rjej=e&BV{xqa$BvopN25nq>EKY&7;S#IPAD#EfBeI-=th8`K!zv?YDbJG=O z$gZr}1>M@{e>oXqh{mzTQB(IN{)SN2AP@TCgy7(5_)fYud}b|;))4>G^uP8#98^^( zy%h=+@R7^9e=UtM5Hs68IOfF``)+@Yt_iNK6RbJCrf7!t&c}wYh$I&=Odk3U8fArC zo@INkD2>g?5}{Bxfa&$IzkBq4W(-Wzd7D!vmRZ>a3J=!-Nha=${yz=z=K!t!Nlxjb zWL38oYE>QBjD8fSl@UCw@`t|-d&&&*D+pxCn{0<~hCEY?O3u^X3%iM{gnWP&L4?bF ziQ99YxPV2Kek4NVD|lM7p1E6IU#&3cxo@E=6rA{XTVU4`eGPJo;JZJYvmk8v&Yudu z5c+v3=pJi^KCqh;_J@~W5yhsYOQ^D`ZL@<_Zb z(V{{>CbVJy?cj(H{L19t@F;hQSRdF;WS$1J4wk@jx11_^#rk)LX$ExmC?2k^Ym!knu!sZF` zSFHkV))t6aE?BRZ-phAv<|}#Q8hNzH;lU-Va%|nlE=fb+T&6N0@0`wN%axv|crB7& zb3>9^z_@yaX~~L)hoG~LNj62zyAL)MW?8MQe-lns~)A z##?u@TU~O6+s(}n#Lw9UFh(#Nlac=Jgv^u1g&;*>TN$yJFP)hLA3`X}{vZh>ECo6*Dd|8}WaW*)5vP&uCdlzyMEjcHXY3l#N=*ez2H51xJTW zSv`+JG`ru2MVt`WC9GW4MV$6;vi8Q%7ftGwv7%$?j8Xhi>%f@NC`P|PEs=>DSEMtz z4r$N$u_JYD!AR;b)$96>@_n8ceXG3yhe#>e!|>hHQG^ zw=NDkA?Z2FA(JW;1W13_Nb!@6(JWQjU|HxuP95>>b;pv8Qa$D8T8`?xASMME_C#xH>qv9Ry%8p>u)?EWA@^{B$wZyi5x^`B z3qRkiK+z>p-i@?C*yY_}pFJtW(6vd^kD1<{lyTHRi-S=*%a^d?^r)1#CU2w%U znbud{v_&oYVgXYLIh0qm+iextf;DEzx}(Pt8hV4uWS z{G5WjpDmDgodqHU<1eDChp(JC<}&*s!1TpAE3%*>?I?rMT$F)Nwi;S2j^VnxVId(m z#~>s{@^&N(ooAC>vc%Wg!~Svhql`j)S)m{v-0QrpyewP_xornDMC8ztixZdNEDSA4 zPexV}7&z;u1JXc;P=>}SUJ4!Zj^I>eh;ZgBC^L(Sbzh|n6k*hg zSQ+Go8_Y_e5Q#4VG}w^%)@mWzID($9zl)#&w-FA&0B;^IWPtwW-TIGRwx8&pojXm;WP|9W4y38YCYhEYYxJ4nNJjobHR7dRQ4<+?{4v&={o zPT=Y8O-ZUIR=zyTepJ@Bg;+?wsBZ35%rF$+J)8I?P`1m;U>#ksAepkD#icuHKjme| zTU2AGtmM|bc0WI$ls1)^*|PUcI_v9;y&NNJ#-xJweB{p$hySKb;h`iJrz0?{sZl96 zf{@daURsp_4K!c&t|L~~jmR0lLvU`zXC2uA0w({=c2!AQ3E=7121ifa1xcbBI_4aJ zDe&p`;u=Nfdy`&u&Cv0d&6M$I_mfVTjQh~Qb#wnitv`#n$c?!0qFI_t>pM1&EI@9mAcWJNn9mtF<3P9x*K=h zbSm}P3q}#7#)6FygY(n}i`2x0_(Y|9~Xls)kU1)@SoA@&ksUqiZaJOH=x{ZoIAHUO_n1)-&YsTpvm`f>; z(%LWr*N$(Fa?CFTC0_Svh}(thtg;-iq8-8??$uz>XP_~huh9JbB(jouW`5rCo>2Z# zicZSRld!wYw-5hwEkVf9n9?5(AneFxULv zKlNn~g)9vZ7WDiMS<1X{q20VpvklOetP?yLj>RH5cFFHk+Ff$0YA$wL zEbez?)VB}P1z3k&o*f-UjM6PdQTLxUY>v1Vc^v<*P)&gO7N&{*W6~Y};K=v$#4E== z&i?bH02@RfA{IJbCjl$uSJSiyzD+hJ$Z4ffjis#JIsQw3Sq7h-E#%k(@Bf?mC=n~22jX_qEsb|({c9S*zwQ4v^|w({$7#S^ zSid9m=>FgR{=b=)|9PqxUIC2oh_hA5b?5z61K4Y-TSsB!=8XT}g8ReQ`_Iq#H^(p? ziiXLQ$BD4<9f$@?^#h8qLds{BS|IIvDrbgE%RC>aQQy zOMB$cvsZ>HC|LL3mb8C@xc>fNzut>6z@K_{lZ)2vY|_0zN1Mvc)Zbr=<$?AHA=4Q} zs~Wm1DzWFYBd>#W3ucl3WN96P7)?hQgZ@R>`tS5l4_4sA{!#p#8z|R=OKw6YEk{@Z zKn76!|59o-51urITwVHDbHWbnO>8;iUKBvDoEP!UmnnzDR!<&6%~74+${g+z^#{Y2 zWGi~pCV;Z(D84MsE#C1evmbOyKUx(k9qr{Ml=8oo3m23gp>4Yus;mg3qJ7DGz>n(l z`dp;epKu8-74W~&j>#{4U$VZ>`!s&c38)RqfQ)lUa&t0x>?rhUB6 z@eGi9$^cbC{5*tzT7$WgnL$Lrs)swu>ky6Sr||U@gz%_`(ajqO1=IQ$fagC1_Or7P zYjLC9eXrY}4bVM-N3%5`&N=D?c)&aoDSHCJ#ykIQqXyvWZ;WhImW(;@pW*zhrx~r? zd8SyWRT3O9fXA0>2Uv@UpN5SfsOb(T4-aIA7TrKDCPaMjYM4ZTIG3=oehK ziK9zJnOz`;cd&0nS$F}^a2!pepWijw17yN^5G5No8P4+e3-%b|9QNMP4UUt5Sxh0q zU?xYu^{w4f_yc6p9Pn_YgUwO@xC^%!UB{J_I^pN_mxh-yCAww_o^M~?c@YL}Z-)Wr zcKL+Z%!QJMOTJ%C2M&m~#E9Q`H^2`fEc7g;*Ai$;!Ku!?uYA=LE>I z)$6=0ia9jDl(GKH`x{S{52!!m@2(U~q2J}Es{R;l!9g<2cv9;Lb=wZBm6h^ACtrZA zHcG3DZSOl(3D6vtLO%#`e)t~$r*9OHIX9;NrdsqZ`rT6JjGDM{U=Ppy_-TS^GnjKT z7AaG6ERwjJ_*_-a?y+{EITSivfHQg-l!<7ay8}$57DNWkk_j|g5{N^t;+#4M8`};1cN+!=rA+t+hZ(v7^5jw zHfXRt7oT%|#l5xqq$2YZ6m>o_tKIb~_GZ9B(91>N*f;&Cgz_Wic?Omh z&$MQ1VA#bD4%yoEw6=<0X~k9FGsj=ZgVVH)#VajsR3 zA~kq`r-r?^hOM<+mBk_BP=Z2RPNtnwDd?cJzAG0)nVk|qD+1S=g*$&ajt}ly^ZU%@i zeVPDrinE4-|1?YBro0AjLH|3ZHo%Z_LOKjqckqen#?#;N><5k{A1Mlkb+i;91EF9q zPTC_3YZJcU9SroY7j-)T#OUqim6es>B1Cs5Xe2)&C6CRy48C3kU6zba^C-?I2~M7> zmNyU6HaT0e)}<(JM`iV+K-X1NRU^F2A-iSJ^4Z=#8N|oA{3*K?jiwhZ z0f<96Kxx>Eyd~Hej>^q%gEm`iw`^1fw_7w67iJm>F3spLzZP6oilrmZ_6XPxozzD* zzJ854a+!J3?cr3qyV)#vag@O^zVd~FQjp(mV6flvU`D0s1i2P4Gx#f1y95X3f?a;_ z0D+)+$^lO-lE_szJ&@n=POgxIESD*xP2LV9$5hzO3IYbqKD$@g711EVRk6dpfsZRu zMWu3x^Ja}GzKfM#j`6&a3cH%RbnUI3(st83jWwQ7o^m$#ogdd!_$$7DF>JxF#w_=w zTo5Z{EF8Ntjp!69n9P~fvyaVAL}=rit%1{s3ZCx!afVc-i1D>9MC?AGlIN7os7U;{ z6TWQ!kd>1B;@X+py9$ask|1E+P|0EkQn8h`A0gxiv(^;wxh-GQWo~7YYf?8*FS1c` z55TjX4ICT5>A;w3xKsVVhLz@)x|%65AHT=OnoZ-jr^a*w1S5^`tej^i#`(4d&zg$= zXl$!$#TYy}e|-ODfz+@y#b-#Bv~v@RGCrZWor%x~VR=iy{~q--dx=GE=J63-8+>s& z04~4S4ud&W+>vqJLfLilLehymVhnqh4|}dS?u4=2Ly|~$DQ>x91eplv z>NYIc85I6Q)B#mE!}6;!&LQvK)jIohu*kf4wmYrAf-^F9XS*4(_pqDoz@MYqqmA>| zUM}InH}_&bn`U7+tfh4itcqy*>FcSfET8}q+ibga5|&n>%avB95naB7g)8S;*1HEG zbdjOzTeXi~z`3%9fti}a4~K7u4vv-1fVMshJ$7GyyVV9$m^!f*=Ps(bIs)5D>Gy`% zdeffAOQ-mOJC!i}WAlTwU?j>qTsxSt;z;2%b~ncg_+JYz=U*LIlrtaGA}uU~Ucj-n z>didXG6Hx69KEmIhXJ}q-3FqoU*;w?I7J%$}DXd33L}$~jA%gw0b{ScPYO2`_n3Gz>C*Kg`d@2pT^Fo5k$;(@=V_ zRg6PlhIraK*=XEe&9LfN8xnwyC5ec$F!Y!vLZ!re(UO1EzWYHo&r5cgxn1?7nR_pM0{&*>*hT5bw5 z8&8|U%V@F}T`8u_t&DaRb=^vWj|)thtd2ANPje8zebl+0U3hmEFFO*4z-Ke8Vp~^% z|7+%~%}3RBNt?X6k+rtlWzy*VBk*Ug^lu!ZtHqf5|LM}r+<()6e9oP?0$Vc}`2g=E zcPS#0)2cd(-S8g^o&i10y6@#v?++~>PaJhvZp~SWuKcDV{d61gpZ zaBrhqj&YbR@T$yu}A^o;J{_eE0B689UbkUY&5!!+qg4sM*_EKgTpVdfKo_8@6jn2hM(dR6DL(V$e!6s) z2b1xQyG3#3d#w8WR_L_0_kE7@${QI)H$MfzzOOXHX*XSLK0285u}xVeD3vPc;@q-k z+66W)XKg&Q=?2Dg0+l~&;e7yxA2gL(jTi*Mp$~(#?6_pkYN!{T0vd%oiXuxz4@PBk z@XbX*DOPDYy>{t`UdqM&sv}b4Ks&WxQeVL3`R>Ilu%h-ik>b49>0nz(_Zqv;Alv1s znkB#@dIfCe@h>^eQE7lAv?f=g?l&qp(Xikb6SoR%gw>3~HtLvdP;zgrP^AtL&;J_u zeht%(UP%((`;%HZBHmZkM2z0XvBWPcz=8H3UexW zodQcAd-cN`?e(eU`ScdSzuFWZ``7XB!=F#-~ z^6Apey5o}Krn+v8ya`5PT+2lr%LB%NIj1)_k^J*>A?xf9B^ zF56Q!HTi9XxGj0H$7%?CNBe2JOcqFg)eFr$gFp{_eo$@4=+&Jk=K1yQ0Je#gxb|YB zd=$vKk4inx#h>4*g=0GNv4rqjx^}#?gy~ z2`J{2)vFeEEn4zeU3)}aqtY|>D|9cRK@LKvQd3L64%Rwn#A$t3H1EBhYyTkevwcT& zq6n0266`3CDA_GAzP2r>x~o%lv-_s#grCrd_0So9mdtUzA~&Qg&sON*MZRxCAkxGF zGE`tX9ogM&e0wpR!SZa0AQ%zb0K7)PAhR?(`Eu*1VVV&n^YCSOCdGiW4Ec$!Kwh-qFZPFli4N|m|`~Gn2!tu?}}h*S0VhDr|uWYlmYTPqS+*&VMRC5 z#Ok_uDMcN`ds83O`wkGG{LP2d90Xd=t7>V-~x3UZ)Oy7b%yJPHi-K;%O7J>yfR$fNuwd0h1Npp%;t(}nO z=levo{j5Lb%SWk7N2U3@`ebxq;d={a{ZkPd4*lG)S=C-Gd6Kq$)yz*8-u>!2HE_@Z zIood7?h{$*CddowTqO9EHGZXkA5X=UYnxi`gcO&>nJHy@&H ziVA^2t|)xmc8}WB3G|`RXfl*O(wwk8b5HtQF2qZ1gKtKD^(_`{OrH#3gEO6G=P>Wh@o}&LWr)ST zWJ|FD&embT4g}(oDVcp%QQM~Gf$ql`n=$8TI>7<_aVY1LJV z*qzgClo+qN+L?h#_|@dSrO~V!1XA5$Km?!fAoaF^735O=ZO#g<{!NaDF^uo2h+RQV zxS%P4=xAe7BllKlZ~1~_el3ID9!J(H#Vw~6f%-FTcXxNAMt4$I4W7#kLXidN9~xsX z4l8`a6WKR`Tx)Ylf7wOTdJR0d*4eUG?h(rs7j7(MVKUQRG1iDlmS}xPG?Y43Ot6ey z+m<-_KW~uW-I`)@EVia_6a@XLYEA-*$FkIS585|&24}wIg55^hya1K@NAB*s1reo7 z?tC{oB#V4Rwh;Goh=uLP!6O07BeA!pH(-Cf0Fn#^l3RpiJNM3utDJjR5XZ=L@9wj2 zrkx2)_xjQRQF4=QX}A5o$WZsj@vV{Dqnge(rw;0*x4!^fM%w2UH=MC}&KN*^9V3ZPWZe=YM_p^8<|aQ&ncabba=kFiBm%}lrC(K0I9YPgJf}UdGUAc$JT&Z zu3A;OR4cuDvZwfiKKJ3@d)}Fge>mljrw?>UoA;s3^NsnuXW8QIe8aqM`I0=T?nguD zel*rJam_Z9VGKz86uPvxDsnIhqg-cpJu9ZFfU@~|lVCI!&v0W=IR01^74Ii+U%85x z+AK|d{Vf84tZ2nio#;&5^Z`{xIh_u{APq*oSxZCU_j;5B9-1=z-nE9M&S-tKmn+fn=?;I2B`K3q5VqPC+>)?5zv?2+Jc;&L zgJ+Qg(YcB)zsC*{P>}^pIJ`f~YdW8Xgvzk@Tk+YO zZ(DVd60jyAKlibiHMjlCFU3@<4q}IPde;iN>Rx=z!MH`8n09+Sg6wKOJx`EDd&|0L z8>aa4mH4dlb;o6uv88MlyNp)IWaV^?BpWYgzEY16G0M%dDfL)NfDUGJa4?Hz5hY-N zG0}Gp2@M*4Bf7*fR!}a))`L$ZLrVhAp5~smC_ASBGnV%Xb#_%*#iy@$61MU#~MYoo_HLRi7=Q6>Jj3MT&17@DzJfP<{;(S z4w@!jr+ILr+IaFBN-r6F24nvU)M+`qV;XT>T5h%P6R7$+Lv1xxe@D~g7yS6__|Zo?xGE|iyNZqn?YW;;8M?5?gXF6 zpVH_AY!W;Ajil?o8q3X=`CH*%z{YeMth*wblzfotMgHOQKBKb6#PotTx}YGm;`|xf zm#rhR#-#hQI%}&G6Y1oMhAsOWuCSg=N?>mE&Y}Bb@7zIVn~LYsHm^WAm3=wJS~QM1 zBLtO``lH<$0Kppmtdtws$pc$Khz{_U(x}NQ{3_$$wH5XD^&mJV4T#~)n$gr)E+7iB!lv*7l4<4=rg&0l zF(-&n1LWe4yr-5*9e9=1*Jy7t1@>9C9eTvXs5vJQ@H$ADOZSX&HV1sK23G+O2cFcU z3Tfn5yU96gEC}_4V;XYAccn|-nARKbNd?@44aZPO_dbcFDv#I$t!#x z=6-+64igQ7EnD`5;PI6<_-u)@RvNw@NJPh2qbt;Lz@0^uz9VxJ$4jfml)G?8pe3IDdSaPSVA$(Zq-JmhX|S#nXXVH{ z8A@Cz1&i|QW6uakELkzN-LmfCVi-MaZ~8{n{VtU#ksN-!)JI)?kia?5+*H_7q2~F% z9_2d*P>@6BpSF5u)8b-_0yi)^{ZfwC04F!H?laioG2a<=l*0M*#*Iya`(C3nFM9-8 z0y5-WJZze0EhH8}+^K_+$}kn4v1btIv<>=_F|%zqC;XBTXqAH9+%y&Wct=2IOjF_5 z-V$tIqS`v(LAfi|M?F*VPm4l4f6i69ORJc4b;1#te2@~(b=l3D^0YFmzvb4Vw*tE> zqc17kgYs^vy}N`u)uiXz$SPb#lZ4Qj#rFKwWWw))5C#RIs5{@?dJKl&7-skHn%fh! z?8~+flf_A&2M~Cj49%Owi5rgRYunndz=i-n{ey+8&DMQs0?_r;48`c}EGwf*2|G9c z+T+h)D7Ic?OP}6BmK=eJ%ic@dxQ#)6id=2Z?Xi!CBV2#9Q&J2|+h<(-gPUw09dN@h z;1pzBs%p{@7d9&&;lL?SDA!|Si0bGq_(XUinSQe>6fLIby6 zZoRts&Ktpfb(XD9rN>(RQ1K5H%u29oA9q&vLnt&?wh!!RoTg&e4x!Jz*T)=f{z@ru zjaUQ_V%OmH$I^<3!X3VRiCAr7Gqrx1^$LY^kJ>$s{#6OCQ1i>7EXIWd1AAVrGC^Jc z(-X-#Z_NAk>>fNYzLR+E^kwbnY?x}j;{zj^lwQ3bz_OsHr5u}Uc_Qdtzsv$t2;)7T z4T!^g!+_nSXdaGVd)U>U{lcpGS%B5(*plYl#>!z!UVs(lMSjgYc8-cpN88@rzMm;*TB|j%V-Fw%q z9xfj3e7@&rf5kIsJ$!vbceKk+&fw$CS<&(!EdksR_h5;VyK;X{%WlJ`lx2@`v2d!V zikc=_+a(p88Emtqt*;Omfe3MA4cI3=#c~rgsx!@)1^VgBy)-)S&hgd|;?!ef6??Jd zg&FKwmFX*PZ5^d|<5WU$sCRBAs-<$~oS3<}W{3mnLQZ>rd7Cs%I+ zI_QWvvi4xb6+lJb& zh5a)4{#3L0?`r1eUP&}eJg`k6U2ZkGn-O$;-LrV5v*3mQE6OYD^XsSxN8TTSiKeG?zxe>Z3cnVWPqFAc@+b!n@|yYOV#dBa#)pLz@E4yL=dL43j zq-=&TW7G)w@yXVEAYSi@Eq*~uUhv(}RWXcly&7wvN$iaUFXuj1?E~Kc`*}DoZ{}== z48fL9QulvI6CNW_!aY!4cI`C&hzllBg~9d|m;Ikw{C1r?IU_@X^mGr)}AN=1H;jK@>itxK-gIFL8lZc4ad3 z_{u=g28FCh!#V)+xuV$5Ya;Eerw>Le!PU&8S8%gf=Gg^EPP8`#W}gz^=9A*P};8oupb2{GSZ3D3!gOf-}D&Q#s6-Ew55@MBvlB#LcMq(p4 zvlcW7Ta2Romtc=8%~eWf9b1>!oQ9suwU}||QYI0wbsD+T`sfd(z{~pZ8SmN6ON$Rw zV=;%Rkxe-TZoX@#y&Th^a==1Bm)-bNglVDuVB+>lhj@pimNd6H`y8*1h8RXY+Xn}2 z;NO(I9+u6rNE%ycpEI5&G)<>huE?*+4~V#H zaWg;t&)(~cm6P5#smE-sMlvmcw4L2SjdJetnDO~m#!XuKjmROZik*<+9N92-bPOfT1{z=P1 zXEK@Gi!`qPvll9}bo{1Y3Axp^Y+~P8MPywPGl|p3TZ6W` zcO)=7&ZI-8ufsIdnUCKfDMxcM>Y@Zl*fjf*gYm2Id@8Fb$9Laqla$+!mr=C?=7=Fi zUGlCUQ)dV|GA<7|=9Y~6@Q6esRs;cW9o~M46uH>0J``ASlE_!oA)}*qIeZ4IVlTe% zQTCLbVr`7DW!P$>5((=|Ygfid|LN%IE1v*8r0Ox|H3t~K%lu4;4PDpz&wAGpxd+qL zcT1n=h)pPfLq(_9DE8_3<0EmIO!o*67qo`~{THAzA^4&1TDTUlLwVpfVjX^;O3$oT zOWqh99?gD92{W3rV%G<4)Jy#r#w7k~n72>=gluvTT?SO8F+Jm5+DCTnH(YIj-ZtCU zVl++o-;746Ffn+=4f3F-D-@6%EDjJI9TS3#erphn~iMm=Mm-&^UaI9gOA+* zKc8#(5-bFp4B&6R>%kJTn^Ql(?13JC(GfTlT3boY0h;dh3-Ji+#?|0MtLydvEfuSh zh>tO$K5*o*(r3z-7;kZ>&j+X|195aOPPs&VhG-<~U?%_@1G(IG811hkhh-MUBVoIx zNl~;D#CM;w@+!|sL^mgI;FsO11u0)z_1p@l_!k#(63~&ueN!fsuTb2ox*p;l_t+RB z|1Nz}_N)E_L-2Z7pM+WbFV?;ToXdWX`%ik1%tEq7DkKeiOGs#v5hB@p?-8j)Lq@h_ z@4fflviIJyH{t!>(mBsLr{|pKdf)fDx}Hm2|L5<%fAc#&L!upesocz5{)wSp47^rw z9lyY$UF4nu1n~kLjnERNz?RTv$uazKSv?3j%#jxV!VPHvOdDg|LHRcwFO>_pWw@XM zLRbcX?ZNeN1dw3a{rW-)7X`~>Xgj7H8Fc1anCJ>0pGamz9|OA(+>JlAO5nFxAXrIC z#mF2f5Us>|z4PO2y$}jGpWbgC&>#P`jPymr6fqFuL(FQkR<54;JXn%hj#YWq7d8Q2 zHY^`&x?16g1KpU|4Y&!!i#e-bHwdUAqgX*uMqB{0@SUsQST9as8;w@HhUSBfx0CEQ ze?HqRgtlym9@hCp)M>x}QKN*0!p&jVQ_@DzNfWuhQ?S}JR|EsiF!;k8=lj1QEVa(T zdDa)hMtA4iW~Yr`J0reRojZdQA?nr|}>{FfR0mv#4#@o^pmoNWqEul#5+s7B=!X}3jnWJG90+OXXL zoD(ZMkNIH&<$M`n>M4@szB+%xP5d2K*cx+9?hWHRc8xQl=SDTm59KlL1%*e0^mL@JXnjY7{{tM zPGGliTym9={kO0D)2ko-_|FApv!=BP^~}7V^F^{0#AV7|wRH(MnAh5*#-NoR!|9O; z1M5+7g9$4mAGK6*O2!P)sS`AX?h8U@N+9-sna}{>ogV#^(mxEK#$m1@K5cc>7Rpv^iZ%rZCw7&lAr)2V45!9kSj$N|k4mZqD+{Lpbf7CNLe#CG1&3gTbURRI+ z^e)qkoZLpuhjSv&|Ae$oNV5HK>L@`0nBo(Z)sN-sd{AmgPhqJ(_ znDbRKsqODyPte8>%O&jnJ`SvxX<492amPaga3~iL76l7Rk1&HN9-Sa);baYpK zxg-31kpCRgLTLGQZ3iS-xOtNi}HOG%?fHvs!mr(@}$n=8>#R7@^GeS$a zEpj*Es7Z8}O+AhX=(G*>=b8>cM`0LXPJwrYqp?vM85o8us2qq7UvlF{qEa60+{({f zG|IYHDdP71KcC`XW?rx!(WfQbxsBs{j3n^~v>chyl(ehquKk)$Y?#gzA3cS88<4{z z%!`S;W{f9Lo;|-rDPGVoasC|BLARifo}Zkp>e`y7pjVJFYB-?wj1AvljN7bmrCJ} zLZ@A3i6#fYeux@EvIZr)vQGldOudhJW6%5K?sS9_gHZ1p zzYSn>!|WDeoOPb$Q#|t--n#&*4pGVns#m{d@$M5#;55=t(O2+*j2|%3_5Ff)CO$pr zhZ@gkioPZQ9nZ6Os~+P(LLeYWZNin<9hu_OQctyFt_Hxr1weOOG6oq5KjEch2FTq4 zT>j3x04y0=Q~+uUdTN|r2!xb8voR6)xgz0E9tM&5Rd&A$BP`$VLdw}j3GAvJ>Z zMx@;9F8>+W_}gQHQnX|cw@%`wa*OQ;|CGr9-A;yVOHt3d^csz!&Dr1wtbbsmCQvUK zoS-@6u@}mHNPiLZBf79FsKrU|5Xb!k__-Fg^O!D0oaDWt~v8lBqq zI~&ggd!ODlM7ZYUbZrWm^J8N6dXE8Me;ad{&$g?E&ZdLPEswQt{!COLQDEEXHJ*!$ zFNsVeMYSxX6s;@MZR83umW(!Vi#*V<3C`-L*zG%~xKf4ov5tYV9sn&ZT%J8c`LWZ4zOT~Ts(@r;Hx&_&lUywTH zKY@9_UEgLWfUFbTdjDA8XDieitEsL65lbQSK#4^D+$GSoi06yNJv^1y*qtp-qvAxB z?bka}Fyb&o0FrH=%QqaLhTT0$|= zW;?`>Tb09XOJK)fgwTDLevn??aeRb>@>zswU@6as zvWxqMTu+}~x+kJ4{z6X7z9xS*F1{bg=y8&?dm* zdPFY}_{Ka$pQXMTs4G#PYCA9WB;653N2D?~^I!oG;FbUcHXq=^`(Fn?Bcf}Mop?RR z6C4|C>W>XKe7?44JFH-}&2E*p;Ngr)+3o#w_AmkyTqM$xLkr7%MfDZbsg{j6{ZUI3 zekvA|=!#{;VhKQK7qKEG*%Hq;Ie)>U#CmZuzj5`uTop#33pMI0uHeLa$|nC%Xya9=T+5 zp$f95X}>i%;*Aj~a``rFE0P)V^JfvvO}R-ef-sR&34XuzU~r3`+h-~9-i6kp^W#jH zK+pz8;X`72fm$8Um&r4)#TiI^|^lcJYM z>|Hee#k+R)qH9S+FX3giRan_jr`~<66$wSonCMdrBbpB@)cGXqZiz zSY5LoCS49-6pZxA&b&1uaIpOjNy&1USxr{X`ys>dspxGZ^>&TeM+W^>y&4|NJ@6Mm zC@%)i$4Rgx85SXkldh+nI-dFjBu+&Neh$H@^LMZ$&pJZ6(}+~bNJ!b-+jPe+Oywl* z={FgM@@T4e$Sc=8Z>>8()GAUe@hlY8D;Vs82+9>vPxDN+6rb z;y%h|3?Q3Xa%4f|pYs5nz!r2x#*t_NVZPP&4Z`7cZW9!xrW~<oRlxbM0Uf}tZ}mt>9Aluz^393fSjohIUmdI?`CLW zENDOA0`21iR-Cj;jsM-R_EM-VI5mb4DeAp9KGn6*8*gJlf)PXpEU7x<-kl-wlUs{k zyh1uNbI2LVlG%PAAtRcC_WMotv(AZ8P0Sl{vcx0}YF~Hto_GCt_$R zf1Jo1NdYua_CL`;nZ$)VQBr}j4;tms{TZBWbujMAA089aw~j0C0Einl|xyaC?+o$Jw z-)a*N>sxA`&eqHds*{mmUTO%Dr>CpPnJpAMb?Kx|Ynm`<+a98^h_68}1F zkmW=?(Yi1m~(V;Zl+Y#Qc z|9qexQIcf)c|(Vl*&tldWz)GJsa6gww3qcO`_HYT$BH3ZDlLM$gE`1oTn~|#1M3hO zP6vqpU7Q*?4~7o*LcO)FP(D=YP!vK>1>T~-ci`i%ns2azZbI!!60Pv83Spp%gTPu$fjZy)G84RCK-VB-ffkt=-Tpx07@jJF>GU8)AzzT3mmMYLW-Dsg<^`Wb#<_TuAFU8w(}>cCAbvQ*y!8pfrtpZC#t)>iE$b57S2w ztS|t{i=i@*gWQW2-G)pb`T^zn9qPeu;{iA2uW2?V@Guhk@s1**e6J6At%w<4?Xn;b z(F<*fj)J>YlOR^s^?A-{;$omwjsIm4eLH{#VK|31)hqW5TzIzn;fg-gtUSMPm>2oj zk3n`~PL%%nOvZ=OS;G~ZO)txWbFYcoiWG$91}_*w`b=N!Y$44(^EHJ&WwavW!;WcB z(T6MeKK{1ofWQsJ?!R4Ukj6EC7lePcov8NwITPK_TZ*c5%7&`SzssSlf-) zjr3=(<69$yE=BD~A7=RlS;-74h{pFYWZp0f^&^2OlJl%dGQG22Ioo|_t3i{0>@qCO z{um8C~BRb=9F8?JN;h7PVBJ8Te z)0L66U}(08R_5KxTC_#OOQ6)2+k>nOe*JnBpY$bVyiq$(JI8pOU4 zK}fILccOMS{nKq64OG~Spm{Pyqx#UXwY8#$O~?3`y2ft~h{H44*@6)UazHVLYj=%b zCca|bTIS*nhR=Mq7N!^TnMojPNDzv}`hb>JrP~~j(U;)Cgtof-+Ro|NLRC!kDrOp;yrXg0tVc4iF*BJ z$UKqulEs^&9{6ulp~EYe6FC8sYE5uEb@WZAn#}DTu+wQ!?Kr9bKeQS`;pQ!_P(&8p z6-iWfmgIfzpZlC91mYB{m*aoJod4yIW*m^Q4SXw7(2kdlA3-C)hrfi!9#!52p-Rz; z|5r2jFER5;5M>@NvE!bYg?5ZftUa=+wOLg6*46$^cLneSoxYLE|KplQhE(to{CZi@ zw9IXK^b#N?+R8ZHs79(*{k@kZW{!dtD;VK1vX969#|eilwUz;-=pwf3b%u@Z;nzh_ zC%{H8;WC{x6Kg!tiH`4d+?nu~esC3hGRt^O_3YpIS`y^LqStPc)8ads{OCfO0G>zz z;mkmM&C$|mL0q2{`%$O=SBQy>bp{_yiT=<{DY8Em_)+ZIMCc_^Hh3S7rb8c5!6xVU zlYiX5%*VeTU;0AuVa4kr8HD!s_K1v1(mzW4bf~urkDeW^4=uz=kHrA>=I>Oydy!?9 zW%woP7A8EjHq)ki_}^MtExu=|6v617;Z*{ zKQr6^zWJwx;CJLld=vAcAiLDc0iIREXas09&`+7}ZAU*GL{KwDFHttI|E0|SD-i$f zp?O^d*6FoRy#ijoC_E~ZJR;FEKlCJ(;OBg_P{5-#8q<;doo$(axZC^ckA=zZYaDhz zy{L|qeo*MJbOrPNS6KA(esTus8w!7!Xr)9&^c>mvT!>aJ-pu>-azPP0lDGEc(WBjl zkx-Nf{Z~h?-_JTUp5e+nrJ!v@4&vpY4-<272Rbc($aJ`|!3p&=;y%OAJVPG7(>7}+ z_Q?9>w?p=8#kbJI*hsnPtZEUV>XxY`QDbN+jro@*j~Z(M$SrFvTk&@~Vm96|WeZxH zp#PAe-KGOa1~VG3_I=9?=AW8PXjp6ice@#KT4;$GO*VWUJf+&$7{Zr7?@4vym^`}G zg+I$mz;b-a6M57e_^%5v7+Eh<86ASYoh)bxuRxh#QgAtc<1BhflD@(bZ-Y-9K7-HB z{pe4S&A(iPKV^R8`fgEyU{jmQ5CpXM19>bjqYL_?4EmbhJU!ai&tXyM`JP_>uTOXM zS!D(odLD(Mrek5BoIw3)#w&n0;W!lv2mRd9g&pRJeBD@8>GfZU(SP~gFc##<^LYM> zT^PNjsEEG{*>(XI&znOigS8o-BP&Z0_m_kGHf(}P(-G#sv0+eX5Ye`Xn{CLV3%dPm z0IotWP^Zll4NbNA1{d*B#}=s$c#!+W{jH8I9Dk3ot9&)D>a@qG9-~5m?j8*k|Jzq? zm7;#V>nOa>+c7bnUw{8^@4gEI_1%kI`d69)qD|2}Ig>=~MW$bGUUu>>I9#`b3$5ztdKKj?Deb`@7X-d^Q=d zFq7sGDYL^6kP6jT+^0tSbEZ{Q;Q=rw%OCxXK}Eqw^CR%-B~gI>X2C*EU65@1f9!yZ z0XsqG1~0^>M!S}>%ty!0bwrXX{p+hgTRHsxjD$1h5*%m)-&WvuJwZGZ$YuImN*8S| znG{eY%6jIrKjDT0h{(5ECAHqiQjlw(y~Fes#?PVBQb(3-j`0=T zzq7t^kPm+$`{D^QiKc*eGdpa)BU^?5P1P)!?%2=g67)cRwehjLe?o-)wm5khpKl;L z%>L93jj#$w#KP9TElMh0TNBiWq!_+uiF-p&PG9P_{o&Mvxg#gRNL6yoEO2v;kp@5@ z(wqdA!~nF3lq#c-Wug|${*ZyR$PXYinav}73V zE_w-+Jk?|Bbmr^;zhSQ5T>yixlb=~YU+l0+3w@yVv(E?T zO`nv%F%8$pK0V_-a9t)#|HWF$Q&^U75Jv9+($q&(xbl|As`J6+uM+X$Hdvef#&_ps z+>y-RpI3d0K1_#&n8)mZ@+jI}OlGtOqLP7cnMb+d8emUOqh>2d5Ca4#JzU*{LJxi8 zD$-ZOQvY~Lzi1WFC=$Wrs?dj;mVvhvySAjRBXqg)!H#T@5^MkrK8TWB)EEOS*CHa# z_I?At!3;5ei?!>$@$DBfLuqxKP^p+m=e!<3x`Zm$L8G z4QJ=uED+D0yPNlA7tZS=)LTDW0FBI(C}@S}=?0tw;;aIP{mxq6>M_bYL7d+XC6Vqu zJ1puwdsi`V$rSWt%|o{;82f>jJ&X{I$8$G;X)G3_XmE>*5n30eH&c{4ClP^%g#g_o zV?=-Q!c)ZN7Ey=U^@*Yu7y=006uGU-=ovnu);76SrEn0KJd-lVKbbpfWp%x;y*@1^Dw^-6}UxTOZ!p(XU~$c=LXu6D)k@C#V*d0)^Xrs9HxX9N!mQ<{42S z)^ESO{^_n5)uFsa%OaEo+ODqL)miO76o5nO>TC&C0#Fq)0F)xGqv!28x7?(A16)HP z7;iRe0cXo_*V{=s3;*=Ev%&uM6#k~Ry>-`}7T%O2?YMI{{c5C|4MbfQqIKNO{JBh{ z`oJ8cA1su8z>mif8X$OO+)og8X3*?i`hH*=ODjv&_XdTWO6&)Rm5aU`+IqbmCqkQ~F#h(O(yOq_K~Rz7n(>^bX69tl(o zX`O=feO8I}r-Fkzy=>h$-3T2BfkWzwo$6~k&te!2E-^Pz7Zyc{C@zZY(aQ*m5Q07# zrzM;}=jjBk!#-JtUVIR>w)*Pp#JOUqHsiXHu{5UZk!Q9~2bJmD(V-fgAB=u-t&0wI zuo2$|u%$&XV*`=6cxyQZ_tTJ1Q@kwa;=`t5p)hyJY7aS+y{)7|rkHu5JZBIa>3hN* zxG9DNVYLw%As311mmY0x79UXh9!Pu4k7I9-Q6E?>8Et}!aNk8%TYg`;0tVm5bYGEa82gVN=zbvLhA4!6vI?)z>Yf>l;8G+7Bh~5Q!xM^thrG5`R+I zy?I7Eh@Q=8Wg5ExG#D0uPGkmPf1UepdFAR!aBQ07p$vV>_{(fQ5SQ|y-E{3Hc;K4$ z1JazLSIng%1G5wwB~_GG!_KtI8(iL+#OE6R#E|(%82Qh7FqrDPQ+I7h0hKO_A!AMS zG3y`p*zsYkY}o(E^x4sDOXagj%9nXty1Gak=1!x96|^&Fb*q&=x4!djC9e^~+P~97 zoy8-Hv=W5>m8`-8{A8(AkQo26C)u?svU9=jH%kH6%E&5TYbx@Pzqk@9kbL8R3&++b9Pjv& z?13DSNE>b0;nR(<9(JO(HO&Y!a*fpti*DNXMifdAC2>>eVa95w+`JvP{^yNHMH+oE zJv#yOGx~bP_lIPuc3QMct2B8|pgIP@!_vw>nI7-Mg>h(;YF>F_FKM5A??PQ}Tv52j zCsxp18$NzlStbxSF21))_*<^@%tOr%k=4xO3(wLaT}TT))8ZIkE6+2S&Lc}YtLGt zV@ygDsn4BtNTR-~rT17o8*b4z{rU0J-axb&`A&{t>j@fOhwtdy)GB9IqG3`HIOx$9 z#mOkxMVV&ZH0hKKon35To(@CJz(?>W=LYlX^Pm z?5-5fj;OzV9FLdhJMVviuOuleH9pM7ZiRRp{kW_W*h@T1U0 zq)G;Jr)`%D!YnVdJw@>Nk_H0L^dE+ZUfwOT1dz0^sEqzRUxaU7%uMsaXg1>kVtU%X zCiW|N4qH8>epzs0Z81t)t0Y;Y4I7;%ee#lY@3^f-y2=~#mLJd!od|Gb3;3G4qcg|X z++Ls>c^SVLL%-4XrNpQsqMc;@&Ls1odC=NP;(q&L@dl8?mc~#*c<+x1jn{BZQD6{q zx;Q-}Ai$=(NAQl~;rk%GT5&wOFsGZ&=a^`g1qnX5(@;YmsZvn9j?az8{C-@kJV zQyj7X;gWq&{iSPLj}uml_sZDL3W%e$>)F;CLVy`_shMZ|p_hySYA^3}P6Sq`;*N^qviXu1vqk7 z4Q-qyt(w_wOZz?2TOVD%-t~d3i%vm`=oXK~J$&vzM)p;UBiNex2A<@h*y5s#1674JdtEE4J>Pk`2-M5Bb_ggM%AOWIJ(EuqtnqKe}aW*7FmT8)=f~?i4GiJ=MybB{-DFO zWH@lj*>P$=WCkHf=u+Y)3&Mpa$LWLDQ*5tAn)iQ&gU8VbR&5SR5iaz0vZFi_Aw3B`0o+%kq+CEi?iJu^49b4|XjOPTR zwFQS*?e_u3_HA>@Ia64;+80@;zNnWg9VAe#`*J#cwvDIsvrH;~dXkZqf`eQF0jc@p zkFFHf^b7z{e8i0Pt1-lmx*dgOI3^VKYPC4bF9NmgSi8X)ozmJAzxKBB*YN@xw(l!n zDhU4Q5RSUaI2!cw8f7>i%eTv{m$S2v<>{^aR|IoR_Gyh7Kd9ikvRKG-nQ_to?W$_w zXKRzNs+YN8qe+kF{MuYoD_;|Kjhn?yptP#lSbGXt?VHnf14!E#@SLhCOz#+(Po|dv zcKpRTT0A?>0o2kyi)X z%*HMtERV{oyFJZinkFmjPgg$LbJ}PyP!K_mJvOYm4ta#T z2Ic3B}mFXclPdyJX`@Xe@7CMclnWr_DD^?6j_bYbmA(ii3K&)>(+uo6jJA)Zirre}0{m3Cd- zAi|)*v*4Y|+dhTZo?I_GX+UJVV&XY*5+aoPr~48-+tzIN?q4@OVam5&F>zgb4b3!( zRK$Jnt#`sr`_I&g$$GW@i^tuFS%VuDrldnWmg2+`Z`$9DT55wUGUi@T)6FYp#WYNodip+a?JAs2+ z25-E3$tBe_9zT*?>5XxM?)CKvRE?c(7iO1cklrq2=;T3^#+Kuzgnf%(@nUqrRPje{ zBY&IqhJdst8SmxF=%M56ZZomMBS6*-3{# z;XJuQ<^J&C#ru>&@xB<+q0eXWSH`#{q6xspm;o<@P+DcU zvp+!UD=P5*`XE)52{XD+!Y79%DjZQffgelb;VkH1GS1*G{}ImWNnKWAb~XH7VN33e zY3t&)W_4W*BZ|3Kncr5Ci}$TGBZkEHDQDAbuQ6v_F(&$N3HRN&6cFPFm>+ZzZ6=)Vq6;N^ZbBA~7`IB;>$r{Gtk5#QRiPGpVJfZarJI6SjW6R3 z?ykypQLNg>uTGhoQj}4kNeAiKf!UMATg%21LAux|u7$7O(zkb9=2-A%K&!d_F&420 z$C&yVzw^wD&1U(d>WZoSchx`c-WcP>W16GnJ2l82T2_LgZY=)&>cT)(_BS@|>gxJi zQ?^x(&ME;=W)1F{vezPzpakWijzU>C~8gsF_GF z8f+C}quMl9LY79>?{{)#vBWox6XPUU8=9U9U6pdG{ozdTu>fmzP;Qi;8s{YvRW&?V zageQTxI-=~h;j2j|AdKR>=2<=%EcRQ1mGTPSUuh3S?QP{iRyNQr$~A{gO+zN%H(=i zy+{AG5yMwm*B^82Svtu_izy>OP+3wdUXzI*|FL+wnH77y2oKAck&mk*;xf}Xn^?3n z+vKq#95W2|39a%xZH!iOXS2Vj)xT^Ue0s$dcLF!u`W^S|g(+$;o<;W4zB8tUZNaPf zS>?~YHp^V&M3@UgNKxDeEx9@>5r!!|*%qBRXi6D{uG!Z;Ruirmf%uku>mLV>%E`0k zWjqdC!mZX_@dQ<;EleBO+*k1|My$#hhT!rlZ1Uu|eu|xqzqu1Tb!y;CnIbC@;&=LW z{*r!=_+!2kih#)#Ia7n^#0LX8G)bJAjf6~nP_$v&@u7$!)NFXFyXgq)+Hr7%YlL;L zg^NZ9nbf5eYaP72v%eetjsH@sG81cajsl<2Y%<@k z4<@+nS3pMX+H!{x2d&OxCDS@!lVsFq&TZ~|a1K5}Zx;?KUKmwf-NRc>QN1oMzGG9H ze~f!kj}(tqk8R{-dMi>YalH}3Y5Zl?WiFvyAx%H5Y8+se(^&3jo6Yw z<=7@A*fFV0YG|8qV#=~$snVW1i2mndr6O0pJJ$qhcu8|vaK*eTAD#x~Vmd*I66T=L zmG5){!n3Uok|1tsk2R#bDBr7jm7f$e>d$|tqgVp2&inr6(Xqn!mtBXS_kla$OhL=F z!GR@iS_@DKX*II9O?|@o?&`%rqk)V}S)Ht=aS=|NGRE>6$1XB{#%*d5*OrlnZDqX~ zEppRn%Mc6YmPNo+3$(|%jIDM711GqFaWM0WD_#>f?IO5J7Gy~MZmA1mD2O^Oj*D*; zT#8o;=~)iGeN8(lce3t>a%a)0csZ(xar?o(Mp~!x^qXaNH0a}gdjnfKkz+C*H}fvt zI{LyqU#Eet)ys-#O^yb*N#|aaqFuoY_qQ0AOi#0z2PdYPCyy4fqjjpQnuI6mTydle zpPAR0=xawF3(KT6wB7F4x2}+W)oI~Csj;gc$bucNxjW0U_rifEax(2+*H;Cy;Vdol zCE-8?cjDf`n0T*_a*qRH>kWPxYHLE>*2@kbUfM>Io~G|>$gL5M80|h2O}9rrRc;eu z|L|+!CvQt7GSV`uuG=~BJ;w9HC@oXbb0gGkrYiTEG(0_JxllH#_s?wRyy>|8!=x=| zi}h_B9#b1y%7^_gOPmGi9r4Kw#j2Dw*YB#gQlN6P70NokSt0D0tXvl!*1kg2l^)ru z!oI7zZpT#f-{PJz4K4k!#q`rzhM{N&qzj6!XR}wa`%d~PT!gt**w)Vf%}oZ^TZRjAnN1FhVZ6EZ1oisD^QlNb zxXh@ZP~CHUaf}9C&_RB#{PFf;W*%!TTFUN@5(~*;zA>$YZtX~@c5@u1MZbSw0!n4Z z`y<*$rfDi@kEoZ6E!(6xg2()Ll=UX;&a@oNizkkJWCwTOlp7X~Y^32uN^^(}*_7LD z#2d{N7$9p^i}KZ*EDj5_RrHby?dsV($aUokv*UaFn( z?o9@1^jF@oI*&1;&4MkPCLQ;VWJ(H@eo~3Gmu}?eXY(~YT|PJ16(&&Pj)-L%&B`b# zhuL(Cat=g-xE!z$+~*s@_a;!?T8;?ryUBg~wC2eje4`wHGy5*eA$gbC5YUrV+6^F6fC{WM~VH5ER9B zRk0jQl?H)uY3UlBc>C@err@N`ZqN;=ZNIdo-i-NhPOQpZE-^5Ws>v44$fw=zic|}U zIecUNvz5k8?v;4b?UZ`40=^q zbFIJG$oM?c|G<;G*^0Q1kU%}ZWCQ6V7$vQ%D7)J)Q?u@y=7{dJ^gm4}l{*B`<_=X> z_u33LU$Q9j{YOOfFF#x%!1&&yqT*#|r&6}baudfRRKC)Da+l&u>e8N^>{l8upJS?b z5(>K+TBEoudB8$-0p@bz?NHJoD-L z(m~40A8$4Yy)4FOL`weXqUp4c>3BnW;5N@6WPX1V3KI`HUKT(?TI)D;eHQijYoRDa z^1ON%ie<}08+M{uVd8GFR^3)c3Wte$riRt2A9k#0rJjgIC!oJEI$sRI){`lI3?tba zyZxQhN>d_l813B^m1N6m>vy`61bCV#P@hB7KXMt5ILR>uo3%>N9^9ftAu7X01-VWg zb=lwMgL%)_o1mCY7PB0*%;{^?7` zh6SjoL$E&M~?!)xkPsH#2%d{U>8<2l#3B}lw_LA$3P42WU8gc+~ z!KFd1#8Jnkv&sqSp7xnd>GN^|s!@Qnl4;%;jyD zW^|Q(i@%XAjGCr={n5f`U|no>E}VPftR&8&7~h+XZ_u73UvZ0eoBBF*=Zw}!OuFk? z>s<~Hm54H5x_OqXNzBX_?1!KD+T3uS8@$Ov@jwP_hSNSS>)P8ufqbnleflMI40*_| zVTq&>nG3bQc|Q)VNNW>u!lq~UJG-@fQ15fQCS`YAQ_;zZRC@h6n|GL4P|uRG?Cll_ z7@M*S>QAF=qEo-#nS5u1?W`@E^N1(9t@`VeUE>SwytGa;V+ETA>I2hzU0(0}Ji*h| z%QNRkQ72(&kNNPEH@Z{{!7=5=uB%ef`=?PRAO`xF6G4$MnosT|tdE^4^DtVRP=1g1 zp)VA@B!Sx&bNKF*%__DMD;#jj^BO#%d;ph!_jSN-;cZ{V4nW=IfG#7)S#W7$FX6t= z>%rfqRj;7Aew_(*omOQq62oaPqJAvjGQ?Re^#Yoz0AGUMa%Sx4Q6L^RhdoZb-($Up z_TK$9|G4@D&<>KejPhzlL~j!6sjDb__f2xg=LrbX#DBj_bmQx4&FVf}xe|4ilu^oM zk9vc?#hm*R&^<8;@mx&z3;m6ATOJRXQO}C;apiJ>i|VpUi?1l92a>yTukN?jVt8O> zabkX;rxST>2-2kzifTfH+b#GTD^D@J$E%-fhr$*$e4y+V{b=Ym1) zIQ(Rg_i&Q{8+i2HadW63Y^bYlOl;tHiGO|Z;<0cd?9}%@wM6%BaZf-+fKi5;n9Lgv zkv*!_5?s7+7U2}Q1ege|df3)9c{v^j%2#z!S8q;SI2+p6z-{m0;oE^d@)2K!AZ-hD z6)s_AjB#P621n8b)kaKrFVT{?5L8pd5y;Usq>}EYPgWP0QkqZNT$9bZUj4|{us#E| z1R$+@!8rUwz7Z3X`=i zN*Zz)6AeUOwl3OJKGwUMe$(fH4Bw3_PHv5%sVInfsP8NYoZnavzjx|kCr9VI#{PVd zw-T3B$6gq>Ocy3Jq<#?8Qmw?8sG0$iMFKYtY0uU*IcB0~4Xst@yg2FBh}8o(3smp2 zmiiYYDy?Lijztc1siDzqSDBAGOqch|`m3MeY2Z>4>knjc+p}?9Z(cV&|~?1 zKB!8AC64MAaN#Y=)}8QJ%ppMIet@2pwq$WBUVwTFzv6h@)uaD0ED*X3P`VQ69w~c{ ze@mCey2gL~ee3KCP6qqSF2VcK8#F#?j!(|5sViZ+>Mg%eZ5n%OVna^%J|m~$CdR9r z*6M0~F#=a6DOnp(x3M*T)2tDU*^Q_Ma#Buy^5c&hwB@f>sOvi<-pPG_b)H#Xyd#GS z*yozvQo)UEOoP|W)2SAthI zK1`^)kk$#QN(evJnMk{nf16}RWrej>%(_p}OzE>f-6T)QrIs&TikXzod>D1-ZtL@_wtW4Xn=qa5m50Z|~F z81h0q0>S4DJFoI8CnBrE=S7&GFjZ(WzN@`XZS|H~fZvXajhz`dOC`$oY7MJ{`5s=i zx2iGMWrphO&XQM!eTdBMs8rfcc=3wQK2*Iab@!rho=xcMnq*&(i}P>mb)N<6(n~9m zPO|rQZ7VVP5)60nI6y3Iq1BNl9-N+JnAL-S;R2SBifkdM)v)WTbh7hTS6v)%m!C>W z?9}w(WKHz=T_xz1AQLuByF$3KqxJ*=>JLo8{bBTOmE)PVMdt~$CPcrc{iAfS<9?U{ z?MBEVwfs>0(}Z@*R|;f>W7N=3P<2-uJj`smsLr!sy+Lq|iQ+8%9sHm!wq-7nOs*j)G;FIJ%?R8wwLNAd4 zf256;c{PK>qA@+qs5D<33Q!)tneChkF8-Kw_KYjj85c61D&HJ^ z#ANAFpOl_K*;Ssb&W~JSvZKmG9#&(#XWsRPl4Y+?zLTc%mPdbF#e1=cqgCcBXOL<4 z@WEq&8@7v=xzB?$mBw3K^_H5e7EWFR7suFYxrI%OLenv#6Pm9tTSIv=k5V~vJYAi4 zv1+PaVQ4U)L6gDNH1nptYeOcrYYNxGqWtq zvkfZi^3DHHtkNWofAJR~E|k5AP!?V&0zy@p6tuM=oo&|2A43b0h%=W~#=)25-LuIg zM~h6*op1|)1CL`w=l88kJi7X?x7`^7*|d8x!Hq!$h)p8GTnri=xYrL9p@EheyR0=A zx=oNo%pECr&j)f)7f3RtP39uLECct%C?^VDm24B3-*~5M=1zKo`+$ZkWrfb&L9KGSAcl-NhO-kr4g8Dk6B|$_FscJA!niLuGd-7XHcud>S^hdG z#WnFsDl|0vU4h`mPZQMH@ISPvE*Q=Z*IP9)xUec@ zLa;dq#&*}*I~{9>fi#%c5Rl%?lf%u5GEq6$=^8lw;LZnYr5^IaS8dipwmFPaH##1A z*_JVRasNo;()#1;{`(N>RTZSR%nsx4*j6HSJvtQe$jutwA})} z@&tff9&DQ454l>;@2G~A&?U}7f+n&b)xyWNXkvCeP?69BhPZPQC#e|kB$7J zU_Q}%RLT?Es9YNc^b*x$)5T#^e$4~^^r-Ju%5s4}Z!c~iCkV~j(hoVK0uBYM;co`K zW%zqoN4;L)an}Tci%XOHJyV3Bu7ySS@fIcKZuCT5CJCCWBNj>mP#Wp0BQCm>ar1O7 z1kMPL7m!HGBi+zGtKVKqzzvRmp&*9pVqHk*bQtNJE*HTV83LIX%1c5ABPV+=N~otT zhO`&v8{Xm;{(Yqij@w@35$AiaHFkJtaop^mu?F&~%Q2eb_QfiCG*ym`yk6$RqyZ#r z;MGDy7?>x8aac|Zo0eID2rz3R4aFZIVwg(*U6Xt45GZ3a9X``&BT$0Tu&g^3Y-uqC zg88VfTa}jR&R~OB&Xy$ZnsxqR{C!)(Gdvavh(yLUCbv`5uwchP1Kuas@rpsaf5L!n zo@Lkb2)^GZK#&7nc?=N*=VO~V2fi0u&4F=iTW9Kt@g89f-zu_%gQj|5 zPDrcFfoQ8h_>>QDvE&Sw5XXIML;2s8cy~z6 zp2eyFqkF5^3_!k=Jw>I17b+a#HPq?40ehHR&YOZbpH!6C)wXC$s9((&Ghb|){F3-O` z0th!5+X)G-6KMT7l8Sm;AS%(pq5thvoGVsF2+GtV^1gAoJHDa)$fZ<$tm(l4_9x+Q z{(1#ph9h>etkZ&#f!1jV2=_FohghoEs6K;Fal%J$0IU*hR3JuF`R~KH|0wk5dBJK5 z{x)%QYD8?;1Z6k+x+Ow4ffnSRPU>g=T!awNK@8AXn4I1PU6gR0l!IyHDP=<~E&H3sLffv*t62*OF1bW0L0|c;9p;mM#MRi$Zt8Y+nu1PNDkAlO$Z*ObMK?Vr9gmK$c3t47l@wh#%!>i2a5< z2N2p2`_~-AupXD3J>hK>6FxF!;#gWu5_dlpt+a*iw+EXxaY+<`&T$x`z2m*vm;~*V ziw2OA;zT1NI)|8Kb`K%zABeYcHYh0M05Fp=_5iVS21{zUaeJFcMfpgsziMp$e4kH3 zFy~h<;Mq~VI)LkQ)MgNV+X*I6fw(n0Agxx$)q%6oJA=el&>r)}{TRFC1B-IZ^&k2&ps%Y78;^cw^ zXs`Wxyb5m8BaNLgyY~wpXrnFf+if=K`Gak$&>#b0{WT0>IpIlJ@O{7`1)-J?aXvPk_3U%mc}e z8%pkyESV1p=#5t(8zru?e}0RM9B6+th%`Y8qhT=kU_0g`2fRHCm-;Z^f5!tB@}6i`=Jp?(0*mNpC{WfZ>i@-!>M|lV-}#NZVD6yaWC>|;+x{2?<5ta#g;^VSsiSb^b2B_cHkB{8$@&{ zNCc5Ragz+$C&{p$ROeTQ(=Fk+kJNz8YJo{@mx9#Q%9daCBXWB$n=)Vc0<|8o+3xF0 z3F5U*8|x((aIovxSPMk-WU%JC`3KC}xT-9#%^(I`As>+k<~u{)i#Ypk`Esp z!_15D;=a`L@>Oeop8KZt6vfRNEc-czZaOoM%9rb2i|zJsCFg>OSr^5g5g^Gioh=E` zXvWOn@oiwaOd-JqVzd?fCP^+IB3;j6R1TtJwJW89USjYxa#uAu{0r`XIS}^*VM91L zaiipk&^e7!Eugsjwv)(0WSa+wn_D(xaU*vO^XTXX>_qCS%Gwn zBJ0k$$SeK+B_t;NUOi*zd81RjLf=(xf)8Dw;_cgOlAI<1ID=rpcn#6Q%>jjv3+)-gpQ(W}Qr21@R&oODHqs!}wjhIQiA4d(4W0&VO^Y1?P$+JL!(A}kpF~?N9(BGalSapE0 zpZ?^fe1j?v-@=R|-uN%a|H?3&t`tj`FGQlBF@AW-=U@?4^9I9-2<3Y=?YR?0W7Qpd@(w-sv*BvdF5Z z^4ksKw$hv3Z>&macW>`h-6eoclnJq&Tho#TMIQ&@o1< z(xLqsM)jR3j^b@8tOvT`4TzU&MJ(IJf?DFL%hrl&Au%@$a;0-8nKhoMq=+m@aH?a3 zKx%17z}Ck#qhW`e&T8*@YBqq&C_p>P_?1YTv~MPc(@b8}YNk!g#+IW|Z^-3xugu5^ z%JeVE1W80!gROmc*gp=7IjjOV=3J~GGH)!)&!Nu&TJruz7g3jj>{Tl3<4%crBzgsp$-r<*!KuQ5v!yj5ENgcHuEz?CRpC=Bd`q3b|56y0Eh!U2b+pp% z1_=)0yULpMpbOS>=#t^sTMSxjS^}9uld^L~KfU3qBvz%kRXsw$xfF^&|C3`bqOz@IE3`)bP?VruI8M* zeL-X8GS2|OG4L#N;IJr=>wM*Ns2bn!e;9k~xT>pBdtC_StK%b>G*01$)QdsEVQJ z_k0B@n5pB(Zut6><$NPlq$;fS;T|}fuIkrni$cGYUn7Z;-(^g4sR5TeAjLoJuli*Pn9@C_eX}vE?&lnigqwp~hx70JXbQ zNp1=&TN2`Y*}VH3Ev$$Mst#>97_i+uhBU9;@s2EN zLY1P>@^swy9Eca}@7OrYoFm(jSS35^!sD-xc#=&EdHgPbh2rwQn)iWyGUI=#a&Pj3 z$`-vEtNklVkDP1C$ZQQw&J=qcOJN0@By2dmDu?rrPQih}r;g^AYc5VHYrWG(UIV7( zcjg8DBH;CU)kjYGGonWZBnfa^G@aV=QaNP$yNZXsl7~z1i%@8UG&y-(3s3&A7N;&H z77S+$p%asak1}P0^|S%*{VnU`NPdtta*guiy2O(`z`P4A4Z_3DjdKZddb{T7f_r{E zSXzyzIrjy)ewvzJ45-o=mr;0xiWWbk*Q7f=!HY@$*;>##OmSI_<_*r#I1P}SDWZhX zX+o994Q)ad_WJ_y4NMmywkZV`x?s}Llb~w2+N~SS7R)9O?6Jhcpjyn|eqAmWhM2xF zi&8fNJST}8??YM@gh6x7{f_4*m$OVJv(Q|tOw{o46FreGs*hl&iGL-GU?ZGKJyI{= z9a2AdxVT3PqtW3Da6~g4)Ty-QBzk{T=}=RMrAIc?%S~xa!)6R@V0|;pW6W_W6+HwH zC&wTl^C`&zB4Q?*NT(1U1u9JQmVC8)%v4=qIRVCC)wt#?+l%9w(bi$f^cqmV|6$NPCuBv$JKlu;Y z&2bNdiwD&i%dkcdvS<%IH!h9F(KS4ovyd|(5vRtyBbBXA8$&{&B5{Sx<|#%Me+{eu z-XaOFLj9B5!nwl7_=kI7qeh=z4o34f-$OT<|Fh1Z>J>rt6^8{a8A9wRR6NaX1hKTh zem^sfQpML{qY#^K+>+Q-j-a(KmfLYZVrujC#66)5Isp!J@BQA0dHcH)y<)<_R9vH< zJ~)Kjg&ak`y+!zk0h_9TUScv=f*Rw`zeB zq%MXPA67t)g0rCkFJz)jIIF{YIR(`%z3KGH4sTCabuRBX&025+6I;HbEgXg0RF6rn z+3JZ92Dsd`#gf&gL338SZ{T{PhmSL>60EHL^NOG6R@`Thd(?~q-%z7Iw^UB~N`~Gp zu)JEgs@hj}29ZX5jdzR4-@I2#?g3@U^c~S*|D#N8H(-$3P`134KB&4TlR0^uG z*%0w-Q4R8USC&oTZK+qRkDz*H5J6GIeBU={0)a;5(uh*PkKd8>-&%L$+f$W2t$Ly5 zY2H|vYjLT2!z5c2xch^OR+CasN(1uYLg*8i6oM>HMjioXm>6L>Xl-bBd5>{&crnvb zlGar2Cb|aL3<3XHuVE!QSS!lf>qYUEE*IgVFwt*a-+~As=3!*|xt<_eMG*>16!Tisvk*DvDxf&^upM<*aK`Y3ZrRZhB{=*PTGa%8gtr@z1SnL zTiy~Df?C`LanoLA`YCXqs|fHs3%*(@zTtbtk-1lUoO=C^0aHu8+h|Z>YWQa;Srx+J zER_EX)L?oA^?>PvG)J&oR{{C_;jd#hUsANn&0$n9B@_)^_|nK00b@YR18@mv>%bqd zkIx2m#@nlqDucUuJgG)9omm@BvHAI+6+HxmcS ze<*ov#55Tqerua8$i)Ut?8t|a_@lq-Ttof>yE6!O?7w9|w5VY?G5+}nIJkF#f)qpK zLlG?UoEw|Wv0q_Y-j5lguP8lHBpE|^Qx zQUJ&gDaD-NQ_@?;BKN!HUgLH|(RPQwpwCeK8UR}ar%tHc3m4EfsnH{z5u&`v?zc#8 zqsMpo{*K!WhaJy{WC(5A2;;n6GmsE}y9?BKika8-+|%r3sZoX5i{yKakhVA_MAK?( zIe|fO`Q9J!heXC#UR)93U7#I}Sc+k-g10^?)>Q1%&tcLdMrCWPq*V502f)ArkZM$Se&Jga>GNRQ&6Wbv(!n zpe`+={7YP>O?Kf{WqiC5@& z2jsQ*DSVt9`S`~&kWShFsi@O%SZ&HGZ*oEv7UoOMQ(}$hER@;)yhY2tb zbhA0;0lz~t)t%-s zj^5=M+1miXXnX3BhaS=?`Fin*ut>KV)W=jpNqzcORo{?lTVv zx1tgjD~4h`-2rNniDo%ndwEeO^8?Kj?uM<~(uSrVCbc5`GMok%W|z_x6^6~75T!?b z{D9gl)ZasmG7e)T^lO;dPYsdbz_{qfaUTOyUbVXxCGWs78pieNY0{l4F#`wSH4- z^d2ZcX+(yH_qists|fxbpClv%h%DyK!vd-7>nNQKC_J!sl)SY^U(Ws{atxr2s=-

gp_b{ouSAw3@3%ZB9w#Fvx6t2M2IsR0r(y;*x#Vy|UaAkIdzGVl zn%|I!Cphft`pyUrvt@)_gB zXx;~cRgD<93QXPB%Z8}J%@le{lJG4^1A$0+$UItq+||ehsUmHHq!ve7-Em>fRv~nE zsn0TadX44>z!oqIrb3vqiSVGK7C!vQ0&-_&F?-}U%GywW`?c543+-joP=(D^h^F}s zwuiv1cNGk*cmwxqFjk}uUrd{0i%{87s|nb|_)28^>Gq1mnUvut!1BJ^v@1toz}5w% z#-C$j4_-edCO2ONjgXpEKqm)2l>k1B3g7tV7_y*XmUdbbTlp<0jDNh}qt#d9HlbY! z)(x9Ic@8Lsm-uDxM$R+e6dYYNRYyzO=X>07tS4PEr^H{HDG6C+2#y>(i}bb)v?(Lf zvq%V@{4a=gv>ZS^cH%L`B7(1caE^r!!uV-coBjGwBryR@eflR%osJFswWpxWfT>7G za(!(Mo(wfLVjueNpLh49(#)27y7zq+sJ{l$`ScvXD zX_cx+{nCJvur&?5E}VjLPxxXeVQW&RCaA(9zLS7J`gu2B^X-)~~W(q$hJC#k&EyGuS+ul$=Fo3g-sQwnNnK z>5)-V6QYH(w*FCsp{!%j73_q0Nj213Iid3h@av#rozTXNwIy=>rOgOn9bv7P3@rkb zAYM&uNjMthUSKof2}~cby3IgUtU63^*~YQ>fC>isGcH_bIgxmr>f$FNXGWBn_ukuj ze|=+qRiY4(O8B__pJDEv0?g|TQX&DFMTGJJXbTDDe>f4jqc5WajZ)xh+ zwDyM~^d^S$4Ma&1Cq@`OzzyLK9;rb)0@h45&a}aXSnU9Ej6d!*Hj3`}#a{V*-;!tV z(XIYs;d9HBnQA}k`@1ytLO7`XU~Eg9wfg!`mgGMao~H;fY4AMx_(TQ)+o=?%^rnR| zu}3)M{Qi|9JjfY?DyiOe8ALq8vk)!QD+aPs;jlST;v55j8E=PpBT}VD+LGo^>{j#h zB5a4p1rCNAuxD~p8WgGb#mB|q8ub{LQ|LmbbI~F#aiAX<28CQ7Ba6K{HQE}ehIESG z_kME6=XUOGemEHcSjSCK64`d7){n71gDDgy6q%rm$c$1u2 z!E`W9KqzT&DOnF^Dr|JvcE#uA+K|ZM^P{H`p=?MS0p*d!gV+3yoakJ*)e89f2~sRo z{Sf#mNqoO@OQaOiveg;5jV~nI-@%5>tT}>EOf)p3pvKnLq&;|Wdu0IY5kP9-vxJKZ z3xb*>PyBA51Ak(iK})ikJEjlNSf^V6TGnAxeSVJtCg$x100i_!p#?D-0L!uY%1xYwOuxr!V0d+FEsrvl=JLX1&t3KI(XELr3U+hDpzR_X74o z?U*y;kJ?s}g~viDy+gsm!ky^>vS-u+@kbZLpGopex_&j**7nAa*cEAiG207m3}{otm9g|Z-n<*zpV-r6yQ60nb>f1eTgjM3 z4$6wQGVO7d)SB5j(maN}vV9>VJQ?lEsJX+F)!f7O?i-%(8rsjA zSYBeUY+Us&`8NHTZ4c8sev$PHck_+Kx98gYv3VaaDK2&rLQn2--XDSlgz8fFIY~gMymYqy|T+wG+IjdT_WVQQ%K8z-JpRA9rP_hV zTlJLWo1=r~I#sunYg{Z?1;gJEyjHFxEY!x=dryExzvwd5Qr^ z#yy^(j^2_7nCWC+SCT@y>)FL+R?6p?y|2ozHro^A?j3qH;GUUX@^sYt90+=KD~f*) zaQ?n{P_RuoP(2pgLpOspw%q`_!dQ9o)b;(YQ|3mvNjm@PN<6fuJI|m4yC`pVf zCqf-b^saSC+q&rNRDthK0E6-MPw>msaaUWv(>A%6I3-Qf7#N48U}$sgP|yiygV2O2 z3G+B9SR@N32RrAKO zdHoBwy2OU>;eH&18=kh8W3F9HUBR#IZC>qBiIsxjr3%Pb2kfv$-Jx0{gwGCUZwI9f z0!Spe?0dd|90NP&l2;PK*0IqjOt1zN;35yF*cxtf^k=;#=-Be5@HZf|S38&e zImM38w`hxssmQ6l%$LNC(Z&xfsgcmRN~yR54AmE*#LCDT0;K@fuYSGzmv^rn$|jAM z0AwRjgXYE2*0jX;yUyup=p@u%!4x5^zfj zWKEt6-X*&U7ws$-cI^-MOCzv~Q;T>v?M-*tn?hug#70!AeKtqtvGqtINbjT{X9#yA zHdYWA6isV97usg_1Uw}vX}PihkC>WkL+X1pVH|cp z@H%iuDFHH$DYuY5n%$4I_9k=Z;KnRMP=mzRRbWx)Cwe!kfSC=mt1YSw`<;puYXnap zfuAWo_6bo-v5V~S#OBLIPT;hk_x?D+yd%dmNy#=g6nBVftnV98F`q!tv1CDu9)dtq zljPnzn|Uno$_3=~;w)&=> zAs%i;*B=e6&3@wmC2s*y9wUhvs&FIe#XE)IAf{xj88VTCmtb}zw`q1FfQsAbmv2g! zEScb{gW9)uthTuuaqFTb&T&x9ydagyPXk1^$mi-4$pt-4lzf3gaV|2fE<$w}13#<; z>o}kR7%2)u4q5&DMu0~tsXBV}fy&XCKRp+3RMf=)*VeYn0$2ptzR^pz)imsWbel-$ zXVvwi&1;*@1oaaUL>ylRDa%SWLC`uT3Khm1GW{wj$?EA@0J2r2Nu6@*G13H8wxpr+ zvNhX`*q%vW6_=`MI+Zy$%Sd@?6q%D01?u6u;(G-23rv?c_*?cn_`Q3JzWX8YD1So1 zQ4;W3ZZ<6HFgi8lgp1H@yshOjMCAf%=_+51q_01LxDT(<*@8t1_C(unIzS;iIwiMV zSLu`2H+qkq$quA8_WI#K%N}WJmCQKFZks(hNsu{ZPGNSU%bUaP*Ju_s|7{$xE(!|g zgXK`FheYg#L9+w90Nld4kU$l_M5s&tNn6sj!G+ca4HS~m=$Sz_QdFpPqKbAEI8r@F ze4~sI_I^8mCt5If&f^DtFi6n%*P$iPETBn1@RS?#u%^hF?J5A4CH z!sII)d*~bPL0@g0XpZGer^mq{sp4HP8%g9Y*2XKiduMWQK`OuBN2GcFhR|Z57B|~W zmJ-c8DKWec;qc|Egsqm%wMHJcWWq!Evux7kbG1!uuIbuXS@@#OY&*{W_d}#Z)2km$ zLoyvvw$ehgm2tA-D@nBV4Y#m{BtUnC8EHFWLpPsnkNjeTCqqBVyIHwgZtXEktj9#X z@y&7KOONHkIoN7Q#hxemx+esC%SiiCQ|0)oVFW%&qV1!45h1SW1UzEO0p~4iMX|yu zlhe4eE*lES%o>dnL!COEI!!6=R=>)kf`p-N6yQEg0F^vj0* z-W>bYRjRBXo{E{b)XvRYKuJE`+T!^(|DCL6U#Byi*Wj>u&(?LrH@h1DhvS04AzkAq zO?S;gHOvIH#TTH5{Che6$5;Lb4c3pjLV;!Lg6IwZ)p-3c!XTJA>y9L0EC*$N@PEt1 z=e1J-(sW;);-=ahPrZ)2#Rl(I^Gj(wzQOiXC%7lpFH=nO*F*;qypoJ z`%@KiZQrEg1(u!}_E!qG`p=mu+`h9ihOc0(q`cAR=gEk*GcZEE;VEj`!>wrQ6|FTm zy!5*KVFJBp*o`|wII~1=p2kKNe?Q~h=dS0ZuBGyG&cvaTc}6lrggpqwL7-&^Ay#R} z>Ef;7fii@;exc!=O8Yx&Up&W!up{3hWtp-Z;%_3;Dc;f+vENVheMF)Rw(B@U{vG|7 zWCCsuR0Y=2<|(IB!df?MgUrTnVW0iC$x9In#3?GZPWVRD!@>4;X*)HDA!{r0?;G=y z1B!0?!I-Y)knjx{IwRMB2AbH1b2!Cd`Poi~XcHnbe%0`FK=GlO3M%p&py-U$N#X>y z)lqC&sKjQx``7zc^a|iz*&oI)jp9-zUt{6o&WLZ*dU4TVz$)^G28{nGkz{E>X`X&y z;a;-(!58y7B^d^_E0~e_J*7%mwx+K>_>`&+hD$fEp(1tcavP8B0*H)lfD^DW;zA3^ zl~PXt(cvBBTz5_Mxnc_nU9Izz_Z~ZvU$5Q|yup+wth)FTK$m=&HtUL&|N1_IgmoY~ zUTE*su(eQg?3F28IX^NDgYbvfBznI6&*t_Jj3iWX!=0j^c(c}pGMB`i0wxECy#O@- z1o<@yWpcmd@wyZkVPMD60&gr{N!7LqZ{jcVqYklnE!+bzXskeFn**?QjJ3>Ae+h-R zOs8P9WdCV7^AFSi-W2c-EqY$QC{YfE*#JWlAO!~zUf(UqNNp=gV0<5m2jIW^A2|5Q zeqqzAK7g7z3GBqa7%TW)Bjd8t>^dK%geV$U#9`ay8y0lB5XW%>B18^qSPPVbQ8(WW zJXZPr=ViXWFw|Nok*1CN=}>|vWHL!&+o!vy{pW`LH)h~y5V+Nr{X{_7Vb~hEHSw|s zn86UBd0$6iLa#-gl}r!${UmEZ?KN|GDkH--U=#45A(k6+EpDT7%ZP6RUe9Pa%w84H z9PLcaOH+vW_m9D-E(%e*tS$%4R&b)er2ZGORuK`j+OtIMlmp2R4)^wuWS1S6*Il>f zExG7;{*(R#jwIQ2wPLA%y`0~O+#i?ufeGMtvEp{RyF{E8ai>7}rPTul3W(oV=R^9I zLF@M`h2Vm#;})I&Pu}1^+|NILpmzjXcVQPYA}}zAJADNEil_xlrRH8`#y{Rcc|7=7 zC&o|B{zb3+e|Jn_YG|4GJv${Ag-<>GOoa}Zr&gDB8F&8t_|u^8M@L8C{!^dxcN*oA zGQ`t=+=E5R`{2Q+|6ynT19!MTMXBOHKDNKDk-xs%P6Zx$H5zoz_hK;a7e8n=(Nt}( zqhuj!ukg_*mH&QBZ$mA+Z9w~@|HqqD2n`I0&iTOd>y1nSrk<>DSPe*^?KV}5%8tCE z8&&Io{Qc5JY|u(U+ABW9Uef z2TZujz}&T?3Vcy%gklY17i!7L$qgJ_xcP=&LL9{V)kpeJBq$Q_c^=+=2!=xCxU$@J zkhjLUQqhj(bJPp;lntmme9!Zb9LyedjxRiyV8^fpz;h@h9B(iO*gVs@rXVq>M?4=9 zYO(C{EW}ZJ7-u+#9qeQIIK{7?q&v1N{oDNmR9eC-9$ujfa;UZRDR6=E<~#pq?F$3r zK;(%7aRi!Gt^3fbr!Ff zG~liKLxcKjq!83dT=&_) z4#x$|TE@ZtqvLo0#(~5OGa2DLKPy3BZUy{od-#bJ`XHr6S#D=|=Xbayl(uPX9NKyY zNPG4R)v`Z>5IbOMYl(~plx?h6-JrF5;33OL1{il-<$!d>yt{jCb{b$qb^t5Y>B`s@ z^^Z|jZ=<9N!<}7&sx?N6PW$^GH3iA{V-`}}tpYdOHE0fQADn_Ectqg`7{njI43e#A;QAlOtrZ>MrwWreNS_^MTYGk7gV8+5Xgk%iLH(5L zk{ABO0JKY%i8-@Ao0xoSQxKiD+;J4(xxODhY&;rOdsq95`j`M1op(wB^>IL;1lI|( z`5;zdF_8S_@H*fDJ(_bJR5K|9ij8#K^1|$~TK<45Q$USFx-i9l)%!t`Ycj#5#3eBL zb%eabroJiF%3x{K)#Bv zq_jB}i~91B2M~o*GUfnKUZCXMs}fJ^BcdQ0Eu^?DV@jp&_F9uTI|K=%1D4=YHUQM_GTgf9s;){o=#(VEkW%%+A-v162Uza zv~>Y+nQv}3?@1oO7(F=E0b>{!{R2SZ2OzJ6y5mKFRXPx8yXZY*Y`oU5bx#OoJPwN4 zq9_;!bjn?m2T!_5!q!Q{9LZ=JQfUW@E*Ldngeqi*9DW}^DPzE}qoL9*6{0WP4Z5r+ zKF7H4+?fd7eNFrt%q@R+kny_-IC0q10oAzf|iswDG>bS=})&> zNS%}T_IgDd+|fMM4ik^Cmk1b&cIit5X+?S}@3XqZaU$vN+TS4H?1t zg%gMQ8;k&Hh7jFa9qAG&2==sq2_Ua6XvjACfGhhe#0-8M8Z-sEb0_Y5O~I_*8kWUM z!$rWvfmbuI0EddOp0ygB5LSS*Yt zRDY5jS$-j-3fs2p6jnNIPodaxaOwENT zg`26*F;YWrP+)%a{LG$nwcWJnbvqfcXEDp<>nFEVcr`7CfKPc|sC-*cC$jYTF1&3T zGV!)4XbSJHccAAxf68Gm+sW<8atw@q*WnMxP0gI7ai|F1ki4gbSoRtEUdvH@imU(+J&{4!rZe`DVkSVmQ?&1}6<#eJ8$ z+XHO24JNQLm4yPeZceXf=+zQZL&?XH`8wua!_$`!cymIuC5$2@S5lmF%wr2}e?0q_ z^X7vWR3OxNXvFaKxF1#HNF=laT?hkM-ZkYr^T`$rmC=6{DA$BgDsmUKO5S>VedxlS z+1jaZQpVRR%z_xb-}(SDrL@b<@)q9WIxU%NP>HM5#CMDKSe01KjsDA1Glya5Ica+?+f*O5U7<{Q9zB!WvNA=%!8 zaOsoW-Ij_AWskcHAclC|vH= zs$iwVaF1h*tT=G^#H)dFB1Pjnwa(w{*nD9LPh;j9HBFNjU}4C1v9-@VH%W0dR@zS_ zRpE@impiihHH(di>%&OdeXKN8DP|PQ%v~eQKgzJrWp4 zia(Ehj*+P%lA>X$YRW)2ft+IJcW`kcuSQQ0|BX%t@2C=h*>cTH5t}s&+$iM)6T|qG@20Zo|H59O)Duh1q)go0g5q_X8MR|&Pi1_J+msa2Su-|!Gydo z$^#hKo=wTR)}o-(j1i6rW?3U6fcK|G4VZ$7Txc?`mAW0XX5lp>X>&@4gE^dD%yP3> zNp?4lbOw54Psuxis)YueBF<|t)dR==EXLU4+!0!Xh8xKG{bv40V>VA_PeOIZ`wE_= zm{VGllY-c#66YyfJoHX&OB0|F2m|B6wpE$QkOs3_(E+A2`fReHA z4P7DxmM%o#y4ANglo=b91-3TdcPNzo#s<9MjlV|UM2iFDt8lxuX;!I5i%I4$LLp|n zJ)riZ{HCFvH1xz6Zk1)}ccb$u983DlTi6%9FZPJZY!SDbJ-PC^+VJa0N?Gxa;z}rg z^^?cSW5OA#;1bHMPcrz*+>AmuUV!gh&MmxuzX4`r9(~f`Z+Vo6rdF_2Eo)g-<~AcLms4tos>^y z0{s?vX~GJ_r50qKjTpS;zsH9^sROiz78@}U{5!4k$Ya$B%a*0e0gfyW|l{kAK5Rxh5m z#ll&`EKSjh@cwJ(e2i)Ld+)a@{jkHMoU3dn1sEo84`NvI0ZwILWb-5jlLhtJ5>OJ3 zuBvh-f%%uD%QF@voN{+qHt6Y%s8e9ug9O2{AzhMG(#rrYAf7z+vVOZh`K=4@-Vpmv zw?TJBtUn^~@TZrTlBoe7o%yoXWs|? zf4_RwTk^CZqR`T)cxcDmc-cQJH9M){h=PRG^D$hCg~S$=D7nNucApaUL++Uwk6E}g zr+rM?Jz$w%%q|>ArsX_=Vx$sR{9y~;l|v#Pw;Ig9#2a6qZ}K|&85kK!vm#c5Cj*vn zDip?@?95`X$wwn1he zJ@QTcCCKw3Z-nn#KwgdChlBc0y<`hvS&{SFSu^-x8QW-+pd!~+zsBdqEtkxDZultclh&^;Zy4Ai^=xz5!t(X8&}4;)V|=ljup3T z`?;~WOWVC42k>dsX&S+29+pZO723+f?o`Sm0mp(!@@*ez=n3!ZD%q=4m>Wlixp;zX zqFZ`Z)2Q#+pQ|Nd_*YH`5c4ifa6>HSZa#{kq>i1i%#T9~lVFhDF-V-e+CF13Z}u09 z{{LW=y+UYfr^4=nLqea=SX4F@2`2Y`(VKw+@#ymU>c@v7uv2oP3bJVLqOm~y<&O)O zx!-VL7q9&Xf0xg?dAN{y!{|EciAC|xcazL?*k#9vcaMYzH~k0i!4!S~v%v;zL5F0% znIP)7X;q0T2xnU2XN>S$z&4R65S||IM`#zLq>Pc?_>q2dYkncgzB?n!!&Cs`;`>|X z!}3hal!JoxJ&x2D8%ReN$~%Avm?9`;g>23l;z4Crc@FTH3%%-svM^kS+OsC~h|ds~ zo#1GQZ<)jHi>c$0yHvlj(?8N(OnWJ|hz;YkXQmJn|D-0>D5_PNn34!|#G=JNM94DD z3p=VC?+KpeLy6$6PQWVG7GMT)Xx?;3W1tsEcHYiZD{_{Bw4(4+ncEK_^=38G7NrX5 zd16c)BjU52CKHV5l-Er0c9c>}6TiAU=I%U^Xbajj3vitXKCX{ z5vTM5_%pK|b0mwIj{j}LQN7>e(|*eUv-;hdD-a(rW^K)D{cVE78i(e+R|f@{=KwsW zmsAaFLSsY@er+wa7)xf&<7@3FmrGYRWM4kbwBZrJ&ja^?f5<(!8(==VE;cL#SPF_+ zs1Ba^!co|wu_~6nB$#E`sA{9=ez(hx=(^r$bGc3V(l-wtm=2}g)KR_w3k9QF2wrN# zBPu-{1Y_-R{Jw(E(qU$uWWup}#t{@5u#y$2*DamS6W^Z>MQW`4}w{__CB!A1O2aSi(&5Lqg$X5FtY2; z2rT(GHC8kPtJra4I^35uyniWfc$J{m>pYV~pO|Yb0)PaC^-}*clHbD3J9V2h%EWL% zA(8Ez-UoYOKhva8Z?222R?`hF2ElR5ra-(bSBp2KAV$;f896y`p|SGhG#$xea`RgQ zC>lz8>}~R`tSzE$RhMneTn-P@?}lELg{Eb(Lz48#w|5S6R7<{X{0NnaI_cLhh9GZ) zO2j8)ZD?-C9q`hUCT3vrar;y9Sy3gG%B5U04uhzCsrRmIruB0GYw#SfJ@_(m5ZhEX za#4IzU{TV&T~=}dupT;#O7CV)ll!14fW*O3>=4bvWMO?mAj;rO=per3LB*Q_q?0Fn zYEE%;_+9iYDJ*IoT)qA9MpM3CA_1xYAt0MS@y}Oel!;@dZ0iXm#0s>v=wXL$JP=e{Kps z2Y(oe7HG6KxCka1(jHL8O+PAiE^p(d8F2y{6dJ5p9x{{$pvFvEV=qLNm%HdmCF!6TGA4%kjgEwycE*j;c~XsmgRsq$?DthsNyfQ@D~LL=oT zv4?xQiUEUS-fhC1cb|5Ls~jaoI=>!b^J2v zy5NMXVJisyG4o zh&~`pciEUJe4@-?XO%>Lh>zTM12dXgtOU&A;42}V8Gp?2M4HOe}%U4!xVgf*NmRZsGQl`LjFU!+=2n)}$5eOcqpH}cRL z<%|Vdi84$%FmRBk8!9QLb%H@k!>D}g-B2urr;dzK^l~|!ppuqM_8cCDBGK*~Y%cGELTwdctF6uWo^1k+?bA1+kY4eZ?b3p1 z?lwLT)49YVkoBXX=gY@YJK5D;-HxuOUzdjOhQ=44g1O3d&qhu2^M-d+%ZlI(spcfJ z2@v%N3T3gc#JC)Jy_&PH^qtLh+_r_*Akv-V@Ftq$0XvEfbITLlcm)<*T07FjLelZI z6Il*Mu*im>;(W9=saFTs!UK|8j{c#D*ftyPLJraks(1}II{0$hkzjR6u3o7K03bw& zT}i>evS62VpwUtUjFlUt2mbOAI&~hE-}v2e0>4?hxsD2^idf`j9K1Gm;kwBtcGuR2 zBJK9}z`(ZiH;9aBnBl&GWHNR>1YjwRxx&fl{oI!inr2eC<#q~t{UB&wshT8ksrIe^ zNm$QMP+nO&(^{7S37~nd-7LF>0OK0vOleVVYecD0`MO$tC@?W8>fx>31NaTY_#};Q z5+j{k-a)?KBlQpJ9bJ+7iI&#b-Qp))kE7GO)w1-hmL1XXKYav90+dy!B%;9>YU{B4 z`5oPC_DvMs6Swp%zy(FO{TkDO^PTnHMpRzi<@8Che1a3^kgOZ=hWZP(2_RiaENbZv zf46KNd7|FVXKnLxJOWvn<+#vQ@GNbfiYfGY+M-dH<6Knw>vlq7TjHIp7OIu3YCU58 z@7#Ft_N^_A%AF|7Y$QWIr*~xSY}@(huv42{hcp&>+n)yY%$AYZYK#X0T8Hi63q6fD z_RM|UOzbyLIp(Ls5S-@P5=EwMFZZx_xzML7XBjrGbd-+pl(fcKIBa~dS_X)viNUwe z|H5$*Hiry3iBN^5FMH2$eJru zz!^|Y^WYv41!19qMcMwK2EA)b1aFBDGXg;10=G-~&6)csv9tBLtteNd-nWR_pe1l$ zZNl1|ejDTRgp7|`{bdl1?X$*h;JR7Fl`K)XiH)aFTEyD8(y`Mkij{3A*3OVNa!ca&h^}cB=Lv-NSuNj>6^%|D@K|(`ib)~Qtv?iyVp|*iC&-m3`|Rjv5xp;%a^Ft zlR(WRZQ2QQX2{wl|$cw ze^F9V!{~GK7pNbQ`3_`J_W5+%dMy55^>bGd_~ED@P-4&Mk{hI5X9NC?Yi+iw@E zIQf!w9SE4n7RhNU00%n%+ld=xT%vKpi*XR7oxq#hTGxLH$_Yo{c#@C^D80YjhaSHs zTd#~vwJH(JO5IJhNcNgq2emxIBB*NAjN_Yb5wU;Ta20pP6f1+u?Oi>Mi9EfAaiF7F z`jX{DdS$UGCDm(s;E7OaK~nhUYqmy7|t+S?M|KQi?I zI{Gz^UBN!jBS&=ZifKOw1h7OQTbBqx8A!|#3N`1ozMwbi)~zNI^g#Z~cm-^9;`SE4 zJG`6G%K-Fs12Fz>S*mCtrvn*!@eZ#U@|mTZ?i)d~KDvP{=nlfb)Oo0YH;M&WH# zj)d@T@s&*bfA%flGy zrRT$Q2!;A4km&@Pj0d8y(#H!8zw~7;)BGV@J%I<9BWnP6*Z@AZ=5$h|jKIzu=JP*p zh!M_^8zT3WR7-7>;cFrNlvMKXyqgWR_(%T*kI?$VbL}OXw+Ge)WF)4j3X#J2(u`zE zL{Mw#e3t)ob2BvnM^uUJ;#V_pDlt>DI<2WX0|>-8wiKY><>onM&EY^lZePO*uKt1C z6sQiJAQE380)LqVfKr6cOR0fhxK^v+d&DT=Z7)SL!~W%l8T{HywSr-hw@F}XlxT{7 z>xX|a8nZ@e!NuQ1`Ryq9IN@(>yHk_Acz(w$;5KQA3PrC$C_~p3cmuE1I5Oe1SQM?D z?gN_|r^5VSNniho)g(*&nv(Z{^&1e-in0|u4E!|?{_p=W`U+g8<@a0ujBFOe ztWeic{)>A9hy5ah`AfvG|M|vIz|EL~IeUlv7cIsA{?JX`p(X7}@KCXi25k$3hm!x| z9HQuoQcIx!zItI|=&23olTiA9Ib>vj$rr8i?t2nl$f$Su`p*Z%wfIH3<9 zF-KnfkL$L>iDT7!B~h66pB?w?5;zkiy02|;hzcUAkhJmNpOYHy5(hKuW02|DI zJ`}(I_kYNFXMkk5d|B*FuPdu`c-bPSJFE%A6Yrlf41fq~fNxnO1>agMf6)ijDknUKE<*-;jbW@^DC}R(Sf`$-={qKLC z;!(gBij<%NEy{VsH^;PwrZfP@+4 zM<}nqJx`BSpgGAQpXCEoMlnaM)#eo z{_O%FR2OtZY#udW{g5H@>CWl6cHX|#K1eJ~1Y-$$U%;2$e9e4x2I|r{&}s7+oNxHN ztXUt2iyFf*P2*cVh?>_x0Xs$V}I`NZcFI;^mUMA{4{e-516 zuXF*U#eo&uNzmwYffloGg`a<pd`R~jy;L!Yj+fBv(k^hFG!w19ehDle2aG{t z@E%v)IXgW1RQ>Dc!!-7-!l(atRUn>xfT7f)kwwF`R>sQ;&m;U`y7B{$Etlj`y|KHg z@gMzKLlg?Al2|YXMQ0FoJlaFLVvcjgJL9NyKv`qtx*{(!ki;$sN&s4mYyv3{VYfJu zzSY3PHxb}T;{tP>uWA8x(2`Cr#R8<9a~6VO@?%xed4g}vf-2g}EzJ7+UOU|%lLlID ze^FwU$R0)Y2D3Wf?1BtfZ~#nj`BT&dR&MuZnSJ^lZFD{_FNRqQHkVtJON!}V6V zC7%82iPEi>p>>sq2P6B*8V2LrjElwcU7Hd~)PLUJzizj@5GoqXd{#C6**!k0XBlN> zBbX@CSA|i%i*3yc34ZjX2v~-81M3A`qMi!$>pvl(zyg?cKVT4;sPXdRQ%o21 zTQIwU&%_#v&s?xuuE)0@+5*P!mVwO!JK(+>=7@8A!K=`+d_LwRb1BulIXhlv-vt3{ zr4TcC?4r!|Tw~;0L1*;6=N4P000QFz&xTo|Xk}k4QePDiZcI6&`Z;`#hTodf>teI6Z{{Gx2N zebatZ4fEiLj`CqKmO@V5+Wzem)m$RCONi6I?nTk-Wz&1AJCvifZvNdH<;sq75!1nu z@uB3YTIZ?ty_O-%ifF;r;f$UfkUVEDY2HHH1*|hUqGn88WBWusJRD*2Oh9Hy4R`1K`_I>jEvt;>Stq@4ZEM{|54K z|7+F$s@)E8*1S|)+vC}$&x%pAUPy5gvE9kLnlq#3B8td3%zE-r%O07a zf(Z)4s6jWaO9yvQ1&=CS0PCu!=qN2=iw~?>8`H)+6;JMY z)U>(ff{udR1EZHd;4W<2%qDm=<;x-Vk-J4N=6f(I8FKf@;t#+%#7j|e%i2|5Ec~*X ze~OV2&0MkoPQuTx0ms(#Wyl3`L@S)n5PgO3?>Yd6nms- zeeKpA!%XI@C^TGS`l8g=QW@?0WVrl$N}WKeo^}CV*O}`_D=s+S2!rRN*87?hKwR(w zc*Gk4E_10(g4bf@Za2pxn@-sTF6)%#!R*A#qU`^#wXY1QGVR)ZKoA5813^;8WFw&x z0#c%=D9r|>1?g_3Q9(yg7+V^V+H{wMBA|3{Iz&P?r8Jv3>jCHeX2y9xXU;kEV`g;M z{oJwc71wnwTpZ?N>c;^P**{UkTa+CBx?0i;DL%bs*9d%e-+<9U;e~4DhcJJuvWU6tq_A9vN(a5T+ild%PWLgvHSs{Y} zi{b~lo7+wF*{S3t5^Hx)Xm{4gx8&?1yL1wxo~U9#Pbq}E@gynnTVfG!CO0B$U!OxG z&+S@qxKuQOAVc3O2!aYJ?q;^P4`dX8%{>)I?%nv|#)Ks0tt%!_KF)YN=N3I4Z7;~i z!gj&cYfSJ`op^np0=?2HX{oxoiOy3VnDG<$-PX2q&VERHEb8sPIK{RgPWd<#<#I`= z59djEu3QfrlD4bcl*C(ACQkG*>X4TmATw6u;*Xq#=d@6pKS68iT=K+{zh{}!wa;T# zJ_|?--G`lRzG!IzzVr&cS6+E{5q5l@bBT_A;Tmh&0| zqVzGm*AbnGUk%PCM*b#ulcTmRGB@t4*IbNJL4Qz}DD9b`|J;lJ*^PUDks>cU`{a>i zP)QLbH-e$jOuKaPIjc4Iwd&dLw`s5k$zlond@ied!p6tl9$YruB?+0~TD!TC?d3Io zSaY@gDIIacw|$KA9~!(E%Es*~h{Iix9^mv?hun_6VrMs$!;gFLE*%S(09!b@p{_if z4lp|*4_-$$RU_H#|AeAT7j7h;jhV$;)4y>Dz5M(W>s@TeZ=}-+nVn!I_fIL(i{@f~ z*;uNQ^lx!`NM63uHQQNy1a08rLM>`K|7JEHz-h_8-EZpMOMe*wSAIAmbGCpgUP}+V zHxdwg**K0~P!A2jZlC2wo_%6E~1TW&9N0u4T-m+E$vxjj^S;&@XGWz zj@#r{d1C6ZwKp(QigYrVheaR0-8-zs<4RDvqBrSPC?3Top_GYLTjCRQCa1* zw>m_<+HCMf?>=0gkHWt`K*kcGDxEK3loQLUpZ7|xH2!^)>Addfv--E7LGCAktM1ea zSlNGx5V#`Iq2;aR{%|pd!?}9RtF`OI!1w6kk6}lY5(x%rue?~mJg-q8IW$F&9G}~5 zAo1M^y@-=)9f;IUWhKV)1u~FPVgme<6b%tOXdp1i*wi`rCVeQSN4c?zoPCv(aqaxx zd-j}r$b(nQ0wn?phXt>jxjc@H(75=~Hr588LICRi&b+jeg7i4|k`C?3Q2!h1k-h2f z3fc$#<*lr57lFL3gP+e)|9&2&a#G;iopv>ht{LiOB2kESyzZgfslQcE%Q85^0S??+JI5ztux zW>}43z<8l6iEv6k9a1?wA*A(dnIHAT?QK%MCM_siz`9ZU+A%-OogM6AGl)4a6w)iqf=P zOZLS!l%N#+k`BVddb(w?QAh~2+m!4z%}diV&A=O!c=9*LRO|tD?DVsJ?CEVZ0zqhoF;glBUTcdf~J!?)AB0Z zPD=jh0YS0}oaH@;+5(@ks?S^fkz11IC^p*ljVK3J#6~7gpr4SMq&j3xY2dw-7Io{{ zRqLF#<6iWquk_HDF^Alk8F&i_j;f%%^0*aKIVF)=GOXq5rG*mzTwSl_VR?Ed0crA+ zV)ErF7B4DvCdZS~Xzv=W0i1jyxFAHaoVW0rgTDKuU>0!dt{+dmb`@3172{btf7Bzj zb+V9woT1^05>FkOFWa6wH&6Ntxy*hpq`|FsMoUEA__QO&D0wg_=V9dP=c6vCjd@}? z1#eR+73>p6F}`d^PEaEL#OIEc8}fmc-rC)=+6@fdrgC`KySRK8;dZGN+hwS2AW(oG;Z}Uug#|Y%Mkkrpgpon<=iEgSOPtR8fVI+4I0CsQhZqCxdRPv zd%-V9m&$c5^POoZk{2CltdkuR^-I0tE(Ecs=mjW0Oe?(lWpQuh5sSz*=P_|p0O)2v z)?y*mJauj@P_3F6)sHuvp7m0Dxfo*@L_PaAeo-gsPLePlmGB@j=ke>eHkhmf{oPe| zD{Y+0XZNnY`ZZpMOQ${H`%P9r-a~Y2?e4LBAkl_RQN=p+llpkvo987oC(x}rWd$q@$Zc)u3J=;k-44X<_H9bmo~kH zot>-WLT{gUo3vpy>NL+RW%jRrVk}K>Y1P2X!IB0g&Aq;_gf`^}4OaZUsMUy7{~p=xEeg->SL0KYEdu<%b32R8Q%j2DmIhQm6PNtL0Pz8w|phi*usrJgZyp zFa{Z)kGJiI9wFjPvhB&)&2qWppMp7M0&&N-mp@^_3bO&fy~$mLKRanZfNcqel_?mZ z@qBWbL!r<0+_;7c@;UOWol=U~%|qS7+XyKON0}mWKjU5UIADv|i1f-9Jp7c5XpRwY zt!O1=C3P{9kvzbWUMSw@wD#122GrU;ZL+|I4LHWbBsS#~nqwQN-Z|%Hs`1y_h%%LAv@OR-B+6Y%RmAB$N)rcR zF&Bx_%&u#9*>XFwJ!(cn*mFn?61$x}xpGCZGc^}N)vH(?1H-GZHypaZ*#hiaS1jnE zB_~hn8qam@_FTTITtzH+SK4=>VU1)8 zKGb6p{K*}~x1viXt+ZtQwJwyzjo+^C+*(|lSPXAsbI8Jlv`q?R@dnh%V{gwy7IW-; z$~rY2xc`*S;z=8nBw-f;MBURv1rBHIo_D1v?(l4m@l@`O2fe5||j=*H+j9 z9oPz}e6)l#S}ao+uuprwGL*yK;Ef!vl~r18z0Y- zFnMyOBHklD5#WE|5{c?A5;(`b3)JEz73|dB zUZbqWlm;}T1lH^b9eJ7F!nLM1ROyKYgLeccp|+`GrOY!*>K{_|-3v@aqWlSMC1cF4 zGQQ)2wdC7+`3sl*BeCASZ?yDAEeb-Z;}ZL+7L7}%6X?L&8QfqedrEEn9BlTK8@I`6 zUDHqXMTV&d=kYI6{9)mJW%OHJ*lI(pG!1Hv@l$>LKpwC!K0RGhw}Vl2fY< zj8oJ&mb+DhpfT7`aM<-Ym3YZij)GV0n+^4qu-d+5IWpuj1cOtyCxUuUd|Df;!bi!y zsbqBYc)|F`g29#}Z-?efk0J@5yk+$<;|i&K@q}wy1tl}Cj63tbuc4C2Ry?>{JY2-l zM2kek(>?_;;GeS&4aG7k&Jrc9{U*9}%p>-%9`MEV97`S*_LNYo_yzC17=~NRzkk|o z3e{JnDEI4%XUM$)_12cIw`UZJo66 zhHgxu+0<25zzko=h%4YAf03!pf6k;M(%{2&!t3Q*(UL7FJ&-&YY`c#=XNDT#@mG0 ztRV(E^%Yv@#gB;Q@j?!+D6Ozk$4^-IwhhN^PLpy%rS2$XpYHU2hJ@<7apw?8rfOkv z+rBsHVgN$R9nH{wp2~=KsxSIdh{c}wQy)$oH{k6V8Yuv*|2yZZ!HIf0-88pJ*X||` z-X6hZ?PA)BHm8&#pS0X~Pc_x_PHX)RfL9J6S=yaxa`zY{v_iHGa>X`!Na+Tp#^8?^#`pz=2{k5m!Lk^g2J+v!f-<4 zw!e4287RcGDj6`I@>cxR z(ua9yJVLj&hD1GkP+p+PjUP3%%}NuS1m%c6v+~n6-p&MnmU-RY-0V`S!^BwvYkfo< zKi1_1@Y+*rH0$;6PMPXckEdD2o+c81E3TWUa$CEfRX`t`8`GE;g2`Ixo=U@VbpDhiYkqTXFbFW4X$a81|U6L5it(&C+cUNBRY?UYlI=taaYF z&z+hc8rU@o6d%cC zBgqfK!tSq|A7b@KOehUptsS@AcBwY%b2RG(!__oV)tUt*lqkASyEhv{QE=dPi6+)B z+940PG{U`I&)ZfUHbCZ!XxOVn&LYV)G@Z8M1&P{NeUMPFJEoo@^%n7#=;aW!P|LR| zJ^3`WAx$c7e~cBL+^|Pq+WNpK>8hu_+_T5E8N5q$|x6$S#4#nVHaaN;mfF@xn?0$pg zu49J!U}Zr5V}e#&BT9y&G_Y+*w#MRDIQ-s2L+7)vV z8tx?hGi#Qd?j3Cj^-w7DxUt$}U+dc4rPQ-uOl4pjR@kXqB}W9WBbYVe>D0h|Xzchm zETz+IM*U=Wvq7rNpDhtLjOiw4~A|pq(|6)gW=I*lqr#=gQm( zPvU~$TgJ7N)FVve^<*-gAp@7)T2i!y_jqtxxh+mvivosW+#yz?lf8Qla)np;&qRJ{ zO?;Ez-OaJDCbVm!j{!Iplux=yoweU^ne%bTbaEab2X!c~Hv1^r%tEJd| zF)S$n4s=o&TVmt;1IdPIy1I+Hg-$2dR_0HMyUiUlBS;@Uzeg=u0O}_KXkNkG%3C8bAU^n5a6)u5rvlFGPW`sVOuc9Ou2UeuQ$VgCO27 zGCC4O5TXnTg^o=x41FSdf%*m^asYJrMxezX@fv4cV?0F#gwSY^J^up17*Gp zok6dy&-Is&O=odoOB%xmytf@q31av{M^bj5KWo>PJ;3}zKff)Spwqm~CpEI?7ayrJ zq^M-=4jgIMQ?Bb#8%*bAqIyUHlYZ|is1sQmcR zkJjbDeJEoev-qejyYZ!WJ2H8?OnPI^PeWXY)Mx%iYo{st312M~0+Dp#+1lAC0TOIt zGof7NGLJDzS<{Y|ds}LdU|IAD@&Y|Np!gPReJ6I;#q=_$an+GC>KNP_bU|BUTzAKn zS+?Gf-O-0F^hZcV$Zl}d`o25#-(Tl8dM^qDj?s47xp!@k5AYsD^R%{0a(c??$mt4`q7v7qy(wW#=2>Qdm8hj88R1# zp=Fg2S{Gcn&VJBG>cNf~2~8u4C%r#--Xvs(^al{8ZHA=kzbQlEsO;IZXJk%E-*lr$ z4TkGFf7v>u!@FThc(1kxNI6pGk)il~}>`Vy;V0C#`UNl??j#grZxRERU2fnCT zuf8`o1L_(Z8_Vd+0uuR2e7p7yc&6tD@wwmqA)ch%dr%5VXG-~8Pq?r1nwf>AW&DT? za*E8(K~cjE77i?p)HV1$YDYuf9~bWr0Svet3HoTt(|%$;a;+@^Ic@*Sk4f|i66H6* zvGqxuCKQDkIL;J4{Ban64s{uJ!EEmu$+SJR6A=;=?Bw*(*3zmjX*y)%!|C(*hT7Pk ztyO6vqeNsKjkta~GLFrWB?CyyKwzhxMSJp9A>;#nnHt=*s-auUkzfk%nfI9Mbp6@4 z9Xkil!72AKvdVu$h3j#MxVwv1uWq`5^fz~1e|8m;^qmRGyEi>HUl-Um9SSp6`+jub z{=5fpvhba4tT=VCu0++NS$2bGA6wYi9Yf=baBb}W$UwDm*6+W-ezsqMgO+}CNRTSVI32+CZRu$ zLVSxFa-DKOy6Y?!FHap! z$?%z14SIn5DcJ=kVf;7a(yh?y&olMMzdL{?+3hdoPP@HB3{?MsNb6pFa-FdCqfdBY zgFDHz|JOnN{z489yiw?(?Oj^7iHEOE8X~MWabGzZrst=~AsI+!YIIxK$alZ}&u8in z&wk)5Ox_;vdsO2FqxIp|BS8o-_xD+$2qf}wk=i?3hxI!^t5NW0`{Uvru&d`-{U3?_ zCKr39>LHu_A5cDrBeBU_1Mzj)2V1zF!l&+UGR}WmZ>dixHf)`qp;g*%16&CMl?M+V znD?5Sn{%1H)e1HLg#odg49=9?{E#!uVfsTliK3s{0xS>xJh9Jr8-@D3*M-S9DeH`C zB-soI0}>|b?bYgxop*o(u`<(ibL)XmlD+ae;KaRO^vV6Q`divRn+2(;N2JQ7({|2N6oKW;~uF$_04S~nU*NI>9)ljxce zxl}JFauG?-e12SeD-n0V%Qu08Qdf}@5#3?)vqeXItEtYdmE=Wi^ASCp7#A0p4aLDj zNW!eocjGKbeQr%^Y~dvm^?2Z?R)#(yS*mr~ogfIXcCa#LO}{+0u(G;hd3*pay=wN1 zJ66`fPs=^(F&G)V?X2+DvmKK@Fivqc?~(-F>3=?6y=^|=Z)H;)YwPK;;zo8OuSpGz z`L5=EAN4A!vLt|$^il=Syc4*|y?3Mi8a8JZmw|^gCq*N>2 zozx3tNI2Q=xt9O_ol?f+kTBIwBay-)tshEvlGM_dJuO!0WZt?`jQ8GK@ojYe^!KE`nzG(F0D}NB-3=qD8u>eCq1z%-L|i zuMgPCv$SNrTV~8zSq5)!ZSKkkoIZOT4vcNz zTA~w_=$03fM;b5L{a(-dlO_7o22xW$Fuqtk&x}lTWDEsuu6ndqwwbbVkmlK3S%jaH z;+D;p_d$Ofodlbfe>DlPk7zb5?;;W41-QZDlOg*_^D{MmKkQLEH+OpKzuoDlFbHNx zM{~1E=fP*eDas`OufuF0DT8QI1>H=&SHV^J|Mc{*1=yn1jEs!HSLM-q9a?Bfh7hKL zv&uKuL-05n#vJ^=Fr6LS&XJe>x`&5Me@SEEma*m5@;;G4EfJpaUsjyodg~gGqy+phl;Oj;7Zpbs@&ve0GwY$<8$WebEu$j?LrF_HUoO zYepXyDa*7$fuO{rnI4sS;W(!@)B*n=k31OTa8c)z)Qr3Wi6bK>Ea1KwU=a0%N54<( zd%n$ha|emk(YFvl{@EG-;g3pJeG~c@+bt1(kb%j_Xxa{2{sr=bd9Uo>(|+$yNAYjJ zS80bYT$dJ<15TpyQvr6AZS`2mR(8O zuK3@A+W+cd{r-Xjb*m?mo|wp$K=wjt^MWYg+ZFfS0T)Ld@KMbs)t?WF7JV{wr+kb3 zk2`69L%mlt0nv268%Vq5Q3Y#&8?MJ3@dsD$_ksMyxv)@)f~908)%4p?!NHYNvuVXY za)*VVML&_i4c@S`bN&|4@qcsZrOH|@k#xt=dZF11h~1}i?)!JL$sxh`ZClTT(}fY` za7eHG4esqPYqkaB{xf$OAsybE z0FKx@Z#GdU{zMcqJe8fD{iH=CgAj3%yzD(Yi|BX%Ap;g6fWhc*(x-o!x~M|(ak!l^ zKDne(q&~Bw4QW#c_h&4UAqU@OFm3Jh9T0iHD7$_3`Cn%H$3Fsh1?CNC59y>)?EGZ> zGRX6w-EmGPyKNTrE(}ylFo6h><^pKKQncHY;3I7ih|@%J<~sJumo*i z=snWqsVFEc+)d>Jx4?pqLDj$d4&244=;*;JDln!x=Px`+{kdQG2g}r2>;qJk&-!3L zh^i#WPtWEbwu!IB?hj0)r^6LO{iqq$RX4tH|8xcaKVvgZY)A|#e5H&^qj>-qZtS@Sq3II8K%c*UTN=*DnHW~(n z>C_a_#OlX#ua0DVDKrDqDA`-+d91cJAYEMk5!sA3HjyH8p@Jz|VNZZ1Q zn4ep?t;v4E8~l5!u^C^@OixKRQWt7k?hS+<8QmLBUz#hDGb)+mEb*z%8KsvxFF_*5 z`_MP?wQusa8|*FLt@O{PHA;wVFGM)8aOIC=PaOw$LTDlRUa=WKx1U#!C!EAoX>;iUQcct)hw3GPK)pY5aDFd6dh35*0Y6l z8)%pXJ|u&_M&ae}2$TQJ>mN?npZ@ONu_z=;3kM-XirD-~vKeZ=HwNr(W1O>41q=n6 zoCV$*ZOc{*ZHbLsdh9P`0duP0Mt8kCh*iP6Ef(*R?poV9To-ZkdeH7ZivA+1*b5rSmc9f&~$eEd$k4yKeA!_Ff zAtU_`$PjGS>_k)(d<5_*g3QdFIne3q{RC*0EDVC&rHxCkv&N#@D;sR|W}V%$5U|m; zpb>y+F9p$(Y7c1Kb~7)pRps(aXzqj`%gqrot!JGD0^I&yb!}C_kA21N8rpf6$EQ&) z8|cyOFM7x+FIH~ZJm8&Vq~P+PcHU*+&|l(tSyWw_QQaF_V7^NT z7}ZfA#OyXuU_SB>jBV>Zlv1s(q|W8;iq#y&^Uk5&WkaCPvIx5BU4Uode9h2Rqj5<^I?}LQ zf=cpBd`QUI7%GwWa-}l3;q&mVz|dl4e+4o-&1i>v51o3k944gIGWb@}au>{|>D|V< zMUR3wRCz^K(n7Qp5BSrIq2KP(w_7HAnf)V!2<45mVv~Sih9YlZmf_e2vpa^n9M@TF z-!z#yNeeQVqoNm0HoZ5;6XR5!?sdl+Z&2Ve0cOwCHEho~t7V#;^;6R3uMz;`ssk19lR}pe z{@XDL6kZpvmS2KqC#`y7II<-mh~Fhx1PNb~L^S2>_)_QZF!lURspJQnbKos$b@7<{ z`b69%IGvKOrkZKq}Jun~X2j9fX( z9>*l`{MzNZ2yw9#a_rj_^-x|WjSR)%6IFrxAG>P61KT))Zf@u3mpzS}52yyL*WJ%~=eU9_?!gAgXxTpUoI4==?}CO*l)&@3h~ z;#5N9EYw@<%0z`EiJc8r?{c54DU4^z$wqFg*f)>0c|1U+ zN_G&LtHOb^$oH`Ada}{V+!qs|OXRgUi37ORyN>cVz;wNSaKN#^y( zMo$m}m2dnNVHC{KY6U53{Og(W)&=7(70Iu)MgYZdztbp4+{zWJcTyv>eKO!t7|@|Z zu0r{-4tiS{pq1H36{*qpdla)5=|sn((yzo~9D5yVcw~)iBS8Xr1k6%aTcKLcW$6f% zrfjA|K=lXrt%6||F0`9}qgCp)RtsQyo9%S$Rvbm%YBX0E{oXlJ@##V5hJ}oz%=r1W z5#iDkXs1o>_kFnx$SSV$H;VlZsuT1|pEO|mSV!;kkOYDx`sVGM6>Ti0qnM56Q_ zKk?E~y`(ex#r1qc5k6Jr-N$uN?V@QqJS^5U^I8HRiPvs^OR3>F*&)eJWj21HF7jx< z+l!xOo8jzBrBJpSBK()Cj>sYWTsL1BvO)pn_6!`+_HXoMxGTaQOEY%&x*jWtegp~; zZybbCsr-$t;f7LX?JOASrLDrYE4^lAa2<4%d=+M}-FA z)wHv}b&^zsaUV1IRJyTddkVpTWlnF{J7zsJjzv8@3aK0i>Vz4MlQtezxye96=;)U?{pQ)&y zPHWMBM*K&n@Rd|Fq}5zie@g?PO#hXLGo8nwagIq!PWwqXLIqbrd!I4prGWXPn;`9C zoxy7ylRbgbh8-_3M`&E-@@9Xqk}!|ak8YAAE>7Fxi|a)ROb>h#YaeA^1oC&Gu0l7f zfLU-I&vjd!WTQY@a|8WWi z9hkMn+SWwXNw2xdZv4I!m8R&4eS*k~J7=yelw>bx9&EwnsWLJk*s={L#ZGN<4}qQbaKY69MbDhw zYw4Pp?$gD+arSkhKa2*CjFzBp4s2teJzEC>a36p_~fAG$iir@^cwuHLfIKbGc@8)>|rZP~B-wRQ? zmIOkd&1O9&_$Q5Q;AMIyyicVj8=*!p*-p@xa+*);DTl4g>wJUOn9h?DS=uDN<3DoaYJbmD!Y2{Z7Tt#^g2YN~iD6 zuOd;Bfwmd5#F`NTUCTcSvlAG6b0GmTQkO;kL1JUov8V>~Id)aX(J|{L(4A%csd@7c zu*xg#(amqDi#q-o*TuEX3B;B=!=x9^U_|47ql~}u(oo=Ryrqo)&J670lSJk-H`41S z^WPbT92N6Vs?c$5S@sm68gjEdJqInEy@0Q#*hD%m7{mLH{IK|nlj#3$*fwCvb-i79sK~WX+-1gcyk(c`*XvtFYGK_>izZE znodR#_U+8_Xe6IYhD)gaj!{G0v0Uv7MjdwU#RFXF**-n8KQIhw2E>IX9LV7DT$SsV|={Xxx zOUr{nZb0;6&Jd8IdN2(q7u^LnD*FicoTdy(l37T|!aS;1vN*5!m(|0HUjaX^dpp9A zj*E}GGlr@)?4?vY%p>_0LqR?a(kA;@Qd@@3lKSBI(UxwO3+dvZ4I=avx1%6JV*sT< zXU%fI81?_fg+yxpV82qNmx1EoX`0bcu)mSPRMdq5MW|gaAyaS{$jVR<?{5>BY-p)y9+(J$9Z2c!~&IV zm|b3Zlwrq0xB8|HdTN<}ev}>e&T2e91xcuHE2l3@VI!kCk#t{+nF1(O9gbYhFz-}E zv^DoIVRc|T*^#!dTP^{Jp3 zzHE-=kPWw2UdiBeESvD$EZo^kUshN-A2UM1vt|$_+2fEg3y`CacLNyyYX<6nUQqi@ z$`Xoh0Y&AsVjaazW-+kS)(qX_(t8@CWhR{@hlcJFS6LsGl6pr#&|#CI6fPO^1(gOV zcU}KRHDi9gY2uX$Ts~mtYcOOldb1;|v5CtvM3aV5$q2}rv6+7bw=V0k?pFcv4|qoJ z<=iO^8ANIMkn#HXFGvEFH%QIoF?{R!7&(0acLn9!TSVTE-=&8jyD3mDfQ1^FeY=rX zrf#`cD|K`e=XM|%-P zr9EfTpgLwm(~pa^FlUx2&WYAZGM1$JVhU!*m;!0jkPM5fDrBGYk2`lmhi3|j>hpOh zI)1EM96Qf?+RmUa6(^8(>w!f<-V*(gCzek9MRfq z#)Bj@UBOPKHVQd>z8G`uR@pDkpvqA}}MfJRoxC325swosO^4uy2 zzea_$bwY}D2{315V~*goK0(ICVdTm92_#{c9G2|_fB{%PyEY5zlGuT?VMgpxhU(`0 zrUC_GbYhDfTjy3vM{TF%{?;`Cl@Li=kBxM|4 zOK+`!(%@o0ue}zO#U+r~9MPEqDaQbsU&F)|qk{y`Wbh7Hn9GSQPIl*M6>6(ULI~0N zFkyE%sd1sRysZUQy(dV#+o*i*&fn(a_IL%tIcuUL@ESw(*Tyw&66552aZCx%2=YSH zw{}H*V4RvQcUvC$Dy;Egb^XkGX3vHHmg4%uY)0)P*P=#N%8C0jr;8>s14N+x*F>_l zA5lP6dp4V)lKU`{U@#aZeS2SbibppZYSp0;))D!T?2eP2d(c^%(FZir6%5mgP>L9{ zVu5<7|5vP(LLJAVX#e^{koY@eufv>MOzJZpQ<*u{nKf$Iy9RtSTRo4j=ZEf+Ig%qe zQD@JC$kEdjr3Bm^=53-y=BqZv_mZI%qDc);o|W@474NGwkzr|~kr*c4oK}_fiSzxD zr%V-+8G7zdN!=k=Gd|(o^OZ6w@&5To`w%BH2vXnBklMg4>+;BdsRTN*^|btEJ4B0& z*I9r@My@2ZfD}e$1L{kbjrtZr1m~ECMtvN9w=h|{cRw9rxn*{~f};;lw{xXsjkw%i z?(|QtKa2BGIpFbJPxT+_1^pzdzRBEoo?6PHt>VC6CAxx-<>azAqBbFd6_$un9_WyZc28}QjSAyA6bF9BS3KtWj}GzBxbt-MZkTQ1lHQlfO+ z%cyDrib!5ReskLL_!m?d=mTF7*Xq$Kl@NbhEM>Y@2yZeN(f%V=NwE#FbEmjSq{v%Z zp<#|LacJR^^i@Bk6av?o5c`Jn1rNlK1c@ciVGkK%$z1d0L4ptN2})g4F61!ZFPRU1 zR)FqR9Rin2QSCqS-5-&`F2t0hxzx@n2$_B}0f8ZrqSWOlony_h0bhVi86KZv7inT) z83BO>1ud)Dq9r&^C!nueFxynS!cxB^Z(zdRc_u_nmMa-aprEpEvrrvQhKxfyq!FnH zd1=|tbXY-GD>UZIJX(c{En$+$<6T9qlb4dROea^;ve@zrL9^sV5Hp3fih zhA9zT^BC|LO^B~CKFs6zv}O^@_TxnVbx6o|-TdZ9c5qsag}RcVC%{tN+Ua@xKXI%t zW~0}Uv(9;6HN+e=;srKg*^qfTwJ-`J6oO!*Fg#A1flk$uyGP^0nM*s6m77mUwr%h5 z%o1BJ^)6Zcb~$F^an0E_BSfilw@4?IPoZiJ;3{1G5C$sDbxI}jeBRnemabLHxsV&r%da!Z&E(+!o~SOYw|PKAmY&C z0W&7aEI1Db2(K$v`074}2l5LesDKSK%{-*PGaJ4{q8NgHRfr#iGOz>^smbIJg%wm+ z?F|s$u941FnFi8yTS0%C5$FIL-c&IpjLmm6?*z(#A43HyLFfoc=B}%PBXe@xDWCaF zR^LxTgl?hssM(h8%#2UdN^7fdo-TH&#mH}$^R7tfo-sJ{CL|B|`y+JTOXY^;gq0y5 zeIQ_%dxC(Ms<&5DTr!4aI zCoc%n5D5$CtN4hlb`5Rg)+%ruOhjBJI>H9Cq5pd&+RaQhFE$sh!nUK>FKRw2oCO}% zK=9*72{E$HWgfGYBD!x47bPh^X-$J@J5#|)GaXL@@qd!O$-WC#QEL8D#jR9OB~&kp z9~Fk)E_M;9(dc&us>NO6XutB3J({!tenj?T0^Cca#-Ph~acA)F9nPNHFCd;IluQg5o%kI_%! z=+Wv^-J6@UTDtO3w@J>~UBK&`oF3^f5-#qZ`|^a5Y*Nk9`Ag)DduvG)U|8V8|y6tTo3&Tvr zLgu*P6jM^Ap%@O%h2h%oz-nD8dVmoeSwzELP21lK|xjh6(kGyHxQ(? zXOF2R%s}9}%S3pX8C-wbP(c;@Q+Tu=wIgUDcHPC)x5q1Txa(hih5CtorI3xPh3TKz zx5HMudj!-}uGdR$c!Yj+pax~Vj_un*Lqn~NrQ|i*-wg+Uo3G%}|6mPe7pgCzq47pl z4;NC|NHrJ1qZs3VbOSv47w^4H7R^D|4$5FY*Te;j4ba7BNUK#>tn4I)@F8O(s!G#f zJ8P~gr=`&ATM}$6ujZ|(*g~6eYHelJ!OwtqdsbMe`D_C^CR#@|r(AhT0y+}%(U*m- z+)BQL*fvHy?xj_s(!dxhWgU2(8^yqdoop{{9@? zNP9PZnTX)-(-~UZd|ritr%pqHdw*SAAl95=eW)Tf^FmQhaD>}QgEAzhEJS~~VV*yc z0ny#S4XZ!ht($Z1r6}H`CCRvS?C3v<_9zboJCPVa6HqbNr6URZd|R!KM5+My>N6^= z5FB^Og*V5RSxAea>q$Z^Ry_)MyajHmiBvwrxygVexwFte;XQw!Fot2y)O7 zX@5~cWfiNE=q7ZjwM4@mX}ne+CemVdtVN5(P>V5G?mjQ5S=wk6q@+Vpmg@FshfYbf z*Q|U)2Gx;&T6f;d74_Ry!M)ij$Wl`kNBncTvsak8wf2~Oq*t;-U5u=!!@zfnz3zlD zTE-e!kMhb>I4xnVU;bM4oa5~FgN4VndB~qXNBWB^)Q91(eSwPwB z(yYDz``7+YT==*Dr*w+cW~txw=oS9NehyEam9SF^IgqRtR?QJY0l%=uq&}A<&(6{P z?-iQ=yn4Wfgh5bMm2#%m-t=W_6i=Sq#?Y@-R)`W7>D_5>`(pl|F2(oJN;#1{$n7d{ zG}RuntqOM$N@VcLbX&<*RS+UR=xI?{Wo|I^y{NM$#oE=f|7$lqFq;RtdnQ0-scWg>zB{F zlvn%GShP0MQivn_w}P)Br5&6;x`}1v)canbSR-?-9sl+Ts*gtP@_5=k8~V+?l(;qs zF2vE0dfn&z;_fL1Dr?>uGH!2gan$yV*w(!nk*8A7+Ta{bkEh} z>vd0+kyY zGret{N)^8?9$jC5-ygX|d`uL3+{f2rO4;k$(n~nMK%n&Y9+;+EUGpuKY$fz_uzQSg zI?mSRg(ymdT0oNaW{c-b<0}-#uiDw)7stb4WGA9^#3MP4+&v>L-53RT=% ztN9w9x;Pd(fnxXhW`flcd2|t<(xPD!<5dn##;}c=l8s*`r!2+SJyv2eHZ&WO%tJ!D zpA|JMe03cq8|A=rq)BcpQjARCl@~*j2o=3}LV_emTIrjOrP15+MLH&4?Ps01_^5saL`J0?X$2-K@kE4nb-bIemkq1|2@AOM9t(8l1IC&+& zPZ5&`r)HNQH$+Z_4a^>mlw4ljeDAkq?MTK<$qV@nVXNzJr#Yr{8b>c~oEcoC^V*nc zpa|!%2#Fh!uq-5Qy&5)vzOebPi|?j6`n|+z-awXk#Ls)Z<;{ARrO9|U-<2wb@Y^%` md|6gAdptyisG9?7Hz Date: Thu, 25 Aug 2022 15:39:19 -0800 Subject: [PATCH 140/195] added a completion log message for finished example problems --- seisflows/examples/sfexample2d.py | 1 + 1 file changed, 1 insertion(+) diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 13fc1985..b5f00e36 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -347,6 +347,7 @@ def main(self): if self.run_example: print(msg.cli("RUNNING SEISFLOWS INVERSION WORKFLOW", border="=")) self.run_sf_example() + print(msg.cli("EXAMPLE COMPLETED SUCCESFULLY")) if __name__ == "__main__": From f80bef5a5934c269bfd84287cf3f3375a15d368a Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 25 Aug 2022 17:38:55 -0800 Subject: [PATCH 141/195] splitting 2D example docs into the automated runs which will now include some analysis of results, and the walkthrough of the 2D example --- docs/2D_example_walkthrough.rst | 1349 +++++++++++++++ docs/containers.rst | 48 +- docs/index.rst | 8 +- docs/notebooks/2D_example_walkthrough.ipynb | 1616 ++++++++++++++++++ docs/notebooks/specfem2d_example.ipynb | 1647 +------------------ docs/specfem2d_example.rst | 1361 +-------------- seisflows/seisflows.py | 2 + 7 files changed, 3046 insertions(+), 2985 deletions(-) create mode 100644 docs/2D_example_walkthrough.rst create mode 100644 docs/notebooks/2D_example_walkthrough.ipynb diff --git a/docs/2D_example_walkthrough.rst b/docs/2D_example_walkthrough.rst new file mode 100644 index 00000000..bc79170e --- /dev/null +++ b/docs/2D_example_walkthrough.rst @@ -0,0 +1,1349 @@ +2D Example Walkthrough +====================== + +The notebook below details a walkthrough of Example \#1 shown in the `SPECFEM2D example \#1 `__. This is meant for those who want to understand what is going on under the hood. You are welcome to follow along on your workstation. The following Table of Contents outlines the steps we will take in this tutorial: + +.. warning:: + Navigation links will not work outside of Jupyter. Please use the navigation bar to the left. + +1. `Setup SPECFEM2D <#1.-Setup-SPECFEM2D>`__ + + a. `Download and compile + codebase <#1a.-Download-and-compile-codebase*>`__ + b. `Create a separate SPECFEM2D working + directory <#1b.-Create-a-separate-SPECFEM2D-working-directory>`__ + c. `Generate initial and target + models <#1c.-Generate-initial-and-target-models>`__ + +2. `Initialize SeisFlows (SF) <#2.-Initialize-SeisFlows-(SF)>`__ + + a. `SeisFlows working directory and parameter + file <#2a.-SF-working-directory-and-parameter-file>`__ + +3. `Run SeisFlows <#2.-Run-SeisFlows>`__ + + a. `Forward simulations <#3a.-Forward-simulations>`__ + b. `Exploring the SeisFlows directory + structure <#3b.-Exploring-the-SF-directory-structure>`__ + c. `Adjoint simulations <#3c.-Adjoint-simulations>`__ + d. `Line search and model + update <#3d.-Line-search-and-model-update>`__ + +4. `Conclusions <#4.-Conclusions>`__ + +1. Setup SPECFEM2D +~~~~~~~~~~~~~~~~~~ + +1a. Download and compile codebase (optional) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + + **NOTE**: If you have already downloaded and compiled SPECFEM2D, you + can skip most of this subsection (1a). However you will need to edit + the first two paths in the following cell (WORKDIR and + SPECFEM2D_ORIGINAL), and execute the path structure defined in the + cell. + +First we’ll download and compile SPECFEM2D to generate the binaries +necessary to run our simulations. We will then populate a new SPECFEM2D +working directory that will be used by SeisFlows. We’ll use to Python OS +module to do our filesystem processes just to keep everything in Python, +but this can easily be accomplished in bash. + +.. code:: ipython3 + + import os + import glob + import shutil + import numpy as np + +.. code:: ipython3 + + # vvv USER MUST EDIT THE FOLLOWING PATHS vvv + WORKDIR = "/home/bchow/Work/scratch" + SPECFEM2D = "/home/bchow/REPOSITORIES/specfem2d" + # where WORKDIR: points to your own working directory + # and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '') + # ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^ + # ====================================================================================================== + + # Distribute the necessary file structure of the SPECFEM2D repository that we will downloaded/reference + SPECFEM2D_ORIGINAL = os.path.join(WORKDIR, "specfem2d") + SPECFEM2D_BIN_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, "bin") + SPECFEM2D_DATA_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, "DATA") + TAPE_2007_EXAMPLE = os.path.join(SPECFEM2D_ORIGINAL, "EXAMPLES", "Tape2007") + + # The SPECFEM2D working directory that we will create separate from the downloaded repo + SPECFEM2D_WORKDIR = os.path.join(WORKDIR, "specfem2d_workdir") + SPECFEM2D_BIN = os.path.join(SPECFEM2D_WORKDIR, "bin") + SPECFEM2D_DATA = os.path.join(SPECFEM2D_WORKDIR, "DATA") + SPECFEM2D_OUTPUT = os.path.join(SPECFEM2D_WORKDIR, "OUTPUT_FILES") + + # Pre-defined locations of velocity models we will generate using the solver + SPECFEM2D_MODEL_INIT = os.path.join(SPECFEM2D_WORKDIR, "OUTPUT_FILES_INIT") + SPECFEM2D_MODEL_TRUE = os.path.join(SPECFEM2D_WORKDIR, "OUTPUT_FILES_TRUE") + +.. code:: ipython3 + + # Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo + if not os.path.exists(WORKDIR): + os.makedirs(WORKDIR) + os.chdir(WORKDIR) + + if os.path.exists("specfem2d"): + print("SPECFEM2D repository already found, you may skip this subsection") + pass + elif os.path.exists(SPECFEM2D): + print("Existing SPECMFE2D respository found, symlinking to working directory") + os.symlink(SPECFEM2D, "./specfem2d") + else: + print("Cloning respository from GitHub") + ! git clone --recursive --branch devel https://github.com/geodynamics/specfem2d.git + + +.. parsed-literal:: + + Existing SPECMFE2D respository found, symlinking to working directory + + +.. code:: ipython3 + + # Compile SPECFEM2D to generate the Makefile + os.chdir(SPECFEM2D_ORIGINAL) + if not os.path.exists("./config.log"): + os.system("./configure") + +.. code:: ipython3 + + # Run make to generate SPECFEM2D binaries + if not os.path.exists("bin"): + os.system("make all") + +.. code:: ipython3 + + # Check out the binary files that have been created + os.chdir(SPECFEM2D_ORIGINAL) + ! pwd + ! ls bin/ + + +.. parsed-literal:: + + /home/bchow/REPOSITORIES/specfem2d + xadj_seismogram xconvolve_source_timefunction xspecfem2D + xcheck_quality_external_mesh xmeshfem2D xsum_kernels + xcombine_sem xsmooth_sem + + +1b. Create a separate SPECFEM2D working directory +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Next we’ll create a new SPECFEM2D working directory, separate from the +original repository. The intent here is to isolate the original +SPECFEM2D repository from our working state, to protect it from things +like accidental file deletions or manipulations. This is not a mandatory +step for using SeisFlows, but it helps keep file structure clean in the +long run, and is the SeisFlows3 dev team’s preferred method of using +SPECFEM. + +.. note:: + All SPECFEM2D/3D/3D_GLOBE need to run successfully are the bin/, DATA/, and OUTPUT_FILES/ directories. Everything else in the repository is not mandatory for running binaries. + +In this tutorial we will be using the `Tape2007 example +problem `__ +to define our **DATA/** directory (last tested 8/15/22, bdba4389). + +.. code:: ipython3 + + # Incase we've run this docs page before, delete the working directory before remaking + if os.path.exists(SPECFEM2D_WORKDIR): + shutil.rmtree(SPECFEM2D_WORKDIR) + + os.mkdir(SPECFEM2D_WORKDIR) + os.chdir(SPECFEM2D_WORKDIR) + + # Copy the binary files incase we update the source code. These can also be symlinked. + shutil.copytree(SPECFEM2D_BIN_ORIGINAL, "bin") + + # Copy the DATA/ directory because we will be making edits here frequently and it's useful to + # retain the original files for reference. We will be running one of the example problems: Tape2007 + shutil.copytree(os.path.join(TAPE_2007_EXAMPLE, "DATA"), "DATA") + + ! pwd + ! ls + + +.. parsed-literal:: + + /home/bchow/Work/scratch/specfem2d_workdir + bin DATA + + +.. code:: ipython3 + + # Run the Tape2007 example to make sure SPECFEM2D is working as expected + os.chdir(TAPE_2007_EXAMPLE) + ! ./run_this_example.sh > output_log.txt + + assert(os.path.exists("OUTPUT_FILES/forward_image000004800.jpg")), \ + (f"Example did not run, the remainder of this docs page will likely not work." + f"Please check the following directory: {TAPE_2007_EXAMPLE}") + + ! tail output_log.txt + + +.. parsed-literal:: + + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + D a t e : 16 - 08 - 2022 T i m e : 14:26:37 + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + + see results in directory: OUTPUT_FILES/ + + done + Tue Aug 16 02:26:37 PM AKDT 2022 + + +-------------- + +Now we need to manually set up our SPECFEM2D working directory. As +mentioned in the previous cell, the only required elements of this +working directory are the following (these files will form the basis for +how SeisFlows3 operates within the SPECFEM2D framework): + +1. **bin/** directory containing SPECFEM2D binaries +2. **DATA/** directory containing SOURCE and STATION files, as well as a + SPECFEM2D Par_file +3. \__OUTPUT_FILES/proc??????_*.bin_\_ files which define the starting + (and target) models + +.. note:: + This file structure is the same for all versions of SPECFEM (2D/3D/3D_GLOBE) + +.. code:: ipython3 + + # First we will set the correct SOURCE and STATION files. + # This is the same task as shown in ./run_this_example.sh + os.chdir(SPECFEM2D_DATA) + + # Symlink source 001 as our main source + if os.path.exists("SOURCE"): + os.remove("SOURCE") + os.symlink("SOURCE_001", "SOURCE") + + # Copy the correct Par_file so that edits do not affect the original file + if os.path.exists("Par_file"): + os.remove("Par_file") + shutil.copy("Par_file_Tape2007_onerec", "Par_file") + + ! ls + + +.. parsed-literal:: + + interfaces_Tape2007.dat SOURCE_003 SOURCE_012 SOURCE_021 + model_velocity.dat_checker SOURCE_004 SOURCE_013 SOURCE_022 + Par_file SOURCE_005 SOURCE_014 SOURCE_023 + Par_file_Tape2007_132rec_checker SOURCE_006 SOURCE_015 SOURCE_024 + Par_file_Tape2007_onerec SOURCE_007 SOURCE_016 SOURCE_025 + proc000000_model_velocity.dat_input SOURCE_008 SOURCE_017 STATIONS + SOURCE SOURCE_009 SOURCE_018 STATIONS_checker + SOURCE_001 SOURCE_010 SOURCE_019 + SOURCE_002 SOURCE_011 SOURCE_020 + + +1c. Generate initial and target models +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Since we’re doing a synthetic-synthetic inversion, we need to manually +set up the velocity models with which we generate our synthetic +waveforms. The naming conventions for these models are: + +1. **MODEL_INIT:** The initial or starting model. Used to generate the + actual synthetic seismograms. This is considered M00. +2. **MODEL_TRUE:** The target or true model. Used to generate ‘data’ + (also synthetic). This is the reference model that our inversion is + trying to resolve. + +The starting model is defined as a homogeneous halfspace uin the +Tape2007 example problem. We will need to run both ``xmeshfem2D`` and +``xspecfem2D`` to generate the required velocity model database files. +We will generate our target model by slightly perturbing the parameters +of the initial model. + +.. note:: + We can use the SeisFlows3 command line option `seisflows sempar` to directly edit the SPECFEM2D Par_file in the command line. This will work for the SPECFEM3D Par_file as well. + +.. code:: ipython3 + + os.chdir(SPECFEM2D_DATA) + + # Ensure that SPECFEM2D outputs the velocity model in the expected binary format + ! seisflows sempar setup_with_binary_database 1 # allow creation of .bin files + ! seisflows sempar save_model binary # output model in .bin database format + ! seisflows sempar save_ascii_kernels .false. # output kernels in .bin format, not ASCII + + +.. parsed-literal:: + + setup_with_binary_database: 0 -> 1 + SAVE_MODEL: default -> binary + save_ASCII_kernels: .true. -> .false. + + +.. code:: ipython3 + + # SPECFEM requires that we create the OUTPUT_FILES directory before running + os.chdir(SPECFEM2D_WORKDIR) + + if os.path.exists(SPECFEM2D_OUTPUT): + shutil.rmtree(SPECFEM2D_OUTPUT) + + os.mkdir(SPECFEM2D_OUTPUT) + + ! ls + + +.. parsed-literal:: + + bin DATA OUTPUT_FILES + + +.. code:: ipython3 + + # GENERATE MODEL_INIT + os.chdir(SPECFEM2D_WORKDIR) + + # Run the mesher and solver to generate our initial model + ! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt + ! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt + + # Move the model files (*.bin) into the OUTPUT_FILES directory, where SeisFlows3 expects them + ! mv DATA/*bin OUTPUT_FILES + + # Make sure we don't overwrite this initial model when creating our target model in the next step + ! mv OUTPUT_FILES OUTPUT_FILES_INIT + + ! head OUTPUT_FILES_INIT/solver_log.txt + ! tail OUTPUT_FILES_INIT/solver_log.txt + + +.. parsed-literal:: + + + ********************************************** + **** Specfem 2-D Solver - serial version **** + ********************************************** + + Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884 + dating From Date: Mon Nov 29 23:20:51 2021 -0800 + + + NDIM = 2 + ------------------------------------------------------------------------------- + Program SPECFEM2D: + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + Tape-Liu-Tromp (GJI 2007) + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + D a t e : 16 - 08 - 2022 T i m e : 14:26:52 + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + + +-------------- + +Now we want to perturb the initial model to create our target model +(**MODEL_TRUE**). The seisflows command line subargument +``seisflows sempar velocity_model`` will let us view and edit the +velocity model. You can also do this manually by editing the Par_file +directly. + +.. code:: ipython3 + + # GENERATE MODEL_TRUE + os.chdir(SPECFEM2D_DATA) + + # Edit the Par_file by increasing velocities by ~10% + ! seisflows sempar velocity_model '1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0' + + +.. parsed-literal:: + + VELOCITY_MODEL: + + 1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0 + -> + 1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0 + + +.. code:: ipython3 + + # Re-run the mesher and solver to generate our target velocity model + os.chdir(SPECFEM2D_WORKDIR) + + # Make sure the ./OUTPUT_FILES directory exists since we moved the old one + if os.path.exists(SPECFEM2D_OUTPUT): + shutil.rmtree(SPECFEM2D_OUTPUT) + os.mkdir(SPECFEM2D_OUTPUT) + + # Run the binaries to generate MODEL_TRUE + ! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt + ! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt + + # Move all the relevant files into OUTPUT_FILES + ! mv ./DATA/*bin OUTPUT_FILES + ! mv OUTPUT_FILES OUTPUT_FILES_TRUE + + ! head OUTPUT_FILES_INIT/solver_log.txt + ! tail OUTPUT_FILES_INIT/solver_log.txt + + +.. parsed-literal:: + + + ********************************************** + **** Specfem 2-D Solver - serial version **** + ********************************************** + + Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884 + dating From Date: Mon Nov 29 23:20:51 2021 -0800 + + + NDIM = 2 + ------------------------------------------------------------------------------- + Program SPECFEM2D: + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + Tape-Liu-Tromp (GJI 2007) + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + D a t e : 16 - 08 - 2022 T i m e : 14:26:52 + ------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- + + +.. code:: ipython3 + + # Great, we have all the necessary SPECFEM files to run our SeisFlows inversion! + ! ls + + +.. parsed-literal:: + + bin DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE + + +2. Initialize SeisFlows (SF) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In this Section we will look at a SeisFlows working directory, parameter +file, and working state. + +2a. SeisFlows working directory and parameter file +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +As with SPECFEM, SeisFlows requires a parameter file +(**parameters.yaml**) that controls how an automated workflow will +proceed. Because SeisFlows is modular, there are a large number of +potential parameters which may be present in a SeisFlows parameter file, +as each sub-module may have its own set of unique parameters. + +In contrast to SPECFEM’s method of listing all available parameters and +leaving it up the User to determine which ones are relevant to them, +SeisFlows dynamically builds its parameter file based on User inputs. In +this subsection we will use the built-in SeisFlows command line tools to +generate and populate the parameter file. + +.. note:: + See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows file. + +In the previous section we saw the ``sempar`` command in action. We can +use the ``-h`` or help flag to list all available SiesFlows3 command +line commands. + +.. code:: ipython3 + + ! seisflows -h + + +.. parsed-literal:: + + usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]] + {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples} + ... + + ================================================================================ + + SeisFlows: Waveform Inversion Package + + ================================================================================ + + optional arguments: + -h, --help show this help message and exit + -w [WORKDIR], --workdir [WORKDIR] + The SeisFlows working directory, default: cwd + -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE] + Parameters file, default: 'parameters.yaml' + + command: + Available SeisFlows arguments and their intended usages + + setup Setup working directory from scratch + configure Fill parameter file with defaults + swap Swap module parameters in an existing parameter file + init Initiate working environment + submit Submit initial workflow to system + resume Re-submit previous workflow to system + restart Remove current environment and submit new workflow + clean Remove files relating to an active working environment + par View and edit SeisFlows parameter file + sempar View and edit SPECFEM parameter file + check Check state of an active environment + print Print information related to an active environment + reset Reset modules within an active state + debug Start interactive debug environment + examples Look at and run pre-configured example problems + + 'seisflows [command] -h' for more detailed descriptions of each command. + + +.. code:: ipython3 + + # The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows + # the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory + os.chdir(WORKDIR) + ! seisflows setup -f + ! ls + + +.. parsed-literal:: + + creating parameter file: parameters.yaml + parameters.yaml sflog.txt specfem2d specfem2d_workdir + + +.. code:: ipython3 + + # Let's have a look at this file, which has not yet been populated + ! cat parameters.yaml + + +.. parsed-literal:: + + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: forward + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient + + +.. code:: ipython3 + + # We can use the `seisflows print modules` command to list out the available options + ! seisflows print modules + + +.. parsed-literal:: + + SEISFLOWS MODULES + ///////////////// + '-': module, '*': class + + - workflow + * forward + * inversion + * migration + - system + * chinook + * cluster + * frontera + * lsf + * maui + * slurm + * workstation + - solver + * specfem + * specfem2d + * specfem3d + * specfem3d_globe + - preprocess + * default + * pyaflowa + - optimize + * LBFGS + * NLCG + * gradient + + +.. code:: ipython3 + + # For this example, we can use most of the default modules, however we need to + # change the SOLVER module to let SeisFlows know we're using SPECFEM2D (as opposed to 3D) + ! seisflows par workflow inversion + ! cat parameters.yaml + + +.. parsed-literal:: + + workflow: forward -> inversion + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: inversion + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient + + +-------------- + +The ``seisflows configure`` command populates the parameter file based +on the chosen modules. SeisFlows will attempt to fill in all parameters +with reasonable default values. Docstrings above each module show +descriptions and available options for each of these parameters. + +In the follownig cell we will use the ``seisflows par`` command to edit +the parameters.yaml file directly, replacing some default parameters +with our own values. Comments next to each evaluation describe the +choice for each. + +.. code:: ipython3 + + ! seisflows configure + ! head --lines=50 parameters.yaml + + +.. parsed-literal:: + + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: inversion + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient + # ============================================================================= + # + # Forward Workflow + # ---------------- + # Run forward solver in parallel and (optionally) calculate + # data-synthetic misfit and adjoint sources. + # + # Parameters + # ---------- + # :type modules: list of module + # :param modules: instantiated SeisFlows modules which should have been + # generated by the function `seisflows.config.import_seisflows` with a + # parameter file generated by seisflows.configure + # :type data_case: str + # :param data_case: How to address 'data' in the workflow, available options: + # 'data': real data will be provided by the user in + # `path_data/{source_name}` in the same format that the solver will + # produce synthetics (controlled by `solver.format`) OR + # synthetic': 'data' will be generated as synthetic seismograms using + # a target model provided in `path_model_true`. If None, workflow will + + +.. code:: ipython3 + + # EDIT THE SEISFLOWS PARAMETER FILE + ! seisflows par ntask 3 # set the number of sources/events to use + ! seisflows par materials elastic # update Vp and Vs during inversion + ! seisflows par end 2 # final iteration -- we will only run 1 + ! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models + ! seisflows par components Y # this default example creates Y-component seismograms + ! seisflows par step_count_max 5 # limit the number of steps in the line search + + # Use Python syntax here to access path constants + os.system(f"seisflows par path_specfem_bin {SPECFEM2D_BIN}") # set path to SPECFEM2D binaries + os.system(f"seisflows par path_specfem_data {SPECFEM2D_DATA}") # set path to SEPCFEM2D DATA/ + os.system(f"seisflows par path_model_init {SPECFEM2D_MODEL_INIT}") # set path to INIT model + os.system(f"seisflows par path_model_true {SPECFEM2D_MODEL_TRUE}") # set path to TRUE model + + +.. parsed-literal:: + + ntask: 1 -> 3 + materials: acoustic -> elastic + end: 1 -> 2 + data_case: data -> synthetic + components: ZNE -> Y + step_count_max: 10 -> 5 + path_specfem_bin: null -> /home/bchow/Work/scratch/specfem2d_workdir/bin + path_specfem_data: null -> /home/bchow/Work/scratch/specfem2d_workdir/DATA + path_model_init: null -> + /home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_INIT + path_model_true: null -> + /home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_TRUE + + + + +.. parsed-literal:: + + 0 + + + +-------------- + +One last thing, we will need to edit the SPECFEM2D Par_file parameter +``MODEL`` such that ``xmeshfem2d`` reads our pre-built velocity models +(*.bin files) rather than the meshing parameters defined in the +Par_file. + +.. code:: ipython3 + + os.chdir(SPECFEM2D_DATA) + ! seisflows sempar model gll + + +.. parsed-literal:: + + MODEL: default -> gll + + +3. Run SeisFlows +~~~~~~~~~~~~~~~~ + +In this Section we will run SeisFlows to generate synthetic seismograms, +kernels, a gradient, and an updated velocity model. + +3a. Forward simulations +^^^^^^^^^^^^^^^^^^^^^^^ + +SeisFlows is an automated workflow tool, such that once we run +``seisflows submit`` we should not need to intervene in the workflow. +However the package does allow the User flexibility in how they want the +workflow to behave. + +For example, we can run our workflow in stages by taking advantage of +the ``stop_after`` parameter. As its name suggests, ``stop_after`` +allows us to stop a workflow prematurely so that we may stop and look at +results, or debug a failing workflow. + +The ``seisflows print flow`` command tells us what functions we can use +for the ``stop_after`` parameter. + +.. code:: ipython3 + + os.chdir(WORKDIR) + ! seisflows print tasks + + +.. parsed-literal:: + + SEISFLOWS WORKFLOW TASK LIST + //////////////////////////// + Task list for + + 1: evaluate_initial_misfit + 2: run_adjoint_simulations + 3: postprocess_event_kernels + 4: evaluate_gradient_from_kernels + 5: initialize_line_search + 6: perform_line_search + 7: finalize_iteration + + +-------------- + +In the Inversion workflow, the tasks listed are described as follows: + +1. **evaluate_initial_misfit:** + + a. Prepare data for inversion by either copying data from disk or + generating ‘synthetic data’ with MODEL_TRUE + b. Call numerical solver to run forward simulations using MODEL_INIT, + generating synthetics + c. Evaluate the objective function by performing waveform comparisons + d. Prepare ``run_adjoint_simulations`` step by generating adjoint + sources and auxiliary files + +2. **run_adjoint_simulations:** Call numerical solver to run adjoint + simulation, generating kernels +3. **postprocess_event_kernels:** Combine all event kernels into a + misfit kernel. +4. **evaluate_gradient_from_kernels:** Smooth and mask the misfit kernel + to create the gradient +5. **initialize_line_search:** Call on the optimization library to scale + the gradient by a step length to compute the search direction. + Prepare file structure for line search. +6. **perform_line_search:** Perform a line search by algorithmically + scaling the gradient and evaluating the misfit function (forward + simulations and misfit quantification) until misfit is acceptably + reduced. +7. **finalize_iteration:** Run any finalization steps such as saving + traces, kernels, gradients and models to disk, setting up SeisFlows3 + for any subsequent iterations. Clean the scratch/ directory in + preparation for subsequent iterations + +Let’s set the ``stop_after`` argument to **evaluate_initial_misfit**, +this will halt the workflow after the intialization step. + +.. code:: ipython3 + + ! seisflows par stop_after evaluate_initial_misfit + + +.. parsed-literal:: + + stop_after: null -> evaluate_initial_misfit + + +-------------- + +Now let’s run SeisFlows. There are two ways to do this: ``submit`` and +``restart`` + +1. ``seisflows submit`` is used to run new workflows and resume stopped + or failed workflows. +2. The ``restart`` command is simply a convenience function that runs + ``clean`` (to remove an active working state) and ``submit`` (to + submit a fresh workflow). + +Since this is our first run, we’ll use ``seisflows submit``. + +.. code:: ipython3 + + ! seisflows submit + + +.. parsed-literal:: + + 2022-08-16 14:32:48 (I) | + ================================================================================ + SETTING UP INVERSION WORKFLOW + ================================================================================ + 2022-08-16 14:32:55 (D) | running setup for module 'system.Workstation' + 2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_001.txt + 2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_001.yaml + 2022-08-16 14:32:57 (D) | running setup for module 'solver.Specfem2D' + 2022-08-16 14:32:57 (I) | initializing 3 solver directories + 2022-08-16 14:32:57 (D) | initializing solver directory source: 001 + 2022-08-16 14:33:04 (D) | linking source '001' as 'mainsolver' + 2022-08-16 14:33:04 (D) | initializing solver directory source: 002 + 2022-08-16 14:33:09 (D) | initializing solver directory source: 003 + 2022-08-16 14:33:16 (D) | running setup for module 'preprocess.Default' + 2022-08-16 14:33:16 (D) | running setup for module 'optimize.Gradient' + 2022-08-16 14:33:17 (I) | no optimization checkpoint found, assuming first run + 2022-08-16 14:33:17 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:33:17 (I) | + //////////////////////////////////////////////////////////////////////////////// + RUNNING ITERATION 01 + //////////////////////////////////////////////////////////////////////////////// + 2022-08-16 14:33:17 (I) | + ================================================================================ + RUNNING INVERSION WORKFLOW + ================================================================================ + 2022-08-16 14:33:17 (I) | + //////////////////////////////////////////////////////////////////////////////// + EVALUATING MISFIT FOR INITIAL MODEL + //////////////////////////////////////////////////////////////////////////////// + 2022-08-16 14:33:17 (I) | checking initial model parameters + 2022-08-16 14:33:17 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00 + 2022-08-16 14:33:17 (I) | 3500.00 <= vs <= 3500.00 + 2022-08-16 14:33:17 (I) | checking true/target model parameters + 2022-08-16 14:33:17 (I) | 5900.00 <= vp <= 5900.00 + 2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00 + 2022-08-16 14:33:17 (I) | 3550.00 <= vs <= 3550.00 + 2022-08-16 14:33:17 (I) | preparing observation data for source 001 + 2022-08-16 14:33:17 (I) | running forward simulation w/ target model for 001 + 2022-08-16 14:33:21 (I) | evaluating objective function for source 001 + 2022-08-16 14:33:21 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:33:25 (D) | quantifying misfit with 'Default' + 2022-08-16 14:33:25 (I) | preparing observation data for source 002 + 2022-08-16 14:33:25 (I) | running forward simulation w/ target model for 002 + 2022-08-16 14:33:29 (I) | evaluating objective function for source 002 + 2022-08-16 14:33:29 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:33:33 (D) | quantifying misfit with 'Default' + 2022-08-16 14:33:33 (I) | preparing observation data for source 003 + 2022-08-16 14:33:33 (I) | running forward simulation w/ target model for 003 + 2022-08-16 14:33:36 (I) | evaluating objective function for source 003 + 2022-08-16 14:33:36 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:33:40 (D) | quantifying misfit with 'Default' + 2022-08-16 14:33:40 (I) | stop workflow at `stop_after`: evaluate_initial_misfit + + +.. note:: + For a detailed exploration of a SeisFlows working directory, see the `working directory `__ documentation page where we explain each of the files and directories that have been generated during this workflow. Below we just look at two files which are required for our adjoint simulation, the adjoint sources (.adj) and STATIONS_ADJOINT file + +.. code:: ipython3 + + # The adjoint source is created in the same format as the synthetics (two-column ASCII) + ! head scratch/solver/001/traces/adj/AA.S0001.BXY.adj + + +.. parsed-literal:: + + -48.0000000 0.0000000 + -47.9400000 0.0000000 + -47.8800000 0.0000000 + -47.8200000 0.0000000 + -47.7600000 0.0000000 + -47.7000000 0.0000000 + -47.6400000 0.0000000 + -47.5800000 0.0000000 + -47.5200000 0.0000000 + -47.4600000 0.0000000 + + +3b. Adjoint simulations +^^^^^^^^^^^^^^^^^^^^^^^ + +Now that we have all the required files for running an adjoint +simulation (*.adj waveforms and STATIONS_ADJOINT file), we can continue +with the SeisFlows3 Inversion workflow. No need to edit the Par_file or +anything like that, SeisFlows3 will take care of that under the hood. We +simply need to tell the workflow (via the parameters.yaml file) to +``resume_from`` the correct function. We can have a look at these +functions again: + +.. code:: ipython3 + + ! seisflows print tasks + + +.. parsed-literal:: + + SEISFLOWS WORKFLOW TASK LIST + //////////////////////////// + Task list for + + 1: evaluate_initial_misfit + 2: run_adjoint_simulations + 3: postprocess_event_kernels + 4: evaluate_gradient_from_kernels + 5: initialize_line_search + 6: perform_line_search + 7: finalize_iteration + + +.. code:: ipython3 + + # We'll stop just before the line search so that we can take a look at the files + # generated during the middle tasks + ! seisflows par stop_after evaluate_gradient_from_kernels + + +.. parsed-literal:: + + stop_after: evaluate_initial_misfit -> evaluate_gradient_from_kernels + + +.. code:: ipython3 + + # We can use the `seisflows submit` command to continue an active workflow + # The state file created during the first run will tell the workflow to resume from the stopped point in the workflow + ! seisflows submit + + +.. parsed-literal:: + + 2022-08-16 14:36:42 (D) | setting iteration==1 from state file + 2022-08-16 14:36:42 (I) | + ================================================================================ + SETTING UP INVERSION WORKFLOW + ================================================================================ + 2022-08-16 14:36:48 (D) | running setup for module 'system.Workstation' + 2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_002.txt + 2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_002.yaml + 2022-08-16 14:36:51 (D) | running setup for module 'solver.Specfem2D' + 2022-08-16 14:36:51 (I) | initializing 3 solver directories + 2022-08-16 14:36:51 (D) | running setup for module 'preprocess.Default' + 2022-08-16 14:36:52 (D) | running setup for module 'optimize.Gradient' + 2022-08-16 14:36:53 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:36:54 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:36:54 (I) | + //////////////////////////////////////////////////////////////////////////////// + RUNNING ITERATION 01 + //////////////////////////////////////////////////////////////////////////////// + 2022-08-16 14:36:54 (I) | + ================================================================================ + RUNNING INVERSION WORKFLOW + ================================================================================ + 2022-08-16 14:36:54 (I) | 'evaluate_initial_misfit' has already been run, skipping + 2022-08-16 14:36:54 (I) | + //////////////////////////////////////////////////////////////////////////////// + EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS + //////////////////////////////////////////////////////////////////////////////// + 2022-08-16 14:36:54 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-16 14:37:05 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-16 14:37:05 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-16 14:37:05 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-16 14:37:16 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-16 14:37:16 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-16 14:37:18 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' + 2022-08-16 14:37:29 (D) | renaming output event kernels: 'alpha' -> 'vp' + 2022-08-16 14:37:29 (D) | renaming output event kernels: 'beta' -> 'vs' + 2022-08-16 14:37:30 (I) | + //////////////////////////////////////////////////////////////////////////////// + GENERATING/PROCESSING MISFIT KERNEL + //////////////////////////////////////////////////////////////////////////////// + 2022-08-16 14:37:30 (I) | combining event kernels into single misfit kernel + 2022-08-16 14:37:31 (I) | scaling gradient to absolute model perturbations + 2022-08-16 14:37:32 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels + + +-------------- + +The function **run_adjoint_simulations()** has run adjoint simulations +to generate event kernels. The functions **postprocess_event_kernels** +and **evaluate_gradient_from_kernels** will have summed and (optionally) +smoothed the kernels to recover the gradient, which will be used to +update our starting model. + + **NOTE**: Since we did not specify any smoothing lenghts + (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has + occurred. + +Using the gradient-descent optimization algorithm, SeisFlows will now +compute a search direction that will be used in the line search to +search for a best fitting model which optimally reduces the objective +function. We can take a look at where SeisFlows has stored the +information relating to kernel generation and the optimization +computation. + +.. code:: ipython3 + + # Gradient evaluation files are stored here, the kernels are stored separately from the gradient incase + # the user wants to manually manipulate them + ! ls scratch/eval_grad + + +.. parsed-literal:: + + gradient kernels misfit_kernel model residuals.txt + + +.. code:: ipython3 + + # SeisFlows3 stores all kernels and gradient information as SPECFEM binary (.bin) files + ! ls scratch/eval_grad/gradient + + +.. parsed-literal:: + + proc000000_vp_kernel.bin proc000000_vs_kernel.bin + + +.. code:: ipython3 + + # Kernels are stored on a per-event basis, and summed together (sum/). If smoothing was performed, + # we would see both smoothed and unsmoothed versions of the misfit kernel + ! ls scratch/eval_grad/kernels + + +.. parsed-literal:: + + 001 002 003 + + +.. code:: ipython3 + + # We can see that some new values have been stored in prepartion for the line search, + # including g_new (current gradient) and p_new (current search direction). These are also + # stored as vector NumPy arrays (.npy files) + ! ls scratch/optimize + + +.. parsed-literal:: + + checkpoint.npz f_new.txt g_new.npz m_new.npz + + +.. code:: ipython3 + + g_new = np.load("scratch/optimize/g_new.npz") + print(g_new["vs_kernel"]) + + +.. parsed-literal:: + + [[-1.18126331e-12 2.40273470e-12 3.97045036e-11 ... 9.62017688e-11 + 4.21140102e-11 3.96825021e-12]] + + +-------------- + +3c. Line search and model update +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Let’s finish off the inversion by running through the line search, which +will generate new models using the gradient, evaluate the objective +function by running forward simulations, and comparing the evaluated +objective function with the value obtained in +**evalaute_initial_misfit**. + +Satisfactory reduction in the objective function will result in a +termination of the line search. We are using a bracketing line search +here `(Modrak et +al. 2018) `__, +which requires finding models which both increase and decrease the +misfit with respect to the initial evaluation. Therefore it takes +atleast two trial steps to complete the line search. + +.. code:: ipython3 + + ! seisflows par stop_after perform_line_search # We don't want to run the finalize_iteration argument so that we can explore the dir + + +.. parsed-literal:: + + stop_after: evaluate_gradient_from_kernels -> perform_line_search + + +.. code:: ipython3 + + ! seisflows submit + + +.. parsed-literal:: + + 2022-08-16 14:41:12 (D) | setting iteration==1 from state file + 2022-08-16 14:41:12 (I) | + ================================================================================ + SETTING UP INVERSION WORKFLOW + ================================================================================ + 2022-08-16 14:41:18 (D) | running setup for module 'system.Workstation' + 2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_003.txt + 2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_003.yaml + 2022-08-16 14:41:21 (D) | running setup for module 'solver.Specfem2D' + 2022-08-16 14:41:21 (I) | initializing 3 solver directories + 2022-08-16 14:41:22 (D) | running setup for module 'preprocess.Default' + 2022-08-16 14:41:24 (D) | running setup for module 'optimize.Gradient' + 2022-08-16 14:41:26 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:41:28 (I) | re-loading optimization module from checkpoint + 2022-08-16 14:41:28 (I) | + //////////////////////////////////////////////////////////////////////////////// + RUNNING ITERATION 01 + //////////////////////////////////////////////////////////////////////////////// + 2022-08-16 14:41:28 (I) | + ================================================================================ + RUNNING INVERSION WORKFLOW + ================================================================================ + 2022-08-16 14:41:28 (I) | 'evaluate_initial_misfit' has already been run, skipping + 2022-08-16 14:41:28 (I) | 'run_adjoint_simulations' has already been run, skipping + 2022-08-16 14:41:28 (I) | 'postprocess_event_kernels' has already been run, skipping + 2022-08-16 14:41:28 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping + 2022-08-16 14:41:28 (I) | initializing 'bracket'ing line search + 2022-08-16 14:41:28 (I) | enforcing max step length safeguard + 2022-08-16 14:41:28 (D) | step length(s) = 0.00E+00 + 2022-08-16 14:41:28 (D) | misfit val(s) = 1.28E-03 + 2022-08-16 14:41:28 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11 + 2022-08-16 14:41:28 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10 + 2022-08-16 14:41:28 (D) | overwriting initial step length, alpha_new=2.32E+09 + 2022-08-16 14:41:28 (I) | trial model 'm_try' parameters: + 2022-08-16 14:41:28 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:41:28 (I) | 3244.51 <= vs <= 3790.00 + 2022-08-16 14:41:29 (I) | + LINE SEARCH STEP COUNT 01 + -------------------------------------------------------------------------------- + 2022-08-16 14:41:29 (I) | evaluating objective function for source 001 + 2022-08-16 14:41:29 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:33 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:33 (I) | evaluating objective function for source 002 + 2022-08-16 14:41:33 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:36 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:36 (I) | evaluating objective function for source 003 + 2022-08-16 14:41:36 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:40 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:40 (D) | misfit for trial model (f_try) == 8.65E-04 + 2022-08-16 14:41:40 (D) | step length(s) = 0.00E+00, 2.32E+09 + 2022-08-16 14:41:40 (D) | misfit val(s) = 1.28E-03, 8.65E-04 + 2022-08-16 14:41:40 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09 + 2022-08-16 14:41:40 (I) | line search model 'm_try' parameters: + 2022-08-16 14:41:40 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:41:40 (I) | 3086.61 <= vs <= 3969.23 + 2022-08-16 14:41:40 (I) | trial step unsuccessful. re-attempting line search + 2022-08-16 14:41:40 (I) | + LINE SEARCH STEP COUNT 02 + -------------------------------------------------------------------------------- + 2022-08-16 14:41:40 (I) | evaluating objective function for source 001 + 2022-08-16 14:41:40 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:44 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:44 (I) | evaluating objective function for source 002 + 2022-08-16 14:41:44 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:48 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:48 (I) | evaluating objective function for source 003 + 2022-08-16 14:41:48 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:52 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:52 (D) | misfit for trial model (f_try) == 1.73E-03 + 2022-08-16 14:41:52 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09 + 2022-08-16 14:41:52 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03 + 2022-08-16 14:41:52 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09 + 2022-08-16 14:41:52 (I) | line search model 'm_try' parameters: + 2022-08-16 14:41:52 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:41:52 (I) | 3325.01 <= vs <= 3698.63 + 2022-08-16 14:41:52 (I) | trial step unsuccessful. re-attempting line search + 2022-08-16 14:41:52 (I) | + LINE SEARCH STEP COUNT 03 + -------------------------------------------------------------------------------- + 2022-08-16 14:41:52 (I) | evaluating objective function for source 001 + 2022-08-16 14:41:52 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:41:56 (D) | quantifying misfit with 'Default' + 2022-08-16 14:41:56 (I) | evaluating objective function for source 002 + 2022-08-16 14:41:56 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:00 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:00 (I) | evaluating objective function for source 003 + 2022-08-16 14:42:00 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:03 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:03 (D) | misfit for trial model (f_try) == 2.59E-03 + 2022-08-16 14:42:03 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09 + 2022-08-16 14:42:03 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03 + 2022-08-16 14:42:03 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09 + 2022-08-16 14:42:03 (I) | line search model 'm_try' parameters: + 2022-08-16 14:42:03 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:42:03 (I) | 3189.77 <= vs <= 3852.13 + 2022-08-16 14:42:03 (I) | trial step unsuccessful. re-attempting line search + 2022-08-16 14:42:03 (I) | + LINE SEARCH STEP COUNT 04 + -------------------------------------------------------------------------------- + 2022-08-16 14:42:03 (I) | evaluating objective function for source 001 + 2022-08-16 14:42:03 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:07 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:07 (I) | evaluating objective function for source 002 + 2022-08-16 14:42:07 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:11 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:11 (I) | evaluating objective function for source 003 + 2022-08-16 14:42:11 (D) | running forward simulation with 'Specfem2D' + 2022-08-16 14:42:15 (D) | quantifying misfit with 'Default' + 2022-08-16 14:42:15 (D) | misfit for trial model (f_try) == 3.46E-03 + 2022-08-16 14:42:15 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09 + 2022-08-16 14:42:15 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03 + 2022-08-16 14:42:15 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit. + 2022-08-16 14:42:15 (I) | line search model 'm_try' parameters: + 2022-08-16 14:42:15 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-16 14:42:15 (I) | 3244.51 <= vs <= 3790.00 + 2022-08-16 14:42:15 (I) | trial step successful. finalizing line search + 2022-08-16 14:42:15 (I) | + FINALIZING LINE SEARCH + -------------------------------------------------------------------------------- + 2022-08-16 14:42:15 (I) | writing optimization stats + 2022-08-16 14:42:15 (I) | renaming current (new) optimization vectors as previous model (old) + 2022-08-16 14:42:15 (I) | setting accepted trial model (try) as current model (new) + 2022-08-16 14:42:15 (I) | misfit of accepted trial model is f=8.645E-04 + 2022-08-16 14:42:15 (I) | resetting line search step count to 0 + 2022-08-16 14:42:15 (I) | stop workflow at `stop_after`: perform_line_search + + +From the log statements above, we can see that the SeisFlows line search +required 4 trial steps, where it modified values of Vs (shear-wave +velocity) until satisfactory reduction in the objective function was +met. This was the final step in the iteration, and so the finalization +of the line search made preparations for a subsequent iteration. + +.. code:: ipython3 + + # We can see that we have 'new' and 'old' values for each of the optimization values, + # representing the previous model (M00) and the current model (M01). + ! ls scratch/optimize + + +.. parsed-literal:: + + alpha.txt f_new.txt f_try.txt m_new.npz output_optim.txt + checkpoint.npz f_old.txt g_old.npz m_old.npz p_old.npz + + +.. code:: ipython3 + + # The stats/ directory contains text files describing the optimization/line search + ! cat scratch/optimize/output_optim.txt + + +.. parsed-literal:: + + step_count,step_length,gradient_norm_L1,gradient_norm_L2,misfit,if_restarted,slope,theta + 04,2.323E+09,9.243E-05,1.049E-06,1.279E-03,0,8.263E-13,0.000E+00 + + +4. Conclusions +~~~~~~~~~~~~~~ + +We’ve now seen how SeisFlows runs an **Inversion** workflow using the +**Specfem2D** solver on a **Workstation** system. More or less, this is +all you need to run SeisFlows with any combination of modules. The +specificities of a system or numerical solver are already handled +internally by SeisFlows, so if you want to use Specmfe3D_Cartesian as +your solver, you would only need to run +``seisflows par solver specfem3d`` at the beginning of your workflow +(you will also need to set up your Specfem3D models, similar to what we +did for Specfem2D here). To run on a slurm system like Chinook +(University of Alaska Fairbanks), you can run +``seisflows par system chinook``. diff --git a/docs/containers.rst b/docs/containers.rst index 350ab5bc..4def8e76 100644 --- a/docs/containers.rst +++ b/docs/containers.rst @@ -59,7 +59,15 @@ We can run SeisFlows through JupyterHub by opening the container through a port: .. code-block:: bash - docker run -p 8888:8888 ghcr.io/seisscoped/pyatoa:latest + docker run -p 8888:8888 \ + --mount type=bind,source=$(pwd),target=/home/scoped/work + ghcr.io/seisscoped/pyatoa:latest + +.. warning:: + If you do **not** use the ``--mount`` command, all progres will be lost + once you close the container. See the + `Docker bind mounts `__ + documentation for more information. To access the JupyterHub instance, open the URL that was output to the display in your favorite web browser. The URL will likely look something like @@ -86,40 +94,12 @@ in an empty directory to avoid muddling up the home directory. .. image:: images/container_2_example.png :align: center | -This example will download, configure and compile SPECFEM2D within your -JupyterHub instance, and then run a SeisFlows-Pyatoa-SPECFEM2D inversion -problem. See `the SPECFEM2D example docs page `__ -for a more thorough explanation of what's going on under the hood. - -.. warning:: - Once you close the JupyterHub instance, all progress you've made since - opening it will be lost. If you would like to save your progress, you can - use the ``--mount`` command to mount your local filesystem inside the - container. - -Aside: Mounting a local filesystem -""""""""""""""""""""""""""""""""""" +This example will download, configure and compile SPECFEM2D, and then run a +SeisFlows-Pyatoa-SPECFEM2D inversion problem. See `the SPECFEM2D example docs +page `__ for a more thorough explanation of what's +going on under the hood. -By default, JupyterHub does not provide explicit access to your local -filesystem. This is not ideal as we would usually like to save/view results. So -we often provide the container access to the local filesystem using the -``--mount`` flag. - -For example, if you already have SPECFEM2D downloaded and compiled on your local -filesystem, you can mount it to the container to avoid having to redo this -action. Or, as in the following code snippet, we bind our local filesystem's -working directory (WORKDIR) into the containers filesystem as -*/home/scoped/work* to save results. - -See the `Docker bind mounts `__ -documentation for more information. - -.. code-block:: bash - - WORKDIR=/Users/Chow/Work/scratch - docker run -p 8888:8888 \ - --mount type=bind,source=${WORKDIR},target=/home/scoped/work \ - ghcr.io/seisscoped/pyatoa:latest +A successful inversion From the command line diff --git a/docs/index.rst b/docs/index.rst index 36bdd286..d48fa4b6 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -27,7 +27,12 @@ optimization problems. `Pyatoa `__ See the `change log `__ for point-by-point changes from the - original codebase. + original codebase. The `Legacy SeisFlows codebase + `__ can still be + accessed along with its `documentation `__, but is no longer + supported by the developers. + .. warning:: @@ -117,6 +122,7 @@ installed manually to the same Conda environment. :caption: Examples specfem2d_example + 2D_example_walkthrough .. toctree:: :maxdepth: 1 diff --git a/docs/notebooks/2D_example_walkthrough.ipynb b/docs/notebooks/2D_example_walkthrough.ipynb new file mode 100644 index 00000000..1e553768 --- /dev/null +++ b/docs/notebooks/2D_example_walkthrough.ipynb @@ -0,0 +1,1616 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2D Example Walkthrough" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "The notebook below details a walkthrough of Example \\#1 shown in the `SPECFEM2D example \\#1 `__. This is meant for those who want to understand what is going on under the hood. You are welcome to follow along on your workstation. The following Table of Contents outlines the steps we will take in this tutorial:\n", + "\n", + ".. warning:: \n", + " Navigation links will not work outside of Jupyter. Please use the navigation bar to the left." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. __[Setup SPECFEM2D](#1.-Setup-SPECFEM2D)__ \n", + " a. [Download and compile codebase](#1a.-Download-and-compile-codebase*) \n", + " b. [Create a separate SPECFEM2D working directory](#1b.-Create-a-separate-SPECFEM2D-working-directory) \n", + " c. [Generate initial and target models](#1c.-Generate-initial-and-target-models) \n", + "2. __[Initialize SeisFlows (SF)](#2.-Initialize-SeisFlows-(SF))__ \n", + " a. [SeisFlows working directory and parameter file](#2a.-SF-working-directory-and-parameter-file) \n", + "3. __[Run SeisFlows](#2.-Run-SeisFlows)__ \n", + " a. [Forward simulations](#3a.-Forward-simulations) \n", + " b. [Exploring the SeisFlows directory structure](#3b.-Exploring-the-SF-directory-structure) \n", + " c. [Adjoint simulations](#3c.-Adjoint-simulations) \n", + " d. [Line search and model update](#3d.-Line-search-and-model-update) \n", + "4. __[Conclusions](#4.-Conclusions)__ " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Setup SPECFEM2D \n", + "#### 1a. Download and compile codebase (optional)\n", + "\n", + "> **NOTE**: If you have already downloaded and compiled SPECFEM2D, you can skip most of this subsection (1a). However you will need to edit the first two paths in the following cell (WORKDIR and SPECFEM2D_ORIGINAL), and execute the path structure defined in the cell.\n", + "\n", + "First we'll download and compile SPECFEM2D to generate the binaries necessary to run our simulations. We will then populate a new SPECFEM2D working directory that will be used by SeisFlows. We'll use to Python OS module to do our filesystem processes just to keep everything in Python, but this can easily be accomplished in bash." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import glob\n", + "import shutil\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# vvv USER MUST EDIT THE FOLLOWING PATHS vvv\n", + "WORKDIR = \"/home/bchow/Work/scratch\" \n", + "SPECFEM2D = \"/home/bchow/REPOSITORIES/specfem2d\"\n", + "# where WORKDIR: points to your own working directory\n", + "# and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '')\n", + "# ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^\n", + "# ======================================================================================================\n", + "\n", + "# Distribute the necessary file structure of the SPECFEM2D repository that we will downloaded/reference\n", + "SPECFEM2D_ORIGINAL = os.path.join(WORKDIR, \"specfem2d\")\n", + "SPECFEM2D_BIN_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, \"bin\")\n", + "SPECFEM2D_DATA_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, \"DATA\")\n", + "TAPE_2007_EXAMPLE = os.path.join(SPECFEM2D_ORIGINAL, \"EXAMPLES\", \"Tape2007\")\n", + "\n", + "# The SPECFEM2D working directory that we will create separate from the downloaded repo\n", + "SPECFEM2D_WORKDIR = os.path.join(WORKDIR, \"specfem2d_workdir\")\n", + "SPECFEM2D_BIN = os.path.join(SPECFEM2D_WORKDIR, \"bin\")\n", + "SPECFEM2D_DATA = os.path.join(SPECFEM2D_WORKDIR, \"DATA\")\n", + "SPECFEM2D_OUTPUT = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES\")\n", + "\n", + "# Pre-defined locations of velocity models we will generate using the solver\n", + "SPECFEM2D_MODEL_INIT = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES_INIT\")\n", + "SPECFEM2D_MODEL_TRUE = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES_TRUE\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Existing SPECMFE2D respository found, symlinking to working directory\n" + ] + } + ], + "source": [ + "# Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo\n", + "if not os.path.exists(WORKDIR):\n", + " os.makedirs(WORKDIR)\n", + "os.chdir(WORKDIR)\n", + "\n", + "if os.path.exists(\"specfem2d\"):\n", + " print(\"SPECFEM2D repository already found, you may skip this subsection\")\n", + " pass\n", + "elif os.path.exists(SPECFEM2D):\n", + " print(\"Existing SPECMFE2D respository found, symlinking to working directory\")\n", + " os.symlink(SPECFEM2D, \"./specfem2d\")\n", + "else:\n", + " print(\"Cloning respository from GitHub\")\n", + " ! git clone --recursive --branch devel https://github.com/geodynamics/specfem2d.git" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Compile SPECFEM2D to generate the Makefile\n", + "os.chdir(SPECFEM2D_ORIGINAL)\n", + "if not os.path.exists(\"./config.log\"):\n", + " os.system(\"./configure\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Run make to generate SPECFEM2D binaries\n", + "if not os.path.exists(\"bin\"):\n", + " os.system(\"make all\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/bchow/REPOSITORIES/specfem2d\n", + "xadj_seismogram\t\t xconvolve_source_timefunction xspecfem2D\n", + "xcheck_quality_external_mesh xmeshfem2D\t\t xsum_kernels\n", + "xcombine_sem\t\t xsmooth_sem\n" + ] + } + ], + "source": [ + "# Check out the binary files that have been created\n", + "os.chdir(SPECFEM2D_ORIGINAL)\n", + "! pwd\n", + "! ls bin/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1b. Create a separate SPECFEM2D working directory\n", + "\n", + "Next we'll create a new SPECFEM2D working directory, separate from the original repository. The intent here is to isolate the original SPECFEM2D repository from our working state, to protect it from things like accidental file deletions or manipulations. This is not a mandatory step for using SeisFlows, but it helps keep file structure clean in the long run, and is the SeisFlows3 dev team's preferred method of using SPECFEM. " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " All SPECFEM2D/3D/3D_GLOBE need to run successfully are the bin/, DATA/, and OUTPUT_FILES/ directories. Everything else in the repository is not mandatory for running binaries." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial we will be using the [Tape2007 example problem](https://github.com/geodynamics/specfem2d/tree/devel/EXAMPLES/Tape2007) to define our __DATA/__ directory (last tested 8/15/22, bdba4389)." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/bchow/Work/scratch/specfem2d_workdir\n", + "bin DATA\n" + ] + } + ], + "source": [ + "# Incase we've run this docs page before, delete the working directory before remaking\n", + "if os.path.exists(SPECFEM2D_WORKDIR):\n", + " shutil.rmtree(SPECFEM2D_WORKDIR)\n", + "\n", + "os.mkdir(SPECFEM2D_WORKDIR)\n", + "os.chdir(SPECFEM2D_WORKDIR)\n", + "\n", + "# Copy the binary files incase we update the source code. These can also be symlinked.\n", + "shutil.copytree(SPECFEM2D_BIN_ORIGINAL, \"bin\")\n", + "\n", + "# Copy the DATA/ directory because we will be making edits here frequently and it's useful to\n", + "# retain the original files for reference. We will be running one of the example problems: Tape2007\n", + "shutil.copytree(os.path.join(TAPE_2007_EXAMPLE, \"DATA\"), \"DATA\")\n", + "\n", + "! pwd\n", + "! ls" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " -------------------------------------------------------------------------------\r\n", + " -------------------------------------------------------------------------------\r\n", + " D a t e : 16 - 08 - 2022 T i m e : 14:26:37\r\n", + " -------------------------------------------------------------------------------\r\n", + " -------------------------------------------------------------------------------\r\n", + "\r\n", + "see results in directory: OUTPUT_FILES/\r\n", + "\r\n", + "done\r\n", + "Tue Aug 16 02:26:37 PM AKDT 2022\r\n" + ] + } + ], + "source": [ + "# Run the Tape2007 example to make sure SPECFEM2D is working as expected\n", + "os.chdir(TAPE_2007_EXAMPLE)\n", + "! ./run_this_example.sh > output_log.txt\n", + "\n", + "assert(os.path.exists(\"OUTPUT_FILES/forward_image000004800.jpg\")), \\\n", + " (f\"Example did not run, the remainder of this docs page will likely not work.\"\n", + " f\"Please check the following directory: {TAPE_2007_EXAMPLE}\")\n", + "\n", + "! tail output_log.txt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "------------------------------------\n", + "Now we need to manually set up our SPECFEM2D working directory. As mentioned in the previous cell, the only required elements of this working directory are the following (these files will form the basis for how SeisFlows3 operates within the SPECFEM2D framework):\n", + "\n", + "1. __bin/__ directory containing SPECFEM2D binaries\n", + "2. __DATA/__ directory containing SOURCE and STATION files, as well as a SPECFEM2D Par_file\n", + "3. __OUTPUT_FILES/proc??????_*.bin__ files which define the starting (and target) models" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note:: \n", + " This file structure is the same for all versions of SPECFEM (2D/3D/3D_GLOBE)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "interfaces_Tape2007.dat\t\t SOURCE_003 SOURCE_012 SOURCE_021\r\n", + "model_velocity.dat_checker\t SOURCE_004 SOURCE_013 SOURCE_022\r\n", + "Par_file\t\t\t SOURCE_005 SOURCE_014 SOURCE_023\r\n", + "Par_file_Tape2007_132rec_checker SOURCE_006 SOURCE_015 SOURCE_024\r\n", + "Par_file_Tape2007_onerec\t SOURCE_007 SOURCE_016 SOURCE_025\r\n", + "proc000000_model_velocity.dat_input SOURCE_008 SOURCE_017 STATIONS\r\n", + "SOURCE\t\t\t\t SOURCE_009 SOURCE_018 STATIONS_checker\r\n", + "SOURCE_001\t\t\t SOURCE_010 SOURCE_019\r\n", + "SOURCE_002\t\t\t SOURCE_011 SOURCE_020\r\n" + ] + } + ], + "source": [ + "# First we will set the correct SOURCE and STATION files.\n", + "# This is the same task as shown in ./run_this_example.sh\n", + "os.chdir(SPECFEM2D_DATA)\n", + "\n", + "# Symlink source 001 as our main source\n", + "if os.path.exists(\"SOURCE\"):\n", + " os.remove(\"SOURCE\")\n", + "os.symlink(\"SOURCE_001\", \"SOURCE\")\n", + "\n", + "# Copy the correct Par_file so that edits do not affect the original file\n", + "if os.path.exists(\"Par_file\"):\n", + " os.remove(\"Par_file\")\n", + "shutil.copy(\"Par_file_Tape2007_onerec\", \"Par_file\")\n", + "\n", + "! ls" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1c. Generate initial and target models\n", + "\n", + "Since we're doing a synthetic-synthetic inversion, we need to manually set up the velocity models with which we generate our synthetic waveforms. The naming conventions for these models are:\n", + "\n", + "1. __MODEL_INIT:__ The initial or starting model. Used to generate the actual synthetic seismograms. This is considered M00.\n", + "2. __MODEL_TRUE:__ The target or true model. Used to generate 'data' (also synthetic). This is the reference model that our inversion is trying to resolve.\n", + "\n", + "The starting model is defined as a homogeneous halfspace uin the Tape2007 example problem. We will need to run both `xmeshfem2D` and `xspecfem2D` to generate the required velocity model database files. We will generate our target model by slightly perturbing the parameters of the initial model." + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " We can use the SeisFlows3 command line option `seisflows sempar` to directly edit the SPECFEM2D Par_file in the command line. This will work for the SPECFEM3D Par_file as well." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "setup_with_binary_database: 0 -> 1\n", + "SAVE_MODEL: default -> binary\n", + "save_ASCII_kernels: .true. -> .false.\n" + ] + } + ], + "source": [ + "os.chdir(SPECFEM2D_DATA)\n", + "\n", + "# Ensure that SPECFEM2D outputs the velocity model in the expected binary format\n", + "! seisflows sempar setup_with_binary_database 1 # allow creation of .bin files\n", + "! seisflows sempar save_model binary # output model in .bin database format\n", + "! seisflows sempar save_ascii_kernels .false. # output kernels in .bin format, not ASCII" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bin DATA OUTPUT_FILES\r\n" + ] + } + ], + "source": [ + "# SPECFEM requires that we create the OUTPUT_FILES directory before running\n", + "os.chdir(SPECFEM2D_WORKDIR)\n", + "\n", + "if os.path.exists(SPECFEM2D_OUTPUT):\n", + " shutil.rmtree(SPECFEM2D_OUTPUT)\n", + " \n", + "os.mkdir(SPECFEM2D_OUTPUT)\n", + "\n", + "! ls" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " **********************************************\n", + " **** Specfem 2-D Solver - serial version ****\n", + " **********************************************\n", + "\n", + " Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884\n", + " dating From Date: Mon Nov 29 23:20:51 2021 -0800\n", + "\n", + "\n", + " NDIM = 2\n", + " -------------------------------------------------------------------------------\n", + " Program SPECFEM2D: \n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n", + " Tape-Liu-Tromp (GJI 2007)\n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n", + " D a t e : 16 - 08 - 2022 T i m e : 14:26:52\n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# GENERATE MODEL_INIT\n", + "os.chdir(SPECFEM2D_WORKDIR)\n", + "\n", + "# Run the mesher and solver to generate our initial model\n", + "! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt\n", + "! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt\n", + "\n", + "# Move the model files (*.bin) into the OUTPUT_FILES directory, where SeisFlows3 expects them\n", + "! mv DATA/*bin OUTPUT_FILES\n", + "\n", + "# Make sure we don't overwrite this initial model when creating our target model in the next step\n", + "! mv OUTPUT_FILES OUTPUT_FILES_INIT\n", + "\n", + "! head OUTPUT_FILES_INIT/solver_log.txt\n", + "! tail OUTPUT_FILES_INIT/solver_log.txt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----------------------------\n", + "\n", + "Now we want to perturb the initial model to create our target model (__MODEL_TRUE__). The seisflows command line subargument `seisflows sempar velocity_model` will let us view and edit the velocity model. You can also do this manually by editing the Par_file directly. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VELOCITY_MODEL:\r\n", + "\r\n", + "1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0\r\n", + "->\r\n", + "1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0\r\n" + ] + } + ], + "source": [ + "# GENERATE MODEL_TRUE\n", + "os.chdir(SPECFEM2D_DATA)\n", + "\n", + "# Edit the Par_file by increasing velocities by ~10% \n", + "! seisflows sempar velocity_model '1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0'" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " **********************************************\n", + " **** Specfem 2-D Solver - serial version ****\n", + " **********************************************\n", + "\n", + " Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884\n", + " dating From Date: Mon Nov 29 23:20:51 2021 -0800\n", + "\n", + "\n", + " NDIM = 2\n", + " -------------------------------------------------------------------------------\n", + " Program SPECFEM2D: \n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n", + " Tape-Liu-Tromp (GJI 2007)\n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n", + " D a t e : 16 - 08 - 2022 T i m e : 14:26:52\n", + " -------------------------------------------------------------------------------\n", + " -------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Re-run the mesher and solver to generate our target velocity model\n", + "os.chdir(SPECFEM2D_WORKDIR)\n", + "\n", + "# Make sure the ./OUTPUT_FILES directory exists since we moved the old one\n", + "if os.path.exists(SPECFEM2D_OUTPUT):\n", + " shutil.rmtree(SPECFEM2D_OUTPUT)\n", + "os.mkdir(SPECFEM2D_OUTPUT)\n", + "\n", + "# Run the binaries to generate MODEL_TRUE\n", + "! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt\n", + "! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt\n", + "\n", + "# Move all the relevant files into OUTPUT_FILES \n", + "! mv ./DATA/*bin OUTPUT_FILES\n", + "! mv OUTPUT_FILES OUTPUT_FILES_TRUE\n", + "\n", + "! head OUTPUT_FILES_INIT/solver_log.txt\n", + "! tail OUTPUT_FILES_INIT/solver_log.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bin DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE\r\n" + ] + } + ], + "source": [ + "# Great, we have all the necessary SPECFEM files to run our SeisFlows inversion!\n", + "! ls" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Initialize SeisFlows (SF)\n", + "In this Section we will look at a SeisFlows working directory, parameter file, and working state.\n", + "\n", + "#### 2a. SeisFlows working directory and parameter file\n", + "\n", + "As with SPECFEM, SeisFlows requires a parameter file (__parameters.yaml__) that controls how an automated workflow will proceed. Because SeisFlows is modular, there are a large number of potential parameters which may be present in a SeisFlows parameter file, as each sub-module may have its own set of unique parameters.\n", + "\n", + "In contrast to SPECFEM's method of listing all available parameters and leaving it up the User to determine which ones are relevant to them, SeisFlows dynamically builds its parameter file based on User inputs. In this subsection we will use the built-in SeisFlows command line tools to generate and populate the parameter file. " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the previous section we saw the `sempar` command in action. We can use the `-h` or help flag to list all available SiesFlows3 command line commands." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]]\r\n", + " {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples}\r\n", + " ...\r\n", + "\r\n", + "================================================================================\r\n", + "\r\n", + " SeisFlows: Waveform Inversion Package \r\n", + "\r\n", + "================================================================================\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n", + " -w [WORKDIR], --workdir [WORKDIR]\r\n", + " The SeisFlows working directory, default: cwd\r\n", + " -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE]\r\n", + " Parameters file, default: 'parameters.yaml'\r\n", + "\r\n", + "command:\r\n", + " Available SeisFlows arguments and their intended usages\r\n", + "\r\n", + " setup Setup working directory from scratch\r\n", + " configure Fill parameter file with defaults\r\n", + " swap Swap module parameters in an existing parameter file\r\n", + " init Initiate working environment\r\n", + " submit Submit initial workflow to system\r\n", + " resume Re-submit previous workflow to system\r\n", + " restart Remove current environment and submit new workflow\r\n", + " clean Remove files relating to an active working environment\r\n", + " par View and edit SeisFlows parameter file\r\n", + " sempar View and edit SPECFEM parameter file\r\n", + " check Check state of an active environment\r\n", + " print Print information related to an active environment\r\n", + " reset Reset modules within an active state\r\n", + " debug Start interactive debug environment\r\n", + " examples Look at and run pre-configured example problems\r\n", + "\r\n", + "'seisflows [command] -h' for more detailed descriptions of each command.\r\n" + ] + } + ], + "source": [ + "! seisflows -h" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "creating parameter file: parameters.yaml\n", + "parameters.yaml sflog.txt specfem2d specfem2d_workdir\n" + ] + } + ], + "source": [ + "# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\n", + "# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\n", + "os.chdir(WORKDIR)\n", + "! seisflows setup -f\n", + "! ls" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# SeisFlows YAML Parameter File\r\n", + "#\r\n", + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# Modules correspond to the structure of the source code, and determine\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "#\r\n", + "# .. rubric::\r\n", + "# - To determine available options for modules listed below, run:\r\n", + "# > seisflows print modules\r\n", + "# - To auto-fill with docstrings and default values (recommended), run:\r\n", + "# > seisflows configure\r\n", + "# - To set values as NoneType, use: null\r\n", + "# - To set values as infinity, use: inf\r\n", + "#\r\n", + "# MODULES\r\n", + "# ///////\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", + "# ==============================================================================\r\n", + "workflow: forward\r\n", + "system: workstation\r\n", + "solver: specfem2d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n" + ] + } + ], + "source": [ + "# Let's have a look at this file, which has not yet been populated\n", + "! cat parameters.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " SEISFLOWS MODULES \r\n", + " ///////////////// \r\n", + "'-': module, '*': class\r\n", + "\r\n", + "- workflow\r\n", + " * forward\r\n", + " * inversion\r\n", + " * migration\r\n", + "- system\r\n", + " * chinook\r\n", + " * cluster\r\n", + " * frontera\r\n", + " * lsf\r\n", + " * maui\r\n", + " * slurm\r\n", + " * workstation\r\n", + "- solver\r\n", + " * specfem\r\n", + " * specfem2d\r\n", + " * specfem3d\r\n", + " * specfem3d_globe\r\n", + "- preprocess\r\n", + " * default\r\n", + " * pyaflowa\r\n", + "- optimize\r\n", + " * LBFGS\r\n", + " * NLCG\r\n", + " * gradient\r\n" + ] + } + ], + "source": [ + "# We can use the `seisflows print modules` command to list out the available options \n", + "! seisflows print modules" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "workflow: forward -> inversion\n", + "# //////////////////////////////////////////////////////////////////////////////\n", + "#\n", + "# SeisFlows YAML Parameter File\n", + "#\n", + "# //////////////////////////////////////////////////////////////////////////////\n", + "#\n", + "# Modules correspond to the structure of the source code, and determine\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\n", + "#\n", + "# .. rubric::\n", + "# - To determine available options for modules listed below, run:\n", + "# > seisflows print modules\n", + "# - To auto-fill with docstrings and default values (recommended), run:\n", + "# > seisflows configure\n", + "# - To set values as NoneType, use: null\n", + "# - To set values as infinity, use: inf\n", + "#\n", + "# MODULES\n", + "# ///////\n", + "# workflow (str): The types and order of functions for running SeisFlows\n", + "# system (str): Computer architecture of the system being used\n", + "# solver (str): External numerical solver to use for waveform simulations\n", + "# preprocess (str): Preprocessing schema for waveform data\n", + "# optimize (str): Optimization algorithm for the inverse problem\n", + "# ==============================================================================\n", + "workflow: inversion\n", + "system: workstation\n", + "solver: specfem2d\n", + "preprocess: default\n", + "optimize: gradient\n" + ] + } + ], + "source": [ + "# For this example, we can use most of the default modules, however we need to \n", + "# change the SOLVER module to let SeisFlows know we're using SPECFEM2D (as opposed to 3D)\n", + "! seisflows par workflow inversion\n", + "! cat parameters.yaml" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-------------------------\n", + "The `seisflows configure` command populates the parameter file based on the chosen modules. SeisFlows will attempt to fill in all parameters with reasonable default values. Docstrings above each module show descriptions and available options for each of these parameters. \n", + "\n", + "In the follownig cell we will use the `seisflows par` command to edit the parameters.yaml file directly, replacing some default parameters with our own values. Comments next to each evaluation describe the choice for each." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# SeisFlows YAML Parameter File\r\n", + "#\r\n", + "# //////////////////////////////////////////////////////////////////////////////\r\n", + "#\r\n", + "# Modules correspond to the structure of the source code, and determine\r\n", + "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", + "#\r\n", + "# .. rubric::\r\n", + "# - To determine available options for modules listed below, run:\r\n", + "# > seisflows print modules\r\n", + "# - To auto-fill with docstrings and default values (recommended), run:\r\n", + "# > seisflows configure\r\n", + "# - To set values as NoneType, use: null\r\n", + "# - To set values as infinity, use: inf\r\n", + "#\r\n", + "# MODULES\r\n", + "# ///////\r\n", + "# workflow (str): The types and order of functions for running SeisFlows\r\n", + "# system (str): Computer architecture of the system being used\r\n", + "# solver (str): External numerical solver to use for waveform simulations\r\n", + "# preprocess (str): Preprocessing schema for waveform data\r\n", + "# optimize (str): Optimization algorithm for the inverse problem\r\n", + "# ==============================================================================\r\n", + "workflow: inversion\r\n", + "system: workstation\r\n", + "solver: specfem2d\r\n", + "preprocess: default\r\n", + "optimize: gradient\r\n", + "# =============================================================================\r\n", + "#\r\n", + "# Forward Workflow\r\n", + "# ----------------\r\n", + "# Run forward solver in parallel and (optionally) calculate\r\n", + "# data-synthetic misfit and adjoint sources.\r\n", + "#\r\n", + "# Parameters\r\n", + "# ----------\r\n", + "# :type modules: list of module\r\n", + "# :param modules: instantiated SeisFlows modules which should have been\r\n", + "# generated by the function `seisflows.config.import_seisflows` with a\r\n", + "# parameter file generated by seisflows.configure\r\n", + "# :type data_case: str\r\n", + "# :param data_case: How to address 'data' in the workflow, available options:\r\n", + "# 'data': real data will be provided by the user in\r\n", + "# `path_data/{source_name}` in the same format that the solver will\r\n", + "# produce synthetics (controlled by `solver.format`) OR\r\n", + "# synthetic': 'data' will be generated as synthetic seismograms using\r\n", + "# a target model provided in `path_model_true`. If None, workflow will\r\n" + ] + } + ], + "source": [ + "! seisflows configure\n", + "! head --lines=50 parameters.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ntask: 1 -> 3\n", + "materials: acoustic -> elastic\n", + "end: 1 -> 2\n", + "data_case: data -> synthetic\n", + "components: ZNE -> Y\n", + "step_count_max: 10 -> 5\n", + "path_specfem_bin: null -> /home/bchow/Work/scratch/specfem2d_workdir/bin\n", + "path_specfem_data: null -> /home/bchow/Work/scratch/specfem2d_workdir/DATA\n", + "path_model_init: null ->\n", + "/home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_INIT\n", + "path_model_true: null ->\n", + "/home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_TRUE\n" + ] + }, + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# EDIT THE SEISFLOWS PARAMETER FILE\n", + "! seisflows par ntask 3 # set the number of sources/events to use\n", + "! seisflows par materials elastic # update Vp and Vs during inversion\n", + "! seisflows par end 2 # final iteration -- we will only run 1\n", + "! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models\n", + "! seisflows par components Y # this default example creates Y-component seismograms\n", + "! seisflows par step_count_max 5 # limit the number of steps in the line search\n", + "\n", + "# Use Python syntax here to access path constants\n", + "os.system(f\"seisflows par path_specfem_bin {SPECFEM2D_BIN}\") # set path to SPECFEM2D binaries\n", + "os.system(f\"seisflows par path_specfem_data {SPECFEM2D_DATA}\") # set path to SEPCFEM2D DATA/\n", + "os.system(f\"seisflows par path_model_init {SPECFEM2D_MODEL_INIT}\") # set path to INIT model\n", + "os.system(f\"seisflows par path_model_true {SPECFEM2D_MODEL_TRUE}\") # set path to TRUE model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "------------------------------\n", + "One last thing, we will need to edit the SPECFEM2D Par_file parameter `MODEL` such that `xmeshfem2d` reads our pre-built velocity models (\\*.bin files) rather than the meshing parameters defined in the Par_file." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MODEL: default -> gll\r\n" + ] + } + ], + "source": [ + "os.chdir(SPECFEM2D_DATA)\n", + "! seisflows sempar model gll" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Run SeisFlows\n", + "\n", + "In this Section we will run SeisFlows to generate synthetic seismograms, kernels, a gradient, and an updated velocity model.\n", + "\n", + "#### 3a. Forward simulations\n", + "\n", + "SeisFlows is an automated workflow tool, such that once we run `seisflows submit` we should not need to intervene in the workflow. However the package does allow the User flexibility in how they want the workflow to behave.\n", + "\n", + "For example, we can run our workflow in stages by taking advantage of the `stop_after` parameter. As its name suggests, `stop_after` allows us to stop a workflow prematurely so that we may stop and look at results, or debug a failing workflow.\n", + "\n", + "The `seisflows print flow` command tells us what functions we can use for the `stop_after` parameter. " + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " SEISFLOWS WORKFLOW TASK LIST \r\n", + " //////////////////////////// \r\n", + "Task list for \r\n", + "\r\n", + "1: evaluate_initial_misfit\r\n", + "2: run_adjoint_simulations\r\n", + "3: postprocess_event_kernels\r\n", + "4: evaluate_gradient_from_kernels\r\n", + "5: initialize_line_search\r\n", + "6: perform_line_search\r\n", + "7: finalize_iteration\r\n" + ] + } + ], + "source": [ + "os.chdir(WORKDIR)\n", + "! seisflows print tasks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----------------------------\n", + "In the Inversion workflow, the tasks listed are described as follows:\n", + "\n", + "1. __evaluate_initial_misfit:__ \n", + " a. Prepare data for inversion by either copying data from disk or generating 'synthetic data' with MODEL_TRUE \n", + " b. Call numerical solver to run forward simulations using MODEL_INIT, generating synthetics \n", + " c. Evaluate the objective function by performing waveform comparisons \n", + " d. Prepare `run_adjoint_simulations` step by generating adjoint sources and auxiliary files\n", + "2. __run_adjoint_simulations:__ Call numerical solver to run adjoint simulation, generating kernels\n", + "3. __postprocess_event_kernels:__ Combine all event kernels into a misfit kernel. \n", + "4. __evaluate_gradient_from_kernels:__ Smooth and mask the misfit kernel to create the gradient\n", + "4. __initialize_line_search:__ Call on the optimization library to scale the gradient by a step length to compute the search direction. Prepare file structure for line search.\n", + "5. __perform_line_search:__ Perform a line search by algorithmically scaling the gradient and evaluating the misfit function (forward simulations and misfit quantification) until misfit is acceptably reduced.\n", + "6. __finalize_iteration:__ Run any finalization steps such as saving traces, kernels, gradients and models to disk, setting up SeisFlows3 for any subsequent iterations. Clean the scratch/ directory in preparation for subsequent iterations\n", + "\n", + "Let's set the `stop_after` argument to __evaluate_initial_misfit__, this will halt the workflow after the intialization step. " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stop_after: null -> evaluate_initial_misfit\r\n" + ] + } + ], + "source": [ + "! seisflows par stop_after evaluate_initial_misfit" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "-----------------------\n", + "Now let's run SeisFlows. There are two ways to do this: `submit` and `restart`\n", + "\n", + "1. `seisflows submit` is used to run new workflows and resume stopped or failed workflows.\n", + "2. The `restart` command is simply a convenience function that runs `clean` (to remove an active working state) and `submit` (to submit a fresh workflow). \n", + "\n", + "Since this is our first run, we'll use `seisflows submit`." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2022-08-16 14:32:48 (I) | \n", + "================================================================================\n", + " SETTING UP INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-16 14:32:55 (D) | running setup for module 'system.Workstation'\n", + "2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_001.txt\n", + "2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_001.yaml\n", + "2022-08-16 14:32:57 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-16 14:32:57 (I) | initializing 3 solver directories\n", + "2022-08-16 14:32:57 (D) | initializing solver directory source: 001\n", + "2022-08-16 14:33:04 (D) | linking source '001' as 'mainsolver'\n", + "2022-08-16 14:33:04 (D) | initializing solver directory source: 002\n", + "2022-08-16 14:33:09 (D) | initializing solver directory source: 003\n", + "2022-08-16 14:33:16 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-16 14:33:16 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-16 14:33:17 (I) | no optimization checkpoint found, assuming first run\n", + "2022-08-16 14:33:17 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:33:17 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " RUNNING ITERATION 01 \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-16 14:33:17 (I) | \n", + "================================================================================\n", + " RUNNING INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-16 14:33:17 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " EVALUATING MISFIT FOR INITIAL MODEL \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-16 14:33:17 (I) | checking initial model parameters\n", + "2022-08-16 14:33:17 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00\n", + "2022-08-16 14:33:17 (I) | 3500.00 <= vs <= 3500.00\n", + "2022-08-16 14:33:17 (I) | checking true/target model parameters\n", + "2022-08-16 14:33:17 (I) | 5900.00 <= vp <= 5900.00\n", + "2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00\n", + "2022-08-16 14:33:17 (I) | 3550.00 <= vs <= 3550.00\n", + "2022-08-16 14:33:17 (I) | preparing observation data for source 001\n", + "2022-08-16 14:33:17 (I) | running forward simulation w/ target model for 001\n", + "2022-08-16 14:33:21 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:33:21 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:33:25 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:33:25 (I) | preparing observation data for source 002\n", + "2022-08-16 14:33:25 (I) | running forward simulation w/ target model for 002\n", + "2022-08-16 14:33:29 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:33:29 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:33:33 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:33:33 (I) | preparing observation data for source 003\n", + "2022-08-16 14:33:33 (I) | running forward simulation w/ target model for 003\n", + "2022-08-16 14:33:36 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:33:36 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:33:40 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:33:40 (I) | stop workflow at `stop_after`: evaluate_initial_misfit\n" + ] + } + ], + "source": [ + "! seisflows submit " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " For a detailed exploration of a SeisFlows working directory, see the `working directory `__ documentation page where we explain each of the files and directories that have been generated during this workflow. Below we just look at two files which are required for our adjoint simulation, the adjoint sources (.adj) and STATIONS_ADJOINT file" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " -48.0000000 0.0000000\r\n", + " -47.9400000 0.0000000\r\n", + " -47.8800000 0.0000000\r\n", + " -47.8200000 0.0000000\r\n", + " -47.7600000 0.0000000\r\n", + " -47.7000000 0.0000000\r\n", + " -47.6400000 0.0000000\r\n", + " -47.5800000 0.0000000\r\n", + " -47.5200000 0.0000000\r\n", + " -47.4600000 0.0000000\r\n" + ] + } + ], + "source": [ + "# The adjoint source is created in the same format as the synthetics (two-column ASCII) \n", + "! head scratch/solver/001/traces/adj/AA.S0001.BXY.adj" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3b. Adjoint simulations\n", + "\n", + "Now that we have all the required files for running an adjoint simulation (\\*.adj waveforms and STATIONS_ADJOINT file), we can continue with the SeisFlows3 Inversion workflow. No need to edit the Par_file or anything like that, SeisFlows3 will take care of that under the hood. We simply need to tell the workflow (via the parameters.yaml file) to `resume_from` the correct function. We can have a look at these functions again:" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " SEISFLOWS WORKFLOW TASK LIST \r\n", + " //////////////////////////// \r\n", + "Task list for \r\n", + "\r\n", + "1: evaluate_initial_misfit\r\n", + "2: run_adjoint_simulations\r\n", + "3: postprocess_event_kernels\r\n", + "4: evaluate_gradient_from_kernels\r\n", + "5: initialize_line_search\r\n", + "6: perform_line_search\r\n", + "7: finalize_iteration\r\n" + ] + } + ], + "source": [ + "! seisflows print tasks" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stop_after: evaluate_initial_misfit -> evaluate_gradient_from_kernels\r\n" + ] + } + ], + "source": [ + "# We'll stop just before the line search so that we can take a look at the files \n", + "# generated during the middle tasks\n", + "! seisflows par stop_after evaluate_gradient_from_kernels" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2022-08-16 14:36:42 (D) | setting iteration==1 from state file\n", + "2022-08-16 14:36:42 (I) | \n", + "================================================================================\n", + " SETTING UP INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-16 14:36:48 (D) | running setup for module 'system.Workstation'\n", + "2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_002.txt\n", + "2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_002.yaml\n", + "2022-08-16 14:36:51 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-16 14:36:51 (I) | initializing 3 solver directories\n", + "2022-08-16 14:36:51 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-16 14:36:52 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-16 14:36:53 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:36:54 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:36:54 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " RUNNING ITERATION 01 \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-16 14:36:54 (I) | \n", + "================================================================================\n", + " RUNNING INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-16 14:36:54 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", + "2022-08-16 14:36:54 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-16 14:36:54 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-16 14:37:05 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-16 14:37:05 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-16 14:37:05 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-16 14:37:16 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-16 14:37:16 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-16 14:37:18 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", + "2022-08-16 14:37:29 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", + "2022-08-16 14:37:29 (D) | renaming output event kernels: 'beta' -> 'vs'\n", + "2022-08-16 14:37:30 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " GENERATING/PROCESSING MISFIT KERNEL \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-16 14:37:30 (I) | combining event kernels into single misfit kernel\n", + "2022-08-16 14:37:31 (I) | scaling gradient to absolute model perturbations\n", + "2022-08-16 14:37:32 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels\n" + ] + } + ], + "source": [ + "# We can use the `seisflows submit` command to continue an active workflow\n", + "# The state file created during the first run will tell the workflow to resume from the stopped point in the workflow\n", + "! seisflows submit " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----------------\n", + "The function __run_adjoint_simulations()__ has run adjoint simulations to generate event kernels. The functions __postprocess_event_kernels__ and __evaluate_gradient_from_kernels__ will have summed and (optionally) smoothed the kernels to recover the gradient, which will be used to update our starting model.\n", + "\n", + "> **NOTE**: Since we did not specify any smoothing lenghts (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has occurred. \n", + "\n", + "Using the gradient-descent optimization algorithm, SeisFlows will now compute a search direction that will be used in the line search to search for a best fitting model which optimally reduces the objective function. We can take a look at where SeisFlows has stored the information relating to kernel generation and the optimization computation." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gradient kernels misfit_kernel model residuals.txt\r\n" + ] + } + ], + "source": [ + "# Gradient evaluation files are stored here, the kernels are stored separately from the gradient incase\n", + "# the user wants to manually manipulate them\n", + "! ls scratch/eval_grad" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" + ] + } + ], + "source": [ + "# SeisFlows3 stores all kernels and gradient information as SPECFEM binary (.bin) files\n", + "! ls scratch/eval_grad/gradient" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "001 002 003\r\n" + ] + } + ], + "source": [ + "# Kernels are stored on a per-event basis, and summed together (sum/). If smoothing was performed, \n", + "# we would see both smoothed and unsmoothed versions of the misfit kernel\n", + "! ls scratch/eval_grad/kernels" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "checkpoint.npz\tf_new.txt g_new.npz m_new.npz\r\n" + ] + } + ], + "source": [ + "# We can see that some new values have been stored in prepartion for the line search,\n", + "# including g_new (current gradient) and p_new (current search direction). These are also\n", + "# stored as vector NumPy arrays (.npy files)\n", + "! ls scratch/optimize" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-1.18126331e-12 2.40273470e-12 3.97045036e-11 ... 9.62017688e-11\n", + " 4.21140102e-11 3.96825021e-12]]\n" + ] + } + ], + "source": [ + "g_new = np.load(\"scratch/optimize/g_new.npz\")\n", + "print(g_new[\"vs_kernel\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "--------------------\n", + "#### 3c. Line search and model update\n", + "\n", + "Let's finish off the inversion by running through the line search, which will generate new models using the\n", + "gradient, evaluate the objective function by running forward simulations, and comparing the evaluated objective function with the value obtained in __evalaute_initial_misfit__. \n", + "\n", + "Satisfactory reduction in the objective function will result in a termination of the line search. We are using a bracketing line search here [(Modrak et al. 2018)](https://academic.oup.com/gji/article/206/3/1864/2583505), which requires finding models which both increase and decrease the misfit with respect to the initial evaluation. Therefore it takes atleast two trial steps to complete the line search." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stop_after: evaluate_gradient_from_kernels -> perform_line_search\r\n" + ] + } + ], + "source": [ + "! seisflows par stop_after perform_line_search # We don't want to run the finalize_iteration argument so that we can explore the dir" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2022-08-16 14:41:12 (D) | setting iteration==1 from state file\n", + "2022-08-16 14:41:12 (I) | \n", + "================================================================================\n", + " SETTING UP INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-16 14:41:18 (D) | running setup for module 'system.Workstation'\n", + "2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_003.txt\n", + "2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_003.yaml\n", + "2022-08-16 14:41:21 (D) | running setup for module 'solver.Specfem2D'\n", + "2022-08-16 14:41:21 (I) | initializing 3 solver directories\n", + "2022-08-16 14:41:22 (D) | running setup for module 'preprocess.Default'\n", + "2022-08-16 14:41:24 (D) | running setup for module 'optimize.Gradient'\n", + "2022-08-16 14:41:26 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:41:28 (I) | re-loading optimization module from checkpoint\n", + "2022-08-16 14:41:28 (I) | \n", + "////////////////////////////////////////////////////////////////////////////////\n", + " RUNNING ITERATION 01 \n", + "////////////////////////////////////////////////////////////////////////////////\n", + "2022-08-16 14:41:28 (I) | \n", + "================================================================================\n", + " RUNNING INVERSION WORKFLOW \n", + "================================================================================\n", + "2022-08-16 14:41:28 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", + "2022-08-16 14:41:28 (I) | 'run_adjoint_simulations' has already been run, skipping\n", + "2022-08-16 14:41:28 (I) | 'postprocess_event_kernels' has already been run, skipping\n", + "2022-08-16 14:41:28 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping\n", + "2022-08-16 14:41:28 (I) | initializing 'bracket'ing line search\n", + "2022-08-16 14:41:28 (I) | enforcing max step length safeguard\n", + "2022-08-16 14:41:28 (D) | step length(s) = 0.00E+00\n", + "2022-08-16 14:41:28 (D) | misfit val(s) = 1.28E-03\n", + "2022-08-16 14:41:28 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11\n", + "2022-08-16 14:41:28 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10\n", + "2022-08-16 14:41:28 (D) | overwriting initial step length, alpha_new=2.32E+09\n", + "2022-08-16 14:41:28 (I) | trial model 'm_try' parameters: \n", + "2022-08-16 14:41:28 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:41:28 (I) | 3244.51 <= vs <= 3790.00\n", + "2022-08-16 14:41:29 (I) | \n", + "LINE SEARCH STEP COUNT 01\n", + "--------------------------------------------------------------------------------\n", + "2022-08-16 14:41:29 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:41:29 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:33 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:33 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:41:33 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:36 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:36 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:41:36 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:40 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:40 (D) | misfit for trial model (f_try) == 8.65E-04\n", + "2022-08-16 14:41:40 (D) | step length(s) = 0.00E+00, 2.32E+09\n", + "2022-08-16 14:41:40 (D) | misfit val(s) = 1.28E-03, 8.65E-04\n", + "2022-08-16 14:41:40 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09\n", + "2022-08-16 14:41:40 (I) | line search model 'm_try' parameters: \n", + "2022-08-16 14:41:40 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:41:40 (I) | 3086.61 <= vs <= 3969.23\n", + "2022-08-16 14:41:40 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-16 14:41:40 (I) | \n", + "LINE SEARCH STEP COUNT 02\n", + "--------------------------------------------------------------------------------\n", + "2022-08-16 14:41:40 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:41:40 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:44 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:44 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:41:44 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:48 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:48 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:41:48 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:52 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:52 (D) | misfit for trial model (f_try) == 1.73E-03\n", + "2022-08-16 14:41:52 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09\n", + "2022-08-16 14:41:52 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03\n", + "2022-08-16 14:41:52 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09\n", + "2022-08-16 14:41:52 (I) | line search model 'm_try' parameters: \n", + "2022-08-16 14:41:52 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:41:52 (I) | 3325.01 <= vs <= 3698.63\n", + "2022-08-16 14:41:52 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-16 14:41:52 (I) | \n", + "LINE SEARCH STEP COUNT 03\n", + "--------------------------------------------------------------------------------\n", + "2022-08-16 14:41:52 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:41:52 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:41:56 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:41:56 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:41:56 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:00 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:00 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:42:00 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:03 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:03 (D) | misfit for trial model (f_try) == 2.59E-03\n", + "2022-08-16 14:42:03 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09\n", + "2022-08-16 14:42:03 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03\n", + "2022-08-16 14:42:03 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09\n", + "2022-08-16 14:42:03 (I) | line search model 'm_try' parameters: \n", + "2022-08-16 14:42:03 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:42:03 (I) | 3189.77 <= vs <= 3852.13\n", + "2022-08-16 14:42:03 (I) | trial step unsuccessful. re-attempting line search\n", + "2022-08-16 14:42:03 (I) | \n", + "LINE SEARCH STEP COUNT 04\n", + "--------------------------------------------------------------------------------\n", + "2022-08-16 14:42:03 (I) | evaluating objective function for source 001\n", + "2022-08-16 14:42:03 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:07 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:07 (I) | evaluating objective function for source 002\n", + "2022-08-16 14:42:07 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:11 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:11 (I) | evaluating objective function for source 003\n", + "2022-08-16 14:42:11 (D) | running forward simulation with 'Specfem2D'\n", + "2022-08-16 14:42:15 (D) | quantifying misfit with 'Default'\n", + "2022-08-16 14:42:15 (D) | misfit for trial model (f_try) == 3.46E-03\n", + "2022-08-16 14:42:15 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09\n", + "2022-08-16 14:42:15 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03\n", + "2022-08-16 14:42:15 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", + "2022-08-16 14:42:15 (I) | line search model 'm_try' parameters: \n", + "2022-08-16 14:42:15 (I) | 5800.00 <= vp <= 5800.00\n", + "2022-08-16 14:42:15 (I) | 3244.51 <= vs <= 3790.00\n", + "2022-08-16 14:42:15 (I) | trial step successful. finalizing line search\n", + "2022-08-16 14:42:15 (I) | \n", + "FINALIZING LINE SEARCH\n", + "--------------------------------------------------------------------------------\n", + "2022-08-16 14:42:15 (I) | writing optimization stats\n", + "2022-08-16 14:42:15 (I) | renaming current (new) optimization vectors as previous model (old)\n", + "2022-08-16 14:42:15 (I) | setting accepted trial model (try) as current model (new)\n", + "2022-08-16 14:42:15 (I) | misfit of accepted trial model is f=8.645E-04\n", + "2022-08-16 14:42:15 (I) | resetting line search step count to 0\n", + "2022-08-16 14:42:15 (I) | stop workflow at `stop_after`: perform_line_search\n" + ] + } + ], + "source": [ + "! seisflows submit" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the log statements above, we can see that the SeisFlows line search required 4 trial steps, where it modified values of Vs (shear-wave velocity) until satisfactory reduction in the objective function was met. This was the final step in the iteration, and so the finalization of the line search made preparations for a subsequent iteration. " + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha.txt\tf_new.txt f_try.txt m_new.npz output_optim.txt\r\n", + "checkpoint.npz\tf_old.txt g_old.npz m_old.npz p_old.npz\r\n" + ] + } + ], + "source": [ + "# We can see that we have 'new' and 'old' values for each of the optimization values,\n", + "# representing the previous model (M00) and the current model (M01).\n", + "! ls scratch/optimize" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "step_count,step_length,gradient_norm_L1,gradient_norm_L2,misfit,if_restarted,slope,theta\r\n", + "04,2.323E+09,9.243E-05,1.049E-06,1.279E-03,0,8.263E-13,0.000E+00\r\n" + ] + } + ], + "source": [ + "# The stats/ directory contains text files describing the optimization/line search\n", + "! cat scratch/optimize/output_optim.txt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Conclusions\n", + "\n", + "We've now seen how SeisFlows runs an __Inversion__ workflow using the __Specfem2D__ solver on a __Workstation__ system. More or less, this is all you need to run SeisFlows with any combination of modules. The specificities of a system or numerical solver are already handled internally by SeisFlows, so if you want to use Specmfe3D_Cartesian as your solver, you would only need to run `seisflows par solver specfem3d` at the beginning of your workflow (you will also need to set up your Specfem3D models, similar to what we did for Specfem2D here). To run on a slurm system like Chinook (University of Alaska Fairbanks), you can run `seisflows par system chinook`. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/notebooks/specfem2d_example.ipynb b/docs/notebooks/specfem2d_example.ipynb index 3a85c76b..7ad00282 100644 --- a/docs/notebooks/specfem2d_example.ipynb +++ b/docs/notebooks/specfem2d_example.ipynb @@ -43,7 +43,7 @@ "metadata": {}, "source": [ ".. note::\n", - " Example number 1 is meant to FAIL during the line search of Iteration #2, after exceeding the maximum allowable line search step count. This is meant to illustrate line search behavior and allow the User to explore a working directory mid-workflow." + " Example number 1 is meant to **FAIL** during the line search of Iteration #2, after exceeding the maximum allowable line search step count. This is meant to illustrate line search behavior and allow the User to explore a working directory mid-workflow." ] }, { @@ -118,6 +118,58 @@ "! seisflows examples run 1 --specfem2d_repo path/to/specfem2d" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A successfully completed example problem will end with the following log messages:" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. code:: bash\n", + " ...\n", + " 2022-08-25 17:29:16 (I) | 5800.00 <= vp <= 5800.00\n", + " 2022-08-25 17:29:16 (I) | 3236.17 <= vs <= 3802.01\n", + " 2022-08-25 17:29:16 (I) | trial step unsuccessful. re-attempting line search\n", + " 2022-08-25 17:29:16 (I) | \n", + " LINE SEARCH STEP COUNT 06\n", + " --------------------------------------------------------------------------------\n", + " 2022-08-25 17:29:16 (I) | evaluating objective function for source 001\n", + " 2022-08-25 17:29:16 (D) | running forward simulation with 'Specfem2D'\n", + " 2022-08-25 17:29:20 (D) | quantifying misfit with 'Default'\n", + " 2022-08-25 17:29:20 (I) | evaluating objective function for source 002\n", + " 2022-08-25 17:29:20 (D) | running forward simulation with 'Specfem2D'\n", + " 2022-08-25 17:29:24 (D) | quantifying misfit with 'Default'\n", + " 2022-08-25 17:29:24 (I) | evaluating objective function for source 003\n", + " 2022-08-25 17:29:24 (D) | running forward simulation with 'Specfem2D'\n", + " 2022-08-25 17:29:28 (D) | quantifying misfit with 'Default'\n", + " 2022-08-25 17:29:28 (D) | misfit for trial model (f_try) == 7.53E-03\n", + " 2022-08-25 17:29:28 (D) | step length(s) = 0.00E+00, 1.47E+08, 2.95E+08, 5.89E+08, 1.18E+09, 2.36E+09, 4.72E+09\n", + " 2022-08-25 17:29:28 (D) | misfit val(s) = 8.65E-04, 7.53E-03, 6.28E-03, 5.02E-03, 3.77E-03, 2.51E-03, 1.26E-03\n", + " 2022-08-25 17:29:28 (I) | fail: bracketing line search has failed to reduce the misfit before exceeding `step_count_max`=5\n", + " 2022-08-25 17:29:28 (D) | checking gradient/search direction angle, theta: 0.000\n", + " 2022-08-25 17:29:28 (C) | \n", + " ================================================================================\n", + " LINE SEARCH FAILED \n", + " ////////////////// \n", + " Line search has failed to reduce the misfit and has run out of fallback options.\n", + " Aborting inversion.\n", + " ================================================================================\n", + " \n", + " \n", + "Using the `working directory documentation page `__ you can figure out how to navigate around and look at the results of our small inversion problem. We will have a look at a few of the files and directories here." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, @@ -193,1599 +245,6 @@ "source": [ "! seisflows examples run 2 -r path/to/specfem2d" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "--------------\n", - "## Option 2: Manual run\n", - "\n", - "The notebook below details a walkthrough of Example \\#1 shown above. This is meant for those who want to understand what is going on under the hood. You are welcome to follow along on your workstation. The following Table of Contents outlines the steps we will take in this tutorial:\n", - "\n" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. warning:: \n", - " Navigation links will not work outside of Jupyter. Please use the navigation bar to the left." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. __[Setup SPECFEM2D](#1.-Setup-SPECFEM2D)__ \n", - " a. [Download and compile codebase](#1a.-Download-and-compile-codebase*) \n", - " b. [Create a separate SPECFEM2D working directory](#1b.-Create-a-separate-SPECFEM2D-working-directory) \n", - " c. [Generate initial and target models](#1c.-Generate-initial-and-target-models) \n", - "2. __[Initialize SeisFlows (SF)](#2.-Initialize-SeisFlows-(SF))__ \n", - " a. [SeisFlows working directory and parameter file](#2a.-SF-working-directory-and-parameter-file) \n", - "3. __[Run SeisFlows](#2.-Run-SeisFlows)__ \n", - " a. [Forward simulations](#3a.-Forward-simulations) \n", - " b. [Exploring the SeisFlows directory structure](#3b.-Exploring-the-SF-directory-structure) \n", - " c. [Adjoint simulations](#3c.-Adjoint-simulations) \n", - " d. [Line search and model update](#3d.-Line-search-and-model-update) \n", - "4. __[Conclusions](#4.-Conclusions)__ " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Setup SPECFEM2D \n", - "#### 1a. Download and compile codebase (optional)\n", - "\n", - "> **NOTE**: If you have already downloaded and compiled SPECFEM2D, you can skip most of this subsection (1a). However you will need to edit the first two paths in the following cell (WORKDIR and SPECFEM2D_ORIGINAL), and execute the path structure defined in the cell.\n", - "\n", - "First we'll download and compile SPECFEM2D to generate the binaries necessary to run our simulations. We will then populate a new SPECFEM2D working directory that will be used by SeisFlows. We'll use to Python OS module to do our filesystem processes just to keep everything in Python, but this can easily be accomplished in bash." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import glob\n", - "import shutil\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# vvv USER MUST EDIT THE FOLLOWING PATHS vvv\n", - "WORKDIR = \"/home/bchow/Work/scratch\" \n", - "SPECFEM2D = \"/home/bchow/REPOSITORIES/specfem2d\"\n", - "# where WORKDIR: points to your own working directory\n", - "# and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '')\n", - "# ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^\n", - "# ======================================================================================================\n", - "\n", - "# Distribute the necessary file structure of the SPECFEM2D repository that we will downloaded/reference\n", - "SPECFEM2D_ORIGINAL = os.path.join(WORKDIR, \"specfem2d\")\n", - "SPECFEM2D_BIN_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, \"bin\")\n", - "SPECFEM2D_DATA_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, \"DATA\")\n", - "TAPE_2007_EXAMPLE = os.path.join(SPECFEM2D_ORIGINAL, \"EXAMPLES\", \"Tape2007\")\n", - "\n", - "# The SPECFEM2D working directory that we will create separate from the downloaded repo\n", - "SPECFEM2D_WORKDIR = os.path.join(WORKDIR, \"specfem2d_workdir\")\n", - "SPECFEM2D_BIN = os.path.join(SPECFEM2D_WORKDIR, \"bin\")\n", - "SPECFEM2D_DATA = os.path.join(SPECFEM2D_WORKDIR, \"DATA\")\n", - "SPECFEM2D_OUTPUT = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES\")\n", - "\n", - "# Pre-defined locations of velocity models we will generate using the solver\n", - "SPECFEM2D_MODEL_INIT = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES_INIT\")\n", - "SPECFEM2D_MODEL_TRUE = os.path.join(SPECFEM2D_WORKDIR, \"OUTPUT_FILES_TRUE\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Existing SPECMFE2D respository found, symlinking to working directory\n" - ] - } - ], - "source": [ - "# Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo\n", - "if not os.path.exists(WORKDIR):\n", - " os.makedirs(WORKDIR)\n", - "os.chdir(WORKDIR)\n", - "\n", - "if os.path.exists(\"specfem2d\"):\n", - " print(\"SPECFEM2D repository already found, you may skip this subsection\")\n", - " pass\n", - "elif os.path.exists(SPECFEM2D):\n", - " print(\"Existing SPECMFE2D respository found, symlinking to working directory\")\n", - " os.symlink(SPECFEM2D, \"./specfem2d\")\n", - "else:\n", - " print(\"Cloning respository from GitHub\")\n", - " ! git clone --recursive --branch devel https://github.com/geodynamics/specfem2d.git" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Compile SPECFEM2D to generate the Makefile\n", - "os.chdir(SPECFEM2D_ORIGINAL)\n", - "if not os.path.exists(\"./config.log\"):\n", - " os.system(\"./configure\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Run make to generate SPECFEM2D binaries\n", - "if not os.path.exists(\"bin\"):\n", - " os.system(\"make all\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/home/bchow/REPOSITORIES/specfem2d\n", - "xadj_seismogram\t\t xconvolve_source_timefunction xspecfem2D\n", - "xcheck_quality_external_mesh xmeshfem2D\t\t xsum_kernels\n", - "xcombine_sem\t\t xsmooth_sem\n" - ] - } - ], - "source": [ - "# Check out the binary files that have been created\n", - "os.chdir(SPECFEM2D_ORIGINAL)\n", - "! pwd\n", - "! ls bin/" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 1b. Create a separate SPECFEM2D working directory\n", - "\n", - "Next we'll create a new SPECFEM2D working directory, separate from the original repository. The intent here is to isolate the original SPECFEM2D repository from our working state, to protect it from things like accidental file deletions or manipulations. This is not a mandatory step for using SeisFlows, but it helps keep file structure clean in the long run, and is the SeisFlows3 dev team's preferred method of using SPECFEM. " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " All SPECFEM2D/3D/3D_GLOBE need to run successfully are the bin/, DATA/, and OUTPUT_FILES/ directories. Everything else in the repository is not mandatory for running binaries." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this tutorial we will be using the [Tape2007 example problem](https://github.com/geodynamics/specfem2d/tree/devel/EXAMPLES/Tape2007) to define our __DATA/__ directory (last tested 8/15/22, bdba4389)." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/home/bchow/Work/scratch/specfem2d_workdir\n", - "bin DATA\n" - ] - } - ], - "source": [ - "# Incase we've run this docs page before, delete the working directory before remaking\n", - "if os.path.exists(SPECFEM2D_WORKDIR):\n", - " shutil.rmtree(SPECFEM2D_WORKDIR)\n", - "\n", - "os.mkdir(SPECFEM2D_WORKDIR)\n", - "os.chdir(SPECFEM2D_WORKDIR)\n", - "\n", - "# Copy the binary files incase we update the source code. These can also be symlinked.\n", - "shutil.copytree(SPECFEM2D_BIN_ORIGINAL, \"bin\")\n", - "\n", - "# Copy the DATA/ directory because we will be making edits here frequently and it's useful to\n", - "# retain the original files for reference. We will be running one of the example problems: Tape2007\n", - "shutil.copytree(os.path.join(TAPE_2007_EXAMPLE, \"DATA\"), \"DATA\")\n", - "\n", - "! pwd\n", - "! ls" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " -------------------------------------------------------------------------------\r\n", - " -------------------------------------------------------------------------------\r\n", - " D a t e : 16 - 08 - 2022 T i m e : 14:26:37\r\n", - " -------------------------------------------------------------------------------\r\n", - " -------------------------------------------------------------------------------\r\n", - "\r\n", - "see results in directory: OUTPUT_FILES/\r\n", - "\r\n", - "done\r\n", - "Tue Aug 16 02:26:37 PM AKDT 2022\r\n" - ] - } - ], - "source": [ - "# Run the Tape2007 example to make sure SPECFEM2D is working as expected\n", - "os.chdir(TAPE_2007_EXAMPLE)\n", - "! ./run_this_example.sh > output_log.txt\n", - "\n", - "assert(os.path.exists(\"OUTPUT_FILES/forward_image000004800.jpg\")), \\\n", - " (f\"Example did not run, the remainder of this docs page will likely not work.\"\n", - " f\"Please check the following directory: {TAPE_2007_EXAMPLE}\")\n", - "\n", - "! tail output_log.txt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "------------------------------------\n", - "Now we need to manually set up our SPECFEM2D working directory. As mentioned in the previous cell, the only required elements of this working directory are the following (these files will form the basis for how SeisFlows3 operates within the SPECFEM2D framework):\n", - "\n", - "1. __bin/__ directory containing SPECFEM2D binaries\n", - "2. __DATA/__ directory containing SOURCE and STATION files, as well as a SPECFEM2D Par_file\n", - "3. __OUTPUT_FILES/proc??????_*.bin__ files which define the starting (and target) models" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note:: \n", - " This file structure is the same for all versions of SPECFEM (2D/3D/3D_GLOBE)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "interfaces_Tape2007.dat\t\t SOURCE_003 SOURCE_012 SOURCE_021\r\n", - "model_velocity.dat_checker\t SOURCE_004 SOURCE_013 SOURCE_022\r\n", - "Par_file\t\t\t SOURCE_005 SOURCE_014 SOURCE_023\r\n", - "Par_file_Tape2007_132rec_checker SOURCE_006 SOURCE_015 SOURCE_024\r\n", - "Par_file_Tape2007_onerec\t SOURCE_007 SOURCE_016 SOURCE_025\r\n", - "proc000000_model_velocity.dat_input SOURCE_008 SOURCE_017 STATIONS\r\n", - "SOURCE\t\t\t\t SOURCE_009 SOURCE_018 STATIONS_checker\r\n", - "SOURCE_001\t\t\t SOURCE_010 SOURCE_019\r\n", - "SOURCE_002\t\t\t SOURCE_011 SOURCE_020\r\n" - ] - } - ], - "source": [ - "# First we will set the correct SOURCE and STATION files.\n", - "# This is the same task as shown in ./run_this_example.sh\n", - "os.chdir(SPECFEM2D_DATA)\n", - "\n", - "# Symlink source 001 as our main source\n", - "if os.path.exists(\"SOURCE\"):\n", - " os.remove(\"SOURCE\")\n", - "os.symlink(\"SOURCE_001\", \"SOURCE\")\n", - "\n", - "# Copy the correct Par_file so that edits do not affect the original file\n", - "if os.path.exists(\"Par_file\"):\n", - " os.remove(\"Par_file\")\n", - "shutil.copy(\"Par_file_Tape2007_onerec\", \"Par_file\")\n", - "\n", - "! ls" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 1c. Generate initial and target models\n", - "\n", - "Since we're doing a synthetic-synthetic inversion, we need to manually set up the velocity models with which we generate our synthetic waveforms. The naming conventions for these models are:\n", - "\n", - "1. __MODEL_INIT:__ The initial or starting model. Used to generate the actual synthetic seismograms. This is considered M00.\n", - "2. __MODEL_TRUE:__ The target or true model. Used to generate 'data' (also synthetic). This is the reference model that our inversion is trying to resolve.\n", - "\n", - "The starting model is defined as a homogeneous halfspace uin the Tape2007 example problem. We will need to run both `xmeshfem2D` and `xspecfem2D` to generate the required velocity model database files. We will generate our target model by slightly perturbing the parameters of the initial model." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " We can use the SeisFlows3 command line option `seisflows sempar` to directly edit the SPECFEM2D Par_file in the command line. This will work for the SPECFEM3D Par_file as well." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "setup_with_binary_database: 0 -> 1\n", - "SAVE_MODEL: default -> binary\n", - "save_ASCII_kernels: .true. -> .false.\n" - ] - } - ], - "source": [ - "os.chdir(SPECFEM2D_DATA)\n", - "\n", - "# Ensure that SPECFEM2D outputs the velocity model in the expected binary format\n", - "! seisflows sempar setup_with_binary_database 1 # allow creation of .bin files\n", - "! seisflows sempar save_model binary # output model in .bin database format\n", - "! seisflows sempar save_ascii_kernels .false. # output kernels in .bin format, not ASCII" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "bin DATA OUTPUT_FILES\r\n" - ] - } - ], - "source": [ - "# SPECFEM requires that we create the OUTPUT_FILES directory before running\n", - "os.chdir(SPECFEM2D_WORKDIR)\n", - "\n", - "if os.path.exists(SPECFEM2D_OUTPUT):\n", - " shutil.rmtree(SPECFEM2D_OUTPUT)\n", - " \n", - "os.mkdir(SPECFEM2D_OUTPUT)\n", - "\n", - "! ls" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " **********************************************\n", - " **** Specfem 2-D Solver - serial version ****\n", - " **********************************************\n", - "\n", - " Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884\n", - " dating From Date: Mon Nov 29 23:20:51 2021 -0800\n", - "\n", - "\n", - " NDIM = 2\n", - " -------------------------------------------------------------------------------\n", - " Program SPECFEM2D: \n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n", - " Tape-Liu-Tromp (GJI 2007)\n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n", - " D a t e : 16 - 08 - 2022 T i m e : 14:26:52\n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "# GENERATE MODEL_INIT\n", - "os.chdir(SPECFEM2D_WORKDIR)\n", - "\n", - "# Run the mesher and solver to generate our initial model\n", - "! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt\n", - "! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt\n", - "\n", - "# Move the model files (*.bin) into the OUTPUT_FILES directory, where SeisFlows3 expects them\n", - "! mv DATA/*bin OUTPUT_FILES\n", - "\n", - "# Make sure we don't overwrite this initial model when creating our target model in the next step\n", - "! mv OUTPUT_FILES OUTPUT_FILES_INIT\n", - "\n", - "! head OUTPUT_FILES_INIT/solver_log.txt\n", - "! tail OUTPUT_FILES_INIT/solver_log.txt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "-----------------------------\n", - "\n", - "Now we want to perturb the initial model to create our target model (__MODEL_TRUE__). The seisflows command line subargument `seisflows sempar velocity_model` will let us view and edit the velocity model. You can also do this manually by editing the Par_file directly. " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VELOCITY_MODEL:\r\n", - "\r\n", - "1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0\r\n", - "->\r\n", - "1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0\r\n" - ] - } - ], - "source": [ - "# GENERATE MODEL_TRUE\n", - "os.chdir(SPECFEM2D_DATA)\n", - "\n", - "# Edit the Par_file by increasing velocities by ~10% \n", - "! seisflows sempar velocity_model '1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0'" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " **********************************************\n", - " **** Specfem 2-D Solver - serial version ****\n", - " **********************************************\n", - "\n", - " Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884\n", - " dating From Date: Mon Nov 29 23:20:51 2021 -0800\n", - "\n", - "\n", - " NDIM = 2\n", - " -------------------------------------------------------------------------------\n", - " Program SPECFEM2D: \n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n", - " Tape-Liu-Tromp (GJI 2007)\n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n", - " D a t e : 16 - 08 - 2022 T i m e : 14:26:52\n", - " -------------------------------------------------------------------------------\n", - " -------------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "# Re-run the mesher and solver to generate our target velocity model\n", - "os.chdir(SPECFEM2D_WORKDIR)\n", - "\n", - "# Make sure the ./OUTPUT_FILES directory exists since we moved the old one\n", - "if os.path.exists(SPECFEM2D_OUTPUT):\n", - " shutil.rmtree(SPECFEM2D_OUTPUT)\n", - "os.mkdir(SPECFEM2D_OUTPUT)\n", - "\n", - "# Run the binaries to generate MODEL_TRUE\n", - "! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt\n", - "! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt\n", - "\n", - "# Move all the relevant files into OUTPUT_FILES \n", - "! mv ./DATA/*bin OUTPUT_FILES\n", - "! mv OUTPUT_FILES OUTPUT_FILES_TRUE\n", - "\n", - "! head OUTPUT_FILES_INIT/solver_log.txt\n", - "! tail OUTPUT_FILES_INIT/solver_log.txt" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "bin DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE\r\n" - ] - } - ], - "source": [ - "# Great, we have all the necessary SPECFEM files to run our SeisFlows inversion!\n", - "! ls" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Initialize SeisFlows (SF)\n", - "In this Section we will look at a SeisFlows working directory, parameter file, and working state.\n", - "\n", - "#### 2a. SeisFlows working directory and parameter file\n", - "\n", - "As with SPECFEM, SeisFlows requires a parameter file (__parameters.yaml__) that controls how an automated workflow will proceed. Because SeisFlows is modular, there are a large number of potential parameters which may be present in a SeisFlows parameter file, as each sub-module may have its own set of unique parameters.\n", - "\n", - "In contrast to SPECFEM's method of listing all available parameters and leaving it up the User to determine which ones are relevant to them, SeisFlows dynamically builds its parameter file based on User inputs. In this subsection we will use the built-in SeisFlows command line tools to generate and populate the parameter file. " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows file." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the previous section we saw the `sempar` command in action. We can use the `-h` or help flag to list all available SiesFlows3 command line commands." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]]\r\n", - " {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples}\r\n", - " ...\r\n", - "\r\n", - "================================================================================\r\n", - "\r\n", - " SeisFlows: Waveform Inversion Package \r\n", - "\r\n", - "================================================================================\r\n", - "\r\n", - "optional arguments:\r\n", - " -h, --help show this help message and exit\r\n", - " -w [WORKDIR], --workdir [WORKDIR]\r\n", - " The SeisFlows working directory, default: cwd\r\n", - " -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE]\r\n", - " Parameters file, default: 'parameters.yaml'\r\n", - "\r\n", - "command:\r\n", - " Available SeisFlows arguments and their intended usages\r\n", - "\r\n", - " setup Setup working directory from scratch\r\n", - " configure Fill parameter file with defaults\r\n", - " swap Swap module parameters in an existing parameter file\r\n", - " init Initiate working environment\r\n", - " submit Submit initial workflow to system\r\n", - " resume Re-submit previous workflow to system\r\n", - " restart Remove current environment and submit new workflow\r\n", - " clean Remove files relating to an active working environment\r\n", - " par View and edit SeisFlows parameter file\r\n", - " sempar View and edit SPECFEM parameter file\r\n", - " check Check state of an active environment\r\n", - " print Print information related to an active environment\r\n", - " reset Reset modules within an active state\r\n", - " debug Start interactive debug environment\r\n", - " examples Look at and run pre-configured example problems\r\n", - "\r\n", - "'seisflows [command] -h' for more detailed descriptions of each command.\r\n" - ] - } - ], - "source": [ - "! seisflows -h" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating parameter file: parameters.yaml\n", - "parameters.yaml sflog.txt specfem2d specfem2d_workdir\n" - ] - } - ], - "source": [ - "# The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows\n", - "# the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory\n", - "os.chdir(WORKDIR)\n", - "! seisflows setup -f\n", - "! ls" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "# //////////////////////////////////////////////////////////////////////////////\r\n", - "#\r\n", - "# SeisFlows YAML Parameter File\r\n", - "#\r\n", - "# //////////////////////////////////////////////////////////////////////////////\r\n", - "#\r\n", - "# Modules correspond to the structure of the source code, and determine\r\n", - "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", - "#\r\n", - "# .. rubric::\r\n", - "# - To determine available options for modules listed below, run:\r\n", - "# > seisflows print modules\r\n", - "# - To auto-fill with docstrings and default values (recommended), run:\r\n", - "# > seisflows configure\r\n", - "# - To set values as NoneType, use: null\r\n", - "# - To set values as infinity, use: inf\r\n", - "#\r\n", - "# MODULES\r\n", - "# ///////\r\n", - "# workflow (str): The types and order of functions for running SeisFlows\r\n", - "# system (str): Computer architecture of the system being used\r\n", - "# solver (str): External numerical solver to use for waveform simulations\r\n", - "# preprocess (str): Preprocessing schema for waveform data\r\n", - "# optimize (str): Optimization algorithm for the inverse problem\r\n", - "# ==============================================================================\r\n", - "workflow: forward\r\n", - "system: workstation\r\n", - "solver: specfem2d\r\n", - "preprocess: default\r\n", - "optimize: gradient\r\n" - ] - } - ], - "source": [ - "# Let's have a look at this file, which has not yet been populated\n", - "! cat parameters.yaml" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " SEISFLOWS MODULES \r\n", - " ///////////////// \r\n", - "'-': module, '*': class\r\n", - "\r\n", - "- workflow\r\n", - " * forward\r\n", - " * inversion\r\n", - " * migration\r\n", - "- system\r\n", - " * chinook\r\n", - " * cluster\r\n", - " * frontera\r\n", - " * lsf\r\n", - " * maui\r\n", - " * slurm\r\n", - " * workstation\r\n", - "- solver\r\n", - " * specfem\r\n", - " * specfem2d\r\n", - " * specfem3d\r\n", - " * specfem3d_globe\r\n", - "- preprocess\r\n", - " * default\r\n", - " * pyaflowa\r\n", - "- optimize\r\n", - " * LBFGS\r\n", - " * NLCG\r\n", - " * gradient\r\n" - ] - } - ], - "source": [ - "# We can use the `seisflows print modules` command to list out the available options \n", - "! seisflows print modules" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "workflow: forward -> inversion\n", - "# //////////////////////////////////////////////////////////////////////////////\n", - "#\n", - "# SeisFlows YAML Parameter File\n", - "#\n", - "# //////////////////////////////////////////////////////////////////////////////\n", - "#\n", - "# Modules correspond to the structure of the source code, and determine\n", - "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\n", - "#\n", - "# .. rubric::\n", - "# - To determine available options for modules listed below, run:\n", - "# > seisflows print modules\n", - "# - To auto-fill with docstrings and default values (recommended), run:\n", - "# > seisflows configure\n", - "# - To set values as NoneType, use: null\n", - "# - To set values as infinity, use: inf\n", - "#\n", - "# MODULES\n", - "# ///////\n", - "# workflow (str): The types and order of functions for running SeisFlows\n", - "# system (str): Computer architecture of the system being used\n", - "# solver (str): External numerical solver to use for waveform simulations\n", - "# preprocess (str): Preprocessing schema for waveform data\n", - "# optimize (str): Optimization algorithm for the inverse problem\n", - "# ==============================================================================\n", - "workflow: inversion\n", - "system: workstation\n", - "solver: specfem2d\n", - "preprocess: default\n", - "optimize: gradient\n" - ] - } - ], - "source": [ - "# For this example, we can use most of the default modules, however we need to \n", - "# change the SOLVER module to let SeisFlows know we're using SPECFEM2D (as opposed to 3D)\n", - "! seisflows par workflow inversion\n", - "! cat parameters.yaml" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "-------------------------\n", - "The `seisflows configure` command populates the parameter file based on the chosen modules. SeisFlows will attempt to fill in all parameters with reasonable default values. Docstrings above each module show descriptions and available options for each of these parameters. \n", - "\n", - "In the follownig cell we will use the `seisflows par` command to edit the parameters.yaml file directly, replacing some default parameters with our own values. Comments next to each evaluation describe the choice for each." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "# //////////////////////////////////////////////////////////////////////////////\r\n", - "#\r\n", - "# SeisFlows YAML Parameter File\r\n", - "#\r\n", - "# //////////////////////////////////////////////////////////////////////////////\r\n", - "#\r\n", - "# Modules correspond to the structure of the source code, and determine\r\n", - "# SeisFlows' behavior at runtime. Each module requires its own sub-parameters.\r\n", - "#\r\n", - "# .. rubric::\r\n", - "# - To determine available options for modules listed below, run:\r\n", - "# > seisflows print modules\r\n", - "# - To auto-fill with docstrings and default values (recommended), run:\r\n", - "# > seisflows configure\r\n", - "# - To set values as NoneType, use: null\r\n", - "# - To set values as infinity, use: inf\r\n", - "#\r\n", - "# MODULES\r\n", - "# ///////\r\n", - "# workflow (str): The types and order of functions for running SeisFlows\r\n", - "# system (str): Computer architecture of the system being used\r\n", - "# solver (str): External numerical solver to use for waveform simulations\r\n", - "# preprocess (str): Preprocessing schema for waveform data\r\n", - "# optimize (str): Optimization algorithm for the inverse problem\r\n", - "# ==============================================================================\r\n", - "workflow: inversion\r\n", - "system: workstation\r\n", - "solver: specfem2d\r\n", - "preprocess: default\r\n", - "optimize: gradient\r\n", - "# =============================================================================\r\n", - "#\r\n", - "# Forward Workflow\r\n", - "# ----------------\r\n", - "# Run forward solver in parallel and (optionally) calculate\r\n", - "# data-synthetic misfit and adjoint sources.\r\n", - "#\r\n", - "# Parameters\r\n", - "# ----------\r\n", - "# :type modules: list of module\r\n", - "# :param modules: instantiated SeisFlows modules which should have been\r\n", - "# generated by the function `seisflows.config.import_seisflows` with a\r\n", - "# parameter file generated by seisflows.configure\r\n", - "# :type data_case: str\r\n", - "# :param data_case: How to address 'data' in the workflow, available options:\r\n", - "# 'data': real data will be provided by the user in\r\n", - "# `path_data/{source_name}` in the same format that the solver will\r\n", - "# produce synthetics (controlled by `solver.format`) OR\r\n", - "# synthetic': 'data' will be generated as synthetic seismograms using\r\n", - "# a target model provided in `path_model_true`. If None, workflow will\r\n" - ] - } - ], - "source": [ - "! seisflows configure\n", - "! head --lines=50 parameters.yaml" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ntask: 1 -> 3\n", - "materials: acoustic -> elastic\n", - "end: 1 -> 2\n", - "data_case: data -> synthetic\n", - "components: ZNE -> Y\n", - "step_count_max: 10 -> 5\n", - "path_specfem_bin: null -> /home/bchow/Work/scratch/specfem2d_workdir/bin\n", - "path_specfem_data: null -> /home/bchow/Work/scratch/specfem2d_workdir/DATA\n", - "path_model_init: null ->\n", - "/home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_INIT\n", - "path_model_true: null ->\n", - "/home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_TRUE\n" - ] - }, - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# EDIT THE SEISFLOWS PARAMETER FILE\n", - "! seisflows par ntask 3 # set the number of sources/events to use\n", - "! seisflows par materials elastic # update Vp and Vs during inversion\n", - "! seisflows par end 2 # final iteration -- we will only run 1\n", - "! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models\n", - "! seisflows par components Y # this default example creates Y-component seismograms\n", - "! seisflows par step_count_max 5 # limit the number of steps in the line search\n", - "\n", - "# Use Python syntax here to access path constants\n", - "os.system(f\"seisflows par path_specfem_bin {SPECFEM2D_BIN}\") # set path to SPECFEM2D binaries\n", - "os.system(f\"seisflows par path_specfem_data {SPECFEM2D_DATA}\") # set path to SEPCFEM2D DATA/\n", - "os.system(f\"seisflows par path_model_init {SPECFEM2D_MODEL_INIT}\") # set path to INIT model\n", - "os.system(f\"seisflows par path_model_true {SPECFEM2D_MODEL_TRUE}\") # set path to TRUE model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "------------------------------\n", - "One last thing, we will need to edit the SPECFEM2D Par_file parameter `MODEL` such that `xmeshfem2d` reads our pre-built velocity models (\\*.bin files) rather than the meshing parameters defined in the Par_file." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MODEL: default -> gll\r\n" - ] - } - ], - "source": [ - "os.chdir(SPECFEM2D_DATA)\n", - "! seisflows sempar model gll" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Run SeisFlows\n", - "\n", - "In this Section we will run SeisFlows to generate synthetic seismograms, kernels, a gradient, and an updated velocity model.\n", - "\n", - "#### 3a. Forward simulations\n", - "\n", - "SeisFlows is an automated workflow tool, such that once we run `seisflows submit` we should not need to intervene in the workflow. However the package does allow the User flexibility in how they want the workflow to behave.\n", - "\n", - "For example, we can run our workflow in stages by taking advantage of the `stop_after` parameter. As its name suggests, `stop_after` allows us to stop a workflow prematurely so that we may stop and look at results, or debug a failing workflow.\n", - "\n", - "The `seisflows print flow` command tells us what functions we can use for the `stop_after` parameter. " - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " SEISFLOWS WORKFLOW TASK LIST \r\n", - " //////////////////////////// \r\n", - "Task list for \r\n", - "\r\n", - "1: evaluate_initial_misfit\r\n", - "2: run_adjoint_simulations\r\n", - "3: postprocess_event_kernels\r\n", - "4: evaluate_gradient_from_kernels\r\n", - "5: initialize_line_search\r\n", - "6: perform_line_search\r\n", - "7: finalize_iteration\r\n" - ] - } - ], - "source": [ - "os.chdir(WORKDIR)\n", - "! seisflows print tasks" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "-----------------------------\n", - "In the Inversion workflow, the tasks listed are described as follows:\n", - "\n", - "1. __evaluate_initial_misfit:__ \n", - " a. Prepare data for inversion by either copying data from disk or generating 'synthetic data' with MODEL_TRUE \n", - " b. Call numerical solver to run forward simulations using MODEL_INIT, generating synthetics \n", - " c. Evaluate the objective function by performing waveform comparisons \n", - " d. Prepare `run_adjoint_simulations` step by generating adjoint sources and auxiliary files\n", - "2. __run_adjoint_simulations:__ Call numerical solver to run adjoint simulation, generating kernels\n", - "3. __postprocess_event_kernels:__ Combine all event kernels into a misfit kernel. \n", - "4. __evaluate_gradient_from_kernels:__ Smooth and mask the misfit kernel to create the gradient\n", - "4. __initialize_line_search:__ Call on the optimization library to scale the gradient by a step length to compute the search direction. Prepare file structure for line search.\n", - "5. __perform_line_search:__ Perform a line search by algorithmically scaling the gradient and evaluating the misfit function (forward simulations and misfit quantification) until misfit is acceptably reduced.\n", - "6. __finalize_iteration:__ Run any finalization steps such as saving traces, kernels, gradients and models to disk, setting up SeisFlows3 for any subsequent iterations. Clean the scratch/ directory in preparation for subsequent iterations\n", - "\n", - "Let's set the `stop_after` argument to __evaluate_initial_misfit__, this will halt the workflow after the intialization step. " - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stop_after: null -> evaluate_initial_misfit\r\n" - ] - } - ], - "source": [ - "! seisflows par stop_after evaluate_initial_misfit" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "-----------------------\n", - "Now let's run SeisFlows. There are two ways to do this: `submit` and `restart`\n", - "\n", - "1. `seisflows submit` is used to run new workflows and resume stopped or failed workflows.\n", - "2. The `restart` command is simply a convenience function that runs `clean` (to remove an active working state) and `submit` (to submit a fresh workflow). \n", - "\n", - "Since this is our first run, we'll use `seisflows submit`." - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-08-16 14:32:48 (I) | \n", - "================================================================================\n", - " SETTING UP INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-16 14:32:55 (D) | running setup for module 'system.Workstation'\n", - "2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_001.txt\n", - "2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_001.yaml\n", - "2022-08-16 14:32:57 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-16 14:32:57 (I) | initializing 3 solver directories\n", - "2022-08-16 14:32:57 (D) | initializing solver directory source: 001\n", - "2022-08-16 14:33:04 (D) | linking source '001' as 'mainsolver'\n", - "2022-08-16 14:33:04 (D) | initializing solver directory source: 002\n", - "2022-08-16 14:33:09 (D) | initializing solver directory source: 003\n", - "2022-08-16 14:33:16 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-16 14:33:16 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-16 14:33:17 (I) | no optimization checkpoint found, assuming first run\n", - "2022-08-16 14:33:17 (I) | re-loading optimization module from checkpoint\n", - "2022-08-16 14:33:17 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " RUNNING ITERATION 01 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-16 14:33:17 (I) | \n", - "================================================================================\n", - " RUNNING INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-16 14:33:17 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " EVALUATING MISFIT FOR INITIAL MODEL \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-16 14:33:17 (I) | checking initial model parameters\n", - "2022-08-16 14:33:17 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00\n", - "2022-08-16 14:33:17 (I) | 3500.00 <= vs <= 3500.00\n", - "2022-08-16 14:33:17 (I) | checking true/target model parameters\n", - "2022-08-16 14:33:17 (I) | 5900.00 <= vp <= 5900.00\n", - "2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00\n", - "2022-08-16 14:33:17 (I) | 3550.00 <= vs <= 3550.00\n", - "2022-08-16 14:33:17 (I) | preparing observation data for source 001\n", - "2022-08-16 14:33:17 (I) | running forward simulation w/ target model for 001\n", - "2022-08-16 14:33:21 (I) | evaluating objective function for source 001\n", - "2022-08-16 14:33:21 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:33:25 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:33:25 (I) | preparing observation data for source 002\n", - "2022-08-16 14:33:25 (I) | running forward simulation w/ target model for 002\n", - "2022-08-16 14:33:29 (I) | evaluating objective function for source 002\n", - "2022-08-16 14:33:29 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:33:33 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:33:33 (I) | preparing observation data for source 003\n", - "2022-08-16 14:33:33 (I) | running forward simulation w/ target model for 003\n", - "2022-08-16 14:33:36 (I) | evaluating objective function for source 003\n", - "2022-08-16 14:33:36 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:33:40 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:33:40 (I) | stop workflow at `stop_after`: evaluate_initial_misfit\n" - ] - } - ], - "source": [ - "! seisflows submit " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " For a detailed exploration of a SeisFlows working directory, see the `working directory `__ documentation page where we explain each of the files and directories that have been generated during this workflow. Below we just look at two files which are required for our adjoint simulation, the adjoint sources (.adj) and STATIONS_ADJOINT file" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " -48.0000000 0.0000000\r\n", - " -47.9400000 0.0000000\r\n", - " -47.8800000 0.0000000\r\n", - " -47.8200000 0.0000000\r\n", - " -47.7600000 0.0000000\r\n", - " -47.7000000 0.0000000\r\n", - " -47.6400000 0.0000000\r\n", - " -47.5800000 0.0000000\r\n", - " -47.5200000 0.0000000\r\n", - " -47.4600000 0.0000000\r\n" - ] - } - ], - "source": [ - "# The adjoint source is created in the same format as the synthetics (two-column ASCII) \n", - "! head scratch/solver/001/traces/adj/AA.S0001.BXY.adj" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 3b. Adjoint simulations\n", - "\n", - "Now that we have all the required files for running an adjoint simulation (\\*.adj waveforms and STATIONS_ADJOINT file), we can continue with the SeisFlows3 Inversion workflow. No need to edit the Par_file or anything like that, SeisFlows3 will take care of that under the hood. We simply need to tell the workflow (via the parameters.yaml file) to `resume_from` the correct function. We can have a look at these functions again:" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " SEISFLOWS WORKFLOW TASK LIST \r\n", - " //////////////////////////// \r\n", - "Task list for \r\n", - "\r\n", - "1: evaluate_initial_misfit\r\n", - "2: run_adjoint_simulations\r\n", - "3: postprocess_event_kernels\r\n", - "4: evaluate_gradient_from_kernels\r\n", - "5: initialize_line_search\r\n", - "6: perform_line_search\r\n", - "7: finalize_iteration\r\n" - ] - } - ], - "source": [ - "! seisflows print tasks" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stop_after: evaluate_initial_misfit -> evaluate_gradient_from_kernels\r\n" - ] - } - ], - "source": [ - "# We'll stop just before the line search so that we can take a look at the files \n", - "# generated during the middle tasks\n", - "! seisflows par stop_after evaluate_gradient_from_kernels" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-08-16 14:36:42 (D) | setting iteration==1 from state file\n", - "2022-08-16 14:36:42 (I) | \n", - "================================================================================\n", - " SETTING UP INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-16 14:36:48 (D) | running setup for module 'system.Workstation'\n", - "2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_002.txt\n", - "2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_002.yaml\n", - "2022-08-16 14:36:51 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-16 14:36:51 (I) | initializing 3 solver directories\n", - "2022-08-16 14:36:51 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-16 14:36:52 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-16 14:36:53 (I) | re-loading optimization module from checkpoint\n", - "2022-08-16 14:36:54 (I) | re-loading optimization module from checkpoint\n", - "2022-08-16 14:36:54 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " RUNNING ITERATION 01 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-16 14:36:54 (I) | \n", - "================================================================================\n", - " RUNNING INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-16 14:36:54 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", - "2022-08-16 14:36:54 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-16 14:36:54 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-16 14:37:05 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-16 14:37:05 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-16 14:37:05 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-16 14:37:16 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-16 14:37:16 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-16 14:37:18 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log'\n", - "2022-08-16 14:37:29 (D) | renaming output event kernels: 'alpha' -> 'vp'\n", - "2022-08-16 14:37:29 (D) | renaming output event kernels: 'beta' -> 'vs'\n", - "2022-08-16 14:37:30 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " GENERATING/PROCESSING MISFIT KERNEL \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-16 14:37:30 (I) | combining event kernels into single misfit kernel\n", - "2022-08-16 14:37:31 (I) | scaling gradient to absolute model perturbations\n", - "2022-08-16 14:37:32 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels\n" - ] - } - ], - "source": [ - "# We can use the `seisflows submit` command to continue an active workflow\n", - "# The state file created during the first run will tell the workflow to resume from the stopped point in the workflow\n", - "! seisflows submit " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "----------------\n", - "The function __run_adjoint_simulations()__ has run adjoint simulations to generate event kernels. The functions __postprocess_event_kernels__ and __evaluate_gradient_from_kernels__ will have summed and (optionally) smoothed the kernels to recover the gradient, which will be used to update our starting model.\n", - "\n", - "> **NOTE**: Since we did not specify any smoothing lenghts (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has occurred. \n", - "\n", - "Using the gradient-descent optimization algorithm, SeisFlows will now compute a search direction that will be used in the line search to search for a best fitting model which optimally reduces the objective function. We can take a look at where SeisFlows has stored the information relating to kernel generation and the optimization computation." - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "gradient kernels misfit_kernel model residuals.txt\r\n" - ] - } - ], - "source": [ - "# Gradient evaluation files are stored here, the kernels are stored separately from the gradient incase\n", - "# the user wants to manually manipulate them\n", - "! ls scratch/eval_grad" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "proc000000_vp_kernel.bin proc000000_vs_kernel.bin\r\n" - ] - } - ], - "source": [ - "# SeisFlows3 stores all kernels and gradient information as SPECFEM binary (.bin) files\n", - "! ls scratch/eval_grad/gradient" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "001 002 003\r\n" - ] - } - ], - "source": [ - "# Kernels are stored on a per-event basis, and summed together (sum/). If smoothing was performed, \n", - "# we would see both smoothed and unsmoothed versions of the misfit kernel\n", - "! ls scratch/eval_grad/kernels" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "checkpoint.npz\tf_new.txt g_new.npz m_new.npz\r\n" - ] - } - ], - "source": [ - "# We can see that some new values have been stored in prepartion for the line search,\n", - "# including g_new (current gradient) and p_new (current search direction). These are also\n", - "# stored as vector NumPy arrays (.npy files)\n", - "! ls scratch/optimize" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[-1.18126331e-12 2.40273470e-12 3.97045036e-11 ... 9.62017688e-11\n", - " 4.21140102e-11 3.96825021e-12]]\n" - ] - } - ], - "source": [ - "g_new = np.load(\"scratch/optimize/g_new.npz\")\n", - "print(g_new[\"vs_kernel\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "--------------------\n", - "#### 3c. Line search and model update\n", - "\n", - "Let's finish off the inversion by running through the line search, which will generate new models using the\n", - "gradient, evaluate the objective function by running forward simulations, and comparing the evaluated objective function with the value obtained in __evalaute_initial_misfit__. \n", - "\n", - "Satisfactory reduction in the objective function will result in a termination of the line search. We are using a bracketing line search here [(Modrak et al. 2018)](https://academic.oup.com/gji/article/206/3/1864/2583505), which requires finding models which both increase and decrease the misfit with respect to the initial evaluation. Therefore it takes atleast two trial steps to complete the line search." - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stop_after: evaluate_gradient_from_kernels -> perform_line_search\r\n" - ] - } - ], - "source": [ - "! seisflows par stop_after perform_line_search # We don't want to run the finalize_iteration argument so that we can explore the dir" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2022-08-16 14:41:12 (D) | setting iteration==1 from state file\n", - "2022-08-16 14:41:12 (I) | \n", - "================================================================================\n", - " SETTING UP INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-16 14:41:18 (D) | running setup for module 'system.Workstation'\n", - "2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_003.txt\n", - "2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_003.yaml\n", - "2022-08-16 14:41:21 (D) | running setup for module 'solver.Specfem2D'\n", - "2022-08-16 14:41:21 (I) | initializing 3 solver directories\n", - "2022-08-16 14:41:22 (D) | running setup for module 'preprocess.Default'\n", - "2022-08-16 14:41:24 (D) | running setup for module 'optimize.Gradient'\n", - "2022-08-16 14:41:26 (I) | re-loading optimization module from checkpoint\n", - "2022-08-16 14:41:28 (I) | re-loading optimization module from checkpoint\n", - "2022-08-16 14:41:28 (I) | \n", - "////////////////////////////////////////////////////////////////////////////////\n", - " RUNNING ITERATION 01 \n", - "////////////////////////////////////////////////////////////////////////////////\n", - "2022-08-16 14:41:28 (I) | \n", - "================================================================================\n", - " RUNNING INVERSION WORKFLOW \n", - "================================================================================\n", - "2022-08-16 14:41:28 (I) | 'evaluate_initial_misfit' has already been run, skipping\n", - "2022-08-16 14:41:28 (I) | 'run_adjoint_simulations' has already been run, skipping\n", - "2022-08-16 14:41:28 (I) | 'postprocess_event_kernels' has already been run, skipping\n", - "2022-08-16 14:41:28 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping\n", - "2022-08-16 14:41:28 (I) | initializing 'bracket'ing line search\n", - "2022-08-16 14:41:28 (I) | enforcing max step length safeguard\n", - "2022-08-16 14:41:28 (D) | step length(s) = 0.00E+00\n", - "2022-08-16 14:41:28 (D) | misfit val(s) = 1.28E-03\n", - "2022-08-16 14:41:28 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11\n", - "2022-08-16 14:41:28 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10\n", - "2022-08-16 14:41:28 (D) | overwriting initial step length, alpha_new=2.32E+09\n", - "2022-08-16 14:41:28 (I) | trial model 'm_try' parameters: \n", - "2022-08-16 14:41:28 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-16 14:41:28 (I) | 3244.51 <= vs <= 3790.00\n", - "2022-08-16 14:41:29 (I) | \n", - "LINE SEARCH STEP COUNT 01\n", - "--------------------------------------------------------------------------------\n", - "2022-08-16 14:41:29 (I) | evaluating objective function for source 001\n", - "2022-08-16 14:41:29 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:41:33 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:41:33 (I) | evaluating objective function for source 002\n", - "2022-08-16 14:41:33 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:41:36 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:41:36 (I) | evaluating objective function for source 003\n", - "2022-08-16 14:41:36 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:41:40 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:41:40 (D) | misfit for trial model (f_try) == 8.65E-04\n", - "2022-08-16 14:41:40 (D) | step length(s) = 0.00E+00, 2.32E+09\n", - "2022-08-16 14:41:40 (D) | misfit val(s) = 1.28E-03, 8.65E-04\n", - "2022-08-16 14:41:40 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09\n", - "2022-08-16 14:41:40 (I) | line search model 'm_try' parameters: \n", - "2022-08-16 14:41:40 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-16 14:41:40 (I) | 3086.61 <= vs <= 3969.23\n", - "2022-08-16 14:41:40 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-16 14:41:40 (I) | \n", - "LINE SEARCH STEP COUNT 02\n", - "--------------------------------------------------------------------------------\n", - "2022-08-16 14:41:40 (I) | evaluating objective function for source 001\n", - "2022-08-16 14:41:40 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:41:44 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:41:44 (I) | evaluating objective function for source 002\n", - "2022-08-16 14:41:44 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:41:48 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:41:48 (I) | evaluating objective function for source 003\n", - "2022-08-16 14:41:48 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:41:52 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:41:52 (D) | misfit for trial model (f_try) == 1.73E-03\n", - "2022-08-16 14:41:52 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09\n", - "2022-08-16 14:41:52 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03\n", - "2022-08-16 14:41:52 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09\n", - "2022-08-16 14:41:52 (I) | line search model 'm_try' parameters: \n", - "2022-08-16 14:41:52 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-16 14:41:52 (I) | 3325.01 <= vs <= 3698.63\n", - "2022-08-16 14:41:52 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-16 14:41:52 (I) | \n", - "LINE SEARCH STEP COUNT 03\n", - "--------------------------------------------------------------------------------\n", - "2022-08-16 14:41:52 (I) | evaluating objective function for source 001\n", - "2022-08-16 14:41:52 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:41:56 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:41:56 (I) | evaluating objective function for source 002\n", - "2022-08-16 14:41:56 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:42:00 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:42:00 (I) | evaluating objective function for source 003\n", - "2022-08-16 14:42:00 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:42:03 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:42:03 (D) | misfit for trial model (f_try) == 2.59E-03\n", - "2022-08-16 14:42:03 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09\n", - "2022-08-16 14:42:03 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03\n", - "2022-08-16 14:42:03 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09\n", - "2022-08-16 14:42:03 (I) | line search model 'm_try' parameters: \n", - "2022-08-16 14:42:03 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-16 14:42:03 (I) | 3189.77 <= vs <= 3852.13\n", - "2022-08-16 14:42:03 (I) | trial step unsuccessful. re-attempting line search\n", - "2022-08-16 14:42:03 (I) | \n", - "LINE SEARCH STEP COUNT 04\n", - "--------------------------------------------------------------------------------\n", - "2022-08-16 14:42:03 (I) | evaluating objective function for source 001\n", - "2022-08-16 14:42:03 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:42:07 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:42:07 (I) | evaluating objective function for source 002\n", - "2022-08-16 14:42:07 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:42:11 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:42:11 (I) | evaluating objective function for source 003\n", - "2022-08-16 14:42:11 (D) | running forward simulation with 'Specfem2D'\n", - "2022-08-16 14:42:15 (D) | quantifying misfit with 'Default'\n", - "2022-08-16 14:42:15 (D) | misfit for trial model (f_try) == 3.46E-03\n", - "2022-08-16 14:42:15 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09\n", - "2022-08-16 14:42:15 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03\n", - "2022-08-16 14:42:15 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", - "2022-08-16 14:42:15 (I) | line search model 'm_try' parameters: \n", - "2022-08-16 14:42:15 (I) | 5800.00 <= vp <= 5800.00\n", - "2022-08-16 14:42:15 (I) | 3244.51 <= vs <= 3790.00\n", - "2022-08-16 14:42:15 (I) | trial step successful. finalizing line search\n", - "2022-08-16 14:42:15 (I) | \n", - "FINALIZING LINE SEARCH\n", - "--------------------------------------------------------------------------------\n", - "2022-08-16 14:42:15 (I) | writing optimization stats\n", - "2022-08-16 14:42:15 (I) | renaming current (new) optimization vectors as previous model (old)\n", - "2022-08-16 14:42:15 (I) | setting accepted trial model (try) as current model (new)\n", - "2022-08-16 14:42:15 (I) | misfit of accepted trial model is f=8.645E-04\n", - "2022-08-16 14:42:15 (I) | resetting line search step count to 0\n", - "2022-08-16 14:42:15 (I) | stop workflow at `stop_after`: perform_line_search\n" - ] - } - ], - "source": [ - "! seisflows submit" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the log statements above, we can see that the SeisFlows line search required 4 trial steps, where it modified values of Vs (shear-wave velocity) until satisfactory reduction in the objective function was met. This was the final step in the iteration, and so the finalization of the line search made preparations for a subsequent iteration. " - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "alpha.txt\tf_new.txt f_try.txt m_new.npz output_optim.txt\r\n", - "checkpoint.npz\tf_old.txt g_old.npz m_old.npz p_old.npz\r\n" - ] - } - ], - "source": [ - "# We can see that we have 'new' and 'old' values for each of the optimization values,\n", - "# representing the previous model (M00) and the current model (M01).\n", - "! ls scratch/optimize" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "step_count,step_length,gradient_norm_L1,gradient_norm_L2,misfit,if_restarted,slope,theta\r\n", - "04,2.323E+09,9.243E-05,1.049E-06,1.279E-03,0,8.263E-13,0.000E+00\r\n" - ] - } - ], - "source": [ - "# The stats/ directory contains text files describing the optimization/line search\n", - "! cat scratch/optimize/output_optim.txt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 4. Conclusions\n", - "\n", - "We've now seen how SeisFlows runs an __Inversion__ workflow using the __Specfem2D__ solver on a __Workstation__ system. More or less, this is all you need to run SeisFlows with any combination of modules. The specificities of a system or numerical solver are already handled internally by SeisFlows, so if you want to use Specmfe3D_Cartesian as your solver, you would only need to run `seisflows par solver specfem3d` at the beginning of your workflow (you will also need to set up your Specfem3D models, similar to what we did for Specfem2D here). To run on a slurm system like Chinook (University of Alaska Fairbanks), you can run `seisflows par system chinook`. " - ] } ], "metadata": { diff --git a/docs/specfem2d_example.rst b/docs/specfem2d_example.rst index 25c9ae46..bb054a45 100644 --- a/docs/specfem2d_example.rst +++ b/docs/specfem2d_example.rst @@ -35,7 +35,7 @@ Example #1 runs a 2 iteration inversion using SPECFEM2D, the default preprocessing module and a gradient descent optimization algorithm. .. note:: - Example number 1 is meant to FAIL during the line search of Iteration #2, after exceeding the maximum allowable line search step count. This is meant to illustrate line search behavior and allow the User to explore a working directory mid-workflow. + Example number 1 is meant to **FAIL** during the line search of Iteration #2, after exceeding the maximum allowable line search step count. This is meant to illustrate line search behavior and allow the User to explore a working directory mid-workflow. .. code:: ipython3 @@ -98,6 +98,10 @@ working directory. # The above commands are the same as the below ! seisflows examples run 1 --specfem2d_repo path/to/specfem2d +A successfully completed example problem will end with the following log +messages: + + Example #2 ~~~~~~~~~~ @@ -156,1358 +160,3 @@ You can run the example with the same command as shown for Example 1: .. code:: ipython3 ! seisflows examples run 2 -r path/to/specfem2d - --------------- - -Option 2: Manual run --------------------- - -The notebook below details a walkthrough of Example #1 shown above. This -is meant for those who want to understand what is going on under the -hood. You are welcome to follow along on your workstation. The following -Table of Contents outlines the steps we will take in this tutorial: - -.. warning:: - Navigation links will not work outside of Jupyter. Please use the navigation bar to the left. - -1. `Setup SPECFEM2D <#1.-Setup-SPECFEM2D>`__ - - a. `Download and compile - codebase <#1a.-Download-and-compile-codebase*>`__ - b. `Create a separate SPECFEM2D working - directory <#1b.-Create-a-separate-SPECFEM2D-working-directory>`__ - c. `Generate initial and target - models <#1c.-Generate-initial-and-target-models>`__ - -2. `Initialize SeisFlows (SF) <#2.-Initialize-SeisFlows-(SF)>`__ - - a. `SeisFlows working directory and parameter - file <#2a.-SF-working-directory-and-parameter-file>`__ - -3. `Run SeisFlows <#2.-Run-SeisFlows>`__ - - a. `Forward simulations <#3a.-Forward-simulations>`__ - b. `Exploring the SeisFlows directory - structure <#3b.-Exploring-the-SF-directory-structure>`__ - c. `Adjoint simulations <#3c.-Adjoint-simulations>`__ - d. `Line search and model - update <#3d.-Line-search-and-model-update>`__ - -4. `Conclusions <#4.-Conclusions>`__ - -1. Setup SPECFEM2D -~~~~~~~~~~~~~~~~~~ - -1a. Download and compile codebase (optional) -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - - **NOTE**: If you have already downloaded and compiled SPECFEM2D, you - can skip most of this subsection (1a). However you will need to edit - the first two paths in the following cell (WORKDIR and - SPECFEM2D_ORIGINAL), and execute the path structure defined in the - cell. - -First we’ll download and compile SPECFEM2D to generate the binaries -necessary to run our simulations. We will then populate a new SPECFEM2D -working directory that will be used by SeisFlows. We’ll use to Python OS -module to do our filesystem processes just to keep everything in Python, -but this can easily be accomplished in bash. - -.. code:: ipython3 - - import os - import glob - import shutil - import numpy as np - -.. code:: ipython3 - - # vvv USER MUST EDIT THE FOLLOWING PATHS vvv - WORKDIR = "/home/bchow/Work/scratch" - SPECFEM2D = "/home/bchow/REPOSITORIES/specfem2d" - # where WORKDIR: points to your own working directory - # and SPECFEM2D: points to an existing specfem2D repository if available (if not set as '') - # ^^^ USER MUST EDIT THE FOLLOWING PATHS ^^^ - # ====================================================================================================== - - # Distribute the necessary file structure of the SPECFEM2D repository that we will downloaded/reference - SPECFEM2D_ORIGINAL = os.path.join(WORKDIR, "specfem2d") - SPECFEM2D_BIN_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, "bin") - SPECFEM2D_DATA_ORIGINAL = os.path.join(SPECFEM2D_ORIGINAL, "DATA") - TAPE_2007_EXAMPLE = os.path.join(SPECFEM2D_ORIGINAL, "EXAMPLES", "Tape2007") - - # The SPECFEM2D working directory that we will create separate from the downloaded repo - SPECFEM2D_WORKDIR = os.path.join(WORKDIR, "specfem2d_workdir") - SPECFEM2D_BIN = os.path.join(SPECFEM2D_WORKDIR, "bin") - SPECFEM2D_DATA = os.path.join(SPECFEM2D_WORKDIR, "DATA") - SPECFEM2D_OUTPUT = os.path.join(SPECFEM2D_WORKDIR, "OUTPUT_FILES") - - # Pre-defined locations of velocity models we will generate using the solver - SPECFEM2D_MODEL_INIT = os.path.join(SPECFEM2D_WORKDIR, "OUTPUT_FILES_INIT") - SPECFEM2D_MODEL_TRUE = os.path.join(SPECFEM2D_WORKDIR, "OUTPUT_FILES_TRUE") - -.. code:: ipython3 - - # Download SPECFEM2D from GitHub, devel branch for latest codebase OR symlink from existing repo - if not os.path.exists(WORKDIR): - os.makedirs(WORKDIR) - os.chdir(WORKDIR) - - if os.path.exists("specfem2d"): - print("SPECFEM2D repository already found, you may skip this subsection") - pass - elif os.path.exists(SPECFEM2D): - print("Existing SPECMFE2D respository found, symlinking to working directory") - os.symlink(SPECFEM2D, "./specfem2d") - else: - print("Cloning respository from GitHub") - ! git clone --recursive --branch devel https://github.com/geodynamics/specfem2d.git - - -.. parsed-literal:: - - Existing SPECMFE2D respository found, symlinking to working directory - - -.. code:: ipython3 - - # Compile SPECFEM2D to generate the Makefile - os.chdir(SPECFEM2D_ORIGINAL) - if not os.path.exists("./config.log"): - os.system("./configure") - -.. code:: ipython3 - - # Run make to generate SPECFEM2D binaries - if not os.path.exists("bin"): - os.system("make all") - -.. code:: ipython3 - - # Check out the binary files that have been created - os.chdir(SPECFEM2D_ORIGINAL) - ! pwd - ! ls bin/ - - -.. parsed-literal:: - - /home/bchow/REPOSITORIES/specfem2d - xadj_seismogram xconvolve_source_timefunction xspecfem2D - xcheck_quality_external_mesh xmeshfem2D xsum_kernels - xcombine_sem xsmooth_sem - - -1b. Create a separate SPECFEM2D working directory -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -Next we’ll create a new SPECFEM2D working directory, separate from the -original repository. The intent here is to isolate the original -SPECFEM2D repository from our working state, to protect it from things -like accidental file deletions or manipulations. This is not a mandatory -step for using SeisFlows, but it helps keep file structure clean in the -long run, and is the SeisFlows3 dev team’s preferred method of using -SPECFEM. - -.. note:: - All SPECFEM2D/3D/3D_GLOBE need to run successfully are the bin/, DATA/, and OUTPUT_FILES/ directories. Everything else in the repository is not mandatory for running binaries. - -In this tutorial we will be using the `Tape2007 example -problem `__ -to define our **DATA/** directory (last tested 8/15/22, bdba4389). - -.. code:: ipython3 - - # Incase we've run this docs page before, delete the working directory before remaking - if os.path.exists(SPECFEM2D_WORKDIR): - shutil.rmtree(SPECFEM2D_WORKDIR) - - os.mkdir(SPECFEM2D_WORKDIR) - os.chdir(SPECFEM2D_WORKDIR) - - # Copy the binary files incase we update the source code. These can also be symlinked. - shutil.copytree(SPECFEM2D_BIN_ORIGINAL, "bin") - - # Copy the DATA/ directory because we will be making edits here frequently and it's useful to - # retain the original files for reference. We will be running one of the example problems: Tape2007 - shutil.copytree(os.path.join(TAPE_2007_EXAMPLE, "DATA"), "DATA") - - ! pwd - ! ls - - -.. parsed-literal:: - - /home/bchow/Work/scratch/specfem2d_workdir - bin DATA - - -.. code:: ipython3 - - # Run the Tape2007 example to make sure SPECFEM2D is working as expected - os.chdir(TAPE_2007_EXAMPLE) - ! ./run_this_example.sh > output_log.txt - - assert(os.path.exists("OUTPUT_FILES/forward_image000004800.jpg")), \ - (f"Example did not run, the remainder of this docs page will likely not work." - f"Please check the following directory: {TAPE_2007_EXAMPLE}") - - ! tail output_log.txt - - -.. parsed-literal:: - - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - D a t e : 16 - 08 - 2022 T i m e : 14:26:37 - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - - see results in directory: OUTPUT_FILES/ - - done - Tue Aug 16 02:26:37 PM AKDT 2022 - - --------------- - -Now we need to manually set up our SPECFEM2D working directory. As -mentioned in the previous cell, the only required elements of this -working directory are the following (these files will form the basis for -how SeisFlows3 operates within the SPECFEM2D framework): - -1. **bin/** directory containing SPECFEM2D binaries -2. **DATA/** directory containing SOURCE and STATION files, as well as a - SPECFEM2D Par_file -3. \__OUTPUT_FILES/proc??????_*.bin_\_ files which define the starting - (and target) models - -.. note:: - This file structure is the same for all versions of SPECFEM (2D/3D/3D_GLOBE) - -.. code:: ipython3 - - # First we will set the correct SOURCE and STATION files. - # This is the same task as shown in ./run_this_example.sh - os.chdir(SPECFEM2D_DATA) - - # Symlink source 001 as our main source - if os.path.exists("SOURCE"): - os.remove("SOURCE") - os.symlink("SOURCE_001", "SOURCE") - - # Copy the correct Par_file so that edits do not affect the original file - if os.path.exists("Par_file"): - os.remove("Par_file") - shutil.copy("Par_file_Tape2007_onerec", "Par_file") - - ! ls - - -.. parsed-literal:: - - interfaces_Tape2007.dat SOURCE_003 SOURCE_012 SOURCE_021 - model_velocity.dat_checker SOURCE_004 SOURCE_013 SOURCE_022 - Par_file SOURCE_005 SOURCE_014 SOURCE_023 - Par_file_Tape2007_132rec_checker SOURCE_006 SOURCE_015 SOURCE_024 - Par_file_Tape2007_onerec SOURCE_007 SOURCE_016 SOURCE_025 - proc000000_model_velocity.dat_input SOURCE_008 SOURCE_017 STATIONS - SOURCE SOURCE_009 SOURCE_018 STATIONS_checker - SOURCE_001 SOURCE_010 SOURCE_019 - SOURCE_002 SOURCE_011 SOURCE_020 - - -1c. Generate initial and target models -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -Since we’re doing a synthetic-synthetic inversion, we need to manually -set up the velocity models with which we generate our synthetic -waveforms. The naming conventions for these models are: - -1. **MODEL_INIT:** The initial or starting model. Used to generate the - actual synthetic seismograms. This is considered M00. -2. **MODEL_TRUE:** The target or true model. Used to generate ‘data’ - (also synthetic). This is the reference model that our inversion is - trying to resolve. - -The starting model is defined as a homogeneous halfspace uin the -Tape2007 example problem. We will need to run both ``xmeshfem2D`` and -``xspecfem2D`` to generate the required velocity model database files. -We will generate our target model by slightly perturbing the parameters -of the initial model. - -.. note:: - We can use the SeisFlows3 command line option `seisflows sempar` to directly edit the SPECFEM2D Par_file in the command line. This will work for the SPECFEM3D Par_file as well. - -.. code:: ipython3 - - os.chdir(SPECFEM2D_DATA) - - # Ensure that SPECFEM2D outputs the velocity model in the expected binary format - ! seisflows sempar setup_with_binary_database 1 # allow creation of .bin files - ! seisflows sempar save_model binary # output model in .bin database format - ! seisflows sempar save_ascii_kernels .false. # output kernels in .bin format, not ASCII - - -.. parsed-literal:: - - setup_with_binary_database: 0 -> 1 - SAVE_MODEL: default -> binary - save_ASCII_kernels: .true. -> .false. - - -.. code:: ipython3 - - # SPECFEM requires that we create the OUTPUT_FILES directory before running - os.chdir(SPECFEM2D_WORKDIR) - - if os.path.exists(SPECFEM2D_OUTPUT): - shutil.rmtree(SPECFEM2D_OUTPUT) - - os.mkdir(SPECFEM2D_OUTPUT) - - ! ls - - -.. parsed-literal:: - - bin DATA OUTPUT_FILES - - -.. code:: ipython3 - - # GENERATE MODEL_INIT - os.chdir(SPECFEM2D_WORKDIR) - - # Run the mesher and solver to generate our initial model - ! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt - ! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt - - # Move the model files (*.bin) into the OUTPUT_FILES directory, where SeisFlows3 expects them - ! mv DATA/*bin OUTPUT_FILES - - # Make sure we don't overwrite this initial model when creating our target model in the next step - ! mv OUTPUT_FILES OUTPUT_FILES_INIT - - ! head OUTPUT_FILES_INIT/solver_log.txt - ! tail OUTPUT_FILES_INIT/solver_log.txt - - -.. parsed-literal:: - - - ********************************************** - **** Specfem 2-D Solver - serial version **** - ********************************************** - - Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884 - dating From Date: Mon Nov 29 23:20:51 2021 -0800 - - - NDIM = 2 - ------------------------------------------------------------------------------- - Program SPECFEM2D: - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - Tape-Liu-Tromp (GJI 2007) - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - D a t e : 16 - 08 - 2022 T i m e : 14:26:52 - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - - --------------- - -Now we want to perturb the initial model to create our target model -(**MODEL_TRUE**). The seisflows command line subargument -``seisflows sempar velocity_model`` will let us view and edit the -velocity model. You can also do this manually by editing the Par_file -directly. - -.. code:: ipython3 - - # GENERATE MODEL_TRUE - os.chdir(SPECFEM2D_DATA) - - # Edit the Par_file by increasing velocities by ~10% - ! seisflows sempar velocity_model '1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0' - - -.. parsed-literal:: - - VELOCITY_MODEL: - - 1 1 2600.d0 5800.d0 3500.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0 - -> - 1 1 2600.d0 5900.d0 3550.0d0 0 0 10.d0 10.d0 0 0 0 0 0 0 - - -.. code:: ipython3 - - # Re-run the mesher and solver to generate our target velocity model - os.chdir(SPECFEM2D_WORKDIR) - - # Make sure the ./OUTPUT_FILES directory exists since we moved the old one - if os.path.exists(SPECFEM2D_OUTPUT): - shutil.rmtree(SPECFEM2D_OUTPUT) - os.mkdir(SPECFEM2D_OUTPUT) - - # Run the binaries to generate MODEL_TRUE - ! ./bin/xmeshfem2D > OUTPUT_FILES/mesher_log.txt - ! ./bin/xspecfem2D > OUTPUT_FILES/solver_log.txt - - # Move all the relevant files into OUTPUT_FILES - ! mv ./DATA/*bin OUTPUT_FILES - ! mv OUTPUT_FILES OUTPUT_FILES_TRUE - - ! head OUTPUT_FILES_INIT/solver_log.txt - ! tail OUTPUT_FILES_INIT/solver_log.txt - - -.. parsed-literal:: - - - ********************************************** - **** Specfem 2-D Solver - serial version **** - ********************************************** - - Running Git version of the code corresponding to commit cf89366717d9435985ba852ef1d41a10cee97884 - dating From Date: Mon Nov 29 23:20:51 2021 -0800 - - - NDIM = 2 - ------------------------------------------------------------------------------- - Program SPECFEM2D: - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - Tape-Liu-Tromp (GJI 2007) - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - D a t e : 16 - 08 - 2022 T i m e : 14:26:52 - ------------------------------------------------------------------------------- - ------------------------------------------------------------------------------- - - -.. code:: ipython3 - - # Great, we have all the necessary SPECFEM files to run our SeisFlows inversion! - ! ls - - -.. parsed-literal:: - - bin DATA OUTPUT_FILES_INIT OUTPUT_FILES_TRUE - - -2. Initialize SeisFlows (SF) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -In this Section we will look at a SeisFlows working directory, parameter -file, and working state. - -2a. SeisFlows working directory and parameter file -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -As with SPECFEM, SeisFlows requires a parameter file -(**parameters.yaml**) that controls how an automated workflow will -proceed. Because SeisFlows is modular, there are a large number of -potential parameters which may be present in a SeisFlows parameter file, -as each sub-module may have its own set of unique parameters. - -In contrast to SPECFEM’s method of listing all available parameters and -leaving it up the User to determine which ones are relevant to them, -SeisFlows dynamically builds its parameter file based on User inputs. In -this subsection we will use the built-in SeisFlows command line tools to -generate and populate the parameter file. - -.. note:: - See the `parameter file documentation page `__ for a more in depth exploration of this central SeisFlows file. - -In the previous section we saw the ``sempar`` command in action. We can -use the ``-h`` or help flag to list all available SiesFlows3 command -line commands. - -.. code:: ipython3 - - ! seisflows -h - - -.. parsed-literal:: - - usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]] - {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples} - ... - - ================================================================================ - - SeisFlows: Waveform Inversion Package - - ================================================================================ - - optional arguments: - -h, --help show this help message and exit - -w [WORKDIR], --workdir [WORKDIR] - The SeisFlows working directory, default: cwd - -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE] - Parameters file, default: 'parameters.yaml' - - command: - Available SeisFlows arguments and their intended usages - - setup Setup working directory from scratch - configure Fill parameter file with defaults - swap Swap module parameters in an existing parameter file - init Initiate working environment - submit Submit initial workflow to system - resume Re-submit previous workflow to system - restart Remove current environment and submit new workflow - clean Remove files relating to an active working environment - par View and edit SeisFlows parameter file - sempar View and edit SPECFEM parameter file - check Check state of an active environment - print Print information related to an active environment - reset Reset modules within an active state - debug Start interactive debug environment - examples Look at and run pre-configured example problems - - 'seisflows [command] -h' for more detailed descriptions of each command. - - -.. code:: ipython3 - - # The command 'setup' creates the 'parameters.yaml' file that controls all of SeisFlows - # the '-f' flag removes any exist 'parameters.yaml' file that might be in the directory - os.chdir(WORKDIR) - ! seisflows setup -f - ! ls - - -.. parsed-literal:: - - creating parameter file: parameters.yaml - parameters.yaml sflog.txt specfem2d specfem2d_workdir - - -.. code:: ipython3 - - # Let's have a look at this file, which has not yet been populated - ! cat parameters.yaml - - -.. parsed-literal:: - - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print modules - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # workflow (str): The types and order of functions for running SeisFlows - # system (str): Computer architecture of the system being used - # solver (str): External numerical solver to use for waveform simulations - # preprocess (str): Preprocessing schema for waveform data - # optimize (str): Optimization algorithm for the inverse problem - # ============================================================================== - workflow: forward - system: workstation - solver: specfem2d - preprocess: default - optimize: gradient - - -.. code:: ipython3 - - # We can use the `seisflows print modules` command to list out the available options - ! seisflows print modules - - -.. parsed-literal:: - - SEISFLOWS MODULES - ///////////////// - '-': module, '*': class - - - workflow - * forward - * inversion - * migration - - system - * chinook - * cluster - * frontera - * lsf - * maui - * slurm - * workstation - - solver - * specfem - * specfem2d - * specfem3d - * specfem3d_globe - - preprocess - * default - * pyaflowa - - optimize - * LBFGS - * NLCG - * gradient - - -.. code:: ipython3 - - # For this example, we can use most of the default modules, however we need to - # change the SOLVER module to let SeisFlows know we're using SPECFEM2D (as opposed to 3D) - ! seisflows par workflow inversion - ! cat parameters.yaml - - -.. parsed-literal:: - - workflow: forward -> inversion - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print modules - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # workflow (str): The types and order of functions for running SeisFlows - # system (str): Computer architecture of the system being used - # solver (str): External numerical solver to use for waveform simulations - # preprocess (str): Preprocessing schema for waveform data - # optimize (str): Optimization algorithm for the inverse problem - # ============================================================================== - workflow: inversion - system: workstation - solver: specfem2d - preprocess: default - optimize: gradient - - --------------- - -The ``seisflows configure`` command populates the parameter file based -on the chosen modules. SeisFlows will attempt to fill in all parameters -with reasonable default values. Docstrings above each module show -descriptions and available options for each of these parameters. - -In the follownig cell we will use the ``seisflows par`` command to edit -the parameters.yaml file directly, replacing some default parameters -with our own values. Comments next to each evaluation describe the -choice for each. - -.. code:: ipython3 - - ! seisflows configure - ! head --lines=50 parameters.yaml - - -.. parsed-literal:: - - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print modules - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # workflow (str): The types and order of functions for running SeisFlows - # system (str): Computer architecture of the system being used - # solver (str): External numerical solver to use for waveform simulations - # preprocess (str): Preprocessing schema for waveform data - # optimize (str): Optimization algorithm for the inverse problem - # ============================================================================== - workflow: inversion - system: workstation - solver: specfem2d - preprocess: default - optimize: gradient - # ============================================================================= - # - # Forward Workflow - # ---------------- - # Run forward solver in parallel and (optionally) calculate - # data-synthetic misfit and adjoint sources. - # - # Parameters - # ---------- - # :type modules: list of module - # :param modules: instantiated SeisFlows modules which should have been - # generated by the function `seisflows.config.import_seisflows` with a - # parameter file generated by seisflows.configure - # :type data_case: str - # :param data_case: How to address 'data' in the workflow, available options: - # 'data': real data will be provided by the user in - # `path_data/{source_name}` in the same format that the solver will - # produce synthetics (controlled by `solver.format`) OR - # synthetic': 'data' will be generated as synthetic seismograms using - # a target model provided in `path_model_true`. If None, workflow will - - -.. code:: ipython3 - - # EDIT THE SEISFLOWS PARAMETER FILE - ! seisflows par ntask 3 # set the number of sources/events to use - ! seisflows par materials elastic # update Vp and Vs during inversion - ! seisflows par end 2 # final iteration -- we will only run 1 - ! seisflows par data_case synthetic # synthetic-synthetic means we need both INIT and TRUE models - ! seisflows par components Y # this default example creates Y-component seismograms - ! seisflows par step_count_max 5 # limit the number of steps in the line search - - # Use Python syntax here to access path constants - os.system(f"seisflows par path_specfem_bin {SPECFEM2D_BIN}") # set path to SPECFEM2D binaries - os.system(f"seisflows par path_specfem_data {SPECFEM2D_DATA}") # set path to SEPCFEM2D DATA/ - os.system(f"seisflows par path_model_init {SPECFEM2D_MODEL_INIT}") # set path to INIT model - os.system(f"seisflows par path_model_true {SPECFEM2D_MODEL_TRUE}") # set path to TRUE model - - -.. parsed-literal:: - - ntask: 1 -> 3 - materials: acoustic -> elastic - end: 1 -> 2 - data_case: data -> synthetic - components: ZNE -> Y - step_count_max: 10 -> 5 - path_specfem_bin: null -> /home/bchow/Work/scratch/specfem2d_workdir/bin - path_specfem_data: null -> /home/bchow/Work/scratch/specfem2d_workdir/DATA - path_model_init: null -> - /home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_INIT - path_model_true: null -> - /home/bchow/Work/scratch/specfem2d_workdir/OUTPUT_FILES_TRUE - - - - -.. parsed-literal:: - - 0 - - - --------------- - -One last thing, we will need to edit the SPECFEM2D Par_file parameter -``MODEL`` such that ``xmeshfem2d`` reads our pre-built velocity models -(*.bin files) rather than the meshing parameters defined in the -Par_file. - -.. code:: ipython3 - - os.chdir(SPECFEM2D_DATA) - ! seisflows sempar model gll - - -.. parsed-literal:: - - MODEL: default -> gll - - -3. Run SeisFlows -~~~~~~~~~~~~~~~~ - -In this Section we will run SeisFlows to generate synthetic seismograms, -kernels, a gradient, and an updated velocity model. - -3a. Forward simulations -^^^^^^^^^^^^^^^^^^^^^^^ - -SeisFlows is an automated workflow tool, such that once we run -``seisflows submit`` we should not need to intervene in the workflow. -However the package does allow the User flexibility in how they want the -workflow to behave. - -For example, we can run our workflow in stages by taking advantage of -the ``stop_after`` parameter. As its name suggests, ``stop_after`` -allows us to stop a workflow prematurely so that we may stop and look at -results, or debug a failing workflow. - -The ``seisflows print flow`` command tells us what functions we can use -for the ``stop_after`` parameter. - -.. code:: ipython3 - - os.chdir(WORKDIR) - ! seisflows print tasks - - -.. parsed-literal:: - - SEISFLOWS WORKFLOW TASK LIST - //////////////////////////// - Task list for - - 1: evaluate_initial_misfit - 2: run_adjoint_simulations - 3: postprocess_event_kernels - 4: evaluate_gradient_from_kernels - 5: initialize_line_search - 6: perform_line_search - 7: finalize_iteration - - --------------- - -In the Inversion workflow, the tasks listed are described as follows: - -1. **evaluate_initial_misfit:** - - a. Prepare data for inversion by either copying data from disk or - generating ‘synthetic data’ with MODEL_TRUE - b. Call numerical solver to run forward simulations using MODEL_INIT, - generating synthetics - c. Evaluate the objective function by performing waveform comparisons - d. Prepare ``run_adjoint_simulations`` step by generating adjoint - sources and auxiliary files - -2. **run_adjoint_simulations:** Call numerical solver to run adjoint - simulation, generating kernels -3. **postprocess_event_kernels:** Combine all event kernels into a - misfit kernel. -4. **evaluate_gradient_from_kernels:** Smooth and mask the misfit kernel - to create the gradient -5. **initialize_line_search:** Call on the optimization library to scale - the gradient by a step length to compute the search direction. - Prepare file structure for line search. -6. **perform_line_search:** Perform a line search by algorithmically - scaling the gradient and evaluating the misfit function (forward - simulations and misfit quantification) until misfit is acceptably - reduced. -7. **finalize_iteration:** Run any finalization steps such as saving - traces, kernels, gradients and models to disk, setting up SeisFlows3 - for any subsequent iterations. Clean the scratch/ directory in - preparation for subsequent iterations - -Let’s set the ``stop_after`` argument to **evaluate_initial_misfit**, -this will halt the workflow after the intialization step. - -.. code:: ipython3 - - ! seisflows par stop_after evaluate_initial_misfit - - -.. parsed-literal:: - - stop_after: null -> evaluate_initial_misfit - - --------------- - -Now let’s run SeisFlows. There are two ways to do this: ``submit`` and -``restart`` - -1. ``seisflows submit`` is used to run new workflows and resume stopped - or failed workflows. -2. The ``restart`` command is simply a convenience function that runs - ``clean`` (to remove an active working state) and ``submit`` (to - submit a fresh workflow). - -Since this is our first run, we’ll use ``seisflows submit``. - -.. code:: ipython3 - - ! seisflows submit - - -.. parsed-literal:: - - 2022-08-16 14:32:48 (I) | - ================================================================================ - SETTING UP INVERSION WORKFLOW - ================================================================================ - 2022-08-16 14:32:55 (D) | running setup for module 'system.Workstation' - 2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_001.txt - 2022-08-16 14:32:57 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_001.yaml - 2022-08-16 14:32:57 (D) | running setup for module 'solver.Specfem2D' - 2022-08-16 14:32:57 (I) | initializing 3 solver directories - 2022-08-16 14:32:57 (D) | initializing solver directory source: 001 - 2022-08-16 14:33:04 (D) | linking source '001' as 'mainsolver' - 2022-08-16 14:33:04 (D) | initializing solver directory source: 002 - 2022-08-16 14:33:09 (D) | initializing solver directory source: 003 - 2022-08-16 14:33:16 (D) | running setup for module 'preprocess.Default' - 2022-08-16 14:33:16 (D) | running setup for module 'optimize.Gradient' - 2022-08-16 14:33:17 (I) | no optimization checkpoint found, assuming first run - 2022-08-16 14:33:17 (I) | re-loading optimization module from checkpoint - 2022-08-16 14:33:17 (I) | - //////////////////////////////////////////////////////////////////////////////// - RUNNING ITERATION 01 - //////////////////////////////////////////////////////////////////////////////// - 2022-08-16 14:33:17 (I) | - ================================================================================ - RUNNING INVERSION WORKFLOW - ================================================================================ - 2022-08-16 14:33:17 (I) | - //////////////////////////////////////////////////////////////////////////////// - EVALUATING MISFIT FOR INITIAL MODEL - //////////////////////////////////////////////////////////////////////////////// - 2022-08-16 14:33:17 (I) | checking initial model parameters - 2022-08-16 14:33:17 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00 - 2022-08-16 14:33:17 (I) | 3500.00 <= vs <= 3500.00 - 2022-08-16 14:33:17 (I) | checking true/target model parameters - 2022-08-16 14:33:17 (I) | 5900.00 <= vp <= 5900.00 - 2022-08-16 14:33:17 (I) | 2600.00 <= rho <= 2600.00 - 2022-08-16 14:33:17 (I) | 3550.00 <= vs <= 3550.00 - 2022-08-16 14:33:17 (I) | preparing observation data for source 001 - 2022-08-16 14:33:17 (I) | running forward simulation w/ target model for 001 - 2022-08-16 14:33:21 (I) | evaluating objective function for source 001 - 2022-08-16 14:33:21 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:33:25 (D) | quantifying misfit with 'Default' - 2022-08-16 14:33:25 (I) | preparing observation data for source 002 - 2022-08-16 14:33:25 (I) | running forward simulation w/ target model for 002 - 2022-08-16 14:33:29 (I) | evaluating objective function for source 002 - 2022-08-16 14:33:29 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:33:33 (D) | quantifying misfit with 'Default' - 2022-08-16 14:33:33 (I) | preparing observation data for source 003 - 2022-08-16 14:33:33 (I) | running forward simulation w/ target model for 003 - 2022-08-16 14:33:36 (I) | evaluating objective function for source 003 - 2022-08-16 14:33:36 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:33:40 (D) | quantifying misfit with 'Default' - 2022-08-16 14:33:40 (I) | stop workflow at `stop_after`: evaluate_initial_misfit - - -.. note:: - For a detailed exploration of a SeisFlows working directory, see the `working directory `__ documentation page where we explain each of the files and directories that have been generated during this workflow. Below we just look at two files which are required for our adjoint simulation, the adjoint sources (.adj) and STATIONS_ADJOINT file - -.. code:: ipython3 - - # The adjoint source is created in the same format as the synthetics (two-column ASCII) - ! head scratch/solver/001/traces/adj/AA.S0001.BXY.adj - - -.. parsed-literal:: - - -48.0000000 0.0000000 - -47.9400000 0.0000000 - -47.8800000 0.0000000 - -47.8200000 0.0000000 - -47.7600000 0.0000000 - -47.7000000 0.0000000 - -47.6400000 0.0000000 - -47.5800000 0.0000000 - -47.5200000 0.0000000 - -47.4600000 0.0000000 - - -3b. Adjoint simulations -^^^^^^^^^^^^^^^^^^^^^^^ - -Now that we have all the required files for running an adjoint -simulation (*.adj waveforms and STATIONS_ADJOINT file), we can continue -with the SeisFlows3 Inversion workflow. No need to edit the Par_file or -anything like that, SeisFlows3 will take care of that under the hood. We -simply need to tell the workflow (via the parameters.yaml file) to -``resume_from`` the correct function. We can have a look at these -functions again: - -.. code:: ipython3 - - ! seisflows print tasks - - -.. parsed-literal:: - - SEISFLOWS WORKFLOW TASK LIST - //////////////////////////// - Task list for - - 1: evaluate_initial_misfit - 2: run_adjoint_simulations - 3: postprocess_event_kernels - 4: evaluate_gradient_from_kernels - 5: initialize_line_search - 6: perform_line_search - 7: finalize_iteration - - -.. code:: ipython3 - - # We'll stop just before the line search so that we can take a look at the files - # generated during the middle tasks - ! seisflows par stop_after evaluate_gradient_from_kernels - - -.. parsed-literal:: - - stop_after: evaluate_initial_misfit -> evaluate_gradient_from_kernels - - -.. code:: ipython3 - - # We can use the `seisflows submit` command to continue an active workflow - # The state file created during the first run will tell the workflow to resume from the stopped point in the workflow - ! seisflows submit - - -.. parsed-literal:: - - 2022-08-16 14:36:42 (D) | setting iteration==1 from state file - 2022-08-16 14:36:42 (I) | - ================================================================================ - SETTING UP INVERSION WORKFLOW - ================================================================================ - 2022-08-16 14:36:48 (D) | running setup for module 'system.Workstation' - 2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_002.txt - 2022-08-16 14:36:51 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_002.yaml - 2022-08-16 14:36:51 (D) | running setup for module 'solver.Specfem2D' - 2022-08-16 14:36:51 (I) | initializing 3 solver directories - 2022-08-16 14:36:51 (D) | running setup for module 'preprocess.Default' - 2022-08-16 14:36:52 (D) | running setup for module 'optimize.Gradient' - 2022-08-16 14:36:53 (I) | re-loading optimization module from checkpoint - 2022-08-16 14:36:54 (I) | re-loading optimization module from checkpoint - 2022-08-16 14:36:54 (I) | - //////////////////////////////////////////////////////////////////////////////// - RUNNING ITERATION 01 - //////////////////////////////////////////////////////////////////////////////// - 2022-08-16 14:36:54 (I) | - ================================================================================ - RUNNING INVERSION WORKFLOW - ================================================================================ - 2022-08-16 14:36:54 (I) | 'evaluate_initial_misfit' has already been run, skipping - 2022-08-16 14:36:54 (I) | - //////////////////////////////////////////////////////////////////////////////// - EVALUATING EVENT KERNELS W/ ADJOINT SIMULATIONS - //////////////////////////////////////////////////////////////////////////////// - 2022-08-16 14:36:54 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' - 2022-08-16 14:37:05 (D) | renaming output event kernels: 'alpha' -> 'vp' - 2022-08-16 14:37:05 (D) | renaming output event kernels: 'beta' -> 'vs' - 2022-08-16 14:37:05 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' - 2022-08-16 14:37:16 (D) | renaming output event kernels: 'alpha' -> 'vp' - 2022-08-16 14:37:16 (D) | renaming output event kernels: 'beta' -> 'vs' - 2022-08-16 14:37:18 (I) | running SPECFEM executable bin/xspecfem2D, log to 'adj_solver.log' - 2022-08-16 14:37:29 (D) | renaming output event kernels: 'alpha' -> 'vp' - 2022-08-16 14:37:29 (D) | renaming output event kernels: 'beta' -> 'vs' - 2022-08-16 14:37:30 (I) | - //////////////////////////////////////////////////////////////////////////////// - GENERATING/PROCESSING MISFIT KERNEL - //////////////////////////////////////////////////////////////////////////////// - 2022-08-16 14:37:30 (I) | combining event kernels into single misfit kernel - 2022-08-16 14:37:31 (I) | scaling gradient to absolute model perturbations - 2022-08-16 14:37:32 (I) | stop workflow at `stop_after`: evaluate_gradient_from_kernels - - --------------- - -The function **run_adjoint_simulations()** has run adjoint simulations -to generate event kernels. The functions **postprocess_event_kernels** -and **evaluate_gradient_from_kernels** will have summed and (optionally) -smoothed the kernels to recover the gradient, which will be used to -update our starting model. - - **NOTE**: Since we did not specify any smoothing lenghts - (PAR.SMOOTH_H and PAR.SMOOTH_V), no smoothing of the gradient has - occurred. - -Using the gradient-descent optimization algorithm, SeisFlows will now -compute a search direction that will be used in the line search to -search for a best fitting model which optimally reduces the objective -function. We can take a look at where SeisFlows has stored the -information relating to kernel generation and the optimization -computation. - -.. code:: ipython3 - - # Gradient evaluation files are stored here, the kernels are stored separately from the gradient incase - # the user wants to manually manipulate them - ! ls scratch/eval_grad - - -.. parsed-literal:: - - gradient kernels misfit_kernel model residuals.txt - - -.. code:: ipython3 - - # SeisFlows3 stores all kernels and gradient information as SPECFEM binary (.bin) files - ! ls scratch/eval_grad/gradient - - -.. parsed-literal:: - - proc000000_vp_kernel.bin proc000000_vs_kernel.bin - - -.. code:: ipython3 - - # Kernels are stored on a per-event basis, and summed together (sum/). If smoothing was performed, - # we would see both smoothed and unsmoothed versions of the misfit kernel - ! ls scratch/eval_grad/kernels - - -.. parsed-literal:: - - 001 002 003 - - -.. code:: ipython3 - - # We can see that some new values have been stored in prepartion for the line search, - # including g_new (current gradient) and p_new (current search direction). These are also - # stored as vector NumPy arrays (.npy files) - ! ls scratch/optimize - - -.. parsed-literal:: - - checkpoint.npz f_new.txt g_new.npz m_new.npz - - -.. code:: ipython3 - - g_new = np.load("scratch/optimize/g_new.npz") - print(g_new["vs_kernel"]) - - -.. parsed-literal:: - - [[-1.18126331e-12 2.40273470e-12 3.97045036e-11 ... 9.62017688e-11 - 4.21140102e-11 3.96825021e-12]] - - --------------- - -3c. Line search and model update -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -Let’s finish off the inversion by running through the line search, which -will generate new models using the gradient, evaluate the objective -function by running forward simulations, and comparing the evaluated -objective function with the value obtained in -**evalaute_initial_misfit**. - -Satisfactory reduction in the objective function will result in a -termination of the line search. We are using a bracketing line search -here `(Modrak et -al. 2018) `__, -which requires finding models which both increase and decrease the -misfit with respect to the initial evaluation. Therefore it takes -atleast two trial steps to complete the line search. - -.. code:: ipython3 - - ! seisflows par stop_after perform_line_search # We don't want to run the finalize_iteration argument so that we can explore the dir - - -.. parsed-literal:: - - stop_after: evaluate_gradient_from_kernels -> perform_line_search - - -.. code:: ipython3 - - ! seisflows submit - - -.. parsed-literal:: - - 2022-08-16 14:41:12 (D) | setting iteration==1 from state file - 2022-08-16 14:41:12 (I) | - ================================================================================ - SETTING UP INVERSION WORKFLOW - ================================================================================ - 2022-08-16 14:41:18 (D) | running setup for module 'system.Workstation' - 2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/sflog_003.txt - 2022-08-16 14:41:21 (D) | copying par/log file to: /home/bchow/Work/scratch/logs/parameters_003.yaml - 2022-08-16 14:41:21 (D) | running setup for module 'solver.Specfem2D' - 2022-08-16 14:41:21 (I) | initializing 3 solver directories - 2022-08-16 14:41:22 (D) | running setup for module 'preprocess.Default' - 2022-08-16 14:41:24 (D) | running setup for module 'optimize.Gradient' - 2022-08-16 14:41:26 (I) | re-loading optimization module from checkpoint - 2022-08-16 14:41:28 (I) | re-loading optimization module from checkpoint - 2022-08-16 14:41:28 (I) | - //////////////////////////////////////////////////////////////////////////////// - RUNNING ITERATION 01 - //////////////////////////////////////////////////////////////////////////////// - 2022-08-16 14:41:28 (I) | - ================================================================================ - RUNNING INVERSION WORKFLOW - ================================================================================ - 2022-08-16 14:41:28 (I) | 'evaluate_initial_misfit' has already been run, skipping - 2022-08-16 14:41:28 (I) | 'run_adjoint_simulations' has already been run, skipping - 2022-08-16 14:41:28 (I) | 'postprocess_event_kernels' has already been run, skipping - 2022-08-16 14:41:28 (I) | 'evaluate_gradient_from_kernels' has already been run, skipping - 2022-08-16 14:41:28 (I) | initializing 'bracket'ing line search - 2022-08-16 14:41:28 (I) | enforcing max step length safeguard - 2022-08-16 14:41:28 (D) | step length(s) = 0.00E+00 - 2022-08-16 14:41:28 (D) | misfit val(s) = 1.28E-03 - 2022-08-16 14:41:28 (I) | try: first evaluation, attempt guess step length, alpha=9.08E+11 - 2022-08-16 14:41:28 (I) | try: applying initial step length safegaurd as alpha has exceeded maximum step length, alpha_new=1.44E+10 - 2022-08-16 14:41:28 (D) | overwriting initial step length, alpha_new=2.32E+09 - 2022-08-16 14:41:28 (I) | trial model 'm_try' parameters: - 2022-08-16 14:41:28 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-16 14:41:28 (I) | 3244.51 <= vs <= 3790.00 - 2022-08-16 14:41:29 (I) | - LINE SEARCH STEP COUNT 01 - -------------------------------------------------------------------------------- - 2022-08-16 14:41:29 (I) | evaluating objective function for source 001 - 2022-08-16 14:41:29 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:41:33 (D) | quantifying misfit with 'Default' - 2022-08-16 14:41:33 (I) | evaluating objective function for source 002 - 2022-08-16 14:41:33 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:41:36 (D) | quantifying misfit with 'Default' - 2022-08-16 14:41:36 (I) | evaluating objective function for source 003 - 2022-08-16 14:41:36 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:41:40 (D) | quantifying misfit with 'Default' - 2022-08-16 14:41:40 (D) | misfit for trial model (f_try) == 8.65E-04 - 2022-08-16 14:41:40 (D) | step length(s) = 0.00E+00, 2.32E+09 - 2022-08-16 14:41:40 (D) | misfit val(s) = 1.28E-03, 8.65E-04 - 2022-08-16 14:41:40 (I) | try: misfit not bracketed, increasing step length using golden ratio, alpha=3.76E+09 - 2022-08-16 14:41:40 (I) | line search model 'm_try' parameters: - 2022-08-16 14:41:40 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-16 14:41:40 (I) | 3086.61 <= vs <= 3969.23 - 2022-08-16 14:41:40 (I) | trial step unsuccessful. re-attempting line search - 2022-08-16 14:41:40 (I) | - LINE SEARCH STEP COUNT 02 - -------------------------------------------------------------------------------- - 2022-08-16 14:41:40 (I) | evaluating objective function for source 001 - 2022-08-16 14:41:40 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:41:44 (D) | quantifying misfit with 'Default' - 2022-08-16 14:41:44 (I) | evaluating objective function for source 002 - 2022-08-16 14:41:44 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:41:48 (D) | quantifying misfit with 'Default' - 2022-08-16 14:41:48 (I) | evaluating objective function for source 003 - 2022-08-16 14:41:48 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:41:52 (D) | quantifying misfit with 'Default' - 2022-08-16 14:41:52 (D) | misfit for trial model (f_try) == 1.73E-03 - 2022-08-16 14:41:52 (D) | step length(s) = 0.00E+00, 2.32E+09, 3.76E+09 - 2022-08-16 14:41:52 (D) | misfit val(s) = 1.28E-03, 8.65E-04, 1.73E-03 - 2022-08-16 14:41:52 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=1.59E+09 - 2022-08-16 14:41:52 (I) | line search model 'm_try' parameters: - 2022-08-16 14:41:52 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-16 14:41:52 (I) | 3325.01 <= vs <= 3698.63 - 2022-08-16 14:41:52 (I) | trial step unsuccessful. re-attempting line search - 2022-08-16 14:41:52 (I) | - LINE SEARCH STEP COUNT 03 - -------------------------------------------------------------------------------- - 2022-08-16 14:41:52 (I) | evaluating objective function for source 001 - 2022-08-16 14:41:52 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:41:56 (D) | quantifying misfit with 'Default' - 2022-08-16 14:41:56 (I) | evaluating objective function for source 002 - 2022-08-16 14:41:56 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:42:00 (D) | quantifying misfit with 'Default' - 2022-08-16 14:42:00 (I) | evaluating objective function for source 003 - 2022-08-16 14:42:00 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:42:03 (D) | quantifying misfit with 'Default' - 2022-08-16 14:42:03 (D) | misfit for trial model (f_try) == 2.59E-03 - 2022-08-16 14:42:03 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 3.76E+09 - 2022-08-16 14:42:03 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 1.73E-03 - 2022-08-16 14:42:03 (I) | try: bracket acceptable but step length unreasonable attempting to re-adjust step length alpha=2.82E+09 - 2022-08-16 14:42:03 (I) | line search model 'm_try' parameters: - 2022-08-16 14:42:03 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-16 14:42:03 (I) | 3189.77 <= vs <= 3852.13 - 2022-08-16 14:42:03 (I) | trial step unsuccessful. re-attempting line search - 2022-08-16 14:42:03 (I) | - LINE SEARCH STEP COUNT 04 - -------------------------------------------------------------------------------- - 2022-08-16 14:42:03 (I) | evaluating objective function for source 001 - 2022-08-16 14:42:03 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:42:07 (D) | quantifying misfit with 'Default' - 2022-08-16 14:42:07 (I) | evaluating objective function for source 002 - 2022-08-16 14:42:07 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:42:11 (D) | quantifying misfit with 'Default' - 2022-08-16 14:42:11 (I) | evaluating objective function for source 003 - 2022-08-16 14:42:11 (D) | running forward simulation with 'Specfem2D' - 2022-08-16 14:42:15 (D) | quantifying misfit with 'Default' - 2022-08-16 14:42:15 (D) | misfit for trial model (f_try) == 3.46E-03 - 2022-08-16 14:42:15 (D) | step length(s) = 0.00E+00, 1.59E+09, 2.32E+09, 2.82E+09, 3.76E+09 - 2022-08-16 14:42:15 (D) | misfit val(s) = 1.28E-03, 2.59E-03, 8.65E-04, 3.46E-03, 1.73E-03 - 2022-08-16 14:42:15 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit. - 2022-08-16 14:42:15 (I) | line search model 'm_try' parameters: - 2022-08-16 14:42:15 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-16 14:42:15 (I) | 3244.51 <= vs <= 3790.00 - 2022-08-16 14:42:15 (I) | trial step successful. finalizing line search - 2022-08-16 14:42:15 (I) | - FINALIZING LINE SEARCH - -------------------------------------------------------------------------------- - 2022-08-16 14:42:15 (I) | writing optimization stats - 2022-08-16 14:42:15 (I) | renaming current (new) optimization vectors as previous model (old) - 2022-08-16 14:42:15 (I) | setting accepted trial model (try) as current model (new) - 2022-08-16 14:42:15 (I) | misfit of accepted trial model is f=8.645E-04 - 2022-08-16 14:42:15 (I) | resetting line search step count to 0 - 2022-08-16 14:42:15 (I) | stop workflow at `stop_after`: perform_line_search - - -From the log statements above, we can see that the SeisFlows line search -required 4 trial steps, where it modified values of Vs (shear-wave -velocity) until satisfactory reduction in the objective function was -met. This was the final step in the iteration, and so the finalization -of the line search made preparations for a subsequent iteration. - -.. code:: ipython3 - - # We can see that we have 'new' and 'old' values for each of the optimization values, - # representing the previous model (M00) and the current model (M01). - ! ls scratch/optimize - - -.. parsed-literal:: - - alpha.txt f_new.txt f_try.txt m_new.npz output_optim.txt - checkpoint.npz f_old.txt g_old.npz m_old.npz p_old.npz - - -.. code:: ipython3 - - # The stats/ directory contains text files describing the optimization/line search - ! cat scratch/optimize/output_optim.txt - - -.. parsed-literal:: - - step_count,step_length,gradient_norm_L1,gradient_norm_L2,misfit,if_restarted,slope,theta - 04,2.323E+09,9.243E-05,1.049E-06,1.279E-03,0,8.263E-13,0.000E+00 - - -4. Conclusions -~~~~~~~~~~~~~~ - -We’ve now seen how SeisFlows runs an **Inversion** workflow using the -**Specfem2D** solver on a **Workstation** system. More or less, this is -all you need to run SeisFlows with any combination of modules. The -specificities of a system or numerical solver are already handled -internally by SeisFlows, so if you want to use Specmfe3D_Cartesian as -your solver, you would only need to run -``seisflows par solver specfem3d`` at the beginning of your workflow -(you will also need to set up your Specfem3D models, similar to what we -did for Specfem2D here). To run on a slurm system like Chinook -(University of Alaska Fairbanks), you can run -``seisflows par system chinook``. diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 60e4d7c1..c4f1c874 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -918,6 +918,8 @@ def examples(self, run=None, choice=None, specfem2d_repo=None, **kwargs): specfem2d_repo = os.path.expanduser( os.path.abspath(specfem2d_repo) ) + os.chdir(self._args.workdir) # run example in working dir. + # $ python /path/to/example.py run path/to/specfem2d subprocess.run(f"python {fid} {arg2} {specfem2d_repo}", shell=True, check=False) From a3889d576a68dafd7292e6273cf6bd78d0ba7c62 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Sun, 28 Aug 2022 15:57:33 -0800 Subject: [PATCH 142/195] Feature plot2d (#134) * moved read and write fortran binary files into their own separate functions in the SPECFEM tools, rather than hiding them inside the Model class. * specfem Model class now reads and writes coordinates if working with SPECFEM2D * adding 2d plotting capabilites for seisflows to plot kernels and models specfem2d solver now exports X and Z coordinate files to disk which can be used by the Model class to plot sections also changed some naming schema of output models and gradients that get written to output directory * seisflows now has function which plots SPECFEM2D model, kernels, gradients bugfix specfem.Model had some conflicts when model parameters were called X or Z, which occurred during the Rosenbrock tests feature: kernels now only save updated quantities rather than kernels for all quantities that are created during the adjoint simulation * bug fix plot 2d model naming --- seisflows/seisflows.py | 52 +++++++- seisflows/solver/specfem.py | 25 ++-- seisflows/solver/specfem2d.py | 34 +++++- seisflows/tools/array.py | 2 - seisflows/tools/graphics.py | 23 ++-- seisflows/tools/specfem.py | 207 ++++++++++++++++++++++++-------- seisflows/workflow/inversion.py | 27 ++++- seisflows/workflow/migration.py | 10 +- 8 files changed, 301 insertions(+), 79 deletions(-) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 60e4d7c1..2e9266b5 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -27,7 +27,7 @@ from seisflows.tools import unix, msg from seisflows.tools.config import load_yaml, custom_import, import_seisflows from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, - setpar_vel_model) + setpar_vel_model, Model) def sfparser(): @@ -230,6 +230,20 @@ def _format_action(self, action): # check.add_argument("args", type=str, nargs="*", # help="Generic arguments passed to check functions") # ========================================================================= + plot2d = subparser.add_parser( + "plot2d", formatter_class=argparse.RawDescriptionHelpFormatter, + description="""Plots model/kernels/gradient files located in the output/ + directory. ONLY available for SPECFEM2D models.""", + help="Plot 2D figures of models/kernels/gradients.") + + plot2d.add_argument("name", type=str, nargs="?", + help="Name of directory in the output/ directory") + plot2d.add_argument("parameter", type=str, nargs="?", + help="Name of parameter to plot from `name`. E.g., 'vs', " + "'vp' etc.") + plot2d.add_argument("-c", "--cmap", type=str, nargs="?", + help="colormap to be passed to PyPlot") + # ========================================================================= print_ = subparser.add_parser( "print", formatter_class=argparse.RawDescriptionHelpFormatter, description=""" @@ -297,7 +311,7 @@ def _format_action(self, action): # ========================================================================= # Defines all arguments/functions that expect a sub-argument subparser_dict = {"check": check, "par": par, "inspect": inspect, - "sempar": sempar, "clean": clean, + "sempar": sempar, "clean": clean, "plot2d": plot2d, "restart": restart, "print": print_, "reset": reset, "examples": examples, "swap": swap} if parser.parse_args().command in subparser_dict: @@ -956,6 +970,40 @@ def print(self, choice=None, **kwargs): acceptable_args[choice](*self._args.args, **kwargs) + def plot2d(self, name, parameter, cmap=None, **kwargs): + """ + Plot model, gradient or kernels in the PATH.OUTPUT + + :type name: str + :param name: Name of directory in the output/ directory + :type parameter: str + :param parameter: Name of parameter to plot from `name`, e.g., 'vs', + 'vp' etc. + :type cmap: str + :param cmap: optional colormap parameter to be passed to Pyplot + """ + # Figure out which models/gradients/kernels we can actually plot + _, output_dir, _ = getpar(key="path_output", + file=self._args.parameter_file, + delim=":") + acceptable_names = [ + os.path.basename(_) for _ in glob(os.path.join(output_dir, "*")) + ] + assert(name in acceptable_names), ( + f"`seisflows plot 2d` can only plot {acceptable_names}" + ) + # Grab model_init to use its coordinates + # name of directory for model_init is defined by solver.specfem.setup() + base_model = Model(path=os.path.join(output_dir, "MODEL_INIT")) + assert(base_model.coordinates is not None), \ + f"`MODEL_INIT` does not have any available 2D coordinates" + + # Now read in the actual updated values and update the model + plot_model = Model(path=os.path.join(output_dir, name)) + plot_model.coordinates = base_model.coordinates + # plot2d has internal check for acceptable parameter value + plot_model.plot2d(parameter=parameter, show=True, cmap=cmap) + def reset(self, choice=None, **kwargs): """ Mid-level function to wrap lower level reset functions diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 9f562bdb..3484ac09 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -402,12 +402,17 @@ def setup(self): """ self._initialize_working_directories() - # Export the initial model to the SeisFlows output directory - dst = os.path.join(self.path.output, "MODEL_INIT", "") - unix.mkdir(dst) - for key in self._parameters: - src = glob(os.path.join(self.path.model_init, f"*{key}{self._ext}")) - unix.cp(src, dst) + # Export the initial and target models to the SeisFlows output directory + # Copy ALL files with relevant extension, just incase + for name, model in zip(["MODEL_INIT", "MODEL_TRUE"], + [self.path.model_init, self.path.model_true]): + dst = os.path.join(self.path.output, name) + if not os.path.exists(dst): + unix.mkdir(dst) + for par in self._parameters: + src = glob(os.path.join(self.path.model_init, + f"*{par}{self._ext}")) + unix.cp(src, dst) def forward_simulation(self, executables=None, save_traces=False, export_traces=False, **kwargs): @@ -533,11 +538,15 @@ def adjoint_simulation(self, executables=None, save_kernels=False, # Save and export the kernels to user-defined locations if export_kernels: unix.mkdir(export_kernels) - unix.cp(src=glob(f"*_kernel{self._ext}"), dst=export_kernels) + for par in self._parameters: + unix.cp(src=glob(f"*{par}_kernel{self._ext}"), + dst=export_kernels) if save_kernels: unix.mkdir(save_kernels) - unix.mv(src=glob(f"*_kernel{self._ext}"), dst=save_kernels) + for par in self._parameters: + unix.mv(src=glob(f"*{par}_kernel{self._ext}"), dst=save_kernels) + def combine(self, input_path, output_path, parameters=None): """ diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index c0f8b761..7aa4daa1 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -48,8 +48,31 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): elif self.materials.upper() == "ELASTIC": self._parameters += ["vp", "vs"] + # @property + # def model_files(self): + # """ + # Return a list of paths to model files AND coordinates, which can be + # used by SeisFlows to plot SPECFEM2D models and gradients. + # + # :rtype: list + # :return: a list of full paths to model files that matches the internal + # list of solver parameters + # """ + # _model_files = super().model_files + # + # # Append coordinates 'x' and 'z' files to current list of model files + # for parameter in ["x", "z"]: + # _model_files += glob(os.path.join(self.path.mainsolver, + # self.model_databases, + # f"*{parameter}{self._ext}")) + # return _model_files + def setup(self): - """Setup the SPECFEM2D solver interface in a SeisFlows workflow""" + """ + Setup the SPECFEM2D solver interface in a SeisFlows workflow + Append coordinate files to exported model files so that we can use + them for plotting later + """ source_file = os.path.join(self.path.specfem_data, self.source_prefix) self._f0 = getpar(key="f0", file=source_file)[1] @@ -61,6 +84,15 @@ def setup(self): super().setup() + # Copy in coordinate files to the Model definition so we can plot + for name, model in zip(["MODEL_INIT", "MODEL_TRUE"], + [self.path.model_init, self.path.model_true]): + dst = os.path.join(self.path.output, name) + for par in ["x", "z"]: + src = glob(os.path.join(self.path.model_init, + f"*{par}{self._ext}")) + unix.cp(src, dst) + def smooth(self, input_path, output_path, parameters=None, span_h=0., span_v=0., use_gpu=False): """ diff --git a/seisflows/tools/array.py b/seisflows/tools/array.py index 69352ac3..77b421d2 100644 --- a/seisflows/tools/array.py +++ b/seisflows/tools/array.py @@ -2,8 +2,6 @@ """ Tools useful for array manipulation in Seisflows """ -import os - import numpy as np import scipy.signal as _signal import scipy.interpolate as _interp diff --git a/seisflows/tools/graphics.py b/seisflows/tools/graphics.py index b4660619..1d1233e5 100644 --- a/seisflows/tools/graphics.py +++ b/seisflows/tools/graphics.py @@ -1,6 +1,6 @@ #!/usr/bin/env python3 """ -Visualization tools for Seisflows +Basic visualization tools for SeisFlows to visualize waveforms, models, etc. """ import numpy as np import matplotlib.pyplot as plt @@ -9,25 +9,28 @@ from obspy.core.stream import Stream -def plot_gll(x, y, z): +def plot_2D_contour(x, z, data, cmap="viridis"): """ - Plots values on 2D unstructured GLL mesh + Plots values of a SPECEFM2D model on an unstructured grid + :type x: np.array :param x: x values of GLL mesh - :type y: np.array - :param y: y values of GLL mesh :type z: np.array :param z: z values of GLL mesh + :type data: np.array + :param data: D """ - r = (max(x) - min(x))/(max(y) - min(y)) + # Figure out aspect ratio of the figure + r = (max(x) - min(x))/(max(z) - min(z)) rx = r/np.sqrt(1 + r**2) ry = 1/np.sqrt(1 + r**2) - f = plt.figure(figsize=(10*rx, 10*ry)) - p = plt.tricontourf(x, y, z, 125) - plt.axis('image') + f = plt.figure(figsize=(10 * rx, 10 * ry)) + p = plt.tricontourf(x, z, data, levels=125, cmap=cmap) + cbar = plt.colorbar(p, shrink=0.8, pad=0.025) # , format="%.2f") + plt.axis("image") - return f, p + return f, p, cbar def plot_vector(t, v, xlabel='', ylabel='', title=''): diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index f285baf8..b7674a81 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -3,6 +3,7 @@ i.e., SPECFEM2D/3D/3D_GLOBE """ import os +import matplotlib.pyplot as plt import numpy as np from copy import deepcopy from glob import glob @@ -10,6 +11,8 @@ from seisflows.tools.config import Dict from seisflows.tools import unix, msg from seisflows.tools.math import poissons_ratio +from seisflows.tools.graphics import plot_2D_contour + class Model: @@ -49,6 +52,7 @@ def __init__(self, path=None, fmt="", parameters=None): self.path = path self.fmt = fmt self.model = None + self.coordinates = None self._parameters = parameters self._ngll = None self._nproc = None @@ -57,7 +61,8 @@ def __init__(self, path=None, fmt="", parameters=None): if self.path and os.path.exists(path): # Read existing model from a previously saved .npz file if os.path.splitext(path)[-1] == ".npz": - self.model, self._ngll, self.fmt = self.load(file=self.path) + self.model, self.coordinates, self._ngll, self.fmt = \ + self.load(file=self.path) _first_key = list(self.model.keys())[0] self._nproc = len(self.model[_first_key]) # Read a SPECFEM model from its native output files @@ -67,6 +72,11 @@ def __init__(self, path=None, fmt="", parameters=None): self._nproc, self.available_parameters = \ self._get_nproc_parameters() self.model = self.read(parameters=parameters) + # Coordinates are only useful for SPECFEM2D models + try: + self.coordinates = self.read_coordinates_specfem2d() + except AssertionError: + pass # .sorted() enforces parameter order every time, otherwise things # can get screwy if keys returns different each time @@ -199,6 +209,44 @@ def read(self, parameters=None): return parameter_dict + def read_coordinates_specfem2d(self): + """ + Attempt to read coordinate files from the given model definition. + This is only really useful for SPECFEM2D, where we can plot the + model, kernel and gradient using matplotlib. + + .. warning + This will NOT work for SPECEFM3D. When you get to 3D, the + coordinates don't match up one-to-one with the model values so you + need external viewing software (e.g., ParaView) to plot. + + :rtype: Dict + :return: a dictioanary with the X and Z coordinates read in from + a SPECFEM2D model, if applicable + """ + coordinates = {"x": [], "z": []} + if self.fmt == ".bin": + coordinates["x"] = self._read_model_fortran_binary(parameter="x") + coordinates["z"] = self._read_model_fortran_binary(parameter="z") + elif self.fmt == ".dat": + fids = glob(os.path.join(self.path, + self.fnfmt(val="*", ext=".dat"))) + for fid in sorted(fids): + coordinates["x"].append(np.loadtxt(fid).T[:, 0]) + coordinates["z"].append(np.loadtxt(fid).T[:, 0]) + + # Internal check for parameter validity by checking length of coord + # against length of model. If they're not the same, then it's not + # useful to store coordinates because they can't be used for plotting + assert(len(coordinates["x"]) == len(coordinates["z"])), \ + f"coordinate arrays do not match in length" + # Assuming all model parameters have the same length + assert(len(coordinates["x"]) == + len(self.model[list(self.model.keys())[0]])), \ + f"length of coordinates array does not match model length" + + return coordinates + def merge(self, parameter=None): """ Convert dictionary representation `model` to vector representation `m` @@ -307,6 +355,11 @@ def save(self, path): .npz array so that it can be loaded in at a later time for future use """ model = self.split() + if self.coordinates: + # Incase we have model parameters called 'x' or 'z', rename for save + model["x_coord"] = self.coordinates["x"] + model["z_coord"] = self.coordinates["z"] + np.savez(file=path, fmt=self.fmt, **model) def load(self, file): @@ -321,17 +374,24 @@ def load(self, file): :return: (Model Dictionary, ngll points for each slice, file format) """ model = Dict() + coords = Dict() ngll = [] data = np.load(file=file) for i, key in enumerate(data.files): if key == "fmt": continue - model[key] = data[key] - if not ngll: - for array in model[key]: - ngll.append(len(array)) + # Special case where we are using SPECFEM2D and carry around coords + elif "coord" in key: + coords[key[0]] = data[key] # drop '_coord' suffix from `save` + else: + model[key] = data[key] + # Assign the number of GLL points per slice. Only needs to happen + # once because all model values should have same points/slice + if not ngll: + for array in model[key]: + ngll.append(len(array)) - return model, ngll, str(data["fmt"]) + return model, coords, ngll, str(data["fmt"]) def update(self, model=None, vector=None): """ @@ -344,6 +404,64 @@ def update(self, model=None, vector=None): elif vector is not None: self.model = self.split(vector=vector) + def plot2d(self, parameter, cmap=None, show=True, save=None): + """ + Plot internal model parameters as a 2D contour plot. Kwargs are passed + to underlying matplotlib.pylpot.tricontourf function. + + .. warning:: + This is only available for SPECFEM2D models. SPECFEM3D model + coordinates do not match the model vectors (because the grids are + irregular) and cannot be visualized like this. + + :type parameter: str + :param parameter: chosen internal parameter value to plot. + :type cmap: str + :param cmap: colormap which match available matplotlib colormap. + If None, will choose default colormap based on parameter choice. + :type show: bool + :param show: show the figure after plotting + :type save: str + :param save: if not None, full path to figure to save the output image + """ + assert(parameter in self._parameters), \ + f"chosen `parameter` must be in {self._parameters}" + + assert(self.coordinates is not None), ( + f"`plot2d` function requires model coordinates which are only " + f"available for solver SPECFEM2D" + ) + + # Choose default colormap based on parameter values + if cmap is None: + if "kernel" in parameter: + cmap = "seismic_r" + else: + cmap = "Spectral" + + # 'Merge' the coordinate matrices to get a vector representation + x, z = np.array([]), np.array([]) + for iproc in range(self.nproc): + x = np.append(x, self.coordinates["x"][iproc]) + z = np.append(z, self.coordinates["z"][iproc]) + data = self.merge(parameter=parameter) + + f, p, cbar = plot_2D_contour(x=x, z=z, data=data, cmap=cmap) + + # Set some figure labels based on information we know here + ax = plt.gca() + ax.set_xlabel("X [m]") + ax.set_ylabel("Z [m]") + ax.set_title(f"{parameter.title()}_min = {data.min()};\n" + f"{parameter.title()}_max = {data.max()};\n" + f"{parameter.title()}_mean = {data.mean()}; ") + cbar.ax.set_ylabel(parameter.title(), rotation=270, labelpad=15) + + if save: + plt.savefig(save) + if show: + plt.show() + def _get_nproc_parameters(self): """ Get the number of processors and the available parameters from a list of @@ -404,29 +522,12 @@ def _read_model_fortran_binary(self, parameter): :rtype: np.array :return: vector of model values for given `parameter` """ - def _read(filename): - """Read a single slice (e.g., proc000000_vs.bin) binary file""" - nbytes = os.path.getsize(filename) - with open(filename, 'rb') as file: - # read size of record - file.seek(0) - n = np.fromfile(file, dtype='int32', count=1)[0] - - if n == nbytes-8: - file.seek(4) - data = np.fromfile(file, dtype='float32') - return data[:-1] - else: - file.seek(0) - data = np.fromfile(file, dtype='float32') - return data - array = [] fids = glob(os.path.join( self.path, self.fnfmt(val=parameter, ext=".bin")) ) for fid in sorted(fids): # make sure were going in numerical order - array.append(_read(fid)) + array.append(read_fortran_binary(fid)) array = np.array(array) @@ -485,13 +586,8 @@ def _write_model_fortran_binary(self, path): for i, data in enumerate(self.model[parameter]): filename = self.fnfmt(i=i, val=parameter, ext=".bin") filepath = os.path.join(path, filename) - buffer = np.array([4 * len(data)], dtype="int32") - data = data.astype("float32") - with open(filepath, 'wb') as f: - buffer.tofile(f) - data.tofile(f) - buffer.tofile(f) + write_fortran_binary(arr=data, filename=filepath) def check_source_names(path_specfem_data, source_prefix, ntask=None): @@ -732,46 +828,57 @@ def setpar_vel_model(file, model): setpar(key="nbmodels", val=len(model), file=file) -def _read(filename): +def read_fortran_binary(filename): """ - Legacy code: Reads Fortran style binary data into numpy array. + Reads Fortran-style unformatted binary data into numpy array. .. note:: - Has been rewritten into the Model class but left here if useful + The FORTRAN runtime system embeds the record boundaries in the data by + inserting an INTEGER*4 byte count at the beginning and end of each + unformatted sequential record during an unformatted sequential WRITE. + see: https://docs.oracle.com/cd/E19957-01/805-4939/6j4m0vnc4/index.html + + :type filename: str + :param filename: full path to the Fortran unformatted binary file to read + :rtype: np.array + :return: numpy array with data with data read in as type Float32 """ nbytes = os.path.getsize(filename) - with open(filename, 'rb') as file: + with open(filename, "rb") as file: # read size of record file.seek(0) - n = np.fromfile(file, dtype='int32', count=1)[0] + n = np.fromfile(file, dtype="int32", count=1)[0] - if n == nbytes-8: + if n == nbytes - 8: file.seek(4) - data = np.fromfile(file, dtype='float32') + data = np.fromfile(file, dtype="float32") return data[:-1] else: file.seek(0) - data = np.fromfile(file, dtype='float32') + data = np.fromfile(file, dtype="float32") return data -def _write(v, filename): +def write_fortran_binary(arr, filename): """ - Legacy code: Writes Fortran style binary files - Data are written as single precision floating point numbers - - .. note:: - Has been rewritten into the Model class but left here if useful + Writes Fortran style binary files. Data are written as single precision + floating point numbers. .. note:: FORTRAN unformatted binaries are bounded by an INT*4 byte count. This function mimics that behavior by tacking on the boundary data. https://docs.oracle.com/cd/E19957-01/805-4939/6j4m0vnc4/index.html + + :type arr: np.array + :param arr: data array to write as Fortran binary + :type filename: str + :param filename: full path to file that should be written in format + unformatted Fortran binary """ - n = np.array([4 * len(v)], dtype='int32') - v = np.array(v, dtype='float32') + buffer = np.array([4 * len(arr)], dtype="int32") + data = np.array(arr, dtype="float32") - with open(filename, 'wb') as file: - n.tofile(file) - v.tofile(file) - n.tofile(file) + with open(filename, "wb") as file: + buffer.tofile(file) + data.tofile(file) + buffer.tofile(file) diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index edc156cf..91d71419 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -241,6 +241,11 @@ def evaluate_initial_misfit(self): """ if self.iteration == 1: super().evaluate_initial_misfit() + + # Expose the initial model to the optimization library + model = Model(self.path.model_init, + parameters=self.solver._parameters) + self.optimize.save_vector(name="m_new", m=model) else: # Thrifty inversion SKIPS initial misfit evaluation, re-using final # model from previous line search. Can only happen mid-workflow @@ -280,10 +285,21 @@ def evaluate_gradient_from_kernels(self): """ super().evaluate_gradient_from_kernels() - model = Model(os.path.join(self.path.eval_grad, "model"), - parameters=self.solver._parameters) - self.optimize.save_vector(name="m_new", m=model) - + # Rename kernels (K) and gradient (G) output files by iteration number + # so they don't get overwritten by future iterations. + src = os.path.join(self.path.output, "kernels") + dst = os.path.join(self.path.output, f"KERNELS_{self.iteration:0>2}") + if os.path.exists(src): + logger.debug(f"{src} -> {dst}") + unix.mv(src, dst) + + src = os.path.join(self.path.output, "gradient") + dst = os.path.join(self.path.output, f"GRADIENT_{self.iteration:0>2}") + if os.path.exists(src): + logger.debug(f"{src} -> {dst}") + unix.mv(src, dst) + + # Expose the gradient to the optimization library gradient = Model(path=os.path.join(self.path.eval_grad, "gradient")) self.optimize.save_vector(name="g_new", m=gradient) @@ -417,7 +433,7 @@ def finalize_iteration(self): if self.export_model: model = self.optimize.load_vector("m_new") model.write(path=os.path.join(self.path.output, - f"M{self.iteration:0>2}"), + f"MODEL_{self.iteration:0>2}"), ) # Update optimization @@ -439,6 +455,7 @@ def finalize_iteration(self): self.preprocess.finalize() + def _update_thrifty_status(self): """ Determine if line search forward simulation can be carried over to the diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index cf065dcc..637b4b89 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -54,7 +54,7 @@ class Migration(Forward): """ __doc__ = Forward.__doc__ + __doc__ - def __init__(self, modules=None, path_mask=None, export_gradient=False, + def __init__(self, modules=None, path_mask=None, export_gradient=True, export_kernels=False, **kwargs): """ Instantiate Migration-specific parameters @@ -198,3 +198,11 @@ def evaluate_gradient_from_kernels(self): gradient.update(vector=gradient.vector * mask.vector) gradient.write(path=os.path.join(self.path.eval_grad, "gradient")) + + # Export gradient to disk + if self.export_gradient: + logger.info("exporting gradient to disk") + src = os.path.join(self.path.eval_grad, "gradient") + dst = os.path.join(self.path.output, "gradient") + unix.cp(src, dst) + From 5942760f3612c8513a576552eaa03b53425a69a9 Mon Sep 17 00:00:00 2001 From: bch0w Date: Sun, 28 Aug 2022 16:34:51 -0800 Subject: [PATCH 143/195] bugfix seisflows plot2d picking up non model directories for plotting pyaflowa now finalizes its scratch directory into output/pyaflowa, rather than directly into output --- seisflows/preprocess/pyaflowa.py | 6 +++--- seisflows/seisflows.py | 30 ++++++++++++++++++++++-------- 2 files changed, 25 insertions(+), 11 deletions(-) diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index 3dda7d37..6bde4b62 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -579,19 +579,19 @@ def finalize(self): if self.export_datasets: src = glob(os.path.join(self.path._datasets, "*.h5")) src += glob(os.path.join(self.path._datasets, "*.csv")) # inspector - dst = os.path.join(self.path.output, "datasets", "") + dst = os.path.join(self.path.output, "pyaflowa", "datasets", "") unix.mkdir(dst) unix.cp(src, dst) if self.export_figures: src = glob(os.path.join(self.path._figures, "*.pdf")) - dst = os.path.join(self.path.output, "figures", "") + dst = os.path.join(self.path.output, "pyaflowa", "figures", "") unix.mkdir(dst) unix.cp(src, dst) if self.export_log_files: src = glob(os.path.join(self.path._logs, "*.log")) - dst = os.path.join(self.path.output, "logs", "") + dst = os.path.join(self.path.output, "pyaflowa", "logs", "") unix.mkdir(dst) unix.cp(src, dst) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 99ef1e37..23045eb5 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -243,6 +243,8 @@ def _format_action(self, action): "'vp' etc.") plot2d.add_argument("-c", "--cmap", type=str, nargs="?", help="colormap to be passed to PyPlot") + plot2d.add_argument("-s", "--savefig", type=str, nargs="?", default=None, + help="optional name and path to save figure") # ========================================================================= print_ = subparser.add_parser( "print", formatter_class=argparse.RawDescriptionHelpFormatter, @@ -972,7 +974,8 @@ def print(self, choice=None, **kwargs): acceptable_args[choice](*self._args.args, **kwargs) - def plot2d(self, name, parameter, cmap=None, **kwargs): + def plot2d(self, name=None, parameter=None, cmap=None, savefig=None, + **kwargs): """ Plot model, gradient or kernels in the PATH.OUTPUT @@ -983,17 +986,27 @@ def plot2d(self, name, parameter, cmap=None, **kwargs): 'vp' etc. :type cmap: str :param cmap: optional colormap parameter to be passed to Pyplot + :type savefig: str + :param savefig: optional name and path of filename to save figure + to disk """ # Figure out which models/gradients/kernels we can actually plot _, output_dir, _ = getpar(key="path_output", file=self._args.parameter_file, delim=":") - acceptable_names = [ - os.path.basename(_) for _ in glob(os.path.join(output_dir, "*")) - ] - assert(name in acceptable_names), ( - f"`seisflows plot 2d` can only plot {acceptable_names}" - ) + # Assuming only models/kernels/gradients have the format *_* in output + acceptable_names = sorted([ + os.path.basename(_) for _ in glob(os.path.join(output_dir, "*_*")) + ]) + if name is None: + print(msg.cli(f"Available models/gradients/kernels", + items=sorted(acceptable_names), header="Plot2D") + ) + sys.exit(0) + else: + assert(name in acceptable_names), ( + f"`seisflows plot 2d` can only plot {acceptable_names}" + ) # Grab model_init to use its coordinates # name of directory for model_init is defined by solver.specfem.setup() base_model = Model(path=os.path.join(output_dir, "MODEL_INIT")) @@ -1004,7 +1017,8 @@ def plot2d(self, name, parameter, cmap=None, **kwargs): plot_model = Model(path=os.path.join(output_dir, name)) plot_model.coordinates = base_model.coordinates # plot2d has internal check for acceptable parameter value - plot_model.plot2d(parameter=parameter, show=True, cmap=cmap) + plot_model.plot2d(parameter=parameter, cmap=cmap, show=True, + save=savefig) def reset(self, choice=None, **kwargs): """ From 1c6d4f3006fa22e0651e49899851dbc702a271f9 Mon Sep 17 00:00:00 2001 From: bch0w Date: Sun, 28 Aug 2022 16:59:33 -0800 Subject: [PATCH 144/195] added plot2d to command line tool docs page --- docs/command_line_tool.rst | 118 ++++++++++++ .../command_line_tool_39_0.png | Bin 0 -> 66983 bytes docs/notebooks/command_line_tool.ipynb | 173 +++++++++++++++++- 3 files changed, 289 insertions(+), 2 deletions(-) create mode 100644 docs/images/command_line_tool_files/command_line_tool_39_0.png diff --git a/docs/command_line_tool.rst b/docs/command_line_tool.rst index b22c5a34..7afc0894 100644 --- a/docs/command_line_tool.rst +++ b/docs/command_line_tool.rst @@ -532,3 +532,121 @@ defines. -h, --help show this help message and exit -f, --force Skip the clean warning check statement + +Plotting +~~~~~~~~ + +seisflows plot2d +^^^^^^^^^^^^^^^^ + +``plot2d`` allows you to quickly plot SPECFEM2D models, kernels and +gradients which have been exported to disk during a SeisFlows workflow. +From a SeisFlows working directory the format for running ``plot2d`` is +provided in the help message. + +.. code:: ipython3 + + # a directory where we have run example #2 + %cd ~/Work/scratch/ + ! ls + + +.. parsed-literal:: + + /home/bchow/Work/scratch + logs parameters.yaml sflog.txt specfem2d + output scratch sfstate.txt specfem2d_workdir + + +.. code:: ipython3 + + ! seisflows plot2d -h + + +.. parsed-literal:: + + usage: seisflows plot2d [-h] [-c [CMAP]] [-s [SAVEFIG]] [name] [parameter] + + Plots model/kernels/gradient files located in the output/ + directory. ONLY available for SPECFEM2D models. + + positional arguments: + name Name of directory in the output/ directory + parameter Name of parameter to plot from `name`. E.g., 'vs', + 'vp' etc. + + optional arguments: + -h, --help show this help message and exit + -c [CMAP], --cmap [CMAP] + colormap to be passed to PyPlot + -s [SAVEFIG], --savefig [SAVEFIG] + optional name and path to save figure + + +Running ``plot2d`` without any arguments will print out a list of +available directories you can plot + +.. code:: ipython3 + + ! seisflows plot2d + + +.. parsed-literal:: + + PLOT2D + ////// + Available models/gradients/kernels + + GRADIENT_01 + MODEL_01 + MODEL_INIT + MODEL_TRUE + + +Users will also have to choose which parameter they would like to plot, +which is defined by the available parameters in the underlying model. +Incorrect choices will throw an AssertionError which will tell you what +parameters are available to plot. + +.. code:: ipython3 + + ! seisflows plot2d GRADIENT_01 + + +.. parsed-literal:: + + Traceback (most recent call last): + File "/home/bchow/miniconda3/envs/docs/bin/seisflows", line 33, in + sys.exit(load_entry_point('seisflows', 'console_scripts', 'seisflows')()) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 1298, in main + sf() + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 410, in __call__ + getattr(self, self._args.command)(**vars(self._args)) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 1021, in plot2d + save=savefig) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/tools/specfem.py", line 428, in plot2d + f"chosen `parameter` must be in {self._parameters}" + AssertionError: chosen `parameter` must be in ['vp_kernel', 'vs_kernel'] + + +.. code:: ipython3 + + ! seisflows plot2d GRADIENT_01 vs_kernel --savefig gradient_01_vs_kernel.png + + +.. parsed-literal:: + + Figure(707.107x707.107) + + +.. code:: ipython3 + + from IPython.display import Image + Image(filename='gradient_01_vs_kernel.png') + + + + +.. image:: images/command_line_tool_files/command_line_tool_39_0.png + + diff --git a/docs/images/command_line_tool_files/command_line_tool_39_0.png b/docs/images/command_line_tool_files/command_line_tool_39_0.png new file mode 100644 index 0000000000000000000000000000000000000000..8e903d5175323442efd8795d79dbe635b234da61 GIT binary patch literal 66983 zcmeFZX*ibc`!0NIR478mGE3&ENT!4`WKKv5$&@iNQ$m!X457>_4Q47sC}V~~1470W zk)h1vyI=j+|NXrm*4nnUtuODF^=v)QBX0M7UFUfo$FU##z8_bZj@AjPoy=}VeV>0axiyuzU<_7+17&ns+H>%TPH_$31LxT2|;!nH#cV)5t0AAK-kIE zS|pj`c_xX(PEu1oX5g7L@y)}Ou5(#ox>YzoKjQH<_MJvF)L~tR0s})U(#gbbr9H7x z{u^N-S$kDi@JwCbo>O!MDjB@@1XO9m%_3+bRJl|w83aRbkylUtU8(8+V3qL5XwMW? z>&jerr$(#nl@Cc@t0g3?KfDVKeZy!OE>>?u&mGXi@?T$f^;9>C65nKeUMS6UiTJ|u z^xgwC|Gvm>8oHQ3d?)<0aT28j@kIgu?HF_73o%107x9*V@AphlD}?Fa8^_iC-#7ce zYxci!G$!axE4=B&6Dh|#^ENbk+}+((l$C4Gck|*H&3n{0I@5O+S!+Kr;FtCK^ROjh zdfJ(fZl|p0^gzUm@n64gO@1raXp*|zMWUsp-LidqW?CA4(9oCL+iR+P;zZ4d54-GM zFz=Ibd-GI3i@#z$n1X?tm6b9=b@SP?XJ2ouuatO9rEqKIby`mLmO5X#aw9l+>+6b& zyV22{VMkqtwpdtL42+LcNJvP$yC|OdyRXD$^QSEB6SwyYU9hyg@$1X;n*M$^TU%Qz zM|%?!W|^xK4Iq7#O%Fe6DO@v^_JrOCw&G zLsF9N!-o$#PYs+sJQ~88B<`f9iqwAp`P1@ip%wYgoq?H|T*W3reO^EJWg8W2l1ctB zI)ARxmud6%T|pHUazdG}x4(dOS?Kx22CBSa@$f56bBB_nxysx?25>`(w$520N zzg(Y9xv;SC=bW=rx?k%fSk#2$^>uWp<$UHRB3>>$UYluP+j6ZV=j=lK%d`lX_=zlA7KX~w9*q%Lm z-qqKK+?TXf3Jwm==u(T}r6DoP`%34SRopLgA6F&u@$jh7NnuySB_z1cpFeNcmPQsg zr(bfhagQE<9Npf%#78_*xxH8S)8kV+NPg=}Kcg306*iJCiZgB9y0!h|BMsZSTlA8S zz0&ukoKpB4TT|q?V;Y|vzqzZ}d(Lio;KuHg!ttNp-Q_y()n8gtawjTkw?kL{u~`}a z)e^qR^Bc?Y+?Ph0;CCZRqgjF2!TVj%~T7l_bqkJK0z9;JfRQL-rlv z(b3U1KUxwED!kpF85i+>tMFNfTb>*r*Kl-nlyn(VHYvJ9<+nQ1@bHUW=+HbeUsXyX;VR9-ZB_(=<&3}=DEbZ8h zZSBuaKezdibi^P_YoGX`L-fBtAvj}Ryf}nAXq)(2Wc%gWX*wF3W27h6ttm>qUyH2O zcw=-gTws5nd^FxL*Hq1Kd6t7D={bEtZH0-6>7tdD%KrWPV-pfi+IM89FD`oC3Jv8e z(he^;Q-k=9PfgV}$+;)vF?rc-3A;*8!hu(VeMetb%X@ix>csG#dh+DSNxlc-Ryz^5WzK_vI`iTyAG*jc zSz&{(lXP5NU4skeetpSYo*UO#*3UDOYk%7~_9+Vo{nJf0f4;CB&Hk#5b)S!8ZW->x z7n>CIA8XRYd5nDwX5F`MtUdFD(%1Wk?8!;L`>XnG6#9IoP#A4s~5>J+|u z#V{nlG9jVc@|?To=B|C5Bx0NIA9i3qa^%Qe)y#DNwPjsLM`3z8I-Sdx1;2j%deOJN56MWy-m$JMtC34US!M}CO7V?erFE2BZrJWC0J56UTou;9!EoBnm)#z+Y zX-&nZ;4c_kS66peDLoA}hLh9#&-WcTPK{+%>&pUUX;#hm!kV1Em8p=3P*wWcJaM$< zXH|aw9jv+8Glg?yZX7R6&JB7uM6n$pNjh{(rcb=Rv3<)mUd;sdu!Y%K?gIx73~q>g zS}5%5?$+zC^b6il@SY9TJavlaH^bh&(O7{ePx#dK^#^RoB_<@aiBzpxNHTqBZDsJ6 zP;Y8(<|;MSa&d7{GB!13CA-5aNnEO_aGrDOWcQ2PBovbJphBGPJ*4g;>)kXJB}!-h zT*!ThJ0VW+bg5-{h3tNb7V7=`BZr18E`KXKZIBWZb7O5~AyYe5UWY%9WEM_ANkMTV zB7zF{ccZped2wZBxPdLe_tDF$a7Z>(#ty&clYjfBqJqZhK=50oAylzyLT-uf>*wsedRa^)M3++op{k0K;X{Z zyBu~Watt$dGgYIdYyL>_2nbN{$L-{gQ|Hsr(6~`vesq4~>t<_fYv2Nd=Y~`>Gc#@D za~Z$4u#d&W#Ly-sC-eAuC;A~D^&fkrcPz90&6h9qYHDiq^CNu~KGMzuB=3buDx4a} z%dW2C*BGjpwxODlF3grc*L&)`GVg%=x?_!uzth7KhwM&#{7tM4g%wh>ii=CZL#<#X zGB!3gwPcy(U2MM7WFb^6A*i=34kw-(WZ<|ORr$+B$Hcg-ExWJ&X%-0$4ZViV&B)9Q zHVOy`ASoIc&}pU0N3cjaUI3yoDzMlJOmTKl{?NpOXg~3AH7O~n6GfNarx`v^*LzCM z%zO)Zr+xY9)2B9{pU~*(>o+^x6f=x`l^jv@DzBs@0jce&`*=r&YmIbubUc%#rDfyC zkA*Eoba5j?LrPj&S{Lo?)YsS7XJ^OsGhN2U##BZ6kw&!jCh=pE4I(1in{)@!hX^>w zcl62+O0qN_jeF!)y1KgGM@LUCO!YJ5urV{M8yXr`CysX>k(d}6;bC52K`j?g3@>vV zho>2#sz?ed$^^*BlyU!cawtXKPn~4*@u8Y(kLOp3nt0)JoJ7gpSX)pTxp(j0 zMN7-$$cuDrY}!4qoU(xD)Voupoc5EYp{i>9a_oD31Pe84NiC5IKrlmMA-?{z#ARtT*3HF`P9bvjbyfm~#Q1agz*kOb+eby*ul7&ntaj zU)jX__w^nec2MqjuklE@d0A}!m*z&X;DfbRQ8BS&Ha2|7{Grd!QPFPrQ4h;>FNNdY;$F;O}0nCYd{kdrKqI>7c z?Ba|ik@U0BEreNw?Amt=mHNWlz^#kGj{_4Emy5Nrz=6rh`*7Y29Q$|gmkq^tHB)4b z4TR&H#Vl&cTM{Lc3Sv9AYdAG#rVXvB`7BSnsL9 z;^J_W%k;ppE!(zjB5`tZdX}lwo6#Pqp?q_@Ifa5jxE7g~SdHG-UbF~##-mpSH8nMZ zN)i$nQG@7FHIKc&e~5;TE{JUNw%2+Vtkl%kuql>6wE2Lg-f9Z~;-0gkG!wsnM|8L> zOrC4s_}1IobUE+p@9t=E78Vv+-$iPCSY2spsZoXZA;Ubgb5G~ZRK|Yi7Zz?JeSUUY zLoc^;d}g$r3n}{dqhG}Z1!SajCo2~>x1h{S%SSKEWwD;|rj;*>if)93?TA%>i4mL;jdiU;~ z;>!GQfeHP_-@eK6z>eW;3j0?UrWyuoZi?Bov8%Pj37m1B=n_Ng^|*R-?)UE(6A}^z zDi-=;1Rsc5ZbO_$m0tO|bNdc738A-cRX4>6q_^8B_nb|vjGygss!B(tMw?fS1yX4? zd;CFLere0gmoJI4)b!gP*<;h@&4W`@QAE}pxqkin^z3ZyYp=gS9GVZLoK)T1B+&~6 zZ;q_=TT#mEAM6;kOWn+|i<1Mjr{V ze}UjxY8x7c-67g}iywoEtA?(-DO=HTNaN1c@RoK9l z9j;RB!W&ZhD$;?p-*U0e)$tA?+*J6!qlU9AmIFV2gmiTo0l<=@i&0`z7vSgLBgf8t z^yt}=J^C`cu6;M>JnAu7n{Qsz_R8tJ;Mtd&h5M(6ii$72XU4r~7?>^p+bz$-J9tG` z(^qCcX}c`X+GYkUsw)I*3CB}dYebxToJ|St>T-YOK45^l5|?4T+cxvBC&Nzp=v#EmxLyY6i|yiTn6o z#NG{b9xM(GO-(zIBfCmmGDp?!vmCyxXl9l&%{24pkCL6;v+pBgV_}GDE|4U^pCoqH ziDRGaZAOg@hxcu%u zBxqc?MP6P$`e2S(i29>ypf?Hy1qEeQ)oNTi@LEu6Dw}FJ<8`n!!?Rf;ZyYWow(4`VtFp?ls z=m~`K_h)OS_uMZcyST~hd#s%*eCtqew(%da%9sP%^$2#n-S*o0dQK6M-6$Q$hwCF$ ztY4sy69ZS)@<3|0ii(O2pl{{+vi-xXEQ;ZCRA^3lS>2dE$ZQO=ZIDPMB_#uE3;o-t zExMnD(H__t-#{fL!Q}Sqvzjz*_wzF%TefVufPE?n*pLUq7noPI&U_-0^)0w7Wwi|) zr8e-!TefZ`_)K)1H9!br;78jRo)oS)f*e|GP*}fy=MHsAX(`8n1KY92)hMe$ET!ra zhfm!X!y*%9ifBKR28A4O`HR1v=e1S(`PfJ@KYaAa92ti3@MT8g1-Ei8_t(_axD3_q zz`74r2UC=wo6gtFY)|u;>Z{(M-Lt3d@hO(Yr6mp-8D=S`zFLKiCF0t4EJzpti4;d( zH*czqZbqhRM>Fg@Q^(-Bx+oSH80h@-!#-kz)gSG_70_B7&`h`nNH&CCu`WT(QU^%f z_wRct;!4ri@ltw~T>Z`LJwI`fdyOE*9B#gP_3Dmv=M&w{;FjKIrTX6j^EW&BjfLob zQO&9M?&U4Bc;&z5O}S5o4!1PSGREk0+R0%*#r*lk>4CtHpAIk~eI(;rg0|~@&OP@4 zXNkj0)=s6#+XOAvUeu&0K|w*Z_Q#c$P{n#yGl_Y)FvA^=1d9w0` z*Jwz=Z@wd^nP_y8JtFqY-A8&=xpe80L8dCzPIB@zycLC5p2Q22#;h=!HEX+vss77q z2J(QsjThIgPURSSpF4h*XJN1>HYVmc!j0%d04_mIANYDHgJDfTE}6Cc_JOw`?(Txt zw70h>x)gAGYRK7{#zmLz-o8z7kZ$Ln+1ZD{rs_kKD-B)Et*zRj60f&gRj5z(Bh3@6 z(w8T?H|Tb5J>=NiWwWBJj9&Kp@G#NCeV>@nO!fT})_%g_%%%QhS+8hthR49oatA9N zV~z+xDmVdt;86EVd?1!r53F&7ut=k5okinKrP!;hi!OHkm2zLZy6!+|IAr@V2yChC zY&uum?{f2J%9bLQsdrKN>^?oFGBz^01Hg}EGMUwhEsQ<%!o=TS{(XYj4Ov;)lTQtz zfe_rM`jW-P#lz>Tz)};dh%B4Ajfz=ENh#2#toV=o6_U-b&rdUC=Dg*Ej0=O9C2bUm z^?q(Bl)2IXTW+HXe)oo^*i0u_tE6bH1DJbNBgcWnsn=Y0!pZ*4ax zC#$@#k+|ATxZy~fD`@=s(ToyJ=ss-e5<2@b4XIt{`Ir2cFIACfrV+k7np5R`Lcm~odU?G?re==V zcIv()!ED{Sb&Gp$pR_Xxg3%52M}c5tl$4Z|wSP)DySoQ#^2WRdX0vrW`sw3GqMJjH z3_Mlc*~tJfb+=Z|>(3VO1wjuUu%JC9iYrPZyMjVhi=U|PqB9|5^-nc*c%d6ZuF3!i zh0^mxKWi7k3juG$eia7Dxa8!tJ5e(P9lplB^JQ*3($mwOuU`<|rc~|h__v{VH%>`SjY>Z1!6_}x2x@;t z{}s=XBTO_jG~|?&wVme!s3<6IE4+}K|A|i=?Z{z)l5t}PEiZW#?fk+*1Js*vB<=X} zb-=!Mbc}KSKyXNK^KsA^73F9PeD~?ZSGRXZsw6tPaH=tiu0*#^jhiV6!i@)~w z*CGOX2ETeGg&@;+j4rVI!XM6hWDg*A4H*7VL^816UNDEDw{O$dX+1bhC2^@m@#INz zw7@zB20=jUgOIqCT8gY&r^oXYuT#kWw-=y_KqAC`n+i7oP>X?|VpZ^G#o^gwQ3YT% z`|Aq@(2NRLh5ZWt;SV2j7u$F4g4hClO#5OA2zq0sYJ)cJkWHK7$1I#a4u1ZfV0Wsq zWfv?g0&g>j458J?C_(G?wzYLPijp!~KY~^DS(xOIliLS8i<1#urkx@iHaFfGzw|BV zax$ppca4q5(8KBCc$=2GZbjy)lj`@qfh}h7do4-wT^`G_;{63BPLWVat*nB@EbHHN zbnI=2+*gBTn)%zRKoOO`ooHU%#yhC+`E_Wu2GO`f_Z(WB87BI8U>h=0mR7P-`PJV# zNLQN4GW2LTfGuwV&H(yf$8p{1t_7q|u~+a7dMRpJ+8c=HY?Bu|{r&wHAs?bsq9DBi zn>IZhrH}za1{{tmDi)ZpTLAb&{Tu625H-T*qr~Q!`?`y!x&ne%SA8KSelERYo!Knq z&<(u;*u|;%+s7!a|7cMUL9JHYJv{3z2d1a$Zkf7IT!Yvd6(am(1DC-KUvzLdg{GN4 zR{`WQWE%9#htel-bhcariOm!H?X_1-OG}G#RBy-l-0WoeRCH011U&--#fY)7arI9N zv{wcltrw8*Pd_(2^(S-+-I(6)3Lu8KVRZup>1%fGiYQTn@c;Wc%K4_!n z-jt?}B>=7%t*n?>vNR~TjOTuWS0@Nre2(aH*WaL^Et?bprfB0pK_!qv`&z-L-vON5 zr{Mp(_xD8i3jx%&Hjs?Lh2T14pjLoJ*l7i<_t1d^ zbcr|d!2^9yPtVex8b+T(u$M54UnD13#j96eUNl~q{HFH&%dP09*jPHd?&5>ClFZnm z?;|5nWre(-9@bbd=q`U)Gz;M zZjR^5l`AGC&Kxu}WN8R3ePk8XoM@$VcEH~5a*w=+6(B-B0?^=>%|cfuidvP$@}eo( zWZXhYZP3kZpeFzxE2H2ek(>afWB`R49m_>)>l2`05#3MH(i9CEkO#HkJzzh2^r#*m z9oC)8q|&#P@5jK~8xV>4|VU zK^XZEgg7W-Y%fn znNBbdL43egVF~=2@dxt5M1K_T|=KJ0Lxf``8a2+yNQ*ICPY~LMF57eu56@ zTDqzN6nIbF4}!=r(N(aS>qMmT#f#j)Z(`uRW`FlE05UZocPWqO!ejxX1i_`PFSQ0_ zAcKU4g}ud52ug_Dca)QtcN@yb-ufSXrB}8S0uSiDX4VsSux&(vRy?!l4bTww(p_)z5u^xO6cq?K+|9(d!^0_ckHRt&!F(vXmg!!VV2#Y9o(13= zQ(=ZL1ZW@%A&N%`uqj+1to!yAxQ*#$x+?^%vqE}l0It4s|Nbpd9yN7!TXEl;Nl@iC zU2C5Ll&J=u;L-M3MaE0hdrEju0M1al8p~jzA>1Y)s6cm9<`~{aYrr8dzu&vUERwQ)^6&S>`X!^i(9U>f)Ent$a5Tt>5LKa4sg zYI^!$WJk18EM3SMhS^5f3oILyatt?+*8jWQu8f}Az2^50jr`iBBhPk4exM@L;(w3Od{_;7Dl4zvIk5=?9|Ba|Mbfum-%@l`WSd=A5AyB2O zn;YG^d2Y^~R8-I-1qNH@#*>)lq5J=AO{EyYK_*-(sNETh03b29Z{L2>(v|oZM_nHv zLD>on$s=_4cY(+VrTvxTw|5^u>Phyd2||wHA<k)j%*@s5fkEfSZQ~fH>sWzVG}3>dUiaucZ?SX3Wsg`Y1MS z(kMQfx(RxW_O4yKGT4^EH${W-Y9HJxg18GtjwUC;7xr%SkqKu8u8HUt;TMVrI62^r z3d(%=a>5fWNVl1Dq%`m@>P+Zqd>uhiVW zi}lI0RTsm^-R2QV03x*|h>|-c;S&{u81 zeMq`~KWPV@7iCD3&axz1!S*9}Q%lQ3uv2<~qObyG_olNci^w;lli=0Y*DrG!4$*;{ zhCt)xy)}edtoGF4<8VV%SZI*TD}XBoswL^G6A9ecU&FVMn3x#0N5Qgjy7{wl_dW zF#j&z%%*qp7QFyAjY&Mne{JrJjL*CvQNgQy3|#q60ku}ZtSIR{Yts#DgV6cPBy>rq zCMPGO(^+`Vl{jBVuSLk}d478W#V)b_J17VWH4+~O$Mw)q$KH}-;)$Bk%0MXk@JEr8 zzGNH6fW})^4=Wgq8i7*6Ep;dMGb9+-RxOk#eFJMOQbfn*YyZ`2BDn=so_0IzhVLrR zdN(?cJ)ofqo3GkfbJ8sxq;zO3`V8(Z9l9Y1nP>-zs~w$pCgR+0d{52cPhzU{nA%Uq z4kB8uP#kqxy#GNota&Fh+e01G1Ox>iB42S_-%6O?h+W&Hh&E=V!?wg*Pn<&{>9lZ# z+CPb19*ra0;Cu5q_p174O*U%R`bqoShj zWV0|jlCQ4*Z4E9gj2;Ar1Rl@0v6(Xio*`Uo^}=NwmMw2a=iNrzj=8=8PP)jkbSP;g zRov><=!Lu|PeKXfQ%izahC6Nm$41k2TmJwOC1H*O*SHt*Mzam2<;2{~XFKSbE_bji zAP3%lZ;XMBbQ7nNr)LS@hrYi3pqJ|bhzMnH;#)Zb@rWNnOlDYhxqqdx%&JGD$UzTjBNIK0fir0akG@ z_R%}^k2J^AP*amUJUj%A@=0(O1S+M!L1E2z9#m>i&>pDstj7mYjQ{xglO=iAbIF>n zmZsUv*>#ck|3erPKX4$+wNr@cthXObvI!3!P!zz3wTUL|2UV`-(UBJjIAE5J;Xt%uaL&4hp)^6nn6%^vVICD>4!|d86{HLfC$^ z4Li1P-!5s>Mk1`Ez!&ul@sAMSuo$gLIlH=6<21sYs`KM2^APFe5M@C~$yDXaE{LZ! zz&*-;*%%lYhQVr=c+c?zbDG=Q8joS`U52-TtRxywkl%{v9PS06C4Bs!5?Kn*tyd@^56QHxryYB{|ID?7cN`~?lJaW^-@yWB)>e$wF=Y?tyl@zK@4Yv zw2|07i6;LIkY7IPNP8Kg`2<2MyzdI3BD;-!+=|BFq_%dzqgGMNY}fw-QB7cV^SS%z z|4~xI&?cKN&yEo~AIwd`BZzesIF7sFta8j);bnC6g^v*Y$EtphH$B0X0LSD0c+|7i z`#)QXfr&xX%i8VsR`hb$WH_N_%eu1h;MMay9~>PpnC1+=`D-b;-jL|D&qeNZxlH zf9*PQ>!AbG9#gPSfFFdtxv5u+kbkJ(-!&EQfWl02hG&VS2vMEK1uqE%2>2)va5!F4gL@emHj|j893hz% ziNE^PpxOZQFbhwk9dQ!h4SMpTSQ}bBv`qbX_9n^w`qTX8mRHUqGNwflYzHl;i7mv&n0cf*x3^ zqnz%k4`+T}#H}ckbJskX<9G=9MpS4hJE&z44so?GgPmDi7^jTk^IPf=)f@twzbB3* zM2)eYR@m%y0;vr(DmVcg2=^)y64aUfycoVwhDq6E#)AujD!(?f;%I2|c>uJGl{$EY&ebSuQdI68B4G9Pi}J{YIo-t`_gwMkLHFq^swjo64{;dJ7Te z1%D7J>ZeY{y@p{05q$|xQhsl30sRB*w+}V|a~y+j)h+XaEj%RAFR7%u3HbpEeDH(Q z2nns7!GTyPzGs=}c+ga;)KCNBst`+L;GwJxV0-{x<6B{22e0^quK!I;RS2lmxx^S^ z_~%tf=qP%5-cnOx=IYa?rkaEe3Xq|(*gw2LVf%p^&4)m5)m^WU#ntX%VIC034Bb{H zZbc9N8soEPV^EAP3V;2>s9_5J;VG=>1h0awnXc(XI3ujo_}yZpXp=IxgLU=waOB1C zHF`r3N9`w!p-Y_XFGydbC#wPNt2Tfp$o(8o8iuU5@2UaYxp2F??&Q}tB5VSc&d7>F%`aRG1SH`{)q7&XrhN+4lp zMFI{gftIgV6GDZiKN96Y1xX7`pbQP^S9|8oCm*O-4(m+yRoKGjKv?XVMK6%ZsJ}_7 z&kp_7hh`58S0>tqkKj4M=)&@fFO&nR_nZda zj*D=%@7i^*chRn^6-hXqUcj&oL9LFBeQ5Yxr9T)OKKNIsY>KBLfOh8cp74r;AjfEG z*fu~UFrEXmb`^c`p8Y3v(Md3iSp8PpMWyTi{N1JnIpoZTCzfFiy z@P82(FTb&RMOR$*zxpb(C5ctHO zfEFTxBh%UgY1kGn?~C^K8W7}&Q`SfosIWFmJ2%yzN`PW~7pwOaLpMZ!r}oF~e=52i zv|Yi4e}NG`D56~@4j5bzm{>V@i{M)i^6`Z}JCmnH=!=*)K<>OJdn|Iaj_ea0U_@&JITgIH zF7gVGl+yCjQk)O1lN#KhPp4H4>W%6yDsOB|vJ#VcYpslkhFr6XTTp;r|2}0t5y0H9 z*g*Uwii42v7~$ge{U__m%1gBLJ^2_FDs&1UxT)!vNca7!dW4$Fr!!2JR#tOats#W& zR}kOO2(3^3!;D=Eux38&e^r+(*Evy3RDlYcB8*=-?n8I5exJ$$`kc|D8POf{s!*@e zdPf2p!iFD6+Ul8C$;ruWWaOCR1zpVp68}9?7=4Dd8Xtjg_QMMpz7~L0fxflU6Jbk? z9~ym?W?Ea^#L$8Rxx#U9g$KhEG1+6z&K+$MXO zU_%y_lDY|29?F~ZWbctocZhL>;DWw=DOVE9JZlJD3d*4>GD zt8f;nU7!K+CIlwThet&%sj8}~?dC@jfQvKF{sKBGLa)??wgDP74Pi&VYgawGdYj^@ z|E03VJr4n86bpjt2&HpiWF#0cj-r`r`va>A_%?)}P5sZLx7!wQ0m9eqY6;^rPwlTc z?`+f3JwRn})H*vmE5g_2JUgnJxiaPsds0jCQ3miH#JVB!Vc+9+v2v&?FJEEl=dFLn zTzP%ciSPeRkLw=+bS3P4va+&mAj8$f_3xsRUck~4(hLwDu$1wj4Ei2|$AlCJXEndE zKNLB_eRTLRVKz8{dPw9T!jq3?^f<6h5T*?lGEmf~A@6|zbH*>M!b0)}#Dq%Y4?>+X ztMDeq@ZiU-MMr-(HZ};jj)RM9^VO?YNu*@0n}o9$34sx*kg(1{!QcY13UF47?*_|c zX(k3D6@|TAgPoHR5Q*?Z6vjVAjMD<)67(&IzUk?~`@3KREK z15*8+q$I&#pK$DmVLy;}7P%Gg`8N}>{GL#f%Qha?6oxUVr}ng*>ANUNl0uzu1B2R#L=vY_;ypr6#eka_&{}H#RJc5SfGu(ph!`|2!CD{52gV!yf zkCaid*XXl>)U;rFPS<(qK5n>4G1YHA@kugL*Ih)fm9=$zc`}j)J1I6PX|?{B@AB+H z^dKkwMF{o~{)p%X@A!H2aF`QHllNP`qm?Bf)sX;hqp-M`ZcPWzDXG(%I7M*T^eW!3ElX-<%6m+t;pFZiAtjfSA4j;4*oi(F3F)Sl# z-$4mu5u}Pu(-vC8&?*KncMuXE&j8_U5Y9FX@~FN134%B@JUj>-3-!X%&(tc{4a!|? z@|3U#G*MUX;iwJ-rh2RvQhBO)b#eU0yk7c0G^rnDxqttth@!l6oo$+jn8pR#bB0~&2N^* zP3D{Z!jcunqm-V1sr<7H0#sx!KN=je@1Mp4Fhy;{M1(*^3T9DJH*nB{3sKgF(dmXp zMut2c3lPqztF65jnh*Gt{vJR2H`&BTr(}v$LZl_a!N-T8ukEBprmD6!9XdL?3pm~* zjz6IqW6Y%;=S<2l3tkAg*`7=xTVYsd^i$SuLO;RO6#Pi>rKjNOJbCiuHMH+&_s|J9 zJA5KoBf?_54Ey(T1gL=%7cQiYHpM{3uo(-(CQ5rhhXJ z^z`(Dfb+=M)OFoGJ;#OPHRPl6{`M3iPU-0BIe2+h`C=L`G9I#{!%RsS4xCy?`eyD3)Mk8K(`7J;|!SJ!}wYzupS?J*}DJV z6f<6K?hCM$KRI6|zgN)c8cy0Eh&GH4Rq!4A`qF^~DT|o;B7Ak=e(O;&!gmFWnaboD z<}m+gP2COqof zurGwU5U`k$jEt=M4`eiwB1ARiap;_HzkW3~a+EF+n?G{qsR7~Mp1xR*Ni*2`L!&Pp zXPvf4x@-(){w8=Z!Y~NsNonc%=OxT>U>J=J@-7Rnc1k$bHEh{`ebuYC(vJlWB;q)m z-37)FrO`g+^x; zIVGI;;UgSJ`8Wu0;ci2{P%4Fq3Zq^Ha0OyNhoNyV!q-g=y&QuSn5w5J$Xn@&zI&JK zg-HbAF>j)(5v5EOy8-irk%(IIl{xo97HNS%bX4m$n&)RZ=Ks6))wC6dN}^h9W&)UI%k;00T* z;S3&lx}5~vz6=B%T!@ESP?JmwFNW#trKeXx|COPUtE`N&g)tT$(~y8T^F9BDNeSBk z;1xqtO?5TV4FdWo&){l!!6goE0DtnJDQmZaXaX1>4ddUF-md98*xeXS-c0aXJFJd} zP-3*%vYt|R;^@@ttae`44j0x9rx2&rhXcMt6zLdE(9+s5pWdRxiiMWGE5;HlYqG8WZC~wMvwO1Vl0Ew7av?tFp0Dx`l;q*z zF~y|T_G^SyyTOHZ;l~3fS5iq{<+A#ntEh^sq{;RZZ0<&tfG9UNzX4#=aPCdMf=&8k zwVRUidy3z@@pX;2xV37s0i?mV?h{>i&tkBUaF*sG6PaQ-9DLMTly=Vx`!l)VCWvfX zg8#dKejf%QSxYv6>bdXU&0%R_F|oV$U{AOfh&d={d}h`KP3S!`9?e3poJl1>$wu=> zelOt--;)i1BKR^|jwE{pL{?r}6?_oCdja&fj6IALiX`SlJXU_cl9DkyeY%cp;L?Yr zMz#k>uJA5k=)@I{wGsK%>ErA2guJrVQI@q+)Ui8KV#_hC#@6Q#&6$dIVGbHq@`5({sR*htUd6PuJ|G5RAa)WA4ZPq8H)# z1PP_m8W$ZMcyzMl#zp|_$27>KsR8RuiZz=OK?V|YFay$B&K2lDV&mh7Q8)L;ALZgY zo?op10|9G;IV6ZcH&hzwfOT26h=CYw`D1>5a?o)2-<<`ifoD(fJ)!7X&VKexNlk4B zn60gm!_3BaNEe{$1#T>ieY%;)V2wA~3|d-P!KrfTadA_7DE4FuP2;r-?XePspp7z0 zSg3%-tHE7uapX2!h)GLJQ>~)fwd+R}i~w~-t@6YZC0gzuq5#rT)zzgT?BMtBGruiO z@&0vCSy}l4J_REMbqE{6qmTDfzoQinh?fa2$#Ze==GKO9M}7{~-JVI^SS2iUDnuuw zug?{F$Na@%GnmTY`XI^}l1s2i<>DsXePc9FU@_to8rrsdBIhHkR!2k#=AJlt5aYMv zQuYe90v;2-IvDR3mv?4mRIUAXl6L<^2f#H`vs;09#06$w-auDK>WC@2a_bAh$l&U` zN6S$df~)O?ft(sx>74G0SxD0a4F<*7RLn|Mx;0USr#%}p8zBT;!-3zDwl#KxV7~cidV;O0zbm|s|-hBN_Z%VwG zcNhgZ`9SmM3LlS2wvEN@+pqOh`jwykS?mg2O=OY`!@u3#CX=`tM}tlW#?Lsh6pr#1t~OTZoUm{LT5pt7UI)17xe1M>)GkoUopNX$PIgDYs?m8Wp{q&1*{1`QayP8B{pbRs|fvxr906IP+ed_ zIxFb_;B{>q+W^=BMx+)`h=Vi?3^xHn3Hb>jVUW31BQjSY_|G5Lti9?2m`uS8MQKl` zZZw0LCmH6rxZ(csx}ET)e;KFl$}327|n2QjxdoRV{&|S0~<} z`&Svif>uk~dzP=ydtB)441~Z8MANFt&Lft$Ux*kRqvjA<12;O*EK;?l!6lHf+mNE9 zNS;D6JOWk^MO)japWKN2UYp;@BxbP%)$Im^<^9C$BlrY>yeQQ%EQT1KUP8HFmJvI; z*weor60kOYK0(4d@&ac(u^@c`8-7Hd1~5`ZuRMcVl)SMXd35p(o^x{@V#;~Lha?YT zSO$)@TV-Wss$#0f1Nb?q!G%Dg`t7cG)IpMr`%X}Dbb<-`)i3H&pqXiSlmEh_3II{* zt16EsDFhG~_CqC82*phVH2V+n`WYfI-`zh*>Qt^DPulvz1j;W-{_~ zb9dp)!NE4fW|xf?f5+ZHf1D)JKzHIl|L8gnVM3PGVY$Sv$yy1*n|C9^XrDOmPF-u8NWv`AQ&9nYE|Gr z6)tclH|^m=<>JU4fp>N-Q9fXOK0-W@2~nB{N}!>R+YoW!5$cxh1)g4UHJNMn57Rt1>t}#V7C&V6Z6r^8$_yr*|Jv47Q-QEp@aL{nRuuvT411cCtUmtn}c8Zt=CHgRMIn%aLYzmQJp(s}G<;cH6 zuAooyz^V}pSL*s~mTG6QeDS-3pU|5V^YfaC;wqonjD8&<2JncA8L<90bt#nPr4gID z!|@?9DwgYzZuczoUfE6ZveZylzlEGgr+|rAJlt+zt^9h(iVU7wfr_MpQ8W_i%a<=1 zM{i+>{y8v7zVXgu)PFdd^BZk}WB@Gc8kp&6Yg%RhQmSic%(NZfoer6RXc4AA9Gzn4 z;7Hef$96>0_Tv`tE=*{4Zxb#^PR>nHa`TMDU#(O9_JVP$Ms_7;0x`!mfWb64=IV*D zsCcF0yNJv|sNV1f5)OKhVthhEb+F=1!!0qod~1dXH0U*=P$W@v_rg91Q|>{+=nq21 z67)j?CQvbM@7%D@;{sC3;#}u>0&(FEkN9r=y#w#KNg(b35y41aWTf@EKOmc^nV5)2 zhG2O9uD1QT&$i{$KXDa9Sg6$z7Z_HGW(c|6}-BO~VK z0$yX^M=|#ZZv#Xpi6nVHW&+#5tF~9fOi;Q3186f{mQm?&q7%>onWg}|ueNU-E*iVrcp(#MYnaHU!T zK6`$@dt!@A7TI+AkPXegV<(l_&R8jFV4A9tYye0=zI_U(+cFo|X^Pt_h4M0a@2uk> z0T(B+5rw&yRhyIPZ`W13kG5T>0Jg1M{iCtIh?c(;&$JQd<_@yQf$BsFa)iRyi#0r# z5;M%ax9#g>@5Pk|kPUW5!pM1rmREBC&dpNvxxz9s_p#n=uYh^wBMwlE0_bdQ$e|d; zL#WuLCv9{)vB4!kI9Je@673dx&IZgXAIoQ-K*1jX)n1aHFG@U%q8BT$q~rS1>uRxn z+zr6zuQJR*J2pOcFgpclgfEORQ6!zB>JckcDvvt^K#Ewac*N`rdKG3p?WB_PB$)Uk=) zQd+R-ACDg0Vov_fI)R-$kX^Hy$Xald?y26wvAK|vR=B{CXFL>@6>X7CEQfHjpjZEQO)ebGqQ{7@faBUW$^82T@@jhysU7rB^Zq4(_F`N8c>h<# zOUw;R6ke`GhK135GYw&%4XVw*g<4O8D&%c_gSeuE0YFFOk>tLw?BrzJA*UZ=|47$1 zR)5N3R^4Nq^~)EjjeV@y%DKHYhuKu?D%WHAVtNmY9hbY6ezCtekBjGnLx;CVaF+W4 ztJRr{;d|^E4o&KN+|l35^Y=-o`?-;tuP+{cFU4~={8sA!{N+5Bza`9^zMxFC*oG!D zUv$Z$q>P!IqI@YJr`Fm1#k9%%k|?KzJHy@|>lcT#&L*Vq|E-&;&2N07WB$F&Tly=5rZM1a86efIljebZdHDRUa?n$kbNNE&Qp{P#ZlfF43CBILq#bj#of=KVfhwihKoSkNnm3jJW$a0<~Ynav%civ8( z>co@LTpu5C@~VERZ+D+)w%TY*qf<|bua~Mmi(iqh71Ul)k9|uymqwS}v2};JE#GPF zmlhp~?6fQ=VjTtcEs=e0SH6W4~PF%+o7tb!w7t#PPA(>6|+kf#|GjWnp9ty|DMFaQYGM5UN1Eh3Cxv z-l|GY3Q8y5+3uF(^)y_$oyhBZ;-qo0s`Sm%x|B~2Sj6!cB~?BSamN!jm^nD^l5z!n zEJ$z^O5+JlJ1hcgMKx?nIZXt8nbRpvN-h`$JXa|%kkR(^N&Ql|_Fk{k?v@1)6_t8@ zcZW#}zfdTPV09^p@J zAzO^CM3%zX8KLZyeakdtU$Ue`*-DJEL<(h>5|Le$rN~kgQla~LeZJq{xqtV$@9!V? zIls>5ILC(>Gw*r7U+>p-J)h6V_3)(m@2!W=okj}^4(LbUGo`AD-dlEwthlE4fUauE zWYIBk@cGAmZqHap^xmg(MQJVNZJfLC`imHmn3c3gFcPyX#FZp-=&@!U`&rxNUk~xR z?Y8;({=AP>Q_SbqSsTTi-Pf?@i=7IQJzJrTX1IiWvtLCUwiZ+K8BMwB{Kpz6e~N3q zjFxPrzgufI!t!`*;^cml9umL#ULz^;!=CoN6vHaFm{+FXZ772|iVmJyMwF+1<*)Q@ z^uDaUV!}B~wLWIy^<`mhRc<9Q4!Iqusy5mt7=$ zKCK0ZycF!-9p{+K6#B|M;@HCHr^&i$NBJV#fq*lFp{uC`T4`%Ux9pZ1f!foj1C zMH^c>j8+=N5zPFtk_D0J?wGuSb6;yFmfasdbS#RPxoG!hgK^q0sG7f4P_b86f=@FR z4(hI@Jr0L*v@Y;SXVa+m%JjSISfuBxILqjVxfin^D?R9a%XrT*Y~^|bSuC|zCZ88h ziTLXR0U6I}rZ@@*4!IZDE^k#-DRsqWY2!HuYO&2nSgn$nmMnOypW}07Xee=3Y>vy% z?<&0G`?GS{sx4Fuhd=T1XgA{|n{*ccn(oE4!hu%FMl09->nc0f%_WN_8UnKFgy&%J%?-2>jZ7Tc5b z?y(uoDJ?gd^c^mzxvp)!Zcd+|TDG6y3a6x+dWrmwx$du%zlLksOywBD1!`Ahd|)DT zP-6Vj$L=)hI0S`6TI=Mdb<(PhS$<7+_v`80OZ+9fL3Q>cA0Nq>m${Ww1E0MTK={cr z#A&hKywI9xT4H-7v`>uf^@NF4pra0B{i~~lV9Os}qPX(>w{FT>_-tbqHcHG_8~bmn z)ub{;dtHi{TA-8sj^NSZlV4Z{2ZgWDwy>cmt~X{15fUvOh%G!EU}zL!B;PS-+THe6zWPKsrZ}|c7*tnno=+xXK#m5^-V`8${BNnNsBl4Y222OK&;zdkv9S3k zwArBOx&YyGkn&QYSqV*5y8eu;EMi+M6K?;0y?-T?Oe`%Ao%{j)V4y+lg3NL=+{ojh ziJF@X>Zn~$P<_X@`DT}tGT{l_ikV4wOI;2ffOE6B-e*NlEQRr_zDj(yjaD8sxQ0OAo^~B>lt??1+Sgh54a|3f==Aqh|0oL)h&q^o79}JcH~d(C(Nhmw$)Pa%4#3RCw7vv^$iJO@d9z;@8nj zIk5s_3s;AxUy1KOlKeZ_H2hTj$R$=2jYko0Ovk%|?_Rey3ZZj6H0Sa_YOScC0Kf7S zVjLIHmJlhJ;1@XYd2ulTT>9`YcIO_XC{uYc&^-UO2EdA_b|O2Kt<${U|Mvbd~v?^?`#*oP$VHbx=QVa%SNrwPwnhdxr6zr>m>H{p#mu>0; z3{BN;@-Vk164_RrMKv#G`HAoP#a5F>kD)+NguvWwqjbo` zL3a)d{eu$NkwKq&1tgZ;7|=Jcm`$i@RzLjRVMkeLXg*YepD+wKzNqi?xq;Mx-CM3J zo~#(FlVzt?7ELG-m&;1OkZ6}iW3$YC|MM}=K(|ZL=PY>KIUB!nU7BcZ#*kQ5?XOCK z-}=XH#kjltB9HPJpySpKEm<<8npkUUYT#<_1Y?UVG%YuOD`ZqZf6fbjpb=02`MkuM zti2nf#qxr7!_|O4c``On=Pgeay*v3Pb-_)_i?75X<+tO0uI6nvVrxq(J-;921*bDp zx4(P-KzEez%-)0gxI{294*J2(ooO6iP#J@`Z43?vB|Gq#&(B}z`v4lEilO)R;^Cz2 z-Hp)yy8HNXhS3b1W#FIW$;`||ADlxa!RJHx&s`X=7ux|C4G6v?il`lqN&{NF(6NGZ z_T$}vhCR%!Wb1jg;Ob<{_R66PQ!kbcY)-}fkkCo(TK#bT>5Gcnic);<6GaavW!baQ z0xS?BppX&Vbb`wX{GnQYepU0{V78_HvWs6)@rDu9E}=-`>_2zz++8S@j35}B2#p#z zJy$ROLk0RB0*feZ&oY>9pq>+ykzqvKWOxdoCQD$NK#oj-_QhU&6;wNWp{PPTX%#c# z;g^Oa69RVwArEKSX%#40E8#9a+S_KwG9D?tuA-OFS7g&V>fN5oB75~MuN&XD^I%0q zMk6?Ntro*>{+AaZ8M^NKp(@fcGdln%V+IW3$$^9x{9*>WhlSu52?8Dr;>aOY1f14L z#oi@PxQrZ3)O2ij;Y5J`qZ(>^!X*zNn_U+wCe^>c6hhEFv}{^iCxCh;2m}DgnqWA$ zZlXeZ>x)q&-rxTi>VSg>9`Y+UdjFg?Qj4~*4?h4c(++610-u_>VWowRL(U~}xc($Y zIOZm)y*U$GQ8oW5q3h_^HCdx={!IEepARQhe_PhcyzN)PdawIs-Qs$@|up|K@U1JoFR15@lx&~r=v*++c^Dn3V8fwI9{YZvlGWPpU*47MriU?hkDxoBVV z47jTjLB5_e+l>JtZE8+V0tgHFplzTo2hz9T(7k-PM-J~BW7ek7<3q^)p%f#@P$GO~ zJ*rs!E-R6wnY1G!c8|hLdY5@@gr#WKs4R3KG2C>ozD^>)*L3jhsRzaZyC(cG-d#QW z9nZWxN|BSKFA$CxZ89)-sv#~a*XP|H+&1-n%xVATyAsRCp66m2TFVNeIFi&!`bDe+ z@mle&JJHIH#p;O*=_Nlq4iWu7d*ykQj}iX{ME4K*cu(?c?Vq30Iyg(FTsp&_F%gw) z7tf+7AWPZx^*6RO&W@^~{}a2!HL+oz4eRp7?hER1lCd;^0RB2uxO{wK!m?YuPcXJ4 zRa_MJLyJfdA~4BI#yb@MnEmq0Chkz9cBLmT&Nm~Zarsp4Y1%^F7JZ(9_YS15Y9twH z;h08jxkX;Rm1ghJhoa|Prz!?IE({T+Dw7x_?@QgTd17U9828CB+(rOLg6&ogx6~6k zfB){K^vrsJTko4o)Y~PeO2XfVe@so!qqM#f5WCEiul8zv9V5OdCwbyAr=uM_h_yz{ zDy!whgQWULc7q!%&RzPHKx+xxJyrvUXo;Tung)zy3HUX}V`79Xw(Kv_D$@i*$L{Om zLsUk!nprvK7hm{hVJmO`*$=e{|7}g;i156?70a7#>$(p)%uaKJwvweg`E29I~+pndBkCdu5ACfWAlS$Fk z4Dm;Hq_L8p*9g38J=a!^LsUL1Q}^m{zzv2**O1A^){r!8n}K^>+*b5xPFun?^!)Mc zr$$w?M;!wQjO|#>3aU6qs)E|nSi_gEroNU1i`X0@-+7W<}ZS2X7~`GCo* zg~nGj`re%e`Gc`JsT>=`23a;4i8_@pPbD%4dFR((v6rno>YVE946(G-@=mB6y&D|u zfL^yoc~qM@|G|qD-!GGh#gsgQy0179A%hhwt811K8Ws2}tPbnSK}B!1{(B zL|@q9Zu;j^)zLn;4ubF$!8T>@Fi; z(#+f+3k9mM{m^GL<(KVd)TbYj)Q(-bx66diajB~(K-VY7p|7f~O2*vJ`l5GK<`XBE z&QXF+c!tA4I1+bVHigS+A~@#oH}@2JbO1}WLOG0DB&m0Q(WdZbi1 zU2K|y zwxpQUI0S1b2!>b|WITIV&%#6NC}8Eifd5(PPN-L0_fRofjN)y>3271uT8~4_9Pfb#J}BC+icr^I;#v{OO^d<7XADQzzAJ!0VZ3pHS!$>5#sK0;~~*c)Ts zCpOULk^V$3V?iQh=wKYnmkUy7Y64Y!lCOIO>3$fAkvRdC=M}cARe9+`bkj|2Y72Oy zJ31}LTv$?EDwtL3Eiw*sP25oIdvRp?ov@u6`DgXL7m2lur~_%rCnXU80tHEBx+2zZK=h9bQLs!hsgI{Ek-2WXnK3 ztQs!pbx)TC(!}Oq_b6^KC|r-MP<+TSRN5^+wUBV#)4=nAv>PF}hWBU2-jsQ-$p`yc zT&|+)Mu0TP(WH9N_zjuO|E@U~bHB`4d)IuvgHoiVvJV{P_7`d-?v0|cA71s#3IJRN z$0#jghP+#YZa)Buv>?R0Xzp%>VW*rwgu(qCFIyaJU@`OW}?~cnv%F$EOz7gD;p(|lxFrSe2M}7ScP2zKnL3%c?U~I`sS|>ae zn!JLjgWv)~x;0`{z?(Oe-v<8~@?`@iej41kT44C-@9#%;c=b1646F$I4O`I!&L=%)<^84JDKOd~`#1RRqF_UY0AGk~0CD|?`(RfD z?!OKYGLWEh{``3dfQS%)X@mI)@vA!6BO+iF5|0qo3dEI_QP(>HK%>ymy59pEM)1&s zNK^rJ1_Z*9?;T7FHAM|||E->dk0s%rNoeJ5D|~ipveop}u_%W3p7xDnDaT|ft|!co z-p)~(^Z&V(XV*LEUwqrhD-Y^epTFBo;?mN3L3Nv9;xSOjs_%ZQJ*kuHcc97G^4BSS zeLMsvQ5piH0p2ChO=KaJ51{gDliy%o&o3?A3yRik%KFkM3)=X-dbPXL7r{=TE|Gzn z4Wkhpd>mdQf|#Oe6uiQ*DJh+3LJqh?FdE=v1*dE*H2nERMep_b{{>YZH7Ou6taV2{ zT>G^tlxv`SI082sL2%DS$Q33y*MX3R1{H*UYeYX>?F3+VB_vxL)`zTv=JT(mf(8za z4FoRUgrW_D`3o2pkhM+#P+46A;=wfZ99Pgj82T*QhK39nREDDnK#uqGI0&ve0xc(K zI!V1CX~B^O_+=Cyc!HD?s@*{is3-1+_4E! z0*is9Q_&yNm>EuD`SZp4`O4M@Pu7e7hYDunwP!Gqr5TF-FUB}3WUw%S?LYKf>cyW1 z-c8`h13MJ(1P4meq5jFQtu^;i1s?R1_kIa?osd@mAdF$Rz_AAZK7wQw#_7sqtbaf2 zI(sPi3X|jG_cnJP(Dg}h@T__guW_8O(d6BS46H2INl)v>uVUuo>6xJe2Pt#=jUxoO z-DjR#jr5KVKeA^xv@kU#J$t4cwSl?vf7R8M&&zA4fnE(SGQsW%G@D_K!n?TKD-@){ z*oCd?09i!7Uw<%u!37nO#--7bDmQqlwl zh!yZ_s4NWt^Dy-`dnknK$ROj4Ui`Joe@6b+MOR^w*9GSoBSnmb+F06m&Qs}mmIaP; zXm-b~JL>&1FIE3EkZ?P+J2%x`pKNkYXdtJ0Re#)9j6)-qG*`9<0}Rx?$vv?2fYsb$ zMR}|WlsN=WgUra~Y?syPc0{59zXy{CxmlA+{y-}PQBiH4mXqWDiUwp@wtHuCU;TXn z=Y3z2i%ybe+x&RPLgjkp0kv0UYi-5n?^JzGI%eX^N_Zev$WU$iqs(HyLG{b6H? zjY`YFCY8vYh9*}faq*M#woo}jT4eYFQ#fQl|KVb>@bE0lH?Dib_uyF&I+>oD+H}9t z{%#=n^P%+@Z-;CLK@ijAI{1guu-d_e0zA(*r|BRDVJ4rXSnwc68$5tux>S4*R}dH! zuDy710@1xeU`Eri;2c3dBumSi9|JdX^(dDtUtG!(g#-~?nb(#5FJFHAx?zL`7WRKS z2E0NI{XGhBA5fT+X_b+dCh|on0S|7AX1K`?qyD?<8#=Ia9}rJZ-M*1#=* z^fwTAV|Sg9u>#C%ESD4E6UF6az#m0U1GopMCspqgFFq?KD*CKDfxAs%z<9Svdt8<} zQS#T1F(Qo#rTr?C`?4->_1;F`Ow#p?)zgn~O!~I=J--@@Ul;=M4wP121+Vw9(6*a- zI+yp~YyKvPwQjCKVpAl@9HiCec^ zI}S}5_z$}p-+0h)LKr!l;GSviBMFFI@K$|HadmMaLf-;$eSxfn7Izc~fb=@%3f%Zm z>k)cT@>!CWyTQW%_E0BC4{Whaz&ehs5XhX01_^-CW(C^I=mt3RNCj@(NEro}WGBo> zxd!SuEf9*d$*&tuw&Nb%s$p%`)p#^qA^AN1a)wyrLM;E1Z)c6hgHVHnWBim!r?F&< zukADekT|9XbTULBI$)3CSV>3)5IZzACq)qIdS$)wBA~>|*uf>A2(N3V_=X)G++c|2 z6SeQw|Ff-7cin63F)es?w1JroL*f#^-01M@`zKPv;P9{$+_{m168Zf&gU=OdW~gHeE&$}_L^Nq=y)oB`qJbStfL;sBc7t!_Jc#4u{t`6 zGxXIi+lA%iV#l`Z3aj5m)ykHk5-xRf?={bykhkJ_8k+KeNp6HkHASw0OQWQ0_Grm& z8I6Dl+@*qg4h6XlV)n5Q#$$&J)pe~1C3S7wOEHmGD<=8A#@HABN#M`;w_xMw`0DoS z@#qSb;2WIv=Z;wY`SIYu(Nh-*KQ9U6Btkx%{i-_u>Oh<6>zB{p?%SFvWUcvkb;5vs zjVHXJ)hRF6&17q@oinFv6!W&W85D{mE;|-`Gk#AEwXc@8p=}||SMkUR@R>(fSmnPQ zc>jE4hf}{m=cUq+sOFy#*6OzOlV|x#ot%cFOtx}qTM|>9M=%wVkMx8qRF$LeKJ?BRpk$!++kGApKMZ+-0OJk$?pNW8Zqr+ zC&TL5BLeKq?ftTDTr6LwzJ|Z4jTOOd2*`HJ2$SC=OhVfy?dXG?#(f~U68+;P`^9M6fnT+})%q?G?&fD9# zRvc~aV)CE0e$OGdVf0{GBI`_CM0sF%slWGv?Gcg;^DIz*^Y%FilhrzL!I$@BiRz8N z4K^(>uE+>%OgkG$DQv@=8aWi(A8KsM;>QK2I%f-XOOlfm>T=d=2(~6?%1FIOKBbW2os9 z$xN-&-9vn8&DMV~nvDJYuPgRd$jESY9czhi#MD~7pbR@Zepk#X&K9vJ8c}j3Gh3G` z%sXA4vL_|aEomr>WvRPi?0`0pZ&zv#w|7b!N+=`~Kt>hH=%XLbGa5 zoMVzhvs%mi$c;Px2^B(#N6ugZutnFijLcsZvH95s&JLAZF1|6C|HZ%f%b#jzQ#|_m zoM7Uo|WdK zi8=zIXqw?_?ZE=03Yq3olN1-WcHO4={RtFeLj(`Txivp62a7~_vR0zZ$y>hH<-gDN z_G8Pk{*c$-WAl%>)sVj6H(u9P6RSNB6-a^_CHbBQ!wEip`b zWTvNac}Y=!fMMOWWgHBWr&hIbp?-#PhE|demnCHBwl&M6<0UPd<7gh+%q|`>{ZpK= zQ%nwJgkR5rbwJ5#pMmM4;<;Jk3z;(>nz?Cgy{DRAnurl@IShtWtOWd|eab~FiI#Z% zpzkYR;NshN->WY7?gfz;T`39zU+GCp3}O8;IV=7#CSv|gTjoRwO2%35kpt&`JB{nL zEu4CwUNkWDsdi2XSB)o*oG+0gCyBRp$C%iP5tvVc<09+T1BHhRDaFqmzC8EcP|)mp zX6kfb_s=C3^1-{*m+1@J9klQx*&M-9Jg2u`TBW!RIQz(0I}fsy(*2k!_k0HI!uJ8= zo=8ImMGkEx?tcM119Gf`)Qsu_p!YI|_4;yu?#WF6OEy1DFNLu%Xcz{+;l+!G5N{K9 zeZZj>gh*`WKGN5}FenH)IibD46%NUSqeyTCv!EtW*^xKx9GAbK3A8=!;%#<)OuCxK zB(tE@F|A!%EACR>5c1JW?c}eda}vkgFZ3x6aEm=&9FIC2HjCVk2p|lyK`VGj-@?dI zP=%)Npw~2#I8HAgXKX2#d-7%&y7YjX9G2%TyF=BhYxX)_Y z3nn9-Cx>b+tLN+RC`o8JJ5zssabh<}ytw^0)cLIDOg;u;zR#J6xzfBfFpoesP~cmj zA*~o=*c?O14voiyV46op#7KoBSom8Yk^0LCvf0|O4*~H9bTt5)$^e4Y;Ep;E#@Nm- z8456uk&0aqgZj5)8~Kev3gy87qVg(~-e}wb)aX;a+mNW5hExyoz(SLU1ghCiJ#;P* z(;3(#Vp#>{?pLs(m<%2eqGw&;v zuOG1Emg?9eG!&|%6aDcL(4P7(A3Jso(xrHP{k@Uh&=P^u3B|Lv4K+2R_|-7*xqkoB zd;2(5Lc8Ee7U-OSe69{Z+XW|7umC*gQ5Kh_MY1BtR>lYLKkISFT%7f zsm)0!lOR1Y_ipRM-)%mWUw{FHP5GIBAbs&qm<#6rCC~UkMFz8?^4<&YTxpZJ8pLUD zdg=mRR#dY5_6@o+L6f*7hPIUrrFLzq4T0grNp?bG%JOlj{WLUasHwkXbNxgLABt$H zg3EZ{J2cUEswJ8LL?Jj+5F?xTeYOjgJ+hGdWw`WO6zu^h`?<-!G9mUv%kHu->dk&n zc^ucCckHcQ_8xfduz%4Rgk<(G?zk!NO13~+4)UF(8TbO-DYk7xD7)UR4ZV2SKO+4W zjQKQR7ykudoTX-P$?pPb97ab9!G#YeF!HrSx&ea$YeO^GO_N;nf@xsvS2HBUTqSMl z7{M=&4-apA9dcAfIEMCGg?cR0Ls>tZLX#><0lfFNkWgO*vv5qlEVaS-EtgJ}| zrW{ml5ZnQv2d@Q$UN}Dhef0ecAU9J$ht|9W4GPFJe7^|dt%j(7JAxnT^n3`zd@k@8W-8zY@k*ONT zIwTKwe09jMcvH(U>ODbu=}C7?&`*3dl#j2s$C0kH>%}7|=;NW9EC78GA?;8f4g!Ua z;Pb#-fkN%E=Q#4m@5Z1(IN(%iM~x&v5;;Qkj%WaoJ7B=9tga#lHDb>p4HWg802hoX z=&*iakVwArQYZ!W1yPF$Oz21egeaU8TpQMj-#It&j^^aQ1JUb~{Aaic7P}ao!c9Mu{FvmGOZk+e$=M8R{f&#YP zL~x3<5G%p|zYA<7Tf6I^flNzz1RS&$v={;p39Wu;a19z9#P|S^;u;`g1H0fFtQ2S_ z2|Nr}`(PfH3Dhz}%Lu$c+4Cg7wn%}sH3*X)_Y#^$0YPLPia+;JqW;1j=ocyObF_~yoq;)c4G`S4_F!bNX4y%vwu z94u9Zd_~345#}+6^Y+AY+dYJGG1p(jiyoE4S@q7{l+9lEiDXU9E00K@RrcQ17y+9M zX~i$mtMY6p9`aR^d(3}$uBnT$7iL%-`b#9qaDvJbQ{3E^9+zJ1$N1H8R^i;~imJn+ zpFVojJ2lGs-AN}k;uJ!IX}fJ4$%Jr-7;VQTS$RFZV0Om)fWgL2qt#D|@~w~>4r$WW zF4t`1{b=`kI{oSsgDrAcH}O!`yUs5W#=MmZD{PC8t+Ik1%%z9^yaGd_oE$Z>{{pjbt)3Z3Nk+*XrV`M0Dmk| zd~NMjHPd3e%)av?qPR{ti3GTARjfA$RLNR#aWvn_&Qv~zw`JF<&q~%I4xF z%_ezAm+6+|zyU{f8_U?tCGVk2CTlb#=a)wf7!#*F1c`(3U-pG$w#KfzwyCms%)InF zz2AqxKB(@RVp&|hG`JB!h4F;H6? zk6Wu{;!0I?NJx9)H*rVk@!cRWvMQcjSY(wb^}@b=T6;6GGb4#&qSI6atXZOQoi()oYZ$N3#tiBVu- z5&-T7NJVXsM?!9&W`Bs-#e=(V3Of0n5UPgv69tYTg;(#On}_UvV20F-pw8ytOP*0` zlyfu(+9nd#9=$lCM!0M~p@$x6zI<^1G1kb1Wm-Q3OTZ=8l^v{co`F4ekx!A1EpkK+2g0Xg14s(i5#dVH`;|gSo{`C*|%N-huXc zmDy2Z(Q<@k=lJ3g@sg=RR&{lTNMM0T`=sMczY8j_fawrTUI~J(JIeQ9ngAoY0#g-d z;3>6W>*e1gkaNN9UdJQZADj3=ER$Tg_Ia$ApPP5{QX@b@) z(fl+MUAEa~>flKD`*OLlj?v@hYQ$|N=2ie$!c;$dAs(<*{zpgU<34}z_$Ht&5&-3O zftwJy1$4<4bU{E$3-;bfoq_1Hx;ik+;oBJmlzsC;G5-Mv%*W$_&|)I&h=F0ih@#`X zkz2mpDgmHP150}b+^UKYZ$m6=6dsEF_1b>(!|>psunqbT_ zbwzdU(6cw)M?S8#aeY0pa3aYhB%QVRPuf635T_w%D}Gq&Ly9SOFYKb8OkTfn2QD)r z@EtaXU+hHx+Zoyl7GE;R68tdm2|(%y&h#y?0oojBst5|!!r55i{F)6_Rp5qb0dax> z69gI%Vvqk9y$(LF6>zf7AWY#3U#1F7g@XYrLLh8|c^EA#o5PvA4Fr zMb7kPS)MBb|bF6XKX3Jk>Mx_Wq`R;-r07?<$EQcGW00`bl{R0uXuRhS5V%K=tA}v_r~w#itVK`k%?{Nr^#9JS zmIs^{8rB%`cRTQ!1m5VjQuCcwGrKkdq~Po#emOrd(`2lwU~j37Tu!0t5i`(ZyC5=g z#N*MU8&{lk!+eeWV@bl%i#NT@1sFT5?F*f`o}L;nHVZIHT`fwg=U zI37-LZozEHM?<5=(ZK$71Z{8YFU+ZZ$$rfk>xv)wdh^XE?YZs)ts5#eWZAnrvt7@` z&z;uDHW3bWT4SymPr%A*;^1lb(9jfs5|6n8*;;P!yFixk1ma~43=G_*Pz)T>YV6G} z@~t;N+xt!-Y2;NmGzDSQOH*%e@2B{;P^#YuW)cz?f4SmliL3RQv zVCF~zPX|PH;oJiWbs7{vl36AUFksRS2XGCt;sBc9mwb=8x4tFQVG(I;zCw@oEwiPp z%wxEZoY;Z_WkxnS;L*0;uloMElO{J;03sjgif5`0~*jTzR(oc|64)*(Z_`- zdB|3@z4ne!b)Hs|jSjTyBp6n-!Zr#!1vCjAq3_^Kz6$NUkA*4fEfBNsm~;ByHu9cF zxbo7{=|K0i>+D(iQC+tQ(YI>C%UK*PM-8KlO<~BZ`Rht%wv)%o+w!Iju=Q7moSolH zcbQ&hb`2{0gOxDOWpU9uE4u~x7(~v5iwX~nKD6n*l-e&#dmYS5m^J)qe8#4Kk;2=)P=X< zWCc79_@$*Kv5)L}wZ>E&UGN?T-<>L+;C{^9>cY$!l6=6WR8J$sHpI%yb=aizj9QW$ z=(C@2`^>#~%O5^$Y5*3dRyGSP158+fWE%ksQ$gN$Lp!R(EV*KcO4xpJD`eHB}Is?l9{EH&74?H zt`Pg=V}3)Qj$P7qE%dakhsUVlJ1Cqy3T9kdPKF~N6H#xNT-u)N%?vqAt z`t;#(Wg?_Z-7{S7Q*;YQdL;AoiJ}sfoNq%IN&K<~jL&A=sBn6u-UzCF8cM5+vcEzX z6a-v}=6GDF+Z%Og%;x84wTwL$+TbjhEFqf4j7H+o20AEX$W<{i15{^L)DOg>|+h!O{G z|3l3nA48$Er9&a#p4|)NTbXsl?{&M;$Hgn2JLNSo=Cz^4s2d}RJ~cl|ORZ8h$Q26D_I(zr^{|R57ck3>BdRr4pLs+ z<#+D2w}15hDQ-p!z5eFIY__ySJyKJ;&SfipGe!xfqi+I;&kw!b9rbdEA&XMgk??t` zwI%LTtJ%(a#PY*VFK=SW7kvJ`Me-9mB5B3^Boqog;!m3r*W=#b+D zAr5~C-Y)iP9hVuzaC1E8#q{{bX(tYsw6$hyl*R7!=!atc|-S%##V>=oG_dvi{j z90(ek_S-A7wn1*Ra!!$z>@DWXmocWMobQDxS&p(cw8U}wp6?FYn)LHC_6FuePo^?< zq1bT0bQwNG(SQjk0DeyZ1I)SM26V-@TqcMGjz|0PD9hLB#tH-$9D`hLL2*qsIOMXQ zdSKDC4Q9mTfSNW1vNc6TMf15LV^PWc1RedN-M8v8q8F-Vt(JZ6cbsu?`!wFIUiG+; zJD!IqlaTummRPj8i2xKBVoZHoN^{QUPfS)}laWhMuT0W=AIz}yO8+y% zkfZhEDpmcy!1bG58HY+L|t82T>PgK3!BFMsw-C}Em{7#YGT;>yILbG zj$7Yeem~c>-p%Ta-)lu)mx~`K_hBnR#Z4JH*R;Q*9iLyn zcVAqgl;2$Wg9}@d%Mq@8bqKa2IG69jz#%lt2X)^en2CmbBajLVd&-=&6u#rw^8Vz_ zmG0V_%IfbNwrfulOcu1`4~&lH>~7pj8GL?i;Jdw<@(0SV(fBE^o9jn%`uEGs%2D=% zf~X00RYcQqfVz`V?ZSYtIU%`JC(=1Y4d@oruXE2HDXO;D^uG7Zhdq?(Bjrp+z;Tm) zvz8qj;xr*8Kuq)fmB|7V!)_Y|Jda)I@-f(GeT4d!27|`BBRdjQ-H43}2B&FgmnhF& zho)gVo+^OK#aev+kgk>Lp+V`os{YE6p|S9m*dr`gem*q_;?!)ixiVOdP1)L?{+_(KJ~~dF$l74Y7)s)GrepBrpvwGR$1>&q|J{q)eR}>sn7~C+ z{zIS`w)OKLUYtO{5fBs|;atx?5vh()Q4-Q_h)j<7@)#7jejhxSi#}VJJ&Y#Tnmv-* z^Z)KnEesb01WPfhjDY1Mr0ga7kB@KcRWlE?dQe*CdJOlT zKx`qi-op0-^j+w1!awcEv&P2!&>jGeYuInly_<-YxPBn9z(~$GBly`BfIXo^Df~Jp zO~9#sc|RD?I6(p)jXjX2M8kqkze=!z-r*h~{Ix*kSm`;gfHIR9M5qC=w=~2P8Qx$m zuMlOeNu)LK-mltejjd$*5a_iy$sRWZC$-JG^PV~Js`Fq&x7UUD? zp8x#$6H(WxFShkKhB8Af=Y?~d*l@O>Bg58a+NehNJ0rq0eirnd3nAQ-}u z_a5B7@y^NovqWtsO^*GQUG~X$WeQ&&EetwWWgvO&xO_an`BgBZ(uKubC6Tn>)p(3D z!%$`v@!*y|azqz&;dyUxALrhCvLglGgM}M=5qhGV@*8w(&>f3{S(DAdZ4aIPIS%pg z9W*Oa*;{p+!E6lLJ#fBez%ku>LTDs5aF+mWwPN|Gs85Sr(Z-(f%YG3vhs&3@UAXr4 z?93$1n|OJby9dfl6F7N!k8DEo3`%hr1E38Zq)5uY1mdl-$k6})2r$Hfm&dPx>7&^n z5exyQZeVKHz;i8Y3YyZW+J%CDD-wXds_}>4{QZD^NsYh%RQRGGKfm~S$Mf{NO)mSS z^Jx|oI@#zP)TY1d)nagEYFctS+*o(dc}+Q$o>+E5CXZvr1sPJ4_`xH-qq}Gb!%?)c zxv6_p40k`B`>97Mcy@Ne_QqMW`=uXxf2?VhDElvzpEa8c`?LJBLC-`7<{rpF&+O(w zT}JH-;^#>FALHhHa4n|~H_eI~#ytCJZd7r(Adti1o4{uihw5j#c8^l1Av)0p&SKP4 z2de=uD#f(4sG!t@77<(-KJ5oA96r6u#9RSger~fbC4vlqPFfJzgWxvm1LI+3KUuENLWCU)LaM^wl2s`C2oQ#_^esl!LA%y68{pJ)0at-OzrqupO7tLe3DVG zql?rhK0Py9d$TRBG#m9-QU4Vh@*mejWFd6{{lGYucW|F)p}-7Yx!TEHp0 z3T(iCVjyraQnB4cMK&iVr;PWc>SmZa^36CqJMVf?>kZ=_0FDaA5nZ^2!bymdBEFGO z)FNywxCxMx3AlZo@Hcn+F-cU4+{#yNrJ2r9ZM~vKqgX!dea)SYI{2E_hZAy_N*2^2 zeJ+sC;a-ml43w{P>pI=YoPON&eJrSs_mHk#&ZKIqUh+VGpm)H`d^BA|B5(O5ub^t= z-#;IGmurTR@y0x-V6V;tK4oR)75l&I_M33fjnAIF3S$GWY(s1Jxj+XKxo^Z0$FkL8 zio3>a;C9DWt}#tF_*(EviSnq{(yY5stdBS|%nWVcT=tGku=aXN4J-}t^T>`J0blAH z!n%mwHzJ=OUWvf?C+xR}Jl*}6)0m#;3RxAbZ4|L&H`;W5LBvo6kHV;%+_}P&^e<3u z2Ed7El5yd(01i(rpVp%^uy59?EzM@TO_4oTxh~E%=>((l5!*O9B0|Not77V+`EzmE4yFmSVtCCwmBXe znAokqKssqbCT)lb9CyfPDl-v|`3CU3t+~h@F))Xr9Wp2gLJoi77cR#70&Yw7ZeaWI z<9O$|lPBj{D_VB*Op(2n`j}4<()eAjo_&;{NVsqA?&V^^&U6dlww==-yc^fqYP}}n z%N{-F1pfBnfNzsYu=3ND*Cz_fqR!DdbMxu@C$eS zrf#%Tj3mZ~<;xA7rhNx)N8ytlDy{9mHKfwoH9R>Q!XgO4H*- zUJ~T{3WHgRHrm{9O2C01c^<9;Xzufm)!?0&Bn)s#;-)$}&O|K**t1pVYo8VWR#P$Y zfJ7)6)<^bBRdgw#=UlY^%L!)`<_aisj$kUPTYOlLz`6yYfjWKzGDIQvU2u2NKJ|dM zQzKW!QN)jAb_P2<6cF$5=;!wrH8r^;b530W3k#WkPrny}+1qD01U7<#9tAU1O8QP8 zWBR-bJL8W)achHH0IXSTvE#N!*ip9?V4Iw9pMU(eAhjqWLw8^}IU;N&;zMfWX^)fhDi>LJ}zYBx(MmoP}?3ujKugABh* z^KLO)I;LDny9N&E%e6o!dlk0(f*?o^+l5MfZTx8`dqzn}sFf&Tc0Qed^P2J*$UkrY zvERUks@`~_$DFL+&?+4Jrumd3zpBk??psWI0xB6K7X|Uql)nm>_CeJ4hnfvQm_W&id>e)#Ku zChtecXs+1iUvs0M$?C#4aN6CGf7pxZRSj- z^nfnk1FpY#iD%RC5-SL_8)t%TX67`&-FFQbw*a@%l%H$gHg} zYqH~8#7~v>1Hr0!M=W7Gcp*db_-V#7Q8oO6njXAonA)=XMsRKImE|ci+ydJ8TUk$@ zK0Vm0{zua5*%#48dOE=(4t4*9j5rrYY-q_Np(XrE^E%#*I zh9X{kk?DFv&^5#R58{>+`Ulz`9uX7<4Q^lkUr^l?yRNUGO*5&2DW9Bb8daoga9qs> zPuqW~y1|9HO%FJw3HAOCO@g?7>euM)V0SC9-O`QJc%t5_b(b z9%!&(*W_r2-TDV-Yj<}E#5RHDb8L6QEN#xLl!}V=1|AC(Vx%~H)@34_UvLn>7Ia;5 znXUQ$y*U26ze+K<~pm3N7JV|)EmdZ3=!EmU07V?(9$EFZSwX~g8i zQ&RUvrNgKke+fv60G2a{dR*|x-&L5XLWFqTW|vU}3Er-phair`BpgdyQ!7psPX&coQ|&NNxWa3 zYP)VZEn^cvd+TlS3x*}`6CSSPv`z=Xs|T9}{MQq~-;3gg$hv*lXXweHenU<~ACLiO zP`WD^&1O0O*n>n9;QGzD5XjSa`%U2ISr)-)wy=G@> z{dVdsOH+Ts$p?c5`5>r%{0sBMk&pzI&q@$V5-1Dt(;m!7{{xV(Q;J#)xE`iZyc;SQ z?;=mQzZl54-F1<|7X^Ih_Ze`g6`!$Wq#CneoL#*ItHg;vqrK;!+{nm)!R=I{)-1Ow zWLp7GW4rSgsnIYwrw#n8D5=Kb#;qwHMU(P!<>Q;`TV(7;FfmCZDOdNtRr=NY_6LJ@ zTJF}^_xl+(tVOAQ*iVv1MrF`ntUY5+5@fj#_c$R~Fg&L(B>l7!;p0#{bD+&_k3(Yt zp=$oXdyV2god1n>4( zn+(aAlul!hSFwt)%i1@lpZv))pIT0PkMwHEl#JkGjXD=L|D3^?fI5q37d)`fX4rC>QH>zMnC5c3>c zB9xv|nJvB%+Fg10Tub+wi{yd>lfB0|W%(>#HxY7uplbAKj;G>rW&$h?5eJ1@F2N8Q z6xKU(gU;&-7qnzbQW!lxjEuy>P@A>I;r%eB;$?5I9&|l5ZUUkV7;5=o-bDO1u!r}J zjd2>g0Kyl&K}K-600tVVkh}g^JhX{}z#%V8bJGO@=xf7|GmvV;58X>n-uE7I(=od%VZ+cI2p|~yija4K3Zlu8$iKVWYOSklcT1^zp>&?dbN-9Ldj@W&e`VoA zuNL|qI*=a+Xj2SGWDb)J!Hy}G&_+aDH>B$$6daf%e1~lV>TlupMcI6Is`vHMNUCs+n z%d?%mXmn?NlN7ppX!rvkbu;^`s)|i{7(4OpzbS+NU$ngkR8;%A?O6n&idbZjoKZk> zkerip*;~pfUhz)#Ed7 zBj_Pf)Ehun#r5^fh&Lbke<8gL8AQQ68<=$kD@uu>D#%rjdZ=Zo2!)phji~uEwgE2q ztY(Bg%oHkneo0)V^_CuZEQlH=#VK$ofI%TX5@_3ngN-2<$lBVPm|2D$AX|w38N}dK zGe9bj(PBl6!}I$`K0tw}GTsb#19^!fr!TOCi8M5-@ko^iBg<}hbk1)DJg{pN`!8x3 zSm&p_XtaX)bS3q`#H)$SxnP%J)!HB91KClD!n|dIA!DAFb?NsXQYWgBuWn~1a(eC^ z{U*v6$`$<-*kT8M1~Si8n5@A7n6hG&{YM5It}my*hpt1HwjgC!p`d}LJc_(C|Nh{2 z2t;L<^aM^$PMU!%2qgA&0On$DkN_93!jw13_m_(_g6SM-AX7mjRA&(V6IUC7s$&tN zWCm>20iVP`iW4aldQ?>%q5pXz=3z_Oq<#5v3d_02bel*;?6Q%A_5SdK!~sM;h^Ss2 zfCmp$e^)#AfQ*e{?*_~Q^;kS;KzpO;`x!kGxXkG@2^8Z{7$_o7IpaQ`dBU-A(-_Ef zT6C>?#GxU9L5?ELVt31L{?T-=z4j1IppHpetVAu{swN^gWIoB8{U3?bpZ+8 zi-;PDB#EK=tU(W{YXOKeqI#CJz~|Do2l^%--~0<@FpgjVxP~8#gdb!RBQ@FDM4hN7 zJ1IZjfQn68XKG|>DgnXPD@@-^ecqUWM^;Z}vD2ifgWHygIXv~HicaF@fu~t~*wT9* zyAj*ML=oWEd}%%J--q`vgHuNkV3kBSDSG$z{EY$my_eD3YYeR-35-KE;79(WCqgnc zEG*J2Hy{Wm8VCDjxVfDd85P7HI_& z0kA)W9VTI3SP2MnWJpI>p`HP9Py_`BItQ|knN~&rDj2=r8s4!0P;B9t-zFxSq2e9I z{rd;88$((m{l#e>3)5%Hm}O?^W@hy*ic<77J^gL*zW?dyMk=)viP(gn)BN*GHY;Sq zAbtv%u0kjUvRUzdbr~6fgS|)+F{Zacr+E+LnVB-Kj*vPG4>ttZ3C?`o>wEmkD&YY3 zM$&!|@O1yTi}JvjK3{|65U_4utfP)ooZ58u6*vg-gr7%$_!EeKH8 zqFZNa3$`h{{zGB=wa-^qGk4PogJUn-F;>*A#jeEeY&TWfmx?@bjpsD^L9-n*oi~an zC9`kK&I-LYoiWBg;)(?@Awo8Q9T6QoHDOSVq+d?W!kG@o-yA&27U}_*5$~Lxm4yJ~ zK=r6QH4DljB+~)8Snz^Bf~^P%N`j?dt)&a-{E+GgFnpWf>vn=tCIH4b@U^08bZHvQ zDs{xrzXo+mV#Q%h&-?AD4+(=q@{%(1BaS_A9n&c5m7!8p7?mvKZVHU5>nwDCrN^J| zp35*iqplTD`OGHd88)rLOR8LJ@^+A(W&yu!?B4p&(V+a6qGBr9xqZ#VOW7A+;!V@f zdk@xO-_!kI-A*bA6n{__>osyXg@Q!jAh<&7YN?grrtx?a$t|-|99pX6i5+>6G`l^ZnNB9TsH%$Z$?2 zOrrG{J<_?tK}=#^q*EQqvt}e4tHbqT*xii&f%U_{>3KABr@Pl&SFzi}X@81HNydmD zaDF-X^m=b*jk&z&SH%%XFW>#Wi|`CW`yN`tzyS{fZ>RBU=Qz(;{IFC z@)$0S&*Gb((w*4LCtNB#S#GN@C1EbnmVP8rb-OBKv2Rz(lEG31JYId5CrKIe4Kt41 zGAcKOx~LdXVs>Gt0?vBYj4VTBt{#jCH8Np?1xvOV=Lch2SbyOYv9$dqsb>69y*IB^ zm7R~x-Q5kdH~RcON;!|*?CIl{GV7n`Hhf6w&RWWcnOytlJN<#x*2j?%AsanQ6SG+H zc3C;OV`UzvK9BIDXE4m27QqSS*sm6NY^BK4OP*{}R-$7jSEt(NKn{4py# zHxm<4JxjsgY>0W=rTZ(Vvc~*fVQfp}kwbf2_N{v=6~DXkXA#X!)-&qu)~z||V^lU}KL)b~?9KCyu@hA~RFoc$clX9!i98(7j4r3qH>)*FO-vGA zdpqNIUmbxo36Au4X(=Og@6sH&Ah-%1m9hDNLlSkT4X-3I!M<@RxNt9vS8X`XsW{iU zeb9`I7&(0*ETeO4xH1GO|YJnfty?6#f=v?TW%B=CZ$Re7wbxuN>adQ%)mE2F_aDpC=*>!6BAR>+jZ6bmmf+G*H;z2z`EHtbO zpY0fv1o|%PV^wroW1jP6%eSr5ww>!pD<^JP3&xaRUg~>xgVKxfB3~vCtHaei+|v&2 zJY1+RHNzLj3qll+i!vT#>j@FAj|`+&6;I4dpE39=@k?}S*&r~+$~np*Y{XxB#ZKS- zhUmv!*MMoIm-Gyo9p=L6UeT` zTj76Dkq5^tHMb8|i+O7`);YX2)WojvN^u<995Q3*6F%{7OruzqSiHWgced==tu&i~9Qu1BIFo!%CG3K7nyEM`-U7@AO z5wyK*)Kxn8hu0FFojCkEV|ZB@4KP4>#)eyIjrDp*8?cIlV8>Ei>s;)u3^_5<5-#OL z=FXi}9!-2S^4}R(1)Xp`-TR}NP0Gw9dA-oQm`%>d`0(!O>(`%cTd#AvL{6_S9~TX2 zp3mj8`Mou5&@{wr707uPX;Sl&yg?mwMLn!zdO z=kpW+&5yL5P9^B#a9jLuy|}YnExlziH~)r5`Y0y9$O%}oT|0gHaySPcDcy1SFL5Nj zn-r^@F?AF;anbZ|;(ollZ5A;FHzo?4pMm*>sah zmZ!rHBR@t*{Gu76n@5UdVnS{x)mly z8;58cZAZoTl8*NZ`;?S?o@2jsxmd8WMa+x^oMt}wbS`Y;^)~U>$Tx3hP?uR%CnDRq z?z)EINeiSl6|dTC3x!zidZXX%@4U4kZiih16< z_0`)#SwuU;AK5tPcm1QzyqpFGSdL<$NuQ`#dAe}2;JFzbym$sp%VV+gB6uZDEm1wp zyxaR94lK0!^ky6e9HF8_sPt2EMfLJTYTVu{7hE|>$WO9Nw3kjqTF+^_mvT;AkQngI zt(KK1=Hy&kDbB!YK?p!N#%$V9pD5_Yr|Of}$t=`+Eb`Se9D?z!5vtAF(QgRLtHOU~ zS0CEDY4@{idE0*u^k{IfJk1->Y7$<_k7(-9XJj!rE#+eUTYagiarPyaG!26sAN|5; z>IehRmSa1GH5Iwx-k^vy!lp?2N>R^rMGg>)nE&=?aA@bH()v5tsy?^%)y7TR(B3({ ze&K_%XQ@v?Nvv0f&W#(NrFDkj?Q)2kCi5;5wI1|7eHKmWMu+i#B`^0j(!hXj=Ey-a z=fThkd`IBzh*g@=FNMsr-j3O#VTU&14nUI#k8#}jQsDO-I}(>==;{&}oq9jvgB%s! zF3#$J1)amnLUFpV^vjvpL&LjYIxQ@Yp$z}Ps?-l0{mfZ|c0sXcF@(mEzH%NWR zLv~B;iBSI@Vjvu-F`yuWB{vKq2tk4r2%xDIXJIO^3HWhl^@DcW#<3p|OVzf#JrDK` zB*m!;9AQ8xR7K3lAqO4Y(w-+mc={`K@n>kS2sNV_MO7C4BkQ6sQ4f3x{6u-K|EBri zQgRAw;DvxaXk@O%WCk%-l$P4_!hD1_*n58@d z(Hs@05~D=R4n5MnK({vq2q{=6`?dW<1a0t1`1So(E5ZhB9IF8@OK-k9H^8>KK?#G9 zAK^0s+cxQI;vqazo_t0fylXSB#-~HLs>HNwSS*aEQSMUwxkRa= zDr2(oDZt&MX6s*Fe7p~^@!Hn?kxa6MdT=CwXv7gFgw@^for~atg41B39?am5u=|0K zEbJ<$j0+VYC_ANL>Hy;)h&6a-sb?K+s`pGAfaF-XsJ0;H@$R4wfT@fROyZytLPE?m zot*d~gR88W*OM$3$G}tJ8t}~PbCorUi?kYk+nZ!oQi7cgFcNGhQ5ex8^rVfEbp~ z5OK-t`4EaeC)a!;0FoXD#dyCNFe>np5`8fLrOEG)hE9tSS--=a(5GK@e-82MgDBpq zsOt+vot$5jKKK?%R&7#-CAg^B4{VA}(up&yh93#Nx|K2G;athM9n_uR_S+GDFmb21 z2x9Pn35KL+Cb;t27q<$YJP~pTh806!zB+AkH-B(W_oC*F8#1@m>_cw>#midd&El2= z+#y8Wm~o*;&fzkq7cO1uSn}nSlA?ogFk+1YhlTL>>mD8*KpH@>k5Jyv50#up`V<7z zcK7hqNP%GR&^E;(x~sA_>}k*v=?A z{Dp235%Y`LHZlSwt^<`PZ`#Ud`c+(^0-zEc;^F>~+nT~RW)dD}8qE}L zwSHO~gDalBB^W+<&0eu~?yHBVCn-`X?%&BE_4rSx4gUy55M?StE=30aKo>~?dV6>{ zG2&X_1_WD51?_xA1qbi0L;^ZKb`qwUu`sP(gjMz%7&Ra~c^qg8fq2>t zQ)Q~FGF(6cK5g=Ks>tfVNXm$Ga_Q&XycNx^n6(#6A*8QgQ0*^B>6ZwM&h3H?EplEX zUfnlu_`v;vL_F>{)Yc-#vLY5{6rvbR^Ky6Bg2WQLz$GT1yRdSs1o@fD;n!jW=>S2E zNcB>_K!wBCP zX5A?=`n1&ng9*lO?DjD`f(Gm|E=iF=&i>yo? z%*hN)uFDg>Kx13%S+#oO`U7lQ(ax(;zNy@(PZh~L384gm7*xQ)tG*NA$&pxpBb&Fp zDz17@Zpc)dJe|rmU=s}AV4(CVCBMoom}~HqtenfSSo==E*SoJCL*3Hr?IGIKh@RAT z9245aUN;ocu0SW%A9>>2WVKCM#lHk<8)i>j4WnK;j|s;XNMed8Eoia+y9r-y#rq6# zSZgUI#;|+Qkuk#zT!qndxB9+sU@4DstEuEQGmgdL*fk?m^6#Nt;zw9*OVd=J?hoEh zt{mAHJWy=BMXHHn6w<`Ey&scP#%QTMZR+NM~j@z?UBt>yY}iqLu9Ec2FZ zujugIs!dXtKkm*M-r_ zfW(i=klQqOonordsZ7N)(Zzhi*D!LW*$VA+I4dj2RZ)96WIjo(RFwq=4M5(oq2NIZPKsCu&qvS;IlIzAqFzVSl84kale$lJkviA#x zc+>r^Q~U9wj~`+PSK)Aok#swo{p1RE@gj-=Z(fGAY2Qf5Wp; z!wF3TUa2)yFY8>+l+=oq$@n|Iu@b^N%(GVt{`Bo-Ld}^EFA``JVJjIf2j59YPA^h- z%!)KSOj3h#ozYAEbPYPv)I2&BM|ZL?-7WZ<_~Q~xjPuu4kL#|NSa87xRLZ0)4~Cr{ zC}ilWhSoX0d3%FgB2sj}Ave!i)XT4N?xMEr2QP@>6K52f=jpZl{qDrqEp)WjStYp< z=k@SG*9!+%)w8-dfLzKhh8z1y?;x(Gc5HxIAGQt*0n{En~TT zq@+lZqioh$d_VoEf3g7D3auw|bS`gJAv{J%#F$XXI{fa3B#(QGd=0+RR+~K`$i;GW z_0c9qaI}3P$Z8nJEatRPH&jBVtP<~EnZi?sv|w&L7hdAcNL~yqOe94-=JZO_KFd*; z)|fkJLhS#m$Pi09Ynp+N@G*Lc=Wwq`e0<6B%v7aa@B8l#Pa7i-b2k%2TWB8hQkr1f z#I(597!{0l3gBIh#a*)3C;#Ub&cj77em1fDRyS^oW|*%!WOMZk5vRP0KV*#@_9`b0 z;vU!ZGSs0Ih$=>nkYwa48CYmpo+2f@sA@M~nw_g*J}fEc|?ki9CrQN%@EveRB+r-I_z}aLN0Gw})+qL13SK{H>+;O`IgziUfwQ zkw=O{SI36DqD!>wBGp)lZLSDDuq}pZ$1>JYE_G*ZM@%$qA&OJWi65qi@a`+V_g-*t z6&S2{q?0If{`gpPBBYY}jr;22w@kXVVW-roV21Cud_HHe_~Qmt`n&@?F;)SQ9T=SI zy6cjL*IwX<*A`s)Uax>oUCgOt_e>&5Z{pf+aM$DweJtJ=_7D$>ZhdqZ-`bX>`yj?! z#+(+>#Hn+k)*&6^SvIi!q9$mg?7Ig#e2(@9Rkntc)8`DiaP9y)g3e7|7P2-5F&X*F z9}CqxWar(EEt~dA;&?u@$zx{7NF&jKOB;!~LxN`gtbhpv2)* z#bttD?7oG3o3$o9>9v%M;z6sy+p=UD%@H%@aQxag=Wn50zwWktY~dwc!i1`|p zWRAd5cJuP07O4SY{pDNJeh3$QbH1Yr>bB6|h#BA5*f{+h4p-=Q1hs+B2f0xmD9I4v zPJhUr49qLPU1v?=g(|=K=0v+2n}gNwPPXrVtv@!t)sytqvP>LX`ewH+X)r0*mvxD+ zT*I{?(mx=`J|}K^Hl7(J4sE&`*@P1G6Yz*-1fCV-PO~FvL9m{VRCQ?&KXw4X@T$OV z7sMzI8`Cb^ThoF_6{rn5@>JuYH(Wq$=g>_cgmlFFUQiI~%;2MMtWSQd zk2P|3Lmz~yuMdi73=L2DDEH^yAJlw@mMW{ad$qV5Wk4Dn*pVwrpTey8@rDW|ds&-U zu)*bb#k=u2R`#gj&)PJ*e@*X__fOtaPM>+{CAU=P!ZwgyWFlTRGkzGPE-mw~g>w(n z&(ICJHv`tF_sQm_5}|)W-Gljj*2bg&Q;(=OkU1*~T)$KZ@fMaqkV`hRlmV9%%2fyW zJA__OghHTs&&-NV0gwkp+yYehZ;%K(c!_)n!`KuE;jm&xd^`|c&;ep$Gk}=@fH}qw z7F?Wa`Lr;Luij&3VR3?Rqyx~|U>W#?fg+2zrJ7 zf^SWic1?=-bNc_Az1$>crK-62S(P`dyJTn_uC-F)GF$6xGAywDPH#ZZG{60G6R`GC z&3PbfNAd&cI#kw@ZaAwgZ|1!b9_o)&ndC^goT2@asWklWHP0c1&?u$!+=-9q-k?1z zap$tn94-!>zWqj(D`#?L7F-#JTF5h;Hj~;i&9evoY?rolMW`Sifm{;hlE<-W{NF@MJ2I(3Y6k-~jn4FY? zUDmi0tUVwzoEE??BoK#z3WY5s!c+h}rDF@Ux*Q;x=#)%=GXbVsaIeKULx6a3Xd|Q< zbSXV*{&TpB#8=qa*`?nJY2}7bBXUF{>v>XP|2$38-pa0wVa>>%hpVKI=BdiacIPe= zeAjiQV(}0a!FP8Ed(7#gj^&=S$u}0vHXER=5r`d#Jsgo(1P~FMLN@~)d;C0l_VzZl zUJ}QNprF+Mxd;A77zJB!#Iz1!)5bZ9bSO#Z_l!t%1<3Ud^8fzi1_cdgPr8IY9MY^4 zTL7<{1Ez~I(wZUs^M{x0+L6`_2^JNLC!Ua#o~I^lj`TKoK`Lw>J2SU{FE? zwAjI)+PXTn>Dy_Vc{m!$iTJ{s(nhk6Tj)FWUcS4oWF()_qD< z?;VS{pq(MtjHn)a17sh2V$)W3CIAGzdCK;3v$(=ZCom8A-v^4skFdpa%r% zQ_-?_99ea)9RY8~3_MuSj6REBhuo0I8M}@LoAX3R$iNN=<6qs`?GQr&{mK4H4vV;X zhXgJjzVYInUxm%p^D8VXCPpj2n(FIImmBJtH-ku2+X+5}F8gOzsc&(*#JDw4Z~E6< z!dQ1+7kGenRCOGC|BGN0yJMnzXk+*S_f1WF^oj7L$`n{G&j{Q7pvosYQt2RRSL>I= zof9z*X9)N)ws|Gqdgu!}Eqmw7wk>m))=KTfM9)zom4r``WCGa^Uh$bK`MHegOJ8?y zpBG`!#QK_Mkm_&l)Nr1wchk+{6AutPS#s;r!T#Hn9>;@Tw!nVxzkkAZw@37v#}_Y@ zF+MglEQC1K8DqOD8&=X}`Eep;C{yI!w|7KGOlnJQT6*qF)AU#*PnexOUb)--rS~5NWr#iM}x8+j9M7VS& zsMdQ1_ta@QWrhKmuhZbB$5-Fo`8M=upZL_qU&jeW1-)dGuJ(xB@RzT-Koi(k zi3u}c_-a}3)TD{p+G5h<@z;yh`OWv|G2i(g{Y_t051{*~GNysmxdciYx_M`wfe3Hv z#6)SWx2s)q6a1`eh8o*m3J#O?ebs|wjtw@i8b&=UDs#UlUaZd&53zD4#R$h~gEPbK zAPh}CU9(vm=9N=%L*@&;wWMlxCrpdHkJcOb|CP%(1}LPqKcI_4=&mGWR2pEE^!4@K z9KK|K>;XVORa|;Ah|+tGHB2VLU}T6qk>c*}RePULXBCh<6oka{{9gv^=XGHbtc2R7)i&7a;@OM4r%2e)ICcUxIik0XB+UToVZ zKfQ4aE?*w*YNL>*=T+zkl4U4g?Mai!R4W@)ttiEA-fI&;Yhj+m&%+ZJnQ4K`wq@_o_U_7_25`&AAStfSV-vxVS-5roec08kg?kK(q|EcfyOVrfVP(5b5^}`_OAIs8% z2O`yi^zO{l=wqui7dArM-*b&nUPr4_8GI@^md~$<`P&wj>!{Fo>Bi~&iGAf?-`f@a zp38J}X3C@|V@w8^-&s7R#M!M$nxky)B+kz~^cEF)ULLW}HR7*fbG_@nz5!Dt%!QFyjB95=rU(g6 zP@oZ^U~c_?DTpjCYgK|u5L7`mB6uWMlLewxVDolII4vblUxYtLKURDoW;nuLZu^{LibR0mi*>Jr1(W;+QKL|uqG1Y28Yz3gAz<5AAr zs)K*YH&TzRF8&gDc~41T{z${IfX&A-u!QBrV5iVyd5`wzM8hj#muW2c?sa=OX+GP} z>E2h*`AR(_d~0@hC&fRT!&BG>Loo3cj9Tvl=Q`p)lB!5o(Cj5}iIO|Fhu{jBUOavS zgLdVMVkDPogp(dL8e;tE+Er*@is?x9kFuO~dzX3{>OZzQ&8hcyG+{M<{Ut>ztaebL zD=RCZ>%+st3u^yX!u|fY5>A8dmC~bS^hLc!_50%ODtlv2&q_-f)SsTqx9}c*KldTK zBU?4J`kg1SmVE5tVc)|qcwL3&nZEvg8b>OQfYZiWJ^jnpcdscNxd!DCh{JIyOySF` zGVJ9Hsu2Sd5o1ZNX*hhyiAsA%EQ22~Y^+OQ2je}^D!Y$#7q zq43BD7aeRo;++4(09p*Hd9K>p+8Afh$|5aU0bCGAwr_!WX+q$GF?wV0wO&4Tsf~QD z;ylsV*p;0*f}>XKprNRiKjxcofOOInKF5H&E<17_UY#qAR{@$J1u(&{rXnyZ_U#xB&aDHW=`3!MY1H zu(rL5Qtm?{2s#{;8(p9x1k1mD!Lw&*khbUp$_q6II#5KB0%l_*GOQU|mw=y3>4@Te zAPKQZA}g*l5-oV7f`M&SC+JvV>`RJ@^ORzr@uelX?Z4nIZAR*vd+(3>R9zLll}oI- za;!al`v~qzb`>L`-S1sXsmk72Qq9fSZ&Dpdo~wAn6yG0v>@&oX43%vqP|9UxWf3_u zRI-Sf8v%^*e0!__!7;G$f-yNiv?x$9S~mHYzf^~rZvO2b7|`1x`EBr;5OfgHtC;IA z=gB-F&;%;5ZjdjZK|;;WM9}^ zq|jAsYvr~2?_LcD1QGqr>6q^mWcgFDbJ@Z%ooKd9S28Ez{_D zQI7u}LucsijEK+)kNK^}M0|84S8s1MZ=}Aa2+wWIgN`_FjHpo0I2~7hiQDQYba<&J zy@}A&U|ZSBP`q7sg7x?F<(DYYIe2(QSe168Ynn-JLIKk3rLkT?k~fGQo^30d32cVs z`kpC0!#i*mi?@TlFkf@fxyPF;ycXvxc8+UB8e?w<1a#oKnu=tZxGSI<71jN)6-4^{ z{=pT&{n-82X{P$@p%!m;>F}snTq;Yn#nK1O$fSOlB6MwcA&2r=(r2SN0FEM-%#>)j^$>db5aEDzxKT8?bpQ zX=-!>OX)|}VU5<8k&Uq-kH3d`C6Qc4TE=#VYa@v`@3l8(bHYx1_O9iKK9*QEtWWFn z566|ThNO!^|2aY2gJXj5rj2?|#p3*RJzzn3U6mVRzt*WF#iO=%(x zEsZz(16027kgX|a8W?TL8R%*~%TIksfvKzN_O%>%EpTN$It}~8l$Swl#zW4p@+1q# z%7c5}r>|w~e*{0&0o0%5iniEoMs*G&gRimVE`DCJp$zV(qH)7$M}Eghe$I*~A@t2} z+HPdmhj}T<8kOrA6iQ-DD&t3o-{!CNuEhj?-@#~6iwzP#Pvn+g=qYFG-oztwcVXB{ z@+ZVp_(_X}%m|`|3xxb_5_xDE^1DbK1aF}5((~`5CQiAgkJyLtjXRJsN*H6mfY3rF zAk&+frabjY!qjeO zkBe5h=q#6ZsmU=oS&p!O%MpmfJZ&?t)O()n7i6F@-o#;qt+D)O7K`#P%2;Zl^^~8} z#uCG(0R>-pfxNGpVYrE^mMh>#00W-ufm)AmxT5*5O0zpDIVftHlzVArhchRvGCJb0 z=wfez92P%*kM#?y@@HOVQ>BCFiDxcQ#;-0;YinVRa3^B4*J*bfvc{%N`4r6q%Xt}s zr1JC<4Qa0b~e*Uix`yDam_art?Zj z(1Mvm2kasUuX1E$BvcwgCkU`)jfPPJlE=UJH5r!W6j%haGU}3gT5^ zo7|Cn_m>lrQw0Wzm(V6d|Mj?B(-ZEjzN%CnGJ-^>!_(pNp`h4z?An`g_g$@GdE_05 zIe8@T5q~9?Uk&r&uNwLV8U)lh!=f41^&;>zLpTwz7$t{+6J>BOqWFcKp(Feo!U{!Z zbs*F@Gc`Lh5(Q2YSp@|rST=&=Q309TK}oMAcH_rqL-5VaL+#oQnH31=6VYeDq{%T8 z{sEzIAWmTfa|jL-9${f}XuA_Fzkq+{4UlLgVIzx3!;z|g3o>Pqlfhr znPB1rmf{N*BZa}Y(qA-w&eIfjJ?|iR>cgKO@Cl~ZdE{!<7szB%rgvy#ZU3m+XfgDd zrf9QAdnxbUhD7VRpfbCJJ*sTgTZDv=($_P|y}egpfZD!fuEs^N=yp2Pj%xiXYV$AZ zf4|8DRRA1~|3{YzVzNPa@^=qE<%5YwIPG0;Zzou{<3Pc0q4ES~H31O9m{CW$anE&3 zAmQL=zHY9`zFQWjJRP-{(HP4J*Mh+e?&=+*S^m?!YukPy$Jr&W$1|?>EOuJ1u;-kE zAi1e)4M=4RZ#xiF#u~2YuSr33;&%0_COGF_dI2^Oab*HzxD)gQZ2XA%K6AJQkw2mzq1w2iPyGF)p1!g2>TZhwQ}{ceZ40e_%sM1U_H9l+a>cEE}|BAcwf9+paANO6ZDXXYZ1#n zd4e2lFGMKB8ToIlks}Dbk;poj6gxit7Bx8SPEwSDC;fe*Q;XVI%sh4L^NEj>7UrKP zJ{SaB<|I2rm}!M|-_kpga+vVw(TlCd_WstLzl2%eNqi%LQ^M4qTPZRNds52V;p zx^eMGqpV&GYikEn)n5P)LnPIKs8p8zr(VPs3~dph4S{)a+uq2C1+v)SO4i>~{O{XS z0DJ^qasphnfsY?iaLW>rkj+83ZWo*pC=|>o^`V~u&NZEBKMcw{O(}$dPsW#k?bLd` zXx#Nbv;ZxHkRnmBPRcW3Calq!`)^C^Z}(z5ef`LSXW7}qK)30u#w~eU5gcGki=@du zBIl|&d{d7_dX?!)1xEhtTJk-SrICLBK12XNh*<(h!`${yQ!A@jaIc`+AUtLO25}(Y zddrmx#U!v(9pF3#>mNA^i6aCM83+~VSMNZA9Z)Iwqi`T%12If2K@LE&Kov97n1)@6 zBd0ksA4Ak~01WB?dsdbE@JW;g)YUJ*4*}nauizKLfLeglJ0ak=e`IH6B&%S|?#PG9 zwrluzy!C>C`9)7&;jf(a(O_B#tL)b(N^1VS58k4wPG4 z!|aoyDk*slETxq|cvmG4VRdz>LYLaVxfTB^;kXfuso54aicPAGK+5Kqx_&)27zeCnp+U!E^KG&ABX(7wvz4&;G^1UW*kB zYA`nyPqTvLO~lHN80TItrP-K5W(ioavGBl?uHZcjDc@bJ;xUoZ)+-N3aB_M9%~p|T zNkOn+^AVo=fEVwdf|maM!C*eZJIwYxIxI1U;qIK38NU`w}uYjuPg z7BC&aBaMS5a0eK?NZ$epFXCxzK!!o=!H{5rP+q{)$Ag&j;cMfZp|9N>b4s2EN7L8I z1_|J-Y=PhqL036u=KuOEjEs(uUb-g#H`VCn8`OVbI`0S?LOr?6CFlf5QogX67*YI{ zNthwBHSB(}%c0_*C3Xy(JgSe6b|v!MUp`?zsrO!2Z2#6~YvEuqCeMNQp|zK|_sWAg zx$ck zmo@iOX)Rr{(1J;khJNi!cV4%R&EiSt1|PfJjGN~|9XhpzLb5QYNL1wF=X*U?Vm!ie z>-R4bPTAqY=Qu$?=6Hp}XEX3o_p=i9gMds(y_q9hV-xfsrrC}&Az|+O2glX0ELps zlsq(d+4}hFV{=BvqXhJ5GtQ;~zBauoKI{|Xb zgT87brYb&e&un}7j~|o5+A*H_D^Y$PoeZo`ftx{5k;mlSJ%~KVPzs?Bz~p)>KqWVS zR_G zGt)CO=fGRGL;1q4qLOXHM;5Lm!42d(Xgi_UlB$UGTF;>7PT3f&Sj>n$hgM+h(tFI? zH^(XO8fOW_%>k|F>A|ioO$wSxn1iB3!J1a(Toyl?PX(HUn2SE0zW$`6B|B4MeHF*V zyx}Ovd%-dhd4)k~GkQz5Cj30m^(j?~Jb$)Q){jUF_->08?M?l-5=0R@+9n75;XqQw{$uQ76)K{N(USeGNiV31{7 zFf(~u#z#`-g$$jlT}waO9I?0v%y4}nY2{5DkudRH5lYf{2WBlxaf?X&R`|?*Oq!EW z0tCKv%sKn!4sl&=abKG&;UA62%O^ziq$-Y(QC@FhlsWG<{#z9-XuU+>(E6=ziPirh z+v6OC)sYnC_0-F$oY>xsV|WqfEiVwoiIzAq_Qt!wN;o|N*yvEqQaPZ9(`OnGU zXro?Ql5I*|Hq0qy>b8gvR2>VHY-pS=r^)|#GA3-Z$nx8(h`%FE&vQa;X9Y#2iauBq z)k?ld<{^d237Qti5YA~N72H;5&9NmAckF@K1wzqu?d6)`{T}x+=FZT%8ArizR?|~) z!#N5E9M&tCH^#}8Y1>sQ3Yt1HV9Pk0YE?wdrCY@)NNgoO5Rku1nB2y7v0M}UZ75(S zhJDWU%A?wx)W*-`pGU%&V?ZWpN7LBiG37djF0PtxntfGPQI#&ER);gk$}Tt7dhbQ` zh!m2SIQv@!S1YM|1O)ZLd;^Z?&<2{bG|FRdNt!YF-uI&IPg~1Wl0N;p@NK-(n(++IIU;Sp z|0Hi2OKJZ(tO8@(O>mto>@D*mLHVM}-SIUc(U!Iffp|>#bp(nn zF(VMJo+FS{?6oPs(Bi^W{9)nM!tZ#R3O-ikBkIpH0-Wu@H8DI|9z8Ed=%yKaXEDO+ zx1N~jc|^k8|G)q2E< zc;XQbCc>tL#PPk2S#HxO#l<9|7G>ZWA-M+xI50QdhV(!sYy4dUsvE|#eq1_N!n>r- z6{RW!mvufna>BoKWFy0V>(I`fcLRv|I?b0yN$T zB=3EmD}ow(*mk36r3H{NA(w zz~1O#`on`EC>|1r>O}e55?3;sdYuzU;#7_TIXV)90LlUq6v(u209RGK@r4S2s!bf{ zAua>N`^YRFHf9Q_IoJ#$QQ|O6K>YJaZUxfUBF*_fBvKRu|B?8Qr3LESo zyRzgw2osYqVN$zu=m1)L1QqjfU?2>ZkYd14Xg%nX&^ZF52{Lkmv`^bx>|5x-C@+m# z8gsnbXO(wB>UgC!dL<&ASyh)iEsV@`F}4#O8~fz9VN-T<_|ktx)qs2x{%ij=R|AIA zkQ)O#I;6Zu&3%5C3UdjfdT6SUO!y*k6L<=~`)W9Ly_1wv`KARa?p6YQra;`V(*-mo zWzNSvfA&j=qZ`IpTQ!hFYrFgZ0+wNI1$-xXuXVRXhXik(QeB?sd@qEPvHT#J?r%|B z&8o?oobvN=BCxC;(6USJQDP|9X8s=kor5gouTSp(MR+DW#(ZjOcJ;piez8fQl)#s7 zgP{rh`H@H_`$qFN4U!>B+N2(;1foLe!R50X6c%~`3Pr!}@Sr<*%{*!J_MOXQZjaG5 zsWKpf9bKsoAj={7IIQ)(a7pI20-$APsBEdLV}koS8ZZZ{ePBQVY?xZUM4R$uTU&9i z#jSwGD|fKfXYtP!I3!*l@F5Yo2*D3bTOnA7c+-8jHHrJ=0DL*TTt&$!gySt6WUuPP zmALRG|B84Cj;E$n@P}hN}DX}Ns3`mgCCJgO}QHZb# zR2fJ@F~}uTh0bbOS!EV4#+~S|48y;dDI*onP0m`raP>D$$Q~x#CV`QA$D}l3G}5Fu zbg6FjgUl~kRNC25w8OEnWj3KTOkflzX`})cFH>3ibj(nvMnN{KA~(hao&-i(;afAj zg1f10AXVov^E~xAWtpX^lZs&vUv21}kk*&_dVm4HEh(+7CF??le)Cp-PL)Joa^Q~` zb^!Ud=)fBoLT1MNiL|`#Z>-|K)<%*9@Ud=y|6g|F{AEeuNIwcI4wpw)DAm%>OKNY9 zSA8%*GYmjIf|G90>++X|N-?Rre3I{GRx8u%Zdq zGV0J#x%jGa;^h539yA|R!Cv8m?IvfV%LIz?T)bjy#hT$fz3sgZ=fnGPyTR8U-ukq% zn#7!?Sdm<*0QGNNd>p6x;8HkY$8Ozd$Pb#jm@o z>vRw#vYv)g$V%e=;2+I1(e6W1Lr>{++{!kYl`$*!Wzaf@>4@S)kdDl(^wZUE9tn0Q z&Lwh&wg`bbg6W=!1^F&N>HKZCV@k&mpCqDVBD-ystxkpmK$sv8SUym9fV#pWn=CZBZ^DS3uSqYgfZb`0|g3boV6qHS&5deR0N^Sa z#RE=fXpdQA{TlVq_YsZt7gW9!bj?}}UkM0y3+A#&@ZZ!3%w;*1{dq)1d$f9BgNgiM zzUQh){GS4zz3Q&Q3qxL;Nu%mdI3cXPNc$7GRF4DU4N;fc-QLngwSjF75o(Aiy#{SS zhDxAxM6m1@O-=Q^X9Mgn#~4 zX9(C>|NMU8G1dlD>~BHmk8pGa1OyzQ5*TZ}+d3@dgOr5-E&1Eu)|RH^lIlNy75}JB zacok}Ykb8$B#m;M5fwCv{qqNzo@3iZZ5w)Skc`4C`KPj1|k7e9NA6svWWnVde zMN0Smk2DRvr$^ zMBN!$ZnZK%Fg<(n=#k}7#pPE;;0yqB^986khXLf2n3OaE4|Gd8kfoVMcND^8|A~c# z#R`1%mTz|G<;o8WzLA>#Ik8A5iu`m)=&MpKFge z&cgB(nwJs5GijESnW`v)w?w8SF8m4H*ZqJI+<~3VFo2@=ahG0yJCvN7nRx-^%0s{x zTTa3zO-?{SN8$QR+4JYHKs?D8^z|cesS6Zb?lt3ZIMzIWeh9iDw<}j3*)`sL_uT6B z?N>rVLe~9Y^4HB(@_T+s9h#FyhxTx;{e^y*nqSbVefiSzV#VwFxjBdFYUlWi2$qeB zZW?x!&+YE;Ghnd=$Z>rZJ`GXP(Ka=9^`4nYtWtzkh@$u~2tIF^r7atr3)*spBl-|> zx!^-mP*P$TO~qCOWVb`)WWZ&NlbBvyl8&|W{`tfC#EBCr@ZNgZXlR6j73V!jIu9#l z{(8d(8+yyFEPEXtJk<3z+mO4Sub6AXrXJFKF*PgeBoPsj?_3*E>6cjHJZ#hSwPCor zh8HhBgk{;x^H+O{oN}Dq-wY-Gl)=YEN2jQ$NJj^;G+W!)wAgJxjVvH9KjN`htd~d+ zXX`&-?BrAo8I`@yUkzLi_D$M(#Bz5CKuWN9`}2F>-lu80_ZJOBtEK~i-am`BhMb2m zDzzWi`uC3wochgwwixMrUS0kH9NB%dOMi-=Jkis6)brDCt+b>h1w1!F>$DUU_aSn% zBJ1Gbz{KO`T6{vn1L%gXC4aJ&`18D_#TF#`&anQGhV47utHYpm|0a076%(tjgTpFH zd(+RJR8@gb#riXd9H#U5RljxR!$vHAay<>0f<~5>8L;tx2d<^ZWn~GO`+Q(9Z~eWO z4Mpj*PilW&lVEwNNZ$M(?Okh3lUEo%h)!L=jH@UeDzp^?QiK4G>C~-&SS|~rDz{>1 ztD%LWg4|K#7=bZFsgo;$0h#(FEdp@_{`>}sZ z_N!^qFF8Hmd*1h)^FEh-7(b*60enr4SACubL%l6-Zl&1By#WqZ02Ek6Z0wLO$)H_a zm=2F>78IiCv=7kuc$K*(=y(;IRdDWHg+`+Z>sS#R6XS+Z%pE9S8vmxR*tpil#s#Vi zJZi-_BLt_VPesMzlBp$athz(ZTj+!4nGnb1h{#Af)Vn&AJDJQtIKR6?qL(+L>m5Dv zgfdxxTcWA&ZOSP$NGh@BAsl=W3!odgj!_VKju_j&#cM>c3LuJLZEH)12P#JGj;2`Y z<;xrK4t{nb{2PA1O{P(g#;Mby^k6{^cQ67*UJYr|;E<3qIDW{C_aCPYq|&Z#ZlAN^mV>a);qhug z%u?SK(ji@HO`|=V$&yK>qv$^IT39UB>n!gG@WqFRhrM#(LHDU)~J{=um1Y&BFD z3#(pV0W_AAnfX0V^HC)*=NQkk*C$#V5-?7(B?jg14)H48;b)g{ww z8nLiA9FDTJH8Oy`3p%7!f&#cuHlfv5eQ+tv03a~Bs*#j6phvQN79=tgA~6+c5r5Q3 zMT|_V)5*HW`a#4HAthz)a5}l2c1a?)x3#SYqg)Hzp@~9zw<)93+vkb^Sx&%ed_LF` zB$LVHK`ALMZ}Vnxaj_QnD<)tcwUcQw{p9u8^dZp%=nD5>CA`(u^;a~XQ!{1Pz`2^h zzdMQccH9GzRGm_fxB$bU0!%9treFqe!Rqqz2H%>{({M=P3XSRg%JkAtg|p;_GFlN0 z_;)8_<=tI)nDp7wkPd~`Znm=mHon8(K#hayi4d>ppQHzVYb`wyP@ z@^yg2JI8c@YuMEEFfpsB7|99ptF>8O(Xz(IXTB#_kr#G&`lD-dc__~B0`#hRddKza z1rX_MJ~8(DPuq?Xvb;W+y(hBEad833jRm~0wUyOzPHv*%CKrnC85}VoIcxb2XTsmL zuqZ>AZgF)zkD}OlzxKj~O>p~Z7HOr9i#eeBFtFqkef3*stnBOF#7qQ7|Xlsi_HQl)m9MMp@7AIPy z3>&0L-1&LIM5M|$sTv9QPH%4|$Wga(7b>8#F0nD8g zWkVi0&IueeaS3l;j#=B=Gr>|&wf=&8Q~^9*RM*_d8O3lZpQK+x_TpeR3kocpb{t%` zOtP4}giR^\r\n", + " sys.exit(load_entry_point('seisflows', 'console_scripts', 'seisflows')())\r\n", + " File \"/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py\", line 1298, in main\r\n", + " sf()\r\n", + " File \"/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py\", line 410, in __call__\r\n", + " getattr(self, self._args.command)(**vars(self._args))\r\n", + " File \"/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py\", line 1021, in plot2d\r\n", + " save=savefig)\r\n", + " File \"/home/bchow/REPOSITORIES/seisflows/seisflows/tools/specfem.py\", line 428, in plot2d\r\n", + " f\"chosen `parameter` must be in {self._parameters}\"\r\n", + "AssertionError: chosen `parameter` must be in ['vp_kernel', 'vs_kernel']\r\n" + ] + } + ], + "source": [ + "! seisflows plot2d GRADIENT_01" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Figure(707.107x707.107)\r\n" + ] + } + ], + "source": [ + "! seisflows plot2d GRADIENT_01 vs_kernel --savefig gradient_01_vs_kernel.png" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XdcFNf6P/DPLrCwjaaAIApYERCJ2DWCgoi9oQExiqCoaETzjWI0xHZRLFfF3hJNFLFFoiaWK0YTjF6NEY1GI0ZjFyyIigjC7vP7w9/OZZilWBLvDc/79drXS888c86c2cIzM2fOyIiIwBhjjDHGWBUkf9sbwBhjjDHG2NvCyTBjjDHGGKuyOBlmjDHGGGNVFifDjDHGGGOsyuJkmDHGGGOMVVmcDDPGGGOMsSqLk2HGGGOMMVZlcTLMGGOMMcaqLE6GGWOMMcZYlcXJMGOMMcYYq7I4GWaMMcYYY1UWJ8OMMcYYY6zK4mSYMcYYY4xVWZwMM8YYY4yxKouTYcYYY4wxVmVxMswYY4wxxqosToYZY4wxxliVxckwY4wxxhirsjgZZowxxhhjVRYnw4wxxhhjrMriZJgxxhhjjFVZnAwzxhhjjLEqi5NhxhhjjDFWZXEyzBhjjDHGqixOhhljjDHGWJXFyTBjjDHGGKuyOBlmjDHGGGNVFifDjDHGGGOsyuJkmDHGGGOMVVmcDDPGGGOMsSqLk2HGGGOMMVZlcTLMGGOMMcaqLE6GGWOMMcZYlcXJMGOMMcYYq7I4GWaMMcYYY1UWJ8OMMcYYY6zK4mSYMcYYY4xVWZwMM8YYY4yxKouTYcYYY4wxVmVxMswYY4wxxqosToYZY4wxxliVxckwY4wxxhirsjgZZowxxhhjVRYnw4wxxhhjrMriZJgxxhhjjFVZnAwzxhhjjLEqi5NhxhhjjDFWZXEyzBhjjDHGqixOhhljjDHGWJXFyTBjjDHGGKuyOBlmjDHGGGNVFifDjDHGGGOsyuJkmDHGGGOMVVmcDDPGGGOMsSqLk2HGGGOMMVZlcTLMGGOMMcaqLE6GGWOMMcZYlcXJMGOMMcYYq7I4GWaMMcYYY1UWJ8OMMcYYY6zK4mSYMcYYY4xVWZwMM8YYY4yxKouTYcYYY4wxVmVxMswYY4wxxqosToYZY4wxxliVxckwY4wxxhirsjgZZuwVXL16FTKZDOvXr/9L23V1dUVERMRf2iZjjDH2d8bJcBXXs2dPqFQqPHnypMyY8PBwKBQKPHjw4I216+rqiu7du0vKN2zYABMTEwQHB6OgoOCNtcfertzcXERHR8POzg5qtRodOnTAqVOnKr3+hQsXEBwcDI1GA1tbW7z//vu4d++eJE6v12Pu3Llwc3ODhYUFvL29kZKSIok7ceIEYmJi4OvrCzMzM8hkMqPt3rhxA9OnT0eLFi1gY2OD6tWrw9/fH2lpaWVua1paGjp27AgrKytotVr4+vpiy5Ytkrhdu3ahadOmsLCwQO3atTF16lQUFxdL4iq771xdXSGTySSvkSNHiuL8/f2NxslkMpiZmQlxhw8fLjNOJpMhISFBVO+BAwfQrl07qFQq2NjYICQkBFevXjW6jyrT94MHDyIyMhINGjSASqVCnTp1MGzYMNy5c8donUePHhXar1GjBsaOHYu8vDyjsQYJCQmQyWTw8vKSLNPr9Vi5ciV8fHyg0Wjg4OCALl264OjRo5LYS5cuITQ0FM7OzlCpVHB3d8eMGTOQn58vxOTn52PZsmUICgqCo6MjtFot3nnnHaxYsQI6nc7o9l2+fBkDBw6Evb09lEol6tevjylTppTbJ8bYKyBWpW3evJkA0BdffGF0+dOnT0mtVlOPHj3eaLsuLi7UrVs3UdnGjRtJLpdTUFAQPXv27I2296b98ccfBIDWrVv3l7ZbUFBAz58//0vbfF06nY7atGlDarWapk2bRkuXLiUPDw/SarWUmZlZ4fo3btyg6tWrU926dSkpKYkSEhLIxsaGmjRpQoWFhaLYSZMmEQAaPnw4rV69mrp160YAKCUlRRQ3depUMjMzI19fX2rQoAGV9VO4ZMkSUiqVFBYWRkuXLqVFixZR06ZNCQB9/vnnkvjPP/+cZDIZBQUF0dKlS2nFihU0btw4mjdvnihuz549JJPJqEOHDrR69Wr64IMPSC6X08iRI19537m4uJCPjw9t2LBB9Dp+/Lgo7l//+pckZuXKlQSAunbtKsRlZWVJ4jZs2EBBQUEEgE6cOCHE7t69m+RyOTVr1oySkpJo5syZVL16dapZsybdvXv3lfru6+tLbm5uNHHiRFqzZg19/PHHpNVqycHBge7cuSOKzcjIIAsLC3rnnXdoxYoVNGXKFDI3N6fg4GCj7yvRi8+VSqUitVpNnp6ekuUffvghAaBBgwbRqlWraM6cOVSnTh0yNTUV7dPr16+TtbU1ubi40OzZs2nVqlUUERFBAKhnz55C3NmzZ0kmk1FgYCDNnTuXVq5cSX369CEANHjwYEn7GRkZZGVlRR4eHpSYmEhr1qyh+Ph4ioiIKLNPjLFXw8lwFZefn09arZY6d+5sdPmmTZsIAG3evPmNtls6GU5JSSETExMKDAx8Y4mwXq+n/Pz8N1JXaW8rGf5ftGXLFgJA27ZtE8ru3r1L1tbWFBYWVuH6o0aNIqVSSdeuXRPKDhw4QABo1apVQtnNmzfJzMyMRo8eLZTp9Xp69913ydnZmYqLi4XyrKws4bMxevToMpPhc+fO0b1790RlBQUF5O7uTs7OzqLyP/74g5RKJY0dO7bCPnl4eFCTJk2oqKhIKJsyZQrJZDK6cOGCUPYy+87YAWZlbdiwgQBQcnJyhbH16tWj+vXrS/pTr1490cHJ6dOnSS6X04cffiiJrUzfv//+e9LpdKJ1v//+ewJAU6ZMEZV36dKFHB0d6dGjR0LZmjVrCADt37/faD/ee+896tixI/n5+UmS4aKiIlIqlRQSEiIqv3LlCgEQvccJCQkEgM6dOyeKHTx4MAGgnJwcIiK6d++eJIaIaOjQoQSALl26JJTpdDry8vKili1b/mm/YYyx/+BkmNGQIUPI1NSUsrOzJcu6d+9OWq1W9IOckpJCTZs2JY1GQ1qtlry8vGjRokUv1WbJP9xbtmwhExMTCggIMPrDr9PpaOHCheTh4UHm5uZkb29P0dHRwh+Z0nXu27ePfH19ydzcnBYuXEhERABo9OjRlJqaSp6enqRQKMjDw4P27t0rae/mzZs0dOhQsre3F+I+++wzUcyrJMOHDh0iALRlyxaaNm0aOTk5kUajoX79+lFubi4VFBRQbGws2dnZkVqtpoiICCooKJD0cciQIcL/161bRwDoyJEjNH78eKpevTqpVCrq3bu35Izc29K/f39ycHCQJDbR0dGkUqkkfSzN3t6e+vfvLylv0KABBQQECP9ftmwZAaBff/1VFGc4oEtPTzdaf3nJcFkMZw0fP34slMXFxZFCoaDc3FwiInry5Anp9XrJur/++isBoGXLlonKb926RQBo5syZQtnL7DvD57+wsJDy8vJeqj9dunQhtVpd4XrHjx8nADRt2jSh7MGDBwSAJkyYIIn39PQkJycn4f8v0/ey2NraUt++fYX/P3r0iExNTSXtFxYWkkajoaioKEkd33//PZmYmNAvv/xiNBnOz88XfjNKysvLI7lcTnFxcUJZXFwcAZAcNMXFxZFcLq9wn+7atYsA0K5du4SyvXv3EgDas2cPEb24QlfyYK6k3NxcunDhgvC5Y4y9PB4zzBAeHo7i4mJs3bpVVJ6Tk4P9+/ejT58+UCqVAF6MCwwLC4ONjQ3mzJmDxMRE+Pv748cff3yltr/66iuEh4ejffv22L17t9BOSSNGjMCECRPQtm1bJCUlYejQoUhOTkbnzp1RVFQkir148SLCwsLQqVMnJCUlwcfHR1h25MgRxMTEIDQ0FHPnzkVBQQH69esnGgudnZ2NVq1aIS0tDWPGjEFSUhLq1auHqKgoLFq06JX6WNrs2bOxf/9+TJo0CZGRkdixYwdGjhyJyMhIZGZmYtq0aejbty/Wr1+POXPmVKrODz74AGfOnMHUqVMxatQo7N69G2PGjKlwvcLCQty/f79Sr1eVkZGBpk2bQi4X/9y0aNEC+fn5yMzMLHPdW7du4e7du2jWrJlkWYsWLZCRkSFqR61Wo1GjRpI4w/I3JSsrCyqVCiqVSihLS0uDu7s79uzZA2dnZ2i1WlSrVg3x8fHQ6/Wi7QQg6ZOTkxOcnZ0lfXqZfffdd99BpVJBo9HA1dUVSUlJFfbl3r17OHDgAHr37g21Wl1ubHJyMoAXvxkGhYWFAGD0u6tSqXD79m1kZWUJ/QEq13dj8vLykJeXh+rVqwtlZ8+eRXFxsaROhUIBHx8fSZ06nQ4ffPABhg0bhsaNGxttR6lUomXLlli/fj2Sk5Nx/fp1/PLLL4iIiICNjQ2io6OFWH9/fwBAVFQUTp8+jRs3bmDLli1YsWIFxo4dW+E+Neybkn0yjEk3NzdHs2bNoFaroVKpEBoaipycHNH6qampaNSoEVJTU8tthzFWjredjbO3r7i4mBwdHal169aicsM4wpKXGWNjY8nS0rLMsxSV5eLiQk5OTmRqakr+/v709OlTo3Hp6elGL9/u27dPUu7i4kIAaN++fZJ6AJBCoaDff/9dKDtz5gwBoCVLlghlUVFR5OjoSPfv3xetHxoaSlZWVsKZ69c5M+zl5SUa9xsWFkYymYy6dOkiim/dujW5uLiIyso6MxwYGCg6Czl+/HgyMTGp8GyRYf3KvF6VWq2myMhISfm3335b5vtl8NNPPxEA+vLLLyXLJkyYQACEs6PdunWjOnXqSOKePn1KAGjSpElG23jZM8OXLl0iCwsLev/990XllpaWZGNjQ+bm5hQfH0/bt2+ngQMHStqeN28eAaDr169L6m7evDm1atVK+P/L7LsePXrQnDlz6Ouvv6bPPvuM3n33XQJAEydOLLc/S5YsEZ2FLEtxcTE5ODhQixYtROU6nY6sra1FZ+mJiO7fv09qtZoA0MmTJ1+678bMnDmTANDBgweFsm3bthEA+uGHHyTx/fv3pxo1aojKli5dSlZWVsKVE2NnholevM+G8eGGV506dei3334zul1KpVIUW3oohzGFhYXk4eFBbm5uomEjPXv2JABUrVo1Cg8Pp+3bt1N8fDyZmppSmzZtRN91w3eYh2wx9upM/7Qsm/3PMDExQWhoKBYuXIirV6/C1dUVALBp0yY4ODggICBAiLW2tsbTp09x4MABBAcHv1a7OTk5KC4uhrOzs9GzSgCwbds2WFlZoVOnTqKzk76+vtBoNDh06BAGDhwolLu5uaFz585G6woMDETdunWF/3t7e8PS0hJXrlwBABARvvrqKwwYMABEJGqvc+fO2Lx5M06dOoW2bdu+Vr8HDx4sumu/ZcuWSElJQWRkpCiuZcuWWLx4MYqLi2FqWv5XNTo6WjQjwrvvvouFCxfi2rVr8Pb2LnO9zp0748CBA6/Yk8p59uwZzM3NJeUWFhbC8vLWBVDh+ubm5q/VTmXl5+ejf//+UCqVSExMFC3Ly8uDXq9HYmIi4uLiAAD9+vVDTk4OkpKSMHnyZGi12gr79PjxY+H/L9OnXbt2iWKGDh2KLl26YMGCBfjggw/g7OxstE+bNm2CnZ0dOnXqVG7fDx48iOzsbEyePFlULpfLMWLECMyZMwcff/wxIiMj8fjxY0ycOBHPnz8XbefL9L20H374AdOnT8eAAQPQsWNHobyiOkvuowcPHuDTTz9FfHw87Ozsyu2vVquFp6cnWrdujYCAAGRlZSExMRG9e/dGenq66Eyuq6sr2rdvj379+qFatWr49ttvMWvWLNSoUaPcKzRjxozB+fPn8e2334q+44ZZMJo3b46NGzcCePFZUqlU+Pjjj3Hw4EEEBgYCACIiIni6RcZeEyfDDMCLy54LFy7Epk2bMHnyZNy8eRPp6ekYO3YsTExMhLiYmBhs3boVXbp0Qc2aNREUFIQBAwa8UmIcEBCA2rVrY8WKFbC1tTV6SffSpUt49OgR7O3tjdZx9+5d0f/d3NzKbK927dqSMhsbGzx8+BDAi8vFubm5WL16NVavXl2p9l5F6e2wsrICANSqVUtSrtfr8ejRI1SrVu2l6rSxsQEAoW9lcXR0hKOjY6W2uzzPnz+XXL61s7ODiYkJlEqlcCm9JMPUeWUdCJVcVpn1X6edytDpdAgNDcX58+exd+9eODk5Sbb16dOnCAsLE5WHhYVh3759yMjIQPv27SvsU8ntfJ0+yWQyjB8/Hvv378fhw4cxaNAgScyVK1dw7NgxjBkzpsIDruTkZJiYmOC9996TLJsxYwbu37+PuXPnCgcJQUFBiIqKwsqVK6HRaETbW5m+l/Tbb7+hT58+8PLywtq1a0XLXqbOTz75BLa2tvjggw/K7WtxcTECAwPh7++PJUuWCOWBgYHw9PTEvHnzhCFMmzdvRnR0NDIzM4UDjr59+0Kv1yMuLg5hYWFGv7/z5s3DmjVrMHPmTHTt2tVon0p/lgYOHIiPP/4YR48eFZJhxtjr42SYAXhxptXd3R0pKSmYPHkyUlJSQESisYEAYG9vj9OnT2P//v3Yu3cv9u7di3Xr1mHw4MH44osvXrrdpUuX4uHDh1i8eDFsbGwwbdo00XK9Xg97e3thrGJppc/ulJcclEzqSyIioS0AGDRoEIYMGWI0tryzrJVV1nZUtH2vUmdF6z579gyPHj2qsH4AqFGjRpnLjh49ig4dOojK/vjjD7i6usLR0dHo3LCGstJJZUmGRL2s9W1tbYUzgo6Ojjh06BCISHSWvDLtVMbw4cPxzTffIDk5WXRm0sDJyQmXLl2Cg4ODqNxwIGc4MCnZp9IHQHfu3BHGOBtiX3XfAf85wCp9oGKwadMmAJB8z0t79uwZUlNTERgYKOkf8GJ87tq1a5GQkIDMzEw4ODigQYMGGDhwIORyOerVqyf0x7D9FfXd4MaNGwgKCoKVlRX27NkDrVYrWl7RZ8Swjy5duoTVq1dj0aJFuH37thBTUFCAoqIiXL16FZaWlrC1tcUPP/yAc+fOYcGCBaL66tevj0aNGonukVi+fDneeecdyZn3nj17Yv369cjIyJAkruvXr0dcXBxGjhyJTz75RLLdhm2u6LPEGHszOBlmgvDwcMTHx+OXX37Bpk2bUL9+fTRv3lwSp1Ao0KNHD/To0QN6vR4xMTFYtWoV4uPjhT96lSWXy/Hll1/i0aNHmD59OmxtbTF27Fhhed26dZGWloa2bdu+9pm9itjZ2UGr1UKn01WZsy5btmzB0KFDKxVbXmLdpEkTyXALQ/Ls4+OD9PR06PV60Y1gx48fh0qlQoMGDcqst2bNmrCzs8PJkycly06cOCG6QdLHxwdr167FhQsX4OHhIWrHsPxVTZgwAevWrcOiRYskZ+sMfH19cenSJdy6dQt16tQRyg2Jl+HAzbAdJ0+eFCV/t2/fxs2bN0U3Z73OvgMgDAEqa0jApk2bULduXbRq1arcenbt2oUnT55UmDQ7ODgICZxOp8Phw4fRsmVL4czwy/QdeDGsISgoCIWFhTh48KDRqxheXl4wNTXFyZMnMWDAAKH8+fPnOH36tFB269Yt6PV6jB07VvQbY+Dm5obY2FgsWrQI2dnZQh9KKyoqEj0gJDs7W7gSUzoOgORhIjt37sSwYcPQt29fLFu2TLIe8OKztGbNGty6dUtUXvqzxBh7M3g2CSYw/KH79NNPcfr0aaN/+Eo/hU4ulwtnS41dpqwMMzMzbN++HW3btsW4ceOwYcMGYdmAAQOg0+kwc+ZMyXrFxcXIzc19pTaNMTExQb9+/fDVV1/h3LlzkuXGnnj2v84wZrgyr/LY2NggMDBQ9DKMaw0JCUF2djZ27NghxN+/fx/btm1Djx49RGM9L1++jMuXL4vq7tevH7755hvcuHFDKDt48CAyMzPRv39/oaxXr14wMzPD8uXLhTIiwsqVK1GzZk20adPmlfbRvHnzMH/+fEyePBmxsbFlxhmGD3z22WdCmV6vx7p162BrawtfX18AgKenJ9zd3bF69WpRsrVixQrIZDKEhIQIZZXddzk5OZLEraioCImJiVAoFJKz9sCLmR0uXLggGnNflk2bNkGlUqFPnz4VxhrMnz8fd+7cwf/93/8JZS/T96dPn6Jr1664desW9uzZg/r16xttx8rKCoGBgdi4caPoSZobNmxAXl6e8Bnx8vJCamqq5OXp6YnatWsjNTUVUVFRACAcZGzevFnU1qlTp3Dx4kW88847QlmDBg2QkZEhmdkjJSVF9PsIvBj3HBoaivbt2yM5OVkyS4hBr169YG5ujnXr1olmIjEMEalofDdj7OXwmWEmcHNzQ5s2bbBz504Axi+dDhs2DDk5OejYsSOcnZ1x7do1LFmyBD4+PpIprV6GSqXCt99+Cz8/P0RGRsLKygo9e/aEn58fRowYgdmzZ+P06dMICgqCmZkZLl26hG3btiEpKUn0B/R1JSYm4tChQ2jZsiWGDx8ODw8P5OTk4NSpU0hLSyvzcvP/qjc1Zrg8ISEhaNWqFYYOHYrz58+jevXqWL58OXQ6HaZPny6KNdysWfIxvpMnT8a2bdvQoUMHxMbGIi8vD/PmzUPjxo1FZ7WdnZ0xbtw4zJs3D0VFRWjevDm+/vprpKenC+NdDa5duyYcdBnOOv/jH/8AALi4uOD9998H8GLaqokTJwqXxw03Mxl06tRJOBPaq1cvBAQEYPbs2bh//z6aNGmCr7/+GkeOHMGqVatESf+8efPQs2dPBAUFITQ0FOfOncPSpUsxbNgw0feosvtu165d+Mc//oGQkBC4ubkhJycHmzZtwrlz54QbuUozNk2aMTk5Odi7dy/69esnnOEtbePGjfjqq6/Qvn17aDQapKWlYevWrRg2bBj69esniq1s38PDw3HixAlERkbiwoULuHDhgrBMo9Ggd+/ewv8TEhLQpk0b+Pn5ITo6Gjdv3sQ///lPBAUFCfczVK9eXbSOgWHKxJLLfH190alTJ3zxxRd4/PgxgoKCcOfOHSxZsgRKpRLjxo0TYidMmIC9e/fi3XffxZgxY1CtWjV888032Lt3L4YNGyYMebh27Rp69uwpJP3btm0TbYe3t7eQONeoUQNTpkzBp59+iuDgYPTu3RtnzpzBmjVrEBYWJrpit379egwdOhTr1q3jG+kYe1VvbR4L9l/J8OCC0tMnGWzfvp2CgoKEB1LUrl2bRowYIXk8akXKelpWVlYW1atXjywsLOjQoUNC+erVq8nX15eUSiVptVpq3LgxTZw4kW7fvl1hnUT/eeiGse0oOVUZEVF2djaNHj2aatWqRWZmZlSjRg0KCAig1atXCzGvM7VayaeJEf1naqSffvpJVD516lTJZP5lTa1Wel1DWyX34duUk5NDUVFRVK1aNVKpVOTn5yfZZqIX/Ss9nRzRiyfBBQUFkUqlImtrawoPD6esrCxJnE6no1mzZpGLiwspFAry9PSkjRs3SuIM+8fYy8/PT4gzvAdlvUrv3ydPnlBsbCzVqFGDFAoFNW7c2Gj7RESpqank4+ND5ubm5OzsTJ988onRR21XZt+dPHmSevToQTVr1iSFQkEajYbatWtHW7duNdq2TqejmjVrUtOmTY0uL8kwxWLJh0KUdvz4cWrfvj3Z2NiQhYUFNWnShFauXGn0oSOV7bthqkRjL2OfkfT0dGrTpg1ZWFiQnZ0djR49WvRQlLKUNbVafn4+zZgxgzw8PEipVJKVlRV1796dMjIyjPa/S5cuVKNGDTIzM6MGDRpQQkKCaLq08j5zAGjq1KmiOvV6PS1ZsoQaNGhAZmZmVKtWLaP7yTA1XnlTFDLGyicjqsTdOYwxxhj7rzNgwABcvXoVJ06ceNubwtj/LB4mwRhjjP0PIiIcPnxYMnyHMfZy+Mwwe6MMjxYti1KpFObV/bswNsduaVZWVn/6bBiMMcYYe3mcDLM3quT8rsYMGTIE69ev/2s25i9y+PBho3frl8Q3tzDGGGP/nXiYBHujKpqC63UffPDfyNgcu6V5enr+RVvDGGOMsZfBZ4YZY4wxxliVxQ/dYIwxxhhjVRYnw4y9gqtXr0Imk/3txj8zxhhjVQ0nw1Vcz549oVKpRI8xLS08PBwKhULyKObX4erqiu7du0vKN2zYABMTEwQHB6OgoOCNtcfentzcXERHR8POzg5qtRodOnTAqVOnKr3+hQsXEBwcDI1GA1tbW7z//vtGH42t1+sxd+5cuLm5wcLCAt7e3khJSZHEnThxAjExMfD19YWZmVmFN31+9tlnaNSoESwsLFC/fn0sWbKkzNgtW7agdevWUKvVsLa2Rps2bfDdd98Jy589e4aoqCh4eXnBysoKGo0GTZo0QVJSEoqKiiT1HThwAO3atYNKpYKNjQ1CQkJET+czcHV1hUwmk7xGjhxpdDvT0tLQsWNHWFlZQavVwtfXF1u2bJHEPXnyBBMnToSbmxvMzc1Rs2ZNhISEID8/v8x9MHz4cMhkMqPf78rWefDgQURGRqJBgwZQqVSoU6cOhg0bhjt37pTZLvDis2Zvbw+ZTIbt27dLll+6dAmhoaFwdnaGSqWCu7s7ZsyYYbQ/z58/x6xZs+Du7g4LCws4ODigW7duuHnzpiju559/RnBwMCwtLaHVahEUFITTp09L6tPr9Vi5ciV8fHyg0Wjg4OCALl264OjRo6K4n376CWPGjIGnpyfUajVq166NAQMGSB73zBh7c/gGuiouPDwcu3fvRmpqKgYPHixZnp+fj507dyI4OBjVqlX7U7clOTkZERERCAwMxNdffw0LC4s/tT3259Pr9ejWrRvOnDmDCRMmCI8T9vf3x88//4z69euXu/7NmzfRvn17WFlZYdasWcjLy8P8+fNx9uxZnDhxAgqFQoidMmUKEhMTMXz4cDRv3hw7d+7EwIEDIZPJEBoaKsTt2bMHa9euhbe3N+rUqVNukrFq1SqMHDkS/fr1w4cffoj09HSMHTsW+fn5iIuLE8VOmzYNM2bMQEhICCIiIlBUVIRz587h1q1bQsyzZ8/w669AgQs8AAAgAElEQVS/omvXrnB1dYVcLsfRo0cxfvx4HD9+HJs2bRJiv/nmG/Tq1QtNmzZFYmIiHj9+jKSkJLRr1w4ZGRmws7MTte/j44P/+7//E5U1aNBA0qd169YhKioKnTp1wqxZs2BiYoKLFy/ixo0borhHjx7Bz88PN2/eRHR0NOrVq4d79+4hPT0dhYWFUKlUkrpPnjyJ9evXl/ndrWydcXFxyMnJQf/+/VG/fn1cuXIFS5cuxTfffIPTp08bfbw0AHz66adlJuo3btxAixYtYGVlhTFjxsDW1hbHjh3D1KlT8fPPPwuPoQeAoqIidOvWDUePHsXw4cPh7e2Nhw8f4vjx43j06BGcnZ0BAKdOnUK7du1Qq1YtTJ06FXq9HsuXL4efnx9OnDiBhg0bCnVOmDABCxYswKBBgxATE4Pc3FysWrUKfn5++PHHH9GiRQsAwJw5c/Djjz+if//+8Pb2RlZWFpYuXYqmTZvi3//+N7y8vIz2jzH2Gt7as+/Yf4X8/HzSarXUuXNno8s3bdpEAGjz5s1vtN3Sj05OSUkhExMTCgwMpGfPnr2RNvR6PeXn57+Rukp7lccxV0VbtmyRPIL67t27ZG1tTWFhYRWuP2rUKFIqlXTt2jWh7MCBAwSAVq1aJZTdvHmTzMzMRI/c1uv19O6775KzszMVFxcL5VlZWcLnYvTo0VTWz2B+fj5Vq1ZN8ojv8PBwUqvVlJOTI5QdO3aMZDIZLViwoMI+GTNmzBgCIHqsuYeHB9WrV48KCwuFstOnT5NcLqcPP/xQtH55jyIv6Y8//iClUkljx46tMHbUqFFkbW1NV65cqVQf9Ho9tW7dmiIjI8vcnsrW+f3335NOp5OUAaApU6YYXefs2bNkampKM2bMMPrY84SEBAJA586dE5UPHjyYAIjezzlz5pCZmRkdP3683O3s2rUr2djY0P3794Wy27dvk0ajob59+wplRUVFpFQqKSQkRLT+lStXCIDo/fjxxx9F7zkRUWZmJpmbm1N4eHi528MYezWcDDMaMmQImZqaUnZ2tmRZ9+7dSavVipLKlJQUatq0KWk0GtJqteTl5UWLFi16qTZL/rHcsmULmZiYUEBAgNHkVafT0cKFC8nDw4PMzc3J3t6eoqOjRX+8Sta5b98+8vX1JXNzc1q4cCEREQGg0aNHU2pqKnl6epJCoSAPDw/au3evpL2bN2/S0KFDyd7eXoj77LPPRDGvkgwfOnSIANCWLVto2rRp5OTkRBqNhvr160e5ublUUFBAsbGxZGdnR2q1miIiIqigoEBUx+eff04dOnQgOzs7UigU1KhRI1q+fLko5uDBgySTySg+Pl5UnpycTAAk8X+m/v37k4ODgySxiY6OJpVKJelfafb29tS/f39JeYMGDSggIED4/7JlywgA/frrr6I4w8Fcenq60frLS4a//fZbAkDffvutqPzo0aMEgDZs2CCUvffee+To6Eg6nY70ej09efKk3H6VNn/+fAJAFy5cICKiBw8eEACaMGGCJNbT05OcnJxEZYbPfmFhIeXl5ZXZTlxcHCkUCsrNzSUioidPnpBer5fEPXz4kCwsLGjixIlERFRYWFjhe/XFF1+QVqulO3fuGE2GX6XO0mxtbUVJZkkdO3ak/v37C9+z0slwXFwcAaB79+5JyuVyubDfdDodOTk50YABA4joRSL79OlTo21qtVqjn89u3bqRQqEQPgf5+fnCb1BJeXl5JJfLKS4ursK+N23alJo2bSoqy83NpQsXLgjvJ2Ps1fCYYYbw8HAUFxdj69atovKcnBzs378fffr0EZ6eduDAAYSFhcHGxgZz5sxBYmIi/P398eOPP75S21999RXCw8PRvn177N692+hT2kaMGIEJEyagbdu2SEpKwtChQ5GcnIzOnTtLxllevHgRYWFh6NSpE5KSkuDj4yMsO3LkCGJiYhAaGoq5c+eioKAA/fr1E42Fzs7ORqtWrZCWloYxY8YgKSkJ9erVQ1RUFBYtWvRKfSxt9uzZ2L9/PyZNmoTIyEjs2LEDI0eORGRkJDIzMzFt2jT07dsX69evx5w5c0TrrlixAi4uLpg8eTL++c9/olatWoiJicGyZcuEmI4dOyImJgazZ88WxubeuXMHH3zwAQIDA8scR2qQn5+P+/fvV/h6+PBhhX3NyMhA06ZNIZeLf2patGiB/Pz8coco3Lp1C3fv3kWzZs0ky1q0aIGMjAxRO2q1Go0aNZLEGZa/LMM6pdv39fWFXC4X1Xnw4EE0b94cixcvhp2dHbRaLRwdHbF06VKjdT9//hz379/HjRs3kJqaivnz58PFxQX16tUDABQWFgKA0e+DSqXC7du3JU97/O6776BSqaDRaODq6oqkpCTJumlpaXB3d8eePXvg7OwMrVaLatWqIT4+Hnq9Xog7cuQICgoKUK9ePYSEhEClUkGpVKJt27ZGx8M+efIEcXFxmDx5cplDGF62ztLy8vKQl5eH6tWrS5Zt27YNR48exdy5c8tc39/fHwAQFRWF06dP48aNG9iyZQtWrFiBsWPHQq1WAwDOnz+P27dvw9vbG9HR0VCr1VCr1fD29sahQ4dEdRYWFpb5Hj1//hznzp0D8OJ9bNmyJdavX4/k5GRcv34dv/zyCyIiImBjY4Po6Ohy+05EyM7OlvQ9NTUVjRo1QmpqarnrM8Yq8Lazcfb2FRcXk6OjI7Vu3VpUvnLlSgJA+/fvF8piY2PJ0tJSdNn5Vbi4uJCTkxOZmpqSv79/mWde0tPTCQAlJyeLyvft2ycpd3FxIQC0b98+ST0ASKFQ0O+//y6UnTlzhgDQkiVLhLKoqChydHQUXfYkIgoNDSUrKyvhzPXrnBn28vKi58+fC+VhYWEkk8moS5cuovjWrVuTi4uLqMzYmfPOnTtTnTp1RGVPnz6levXqkaenJxUUFFC3bt3I0tJSNNygLFOnTiUAFb5Kb5sxarWaIiMjJeWGs67G3iuDn376iQDQl19+KVk2YcIEAiCcWezWrZtkHxC92A8AaNKkSUbbKO/M8OjRo8nExMToMjs7OwoNDSUiopycHAJA1apVI41GQ/PmzaMtW7ZQcHAwAaCVK1dK1k9JSRHty2bNmtEvv/wiLNfpdGRtbS06+01EdP/+fVKr1QSATp48KZT36NGD5syZQ19//TV99tln9O677xIA4SysgaWlJdnY2JC5uTnFx8fT9u3baeDAgZJ9tGDBAqFPLVq0oOTkZFq+fDk5ODiQjY0N3b59W1TvRx99RG5ubsL7YezM8MvWWdrMmTMJAB08eFBUnp+fT7Vr16aPP/6YiKjMM8OGOpRKpWjflx52sWPHDmE769evT+vWraN169ZR/fr1SaFQ0JkzZ4TYxo0bU4MGDUS/h4WFhVS7dm0CQNu3bxfKL126RE2bNhW1XadOHfrtt9/K7TcR0YYNGwiA5ArVunXreLgWY28AJ8OMiIjGjx9PAOiPP/4Qytq3b08ODg6iH/qpU6eSiYmJ0eEFL8PFxYUsLCwIAA0aNMjopVoiorFjx5KVlRXdvXuX7t27J3ppNBoaNmyYqE43Nzej9QCgrl27SsotLS1p/PjxRPRizKO1tTVFR0dL2jL80Tly5AgRvV4yPHfuXFH5okWLjP7xHjduHMnlcioqKjJaX25uLt27d49mzZpFACSXSo8cOUJyuZxatGhh9A9pWS5fvkwHDhyo8GXYF+WRy+U0atQoSfnBgwcJAKWmppa57g8//CAMKyktPj6eANDDhw+J6MUl8kaNGknidDodAaDY2FijbZSXDEdGRpJSqTS6rFatWtSrVy8iIrp+/bqQ3JQcW6/T6cjDw4OcnZ0l62dlZdGBAwdo27ZtNHLkSGrdujUdO3ZMFGO4rD9p0iTKzMykkydPUseOHcnMzKzcoR9ELz7LnTt3JlNTU7px44ZQLpfLCQAlJiaK4oODg0mpVNLjx4+JiIRxt9WrVxcN+Th27Jgkgbx48SKZmZmJEj9jyfDL1Fna999/T6ampsLQhZI+/fRTcnR0FOosLxnesGEDde7cmVavXk1fffUVRUZGkkwmEx0Qf/nll8LB8/Xr14Xya9eukZmZmWjc7ooVKwgADRkyhH799Vc6e/Ysvffee8J7VHIoTVZWFr3//vs0evRo2rFjBy1fvpxq165N7u7ukqEbJV24cIEsLS2pdevWr30SgjFmHCfDjIiITp48SQAoISGBiIhu3LhBMplMkkRkZ2dTo0aNCADVrFmThg4d+kqJseGP5ahRoyQ3kJTUpUuXcs9O9uzZU1Rnx44djdYDgEaOHGl0OyIiIoS+VXQ2dMeOHUT0eslw6ZsRDYn2v//9b1G54QxtybPUR44coYCAAFKpVJJtM3bW15DslXWD5J+tKpwZvnfvHgEgMzMzSbIyffr0Mt+bkhISEkij0YhuoCssLKSoqCghgQVAQUFBNHLkSAJAGRkZ5dZpuHpSMiEznFUuvT1ffPEFAaDvv/+eiIjmzZtHAGjo0KGSet3c3KhDhw7C/4ODg8nPz08UYywZfpk6S7pw4QLZ2tqSj4+PkKwbGG4I/Pzzz4WyspLhlJQUUiqVooMDIqKIiAhSqVTC92zbtm0EwOj2dOjQQXLAPXnyZCH5NZzlnzJliuhgr6ioiLy8vGjMmDGidTMzM8nMzExyBt/gzp07VKdOHapVqxbdunXLaAxj7PXx1GoMwItxkO7u7khJScHkyZORkpICIkJ4eLgozt7eHqdPn8b+/fuxd+9e7N27F+vWrcPgwYPxxRdfvHS7S5cuxcOHD7F48WLY2Nhg2rRpouV6vR729vZITk42un7p6aWMjd8zMDExMVpO//+J5IYxk4MGDcKQIUOMxnp7e5dZf2WVtR0Vbd/ly5cREBAAd3d3LFiwALVq1YJCocCePXuwcOFC0ZhP4MV4xsOHDwvr5ufnG50OqzTD2MzK9KP0/i/N0dHR6NywhjInJ6dy1y0ZW3p9W1tbmJubC7GHDh0CEYnmDa5MO+W1r9PpcPfuXdjb2wvlz58/x4MHD4Q6bW1tYWFhAWtra8l7aFjv4cOHqF27dplthYSEYMqUKdi5cydGjBgBAFAoFFi7di0SEhKQmZkJBwcHNGjQAAMHDoRcLhfGF5elVq1aAF6M/TdwcnLCpUuX4ODgUOZ2GuIASOIMsYa47777Dvv27cOOHTtE8x8XFxfj2bNnuHr1KmxtbWFpaVnpOku6ceMGgoKCYGVlhT179kCr1YqWf/rpp6hZsyb8/f2F9g1jqe/du4erV6+idu3akMvlWL58Od555x1hWjSDnj17Yv369cjIyEBgYGCF21l6/HlCQgI++ugj/Prrr7CyskLjxo0xefJkAP+Z2u6HH37AuXPnsGDBAtG69evXR6NGjYzec/Ho0SN06dIFubm5SE9Pf6XPMGOscjgZZoLw8HDEx8fjl19+waZNm1C/fn00b95cEqdQKNCjRw/06NEDer0eMTExWLVqFeLj4yv8A12aXC7Hl19+iUePHmH69OmwtbXF2LFjheV169ZFWloa2rZtW26i+yYYbnzS6XQIDAz8U9t6Fbt370ZhYSF27dolSqxK39RjMHXqVFy4cAHz589HXFwcJk2ahMWLF1fYzvz58zF9+vQK41xcXIw+AKIkHx8fpKenQ6/Xi26iO378OFQqldF5cA1q1qwJOzs7nDx5UrLsxIkTopsjfXx8sHbtWly4cAEeHh6idgzLX5ZhnZMnT6Jr165C+cmTJ6HX64XlcrkcPj4++Omnn/D8+XPR3Me3b98GID1oK+3Zs2cAXiRApTk4OAiJmU6nw+HDh9GyZUtoNJpy67xy5YqkbV9fX1y6dAm3bt1CnTp1ytxOX19fABDNkVwy1t3dHQBw/fp1AEDfvn0lcbdu3YKbmxsWLlyIcePGVbpOgwcPHiAoKAiFhYU4ePCgcHBU0vXr1/H777+L+mIQExMD4EWCb21tjezsbNjY2EjiDDfhFhcXAwAaN24MMzOzMrfT2HtpY2ODdu3aCf9PS0uDs7Oz0Kfs7GwAL94/Y+0b2jYoKChAjx49kJmZibS0NNFnmjH2J3i7J6bZfxPDnJe9evUiADRt2jRJTOkby4j+M61V6fk7y1P6MurTp0+pbdu2JJPJRJfFDx8+TACEm2NKKioqEsaMGquzJEA6rZFhnSFDhgj/j4iIIIVCQWfPnpXE3r17V/j36wyTKH351jBM4qeffhKVG4ZJGMYTLl68mADQ1atXhZjc3FxydHSUjPf+97//TSYmJsJ8tJMmTSKZTEaHDx+ucDvf5JjhzZs3S/p87949sra2pvfee08U+/vvv4tucCQiGjlyJCmVStHYzbS0NAJAK1asEMpu3LhR5jzDNWvWLHOsZUXzDNva2lL37t1F5YMGDSKVSkUPHjwQyhYuXEgAaPXq1ULZs2fPqE6dOuTh4SHqu7Hx8YZ5hkvfHFZaYmKi5MasBw8eSPr3/Plzatu2LSkUCtHQi9TUVAJAkydPFsp0Oh21a9eObG1tRVOdNWnShCwtLUXjWffv3y8a937t2jVKTU2VvOzs7KhZs2aUmpoqek8rUyfRiynHWrRoQVqtVnSjYGnp6emStg032k2cOJFSU1OFm1W7d+9OCoWCLl68KKqjd+/eJJfLRcMQevXqRSYmJsJUd0RE58+fJxMTE4qJiSlze4j+85mfP3++UGYYhlbyt4aI6Oeffya5XC4awlVcXEw9e/YkU1NTybR+jLE/ByfDTKRNmzbC2LdLly5Jlvfu3Zvat29P06ZNo7Vr11J8fDxZW1uTj4+PZC7Z8hhLXHNzc6lJkyZkampKO3fuFMpHjBhBAKhLly60cOFCWrp0KcXGxpKTk5MoyXoTyXBWVha5uLiQSqWi2NhYWrVqFc2ePZv69+9PNjY2QtzbSIZ/++03UigU1LhxY1q6dCklJiZS3bp1qUmTJqJk+NmzZ9SwYUNyd3cXHmBSWFhInp6e5ObmVu48tG9acXExtWrVijQaDU2fPp2WLVtGnp6epNVqJXfRu7i4SGaouH79OlWrVo3q1q1LixcvplmzZpGNjQ01btxYMketYRxxdHQ0rVmzhrp160aAdCaSq1ev0syZM2nmzJnUsmVLAiD8v/T4ZMOBXkhICK1Zs0Z4QINhbL1Bfn4+eXp6kpmZGX300Ue0ePFiat68OZmYmNCePXuEuIULF1LDhg0pLi6OVq1aRfPnz6dOnToRAOrRo4eozg0bNlDv3r1pwYIFtHr1ahowYAABEN00SvTi81O3bl2Ki4ujlStX0qxZs8jLy4sA0KxZs0Sxer2eAgICSCaTUXR0NC1btkxov+RDTIiIvvvuOzIxMaGGDRvSggULaOrUqaTVaqlBgwYVzqNc1nexsnUaDsgjIyNpw4YNold5N10Slf09+/7778nExITs7e1pxowZtGzZMuGehNL79NdffyWNRkOOjo40e/Zsmj17Njk6OpKdnR3dvHlTVGdAQADNmTOH1q5dS8OGDSMTExMKDg6W3Phq2M99+vShFStW0Keffko2NjakVqtF34XY2Fjh81C67yXHfxPxbBKMvSmcDDMRwx//Fi1aGF2+fft2CgoKEh5IUbt2bRoxYoTo7FNllPXHMisri+rVq0cWFhZ06NAhoXz16tXk6+tLSqWStFotNW7cmCZOnCiajulNJMNEL26kGz16NNWqVYvMzMyoRo0aFBAQIDrr9zaSYSKiXbt2kbe3N1lYWJCrqyvNmTOHPv/8c1EyPH78eDIxMZE8PevkyZNkampqdHaHP1NOTg5FRUVRtWrVSKVSkZ+fn6SvRMaTYSKic+fOUVBQEKlUKrK2tqbw8HDKysqSxOl0Opo1axa5uLiQQqEgT09P2rhxoyTO8D4Ye5W+EYzoxWevYcOGpFAoqG7durRw4UKjZ3ezs7NpyJAhZGtrS+bm5tSyZUvJDYI//fQT9e/fn2rXrk3m5uakVqupadOmtGDBAknydPz4cWrfvj3Z2NiQhYUFNWnShFauXClp++TJk9SjRw+qWbMmKRQK0mg01K5dO9q6datkG4lePGgjNjaWatSoIRxcGdtPRC+e9teqVSuysLAgW1tbev/99yv1XS/vu1iZOg3TJBp7VTSlX3mzSRw/fpy6dOlCNWrUIDMzM2rQoAElJCQYnbHl559/psDAQFKr1aTVaqlXr16UmZkpivn9998pKCiIqlevTubm5uTu7k6zZ8+WPEGO6MUB04wZM8jDw4OUSiVZWVlR9+7dJTdC+vn5lXsTb0lLliyp8EZUxljFZET//+4cxhhjjP3PGDBgAK5evYoTJ0687U1h7H8a30DHGGOM/Y8hIhw+fBgbN25825vC2P88PjPM3qjSj4gtTalUwsrK6i/amr/G8+fPRdNXGWNlZfWnz4bBGGOMsZfHyTB7o0rO8WrMkCFDsH79+r9mY/4ihw8fRocOHcqNWbduHSIiIv6aDWKMMcZYpfEwCfZGHThwoNzlf8eJ45s0aVJhvz09Pf+irWGMMcbYy+Azw4wxxhhjrMqSVxzCGGOMMcbY3xMnw4z9f1evXoVMJvvbjWlmjDHGWNk4Gf4b6tmzJ1QqFZ48eVJmTHh4OBQKBR48ePDG2nV1dUX37t0l5Rs2bICJiQmCg4NRUFDwxtpj//0uXryI8ePHo02bNrCwsIBMJsPVq1crvf6JEycQExMDX19fmJmZVXiDpsGRI0cgk8kgk8lw//590bLU1FR07twZTk5OMDc3h7OzM0JCQnDu3Dmjde3atQtNmzaFhYUFateujalTp6K4uFgSd+DAAbRr1w4qlQo2NjYICQkx2te8vDyMGzcOzs7OMDc3R6NGjbBixQpJnL+/v9CH0i8zM7NXqvOHH35Az549UatWLVhYWKBGjRoIDg7Gjz/+aLTvz58/x6xZs+Du7g4LCws4ODigW7duuHnzpiT21KlT6NmzJ2xtbaFSqeDl5YXFixcLyw0Hm2W9hg8fLqrv559/RnBwMCwtLaHVahEUFITTp0+LYl6mzoiIiHJjb926JcTq9XqsXLkSPj4+0Gg0cHBwQJcuXXD06FGj++l16PV6zJ07F25ubrCwsIC3tzdSUlIkcWVtv7u7+xvfJsaqGr6B7m8oPDwcu3fvRmpqKgYPHixZnp+fj507dyI4OBjVqlX7U7clOTkZERERCAwMxNdffw0LC4s/tT323+XYsWNYvHgxPDw80KhRI0kyU5E9e/Zg7dq18Pb2Rp06dZCZmVnhOnq9Hh988AHUajWePn0qWX727FnY2NggNjYW1atXR1ZWFj7//HO0aNECx44dQ5MmTYTYvXv3onfv3vD398eSJUtw9uxZ/OMf/8Ddu3dFyeY333yDXr16oWnTpkhMTMTjx4+RlJSEdu3aISMjA3Z2dgAAnU6Hzp074+TJkxg9ejTq16+P/fv3IyYmBg8fPsTkyZOFOqdMmYJhw4aJtv3p06cYOXIkgoKChLKXqTMzMxNyuRwjR45EjRo18PDhQ2zcuBHt27fHt99+i+DgYCG2qKgI3bp1w9GjRzF8+HB4e3vj4cOHOH78OB49egRnZ2ch9l//+hd69OiBd955B/Hx8dBoNLh8+bIoabazs8OGDRsk78e+ffuQnJws6tOpU6fQrl071KpVC1OnToVer8fy5cvh5+eHEydOoGHDhi9d54gRIxAYGCiKIyKMHDkSrq6uqFmzplA+YcIELFiwAIMGDUJMTAxyc3OxatUq+Pn54ccff0SLFi0kbb6qKVOmIDExEcOHD0fz5s2xc+dODBw4EDKZDKGhoaJYc3NzrF27VlT2d5uqkrG34m09+o79efLz80mr1VLnzp2NLt+0aRMBoM2bN7/Rdks/gjUlJYVMTEwoMDCQnj179kba0Ov1lJ+f/0bqKu1VHrHMyvfgwQN6/PgxERHNmzdP9NjoysjKyhLe79GjR0seR2vMihUrqFq1ahQbGyt5nHV57ZiamtKIESNE5R4eHtSkSRPR43qnTJlCMpmMLly4IIqrV6+e6DG8p0+fJrlcTh9++KFQtnXrVgJAn332maidfv36kYWFBWVnZ5e7nRs2bCAAlJyc/MbqfPr0KTk4OEh+L+bMmUNmZmaSx3qX9ujRI3JwcKA+ffqQTqcrN9aYgIAAsrS0FP1GdO3alWxsbOj+/ftC2e3bt0mj0VDfvn1fqU5j0tPTCQAlJCQIZUVFRaRUKikkJEQUe+XKFQJAY8eOrWzXKnTz5k0yMzMTPSper9fTu+++S87OzlRcXCyUDxkyhNRq9RtrmzH2HzxM4m9IqVSib9++OHjwIO7evStZvmnTJmi1WvTs2VMo27x5M3x9faHVamFpaYnGjRsjKSnplbdh69atGDRoEPz9/bFr1y7JGWG9Xo9FixbB09NTuPw6YsQIPHz4UBRnGHqxf/9+NGvWDEqlEqtWrQLwYk7jMWPG4Ouvv4aXlxfMzc3h6emJffv2Sbbn1q1biIyMhIODgxD3+eefv3L/DA4fPgyZTIatW7di+vTpqFmzJrRaLUJCQvDo0SMUFhZi3LhxsLe3h0ajwdChQ1FYWCipZ+PGjfD19YVSqYStrS1CQ0Nx48YNUUx6ejr69++P2rVrw9zcHLVq1cL48ePx7NkzUVxERAQ0Gg1u3bqF3r17Q6PRwM7ODh999BF0Ot1r9/ll2NraQqvVvvL6Dg4OL/WwkpycHHzyySeYMWMGrK2tK72evb09VCoVcnNzhbLz58/j/PnziI6Ohqnpfy6ixcTEgIiwfft2oc3z58+jT58+UCgUQlyTJk3QqFEjbN68WShLT08HAMkZv9DQUBQUFGDnzp3lbuemTZugVqvRq1evN1anSqWCnZ2dqO96vR5JSUno06cPWrRogeLiYuTn55e5TdnZ2UhISIBcLsfTp0+h1+vLbdPgzp07OHToEPr27Sv6jUhPT0dgYKDoypWjoyP8/PzwzTffIC8v76XrLGvbZQTctvUAACAASURBVDIZBg4cKJQVFRXh2bNncHBwEMXa29tDLpdLPo+v89uyc+dOFBUVISYmRiiTyWQYNWoUbt68iWPHjknW0el0ePz4cbn1Xr58GZcvX67UNjDGeMzw31Z4eDiKi4uxdetWUXlOTg7279+PPn36CD/qBw4cQFhYGGxsbDBnzhwkJibC39+/zHGEFfnqq68QHh6O9u3bY/fu3UaTmREjRmDChAlo27YtkpKSMHToUCQnJ6Nz584oKioSxV68eBFhYWHo1KkTkpKS4OPjIyw7cuQIYmJiEBoairlz56KgoAD9+vUTjYXOzs5Gq1atkJaWhjFjxiApKQn16tVDVFQUFi1a9Ep9LG327NnYv38/Jk2ahMjISOzYsQMjR45EZGQkMjMzMW3aNPTt2xfr16/HnDlzROsmJCRg8ODBqF+/PhYsWIBx48bh4MGDaN++vShB2bZtG/Lz8zFq1CgsWbIEnTt3xpIlS4wOhTFcOq9WrRrmz58PPz8//POf/8Tq1asr7EteXh7u379f4evRo0evv+PesPj4eNSoUQMjRoyoMDY3Nxf37t3D2bNnMWzYMDx+/BgBAQHC8oyMDABAs2bNROs5OTnB2dlZWG44uDH2OVepVLh9+7bwZMbCwkKYmJiIkmZDHPBinGxZ7t27hwMHDqB3795Qq9VC+avU+fjxY9y/fx+//fYbJk+ejHPnzon6fv78edy+fRve3t6Ijo6GWq2GWq2Gt7c3Dh06JKorLS0NlpaWuHXrFho2bAiNRgNLS0uMGjWqwnsENm/eDL1ej/DwcFF5YWFhmfvz+fPnZY7vLq/O0oqKirB161a0adMGrq6uQrlSqUTLli2xfv16JCcn4/r16/jll18QEREBGxsbREdHC7Gv+9uSkZEBtVqNRo0aicoNwzAMnzGD/Px8WFpawsrKCra2thg9erTRA4OAgADR+8kYq8DbPjXN/hzFxcXk6OhIrVu3FpWvXLmSAND+/fuFstjYWLK0tBRdknsVLi4u5OTkRKampuTv709Pnz41Gme4NFnyUi8R0b59+yTlLi4uBID27dsnqQcAKRQK+v3334WyM2fOEABasmSJUBYVFUWOjo6iS65ERKGhoWRlZSVchn+VYRKHDh0iAOTl5UXPnz8XysPCwkgmk1GXLl1E8a1btyYXFxfh/1evXiUTExPRZVoiorNnz5Kpqamo3NjwkNmzZ5NMJqNr164JZUOGDCEANGPGDFHsO++8Q76+vhX2ybB+RS8/P78K6yrpVYZJlFTRMIkzZ86QiYmJ8NmeOnVqucMkGjZsKPRFo9HQJ598IrrMb9je69evS9Zt3rw5tWrVioiIdDod/T/2zj2simr941/uIAh4BVEqSwsxlUJDTPOUJKlZnGMp5gkvpNlRj6Zm2vFWmZp28Zgax7z2pGlk+nRM6RCGdpJIMU9q3ipNTTfJjwBBEYT5/UF73LOZvffM3nNZM/v9PM9+0Nlrz6zbrPWdd971rsjISK5fv36CNCUlJVxoaCgHgDt48CDHcRz35ptvcgC4r776SpB25syZHADu0UcfdVi+d955hwPA7dq1S3DcnXOmpqbyZQ8MDOSeffZZgUvBJ598wgHgWrRowXXs2JFbv349t379eq5jx45cYGAg97///Y9P27VrV65JkyZckyZNuEmTJnHbtm3jJk2axAHg0tPTHZaH4zguMTGRa9OmTSP3ii5dunB33nmnYEy6fv06d8stt3AAuI8//lj2Oe3597//zQHgVq1a1ei706dPc/fee6+gv99+++3ciRMnBOmkji2OGDRoEHf77bc3Ol5VVcUB4GbOnMkfmzlzJvfiiy9yW7du5T788EP+Pr3//vsFbjwc1zBu2o4zBEE4hyzDJsXPzw/p6ekoKCgQrGjfvHkzoqKiBFaDyMhIVFVVudxFTQqlpaW4ceMG2rVr5/D1dnZ2NiIiIvDwww8LLI2JiYkICwtrZHlq3749UlNTRc+VkpKCO+64g/9/165dER4ejp9//hlAwwKZbdu2YfDgweA4TnC91NRUlJeX49ChQx6XOyMjQ7DCPykpCRzHYcyYMYJ0SUlJOH/+PB+N4JNPPkF9fT2GDh0qyFt0dDQ6duwoqAvb+qyqqkJJSQl69eoFjuMaWZAAYPz48YL/9+nTh68XZ8yYMQO5ubkuP2+++aa0ytGIv//97xgwYIBg0ZQz1q9fj5ycHKxatQqdOnXCtWvXBG4kVveToKCgRr8NDg7mv/f19cWzzz6LvLw8zJo1C6dPn0ZRURGGDh2KmpoawbmeeuopREREYMyYMcjNzcXZs2exevVqrFq1SpBOjM2bN6NVq1Z4+OGHBcfdOefixYvxn//8B2vXrkXPnj1RU1MjiJBhtTZeuXIFeXl5GDVqFEaNGoUvvvgCHMdhyZIlgrRXr15FRkYGli9fjr/85S9Yvnw5nn32WWzZsgWnT58WLc+pU6dQVFSE9PR0+PoKp6K//e1vOHXqFDIzM/HDDz/g6NGjyMjIwKVLl5zWk7NzitVnQEAAhg4d2ui7pk2bonPnzpgwYQI++eQTrFq1Cjdu3EBaWhofnUSJseXatWsO+5d9ORctWoTFixdj6NChSE9Px4YNG/Daa6/h66+/5l12rJw9e1ZW1BaC8Hp0FOKEyhw8eFCwOOT8+fOcj48PN3nyZEG64uJirlOnThwArm3bttzo0aO53bt3y76edQHdc88953ShyYABA5xaHB977DHBOR966CHR8wDgxo8fL5qPUaNG8WVzdi0A3CeffMJxnGeWYfvFiOvXr+cAcN98843guNVaabUkWevK0adr1678b3/55Rdu5MiRXLNmzRql27hxI59u5MiRXHBwcKO8Wq+tF2pahrds2cIFBARwJ0+e5I+5sgzbUlpaykVFRXHTpk1rlF9XlmGOa7BaZmZmcr6+vnyb9O/fnxs/fjwHgPvuu+/4tHv37uUtnAC48PBwbuPGjRwA7vHHHxfN308//cQB4CZOnCj6vTvntM17586duSFDhvDHsrOzOQDcgw8+2Cj9gw8+yLVv357/f+fOnTkA3N69exvlyb5v2jJ37lyB1dyel156iQsICODL1L17d+4f//gHB4Dbvn27W+e0cuXKFa5JkyaiVvPa2lru7rvvblTXp06d4gICArgZM2ZwHCdvbLl06ZLgY7UYy7EMi3H16lXO19eXy8zMdJqOIAjnUGg1E5OYmIi4uDh8+OGHeOmll/Dhhx+C47hGvnStW7fG4cOH8fnnn2P37t3YvXs31q9fj4yMDGzcuFH2dVesWIHff/8dy5cvR7NmzTB//nzB9/X19WjdujU2bdok+ntrGCorzhZQ+fn5iR7n/thl3LqQ569//StGjhwpmrZr164Ozy8VR/mQkj8fHx/s3r1bNG1YWBiABh/ghx9+GKWlpXjxxRcRFxeH0NBQ/Prrrxg1alSjBUuOriuF8vJypxZKK4GBgWjevLnb11GSF154AU8++SQCAwN5i5jV3/r8+fOoqalBTEyMw983a9YMDz30EDZt2oQ33ngDQMOCLaBhQVZsbKwg/aVLlwThtQIDA7FmzRq89tprOHXqFKKionDnnXfiqaeegq+vLzp06MCnfeCBB/Dzzz/jyJEjqKqqQrdu3XDx4kUAwJ133imav82bNwOAQz9Yd85pm/fHHnsMixcvxrVr1xASEsLXlf0iMqBhvLB9ExETE4Njx46JLjgD0GhRrG2Z7rrrLiQmJop+/9prr2H69Ok4duwYIiIi0KVLFz5MnLN6cnZOKzt27MDVq1dF63Pfvn04evQo3nrrLcHxjh07olOnTvxaCjlji7UvWVm/fj1GjRqFNm3a4MsvvwTHcYIY2lYLuLM+CzSMjS1atEBpaanTdARBOIfEsMkZMWIE5syZg++//x6bN29Gx44d0aNHj0bpAgMDMXjwYAwePBj19fX429/+hn/961+YM2eOYCKXgq+vL95//32Ul5fj5ZdfRvPmzfH3v/+d//6OO+7AF198gfvvv19WpAB3aNWqFZo2bYq6urpGMUZZ4I477gDHcWjfvr1T0XLkyBGcOnUKGzduFCyYU8K1xZ7JkydLegjq27cv8vPzFb++O5w/fx6bN2/mRaMt9957L7p16+YyxvG1a9cEiwKtCzUPHjwoEL4XL17EhQsXBAuprERFRfGisK6uDvn5+UhKSuIfaqz4+fkJFoJ+8cUXAOCwj27evBl33HEHevbs6TD/cs9py7Vr18BxHK5cuYKQkBB06dIFAQEBgo0orFy8eFHwwJqYmIjc3Fx+AZ1tOqDxwy0AFBYW4scff8Qrr7ziNF/NmjVD7969BWVq166d6EYTUs8JNMQ/DwsLE0TUsVJcXAwAopFXamtreXcSOWOL/X3auXNnAA19bM2aNTh+/Dji4+MFZbF+74wrV66gpKREtI4JgpAO+QybHKvlY+7cuTh8+LCoJcR+FzpfX1/eoiEWBkwKAQEB+Pjjj3H//fdjypQpgsD4Q4cORV1dHV599dVGv7tx44YggoKn+Pn5YciQIdi2bZvoCvTLly8rdi13+Mtf/gI/Pz+8/PLLvLXYCsdxfNtYLb22aTiO8yj8nSP08hn2JBzU9u3bG32GDRsGAHj//ffx9ttv82nFwg2ePXsWeXl5gsgRnTt3RlxcHFavXi0QRu+++y58fHzwxBNPOM3TG2+8gUuXLmHatGlO012+fBmvv/46unbtKiqqvvvuOxw/flwQ/ssVjs4pVvaysjJs27YNsbGxvDW3adOmGDhwIPbv348TJ07waY8fP479+/cL/JatPrdr164VnHfNmjXw9/fHn/70p0bXtD60yCnT1q1bceDAAUyZMkXUH1jqOS9fvowvvvgCf/7zn/mIG7ZYH0ptQ+IBDRuBnDx5Evfccw8AeWNLSkqK4GO1FD/++OMICAjg/buBhvs6KysLbdu2Ra9evQAA1dXVojuKvvrqq+A4TrBZCkEQ8iHLsMlp3749evXqxccaFRPDzzzzDEpLS/HQQw+hXbt2+OWXX/DOO+8gISGhUcgfOTRp0gSfffYZ+vbtizFjxiAiIgKPPfYY+vbti2effRaLFi3C4cOH0b9/fwQEBOD06dPIzs7GP//5T5dCQw6LFy/Gl19+iaSkJIwdOxbx8fEoLS3FoUOH8MUXX+j6ivGOO+7AggULMGvWLJw9exZpaWlo2rQpzpw5g+3bt2PcuHGYPn064uLicMcdd2D69On49ddfER4ejm3btjl8Be0J8fHxAiuVJ5SXl+Odd94BAP718ooVKxAZGYnIyEhMnDiRT2td1Gm78OeXX37hH6QOHjwIAFiwYAEA4NZbb8XTTz8NAEhLS2t0basleMCAAWjZsiV/vEuXLujXrx8SEhLQrFkznD59GmvXrkVtbS0WL14sOMfSpUvx2GOPoX///khPT8fRo0exYsUKPPPMM4J744MPPsC2bdvwwAMPICwsDF988QU++ugjPPPMMxgyZIjgnH379kVycjI6dOgAi8WC1atXo7KyEjt37hQVeVZ3ImehwqSec8CAAWjXrh2SkpLQunVrnDt3DuvXr8fFixexdetWwTkXLlyIvLw8PPTQQ/ybneXLl6N58+aCXe3uuecejBkzBuvWrcONGzf4NwbZ2dmYNWtWo1f9dXV12Lp1K3r27ClY/GrLvn378Morr6B///5o0aIFvvnmG6xfvx6PPPIIJk+e3Ci9lHNa2bp1K27cuOGwPhMTE/Hwww9j48aNqKioQP/+/XHp0iW88847CAkJwZQpU/i0no4t7dq1w5QpU7B06VLU1taiR48e2LFjB7766its2rSJfwi2WCy45557MHz4cN4q/vnnn2PXrl145JFHBHGnAfCh4mgRHUFIRB9XZUJLVq5cyQHg7rvvPtHvP/74Y65///5c69atucDAQO6WW27hnn32We7SpUuyrmO/A50Vi8XCdejQgQsODua+/PJL/vjq1au5xMRELiQkhGvatCnXpUsXbsaMGdzFixddnpPjGhbQ2e7cZPubkSNHCo4VFxdzEyZM4GJjY7mAgAAuOjqa69evH7d69Wo+jScL6LKzswXHrQvoDhw4IDjuaFHXtm3buN69e3OhoaFcaGgoFxcXx02YMEGwIOyHH37gUlJSuLCwMK5ly5bc2LFj+VBytnl2tFOVHgvorHUq9rEP/SQWDspav2IfV6HdHNX1vHnzuO7du3PNmjXj/P39uZiYGC49PZ37/vvvRc+zfft2LiEhgQsKCuLatWvHzZ49WxBGj+M4rrCwkHvggQe4Zs2accHBwVy3bt24rKwsrr6+vtH5nn/+ee7222/ngoKCuFatWnFPPfUU99NPP4leu66ujmvbti137733Oi2r1HOuWLGC6927N9eyZUvO39+fa9WqFTd48GBu3759ouctKiriUlJSuNDQUK5p06bc448/zp06dapRupqaGm7+/PncrbfeygUEBHAdOnTg3n77bdFzWkMoLl++3GF5fvzxR65///5cy5YtuaCgIC4uLo5btGiRYIc/uee00rNnT65169ZOQ0levXqVe+WVV7j4+HguJCSEi4iI4B599FHBQkgrUsYWZ9TV1XELFy7kbr31Vi4wMJDr3Lkz98EHHwjS/P7779xf//pXrkOHDlyTJk24oKAgrnPnztzChQsb9UWO47iWLVsKFngSBOEcH46zezdLEARBEIQh+eGHH9C5c2fs3LkTgwYN0js7BGEIyGeYIAiCIEzCl19+ieTkZBLCBCEDsgwTLrFuJeuIkJAQREREaJQbbaipqXHp7xcREaF6NAyCIAiCINSFxDDhEtv4l2KMHDkSGzZs0CYzGpGfn48HH3zQaRprrFCCIAiCIIwLRZMgXOIqlq2rwPBGpFu3bi7LbY0VShAEQRCEcSHLMEEQBEEQBOG10AI6giAIgiAIwmshNwkVqa+vx8WLF9G0aVOXfrcEQRAEYVa4P7b7jomJEd1chiD0hMSwily8eBGxsbF6Z4MgCIIgmOD8+fNo166d3tkgCAEkhlWkadOmAID//Oc8WrQId+sc1dU3/x0crESu3MM2H0bFvv6UKJPcNjFDPYqhZN+0ryMlzm3WeneFp3UnZfzxZIwSaxc17lN3kFMWJfOo13Vd5cPZtaTkubKyAn37xvLzIkGwBIlhFbG6RrRoEY6wMPliuLoaCAu7+X+txHB1tfBa9vkwImJ1Fxbm/mTiTluYoR7tUaNPKllH1vY1W73Lwd2+Ckgbf/ztZpHg4MZjiCPsfyt2HWse9HygcSQMrcfFyqHUtZzhyRgmNx/Oyignz+QySLAIiWEGYcGKJXUyMwpKlocVy42esN43zFrv7mAv3KSkdfSd2Dms4tf+HFLuOdvfSknrLG9q4uj89mW0NyLYHpOaR73HXrFru8q73nkmCE8hMUwIIBHhHBrw2Yb6r2MciU45dSbXJcKZSJIj0qUiJkbVxtF17Mtl/9CgFEqel8Y3wlshMUw4xCxP+0qUwQz1oBSs1gUJYWkoVU+2YtaZIBMbR5RuKxb6pJQ8GEEQ20P3FeENkBhmDBp4lEfMAiWnnt2daJW21rDQN1gQHWKwUDfehtS+4Mi1Qm3UFIiewGq+PMUsxhPCOyExTPCIDdBmGrStgzXrZXI0oegtilmd6FhvTyXRuw/Y5kHqcT1hob7EUMOdg5UoHGpQXV2Nmpoaxc8bGBiIYBY7LqE5JIYNglL3qxp+ekZCbz9CR8hpDz0meFb7i5kmfEdIWbRGOIdVUQyoJ2KVKrOcvqaGdbi6uhohIZEArit7YgDR0dE4c+YMCWKCxDBLaLkiWix8GqEMWrhgWH+rRbuxOk94e5/Vsv3NUtdqimIlDQ1KxtrWWswqLYgbLMLXAfSHspLlBiyW/6CmpobEMEFimBWkrkhW+vyuvmPZoqIVSoWmUgO1hQqrc4Q39EepC7LsUethjNW+4A5quhTYR9yQG4FD7J72VGjL6SdiYpaNByJ/AAF6Z4IwKbRBuBdTXe35rkJGxV2hoXUetDyPVuf1FL0nZWv0BFbrxzZ/zvx7vVUIi6FV+aT2XVfh6JTAnT4gNb3e9yhByIUswwygtlXYE7Ta3UgPUc6CIFYKTy2Ers7FCqxNsmqGylLyXKzVmzdgbUNPrLlyrcpKXEfp9MoRCGUtw7QTHnETEsM6w4IQ1moVsrMysSzAvAlqByHuPDApsWBJaahdjYlW7WYrcOX0eXrIIswCiWGdEXvKVn41rvPrSzkm5/fejFQLrTfHWXUXPfyxCe9B6fvFSHF3PXmLpPb8RRBaQGLYAOg1qOol4syGnqJU7rXd7WuurmGkfuNpXs32EOJNeLMgtiI3z0YrH0GIQWKYAewHYCmbQ2gdL5gGPM8w0mtFV5OhO2UwSnxrpRc1qhlvmlAHNQSx9byEJ5DPMKEeJIYNipIhdpS+BuEYo9Qpa6Jd7fywsjjJiJZEQhrUtgTBLhRajRHsVx6zvkKdMAasiVoWYe2+oDbTH/vwdFrEeycIQj/IMswQ3hYvliD0RmmRo9TDLL1aZw/btvCkfVm3ELOcN4JQCxLDBGFSWLRCuSMEtC6Hp0JHSaSczxvEixbxduXg6UOP1oLY2fVYHCfEUXoHOk7BcxFGh8SwBlRXA/7+bAziBGEUtJikjSMEnMO6tVEuUttFapx2tcJ/ebLYTqs2s+bP0fXM1G8Iwl1IDGuIlMGPwpkRSmB0kWf0/MvBk90D7V/dG32skFJuJfqGknVFofQIwviQGNYId0SwlN8RhBishnKT2p+9RWB4en9bRZ2Rxwk92lnujmtyzscKYvkx9gNT4B8fglAeEsMaQEKY8HZY9xPWGlf1werDjFKoXS570ScWy91RWndhRRC7yoNYeVnzySYIraHQajpDQphQExashu5cX+88s4KrEF9GrCc9d2M0/iIy10jpE9XVJIAJwhYSwxpAu1AReiMmqtSIoyp2TU9+TzTG3k/YTEJOCxz1S2tdmqE+3X0ApXvONStXrsRtt92G4OBgJCUl4dtvv3WaPjs7G3FxcQgODkaXLl2wa9cuwfccx2Hu3Llo06YNQkJCkJKSgtOnTwvSlJaWYsSIEQgPD0dkZCQyMzNRWVkpSPPRRx8hISEBTZo0wa233oqlS5c2ysv169fxj3/8A7feeiuCgoJw2223Yd26dW7WhLkgMawDzgZdGowIvVBqMlRyUnV2HiPdK/av7JU8HyAcU1gWcyznTQnIHUhNAlT4yGPr1q2YOnUq5s2bh0OHDqFbt25ITU3Fb7/9Jpp+//79GD58ODIzM/Hdd98hLS0NaWlpOHr0KJ9myZIlWL58ObKyslBYWIjQ0FCkpqai2qZzjBgxAseOHUNubi527tyJffv2Ydy4cfz3u3fvxogRIzB+/HgcPXoUq1atwttvv40VK1YI8jN06FDk5eVh7dq1OHnyJD788EPcddddsuvBjPhwHEfB9lSioqICERER+PrrcrRsGQ7A9eBnpAleDfR8hUrchOW3GXJ8PPUUG442adBqNzNHfsd69nUt28PdtRpSfisFdyKCKAlrMaorKyuQmBiB8vJyhIeHS/6ddR4FxkLZBXQ1AN6TlZ+kpCT06NGDF5n19fWIjY3FpEmTMHPmzEbphw0bhqqqKuzcuZM/1rNnTyQkJCArKwscxyEmJgbTpk3D9OnTAQDl5eWIiorChg0bkJ6ejuPHjyM+Ph4HDhxA9+7dAQA5OTkYOHAgLly4gJiYGDz11FOora1FdnY2f5133nkHS5Yswblz5+Dj44OcnBykp6fj559/RvPmzd2tNNNClmENkRo2yMzWAnsLFisWLVf5MnObiCEn6oPW4sooDy6O+o5SfUmK2HMUUUCvfs1S28l5oJJbT3oLYSnnZqkt9KSiokLwuX79umi6mpoaFBUVISUlhT/m6+uLlJQUFBQUiP6moKBAkB4AUlNT+fRnzpyBxWIRpImIiEBSUhKfpqCgAJGRkbwQBoCUlBT4+vqisLAQQIP7Q7Bdg4aEhODChQv45ZdfAACffvopunfvjiVLlqBt27a48847MX36dFy7dk1SPZkdEsOMYhbxZSZBaZZyKAH5F7KBlhZMpdDSb11KXpwds4864c7976hcet4/dO/eJDY2FhEREfxn0aJFoulKSkpQV1eHqKgowfGoqChYLBbR31gsFqfprX9dpWndurXge39/fzRv3pxPk5qaik8++QR5eXmor6/HqVOn8OabbwIALl26BAD4+eef8d///hdHjx7F9u3bsWzZMnz88cf429/+5ryCvAQKrUYojjeIRZZePauFWKgoM5aTaIxekQZc7Ryn5jVtd2pzhVRXHWsave4bc93DwQCCFDxfgy3w/PnzAjeJoCAlr6ENY8eOxU8//YRHH30UtbW1CA8Px+TJkzF//nz4+jaUs76+Hj4+Pti0adMfbifAW2+9hSeeeAKrVq1CSEiInkXQHbIMa4SZBaKZrL/uYtY60NtyZ1bEXCf07DvO+q+eeZMSBcXTvqlG2Vi6X2wFOSt5Yonw8HDBx5EYbtmyJfz8/FBcXCw4XlxcjOjoaNHfREdHO01v/esqjf0CvRs3bqC0tJRP4+Pjg9dffx2VlZX45ZdfYLFYcN999wEAbr/9dgBAmzZt0LZtW14IA0CnTp3AcRwuXLjgoHa8BxLDhFvoPXmzjlnFsdZo4b/tTFxJifMrRZDJ8d9kub+wnDctH9yMJiqNll8WCQwMRGJiIvLy8vhj9fX1yMvLQ3JysuhvkpOTBekBIDc3l0/fvn17REdHC9JUVFSgsLCQT5OcnIyysjIUFRXxafbs2YP6+nokJSUJzu3n54e2bdsiMDAQH374IZKTk9GqVSsAwP3334+LFy8KQrKdOnUKvr6+aNeunTtVYirITYJRWBy8WJ4IWcdadyy2K2so2c/EXhPbfy/1O0eL0aRcw9lvxZATMYPQHmof72Tq1KkYOXIkunfvWut8mQAAIABJREFUjvvuuw/Lli1DVVUVRo8eDQDIyMhA27Zteb/jyZMno2/fvnjzzTcxaNAgbNmyBQcPHsTq1asBNFh0p0yZggULFqBjx45o37495syZg5iYGKSlpQFosN4+8sgjGDt2LLKyslBbW4uJEyciPT0dMTExABr8mT/++GP86U9/QnV1NdavX4/s7Gzs3buXz/tTTz2FV199FaNHj8bLL7+MkpISvPDCCxgzZozXu0gAJIaZgsXBlQSwsujli8ky7vQxT/0glQzN5iqNs+/tRZWccrAUpszIuOunTA+4WuNebGDH1Mv+xbBhw3D58mXMnTsXFosFCQkJyMnJ4RfAnTt3jvfRBYBevXph8+bNmD17Nl566SV07NgRO3bswN13382nmTFjBqqqqjBu3DiUlZWhd+/eyMnJEUSH2LRpEyZOnIh+/frB19cXQ4YMwfLlywV527hxI6ZPnw6O45CcnIz8/HzeVQIAwsLCkJubi0mTJqF79+5o0aIFhg4digULFsiuBzNCcYZVxDbOcFiY8ziGLA2oJID1gaU+oBRigkGN/iUnpqwSgtOVNdgTpORPq3vUjH1SCkpFjCBu4nmc4alQdgHddQBvyc4PYU7IMqwzLAyiJH7ZwExWY7Vi6zq7npzV/VJxtBpfzfI4E+DOvieUQ+02JgiCLUgM6wQrYoelAZ+FOmGlPozqk6j3xilideZunmyt2mL/doXS1nBv3iBDD+jhQxnkhKxzTiCU3YGOXooTNyExrAHu+gSqiV4DvNLlFyuHJ9dw9lut68xoPoksiAZnDxHu1qPtOd3dWcwo0SKIxpAoJgjzQ2JYI1gRNCyKYKXz5On5XIkpvUSxbR4IcZR6ve1JnUsJo0bCSh3U3GCC7j2CMC8khr0ErVeeu1pBzzKuJlRn4bDUxmjWYi2xjQ0spy2ctbdaUSoI5WF9XCEIgl1IDJscLbczdXXM7JOVuyGa3MGoPsUs4ah93H3gkJOerMPKISd0HaE9yvX1ACjrMyw/tBphXkgMmxS1J1qWwj+pjbuvXtX2E2XJSqx3WytdB1rUKQlibSBBTBCEK0gMmxA1J1iWFpjphTviWE1hzJIo1gNPtkGWm1Zpv3GWBLGZ+w8JYoIgnEFi2CToIYBZmcT1Rq4YVUsYe8OEL8cfXYrbirv1pcbCLK1cmsywINPdXQuNWl6CINSFxLAJ0GMnLBLCjXHHQqu0n7FeVmIt/aXtceX76+q33iaQlCivXoLaqPeHWB70zofxUHo75joFz0UYHRLDBkZNEVxdTYLXXZQIy6XEpK/nRCtne2Q5mLlPsuQyYXZYEMUEQbADiWEDorZLBE3IyuHuq3klXClYnvBZ6Wes1Q0r9cIqSteP3veImnGRWSI4GKis1DsXBOEYEsMGgoUIEYTnyLXaeiqM9bYSO8LeCk5CsAG1fIjNsgGFGv2EFVHK6r3KBkpvx0yh1YibkBj2YrwxFjAruDvpuSuUWJ5k9coXq/VhRUnRx3pZWUNvi7HZoHmFYB0SwwZArYHEViAZabDydIJipayeTLjuCCUjTPBaWodZfkCwQtZycbSqFz36iBH6pVzITYJgHRLDDKPGa1L7c7Iy0Wo5+Eu9lpaizBZ3QrSJncfV9cw24bqDEYSHuw+srJfLU9Te1Mb+3ErVpxQhb4R+SRBmgsQwo6jlL8iCpckog7xWk609nrhQyMknqxMuC32URZzF+2axHbVEizdcVM96EwRAyQbgFDwXYXR89c4A0Rgl/QStH6XP7Ul+jIhYXaqJu6Ht5OaPRdGpdZ6MHkbQqPeUGqh9n7IQP5s1jJJPgnAGWYYZQ60FM3oMWGadpLV8uHDHGuWOhdj6O2+GNkMwF2bY6ZFVa7QjdzsW80oQUiAxzBBKDNgsRIjwpgFRC2Hsyc52RnCbYNGyxLIwVnJbaW+BlbdjZsfZWEV9lGAZEsMMoGb4JK0Gfhro1J9w3RXFZCX2DFasc87akdpNOkr4F7PSJ7wLpeMM03bMxE1IDOuMGtZgLS0fNCGIo+aCHrnCh7UwbEa0zOkpfuhhRh30DCsp59osCm+x/LOWR4KQA4lhnTCqbzANePLQQhSLXU/pa1C7ay9KPLVcAtRuUtAzeomUaxulDUkYE0aGxLCBISFsHLSMierIX08JcWU9lxLnIW6ixcY6hGP0thI7ui7LbefKbUf5vAf88VGKGwqeizA6JIZ1wJMB11msUbVgeUA2InpZopS6rrsTHQlhIVpv6kL3sWtYuzf1bDtP64EexAgjQWJYQ7R6Va4UNJCph5qTrqMJ1Do5KSWIxa7hKB0hRI96IXEiDb2sxGbcbIYexAijQGJYI5Qe5Mwugr0hCoZW0SfUxGyTtzOU6it61hmJE+loLU61dztwjpJueEbf2IYwPySGDYAWg7KekyML4sAWPepCT59FwjVmE49msBI7u1eUKhvdlzfRvy4CoGxoNfIZJm5CYlgDqquBsDD3fmsdgNS0IhrRH01N9FwVbcZXpUZHyT5AbSvEnXtNajgyOed0hf19qVbUFoIg9IHEMMNoES3CKKGi9EIPYax1ODbCOWaworKIoy19AeU2EFJSFNvel3r0CXJxIQj1IDHMIGYSwWYSX1pPRmQlNh8stSnLIl+NNRZKlNU2X3rVn97txlIfJgilIDHshag9kJp9oNTSWqy/nx5hVlgVwmqhxsOs3sLUu1B6O2byGSZu4qt3BoibBAc39g02kn+wN64Y1qrMNOHqi5JtTG2pL2pYnbUe95QKj+hu3qkPE2aDxDCjqCGC1RjAPBlQzYQWdaBWGxLSMFNfZ6EfGS2CjavfGK1faLUrptlYuXIlbrvtNgQHByMpKQnffvut0/TZ2dmIi4tDcHAwunTpgl27dgm+5zgOc+fORZs2bRASEoKUlBScPn1akKa0tBQjRoxAeHg4IiMjkZmZicrKSv77+fPnw8fHp9EnNDSUT/Pee++hT58+aNasGZo1a4aUlBSXefcmdBXDixcvho+PD6ZMmcIfq66uxoQJE9CiRQuEhYVhyJAhKC4uFvzu3LlzGDRoEJo0aYLWrVvjhRdewI0bwlce+fn5uPfeexEUFIQOHTpgw4YNja7vqlNLyYsS2Ioco1iDzSIKlEYrUUzoi5H7PvWfBoy+QNUMFm55BKjwkcfWrVsxdepUzJs3D4cOHUK3bt2QmpqK3377TTT9/v37MXz4cGRmZuK7775DWloa0tLScPToUT7NkiVLsHz5cmRlZaGwsBChoaFITU1FtU1jjBgxAseOHUNubi527tyJffv2Ydy4cfz306dPx6VLlwSf+Ph4PPnkk3ya/Px8DB8+HF9++SUKCgoQGxuL/v3749dff5VdD2bEh+M4To8LHzhwAEOHDkV4eDgefPBBLFu2DADw3HPP4bPPPsOGDRsQERGBiRMnwtfXF19//TUAoK6uDgkJCYiOjsbSpUtx6dIlZGRkYOzYsVi4cCEA4MyZM7j77rsxfvx4PPPMM8jLy8OUKVPw2WefITU1FUBDp87IyEBWVhaSkpKwbNkyZGdn4+TJk2jdurWkvLiioqICERER+PrrcoSFhYumUXuxnFpCmJCOWuKD2oEN3G1fvdqPNTGsZz9WMpybO+d19/yeXs/VdaWcT26eKysrcP/9ESgvL0d4uPh8KIZ1HgU+AtBE3kWdchXAUFn5SUpKQo8ePbBixQoAQH19PWJjYzFp0iTMnDmzUfphw4ahqqoKO3fu5I/17NkTCQkJyMrKAsdxiImJwbRp0zB9+nQAQHl5OaKiorBhwwakp6fj+PHjiI+Px4EDB9C9e3cAQE5ODgYOHIgLFy4gJiam0XX/97//ISEhAfv27UOfPn1Ey1JXV4dmzZphxYoVyMjIkFR+M6OLZbiyshIjRozAe++9h2bNmvHHy8vLsXbtWrz11lt46KGHkJiYiPXr12P//v345ptvAAD/+c9/8MMPP+CDDz5AQkICBgwYgFdffRUrV65ETU0NACArKwvt27fHm2++iU6dOmHixIl44okn8Pbbb/PXeuuttzB27FiMHj0a8fHxyMrKQpMmTbBu3TrJeVESpZ/K1Xilzr7lgE3UqjM13SZYE0wsY6T7gtpVCCvt5mm76LHDqbf1pZqaGhQVFSElJYU/5uvri5SUFBQUFIj+pqCgQJAeAFJTU/n0Z86cgcViEaSJiIhAUlISn6agoACRkZG8EAaAlJQU+Pr6orCwUPS6a9aswZ133ulQCAPA1atXUVtbi+bNm7souXegixieMGECBg0a1KiTFBUVoba2VnA8Li4Ot9xyi6BjdOnSBVFRUXya1NRUVFRU4NixY3waZx1QSqeWkhd7rl+/joqKCsHHFUZwi2BtsreKQDkfvVHT35QEMRtIbVu97idW25OVe9QZrOcPUH4hHGvjvlrYz9nXr18XTVdSUoK6ujqB9gCAqKgoWCwW0d9YLBan6a1/XaWxvq224u/vj+bNm4tet7q6Gps2bUJmZqajIgMAXnzxRcTExDTSSt6K5qHVtmzZgkOHDuHAgQONvrNYLAgMDERkZKTguH3HEOs41u+cpamoqMC1a9fw+++/O+zUJ06ckJwXexYtWoSXX37ZafkBdeM0mmlnJCXLolQQfyVQI8QTxf5kA0dtq3fbGEHMifVhR/lWqj7l1Iuce8ydkGtKhFFUI9Sbs/FK23EnGECIguerBwDExsYKjs6bNw/z589X8Drasn37dly5cgUjR450mGbx4sXYsmUL8vPzEWyEwUEDNBXD58+fx+TJk5Gbm2vKBpg1axamTp3K/7+ioqLRjWZFjUHE6NvG6rH1sRU9yqv0xKVkn7LmjTVRZxRYqSejDbNS86tX/G0txJ+n11Ar9rFZd8A7f/68wGc4KChINF3Lli3h5+fXaBF9cXExoqOjRX8THR3tNL31b3FxMdq0aSNIk5CQwKexX6B348YNlJaWil53zZo1ePTRRxsZ+6y88cYbWLx4Mb744gt07dpVNI03oqmbRFFREX777Tfce++98Pf3h7+/P/bu3Yvly5fD398fUVFRqKmpQVlZmeB39p1HrHNZv3OWJjw8HCEhIZI6dXR0tMu82BMUFITw8HDBxx4jvNLWY4LRe4DVKw9q+IorhVi+WGgrQhre0E5mLSNrPsT259Zy4yG1sZ+zHYnhwMBAJCYmIi8vjz9WX1+PvLw8JCcni/4mOTlZkB4AcnNz+fTt27dHdHS0IE1FRQUKCwv5NMnJySgrK0NRURGfZs+ePaivr0dSUpLg3GfOnMGXX37p0EViyZIlePXVV5GTkyPwQSY0FsP9+vXDkSNHcPjwYf7TvXt3jBgxgv93QECAoGOcPHkS586dE3SMI0eOCJ6UcnNzER4ejvj4eD6Nsw4opVMnJia6zIscxDbUUAIlxYmWPmIs+fPaYgZRrMWDEWvtRgjxpvbR442SlPFLrwgRSl1fzvm9pb9NnToV7733HjZu3Ijjx4/jueeeQ1VVFUaPHg0AyMjIwKxZs/j0kydPRk5ODt58802cOHEC8+fPx8GDBzFx4kQA4EPLLliwAJ9++imOHDmCjIwMxMTEIC0tDQDQqVMnPPLIIxg7diy+/fZbfP3115g4cSLS09MbRZJYt24d2rRpgwEDBjTK++uvv445c+Zg3bp1uO2222CxWGCxWATxir0ZTd0kmjZtirvvvltwLDQ0FC1atOCPZ2ZmYurUqWjevDnCw8MxadIkJCcno2fPngCA/v37Iz4+Hk8//TSWLFkCi8WC2bNnY8KECfwT3fjx47FixQrMmDEDY8aMwZ49e/DRRx/hs88+4687depUjBw5Et27d8d9992HZcuWCTp1RESEy7xIxQivmrUUwUZAr9ewLL6KdJQnveqIIOxxx7VAqXtMizUgrN5j2o5X7sUGdn4+eQwbNgyXL1/G3LlzYbFYkJCQgJycHN4l4dy5c/D1vWlj7NWrFzZv3ozZs2fjpZdeQseOHbFjxw6BDpoxYwaqqqowbtw4lJWVoXfv3sjJyRG4km7atAkTJ05Ev3794OvriyFDhmD58uWCvNXX12PDhg0YNWoU/Pz8GuX93XffRU1NDZ544gnBcaP7SCuFbnGGrfzpT39CQkICH2e4uroa06ZNw4cffojr168jNTUVq1atErgm/PLLL3juueeQn5+P0NBQjBw5EosXL4a//01tn5+fj+effx4//PAD2rVrhzlz5mDUqFGCa69YsQJLly7lO/Xy5csFrx2k5MUZ1viIRUU34wyzZv2jrYSlYcSYsFr6pLM6WXsrZrjn3EFOPzRaHbl7j6kRM9gdPI8zvBtAqKvkMqgCMEB2fghzorsYNjP2Ypg131DaKU0+RlpYqEfEEhLF+mPG+04qelmH5eLuIjelw6d5em45kBgmWEbz0GreijcJYS0nGK2Dw+sRgYI11wl2Qi0RhPGw3h/uhl+j+4sglIfEsAZUVwNhYcqcy9uFsDt5lxq7VC5a+/OpFTJJaVj3cyQIK3rfU+486MoVxFLLyL7QDvzjoxS1Cp6LMDokhg0Ey0JYzQlFra1GlRbFtudWC70nb1tc1SOJYu1hpW8Q8pB7X7MvXAnCWOiyHTMhH1aFsFqhyNTcvtj+GkqiRcg41iZB+3oUs8STSFMfqmNj14FR/J0JwoyQZdgAsCyElUTP7ZHVmFj03uFOa+uRq2uRpVgdSBR5htZvW5QcF6TeU+ZwlfCHsqHVSP4QN6HewDgsCmE1t/rUC7UnRKVjTbPkLiEXEsXSMWobE+7h7n3NtoglCPYhMcwwJITNi95WY7WRMqmbvQ4IgiAIY0A+w4ziDUJYy+2fpaDnxhpyfI3l+ODqvVJeap2SX7E4rN0jWuBNZRbr82purkEQhDhkGWYQ1oQwWYO1Ren61vsVqu21yVrsHqzFmlYasbZWKySimVHi/tF7vHCM0qHVlDwXYXRIDJsQEsLuY2RfXGewMsHJEXXkW9wYM/ZPqe0rlk6Jfq13fap1b+pdLoIwEuQmwRieDmAkhD3HCHl0B5YmR9vQeVKiULCUd72RU3eso8RCUk9gpV8pvcCWIAh5kGWYIcwshI02uJv1tTSr1lY5C+5Yy7veGNVarKePPouwmi+C8AZIDDOCmYWwkTGq0HAFi8JSTixUa3rCeFC7Ee5BPsOEepAYZgCWxJa3W4TFMKsgBtjxJXYHEsU3MUIfZaGdWK8jNWGh/gmCVchn2AQoNciREHaMGfwzHcGSQHCnnlnKP9EYM987BEGYA7IM6wwr7hFGEhTO8qr2pEu+xNog19JJIdnY7JsstQVL9UK4QxAAJRuxVsFzEUaHLMM6YmYhrNYkKCdOrZqY1drFUuQG2nzAPVjpl6zkgyAIwhVkGfZi1BINeu98p6UfLIvWOCVgxZfY3fr1dkux3j7E3ljnBEEYF7IM6wQrVmGlUTtfUrYu1qNuzGgpZknge1K3LJVDS8zWHz3BW/sAQRDSIMuwDrAwMBvJNcKKvQC2Wr+s12Vh8jebpZglX2JPrJ0slcPssFbHZrkXjY7n7UCh1Qj1IDGsMUoMzGbZdUkKznZmshfBlZVAWJg2+XKFbT6NVN+OYMltwpP6JFHsXZjh3iMIQn1IDBsMEsKNj1VWapMfdzGLtZgVIamEP6y3+BRr7Tus5cJZZ9cy+r2mBqw80BIEi5AY1hC9B2i9ry8HMSEsRcCwZB22x0yiWO9JVcm6ZEXkq4XR+52jfBu1PARBsAeJYY1gwT3C6NiXn3WLsCOMLk4AdgSkkpZPVsqkFnJdd+TWrVnrzUzo+SDr+XUD/vgohZLnIowOiWENYEH0qCXG1QzP5ujctiLYyMLSyHm3woqVWMk6NLsodoQjNyQxvMXNxIywcM8SBGuQGPYCjBrGTUwsSrEGs+wqIYbeMWE9hQXxqMaDBQvlUgtPy2TGOvEmSBAThBASwwZBr924WFik4g2DthmiT7AwwapRj2YWxUbA6A+LrGK8fh0AZcOhkZsEcRMSw4RDjDBImnGSNPLkz9IEq5b7hPXcBKE1ariqsfAQSxB6QzvQGQCtrcJSdlMzqlgzCkbf0Y6V/qFlqC9CPYx8L9jjzr3t7DdK1A31Z8LbIcuwSfFECHtyTTNNWixgdCsxC/1BrYWKLFnBiQa0XOTrKVL7pZT+pYR7EPVnwpshMcw4Wg5MUq+l5+RivzBObEGdkRbPScHIUSdYmmDVerDwdvcJuRtiqIUry6nR7h9369DT8rJ0zwqh0GqEepAYNiHuDILsDXzSMJvwdYZRJ3XA/FZiK6yUU2/YFVT6Y9tHxOpJqT6k1NbltucjCLNCYthkqC2EjSjEzIZRXSdYEkhqimKWyqk2ruqPpbpg6b5x9jZBybpSY6dG+3MThBmgBXQMo8VgQ0LYmBh5gR1L/chaj2rUZXAwW2XVE6oL8+Gtbbpy5UrcdtttCA4ORlJSEr799lun6bOzsxEXF4fg4GB06dIFu3btEnzPcRzmzp2LNm3aICQkBCkpKTh9+rQgTWlpKUaMGIHw8HBERkYiMzMTlQ6C7v/4449o2rQpIiMjG323bNky3HXXXQgJCUFsbCyef/55VBt1IlEYEsNeilwB4I2DnhEw6jjG4kSqtihmrbx64G49SPmNVCs1a2jRN9QcJ7Tr24EqfOSxdetWTJ06FfPmzcOhQ4fQrVs3pKam4rfffhNNv3//fgwfPhyZmZn47rvvkJaWhrS0NBw9epRPs2TJEixfvhxZWVkoLCxEaGgoUlNTBSJ1xIgROHbsGHJzc7Fz507s27cP48aNa3S92tpaDB8+HH369Gn03ebNmzFz5kzMmzcPx48fx9q1a7F161a89NJLsuvBjPhwHMfpnQmzUlFRgYiICBQVlSMsLFz2790ZwJRYmSz3nJ6en1AGVid7KbDYb9SsTxbL6w5a7W7p6RhkhHtD7T6hRR04K0NlZQXuvz8C5eXlCA+XPh9a51HgdwDy51EnZwbQTFZ+kpKS0KNHD6xYsQIAUF9fj9jYWEyaNAkzZ85slH7YsGGoqqrCzp07+WM9e/ZEQkICsrKywHEcYmJiMG3aNEyfPh0AUF5ejqioKGzYsAHp6ek4fvw44uPjceDAAXTv3h0AkJOTg4EDB+LChQuIiYnhz/3iiy/i4sWL6NevH6ZMmYKysjL+u4kTJ+L48ePIy8vjj02bNg2FhYX473//K73aTApZhhmFFSFMGAcjty+LYkVNVxQWy+sOntaPrdVcrE7csTqSFV4cLcYHI9Z7RUWF4HP9+nXRdDU1NSgqKkJKSgp/zNfXFykpKSgoKBD9TUFBgSA9AKSmpvLpz5w5A4vFIkgTERGBpKQkPk1BQQEiIyN5IQwAKSkp8PX1RWFhIX9sz549yM7OxsqVK0Xz0qtXLxQVFfFuHT///DN27dqFgQMHOqwbb4IW0JkcIwskQj5GjzgBsNdnKU6xc5RcmKbWjoGEdqjVr4ODfeHjo5z9juN8UV0NxMbGCo7PmzcP8+fPb5S+pKQEdXV1iIqKEhyPiorCiRMnRK9hsVhE01ssFv576zFnaVq3bi343t/fH82bN+fT/N///R9GjRqFDz74wKGV+6mnnkJJSQl69+4NjuNw48YNjB8/ntwk/oDEMIN4Gl9SSWhCMSYsrZyXC6siUYmNDcTw9jjFRAP2IdeM3hdYvY/tOX/+vEBABgUF6Zgb9xg7diyeeuopPPDAAw7T5OfnY+HChVi1ahWSkpLw448/YvLkyXj11VcxZ84cDXPLJuQmwRisDxyEcTB6X2JZzKvpPsFyuR1h9L7GCrbtb9S+YA/rZQgPDxd8HInhli1bws/PD8XFxYLjxcXFiI6OFv1NdHS00/TWv67S2C/Qu3HjBkpLS/k0e/bswRtvvAF/f3/4+/sjMzMT5eXl8Pf3x7p16wAAc+bMwdNPP41nnnkGXbp0wZ///GcsXLgQixYtQn19vct6MjskhgmHsD6IEa4xcgg2wDyCQC5GLLfR+xqrGK0fiGGGMgQGBiIxMVGwAK2+vh55eXlITk4W/U1ycrIgPQDk5uby6du3b4/o6GhBmoqKChQWFvJpkpOTUVZWhqKiIj7Nnj17UF9fj6SkJAANfsWHDx/mP6+88gqaNm2Kw4cP489//jMA4OrVq/D1FUo+Pz8/AA3h3bwdcpNgCJpICLUwstsEYI7Xxu5glFfNthjZb92syG0LNSJyKPF7Hx/PzmELx8m/r6ZOnYqRI0eie/fuuO+++7Bs2TJUVVVh9OjRAICMjAy0bdsWixYtAgBMnjwZffv2xZtvvolBgwZhy5YtOHjwIFavXg0A8PHxwZQpU7BgwQJ07NgR7du3x5w5cxATE4O0tDQAQKdOnfDII49g7NixyMrKQm1tLSZOnIj09HQ+kkSnTp0E+Tx48CB8fX1x991388cGDx6Mt956C/fccw/vJjFnzhwMHjyYF8XeDIlhQhRv2tLZWzC6SDGiMFQKI5bd6P2NJTx5GFRCCNse9+b2HDZsGC5fvoy5c+fCYrEgISEBOTk5/AK4c+fOCayvvXr1wubNmzF79my89NJL6NixI3bs2CEQqTNmzEBVVRXGjRuHsrIy9O7dGzk5OQi2qehNmzZh4sSJ6NevH3x9fTFkyBAsX75cVt5nz54NHx8fzJ49G7/++itatWqFwYMH47XXXvOwVswBxRlWETlxhlma5Nwd7FgqA+Eco09oevc1VupP73qQAyt1ZmTU3ihJjbjPViorK5CY6H6c4cjIcvj4KBdnmOMqUFYmPz+EOSGfYYLwQozu36mXsGLNl5elvLjC6H2OBVhpb2pHwmyQmwQDsDSwsDLYEtpgZF9irV0HWK0nZ/liaWyxYuQ+xwKs+M9r3Y5BQYCvguY7CqBA2EKWYYLwcoxusVN7QmbNGiwHVvNt9D4nF6OUVyn/YoIwGiSGdYalwcSTiZOlchDuYeQ2VEuwsiom5eBsu2O9MXKfk4K9CDZ7eQnCqJAY1hHRqLfoAAAgAElEQVSWBkYWJ0pCe4xiwXKEkqLPjPeErTA2Y/m8BSltp9V9bOTxgiCskM8wQRCNMHoYJU/9iY1abrloVU5vFUz2/r1a9yut/Hq1GC+Cg8lnmFAPsgzrBEuTg7dM/IR8zGIpltPH6X5QHrE28BbrtFqWeKnnk3v/krsc4Y2QZVgHzDZgmK08RGPMEAHAPv9mKJPRsLXY62kx9Ta07Ot0XxFGhMSwxpBwJIyK2SY5M5XFLBjdPUdr5IRZ07Ju1RgrgoIAJXcNrqtT7lyE8SE3CS+HJh1CDkZ3myDYwNW4o1Qfo77aGCl1osS8QHVPGAmyDGuIGQcHM5aJ8F5c9Wd6eFQOq1XTtk718qs1Mu5swqGVldhsb5MI80KWYY1gUTTSIEW4C4v92VOklIks48pCY5AyuFuPzvqyUm1D9wthBMgyrAHV1UBYmN65IAjCGaz6XxKEmjjry6xs/Qw0zKHkM0yoBVmGvRSaxAmiMe5sR8uKWCC8G0/HdEf9mPyHCW+AxDDhNjTAeTdmbX93Jn8SxQQLqCWICcLskBgmCIJQCBLFhNER679kHSbMDvkMeyHkIkEohVlXi3u6nTP5FBN6oZafr97+w0FBgL+CiuXGDeXORRgfsgwTBOERZrb4eLqNLlmKCT1g2X+YIFiExLCXQYMZoQYk+JxD9UNojVpjPc0hhBkhNwnCLWhyJ+wh1wDn2N4zVEeEkdHDZSI4mNwkCPUgyzBBEIpiNtcANcpitjoi2ETNhy5PXYgIgiVIDHsRNHARWmJ0saeFYLVew+h1RbCL2qKV5hXCDJAYJghCNYwo9PTKsxHrijAOZCUmCMeQzzAhG5qw9cF2sjFaGxjBn5iVOjVCXRHGRG1fX09DEjojKAgICFDufLW1yp2LMD5kGSYIxjGT1YUVwWkLqxZZFvNEGB8txhLrmGWWcYswP2QZ9hJoUDIWZm4vFiyfRhGaLNQVYT5cWYiV7G/Wc1H0BoJlyDJMEIzhbCJi1YrpDnqVw4j1Z8Q8E2zjyHJLD16EN0KWYYJgCLGJiIQQAZCV2BvQOha1/djCct8KDlbWZ9jPT7lzEcaHxLAXoOQAR8JMPezbiepaHfTYMEBJSBR7D2qKYyPfAwShNCSGCYJBvGGi0lPMuXNt1tqERLG5se9vSrQ3a32YIFiBxDBBMIKnE1VlpfD/YWGenY8Q4kqEsOYDTSLZnFRXy29bqX3TnXNrRVAQEBio3Pl8acUUYQOJYYIwIPbC11Ua1oQxqxOuJzgqE4lkQipSXXjkiFayBhOEa0gMmxya+MyDFAHs7LcsCGJv7I+sLYoUu7Y3tgurKCmI3elnLFuHCUIt6EUBQRgAT4Sw3lAA/sawVh/WkH1mCt1HuA/1A8esXLkSt912G4KDg5GUlIRvv/3Wafrs7GzExcUhODgYXbp0wa5duwTfcxyHuXPnok2bNggJCUFKSgpOnz4tSFNaWooRI0YgPDwckZGRyMzMRKXNpJCfn4/HH38cbdq0QWhoKBISErBp0yaHedqyZQt8fHyQlpbmRg2YExLDBME4SglhrQS1rfhlSfCxCKt1ZC+OSRhpixJ9Qok2Y6ndw8KU/8hl69atmDp1KubNm4dDhw6hW7duSE1NxW+//Saafv/+/Rg+fDgyMzPx3XffIS0tDWlpaTh69CifZsmSJVi+fDmysrJQWFiI0NBQpKamotqm8keMGIFjx44hNzcXO3fuxL59+zBu3DjBdbp27Ypt27bh+++/x+jRo5GRkYGdO3c2ytPZs2cxffp09OnTR34FmBgfjuM4vTNhVioqKhAREYGvvy5HWFi45tdXY5JlaXA0O0qLV6XdJFgUcUbGyPcW9QV18HSXOKX6lBLtW1lZgcTECJSXlyM8XPp8aJ1HMzPLERio3DxaU1OBtWvl5ScpKQk9evTAihUrAAD19fWIjY3FpEmTMHPmzEbphw0bhqqqKoEo7dmzJxISEpCVlQWO4xATE4Np06Zh+vTpAIDy8nJERUVhw4YNSE9Px/HjxxEfH48DBw6ge/fuAICcnBwMHDgQFy5cQExMjGheBw0ahKioKKxbt44/VldXhwceeABjxozBV199hbKyMuzYsUNahZkcsgwThBdAQph9jFynZEFmE6X6lJnbtaKiQvC5fv26aLqamhoUFRUhJSWFP+br64uUlBQUFBSI/qagoECQHgBSU1P59GfOnIHFYhGkiYiIQFJSEp+moKAAkZGRvBAGgJSUFPj6+qKwsNBhucrLy9G8eXPBsVdeeQWtW7dGZmamw995KySGCcmYeUBkDSWtwiSEjYMZ6paEsXI46g969BOztmlsbCwiIiL4z6JFi0TTlZSUoK6uDlFRUYLjUVFRsFgsor+xWCxO01v/ukrTunVrwff+/v5o3ry5w+t+9NFHOHDgAEaPHs0f++9//4u1a9fivffeE/2Nt0PRJAiCMZQSwmpFj6DNHtTF6Dvk2WKk7X5Zx9vrLiio4aMUPj4Nf8+fPy9wkwhS8iI68OWXX2L06NF477330LlzZwDAlStX8PTTT+O9995Dy5Ytdc4hm2hqGX733XfRtWtXhIeHIzw8HMnJydi9ezf/fXV1NSZMmIAWLVogLCwMQ4YMQXFxseAc586dw6BBg9CkSRO0bt0aL7zwAm7cuCFIk5+fj3vvvRdBQUHo0KEDNmzY0CgvrlaESskLQbCAUotD5GJWSxELmFX4kNXYfdytM9rG2TlWPWL9OBLDLVu2hJ+fXyMdUFxcjOjoaNHfREdHO01v/esqjf0CvRs3bqC0tLTRdffu3YvBgwfj7bffRkZGBn/8p59+wtmzZzF48GD4+/vD398f77//Pj799FP4+/vjp59+Es2/N6GpGG7Xrh0WL16MoqIiHDx4EA899BAef/xxHDt2DADw/PPP49///jeys7Oxd+9eXLx4EX/5y1/439fV1WHQoEGoqanB/v37sXHjRmzYsAFz587l05w5cwaDBg3Cgw8+iMOHD2PKlCl45pln8Pnnn/NppKwIdZUX1jHrZGp25FqFWYgdbLbJkRXMfg+TMNYONQSxt7VbYGAgEhMTkZeXxx+rr69HXl4ekpOTRX+TnJwsSA8Aubm5fPr27dsjOjpakKaiogKFhYV8muTkZJSVlaGoqIhPs2fPHtTX1yMpKYk/lp+fj0GDBuH1118XRJoAgLi4OBw5cgSHDx/mP4899hivk2JjY92sFfOgezSJ5s2bY+nSpXjiiSfQqlUrbN68GU888QQA4MSJE+jUqRMKCgrQs2dP7N69G48++iguXrzI+9hkZWXhxRdfxOXLlxEYGIgXX3wRn332mSB0SXp6OsrKypCTkwPA9YrQ8vJyl3mRgp7RJCiShDGRIobtBbCztta6zcwu4PTEG+4/6j+NUXqTFKX7kdS8eBpNYurUcgQFKTePXr9egbfekpefrVu3YuTIkfjXv/6F++67D8uWLcNHH32EEydOICoqChkZGWjbti3vd7x//3707dsXixcvxqBBg7BlyxYsXLgQhw4dwt133w0AeP3117F48WJs3LgR7du3x5w5c/D999/jhx9+QPAflTtgwAAUFxcjKysLtbW1GD16NLp3747NmzcDaHCNePTRRzF58mT8/e9/5/MbGBjYaBGdlVGjRlE0CRt0W0BXV1eHLVu2oKqqCsnJySgqKkJtba1gVWVcXBxuueUWwarKLl26CJzNU1NTUVFRwVuXXa3elLIiVEpexLh+/XqjlakEoSS2Qtg+Ri0LMWtZtvaJxc7V6qME3hC7mdW+oxeO6oLqSB+GDRuGN954A3PnzkVCQgIOHz6MnJwcXpOcO3cOly5d4tP36tULmzdvxurVq9GtWzd8/PHH2LFjBy+EAWDGjBmYNGkSxo0bhx49eqCyshI5OTm8EAaATZs2IS4uDv369cPAgQPRu3dvrF69mv9+48aNuHr1KhYtWoQ2bdrwHyO9zdYbzRfQHTlyBMnJyaiurkZYWBi2b9+O+Ph4HD58GIGBgYiMjBSkt19VKbbq0vqdszQVFRW4du0afv/9d4crQk+cOMGfw1VexFi0aBFefvllqVVBELKwF8K2f+2PA84nTEcWaCXdLmyvr5eAY0U0KL2QzNHvWSmvp7DQd/TGVVu6u22y0gs0vW375okTJ2LixImi3+Xn5zc69uSTT+LJJ590eD4fHx+88soreOWVVxymad68OW8FFmPDhg2ia6OcITe92dFcDN911104fPgwysvL8fHHH2PkyJHYu3ev1tlQhVmzZmHq1Kn8/ysqKsgXh1AEZ0LY7pnN5UTnzBXD9ju1hDGg/uTJuihUS0CYUSR7Y/QStduLBDFBCNFcDAcGBqJDhw4AgMTERBw4cAD//Oc/MWzYMNTU1KCsrExgkbVfVWkf9cG6CtM2jdjKzPDwcISEhMDPz8/litDo6GiXeREjKCjI8GFZCLZw5B9sfV0eGQkEoob/vgaBABq/bnYnXJv1N2os0lPL8id1gldL9MtBS5FnBpFMgktZjBbCLyiI2p9QD9033aivr8f169eRmJiIgIAAwarKkydP4ty5c4JVlUeOHBFEfcjNzUV4eDji4+P5NM5Wb0pZESolLwShNs5EmlXslpU1COAaBKKiOhAWC3DhQsOnsvLmxxOU3hbaHqUmZEfnsa0Hsfpw9p3ZsfVDNoI/Mss+6UoitR08rQel2pv1fkMQrtDUMjxr1iwMGDAAt9xyC65cuYLNmzcjPz8fn3/++R97j2di6tSpaN68OcLDwzFp0iQkJyfz0Rv69++P+Ph4PP3001iyZAksFgtmz56NCRMm8BbZ8ePHY8WKFZgxYwbGjBmDPXv24KOPPsJnn33G52Pq1KkYOXIkunfvzq8Iraqq4ndrkZIXlqGByZxYhZq1fa0TYVnZTYFQUnLz/1bLsRIWSDWtxJ7iTAS7g9ZlZc3iyVJ0Emd4o/sEK1CdE2ZDUzH822+/ISMjA5cuXUJERAS6du2Kzz//HA8//DAA4O2334avry+GDBmC69evIzU1FatWreJ/7+fnh507d+K5555DcnIyQkNDMXLkSIHjefv27fHZZ5/h+eefxz//+U+0a9cOa9asQWpqKp9m2LBhuHz5MubOnQuLxYKEhATBilApefE2WJoEzUxYWIMYsxditsLOVgxbrcOVlTf/bT1u71ushOhiTRQrLYTtz8FKOVlBrP/oPTaw9jChFFq5MUi9jhnrmCCs6B5n2MzoFWeYYgwbF0di0/a4fcQIMSFsFXKRkY0X2AHK9BGlhaLcPIn1SaXdHLQSw2YSGnqOFWaqR0B6XXpabmfXUapOPY0z/PLL5QgOVm4era6uwLx58vNDmBPNF9ARBCGOXCFXUiIe09b+PGKWM6VcJ/RefGaLEf19zSbeAMd9TQvM5johxWprlrIShJ6QGCYIRrC6SLj6zip4bS3B1uMlJQ3/tl8MpdarZD38a53lQ0mUKJMWbcA6UmNfK4mZRLH9GgGx7wiC8AwSwwTBEFIEmK0QLiu7ecx2shQ7jyMLsRITqhZWYq2EsCflcFaXSgsXI/p5ai2MzfQAYpZyuIsRop0QxoXEMEEYAKvgsxW91one1gqmp7+mp4LYmXDRQgirJYKVRk4ba+EL6i7OLJ5KYiYrsRrQehCCIDFMELrjagMIR4LPfgMOQDjx6zH5e+o2IWdiVkIIe2rNNrLAclTXWpdJS1Fs5PYiCEI9SAybDBrsjY1U66qjdrY/rld/UNttwh0hrHf0C6Og9dbZ9tdRUxSTlVg+9BBBeAMkhgmCMaQKPVcuEnJ2sVJrcZ0aglhq/dheW6x8jvxXWX9trLU7jFpbZztCK1FMAs9YhIYCISHKnc/PT7lzEcaHxDBBmARXk7tUa7KSKC2I3bEI27uMOFpEKHebXz2tjHr5h2spjNUuIwniBvRea0AQLEBimCAYw1mINXu8ZSKTK4KtAtwqhO1347NHrhC2/61egth6fT3QQhirXUZym5AGPTgQZsdX7wwQBOEZrE9Sni50k/P7sDChELYlOBgID65BeHBNI5HsKXrvuqZ3H/DkYUIKapfRGx4oneFu3dpu9kMQRoYswwTBEHKswrY4sxDrLZQA99wlPBHR9pE2rEIYZWVAcDACg4EaBPLplZjM9baesfCWQG1Lq5pl1Lv99EaJLZ3VrL+gIGXPX1+v3LkI40NimCAYwSoWXQliR4LAk0V0WiBVECsRMs12Yr4p0AKByNYNlqyyxovm7MPCieXDVf71fu2ux25vYqjpQqGm64S3C2KC8FZIDBOEzii5wIz1idyZIPZUBLvadc+6Y5/1ta69+LVN6ygvUuMoax2BQQy9fYqtqCUw1bIS6/1AY2ToYYIwKiSGCcKL0XNjDjURixhhFcIlJUI/R1uXCqniSs7mInoLBBasxWoJTHKbYA+qN8KIkBgmXKK3ZYloDAv+oSxjGy6tpKTh2NmzwI8/ApGRQMuWja23jhZpOZvY5ViKWRAIeluL1RDF5DbBHmrUm9KLKMlnmLCFxDBBEKbA3gXDKoKrq4GjR4GdO4ELFxqEcHQ00K5dw18pYdecfS92bXfPoxVilnMtUUsskSDWFr0frghCKUgMEwSDuBtVghDWm23oJ0cf2wndKqjExI8rMWs0K7EteogaI1mJWXqQUQol/drNVC+Ed0Ji2ETQgORdeGoJM2N/sRfCVjp0AFJSGtwkrJZhMVwJYts0zvJgREEM6ONfTFZibRGrFyOIfXKTMB91dXXYuXMn1q5di08//VTXvJAYJgjCdFgnd9uFch06NLhGiCF3ojWzILaipbWYBDEbmLlsBDucPHkS69atw/vvv4+SkhKkpKTonSXagY4gWEVKpAKauJSF6rMxWu1wp8ZOZmrl28w+srSjHKEGVVVVWL9+PXr37o1OnTph+/btmDRpEn755Rfs3r1b7+yRZZggjI47FjAziz6xjUfceQ3sykrmDdZhW7SyFCtdJ2r6ERul7QhCL7755husXbsWH330Eerr6zFkyBAsXLgQDzzwgN5ZE0BimCAYhhbSycN+VzlbnO3c58n1zBRlQgpahPUzituE0QSxnPKzVjalt2Ouq1PuXIRj7r//fkRGRmLp0qUYMWIEQkND9c6SKOQmQXgVtvFkWRroPcVMZVET+/a3rTe961BK5AtW0OL+UaO8auSZpXZRGjOXjdCGQYMG4cqVK1iwYAEWLlyIH3/8Ue8siUJimPAK3NlQgRWkbtcstSxGKLM7sOpvqqRlnzWRTIK4AaOIRnfKbpSyEWzy6aef4ty5c5gwYQKys7Nx5513om/fvli/fj2qqqr0zh4PiWHC9JhV/InhTWW1xdMJ2+j1pqcoNqogVjrfZhaNZi4boT7R0dF48cUXcerUKezduxft27fHpEmT0KZNG4wZMwZfffWV3lkkn2HC3EiZ8My2tbGz8hhd9LmLUepEihXZ2ZsCvfyP1b6H1PJfVTrfrPnZiuFumfUum9IPMOQzrA99+vRBnz598M4772DLli1Ys2YN+vbti3qdAz+TGCZMC+uTkhzkLqSzX0FvprpwF3sR4KxOlHY5UdJVwv5cYuJYj3YnQdyA3qJRTcxcNkIdXnvtNdTU1ODll18GAOTk5ODdd99FbGwsFixYgLFjx+Lo0aM655LcJAiTQgN2A2ZbKOgpRlo8KdUvuLLSsdjW2n3CiC4TgPe5THgaQcWbWblyJW677TYEBwcjKSkJ3377rdP02dnZiIuLQ3BwMLp06YJdu3YJvuc4DnPnzkWbNm0QEhKClJQUnD59WpCmtLQUI0aMQHh4OCIjI5GZmYlKu5v++++/R58+fRAcHIzY2FgsWbJEdl7U4MMPP0RiYiIA4P/+7/8wZMgQtGrVCgUFBZgwYQIA4O6771Y9H64gMUwQBkHqQjpCG5QUUFIWxbn63pn12dsFjBS8TRB7gh5lCw1tGAOV+rgT4Wvr1q2YOnUq5s2bh0OHDqFbt25ITU3Fb7/9Jpp+//79GD58ODIzM/Hdd98hLS0NaWlpAkvokiVLsHz5cmRlZaGwsBChoaFITU1FtU0ljxgxAseOHUNubi527tyJffv2Ydy4cfz3FRUV6N+/P2699VYUFRVh6dKlmD9/PlavXi0rL2pw9uxZdO7cGQCwa9cu3HnnnVizZg3WrFmD3NxcVa8tBx+O4zi9M2FWKioqEBERga+/LkdYWLjq16Pdlm4ity6MUkaKOSyOI/HoLlJ9zT1BiT4nlgdnD01a7SSnNmqWg9WoJGqg5cLTysoKJCZGoLy8HOHh0udDtebRysoK3H+/vPwkJSWhR48eWLFiBQCgvr4esbGxmDRpEmbOnNko/bBhw1BVVYWdO3fyx3r27ImEhARkZWWB4zjExMRg2rRpmD59OgCgvLwcUVFR2LBhA9LT03H8+HHEx8fjwIED6N69O4AGV4OBAwfiwoULiImJwbvvvot//OMfsFgsCAwMBADMnDkTO3bswIkTJyTlRS1atWqF/Px8dO7cGRkZGWjTpg1ef/11nDt3DnFxcbh69apq15YDWYYJ08Hy5OMpZB1ujB5C2BOUcl1gsZ8bXQircX6jPGi7g5nLZk9NTQ2KioqQkpLCH/P19UVKSgoKCgpEf1NQUCBIDwCpqal8+jNnzsBisQjSREREICkpiU9TUFCAyMhIXggDQEpKCnx9fVFYWMineeCBB3ghbL3OyZMn8fvvv0vKi1r06dMHs2bNwurVq7Ft2zakpaUBAH788UfExsaqem05kBgmCMJ0sCYUtYwJTG8PPMdbBLES5WS1bFKpqKgQfK5fvy6arqSkBHV1dYiKihIcj4qKgsViEf2NxWJxmt7611Wa1q1bC7739/dH8+bNBWnEzmF7DVd5UYu3334bJSUlmDFjBiZMmIDk5GQAwLVr1/DSSy+pem05OIwm8f3338s+WXx8PPz9KUAFQagJbdGsP1JFhCuhYIRwb1Ixuiiyx2whFx2hRDm1iDKh9MLXGzca/tpbJ+fNm4f58+crdyEvo6ysDO+++y5mzZoFALj11luxf//+RukGDRqkddac4lC5JiQkwMfHB1Jdin19fXHq1CncfvvtimWOIORiRBFBGA+xyV+OoDCjyDKjeFSyTCyHOTSKIFaD8+fPC3yGg4KCRNO1bNkSfn5+KC4uFhwvLi5GdHS06G+io6Odprf+LS4uRps2bQRpEhIS+DT2C/Ru3LiB0tJSwXnErmN7DVd5UYrS0lIsXLiQF8NGwambRGFhIc6cOePy8/PPPyPYiHcBIQmzN63ZJnDCM6T2B9t0cn7jKq3t/WYbCs7+443oUW5vrWt3MOJYGh4eLvg4EsOBgYFITExEXl4ef6y+vh55eXn8q397kpOTBekBIDc3l0/fvn17REdHC9JUVFSgsLCQT5OcnIyysjIUFRXxafbs2YP6+nokJSXxafbt24fa2lrBde666y40a9ZMUl68HYeW4b59+6JDhw6IjIz8f/bOPTyKKs3/3wTIBUKnuSRpIiAgKGRhZAwCUXRwkx9BoqNjXEUZRAygbsJMgOHiLOJ9UEYHZEEzO86IF1iVHWGUaDCCwCgZLnHZAQZY14EJiJ2QBztNArnn90esorpT3V2XU1Wnqt/P8/RDqDp16q1TVed8++33vEdRRTfffDMSExOZGUYQRGgoVIIPtAjncAjCSyrA5CZNhrr3Vk+wdKJ3GGDvIeZRYLO6Rl6vjwULFy7ErFmzMG7cOIwfPx5r1qxBQ0MDZs+eDQB44IEHcMUVV2DlypUAgJ///Of40Y9+hJdeegl5eXl45513cPDgQTHlWUxMDIqLi/Hss89ixIgRGDp0KB5//HGkp6eLE81GjRqFqVOnYu7cuSgpKUFLSwuKioowffp0pKenAwDuv/9+PPXUUygoKMDSpUtx5MgRvPzyy1i9erVoeyRbop2QYvizzz5TVZEZyZsJgiDshBpxESyEBWHLSliYJVBIEEfGyYLRKOLj2baZxImqmHvvvRfnzp3DihUr4PV6MXbsWJSVlYkT06qqqhAbe/kH9xtuuAGbNm3C8uXL8ctf/hIjRozA1q1bAxaZWLJkCRoaGjBv3jz4fD5MmjQJZWVlAb+2b9y4EUVFRcjOzkZsbCzy8/Oxdu1acX9ycjI++eQTFBYWIjMzE/3798eKFSsCchErsSWaoTzDBuKUPMOAPQY3rddvh2sLBXmHQ98/M3Oo6j1/cGiEVAjL2SHUrfUcRmOXleK0wPLaeLgeKUZem948w0eO1KF3b3bj6IULfowerd4eIjx///vfce211+LChQtWm6IKRakfOjo68F//9V/47LPPUFNTg/b29oD977//viHGEYTR2FkIE/zCUgiHEkxqn10zvZFGeYd58Kg62UPs5GsjiHAoEsPFxcX47W9/i1tuuQVpaWmIiYkx2i6CIAjNWPUlR+9iH3JCOFgQ+3z6bDQLp4ZLAM6+NpawFMSsJ45qCZMgIpOYmIibb77ZajNUo0gMv/XWW3j//fcxbdo0o+0hCEIFNJHOONQO5FrEkVz9wqDvdnf+G+erAXyNgNuN5gRXWCEmPAuhJtKZ7a0zQjTy4nGkCWfKcPr1EYEMGDAApaWlVpuhGkViODk5mfIHE46DPDtEJJQO5KxEkRTBA+x2pwIJgR5hny/8lyDpvmBh7BRBLNTtBHgSjEbeLyL66Natm6L1KoLDb81GkRh+8skn8dRTT+EPf/gDpU8juISXgYRwHpGECuuBXhCyjY2df585E/6ckZ59OW+xEwQxDzg1xpYEMcGKLVu2BPz/rbfewocffoiXX345YKERq1Ekhu+55x7853/+J1JTUzFkyBD06NEjYP+XX35piHEEQRA8oHfFOTlCZYlISOgUsMICHeGEbzjREklYkSBmg1OvizdYp1ZrbmZXFxGaH//4x+Lfb731FrZu3Yqrr74ar776Knbv3o3k5GQLrbuMIjE8a9YsVFZW4qc//SlNoChOCVEAACAASURBVCMcgZMGL4obNgezUmoJ4RCCEK6t7bzHUtEVnIFCjmCxW1/vvJAJXrypTowfJpFPsOTtt9/G7Nmz8eKLL+KRRx7BlClTMG3aNHz66adcRBwoEsOlpaXYvn07Jk2aZLQ9BEEQUYvUGywI4cbGToHsdl8Ws6FEUyjvtbDdqYJYqNdKSBAThDybNm3C7Nmz8etf/xrFxcUAgG3btmHy5Mm466678OGHH6J7d0Vy1DBiIxcBBg0aREmpCcdAnTthJXKCVU4E19Z2imCv9/K/tbWdglYaRiFXVzDSbXK/Ipj9Thgh9nh4r3kRsSxx4jUR5vHOO+/gwQcfxPPPP48FCxaI210uF7Zv346vv/4aM2fOtNDCThRJ8ZdeeglLlixBSUkJhgwZYrBJBKEO6qyjFx4EkBbkRKzwr/Dx+Tonz/l8nc94//6d24WUa0Do0IlQ25zsIeYFFtfFk3eYF1jnGaaYYXN44IEH8Ktf/QqLFi3qsi8lJQWffvopbrzxRgssC0SRGP7pT3+Kixcv4qqrrkLPnj27TKA7f/68IcYRBGucOPgS9kLr8tH19ZGzWsh5nUMdw4MgZg0v9pMgJohOnnvuOfziF78IuX/w4MHYvn27iRbJo0gMr1mzxmg7CMJwnCyEaRKdfQn1XLrdwPDhl0VrQkJnmIRA//7azsXTpDonL8rBAiddCxGdLF68GJcuXcLGjRvx5ZdfIikpCddeey3uvfdeMU44IyPDYitVZJMg+Ic6ToJwBv37X/YEezyXt0cSjkq8wySIzcFJYSA8XEscmhEHdrENLOsiQlNTU4Obb74ZtbW1GDFiBA4ePIgRI0bgV7/6FbZv346BAwdabSKAMBPo/H6/qoouXLig2xiCX6weWPRidUdOEHKEey6Tkjr3/9//dU6e83rZnSf4/1ZPqqMJdaHh4ToIQitLly7FFVdcgVOnTmHTpk1ISEjA3/72N9x4442yccRWEVIM9+nTBzU1NYoruuKKK/D3v/+diVEEwRIaTAinYdaXUycIYqvff7s7EgScch2EuXz00Ud46qmnkJSUFLAsc3FxMT755BMLLQskZJhER0cHXnvtNSQF/34WgpaWFmZGEQShHoobthfhVo6T7gvugpUsuBHqfGrDJeTKGYlRP8dbHTah97qstl9AsMHqLxiEfbhw4YJsKES3bt0QG6sou68phBTDgwcPxu9+9zvFFXk8ni5ZJgjCaJQsOUsQToG1ICJBbB5OEcSW0dgIxMWxrY8wHCFEQpqWt7m5Gc8++yxuuukm6wwLIqQYPnXqlIlmEAR7qK8j7ELwsyonnIKFkFHCyOmCWKjfCniYiEYQZpKdnY0tW7Zg8uTJAIBLly6hT58+GDx4MMrKyqw1ToK1698RhEFE64BDoRL2QIv4VYKSX0qU5CJ2siAGrBfFWuHFO0yinlDKiy++KCZkSElJwfr163HVVVdh8uTJli/BLIUfSwiCIBjh9MHaSkHkFEEMWCOKnfJsOuU6CGNJSkoS55717t0bDz/8sMUWyUNimLAtoQawaO+gyTtsP6x+ZtV4h51IuPY3QijrEZK8eIdNp6mJ7YvS1MSuLiIks2fPDrv/9ddfN8mS8JAYJgiCsBGhhJBSgaRGTDk9XEIJ0nOzvGYSxEQ0UFdXF/D/hoYGHD58GPX19cjOzrbIqq6QGCYIB0LeYX7RI+yMFEBqBVY0CWIB1mEVvFwXQRjF+++/32Vba2sr5syZg6uvvtoCi+QJm+QtOztb9kIEamtrMWzYMOZGEYRWaGAhBKLJc2bktfLypYqn+8nDYh5Wnx/g654Q9qF79+5YunQp1q9fb7UpImHF8GeffYZ77rkHTzzxhOz+trY2/OMf/zDEMEIbRnaQPHV8crbwMDjwRLTEezoBJe8Wy/cv1LsSansoQWz2O8dTHwSwuX7erkktptkvfANh+SEsJSEhgZsF2yIu//Hqq69izZo1+MlPfoKGhgYzbCIIghEkiAm1qNUIJIj1t4HWayI9R9iVUaNG4euvv+ZmsbaIMcN33HEHJk2ahDvuuAMTJ07En/70JwqNILiDBgVCDjNjMvWeK9zx4cSSWeIwXHYJmtClvw3sHD9sZ9sJYxk2bBg6OjpC7j958qSJ1oRG0QS6UaNG4cCBA7jvvvtw/fXX491330VOTo7RthGELNE+6KrFyZPplAzCRg/U0udR+Jvl+ax43kMJO17SrfEqvqz4UsDLFxHD70lTE8DSi0ip1UyhuLg44P8tLS04fPgwSktLsXDhQous6oribBLJyckoLS3FY489hmnTpuGFF17A/fffb6RtBEEQTDBqoGYtQqR28iBw1GC2KONZEAPaVxDk8ZoIQis/+9nPZLeXlJTgwIEDJlsTmrAxwzExMV3+//zzz+PNN9/E448/jjlz5hhqHEEogQaPyPDgzbOahAT2eWKNQI2dRqdak4OnXxl4/sKgtV/Sck289IE83w+CL6ZMmYLNmzdbbYZIWDEcKs5j+vTp+Pzzz3H48GFDjCIIgj1OFcRqB2C9oljJ8U4XBbxklzASFvfQTEHMC3a2nTCPzZs3o0+fPlabIRI2TOKzzz5D3759ZfeNHTsWlZWVKC0tNcQwglCCkwZfQjtafl6WDtpKjuVtoQUzRAcv8ajhMCK0QLhmFnWb1YZ2uFe6aGwEujNcJ4wGD1O47rrrAhyrHR0d8Hq9qK2txauvvmqhZYGEfbJ+9KMfhT24X79+eOCBB5gaRPANxbQRvKLn2QwljHkVF6y8lnrq4WGpZgEj+yWrBDH1tYQTuPPOOwP+Hxsbi9TUVNxyyy0YMWKERVZ1JWKeYcJ+OLkDVevNIwKxKlTCzPRmLOpgEV9sVDo0lh5qJYS7dzyFSxi5KIlVIRO8fhkjwnP+/HnMmDEDLpcLbrcbBQUFqI8QbN/Y2IjCwkL069cPSUlJyM/PR3V1dUCZqqoq5OXloWfPnkhNTcXixYvR2toaUGbXrl247rrrEB8fj+HDh2PDhg0B+1euXInrr78evXv3RmpqKu68806cOHFC1qaOjg7ceuutiImJwdatW9U3BIAVK1YEfJYvX4558+ZxJYQBEsMEQRiMIALMWvTJyQLCqmujL55sviBpeQfUnJPuEx/MmDEDR48eRXl5ObZt24Y9e/Zg3rx5YY9ZsGABPvzwQ2zevBm7d+/G2bNncdddd4n729rakJeXh+bmZuzduxdvvPEGNmzYgBUrVohlTp48iby8PNxyyy04dOgQiouLMWfOHGzfvl0ss3v3bhQWFuIvf/kLysvL0dLSgilTpsguqrZmzZouiRS0cOnSJbz22mv413/9VyxZsgRvv/12FxFvNTEd4bIhE7rw+/1ITk7GF1/UISnJZeq5rZhlbgZG5HGNNszOBiB3r8wSdTw8J+FsUGMfD5kwQh0X6hcHq3IksyCc7VbEfCs9Jy9fBoPtra/348Ybk1FXVweXS/l4KIyjdZ98AlevXszs8zc0IHnKFNX2ROLYsWPIyMjAgQMHMG7cOABAWVkZpk2bhjNnziA9Pb3LMXV1dUhJScGmTZtw9913AwCOHz+OUaNGoaKiAhMnTsTHH3+M2267DWfPnkVaWhqAzvRkS5cuxblz5xAXF4elS5eitLQUR44cEeuePn06fD4fysrKZO09d+4cUlNTsXv3btx8883i9kOHDuG2227DwYMHMWDAAGzZsqVLyIMSampqcPPNN6O2thYjRozAwYMHMWLECMTExGD79u0YOHCg6jqNgDzDBEEYhpVCWDgXL+JADitSqBnRHjyFS5iBlZkmrKpXLTy/d0ZSUVEBt9stCmEAyMnJQWxsLPbt2yd7TGVlJVpaWgIWMxs5ciQGDx6MiooKsd4xY8aIQhgAcnNz4ff7cfToUbFM8IJoubm5Yh1y1NXVAUBAsoSLFy/i/vvvx/r16+HxeJReuixLly7FFVdcgVOnTmHTpk1ISEjA3/72N9x4441YtGiRrrpZQmKYsA3R2rnameB7ZtU9tPLZ0ZuGjSchrCV+2GxYtZeSlQ2NPgfr85mNHWz2+/0BnyadK9N5vV6kpqYGbOvevTv69u0Lr9cb8pi4uDi43e6A7WlpaeIxXq83QAgL+4V94cr4/X5cunSpy3nb29tRXFyMG2+8EaNHjxa3L1iwADfccAPuuOMOJZcclo8++ghPPfUUkpKSArJKFBcX45NPPtFdPytIDBMEYSisJqSxsoNH5NqIlb2s21+t55EXT6UR8Owh5gVm75wQcM3yA2DQoEFITk4WPytXrpQ9/bJlyxATExP2c/z4cUYXaw6FhYU4cuQI3nnnHXHbBx98gJ07d2LNmjVMznHhwgXZUIhu3bohNpYfCcowaR9BmIPTBw/CWHiPO2clgI0kVKqwUOnWzMbMtGRmpl5Tei7H5xxmyOnTpwNihuPj42XLLVq0CA8++GDYuoYNGwaPx4OampqA7a2trTh//nzIkAOPx4Pm5mb4fL4A73B1dbV4jMfjwf79+wOOE7JNSMsEZ6Corq6Gy+VCYmJiwPaioiJxcp9UrO7cuRNff/11Fy91fn4+brrpJuzatStsGwQjhEgMGTJE3Nbc3Ixnn30WN910k6q6jITEMEEQUYndBJPS81iNnCC2qzhjLVJ5ORdxGZfLpWgCXUpKClJSUiKWy8rKgs/nQ2VlJTIzMwF0Csz29nZMmDBB9pjMzEz06NEDO3bsQH5+PgDgxIkTqKqqQlZWlljvc889h5qaGjEMo7y8HC6XCxkZGWKZjz76KKDu8vJysQ6gM13a/PnzsWXLFuzatQtDhw4NKL9s2TLMmTMnYNuYMWOwevVq3H777RGvP5js7Gxs2bIFkydPBtCZWaJPnz4YPHhwyEl9VkBi2KHYdfAJhxOvyQqSkviJ79RCKM+jlmvi3UusFjPfEd7fR1aikUdBbHZdhHJGjRqFqVOnYu7cuSgpKUFLSwuKioowffp0MZPEN998g+zsbLz55psYP348kpOTUVBQgIULF6Jv375wuVyYP38+srKyMHHiRADAlClTkJGRgZkzZ2LVqlXwer1Yvnw5CgsLRW/2I488gnXr1mHJkiV46KGHsHPnTrz33nsBKwUXFhZi06ZN+NOf/oTevXuL8cbJyclITEyEx+OR9WAPHjy4i3BWwosvvgi/3w+g8wvF+vXrcdVVV2Hy5MnoznJFQZ3wYwlhG6z0TDhFtBDqifTzu7BfqyimZ4sdTvIO84jdnteEBAZfwJuagG7dmNgj1mcQGzduRFFREbKzsxEbG4v8/HysXbtW3N/S0oITJ07g4sWL4rbVq1eLZZuampCbm4tXXnlF3N+tWzds27YNjz76KLKystCrVy/MmjULTz/9tFhm6NChKC0txYIFC/Dyyy9j4MCBeO2115CbmyuWEZZAFjy1Aq+//nrEMBAtJCUlIen7zqB37954+OGHmZ+DBZRn2ECszDMMODfXMKEfu3mGtcSharlGI59rO63Cx+J8cvfMijAAs3MCm3k+MzJesKK2Vmee4c2b4erZk5k9/osXkfwv/8I8zzARyOzZsxWXff311w20JDzkGSZsgd08IQQ7tE7I0hIO4oTnTGq/lWJIrXc4OJMGT/dBjVebVbiEUJdTcNK1EMoR8hjzjql5LZSsiW3W+twAsH79egwZMgQJCQmYMGFCl5maSmwhzIGngZEwD72ZCXjIbGAlZi2BHQo9v0CwTC1nNrzkOqZ+k7Ca999/X/HHSkwVw0rWxDZrfe53330XCxcuxBNPPIEvv/wS1157LXJzcwNSokSyhSDsSjSJRB6u1WpREpRalXnd4QgWxGpt4MWjaJXddgqFMBSD8gwTBGBxzHDwmthmrs89YcIEXH/99Vi3bh2AzpVYBg0ahPnz52PZsmWKbImE1THDgHEdJfUjzoDn2GGWIlbpdTp9iVwpZq9sF3w/5Y4JVw+r0AM9aGkzVvdeqxeYF7FcX+9HZqaOmOG33mIfMzxzJsUMEwAsXoEueE1ss9bnbm5uRmVlZUCZ2NhY5OTkiGWU2EIQdicpiQ/PqZNRI4bMdGSxrFOJnfX1gV9K5MqGO54HUaelvaxa+U/vcQQRTVg2gU5uTWyz1uf+7rvv0NbWJltGWE5RiS3BNDU1BaxrLuTWIwjeCRbEVnuMrRDoVoQQsCinV2wZMVkr2E5p3cET68yanGZ23mEjiOr0dI2NAMvle+lbAiHBMs+w3JrYdmflypUBa5wPGjTIapMMI2o75ChB8BhLP3ZFibC3Sgiz8M6y8iAbnVZOWr+cl9gMW6zy0prRX1KfTBDasUQMC2tif/bZZwFrYkvX55YSvD633Nrbwr5wZYT1ufv3749u3brJlpHWEcmWYB577DHU1dWJn9OnTytqD4KwA04QxmagVJCaIT7VimOjnWXB9WsRxHpFn1Wi0epwCYIgQmOqGO7o6EBRURG2bNmCnTt3dlnaT7o+t4Dc+tyHDx8OyPogtz63tA6hjFBHXFwcMjMzA8q0t7djx44dYhkltgQTHx8vrnOudL1zo6GOkzACo0UxqzANM73CaoSn2e+lGnFs9GT74PrtKoitjh82y5tOENGAqTHDkdbENnN97oULF2LWrFkYN24cxo8fjzVr1qChoUFcLUWJLQQR7ehZAjkScos2qD0+ElZkKOBBtCiNE1YTo6z0uqTHCzGw0nsdHBfLc5ysFttYLijCw7NkGk1NbGOGDVyOmbAfpophJWtim7U+97333otz585hxYoV8Hq9GDt2LMrKygIm1UWyhSCITowSxVoFsRFC2GzhrOd8WpbzZbUEsNpzWiWIrVzlzqhzC20UVSKZIBhgaZ5hp8NDnmGAcg0T5mJUJgqlopilELbCg2ekSDLrOCnhMktI/y/8K9znSHmIWWWGYIHWdjLqXkdqcyvQnWd43Tq4EhOZ2eO/dAnJRUWUZ5gAYGFqNYIgCDUIIldOFLMW4CxFCg9xxFrFUSSbtIRZhPIMB3uI5bzB0rIscEK6tWDISUEQ6iExHAXw1FETzicpydg8xXrrVjKBjBVWZ5VQe061/UQ4ka302rUIYqdgZaiG7WhoANra2NVHDU9IIDFMaIY6cuMJFn6U1kwf4Z5X1s8yr0I4HHrz50rFq9L+IVgIm43V/ZjV5ycIgsQwQRBRgllC2Mxwh0gYLS4jCVgtQk+Jd5g1LASpHjuNFsT06yBBhIfEMEEQTLF6KWc5zPK8GTFRTo/toVKjGTVxTPp/OW9vqPNa7R1mhd3t5xorfrohogYSw1ECddL2IZSYpBAJ9ZgVqmBU2jQjxmu1dUqfR7lnUK5vCc4QIVcukqfejt5hO5+fIKIZEsMEwRE8elXVwIv9RopNHr3MrIh0/4KFcTiPrpx45V3sOTlcghwiBBEaEsMEYQPM8ArrHYi1CmEtK5fprUttWS3l9dRjtmjUcu9CLYiSkND5CffM8i6K9cKrICYIQh4Sw4QuqOM2DjPDIqzwGFklRtXWZfbzbeb5WHjy5YRf//6d/8rFENfXBx4TKY7YbHjo04yywdbeYYoZJgyExHAUYeuOMEowOkevUaix2eoxiIdFMKxE6b1Skos4eAllYb/0I63P5+s8Rir2wqVni2Z4EOUEES2QGCYIi5ETJ2Z7hc0Kj7B6cCchHLmMkkVJlAhYt7vz3zg0Q/grOHyC13a2OnaYpR0EQUSGxDBBWIzVWSLMGGxpQLcWI5arFoSetO7a2s59o0cDcY3+oMJxms5lZkYJ1vBoM482EYTVkBgmCEIzLDyNZsGLHU4hOO738887/05I6PQKT5sEwOsVC7o8QGOCS3Xd0Q55h7+nqYnv+ghbQ2I4yjBikKHOOjpxqhDmxWZWGBmD3th4ORb400+B777zAuiFxsbeAFwYPdqFwR5/Z4GEBKAx8DhpW/Mmfln1azyGS9CXDYIIhMQwQRCqcaoQJpQjFbSNjcB337UD+ApAHA4enIDRo7/fN9qFq4dcVl7CxLrg+6I0FjmYaPkyHi3XSRBWQGKYIAhVGC2Ewx2rxptFwkEbkVKeye3rfCaaAfQC0Bkd4fV2hku43UBCQpw4oU7OKyytlyePJU/eYdbwaBNBWAWJ4SiEOkFCK0YJ4WjK8mAXD58SURxIHIArAQCXLjWitjYBPh9w6lRnHQMHKhfawavahVrgQ2qrHdpUL9FynbI0NgIdHezqo5hhQgKJYYIJUd1JRwF6c9OyKm8GVj/LVp8/mGB7hL+DPbxDh8bC5+sn/t/rlV9oQ88X8XBf5Hlrt2BYOSF4v06CsCMkhgmCCEs0CWFCO6NHd86Tk4pfqVgOt9Ic0HWBDrXC0ajnicQnQTgfEsNRCoVKEJEwcjEN3sWF0QIoUv12E2DBIQxC/9K/P+Dx6FtoQ0lfZZe24s07bKtxoKmJbZhEc3PkMkTUQGKYYIbdBnCiK1rScDlNCAtoEQl2uTY1yIVISBHe+2BBnJTUKYTDeXyD6w7X5qEW33BimyuB+luCYAeJYYKIYvTmoHWqENaKmklnZnmHk5KMzTUMhF6KWfgXCJwYFwo5oavmS4n6SX/mw5s3ljd7CMIKYq02INoRJpTonViiBZ4HDIId9fWhP3qg5yc00SIugq9T2pe53eY/I6FStjmVaHnO7Mb58+cxY8YMuFwuuN1uFBQUoD5Ch9vY2IjCwkL069cPSUlJyM/PR3V1dUCZqqoq5OXloWfPnkhNTcXixYvR2toaUGbXrl247rrrEB8fj+HDh2PDhg0hz/n8888jJiYGxcXFAdu9Xi9mzpwJj8eDXr164brrrsMf//hHdY1gM8gzbCFO7Mj0erPopz9tGO35C8bI9GlOQcmzbGfvcHD6MyPR6zHmDbvbbwn19UBcHLv6DIwZnjFjBr799luUl5ejpaUFs2fPxrx587Bp06aQxyxYsAClpaXYvHkzkpOTUVRUhLvuugtffPEFAKCtrQ15eXnweDzYu3cvvv32WzzwwAPo0aMHfvWrXwEATp48iby8PDzyyCPYuHEjduzYgTlz5mDAgAHIzc0NON+BAwfw29/+Fj/4wQ+62PLAAw/A5/Phgw8+QP/+/bFp0ybcc889OHjwIH74wx8ybCl+IM+wRYRLD2QmvAgUKzzjdoW1h1cN0eZ50wtPz3RS0uWPkRh5zdJnnZ7DTnh6xgjg2LFjKCsrw2uvvYYJEyZg0qRJ+Pd//3e88847OHv2rOwxdXV1+P3vf4/f/OY3+Od//mdkZmbi9ddfx969e/GXv/wFAPDJJ5/gb3/7G95++22MHTsWt956K5555hmsX78ezd8L+5KSEgwdOhQvvfQSRo0ahaKiItx9991YvXp1wPnq6+sxY8YM/O53v0OfPn262LN3717Mnz8f48ePx7Bhw7B8+XK43W5UVlYybi1+IDFsIkrDIezeudndfh6xQvhK0SuCSbhox4j3SakgVuLZlgv1Cv5XCzw9M07v03hqa7Px+/0Bnyadi3FUVFTA7XZj3Lhx4racnBzExsZi3759ssdUVlaipaUFOTk54raRI0di8ODBqKioEOsdM2YM0tLSxDK5ubnw+/04evSoWEZah1BGqEOgsLAQeXl5XcoK3HDDDXj33Xdx/vx5tLe345133kFjYyMmT56svCFsBolhEyCvZ3iobeSxWgAD5AlmAa9ffrV4iLXYarQn2q6wfK+oD9XOoEGDkJycLH5Wrlypqz6v14vU1NSAbd27d0ffvn3h9XpDHhMXFwe3dMYpgLS0NPEYr9cbIISF/cK+cGX8fj8uXboEAHjnnXfw5Zdfhr3O9957Dy0tLejXrx/i4+Px8MMPY8uWLRg+fHiky7ctFDNMGBK/RrG/6rFS9ArQwgXGEC2x9NJ+RG5ynRaCl2eWLs1MsbdRRFMT0N7Orr6WFgDA6dOn4XK5xM3x8fGyxZctW4YXXnghbJXHjh1jZ58BnD59Gj//+c9RXl6OhDAvzuOPPw6fz4dPP/0U/fv3x9atW3HPPffgz3/+M8aMGWOixeZBYphT7DL46YUGsk6sEMJmPl/R8CzbES0T64L7Jrl3mN5rZbAU83rHjGj9YuFyuQLEcCgWLVqEBx98MGyZYcOGwePxoKamJmB7a2srzp8/D4/HI3ucx+NBc3MzfD5fgHe4urpaPMbj8WD//v0BxwnZJqRlgjNQVFdXw+VyITExEZWVlaipqcF1110n7m9ra8OePXuwbt06NDU14dSpU1i3bh2OHDmCf/qnfwIAXHvttfjzn/+M9evXo6SkJGwb2BUSwxxjpiC2wjscjR2vFLMEMA9CNFq+3IUjXBvYrX3CvbvSfUaFSDjJO2x3+6OFlJQUpKSkRCyXlZUFn8+HyspKZGZmAgB27tyJ9vZ2TJgwQfaYzMxM9OjRAzt27EB+fj4A4MSJE6iqqkJWVpZY73PPPYeamhoxDKO8vBwulwsZGRlimY8++iig7vLycrGO7OxsHD58OGD/7NmzMXLkSCxduhTdunXDxYsXAQCxsYFRtN26dUM7S888Z5AYJgwl1CAfzZ2/kSLYToKKUIcVglntOUMJYaPfdyWC0m5fOLTg6GtsbATa2tjV932YBGtGjRqFqVOnYu7cuSgpKUFLSwuKioowffp0pKenAwC++eYbZGdn480338T48eORnJyMgoICLFy4EH379oXL5cL8+fORlZWFiRMnAgCmTJmCjIwMzJw5E6tWrYLX68Xy5ctRWFgohnY88sgjWLduHZYsWYKHHnoIO3fuxHvvvYfS0lIAQO/evTF69OgAe3v16oV+/fqJ20eOHInhw4fj4Ycfxosvvoh+/fph69atKC8vx7Zt2wxpMx4gMcw5Tujcoln4SjFKBNvl+eDhWQ71LFptF6EMvV5UPc+gkc8veYedxcaNG1FUVITs7GzExsYiPz8fa9euFfe3tLTgxIkTohcWAFavXi2WbWpqQm5uLl555RVxf7du3bBt2zY8+uijyMrKQq9evTBr1iw8/fTTYpmh5lnb9wAAIABJREFUQ4eitLQUCxYswMsvv4yBAwfitdde65JjOBw9evTARx99hGXLluH2229HfX09hg8fjjfeeAPTpk3T2TL8EtPR0dFhtRFOxe/3Izk5GZWVdUhKihyTFAozB2oeOmSnCRPWItgJ7WOFh1MtRtgYaSliPcdrJdLzqXRpaSnB4RFallSW/h1qYp7a87CIqzUSFv2vXhuNGgPq6/3IzExGXV2dohhdAWEcrZs6Fa4ePZjZ429pQXJZmWp7CGdCqdVsAA8C1UycdL0shbCT0pyZeY+1nitUDl2jbLHrc2+UEJai9LnXItydhtOvjyCMgMIkiAB4+LnOKYKPhRB2SlvIITxnRqZzM7JOp9ybSBklgu8TC3GrB2kfJZ1IpwatHmKjQ3146H+5pamJbcxwayu7ugjbQ2LYJvAQb0koQ68Ijrb7bITANENQGC3meUNJm9ppgQ3qUwmCEKAwCaILVg8QdvWM6F0tzklhEFoxOhSBkIeFiNUTHqGH4HfO7u8QC/udsgw2QZgFiWEbQYM8n5AIZovWGF2rlj2n99J8j7DW9yX4OLp3BEEAFCZBhMDK2DU7CUO9Ipg1etJG8UiwXZFWPiO0IwhaNc90KBFsdKxwMMGxw0b2X2aEV1DssAyNjUB3hpKFYoYJCSSGbQbFufGDViGs9/6ZJaJ5HIx5tIklPLzfSpZo5iE2WKtgDD6OhzY3AqdeF0EYAYlhgtCAmULYqgGNvFPKcZrw0CN2rXpmzPQOm4Hd7ScIO0Fi2IaYNfBSZ9wVs0Swk4QVEYjThLMUHpZdJvTDZTs3NbENbWCZpo2wPTSBjiAUokUIq50cR5PpiHBwJ1AkGBUnrGa/1i+rWiZrEgThHEgM2xSzOmMSZp1oFcJKy/Eqgnm0iUeiuZ2syuKhhFD3xS73i9ellQnCaZAYJogwaE2bpmQQ41UAE4RSrBBbwe+MnRZqIQiCTyhm2MY4OfaQB4wUwXaBBAIRjNnPhNr4Va1LNPMKl/G7VlBfD3Trxq4+ihkmJJAYtjmU85ItRuYNtpMIJqwj0jut9513wruspk8KVVZvv0bOCIJwDhQmQXCHlamZtBAp3IHCIQge4Dm2Vy9Of7+suD6ntylBSCEx7ADMGOCc3DHqWU7ZySLYqcLJCai5N3YSwawmvJmVVcIOOPGaCII1FCZBRDVGhUXYWQSbgTBAC+0UbT85swiFUFKHk2ERKqGXaHtuLaWpCYhl6L9rb2dXF2F7SAw7BOqU1WOUN5hFPYC1YsbIcwcvhSv3t52eZSttdbrgVUM0zW0gCIItFCbhIMxY/ckp6PEIh0JNOjXWZe2C0mdU+Gk/msVNNF+7HE56D6TQfSYI6yHPsMNwiofYyOtgHRrhtCwSRv2crPdYu7VjJKx8V9XcD7NtZBX+oCTFGi/eZCXPAi+2WkZjI4VJEIZBYtiBOEkQy6Hn2liHRjgtbpjnwdapojgcrN9lLfeXp3aPJAhZCEYz+0+e3zeCiCYoTMKhGNXJ8jAgar02s4SwXUMbjHpmWNfrpPAJJdfB4npZ1WEWLGPvtdSpBjs8i3awkSCshMQwQWggVLiEUQOu0eLajoOlHW2WQ00ctZa6ndJOAnb8okkQBN9QmISDcUq4hBxqr42lV1hL3LBezMruYKe6hfqd8IwrvQ6lIQtOEMAsQh7sFDdMRKCpCYiJYVdfRwe7ugjbQ55hh+PkTl7ptdldCBPhsfoZZ3V+LQtphPoYhdVtrQR6H9lBbUlECySGowDWA5idOkhWQlguBMKuscFS7CBulOCk6zDjWswU0HpQGq9vddwwC5TcA57tJwg7Q2ESUYJTfk42AyUDrdYsEryIDl7sYInVqcqMyPrA+nrC3Xel6b3MxoowBuovCSK6IDEcRURbB6/FK6xVDNipXZ0ohHnAiBX0WIliNZP07PQsK4Hihh1CYyPFDBOGQWI4ynDiYGck0rZiES+sZdClQdp+sBbGauvj6ZkR7NVjk9x7E+5dInFLEIQaSAxHIdEgiFl4hcMJYT3tZ+VAbfZ5zb5WHp9tuevXY6MdRF6oL45G2m71e8Xbc0cQhHJoAl2UonfQYNnx8zARzSwhrBaWg7sdRFS0YJcJbKzR866zeu+s7msIguAP8gybQGNj5Jg1gh94EcJEdCEXBsATLDM2sPLisvQGU2gF51DMMGEg5Bk2Cd4GNoCPjl9vuIEcakMklA7eWjNI8ICV95r3tuEVO3qN1S6jrCXmXul+6d9awqbMWDCGIAg+IDEc5VCHHIjcYBpu6WXpgB78f73QvSEE7BBSYVX4Ay9ftni9L4T5nD9/HjNmzIDL5YLb7UZBQQHqI3wja2xsRGFhIfr164ekpCTk5+ejuro6oExVVRXy8vLQs2dPpKamYvHixWhtbQ0os2vXLlx33XWIj4/H8OHDsWHDhoD9Q4YMQUxMTJdPYWGhaPv8+fNxzTXXIDExEYMHD8bPfvYz1NXV6W8YjiExbCK8dNrBaBlgWf3EGe7/WtC6yEYwckJYjdjl6V7zMEjbNc6aVyKtQGe3hXZ4el+cit3fixYALR0d7D4G2jpjxgwcPXoU5eXl2LZtG/bs2YN58+aFPWbBggX48MMPsXnzZuzevRtnz57FXXfdJe5va2tDXl4empubsXfvXrzxxhvYsGEDVqxYIZY5efIk8vLycMstt+DQoUMoLi7GnDlzsH37drHMgQMH8O2334qf8vJyAMC//Mu/AADOnj2Ls2fP4sUXX8SRI0ewYcMGlJWVoaCggGUTcUdMRwcFzhiF3+9HcnIyvviiDklJLnE7z52S0kHJCDGstl654/WGSAR7ecOdKxKRFjjQczwLG6zALHtIXMmj9YucWV8A1eRDDvX/UH8Hz9uQO5feuG015bVmGdGbok4trN7Z+no/MjOTUVdXB5fLFfmA7xHG0VoAyo9SUC+A/oBqeyJx7NgxZGRk4MCBAxg3bhwAoKysDNOmTcOZM2eQnp7e5Zi6ujqkpKRg06ZNuPvuuwEAx48fx6hRo1BRUYGJEyfi448/xm233YazZ88iLS0NAFBSUoKlS5fi3LlziIuLw9KlS1FaWoojR46IdU+fPh0+nw9lZWWy9hYXF2Pbtm346quvEBMiJnvz5s346U9/ioaGBnTv7sypZuQZtgCeB2rexJOZhAqLsOJ+OfU+mNWWPLafEm+u0eEQkerkIdODU8ImCHvg9/sDPk1NTbrqq6iogNvtFoUwAOTk5CA2Nhb79u2TPaayshItLS3IyckRt40cORKDBw9GRUWFWO+YMWNEIQwAubm58Pv9OHr0qFhGWodQRqgjmObmZrz99tt46KGHQgph4PIXBqcKYYDEMCFDpAHTKK+wXuS8wmoH12BBLPxbXx/+E64uq+BREEYDLIUt73HCRqF2JchQ5fVOoiOcz6BBg5CcnCx+Vq5cqas+r9eL1NTUgG3du3dH37594fV6Qx4TFxcHt9sdsD0tLU08xuv1BghhYb+wL1wZv9+PS5cudTnv1q1b4fP58OCDD4a8ntraWjzzzDMRwzzsjnNlPufwnsYn1M+FPNscjFyYQ7gVq4L/bmzUN4CGOped2tAIzHr2WS1lrOQcZmDEcs9KsOpLnRV9JO/9cjTT+v2HZX0AcPr06YAwifj4eNnyy5YtwwsvvBC2zmPHjrEyzxR+//vf49Zbb5UN3QA6veZ5eXnIyMjAk08+aa5xJkNimFCE3QYIFj+1CkI4uC65tqiv7xqTqHVgdWKscDBmig4Wopi39jRD6POAUwUxb89TNONyuRTFDC9atCisBxUAhg0bBo/Hg5qamoDtra2tOH/+PDwej+xxHo8Hzc3N8Pl8Ad7h6upq8RiPx4P9+/cHHCdkm5CWCc5AUV1dDZfLhcTExIDt//jHP/Dpp5/i/fffl7XpwoULmDp1Knr37o0tW7agR48eYa/d7pAYthCzO3oloi7aCF5GVQirCCWEg7dRG2rH7OffifeKpSi2Ol44XP2hJpuF+6XHivvN87LMvNplF1JSUpCSkhKxXFZWFnw+HyorK5GZmQkA2LlzJ9rb2zFhwgTZYzIzM9GjRw/s2LED+fn5AIATJ06gqqoKWVlZYr3PPfccampqxDCM8vJyuFwuZGRkiGU++uijgLrLy8vFOqS8/vrrSE1NRV5eXpd9fr8fubm5iI+PxwcffIAEJ3aeQVDMsMWY1UGFy5XrBKThDKwG9eBcwnLtRTGJhBaSkiJ/1BAFY1VEWPZlTukXCfMZNWoUpk6dirlz52L//v344osvUFRUhOnTp4vhCN988w1GjhwpenqTk5NRUFCAhQsX4rPPPkNlZSVmz56NrKwsTJw4EQAwZcoUZGRkYObMmfif//kfbN++HcuXL0dhYaEY2vHII4/g73//O5YsWYLjx4/jlVdewXvvvYcFCxYE2Nje3o7XX38ds2bN6jIpzu/3Y8qUKWhoaMDvf/97+P1+eL1eeL1etLW1Gd18lkGeYQ4w2ouhdDJKNKW9EsRGuMlvPl/X7YLnx6zUaE4nWmI0tSzHLj1GyRctJV5JHt49LWjxDrM4luAHo2KGjWDjxo0oKipCdnY2YmNjkZ+fj7Vr14r7W1pacOLECVy8eFHctnr1arFsU1MTcnNz8corr4j7u3Xrhm3btuHRRx9FVlYWevXqhVmzZuHpp58WywwdOhSlpaVYsGABXn75ZQwcOBCvvfYacnNzA+z79NNPUVVVhYceeqiL7V9++aWY9WL48OEB+06ePIkhQ4boahteoTzDBhIqz7AcVorhYIweICLZo/T8obyy4eoX6k5K6vy7trar57e2FvB6Az3BwnGhZvdL6w13HWaIaLsN8HazVwlaxG8klAhiPWLYyvzCSon0TkX6W0muYek+LdemJ1ewkXmGtd4nXvIMnwH7PMMDwT7PMGFPKEyCE3jy2PBki1rU5giWm/Tm810WxULqtNray/uNDC9xojCMBvSEOKg9B0+Y3Vfo9XxTKBNBEHJQmARH8PSzHU+2aEWaIi14JSqpd1f498iRy2L4zBl5z3D//oH189ZGvNnjVKwUpUlJoUWdkd5MXrFbGASPNtkBO4VJEPaDxDARtQgZbGprgYMHOz/B4RICgoCWiuNgMU04E968sYQ52PkLAkEQ6iAxzBk8eTN4skUtSmPvBE+w8JGmVpPWoSSHMIt4YT3Y8V7xZrMVwldLerRw3mGnY+d+yW5QOxPRAolhDmHd2evJfenUpPcCLu//Yto4N0aPTsXBg52CuL4e+PzzzrAJgUgT6Figp067DVpW22ul6FWyn7yS4QnuI6T/l+s/eBHQPNhAEERXSAwTEeFlINGDcA2NjTJCyOvF4NojGOxJQPNtN2Dbts6y0thit1u5t9dsr7Cd7o1VtpotflllBAknikN5h3le+IEIDd2z8LSBbZyvczPmElowPZvEnj17cPvttyM9PR0xMTHYunVrwP6Ojg6sWLECAwYMQGJiInJycvDVV18FlDl//jxmzJgBl8sFt9uNgoIC1AeNCn/9619x0003ISEhAYMGDcKqVau62LJ582aMHDkSCQkJGDNmTJeVW5TYYhSsO0a9gzNLe6xadU/4WwiB8PlwWeX27w/4fIg79b8YPRoYPRoYN67zX4+nc3f//oGeYWm6JkFsab02s48zC7n2MgMzsjtIseo6ifCQwCQIQgmmi+GGhgZce+21WL9+vez+VatWYe3atSgpKcG+ffvQq1cv5ObmolHSq82YMQNHjx5FeXk5tm3bhj179mDevHnifmEFlSuvvBKVlZX49a9/jSeffBL/8R//IZbZu3cv7rvvPhQUFOC///u/ceedd+LOO+/EEclv40psiSbsetmhlltubMRlty8gJh6+2uPHuHGdYnjIkMsiWM47HClOONx2pftZH2cUwYLQCvucJn7NakPeniUlqE2jaDV2bGOCiBYsXXQjJiYGW7ZswZ133gmg0xObnp6ORYsW4Re/+AWAzoTYaWlp2LBhA6ZPn45jx44hIyMDBw4cwLhx4wAAZWVlmDZtGs6cOYP09HS8+uqr+Ld/+zd4vV7ExcUBAJYtW4atW7fi+PHjAIB7770XDQ0N2LZtm2jPxIkTMXbsWJSUlCiyJRJqFt0IBesOVO+Awcoe1gtvCD8MSNOpBZ8jOAn/wIGdYjfOV3M5n9r3O/zuwTh1qjPDxJkzl48JTtEWyVanC2Fe7DBSAFt9jeHelXArKKqti+UxZhF8b+QW2pDL+qL3l5xIyLVLpHMpbUszF91g2T56F934GkBvdubgAoCrQItuEJ1wtejGyZMn4fV6kZOTI25LTk7GhAkTUFFRAQCoqKiA2+0WhTAA5OTkIDY2VlxCsKKiAjfffLMohAEgNzcXJ06cwHfffSeWkZ5HKCOcR4kt0YjVg18olIohqVgGOjWwPyG1MxZi4ECxIldCc0C8sNt9OVQiOGRCDiUeQy0DDQ8/w/MUDsDaE8yDd1vOplA4Le2bsMiN8IkEj/2RFiFsNDy2k1qaDPgQhABXE+i8Xi8AIC0tLWB7WlqauM/r9SI1NTVgf/fu3dG3b9+AMkOHDu1Sh7CvT58+8Hq9Ec8TyZZgmpqa0NR0+RXz+/0RrjgyPGWWMBOl1x18PdL/B++T+1lV/CS4kDok4ftAYqAZcWJ5qRcp0sQmpTZrwaoB1eqBXA5WIpDHa2NBqPecx/c/nOgN3id33/X0kXabHGwnWwnCTnAlhu3OypUr8dRTTzGvlzdBzMIeKwdlwX5hoBWupcYXB7c7VSwDXA4njpS6SQl2EcE8D7gsRDDP1xdNaMmTXF8f/hngQdzKfUEnCIJvuAqT8Hg8AIDq6uqA7dXV1eI+j8eDmpqagP2tra04f/58QBm5OqTnCFVGuj+SLcE89thjqKurEz+nT59WcNXK4M2bw5s9gLLJbAJCNon6+s6V5oRFN7zezs/3DmIMHHg5TELLz+daf243+2d6nsICgmGRFYLn6zMbrRM9g9HaBygNgQh3vBas6LPs/LzxZnubAR+CEOBKDA8dOhQejwc7duwQt/n9fuzbtw9ZWVkAgKysLPh8PlRWVopldu7cifb2dkyYMEEss2fPHrS0tIhlysvLcc0116BPnz5iGel5hDLCeZTYEkx8fDxcLlfAB+CvUwHY2GT04MJiQonSSStCdgnpJ3gyjtyEnEgftZgl2HiLi5WDRTwwz9fHilBtxOq6WYlnwJpV86wSwWrah0fnAkFEE6aL4fr6ehw6dAiHDh0C0DlR7dChQ6iqqkJMTAyKi4vx7LPP4oMPPsDhw4fxwAMPID09Xcw4MWrUKEydOhVz587F/v378cUXX6CoqAjTp09Heno6AOD+++9HXFwcCgoKcPToUbz77rt4+eWXsXDhQtGOn//85ygrK8NLL72E48eP48knn8TBgwdRVFQEAIpsMRvecg8DfHbiajJRBGedkP4/3LWxEllmiVI7iV8SwdZhZJuxFMLBdcm9qzz2TQRB8InpMcMHDx7ELbfcIv5fEKizZs3Chg0bsGTJEjQ0NGDevHnw+XyYNGkSysrKkCDppTdu3IiioiJkZ2cjNjYW+fn5WLt2rbg/OTkZn3zyCQoLC5GZmYn+/ftjxYoVAbmIb7jhBmzatAnLly/HL3/5S4wYMQJbt27F6NGjxTJKbFEKqxhZHmLiWMEyblioS1iVKzi+V0l6KKFsUlLkCXLSSXrB9YQ7zgzs8nwYkQnBLtduFjxMpDPbG+ykPpIgCHOwNM+w0xHyI1ZWBuYZZjEIsezsrbRHybnVeHoB+ZzD4c4lF/6g9FxWYpcB36xFMJyMkudNbc7hUPvUeFkj2WW0EA41TyDUOy38q2Z+gRkYmWNYa1/Ful305hn+b7DPM/xDUJ5hohPKJkFwmW5JC3LeYalnONx1apngJmBU2/EwSKvF7Ly3dmwjs1H7fsuV57WPkGaXcLpH2MnXRhBWQ2LYBASBJsBiYHFiujUjkBPEgHyYg4Daa+Hxuo2Eh4UezMyyIYVHQSggfAmUw4pwCSsmy9kRHp+paOvTCIKrbBJOJtzSwKzq1Item4xa7lOtVwsInIQlF/4QPMFKbkGOaCZ4MhuriW16MHMCYKjzOFEk8H6dckurSyHRTRCEXsgzbCK8ek+l8OohVlOv9BpChUwQfHh4w2HFu6I0FR+vaPEOK0XN8XoEqpL4ZCX3ife+llBHG4BWxvURhACJYZNh3Ukb0embLYiNEKjh4h7lPMJq7NUiIs32XvEudOXgQbwECy7exa8crMIllFw/yyw5asuzCHFyOnZ8fgnCCkgMWwTLTooGAHmCJ9RJt0nLhDpWDq0i047i1Ejs8LzyJCTUik7e4odDwep8kZZptjt2eF8Iws6QGLYAOTHG44Q6oV4e7NFbpzBQSnMQC3UGw1oIRzM0iFsHi5AJuS+PrASsGX0e744Cnr5wCfDaXi3ff1jWRxACNIHOQuTyYuqBt45Vy8Q31gRPhAqeBCadlGXW5CwnIteO1JZs0dKe4b7AWTlxjhdBTRAEAZAYthS7ZJjQYxdreyLNLA9F8DWo9fKqKe9UMRhK8DrtOnmGtSBWco5I/1cLCVh1aG1vameCUA6FSVhM8M94POYgBuw7mUhK8DVIRUKon5OVCgm1scdyWNG+JGTth5YQplAhEyzeazV1sCoXHOqUkHA5bpj30AiCIPiDxDAHOF0Q8xQ/HEpI6IkHZnVtNIATalAritUIYiNihSMdr6Z+ErzGwHObtoFtOjRKrUZIoTAJTrCL19XIn+zM7Ih57vQJQg0s0gKqjR824sutGcfwhN3tJwgnQWKYI4yIr3UyLH7eJQgnoCZ2W40gDrefxQRgJXMAhDLhyobaLmeX1l+BItlgBBQvTBDmQGKYM3iZcBYOrZOmjOig9V4fCWLCSbAWxFonzykRnOHe23DCU7rN6Iw1RglgEqsEwRckhjlEuioaK7FmROerxT41E2NY1hvpnCSKCafAUrBGqo91ekhA2bscShCzWOlRiQB2opjlvQ9sNuBDEAIkhm0AK7FmVAfOshPVuwy0HnjyeBOEHpQ+y3KCOFL8sFF9kZwADQ6RkJZR+t4pWZjDihAIo3DCNRCE2ZAY5hg75CEWUDr4qo1LVAuL6+PdQ0IQSmEpiEPtD/W3mtjcUCI4UnmtIRN6MSP3OvVD9uX8+fOYMWMGXC4X3G43CgoKUB/hZ4vGxkYUFhaiX79+SEpKQn5+PqqrqwPKVFVVIS8vDz179kRqaioWL16M1tbWgDK7du3Cddddh/j4eAwfPhwbNmwI2H/hwgUUFxfjyiuvRGJiIm644QYcOHCgiz3Hjh3Dj3/8YyQnJ6NXr164/vrrUVVVpa1BbACJYc6xkyAGwi/EYKfVrdR6ickbQ/CKkmdZiSA2YgIdIC+Eg/8v57nVIoRpSXV5SHizZcaMGTh69CjKy8uxbds27NmzB/PmzQt7zIIFC/Dhhx9i8+bN2L17N86ePYu77rpL3N/W1oa8vDw0Nzdj7969eOONN7BhwwasWLFCLHPy5Enk5eXhlltuwaFDh1BcXIw5c+Zg+/btYpk5c+agvLwcb731Fg4fPowpU6YgJycH33zzjVjm66+/xqRJkzBy5Ejs2rULf/3rX/H4448jwcEPSkxHR0eH1UY4Fb/fj+TkZFRW1qF7d5euuuSeQSdnU2AlLs3+8sBzmxJEpGdZznkVTqxG+ltaX6SySuOABUErvGvBqyH27y+/T3qsXoz2DJs9d8KMfqu+3o/MzGTU1dXB5VI+HgrjaDmAXgztaQDw/wDV9kTi2LFjyMjIwIEDBzBu3DgAQFlZGaZNm4YzZ84gPT29yzF1dXVISUnBpk2bcPfddwMAjh8/jlGjRqGiogITJ07Exx9/jNtuuw1nz55FWloaAKCkpARLly7FuXPnEBcXh6VLl6K0tBRHjhwR654+fTp8Ph/Kyspw6dIl9O7dG3/605+Ql5cnlsnMzMStt96KZ599VjymR48eeOutt5i1C++QZ9gkjPj5n0WdTvdomh02EQ1tStgX1h7iSN5haX1K3yM5IezzdX4aGy9vixTry+PEWOobnE9FRQXcbrcohAEgJycHsbGx2Ldvn+wxlZWVaGlpQU5Ojrht5MiRGDx4MCoqKsR6x4wZIwphAMjNzYXf78fRo0fFMtI6hDJCHa2trWhra+vi4U1MTMTnn38OAGhvb0dpaSmuvvpq5ObmIjU1FRMmTMDWrVu1NoktIDFsIjwKYl7hZVKegFPbmQg9SSvc5C07Y4YgVit85bzDUtEbXD4UWuKfo51obx+/3x/waWpq0lWf1+tFampqwLbu3bujb9++8Hq9IY+Ji4uD2+0O2J6WliYe4/V6A4SwsF/YF66M3+8XvcJZWVl45plncPbsWbS1teHtt99GRUUFvv32WwBATU0N6uvr8fzzz2Pq1Kn45JNP8JOf/AR33XUXdu/erbFV+IfEsMnwKIh5HeTtLIh5bE+Cjbh1gjA2UhAHb9MiUIO9vwJud2d9gtfX7Zb3ABvpFTY6hIEW2pCn1YAPAAwaNAjJycniZ+XKlbLnX7ZsGWJiYsJ+jh8/bszFM+Stt95CR0cHrrjiCsTHx2Pt2rW47777EBvbKQfb29sBAHfccQcWLFiAsWPHYtmyZbjttttQUlJipemG0t1qA6KRhAT9KcRCDUwsUpPx5CnQ21ZS5NrNSHtYnI9gg1FCgcd3RimR+oykpK7xusHPv/T/wt9y24S6wh0vUF8fOoWaECoxcGDouGC12S2k1xhtE+zs+Nyy5vTp0wExw/Hx8bLlFi1ahAcffDBsXcOGDYPH40FNTU3A9tbWVpw/fx4ej0f2OI/Hg+bmZvh8vgDvcHV1tXiMx+PB/v37A44Tsk1IywRnoKiurobL5UJiYiIA4KqrrsLu3bvR0NAAv9+PAQMG4N5778WwYcMAAP3790f37t2RkZERUM+oUaPEUAonQmLYIowQxEK+40zFAAAgAElEQVS9wn6iKyzEC0uBThiHmffIqV98zBDEcnUGe98bG4Ha2s5yPh8wfDgwbtzl4wSPcShPsRxykwWFbaxFMXmF+cXlcimaQJeSkoKUlJSI5bKysuDz+VBZWYnMzEwAwM6dO9He3o4JEybIHpOZmYkePXpgx44dyM/PBwCcOHECVVVVyMrKEut97rnnUFNTI4ZhlJeXw+VyicI1KysLH330UUDd5eXlYh1SevXqhV69euG7777D9u3bsWrVKgBAXFwcrr/+epw4cSKg/P/+7//iyiuvjHj9doXEsIUYJYj11s3bwG6E+NR7jUq+dPDUhtGClaKAt/dGKUo8xECgeNQqiIPPG1xOiiCG6+sBr7fz70uXLgBowLffpqKxMTZAEAtZJILFsCDC6+vlr0UNdry/hLmMGjUKU6dOxdy5c1FSUoKWlhYUFRVh+vTpYiaJb775BtnZ2XjzzTcxfvx4JCcno6CgAAsXLkTfvn3hcrkwf/58ZGVlYeLEiQCAKVOmICMjAzNnzsSqVavg9XqxfPlyFBYWit7sRx55BOvWrcOSJUvw0EMPYefOnXjvvfdQWloq2rd9+3Z0dHTgmmuuwf/93/9h8eLFGDlyJGbPni2WWbx4Me69917cfPPNuOWWW1BWVoYPP/wQu3btMq8hTYbEsMUYLYiFMlrqldZhNUZ4vFmFTQTXSZgLtTkbIvVFwV7i4HcykiCW1hFJCAsIQvi77xoB1ACoRWdSLD8OHBgOoFMQS73ICQldPbt6RbAejPYKa4WXvl0p0jhfVvUZxcaNG1FUVITs7GzExsYiPz8fa9euFfe3tLTgxIkTuHjxorht9erVYtmmpibk5ubilVdeEfd369YN27Ztw6OPPoqsrCz06tULs2bNwtNPPy2WGTp0KEpLS7FgwQK8/PLLGDhwIF577TXk5uaKZerq6vDYY4/hzJkz6Nu3L/Lz8/Hcc8+hR48eYpmf/OQnKCkpwcqVK/Gzn/0M11xzDf74xz9i0qRJRjWZ5VCeYQOR5hlOSgr/M4zeAV1Jx6b1HDx2miwFEI/XR4SHZwFs9+cpUttGykUs93fwv6HSowmeYCGVWm0tcOqU4BH+FsB339c8AImJgzFuXGe4xJAhnXHEbnenh1ip3aEIFSah5d7yGiJh9nOqN8/wh2CfZ/h2sM8zTNgT8gxzAgsPsVBPuHNIy9oZ3ibWEcZip2fW7s+TWg9x8DHSfkbqAVaDcMxlUdoAoPn7v3sAGCgKYakY9vmUXYNwDqm9UqQhFQI8CmGCINhAYpgjWGWEiNSxqj2PXKwfD9BENudB95MPWGaaCCWOhUl1weV9vsDY34QE4NKlZnSK4R4A+mPAgFiMHh0ohoXj5JDLWSwgJ4rtklXCLl5hguAdEsMcYmQccfB5pMeoqT/4eKtg5e22uzfPDpDQtR/h+qJQE+uA0F7icAhl3O7AGOCgswLog4EDAY8HGD0auNrjB5AAIE7WjnBCWClGeoUJZdgpZpiwHySGOcUsQSw9n3CcmnNIj7USs7zqRqLFdh7aXoAG/8tY/SyxRGu2CekxcmEUcvUIk+vc7k5Pr5Ah4vPPB+PSpT546qneGD0ayMkBXAd3Ake8gHsS4HYjISGuS93BQtisPkvNu+D0WGGCsAMkhjnGbEEsnFM4Vs15pMdaiV5RbIWIYRErroZw10eClh1OEsSA9lhioGtbBP9fLrZ4+PDO/5861ekBrq3tjRWP1OBcWhq+BeBKTASERRBGj0bCyB8E1CMs0CE9Z/Dfan9BIwjCmZAY5hwzJtaFOq/0eDXn0nI+1lA8cWioXcwjGgUxEF4US/8vrVMIjxC2JSR0eoaFBTZqawFs2AA3gJQ+fTp3eDydn+9X7RJijoHO8sG2KrkfwXHMRkJeYeW0gW1oQxvDugj7Q2LYBrAQdloHZTvHFWv1EvNgO+Ecok0QA/JeYuHYUHVK/01KuhwukZAADPY0fx9IPBo9Zs7sTB0hiOHvYymkqdmkMcdKBDHL+0MZJAjCfpAYtglWCmKpDUI9dkJr25klYsiL7XyiVRADbPL7Aug84bhxnatweDyXEwt/r5p93sve4GAhrPQLrl6vsBnvcTR6hQnCaEgM2wheJompsYOXtGx6vMQ0iBAsiNZfHEJ5ieXKCcjGGgt/TJokiuDmBFen+PVdDpEIFSccCqk3Wg88T5ojCCI8JIZtiFVxxHJ2BNep9Nwszq8FLW1nhs3kHY4enCKK1TyzUqEZLIxDLW4RKIjjgITvU6cNcQUIXyE0Qli1TjhGrs5I25TssyNOuJ5msBUszZGLEFEEiWGbwlvIglaRaRdBLGCkkCFBHF044VcHLc+s4CkO5TGWq08QucJ+qQgW9ut5d8wMjyCvMEHwB4lhm8OTsONNoIeDlXddqIsgtBBNz1Gw8BX+L90uFcjCv8JkOqGtgifICchtA7p6moVMFdJtwWXVwHt/5/TniiBYQGLYAViRjziSPUK9Ss4d6nijYeWJZRkXbacvFARbnBI+IYfSSXRyq8XJ/R1K+AoeZ4FwYjc4VtgMIUxeYYLgExLDDoHFYhPSeljAexYHwJjQBBbimESx9Vh1D5wsioMJ1bahBLB0WyiBLfUoCwSLYBZCWC1WhYTxgt73iJZjJoyExLDD4GVyndQeab1q7OCpI9eDnp/Cg8uTONYGC2+9FDNTaNn9PQglWuXCHEL9P1gQR/I0y2WGEEQwKyFsRpyw2vPwihOugXA2JIYdCC8p2KRoscksMWDmxDW910QeY+UY+dyYeR+cIoqlKBXCcl7hUEJYLitFcJxwNAlhJz0vBGE0JIYdDIvQCdYdKq9izuxMDiSK2eP0wd+JoliOSM90pLzFoSbKWSGErYKnZ4RVe1GYBGEkJIajAL0ZJ4xKIybUr8QG6TFGYUVqM73ZBKI9HZvVg76Vz4zV1y4QqQ3kxKvadgsuHyoMIvjf4G1mC+FoD48gCLtAYtgEGhs7O2Er42B59STyZpeV4lKryIm2uGJeRKCAVc+Mk+LqlSDtK+SuO5wYZjFRzi5COJqeCYJgBYlhk5CLfbNqdjGPYoknUWx1G7FM1eYUeG8DKwWx1Aar0OsdlhO6kURvqO2svcGCLWogIUwQ9oLEcBSiduA2c8AN5eU0u5PnSZyrFcdWi3k92Hkwt7rdrQ6f0CqIgfCiWOm5g//Wu6qcgF3fJSsxos1aAbQwro8gBEgMWwgPYROCHUoxe8C1WhzxJIoFlCxUwqLdtFyz1ffLaqwWxIC13mIlghhQLorVnDf4HFrqCcZMj7CW87E8N0FEMySGCU2TWaINHkWxFCUCWS3ReJ/1wtvzYcUXbiX9SSRRLBCqHrlrslIEW3VOgiDYQGLYYniZBMO72OMFO7UTxR6zxw73PRgrPMVKv2BLBaxcurRw9obLKKEHq2O/tUDvNkHog8QwEYASzwyJLO1hJlbCyxcvu6L11xOeng8zn4FQ5wnVHnLiVs95tKD1XlkZkxwt73Tb9x+W9RGEAIlhDuBZpNjJE2oVvAofOXjJPmA39MZy8vRc8DDRLhiWYT5a3kcrRLCe87I6P2t4es4JQg0khjmAtw5NDjvYyAO8CZ9wkIdfOVozsASn+eLp2bBaFEthZYOW988qIawXq89PEE6CxDAH8OwZJtTDo/BRAnmN2RNKFEv3EdqQe8+0pozUem49RNv919tmtBwzYSQkhgnCIOwqigFjslPYHT1ef7kvvLw8Hzx5iNWgp93sLoTtdK8EW+UmSBIEL5AY5gTyDjsXXkSPXuwqmliiVxBL65H7W00drImWPoiEsHHwbBtBhIPEMEdEy2AUrThNFAPR+byyuI/hjg3Xpkonn2nFyX0QDyKUBxsIgugKiWETSEhQ7lFy8mBEdOIUUQxEtzDmZbKk0oUqohFWbcGDEI52mgF0Y1wfQQiQGDYREsSEFKeJmGjMTmHEFxu94Sh6nys7x4uzfodYXTd5hAmCb0gMmwwv3iSCP5wkjqNt8DbivWYVo83iueL9iw6vIhggIUwQdiDWagMIeewshAg2COE1wscO2MlW1hh17Y2NbPsDFs+UYBNr27TawSM822YF0dQW58+fx4wZM+ByueB2u1FQUID6COk0GhsbUVhYiH79+iEpKQn5+fmorq4OKFNVVYW8vDz07NkTqampWLx4MVpbLyeJ+/bbb3H//ffj6quvRmxsLIqLi7uc53e/+x1uuukm9OnTB3369EFOTg72798fUKajowMrVqzAgAEDkJiYiJycHHz11Vc6WoR/SAxzTDR1HkRkgsUxT6KTN3usxKj7Y4S4YhkGEOnDQ53hYHnfeIpV5gEW7dFqwMcoZsyYgaNHj6K8vBzbtm3Dnj17MG/evLDHLFiwAB9++CE2b96M3bt34+zZs7jrrrvE/W1tbcjLy0NzczP27t2LN954Axs2bMCKFSvEMk1NTUhJScHy5ctx7bXXyp5n165duO+++/DZZ5+hoqICgwYNwpQpU/DNN9+IZVatWoW1a9eipKQE+/btQ69evZCbm4tGB4uSmI6Ojg6rjXAqfr8fycnJqKysQ1KSS9yu9nlySodImIsR/RY9i+owauwwygMdjRjxpUUvTnrPhPaor/fjxhuTUVdXB5fLFf4gCcI4+gKARIZ2XQKwFFBtTySOHTuGjIwMHDhwAOPGjQMAlJWVYdq0aThz5gzS09O7HFNXV4eUlBRs2rQJd999NwDg+PHjGDVqFCoqKjBx4kR8/PHHuO2223D27FmkpaUBAEpKSrB06VKcO3cOcXFxAXVOnjwZY8eOxZo1a8La29bWhj59+mDdunV44IEH0NHRgfT0dCxatAi/+MUvRPvS0tKwYcMGTJ8+XXcb8Qh5hm1AtA5ShD7kPMl6P4Q67BI6AUTfPWZ9vRQWEYhd2sPv9wd8mpqadNVXUVEBt9stCmEAyMnJQWxsLPbt2yd7TGVlJVpaWpCTkyNuGzlyJAYPHoyKigqx3jFjxohCGAByc3Ph9/tx9OhRzfZevHgRLS0t6Nu3LwDg5MmT8Hq9AbYkJydjwoQJoi1OhMSwyehJ2G/EBB07dFYEYXeMEpkkitVjVAgLC5zQ9nYbVwYNGoTk5GTxs3LlSl31eb1epKamBmzr3r07+vbtC6/XG/KYuLg4uN3ugO1paWniMV6vN0AIC/uFfVpZunQp0tPTRfEr1CV3Lj3n4R3KJmEzWM0wl3ZWtLIYQRiPkfmljXiHnZQPGzD2CwkL7N7/Gv2ctIFtnG/b9/+ePn06IEwiPj5etvyyZcvwwgsvhK3z2LFjrMwzheeffx7vvPMOdu3ahQS7P4A6ITFsMtLnTe8KVkZ4N6L8fSAIwyFRbA5G92WsM3zYEbs9E3K4XC5FMcOLFi3Cgw8+GLbMsGHD4PF4UFNTE7C9tbUV58+fh8fjkT3O4/GgubkZPp8vwDtcXV0tHuPxeLpkfRCyTYSqNxwvvvginn/+eXz66af4wQ9+EGCLUPeAAQMCzjV27FjV57ELFCZhIazSG7HECZ0bQdgBIwUQ79kWjMIsG6NZCPOQUs8KUlJSMHLkyLCfuLg4ZGVlwefzobKyUjx2586daG9vx4QJE2TrzszMRI8ePbBjxw5x24kTJ1BVVYWsrCwAQFZWFg4fPhwgtMvLy+FyuZCRkaHqWlatWoVnnnkGZWVlAbHNADB06FB4PJ4AW/x+P/bt2yfa4kTIM8wBej0vrD265CEmCHMw2utq1LvMm7fYrP6Kl+u1AquvnXU6NKNSq40aNQpTp07F3LlzUVJSgpaWFhQVFWH69OliJolvvvkG2dnZePPNNzF+/HgkJyejoKAACxcuRN++feFyuTB//nxkZWVh4sSJAIApU6YgIyMDM2fOxKpVq+D1erF8+XIUFhYGhHYcOnQIAFBfX49z587h0KFDiIuLEwXzCy+8gBUrVmDTpk0YMmSIGAeclJSEpKQkxMTEoLi4GM8++yxGjBiBoUOH4vHHH0d6ejruvPNOg1rNekgMOwQjBDFAopggzMBuoRMC4ep0Umo/J12LFqwWwnZj48aNKCoqQnZ2NmJjY5Gfn4+1a9eK+1taWnDixAlcvHhR3LZ69WqxbFNTE3Jzc/HKK6+I+7t164Zt27bh0UcfRVZWFnr16oVZs2bh6aefDjj3D3/4Q/HvyspKbNq0CVdeeSVOnToFAHj11VfR3NwspnATeOKJJ/Dkk08CAJYsWYKGhgbMmzcPPp8PkyZNQllZmaPjiinPsIGEyjOsBC2dj5rnVGn9Dn72CYJbjBQf9E6rg9eFTsyA5bXrzTP8NACWTdcIYAXY5xkm7Al5hh0EhTcQhDOwq6fYSUSzNzSar52ITkgMc0pCgvHeISX1k8AmCOsgUWwu5JHnF7vEDBP2hLJJcIyWzpO+0ROE8zAyQ0I0ZgYIxsg24D0DRzDR/iwQ0Ql5hh0IeXMJwpmY4SmWnsfpGC387NaOJISJaIXEMOdoHfxYCmIS1wTBF2akZAs+l1MwQ/DZsc1ICBPRDIlhh2LHzpggCHWYke/XCcLYTKFnxzaygxCmmGHCSEgMOxDWnbGS+kJ1pnYcGAjCbpi1CIadhLHZAo/39iAIIjQkhm2C0sFOTYesJKOEHiEs7KNBgiDMwcyV4YLPYfV7bpV30+rrjhaaOK+PsDckhqOccIKYZcwxy/oIggiPFcslhzuXEatj8gD1acYTFxcHj8eDl75fNpglHo8HcXFxzOsl7AeJYZthhng1CqWiWO76eL82guAR6XtjpYjkScCywAn9kV3uSUJCAk6ePInm5mbmdcfFxTl6iWFCOSSGCVkvktL+QUuHatQx1KcRRGis8BY7CepfrCMhIYFEK2EoJIZtiFGr02npa4xeKU+NHYC9JvgQhBWQKFYH9SME4XxoBToFrF+/HkOGDEFCQgImTJiA/fv3qzrejMTu0dxhh7p2GuwJIjTR3m9EgtqHIKIHEsMRePfdd7Fw4UI88cQT+PLLL3HttdciNzcXNTU1VpsGgI/O2kobIsVECsusSj8EQVxGEH0k/pzfDtQPEoQ8JIYj8Jvf/AZz587F7NmzkZGRgZKSEvTs2RN/+MMfVNXDuvPhrcO2yhat8cc0KBCEPLz1LUbjdAGshOAvRNHcFkR0QjHDYWhubkZlZSUee+wxcVtsbCxycnJQUVHRpXxTUxOami5nL6yrqwMANDT4AQCtUbDkjRXiUtquWs5fXx9+Pw0MRLTjtC+N0nc60vsfDci1Aet7LoyDHR0dbCsmCAaQGA5DbW0t2trakJaWFrA9LS0Nx48f71J+5cqVeOqpp7psnzJlkGE2EgRBEIRduHDhApKTk602gyACIDHMkMceewwLFy4U/+/z+XDllVeiqqqKXn6T8fv9GDRoEE6fPg2Xy2W1OVEDtbs1ULtbA7W7cjo6OnDhwgWkp6dbbQpBdIHEcBj69++Pbt26obq6OmB7dXU1PB5Pl/Lx8fGIj4/vsj05OZk6SotwuVzU9hZA7W4N1O7WQO2uDHIKEbxCE+jCEBcXh8zMTOzYsUPc1t7ejh07diArK8tCywiCIAiCIAgWkGc4AgsXLsSsWbMwbtw4jB8/HmvWrEFDQwNmz55ttWkEQRAEQRCETro9+eSTT1ptBM+MHj0abrcbzz33HF588UUAwMaNG3HNNdcoOr5bt26YPHkyunen7x1mQ21vDdTu1kDtbg3U7gRhf2I6KM8JQRAEQRAEEaVQzDBBEARBEAQRtZAYJgiCIAiCIKIWEsMEQRAEQRBE1EJimCAIgiAIgohaSAwbyPr16zFkyBAkJCRgwoQJ2L9/v9UmccOePXtw++23Iz09HTExMdi6dWvA/o6ODqxYsQIDBgxAYmIicnJy8NVX/7+9u4+psv7/OP4+3BzwDOFA6GGVBIZi3icmHezOySJzq7xZzjln5UoNSVZTMSu3/pGZq6UzaiulWvMsm2RTZDFFyvKWQEGMvpt35bhZKTcGKsL794fjmkf4CanIOX6ej+1snut687ne5z0vfZ2zi+v8z6vm3LlzMmfOHAkPDxen0ynz58+XCxcueNUcPXpUHn/8cQkNDZVBgwbJmjVrOvWyZcsWGTZsmISGhsqoUaMkPz//P/fiL1avXi2PPPKI9O/fXwYOHCgvvPCCVFVVedVcvHhR0tPT5Z577pGwsDCZMWNGpy+eOXPmjEydOlUcDocMHDhQli5dKleuXPGq2bNnj4wbN05CQkIkISFBcnNzO/XT3TnSk178QU5OjowePdr6cga32y07d+609jPzOyM7O1tsNptkZmZa25g9AFH0Co/Ho3a7XTdu3KjHjh3TV199VZ1Op9bW1vZ1az4hPz9fV65cqVu3blUR0by8PK/92dnZGhERod9//70eOXJEn3vuOY2Pj9eWlhar5plnntExY8bo/v379eeff9aEhASdPXu2tb+hoUFdLpfOmTNHKyoqdPPmzdqvXz/97LPPrJpffvlFAwMDdc2aNVpZWanvvPOOBgcHa3l5+X/qxV+kpaXppk2btKKiQsvKyvTZZ5/V2NhYvXDhglWzcOFCHTRokO7atUsPHz6sjz76qKakpFj7r1y5oiNHjtTU1FQtLS3V/Px8jY6O1hUrVlg1J06cUIfDoW+++aZWVlbq+vXrNTAwUAsKCqyanpwj3fXiL3744QfdsWOH/vHHH1pVVaVvv/22BgcHa0VFhaoy8zvh4MGDGhcXp6NHj9YlS5ZY25k9AMJwL5kwYYKmp6dbz9va2vTee+/V1atX92FXvun6MNze3q4xMTH6wQcfWNvq6+s1JCREN2/erKqqlZWVKiJ66NAhq2bnzp1qs9n07Nmzqqr6ySefaGRkpF66dMmqWb58uSYmJlrPX3zxRZ06dapXP8nJybpgwYIe9+LP6urqVES0uLhYVa++tuDgYN2yZYtVc/z4cRUR3bdvn6pefSMTEBCgNTU1Vk1OTo6Gh4dbs162bJmOGDHC61izZs3StLQ063l350hPevFnkZGR+vnnnzPzO6CpqUmHDBmihYWF+uSTT1phmNkDUFXlMolecPnyZSkpKZHU1FRrW0BAgKSmpsq+ffv6sDP/cPLkSampqfGaX0REhCQnJ1vz27dvnzidThk/frxVk5qaKgEBAXLgwAGr5oknnhC73W7VpKWlSVVVlZw/f96qufY4HTUdx+lJL/6soaFBRESioqJERKSkpERaW1u9Xu+wYcMkNjbWa/ajRo0Sl8tl1aSlpUljY6McO3bMqrnRXHtyjvSkF3/U1tYmHo9H/v33X3G73cz8DkhPT5epU6d2mg+zByDC1zH3ir///lva2tq8/vEUEXG5XPL777/3UVf+o6amRkSky/l17KupqZGBAwd67Q8KCpKoqCivmvj4+E5rdOyLjIyUmpqabo/TXS/+qr29XTIzM2XixIkycuRIEbn6eu12uzidTq/a62fS1Tw69t2oprGxUVpaWuT8+fPdniM96cWflJeXi9vtlosXL0pYWJjk5eXJ8OHDpaysjJn3Io/HI7/99pscOnSo0z7+vgMQIQwDxkpPT5eKigrZu3dvX7dihMTERCkrK5OGhgb57rvvZN68eVJcXNzXbd3V/vzzT1myZIkUFhZKaGhoX7cDwEdxmUQviI6OlsDAwE6/BVxbWysxMTF91JX/6JjRjeYXExMjdXV1XvuvXLki586d86rpao1rj/H/1Vy7v7te/NHixYtl+/btUlRUJPfff7+1PSYmRi5fviz19fVe9dfP5GbnGh4eLv369evROdKTXvyJ3W6XhIQESUpKktWrV8uYMWPk448/Zua9qKSkROrq6mTcuHESFBQkQUFBUlxcLOvWrZOgoCBxuVzMHgBhuDfY7XZJSkqSXbt2Wdva29tl165d4na7+7Az/xAfHy8xMTFe82tsbJQDBw5Y83O73VJfXy8lJSVWze7du6W9vV2Sk5Otmp9++klaW1utmsLCQklMTJTIyEir5trjdNR0HKcnvfgTVZXFixdLXl6e7N69u9NlJElJSRIcHOz1equqquTMmTNesy8vL/d6M1JYWCjh4eEyfPhwq+ZGc+3JOdKTXvxZe3u7XLp0iZn3osmTJ0t5ebmUlZVZj/Hjx8ucOXOsPzN7ANxNopd4PB4NCQnR3Nxcrays1Ndee02dTqfXbySbrKmpSUtLS7W0tFRFRD/88EMtLS3V06dPq+rV25k5nU7dtm2bHj16VJ9//vkub6328MMP64EDB3Tv3r06ZMgQr1ur1dfXq8vl0rlz52pFRYV6PB51OBydbq0WFBSka9eu1ePHj+uqVau6vLVad734i0WLFmlERITu2bNHq6urrUdzc7NVs3DhQo2NjdXdu3fr4cOH1e12q9vttvZ33Grq6aef1rKyMi0oKNABAwZ0eauppUuX6vHjx3XDhg1d3mqqu3Oku178RVZWlhYXF+vJkyf16NGjmpWVpTabTX/88UdVZeZ30rV3k1Bl9gC4tVqvWr9+vcbGxqrdbtcJEybo/v37+7oln1FUVKQi0ukxb948Vb16S7N3331XXS6XhoSE6OTJk7WqqsprjX/++Udnz56tYWFhGh4eri+//LI2NTV51Rw5ckQfe+wxDQkJ0fvuu0+zs7M79fLtt9/q0KFD1W6364gRI3THjh1e+3vSi7/oauYiops2bbJqWlpa9PXXX9fIyEh1OBw6bdo0ra6u9lrn1KlTOmXKFO3Xr59GR0frW2+9pa2trV41RUVFOnbsWLXb7Tp48GCvY3To7hzpSS/+4JVXXtEHHnhA7Xa7DhgwQCdPnmwFYVVmfiddH4aZPQCbqmrffCYNAAAA9C2uGQYAAICxCMMAAAAwFmEYAAAAxiIMAwAAwFiEYQAAABiLMAwAAABjEYYBAABgLMIwAAAAjEUYBnDXiYuLE5vNJjabTerr629praeeespaq6ys7DZ1CADwFYRhAD6pra1NUlJSZPr06V7bGxoaZNCgQbJy5e/EMWcAAASkSURBVMob/vz7778v1dXVEhERcUt9bN26VQ4ePHhLawAAfBdhGIBPCgwMlNzcXCkoKJBvvvnG2p6RkSFRUVGyatWqG/58//79JSYmRmw22y31ERUVJQMGDLilNQAAvoswDMBnDR06VLKzsyUjI0Oqq6tl27Zt4vF45KuvvhK73f6f1srNzRWn0ynbt2+XxMREcTgcMnPmTGlubpYvv/xS4uLiJDIyUt544w1pa2vrpVcEAPA1QX3dAADcSEZGhuTl5cncuXOlvLxc3nvvPRkzZsxNrdXc3Czr1q0Tj8cjTU1NMn36dJk2bZo4nU7Jz8+XEydOyIwZM2TixIkya9as2/xKAAC+iDAMwKfZbDbJycmRhx56SEaNGiVZWVk3vVZra6vk5OTIgw8+KCIiM2fOlK+//lpqa2slLCxMhg8fLpMmTZKioiLCMAAYgsskAPi8jRs3isPhkJMnT8pff/110+s4HA4rCIuIuFwuiYuLk7CwMK9tdXV1t9QvAMB/EIYB+LRff/1VPvroI9m+fbtMmDBB5s+fL6p6U2sFBwd7PbfZbF1ua29vv+l+AQD+hTAMwGc1NzfLSy+9JIsWLZJJkybJF198IQcPHpRPP/20r1sDANwlCMMAfNaKFStEVSU7O1tErn6Zxtq1a2XZsmVy6tSpvm0OAHBXIAwD8EnFxcWyYcMG2bRpkzgcDmv7ggULJCUl5ZYulwAAoINN+d8EwF0mLi5OMjMzJTMz87asd+rUKYmPj5fS0lIZO3bsbVkTAOAb+GQYwF1p+fLlEhYWJg0NDbe0zpQpU2TEiBG3qSsAgK/hk2EAd53Tp09La2uriIgMHjxYAgJu/n3/2bNnpaWlRUREYmNj//M33wEAfBthGAAAAMbiMgkAAAAYizAMAAAAYxGGAQAAYCzCMAAAAIxFGAYAAICxCMMAAAAwFmEYAAAAxiIMAwAAwFiEYQAAABiLMAwAAABjEYYBAABgLMIwAAAAjEUYBgAAgLEIwwAAADAWYRgAAADGIgwDAADAWIRhAAAAGIswDAAAAGMRhgEAAGAswjAAAACMRRgGAACAsQjDAAAAMBZhGAAAAMYiDAMAAMBYhGEAAAAYizAMAAAAYxGGAQAAYCzCMAAAAIxFGAYAAICxCMMAAAAwFmEYAAAAxiIMAwAAwFiEYQAAABiLMAwAAABjEYYBAABgLMIwAAAAjEUYBgAAgLEIwwAAADAWYRgAAADGIgwDAADAWIRhAAAAGIswDAAAAGMRhgEAAGAswjAAAACMRRgGAACAsQjDAAAAMBZhGAAAAMYiDAMAAMBYhGEAAAAYizAMAAAAYxGGAQAAYCzCMAAAAIxFGAYAAICxCMMAAAAwFmEYAAAAxiIMAwAAwFiEYQAAABiLMAwAAABjEYYBAABgLMIwAAAAjEUYBgAAgLEIwwAAADAWYRgAAADGIgwDAADAWIRhAAAAGIswDAAAAGMRhgEAAGAswjAAAACMRRgGAACAsQjDAAAAMBZhGAAAAMYiDAMAAMBYhGEAAAAYizAMAAAAYxGGAQAAYCzCMAAAAIxFGAYAAICxCMMAAAAwFmEYAAAAxvo/8fH7fxaemmcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "Image(filename='gradient_01_vs_kernel.png') " + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -669,7 +838,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.7.12" } }, "nbformat": 4, From 1b76e32ea410c3ab965e157587ee20686fb5cef2 Mon Sep 17 00:00:00 2001 From: bch0w Date: Sun, 28 Aug 2022 18:10:14 -0800 Subject: [PATCH 145/195] updated specfem2d example with what user should expect when finishing example problem #1 --- .../specfem2d_example_15_0.png | Bin 0 -> 67022 bytes docs/notebooks/specfem2d_example.ipynb | 113 +++++++++++++++++- .../specfem2d_example_15_0.png | Bin 0 -> 67022 bytes docs/specfem2d_example.rst | 97 +++++++++++++++ 4 files changed, 204 insertions(+), 6 deletions(-) create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_15_0.png create mode 100644 docs/notebooks/specfem2d_example_files/specfem2d_example_15_0.png diff --git a/docs/images/specfem2d_example_files/specfem2d_example_15_0.png b/docs/images/specfem2d_example_files/specfem2d_example_15_0.png new file mode 100644 index 0000000000000000000000000000000000000000..25325e27bd2c61df45c76363f1f69b8ab008d987 GIT binary patch literal 67022 zcmeFZcRZK<|2Ov2D>>%JfNANPOP`F)({x53A8ypQ+$^?I(?5vHxBLQBO)MIw=C)l?OA zNu(|H#J?2V@h3A8vp5R`zh-sy63NlZ-Q|k2`xUzj9G;i1y4g89aU2ynB63uS!`9v1<>cYR|KkfpoUhs( zPNL3vN+NNP)D%zYdnHcxUNhG3Sd^TZ*4}>kysdzelH!|?ZF|+lZ>FW_=rHIU-hN1# zUPrv*ly$|!PVJjq%5850I|A>#JrElxT>8k^I=Y&XiGg0HD|d;m|3pVUje*;G@29`g zU!kGX5mT|WK$G=}owsm`EY`$gffy&Ct(eARt7S-Mh%~6egPjYjG&Lo{= zlJQv#Qb-L{94K>6Poyb{bk* z&U>mZbHCI|rZTjW>H^8Oo_BPlwYIh{cI;;U7V-Un4LOBcKLIBaE;$;U0q#T z6T3%NR@P`&iQuPCpR_Zy_Lo;w3^cL_=!d`ZUq9*V=V#^Qw6nr2>UZy}q1QLIvQ6j< z#Hy;Q2EKfG^rG0F@wTj6Se${L3OA-w?h_~WFouygG&C?ZkmS|WC{0T2x8W8ZJz_1H z!b0CJE0fI4&E>eKdck)` zc6M3(4ZXe9b;rggCTjm26MY^z-*;_mXTX!%S~<_(Jz;sKWn3H_@{T@MR-C2I{ZY83 zG_9nQ0d}VMV`3OsSws7(eXP4n9gm2MuW3Xt)sBw0=X`Bh>Hpj7y)bT|sG?He(!$`_ zRs3dlsL`Q#6PKV<>+cuACP5X+CQ-NYXQc4LJF3aP>b)6fpM;#@{Z`)p>qAUxM#k;5 zG_Ddy;z{mc_a&*QsGNB$wha&7XL0h>#fv;nJ>@sb%a7|+VU17^kLsMm-H0E!_PeK| zpsb7~_VMG#VH?dKKi*16*!#P`HoDNdvF^*(u~SD5Ym>CxI*8xW8v zb#3R9fQ=L5-}Ay_1&!)@d-vn#G9J8CyS}(rc5UV~`L=CuzJ8^*X-<5TrWAe`AB`_R z=hc7F#>N^y(6%j;p{vBfXpAmqdD-hs;&F!c)ul#!<;-}yAkV>rR<8remIrRL{~Q|H zN-DoLeZb7zJT)gL{EOV?K4oQP)iY;;GBWrUr@C(+kns*3r`@?z`RY}%EnBwGGcep> zIc)Ls)8nIFYs-ZVp1XJN<`58|!Z$IME_^=LU+q&?H+A&#r@)dDiLNr|==u41sv#Vd z=ZmKYo0Fs-iCS-$mXXQ1qM|wZQ9JLp1Qy^|qx5(p{%uNU6{Lfsz zd|CYJulEAcyLRn5O&VRE9a8v_W0cP?C>S0Z>c2WwrrzHe6&2N1;bx;N5UX&`!s5W5 zy?bNI%F48v4;;|)_V#ukZemKEd>77g(ZNAu|4H|+URtK5SF(!M1@xYuN&V+@LJSVb zo;`aESeHgyxWyzS(kt9X7)d5Y7sE_G;n0MJj(&*YBM(FwFqrc6T^Wue4~#k>V>0EJ z{nQ}GuK$LwY7B<{t>-_d!h{04hi z%5zeCg27NA*0}V_p2Wn&^R~7Wf`WoUAt8f5UfQG`Z~q!TKkx27-bN|*m-_w~b8~ar`uag?F}!bDTNzQQD5$7(C)$PNE*pE;ZH%@&U7r7THdtfq zbO_Cx7{0T8m7k|?;yZ(bmGYLZUAtx^xL52V1?lJ9@JIV@b#-<6J$u65zgHD^?9#VR zT3J~^q0yfxEGaC^D#)lPFK0b$QI%Fp!<>NCnKlZKMb1Gi@z}~&oEG#TEd&J1q(~Fu$ z=1~QVE8P!Wu(nRkFk0F6DN8RS?fRd8SS9TBgGIAPo*mQG)jjX*98D*?EU#~YMMBkj zgR-=J`}Ts85+!|o{n&gul3ArYWt@n49crc02+M&3JGm50OiW@O#l*zwQcm4c96opM zT=~^uDlCq@OGt#MR!GSMY({kr4Lp4TfiE9EobvWQ8A7v%YppTv-n|?5xK-+UdiJ%n zv=|rLGW7KJy3UWbnCxG@&F&wF@AIA?y^$n!&Hjv{!s*kqDGR$!kavrD)Ry}*Ru`NrFVc)(8Vbf9$At4&9 z!}3tH9MQIxmzOyX9iqeqw`aT61yLTq_In@EPSL!rMw*jCLqjvK)}lY4{u)ip287wu zIHB0Im*SIXz9h@kqm&8s^y3I%yHL>5zC&el9ckX5Yf?gmGyI0d(l?d4Hel2L{qR-R zy?dYHV`Dd#Cw{!-JA+buaptokz1O;|@4`6KzJ2?CPE1gvRXjcuf}b&fGMd(T)TTM* z^zEJYr>)J*%(RV-L*+J>PwQKlnB1A1ydv$pOfR=Szw7d+M`XbYWGpOkRNba~u&*b3 zU$M;2&X)VF9(!R{aTD#3`|x49d-v`snCa-;YxwfQzPu6pg;b^WB4B;N$o+TEo^Q`J zZ)Ig2iinJCd8W3jWSTt|hbq|MT^Y(CFyKpKopzx{vA7u*+7NENqcSi&Gq4nCMWc51|d7 zikH4VM~-sFD(zL!MSuTr&GHtk=3BIkY@a(3qJg*7Y;#&$b&CoMIgN~rbXKwrawtgY z85z`}P7?)RuIte!dvR*XA#?&Bb} zReCrGh=?#ZVdJTxX8v86;Jb6p!{Z=+s?KA4bR_EQvZ;q%&9&*iG>so9F1+UE=1reJ z=M`&aujl;nVzEDZMj__zUHaDc_Vj@a`!+Z-(MJ76PeqrJC&`^q2Aiw6b zMn-XrjErqj5-vaG??gpCckC{0!3iI$r<3C$?Pg*+c&EGAZr8T$+gs7aY$v|wiCZ_& z-2XVNU*=?9>9h2Lo@MV|4N@l1(yzfmg%2M-6ki=yFDfeHa&vR@UY<#%cer>_5!>G0 z@$YOSyF^U~+OdfDXH*)CF*oz}BVlNI_io?5o!N}fZv}#BOXfa$^k~zUFD$XIDk~XD zcf!Irxzd0|sYjeHT~ZP>dhzVnuZve*T{*)P6#$eNrfMBJL|VUndy2Ns$k2k?E3q?1 zTObzK!$q@S$4^#*Hby&Z>`2%b+0_Wr*L00I#bKfc?ccxur0;S;rrE;!x%Rtv4r)B4 zC$;z}rn`+ax0N__P%TA9NAr=2eU_X`9C6rrNp%JE4aN&IwC*PAMn){$$`P+y(=}XI z7aa%0E~u+h0g?V37~p&x|M>9$O2zy4@8$bz{QAesPn?ymp%QN!9CdxzQlm~(fjFwUyWpMNw-BnCh$|G+0t z*h5v_r4JuIe5I$H0bo+O%&E6;ylU%~EsEFtuZ^{C+k5Payo*Z#{|k*c5#t))6R4Lt zRnpR)lg2vEo%o1Q+&+PtY|;OMSFc~c&dJUF^r6k1Klsi0sjiaHJ9l(nT0;_uT*HGHM$Ihc*6_l1X;J5{Mq6vpC(o#_=)cUW}@7)_t zxr;Z&sy>87l9Q8LURj}ZB`{fB91Br{frYKxvkgcbJr54vQ!Q}rm$mW?LffxzZ)dU$ zSeF3i*g^7InLCKa+}4%PranJ6tf6x~$1v|Miadc6(JNAkICC>QD4ClwuNT!2T_MDH^ch%erTe)o@d6ozQ`7&+M+b`7ynL`^GcM1bKTor)^|$?+ zLI!+0fX~Z$+gV?~6_i3jL1BxKkdU~Aca7&18?eZEP@KZ3xuL|5{qHuPD@U?r#Xe3* zptg>FB7OZPm|gCbw*Q@j8s}$YCo)=&WJr=(ELlMMhgd)q`lY3 zJUKFw76mH1{dd!D78Y(kJ{5gb4w)985%c4|%SZ6De+~}^<3Wa(u45UEYyD;L0F8zt z_J%VHE1++_Fn`6%^VHwpe-z!OA(}lJELeYet0LFE^K-vG5KR$4OK|^_u4^DfhOq(HazU^lR!? z(raK5Y!}er2QJCki(TE_)L}ufvu;0%ly|*zv-=9<5ggD-^k!U32v6)vMZOWUKGPIr~0C% zl<%grf19Lp-&=G;1_lP5;pj^!BeNN5;U1Hn48kVGuW|K99J{cU3&<470|Ekc64TQU zHYdvv(3Rjc1RVq~09h(Pe`aI9_U;ao*W%=!hlee9;;EIKkc(A6C?qU=FEKIKb#rc$ z%wV2F7e6Vyt`YCYiR*B!E+JEy^w(si3GxH@u{{c=vi> zVPWAZL&JwAiP>iijFfzReP_@ktN~ahv_hQws=|mSx_+d%pg?}wS$0Bru7 z>(^A%b&pF)S)*i;HjdJo8;n@!>T>mHW1XdgZr|pXld~M%FU-%6!imiZ<)WatSnrz&2{Hr!^2k1i6;sQ z3SPer+Z8+o(xY_wGA|yBpdK-m z%lsX&tsQWWc7Cdx<>AAJogmN+!7O-C;Xom_RVRN=P0{M<=~)>D<5uhvr%rjCzP$2o zXOkXnURI`Lf$wC3D|Q1pDN^#741gYXDE)?~r)L8&PO83uQgtt%R$`!;NWRMp>sSEP zfpG;*8Si-tl7MfrxQq&TyNibh(?;{BPrIFVl3VcAfB*iSDfv}uD(7yhZNybTJQA{~ zVnw?)3@<4wYXsacaO^(TQ|-e7V0$YjCdQ=a<~Hhr^KZ5!o^VrkKkBFnAo6bmeD&&8 z13NobrWFLhR`6sB95~S6a!^htz%9WqtWSoz7E3X^lVTcn2lo`*;6;++|>kNtu&y*9OEL z`-5_u8h!1LtlZrGT$|fE2-S;UNND%Lpn#1PK9uv+r%!JYLWbon35V~Qd3~io>L^m& zyu8Z#Hc)xc?Kr*V;$mYtB_x=rf)!XzlVf7G;;HF;@qr-5ENns!&0w6iV}1kAR}%2+ z;NKe^RoC5$9XfV)mpQ9=dX^sHZa6Eq9^|w1+Y0SkAs4h2B(dPqN9N_ff46w`b`w~H zX5VpbR-1S<3vO=i5`*_O>x-tO@uN)ow{P9r>hA7d0L=kxnkp>Wp27g9P_UPfw>pb1 zQG=TE(QMlih;6|wBC->>y3V)*ZA(tZ9kz@bYK*o922zL~ z$F^3ouDa22dKbtTA+MpR8=Umb7I<}STG`3TDOjce-GjKVnw5X{mb_g+fd!yDA|}S@ zPaZo0zK;7p|2bX)yoagJfs&FEa%bJd25&1$9V@^f|7- zA!5(1#Ke8`Dk%oY;0^w_G;KGh{O#+stkgTcJtOPD|>q?unOpxoZ{lU zsaZtcLP{7I8>95|^D}$pNecl+*~~1lVN=N7p(Rb}xXVvcrTf^;v$8AXc_t+aT3S1` zp2$W*1+_P4-n5*1(LiIQ!gKZgJ#G?5{1#yj4iZsM78I6nPEofMq02_? zJHa)%qpGIog?grV-s|*nN>4YpT?d2oGPK@h>O2K_Wg$dbXc+){ufe2_px$w2^+59^ zkdvjQCD07fvX={saeQ>9mmn+#q5?j}CmfNGc!!=j3u)uc_wURgUb_JFThm9sWzbb# zn~wVWRU5U3^Vl(FENy+c>rl{fe4sn}@u^d%%H7BA7i=+yzHBQrh5jw-I;e(P1E)!^0XBnEx9#FR69|?^fT5p1&-+50nwgmi zgyfSf7Z3$KauAO=?a(NM#;rh&&>!l%y4V2s-hzXDEp;?4VK21wo!zFZrzh$@s_pxC zEQ7ck{G~R^{@bSEt0m+tq*BN35P(R7;yf_dy5pCa+FdC5`1ne^zvo*sFj#{XCg$KYTm`Gjqt+9XnGX4?sw($EDqc-tfuC;xP!q z>+bHo$;rvAq8G?T%*q3q1P#xBdL+tLYh+O0Ah4H<*vg=))qe)mBi5&?%dQJ`Ztfva zEg1(Cl*sOHt*!6BeT%`VP!ovNMPKHJ%wyb=T`6GFJ^`VWXUC2mV%Tz;lqHuxvyFEa za(}oerpv#(?YZXOJ9q9dYMwUup>9R8U0a@I>z@5b|B_;UMhu&rzx0o;uKP7Lvgb@q zV{YHxk$3K;a_IGhtoA-L&4|pwv0BIqN+d$5V=666^D}7l?mqOXk4fLH>6oOXWJyue zqKBJX&U|@n9#z@3X$w5Lr)W0!^##(8Id*-;8Y_zOolSm*rlkwmr7946zpzl$W4bR1 z%hf)fAnSMXgp^bao-WjNJ=~RTPr2*-$dds3E2hfI+kxj|;ahyDtGg+?v1}drsefQ2YUBt#<~x zx(bjNeoaoEfo^s2%9S&KEYBd)=9IX8O*wVZ(NR-3>j6YDI}jLqy}T@3$t`F^3cS3$ zJTV_Kjq)w#At=~K_~|L><-{8OXtU2=dh}dn<%s6Ng{pq0seyO{>WOD!zKyn4O#D=!kXT zL8t|7?UY0#K;Vt9Ju8`Q&68~Ii+L!PrObnkgxyh>)^20ReiaqB~IX8!m zqB?4 zJy{N3)DTFvwXLZm-;xgfkiZ@JFmr4gt*2E05ua-%-AR`5QApL6=eqY3lu;sk2o+@J z&!1b5AMXLhJ!1Qnqo?Y+p78IMrz#XwR5t;C;R(UT34{gakn09SNI-XNBLZg!1qE?P zNv-CMqr@r#G3Y>wc=Y)3n|JTF0bsJctMXl8jpuz^hn!~|S>c)Z)l}p^=I}HpP z&3N%QFdpv4#vZ&QC?xc@!!m&O?Af!Oot^UdT#!UKTk@!tU7|4mcA|t3b|7D3QAs!!R&LJERgq~m=!eIH$pHrPiyr+ib`*x2Z-aN{d=>b(;fNGh3vwbzLb z_;+zC9OrE<-BC?TOZohH4)3Mkk&t@UFKx~iY$gMRa-BTM2D8BS+jH6|b~%fu>(o?K zUtijsCD3SBvEA2>jz*{*1ONOJ^3uj!T4wscvH)MGra!E$`MOW{?T7)G4AZ{GMg_4XbwoT{{H=&kO#4OMbR;({nuE58cMSNXyS81 zl9Lahytb8U!hJ*CVLf(*6$H{1!b`4k;g(mPQ*~JU;Db2?C4so{8YKLQ|KCH{xp$M3 zqd?UOIl;KhDM@<-jOFL}I2BHT@5agq5Q_qc8}MEslnw~er$c3+U!p(_0D}Ww_EdUM z_xt{##Rd(A?nEg$B@n9)<$VXFaRtcE@e&Rp*wfZfF9_a@CYh?uuQ>AX?p+d0-vMWH z^IobaPrI^zJN)0>t>>>P9tg5OKcRH)4#z`s$Ke*=IGpE7l z+*xn~3zh|P4XNehwW~Dgx@y=p)6ZVa*}vTP@)(r33@A-d)_^b^suY0<#mVS}+kIB% zE)fbNR8$3i(<(1fGGgCTf|pz(9H*kv(&r!tTwDSI0$dRE##^55I25bS=?NZ09th@Y zF?2F4^zZ!GX~?q~D9n_Xa6H?J?ey#+O~sDvVPH5#Qv4{|4}%T0Kr``pVbi*4iMp-dqvp+115(ny5d3m`>8G-K6F>gXg_MGfY{mz}MFHm^phuHBGCkQjv z(9n>O_Fvk3QFP5tWx@51wq@E?QKgj@O zgFn8|($ZS~{c76Y&tG5%-GSZSG$WrLqlvSjOcBmM#2P+|_s)>00HpVyKQlEM=9vT+6^VUHl45y1 zVR5zf$iNq9n=WIm2ML7i?Y&v?`oC?Z$O(NAG{REn;^uC_9*YzOV+};TGkF{wybXSW z(1Z3oQ=_5Xw_w|^1~22a`l%g8VEN^G$b}+ zvk)e0j`ikDJ>AUG5?H)Uf!l~ya_))QBG zaBQ&mjzc`5?grhsiSiY}D!K*OqXBK;2+(zl@hCnr)uH1BgjRT^dLv7}ZKkHC5NL(~!p0fwa=zZ+$R9$z=wv05F|B}hM}-?ksc%` zi#$+LR=$rK75ngEO}psSxcP3R>v=;5+I_*V}aL-@W#@5S3;ax)6Eb;_u!Z zLpsuZ^>lYEaVk_;H}XIvFoKJ)W#FczLKSG)fMLQx$WEO~jv;FMj=Kbsw6Wq@<>kiw z?AVuTJdEQV`A_)!+S_9%Cnpsz#fSKLUB9jaN}zZN{x=865fC|1mvlBa)<3*`8w9qf zcS*`1E;PscfwQTB{mCA%luluX!LzwEj~#UvT0}1d$=#9{-coFlN7YnF zg0}`KThZ0%g&9M$#zL1-nHEpp&uI^{fe5V zw3<^RgV56V^5K8r{6{_EGfq_2=A6o(}H#i0if0TFEQZ@^TFbZ91QM=wWYYWev1 zL@tn0qGkW8=JnvI!D2b1nBT~n@c3~Hq@?z!baiqRA_Ya~I2t@>WBnR5!2gK3#GZ{8 z4+G#(RI5t>Egi$tC1i~)@)Z>oX;W}WInhuEE09zS1Z7|H2d(45y?Z*trx(ohjWlBh z@F3tIMnxHRmwHZ_Y>`J<;7sd~yE4D9@ZsINV3bjHkd};X)XWr=tqC8dafFDKyKv#c zC_ZW)rBn~_Pu0@$3F#}KoxPb2#JA6nL~lW|SB3fvD!{;j12S7_V9rE?vQpc-!sW!NCj2qg(?t2%X@-G7-AhU1F{4@L%p z1mhc3-fwqJTx~nxrK!Jh;;+5Ze(qXPEc4T~99SuBZX7z@sp;RJ`gJ?S~9}E;et~6B5 zdx~7CNUrGgz#`4O^zk8iAe*?YJOrZ>^#}vWui%DJBz>>bXK}3pQ%UoSi_Gl^DIF$u z1ePaqih_n_cXM8LpLVtSBz1mhmk5rfWWZ5r8-~u6tiM z)>nfcjq}t)#N?%>roQUwX*kg?eAeSu+Vi&$M?Jn|WLJ~kzj<@2(*|N%>~}xZKtjba zU#LK26KNWh*~{fdf7_|e@FC*=s|?oS8VqU{_A#nhPCx|C0FSB$9)!sV0#yW;SeSfstN+&^qP_S z=7NT~uYnm0d{?dlHdvz{r%l1>!}q9aX?-sbfI6!fVC4BySLqv9%VzBfWr@pI+cI@n zWxR_U04KW*jRQOk+M=?%uA#-EOQk4C*ke&NaQjGNH zo;%9f+}5@mf^}o>t80Xp-udIl8=wVt-x)IOxgAH3zGQ1ZXJ!_G0|F|c?#}%fLKmR- zZ2?;zmA8B5V@&JlR8td(O^?}Jr;_9~0*Cxj!z_lB(D-}c=L4AU(YrGfK9sS+f zKfeK@QXJP|}jPr+&po+W`da90jo1w~Xc@mpb=5T*NDjL*VNPPgW1`CfU6OYXfJnBL~VVbp5EZ->DU|9)zv1Z z_z#qPf%vQe`~*BsMGPjO9P;s8k0&e&>xPIM(b3VP4QDlhkwDr7){-7Sru>f#ltCr? z%-<7!Zpydu+-`)nSx~oYmNN-!rzt2B*(StL4?mE=vj&;Hh46~4=l!{wzvF@}v>Dm# zt`gU$`X1cBe-qYR8p?WX>0?nt>gf{8`08tr_IOC*kh`|XyzRg=Z~+0k z5Opo-MC+yA^hc0rxN*CY`%1-{Sq2^)A1Q5bC7NgO-kW{g@_*%bVWsR zk8yqINA5E}-w1TC)HKlaSGcJ-TD0T5XURwc8F50$h!?x0p5C~MuArK#{S`uA_7zj0 zeISa^e~!LzN4>$n4QhO9@1Yma0OtGJP>Qb z3osO`11kxVu!4AoD=1B-`76(~*>&is90>J5`^a`p0@*Ewchq7H@2c*z1DYb^;$eP% zLP>`t?hbIG{-hSgnh=W@CV%L)ZHylWV@F)&PRMqwmbR8wl*uF{B2`432<16d2yG^!wf5Kr1}94-FpYt(RnCX4b{AjvX=R?a&%VJwdRwIq}@3-iX5Z zp=2vzoBs$kl2EO7q^vOZ5CULK3=vyTMck#_ZDc1fFHsE;0sQ{A6EY#vSKJ8i)9>3y z1LRA%8lOMYrlzJEm%DJn-=~ITI65&g1U;g&>iSWFW=%|(P7FOP16BY+CYe{dzd_f( z39ie@$G3wB{9L~Le3Wr4AR!|oKdklFRI%5-C5fNA~J33R0-Zy&dG_KXES8 zPMFu%*Ux^I>`w{U+*lrw+a$cNw+#(-O-)o!{1zXN9*5IKIxLBhCQeKE zKh$9KM6QX9L{t)_8E_VXliDAaICYoi9ibV6p+!j7#0)}So+}oRh+G0xy@O{RQw!Q50o&&vF_3kFR!5h0sXuI62-0(qOm3mjF#JA#gqluaXsu9z;#I+CPGJ0)zoDAM>_wE zhoux#``yB(5LNQ++b7Z zHIiK}8B&KDbnbFH^a}}vPphMQc)7Y@OO`lxKZInR1;KIm{{6zaDe2>TlBKVU;heVO za4Ie&NngJYC!8>i+MWKq3RHJG;vJKakYKW>Wg_7OwjIIrkPfwjI+WJlq>m)-DYSBk zeFXj9&CL9KR%9LZgHq-(5N)OBlsXoOt=ppaWSGU5V?Pl}L{6SCe?XD#B^}lmyPc7= zIYOxYdstcFvom;%e!YP-vqUr145}B9G>?OW1F9-vyZuETNa8>MY8PQTL5ylEusV(O zeuynqZCBgM^E-VR*@tK)Wcm{Q&n|4_kBWjMaUSF2yA6$vr?{oBFZubI$7!B=7HB>o z*19+h#QhNbqq#W>1XNs0&=cF9YUfT~U=jS(i`LespZLy&b*a0dMWy2C-&08Cz&c!Y zarx@yi}hAlR#8DnVi$4w6%{9tBD#kT&mA9Lj7%-2ZSfP0%Ky zaQq&gnDdB>o^8ESp&GheU*ANObI`Ocxt!@7B6WUvZrR97(#%l4qK!OFu@|U&v06r*< zgfAl)sdna!;`#GG12Rq#=28w*vgXa|5_DVjvf2vOx_%`T^=xTpKE8}iT?b-(%h0sv z=qKVA4aE<&+ByGqq$1X3T*W>WcL7#m_G!b@I-VH4GL%WA+0;Zu{r_x9Z6-WWKL|KS zq+p;$Asd*Aj{69C)W|;e#;EiJFy-jVO;`Uyb-z$yG^7>5_OV1ZA)6P$s~e^glPaOj_CfU zWSLiW)|d}sz|=+{Iv`=JLu^4vD!KxaXj zB~(fZ5Brn;9^H@Q;%-9-!|;>>Zw!IF;hX^oJEb?~XZ^2+)C42)f7^fvO4Qu=?OcZt zBYgF@&}JFv=~GIp3kv9o@CjJ14j^7_u`q523{Me!wGa^>EYU`KqxI$zS}hkpKLw7h z5}*Wdx+}=@r+5kK)y1iL@U5K0*k2$u$Oy=Pd??I-P$|SQ0)i4?5R5Jem-w47{IDqz z3d3AQuuCo!8cL1mt;E3C-=*njxO)SbtvQ7wH#_;`C@An2$lZiqN52$BL4@s(k7es#%MV!Bu-;niAC!=ovN+B?A!JhNjrx9`w0jD%D5e%F#kwt<&$j<#uERUL9Yz{cV^H> z&i`jK=&e{z1-QXU@A*uV6}aIPq)Qhs>Yq~qt$E+jpj_ND1y}PliC;#>oIe3V16c|@ zm(WEz3JMO=gP0iZ2Ve*>pn+Xt--nYRNRYnXKd2E@1X`_&HU7}vZZIS}^5qF1f}HVE z*IqOntZ-;;MlGSxSXi9yw=DkUs)S;y0N}!hkR)_*-ELWc;KTHn* zm8NgcH`(cjZD>$hTM2b=40J+Ku^8E@EgUAv8=CFwLPr|1Z{Jp1(|mtX3<>1(*#5*Q zTh}5&ftXxEm7>0c$x%f-a>&T%FI>2Z?#>}1^5VNA`Zf{l`T6@d98k~9g)Q*N2qhW5 zP2KP)5;@X7i)VIcuz3>?8JBm8H^vGO2az z3I!*epPHP7l`JA0Fq#y9)Mh8d84@No(5YeUreMpN=ngdvO%O662c*3MVeHo<(T;1Z zm)l%93wTn!aH3W?OaBfX=7I8j-{0jV1!A`vRR&;Mjxaau+xRitMKKH{Ts2l>la(^7QG}EPbk<3#+2=@8Qkd2oI-*o+3E;P7^sj5SfOk{elmW+~DHjA;(@f z^64dUASXu5U4h>l51cT_fCn%}35h`B`_m5~>IKM&1Ij9#&7Y$VBx01N0=h|7d;TXY zYJ8ae$axZ$q|kLpIdZkyccrK`Rg4(Rl9ap+{HFaJqnn7x*qgQS0+xfeyoQ`-b@}q5 z;Z*LV#FiA#wOxE#DTtOLq!er>avQla!m$~ssK%h-YhqZoJl>a?^b?17+E;alb$}$g zStLRgPm7E7r#>FRhl2jFid_ty8BY3N4L9YizccTnlUpOEGLFg@ec=<7{?%|{lvpEmjMNM0?1UShfB5mR~8@(({l|VKNzkI zK~@6MN%luFKF5&jz5C!n5E3;lHAL_l&;tSnQPeT%V}-+lbn*^@p_b!lKSc{c+~c&b zuQVek@m==|idex+2VbRwu=jyDTXJOpV zScE#Ff|MpQ4?F^K>gg_suL6Asi6JsUBBr#6bTy8P6$%fc8vh1ut+o>LXwVZ{kT)Yd zM1Xg~z(@aZ{rQ@##T9t{7SL_jeefn%SF)MEMGFZS^o&5Gv6>xx$CRw+(S2?&4wM4G z&uohdy8)Y#u`vavGm$sJi1ZdDAoCZHXs46aeBuX8fUKfC4n|YV{rl%HUL?n#5Jd0b zK_y2^T&EdA5BQ3=@W+WXFEL$7L?!^g+XkUyQv#$y?5gpQ`hT^M3Z~Ig@kHsMBwJ(I zh>!%q3axC61lDd`_bL@2QE2F#~KwQ#Sh%)WtWbz1R zy|Anmd4S|)6iM6Hw@RCtkx>C;>p@bIa903m+C``}G_Nv09|=PzrYG6=R+hMo#fRGd zdVdc_e*Z+|sHiv~lJrA@=C1Ugz#E~o8>-bv;YD8KMy_&bH!0Oh_fzj`Idt)Cw zu+4o{WW|W&0x{M5>D zk#XfBp^3tqnc+7J()d#ZEy-M&I;f3Vn3x_IFlg_Vb~V4N@pjj4%DG+cO6J24T=>-} z98^{RE~$*dt6^{N#s6f!tS-bGiS@P{w71I`Ae@txp+!s!$A4!|`L6pgHa0k1q>|sM z!4qmIdQO4=y7$`H*?>Ea(+F8Yyq5SQ0Bi@ydZFJ3o;0jqLWdxc)b7vVfLM1HSl#70 z^r8xa6>-nRd}YN*^2BJBN(3vz()dX^Id-J^-k^>RwGNMr459Eff;=FSxV37wVQ*$u z)*EOggX0eq62iY}Nzo$G)0lLvkCLO$8|+P#use>AB)V~^F%sn)5pIzexfq3O@ROUa z`g6vnck63lNY~F29gm(nK)$hKGsHx7)V03rI}kd4_RqwXgGHvHa|RV>#Mv}m_KqPc z=l>_6|2%rF?f2Y0g!F-p%nj~=3bZ5e(KfVB*RC^P>-8{FC{FI*SS<4z2xigN)4TOx z_sC)EybWd^6QgjBPqRkhyQ+RvU4Kc=aoN1*rA@Rxl7?g7O`Rh(uA%y8;WijaS>S1{ zfNRf?8Zr?%n=F6ro2H~1>6xihh0@Vp%rVdiN5z?4RWnOAF+8r8U2+v|#PH>T4)bf~ zlRXhlH!lo^@A_EaEj9?s$U|y{w8vOxUaIxsJ8wnaylj)&DG=iO=+TEH>{@v^dqLqY zj1j+8dfF0H*>uV09d0q5Aegd%#cgNGfMhf$5)T;WT4DR$Ln$WA*|+JhepgOB!}>S8 zxRp4vjm7NlUE;qS#8z8OY8P9>6pt$KMXTEv85WJFHhV7TWw3F7oIyk)9ishP-V18? zOTw;hLV$h-1lv1t;o_c$JZhNazb8`h>wfv_e7wVpdm^=KS1AL>_L5eFzXNHpc6$y* zN~*&oeVCn-W8EzvD433|t_k{Ud8HfC!F0^I+My5^I+{GR5?olD4%ifwxYDWZJyp^% z7-d=Rl1eV`ja>LawfoOde}5EzS%H$E(`phzv3B{ap@5Uh1+|vePS3~BBrl} z&J~g481O;L*rIkHuTGgMcZa#sS?M82cp-R97f=_8en$*&V>_M`xrR1=9CGJ@fHhaV zXN8Azr=6xIEv(O(!SKWO2l}z-<zsNM3D} zyIA9>^E4kHiYPCzm3I{S4TbgJs1KywN!Ep5{3(k|sq@v+!w>X`AN#q8?Cl(;U)azb zB4K08dG-}q&LeY01cith5#*shEnG~8YD_0RLvpHFxeTcOjyE7SF7EVw9zrw5n1muU zbf*K@DnuC}ZtkC}u@@0sLI#Y5umRD_|DA}$s{@)(jO>F|SvOA`cqJ+BV}5S#TPPNy z*XMp6&#^~ihaMILyC|ioi1D5(IY3e!labjC&|U|hADjLFOqsd45$1f~y%DUZM~aHF zux&W(J$t~KD86&|s_+I;LlXK^c(}Q@5`QXE{_|$}l-%0PR<|D8*ImvxI4F*((%ila zWpW6#rvdZtH{vY3DKnBh*_uyI-eoMWhJryt0 z#Sqt=cxXe5{dNlSoA?6`~%FMw=QPI=@qwM^##%E%>e3brHX0|yjH0NbJA6*&^!8_@x4 z+(a_h$m04t@zxukppr-7ZqNVu=QA>>##emsJ_jUu*~+Fc8X5n4-yF|p@Cp)%csUPF zljc3blxdJjL8IP*mV%f6oa^DK#LSO)DLaXHKGQX;J2R5K?G=*2%#V_OV)O)gs>?6< z1feURx_VNsVCq%j@Cqo&Sp z=@)siEDw#fUN!^yF3Q?|jHUL@n;5SM)04m19yUPF6+VDDV{GOR~1Y)lA%CDI6&5c#ee9o5-5$5CE+*Q3C z20>tFB1T7Cm=*MyB?(*6l{NMLs+l@!Obj$)qccdALVh-Wd6^ayO$p_l6 zmEjV?83EilZ6fYqB&~OGZ}L0hpgVot@tL0 z+YK(0^)~(Y$%OzinCR9VmUlkg^ByS>@vQ^I!w{*OQ6PjYw8pw!XQgj|z7oSZr5~MO zGZN4S)5YfjXx=w9)g6p8yNTcaY}o7k7VpO>fPY9BqVjq)Fi;_L7c!x;&zO< zZiX_Vt`HAx(g$%(#@w$ENH~ZxO2c}DB-!J#6|uT-qO$_%MC@`VN+$FI*S_l`Ru}*x zDl$^k|ISVUqDK2fN@L(T*R*UWi-nifq-Fz3LloTB2F<{aU%n7~@CMSFgD|#G?2ZC8 z1>uG+Y^<#mx|;~Le4x8-ljOlH@@i7dbYTsRa0VrdjD+X@>X8Pywu58U@?dxiFl_nS zr9R(3ni#A;f}p;is%~|S>t9pUtM#)a+90%*)2}^4RW@3sQVjD zzD&G$wG%Uyb&-;Np~U;BAP&BUOffV0@=F^0{leov&<(v7f7pn^nJ45F^lk;zAtJP& zikMiDj^6}u{g)HO*b;a2t6UgUK z^fUm7b-leS+sa+7voJo?3gn-ThSwr~R;|^tBpWcg6`N?NbpLS|d8DBe+koK@Nk|yr z4Ir`ptKI$TsLk#|kuj9+0rM2`vVPuXPH{uulXIuE2fAT>A%YdSHAU!%@g73xh6r%6=E!| zax^Xc!blPn2U^U%0vjd$bAs5~y3nwnA*Ff<+BF6q&OT~;9^B^~U6OpCM-3-97J7m( z;IqyhMXuIE8HrrP`f#2FQpI*Ms|0^bhcKjOXJ@C2?VXOFJC+>B_Ow5g?O}f%F#ADL zD~QrNec4kyf(txhgD>dGPthxOdZBjA-j-V<+nnB9mxCDbZF-zOsNgG=JN}xSL4g=s z%z06HC+NtjNAeG?6n351_kciSD0Oq0$NE6Y?8Y?`V`GQC#c6JGgdUlDvxEI725xp> znuRzv5R%V)>quaMNAwy~(2S)RHTnDq(z?SiUW1-;N_x|FjGD7!(dC(h4-Vauu(AiNfS{zA*x_c&C#Kn%WRrpH#ElrmyL6R{hdv z&`qLAAYgK3SS5&su|9~GOT=*CnDm7}My$soD+V2jeM&HJB7J}kH}k50eJAi%y>ksX@zDNv5*6zkY~dG?12y^sU@?Zj~DSt{r+r?*B8PJiz_gW zF|fEk%tYt`>hGU$kcwztse=*tug$86JM}zDR;0w*K2y5SgStWdUmrV|OuU9Q zUO4v@7B&Vj?g%R#=05D~H=dO-2uvDnwNd0^NW^@rK#jdnG4{13QXJ(8F;}!Wy0N~r z#KFz|%~RIS?#fscdzpFAaFJJ>L)jI{an7M)S;L>^OBWkHPW;1ns=`LG=73Xi>JvYH zLC^fK81IL1ad=N(X`!pm=RG!wH$bo94A2AGCSQ&R6gQRap`vCMlE(z|cDe&sR*bn$ zaEMNF6*(v>D?fJ>-4|Juo|8$^)pKOBsu1cM?h@{f^q$G27Gz@b*!+|2Q#8oNY3gM!-P&RHA)aziCkvu$n>HWuV7MW^Mrj`Z< z!RR(5oL*@lsN0xq8bUK@01|ZYVXDSRKEkQ=7|BtcQQ@W7gXcG>NE0p;q{R4yt35b4 zg@Ty@Z@1k>)-o-6FJExFbf~vX`RPW7PJ_M7MNu=nBkR+dRi|6z1Ka1D<>eKb>!j6q zIfd@ax12Ppo!~2yr((Nm`qxkM7KL-+IUTF1zRQQ6EG?9nsNAIB<_X!VF7`^9T#bC| z#vR7*fApTay{ZwP@xGOrX8eEg_2%JF_VN2Sg+|06gluEYz7#@=hLkNWW2_lPMOiAM zvQ2}rQ`wh7Ma^LBdlvMfR=leWg zXF+VPMzYe#ubghc8ZI#ODK#;ZYI)p5pYfYa^u6C0<|S8piy{ z71NNj&9Ep&eTj(JdjW^L)vd`LE+#i?X6(B+oDeJ~t`H!MN4-W3wD-NQ>KVd_IN1Dc zB0gO};jk`4%rL=b{?J##xEOmp34|-KDF-vD>O0~0*KR7ZSfU;u!3!xb2=M8j_-af; zpFR+ILpX8ioFcVH7Hq%hPM+ong#TAH0 zhOQs$Ts(8Zclc^aI#0BCqY+cR6L<6W^5=^dy-Z$;`xwri@SzKH^P^;R-?E7xjFzrI zm*4-ZaN&Zlgyg919)S%zYWm}eL_;E{!{{X=-xZx(ySi5=rSN6&18&7*9T2cCnWo zus!0c^Ag!Un*)-6ZEX2LtdwA;YWZ^MpygSB)H>|L>T|)oLzQjrV z%ot91y4ZeK_FAsY;Nu+C zuA<9pw~JF-4Td_5xqN6mJHaSU-5eIJB0e4`yh9x-#F$H(Ofzu8pRFz3`&-O(`raX> z{DI@c&C2_pzgy&c?qgV##xxzk-#B<2^%IN67&r}`thKRg+8bcwvV+Gqvn!8`pV|4j zcURd;GPP}zwB`{^ZC+ix|DMT24}&jaH8|XQRSP>*q;}6Z}=^-M%_T3bQC1`T0HUAMLhp;RzY9&PbH@6@gV$FN+U1-J9$p!h@w) z^q{AMdtVEkJ-}Kb#xZw9;t|iS$BRLwhwI(Yv6tRdXR~V5Yu{d}BA?^L=vJ;QR9`~l2rz%@xKNLIW_giji6VU?2>}*(c=KH!BDFuT{jL7$lJ)D%N zPs>>1qd2ZH18P~u5f4qp=63Bv|7I*R>)EWyt9+^L&K(ljnZ)D-KgnV$ut%Io!$Y zz09hywSJEMW=)h$zy9NumK+co(9h~eRfwq`bgZ>$eyBhnpxFj$?$I644p*z{-bcKp zWVCW;c?4~Z-m`MVzegG(=vgsh*oV!u6Xcx>B2l+?sJkr!4J=2cYxlP-?fd;wq|2;oq3@c@;lS$TF!=tJ7{{Y^85B-76-z!nzG#i$>Vl3W}Nqn9++w1{1;n^(=dBtV%_dE0P>FMn`Mg{?acU$?J zJS8@V4E=bO&K!H9_3APIo92Mh6qG+3nz=#!TD`aJXV4X*K>c?Ds2B`mT42Ux3H(IR zSj52XC%$8UcPs?thOa4CGxb4UDZ01fy1f(|*bIWL=R1L`3=Bvr50Pg1?K~NA1$NLpT8*d@9~(e(dz4*2qyQFnU4$JmlwyNpGds%jvHf>m1TwNmVMW1OXfy2b-?F z%4mZHzj#G+!TC%&YAaJ&U9ln{aKvQcK>`!S}(y0I%h1K&JzHN|4S%rG&UY zq{kKq>;Lk?;W+Xpf;L5h3BF5C3=P6}M}ra9BD_7aexJwOK-Mp>FDGY?1niwuiEs=m zM7wl#Tg-2|*}RQdTp8Jwd(rB}3EV)pf&qCTfO4}y%5KHZetwfvsJ~72QoVmz*{sCO zTOlsRS^XCvxGdbau@U@mI59e(N=5wLa8MTx(zkkG59l$yyS_+(GinZ~DPAKmKMIF~U)N=rJT0|K#Qyi~!j=t13<5+;}=j%{<(eLB29 zq{x&U!QYuTdZxndb+3{zy|OGwd%sVGyQp0wF8`eo-{lI0M4LqGoSOTug^M)5;3%uD=V1`v12VAT11tthXp^1om(Orx&GfsV`8W(;yj3JLX%xdhO;Q zPlLI`+Hdn;Ow;~XC5dHBh4CsH+;3~Q+pL+3?35_?nM{tlH;f1e->s`-ui(Rh5h3M4 zD1@qFV9)*)&VyP(pdof$hEr%TD3?5-8Y4zyAeP9FdbJ2^t$aLx`MUYh>HQ$> z99yVF(57JYt?<$y*&DOpkIKu4A$y-YIpFxOedX)lvjg2R3_j-%j&z;mQ}(gT_`^g= z%wwAU6lJ)-V)_fy(K{|GV;fL3cdLSB=dQ4>gJB_Z6JHT95 z+@T5&Q6vnE#MM0lw}e2Y2c+E;KC@!XM+niOOrPor!-22~RHQ{vCceV8{dPN*iAOT@ zSZLCHhVB@PJ8LLzx>G`%8~Q3&*(|FQF1Etv&3Wp#>oVBv%o7^i?_4dZS6^Lp|1H1& zY4x~~(qV@kmxp3xKQSAB?ALbrLL>x^kng}!nuEX_%3LqrI5!4vqxeVX_>-PxXYYdP z2|waT0_*o@kYJ910>lg^$CeN2pc5d>XGEFP>xAZQa_)UW1cKUHAtRZu(R@2>}!1T$K#JQ6so?>&|#k4#8b zekGUjSv|RjCh^BPYcViY zoiEnGR~w?YQP!|~unn;u75(#JY1{?3M;_NJ)-bD<6=GS+N?G8?DZalqO^#~ibLyow zwX>!(iDRw^m>bj<7vob#d9mX2Ms?Q9JpKJfV{nM43slnu}1AEu&#<(_*hXa6dHatn|cEuf%?$zpVl@JUGnCW=b9elao+BHkazO%53n_sh>;rbXB-t=q}@o63-^S=*KAp%-+(o;S@b{-04_w?o46l zW@tlUSOP85T;yijJ9VszzGrANt%2NAWs`q$h(sG46r&m>zqNYOA9lgRaR53b9*MHm zF3998I@!R%vA|w)mxR@xd~NL6aO3@X7ecCwzo=y?*;4HC_ZV8*OJOt4@{44>zkk$a zZ@$q-eWxLb?bWJf`lS>SE!lYyYk?Z!YV>(;f3z_&EU;|st8X)LI$oy3mRaUa?HNp- zY3pHbX0+M<=AbI?p}qQCcL;pVU)DKzm;#O2+4gpG^vhGoB9f$G^q3q~p{Y}_)0T-c zdGl3Sn$ZQXXEP3jkE{3o(!DTw*%)!27h<@XLMd`nOde5-eVT`43rpZp9~~u!jH9fC ze;t#-iRg0Iec!y_)KXtlTdJLdzXfOZ^mCU}H)KzvkMr_^w|6_ZR~934yfvoz=fJXP z;=iOM;|X4w7B`b7miBvJUOst&A#oZyf0zU+5&-=^C0Gt{MQxwI6`t8)ue zH-uOTy;xep?>iXZ4ARxF*H;FM>92no%CEglH`kLsZ#~!)Hn;cKA#!|1^tHoIf&`2; ziXyh!t)0#ibhVMYrI!5cq*JmdiAU5>bIy@>oY-}vXHwPrjIwCmPakQKLzZj=$^w@U zfwxgt;hhgwxm%6;T(dgt$yTQw?~O|`!_F8%AY4jnM&!}MhGad41MzO$qLc*u9U}fJ z(bx!tk==+4WaR_F%Rf=d77Z^ixczrIX;kGMX)JaPzU10ZYWxb67{%^r}!Txu%Tc4kscxIrK4!!y)TetkCDoX~g zD^~}l`*}uvPUbUn#WQ)SjA_E&UKyhhcYu#wQ{jfYfkE=IKnEN_#vu8K#k7XH_>Hm$GD@62%(RieZ(b4y zXZ!YA9Nurj#E{)PG|_o2|DyFknJXuG{>I0faT3P!V?vjpt|EAJ^wYnRlHhC7-Eu7v zoSB9t9K{?wq-0oZZg`Ue?qutu=?-5*(MrmLd=2KKnEAbq68|pAWPiF*BNCcDNVUWZ zb-8{mem-cDbB*CB&eO$b|L|~G;#Xrs>wGmOmiFS2e(U751!fHo7VWzQ9rcx!tLH5l z0V#u$%ZgH%yuuix!dgLNb^1kZdL?tbR;%%URyq!@Y*Z<&Y2@kPnE-dTUFzcVi6|GZ zK-!!^){6bRVz%9mqbLV9r^Gwdy%)IDwWJ9qXM%pc*&VRscHu&L`iY9W%8R|H@;18z z<802IlOc187L4&n4~Xzb@9I5h*7)}12?5rly_Y7!PLJ;XQlY7ztnZYJV#>ycj4do? z?7jSAfsm5?e3eIoyTP198~BG~rtzv${}#yK`#HWJWICP3htbOyHjP>X6W%o5O6^Ju z?n+yd2zt4-mg9Ar6()B1ZdfnXo|k6xF72HK*zmUJxmQxLx!C>s3TKX?=oYXRksfoj z6&SM_$Q+OqzcF=xZoj%FbD72m9s!$~ERHM}D^v;It*n`5XW{ULzX#o5o>8^piHWlA zTjYM@!ZFcqeWQ4;>9m`dA#0HA?7{GamR8EuYhp4LUw62C+$222XRoG7HLYOiY_Qgc zl03C&U&3D9uu!zWatc)=6%8rL|_IDes1u(1hqL+ZQooL-Jb&+kid9wfN4$HcOG zKRq8_iWU(%@r3{6MnvPTHo2ErbaU8{(Kyh!yw}F0CNG3meX!(3_{v|`suM%JO{oQ()R%q^e6}?$#d?iHT)$jq+3+6-Z(Vp6)YJuyFKR^UGj3XPBSzYHsSu$6^d+X|OQ1VYx^u4$P z=I59W=5nK7sPn!M2|6NvL&ihhid~|ViDttj#Of%qG&eNeX!egcu{Pc2LD%YtS9p&> zCRXNghW*^`2g{3(xW#4$>si`6dL;$(dFky!xn^mV;l4~d0b2{9r{j1?7vb9>j+v9S zh5WJT?SR2X1;K~H(Ro+L$}q$(CY8tQ)6PeZbaW`W>`HFIYUj@6@KUWeevAsVb{TpV z$(jBB1|;<|_x;5O-go8mb{9Qs-qiY0QOg}2Kt7r|^DVcARLpVf4U@QZO&J7s0K|I>N+}lMC@T3H{L|$%1?9!6fUs4UHZ@Lo$YdT4dc__lXVBxK~?jH zC)$8D_WfW-(Wv6nE6(GyYEKd+R-P4FCE9aQof!vs8)~TyxW1)TouYH)W2Hv4(F?O| zpKAR~nXHV|Ezg~s5#gfPxGOp7JW=8*ev4nScj#AQ_q{&-=e9wbtrJ9I{`zq&n-0;A@V$X2`2b|2d%Mr`*^L6WWaDpL6zU^t{!0?-tyu1d0fg+*_62JsgAt3BdjCz5?1IbCkRQTl7)Rg0g z=cfT){x_lJ{;#?)^=@4rn1=l~YF4sKKKu9oBhq+nS0u> zdS3ZI+e1}5PR1@TSI3g`c6|J%vfhYKMJB~_1x{L28@9ULyl~{?Z(dn7t4W0-V&qA%L6`TieBaov#@>)Rft zQ14@SoxP%Yj;4rlNADW;#+?`zbiNQ1-*3I4DIL%+L-w~cxlPo@h=WAT{f3~rzuSlIvJ0(sovy;U7|D~NgtI+H-cRKMpCM8ei^rI>7tm)}# zE%5FvO+B{w61+#`1jLn)^CQe!L37~q{qZ6R!9y`Lz$7^uPSXTXdyx5i5i~w*PjUt} zz*Ql`TzwY<%u~V+oqvf$iOEw(mvz@);XYNsa^N*!h7Q1fr&Q52^g!UU4 zcE}y%p%=GXZmFj~P%QYvc2N-D@2!3-%-Hi`Pipv;ei^*c{-+KSAET#pSuK^%k(L8P zu3Ze665~2C28Xk;(NP<>;}MZxFP60TXHzi_cDp|%#YxR)+Hp=_TKVVFMJTlox7sPX zm_B+YVC@ydSqF#E+FAv;IvDlyfw~tYVsjeg83dPKu`_%QWC*n`;N&uY;Pv=`ru#vd zrbU4yRrwQKRC%voM~sZa=pAw4K`Mxe0qJr8-)0mmfdP~$EQB3^G~Iz0^d5&;Tahjd z*P+U5e-cuQ1b>PSD|lPphP46l>-l%0wjNg`6^_uy6Kz^CQW6rDsF^EPm~*#ixaj@- zgL3Jx9f1tc*4EfvAn}r)9K@QJvL78zXzdD_JoQ5k9y9Mc@`Wc-5$-R-dpq|T82z9> z`%8|>GB zhuItVDle1`fU084n+ucOL|Hw7@5PWiF-LW5P5T>NhkIcWgjK}CmRC?PVEP-R9Q8rN zF0lD{{;FFO%skFX>^XY9zxO6Zg>zf>sa1;WPoDEy#VLi)pW~S1uaDQ_WaXvx49x@7 zy5w+-K7)JmBfCvL&!*7og07}0_@yZBcI7Qye%)Aq9(%^de$wO+8}6s^)q&JPB(FpK9uGL!o>zyP9-UT=A=7#RM7 zUO|B04snBl9nRz6(OXOvrBUiijnW>V8dz3a~dt0(^`e^bL9k9G6a?HM7f1%@bxB#wj#yzI8$ z<$zJ7%aI@3k_Hha62Tcmk<|KKgyIP!w?+Lb9Rijxxce&x=47Nzchiq+%{ojDv=9~Z8i zYxjW7rDc<45IRW_}}LT)bXlYVk)3-9~Zy!+B0 zTvNsVu{hUqH{Y_RYUNwunTtMUSb7{x8k2{dfZ)hWpTfh4<){)CG=zdMb{OI^|K0tz z*Xj1UD*}IidIUzo_lGzdi!5OD0NT{z&_6Jv0V>pfJ{c4%M{v@E1ME1%GqCs~AV;`p z2TV%9>JC=`p(_;~Zr7bUd`kqptKbXrx(*s0QUQTat*zDVt6mSzcyD?qP$QQ-q`!64 zT9xmu{wmvemHJ-~L&JRZLJuR)5(*NNB=M6kFAvqS1rv#%oP82n`1uD#Z0+o}EOnAy zQy9ut!*69pJ-A<1p0cs_+H!NDc%X%PFz2w~()^U8&#mOc8&$@_YCjhzn@!q?>E=o; z5r#u&`o1T~YdiG!%>`((bIQAZD!&;C^*2LTAqt!NgF{r0I_L0eM*Gzjn8qN|a6$dw zdt-+|pG95;1#dQ8Q$NnAX4-@zb((z^$B((&A`1lA1BX_@{?MHa8wtc70B%v!WEDm* zyvG`P9MJL1{^2fs zR7$(Q9MlxX=y=?7nP%fQ(H1rJ;0fKN>KQSyY>2HS`Qm6n?8PJ&ogaT55P2u2PrJFw z(>4RkV3iEak;}6iM%6D8_uDr;h%$7$!&MdNiRs5T0^SQEfMr2j}#7xe3bkHI~sDtW()`2Vp)8hVh;SHQLwGB<#i^t)9s*NZ}! zvc*huj0F3S9B9Quep4j(iBAPXr4uxTRQ@a8aHI(u5|5tK2@~vx6Ic)=HFa=T15HkEz>lwhELUHG_qA6S69d&)U9qHMG$lc3X`G&)oI5 zmw&=P!ESenBRw4}$nSrGuMsREO8eWLXQs}`%FkDDdr}_Ad`Ws?elO82`d=9nZL=^1 zHJ}|+_M>#Ur@dQ_IxgqZvKf6%4~|1T(n;a)#Y@ZI02{Q~nEVQSR|gW6>;-erKWR1a zg=vH@7+%}t=6Ano7BJ_F`occ)!x(!f{_}O-)!*CH#I7$^Z8k3*hF$duhyPK{(yGs1 zl~rQ7(kTD0-cOz5GP3pmS^isH52-2^`||~hAQ)Jw}{_w z8;-7+b;xhb*4Qw}{~KK1>5o7Yq;UyJXXnmQl&j(oXg0O~%$9jmwtRWa9T#)H7Cqy> zR-)VPEppXYioySq?cBlLDy`@IVTaQT{WH2t%{&ljlOHK_3j?Z{oB6ZH*1&*)@MibOPH-0>f&ZWCn0bkG=j6|);z%@MY`N)TdAe)}Ezw&hOToH_kH3XO zuV845fow=TCfvZv@WU+iBMZ0txb7P;b* zcvRxQV)AMAKQX^&8INBh_1o`4C50q2tFN^~^Z>ySum&Jiwk84hrhouK|&fqY}b1%2;HKsEjXga*`Wt3!_ zlnpuv*r&?uRmY>9sp%=WCf^_XUH9l@54!JA$#!g*Vbg87e^oiEy#xm*?!;N)R+=F9^-A}pbwb7J-A zVA$qfhESmB_`Nwr24vs*WffeaA^@R(Gp)_N3N9v9!XodtBc9e>eW(BWEZL$;Dlf~9 zC}}X7r##EvCF8U;NAldwVD?^{t#ZEjQ^rWepkdnC%{}rHksWRtl-~P;`B1caq)`dy zemM7f*QZ^^_*Z5Y)Y%;mY2wN#Z`6W(nemZZmmTw!EhB}p@gyH}X|^SZB&h~9_GCR=(4*UemPO(S@L8~N7OKmP8IiFKaV{>2cd&~(eEN)C{pn+r zGckv=I?o;=Px}uKhnqjYHQZj0+4I=@%Vxu)_YGtE?_RH8{0IMhS9{Ov^4hLhA)fke zoS{NDJI-?6NOUT3#7K?R3G*QCz$&^%IK&v&N3#y;k}eDn`g92&eJ%%g;hEB5o5MD9 z|L))7w)@k{^?bLgyw~n$?y4MOURnF5$%}Z9qMiZ4%No8zkj=qKm2hpDCo0$+7SlOG$aGb+TYz5$ttx2 zcTb`s$%8YFQ<;>NdR#Re)`Dft{HENOF1yGSrGcR#!y(_B3iV5L*W_aOi!{sde+F^mldEx+SHQp9*^VPdk z3OHSUQ0LW8b~hRB)N?tkvzDair0p0V2+6PwXgWh5a>x3D*+m5dO51)qZqlBmu(9EE zZnv6j%CzDP*Nj}e|A%g?7}oSOw)wHhcQTjp@2q_yBZK=aV)^TqBW}0HE|XSV@T%_W zJgG}9gD;}ETH;XKC4Mm}y=ZB3$HF-fdc0TzQ=KK$G%R#Ae_Uj;-k8Vx;<&W3Rb*6@w*JBRv4gj62ZMO;Bg@tSQc+v+ z0i5;2ev^MVt zk_>0C+hD~=%mJ1tX4+=W#SR(H`Ug01s-8J%&p9cFHOniLcZ_UOCyt1r{6P*QPw<^r zZeQCvnEyExjq|7|R!Q6RE=#=jDvu$~|AU#qcwC0POvLnCjnZ*{`BBW1wElmTj?#zr zOEYhGE*mZi3SVturc)o_I_*U8Au1Nw)G)^c(0rBio8F5*CD386$QC*wd_E2<=TXX{ zT@gYX2&kds&8!V2$F)am{eH40KKYoT@RhawUh4Ek8IzriH)s34m zT5&96k^jdJSzE&0M`HSDk^p!Uqw;!reZQ1Vk3?&z+`n0%)E9I1qyLNi7?ilh>%Qf{ z9?G+~k_v)pYu* zshr>F)2`yC*}EC5!s!gwFuBrvv_`AUU2aX@pJ+Yz`s&Z~Gs2eIA|0&L zt=u+y(oKc*rLudCiCn{q$MFMg4{_205lZRSUKk={Ahl6kXsLLi?Z#v%N~7bXbzt4{ z&i*!+UHBdQUxA3dQJ?>@0%wGN5R+;=72akkS7v>;wXKxLB%X{oXH82INtqWdGIEEH z4pg5}k?d^k`6G&BBh;Psz!~Zrg|1Y#EBFazNSoA**fWJN%dbgLK+LVUyzkqg?~h(x zI?v5#X^L)x_?e{SFqK|AX@5$G=lgtTUaWOkSzP~9{dcb7ouBQwD$F<)^{H2Hme1wf zJiO6ERm@jPx_RMc#vh|>tGODU3e<6uCpzFajR5>vD@v&&;1{YQlo*2@l47am7 z-a&!63(c1XWcR0J3K63od!7q@DAW|pb>Ut1neVLjC9FQKgL{uC@Hxq>WhJhpIzNr# z)xWXQ80uXwgu!nF@!SztNDX2uPQcsgo1zy^IBB&#<9M%!V>zN@B3IHdy?OoU&aBt+ za|z35yST=lD-iM4wNH07b_I{iUeej3?sY7=^=I{WrL-iejI~%+ntUa=nHKB2v-yF; z!F=eee~j)PV|m;q`Ie$*yiD|VuQPI7ugd<&@qFJn*7~MNrrx%{hsuZdt5KN$C?YiL z>ZkbWiFe5(Q40dKtn0PZkXfT_@d4hDXW>puFmd`U#1TCzNrqXS440GljfF3{XrB%_ zYICOnB|*deX`;ZOLCzsgt5C&(_V!jyD|tnVEN;dF2cI(^JO8`aC)*-=D%o*Jis zBPe#-g<|PvD#S8FH8A;mr{%N5^#jM zD`}P+)Ry9TtFKeR@8vKx1{;QGrXt>Xy(u2jQ@BrAdv`(}emc4}yzx4OW-YW#V@a!G zS4qk`f=N3_b-tj%ldn*~eeZyEWdDypvu-4NuK5cLCD>Pv*F_5#{A;F}$}Gg^n+DIB zf-`dsHW!uVXY+UC;Hh3`l`s1G@b&$ml#BSwHSw0it-q|I6T4}`gwAt`eCDI#>10Ql z0#5Tj`K2?@9-%di?#$76EKLe{kk@BAlkdu>k4g?kRL8fk?~^hP(;Kw7tpq!#22x}9 ze2>)Qn{@rwPBp!HfluD&ZT@-2&Zd>O@>tL4IM%cVZhN#&R`xEffYDzzXp$Z{&t<3? zmy;dK_NMLgnQhFNQEQm3{c1q9K6+LrJY}wEvo<3=jd!ky3nx>O67E>Rtm3hB^@Rsl z*AdJO1ITd)g2j5bgU?j9ZHV7w(nY)pDvi}4f2VzOORc9Q+3^TR?=5u=o#Tr0Hh1$) zKd3)kBWdZdIkjHL-YbKV-xVw+R#1kgm3~9m$DHZGSN7kC2Sze9{D6K&p3H~O-w%IN zj4bPQA9p>R-=r;Ypvw4Kf8(roKX<9k)-`*&{_#Q^iv^W_P=Y}XIltQGBgoW}GggqFfQ`u-GDIz?5-YUlUfmA~n9 zhkZ_?D#qnUY5V?txhvU!pL57$%@KXy5Uv7$1gR~`?v;gOU=aX5UVepxYy?aeCLu`} zIRfyF7&r~)z`-2)9!`N6gp|{0zBWH_B5@Mk^eLWYc-LgoebU(Bds@6A?)y?*#phS+ zvUNF2WO-*xYe%I@XPru;2j#pm4LRE(6)#C zSi~F)$_L_o1YrQcr8)OUf%egu@c8gJ$m{yzv{t8yIl$g=i8CGn&F=A=m0+H3o&r@T6YA38aQTIJ?1 zY^QCQ2~|nut+|Ce@p;|2C`<8@xR9FUyMhbZqksLpgl}Q-^+72z?G$7ZAS-niIz|7V zuF*9_vgHJh!20i}|EN{}AeGu^>rod1M|IF;kVGKT*#p78)}4bW|5h{lW$bqv-LY=z zweZ-jSQQ?tfN>d|bcglZcE6M=)4Vl`Rc@bLtd*9kjsc!D@kWR&NxE6s(8^j;?x}Oe z_^@Ei-!T)=x4*o}eeptEQBhHR49pOgFkOOS3eb>;i>2QD-E`}!Jq`qS1nUa%*M7x+ z;WC;3T@ql40eOPO`1I*U&|4o)Y=6_#cpplGF?C$_;N-beDdYr=Ndm9N?Z}?uYp#U5 zD;g5>riovJadl+|7p{jpZPcjM-DB3xxrN#ye|&na|Lv=Z%8U4BSyrd}*qjq}_qLZG zKmX)|wDOFu-e0KN69^&0gEN4gvb4MZv&{Ef%GDm|ogBMkp}WMSw=u<23l7_BKm^cR z|GYa&NRtC1QxPQwJPQU+TF(!d$?nzGFW>u{n{KpHbSp}&R*+(d_kZthk$f)FsqUA} zj}>eY&%DwB%(;0-5%LYLfltckMjngtg@Ifq1~kJ}`wlsF1Wu0#!+>Q9uKWq*+0Y^5 zZm{_e6!#%0zk-DSm!WbPCo!CWI3n$G3kNWH_Wp;7P_zw&iQR4ncmzYh35mq3!Oci| z0B?ap9iw;_5sBLJy+QK9QVJmC}b;qXYzg% zeC_5h7k{jdReW1#XVljB@JVAyXjsyP2(D6j{>zsvAp4$#q6(f5cL8#Xgw((kdikk| zQWX_!^8fZmo3E>Xat7@rPLass(Kmh~!K2>2FGA5Er0gT-t^`VVZNY`NYTDY5AL z$*P{5)6*#Co)d0rI%ntLu0XA`Ind0Boj0L=JY8CTm!cQ&XNw@@R*LAS$b<97e+y}l zMi^Z1$cKVB$jE?jFpv)dN-bF9{|m&&biaSk5;U|5pC8Fm!yp$~jUdRl1Qui@+}$D( ztNZ0=o77QQ^Fyq1xnI5yUwby$EZ6Dw;h>4O%;Vxwk!`=xOH}VEDRQul>Rg3b;vE0} z+F6rPcb;A*)kY&5!8rPoeYtScT!NKDIM7{?N-AI?=pD5E`0T! zL&yLG!8m|=gFqFRK0oAi0wDQ-yz$V>Ov%%aCK6Ecz-@yRq=BX7AvHBu|3{zvZsMw z6IKjGxrhhfT)5C|X#H!e$J12DQ;wflAHO4}#JMaL^7d zm>PFA?;fA|;auaVO1>7Z>@agpnp!I;S(oWJ{c+daOEH!q{~kkbRfmC=LPLqE+ZO`1 zPduM1Ff5L;$1WrP=7-6v3I<_ zN$UoPwyC6ax@BAb^A8PQG)N@StvaQ{!d-a33FsTJm8dw~`%&uYDph{JKtb=VE@_uX zpq)t8AbwODzj)r5S&BVpWaUq_u(2)=DG+>7=-K^aC-+lSOav2Iz03`Z#`Tm%*hgDU zNUU!9e9aD9d$w*eYChbAg9k^e8S!&OpH*bQWZAlU$!hh{no(IL)s7{fcJH}Q#kDcz z%k7`8w;mBtuV5XpT5_m1CF@$oh<*4Fw7Ie|ZDrr3tc+QYb533qE>yrez`b92#OwWg z_H7m0S}cvDW3e)}wh|{vTH#W?BczXhAg*faDUp{^Z;P{(S>VLQmh`RSutlw3tR*|(cQq-5zUg^S9bJH{DX7wfKXHG%d z%AFgVw=`mf=XBWBIO`UWQ|caS_jTjm#4ERx2S%l)O4W>7n4G!x9m7^Cox$S8drThv zunV6GX{L#h2PSzQoVDT4=a6&YH1Ju_?|ne>W3zYg3QKsB^t(bk@TQiz;H5LT2<2pK<3V-H&q~Iz|6*I-D$uBXHSC`hHoV^onhZ_}Y@Y z7LIXc-}SA+8=)5%Yu25GrH{K4Rl=H8;xAMRuvvv?UL4AQtA&px*bfEw-*aE>)ehBk zs5W7k78Q3ZfSZ2Zrmwi_J0@aQ5c@{HOXB{vMz3jQ?srEdO7Dt*w1Gv>o-_4h68KMrwWFIPHBCFI zQ5d}bctY+`s#T5j5hKb+^69_f(=X7`Ukn0mgpG^kDXsC-OLy{RnTJ{Dm^!kDI;Qij zSyL-_HQzXOoNKxo9Uk{gn#c}!YE}a$KWmOG_q`uPK6^UVejfkuXJ!SeFtm=nOq!?E zIn6KohDXWm{f+j-X`6NXmS>L=S+E!=_7*=cmKEf_2lH|L$Rb(JoT!G5JZnK2?6J7Z zio;&BqTsE?3_ea|2r(_$aFg=D_@yB6Dd_7*xf^?M6i;-I+woku^DZsfdL__O!=A>e z>}9!=fif_KBkO6-UySWBwxn^rdYSGY;@LgkyD49WyU)5&N%nCYJ2dXqRVlIxtnehM zZINqKvE^q|rNR<wZaI`JVYkrR0if|QXJ&%VGRvdR`m7-Rfaj#ylL>ysol=jnMiY@cc9>dQTJ5OgpIcQi@F3$(|`4_aUJ~TW{h?)a7uPGA~70;i|!7#@5mAk zBpiR%*k8T4at__6*2Ofb4BQGsm=K|(jpCm^jfF$ZkC*9likkwys7fCqcGYIWg)Bg~Kyo(e*vz0!(?<^?gO zSlEzUM(PKEG6Qfh6(EHHK^mjf^?$Or@t5T4BvzyU5)PBY2tgHd$~O$Jm6Sg|FFv0X zw`zl)YqUlGF6RiFT+22@i)#Nw56sD6Vs)2MunBtzyRs~p^dl}X;ER)IGVhzK??fuU zA*Xq~5dfYMlD}F)NG1QXrHnKI;-Vfh7Kh?Z3^Xv;Y4I9_0Giki zNGX*-*;s-rxQoHP=BEZy2J;Rop(2pf8<=n;0N}PfwAA0hzpB<94J!`3XkxxRJP2Y<2p z*sKwa`3O2UXA{NBQwKQNRKq2SD!Eh$>mjbCt~=2F0muUb;FjI6g)STTLj%n2%VNYY zlLgyh_(h^`QUI9<^b~{;n+1rL_vWFr=v*ftbtu0>fJx~-pRRxZ@PbX`!6LLeUipl0 zz5)08t@~;0DG@&=K;Vc2z=#H2VK;_ojDXW;WkCAk*TKd|gIFTcunI>5Iu!WCLLpK1 z@|E-_e!stE0o>4ceKM>UdKDnbC4yiGVZ10v2^;PcHnGQ^bQ3F=i)xCnwUqQdm=rbm z&MjV=PSOr46m#)6CfuB(?VY)@;eWI$K)-5L*Ix3;S0}h9;}a5ix4>3&vSb_Zs5xMU zfr)C=$at}{3B;b%Gn$?pI**iWYw7R61rUY;=?2A$QKv!zN@@L@I^e;PvZXIzB1DWL z$YJ&3Mc%uQk>U&}ql`S}ee-|0$7%$i;>QwvIVDOSqm`;koJXV6_jDkiyA&(~zV!1i z`Dq-hJ_;@RLZ-FzLrn|HH>4}4hL_u8FA`PIzn4W>wz->vjWUWv9 z=je-~=P4#yTf)rxPguQ!)`(iehVJOVSf9n;+Iy;^r;nO0%a~ntu?L%gB_!QQRVV-F zBv?QYKwv-MVJ(6d^*_KgF5dxQQ!^a=dJF7z5aJMWkpYOZ82E235EPn+UvEncE!naE zo3*N^!{KNNl5SsKrn%F>Y_`;Ib;-|upH;Fp04;dF0p)DF;E}lgLIZwDCxVor!AD?q zITru+gO5JnB?r^I-Oaqs`fq%g?2l_giC}9-M`YTzv_}G&Fc@c4?BIqjQ`~;X2=(lOM zzLH>J4}E8>mZDR+hn)rUWh%fof#jOOqyY()jX~MO=l&Y%3Y@UyBvzA{>vi}kWUXhzEA<@bMk0q6e8lduYS3@hJ?6c~^O*x+dQt%6 z2?4`e7Gw(lLqX=-@ZPQ&1^f$eBt=dBA#Vb3p&^eqz{9@c&~_QjLW3>t$6a<1x+D6#&ZGJ22=V z*gt0A%ah^F_#@_p5&=WS@f^=KW;*?Ow$aTg@sq(t2L~Aj!wLt19qB)-!yCfRR~Fqo zoVRAh@72_t#%~=x_GrVVrtSY_GZfC&Y#vIGJHf-Exf`oq`V zJEBzm9mCK7D_aEMJ=q1+5ODe_0zo|U!E)Qs62i;_U_O#J&Vn!G8Wg17sa5;u{$2s= zMr`Bj1K$V&1KNQvhE#6(tALW#KJtF*XjwOH^I*b6*sOb>)x$RrI;| zd|nb9cE#??sr3y#eVMC?urI$gV$(*pTb(*^x#E5NipbG>rR=#+GokJM+!dGN*sx`- zd%x;lkc~E?b9i~3D`!OJR>bMyzx0~gm=uYV!tRFgD)flL>t`1j3qyjf{Rq5r*_)hU zWp$6eAX2c@z>1j%&7Vy3p*iR)agRGXJFDwNx|54*)j2z4yW8&6a=plSc;ajzg-L(0 z>35GSlYS*zWbA9(jtbWe+0bE+-q|bKIc`n2)r8rogHqJN?s@$%g*+#HkBh9D;vFgk zWAq*-2O_=w_3gG@-CN?aYq+z8>J|jyCvGrxAnXA%j`$}Ac^m&Hi=Of5wo6*FLpRkc zm`kqFO+OAb1yzZ?9BSHRTDfb2CV3-qf?4WVlR^Zk|8i4Mno}!h*0kaFcbFan)dbmy zV)Ib+X7OX15~H;x9EJW6ajA_C%CAZi|tKW(Ko>l0NrshkWgsfg(~pIp8O@ zj6+5!dji^H_?ji-07mk3GU!ofM)6b1`*^&@C9b#@zv6FSb7LtfqOUHB5|nq&`E7E@ zq&fStKZIiPMM!EOXD0UTWd z@OuNSy48Ud!XP#|tv97SujF8O(9HjMflVhpRu6Ii}vlA(A6!Fd7V z6>&=@>-lRVEbMjrBbPvW(K^f^@HL^H*6aPuO_DEwRkJ2*V4i;al}pK4H=NkyK@Kd> za&6M(f`V^JR_LQJmO#3p1Gm459?*NB1@yY9y9p0Kq+l}GI4QH|A9ni>zcjUi;&4y7 zz@le?kxRNSMSp>N75zidCb)o5DF7R5=zWMlP*Z?PXaQI14Dth-X^xULD83iFzx`0Y z@npQvnA^x3?#MKLVrN(Qqc(2WXtGSo)*S;=#Lfn^G9d_BG$C7egqH<1SjeRULHFC; z6oIY=mfpIArEW9P%U9*we3wXRUzQv*xEJpqL$i^8O>N2p03GSAgCjHpNu@+uw3*liC(kwL$91Sm zvJ;P-9cJ5uU29@Zr%F9te9u;FAicJUm0bu?#XMG#yq1DQK*AMuT>K5wZU~r3ykWY0 zG@Y!tii}$@1+CU3Ou*79ameWcF-EYHV{`Yjo)eubFT#|#q_YLa|646I>v~XMvi8oPw>oi% zOB#MVjrUc1Uxxi~U4Inl0;un$Lm^Ro15j9}4}KOT866T^=0ca66O{n#ozj|HPZg1< z?X*nmjuT^Z_}UjuxihSR-r{ykT#|aZaX8uQiNy;D_1E3w;Q1XU7jNJtP?uo{Dbi<= z<3iqjmlK~+h4UZF$7Rp0l1&!x*~YuZJ^S~Oikt%5uKePsIlk6g(YMRjLaN$a0s)%efH~X1ybVy3?z~n{P1Ip-l=EO);W+1jpSk=vm*4AL-}0g?NSsf^80}0 z8PJ;`GYVW#guI|bAyfKt^SZ-uj{wKfJ4C%YG^j5jrMR2p7Me+4pl>qMaPHB3#zJFt z^&MOE`ljd?mXsA$=qrnC*um-Fsgm=;o8o7G)6s+#=U$S#=0AEla0n+J02$bs|t-SRY*6KD0^L^P6 zYl3VckeNL4w1qcK_{6WHqD3`dW!t2lQ(cTo#D2W9^{rceJAS`ooSB zdr*54sxsa5{I{!vLWef}Mo%$^d+IZmx_P?Xtk&+yxOtmC<=*H^E%X!lnKbmW?u0%e zOHxIJ4a@=Ey}sgHpU>2nl|jkSpXbhc8!zCCayyY955d?d6lnYVAu|S9?a#eGV~PKz zSl!GGzi&GXV?N`r4SxqAYb$I!anjcQ?;h~|UD^4|g?y!`LP+d^rLqHB7tg#q?0QD$ ztviyL@qPJ&Fzn8svrpuxYR<$!qLMUDfnkV%4KvP_9Yz6Pyw;ixNuN)17DY$Uj-Sm~t&T?LZ~g0&k=?8dfr`OsL=Y=OA@vg8xa%i~L&Zn&f=$Ve%HbSnt5 zx9a`{Ek3Oa8+(>#HljLd`BDbn^^2l%^AePodq=H2KurAXD3B zs+D(N>g!kC>nAcZ#vYKv?wHe-hmFH1AsGa|n?3Om&5ID3)T+u#4j?kw?#i&0LSOe? z{eHu?c#o&BSgl64NFM(aV+0L2A~g=NTo1k>GXTe>zw399%@IOcq@bJR;ZX+SS6^XV ziHsSZ)HtyI(_`VO%a23VauGTOZDGaFIgd=ayRkGqlvx-IIGaP_M|v%g>@3*IAp%{n zAm-Oe5u+Fph`!o|dJi$NIt!FK1lB>dLTq~?@`NDIJ~U(|e(t&H0|-LoTBiUV3M$x; zmmFf7fHY-^tM1AWy`{>+qzDo1vGC=`p3INHX9>nYO7j{dL;Jvb*1RN%K1d#Ft6TP6 zykU*!!gVm~F=of=@P}PYm7AC)_y3EDg1&dL&@a7L`exgqQsFY}Dy^tTh>=Nc?K|@p z?7;|1(hhJ#>c{QnbAnJK1zSDewTlZ7&DsH44+zBf9enqW2to%aJ@v`;5k$fHa|N^( zs+DgY%z8DD)SZi~@VC7nHq~OpS6IF;By9Rc)5|@T?my1UPW+(-{N+q^jUgHzO`o#b z8NPjj5bSSF@n|1-X?djdcoVwg_BoxgM*rVb-u9a2_8aF221;h-d>zyY{q~)|`^ICw zkEj{_+8REUaTFq}uRn;A9vd5Dr#`=MC@NtVY@0vVXJ-IpDEfYq^m*Xz&twsRiK53P z$7avT6unYZjL%%PYT)N^ZfSRUr5d&l$< zj-m2*xuRl~5m0%;@OKBPV1Wl5sYpT4I|R}LbFr-Z3H=8htAJEELpRB>Khpx5m(!`D z7SGw%Nr#zF#OF0$HfV0IDNNEKTM@P=WIHAy|GD+9^>r$gS0SnYh|vvkU?B5ddNPBP zOu{gvP(!O027tQRU@jBF?uj)T#hKe4$4YGCY<#=k-p*>|KG^tdZrED0tP;(SG_@hQ z+yFl&0p37|LP{sVNHGb|S}Ot+-<3YBKJcyVrAFTE+Y8;O&{%T9oanUy9t&!R^~nvw zmu8nbF8dA>Ob4=XcZr^xM4Dp&l@uqeL^Q2UC5lhO*hdR~_`$C@9;AZoM&JpGgu9~# z7W&s;FeG&g`^L7wWBdd)PXdFL?=7|lqa)v+CQ_meKIykB3CM*a>K^1s_3OL7IVJR&wKH&Wg zp^)N>aULAvarTXGbPk=k4vc%r;4Lcev53XRS0Z=s$vmU(t~q|f#4r9(U_i}!crtT9 zN`!~M->-1{`nFyRs9TOhUh?qT?u0~PDxi}{too%N?c%F&S&Je1&+oRsJk}>+JLcK_ zWSFM!j|;|9S&Pp(MKfS**QBQl^_-pGx=_a7b`ScyJTtUt*R9GLyMsnjQ23eL@{dS=*P z`jcv{Z_C7`ar&h$xN9T#+K!U2&Cp?hEHD7;o8CWO0Biw=#pG>Oz^Qw216w441RQ%U7JYi`fHe!sc`K0VFS6*iV{!yr>BYpWIXWS8z1UM$5_==UB_I9 z1+g^;F;h;tKKqsRg8vp9q|;&qGfTZ(xLpQx4;oB&B~1{usOeb#0X@4ise*;z^4XH| zq)OcB0B_fujJGsT9vEDze){WyNj4dxUuhwWUx=8;rr6*@Nv`i`?*T>)F2|~O&F#g< zr0S-o7-bh7p~ScQBVcVX)amv2_g{v##p@JxF2E1^<)g}bc_ZERFeU43<4cJas?BDZ z?>hOT67y4*TG|-)O~Bd5xc~)_@p>!GK=XyBv+&=t9rQg5j`Cy<*-%hp0aknSu`@%P zaDxzA@1hPN(JE)& z)yH|;llCNlp)dn^X~T>9@cW6ev1CYTPe>smsMUk%*qd_=0q463QMrD2y<%2km8N#> zF|_%C0|!L*WxDsCwBT3qOa%}0ZU_i4NEbIcMY1QE)=W1kxHEf&@h7cr9vm-dHcCpF zl&PI=;Y-bGX{S(sY5B$5l9bo@V z#7mJMVQWn5rfrXOL=4(AFNv*O-rvM^pC>%m&!+A6Ne}_8uSuJ~e+onyeWjZC zVfs0Q41zL<_h);Q9|4Jk^a~U}dX)1pn4yh9SyZ`t(96%KLE%h|_1+tc^j4_3fzqx@+lJDVRy1^U1tN*fI0_Q)Z3;yP6Mwu1u=iAqQXs&i-E zXeSQjf?1`(3{wQN9u<)l2CnAG&!YUIC34f4S9(Dk3#H81cBw&;J262?FHXm-3wLg) zG_URgO;`X`>kE&TpN^ztQTs>8Q_w+5wf+D#)&+fGFW%|UMptbr{NnAn-3Pc;g3JP* z5Q4jkgHNjFYg59Ec!n-7EBsc2LQNR_Xh9n6at{R4c^%b>GzJ730g#1R0A3rcIa-kp zpRO{y97n~_|EBDXi2Bn{Zse*6;j^jZH*)#T$}{8(zEKc??HgxrPueY819fS@?Z}^M znv7*biojr82~kU>iaRWJm`S)d1@h&&mwJ6kJIMUDlkH-o?Dyi0$6gVATH3p;*=Jco zf5e3hmwf~Zc`Mljm*j>M9 zgn*82ZeP3WF113{D%6%7Jp1jFHNtx#jmFSm^lw3j<;+^C-B~FXdB+@@B(1V~j_T6X znkpCbK;8O@F@nE%qDMi29bPg8bi-2`Ux%P-C|R+p6@F_quU1shcq0cr6MHKZfc?*N zNUhXI7OkObQ#Q(xiI*O{OE{R4n?9ISK9pK;->trvJHp~_^8{%dA$Xz8NNMroGjW8C z1Nsy(-uLWnVuzGb)p7lH5Jipf%SE0u=i~5e2-aVc3=poRac)IPFJ4$8yvnl{bPNtw zhW!1>h^DEvNT{SrPLO|wg3`k?K&KPSRJT2@`{s({T- zwQDe+bV0XMCMYbg9rgw#-w!Cmn11l~rBe=r$>k4|`!m0>-InByjCdJc>OaK8EqPWa zzQ75sQF_vkPj4|ynj$ za|TIO3;Xt7DfUjXgWKsx3_TYq3_XE99TJC>M}Cf(vmGZ2C74ltAd4R+@qZK+gvPRq z8;XF~Km@5)fhkaNSpx(Cf3{aHbs+!+5NlINfsNStMYU$oDeC}RWHkz5z9m&voKO^V zd9U7QOp;gb?b~a}C4qpK;lmI4;5*S_YO-%vI$)zEHE!2uEMgEWT|1|)8?c$& z+%`SDXGN~`fU`4QMpqnUVloXOVHj#^SO`3IISS{7!TVF^to#yz4x7oe6l((y{QdFs zM}UY02?Nt#LzthCz+D(}^dZ0H$=604udGQG{f5;-CDyyi{M&=f5r(0!tK6v9+lLSz73jMbSP*H$%I!cfnSMG82JO-(9m}& z`L*`kisy&Y`K{k-r{3!zLIl7**eG{E&5AIhDaZccx71J)Fff8r8+G}=PI5lT1rSvr z(S2j*;WV!#*S(zFuK`a~qrK+9T}$-5kkbiQ$KuQhVu{3xYTI?l=be#8;r^ z!?gTpCcP|t1I`c6Y5^c8B^Mmw#2p)Rk8GJJ`z;PRs-T-SfwmqhMBaogzu!--Y;J~l z)kQRW*>w$Lq(TVcctM6B-mn}3U3zz)EW!Z)p!}2~0GlED#bJf+OntYM{RiuB?Jjz- z6{?q!$`EnqzFQy@3sxO2iVA$sWWjVqpaO}vKG}+p2XpkOD5x_)V#8H zVmc<~nK7SQiIadGSDT~dqhUpOUZ;9I)#3_f7;vA^GL{+Kn|NrHQ}vtBXJ>g0G{ zauJam`W;$31&*b{<&uOzBS=sXg}y%1mzvtz-cUn|ra>vH z8ni_k6KF_6tbc#uVn#)@?4ArXS#-|!9>{Hd(0L|sN=9RTgWau0xsD>Lz3 z@)c9yrFUu3p)>7Vg~Sro<1cwHK=#3vKj*)3NQCZeZ_OaAE+jiarxBBg;RQh`Tr%}K z4+sx}C4BkfcLCtCA3ewZ#zKdc7n~he)Io~e4mnuJnRDpyVMM`<6jvfk8q>>WX!Sy< z2B`i?fh}eR5acfC*fcdf-BBAak$U-||Jwsbfs&LH;zD9|w?>a1I+=#O-^)#!r=|*I z3pgOB4Cqln&WuGCQe^6Z?}$C<^vRPZ;o(|PXhw%Zax{>(VSw?Gv=I2|mR|cKS0(o8 zCB2olYCD)A*b69s2Iy>%{n*vx4CB{@h0I&Gl8^!~D8ynwEq-VcfNKqySSvD5LERK; zXXDsTJiOKEQ9+5_*qmTV8%$3 zUcsfmQ7GdhM}*<={datTn*KphQvAmiOGxF8Sf*G$JXK@VJ|fycpG)9aWnF2FV{~2B z*4oKv@Pou%xU;Chz`zS;)v8Y z=&e5b+q|T?U1{Ztzfrea8r@A}wj*3s7 zv!ZC{I1EO7y24k0jg>%G3hqgeu|}S2BrWX5&6~^z;<~|-gdjpl9FEsfxX+Py4OHx+ zmiGSvZUB32g9tK=kfskHPzx!v3lTjl^qBJ>Hu>kOdT?+s^6v^$cORiyLt)J)r9-!y zu1Z9<9w?mOU=>y_oaU&bR+Kf|K1bk)Xvu~Jrma6`3YbcyxD9D@><9mc@nSICsR$+r z2sZ?IA;E3k-Q57PB2_Rc(AjOgiP$EHFo67vQR(1uY@J=7f@l6Y$hLNAbRjrW(&G?DBN5$cO?jntv(UAlJC!<_33`V4RTXkw=)x zTjn^=-q+VFj(>Xg=MvT|na3y5?fLIqQ9Y&TBRqNj0p7wIBAQPVCD{4eQv_6)kQ8s6 z?=~DOyK}y*A{CO{JUmFwgr=4j5#jaT-ucTbKVE)Nj^f#}8wfWpL@^1)0$vb<6Zt9A za@TPr^&4?_!E@e)ScX8*Mn5#8)?2rf-KZZk3EKN4juWrDFyl`i^k zEx?7M93m}(JmM@IkCx;f@KbxMXp#Ezn6Tr8laz~Q>27He!DcV@dUcO!5+!qUJE}6M zn#cuYR$R%r7J@bK)DaobC*qP!#5CTHYI)#UGOJ`Dr$Ee#T^O~Ek{R?$#IW%1deN;J z=)!dqEq1p%^cznm+yR_-c|MO}86-L3d&SErwb1ls$I${T7PI_*Sz37M>651LnzUK+ z4;y!%cZcdRaHum(4+*an&Thz~fA~AMoAAV%RGsxs{q}7714VZFAxo z5&7S49@qO?nZlrCf+>b9a4*XHBJS5FcZFstB72Duiy^AbGf!Uq_{ulm#ny6yCAJ^@ z1TqIJFf&+0vqm=SmQ2A)lJbibD3VUXncZqg8gOh#Gl-btPPXl z`qlQ7NMgY#4oBQ`ntjeXyt)&S>mzhe7UiQ02HT}#Bx4El!aF{@7<MH5XZTdgFZ9! zp8J06?2gEI$et4FgRSe?<;7GRofb-2NoK2lHfkhVL@8S{iAEfR`=PE3+lz@*28U|#P=+Hh*O(a}z z?p=idGQ~leGsA}`;qCDM8hG=D_KR19xs&}isryW91kOD%uwio_E;v4>pH zGqmW@8Bl%8ZGYmtL7-G_?&U`9h>bJcSI=)Qn!regm~4esy|}TFA5ovf*hYtf^Y`Bt4LBbY1g*`UHFUTFFIgNROp0uY$K(+0DAEOlo&g_ zutdEGSi-+BQCNaY9zPb6b1djUig5tr177-eSGf)=ce^ZJg}A1wew~!dqBZFCy>)*9 zIj2@}B80`|b6S<7Vln$&DRLwX{*tx_4_>c=^;8@{AN&x+2TFp-6o}X97?^pD_O^UK zfOt`p$D6_z5&$(5Jl(v;gdFQoLkWl16tqwpAKuOC>JXoyREp*u{Wf898 z*E(I?b#=BQ!K$Lw3$K4im7b&6UuBlB^FV$2@&(kh%2a4WG+tW;IV&Fi8$6B#Jm!xf z0!}CyM(XLYJ$d?3P+xElqN92cr7jUPu~3$bMplXIa*of#J*G9khsLV%VrTGD*fXnn z#&Qx@6?!o;oLYJQYwdosV%mDzF7xhXN4r=DW|~;kkhvZpzXh0D z!}kN^N2VA7<@5-ID0KB*ymGR#3BI{kcTV~2r}h^)<&X;HFT9crGNT9*4Spv26qUXe zuvZl{$Vm?eyvF)aZ$XWdW1ecf4JHCK6kM=;w;}CGNF*6tVvuC-0hJi0Tlx&-Mj@(Q zDAoZfPm3pLTBUvIE+g~;EQF}bceWQ#fUaL0Spz}J%#3si0}*)j#tjm*)Z~WNYC|ub zdEw2+4M|!Y8kpa^g+KH0(_y{cq_9i6)Pht~MZZ7B-17v@&bqXdFp#NGLJK`K5y}dT z*F|MzXhiZ3z!Z}6%hdR=zP=D-{&Eg^PDf|Kn!SqfqHynZQY zm>cNOJ7xlvrhKn7PB73e^yV@dB zHi1}Do%x};eZWg-FOkvgJLh;!K1-|UkmKknim(K#c0vP(pudK$|mQ19|--;~N^Q$#^%Gijfz;qlS+> zo4AE~^^{Y(>_6uXo%49+)yvxGxZPvD3knA)sw*=on7vrXsFD?~p@TlRFN)KBe=Uv1 z3$b3O>hSKx=12P7OV(KzF&#`U@G3f<;5w4Ll`S-CnVOgX+Uk4#z1)lOFL>9ba191n z3pgM96NX$O!m-(j`t8~hVk_6lJkdFs3xnN0&-ETNou>5v3~W$yi7IIiAsjuSyg}8K z?FqYJ;dl*?VJKqaZr@c@x_+Rk8a=HjX2%nxD{S}5SGX-vvO2^U4p1yho!tCn+N~{2 zCkGEh5kGgkHg1ANq<0lFe$?OG)cQwmy#KHyKW9Um2Z#zDC%F5_-8z-lWx((FhdNPf(Yoj9a4Jwn zn92`H;wSx4y5Zig;+^a~FwBl5$VWvliCMIKh$W5 zmJ8DQZNA2O#QMgFa?A+p#8jkD;>^iQSp7`~6CL_wA%6DE>35Oi#ac|xB}7_C z?D3EvpdG?}u=V@sV?lg=m&?5~htK;@{@G_x0n09L7wg1W-IpBk47?3 zrFNM}jKYW9Y=v7J3AWUj1h@JUKD;a1#6RdR4D`Y<#2xa<_UGWoHZ$zU$W-ROdiUh0 znR*XhxJAP3h*p!CKK*=efmpr-`UKP_8sG4IQ;g;>(ZyuX2G*ajP8Uf3%pqH?dVZ1D zs8`A(c4J-f+M_h4sGFnS&nfp9+8{!aCf#bqVU2fIzsr~U$#CJcSorFAe z-fE$Be;w06^3dyI<0bqEjO&dUT<7qCfMQi|&4k_6s->nHA05LM`Hd*>bo&@|snKUn zgqq3U_q=&uRzmX1(TmqQs`k>p!FEFyo=|yir7*<4&^@EmW+lm8^Wfepx^YAyX5{Or zjM?qtTV$?ZSMVcHbsEb(-znuThx^8MfOj0n;xno!(&JDN$HWqa}WIo-t zX=WDW4#$GNnBPoOvc1^no$$Fbro$2HIzn2WL@C*k!aUmI%WtckmQR=ozBe(S6AM$z zw(|U!r1uOukUqfZAIoC#Nm5&LwrnV>xJZA&gHnD|K|fZ-CBMoouz=VQK3DF@5j}R> zJ3gsQQ~N-#Y8%Hl_9ML5&h#wZ+K?ksUj+S}j56S{C|ty@`GozZT0N8<3+?)vLPBpn z@DBzwRUDGAQu&T`H2Yv1IPdy+XC&Osb+4`MTu@HmS8#yg43P;D-?X~E{ zsD}m|#ZqWI3w%8~xUSJop6i117jT`NU7>%~mJS>&!ZT(z)7*jXYZPK322+#8zwqf% zWOk_8Io=xHiEfhLe!pTtzuV;1unU1VcdXQ4k36SY-LdNiQ}I%ZB0Y+fo&*WP{i?Hj zC}VANj+-v2;w}rKenNY&eLqtM{TNJg=#z-Tz;P$-3&M#kUk{m6Jy7YYbM5kgu$*1o zm%)-o12fi}{V7=tcP1hpzImL?-XJw44ZhTbA{XA7gQ#{TQ=RQSsSVBlOz+a3N~V0&hM}3*2SKFMEW{o zp?<&w6UdQ4W;~vbq1W&$rT>BU&NRH(b$;i;$rb-uYa!@MMuWtesJmyw&usdYfylws z#MA5*%|d(4SE|wY98#?=p_5BknOvEW8{v1cFIoCeB}2pQn1H}Qs8`taaGV1O6|i_{ znnmSofpD2bV(2^$+$QQWxF>f#e1Db=hG0bZ3vMJtx}^5?Mi6+RQwn8dZX6z%R!HBc zZ#;i-a4KiOjEc953))xVKq66V2x{#NDl60hyw#_+R1zU?nz~vHGE`)&01XWSrv-s4 z4@SRqf+47|p^EZow>qT!LN~zlgNmwMDCpuv>I9H66|}3mPw1ib+LLTpqCoT98KgewCgc@5xo zoSdBHVFSc#i5QBSA+sLag9N@KOG#AJexC7s_NWA9l9=;xSK3VCyNI*7`j3f>?-DHK z7kBe<)22)AUrfuZy=Cb^<%_YZJLRL8SBKT95&aW$sr${~;N6O+P+A@51dg-OBEEW)}8VlWlaCsTC8QJ*f9`wzw10AC1d-T8oZmRb0S;!EkdcfrAdte0R%P<0jkR12^6S7Y{ z>01Zl1{vxORj(qUOyCRj2I(mf9ygYKxQ(xkGGQ)QTVr=*N*N!Ure@cK<)xj`KZ)k0%VfF_Nqe z9ofq?8D7Na766Kn^^8e43f@O5;BS{ z;!Q40W63qIK!36_Nh-C4zA$ea_oF|;ta79QKP!?dG;CKXG4wXueJi|3Xs>3)o}QUR zW)pJjn|rouz+Uk3@ex6Hf|yV|FRXR8ZUR|~ICbDllKkEB?WN+}XkDqd$SM+2g(y^! z_X@~Lu>^=h@?M^uVUX`rwfyvltaomxztl}U0zyOuxbAL54^M6gYkU6z*y__ zR?>m+THV=o_$kAR@XG9I<^4WVM001ad*UH$hKd85GkivrP3EjOuGb?sQ!J>M^xUG) zmeViPL=-=&W_Yx_T$rf$>ZmK<*S8u&?bCQKytvNJGeiRHj1;badno5AA+B!`PjRq6 z_0Wsx;mWLe-#35aA=aOw*K+5Y<-tIGc{VKN{sqcHU|83w&fjU4iwf0r;Wla=O7QY{ zdV*#^`}T3b>`bH{^N#5Jj(d?B|3J<3x;2I(sTQQF*&4?Yp!>*wVrDX$w)5`nMPF>O z^jYst&DyVp4HJ$w^c+#d&*u#aPQ0VA^8_%S(Fuqz7BiX0*U6fQutg{8UU#9Utp^_` z2oNu_X9!IIeuG2{K(CF2q$C|Aps|kbwdMwHEKbZIy3qFKUI;IGjwq|Is>4$wub^;c zd?}%82JxWprbXw#UCWIu;h>Cya)T7Pg2>`HWw3g-!Zvsn+G&w?U-+J$`W>0Rau1bM zdN3sSrnLU4eKPkh{yKinMx$2$)oLUvqtxIKZGka*i}UD>O|A^O?3qh(Hwl{^Y&~s$ z`plG36Dr}j@lomNB=Ik2J`6s`(tl;@d(khU8!JKZdL(EFIq|QJb}j%bYjx%~kE8yT z6L&81BQhfdf6{oZLyz#sKK;T^{@2N+=F89j>|+KHA5#!KU;$JbI76*_Z|_r)zPt^2 z{heS?kA+k90uUdMfVK_!5I#(teVv~hRI?`n)8S6aV|x{%^^2Zuw=mruuCj`_iUF>3 zJ{%tBp9LM;-1#_vZ-6VKw58?Kr8t3m;Whl&nl|NEX^~a8yM<&2(VrsK9XgV+LpX94 z^?U+ftVD17AYB+>XoSaSWvZH%bx}(NBYAlu0H)D{TWF-Xa+mI0}b0WL!| za@8y7!xJslt#g2lA%yDbXWRTB5aUe_Swp zt>zpFg|s^mI_+&`Q)w=InN1*Z6|y~FYzu2%RArMneND;R!+*Iful;Dn$C&ZG>2c@m ztmzWi>6#~uEvpaNtGb+ati$h%9Brdlp5?Dl%DBqnLjQGI$gb34)q?vK(El}pW|s7G z)0Z4(PG*!?Zg=-(Ttal@92<74^2R%%1KpXP*=?!ZVM`y|l=Iksm&@ z!iy8v`IZJsmQs{RJKLwdW?yf9{dI~fxBo*v`O%PcT}3o}0* zDz*M*k7V?3)FOjgb&hKTsPHXVrz5NNIyt%$KU}KkCh?QF+g(ny#WI5Uj!g-y?rK|V z=T$`mg?pv1Nw|FHOk5cmL5HoxxMNE1H{Q%@=^~a4`I@lHpHIjq^O00->AaXtg8XtE zmAKTRNK5oAr}1I%6G8QX3i;HXd3D1wU4$iQJ-Vf=yqsk;=IfxsAb?vpoF7R25X^kZ za603-tq$U10!1f6!WSmj@y{@-#BwM(ZM@0i3#78Lcn-Jxp8sQC>q>}|aEY5+s+2o= zqIE*3H+1a<6jGt{$6awWRQC9lu(d)sDxgOXiJ`wayZ6-yxAL1(e+IC3s!XJ;GV`Y-1hK-gS2SPauWEDY2CLyjgO zrjb+&N4e8CIpsXQ%SR`Ep8Qx~Fuq=HZo@XU(RefS9c$d=v4Z(tLh+CVHlCUp+`C8r zxlL@&;qk98REamYvV;gz+ol)`??-~C{QZq#`~ssVs-Ei*;LEft^vqYUUcHR)-$=za zf{Y@;{NSsw1PoeY#>~@G3`sg^T7JR?2wfXk(^Nq?g&3XwDR&Uqc<)WbAvMwvC;&5- zJ)&X)IYo49IugVPSXm?lLQ+8v1n(d&fU?_xN2W8*QdYuBdc-z}`W1g-2?}EPleSm0 z^pPp!nXTm_N$$23Kx6a+mMvpjyav?mNaM$4yz^81@go%R-4VPUHIp*rldE|x)G@t` z5ZQ!20Ns&6_c8f@HEo#M^b3c~zqyCNkC4Z4H7AFRsAZ50fFMVZ zf?A4SBmvJX0Y*2_Yjr_kI{qy7SoHio#MKHT6!FjUxo7Q&C_Uia9t5d$vPe@_%6!&a zS6Gv&%P|?I7v?|AyU(Ldc(?F4WAy=t`>O=<4PMRmdpb@kZ#L@ACQ6Kp<)y|k`kgpL z+)gdK7~^I*>+Y0$Z}0A@rIN;$+^IMD2MJ03OZ=QcN zejKY)Clk@~QMY~bh36iXw>WZz? z5>HnXS0iWqg}iSRJe$-$_{&~6eN4YSg6Fb@k;=EV-Mhbk7Wyj!=lwDCOAR}Cd-bZC zOmR1pvrp1K&fzs^G`Sd$+=K6zY=4VHh)!Q^XFkCw9!H|8D`}h}4?QnFk%Q7@4HjE# zk7j-|-+5|9#f7}tj3LPjipiRESlj?S@lNL}*=w^dr&ez87OL6ERar2M+^dX~e3@ZT z;2#y!aN*aiHRUQ=idN;}&xswdNYK3+nVu$At!hH%Od>KDK9s8S`6J3E8Te3pDrt1B z%|hylgiEsc5bknR(&rEpC7y3_ho_F=vx6`sK0flLmylL4 zR#_~^DWeQOB5#%e!RFtIj1~ zD0be1KF!tiEY8e~v~{#6gRSQmP;!6-8v}VtOUc9t3@p1kQ=cRfDlK)IJvy9{1hcx5 z_qn_+pu7}}Kl=2L+h_#s7HsHfY1NTdTvw%4eyKmn;?ZNuSs}J4w zf0w-W3#Ma0_6ylkq(aO}z{UE} zxsmSKzA~TACw)u5L@*>Pr(SBOmw{xWN9kx|4hxIN#Z`Z!f~_p{@R9F=-i1CQXYT3{ zwRVO{$)X$0=VSX`^q#-6)%2FaOKN^y!58$l$T>g@CkSW|2CEw?lo=$sctteEtK1}v zOReyusmPxlPT-s6`07g*MH_pXo_}3yWguF@&c>U0zu`DG(U!m^HvHivu5B%L#EZ~y z@a|yh0O?dSE@z^Wp-mhBEemNA_I}%OYl5;S-lF6Dpq&Y&@s(Q_rUKul$4+fZSQ{*H z>Ceq?e@_w5a`>%gI|2a={D}-|L`@ey8m^?XN31d^;6b#r(!Hghah z1DI`dD-4f1FF#S=uM6AtZ6t9P2P2i1P|+cU?~V%9^?M@?F4pvOHV6=pTd|KbI2)Xk zCRegmD@po==ejfrG(5*z;xiHnwj(5W6Uv-udYBU!;e}ZG2zHgKw34GzT5ej4(xg`jV@fwbtO?;btxFN@Gi!)1mP74+ z@*g0_Lcr=L1zwR;4~6%A2;)f?+5e{KJ*f5}`}Z=~>Ls9V4ADYXzYPJ2cyMyrorl(# zl#~xN94*OmHCZ~%JEME{&isnQg^IZ5e<5Xbuh!w=cPT6o0ur$BcU2@8@zTo&FJPe~_aRk_QFxNj~5N zMM54>g(-3%o!`+-A8X-0qrba@ODAgbD*+9L>Jm*S0=~ z*mOQFYO4OwshDR*zR-jA=I}9~HTA_DjnVYRXU?dB2&x8h&pI!HL>ZYzV0CMK0`WEg z8%=}VjSdy`@u?`J)!{+gx3_r}4@xO|*Q4Qlpq?x5@hpa(2&TgI(Kl&xu{pX5GgHd3 zl@lfwrZ+-;)To?JcY^WN66vxey}{C}3%&2=ELBcxG<&wrIB)(+Nb$KB`tTry$`{O^ z_WuDX@oqi-bj>yd(PAMkvNO{Rh?*5ihX4`l4=C+Ip^jbJ)kQQSIliY+_4R%zqSJCeWc z-ak;knS$j3ZZRiU*Tj^)PtZw8OX~LNqA_ztiK-wr1L@ujDB{iG7DhVOhR=Wq^;YoZ zgZ@F9JLY-UXtSR?zrBwfoePWnc;4ceM%^8m%&X)0S6bx5+FDu>N@pTP1FFnT+fM@A z_w?${$F>4q0gtH-rgA^mqa4i>n{?qdi}i}%3w-0omt6QX^nISQzXyM$a}VO}`QO@X z^6zv=ra}S%5V<;-nn3CSG%)g)QT-*BT&Py~rRjf5%gL3T{`eHBueJM~GS@%-N@aa19Q!$GGgFE3Aid3@UiY%({niVg+WPip^u zAtZedKpj*e0Fl7dBSBK4D<`o=c<+%b1QQJXCz+w-f#Tj5I2}P{u>%GE7d;7)Ni!y! z+{_PezuBQ*;Tg5fyB6#BDCYe#o)z~n>aK29;kneGTUGfGJ=PAnY9a7an~E3kG=?<^ z$yH|Ik!4V~7SRnu1Ev=VFr#YFh$^ZT2^Rrn1|V{XyaQ|&;z&*zyNC|PxQQ8N@RjFK z;F}3hMqQtwFlbk#QInu8f4pBVPzuymsh(}!4`x1pzIa@jo%XyRgH^57kit?@(ZxCi z;#UVI7z0{5+*!7`dm`jV`~SWUla%=!c8d5o=&p{JK<<=HlKSU5^Zw}%je3+&dYJs1 z!{!elNf_`6t?cYNKro5qAO25X9ZjjIs(KDEsxydtz*js|lqiOT`H3G`L9DoN10e5D zL}d#b67;mDfBznqeqx6GzhJPetPLxBjx=lUHS6TVr9BIu_nhTt(=#scI&SvZvX}qc zT76tLJC@>r1qgv9WKRL`XXGy_tNrvf1WO5wyFr)a9dAHL+4DZ94 z9d;y7qx%~8Uj+wYVaohBrrc)e`QgqVzLwheS*yF-nl_Tk*<*tv`1XqU3ao@yy71Ef zimy3f^U&(?l@AK9mMkv*4lcV=Tf7;GbMe-yrk3TrJ5}i=Jl6k`x|j9~ZgOlx{@q;8 zSFEuFLnf}pJ*n0VQ0Ob?n3$!^t~lQji1PBAHN%Ze%tbXepaU8-#>{mS{_J>3 zQUs+$g6u-33d7Gfhdla#d&XnNPs2SFHkrH9L485pny8uRI%ymkIpFnc}Cph+$z`djT;e}3;0mxPLY!#dGE}q z*9)=`!;l0SGGrSi){>ovVhL4mt*itSaqgv#!_tPSf5u9>)+w8hT?3E&h%)2uXd7?e z;@WxU-)APB8skD)Onu0vymn9MmxKhkYYa- zzNh8LAepGxI&FI;%gUP0-TnJJ6CyVQ(EV&SN&^opNwAUhkin%Hpo51DNMi+>AwB#G9m?#Yg3oM51UBf*|Qsw5^Zd_dg4jLukgAj+e(Gns$6o3mKahNOxmi_WR}dDI232s zsaYO})!x9&MxN*1U9(n-l)h*G&?sJ6;x2uokF{mDXG>jM%5%}1Iz?~!C4FP}IpmR^ z@4f1pBheeL-!5BJTIa3B_W-0qvHJ2~@WH1Yy`xfCV*D@O@8zfIV>&rwo!Fuh?9J*$ z+HAT|sZlks|LdOd32{&S%&Wop(yaRcm*rblkCf8;t%g6iMd;OG^?UL(bq1? zbz1KEpkZUgZuZpE&v>HWsmx%y{Uv@Rc?$aqrK?tzA>j+>o$*1Q{>s}=YV~zxhr*Nh zlG|%)ja}Zp9-#T+io*W7Jh^XSsz8_IWyW3PQh!Cl406Lw{IOT1$v>rXjkO;rZ#ca6 z`Wz^hIyT$3cUG9~8|Qjrm)?gU;pv9Be}DPPDt|}KS2+_A(URs%ehorBBWqqamK7D> z3)B=OTFn|44?HGMV;gDf<`@^yt+n~{b$l}{_TFbAlA8ZIW!6CY+qO`ORbNhil|dU* z1sk#Ad_0Kf5xI$M;bG(2?{nXNh`hALTsM|XjXm(gxy%gM@hzRhXdZ^s{%<(0_v;>g zkb8I8-Qcy7S}{-7c&cvDTFo~t)~9`Q1yYgrslGQvrAcYCNE#`a29m))Lz`LaQ2O}h zP3$d=6VvZQ`#ObAF?rIxuzTLf!|&f_xAn!RB)lrK7w%MLs>>JH#eUCm=0^w7GjD5YkV+5 zhQVCLqTmYE@^tuH3zb(Jp2I&?^l_E^Kkc1)G*<1q$G72?GoHW)Aeka6l9WP{BFR{$jERH>kttH9L}?Hqvye=QS3;T3_pa9OoZmX{ zS?m0B{yQyeWj!9-e)it?eP8!=eZQaU>yJr|8Khd_2F%p1%dTl?@F901+}IvvDK-k_ z4w8@$`%hcvvcpXr!}I6)yjFy{+ip;JEC=kDFu0%Dm<#f&VAo^SwRO(Du+**i( z2fR1ip>)>AqslQOrlH=GQNLG{Gvm6{DFXpfB#;)p;#Kjn(v>9*uZIemeR}`he`y%8 zE|WF`%P)dALCc8xey#1>w=>2;Jh}z(ve`q!`jZeIg%>k+-MOQ&*r?aXE~X}4pLZZq z;ri3q_vbhj)!3V-70y7gny}%IVD}YRYMMVK<7l##smEdapcqDv?`$dB9^4kTL39%P89ad3#e^uNyMoWF!A*gM;~P!VvlbWEV+rCfU3*6ZWkB7QCAL^U*bo$BXRbE+(&zckHR! zB$wiAsgh1p+`(H)nJL6W}4Z)Lbcdpsd{SN=Zei> z+%)3N2@>i)cDs@JW$&?eS+%z;w+qU)wys#|YHF>SUEy==L=v1TuKMzGd4jbv7UwTd zC~f^_Cm!4+#_hz-ucIHnpr7Nk;NMy8im8%bMmH|`{P6aX=knTDzQK-JM^NgcnL@B~ zmaED|C-T5jl+#3V33MDchsPu9 z2S#0C-Hfb9iWA4+-d?p-*iVb*Ch?WFi^lT8inBvN!!CJ^?Cv4|&+BqR*YN(8;^*c=ys=8-s=XTrEO$Di`GsPX;K;V;NtZ0iuqUZTvut4Wj(%b4ZZ_#7Vl zIinp-Qu~URIX`g8@T7%nYikR?*Kq*clDhkCs-cx-t)DC?Ai*~#5;<${N^n!W$p*Z26*!9@MVefdU0_setDm5jTLWF}*yLzwxMx?ctf+aM`( zr8%`=3!VL@{#%DdfCvz-Rb$qXIdvkdR|8kF6b4p-*Bj;JZr$rUJytR?;Yz7$T-uV> zxluNIc6tAjGd!JMzP8s=cvHvZWP7*B_sa)cSQty?e+}>!cqhzX*RyCI*So02!`}t3 zF1x9mlAY2bzi!<`|EKfsUcH+5T6-+c%`I;QeRjFDm_S(mSS=Ql-cs;SW>pCJ&=~VKSRq?Tig)dQKY5~fW;<-S@}f#sId#yPgmj`2>0*XY`$#XFiTyp_K!q=@F09H^UZ1GMO0 zrC1L*O7u4)U-F8hjkl({x>w7F+dem@=_Bji)(VfNR{p!KAJldTtM6G8qqzv9fwbF$ z!M*rNPL4b}uFy zFv3^t>FABB&Q{LPP|<`i=(N%_!rLFw0*G8?M>GQ{K>jxdCeCF;Lt6V(4e* zHGl(|;P06C;C7BEJ2UsQ%dj`=N=E3qc3n42M0BU^+&`#N7KkjSA!Bt zFMwi=o3a5iSh#t`g{hNbfZrc@WP5!Cb}mM}iDO{xot-QC2qQrTUXoxUkLg23D|BYO z@`4WBPZ9QcUE#%J7+GRUO2%u&#Db9?7Mn)Ua2;-7(o7#gsS(^%(Arsf+`1G!7)k#id_fI-KwFNOoA6hd%=PQ9x{Lc=Z3|^h{Jxo zqbcWj%xS1i7(`-ta1z%n5sw<9tgNgW)0SibK9>RVhDl@+cHY3GokOEjPUVtD^}h76D!xP8yP7lhCs#Tk=JiexnF zYb5%%F$?Y8vxgB8gdC06`&a3qTQ!OR=OiP<^$+6& z5M;d|D8V&6Zv1%xZv1jN`=fr%*Z`|g@sK)_K94<0ztIHZi35Pnn1Go%=QW-lKBzvR zCFTh8txL1L$%S7HMo1}PUdaCk)c+`ti3n{0>FuxDTnp<3B`dID3CVre)zt+>h*CHb zA(XB*vKD}8j#`rwmtXNm;d<`3!d3k>*2p^=0>e4TjsA2ijC|>9?Z4ON*sGQ z9YJ^+R8wVr*QsZn-@L*WoZv|s3(D0J$25KtU?ie2l8z(i=1Yha(53_i2BO^1mEbmw6{--?9 z{2SfU6eOc_hIPd%gQ)g_47-e#7%ydL=0K2EBVQXgq<@5;4k0*%HNsubo9Q2&uxS9} z!2kXc&A@g0O1e&w9tZ@ejFI4gRlgG|@mume42a_JNE5J?u$b6f1V0!$ETk0z9p*$O zr5N&LaX(jf$TK0o{NzkOb3Z_v;LRzbS3)!%tKOPBoB;4KCda4U?LOu!RJmi7B8Uyh zUE=kipT^rsW70KQfb3%H#rm31l7Jf3bai!&*Bd(dS!VcTZG)u<{l8)roY_|aD!dIt zN8?>COla7Zu-i=H4tY&2HNrJ)vERtXDagNuC)Mw}eVE_eM4Lr02NDR&% zU6927o?~lM4A^Li4=B#(6peVigkP|AtIstvA&8FQ5ds(lG`?E$e0_u0ud-Nwd71MJl? z!O-`jzE=AU*^O;ay26bUVOV`N;G_$vXb8e8UW0CM(Sy7>S4fJ8is}L=89svb(K)^A z#D&S2)9(~|82ED&uXehxOf||{ZS|DT_<^TE3`>yN`Oy!mQ7|Cr5RqyUhWI@Ie5!$K zT2C&M@F)mk=1)+tO+@XRfp9AVfKcH_+1XxUMn&!gr=R_`gdF(`&}Ze+R+hh}QfAWs zDGAG^@u@r$a_MmTi)bYwm|E!_zot?j5+ysjRsRlZSS=*sY55&=ZGsW*_p4rq2-)D* z_y6`{x9vfBih}7=Q*F;bzTtm*(QAN&O5EJsBq&0}X?i9QfDC;@?8R5jL!ShqDbS;N z1tFOIgq5HSU4&_wg@uKJ5DmJZnwc;-i-yGQSOzr?9Eg_ul}-YNNXt+FC+YQ=U>4LF zgewL?7^!fVDJZet80Z96v}tzgd*}Urj0G1! zk22iGPXSUjABZECw4xbT6h}$K^b=TJ!VMv$^~c~BEsL8=j*H-bt|u)TOE`(pzzf<0 zhKMxG3Xl73ZET)>D)WE;(0mJ344AGDIFABQN~)n$j9DcBURp~eSI7Z`_?a(j<7mnc z^M^S|TnII5NAroIz^6BnFl2*z6-(4@;6$-xEHE-BTdd zmSU=wMuif-ef5yU$6vmn3|ZcW)RP~XO+V#CAW~0<Hn=2-PU^I3GTm1rG_hg-PKXwpka%rcBv8lQTdAR{q(3siEjXQQiwKR<)_wvB9dG z3?YvA-ey&Cx&2q~X{ReOM3Uq3LfUIXI9fbe3{->EiY1%6Vp#VV_7pSieBM3to)H%# zVqRP3SQ`__ you can figure out how to navigate around and look at the results of our small inversion problem. We will have a look at a few of the files and directories here." + "Using the `working directory documentation page `__ you can figure out how to navigate around and look at the results of our small inversion problem. We will have a look at a few of the files and directories here. I've run the example problem in a scratch directory but your output directory should look the same." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/bchow/Work/scratch\n", + "logs\tparameters.yaml sflog.txt specfem2d\r\n", + "output\tscratch\t\t sfstate.txt specfem2d_workdir\r\n" + ] + } + ], + "source": [ + "%cd ~/Work/scratch\n", + "! ls" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the `output/` directory, we can see the updated model from our first iteration (MODEL_01) and the gradient that was used to create it (GRADIENT_01). The 2nd iteration produced a gradient (GRADIENT_02), but was unable to succesfully reduce the misfit during the line search, which is why we don't have a MODEL_02." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GRADIENT_01 GRADIENT_02 MODEL_01 MODEL_INIT\tMODEL_TRUE\n", + "\n", + "proc000000_vp.bin proc000000_vs.bin\n" + ] + } + ], + "source": [ + "! ls output\n", + "! echo\n", + "! ls output/MODEL_01" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because we're working with SPECFEM2D, we can plot the models and gradients that were created during our workflow using the `seisflows plot2d` command. If we use the `--savefig` option we can also save the output .png files to disk." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Figure(707.107x707.107)\r\n" + ] + } + ], + "source": [ + "! seisflows plot2d GRADIENT_01 vs_kernel --savefig i02_gradient_vs_kernel.png" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XdYVNf2N/DvUAZmYGgqRUVEwYYFG0o0gqKgUVERUS8GKUYQUTS5QWO5lthQgiJG1MSA14CKxB6VgC22mFhjj70SFREQUdqs9w/fOdfDDFVz/d3M+jzPPI/ss84++0xzzT777C0hIgJjjDHGGGNaSOd9N4AxxhhjjLH3hZNhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmrJpu374NiUSCpKSk/+pxGzdujMDAwP/qMRljjDFtwcmwFvL29oZcLsfz588rjPH394dUKsXTp0/f2XEbN26MAQMGqJWvX78eurq66Nu3L169evXOjsfen6ysLEydOhU9e/aEQqGARCLBwYMHq73/li1bMHz4cDRp0gRyuRzNmzfHZ599htzc3Er3u3HjBgwNDSGRSHDy5Em17adOncKAAQNgbW0NY2NjtG3bFsuXL0dZWZkornHjxpBIJGqPsLAwUVxSUpLGOIlEgj///FPt+M+fP0dUVBTs7e1hYGCABg0awNfXF4WFhaK43NxcjB07FvXq1YORkRF69uyJ06dPq9U3efJkdOjQARYWFpDL5WjZsiVmz56NgoICUVxBQQFmzZqFvn37wsLCosofdampqejatSvMzMxQp04duLm54ccff1SLu379Onx9fWFubg65XI7u3bvjwIEDGutUKpVISEiAs7MzZDIZ6tSpg169euHcuXMVtiM5ORkSiQTGxsYVxgBASUkJWrVqBYlEgpiYGLXt8+fPh7e3N6ysrCCRSDB79myN9VT0ukskEjg6OlbahtrYsWMHOnToAENDQzRq1AizZs1CaWmpKMbd3b3CNunr67/zNjGmjfTedwPYf5+/vz927tyJrVu3IiAgQG17YWEhtm/fjr59+6JOnTp/aVuSk5MRGBiI3r17Y9u2bTA0NPxLj/e/6OrVq9DR+d/63Xr16lVER0fD0dERbdq0wfHjx2u0/9ixY1G/fn2MGjUKjRo1wvnz57FixQrs3r0bp0+fhkwm07jf5MmToaenh6KiIrVtp06dwgcffABHR0dMmTIFcrkce/bsQWRkJG7cuIG4uDhRvLOzMz777DNRWbNmzTQed+7cubC3txeVmZmZif7Oy8uDm5sb7t+/j7Fjx8LBwQFPnjzB4cOHUVRUBLlcDuB10ti/f3+cO3cOn3/+OerWrYuVK1fC3d0dp06dEiVlv/32Gz788EMEBQXB0NAQZ86cwaJFi5CZmYmff/5ZeN9kZ2dj7ty5aNSoEdq1a1fpD5P4+HhMnDgR/fv3x6JFi/Dq1SskJSVhwIAB+OGHH+Dj4wMAuHfvHlxdXaGrq4vPP/8cRkZGSExMhKenJ/bt24cePXqI6g0ODkZycjICAgIQERGBFy9e4MyZM3j8+LHGdhQUFCAqKgpGRkYVtvXNNt+9e7fC7TNmzIC1tTXat2+P9PT0CuOWLVum9kPizp07mDFjBjw9PatsR03s2bMHgwcPhru7O+Lj43H+/HnMmzcPjx8/RkJCghA3ffp0jBkzRrTvixcvEBYW9s7bxJjWIqZ1CgsLSaFQkJeXl8btKSkpBIA2btz4To9rZ2dH/fv3F/7esGED6erqUu/evenly5fv5BhKpZIKCwvfSV3l3bp1iwBQYmLiX1L/30l+fj49ffqUiIg2b95MAOjAgQPV3l9T7Lp16wgAffPNNxr32bt3L0mlUpoxYwYBoN9++020/ZNPPiGpVCq0S6VHjx5kYmIiKiv/Xq1IYmKixmNpMm7cODIzM6ObN29WGrdp0yYCQJs3bxbKHj9+TGZmZjRy5MgqjxMTE0MA6Pjx40LZq1evKCsri4iIfvvtt0rfx46OjtS5c2dSKpVCWV5eHhkbG5O3t7dQFh4eTnp6enTlyhWh7MWLF2Rra0sdOnTQeE5btmypsv0qU6ZMoebNm5O/vz8ZGRlVGPfo0SMyNTWluXPnEgBasmSJWsytW7eIiOjJkycEgGbNmlXtdnz55ZcEgI4ePVrtfaqjVatW1K5dOyopKRHKpk+fThKJhC5fvlzpvuvXrycAlJyc/E7bxJi2+t/qbmLvhEwmg4+PD/bt26exVyYlJQUKhQLe3t5C2caNG9GxY0coFAqYmJigTZs2aj1pNZGamopRo0bB3d0dO3bsUOsRViqVWLZsGZycnGBoaAgrKyuEhobi2bNnojjV0Iv09HR06tQJMpkMq1evBgBIJBJERERg27ZtaN26NQwMDODk5IS9e/eqtefBgwcIDg6GlZWVEPfdd9/V+vxUDh48CIlEgtTUVMyZMwcNGjSAQqGAr68v8vLyUFRUhEmTJsHS0hLGxsYICgpS69UsP2ZYdWn+6NGj+PTTT4VL6UOGDMGTJ0/eus3vgkKhgIWFRa33d3d3VysbMmQIAODy5ctq20pKShAZGYnIyEg0bdpUY535+fkwNDRU67G1sbGpsKe5uLgYL168qFabnz9/rjbcQiU3NxeJiYkYO3Ys7O3tUVxcrLH3GgDS0tJgZWUl9MACQL169eDn54ft27dXuJ9K48aNhWOqGBgYwNraulrnkZ+fD0tLS0gkEqHMxMQExsbGoufp8OHDaN++PZo3by6UyeVyeHt74/Tp07h27ZpQHhsbCxcXFwwZMgRKpbLK5/TatWtYunQpYmNjoadX+QXMqVOnonnz5hg1alSFMarnpDZSUlJgb2+PDz74QFReVFSEWbNmwcHBAQYGBrC1tUVUVFSVrw8AXLp0CZcuXcLYsWNF5xceHg4iQlpaWpVtMjIywqBBg0TlWVlZuHLlCkpKSmpwhowxToa1lL+/P0pLS5Gamioqz8nJQXp6OoYMGSL8x5eRkYGRI0fC3Nwc0dHRWLRoEdzd3XH06NFaHfuHH36Av78/evTogZ07d2pMREJDQ/H555+jW7duiIuLQ1BQEJKTk+Hl5aX2RX/16lWMHDkSffr0QVxcHJydnYVtR44cQXh4OEaMGIHFixfj1atXGDp0qGgs9KNHj9C1a1dkZmYiIiICcXFxcHBwQEhICJYtW1arcyxv4cKFSE9Px9SpUxEcHIwtW7YgLCwMwcHB+OOPPzB79mz4+PggKSkJ0dHR1apzwoQJOHfuHGbNmoVx48Zh586diIiIqHK/oqIiZGdnV+vxf4lqDG7dunXVti1btgzPnj3DjBkzKtzf3d0d+fn5CA0NxeXLl3Hnzh2sWrUKW7ZswRdffKEWv3//fsjlchgbG6Nx48aV/vjr2bMnTExMhGTwzUQQeP0+fPXqFRwcHODr6wu5XA6ZTIZu3brh7NmzotgzZ86gQ4cOakNjXFxcUFhYiD/++ENUXlpaiuzsbDx8+BA//fQTZsyYAYVCARcXlwrbWxl3d3fs3bsX8fHxuH37Nq5cuYLx48cjLy8PkZGRQlxRUZHGz65quMepU6cAvE6uf/31V3Tu3BnTpk2DqakpjI2N0aRJE7XvH5VJkyahZ8+e+Oijjypt66+//op169Zh2bJlouT9XTlz5gwuX76Mf/zjH6JypVIJb29vxMTEYODAgYiPj8fgwYOxdOlSDB8+vFr1AkCnTp1E5fXr10fDhg2F7Zo8efIEGRkZGDx4sNoQki+++AItW7bEgwcPqnuKjDGAh0loq9LSUrKxsSFXV1dR+apVqwgApaenC2WRkZFkYmJCpaWlb3VMOzs7ql+/Punp6ZG7uzu9ePFCY9zhw4c1XgLcu3evWrmdnR0BoL1796rVA4CkUildv35dKDt37hwBoPj4eKEsJCSEbGxsKDs7W7T/iBEjyNTUVBh2UZthEgcOHCAA1Lp1ayouLhbKR44cSRKJhPr16yeKd3V1JTs7O1GZnZ0djR49WvhbdWm+d+/eokvZkydPJl1dXcrNza20Tar9q/N4F2ozTEKTkJAQ0tXVpT/++ENUnpWVRQqFglavXk1EFQ9dKC0tpYiICNLX1xfOT1dXlxISEtSONXDgQIqOjqZt27bR2rVr6cMPPyQAFBUVJYrbtGkTBQYG0rp162jr1q00Y8YMksvlVLduXbp7964QFxsbSwCoTp065OLiQsnJybRy5UqysrIic3NzevjwoRBrZGREwcHBam368ccfNb7Xjx8/LnrNmjdvXulzXdUwiUePHpGHh4eozrp169KxY8fUniMzMzPKz88Xlbu6uhIAiomJISKi06dPC+duZWVFK1eupOTkZHJxcSGJREJ79uwR7b9r1y7S09OjixcvEhHR6NGjNQ6TUCqV5OLiIgwdUX0+NQ2TUKnpMInPPvuMANClS5dE5evXrycdHR06fPiwqFz1/VnVkIolS5YQANF7RKVz587UtWvXCveNj48nALR79261baNHjyYAwrAQxlj18A10WkpXVxcjRozA0qVLcfv2beEyYkpKCqysrODh4SHEmpmZ4cWLF8jIyEDfvn3f6rg5OTkoLS1Fw4YNK7w0vXnzZpiamqJPnz6i3smOHTvC2NgYBw4cEPXU2Nvbw8vLS2NdvXv3Fl02b9u2LUxMTHDz5k0AABHhhx9+gJ+fH4hIdDwvLy9s3LgRp0+fRrdu3d7qvAMCAkR3fnfp0gUbNmxAcHCwKK5Lly5Yvnw5SktLq7w8PHbsWFFv2IcffoilS5fizp07aNu2bYX7eXl5ISMjo5Zn8n6kpKRg7dq1iIqKUrurf8qUKWjSpInaTUbl6erqomnTpvDy8sKwYcNgaGiIDRs2YMKECbC2tsbgwYOF2B07doj2DQoKQr9+/RAbG4sJEyagYcOGAAA/Pz/4+fkJcYMHD4aXlxd69OiB+fPnY9WqVQAg3JQlkUiwb98+YXaE9u3bw9XVFV9//TXmzZsHAHj58iUMDAzU2q8aSvTy5UtReatWrZCRkYEXL17g2LFjyMzMVLsJrCZUs3c0bNgQAwYMwPPnz7F06VL4+Pjg8OHDcHBwAADhasTw4cMxf/58GBkZYeXKlcIsHqp2qtry9OlT/PLLL+jSpQuA17Pa2NvbY968ecL3SnFxMSZPnoywsDC0atWq0nYmJSXh/PnzVQ4pqC2lUomNGzeiffv2aNmypWjb5s2b0bJlS7Ro0UL0ndGrVy8AwIEDB9SGVbxJ9dxU9Drn5+dXuG9KSgrq1auHPn36qG1LSkr6r0/9yNjfASfDWszf3x9Lly5FSkoKpk2bhvv37+Pw4cOYOHEidHV1hbjw8HCkpqaiX79+aNCgATw9PeHn51erxNjDwwONGjVCQkICLCwsNF56vnbtGvLy8mBpaamxjvLjnMvfxf+mRo0aqZWZm5sLY4+fPHmC3NxcrFmzBmvWrKnW8WqjfDtMTU0BALa2tmrlSqUSeXl5Vc7kUb5Oc3NzAFAbV12ejY0NbGxsqtXuyhQXFyMnJ0dUVq9ePdF75104fPgwQkJC4OXlhfnz54u2/fLLL1i/fj327dtX5YwbixYtQlxcHK5duyYko35+fujZsyfGjx+PAQMGVPgDRCKRYPLkyUhPT8fBgwcrHZ/avXt3dOnSBZmZmUKZ6offwIEDRdOEde3aFfb29jh27JgoVtO4U9W0g+V/RJqYmKB3794AgEGDBiElJQWDBg3C6dOn0a5du0qfE02GDRsGPT097Ny5UygbNGgQHB0dMX36dGzatAkA0K9fP8THx2Pq1Kno0KEDAMDBwQHz589HVFSUcJ6q9trb2wuJMAAYGxtj4MCB+P7774Uff0uXLkV2djbmzJlTaRvz8/PxxRdf4PPPP1f7DL0rhw4dwoMHDzB58mS1bdeuXcPly5dRr149jfuqvjNycnJQXFwslMtkMpiamgrPSUWvc0UdBTdv3sTx48cRERFR5Y9lxlj18adJi3Xs2BEtWrTAhg0bMG3aNGzYsAFEBH9/f1GcpaUlzp49i/T0dOzZswd79uxBYmIiAgICsG7duhofd8WKFXj27BmWL18Oc3NztTk/lUolLC0tkZycrHH/8v8BVfQfB4AKEzMiEo4FAKNGjcLo0aM1xlbWy1pdFbWjqvbVps6q9n358iXy8vKqrB9ApTddHTt2DD179hSV3bp1661uVirv3Llz8Pb2RuvWrZGWlqaWAERFReHDDz+Evb09bt++DQBCT11WVhbu3r0r/GhYuXIlevXqpTZnrbe3Nz799FPcvn1b6PXURJV0lf8BUFHs1atXhb/r168PALCyslKLtbS0FP2AsbGxQVZWllqcqkxVV0V8fHzw8ccfY+PGjTVOhm/evIm9e/eq/TC0sLBA9+7d1e4TiIiIQFBQEH7//XdIpVI4Oztj7dq1AP4zDV1V515SUiLcUDdv3jyEh4cjPz9f6B0tKCgAEeH27duQy+WwtLRETEwMiouLMXz4cOF1v3//PoDXPwZv376N+vXrQyqV1uj835ScnAwdHR2MHDlSbZtSqUSbNm0QGxurcV/Ve8XHxweHDh0SykePHo2kpCThx2hWVpZaMp+VlVXheO+UlBQAUPuOZoy9HU6GtZy/vz9mzpyJ33//HSkpKXB0dETnzp3V4qRSKQYOHIiBAwdCqVQiPDwcq1evxsyZMytNIDTR0dHBv//9b+Tl5WHOnDmwsLDAxIkThe1NmzZFZmYmunXrVmmi+y7Uq1cPCoUCZWVlQu/a392mTZsQFBRUrdjKEut27dqpDbeo7owF1XHjxg307dsXlpaW2L17t8aFF+7evYs7d+5ovDrg7e0NU1NTYVaFR48eaZztQXVDZvnFDspTDa2pqDewfOybcR07dgQAjTc2PXz4EC1atBD+dnZ2xuHDh6FUKkW93SdOnIBcLq9wrmOVoqIi4epCTT169AgAKnyeND1HRkZGcHV1Ff7OzMwUbg4EXifD1tbWFZ67oaEhFAoF7t69i4KCAixevBiLFy9Wi7W3t8egQYOwbds23L17F8+ePYOTk5Na3IIFC7BgwQKcOXNGdDNtTRQVFeGHH36Au7u7xh8fTZs2xblz5+Dh4VHpjXtfffWV6IeOqi5Vu06ePClKfB8+fCjMQ61JSkoKmjZtiq5du9bqvBhjmnEyrOVUyfC//vUvnD17VuPKTE+fPhVdstfR0RF6S6szjZAm+vr6SEtLg6enJyZNmgRzc3N8/PHHAF5ful65ciW+/PJLLFiwQLRfaWkpCgoK1KbHqi1dXV0MHToUKSkpuHDhAlq3bi3a/uTJk2olP/9L3tWYYXNz83fyA+Lu3bsoLCwUJYR//vknPD09oaOjg/T09ApfgzVr1qit3rZ//37Ex8cjJiZGVGezZs2QkZEhej+XlZUhNTUVCoVCGFuek5MDU1NTUc97SUkJFi1aBKlUKuoN1/T+2L17N06dOiX6gde8eXO0a9cO27dvR3Z2tjAjxk8//YR79+5hwoQJQqyvry/S0tKwZcsW+Pr6Anjd271582YMHDhQGGeam5sLIyMjtVXIvv32WwDqMxVUh4ODA3R0dLBp0yaEhoYKiZ5qCFX37t0r3f/YsWPYsmULxo0bJwwFAoDhw4cjLi4OGRkZwljX7OxsbN++Hb169YKOjg4sLS2xdetWtTqXL1+O48ePY8OGDUKP6sSJE0VjvIHXQxNCQ0MRGBiIQYMGVTp8qiq7d+9Gbm5uhT2wfn5+2L17N7755hu1xPXly5dQKpUwMjISfgSV5+TkhBYtWmDNmjUIDQ0V3msJCQmQSCTC6/4m1cwWM2fOrPV5McY042RYy6nmz9y+fTsAzZffxowZg5ycHPTq1QsNGzbEnTt3EB8fD2dnZ7UbS2pCLpfjxx9/hJubG4KDg2Fqagpvb2+4ubkhNDQUCxcuxNmzZ+Hp6Ql9fX1cu3YNmzdvRlxcnMb/LGpr0aJFOHDgALp06YJPPvkErVq1Qk5ODk6fPo3MzMxqXRb/X/KuxgxXRXVD2MWLFwG8Xnb7yJEjACCaAi0gIACHDh0S9UL37dsXN2/eRFRUFI4cOSLsB7y+3K5KqDStwKXqCXZzcxMlhFOnTsWoUaPQpUsXjB07FjKZDBs2bMCpU6cwb948IancsWMH5s2bB19fX9jb2yMnJ0f4sbRgwQJR7/cHH3yA9u3bo1OnTjA1NcXp06fx3XffwdbWFtOmTRO1a+nSpejTpw+6d++O0NBQ5OXlITY2Fs2aNcO4ceOEOF9fX3Tt2hVBQUG4dOmSsAJdWVmZaCztwYMHMXHiRPj6+sLR0RHFxcU4fPgwtmzZgk6dOqmNa16xYgVyc3Px8OFDAMDOnTuFoQUTJkyAqakp6tWrh+DgYHz77bfw8PCAj48Pnj9/jpUrV+Lly5eiKeju3LkDPz8/eHt7w9raGhcvXsSqVavQtm1btR+xX3zxBVJTUzF06FB8+umnMDU1xapVq1BSUiLEyuVytQQXALZt24Zff/1VtK1Dhw7COGUV1XAJJycntXrWr1+PO3fuCD+cfv75Z+H9+fHHH8POzk4Un5ycDAMDAwwdOlStPap9UlNTERYWhgMHDqBbt24oKyvDlStXkJqaKsx7XpklS5bA29sbnp6eGDFiBC5cuIAVK1ZgzJgxGr9XVcPGKhsiERgYiHXr1r3z4UqM/e29t3ks2P8ZX3/9NQEgFxcXjdvT0tLI09OTLC0tSSqVUqNGjSg0NFRY0aq6KlrV688//yQHBwcyNDQUTQm1Zs0a6tixI8lkMlIoFNSmTRuKiooSTUNV2UphAGj8+PEa2/HmVGVEr6eTGj9+PNna2pK+vj5ZW1uTh4cHrVmzRoh5m6nV3lxNjKji6b9mzZpFAOjJkycVtreifVXHetspzN4VVHPKNjc3N7WyyvZ1c3Or9LiVrQq3d+9ecnNzo7p165JUKqU2bdrQqlWrRDEnT56kgQMHUoMGDUgqlZKxsTF1796dUlNT1eqbPn06OTs7k6mpKenr61OjRo1o3Lhx9Oeff2psW0ZGBnXt2pUMDQ3JwsKCPv74Y42fo5ycHAoJCaE6deqQXC4nNzc3tfO5fv06BQQEUJMmTUgmk5GhoSE5OTnRrFmzqKCgQK1O1TSEmh5vTsVVUlJC8fHx5OzsTMbGxmRsbEw9e/ak/fv3q7Vx0KBBZG1tTVKplOzt7WnKlClqU62p3Lhxg4YMGUImJiYkk8moV69e9Ouvv2qMfVNFU6uVV9nUaqr3mKZH+c9LXl4eGRoako+PT6XHKy4upujoaHJyciIDAwMyNzenjh070pw5cygvL6/K9hIRbd26lZydncnAwIAaNmxIM2bMEE3BqFJWVkYNGjRQW9mvvKFDh5JMJqNnz55V6/iMsdckRNW4U4cxxhhj/6dZWVkhICAAS5Ysed9NYex/CifDjDHG2P+4ixcvwtXVFTdv3tS4SiNjrGKcDLO3plomtyKquTX/TjTNsVvem/OJMsYYY+z/Jk6G2VurbGoh4D9za/6dHDx4UG2O3fISExMRGBj432kQY4wxxmqFZ5Ngb62qabqqWiTgf5GmOXbL0zQHKmOMMcb+b+GeYcYYY4wxprV0qg5hjDHGGGPs74mTYcaq6fbt25BIJH+78c+MMcaYNuNkWAt5e3tDLpfj+fPnFcb4+/tDKpXi6dOn7+y4jRs3xoABA9TK169fD11dXfTt2xevXr16Z8dj70dWVhamTp2Knj17QqFQQCKR4ODBgzWq48GDB/Dz84OZmRlMTEwwaNAg3Lx5Uy3u0aNHCAoKgqWlJWQyGTp06IDNmzdrrHPjxo3o0KEDDA0NUa9ePYSEhCA7O/ut6szMzETPnj1Rt25dmJmZwcXFBevXrxfFvHz5EiEhIWjdujVMTU1hbGyMdu3aIS4uDiUlJRXW26tXL5iamkKhUKBjx47YtGmTWtyOHTuEc2rUqBFmzZqF0tLSt6pT5caNGzA0NIREIsHJkydF2/bt24fg4GA0a9YMcrkcTZo0wZgxY5CVlSWKKywsxNdffw1PT0/Y2NhAoVCgffv2SEhIQFlZmdoxr1+/Dl9fX5ibm0Mul6N79+44cOCAWtw333wDNzc3WFlZwcDAAPb29ggKChJWoXtTXl4eoqKi4OjoCJlMBjs7O4SEhODu3buiuNmzZ0Mikag9DA0NK3yO3kZ1Xjt3d3eNbZJIJGrLcDPGao9voNNC/v7+2LlzJ7Zu3YqAgAC17YWFhdi+fTv69u2LOnXq/KVtSU5ORmBgIHr37o1t27b9Zf/xsP+eq1evIjo6Go6OjmjTpg2OHz9eo/0LCgrQs2dP5OXlYdq0adDX18fSpUvh5uaGs2ddPD3vAAAgAElEQVTPCu/J/Px8dO/eHY8ePUJkZCSsra2RmpoKPz8/JCcn4x//+IdQZ0JCAsLDw+Hh4YHY2Fjcv38fcXFxOHnyJE6cOCG872pS544dOzB48GC4uroKiVRqaioCAgKQnZ2NyZMnA3idDF+8eBEfffQRGjduDB0dHRw7dgyTJ0/GiRMnkJKSIjr/xMREhISEoE+fPliwYAF0dXVx9epV3Lt3TxS3Z88eDB48GO7u7oiPj8f58+cxb948PH78GAkJCbWq802TJ0+Gnp4eioqK1LZNmTIFOTk5GDZsGBwdHXHz5k2sWLECu3btwtmzZ4Ulq2/evIkJEybAw8MDn376KUxMTJCeno7w8HD88ssvWLdunVDnvXv34OrqCl1dXXz++ecwMjJCYmIiPD09sW/fPvTo0UOIPXPmDOzt7eHt7Q1zc3PcunUL33zzDXbt2oVz584JN+0qlUr06dMHly5dQnh4OJo1a4br169j5cqVSE9Px+XLl6FQKETnlpCQAGNjY+FvXV3dCp+j2qruazd9+nSMGTNGtO+LFy8QFhamcSlyxlgtva+l79j7U1hYSAqFgry8vDRuT0lJIQC0cePGd3rc8ksnb9iwgXR1dal379708uXLd3IMpVJJhYWF76Su8mqzHLM2ys/Pp6dPnxIR0ebNm2u8RHR0dDQBEC3Ve/nyZdLV1aUvvvhCKFu8eDEBoH379gllZWVl1LlzZ7K2tqaioiIiIioqKiIzMzPq0aMHKZVKIXbnzp0EgJYvX17jOomI+vTpQ/Xr16dXr14JZSUlJdS0aVNq27ZtlecZERFBAETLMd+6dYtkMhlNnDixyv1btWpF7dq1o5KSEqFs+vTpJJFI6PLly7WqU2Xv3r0klUppxowZGpe2PnToEJWVlamVAaDp06cLZU+ePKELFy6o1R8UFEQA6Nq1a0JZeHg46enp0ZUrV4SyFy9ekK2tbZXLEBO9XkYbAC1cuFAoO3r0KAGgFStWiGK/++47AkBbtmwRyjQthf5Xqe5rp8n69esJACUnJ//VzWRMa/AwCS0kk8ng4+ODffv24fHjx2rbU1JSoFAo4O3tLZRt3LgRHTt2hEKhgImJCdq0aYO4uLhatyE1NRWjRo2Cu7s7duzYodYjrFQqsWzZMjg5OcHQ0BBWVlYIDQ3Fs2fPRHGqoRfp6eno1KkTZDIZVq9eDeD1/McRERHYtm0bWrduDQMDAzg5OWHv3r1q7Xnw4AGCg4OFy65OTk747rvvan1+KgcPHhR6DOfMmYMGDRpAoVDA19cXeXl5KCoqwqRJk2BpaQljY2MEBQWp9cQlJiaiV69esLS0hIGBAVq1aqXW87d//37o6OjgX//6l6g8JSUFEolELf6vpFAoYGFhUev909LS0LlzZ3Tu3Fkoa9GiBTw8PJCamiqUHT58GPXq1UOvXr2EMh0dHfj5+eHPP//EoUOHAAAXLlxAbm4uhg8fLpoTe8CAATA2NsbGjRtrXCfwuhfZ3NwcBgYGQpmenh7q1q1brcVWGjduDADIzc0VylatWoWysjLMnTsXwOtectIw4c+lS5dw6dIljB07Fnp6/7nAFx4eDiJCWlpajetUKSkpQWRkJCIjI9G0aVONMT169ICOjo5amYWFBS5fviyU1a1bV+MUg0OGDAEAUezhw4fRvn17NG/eXCiTy+Xw9vbG6dOnce3atQrbDGh+PvPz8wG8Xqb4TTY2NgCg8XUiIuTn51f6HBUVFWHWrFlwcHCAgYEBbG1tERUVpbEXvbyavHaapKSkwMjICIMGDRKVZ2Vl4cqVKxUOvWGMVYyTYS3l7++P0tJSUXIBADk5OUhPT8eQIUOE/ygyMjIwcuRImJubIzo6GosWLYK7uzuOHj1aq2P/8MMP8Pf3R48ePbBz506N/yGFhobi888/R7du3RAXF4egoCAkJyfDy8tL7cv+6tWrGDlyJPr06YO4uDg4OzsL244cOYLw8HCMGDECixcvxqtXrzB06FDRWOhHjx6ha9euyMzMREREBOLi4uDg4ICQkBAsW7asVudY3sKFC5Geno6pU6ciODgYW7ZsQVhYGIKDg/HHH39g9uzZ8PHxQVJSEqKjo0X7JiQkwM7ODtOmTcNXX30FW1tbhIeH4+uvvxZievXqhfDwcCxcuBCnT58G8Po/xwkTJqB3794ICwurtH2FhYXIzs6u8lH+x8i7plQq8fvvv6NTp05q21xcXHDjxg1hrHtRUZHG945cLgcAnDp1SogDNCc+MpkMZ86cgVKprFGdwOvxnBcvXsTMmTNx/fp13LhxA19++SVOnjyJqKgotTqKi4uRnZ2Ne/fuYevWrYiJiYGdnR0cHByEmMzMTLRo0QK7d+9Gw4YNoVAoUKdOHcycOVNoI/B6mAAAteepfv36aNiwobC9JnWqLFu2DM+ePcOMGTPUtlWmoKAABQUF1VoKWLVq5ZuxNXnuVZ4+fYrHjx/j5MmTCAoKAgB4eHgI2zt16gQjIyPMnDkT+/fvx4MHD3Do0CFERUWhc+fO6N27t1qdTZo0EcZVjxo1Co8ePRJtVyqV8Pb2RkxMDAYOHIj4+HgMHjwYS5cuxfDhw6s895q8duU9efIEGRkZGDx4MIyMjETbvvjiC7Rs2RIPHjyosg2MsXLeZ7c0e39KS0vJxsaGXF1dReWrVq0iAJSeni6URUZGkomJCZWWlr7VMe3s7Kh+/fqkp6dH7u7u9OLFC41xhw8f1ngZcO/evWrldnZ2BID27t2rVg8AkkqldP36daHs3LlzBIDi4+OFspCQELKxsaHs7GzR/iNGjCBTU1Nh2EVthkkcOHCAAFDr1q2puLhYKB85ciRJJBLq16+fKN7V1ZXs7OxEZZqGfXh5eVGTJk1EZS9evCAHBwdycnKiV69eUf/+/cnExITu3LlTZTtVl4irepRvW1VqOkziyZMnBIDmzp2rtu3rr78mAMJl9AkTJpCOjg7dvn1bFDdixAgCQBEREUKdEomEQkJCRHFXrlwRzkv12le3TiKigoIC8vPzI4lEItQjl8tp27ZtGs9tw4YNoueyU6dO9Pvvv4tiTExMyNzcnAwMDGjmzJmUlpZG//jHPwgATZ06VYhbsmQJAaC7d++qHadz587UtWvXGtdJRJSVlUUKhYJWr15NRESJiYkah0lo8uWXX6oNMdGkqKiIWrVqRfb29qJhAgMHDiQzMzPKz88Xxbu6uhIAiomJUavLwMBAeD7r1KkjGvKismvXLrKxsRE9915eXvT8+XNR3LJlyygiIoKSk5MpLS2NIiMjSU9PjxwdHSkvL0+IW79+Peno6NDhw4dF+6u+O48ePVrp+dfktSsvPj6eANDu3bvVto0ePZoA0K1btyo9PmNMHSfDWmzy5MlqX549evQgKysrUeI7a9Ys0tXVpT179rzV8ezs7MjQ0JAA0KhRo0TjN980ceJEMjU1pcePH9OTJ09ED2NjYxozZoyoTnt7e431AKCPPvpIrdzExIQmT55MRK/HGJuZmdHYsWPVjqVKBI4cOUJEb5cML168WFS+bNkyAkCbN28WlU+aNIl0dHREScKbcnNz6cmTJ7RgwQICQLm5uaLtR44cIR0dHXJxcSEAtHbt2mq188aNG5SRkVHlQ/VcVFdNk+G7d+8SAIqOjlbbtnbtWgJAZ86cIaLXP2z09fXJxcWFjh49StevX6cFCxYICdKbye/w4cNJT0+PYmJi6MaNG/Tzzz9Tu3btSF9fnwDQvXv3alxnSUkJzZgxg4YNG0YbNmyg77//nnr06EHGxsZ0/Phxtfb/+eeflJGRQZs3b6awsDBydXVVi9PR0SEAtGjRIlF53759SSaTCYni3LlzCQA9evRI7TgffvghtWvXrsZ1EhEFBARQu3bthPHA1U2GDx06RHp6euTn51dpHBHRJ598QgDoxx9/FJXv3r2bAFC/fv3o9OnTdPXqVYqMjBReoy+//FKtrv3799Pu3bvpq6++ovbt24vGC6ucOHGCPvroI5o/fz5t27aNZs+eTXK5nHx9fatsa3Jysto4ZG9vb3JyclL7vvjjjz8IAM2bN6/SOmvy2pXn6upK9erVq/D7gTFWO5wMazHVDSfz588nIqJ79+6RRCKhyMhIUdyjR4+oZcuWBIAaNGhAQUFBtUqMVTfQjRs3jgBUeENPv379Ku2d9Pb2FtXZq1cvjfUAoLCwMI3tCAwMFM6tqt5Q1U02b5MMl78ZUZVk/PLLL6JyVQ/tm73UR44cIQ8PD5LL5Wpt09TrO378eKH36337K3uGVfXXqVNHeD6sra0pISGBAIjex7m5ueTt7S167kaNGkU+Pj4EgJ49e1bjOkNDQ0WJIxFRcXExOTo6kouLS5XnOn/+fDI2NhbdQGdkZKTxdV23bh0BoEOHDhFRzXoXq1vn8ePHSSKR0P79+4WY6iTDly9fJgsLC3J2dlbr1S1PdYOipsSW6HXPp6q9AMjBwUHYZ+nSpZXWff36dTI0NBRd9blx4wbJ5XJKS0sTxSYlJVXYw1qetbU1eXh4CH+rvgsreqi+154+fUpZWVnCQ/XDtbY9wzdu3FC7OsEYezd4ajUt1rFjR7Ro0QIbNmzAtGnTsGHDBhAR/P39RXGWlpY4e/Ys0tPTsWfPHuzZsweJiYkICAgQTY1UXStWrMCzZ8+wfPlymJubY/bs2aLtSqUSlpaWSE5O1rh/vXr1RH9XdrNSRdMi0f+/OUY1ZnLUqFEYPXq0xti2bdtWWH91VdSOqtp348YNeHh4oEWLFoiNjYWtrS2kUil2796NpUuXqo35LCoqEub0vXHjBgoLC4Uxl5VRjfesznmUf/7fJQsLCxgYGKjNVwtAKFNNmwUAvr6+8Pb2xrlz51BWVoYOHToI59+sWTMhztTUFNu3b8fdu3dx+/Zt2NnZwc7ODh988AHq1asHMzOzGtVZXFyMtWvXIioqSnQjmb6+Pvr164cVK1aguLgYUqm0wnP19fXF9OnTsX37doSGhgrndu3aNbUbviwtLQFAGLOtugEsKysLtra2as+Ti4uL8Hd164yKisKHH34Ie3t7Yb5e1TzMWVlZuHv3Lho1aiSq4969e/D09ISpqSl2796tNk3Zm5KSkjBlyhSEhYVVOB45IiICQUFB+P333yGVSuHs7Iy1a9cCEL+emjRt2hTt27dHcnIyIiIihGO+evVKbX5z1c3BR48eRb9+/Sqt19bWFjk5OcLfSqUSbdq0QWxsbIXxAODj4yO64XL06NFISkqq0Wv3JtUUfOW/nxljb4+TYS3n7++PmTNn4vfff0dKSgocHR1Fd/GrSKVSDBw4EAMHDoRSqUR4eDhWr16NmTNnim4Aqg4dHR38+9//Rl5eHubMmQMLCwtMnDhR2N60aVNkZmaiW7du1bor/23Uq1cPCoUCZWVlGm+med927tyJoqIi7NixQ5SIaFqIAABmzZqFy5cvIyYmBlOmTMHUqVOxfPnyKo8TExODOXPmVBlnZ2encWGDd0VHRwdt2rRRW+QBAE6cOIEmTZqoJVxSqVT0ns3MzAQAja9no0aNhOcxNzcXp06dwtChQ9Xiqqrz6dOnKC0t1bhwRElJCZRKpcZtb3r58iWA14tCqHTs2BHXrl3DgwcP0KRJE6H84cOHAP7zQ1B1k+jJkydFydPDhw9x//59jB07tsZ13r17F3fu3IG9vb1aW729vWFqaiqaqeHp06fw9PREUVER9u3bJyR5mmzfvh1jxoyBj4+P6MZPTYyMjODq6ir8nZmZCZlMhm7dulW6H/D6OX1zRodHjx6BiNReC9VNuBUtUKJCRLh9+zbat28vlDVt2hTnzp2Dh4eHaHaS8r766ivRDaeqH3E1ee3elJKSgqZNm6Jr166VtpkxVgvvtV+avXc3b94kADRo0CACQLNnz1aLKX9jGdF/LllrmkO0IuXnGX7x4gV169aNJBIJ/fvf/xbKDx48SABEc8qqlJSUiC5pl6/zTQBo/PjxGtsxevRo4e/AwECSSqV0/vx5tdjHjx8L/36bYRLlxwZXdPm5/Fyny5cvJwCiG7pyc3OFG4LeHO/9yy+/kK6uLn366adERDR16lSSSCR08ODBKtv5vsYM37lzR21e1UWLFqk9N1euXCFdXV2aMmVKpcf7448/SKFQ0IABA6psW1hYGOno6IjmM65unaWlpWRmZkbNmjUTzT38/PlzatiwIbVo0UIoe/Lkicbx8ap5ht+84Wzr1q0EgKZNmyaUlZWVUffu3cnCwkI0p3GLFi2oXbt2ovH9M2bMIIlEQpcuXapxnenp6bR161bRY8KECcLNa7t27RL2LygoIBcXF1IoFHTy5MlKn79Dhw6RoaEh9ezZU9T+6jh69Cjp6uqKhgaUlJRQTk6OWuyJEydIV1eXPv74Y6EsJiZG42dWNWb/zeFLb37WVVTfc7GxsUKZaoiF6ibDNxUWFlJBQUGV51Xd107l9OnTBIBmzpxZZd2MsZrjnmEtZ29vjw8++ADbt28HoPkS3JgxY5CTk4NevXqhYcOGuHPnDuLj4+Hs7IyWLVvW+thyuRw//vgj3NzcEBwcDFNTU3h7e8PNzQ2hoaFYuHAhzp49C09PT+jr6+PatWvYvHkz4uLi4OvrW+vjlrdo0SIcOHAAXbp0wSeffIJWrVohJycHp0+fRmZmpugS6X+bp6en0CsfGhqKgoICfPPNN7C0tBQNJXj16hVGjx4NR0dHzJ8/HwAwZ84c7Ny5E0FBQTh//rzaVExvatKkiajX8G3NmzcPAHDx4kUAr5fcPnLkCACILpEHBATg0KFDojldw8PD8c0336B///745z//CX19fcTGxsLKygqfffaZ6DitWrXCsGHD0KhRI9y6dQsJCQmwsLDAqlWrRHGLFi3ChQsX0KVLF+jp6WHbtm346aefMG/ePLUrIdWpU1dXF//85z8xY8YMdO3aFQEBASgrK8PatWtx//59fP/990Ls999/j1WrVmHw4MFo0qQJnj9/jvT0dGRkZGDgwIGiOY0HDRoEDw8PLFy4ENnZ2WjXrh22bduGI0eOYPXq1aI5jZcsWQJvb294enpixIgRuHDhAlasWIExY8aIPpfVrVPTimaqnmA3NzfRVGD+/v749ddfERwcjMuXL4vmCzY2NsbgwYMBAHfu3IG3tzckEgl8fX3VlrVu27atMAzpzp078PPzg7e3N6ytrXHx4kWsWrUKbdu2xYIFC4R9CgoKYGtri+HDh8PJyQlGRkY4f/48EhMTYWpqipkzZwqxgYGBiImJQWhoKM6cOQMnJyecPn0a3377LZycnIT5joHXVz2GDx+ONm3awNDQEEeOHMHGjRvh7OwsDGMBgI8//hipqakICwvDgQMH0K1bN5SVleHKlStITU0V5jyvTHVfOxXVkLHKhkgEBgZi3bp1uHXrljDnMmOsmt53Ns7eP1XvR0U3/aSlpZGnpydZWlqSVCqlRo0aUWhoqOjGn+qoqBf3zz//JAcHBzI0NBT1IK5Zs4Y6duxIMpmMFAoFtWnThqKioujhw4dV1klU/Z5hotc30o0fP55sbW1JX19fuGlmzZo1Qsz76BkmItqxYwe1bduWDA0NqXHjxhQdHS2soKXqGZ48eTLp6urSiRMnRPWdPHmS9PT0aNy4cdVu87uASm4wepObm5taGdHrmzl9fX3JxMSEjI2NacCAAaLVylRGjBhBtra2JJVKqX79+hQWFqbxLv1du3YJPZlyuZy6du1KqampGtte3TqJXs824OLiQmZmZiSTyahLly5qN2v99ttvNGzYMGrUqBEZGBiQkZERdejQgWJjYzXOCvD8+XOKjIwka2trkkql1KZNG/r+++81Hn/r1q3k7OxMBgYG1LBhQ5oxY4ZoCr/a1Pmmit6nqikNNT3enH5P9f6v6DFr1iwhNicnhwYNGiS00d7enqZMmaJ2U15RURFFRkZS27ZtycTEhPT19cnOzo5CQkI0Tit2//59Cg4OJnt7e5JKpWRjY0OffPKJ2kpzY8aMoVatWpFCoSB9fX1ycHDQeHyi1zdKRkdHk5OTExkYGJC5uTl17NiR5syZI5qGrTLVfe3KysqoQYMGVa7CN3ToUJLJZKIrZ4yx6pEQVbLMDmOMMcb+z7OyskJAQACWLFnyvpvC2P8cToYZY4yx/2EXL16Eq6srbt68Wa0VABljYpwMs7emWlq1IjKZDKampv+l1vx3FBcXVzmW2NTU9C+fDYMxxhhjb4eTYfbWKpteCPjP/Jp/JwcPHkTPnj0rjUlMTERgYOB/p0GMMcYYqxWeTYK9tYyMjEq3v7lIwt9Fu3btqjxvJyen/1JrGGOMMVZb3DPMGGOMMca0lk7VIYwxxhhjjP09cTLMtNrt27chkUj+dmOaGWOMMVY9nAz/TXh7e0Mul+P58+cVxvj7+0MqleLp06fv7LiNGzfGgAED1MrXr18PXV1d9O3bF69evXpnx2P/m5RKJZKSkuDt7Q1bW1sYGRmhdevWmDdvXo3eH8eOHUP37t0hl8thbW2NiRMnoqCgQC3u2rVrGDFiBBo2bAi5XI4WLVpg7ty5KCwsVIstLi7GggUL0KJFCxgaGsLKygr9+/fH/fv3RXFFRUWYMmUK6tevD5lMhi5dulQ5bjw3NxeWlpaQSCRIS0urdTt/+uknhISEoHXr1tDV1a32CmPJycmQSCQwNjZW2xYYGAiJRKL2aNGihVrs/Pnz4e3tDSsrK0gkEsyePbvCY27cuBEdOnSAoaEh6tWrh5CQEGRnZ6vFaTq2RCLBokWL1GIzMzPRs2dP1K1bF2ZmZnBxccH69esrPfcjR44IdWo6fnXbmZeXh6ioKDg6OkImk8HOzg4hISG4e/dupcevqaysLEydOhU9e/aEQqGARCLBwYMHK4yv7meBMVY1voHub8Lf3x87d+7E1q1bERAQoLa9sLAQ27dvR9++fVGnTp2/tC3JyckIDAxE7969sW3bNhgaGv6lx2P/9xUWFiIoKAhdu3ZFWFgYLC0tcfz4ccyaNQv79u3D/v37q5yV5OzZs/Dw8EDLli0RGxuL+/fvIyYmBteuXcOePXuEuHv37sHFxQWmpqaIiIiAhYWFcKxTp04JS48DQElJCfr3749jx47hk08+Qdu2bfHs2TOcOHECeXl5aNiwoRAbGBiItLQ0TJo0CY6OjkhKSsJHH32EAwcOoHv37hrb/K9//UtjAl7TdqakpGDTpk3o0KFDtW9ILSgoQFRUVKXLcBsYGODbb78VlWmaBnHGjBmwtrZG+/btkZ6eXmF9CQkJCA8Ph4eHh/AaxcXF4eTJkzhx4oTad0GfPn3Uvq/at28v+nvHjh0YPHgwXF1dMXv2bEgkEqSmpiIgIADZ2dmYPHmyWjuUSiUmTJgAIyMjvHjxotbtVCqV6NOnDy5duoTw8HA0a9YM169fx8qVK5Geno7Lly9DoVBU+HzUxNWrVxEdHQ1HR0e0adMGx48frzC2up8Fxlg1va+l79i7VVhYSAqFgry8vDRuT0lJIQC0cePGd3rc8sshb9iwgXR1dal379708uXLd3IMpVJJhYWF76Su8mqzxDKruaKiIjp69Kha+Zw5cwgAZWRkVFlHv379yMbGRrTc7TfffEMAKD09XSibP38+AaALFy6I9g8ICCAAlJOTI5RFR0eTvr6+2jLW5Z04cYIA0JIlS4Syly9fUtOmTcnV1VXjPufPnyc9PT2aO3euxiW5a9LOBw8eCEv19u/fX7TkcUWmTJlCzZs3J39/fzIyMlLbPnr0aI3lmqiWOX7y5InaMsoqRUVFZGZmRj169CClUimU79y5kwDQ8uXLRfGoYLn08vr06UP169enV69eCWUlJSXUtGlTatu2rcZ9EhISqE6dOhQZGam2vHlN2nn06FECQCtWrBDVr1oOfcuWLVW2v7ry8/Pp6dOnRES0efNmAiBanv5N1f0sMMaqh4dJ/E3IZDL4+Phg3759ePz4sdr2lJQUKBQKeHt7C2UbN25Ex44doVAoYGJigjZt2iAuLq7WbUhNTcWoUaPg7u6OHTt2qPUCKZVKLFu2DE5OTsLl6NDQUDx79kwUpxp6kZ6ejk6dOkEmk2H16tUAXl9ajYiIwLZt29C6dWsYGBjAyckJe/fuVWvPgwcPEBwcDCsrKyHuu+++q/X5qRw8eFDonZozZw4aNGgAhUIBX19f5OXloaioCJMmTYKlpSWMjY0RFBSEoqIitXq+//57dOzYETKZDBYWFhgxYgTu3bsnijl8+DCGDRuGRo0awcDAALa2tpg8eTJevnwpigsMDISxsTEePHiAwYMHw9jYGPXq1cM///lPlJWVvfU5vy2pVIoPPvhArXzIkCEAgMuXL1e6f35+PjIyMjBq1CiYmJgI5QEBATA2NkZqaqooFni9PO2bbGxsoKOjA6lUCuD1+zEuLg5DhgyBi4sLSktLK+zFTUtLg66uLsaOHSuUGRoaIiQkBMePH1d73QAgMjISQ4YMwYcffljhOVWnncDr6Qn19fU11qPJtWvXsHTpUsTGxkJPr/ILgGVlZUJbKlKdYRkXLlxAbm4uhg8fLurlHzBgAIyNjbFx40aN+718+bLSoTL5+fkwNzeHgYGBUKanp4e6detqXNQmJycHM2bMwNy5c2FmZvZW7azsNQKgdvwTJ06gb9++MDU1hVwuh5ubG44ePVrhub1JoVDAwsKiyriafBYA4MqVK+98SAdjfzecDP+N+Pv7o7S0VO3LMCcnB+np6RgyZIjw5Z2RkYGRI0fC3Nwc0dHRWLRoEdzd3av9xV3eDz/8AH9/f/To0QM7d+7U+J9UaGgoPv/8c3Tr1g1xcXEICgpCcnIyvLy8UFJSIoq9evUqRo4ciT59+iAuLg7Ozs7CtiNHjiA8PBwjRozA4sWL8erVKwwdOlQ0FvrRo0fo2rUrMjMzERERgbi4ODg4OCAkJATLli2r1TmWt3DhQqSnp2Pq1KWLO9EAACAASURBVKkIDg7Gli1bEBYWhuDgYPzxxx+YPXs2fHx8kJSUhOjoaNG+8+fPR0BAABwdHREbG4tJkyZh37596NGjB3Jzc4W4zZs3o7CwEOPGjUN8fDy8vLwQHx+vcShMWVkZvLy8UKdOHcTExMDNzQ1fffUV1qxZU+W5FBQUIDs7u8pHXl7e2z9xb1CtXljVErLnz59HaWkpOnXqJCqXSqVwdnbGmTNnhDJ3d3cAQEhICM6ePYt79+5h06ZNSEhIwMSJE4VhA5cuXcLDhw/Rtm1bjB07FkZGRjAyMkLbtm1x4MAB0XHOnDmDZs2aiZIPAHBxcQHw+rL1mzZv3oxjx45h8eLFFZ5TddtZG5MmTULPnj3x0UcfVRpXWFgIExMTmJqawsLCAuPHj6/1uFPVDz5Nn32ZTIYzZ85AqVSKypOSkmBkZASZTIZWrVohJSVFbV93d3dcvHgRM2fOxPXr13Hjxg18+eWXOHnyJKKiotTiZ86cCWtra4SGhr51Ozt16gQjIyPMnDkT+/fvx4MHD3Do0CFERUWhc+fO6N27t7Dv/v370aNHD+Tn52PWrFlYsGABcnNz0atXL/z6668VPW01VpPPAgC0bNlS4/cFY+wN77trmr07paWlZGNjo3bZdtWqVWqXzyIjI8nExIRKS0vf6ph2dnZUv3590tPTI3d3d3rx4oXGuMOHDxMASk5OFpXv3btXrdzOzo4A0N69e9XqAUBSqZSuX78ulJ07d44AUHx8vFAWEhJCNjY2lJ2dLdp/xIgRZGpqKgy7qM0wiQMHDhAAat26tXDpmoho5MiRJJFIqF+/fqJ4V1dX0WXt27dvk66uLs2fP18Up7qs/ma5puEhCxcuJIlEQnfu3BHKRo8eTQBo7ty5otj27dtTx44dqzwn1f5VPdzc3KqsqyZ69+5NJiYm9OzZs0rjVJeNf/75Z7Vtw4YNI2tra1HZl19+STKZTNT26dOni2K2bNlCAKhOnTrk6OhIiYmJlJiYSI6OjiSVSuncuXNCrJOTE/Xq1Uvt2BcvXiQAtGrVKqGssLCQGjVqRF988QUR/ef9Un6YRHXbWV5VwyR27dpFenp6dPHiRSKqeDjE1KlTacqUKbRp0ybasGGD8B7o1q0blZSUaKy7smEST548IYlEQiEhIaLyK1euCOf25ufxgw8+oGXLltH27dspISGBWrduTQBo5cqVov0LCgrIz8+PJBKJUI9cLqdt27apteHcuXOkq6srfNfNmjVLbZhETdu5a9cusrGxEb1GXl5e9Pz5cyFGqVSSo6MjeXl5iYZeFBYWkr29PfXp00fj81mRyoZJ1PSz8Fd8bhn7u+Eb6P5GdHV1MWLECCxduhS3b98WLm2mpKTAysoKHh4eQqyZmRlevHiBjIwM9O3b962Om5OTg9LS/8femcdHUaT//0MgkwmEJFwhciPIcsihQSK6LupGsizrsYKoi4KwoiigK18BcRXXC1gXFRWUVRFQFDxxXZBLxBMUCfITdEVd5ZRwKEkIa0hI+vdH6ElPTx/V3dXd1T3P+/WaVzLd1VXV1T1Vn376qadOoE2bNprWFqDWUpaVlYWLLroobsZ2Xl4eMjIysH79evzpT3+Kbe/YsSMKCws18yooKECnTp1i33v16oXMzEx8//33AABJkvD6669j2LBhkCQprrzCwkIsXboUW7ZswbnnnuvovEeMGBH36jo/Px9LlizB6NGj49Ll5+fj8ccfx4kTJ9CgQQO88cYbqKmpwbBhw+Lqlpubi9NOOw3r16/HnXfeCSDeenXs2DH88ssvOOeccyBJEj7//HO0a9curqyxY8fGfT/vvPNMZ90DwOTJk3HNNdeYpmvSpIlpGlamT5+Od955B08++aTm62wlsluI8lW5TDQaTXAb6dChA37zm99gyJAhaNasGVasWIHp06cjNzcX48ePB4CYBfTo0aP4/PPP0bZtWwDAhRdeiM6dO+Ohhx7C4sWLY+Xrla2sHwDMnDkTVVVVsWtoBEs9rVBZWYnbbrsNY8eORffu3Q3TzpgxI+77VVddhS5duuCvf/0rXnvtNVx11VWWym7evDmGDRuGRYsWoVu3bvjjH/+Iffv2YcKECUhNTUVVVVVcO6nfQo0ePRp5eXm48847cd1118Xu/bS0NHTp0gVDhw7F5Zdfjurqajz99NO45pprsHbtWpx99tmxPG655RYMGjQIAwcO5FbPFi1a4IwzzsD48ePRo0cPbN26FQ899BBGjRqFV199FUDtm4Fvv/0Wd911V0K0nt/+9rd44YUXUFNTg5QU5y9jrf4WJFpXiyDM8VeLE7zZvHmzBCBmXdyzZ49Ur1496dZbb41Ld+DAAalbt24SAKl169bSqFGjpJUrV1ouT55Ad9NNN0kApFtuuUUz3aBBgwwtjpdccklcnlpWOEmqtXKMHTtWsx7XXXdd7NyMyoJi4osTy7B6MuKCBQskANInn3wSt122TsnWJrmt9D7KSUG7du2SRo4cKTVp0iQh3aJFi2LpRo4cKUWj0YS6ymV7xdGjR6X9+/fHPgcPHtRMt3TpUk3rnB5WrGFLliyR0tPTpT179sSlu+6666SGDRvGroOc5wUXXJCQ5wUXXCB17Ngx9p3VMvzDDz9I6enp0nPPPRdLo2cZZq2nGiPL8MyZM6UmTZrEJmJJkrWJcv/73/+klJQU3etiZBmWJEkqKSmRLrnkkrj79JprrpEuv/xyCYDpGwD5LdaHH34Y23bjjTdKvXv3lqqrq2PbKisrpdNOO03q169fbNvSpUul1NRUaceOHbFtWpZhK/X873//KzVs2FB67bXX4o5fuHChBEB6++23JUmSpJdfftm0z/n555+l48ePx/0+9u/fr/l2jqdlmCAIc8gyHDLy8vLQtWtXLFmyBHfeeSeWLFkCSZIwfPjwuHQ5OTnYunUrVq9ejZUrV2LlypVYsGABRowYgUWLFlkud86cOThy5Agef/xxNGnSJCEOaU1NDXJycvDiiy9qHt+iRYu473oWZqDWAq6FdNICIvv7XXPNNRg5cqRm2l69eunmz4pePVjqV69ePaxcuVIzrRwTtrq6GhdddBF+/vlnTJkyBV27dkWjRo2wb98+XHfddQn+l3rlslBaWppgUdIiEokYTvKZNWsW7r333tj39u3bY+fOnXFp1q5dixEjRmDw4MGYN28eU/3kCUv79+9P2Ld///64cGNPPvkkzjjjjLiwaEBtLO6FCxfi888/R0FBQewY9eQooPb3ofS9POWUU7Bv3z7NsgHE8po2bRpat26N888/P3besl/0oUOHsHPnTrRr1w4pKSnM9WSltLQUDzzwAG6++WaUlZXFJn+Vl5dDkiTs3LkTDRs2RE5Ojm4e6enpaNasGX7++WfmcpVkZWXhX//6F3bv3o2dO3eiffv2aN++Pc455xy0aNHC9A2AbJ2Xy6+srMT8+fMxefLkOKtqamoqBg0ahDlz5qCyshKRSASTJk3CFVdcgUgkEmt72f9+z549qKysjF0n1nouXLgQFRUVCbHU5YnIH3/8MQYNGhT7Lf7jH/+Im9+gJCMjAx9//DEuuOCCuO0//PADc9xowNpvgSAINkgMh5Dhw4fj7rvvxhdffIGXXnoJp512Gs4666yEdJFIBBdffDEuvvhi1NTU4Oabb8Y///lP3H333ejcubOlMlNSUvD888+jtLQU9957L5o2bYpbbrkltr9Tp0545513cO655xoKXR60aNECjRs3RnV1tSUx4RWdOnWCJEno2LEjunTpoptu27Zt+Oabb7Bo0aK4CTBmCz3Y4dZbb2V6CBowYIDhQgAjRoyIi7mrNdv+j3/8I/r27YtXXnnFNNKBzOmnn44GDRpg8+bNGDZsWGx7ZWUltm7dGrftwIEDmu4c8iTNEydOAAB69uyJ1NRUTZH7448/xj2g9enTB+vXr0dZWVncJLpPP/00th8Adu/eje+++w6nnnpqQp4333wzAODIkSPIzs5mricrR44cQXl5OR566CHNiXsdO3bEpZdeijfffFM3j6NHj+Lw4cMJD6dWadeuXcyFp6SkBEVFRRgyZIjpcbKrk1z+Tz/9hBMnTmhGRKmqqkJNTU1s3549e/DSSy9pTsI788wz0bt374SJjmb1PHDgACRJSihffY1kt63MzEzDPqd3794Jv9/c3Fzd9FpY+S0QBMEGieEQIovhadOmYevWrZqrRf30009xi2+kpKTErKVaYcBYSE1NxWuvvYaBAwfiL3/5C5o0aYJrr70WADBs2DA8+eSTuP/++zF9+vS4406cOIHy8nJTqxEr9evXx5AhQ/DSSy9h+/btOP300+P2Hzp0yPFg74TLL78cU6dOxb333ovFixfHhXeSJAk///wzmjVrFrP0SgqfP0mSHIW/04OXz/Cpp56qKQSB2vBpgwcPRocOHbB8+XLDh6Kvv/4aDRs2jAmVrKwsFBQUYPHixbj77rtjCx288MILKC8vxxVXXBE7tkuXLlizZg2++eabuIeNJUuWxN3njRs3xu9//3ssX74cX3/9dWzltf/85z/YsGFDXDSCoUOHYtasWXj66adx++23A6j9nSxYsAD5+fkxi+YDDzyQsIrZ9u3bcffdd2Py5Mno379/LEoEaz1ZycnJwbJlyxK2P/7449i4cSOWLFkSsypWVFSgqqoqYcGI+++/H5IkOZ5HoGTq1Kk4ceJE3OIYWr/Bo0ePYvbs2WjevDny8vJi55SdnY1ly5bhvvvui4WbKy8vx7///W907do1dh9pnfvSpUvx8ssv4/nnn0+wwLPUs0uXLpAkCa+88gquu+662PYlS5YAqFsgJC8vD506dcKsWbPwpz/9KWHFP/l8mzRp4vgB3cpvgSAINkgMh5COHTvinHPOia1gpXaRAIDrr78eP//8My688EK0adMGu3btwhNPPIE+ffqgW7dutstu2LAhVqxYgQEDBmD06NHIysrCJZdcggEDBuDGG2/EjBkzsHXrVgwcOBCpqan49ttv8eqrr+Kxxx7D0KFDbZerZubMmVi/fj3y8/MxZswYdO/eHT///DO2bNmCd955x/ZrYB506tQJDzzwAKZOnYqdO3fisssuQ+PGjfHDDz9g2bJluOGGG3D77beja9eu6NSpE26//Xbs27cPmZmZeP311xPiMvOge/fuphOunHD06FEUFhbiyJEjmDRpElasWBG3v1OnTujfv3/se7du3RKs0A8++CDOOeccDBgwADfccAP27t2Lhx9+GAMHDowTb5MmTcLKlStx3nnnYfz48WjWrBmWL1+OlStX4vrrr497jTx9+nSsW7cOF154YexNxuOPP46mTZvGTYDLz8/HFVdcgalTp+LgwYPo3LkzFi1ahJ07d2L+/PmxdFor0ckPeWeddRYuu+wyW/X84osv8NZbbwEAvvvuu5hLBFBrbbz44ovRsGHDuPxl3nzzTWzatCluX3FxMc444wxcffXVsYeA1atX4+2338bvfvc7XHrppXF5vPDCC9i1a1csDvMHH3wQK//aa69F+/btAdT+7rZv3478/Hw0aNAAb775JtasWYMHHngg7u3U3Llz8eabb+Liiy9Gu3btsH//fjz33HPYvXs3XnjhhZjorV+/Pm6//XbcddddOPvsszFixAhUV1dj/vz52Lt3b2yCIwDNc5ctwYMGDYoL38daz+uuuw6zZs3CjTfeiM8//xw9evTAli1b8Oyzz6JHjx6xONkpKSl49tlnMWjQIPTo0QOjRo1C69atsW/fPqxfvx6ZmZn497//nVA/NXKbfvnll7F2/+ijjwDUrgIow/pbAGpjs5u90SGIpMcnX2XCZebOnSsBiJtgouS1116TBg4cKOXk5EiRSERq166ddOONN0r79++3VI56BTqZ4uJiqXPnzlI0Go2bBPL0009LeXl5Unp6utS4cWOpZ8+e0uTJk6Uff/zRNE9J0l+1qn379tLIkSPjth04cEAaN26c1LZtWyk1NVXKzc2Vfvvb30pPP/10LI2TCXTqCVHyBLrPPvssbrveJJ7XX39d+vWvfy01atRIatSokdS1a1dp3LhxcROAvvrqK6mgoEDKyMiQmjdvLo0ZMyYWSk5ZZ71JUl5PoNNDbme9j/raQScc1Icffiidc845UjQalVq0aCGNGzdOKisrS0j36aefSoMGDZJyc3Ol1NRUqUuXLtKDDz6oGTKsqKhIKigokBo1aiQ1btxYuvTSS6VvvvkmId0vv/wi3X777VJubq6UlpYmnXXWWZrh/9QYhVZjrad8b7G0nRqte+PIkSPSNddcI3Xu3Flq2LChlJaWJvXo0UOaPn16XLhAmQEDBuiWr/x9L1++XOrXr5/UuHFjqWHDhtLZZ58tvfLKKwn5rVmzRrroooti552dnS0NHDhQWrduneY5vPjii1K/fv2k7OxsKT09XcrPz0+Y1KaF3m+PtZ6SJEl79+6VRo8eLXXs2FGKRCLSKaecIo0ZMyYhT0mSpM8//1y6/PLLpWbNmklpaWlS+/btpWHDhumelxqj34galt/C0aNHJQDSVVddxVQ+QSQr9SSJ4q4QBEEQRNh4++238Yc//AH/7//9P/Ts2dPv6hCEsNAKdARBEAQRQtavX4+rrrqKhDBBmECWYUITORyUHunp6cjKyvKoNt5QWVlp6kuclZXlejQMgiCIMPLBBx/gH//4B4qKirB//34sW7ZM09ebFx06dMCuXbsStt98882YO3eua+USwYMm0BGayLPO9Rg5ciQWLlzoTWU8YsOGDQkxQNUsWLAgblY5QRAEwcaxY8fQu3dvjB49Gpdffrnr5X322WdxYfG2b9+Oiy66iCJuEAmQGCY0MYtlG8bA7loxQNX06NHDo9oQBEGEi0GDBmHQoEG6+48fP46//vWvWLJkCUpKSnD66afj73//O84//3xb5anD982cOROdOnXCgAEDbOVHhBcSw4QmIi5W4TY8YoASBEEQ9hg/fjy++uorLF26FK1atcKyZcvwu9/9Dtu2bcNpp53mKO/KykosXrwYEydOjIvtThAA+QwTBEEQBOEx9erVi/MZ3r17N0499VTs3r077s1jQUEB+vXrl7BYk1VeeeUV/OlPf0rInyAAsgy7Sk1NDX788Uc0btyYnkQJgiCIpEWSJBw9ehStWrVCSkpiIKtt27ahuro6YYn648ePx1ZL/frrr00XhZoyZQpmzpyZsH3+/PkYNGgQCWFCExLDLvLjjz/GlmklCIIgiGRnz549mktjl5eXo379+igqKootRS8jL2996qmn4j//+Y9h/rJwVrJr1y688847eOONNxzUnAgzJIZdRF4z/v339yAjI9N2PmlpbOmOH7ddhOWyeJdrt2w36iHjtD5W4F33ZMbL6+YnQblnRL4ebrShn30oK3aviZN6lpeXYcCAtrFxUc0ZZ5yB6upqHDx4EOedd55mmkgkEls+3AoLFixATk4OBg8ebPlYIjkgMewismtERkambTEcjbKlq6gAUlNtFWG5LN7l2i3bjXrwqAsrFRV1//Oqe7Lh1bUSEaWmUN5LIiLqdWrc2J22s3q+btXDCDvXhEc9t23bFrP0/vDDD9i6dSuaNm2KLl26YPjw4RgxYgQefvhhnHHGGTh06BDWrVuHXr162RayNTU1WLBgAUaOHIkGDUjyENrQBDoXKSsrQ1ZWFoqKSm2JYStC2Cl2hTAPeAhhXngxaIsuXERGVFElAkG5r0S8hiIIYrfqYYTda2GnnuXlZcjL016oSY5bX1VVhQceeADPP/889u3bh+bNm+Pss8/Gvffea3sVvTVr1qCwsBA7duxI8EcmCBkSwy7iRAyLLIRFEp8i1YWFoAgWERBRNAUB0e8xka8r77bj3bdGo/7XUcZqPWQxXFpaisxM+26DBOEG9M5AQEQWwjxJJiEskkDROle/6yeyQAoaclv6fU2DCG+xWVFh7d5mKZ/39bVaR4IIIySGA0oyu0YESQQD/ooS1vNTpnO7vjTweoOooliuj6j3gd+CmBWe9bRTRzes1AThFySGBYOlQyIh7H89WAiK/59WPqK8iiWcI6poEdki6acgNipbnU+yCOKKigpUVlZyzzcSiSAq6k1IeAqJYYEgISx+HVgIqgjWytPOudDYIh5eWv7Dgp/uCFZEZtgFcUVFBdLTswHwjz+Xm5uLH374gQQxQWJYFLz6LQZRCJM1WBsv7hkWQUDjSLAQSRiLbB2W8UNsGpWnlQdP4S6aIK61CB8HMBB8JcsJFBevQWVlJYlhgsSwCHg1Yc4vISyCNdhpPczwSlR42WeznBONIcFGBL9iEsT88uBVT9EEcS0NAFBAdsIdEhcIJzzFCyEcjSa3ELZ7/ixUVHgjJNw8Bxn5XKyck9+WRYIPXtxfRnj1O3ICz/bhJVi14FVPcpEikgmyDAcAp0LY6zJ54LdrBgteiWA34T0o02DoDW4JIb9dKES3EotmIdaDl8XfroWYR9mJRMDXMlyPY15E0CEx7COidvphsAi7aQn2gqDW32r+ov4GggrPBxO/XCiCIIgBd90RWEW3WVvxEO+iXw+C4AGJYZ/wyj3CKn4LUb/LNyKIQthvC78ZWvWjgZcPvNrWj9BsosciBsQJWeeFILaDKO1DECyQz7APeBkFwAp+C1G/yzciSH7BVv1+RSPIdRcdu/eGfG+KLE79gNfv1e08eEzYI4gwQ5ZhgbHbAfkZPs0OIotgIDi+wWEbsIJgHfQLXq+/5byslq083k2C8Io+KBZQp/X0P8IE+QwT7kGWYY8RsWP3c7KayELYy0gRdrAT/YEIDzyjBjixFhNiWF69CIVIESaIsEJiWFC8tArzIEzleikurdY/2cQvDaTG8BakdkWxmwTlfhfB1z8I7UQQIkJi2EO8WlzDCn5aZv1YRMQML9veSv3tCgK19ZisyeGE92+BrMT28HvOBEs+IlixCUI0yGc4RNixMnpdJo+ygzxJTsbpkqy8jhPZL1fEOokMb99VO/dGUPxn3YSHT7Xb7eiH/7BzeK9AJ3HMiwg6ZBn2CNEGdhLCdYhmJXVqBQ4Dov1egoIIb0tYrcRW31AE7f72e0U/M7ysH/2eCdEhMSwYQfEVDpMQFgGnrguitasTRKtP0BDlgdGqG1AYCbMgDus1I5ITcpPwgLQ0v2sQj1++uqIJNr86c/W5iFIPIjy49Zrd6utxo3rYrWMQwq0pses24dXqcV64tvDJP3LyQxD8IctwCAiCBUYkISzS61avQioB8QsniComRK1XEBHFt97KxGErLhNuw7ufMPvd6S3L7BRR+jqCEBmyDAtEEJ7OvY4lLEK4Ih7onQcPq4za8kSCkpAR3UKstZ01bzctxMo6Kf/nUZ6/C1f4VwZBiAyJ4YAT5kkQYRfCyv0iLz6STPhxn7h93UgQW8OorYL6wMlSb6v3SdDagCCMIDGcJPjhJ5zsFmGRQ1Lp1S3ZrEMinK+6Dm6IDNEFMY+8eWDVTcOr+nnVP7hRDr/8UkGh1Qi3IDEcYLxaxIMswtawW383BzzWOokyuc8NgnIuRvV08tsQWRAH9TV90CbziTKhjiBEg8SwQIj9VB6Mcv2sA09/QlHcJrwUx/L9L8oKWSJY6tXouRlYKcctQWylLjwFMU9BaqcOXgliXtfOqSAOkvgnCFYomkSISdYJc15Hi3AjOoNTC6BbA5Y6IoXTCBVax2j5j1r5WIVXPk5wUger6d0UM7x9TlnPze+Hb6/uGV7XjqWuWr9rEsLA3Llz0aFDB0SjUeTn52PTpk26aauqqnDfffehU6dOiEaj6N27N1atWpWQbt++fbjmmmvQrFkzpKeno2fPnti8ebObp0GoIMuwYLBaBr2yRFhFBCHsFaJNfBJhoHIiiPVm8PPGTt7l5fzrAQAZGcb7rfoTs1opRXkVLko9lDipkxe+xH60mQh9CxAFwDNov3Vb4Msvv4yJEydi3rx5yM/Px+zZs1FYWIgdO3YgJycnIf1dd92FxYsX45lnnkHXrl2xevVq/PGPf8SGDRtwxhlnAACOHDmCc889FxdccAFWrlyJFi1a4Ntvv0WTJk0cnyHBTj1JksiL3CXKysqQlZWF7dtL0bhxpuXjnfgOJuOEuTAJYRlWCw4LPF0w3MBPFyG3xK5TzMQyq/DVw0obKYW2meiz8vvQehOgh1k0BF6I4qakB6/fihf9mFzX8vIy5OVlobS0FJmZ7OOhPI4CE8BXDB8H8ISl+uTn5+Oss87CnDlzAAA1NTVo27YtJkyYgDvuuCMhfatWrfDXv/4V48aNi20bMmQI0tPTsXjxYgDAHXfcgY8//hgffvih81MibEOWYYFx4kPnNX4K4TCKYICvEGbNz0/s+mtaxYrw9dsCp1VXpUBW1s8sQojWfqttriVc9Vxd7PoPG9XJKF+/fYe16iPnxRsRLepBpaysLO57Wloa0jSWja2srERRURGmTp0a25aSkoKCggJs3LhRM+/jx48jqroB0tPT8dFHH8W+v/XWWygsLMQVV1yB999/H61bt8bNN9+MMWPGODktwiLkMxwwzHwzRbdo8C7LqwHBTT9cNVb9RZMFKz615eX6H5Z8zfK36sfMmj9LOr3zMau33j4ev0G9c9FCT5TzqJOIvwe36hS0t2mi0rZtW2RlZcU+M2bM0Ex3+PBhVFdXo2XLlnHbW7ZsieLiYs1jCgsL8cgjj+Dbb79FTU0N1q5dizfeeAP79++Ppfn+++/x1FNP4bTTTsPq1atx00034ZZbbsGiRYv4nSRhClmGPeD4cSA1ld8EIz38EsJ2y3XSmSezNVh07EagMBJxerhh5fXyGrDODTASsco2kK3GRhZjtyyWWpZZo20s564nsoMUvQHwxpfYLl61p3N4xxmuAQDs2bMnzk1Cyypsl8ceewxjxoxB165dUa9ePXTq1AmjRo3Cc889V1eLmhr07dsX06dPBwCcccYZ2L59O+bN/u4p1QAAIABJREFUm4eRI0dyqwthDIlhD3Gr0/HTfyzMQphEsD14uvZobdcTwE5e9/NO7wTlfWckgrUEr5EwNhLFvPzJWQWxXC6rewRLOW7A2x2Bd729DLcWVjIzM5l8hps3b4769evjwIEDcdsPHDiA3NxczWNatGiBN998ExUVFfjpp5/QqlUr3HHHHTj11FNjaU455RR079497rhu3brh9ddft3E2hF1IDHuMqJ2OiHVSQ9Zg/8r14/5Q1s+OAHZTHNvNQxYvdlyd9ASrlqgE6tqMRRTL24zEFavwYhHETssIMrytxCSIvSESiSAvLw/r1q3DZZddBqDWqrtu3TqMHz/e8NhoNIrWrVujqqoKr7/+OoYNGxbbd+6552LHjh1x6b/55hu0b9+e/0kQupAYDhjKjtTvQcNLqzBZg/0t1+i1u1PU9dHykTXar7fNyn5ex7DmyZo3i5XYyLoajWqLYpaoDCzl6aEl+LTKdSPCiajWVzU86ynCeOA+kZMfXlgPpDVx4kSMHDkSffv2Rb9+/TB79mwcO3YMo0aNAgCMGDECrVu3jvkdf/rpp9i3bx/69OmDffv24W9/+xtqamowefLkWJ633XYbzjnnHEyfPh3Dhg3Dpk2b8PTTT+Ppp5/mc5oEEySGPYaXewDPjk909wgSwmKVyWsQZxG16gliVo+3Wr5TrOZpJ0SinkA2EsZqUaxnqVVu8ysUn7reRi40Xv1mgyCIeSBafUTjyiuvxKFDhzBt2jQUFxejT58+WLVqVWxS3e7du5GSUheXoKKiAnfddRe+//57ZGRk4Pe//z1eeOEFZGdnx9KcddZZWLZsGaZOnYr77rsPHTt2xOzZszF8+HDPzy+ZoTjDLiLHRywqKkVGRp1PkkiCkIRwsEUwa93daEer7WbFpcHIGswiis3Ks4uIrjpm0Rm0/leGZ9NLq4S1zVnqp1ee3jU2KovFws0TkfphLfycP2JERQWPOMN3gH+c4ZmW60OEE7IMJzGih1ALkxAOkkuEV3mzTI6zKoKtvMIXHTOrsFY6tTXXzMoqW4mV+43EtR03LSNro56/sojWYbO6OIGXHzH5DxOEPUgMe0zQOxivhEQYhLDb52DnFbuf6NVHL/av3nfe7hJBwmjimXq/mbiUXSfMVrlTl+NUEPMWWmERxACfcwmv/3Aq+PoM13DMiwg6tOhGkiKqe0RFRbCFsFz/cA5G1lC2hZYbhNmiEVrHmgnhZG17rfPWakv5f+Vf+RroWaJZ3RxY6mj2P49yzPLlgZviW5T7V5R6EIQXkGU4AAS5U7I7WLpFEPwIWaxDIluFWdwf9NLx3mZWBytW0SDA6jKhhVG0CavuF1YtznrliIzIFmLRrMPKCZwEISJkGU5CvLKyWJncFUQh7Ea9WfIT1dVG3R5Wrb9qa6GZtVO93Qi9gTjMA7SZpVidprxce7sSpaXY7D40ewDiea/7JfzCbiEWoQ4E4QVkGfYQEV71eRmKiAWvOlvePopu4dQiDHg/gGlZBY32s/j8suyzkkaPsFmG1WhNzJKtjup2U1rvjFwj1FZLvfyM6qTOn/VtiNVr7bU/MW+c1D98k+l4L8dczTEvIuiQGCZMcUNceSnYgiKEg4iRELbi62u2nbV8PTIyEkW6k9f4fsDz3tMStID+RDwlWhPh9ASx1vLQevVQ/i/aa34j3K6rCIKYIMIOieEkQgSrMIlg87z16i2SVZiXCHZaX704tVpYjZrgtD48MBKlPPJWRpZQlqXVVix+6nI+Wg8fSj9iPYGn56/M+obAr4eVsItOHm2bxjNEMEFwhsSwwIjQuVqtQ9iEsNfXIKxCmMVXlNWHVG9g1nr1zpIfC7zuJ6PwYlr1tVquXTcCI1cHrTpEUIlIFKhUhbqy4jKhLlurXK0HRVFdJUSdUBceoc57OWYKrUbUQWLYI/z2ufLCX5mEsJhl8ERPCNsRwXbOXTnBi4d/td3jeMSC5ZEny1sFJ768SiKoTMg0EgUQTRTEgLl12ApBEXRhFsTi+A4TBH9IDAsKzw7VK6uIHiSE2RDdKqwsw8wazFsEq+FtqbWbRlRxoOdeYdT2ev7CcSKooiIhE6UgVuevJYjDjqiCOAzlE4RbkBgOOXY7Ll6dOQlh/8vhgZYQtmoN5nW+vKyqrMe6ZYHmgZ7Q1RK2rPkoSRA/FRVASUn8gdEoIic/yI7E7dbyH5b/l5eC5ukqYcUX2U1EFMRBsa4ThB+QGA4xXglho4HUK3gMdDzFml0XAL2Z+2bHsewzEh2s+RsJYdFEsJXzdCJ4nYRn42n117LCqu9FK/emnE4+JlNZ18OH6wo9KYiRnY1oNGIaYSJZCKsg9s86nAaAZ8ESx7yIoENimHCEEx9FN+tgFd6CzWzQ4TFZSi8fve12Jh4pUQthq+4RdmEVwTwsxnZEL88yrKQ3uoeU+8xcFWxfJ9llIhqNNU4kN4qowofYKG/Zf1hrEh+rlVh0glhngkhGSAx7QJBCyljpuEkIx8NaF6evrnnlz5qHln+wX9Zgq9/1tulhZOV14tNtJ63VvIz8hJUiWSmO1fuM8i2riCAzO7tug+wPoVR80Sgys7NRUcFv1n9QXSVk3BLEyWkdJgh3IDEsICJNMLICCWFv4WH9NcuXRQjzFsEsglb53UwQs7ox2HWVcDoJjxdmAlD5v3IbywQ3+brGXCWUvsOym4Ti/6jOhLpkRTRBHPSyCYI3JIZDiBcWRb87QdGFsBX3BdY8zXBLCHshgq0KYPV35f9q8ctrApwfYjgunBkD6ri/WkJY/q7erhTG6vvgpEtwnQguKanzG1YK4cOHa63DuVEAEWRn1ybVE9x2Q60FEZEEcTDdN3jHGablmIk6SAwTAJx1jGQR9j4fdf2tnI/Ra2QZK0LYLl4JYLcn2ZnlYVXQOmncCLSPjagqqbbcKt1/9a5xNAqg5KRilgWx8uCMjFrFfPJ7NBqJ5cHit2zkL0yICV0vIiyQGBYMNyxsbkJCmD1/XlZhJ0KYNU/lNjMhbLV8Jy4PdgWw2/6+poLX6tMKTzQUSwQAotHY38xorVVZ1rVqD4jsbNRtkCNI7N0bX9+9e4Hc3Nr/s7OBaCbPKseKD55Fsw6yDhOEmJAYJmx1iH50okEQwl7jhhAuL9cWwE7cIuwKYCP/Xyei2my7Hoai16xRWBvNauOypNdLo2gAOVZwZnYU2dm1luNIRVmtMi4GyrLb1VmY9+4FNm8GOneuy7+4uPZTUQG0aYMIKqGMLOFkAY4wCbewCWLvrMOpJz+8OMExLyLokBgOEaIItLDD25/XSn5uCwIzIeyWCGZxf7DrQqH1XcayCwNg3AheC2KWdKwKVBEzOCZhS0qA774Dfv1rVFScnEC3dy/w0Ueo+s9/kFpSUieIDx+u3ReN1h4XjQLRHE3BxUNAGQk50V/fh0ncA+K3N0GYQWKYCASiWIXd7vCdCmOl7mGZmKT2EzYSwE6EsNb/VgWwFTGs/q4reu3eFCIIYjvBg43yVPpGyH+VvsFyms2bgc2b8SOApvv3o3FJCdChQ61rRHEx0KZN7GbKzK5Eicmkp2SaRKdEFEEsSj0Iwk9IDAuEkw7JrkgLQicYJCFs5HvrFDM3BbU20hMZWuehDqFmVwizWGu1xLBcT17iF9AQwE6dufVwIoxZ0/ASvmYO38pZbLLrw0lrcUUJgCjqHImVx8irZ2ggJ7fj/RF2ayNvIepnmyXD9SLCC4nhJIaEcDiw4oepbE8tXWRHCLslgI2Esd42UwHsVLgawcMibCXoL+s+ozbQ81+Qb4TDh2vdIKLR2qTZ8Y0eG0CUF0P5isECySqmRBDEvOrg7jVMBd/QauQzTNRBYjgEJOMAwoqXE+bslGUm+LTyVrs2GMHyClpLu6iFsLocs6WJ9f5quUDYFcOarg+spnleFlu7x7I+wdgR72bna3YDKW+IaBTIzo7FL66MZiLSvDnQvDkyf/gB6fXq1UWQiEa1V2kRCFEFtwiCmGfZgJjtTBB6kBhOUgQcpxIQpTMVpR6ANSFsJ28zVwwjtASwWgQbCWAj8evY5cFN/xWWvJxafM3223GJ0EKeRCeTnV3rA3zy8JISIOfXvwbKy9EkGq0Vwsobp02buIl4BDt+++6GSZAThFVIDAuC3U6IOht9RBD8ftfBLBqDHY2oZ921IoLNBDCT+OVlNTXLyy5mApjHRDqn56MVrFn56dwZyM1FcbEqTfPmQN++tW4UshjOza0Vz7GgxPo46be8Eo1+iDme5+anu4SyDnK+BCEyJIaTEL8FGguidJ6s9XCzTVkmy2lhJIStorfAhZ4YVopgFiEcJ36tCF+7PsB+iF8rZTutn5aq0bsJ1E8k2dl1q8llZ6OsQsNPMzs7PoJENFprFZYvuNrCLAhWf8/KJvTqdPy2ELsBn/PhvRwz+QwTdZAYJkIJj87Xy7HcLZ9kZd7qMpSWI/Wgr1eWXRGsZQHWFcC8rMBW0/H2O7FStt20RrDcVOoL2rx5TARXRjNRUlLnHhGrWm4uYjuULhGyxVjxXV7VLgx4aeX0c0KbW2L8+HH+eRIEL0gMBxgBDS9CEJTB1+7105qjpM5LLUqVmkd5jPyGW3m80QBqJIL19in/xgSwWUQDLdwQlG4KYBk3b0i7N5H6wsgXUBbCqqWZ5WaKRoGyiggyZXcI+WbJza07XhbEjGhFFTHC7d83i+t2kAQxQRDmpPhZ+MyZM1GvXj385S9/iW2rqKjAuHHj0KxZM2RkZGDIkCE4cOBA3HG7d+/G4MGD0bBhQ+Tk5GDSpEk4cSL+lcd7772HM888E2lpaejcuTMWLlyYUP7cuXPRoUMHRKNR5OfnY9OmTXH7WerCAy87vCB0riKIfCt1cNMN1U4eamOdrFtysiuRGa1ETnZlbJv8ORkgIPZdeZzeRzYEysfJxyjLjUaBzGglIqj9xBSW0Uc+ca3tyoYxy0OP8vK6j4io/XZ55KG+IeSLl5ERf+FPukXIa21UVOg0k3zTKG8elVUY0WiCu4FXi2u43Yd41Y/61ReK0AcnkurChyBq8c0y/Nlnn+Gf//wnevXqFbf9tttuw4oVK/Dqq68iKysL48ePx+WXX46PP/4YAFBdXY3BgwcjNzcXGzZswP79+zFixAikpqZi+vTpAIAffvgBgwcPxtixY/Hiiy9i3bp1uP7663HKKaegsLAQAPDyyy9j4sSJmDdvHvLz8zF79mwUFhZix44dyMnJYaoLIR5BEPt2kM+LVb/Jg5mseyIVZXGNEzmZIBKNAtl1VkDZGmVUjpHVWfk3Jn7VJ2H0vxIeF9OO4GUt103fFqvlsByndiJX3SSyNVgWwfJ9oPn2QS2s5ZtHIYi1XCREff6wQ1AsxHbrSZZpIpmoJ0mS5HWh5eXlOPPMM/Hkk0/igQceQJ8+fTB79myUlpaiRYsWeOmllzB06FAAwNdff41u3bph48aNOPvss7Fy5Ur84Q9/wI8//oiWLVsCAObNm4cpU6bg0KFDiEQimDJlClasWIHt27fHyrzqqqtQUlKCVatWAQDy8/Nx1llnYc6cOQCAmpoatG3bFhMmTMAdd9zBVBczysrKkJWVhe3bS9G4caZuOjsdjp3Oza+OTf0K3kp6q3itPZy4smr50erloSeG1UJFyyocE8KyylH7M5x8La70C1UaWNV1M3KHSHCD0JqJZNUnWEYUn14j1I3lpwlRL1KE8n+FaFV+5CARQN0tI2vd3Nxaaz+Ki+NVs8rVoqwiXlwD2peQJeyeXA/lX/X/Zs1htF2JV/2xVZzcSn73qQBQXl6GvLwslJaWIjNTfzxUI4+jwCsAGvKpDADgfwCGWa4PEU58cZMYN24cBg8ejIKCgrjtRUVFqKqqitvetWtXtGvXDhs3bgQAbNy4ET179owJYQAoLCxEWVkZvvzyy1gadd6FhYWxPCorK1FUVBSXJiUlBQUFBbE0LHVRc/z4cZSVlcV9zAj7k7eXr9vC3pZayCIlIyNRCOdkVyJScrBWjRQX1yqcvXuB776r+/vdd8DOnYiUHEROtAw52ZXIzYXhR+kqkRmtdb2IVJQlim6lidHMDUJG6cKg/oiMnkuDkbuCkTuEleOUN4D8UbssaPm/nBTCskuE8nLJGP6m1OWrBHYy4UXf45egFdNlwj/M3CuVnH/++ahXr17CZ/DgwQCAqqoqTJkyBT179kSjRo3QqlUrjBgxAj/++KNXp0OcxHM3iaVLl2LLli347LPPEvYVFxcjEokgWxWnsmXLlig+GeiyuLg4TgjL++V9RmnKysrwyy+/4MiRI6iurtZM8/XXXzPXRc2MGTNw7733Gp4/D4LQOWnV0W2rMA/8KJ9XmWrtE1M4spmvpKRWBCtp3rxWKCsmPkVOfjLNKlYBdtcHrYvPS+DqmbC9gGeZLHmZLf2n97/ir9J9Qf1MIl8SI9frWktxJOZqE8tf8WF13zbyIfa7L7CKF24Tye26EAWQzjG/GstHsLhXKnnjjTdQWVkXNeenn35C7969ccUVVwAA/ve//2HLli24++670bt3bxw5cgS33norLrnkEmzevNn+qRGW8VQM79mzB7feeivWrl2LaNB6OgamTp2KiRMnxr6XlZWhbdu2PtaoDi87UD8urR8DhGiDklKPRCrK6sSvLIr37kVs9QT5IimFcElJorVPmbn6f6vuDjzj8Fo5Tq++RufhN2YzzfR8V5T/q/6aiWA9zxa9B9uIMn+FL4WW24UZps9dAl4iLcIqiJNbhNfxyCOPYMyYMRg1ahSAWhfNFStW4LnnnsMdd9yRkL5p06Zx35cuXYqGDRvGxHBWVhbWrl0bl2bOnDno168fdu/ejXbt2rl0JoQaT8VwUVERDh48iDPPPDO2rbq6Gh988AHmzJmD1atXo7KyEiUlJXEW2QMHDiA3NxcAkJubm/BaQo7woEyjjvpw4MABZGZmIj09HfXr10f9+vU10yjzMKuLmrS0NKSlpTG3R9g6F6NBIAjnGuTnswQtVFIRbw0uLo4Xw0Dt6mIAHsJkdM4GLs9+t/aYnTvrVhHTEVa2EeWpRd1gWsrPqK6s7eA0fAKr86uWlfYkRiIYqBPCWj65WsiCrxIRRJTViJrHFc7IqHsm0mqaIP8GZbwSxHJZrDitV1gFsdqdUW8cl90rp06dGtumdq80Y/78+bjqqqvQqFEj3TSlpaWoV69ewltpwl089Rn+7W9/i23btmHr1q2xT9++fTF8+PDY/6mpqVi3bl3smB07dmD37t3o378/AKB///7Ytm0bDh48GEuzdu1aZGZmonv37rE0yjzkNHIekUgEeXl5cWlqamqwbt26WJq8vDzTuviBnc5MdH82p4jYQfs5WTEWxUH2C965M/5vRUWtEO7QARPxCKZMmYQhQ6Zj2LwLgYKC2mV2lccXF9ceW1xc+1E7mGqZALX2iXKhjHx7tbaZ+feqUfrustbHrByjNBrx7ORgdnKYNPm5SB0y7fDhxEvJgpxOLseKRdhK0+iVKzpe1dPrfjcMDytq2rZti6ysrNhnxowZmukOHz6s616p5zqpZNOmTdi+fTuuv/563TQVFRWYMmUKrr76aprU5zGeWoYbN26M008/PW5bo0aN0KxZs9j2P//5z5g4cSKaNm2KzMxMTJgwAf37949Fbxg4cCC6d++Oa6+9Fg899BCKi4tx1113Ydy4cbGnubFjx2LOnDmYPHkyRo8ejXfffRevvPIKVqxYESt34sSJGDlyJPr27Yt+/fph9uzZOHbsWOz1R1ZWlmldiFrC8opTNNTtpudlkLDqm1LxyJbhnTtr/1ZU1C6be/KAw4cBYD9w8rBaa9/JjOR8lMJLuaCClrXYC7OYVdyuj1WXBjvp9HyCFd/lSWtqK7D6f7VLhPJ/oyqoT1OZXi2ErWD38rhVDi8LqIg/BR74ZyHmHRu4Nq89e/bECU8rb3etMH/+fPTs2RP9+vXT3F9VVYVhw4ZBkiQ89dRTrtSB0Ee4FegeffRRpKSkYMiQITh+/DgKCwvx5JNPxvbXr18fy5cvx0033YT+/fujUaNGGDlyJO67775Ymo4dO2LFihW47bbb8Nhjj6FNmzZ49tlnYzGGAeDKK6/EoUOHMG3aNBQXF6NPnz5YtWpV3FOfWV2c4FVnEnYh6tf5eVkuq89lzCoM1Jr8vvuuLpLE9u04+ssvOAGgyebNwMmwg89X3IHnd31dK5QX3wxcXw6cnEQaF31AFsEVFXUuFMpl5+RKKCvstxJwq3wn4pelTnqWa43/tQSw+q+ZCNY6jrXptPLQys8qrN4qZsf6jWg+xLzqEyaXiczMTCYrbPPmzU3dK/U4duwYli5dGqdTlMhCeNeuXXj33XfJKuwDvsQZThaM4gzb6UhEdJHgaRX28/ysls3iV8lapl7ZakFhNP+sTZu6UGcoLgZkwSv/v3kzDkkSfkRtdE0l5QAyAPQBkJ6eXhd6C6hbZaxNG+1X9MqQWqwnxgMeefNaDs2O+LVyjOq7WgAr/9fy/dWKEGEmVpWXUOtSqy+5kRg3w8rtoie+tfJj3W5WjlO8EOdu97M8ynUeZ3glAH1fW+scAzDIUn3y8/PRr18/PPHEEwBq3SvbtWuH8ePHa06gk1m4cCHGjh2Lffv2oVmzZnH7ZCH87bffYv369WjRooXtMyLsI5xlmOBHkISwHUS2TPC2nCiFsJZ1J6EsWdAWF8cOPq7Y3QCIRYI9HcAJAOlNmtQGEm7ePL4gdWElJXVWY71K8VAkPHFrIhtLOqttoSN+AWPrq5EIlv+yiEkz9I7z6gE/aITVXQIIl4WYBTP3yhEjRqB169YJfsfz58/HZZddpimEhw4dii1btmD58uWorq6O+R83bdoUkUhyxev2ExLDPhCGQUO0+jjBb1FvBaPX2RUVQKb8XTblnXw3XqV4ASQL4SiAHACNr7ii9mA5zJqcmVbDeOkUagc7otdu/ayIXAsi2Uz8Kv9nEcDKY9SXzsgtQrlNL8qeWT2NYHl20iuDJU8n8BZ5ongOuYF3gjgCcF3MpcryEWbulbt370ZKSnxcgh07duCjjz7CmjVrEvLbt28f3nrrLQBAnz594vatX78e559/vuU6EvYgMewxYfAV5jVwWc3TSf528VsIs7hjKNsuNgFOmaCiAidi++uEcAMATc46C7jsstqd27fXRZtQ+gcr34vLazar0XvXrf7OyzXBLlZuNKdpzdoCSFipTU+s6v1vJoL13BWM7iu1SDVyY2CtL1GLG6JYhHZOJgvx+PHjMX78eM197733XsK2X/3qV9DzRu3QoYPuPsJbSAwThA5+du5aZRu9no7bJ1uFZbKzkV5cjDRJSly/ST2rSo40ocxQKYjlfdnZiU6kctnKvyIHk3Xi+sCSzsDdQcaq+FX/byaCzcrQqra8zeobE7/8VkUszwxWUexGH+SW20YyCWIifJAY9hC7HYVIVtOwWYXNJq+JgNpfWI1So1ZUoC40WjRa6/97chJc9MgRpAMxK3EDoG4xDiBxoQ3liC37EcvW4YyMeL9hIxFsxY9WD7dvKh7CmKPl12ifWgAr/2cR0HpoWYDtiiZWyzNrGV66SCjz82reg+kcgIDgbps1AN/QaiR/iDrobvCIMLzWd0MIi4jX52Dknqv1v1a68vK6gSjOb1ieSHdSDKdB9aOvqKhzfejQIdGSqw4roBbCWspJGfhYvU8LFiXAQ+nwtAQz+PsC9sWv8rvew5CZGNb6robFu0UdQU+NH7/5MPQzSsJ0PmQhJoIIiWEPOH4cSLX5QGtFA/gthL3AK0uNGTw6fBYRzLJdnaYSEUQUIliOE5xaXIxGv/yCYyfTxoIU7d1buyKd0vor/9VSS0pfYhktS7BdMez2aOpA7Cqx6vag/m60z4oAZimXFfUl13s2sosdq7BTnJRBws4e1G5E0CAxTJjCOpjY6fxEEdmANSGs/Muj02exCuqllQcepXUw5irRpk3dwhvZ2Wjwyy/IQu0EutT0kx7EJxfgQN++2mpIuU2OUKFlLjQSv1ZdJdTimzc2xa4SFr9uq64PZums7DNDz8NF/b8RXvgJs5yjm/1IGIWdW37DSsLYbkR4ITEsMCJYhd0UwlbhXQavwcBJp88yKJnlLecR5yqRfdLPV44JnJsL7N2LxidjWMZZdouLgdNPjxe98opzyo/yhPVmWDFuMxOa8cfXpY2tsMcBO2LXbL8VMWzkC25V8Np1qTYSxFreLlbLtOhiTYQMvoKYd2g1iuFL1EFimNAlmQYrq1Zh3mVr5ctiFVbnIVuIYyHW5KWUmzevdYVQmo/liXFdu9ZFkQDqVp1TTairRASRXPYG0BObTgbHCkWeTq+FHbFrts9MuLK4P7B8N6ufHlrWX1YLsVVjPY/fCi/3D6eQldM+1HZEECAxLCgiWIXdLj9I5wiYW7lY6ygLIqU/Ji9Xi4yMOkEckd0ccnOBw4frdigLy82tFcmyGFZZg9VL/1Y4tKbwvI5a7iI868FDDNt1f7C6jQUrQlgvHDSvh0aeD5VkfbaHF64SMvKbK4IQFRLDhCZhH0Ssztni1R7KAUFLFGulU9fDqJ7xUSUUwrZNm9qNsig24+QJq7WzvE0nuSZOhCcPgWvXt9uOGAaMBbD6u1XLJw+/fFYhrD5OhAdSJV73UWThdEZamt81IAh9SAwLiN8WUy/K9/screCGEFZvt7Iwm/p1tZZoqagAkH3STULekJ1dJ4rlxTa03n0r3CKUm9X/q8u0g13x58X9Y0XwGh1nxwXCrHxWzFweWIUwT0Sah2CVsAliL63DziGfYcI9SAwLht8dU5BEKm+0Bjq3hbDWfrvCWE1ZRSTeOty8ee0JlpTUnSzjCcp6muVVJ0v9nb4yVR/vxirPVgSv2T63fID1YLUGK/8XSQhrYXeSIEEQhBkkhgOMqNEVeOK15duNNjB7ba4u045Q1H2lrY4IIU+q0/J/0KugxSQsGpv3dVUtrS0xAAAgAElEQVQZtbnmaTeN2z7Aeli1BgPeCGEriPygHTbrMEEQJIaFws+ByGrZTgYDUQZcnjiKkGAiHtVGXFbXgdpjInUT6ZQi+PDh+IPKy+uiR+iUr8zXqB4s5+SWmAiKKLaSNwt6lmC9/80myrmBV5PmeJcVdoLjKpEGgGdFqzjmRQQdEsNEQDpCPvh9rmbGWJb6WXVliYVYkzfIhRn5ZlRUnFy4I2IohO0KYrcta8r8eV1zp6LYShoWtM7LTAQr/+e9upwRvNyvRLHKilIPgiD4QGJYELy0zDopl2fZopTjBlb8Rs0mxMlprEa7kPOqjGYiko26SXTKgm2YUrWEsJ1rxXqM00l0PC1fbp6nFewIYS23CL28REN5z4liFQ6TIA6OdZgg3IHEMGEJp51/GDtcq1EHtESxXYuwOi8NA2/dcbJ1+PBh7ffqmn4WkYRkrNEQzPZZSQMkGrJFFiJu1s2qS4Tyfy+twXbKMGs30fqPMAligkhmSAwLQJCswl7h9cQ5uzi1bir3K32CWeuqZ+1T5x1ROh7LCeXIEloHnEwbQSWi0UiCEdktP1jWyYNWJhmKLpxZcSKCAX+swTzdI4hkh0KrEe5BYpggbGInGIMdH1s9kWs5HJvW+3K124ROhZSGYzeEsJ645TFR00g4ezmBzA5O/YIBf6zBXpYjQplheNgiVwkimSExHDDIV9geYezk9YSc1rlWIoJIFOwjnpyuogLRk5Po1FEtVMls4YYINstDWX+98v0UyWYCWP1d738gOL7BQReTLA+KQYAEMZGskBj2mWTqePw6Vy/dI5TbZaHlJIKEnlVPnafZOda6SjAkzMjQ9B9WC2G9UG9WRUFGhvW4yix5G50mS7vbXQSFBSv3I6sIVn+3Yw3mKeiSqV9TEhZRTBDJBonhJCTZrMK84V1HOxPo7Myoj1mHtZDVn0HGaiHM4F0Rt00PLUGsZ22266NtNPnQrC2tLpdtVKad9EaiV+u7E7cIP4RwEH7zVgmy64S41uHUkx+e+RFELSSGA4RfnWtQO3WAf6fuxF/WKBSZnhuCjJNwUoaDG8OBEVTGokroCV2zCXZq1wo1LBZiJ/ehlvWaZZ+MFUFs9cGGdb8bIlj5gBN0ISyagAuylVhcQUwQ7kBiOMmgDs4+VgY1O0sqs8Dl+mk5/epx8qQjUaACEd2kLIJYWbyfAsHNgd4oXzv7rApgs3L09vO4JiSEtQmyKCaIZIHEsI94/frSDl5O2ON9jjwHSCtWXyvHsaAVBMLKcUoqEam19CoT6Pk9yL7DJ79b1dCsFlh5uyzs1B4b6mp5LdqUdbOSH09hrLXNqiXYTcEoshgVhaCJYvGsw6ngGw6N3CSIOkgMJxFidWzu4qcQdssqrMTMQquVNm6flhnXQqMpD1eGLdbKysg3VystqyhW529WXzv7rUTs4LndSp14iGAeIeyskCxWYS3MXIZEwkq3IJ54Jgh2SAwTuojeUYuA3TZSv5a2MojYtTgaVkRTMUNzm9ZuowU/WCevqauhzLO8XN+y5nQAZrG6GqW1InR5iF/W/Fj2O8VvIRx0/HYZYoFF5MrnQIKYCCokhpME0TsoUS1FVifMObUKuylu5GNjrhJKIcwQWkGeSKcXSk2eBGemq7WKMQvbprQW87SssQphVmHrZJtR+azHsuxX4+SBzioiu0L5RRAEsRXsPuQThJ+QGPYJ0f2Fg9o5+9n5qoWwWRvysAabuQwwl6E1IpscrGVUNhOtLK4SehhZi9Xp9OprhF0R7FQAs0SpYGkfr+59u+UEtU8h7MPXUkyh1Qj3IDFMuE5QrQNWrMJe+AkrseODqnuAmVVYY7uRUdnI71eNls+wHWHMUpYWTtwhnIhgJ64PTtMr8UqgkhA2RnTrsBNRS64TRBAgMZwEePXa1C5eRqxgxap7hJ00wsA4ElcazOTWmo8H6Is+FuFq5sqsTGdUFit2xa1TAczD9cUrRHCNkAmbwBJdEDuhogI4ftzvWhCEPiSGBSesnWOYYLUKmw126sGd5zLA6rzjQqxZOVAniZnrsfq8nZybFeuxEVYns5mJYLcFMG/xZ6VvEc01ImxCmCAIfyEx7ANeduSiW4V54ZdVWEsImwlerf3K+vsy0LOYYDUO0XIzNjs/Lexad61M0jOD94Q4OwtiyGlEerUsSj1kRKuPGicTyMJsHXZOBHzjDPPMiwg6JIaJGEGdqCfS4Og05i2LtdFu3mo0rcM6GRi5SGjVwep11RK0WpPxzEQiLxHptQh2et2twnp9guCPLDJ27kflvU4QhDek+F0BQgzodWYtfk6aU7aVFQtpNFr3sQKTmwT0hbCZBdzOR+v4jIy6jzqt0XcrbWJ0DOs2uY5m6bTKFA2n9aL+pA4noeuCeL5hZ+7cuejQoQOi0Sjy8/OxadMmpuOWLl2KevXq4bLLLovbXl5ejvHjx6NNmzZIT09H9+7dMW/ePDeqThhAluEQw9qRBtkC4Zd7hN00ejgVHm4Nmmoh7Pa9ojwPsygV6rS83CW06mK0jdcqdSLAo24khPlCluJaotEU1KvHz34nSSmW2/Tll1/GxIkTMW/ePOTn52P27NkoLCzEjh07kJOTo3vczp07cfvtt+O8885L2Ddx4kS8++67WLx4MTp06IA1a9bg5ptvRqtWrXDJJZdYPS3CJmQZFhgvOr8gd7B+Do5WYwoboWVhNCPI103GinVY+R2Itxar9+nlb7UuWmnUBFUI61nSnVBREY770g14uYOJai0WsU5u8Mgjj2DMmDEYNWpUzILbsGFDPPfcc7rHVFdXY/jw4bj33ntx6qmnJuzfsGEDRo4cifPPPx8dOnTADTfcgN69ezNbnAk+kBhOUrwYuILUQfrhHqH3ql25nxU719LMD9jIKuxU/Jv5TRu5Jaj3a4liFnFsVSircSNUmpd49VaFB0FpUyN4r7Jp1yWIsEdlZSWKiopQUFAQ25aSkoKCggJs3LhR97j77rsPOTk5+POf/6y5/5xzzsFbb72Fffv2QZIkrF+/Ht988w0GDhzI/RwIfchNwmNE6LDCYL3xqh3dco8wE1d+3idWJstZxcp5mblMqPerV6fTKo9XODE7QliE374biCSEba/AyAmztnA7Skg0Go7+3UvKysrivqelpSEtLS0h3eHDh1FdXY2WLVvGbW/ZsiW+/vprzbw/+ugjzJ8/H1u3btUt/4knnsANN9yANm3aoEGDBkhJScEzzzyD3/zmNzbOhrALieGQotfhUkeZiJU24WEVNnOL0LJoamF39TYj7EyW44FWvbVCVGmJYvm7Mr16BTyjcgj7iNSfaNXFqd+4VVjEKAlie0SjQL16/PKTpNp2atu2bdz2e+65B3/7298c53/06FFce+21eOaZZ9C8eXPddE888QQ++eQTvPXWW2jfvj0++OADjBs3Dq1atYqzQhPuQmI4pBhNKAo6QbYK8xLCRvWxcowyvBqrRVh9zm5PmFKLYr3vWun1RLET7C4YIlLsYB6IbBHW2i9S25MgFoc9e/YgMzMz9l3LKgwAzZs3R/369XHgwIG47QcOHEBubm5C+v/+97/YuXMnLr744ti2mpoaAECDBg2wY8cOtGrVCnfeeSeWLVuGwYMHAwB69eqFrVu3YtasWSSGPYR8hpMErztGkQYeI7y2ChthJoRZ29Tqta5ExFAI87x37CzIYeQ/zPId0A575gYsoizoBHW+gWht72Z9RDtXkcnMzIz76InhSCSCvLw8rFu3LratpqYG69atQ//+/RPSd+3aFdu2bcPWrVtjn0suuQQXXHABtm7dirZt26KqqgpVVVVISYmXYvXr148JZ8IbyDIcYtRL5IaBIFuF1Rj5CFsRvkYuBkF5KDFD6z42shLrHcPDUlxebiysvVoYxA9E7Eus1Em0tnerPn70+2Eba7SYOHEiRo4cib59+6Jfv36YPXs2jh07hlGjRgEARowYgdatW2PGjBmIRqM4/fTT447Pzs4GgNj2SCSCAQMGYNKkSUhPT0f79u3x/vvv4/nnn8cjjzzi7cklOSSGBYVXpxKmzon3oOHEKsxr0hxLOieTstwe/HncX6x15CWIgVox67cglusXFLzqS9xuE9EEMcFGWhqQwvFdth3D65VXXolDhw5h2rRpKC4uRp8+fbBq1arYpLrdu3cnWHnNWLp0KaZOnYrhw4fj559/Rvv27fHggw9i7Nix1itI2KaeJEmS35UIK2VlZcjKykJRUSkyMmp9ktx61S0abpynV2JYaztvMaxnFXbiM2zV3YAVIx9hJ6trGX23Uh+tbVb8mp2IYjPXC1aRLzpe9kd2/OS9KMcKTucS+FEHM1jqaPw7K0NeXhZKS0vjfHTNkMfRli1LkZLCfpwZNTVlOHDAen2IcEI+w0QgCKtVWE8I24kb6oa/qleT5axgR2DaCZPGgpmQZvGvFX2xijAKYafHik6Yz40g3IDEsIcEwQLEA97n6WW7eTGIaIkvXudoJqy8GiS9nmDl1ALrpiAG2H3QRRIxXtbHr0Uj5HNUfvxApOuuRbKMXUTyQj7DRNLhd1xhO9uthskz8ov0yl/Va99MFn9htyb5yPeJEz9iq+ncRHRx5iY8fh/JMJnMa6JR/32GifBClmHCV8wmh4lmFeYZQUILszBieum0cGoltnuuLD7FPIQCb39cHqHXWNwmWPBTSAUlDKPb9fS6HUg8E4R/kBgWEOoU3UMUqzBLGpYJcU5Fsd4+Lx4M3MhLhAlrQRbEXvsH+20BN4P6YoJIDshNguCK01eLfuG1+DOz9ro5u9woLjHL8XbKdevasryOtvLK2mnINRkztwnWV/FeukyIPFGOINLSgPr1+eVXXc0vLyL4kGWY8B2vLEReW4XVuDVxzs4M/DBbvESwDsvwuI+8uFYkhPURMXQbQRB8ITFMcCOonb9bVlEn7g9Wj7PT9lZEscjiWSTxq4WRIBah/UW+tnqE1Z83iNdCSVDHAIIgMSwYQe8MRUVEq7AS1omEbljR3fIp9hMnApnHRDo1ogpi8hFmR/R7niAI+5DPMJHUeG0VtprGapl+L0Lgl2Cw6zssSggsP8KukWsEESQyMshnmHAPsgwThAI3rMJKrLpI2HW1cBM3w6VpYdei6KSNvLYOW8FpO4fdZ9xNrLYbPQQQRDAgMSwQQR6gRO70nYg3HlZhJy4SVo9z8zr4LaLMRDFLe1hpM1HdJaym5XGcHeTr5edS6kEk7OdHECJCbhJEqPHbV1gPXgLB6mt+o7Ruhlzj+XrfqWtDGNwl5LQyRscEZRENPUS4LkpEWCHQS5LpXInkhcSwIIjW4RN8UFoXrQ4qXg9Cdu5B0XyEeQtdXnGHlZSX87c6i9J/hF0I28GPBy2eZYoi/tPSgAYcFcuJE/zyIoIPuUkQSYmfE+f00vO0nLoND5cJluPdXKyDtSyR3SVEwA13CL9dcswQuW4yyXQ9CMIpJIY9xOuJR14hgtVAiyC7SFhpUy9XKHMyKPK+z61MLnSyDXBHEBsRhD7BrVBpQTh3q9hZGEdERK0XQTiF3CR8hjoX7/Fq6WUnLhJO4f2aVFScuktYcavg7TJh5i4hyutpGZHqIgKiXR8tRPGF50E0Sm4ShHuQZdhHwtJJiYgfVmERXCR44vWr0SD8HnhbiM3uPRGid3i5WEYQ7gG7+GUdJj9ugjCHxDCRVLgZC1eJnlXYrcU4WI9hXdiB1Xpu9tE6hjdeuksA4RXEfojfoBOUuMNu+HQblUUQQYPEsMc49bskzHFqFQ7LtbEzKFkRwTzyc7ut3RLEvGERxG49SJD4dYab9zDv8YLnAw8JYiJMkM8w4Qjq9OwhuouEHnbDrynP0WosXVZrupW6ieY/DLCFXOMdr5nwHrt+vG74KKt/l1bx0m86LQ1ITeWXX1UVv7yI4EOWYSJpCIKLhMg4aT9elmQ7uNXufi3ZzKONgn4vyohyHl69TRLxrZVenUS5NgTBAolhIlSE2UUigkq/q8ANZTvzcqXgsaiJ3+4SgPuCWGSRImJIQdEQuY9So3TJSEvzuzYEoQ+JYSIp8Moq7PR4s/zcFMRGbcSj/fyOjODG8W7FH/bKQhxUklUIi0oy34tEOCCfYcI2og1IIliFWVwk7LQbiwgOS0xRL/0QeS/fzBM3lm0W7TfLA1Gul5cEIcYxb6JRvj7D9evzy4sIPmQZJkJP0AdKv90jWNqvvNz6hDI3XCXcRJTV6ZSI0C68MYt2IIIrixZBvhZBrjtB8IDEMGELEQafsMHapm6IYyeDoVIEy6LYy+WtWQmauALEbEc/EeW6EImQoCaCDLlJEKHADxcJoygSeumCFl3CrF3sWIPtnrcIr4a9DLUmE7Rlm3mibG+zcxTBXYLlWvhdx6CSlgZEIvzySyFTIKGAbgci1Pg18IgqToIyEItQT6vX0E93CVZEaFerWFkgQtTfnRsE8VoShKiQGCYsI9qA49QqbAdWq3AQ0Gs/p1ZhEV/xW3GVsJqHn5AwCgZ0nQhCTEgME0kP7wHKjluE3j6/J8/pIaLQdQOr4tnPUGushF2Q+f2wEvb2JYgwQj7DhCX8HmisIPKg5LQdI6hEJTg60KkwajuRhTCL36heGqvb9XDTf9iIMPsOhwGR+6MgkJHB12e4Ukw7A+ETZBkmAo3IE+ec4oVV2Or5WxV5IgtnLUR2lyDrcHBQhw1MhvamBzEiyJAYJkIJTZyzj17bBUXYslwDHks3G233y4fcyn0fZoEmwu/QCxEc5mtIEF5CYphgRoQBRokfA4Fdy6Edf2E/oMHVuvD1UhDTMs0E4S9z585Fhw4dEI1GkZ+fj02bNummfeaZZ3DeeeehSZMmaNKkCQoKCgzTjx07FvXq1cPs2bPdqDphAInhJCdZQhZ5sfwyK0Fsy6BYhWWcWodFFsQ8IeFMBIW0tPjVCZ1+0tKs1+Hll1/GxIkTcc8992DLli3o3bs3CgsLcfDgQc307733Hq6++mqsX78eGzduRNu2bTFw4EDs27cvIe2yZcvwySefoFWrVtYrRjjGUzH81FNPoVevXsjMzERmZib69++PlStXxvZXVFRg3LhxaNasGTIyMjBkyBAcOHAgLo/du3dj8ODBaNiwIXJycjBp0iScOHEiLs17772HM888E2lpaejcuTMWLlyYUBezpzuWuhD+YTSIh2GAt+svbEVos7aTUyHsl5D2WhDrwVsQ87YOh+H3okUQHzrtENbrJyKPPPIIxowZg1GjRqF79+6YN28eGjZsiOeee04z/Ysvvoibb74Zffr0QdeuXfHss8+ipqYG69ati0u3b98+TJgwAS+++CJSU1O9OBVChadiuE2bNpg5cyaKioqwefNmXHjhhbj00kvx5ZdfAgBuu+02/Pvf/8arr76K999/Hz/++CMuv/zy2PHV1dUYPHgwKisrsWHDBixatAgLFy7EtGnTYml++OEHDB48GBdccAG2bt2Kv/zlL7j++uuxevXqWBqWpzuzuoiI+smXBZaONFkGFad4vboc7wl2WveCSBZhO23qliC2mtYPCzGJJIIwp6ysLO5z/PhxzXSVlZUoKipCQUFBbFtKSgoKCgqwceNGprL+97//oaqqCk2bNo1tq6mpwbXXXotJkyahR48ezk6GsI2nYvjiiy/G73//e5x22mno0qULHnzwQWRkZOCTTz5BaWkp5s+fj0ceeQQXXngh8vLysGDBAmzYsAGffPIJAGDNmjX46quvsHjxYvTp0weDBg3C/fffj7lz56LyZJyUefPmoWPHjnj44YfRrVs3jB8/HkOHDsWjjz4aq4fZ0x1LXURDayC2KozDiltRJHgcl4zXxmuRJsKEOoCvIGZ9SGFt67AK52T5fTm5fkG59jxdJJTjYtu2bZGVlRX7zJgxQ7P8w4cPo7q6Gi1btozb3rJlSxQXFzOdw5QpU9CqVas4Qf33v/8dDRo0wC233GKvYQgu+OYzXF1djaVLl+LYsWPo378/ioqKUFVVFXeTdO3aFe3atYs9dW3cuBE9e/aMuxkLCwtRVlYWsy5v3LgxLg85jZwHy9MdS120OH78eMJTphewDvZ2LMdBG0y87NjD7i9sJrjk2fLKj1WCMBDz8h8G/BHErAThWhAEb/bs2YPS0tLYZ+rUqa6UM3PmTCxduhTLli1D9GQnUVRUhMceewwLFy5EvXr1XCmXYMNzMbxt2zZkZGQgLS0NY8eOxbJly9C9e3cUFxcjEokgOzs7Lr3yqau4uFjzqUzeZ5SmrKwMv/zyC9PTHUtdtJgxY0bcE2bbtm1Zm4WwgIhRJLx2keCNVR9Tq0s4+x0FQZQJdYD3gjjZRW4Qf4928PM6B7mN5TlM8idNZ2Zd8+bNUb9+/YS5QwcOHEBubq5hGbNmzcLMmTOxZs0a9OrVK7b9ww8/xMGDB9GuXTs0aNAADRo0wK5du/B///d/6NChg+NzI9jxXAz/6le/wtatW/Hpp5/ipptuwsiRI/HVV195XQ1XmDp1atwT5p49e/yukiFB7sBY8TuKhJ02FmEJZj2RxdJ2QRZfXkyoA8QVxEG+dgRdPzeJRCLIy8uLm/wmT4br37+/7nEPPfQQ7r//fqxatQp9+/aN23fttdfiiy++wNatW2OfVq1aYdKkSXHznAj38Xw55kgkgs6dOwMA8vLy8Nlnn+Gxxx7DlVdeicrKSpSUlMRZZJVPXbm5uQlRH+SnNGUarSe3zMxMpKeno379+qZPd7m5uaZ10SItLU33qdItkkHQspKMA4HZssxWlxI2wqr1mPe96TRPnm0hYnm8COOyzkG9FnYI4/UD6kKr+cnEiRMxcuRI9O3bF/369cPs2bNx7NgxjBo1CgAwYsQItG7dOuZ3/Pe//x3Tpk3DSy+9hA4dOsTeLGdkZCAjIwPNmjVDs2bN4spITU1Fbm4ufvWrX3l7ckmO73GGa2pqcPz4ceTl5SE1NTXuqWvHjh3YvXt37Kmrf//+2LZtW1zUh7Vr1yIzMxPdu3ePpVGHLVm7dm0sD5anO5a6hAW/OxeriDig2fW/DlLbi9judiB3CTbCcr2TFXoT4A5XXnklZs2ahWnTpqFPnz7YunUrVq1aFXO73L17N/bv3x9L/9RTT6GyshJDhw7FKaecEvvMmjXLr1MgdPDUMjx16lQMGjQI7dq1w9GjR/HSSy/hvffew+rVq5GVlYU///nPmDhxIpo2bYrMzExMmDAB/fv3x9lnnw0AGDhwILp3745rr70WDz30EIqLi3HXXXdh3LhxMYvs2LFjMWfOHEyePBmjR4/Gu+++i1deeQUrVqyI1cPs6Y6lLmEirFYTP6JIBEng6sFrYpbaQlVeXicARbdeGf0m9PbZ+R1lZPBrb2X76iF6u7tJWPs5PZL5WrvJ+PHjMX78eM197733Xtz3nTt3Ws7fzjGEczwVwwcPHsSIESOwf/9+ZGVloVevXli9ejUuuugiAMCjjz6KlJQUDBkyBMePH0dhYSGefPLJ2PH169fH8uXLcdNNN6F///5o1KgRRo4cifvuuy+WpmPHjlixYgVuu+02PPbYY2jTpg2effZZFBYWxtJceeWVOHToEKZNm4bi4mL06dMn7umOpS6E94iy0Iab/sIi4nbb6g3aYRnMvRRhLIKYlbC0fzJD15Ag2KgnSZLkdyXCSllZGbKyslBUVIqMjExXyuDV0RlZwUTBqhjmYRnWOn+l2DByfTBzi9DK287kObXPsPocld+1/lenV7ebUyGnPE+9tpP/t9NmduDxGtlqRA2jvHiGSWMRw2ENrciK+loozzOs1mO3zpH1Hjl6tAynn56F0tJSZGayj4fyOHrvvaWIRvmNoxUVZbjnHuv1IcKJ7z7DyQQtguEdbkWRMMKKr2lQ7gGvhYFZeWEVKqL6D4e1vZNxIRwn8cAJIuyQGPaIsHawXkEuEt5gZWUzO4tuiLK8Mw/LKM/JdLwRpZ2DQFB/qwRB8MPz0GoEQbgLi4+qW8u3avkohtlv0epkOqNrw3MyHQus1yWs18/sQYcsqGJBb1UJNyHLMGFIEAcEXoLCyqpzyQLP+yEo91ZQrzNPYR2Ua0UQBGEHEsM+IdoAK1p9lPBwkRDJXzgo2G0ztwWzaMJM1NjDgLkgptjD+gT1d0sQhHVIDAcY6qzdwyyKhNVjw4CbYsgPoeVF/OiwCWKCIIgwQj7DRKgIwsQhPSFkJ6yaqKj9TJXfecbC9RI7C3GEjbD6DxPi06gRkJ7OL7/69fnlRQQfsgwTMYI2yPkpPoLWVk7xsq29LIvndUwWd4lkItl+5wSRrJAYJoSGxyDNIw8jcRJGf2EehM2tAvD2eopqPU824ZzMv2GCSBZIDHtAWpr2dhE7WRHr5DVO2iAs7eeV4AmbsApy7GGaTEfYge4FIgyQzzARSNxafpmFsIplt/2t7fqbiuanatc/WITYw2b+2qK1tSgki0+4Xby4b9LS+JZRU8MvLyL4kGWYSECUwTAIgw+vthJ58pxbC3Q4hVfevO933vmRu4QYiNIviorZ/XD8uDf1IAg7kBj2GVE7WLleotbPS+yKkTC3nd3lmGW8suK7hd0FWchdgggzVvsBghAFEsOELkESc16tOufWsYS/iH7tRLUOJxui3yeioBbEJJAJ0SGf4YCSzJ2yn6vOkVg2XxGQx3my5uOnj6uZH6lVH2Ev/VJ5+g4nm58x+Q+zwbuNolHyGSbcgyzDhJCIMtjYDalG1OF2eLwgxpsWIfawGaL8BgmCINyGxLAAkKgSAy8WYEgGrArXMIsukSfT8YxSEeZrqIVspUzm3zlBhAkSwwGEOuB4RFiC2ck1ETmShBpRRQ+PevG28prtD9tkumRFKYxJJLuHXjs7+RDaVFdX41//+hcuueQSv6viGSSGA0ay/4DJX9hb7LajHyIqWYSbqJPpkqX9WQnqb55IXnbs2IEpU6agTZs2GDp0KKqqqvyukmeQGBYElo4zWTpXUQZV8mxVWbUAACAASURBVBd2F7PwakGake61ddhLdwkKtUYQ4eXYsWNYsGABfv3rX6Nbt25YtmwZJkyYgF27dmHlypV+V88zKJpEACDh5T7kL+wuXkUccFqOH5ECRIguYUayRYzghUjXkCCUfPLJJ5g/fz5eeeUV1NTUYMiQIZg+fTp+85vf+F01XyAxLDg0ABnjlb+w0XWgayQWfgk3u6HW7MJzqWazUGtWIOEcDkQT8ryXY66u5pdXEDn33HORnZ2Nf/zjHxg+fDgaNWrkd5V8hdwkBEL5QycH/0T89BcmrLerXnovrk/Q7gERJtOZQe4S9hDpGlqBrmG4GTx4MI4ePYoHHngA06dPx3fffed3lXyFxLBgJLsIFqUD5ukvbJTer0gSRnUSefKbF4LMzYmSyRJqjYgnmft0Qkzeeust7N69G+PGjcOrr76KLl26YMCAAViwYAGOHTvmd/U8h8QwkfSQv7C4OBXmfgj7IE+mM4Osw+GH+rDkITc3F1OmTME333yD999/Hx07dsSECRNwyimnYPTo0fjwww/9rqJnkBgmAotZNAIvoIGDP7yvoZ38RLuuXtWHrMPuIdo9pYVofsJKKM6wu5x33nlYuHAh9u/fj4cffhhffvklBgwY4He1PIPEMCEMYVty1wsqEfG7Co6wI77s3AuiPSTx9hEm63AwELkvIZKLBx98EPfcc0/s+6pVq3DppZdi6tSpuOKKK/Dpp5/iiy++8LGG3kJimCBUUHxhfhjFDfYav8tnxe/JdCwPKCSI7SNyH0LXKnlYsmQJ8vLyAAA//fQThgwZghYtWmDjxo0YN24cAOD000/3s4qeQqHVCMJFRJw8FzR4huryMuyXG6HWjI4RNdQaIT7yb0JkMdyoEd2TPNm5cyd69OgBAHj77bfRpUsXPPvss/j8889RWFjoc+28hyzDRCDhNejzjBwgssVHjciDHgtO6s96rJ/XMwj3ElmH7SPK9VWKYLpGyUV6ejoqTl70tWvXYuDAgQCAZs2aoTwJJw+QGCaEgIe/sBuduSiDlujwiEHspUuFV4O/G6HWjI6hUGvBgfoWwk/OO+88TJ06FU8//TRef/11XHbZZQCA7777Dm3btvW5dt5DYpggFATpNZze5LlksfDwOE8vRLFd0UOT6Qg3ITFuj7lz56JDhw6IRqPIz8/Hpk2bDNO/+uqr6Nq1K6LRKHr27Im33347br8kSZg2bRpOOeUUpKeno6CgAN9++62bpwAAePTRR3H48GFMnjwZ48aNQ//+/QEAv/zyC+68807XyxcNXZ9hO7MIu3fvjgYNyA2ZCAY8F8/gkT7ouOmP67avr59LCPP2HeYJi+8wLb8cDIJ+jXiHQztxwvoxL7/8MiZOnIh58+YhPz8fs2fPRmFhIXbs2IGcnJyE9Bs2bMDVV1+NGTNm4A9/+ANeeuklXHbZZdiyZUtsctpDDz2Exx9/HIsWLULHjh1x9913o7CwEF999RWiHE+4pKQETz31FKZOnQoAaN++PTZs2JCQbvDgwdzKDBL1JEmStHakpKSgXr160Nmtmf6bb77BqaeeyrWCQaasrAxZWVnYvr0UjRtn+l0dobHqJsEjxrBWP6Me+NVLZLPu09umxOkEOlbLsJb7gdY2uU313BVYrpFZO2j9r2xz1vZm2W4HdV48BadZXlaXrzbLj5ebA4ul2co1CLoo440I7jrePFiVIS8vC6WlpcjMZB8P5XG0qKgUGRn8xlE79cnPz8dZZ52FOXPmAABqamrQtm1bTJgwAXfccUdC+iuvvBLHjh3D8uXLY9vOPvts9OnTB/PmzYMkSWjVqhX+7//+D7fffjsAoLS0FC1btsTChQtx1VVXcTjTWr7//nv07t0bR48e5ZZnmDA043766ado0aKFaSaSJCVVCA7CO9wSwiwYDSBOB/QwRZJw2vYiRy4QYRECvToE1TpMlmRvEUEIi0xZWVnc97S0NKSlpSWkq6ysRFFRUcyyCtQaAQsKCrBx40bNvDdu3IiJEyfGbSss/P/snXt8FNX5/z8JYRMwbDaRJEskyFUIxWuQGEWFJgWEr1esoqkijVItWBGsQLVc/Grxq/itN4r154WqUCxWUEGjlCBUjFyCUa75tgqC4BJpTJYAuZDM7484y+5mdndm55yZMzPP+/WaF2TmzJlnzlzOZ595znNGY9WqVQCAffv2wefzobi4OLA9LS0NBQUFqKioYCqGiehEFMNXXnkl+vfvD4/Ho6qiK664Al26dGFmGOEcRHkZiyrInEq4aIokoqySeo1SrRFGQj841BE+WGzu3LmYN29eh3JHjx5Fa2srsrOzQ9ZnZ2dj7969inX7fD7F8j6fL7BdXhepDGEMEcXw+vXrNVUUHhROEHZCtHhhK808FywwY4nNeMWoVQRxvIjgoY6FiO3mVOx4HZKT2Z5XS0v7vwcPHgwJk1DyChP2h7JJEKYiegdP6MeKHbOcZYL1/Ump1tqh554fWu4hug6A2+0OWSKJ4e7du6NTp044cuRIyPojR47A6/Uq7uP1eqOWl//VUifBB1ViWJIkrFixAr/+9a9x44034oYbbghZCMIojJpsQ0u8sEhiz4zOzcjzZ5GP2qqIdJ9Fwu7XQHSscI9YFZfLhfz8fKxbty6wrq2tDevWrQukJQunsLAwpDzQPsGFXL5Pnz7wer0hZfx+PzZv3hyxToIPqvKgTZs2DX/+858xcuRIZGdnIyEhgbddBGHqZBsioyVEQoS20fP5XOu+VvhUryd2OJ7BdKLGDlvhWlkJu7cl69RqcpiEFqZPn46JEydi6NChGDZsGJ5++mkcP34ckyZNAgDcfvvtOOuss7BgwQIAwH333Ycrr7wSTz31FMaNG4fly5dj27ZtePHFFwEACQkJmDZtGh599FEMGDAgkFotJycnMAkGK7p06YIrrriCaZ12QpUYfv311/H2229j7NixvO0hCFOI1sGz7mTslElCDyLEBzsFloI4FnR9jCfe54jQxs0334zvv/8ec+bMgc/nwwUXXICysrLAALgDBw4gMfH0B/dLL70Uy5Ytw8MPP4zf/e53GDBgAFatWhWSfevBBx/E8ePHMXnyZNTV1WH48OEoKytjmmMYAHr06IE1a9YwrdNORMwzHEyfPn3wwQcfYNCgQUbYZBsoz3B04sm7yiqtWvh7Jt78wmr+DodXfmFAXY7hSP/Xm2dYbWhJrFzD0cpHW6dluwjEm3c42rZo+7AUw7G8w5R3WD0sRKkVxLDePMP//jfbfvTYMT/699duj13o1KmTqnkk2traDLDGfFR5hufNm4f58+fjlVdeofRphOXR0/mKHC9sJnrbIdrndyWhzSsrhZHwSLUWDVG9w1a4ViJDbUfEw8qVK0P+fv311/Hee+/hmWeeQY8ePUyyyjxUieGbbroJf/3rX5GVlYXevXujc+fOIdu3b9/OxTjCuYg62YbZWCmlmozI7WlV7DYRh1PRe630xOJbDdap1ZodHq12zTXXBP7/+uuvY9WqVTjnnHOwePFibNiwAWlpaSZaZzyqxPDEiRNRWVmJX/ziFzSAjrAdRsYL84RVB2eFnLaAPbzDsaCJOIhIWP3eJsTgjTfewKRJk7Bw4ULcfffdGDVqFMaOHYt//OMfjooEUCWG16xZgw8//BDDhw/nbQ9BWBre8cKsURJNIgphuw620/PDwwo/WtS2v+jXSTSorQgWLFu2DJMmTcKTTz6JadOmAQBWr16NESNG4IYbbsB7772HpCRVMtHyqMoznJub68gAc4KIhugdktETRrDESWn1WOa8VrMPTcRBEMTy5ctxxx134PHHH8f9998fWO92u/Hhhx/iq6++wm233WaihcaiSgw/9dRTePDBB7F//37O5hCEMkZNtsFrXxZYMV5YBEhkmQu1P1v0voesej3kPMMsFydz++234w9/+ANmzJjRYVtmZib+8Y9/4JNPPjHBMnNQ5f/+xS9+gRMnTqBfv37o2rVrhwF0tbW1XIwjnImZL2ueL0ieIRJW7eC0EOlTuh0+sdNEHO3Y4VryhNqGYMVjjz2GBx54IOL2Xr164cMPPzTQInNRJYaffvpp3nYQhGZ4C0CROh69XmG1+YIB82JReQ7IsoPIckqqNacQz8BIo49J2Jff/va3OHnyJJYuXYrt27cjNTUV559/Pm6++eZAnPDgwYNNttI4VGeTIAiro9SZsBRfduzszRykpSW/sBqxZWdBZoVUa2qx83WKB2qLdlxoZvp1TbTBzEZTU1ODK664AkePHsWAAQOwbds2DBgwAH/4wx/w4YcfomfPnmabaCgRY4b9fr+mio4dO6bbGIKwCqJ3UHoEEEvxJOKgO1FR01as29PI1GhWvz5GwzquldqfCGbmzJk466yzsH//fixbtgwpKSnYvXs3LrvsMsU4YrsTUQynp6ejpqZGdUVnnXUWvv76ayZGEfZHy4vZqE+50dDbKVG8MDtEEfo84DHA06gfJCI8p1YiktilwV2EEbz//vuYP38+UlNTQ6ZlnjZtGj766CMTLTOHiGESkiThpZdeQqpK10FLSwszowjCDKgDio3ez+5a21jrJ3MnhEs4IXbY6tdIC0acp+g/AgnjOXbsmGIoRKdOnZCYqCrRmK2IKIZ79eqF//f//p/qirxeb4csEwTBC9EGz/Hs0FgOnjMSnm0STSxZXUjxmIiDYocJy9PYCLgYppd0+C8EOUSid+/egXXNzc149NFHcfnll5tnmElEFMOUU5gwAyPfTzSVrDJ60nzpxagpfq0utKw8TbPV295qOFzzEREoKirCypUrMWLECADAyZMnkZ6ejl69eqGsrMxc40zAGfPsEY6HZSymSB251umUI6VYCxZCLDpP1gN/tGaQsLrgMmOaZiPDJdRi9etoNiSEiUgsXLgwkCghMzMTixYtQr9+/TBixAjHTMEcjPPOmCAUsOpkG2YRaxIIKyC60OLhoRclXEL0trc6en5Isa6TEJPU1NTAmLBu3brhV7/6lckWmQuJYYIQGJGnYFYSVtE6Uz3ix4neYTWwjhEW0TtMqCOe622p56Opia0ib2piV5cFmTRpUtTtr776qkGWiAGJYcJw7OZhELlDEW2gIQ/0CGLRBTMPT67VvMOiXyOz4eEFJuxPfX19yN/Hjx/Hjh070NDQgKKiIpOsMg8Sw4TQKHmpzBR4WjsQo/ML2+2HRjC8RJHVxRZ5h52L7b3BBDfefvvtDutOnTqFO++8E+ecc44JFplL1GRyRUVFig0mc/ToUfTt25e5UQTBG7UZC8zsOFiHSJjpQdJSRzxCTO2gQSti54k41F4bq19DHogohOUJQ0hwW5OkpCTMnDkTixYtMtsUw4kqhtevX4+bbroJc+fOVdze2tqKb775hothBEHww6rigpfotWp7yFh5mmZCO6IKYa40NrJfCEVSUlIcN5FazGlGFi9ejKeffhrXX389jh8/boRNhEOx4rspWgdgdBaJ8PZT2568P4mL4CWy4r0VjJW9w6yw+jVkhVWEsNXuL6KdvLw8fPXVV46bRC1mzPC1116L4cOH49prr8Ull1yCd955h0IjiLgRsUOz4ktbxHbUSrztHu+AObsPphN1mmZKs8YOOzz3hBj07dsXkiRF3L5v3z4DrTEfVQPo8vLysHXrVtxyyy24+OKL8eabb6K4uJi3bQTBBC0dLa/UYGZjtSmZjZqJLhy7CjOzp2kmzMPy4REyTU0AS2+lw1OrTZs2LeTvlpYW7NixA2vWrMH06dNNsso8VGeTSEtLw5o1azB79myMHTsW//M//4Nbb72Vp20E4VhEyy8c7wQPvODlHRYdoyfiEM07bPXrpwcRwyPUHJ9+bInJb37zG8X1L7zwArZu3WqwNeYTNWY4ISGhw9+PP/44XnvtNfz+97/HnXfeydU4wtnwSqtmhUwSWtESL2xEarpYbceibWkwnTasdD8T1oDuKfsxatQorFixwmwzDCeqGI4UTzJhwgR88skn2LFjBxejCMIKmDV4TuSQB1ZlAH4D+6wudnn80Ii2D6twFUqzFj9W9AoT1mTFihVIT0832wzDiRomsX79emRkZChuu+CCC1BZWYk1a9ZwMYywH07sxEQgWrtrFZxap2DmjVMH08ULfbYm9KL1uWB2zzU2AkkM5wlz+INw0UUXhTg8JUmCz+fD0aNHsXjxYhMtM4eod9aVV14ZdeczzzwTt99+O1ODCGfC671kxOd6p8EjzVck1Ayks6twjQbFDjvnmpNXmODBddddF/J3YmIisrKyMHLkSAwYMMAkq8yDpmMmiB+xaiYJkeKFo2FGG5J3uCPkHbYOIl0nOz4LTmbOnDlmmyAUJIYJR2FEui698cLRMklo7RxF6Uz1dKRmeodFFsR6vMPxpFoj77A1oDYh1HLy5EksXboU27dvR2pqKs477zxMmDABSSzDUSyC886YIFTghPAKXtk6wjG7reycai0W5AV2FqLeyykpDH5IsZ4B1+Ez6tbU1OCKK67A0aNHMWDAAGzbtg0DBgzAggUL8OGHH6Jnz55mm2goMadjJggzMEqo2Q2RQiTUpFhTi5qO1Imp1oyeplm0zBJ2RqS83oT9mDlzJs466yzs378fy5YtQ0pKCnbv3o3LLrsMM2bMMNs8wyExTNgWJ3h3RRUNZrVtPO0hahuywg73eSTsfO1YzZxJGE9tbS1KSkrgdrvh8XhQWlqKhii/AGtra3Hvvfdi4MCB6NKlC3r16oXf/OY3qK+vVyz/n//8Bz179kRCQgLq6urisvH999/H/PnzkZqaGpJVYtq0afjoo4/iqtPKUJgEQYDd4DmR8gubIRR4dsp6p2jWExIhcjiFnlAIM6dpZhU77HQc00aNjUCnTmzr40RJSQm+++47rF27Fi0tLZg0aRImT56MZcuWKZY/fPgwDh8+jIULF2Lw4MH45ptvcPfdd+Pw4cN46623OpQvLS3Feeedh0OHDsVt47FjxxRDITp16oTEROf5SZ13xgQhMEZNw8wjDMWITllvuATLfawEy2tjxCBULdj52kULZWEZhkSwY8+ePSgrK8NLL72EgoICDB8+HM899xyWL1+Ow4cPK+4zZMgQ/P3vf8fVV1+Nfv364ac//Skee+wxvPfeezh16lRI2cWLF6Ourg4PPPCALjvlEIlgmpub8eijj+Lyyy/XVbcVITFMOAa7TcMsUko1I9tMz0AcPW0ksugyOnaYFbxmGbQbweLXKu8np1JRUQGPx4OhQ4cG1hUXFyMxMRGbN29WXU99fT3cbndIZofdu3fjkUcewWuvvabbe1tUVISVK1cG/j558iTS09Oxbds2PPPMM7rqtiIUJkGYjsgiQwkrdEZGtqmI7eHET+w8JuKIBKs0a7GgNGv2Oa/kZLMtUMbv94f8nZycjGQdxvp8PmRlZYWsS0pKQkZGBnw+n6o6jh49iv/+7//G5MmTA+uamppwyy234Mknn0SvXr3w9ddfx20jACxcuDBw7pmZmVi0aBH69euHESNGODK1GnmGCUtgNcEsMixDJMzqqPWES9jVO6wHkTNLEAQAoKmp/QFktTQ1AQByc3ORlpYWWBYsWKB4+FmzZiEhISHqsnfvXt2n6ff7MW7cOAwePBjz5s0LrJ89ezby8vLwi1/8QvcxACA1NRU5OTkAgG7duuFXv/oViouLHSmEAfIMEw5FrYizyuA5M0Ik1LZNNNGkRwjpGVBnV0+ikd5hoyDvMMGTgwcPwu12B/6O5BWeMWMG7rjjjqh19e3bF16vFzU1NSHrT506hdraWni93qj7Hzt2DGPGjEG3bt2wcuVKdO7cObCtvLwcO3bsCAyokzNAdO/eHQ899BDmz58fte5wJk2apLrsq6++qqluK0JimHA8onSgWgbPmS1o1LSZGqGq93M7j4wEdp+mWWsGCREySxAEL9xud4gYjkRmZiYyMzNjlissLERdXR0qKyuRn58PoF3ItrW1oaCgIOJ+fr8fo0ePRnJyMt59912khL1k/v73v+PkyZOBv7du3Ypf/vKX+Oc//4l+/frFtCucSGnbnIqhYRILFizAxRdfjG7duiErKwvXXXcdqqurQ8o0NjZiypQpOPPMM5Gamorx48fjyJEjIWUOHDiAcePGoWvXrsjKysJvf/vbDiMuP/74Y1x00UVITk5G//79sWTJkg72LFq0CL1790ZKSgoKCgqwZcsWzbYQ7DHzs6kdchNHEy4s2paVEI6nLEtoIg79GHXt1La3yNeFcAZ5eXkYM2YM7rrrLmzZsgWbNm3C1KlTMWHChEBYwqFDhzBo0KCA5vD7/Rg1ahSOHz+Ol19+GX6/Hz6fDz6fD62trQCAfv36YciQIYGlT58+geOFxyir4e2331a9OAFDxfCGDRswZcoUfPbZZ4H8e/INIHP//ffjvffew4oVK7BhwwYcPnwYN9xwQ2B7a2srxo0bh+bmZnz66af4y1/+giVLlmDOnDmBMvv27cO4ceMwcuRIVFVVYdq0abjzzjvx4YcfBsq8+eabmD59OubOnYvt27fj/PPPx+jRo0M+b8SyhSCMgLdo01I/ayGsZx8ZHrOZ2V1UaY0RpswShOmwjBeWF04sXboUgwYNQlFREcaOHYvhw4fjxRdfDGxvaWlBdXU1Tpw4AQDYvn07Nm/ejB07dqB///7o0aNHYDl48CA3O4nTJEjBU48YzPfff4+srCxs2LABV1xxBerr65GZmYlly5bhxhtvBADs3bsXeXl5qKiowCWXXIIPPvgA//Vf/4XDhw8jOzsbAPDCCy9g5syZ+P777+FyuTBz5kysWbMGO3fuDBxrwoQJqKurQ1lZGQCgoKAAF198MZ5//nkAQFtbG3Jzc3Hvvfdi1qxZqmyJhd/vR1paGnburEe3brE/w9gdtQOaWA3wCu/AgwVX8DY1/4+2DmATLxwpTELp3IPXRUuxxrptY4kivZ5CPYIo1rF5CECRvxTEG2cez8BDVkI23muotQxhPMeO+TFkSFogZZha5H60/vXX4e7alZk9/hMnkHbbbZrtIeyJqdkk5JiVjIwMAEBlZSVaWlpQXFwcKDNo0CD06tULFRUVANpz+J177rkBIQwAo0ePht/vx65duwJlguuQy8h1NDc3o7KyMqRMYmIiiouLA2XU2EI4C56dLKt4Ya2CRSQhbBbxiD8rEG/Ij5likoWotvp1IwjCeEwbQNfW1oZp06bhsssuw5AhQwC05+dzuVzweDwhZbOzswP5+Xw+X4gQlrfL26KV8fv9OHnyJH744Qe0trYqlpFTo6ixJZympiY0/ZiuBeiYv5AwD55CjWcWCT0YKQpYta+eAXU0mI4vVsxEQdiIxkaA5TTBdDMTQZjmGZ4yZQp27tyJ5cuXm2UCcxYsWBCSrzA3N9dsk4TB6PcOj9RpZiBK3lsj8s2aiV37RaO8wyzvgWg/hux6nQiCMBdTxPDUqVOxevVqrF+/Hj179gys93q9aG5uRl1dXUj5I0eOBPLzeb3eDhkd5L9jlXG73ejSpQu6d++OTp06KZYJriOWLeHMnj0b9fX1gYUC38VExM/DajErRMJIrDaYTtR25IEVnhGCIAitGCqGJUnC1KlTsXLlSpSXlwdSg8jk5+ejc+fOWLduXWBddXU1Dhw4gMLCQgDtOfx27NgRkvVh7dq1cLvdGDx4cKBMcB1yGbkOl8uF/Pz8kDJtbW1Yt25doIwaW8JJTk4O5CxUm7uQIHjAUqDp9QobLaDiDbOwq6i1m3dYDXa9lgRB8MHQmOEpU6Zg2bJleOedd9CtW7dA7G1aWhq6dOmCtLQ0lJaWYvr06cjIyIDb7ca9996LwsLCQPaGUaNGYfDgwbjtttvwxBNPwOfz4eGHH8aUKVMCM8fcfffdeP755/Hggw/il7/8JcrLy/G3v/0Na9asCdgyffp0TJw4EUOHDsWwYcPw9NNP4/jx44FZWdTYQhiDGR1buBDgmUUiXszOk6tl5L/8fxFEihNjh1nG+5odOyx6WxOcaGpiGzMcNL6HIAwVw4sXLwYAjBgxImT9q6++Gpjm8I9//CMSExMxfvx4NDU1YfTo0fjTn/4UKNupUyesXr0a99xzDwoLC3HGGWdg4sSJeOSRRwJl+vTpgzVr1uD+++/HM888g549e+Kll17C6NGjA2VuvvlmfP/995gzZw58Ph8uuOAClJWVhQyqi2ULQfBEi+AwIu2VFmJ5G2Odm1kz04kitIz+8WDm7HMEQRBmY2qeYbtDeYZPoyXWNVwEiZBjWEkgsfIKq80vrDafsFG5hSOJTTViUs3x9Yp41nmHY21Ts10LPIRoPDHnWtez/PGl5x7TUo7gj+48w88/D3eXLszs8Z88ibSpUynPMAHA5DzDBEHEh1EhEjyEsNpyvCfwiCe/sJGD6UTJwCKioCRvNUEQLDEtzzBBEGwQJURCq2gy4hN8rHCJSIgSLsEaI2KH9Ya4sMSu19GRHD8OtLayq49+URFBkGeYIGJgpc7UCM+lkXmFeR+LUq2FIpp3mHIOEwRhBCSGCccSLUbYbGLFC6tBZK+w3v20wCNcIhYiCzXR7nWCIAizoTAJgghDjViwYko1rfvZSTTFGy4RCTt/ftcSSkGhEoRhGDmalHAc5BkmbE+kTBJ2IFoWCR4oCUq9bRprfyPCMsg7zH4fVteNRaiEyNeCIAjzITFMECYSKa2aXkTxyokE6zZRI7CsKsK0CF+7/cAkCMJ5kBgmCMFgES8cq05WsBJCVvUOW1XsAs7zDhMEQUSCYoYJIgqieb3UTrShF6XzNjKLBC/MmJnOqjGrLGKHRcKq14H4EYoZJjhCnmHCEOzUCZk5eE4NRoVIqJmNTV5Y1GeElzEerNynGuEdZgV5hwmC4AWJYcLxiJxijQVmCAU101mLiugz0xkJi9hhO3xRIAjC3pAYJhyJCOJMafBctHhhJ4RIGHVd4vUOW1XURsNK3uFo2HlAI0EQS4wkoQAAIABJREFUfKGYYcJ2iNhRG4UIIRLRZjHTK0aMyl8bT3xprH1EjlmNdm1EyjvMOl80YSGamsSuj7A05BkmbAcr74+ScBE9Xjgc0TxhIolBHjPT2TVcQgmRriVBEIQeSAwbAP0AJdRghxAJFgLJyDRrVg+XCB6kyHPyE5Fih/UOpBPl2hEEIQ4khglCJSy9wjwm2wgXCUbnFmaVNUIk4mlDo7zDSu1odNta6VoSBEFEgmKGDULkeEGnoCYVGBGKWfGZseJUWcYOm5F7mCd6YrN5xw6zgmKHHUhjIyBJ7OqjT7ZEEOQZJmyHHaaSFSVEQm0Zre0oWrsbnXuY96d6PWETPK+lmTMJai1DEIRzIDFMEAoYLdb0ds5GhUgYiQhTNMvEM5hOBFjfx6L9iCEIgmABhUkYiKifVe0Gj3YWPV6YB7zFpmip1uL99B5vGIVR74N42lnrPkrlKVSCYEpTE9swiWZrZQYi+EKeYYIQDK0hEiy8wkaGSGjB6B+Pdp3yl2U76q2LBCxBEKJBYthgrNyhEs5BpBnnrBwuYXbscDC847rN+OoV6ccLvWcJgtACiWHCMKwaIsJ7og2tA35Ye4XVYIZXWAsi5B62Aqyulx3S6JFgJghChmKGTYBih/kSTwq14HU8r02seGGe2SIiYfa9qCa2lHf8qRa0xgiLEjscD7za3ahptQkb0dAAuBiOt6CYYSII8gwTtiO48zbsE7pBSk3PVMBqUdtmok3wILJ3mMftYfaPA7WTfvC+TyhUgiAIvZAYJmwNd+9TY+PpXjf4/xp2j7cMi3NjEbPLAlbHMOrHD+tUa3aKHSYIp1NbW4uSkhK43W54PB6UlpaiQeULW5IkXHXVVUhISMCqVatCtm3duhVFRUXweDxIT0/H6NGj8cUXX/A4BcdBYpgwHZE726jxwowVjBkhElZDzb3CShDH6rucNJiOR90iZJWg54zgQUlJCXbt2oW1a9di9erV2LhxIyZPnqxq36effhoJCQkd1jc0NGDMmDHo1asXNm/ejE8++QTdunXD6NGj0dLSwvoUHAfFDJuEyHGCdiJah2u19jcinZqZIRIixQXLiJ7L1uxcxWqvmVk5h+k9ayOamoC2Nnb1cRKQe/bsQVlZGbZu3YqhQ4cCAJ577jmMHTsWCxcuRE5OTsR9q6qq8NRTT2Hbtm3o0aNHyLa9e/eitrYWjzzyCHJzcwEAc+fOxXnnnYdvvvkG/fv353I+ToE8wwQRDwLECBuBiELCSO9wLMg7rA8RfmiY/YwR9qKiogIejycghAGguLgYiYmJ2Lx5c8T9Tpw4gVtvvRWLFi2C1+vtsH3gwIE488wz8fLLL6O5uRknT57Eyy+/jLy8PPTu3ZvHqTgKEsMmQi9h8TAyk4SaCTXUYPTAOZ6ImLIr3nAJVuWNrk8rogykI4h48Pv9IUtTU5Ou+nw+H7KyskLWJSUlISMjAz6fL+J+999/Py699FJce+21itu7deuGjz/+GG+88Qa6dOmC1NRUlJWV4YMPPkBSEn3k1wuJYZMxuyMTERFEmQiozS0cD6LOOMcSs7NL2G0wHa/rzvt5p3esTZAHKLNcAOTm5iItLS2wLFiwQPHws2bNQkJCQtRl7969cZ3au+++i/Lycjz99NMRy5w8eRKlpaW47LLL8Nlnn2HTpk0YMmQIxo0bh5MnT8Z1XOI09HOCMBQR40IjEXHwnEAnIJApzBAlDjWcaPHDZuceNjs2VulaqF3HCtHjuwkxOXjwINxud+Dv5ORkxXIzZszAHXfcEbWuvn37wuv1oqamJmT9qVOnUFtbqxj+AADl5eX46quv4PF4QtaPHz8el19+OT7++GMsW7YM+/fvR0VFBRIT2/2Yy5YtQ3p6Ot555x1MmDAh1qkSUSAxTDgeTSKCs/pSqp61V1iJcBFhFe9vLIyc3MFqAlZGi0C10o9ZLYhyLQjjcbvdIWI4EpmZmcjMzIxZrrCwEHV1daisrER+fj6AdrHb1taGgoICxX1mzZqFO++8M2Tdueeeiz/+8Y+4+uqrAbTHFCcmJoZkmpD/bmM5sNChUJiEoCh8zSFsRKwYYT35h2Ohp9MXTTAYPZiOdbgEy0lUzJ6xUE+cMIVKEHYhLy8PY8aMwV133YUtW7Zg06ZNmDp1KiZMmBDIJHHo0CEMGjQIW7ZsAQB4vV4MGTIkZAGAXr16oU+fPgCAn/3sZ/jhhx8wZcoU7NmzB7t27cKkSZOQlJSEkSNHmnOyNoLEsEWgl7m1iTUNMxD7GhvlFRYBEWJZIxHtOrCejEMrZvxAEulYNMWzjWlqYhsvrHOgXDSWLl2KQYMGoaioCGPHjsXw4cPx4osvBra3tLSguroaJ06cUF3noEGD8N577+HLL79EYWEhLr/8chw+fBhlZWUd0rAR2qEwCQEI/0QXrUMVzTNnBMJ8muVghNGptkSZcc5ojAyXiEQ88cNGPvMswiX0xAmLcI0IggUZGRlYtmxZxO29e/eGJElR61Da/rOf/Qw/+9nPdNtHdIQ8wxZDCFHIAREEmFE2xCOAWUyyoYSWWGGjr5HdvMPRYBkuYQVE9A7bsZ0JglAHiWELYvWXtkg5YiPRIZOEyQPnWJgiwg8OM2EdDiJquISeY7D4ASJqjmGrvzcJguAHhUlYFKeGTGhFhHjY4HjheAbOOTmDBOtMB6w/xRuVbk3UcAnWx6FQCSIijY0Ay8klTp1iVxdhecgzLAjktQhFBBFrFGZ4hbW2r4hCWQmr2Mn7eddbv96ZAM2+DiSoCYLQAolhAVHbkZCANgiDGtrM6ylSrDDv44sQLhFPeaPvD9ZTY5t9HwH0ziQIQhkKk7A4FC4RnXhmpYo48xxD1IqeYKFlhlfYiveWGdlHjJydzkj0tKWafYXJFPMjIrU9EUZTE9vQhtZWdnURloc8wzYgHu+TiBN6mJHr1Mhjxju5Bm+s0PlrtTFWeaPDcFhdZy31sDomy3R8Rk+SQhAEoQYSwwKhp/NSu68I4iseTBNsOhtMzWQbwYchr3BkrBwuEQmzJ+ngjZn3EMUNEwShFhLDNiLeCRzM8BDbXWhFQ0n4moVo1yEWIuceBoxJt2bGfcNzshajr5MIzx1BEGJBMcOCEm8snZ6YN9Hi5SyZZilCA2odGGWEV1jkQXPRYJlujcc9Fk/8sN6yRsAqvteMFHhaEK3diR9paAA6dWJXH8UME0GQZ9iGKHl67R5GwQqWg+eUQiTUiGLL/QAQHNHih5Xg5R0W4YsPhUoQBCE6JIZtTLyf40VN8WU4HBtC7bUhr7AyVo4fNmMQnGiEXz8r3HMEQdgXEsMCw6KDiLcztXonbDX7RfEKW0mU2C1+2Are4Xhjh+NpfxE89gRBOAOKGRYMkeLVeNuiNQZRiJykwQaobJxwL7DIXmGrIXr8sFaUnjlRpmmWEeI51IlI71lCJU1NQCJD/11bG7u6CMtDnmHBMfuFbfbIdaG8QxoaQ21KteBqWQgxO6VSUwtLu+0aLiFi7LBRoRIsU94RBGFPSAxbALNFiiM7hnhGICpcKNHCVCLdS2bfY0ZhxqQPWsWYFWL8nXK/EAThDChMglAFr8+KdvjkqoZYoRJmp1KzOizDJXgQKd2alimZ9YZLsH6GWbSjFUJXCEFobKQwCYIb5BkmVGOWaA0WEbwEORAlrZrN1bpdRDLLAXVGhufYNbtEPAPpzJ4enSAIZ0JiWECUXtKiCBajOhCW52u0Z0mOF47lDSavMHvsFD/MI1yC9fMrkriNBnmX2WLGrKUEwRMSw4RmjO5QDSf4BA1847OartduOYV5YdX4YdFEiNZ7SOvAObMG0YrWzqJA7ULYEYoZthAixddSaqIwYjSGGq8wp0Mz30907BY/rISWWGM9xzEDkd5zRCimXpemJiAhgV19ksSuLsLykGeYiBveL8ZIKdYM68jjOMFIIRKxqqXwCLbYKX7Y6tklRJuimYgP+oFC2BkSw4IS6cUjWici8gtSFNsiCWPZKxzLTp6DBglzMDtcgsezoeeeihU6weIHCcUNEwQRCRLDFkQ0IcOiY9Ubd6gGVXYyOBk1XmEjJtignMLsyvLwDke6B1hklxDlh6CMqPecaO0kKtROhN2hmGGCCUbkITY056jWeaKhPOtcrKmXKTyCL1adrllrnmG1deipTw162ptihYmoNDZSzDDBDfIMWxQRxY6VOrJwWyPmGGZQP49Bc9Gg7BHxY3T7sEi3Jtpzx+qLhAj3qmhtSxAEH0gMC4wVX8S8YxG1DqRjYo+GpJpasrLF6y2ON55SBHFhBiLnHgb4xg+L/g7Rcm3MSrHmdES/hwiCBSSGLYyo4ibehOw8zydub6xKZRocIqHGK0zhEcbCMn6YByzih+OBV/3xeod5tz0NoiMIQgmKGbY4IsfZxROTGOl8IsUOx3P+Me1SU6FCBZG8wlrDI9S2GQlhbbCKH+YVO6wl/7CWmGIzYodZIfL7zQkI1fYUM0xwhDzDgiPUyygORLNfkz3hhSPsHMsrrMuGIFimrnIqrNrB6E/2VowfVusdZhkqEc/5i9RmBEGYA4lhGyC60Ik3bCIc7pNw6DBSrVc4koDRGydMg+bUo7Y9RAqX0IuVBJ/edrfSuYoMtSPhJEgME4ahVhSbKt5i5UILJiVFlVdYr8AhIcweFoKYl3dYS/wwq8F0ZscO031KxKIFQIsksVvMPiFCKEgMWwDhBaRG4vGEKq1X6x1mntIs7GDhIjiSno50zikp6kUDCWF2sGgfqwniaBgtiNXuQ/ex8ditzyGIWJAYthFWezmxyDoRb7iE6uNGMlJBEGsNj4gFZY4QAzNmpwP4CGKRPn3He/+qae9o50kZJQiCCIfEMGE6KvVmROLNPRxTjIdvDKu8GS5F768IQpiEsjpYxQ8bLYithpp2Zn3PiiT8rQS1m35qa2tRUlICt9sNj8eD0tJSNER5mPfv34+EhATFZcWKFQCAL774Arfccgtyc3PRpUsX5OXl4ZlnnjHqlGwPiWGLoCUllFXR4imONzxA6X3U4ZjRRLBCTINsN6tOhISwsVgxwwQv77DRQkjkwYyEWJzisPCipKQEu3btwtq1a7F69Wps3LgRkydPjlg+NzcX3333Xcgyf/58pKam4qqrrgIAVFZWIisrC2+88QZ27dqFhx56CLNnz8bzzz/P8UycQ4IkUbI9Xvj9fqSlpaGysh6pqW7d9XEJA7A4sQaqKeVQTU09rWnlxZ3SHKpqgyuWKwjaQfYKh8cIK8Una7kWamaXIzHMHrXXSE05Ht7cSEJb6VrrWRdtPQvUiPNYmVkA9SEkkc6FfmBGhpfj5dgxP4YMSUN9fT3cbvX9odyP+gDo70WD6gXgBTTbE4s9e/Zg8ODB2Lp1K4YOHQoAKCsrw9ixY/Htt98iJydHVT0XXnghLrroIrz88ssRy0yZMgV79uxBeXk5E9udDHmGLYQeUWVXwuOH1XZymjy5YQXVhkco7BoVEsLio6Z9jZyymUdcsBV+SLNuYyucsxE4sR38fn/I0tTUpKu+iooKeDyegBAGgOLiYiQmJmLz5s2q6qisrERVVRVKS0ujlquvr0dGRoYue4l2SAwTlic8ckFLRym//INTpEU8QNiBlBzJwXHCJIStg5a2M6ud9UzZLMpgOi0eaoIwgtzcXKSlpQWWBQsW6KrP5/MhKysrZF1SUhIyMjLg8/lU1fHyyy8jLy8Pl156acQyn376Kd58882o4ReEekgMWwzyDkdGqyCORwyEh0ewnkwEUPZuO+1aio7oA+p45iTWi5YfdbxSrNllYCJLRPcK84oZPnjwIOrr6wPL7NmzFY8/a9asiIPc5GXv3r26z/PkyZNYtmxZVK/wzp07ce2112Lu3LkYNWqU7mMSQJLZBhB8SUkR/yWnBblDjJazV94eLkgixRQrxRUHNip4hZVihYPr1xNzR+nTzEPrsxKrfGqqcaJL6R6OeF8LCK/3lJXagDAHt9utKmZ4xowZuOOOO6KW6du3L7xeL2pqakLWnzp1CrW1tfB6vTGP89Zbb+HEiRO4/fbbFbfv3r0bRUVFmDx5Mh5++OGY9RHqIDFsAMnJbOujF3w7Sp1/+LbgdUreumBh64rWIwcNmguul5UQjicsQms5gj1mCOKGhsj3cixBrEU083zP8BK/dvvxLypOfOdkZmYiMzMzZrnCwkLU1dWhsrIS+fn5AIDy8nK0tbWhoKAg5v4vv/wyrrnmGsVj7dq1Cz/96U8xceJEPPbYY9pPgogIhUk4ADu+uCLFHoav1xVioCJ7BKBN7CjZ40QhHB5qwjr0JF7iaU8zQibsED8cjtbwCCNT2dkdEa5/LKySWi0vLw9jxozBXXfdhS1btmDTpk2YOnUqJkyYEMgkcejQIQwaNAhbtmwJ2fff//43Nm7ciDvvvLNDvTt37sTIkSMxatQoTJ8+HT6fDz6fD99//z2nM3EWJIYNwuyE8lYVTeGoOW+l8W4K49+UK5cPELajkmBraIgthCOMvQOgnP0i+NB2RK3YtULnHIwZ10ytINbTllr3daEZLjSrKsvjhwdBiMDSpUsxaNAgFBUVYezYsRg+fDhefPHFwPaWlhZUV1fjxIkTIfu98sor6Nmzp2Ic8FtvvYXvv/8eb7zxBnr06BFYLr74Yu7n4wQozzBH5PyIO3fWo1s3N/MOXmvHYDWBEY1oOVLVTCoQXsbrBbJQ0yFOWM4yUVfXvgTvG+/nby05YyNhRVFgpR9w8T4r0fbjFT+s9geV0leTePaLRrAQjpqh5UfiyTEcK98wj1zDVnzetGDEs6k3z/B+sM8z3Bvs8wwT1oRihg2EdTyb1pi+WIPP7EKsTk1ut2BhXFcHNKZknd63EWisO72fkkdTazwoCxGspnys62t0x27F+41H7CmvAXVKMcQs44fVvmfCPcLy39FEcXg7B/8d6f9aoTEW0bHi80kQrCExbDA0wIMNajq4aN7j4HrC/9VyfWQRoiRyYsU0suqgtd5PSgMNeWHlez2eZ9WsDBNqBXE4aoWiHkHpQrMmQRwLeoc6k1awjfNtZVgXYX0MjxneuHEjrr76auTk5CAhIQGrVq0K2S5JEubMmYMePXqgS5cuKC4uxr/+9a+QMrW1tSgpKYHb7YbH40FpaSkawnqYL7/8EpdffjlSUlKQm5uLJ554ooMtK1aswKBBg5CSkoJzzz0X77//vmZb4oGlAImnU3CalyQ8bjclpX36ZXdKM7I8zfB4AI+nPVTC6wV69w5dlPYPjwGW43+Dl1j2xAvLwWY8B6zZQbBYZUBdJOKJH+Zx3dTGEQPqBs/J0CA6giBYYLgYPn78OM4//3wsWrRIcfsTTzyBZ599Fi+88AI2b96MM844A6NHj0Zj0Bu6pKQEu3btwtq1a7F69Wps3LgxZBYWv9+PUaNG4eyzz0ZlZSWefPJJzJs3LySA/dNPP8Utt9yC0tJSfP7557juuutw3XXXYefOnZpssSp2EMRahJwLzXA1+gMLGhsBnw+oq4Or0Q93Yw1ce79sX/b/3+ml0Q+Pp7295H+DF6V1sRYRscEtzY14rpvIGSbUCOR4Mk7EihHWIoiVsHuGFYIgzMPUAXQJCQlYuXIlrrvuOgDtnticnBzMmDEDDzzwAID24Pbs7GwsWbIEEyZMwJ49ezB48GBs3bo1MPd3WVkZxo4di2+//RY5OTlYvHgxHnroIfh8Prhc7S/oWbNmYdWqVYEZYm6++WYcP34cq1evDthzySWX4IILLsALL7ygypZYhA+gC8bswXS87DALJW+SLGJcaO6onMNdq99+2y6Og3dMSQGGDAG83kBHr1RNMFZvT7NCN3jZwQMt5xarLI+QCVYD6uIZTKdG8EYSzVoGz7EYREcD6OJ/TuNpj6NH/cjPj38A3VcAumk/bESOAegHGkBHtCNUarV9+/bB5/OhuLg4sC4tLQ0FBQWoqKgAAFRUVMDj8QSEMAAUFxcjMTERmzdvDpS54oorAkIYAEaPHo3q6mr88MMPgTLBx5HLyMdRY4seWL9crS7CeNHY+GPnG+zekxXt0aPtiyyE//1vYOfO9uXf/z6dQuJH77ELzSHeYKCj19CqnmEZFveR3e9F0bN+qBGHSuvi9RhrRY1gjhUqIfpzZGfMavsmDgtByAglhn0/euays7ND1mdnZwe2+Xw+ZGVlhWxPSkpCRkZGSBmlOoKPEalM8PZYtoTT1NQEv98fskRDhBe6CDawIJb3KOaOcuBweNwDEFEUBxfRInRFb3Mj89IqIXr7AOwEMa+YV7WCOBZGCuJ4rzvFDceH3X+0EoQWhBLDVmfBggVIS0sLLLm5uTH3MXswHWsbzCSSIFb0Dofv2NgIdO9+WhCnpraXlb3HYaPWZEEMKHuGnYgVhDBLAWAHQWxmmE8sDzF5hO0DCW9CdIQSw16vFwBw5MiRkPVHjhwJbPN6vaipqQnZfurUKdTW1oaUUaoj+BiRygRvj2VLOLNnz0Z9fX1gOXjwoIqzFuMFL4INLFD10pUVa7AKCV7Xvfvp/E2yV1iDIFaD6O2tJ11bvPBoE6XMGywzaLCyWWRBrKWt1Ey0EY1I7Sn680Lwp5XDQhAyQonhPn36wOv1Yt26dYF1fr8fmzdvRmFhIQCgsLAQdXV1qKysDJQpLy9HW1sbCgoKAmU2btyIlpaWQJm1a9di4MCBSE9PD5QJPo5cRj6OGlvCSU5OhtvtDlmMRk8nb5cOJ1z0KHqH5eDfnj3b86lFSgvh9baXkdUKg+BfnunMWKLWRhGFsJFtzCo8xkqCmFXb6skwYZf3lRlY4f1DEEZiuBhuaGhAVVUVqqqqALQPVKuqqsKBAweQkJCAadOm4dFHH8W7776LHTt24Pbbb0dOTk4g40ReXh7GjBmDu+66C1u2bMGmTZswdepUTJgwATk5OQCAW2+9FS6XC6Wlpdi1axfefPNNPPPMM5g+fXrAjvvuuw9lZWV46qmnsHfvXsybNw/btm3D1KlTAUCVLSwRIVyCtR1mouQJbGwE/I0uNKe4QwVx9+6hIRLBixwuETxq7keCvWDRMkyE22UlYp2LaELYrB8adhTEseAliGnwnL2w2juPcCaGz0C3bds2jBw5MvC3LFAnTpyIJUuW4MEHH8Tx48cxefJk1NXVYfjw4SgrK0NK0Btw6dKlmDp1KoqKipCYmIjx48fj2WefDWxPS0vDRx99hClTpiA/Px/du3fHnDlzQnIRX3rppVi2bBkefvhh/O53v8OAAQOwatUqDBkyJFBGjS0skb/Ms6CxkToN4HQ7dGjXFDdcwRsaG9sFr1JOpvBYiJQUNMOlOFAv0vWzcocg2x6cjIMFZmdUYf2MqH1+WT7nWlCapS4a4e2jtr2a4dKdU1iJaO0WPrOfWW1sBchZQhAdMTXPsN2Jlmc4EmYN8OFphwgoeZtknRvouKOd9I87BecbDt+F18h7u8KqYxWpc9diS7SyPPIPy8TKr6v3byC+8IfweONoGWKUnr/gNlP6TRuO2jzDdhOARj8v8vEaGvTlGf4c7PMMXwjKM0y0I1TMMEHhEryIlmnC3+hCM8LCJ35cmlPc7Uv7HHYd4pDDB2cFH4OEsDIsM26I1saiZ5gAOgptHvHDegfS6cVu7y9WiPa8EIQoGB4mQcRGlHAJ1p/FzSaS51Zu75QUoDFKJ65GBNilrXghyo89nmh5frV8+udJrJAII8KuXGgOEdFGhjqQeI6NHq8wQYgOiWEHoLcjs2P8HQsha7c24YnZ8cFGI7ogVoof1iKAeYnlcEEsE/KDVeFfIjbUTgQRGRLDgkIvef1Ear/wTlupnJoyhDpEFcK8vYF2E8RaBXC8A+mCBbGe92CwYI4Xu3iM7fD+agVwinF9BCFDMcMOQe/L0IqdQnjKYBk1bREtHphQj6hC2ChEjyHWmnJNyzbA/Nhhwjys9qwSzobEsMCIJiSsKIiDCRfEsQbBEfoQ7f41C7sL4mj7xYuSR5nl/cRzgKJoWPW5IQgjoTAJwWEdLkHxw9HR8lmbiAwJ4VDsEDIRaZuud4p8olEqCG8Pu7+DRESE913LjwvL+ghChjzDFkA0YSHCi5EQF9HuV1GwuodYrUc4vFzEUIkYlceKN1bTnqzKGIVdvlRZ2XbCmZAYtggkMNjAIsetSJ2naFjlPjXrGtpJEDMPl4iyU7S2kLdZOfQhkvjVe/879T1PEFohMWwhRBJhItkSD0oD69TuRyhjFSFsNlYQxNEm5ohHHKseSBdWSbh32Mjnz6hjxbrP7focEIRIUMywxWA9IYdcp9m2mAkJXH3waD+e95UI11v0GGKgYxxxpDhhNf/XhIod9bx7gs/JzHuB97vTrBSEvM6rFWzToVFqNSIY8gxbEBE6cxmRbCHsgR1+YKlBdA8xoN9DHPz/Dt7haCcVtKPsHbbLu8bq8cAEYUdIDFsUkaa1ZRGHS1gPHtfdaSLB8YLYYFi1U6TUjNGEbrwimN6tBMEfEsMWRiRBDNBL20lYLTRCRsR71ExBrLbNWccQq0LBOwywu4bx1KNW0Jqdw9ysH5VO+zFL2AcSwxaHBDFhNFYVwiKjxcserWxqqnpRLLe5WsEWjyBWWhfiHY510mGV6bn31LRLpIG1ZoY2OP3ZkGnmsBCEDIlhIgQSxEQ0eIRFUGd/GiO9xErTlbMWxEw9xQoY8a5x8v1J73LCKZAYtgEixm3SS9ReUHywcYgeR8xCEMfjHdaTZi28LdTuK8I9Kko2B4KwMySGCUVIEBMyFBZhPGbHEcfy2IfnItYiiDUZoVQp9E8pr7QueD19sdAOtRdhZUgM2wRRPXckiK0LrywhZnWaVrsXtcYRR0KPh1hL2IRaQazoHY50UAUDtF7HWHmF1a6zAiyfLdHaoBXAKYYL5RkmgiExbDNEFcSivViJ6PC6XuQ90g6rgXXxHkeNlzi4bLT/RxTEsXIO19UBPh9cjf4ONqs9by2i14qsJyVqAAAgAElEQVT3qRVtJghRIDFsQ0Qd5ESC2Brw8gaL2llrzRdrBizCJrQMqlNCiyCOFi8c00McyYCUFDSnuFFX166No10jNVk17CSEzYbaLJTa2lqUlJTA7XbD4/GgtLQUDTGmivzqq69w/fXXIzMzE263GzfddBOOHDnSodyaNWtQUFCALl26ID09Hddddx2v03AUJIZtiqift0kQi4vdwiLCiUfwiiSMWQlivV7iSESKI1YjiKMeFAA8HjR7suDzAT4fOghiuR6l8wu/r+34pYr1/Sli+7AMkZAXXpSUlGDXrl1Yu3YtVq9ejY0bN2Ly5MkRyx8/fhyjRo1CQkICysvLsWnTJjQ3N+Pqq69GW1tboNzf//533HbbbZg0aRK++OILbNq0CbfeeivHM3EOCZIkSWYbYVf8fj/S0tKwc2c9unVzm2KDyOmMRBAYRDsUFqEOUUSC2nZV683Vun+sdogUniD/X+nfQLYIpV8fHg/8jS74fNruqXA7NaY1FgIzbOaRwaKhwY/8/DTU19fD7VbfH8r96AcAztBmVlSOA7gK0GxPLPbs2YPBgwdj69atGDp0KACgrKwMY8eOxbfffoucnJwO+3z00Ue46qqr8MMPPwRsqa+vR3p6Oj766CMUFxfj1KlT6N27N+bPn4/S0lJm9hLtkGfY5ojs6RNFWDgZnl4yEYWFXkQ5J1YD69SEEkSahCIaseKIlf5thqs9ZCLCTalkS7SYYbt7g3nhtFRufr8/ZGlqatJVX0VFBTweT0AIA0BxcTESExOxefNmxX2ampqQkJCA5OTkwLqUlBQkJibik08+AQBs374dhw4dQmJiIi688EL06NEDV111FXbu3KnLXqIdEsMGoPPZ0o3ogpg6KePhLYKt3kFGQ5RzYzGwDlCfbUKvII4mhDvUp5DrzNXoRy9vM7xewONR9vqGi2Olc7dTrLAVbRaN3NxcpKWlBZYFCxboqs/n8yErKytkXVJSEjIyMuDz+RT3ueSSS3DGGWdg5syZOHHiBI4fP44HHngAra2t+O677wAAX3/9NQBg3rx5ePjhh7F69Wqkp6djxIgRqK2t1WUzQWLYMYg+KIpEsTHwbmczOmclEcQbUQQ/y3zE8cQSx4qpjhZHrBS7LXuIOyAHCft8cDfWwOuNfj5KgpjeMbER2SvMK2b44MGDqK+vDyyzZ89WPP6sWbOQkJAQddm7d29c55aZmYkVK1bgvffeQ2pqKtLS0lBXV4eLLroIiYntMk2OHX7ooYcwfvx45Ofn49VXX0VCQgJWrFgR13GJ0ySZbYBTaGw0/0WcksLn5cXy3HjZ6HR433tGXzOznyWRkNtCzTWIVTY1NXYscXgdaq5FQ8NpsR38vpD/38GeFBdc4fUGqWZXXQ283vYBdbHstCv0nmSD2+1WFTM8Y8YM3HHHHVHL9O3bF16vFzU1NSHrT506hdraWni93oj7jho1Cl999RWOHj2KpKQkeDweeL1e9O3bFwDQo0cPAMDgwYMD+yQnJ6Nv3744cOBATPuJ6JAYNhASxOrQ0rkTkTHSS2oUZj8/4YjwTMdDtPeALFrVimK1yPWlpqoXxEhxhU7DLMdHNDbChWakpESYuCOCfZHO2WrvGqsMmrMTmZmZyMzMjFmusLAQdXV1qKysRH5+PgCgvLwcbW1tKCgoiLl/9+7dA/vU1NTgmmuuAQDk5+cjOTkZ1dXVGD58OACgpaUF+/fvx9lnnx3vaRE/QmLYgVhBEAPkJdaK0aLMySI4GC0eUp5ofV5YeInjQfYSB7eb0v8D7xPZS5ySgma4ftzuQgoit3mkOpWgd4z5966dyMvLw5gxY3DXXXfhhRdeQEtLC6ZOnYoJEyYEMkkcOnQIRUVFeO211zBs2DAAwKuvvoq8vDxkZmaioqIC9913H+6//34MHDgQQLsH++6778bcuXORm5uLs88+G08++SQA4Oc//7k5J2sjSAwbjF7ByKrj5eV9ZS0MwsbQEBEwsjMjEayMCKI4nh+Q0d4Far3EWgn3Est2KNnQ/s50ISXldG5huWykOGAXmuFKiTLls0XQ4t22O6xzA/PMM7x06VJMnToVRUVFSExMxPjx4/Hss88Gtre0tKC6uhonTpwIrKuursbs2bNRW1uL3r1746GHHsL9998fUu+TTz6JpKQk3HbbbTh58iQKCgpQXl6O9PR0jmfjDCjPMEfk/IiVlfVITQ2NSWLxSYpVp8vr5SpyFgs7QJ5gZUS5R8wW8vG0g5YMEaxQmiQjHHmd13taBIeET4QTpLBPe5NjZLAQEK0ZPFgdJxbx2KE3z/BKsM8zfD3Y5xkmrAl5hi1ArDg3Fl5iXmETcv2sIE8xieBoiHRPmO0pZu0lBvh4ioMH1wUfW+lZb2wE3HUHTv8hbwjPtRbNbWwRRBXCBGFHSAybBMv4WhZ18YzP5TXIyEnC2IwOy0oiWGTMHGQX73OtVhQD+oWxUkq3SLmB3SnN7UZ9+22ogbKi9ngiVmI1r7ComNVurWAb2tDKsC7C+pAYNhG1naSaDs0Kglg+Bg/sKoxJBNsDswWxbAOPfcPFrFpxHCmvcXA7BecK9njQHjT87bft/8qGycHEMkozcuB0cStg1L3ilOePIGJBYpgIgXcGByNEgVGfF3lgZudEItje6Hm2tQhqtTPaRTqG/P9gIawYIxxsTHDhoHVyvHC43SK/E0QWwiK3G0HogcSwybD2Dstl9WCEIJaPYwSRjmPmi10kMWh0O/A6d+qoY6P32Wb9BSbSYLngBfhRCMupJMJ3lv+VVXjQjsFC2MrhEVa0mSCsBIlhGyJ6yISMCAOMlNB73iIJ3WjYRQRbBTNDJYJh9WzH+wUmWm5g+d8Qb7CsaBsbT4dDKLmRw5bgtGpWEcJmOwiiYXbbNYOtYImSi4RwICSGBYBHJ8lKEMt18cRsURyOKHbwwoxOze5tajV4hBLFc40jxQeHEC6ElXbs3r2DEA7W0HI1IiPiFyyCcAokhgVBjXjV6tFhJbKN8BID4oliu2FWp0rXsx1qh1AihUh02Ca/gOSVP05XG7JdXjweWwlhUY4levsRhF5IDNscqwligEQxayg2mlCDURlZoongqDsFi+LwPMIKHmEZ0YUcPSMEYT4khgWCh3dYbb1qMCpsQoZEcfyIIADousVHpGvHsz3D6+bx41dNrLDqHeV8wj9uCxfBVvEIx8Koa2CkDfFipemYCetBYlgweA2yYVmvkV5iQHkAOdERUTotukYdUdMmarPFqK1PL0rH0HqPqflxH1x38A/ulJR2ketCcwfFHGlwnNVEsJOeleRksy0giMiQGLYg8YpR1oJYrtNISBiHIlqnT9ckPoz82qPH86z2uVdrW/h5RBLEwdvD9w//v2jPRCSMflas7BUmCN6QGBYQnimYWNdttJc4GCcKY5E7J6dcA9aY9ZUl0jaWoliLTeF1Kr1b1IhhK8DiS4GVSEkBWlr01UFhEgRPSAwLSizRqkeE2kkQy4Qf3y7CzOx2tRIi3IdKRLsX9dir9TlWeyy1opiVsFaqL9q1jCWQRceMdxN5hQkiOiSGBcZqgliuVwSsLI5FaUO1WKltRUIUj3C0ffTmI473642a41jtOQG0hY8YfUyCcDIkhgXHSoJYrz08MWOEfixEbCetiNbRinb/WX0iBZZ2svqBapW2C0e0ZyUaVm1jgogXEsMGIPIoWicJYiW02Knns7EdEbVzF/3+M3PQqUiIahcPeISzsD4uj+PHa4MSpwDoDDvuUB9ByJAYNgieHly9nT8vQSzXbRfsdC7xIqoADkdUQSyiTYQ9EeFZFcEGglADiWGLwDPDBM/67SiKnYZVOzQRBDHv4/N+LxD6McsrHA9mH58gzCLRbAOchN5OK9qLikWHyPNFSB22tZBnurX6dbO6/SygNjAPJ4dHEISVIDFsMCSICZGxgwAOx27nE07wzGuRthPGYsfnSCusz7+Vw0IQMhQmYQI8P9+yqJvnp1e9qZoI9jih0xYhZII3TpyExi6QV5ggzIU8wyahp7NiNRWqnmOwgjwo5kJtb09ieYsJfmh9pswWwjwQxQ6CUAt5hk1EtBzBSscAjHmxBR+DOnFjcFqH5QTvsBJK19mJ7WAEVhTCVrkXaDpmgifkGTYZXh5ilkLH6JelXQZviQy1rbOh54stVm1PHu92K7YDQZBnWAB4eYjt4AlT82K1+jkaidM7Kjs8Eyyh9tCPCB5ZihMmCH2QGLY5rDo7I0MmtEIhFrER8boRfKFrzh+rCmFeiGQLQWiBxLAg6JmcwkihKnqSfyfFRyrdM0o/DES+XmZA3tBQqD3iw8pC2IrhEc0AOjGujyBkSAwbQFMT0K2burI8OibWdYouiMOxskBW087RwmQioXT+VrqmRkMpAYlgRBKhVrSBIESDxLBBaBGQJIj5I5pANqot9U7OYOVrHoza58Eu5xsL8g7zh8c73Wwb4rWDIESDxLCB8BbEseonQRwdo7x/ZrUZy9jxYJTuKyvcF7Geh0jnQKLRuYjiEbbC80UQVoLEsMFoFcTyPqJiN0EcjJ3Oi+c9JPL9GYtIz5idrj3BBqsLYat7hSnPMMETEsMmoFVAsvTo8vgcyksQk0AhjIJS+FGoRDREefc4VQgTBG9o0g2T0Dpdqpqk7lo9ziwxohOV24w6bPGx8jUKvs/oniN4TYxklB0khI3nsccew6WXXoquXbvC4/HELN/S0oKZM2fi3HPPxRlnnIGcnBzcfvvtOHz4cEi52tpalJSUwO12w+PxoLS0FA0NDbxOw1GQGDYZrS+qSKJY68vJ6i8zEijiY7XrQ/cUEY7VhTAP4rWlqYmtHSLT3NyMn//857jnnntUlT9x4gS2b9+O3//+99i+fTvefvttVFdX45prrgkpV1JSgl27dmHt2rVYvXo1Nm7ciMmTJ/M4BcdBYRICEE+YAYuXox0+i1IuXUIvVn8GlKDnQT+ieGJFEeR6YGFHK9jG+bYyrCuc+fPnAwCWLFmiqnxaWhrWrl0bsu7555/HsGHDcODAAfTq1Qt79uxBWVkZtm7diqFDhwIAnnvuOYwdOxYLFy5ETk4O03NwGuQZFgSzvFJ26TTJqycmol8XkW3TA4V56IOEsDKipHNzAvX19UhISAiEWVRUVMDj8QSEMAAUFxcjMTERmzdvNstM20CeYcEww9NpBw+xDHmKxUTErCN2uefVEul8rZC1xkhICCtjVyHs9/tD/k5OTkZycrJJ1rTT2NiImTNn4pZbboHb7QYA+Hw+ZGVlhZRLSkpCRkYGfD6fGWbaCvIMC4rRLxHRhIperPASNgpR2kIUOwCxbGGBXuFkt/aIBzWDlCNhdyEsAqc4LACQm5uLtLS0wLJgwQLF48+aNQsJCQlRl7179+o+z5aWFtx0002QJAmLFy/WXR+hDvIMC4zRXk47eYiB0HOxm9jXgkjXVUQPsZUwclIdJyGS+BTJFj2IZEs0Dh48GPC+AojoFZ4xYwbuuOOOqHX17dtXly2yEP7mm29QXl4eYpfX60VNTU1I+VOnTqG2thZer1fXcQkSw5bASFGnp0MVWeiIbJvToFAW7Zg5lbud0XsPOkEI2/05dbvdIaIzEpmZmcjMzORmhyyE//Wvf2H9+vU488wzQ7YXFhairq4OlZWVyM/PBwCUl5ejra0NBQUF3OxyChQmYTGMGBAjyguZ9UvYrM/BIuStFbFDo8/zsYnn072I11o09IREAHzuXTtdN6c/1wcOHEBVVRUOHDiA1tZWVFVVoaqqKiQn8KBBg7By5UoA7UL4xhtvxLZt27B06VK0trbC5/PB5/OhubkZAJCXl4cxY8bgrrvuwpYtW7Bp0yZMnToVEyZMoEwSDCDPsAHwisXn6WETxUNspRnzwo8RbxletpHX0FrouQ/0XGul49rhvmH1XIkyOE1GNMcIL3usNB3znDlz8Je//CXw94UXXggAWL9+PUaMGAEAqK6uRn19PQDg0KFDePfddwEAF1xwQUhdwfssXboUU6dORVFRERITEzF+/Hg8++yzHM/EOSRIkiSZbYRd8fv9SEtLw86d9ejWzc29QxFtZjmROx8ZHt5nlvASxqKJG6O9YqKdfzhmPTvRjit6m0VC9PeQnYQwENmmhgY/8vPTUF9fryosQUbuR+cAYPmaaATwCKDZHsKekGfYQHh75nh4ivV6iFnYw7PdRI8l5uX9D65PBJEj+nUwEtbPL6DuGmuZ7l2EeyYaLNtQRBEMWEsIE4TokBg2gKYmoHPn0Dg1q4liPbAQOk4WxABfG52YZ9ZpISO8fkyZ3YYihDvFg8hCOF5EtIkg1EJi2ECCRaoRnbFInlkWtpAg5muj2QLH6GvgNEHMA6O9xUbdHyJ6XWVEtM2Ia2+lmGHCelA2CRORRbEVvBuixN3xbCuR2ikSdhIcSlCWDesKdB7vs+A6rS6EWZyDiPeGiDYRhFbIM2wCSh4w3l45kTyzej2APNuKPMTtOMlrarZHXAkr3IfRCLddS9uacd5WGNwsoo1GPjNNgtdHWBsSwyYRqbMTXRSzsk8kcR6OyGJdxupiKRpmxbyLNkBMtNh/PYh6DiIKTCWsYicPXC4XvF4vnvL5mNft9XrhcrmY10tYDxLDJhJN0BghikUQfCzsEFEQA8ZkD+EdQ2ymKDRT8IvkLbaTKBYFq4QbiSqCjXwuUlJSsG/fvsDkEyxxuVxIoQeLAIlh04nV4YseEsBqcJ0IwjwcUdonGiSI+WL2+QcTbgf14dowVsAZd6x4sYIQlklJSSHRSnCFxLAAqPH82N0DKood4bCyS66LB3b3HAa3mxnnKJIgDobEcWTMul5WyG8MWEsIE4QRUDYJFSxatAi9e/dGSkoKCgoKsGXLFi7HaWyM/rLhNaKaVRYFO46UBtjZZUSmiVj3kNUx6/ysIDSDr7+d7wGg47mKcO4s44NFFMIEYWdIDMfgzTffxPTp0zF37lxs374d559/PkaPHo2amhpux4z1IuQhilm9gPXaJmrqNasIYhmW4sDo1FZqMEP0iHT+ahBBILJE1HNh+WyIGiMM6LctOVnf/gTBkwRJkiSzjRCZgoICXHzxxXj++ecBAG1tbcjNzcW9996LWbNmRd1XnlO9srIeqana5z5X8+Li8fI0+1OfyB5ms9uGBVbpuLVgpFAV6bxZIKrIt0I7W+VZMvudmpICHDvmx5Ahaaivr4fbrb0/JAieUMxwFJqbm1FZWYnZs2cH1iUmJqK4uBgVFRUdyjc1NaGp6XT2wvr6egBAQ4M/ruM3NLT/G+sXdRPjhIlqj6sWrfY1NOg/Nus2kWFhWzC87IyGHc4hHNbnFAsRzpkV8vMejhmePKu0q9w2LS366+J9zsnJ+uzUa598fLkfJP8bISIkhqNw9OhRtLa2Ijs7O2R9dnY29u7d26H8ggULMH/+/A7rr7wyl5uNBEEQBGEVjh07hrS0NLPNIIgQSAwzZPbs2Zg+fXrg77q6Opx99tk4cOAAPfwG4/f7kZubi4MHD9InOQOhdjcHandzoHZXjyRJOHbsGHJycsw2hSA6QGI4Ct27d0enTp1w5MiRkPVHjhyB1+vtUD45ORnJCt8W09LS6EVpEm63m9reBKjdzYHa3Ryo3dVBTiFCVCibRBRcLhfy8/Oxbt26wLq2tjasW7cOhYWFJlpGEARBEARBsIA8wzGYPn06Jk6ciKFDh2LYsGF4+umncfz4cUyaNMls0wiCIAiCIAiddJo3b948s40QmSFDhsDj8eCxxx7DwoULAQBLly7FwIEDVe3fqVMnjBgxAklJ9LvDaKjtzYHa3Ryo3c2B2p0grA/lGSYIgiAIgiAcC8UMEwRBEARBEI6FxDBBEARBEAThWEgMEwRBEARBEI6FxDBBEARBEAThWEgMc2TRokXo3bs3UlJSUFBQgC1btphtkjBs3LgRV199NXJycpCQkIBVq1aFbJckCXPmzEGPHj3QpUsXFBcX41//+ldImdraWpSUlMDtdsPj8aC0tBQNDQ0hZb788ktcfvnlSElJQW5uLp544okOtqxYsQKDBg1CSkoKzj33XLz//vuabbEKCxYswMUXX4xu3bohKysL1113Haqrq0PKNDY2YsqUKTjzzDORmpqK8ePHd5h45sCBAxg3bhy6du2KrKws/Pa3v8WpU6dCynz88ce46KKLkJycjP79+2PJkiUd7In1jKixxQosXrwY5513XmByhsLCQnzwwQeB7dTmxvD4448jISEB06ZNC6yjticIAhLBheXLl0sul0t65ZVXpF27dkl33XWX5PF4pCNHjphtmhC8//770kMPPSS9/fbbEgBp5cqVIdsff/xxKS0tTVq1apX0xRdfSNdcc43Up08f6eTJk4EyY8aMkc4//3zps88+k/75z39K/fv3l2655ZbA9vr6eik7O1sqKSmRdu7cKf31r3+VunTpIv35z38OlNm0aZPUqVMn6YknnpB2794tPfzww1Lnzp2lHTt2aLLFKowePVp69dVXpZ07d0pVVVXS2LFjpV69ekkNDQ2BMnfffbeUm5srrVu3Ttq2bZt0ySWXSJdeemlg+6lTp6QhQ4ZIxcXF0ueffy69//77Uvfu3aXZs2cHynz99ddS165dpenTp0u7d++WnnvuOalTp05SWVlZoIyaZySWLVbh3XffldasWSP93//9n1RdXS397ne/kzp37izt3LlTkiRqcyPYsmWL1Lt3b+m8886T7rvvvsB6anuCIEgMc2LYsGHSlClTAn+3trZKOTk50oIFC0y0SkzCxXBbW5vk9XqlJ598MrCurq5OSk5Olv76179KkiRJu3fvlgBIW7duDZT54IMPpISEBOnQoUOSJEnSn/70Jyk9PV1qamoKlJk5c6Y0cODAwN833XSTNG7cuBB7CgoKpF/96leqbbEyNTU1EgBpw4YNkiS1n1vnzp2lFStWBMrs2bNHAiBVVFRIktT+QyYxMVHy+XyBMosXL5bcbnegrR988EHpJz/5Scixbr75Zmn06NGBv2M9I2pssTLp6enSSy+9RG1uAMeOHZMGDBggrV27VrryyisDYpjaniAISZIkCpPgQHNzMyorK1FcXBxYl5iYiOLiYlRUVJhomTXYt28ffD5fSPulpaWhoKAg0H4VFRXweDwYOnRooExxcTESExOxefPmQJkrrrgCLpcrUGb06NGorq7GDz/8ECgTfBy5jHwcNbZYmfr6egBARkYGAKCyshItLS0h5zto0CD06tUrpO3PPfdcZGdnB8qMHj0afr8fu3btCpSJ1q5qnhE1tliR1tZWLF++HMePH0dhYSG1uQFMmTIF48aN69A+1PYEQQA0HTMXjh49itbW1pCXJwBkZ2dj7969JlllHXw+HwAotp+8zefzISsrK2R7UlISMjIyQsr06dOnQx3ytvT0dPh8vpjHiWWLVWlra8O0adNw2WWXYciQIQDaz9flcsHj8YSUDW8TpfaQt0Ur4/f7cfLkSfzwww8xnxE1tliJHTt2oLCwEI2NjUhNTcXKlSsxePBgVFVVUZtzZPny5di+fTu2bt3aYRvd7wRBACSGCcKxTJkyBTt37sQnn3xitimOYODAgaiqqkJ9fT3eeustTJw4ERs2bDDbLFtz8OBB3HfffVi7di1SUlLMNocgCEGhMAkOdO/eHZ06deowCvjIkSPwer0mWWUd5DaK1n5erxc1NTUh20+dOoXa2tqQMkp1BB8jUpng7bFssSJTp07F6tWrsX79evTs2TOw3uv1orm5GXV1dSHlw9sk3nZ1u93o0qWLqmdEjS1WwuVyoX///sjPz8eCBQtw/vnn45lnnqE250hlZSVqampw0UUXISkpCUlJSdiwYQOeffZZJCUlITs7m9qeIAgSwzxwuVzIz8/HunXrAuva2tqwbt06FBYWmmiZNejTpw+8Xm9I+/n9fmzevDnQfoWFhairq0NlZWWgTHl5Odra2lBQUBAos3HjRrS0tATKrF27FgMHDkR6enqgTPBx5DLycdTYYiUkScLUqVOxcuVKlJeXdwgjyc/PR+fOnUPOt7q6GgcOHAhp+x07doT8GFm7di3cbjcGDx4cKBOtXdU8I2pssTJtbW1oamqiNudIUVERduzYgaqqqsAydOhQlJSUBP5PbU8QBGWT4MTy5cul5ORkacmSJdLu3bulyZMnSx6PJ2REspM5duyY9Pnnn0uff/65BED63//9X+nzzz+XvvnmG0mS2tOZeTwe6Z133pG+/PJL6dprr1VMrXbhhRdKmzdvlj755BNpwIABIanV6urqpOzsbOm2226Tdu7cKS1fvlzq2rVrh9RqSUlJ0sKFC6U9e/ZIc+fOVUytFssWq3DPPfdIaWlp0scffyx99913geXEiROBMnfffbfUq1cvqby8XNq2bZtUWFgoFRYWBrbLqaZGjRolVVVVSWVlZVJmZqZiqqnf/va30p49e6RFixYpppqK9YzEssUqzJo1S9qwYYO0b98+6csvv5RmzZolJSQkSB999JEkSdTmRhKcTUKSqO0JgqDUalx57rnnpF69ekkul0saNmyY9Nlnn5ltkjCsX79eAtBhmThxoiRJ7SnNfv/730vZ2dlScnKyVFRUJFVXV4fU8Z///Ee65ZZbpNTUVMntdkuTJk2Sjh07FlLmiy++kIYPHy4lJydLZ511lvT44493sOVvf/ubdM4550gul0v6yU9+Iq1ZsyZkuxpbrIJSmwOQXn311UCZkydPSr/+9a+l9PR0qWvXrtL1118vfffddyH17N+/X7rqqqukLl26SN27d5dmzJghtbS0hJRZv369dMEFF0gul0vq27dvyDFkYj0jamyxAr/85S+ls88+W3K5XFJmZqZUVFQUEMKSRG1uJOFimNqeIIgESZIkc3zSBEEQBEEQBGEuFDNMEARBEARBOBYSwwRBEARBEIRjITFMEARBEARBOBYSwwRBEARBEIRjIeZqYDYAAATLSURBVDFMEARBEARBOBYSwwRBEARBEIRjITFMEARBEARBOBYSwwRBEARBEIRjITFMEITt6N27NxISEpCQkIC6ujpddY0YMSJQV1VVFSMLCYIgCFEgMUwQhJC0trbi0ksvxQ033BCyvr6+Hrm5uXjooYei7v/II4/gu+++Q1pami473n77bWzZskVXHQRBEIS4kBgmCEJIOnXqhCVLlqCsrAxLly4NrL/33nuRkZGBuXPnRt2/W7du8Hq9SEhI0GVHRkYGMjMzddVBEARBiAuJYYIghOWcc87B448/jnvvvRffffcd3nnnHSxfvhyvvfYaXC6XprqWLFkCj8eD1atXY+DAgejatStuvPFGnDhxAn/5y1/Qu3dvpKen4ze/+Q1aW1s5nRFBEAQhGklmG0AQBBGNe++9FytXrsRtt92GHTt2YM6cOTj//PPjquvEiRN49tlnsXz5chw7dgw33HADrr/+eng8Hrz//vv4+uuvMX78eFx22WW4+eabGZ8JQRAEISIkhgmCEJqEhAQsXrwYeXl5OPfcczFr1qy462ppacHixYvRr18/AMCNN96I119/HUeOHEFqaioGDx6MkSNHYv369SSGCYIgHAKFSRAEITyvvPIKunbtin379uHbb7+Nu56uXbsGhDAAZGdno3fv3khNTQ1ZV1NTo8tegiAIwjqQGCYIQmg+/fRT/PGPf8Tq1asxbNgwlJaWQpKkuOrq3LlzyN8JCQmK69ra2uK2lyAIgrAWJIYJghCWEydO4I477sA999yDkSNH4uWXX8aWLVvwwgsvmG0aQRAEYRNIDBMEISyzZ8+GJEl4/PHHAbRPprFw4UI8+OCD2L9/v7nGEQRB/P/27tC2sSAKoOjbQCs1WI6pSbA7SCWmn7mS4NSSCtyCA1JAkEHALtrlmwRYvufAAU/D5v7RSJ+bIIaBq/T6+jrPz8/z8vIyq9Xq3/rhcJj9fv+t5xIA8Nev304T4MZsNptZlmWWZfmReefzeR4eHuZ0Os3j4+OPzATgOrgZBm7S8Xic+/v7+fj4+Nacp6en2e12P7QrAK6Nm2Hg5ry9vc3n5+fMzGy327m7+/p3//v7+1wul5mZWa/X//3nOwCumxgGACDLMwkAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyPoDrWknhOkqWQEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Because this docs page was made in a Jupyter Notebook, we need to use IPython to open the resulting .png\n", + "from IPython.display import Image\n", + "Image(filename='i02_gradient_vs_kernel.png') " + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory." + ] }, { "cell_type": "markdown", @@ -181,7 +280,9 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stdout", diff --git a/docs/notebooks/specfem2d_example_files/specfem2d_example_15_0.png b/docs/notebooks/specfem2d_example_files/specfem2d_example_15_0.png new file mode 100644 index 0000000000000000000000000000000000000000..25325e27bd2c61df45c76363f1f69b8ab008d987 GIT binary patch literal 67022 zcmeFZcRZK<|2Ov2D>>%JfNANPOP`F)({x53A8ypQ+$^?I(?5vHxBLQBO)MIw=C)l?OA zNu(|H#J?2V@h3A8vp5R`zh-sy63NlZ-Q|k2`xUzj9G;i1y4g89aU2ynB63uS!`9v1<>cYR|KkfpoUhs( zPNL3vN+NNP)D%zYdnHcxUNhG3Sd^TZ*4}>kysdzelH!|?ZF|+lZ>FW_=rHIU-hN1# zUPrv*ly$|!PVJjq%5850I|A>#JrElxT>8k^I=Y&XiGg0HD|d;m|3pVUje*;G@29`g zU!kGX5mT|WK$G=}owsm`EY`$gffy&Ct(eARt7S-Mh%~6egPjYjG&Lo{= zlJQv#Qb-L{94K>6Poyb{bk* z&U>mZbHCI|rZTjW>H^8Oo_BPlwYIh{cI;;U7V-Un4LOBcKLIBaE;$;U0q#T z6T3%NR@P`&iQuPCpR_Zy_Lo;w3^cL_=!d`ZUq9*V=V#^Qw6nr2>UZy}q1QLIvQ6j< z#Hy;Q2EKfG^rG0F@wTj6Se${L3OA-w?h_~WFouygG&C?ZkmS|WC{0T2x8W8ZJz_1H z!b0CJE0fI4&E>eKdck)` zc6M3(4ZXe9b;rggCTjm26MY^z-*;_mXTX!%S~<_(Jz;sKWn3H_@{T@MR-C2I{ZY83 zG_9nQ0d}VMV`3OsSws7(eXP4n9gm2MuW3Xt)sBw0=X`Bh>Hpj7y)bT|sG?He(!$`_ zRs3dlsL`Q#6PKV<>+cuACP5X+CQ-NYXQc4LJF3aP>b)6fpM;#@{Z`)p>qAUxM#k;5 zG_Ddy;z{mc_a&*QsGNB$wha&7XL0h>#fv;nJ>@sb%a7|+VU17^kLsMm-H0E!_PeK| zpsb7~_VMG#VH?dKKi*16*!#P`HoDNdvF^*(u~SD5Ym>CxI*8xW8v zb#3R9fQ=L5-}Ay_1&!)@d-vn#G9J8CyS}(rc5UV~`L=CuzJ8^*X-<5TrWAe`AB`_R z=hc7F#>N^y(6%j;p{vBfXpAmqdD-hs;&F!c)ul#!<;-}yAkV>rR<8remIrRL{~Q|H zN-DoLeZb7zJT)gL{EOV?K4oQP)iY;;GBWrUr@C(+kns*3r`@?z`RY}%EnBwGGcep> zIc)Ls)8nIFYs-ZVp1XJN<`58|!Z$IME_^=LU+q&?H+A&#r@)dDiLNr|==u41sv#Vd z=ZmKYo0Fs-iCS-$mXXQ1qM|wZQ9JLp1Qy^|qx5(p{%uNU6{Lfsz zd|CYJulEAcyLRn5O&VRE9a8v_W0cP?C>S0Z>c2WwrrzHe6&2N1;bx;N5UX&`!s5W5 zy?bNI%F48v4;;|)_V#ukZemKEd>77g(ZNAu|4H|+URtK5SF(!M1@xYuN&V+@LJSVb zo;`aESeHgyxWyzS(kt9X7)d5Y7sE_G;n0MJj(&*YBM(FwFqrc6T^Wue4~#k>V>0EJ z{nQ}GuK$LwY7B<{t>-_d!h{04hi z%5zeCg27NA*0}V_p2Wn&^R~7Wf`WoUAt8f5UfQG`Z~q!TKkx27-bN|*m-_w~b8~ar`uag?F}!bDTNzQQD5$7(C)$PNE*pE;ZH%@&U7r7THdtfq zbO_Cx7{0T8m7k|?;yZ(bmGYLZUAtx^xL52V1?lJ9@JIV@b#-<6J$u65zgHD^?9#VR zT3J~^q0yfxEGaC^D#)lPFK0b$QI%Fp!<>NCnKlZKMb1Gi@z}~&oEG#TEd&J1q(~Fu$ z=1~QVE8P!Wu(nRkFk0F6DN8RS?fRd8SS9TBgGIAPo*mQG)jjX*98D*?EU#~YMMBkj zgR-=J`}Ts85+!|o{n&gul3ArYWt@n49crc02+M&3JGm50OiW@O#l*zwQcm4c96opM zT=~^uDlCq@OGt#MR!GSMY({kr4Lp4TfiE9EobvWQ8A7v%YppTv-n|?5xK-+UdiJ%n zv=|rLGW7KJy3UWbnCxG@&F&wF@AIA?y^$n!&Hjv{!s*kqDGR$!kavrD)Ry}*Ru`NrFVc)(8Vbf9$At4&9 z!}3tH9MQIxmzOyX9iqeqw`aT61yLTq_In@EPSL!rMw*jCLqjvK)}lY4{u)ip287wu zIHB0Im*SIXz9h@kqm&8s^y3I%yHL>5zC&el9ckX5Yf?gmGyI0d(l?d4Hel2L{qR-R zy?dYHV`Dd#Cw{!-JA+buaptokz1O;|@4`6KzJ2?CPE1gvRXjcuf}b&fGMd(T)TTM* z^zEJYr>)J*%(RV-L*+J>PwQKlnB1A1ydv$pOfR=Szw7d+M`XbYWGpOkRNba~u&*b3 zU$M;2&X)VF9(!R{aTD#3`|x49d-v`snCa-;YxwfQzPu6pg;b^WB4B;N$o+TEo^Q`J zZ)Ig2iinJCd8W3jWSTt|hbq|MT^Y(CFyKpKopzx{vA7u*+7NENqcSi&Gq4nCMWc51|d7 zikH4VM~-sFD(zL!MSuTr&GHtk=3BIkY@a(3qJg*7Y;#&$b&CoMIgN~rbXKwrawtgY z85z`}P7?)RuIte!dvR*XA#?&Bb} zReCrGh=?#ZVdJTxX8v86;Jb6p!{Z=+s?KA4bR_EQvZ;q%&9&*iG>so9F1+UE=1reJ z=M`&aujl;nVzEDZMj__zUHaDc_Vj@a`!+Z-(MJ76PeqrJC&`^q2Aiw6b zMn-XrjErqj5-vaG??gpCckC{0!3iI$r<3C$?Pg*+c&EGAZr8T$+gs7aY$v|wiCZ_& z-2XVNU*=?9>9h2Lo@MV|4N@l1(yzfmg%2M-6ki=yFDfeHa&vR@UY<#%cer>_5!>G0 z@$YOSyF^U~+OdfDXH*)CF*oz}BVlNI_io?5o!N}fZv}#BOXfa$^k~zUFD$XIDk~XD zcf!Irxzd0|sYjeHT~ZP>dhzVnuZve*T{*)P6#$eNrfMBJL|VUndy2Ns$k2k?E3q?1 zTObzK!$q@S$4^#*Hby&Z>`2%b+0_Wr*L00I#bKfc?ccxur0;S;rrE;!x%Rtv4r)B4 zC$;z}rn`+ax0N__P%TA9NAr=2eU_X`9C6rrNp%JE4aN&IwC*PAMn){$$`P+y(=}XI z7aa%0E~u+h0g?V37~p&x|M>9$O2zy4@8$bz{QAesPn?ymp%QN!9CdxzQlm~(fjFwUyWpMNw-BnCh$|G+0t z*h5v_r4JuIe5I$H0bo+O%&E6;ylU%~EsEFtuZ^{C+k5Payo*Z#{|k*c5#t))6R4Lt zRnpR)lg2vEo%o1Q+&+PtY|;OMSFc~c&dJUF^r6k1Klsi0sjiaHJ9l(nT0;_uT*HGHM$Ihc*6_l1X;J5{Mq6vpC(o#_=)cUW}@7)_t zxr;Z&sy>87l9Q8LURj}ZB`{fB91Br{frYKxvkgcbJr54vQ!Q}rm$mW?LffxzZ)dU$ zSeF3i*g^7InLCKa+}4%PranJ6tf6x~$1v|Miadc6(JNAkICC>QD4ClwuNT!2T_MDH^ch%erTe)o@d6ozQ`7&+M+b`7ynL`^GcM1bKTor)^|$?+ zLI!+0fX~Z$+gV?~6_i3jL1BxKkdU~Aca7&18?eZEP@KZ3xuL|5{qHuPD@U?r#Xe3* zptg>FB7OZPm|gCbw*Q@j8s}$YCo)=&WJr=(ELlMMhgd)q`lY3 zJUKFw76mH1{dd!D78Y(kJ{5gb4w)985%c4|%SZ6De+~}^<3Wa(u45UEYyD;L0F8zt z_J%VHE1++_Fn`6%^VHwpe-z!OA(}lJELeYet0LFE^K-vG5KR$4OK|^_u4^DfhOq(HazU^lR!? z(raK5Y!}er2QJCki(TE_)L}ufvu;0%ly|*zv-=9<5ggD-^k!U32v6)vMZOWUKGPIr~0C% zl<%grf19Lp-&=G;1_lP5;pj^!BeNN5;U1Hn48kVGuW|K99J{cU3&<470|Ekc64TQU zHYdvv(3Rjc1RVq~09h(Pe`aI9_U;ao*W%=!hlee9;;EIKkc(A6C?qU=FEKIKb#rc$ z%wV2F7e6Vyt`YCYiR*B!E+JEy^w(si3GxH@u{{c=vi> zVPWAZL&JwAiP>iijFfzReP_@ktN~ahv_hQws=|mSx_+d%pg?}wS$0Bru7 z>(^A%b&pF)S)*i;HjdJo8;n@!>T>mHW1XdgZr|pXld~M%FU-%6!imiZ<)WatSnrz&2{Hr!^2k1i6;sQ z3SPer+Z8+o(xY_wGA|yBpdK-m z%lsX&tsQWWc7Cdx<>AAJogmN+!7O-C;Xom_RVRN=P0{M<=~)>D<5uhvr%rjCzP$2o zXOkXnURI`Lf$wC3D|Q1pDN^#741gYXDE)?~r)L8&PO83uQgtt%R$`!;NWRMp>sSEP zfpG;*8Si-tl7MfrxQq&TyNibh(?;{BPrIFVl3VcAfB*iSDfv}uD(7yhZNybTJQA{~ zVnw?)3@<4wYXsacaO^(TQ|-e7V0$YjCdQ=a<~Hhr^KZ5!o^VrkKkBFnAo6bmeD&&8 z13NobrWFLhR`6sB95~S6a!^htz%9WqtWSoz7E3X^lVTcn2lo`*;6;++|>kNtu&y*9OEL z`-5_u8h!1LtlZrGT$|fE2-S;UNND%Lpn#1PK9uv+r%!JYLWbon35V~Qd3~io>L^m& zyu8Z#Hc)xc?Kr*V;$mYtB_x=rf)!XzlVf7G;;HF;@qr-5ENns!&0w6iV}1kAR}%2+ z;NKe^RoC5$9XfV)mpQ9=dX^sHZa6Eq9^|w1+Y0SkAs4h2B(dPqN9N_ff46w`b`w~H zX5VpbR-1S<3vO=i5`*_O>x-tO@uN)ow{P9r>hA7d0L=kxnkp>Wp27g9P_UPfw>pb1 zQG=TE(QMlih;6|wBC->>y3V)*ZA(tZ9kz@bYK*o922zL~ z$F^3ouDa22dKbtTA+MpR8=Umb7I<}STG`3TDOjce-GjKVnw5X{mb_g+fd!yDA|}S@ zPaZo0zK;7p|2bX)yoagJfs&FEa%bJd25&1$9V@^f|7- zA!5(1#Ke8`Dk%oY;0^w_G;KGh{O#+stkgTcJtOPD|>q?unOpxoZ{lU zsaZtcLP{7I8>95|^D}$pNecl+*~~1lVN=N7p(Rb}xXVvcrTf^;v$8AXc_t+aT3S1` zp2$W*1+_P4-n5*1(LiIQ!gKZgJ#G?5{1#yj4iZsM78I6nPEofMq02_? zJHa)%qpGIog?grV-s|*nN>4YpT?d2oGPK@h>O2K_Wg$dbXc+){ufe2_px$w2^+59^ zkdvjQCD07fvX={saeQ>9mmn+#q5?j}CmfNGc!!=j3u)uc_wURgUb_JFThm9sWzbb# zn~wVWRU5U3^Vl(FENy+c>rl{fe4sn}@u^d%%H7BA7i=+yzHBQrh5jw-I;e(P1E)!^0XBnEx9#FR69|?^fT5p1&-+50nwgmi zgyfSf7Z3$KauAO=?a(NM#;rh&&>!l%y4V2s-hzXDEp;?4VK21wo!zFZrzh$@s_pxC zEQ7ck{G~R^{@bSEt0m+tq*BN35P(R7;yf_dy5pCa+FdC5`1ne^zvo*sFj#{XCg$KYTm`Gjqt+9XnGX4?sw($EDqc-tfuC;xP!q z>+bHo$;rvAq8G?T%*q3q1P#xBdL+tLYh+O0Ah4H<*vg=))qe)mBi5&?%dQJ`Ztfva zEg1(Cl*sOHt*!6BeT%`VP!ovNMPKHJ%wyb=T`6GFJ^`VWXUC2mV%Tz;lqHuxvyFEa za(}oerpv#(?YZXOJ9q9dYMwUup>9R8U0a@I>z@5b|B_;UMhu&rzx0o;uKP7Lvgb@q zV{YHxk$3K;a_IGhtoA-L&4|pwv0BIqN+d$5V=666^D}7l?mqOXk4fLH>6oOXWJyue zqKBJX&U|@n9#z@3X$w5Lr)W0!^##(8Id*-;8Y_zOolSm*rlkwmr7946zpzl$W4bR1 z%hf)fAnSMXgp^bao-WjNJ=~RTPr2*-$dds3E2hfI+kxj|;ahyDtGg+?v1}drsefQ2YUBt#<~x zx(bjNeoaoEfo^s2%9S&KEYBd)=9IX8O*wVZ(NR-3>j6YDI}jLqy}T@3$t`F^3cS3$ zJTV_Kjq)w#At=~K_~|L><-{8OXtU2=dh}dn<%s6Ng{pq0seyO{>WOD!zKyn4O#D=!kXT zL8t|7?UY0#K;Vt9Ju8`Q&68~Ii+L!PrObnkgxyh>)^20ReiaqB~IX8!m zqB?4 zJy{N3)DTFvwXLZm-;xgfkiZ@JFmr4gt*2E05ua-%-AR`5QApL6=eqY3lu;sk2o+@J z&!1b5AMXLhJ!1Qnqo?Y+p78IMrz#XwR5t;C;R(UT34{gakn09SNI-XNBLZg!1qE?P zNv-CMqr@r#G3Y>wc=Y)3n|JTF0bsJctMXl8jpuz^hn!~|S>c)Z)l}p^=I}HpP z&3N%QFdpv4#vZ&QC?xc@!!m&O?Af!Oot^UdT#!UKTk@!tU7|4mcA|t3b|7D3QAs!!R&LJERgq~m=!eIH$pHrPiyr+ib`*x2Z-aN{d=>b(;fNGh3vwbzLb z_;+zC9OrE<-BC?TOZohH4)3Mkk&t@UFKx~iY$gMRa-BTM2D8BS+jH6|b~%fu>(o?K zUtijsCD3SBvEA2>jz*{*1ONOJ^3uj!T4wscvH)MGra!E$`MOW{?T7)G4AZ{GMg_4XbwoT{{H=&kO#4OMbR;({nuE58cMSNXyS81 zl9Lahytb8U!hJ*CVLf(*6$H{1!b`4k;g(mPQ*~JU;Db2?C4so{8YKLQ|KCH{xp$M3 zqd?UOIl;KhDM@<-jOFL}I2BHT@5agq5Q_qc8}MEslnw~er$c3+U!p(_0D}Ww_EdUM z_xt{##Rd(A?nEg$B@n9)<$VXFaRtcE@e&Rp*wfZfF9_a@CYh?uuQ>AX?p+d0-vMWH z^IobaPrI^zJN)0>t>>>P9tg5OKcRH)4#z`s$Ke*=IGpE7l z+*xn~3zh|P4XNehwW~Dgx@y=p)6ZVa*}vTP@)(r33@A-d)_^b^suY0<#mVS}+kIB% zE)fbNR8$3i(<(1fGGgCTf|pz(9H*kv(&r!tTwDSI0$dRE##^55I25bS=?NZ09th@Y zF?2F4^zZ!GX~?q~D9n_Xa6H?J?ey#+O~sDvVPH5#Qv4{|4}%T0Kr``pVbi*4iMp-dqvp+115(ny5d3m`>8G-K6F>gXg_MGfY{mz}MFHm^phuHBGCkQjv z(9n>O_Fvk3QFP5tWx@51wq@E?QKgj@O zgFn8|($ZS~{c76Y&tG5%-GSZSG$WrLqlvSjOcBmM#2P+|_s)>00HpVyKQlEM=9vT+6^VUHl45y1 zVR5zf$iNq9n=WIm2ML7i?Y&v?`oC?Z$O(NAG{REn;^uC_9*YzOV+};TGkF{wybXSW z(1Z3oQ=_5Xw_w|^1~22a`l%g8VEN^G$b}+ zvk)e0j`ikDJ>AUG5?H)Uf!l~ya_))QBG zaBQ&mjzc`5?grhsiSiY}D!K*OqXBK;2+(zl@hCnr)uH1BgjRT^dLv7}ZKkHC5NL(~!p0fwa=zZ+$R9$z=wv05F|B}hM}-?ksc%` zi#$+LR=$rK75ngEO}psSxcP3R>v=;5+I_*V}aL-@W#@5S3;ax)6Eb;_u!Z zLpsuZ^>lYEaVk_;H}XIvFoKJ)W#FczLKSG)fMLQx$WEO~jv;FMj=Kbsw6Wq@<>kiw z?AVuTJdEQV`A_)!+S_9%Cnpsz#fSKLUB9jaN}zZN{x=865fC|1mvlBa)<3*`8w9qf zcS*`1E;PscfwQTB{mCA%luluX!LzwEj~#UvT0}1d$=#9{-coFlN7YnF zg0}`KThZ0%g&9M$#zL1-nHEpp&uI^{fe5V zw3<^RgV56V^5K8r{6{_EGfq_2=A6o(}H#i0if0TFEQZ@^TFbZ91QM=wWYYWev1 zL@tn0qGkW8=JnvI!D2b1nBT~n@c3~Hq@?z!baiqRA_Ya~I2t@>WBnR5!2gK3#GZ{8 z4+G#(RI5t>Egi$tC1i~)@)Z>oX;W}WInhuEE09zS1Z7|H2d(45y?Z*trx(ohjWlBh z@F3tIMnxHRmwHZ_Y>`J<;7sd~yE4D9@ZsINV3bjHkd};X)XWr=tqC8dafFDKyKv#c zC_ZW)rBn~_Pu0@$3F#}KoxPb2#JA6nL~lW|SB3fvD!{;j12S7_V9rE?vQpc-!sW!NCj2qg(?t2%X@-G7-AhU1F{4@L%p z1mhc3-fwqJTx~nxrK!Jh;;+5Ze(qXPEc4T~99SuBZX7z@sp;RJ`gJ?S~9}E;et~6B5 zdx~7CNUrGgz#`4O^zk8iAe*?YJOrZ>^#}vWui%DJBz>>bXK}3pQ%UoSi_Gl^DIF$u z1ePaqih_n_cXM8LpLVtSBz1mhmk5rfWWZ5r8-~u6tiM z)>nfcjq}t)#N?%>roQUwX*kg?eAeSu+Vi&$M?Jn|WLJ~kzj<@2(*|N%>~}xZKtjba zU#LK26KNWh*~{fdf7_|e@FC*=s|?oS8VqU{_A#nhPCx|C0FSB$9)!sV0#yW;SeSfstN+&^qP_S z=7NT~uYnm0d{?dlHdvz{r%l1>!}q9aX?-sbfI6!fVC4BySLqv9%VzBfWr@pI+cI@n zWxR_U04KW*jRQOk+M=?%uA#-EOQk4C*ke&NaQjGNH zo;%9f+}5@mf^}o>t80Xp-udIl8=wVt-x)IOxgAH3zGQ1ZXJ!_G0|F|c?#}%fLKmR- zZ2?;zmA8B5V@&JlR8td(O^?}Jr;_9~0*Cxj!z_lB(D-}c=L4AU(YrGfK9sS+f zKfeK@QXJP|}jPr+&po+W`da90jo1w~Xc@mpb=5T*NDjL*VNPPgW1`CfU6OYXfJnBL~VVbp5EZ->DU|9)zv1Z z_z#qPf%vQe`~*BsMGPjO9P;s8k0&e&>xPIM(b3VP4QDlhkwDr7){-7Sru>f#ltCr? z%-<7!Zpydu+-`)nSx~oYmNN-!rzt2B*(StL4?mE=vj&;Hh46~4=l!{wzvF@}v>Dm# zt`gU$`X1cBe-qYR8p?WX>0?nt>gf{8`08tr_IOC*kh`|XyzRg=Z~+0k z5Opo-MC+yA^hc0rxN*CY`%1-{Sq2^)A1Q5bC7NgO-kW{g@_*%bVWsR zk8yqINA5E}-w1TC)HKlaSGcJ-TD0T5XURwc8F50$h!?x0p5C~MuArK#{S`uA_7zj0 zeISa^e~!LzN4>$n4QhO9@1Yma0OtGJP>Qb z3osO`11kxVu!4AoD=1B-`76(~*>&is90>J5`^a`p0@*Ewchq7H@2c*z1DYb^;$eP% zLP>`t?hbIG{-hSgnh=W@CV%L)ZHylWV@F)&PRMqwmbR8wl*uF{B2`432<16d2yG^!wf5Kr1}94-FpYt(RnCX4b{AjvX=R?a&%VJwdRwIq}@3-iX5Z zp=2vzoBs$kl2EO7q^vOZ5CULK3=vyTMck#_ZDc1fFHsE;0sQ{A6EY#vSKJ8i)9>3y z1LRA%8lOMYrlzJEm%DJn-=~ITI65&g1U;g&>iSWFW=%|(P7FOP16BY+CYe{dzd_f( z39ie@$G3wB{9L~Le3Wr4AR!|oKdklFRI%5-C5fNA~J33R0-Zy&dG_KXES8 zPMFu%*Ux^I>`w{U+*lrw+a$cNw+#(-O-)o!{1zXN9*5IKIxLBhCQeKE zKh$9KM6QX9L{t)_8E_VXliDAaICYoi9ibV6p+!j7#0)}So+}oRh+G0xy@O{RQw!Q50o&&vF_3kFR!5h0sXuI62-0(qOm3mjF#JA#gqluaXsu9z;#I+CPGJ0)zoDAM>_wE zhoux#``yB(5LNQ++b7Z zHIiK}8B&KDbnbFH^a}}vPphMQc)7Y@OO`lxKZInR1;KIm{{6zaDe2>TlBKVU;heVO za4Ie&NngJYC!8>i+MWKq3RHJG;vJKakYKW>Wg_7OwjIIrkPfwjI+WJlq>m)-DYSBk zeFXj9&CL9KR%9LZgHq-(5N)OBlsXoOt=ppaWSGU5V?Pl}L{6SCe?XD#B^}lmyPc7= zIYOxYdstcFvom;%e!YP-vqUr145}B9G>?OW1F9-vyZuETNa8>MY8PQTL5ylEusV(O zeuynqZCBgM^E-VR*@tK)Wcm{Q&n|4_kBWjMaUSF2yA6$vr?{oBFZubI$7!B=7HB>o z*19+h#QhNbqq#W>1XNs0&=cF9YUfT~U=jS(i`LespZLy&b*a0dMWy2C-&08Cz&c!Y zarx@yi}hAlR#8DnVi$4w6%{9tBD#kT&mA9Lj7%-2ZSfP0%Ky zaQq&gnDdB>o^8ESp&GheU*ANObI`Ocxt!@7B6WUvZrR97(#%l4qK!OFu@|U&v06r*< zgfAl)sdna!;`#GG12Rq#=28w*vgXa|5_DVjvf2vOx_%`T^=xTpKE8}iT?b-(%h0sv z=qKVA4aE<&+ByGqq$1X3T*W>WcL7#m_G!b@I-VH4GL%WA+0;Zu{r_x9Z6-WWKL|KS zq+p;$Asd*Aj{69C)W|;e#;EiJFy-jVO;`Uyb-z$yG^7>5_OV1ZA)6P$s~e^glPaOj_CfU zWSLiW)|d}sz|=+{Iv`=JLu^4vD!KxaXj zB~(fZ5Brn;9^H@Q;%-9-!|;>>Zw!IF;hX^oJEb?~XZ^2+)C42)f7^fvO4Qu=?OcZt zBYgF@&}JFv=~GIp3kv9o@CjJ14j^7_u`q523{Me!wGa^>EYU`KqxI$zS}hkpKLw7h z5}*Wdx+}=@r+5kK)y1iL@U5K0*k2$u$Oy=Pd??I-P$|SQ0)i4?5R5Jem-w47{IDqz z3d3AQuuCo!8cL1mt;E3C-=*njxO)SbtvQ7wH#_;`C@An2$lZiqN52$BL4@s(k7es#%MV!Bu-;niAC!=ovN+B?A!JhNjrx9`w0jD%D5e%F#kwt<&$j<#uERUL9Yz{cV^H> z&i`jK=&e{z1-QXU@A*uV6}aIPq)Qhs>Yq~qt$E+jpj_ND1y}PliC;#>oIe3V16c|@ zm(WEz3JMO=gP0iZ2Ve*>pn+Xt--nYRNRYnXKd2E@1X`_&HU7}vZZIS}^5qF1f}HVE z*IqOntZ-;;MlGSxSXi9yw=DkUs)S;y0N}!hkR)_*-ELWc;KTHn* zm8NgcH`(cjZD>$hTM2b=40J+Ku^8E@EgUAv8=CFwLPr|1Z{Jp1(|mtX3<>1(*#5*Q zTh}5&ftXxEm7>0c$x%f-a>&T%FI>2Z?#>}1^5VNA`Zf{l`T6@d98k~9g)Q*N2qhW5 zP2KP)5;@X7i)VIcuz3>?8JBm8H^vGO2az z3I!*epPHP7l`JA0Fq#y9)Mh8d84@No(5YeUreMpN=ngdvO%O662c*3MVeHo<(T;1Z zm)l%93wTn!aH3W?OaBfX=7I8j-{0jV1!A`vRR&;Mjxaau+xRitMKKH{Ts2l>la(^7QG}EPbk<3#+2=@8Qkd2oI-*o+3E;P7^sj5SfOk{elmW+~DHjA;(@f z^64dUASXu5U4h>l51cT_fCn%}35h`B`_m5~>IKM&1Ij9#&7Y$VBx01N0=h|7d;TXY zYJ8ae$axZ$q|kLpIdZkyccrK`Rg4(Rl9ap+{HFaJqnn7x*qgQS0+xfeyoQ`-b@}q5 z;Z*LV#FiA#wOxE#DTtOLq!er>avQla!m$~ssK%h-YhqZoJl>a?^b?17+E;alb$}$g zStLRgPm7E7r#>FRhl2jFid_ty8BY3N4L9YizccTnlUpOEGLFg@ec=<7{?%|{lvpEmjMNM0?1UShfB5mR~8@(({l|VKNzkI zK~@6MN%luFKF5&jz5C!n5E3;lHAL_l&;tSnQPeT%V}-+lbn*^@p_b!lKSc{c+~c&b zuQVek@m==|idex+2VbRwu=jyDTXJOpV zScE#Ff|MpQ4?F^K>gg_suL6Asi6JsUBBr#6bTy8P6$%fc8vh1ut+o>LXwVZ{kT)Yd zM1Xg~z(@aZ{rQ@##T9t{7SL_jeefn%SF)MEMGFZS^o&5Gv6>xx$CRw+(S2?&4wM4G z&uohdy8)Y#u`vavGm$sJi1ZdDAoCZHXs46aeBuX8fUKfC4n|YV{rl%HUL?n#5Jd0b zK_y2^T&EdA5BQ3=@W+WXFEL$7L?!^g+XkUyQv#$y?5gpQ`hT^M3Z~Ig@kHsMBwJ(I zh>!%q3axC61lDd`_bL@2QE2F#~KwQ#Sh%)WtWbz1R zy|Anmd4S|)6iM6Hw@RCtkx>C;>p@bIa903m+C``}G_Nv09|=PzrYG6=R+hMo#fRGd zdVdc_e*Z+|sHiv~lJrA@=C1Ugz#E~o8>-bv;YD8KMy_&bH!0Oh_fzj`Idt)Cw zu+4o{WW|W&0x{M5>D zk#XfBp^3tqnc+7J()d#ZEy-M&I;f3Vn3x_IFlg_Vb~V4N@pjj4%DG+cO6J24T=>-} z98^{RE~$*dt6^{N#s6f!tS-bGiS@P{w71I`Ae@txp+!s!$A4!|`L6pgHa0k1q>|sM z!4qmIdQO4=y7$`H*?>Ea(+F8Yyq5SQ0Bi@ydZFJ3o;0jqLWdxc)b7vVfLM1HSl#70 z^r8xa6>-nRd}YN*^2BJBN(3vz()dX^Id-J^-k^>RwGNMr459Eff;=FSxV37wVQ*$u z)*EOggX0eq62iY}Nzo$G)0lLvkCLO$8|+P#use>AB)V~^F%sn)5pIzexfq3O@ROUa z`g6vnck63lNY~F29gm(nK)$hKGsHx7)V03rI}kd4_RqwXgGHvHa|RV>#Mv}m_KqPc z=l>_6|2%rF?f2Y0g!F-p%nj~=3bZ5e(KfVB*RC^P>-8{FC{FI*SS<4z2xigN)4TOx z_sC)EybWd^6QgjBPqRkhyQ+RvU4Kc=aoN1*rA@Rxl7?g7O`Rh(uA%y8;WijaS>S1{ zfNRf?8Zr?%n=F6ro2H~1>6xihh0@Vp%rVdiN5z?4RWnOAF+8r8U2+v|#PH>T4)bf~ zlRXhlH!lo^@A_EaEj9?s$U|y{w8vOxUaIxsJ8wnaylj)&DG=iO=+TEH>{@v^dqLqY zj1j+8dfF0H*>uV09d0q5Aegd%#cgNGfMhf$5)T;WT4DR$Ln$WA*|+JhepgOB!}>S8 zxRp4vjm7NlUE;qS#8z8OY8P9>6pt$KMXTEv85WJFHhV7TWw3F7oIyk)9ishP-V18? zOTw;hLV$h-1lv1t;o_c$JZhNazb8`h>wfv_e7wVpdm^=KS1AL>_L5eFzXNHpc6$y* zN~*&oeVCn-W8EzvD433|t_k{Ud8HfC!F0^I+My5^I+{GR5?olD4%ifwxYDWZJyp^% z7-d=Rl1eV`ja>LawfoOde}5EzS%H$E(`phzv3B{ap@5Uh1+|vePS3~BBrl} z&J~g481O;L*rIkHuTGgMcZa#sS?M82cp-R97f=_8en$*&V>_M`xrR1=9CGJ@fHhaV zXN8Azr=6xIEv(O(!SKWO2l}z-<zsNM3D} zyIA9>^E4kHiYPCzm3I{S4TbgJs1KywN!Ep5{3(k|sq@v+!w>X`AN#q8?Cl(;U)azb zB4K08dG-}q&LeY01cith5#*shEnG~8YD_0RLvpHFxeTcOjyE7SF7EVw9zrw5n1muU zbf*K@DnuC}ZtkC}u@@0sLI#Y5umRD_|DA}$s{@)(jO>F|SvOA`cqJ+BV}5S#TPPNy z*XMp6&#^~ihaMILyC|ioi1D5(IY3e!labjC&|U|hADjLFOqsd45$1f~y%DUZM~aHF zux&W(J$t~KD86&|s_+I;LlXK^c(}Q@5`QXE{_|$}l-%0PR<|D8*ImvxI4F*((%ila zWpW6#rvdZtH{vY3DKnBh*_uyI-eoMWhJryt0 z#Sqt=cxXe5{dNlSoA?6`~%FMw=QPI=@qwM^##%E%>e3brHX0|yjH0NbJA6*&^!8_@x4 z+(a_h$m04t@zxukppr-7ZqNVu=QA>>##emsJ_jUu*~+Fc8X5n4-yF|p@Cp)%csUPF zljc3blxdJjL8IP*mV%f6oa^DK#LSO)DLaXHKGQX;J2R5K?G=*2%#V_OV)O)gs>?6< z1feURx_VNsVCq%j@Cqo&Sp z=@)siEDw#fUN!^yF3Q?|jHUL@n;5SM)04m19yUPF6+VDDV{GOR~1Y)lA%CDI6&5c#ee9o5-5$5CE+*Q3C z20>tFB1T7Cm=*MyB?(*6l{NMLs+l@!Obj$)qccdALVh-Wd6^ayO$p_l6 zmEjV?83EilZ6fYqB&~OGZ}L0hpgVot@tL0 z+YK(0^)~(Y$%OzinCR9VmUlkg^ByS>@vQ^I!w{*OQ6PjYw8pw!XQgj|z7oSZr5~MO zGZN4S)5YfjXx=w9)g6p8yNTcaY}o7k7VpO>fPY9BqVjq)Fi;_L7c!x;&zO< zZiX_Vt`HAx(g$%(#@w$ENH~ZxO2c}DB-!J#6|uT-qO$_%MC@`VN+$FI*S_l`Ru}*x zDl$^k|ISVUqDK2fN@L(T*R*UWi-nifq-Fz3LloTB2F<{aU%n7~@CMSFgD|#G?2ZC8 z1>uG+Y^<#mx|;~Le4x8-ljOlH@@i7dbYTsRa0VrdjD+X@>X8Pywu58U@?dxiFl_nS zr9R(3ni#A;f}p;is%~|S>t9pUtM#)a+90%*)2}^4RW@3sQVjD zzD&G$wG%Uyb&-;Np~U;BAP&BUOffV0@=F^0{leov&<(v7f7pn^nJ45F^lk;zAtJP& zikMiDj^6}u{g)HO*b;a2t6UgUK z^fUm7b-leS+sa+7voJo?3gn-ThSwr~R;|^tBpWcg6`N?NbpLS|d8DBe+koK@Nk|yr z4Ir`ptKI$TsLk#|kuj9+0rM2`vVPuXPH{uulXIuE2fAT>A%YdSHAU!%@g73xh6r%6=E!| zax^Xc!blPn2U^U%0vjd$bAs5~y3nwnA*Ff<+BF6q&OT~;9^B^~U6OpCM-3-97J7m( z;IqyhMXuIE8HrrP`f#2FQpI*Ms|0^bhcKjOXJ@C2?VXOFJC+>B_Ow5g?O}f%F#ADL zD~QrNec4kyf(txhgD>dGPthxOdZBjA-j-V<+nnB9mxCDbZF-zOsNgG=JN}xSL4g=s z%z06HC+NtjNAeG?6n351_kciSD0Oq0$NE6Y?8Y?`V`GQC#c6JGgdUlDvxEI725xp> znuRzv5R%V)>quaMNAwy~(2S)RHTnDq(z?SiUW1-;N_x|FjGD7!(dC(h4-Vauu(AiNfS{zA*x_c&C#Kn%WRrpH#ElrmyL6R{hdv z&`qLAAYgK3SS5&su|9~GOT=*CnDm7}My$soD+V2jeM&HJB7J}kH}k50eJAi%y>ksX@zDNv5*6zkY~dG?12y^sU@?Zj~DSt{r+r?*B8PJiz_gW zF|fEk%tYt`>hGU$kcwztse=*tug$86JM}zDR;0w*K2y5SgStWdUmrV|OuU9Q zUO4v@7B&Vj?g%R#=05D~H=dO-2uvDnwNd0^NW^@rK#jdnG4{13QXJ(8F;}!Wy0N~r z#KFz|%~RIS?#fscdzpFAaFJJ>L)jI{an7M)S;L>^OBWkHPW;1ns=`LG=73Xi>JvYH zLC^fK81IL1ad=N(X`!pm=RG!wH$bo94A2AGCSQ&R6gQRap`vCMlE(z|cDe&sR*bn$ zaEMNF6*(v>D?fJ>-4|Juo|8$^)pKOBsu1cM?h@{f^q$G27Gz@b*!+|2Q#8oNY3gM!-P&RHA)aziCkvu$n>HWuV7MW^Mrj`Z< z!RR(5oL*@lsN0xq8bUK@01|ZYVXDSRKEkQ=7|BtcQQ@W7gXcG>NE0p;q{R4yt35b4 zg@Ty@Z@1k>)-o-6FJExFbf~vX`RPW7PJ_M7MNu=nBkR+dRi|6z1Ka1D<>eKb>!j6q zIfd@ax12Ppo!~2yr((Nm`qxkM7KL-+IUTF1zRQQ6EG?9nsNAIB<_X!VF7`^9T#bC| z#vR7*fApTay{ZwP@xGOrX8eEg_2%JF_VN2Sg+|06gluEYz7#@=hLkNWW2_lPMOiAM zvQ2}rQ`wh7Ma^LBdlvMfR=leWg zXF+VPMzYe#ubghc8ZI#ODK#;ZYI)p5pYfYa^u6C0<|S8piy{ z71NNj&9Ep&eTj(JdjW^L)vd`LE+#i?X6(B+oDeJ~t`H!MN4-W3wD-NQ>KVd_IN1Dc zB0gO};jk`4%rL=b{?J##xEOmp34|-KDF-vD>O0~0*KR7ZSfU;u!3!xb2=M8j_-af; zpFR+ILpX8ioFcVH7Hq%hPM+ong#TAH0 zhOQs$Ts(8Zclc^aI#0BCqY+cR6L<6W^5=^dy-Z$;`xwri@SzKH^P^;R-?E7xjFzrI zm*4-ZaN&Zlgyg919)S%zYWm}eL_;E{!{{X=-xZx(ySi5=rSN6&18&7*9T2cCnWo zus!0c^Ag!Un*)-6ZEX2LtdwA;YWZ^MpygSB)H>|L>T|)oLzQjrV z%ot91y4ZeK_FAsY;Nu+C zuA<9pw~JF-4Td_5xqN6mJHaSU-5eIJB0e4`yh9x-#F$H(Ofzu8pRFz3`&-O(`raX> z{DI@c&C2_pzgy&c?qgV##xxzk-#B<2^%IN67&r}`thKRg+8bcwvV+Gqvn!8`pV|4j zcURd;GPP}zwB`{^ZC+ix|DMT24}&jaH8|XQRSP>*q;}6Z}=^-M%_T3bQC1`T0HUAMLhp;RzY9&PbH@6@gV$FN+U1-J9$p!h@w) z^q{AMdtVEkJ-}Kb#xZw9;t|iS$BRLwhwI(Yv6tRdXR~V5Yu{d}BA?^L=vJ;QR9`~l2rz%@xKNLIW_giji6VU?2>}*(c=KH!BDFuT{jL7$lJ)D%N zPs>>1qd2ZH18P~u5f4qp=63Bv|7I*R>)EWyt9+^L&K(ljnZ)D-KgnV$ut%Io!$Y zz09hywSJEMW=)h$zy9NumK+co(9h~eRfwq`bgZ>$eyBhnpxFj$?$I644p*z{-bcKp zWVCW;c?4~Z-m`MVzegG(=vgsh*oV!u6Xcx>B2l+?sJkr!4J=2cYxlP-?fd;wq|2;oq3@c@;lS$TF!=tJ7{{Y^85B-76-z!nzG#i$>Vl3W}Nqn9++w1{1;n^(=dBtV%_dE0P>FMn`Mg{?acU$?J zJS8@V4E=bO&K!H9_3APIo92Mh6qG+3nz=#!TD`aJXV4X*K>c?Ds2B`mT42Ux3H(IR zSj52XC%$8UcPs?thOa4CGxb4UDZ01fy1f(|*bIWL=R1L`3=Bvr50Pg1?K~NA1$NLpT8*d@9~(e(dz4*2qyQFnU4$JmlwyNpGds%jvHf>m1TwNmVMW1OXfy2b-?F z%4mZHzj#G+!TC%&YAaJ&U9ln{aKvQcK>`!S}(y0I%h1K&JzHN|4S%rG&UY zq{kKq>;Lk?;W+Xpf;L5h3BF5C3=P6}M}ra9BD_7aexJwOK-Mp>FDGY?1niwuiEs=m zM7wl#Tg-2|*}RQdTp8Jwd(rB}3EV)pf&qCTfO4}y%5KHZetwfvsJ~72QoVmz*{sCO zTOlsRS^XCvxGdbau@U@mI59e(N=5wLa8MTx(zkkG59l$yyS_+(GinZ~DPAKmKMIF~U)N=rJT0|K#Qyi~!j=t13<5+;}=j%{<(eLB29 zq{x&U!QYuTdZxndb+3{zy|OGwd%sVGyQp0wF8`eo-{lI0M4LqGoSOTug^M)5;3%uD=V1`v12VAT11tthXp^1om(Orx&GfsV`8W(;yj3JLX%xdhO;Q zPlLI`+Hdn;Ow;~XC5dHBh4CsH+;3~Q+pL+3?35_?nM{tlH;f1e->s`-ui(Rh5h3M4 zD1@qFV9)*)&VyP(pdof$hEr%TD3?5-8Y4zyAeP9FdbJ2^t$aLx`MUYh>HQ$> z99yVF(57JYt?<$y*&DOpkIKu4A$y-YIpFxOedX)lvjg2R3_j-%j&z;mQ}(gT_`^g= z%wwAU6lJ)-V)_fy(K{|GV;fL3cdLSB=dQ4>gJB_Z6JHT95 z+@T5&Q6vnE#MM0lw}e2Y2c+E;KC@!XM+niOOrPor!-22~RHQ{vCceV8{dPN*iAOT@ zSZLCHhVB@PJ8LLzx>G`%8~Q3&*(|FQF1Etv&3Wp#>oVBv%o7^i?_4dZS6^Lp|1H1& zY4x~~(qV@kmxp3xKQSAB?ALbrLL>x^kng}!nuEX_%3LqrI5!4vqxeVX_>-PxXYYdP z2|waT0_*o@kYJ910>lg^$CeN2pc5d>XGEFP>xAZQa_)UW1cKUHAtRZu(R@2>}!1T$K#JQ6so?>&|#k4#8b zekGUjSv|RjCh^BPYcViY zoiEnGR~w?YQP!|~unn;u75(#JY1{?3M;_NJ)-bD<6=GS+N?G8?DZalqO^#~ibLyow zwX>!(iDRw^m>bj<7vob#d9mX2Ms?Q9JpKJfV{nM43slnu}1AEu&#<(_*hXa6dHatn|cEuf%?$zpVl@JUGnCW=b9elao+BHkazO%53n_sh>;rbXB-t=q}@o63-^S=*KAp%-+(o;S@b{-04_w?o46l zW@tlUSOP85T;yijJ9VszzGrANt%2NAWs`q$h(sG46r&m>zqNYOA9lgRaR53b9*MHm zF3998I@!R%vA|w)mxR@xd~NL6aO3@X7ecCwzo=y?*;4HC_ZV8*OJOt4@{44>zkk$a zZ@$q-eWxLb?bWJf`lS>SE!lYyYk?Z!YV>(;f3z_&EU;|st8X)LI$oy3mRaUa?HNp- zY3pHbX0+M<=AbI?p}qQCcL;pVU)DKzm;#O2+4gpG^vhGoB9f$G^q3q~p{Y}_)0T-c zdGl3Sn$ZQXXEP3jkE{3o(!DTw*%)!27h<@XLMd`nOde5-eVT`43rpZp9~~u!jH9fC ze;t#-iRg0Iec!y_)KXtlTdJLdzXfOZ^mCU}H)KzvkMr_^w|6_ZR~934yfvoz=fJXP z;=iOM;|X4w7B`b7miBvJUOst&A#oZyf0zU+5&-=^C0Gt{MQxwI6`t8)ue zH-uOTy;xep?>iXZ4ARxF*H;FM>92no%CEglH`kLsZ#~!)Hn;cKA#!|1^tHoIf&`2; ziXyh!t)0#ibhVMYrI!5cq*JmdiAU5>bIy@>oY-}vXHwPrjIwCmPakQKLzZj=$^w@U zfwxgt;hhgwxm%6;T(dgt$yTQw?~O|`!_F8%AY4jnM&!}MhGad41MzO$qLc*u9U}fJ z(bx!tk==+4WaR_F%Rf=d77Z^ixczrIX;kGMX)JaPzU10ZYWxb67{%^r}!Txu%Tc4kscxIrK4!!y)TetkCDoX~g zD^~}l`*}uvPUbUn#WQ)SjA_E&UKyhhcYu#wQ{jfYfkE=IKnEN_#vu8K#k7XH_>Hm$GD@62%(RieZ(b4y zXZ!YA9Nurj#E{)PG|_o2|DyFknJXuG{>I0faT3P!V?vjpt|EAJ^wYnRlHhC7-Eu7v zoSB9t9K{?wq-0oZZg`Ue?qutu=?-5*(MrmLd=2KKnEAbq68|pAWPiF*BNCcDNVUWZ zb-8{mem-cDbB*CB&eO$b|L|~G;#Xrs>wGmOmiFS2e(U751!fHo7VWzQ9rcx!tLH5l z0V#u$%ZgH%yuuix!dgLNb^1kZdL?tbR;%%URyq!@Y*Z<&Y2@kPnE-dTUFzcVi6|GZ zK-!!^){6bRVz%9mqbLV9r^Gwdy%)IDwWJ9qXM%pc*&VRscHu&L`iY9W%8R|H@;18z z<802IlOc187L4&n4~Xzb@9I5h*7)}12?5rly_Y7!PLJ;XQlY7ztnZYJV#>ycj4do? z?7jSAfsm5?e3eIoyTP198~BG~rtzv${}#yK`#HWJWICP3htbOyHjP>X6W%o5O6^Ju z?n+yd2zt4-mg9Ar6()B1ZdfnXo|k6xF72HK*zmUJxmQxLx!C>s3TKX?=oYXRksfoj z6&SM_$Q+OqzcF=xZoj%FbD72m9s!$~ERHM}D^v;It*n`5XW{ULzX#o5o>8^piHWlA zTjYM@!ZFcqeWQ4;>9m`dA#0HA?7{GamR8EuYhp4LUw62C+$222XRoG7HLYOiY_Qgc zl03C&U&3D9uu!zWatc)=6%8rL|_IDes1u(1hqL+ZQooL-Jb&+kid9wfN4$HcOG zKRq8_iWU(%@r3{6MnvPTHo2ErbaU8{(Kyh!yw}F0CNG3meX!(3_{v|`suM%JO{oQ()R%q^e6}?$#d?iHT)$jq+3+6-Z(Vp6)YJuyFKR^UGj3XPBSzYHsSu$6^d+X|OQ1VYx^u4$P z=I59W=5nK7sPn!M2|6NvL&ihhid~|ViDttj#Of%qG&eNeX!egcu{Pc2LD%YtS9p&> zCRXNghW*^`2g{3(xW#4$>si`6dL;$(dFky!xn^mV;l4~d0b2{9r{j1?7vb9>j+v9S zh5WJT?SR2X1;K~H(Ro+L$}q$(CY8tQ)6PeZbaW`W>`HFIYUj@6@KUWeevAsVb{TpV z$(jBB1|;<|_x;5O-go8mb{9Qs-qiY0QOg}2Kt7r|^DVcARLpVf4U@QZO&J7s0K|I>N+}lMC@T3H{L|$%1?9!6fUs4UHZ@Lo$YdT4dc__lXVBxK~?jH zC)$8D_WfW-(Wv6nE6(GyYEKd+R-P4FCE9aQof!vs8)~TyxW1)TouYH)W2Hv4(F?O| zpKAR~nXHV|Ezg~s5#gfPxGOp7JW=8*ev4nScj#AQ_q{&-=e9wbtrJ9I{`zq&n-0;A@V$X2`2b|2d%Mr`*^L6WWaDpL6zU^t{!0?-tyu1d0fg+*_62JsgAt3BdjCz5?1IbCkRQTl7)Rg0g z=cfT){x_lJ{;#?)^=@4rn1=l~YF4sKKKu9oBhq+nS0u> zdS3ZI+e1}5PR1@TSI3g`c6|J%vfhYKMJB~_1x{L28@9ULyl~{?Z(dn7t4W0-V&qA%L6`TieBaov#@>)Rft zQ14@SoxP%Yj;4rlNADW;#+?`zbiNQ1-*3I4DIL%+L-w~cxlPo@h=WAT{f3~rzuSlIvJ0(sovy;U7|D~NgtI+H-cRKMpCM8ei^rI>7tm)}# zE%5FvO+B{w61+#`1jLn)^CQe!L37~q{qZ6R!9y`Lz$7^uPSXTXdyx5i5i~w*PjUt} zz*Ql`TzwY<%u~V+oqvf$iOEw(mvz@);XYNsa^N*!h7Q1fr&Q52^g!UU4 zcE}y%p%=GXZmFj~P%QYvc2N-D@2!3-%-Hi`Pipv;ei^*c{-+KSAET#pSuK^%k(L8P zu3Ze665~2C28Xk;(NP<>;}MZxFP60TXHzi_cDp|%#YxR)+Hp=_TKVVFMJTlox7sPX zm_B+YVC@ydSqF#E+FAv;IvDlyfw~tYVsjeg83dPKu`_%QWC*n`;N&uY;Pv=`ru#vd zrbU4yRrwQKRC%voM~sZa=pAw4K`Mxe0qJr8-)0mmfdP~$EQB3^G~Iz0^d5&;Tahjd z*P+U5e-cuQ1b>PSD|lPphP46l>-l%0wjNg`6^_uy6Kz^CQW6rDsF^EPm~*#ixaj@- zgL3Jx9f1tc*4EfvAn}r)9K@QJvL78zXzdD_JoQ5k9y9Mc@`Wc-5$-R-dpq|T82z9> z`%8|>GB zhuItVDle1`fU084n+ucOL|Hw7@5PWiF-LW5P5T>NhkIcWgjK}CmRC?PVEP-R9Q8rN zF0lD{{;FFO%skFX>^XY9zxO6Zg>zf>sa1;WPoDEy#VLi)pW~S1uaDQ_WaXvx49x@7 zy5w+-K7)JmBfCvL&!*7og07}0_@yZBcI7Qye%)Aq9(%^de$wO+8}6s^)q&JPB(FpK9uGL!o>zyP9-UT=A=7#RM7 zUO|B04snBl9nRz6(OXOvrBUiijnW>V8dz3a~dt0(^`e^bL9k9G6a?HM7f1%@bxB#wj#yzI8$ z<$zJ7%aI@3k_Hha62Tcmk<|KKgyIP!w?+Lb9Rijxxce&x=47Nzchiq+%{ojDv=9~Z8i zYxjW7rDc<45IRW_}}LT)bXlYVk)3-9~Zy!+B0 zTvNsVu{hUqH{Y_RYUNwunTtMUSb7{x8k2{dfZ)hWpTfh4<){)CG=zdMb{OI^|K0tz z*Xj1UD*}IidIUzo_lGzdi!5OD0NT{z&_6Jv0V>pfJ{c4%M{v@E1ME1%GqCs~AV;`p z2TV%9>JC=`p(_;~Zr7bUd`kqptKbXrx(*s0QUQTat*zDVt6mSzcyD?qP$QQ-q`!64 zT9xmu{wmvemHJ-~L&JRZLJuR)5(*NNB=M6kFAvqS1rv#%oP82n`1uD#Z0+o}EOnAy zQy9ut!*69pJ-A<1p0cs_+H!NDc%X%PFz2w~()^U8&#mOc8&$@_YCjhzn@!q?>E=o; z5r#u&`o1T~YdiG!%>`((bIQAZD!&;C^*2LTAqt!NgF{r0I_L0eM*Gzjn8qN|a6$dw zdt-+|pG95;1#dQ8Q$NnAX4-@zb((z^$B((&A`1lA1BX_@{?MHa8wtc70B%v!WEDm* zyvG`P9MJL1{^2fs zR7$(Q9MlxX=y=?7nP%fQ(H1rJ;0fKN>KQSyY>2HS`Qm6n?8PJ&ogaT55P2u2PrJFw z(>4RkV3iEak;}6iM%6D8_uDr;h%$7$!&MdNiRs5T0^SQEfMr2j}#7xe3bkHI~sDtW()`2Vp)8hVh;SHQLwGB<#i^t)9s*NZ}! zvc*huj0F3S9B9Quep4j(iBAPXr4uxTRQ@a8aHI(u5|5tK2@~vx6Ic)=HFa=T15HkEz>lwhELUHG_qA6S69d&)U9qHMG$lc3X`G&)oI5 zmw&=P!ESenBRw4}$nSrGuMsREO8eWLXQs}`%FkDDdr}_Ad`Ws?elO82`d=9nZL=^1 zHJ}|+_M>#Ur@dQ_IxgqZvKf6%4~|1T(n;a)#Y@ZI02{Q~nEVQSR|gW6>;-erKWR1a zg=vH@7+%}t=6Ano7BJ_F`occ)!x(!f{_}O-)!*CH#I7$^Z8k3*hF$duhyPK{(yGs1 zl~rQ7(kTD0-cOz5GP3pmS^isH52-2^`||~hAQ)Jw}{_w z8;-7+b;xhb*4Qw}{~KK1>5o7Yq;UyJXXnmQl&j(oXg0O~%$9jmwtRWa9T#)H7Cqy> zR-)VPEppXYioySq?cBlLDy`@IVTaQT{WH2t%{&ljlOHK_3j?Z{oB6ZH*1&*)@MibOPH-0>f&ZWCn0bkG=j6|);z%@MY`N)TdAe)}Ezw&hOToH_kH3XO zuV845fow=TCfvZv@WU+iBMZ0txb7P;b* zcvRxQV)AMAKQX^&8INBh_1o`4C50q2tFN^~^Z>ySum&Jiwk84hrhouK|&fqY}b1%2;HKsEjXga*`Wt3!_ zlnpuv*r&?uRmY>9sp%=WCf^_XUH9l@54!JA$#!g*Vbg87e^oiEy#xm*?!;N)R+=F9^-A}pbwb7J-A zVA$qfhESmB_`Nwr24vs*WffeaA^@R(Gp)_N3N9v9!XodtBc9e>eW(BWEZL$;Dlf~9 zC}}X7r##EvCF8U;NAldwVD?^{t#ZEjQ^rWepkdnC%{}rHksWRtl-~P;`B1caq)`dy zemM7f*QZ^^_*Z5Y)Y%;mY2wN#Z`6W(nemZZmmTw!EhB}p@gyH}X|^SZB&h~9_GCR=(4*UemPO(S@L8~N7OKmP8IiFKaV{>2cd&~(eEN)C{pn+r zGckv=I?o;=Px}uKhnqjYHQZj0+4I=@%Vxu)_YGtE?_RH8{0IMhS9{Ov^4hLhA)fke zoS{NDJI-?6NOUT3#7K?R3G*QCz$&^%IK&v&N3#y;k}eDn`g92&eJ%%g;hEB5o5MD9 z|L))7w)@k{^?bLgyw~n$?y4MOURnF5$%}Z9qMiZ4%No8zkj=qKm2hpDCo0$+7SlOG$aGb+TYz5$ttx2 zcTb`s$%8YFQ<;>NdR#Re)`Dft{HENOF1yGSrGcR#!y(_B3iV5L*W_aOi!{sde+F^mldEx+SHQp9*^VPdk z3OHSUQ0LW8b~hRB)N?tkvzDair0p0V2+6PwXgWh5a>x3D*+m5dO51)qZqlBmu(9EE zZnv6j%CzDP*Nj}e|A%g?7}oSOw)wHhcQTjp@2q_yBZK=aV)^TqBW}0HE|XSV@T%_W zJgG}9gD;}ETH;XKC4Mm}y=ZB3$HF-fdc0TzQ=KK$G%R#Ae_Uj;-k8Vx;<&W3Rb*6@w*JBRv4gj62ZMO;Bg@tSQc+v+ z0i5;2ev^MVt zk_>0C+hD~=%mJ1tX4+=W#SR(H`Ug01s-8J%&p9cFHOniLcZ_UOCyt1r{6P*QPw<^r zZeQCvnEyExjq|7|R!Q6RE=#=jDvu$~|AU#qcwC0POvLnCjnZ*{`BBW1wElmTj?#zr zOEYhGE*mZi3SVturc)o_I_*U8Au1Nw)G)^c(0rBio8F5*CD386$QC*wd_E2<=TXX{ zT@gYX2&kds&8!V2$F)am{eH40KKYoT@RhawUh4Ek8IzriH)s34m zT5&96k^jdJSzE&0M`HSDk^p!Uqw;!reZQ1Vk3?&z+`n0%)E9I1qyLNi7?ilh>%Qf{ z9?G+~k_v)pYu* zshr>F)2`yC*}EC5!s!gwFuBrvv_`AUU2aX@pJ+Yz`s&Z~Gs2eIA|0&L zt=u+y(oKc*rLudCiCn{q$MFMg4{_205lZRSUKk={Ahl6kXsLLi?Z#v%N~7bXbzt4{ z&i*!+UHBdQUxA3dQJ?>@0%wGN5R+;=72akkS7v>;wXKxLB%X{oXH82INtqWdGIEEH z4pg5}k?d^k`6G&BBh;Psz!~Zrg|1Y#EBFazNSoA**fWJN%dbgLK+LVUyzkqg?~h(x zI?v5#X^L)x_?e{SFqK|AX@5$G=lgtTUaWOkSzP~9{dcb7ouBQwD$F<)^{H2Hme1wf zJiO6ERm@jPx_RMc#vh|>tGODU3e<6uCpzFajR5>vD@v&&;1{YQlo*2@l47am7 z-a&!63(c1XWcR0J3K63od!7q@DAW|pb>Ut1neVLjC9FQKgL{uC@Hxq>WhJhpIzNr# z)xWXQ80uXwgu!nF@!SztNDX2uPQcsgo1zy^IBB&#<9M%!V>zN@B3IHdy?OoU&aBt+ za|z35yST=lD-iM4wNH07b_I{iUeej3?sY7=^=I{WrL-iejI~%+ntUa=nHKB2v-yF; z!F=eee~j)PV|m;q`Ie$*yiD|VuQPI7ugd<&@qFJn*7~MNrrx%{hsuZdt5KN$C?YiL z>ZkbWiFe5(Q40dKtn0PZkXfT_@d4hDXW>puFmd`U#1TCzNrqXS440GljfF3{XrB%_ zYICOnB|*deX`;ZOLCzsgt5C&(_V!jyD|tnVEN;dF2cI(^JO8`aC)*-=D%o*Jis zBPe#-g<|PvD#S8FH8A;mr{%N5^#jM zD`}P+)Ry9TtFKeR@8vKx1{;QGrXt>Xy(u2jQ@BrAdv`(}emc4}yzx4OW-YW#V@a!G zS4qk`f=N3_b-tj%ldn*~eeZyEWdDypvu-4NuK5cLCD>Pv*F_5#{A;F}$}Gg^n+DIB zf-`dsHW!uVXY+UC;Hh3`l`s1G@b&$ml#BSwHSw0it-q|I6T4}`gwAt`eCDI#>10Ql z0#5Tj`K2?@9-%di?#$76EKLe{kk@BAlkdu>k4g?kRL8fk?~^hP(;Kw7tpq!#22x}9 ze2>)Qn{@rwPBp!HfluD&ZT@-2&Zd>O@>tL4IM%cVZhN#&R`xEffYDzzXp$Z{&t<3? zmy;dK_NMLgnQhFNQEQm3{c1q9K6+LrJY}wEvo<3=jd!ky3nx>O67E>Rtm3hB^@Rsl z*AdJO1ITd)g2j5bgU?j9ZHV7w(nY)pDvi}4f2VzOORc9Q+3^TR?=5u=o#Tr0Hh1$) zKd3)kBWdZdIkjHL-YbKV-xVw+R#1kgm3~9m$DHZGSN7kC2Sze9{D6K&p3H~O-w%IN zj4bPQA9p>R-=r;Ypvw4Kf8(roKX<9k)-`*&{_#Q^iv^W_P=Y}XIltQGBgoW}GggqFfQ`u-GDIz?5-YUlUfmA~n9 zhkZ_?D#qnUY5V?txhvU!pL57$%@KXy5Uv7$1gR~`?v;gOU=aX5UVepxYy?aeCLu`} zIRfyF7&r~)z`-2)9!`N6gp|{0zBWH_B5@Mk^eLWYc-LgoebU(Bds@6A?)y?*#phS+ zvUNF2WO-*xYe%I@XPru;2j#pm4LRE(6)#C zSi~F)$_L_o1YrQcr8)OUf%egu@c8gJ$m{yzv{t8yIl$g=i8CGn&F=A=m0+H3o&r@T6YA38aQTIJ?1 zY^QCQ2~|nut+|Ce@p;|2C`<8@xR9FUyMhbZqksLpgl}Q-^+72z?G$7ZAS-niIz|7V zuF*9_vgHJh!20i}|EN{}AeGu^>rod1M|IF;kVGKT*#p78)}4bW|5h{lW$bqv-LY=z zweZ-jSQQ?tfN>d|bcglZcE6M=)4Vl`Rc@bLtd*9kjsc!D@kWR&NxE6s(8^j;?x}Oe z_^@Ei-!T)=x4*o}eeptEQBhHR49pOgFkOOS3eb>;i>2QD-E`}!Jq`qS1nUa%*M7x+ z;WC;3T@ql40eOPO`1I*U&|4o)Y=6_#cpplGF?C$_;N-beDdYr=Ndm9N?Z}?uYp#U5 zD;g5>riovJadl+|7p{jpZPcjM-DB3xxrN#ye|&na|Lv=Z%8U4BSyrd}*qjq}_qLZG zKmX)|wDOFu-e0KN69^&0gEN4gvb4MZv&{Ef%GDm|ogBMkp}WMSw=u<23l7_BKm^cR z|GYa&NRtC1QxPQwJPQU+TF(!d$?nzGFW>u{n{KpHbSp}&R*+(d_kZthk$f)FsqUA} zj}>eY&%DwB%(;0-5%LYLfltckMjngtg@Ifq1~kJ}`wlsF1Wu0#!+>Q9uKWq*+0Y^5 zZm{_e6!#%0zk-DSm!WbPCo!CWI3n$G3kNWH_Wp;7P_zw&iQR4ncmzYh35mq3!Oci| z0B?ap9iw;_5sBLJy+QK9QVJmC}b;qXYzg% zeC_5h7k{jdReW1#XVljB@JVAyXjsyP2(D6j{>zsvAp4$#q6(f5cL8#Xgw((kdikk| zQWX_!^8fZmo3E>Xat7@rPLass(Kmh~!K2>2FGA5Er0gT-t^`VVZNY`NYTDY5AL z$*P{5)6*#Co)d0rI%ntLu0XA`Ind0Boj0L=JY8CTm!cQ&XNw@@R*LAS$b<97e+y}l zMi^Z1$cKVB$jE?jFpv)dN-bF9{|m&&biaSk5;U|5pC8Fm!yp$~jUdRl1Qui@+}$D( ztNZ0=o77QQ^Fyq1xnI5yUwby$EZ6Dw;h>4O%;Vxwk!`=xOH}VEDRQul>Rg3b;vE0} z+F6rPcb;A*)kY&5!8rPoeYtScT!NKDIM7{?N-AI?=pD5E`0T! zL&yLG!8m|=gFqFRK0oAi0wDQ-yz$V>Ov%%aCK6Ecz-@yRq=BX7AvHBu|3{zvZsMw z6IKjGxrhhfT)5C|X#H!e$J12DQ;wflAHO4}#JMaL^7d zm>PFA?;fA|;auaVO1>7Z>@agpnp!I;S(oWJ{c+daOEH!q{~kkbRfmC=LPLqE+ZO`1 zPduM1Ff5L;$1WrP=7-6v3I<_ zN$UoPwyC6ax@BAb^A8PQG)N@StvaQ{!d-a33FsTJm8dw~`%&uYDph{JKtb=VE@_uX zpq)t8AbwODzj)r5S&BVpWaUq_u(2)=DG+>7=-K^aC-+lSOav2Iz03`Z#`Tm%*hgDU zNUU!9e9aD9d$w*eYChbAg9k^e8S!&OpH*bQWZAlU$!hh{no(IL)s7{fcJH}Q#kDcz z%k7`8w;mBtuV5XpT5_m1CF@$oh<*4Fw7Ie|ZDrr3tc+QYb533qE>yrez`b92#OwWg z_H7m0S}cvDW3e)}wh|{vTH#W?BczXhAg*faDUp{^Z;P{(S>VLQmh`RSutlw3tR*|(cQq-5zUg^S9bJH{DX7wfKXHG%d z%AFgVw=`mf=XBWBIO`UWQ|caS_jTjm#4ERx2S%l)O4W>7n4G!x9m7^Cox$S8drThv zunV6GX{L#h2PSzQoVDT4=a6&YH1Ju_?|ne>W3zYg3QKsB^t(bk@TQiz;H5LT2<2pK<3V-H&q~Iz|6*I-D$uBXHSC`hHoV^onhZ_}Y@Y z7LIXc-}SA+8=)5%Yu25GrH{K4Rl=H8;xAMRuvvv?UL4AQtA&px*bfEw-*aE>)ehBk zs5W7k78Q3ZfSZ2Zrmwi_J0@aQ5c@{HOXB{vMz3jQ?srEdO7Dt*w1Gv>o-_4h68KMrwWFIPHBCFI zQ5d}bctY+`s#T5j5hKb+^69_f(=X7`Ukn0mgpG^kDXsC-OLy{RnTJ{Dm^!kDI;Qij zSyL-_HQzXOoNKxo9Uk{gn#c}!YE}a$KWmOG_q`uPK6^UVejfkuXJ!SeFtm=nOq!?E zIn6KohDXWm{f+j-X`6NXmS>L=S+E!=_7*=cmKEf_2lH|L$Rb(JoT!G5JZnK2?6J7Z zio;&BqTsE?3_ea|2r(_$aFg=D_@yB6Dd_7*xf^?M6i;-I+woku^DZsfdL__O!=A>e z>}9!=fif_KBkO6-UySWBwxn^rdYSGY;@LgkyD49WyU)5&N%nCYJ2dXqRVlIxtnehM zZINqKvE^q|rNR<wZaI`JVYkrR0if|QXJ&%VGRvdR`m7-Rfaj#ylL>ysol=jnMiY@cc9>dQTJ5OgpIcQi@F3$(|`4_aUJ~TW{h?)a7uPGA~70;i|!7#@5mAk zBpiR%*k8T4at__6*2Ofb4BQGsm=K|(jpCm^jfF$ZkC*9likkwys7fCqcGYIWg)Bg~Kyo(e*vz0!(?<^?gO zSlEzUM(PKEG6Qfh6(EHHK^mjf^?$Or@t5T4BvzyU5)PBY2tgHd$~O$Jm6Sg|FFv0X zw`zl)YqUlGF6RiFT+22@i)#Nw56sD6Vs)2MunBtzyRs~p^dl}X;ER)IGVhzK??fuU zA*Xq~5dfYMlD}F)NG1QXrHnKI;-Vfh7Kh?Z3^Xv;Y4I9_0Giki zNGX*-*;s-rxQoHP=BEZy2J;Rop(2pf8<=n;0N}PfwAA0hzpB<94J!`3XkxxRJP2Y<2p z*sKwa`3O2UXA{NBQwKQNRKq2SD!Eh$>mjbCt~=2F0muUb;FjI6g)STTLj%n2%VNYY zlLgyh_(h^`QUI9<^b~{;n+1rL_vWFr=v*ftbtu0>fJx~-pRRxZ@PbX`!6LLeUipl0 zz5)08t@~;0DG@&=K;Vc2z=#H2VK;_ojDXW;WkCAk*TKd|gIFTcunI>5Iu!WCLLpK1 z@|E-_e!stE0o>4ceKM>UdKDnbC4yiGVZ10v2^;PcHnGQ^bQ3F=i)xCnwUqQdm=rbm z&MjV=PSOr46m#)6CfuB(?VY)@;eWI$K)-5L*Ix3;S0}h9;}a5ix4>3&vSb_Zs5xMU zfr)C=$at}{3B;b%Gn$?pI**iWYw7R61rUY;=?2A$QKv!zN@@L@I^e;PvZXIzB1DWL z$YJ&3Mc%uQk>U&}ql`S}ee-|0$7%$i;>QwvIVDOSqm`;koJXV6_jDkiyA&(~zV!1i z`Dq-hJ_;@RLZ-FzLrn|HH>4}4hL_u8FA`PIzn4W>wz->vjWUWv9 z=je-~=P4#yTf)rxPguQ!)`(iehVJOVSf9n;+Iy;^r;nO0%a~ntu?L%gB_!QQRVV-F zBv?QYKwv-MVJ(6d^*_KgF5dxQQ!^a=dJF7z5aJMWkpYOZ82E235EPn+UvEncE!naE zo3*N^!{KNNl5SsKrn%F>Y_`;Ib;-|upH;Fp04;dF0p)DF;E}lgLIZwDCxVor!AD?q zITru+gO5JnB?r^I-Oaqs`fq%g?2l_giC}9-M`YTzv_}G&Fc@c4?BIqjQ`~;X2=(lOM zzLH>J4}E8>mZDR+hn)rUWh%fof#jOOqyY()jX~MO=l&Y%3Y@UyBvzA{>vi}kWUXhzEA<@bMk0q6e8lduYS3@hJ?6c~^O*x+dQt%6 z2?4`e7Gw(lLqX=-@ZPQ&1^f$eBt=dBA#Vb3p&^eqz{9@c&~_QjLW3>t$6a<1x+D6#&ZGJ22=V z*gt0A%ah^F_#@_p5&=WS@f^=KW;*?Ow$aTg@sq(t2L~Aj!wLt19qB)-!yCfRR~Fqo zoVRAh@72_t#%~=x_GrVVrtSY_GZfC&Y#vIGJHf-Exf`oq`V zJEBzm9mCK7D_aEMJ=q1+5ODe_0zo|U!E)Qs62i;_U_O#J&Vn!G8Wg17sa5;u{$2s= zMr`Bj1K$V&1KNQvhE#6(tALW#KJtF*XjwOH^I*b6*sOb>)x$RrI;| zd|nb9cE#??sr3y#eVMC?urI$gV$(*pTb(*^x#E5NipbG>rR=#+GokJM+!dGN*sx`- zd%x;lkc~E?b9i~3D`!OJR>bMyzx0~gm=uYV!tRFgD)flL>t`1j3qyjf{Rq5r*_)hU zWp$6eAX2c@z>1j%&7Vy3p*iR)agRGXJFDwNx|54*)j2z4yW8&6a=plSc;ajzg-L(0 z>35GSlYS*zWbA9(jtbWe+0bE+-q|bKIc`n2)r8rogHqJN?s@$%g*+#HkBh9D;vFgk zWAq*-2O_=w_3gG@-CN?aYq+z8>J|jyCvGrxAnXA%j`$}Ac^m&Hi=Of5wo6*FLpRkc zm`kqFO+OAb1yzZ?9BSHRTDfb2CV3-qf?4WVlR^Zk|8i4Mno}!h*0kaFcbFan)dbmy zV)Ib+X7OX15~H;x9EJW6ajA_C%CAZi|tKW(Ko>l0NrshkWgsfg(~pIp8O@ zj6+5!dji^H_?ji-07mk3GU!ofM)6b1`*^&@C9b#@zv6FSb7LtfqOUHB5|nq&`E7E@ zq&fStKZIiPMM!EOXD0UTWd z@OuNSy48Ud!XP#|tv97SujF8O(9HjMflVhpRu6Ii}vlA(A6!Fd7V z6>&=@>-lRVEbMjrBbPvW(K^f^@HL^H*6aPuO_DEwRkJ2*V4i;al}pK4H=NkyK@Kd> za&6M(f`V^JR_LQJmO#3p1Gm459?*NB1@yY9y9p0Kq+l}GI4QH|A9ni>zcjUi;&4y7 zz@le?kxRNSMSp>N75zidCb)o5DF7R5=zWMlP*Z?PXaQI14Dth-X^xULD83iFzx`0Y z@npQvnA^x3?#MKLVrN(Qqc(2WXtGSo)*S;=#Lfn^G9d_BG$C7egqH<1SjeRULHFC; z6oIY=mfpIArEW9P%U9*we3wXRUzQv*xEJpqL$i^8O>N2p03GSAgCjHpNu@+uw3*liC(kwL$91Sm zvJ;P-9cJ5uU29@Zr%F9te9u;FAicJUm0bu?#XMG#yq1DQK*AMuT>K5wZU~r3ykWY0 zG@Y!tii}$@1+CU3Ou*79ameWcF-EYHV{`Yjo)eubFT#|#q_YLa|646I>v~XMvi8oPw>oi% zOB#MVjrUc1Uxxi~U4Inl0;un$Lm^Ro15j9}4}KOT866T^=0ca66O{n#ozj|HPZg1< z?X*nmjuT^Z_}UjuxihSR-r{ykT#|aZaX8uQiNy;D_1E3w;Q1XU7jNJtP?uo{Dbi<= z<3iqjmlK~+h4UZF$7Rp0l1&!x*~YuZJ^S~Oikt%5uKePsIlk6g(YMRjLaN$a0s)%efH~X1ybVy3?z~n{P1Ip-l=EO);W+1jpSk=vm*4AL-}0g?NSsf^80}0 z8PJ;`GYVW#guI|bAyfKt^SZ-uj{wKfJ4C%YG^j5jrMR2p7Me+4pl>qMaPHB3#zJFt z^&MOE`ljd?mXsA$=qrnC*um-Fsgm=;o8o7G)6s+#=U$S#=0AEla0n+J02$bs|t-SRY*6KD0^L^P6 zYl3VckeNL4w1qcK_{6WHqD3`dW!t2lQ(cTo#D2W9^{rceJAS`ooSB zdr*54sxsa5{I{!vLWef}Mo%$^d+IZmx_P?Xtk&+yxOtmC<=*H^E%X!lnKbmW?u0%e zOHxIJ4a@=Ey}sgHpU>2nl|jkSpXbhc8!zCCayyY955d?d6lnYVAu|S9?a#eGV~PKz zSl!GGzi&GXV?N`r4SxqAYb$I!anjcQ?;h~|UD^4|g?y!`LP+d^rLqHB7tg#q?0QD$ ztviyL@qPJ&Fzn8svrpuxYR<$!qLMUDfnkV%4KvP_9Yz6Pyw;ixNuN)17DY$Uj-Sm~t&T?LZ~g0&k=?8dfr`OsL=Y=OA@vg8xa%i~L&Zn&f=$Ve%HbSnt5 zx9a`{Ek3Oa8+(>#HljLd`BDbn^^2l%^AePodq=H2KurAXD3B zs+D(N>g!kC>nAcZ#vYKv?wHe-hmFH1AsGa|n?3Om&5ID3)T+u#4j?kw?#i&0LSOe? z{eHu?c#o&BSgl64NFM(aV+0L2A~g=NTo1k>GXTe>zw399%@IOcq@bJR;ZX+SS6^XV ziHsSZ)HtyI(_`VO%a23VauGTOZDGaFIgd=ayRkGqlvx-IIGaP_M|v%g>@3*IAp%{n zAm-Oe5u+Fph`!o|dJi$NIt!FK1lB>dLTq~?@`NDIJ~U(|e(t&H0|-LoTBiUV3M$x; zmmFf7fHY-^tM1AWy`{>+qzDo1vGC=`p3INHX9>nYO7j{dL;Jvb*1RN%K1d#Ft6TP6 zykU*!!gVm~F=of=@P}PYm7AC)_y3EDg1&dL&@a7L`exgqQsFY}Dy^tTh>=Nc?K|@p z?7;|1(hhJ#>c{QnbAnJK1zSDewTlZ7&DsH44+zBf9enqW2to%aJ@v`;5k$fHa|N^( zs+DgY%z8DD)SZi~@VC7nHq~OpS6IF;By9Rc)5|@T?my1UPW+(-{N+q^jUgHzO`o#b z8NPjj5bSSF@n|1-X?djdcoVwg_BoxgM*rVb-u9a2_8aF221;h-d>zyY{q~)|`^ICw zkEj{_+8REUaTFq}uRn;A9vd5Dr#`=MC@NtVY@0vVXJ-IpDEfYq^m*Xz&twsRiK53P z$7avT6unYZjL%%PYT)N^ZfSRUr5d&l$< zj-m2*xuRl~5m0%;@OKBPV1Wl5sYpT4I|R}LbFr-Z3H=8htAJEELpRB>Khpx5m(!`D z7SGw%Nr#zF#OF0$HfV0IDNNEKTM@P=WIHAy|GD+9^>r$gS0SnYh|vvkU?B5ddNPBP zOu{gvP(!O027tQRU@jBF?uj)T#hKe4$4YGCY<#=k-p*>|KG^tdZrED0tP;(SG_@hQ z+yFl&0p37|LP{sVNHGb|S}Ot+-<3YBKJcyVrAFTE+Y8;O&{%T9oanUy9t&!R^~nvw zmu8nbF8dA>Ob4=XcZr^xM4Dp&l@uqeL^Q2UC5lhO*hdR~_`$C@9;AZoM&JpGgu9~# z7W&s;FeG&g`^L7wWBdd)PXdFL?=7|lqa)v+CQ_meKIykB3CM*a>K^1s_3OL7IVJR&wKH&Wg zp^)N>aULAvarTXGbPk=k4vc%r;4Lcev53XRS0Z=s$vmU(t~q|f#4r9(U_i}!crtT9 zN`!~M->-1{`nFyRs9TOhUh?qT?u0~PDxi}{too%N?c%F&S&Je1&+oRsJk}>+JLcK_ zWSFM!j|;|9S&Pp(MKfS**QBQl^_-pGx=_a7b`ScyJTtUt*R9GLyMsnjQ23eL@{dS=*P z`jcv{Z_C7`ar&h$xN9T#+K!U2&Cp?hEHD7;o8CWO0Biw=#pG>Oz^Qw216w441RQ%U7JYi`fHe!sc`K0VFS6*iV{!yr>BYpWIXWS8z1UM$5_==UB_I9 z1+g^;F;h;tKKqsRg8vp9q|;&qGfTZ(xLpQx4;oB&B~1{usOeb#0X@4ise*;z^4XH| zq)OcB0B_fujJGsT9vEDze){WyNj4dxUuhwWUx=8;rr6*@Nv`i`?*T>)F2|~O&F#g< zr0S-o7-bh7p~ScQBVcVX)amv2_g{v##p@JxF2E1^<)g}bc_ZERFeU43<4cJas?BDZ z?>hOT67y4*TG|-)O~Bd5xc~)_@p>!GK=XyBv+&=t9rQg5j`Cy<*-%hp0aknSu`@%P zaDxzA@1hPN(JE)& z)yH|;llCNlp)dn^X~T>9@cW6ev1CYTPe>smsMUk%*qd_=0q463QMrD2y<%2km8N#> zF|_%C0|!L*WxDsCwBT3qOa%}0ZU_i4NEbIcMY1QE)=W1kxHEf&@h7cr9vm-dHcCpF zl&PI=;Y-bGX{S(sY5B$5l9bo@V z#7mJMVQWn5rfrXOL=4(AFNv*O-rvM^pC>%m&!+A6Ne}_8uSuJ~e+onyeWjZC zVfs0Q41zL<_h);Q9|4Jk^a~U}dX)1pn4yh9SyZ`t(96%KLE%h|_1+tc^j4_3fzqx@+lJDVRy1^U1tN*fI0_Q)Z3;yP6Mwu1u=iAqQXs&i-E zXeSQjf?1`(3{wQN9u<)l2CnAG&!YUIC34f4S9(Dk3#H81cBw&;J262?FHXm-3wLg) zG_URgO;`X`>kE&TpN^ztQTs>8Q_w+5wf+D#)&+fGFW%|UMptbr{NnAn-3Pc;g3JP* z5Q4jkgHNjFYg59Ec!n-7EBsc2LQNR_Xh9n6at{R4c^%b>GzJ730g#1R0A3rcIa-kp zpRO{y97n~_|EBDXi2Bn{Zse*6;j^jZH*)#T$}{8(zEKc??HgxrPueY819fS@?Z}^M znv7*biojr82~kU>iaRWJm`S)d1@h&&mwJ6kJIMUDlkH-o?Dyi0$6gVATH3p;*=Jco zf5e3hmwf~Zc`Mljm*j>M9 zgn*82ZeP3WF113{D%6%7Jp1jFHNtx#jmFSm^lw3j<;+^C-B~FXdB+@@B(1V~j_T6X znkpCbK;8O@F@nE%qDMi29bPg8bi-2`Ux%P-C|R+p6@F_quU1shcq0cr6MHKZfc?*N zNUhXI7OkObQ#Q(xiI*O{OE{R4n?9ISK9pK;->trvJHp~_^8{%dA$Xz8NNMroGjW8C z1Nsy(-uLWnVuzGb)p7lH5Jipf%SE0u=i~5e2-aVc3=poRac)IPFJ4$8yvnl{bPNtw zhW!1>h^DEvNT{SrPLO|wg3`k?K&KPSRJT2@`{s({T- zwQDe+bV0XMCMYbg9rgw#-w!Cmn11l~rBe=r$>k4|`!m0>-InByjCdJc>OaK8EqPWa zzQ75sQF_vkPj4|ynj$ za|TIO3;Xt7DfUjXgWKsx3_TYq3_XE99TJC>M}Cf(vmGZ2C74ltAd4R+@qZK+gvPRq z8;XF~Km@5)fhkaNSpx(Cf3{aHbs+!+5NlINfsNStMYU$oDeC}RWHkz5z9m&voKO^V zd9U7QOp;gb?b~a}C4qpK;lmI4;5*S_YO-%vI$)zEHE!2uEMgEWT|1|)8?c$& z+%`SDXGN~`fU`4QMpqnUVloXOVHj#^SO`3IISS{7!TVF^to#yz4x7oe6l((y{QdFs zM}UY02?Nt#LzthCz+D(}^dZ0H$=604udGQG{f5;-CDyyi{M&=f5r(0!tK6v9+lLSz73jMbSP*H$%I!cfnSMG82JO-(9m}& z`L*`kisy&Y`K{k-r{3!zLIl7**eG{E&5AIhDaZccx71J)Fff8r8+G}=PI5lT1rSvr z(S2j*;WV!#*S(zFuK`a~qrK+9T}$-5kkbiQ$KuQhVu{3xYTI?l=be#8;r^ z!?gTpCcP|t1I`c6Y5^c8B^Mmw#2p)Rk8GJJ`z;PRs-T-SfwmqhMBaogzu!--Y;J~l z)kQRW*>w$Lq(TVcctM6B-mn}3U3zz)EW!Z)p!}2~0GlED#bJf+OntYM{RiuB?Jjz- z6{?q!$`EnqzFQy@3sxO2iVA$sWWjVqpaO}vKG}+p2XpkOD5x_)V#8H zVmc<~nK7SQiIadGSDT~dqhUpOUZ;9I)#3_f7;vA^GL{+Kn|NrHQ}vtBXJ>g0G{ zauJam`W;$31&*b{<&uOzBS=sXg}y%1mzvtz-cUn|ra>vH z8ni_k6KF_6tbc#uVn#)@?4ArXS#-|!9>{Hd(0L|sN=9RTgWau0xsD>Lz3 z@)c9yrFUu3p)>7Vg~Sro<1cwHK=#3vKj*)3NQCZeZ_OaAE+jiarxBBg;RQh`Tr%}K z4+sx}C4BkfcLCtCA3ewZ#zKdc7n~he)Io~e4mnuJnRDpyVMM`<6jvfk8q>>WX!Sy< z2B`i?fh}eR5acfC*fcdf-BBAak$U-||Jwsbfs&LH;zD9|w?>a1I+=#O-^)#!r=|*I z3pgOB4Cqln&WuGCQe^6Z?}$C<^vRPZ;o(|PXhw%Zax{>(VSw?Gv=I2|mR|cKS0(o8 zCB2olYCD)A*b69s2Iy>%{n*vx4CB{@h0I&Gl8^!~D8ynwEq-VcfNKqySSvD5LERK; zXXDsTJiOKEQ9+5_*qmTV8%$3 zUcsfmQ7GdhM}*<={datTn*KphQvAmiOGxF8Sf*G$JXK@VJ|fycpG)9aWnF2FV{~2B z*4oKv@Pou%xU;Chz`zS;)v8Y z=&e5b+q|T?U1{Ztzfrea8r@A}wj*3s7 zv!ZC{I1EO7y24k0jg>%G3hqgeu|}S2BrWX5&6~^z;<~|-gdjpl9FEsfxX+Py4OHx+ zmiGSvZUB32g9tK=kfskHPzx!v3lTjl^qBJ>Hu>kOdT?+s^6v^$cORiyLt)J)r9-!y zu1Z9<9w?mOU=>y_oaU&bR+Kf|K1bk)Xvu~Jrma6`3YbcyxD9D@><9mc@nSICsR$+r z2sZ?IA;E3k-Q57PB2_Rc(AjOgiP$EHFo67vQR(1uY@J=7f@l6Y$hLNAbRjrW(&G?DBN5$cO?jntv(UAlJC!<_33`V4RTXkw=)x zTjn^=-q+VFj(>Xg=MvT|na3y5?fLIqQ9Y&TBRqNj0p7wIBAQPVCD{4eQv_6)kQ8s6 z?=~DOyK}y*A{CO{JUmFwgr=4j5#jaT-ucTbKVE)Nj^f#}8wfWpL@^1)0$vb<6Zt9A za@TPr^&4?_!E@e)ScX8*Mn5#8)?2rf-KZZk3EKN4juWrDFyl`i^k zEx?7M93m}(JmM@IkCx;f@KbxMXp#Ezn6Tr8laz~Q>27He!DcV@dUcO!5+!qUJE}6M zn#cuYR$R%r7J@bK)DaobC*qP!#5CTHYI)#UGOJ`Dr$Ee#T^O~Ek{R?$#IW%1deN;J z=)!dqEq1p%^cznm+yR_-c|MO}86-L3d&SErwb1ls$I${T7PI_*Sz37M>651LnzUK+ z4;y!%cZcdRaHum(4+*an&Thz~fA~AMoAAV%RGsxs{q}7714VZFAxo z5&7S49@qO?nZlrCf+>b9a4*XHBJS5FcZFstB72Duiy^AbGf!Uq_{ulm#ny6yCAJ^@ z1TqIJFf&+0vqm=SmQ2A)lJbibD3VUXncZqg8gOh#Gl-btPPXl z`qlQ7NMgY#4oBQ`ntjeXyt)&S>mzhe7UiQ02HT}#Bx4El!aF{@7<MH5XZTdgFZ9! zp8J06?2gEI$et4FgRSe?<;7GRofb-2NoK2lHfkhVL@8S{iAEfR`=PE3+lz@*28U|#P=+Hh*O(a}z z?p=idGQ~leGsA}`;qCDM8hG=D_KR19xs&}isryW91kOD%uwio_E;v4>pH zGqmW@8Bl%8ZGYmtL7-G_?&U`9h>bJcSI=)Qn!regm~4esy|}TFA5ovf*hYtf^Y`Bt4LBbY1g*`UHFUTFFIgNROp0uY$K(+0DAEOlo&g_ zutdEGSi-+BQCNaY9zPb6b1djUig5tr177-eSGf)=ce^ZJg}A1wew~!dqBZFCy>)*9 zIj2@}B80`|b6S<7Vln$&DRLwX{*tx_4_>c=^;8@{AN&x+2TFp-6o}X97?^pD_O^UK zfOt`p$D6_z5&$(5Jl(v;gdFQoLkWl16tqwpAKuOC>JXoyREp*u{Wf898 z*E(I?b#=BQ!K$Lw3$K4im7b&6UuBlB^FV$2@&(kh%2a4WG+tW;IV&Fi8$6B#Jm!xf z0!}CyM(XLYJ$d?3P+xElqN92cr7jUPu~3$bMplXIa*of#J*G9khsLV%VrTGD*fXnn z#&Qx@6?!o;oLYJQYwdosV%mDzF7xhXN4r=DW|~;kkhvZpzXh0D z!}kN^N2VA7<@5-ID0KB*ymGR#3BI{kcTV~2r}h^)<&X;HFT9crGNT9*4Spv26qUXe zuvZl{$Vm?eyvF)aZ$XWdW1ecf4JHCK6kM=;w;}CGNF*6tVvuC-0hJi0Tlx&-Mj@(Q zDAoZfPm3pLTBUvIE+g~;EQF}bceWQ#fUaL0Spz}J%#3si0}*)j#tjm*)Z~WNYC|ub zdEw2+4M|!Y8kpa^g+KH0(_y{cq_9i6)Pht~MZZ7B-17v@&bqXdFp#NGLJK`K5y}dT z*F|MzXhiZ3z!Z}6%hdR=zP=D-{&Eg^PDf|Kn!SqfqHynZQY zm>cNOJ7xlvrhKn7PB73e^yV@dB zHi1}Do%x};eZWg-FOkvgJLh;!K1-|UkmKknim(K#c0vP(pudK$|mQ19|--;~N^Q$#^%Gijfz;qlS+> zo4AE~^^{Y(>_6uXo%49+)yvxGxZPvD3knA)sw*=on7vrXsFD?~p@TlRFN)KBe=Uv1 z3$b3O>hSKx=12P7OV(KzF&#`U@G3f<;5w4Ll`S-CnVOgX+Uk4#z1)lOFL>9ba191n z3pgM96NX$O!m-(j`t8~hVk_6lJkdFs3xnN0&-ETNou>5v3~W$yi7IIiAsjuSyg}8K z?FqYJ;dl*?VJKqaZr@c@x_+Rk8a=HjX2%nxD{S}5SGX-vvO2^U4p1yho!tCn+N~{2 zCkGEh5kGgkHg1ANq<0lFe$?OG)cQwmy#KHyKW9Um2Z#zDC%F5_-8z-lWx((FhdNPf(Yoj9a4Jwn zn92`H;wSx4y5Zig;+^a~FwBl5$VWvliCMIKh$W5 zmJ8DQZNA2O#QMgFa?A+p#8jkD;>^iQSp7`~6CL_wA%6DE>35Oi#ac|xB}7_C z?D3EvpdG?}u=V@sV?lg=m&?5~htK;@{@G_x0n09L7wg1W-IpBk47?3 zrFNM}jKYW9Y=v7J3AWUj1h@JUKD;a1#6RdR4D`Y<#2xa<_UGWoHZ$zU$W-ROdiUh0 znR*XhxJAP3h*p!CKK*=efmpr-`UKP_8sG4IQ;g;>(ZyuX2G*ajP8Uf3%pqH?dVZ1D zs8`A(c4J-f+M_h4sGFnS&nfp9+8{!aCf#bqVU2fIzsr~U$#CJcSorFAe z-fE$Be;w06^3dyI<0bqEjO&dUT<7qCfMQi|&4k_6s->nHA05LM`Hd*>bo&@|snKUn zgqq3U_q=&uRzmX1(TmqQs`k>p!FEFyo=|yir7*<4&^@EmW+lm8^Wfepx^YAyX5{Or zjM?qtTV$?ZSMVcHbsEb(-znuThx^8MfOj0n;xno!(&JDN$HWqa}WIo-t zX=WDW4#$GNnBPoOvc1^no$$Fbro$2HIzn2WL@C*k!aUmI%WtckmQR=ozBe(S6AM$z zw(|U!r1uOukUqfZAIoC#Nm5&LwrnV>xJZA&gHnD|K|fZ-CBMoouz=VQK3DF@5j}R> zJ3gsQQ~N-#Y8%Hl_9ML5&h#wZ+K?ksUj+S}j56S{C|ty@`GozZT0N8<3+?)vLPBpn z@DBzwRUDGAQu&T`H2Yv1IPdy+XC&Osb+4`MTu@HmS8#yg43P;D-?X~E{ zsD}m|#ZqWI3w%8~xUSJop6i117jT`NU7>%~mJS>&!ZT(z)7*jXYZPK322+#8zwqf% zWOk_8Io=xHiEfhLe!pTtzuV;1unU1VcdXQ4k36SY-LdNiQ}I%ZB0Y+fo&*WP{i?Hj zC}VANj+-v2;w}rKenNY&eLqtM{TNJg=#z-Tz;P$-3&M#kUk{m6Jy7YYbM5kgu$*1o zm%)-o12fi}{V7=tcP1hpzImL?-XJw44ZhTbA{XA7gQ#{TQ=RQSsSVBlOz+a3N~V0&hM}3*2SKFMEW{o zp?<&w6UdQ4W;~vbq1W&$rT>BU&NRH(b$;i;$rb-uYa!@MMuWtesJmyw&usdYfylws z#MA5*%|d(4SE|wY98#?=p_5BknOvEW8{v1cFIoCeB}2pQn1H}Qs8`taaGV1O6|i_{ znnmSofpD2bV(2^$+$QQWxF>f#e1Db=hG0bZ3vMJtx}^5?Mi6+RQwn8dZX6z%R!HBc zZ#;i-a4KiOjEc953))xVKq66V2x{#NDl60hyw#_+R1zU?nz~vHGE`)&01XWSrv-s4 z4@SRqf+47|p^EZow>qT!LN~zlgNmwMDCpuv>I9H66|}3mPw1ib+LLTpqCoT98KgewCgc@5xo zoSdBHVFSc#i5QBSA+sLag9N@KOG#AJexC7s_NWA9l9=;xSK3VCyNI*7`j3f>?-DHK z7kBe<)22)AUrfuZy=Cb^<%_YZJLRL8SBKT95&aW$sr${~;N6O+P+A@51dg-OBEEW)}8VlWlaCsTC8QJ*f9`wzw10AC1d-T8oZmRb0S;!EkdcfrAdte0R%P<0jkR12^6S7Y{ z>01Zl1{vxORj(qUOyCRj2I(mf9ygYKxQ(xkGGQ)QTVr=*N*N!Ure@cK<)xj`KZ)k0%VfF_Nqe z9ofq?8D7Na766Kn^^8e43f@O5;BS{ z;!Q40W63qIK!36_Nh-C4zA$ea_oF|;ta79QKP!?dG;CKXG4wXueJi|3Xs>3)o}QUR zW)pJjn|rouz+Uk3@ex6Hf|yV|FRXR8ZUR|~ICbDllKkEB?WN+}XkDqd$SM+2g(y^! z_X@~Lu>^=h@?M^uVUX`rwfyvltaomxztl}U0zyOuxbAL54^M6gYkU6z*y__ zR?>m+THV=o_$kAR@XG9I<^4WVM001ad*UH$hKd85GkivrP3EjOuGb?sQ!J>M^xUG) zmeViPL=-=&W_Yx_T$rf$>ZmK<*S8u&?bCQKytvNJGeiRHj1;badno5AA+B!`PjRq6 z_0Wsx;mWLe-#35aA=aOw*K+5Y<-tIGc{VKN{sqcHU|83w&fjU4iwf0r;Wla=O7QY{ zdV*#^`}T3b>`bH{^N#5Jj(d?B|3J<3x;2I(sTQQF*&4?Yp!>*wVrDX$w)5`nMPF>O z^jYst&DyVp4HJ$w^c+#d&*u#aPQ0VA^8_%S(Fuqz7BiX0*U6fQutg{8UU#9Utp^_` z2oNu_X9!IIeuG2{K(CF2q$C|Aps|kbwdMwHEKbZIy3qFKUI;IGjwq|Is>4$wub^;c zd?}%82JxWprbXw#UCWIu;h>Cya)T7Pg2>`HWw3g-!Zvsn+G&w?U-+J$`W>0Rau1bM zdN3sSrnLU4eKPkh{yKinMx$2$)oLUvqtxIKZGka*i}UD>O|A^O?3qh(Hwl{^Y&~s$ z`plG36Dr}j@lomNB=Ik2J`6s`(tl;@d(khU8!JKZdL(EFIq|QJb}j%bYjx%~kE8yT z6L&81BQhfdf6{oZLyz#sKK;T^{@2N+=F89j>|+KHA5#!KU;$JbI76*_Z|_r)zPt^2 z{heS?kA+k90uUdMfVK_!5I#(teVv~hRI?`n)8S6aV|x{%^^2Zuw=mruuCj`_iUF>3 zJ{%tBp9LM;-1#_vZ-6VKw58?Kr8t3m;Whl&nl|NEX^~a8yM<&2(VrsK9XgV+LpX94 z^?U+ftVD17AYB+>XoSaSWvZH%bx}(NBYAlu0H)D{TWF-Xa+mI0}b0WL!| za@8y7!xJslt#g2lA%yDbXWRTB5aUe_Swp zt>zpFg|s^mI_+&`Q)w=InN1*Z6|y~FYzu2%RArMneND;R!+*Iful;Dn$C&ZG>2c@m ztmzWi>6#~uEvpaNtGb+ati$h%9Brdlp5?Dl%DBqnLjQGI$gb34)q?vK(El}pW|s7G z)0Z4(PG*!?Zg=-(Ttal@92<74^2R%%1KpXP*=?!ZVM`y|l=Iksm&@ z!iy8v`IZJsmQs{RJKLwdW?yf9{dI~fxBo*v`O%PcT}3o}0* zDz*M*k7V?3)FOjgb&hKTsPHXVrz5NNIyt%$KU}KkCh?QF+g(ny#WI5Uj!g-y?rK|V z=T$`mg?pv1Nw|FHOk5cmL5HoxxMNE1H{Q%@=^~a4`I@lHpHIjq^O00->AaXtg8XtE zmAKTRNK5oAr}1I%6G8QX3i;HXd3D1wU4$iQJ-Vf=yqsk;=IfxsAb?vpoF7R25X^kZ za603-tq$U10!1f6!WSmj@y{@-#BwM(ZM@0i3#78Lcn-Jxp8sQC>q>}|aEY5+s+2o= zqIE*3H+1a<6jGt{$6awWRQC9lu(d)sDxgOXiJ`wayZ6-yxAL1(e+IC3s!XJ;GV`Y-1hK-gS2SPauWEDY2CLyjgO zrjb+&N4e8CIpsXQ%SR`Ep8Qx~Fuq=HZo@XU(RefS9c$d=v4Z(tLh+CVHlCUp+`C8r zxlL@&;qk98REamYvV;gz+ol)`??-~C{QZq#`~ssVs-Ei*;LEft^vqYUUcHR)-$=za zf{Y@;{NSsw1PoeY#>~@G3`sg^T7JR?2wfXk(^Nq?g&3XwDR&Uqc<)WbAvMwvC;&5- zJ)&X)IYo49IugVPSXm?lLQ+8v1n(d&fU?_xN2W8*QdYuBdc-z}`W1g-2?}EPleSm0 z^pPp!nXTm_N$$23Kx6a+mMvpjyav?mNaM$4yz^81@go%R-4VPUHIp*rldE|x)G@t` z5ZQ!20Ns&6_c8f@HEo#M^b3c~zqyCNkC4Z4H7AFRsAZ50fFMVZ zf?A4SBmvJX0Y*2_Yjr_kI{qy7SoHio#MKHT6!FjUxo7Q&C_Uia9t5d$vPe@_%6!&a zS6Gv&%P|?I7v?|AyU(Ldc(?F4WAy=t`>O=<4PMRmdpb@kZ#L@ACQ6Kp<)y|k`kgpL z+)gdK7~^I*>+Y0$Z}0A@rIN;$+^IMD2MJ03OZ=QcN zejKY)Clk@~QMY~bh36iXw>WZz? z5>HnXS0iWqg}iSRJe$-$_{&~6eN4YSg6Fb@k;=EV-Mhbk7Wyj!=lwDCOAR}Cd-bZC zOmR1pvrp1K&fzs^G`Sd$+=K6zY=4VHh)!Q^XFkCw9!H|8D`}h}4?QnFk%Q7@4HjE# zk7j-|-+5|9#f7}tj3LPjipiRESlj?S@lNL}*=w^dr&ez87OL6ERar2M+^dX~e3@ZT z;2#y!aN*aiHRUQ=idN;}&xswdNYK3+nVu$At!hH%Od>KDK9s8S`6J3E8Te3pDrt1B z%|hylgiEsc5bknR(&rEpC7y3_ho_F=vx6`sK0flLmylL4 zR#_~^DWeQOB5#%e!RFtIj1~ zD0be1KF!tiEY8e~v~{#6gRSQmP;!6-8v}VtOUc9t3@p1kQ=cRfDlK)IJvy9{1hcx5 z_qn_+pu7}}Kl=2L+h_#s7HsHfY1NTdTvw%4eyKmn;?ZNuSs}J4w zf0w-W3#Ma0_6ylkq(aO}z{UE} zxsmSKzA~TACw)u5L@*>Pr(SBOmw{xWN9kx|4hxIN#Z`Z!f~_p{@R9F=-i1CQXYT3{ zwRVO{$)X$0=VSX`^q#-6)%2FaOKN^y!58$l$T>g@CkSW|2CEw?lo=$sctteEtK1}v zOReyusmPxlPT-s6`07g*MH_pXo_}3yWguF@&c>U0zu`DG(U!m^HvHivu5B%L#EZ~y z@a|yh0O?dSE@z^Wp-mhBEemNA_I}%OYl5;S-lF6Dpq&Y&@s(Q_rUKul$4+fZSQ{*H z>Ceq?e@_w5a`>%gI|2a={D}-|L`@ey8m^?XN31d^;6b#r(!Hghah z1DI`dD-4f1FF#S=uM6AtZ6t9P2P2i1P|+cU?~V%9^?M@?F4pvOHV6=pTd|KbI2)Xk zCRegmD@po==ejfrG(5*z;xiHnwj(5W6Uv-udYBU!;e}ZG2zHgKw34GzT5ej4(xg`jV@fwbtO?;btxFN@Gi!)1mP74+ z@*g0_Lcr=L1zwR;4~6%A2;)f?+5e{KJ*f5}`}Z=~>Ls9V4ADYXzYPJ2cyMyrorl(# zl#~xN94*OmHCZ~%JEME{&isnQg^IZ5e<5Xbuh!w=cPT6o0ur$BcU2@8@zTo&FJPe~_aRk_QFxNj~5N zMM54>g(-3%o!`+-A8X-0qrba@ODAgbD*+9L>Jm*S0=~ z*mOQFYO4OwshDR*zR-jA=I}9~HTA_DjnVYRXU?dB2&x8h&pI!HL>ZYzV0CMK0`WEg z8%=}VjSdy`@u?`J)!{+gx3_r}4@xO|*Q4Qlpq?x5@hpa(2&TgI(Kl&xu{pX5GgHd3 zl@lfwrZ+-;)To?JcY^WN66vxey}{C}3%&2=ELBcxG<&wrIB)(+Nb$KB`tTry$`{O^ z_WuDX@oqi-bj>yd(PAMkvNO{Rh?*5ihX4`l4=C+Ip^jbJ)kQQSIliY+_4R%zqSJCeWc z-ak;knS$j3ZZRiU*Tj^)PtZw8OX~LNqA_ztiK-wr1L@ujDB{iG7DhVOhR=Wq^;YoZ zgZ@F9JLY-UXtSR?zrBwfoePWnc;4ceM%^8m%&X)0S6bx5+FDu>N@pTP1FFnT+fM@A z_w?${$F>4q0gtH-rgA^mqa4i>n{?qdi}i}%3w-0omt6QX^nISQzXyM$a}VO}`QO@X z^6zv=ra}S%5V<;-nn3CSG%)g)QT-*BT&Py~rRjf5%gL3T{`eHBueJM~GS@%-N@aa19Q!$GGgFE3Aid3@UiY%({niVg+WPip^u zAtZedKpj*e0Fl7dBSBK4D<`o=c<+%b1QQJXCz+w-f#Tj5I2}P{u>%GE7d;7)Ni!y! z+{_PezuBQ*;Tg5fyB6#BDCYe#o)z~n>aK29;kneGTUGfGJ=PAnY9a7an~E3kG=?<^ z$yH|Ik!4V~7SRnu1Ev=VFr#YFh$^ZT2^Rrn1|V{XyaQ|&;z&*zyNC|PxQQ8N@RjFK z;F}3hMqQtwFlbk#QInu8f4pBVPzuymsh(}!4`x1pzIa@jo%XyRgH^57kit?@(ZxCi z;#UVI7z0{5+*!7`dm`jV`~SWUla%=!c8d5o=&p{JK<<=HlKSU5^Zw}%je3+&dYJs1 z!{!elNf_`6t?cYNKro5qAO25X9ZjjIs(KDEsxydtz*js|lqiOT`H3G`L9DoN10e5D zL}d#b67;mDfBznqeqx6GzhJPetPLxBjx=lUHS6TVr9BIu_nhTt(=#scI&SvZvX}qc zT76tLJC@>r1qgv9WKRL`XXGy_tNrvf1WO5wyFr)a9dAHL+4DZ94 z9d;y7qx%~8Uj+wYVaohBrrc)e`QgqVzLwheS*yF-nl_Tk*<*tv`1XqU3ao@yy71Ef zimy3f^U&(?l@AK9mMkv*4lcV=Tf7;GbMe-yrk3TrJ5}i=Jl6k`x|j9~ZgOlx{@q;8 zSFEuFLnf}pJ*n0VQ0Ob?n3$!^t~lQji1PBAHN%Ze%tbXepaU8-#>{mS{_J>3 zQUs+$g6u-33d7Gfhdla#d&XnNPs2SFHkrH9L485pny8uRI%ymkIpFnc}Cph+$z`djT;e}3;0mxPLY!#dGE}q z*9)=`!;l0SGGrSi){>ovVhL4mt*itSaqgv#!_tPSf5u9>)+w8hT?3E&h%)2uXd7?e z;@WxU-)APB8skD)Onu0vymn9MmxKhkYYa- zzNh8LAepGxI&FI;%gUP0-TnJJ6CyVQ(EV&SN&^opNwAUhkin%Hpo51DNMi+>AwB#G9m?#Yg3oM51UBf*|Qsw5^Zd_dg4jLukgAj+e(Gns$6o3mKahNOxmi_WR}dDI232s zsaYO})!x9&MxN*1U9(n-l)h*G&?sJ6;x2uokF{mDXG>jM%5%}1Iz?~!C4FP}IpmR^ z@4f1pBheeL-!5BJTIa3B_W-0qvHJ2~@WH1Yy`xfCV*D@O@8zfIV>&rwo!Fuh?9J*$ z+HAT|sZlks|LdOd32{&S%&Wop(yaRcm*rblkCf8;t%g6iMd;OG^?UL(bq1? zbz1KEpkZUgZuZpE&v>HWsmx%y{Uv@Rc?$aqrK?tzA>j+>o$*1Q{>s}=YV~zxhr*Nh zlG|%)ja}Zp9-#T+io*W7Jh^XSsz8_IWyW3PQh!Cl406Lw{IOT1$v>rXjkO;rZ#ca6 z`Wz^hIyT$3cUG9~8|Qjrm)?gU;pv9Be}DPPDt|}KS2+_A(URs%ehorBBWqqamK7D> z3)B=OTFn|44?HGMV;gDf<`@^yt+n~{b$l}{_TFbAlA8ZIW!6CY+qO`ORbNhil|dU* z1sk#Ad_0Kf5xI$M;bG(2?{nXNh`hALTsM|XjXm(gxy%gM@hzRhXdZ^s{%<(0_v;>g zkb8I8-Qcy7S}{-7c&cvDTFo~t)~9`Q1yYgrslGQvrAcYCNE#`a29m))Lz`LaQ2O}h zP3$d=6VvZQ`#ObAF?rIxuzTLf!|&f_xAn!RB)lrK7w%MLs>>JH#eUCm=0^w7GjD5YkV+5 zhQVCLqTmYE@^tuH3zb(Jp2I&?^l_E^Kkc1)G*<1q$G72?GoHW)Aeka6l9WP{BFR{$jERH>kttH9L}?Hqvye=QS3;T3_pa9OoZmX{ zS?m0B{yQyeWj!9-e)it?eP8!=eZQaU>yJr|8Khd_2F%p1%dTl?@F901+}IvvDK-k_ z4w8@$`%hcvvcpXr!}I6)yjFy{+ip;JEC=kDFu0%Dm<#f&VAo^SwRO(Du+**i( z2fR1ip>)>AqslQOrlH=GQNLG{Gvm6{DFXpfB#;)p;#Kjn(v>9*uZIemeR}`he`y%8 zE|WF`%P)dALCc8xey#1>w=>2;Jh}z(ve`q!`jZeIg%>k+-MOQ&*r?aXE~X}4pLZZq z;ri3q_vbhj)!3V-70y7gny}%IVD}YRYMMVK<7l##smEdapcqDv?`$dB9^4kTL39%P89ad3#e^uNyMoWF!A*gM;~P!VvlbWEV+rCfU3*6ZWkB7QCAL^U*bo$BXRbE+(&zckHR! zB$wiAsgh1p+`(H)nJL6W}4Z)Lbcdpsd{SN=Zei> z+%)3N2@>i)cDs@JW$&?eS+%z;w+qU)wys#|YHF>SUEy==L=v1TuKMzGd4jbv7UwTd zC~f^_Cm!4+#_hz-ucIHnpr7Nk;NMy8im8%bMmH|`{P6aX=knTDzQK-JM^NgcnL@B~ zmaED|C-T5jl+#3V33MDchsPu9 z2S#0C-Hfb9iWA4+-d?p-*iVb*Ch?WFi^lT8inBvN!!CJ^?Cv4|&+BqR*YN(8;^*c=ys=8-s=XTrEO$Di`GsPX;K;V;NtZ0iuqUZTvut4Wj(%b4ZZ_#7Vl zIinp-Qu~URIX`g8@T7%nYikR?*Kq*clDhkCs-cx-t)DC?Ai*~#5;<${N^n!W$p*Z26*!9@MVefdU0_setDm5jTLWF}*yLzwxMx?ctf+aM`( zr8%`=3!VL@{#%DdfCvz-Rb$qXIdvkdR|8kF6b4p-*Bj;JZr$rUJytR?;Yz7$T-uV> zxluNIc6tAjGd!JMzP8s=cvHvZWP7*B_sa)cSQty?e+}>!cqhzX*RyCI*So02!`}t3 zF1x9mlAY2bzi!<`|EKfsUcH+5T6-+c%`I;QeRjFDm_S(mSS=Ql-cs;SW>pCJ&=~VKSRq?Tig)dQKY5~fW;<-S@}f#sId#yPgmj`2>0*XY`$#XFiTyp_K!q=@F09H^UZ1GMO0 zrC1L*O7u4)U-F8hjkl({x>w7F+dem@=_Bji)(VfNR{p!KAJldTtM6G8qqzv9fwbF$ z!M*rNPL4b}uFy zFv3^t>FABB&Q{LPP|<`i=(N%_!rLFw0*G8?M>GQ{K>jxdCeCF;Lt6V(4e* zHGl(|;P06C;C7BEJ2UsQ%dj`=N=E3qc3n42M0BU^+&`#N7KkjSA!Bt zFMwi=o3a5iSh#t`g{hNbfZrc@WP5!Cb}mM}iDO{xot-QC2qQrTUXoxUkLg23D|BYO z@`4WBPZ9QcUE#%J7+GRUO2%u&#Db9?7Mn)Ua2;-7(o7#gsS(^%(Arsf+`1G!7)k#id_fI-KwFNOoA6hd%=PQ9x{Lc=Z3|^h{Jxo zqbcWj%xS1i7(`-ta1z%n5sw<9tgNgW)0SibK9>RVhDl@+cHY3GokOEjPUVtD^}h76D!xP8yP7lhCs#Tk=JiexnF zYb5%%F$?Y8vxgB8gdC06`&a3qTQ!OR=OiP<^$+6& z5M;d|D8V&6Zv1%xZv1jN`=fr%*Z`|g@sK)_K94<0ztIHZi35Pnn1Go%=QW-lKBzvR zCFTh8txL1L$%S7HMo1}PUdaCk)c+`ti3n{0>FuxDTnp<3B`dID3CVre)zt+>h*CHb zA(XB*vKD}8j#`rwmtXNm;d<`3!d3k>*2p^=0>e4TjsA2ijC|>9?Z4ON*sGQ z9YJ^+R8wVr*QsZn-@L*WoZv|s3(D0J$25KtU?ie2l8z(i=1Yha(53_i2BO^1mEbmw6{--?9 z{2SfU6eOc_hIPd%gQ)g_47-e#7%ydL=0K2EBVQXgq<@5;4k0*%HNsubo9Q2&uxS9} z!2kXc&A@g0O1e&w9tZ@ejFI4gRlgG|@mume42a_JNE5J?u$b6f1V0!$ETk0z9p*$O zr5N&LaX(jf$TK0o{NzkOb3Z_v;LRzbS3)!%tKOPBoB;4KCda4U?LOu!RJmi7B8Uyh zUE=kipT^rsW70KQfb3%H#rm31l7Jf3bai!&*Bd(dS!VcTZG)u<{l8)roY_|aD!dIt zN8?>COla7Zu-i=H4tY&2HNrJ)vERtXDagNuC)Mw}eVE_eM4Lr02NDR&% zU6927o?~lM4A^Li4=B#(6peVigkP|AtIstvA&8FQ5ds(lG`?E$e0_u0ud-Nwd71MJl? z!O-`jzE=AU*^O;ay26bUVOV`N;G_$vXb8e8UW0CM(Sy7>S4fJ8is}L=89svb(K)^A z#D&S2)9(~|82ED&uXehxOf||{ZS|DT_<^TE3`>yN`Oy!mQ7|Cr5RqyUhWI@Ie5!$K zT2C&M@F)mk=1)+tO+@XRfp9AVfKcH_+1XxUMn&!gr=R_`gdF(`&}Ze+R+hh}QfAWs zDGAG^@u@r$a_MmTi)bYwm|E!_zot?j5+ysjRsRlZSS=*sY55&=ZGsW*_p4rq2-)D* z_y6`{x9vfBih}7=Q*F;bzTtm*(QAN&O5EJsBq&0}X?i9QfDC;@?8R5jL!ShqDbS;N z1tFOIgq5HSU4&_wg@uKJ5DmJZnwc;-i-yGQSOzr?9Eg_ul}-YNNXt+FC+YQ=U>4LF zgewL?7^!fVDJZet80Z96v}tzgd*}Urj0G1! zk22iGPXSUjABZECw4xbT6h}$K^b=TJ!VMv$^~c~BEsL8=j*H-bt|u)TOE`(pzzf<0 zhKMxG3Xl73ZET)>D)WE;(0mJ344AGDIFABQN~)n$j9DcBURp~eSI7Z`_?a(j<7mnc z^M^S|TnII5NAroIz^6BnFl2*z6-(4@;6$-xEHE-BTdd zmSU=wMuif-ef5yU$6vmn3|ZcW)RP~XO+V#CAW~0<Hn=2-PU^I3GTm1rG_hg-PKXwpka%rcBv8lQTdAR{q(3siEjXQQiwKR<)_wvB9dG z3?YvA-ey&Cx&2q~X{ReOM3Uq3LfUIXI9fbe3{->EiY1%6Vp#VV_7pSieBM3to)H%# zVqRP3SQ`__ you can figure out how to navigate around and look at the results of our small inversion problem. We will have a look at a few of the files and directories here. I've run the example problem in a scratch directory but your output directory should look the same. + +.. code:: ipython3 + + %cd ~/Work/scratch + ! ls + + +.. parsed-literal:: + + /home/bchow/Work/scratch + logs parameters.yaml sflog.txt specfem2d + output scratch sfstate.txt specfem2d_workdir + + +In the ``output/`` directory, we can see the updated model from our +first iteration (MODEL_01) and the gradient that was used to create it +(GRADIENT_01). The 2nd iteration produced a gradient (GRADIENT_02), but +was unable to succesfully reduce the misfit during the line search, +which is why we don’t have a MODEL_02. + +.. code:: ipython3 + + ! ls output + ! echo + ! ls output/MODEL_01 + + +.. parsed-literal:: + + GRADIENT_01 GRADIENT_02 MODEL_01 MODEL_INIT MODEL_TRUE + + proc000000_vp.bin proc000000_vs.bin + + +Because we’re working with SPECFEM2D, we can plot the models and +gradients that were created during our workflow using the +``seisflows plot2d`` command. If we use the ``--savefig`` option we can +also save the output .png files to disk. + +.. code:: ipython3 + + ! seisflows plot2d GRADIENT_01 vs_kernel --savefig i02_gradient_vs_kernel.png + + +.. parsed-literal:: + + Figure(707.107x707.107) + + +.. code:: ipython3 + + # Because this docs page was made in a Jupyter Notebook, we need to use IPython to open the resulting .png + from IPython.display import Image + Image(filename='i02_gradient_vs_kernel.png') + + + + +.. image:: images/specfem2d_example_files/specfem2d_example_15_0.png + + + +Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory. Example #2 ~~~~~~~~~~ From 75243790eadcc826d18e754538cc73a65811df26 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 29 Aug 2022 13:04:24 -0800 Subject: [PATCH 146/195] bugfix: specfem2d smoothing was not providing smoothing lengths (h and v) properly to underlying smoothing function --- seisflows/solver/specfem.py | 4 ++-- seisflows/solver/specfem2d.py | 23 ++--------------------- 2 files changed, 4 insertions(+), 23 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 3484ac09..551979e1 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -628,8 +628,8 @@ def smooth(self, input_path, output_path, parameters=None, span_h=None, if span_v is None: span_v = self.smooth_v - logger.info(f"smoothing {parameters} with horizontal Gaussian " - f"{span_h}m and vertical Gaussian {span_v}m") + logger.debug(f"smoothing {parameters} with horizontal Gaussian " + f"{span_h}m and vertical Gaussian {span_v}m") if not os.path.exists(output_path): unix.mkdir(output_path) diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 7aa4daa1..1fb6bc6b 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -48,25 +48,6 @@ def __init__(self, source_prefix="SOURCE", multiples=False, **kwargs): elif self.materials.upper() == "ELASTIC": self._parameters += ["vp", "vs"] - # @property - # def model_files(self): - # """ - # Return a list of paths to model files AND coordinates, which can be - # used by SeisFlows to plot SPECFEM2D models and gradients. - # - # :rtype: list - # :return: a list of full paths to model files that matches the internal - # list of solver parameters - # """ - # _model_files = super().model_files - # - # # Append coordinates 'x' and 'z' files to current list of model files - # for parameter in ["x", "z"]: - # _model_files += glob(os.path.join(self.path.mainsolver, - # self.model_databases, - # f"*{parameter}{self._ext}")) - # return _model_files - def setup(self): """ Setup the SPECFEM2D solver interface in a SeisFlows workflow @@ -93,8 +74,8 @@ def setup(self): f"*{par}{self._ext}")) unix.cp(src, dst) - def smooth(self, input_path, output_path, parameters=None, span_h=0., - span_v=0., use_gpu=False): + def smooth(self, input_path, output_path, parameters=None, span_h=None, + span_v=None, use_gpu=False): """ Specfem2D requires additional model parameters in directory to perform the xsmooth_sem task. This function will copy these files into the From 2913cba922d01c186c6c2f8a58b48f3e75a1fcad Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 29 Aug 2022 13:26:13 -0800 Subject: [PATCH 147/195] updated notebook convert function to do some bookkeeping after creating the .rst files from the .ipynb notebooks --- docs/notebooks/convert.py | 56 ++++++++++++++---- .../specfem2d_example_15_0.png | Bin 67022 -> 0 bytes docs/specfem2d_example.rst | 6 +- 3 files changed, 47 insertions(+), 15 deletions(-) delete mode 100644 docs/notebooks/specfem2d_example_files/specfem2d_example_15_0.png diff --git a/docs/notebooks/convert.py b/docs/notebooks/convert.py index 9a91ec81..d6bc780d 100644 --- a/docs/notebooks/convert.py +++ b/docs/notebooks/convert.py @@ -13,9 +13,9 @@ Copied and edited from Pyflex documentation """ -import io import os import sys +import shutil import glob @@ -24,29 +24,61 @@ def convert_nb(nbname): Open up a Jupyter notebook, execute the code inside and save to a new notebook, and then convert the executed notebook to a .rst file for docs. """ - # Remove file extension nbname = os.path.splitext(nbname)[0] filename = f"{nbname}.ipynb" rst_filename = filename.replace("ipynb", "rst") - # Run nbconvert to execute a notebook, allowing errors through and saving - # the new, executed notebook in place - - # !!! For SeisFlows documentation, we don't want to be running notebooks - # os.system(f"jupyter nbconvert --to notebook " - # f"--execute {filename} --inplace") - # os.system("rm -rf ./index_files") - # Run nbconvert to convert executed notebook to RST format for docs page os.system(f"jupyter nbconvert --to rst {filename}") - os.system(f"rm ../{rst_filename}") - os.system(f"mv {rst_filename} ..") + + # Overwrite any existing .rst file with newly created one + rst_path = f"../{rst_filename}" + if os.path.exists(rst_path): + os.remove(rst_path) + os.rename(rst_filename, rst_path) + + +def adjust_nb(nbname): + """ + Since the notebooks are not stored in the same directory, their images + will point at the wrong directory. Just make sure that we adjust the + path and then move the created images to the correct location. Probably + an easier way to do this but for this scale this should work. + """ + nbname = os.path.splitext(nbname)[0] + filename = f"{nbname}.ipynb" + rst_filename = filename.replace("ipynb", "rst") + rst_path = f"../{rst_filename}" + + # Move the created images files to a new directory + nb_files_path_old = f"{nbname}_files" + nb_files_path_new = f"../images/{nb_files_path_old}" + + if os.path.exists(nb_files_path_old): + if os.path.exists(nb_files_path_new): + shutil.rmtree(nb_files_path_new) + os.rename(nb_files_path_old, nb_files_path_new) + + with open(rst_path, "r") as f: + rst_file = f.readlines() + + # Check if any images in the converted notebook + for i, line in enumerate(rst_file[:]): + if ".. image::" in line: + # If so, replace with correct image location + new_line = line.replace(".. image:: ", ".. image:: images/") + rst_file[i] = new_line + + with open(rst_path, "w") as f: + f.writelines(rst_file) if __name__ == "__main__": if sys.argv[1:]: for nbname in sys.argv[1:]: convert_nb(nbname) + adjust_nb(nbname) else: for nbname in glob.glob("*ipynb"): convert_nb(nbname) + adjust_nb(nbname) diff --git a/docs/notebooks/specfem2d_example_files/specfem2d_example_15_0.png b/docs/notebooks/specfem2d_example_files/specfem2d_example_15_0.png deleted file mode 100644 index 25325e27bd2c61df45c76363f1f69b8ab008d987..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 67022 zcmeFZcRZK<|2Ov2D>>%JfNANPOP`F)({x53A8ypQ+$^?I(?5vHxBLQBO)MIw=C)l?OA zNu(|H#J?2V@h3A8vp5R`zh-sy63NlZ-Q|k2`xUzj9G;i1y4g89aU2ynB63uS!`9v1<>cYR|KkfpoUhs( zPNL3vN+NNP)D%zYdnHcxUNhG3Sd^TZ*4}>kysdzelH!|?ZF|+lZ>FW_=rHIU-hN1# zUPrv*ly$|!PVJjq%5850I|A>#JrElxT>8k^I=Y&XiGg0HD|d;m|3pVUje*;G@29`g zU!kGX5mT|WK$G=}owsm`EY`$gffy&Ct(eARt7S-Mh%~6egPjYjG&Lo{= zlJQv#Qb-L{94K>6Poyb{bk* z&U>mZbHCI|rZTjW>H^8Oo_BPlwYIh{cI;;U7V-Un4LOBcKLIBaE;$;U0q#T z6T3%NR@P`&iQuPCpR_Zy_Lo;w3^cL_=!d`ZUq9*V=V#^Qw6nr2>UZy}q1QLIvQ6j< z#Hy;Q2EKfG^rG0F@wTj6Se${L3OA-w?h_~WFouygG&C?ZkmS|WC{0T2x8W8ZJz_1H z!b0CJE0fI4&E>eKdck)` zc6M3(4ZXe9b;rggCTjm26MY^z-*;_mXTX!%S~<_(Jz;sKWn3H_@{T@MR-C2I{ZY83 zG_9nQ0d}VMV`3OsSws7(eXP4n9gm2MuW3Xt)sBw0=X`Bh>Hpj7y)bT|sG?He(!$`_ zRs3dlsL`Q#6PKV<>+cuACP5X+CQ-NYXQc4LJF3aP>b)6fpM;#@{Z`)p>qAUxM#k;5 zG_Ddy;z{mc_a&*QsGNB$wha&7XL0h>#fv;nJ>@sb%a7|+VU17^kLsMm-H0E!_PeK| zpsb7~_VMG#VH?dKKi*16*!#P`HoDNdvF^*(u~SD5Ym>CxI*8xW8v zb#3R9fQ=L5-}Ay_1&!)@d-vn#G9J8CyS}(rc5UV~`L=CuzJ8^*X-<5TrWAe`AB`_R z=hc7F#>N^y(6%j;p{vBfXpAmqdD-hs;&F!c)ul#!<;-}yAkV>rR<8remIrRL{~Q|H zN-DoLeZb7zJT)gL{EOV?K4oQP)iY;;GBWrUr@C(+kns*3r`@?z`RY}%EnBwGGcep> zIc)Ls)8nIFYs-ZVp1XJN<`58|!Z$IME_^=LU+q&?H+A&#r@)dDiLNr|==u41sv#Vd z=ZmKYo0Fs-iCS-$mXXQ1qM|wZQ9JLp1Qy^|qx5(p{%uNU6{Lfsz zd|CYJulEAcyLRn5O&VRE9a8v_W0cP?C>S0Z>c2WwrrzHe6&2N1;bx;N5UX&`!s5W5 zy?bNI%F48v4;;|)_V#ukZemKEd>77g(ZNAu|4H|+URtK5SF(!M1@xYuN&V+@LJSVb zo;`aESeHgyxWyzS(kt9X7)d5Y7sE_G;n0MJj(&*YBM(FwFqrc6T^Wue4~#k>V>0EJ z{nQ}GuK$LwY7B<{t>-_d!h{04hi z%5zeCg27NA*0}V_p2Wn&^R~7Wf`WoUAt8f5UfQG`Z~q!TKkx27-bN|*m-_w~b8~ar`uag?F}!bDTNzQQD5$7(C)$PNE*pE;ZH%@&U7r7THdtfq zbO_Cx7{0T8m7k|?;yZ(bmGYLZUAtx^xL52V1?lJ9@JIV@b#-<6J$u65zgHD^?9#VR zT3J~^q0yfxEGaC^D#)lPFK0b$QI%Fp!<>NCnKlZKMb1Gi@z}~&oEG#TEd&J1q(~Fu$ z=1~QVE8P!Wu(nRkFk0F6DN8RS?fRd8SS9TBgGIAPo*mQG)jjX*98D*?EU#~YMMBkj zgR-=J`}Ts85+!|o{n&gul3ArYWt@n49crc02+M&3JGm50OiW@O#l*zwQcm4c96opM zT=~^uDlCq@OGt#MR!GSMY({kr4Lp4TfiE9EobvWQ8A7v%YppTv-n|?5xK-+UdiJ%n zv=|rLGW7KJy3UWbnCxG@&F&wF@AIA?y^$n!&Hjv{!s*kqDGR$!kavrD)Ry}*Ru`NrFVc)(8Vbf9$At4&9 z!}3tH9MQIxmzOyX9iqeqw`aT61yLTq_In@EPSL!rMw*jCLqjvK)}lY4{u)ip287wu zIHB0Im*SIXz9h@kqm&8s^y3I%yHL>5zC&el9ckX5Yf?gmGyI0d(l?d4Hel2L{qR-R zy?dYHV`Dd#Cw{!-JA+buaptokz1O;|@4`6KzJ2?CPE1gvRXjcuf}b&fGMd(T)TTM* z^zEJYr>)J*%(RV-L*+J>PwQKlnB1A1ydv$pOfR=Szw7d+M`XbYWGpOkRNba~u&*b3 zU$M;2&X)VF9(!R{aTD#3`|x49d-v`snCa-;YxwfQzPu6pg;b^WB4B;N$o+TEo^Q`J zZ)Ig2iinJCd8W3jWSTt|hbq|MT^Y(CFyKpKopzx{vA7u*+7NENqcSi&Gq4nCMWc51|d7 zikH4VM~-sFD(zL!MSuTr&GHtk=3BIkY@a(3qJg*7Y;#&$b&CoMIgN~rbXKwrawtgY z85z`}P7?)RuIte!dvR*XA#?&Bb} zReCrGh=?#ZVdJTxX8v86;Jb6p!{Z=+s?KA4bR_EQvZ;q%&9&*iG>so9F1+UE=1reJ z=M`&aujl;nVzEDZMj__zUHaDc_Vj@a`!+Z-(MJ76PeqrJC&`^q2Aiw6b zMn-XrjErqj5-vaG??gpCckC{0!3iI$r<3C$?Pg*+c&EGAZr8T$+gs7aY$v|wiCZ_& z-2XVNU*=?9>9h2Lo@MV|4N@l1(yzfmg%2M-6ki=yFDfeHa&vR@UY<#%cer>_5!>G0 z@$YOSyF^U~+OdfDXH*)CF*oz}BVlNI_io?5o!N}fZv}#BOXfa$^k~zUFD$XIDk~XD zcf!Irxzd0|sYjeHT~ZP>dhzVnuZve*T{*)P6#$eNrfMBJL|VUndy2Ns$k2k?E3q?1 zTObzK!$q@S$4^#*Hby&Z>`2%b+0_Wr*L00I#bKfc?ccxur0;S;rrE;!x%Rtv4r)B4 zC$;z}rn`+ax0N__P%TA9NAr=2eU_X`9C6rrNp%JE4aN&IwC*PAMn){$$`P+y(=}XI z7aa%0E~u+h0g?V37~p&x|M>9$O2zy4@8$bz{QAesPn?ymp%QN!9CdxzQlm~(fjFwUyWpMNw-BnCh$|G+0t z*h5v_r4JuIe5I$H0bo+O%&E6;ylU%~EsEFtuZ^{C+k5Payo*Z#{|k*c5#t))6R4Lt zRnpR)lg2vEo%o1Q+&+PtY|;OMSFc~c&dJUF^r6k1Klsi0sjiaHJ9l(nT0;_uT*HGHM$Ihc*6_l1X;J5{Mq6vpC(o#_=)cUW}@7)_t zxr;Z&sy>87l9Q8LURj}ZB`{fB91Br{frYKxvkgcbJr54vQ!Q}rm$mW?LffxzZ)dU$ zSeF3i*g^7InLCKa+}4%PranJ6tf6x~$1v|Miadc6(JNAkICC>QD4ClwuNT!2T_MDH^ch%erTe)o@d6ozQ`7&+M+b`7ynL`^GcM1bKTor)^|$?+ zLI!+0fX~Z$+gV?~6_i3jL1BxKkdU~Aca7&18?eZEP@KZ3xuL|5{qHuPD@U?r#Xe3* zptg>FB7OZPm|gCbw*Q@j8s}$YCo)=&WJr=(ELlMMhgd)q`lY3 zJUKFw76mH1{dd!D78Y(kJ{5gb4w)985%c4|%SZ6De+~}^<3Wa(u45UEYyD;L0F8zt z_J%VHE1++_Fn`6%^VHwpe-z!OA(}lJELeYet0LFE^K-vG5KR$4OK|^_u4^DfhOq(HazU^lR!? z(raK5Y!}er2QJCki(TE_)L}ufvu;0%ly|*zv-=9<5ggD-^k!U32v6)vMZOWUKGPIr~0C% zl<%grf19Lp-&=G;1_lP5;pj^!BeNN5;U1Hn48kVGuW|K99J{cU3&<470|Ekc64TQU zHYdvv(3Rjc1RVq~09h(Pe`aI9_U;ao*W%=!hlee9;;EIKkc(A6C?qU=FEKIKb#rc$ z%wV2F7e6Vyt`YCYiR*B!E+JEy^w(si3GxH@u{{c=vi> zVPWAZL&JwAiP>iijFfzReP_@ktN~ahv_hQws=|mSx_+d%pg?}wS$0Bru7 z>(^A%b&pF)S)*i;HjdJo8;n@!>T>mHW1XdgZr|pXld~M%FU-%6!imiZ<)WatSnrz&2{Hr!^2k1i6;sQ z3SPer+Z8+o(xY_wGA|yBpdK-m z%lsX&tsQWWc7Cdx<>AAJogmN+!7O-C;Xom_RVRN=P0{M<=~)>D<5uhvr%rjCzP$2o zXOkXnURI`Lf$wC3D|Q1pDN^#741gYXDE)?~r)L8&PO83uQgtt%R$`!;NWRMp>sSEP zfpG;*8Si-tl7MfrxQq&TyNibh(?;{BPrIFVl3VcAfB*iSDfv}uD(7yhZNybTJQA{~ zVnw?)3@<4wYXsacaO^(TQ|-e7V0$YjCdQ=a<~Hhr^KZ5!o^VrkKkBFnAo6bmeD&&8 z13NobrWFLhR`6sB95~S6a!^htz%9WqtWSoz7E3X^lVTcn2lo`*;6;++|>kNtu&y*9OEL z`-5_u8h!1LtlZrGT$|fE2-S;UNND%Lpn#1PK9uv+r%!JYLWbon35V~Qd3~io>L^m& zyu8Z#Hc)xc?Kr*V;$mYtB_x=rf)!XzlVf7G;;HF;@qr-5ENns!&0w6iV}1kAR}%2+ z;NKe^RoC5$9XfV)mpQ9=dX^sHZa6Eq9^|w1+Y0SkAs4h2B(dPqN9N_ff46w`b`w~H zX5VpbR-1S<3vO=i5`*_O>x-tO@uN)ow{P9r>hA7d0L=kxnkp>Wp27g9P_UPfw>pb1 zQG=TE(QMlih;6|wBC->>y3V)*ZA(tZ9kz@bYK*o922zL~ z$F^3ouDa22dKbtTA+MpR8=Umb7I<}STG`3TDOjce-GjKVnw5X{mb_g+fd!yDA|}S@ zPaZo0zK;7p|2bX)yoagJfs&FEa%bJd25&1$9V@^f|7- zA!5(1#Ke8`Dk%oY;0^w_G;KGh{O#+stkgTcJtOPD|>q?unOpxoZ{lU zsaZtcLP{7I8>95|^D}$pNecl+*~~1lVN=N7p(Rb}xXVvcrTf^;v$8AXc_t+aT3S1` zp2$W*1+_P4-n5*1(LiIQ!gKZgJ#G?5{1#yj4iZsM78I6nPEofMq02_? zJHa)%qpGIog?grV-s|*nN>4YpT?d2oGPK@h>O2K_Wg$dbXc+){ufe2_px$w2^+59^ zkdvjQCD07fvX={saeQ>9mmn+#q5?j}CmfNGc!!=j3u)uc_wURgUb_JFThm9sWzbb# zn~wVWRU5U3^Vl(FENy+c>rl{fe4sn}@u^d%%H7BA7i=+yzHBQrh5jw-I;e(P1E)!^0XBnEx9#FR69|?^fT5p1&-+50nwgmi zgyfSf7Z3$KauAO=?a(NM#;rh&&>!l%y4V2s-hzXDEp;?4VK21wo!zFZrzh$@s_pxC zEQ7ck{G~R^{@bSEt0m+tq*BN35P(R7;yf_dy5pCa+FdC5`1ne^zvo*sFj#{XCg$KYTm`Gjqt+9XnGX4?sw($EDqc-tfuC;xP!q z>+bHo$;rvAq8G?T%*q3q1P#xBdL+tLYh+O0Ah4H<*vg=))qe)mBi5&?%dQJ`Ztfva zEg1(Cl*sOHt*!6BeT%`VP!ovNMPKHJ%wyb=T`6GFJ^`VWXUC2mV%Tz;lqHuxvyFEa za(}oerpv#(?YZXOJ9q9dYMwUup>9R8U0a@I>z@5b|B_;UMhu&rzx0o;uKP7Lvgb@q zV{YHxk$3K;a_IGhtoA-L&4|pwv0BIqN+d$5V=666^D}7l?mqOXk4fLH>6oOXWJyue zqKBJX&U|@n9#z@3X$w5Lr)W0!^##(8Id*-;8Y_zOolSm*rlkwmr7946zpzl$W4bR1 z%hf)fAnSMXgp^bao-WjNJ=~RTPr2*-$dds3E2hfI+kxj|;ahyDtGg+?v1}drsefQ2YUBt#<~x zx(bjNeoaoEfo^s2%9S&KEYBd)=9IX8O*wVZ(NR-3>j6YDI}jLqy}T@3$t`F^3cS3$ zJTV_Kjq)w#At=~K_~|L><-{8OXtU2=dh}dn<%s6Ng{pq0seyO{>WOD!zKyn4O#D=!kXT zL8t|7?UY0#K;Vt9Ju8`Q&68~Ii+L!PrObnkgxyh>)^20ReiaqB~IX8!m zqB?4 zJy{N3)DTFvwXLZm-;xgfkiZ@JFmr4gt*2E05ua-%-AR`5QApL6=eqY3lu;sk2o+@J z&!1b5AMXLhJ!1Qnqo?Y+p78IMrz#XwR5t;C;R(UT34{gakn09SNI-XNBLZg!1qE?P zNv-CMqr@r#G3Y>wc=Y)3n|JTF0bsJctMXl8jpuz^hn!~|S>c)Z)l}p^=I}HpP z&3N%QFdpv4#vZ&QC?xc@!!m&O?Af!Oot^UdT#!UKTk@!tU7|4mcA|t3b|7D3QAs!!R&LJERgq~m=!eIH$pHrPiyr+ib`*x2Z-aN{d=>b(;fNGh3vwbzLb z_;+zC9OrE<-BC?TOZohH4)3Mkk&t@UFKx~iY$gMRa-BTM2D8BS+jH6|b~%fu>(o?K zUtijsCD3SBvEA2>jz*{*1ONOJ^3uj!T4wscvH)MGra!E$`MOW{?T7)G4AZ{GMg_4XbwoT{{H=&kO#4OMbR;({nuE58cMSNXyS81 zl9Lahytb8U!hJ*CVLf(*6$H{1!b`4k;g(mPQ*~JU;Db2?C4so{8YKLQ|KCH{xp$M3 zqd?UOIl;KhDM@<-jOFL}I2BHT@5agq5Q_qc8}MEslnw~er$c3+U!p(_0D}Ww_EdUM z_xt{##Rd(A?nEg$B@n9)<$VXFaRtcE@e&Rp*wfZfF9_a@CYh?uuQ>AX?p+d0-vMWH z^IobaPrI^zJN)0>t>>>P9tg5OKcRH)4#z`s$Ke*=IGpE7l z+*xn~3zh|P4XNehwW~Dgx@y=p)6ZVa*}vTP@)(r33@A-d)_^b^suY0<#mVS}+kIB% zE)fbNR8$3i(<(1fGGgCTf|pz(9H*kv(&r!tTwDSI0$dRE##^55I25bS=?NZ09th@Y zF?2F4^zZ!GX~?q~D9n_Xa6H?J?ey#+O~sDvVPH5#Qv4{|4}%T0Kr``pVbi*4iMp-dqvp+115(ny5d3m`>8G-K6F>gXg_MGfY{mz}MFHm^phuHBGCkQjv z(9n>O_Fvk3QFP5tWx@51wq@E?QKgj@O zgFn8|($ZS~{c76Y&tG5%-GSZSG$WrLqlvSjOcBmM#2P+|_s)>00HpVyKQlEM=9vT+6^VUHl45y1 zVR5zf$iNq9n=WIm2ML7i?Y&v?`oC?Z$O(NAG{REn;^uC_9*YzOV+};TGkF{wybXSW z(1Z3oQ=_5Xw_w|^1~22a`l%g8VEN^G$b}+ zvk)e0j`ikDJ>AUG5?H)Uf!l~ya_))QBG zaBQ&mjzc`5?grhsiSiY}D!K*OqXBK;2+(zl@hCnr)uH1BgjRT^dLv7}ZKkHC5NL(~!p0fwa=zZ+$R9$z=wv05F|B}hM}-?ksc%` zi#$+LR=$rK75ngEO}psSxcP3R>v=;5+I_*V}aL-@W#@5S3;ax)6Eb;_u!Z zLpsuZ^>lYEaVk_;H}XIvFoKJ)W#FczLKSG)fMLQx$WEO~jv;FMj=Kbsw6Wq@<>kiw z?AVuTJdEQV`A_)!+S_9%Cnpsz#fSKLUB9jaN}zZN{x=865fC|1mvlBa)<3*`8w9qf zcS*`1E;PscfwQTB{mCA%luluX!LzwEj~#UvT0}1d$=#9{-coFlN7YnF zg0}`KThZ0%g&9M$#zL1-nHEpp&uI^{fe5V zw3<^RgV56V^5K8r{6{_EGfq_2=A6o(}H#i0if0TFEQZ@^TFbZ91QM=wWYYWev1 zL@tn0qGkW8=JnvI!D2b1nBT~n@c3~Hq@?z!baiqRA_Ya~I2t@>WBnR5!2gK3#GZ{8 z4+G#(RI5t>Egi$tC1i~)@)Z>oX;W}WInhuEE09zS1Z7|H2d(45y?Z*trx(ohjWlBh z@F3tIMnxHRmwHZ_Y>`J<;7sd~yE4D9@ZsINV3bjHkd};X)XWr=tqC8dafFDKyKv#c zC_ZW)rBn~_Pu0@$3F#}KoxPb2#JA6nL~lW|SB3fvD!{;j12S7_V9rE?vQpc-!sW!NCj2qg(?t2%X@-G7-AhU1F{4@L%p z1mhc3-fwqJTx~nxrK!Jh;;+5Ze(qXPEc4T~99SuBZX7z@sp;RJ`gJ?S~9}E;et~6B5 zdx~7CNUrGgz#`4O^zk8iAe*?YJOrZ>^#}vWui%DJBz>>bXK}3pQ%UoSi_Gl^DIF$u z1ePaqih_n_cXM8LpLVtSBz1mhmk5rfWWZ5r8-~u6tiM z)>nfcjq}t)#N?%>roQUwX*kg?eAeSu+Vi&$M?Jn|WLJ~kzj<@2(*|N%>~}xZKtjba zU#LK26KNWh*~{fdf7_|e@FC*=s|?oS8VqU{_A#nhPCx|C0FSB$9)!sV0#yW;SeSfstN+&^qP_S z=7NT~uYnm0d{?dlHdvz{r%l1>!}q9aX?-sbfI6!fVC4BySLqv9%VzBfWr@pI+cI@n zWxR_U04KW*jRQOk+M=?%uA#-EOQk4C*ke&NaQjGNH zo;%9f+}5@mf^}o>t80Xp-udIl8=wVt-x)IOxgAH3zGQ1ZXJ!_G0|F|c?#}%fLKmR- zZ2?;zmA8B5V@&JlR8td(O^?}Jr;_9~0*Cxj!z_lB(D-}c=L4AU(YrGfK9sS+f zKfeK@QXJP|}jPr+&po+W`da90jo1w~Xc@mpb=5T*NDjL*VNPPgW1`CfU6OYXfJnBL~VVbp5EZ->DU|9)zv1Z z_z#qPf%vQe`~*BsMGPjO9P;s8k0&e&>xPIM(b3VP4QDlhkwDr7){-7Sru>f#ltCr? z%-<7!Zpydu+-`)nSx~oYmNN-!rzt2B*(StL4?mE=vj&;Hh46~4=l!{wzvF@}v>Dm# zt`gU$`X1cBe-qYR8p?WX>0?nt>gf{8`08tr_IOC*kh`|XyzRg=Z~+0k z5Opo-MC+yA^hc0rxN*CY`%1-{Sq2^)A1Q5bC7NgO-kW{g@_*%bVWsR zk8yqINA5E}-w1TC)HKlaSGcJ-TD0T5XURwc8F50$h!?x0p5C~MuArK#{S`uA_7zj0 zeISa^e~!LzN4>$n4QhO9@1Yma0OtGJP>Qb z3osO`11kxVu!4AoD=1B-`76(~*>&is90>J5`^a`p0@*Ewchq7H@2c*z1DYb^;$eP% zLP>`t?hbIG{-hSgnh=W@CV%L)ZHylWV@F)&PRMqwmbR8wl*uF{B2`432<16d2yG^!wf5Kr1}94-FpYt(RnCX4b{AjvX=R?a&%VJwdRwIq}@3-iX5Z zp=2vzoBs$kl2EO7q^vOZ5CULK3=vyTMck#_ZDc1fFHsE;0sQ{A6EY#vSKJ8i)9>3y z1LRA%8lOMYrlzJEm%DJn-=~ITI65&g1U;g&>iSWFW=%|(P7FOP16BY+CYe{dzd_f( z39ie@$G3wB{9L~Le3Wr4AR!|oKdklFRI%5-C5fNA~J33R0-Zy&dG_KXES8 zPMFu%*Ux^I>`w{U+*lrw+a$cNw+#(-O-)o!{1zXN9*5IKIxLBhCQeKE zKh$9KM6QX9L{t)_8E_VXliDAaICYoi9ibV6p+!j7#0)}So+}oRh+G0xy@O{RQw!Q50o&&vF_3kFR!5h0sXuI62-0(qOm3mjF#JA#gqluaXsu9z;#I+CPGJ0)zoDAM>_wE zhoux#``yB(5LNQ++b7Z zHIiK}8B&KDbnbFH^a}}vPphMQc)7Y@OO`lxKZInR1;KIm{{6zaDe2>TlBKVU;heVO za4Ie&NngJYC!8>i+MWKq3RHJG;vJKakYKW>Wg_7OwjIIrkPfwjI+WJlq>m)-DYSBk zeFXj9&CL9KR%9LZgHq-(5N)OBlsXoOt=ppaWSGU5V?Pl}L{6SCe?XD#B^}lmyPc7= zIYOxYdstcFvom;%e!YP-vqUr145}B9G>?OW1F9-vyZuETNa8>MY8PQTL5ylEusV(O zeuynqZCBgM^E-VR*@tK)Wcm{Q&n|4_kBWjMaUSF2yA6$vr?{oBFZubI$7!B=7HB>o z*19+h#QhNbqq#W>1XNs0&=cF9YUfT~U=jS(i`LespZLy&b*a0dMWy2C-&08Cz&c!Y zarx@yi}hAlR#8DnVi$4w6%{9tBD#kT&mA9Lj7%-2ZSfP0%Ky zaQq&gnDdB>o^8ESp&GheU*ANObI`Ocxt!@7B6WUvZrR97(#%l4qK!OFu@|U&v06r*< zgfAl)sdna!;`#GG12Rq#=28w*vgXa|5_DVjvf2vOx_%`T^=xTpKE8}iT?b-(%h0sv z=qKVA4aE<&+ByGqq$1X3T*W>WcL7#m_G!b@I-VH4GL%WA+0;Zu{r_x9Z6-WWKL|KS zq+p;$Asd*Aj{69C)W|;e#;EiJFy-jVO;`Uyb-z$yG^7>5_OV1ZA)6P$s~e^glPaOj_CfU zWSLiW)|d}sz|=+{Iv`=JLu^4vD!KxaXj zB~(fZ5Brn;9^H@Q;%-9-!|;>>Zw!IF;hX^oJEb?~XZ^2+)C42)f7^fvO4Qu=?OcZt zBYgF@&}JFv=~GIp3kv9o@CjJ14j^7_u`q523{Me!wGa^>EYU`KqxI$zS}hkpKLw7h z5}*Wdx+}=@r+5kK)y1iL@U5K0*k2$u$Oy=Pd??I-P$|SQ0)i4?5R5Jem-w47{IDqz z3d3AQuuCo!8cL1mt;E3C-=*njxO)SbtvQ7wH#_;`C@An2$lZiqN52$BL4@s(k7es#%MV!Bu-;niAC!=ovN+B?A!JhNjrx9`w0jD%D5e%F#kwt<&$j<#uERUL9Yz{cV^H> z&i`jK=&e{z1-QXU@A*uV6}aIPq)Qhs>Yq~qt$E+jpj_ND1y}PliC;#>oIe3V16c|@ zm(WEz3JMO=gP0iZ2Ve*>pn+Xt--nYRNRYnXKd2E@1X`_&HU7}vZZIS}^5qF1f}HVE z*IqOntZ-;;MlGSxSXi9yw=DkUs)S;y0N}!hkR)_*-ELWc;KTHn* zm8NgcH`(cjZD>$hTM2b=40J+Ku^8E@EgUAv8=CFwLPr|1Z{Jp1(|mtX3<>1(*#5*Q zTh}5&ftXxEm7>0c$x%f-a>&T%FI>2Z?#>}1^5VNA`Zf{l`T6@d98k~9g)Q*N2qhW5 zP2KP)5;@X7i)VIcuz3>?8JBm8H^vGO2az z3I!*epPHP7l`JA0Fq#y9)Mh8d84@No(5YeUreMpN=ngdvO%O662c*3MVeHo<(T;1Z zm)l%93wTn!aH3W?OaBfX=7I8j-{0jV1!A`vRR&;Mjxaau+xRitMKKH{Ts2l>la(^7QG}EPbk<3#+2=@8Qkd2oI-*o+3E;P7^sj5SfOk{elmW+~DHjA;(@f z^64dUASXu5U4h>l51cT_fCn%}35h`B`_m5~>IKM&1Ij9#&7Y$VBx01N0=h|7d;TXY zYJ8ae$axZ$q|kLpIdZkyccrK`Rg4(Rl9ap+{HFaJqnn7x*qgQS0+xfeyoQ`-b@}q5 z;Z*LV#FiA#wOxE#DTtOLq!er>avQla!m$~ssK%h-YhqZoJl>a?^b?17+E;alb$}$g zStLRgPm7E7r#>FRhl2jFid_ty8BY3N4L9YizccTnlUpOEGLFg@ec=<7{?%|{lvpEmjMNM0?1UShfB5mR~8@(({l|VKNzkI zK~@6MN%luFKF5&jz5C!n5E3;lHAL_l&;tSnQPeT%V}-+lbn*^@p_b!lKSc{c+~c&b zuQVek@m==|idex+2VbRwu=jyDTXJOpV zScE#Ff|MpQ4?F^K>gg_suL6Asi6JsUBBr#6bTy8P6$%fc8vh1ut+o>LXwVZ{kT)Yd zM1Xg~z(@aZ{rQ@##T9t{7SL_jeefn%SF)MEMGFZS^o&5Gv6>xx$CRw+(S2?&4wM4G z&uohdy8)Y#u`vavGm$sJi1ZdDAoCZHXs46aeBuX8fUKfC4n|YV{rl%HUL?n#5Jd0b zK_y2^T&EdA5BQ3=@W+WXFEL$7L?!^g+XkUyQv#$y?5gpQ`hT^M3Z~Ig@kHsMBwJ(I zh>!%q3axC61lDd`_bL@2QE2F#~KwQ#Sh%)WtWbz1R zy|Anmd4S|)6iM6Hw@RCtkx>C;>p@bIa903m+C``}G_Nv09|=PzrYG6=R+hMo#fRGd zdVdc_e*Z+|sHiv~lJrA@=C1Ugz#E~o8>-bv;YD8KMy_&bH!0Oh_fzj`Idt)Cw zu+4o{WW|W&0x{M5>D zk#XfBp^3tqnc+7J()d#ZEy-M&I;f3Vn3x_IFlg_Vb~V4N@pjj4%DG+cO6J24T=>-} z98^{RE~$*dt6^{N#s6f!tS-bGiS@P{w71I`Ae@txp+!s!$A4!|`L6pgHa0k1q>|sM z!4qmIdQO4=y7$`H*?>Ea(+F8Yyq5SQ0Bi@ydZFJ3o;0jqLWdxc)b7vVfLM1HSl#70 z^r8xa6>-nRd}YN*^2BJBN(3vz()dX^Id-J^-k^>RwGNMr459Eff;=FSxV37wVQ*$u z)*EOggX0eq62iY}Nzo$G)0lLvkCLO$8|+P#use>AB)V~^F%sn)5pIzexfq3O@ROUa z`g6vnck63lNY~F29gm(nK)$hKGsHx7)V03rI}kd4_RqwXgGHvHa|RV>#Mv}m_KqPc z=l>_6|2%rF?f2Y0g!F-p%nj~=3bZ5e(KfVB*RC^P>-8{FC{FI*SS<4z2xigN)4TOx z_sC)EybWd^6QgjBPqRkhyQ+RvU4Kc=aoN1*rA@Rxl7?g7O`Rh(uA%y8;WijaS>S1{ zfNRf?8Zr?%n=F6ro2H~1>6xihh0@Vp%rVdiN5z?4RWnOAF+8r8U2+v|#PH>T4)bf~ zlRXhlH!lo^@A_EaEj9?s$U|y{w8vOxUaIxsJ8wnaylj)&DG=iO=+TEH>{@v^dqLqY zj1j+8dfF0H*>uV09d0q5Aegd%#cgNGfMhf$5)T;WT4DR$Ln$WA*|+JhepgOB!}>S8 zxRp4vjm7NlUE;qS#8z8OY8P9>6pt$KMXTEv85WJFHhV7TWw3F7oIyk)9ishP-V18? zOTw;hLV$h-1lv1t;o_c$JZhNazb8`h>wfv_e7wVpdm^=KS1AL>_L5eFzXNHpc6$y* zN~*&oeVCn-W8EzvD433|t_k{Ud8HfC!F0^I+My5^I+{GR5?olD4%ifwxYDWZJyp^% z7-d=Rl1eV`ja>LawfoOde}5EzS%H$E(`phzv3B{ap@5Uh1+|vePS3~BBrl} z&J~g481O;L*rIkHuTGgMcZa#sS?M82cp-R97f=_8en$*&V>_M`xrR1=9CGJ@fHhaV zXN8Azr=6xIEv(O(!SKWO2l}z-<zsNM3D} zyIA9>^E4kHiYPCzm3I{S4TbgJs1KywN!Ep5{3(k|sq@v+!w>X`AN#q8?Cl(;U)azb zB4K08dG-}q&LeY01cith5#*shEnG~8YD_0RLvpHFxeTcOjyE7SF7EVw9zrw5n1muU zbf*K@DnuC}ZtkC}u@@0sLI#Y5umRD_|DA}$s{@)(jO>F|SvOA`cqJ+BV}5S#TPPNy z*XMp6&#^~ihaMILyC|ioi1D5(IY3e!labjC&|U|hADjLFOqsd45$1f~y%DUZM~aHF zux&W(J$t~KD86&|s_+I;LlXK^c(}Q@5`QXE{_|$}l-%0PR<|D8*ImvxI4F*((%ila zWpW6#rvdZtH{vY3DKnBh*_uyI-eoMWhJryt0 z#Sqt=cxXe5{dNlSoA?6`~%FMw=QPI=@qwM^##%E%>e3brHX0|yjH0NbJA6*&^!8_@x4 z+(a_h$m04t@zxukppr-7ZqNVu=QA>>##emsJ_jUu*~+Fc8X5n4-yF|p@Cp)%csUPF zljc3blxdJjL8IP*mV%f6oa^DK#LSO)DLaXHKGQX;J2R5K?G=*2%#V_OV)O)gs>?6< z1feURx_VNsVCq%j@Cqo&Sp z=@)siEDw#fUN!^yF3Q?|jHUL@n;5SM)04m19yUPF6+VDDV{GOR~1Y)lA%CDI6&5c#ee9o5-5$5CE+*Q3C z20>tFB1T7Cm=*MyB?(*6l{NMLs+l@!Obj$)qccdALVh-Wd6^ayO$p_l6 zmEjV?83EilZ6fYqB&~OGZ}L0hpgVot@tL0 z+YK(0^)~(Y$%OzinCR9VmUlkg^ByS>@vQ^I!w{*OQ6PjYw8pw!XQgj|z7oSZr5~MO zGZN4S)5YfjXx=w9)g6p8yNTcaY}o7k7VpO>fPY9BqVjq)Fi;_L7c!x;&zO< zZiX_Vt`HAx(g$%(#@w$ENH~ZxO2c}DB-!J#6|uT-qO$_%MC@`VN+$FI*S_l`Ru}*x zDl$^k|ISVUqDK2fN@L(T*R*UWi-nifq-Fz3LloTB2F<{aU%n7~@CMSFgD|#G?2ZC8 z1>uG+Y^<#mx|;~Le4x8-ljOlH@@i7dbYTsRa0VrdjD+X@>X8Pywu58U@?dxiFl_nS zr9R(3ni#A;f}p;is%~|S>t9pUtM#)a+90%*)2}^4RW@3sQVjD zzD&G$wG%Uyb&-;Np~U;BAP&BUOffV0@=F^0{leov&<(v7f7pn^nJ45F^lk;zAtJP& zikMiDj^6}u{g)HO*b;a2t6UgUK z^fUm7b-leS+sa+7voJo?3gn-ThSwr~R;|^tBpWcg6`N?NbpLS|d8DBe+koK@Nk|yr z4Ir`ptKI$TsLk#|kuj9+0rM2`vVPuXPH{uulXIuE2fAT>A%YdSHAU!%@g73xh6r%6=E!| zax^Xc!blPn2U^U%0vjd$bAs5~y3nwnA*Ff<+BF6q&OT~;9^B^~U6OpCM-3-97J7m( z;IqyhMXuIE8HrrP`f#2FQpI*Ms|0^bhcKjOXJ@C2?VXOFJC+>B_Ow5g?O}f%F#ADL zD~QrNec4kyf(txhgD>dGPthxOdZBjA-j-V<+nnB9mxCDbZF-zOsNgG=JN}xSL4g=s z%z06HC+NtjNAeG?6n351_kciSD0Oq0$NE6Y?8Y?`V`GQC#c6JGgdUlDvxEI725xp> znuRzv5R%V)>quaMNAwy~(2S)RHTnDq(z?SiUW1-;N_x|FjGD7!(dC(h4-Vauu(AiNfS{zA*x_c&C#Kn%WRrpH#ElrmyL6R{hdv z&`qLAAYgK3SS5&su|9~GOT=*CnDm7}My$soD+V2jeM&HJB7J}kH}k50eJAi%y>ksX@zDNv5*6zkY~dG?12y^sU@?Zj~DSt{r+r?*B8PJiz_gW zF|fEk%tYt`>hGU$kcwztse=*tug$86JM}zDR;0w*K2y5SgStWdUmrV|OuU9Q zUO4v@7B&Vj?g%R#=05D~H=dO-2uvDnwNd0^NW^@rK#jdnG4{13QXJ(8F;}!Wy0N~r z#KFz|%~RIS?#fscdzpFAaFJJ>L)jI{an7M)S;L>^OBWkHPW;1ns=`LG=73Xi>JvYH zLC^fK81IL1ad=N(X`!pm=RG!wH$bo94A2AGCSQ&R6gQRap`vCMlE(z|cDe&sR*bn$ zaEMNF6*(v>D?fJ>-4|Juo|8$^)pKOBsu1cM?h@{f^q$G27Gz@b*!+|2Q#8oNY3gM!-P&RHA)aziCkvu$n>HWuV7MW^Mrj`Z< z!RR(5oL*@lsN0xq8bUK@01|ZYVXDSRKEkQ=7|BtcQQ@W7gXcG>NE0p;q{R4yt35b4 zg@Ty@Z@1k>)-o-6FJExFbf~vX`RPW7PJ_M7MNu=nBkR+dRi|6z1Ka1D<>eKb>!j6q zIfd@ax12Ppo!~2yr((Nm`qxkM7KL-+IUTF1zRQQ6EG?9nsNAIB<_X!VF7`^9T#bC| z#vR7*fApTay{ZwP@xGOrX8eEg_2%JF_VN2Sg+|06gluEYz7#@=hLkNWW2_lPMOiAM zvQ2}rQ`wh7Ma^LBdlvMfR=leWg zXF+VPMzYe#ubghc8ZI#ODK#;ZYI)p5pYfYa^u6C0<|S8piy{ z71NNj&9Ep&eTj(JdjW^L)vd`LE+#i?X6(B+oDeJ~t`H!MN4-W3wD-NQ>KVd_IN1Dc zB0gO};jk`4%rL=b{?J##xEOmp34|-KDF-vD>O0~0*KR7ZSfU;u!3!xb2=M8j_-af; zpFR+ILpX8ioFcVH7Hq%hPM+ong#TAH0 zhOQs$Ts(8Zclc^aI#0BCqY+cR6L<6W^5=^dy-Z$;`xwri@SzKH^P^;R-?E7xjFzrI zm*4-ZaN&Zlgyg919)S%zYWm}eL_;E{!{{X=-xZx(ySi5=rSN6&18&7*9T2cCnWo zus!0c^Ag!Un*)-6ZEX2LtdwA;YWZ^MpygSB)H>|L>T|)oLzQjrV z%ot91y4ZeK_FAsY;Nu+C zuA<9pw~JF-4Td_5xqN6mJHaSU-5eIJB0e4`yh9x-#F$H(Ofzu8pRFz3`&-O(`raX> z{DI@c&C2_pzgy&c?qgV##xxzk-#B<2^%IN67&r}`thKRg+8bcwvV+Gqvn!8`pV|4j zcURd;GPP}zwB`{^ZC+ix|DMT24}&jaH8|XQRSP>*q;}6Z}=^-M%_T3bQC1`T0HUAMLhp;RzY9&PbH@6@gV$FN+U1-J9$p!h@w) z^q{AMdtVEkJ-}Kb#xZw9;t|iS$BRLwhwI(Yv6tRdXR~V5Yu{d}BA?^L=vJ;QR9`~l2rz%@xKNLIW_giji6VU?2>}*(c=KH!BDFuT{jL7$lJ)D%N zPs>>1qd2ZH18P~u5f4qp=63Bv|7I*R>)EWyt9+^L&K(ljnZ)D-KgnV$ut%Io!$Y zz09hywSJEMW=)h$zy9NumK+co(9h~eRfwq`bgZ>$eyBhnpxFj$?$I644p*z{-bcKp zWVCW;c?4~Z-m`MVzegG(=vgsh*oV!u6Xcx>B2l+?sJkr!4J=2cYxlP-?fd;wq|2;oq3@c@;lS$TF!=tJ7{{Y^85B-76-z!nzG#i$>Vl3W}Nqn9++w1{1;n^(=dBtV%_dE0P>FMn`Mg{?acU$?J zJS8@V4E=bO&K!H9_3APIo92Mh6qG+3nz=#!TD`aJXV4X*K>c?Ds2B`mT42Ux3H(IR zSj52XC%$8UcPs?thOa4CGxb4UDZ01fy1f(|*bIWL=R1L`3=Bvr50Pg1?K~NA1$NLpT8*d@9~(e(dz4*2qyQFnU4$JmlwyNpGds%jvHf>m1TwNmVMW1OXfy2b-?F z%4mZHzj#G+!TC%&YAaJ&U9ln{aKvQcK>`!S}(y0I%h1K&JzHN|4S%rG&UY zq{kKq>;Lk?;W+Xpf;L5h3BF5C3=P6}M}ra9BD_7aexJwOK-Mp>FDGY?1niwuiEs=m zM7wl#Tg-2|*}RQdTp8Jwd(rB}3EV)pf&qCTfO4}y%5KHZetwfvsJ~72QoVmz*{sCO zTOlsRS^XCvxGdbau@U@mI59e(N=5wLa8MTx(zkkG59l$yyS_+(GinZ~DPAKmKMIF~U)N=rJT0|K#Qyi~!j=t13<5+;}=j%{<(eLB29 zq{x&U!QYuTdZxndb+3{zy|OGwd%sVGyQp0wF8`eo-{lI0M4LqGoSOTug^M)5;3%uD=V1`v12VAT11tthXp^1om(Orx&GfsV`8W(;yj3JLX%xdhO;Q zPlLI`+Hdn;Ow;~XC5dHBh4CsH+;3~Q+pL+3?35_?nM{tlH;f1e->s`-ui(Rh5h3M4 zD1@qFV9)*)&VyP(pdof$hEr%TD3?5-8Y4zyAeP9FdbJ2^t$aLx`MUYh>HQ$> z99yVF(57JYt?<$y*&DOpkIKu4A$y-YIpFxOedX)lvjg2R3_j-%j&z;mQ}(gT_`^g= z%wwAU6lJ)-V)_fy(K{|GV;fL3cdLSB=dQ4>gJB_Z6JHT95 z+@T5&Q6vnE#MM0lw}e2Y2c+E;KC@!XM+niOOrPor!-22~RHQ{vCceV8{dPN*iAOT@ zSZLCHhVB@PJ8LLzx>G`%8~Q3&*(|FQF1Etv&3Wp#>oVBv%o7^i?_4dZS6^Lp|1H1& zY4x~~(qV@kmxp3xKQSAB?ALbrLL>x^kng}!nuEX_%3LqrI5!4vqxeVX_>-PxXYYdP z2|waT0_*o@kYJ910>lg^$CeN2pc5d>XGEFP>xAZQa_)UW1cKUHAtRZu(R@2>}!1T$K#JQ6so?>&|#k4#8b zekGUjSv|RjCh^BPYcViY zoiEnGR~w?YQP!|~unn;u75(#JY1{?3M;_NJ)-bD<6=GS+N?G8?DZalqO^#~ibLyow zwX>!(iDRw^m>bj<7vob#d9mX2Ms?Q9JpKJfV{nM43slnu}1AEu&#<(_*hXa6dHatn|cEuf%?$zpVl@JUGnCW=b9elao+BHkazO%53n_sh>;rbXB-t=q}@o63-^S=*KAp%-+(o;S@b{-04_w?o46l zW@tlUSOP85T;yijJ9VszzGrANt%2NAWs`q$h(sG46r&m>zqNYOA9lgRaR53b9*MHm zF3998I@!R%vA|w)mxR@xd~NL6aO3@X7ecCwzo=y?*;4HC_ZV8*OJOt4@{44>zkk$a zZ@$q-eWxLb?bWJf`lS>SE!lYyYk?Z!YV>(;f3z_&EU;|st8X)LI$oy3mRaUa?HNp- zY3pHbX0+M<=AbI?p}qQCcL;pVU)DKzm;#O2+4gpG^vhGoB9f$G^q3q~p{Y}_)0T-c zdGl3Sn$ZQXXEP3jkE{3o(!DTw*%)!27h<@XLMd`nOde5-eVT`43rpZp9~~u!jH9fC ze;t#-iRg0Iec!y_)KXtlTdJLdzXfOZ^mCU}H)KzvkMr_^w|6_ZR~934yfvoz=fJXP z;=iOM;|X4w7B`b7miBvJUOst&A#oZyf0zU+5&-=^C0Gt{MQxwI6`t8)ue zH-uOTy;xep?>iXZ4ARxF*H;FM>92no%CEglH`kLsZ#~!)Hn;cKA#!|1^tHoIf&`2; ziXyh!t)0#ibhVMYrI!5cq*JmdiAU5>bIy@>oY-}vXHwPrjIwCmPakQKLzZj=$^w@U zfwxgt;hhgwxm%6;T(dgt$yTQw?~O|`!_F8%AY4jnM&!}MhGad41MzO$qLc*u9U}fJ z(bx!tk==+4WaR_F%Rf=d77Z^ixczrIX;kGMX)JaPzU10ZYWxb67{%^r}!Txu%Tc4kscxIrK4!!y)TetkCDoX~g zD^~}l`*}uvPUbUn#WQ)SjA_E&UKyhhcYu#wQ{jfYfkE=IKnEN_#vu8K#k7XH_>Hm$GD@62%(RieZ(b4y zXZ!YA9Nurj#E{)PG|_o2|DyFknJXuG{>I0faT3P!V?vjpt|EAJ^wYnRlHhC7-Eu7v zoSB9t9K{?wq-0oZZg`Ue?qutu=?-5*(MrmLd=2KKnEAbq68|pAWPiF*BNCcDNVUWZ zb-8{mem-cDbB*CB&eO$b|L|~G;#Xrs>wGmOmiFS2e(U751!fHo7VWzQ9rcx!tLH5l z0V#u$%ZgH%yuuix!dgLNb^1kZdL?tbR;%%URyq!@Y*Z<&Y2@kPnE-dTUFzcVi6|GZ zK-!!^){6bRVz%9mqbLV9r^Gwdy%)IDwWJ9qXM%pc*&VRscHu&L`iY9W%8R|H@;18z z<802IlOc187L4&n4~Xzb@9I5h*7)}12?5rly_Y7!PLJ;XQlY7ztnZYJV#>ycj4do? z?7jSAfsm5?e3eIoyTP198~BG~rtzv${}#yK`#HWJWICP3htbOyHjP>X6W%o5O6^Ju z?n+yd2zt4-mg9Ar6()B1ZdfnXo|k6xF72HK*zmUJxmQxLx!C>s3TKX?=oYXRksfoj z6&SM_$Q+OqzcF=xZoj%FbD72m9s!$~ERHM}D^v;It*n`5XW{ULzX#o5o>8^piHWlA zTjYM@!ZFcqeWQ4;>9m`dA#0HA?7{GamR8EuYhp4LUw62C+$222XRoG7HLYOiY_Qgc zl03C&U&3D9uu!zWatc)=6%8rL|_IDes1u(1hqL+ZQooL-Jb&+kid9wfN4$HcOG zKRq8_iWU(%@r3{6MnvPTHo2ErbaU8{(Kyh!yw}F0CNG3meX!(3_{v|`suM%JO{oQ()R%q^e6}?$#d?iHT)$jq+3+6-Z(Vp6)YJuyFKR^UGj3XPBSzYHsSu$6^d+X|OQ1VYx^u4$P z=I59W=5nK7sPn!M2|6NvL&ihhid~|ViDttj#Of%qG&eNeX!egcu{Pc2LD%YtS9p&> zCRXNghW*^`2g{3(xW#4$>si`6dL;$(dFky!xn^mV;l4~d0b2{9r{j1?7vb9>j+v9S zh5WJT?SR2X1;K~H(Ro+L$}q$(CY8tQ)6PeZbaW`W>`HFIYUj@6@KUWeevAsVb{TpV z$(jBB1|;<|_x;5O-go8mb{9Qs-qiY0QOg}2Kt7r|^DVcARLpVf4U@QZO&J7s0K|I>N+}lMC@T3H{L|$%1?9!6fUs4UHZ@Lo$YdT4dc__lXVBxK~?jH zC)$8D_WfW-(Wv6nE6(GyYEKd+R-P4FCE9aQof!vs8)~TyxW1)TouYH)W2Hv4(F?O| zpKAR~nXHV|Ezg~s5#gfPxGOp7JW=8*ev4nScj#AQ_q{&-=e9wbtrJ9I{`zq&n-0;A@V$X2`2b|2d%Mr`*^L6WWaDpL6zU^t{!0?-tyu1d0fg+*_62JsgAt3BdjCz5?1IbCkRQTl7)Rg0g z=cfT){x_lJ{;#?)^=@4rn1=l~YF4sKKKu9oBhq+nS0u> zdS3ZI+e1}5PR1@TSI3g`c6|J%vfhYKMJB~_1x{L28@9ULyl~{?Z(dn7t4W0-V&qA%L6`TieBaov#@>)Rft zQ14@SoxP%Yj;4rlNADW;#+?`zbiNQ1-*3I4DIL%+L-w~cxlPo@h=WAT{f3~rzuSlIvJ0(sovy;U7|D~NgtI+H-cRKMpCM8ei^rI>7tm)}# zE%5FvO+B{w61+#`1jLn)^CQe!L37~q{qZ6R!9y`Lz$7^uPSXTXdyx5i5i~w*PjUt} zz*Ql`TzwY<%u~V+oqvf$iOEw(mvz@);XYNsa^N*!h7Q1fr&Q52^g!UU4 zcE}y%p%=GXZmFj~P%QYvc2N-D@2!3-%-Hi`Pipv;ei^*c{-+KSAET#pSuK^%k(L8P zu3Ze665~2C28Xk;(NP<>;}MZxFP60TXHzi_cDp|%#YxR)+Hp=_TKVVFMJTlox7sPX zm_B+YVC@ydSqF#E+FAv;IvDlyfw~tYVsjeg83dPKu`_%QWC*n`;N&uY;Pv=`ru#vd zrbU4yRrwQKRC%voM~sZa=pAw4K`Mxe0qJr8-)0mmfdP~$EQB3^G~Iz0^d5&;Tahjd z*P+U5e-cuQ1b>PSD|lPphP46l>-l%0wjNg`6^_uy6Kz^CQW6rDsF^EPm~*#ixaj@- zgL3Jx9f1tc*4EfvAn}r)9K@QJvL78zXzdD_JoQ5k9y9Mc@`Wc-5$-R-dpq|T82z9> z`%8|>GB zhuItVDle1`fU084n+ucOL|Hw7@5PWiF-LW5P5T>NhkIcWgjK}CmRC?PVEP-R9Q8rN zF0lD{{;FFO%skFX>^XY9zxO6Zg>zf>sa1;WPoDEy#VLi)pW~S1uaDQ_WaXvx49x@7 zy5w+-K7)JmBfCvL&!*7og07}0_@yZBcI7Qye%)Aq9(%^de$wO+8}6s^)q&JPB(FpK9uGL!o>zyP9-UT=A=7#RM7 zUO|B04snBl9nRz6(OXOvrBUiijnW>V8dz3a~dt0(^`e^bL9k9G6a?HM7f1%@bxB#wj#yzI8$ z<$zJ7%aI@3k_Hha62Tcmk<|KKgyIP!w?+Lb9Rijxxce&x=47Nzchiq+%{ojDv=9~Z8i zYxjW7rDc<45IRW_}}LT)bXlYVk)3-9~Zy!+B0 zTvNsVu{hUqH{Y_RYUNwunTtMUSb7{x8k2{dfZ)hWpTfh4<){)CG=zdMb{OI^|K0tz z*Xj1UD*}IidIUzo_lGzdi!5OD0NT{z&_6Jv0V>pfJ{c4%M{v@E1ME1%GqCs~AV;`p z2TV%9>JC=`p(_;~Zr7bUd`kqptKbXrx(*s0QUQTat*zDVt6mSzcyD?qP$QQ-q`!64 zT9xmu{wmvemHJ-~L&JRZLJuR)5(*NNB=M6kFAvqS1rv#%oP82n`1uD#Z0+o}EOnAy zQy9ut!*69pJ-A<1p0cs_+H!NDc%X%PFz2w~()^U8&#mOc8&$@_YCjhzn@!q?>E=o; z5r#u&`o1T~YdiG!%>`((bIQAZD!&;C^*2LTAqt!NgF{r0I_L0eM*Gzjn8qN|a6$dw zdt-+|pG95;1#dQ8Q$NnAX4-@zb((z^$B((&A`1lA1BX_@{?MHa8wtc70B%v!WEDm* zyvG`P9MJL1{^2fs zR7$(Q9MlxX=y=?7nP%fQ(H1rJ;0fKN>KQSyY>2HS`Qm6n?8PJ&ogaT55P2u2PrJFw z(>4RkV3iEak;}6iM%6D8_uDr;h%$7$!&MdNiRs5T0^SQEfMr2j}#7xe3bkHI~sDtW()`2Vp)8hVh;SHQLwGB<#i^t)9s*NZ}! zvc*huj0F3S9B9Quep4j(iBAPXr4uxTRQ@a8aHI(u5|5tK2@~vx6Ic)=HFa=T15HkEz>lwhELUHG_qA6S69d&)U9qHMG$lc3X`G&)oI5 zmw&=P!ESenBRw4}$nSrGuMsREO8eWLXQs}`%FkDDdr}_Ad`Ws?elO82`d=9nZL=^1 zHJ}|+_M>#Ur@dQ_IxgqZvKf6%4~|1T(n;a)#Y@ZI02{Q~nEVQSR|gW6>;-erKWR1a zg=vH@7+%}t=6Ano7BJ_F`occ)!x(!f{_}O-)!*CH#I7$^Z8k3*hF$duhyPK{(yGs1 zl~rQ7(kTD0-cOz5GP3pmS^isH52-2^`||~hAQ)Jw}{_w z8;-7+b;xhb*4Qw}{~KK1>5o7Yq;UyJXXnmQl&j(oXg0O~%$9jmwtRWa9T#)H7Cqy> zR-)VPEppXYioySq?cBlLDy`@IVTaQT{WH2t%{&ljlOHK_3j?Z{oB6ZH*1&*)@MibOPH-0>f&ZWCn0bkG=j6|);z%@MY`N)TdAe)}Ezw&hOToH_kH3XO zuV845fow=TCfvZv@WU+iBMZ0txb7P;b* zcvRxQV)AMAKQX^&8INBh_1o`4C50q2tFN^~^Z>ySum&Jiwk84hrhouK|&fqY}b1%2;HKsEjXga*`Wt3!_ zlnpuv*r&?uRmY>9sp%=WCf^_XUH9l@54!JA$#!g*Vbg87e^oiEy#xm*?!;N)R+=F9^-A}pbwb7J-A zVA$qfhESmB_`Nwr24vs*WffeaA^@R(Gp)_N3N9v9!XodtBc9e>eW(BWEZL$;Dlf~9 zC}}X7r##EvCF8U;NAldwVD?^{t#ZEjQ^rWepkdnC%{}rHksWRtl-~P;`B1caq)`dy zemM7f*QZ^^_*Z5Y)Y%;mY2wN#Z`6W(nemZZmmTw!EhB}p@gyH}X|^SZB&h~9_GCR=(4*UemPO(S@L8~N7OKmP8IiFKaV{>2cd&~(eEN)C{pn+r zGckv=I?o;=Px}uKhnqjYHQZj0+4I=@%Vxu)_YGtE?_RH8{0IMhS9{Ov^4hLhA)fke zoS{NDJI-?6NOUT3#7K?R3G*QCz$&^%IK&v&N3#y;k}eDn`g92&eJ%%g;hEB5o5MD9 z|L))7w)@k{^?bLgyw~n$?y4MOURnF5$%}Z9qMiZ4%No8zkj=qKm2hpDCo0$+7SlOG$aGb+TYz5$ttx2 zcTb`s$%8YFQ<;>NdR#Re)`Dft{HENOF1yGSrGcR#!y(_B3iV5L*W_aOi!{sde+F^mldEx+SHQp9*^VPdk z3OHSUQ0LW8b~hRB)N?tkvzDair0p0V2+6PwXgWh5a>x3D*+m5dO51)qZqlBmu(9EE zZnv6j%CzDP*Nj}e|A%g?7}oSOw)wHhcQTjp@2q_yBZK=aV)^TqBW}0HE|XSV@T%_W zJgG}9gD;}ETH;XKC4Mm}y=ZB3$HF-fdc0TzQ=KK$G%R#Ae_Uj;-k8Vx;<&W3Rb*6@w*JBRv4gj62ZMO;Bg@tSQc+v+ z0i5;2ev^MVt zk_>0C+hD~=%mJ1tX4+=W#SR(H`Ug01s-8J%&p9cFHOniLcZ_UOCyt1r{6P*QPw<^r zZeQCvnEyExjq|7|R!Q6RE=#=jDvu$~|AU#qcwC0POvLnCjnZ*{`BBW1wElmTj?#zr zOEYhGE*mZi3SVturc)o_I_*U8Au1Nw)G)^c(0rBio8F5*CD386$QC*wd_E2<=TXX{ zT@gYX2&kds&8!V2$F)am{eH40KKYoT@RhawUh4Ek8IzriH)s34m zT5&96k^jdJSzE&0M`HSDk^p!Uqw;!reZQ1Vk3?&z+`n0%)E9I1qyLNi7?ilh>%Qf{ z9?G+~k_v)pYu* zshr>F)2`yC*}EC5!s!gwFuBrvv_`AUU2aX@pJ+Yz`s&Z~Gs2eIA|0&L zt=u+y(oKc*rLudCiCn{q$MFMg4{_205lZRSUKk={Ahl6kXsLLi?Z#v%N~7bXbzt4{ z&i*!+UHBdQUxA3dQJ?>@0%wGN5R+;=72akkS7v>;wXKxLB%X{oXH82INtqWdGIEEH z4pg5}k?d^k`6G&BBh;Psz!~Zrg|1Y#EBFazNSoA**fWJN%dbgLK+LVUyzkqg?~h(x zI?v5#X^L)x_?e{SFqK|AX@5$G=lgtTUaWOkSzP~9{dcb7ouBQwD$F<)^{H2Hme1wf zJiO6ERm@jPx_RMc#vh|>tGODU3e<6uCpzFajR5>vD@v&&;1{YQlo*2@l47am7 z-a&!63(c1XWcR0J3K63od!7q@DAW|pb>Ut1neVLjC9FQKgL{uC@Hxq>WhJhpIzNr# z)xWXQ80uXwgu!nF@!SztNDX2uPQcsgo1zy^IBB&#<9M%!V>zN@B3IHdy?OoU&aBt+ za|z35yST=lD-iM4wNH07b_I{iUeej3?sY7=^=I{WrL-iejI~%+ntUa=nHKB2v-yF; z!F=eee~j)PV|m;q`Ie$*yiD|VuQPI7ugd<&@qFJn*7~MNrrx%{hsuZdt5KN$C?YiL z>ZkbWiFe5(Q40dKtn0PZkXfT_@d4hDXW>puFmd`U#1TCzNrqXS440GljfF3{XrB%_ zYICOnB|*deX`;ZOLCzsgt5C&(_V!jyD|tnVEN;dF2cI(^JO8`aC)*-=D%o*Jis zBPe#-g<|PvD#S8FH8A;mr{%N5^#jM zD`}P+)Ry9TtFKeR@8vKx1{;QGrXt>Xy(u2jQ@BrAdv`(}emc4}yzx4OW-YW#V@a!G zS4qk`f=N3_b-tj%ldn*~eeZyEWdDypvu-4NuK5cLCD>Pv*F_5#{A;F}$}Gg^n+DIB zf-`dsHW!uVXY+UC;Hh3`l`s1G@b&$ml#BSwHSw0it-q|I6T4}`gwAt`eCDI#>10Ql z0#5Tj`K2?@9-%di?#$76EKLe{kk@BAlkdu>k4g?kRL8fk?~^hP(;Kw7tpq!#22x}9 ze2>)Qn{@rwPBp!HfluD&ZT@-2&Zd>O@>tL4IM%cVZhN#&R`xEffYDzzXp$Z{&t<3? zmy;dK_NMLgnQhFNQEQm3{c1q9K6+LrJY}wEvo<3=jd!ky3nx>O67E>Rtm3hB^@Rsl z*AdJO1ITd)g2j5bgU?j9ZHV7w(nY)pDvi}4f2VzOORc9Q+3^TR?=5u=o#Tr0Hh1$) zKd3)kBWdZdIkjHL-YbKV-xVw+R#1kgm3~9m$DHZGSN7kC2Sze9{D6K&p3H~O-w%IN zj4bPQA9p>R-=r;Ypvw4Kf8(roKX<9k)-`*&{_#Q^iv^W_P=Y}XIltQGBgoW}GggqFfQ`u-GDIz?5-YUlUfmA~n9 zhkZ_?D#qnUY5V?txhvU!pL57$%@KXy5Uv7$1gR~`?v;gOU=aX5UVepxYy?aeCLu`} zIRfyF7&r~)z`-2)9!`N6gp|{0zBWH_B5@Mk^eLWYc-LgoebU(Bds@6A?)y?*#phS+ zvUNF2WO-*xYe%I@XPru;2j#pm4LRE(6)#C zSi~F)$_L_o1YrQcr8)OUf%egu@c8gJ$m{yzv{t8yIl$g=i8CGn&F=A=m0+H3o&r@T6YA38aQTIJ?1 zY^QCQ2~|nut+|Ce@p;|2C`<8@xR9FUyMhbZqksLpgl}Q-^+72z?G$7ZAS-niIz|7V zuF*9_vgHJh!20i}|EN{}AeGu^>rod1M|IF;kVGKT*#p78)}4bW|5h{lW$bqv-LY=z zweZ-jSQQ?tfN>d|bcglZcE6M=)4Vl`Rc@bLtd*9kjsc!D@kWR&NxE6s(8^j;?x}Oe z_^@Ei-!T)=x4*o}eeptEQBhHR49pOgFkOOS3eb>;i>2QD-E`}!Jq`qS1nUa%*M7x+ z;WC;3T@ql40eOPO`1I*U&|4o)Y=6_#cpplGF?C$_;N-beDdYr=Ndm9N?Z}?uYp#U5 zD;g5>riovJadl+|7p{jpZPcjM-DB3xxrN#ye|&na|Lv=Z%8U4BSyrd}*qjq}_qLZG zKmX)|wDOFu-e0KN69^&0gEN4gvb4MZv&{Ef%GDm|ogBMkp}WMSw=u<23l7_BKm^cR z|GYa&NRtC1QxPQwJPQU+TF(!d$?nzGFW>u{n{KpHbSp}&R*+(d_kZthk$f)FsqUA} zj}>eY&%DwB%(;0-5%LYLfltckMjngtg@Ifq1~kJ}`wlsF1Wu0#!+>Q9uKWq*+0Y^5 zZm{_e6!#%0zk-DSm!WbPCo!CWI3n$G3kNWH_Wp;7P_zw&iQR4ncmzYh35mq3!Oci| z0B?ap9iw;_5sBLJy+QK9QVJmC}b;qXYzg% zeC_5h7k{jdReW1#XVljB@JVAyXjsyP2(D6j{>zsvAp4$#q6(f5cL8#Xgw((kdikk| zQWX_!^8fZmo3E>Xat7@rPLass(Kmh~!K2>2FGA5Er0gT-t^`VVZNY`NYTDY5AL z$*P{5)6*#Co)d0rI%ntLu0XA`Ind0Boj0L=JY8CTm!cQ&XNw@@R*LAS$b<97e+y}l zMi^Z1$cKVB$jE?jFpv)dN-bF9{|m&&biaSk5;U|5pC8Fm!yp$~jUdRl1Qui@+}$D( ztNZ0=o77QQ^Fyq1xnI5yUwby$EZ6Dw;h>4O%;Vxwk!`=xOH}VEDRQul>Rg3b;vE0} z+F6rPcb;A*)kY&5!8rPoeYtScT!NKDIM7{?N-AI?=pD5E`0T! zL&yLG!8m|=gFqFRK0oAi0wDQ-yz$V>Ov%%aCK6Ecz-@yRq=BX7AvHBu|3{zvZsMw z6IKjGxrhhfT)5C|X#H!e$J12DQ;wflAHO4}#JMaL^7d zm>PFA?;fA|;auaVO1>7Z>@agpnp!I;S(oWJ{c+daOEH!q{~kkbRfmC=LPLqE+ZO`1 zPduM1Ff5L;$1WrP=7-6v3I<_ zN$UoPwyC6ax@BAb^A8PQG)N@StvaQ{!d-a33FsTJm8dw~`%&uYDph{JKtb=VE@_uX zpq)t8AbwODzj)r5S&BVpWaUq_u(2)=DG+>7=-K^aC-+lSOav2Iz03`Z#`Tm%*hgDU zNUU!9e9aD9d$w*eYChbAg9k^e8S!&OpH*bQWZAlU$!hh{no(IL)s7{fcJH}Q#kDcz z%k7`8w;mBtuV5XpT5_m1CF@$oh<*4Fw7Ie|ZDrr3tc+QYb533qE>yrez`b92#OwWg z_H7m0S}cvDW3e)}wh|{vTH#W?BczXhAg*faDUp{^Z;P{(S>VLQmh`RSutlw3tR*|(cQq-5zUg^S9bJH{DX7wfKXHG%d z%AFgVw=`mf=XBWBIO`UWQ|caS_jTjm#4ERx2S%l)O4W>7n4G!x9m7^Cox$S8drThv zunV6GX{L#h2PSzQoVDT4=a6&YH1Ju_?|ne>W3zYg3QKsB^t(bk@TQiz;H5LT2<2pK<3V-H&q~Iz|6*I-D$uBXHSC`hHoV^onhZ_}Y@Y z7LIXc-}SA+8=)5%Yu25GrH{K4Rl=H8;xAMRuvvv?UL4AQtA&px*bfEw-*aE>)ehBk zs5W7k78Q3ZfSZ2Zrmwi_J0@aQ5c@{HOXB{vMz3jQ?srEdO7Dt*w1Gv>o-_4h68KMrwWFIPHBCFI zQ5d}bctY+`s#T5j5hKb+^69_f(=X7`Ukn0mgpG^kDXsC-OLy{RnTJ{Dm^!kDI;Qij zSyL-_HQzXOoNKxo9Uk{gn#c}!YE}a$KWmOG_q`uPK6^UVejfkuXJ!SeFtm=nOq!?E zIn6KohDXWm{f+j-X`6NXmS>L=S+E!=_7*=cmKEf_2lH|L$Rb(JoT!G5JZnK2?6J7Z zio;&BqTsE?3_ea|2r(_$aFg=D_@yB6Dd_7*xf^?M6i;-I+woku^DZsfdL__O!=A>e z>}9!=fif_KBkO6-UySWBwxn^rdYSGY;@LgkyD49WyU)5&N%nCYJ2dXqRVlIxtnehM zZINqKvE^q|rNR<wZaI`JVYkrR0if|QXJ&%VGRvdR`m7-Rfaj#ylL>ysol=jnMiY@cc9>dQTJ5OgpIcQi@F3$(|`4_aUJ~TW{h?)a7uPGA~70;i|!7#@5mAk zBpiR%*k8T4at__6*2Ofb4BQGsm=K|(jpCm^jfF$ZkC*9likkwys7fCqcGYIWg)Bg~Kyo(e*vz0!(?<^?gO zSlEzUM(PKEG6Qfh6(EHHK^mjf^?$Or@t5T4BvzyU5)PBY2tgHd$~O$Jm6Sg|FFv0X zw`zl)YqUlGF6RiFT+22@i)#Nw56sD6Vs)2MunBtzyRs~p^dl}X;ER)IGVhzK??fuU zA*Xq~5dfYMlD}F)NG1QXrHnKI;-Vfh7Kh?Z3^Xv;Y4I9_0Giki zNGX*-*;s-rxQoHP=BEZy2J;Rop(2pf8<=n;0N}PfwAA0hzpB<94J!`3XkxxRJP2Y<2p z*sKwa`3O2UXA{NBQwKQNRKq2SD!Eh$>mjbCt~=2F0muUb;FjI6g)STTLj%n2%VNYY zlLgyh_(h^`QUI9<^b~{;n+1rL_vWFr=v*ftbtu0>fJx~-pRRxZ@PbX`!6LLeUipl0 zz5)08t@~;0DG@&=K;Vc2z=#H2VK;_ojDXW;WkCAk*TKd|gIFTcunI>5Iu!WCLLpK1 z@|E-_e!stE0o>4ceKM>UdKDnbC4yiGVZ10v2^;PcHnGQ^bQ3F=i)xCnwUqQdm=rbm z&MjV=PSOr46m#)6CfuB(?VY)@;eWI$K)-5L*Ix3;S0}h9;}a5ix4>3&vSb_Zs5xMU zfr)C=$at}{3B;b%Gn$?pI**iWYw7R61rUY;=?2A$QKv!zN@@L@I^e;PvZXIzB1DWL z$YJ&3Mc%uQk>U&}ql`S}ee-|0$7%$i;>QwvIVDOSqm`;koJXV6_jDkiyA&(~zV!1i z`Dq-hJ_;@RLZ-FzLrn|HH>4}4hL_u8FA`PIzn4W>wz->vjWUWv9 z=je-~=P4#yTf)rxPguQ!)`(iehVJOVSf9n;+Iy;^r;nO0%a~ntu?L%gB_!QQRVV-F zBv?QYKwv-MVJ(6d^*_KgF5dxQQ!^a=dJF7z5aJMWkpYOZ82E235EPn+UvEncE!naE zo3*N^!{KNNl5SsKrn%F>Y_`;Ib;-|upH;Fp04;dF0p)DF;E}lgLIZwDCxVor!AD?q zITru+gO5JnB?r^I-Oaqs`fq%g?2l_giC}9-M`YTzv_}G&Fc@c4?BIqjQ`~;X2=(lOM zzLH>J4}E8>mZDR+hn)rUWh%fof#jOOqyY()jX~MO=l&Y%3Y@UyBvzA{>vi}kWUXhzEA<@bMk0q6e8lduYS3@hJ?6c~^O*x+dQt%6 z2?4`e7Gw(lLqX=-@ZPQ&1^f$eBt=dBA#Vb3p&^eqz{9@c&~_QjLW3>t$6a<1x+D6#&ZGJ22=V z*gt0A%ah^F_#@_p5&=WS@f^=KW;*?Ow$aTg@sq(t2L~Aj!wLt19qB)-!yCfRR~Fqo zoVRAh@72_t#%~=x_GrVVrtSY_GZfC&Y#vIGJHf-Exf`oq`V zJEBzm9mCK7D_aEMJ=q1+5ODe_0zo|U!E)Qs62i;_U_O#J&Vn!G8Wg17sa5;u{$2s= zMr`Bj1K$V&1KNQvhE#6(tALW#KJtF*XjwOH^I*b6*sOb>)x$RrI;| zd|nb9cE#??sr3y#eVMC?urI$gV$(*pTb(*^x#E5NipbG>rR=#+GokJM+!dGN*sx`- zd%x;lkc~E?b9i~3D`!OJR>bMyzx0~gm=uYV!tRFgD)flL>t`1j3qyjf{Rq5r*_)hU zWp$6eAX2c@z>1j%&7Vy3p*iR)agRGXJFDwNx|54*)j2z4yW8&6a=plSc;ajzg-L(0 z>35GSlYS*zWbA9(jtbWe+0bE+-q|bKIc`n2)r8rogHqJN?s@$%g*+#HkBh9D;vFgk zWAq*-2O_=w_3gG@-CN?aYq+z8>J|jyCvGrxAnXA%j`$}Ac^m&Hi=Of5wo6*FLpRkc zm`kqFO+OAb1yzZ?9BSHRTDfb2CV3-qf?4WVlR^Zk|8i4Mno}!h*0kaFcbFan)dbmy zV)Ib+X7OX15~H;x9EJW6ajA_C%CAZi|tKW(Ko>l0NrshkWgsfg(~pIp8O@ zj6+5!dji^H_?ji-07mk3GU!ofM)6b1`*^&@C9b#@zv6FSb7LtfqOUHB5|nq&`E7E@ zq&fStKZIiPMM!EOXD0UTWd z@OuNSy48Ud!XP#|tv97SujF8O(9HjMflVhpRu6Ii}vlA(A6!Fd7V z6>&=@>-lRVEbMjrBbPvW(K^f^@HL^H*6aPuO_DEwRkJ2*V4i;al}pK4H=NkyK@Kd> za&6M(f`V^JR_LQJmO#3p1Gm459?*NB1@yY9y9p0Kq+l}GI4QH|A9ni>zcjUi;&4y7 zz@le?kxRNSMSp>N75zidCb)o5DF7R5=zWMlP*Z?PXaQI14Dth-X^xULD83iFzx`0Y z@npQvnA^x3?#MKLVrN(Qqc(2WXtGSo)*S;=#Lfn^G9d_BG$C7egqH<1SjeRULHFC; z6oIY=mfpIArEW9P%U9*we3wXRUzQv*xEJpqL$i^8O>N2p03GSAgCjHpNu@+uw3*liC(kwL$91Sm zvJ;P-9cJ5uU29@Zr%F9te9u;FAicJUm0bu?#XMG#yq1DQK*AMuT>K5wZU~r3ykWY0 zG@Y!tii}$@1+CU3Ou*79ameWcF-EYHV{`Yjo)eubFT#|#q_YLa|646I>v~XMvi8oPw>oi% zOB#MVjrUc1Uxxi~U4Inl0;un$Lm^Ro15j9}4}KOT866T^=0ca66O{n#ozj|HPZg1< z?X*nmjuT^Z_}UjuxihSR-r{ykT#|aZaX8uQiNy;D_1E3w;Q1XU7jNJtP?uo{Dbi<= z<3iqjmlK~+h4UZF$7Rp0l1&!x*~YuZJ^S~Oikt%5uKePsIlk6g(YMRjLaN$a0s)%efH~X1ybVy3?z~n{P1Ip-l=EO);W+1jpSk=vm*4AL-}0g?NSsf^80}0 z8PJ;`GYVW#guI|bAyfKt^SZ-uj{wKfJ4C%YG^j5jrMR2p7Me+4pl>qMaPHB3#zJFt z^&MOE`ljd?mXsA$=qrnC*um-Fsgm=;o8o7G)6s+#=U$S#=0AEla0n+J02$bs|t-SRY*6KD0^L^P6 zYl3VckeNL4w1qcK_{6WHqD3`dW!t2lQ(cTo#D2W9^{rceJAS`ooSB zdr*54sxsa5{I{!vLWef}Mo%$^d+IZmx_P?Xtk&+yxOtmC<=*H^E%X!lnKbmW?u0%e zOHxIJ4a@=Ey}sgHpU>2nl|jkSpXbhc8!zCCayyY955d?d6lnYVAu|S9?a#eGV~PKz zSl!GGzi&GXV?N`r4SxqAYb$I!anjcQ?;h~|UD^4|g?y!`LP+d^rLqHB7tg#q?0QD$ ztviyL@qPJ&Fzn8svrpuxYR<$!qLMUDfnkV%4KvP_9Yz6Pyw;ixNuN)17DY$Uj-Sm~t&T?LZ~g0&k=?8dfr`OsL=Y=OA@vg8xa%i~L&Zn&f=$Ve%HbSnt5 zx9a`{Ek3Oa8+(>#HljLd`BDbn^^2l%^AePodq=H2KurAXD3B zs+D(N>g!kC>nAcZ#vYKv?wHe-hmFH1AsGa|n?3Om&5ID3)T+u#4j?kw?#i&0LSOe? z{eHu?c#o&BSgl64NFM(aV+0L2A~g=NTo1k>GXTe>zw399%@IOcq@bJR;ZX+SS6^XV ziHsSZ)HtyI(_`VO%a23VauGTOZDGaFIgd=ayRkGqlvx-IIGaP_M|v%g>@3*IAp%{n zAm-Oe5u+Fph`!o|dJi$NIt!FK1lB>dLTq~?@`NDIJ~U(|e(t&H0|-LoTBiUV3M$x; zmmFf7fHY-^tM1AWy`{>+qzDo1vGC=`p3INHX9>nYO7j{dL;Jvb*1RN%K1d#Ft6TP6 zykU*!!gVm~F=of=@P}PYm7AC)_y3EDg1&dL&@a7L`exgqQsFY}Dy^tTh>=Nc?K|@p z?7;|1(hhJ#>c{QnbAnJK1zSDewTlZ7&DsH44+zBf9enqW2to%aJ@v`;5k$fHa|N^( zs+DgY%z8DD)SZi~@VC7nHq~OpS6IF;By9Rc)5|@T?my1UPW+(-{N+q^jUgHzO`o#b z8NPjj5bSSF@n|1-X?djdcoVwg_BoxgM*rVb-u9a2_8aF221;h-d>zyY{q~)|`^ICw zkEj{_+8REUaTFq}uRn;A9vd5Dr#`=MC@NtVY@0vVXJ-IpDEfYq^m*Xz&twsRiK53P z$7avT6unYZjL%%PYT)N^ZfSRUr5d&l$< zj-m2*xuRl~5m0%;@OKBPV1Wl5sYpT4I|R}LbFr-Z3H=8htAJEELpRB>Khpx5m(!`D z7SGw%Nr#zF#OF0$HfV0IDNNEKTM@P=WIHAy|GD+9^>r$gS0SnYh|vvkU?B5ddNPBP zOu{gvP(!O027tQRU@jBF?uj)T#hKe4$4YGCY<#=k-p*>|KG^tdZrED0tP;(SG_@hQ z+yFl&0p37|LP{sVNHGb|S}Ot+-<3YBKJcyVrAFTE+Y8;O&{%T9oanUy9t&!R^~nvw zmu8nbF8dA>Ob4=XcZr^xM4Dp&l@uqeL^Q2UC5lhO*hdR~_`$C@9;AZoM&JpGgu9~# z7W&s;FeG&g`^L7wWBdd)PXdFL?=7|lqa)v+CQ_meKIykB3CM*a>K^1s_3OL7IVJR&wKH&Wg zp^)N>aULAvarTXGbPk=k4vc%r;4Lcev53XRS0Z=s$vmU(t~q|f#4r9(U_i}!crtT9 zN`!~M->-1{`nFyRs9TOhUh?qT?u0~PDxi}{too%N?c%F&S&Je1&+oRsJk}>+JLcK_ zWSFM!j|;|9S&Pp(MKfS**QBQl^_-pGx=_a7b`ScyJTtUt*R9GLyMsnjQ23eL@{dS=*P z`jcv{Z_C7`ar&h$xN9T#+K!U2&Cp?hEHD7;o8CWO0Biw=#pG>Oz^Qw216w441RQ%U7JYi`fHe!sc`K0VFS6*iV{!yr>BYpWIXWS8z1UM$5_==UB_I9 z1+g^;F;h;tKKqsRg8vp9q|;&qGfTZ(xLpQx4;oB&B~1{usOeb#0X@4ise*;z^4XH| zq)OcB0B_fujJGsT9vEDze){WyNj4dxUuhwWUx=8;rr6*@Nv`i`?*T>)F2|~O&F#g< zr0S-o7-bh7p~ScQBVcVX)amv2_g{v##p@JxF2E1^<)g}bc_ZERFeU43<4cJas?BDZ z?>hOT67y4*TG|-)O~Bd5xc~)_@p>!GK=XyBv+&=t9rQg5j`Cy<*-%hp0aknSu`@%P zaDxzA@1hPN(JE)& z)yH|;llCNlp)dn^X~T>9@cW6ev1CYTPe>smsMUk%*qd_=0q463QMrD2y<%2km8N#> zF|_%C0|!L*WxDsCwBT3qOa%}0ZU_i4NEbIcMY1QE)=W1kxHEf&@h7cr9vm-dHcCpF zl&PI=;Y-bGX{S(sY5B$5l9bo@V z#7mJMVQWn5rfrXOL=4(AFNv*O-rvM^pC>%m&!+A6Ne}_8uSuJ~e+onyeWjZC zVfs0Q41zL<_h);Q9|4Jk^a~U}dX)1pn4yh9SyZ`t(96%KLE%h|_1+tc^j4_3fzqx@+lJDVRy1^U1tN*fI0_Q)Z3;yP6Mwu1u=iAqQXs&i-E zXeSQjf?1`(3{wQN9u<)l2CnAG&!YUIC34f4S9(Dk3#H81cBw&;J262?FHXm-3wLg) zG_URgO;`X`>kE&TpN^ztQTs>8Q_w+5wf+D#)&+fGFW%|UMptbr{NnAn-3Pc;g3JP* z5Q4jkgHNjFYg59Ec!n-7EBsc2LQNR_Xh9n6at{R4c^%b>GzJ730g#1R0A3rcIa-kp zpRO{y97n~_|EBDXi2Bn{Zse*6;j^jZH*)#T$}{8(zEKc??HgxrPueY819fS@?Z}^M znv7*biojr82~kU>iaRWJm`S)d1@h&&mwJ6kJIMUDlkH-o?Dyi0$6gVATH3p;*=Jco zf5e3hmwf~Zc`Mljm*j>M9 zgn*82ZeP3WF113{D%6%7Jp1jFHNtx#jmFSm^lw3j<;+^C-B~FXdB+@@B(1V~j_T6X znkpCbK;8O@F@nE%qDMi29bPg8bi-2`Ux%P-C|R+p6@F_quU1shcq0cr6MHKZfc?*N zNUhXI7OkObQ#Q(xiI*O{OE{R4n?9ISK9pK;->trvJHp~_^8{%dA$Xz8NNMroGjW8C z1Nsy(-uLWnVuzGb)p7lH5Jipf%SE0u=i~5e2-aVc3=poRac)IPFJ4$8yvnl{bPNtw zhW!1>h^DEvNT{SrPLO|wg3`k?K&KPSRJT2@`{s({T- zwQDe+bV0XMCMYbg9rgw#-w!Cmn11l~rBe=r$>k4|`!m0>-InByjCdJc>OaK8EqPWa zzQ75sQF_vkPj4|ynj$ za|TIO3;Xt7DfUjXgWKsx3_TYq3_XE99TJC>M}Cf(vmGZ2C74ltAd4R+@qZK+gvPRq z8;XF~Km@5)fhkaNSpx(Cf3{aHbs+!+5NlINfsNStMYU$oDeC}RWHkz5z9m&voKO^V zd9U7QOp;gb?b~a}C4qpK;lmI4;5*S_YO-%vI$)zEHE!2uEMgEWT|1|)8?c$& z+%`SDXGN~`fU`4QMpqnUVloXOVHj#^SO`3IISS{7!TVF^to#yz4x7oe6l((y{QdFs zM}UY02?Nt#LzthCz+D(}^dZ0H$=604udGQG{f5;-CDyyi{M&=f5r(0!tK6v9+lLSz73jMbSP*H$%I!cfnSMG82JO-(9m}& z`L*`kisy&Y`K{k-r{3!zLIl7**eG{E&5AIhDaZccx71J)Fff8r8+G}=PI5lT1rSvr z(S2j*;WV!#*S(zFuK`a~qrK+9T}$-5kkbiQ$KuQhVu{3xYTI?l=be#8;r^ z!?gTpCcP|t1I`c6Y5^c8B^Mmw#2p)Rk8GJJ`z;PRs-T-SfwmqhMBaogzu!--Y;J~l z)kQRW*>w$Lq(TVcctM6B-mn}3U3zz)EW!Z)p!}2~0GlED#bJf+OntYM{RiuB?Jjz- z6{?q!$`EnqzFQy@3sxO2iVA$sWWjVqpaO}vKG}+p2XpkOD5x_)V#8H zVmc<~nK7SQiIadGSDT~dqhUpOUZ;9I)#3_f7;vA^GL{+Kn|NrHQ}vtBXJ>g0G{ zauJam`W;$31&*b{<&uOzBS=sXg}y%1mzvtz-cUn|ra>vH z8ni_k6KF_6tbc#uVn#)@?4ArXS#-|!9>{Hd(0L|sN=9RTgWau0xsD>Lz3 z@)c9yrFUu3p)>7Vg~Sro<1cwHK=#3vKj*)3NQCZeZ_OaAE+jiarxBBg;RQh`Tr%}K z4+sx}C4BkfcLCtCA3ewZ#zKdc7n~he)Io~e4mnuJnRDpyVMM`<6jvfk8q>>WX!Sy< z2B`i?fh}eR5acfC*fcdf-BBAak$U-||Jwsbfs&LH;zD9|w?>a1I+=#O-^)#!r=|*I z3pgOB4Cqln&WuGCQe^6Z?}$C<^vRPZ;o(|PXhw%Zax{>(VSw?Gv=I2|mR|cKS0(o8 zCB2olYCD)A*b69s2Iy>%{n*vx4CB{@h0I&Gl8^!~D8ynwEq-VcfNKqySSvD5LERK; zXXDsTJiOKEQ9+5_*qmTV8%$3 zUcsfmQ7GdhM}*<={datTn*KphQvAmiOGxF8Sf*G$JXK@VJ|fycpG)9aWnF2FV{~2B z*4oKv@Pou%xU;Chz`zS;)v8Y z=&e5b+q|T?U1{Ztzfrea8r@A}wj*3s7 zv!ZC{I1EO7y24k0jg>%G3hqgeu|}S2BrWX5&6~^z;<~|-gdjpl9FEsfxX+Py4OHx+ zmiGSvZUB32g9tK=kfskHPzx!v3lTjl^qBJ>Hu>kOdT?+s^6v^$cORiyLt)J)r9-!y zu1Z9<9w?mOU=>y_oaU&bR+Kf|K1bk)Xvu~Jrma6`3YbcyxD9D@><9mc@nSICsR$+r z2sZ?IA;E3k-Q57PB2_Rc(AjOgiP$EHFo67vQR(1uY@J=7f@l6Y$hLNAbRjrW(&G?DBN5$cO?jntv(UAlJC!<_33`V4RTXkw=)x zTjn^=-q+VFj(>Xg=MvT|na3y5?fLIqQ9Y&TBRqNj0p7wIBAQPVCD{4eQv_6)kQ8s6 z?=~DOyK}y*A{CO{JUmFwgr=4j5#jaT-ucTbKVE)Nj^f#}8wfWpL@^1)0$vb<6Zt9A za@TPr^&4?_!E@e)ScX8*Mn5#8)?2rf-KZZk3EKN4juWrDFyl`i^k zEx?7M93m}(JmM@IkCx;f@KbxMXp#Ezn6Tr8laz~Q>27He!DcV@dUcO!5+!qUJE}6M zn#cuYR$R%r7J@bK)DaobC*qP!#5CTHYI)#UGOJ`Dr$Ee#T^O~Ek{R?$#IW%1deN;J z=)!dqEq1p%^cznm+yR_-c|MO}86-L3d&SErwb1ls$I${T7PI_*Sz37M>651LnzUK+ z4;y!%cZcdRaHum(4+*an&Thz~fA~AMoAAV%RGsxs{q}7714VZFAxo z5&7S49@qO?nZlrCf+>b9a4*XHBJS5FcZFstB72Duiy^AbGf!Uq_{ulm#ny6yCAJ^@ z1TqIJFf&+0vqm=SmQ2A)lJbibD3VUXncZqg8gOh#Gl-btPPXl z`qlQ7NMgY#4oBQ`ntjeXyt)&S>mzhe7UiQ02HT}#Bx4El!aF{@7<MH5XZTdgFZ9! zp8J06?2gEI$et4FgRSe?<;7GRofb-2NoK2lHfkhVL@8S{iAEfR`=PE3+lz@*28U|#P=+Hh*O(a}z z?p=idGQ~leGsA}`;qCDM8hG=D_KR19xs&}isryW91kOD%uwio_E;v4>pH zGqmW@8Bl%8ZGYmtL7-G_?&U`9h>bJcSI=)Qn!regm~4esy|}TFA5ovf*hYtf^Y`Bt4LBbY1g*`UHFUTFFIgNROp0uY$K(+0DAEOlo&g_ zutdEGSi-+BQCNaY9zPb6b1djUig5tr177-eSGf)=ce^ZJg}A1wew~!dqBZFCy>)*9 zIj2@}B80`|b6S<7Vln$&DRLwX{*tx_4_>c=^;8@{AN&x+2TFp-6o}X97?^pD_O^UK zfOt`p$D6_z5&$(5Jl(v;gdFQoLkWl16tqwpAKuOC>JXoyREp*u{Wf898 z*E(I?b#=BQ!K$Lw3$K4im7b&6UuBlB^FV$2@&(kh%2a4WG+tW;IV&Fi8$6B#Jm!xf z0!}CyM(XLYJ$d?3P+xElqN92cr7jUPu~3$bMplXIa*of#J*G9khsLV%VrTGD*fXnn z#&Qx@6?!o;oLYJQYwdosV%mDzF7xhXN4r=DW|~;kkhvZpzXh0D z!}kN^N2VA7<@5-ID0KB*ymGR#3BI{kcTV~2r}h^)<&X;HFT9crGNT9*4Spv26qUXe zuvZl{$Vm?eyvF)aZ$XWdW1ecf4JHCK6kM=;w;}CGNF*6tVvuC-0hJi0Tlx&-Mj@(Q zDAoZfPm3pLTBUvIE+g~;EQF}bceWQ#fUaL0Spz}J%#3si0}*)j#tjm*)Z~WNYC|ub zdEw2+4M|!Y8kpa^g+KH0(_y{cq_9i6)Pht~MZZ7B-17v@&bqXdFp#NGLJK`K5y}dT z*F|MzXhiZ3z!Z}6%hdR=zP=D-{&Eg^PDf|Kn!SqfqHynZQY zm>cNOJ7xlvrhKn7PB73e^yV@dB zHi1}Do%x};eZWg-FOkvgJLh;!K1-|UkmKknim(K#c0vP(pudK$|mQ19|--;~N^Q$#^%Gijfz;qlS+> zo4AE~^^{Y(>_6uXo%49+)yvxGxZPvD3knA)sw*=on7vrXsFD?~p@TlRFN)KBe=Uv1 z3$b3O>hSKx=12P7OV(KzF&#`U@G3f<;5w4Ll`S-CnVOgX+Uk4#z1)lOFL>9ba191n z3pgM96NX$O!m-(j`t8~hVk_6lJkdFs3xnN0&-ETNou>5v3~W$yi7IIiAsjuSyg}8K z?FqYJ;dl*?VJKqaZr@c@x_+Rk8a=HjX2%nxD{S}5SGX-vvO2^U4p1yho!tCn+N~{2 zCkGEh5kGgkHg1ANq<0lFe$?OG)cQwmy#KHyKW9Um2Z#zDC%F5_-8z-lWx((FhdNPf(Yoj9a4Jwn zn92`H;wSx4y5Zig;+^a~FwBl5$VWvliCMIKh$W5 zmJ8DQZNA2O#QMgFa?A+p#8jkD;>^iQSp7`~6CL_wA%6DE>35Oi#ac|xB}7_C z?D3EvpdG?}u=V@sV?lg=m&?5~htK;@{@G_x0n09L7wg1W-IpBk47?3 zrFNM}jKYW9Y=v7J3AWUj1h@JUKD;a1#6RdR4D`Y<#2xa<_UGWoHZ$zU$W-ROdiUh0 znR*XhxJAP3h*p!CKK*=efmpr-`UKP_8sG4IQ;g;>(ZyuX2G*ajP8Uf3%pqH?dVZ1D zs8`A(c4J-f+M_h4sGFnS&nfp9+8{!aCf#bqVU2fIzsr~U$#CJcSorFAe z-fE$Be;w06^3dyI<0bqEjO&dUT<7qCfMQi|&4k_6s->nHA05LM`Hd*>bo&@|snKUn zgqq3U_q=&uRzmX1(TmqQs`k>p!FEFyo=|yir7*<4&^@EmW+lm8^Wfepx^YAyX5{Or zjM?qtTV$?ZSMVcHbsEb(-znuThx^8MfOj0n;xno!(&JDN$HWqa}WIo-t zX=WDW4#$GNnBPoOvc1^no$$Fbro$2HIzn2WL@C*k!aUmI%WtckmQR=ozBe(S6AM$z zw(|U!r1uOukUqfZAIoC#Nm5&LwrnV>xJZA&gHnD|K|fZ-CBMoouz=VQK3DF@5j}R> zJ3gsQQ~N-#Y8%Hl_9ML5&h#wZ+K?ksUj+S}j56S{C|ty@`GozZT0N8<3+?)vLPBpn z@DBzwRUDGAQu&T`H2Yv1IPdy+XC&Osb+4`MTu@HmS8#yg43P;D-?X~E{ zsD}m|#ZqWI3w%8~xUSJop6i117jT`NU7>%~mJS>&!ZT(z)7*jXYZPK322+#8zwqf% zWOk_8Io=xHiEfhLe!pTtzuV;1unU1VcdXQ4k36SY-LdNiQ}I%ZB0Y+fo&*WP{i?Hj zC}VANj+-v2;w}rKenNY&eLqtM{TNJg=#z-Tz;P$-3&M#kUk{m6Jy7YYbM5kgu$*1o zm%)-o12fi}{V7=tcP1hpzImL?-XJw44ZhTbA{XA7gQ#{TQ=RQSsSVBlOz+a3N~V0&hM}3*2SKFMEW{o zp?<&w6UdQ4W;~vbq1W&$rT>BU&NRH(b$;i;$rb-uYa!@MMuWtesJmyw&usdYfylws z#MA5*%|d(4SE|wY98#?=p_5BknOvEW8{v1cFIoCeB}2pQn1H}Qs8`taaGV1O6|i_{ znnmSofpD2bV(2^$+$QQWxF>f#e1Db=hG0bZ3vMJtx}^5?Mi6+RQwn8dZX6z%R!HBc zZ#;i-a4KiOjEc953))xVKq66V2x{#NDl60hyw#_+R1zU?nz~vHGE`)&01XWSrv-s4 z4@SRqf+47|p^EZow>qT!LN~zlgNmwMDCpuv>I9H66|}3mPw1ib+LLTpqCoT98KgewCgc@5xo zoSdBHVFSc#i5QBSA+sLag9N@KOG#AJexC7s_NWA9l9=;xSK3VCyNI*7`j3f>?-DHK z7kBe<)22)AUrfuZy=Cb^<%_YZJLRL8SBKT95&aW$sr${~;N6O+P+A@51dg-OBEEW)}8VlWlaCsTC8QJ*f9`wzw10AC1d-T8oZmRb0S;!EkdcfrAdte0R%P<0jkR12^6S7Y{ z>01Zl1{vxORj(qUOyCRj2I(mf9ygYKxQ(xkGGQ)QTVr=*N*N!Ure@cK<)xj`KZ)k0%VfF_Nqe z9ofq?8D7Na766Kn^^8e43f@O5;BS{ z;!Q40W63qIK!36_Nh-C4zA$ea_oF|;ta79QKP!?dG;CKXG4wXueJi|3Xs>3)o}QUR zW)pJjn|rouz+Uk3@ex6Hf|yV|FRXR8ZUR|~ICbDllKkEB?WN+}XkDqd$SM+2g(y^! z_X@~Lu>^=h@?M^uVUX`rwfyvltaomxztl}U0zyOuxbAL54^M6gYkU6z*y__ zR?>m+THV=o_$kAR@XG9I<^4WVM001ad*UH$hKd85GkivrP3EjOuGb?sQ!J>M^xUG) zmeViPL=-=&W_Yx_T$rf$>ZmK<*S8u&?bCQKytvNJGeiRHj1;badno5AA+B!`PjRq6 z_0Wsx;mWLe-#35aA=aOw*K+5Y<-tIGc{VKN{sqcHU|83w&fjU4iwf0r;Wla=O7QY{ zdV*#^`}T3b>`bH{^N#5Jj(d?B|3J<3x;2I(sTQQF*&4?Yp!>*wVrDX$w)5`nMPF>O z^jYst&DyVp4HJ$w^c+#d&*u#aPQ0VA^8_%S(Fuqz7BiX0*U6fQutg{8UU#9Utp^_` z2oNu_X9!IIeuG2{K(CF2q$C|Aps|kbwdMwHEKbZIy3qFKUI;IGjwq|Is>4$wub^;c zd?}%82JxWprbXw#UCWIu;h>Cya)T7Pg2>`HWw3g-!Zvsn+G&w?U-+J$`W>0Rau1bM zdN3sSrnLU4eKPkh{yKinMx$2$)oLUvqtxIKZGka*i}UD>O|A^O?3qh(Hwl{^Y&~s$ z`plG36Dr}j@lomNB=Ik2J`6s`(tl;@d(khU8!JKZdL(EFIq|QJb}j%bYjx%~kE8yT z6L&81BQhfdf6{oZLyz#sKK;T^{@2N+=F89j>|+KHA5#!KU;$JbI76*_Z|_r)zPt^2 z{heS?kA+k90uUdMfVK_!5I#(teVv~hRI?`n)8S6aV|x{%^^2Zuw=mruuCj`_iUF>3 zJ{%tBp9LM;-1#_vZ-6VKw58?Kr8t3m;Whl&nl|NEX^~a8yM<&2(VrsK9XgV+LpX94 z^?U+ftVD17AYB+>XoSaSWvZH%bx}(NBYAlu0H)D{TWF-Xa+mI0}b0WL!| za@8y7!xJslt#g2lA%yDbXWRTB5aUe_Swp zt>zpFg|s^mI_+&`Q)w=InN1*Z6|y~FYzu2%RArMneND;R!+*Iful;Dn$C&ZG>2c@m ztmzWi>6#~uEvpaNtGb+ati$h%9Brdlp5?Dl%DBqnLjQGI$gb34)q?vK(El}pW|s7G z)0Z4(PG*!?Zg=-(Ttal@92<74^2R%%1KpXP*=?!ZVM`y|l=Iksm&@ z!iy8v`IZJsmQs{RJKLwdW?yf9{dI~fxBo*v`O%PcT}3o}0* zDz*M*k7V?3)FOjgb&hKTsPHXVrz5NNIyt%$KU}KkCh?QF+g(ny#WI5Uj!g-y?rK|V z=T$`mg?pv1Nw|FHOk5cmL5HoxxMNE1H{Q%@=^~a4`I@lHpHIjq^O00->AaXtg8XtE zmAKTRNK5oAr}1I%6G8QX3i;HXd3D1wU4$iQJ-Vf=yqsk;=IfxsAb?vpoF7R25X^kZ za603-tq$U10!1f6!WSmj@y{@-#BwM(ZM@0i3#78Lcn-Jxp8sQC>q>}|aEY5+s+2o= zqIE*3H+1a<6jGt{$6awWRQC9lu(d)sDxgOXiJ`wayZ6-yxAL1(e+IC3s!XJ;GV`Y-1hK-gS2SPauWEDY2CLyjgO zrjb+&N4e8CIpsXQ%SR`Ep8Qx~Fuq=HZo@XU(RefS9c$d=v4Z(tLh+CVHlCUp+`C8r zxlL@&;qk98REamYvV;gz+ol)`??-~C{QZq#`~ssVs-Ei*;LEft^vqYUUcHR)-$=za zf{Y@;{NSsw1PoeY#>~@G3`sg^T7JR?2wfXk(^Nq?g&3XwDR&Uqc<)WbAvMwvC;&5- zJ)&X)IYo49IugVPSXm?lLQ+8v1n(d&fU?_xN2W8*QdYuBdc-z}`W1g-2?}EPleSm0 z^pPp!nXTm_N$$23Kx6a+mMvpjyav?mNaM$4yz^81@go%R-4VPUHIp*rldE|x)G@t` z5ZQ!20Ns&6_c8f@HEo#M^b3c~zqyCNkC4Z4H7AFRsAZ50fFMVZ zf?A4SBmvJX0Y*2_Yjr_kI{qy7SoHio#MKHT6!FjUxo7Q&C_Uia9t5d$vPe@_%6!&a zS6Gv&%P|?I7v?|AyU(Ldc(?F4WAy=t`>O=<4PMRmdpb@kZ#L@ACQ6Kp<)y|k`kgpL z+)gdK7~^I*>+Y0$Z}0A@rIN;$+^IMD2MJ03OZ=QcN zejKY)Clk@~QMY~bh36iXw>WZz? z5>HnXS0iWqg}iSRJe$-$_{&~6eN4YSg6Fb@k;=EV-Mhbk7Wyj!=lwDCOAR}Cd-bZC zOmR1pvrp1K&fzs^G`Sd$+=K6zY=4VHh)!Q^XFkCw9!H|8D`}h}4?QnFk%Q7@4HjE# zk7j-|-+5|9#f7}tj3LPjipiRESlj?S@lNL}*=w^dr&ez87OL6ERar2M+^dX~e3@ZT z;2#y!aN*aiHRUQ=idN;}&xswdNYK3+nVu$At!hH%Od>KDK9s8S`6J3E8Te3pDrt1B z%|hylgiEsc5bknR(&rEpC7y3_ho_F=vx6`sK0flLmylL4 zR#_~^DWeQOB5#%e!RFtIj1~ zD0be1KF!tiEY8e~v~{#6gRSQmP;!6-8v}VtOUc9t3@p1kQ=cRfDlK)IJvy9{1hcx5 z_qn_+pu7}}Kl=2L+h_#s7HsHfY1NTdTvw%4eyKmn;?ZNuSs}J4w zf0w-W3#Ma0_6ylkq(aO}z{UE} zxsmSKzA~TACw)u5L@*>Pr(SBOmw{xWN9kx|4hxIN#Z`Z!f~_p{@R9F=-i1CQXYT3{ zwRVO{$)X$0=VSX`^q#-6)%2FaOKN^y!58$l$T>g@CkSW|2CEw?lo=$sctteEtK1}v zOReyusmPxlPT-s6`07g*MH_pXo_}3yWguF@&c>U0zu`DG(U!m^HvHivu5B%L#EZ~y z@a|yh0O?dSE@z^Wp-mhBEemNA_I}%OYl5;S-lF6Dpq&Y&@s(Q_rUKul$4+fZSQ{*H z>Ceq?e@_w5a`>%gI|2a={D}-|L`@ey8m^?XN31d^;6b#r(!Hghah z1DI`dD-4f1FF#S=uM6AtZ6t9P2P2i1P|+cU?~V%9^?M@?F4pvOHV6=pTd|KbI2)Xk zCRegmD@po==ejfrG(5*z;xiHnwj(5W6Uv-udYBU!;e}ZG2zHgKw34GzT5ej4(xg`jV@fwbtO?;btxFN@Gi!)1mP74+ z@*g0_Lcr=L1zwR;4~6%A2;)f?+5e{KJ*f5}`}Z=~>Ls9V4ADYXzYPJ2cyMyrorl(# zl#~xN94*OmHCZ~%JEME{&isnQg^IZ5e<5Xbuh!w=cPT6o0ur$BcU2@8@zTo&FJPe~_aRk_QFxNj~5N zMM54>g(-3%o!`+-A8X-0qrba@ODAgbD*+9L>Jm*S0=~ z*mOQFYO4OwshDR*zR-jA=I}9~HTA_DjnVYRXU?dB2&x8h&pI!HL>ZYzV0CMK0`WEg z8%=}VjSdy`@u?`J)!{+gx3_r}4@xO|*Q4Qlpq?x5@hpa(2&TgI(Kl&xu{pX5GgHd3 zl@lfwrZ+-;)To?JcY^WN66vxey}{C}3%&2=ELBcxG<&wrIB)(+Nb$KB`tTry$`{O^ z_WuDX@oqi-bj>yd(PAMkvNO{Rh?*5ihX4`l4=C+Ip^jbJ)kQQSIliY+_4R%zqSJCeWc z-ak;knS$j3ZZRiU*Tj^)PtZw8OX~LNqA_ztiK-wr1L@ujDB{iG7DhVOhR=Wq^;YoZ zgZ@F9JLY-UXtSR?zrBwfoePWnc;4ceM%^8m%&X)0S6bx5+FDu>N@pTP1FFnT+fM@A z_w?${$F>4q0gtH-rgA^mqa4i>n{?qdi}i}%3w-0omt6QX^nISQzXyM$a}VO}`QO@X z^6zv=ra}S%5V<;-nn3CSG%)g)QT-*BT&Py~rRjf5%gL3T{`eHBueJM~GS@%-N@aa19Q!$GGgFE3Aid3@UiY%({niVg+WPip^u zAtZedKpj*e0Fl7dBSBK4D<`o=c<+%b1QQJXCz+w-f#Tj5I2}P{u>%GE7d;7)Ni!y! z+{_PezuBQ*;Tg5fyB6#BDCYe#o)z~n>aK29;kneGTUGfGJ=PAnY9a7an~E3kG=?<^ z$yH|Ik!4V~7SRnu1Ev=VFr#YFh$^ZT2^Rrn1|V{XyaQ|&;z&*zyNC|PxQQ8N@RjFK z;F}3hMqQtwFlbk#QInu8f4pBVPzuymsh(}!4`x1pzIa@jo%XyRgH^57kit?@(ZxCi z;#UVI7z0{5+*!7`dm`jV`~SWUla%=!c8d5o=&p{JK<<=HlKSU5^Zw}%je3+&dYJs1 z!{!elNf_`6t?cYNKro5qAO25X9ZjjIs(KDEsxydtz*js|lqiOT`H3G`L9DoN10e5D zL}d#b67;mDfBznqeqx6GzhJPetPLxBjx=lUHS6TVr9BIu_nhTt(=#scI&SvZvX}qc zT76tLJC@>r1qgv9WKRL`XXGy_tNrvf1WO5wyFr)a9dAHL+4DZ94 z9d;y7qx%~8Uj+wYVaohBrrc)e`QgqVzLwheS*yF-nl_Tk*<*tv`1XqU3ao@yy71Ef zimy3f^U&(?l@AK9mMkv*4lcV=Tf7;GbMe-yrk3TrJ5}i=Jl6k`x|j9~ZgOlx{@q;8 zSFEuFLnf}pJ*n0VQ0Ob?n3$!^t~lQji1PBAHN%Ze%tbXepaU8-#>{mS{_J>3 zQUs+$g6u-33d7Gfhdla#d&XnNPs2SFHkrH9L485pny8uRI%ymkIpFnc}Cph+$z`djT;e}3;0mxPLY!#dGE}q z*9)=`!;l0SGGrSi){>ovVhL4mt*itSaqgv#!_tPSf5u9>)+w8hT?3E&h%)2uXd7?e z;@WxU-)APB8skD)Onu0vymn9MmxKhkYYa- zzNh8LAepGxI&FI;%gUP0-TnJJ6CyVQ(EV&SN&^opNwAUhkin%Hpo51DNMi+>AwB#G9m?#Yg3oM51UBf*|Qsw5^Zd_dg4jLukgAj+e(Gns$6o3mKahNOxmi_WR}dDI232s zsaYO})!x9&MxN*1U9(n-l)h*G&?sJ6;x2uokF{mDXG>jM%5%}1Iz?~!C4FP}IpmR^ z@4f1pBheeL-!5BJTIa3B_W-0qvHJ2~@WH1Yy`xfCV*D@O@8zfIV>&rwo!Fuh?9J*$ z+HAT|sZlks|LdOd32{&S%&Wop(yaRcm*rblkCf8;t%g6iMd;OG^?UL(bq1? zbz1KEpkZUgZuZpE&v>HWsmx%y{Uv@Rc?$aqrK?tzA>j+>o$*1Q{>s}=YV~zxhr*Nh zlG|%)ja}Zp9-#T+io*W7Jh^XSsz8_IWyW3PQh!Cl406Lw{IOT1$v>rXjkO;rZ#ca6 z`Wz^hIyT$3cUG9~8|Qjrm)?gU;pv9Be}DPPDt|}KS2+_A(URs%ehorBBWqqamK7D> z3)B=OTFn|44?HGMV;gDf<`@^yt+n~{b$l}{_TFbAlA8ZIW!6CY+qO`ORbNhil|dU* z1sk#Ad_0Kf5xI$M;bG(2?{nXNh`hALTsM|XjXm(gxy%gM@hzRhXdZ^s{%<(0_v;>g zkb8I8-Qcy7S}{-7c&cvDTFo~t)~9`Q1yYgrslGQvrAcYCNE#`a29m))Lz`LaQ2O}h zP3$d=6VvZQ`#ObAF?rIxuzTLf!|&f_xAn!RB)lrK7w%MLs>>JH#eUCm=0^w7GjD5YkV+5 zhQVCLqTmYE@^tuH3zb(Jp2I&?^l_E^Kkc1)G*<1q$G72?GoHW)Aeka6l9WP{BFR{$jERH>kttH9L}?Hqvye=QS3;T3_pa9OoZmX{ zS?m0B{yQyeWj!9-e)it?eP8!=eZQaU>yJr|8Khd_2F%p1%dTl?@F901+}IvvDK-k_ z4w8@$`%hcvvcpXr!}I6)yjFy{+ip;JEC=kDFu0%Dm<#f&VAo^SwRO(Du+**i( z2fR1ip>)>AqslQOrlH=GQNLG{Gvm6{DFXpfB#;)p;#Kjn(v>9*uZIemeR}`he`y%8 zE|WF`%P)dALCc8xey#1>w=>2;Jh}z(ve`q!`jZeIg%>k+-MOQ&*r?aXE~X}4pLZZq z;ri3q_vbhj)!3V-70y7gny}%IVD}YRYMMVK<7l##smEdapcqDv?`$dB9^4kTL39%P89ad3#e^uNyMoWF!A*gM;~P!VvlbWEV+rCfU3*6ZWkB7QCAL^U*bo$BXRbE+(&zckHR! zB$wiAsgh1p+`(H)nJL6W}4Z)Lbcdpsd{SN=Zei> z+%)3N2@>i)cDs@JW$&?eS+%z;w+qU)wys#|YHF>SUEy==L=v1TuKMzGd4jbv7UwTd zC~f^_Cm!4+#_hz-ucIHnpr7Nk;NMy8im8%bMmH|`{P6aX=knTDzQK-JM^NgcnL@B~ zmaED|C-T5jl+#3V33MDchsPu9 z2S#0C-Hfb9iWA4+-d?p-*iVb*Ch?WFi^lT8inBvN!!CJ^?Cv4|&+BqR*YN(8;^*c=ys=8-s=XTrEO$Di`GsPX;K;V;NtZ0iuqUZTvut4Wj(%b4ZZ_#7Vl zIinp-Qu~URIX`g8@T7%nYikR?*Kq*clDhkCs-cx-t)DC?Ai*~#5;<${N^n!W$p*Z26*!9@MVefdU0_setDm5jTLWF}*yLzwxMx?ctf+aM`( zr8%`=3!VL@{#%DdfCvz-Rb$qXIdvkdR|8kF6b4p-*Bj;JZr$rUJytR?;Yz7$T-uV> zxluNIc6tAjGd!JMzP8s=cvHvZWP7*B_sa)cSQty?e+}>!cqhzX*RyCI*So02!`}t3 zF1x9mlAY2bzi!<`|EKfsUcH+5T6-+c%`I;QeRjFDm_S(mSS=Ql-cs;SW>pCJ&=~VKSRq?Tig)dQKY5~fW;<-S@}f#sId#yPgmj`2>0*XY`$#XFiTyp_K!q=@F09H^UZ1GMO0 zrC1L*O7u4)U-F8hjkl({x>w7F+dem@=_Bji)(VfNR{p!KAJldTtM6G8qqzv9fwbF$ z!M*rNPL4b}uFy zFv3^t>FABB&Q{LPP|<`i=(N%_!rLFw0*G8?M>GQ{K>jxdCeCF;Lt6V(4e* zHGl(|;P06C;C7BEJ2UsQ%dj`=N=E3qc3n42M0BU^+&`#N7KkjSA!Bt zFMwi=o3a5iSh#t`g{hNbfZrc@WP5!Cb}mM}iDO{xot-QC2qQrTUXoxUkLg23D|BYO z@`4WBPZ9QcUE#%J7+GRUO2%u&#Db9?7Mn)Ua2;-7(o7#gsS(^%(Arsf+`1G!7)k#id_fI-KwFNOoA6hd%=PQ9x{Lc=Z3|^h{Jxo zqbcWj%xS1i7(`-ta1z%n5sw<9tgNgW)0SibK9>RVhDl@+cHY3GokOEjPUVtD^}h76D!xP8yP7lhCs#Tk=JiexnF zYb5%%F$?Y8vxgB8gdC06`&a3qTQ!OR=OiP<^$+6& z5M;d|D8V&6Zv1%xZv1jN`=fr%*Z`|g@sK)_K94<0ztIHZi35Pnn1Go%=QW-lKBzvR zCFTh8txL1L$%S7HMo1}PUdaCk)c+`ti3n{0>FuxDTnp<3B`dID3CVre)zt+>h*CHb zA(XB*vKD}8j#`rwmtXNm;d<`3!d3k>*2p^=0>e4TjsA2ijC|>9?Z4ON*sGQ z9YJ^+R8wVr*QsZn-@L*WoZv|s3(D0J$25KtU?ie2l8z(i=1Yha(53_i2BO^1mEbmw6{--?9 z{2SfU6eOc_hIPd%gQ)g_47-e#7%ydL=0K2EBVQXgq<@5;4k0*%HNsubo9Q2&uxS9} z!2kXc&A@g0O1e&w9tZ@ejFI4gRlgG|@mume42a_JNE5J?u$b6f1V0!$ETk0z9p*$O zr5N&LaX(jf$TK0o{NzkOb3Z_v;LRzbS3)!%tKOPBoB;4KCda4U?LOu!RJmi7B8Uyh zUE=kipT^rsW70KQfb3%H#rm31l7Jf3bai!&*Bd(dS!VcTZG)u<{l8)roY_|aD!dIt zN8?>COla7Zu-i=H4tY&2HNrJ)vERtXDagNuC)Mw}eVE_eM4Lr02NDR&% zU6927o?~lM4A^Li4=B#(6peVigkP|AtIstvA&8FQ5ds(lG`?E$e0_u0ud-Nwd71MJl? z!O-`jzE=AU*^O;ay26bUVOV`N;G_$vXb8e8UW0CM(Sy7>S4fJ8is}L=89svb(K)^A z#D&S2)9(~|82ED&uXehxOf||{ZS|DT_<^TE3`>yN`Oy!mQ7|Cr5RqyUhWI@Ie5!$K zT2C&M@F)mk=1)+tO+@XRfp9AVfKcH_+1XxUMn&!gr=R_`gdF(`&}Ze+R+hh}QfAWs zDGAG^@u@r$a_MmTi)bYwm|E!_zot?j5+ysjRsRlZSS=*sY55&=ZGsW*_p4rq2-)D* z_y6`{x9vfBih}7=Q*F;bzTtm*(QAN&O5EJsBq&0}X?i9QfDC;@?8R5jL!ShqDbS;N z1tFOIgq5HSU4&_wg@uKJ5DmJZnwc;-i-yGQSOzr?9Eg_ul}-YNNXt+FC+YQ=U>4LF zgewL?7^!fVDJZet80Z96v}tzgd*}Urj0G1! zk22iGPXSUjABZECw4xbT6h}$K^b=TJ!VMv$^~c~BEsL8=j*H-bt|u)TOE`(pzzf<0 zhKMxG3Xl73ZET)>D)WE;(0mJ344AGDIFABQN~)n$j9DcBURp~eSI7Z`_?a(j<7mnc z^M^S|TnII5NAroIz^6BnFl2*z6-(4@;6$-xEHE-BTdd zmSU=wMuif-ef5yU$6vmn3|ZcW)RP~XO+V#CAW~0<Hn=2-PU^I3GTm1rG_hg-PKXwpka%rcBv8lQTdAR{q(3siEjXQQiwKR<)_wvB9dG z3?YvA-ey&Cx&2q~X{ReOM3Uq3LfUIXI9fbe3{->EiY1%6Vp#VV_7pSieBM3to)H%# zVqRP3SQ`__ you .. parsed-literal:: /home/bchow/Work/scratch - logs parameters.yaml sflog.txt specfem2d - output scratch sfstate.txt specfem2d_workdir + logs parameters.yaml sflog.txt specfem2d + output scratch sfstate.txt specfem2d_workdir In the ``output/`` directory, we can see the updated model from our @@ -181,7 +181,7 @@ also save the output .png files to disk. .. parsed-literal:: - Figure(707.107x707.107) + Figure(707.107x707.107) .. code:: ipython3 From 39130db2727996402a6997d1c8cabf3a4bfc6d77 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 29 Aug 2022 14:31:26 -0800 Subject: [PATCH 148/195] plot2d now plots zero midpoint for gradient/kernel figures --- seisflows/tools/graphics.py | 21 ++++++++++++++++++--- seisflows/tools/specfem.py | 8 +++++--- 2 files changed, 23 insertions(+), 6 deletions(-) diff --git a/seisflows/tools/graphics.py b/seisflows/tools/graphics.py index 1d1233e5..2d041fb3 100644 --- a/seisflows/tools/graphics.py +++ b/seisflows/tools/graphics.py @@ -9,9 +9,9 @@ from obspy.core.stream import Stream -def plot_2D_contour(x, z, data, cmap="viridis"): +def plot_2d_contour(x, z, data, cmap="viridis", zero_midpoint=False): """ - Plots values of a SPECEFM2D model on an unstructured grid + Plots values of a SPECEFM2D model/gradient on an unstructured grid :type x: np.array :param x: x values of GLL mesh @@ -19,14 +19,29 @@ def plot_2D_contour(x, z, data, cmap="viridis"): :param z: z values of GLL mesh :type data: np.array :param data: D + :type cmap: str + :param cmap: matplotlib colormap to be applied to the contour plot. Defaults + to 'viridis' + :type zero_midpoint: bool + :param zero_midpoint: set 0 as the midpoint for the colorbar. Useful for + diverging colorscales (e.g., for gradients), where the neutral color + (e.g., white) is set at value=0 """ # Figure out aspect ratio of the figure r = (max(x) - min(x))/(max(z) - min(z)) rx = r/np.sqrt(1 + r**2) ry = 1/np.sqrt(1 + r**2) + # Assign zero as the midpoint for things like gradients + if zero_midpoint: + abs_max_val = max(abs(data)) + vmin = -1 * abs_max_val + vmax = abs_max_val + else: + vmin, vmax = None, None + f = plt.figure(figsize=(10 * rx, 10 * ry)) - p = plt.tricontourf(x, z, data, levels=125, cmap=cmap) + p = plt.tricontourf(x, z, data, levels=125, cmap=cmap, vmin=vmin, vmax=vmax) cbar = plt.colorbar(p, shrink=0.8, pad=0.025) # , format="%.2f") plt.axis("image") diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index b7674a81..dfe70801 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -11,8 +11,7 @@ from seisflows.tools.config import Dict from seisflows.tools import unix, msg from seisflows.tools.math import poissons_ratio -from seisflows.tools.graphics import plot_2D_contour - +from seisflows.tools.graphics import plot_2d_contour class Model: @@ -436,8 +435,10 @@ def plot2d(self, parameter, cmap=None, show=True, save=None): if cmap is None: if "kernel" in parameter: cmap = "seismic_r" + zero_midpoint = True else: cmap = "Spectral" + zero_midpoint = False # 'Merge' the coordinate matrices to get a vector representation x, z = np.array([]), np.array([]) @@ -446,7 +447,8 @@ def plot2d(self, parameter, cmap=None, show=True, save=None): z = np.append(z, self.coordinates["z"][iproc]) data = self.merge(parameter=parameter) - f, p, cbar = plot_2D_contour(x=x, z=z, data=data, cmap=cmap) + f, p, cbar = plot_2d_contour(x=x, z=z, data=data, cmap=cmap, + zero_midpoint=zero_midpoint) # Set some figure labels based on information we know here ax = plt.gca() From 7de6d46b87813182a9bf8a491331b59b74bcaf86 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 29 Aug 2022 14:46:43 -0800 Subject: [PATCH 149/195] bugfix: step_count_max was exceeded by 1 step count, changed a '<=' logic to '<' to fix this --- seisflows/plugins/line_search/backtrack.py | 2 +- seisflows/plugins/line_search/bracket.py | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/seisflows/plugins/line_search/backtrack.py b/seisflows/plugins/line_search/backtrack.py index b637b1fa..a86db90b 100644 --- a/seisflows/plugins/line_search/backtrack.py +++ b/seisflows/plugins/line_search/backtrack.py @@ -82,7 +82,7 @@ def calculate_step_length(self): f"successful w/ alpha={alpha}") status = "PASS" # If misfit continually increases, decrease step length - elif step_count <= self.step_count_max: + elif step_count < self.step_count_max: slope = gtp[-1] / gtg[-1] alpha = parabolic_backtrack(f0=f[0], g0=slope, x1=x[1], f1=f[1], b1=0.1, b2=0.5) diff --git a/seisflows/plugins/line_search/bracket.py b/seisflows/plugins/line_search/bracket.py index c4fc6f02..9ddbce82 100644 --- a/seisflows/plugins/line_search/bracket.py +++ b/seisflows/plugins/line_search/bracket.py @@ -179,13 +179,13 @@ def calculate_step_length(self): f"alpha={alpha:.2E}") status = "TRY" # If misfit continues to step down, increase step length - elif step_count <= self.step_count_max and all(f <= f[0]): + elif step_count < self.step_count_max and all(f <= f[0]): alpha = 1.618034 * x[-1] # 1.618034 is the 'golden ratio' logger.info(f"try: misfit not bracketed, increasing step length " f"using golden ratio, alpha={alpha:.2E}") status = "TRY" # If misfit increases, reduce step length by backtracking - elif step_count <= self.step_count_max: + elif step_count < self.step_count_max: slope = gtp[-1] / gtg[-1] alpha = parabolic_backtrack(f0=f[0], g0=slope, x1=x[1], f1=f[1], b1=0.1, b2=0.5) From e7e1745988f8db054f93fdc0398ac2daea09c179 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 29 Aug 2022 16:08:01 -0800 Subject: [PATCH 150/195] refactored SEISFLOWS EXAMPLES ////////////////// Example options where is either the example name or corresponding index, provided below. 'seisflows examples ': print example description 'seisflows examples setup ': setup example but don't run workflow 'seisflows examples run ': setup and run example 1: ex1_homogeneous_halfspace 2: ex2_hh_w_pyatoa 3: ex3_fwd_solver command to not use subprocess but rather import directly from package, makes it less confusing and also allows user to select the number of stations, events and iterations for each example problem reworked some of the example problems to avoid using __main__ for better compatibility with new cli tool example 1 now only uses 1 station, 1 event and 1 iteration to show off a kernel, but allows users to choose beyond default example 2 defaults to 4 events, 2 iterations, X stations started example 3, which will be a mass forward solver --- docs/notebooks/specfem2d_example.ipynb | 52 +++---- ...ersion.py => ex1_homogeneous_halfspace.py} | 0 ...version_w_pyatoa.py => ex2_hh_w_pyatoa.py} | 92 +++++------ seisflows/examples/ex3_fwd_solver.py | 140 +++++++++++++++++ seisflows/examples/sfexample2d.py | 100 +++++++----- seisflows/seisflows.py | 144 ++++++++++-------- 6 files changed, 341 insertions(+), 187 deletions(-) rename seisflows/examples/{ex1_specfem2d_workstation_inversion.py => ex1_homogeneous_halfspace.py} (100%) rename seisflows/examples/{ex2_specfem2d_workstation_inversion_w_pyatoa.py => ex2_hh_w_pyatoa.py} (60%) create mode 100644 seisflows/examples/ex3_fwd_solver.py diff --git a/docs/notebooks/specfem2d_example.ipynb b/docs/notebooks/specfem2d_example.ipynb index b4787448..0a236ac0 100644 --- a/docs/notebooks/specfem2d_example.ipynb +++ b/docs/notebooks/specfem2d_example.ipynb @@ -6,44 +6,31 @@ "source": [ "# Specfem2D Workstation Example\n", "\n", - "To demonstrate the inversion capabilities of SeisFlows, we will run a __Specfem2D synthetic-synthetic example__ on a __local machine__ (tested on a Linux workstation running CentOS 7, and an Apple Laptop running macOS 10.14.6). Many of the setup steps here may be unique to our OS and workstation, but hopefully they may serve as templates for new Users wanting to explore SeisFlows. \n", + "SeisFlows comes with some __Specfem2D synthetic examples__ to showcase the package. These examples are meant to be run on a __local machine__ (tested on a Linux workstation running CentOS 7, and an Apple Laptop running macOS 10.14.6).\n", "\n", - "The numerical solver we will use is: [SPECFEM2D](https://geodynamics.org/cig/software/specfem2d/). We'll also be working in our `seisflows` [Conda](https://docs.conda.io/en/latest/) environment, see the installation documentation page for instructions on how to install and activate the required Conda environment.\n", + "The numerical solver we will use is: [SPECFEM2D](https://geodynamics.org/cig/software/specfem2d/). We'll also be working in our `seisflows` [Conda](https://docs.conda.io/en/latest/) environment, see the installation documentation page for instructions on how to install and activate the required Conda environment. \n", "\n", "-----------------------------------" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Option 1: Automated run\n", - "\n", - "We have set up this example to run using a single command line argument. The following command will run an example script which will (1) download and compile SPECFEM2D, (2) setup a SPECFEM2D working directory to generate initial and target models, and (3) Run a SeisFlows inversion. " - ] - }, { "cell_type": "raw", "metadata": {}, "source": [ ".. warning:: \n", - " If you do not have a compiled version of SPECFEM2D, then this example will attempt to automatically download and compile SPECFEM2D. This step may fail if you do not have software required by SPECFEM2D, if there are issues with the SPECFEM2D repository itself, or if the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem using the -r or --specfem2d_repo flags (shown below)." + " If you do not have a compiled version of SPECFEM2D, then each example will attempt to automatically download and compile SPECFEM2D. This step may fail if you do not have software required by SPECFEM2D, if there are issues with the SPECFEM2D repository itself, or if the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem using the -r or --specfem2d_repo flags (shown below)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Example \\#1\n", - "Example \\#1 runs a 2 iteration inversion using SPECFEM2D, the default preprocessing module and a gradient descent optimization algorithm." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - ".. note::\n", - " Example number 1 is meant to **FAIL** during the line search of Iteration #2, after exceeding the maximum allowable line search step count. This is meant to illustrate line search behavior and allow the User to explore a working directory mid-workflow." + "## Example \\#1: Simple, default inversion\n", + "Example \\#1 runs a 1-iteration synthetic inversion with 1 event and 1 station.\n", + "\n", + "The starting model (MODEL_INIT) and target model (MODEL_TRUE) are used to generate synthetics and data, respectively. Both models are homogeneous halfspace models with slightly varying P- and S-wave velocity values. Only Vp and Vs are updated during the example.\n", + "\n", + "Misfit during Example \\#1 is defined by a 'waveform' misfit using the default preprocessing module. It also uses a gradient-descent optimization algorithm paired with a bracketing line search. No smoothing/regularization is applied to the gradient." ] }, { @@ -103,7 +90,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can either setup and run the example in separate tasks using the `examples setup` and `submit` commands. or directly run the example after setup using the `examples run` command. Use the `-r` or `--specfem2d_repo` flag to point SeisFlows at an existing SPECFEM2D/ repository (with compiled binaries). If not given, SeisFlows will automatically download, configure and compile SPECFEM2D in your current working directory." + "### Running the example\n", + "\n", + "You can either setup and run the example in separate tasks using the `seisflows examples setup` and `seisflows submit` commands, or by directly running the example after setup using the `examples run` command (illustrated below). \n", + "\n", + "Use the `-r` or `--specfem2d_repo` flag to point SeisFlows at an existing SPECFEM2D/ repository (with compiled binaries) if available. If not given, SeisFlows will automatically download, configure and compile SPECFEM2D in your current working directory." ] }, { @@ -112,10 +103,11 @@ "metadata": {}, "outputs": [], "source": [ - "! seisflows examples setup 1 -r path/to/specfem2d\n", + "! seisflows examples setup 1 -r ${PATH_TO_SPECFEM2D}\n", "! seisflows submit\n", + "\n", "# The above commands are the same as the below\n", - "! seisflows examples run 1 --specfem2d_repo path/to/specfem2d" + "! seisflows examples run 1 --specfem2d_repo ${PATH_TO_SPECFEM2D}" ] }, { @@ -162,12 +154,14 @@ " EXAMPLE COMPLETED SUCCESFULLY\n", "\n", " \n", - "Using the `working directory documentation page `__ you can figure out how to navigate around and look at the results of our small inversion problem. We will have a look at a few of the files and directories here. I've run the example problem in a scratch directory but your output directory should look the same." + "Using the `working directory documentation page `__ you can figure out how to navigate around and look at the results of this small inversion problem. \n", + "\n", + "We will have a look at a few of the files and directories here. I've run the example problem in a scratch directory but your output directory should look the same." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -350,7 +344,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -364,7 +358,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.12" + "version": "3.7.6" } }, "nbformat": 4, diff --git a/seisflows/examples/ex1_specfem2d_workstation_inversion.py b/seisflows/examples/ex1_homogeneous_halfspace.py similarity index 100% rename from seisflows/examples/ex1_specfem2d_workstation_inversion.py rename to seisflows/examples/ex1_homogeneous_halfspace.py diff --git a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py b/seisflows/examples/ex2_hh_w_pyatoa.py similarity index 60% rename from seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py rename to seisflows/examples/ex2_hh_w_pyatoa.py index fcae1abf..f8ea5c03 100644 --- a/seisflows/examples/ex2_specfem2d_workstation_inversion_w_pyatoa.py +++ b/seisflows/examples/ex2_hh_w_pyatoa.py @@ -2,9 +2,9 @@ """ SEISFLOWS SPECFEM2D WORKSTATION EXAMPLE 2 -This example will run two iterations of an inversion to assess misfit between -a homogeneous halfspace model and a checkerboard model using 2 events and -5 receivers. +This example will run N iterations of an inversion to assess misfit between +a homogeneous halfspace model and a checkerboard model using X events and +Y receivers. N, X and Y are all user-selectable. .. note:: See Example 1 docstring for more information @@ -26,7 +26,8 @@ class SFPyatoaEx2D(SFExample2D): advantage of the default SPECFEM2D stuff, onyl changes the generation of MODEL TRUE, the number of stations, and the setup of the parameter file. """ - def __init__(self, ntask=2, niter=2, nsta=5, specfem2d_repo=None): + def __init__(self, ntask=None, niter=None, nsta=None, method="run", + specfem2d_repo=None): """ Overload init and attempt to import Pyatoa before running example, overload the default number of tasks to 2, and add a new init parameter @@ -45,12 +46,10 @@ def __init__(self, ntask=2, niter=2, nsta=5, specfem2d_repo=None): contain binary executables. If not given, SPECFEM2D will be downloaded configured and compiled automatically. """ - super().__init__(ntask=ntask, niter=niter, - specfem2d_repo=specfem2d_repo) - self.nsta = nsta - # -1 because it represents index but we need to talk in terms of count - assert(1 <= self.nsta <= 131), \ - f"number of stations must be between 1 and 131, not {self.nsta}" + # Setting default values for ntask, niter, nsta here vvv + super().__init__(ntask=ntask or 4, niter=niter or 2, nsta=nsta or 32, + method=method, specfem2d_repo=specfem2d_repo) + # Make sure that Pyatoa has been installed before running try: import pyatoa @@ -62,6 +61,31 @@ def __init__(self, ntask=2, niter=2, nsta=5, specfem2d_repo=None): ) sys.exit(-1) + def print_dialogue(self): + """ + Print help/system dialogue message that explains the setup of th + this workflow + """ + print(msg.ascii_logo_small) + print(msg.cli( + f"This is a [SPECFEM2D] [WORKSTATION] example, which will " + f"run an inversion to assess misfit between a starting homogeneous " + f"halfspace model and a target checkerboard model. This " + f"example problem uses the [PYAFLOWA] preprocessing " + f"module and the [LBFGS] optimization algorithm. " + f"[{self.ntask} events, {self.nsta} stations, {self.niter} " + f"iterations]. " + f"The tasks involved include: ", + items=["1. (optional) Download, configure, compile SPECFEM2D", + "2. Set up a SPECFEM2D working directory", + "3. Generate starting model from 'Tape2007' example", + "4. Generate target model w/ perturbed starting model", + "5. Set up a SeisFlows working directory", + "6. Run the inversion workflow"], + header="seisflows example 2", + border="=") + ) + def setup_specfem2d_for_model_true(self): """ Overwrites MODEL TRUE creation from EX1 @@ -113,52 +137,4 @@ def setup_seisflows_working_directory(self): self.sf.par("path_model_init", self.workdir_paths.model_init) self.sf.par("path_model_true", self.workdir_paths.model_true) - def finalize_specfem2d_par_file(self): - """ - Final changes to the SPECFEM2D Par_file before running SeisFlows. - Par_file will be used to control all the child specfem2d directories. - Need to tell them to read models from .bin files, and to use existing - station files rather than create them from the Par_file - """ - print("> EX2: Finalizing SPECFEM2D Par_file for SeisFlows inversion") - cd(self.workdir_paths.data) - self.sf.sempar("model", "gll") # GLL so SPECFEM reads .bin files - self.sf.sempar("use_existing_stations", ".true.") # Use STATIONS file - # Assign STATIONS_checker file which has 132 stations - rm("STATIONS") - - # Only write the first 10 lines to get 10 stations in inversion - with open("STATIONS_checker", "r") as f: - lines = f.readlines() - - print(f"> EX2: Using {self.nsta} stations in this inversion workflow") - with open("STATIONS", "w") as f: - f.writelines(lines[:self.nsta]) - - -if __name__ == "__main__": - print(msg.ascii_logo_small) - print(msg.cli( - f"This is a [SPECFEM2D] [WORKSTATION] example, which will " - f"run an inversion to assess misfit between a homogeneous halfspace " - f"and checkerboard model using Pyatoa for misfit quantification " - f"[2 events, 5 stations, 1 iterations]. The tasks involved include: ", - items=["1. (optional) Download, configure, compile SPECFEM2D", - "2. Set up a SPECFEM2D working directory", - "3. Generate starting model from Tape2007 example", - "4. Generate target model w/ perturbed starting model", - "5. Set up a SeisFlows working directory", - f"6. Run an inversion workflow. The line search is expected to " - f"attempt 2 evaluations (i01s02)"], - header="seisflows example 2", - border="=") - ) - - # Dynamically traverse sys.argv to get user-input command line. Cannot - # use argparser here because we're being called by SeisFlows CLI tool which - # is occupying argparser - if len(sys.argv) > 2: - _, _, specfem2d_repo = sys.argv - sfex2d = SFPyatoaEx2D(specfem2d_repo=specfem2d_repo) - sfex2d.main() diff --git a/seisflows/examples/ex3_fwd_solver.py b/seisflows/examples/ex3_fwd_solver.py new file mode 100644 index 00000000..f8ea5c03 --- /dev/null +++ b/seisflows/examples/ex3_fwd_solver.py @@ -0,0 +1,140 @@ +#!/usr/bin/env python3 +""" + SEISFLOWS SPECFEM2D WORKSTATION EXAMPLE 2 + +This example will run N iterations of an inversion to assess misfit between +a homogeneous halfspace model and a checkerboard model using X events and +Y receivers. N, X and Y are all user-selectable. + +.. note:: + See Example 1 docstring for more information + +.. rubric:: + $ seisflows examples run 2 +""" +import os +import sys + +from seisflows.tools import msg +from seisflows.tools.unix import cd, rm, ln +from seisflows.examples.sfexample2d import SFExample2D + + +class SFPyatoaEx2D(SFExample2D): + """ + A class for running SeisFlows examples. Overloads Example 1 to take + advantage of the default SPECFEM2D stuff, onyl changes the generation of + MODEL TRUE, the number of stations, and the setup of the parameter file. + """ + def __init__(self, ntask=None, niter=None, nsta=None, method="run", + specfem2d_repo=None): + """ + Overload init and attempt to import Pyatoa before running example, + overload the default number of tasks to 2, and add a new init parameter + `nsta` which chooses the number of stations, between 1 and 132 + + :type ntask: int + :param ntask: number of events to use in inversion, between 1 and 25. + defaults to 3 + :type niter: int + :param niter: number of iterations to run. defaults to 2 + :type nsta: int + :param nsta: number of stations to include in inversion, between 1 and + 131 + :type specfem2d_repo: str + :param specfem2d_repo: path to the SPECFEM2D directory which should + contain binary executables. If not given, SPECFEM2D will be + downloaded configured and compiled automatically. + """ + # Setting default values for ntask, niter, nsta here vvv + super().__init__(ntask=ntask or 4, niter=niter or 2, nsta=nsta or 32, + method=method, specfem2d_repo=specfem2d_repo) + + # Make sure that Pyatoa has been installed before running + try: + import pyatoa + except ModuleNotFoundError: + print(msg.cli("Module Pyatoa not found but is required for this " + "example. Please install Pyatoa and rerun this " + "example.", header="module not found error", + border="=") + ) + sys.exit(-1) + + def print_dialogue(self): + """ + Print help/system dialogue message that explains the setup of th + this workflow + """ + print(msg.ascii_logo_small) + print(msg.cli( + f"This is a [SPECFEM2D] [WORKSTATION] example, which will " + f"run an inversion to assess misfit between a starting homogeneous " + f"halfspace model and a target checkerboard model. This " + f"example problem uses the [PYAFLOWA] preprocessing " + f"module and the [LBFGS] optimization algorithm. " + f"[{self.ntask} events, {self.nsta} stations, {self.niter} " + f"iterations]. " + f"The tasks involved include: ", + items=["1. (optional) Download, configure, compile SPECFEM2D", + "2. Set up a SPECFEM2D working directory", + "3. Generate starting model from 'Tape2007' example", + "4. Generate target model w/ perturbed starting model", + "5. Set up a SeisFlows working directory", + "6. Run the inversion workflow"], + header="seisflows example 2", + border="=") + ) + + def setup_specfem2d_for_model_true(self): + """ + Overwrites MODEL TRUE creation from EX1 + + Make some adjustments to the parameter file to create the final velocity + model. This function assumes it is running from inside the + SPECFEM2D/DATA directory + """ + cd(self.workdir_paths.data) + assert(os.path.exists("Par_file")), f"I cannot find the Par_file!" + + print("> EX: Updating SPECFEM2D to set checkerboard model as " + "MODEL_TRUE") + self.sf.sempar("model", "legacy") # read model_velocity.dat_checker + rm("proc000000_model_velocity.dat_input") + ln("model_velocity.dat_checker", "proc000000_model_velocity.dat_input") + + def setup_seisflows_working_directory(self): + """ + Create and set the SeisFlows parameter file, making sure all required + parameters are set correctly for this example problem + """ + cd(self.cwd) + + print("> EX2: Setting SeisFlows parameters for Pyatao preprocessing") + self.sf.setup(force=True) # Force will delete existing parameter file + self.sf.par("workflow", "inversion") + self.sf.par("preprocess", "pyaflowa") + self.sf.par("optimize", "LBFGS") + self.sf.configure() + + self.sf.par("end", 1) # only 1 iteration + self.sf.par("ntask", self.ntask) # 3 sources for this example + self.sf.par("materials", "elastic") # how velocity model parameterized + self.sf.par("density", False) # update density or keep constant + self.sf.par("data_format", "ascii") # output synthetic seismograms + self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion + self.sf.par("attenuation", False) + self.sf.par("components", "Y") + + # PYATOA preprocessing parameters + self.sf.par("unit_output", "DISP") + self.sf.par("min_period", 10) # filter bounds define window selection + self.sf.par("max_period", 200) + # self.sf.par("pyflex_preset", "") # To turn off windowing completely + + self.sf.par("path_specfem_bin", self.workdir_paths.bin) + self.sf.par("path_specfem_data", self.workdir_paths.data) + self.sf.par("path_model_init", self.workdir_paths.model_init) + self.sf.par("path_model_true", self.workdir_paths.model_true) + + diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index b5f00e36..d645ba52 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -44,7 +44,8 @@ class SFExample2D: A class for running SeisFlows examples. Simplifies calls structure so that multiple example runs can benefit from the code written here """ - def __init__(self, ntask=3, niter=2, specfem2d_repo=None): + def __init__(self, ntask=None, niter=None, nsta=None, method="run", + specfem2d_repo=None): """ Set path structure which is used to navigate around SPECFEM repositories and the example working directory @@ -54,6 +55,9 @@ def __init__(self, ntask=3, niter=2, specfem2d_repo=None): defaults to 3 :type niter: int :param niter: number of iterations to run. defaults to 2 + :type nsta: int + :param nsta: number of stations to include in inversion, between 1 and + 131 :type specfem2d_repo: str :param specfem2d_repo: path to the SPECFEM2D directory which should contain binary executables. If not given, SPECFEM2D will be @@ -63,21 +67,47 @@ def __init__(self, ntask=3, niter=2, specfem2d_repo=None): self.sem2d_paths, self.workdir_paths = self.define_dir_structures( cwd=self.cwd, specfem2d_repo=specfem2d_repo ) - self.ntask = ntask + self.ntask = ntask or 1 assert(1 <= self.ntask <= 25), \ f"number of tasks/events must be between 1 and 25, not {self.ntask}" - self.niter = niter + self.niter = niter or 1 assert(1 <= self.niter <= np.inf), \ f"number of iterations must be between 1 and inf, not {self.niter}" + self.nsta = nsta or 1 + # -1 because it represents index but we need to talk in terms of count + assert(1 <= self.nsta <= 131), \ + f"number of stations must be between 1 and 131, not {self.nsta}" # This bool information is provided by the User running 'setup' or 'run' - self.run_example = bool(sys.argv[1] == "run") + self.run_example = bool(method == "run") # Command line tool to use $ seisflows from inside Python # Zero out sys.argv to ensure that no arguments are given to the CLI sys.argv = [sys.argv[0]] self.sf = SeisFlows() + def print_dialogue(self): + """ + Print help/system dialogue message that explains the setup of th + this workflow + """ + print(msg.ascii_logo_small) + print(msg.cli( + f"This is a [SPECFEM2D] [WORKSTATION] example, which will " + f"run an inversion to assess misfit between two homogeneous " + f"halfspace models with slightly different velocities. " + f"[{self.ntask} events, 1 station, {self.niter} iterations]. " + f"The tasks involved include: ", + items=["1. (optional) Download, configure, compile SPECFEM2D", + "2. Set up a SPECFEM2D working directory", + "3. Generate starting model from 'Tape2007' example", + "4. Generate target model w/ perturbed starting model", + "5. Set up a SeisFlows working directory", + "6. Run the inversion workflow"], + header="seisflows example 1", + border="=") + ) + @staticmethod def define_dir_structures(cwd, specfem2d_repo, ex="Tape2007"): """ @@ -91,15 +121,10 @@ def define_dir_structures(cwd, specfem2d_repo, ex="Tape2007"): :type ex: str :type ex: The name of the example problem inside SPECFEM2D/EXAMPLES """ - if not os.path.exists(specfem2d_repo): + if specfem2d_repo is None or not os.path.exists(specfem2d_repo): print(f"No existing SPECFEM2D repo given, default to: " f"{cwd}/specfem2d") specfem2d_repo = os.path.join(cwd, "specfem2d") - else: - assert(os.path.exists(specfem2d_repo)), ( - f"User supplied SPECFEM2D directory '{specfem2d_repo}' " - f"does not exist, please check your path and try again." - ) # This defines required structures from the SPECFEM2D repository sem2d = { @@ -133,6 +158,11 @@ def download_specfem2d(self): print(f"Downloading SPECFEM2D with command: {cmd}") subprocess.run(cmd, shell=True, check=True) + assert self.sem2d_paths.repo, ( + f"User supplied SPECFEM2D directory '{self.sem2d_paths.repo}' " + f"does not exist, please check your path and try again." + ) + def configure_specfem2d_and_make_binaries(self): """ Run ./configure within the SPECFEM2D repo directory. @@ -297,6 +327,8 @@ def setup_seisflows_working_directory(self): self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion self.sf.par("components", "Y") # only Y component seismograms avail. self.sf.par("attenuation", False) + self.sf.par("misfit", "traveltime") # cross-correlation phase measure + self.sf.par("adjoint", "traveltime") # cross-correlation phase measure self.sf.par("path_specfem_bin", self.workdir_paths.bin) self.sf.par("path_specfem_data", self.workdir_paths.data) @@ -305,12 +337,26 @@ def setup_seisflows_working_directory(self): def finalize_specfem2d_par_file(self): """ - Last minute changes to get the SPECFEM2D Par_file in the correct format - for running SeisFlows. Setting model type to read from .bin GLL files - change number of stations etc. + Final changes to the SPECFEM2D Par_file before running SeisFlows. + Par_file will be used to control all the child specfem2d directories. + Need to tell them to read models from .bin files, and to use existing + station files rather than create them from the Par_file """ + print("> Finalizing SPECFEM2D Par_file for SeisFlows inversion") + cd(self.workdir_paths.data) self.sf.sempar("model", "gll") # GLL so SPECFEM reads .bin files + self.sf.sempar("use_existing_stations", ".true.") # Use STATIONS file + + # Assign STATIONS_checker file which has 132 stations + rm("STATIONS") + + with open("STATIONS_checker", "r") as f: + lines = f.readlines() + + print(f"> Using {self.nsta} stations in this inversion workflow") + with open("STATIONS", "w") as f: + f.writelines(lines[:self.nsta]) def run_sf_example(self): """ @@ -324,6 +370,7 @@ def main(self): Setup the example and then optionally run the actual seisflows workflow """ print(msg.cli("EXAMPLE SETUP", border="=")) + # Step 1: Download and configure SPECFEM2D, make binaries. Optional self.download_specfem2d() self.configure_specfem2d_and_make_binaries() @@ -349,30 +396,3 @@ def main(self): self.run_sf_example() print(msg.cli("EXAMPLE COMPLETED SUCCESFULLY")) - -if __name__ == "__main__": - print(msg.ascii_logo_small) - print(msg.cli( - f"This is a [SPECFEM2D] [WORKSTATION] example, which will " - f"run an inversion to assess misfit between two homogeneous halfspace " - f"models with slightly different velocities. [3 events, 1 station, 2 " - f"iterations]. The inversion is expected to fail after the 5th line " - f"search step count of the 2nd iteration. The tasks involved include: ", - items=["1. (optional) Download, configure, compile SPECFEM2D", - "2. Set up a SPECFEM2D working directory", - "3. Generate starting model from Tape2007 example", - "4. Generate target model w/ perturbed starting model", - "5. Set up a SeisFlows working directory", - "6. Run an inversion workflow"], - header="seisflows example 1", - border="=") - ) - - # Dynamically traverse sys.argv to get user-input command line. Cannot - # use argparser here because we're being called by SeisFlows CLI tool which - # is occupying argparser. Call looks something like: - # $ python /path/to/example.py run path/to/specfem2d - if len(sys.argv) > 2: - _, _, specfem2d_repo = sys.argv - sfex2d = SFExample2D(specfem2d_repo=specfem2d_repo) - sfex2d.main() diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 23045eb5..e483a254 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -19,7 +19,6 @@ import warnings import argparse import traceback -import subprocess from glob import glob from IPython import embed @@ -297,19 +296,41 @@ def _format_action(self, action): numerical solver """ ) - examples.add_argument("run", type=str, nargs="?", default=None, - help="Run your choice of example problem") - examples.add_argument("choice", type=str, nargs="?", default=None, - help="Name of the specific example problem to run") + examples.add_argument("method", type=str, nargs="?", default=None, + help="Method for running the example problem. If not" + "provided, simply prints out the list of " + "available example problems. If given as an " + "integer value, will print out the help message " + "for the given example. If 'run', will run the " + "example. If 'setup' will simply setup the " + "example working directory but will not execute " + "`seisflows submit`") + examples.add_argument("choice", type=int, nargs="?", default=None, + help="If `method` in ['setup', 'run'], integer" + "value corresponding to the given example " + "problem which can listed using `seisflows " + "examples`") examples.add_argument("-r", "--specfem2d_repo", type=str, nargs="?", default=None, - help= "path to the SPECFEM2D directory which should " - "contain binary executables. If not given, " - "assumes directory is called 'specfem2d/' in " - "the current working directory. If that dir " - "is not found, SPECFEM2D will be downloaded, " - "configured and compiled automatically in the " - "current working directory.") + help="path to the SPECFEM2D directory which should " + "contain binary executables. If not given, " + "assumes directory is called 'specfem2d/' in " + "the current working directory. If that dir " + "is not found, SPECFEM2D will be downloaded, " + "configured and compiled automatically in the " + "current working directory.") + examples.add_argument("--nsta", type=int, nargs="?", default=None, + help="User-defined number of stations to use for " + "the example problem (1 <= NSTA <= 131). If " + "not given, each example has its own default.") + examples.add_argument("--ntask", type=int, nargs="?", default=None, + help="User-defined number of events to use for " + "the example problem (1 <= NTASK <= 25). If " + "not given, each example has its own default.") + examples.add_argument("--niter", type=int, nargs="?", default=None, + help="User-defined number of iterations to run for " + "the example problem (1 <= NITER <= inf). If " + "not given, each example has its own default.") # ========================================================================= # Defines all arguments/functions that expect a sub-argument subparser_dict = {"check": check, "par": par, "inspect": inspect, @@ -871,9 +892,10 @@ def par(self, parameter, value=None, skip_print=False, **kwargs): if not skip_print: print(msg.cli(f"{key}: {cur_val} -> {value}")) - def examples(self, run=None, choice=None, specfem2d_repo=None, **kwargs): + def examples(self, method=None, choice=None, specfem2d_repo=None, + nsta=None, nevent=None, niter=None, **kwargs): """ - List or run a SeisFlows example problem + List or run a SeisFlows example problems USAGE @@ -887,8 +909,8 @@ def examples(self, run=None, choice=None, specfem2d_repo=None, **kwargs): seisflows examples run 1 - :type run: bool - :param run: if True, run an example of choice `choice` + :type method: bool + :param method: if True, run an example of choice `choice` :type choice: str :param choice: The choice of example, must match the given tag or file name that is assigned to it @@ -897,6 +919,43 @@ def examples(self, run=None, choice=None, specfem2d_repo=None, **kwargs): contain binary executables. If not given, SPECFEM2D will be downloaded configured and compiled automatically. """ + # e.g., $ seisflows examples + if method is None: + self._print_examples() + sys.exit(0) + # e.g., $ seisflows examples 1 + elif method and choice is None: + try: + choice = int(method) + except ValueError: + print(f"`method` argument must be 'run', 'setup' or an integer " + f"value corresponding to one of the available examples") + sys.exit(0) + + # Allow the examples to be dynamically recovered based on user choice + if choice == 1: + from seisflows.examples.ex1_homogeneous_halfspace \ + import SFExample2D as Example + elif choice == 2: + from seisflows.examples.ex2_hh_w_pyatoa \ + import SFPyatoaEx2D as Example + else: + print(f"no SeisFlows example matching given number: {choice}") + sys.exit(0) + + # Run or setup example, or just print system dialogue + example = Example(specfem2d_repo=specfem2d_repo, method=method, + nsta=nsta, ntask=nevent, niter=niter) + example.print_dialogue() + + # e.g., $ seisflows examples run 1 + if method in ["setup", "run"]: + example.main() + + @staticmethod + def _print_examples(): + """Simply print a list of available examples which match the format + ex_?*.py""" # Gather all the available examples in the repository examples_dir = os.path.join(ROOT_DIR, "examples") examples_list = [] @@ -906,51 +965,16 @@ def examples(self, run=None, choice=None, specfem2d_repo=None, **kwargs): example_name = os.path.splitext(os.path.basename(fid))[0] examples_list.append((i+1, example_name, fid)) - arg1, arg2 = None, None - if run: - # Case 1: seisflows examples 1 OR seisflows examples ex1_... - if choice is None: - arg1 = run - arg2 = "" - # Case 2: seisflows examples run 1 OR seisflows examples run ex1_... - elif run in ["run", "setup"]: - arg1 = choice - arg2 = f"{run}" # space so that we do $ python ex.py run - if arg1: - # Allow for matching against index (int) and name (str) - try: - arg1 = int(arg1) - except ValueError: - pass - - for ex_tup in examples_list: - j, exname, fid = ex_tup - if arg1 in [j, exname]: - print(f"{run.capitalize()} example: {exname}") - # Set default value for SPECFEM2D repository and make - # sure paths are fully expanded to avoid any pathing error - if specfem2d_repo is None: - specfem2d_repo = os.path.join(os.getcwd(), "specfem2d") - specfem2d_repo = os.path.expanduser( - os.path.abspath(specfem2d_repo) - ) - os.chdir(self._args.workdir) # run example in working dir. - - # $ python /path/to/example.py run path/to/specfem2d - subprocess.run(f"python {fid} {arg2} {specfem2d_repo}", - shell=True, check=False) - return - - # Default behavior is to just print this help dialogue items = [f"{j}: {exname}" for j, exname, fid in examples_list] - print(msg.cli("Example options where is either the " - "example name or corresponding index, provided below.", - items=[ - "'seisflows examples ': print example description", - "'seisflows examples setup ': setup example but " - "don't run workflow", - "'seisflows examples run ': setup and run example" - ], + print(msg.cli( + "Example options where is either the example name " + "or corresponding index, provided below.", + items=[ + "'seisflows examples ': print example description", + "'seisflows examples setup ': setup example but " + "don't run workflow 'seisflows examples run ': " + "setup and run example" + ], header="seisflows examples" )) print(msg.cli(items=items)) From b3e2573e05c4f89ea0443dc39a7f7e6b8ce6827d Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 29 Aug 2022 16:20:01 -0800 Subject: [PATCH 151/195] bugfix pyaflowa wasnt writing adjoint sources for misfit ==0 added log message to adjoint simulations to state what source theyre running for --- seisflows/preprocess/pyaflowa.py | 2 +- seisflows/workflow/migration.py | 2 ++ 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index 6bde4b62..cdaa20fd 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -516,7 +516,7 @@ def _quantify_misfit_station(self, config, station_code, # Write out the .adj adjoint source files for solver to discover. # Write empty adjoint sources for components with no adjoint sources - if mgmt.stats.misfit and save_adjsrcs: + if mgmt.stats.misfit is not None and save_adjsrcs: mgmt.write_adjsrcs(path=save_adjsrcs, write_blanks=True) # Wait until the very end to write to the HDF5 file, then do it diff --git a/seisflows/workflow/migration.py b/seisflows/workflow/migration.py index 637b4b89..25593c02 100644 --- a/seisflows/workflow/migration.py +++ b/seisflows/workflow/migration.py @@ -114,6 +114,8 @@ def run_adjoint_simulation(): else: export_kernels = False + logger.info(f"running adjoint simulation for source " + f"{self.solver.source_name}") # Run adjoint simulations on system. Make kernels discoverable in # path `eval_grad`. Optionally export those kernels self.solver.adjoint_simulation( From e76cc39dd29cbbf677a094c3a5cbc7a3fe573c1e Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 29 Aug 2022 17:38:33 -0800 Subject: [PATCH 152/195] bugfix solver.specfem setup not copying correct model files added smoothing to example 2 working on example 3, added to cli tool --- seisflows/examples/ex2_hh_w_pyatoa.py | 8 +- seisflows/examples/ex3_fwd_solver.py | 106 +++++++++++--------------- seisflows/examples/sfexample2d.py | 2 +- seisflows/seisflows.py | 2 + seisflows/solver/specfem.py | 10 +-- seisflows/solver/specfem2d.py | 3 +- 6 files changed, 56 insertions(+), 75 deletions(-) diff --git a/seisflows/examples/ex2_hh_w_pyatoa.py b/seisflows/examples/ex2_hh_w_pyatoa.py index f8ea5c03..2faaa5c4 100644 --- a/seisflows/examples/ex2_hh_w_pyatoa.py +++ b/seisflows/examples/ex2_hh_w_pyatoa.py @@ -29,9 +29,7 @@ class SFPyatoaEx2D(SFExample2D): def __init__(self, ntask=None, niter=None, nsta=None, method="run", specfem2d_repo=None): """ - Overload init and attempt to import Pyatoa before running example, - overload the default number of tasks to 2, and add a new init parameter - `nsta` which chooses the number of stations, between 1 and 132 + Overload init and attempt to import Pyatoa before running example. :type ntask: int :param ntask: number of events to use in inversion, between 1 and 25. @@ -110,7 +108,7 @@ def setup_seisflows_working_directory(self): """ cd(self.cwd) - print("> EX2: Setting SeisFlows parameters for Pyatao preprocessing") + print("> EX2: Setting SeisFlows parameters for Pyatoa preprocessing") self.sf.setup(force=True) # Force will delete existing parameter file self.sf.par("workflow", "inversion") self.sf.par("preprocess", "pyaflowa") @@ -125,6 +123,8 @@ def setup_seisflows_working_directory(self): self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion self.sf.par("attenuation", False) self.sf.par("components", "Y") + self.sf.par("smooth_h", 5000.) + self.sf.par("smooth_v", 5000.) # PYATOA preprocessing parameters self.sf.par("unit_output", "DISP") diff --git a/seisflows/examples/ex3_fwd_solver.py b/seisflows/examples/ex3_fwd_solver.py index f8ea5c03..6324a6f0 100644 --- a/seisflows/examples/ex3_fwd_solver.py +++ b/seisflows/examples/ex3_fwd_solver.py @@ -1,37 +1,31 @@ #!/usr/bin/env python3 """ - SEISFLOWS SPECFEM2D WORKSTATION EXAMPLE 2 + SEISFLOWS SPECFEM2D WORKSTATION EXAMPLE 3 -This example will run N iterations of an inversion to assess misfit between -a homogeneous halfspace model and a checkerboard model using X events and -Y receivers. N, X and Y are all user-selectable. +This example will run a number of forward simulations and misfit quantification. +This is useful for generating a large number of synthetics through a given model .. note:: See Example 1 docstring for more information .. rubric:: - $ seisflows examples run 2 + $ seisflows examples run 3 """ -import os -import sys - from seisflows.tools import msg -from seisflows.tools.unix import cd, rm, ln +from seisflows.tools.unix import cd from seisflows.examples.sfexample2d import SFExample2D -class SFPyatoaEx2D(SFExample2D): +class SFFwdEx2D(SFExample2D): """ A class for running SeisFlows examples. Overloads Example 1 to take advantage of the default SPECFEM2D stuff, onyl changes the generation of MODEL TRUE, the number of stations, and the setup of the parameter file. """ - def __init__(self, ntask=None, niter=None, nsta=None, method="run", - specfem2d_repo=None): + def __init__(self, ntask=None, nsta=None, method="run", specfem2d_repo=None, + **kwargs): """ - Overload init and attempt to import Pyatoa before running example, - overload the default number of tasks to 2, and add a new init parameter - `nsta` which chooses the number of stations, between 1 and 132 + Overloads init of the base problem :type ntask: int :param ntask: number of events to use in inversion, between 1 and 25. @@ -47,20 +41,9 @@ def __init__(self, ntask=None, niter=None, nsta=None, method="run", downloaded configured and compiled automatically. """ # Setting default values for ntask, niter, nsta here vvv - super().__init__(ntask=ntask or 4, niter=niter or 2, nsta=nsta or 32, + super().__init__(ntask=ntask or 25, niter=1, nsta=nsta or 131, method=method, specfem2d_repo=specfem2d_repo) - # Make sure that Pyatoa has been installed before running - try: - import pyatoa - except ModuleNotFoundError: - print(msg.cli("Module Pyatoa not found but is required for this " - "example. Please install Pyatoa and rerun this " - "example.", header="module not found error", - border="=") - ) - sys.exit(-1) - def print_dialogue(self): """ Print help/system dialogue message that explains the setup of th @@ -69,40 +52,21 @@ def print_dialogue(self): print(msg.ascii_logo_small) print(msg.cli( f"This is a [SPECFEM2D] [WORKSTATION] example, which will " - f"run an inversion to assess misfit between a starting homogeneous " - f"halfspace model and a target checkerboard model. This " - f"example problem uses the [PYAFLOWA] preprocessing " - f"module and the [LBFGS] optimization algorithm. " + f"run forward simulations generate synthetic seismograms through " + f"a given starting model. This example uses no preprocessing or " + f"optimization modules" f"[{self.ntask} events, {self.nsta} stations, {self.niter} " f"iterations]. " f"The tasks involved include: ", items=["1. (optional) Download, configure, compile SPECFEM2D", "2. Set up a SPECFEM2D working directory", "3. Generate starting model from 'Tape2007' example", - "4. Generate target model w/ perturbed starting model", - "5. Set up a SeisFlows working directory", - "6. Run the inversion workflow"], + "4. Set up a SeisFlows working directory", + "5. Run the forward simulation workflow"], header="seisflows example 2", border="=") ) - def setup_specfem2d_for_model_true(self): - """ - Overwrites MODEL TRUE creation from EX1 - - Make some adjustments to the parameter file to create the final velocity - model. This function assumes it is running from inside the - SPECFEM2D/DATA directory - """ - cd(self.workdir_paths.data) - assert(os.path.exists("Par_file")), f"I cannot find the Par_file!" - - print("> EX: Updating SPECFEM2D to set checkerboard model as " - "MODEL_TRUE") - self.sf.sempar("model", "legacy") # read model_velocity.dat_checker - rm("proc000000_model_velocity.dat_input") - ln("model_velocity.dat_checker", "proc000000_model_velocity.dat_input") - def setup_seisflows_working_directory(self): """ Create and set the SeisFlows parameter file, making sure all required @@ -112,12 +76,11 @@ def setup_seisflows_working_directory(self): print("> EX2: Setting SeisFlows parameters for Pyatao preprocessing") self.sf.setup(force=True) # Force will delete existing parameter file - self.sf.par("workflow", "inversion") - self.sf.par("preprocess", "pyaflowa") - self.sf.par("optimize", "LBFGS") + self.sf.par("workflow", "forward") + self.sf.par("preprocess", "null") + self.sf.par("optimize", "null") self.sf.configure() - self.sf.par("end", 1) # only 1 iteration self.sf.par("ntask", self.ntask) # 3 sources for this example self.sf.par("materials", "elastic") # how velocity model parameterized self.sf.par("density", False) # update density or keep constant @@ -126,15 +89,32 @@ def setup_seisflows_working_directory(self): self.sf.par("attenuation", False) self.sf.par("components", "Y") - # PYATOA preprocessing parameters - self.sf.par("unit_output", "DISP") - self.sf.par("min_period", 10) # filter bounds define window selection - self.sf.par("max_period", 200) - # self.sf.par("pyflex_preset", "") # To turn off windowing completely - self.sf.par("path_specfem_bin", self.workdir_paths.bin) self.sf.par("path_specfem_data", self.workdir_paths.data) self.sf.par("path_model_init", self.workdir_paths.model_init) - self.sf.par("path_model_true", self.workdir_paths.model_true) - + def main(self): + """ + Setup the example and then optionally run the actual seisflows workflow + """ + print(msg.cli("EXAMPLE SETUP", border="=")) + + # Step 1: Download and configure SPECFEM2D, make binaries. Optional + self.download_specfem2d() + self.configure_specfem2d_and_make_binaries() + # Step 2: Create a working directory and generate initial/final models + self.create_specfem2d_working_directory() + # Step 2a: Generate MODEL_INIT, rearrange consequent directory structure + print(msg.cli("GENERATING INITIAL MODEL", border="=")) + self.setup_specfem2d_for_model_init() + self.run_xspecfem2d_binaries() + self.cleanup_xspecfem2d_run(choice="INIT") + # Step 3: Prepare Par_file and directory for MODEL_TRUE generation + self.setup_seisflows_working_directory() + self.finalize_specfem2d_par_file() + print(msg.cli("COMPLETE EXAMPLE SETUP", border="=")) + # Step 4: Run the workflwo + if self.run_example: + print(msg.cli("RUNNING SEISFLOWS FORWARD WORKFLOW", border="=")) + self.run_sf_example() + print(msg.cli("EXAMPLE COMPLETED SUCCESFULLY", border="=")) diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index d645ba52..3ad3f660 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -394,5 +394,5 @@ def main(self): if self.run_example: print(msg.cli("RUNNING SEISFLOWS INVERSION WORKFLOW", border="=")) self.run_sf_example() - print(msg.cli("EXAMPLE COMPLETED SUCCESFULLY")) + print(msg.cli("EXAMPLE COMPLETED SUCCESFULLY", border="=")) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index e483a254..7b4c38ea 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -939,6 +939,8 @@ def examples(self, method=None, choice=None, specfem2d_repo=None, elif choice == 2: from seisflows.examples.ex2_hh_w_pyatoa \ import SFPyatoaEx2D as Example + elif choice == 3: + from seisflows.examples.ex3_fwd_solver import SFFwdEx2D as Example else: print(f"no SeisFlows example matching given number: {choice}") sys.exit(0) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 551979e1..d32199dd 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -398,20 +398,20 @@ def setup(self): Prepares solver scratch directories for an impending workflow. Sets up directory structure expected by SPECFEM and copies or generates - seismic data to be inverted or migrated + seismic data to be inverted or migrated. + + Exports INIT/STARTING and TRUE/TARGET models to disk (output/ dir.) """ self._initialize_working_directories() # Export the initial and target models to the SeisFlows output directory - # Copy ALL files with relevant extension, just incase for name, model in zip(["MODEL_INIT", "MODEL_TRUE"], [self.path.model_init, self.path.model_true]): - dst = os.path.join(self.path.output, name) + dst = os.path.join(self.path.output, name, "") if not os.path.exists(dst): unix.mkdir(dst) for par in self._parameters: - src = glob(os.path.join(self.path.model_init, - f"*{par}{self._ext}")) + src = glob(os.path.join(model, f"*{par}{self._ext}")) unix.cp(src, dst) def forward_simulation(self, executables=None, save_traces=False, diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 1fb6bc6b..8bb4e009 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -70,8 +70,7 @@ def setup(self): [self.path.model_init, self.path.model_true]): dst = os.path.join(self.path.output, name) for par in ["x", "z"]: - src = glob(os.path.join(self.path.model_init, - f"*{par}{self._ext}")) + src = glob(os.path.join(model, f"*{par}{self._ext}")) unix.cp(src, dst) def smooth(self, input_path, output_path, parameters=None, span_h=None, From c893c99b2a030845556fe8507ed2e5cd1da82c05 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Mon, 29 Aug 2022 18:16:50 -0800 Subject: [PATCH 153/195] updating specfem2d example problems to match the new examples 1 and 2 --- .../specfem2d_example_13_1.png | Bin 0 -> 34117 bytes .../specfem2d_example_15_0.png | Bin 67022 -> 0 bytes .../specfem2d_example_15_1.png | Bin 0 -> 67656 bytes .../specfem2d_example_17_1.png | Bin 0 -> 58836 bytes .../specfem2d_example_28_1.png | Bin 0 -> 217588 bytes .../specfem2d_example_30_1.png | Bin 0 -> 79493 bytes .../specfem2d_example_31_1.png | Bin 0 -> 81881 bytes docs/notebooks/specfem2d_example.ipynb | 464 ++++++++++++++---- docs/specfem2d_example.rst | 374 ++++++++++---- 9 files changed, 656 insertions(+), 182 deletions(-) create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_13_1.png delete mode 100644 docs/images/specfem2d_example_files/specfem2d_example_15_0.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_15_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_17_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_28_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_30_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_31_1.png diff --git a/docs/images/specfem2d_example_files/specfem2d_example_13_1.png b/docs/images/specfem2d_example_files/specfem2d_example_13_1.png new file mode 100644 index 0000000000000000000000000000000000000000..18fb8d8629b93f872a85fbcacf5a029581a2f6e8 GIT binary patch literal 34117 zcmeEvc|4cv`tFO83`NQ;Q4u9mWyq97Axe@YV<|(1P{^2hN|I7Slq3lm8_ZLK3{9jm zq(TUhh&b1ywf5d;@4bHOb3UJQ{yTkIt(Gs}@B6;b^W67!U)OctD{PmpCJQ4EBSldx zJGQIqQxt6#`GMQNzFFUAGyz?s2qsJ!x_LFtyXd)ydw`)!xQ(#fihmU2Gg3 zWY%w7FTHNXQCC+d7X=B4WB>Su^^V7nNQi9`*oHS*=(K&m3q>uqApg+ZR7tm?sKC2B z)VCP8Um1As;jYs%yI}aoA%PfXw*A2?#81~=HnOx?b2_}_^`^k4TN{tQ(znxIx=lMn zX*|DUN&beN`4?^lhTfPLWgBx=eVx?)vxm-&PE|=1)v9wOt~=h5-E*(es^Ql=m&TIk zpS$aOk}_G<7+Bfx>+#v$`xpC#;@8dFlH9^V`1Qt8T1Oqf?$#WNCodd|cq}>htsJoy zUasiwQ2*Ak zjAhTBJ?~1rAB@o(GMJf}z0BB?emi8u4Vf_hB(;RQd)-Yx%4!pX>%IfG2z~O%V5jw%&(C~mD!J*gI{ItyS62OUQ$*z zBri{fW1W%Tz`%e|l*;DKyi6SHR1+24%pDxg(6jKEfB*8Tri@KpUAp{GeDCVdJv||H z(E?UKzP_LQ+H!OQ!=gpOMMbg$gM->0u8p!s8u;cdSa9*XWYXG|E9r(xr`DesYLD6) zvdChrx4AXPf=*FMDJCv1jkC;s#4<1>q~HF|ojVFrzB7{|3MU3aZ{J?$H8oh&diOBX z9g};f7x61}HY9FV$c^9-ul)EpwzIXxmnJ&|*+adzhQdl`9OxF!7N=ZqnrR)l=iQw$dkLH%qSQDq^Jk(yI zR;Q)DO5_T+uxA)IFRxW~C|hWFcx4b1=h(R8`}@nzoH^6md@bZ@R%DW|!1WlQ*9jP^}7P*`1-kn!KmV^zhc)T0{L?`?42Nl2THlNp_hm+G!#a=c+ZmRt_(aC6)ci6gb^POY2EiQP*%{i#0^eC52ElJi zGtJjD85S-S9iIpb6_Z9>leoA0n#PutUFJ_Oh${?UTz|0glFSiF%W4KLUS2xt^y$-* z4)5gLJw1iw)_fcG3+wiuRysAlLR_2$|EkWnc`=O5 zZ}IH%MzUwtAG{w(Lr1U5u={9o$RhsA%Ny--oVwHo-ap{nv}sdsOLm7#zisl3SGE!P z%MSDD{kRkpUYy7zS!uWpiJM&9gD*=#M2 zQq%Pv>?KwS8*EPF0e-+YQhxFAT$Cy{mfHtDetru(yS0P9N%)#UwkiLjMT2j6mH2iD-sUfs2ZqE3E&=U-N) zVrgkPw&dXvCC@Pi%`<%d*csH-Z4n&1GG9%Mzjc(ds*R+Le)iyNr9HM%X=!Ot?KXAw z@~Wz>Kc_z@I0~&IJs1oW6hAyY4_CGybzWWot-N)&W_n zyyVmmio)~s?8(i|^=G9O6%}=Ib*;vi5ee46Z#iN$`qMM%)Q_*9PA%8g){eh)sgEyv z*BWzsd*+oZ8zNX^ypYLmQPb1Yl3o)|e2VU@*js*vnKd}U%_&k4=eBhCFhC@#{9rr1qY^zJ*za2aft8 zVsOV=q%wA96}4AZhq33n^&2vCNm3z;1!@Q17LB|)lH6B4IWeJ{`N|Sk$R%k`9d~hQ zzI#~P>t|njFTzP~!{orgwM&=w`ww~?rsiiDW?eQ-xOY!}xss*rBI>$8``yN*D~|T?UFe0@llMN+n1#qcvui~=LybxSW*(P zVahn^(&ft>Hg5}$y=D47gezUSa;3?=<7rK;5AT0`xW9FunfEfSH0h2IJ_(azzx!_e zm6esW7ySCV+XVJNH=f)c7t~Patg?gN3ykzO&Fe(`S`$_M^BzqBA9AB=Ld6gbML>NwJ+OL;^iz(XiP#v z1U`?0>*Bd{rv-c_Xz)~Hmzc1#vyXjw#e_q@)!6v*QeIBZ5S;H+L@)gV$XFH@7XIbs zs);^ybaZL=2TqUmy;#5)q$bg~n3*|HKSLeg65&*!uKuk;dSNPK<@@*iJ1=jjxV1NP zMWA1Daj%cZ9wC@V|+#?A!cnm4Vjo!!wYwO8a_%&n~GBqSu%H8d<|rYE_S zJU8%cv|Ux>&{4{NO(UxEg7^V)5UFyz>=Jqv6_xq~*~PWBwdB3kwr`7ll!T>HGaYwXpN38G!V$m?}bET3JKVr<$ zj#8x)1Fb1Pq9Xt?I$LwCCVH<$55GR(Sb-Sr_;7^&f`r+flS4-ulUT4vy}rNNXH@DX z&&S6{-n2eR>43<3Sy@hbdHF}rp1ra$dvHSB_T^1~fSQ$96t^!gD>%)({KMEqzEr2B zr_;ILwdZAvF%eaF=6JtKD3y@}fY!Vti)ViJOJrOR2;J^rB%`CgY7dFNc(Cyd>@l~U zt>Z&i1!c+G9XeFaxq+2!cTi=At@)b|2Wv?nqRj%JvjqTivY!WwI)XDYGV&FUFB_RfH$@dR<;cLDU0wb->J_hFb0D~H*VTO;@wB0#_Vj$F zUFo{~@d*h8#Tk`&y2WG*;@Qs3%pfu3? zL7*D|)RlIhD2;&5PILEDr>ff9OPMu{q_9`FGWY{yRsvLLXlTeef0)Oy-Xzqj?o8LC zn3bM&B*(DuY-qB{L`-Yw>8^{$@mk*dCQoD$pPb*vkB7X*nl*dh-IHlZQetv(aS=W7 zuGkr?yFhvJBYVF6nv~p$cp~p*JW}68-I5||? zl(Ll^Z;PtnlFmdypg|IM3~eLA!q{-+*O@*v>Y2a+ zV@T5%MV#8#>4CtviV6jW?$19t*tYlPE8CP;woLqMk=^SM4lbU}&6U!KQXaUFJqH=2xVRYMmxL4) zeXMHch!{>MPH2335;p?q*7@aCrb1mvP*93qvhvOSdBOmgyNVnRKK#*ss`%88J4;6= zMyyCGbL)Q{q;V~#E%w~G&dyFhfPEnmk#wW(P5BRHYcItwoqbwxpvXZ`T6&4Hva&*5 z(XqE2C@D0ZoN`_k&Y?F+;JHL)jWc{=y?o{fw^pa%-=n{CQm`<66Zkq=;7sZrkA%0*#^1tPjvym-N0QBl!a z=Bsi;=ThpvAI1c5(rr4{7Pwmbf_Y<-(spg_t@xMJv9=A)G&5gu*syQ&@-bqd$uf+1`O+XTFt8Jtz7Csdcc!6uiIJnDBhYA7Z7n^{ zfToU4WW&tEMuhj~%_Kf4i~zgeG%Zm;h#C8k^tImuu&XJ@Vr$8DrLyi(+azQRrh(Yd zo2eGhB%8HwIlRA5l6J03kM6pI_m|$daf4d1x=t^9;WREX1qXKG+f#|OLO`FgCJz}I z88#jsMt~+t&pHBOGXkgP!@GMfyVfkF{D2k9J30jL`A6RsOHt+nt-1OtY7F^UIs(@Q z+X_Yy@Ka9?wNrkc-@jO3n{g?+OO{T2V0u^PD?p+*06SnR6JH0`x@%y-oJLUsWLNM^*^|UlWMMb`3?{RM2TnOTxsK-Ei$>#ef zht~6t{_M}bhFn7yfNVUv1&eyeCdW#|ZvOIc4jNqhb)+g}aUE`oX)u~>0dkwC`m>58 zoj<6PkO-h#4iH8XxYzibBMQzqd`-3mt;NnOQC|7IduKvoABt0(m?ib;N}KoCSX&#K zPa%BLD2lobfBUAUrbhd@{!#$IX%+Ipy?gh_>L9XQKY0hGl?5tRNg0`{>pNn@Hz;E} zZLoWNdwXtB+<}i7#sy;U-oK|&oUAL)%q}I*w6olwZmuYb&O{<^D{_nu4Q0p>cRU<6 zZS6MHQI_o@khwQAxVQIcNpWN(^P$6sKW(;~&bNJaOX-KA>P+4Xb@k&_Lsg-smS7@K zx^KhwTEfnrd-y2_Vq2e*%A z#Hx_C0Mr0=b|@g4bG^ygaXM0tIrlX1m$-$Gp7B=Lq=HYZ{q*!AqO@7ByO5B)IhN%d zcHdTA-9-RD!B{gZ)EGAnGM>A1i;If`dMyTY;N8D}e=*pHj7XWGwUg;BP4oS5Yc@@!!zljbXcmrgM)*Ft2koj{Nd{k4_36?Iaozb3qsuX zV;gN>sv;rgAQ&X>l>!1_<>if-`8B0|%=_nwtEcB4y;U(%4@~H4P*gT(ycRkHY>*M3&N$Na*K-32(20M{- zu3uj@Z{9rBH2oA%0BO<<1Vz2tXI2x*Ed#6?6~$6IJ98>9D5$T-p)G$QDMyj5M%wJM zy9!!NtB{k1n>7VeaQL3r+xq~yT|XB*YYXON0vN69)2I0&A|e1Iov3ANkeZqcj~xJ3 z)(jtfp2lSA`^yd2rtazI(DytIA#CDfte)%7UjuoKIDY$3Pq1R8wjMt&ZCxKvvv1$N z#KSL5PYrIIn4Gj|f9N5(X_E%F1Oj3>qEY7yJ(X9YE=I*pf&^$J`_6DDB_&ZwFP)Kt zmm#Su>+jjK8<`LgdV!#zVCy}Xblpqa&COSk6o!XZ+0xRo;zx97Z`v-6eqQz%8t;)B zPFg>t{@tZhNPof#ZeLb`oeH{i=@I~hWz*FyAEqZqYZMk!Qa;n}iG_A8cNS8XNXH6; zSl!?Bk4gq^R67+fRX%y5WsqgOmsCmE9QaP$f*ONhL$Zp*d95@qDa$}z-)I394(yLq zRH{O&SEm_u`|K|JHJ*S|!2!+*g>o1YLKp&TxSsN)`W(pnIW-lb5yi6*;MM}Q*h||2 z_nyR)>h|{brQRXI!Qt3f3`|T+7FJd(gBJ^|2d2;Bycid^`t!2{5ggRjSTc1iSItE; zpA1e}Aa@#7K2(?KO5)->buMq%ff&z#IMEDdBNr*Mq#Ko!I2C&K>{-iqf}nvz-8nj^L$`kpWR*KHz;)v5yZx`X3JQt2fx8kac}1Ue7-0CK z6amB49S-USy-N=1l|4HH8eGWY(mb|h#v(sc9Wz%735g9E32z~E_uYR$V$ejNc46bA zej4el2tl*%a`Cy2GuU@?> zWJb23m$x?Iq^LQ;?dNmcTTCyE|W25T2w zQsT`WxywgdTH5^Bu_$?$&sPnzj7dp~P%nkZudb@bdX3RoAp;~zuEUMoOp5Ut|$VQqFfT40=Fm>GnkzjUf4>wpLq zisMpxUQ?qH%;8yZd~Dd47uvqH)1T~VNTiK^Wm{0$+`QY}!=o>MsI5SoVnxw?q3xfr zw;BxKpRiZ41-1QZDs)e}?v7(`-n>ag7D`3x4l*Td7Zw#y4gheaMx?5N!P506#aD}b zf!shCse`MyUI?6;V)Nq0O_O`lw{PFZp`#;k->7Hrnx*lQ7PJ8Bj3|G=j}||8fc-+N z#z0trhK2_66YcKZEG8wMd$XfgYM!}@>NlsbP$Nw%u89zN*&nh^OTtkZrJ9y_BDOCf zg&+Rfcd$R#st&{%frKQ?Bd8Lx4-w1K$|}O`*y=Q(CrN4P)493MxzSOfp{h7|h$0y; zl$|+X{8cQ-r0_iyg_TH~IW{kZ?OStbe1CoC#6t`R%99jvW;QH-anCN!Y|9Ec|ot5&T#%Dj@U;} zSoQSu2)BCo?%nH!*ewgG4^QIO>c2&LQV01pGdf8zELgB0CMjus!C*(38N~{ghaKQZ ze+rz;Jj!`y+Cwmqm7ANpvbI(O#E*7*Blx6d&}g(};VrfWLTlG*6WUSdlJquP70HTM6vYe!FE6i!qoagF`$N$hapU~$6l+*mn5Q?6713d|llxy~iU4!o;JkSD z>dX5FMGZX<-_(P}y1FxAQ)3B-tZb2**_v~jS%#dV4J|F42k*O9po}69g;cTtf}kJ@ zmUee{UvtsH6*Xn-5pj2SH^=)=e29>69ar%-W3u%%HL;iqKQ#?FF9mX2ZEB^^Ee6P- zaaN8c-#LVJuY@9@TcRG6^O}%E%8P1Lp3)I%sHsZ&W1i-}>=h+ZCr zhttp??>3o?Kq=7X2PB5z@!LCp&OsJ0 z;#dXMG77q0*k?y-%w8oq&>JH?$-b4ZUhNf`TlT!Kzt1dye9x4m_3mg9p<6fQWONJ~ zur0g#v&(Al9)9YClQ8k~XR3ahR%29Aem)8IAenw0!>ZLRjXGE zu2?~d#W9K>C|nokY=~?CEvPn>ZKV?y^x^l{2XgZAs&E{K>jZp>CTUdUz)zLGeaq|b z?|-!ED$Ql6M_`6X7DK$=&>N4m2Y%P#Y$+gH$lD^vZXjz-a4Ex`6?9m6bKC|Pmlf~c zy}RBDX!s%VWcwCGc|uXk9BG*2hn$?sfx6S=tgNgE$$+BLeW>JzB(@HrjN_HP6^PUU z#=8Gxoj zOGh^XaudLJeqmuDA$AKLJIrJBEShNCpr*K_4~6QQpmaQb{J86d5*b<9Iw<9lU>B`EREN1w3=0xaDd0Q3 zduY%Fmy0l~e{2K5&<$3-*^YB?d}JfE-~?=fd^{WXeOG9x79a6`oV$MGMk=yw=$SJY zE;J(KJu1FDFNS&P_;>*p|L$_3ICkKaNA>lGgiIK9ugDQFvn9(A8jm^l{9zwu!Fit> zlNT2lvw%zn;rHcXVoovPF!0Y-0N{7;_`s16RE1KBN%0PnEUr!AZQduMr zr)e!iC``qJ2N_$(WX81D1Zd^Z)ttjMs6zI>-n!~sBC-Neioq<1%Jv+%?<#6|+sGe# zc?HNsXr2(Z);@p!Jn2-VT8jJE=Yc>jy)V)ilQMbjzB}Y0gJ7z_+cWVGK_)pHAHU`p zv@D6S_;hF%gm7Y5ytod6DN&Ro0jxj;@5%j{5+03$SK0}$)Bbqd)<%k`G#M_T=ht?v zVddkCL}bxAhKhXxv_h_3%X)&0!3#{F+GM_4sp-?huJ%V2AmBa5My-&MVILnKCoc~p z;VKnnqljBJIV%W3a5W(XCMG6&YF!6f*#IS~5Ym%)UHV^(>m({HOG!xqI#dHahYHec zsoWXtma8CzNO>E+!SLLI24?oheh(g;^5g@UR^B~V;Ji`K^riHwAeoI5l*|UDwe|=fz=aLa739Uaz{!et$CBEqcAWsG2 zCK#A(1RS(f5VPcM0g=XjE>Y`5$kwp8Uq@>2028LYd?v;KvNx|xP7RfjI`7>>k3F7( zPZkJx`JFw>N~oy_PKiwu@}P?;)uC6Ncr>$;Vw)Kj0*)8X0j>E7q)Gz;Y9zektR8${awS#CPmP;nicPmk9r1Z7m!b6_tw; z!m=ziNlaO|YV{f@G(gWeckiB?v05!8^rR7tOxl8{(B2mc&im4moy{J5>C!@&4{$<0 zAnzP~etn0(_Ze;(`llBqB*whTV=r5FK2~_4S9AnIxrm6SEic5@%Bm{2pPqvSEv`O| zt5>b+9Wcu=ry*;7{rdGeX$;I1xenU8#JX3nmchOffaHjf9fAd2AtuI%QaA_+x4{|p zQEi9sthjgK-Meb8t{a}ectLz1RzM7d-<*)`YJGUbADZ}+b{u3&#)5(){gdc^& zh)>yz3kkUnz#-gw=%ytQ0@OVEhNP%%>AHK;8uz3t?|7~e*&AG59u4Wn6*8%=PQv&` zRC*D%uWomBH8VJtzPYd7uz*4UthlCmiA(k?6Lwz;sAdM1gU04UCah`C`FLfQSEgy} zEiX@yvZ4nj6^DGhHT-cy13AIVmAx1!!s(JEBT+g*iUTO?96?_6RJhm^6$RG%fzTCRs`$Mm7xQlX4Zm>0LQ}h z(9Cmk&g7VSybsEIPR0j6%}YE1KL(*cA-GBj3ePzk4U`WbKHRnY20h(F!-|*cHaR|d z1<^UOF9i_1k!$AMka3PTgtg)?@vMig#3OJO$Qg9Thk9a^jI%R#S-D0hilrr)t%tVH zY}#hU+^hd#tK3Lzlm>Tfc1B*6lzKOvXy~;5>`YBEJ^Ai`nk?7F;>S~ui`P{%Xxs=+ zD0>QiN-0Q%g>X{;X~E2e){CRPF)K`JsW814zssGjpQ#rGj{KEV^V#n!mcLW1< zKydy~Z>WJE%2T2w7#bP^j&220&Bn`npx4>V`};B?oxmCfRt2Z#pv32jfCXGCK8nzV z2&4qN^Z^xvf)rLP2vHvTV&~`2!Dha{UYWOO+$LKg_4s-`Ek<^_(lheu?%t%104=YH zlLdxd>eRSBO585cqB;5b^*`c)FfE{15Q)RM&_0YnR&4K^P$K|!=2M`_)DQqIjvNVr z32+f$gu0iPA_+=9rIVj|C#I&Xz&VoB`#ReUMTBQ3-udR<%-0be^UkdaWKF%jVE68{ z8#mO_^tW7_T>kp?$k6y{y^_k3}FUSfEuqX&~k%Eo(t*pq`+f-FmbL(_}{$@1|n341-*e^!k#n;#C;E?p@i^geP zk$0g7RYv(C3m{3+;pv5xlqi`TJV*+)j~_o$?$R!N%a+XtDoFHs`0$|U;<)?P&Vq@wryeX&pXm+iA8}bS_`q7hMJuo zU0gc#bu&Jo6H82h(#T{_vQ=~HHp&lrIuhpsqO z4TaG2+$LGpaXFx-S!XV>8v?4O>4)?H2oUE^(~X_H41(s4j*DSKCDll6t)A(E#DoMU z6c2<;g0;lS#bqmmECRFOVbk&!UCNkP8pP^(Z0y6F**RuiOfE8^q_4jOfXLj= zjtQkv$^K3l4@%xxdOFXYdZGPy3kzSrNxI0)Bq(W7Id9-?(PCsMrYnhw5nhYH#E^`D zt7TwhJPqe+WMtBHGwj7Gq-xj>*4CKaJ3gO$nv6`qrAyp^=&T$ZH(ne;B*Y$?qTQ!6 z+4V=nlCPyVHQssPVJWemVlBEMyb-ixZM#=&8H!8F94DmMt^Y#)g<(iZPM_|fM?esr=e_P2J&lcU@4;k344f})<%R>=n^TUS^*S%qoAz9`cLC&bb zYj>Rs3Qu5gu;r8UqJUis35ohRR-_xL=A0$6NF>+{i>}I`?K(PvFd8osP>w{Ye6jWW z6P6b4^;;14LPLAYvSkL8tps$|G5lbms@a#B{Xt`F9f-#s}LD)n!LEo zyEUGdbGebae5I3j^V4XVzwpBU8HiWLiX@~kSgVXJ1?c`Skr2AVEp7ySv6jf4E*6%T z?TQz7+jDfHqA^x8(d=wWXU0jOiD%MeZD!uS0=ifzjVPRTfVfx#n8`*;UBTPMs z^nqXh>F@vJ2wl3=Q(moDXa0-(6VDw9&q?AN!moe${|zs#t|Bh6HA^8+Tx<(ujaTti zerdZA`vU@fDDe3gzKf8EU{ViuN2~{8)aoT7pgl)min-7R+pjZdp z7QS%tV$=lZmRL|kM_<&Wi^%J=lK~g}V1p%H>Bmv(Wh47sH!okro8aKOL3g934_?D?o`^b(RI{+A7 z^mjBg=!$%PGYUy_8D3V9f>o}0vtGOMkt0V+T%ahMgPEQ*Q^b;#uGU^kh!ef__m#!v<@dMs08#>=14=LDav^TW z(T;mAn&g7uQukB+eEI;wGK$X)@K*2}+ zLHK(&(Gvp#=-^DfZiS@bG(F)=tThzi4?SXHVtjSAdUbX6cB$pdmlH#S%jd|YEDnq({Ws?V9 z6ejEICwzT<;WOhx1-cdNZ4N+y!7YP@ICyl#k4^M&oQ<3C>q7P&u2>*&6;`U}bRLk! zi4#@Ix}NK{S=n-G`0InAN-&M<*RQ82Ul z0}BhOj+f>g|D=WcH-~oTKGw^oaPn&;~3yYGtVr;&=TZT zihjn`X0OF|c2DmvUxa17w0-9@Kdo0xJW)4{8ee?;wR|woWr5Dxz0$4jcLkKI{ZD#@ zD=ohj|75_eo&+Z)Tjp~hz(|< zGhi`XXA1(ZB!q_?Ua~rLE(Oh&=vb;Yod~$NV}M_JI_T*ttO^~V6CYqU9NwNW(WgLZ zNV*T3*C%e?XZ!T=WB>GY5n^({GA@IKv>b*K79R&s<++R)vku_+i#<#Y+Z1%KHB%I} zP`K9}IE`R*>f_Ht{3pE%aE`1#;UH#o&v+*`Kxps&8`koYGL2FuA#EZA9Q18ygew^I zmBjEa!Fe}y6T`v4_KR~LI7=cTgf%Wm$uAL;%PdAeKLdlgUSB}M(?N`DuBq)@8n}=| z>4h#XqiWHYKtO^wjs~dam{dG9K2QOhg>z>)4H#b<3e4ef!{#Bvdc!&_uCF3-+(B%P z9u+#bnjraC%zE$(!7B^Ly~r+XUm^Zcl>3Blo}KELz0Mg(Q%-0AP>R<;;OHN4_!@iB z9~*SVrcE5#P&s`SWS6nbT~;bBgCKEcp%JMYd?aj^>z_N53%a@c8WD$~t?oHu7C_J9 zgm95q2$qY>#>R%|RM(fB;Z%}c#y|HqVl6s4$6?MW-nXWQBQG1JFLBPwIdxJfV+gs| z`S`7E+&@ts2YByAojZgSA&+{2LPT(na*fo_2-HeD9TXH~`rZ+mCZ(EQvZm+8Y;Yzi z``DJ5!`X$X)7zT65|vuoV1i?5j3p>-Hcn0vZ__d#rF>&?pv!ERdZ0rr|4+x?2*Uhr^^{^=C#rb#RR9F|L6LAKNrpC+Teb@iVRgx zMqfS>CI3sy;~y3Bjat1;TOV&UHyiubJ%_FTvp%-&ZIS9ZE_ODlQeXkWWB)Ame}mxd zg+_DG4_6rDmk}drm$>-0lW~i6P`V(n{>O653v}AAVybD$arhAzsk}Xahj5 z%dx6kWK!%zV`^$jz!9jc@5y&UTu0zoN2O1TW;{AbMr+2MQ6z)Q)heALRXi#;S_-bM zl%iSil~CCvh^?D6G*RFhy@+W6SgI;L*~fTbWY^5^?R5A2<;%D74qIFEziqv{Ua6%?t`oP8P~;EtSDd6?S_^k zpv#<-L#Cu~L(U_1aDQ0P1 z&(m`S$|`LLGYSbQ=enjzXAXFTeYs~mpqr88a6LU8gzoYq4Oh0DII#)ErS{SD->T=D ze{TlY9O@GP{?%bfvk7{6{v4Vxy3oliw_ zNznrOqV!WYF}aejvUV+#fY&e$u46tFs20;xEJVpgq!O)xBljv;*yla)VOmXo`-BRl z8u5stK#+hEss=uXg)IQhd*+}cP{50Kt-Zh*#Hx1w`wFpJK(oL>M>lj-wYA;79kLaL zny~&JnXCHWPitIj_At*H?oOIs{@%-hPHaC(`pa)91)4>ij37z>_ueC?-Qwvg<~Im# z6WyvLWc{=B`?uhBN?*plxaZe?86CauXgY!$|4G8lrG7-aKZvkr^>Un_Ywywb>)Dl; z_I|3n^cOAMe}i+ve*@~|0 z%$sjbdw%O0)E=scmQ-KM(PC8eyK6kL+FK13Wi+L3W(6;_7g&6HF7X& zOC~tJ$G*Pjg}v})7%B+==;*~Dl=0ik%Ztd^iSZyKh=7Em6knRSNS2Jpxb|evEXE!d(?hKxZ?c9Lx};iwY6d2wg_dJ$Eyn3@0f|D?;sjmuouw zw1m_m-mc${L!veMiR6|4i`2N~TJu%lK+^02{)Cy@zJ0r2Y%DurPH=L%;H)9?HKK15 z8vQ72)p?4Fio?W$fdi>BGqDm4Uu*&bMCYXlHIT-)+ix-DqhOZEn%#cPIpPQD69$W+2A+>9Z*MmhX~!RJ7lFB; zNuYKuDCYunE*Wim^QNy_@l+CY+{*g;+vV{O8$F~Z7cwxMwT%M>hs45IDoBEY!40jA z+$Wr!w?O5?5)30elQwJ;GV^EOe4`UoPg%XNvGyaUV`%(C+jFODWn4b%paQgsh>n(U z8kl>FLcGN$8JVpJt7zIhgIa^g<;0~4$&~7Cye}*wqAhb5QaK^NwY0SSrBGSC-aLeC z=xUjyq^G6DcsDPPDRPIdF8x)NQ@=JqG_)y*d`Jp=OH=Fy7#s^JuxSxx z%-EO*yEF%lVxXO_LdPH?KPxM%AH+i91tpv*Bd>Y@L$&+PdQYRjoB_Uj9AITg z?8HZck_{GgdWt|Gpa>&iY^wA9$&PKPTStEV=%91|Hf)Oe16)cpy!BluyI@w?2CXF* z4lK$~Q=_8SA_7KnX+Bd^PyC7!gh(c?auYD-Qh-x zg7{3pzWxEgjOHRoGmtI4H4rgvCY$e3Z zW7_-Bz$zj5$|N;%@BdQDBOe5! zlqc%rKT7#@-1bey$JqEd_6^~N#4)!z%kcYcn6y3s6%t2ZAS(%BM5-Va7@@&h`tuMh z^phoyn~EvNK38bQcQU<0Q#nDK$W62Nq;MXHwQxf~f&h$upq}!|U0%UbLJ%q9VeL8|RI{2oM)eeY+c(i}n z>)~Dc2wUw*{v2z2Q&N~D-*?|^gA=b@alN1}etY1mT&5{<(Ly|*N~lU~;IUw>AW;&` zqxgwriMwqa%MNBdo8zhDM8GI2Y^<7m#z^M}r5ct9CX?@9_JaT>51;7Klq%i{j?FMU zWYYZ*bnRNV%f9R<{iE9&v}=AtjdN*7E^hTUmA1FGrU!;iT$V+xShr5cIP1&)#RAHK zF)Xg4T<+-|92~6m`#%0aMaHHc0fJL&?~qPTxF@k8hKGmC0jpV2R>mpS zUy)}A)mVvIpN0Z6RSCaN4u($k%!?6?5K_r~@)>ttzUIEL651)!T1N|a>6M%%hV&*!Z2&%1|8$ux(qf)fz_{l5 zkbf63{w$HzEat5Y>eAv}>cubf_nPy{pxiAe&k2J4y?TF*V6C1>#;y8GLFBi5-x9g( zhNNLUPrgd3;-9telatmHr03-;2oMcPsV;RHf__UBzdbWe*l34oF*JheF$z-B(v>J1 zhM%m>=5lo+DG%l%t>-T3$I+7-1;D}ChN%$nUeWU}B|pF0=8-J-_}G{_q8bclaYAn2 z;Ch&FmCNRvQ=F3OulJwlnzklijyCYsSxWiq+r6FnlEQbbbWR~(c zhn2R&`v?D-eC!@He#vJrcJLqTZE4U30H~5h4(Lj zLbdynls?xEI~HE+wKGiaWq(NAFttq}rI6_tB;7!{nXE;xI*ViJq_Bc(uOGrbKVfPC zoJqkeY7LeWXOW&*Mp36)fpa5`^O67~qMs*5x{08V+l3%WpJm7dDj2;)OJ_CoOP8je zm9?`+CmCsxf{1!iZ|#l$vAXgvC~%WHbL!ivG1Die0W-^Y?tG?NaEmT{V-jTVYZxyA ze{15)*Jywp!&DMH0nZVFd5PN(7p8p-v9AVRNdMts3>bjR*J<+G;b|z1`t?AA5IQgQ zG$??(|5puOC@PWBuvaCDei0ujhlvpsd^eQ#pau2S)DtKKIj!|e*)XZd$0AXYS^u4~uZ{%U2%4=(H9Oc|k3qPk5 zXh_8T2lch)+k=!-JT=lBOJdZr4$1FL36B7l3Wn+a@xEY;=QaXyoU2ptGNoYjz;; zDr;)_j>_o|$qwjGt4H+;)WRP+aGdc8jm>EK@!B*I^%o>*dbT@e0^?s^cg9D&H%!6!$_Yd$%oCI z`mLtEo*C_Qpxs~CEM{Wbit!_(O0}41BcY68IY?&U5$02%S$Bza&8I-#FbH1Xe@Jki zuueSjR(7E$&Oa|NFJ*nED$(_EU~^pi^s#^zc&BC3Z1mxhGSeWVJJHAG4mO9(Na~Z2 zY(ztYw*6e-TfJAtgb%9}1Vjq^Ec!(JA+zkU(+{e0?Q^QYo|c}v(A;uYM)&>Rqe z^FZzwY;(-d0fbEAp~Y#|KD>ksBLY=pVLyE+5@CfjoDp^$P<2P%GqJc^>iZ@!AB2~1 zcW61mCa{9Rlw6+nfY;%SrbF&PJ!z86b5F<))pzm9q2;7y67p5?{rkk+L-<1q9R<6O zJcIA%2ssTThM|#*xT7V?rk9{k`K%?$vuLLCnjWbmFcA}>&Hz1IfS=LVY1elE5%7|` zk<2#e?>}JKate-rxJuda=&Dcy6TA)JVvcKrG_Whk*rBM&Ex4}+EGm|6wzMH9#W%XN z*Zt!F0zcXF<6qws>j5**1_pS>PltqP?q58p^0dfWZsW!RqeQ3`+=nDdwlJ6>_5?Dv z3g!jE2*Bn>8dMJ}tqVY+xdUer>fwlYWFEmV)Cn&8UF65k@nv<%iZx*j7nxtu=Yp0e z4EG2?C1Qn9H)PHhD7`06fx)qk&yZqZbyY*18S!#Qdx8OWC#1U~NCHHrqnw7?l}N`r z+_Br--Q|d>1D{Xa>W4RPr+bWR*qh0*$>E*RM_n={!0-}bz*8^2K=&}|tfg`PMq7w& zOnL(6qCV;p>E($QpAwi|cFqwH^G%d@Vx&U%q6|f*MJ)TgvEGBxn~sc=V0-)&4Ia)vz8=&` zR_2Fy=j?@Dr=Z!Pk!5e~HJNpPK!!7LaCC!r_8dfzTo=%Me%)`ytCZVQe#81K4L#Ds zN#50- zl*LWNas^fuF^HXT(%>r3*Z%o(jA1Os?U1H(a@f$K#t!fKx;|&}$!u}OJ$Gbo?^-ja zEP;6jpdLe#lLdSxKV4iRz(-zh;l6Qh?A;{`LG{u>V$_940fKSR65c=HjQiJma$_JY zV~0xd>;&NzMkOouk2~uTu0rIRzuXAjJt%44b<$zMggh@ldVKnk)Fw=h@|aMtCSUqb zaU$u!oH}8!{v(gO&BoF*my#;~hEzOo=XH)->22;C=}!OVDEWtV@HMG9c28cg>U5g} zkYifMtmV*5fgYB?xVU9-`9j+?tFEp6QVm56B^7usv|JMRJ1oI3!yf-Xq54>ZA7JX< z9Ooj=tqhf)93R07l$#njG`Hq)7xcA*VOi@0ARxRp zn%!!!cOkxo03TpjM-aNh{`8+f+pj@2J3QRAm9*_rSDTOKAh~)0c@T+(bStAC{{SBj znrIlPPB4C$v{iu%foMUPHT!qPY$#g;Hn8)f`5l$M1rY1e_J{KKUHeWGy%nwvb#Qr< zIba}(6KJgg)fNs0!U}~G@r)e_fljBjr~SEY@H?&TyGs)r8o|6bKRD?KA|0tD1$Ph{ z5%D5|UG0xnK+I$*YbXVvOF@}M+GQ~_(lVauoWJxbzdwazioyqO1=$9`b)5^W6v*2T z2o#hbo&sh9^;cu#AjxP+;nq5Gw2wwy4lMczzpJ=25VDccze;X8m=zu94 z)c{nEXYFDlq&@s}|J4*ZpF%#Tq0o)$W;r-G2q4KKS_|9&uH;q3yWkF8&yFRaXz(AX?m8ns;Yit1)Q3bre>hb3P?=k2bYw!k9GvRkeOeBbnC#~Qsv7d(kJ%)kUKh+ zNcSiyqR_3RHR$1+>mifpfy9}{y&seyW_<`^LP2>v9G3lwKM>>ipVO zA|iB6$t4Z{%6@k0La5#yb2N|U*aey*dkUm>Y{M!;Rn>A|9&7ACA49a*!?{H!I1#oA zRv8Q*5%~FIC>k(F+nIDZ13WaNGjDc-#`Ar)q|zh)QsA;-^pEz&am#JqT!k)6_>}bz zK-fAXpmGKWjh2G<(%jbe7JF=bd?=haqQHQ35SEY}Vk~u&m06-RuAvc|Jpd3$R2a|@ zd?>inSWBpdDS7XVF+~V-6-+19mt#vq`{=hPQAwG2P<1SyU6GgRD2B%seO6106O~SJ zs5X~+_!y%TpSp^IH(vTMBWd^onkQX;Fkx(@I>8`KV0>c^>O?w|jY^p>ZG$m??_aH- zGeOs3Vlfbd_)7>;C@R+guF$``oXjf)?O}l!rhglW32`A9u(|>RiHN#J#u%cn0m|7X z`%t7@E4Zou!A%Ag6%`p|cB2UudP)Tt9r%B%NdGNNL&SEiPYVmK@c)jdWsrC5~>mY#GP;`PXvq z;W}EQ1AP)Q{)h7aU0OXVo0LBUYh|Nk9p1h`k}7_0+oPfbgt4+VCo6q zOY!cKIDTs%YNt!9URzUf{-{aa~-zA-=#34-<8+rgEbrUmU(4cJJ)PH;X zlS9AZV)#wOR2l>-L(dLcY7FCp$yTMMr6tX@AT!KSb2RP@Og;j?QETC`gt2?jYbig_ z?_a!S^w5srv~aE^A?BfVaNnmr){eisGQ{kDOVr=QMHV!D<|oNLHOSCU+g?W$Sxi#!!w3}Ol|xAAL=Uj1Gcqq>ObKxe3jZqh z3|x6J`6>wA@B$(!<2OvWa0oAEc0Ig|^S8yK35HvfF!P$QI$;hF;Z{ihC*rkVOmkVrJGlCQyQ08=6YnpK2KaFL zlG5<)n8R>bDKuOR&By4X=6Uu5GdtGxcOiGg!L^DxkR`xNr0Fb@X!<)Rt>@iddx_gY zadF-*x8Xv|=yW-Pc7}##)sU}RyumTMetpMHk+uU@Oae;w`nIFAj(B>BE(q}yX^@3N zT=RpccV>E24_p1=aDjpA??n?6f$oKCr3XSGDjjw9%9Th&C^A77I4B5h85l%OB3)lG z;0nG=l#M=VRTC~9W~yej}|T#4K4h^OK1pHZh`9`V0;X;O_>WoZpuG-cFwq1p9+VH&JNaeO_ga&jrUe zndE~OI2erQJHV0gOYdSU#wZXEE3g=80wv-Y@xQ8)B-L5+qrD1sWb;E07jikkDX6z2 zUWTZplyT&-3U!?L$!T_<4B@%ER6rnmj|@gwB{{wWDv><&=q&Bjtv%@tzC01wXJjlX z0(vU2BS}=79NQz&^nqD1Y*Z7*eI{_(>bk>pWKze@(ln43r0b{)Bh7Vo9l*O-Hmp{@p=qYXjByDG15@*#dZV2SL0osP=}Mc z9#vR1!ge?ci=AKUFs6vKn_{vr3G3t{uzv`>lNOI$VS&!qIYNN=El3A;pSDk*b7I$$ zYB%D{o0(Fm`au`MPY7ZL7G*nkNGdsP<8y5a^&rJ%piJ9wV1y1DA#yB_|%M!oTj<}QnzZ~7J@Lb2MJ z&3}1r4gCX9*3@ zL|KKbEuPz-wPx;~P{k)&O=QiRhDQ)1ZEL_IIgfnUMh-T~=Y+}WbS7gI&@+)^{fq~8 zl}bQnY#k!2QRUDppxi0E#avjDBFIeAUu1?52B(nTCzvy{@E5y=N~gM>4O~EN_e;26V#okj}Xdn2AsY zqGN=#5YbYHtgS22szJsrqBXn3E7}fqu5tcRf6y{?6zKB^RO8(sj6u@TQDp8rY$~K~ zM(8x5-M3Hb{FnM+VzkcOCqYz_X&gpN)%716YcY8rW0)4g%!YPab5KB?W&B7b zV!=dn7nhNF(b)q}E+#5@e4PP(Ac$fTBDp>p;Z3pzQl(dPSa>*T8ONC8>xF>vDHc`1 zt)k!i z`R@PtCzPnB5|ylzd>KNK#7=;KIP%SP_b0ubjPe9iw}p}HcbiHPgPURZqj zEj>=Grnn$$i55W#Wxy{|N(LxU7>Co*iT3;P<3P@Yl1cb}P1J}?6gWM|=M80T0WCPg z6O=aX#C(nW(r>|i7l=~MDKn)@aE2YaAh#RTrs_3Ykz%p>!fCpPD4zlXVrE)SR%a)r z28AZ{@M!zL3V$ZvwG+-5#e@nxd9EYiiL;l;U2OUqZ-;2lW14#Xj?l2=1v9B=n(wzZ zSw@al%JP~a?|YEfzIkRqN$}^`N_gTcW&Nv!f{@3hEnBFo3$(6Mxh720;v$gR+T9D0 zSKfTuaF4dQ4!yI|3bGSJhg#37wQ!fhVq;_78vs=VF^K2LBapnb0*1lb;-IQWgNF=x z5ZkqX|B3O%JplHvuTlw$^Jy)q2u7?-XV3t3wFMJbF{KzeQayi&^>1CjU|>oos#BWj zGqd7?zcS1KSd&x;XSHZHsk^gM7Mp+etY&KJ;+yWnbMwyoY~K|!&dJF!q;h#=&Z5AF zK{sK273{O2M6mF=DxY)8)PpClPZ6b&;pY|miTJ^RsMZnFqOsUEJ3QBj(j{xxUox~SGE*ESR1?Nx&oXb z*&lmrVXu{b8?_B@&w+;hN0_B{38tm7n`Y%B=L-XqZ8j4)My)L0{qAPiy>E3`lMEtZ z7*Z-Px-*i@8$?Dy84y8?!)1QV&zE3)@4V=}C!YfLbEL~Otu65fy?T6s7GMj4)55{? z=n)z2FCU-kZAx5}+T6zG4e?QDd?jVB$=f~(^_w)rszB7r7PY z<>}xTWoQ! zJvoL$Ag?67^6}9ZWh(d=t`@cxlVUbh7x;Xy7MCc;H)pPj4dL7|09> zQ15ad(d@a*7QvH?wV$8C*&M5@4pFMc*5l07Fx3EJS3|w^o!3vqPM`ZxCiL>z?+rQR z?|#Pdwnyr|Mlq|!-2c>sxp`v;$tP9?LKxa!Hx#&MMLZ!d)?m9e-?ci9f4 zD7=(#=6m>ShLPyh6q2x_K-BELS?j=#MmXnpS;=z~KwliZ)K4dWT4E{^F(#{>!o{7; z_jYc(o;ho%#n52L^kOE;Y77^s(RwcX;)8jOwRLLr?ny?An=9l*ZqsZnP0fB~DGl|{ zJ{2J{FSk#>hXBzI!~}`C`1Ok4>ST6G;GNw@Azy@H1OOWI&HQZu2S|Litv?#@@SIi>&^F!y%~^(*f(G?3|n&Z{Vh#H{-(^`*sUqDPpj&%3u*TSTcc! zdGRBd?&{U86Gr9XRfBPm`!>Q8lL$41KZJZS0xtxxh!zSt!NJi{8&Aon&E9vIpfb{N zxb60ltEJ<7Kb&0Do-K645W*UrJ7$S95Qwk`W^HnQR@U&R^M40Mvk)aPSd|War;CLw zO%YY3SoBc6DdNgU)3s^f+zw2KG+==)Ml6d}`{D7%BR~a20}DEV{e|FBir5Qc=9=n| zklF=DaN^{L3Taa4GGcQHrhosJw)UfztW|aH>up=AtBa9IARel|bmsp`nD#oLTwzef zJb+rX!U_)z7ZyB}uvx7hRJ&7CV(jNQ-SU>6+wIta?S1LhtL9a!Y!@!_2LkN3X)^02&i z>A7xx#OMjX$^TUF-+#@an}jWE#_oUbuMP8`)GvLe^jbGJbIT0DbYF(Q&bhLASoHeN zNN+B;o20y|yY`x+{;iH%|MPo)D0^k|Kl?~Cw}{gFi;sv%`6ZDRiewYpG5HD;@(tO4 z&I3*Qsy;)ebov=X^((zM?s(Z4z4<*LBg$EIU_Ht$;mbk`S2w-+;DJ_z{m!H#voDSO z2_0Xs#7saomF4gc-$ZcBkbIQY{GCaIneXOyt(!EJ=PsNd5#6Q8=S8dR+S&umU1l)L z<-$u46VbP7%@nmn>!IQx%GKLnbLISb$EWkTIQshfqM;V9KNO2hv?byn2M=WYN_db) zm_)3gSyD2=u(TM3%fLb7MDEH66)SiBQn9^#Iv)-cb&$63_!#nWeS;tR%B0N4=WIY6 z-UcvqdIg7oM2Xd{aN^ipAm^S`p@)AYlY22OQ4alKB&u=zq==ijT@Gf~8Bj~}g>Z4o z^e);8<+cne1z?r}Z1CXJ%s`c2&zw!0hHfs>{*(Q|q@78HevQKgiz3tET1GwtlHV<8 zhLPFC1wYY2Q*hSDJ!@b;kN_XhzI0_(1;w}1^u^R%{V;EqOG_o5jRQ{w+f*=lvnZ() zvOlnKE3t;#*QaS9e3%A?fc`YU$Ys4M0`BsI1)+^-<8h~)ivC+^YnLKdF^Ye}&n(R{|ZZ{W`Oqf@d7&s5x>2zz+FH8vc+I@HYxGZ{s zsCRlN+tuiTV}Ar%5IhF-`Xt}l|IzKD4BZ>4clVk%rKk_-sRe83)$82#;JY#1Y(I4k zq%y#ja@5inKkS?M?$e~kNc~<$Nbp-wWB`r{5#Xusu0MSTg`tppNcn}cC$MS-^j=oc z(9%4Jawh{^hw8mB_!@*v6iXwl6Q?%4_jBy)f?@Avy*%yKqY;q}OMae)EyVgSQYpmg zlNoIHID*i87qfl*56&=MsC~HNr4a6kf*)^(wJDGgW}FFxtOBZluW48WFcs4fs-H=- zTvMx+Wq;Ie;s^lwLYzRLL}!5&(0Ug2 z%%Y(A(tXnmj6<~yEoBV+wMT}n)cE4_%lZ(CHWevin{99hkt~T8h-Wkx*1vNG8UuUY ztE^8Dmj>21Q1A4(wzWdvIWq0ZqTC|*NoCy6MIyCS7v=$j&#}X^HGX!FV_RCBI_vj#XJE|`T_Agp$N-e=q#C}91JoW6Q(~JvNlP4tL16SR!$6gD52uwZd;aE@+^*fT)xp0lX`XAM zyB$7uET6B(Yiw~*XMevA2a2HQb{m95o)MFmjdqte9G9=Uer17X+_BJFsAZUjFY*`|SaMFIe9@Kb!RFr>JucMYsF77w#4FNtV-58;-at7%t=y;| zQ3ZqYtATnvhZ^r?v&T;bdBO{&OvOs`QF%#Xl85F}p&{V-ie8c%K>faJyd!>^|2xPT zj)_X_CXR3>E;1Z<3_3G;vz6c4Eb724nsGRLEm{)_%YHuA7j$8PXJCmAt4J4!BTxV<19Hd=FE2C6HI`FTRL;(fX-2^AFz64jfJ>;O*S>vs;2CpS z*s%piQZ{}WT%vduwIONKO#Y{|7cNAy$NnE$^RZo|4)%R`b+G(Zs2+IWh8gU>=pCM( zo-TI2DL$oPVigTUq7Q4mZ|dtV&A2JuWlb3FTMqvI$zt7u?OZet(=qZ8$_d~%aPNTP z?+S5lCFIXm&{y@^w(S~z-KMV&+!Hgf z7&R(V*FF-czm>vSvzKA4p>m4FC_TdiH$=T|Y`lVCJQ_c~U-Zc0_PZ}?b`GakImqRd z)uqmkkcuF@bs03MC^TS~znQr?+tJVt*lQNo6}kXnNz5s(c3y|W6G)Rew)g4q@z-GM$v|}Xd+9?FBQ9s{Ozg8+^X9#VbN{{i5r1oJWRLJ- zFV*@_?8LZt3fh?cLD#WX9Ikgb(+nc^81a{5BWl0HEt6dZ%v7#b4B8PziwNAiMn~ag zuG_eA88TgFdYReT%j(h$#EC^Dyqq?FdE`CXU|A}IHmZIRhze$HifYyCt#4x9Ew-^J zt2Z+<%WC9<_33vS*Q3NG%wYwEo5&-e#lzvf?uplnX9o6S>Lj++oGrDA6ES-v^5eQI z`Hq5151}!no67Amhj>NXh6KDOVu)vf@)`tiF=!oeVOHmG_t$MoR$a}QHM45fAcxhD z8$Ne)znqc(J0*Wlv2Afc_WVW#s_D?cP*LuqK*a?qB{{C{Y6aO=yp_QJ_&{!?`li)6 zoZ4Kf{~wRLC3ynqzBm_GGx+Vdm4Y~(pr`fxs;RS6Kh2KlDTxiV)n%fGMP31I&(LV& zwr$$Ombl*Y5<3*3k}z``!3bjSXT^0JWi3d z`=}5Oyn+@NJ15M29OG>m4uDMbk#j=OE4_Yw$NYvS>FK?CHa29D+swOLS?Pf!I)DUxk<8G3w|TyvF;EjYPI<{?>>1y1l? zm{~v}PoYWmJu%jF0ef^fIpa+R`#E4fIB{0aZcq$OR3)+oKuoI+e_CRTc>6_RpP(AF z$y#`2h`Ta)>E2&aDL8AFe^&})ZK6C8q=)0S*)4IW=O1fCINRT*h!xpN!U?at>~M`$B!!Zl?fD)RpwP96S3+^K+(*;wDfVYLfCQNl&Xd_+>Sf zw7OP2U|7&yS#TsfjF2r^Taho@vNhwV#8RrD8@NTw9#Cs58WUZvroouK&X`t2a^%Z; zf7&fv_ilciA>?&kf)ta=;iBf;JLO@IjAuH-7y(RLSsFYjjj%tup(AVej+Y_qjMCJ~ zTI9ZE`?%$eLDj&%qIRGp?QRoP?d$I*d<{j#FP4ow67OqLe__E9qjy)UT^woLPOn|o z<>@=8&)nMLmt@_;9Y%HiYMsGA&(2|;hU?~ZvbQkn+>g84`BOcc-bji-qCKpCOIW#6R-mj{kgyGpg}R* zj@zW*jI?@C?QZ(<2*EK=7N*ZoI!*=V$EnZ)q9U7oTd^;Ext$(Z6@*gH0+@Ih@A?HKE!K3ura z`bCHx!T8yfBmn+5`}JGLG75+#HnWfYZ2ZO>c@T3imDgSR^|K^U^qPg~y)7;4#Y-)M|3XO(_Misd; z4VZ-`!GrNYf`wVRs68nxIFS>m4q&<@PB)Xn%Iar>+ zEQy68@zte!A0j+pfuT23>~71|R#t3kQ4ok;b1Dj~c@K8>Z;xh)@rHTF zwvLalzI27>=$hPDX)y6L@=oSe-y*%i@XetI^FtG|m>&Lvq{|7@o?Uu?bDLd0B};TV zU*DUrKfsa;WKtG9o;;GcAJG91tKJ;$$Cvi29U2okV+V%aXRvmQ;ys&>M#{Av>A@}d zQk!FAUnHGVJ7mGvtQYfSUgIoi-2Bww8v?YXt)p|W%(s>DIPr2oT=z^1o_K#yBryMy zH$Mfpq)Rx91y{_Aq;$}rRJhUrOEBM6IND2LRXm>T$dF7X<`YFn*5BC3m j;XmH{|C7gaIYVvbqzz}Cb`JbS;lI%%#ycd~PY?Sy?t=8d literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_15_0.png b/docs/images/specfem2d_example_files/specfem2d_example_15_0.png deleted file mode 100644 index 25325e27bd2c61df45c76363f1f69b8ab008d987..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 67022 zcmeFZcRZK<|2Ov2D>>%JfNANPOP`F)({x53A8ypQ+$^?I(?5vHxBLQBO)MIw=C)l?OA zNu(|H#J?2V@h3A8vp5R`zh-sy63NlZ-Q|k2`xUzj9G;i1y4g89aU2ynB63uS!`9v1<>cYR|KkfpoUhs( zPNL3vN+NNP)D%zYdnHcxUNhG3Sd^TZ*4}>kysdzelH!|?ZF|+lZ>FW_=rHIU-hN1# zUPrv*ly$|!PVJjq%5850I|A>#JrElxT>8k^I=Y&XiGg0HD|d;m|3pVUje*;G@29`g zU!kGX5mT|WK$G=}owsm`EY`$gffy&Ct(eARt7S-Mh%~6egPjYjG&Lo{= zlJQv#Qb-L{94K>6Poyb{bk* z&U>mZbHCI|rZTjW>H^8Oo_BPlwYIh{cI;;U7V-Un4LOBcKLIBaE;$;U0q#T z6T3%NR@P`&iQuPCpR_Zy_Lo;w3^cL_=!d`ZUq9*V=V#^Qw6nr2>UZy}q1QLIvQ6j< z#Hy;Q2EKfG^rG0F@wTj6Se${L3OA-w?h_~WFouygG&C?ZkmS|WC{0T2x8W8ZJz_1H z!b0CJE0fI4&E>eKdck)` zc6M3(4ZXe9b;rggCTjm26MY^z-*;_mXTX!%S~<_(Jz;sKWn3H_@{T@MR-C2I{ZY83 zG_9nQ0d}VMV`3OsSws7(eXP4n9gm2MuW3Xt)sBw0=X`Bh>Hpj7y)bT|sG?He(!$`_ zRs3dlsL`Q#6PKV<>+cuACP5X+CQ-NYXQc4LJF3aP>b)6fpM;#@{Z`)p>qAUxM#k;5 zG_Ddy;z{mc_a&*QsGNB$wha&7XL0h>#fv;nJ>@sb%a7|+VU17^kLsMm-H0E!_PeK| zpsb7~_VMG#VH?dKKi*16*!#P`HoDNdvF^*(u~SD5Ym>CxI*8xW8v zb#3R9fQ=L5-}Ay_1&!)@d-vn#G9J8CyS}(rc5UV~`L=CuzJ8^*X-<5TrWAe`AB`_R z=hc7F#>N^y(6%j;p{vBfXpAmqdD-hs;&F!c)ul#!<;-}yAkV>rR<8remIrRL{~Q|H zN-DoLeZb7zJT)gL{EOV?K4oQP)iY;;GBWrUr@C(+kns*3r`@?z`RY}%EnBwGGcep> zIc)Ls)8nIFYs-ZVp1XJN<`58|!Z$IME_^=LU+q&?H+A&#r@)dDiLNr|==u41sv#Vd z=ZmKYo0Fs-iCS-$mXXQ1qM|wZQ9JLp1Qy^|qx5(p{%uNU6{Lfsz zd|CYJulEAcyLRn5O&VRE9a8v_W0cP?C>S0Z>c2WwrrzHe6&2N1;bx;N5UX&`!s5W5 zy?bNI%F48v4;;|)_V#ukZemKEd>77g(ZNAu|4H|+URtK5SF(!M1@xYuN&V+@LJSVb zo;`aESeHgyxWyzS(kt9X7)d5Y7sE_G;n0MJj(&*YBM(FwFqrc6T^Wue4~#k>V>0EJ z{nQ}GuK$LwY7B<{t>-_d!h{04hi z%5zeCg27NA*0}V_p2Wn&^R~7Wf`WoUAt8f5UfQG`Z~q!TKkx27-bN|*m-_w~b8~ar`uag?F}!bDTNzQQD5$7(C)$PNE*pE;ZH%@&U7r7THdtfq zbO_Cx7{0T8m7k|?;yZ(bmGYLZUAtx^xL52V1?lJ9@JIV@b#-<6J$u65zgHD^?9#VR zT3J~^q0yfxEGaC^D#)lPFK0b$QI%Fp!<>NCnKlZKMb1Gi@z}~&oEG#TEd&J1q(~Fu$ z=1~QVE8P!Wu(nRkFk0F6DN8RS?fRd8SS9TBgGIAPo*mQG)jjX*98D*?EU#~YMMBkj zgR-=J`}Ts85+!|o{n&gul3ArYWt@n49crc02+M&3JGm50OiW@O#l*zwQcm4c96opM zT=~^uDlCq@OGt#MR!GSMY({kr4Lp4TfiE9EobvWQ8A7v%YppTv-n|?5xK-+UdiJ%n zv=|rLGW7KJy3UWbnCxG@&F&wF@AIA?y^$n!&Hjv{!s*kqDGR$!kavrD)Ry}*Ru`NrFVc)(8Vbf9$At4&9 z!}3tH9MQIxmzOyX9iqeqw`aT61yLTq_In@EPSL!rMw*jCLqjvK)}lY4{u)ip287wu zIHB0Im*SIXz9h@kqm&8s^y3I%yHL>5zC&el9ckX5Yf?gmGyI0d(l?d4Hel2L{qR-R zy?dYHV`Dd#Cw{!-JA+buaptokz1O;|@4`6KzJ2?CPE1gvRXjcuf}b&fGMd(T)TTM* z^zEJYr>)J*%(RV-L*+J>PwQKlnB1A1ydv$pOfR=Szw7d+M`XbYWGpOkRNba~u&*b3 zU$M;2&X)VF9(!R{aTD#3`|x49d-v`snCa-;YxwfQzPu6pg;b^WB4B;N$o+TEo^Q`J zZ)Ig2iinJCd8W3jWSTt|hbq|MT^Y(CFyKpKopzx{vA7u*+7NENqcSi&Gq4nCMWc51|d7 zikH4VM~-sFD(zL!MSuTr&GHtk=3BIkY@a(3qJg*7Y;#&$b&CoMIgN~rbXKwrawtgY z85z`}P7?)RuIte!dvR*XA#?&Bb} zReCrGh=?#ZVdJTxX8v86;Jb6p!{Z=+s?KA4bR_EQvZ;q%&9&*iG>so9F1+UE=1reJ z=M`&aujl;nVzEDZMj__zUHaDc_Vj@a`!+Z-(MJ76PeqrJC&`^q2Aiw6b zMn-XrjErqj5-vaG??gpCckC{0!3iI$r<3C$?Pg*+c&EGAZr8T$+gs7aY$v|wiCZ_& z-2XVNU*=?9>9h2Lo@MV|4N@l1(yzfmg%2M-6ki=yFDfeHa&vR@UY<#%cer>_5!>G0 z@$YOSyF^U~+OdfDXH*)CF*oz}BVlNI_io?5o!N}fZv}#BOXfa$^k~zUFD$XIDk~XD zcf!Irxzd0|sYjeHT~ZP>dhzVnuZve*T{*)P6#$eNrfMBJL|VUndy2Ns$k2k?E3q?1 zTObzK!$q@S$4^#*Hby&Z>`2%b+0_Wr*L00I#bKfc?ccxur0;S;rrE;!x%Rtv4r)B4 zC$;z}rn`+ax0N__P%TA9NAr=2eU_X`9C6rrNp%JE4aN&IwC*PAMn){$$`P+y(=}XI z7aa%0E~u+h0g?V37~p&x|M>9$O2zy4@8$bz{QAesPn?ymp%QN!9CdxzQlm~(fjFwUyWpMNw-BnCh$|G+0t z*h5v_r4JuIe5I$H0bo+O%&E6;ylU%~EsEFtuZ^{C+k5Payo*Z#{|k*c5#t))6R4Lt zRnpR)lg2vEo%o1Q+&+PtY|;OMSFc~c&dJUF^r6k1Klsi0sjiaHJ9l(nT0;_uT*HGHM$Ihc*6_l1X;J5{Mq6vpC(o#_=)cUW}@7)_t zxr;Z&sy>87l9Q8LURj}ZB`{fB91Br{frYKxvkgcbJr54vQ!Q}rm$mW?LffxzZ)dU$ zSeF3i*g^7InLCKa+}4%PranJ6tf6x~$1v|Miadc6(JNAkICC>QD4ClwuNT!2T_MDH^ch%erTe)o@d6ozQ`7&+M+b`7ynL`^GcM1bKTor)^|$?+ zLI!+0fX~Z$+gV?~6_i3jL1BxKkdU~Aca7&18?eZEP@KZ3xuL|5{qHuPD@U?r#Xe3* zptg>FB7OZPm|gCbw*Q@j8s}$YCo)=&WJr=(ELlMMhgd)q`lY3 zJUKFw76mH1{dd!D78Y(kJ{5gb4w)985%c4|%SZ6De+~}^<3Wa(u45UEYyD;L0F8zt z_J%VHE1++_Fn`6%^VHwpe-z!OA(}lJELeYet0LFE^K-vG5KR$4OK|^_u4^DfhOq(HazU^lR!? z(raK5Y!}er2QJCki(TE_)L}ufvu;0%ly|*zv-=9<5ggD-^k!U32v6)vMZOWUKGPIr~0C% zl<%grf19Lp-&=G;1_lP5;pj^!BeNN5;U1Hn48kVGuW|K99J{cU3&<470|Ekc64TQU zHYdvv(3Rjc1RVq~09h(Pe`aI9_U;ao*W%=!hlee9;;EIKkc(A6C?qU=FEKIKb#rc$ z%wV2F7e6Vyt`YCYiR*B!E+JEy^w(si3GxH@u{{c=vi> zVPWAZL&JwAiP>iijFfzReP_@ktN~ahv_hQws=|mSx_+d%pg?}wS$0Bru7 z>(^A%b&pF)S)*i;HjdJo8;n@!>T>mHW1XdgZr|pXld~M%FU-%6!imiZ<)WatSnrz&2{Hr!^2k1i6;sQ z3SPer+Z8+o(xY_wGA|yBpdK-m z%lsX&tsQWWc7Cdx<>AAJogmN+!7O-C;Xom_RVRN=P0{M<=~)>D<5uhvr%rjCzP$2o zXOkXnURI`Lf$wC3D|Q1pDN^#741gYXDE)?~r)L8&PO83uQgtt%R$`!;NWRMp>sSEP zfpG;*8Si-tl7MfrxQq&TyNibh(?;{BPrIFVl3VcAfB*iSDfv}uD(7yhZNybTJQA{~ zVnw?)3@<4wYXsacaO^(TQ|-e7V0$YjCdQ=a<~Hhr^KZ5!o^VrkKkBFnAo6bmeD&&8 z13NobrWFLhR`6sB95~S6a!^htz%9WqtWSoz7E3X^lVTcn2lo`*;6;++|>kNtu&y*9OEL z`-5_u8h!1LtlZrGT$|fE2-S;UNND%Lpn#1PK9uv+r%!JYLWbon35V~Qd3~io>L^m& zyu8Z#Hc)xc?Kr*V;$mYtB_x=rf)!XzlVf7G;;HF;@qr-5ENns!&0w6iV}1kAR}%2+ z;NKe^RoC5$9XfV)mpQ9=dX^sHZa6Eq9^|w1+Y0SkAs4h2B(dPqN9N_ff46w`b`w~H zX5VpbR-1S<3vO=i5`*_O>x-tO@uN)ow{P9r>hA7d0L=kxnkp>Wp27g9P_UPfw>pb1 zQG=TE(QMlih;6|wBC->>y3V)*ZA(tZ9kz@bYK*o922zL~ z$F^3ouDa22dKbtTA+MpR8=Umb7I<}STG`3TDOjce-GjKVnw5X{mb_g+fd!yDA|}S@ zPaZo0zK;7p|2bX)yoagJfs&FEa%bJd25&1$9V@^f|7- zA!5(1#Ke8`Dk%oY;0^w_G;KGh{O#+stkgTcJtOPD|>q?unOpxoZ{lU zsaZtcLP{7I8>95|^D}$pNecl+*~~1lVN=N7p(Rb}xXVvcrTf^;v$8AXc_t+aT3S1` zp2$W*1+_P4-n5*1(LiIQ!gKZgJ#G?5{1#yj4iZsM78I6nPEofMq02_? zJHa)%qpGIog?grV-s|*nN>4YpT?d2oGPK@h>O2K_Wg$dbXc+){ufe2_px$w2^+59^ zkdvjQCD07fvX={saeQ>9mmn+#q5?j}CmfNGc!!=j3u)uc_wURgUb_JFThm9sWzbb# zn~wVWRU5U3^Vl(FENy+c>rl{fe4sn}@u^d%%H7BA7i=+yzHBQrh5jw-I;e(P1E)!^0XBnEx9#FR69|?^fT5p1&-+50nwgmi zgyfSf7Z3$KauAO=?a(NM#;rh&&>!l%y4V2s-hzXDEp;?4VK21wo!zFZrzh$@s_pxC zEQ7ck{G~R^{@bSEt0m+tq*BN35P(R7;yf_dy5pCa+FdC5`1ne^zvo*sFj#{XCg$KYTm`Gjqt+9XnGX4?sw($EDqc-tfuC;xP!q z>+bHo$;rvAq8G?T%*q3q1P#xBdL+tLYh+O0Ah4H<*vg=))qe)mBi5&?%dQJ`Ztfva zEg1(Cl*sOHt*!6BeT%`VP!ovNMPKHJ%wyb=T`6GFJ^`VWXUC2mV%Tz;lqHuxvyFEa za(}oerpv#(?YZXOJ9q9dYMwUup>9R8U0a@I>z@5b|B_;UMhu&rzx0o;uKP7Lvgb@q zV{YHxk$3K;a_IGhtoA-L&4|pwv0BIqN+d$5V=666^D}7l?mqOXk4fLH>6oOXWJyue zqKBJX&U|@n9#z@3X$w5Lr)W0!^##(8Id*-;8Y_zOolSm*rlkwmr7946zpzl$W4bR1 z%hf)fAnSMXgp^bao-WjNJ=~RTPr2*-$dds3E2hfI+kxj|;ahyDtGg+?v1}drsefQ2YUBt#<~x zx(bjNeoaoEfo^s2%9S&KEYBd)=9IX8O*wVZ(NR-3>j6YDI}jLqy}T@3$t`F^3cS3$ zJTV_Kjq)w#At=~K_~|L><-{8OXtU2=dh}dn<%s6Ng{pq0seyO{>WOD!zKyn4O#D=!kXT zL8t|7?UY0#K;Vt9Ju8`Q&68~Ii+L!PrObnkgxyh>)^20ReiaqB~IX8!m zqB?4 zJy{N3)DTFvwXLZm-;xgfkiZ@JFmr4gt*2E05ua-%-AR`5QApL6=eqY3lu;sk2o+@J z&!1b5AMXLhJ!1Qnqo?Y+p78IMrz#XwR5t;C;R(UT34{gakn09SNI-XNBLZg!1qE?P zNv-CMqr@r#G3Y>wc=Y)3n|JTF0bsJctMXl8jpuz^hn!~|S>c)Z)l}p^=I}HpP z&3N%QFdpv4#vZ&QC?xc@!!m&O?Af!Oot^UdT#!UKTk@!tU7|4mcA|t3b|7D3QAs!!R&LJERgq~m=!eIH$pHrPiyr+ib`*x2Z-aN{d=>b(;fNGh3vwbzLb z_;+zC9OrE<-BC?TOZohH4)3Mkk&t@UFKx~iY$gMRa-BTM2D8BS+jH6|b~%fu>(o?K zUtijsCD3SBvEA2>jz*{*1ONOJ^3uj!T4wscvH)MGra!E$`MOW{?T7)G4AZ{GMg_4XbwoT{{H=&kO#4OMbR;({nuE58cMSNXyS81 zl9Lahytb8U!hJ*CVLf(*6$H{1!b`4k;g(mPQ*~JU;Db2?C4so{8YKLQ|KCH{xp$M3 zqd?UOIl;KhDM@<-jOFL}I2BHT@5agq5Q_qc8}MEslnw~er$c3+U!p(_0D}Ww_EdUM z_xt{##Rd(A?nEg$B@n9)<$VXFaRtcE@e&Rp*wfZfF9_a@CYh?uuQ>AX?p+d0-vMWH z^IobaPrI^zJN)0>t>>>P9tg5OKcRH)4#z`s$Ke*=IGpE7l z+*xn~3zh|P4XNehwW~Dgx@y=p)6ZVa*}vTP@)(r33@A-d)_^b^suY0<#mVS}+kIB% zE)fbNR8$3i(<(1fGGgCTf|pz(9H*kv(&r!tTwDSI0$dRE##^55I25bS=?NZ09th@Y zF?2F4^zZ!GX~?q~D9n_Xa6H?J?ey#+O~sDvVPH5#Qv4{|4}%T0Kr``pVbi*4iMp-dqvp+115(ny5d3m`>8G-K6F>gXg_MGfY{mz}MFHm^phuHBGCkQjv z(9n>O_Fvk3QFP5tWx@51wq@E?QKgj@O zgFn8|($ZS~{c76Y&tG5%-GSZSG$WrLqlvSjOcBmM#2P+|_s)>00HpVyKQlEM=9vT+6^VUHl45y1 zVR5zf$iNq9n=WIm2ML7i?Y&v?`oC?Z$O(NAG{REn;^uC_9*YzOV+};TGkF{wybXSW z(1Z3oQ=_5Xw_w|^1~22a`l%g8VEN^G$b}+ zvk)e0j`ikDJ>AUG5?H)Uf!l~ya_))QBG zaBQ&mjzc`5?grhsiSiY}D!K*OqXBK;2+(zl@hCnr)uH1BgjRT^dLv7}ZKkHC5NL(~!p0fwa=zZ+$R9$z=wv05F|B}hM}-?ksc%` zi#$+LR=$rK75ngEO}psSxcP3R>v=;5+I_*V}aL-@W#@5S3;ax)6Eb;_u!Z zLpsuZ^>lYEaVk_;H}XIvFoKJ)W#FczLKSG)fMLQx$WEO~jv;FMj=Kbsw6Wq@<>kiw z?AVuTJdEQV`A_)!+S_9%Cnpsz#fSKLUB9jaN}zZN{x=865fC|1mvlBa)<3*`8w9qf zcS*`1E;PscfwQTB{mCA%luluX!LzwEj~#UvT0}1d$=#9{-coFlN7YnF zg0}`KThZ0%g&9M$#zL1-nHEpp&uI^{fe5V zw3<^RgV56V^5K8r{6{_EGfq_2=A6o(}H#i0if0TFEQZ@^TFbZ91QM=wWYYWev1 zL@tn0qGkW8=JnvI!D2b1nBT~n@c3~Hq@?z!baiqRA_Ya~I2t@>WBnR5!2gK3#GZ{8 z4+G#(RI5t>Egi$tC1i~)@)Z>oX;W}WInhuEE09zS1Z7|H2d(45y?Z*trx(ohjWlBh z@F3tIMnxHRmwHZ_Y>`J<;7sd~yE4D9@ZsINV3bjHkd};X)XWr=tqC8dafFDKyKv#c zC_ZW)rBn~_Pu0@$3F#}KoxPb2#JA6nL~lW|SB3fvD!{;j12S7_V9rE?vQpc-!sW!NCj2qg(?t2%X@-G7-AhU1F{4@L%p z1mhc3-fwqJTx~nxrK!Jh;;+5Ze(qXPEc4T~99SuBZX7z@sp;RJ`gJ?S~9}E;et~6B5 zdx~7CNUrGgz#`4O^zk8iAe*?YJOrZ>^#}vWui%DJBz>>bXK}3pQ%UoSi_Gl^DIF$u z1ePaqih_n_cXM8LpLVtSBz1mhmk5rfWWZ5r8-~u6tiM z)>nfcjq}t)#N?%>roQUwX*kg?eAeSu+Vi&$M?Jn|WLJ~kzj<@2(*|N%>~}xZKtjba zU#LK26KNWh*~{fdf7_|e@FC*=s|?oS8VqU{_A#nhPCx|C0FSB$9)!sV0#yW;SeSfstN+&^qP_S z=7NT~uYnm0d{?dlHdvz{r%l1>!}q9aX?-sbfI6!fVC4BySLqv9%VzBfWr@pI+cI@n zWxR_U04KW*jRQOk+M=?%uA#-EOQk4C*ke&NaQjGNH zo;%9f+}5@mf^}o>t80Xp-udIl8=wVt-x)IOxgAH3zGQ1ZXJ!_G0|F|c?#}%fLKmR- zZ2?;zmA8B5V@&JlR8td(O^?}Jr;_9~0*Cxj!z_lB(D-}c=L4AU(YrGfK9sS+f zKfeK@QXJP|}jPr+&po+W`da90jo1w~Xc@mpb=5T*NDjL*VNPPgW1`CfU6OYXfJnBL~VVbp5EZ->DU|9)zv1Z z_z#qPf%vQe`~*BsMGPjO9P;s8k0&e&>xPIM(b3VP4QDlhkwDr7){-7Sru>f#ltCr? z%-<7!Zpydu+-`)nSx~oYmNN-!rzt2B*(StL4?mE=vj&;Hh46~4=l!{wzvF@}v>Dm# zt`gU$`X1cBe-qYR8p?WX>0?nt>gf{8`08tr_IOC*kh`|XyzRg=Z~+0k z5Opo-MC+yA^hc0rxN*CY`%1-{Sq2^)A1Q5bC7NgO-kW{g@_*%bVWsR zk8yqINA5E}-w1TC)HKlaSGcJ-TD0T5XURwc8F50$h!?x0p5C~MuArK#{S`uA_7zj0 zeISa^e~!LzN4>$n4QhO9@1Yma0OtGJP>Qb z3osO`11kxVu!4AoD=1B-`76(~*>&is90>J5`^a`p0@*Ewchq7H@2c*z1DYb^;$eP% zLP>`t?hbIG{-hSgnh=W@CV%L)ZHylWV@F)&PRMqwmbR8wl*uF{B2`432<16d2yG^!wf5Kr1}94-FpYt(RnCX4b{AjvX=R?a&%VJwdRwIq}@3-iX5Z zp=2vzoBs$kl2EO7q^vOZ5CULK3=vyTMck#_ZDc1fFHsE;0sQ{A6EY#vSKJ8i)9>3y z1LRA%8lOMYrlzJEm%DJn-=~ITI65&g1U;g&>iSWFW=%|(P7FOP16BY+CYe{dzd_f( z39ie@$G3wB{9L~Le3Wr4AR!|oKdklFRI%5-C5fNA~J33R0-Zy&dG_KXES8 zPMFu%*Ux^I>`w{U+*lrw+a$cNw+#(-O-)o!{1zXN9*5IKIxLBhCQeKE zKh$9KM6QX9L{t)_8E_VXliDAaICYoi9ibV6p+!j7#0)}So+}oRh+G0xy@O{RQw!Q50o&&vF_3kFR!5h0sXuI62-0(qOm3mjF#JA#gqluaXsu9z;#I+CPGJ0)zoDAM>_wE zhoux#``yB(5LNQ++b7Z zHIiK}8B&KDbnbFH^a}}vPphMQc)7Y@OO`lxKZInR1;KIm{{6zaDe2>TlBKVU;heVO za4Ie&NngJYC!8>i+MWKq3RHJG;vJKakYKW>Wg_7OwjIIrkPfwjI+WJlq>m)-DYSBk zeFXj9&CL9KR%9LZgHq-(5N)OBlsXoOt=ppaWSGU5V?Pl}L{6SCe?XD#B^}lmyPc7= zIYOxYdstcFvom;%e!YP-vqUr145}B9G>?OW1F9-vyZuETNa8>MY8PQTL5ylEusV(O zeuynqZCBgM^E-VR*@tK)Wcm{Q&n|4_kBWjMaUSF2yA6$vr?{oBFZubI$7!B=7HB>o z*19+h#QhNbqq#W>1XNs0&=cF9YUfT~U=jS(i`LespZLy&b*a0dMWy2C-&08Cz&c!Y zarx@yi}hAlR#8DnVi$4w6%{9tBD#kT&mA9Lj7%-2ZSfP0%Ky zaQq&gnDdB>o^8ESp&GheU*ANObI`Ocxt!@7B6WUvZrR97(#%l4qK!OFu@|U&v06r*< zgfAl)sdna!;`#GG12Rq#=28w*vgXa|5_DVjvf2vOx_%`T^=xTpKE8}iT?b-(%h0sv z=qKVA4aE<&+ByGqq$1X3T*W>WcL7#m_G!b@I-VH4GL%WA+0;Zu{r_x9Z6-WWKL|KS zq+p;$Asd*Aj{69C)W|;e#;EiJFy-jVO;`Uyb-z$yG^7>5_OV1ZA)6P$s~e^glPaOj_CfU zWSLiW)|d}sz|=+{Iv`=JLu^4vD!KxaXj zB~(fZ5Brn;9^H@Q;%-9-!|;>>Zw!IF;hX^oJEb?~XZ^2+)C42)f7^fvO4Qu=?OcZt zBYgF@&}JFv=~GIp3kv9o@CjJ14j^7_u`q523{Me!wGa^>EYU`KqxI$zS}hkpKLw7h z5}*Wdx+}=@r+5kK)y1iL@U5K0*k2$u$Oy=Pd??I-P$|SQ0)i4?5R5Jem-w47{IDqz z3d3AQuuCo!8cL1mt;E3C-=*njxO)SbtvQ7wH#_;`C@An2$lZiqN52$BL4@s(k7es#%MV!Bu-;niAC!=ovN+B?A!JhNjrx9`w0jD%D5e%F#kwt<&$j<#uERUL9Yz{cV^H> z&i`jK=&e{z1-QXU@A*uV6}aIPq)Qhs>Yq~qt$E+jpj_ND1y}PliC;#>oIe3V16c|@ zm(WEz3JMO=gP0iZ2Ve*>pn+Xt--nYRNRYnXKd2E@1X`_&HU7}vZZIS}^5qF1f}HVE z*IqOntZ-;;MlGSxSXi9yw=DkUs)S;y0N}!hkR)_*-ELWc;KTHn* zm8NgcH`(cjZD>$hTM2b=40J+Ku^8E@EgUAv8=CFwLPr|1Z{Jp1(|mtX3<>1(*#5*Q zTh}5&ftXxEm7>0c$x%f-a>&T%FI>2Z?#>}1^5VNA`Zf{l`T6@d98k~9g)Q*N2qhW5 zP2KP)5;@X7i)VIcuz3>?8JBm8H^vGO2az z3I!*epPHP7l`JA0Fq#y9)Mh8d84@No(5YeUreMpN=ngdvO%O662c*3MVeHo<(T;1Z zm)l%93wTn!aH3W?OaBfX=7I8j-{0jV1!A`vRR&;Mjxaau+xRitMKKH{Ts2l>la(^7QG}EPbk<3#+2=@8Qkd2oI-*o+3E;P7^sj5SfOk{elmW+~DHjA;(@f z^64dUASXu5U4h>l51cT_fCn%}35h`B`_m5~>IKM&1Ij9#&7Y$VBx01N0=h|7d;TXY zYJ8ae$axZ$q|kLpIdZkyccrK`Rg4(Rl9ap+{HFaJqnn7x*qgQS0+xfeyoQ`-b@}q5 z;Z*LV#FiA#wOxE#DTtOLq!er>avQla!m$~ssK%h-YhqZoJl>a?^b?17+E;alb$}$g zStLRgPm7E7r#>FRhl2jFid_ty8BY3N4L9YizccTnlUpOEGLFg@ec=<7{?%|{lvpEmjMNM0?1UShfB5mR~8@(({l|VKNzkI zK~@6MN%luFKF5&jz5C!n5E3;lHAL_l&;tSnQPeT%V}-+lbn*^@p_b!lKSc{c+~c&b zuQVek@m==|idex+2VbRwu=jyDTXJOpV zScE#Ff|MpQ4?F^K>gg_suL6Asi6JsUBBr#6bTy8P6$%fc8vh1ut+o>LXwVZ{kT)Yd zM1Xg~z(@aZ{rQ@##T9t{7SL_jeefn%SF)MEMGFZS^o&5Gv6>xx$CRw+(S2?&4wM4G z&uohdy8)Y#u`vavGm$sJi1ZdDAoCZHXs46aeBuX8fUKfC4n|YV{rl%HUL?n#5Jd0b zK_y2^T&EdA5BQ3=@W+WXFEL$7L?!^g+XkUyQv#$y?5gpQ`hT^M3Z~Ig@kHsMBwJ(I zh>!%q3axC61lDd`_bL@2QE2F#~KwQ#Sh%)WtWbz1R zy|Anmd4S|)6iM6Hw@RCtkx>C;>p@bIa903m+C``}G_Nv09|=PzrYG6=R+hMo#fRGd zdVdc_e*Z+|sHiv~lJrA@=C1Ugz#E~o8>-bv;YD8KMy_&bH!0Oh_fzj`Idt)Cw zu+4o{WW|W&0x{M5>D zk#XfBp^3tqnc+7J()d#ZEy-M&I;f3Vn3x_IFlg_Vb~V4N@pjj4%DG+cO6J24T=>-} z98^{RE~$*dt6^{N#s6f!tS-bGiS@P{w71I`Ae@txp+!s!$A4!|`L6pgHa0k1q>|sM z!4qmIdQO4=y7$`H*?>Ea(+F8Yyq5SQ0Bi@ydZFJ3o;0jqLWdxc)b7vVfLM1HSl#70 z^r8xa6>-nRd}YN*^2BJBN(3vz()dX^Id-J^-k^>RwGNMr459Eff;=FSxV37wVQ*$u z)*EOggX0eq62iY}Nzo$G)0lLvkCLO$8|+P#use>AB)V~^F%sn)5pIzexfq3O@ROUa z`g6vnck63lNY~F29gm(nK)$hKGsHx7)V03rI}kd4_RqwXgGHvHa|RV>#Mv}m_KqPc z=l>_6|2%rF?f2Y0g!F-p%nj~=3bZ5e(KfVB*RC^P>-8{FC{FI*SS<4z2xigN)4TOx z_sC)EybWd^6QgjBPqRkhyQ+RvU4Kc=aoN1*rA@Rxl7?g7O`Rh(uA%y8;WijaS>S1{ zfNRf?8Zr?%n=F6ro2H~1>6xihh0@Vp%rVdiN5z?4RWnOAF+8r8U2+v|#PH>T4)bf~ zlRXhlH!lo^@A_EaEj9?s$U|y{w8vOxUaIxsJ8wnaylj)&DG=iO=+TEH>{@v^dqLqY zj1j+8dfF0H*>uV09d0q5Aegd%#cgNGfMhf$5)T;WT4DR$Ln$WA*|+JhepgOB!}>S8 zxRp4vjm7NlUE;qS#8z8OY8P9>6pt$KMXTEv85WJFHhV7TWw3F7oIyk)9ishP-V18? zOTw;hLV$h-1lv1t;o_c$JZhNazb8`h>wfv_e7wVpdm^=KS1AL>_L5eFzXNHpc6$y* zN~*&oeVCn-W8EzvD433|t_k{Ud8HfC!F0^I+My5^I+{GR5?olD4%ifwxYDWZJyp^% z7-d=Rl1eV`ja>LawfoOde}5EzS%H$E(`phzv3B{ap@5Uh1+|vePS3~BBrl} z&J~g481O;L*rIkHuTGgMcZa#sS?M82cp-R97f=_8en$*&V>_M`xrR1=9CGJ@fHhaV zXN8Azr=6xIEv(O(!SKWO2l}z-<zsNM3D} zyIA9>^E4kHiYPCzm3I{S4TbgJs1KywN!Ep5{3(k|sq@v+!w>X`AN#q8?Cl(;U)azb zB4K08dG-}q&LeY01cith5#*shEnG~8YD_0RLvpHFxeTcOjyE7SF7EVw9zrw5n1muU zbf*K@DnuC}ZtkC}u@@0sLI#Y5umRD_|DA}$s{@)(jO>F|SvOA`cqJ+BV}5S#TPPNy z*XMp6&#^~ihaMILyC|ioi1D5(IY3e!labjC&|U|hADjLFOqsd45$1f~y%DUZM~aHF zux&W(J$t~KD86&|s_+I;LlXK^c(}Q@5`QXE{_|$}l-%0PR<|D8*ImvxI4F*((%ila zWpW6#rvdZtH{vY3DKnBh*_uyI-eoMWhJryt0 z#Sqt=cxXe5{dNlSoA?6`~%FMw=QPI=@qwM^##%E%>e3brHX0|yjH0NbJA6*&^!8_@x4 z+(a_h$m04t@zxukppr-7ZqNVu=QA>>##emsJ_jUu*~+Fc8X5n4-yF|p@Cp)%csUPF zljc3blxdJjL8IP*mV%f6oa^DK#LSO)DLaXHKGQX;J2R5K?G=*2%#V_OV)O)gs>?6< z1feURx_VNsVCq%j@Cqo&Sp z=@)siEDw#fUN!^yF3Q?|jHUL@n;5SM)04m19yUPF6+VDDV{GOR~1Y)lA%CDI6&5c#ee9o5-5$5CE+*Q3C z20>tFB1T7Cm=*MyB?(*6l{NMLs+l@!Obj$)qccdALVh-Wd6^ayO$p_l6 zmEjV?83EilZ6fYqB&~OGZ}L0hpgVot@tL0 z+YK(0^)~(Y$%OzinCR9VmUlkg^ByS>@vQ^I!w{*OQ6PjYw8pw!XQgj|z7oSZr5~MO zGZN4S)5YfjXx=w9)g6p8yNTcaY}o7k7VpO>fPY9BqVjq)Fi;_L7c!x;&zO< zZiX_Vt`HAx(g$%(#@w$ENH~ZxO2c}DB-!J#6|uT-qO$_%MC@`VN+$FI*S_l`Ru}*x zDl$^k|ISVUqDK2fN@L(T*R*UWi-nifq-Fz3LloTB2F<{aU%n7~@CMSFgD|#G?2ZC8 z1>uG+Y^<#mx|;~Le4x8-ljOlH@@i7dbYTsRa0VrdjD+X@>X8Pywu58U@?dxiFl_nS zr9R(3ni#A;f}p;is%~|S>t9pUtM#)a+90%*)2}^4RW@3sQVjD zzD&G$wG%Uyb&-;Np~U;BAP&BUOffV0@=F^0{leov&<(v7f7pn^nJ45F^lk;zAtJP& zikMiDj^6}u{g)HO*b;a2t6UgUK z^fUm7b-leS+sa+7voJo?3gn-ThSwr~R;|^tBpWcg6`N?NbpLS|d8DBe+koK@Nk|yr z4Ir`ptKI$TsLk#|kuj9+0rM2`vVPuXPH{uulXIuE2fAT>A%YdSHAU!%@g73xh6r%6=E!| zax^Xc!blPn2U^U%0vjd$bAs5~y3nwnA*Ff<+BF6q&OT~;9^B^~U6OpCM-3-97J7m( z;IqyhMXuIE8HrrP`f#2FQpI*Ms|0^bhcKjOXJ@C2?VXOFJC+>B_Ow5g?O}f%F#ADL zD~QrNec4kyf(txhgD>dGPthxOdZBjA-j-V<+nnB9mxCDbZF-zOsNgG=JN}xSL4g=s z%z06HC+NtjNAeG?6n351_kciSD0Oq0$NE6Y?8Y?`V`GQC#c6JGgdUlDvxEI725xp> znuRzv5R%V)>quaMNAwy~(2S)RHTnDq(z?SiUW1-;N_x|FjGD7!(dC(h4-Vauu(AiNfS{zA*x_c&C#Kn%WRrpH#ElrmyL6R{hdv z&`qLAAYgK3SS5&su|9~GOT=*CnDm7}My$soD+V2jeM&HJB7J}kH}k50eJAi%y>ksX@zDNv5*6zkY~dG?12y^sU@?Zj~DSt{r+r?*B8PJiz_gW zF|fEk%tYt`>hGU$kcwztse=*tug$86JM}zDR;0w*K2y5SgStWdUmrV|OuU9Q zUO4v@7B&Vj?g%R#=05D~H=dO-2uvDnwNd0^NW^@rK#jdnG4{13QXJ(8F;}!Wy0N~r z#KFz|%~RIS?#fscdzpFAaFJJ>L)jI{an7M)S;L>^OBWkHPW;1ns=`LG=73Xi>JvYH zLC^fK81IL1ad=N(X`!pm=RG!wH$bo94A2AGCSQ&R6gQRap`vCMlE(z|cDe&sR*bn$ zaEMNF6*(v>D?fJ>-4|Juo|8$^)pKOBsu1cM?h@{f^q$G27Gz@b*!+|2Q#8oNY3gM!-P&RHA)aziCkvu$n>HWuV7MW^Mrj`Z< z!RR(5oL*@lsN0xq8bUK@01|ZYVXDSRKEkQ=7|BtcQQ@W7gXcG>NE0p;q{R4yt35b4 zg@Ty@Z@1k>)-o-6FJExFbf~vX`RPW7PJ_M7MNu=nBkR+dRi|6z1Ka1D<>eKb>!j6q zIfd@ax12Ppo!~2yr((Nm`qxkM7KL-+IUTF1zRQQ6EG?9nsNAIB<_X!VF7`^9T#bC| z#vR7*fApTay{ZwP@xGOrX8eEg_2%JF_VN2Sg+|06gluEYz7#@=hLkNWW2_lPMOiAM zvQ2}rQ`wh7Ma^LBdlvMfR=leWg zXF+VPMzYe#ubghc8ZI#ODK#;ZYI)p5pYfYa^u6C0<|S8piy{ z71NNj&9Ep&eTj(JdjW^L)vd`LE+#i?X6(B+oDeJ~t`H!MN4-W3wD-NQ>KVd_IN1Dc zB0gO};jk`4%rL=b{?J##xEOmp34|-KDF-vD>O0~0*KR7ZSfU;u!3!xb2=M8j_-af; zpFR+ILpX8ioFcVH7Hq%hPM+ong#TAH0 zhOQs$Ts(8Zclc^aI#0BCqY+cR6L<6W^5=^dy-Z$;`xwri@SzKH^P^;R-?E7xjFzrI zm*4-ZaN&Zlgyg919)S%zYWm}eL_;E{!{{X=-xZx(ySi5=rSN6&18&7*9T2cCnWo zus!0c^Ag!Un*)-6ZEX2LtdwA;YWZ^MpygSB)H>|L>T|)oLzQjrV z%ot91y4ZeK_FAsY;Nu+C zuA<9pw~JF-4Td_5xqN6mJHaSU-5eIJB0e4`yh9x-#F$H(Ofzu8pRFz3`&-O(`raX> z{DI@c&C2_pzgy&c?qgV##xxzk-#B<2^%IN67&r}`thKRg+8bcwvV+Gqvn!8`pV|4j zcURd;GPP}zwB`{^ZC+ix|DMT24}&jaH8|XQRSP>*q;}6Z}=^-M%_T3bQC1`T0HUAMLhp;RzY9&PbH@6@gV$FN+U1-J9$p!h@w) z^q{AMdtVEkJ-}Kb#xZw9;t|iS$BRLwhwI(Yv6tRdXR~V5Yu{d}BA?^L=vJ;QR9`~l2rz%@xKNLIW_giji6VU?2>}*(c=KH!BDFuT{jL7$lJ)D%N zPs>>1qd2ZH18P~u5f4qp=63Bv|7I*R>)EWyt9+^L&K(ljnZ)D-KgnV$ut%Io!$Y zz09hywSJEMW=)h$zy9NumK+co(9h~eRfwq`bgZ>$eyBhnpxFj$?$I644p*z{-bcKp zWVCW;c?4~Z-m`MVzegG(=vgsh*oV!u6Xcx>B2l+?sJkr!4J=2cYxlP-?fd;wq|2;oq3@c@;lS$TF!=tJ7{{Y^85B-76-z!nzG#i$>Vl3W}Nqn9++w1{1;n^(=dBtV%_dE0P>FMn`Mg{?acU$?J zJS8@V4E=bO&K!H9_3APIo92Mh6qG+3nz=#!TD`aJXV4X*K>c?Ds2B`mT42Ux3H(IR zSj52XC%$8UcPs?thOa4CGxb4UDZ01fy1f(|*bIWL=R1L`3=Bvr50Pg1?K~NA1$NLpT8*d@9~(e(dz4*2qyQFnU4$JmlwyNpGds%jvHf>m1TwNmVMW1OXfy2b-?F z%4mZHzj#G+!TC%&YAaJ&U9ln{aKvQcK>`!S}(y0I%h1K&JzHN|4S%rG&UY zq{kKq>;Lk?;W+Xpf;L5h3BF5C3=P6}M}ra9BD_7aexJwOK-Mp>FDGY?1niwuiEs=m zM7wl#Tg-2|*}RQdTp8Jwd(rB}3EV)pf&qCTfO4}y%5KHZetwfvsJ~72QoVmz*{sCO zTOlsRS^XCvxGdbau@U@mI59e(N=5wLa8MTx(zkkG59l$yyS_+(GinZ~DPAKmKMIF~U)N=rJT0|K#Qyi~!j=t13<5+;}=j%{<(eLB29 zq{x&U!QYuTdZxndb+3{zy|OGwd%sVGyQp0wF8`eo-{lI0M4LqGoSOTug^M)5;3%uD=V1`v12VAT11tthXp^1om(Orx&GfsV`8W(;yj3JLX%xdhO;Q zPlLI`+Hdn;Ow;~XC5dHBh4CsH+;3~Q+pL+3?35_?nM{tlH;f1e->s`-ui(Rh5h3M4 zD1@qFV9)*)&VyP(pdof$hEr%TD3?5-8Y4zyAeP9FdbJ2^t$aLx`MUYh>HQ$> z99yVF(57JYt?<$y*&DOpkIKu4A$y-YIpFxOedX)lvjg2R3_j-%j&z;mQ}(gT_`^g= z%wwAU6lJ)-V)_fy(K{|GV;fL3cdLSB=dQ4>gJB_Z6JHT95 z+@T5&Q6vnE#MM0lw}e2Y2c+E;KC@!XM+niOOrPor!-22~RHQ{vCceV8{dPN*iAOT@ zSZLCHhVB@PJ8LLzx>G`%8~Q3&*(|FQF1Etv&3Wp#>oVBv%o7^i?_4dZS6^Lp|1H1& zY4x~~(qV@kmxp3xKQSAB?ALbrLL>x^kng}!nuEX_%3LqrI5!4vqxeVX_>-PxXYYdP z2|waT0_*o@kYJ910>lg^$CeN2pc5d>XGEFP>xAZQa_)UW1cKUHAtRZu(R@2>}!1T$K#JQ6so?>&|#k4#8b zekGUjSv|RjCh^BPYcViY zoiEnGR~w?YQP!|~unn;u75(#JY1{?3M;_NJ)-bD<6=GS+N?G8?DZalqO^#~ibLyow zwX>!(iDRw^m>bj<7vob#d9mX2Ms?Q9JpKJfV{nM43slnu}1AEu&#<(_*hXa6dHatn|cEuf%?$zpVl@JUGnCW=b9elao+BHkazO%53n_sh>;rbXB-t=q}@o63-^S=*KAp%-+(o;S@b{-04_w?o46l zW@tlUSOP85T;yijJ9VszzGrANt%2NAWs`q$h(sG46r&m>zqNYOA9lgRaR53b9*MHm zF3998I@!R%vA|w)mxR@xd~NL6aO3@X7ecCwzo=y?*;4HC_ZV8*OJOt4@{44>zkk$a zZ@$q-eWxLb?bWJf`lS>SE!lYyYk?Z!YV>(;f3z_&EU;|st8X)LI$oy3mRaUa?HNp- zY3pHbX0+M<=AbI?p}qQCcL;pVU)DKzm;#O2+4gpG^vhGoB9f$G^q3q~p{Y}_)0T-c zdGl3Sn$ZQXXEP3jkE{3o(!DTw*%)!27h<@XLMd`nOde5-eVT`43rpZp9~~u!jH9fC ze;t#-iRg0Iec!y_)KXtlTdJLdzXfOZ^mCU}H)KzvkMr_^w|6_ZR~934yfvoz=fJXP z;=iOM;|X4w7B`b7miBvJUOst&A#oZyf0zU+5&-=^C0Gt{MQxwI6`t8)ue zH-uOTy;xep?>iXZ4ARxF*H;FM>92no%CEglH`kLsZ#~!)Hn;cKA#!|1^tHoIf&`2; ziXyh!t)0#ibhVMYrI!5cq*JmdiAU5>bIy@>oY-}vXHwPrjIwCmPakQKLzZj=$^w@U zfwxgt;hhgwxm%6;T(dgt$yTQw?~O|`!_F8%AY4jnM&!}MhGad41MzO$qLc*u9U}fJ z(bx!tk==+4WaR_F%Rf=d77Z^ixczrIX;kGMX)JaPzU10ZYWxb67{%^r}!Txu%Tc4kscxIrK4!!y)TetkCDoX~g zD^~}l`*}uvPUbUn#WQ)SjA_E&UKyhhcYu#wQ{jfYfkE=IKnEN_#vu8K#k7XH_>Hm$GD@62%(RieZ(b4y zXZ!YA9Nurj#E{)PG|_o2|DyFknJXuG{>I0faT3P!V?vjpt|EAJ^wYnRlHhC7-Eu7v zoSB9t9K{?wq-0oZZg`Ue?qutu=?-5*(MrmLd=2KKnEAbq68|pAWPiF*BNCcDNVUWZ zb-8{mem-cDbB*CB&eO$b|L|~G;#Xrs>wGmOmiFS2e(U751!fHo7VWzQ9rcx!tLH5l z0V#u$%ZgH%yuuix!dgLNb^1kZdL?tbR;%%URyq!@Y*Z<&Y2@kPnE-dTUFzcVi6|GZ zK-!!^){6bRVz%9mqbLV9r^Gwdy%)IDwWJ9qXM%pc*&VRscHu&L`iY9W%8R|H@;18z z<802IlOc187L4&n4~Xzb@9I5h*7)}12?5rly_Y7!PLJ;XQlY7ztnZYJV#>ycj4do? z?7jSAfsm5?e3eIoyTP198~BG~rtzv${}#yK`#HWJWICP3htbOyHjP>X6W%o5O6^Ju z?n+yd2zt4-mg9Ar6()B1ZdfnXo|k6xF72HK*zmUJxmQxLx!C>s3TKX?=oYXRksfoj z6&SM_$Q+OqzcF=xZoj%FbD72m9s!$~ERHM}D^v;It*n`5XW{ULzX#o5o>8^piHWlA zTjYM@!ZFcqeWQ4;>9m`dA#0HA?7{GamR8EuYhp4LUw62C+$222XRoG7HLYOiY_Qgc zl03C&U&3D9uu!zWatc)=6%8rL|_IDes1u(1hqL+ZQooL-Jb&+kid9wfN4$HcOG zKRq8_iWU(%@r3{6MnvPTHo2ErbaU8{(Kyh!yw}F0CNG3meX!(3_{v|`suM%JO{oQ()R%q^e6}?$#d?iHT)$jq+3+6-Z(Vp6)YJuyFKR^UGj3XPBSzYHsSu$6^d+X|OQ1VYx^u4$P z=I59W=5nK7sPn!M2|6NvL&ihhid~|ViDttj#Of%qG&eNeX!egcu{Pc2LD%YtS9p&> zCRXNghW*^`2g{3(xW#4$>si`6dL;$(dFky!xn^mV;l4~d0b2{9r{j1?7vb9>j+v9S zh5WJT?SR2X1;K~H(Ro+L$}q$(CY8tQ)6PeZbaW`W>`HFIYUj@6@KUWeevAsVb{TpV z$(jBB1|;<|_x;5O-go8mb{9Qs-qiY0QOg}2Kt7r|^DVcARLpVf4U@QZO&J7s0K|I>N+}lMC@T3H{L|$%1?9!6fUs4UHZ@Lo$YdT4dc__lXVBxK~?jH zC)$8D_WfW-(Wv6nE6(GyYEKd+R-P4FCE9aQof!vs8)~TyxW1)TouYH)W2Hv4(F?O| zpKAR~nXHV|Ezg~s5#gfPxGOp7JW=8*ev4nScj#AQ_q{&-=e9wbtrJ9I{`zq&n-0;A@V$X2`2b|2d%Mr`*^L6WWaDpL6zU^t{!0?-tyu1d0fg+*_62JsgAt3BdjCz5?1IbCkRQTl7)Rg0g z=cfT){x_lJ{;#?)^=@4rn1=l~YF4sKKKu9oBhq+nS0u> zdS3ZI+e1}5PR1@TSI3g`c6|J%vfhYKMJB~_1x{L28@9ULyl~{?Z(dn7t4W0-V&qA%L6`TieBaov#@>)Rft zQ14@SoxP%Yj;4rlNADW;#+?`zbiNQ1-*3I4DIL%+L-w~cxlPo@h=WAT{f3~rzuSlIvJ0(sovy;U7|D~NgtI+H-cRKMpCM8ei^rI>7tm)}# zE%5FvO+B{w61+#`1jLn)^CQe!L37~q{qZ6R!9y`Lz$7^uPSXTXdyx5i5i~w*PjUt} zz*Ql`TzwY<%u~V+oqvf$iOEw(mvz@);XYNsa^N*!h7Q1fr&Q52^g!UU4 zcE}y%p%=GXZmFj~P%QYvc2N-D@2!3-%-Hi`Pipv;ei^*c{-+KSAET#pSuK^%k(L8P zu3Ze665~2C28Xk;(NP<>;}MZxFP60TXHzi_cDp|%#YxR)+Hp=_TKVVFMJTlox7sPX zm_B+YVC@ydSqF#E+FAv;IvDlyfw~tYVsjeg83dPKu`_%QWC*n`;N&uY;Pv=`ru#vd zrbU4yRrwQKRC%voM~sZa=pAw4K`Mxe0qJr8-)0mmfdP~$EQB3^G~Iz0^d5&;Tahjd z*P+U5e-cuQ1b>PSD|lPphP46l>-l%0wjNg`6^_uy6Kz^CQW6rDsF^EPm~*#ixaj@- zgL3Jx9f1tc*4EfvAn}r)9K@QJvL78zXzdD_JoQ5k9y9Mc@`Wc-5$-R-dpq|T82z9> z`%8|>GB zhuItVDle1`fU084n+ucOL|Hw7@5PWiF-LW5P5T>NhkIcWgjK}CmRC?PVEP-R9Q8rN zF0lD{{;FFO%skFX>^XY9zxO6Zg>zf>sa1;WPoDEy#VLi)pW~S1uaDQ_WaXvx49x@7 zy5w+-K7)JmBfCvL&!*7og07}0_@yZBcI7Qye%)Aq9(%^de$wO+8}6s^)q&JPB(FpK9uGL!o>zyP9-UT=A=7#RM7 zUO|B04snBl9nRz6(OXOvrBUiijnW>V8dz3a~dt0(^`e^bL9k9G6a?HM7f1%@bxB#wj#yzI8$ z<$zJ7%aI@3k_Hha62Tcmk<|KKgyIP!w?+Lb9Rijxxce&x=47Nzchiq+%{ojDv=9~Z8i zYxjW7rDc<45IRW_}}LT)bXlYVk)3-9~Zy!+B0 zTvNsVu{hUqH{Y_RYUNwunTtMUSb7{x8k2{dfZ)hWpTfh4<){)CG=zdMb{OI^|K0tz z*Xj1UD*}IidIUzo_lGzdi!5OD0NT{z&_6Jv0V>pfJ{c4%M{v@E1ME1%GqCs~AV;`p z2TV%9>JC=`p(_;~Zr7bUd`kqptKbXrx(*s0QUQTat*zDVt6mSzcyD?qP$QQ-q`!64 zT9xmu{wmvemHJ-~L&JRZLJuR)5(*NNB=M6kFAvqS1rv#%oP82n`1uD#Z0+o}EOnAy zQy9ut!*69pJ-A<1p0cs_+H!NDc%X%PFz2w~()^U8&#mOc8&$@_YCjhzn@!q?>E=o; z5r#u&`o1T~YdiG!%>`((bIQAZD!&;C^*2LTAqt!NgF{r0I_L0eM*Gzjn8qN|a6$dw zdt-+|pG95;1#dQ8Q$NnAX4-@zb((z^$B((&A`1lA1BX_@{?MHa8wtc70B%v!WEDm* zyvG`P9MJL1{^2fs zR7$(Q9MlxX=y=?7nP%fQ(H1rJ;0fKN>KQSyY>2HS`Qm6n?8PJ&ogaT55P2u2PrJFw z(>4RkV3iEak;}6iM%6D8_uDr;h%$7$!&MdNiRs5T0^SQEfMr2j}#7xe3bkHI~sDtW()`2Vp)8hVh;SHQLwGB<#i^t)9s*NZ}! zvc*huj0F3S9B9Quep4j(iBAPXr4uxTRQ@a8aHI(u5|5tK2@~vx6Ic)=HFa=T15HkEz>lwhELUHG_qA6S69d&)U9qHMG$lc3X`G&)oI5 zmw&=P!ESenBRw4}$nSrGuMsREO8eWLXQs}`%FkDDdr}_Ad`Ws?elO82`d=9nZL=^1 zHJ}|+_M>#Ur@dQ_IxgqZvKf6%4~|1T(n;a)#Y@ZI02{Q~nEVQSR|gW6>;-erKWR1a zg=vH@7+%}t=6Ano7BJ_F`occ)!x(!f{_}O-)!*CH#I7$^Z8k3*hF$duhyPK{(yGs1 zl~rQ7(kTD0-cOz5GP3pmS^isH52-2^`||~hAQ)Jw}{_w z8;-7+b;xhb*4Qw}{~KK1>5o7Yq;UyJXXnmQl&j(oXg0O~%$9jmwtRWa9T#)H7Cqy> zR-)VPEppXYioySq?cBlLDy`@IVTaQT{WH2t%{&ljlOHK_3j?Z{oB6ZH*1&*)@MibOPH-0>f&ZWCn0bkG=j6|);z%@MY`N)TdAe)}Ezw&hOToH_kH3XO zuV845fow=TCfvZv@WU+iBMZ0txb7P;b* zcvRxQV)AMAKQX^&8INBh_1o`4C50q2tFN^~^Z>ySum&Jiwk84hrhouK|&fqY}b1%2;HKsEjXga*`Wt3!_ zlnpuv*r&?uRmY>9sp%=WCf^_XUH9l@54!JA$#!g*Vbg87e^oiEy#xm*?!;N)R+=F9^-A}pbwb7J-A zVA$qfhESmB_`Nwr24vs*WffeaA^@R(Gp)_N3N9v9!XodtBc9e>eW(BWEZL$;Dlf~9 zC}}X7r##EvCF8U;NAldwVD?^{t#ZEjQ^rWepkdnC%{}rHksWRtl-~P;`B1caq)`dy zemM7f*QZ^^_*Z5Y)Y%;mY2wN#Z`6W(nemZZmmTw!EhB}p@gyH}X|^SZB&h~9_GCR=(4*UemPO(S@L8~N7OKmP8IiFKaV{>2cd&~(eEN)C{pn+r zGckv=I?o;=Px}uKhnqjYHQZj0+4I=@%Vxu)_YGtE?_RH8{0IMhS9{Ov^4hLhA)fke zoS{NDJI-?6NOUT3#7K?R3G*QCz$&^%IK&v&N3#y;k}eDn`g92&eJ%%g;hEB5o5MD9 z|L))7w)@k{^?bLgyw~n$?y4MOURnF5$%}Z9qMiZ4%No8zkj=qKm2hpDCo0$+7SlOG$aGb+TYz5$ttx2 zcTb`s$%8YFQ<;>NdR#Re)`Dft{HENOF1yGSrGcR#!y(_B3iV5L*W_aOi!{sde+F^mldEx+SHQp9*^VPdk z3OHSUQ0LW8b~hRB)N?tkvzDair0p0V2+6PwXgWh5a>x3D*+m5dO51)qZqlBmu(9EE zZnv6j%CzDP*Nj}e|A%g?7}oSOw)wHhcQTjp@2q_yBZK=aV)^TqBW}0HE|XSV@T%_W zJgG}9gD;}ETH;XKC4Mm}y=ZB3$HF-fdc0TzQ=KK$G%R#Ae_Uj;-k8Vx;<&W3Rb*6@w*JBRv4gj62ZMO;Bg@tSQc+v+ z0i5;2ev^MVt zk_>0C+hD~=%mJ1tX4+=W#SR(H`Ug01s-8J%&p9cFHOniLcZ_UOCyt1r{6P*QPw<^r zZeQCvnEyExjq|7|R!Q6RE=#=jDvu$~|AU#qcwC0POvLnCjnZ*{`BBW1wElmTj?#zr zOEYhGE*mZi3SVturc)o_I_*U8Au1Nw)G)^c(0rBio8F5*CD386$QC*wd_E2<=TXX{ zT@gYX2&kds&8!V2$F)am{eH40KKYoT@RhawUh4Ek8IzriH)s34m zT5&96k^jdJSzE&0M`HSDk^p!Uqw;!reZQ1Vk3?&z+`n0%)E9I1qyLNi7?ilh>%Qf{ z9?G+~k_v)pYu* zshr>F)2`yC*}EC5!s!gwFuBrvv_`AUU2aX@pJ+Yz`s&Z~Gs2eIA|0&L zt=u+y(oKc*rLudCiCn{q$MFMg4{_205lZRSUKk={Ahl6kXsLLi?Z#v%N~7bXbzt4{ z&i*!+UHBdQUxA3dQJ?>@0%wGN5R+;=72akkS7v>;wXKxLB%X{oXH82INtqWdGIEEH z4pg5}k?d^k`6G&BBh;Psz!~Zrg|1Y#EBFazNSoA**fWJN%dbgLK+LVUyzkqg?~h(x zI?v5#X^L)x_?e{SFqK|AX@5$G=lgtTUaWOkSzP~9{dcb7ouBQwD$F<)^{H2Hme1wf zJiO6ERm@jPx_RMc#vh|>tGODU3e<6uCpzFajR5>vD@v&&;1{YQlo*2@l47am7 z-a&!63(c1XWcR0J3K63od!7q@DAW|pb>Ut1neVLjC9FQKgL{uC@Hxq>WhJhpIzNr# z)xWXQ80uXwgu!nF@!SztNDX2uPQcsgo1zy^IBB&#<9M%!V>zN@B3IHdy?OoU&aBt+ za|z35yST=lD-iM4wNH07b_I{iUeej3?sY7=^=I{WrL-iejI~%+ntUa=nHKB2v-yF; z!F=eee~j)PV|m;q`Ie$*yiD|VuQPI7ugd<&@qFJn*7~MNrrx%{hsuZdt5KN$C?YiL z>ZkbWiFe5(Q40dKtn0PZkXfT_@d4hDXW>puFmd`U#1TCzNrqXS440GljfF3{XrB%_ zYICOnB|*deX`;ZOLCzsgt5C&(_V!jyD|tnVEN;dF2cI(^JO8`aC)*-=D%o*Jis zBPe#-g<|PvD#S8FH8A;mr{%N5^#jM zD`}P+)Ry9TtFKeR@8vKx1{;QGrXt>Xy(u2jQ@BrAdv`(}emc4}yzx4OW-YW#V@a!G zS4qk`f=N3_b-tj%ldn*~eeZyEWdDypvu-4NuK5cLCD>Pv*F_5#{A;F}$}Gg^n+DIB zf-`dsHW!uVXY+UC;Hh3`l`s1G@b&$ml#BSwHSw0it-q|I6T4}`gwAt`eCDI#>10Ql z0#5Tj`K2?@9-%di?#$76EKLe{kk@BAlkdu>k4g?kRL8fk?~^hP(;Kw7tpq!#22x}9 ze2>)Qn{@rwPBp!HfluD&ZT@-2&Zd>O@>tL4IM%cVZhN#&R`xEffYDzzXp$Z{&t<3? zmy;dK_NMLgnQhFNQEQm3{c1q9K6+LrJY}wEvo<3=jd!ky3nx>O67E>Rtm3hB^@Rsl z*AdJO1ITd)g2j5bgU?j9ZHV7w(nY)pDvi}4f2VzOORc9Q+3^TR?=5u=o#Tr0Hh1$) zKd3)kBWdZdIkjHL-YbKV-xVw+R#1kgm3~9m$DHZGSN7kC2Sze9{D6K&p3H~O-w%IN zj4bPQA9p>R-=r;Ypvw4Kf8(roKX<9k)-`*&{_#Q^iv^W_P=Y}XIltQGBgoW}GggqFfQ`u-GDIz?5-YUlUfmA~n9 zhkZ_?D#qnUY5V?txhvU!pL57$%@KXy5Uv7$1gR~`?v;gOU=aX5UVepxYy?aeCLu`} zIRfyF7&r~)z`-2)9!`N6gp|{0zBWH_B5@Mk^eLWYc-LgoebU(Bds@6A?)y?*#phS+ zvUNF2WO-*xYe%I@XPru;2j#pm4LRE(6)#C zSi~F)$_L_o1YrQcr8)OUf%egu@c8gJ$m{yzv{t8yIl$g=i8CGn&F=A=m0+H3o&r@T6YA38aQTIJ?1 zY^QCQ2~|nut+|Ce@p;|2C`<8@xR9FUyMhbZqksLpgl}Q-^+72z?G$7ZAS-niIz|7V zuF*9_vgHJh!20i}|EN{}AeGu^>rod1M|IF;kVGKT*#p78)}4bW|5h{lW$bqv-LY=z zweZ-jSQQ?tfN>d|bcglZcE6M=)4Vl`Rc@bLtd*9kjsc!D@kWR&NxE6s(8^j;?x}Oe z_^@Ei-!T)=x4*o}eeptEQBhHR49pOgFkOOS3eb>;i>2QD-E`}!Jq`qS1nUa%*M7x+ z;WC;3T@ql40eOPO`1I*U&|4o)Y=6_#cpplGF?C$_;N-beDdYr=Ndm9N?Z}?uYp#U5 zD;g5>riovJadl+|7p{jpZPcjM-DB3xxrN#ye|&na|Lv=Z%8U4BSyrd}*qjq}_qLZG zKmX)|wDOFu-e0KN69^&0gEN4gvb4MZv&{Ef%GDm|ogBMkp}WMSw=u<23l7_BKm^cR z|GYa&NRtC1QxPQwJPQU+TF(!d$?nzGFW>u{n{KpHbSp}&R*+(d_kZthk$f)FsqUA} zj}>eY&%DwB%(;0-5%LYLfltckMjngtg@Ifq1~kJ}`wlsF1Wu0#!+>Q9uKWq*+0Y^5 zZm{_e6!#%0zk-DSm!WbPCo!CWI3n$G3kNWH_Wp;7P_zw&iQR4ncmzYh35mq3!Oci| z0B?ap9iw;_5sBLJy+QK9QVJmC}b;qXYzg% zeC_5h7k{jdReW1#XVljB@JVAyXjsyP2(D6j{>zsvAp4$#q6(f5cL8#Xgw((kdikk| zQWX_!^8fZmo3E>Xat7@rPLass(Kmh~!K2>2FGA5Er0gT-t^`VVZNY`NYTDY5AL z$*P{5)6*#Co)d0rI%ntLu0XA`Ind0Boj0L=JY8CTm!cQ&XNw@@R*LAS$b<97e+y}l zMi^Z1$cKVB$jE?jFpv)dN-bF9{|m&&biaSk5;U|5pC8Fm!yp$~jUdRl1Qui@+}$D( ztNZ0=o77QQ^Fyq1xnI5yUwby$EZ6Dw;h>4O%;Vxwk!`=xOH}VEDRQul>Rg3b;vE0} z+F6rPcb;A*)kY&5!8rPoeYtScT!NKDIM7{?N-AI?=pD5E`0T! zL&yLG!8m|=gFqFRK0oAi0wDQ-yz$V>Ov%%aCK6Ecz-@yRq=BX7AvHBu|3{zvZsMw z6IKjGxrhhfT)5C|X#H!e$J12DQ;wflAHO4}#JMaL^7d zm>PFA?;fA|;auaVO1>7Z>@agpnp!I;S(oWJ{c+daOEH!q{~kkbRfmC=LPLqE+ZO`1 zPduM1Ff5L;$1WrP=7-6v3I<_ zN$UoPwyC6ax@BAb^A8PQG)N@StvaQ{!d-a33FsTJm8dw~`%&uYDph{JKtb=VE@_uX zpq)t8AbwODzj)r5S&BVpWaUq_u(2)=DG+>7=-K^aC-+lSOav2Iz03`Z#`Tm%*hgDU zNUU!9e9aD9d$w*eYChbAg9k^e8S!&OpH*bQWZAlU$!hh{no(IL)s7{fcJH}Q#kDcz z%k7`8w;mBtuV5XpT5_m1CF@$oh<*4Fw7Ie|ZDrr3tc+QYb533qE>yrez`b92#OwWg z_H7m0S}cvDW3e)}wh|{vTH#W?BczXhAg*faDUp{^Z;P{(S>VLQmh`RSutlw3tR*|(cQq-5zUg^S9bJH{DX7wfKXHG%d z%AFgVw=`mf=XBWBIO`UWQ|caS_jTjm#4ERx2S%l)O4W>7n4G!x9m7^Cox$S8drThv zunV6GX{L#h2PSzQoVDT4=a6&YH1Ju_?|ne>W3zYg3QKsB^t(bk@TQiz;H5LT2<2pK<3V-H&q~Iz|6*I-D$uBXHSC`hHoV^onhZ_}Y@Y z7LIXc-}SA+8=)5%Yu25GrH{K4Rl=H8;xAMRuvvv?UL4AQtA&px*bfEw-*aE>)ehBk zs5W7k78Q3ZfSZ2Zrmwi_J0@aQ5c@{HOXB{vMz3jQ?srEdO7Dt*w1Gv>o-_4h68KMrwWFIPHBCFI zQ5d}bctY+`s#T5j5hKb+^69_f(=X7`Ukn0mgpG^kDXsC-OLy{RnTJ{Dm^!kDI;Qij zSyL-_HQzXOoNKxo9Uk{gn#c}!YE}a$KWmOG_q`uPK6^UVejfkuXJ!SeFtm=nOq!?E zIn6KohDXWm{f+j-X`6NXmS>L=S+E!=_7*=cmKEf_2lH|L$Rb(JoT!G5JZnK2?6J7Z zio;&BqTsE?3_ea|2r(_$aFg=D_@yB6Dd_7*xf^?M6i;-I+woku^DZsfdL__O!=A>e z>}9!=fif_KBkO6-UySWBwxn^rdYSGY;@LgkyD49WyU)5&N%nCYJ2dXqRVlIxtnehM zZINqKvE^q|rNR<wZaI`JVYkrR0if|QXJ&%VGRvdR`m7-Rfaj#ylL>ysol=jnMiY@cc9>dQTJ5OgpIcQi@F3$(|`4_aUJ~TW{h?)a7uPGA~70;i|!7#@5mAk zBpiR%*k8T4at__6*2Ofb4BQGsm=K|(jpCm^jfF$ZkC*9likkwys7fCqcGYIWg)Bg~Kyo(e*vz0!(?<^?gO zSlEzUM(PKEG6Qfh6(EHHK^mjf^?$Or@t5T4BvzyU5)PBY2tgHd$~O$Jm6Sg|FFv0X zw`zl)YqUlGF6RiFT+22@i)#Nw56sD6Vs)2MunBtzyRs~p^dl}X;ER)IGVhzK??fuU zA*Xq~5dfYMlD}F)NG1QXrHnKI;-Vfh7Kh?Z3^Xv;Y4I9_0Giki zNGX*-*;s-rxQoHP=BEZy2J;Rop(2pf8<=n;0N}PfwAA0hzpB<94J!`3XkxxRJP2Y<2p z*sKwa`3O2UXA{NBQwKQNRKq2SD!Eh$>mjbCt~=2F0muUb;FjI6g)STTLj%n2%VNYY zlLgyh_(h^`QUI9<^b~{;n+1rL_vWFr=v*ftbtu0>fJx~-pRRxZ@PbX`!6LLeUipl0 zz5)08t@~;0DG@&=K;Vc2z=#H2VK;_ojDXW;WkCAk*TKd|gIFTcunI>5Iu!WCLLpK1 z@|E-_e!stE0o>4ceKM>UdKDnbC4yiGVZ10v2^;PcHnGQ^bQ3F=i)xCnwUqQdm=rbm z&MjV=PSOr46m#)6CfuB(?VY)@;eWI$K)-5L*Ix3;S0}h9;}a5ix4>3&vSb_Zs5xMU zfr)C=$at}{3B;b%Gn$?pI**iWYw7R61rUY;=?2A$QKv!zN@@L@I^e;PvZXIzB1DWL z$YJ&3Mc%uQk>U&}ql`S}ee-|0$7%$i;>QwvIVDOSqm`;koJXV6_jDkiyA&(~zV!1i z`Dq-hJ_;@RLZ-FzLrn|HH>4}4hL_u8FA`PIzn4W>wz->vjWUWv9 z=je-~=P4#yTf)rxPguQ!)`(iehVJOVSf9n;+Iy;^r;nO0%a~ntu?L%gB_!QQRVV-F zBv?QYKwv-MVJ(6d^*_KgF5dxQQ!^a=dJF7z5aJMWkpYOZ82E235EPn+UvEncE!naE zo3*N^!{KNNl5SsKrn%F>Y_`;Ib;-|upH;Fp04;dF0p)DF;E}lgLIZwDCxVor!AD?q zITru+gO5JnB?r^I-Oaqs`fq%g?2l_giC}9-M`YTzv_}G&Fc@c4?BIqjQ`~;X2=(lOM zzLH>J4}E8>mZDR+hn)rUWh%fof#jOOqyY()jX~MO=l&Y%3Y@UyBvzA{>vi}kWUXhzEA<@bMk0q6e8lduYS3@hJ?6c~^O*x+dQt%6 z2?4`e7Gw(lLqX=-@ZPQ&1^f$eBt=dBA#Vb3p&^eqz{9@c&~_QjLW3>t$6a<1x+D6#&ZGJ22=V z*gt0A%ah^F_#@_p5&=WS@f^=KW;*?Ow$aTg@sq(t2L~Aj!wLt19qB)-!yCfRR~Fqo zoVRAh@72_t#%~=x_GrVVrtSY_GZfC&Y#vIGJHf-Exf`oq`V zJEBzm9mCK7D_aEMJ=q1+5ODe_0zo|U!E)Qs62i;_U_O#J&Vn!G8Wg17sa5;u{$2s= zMr`Bj1K$V&1KNQvhE#6(tALW#KJtF*XjwOH^I*b6*sOb>)x$RrI;| zd|nb9cE#??sr3y#eVMC?urI$gV$(*pTb(*^x#E5NipbG>rR=#+GokJM+!dGN*sx`- zd%x;lkc~E?b9i~3D`!OJR>bMyzx0~gm=uYV!tRFgD)flL>t`1j3qyjf{Rq5r*_)hU zWp$6eAX2c@z>1j%&7Vy3p*iR)agRGXJFDwNx|54*)j2z4yW8&6a=plSc;ajzg-L(0 z>35GSlYS*zWbA9(jtbWe+0bE+-q|bKIc`n2)r8rogHqJN?s@$%g*+#HkBh9D;vFgk zWAq*-2O_=w_3gG@-CN?aYq+z8>J|jyCvGrxAnXA%j`$}Ac^m&Hi=Of5wo6*FLpRkc zm`kqFO+OAb1yzZ?9BSHRTDfb2CV3-qf?4WVlR^Zk|8i4Mno}!h*0kaFcbFan)dbmy zV)Ib+X7OX15~H;x9EJW6ajA_C%CAZi|tKW(Ko>l0NrshkWgsfg(~pIp8O@ zj6+5!dji^H_?ji-07mk3GU!ofM)6b1`*^&@C9b#@zv6FSb7LtfqOUHB5|nq&`E7E@ zq&fStKZIiPMM!EOXD0UTWd z@OuNSy48Ud!XP#|tv97SujF8O(9HjMflVhpRu6Ii}vlA(A6!Fd7V z6>&=@>-lRVEbMjrBbPvW(K^f^@HL^H*6aPuO_DEwRkJ2*V4i;al}pK4H=NkyK@Kd> za&6M(f`V^JR_LQJmO#3p1Gm459?*NB1@yY9y9p0Kq+l}GI4QH|A9ni>zcjUi;&4y7 zz@le?kxRNSMSp>N75zidCb)o5DF7R5=zWMlP*Z?PXaQI14Dth-X^xULD83iFzx`0Y z@npQvnA^x3?#MKLVrN(Qqc(2WXtGSo)*S;=#Lfn^G9d_BG$C7egqH<1SjeRULHFC; z6oIY=mfpIArEW9P%U9*we3wXRUzQv*xEJpqL$i^8O>N2p03GSAgCjHpNu@+uw3*liC(kwL$91Sm zvJ;P-9cJ5uU29@Zr%F9te9u;FAicJUm0bu?#XMG#yq1DQK*AMuT>K5wZU~r3ykWY0 zG@Y!tii}$@1+CU3Ou*79ameWcF-EYHV{`Yjo)eubFT#|#q_YLa|646I>v~XMvi8oPw>oi% zOB#MVjrUc1Uxxi~U4Inl0;un$Lm^Ro15j9}4}KOT866T^=0ca66O{n#ozj|HPZg1< z?X*nmjuT^Z_}UjuxihSR-r{ykT#|aZaX8uQiNy;D_1E3w;Q1XU7jNJtP?uo{Dbi<= z<3iqjmlK~+h4UZF$7Rp0l1&!x*~YuZJ^S~Oikt%5uKePsIlk6g(YMRjLaN$a0s)%efH~X1ybVy3?z~n{P1Ip-l=EO);W+1jpSk=vm*4AL-}0g?NSsf^80}0 z8PJ;`GYVW#guI|bAyfKt^SZ-uj{wKfJ4C%YG^j5jrMR2p7Me+4pl>qMaPHB3#zJFt z^&MOE`ljd?mXsA$=qrnC*um-Fsgm=;o8o7G)6s+#=U$S#=0AEla0n+J02$bs|t-SRY*6KD0^L^P6 zYl3VckeNL4w1qcK_{6WHqD3`dW!t2lQ(cTo#D2W9^{rceJAS`ooSB zdr*54sxsa5{I{!vLWef}Mo%$^d+IZmx_P?Xtk&+yxOtmC<=*H^E%X!lnKbmW?u0%e zOHxIJ4a@=Ey}sgHpU>2nl|jkSpXbhc8!zCCayyY955d?d6lnYVAu|S9?a#eGV~PKz zSl!GGzi&GXV?N`r4SxqAYb$I!anjcQ?;h~|UD^4|g?y!`LP+d^rLqHB7tg#q?0QD$ ztviyL@qPJ&Fzn8svrpuxYR<$!qLMUDfnkV%4KvP_9Yz6Pyw;ixNuN)17DY$Uj-Sm~t&T?LZ~g0&k=?8dfr`OsL=Y=OA@vg8xa%i~L&Zn&f=$Ve%HbSnt5 zx9a`{Ek3Oa8+(>#HljLd`BDbn^^2l%^AePodq=H2KurAXD3B zs+D(N>g!kC>nAcZ#vYKv?wHe-hmFH1AsGa|n?3Om&5ID3)T+u#4j?kw?#i&0LSOe? z{eHu?c#o&BSgl64NFM(aV+0L2A~g=NTo1k>GXTe>zw399%@IOcq@bJR;ZX+SS6^XV ziHsSZ)HtyI(_`VO%a23VauGTOZDGaFIgd=ayRkGqlvx-IIGaP_M|v%g>@3*IAp%{n zAm-Oe5u+Fph`!o|dJi$NIt!FK1lB>dLTq~?@`NDIJ~U(|e(t&H0|-LoTBiUV3M$x; zmmFf7fHY-^tM1AWy`{>+qzDo1vGC=`p3INHX9>nYO7j{dL;Jvb*1RN%K1d#Ft6TP6 zykU*!!gVm~F=of=@P}PYm7AC)_y3EDg1&dL&@a7L`exgqQsFY}Dy^tTh>=Nc?K|@p z?7;|1(hhJ#>c{QnbAnJK1zSDewTlZ7&DsH44+zBf9enqW2to%aJ@v`;5k$fHa|N^( zs+DgY%z8DD)SZi~@VC7nHq~OpS6IF;By9Rc)5|@T?my1UPW+(-{N+q^jUgHzO`o#b z8NPjj5bSSF@n|1-X?djdcoVwg_BoxgM*rVb-u9a2_8aF221;h-d>zyY{q~)|`^ICw zkEj{_+8REUaTFq}uRn;A9vd5Dr#`=MC@NtVY@0vVXJ-IpDEfYq^m*Xz&twsRiK53P z$7avT6unYZjL%%PYT)N^ZfSRUr5d&l$< zj-m2*xuRl~5m0%;@OKBPV1Wl5sYpT4I|R}LbFr-Z3H=8htAJEELpRB>Khpx5m(!`D z7SGw%Nr#zF#OF0$HfV0IDNNEKTM@P=WIHAy|GD+9^>r$gS0SnYh|vvkU?B5ddNPBP zOu{gvP(!O027tQRU@jBF?uj)T#hKe4$4YGCY<#=k-p*>|KG^tdZrED0tP;(SG_@hQ z+yFl&0p37|LP{sVNHGb|S}Ot+-<3YBKJcyVrAFTE+Y8;O&{%T9oanUy9t&!R^~nvw zmu8nbF8dA>Ob4=XcZr^xM4Dp&l@uqeL^Q2UC5lhO*hdR~_`$C@9;AZoM&JpGgu9~# z7W&s;FeG&g`^L7wWBdd)PXdFL?=7|lqa)v+CQ_meKIykB3CM*a>K^1s_3OL7IVJR&wKH&Wg zp^)N>aULAvarTXGbPk=k4vc%r;4Lcev53XRS0Z=s$vmU(t~q|f#4r9(U_i}!crtT9 zN`!~M->-1{`nFyRs9TOhUh?qT?u0~PDxi}{too%N?c%F&S&Je1&+oRsJk}>+JLcK_ zWSFM!j|;|9S&Pp(MKfS**QBQl^_-pGx=_a7b`ScyJTtUt*R9GLyMsnjQ23eL@{dS=*P z`jcv{Z_C7`ar&h$xN9T#+K!U2&Cp?hEHD7;o8CWO0Biw=#pG>Oz^Qw216w441RQ%U7JYi`fHe!sc`K0VFS6*iV{!yr>BYpWIXWS8z1UM$5_==UB_I9 z1+g^;F;h;tKKqsRg8vp9q|;&qGfTZ(xLpQx4;oB&B~1{usOeb#0X@4ise*;z^4XH| zq)OcB0B_fujJGsT9vEDze){WyNj4dxUuhwWUx=8;rr6*@Nv`i`?*T>)F2|~O&F#g< zr0S-o7-bh7p~ScQBVcVX)amv2_g{v##p@JxF2E1^<)g}bc_ZERFeU43<4cJas?BDZ z?>hOT67y4*TG|-)O~Bd5xc~)_@p>!GK=XyBv+&=t9rQg5j`Cy<*-%hp0aknSu`@%P zaDxzA@1hPN(JE)& z)yH|;llCNlp)dn^X~T>9@cW6ev1CYTPe>smsMUk%*qd_=0q463QMrD2y<%2km8N#> zF|_%C0|!L*WxDsCwBT3qOa%}0ZU_i4NEbIcMY1QE)=W1kxHEf&@h7cr9vm-dHcCpF zl&PI=;Y-bGX{S(sY5B$5l9bo@V z#7mJMVQWn5rfrXOL=4(AFNv*O-rvM^pC>%m&!+A6Ne}_8uSuJ~e+onyeWjZC zVfs0Q41zL<_h);Q9|4Jk^a~U}dX)1pn4yh9SyZ`t(96%KLE%h|_1+tc^j4_3fzqx@+lJDVRy1^U1tN*fI0_Q)Z3;yP6Mwu1u=iAqQXs&i-E zXeSQjf?1`(3{wQN9u<)l2CnAG&!YUIC34f4S9(Dk3#H81cBw&;J262?FHXm-3wLg) zG_URgO;`X`>kE&TpN^ztQTs>8Q_w+5wf+D#)&+fGFW%|UMptbr{NnAn-3Pc;g3JP* z5Q4jkgHNjFYg59Ec!n-7EBsc2LQNR_Xh9n6at{R4c^%b>GzJ730g#1R0A3rcIa-kp zpRO{y97n~_|EBDXi2Bn{Zse*6;j^jZH*)#T$}{8(zEKc??HgxrPueY819fS@?Z}^M znv7*biojr82~kU>iaRWJm`S)d1@h&&mwJ6kJIMUDlkH-o?Dyi0$6gVATH3p;*=Jco zf5e3hmwf~Zc`Mljm*j>M9 zgn*82ZeP3WF113{D%6%7Jp1jFHNtx#jmFSm^lw3j<;+^C-B~FXdB+@@B(1V~j_T6X znkpCbK;8O@F@nE%qDMi29bPg8bi-2`Ux%P-C|R+p6@F_quU1shcq0cr6MHKZfc?*N zNUhXI7OkObQ#Q(xiI*O{OE{R4n?9ISK9pK;->trvJHp~_^8{%dA$Xz8NNMroGjW8C z1Nsy(-uLWnVuzGb)p7lH5Jipf%SE0u=i~5e2-aVc3=poRac)IPFJ4$8yvnl{bPNtw zhW!1>h^DEvNT{SrPLO|wg3`k?K&KPSRJT2@`{s({T- zwQDe+bV0XMCMYbg9rgw#-w!Cmn11l~rBe=r$>k4|`!m0>-InByjCdJc>OaK8EqPWa zzQ75sQF_vkPj4|ynj$ za|TIO3;Xt7DfUjXgWKsx3_TYq3_XE99TJC>M}Cf(vmGZ2C74ltAd4R+@qZK+gvPRq z8;XF~Km@5)fhkaNSpx(Cf3{aHbs+!+5NlINfsNStMYU$oDeC}RWHkz5z9m&voKO^V zd9U7QOp;gb?b~a}C4qpK;lmI4;5*S_YO-%vI$)zEHE!2uEMgEWT|1|)8?c$& z+%`SDXGN~`fU`4QMpqnUVloXOVHj#^SO`3IISS{7!TVF^to#yz4x7oe6l((y{QdFs zM}UY02?Nt#LzthCz+D(}^dZ0H$=604udGQG{f5;-CDyyi{M&=f5r(0!tK6v9+lLSz73jMbSP*H$%I!cfnSMG82JO-(9m}& z`L*`kisy&Y`K{k-r{3!zLIl7**eG{E&5AIhDaZccx71J)Fff8r8+G}=PI5lT1rSvr z(S2j*;WV!#*S(zFuK`a~qrK+9T}$-5kkbiQ$KuQhVu{3xYTI?l=be#8;r^ z!?gTpCcP|t1I`c6Y5^c8B^Mmw#2p)Rk8GJJ`z;PRs-T-SfwmqhMBaogzu!--Y;J~l z)kQRW*>w$Lq(TVcctM6B-mn}3U3zz)EW!Z)p!}2~0GlED#bJf+OntYM{RiuB?Jjz- z6{?q!$`EnqzFQy@3sxO2iVA$sWWjVqpaO}vKG}+p2XpkOD5x_)V#8H zVmc<~nK7SQiIadGSDT~dqhUpOUZ;9I)#3_f7;vA^GL{+Kn|NrHQ}vtBXJ>g0G{ zauJam`W;$31&*b{<&uOzBS=sXg}y%1mzvtz-cUn|ra>vH z8ni_k6KF_6tbc#uVn#)@?4ArXS#-|!9>{Hd(0L|sN=9RTgWau0xsD>Lz3 z@)c9yrFUu3p)>7Vg~Sro<1cwHK=#3vKj*)3NQCZeZ_OaAE+jiarxBBg;RQh`Tr%}K z4+sx}C4BkfcLCtCA3ewZ#zKdc7n~he)Io~e4mnuJnRDpyVMM`<6jvfk8q>>WX!Sy< z2B`i?fh}eR5acfC*fcdf-BBAak$U-||Jwsbfs&LH;zD9|w?>a1I+=#O-^)#!r=|*I z3pgOB4Cqln&WuGCQe^6Z?}$C<^vRPZ;o(|PXhw%Zax{>(VSw?Gv=I2|mR|cKS0(o8 zCB2olYCD)A*b69s2Iy>%{n*vx4CB{@h0I&Gl8^!~D8ynwEq-VcfNKqySSvD5LERK; zXXDsTJiOKEQ9+5_*qmTV8%$3 zUcsfmQ7GdhM}*<={datTn*KphQvAmiOGxF8Sf*G$JXK@VJ|fycpG)9aWnF2FV{~2B z*4oKv@Pou%xU;Chz`zS;)v8Y z=&e5b+q|T?U1{Ztzfrea8r@A}wj*3s7 zv!ZC{I1EO7y24k0jg>%G3hqgeu|}S2BrWX5&6~^z;<~|-gdjpl9FEsfxX+Py4OHx+ zmiGSvZUB32g9tK=kfskHPzx!v3lTjl^qBJ>Hu>kOdT?+s^6v^$cORiyLt)J)r9-!y zu1Z9<9w?mOU=>y_oaU&bR+Kf|K1bk)Xvu~Jrma6`3YbcyxD9D@><9mc@nSICsR$+r z2sZ?IA;E3k-Q57PB2_Rc(AjOgiP$EHFo67vQR(1uY@J=7f@l6Y$hLNAbRjrW(&G?DBN5$cO?jntv(UAlJC!<_33`V4RTXkw=)x zTjn^=-q+VFj(>Xg=MvT|na3y5?fLIqQ9Y&TBRqNj0p7wIBAQPVCD{4eQv_6)kQ8s6 z?=~DOyK}y*A{CO{JUmFwgr=4j5#jaT-ucTbKVE)Nj^f#}8wfWpL@^1)0$vb<6Zt9A za@TPr^&4?_!E@e)ScX8*Mn5#8)?2rf-KZZk3EKN4juWrDFyl`i^k zEx?7M93m}(JmM@IkCx;f@KbxMXp#Ezn6Tr8laz~Q>27He!DcV@dUcO!5+!qUJE}6M zn#cuYR$R%r7J@bK)DaobC*qP!#5CTHYI)#UGOJ`Dr$Ee#T^O~Ek{R?$#IW%1deN;J z=)!dqEq1p%^cznm+yR_-c|MO}86-L3d&SErwb1ls$I${T7PI_*Sz37M>651LnzUK+ z4;y!%cZcdRaHum(4+*an&Thz~fA~AMoAAV%RGsxs{q}7714VZFAxo z5&7S49@qO?nZlrCf+>b9a4*XHBJS5FcZFstB72Duiy^AbGf!Uq_{ulm#ny6yCAJ^@ z1TqIJFf&+0vqm=SmQ2A)lJbibD3VUXncZqg8gOh#Gl-btPPXl z`qlQ7NMgY#4oBQ`ntjeXyt)&S>mzhe7UiQ02HT}#Bx4El!aF{@7<MH5XZTdgFZ9! zp8J06?2gEI$et4FgRSe?<;7GRofb-2NoK2lHfkhVL@8S{iAEfR`=PE3+lz@*28U|#P=+Hh*O(a}z z?p=idGQ~leGsA}`;qCDM8hG=D_KR19xs&}isryW91kOD%uwio_E;v4>pH zGqmW@8Bl%8ZGYmtL7-G_?&U`9h>bJcSI=)Qn!regm~4esy|}TFA5ovf*hYtf^Y`Bt4LBbY1g*`UHFUTFFIgNROp0uY$K(+0DAEOlo&g_ zutdEGSi-+BQCNaY9zPb6b1djUig5tr177-eSGf)=ce^ZJg}A1wew~!dqBZFCy>)*9 zIj2@}B80`|b6S<7Vln$&DRLwX{*tx_4_>c=^;8@{AN&x+2TFp-6o}X97?^pD_O^UK zfOt`p$D6_z5&$(5Jl(v;gdFQoLkWl16tqwpAKuOC>JXoyREp*u{Wf898 z*E(I?b#=BQ!K$Lw3$K4im7b&6UuBlB^FV$2@&(kh%2a4WG+tW;IV&Fi8$6B#Jm!xf z0!}CyM(XLYJ$d?3P+xElqN92cr7jUPu~3$bMplXIa*of#J*G9khsLV%VrTGD*fXnn z#&Qx@6?!o;oLYJQYwdosV%mDzF7xhXN4r=DW|~;kkhvZpzXh0D z!}kN^N2VA7<@5-ID0KB*ymGR#3BI{kcTV~2r}h^)<&X;HFT9crGNT9*4Spv26qUXe zuvZl{$Vm?eyvF)aZ$XWdW1ecf4JHCK6kM=;w;}CGNF*6tVvuC-0hJi0Tlx&-Mj@(Q zDAoZfPm3pLTBUvIE+g~;EQF}bceWQ#fUaL0Spz}J%#3si0}*)j#tjm*)Z~WNYC|ub zdEw2+4M|!Y8kpa^g+KH0(_y{cq_9i6)Pht~MZZ7B-17v@&bqXdFp#NGLJK`K5y}dT z*F|MzXhiZ3z!Z}6%hdR=zP=D-{&Eg^PDf|Kn!SqfqHynZQY zm>cNOJ7xlvrhKn7PB73e^yV@dB zHi1}Do%x};eZWg-FOkvgJLh;!K1-|UkmKknim(K#c0vP(pudK$|mQ19|--;~N^Q$#^%Gijfz;qlS+> zo4AE~^^{Y(>_6uXo%49+)yvxGxZPvD3knA)sw*=on7vrXsFD?~p@TlRFN)KBe=Uv1 z3$b3O>hSKx=12P7OV(KzF&#`U@G3f<;5w4Ll`S-CnVOgX+Uk4#z1)lOFL>9ba191n z3pgM96NX$O!m-(j`t8~hVk_6lJkdFs3xnN0&-ETNou>5v3~W$yi7IIiAsjuSyg}8K z?FqYJ;dl*?VJKqaZr@c@x_+Rk8a=HjX2%nxD{S}5SGX-vvO2^U4p1yho!tCn+N~{2 zCkGEh5kGgkHg1ANq<0lFe$?OG)cQwmy#KHyKW9Um2Z#zDC%F5_-8z-lWx((FhdNPf(Yoj9a4Jwn zn92`H;wSx4y5Zig;+^a~FwBl5$VWvliCMIKh$W5 zmJ8DQZNA2O#QMgFa?A+p#8jkD;>^iQSp7`~6CL_wA%6DE>35Oi#ac|xB}7_C z?D3EvpdG?}u=V@sV?lg=m&?5~htK;@{@G_x0n09L7wg1W-IpBk47?3 zrFNM}jKYW9Y=v7J3AWUj1h@JUKD;a1#6RdR4D`Y<#2xa<_UGWoHZ$zU$W-ROdiUh0 znR*XhxJAP3h*p!CKK*=efmpr-`UKP_8sG4IQ;g;>(ZyuX2G*ajP8Uf3%pqH?dVZ1D zs8`A(c4J-f+M_h4sGFnS&nfp9+8{!aCf#bqVU2fIzsr~U$#CJcSorFAe z-fE$Be;w06^3dyI<0bqEjO&dUT<7qCfMQi|&4k_6s->nHA05LM`Hd*>bo&@|snKUn zgqq3U_q=&uRzmX1(TmqQs`k>p!FEFyo=|yir7*<4&^@EmW+lm8^Wfepx^YAyX5{Or zjM?qtTV$?ZSMVcHbsEb(-znuThx^8MfOj0n;xno!(&JDN$HWqa}WIo-t zX=WDW4#$GNnBPoOvc1^no$$Fbro$2HIzn2WL@C*k!aUmI%WtckmQR=ozBe(S6AM$z zw(|U!r1uOukUqfZAIoC#Nm5&LwrnV>xJZA&gHnD|K|fZ-CBMoouz=VQK3DF@5j}R> zJ3gsQQ~N-#Y8%Hl_9ML5&h#wZ+K?ksUj+S}j56S{C|ty@`GozZT0N8<3+?)vLPBpn z@DBzwRUDGAQu&T`H2Yv1IPdy+XC&Osb+4`MTu@HmS8#yg43P;D-?X~E{ zsD}m|#ZqWI3w%8~xUSJop6i117jT`NU7>%~mJS>&!ZT(z)7*jXYZPK322+#8zwqf% zWOk_8Io=xHiEfhLe!pTtzuV;1unU1VcdXQ4k36SY-LdNiQ}I%ZB0Y+fo&*WP{i?Hj zC}VANj+-v2;w}rKenNY&eLqtM{TNJg=#z-Tz;P$-3&M#kUk{m6Jy7YYbM5kgu$*1o zm%)-o12fi}{V7=tcP1hpzImL?-XJw44ZhTbA{XA7gQ#{TQ=RQSsSVBlOz+a3N~V0&hM}3*2SKFMEW{o zp?<&w6UdQ4W;~vbq1W&$rT>BU&NRH(b$;i;$rb-uYa!@MMuWtesJmyw&usdYfylws z#MA5*%|d(4SE|wY98#?=p_5BknOvEW8{v1cFIoCeB}2pQn1H}Qs8`taaGV1O6|i_{ znnmSofpD2bV(2^$+$QQWxF>f#e1Db=hG0bZ3vMJtx}^5?Mi6+RQwn8dZX6z%R!HBc zZ#;i-a4KiOjEc953))xVKq66V2x{#NDl60hyw#_+R1zU?nz~vHGE`)&01XWSrv-s4 z4@SRqf+47|p^EZow>qT!LN~zlgNmwMDCpuv>I9H66|}3mPw1ib+LLTpqCoT98KgewCgc@5xo zoSdBHVFSc#i5QBSA+sLag9N@KOG#AJexC7s_NWA9l9=;xSK3VCyNI*7`j3f>?-DHK z7kBe<)22)AUrfuZy=Cb^<%_YZJLRL8SBKT95&aW$sr${~;N6O+P+A@51dg-OBEEW)}8VlWlaCsTC8QJ*f9`wzw10AC1d-T8oZmRb0S;!EkdcfrAdte0R%P<0jkR12^6S7Y{ z>01Zl1{vxORj(qUOyCRj2I(mf9ygYKxQ(xkGGQ)QTVr=*N*N!Ure@cK<)xj`KZ)k0%VfF_Nqe z9ofq?8D7Na766Kn^^8e43f@O5;BS{ z;!Q40W63qIK!36_Nh-C4zA$ea_oF|;ta79QKP!?dG;CKXG4wXueJi|3Xs>3)o}QUR zW)pJjn|rouz+Uk3@ex6Hf|yV|FRXR8ZUR|~ICbDllKkEB?WN+}XkDqd$SM+2g(y^! z_X@~Lu>^=h@?M^uVUX`rwfyvltaomxztl}U0zyOuxbAL54^M6gYkU6z*y__ zR?>m+THV=o_$kAR@XG9I<^4WVM001ad*UH$hKd85GkivrP3EjOuGb?sQ!J>M^xUG) zmeViPL=-=&W_Yx_T$rf$>ZmK<*S8u&?bCQKytvNJGeiRHj1;badno5AA+B!`PjRq6 z_0Wsx;mWLe-#35aA=aOw*K+5Y<-tIGc{VKN{sqcHU|83w&fjU4iwf0r;Wla=O7QY{ zdV*#^`}T3b>`bH{^N#5Jj(d?B|3J<3x;2I(sTQQF*&4?Yp!>*wVrDX$w)5`nMPF>O z^jYst&DyVp4HJ$w^c+#d&*u#aPQ0VA^8_%S(Fuqz7BiX0*U6fQutg{8UU#9Utp^_` z2oNu_X9!IIeuG2{K(CF2q$C|Aps|kbwdMwHEKbZIy3qFKUI;IGjwq|Is>4$wub^;c zd?}%82JxWprbXw#UCWIu;h>Cya)T7Pg2>`HWw3g-!Zvsn+G&w?U-+J$`W>0Rau1bM zdN3sSrnLU4eKPkh{yKinMx$2$)oLUvqtxIKZGka*i}UD>O|A^O?3qh(Hwl{^Y&~s$ z`plG36Dr}j@lomNB=Ik2J`6s`(tl;@d(khU8!JKZdL(EFIq|QJb}j%bYjx%~kE8yT z6L&81BQhfdf6{oZLyz#sKK;T^{@2N+=F89j>|+KHA5#!KU;$JbI76*_Z|_r)zPt^2 z{heS?kA+k90uUdMfVK_!5I#(teVv~hRI?`n)8S6aV|x{%^^2Zuw=mruuCj`_iUF>3 zJ{%tBp9LM;-1#_vZ-6VKw58?Kr8t3m;Whl&nl|NEX^~a8yM<&2(VrsK9XgV+LpX94 z^?U+ftVD17AYB+>XoSaSWvZH%bx}(NBYAlu0H)D{TWF-Xa+mI0}b0WL!| za@8y7!xJslt#g2lA%yDbXWRTB5aUe_Swp zt>zpFg|s^mI_+&`Q)w=InN1*Z6|y~FYzu2%RArMneND;R!+*Iful;Dn$C&ZG>2c@m ztmzWi>6#~uEvpaNtGb+ati$h%9Brdlp5?Dl%DBqnLjQGI$gb34)q?vK(El}pW|s7G z)0Z4(PG*!?Zg=-(Ttal@92<74^2R%%1KpXP*=?!ZVM`y|l=Iksm&@ z!iy8v`IZJsmQs{RJKLwdW?yf9{dI~fxBo*v`O%PcT}3o}0* zDz*M*k7V?3)FOjgb&hKTsPHXVrz5NNIyt%$KU}KkCh?QF+g(ny#WI5Uj!g-y?rK|V z=T$`mg?pv1Nw|FHOk5cmL5HoxxMNE1H{Q%@=^~a4`I@lHpHIjq^O00->AaXtg8XtE zmAKTRNK5oAr}1I%6G8QX3i;HXd3D1wU4$iQJ-Vf=yqsk;=IfxsAb?vpoF7R25X^kZ za603-tq$U10!1f6!WSmj@y{@-#BwM(ZM@0i3#78Lcn-Jxp8sQC>q>}|aEY5+s+2o= zqIE*3H+1a<6jGt{$6awWRQC9lu(d)sDxgOXiJ`wayZ6-yxAL1(e+IC3s!XJ;GV`Y-1hK-gS2SPauWEDY2CLyjgO zrjb+&N4e8CIpsXQ%SR`Ep8Qx~Fuq=HZo@XU(RefS9c$d=v4Z(tLh+CVHlCUp+`C8r zxlL@&;qk98REamYvV;gz+ol)`??-~C{QZq#`~ssVs-Ei*;LEft^vqYUUcHR)-$=za zf{Y@;{NSsw1PoeY#>~@G3`sg^T7JR?2wfXk(^Nq?g&3XwDR&Uqc<)WbAvMwvC;&5- zJ)&X)IYo49IugVPSXm?lLQ+8v1n(d&fU?_xN2W8*QdYuBdc-z}`W1g-2?}EPleSm0 z^pPp!nXTm_N$$23Kx6a+mMvpjyav?mNaM$4yz^81@go%R-4VPUHIp*rldE|x)G@t` z5ZQ!20Ns&6_c8f@HEo#M^b3c~zqyCNkC4Z4H7AFRsAZ50fFMVZ zf?A4SBmvJX0Y*2_Yjr_kI{qy7SoHio#MKHT6!FjUxo7Q&C_Uia9t5d$vPe@_%6!&a zS6Gv&%P|?I7v?|AyU(Ldc(?F4WAy=t`>O=<4PMRmdpb@kZ#L@ACQ6Kp<)y|k`kgpL z+)gdK7~^I*>+Y0$Z}0A@rIN;$+^IMD2MJ03OZ=QcN zejKY)Clk@~QMY~bh36iXw>WZz? z5>HnXS0iWqg}iSRJe$-$_{&~6eN4YSg6Fb@k;=EV-Mhbk7Wyj!=lwDCOAR}Cd-bZC zOmR1pvrp1K&fzs^G`Sd$+=K6zY=4VHh)!Q^XFkCw9!H|8D`}h}4?QnFk%Q7@4HjE# zk7j-|-+5|9#f7}tj3LPjipiRESlj?S@lNL}*=w^dr&ez87OL6ERar2M+^dX~e3@ZT z;2#y!aN*aiHRUQ=idN;}&xswdNYK3+nVu$At!hH%Od>KDK9s8S`6J3E8Te3pDrt1B z%|hylgiEsc5bknR(&rEpC7y3_ho_F=vx6`sK0flLmylL4 zR#_~^DWeQOB5#%e!RFtIj1~ zD0be1KF!tiEY8e~v~{#6gRSQmP;!6-8v}VtOUc9t3@p1kQ=cRfDlK)IJvy9{1hcx5 z_qn_+pu7}}Kl=2L+h_#s7HsHfY1NTdTvw%4eyKmn;?ZNuSs}J4w zf0w-W3#Ma0_6ylkq(aO}z{UE} zxsmSKzA~TACw)u5L@*>Pr(SBOmw{xWN9kx|4hxIN#Z`Z!f~_p{@R9F=-i1CQXYT3{ zwRVO{$)X$0=VSX`^q#-6)%2FaOKN^y!58$l$T>g@CkSW|2CEw?lo=$sctteEtK1}v zOReyusmPxlPT-s6`07g*MH_pXo_}3yWguF@&c>U0zu`DG(U!m^HvHivu5B%L#EZ~y z@a|yh0O?dSE@z^Wp-mhBEemNA_I}%OYl5;S-lF6Dpq&Y&@s(Q_rUKul$4+fZSQ{*H z>Ceq?e@_w5a`>%gI|2a={D}-|L`@ey8m^?XN31d^;6b#r(!Hghah z1DI`dD-4f1FF#S=uM6AtZ6t9P2P2i1P|+cU?~V%9^?M@?F4pvOHV6=pTd|KbI2)Xk zCRegmD@po==ejfrG(5*z;xiHnwj(5W6Uv-udYBU!;e}ZG2zHgKw34GzT5ej4(xg`jV@fwbtO?;btxFN@Gi!)1mP74+ z@*g0_Lcr=L1zwR;4~6%A2;)f?+5e{KJ*f5}`}Z=~>Ls9V4ADYXzYPJ2cyMyrorl(# zl#~xN94*OmHCZ~%JEME{&isnQg^IZ5e<5Xbuh!w=cPT6o0ur$BcU2@8@zTo&FJPe~_aRk_QFxNj~5N zMM54>g(-3%o!`+-A8X-0qrba@ODAgbD*+9L>Jm*S0=~ z*mOQFYO4OwshDR*zR-jA=I}9~HTA_DjnVYRXU?dB2&x8h&pI!HL>ZYzV0CMK0`WEg z8%=}VjSdy`@u?`J)!{+gx3_r}4@xO|*Q4Qlpq?x5@hpa(2&TgI(Kl&xu{pX5GgHd3 zl@lfwrZ+-;)To?JcY^WN66vxey}{C}3%&2=ELBcxG<&wrIB)(+Nb$KB`tTry$`{O^ z_WuDX@oqi-bj>yd(PAMkvNO{Rh?*5ihX4`l4=C+Ip^jbJ)kQQSIliY+_4R%zqSJCeWc z-ak;knS$j3ZZRiU*Tj^)PtZw8OX~LNqA_ztiK-wr1L@ujDB{iG7DhVOhR=Wq^;YoZ zgZ@F9JLY-UXtSR?zrBwfoePWnc;4ceM%^8m%&X)0S6bx5+FDu>N@pTP1FFnT+fM@A z_w?${$F>4q0gtH-rgA^mqa4i>n{?qdi}i}%3w-0omt6QX^nISQzXyM$a}VO}`QO@X z^6zv=ra}S%5V<;-nn3CSG%)g)QT-*BT&Py~rRjf5%gL3T{`eHBueJM~GS@%-N@aa19Q!$GGgFE3Aid3@UiY%({niVg+WPip^u zAtZedKpj*e0Fl7dBSBK4D<`o=c<+%b1QQJXCz+w-f#Tj5I2}P{u>%GE7d;7)Ni!y! z+{_PezuBQ*;Tg5fyB6#BDCYe#o)z~n>aK29;kneGTUGfGJ=PAnY9a7an~E3kG=?<^ z$yH|Ik!4V~7SRnu1Ev=VFr#YFh$^ZT2^Rrn1|V{XyaQ|&;z&*zyNC|PxQQ8N@RjFK z;F}3hMqQtwFlbk#QInu8f4pBVPzuymsh(}!4`x1pzIa@jo%XyRgH^57kit?@(ZxCi z;#UVI7z0{5+*!7`dm`jV`~SWUla%=!c8d5o=&p{JK<<=HlKSU5^Zw}%je3+&dYJs1 z!{!elNf_`6t?cYNKro5qAO25X9ZjjIs(KDEsxydtz*js|lqiOT`H3G`L9DoN10e5D zL}d#b67;mDfBznqeqx6GzhJPetPLxBjx=lUHS6TVr9BIu_nhTt(=#scI&SvZvX}qc zT76tLJC@>r1qgv9WKRL`XXGy_tNrvf1WO5wyFr)a9dAHL+4DZ94 z9d;y7qx%~8Uj+wYVaohBrrc)e`QgqVzLwheS*yF-nl_Tk*<*tv`1XqU3ao@yy71Ef zimy3f^U&(?l@AK9mMkv*4lcV=Tf7;GbMe-yrk3TrJ5}i=Jl6k`x|j9~ZgOlx{@q;8 zSFEuFLnf}pJ*n0VQ0Ob?n3$!^t~lQji1PBAHN%Ze%tbXepaU8-#>{mS{_J>3 zQUs+$g6u-33d7Gfhdla#d&XnNPs2SFHkrH9L485pny8uRI%ymkIpFnc}Cph+$z`djT;e}3;0mxPLY!#dGE}q z*9)=`!;l0SGGrSi){>ovVhL4mt*itSaqgv#!_tPSf5u9>)+w8hT?3E&h%)2uXd7?e z;@WxU-)APB8skD)Onu0vymn9MmxKhkYYa- zzNh8LAepGxI&FI;%gUP0-TnJJ6CyVQ(EV&SN&^opNwAUhkin%Hpo51DNMi+>AwB#G9m?#Yg3oM51UBf*|Qsw5^Zd_dg4jLukgAj+e(Gns$6o3mKahNOxmi_WR}dDI232s zsaYO})!x9&MxN*1U9(n-l)h*G&?sJ6;x2uokF{mDXG>jM%5%}1Iz?~!C4FP}IpmR^ z@4f1pBheeL-!5BJTIa3B_W-0qvHJ2~@WH1Yy`xfCV*D@O@8zfIV>&rwo!Fuh?9J*$ z+HAT|sZlks|LdOd32{&S%&Wop(yaRcm*rblkCf8;t%g6iMd;OG^?UL(bq1? zbz1KEpkZUgZuZpE&v>HWsmx%y{Uv@Rc?$aqrK?tzA>j+>o$*1Q{>s}=YV~zxhr*Nh zlG|%)ja}Zp9-#T+io*W7Jh^XSsz8_IWyW3PQh!Cl406Lw{IOT1$v>rXjkO;rZ#ca6 z`Wz^hIyT$3cUG9~8|Qjrm)?gU;pv9Be}DPPDt|}KS2+_A(URs%ehorBBWqqamK7D> z3)B=OTFn|44?HGMV;gDf<`@^yt+n~{b$l}{_TFbAlA8ZIW!6CY+qO`ORbNhil|dU* z1sk#Ad_0Kf5xI$M;bG(2?{nXNh`hALTsM|XjXm(gxy%gM@hzRhXdZ^s{%<(0_v;>g zkb8I8-Qcy7S}{-7c&cvDTFo~t)~9`Q1yYgrslGQvrAcYCNE#`a29m))Lz`LaQ2O}h zP3$d=6VvZQ`#ObAF?rIxuzTLf!|&f_xAn!RB)lrK7w%MLs>>JH#eUCm=0^w7GjD5YkV+5 zhQVCLqTmYE@^tuH3zb(Jp2I&?^l_E^Kkc1)G*<1q$G72?GoHW)Aeka6l9WP{BFR{$jERH>kttH9L}?Hqvye=QS3;T3_pa9OoZmX{ zS?m0B{yQyeWj!9-e)it?eP8!=eZQaU>yJr|8Khd_2F%p1%dTl?@F901+}IvvDK-k_ z4w8@$`%hcvvcpXr!}I6)yjFy{+ip;JEC=kDFu0%Dm<#f&VAo^SwRO(Du+**i( z2fR1ip>)>AqslQOrlH=GQNLG{Gvm6{DFXpfB#;)p;#Kjn(v>9*uZIemeR}`he`y%8 zE|WF`%P)dALCc8xey#1>w=>2;Jh}z(ve`q!`jZeIg%>k+-MOQ&*r?aXE~X}4pLZZq z;ri3q_vbhj)!3V-70y7gny}%IVD}YRYMMVK<7l##smEdapcqDv?`$dB9^4kTL39%P89ad3#e^uNyMoWF!A*gM;~P!VvlbWEV+rCfU3*6ZWkB7QCAL^U*bo$BXRbE+(&zckHR! zB$wiAsgh1p+`(H)nJL6W}4Z)Lbcdpsd{SN=Zei> z+%)3N2@>i)cDs@JW$&?eS+%z;w+qU)wys#|YHF>SUEy==L=v1TuKMzGd4jbv7UwTd zC~f^_Cm!4+#_hz-ucIHnpr7Nk;NMy8im8%bMmH|`{P6aX=knTDzQK-JM^NgcnL@B~ zmaED|C-T5jl+#3V33MDchsPu9 z2S#0C-Hfb9iWA4+-d?p-*iVb*Ch?WFi^lT8inBvN!!CJ^?Cv4|&+BqR*YN(8;^*c=ys=8-s=XTrEO$Di`GsPX;K;V;NtZ0iuqUZTvut4Wj(%b4ZZ_#7Vl zIinp-Qu~URIX`g8@T7%nYikR?*Kq*clDhkCs-cx-t)DC?Ai*~#5;<${N^n!W$p*Z26*!9@MVefdU0_setDm5jTLWF}*yLzwxMx?ctf+aM`( zr8%`=3!VL@{#%DdfCvz-Rb$qXIdvkdR|8kF6b4p-*Bj;JZr$rUJytR?;Yz7$T-uV> zxluNIc6tAjGd!JMzP8s=cvHvZWP7*B_sa)cSQty?e+}>!cqhzX*RyCI*So02!`}t3 zF1x9mlAY2bzi!<`|EKfsUcH+5T6-+c%`I;QeRjFDm_S(mSS=Ql-cs;SW>pCJ&=~VKSRq?Tig)dQKY5~fW;<-S@}f#sId#yPgmj`2>0*XY`$#XFiTyp_K!q=@F09H^UZ1GMO0 zrC1L*O7u4)U-F8hjkl({x>w7F+dem@=_Bji)(VfNR{p!KAJldTtM6G8qqzv9fwbF$ z!M*rNPL4b}uFy zFv3^t>FABB&Q{LPP|<`i=(N%_!rLFw0*G8?M>GQ{K>jxdCeCF;Lt6V(4e* zHGl(|;P06C;C7BEJ2UsQ%dj`=N=E3qc3n42M0BU^+&`#N7KkjSA!Bt zFMwi=o3a5iSh#t`g{hNbfZrc@WP5!Cb}mM}iDO{xot-QC2qQrTUXoxUkLg23D|BYO z@`4WBPZ9QcUE#%J7+GRUO2%u&#Db9?7Mn)Ua2;-7(o7#gsS(^%(Arsf+`1G!7)k#id_fI-KwFNOoA6hd%=PQ9x{Lc=Z3|^h{Jxo zqbcWj%xS1i7(`-ta1z%n5sw<9tgNgW)0SibK9>RVhDl@+cHY3GokOEjPUVtD^}h76D!xP8yP7lhCs#Tk=JiexnF zYb5%%F$?Y8vxgB8gdC06`&a3qTQ!OR=OiP<^$+6& z5M;d|D8V&6Zv1%xZv1jN`=fr%*Z`|g@sK)_K94<0ztIHZi35Pnn1Go%=QW-lKBzvR zCFTh8txL1L$%S7HMo1}PUdaCk)c+`ti3n{0>FuxDTnp<3B`dID3CVre)zt+>h*CHb zA(XB*vKD}8j#`rwmtXNm;d<`3!d3k>*2p^=0>e4TjsA2ijC|>9?Z4ON*sGQ z9YJ^+R8wVr*QsZn-@L*WoZv|s3(D0J$25KtU?ie2l8z(i=1Yha(53_i2BO^1mEbmw6{--?9 z{2SfU6eOc_hIPd%gQ)g_47-e#7%ydL=0K2EBVQXgq<@5;4k0*%HNsubo9Q2&uxS9} z!2kXc&A@g0O1e&w9tZ@ejFI4gRlgG|@mume42a_JNE5J?u$b6f1V0!$ETk0z9p*$O zr5N&LaX(jf$TK0o{NzkOb3Z_v;LRzbS3)!%tKOPBoB;4KCda4U?LOu!RJmi7B8Uyh zUE=kipT^rsW70KQfb3%H#rm31l7Jf3bai!&*Bd(dS!VcTZG)u<{l8)roY_|aD!dIt zN8?>COla7Zu-i=H4tY&2HNrJ)vERtXDagNuC)Mw}eVE_eM4Lr02NDR&% zU6927o?~lM4A^Li4=B#(6peVigkP|AtIstvA&8FQ5ds(lG`?E$e0_u0ud-Nwd71MJl? z!O-`jzE=AU*^O;ay26bUVOV`N;G_$vXb8e8UW0CM(Sy7>S4fJ8is}L=89svb(K)^A z#D&S2)9(~|82ED&uXehxOf||{ZS|DT_<^TE3`>yN`Oy!mQ7|Cr5RqyUhWI@Ie5!$K zT2C&M@F)mk=1)+tO+@XRfp9AVfKcH_+1XxUMn&!gr=R_`gdF(`&}Ze+R+hh}QfAWs zDGAG^@u@r$a_MmTi)bYwm|E!_zot?j5+ysjRsRlZSS=*sY55&=ZGsW*_p4rq2-)D* z_y6`{x9vfBih}7=Q*F;bzTtm*(QAN&O5EJsBq&0}X?i9QfDC;@?8R5jL!ShqDbS;N z1tFOIgq5HSU4&_wg@uKJ5DmJZnwc;-i-yGQSOzr?9Eg_ul}-YNNXt+FC+YQ=U>4LF zgewL?7^!fVDJZet80Z96v}tzgd*}Urj0G1! zk22iGPXSUjABZECw4xbT6h}$K^b=TJ!VMv$^~c~BEsL8=j*H-bt|u)TOE`(pzzf<0 zhKMxG3Xl73ZET)>D)WE;(0mJ344AGDIFABQN~)n$j9DcBURp~eSI7Z`_?a(j<7mnc z^M^S|TnII5NAroIz^6BnFl2*z6-(4@;6$-xEHE-BTdd zmSU=wMuif-ef5yU$6vmn3|ZcW)RP~XO+V#CAW~0<Hn=2-PU^I3GTm1rG_hg-PKXwpka%rcBv8lQTdAR{q(3siEjXQQiwKR<)_wvB9dG z3?YvA-ey&Cx&2q~X{ReOM3Uq3LfUIXI9fbe3{->EiY1%6Vp#VV_7pSieBM3to)H%# zVqRP3SQbp=VjHcvg)gz^c7bvSJltZe@ zr!FTC-EqIn_NAq^G>QL&9GzfPY@-(|l?r|6WaFtP>Yiu9MfsFHwjE|>+a`1_TuJA^ zTA@wn_RyZVr+GbI`=sWkr4qj?E-N={!`#<9^1Kuqb};sSxYKSm{lUE<#p_wHOw9o% zDrNG|vCxQ)^_yt@|Nc|BN#@AE{#-#~OEBHP{_tT?mGs}2QuRE)#wqfzmnO5bRQ~G? z0zavkCI0IToD4J>SpWUD^kJs|`t^zng8%nT|1Qe^UDN;HZz&4pmFut7j*gC7wr=IA zpO|iUto-(kkCA_0wn4Fuj!tM))EBK4{Athc-{H}GdxbV{uC$rbzp=D1bMS7H$;$GQ z+f(`N+t>NbPv+R(Y5v~jx1v_+yTruIyz2Pz<7`q!yysrI$_#!T8nW{qf4em_Jly}` z!>!v-KMBk#nLjLLeCib2PVT7Qp1!{O34Wg*9DQ^;gT1Jz2)}<-=dQY-gv8Ofkk>6I zYIDqMRXs`<$F+8zZ={r$myb?Psy;q(zwxdHWImcCr*{6l=)V2? znemw$`1Wv$PmKMj<=pMO#V_ln+&-WAxCWQ$A^qo$UHtbC-}Ha+Lf+rspNWqzYNTZ0 zSk}H8&Uh)~=slNymvwass70`=9XY~K;MnDmAd^qcD4?jCs_4VS%Nr@A7QSiE9`4eW z<<~|f{+&wxo7P1qp$x?-V+nIE4eHvpX0NIYUjJ!tYHX~(gkixZIXU*Uv@|*Uy5!w1 z(r!a~Rn^s|eeZ5Mx!kQi^(J1zuzO@g%6*4;e?<`e`Q}WncX8VS3S9=$Rl`^`H8sl| zOP8#gr|^cAuPzNr`^>u*&Hv7r{qv$r+PPPApVu@4>(*nv6ZUPnYj54Um2T_URT4G) z?e!pC`qW^{k2~(27hkt>6d%D&8+q4V}RZ%?h(q7YcpRGx-4Jw47;MW^lqnZ~93tRhFsY_p1k@f&8-Lv5j9VdVmTi&s6Te*c;hlaN@y zhGv7Rsw&lRS80~}^4l9*&wqZztRBr9*4=HgWy={v7we6;p?wuO~d zI_|gTv12v31~#MJW=}UDwC1Y6~(%`y1c`DzkdDF-KLS?voI|~vFj@F zk=xdF{Y_n+dA`jTGxCE=VmJ2dsaX4<>3nPbtsQE=utpZ0ot;Bi9`&qLIeYFkWmw9} zhkd=h*`uRQ%}-8?>2%_Y?x5J!M)P@dyJz{$_RvJMf8aDvkUVEbX^q=C*O8u8FH;X4e>`gD48R@d7w1zTo-crY{=&g`(?zLRfJ`dS7W&Ha+EpnH! zs{O;mAHIM8uKMfFo=ax9=hnwl74u&nkCf3Z_4U!swK$|>fCbn8Q4^(hLCUDe#NcWC zrJ>gA$MdQa4Fa%sw^x~HMDzB1%FWBuzq$RiUa{xY?DKye6`I0BOcctQGiN4;zwuz3 z)XYr`Ont~Q$Y0mf({sMPKq9rk;w{VPOnugpl9JJhiGw()s_c8Tux6EwX$NI&o5j5s z$7*NC>!i|}&d*Ln%7_~kabhLOabCS<%~-RcV^2*KPrCE%UADnCU!L@Imj|40%@z!2 z+ve}PG~d(w)UfgV&cwa$lKl;-F(2=1RkpNnG&MDOD!HsFdwlX?V~)87)!Mb?b#?Ul zwkonS}oV?$Q{jPcxO6bGt7RPU| zHb%-!{%JoG*ZIQHxajiO>anpg>MYAh(=Sg>i=KSIVC3~@m*P@ujyWnqqgbA8%d^p` zscO^?afgS3;Ty%MDe1<$*XZX)`C8;wL~5!43bd*Z>I%E>@|-mTuL9H6t5?})=qUaH0aL!~o!#AA25%%J zaQHd3njKj+F(7cz4s~Xun69d;>(12v{{CS1P7j)`$CAs6y=EwEL(9xmI+uZ?_ASj% z1*qRGe|J+%?H6`sMHuVW#@FtS%a(-~K8Y~!$T7&s$h78K(ib><3varsv3dXgZ{I!h z^76*epUm5GE%jbH2`bL@vKH^d8rMA1xjQ;Pm}NfL{8X>#vW%orQ7CT4?>XtMTeftg z#3^SP6=$2*Zn)lF+hXh&_3gF0dAa{uy;9%(A3uF+dUkH_y?ggYJ#aol)T6isckkxX zN|3BZt<%oXm2e&Du@TV7s1|LxVT4FZaG*_|C7XHm1hkN4GaN}EtrR8&+eUQ3%h z|M|L$caJOWe$PqlfviV=NYB72$VN}P_u#>I?0ilIr%lfdB&av=if$jk!T#A*s)Qv8 zI%DKfeg4kbR25_HVR7DkS31ntH8cDGBP4fDw==)c6}=& zBYtOR=h2@{o5?9GU7F^>(cAiN2Rc(#ZLK+)hUVeJxW3hjv)yZO6HKZ?ndSISmgUZA zgwu0K{@ia}R%abEvGv8|vYMKj;P&nBES9L06A!3o>`XggW@e`695)YpWhRKmP}3 z7Z)z`wJtZhpZ#h~3lR1B{75HODZp*GYr{SQI_Zye7EisiYk77@v?;q5f9vbtX>HyoQ1Litv^#KhJ$a(br8=S-U*4!}>$^_01Z& zz!ljz8o4Mbxj1DzP*K?h1f=w{fXS2`Hf}#}K+5F1-kMdEiP2G$2o9AQ8WTBR1;zwj~D{X}WC>t}%nkA*R|9ujd z`JAskFjMBC8zQlDo|8YzQ7CNUW761g&ogzO8f2b&e4@Uq%Xqv`@xsR~q<3O5^l%G* zo^Sl;>YD*c5s~1v)YQLkmWTBK14ew@AuG#CkprNq;WTe~cFvsA+EM5-_1ggDWKCJb z?TXMI%ewfmj|mcnHI!@|>Z5TV=CqZ(rjP8jI$?I1d@Wlk zX?{FqpJ_@;icqQRhGPs{MMQqzvHkMort;YP>v3^ahvP)cvA%*H%fKx|*wjO>M@r0r zvrMrZLx3lXbNFLc+XXxJCrvyl-dry;j`q#tMT;Plx`}TqybcS4jD!2Z6 zF2yb^z^#mo3{CCZER`IRXH9^Zt(6u>*Vs0tubr5fVBNpck*NFlgxci&iRGn*OwH>; zLqHA9ViTYMmRpafShT-zv_2TjV2T!E_aS+A`aZEU&n)m2?CKL`>>5(`6CjeQ5yMY@ zHC<|R0q04Vfz+a+eZ>>J!^6XNZ>|Y?TDq9&&02PJ07?Z;fvJaHUS8b&$tJ((a%+J- z&zdsbETg9h?m)%jd-mKeeDz8;O1%_R2;oARUS9{G_F63{}{tyi3OKA3c;RB+sz|$Dnl5Po=5ZVyL?SXS3xH8H4|3) zGy{d)I?;27lQ~%`Us*c)80FjCY?3=vT(zF>K_j2ovtcY4&=t_AXA8Q09y$fL#0&EM z^m5ERe_gn60Usc3>fd__HOzw2ip8G%AaU+h+$s|eDWlJO&%AIr$Ii!R|NLmAj2xgR z^_3Ty+(Nr{-3$s03}yG)=z8R3LobK1cbfY!@W+w6O+WV!0MKThEp*P*&$IG2z(wj~ zlj@&1!Q$uC+%(vdmG}Acsk=V!K76pk-?92|b=RD-NjrlkoN=}=w@H?(PT-`xy!`ZN z&q3^OpfyV%NW0n59#0Q*R8df~l@}5!{xcdH*NqJ0=up(uHD5QMGe>ydzS5PlE@@|ejGL?r7Vz+ zRki1KAnif(-K%Lf@HWzOScRf|b5H5)!`=Bgf|Xg*I8(Q=f-@i@VyurIpHutbXwtRB zMA31ces-_l!SX+FJJzZkJSc3geGyz&0)*RSt__$WAaQ&Qc=zN>+WGUJE@ z80|(`PKmAKA}KWf&qiRm(&d3LrOWpHwy zigIbNx%%oFnrrd#)W*ifNs*5WCyrwcCR6;Pv8%Ntk2L%EN)-B0DeEz^R0i^cgV*AX z2+;+^SOW^Kd|gP5p?_vNe3Wy|qZpR_C6`c}qkL11X8_+SHUpRL-4V;DA`1>pHFV6kO*r9JH3ERVo zMIGO&9>f3sVd`!d>aegdQbC)X_g?xP2nu43@199n3wPb$10|0FXPM$s zV{@KhcgBF1WEvG4u*|-UiAw zTV!OI_qq+0@i-P;1@roSXJEL2$O1XGVEY$Qv*JW`{EwsRq;^i>llwUwH%b|GoKKaN zm310wm5CEO6Ma0xxKt6v@+zpTpuBv7v6I)zvJd&bxYe=-A}x{}92{Um>RHDDP5UQg zYRGR=QBzmc*3w+DCuiZ|`KI*PmNj!p-0J~IQ4}?RT37Y@{hA+sJ)#Y!QxX&30eYWF z6K1LsgYKOUsHB%|vWn9jxT(}A1vj{&y`3kDdzZ@P%L**4tc0DM&o?+kA6=-bt{zS` z2AQSt-XT^(5O8{`3B7oJ;pFV>>?T3MRUwQ5>exXtu0Ihiqc%UKm?uAbeG!GprKV$3@gkoU!?bRjkPMphM=NkSzXnmx!dHDDvch^=LirjhySgSa$6KIperj-sfPg^%pFi*4#Y@z6`plej`~7*_@~gx| z&bMmP{qqbiI0n(EKvC#7(!gHq?Cdp!KsE{O(ir0^*jkq$WsNps&d<-Ei8DZ&y%nk< zb6-!5%8PI4M0VIHe-Tz?Wx(l2+E;z%`VwNNoJvLjes;Azz;Vgu-en^VKttYIJ(5$< zAp4D;Z(JaRB$=nWb!X3=L!qtK0|ada^HZI}!EJ>MrHB503-r{*#l>9saGc3V(M0q; z$J|2m3LSu3_Kh1YT@T)d{vZcTr(5W3Nni~-3rht^jL28jDyCre#wY;RFPZu`F60}4 ze%4e}RQ&xEKwClm4_Li6Z0>ger?XKqt_!8keTSQI{@8hW>pMC+^bQ=LM1+NzqDFoa z8v*?xU?vlXy1ttGxt9@>vi}y+{Atq@Lgi#G#7FAbh&g%;?zC*zwSe3%#TORDmpJ;zvkJG zo4(bZ_31m5oFmg7*f-AdH~#t-d~alrv<5=w;@U63%WJpO=;_zX(?eX?e`Y(61GcUY zHWK>#!TkS=y-|2bK@ei@RaErY8#mVXdo28U(K9?8jYF*WwDZv;(YJTXN|vS#U%q;k zZeAPx=FOXI1D|FK5E)1(-n_ahw^0>H`9J^V$ws0+M5zbh@jg3C6e2K0Lq_=+XFq z=a}aI)S#8et8f0l3(&E9gP4E!;FityCpl{8Ssis9?%)FVvAIQLZD$ zj;UiAbZ{Kee|oUDXG>QWlt_zsd3j7|BsMlBWrLrepYM;L%uI2DUWoYlA!Waq%@5E? z0tf4pceCQg5&4Vg*LLj%>;0DJwsyrQC-XkHYhwX;BPuPa0Yo)eoE>}VH6vL9i=d=_ z+sOwegg^WlX-r##`=gfh8TgP29EYGXW=_sf5Cankq>q3Hj-@I}d|l@au^>^_a$QY~ zKn!k450v0U=$jD5LmW%y)K3uzErae87!=g=>(fKMSFYQ>zHp2|!R&#S)H4AhM`TA~VcaxEcY>o$g~i`ix4CQe=n1HwQ$A}H-#udx8>}^`|1)ZvFVgn z7IzRe9f-`lry@w#oE(ryB!fXHR{sgx5Pr?Wm9VAK7XHROu#UJX_SC(df#H5qnYX%ZI1m#M7u(Q-p z3F^)96uaCzCL)As_?zIC~iyhmu`5xuZ~@qfg-sBFd#lYUgTXnbQmyD z$9y^Fz#Ru2SdN8eWQcjr3`c!>c>D*s&jV*r1AvB~+qcIbH^f5QG-uL*0pRGQ0aqj{ zTr|7-yWxM=veg7@In4=hfMUHCun9o*`_mVl6%ZX&`*zwkGhokF0**Chn;vA_c7lq) zyQhXP{%JZd?LK_AK2=Eo^eY&xHT~{gHKju?$$KuX*tUKc^?|~%Em{IDhe&( z*m5RNrfC@&L-6W7u0OA!=y$i}S#x3;p!zbS&XxEq2*Iv9RYSy7ATyyYTd06Q9vKzy zQCwMcxn4a4L34CwMgtsGtp(?b{2se`?w zf3bpyoiCwCL)|(~Pe<2Ocjnla{|jyF$`y*vt(oC(l_+I^ty>Q}0wJPB zZ2J9)QEBlCng>C4A|o@z-PyP?$l=?oTSFOzJ?!7UeOpB#`Zzxm69s(X^5x5%#ho7q zRJS{t_OI6(PJR7)FW6%DpFa}sc<>Tz%e>#4X)CB?BQC0lpaazG1b5hF6DPU^YQ{j} zQS#lFTBBdy>9^ujVA~>D0E4o?_16hGvntw%-;t4#7O>jPpwF6cM+HlqeW@+m1ypwn zpTe`liXkE<#+paY&IFE$8N?oO8JX)19IULBFe&xk#tOFq6jx&d*KXidD04i>yK!SR z=vXC$v3KN$NSp9K^qrk$jcYoKy>5ks(Aa*wN4J23t?%u6=UQq__k;-Kf*RyBC@w@og~^3>YJ7?mv$j}aEj_$V`)hZp zh3^qkM425VH=_$1gp=ZXgq4Lw5AG|$SG#xbR&T$RkWh=$`F@Xh+CT9%j-n3tG2vvfw29^aLuh9o*yk+S-t#iPGg3UN09!y^Uzr zb5{XXPSx}RAedA1Q2f@%CnP7=L$7EX%qn$|J`UcG`eOo7UViZNV^-`jQ^4o`h8O{* zlvRy+?6UEtYFVe23JVLx_wG%CM-bx!BdPw|w>wL~?~8M@vzMu_2)GM67EiI$GcpdW z47X$npiaV!YzFfnp4jTutMy{|_qT#k&U&}Cwbg(6bmP*mk3sK~h;yaBckVxUkPE{w25;txm1gwhHvf9^Rnl^h)R!LZx^*2Y)t3^`>w(hkz- z%)^)Aq!dfB;(e?D^r-88RMq3PL~QIlUVboSgC!`&UlB9E#mF4gXb3D+q`lDQ%l74x zMC^=BW(wf$U$Tsiw@^oh_28uHEc|ZCl43De0qd(C_;h|JQBg(OZ`{89Zu^;M^@rod zx3RR+vy0>M(hi2G&OJPG3nnbuJeT+lmxC;dA+IibdXC#a)lOUe+VxlL&qZ>;V6ye* zLleK2S&A<2eGBMp=wYfa%N>xn{cFnLWjt~J^N(^sVn|4ck^ZVxtL%Vd?4a=50YMXr zM5MW**DUUSM9&Xn5pD$|X$8*t5X``3=E`qU|B}-xGN*K9Iq5V^8`l+$NKR92lO*nw z8;0wY+=;R0=qv5sDIIu!W&{el2|Q%)B<$xl0KsSOf3~K2SCIe1>O?gkX9|Qad5kP1 z7p1^s!m38EWaHMIJ5M#lT&rtAN}>RM&NPnX>MtBzTyN1Zs&S91ab?2BuSj1*ZP|Z$ z^gzS*wttk@Kv&(b=!hf(Jp;pMu>jUel|ec4NJ|R~=g09-h*u=MnurJ=i4Ue|M6a&mHDfThX}K& zGBn)U5kedjZ}+IM9t20+#(NLB&5oKDc+WZOLZ2d@##^aXP#T8-7>3B%2GkBUeXpW}A|^+aQF6}Y>{`oG2dc6ijJfJK zDpkfveWbp!o`0WSoFhJlfnr$Vy&D=cj^|iI#_&Kf0DXO3oz}>fmFwq(iddcaFmS|YCF_bqo=)tg{bW`e{NmE~J>HtuhryQDST1;I#9 zQu_qv)HrVAHNfF(cp1*l#Jnya1twkX0sG zMdRUZe@=xbRpFG>k*bYm{8!-KY4bVs^s}?KgoTB3AOZ16`~V`TfB*iyI7bR_$qvd8 z-obMK5`tcmoP8qP==MD8nBFN;qrfQoQ*S~-%!PU-P093IS&nTX>c=V*SWP?I6r-V= z69oZ!(VK@CmGZPCICu4mq-o)u^h``PNsWtNyn&-cv*sV`bG~EW*OG$svoS3)XK}YW zc&y~)_YyXUmuGW*YO0(7G4wSxLsOE7ugyid5w8QhNHySJHT5Od6Da|ii7kHELTJm(6xU* zAJAA8XcIFcDk#N5va%o3J>gbIK_R{isfZwc*l+{}Qs(x4y0DWQj;|(LP1r&Cr_vGm z0C1})B!mNHRq&Pu=eu{EcE}b0)6c>kQZ@I6iv4yG9#C1WfL|m4#YWtxDgf89avFie zOlwdoPkIlAa=Vur4S=4b->c~(d3Up5EkExS0M~-^Xa;AUx=vIlok~bZ$O-4>#uRoI zBZd4Y2!GP?hWdKdfe&|b9J>?=(~~fGeywO3B6~Hkh7-(X=y7+w=f)L$=66#5foc%j z0$XJ@h3J7d{`}}>&s?`~s@U@qr3}ds9jLI1`=J)2iN{CQWom&wF$oC7fK3ZRG%M}L zrJpAr>_{Ol#VB={wh7U6_D5n*a+e5o~!44V4zlFqesbFzDpdU zf#f47Gt@gd(j`E$1PFGK`~gv8)xz0i61%|02!+(uW#8jI90~MeARc^malL|qa>s+C zJVPCYtVA^i)U|3zi9!Xql|Nr34d0a+ms|^9RobQhNK*4@CWSPq#nok;l^{%0;}5WM zut<@-tH5rN_FcRjDWJrUH)1KayN_KP(5Yp(0sSBdTJx{_G2FY>ZQHg@FW+V(baK<@ zk>K1k?jxOQFzb#s*M7m7+pQ?EV+SjgpmG$Ju}{a9($F47>U!jYO(IP@i#(uDTw7Fu z_!$NXYy-6F9a@>rL@~uV)j)BZeJ*GJwG2raY*qGeUDyW@fBr!oRIjs$>_O+HrKRou zA%h~$ORN(2E}swp@@pK%xP(fg2H1QSU7klE%>+%J*boRXRy-WR>O{&Q9eCxq*Tj2y zLZf+iI|r_Oq^CfYA@LUI**4R9PLOQ6QAOZ41mF)-eJ6kFP^9OQHE}mxQ(3k8qoCOz zeqiXlLUt;sdvAY#I8{!ek1%b;&Mm=rlK($Q`c1*B;#s)3wy{*<5)Pot5;Y5bodY7X z3gBwbj~@X*FT9H0oLGfgB$entSu#VVISBiv>D47$vNebX0-`tuQ2hfnZ5CiVQ#av0 zkwDP#ezxUpB`SMlB!jqqF4dt!hdez(7`XglgZ!upW5uQ|FY=gh!k3)<*|dfTD1f63 z%_pCq*D+$!CteV#9{|Q{u9YfRpzW-pAlC4s)NTr!)V4XZ9GNjVbzxvjAe2Y4itrzh zCqh3gA)3Uw-*acD=b!`}6KW821;6EeC9~h@*(40uQ0@g&-Ju9y9_?O5)CN$U&B)Ne z;L}3~eC75h9J0cwM;CsbY-}u!N>jR;TG}kyozDHk8<$7m;-^6v1L>^&)BYj{sw}UP zFE74W3w^-aUc-4LD{UILCqu0QV^0To6*Vr|haPbeHAVdFOD62VL>RiM@}i=&H?|(H z!BsM`u~j*KmA3!7lYvwEz~>Kex6%L^N$3>)KYU?k#2j0W_<1GE^R_x~vcYH=h|CAh zDr46w{a4kgjnP1IOtqAs=z{QyYw^{31_naVM8CryAgU1nj>Nps0&bNVIQP%5`C<=_ zr$(~~A0|%M?A$=A46sv^9?lRQG>p~P9EE*gY_AL_qj}vvK90)WTO`!)jPy?lVt_VA^5@6CF1>lfxJgvX|MR#w)wy(2}H#P&d(uL9Iu55jWmHNk_E6_!hQhas%Q->>%mebn6id@eR!j#TO5 zi3Y~6+OJn-quA?of;Qwrijg7i1$=={?}?*#Q^T zyU4;>*G*TYoBptOgtJ4HNNbrYLF>r!5z=?`&Ysh3e3(j5To~Fhjd*EpS=oX9-@o5s zAHE}TkaZa%7T9&fIsiV5AVvc!;Th*0vCuzBBn3cVH$j{gm6dI{y+B2=Mx8hvc?e`? zlQ-+>A(@bJyzX&A%mRZZ->cMiaL`=Po*a1j#0rAkQAR>i1g!icv-BfINe|s6A~e(l zrG?}&GI2WW;Dg1M6!+KjJdhq(M&5^{dAQ{r>VX?>#l$dXz_oy8_bR1fGEv4nQT?td z*z}7wdpHd;>&@j{S8pL!LWSgKG<*bca+lN9m}~<7HDU268BmM3;IIbN0MPp!HYh(@ z$5N@9_7+(<&(7-V`v=5oZmu(D00UQ_fbwHtX=wJ>=&+0UAP9vG9SaGx z|6k@ndPV*<{Gm+77x)ss=CfZU+qBsES{GOQs91nQ(?B+;4-ta2B5kQ-rV}d9exa;bHw-(NCN3Az^gPkysBzyJuv%f@X@Ms zCr+M}LBfoPi#V@{ld7R$j&HRYIA8bzus~M3TWsu>^pae+T(02Pd9=dV@>=tfgn)gdn_t_vk8bAD@c|aUMyM zTaQp)4dhz2rc)#fi=Vsb%*6k|`MMCxNWK5M2r05P z&zccEbv+!TyT)Z`nd?w>i>ANY&Vt`&cC!0BdG@vq24vGfL=+bi^8fPqq{jFnIwOSq zI;m2?bUjkZc=ouSzxqt+(r-2d z9!*nyrfwl!wkV zaUnkP(0`G2*NNM3Wxar6hsCWEd*2f+vGDclJjgc_2!~zpe4UEg3QoXDal^_hO6=c% zCkQz*EO^r5q93$qqB_D5ia4%y=#VM=qfBgYZv!Zp5FV|e5wk!nT=Jy8@~1T?;P{T` ztoPVZ?yXQ=L?-kDkp5j>>3GTYHA*M(1>nBtYe5z&9fdbXE3RI=bV&`e6>*Rd-8C9n zd~!O2iJw0jfM)!HR=l_}P(sh(AU$X&fjmgTifb=L}_J@Ekk941MZ{XiYQrILx^b<-c7IrPl4v>Huf^)=S#l~ai z<9j+YvGtn36!DR1*RAu%Zo=)4T3H(LTl+hSY1q2;|Im^6y%c9VtT)tI%!8o>6=-nX zeSJaBeeX<1yUQ;x&gO`AVIT#5h!fIVgk+<_0^^V?J8|N~x^LFDqd2t$UO`|IYn+0c zN5+?kQZM%6NUB+Ncsa82@G;aU=H}**{@0qU14sUsE0MhF->yWqWgWZX`&gNa?(QMF z85{3o>BcmaX<=t*q17J1RXGiO;8T2$3XhxR=`r{vgNBk`L;@x(EG(l<8UnW>i;M9l zWXFd_M)rOJMkc4cJHgnu=iF(64nZS`VCd?DlZ1OE#(mQ8`t94{AWlrg}@mRnf3RX&cGWBM4=N-jgWr$Ui;O6$8rs{k?owpl(Jr4y6nRrf@utjnD@dnqP!1 zr>dc04m+eZ-jE#-GcJ0~~M#WhQx*aF%R-?W0cC8c?QfS-h z==k9DH?KGOyd~`zpE)kcQq$c*ALxNuKiW-x$v|`rK)3J^(*eeWT4F%JyV2ReMuLqB zciDU{!|j}v3V{yP{V53flDojeiynetKp}8(u_Xy(1((&!WyE;T0Ze$U?1LWb1yAp> zXaj5;f;D#8Hj_9%q3xvh<9^=788?w#d*M3+6%uUM@B8{|OXPmNPxqRMxL5%J`jA6X z<*e#Csjr+X_PlxA3sHV#at@>o5;c;7eD=lfs&Dr}+(8N)TvzoMk|L&vfe<-9eR_=v zq{G*uBcLx_6kSL}@i%T%K1@}(=)cMYA%Nabm_@82f;7A(HOs1+np_yM%hqrFUmkL5 zLC8)yP7!(o^_3`28I`zB&@y&5wp0J)Fkx>Hr>czzlN2O23dRNyReMLtCJ7VQ_t~bE z5FHcVre+il9_2%aRE@jg3kXrt|p;wAON!^sp2iv6Vf3Z!L=_Mf&?z-?%Ro0l;b|fAK z7QOD2F~%@RltB!05EC;q*4S}h>UQ8f|33x^R^c%7|BaXbpU)D2V^nd9C36}T*xeHK zL7iZrAYIj^`YV}n*Nk(%g*fsNWz>xP^{6Z5hy$rs#0^TBOI2q!3f#=`9;3PZ;qqKVbx1kM^E$s~UM zb^<+d=$m_&C3>kH+yM2uR~Wq!)6d;PwuIMsZ`e#>W@mMFy^&IIeSHVsEUA}8*TCz8`5#vWM;3i)Xz^xQSxIYPJ9GX zo~&>tNqop{q|^T59iq|!$&qLgF75~1f%FL!R*E?T@Pwx!m%v`PBMmfi`}TF1oO`vm z_@a`Mi_%pW2WqTon$fxB*Fg?GYe}MZ@&(+)CRa(Sn}z1r(SAr238rHOPSqGw4(U8B*LyIwfgfb_s)f97~ip?sSi^X^EDHEY)UNSt8!|Hqg+}Y(|2D(g;hC zWJ?H>fp(6xv#$7`lkm}k83m$Ot)Vu-HiF-|_G^JX8F>3nbbH7vk<)hu{f-@r?%fcJ zxiFBoE}t1bSc_3;MqJ_p(8bjthxK3{5dV2@#6$k`L#!Rd;8CA-3=Dyo1jK%v{N3Hb z_A<9nc75L$`v6JUtR%P&lgM&BukpSX2eN>nDK|(Q1ugNTSHaTaVj1TTr96-g);o?( z=|N4eX#KCzggf?80h5woGSMG_tFj>|l7I~kf~N;cam0V=rG&HRCmuwl%<)_C-RaoL zi};K>0u9`9cC?#}H-U1(NeSgRuj2aYh(wVL(dsBB6@he~Jr5KD1(SxNfIcv$OA_X& z3hF@Fa}z6z6ER=fCvoTw&wC6)AHE@ls7XoaV+UWN`6`=BZ48~ zT!m7w+PJ~=n4*JeD|)8RYd8CVIaL19cVbyTCF;GWzMQ%E>!WbTt4s8-ZHN$xRNHzA znTt+s=#W7TUT0Kv`6>j$(^4qamo9dft-5#retAnvi;3a-DAuikB!UF&GHT3yZx$S> z3FGwAHQD&qNY$%I9Y=r4#t>$JrPGubmJ!Z&Y=jT|Lq^~WBL7mf(OMPH%?62Y-AaR5 zMUwto-@J8bt4U`^1t)9NNvsUC*{NnT+J-fA^!iD*>!kWZD|OUlWoRs3v51{H6N{ zKNNc1#Amne0iKhUzzagqQocTa=5I2r=Okr+uDr;uO*Z4j1?=lso`*k$ggb-CPC#df z9Ux%P8wLUp%0o?)VI&g|lx+OMi433!6r3P3JOQaWeem4bvs;4Fuc0F*o@TsON@1m- zO^#du+ zMj{Z?DKx@b@l@AJP2V0@S_;IqjMH=e&uI&8(9VG@BusXE{P>Z<_g5cAEh}(x-Z{3K zMxs;xfF+jhR)fU^8y7WrE_ygY(th+Sw4CJ>R;skKu#M?ZU)0Ecz{g3~OrG6BG3hS5 zIyybA4$Mw?V^x(ZkO;lO)8>2G(&`o#_cWPCu#QJ>?<_}Lq7k#oBxnX|5d_YSlSs6k zQ&~oQh<->MNl+t{g4kea15FQ)3y^0>!1b<1jfetj>JAa`%{Dj}{}J~*uO=NBR1~^1 zU^`fiymf(qh3hcIh)z2or4FJ{e=BE)zBawk<^n^v12h~! z2_rlmb&JqN9Fb~_2Fw;=%T+*s2*uYk17`zSp+*kS39{7C*L->)4`nn0(@207;w)0i z3@gD7!muc5ScSz05(j+sG>177p+ckDAvQyqE8XMNFpn}%Bt<-Kpxs8tnYLnEc3zCE z;O4)RdwN)oEe%=vdBHf`$w9%vvcwc%W-dqFv2wm1C;2ML!3hU9>86BXJPeR*Jextf zW}IWye{YCJbE*(WF{Cnr6Y zRP1WX&!-9l>@R*vYVWibCm<55`c^}SI8Lv977C2~)_*C_f14b%XSy2)+YTAdOpCX% z$Vo)~H6aqEl^tCoz$UZ`7JwV=z~9MO36Z7NZQP!X-4rUMihB|T?Kc|JRLMw}kq`{w zQ3Sdddy*#rOoPYgVJe1njd^vJ1Yh&&)UX^hc~DuWZ}#QU(t# z;3OjMxm?BwUVoC&(%g{wcnDw|>^}^XEI|JjN|_bIjDpy8v4w$uT2=FV?PR#H@^#Y3zTqa2PL{dO0DH)r{# zCz{o7zU+S)N=1y7i^xptAp9?G@cfPBl+SdVHBp2CCj$YGc?hdT{|JC8{Z4X<_4n2E zLrhk8d8BkXdY-sy9N4b@OtPk8J2T!$>H?nLQF=9!4Fg2PIc?4|j=?Msd2kQ(S1wdH z-GAm0wF^ggOoK2)89(?9kL}TMzROin`1cCaF6Tst=WrI1tGe{7{e=|Tco3Qk@e~XT z?35Aha9UpUh?6qz{5}qmgGfrmr+oxsL7)NZ9C_|Tv*W%rn}1Kc2#U328P`IexHvO> zPO)YVEhlt#_Hw2{{*wbGjU?88`0zUD22_}zM?Am`7Mj%`ZA}G^Ey4Dhc)9_eRKuvG zRH|aX_3yLAY=UKifje2T|l%y%)k*^(Gm+gP7Q*P%zI%rcl_=4X*AB z@qL@;EX`s)Aa&Od?6bN?bv0Z6-3fgOnc+8L1*;gZQ)`5Z79fDkfh9xJ>`-8FYDR zlqAw7Nq4{&3`5D=dzMo>eYDZ7UT({-T^k|q9y+wmD#G-B_*%oG-w*%EV!B^kb|mW7 z*RNVk@#)jnXD|Gb56)LCef;=wEyEcC`UEHqKj20^_LCS zm@hfqTR6=Ww<$8{Qj%Es&1Jj(^6F;|x&XJixw)A}&!8tGz?o?znWm`8P#1c_=+t!L z<(nVRoQoU(sFN$K_ju+5Z=ADVUq#1q#vFfA1WRB}VY(ij{jQ+m%qk@EY3a5_SvRme zHFASY=+Ieo$UkwDj5x>P%X12OU3X6yNgv)=ez?f`f%d!or#FAFIu~zfXJE69-RSO4 zJA2^|@7`79S%)P`_iVs5ycm_-ym@1u)lF3hg?I#CRW`3^Pv7@U6}@dzY%JwL2e-{M zaY^rNw(-zCBKT0+jZMdn@dcfflwU@;sXvp7S?dRdcl1?khld`r7zrI_!^fU^CEC-; zY<6!rj5|fx{EaXc;ntu^+Vch~iD#QXGlZG$O^-XIG91c0oxJnrc!lvUGQ?i!C@|BSKVgX4W7J1fhUY;4>MOxAE1+>6ON+!CwV}dL%2h% zLQcW|K>WeWPxRT^_kN{PX2U}U-O9K`*19bG9BMWh7Va4m(%Uu@dW}Y_V|830Z?jo` zxEV`T;B6$hRo~>_P0lM+OAKcnLRjpklQFGjdb1|`G<#}%sM&q*&dhD0Z;$$C3r{L2 z&=n-|-t1ldPvBeQZBh<}?P-Bt$_msrOz)-(*poJg_ifui&g7P`Gc} zd-t2LoG~X6t!$Rzpu0NP7Jf6#q-`?fZ|C+hi1^a4DCoXKWy-)(xglI)E5DY}o&sOx zZKnP=4QcDPt&Wpkwo#$;f3KqxE0D{ZuBVrkCf77@bJM-Q6}wQ1(`%Mi%=CnOACLH% zr2=(2b152UdT}i$x1PIf89BVZ)%`DzKN@QroutYv)ZsO67K_kUf)&qXd)zg?NHe)y zqJm4J+&QLDLg&UC;dQ|sy5?Sn;a|S*QD!=PwMyFbT1BXdVX;$ha#5d=w5HHYCxw8Y zm+mcCiuJP9OtYlfOl%dQMe`Uk(X%}v_J~P@*=}Xt{_5Q#-a{1Dnrm8|?I+oiUbnXK z|JlaCW)MXdkV$CWgvusCyRKJHqhgH%`@jGE-oiY5{X~xSKGzLivu=h$vtKra(^arv z<8<4!ZtvCWOuk`xp(Yw0zjo)+y2W|jV;_{f-D-aM$%y5~(FyJ^grdtgH1$CQ&NMJ?-Z z?sGU{fAZbSUqZDidxiBaSM}wGY|5kyGu;IKFUd*#Qze?DA^ z4b0grnY*J!IIu&6Rs*MZ-L*PyyO^-fPS(e~4$K9-2lGopKa2hx+TCo!E3jMJU)s&W z&&=h8o9^H~RVLmo!5gD_Ra%W$dFXol?=~mId{yPAGnx8_&2%U<-b^^qWMcfCQl=We zPY3NPyf*UgI#X+>h)v9yF$Q>cQjMO3xw2mLW`po;R6IRDaq~oIGwpnN00CCMCT;uXT3&?`mZ>+J1QBRf|<_ym5=WuiO6E zu>0IrO(s^GfU4}(Iu%<~a3?Npq!!*s6QmYqb`8UHItv5kP2X9Qe#hjmm9eiq(#qn= z%NE$t^NCmObDN8`ST1!2y+-Q^!(WXPw!GFX)fR#xpI3(gz`bB9*ciP%@DNp!`k@A) zFq2xZlF!k_9ADcGvhlD~QKh+(9>7u&q!F#Qy}5!}Ej%_wO@pH%dUjEPXZksN`$q%Y zcZbh%{(D!wVW8`&IM{4rnfBbeNw?8zdtiP}f@pl*;Ui3kgQ~J4-|%U)GJ6LeqGheo zewC%Le@!6UG|LTVYy_1HjYq^;w*=D16dSP@I7K*}V%{qbb|v0}OP>qi?gv7G$Oj%UxB zrzS34%3r)q5ENmBK+HrJ`nQ@ua>V2T1jUQQtpuu?D|K;p{yV<<=j+Ymh8XD};0W>3 zbZ~S+Z$YTnP-Zc-B<{FHhjec)tZhJGwu?}$)VBTuGdHv43)rd)#)aMD8s0(`ZGt{b zM9u>xYBK;Ul}H~*BZOMK2+)C${fZZGHhHcU!1~;C7z*SW9K;KyY{Jws0SlOUx9i|h z2{qrBw*6|LQ;+m#ciZL2^M6tq_?8Bo4412H-lv8>{q;l3VM8EGcHfSlM~rz-o;;~W zo+e~b0*5eJ(TAJF0Pe%zUk86hCgT|ty>628gLRSG{PLnXUUHkGRNkSZ48l+&6wlSu zp`x@FTm`I$St^>@y$aN$noaH>TRg1sI6~l;FU#R--FP!YjpS@LsjS6H1AyHX%qJew znFmRgL5#9^5gBWBs8e{LirOzQ6HKe_)Hg<~1<*7MMr!CsugRZRLBG@Ryc3g1LC_4y zJk_&fKO_d3bVRYNtL`5WX;wcbnAt0FlW)p*@H>O~gU@cvfszH`2YPZc;_}EBqNN9>0|x466lnmnrp~j1K%Hm2WLVOHi(WwoU9+AC7+Z* z<+63RIcxgYDtbE8TJ^W)_j?PN0|o6i%4lBDHM9MWX9TfS1|yXdj7g-FjkB1d@@zIc zhY3sg7nECuVNer957@E>rR)?%+0qCS`r!1F26nrs<) z6|RuPHG=ysduIrCE+72;dtD7Dr+JX0f+@QNmmAZOqniUAv6mXgN)2L|2(3$mSR0)RL$Ol6aUsrMD)Z&eXcfpy57mt8J}{ zzcx#Op2fh=lByHrnRs|gRXOYmGI~!a9CY07y9e=*&ThDs>9)vJj3O&zhAd>P<*}4~ zTzJM0N#+tnjX_Vit*bE8lI`IansA=8t;b#+56l8tj*UH0KYobi#Q$LKt%IW835K&4=ML@z`8l*!|N))6PrNdZSLP27sq(MqS1yO!q=B-}Np+`*K7p7Xq zBsz40HjRP3L`Of?<(u~A*(P^O>fm6>pog5069_n<_4FyC9A7V-%C8nHcu4|&oG>~? z6uh#BDQDwdwfXk}DpkE>jNtUBGxdkr$`;&*oSVUap2hNZnx| zthS=v?+aQHz9^rlXLW9cX{rt>S@@1FJ5#Otd}0`*&P$N5Y1TYTw>rKrgtq^0qNm3C zBy@Kr3;QeHGB6~wvR;`!q5CJ7`KW=iy4iSxb+5h$jRxFu76ROC_qZ>U?V)X-)A^c? z8@wPe2c*(A!aYZqYt7BJ#Brt2L7~xzegF+~f3-!oxS|zC58bP+)pb76n|EuCT_sK> zV7Q@m0bU80V5H0Wo7J`>lDLuYE}C@1@Ip{$&eeR52^2L_v6=8Jl)W3c$TP|>(sj>; zVO3W(Pfeul5i7RXRvW(LgCRVj_K7{_@yGql3pbq$pE_)yi54oO6AnTupPp)BtWHs% zmJU4ZVY1cckESnNa(!o!$5tG2VO>#~9%q-7gL_#?FKhCdqQEk2v=T_dN6YpvV6q9z#qqu`?( zPO6~mow2Cr9aY;=9n5c`o!|lqJ#^U>f|#BkJJD2WT8^zaMoXJyCMfPn>v8kA2wD|Z z)MMpRxOB;*dgx{651Hq+_8)lSQyh}?8JX*dRy^s!x8e&}C8{gzh5go&xqNbXxhWaj zsF4Hvy)s)+Go|QaaR*;lYbH%`LMx-Jg0Ox|s9A{~^MsFK`Zck-Ox^(h+Ddnrjefo7 zA3hO-rJO-yNTdGZt>1hkQ7^9ydmSKkj(# z2Wvc`B6;GN{U%$U+4(SmqBEU7UwpMiKijMuzOEIFrc%^)vbvC_639kTOoO#`d|~f4 z-TpM+e}YkWue^k#IL^5^&Z#&dQ;OiCQPE0nA5e$$YpnqVT_5$TCC3eKv!N^+Q@3U`k^QB5En-3f9`*r*%0v$VD(H(C+Cia3 z1SFGzl{FIN19PyJ2S0&}77OGtspcjVBE$tW4#*;Yu#kTERAwoY3z@2*p^1L@5K(D@ z6TB<$Lw`S#i8Vv9nJ0wHG`H7s9AZ(%o8s`{l@=YiYkUj0l zT@KnCB=xDpte6`9H4^ZBauo6pD=RnbUI%l)AkYqI7vc~*b7zwmez7Qo&qE9*0NUUn z+9*TPI)aKx82oz2AfAK*g;2!E%LCad4TLGYtU@pmx7v$(`bZE`-sTFXf#5G*{bi}9 z=LsuT*C#5Ut$DtPLheQTa(VuIVf*Wq!ijpo)o+lKC#R(F-{W}{5%lot>s&GojUQF= z9j{zVOD^lVdk3Mr+Bfq`;Ib_Oc<(OQN_4&|-Ic}RXI{7fwnmIwDRWWvO5!?lyZMnoa+$2CYhg%=q71fI96Xx~79r%JJFU=k-ZLge$k#PEwHKf9un(9^b4%o zxYH&nvKC~C|FV<*o@2r_k~YLzK?{!LbRedxs~0kGt4%zzorX<c$l8 z7-q>H0rl5EZ_pDC2I>;1C*0oUD&h#Wrm^&OSM~%WJRguY?FntxNq;|^ytm3ZbJT60 zyR>!+_rtNChZ-p31OTrPtyr)P%yfuW6JYUKAU09k6_pUR9Q*|S`!?%munzzo%O@tL zckSeTppJkJ?_Li4J`;X*AMi!Sbl-o!y$AQee*Rxp&WcSK&$(c<=9hc@vtPf8`ION+ zeZya=)9hizx(n3PTm0?S-q^^r6|^>cGv38Xzx!_5xhgHm!*0JW{-b~h-cw^kQz?^8h* z2Sfk&KuEcOCoux_tKS0?c{CEiLT~y6{tLvag@1r_WNE|%?sQg7jT7Vq%y?VyCbI#O zM-K^8reCD8Dbhq~k4#8qncIY>J7$}|Qnd0i$P-eDbs1&&!+Ty@nYuVWr{H-CFM0y2 z+)IF%WWaBQ^}!LN1v03;pU5eMaH_yagCyr6Fw*~tV37>~2{Q^kJOH^iEn-6gRZTE3 zY9+uCyy2|^wd##e&yGX-ZZw2?9YG-jCz$FH+aKy9NI5{>O$l1$EO}Qth$Hz=@d<>} zf@S&+FlTwe+f=Z~Jb>K-;oY)SeT5PE<12nWW{P4eZQHTZnuGT@6JABx;-pNsdu^!5 zbm_R?5pTS=aiig$&E$ySmDDy}69eZRoKsgFK?;hjFfcS$!`lU1;8q}F_-bfuEPxLd zoadCtuLvgNwkzLry5J0wgA9vvtLNeWuf8$Jf6xLrFofeL!irS@?+3yeLogf?Msn^U z2shy}kqiEP8wrVnkJ0a$2Pa^ZR5b*^nYXG zjX*nx&9nEG6aD9pJb(7A@S0w%yx~HTXfHt?lPn+^g(D~oT%!~|;t_;%E`J*I0ei_^ z&KdxoYCy0q&e0|daO;_PlgJqGhx;jZOebkpaH}KR7|{Un(1YcWY()1 zsewOpMeGC|vp!4Lj@@ltnvM0iOv?kT6h(L;8t{%>Q9W+zYJ3nb1(zT|g|$s6vkS2p z^2KC59Flyt1JiE72l$fQ!0Vueka6&1SMqs6(IgW;j}X=Qpgoq<^eo=t<01E4FnVOk z+A(~?3jqlx<1_;nT;wW0gpc7oO~!?J>+Zi!AG$=WLjso(Jus*c!JGF0RxytLP~cP% z^~u$%R}pJKhP3^Q%w<5X&jUG!_&9**aD?l#&g~o)<wx(IH-*YHpjGXPP z)<0Vc#R#}N-_wToiNw~`Mw;C6o!u!s1W<%BZZqtVZaNl{&a-iglhrBLCi2L8!zB1i<1~#wTpfrS~3wg#=z`v>$6)TEj zb|pn#?BK9?L2vOW2xr&aD|RKH^q$j0W>}am?GHC>bWEQR$R2V#!P+!0T z*XF_xq`m+iO%klqTFtsv=nyliC{|*I&CN7Xh4LxkARD1{4OQJ09&8dmkFj2pbLMTneeIkpDjJPWeL8`y*+qw31E-oJ9B2@#wl$V#yYK# zSI=Wj3$Kt^nQG014__EKT^5H%~^lE%A zvy@?whJ?^Du#Xr1g!us~G4!vdLI!HK2JGLku`505GReky=HFlpz<4rYwH#>m8U9h; z)IDWqcvVFG)>`Is#p)&RZ&r42m0zB>jYdctJVRkz`F|mXogb-gbWvcu#2Y>j{nrF zAs;1VjJpq|^gJvRsR7Y;qtGTE$*RqHv%*NzJ9Ny0B=+5mt-r;cICy?hGrlhzb za4#o-c0>Ov6Zi@;LqUj9Vp}hb_{NsxE(>G1x=)wiUO#yjleoR$mtaEe_UdS_kRkf7 zlY9LUgXB+U9tLAnm2^b3sw#r!ze++B)^Oe;Ujr_bEzq1J%PsrqYv})!Ux)x{w9=l2 zSHq_rG`z?GhR9=7?)?;n)GNMNMmdN%SMVHXM(9ld#BiXdz=Bvx1$4UpfAq2_W3VFa zwVavtVfWPVPD`wa{oSU6XvGl{tRISN6bnfHrj&Ou?U(D z0>0(RYkNm}qS<)lgv3hUZZT}I+_K!j4zF)T_*~~R z9Qd<))jP7bBi4HIe^%@W)3&Fgy9OVxdJ>jec{9;+Zg&T$=DR%=YwL?ir)bt!d<(QM z9G#iPPHm&-G+@zX4zl4}y#4TYKpdgg1TNN|d3|PDSLP1p$OPX1mLz~tcRXd;f*MPi zDQYDvhw)dxCqDdss+TW*LoC+QQ|Q?T8ZFW(#x~@qBe`23&!iVFb`Wv_%{*LeBtWYcyq0e-XYRA$Zv zHGf^uwvm!dh1Vsj&8eLt2n>Kggqek0_Pp|>b}f@r!(hC;oh^1Kk4jT@UU>IMsjy#{ zzSyn_bx_kKk~y=jExqp|IDl>g+ab0T&^()#8vb*zjTJd~cbS8^Ho0(SnoG;vN1Th$Rkp~W6K%}5s^V2kgUy41rZ z%#OKP$%$E)3YPSGBgbG!MiLes>>@GPiFi~KjKy}l+^$_iZElWAJ>)%jFwK6t;942M zteiQcW@@xxjN0tESeiJFMIz#Oj05BAm-z}<4;fPr1FgOh>~U^0SiBSR>!WE!Lk8`z zCUXmA=anfKiP!6Fh1aSkKUAB&PI?rVGAZh@5s)t|AxGsDA&YQ3u{K4z%oNU^7ISf$ zF&HaTeie}}!pGW|D2urtN0`qA)Y*x4*myi-@2IO|OywO756Bnr09@vb^9cz6Jtk_q z80-bs{l8HUUln0^vy`tCUe4@ZEhW_fyFF13e5%ZxuG!bp`Ee(0C~OC}=V?C_D=Iyy zR@A5OsQW2W=W>YP1tEZA=%%eSyT!d+$Df@r#E?!?FP^Z|beC;iaVR{)s{cD!;vF87 z0Kg}8pir;>F(NGnLDuvAWf02@D0fMc|RrO`%HJG{N|j*31(2^h^|6 zjQ7e&M}*$Aj3`y7=vZZwY|w8e*{!U1tv1kIR|cxneYvp3(shbB`F;rstPC8=m^9g# zo~^l>J8#lu2lVeG$c~@0-*PXorJ!>7D^NdTC2de$Az4`mJj!^P_??(|+O-Rr1t(V! zp64V=6;mp9T-WcRNdcq#RvM^-~O2DqgR@Ya_QeoS=rEo5`f?Zmh^u{sVn@l@E zCfnIPzpT}lu0uaSc6P%!(gsHmyNI@}zb_Vlpl**Uqi)nzk@ji4M53|%)z2D||AAf0 ziq1OnN`#{FXA^QaYgrM5Ji3lIoDWEm4=>Uv!?6clD7Z}_QJo^y9{Xo~X~|}+mQQ&M z@VpmMK*14~SaaPpr8a7g`p|fb8QMJP5sHvyf?*Sw(Xx(*BtA+xEfN~0-1cO){?9>C zs;V6&FK`4rFzLe?m;uwyZswhz5_Oq(&Et6f=VNh?cqLLm=8^d)I$wm%bPV_{&SZhD z-J^_C78upwuJuwSWI9y0c3zUY-#+TI=+o{xWFaUd#0PfN|M(MDxN@OtN$Fm~g`#A2 z*rVE(^&l7%z$Ta#W&n&ruoUpD)Op{^C4WgP!97c{(9Mc9S243q1M{6nJz5?|NHLx0 zwWBIv_Qanp?|=hWVh}^y?IC1gdZYGg>%CdHQvn4!hC+h3;oBkJQrfGqJ@Wnu0y!Si zdh*}xDFr_hEZInm1Co0PBu75DTU5X`3N|9ooBpP^bD`iscsF9d8|jz)VT+Oeg?>;0ZniLT)n6;h;b2s?GxPTTABxph+Uj}i8wkrB&D$jHEpfBV0qD0ASxxt_i?^N!r( z%j=WCMX(hEWyB6*qO-_~2^|d{<26+9{{k{-T`+D4hj+C~>J<{Z{&r8Q`R|@3PVDm? z=A*S5^T0!vch=Qh9iJDuZ)@FD@i|~b`bBRy%Fe#R_EZ>9WU(n=&W{DGk)?qIx?u!3 zDUQP7c;(~<%TL2sCkNAM3wRw1eLY+dmhMWfL|k&TuIIVh&cL4R~`3%pi6!GPx=(HBlN z<-kLbbvw{Lr*SqsZ66Cf;2ijGU{A^v4cT7kK~&P9T}ASIK^j^JG9V;=1H?yO7N2nt z3&Rp!t3)zsawOElE;3&rXi%fY=W%`AvC-kae(1CGXd8UBfK`khy#x<@?__qRc5rS* zff9?op9!KRAxDD-RKp+7>_R6FE;8~_`7+R?4ItV_0>({Yj~+wTXFKrMgS3efg%n+Z z+=+-JZNfJ9NHRwjR4J4KU4lhvF-Bq=sI-v`V!lG2ivcf#$I10ZRlFjhHa&|%PU?kx zCP*zIHa4e^4Y(mdKytwe=dcn0fDIDE4vV>Pl>_L5k?9%4cQ8I^gwmmIdoz3qLd0&1 zgJ&frSF;!%qg}UHgm=*sqwWD``e zL=>Iu_jcAxEuVqcAM8!xh+-JF<^TR{rF|U8{_{bAt+eq_J|Apsja;)OP?m%#8{rod z>yXS7Yz)C~Y!NdA;vaF(7o<`83gZcn$Fb5o!KLDQ`Qk=~qBlKgv2k+dMD8160ogKr z?N+w`hrJ5?rakKqhn|?mKhz<=4)w@6)5Z^Z+7q>99UFYyOxqm7%;Z$qWfr1aO`kPW z=}wPW(#VXh2TiDx;vWWyo+#3@`R9dj5B|~urYY%)mFlk^A=LWyS<@u?x)J$;YYeW^ z`t;py3>~AanRbnJm>$qx-MAndR4hz>dA0YY%&rZ z!FU|MLsiLL27)%+antGe3nUgHG}g81lg)0v?ChsuLEPhaWFBHWrzDZ$tZjiZ9mi=M}{NSyaxsh}yd z{n8v+EZ!Sv((R&MtI@W-oQ76MW1JR$&*eNAr+~7;;*+3N+UBsJPy9)={6w*mgkd*{ z*J;RC8Cupd_LwzrM+^O7w*4ey=~*yVK6ur=rb~Rk2ac(7l^qTaM1FMkeRg#&v%4Xq zKGTz>I$bfiy9%!rSX&tsq_n3MIbM3>RBRnv;pu%PbpmI0AEb3ZH0hf@a_L@J$mRC< zg-I*BG_Z2Y)Ff@@lrwsprtZXmXza+&;sgU+q@pZ7sYz6gZKXX4<02M~AvNjuzKr~# zd}m#qNrN|=6iMTJ-$$?So1K(CX}1=s-P>P#)f%^Ix+U^JRP-9lfNq6MB=P51Mo2*2 z-agocaUG{prc4#2L-<~2Gh*dJV zF}8>K{0sOhZ=k~e^Kx%kt(_osM3K=oHwLWF!{#Ai*j@%O{85P$71jbVtLC}3m-Fb? zL?3JXNZqGgJAVmNG}G$a@pE-%-5b5D@%J0?p3l!dp*efw%ynX<=%KlR)p1+HAveE= zgk3gz)e2QXTny1kMxr{m08S9C8~)__8G+rWw~V^=U$p#LzoHD!ciZ5U z@UUR?5tra6X&;Y95RNVg^9k(Kn7lvfY`&5Dj1&K+!i4z4Rc!RP&TxC=edF+=W}}jR zmqNnEmG^Z1*Z+Iq3cgMyiW&_wGlN=5(FUJ>{fH%Ob34t(_3EyG#xX)V>`o+woR$jD zPbvb_Xs+D|Zu0(nxAH22s1ADKj1z^c%FDVVJyszDu|-`%!kJY5BbVs$_$Q7cnx0I} zQmc0|bbLWLvGX*as31`E{g+y^Xq}>9bia0D#bO0S{C6j$9()whpv+cTU@gqRq&mMd z9cr~Ov&CfzVEP%FJGbu!T92~2`aQmVt)9x&C)=du@b-1#{6VXF^@!gmn)@Y@^aZfm zK-cF9xHu3KJ4_<~0z28k?+^(b6hfmxvI1g?Dv9swGi*6L_=_kQz*vKnT|jh4?Dqe| z7{$8S2!TzIU!yoy#>tEMH_1m>d7j z8d_i#!8CGq9BYVnz1E^m9arq4T9!__`r!$;Z_>DAJ5AfL74YB%E zweD~N)X`2e4Z;j=K=8W&8MzIid5}m_0H8L~J>Y=!^&v?K$Y=pD&;=VCPRMIX&dKRr z{t6&D5~~LqY_KOH@ITOv^B4t-*bq{A$v6d><6q%tA{>;HwXTi$|d1BkIn`V~kyr&K|k1g~| z+X%f0`Cz9>Rq$lP>x-pxJx@h6O#H*$LtSOT=h01cFJ&Qds+8fg9+bCtn!dnWNjc^5 zmdDuVjlx5Q^lgG>2tno$SvJ7fFjf8!WA~nilkvlF~R;{Num zPbn(JX4lr8Moy``;H_iTXKAOH^&tI9H3MNA!Z0J*g)q|%LY<{ulV6NR)!O~H?DAhz z@^f^>-zaY1o)+vJm&Xz*VE*{t1+z_j-D4ABHQ`tLCm*4YCYlfr}%>I<5vAt6DVlc~a^pzEiz*`L}CjUNR z8|C=w&Tqw9oc*hbfS$U_ygFxLkLdE)aJfkMg{A>O2|ok~pp-+U|G$xT|1p+Nz%v$0 ztbp`F8lZQw6Iycd(H@@N8QBiZirCWzZ5QIMOh+2}Lyh36rH#1wRINOl84EcX+Cqy_QSxKmTWG)3NAIJ|`u!TVj^?!+qKmvAG ziEhAgh!l|^;;nTPHB#O!sueB`kViN{zt@Ppx^`L6=FSxLl;RR zL?Ip2NXIN-$J${1hQRHIFaf`V5*!(13k`z|5HP?+0!^3?q%pMjDuNYdPaUkMU0|X5 zUBU!eSO_Bi`v*Y%q}L&50F#ddZ~i;TRs+Wv5uB@g>M-^qaZ})hLHJ$7bN=AOxwlYe z;kbt7_aiJXRAiXA`84Z_YN2zSIap&aJ2;%&%1PeZcD2M_*t~^(^wyQAgV`H0cXtJSPjMJ|}|@bQQ)jwh!( z{&+)o^>dXr3e*{yeBbLULN|F95-V=5sV&}51auMq?P9@I|DGN)MxMCcE3DK`Q<-H| zx9*=RFqezUu{}_gsme_F$j}k{@@XmB_5gQj_k8^1CL=|``5Te9Wx0DSvxGe+ikNrN z&RNcsORR7A{w}?1lR9y#JHlYwd}dT?X48HqFLe7bbZ@)&@Jmzr;bGUq9}gFT~W!++Qd~%-z|<4;%1HlZy${`lk@VvEq6x*uh6ET#;I@v zsyF}>xVuq1hCnO-ll@5xwmgE*iQE%_t}quHp6eVhP;iesTR}{mktk1dHKf+QXKu;9 zCKYX95M+%K@lh?v$;b#r)9n80zcgRof_5b<#2!9(1SA6f7Pu`3_YeUs?2=is zSTdxd2af9*cz|wun=ZTB>m{+*k-LS6akLFatk^~fOkXl5`3~l)@(n-5Jl-0eSXjs; zvl5Nw(YP-bfM+{KvA~ntu;^4482EL0IqCaJi*etAzZ_;Ze+{uTrjpJ15-2y1SFe76 zWf+A5(W&R4Kin#48XEb#kR3aS2%A7T{NZ^zG<|A%3bsR_QaEAx{mo*n*Tg#a2dzcA z?Apq8GHh%lA(6G>-$sUg8eUUm(stb%(hdWMyThgbe2HZKQ+&7;>1Us)EF}HRL=E4p zhuheTgQQbSnrW~5WRR5@a{VP5a@oWiAxQ)PljK8~B(h1r`OKE|W@`-WP)G?8e5Uvn z6qw-xMffC-4SzuZQZ>`mXAv1Alk2xP6>@i+kDES?&MnX6&-x3x(_p#2n7KncK_8y8 z5o_~ZnwOdBS$Bp$TQyi2H;_kd?j7R1PubB*|Cx{Pd^RqFKkM|}r=)+b zqbqS=eSA<_>{rUtjv*9e;R4vJogn{Xw5-bz$%BBt3&^8pgb@J|m3|+0ubPE(3lv63 zS3C-Z05I^2GX-lUQa}f}&u^jQxEo`45qJsoPV`y#Dz@it!pmfu7PFbm!}nf@;8If^ zY#uZ|cy;tkYaAOyI&fPVyBvKQ~U4GSDI;(&+2hkf{yWk z!JzcWu>sG|S$FW^j?C&ijACv-0iH;&ST%Lhs6aE7Bj3!IDL zt3unL7brQU*m#kCsVz_zeaL$71s;RN!iJifOfSYe-?m3*;Wf-sg&phu;wa6&m-?ja zLaM{XMjy>${k_8siALC;aJ1|T1)>{O6qMj$uYr6CowRS@(!4QI zS1~odSOSDH%437S02ebx@Ai`V%qN-&=8Tpo!Fo7Pu><0{8N$@X899#=Bo}OPKMu}Z zMct))E5oZP8BtUi#wdhxaCrKx@p~nG(L?^+bb^y{arH%;rc;(| zEaz1mE>QHdxCb2!zWiAt{;-9c+r}yVV6-HsDDF4VKXzC{3?>P zfv*o*o-7r&%IU%|4WfCb01%5VflTPpVmRLTzkx)I9;eCmT}Qnbmeyvukalz z_ifNIBITU_zQE9M6txbua`12DD0sgq0nBHE3(0BRp*hUZSN1cmH{{y^ z*B#?I{oj2YM4MeBF|MtwPe_bE#ZkB96sLo~NzKLp&bhRse{)$)TF{%x%NOi#8^ld$ zs|W*>MX$e?tuMAAi+^M%xNxCAWJ!D9C-(AKRQLm$gwB22!t<}YjSPAZLoYKYWgNZZ z^&?@%@hXMyx#K+?2Q2|~G@q(4qPXKR*aDr*SF~%=x%0BurC6VsN65&{s8=%8UFe}% zWu8dvGkp7~uDM)tEnTMssA`;6nrx36nSPx~k7>Qo0WtUDLRXS`0mj$!LZlVi_w`XP zFB!^PF^n=rI%uihT(kYELfbq0$yr%>?e^3w&4w#YM(plyyxOV6j!61FME(51^+PCw zyf|9c*W`t$MIo>77c9}*^lgp4C{?W?Zl{L2Y_a$jx^~js{%3&t5_74ShrE|F?X0m6 z(K90?B)mj)fs&%tE?C5Fu~QX&jDo%Px6ep+&_L36MZs99YDNRRqkx0ce3rcN&St6r zl~e866BK;^kyeZC&foNmDkAz>RbB!IV8)-s7Se>}R#AzQwM5nX=4zsSY35seP!G>; z?Q!`$EnZw^dK5}dW>R56!E>E7wp&bd+O?F0vq<&0C%ROai?IWf?4FoTx@@H!R3KbW zMOSPSd-6yQ^;|CZ+m2Wl3GWYn7$xBHDO{gqooxK(vum{ZhlX6_=Xnt6r>fZsw)L(p zZsoBX8~JJ(`yAYS7(X1$7rg6rpQv%z@-qreLk@gVUM}q+)Cpt5Y-P#F{sn5EcD>6Q zYib^m^`Q4w_n+R8cg1T5Qte6UR>sNCFO=mEKNI%pV6=SXPhuF?qR)U&?2PHF+ozAY z`Xv)6gm%*3xHg@+jQ$rKsMWX6MITnq&GuC2P0i{y>+tpd?fRPs%X$B9FmdM|%35}Y zvNc@0_V!CJ&Fgmu!NW?GVwgKF&bA6`(j`n8Sn+?48ZDd}+p3PNvTFI%+un?5AZ(ca zc%`W#A{cokR{oMg;^ZCo9ix5+uk#v*2K%{UmmAcaR22JlYG#b8)CbauW6Gfu*QJfD zSS`PWvR-FHX&r&Ld?ixz)v$h_y};tmTR!G@k+3UI3NJ9X+wJ3;3Of7-3_$CN)J`JF zAE2XtHQ8THgJ=ncgt?2mSS@H0CzY*d(+Y0mA6Ln|^s!4y7N%3AZK0Kmui=JN_TYFt z-P@j?J+|A|9r;vMzwiEn?A)juN4S^Iz5D8mrBJC1jNt#R;5;aV3MnIOej)m8-m|Z# zYJ8%_*pX4Butu00*E-jxv<&P3VzdG6OdMhtf`oD(ru>U;yqEsdL+oTRm6K2A?O;eU*m`rge*)|?zi_BFn)*{h;j0u$i7tG7yHA8w!PxsI8yqy}fzh(0=VBoe`wm@( zS%^(%6o1&NaEX6N;~n*Q#I%5xtc7*Xx31S?LPU; zTICsc;^mQSNF;_8{5@~sqDMl2(xhxHHm~;_?Kd<|ls7cG`8&b1&|VIP$4GE)aQ4HwpOy02y>b z%mdOPi6mMheFva(U4UP?clo6prkRV)17a+$oX3iHuIzSXA7gvq^zq{nc7}Eco#y`~ zj$xx=svpSkI%kgbgSj};M zH!lwd)SUe)ZuT?ktK*xdzp~_W^o(lhLBIbH$1MNcU%il+6f0Vg z3vBQ!#$6@v_9WV+&1p#P{)p%^9E1EEMD&n7~i zlj=H>SLkjY}CI!)$ut{Q=Y{&^*-2Bt>ce!^SY!2KCrdO~(lA9{9!KC7T*X+62D(I{neti3w(%U&iGc>jBPf_8b)l*b$r7Fe1pGWWL0!Ba?-yi85zZ{g{A1i^Q%dA3lf7g7yNd4% zcJR!lmFK)Q6kIRqxNO3O7tiqxnmDsMO^F}*w8_}C&ypBEF4Z39e69@;0*F*g-uiN$ z0F{A=oD_uwQ#|F^OZirk9=|o`>HXalm-4) z$_-V+L^bKEQkLM?uW$SQ_(*g4owZxzoy1B!>GBuuDNJ82o__u(;EHYvH;0hyb0pFj zYT)8Q3vd$k9bSyeh*BSSiqmh%5PR8>4GEY#1sop*ch5OT7yD;X7sn=Tqh~&)(Z}btL z99f*%=7|C?L}iZTGsBVDfl%k*YC$1+w8*HPZR;8;IN}b@S8y)@s9Hu3rHppaAP$O& zYPWgxns#c5PtqqH%vXNx_bi%O16X}@+%`=|C0`!4fPX|v(-O;RKL7f4p&uJmZvMIV zJ@O{j+w5FBQ8>qWUr9I`e~L#i`XssgI{LZVn(Q7eTPy_BAZ07?cA!vD*^bC1?(ISN z)va&O#K;~zn}p!7B8Zm~rg4lf027OaC-ZEB=x2upS(#%(=wrItmd=lSl4lNBBagB^ z=?x9kmc-%9HvB%}S3jDNtCq=H#(Z?@+sd2s+lqL?o3UCZMpIpIj;+%LWA%iQQZE0W z%x#K-Ylsj7gdf{ZS@Z&`pSs%H^I?XE<{a6wB;baiVSeJ#20xk@BkNLnn)NI(EnN57 zN0v_3C7gsS>*9dHzQYSyv5}s}i?=hdC$Z~uYeyX%*j~Y{MX*`b?kmm_h{oU4XKqJX z$M}2eugQYiM^CN=%9-M*p+ha|3g^6Jw_;$4_fTPG-n{dAv4`Y6+~#3IvG>d;2_fIcL)2NmqcQll_ilZ~p>NdM{fN}C*BPYxl-1;-C%3!X!HPq4ana?*pH`znU}6SHJ#Ok>Y7KrNS;^ ztW8F@U6vN!w)G$X?lT*=^@~OKK9iEx7^Zwo=J9o^oOk}_q|391{;im_mi)vAlI^1p zI#YQ22(%9&p&7J94UlFEp*+BS=s*h;t~iU)f>kF*R^Vaxs@PAirGt#qT|UbyPx_n>sWx1jy}(UeTDg#&yX0T(A?h2pKr3*;ETlHdX2( zKR9;4wE?irqF1Dooa%!cwKlOl9y$wI<-=-PYO6E@+532@n^kF{WmjacF=U+X=ky&_ z92T`-Bcv5uIZ6d+J$d)SKPTUvkM)T%j*q5V*2vA>b;@0Jd#14A!?W>o$MhcrN1e=r z5N6OG*>7GKWlg>G4P^I7WZw)#8tvRT!51!Icsg-ard(-Zy{z_0c!W*to;#j;h(xXQ zmcXl|JRFgR8fEE@p!9Ew$nq_qZ!$t3-YQomdJj$Mp1)I_TO45(lf;`5y7551zu2v7 zWP}CEi-b?OzFUZ&h8jOeNn?Q6HDC}Tnwy(f{=ugVo)}^s$$ideAu~;2xBpSMoN?3a zJC%3Kvo!m^i5L~-V^iPVI_DDfI@INB3C7PoytE#FH!GkaXNxr=DcJ8G)9xQi(2}g( zxwNu@?VG~H@Qta!og6+TRKD+N`1Q-CM<2Kq&xeLW#2KP1tG+#p0cxsuSbR@bwE}8a zk3GMX*9k2)4?xX-qnu;;AwiW+Rg4jLgqF&&0L8p_-1ks_kDlB~*WUbfThoLh4cEKJ zW5+2Aiu9)@)qlPi^LJ*wdi{l-*~%Z*oMz8go4@o~?V0%s96vUwo&a2a;qVZ`cM+2$ zl8S{m0bv+Xu@9q2b-D|mo!@YAeFV!xP)!ss`dAxhL{Hj`ye0ki9`3raHqDA(f8~=W8A;&1vK2=&w+U8SI5;i+%vui4#3|R8J6w~mp ze)0o{=^yTIB}hyvsM>UqSPEdeU%K=JTf7R9V2SrUq6q>Fi9o zNN}xS{wFSt(rXRQ*pI;FAtp%(n?MQ*kPYf-aq(<|^0a0mQ)5cjznZ=rC~66UQE-BEsC# zG(MT47-B}WRJQ+J4|=!>`{K~Vv;%8X##sA{A}qr4_<40eut?9k7?i z+-i}q$b-FQ9we(D|3cg72D@{gRU}ZN>Y)eR(61qC_B48$tO*{-@tSZqVcS;bsJt17o);JZ9|7)>At;W}sVea6tA8J2j_Jc;x z;M1XHy_2)PiIrH?<;&FCe`O5tiQl&|PjaHJ<@w*am%-T3ndJ6tGwZ98t$0b~rp2He zeXc&+MxAD5pnm=I|8bW(4OaC}1}O-saUNLMwPrs`CEpkf}~^JAe|zL~#2gj(Iv zdQ7-vX2fLS?3KzLqIEJ#{z8sucSv>Qn_A8%$9Nt5sDUlV0iSwh?V_HZ7Br-O-h1`( z<#+IuAeKOInFjv>B6|=UeGCG&1eC#o;bC^TOQ9T%tzcxT5FVlX5`<&mAQl!jm2e-^{QNNDjSvDyLqMF zNjvUqgYV>f#jvWej2(O6aHt3?$2>O{S7`mv7m88k|z;l6y8SA%l72~y{v!` zPhc};X|jh|3CZX{Jb>WWB||~17y>UMX&xxh4Af%AidY3*$)|4VKLeRa_7zTTaQji4 zZ#J1-tgx0Bjr5ahZ(4bA-aH{``_k|)%E5lux1prr2sP*aR5#ZAH`*toHf=OYyP$YK`lq&ju{ctWItgPS0I15s6`Z)t&T10W8 z;1wz;^*T#0yoQb7RVZT2+5Q~b^U7SkVx`>AvBjSXgNsge`iw~q0=V$&I#vX*G#iA zpNr*T?H#OV4;$Ta=nlT+Sc$L7xv4@sEK3JfYcd|)dSmQO6X$#n$F30U$node)y{Q9 z{)@s__D`yyJIYFBsFr@8SUaf5(XB7zc4IVmWB88OsZ?#F48-qp-2ZiD?JsSf`ptkK zsQ-!w%NQ3TMy0GeJV(3x?TaqNup&j8q z{Yd8H$DSh>81ULgGJJ)Oq8q0qD$c$&uteGCSP_Leb|c5yF{9Xl3h#~Sbb zZTc*tpoZ?Kci_pTZmE!Sj=zIt*SO#E#J>^R-jI|Z5N8~V>wWD#AGvVA0Q?Ow;F$37 zvg?AbNY4d!Z+r1N8zYo$v$;g@a&t6R5cM&1e3FaW?(cOoY+qfsn9Y^V*gnbn;*u{6 z(f{PiXm~lK3<{{V?J<3+M@S(764UH` zhMbH{(B288#L=+E+t@uBPtJ`IeI~1=!diE)pywtm?HBs-OkTMqzCZlK**CDaLZtZ#058~T7KVl&n;25q|f0xZoEQWAaU0} zrvn5$Vo7+b@FblyQBefZgH&+SuNbqV(ulC zJW-WbtauBJ_D;|=zhkkd-@UGV(AIQsI%#m?>7b<+D^`r#n%;JsvcqQHWaYGvPZ%az zMFr$m66N#>5ODJFXM({~C-_Y@~j-=l#)JlU+YW9{?&T$L0QqP$9 z7q=Y~tF(?x3Hjv+xqOr^X~q#~?T>i8?;?5Jp~COc(Rg3ha8fOA!}%b3fw$~%md<{{ zd9eis4*a@W{5*#j9Y+|;Jb_iWE%nn5<938gpFl&<+>^jV!zRasT(0^Y}GwEa~3MXPM!rlYX2NUF47z3Nvb5 z_G@K;g+nF+AG#)PFx3*t>0-RtwEQ%Hdv<%ZrB7AMqvWRDtEURBst)W=DJs%X8AI!= z1@7sVqWXac6_nONkJ&(uIf#r7V8!oye1;8DPg9x$1G;8JurSfCj8Ge>8Z0d*vP-ir!i$p+I8VueP{Ev%pQEOU){2i%!Qp-?xonIoWUrM%`^4z!1n<+tRW6!svzZsfD!81?aLZMt{$xdtA9aMhiMOur zviK&lnsKGiZm%?5xcD_dJFstxbKG%}x;=RbRU4|xR~`q}{9AAKBke@u>aah54V9XU zD1aRVVB8B(6b@tYg-QlvYURC880ufxgulgUnQ!FCE4 z|KpQxv%TWEMDIiW4zX0~ske$2u9<3Hchs;J26HFY5~KKVYm+#m8imP6Hbn;Lg2s;n z*RGRMPL5hJirDf#qp1%YpoazFm9zUo*Fx$QXdVIg0vVEkQdadk7BbXGMfSK@)4v9Z z^v>V@-h5Byk$B~k9c`07THrRRDD^j*JyCcTr{ zMe#{B+J#UhZtQD$%i%K^hnQeEoA3~u@B=A)O@cNKqzW1&OFqgUHnS8B+-q$Re++_( zH3w{bhZ4jBNHeeV$}x8??FbhZ!)#bN-DI*kg}1omOlESUcKCQjXN>X*<(7D=XYQ?w zr&kNz0~B3YMs@0gwMVg2#^{M34pAzt15}sIXGd{gBjdkBmN#Pr8obQ=rXCwJVrPZr zCCFbgGPyZJS6T{C)0gh(*IPY!6)(HPy}JuD3Q`M!6dxjEN#H!xUa$!T_nc;Re0%x( z5$$^x`nR?!8SUORNers&QiIPtKsY4`99pWqQphGQ7Jj`j$DbS$RKr0T|% ze9Fcftxh+Krtby*EOTU7JMqWB?VIAt{7BvS_|CY+T5U&N^!T6o2n*9wTFfaK!}{(L zWSHpTf4t0$n5DnES^b|=eV4j6*9Wp6@2&;z^lbKh&i;`5_;KL3GkHH$0pPepDp+9N z$S&>`%7*SQn9&II0b<`d`fac>Ln!VuJ?!sq;0A4s2AiZ%t+^WSDcn z-eg&sqvFjEo)DaCUWk%=IKv#}bnr`EQb^gOJ(ARk(f%x!PXZphLszfAsXsQPsTSB} zyh->H*1j7zTGn7V9W_bya{TgBgXmknk19Wl`Pnz&RvS<1Ux1pmGs;<_XWFk$&WiHz ze4S4*kk$+Iv}T1unS}c3do*AEEh%fqimTUHvegHcK2%#3wF_KK4?lMPU#k1yoSz)6 zt!DCFNB1jRwbGuJ#_1-DO|dpL<+LGnrH}7U3>I8!s#Sib|N7UXt^(Ui^NhJQ+D}63 z_9gd&SLi7#?q-EQH;6W&XJTY$VPO$NoMv*6tT5?6X5TOqL4$#BTj=e=SD@w1b*b=s zW0|43#!Bvo`{Z929)GTS%v{W)C3$S-+T-`qgxo`3@u5PeOJtVH?1N(G19zJiU)oC6 zGkjUj(%=q%&v<&L8e%o*bk^lvRZQ;x`IHxVGQ!k^Hnk@IhnAu4DV68MfQa-`#<>fV zli25OOj`Lb?H9?DM}HZQ*sa*uV@B7#MuaXGlycv>Lh{znj27=a@l+su8wNHf7*Ite zCEK%IpTt}W{qqSM#Z2AuqCLz{M?xlAaEzq!(r-@R_+ipkjxueDJYx#-JswYDy`N_{ zv^gbt)s_9TsXS?E^T?tJ7aVPjZN8G3)Rt)5M3MA`PA*0odOy2dHU3(cJG?n{<;oRg zDTaoJSaV}l$`5CEx!*&tJDuF~?-P0#Pci-CBG|J0FXrAdtg0{k76oY}HjUC9A}O`E z(kLw*(k0Se5+ZC`0qNQbNOwp#Y*0W#kOm1sI+c>}%=P=&02HL z^}b__cMR;t2AO}`xToedC|A)#5v zaY_}E!E7Y@6eavLx+R2#oyHI4JWQ;m8nf?q9Kb!rmDE?^(i}x2%g2h#(xH#T*ZGvc z7Z+j5DymjqPMKoqb{xrh+2uH)Ha@a+79qkW%s4{WC)vUjf2x zStjsz))E@%{~0{Inj`H3(F0R`qP#TD;tR(EKIIZTj;W{>Yvpz&Q!afIC+kpHBr%sTH?2YGZLsz?b zlEuH$mp*ChUF_8|!wEKoekUGJu;em4Zb${LaL~gyfmk+G{AHK*N8cw_z_>k zUO@}ez(Y*0PW}BFS=Qg53r(fuD3lCH^P8XeT1!VW^61RuAt-*KoNyJIJKVto1Q&Tvel6R^$Mc-hTPcfOFZIF|B(L3ryUCQju zF`2DWF)&YFs=EAzlvr;@R=uBvDYWU4e@0+>WgqLY40fy^S#}}eb8^$|?QMwf!RP`R zbB8HafjC^*ZnyYbcZC6K&9|^D$J|-Ti-fIG9GRbZ46lUYz0RxcF(WI{9@EfS8F1lW zUUEsnN?EiND41eL$GEK?l_?pFBARMSAGC?0%O@KwpKYK%Y-mH7uzpA}WU;B8M? zn!eVy%Cwd?&H{=`>;qUcfH+Bip{$cIk9`yZYg>GPr8Mkv)y zO&O$)qMurTfJItK4|d4F4M22-pKADS0|->!+glVeSpxVMDL7X?XwP~1_*j9l)8g`S zG;q;`1lb_6UZg->RrR)mqvJaz_5>w%O=IKOsi~=CF+lcx?xQh(1Ck+gYHP`XNRX|i zrA2$rX|@&zQageO9JjARpO--{xZ2dup(lRd*e;OMR>Uzqw|TGz5<|80o)f$Ae_PhA zWx;PteMX@wPR~=%Nz;9(9bj0=&*Gp}R7!v9X%x8QKst2zxpDUJ2iYUQ$n9=vnVU2D z6ic$$8KeVo*J=cvOBaxXR)aKbFJE74pzZ}})URrXADu0PUGBG%f{nrqF{8SAdMkOc z{5=4%NOYzaFna@}=a4J`3UqWrIlEw>h?o`R4jnlkS36u z`VH(#GPcLdHJ=%KK}sYB1}NEjAaj%j&rwSd;Bfx?!@oB`MQaW8?GiiXbr=``o$i7p ztKddifG7_?0ObgQivd2wnw*@(2m!L>Wf0u{*wa%4JPwY=T)1qJX zdAn?%etCV8qd6bH#Td$OBB|@1arMlu=ica3{}8J;U&5^!zt=-|gNlmaQ+@qK3lrzT zM@2<$QbD_>#oC0;{Zj_gfv0kpOFG8JbRj>q-e4U52sp?sDIow==F5(pGR)6Z?THDaP^cHK zu2218ay{LS4&g4a3>Rk8n4m3jUkOv$UA%87>TeuM_vF$pHN1;8T4{WF_$LS~O!up= zW?zIGeWkag5ZdZgL7sC^3bg_D=ISW^6nm$tUubrq|2luhBgf!W!FE}U6Yxt5hy$~EJGWswKs$V}d z1~_^6>*-O2+*CS(xSa8K6{V$e1_m_Go;{CC_-d-;L*#dU{8RtLzC1v75@z(&*l!+HTdD)y^I_ z!Jt-j`8v-dQg3HXvu*j@H2{uACOr6(LEFH08yM}OL0(2QP&=K089lYZzd#O>Q(8(0 z5F%xM;BwppI;|v6yQjb?46sjX_H}>MD&Y zH5e!cJO9?(PT8#ED>)QNkm8P=`n(X@i9a&h&NiX4sA>+E;4W=jEr%in= zf&Sx#lM@;wBEAKaHBjS*5u(8Q+Oe`37kHP7n7!QM_&z=TGuHfyRpZf#u8H4DI7SG7 z_aUo5$PN_BfdSGS3y@Hg{wP4KKaSxxM!HlG95O4Pn|lWRY(bh?k3q*V70AV6=CJ^n zKzw2%xk=E;B=o`n?{tIS2T-!T=T(Nu33DZpJ8t2>5a?rWX=MQAaHPh^3t?};cHR6# zUVPE8t?UOK?Tnh!j8nNPudB^>yxJJ@@bSD)xR$~y`iR9GO z)yF z5CdDqk^VR0E63G@KIvGrl+;W??24Ppi85<6{-{Fi3Z`o)=-pC}>(L{q!zhwE;o&pyFli13qb^X7vEP1X z1{DhN50CN9{8n&GJcmVRC6F^@&rmB8u;(aC>5*vjC*Ah* zwf5(j*jk=otiUzMo=4NIMZz2*iJtWs7P;Ss54gob#*e9rORzGL*=jNBe$9w&$OyBBf5aDy7Ae zVyua73e25O$*xm_r|$WIj4f*0Bf78CrT(jzU&ZYrI?bY?+gix|wT{c-;nN+GR+8u6 zWqs3|nA7CF{`NhvgbXHP%bGv&JVpxr!eKf69!!YYD5`m~Nr{wXyh1|XX@lM{=* zy}e(f1LmC@Ex#nNNNg8>tPZ;Ld3gP2;x~Fk}FDiii84 zK$dB^y#qOJgx@m z^y}4nqV1mW+wOf-1`-WqLzVja`gx#`1sCD75bz`hkF2}@PiZ6^;|u!KbYLnvI5-G~ zvr4;k1XfkrDq*1KQKWR?b>^)+D-&AxITZ_Gvr2>Qt%T2xwRCZR>#Vet0?jjD2^HDh)3QhfLZNz=;=PM*5OimO=*jrS z)(EZ)sM)wdSpq%i#+~x@`zUX`*xB*Y6F$?}dR=cMXYn@vj;(wa-Xx`XUgCkbkeJ@L z+=iXuqM{g5Fr|BD4xZc;@XtmD7xKOm@1t_LN&aU3oVJhK5p@OmUVgx~@7vf|2na%D z66m}V{sj(I3JnRCJ}NMGnN$P*(zP9Essq%(ejukA69bqxD$2{tdvGp*fpp9NskNnp zkCQ&+w6{N!H1A#Moh{F#C*_VHV0qUQzj$I}D>g$dQa zAk=Qa2fPdQ48flO5$V2Tm;D+LNSGLvO{;|2?)`VpS4dysV?Z9*Km2|YLuU-vdq1ne zK**#2%bx5n7I2~{)*9K(>>2nPdPhvmzMtNUXs;4H%W$E;(6lo|OEET=hMD}H>Cri3#n^eQsl7Y@7b~8Me*_~^m{5mc5WzLDGZIUS_ znkA3LeP<3V;8pw8*=uETu+L^(t8Rb!7NoeU?$B$*3H|f5rk2eRUo`TAS@o9TMn7mf zB1_RvR?Ljz4U_Fxb{gO;ecS%fUt^H%U_tleE{Pp$)Z(FtdfnKaj9(-}t>3rYq`?vN zljtY*za*t7gf6*1ZeMP*&Cf#0&!h7tOd{T#-c1=r&wOXf9KIILoUD=r%$nWZul{i3 zQ-;{>V`y-{G85Dbg|U)#B6tR9;lyalwtSWIJFT2~ynVlP^}o98WFoTf`5M}0ls^6t zy%X5dD|>bL9_$QP#xO=-FEvikOv$tlR&Di)4sXi$9QVB~&~hAVVRX zlHMWsM)}Ef$Br?hx?331ouXB9TTU83ELe(*7!%E_cYZ#);zH)*RZ$}oly2j33H`EV zM$!1r40Wzx4KV0G^1VGmu=v33*s;h2r?1v)!IG>hsG=0Hs~?cg(|w)$O(sg@TRT=i zrP=qdUF=6MwE3FRJbFC?HGh)Cwx<=S=AW;T#2&mOu&PE)V^NTDs{7Kq`9?0von#vD zA%@(qUDnvtl9*?a1~Cs=7GtGAGiLe9j;ZM33iDvO?Jz^Co~>rs*0^`1X}KY|?-TLl zjS1fT)us7&7cJ{n>f_Uiz)JO(F<}tA#4Yn=MD-UGe7s+`O%jW3>Y%QmXEp3h*o3jT zqSiA-oM@dhMkJsh{2mfhN0I=$7>E9?PBUP34Ms*}^{g)o=siE$@ZQ zwzuW_snubFkN2x-+M0S3SBb_MeB`E=O20pE=|#e%HS1|rI+{~2@D)4nYv&GUqc$hhDA&9`R_XqhI?MlGf>MP=@|7mN(2v<51_AGF%>TV4vsspXB}?C z-2Gn1Gir6PWW*Tw&Y1n0Wbo;UeNH*gxoFv$>Yd>Ec*xH^67{1DY(&K>V|Z*@qEAar zP)H*a9};#;ljsRKp~dQB_=ZwPwgJEy2Ni}Ne3*BahkbQar+4#jvxz~^uqltmgN!mSHm`&iQKO=mQ;!}XC*ch4Ae)Uc2vYD3-wTK zBEBW9+(_tNj!4eo8c9k+5a-vW9kq7fHW|q^K#Q7LmPUpBd&68Ghzh!e=Q!DtuoNXL02!RI-;nOH&q>h*|FLM6Dq*zNKa$ zkmTk^hCUXKJbE6qUu}SywWIAAtSap175UnN-dZ4{p5(@j6Zz$^)IyL_Z8kC}yHkR| z#I)JGs%6|>FfHD}CJ3SanStb1qqd`wTcqMuvQbhmC22QHN``18)nUsMC0@#2_WQN| zLhIp~*wMxrq5%3EFq*QZoY|4{j124Np^;V4@ipXRcq=f?(2#cF9+e?R=1gL@A{#{v z7C(Cx?3J4BHp!(CUcTvDK11J`sshxA0zD|Fe7DQJG*TXp_w6)E(OrBd)ZxHqVQpiD zk&}CMc}AuwOMvyZ>LLD6mrd0>a#4&A?>)FrE=<8(t79vxBxMge7DiiOpeS!rO*LUd z=HKoU9Jt%;W8UKta6Di;m}aeP7xTQx#|(B)_1r!3k@`frO3yGg_!Zk25B!;f7goG3 zmmE)Vqotq?&Mv(lh_u0An7ewM_Akq2zdCB7^XH;4;okz~reUMq{5f!A5Io)hSZ({o zb?z0}zRH1TC{h_;LXL#pZ@UWv`?Yhw+87}%p_c{IYUw>4Y1f!2mlt1r&rgeBrn&=8 znO2`2ovMh&iFlI6LuG*nnD|>^pw@(~5c7y*?~x#);iej8O+S(le1v8KCj(b&BmuG; zBmqGO?;2`d3>Y4_l<;olD{InH$k}j5M88u|XFoQte4eQ8JLCFT?%Bix#GVrMkSq=( z62bS0f=ljb?m%M`cYJmT>~iT9A}_FGNHmTKNARC`tqFtU6K?dBb71|!u-WYs&>Zt3 zOn#Ces796SoN~r(r#~fq`2B>B1v`h96S*b{NR?nbzuBl14yT9d#W$R*V=2!j+NV}h z5#@CCoMmGVz@@|+zX&fOV^4!bc~BduqN?it=i8Hy4Gq))67mQHF316HAj$q?OUqqo zG6#I$(RAmHXo0$&9TzmCGB~IL=|n*`FqHaU=g(d98eE-(+7@+o?gz0&1lNwJo-w+`pDzE_HZP5z1?%#K&)i+C>5~~eb8BmDwe|vv1 z2>I?f!T#08U&A`tju_9@cv}{ZtgO-nGd(&wEvKyqrKLYAui8F+I`C(C`Pat=Z;dit zr&3yEnXZh_-&9j>QNaWQ|wCeNd?ME^J1BH7dWi|Eor~!=%dIxBF}A3 zXpb2@_q!C7O$5ee+Tu|*q*WwUyJjzyCnlQ{%*q(gGo$1mbD3N(Pd?VWW_5Fq)Jt-U zI#*9|yQ@^>IO-Lx>-Tn8>VNC;^mvf3fBeD2;HK*61yVd2fZ+kM7w^9s76i*60Rhf6 zuWMjn-Gd~6azpC;u#ZBl($^R`o6F5s)Ojxb1{kJnS@PM&y>`6*4W8*bs8hA^gM(@P z#8b02&miT?7(;#@YNk_Ta&^3faHF6LhlO=-Z;yx6IQ{vcbK_zJfbf@#KgRU{fA1q8 z7IK__A9y?ft%Dk`Ep338}) z+9Hn|{Zol^zgkC+@G^H$Lo=hYL$%@pJbg&M5>yRpO>3;v2Dn9vpzhAcFWdfb`%?{b z>ZnFB!GRc(ojiK&V`ZgA^FLsgm79~(b#ydk?8-5}54(`h3>HSd9Oi%R2;92M_;>0aAT&A;ie&{ zj?L{PLVgz*yUqi6TnDOBuvSwoAr;jCPvo9_^@qzo5_yvD(Ok@npb-i?V59ghQN%=B zJI|>RAfzUs!Hk-|@f2&*$vumtfo+!q2jJTn7&m{XJ69_jfAlnVUOQv7TloVgOT)V7 z#QdFC9vEFf>iTVFCMsaRnX95n2}r4bMK#4{n;1ky1-zno6zl;Wp&DqGB=-{0fFg}` za~HRZTfq0qw>->{QQC7ki!|_07-hE?t7e`w(pgVSv61?syOc1OUCe zAnzIt)QH;Jf((sOp1z%O;^W5?m($# z;?|AhxAyLd$?uqG1k|9S;k^LM&7JD>W;NJ%)ZHe=`!-z|JY^Og#(ik)YZ!c=#vnn* z7j<(&TI{$KQ{Zp=vk~?vsL!uGwICtP;O#C2sa)iscPcPfDm9O)8XDAo4{Rvc-OwAy zxlOiFU-;W~@K;|>(P#H@F z%|5b#n=*!^k-dPge;{b-_H2>$8E2>W!FR#hx{6ryzG7lw|DlOeL^=_&$Nag`Oz0;S z2-Uak`Ag=g!P9D{9ijt>7Q_g_1yn@B5ZQY+y{iPDDuwYIII z13d17bR*al*;~b@D06hj=}(fOp|(|V)1KcJa4NHMr_SbHAI(+F;;HEForRTs7s|Y% zB^kJ6px%09P68!GAxkE6ZVfA?cV=wcPVHso%TrS>=4>Y>S1>a(N| zMM?ZC1u%J)79?%XbhnoV=2mj6PTu{TryqJw42OU&N?AkfWofXu20INncH!YnjgAyIP=O86w7)K z-Nf8mtdd+R{=HsyKg0Kbk4#y>8y{MZ)<>={hx$aKG}lRYvTY{c_>q*5dlUb;t$ z@Wit)B9j0O$DvP@uk#l3&%_58%WXO4=M$)KJQgv^UKW|6gc5T0yG_K&Nhd{Vp~MiIKAzv-&f9recfR*+zJ2t^}qC+ zx;^(S0m4L8%p`iCiz~0;k(zdUNAbyz*wm+Zdfo&YLuyKaD~%{vUU;ZXybcf?8MPp@ zotb0JOueI%yS>2Db>EoP%{umMq$F6W&*ptMESMoDi@$>64|U^g`4jC?ioLkv=H?M; z8?>b#Ai*HC!C@+AWGc7N%pKRBubv;9g($ymXhO>END{kJ@>eGfm79q@I?4hQ0VPEY zGG+cSdS$Kgn8p8gILiQs?9<6z+c%jiW6?V{?>5r;a|zW_4ET&|td=#z8dSH#tO3Kx zSn{iywk2vwDp~Al!oOd5EM_a>EDCvkEHPGJFR))>r#~s2HPfDXP5t9)~3UxZANQVSe+r32T>Q8qEINOF4DJc|;G?7|X_nltT zoZcwElt6iA6sk((mhrRvyk{y$gjS}%ykGY#@%C;>#b;fDs-Pk|1unX&uUwq$?+@eX zg$rX?^-K!;GaZk&BJq#nr{{WkG0X23ajxcz+sZl#c=9&>O6Om(6-4m@`Atpbr!ejW zJ;{FUQshMCH8S7xjkm=WLaqoe6nm`J~QtT!vkK;uOW$l+JEx z3zKG#b1W#?tz~9Q@8-+(<%j~|OA3duqUgvd_U;ZVj?mbDd+#cO?EY%F1d~9&<@D9? zr>CAgQNNFVk5U@J%K9_?2blDU`#pPNnW@uehZrU}+FE*DqFY)l`lg}ImWA2DziLuk z*H1lCaI1|JPMs9@Hlcc@k)>x%j_4>D)Y8n|ugEqlpBwKO@WJ#$2&pYbxQ&X((l$hTs<$%t%qN0Mw8FC8)9*MN_5k#_} z&;|VGV=r&-f=?iL=QiZzD;tKpl5QQ>jq?3LFjRYMhjjdd#1uW}MR-z%jJ8tF9#T)vN*F8cOJ|Vhu9H}?SldY*I^gCIa??CC3xn5j#lsQgS?elf4 zu>zGB#}Up~y3w(`?wwO2cIh@rx9+i*)#c=1l<8MMqcWI(T6%yI2O5WQY26dUXy-o! z9>Q)wHVF}RivK_T>hkET8xe>`hnz3U>qc&2IL%aJf;gmZXwDWmgsg%=+|NK&4Vi_2 zHWLd2dwj>rHtKqu0H_WFOc1j}oqD<)Z>sqp85Bs1WYij&Y-CFBuHj!Qk9ZFfPpJ>)zAQ!`k&UC=!fYOA zSNd)p13=9BWP7p+xCTC||2H??5iuHkTGs^Bb#DE4?3S&WE@^?*FU4xV0_dV4oe`Jx zg>vAoHB&F>KfNK_B#^-}GG&Rzwcd9Cx@nBRt(9QAC_iZcLLbn-zp%G=cLGxs?}O+6 z0rj5F+?Pvxd;4y1GwJ6ah>K%w9+=JZnYK^@xz7Ng%MlBt+1M)I1;({_>KabB932m=y+>i?K*U_}GOVB~fvZ~e{~1W0}r6%|4I@qC*s1M?u!f`vIq!enatHZ$|?x=?a* zat=sXS$}u$SPNUxnLJLSJJ{pN8H&hCE-nYVM);MX=%AWGsQSq>q6JsCQ}`@S>U_?t z)QGgj(x|McU%uj0lJzxpbs``4j8em);|j=s7=VOkck28@m=($0f8Ff{r!(2?GY`AD+a7NDTWd|dDE{UW)|ec?1__!zX}F7(ewvZHZsQ(FM-C5RZsg6#w}?T%7fy!4yA z7+zDk;5}a%)DnTDlUD}b^>Jiu%;c(pt@(~-g+a909h5c=y%kCsrSZWgmXVT|i9M)R z@0l}jc;(r83%1zcwSaL05e^PcTs$Vd6ch2jL!WI~9$qU9Yj4ZvO6k8y^p?8-d^ce^pQi&0w%hOIH^;B+y9@5^uY3 zXiP$$F#2NytW>GNADBVAgSE$5rU77du7ZZ65KOE?aA2+i4d;KlBdDAK!{tv0_LSMl zA?V7bX$2R;)xaqTsh)(NTk(f)4s7;Mgvk-AkkhVS80vm6+XCR;3F>;z%ub*&ZMN$5 z4_m7MftdqIziMCOmOPTxU=`KZRtQ=liKD7369p-5AhT#6A<-~%^-Z`wQyL4mRm33F z@$!EXS+xI!Kx6v7gt@WWwNN$C7$*N)jiJg{pyoG;x>woM<8CY}DtbQp@9HUdEaxuy zKq4@Kz?Iv6V256|R{=o^z=?n~CUEc=lFI?*F~&>0nMWWr7LvX36lDYZc_808f(&N? ziXR;Fg7b!;V#JO9(AaKv+2zJzLYV9{uoxEYX82-Xp zQDxXth|=Gn^bLtSP0LYeNT=t*jxT@tfqMFM;nXRKt}gp{rAQlj_w=0``p_zoHXs&B zR?&v^us|n!n6-3;3(h0zxJRdk>z81DFa~H&Fyp~z9gwnmh)(HegwSO2HzmnSYui0(C2S77TTMJ(kW~4L#r>F+c#mcLpJWthzeWVaBjYPJ3%b)zEfPA*4crnDHdE_()SdmmfvLe_i;7L zsjkfM;i#U2`hJ(Hmj2>~K1VVOmKmd;wd=PS0oca_ptL~@jQ=1>7$lL=GBAi#??Z#@+`npGSleDaEiPEwx^vor757$igng5+w%4}i zvU%10fH2i~W$vY`67kQ+1@`lyj=OfO5aZZ$iM;fGbmX-;wG(Jc-9uP&SOZ4UFHTSfPJ6d&VV9tz+ z>ais^e;L1QmuNLJF*AKf)OheTTal6F0=sh{B5_|)EbU^zlHg~PWeam5^I?1%Pu8MJ zW%Qoc7CBsfn=@+t$Q>-|63h~XYUBOTQr2+V1bzc~B7LQNef2j*Wsi16iKN&5w#8qb z?YdDjB4^N-^NP1v3_>L;_XP)@w&7b{HfI~`>cL`P2$Lj-8diQy$j;T!JCfBal`YV< zMKcUwZinim#EdOZGH5)Z{A`*|p6Gf=hmz0ZjcY@zr%AMqF=&wL{H%4SK=WccCB-o} z9I-~N585*@#9(@B0HLary=1)M$=twwDdDJ*rIGi%kp(j z6HA901_G(m!Ydh+!zsy8h_3S277X-;M@Rp=>2@j(ZQm7~$$&PAuZ8as$b_#ejafE0 z6b!3sUn1!&JAycc&7|3Mq=(e7Yi1sA+zs%K@eVb-$yy~EimP@ALCtT90Zj0%XZApd zgdWpi`W4&YZQ1_)v%BQ$!E8sNb`Eg^w)K(K1NuakMEOJ5Nee51!wed}xPlW(2C%Y1 zqtvB)H&jQ$#Tpz@I=pH#J%)_BMdaNsp))0I;mJ}f;^q>?D&)w7tI#y;-jz>X-R}f+ z9%PX}`7Tt?ger7yP|U8t>yx~{Cgy|i|8YAYOL%edS}~8;dHVgEpUbis1>xLM!i!FW zXgbzo4xIJda#;8&A(sM;VUd)xf#G|$XI`9W;qHBnu_R3ejYgoUxkH>6Ed`>D+4*RA`xh)2qVbvQDnk{Zmz| zj-#Q5^!P<888C6y)GBUX6{?XI8ICnweA8L$38@`5g1-oq>$Q9o5I#je*osLFB!A6G zC{CAT?b(Z-nIJ>MKN~iFRff&)^zq^5bjsj92sPA*gqf~RO?_vW!6SIFLv$u3uuoG~ zT8iY3+S@1{o&N3^X1`%oX=yK-sQ&e`|1*Bv2yt5AUA44ZSr ztrZE~E*zq6jzOsKP{=sE#2)LcMe;`)23O7Jz$eAl)$nr~ zN!*XBE!($25z;|bQPHlVNB_=_DS_6;mcwngW)toTZ>VtGcdk8CN@~BZ;{}WS`;R`w z9y{)7e*LRkW0RI~6ouJmi%%G3UE*O`=|L64y$8b&-(=NB%gJyO3T0}Dh1*I6N^t^- zc@(BM4gp;wc)ZYQoi`JgCk<6Z|9(D0Nkx?x2wq**L!-2|zP|IA@4kA=h{tZj<-LAu z0adb|7^7XZA^P{yecw5So*P-Z(;EV18u?Bj1|guq*U6UFS;Z$$qBo+zF_yBl`nNrj z%gn1Db?{r;UXHTc54sBeW}^kSCr@014_gmzRa9`}xvio-!PG@3E3(*g z{cEh;pFhr3uQcO6+uSNdc_P>7fZh#;<10a^P+yBw4wV2CvX#=(6pm!Eq8^GXrJ0#V zCY1rs0$6_q45F<~3kVRtGt@;veQbkTM5Y-@qdCh_&k_8;Otba zPMpQgh=>lC(#IE*0Z*sVSv(oeu`NAbN7kvl;YS+Mi|HBXj^i<<>VS2t_ZI8VE z$;_M18{;fXbUw;PZC<9*I1oAkR`)z*T67B2;9yL^@2I^9b@dXTPbgkX=^y@hFJ54f zFe_ifTKKlU?wxNAZT#ofrH8S$_axzt;l=$w87=6j`av@8s0w+tdmrEBX zBKWulNoLp4+*??vY7<+HQ^OEO&;&^IIqcvbqknxRVYP8 z+v77tKr!^==0|H|=cVIqOZVn>2D+Lzba`9&ShKDAnI8NUiMP2UJfo5%qVvwbaAxFd zBYAGAQ{)u(VWppaWKmLsi#4iHc+6qt_(t2VeaCJrrO0DWbv&ID4OLae(Q5N`{h;a; zI|C+O2`FANokr{qh@;=mVXZ$izVz8nsOsKv`L&iuTEQ02-1r3O&fJg#^$4f&w^HUS z@p+rp<7Wy|AKE0^j^V8~8Qh7^Hr>1I;HEjb%Jc17jDA_TY=qH@k@uyf1jSYFZEB>C zHTJd#Tr!rv_HEdtvTI0k-e$ur8;|Mh0DdPUY&s+6avnH+ZgE0ek26S`Y71^}(MacW~^kj^T zTs!xjK|tjWMNeK&0~6TelU%zN=!awhM)o`}HPiEQZEg0P?iOb6AQc#5EW-rXAHOF} zXMcRv;}!i?a6Q1rgHdSte%g!~o%hPXx{t4Zy>+Q(0n+)of=FJXS$Jj<{C(F6boPHD_tJi$L> zEN@IY8N+@A(MTMjJHF#*A?!*WQYJrsxm81b%PY>%NqUyqrKfp*=!9IB6H;_H_44L^)F%>v1o_U9w_Fk0dt zl3>wdSfC@B^74y|8|TpPKE))*P+HZ;)Yg6qcjGU#ii^4DH17K*K`n=N1Z$JTF0vX& z&jj1uL~sxB@$W;ut$H(*l@=}5OJ75u&^>1YIMqO+J-GVuzDs*lXfS++l|w7T^3v6! z4?_hbnUeBPv{}I6Vzp&Zm7>rtna=O!T0%KJA*8jMezwD7&S$~=S5S8yqLHd)^aqg{Y zIDt?mENn{?78zL?uUkSP#@lGUfifSEKOB=JVk?t>&It>aS)au};~eoTzvt^0kpKL84A* z6UKAn7wOD4Jsny$*8ej8IL=(ZBmI*z7Uel#D0oNf->5#l?{l_06+Bo=*^CYR3}WTe z1pJR_2oZBSI;^|V4}SO;jgm=eOR@^NF-KqxeE!1r3hxc$BEqk-u&^;yK~L|%8Z_A$ z-g4;)%q1lyvf$s~PheVpc6H-e)lLmine!3fjtSRA;HrJJ_4L(UK(us&@p!i%{u?Wx zm&1I_^mLObGRmGrs|BL^DZsHM&d8ONtKr>0EQb@b^*+2(Gn;Ci+^uco_YbF)3+iev-aA$0EEvEFq9b z)aS-X)-ThdcDiSqRcH~KBdi{hImTrsB&k2KO@_5Ukvp_?i}y88qcYts(uC>T9m>Xn7{%1s;pGIPf+`$o_CSuD`m7`c(w9|sg#h{rY4y2zIZtb zVzfd)xX$Xon}dIXVCph>$F*gPbHVTDTOR)3%3P>q_j05?dG5#7uA^I2^s(oN83%%{c;E-Puxye=k%x0+V`#IIiU=J663sPd|QS(}T@lQ08Ho=uBKnT<&&! zUKQ)`l-qA>E)geZ;caaX3{w8f6f&)S`DXrs1S7Wg#n%P&$~3MpynsG3Yp6XBa| zG;6O9N%i$Kb$5d!(Vum3U|aywfG8g+_VMt$6}nUt$ju~sihY%+O%Ztr&8DqGVk+>G zQ&rcH$6$qP(2zTjb6s#kh**|O3s3XzrwI*tFv|=)AZqiC`RYJ0W8hiqQXg=~qGDVtmB49y%G8hEBd6q|o7w%a-5jTNE{lA) zP7QwvyYw*`nh%b6kfP*1v^$OCK0-KFq2o8O-V%aBkHD$3EZ%vco*Ks~1==$n%UH)MBu|$* zWu8`CZ~vM{5NqLyv5AsgQng_rLc706U2l zBt_^$q@lKjQ7V-W>_X*#><*qin|pXohdX9oJl;$jjw)SlctycqeWA;LfBM4*y29j7 zp1sK5f=frd+NimhpPN^^Pksbb7MkFGExkvtaM5>q>ch^lF~3`g_Ab%JJMUX&3LN@=2h+7 zvajZBSe(XhE*6>Hf$|6`C&piGY5GZ>94$)`d1cA`tmYRRoQ!C5(M;N17FtKR0 zPExH$F67eO5o~h0uHS1DgpX*|GWYJ`t5Kp)#XQRnAm9(e1~ZOnnFtzoQ^+~pA= z8;bX1h%Mkn$?dXqx7`ZEIrEC%_`26$b{b>s-WpZhIoszanL}7o8r7A^fLs_06*IHY zM8`4pTj`3FMm_cUPqf(iD86Jj)25a!r;{;B30dW}$V6*FQpcId#udxgBqJ!?VYd47RjLR2j=X z32rT6>|dvdcdruPM{x2kq}r{PrS*natiUenK= zDU*7=6mKjVj(Eio3+x{ZM*rM|KIIH&7eyV^XAhlhvrB>psvdv-Z7S+{AJScqBQu(_ch zPj1X6&U+7-;D^96$MEROr zzuNu3TyZ-IDrOS`Z*u9v{bi2|2;;e8`vYQVimFv<+of0;;?l+&1&re4qkR?x-e2_* zZ-4y;L9*;`+0b74k?(jv zBIj%bqHXPH}!fG>1 zn_k=GOg)l)FyJ4Rl!X>I?8ozSGv<|dWkixMehm0a?F4=CrRjkTHMKnQOR`Lh`Yj!y zk>ZD!eBNOu{br_^{#QNTD)9KV#awK*c67V}+K-RD@1*9cAu4#>(NS*hipA6&8IcUf zPXWr;8nNcPJ1-k&|E_e+hMMVck*_(<^|{X-Ik6?pbbH;r%1S9fKx_w3ov-%_q?tfs z5`V86bvue6Z8pYt?N;J-XUKPuE^J)q6Rvdq6O}b`{z<*=Wr~%NJ6x-5Z*hwH{AOgn zrM8X65-}))?kM(dgy753lE1p2?f5P%ejqT58`MNUb0j=K@0R07*XP-LskkX+ta1H5 z4!_Y{y(pq608N9~m2ZJ4s(ihNOE1;p;_VZ5O0nuwidG9v#ce3ArJ6r#qx8b@4}UW@ zuOl?yY;Z-I1@!dYW%0v5$6Z_!!{={>*Si}|$^w|uU?P+>I3P9UCimDgC|bI&?;2UY zgLv!i>9Y`iq6q)m2rzU;oC;VWo*W*OrH(p2&;PUQI_R3k{4KTW8DSgoc!+ui7)~ zg|OL0!I3-miZ}8cT#Zl1G?noK0<#G)-I@pk^aU_LCMkKt1mJ$vO_z90I~Xp^4OVQ~ ziKU21Yz6^Qtf_+d6&XtYLCw)fGMSwEPa0|3VLcBz2+(#}(jGZDIQYQx^fSO7UHUbW z4qgd@AVA`L-?JfK%%Xu@_jv#Fu-OEXU3ZPw4uD-XibN-c9p9*r)PVpUnevOw%F0?~ zHt`$>Pz{Yn3u~363aF=It(~1a>O^^Gf_2Jz8zYy;Hf5TyPUfXhHuHf%DgBT05=d^s z2m${Ja$7E#TZ@}uu#}`bclM1oz>Oiv6X2lFyh>F@PkwLw=&2ce%q6IL)A+1(7M?{jZn>TNw6WW{i?{9XU z1?5ya6mUh!C);(nxD%^P#LaYUFP0_J;EXx6`uI z31Cfx`byz)MwoZuJrG;~g`tnH>|%}>A5WS2DIlChYk_Od4PO}vFRtkg>sf#U!o^Lp zds#tHD6>(d9fK^)^>A6ttn&SGL^uNIv4yGAkSSIJ49N>6j?AtP3{spHD7(1eLRZ6a zG{v*@$(SA&G@#|s{#8}p{S9te)z#V_?;cpQH=lMSc!J=>p6PpE z3rxTT1ds#s2Wv zzo-fh0^A~(C|TvELCg zVa#X;_?Bf+em)BbeHHMYu!*Q0wp7ywy?_Z<1`q&m|K;T5IXyKc&@IWl&t!7=TuYpu zu%R`ym+eQt2zdr+&B!s2z<>fV$w?jdzMbGe|mShA5J9+Zto!Z*&^7v&qlor6uWw;3< zl>|OrgO_K~APccXNF)-{VF5li7U2UyuQfWUT0v|QLe-Z*J+;g(9|!e*c7kpkD68|I zR;w2E?#ZsNm$-~0CYjXRpGaHaDYma zN02Pa78u9A28#y*Ae}H0`nVNAb6^v$`q4d00bkkx;xj>%;9s)u*wf^WdH z{7I~Q6-L`@(C&do`-OJ!%;>k8Wl^Igjr;LWbKxa9y~{1-RzULuRN4tCR5%4C$v%Zt zG@Y65Gbyc{an8NkS{Wo+L7|t&kM**{7QW4mU47PS*r@=0WdiSoS_qW9JOy|tMt~Yj zbDwAHV&TUU?yI`pim)TNM-B`S@tJ=JBIuc29k3YzW~7z>Ag>WBKSDm^&8~3R6Hyx( ztLUQuiVq9j-@*HT+qyNyla9|I!+eGyl_qBx)tP~f=|~pLTd1t4&p8XiP1FfcRFCHA z3>v)Dz2+bmI|NKbh`f-;BUA}?Tadg8W#~b{%W=)KZRx4gqq863bv=E3&WPO*Sy=5k z#F`MfD+Fo5T;>|2;fILC(9tt6@XghkTZ^RCN4qW<&A&XhHVy5c29#^LwTO8@$c7Mm zRsiw2A?b`s%#Rh5o zIZp-N+kHGd8y;Gi8lQyaZvj;HC8~j!L3v{bg(GT!G3a$W==;N0w8PSl-jQgbul}!!Xnky?|XtTLw>t0=wDA+SWx}Pm?Nmk7My12 z&SHqb+QY=Hf$hnyJ;$KuLtSX_k*x5g!5wVrx`}ljuuiana#n)GZl^3QEstaYg{T*; z%382jdH{@-4b#Nt)mFPS(lTuOl`CIdR+?0lmCIpt7ej)uS?R~*!e_i|i#pA-d%S)U zG)2mR+aPzA;$Oc`S~0q8ty!uu9GEe%n)0;{Olhxe?TR@X?*C?Q|35hZ|L!8%RY36F z0mVLSqUSt4+s`?G8{+Ki0NkWV)?o~mC5MPehkWNI2rv&e=PrI6IgwUVRYd^VD%jE*5{1F9yD=aGAXCU;Pky5f?n^qrAh0akqk7*IfyYPyz$+rK<%BJqM}=?! z@1z7>9O}tUKD-@0OPF}lyDS3hQ4?T(eK@3B1mFOm2%NQzO%z0qQGp&j};*sI>(?%x`Kuxu0h zQ@|wc9}kBznX}B!egIq61F@8BfSj&FCcqZb%!Ftl0_P#^EE2DM3|sth-ir%O4fuLD z772EFcn}fz04!W6%NFol8i4mk3ey0n+@cIdSHx*pk;RAyjF!J0(}X?oDM-Fi2Fr&Y z*#iOI2;B+O={U5F!C<74KshYiWQoBl>K)%GX>tQ?y0subMOpF4{X`01SG!a8J--1< z;1w6{?h7L)C#Q077kJovP#-t@qI6zZzY&Yo2e$En{@5MO5XYt>R5Ky=5PbGAgp!bH zg~~7qIXT-AxRoaY!kr?k%e|}d2$2R$jPQOPutFd&>N;~&D;UhQh@`R_ZY@bezmSL+ zo)*a7w?xL$Ubkf&_{#_G(dp|EumNJ1{G8AK3#}_~V#kY_T+4VZ3kZu{HJ`3*1w$dV z_M0n)lNp_Tz(EjHQh^Vm8^g4qU405oMg>fG)`ajv!f#hUt=4bY0d5LEPmo{Qaz_Xn z(-%>D*F0uICX~pA8=>xzYW&yysz&C6v6s}1`Vsw-h(_UmF8YrN{(p^vU#q-Jho!_m TRdX|V;Gc!rQPWZrSMq-WzJWyJ literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_17_1.png b/docs/images/specfem2d_example_files/specfem2d_example_17_1.png new file mode 100644 index 0000000000000000000000000000000000000000..d61392e9a2ae4bb009da654ee3f3330495488b44 GIT binary patch literal 58836 zcmeFZc{rDEyEXnXl_Hr!GAl|llp-@3QX)l4W+hQ(GLsMqsgwqkCaDaSq0F$=YKT<2Qrydw_kX|Gw$y_!OytkK!4 zafm{pE+hZZufSKvFRxL@U%TBkkGdarvUNXa<$98Gz{=hEjFbDB)7Ao>Ctcl6J2~!< z*eS7HT)@uV-PuiEQu6G-|A2&(>nTaGUHqE3$SUW($J{8CwN~UmsuYzcrzw@eg8-A=9KV|QuE^w9k?TUc|_NsImx82_a1+i=tx)ik8+%T6j<6xSl+Cf8m zT0st40|DyQM^l70A2>*Rey#eN(+@w?E-l61z2^2}P_Tq5KLk}Ce+1^(X}{BsVJZ90n2)6>%zf4C!?5WQa7nwD_|jf6#^ zsVnEt$`peK2cPIAd@f{slIYd7O6K%u+Bh*IbyZc$XyLr$!hHL3WtKyusj}n1=SQFH zWaycgvh&7T&$VmL{~p1Cqf${(`I>6P5TiIrAI+;^EBia)Tw6)mT9wOhJ%-dD)ZcUK z`^aZ8|NYge`}KA_ZLDl;BWdS~gQ!vtKVhP#re%1|7Fzj*5ke7aC*_wrIq}C z%q1lyDTYs3`2uFG78YmPJ-e@7yCxm5;ML;Ymw;zi9r=;P!p|Rr+j&~~!t~AOfgyc8 zy(3W{K76Q{9{6IA<7mberS&zw4>usE`<=|7i<~flfqBOjX#L4H>o{xG!&z z{W!Yx^{e4?iy}V%KhtU_PMp|cdf#SwaV&6R_*LDF-zVkbZrzFyP4Z)vmX;o$nW@4J z1Rr~4Yc=)rgPeOm^JT3Etu{+z%S&q|^T(-^A3TV?ecS%r@~@%B`e(+HGEQwgot>St z^J7KQ=SEFmJ2Wz_T+64i_~%z|Ccob}Rd8_dcrne|j-m7-iO&x4QdZPqYx&dUkEEL` zH8k$9tyRU!OZomjW0-EvE2^JZ?vP#(mR|U0^+hJ$LyNW3Bh8#e3zH1CAMZwddvUzG zG?c;XSA#Ljh7FOz+R^tsM}AO(x~pOy?77I4Vo{{r=H17Oq||YdKcM(odf}xDE7x}6 z@2holRs4bEB-qs_(<#pn?>KSll+B;%f!wjedFR=2s}`3kUP{p2yF4v{%Zqz;bV|0S z=Lc&=ad-B-yB05Pv!ZbE_wl=OF4Tg8f~k$!))lK|>^`Y_Jl_{5mYRNX&4w_XYjQce zFOS#!9{zrz(ISwyDw?;fGHOGw%dK0t=+~^N2wa}GAm{YWn>S7Q-aABe9T zo@~NW3X6(r|5EJxm{9iV{vK)P4%NJ|!?=WW;F4cM=F912F_yT)!PVOFx*{yRyxUB& z?0d(TDk3=JGVabY71QUr&9HsX+6g@HumL7On-AuI@fO3hxDsgPxjxfis9#^ zl#`oiaC!AzeEE$_cV+V7CwhDqeYbX;qNPYXwJGMR;X)0+srE;{b;5dcZso>WQzcW8xpQa9)#YY?3B>7G1P^q@$y6jQjR1k0}o?g=qZ=luTtyF}H8ySooln45E)jCs?| z^0NC|^KzQ|1ck)JZ|Gd9`!wK=2j0lUrx=dI(bQUmjWT?8WKDt3ud6ZJ%=5XhP1?@R zQtImJpYEyA=qAW#9jtp+ZzqK)eSS2P8rz_av}2Ov7**gqqfUR`d+O(X$JVzI1^DB7j zQkW$Rrmy;)L3W}JLUaa`Wp66<&ztSIu(rHBf{o$VU5W<2tBHUtziAP$1-BtdGPA)O z*OL=1Zgmk$i}R7VUoF4MccMbuw;z&m_@;YQoMUbRo4}6Lovm;xLEb~7Is0tIsU&}q zT~2M{^5;gyr+o_K{QtaecBpy(eyaa*K9l~(Td}c%0e=QW>#;j7V+Av-uf2Q7?KU@g z(%{j)brWsAWAD;GG}LCiJHd*>(1n{z4qRSJwr@!7YI)+9>gkghlf1_sDQx=L2^vuD{i9QyD(akrb6 zVXC3d!jQ!>>l6JXj?<@4lK|teva+%+4OumrtFkn^hjOJ|_7SJKmztdncWhkTrjU#P zenjLZZdph1-(&5PpTB&mD7mmwGm>LlxzbFFu&bL}Z`HmXWwEib>dzW3jgLE%0C(xB zW@&KSyQ3H>CueZ>-8E4<3i6u6IWvw(&7R)ghz+ui;pOETEbQzX%>(96-W=;g2Bf1* z{25AbZZ*#HJj=q$DinO-LMVb`&4yjK|>3=D*Xh4(0DTa~S#QhjY#uf9&M9ch$Gbzy0K zY*PA^l^pi;;iE_Is!-5Ek33uF_Oo`P|F+^AL~rSX#?AhhC0hA>`UM-ZbXKh4-YDqY~s? zk_Y>``jP@UDCIx097gyg=^7$AB~#O0IJFn1x_OSa95XEnF#FZC?Ra+h=`W8XP^nFZ ze`Jvgy7y~}!5&&Vx(MXp_uUVZ8jYSEdCFIG=KJYU{={Gjg(% zaR8Ie@;rrh>^RIfRl#XN|Db*|@X%wQvuUN{IE@vFO1|aDOPWYQ8YfOXl=GQR`7#l@ zrYySW=g&(wwjIADW|SJ9pRah)2H>Oo!dm6c)HE~|Z3Vs~qcJftoN-%?Ih=|XvzxLU zZq81B(bpXM_CmAutw#lrRj=*Ie+_Q3|Mq;#4e?__0kfSeW3OBhz}<#*R-QruD23$qh?Ni%#MM_tX$k+xK08!zEx3u&b?a230k2!O^Zq|gi&J$fH)D1) zlx6p^m;N!Btd13KH9zcfU1#%1Yo2k|QE??DGYu`RO9;Hk>(|-ma8{&9FdsT}$Z$tr zG(svO)#zEO`t5B_Ay$GR@e1eCC>_os@(K#ar-#2Eo}Hg>-ZsfvD&K5Buf(n%j!Up` zaEJhvY~tS_@1Bxkl9k%(U{UDzh9ZEoz9nR{>8+60%wIhXS_Zy6p`%E<{nX7#FG3k6 z88Y>6DOYr0QYELJj)4P7fxbS=!8oVydfVYsB_23K)Imp!0t%YlbRH(XnrRPg@2+BI z`QAk>Ke?NViV6pm>+033&e%P1i$WeCAudI)jMgR`aGtz#V_Nq1V!O`%pcSMA4!S^K z1AAJFFXM^}+BqR1Awmg79z)+yp5#0R*(n`})?B~2?QMQj2SP4he4m38jdRNe7|A7V z9rE679|PATHx5xjTFQKd_wL=hxuh&9p2JP&k>&0=G^TmRDEZAwQSKeMvn#cm^a{GV zjM02bsoc#e2Eur}r#re-7j@)`A%U(_I zMCafBLV(-9*NY^v1J$opo}~aTm;L;3N80}DX4(}iIcZif7H8U2 z^_XY&)&tQiavSG3whAQ#B6u^7iibx;P*F5AHLU>nJiC8>Oo&7vTfM)r4SVG5{Si;x zi6`i9%Cw11dw1B|+ndB6!C4k6mTO9BRx*`iw__L^}VwBXU6H#2wfTqfr$c} zH`7l{Oi0wNQe9fw+J5*QX(q^`9)7Ir(saK3R*cFL7v)o-zi$lx9*q-V7yJ$(lhi*y zwj+P)qXM(K+(MOKZM-z;n6MlMFHClB6cx3>Cn82)-TAfE3Gi$rZpv@!gY40lCsrY} zFXA`}OG>UKeFA9!%FD|;B197@mS_8V?M~$)aUqJIj_yBjKohGjcM(;}LBUFh_@Yp|fnAJ3xOPIfOdMBg|;^L;k=8X{{K(sNVNCyECi!Xef%y z3scqa-|xX4vaDMdipp!#SsE&bQ+ee1(fjr^ztaO38E{%kUZ4JQ5ZGlH387F@Mut6# zdnYwTabdhHUfEwhG2qW>(_CjNoXNEkW^Y3PH#~dG~Yhxpmo0t0L9<%%(x2hH}?AVkWKq?)GX=#=RT2bl<7^Ci;+-u}L2161Q z&dDqCv&8N@{mqU!PUNXprojU(rZN4!dzsDNx|2j-YA16ECtLbNHM7x^mHPJ>zcKp0 zk6;rmFIxH~X#hCXIW{J_u(+s+2QM#LUUbU)NEa<@a~R#QH_uG z-z=Y<=+@NLy^JQAfXL)?V{O)TiAtV*i-1a+Go!7VhKAR1a+%My`{%?fdcQ2Ih{UOk z?EjJVjGmE^9gA%Z>cMk^C%x5+v8c#MHjlxtECB%l$wyw8SoeRr?>W}~Q0JNk7Dr?6 z-f(g!^71B%fBGMEp%L}$^XrW>E;l>Zx@loyLF3WBI1PMw#afjGOIgS6%Ba6MmQ=*_ z#>kEi%X%cOiP5|KxM5gC%}`_X$F(;O z>$K3SKZ-fY`VWtI6yIQ4!z0Ix$jtSgdi+INSnG07iDfaOZvSYhSbS}*uHt01FzNHr z!7(Gd0*Q71YP8U{wS8=V2E8*Fp1W;8slA!#vPpyuetW@yZU+gXyZ5Gr){!GOT6Y3k zcg7i;tDz_9=|lx5D4Ly*Y*vofx#yytjfX&<3es5-Sq{e=ngzv70O12 zOSe|TZanNopw!N+M)N&)cAXsuO6>Z6DoNAFNB*&1!rRr8g|ju&^)pI7J*VETFd4+CCvd*fr;LRq}R%lex1UM-p6yd zV{c6yFu_~*r+#N}(!dEI=^By7ej6nmw_j6*sw*bL9Tl(Sn{7V~qC`VgHK;l205a1? zN;n$*l<0Fq-wtSKYcpJX*E2bxp-~uw?e4vz_oNIJ&1Jkpjc2!O`RLNRtw-(wz^0D) z;btzQhziTeaRFk0X*;jIBXS>i)CwTCs!Qv(9xMv*r=_L62RPA`cTO^dIbPO@58F&m zydsFEznnx&d-mB4e`dyFxOdtYx3}}7zH=#fil>?7iNw77_)!a`l?A*XNU=FDSJ&+b zhEH$YPQ`!tscx2&(@MA?NUz%n0Uqb=aIOmC~K9buh^eSQue1%P_?eb zoNdaW!iF!+cBf{dvdIBDU%7t0XL1gOHwL%F$fwveI)R5OFZ7=`RZa}A=9FS&i#rTV z9H#Z4WU}|Y5ttd3Xtbp^J=L-3-YG%o`9Rt+;e3{&x@Dp-Q$&UE^hi&f{dvbJ!+qdT zZGr+PPyyL`pPA7p0L*T*L6ymxk>mB+{GG^BTrzgdA=Xi&K!SuT15;#!`z2@V_ek?a z-?0Ktzz7N@Ffh>X_xDq|uDzF95a+ntRsjh{ok_{4U> zZQIu9=;)9mAPpc3D(n4#&C8IDg%T4|J5-xw)s6`z=6zj7?_Z zNxPyIMi0gvrKrBL{m?USw%ccVGxx4DcAP(Wl>%_YK>f>ez&-(S*!tfZk3P_X}| zL=q z&zZ_UnVc|r!6Bazy`h3Rw$6%6M69Z-yL+O^CdLZsoouPD2pfpgsQJ;nwOE^LRas}7 zIgqGI5$5C7!ZG*Ierb+gXnC}sb2mMWDvCB0g^*ttGA3uSbix-qw;HEeB40JVKFua! zo=+cHArzzH(iOrJMrB!jMUZ5vCGf&!XLi{Petp{i?Zutup~&cH&t@8vLkPT>%3uBU zz?(d(IC+HVBqTC0p*%RDF)78{x*{7lZoCI((XPF)V6c#YUlEZNz)?a#&GnBDYyb}8 z1nKC(r4={!ber+ay5AEqO24`Ie21lT&@!jmK}@R23|t(tAVe{+)OocFD@ax(?ZVPb z(el&Eii(Po6WgucUEM?$M4W?xBufyktq+2po=`Y^T87(l*OWU0r z&CYekYV(yCTlj|pyZ?x4M@2-DnLwi}pI-=aK|n%+sWtE1O3Q?S1SQ{H=Ds64!DgHB z9S8E`QTA&ZA9tMab*hJ)x5S&4) zxyfGoRjV?OOVJ%w`O#kBD+@+7^Yj-HdcjXm^!XRicy4li0XScQjyw#o(F)vDf6JR4 zWGxUMay&_3^mB9NTKs2Pfk%qj^c6enr|v5Gej7RR{qtG09hyGd&NgS$QSQon)O0Q) z(Otmvo0{G&o42vH&Nx-aM}TS3@{&TD>6>8C2i>G+Lqzww00dM3_!%i(qNKd=n|W#9@50RfxlVaDn8|IWK7J(?`JCWy{9s~r)){-1_pAMS4M|`Ls<%FeC5ua zNF3R?YL9*V@0ule=Euv{@trCs`9)P$!HY zHoml}VxoLI=&*J7?)7(MohpNULm)6;}}HAgZ{5i*^szg(IbtczZ6Ek zN8LP{=eZ4Se+FnOqg&NAaa$*FE94otcG_R(Y*P|So;;7urVfYVggzk>^u+GFBY+?C z8Q@V!aRFDOrlCPQS}b%n;ZPWm>p>d3<2vgKT>TFdfkb?==n?Ku!XmzYg4Z zewlI^x)yEJ&v9H;UdhSRa~F9?a-#7Exk(9pNd%H;o#Qatm>4v#qBKq%0Tkh zjh9l}iF#OkW><4o6%)W#!0!1I%1uPg}U;oCTm_I)gEL zVgn+Q>Ox5n9{y%a=v)TrN};>vqOAt)6q1o4_4>?rR^+&s$FIwR974aBcc-YRsLV}N zLylK`ef&SafCeNa zAfWp2;lpa1o7;|yP{L7cBe0Q?gfQ3U^VaxB?fWvsCu4UdJUSXYJ7DIhdrK$-r^eBv z@#ITtYHFS{U?I$Eq0B*IHYYa$g3y$d9-+;f_afx^Cv%aaFDZ=WA11Urq&D@9n>Izn z3Tv;XbRmun6Lx^}gz&HN_uJ+LCTCjT8cmP2TlD|($#m<}YiL3(yWe16ftpc{9Tinx zUT~{VHQI{IF%lqAxV+>`*8lCfF^R(2E(Y=|6ZqK3zC>TWoukko;sQO9#LB@CYeMKD za#lsu2HCrX#u`0&B#fkP>5@(xy%>riGz2^;Aca|}u~v2%<9Z=TRn;Fq-iXn$nnkXV z;CDd#M6QF5->6Cj2Zc)YOk4gj ztomU4YN78`qIczKF3%p2+(eIqdSK|0k6M@vRUy^wxHt#Vzz8dLvF{InhK93q#@@Yq zoi~I*@)Q2^dt|FtG|zw(qk`+gtP7+XK%=;r54Uz`Qfy=_{ECD&2?|tP5B`C7-oWmojvNYt|&_UBotafh`4#6yCbH^~iHotjs4E1Lm5# zDkAIiz1?V6t`y$5krtv&F@BlhSN{LMZf^J^i6QrqAL~G$06~yyIikF439{TcYS9Cr zO!8Gy`E#5s@*3Y__mNJXo8@t!PV7NKQ{S_P)EB~`g!-JV=tVmcbmUp6-jl7~=eY0K*C^y$K>0rSo!v{crUJ?}ivvr=yFI=dQ&5-DEscax3WxzW3WOGxq5l-oNU z9?LsQaS`QzF5vVTG)E(e+CI-+pKs-eq!YQeiZtmE8=VKgZqZFt{QjWI$8{7J7D5LD zRB)(O)~b}2ctFs^mSQJ~I#8RW!Vj}cIfG=r<+(I)k;zEdTq*(i@B8vydsh<{_l;X$ zGBA;2di|MQ@OZ2YT$or%@;6GC(XaP=9UUdW zz15;uj%#m?Cx7$p54I%O8>%X^u|4Q^)*&JfH)xJFWun^savqmd z1fG}R*wm_h?MYDJBeooVT@=U7o&y$ zuXW(Qj`Z{m!$yKGxF>zXt~2zM{)T5a2W^fI5N?2mf)W96n|mJlJk{288wZ2W@8JkE z`_(%d5FI!>T3|FRWw=putz@_-fCPwn!m|pM#foq<($} zFdC1XGX>o7w#T}+g8$X2rb@fGxWvnQi23{)32jTGO{(bvONs@&1i;E~P zupEt-v*}v`QXI{+4po%cxpN(Mr2^`7I07@*uMiYsCsw%f>ZbjQ0gI?^m5|6uqXWV6 z9!^(kG%E}W8(~!hus)C9?Lpl<+I@kL9%aeqrBdQsd9sEW zFNhGj5D`0R0%W!Vh9Eq#@3b%= zHDYFCfrWPMIz=f!cAT)X;i6cGS3> zygKVl(q4c6Fb?~dO^lKVIkWo0iQYfg8$8kDjlFwU93r~LzI~Tk%r*%MssX|hDhs|F zO*k8f@S-TOX_F?-zOH%y4Lh+Uxn8S$*g6MlchUjN@{4+i#6StWUAk`WIW%)F8V*#zQu8aPZIJLx&K2 z4MIxhFCp^55b|T&U7F_w!IEZgHx?Q1JNx6c8Z?%LC4MCzcF_Njx!6m~%CLLUptY$f zz@iawH9dU%xQoz4|C08-O})J2zNMK(g1~^xZv$>wBK??&o&9{lP{T9MrMW(SuurQA z{J^0kGAX4PMNl%v;m7NzWpruT?bnFtq)rdiueI}|rPMv-k5nHg?VZ*8YLb#b_&ztu zS`9!|Mp!U(y*7v?IqykgLF&keP6+qguzcj6>lP3o#E1%2;Uae41_|Lm@=)q1!D!rq z5Z`gt+7BRo6J^aAusSC)5!yy;X%dcZC&69t3U_BYT&>xt*m?R^$P4@^C8&9*4Kf7b z!T%y?Jgx$<9D-*pN1pHPw(y&v+rEAKI70h<)e0t_a3Yk#Hj|nOJ_-$#7Itp6|A;z0 zj7bcDLs!ep4bXluLWN3Y61|F5g%89AVeUCI^8M9H@WWtsXedN0_q_7~>>^j4(hLu= z$706?p_-syo%BtY0jeTbL?(<4RCD`@Z6Pu*cq_YeNm>tL_s7DNMriK8hOaQ>>~Lfr zD`2e2dC9o#AXW61Ze3kMQZ#QUErme70M}V+Xdp2gU^_BSzUN@%kvphdh<|{T1f`ni z5EsBg2|`;%aQ1Bb@>1Vq7F(>7HP>U;r^p1PNhj(&y&y9`zmu%(f3NXJiAkXSCv+D% zS14{B7R!G)Q;)p3geu(yCa?^-BGYTan(}Rz5f)klndcKaB_2gDW_0;eDH~L+ND9Y? zn(uBTkPZ$)V&ouxZpXI#2xK?$V=rkD=|{4UMRRO3xd#A1nu;T7rV%iFylYk5NT9^R{&J``RH|)@FR-Pa zV*>~==iw%4&|3{wk-K4cC+ZMvxEzFIfHRF9wieX$Vx%-IZ45X%8j8tlyUuCfPq{8O z?xQX1gR(+zO`m!MH2XhwLabsFA$IAMLyuN3EzLXSgNey??xaR@`iNT=SR@}^CHy~9 zL~BIHNCf06KuFT5dA9({M?wO${8@V|*JFr-SPhUGtcgPcq?kQtAvD(x7^zAK`F7m4}2v=l; zRM9=HB$B*3O~yec+_5T{j)9g^4=>Qg8PSa!!+|iu(GLK$XhQSk+I}LuWuWA6Zq#k7 zcR)p?glZyjgaWl;zc}HuI1;rV{xY~&h;a%Q--9hc*j>n->}Uig?LTD5o^8oBPy`=C z?5^M_&?kx`8*gp%pE1k(QA?;3m{7uzp{%61{;~~+^_3o(w5GpC$tO)cxffUk;$dOj ztFNE4;bvl@goxhV%|w<*5ro3b27NDUgXl>7*&iHRkYNc+L$*!R(()cLsX>@{WpA@C0=8X(7f?cp zLl;XMfrv55>b%ITPKYCtiHJ9iSa;ugIAp?$dGU@1BezVoqp_;cq!PCv`x*m`8u@9U z`gC=5NjbIUe=cMf64NA;NIh=A9AN-HWcI>wCtVz%3{hlbYQh1GfcN=@i&H@Zs@QJM^*%b5)uN1 z!5#JZwIpQp6hnH!D~XBGPz)q=A8)^CmCI$8@5KT%AwKdRlT>1C7~L5AWwtZIk+aNM z8t0UXayLAWQ&6k00k?YRv)ci?+(FT~cFp9MA*)_+={#Z))KXGkk4dWPs>~BtYJ@mO z|8*n(-7uB02ky_{Rvbd3rNuNosnJdb8__=0_h|Cs--)f7hr`2XLX0n|d+Mb&*73rn z1dJ-h%=UMTEA9ZAzUq%U6~&1RmY-I7jpTbj7Jshq!+|d|mX-gV+&Xzjji2(M#Mdf* zZv;a>8b!=_q3gikH8PQEG_Oj0r_OOWizFyV-n)Tmw$Wb9y`0uU`>cvjq+DL1NZI49Mt=FHjvs_I5|l|#_8xx^c^kX zwD7y{lL$X#c}0bwxHuyis_@9jG911AgD3xpe_s>Ysz_` zT+++`m3lyTbfY{I9R}IqA$JkV7`RzNTTEtxYb5Ckk}IB-WK}8m{(}pE#dhCcZlYMu zj(3t&2tJWQA^ic4A`vs%Kfd22`_C+#DH**O93mq$6I~U=ra;6VJV3)DX~jqzK)6ul zY{+cn@&5{O3w+1a|G>z>EwTu8Ev8`Xlkr zarLeSwE#;ML`E>)S$WHF6%c_J+Obg;+7)xZKLby4UAk95EXDX!?6qqbpkC8tg!Mua zAUZJ_q~hQR0|4b5a+vhEyPgd2C0&P0<=&4~sUuBUU-I*qm4I~*BF0OF2vfXKUqtuo!wxkie>Kv)!Jv}|ig&LC- z7={o^x;q9u%!{a0aRz!T?6H-kJOAQ9Ts}hFTq0r^h3wL=#vCp6{>i zt;(tOEgj{PeM9E{CtpgeGbt2n8yn135svTu%vf{IT9}JKJnXq|&bf~1-&ShFzMQNd z;85#9uYP@gj12_bUR~XC>}D^AT~OB2EZD>I1VaM}rGS(uw563ZD_RX_@q zp|zo*AlD0${$ARqvij8ra*W{$DAQxDxcoPHR1@EyFfb29OLeH52!b%6CU=;5_^!pr z(+kpqk+Plfg4%?r>wa|8TpiF6-m~-Z@m%l#blktlceTnN3I$4>5O{eeN`GTIKR}P+ zg5;;F(;>{suO*X{_wC=m2UnLUKc|%vTXc?@CDv)*`GPSkg@lUIH>zUANh@%K zg(m-fNcDfGB)a@2lMm(FR~`Cq5>n5rqkp&W1MyE;`jcG@!EgO zUeb0}yS$v1K9-Ke>zr3vLw@*w&)R0{2LF?X+wxvCh?^^N#sw~%{yW0^e~+9x{1awh z){B4IAl{~M|9fO#vTMwa|89EsgA~$q+-aW#I-dg0AwQ4j>mO79lM(*INbg?>((v&> zLF?bO{J%@UzY^imd@pHoc0PSN7!no+GJu0LBx5L6OiqC6uM}=FQ$w8!h7}42%5Vlr zfPr{(EG-3KV=$~uzqApCAhN#)(mC7CzIeT=~I`Xv( z%;^oYh%*87eCP^ZDl{U|(nM)>k9(uvk;Zshd1WQxUqat%iOK&{i8!IAJp1GG?fEfs zx4)qW5Y=2vY@f$6v3wAI3Imviyvs1$jek4t)QNPFa^%JB)~Wo-nyr)|plY8Px-0wt z&O`TH`~3N{p~d{%TuEJBU9U~8?GB<grU#OLuy;b0;997|yhQ&*bu8WtZLGgBXn0fnl~7Z00z6_4iew z%*3}M1>eG(kHjv5?0gh{?8<1~NN7XiC`QnOOEKp|PdQrPvy(VYMw)Y=mGH^AbkP#e z2bzB}&P&NS@s1U7L;8ABmWkUA8c#Rs3J8o9l>E7$ci;wL2Q43pKqtC1U_vGO&`t>I z;95ISvb=^~is4hb z0_X(RpvDF+fro#pA7ZUY0}p55(0EpFPmjR1Z3jGH)<~Wl0Vp5`9+5_dY=%+LA@~zR zouUX%f;v68$>-H|JN*B+la80nL2GHPFv&g>0Uo>yW0n(@?*&Bnx!YoDiUo70TbX#| zEYDfsAt(aqIXx7i84|KUvC>WkZuJ(&%hR(xJtv?lHH7NMl2qWbUVA=

*Bn%4G8UbGMtk$%WT&?EL1Epxd--habES#8!Zl zk!2tHXj}6njbKRgRoZ6h=t^Ik%hMNzhJDCTB7kyD4i0Z#z9S-7NX%>#N7!1---4F8 zhufIkR|D+Y2?ZWQipC$_ikZD})hv`06I+c&1I8ei-9P`Lr$C^m2Cn8ltdW|zdE$F% zjNnjNs`zf3n3{TZ{MJ6)Z;p0)j@P2r#x0prEm%?H2#u_(FL4mSl+%*%L#AiL32Dkc zduJgYJrSY5P)jHjB1&KodFM~4iDc?cQ3NRz@CsBeT9<(itd$9b|>ncJDq#*w9lktFqv~crX z&(p)~-CD@HSH~I$+(}D8u7f@swh;;*tqK{SR~nEVYrcVy^RFFSxiQ4$1!{K!v3|2y zfmoJU3)EDd#@iknmjZcA>I>&SGRZ_>|2y)_)Lm@D&ly^Oc0G`ic}5goM~19Ktv~17 zJ8m0E(XQ|r@tJgNE&bE!5?aWY8o%$Xf-N~~$)79#?F}PIt$#bdpCg`j!7m#2p8r3= z&A-8=gf{Ae65mH_I4~_v{TEdKSMM$Pi!8;y^e5eL_kTTpp|^hEc~?F+A7f8m?Y6i3NZ)kBtC;Hz|2ze%)Y77>~x zwcl{mo7-=_4=4cgs+Bke#v&lTZR8sgUaUdu10uvk0(m>0OtsCu{tNiXcSPcT4yPZn zczgec^<;kAt?+Qiwd8kqXRGDr+WPHRn3nGze#><=B0N6^xW0z=)iIg`J@);~63_1E zWSAB(tvH!l&B#5LedN`6Am`tEI`oLKs78fzC#~`Ij^jt8&1Gq}v&8z6&q{7-pyu2} zJ8w_%)SfGp;$majO*Y_Bm*;zat{{f0-;36AB0?|m`j=#D(FU6Ra`VUka78~=ly(+1#k~d2cZ1A~Z5KD!{;pnl?zB!jO_;S%YJYxH zN=Ufht?$oWxI;YTJ9p7L{8BG8VqYh?_el8|gMroGasK}=+Q8M-RSJqd&L0^`Lmn=J zYpG`*ma9m}re9wi=Y$xOJCv3uWmCxr*m0xZ;g=?WZgTU_&9ufL$1I&fzBemrAM**6 zJFfev;vU`Qw&5M7)ou+b1~jNR7z1LY2%xN@VIvTUP_1xa=e4o3M z9sD1o1%1-Nif((6ri7QQlQnJ`TN%czyaSd~dLH)PK4|k@4;fiVM&|2ORqwLGpCtYp z#VT^292&1BxGNRTJW2mGi$h{DCi<*A)!+!$ce-TmjMZg(8?5I zB_M4kuo~RbN<7L{#LElfop5ZLZ?z^FallhP@x*EDeZ-u2W6$*!kvcZ#w${~@4sBsL ze>WwCVBs8y2RSj)cRrv~)v&b{L7zJ^S_Fv*4DrL&@5sAC%+2}!mS#B3wXkBOG(V|} zLo*Br!8vJUVCC}mYWV6$DVtaxvD~ilZQ8b4JN->=yRYM@TE&NZ>!j=oX57wvR53>P zU{rOgHvT;1BzeDD2-(b_lR$&PfnR;AGru=Pp## zckkXYC5@4uAL0Y1Q$LjE%ZO2-@ZHjQpFCwp_-@h$Y8$CwJvO43?rX?u;{(`x&etHuP|mIq`qORP6fqnriTY$>NPG9ZKK9r~;r9 zLN|dIC9Yph|I>!_XsD9aU5q(RS$CGKd-OBs`R37?YaSJbEUN^E?Jq-a4ueVIK9SnG zQ3atY7DG_%A@=1`xQ2|ZW{DI==4H@mC_!4Mdu>wr`YIs-UH85Tbv^cUmF?`dfSQ@6 zJMD)*vVIwny5Z`Og%XvFQH+#huSB5I#>U5ogU}b+vPFmQ8hkA%UM*HpPUsH6SxIAx zkpv6+s!AAZg788fGTBCJnZPm%i#vGZ(7CC;ZdBRH?gz=qmwv0i6Gnb|c&O>@wf)u{ z@%yx0Xl=f+ANF>K>;s0d6J;NcnLY6B5Izmc`8ylXV1gmUaL<$2{omC=N)WI>7sjGW z!N`STk|>4my+m$Bq<>f>%RJ*@@54<$I=WVuGU}YXlT$Rd5Mb<=(|pS7<7iBN+o{=J zCjGV}Nmi+H@t?x!RXgQ1rD*4O4b1n9e76o*ez(5h+gpZ&ocN=c_OHgRE2oLquGm2v zr{5;=z;d%l^5q}{$gzW+%|Hivb<&_l!1S}yh4rptXR@t}6~>}fgsh*66E@VnfE@75n#*ek`&4~zL%Cay!1Gum(8%y+gHKXDKWA} z1+mRl{nB;OFyHh8`>U|{aMQn2 zIW51K3wcj&kz?OPfAi7MldGL+?!otS7hc}b@fsVG2e@D@lQP)d>v-TEd@k`R*_%n);X=={XD%lSWfITW4Q(` znHAf*PMUrPEnBRD&x@e8$em?vgzXU*6irnXb7jtsmtib*KhCqr7&r67N9e6TDwvpP z%ZJrBp9s{xwG=xL+6q`8wkymk+4Wwoy!Q28fm&wWiYOJEe=hDlimyEp7>;=9W2Rw< z*{040j+YtXJv)4=%S($cP--c~5OB%+Ym#B8CNot5^CPmvq8kdgyHK%28w(YSWUBf0P!z!LH>;FDNLg z%wX#oCK6cedrUON@+Xh-8QfOOl_|A%8D`yUSpQ!EfmVw#!Oa_s0R(O(hNel^vH$V8 zE@qr|8EKyMCgkO5@Hrvz_qzK*4j=}9G7HY9QU%B_ZCOkKgI#PX#XcbaP6>kxMgoQ0 zA^Y9F-Plp7(Q9mCa(fUj=;;0}ZTo6Hh6Dg%G|rq6hunY~A3{b^;lxu#-(C-Q1ZZfr zfLbK?3>b`vfuHbwCr)f6L*PjPf8GsDkwynEm0ATGN3nouElx>I%FEo$up^Q+hRhQC z)n1F6F&Jptd|fr`Jz-nBtnmcI1NQiu6Gm}deAZxoL=6%Js`B{P!}?bL)O{8*#&r2I zBOwm4{^g+k$vb$+$ShuH!b$0X(QpL?9(Fb|;e(k!@*Wc6IVNwi81y#xo6v;%L|Q#q zN_k*KduHuptW#Py8quG9{pT5HEB0Rb$U~2t?>FJN--v5$gmB>e9!{$^)Z1wG!7kyldPQpOqljA z7@K?3kpViQ1l!3hoXpF;-c*~B7Z5WH+qW7WW>5Ph{+G;=G{ghm-iPBG(^H^oXrW7oqn&ObQ+Zr3Cjj z7#^w_eC~W&F@2l9t>q&)!^(D3wAz3I`22(>!5Rk|IoD#-u! z?Ksh8z={MxSA#CG1}JuNH+u3AXimZ)O;i@A*BkFbyvQoRp_0Zaz8#?Ohk|teFsdE^%!;p4|&LA8OY}##!M-yU^H>95!cJF z`Y0U++jguoi-^;~`|XT>{ldfmfz@O>60avH1(R_B6EvNGs4FN?Q^5GJl3{N00uZ2L zX!uqLCa>|5l~fesum1k)};!^o~URzo_shP zlpyeGY*6$|aRbcoXp_bt+%k-WZX;~4JUw~yL# z+gUDo_szr=;y&=14wTO<_)0RfK?#BmK;GPdHi!lruMO&f4CdjTTQtN+g^9_fMX)w1 zWR?tGh;9UJCD6JHMl=OMuREkC49C?_%Qwfx{|Ck|1{~7=i1GV&L*+8okZ%ViM^ZJpBXMIht~u_(7|FLT;rLLqwPWs_h`J+JGRCiK*`AaJ;}) zlkOJ{GO3fywgF&Ygc+$DDYOhAoQ$GUQ84Z`j&CO8ii9R2bF4V_mhizzyqE3&9oJ9& z_CLu4H;k?KsqF-5xKsHb(r_(B0CS5lhk~l{B=UN%G^n~P-!|AhQY)L3^6NzfA{ZX0m7pb2whJH9gm#KRo~b>l)#jeayezMVh*LcuZEl${Mu|JwG|cz`){N zhnIh}M6Xx!k-@EvxYq8MEC{)2?(?qGpG=N|lDBv`^q~20vQ^XfeYz26=gu>ip4AB+ z;nMCdkk(3VcJWZcD`U2k12;DW+a?;&FTKCmbZYigi#-Faq3-NGo5(yDoP6f~@Ti~0 zRn|3SpZDof>{{RMB-sFOHX?RnbPFDFM@*@|i8Oq^dgrwc&v5!?<|xk;EK{%@S$9iRo72>r%_X@?sn= zRr+5&RIfCYbdZh}up#tHqulPXw@lehOX8YO~c-k+Q1W9v!qO-fl@Ts`t)cGS${?GM9 z9f$Cmjg!YCJ}~B)L_EdI4o`pHSevM{0V#YBq&M>FO)@PDR|6#o%r|jCV3dLwzX(3S zTkfc^ZE<<~i9e21P7EH5BQa4^h}Rv#w-R|}CB=QLjTfm)-PDwaxaWvzFO<`~m`o{D zHWR9lys!q@-U?}fsMONn46TJMBqtw81%?o2>SLMw`C#mxqXxkluU^vM>$u5y zA&HLr0ta^>jpZkGn@{UPx)zpygqaOE#GVSPvPJ2o@=vWBb)7_>~iyXu?fienct)EExjQ)4QU z8oW30YKe8*XNH>ltJO2;s(0+^IX3BJtNK<_h21SXzS`~d8jY2DoZT4 z*O&Ei3T%`iATaSpD96sEe}wc9EsaMXuZ7yD*@ncOM<@3wjO+fIsS6T9l-tb0GE`tL z)_&sjyR>of7+WI4iN3MX6WhzK#xks-^xU?3bCTMzmnx_w*@8w%Bm14>kz>y|(YI*y zGNYT>()m0iPPCUrg7f_V!{GTxCYELz0APDI7JY7k+&Tn>%(YMEJsUK{-Xn6n1J_TB@b{pSY+6CSQIPtu3JIIibqNLpgCm zt=~h{Q$j{$hm6_^fgN?q%zY|J4^-jT=w%?c-0?ia$m+c?#iP#h>Ef+j<@9D6l-K8I z)sJtXgwtRA8C|2=#EYv2b-oRlM7U(SZdi|EcgJ;H9>e?2!)1T<&H@;ygS1h0l zfrap$PjeF{=}$8M-8|=$fp()QC)Si0rK+=WuiCFlKPmpEI_sgJ(irz=R}cD~=33!_ zw84AqsRtULXBBg>-D{wEJoJf{RyDr%oAX_V1UjvyGZ`{l#bXCUw@ylmV@Q}6H@)hA zv38bWQTFY+A6jYzqyz>51(6PEP((~Zx)BC+=ne%HQDQ(OlrBM}BnO8^atLVzX;48z zT2Vk0bzk@Mu669S_TKOQu#f%8<9Sq^x$l2o*LnWVPbFVAq<>g0xHC`n{297Hscx#q zTF7cA9#v>UBcRH)5}@EI`_1DZa|y2+MIDf&ej~N=kX)L+s3KM3fdSJ;4!V2l!Uuk> zL%CLzp0hts2oZVi(kowGkR0yyAPQ}Zt$y6ZC8cwFGO=N5?DOXlb=b}D;xCe;G@>B{ z`61iVwZzqsVxusj1@w(H121tEw)-;-EpJ)H%WzJ%L*&#Ly-^!{b7tE6^vkb;A6qghjk&YToA8R&Y_Dq&CQIH|lHOK{-v3&`*vrrbOBV%v#iPbg z9KzIIvQd|iO}GxfIcK)Y^PEu{CYU)#pD|sqkmf2EGj+UfRK|?kMff9Y@0)GK|ve!AQ zd%HR#>{A=1y=j)1(L&Zyft-0jp&LD{-SM6~6++NWJ{C&BI7Gd=XpW_%K?Su2+emqf zo4={L!9Q|C(LLt9Z_ag&xFsj%@|DmJp{T_x9|Z1{5SovjCc_5bm(s2?ed6$zuQ&HXAa9&Y#Q@!h z*K_!H=|PI7;`FA(okC_-+7}lnymn4|o;rHDiFzc=H^MSN%K9?CBlq0(7zfWMPg1e!{z<&%N)|8( z2`vm>JI6j6$h7B)N@dp3!pBJ=QofSi@kYTlUutoZ279F}o{8atUiBRvWq!QNDPd8E zyR%ewrbN=f`}3E^bu~4iL~s*L5tYUh%4o5+=`q|dc^`M_?O`*Qp7VusF$d)`wnJRl zcdPnpQim0e8+uBd4?$&C;mpdV$yZ)7nU<3d?mJ1@^uF4(O-^)BIKp7oEICjeYLcWO z?C@|=w|&3WjIJUE7v&d-<%q}|-@1&YkZ#e_)?7G*%sW^t5)0^;Q9E~p+^R~XKhw1l z&i$4yc%zH&bbZLKE_hywJfw}u?)77p^RjaVBW>3>Ld6V`nJ(o>^&LkqcFKuh)f+4* zM>8dLHbRxYZ@h%r#NzdG1Z!xX-l^ZF==A-nwwQ+%FPeQ5Wjm_NKa7fb>62HiDj$9H zGQ&2NlIJq) zu=;g2lq^Dqt7KZHz=p~_|J;qGb4MHr&z4PiWy&o7x_+s7L#(>m!{^#Vq|FHkey``* zY$Cb-(98Xg*P>0+@Vy?dp5P7Vq}sv-dlva630YcAz63=D*4csPGyl7c<&NrJc^lh7dz)1+V zqqY;+Hip;V@mP>$)5#5|L6&ZTRhNhw;;bBVd#Z!uQ|YSLzt}0xr$#Zf{5KKz%02r5 ztTyI#QZ`Lg_A}}?D7l`Ge$F0W_-pDCx-_N}QQ51G6RAve{}@x$O0en^R3z?Z;0ylLmCUI&)+WN?bM&mQt^4DVRic-TpkRo@S^<4!4UQ4)%$X3 z3UVoP@8=3XC_2?!>>e(m)l*9Rx&l$S5cV|7fT6r)jdX0d$;s^gEH;=OZ$j7u9kUh8 z&X;?KPv~E!w!+(8bBN4L)R}STqvm|{(sfvaM*Ovz?0Scf{yvoAG;cl~(Mxs+e>0*n z^Cn#AO-a4hjV1FME#3Z#U3%T_^Zxm0MSsRA8-Ib^bM`F>^g8OCV$b)jPgYtu9-K#I zl4%sPMgEMlcGaQ57+}R=$5Q(Sx@6fAyOq!L@Ep?dFOy?3HLwX^GU2UU zsVmwlK6UN*APe_S@cZ1v^8^_N6}rwCa%oh9xt;YN4b{={N9ObM4DG}FAo3Q0ny-i< zPc?I|WPF?kfwe!kJders%3$KHnBIYRtsfmKsFh##2{aFwE!;GpCai4#rF&;VQPFAl zQ0fQ8pNnhqgMpX?twqhCa(fcvnugj-R}H!-gFB~hzNunt%~$2Wm7zCwWO}PfG$u!HBWz(E}iXubzw~8cPm)<`f%dgud3ek z9xh~W^cyo8ji0zd?d@T%a?R}f7$1X~LqyfjgULBp$M4E~$LY!AC@S=O zo|%hed2&Q7ep`@y<)fe_<~ByAh;9%5V?ks!s$a;Db8M2*uGw~N9F9kak|-*u^!i!3M|{Z4SU;R!D{P~- z6LcW9KRdYD|B6;1rw#P=IWn#KOi3!2Zlu!%GA`q7QD}z{oqfw=DkrL}h$$s`EQbix z_KOVCsL#>r&v@T#U1DfNf7uJEeyYr5iQ;@h?~`=l>xnUS*ye1>qK(=1H4n!9hzmK^`cPKk=<&*o#Y)LyNaI+(`HOXpAAQ8vWp#GU#qHnP#;8l^NlT-FPxpGwp)9d zJ6>3(XhMB`KP_*QMYl&Nw?(w^%r#uZgZabl!%C46J;z~vGMF!(YaKzAoT!nI<*1Z0 zq{iNSNoiYJ;P>VR^(&v!nvVw;e1ku!GqCn?uKDdRvi#9|W=@Z)qq=#d8m(|b8 zhf-NIUfgNCRT(!h;(kO36&Uhqa`GudI||w^g$GEtO2&hl!3M`&()WnqB5mpLFpp7E zm491|aAQGZ&7*RR(P0_&2M+l?RKC@VEG&&^t`M@e8|2>u)jh(6+6zU}^=Rx?4jIX{ z2e0WKsqTWii3^bo@5X21KGdqN%@$_zBE;lVM;cc0Kl(T#-xB;faW6I7awU>I+1vVX zjNb#;)!!DFZHi!JC@$V>wNp0zzJK3(O03XO!B{j9Mn#*4dra`#YmL(QZRr^Dik&l} z)0j0Bm?W5$=5qN@GQ$oV)<$G(>QTn7{7!iIVsi3Vx{Ji2Rw1Gss}}!6LNTxCJ@Fmh zvE{)N-G4_p60ULj2J6#ApG&_#a_)#-sDwHNTnAw_YaJxF58lZipQHa;)4%n(W3I!JIe`25$1M-*jyupVw*rF=^xH2%x$+D2i$A_Bc-97eAAkngOsIWGIAw?wYQZnM zv1=n%2j`N73mMF!NAp#8`U;A_I5OU#+KW<^JuMVpUuQB7&JoUBY}^>3U2zqd*^tj zU)`ifq?AxHn(RMg_|=m$96XA98d+dxzgXlU1o9f&k4lSO`_+PExcFauB`5kBqIhIa zli~bk3Ed@PwSMCC3crShvmMYobua+Q2lP~)&5zB$}sfT9*d2hyp~ zwfCGARroA?mCwIp`aw!z4#+WnfItf=d&6*oZUa*HK(t~Y^YDcCfyiT!DjXPNKYmw* zu>-9&SFug zVg1BIi@Aq^7A;@H*~j=?t0i)J`?IT7BS-@EP2p3mcE`<%x`+UZ?!SR(!B zh5EU>W2LjIqUn00Xsv&~6ZsgU5>$h@9fKE5cu!NiFjX_QSIbs}ok~T~wN=!RSG-DS zOEz{yzN8); z621dim}BA`l8ftvSDI~DCV7taHk`bZ?H3BZ#48JfEH2tYExDp87?XjY7TRO#>yJ-! zmy}?VwqTjFrHpgQ3`3tr)od@Y(B&>`B;W5h;2Yx(ot;v+)dHxSU^pc<`^$?mpf0}9zpg$G4;$e`(6fuRfLt616UgTu{Q>IudGH7tV6?7X zy9COu#nhXC=lHM(@}qw&(c_5z8xgF70RBQy=0X~&dE?glgnnT>;Fu;wInEosm8QJi zSzS($nR(f8Sy6&tYU-dLC-0KoD}RoX%XKw8vmd=SvxiCQP>Z&N+zwP(@Q@ci52;iQY zsP%d=MEC=Z&AciSmQHc)AJ$0y^kB;bJoR(lIo7kO7yy8dlW-{qR zi%tfW)-x@uyzAc65@a>_O{mO93p>^&38L=P!(q{#qT=A4yli{VPwcG+oWehDwi)x8 zh?G(JF|-?TT71q97f|-^)Hk%KFI)Hjaw9|yc%-plb>M^E7|31Z098lZqI`U& z@y;zsxuQq9Owi@ED!xusq(@*HZ@Mav9mG_~!9DlAvg(|0=-9!*P$g|>h>?*YP( z2kjP!+lqbxj;hzLK~X^9ivGj+Q`acY|5=E79fAJ&(15nFf1Pl=N3TRIO3(KRif0f_ zp*MbbIa&J<6i`1u?xUe z0f7~?@_69G|3^uf;a^H?Zj>$1?~snFl*0fIvIioQ35?pF(3vMkAt^zyjFSahIrD?9 z0WlF9=9J^#&4kYZriL9c1t7{PFb+dwH7e>2`&wAzV0Bbz`&;RodcLRM+YO^0)ngfL z#S^7!Q!q*L?>yO`lKBl{7p3=ka4vO}dP5x=71_G!HW#sauG1Mbr92T;`41t1+?D==B0!SiP8?V9Sgf2 z`%sGBJuH-C@X7HjWJgsUm3*Z$M9H;Kk2QW7dgi{r**?nQ!Gw7~LHxov?ajJSIZBRq zhbe>_&_{yr9k$DkuokkSw1awh^e|m}21e*sC08jppPXh73uMjh7GS{{ej8ZkAUrl^ z89%RiW?;Q_Uh$e4Yr6mCGTTaR-2{BD)1Qkg9C%-_ME2WO{!Z%ciqUyU?QE;-Z{ATQfn-E4N5I|a2`hN+hQ z3NVTJLuDCWpst$t$K3|vA40Z7?1&&dC=8q@YeCXsTsbZo>3fb9`@V$wr@6z83(u&y zuHol(m4gw4bbjiV zBo|G#I6$95do={<*23u^@19cLfEy<-_#}{#2j_qU`p@8g^c=J2)RUAl9PqTz<}&l8 z@*|}k46vY#+{WVW;~29Y6LJ2t&N?|(dJd)*ST%Q339?^5vD33F2^gV;f``f|QHqKY z-gY#3h2QIoaO2xarYW^kPHTr`>gp) zD6!G4D7aqTKdUFTmhr(FDQrkDn3gP#A6Bu{TP~uhcy&T!(ydLOulm{EuEHX$`A-e3 zrlo&91P%y-07ICr{#);(VJaf1F$5$!>;JB)$BnZLL_AM!Iq(aJh*x6-Q7&;KS4&5? z#e&^lQhvM(>vP}FK=wz*T?yNL!BO6{4)m+J>LnRpt2fTAKW<2JnMnvKw3`ICEm$bR z2haRs05uBOeURohZ1n}hO_efTZk#~~!1`tn>s@G{yVB`s*7VE!vYm{Yv|zV|Tj<;3 zweUOx+9w75Sr~sAigjUB!>U@wwK9yq)b+GTe+!A{g~zDrell8?TOUtWKn+-yDHZW2 zkym_IZ1Ka>Ub_RRk}k8{zc_CJeX3Mt-JG-HIG^SoUO^&VbQe^Yw8!N4#o* zw&46sk#k{3A_bAe7C4WZI@y?{F32-914=~D^Qh(meZqs6C(g$hDY$+SRTRoK|L0CP zE|>ErYUM;vX}TNynoB`_p+<}5U;lOw`pDS01W%Iw?I|p|o@Ak+9iNa$1H^kh24oE) zjfUf57j%t1Kiu0x_bJFU zOw!fQJOilSjWH`KyN21dnRkpY_$cXHrndWaeoK7}I+rQKr1Hu6T&5eIcE!wT?C=r& zw{U8sfHpb_VUqwE7#Z`hxt>O}EBxofZDCmjYcymRi20!vW-n`LiN3o6I@CsQY0U-8 zN5>UUx!g=7MpmcmPIPBsBov?6okuT9Pye!x(-L!?E?M+w=XdMGVq9iJDX5+7(HJ<* zeJZbUe?4b=9{sY()K1MrPljw_kXp-CVF6Y0z-+4CA|T7V_1SlaMVye}1OD{SyNJ{Q z@mnF}Qed+nI29z&1$hS_r5NxaW`GToH!ByASV)v&qrW~tzGmE0Dj0(TL#U}6J8#lZ zW!o}m9{2@Kz_c87_eHU)3{T>%>WtGi?(v4sKa3hvdd9yyV&0%7+;hU{!9;ckA(x+tBGiT;I#7~d88{55Gs+?U`)ifh)r zdQ}5Xm&lCN@1RERa@U7Fk-IkC;W`Ns>FX+LQv&-RXyo+gil z>xD#fe_9A;`Fo&CU1+ObVLcYFhW|ErGWJ{$6JCx|bS>h-v!iJTKd~vHs}2LM!?o6W zG%Yu~DNzmHk!@my@#SGVP|)uIehShdMzz3}E$ukOhkS}VyX&p8gQ_8jNChsj!n09g z$9cl%fC`JizyFK6dZ_)BLt_`3uqy|_rXTeQ=ENImKdx10F!Zhx^7g~!V)Qpln> zw7A81ljIZa!Jz<7I%<^bhb9cT^J!3sE*gNtc>zv0W2W69IAbxj@<^ulH^#-TUpuHTeVEx2B17jF43@p0G5-DB0W z&ttf~nGz)d0DTNGbRivmL~GOZYf}Z)0!P6Pw-h%;EA>m7MkbR~>b38~IfI>(MlwEN zT3yH9K=WflJlD`KNw4QHu}IlA{#)2B)OxQ-!rWv&G1OZ+^Hl>Ss;(ilGaD2H!W@Gu zjL%?kx=@!rU`Lc1NH8UEzJ2>pnU>=nb7B+XXM_el39j-;AY)ya1sIng*}|g7)U+Cu z#SxE;y(rn8^2d)(TaTmsW~Dyn8fjQurm4-uNXS4(C@|ByE|hgBagpUs_^gKVN;2i8 zMV0}0^2RBDNSmv8E$4F>W+fBQVy(Y#oZh?*w^!OQX3lJ{Hqsb1 zZp#+`QSP=u(A3|uT0^$i7oUL^R$qGV?9hAuop)6#&zf69E5Gz6z35kPy|W^6b|5(r zZTZ(q@67Y5yXUJ`!b7|xa|m$$?-9K5$eR{bG<@jgUxN50Zf`|9?u5)lt;=Q-=QI~H zNB(iYAwWajW4DojDhPS(@YV;8?W6i1MFc<6_SXYOMbyg`68avQ>nslV8e~B&w5P)t#pBU$b-Bo!u3;n9 zZ}qHbwNv$(G5=!Rn$7I+IswYm6K>-$_sYm$y!b<^?wUpZt52}eT9#Q~zfLS3v0ful zOaRz_brQpzNE?<(X5_9Urthyw5KknWxvZwL9tYQjov$^PGSAW7=w3nAJ+^!+jiV8m zesn{o`JQb9Zu+cG18$ous{5Bh&Rq$TCoEwVfY<<7BM%5}kY!bCwLYRp^$*E1(A6a( z%0Qun!PP&Hh2T_`EuHKW7u+R1r>OniPWb_pA_4j58k7ho1K4j7S707m-BwEJ=$sKWKst#(d8&_{oYY zu{B=)wd7ANiUYn~Oc->^!bV@T-`j!W+gk_`2AR(%cpj3wQO8BfCrtVqDwVP0)x`wu z0P>5CIn|@KY6ae;Lz!gTyM4iOj*nEeT7`Iuj!d~`JRdiYos@_XrAv=ia#ffo{3d>{ z+Q9LkGLpnmF*Pp!?f$apm1WEQ_ml49VzcElOzkFKyC-me!9$ZUl8WW$`Aa2-;8cJx z4?wcZ71pfG`@Exel9_>X$=_{EF@ma2Y`BVj$77yD#^hgI{msri`SufAGehNYvUH5c zee`ioq84lQUr%hW;KEsA10{2!zJz75ahcWR+&$P85Jzu?UB@H41}Omnhjos~y7y`3 z-B@+vsYKK}KT;8w-Dr0v<%gU~TOtgrQ!n(YEr@wm+RIn!D1!xdj+xYFdecheAJ2K! zzEY_PHestX1kn86Ua#nS9Rwc5X9hvqHk>h61;vCI#p>Y-E39>b!NMiI>Y%H4P>9O3 zPP=VgKeODjs5H&5DAh4KYrwBgGsyFnu>?>+J~~}_;8qvvdp$`@ui_i564fThsoc9@ zM49N5KP8&mz5GBR8o;&N{?xYEwuW+pyi1I-)@>jEi6j~#sjS*r!ub|0+(r_&1bYP| z3RRK*3mxfG><`RF0&aT0ML%7RHOHS*_%5Hnd~u2C=EVZ{DicpD7gGuTQ`)y^Z()>N zIVS5wlH+0~|D-OmXc{Hm#!kvIKe<)=^RlH}2yF{xN7t7}Wru?0h9<}8RP3ak)~^cs zDr3cCztl+NjzC*A%y&PwVoi)cS@ts~S?i58zv{u7$!KPq>$tfFTXnRqvd)4e>K$k0 zkOpRH)-O5k{ogj<na6}|p&G)XH?w$1gS)Q2T>to-uvr^vG2qv}wVUw!PG z$|o4&BJi5%SF8rmy(dNH&z6PJcJD7tVo$nqjGUs#ujv&;DT*h@ZGQ9h2hH7SL|+rO z@cC2F%~?W09!s^`7>|FFCtQ(caCll8Zr{rp>)Hh~MMs03i*YyklD2NWI(i9P?VNOZ zk!4ttYg?N5^Ip=HeI1M;0b~=1_kDDxHf(OiHNV}QDT#gf%6*e=xrS#Lf3^s>^A#`R ztWu`13h+rLo3da@ds;AUrLv}0ve0d(94y;zRQ+!piI71=#}$3i&jpD@;Q@ykVhaa} zAh-`a0p0fzc%*vKa6O5c4Y(e-lE)Gd-SilkB1UDG1&;)x>f|?C6Z}YF*q)J=LJmSo z=|*#|?NVWX8p?=%oKAN>w>0g=r?9CMlHUel+QbEQ+90v&Wp)=~^;F4TPi~9I==Fx8 zV~YDE3=#C0EbFo+;pU#4LVwY@1t zy-g}8QXsq!P;9aW-N6uBf|qdl;b%L%Ny4P(GQy&}Qpkan+58M zuRGxLQcd7cSNZh2wI5OD4gp(xlH5ZCO&@@=@vd%+0iQ&r^wNL&|~U>*ad#1<0GJHDftz{94w z`1nN->FTpF#`NtHxz6nXwmI!dA5Ovm+J#~4=h;#Aema3cD?JG^GY7m!jaA#*>OO-F zf=(T!t=s<6z{Yo8{|@UdZ1zWvn6~e{5)vgC2?y=E;O?lKmxR_N!~Ut1Kl{&0IsgB; zQa%KAWbm>Y@s5L-9q}L_UlS>Pfa#WkkaPjav9=(<1+oaj*p>o73=*}1gax4x?s@#+ z2+;ZvsW~7hlT|IXJ3^pOD{|rzF~va7=d_C0Xm!2C_C z?V&b-<};?vwh5hf$^&S_D@ynOs6qp8u{^V%j$(|;YxsXdPc>A4sQ)~agAuec09?WQ z1FF(A)MB-3E^m-0{3S!tn z+y`aL}^`)q1K}c_Y1f~1bzGq6PM~nyqnUR+PZu361>^!Qbzx=I};{X z-W`^`5&up^r@oGkR2|Cnrn}qg_6K;cNbtr#_7KmtF>w^2`~UpaL#SC^2Ya+A9%bJ{ zsD*EOUxh2AUIWEO6|f%&at$Qd2se3iw&D0ck;wlqY?nU|{(rJv`nFj0JLaNoI9)mJ z)EQ0$+c%KWe7wz%K`p0yF6?1Uo^T8XNHa|ji1gC0vHr$?;}}t*YmV{H_jz|`g8AA9 z(@Vt8XJYxp=`Wi5xBtvvVUOSQ2$S+#H9|(L;+NR+92Rb7kT{D$*}}aZ$#4O% zs6M2RK`00t0t*KBFEfPFp#F)X1HyP8lr4a5`C}peS{&dI!CHn8Jix`#3ft;G#3qRD z!(SvdXMpJXRp&^2?9S{HjdZsLxtB)d!K5(X;2h01TbpfLQ+N>Q^Dgs z5)m>4QEUi)4<;rVij#pF`cg+F8^5yva|*J+8GsUs6v}{(&xCS`?1Wy|BgE1Lwv$5Z z26<#Z0YH4hlGYw=o{4NmS{fY+$xlFi1m+QvRs@c*MQK>yk+cS+q6%+gqW%no=`HEejPAcBYzx(@Afb{9EWow;s0mDD}X823Mc5d@Tn1(Bs3ok z?%f!Eap~}D=;9!w2$B{pUAGvSl?v9W)*rEYf73?p%hewUnng#bv*~8pF9bt%%B8=Q z_2IX^qU$7G7kpzy$^eFj+ly~}hrt)iK62_8wU+9Jnpo!eNQW=nVf{zYhy5M&(Xd(ZdI)x1Fh6FId0RT29Sq{UDM`=x83A|5|BijIE# zIAKdmS2r9&%x>SV?fsXbW#GRXT6(32$A>vB;o(97&~P@QaDgq)h+J=+mSVTjGi=6V zV!hJctp39bgNW(UV@b|j5=wzqWEGd!u9xX2`5vj# zmm9h#1~|3;8|UZt$%r>>m&kMiw9{H&V|rqLsF`0rIjFrPnfvXw|AhRT`d?F+(M{j5 zbc{)~7g09zxCIUUCQmG1(3qsRWgz!L3|KuZ8xji$iw%tMiGJLTUpd`?4? z@6#8#pZoihRZjc@Ti;Gls!Uxq^B7Vr;i%4>^PM2?JC`oE;*y*x$WvuORNMUQVmY9E zrIvHKY&4BEB5|h5!cZ*{@3xlF&o|vP7`#l+2WXYN_O>rbVGtd58SrzJ1EOS8fo8&-8ld+&?MF zGZ1)KrELL{KR|4z@QWx*Nh4YmgH7S*x2nuq0XNZ7eyJT%eDAz zNIe!L9M2?L%pZKJo<7~+QbnDDimzwAa3*i(dcnDOBLghe;=>D5*btpxa%1Qt`m}Ek zxxX}V{coo0fpNCP4ObS2sEyfy$LSrdeI-S|&i@g6@%>4|X_BMFAF&vJmzu^^o809{X6cPX)wqgK0(?p1vjJ1B-6`FMidZ ztp9j9`CBZclnU|~DB*J|&o88w%Fa#-MW{yYsGa6`oeX;9(O<=PxAMyK_TK69nGE!4 zZAoWuT45UpgZypMo+ot*ucbw~2qphLe8=WIbnb7kRv4qmzeq+}j{xE|}dCbpvzU4NiZIt<5n20#vtv|FgHsCvKKkL>` zW=5)g5v};h#Z*}&B;)tf+bYY)d%6HIB2qKsmq>7Y1FEvrk% zto)KaeYMMdRFACZZ`KNPd)=OLW)yCkoEvTn)>*JbE~FEQHyHDY^0qOG)1l|hMdph7 zxol@c&##KjJ+^j;oWEfiWz|P&D0CFp+Bbkcd@wWor4Z_OV@+@&D_Tq)pL zrJ12byLY>_o=+FlT&DR<3a7BwEK09@a`lK|#rjXIn9-Du&7A6SEvj+GM;&MK@lSbk zi-43mcy%b;EZLU_GJ*{zNUsXBtjU-;U5aZ7-LqC>Na^Vk0SKG5#;bTCvD%ALTqwDmw zGo81LM6e1z=Ao0=8h8kIu(2nnPpiy19!ER;zOOc$Kgo8BNXj$6q^-%uL6UmwX4h}m z?P)5)KUx{M{bTz1x|`UO8b|+E+!)mO^l6IssXGRKSwkwXuh|d1gkzDpwnMQL{5-n$ z3okL%)~^q--rtbY5{$S@fxv)fMpnW|=I2Ls9e8(36VG(gtWzYt>QCGFtsJt`+>>fE zTITym@6>i*m`BypscRO5E02|9ElTT3I;i7Z3|I9gY>Ql<2yLk^XKOyZ%V}AxFAcF7 z%!!9Q24|FtIgAG^l;@o?3B;!M9(kAR>6l$#X=|*~ikN=FB-Zr7#4N~37W0Ud4){os zGl;OU?)i)>>8*6B?(Nrc1EWh!n>hTAp4iN{PWXd@RVnB%w~wO>=*L(~mmm4~n*{_3 z2zUS=h1vK}%$bXOx%pLvJXOE9f3AD#pY7S<)4XG!j@w^(O|aEBNSVa$ySUG4Yt|sF zF(bRzjrYnb)rhlRG{kC_MQv|v4LT{7w9nqpQr?HYW66)h8;{eXCaLxUUg^l%-upZ2 z7UrfxZv#K((%EYr6&HvvuAL|hO%=OdcGUkXz34vAKc9YH`16E+qG$W0yVHR1`ByLa z7M!DSH4Vdw-`5Fl4v}}upvcaBCmmVFh(c7jsF0(#E@cW@jiQe*vr)rPHRh~7HX=HG zf08%(HrH?h&u*KX6A!fv{vO_V?+%lHqx5l;2)8t{+kWu960WbRtfL*gA`7LES_#!b zSIv!6XRDL03c7L(lf{I@zqsJP*&~Qb5AzP>-+G#_Dil4EV{58>iC7{qD3GlC=A4mv zQ}+0xWMD&obB>xLF(3Re#YNJdw0% zQF@B4+JAz1T88Zsk(95RZlin^8-)`nx@`tU8^N+#7ge_!hw8D?HVN%3e%YH-_kZ8N zv&VbP_}+5tU%#ca&=Vvb76Ilj7waN6+RDPKqdrpY^Vg4puETKMf}@72vT{?zpMLF( zm~Rz`jQrLZEgM!g1;+5nhr}Q5&|>OE4bxk>i&7purZy5~z} zK__#Z2Y90%9fMKDCa%D}618m&`?P?{*Q7!2?|y;*Mn8?C|v#&D=QC z+u?gT^cH^>@h&Eq_seL6m!&}mX21tO@`P;CX_IiEN@r%`rV@5jAjg%U^DrWu>eu@8 z-N)wfKc`h(SLk^k>AUC>@rG4elr!JC9L7}`YCrsO*uwZ1sj6gp1edaCCSXj$BONa@ zbSjE~V5LOO{qAZTEkMum=4zQ^lf2hv<^vTc( z4~6^J3QTBC#G`n|r44y2WMDX-lL#ZsEa_pAW^|KK+lH8dUun34RRZZ=%qX_`TavPm zpJKXC=GCIGlP{Az-~1BGT7GWVr?=6!!gy+sjg12N+6EzSMV>hKrDdkyuN^HU7|F=0 z-T!8yJYMc6HFmn;V`cs%&%+JNm36Yoro;j7tZO%1wJJt<-rHW@RX7$?%9=s`#FU}w zAJ~(lndh&=6^4GpP4W|NmwRt*dA=V%eK_~l#09^JuT5emrzyH!()#72 z{3kqsat;LxO+P=mqT=GWLqoxECT^|$TfbHok|UfH3*Pe&Un@eH5W*Ylg;uCIh}1*MK!1L>QS6cZpcFHs)~>XRuI2JVikwf%tG#0lsrdAb8?=W{3*UTs z>{{W}#}cRN_z}UG@960zL5FD=rQAf^YgG>Wv4wlPgv{9Y*a2?cr17Tp!lX~nu;SmO zg^mbmw;(FSrBnxU6q0Q%T2@Pr6i}h{PKE+f!YL%z<&z8fgWym0fR*EYG=Ff*0mLn} zbK%@yNXPyluwXnBd1+~>xteJYFAQSFx>mHXuKn0Lc5;IS?Q@xerFHzwEweLcuYAvY zrsA5a#1q5#K5dD0uba=k%t$mScF|7RM+JXxCN=fugNsRPga_~Ln+{uFzI0j-@D|l~ zg8&?C2MHcXYAAC!NN$~7Tt?0efL8Pl0)3kxIvnndJ?2p-$rU}HpYGmfeQP!h0?ppn z-UBPXQXpFb-SmkFM>A=BmbU%aOo=1)Otgj8_@GGY9elKZBx`6<-X>61nJ@%2*$NT3l$F~$Ao z2?$z~EwuH=6QWWa%%hBG-$qi5theEJboyfBtqH0EdB%<{=|FtE#514I82RS?xaFz4 z_v?Ax?$BSTSKxge=kAzW+;+HD<5=|49}4w*_tZ3=$9=5;=0L)==T%i~iHV7as6%QY z#10Al)lQdZL=oVhSKVKTMNCAmL<$ePDKTow6cY$cQMQ}~_ls!DY5xclpEBP%AmqNy#4;`$9}g0&?E3nt zAF7-T`Ktc#?i`(*&fU4Af?%7FoGPFoq{zE*l{Niz{#1KZ7H12D+Y|u$Ls>@2Dqu13 zHjH6{+qC>Tgc>b=a!LF1VFa#tF~w!|bSNYT8i}R@|Q z*}naema^luvEBGAmE)~Bn|*9`272xyACr_scDmXfd4%2!Q9T?`PtzN&07i8ecx1kI zo&Cd%LO$lf{@{HiNJ6~J+HchO$2>=K1Q4&e)!JW8F?^mwTGEKt{@1tdH-gnynDkrU zm=ZjRIZD=BglV~c^=+5SlOxVsn1RK#CEvT(ZzbAuG?H}t8c7ECFBV-{a;})(A9#sF zFWZyRBuemW_V9i}luAIOk|y5-sQ4p93n(rw-bsTxSU7oBT1XG6TSDj%)V!*{Di#$X zxsdR1?SgEyBkga(VMw>Bm=qJ6DDb+jEcYfcKY-7EY`99RMc$clrI_^S!x0avE6;Z0 z-22iNSAN8w^q)AJ94lG;W!H&4=J>=T!XrqYRJz{9)4N%L)LQ|5n$y(8Yi(`q=A6v+pUal&%Tfz8q zRZ&lLmNMSh^o)7|xFizx9JTgc@qEhu>zrKN z+;7Lm!u5nhp@orCS9cVY<4Eg|Z^#3w458~>^l-O$+5+vh|Ux-Z@T z`p>&qd$C&7uql3a7oAQ~VOS*|JBsbyCsf6LzeS6WPg!A%{n~i%A;++OGZOuNYD-j7 zvJ2X`DLeLbPY(8mw)Q?DIx&D;&2@OxbyOeu*M{EOZR$4>l%Br&MLkKu zv3fN(b0iJNN7s?{x^vVD<8L*Rq4O)`X7|N3x(YAt?Ls-Kfg@5k{3h+RUP?_*a9hH?JPWroK1oeMmHer8u|LP^_hvSKRIrXLNTEKdY+$4$RvDG6s`Ll}x8 zm+KCg{p;EKSE`36@0V-|{W#%v)#s}+&-m#s3a|MG){iZ?9jipG`TRMnaCH%qwo{tR zHD#_zFs+wou9x}|pGX)E`q%IDX==Vi&VpA>in>`k?G70h%6!=J7tI_gl;hhGK<_v9 zKi-Ydj#B)2M>^BGzJvRfbz6H=1S!xa#}6VC-M0H9ZZ4#rzuoWKnloY)>AS(iQ(-dm zJu6|MtcpK5_CiN&B79a_-BIkPZ#<^>kqT4E%%FrU;sqW91MUk+=UT2y`?F$bpaHu%r2S>p=$6qhqfn2PH}iCMq5z8CSWK&|E7{pqi3;DPW^D7l4bi`_}AKj zD8=A~_t>>1RkarG>Cf6)itB4>{WX(y=7X*{o0fAOmo)8|-t+7-sJQCp4tMmx)tgnJ zb?Q1Cx-F*8-kO#myTMzP#7b^xgzq1gn2-A@>n3pX!o>3J$F9jzMI;#}NTU~HCz{8nU^l=Jam{f9cY`)YKmL(2{V=JZt%-uIu#htKQc<@_ zWUjsTi+89-Wu6P(#Ubp*RyA5F_cJ7qP4hGv?oH6Zp@_;w%Q2l1%eJaGo06qWXu4Vn-e#< z>Y0CmXZP500knd28bbH07S`?R|Cr!sd-VOxUYX*f@!pPC$XJ%;VB{HyQD1$JEnw?c_s;S! zGKut^sn%88y&2Nju9=4rvL9V6BV8>UKkcA$hx5&*U42ljMX#~n!~k!^r<%H#$dE`X zP9?pZ_z+C+NQsz$dnxPkX=g_D9=ZPAU$caAW_kQs@gmORH1Wpv?O(n6E?-vE>Z+X> zoi3FwUY+vmN52@0n^7tG(b)M27c2Rexbb!M#m0^M)#+p5MvZMtXJt=~Ud4&r)fnZw zTetSjZzrBzEeQ(Tlbe{9ifgh^UYUs-P*gyAx!y&U+CE6xfNQ}0-CSFnYKbZnV^#vSIV;FlUC%{_C7w-y*=$n^;M=sURX#3;$0>3W!=9i|BX1C z?oZ2imSbe)gYaQ`YAg3#**&zSd+Z*%pdn7e(%n+<#L>HxBIk^zkiy<)26!5GUpFdS zd2)>K4~}A6WG-m@9rcyYJikS-dg}^`QzHy@iSg|_9`bQ@^P47T3bdH?y|8e?f1*<_ z*RLy@PBzkGleN?J{Uz>jFT9FL66*1L>`C6N;Llp$(OR!;%>M8`xc#AwYvk;f#}z~nd+H7>rXw>FcVbufIeA&Ia`qU?Dm8k=2Dj6Z%WG-d^PjJ+(15jDwn$ockuqe{$8$o^5wj< z8!X#*Rvsw$G=$!SPr_Nl9^E<3rTuAq{l&zBv_XCn?YGZz-|WeMhWUOa-Ixv?Ns%kR zW)qgFQ%uR|^OiGvi4c?=8+G-iBXX0xP^u@9ujSXAzDh_p?#Jy$t!QR7+~g{QyZB^r z`xVhNSyQ}Wv^mAcdgHb}o~Mg-l{J|usngdK^&b}cBEd>Uy9EbsnJS{m%1d0prE)cFReNF|W1 zDKKR8(~9pC)BH&i&OOkYXgIQHtEF>zlfn1(As z=J($Ayb_gEQTY|Idu`QCAODni`g6X-%}5*@IU#K!PTjHf_P+SHbA`;e8-La*lsm-K zu6O8GJyXK$-#W=|_*5bzw~fz;v90&5bHXv$4KyVdymvj7ljv7%8AqRvv>mD;;-f$O z!bqg7T|4A&*Ay}EfaSZ!8}Wdk-#N+w{F(E6EfkE;Qi60Fzxpg!WZEmNe+&27$3;ej zABF?%TY|nA5l=kIxa7;6V)&tW4IW4mqpwpSenfm)O3P0_b1+%;*2IhogW~ne$wkH* zX9wvH&IsOQn|S&2*@}SjuL?~gE*QQ7SC7MlE;-cOA{vr7DEV_%f=n^iQugc_?FZAm zO9oY1wPk3n-=!?Q{hBp-wRZpNRl@vU`>(L71^N|N*s3(p3JctiP=E7|=bZl0d`KXN z;ReB9)|!0ClEXkJIqqCp^9GCV^vbYKvJ|XDuE{8aYe`Z~=Gz;OK6va~6*|u!De$NL zRG~fk`G<+}BrmopPQti2G=Mvki>3Wuq=IX z$+o;IVKEM>vW)BKV|wC`f7vf=JHkuI=}msi~Up-aqclUsKa{tU8{fP51lm zckQ*G^#tk1RKC!O4|28rW_lZ_*zZZD#7OjM-ZRRyT@mwQSpTW4w}9C~aZI|sZ|Pt| z4UVK(V!ZhF3ldwZTtojKEm}ho$>+?E-#cX-GVDP1Jem`BZez9YqPUiDYkI=B3vmt} z)J^NWJE@Ynk1vqfV_KR$Ww0ctFZcfuzFC|3Cb0j+IX>9rg4YVEFiH}14>piM$J$HnP6W6)nXkzg0{L=?l`I6w{VJu(WkT(zBVT?8* zw~tJsxpesAE{{J|{R z=m0Z#2(K;{m~mtHGJaMH(@HJElGn3MMAZ*4~q>p7-w)-nL6=n_4TzhiSaI1yEN~RFgFdW=o`$(kJy+_ zSK%+caVi7Z%Lc|j$|3gVhZ{{P)h~}=O|euoq#;p5?|y$i=KdBeXxpd3xIjq$)?g6m zO&nm`}vb^S-C-Lx(bINmCA4B%OGrxZv#k?q@ z|CmpCMe`1qZusB`^nw5je1K>B{aLSD)7aBL6}TyLRTI9iQ+?d>ZS3!CE`0Z{cbSns z@27DxN`;)qU5ksVof=C0AFh8s zo_51}PKJI5f4#NDdEL$FPV1{@t?!zTn&EE8ijDwwCqwEfXw;77!C)Fd(06GOt-? zMVe*MUNzP3w%6K%4JD$rh1Bz*FiLg4AQwOAfr9ySo9%!W$G64_3L4Z@@an zk@J~+468icP{ZBGUG-<^cN(}@s60>(9PAj87+*V@6!zlgQ!GBohmpc|$mnUdSp!ev zZE?ov(S-NLCUL*}?aX3qPUjshJ&TdLeDv4C{Gq+8sielokh%8VyQNFsQXKl;e?Y3! z{q<|e`uaWO9|2jz^++=UsxeFdwf+`2(2~^wjYt~i`pD(F0$e>zRCBQnC1n5dqT%R_ zLs=4kr$uvaAujis&w6WJ+_>J`dF^F^gJ(X3b0-lVZ1PsMI#-{U7AF|(^0bKj!24>O@=(Sv=&d3?p3y zv6N#SC%Q;6$odrVg^|+;C@h434=xc}9VVKhHVM23l$iY2uXTY%PN%X}gR<}7roYIP z^~C0kT)BT^%Qq$8gW|ma=+8XnBE0co17#gog-dKIJgN9EtaAiHLK}!LC;{_fz#vuV zZh#s%k=*3&1-u2wfk(pa_(>56?FZiTk!nAg4z)egplgKW*(Tt`#z5&DUD^*k*a&P@ z*%%Im-=YGlar?HoM9rqX=iR%Utyj4Wh%p0}9(0#4U+xB=X=>{F`}glNOGo_N= z$sPNXwqt~EM-+lNPLGPF-Wg6I$k6A-{I~E&8z@9|mK9<1D zRRX|vB(v-cO80{Y+Oz6BWiW7A3E)VputDxWj zq&~%ksuc`IZRdMeHw-Y4Fb=#~>Ot20kIe`OCM-G<%(@d>j~GMqFCy zVv){!Y9)he(!8XWQR#mRvXkK<2&rvR`Kj{mue%(uRaaM6!2XSF?;Gbz_wTQN5=^j# zM-WBW+17SEGLuqiL=_QeRN@YLPzzE1Jc@<~(mAKzV=;?j%*T84n!+qHAyOE$_fv*z z4nhD!uKu$Suwu3YMx`#69GOJ(anmCUkz@rI9suvd;d#59@|ztLXhU~C(xH0~5ezGS zx;Wuc>dHWvr1K3c9>UUskAoQUD%&3W~T7U?Zveb>Bi-GepIvAxw( z$D+@Xl%oSg9kKF(zP>T2P$%L)%clGS{uWF(bkKNme1xZP;dYya6i!+ZO z)g)AP9jA?Kv^#fTJSi4PWlw?i9 z`;_m{CG8Kh^d9{)p#i|@$hIwS_0+1b$+b(tucrqu9@afVZkHlr$6GSBLgUo4Z=6 z-iORDeu4OK?y0UEyi`L87wd6$cg(l_aSMIv?Z`=ZaLqcEuF-sgF1O0B@qL(<_36CL zYNNKaIfa5G7tB^6%L#o(I$kp7h)HVAoyFf!j}Nh4T5)>h*~$$V_3tIM?HR##>GcH< zAP(o_Q`R{u4O*ho?xl+!1=r!=#$0kWKc7CzYG1ciO?y^|h% zzrYesKgTNMKLYXuGxD$|16LEyux$feaCuP?wv{$`|8KizG`a z0}kHz?c3#+cx?g3KZ7NW9H%C(%bwBFA~|{TfNanArKOy$ zVAn+k4btJB(AE>a{3O4xRME^Si_ ze%y;s-dyEcx5o#Lj;ORuK9bDqG)2De1!>L;~MG}m`!KMfw60zo)B1ofV3yW_iM>A*QhaLkIqTdL$89i zG6+B;pjue7QM~{Y$~#iTf8+)%L!oU1nFu`vJ$D^I^h+?eeDL@PE~3QpAZNbB%&+=* zK$;7E)s#Bz5#o2%R+{7!p8a-Pm8n~ehJ6#= z+r4_XbIHwFbL~j(Ic@s_bGcSd_OD8AH&Y+54?oj;{VbszG*H@EO?t2R#cV#RABl0j z8Ay0Y7h#({eumMqAW7l*^XE{!ybiW$j1CJY*B{nS)KJ~#o7WIwdlzBqz#lOmqTq2Q zv`Wn_qu4ZPJ`Mlr?dZ2TX39k8qpDwJOK>b=TeEkM*Uopk_W9xi> z9&H~LqedPlW3uY%%U>%W4DI>_kkw>ffB%BCO^#5Sx>IIiws`zm>cPeL`5|9UvoP~~ zkB8T*%aoI~ISW<_l6eR5_jI$9H#g5+Qsd=Hhfplst%#fak+fAU?(zA=88+(j{GWCv z2R;>x!U8{iD%3*t`b0pp8-HY)8Z9OtXYOOrt{BF3F7~oV%BfqtB}wt#Q^kAho8g}B zQ&Js!jdoX_47AgEgyRB_nbM-}mz#D%DK~WO6M)^WSkpz?2wOdnJ{w%XxR2v z&dNHz+wYr!r{RS)#?+m+1%c!qk4UF!O;izF^-^jucyPJ;cJN>T5c^fHT7TjvDcReQ zQEyX!)j*fm?-GF(qiLNfRM?2&V|V@J!Kll0 ziHNtuz*F0F7=4wm9MMlYbt&b^>?_}X=fMRxk$FB7X}Vr;QC>*Cueq?%iqQ*C-0frP zC9?Z%-V-JwWmaD<9RAYuHeTs^^-rPl{^r#JrX|}uBT3V1&lGy7>g*a)X+IUT6#v&@ zT%gUiSV*6v)r+|>B94j~Us?paorey<22n4lOSJgNl^37hSXw9;En3yds>@5Tm@{Vf zZ_Oat1NOep`{OU}QJF{Y%$sv+KFIt`*PL^PxgM8F1i0o znKFx|nT3^mW}az^X8hNJl|f2z(KUIqNTM7S%_Uzdud!hX zep5Mb|9899t*hrBRBGP3_2$Hyz*Dj{?BRt&^6kgExvos{5nChd8x@}iM zYQGXjMes;gGrx5LN0?{w-@f06@e*0xxAW8q!UvUFHB{t(x%cq-l7K-*Yj$o>T0W0x zKw#B<#U2ss=$m*l z9wkeSZ*V-ZGu;e!?f4;Kmo8>EVlmx!%#OZAbx4LjgJE%NmCiHhT2qSO-c6ecxnxPK z=go&>r%NZ8Vu+=W-tV8XkcAP=N%XnNGqJ=aiEknYI|t>w13#$0+F}{{Bv;KPW||P7 z@$-yX5t}*r>evuPW(N?Ld%5jB+QZn2u8tmHtF>S) zTeDt9eKFi4Mx4p?mhv+Oet~Sy<)wsL6Q@#8SmPyl3()j9?oG$ zNZ!7}>zb+fIZLZx^vw3mx4gx2)$_Tu%}FmOQ1|4_vVYUD$KLG7r@azD#soYy(x|4G zfx;#pn<^18EzjMJU~N8mic3X}bBWXHft}yfJMdDBL;y)JPHOX;;yn7bZaKn77Qeea zEhT~PT?k$h#RyLZH>F%R>o06HJf|4z!iH00T)8csDTc}4esk?8M=kD4Moqe4-s!=@ zhN-hMg$>`w4^eW(qYLJKWc12x&_0>{2?doV^@)a)JBd`{c#CiHF#OKGiN)u-O9%jk?b^^rcaxB{yUpe;mOux*-+k8onk6nQ*ANXI!0KiQEzJ zDGaSVDK<^xJf+kaG_f{kb11)i;gB5HPe*@pv*$k-tCkPOen)BMOM5ji5}ac*=L}54 z_pYTJrSz@-UVf&@{+oipOPmXjQw12~3bZj_`rK)TJ3S!7zo1|qRBAD?u^hPmY#T>3 z9Wyih>W(2hE}T1(d?xibmba8G?x;wen+$2Y?JG>(Clj~nq3Xfin39TLA;LAjzb#|; zSNO+Xl2GEg-aFCyTlw@`kdLZYUN^gaZo|m&K95M#7(}SI&LCdMq$6>EK6ZuCu^r!c5-tsDzsV^lS?ym zHC(XmIq}hJdS*I3G}j2V6(%XMk~n6NT&tU*BQ_Qpak@y(3EEzqNH0Fx7evGrNiyaeSRkF6VR|cUbl0 z+1-yVwSmv}{k3go&91(p6e`vUiTGE6HDow~In=)m&Hnjwn_1oc$zVZ(MYzy$tg|uM zem>r%=yBJf?g5bVzlF$v^LKW?o}aDG4$6=`xJQ=VOS475*CcaU|lGy}}2VoA~{RgzH7>Y$Ed6f?Yba zZGROkT5&a1FxIw4z2?1SQ)rISfR=*R7teH?{cJezz4dRD1pVThIPv9uMmf!Elavw zoz^%E3%Ki^!*h_LzO*6yk-edL5m%b8Zfb@VemZUvYBNt_N|*j1AeAZpH?z>MPo-_t z{)e9HF*K&&vJ}2i88l_yq;Bcg*Iq0NVpNqhR1NHQr&l&35@rqX67l=eKgJ`s6g5gh zrs`z%@CD(M%Ej=4K~zcT9$F??KTepOYWQI4-=r?U(oVqaeUMkk(u<4M<}Dc|5kD4N zMzyDTYA@s?-zrALl#a(N6y{`0TdUM=myB#0vUJ8*OdE2%#!ZO36FHR6(yAWCskEgMjVB4>CNgbqp zh6D_p6OL}}1(gS{^aKB)FfN0Dzw2dGD=jBK^Y-uH!nsKLIFzABYYFGyZZI;W(#rQ& zw_z74G}M4h*z*Rq}FwG+dst`&(Iu zouB1ZIjpMvA$YLlF|O>c;CcZ2dxled@$WUbZ;-^767e1m_FAB9s^17M5ggxXkQILS zC0NFvI&q1R8LLKi)?YkvDGwt@SgRqlEo)1yduNdn`t55eqDN_Z*ySW%yfY79S#s3a z%WFq z7LNP*Z{D;_s~vb(!QuEH`BoH)8QC#j=d}6yFSjL2syZPO#_m;#9B&~|!&RD>ImC0# zBRbjP#6gzsN;*QY+tl3}pQmhOo(*^Oe9CjZD}{1tD|{yAu3+|Bw!#l8GZU!~Wjs&v zF+M+nqaWhDNQp<>aU1Kitacfa#!B%gHkjI1>K0RtgsU6E?SWm1(h9#QujpgyAg9v} zeM&GrN>=s%;5H1@<~Va3e^vlf&m@$9GTsvGMJndYhL9g0Kj7gINUEZou5IOx;8+-! zlmJCC@##~PlwI-XZTlj8QO?rR(yhR(qlki%uRi(VZo`*?yP7f-R+kvdBJK0A&yRBq z)h7JNqaa#wUfU*B7LxNyxR-P5DtjUx6JnDbJ8~k|VYFmp=|%>Fo-gaFHXO|zBYhU1 zJE6*2fo1SQycHm z<821PG!X`*f{mdJsyMLad~BzfFnA0Sl2)BRXN=Qb0=w8Om=Xc{)b=wb_Xz4HS%WQ0 z4POjd2wf3MtBLFtmjApN*<>m$ujaV2QRZh=#r~bQFP7(8k$Ig$8^ig0;*pZc#WZZO@&br!jv-1#9)4^bbk=Us^E=T+3*n-9lb@-i>`Mby6$Y;tT6qW0KNdTvo{GV zwo=K-^ta%OosJLEq~!qkD{XtUT=gWf>mw_vyEM>sT!!Te*h zy9DlBK>}gqT^oko{8nBQ?nY=CzhAp^xUIc?2~17U47o8~#TP8}Ho0ruWl&EbqDey4 z{2Sl+sQ0YnmjCmRl0WS7H6!<8_p+6@lJ_&o&zoV=jj+&8M30hm&BzE7TGf@V$-16Z zY05wO{<#+etE!|xN*yIHY}W!y^f5o&ZS^m)2<}otZSrcU#tNzRv=-mJtL3?->CB)t z7d0DPA$jw?Zj%hDKi9}FPf7)t3%e2hgh?QBV;cs7Ho*BJ@w{sBy@sbc73JAt#y^hk zNqj4^K@4P0jf)o_y+msmB+Qr~B=dztroa9U>m4pTmiz8zzX+N>t*x!i%+6}Uki5)gG#*BAv79H!p;DA^FKp}>U%3(k zs}X|%F^qWma0tw%383+4c2wKBbZfYRF>teycM(QYwU{87RHMlQ!d4jq7D-^MAi$sE z1f!rC#pfaJk?8v+yWxjl(!BXz99i!O4b(>N#x0sPm-)G4tbEF%8Urn<)>3 zV~Z4tYK4HzJFqJ*C4<$v%NHRMNY^IIt9}1acR$fmPhPj`-)~n0^?L>Tig|K-$?PtM zn~3(~7s28JfzD-R@?o0%DC4-Zv$F!GDpqPOU|$kjQ={sKR29fc1C%Q4;I`Y$>6ixI z8!#|{THv-bUyc$Tjm%iV@uamVaL+jn24q`4H%QeP1tMKaKV`pr#|&e>1)D%3Jc-|^ zhW5*5?qZf&9?f|Ti-N^Qlkw0CtU(uex(AMD$Z+MqA#W?p+H4PQE1A*a-M0T}RH{ml z-bLK4>HknHcrCcy(t6!F4wV08>h=gDpBpO1m65w~{(N zo<=xB;5;NDqW5RJJ7Vi-Bfvx-)2bm>ffAW|sekob+IpX(7DQtu`f*b4B=@E6oL4yY%xpXaYetrRnO?6DBmn;) zHDSq)tU;$p45mr6${*9_w}j=c?f$|Radc}q$am{0p4xIoBiU@c!_-W@bKFU8 zo%S(elrge$muo0m9STduDE4W1DF)hP+tpSWLA_h?5ioGmO7ny>gWNZN{taQQjSf z^_!FSG!5ZmT%AiNr?^$w{z(-C+A8RY*AP^ZXuhtVvf!$m_{5fcd>2=s-uL*U+CXyB7Kg}T^#5h^JM84x>nn_Y z@KI;!m1EOMj7t#Woz34nig(K*wJosFa*{R;k6K0%PdIAbtZ+*O8M1NB+X;OCwP=mi zSe>yFWzof4tVSM#C(_#cznJc#+lhN?dfIGI(?>$P`O}HM^FcUVesTp}hUF^_Q*Ok= z6mb7+uqn367N!{(V3=(jod2ki&NIYCKsfjbTqXf_YH`YqJQ2%Sjb!1`fA1$_i#^6w zgZf_WMBOa?*avW!{I`kXK51ly+h%%7Cdc6aaOUo!FCZXu{CyH-K`q=oyX@6}f8WSL zu=fxAon=((ac8ZwE`}13+hzN~?at1gV4>YiP+ilL=YOo>XlD#S8%u0n$R|AhlY9}!rkJg_Gjzc=YOwFFSNMQG?XNVSj1{nsv!~@ zQvQ7Szy;(6Cnu*m==H|D{s3JfOPCtE1()GNgK& zSFVr_KhC>P^z-M>Ex#M2h!!kxr;$oankcH4;(M9ar-ZCWMSQdvYZtfu z`-~>xs@CFqywY+XSN>OwzIHccF>dX@W(JI(OLq>S`&xo%nF$!{>pDA&@&xX>0iS~a zPT%F+9z8nj<3K=aDlDprhAkNB5i9* z-8=Va+?4}J36u>OBWr7V3_6au?~42@G|?9V8)!(D7Nxr}v@E)m_&(MM^Cn74!NK5VpIZF26dxsQ=m@z%IZASPe7hhS7&#w6a(`Bcx>?a28VNKtnCZ5D7 zoCsf?R_z`j4^NSZjBRAqc1PV7~S=LI(1Kvnd65IRoat9zO zS-ibUb??t$@W_ZY>S9rzJIm1(?}a~q&@Di`w^!EHKPvozHVGZ7;KetVQHV`qUBr&4 zU2qtwvR(+X7JZpVS#RgN^%clYAa2_zs>SpZ)hzI}J+=SK{4&h%;$NEiE^nz2SAMgw zQ-a3&UROW%a6O2F&PH3{VVar{zxD+$I`UAEnZBvn&yJC3fc_>J`epmcwkJvJ5f)

~Mvlir~ZqmW%4y{?> zJ^lmEsgIpn>y##cUtcbz2CkGg$ZCNcfuz5{=F9=YR(JBcPGa`S|fr##V>pB07SXlt||lg+D5BR18IO zMNlX`lj4L9M+Ur<}zP3em zp9t7Ua{6TuC(dG~U`?paW-HCx@UaXmau3Z&R(_=z_w_Yj-o%kxu@;~63wlQ_fOr@hRNq>Kuk)&49{ zS$L7nSNIT1W$j>XzPF!%(DaeQXxCd~qmnkiYD0JJWLX6w#${FaHyxVnr3rY$g8w3< z8k`IOJZ*CzaBtwnP~Lu8ssmVT!aW80W5o6i>?JAMkG2_FGqR~z3}WlNvaI~NSyf$q z80;mRK!dx*d%!pM=MP#4V5rxy|6ZeMMOD^oB$B-Aqpv0gIez*x{@s)IAzQAZnIl?`pK?=f$T@k>1eAK5V?eU32klDxBoU;T>e$mTQM>kf41lNl7q|=K?JXR=@KUjksICn zdtYlWk-7z0u0jT0&YL&%(b;3L8I}!8hSjCWIUAXqM*`gpVVKAzQM@&*(GF!|IJCw$ z1HS1BBqRbPKEb{O%qf7D1X!r~S*T%+G6E!#c2h;u-L{Zi@Gh+o5GO~6nwYGl9rS`T`#I(xBf3|V17)~xO zE@Vi_v9XfI5Dz}An#L@{ek+|Vx0N@vNio<&b^`;0hJ}rojJ-dO6R1}Dof zFR;^%*e+lV1CuZ7VTky%hhj_|1US*V$$c=5i^AhYN^bNX17)xX(yB|tGU$OFh1&zR zkZ6`GaOVs1{37C>&e+MSQJ%)lQ-pCucQKZ}T}TcjL>>VZGW#$HrNfd~!2^{Gg!@eMzZ-TR_&`7|}?Il1AV$2FJQq_)1(sL{Fg^elk z(n1_vO0w*YM<8s-t@xdr8aw3uH|jJcKS#vMucH0gqNX^75vR)e6B%2v2=I)Y;bfKY z<@hFR0HqPd338UhkstP!Bl`rkeJx6UZC~Gyi#vPS1qGiKr=aLyc@p%XGoj%R^O}2I zPKqf3RF#kn{75Ry1Vi9vC{~kU68;EE$Z3&2ShG1e8d9GLO%+y?atRQaXn5!C?d@2H zZ*Qzb0rd#Wy`iMc96AR~d$=hj4w2Z9X@99WF1fSHyNiv=)1jG#h3C@le!GOOqdh>C zx*SuLLIP2@nY^)4+Qs)5tS#L?A59vPto+3Utb7k#y4eyk69u08O{G8}&cT|K`!WhX zkXd;AWb%g(CxMFHsCXUL9WbO2r7PCqi`s!700QmOz;gD7OYM0eot^asmk7p+td+n z-kz?!^xX5xVU|sU)i%by3QNT^=A} zsrVaCPU?Dk6xP1;a)e|w8Ue5ciXFFN5Wq=fdgS9w)bR9d8!7b@=$-7b%MY7=mYTiMG9EirqrifAA#;o!1S@_T)u zczJi{ICHBB2_7+M}riqtNt(h>7Q~~Z52 zDdGL?qJzuuNiOr`l$V=Boz;)!QMn8VV@$imM}2Npzd`p7p$tC(bVZHL%#Pym_@>eU zYf-~AMLVS_U`jK`u!%E)eUCkO-P(VDdo5{67m5|QRp2B8mSO}rXrp0mKu@2Nedzu# z&l)0JE01r7BHEw!L4h)|c~EyeFHHd5KtW2HdJom)KX%E}>9{bgCS%ClZRlMfZU7lN z!0RmXkb&0|F$6~ZueWYEMWa0);Tqc7M-f~d@f;SDhA|5?-|Oq^L@M9N*ez|9FP=Mh z&M=)9P!W1`Ha%TpK?@B@y_vbywaV(891^JKoBJEJ8S8Tkpay~a0=qTcjJNVypNZFe z=>YjE2eb|q&^qMvc~@H_+!kO_qz8x_f_TJupvw~|)HXGK6cyp|njq9*(c$b~fuKQI zL#4??A{BD@!T+?f7LL#FvO%$lLC zyNf}4{mz;NEV9kt=L4g2bB{r9H{K>%)bzyMItu+D@NRB}(N7FAl|d!b6}s)|^>8es zu?BEyvO{u(sZoo81_o&!U+ST6__5G>!HgB1mj5BYo4~J+MTA~OXyM@$gHo-a4`4tx z%y1`-qij=2!I}Ui^RlwCqK#(+a(DyO40UwE8Nn7A8d?Z^)x37?v2h=eXYJ~LTa0XG3m(gzgFxc&nahpZc10joK@L>R+U^RoY>9tfU?0SVpw zV?lvzJA}_te+9i29O@ayP`ny6cCkY)K+}f9kE8lL$h);432YWoG18rYFVKMCao~L` z2_@VIn_2yIWlk`iTG+5qfF-OCQ^B6%)vklxuKZW8wDt5_gLoXr8^U3d>=U2Pif$tE zS{w9+TAhg(!Jv{B+1h)su?MNML}1E7G^5h~{Z0*hu!ffZW3?lJ`G4Qh{@)*q|HseO m|NjR6FBGT$k6px92fSX_t>xC(i0@^X- literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_28_1.png b/docs/images/specfem2d_example_files/specfem2d_example_28_1.png new file mode 100644 index 0000000000000000000000000000000000000000..1f473b8eadae90bceb46a2eb566fc49fcb482610 GIT binary patch literal 217588 zcmeFYWmJ}X*YyJK_a1wXv7h~pXN>pb^I_fh(gj!iW6tCF&EpJGR(yB`j|vZkLS2!Qm3e|fp*JA^ z;9$YuY=&Nug8vh;zpr8c)Y`<}$>6myO2NS1#=_d(;-w*-qw#CIm)2H19DE#i+33vd z?QQIYIXNx=?;qf>er?Lh%1?VAUIf=hR?`lJA~Zn$LCX+Ne~Cgvq2y#FpE)P4esYQ> zQ?0nDCBLU|@Pdix{#`s)Nn-M%6$XZiiZZNc_D%V&XD)f`@mxCU>xF6km1S5y75=K6 zWvn6DKG`7*b!@DXsU1K6_K4odTs}Kf(e00_NXI4`{B|3Byqki2=U$&6+=Dqy4Z7NUJsCvR0k=tp;2+st-h3tlUgGVhsk);61r*XJmGleq+P8xOM9m zrGOQ6lIOWgcTKYE^6gM6KD-E7%x~Ym#c~;-Pq?nIYgb>n&Oar7u_Mm?>JJMUIr-1Rt9n!90qj*8VJRyr)?<7$;k!x{yZ(P7{04MUb#^-YDar?=Fwep4Ij%$ zpV)I1jf+y8>36zPOX~fQ&HBrnQzPbi4(!%1U)I&Xy=*(6Y5F-eb><=EX91@P7iO!f zt!COcl$t>gz8ubRdIq6kVEx=UFj^ZaF1t8CDRAC0blYxYes6pY)zj1C#hmO$a`RzW zqtHU4Z+fzauxX{Y#LrtP=-ysg6K4mL;rBMGNNdmc@@$Wn(v3Rf`O0R)?rp+!uffV-SzS76nf6|uKTM& zX1u}T7f0P?eS>dafg`UdH8<5JY9kq%!xMW zNwD*NQuL>Ld7e%01SSGI69i^^AJX!zaOji~WvS)VM?9p#P3{hGSQ&6x@21dqBhFIK zYbICM@s7Cpkb&ymOb~O@&)eyVK9??Eoq`>A$SHc!MnZP=YW&5HNYOYKWhgC)6gOE<8@R!aW&LyX%!3@y79K5os@FWS*(3KSY_$ zcf=*FC?)W}llrWje)eZ@@WbRry8iigOv(1iMs2cS*q6MTW7dUZeUGDCw$u-6&(^Fh z=hSr_$S12(&oNB+~3a$HY@1II1Yi-T$ zB+(_<;i4!9dwXRA1Nu+y`@<%hy1JjrlXD&?3P$+U(KXH57Okd+a4;lyKU`Z|E2%(E z&3y)9?Kp?AL0zXC#+BbzC#pwP(^&A{QF8kbi0&$DA9cj>;G+8b`&~+!pf#Ud-_Ph= z9KiAMdigueV7$WNa3+LPr+on~Ze}KHqRV`o$uO)7*XzHsWMpJ?)C5Lwy*bPcOl_zG z;4ahb%y%|S)%g-bL2=zR%hoE!lkpoaGM#-dO&}>LiKZxa^ul7~M_WlvOoCtUyj{0w zz-Q?I21I|)-7YDk z@xx4|Ymb6m3zK16r}oPi4EPc5b{h9xmEDy=LJA!l$(WXMx1-l?2jfm<@EbdYuF+9Z z!}~W-vXL)}lF+>-Hw4579IE$sh6;>`Lz;SqhRn>LMjOX8RcB7lQBPqFQWY?>Xh>xIs15sCMN`Q%Jy)BtoG$t9MCq ztM|1Y$8w=vrr>CVs$lb5L4cm>on!f=z@!_glK2^~NoV|9n1Jlo@^$3`K?5H+>g zKv){3uB!SuJG(wB4Sl*)oP;d$YXPb)TNcZ8H`Ng`zx74Ju!)nuck)=vH0r>&({;}w(5 zaDpr7#nUw7>jX8B?hq9frE)ipw;fqwbcyTy7F_MQwdby^tgIso=O|@k<8N!KyRbz# zs2jG8#3kw@;Ue2OXer&|7h`M*{FYREYomkxCim}ODlRFBH!dzNZrl+Og;MGA?sjr_ zmCMfdNHd}MX-~<7lIQW$(V;~9d8Vx%X~JG#A7s{0Gt?^QcIOi|i)r?j+2#JrULYIh;^>f`@zJK{D zTMF!T475f`)MCk~Rr|<8SWRd_!n2_~g#+cs%UPZ7% zL%$}WBgIU<=I0i1SbnCi54*){)EuhV@&hhNmDt|io{Oc?n>Y7zG>iPzvNa^b#g182 zRaJYT?kn_~{VDP=H5>|2*LROX!J3P{h}L!JSN(f%BDz9I#mkb8y4BaT`JP@{B&MzK zG5i!CF|qr_*+H7dDV%G|y)K~z>g|&={s^nNtrl8l)b6i4c`t6Xlvs|MK`Y%I(6;V{ z#uT{V5-<9uB&Tbv+^%h5r?*pJ^6^I14gs<_X^NlZVPm7&G$V`GnnEZ(u(j_NC7*T7 zJ*skC(^~HRf~^qG8#LiOdqu0n;@UX$M#lEL<8L;qHAh#2Df#^l;l&cw&){1HIwz%H zw<@F0I|fJ4OCC#U!WGDJHADrfyaH7Az(76EGY52uorP|ve%J$!ch?2NFeT~2X3d~9 z{jgu^4f8TMmL7wgE zO^|*cegy`e@1~0rqmCE9go~UAZnxh2UR5==&y>o89MV*lz9i8%fq@wX1reZB7Pyn) z9`3CSb{BnuYVaOfV-P9x6NU&Ic5!%tCD;q*`zjW5(D5m@M3fQ)toJPh^tnZx)^%pU zSsu0PJ1*%^-F<=c?#4a-4P<>HI6F*Z>%3@^R^U7}M&5d){Pd}Bx!nQ-HNouZ4y;f$ zRQ#-!35Gidm`YzlExaJvoc`XJ3H=>KG5fuovEh8tVIO_V^wH0i1G<<47u9aBS2Chl6+cvJ) z(O*&>*QIao8E-FWWQX3kcQrUQ_IwhKHanDGE|U&Q_3_>>4~;-pnpsxdYNPn(8T+V!SG5z)(tO#hvx&_Jpr()+FL zL)R?gpieG48XIu+Jx&(8k(p_@zdEc@<;)HH75tnlw%CJ(tRAXv(5Q9ojkXsg`tE!E zXw+-xrf{xZ+?f>Of2gnJX%wKxry2b8LOZeSK;(&G0cDubJY~@;v-lD2sfYM{cd~WX zJQKADES}T5LIb#o;e8(a}!-GK+J!cir0%`B73b<4Y)(->(aw0S^yP zggHQTr-KKzyOVPV&LOo(_ZQELbClQe@+;KOOw}xly+9mLY*Mzi+)|(4Yu4B=JxPSO z5L_>t&4&sEZlc>GGb^hAE|I#=m79vM^Yp4Kc&&Vob{1ygk~TI`=!b%^sdyyi+@GmB zRA&2SO^}BYzxmwf*7$R-zEB!bDn#So3>QIX*e1J!C@pkv6tu)}P%wW624=jmX(S8` zKBvE3*AIfN*@$tRaNAK30hKR!vRc$zYOVkE$?a_2%Bx5>z{02Wf-UG%yRh~=xt`j~ z0@et%s3H>DVJ3dIq(qF5RbV;Fe>y`^`}5EDr`*qfqF}|y@2E|IAg$Y+Zm_h3QalxQ zZ~f;dr->jaq&!Q_;HBOn+uGoNg=a+!-m`2b_zo8wd7iBX_!VyVWBZOoAyOZ@=N+-! z8Wr}p5mj({;CUe+FE8J*2S(?D)bo5N+4lTsVHTveG_24j6yF)Rz;`?@P9`hsKY$jj z0zV=M(wp0UQMvoEmDJKG^K_tKX!=pMfvi1ji%rsgfu;xEbET(Gtt+1KFAwsG%ws9#m{gu70h@ywDze znCI{b1ZM(oBEM?1x7=TH{_g7y6rweCz?e`9+q1yQRLj$Q2a57bVPPM6=S*QcM+0d3 zeB<_LU*VfKed`2UkGS1=DMNkVJ*0L2i0XmcEfT}2k?*A_yu=7ij7~H9dqqV&N7)p* z_SXQnpOT9_Rker5D|t(%;wRUj;m5#xKzl`M4lK)A47Mp$cA2jyEsAk> z-yZL+JoJ|EdZC%-je*?uud}d3w?1{ zj>oj?tC;)od$x97Fx$rswC7X9-TP~!FPHy(f2O1JxRC94An{GJ^|A6Khl|q%aZ<1B z_8|M@k=bzZq+h>&$&%d%;gX6=%G3k9w2(R4+bdaQ+MPyx^MSG;bs8Kk;rUpjMetCi zN3&ExY=!R8ocdPg2gQSWU%(lL!Ar1^;q}4+TY@uVcWZ`gKY6glwM!v^pWXDL*_Nr# zy#yPdQsT36AfsGrjr&O-6eF|2T;1F?ap-w0L^x1spAMY0LH+quN9;gv#_|v4!^VZi zjaWdgH~Xu!Z&*Ml>r*oMgEa8n;%tG=`_^{0c^a&khVObwxvBXQiAaG%23w|>A&)r4G6=gsGS4F+H& zK}%9!oK0T5Gvi&(tOc)-=s5Cn5qdThFfPMJoYQGSPn%m_`F*{;-jcpp-m`+I=LfY; z?34Kh7)a40qo6D4;viwu>aLk4dXp*&qA7{)k%7)QKOU@|X})gV2%T*U7SDCx7MzYNo;hl$!r@Ny zyX%O{6xnJdWnp3Y2|m*XWZG1ex?Y{j!lxL!Q}coBI$Y*NFJMSBcMJ$_zbH7?w3S+V`=j-}=yuW&XG==Ihkhe9$lgM8eEBCsC8>R(BTgE%2u4fr z=gk$GvDfYFm|pzW6Bg0BK>hy0YXsd;6hE^MmSIR*bA#Fhb*UOYY!dFH+?wN8pniYY zEhrW}Rw1K;(z>@kp72byQ>Y7&i!T%!7OHpg#yL4T&(zc&w9veX&OJ`xR`5;O6&Mt!CKJ6QiN3Y~ohE=?FnJhHE4AcYcuI&K- zJNMPcJ(4m%Y-b<93ys+Zv9H>fi+F2*YcUW0{ zCO4dlBOWt>S5lvk(C7+`0w7mGZ}_%Kmedi|7=-Z=mafaiT-51 z>(gb1*WZ41l`60nZIU3-IAJv5Uxv5mB*u@w4zhD7(kmT z*#=>bG}>73x|otERMl?ZqcRYs+#pWb0IY>vWv^Ed82`Ap=f?4mMglk+%V&O7&u#1e zkK$s3nZ}^9qxpn_*K_g+q;Lj!SpbJ55zYu*JM|zyI-{{N+gKh`f@lui;L7!i%fPdU zK@16k!a`MS9)c$E5q+~CJ0ta*7eUo@3{?P}<{gctRX$dUeOx%zX7EX6F|)L60-?V- zHi7R<-)*4w6ZzWqkNpkMK!mCdiv9sH}BRVS)e;Pi?nzb`KM#oIHw&i2-*&V=^p$ zzD0mU0SZ%&}ZN6V)C{&Ebgn(- zOLg^)Nw=LV06egMI|*NBXJ>Z?ZDafEcKQ?$FW% zgcd7w#NFA4-yGiQhf4}vCN#3`tEM9mGE&q?zJaf%))`);o7Bb5XEa z3@H0X;)g?e$>QM3FulYsPVKr&fG9p=y$`DECTbTh#Aq}E(J;MeT>cWn$*cs6t5sqD zGTmqlZYo;q%Iw~+u@Jbfy(JTX+!Vh*`=x3PNB5bouH^tJrZ+Hy$?|1)*l9*N5_ZkP zMt+m@1Vj-^gQ^5|ZE{B(P696KY`?U&Q)vBWn4k~V6{;6@6wopL)OvcNOK?_g`k3EH z?lukc1g-P~rUZ%ZM8u*Xzu`jx!&BFuwuuc630VSPo({UM7a=HsD>yy2LbBH!niOUb zC61PYP2)^wTCHP6A|uoGA`+>-qqa2MhM1Pag||#A{U7x~saVw7|F3z>jBpwt_Pe+~ z?~6F0)@=R*_vV3h-})D2L~z(c9b7z|4L`^h079V!H67T=nyTl2$uhRr$19gWiKppR zyApTr@K19C0ay1N)UmrF7bye0?3BAGLY5Ih3@+|k+S)s>iohp>8kPoi`31qn3=ud8 z+2xNY|Nn;wCe^U14{2P!cGmJGP2L)s~Q5E;f+BvgbMsGL7&#TG5J7^|_xVH5Sn&2Eo<9+LYJfc9PwtUSh7N*4PB24xWlT^cx` zo_5aK$8d|%qzQ!lO034?ixDII^ySO%o$A6AU^-vvd9?mx=pW(?ZLS5Sb8&w%2!n}4kC3G#s+1x;{mxQKbfHtosxDlt9My6x$2 zF?tNBUC)aHPm^H;E+Hc8cCcZVxkmB3Hb+Eb*Vjvpl-b_ou@Clwq_#2 znfmV{6Gw^WW2gc%00kRXhl{qd^w02^lbjivL$CSv^*!l6?lmKe(RqyvSKLp6ZYrKS z>Rpa@sbjp_$YHidfni>WF%T-$Zfqsie;CKywkZwFqIeY=pyFMTm?VUfNGWJT2lpM3 zYcQ-q?`d!(r=S>hb4iDm51kgl;nxMMcxNYGQwKoztNC33Q@o^%} zZ3d)(hsw=2gEEHH^P1D`N8Ni!`$R3izL5FRJ=z6D8H=rp>&qw)7<5FW#)`h-zsji> z3RBgNtD-;U{=;2f+zop&jCtQSS8vpl*WNJ}@u1kAa~lxVOrM`U!?}3;Nt_ zW>)Sp??euLYD+k+^&Nen3yHDZBL6eS2UJ|F1J>6*1?161G3MQ&R&O;aut zx5O%cfqd}=qNDxiWA*2X3My3otA5r|F-tSEpKu9mpuv?5$T5;QL%Zd6T-C6foNoY& z60E`I4_?S5xfy|2SjfE>g$mIOws*7jX1G@%7p$!M4e7&BT5%dcy@1`CFbGAw>g(&> zuQDFpg<&(b>*D7_m;zp5kdl+bMd<43*@mZ6zdH;;w}Af{O;ov1in$5;6Viqu11T6r z+yVAutz}aE-dM;yqcC?Hb^>>!_CgHN#>g}i&M@*vnm4Q5)NfV`VntjEH4oAftm+YM z0jhl(3i<;s%0{rTA=tETMCnPcnJ>?7+I5=>qjG`06D5HiGATrW*n( z2kyZ|DllvcuDY2Be%`+=eCbQwb80pbpu=h6-zks*2$<<0=)|(o#+kXfX_q<5=*+(c zSUjh7^AFl(BuM|{7=O)R3idvIZM1aM&0id34<05uujL4@_M0u|M5qb(VNCZWEiH}X z-5YC7fLWg$1~fs@C={|i<)ZuwRj1GWVBGZ43j<_C-3zGxA=q_rA!di0)Ap0@2jwKT zf^8*)*Qux$0eGdufHIOX2xygb?Qwse2(v_2qR{U-QW$Ma_JKc@fY1W8nJbiBUH~-- z2AyZN1a)2JqIdzsv9hqxsgQk#OKcCb_TRA9bHhp{;lG(nKY#W{Y#G9+zF^RhMOK%A zx4iJZX&By%@R-BFZ#g+v;JY}(6wqeeVeo9I0ouuhVg9v$5?+Tf^RyR-*hmlnhFZ%l zGii*Fw*{Qdxvzc0{^OY5~n+`PvfIuXh3QNhuI!m&LSI` zCZHiSD%^kmIyCp^7~{WzF)qsStMg3%M9JV+{)q?)viz5rXW-p%ff07v<2WCfpx-3J z`<$Oo1PY0f#`Dy65VIbx?{(^yaxstE$)dFwJy+a^)V7!a`@l|bA;Jdmyi>oqwRMZ< zX^UqH)HIJ;TI5IcfbLh7PQ%_dA8yUUWLsH7BM{0$+)~^pnJ+415Eh~2H6wxoEC1+` zZJ!*o0f2}S*YD5pKm!m0D#Ql6hS<`A78<+a1DL1J_>n3~0E2~Jfj8%V*~f?&zT66M z+hs5w;08K~=_|RrI!wBd>{(-;4cf2)i88>8(81R-?M{Lkbr&kn!Yiowr_8xk+ww>( z1}X@3OI(|LB0{-ALOr}VKZDQP14J8{6oB$8?SBJG(PrdjI#RUZ=S5w2e?nZuf@wKF zQkD@2o&~kzkO9tHsf>(_pD;vN8adBRG=iTFbrv8ol7m4=GjvHPEwk#i$K+yXyH7>HTIM>yFwFt~WNXiH1a!s(L1<;nX#}QbKAfar{A|$?q@a{7B=kv>WcHIJsyxMbNJqRy>H1rUobv z0o+E-Q^+YmCfg+?{0ROwsrL8BLYfs6y_*17ky#Wp100B~_^_|sKs}D<#Wf$yZ9<4Y zG6h=b`h-mKxj_yhQ5%!_a){TYeEy7v{5~{J|B4D>k;5rpK_I!C0Pbf0eo*2cMRE*V zKpm%`N6Ijg)WI$+lqZt}VIr)6myd56Vm@^Mx;Np|8A2Sz84A(X-k|w_3MaZLEt0MOWq;|$2k%0 zG8;&1`B|RA`Dy9)Jhy{-3QcS>Ym$6dvt`-;y>UgyZ;%q z0Tth?j|b{d@^g(7h{|xU-)&f$i zs$j$?P2|UsR|y*M&!0aCMk$R-2GER9T!_JS7QVeqkqX&6q@3lf!{&qmvY7_0@oPj$ zS{kF~Y+oCR7EK9uv2Bc&aw0;NP3s3vW+plc29rr1$1f3Vy*OFx*|o(9|3T(2)dlh@ zVPOPpnuUxD#}L$mYMmPEBF8L8f*N95MkzmghKVW}ynq5{Q>+P~4+M}wOW2K)ZMRt+ zr*9V)D-`79!zFEjMQav3Btc#aM~b7E+xNNyaUjAZ4TaNE&6X1eC}9Xe1`{R}g4Xri z-foE8%eLn=P(80%!H!S&2GweScOhyXMzlQEq5mi2KdmJ1=U|xAvXq`225XK4*El_o zE`!6iX})GUgt-OhN?A)QShL8)0377ud4c-6HuInV9vn0qh|k*$hj?t$U~hseiFXec0S#T^Sf^jAX+VC_&|fN3G`WH|NH zyKFw*Tv^F?M52uFfgpsPvP$}bm_O{luhLBP%z z-=sh=igS{aXe;VidJE!&v3Bk-%Cc?@H~nbBC2U&nhl`-{wikVDmB2)yS`6jau~nWQ zuYAwQFiSqckbp7SpNR>pXvo6^qI!rQQX9N!I){=@ggOTC8Wae`{Rwy)NR6}&q-AFE z!rYVUo}i;!80GxK|B)=I5-KAtt+~G$ z&YB|RlI~v6f+zoE+k7q8wK>Z%Jq@m4O(^NU?d*K-(OXq|Bd@5%~{H3Wa-~5aTp)I6>xY9j-7P`yB<` z_&*S{$O^FVA{gE+3!dbijy9xIkzm$2hPm{@M+VWi1g6Rzr#J`FsFjKjpfhQ0I zGmzzhY799l8JUmr-=ON(&xf1k{0I1{q}OB)qaB?WghaVx~o<+dopP@&*g{cJ4v@tbP z&~3=c0e8Wbqfy|a=W%3ACF;t11Jd6=;MQl4Izu;wZVz$q*XtoVhJtaA`#?m>Rlhk% z1J@jU4k5K3sAOhP8|?q6JXEo>D>DBCx~^xrKWhmTOZrZ?crv5h>m$cWNWGCkt_=A) zK+=DMmsbR*M+KLtw}sYo^;J>Uf+qBiBR8>lL0iKvOJ)Yw)2$ZRNtkeb8h|13#rZ$` z8`Na@OhdzLV(PyaqC#~hiH@pS;i%5~Be&D(mHT*&`#oY}7`xOmBrPl20dZA$~!gpBx z(b?5i^l!)ldi*`h6)0t2!5NQUXNDA;yMb6ksBgRkofk+rA|%5LP8B9qAvS`m@iLbd zKSYZiPGKNgJEwF4op?ICsH+|_S_G{c?>@GNi|$jxs?8p8*Z)MobQz%PEf8~8O%rXg zn!|2{fR_GJQ{zz^_7boJM6dFcN@9yX8Td8AY(zTUA*hvK6N#2#qXru#@2hM=(rzlh zfuN}W3|x`!d1rIQK!qOkN<^w(xpL(YHn_likfRFf_7LncfzV%~-R1tvUZbAnMO%aY z{hv!p9P?U`6Fa;={tqaGKz(SAm5K^6%wf63HpEi5<|2t*2q$FqvlrGX0sF!TKqr**8>a z;b{qM6h0*vj8>p(AXXOfA{~VwE2x0T#R8MhSw~PFgaQ*Gt8X$44+iv1OoTyHpi|8W z!a^Cjxy?Y)KMgux#=}Dd#h1)XJX+6F?g{q;UE~3T`E3~Thh7&T0E;1GZl0w{6VjA# z*n~HF$gGrvA2yp09a)3uz`Q3x(dp%(3$z2@3sPmLmytAkC?z*K5(x`z-C=SB zQ$bIJgCsUGGBY9B%Z@Z%5DpdDD&l09E?q(%dEo*A#mmn>gCvVwcNe|E+_}Mx&B)4X zfNTQ_h2#<;XcrE?{&`~{u|}!Y4U_JqPcbZucpzwD!zMT_J0S=LPwzA%u?GlNrox;P zE>j&S@V8JaX}>&pcXuU>T8IR!2Dd-K4ZPaP@ct}yBbac*&=3hw8^Y8Mt@dPm!v;*x z6qKE2FfD-)A)SfVwyJ{%V@yatK$x3J5kkm1cAb34uobTOCU6Qvkd+9*wWKdiQ%Vj4 z1^OHWo{3K|lJP){H-vi69}$;H=fzQq#C? zO2WetNM4O+46Kw?{F;EFUuA5{V30z%Oc zFdKx%irD?ez>|j{^JHYQ22-sdAPj~+l)y%45MqZJhO7iS5g@K$x9e9=eoii7eaG#?#H|In$bv-ZZ|;uv`%#c zG-Vn<+9wc*h7XM7!~te@^P9hVwFm`09Uh}Xg2jLwKnkSZaczZ>`Rn5h?KX1FM%OOl zr66(SIU@vqf?8OH1lAeoPNyTsi|&h4!gtqr{9*beM}!G8yl+VO1xY##@&g(D4Ln5= zw&~k*E?MxADM$o2TH|eo`NB076Fnq}G^I5U;~gQV^|5RR2!?jFl_5p?C$Xl_*SiS9 z?0u&Rq1Z0r6*lDJrzzb7LVDnTg#Ql|jWB`XWh|^WX+1nC>jT_$+^6eq_O&I$f8ub@ z?Ky|WlY7}0*|LX#{%si%M*KrUo5N8dOm&M_1si09VBG!BOVusvaS7o5i&gO-l)n9c zXX9qDWq$J_M;59Ib<4jL7b0{Iy#sp&2K-^!_%-8fd+HiD30q;Kd!XFFLuv>CeojpW z^E;zj(~%ck`{Ydio)RDhQO{eVO^I=_@8#s-P>YQeVbiV-5Qa3atdG4urq}w5<|#b8 zx=uiF`^sSr-;N)AWf2X!eZGtKa)u?tB|1yLBZsBm7~c zYW3qkbn;a3RHuu9!%DYST)`oce$Eup(teR~yIPvQy2I?zMS`t?I$4(*)5$X&pJ+QB zlY5aSql!VL)+>XRZbSPo(J)ngSr^|1D@~TWxjqfu3QEPgU$F7`3$2k`a6P?hcO8Yg z%|%<*0JrEP}RuOe|fTC<7iElfS$nC~Bj zIBv5SZA9%lH9d)@n<&c7v?X$uiug+RT&SzdRqYqX98M(XxI`G2$2n2tD{8#*aQC!u z!6#bOa(qFbRFbnMKf247ShDVCu|$#;bqqZ)a_2i6%n~*F^!3;1ubi{nOUb5vPp+z? z-N&f0oX$5gm(fom>X^*i8dZ5Jk{z(wb@`Qzydg!;A3U5T+D~lghQ}h@=Xg>k<(a6= z_}kcb+hyAB_B@;S)a&>&eSZhL3%5}7)1TcfF093DBVAh56IB}%YKDU#_TyY+o3zZ8(V2Od(*LhGD=Z+HgEaWlQ1WTdw1O_!bSfD7Xec&HIViD&9J<`@pK>KW6pgrY{jP`~Kc#&4(b5&VX>G+NBz z7kWaNyp$D*or;GogvmQ_V!5W(6r=k5(i1V3*0I1uDGf4Qv@@C@8{GU#Ce*Da(`ap( z^j?p<^e8;*J4FMw!D1`h7AJMg%NGKTXtx)A7YQYmd2L>PmLuS{xRH!A)NHYCXC#i2 zO?wgekt^mliS>#1_tbOGU(6C;F~5F2SuhRMv+If8LrLs~Or7c+(@V6Q*9tb}55h5! zlJt{iobfQT3x2}Mov1(=QiY#HN@o-4@?p2aJB^nnIC^)L^QO<9T?bJWx~aQFgpSk@ zp|vDF3iq8r_t3}Yx&;l6Z9jBPN##ElmV%?aIG1ku^&VkxGK$ZzO5WtIX1|>$kE&Px z!Pq+KT~UU4?V8FfSyrPeF%)i8fKre06wpi4#{93tP5CoK4Yw7nmE<;j{o=(Q@)107 zbukfNn*2aT@onH#PN{)dl`s+@8MH9pN2hj9}VO|K}6|2eV;kfC# zD!@J1)MXS$@8`l@Sy#6*a!1h5oFl8IVC+zEv~}R2*k9ZA)%Ihm@46(7p9a*U+-Z4W z=2h1#m-q_N920?((FkINGBhirlcr3f|Z17gCxgG7xTIi zFJ=|Rn>&6v>1j`KD#!SqoN(R#^^&|KQo%lMoj5EYN5@C-aw0YQvr8|CUHHv&FUddf zel{jr!gh7MD!cwfDk+s$U(!PK;k~Tn6-z?jtvpQ9263jY5RI^vAOmtoJT+ensUf=W zLfIYBxjFSxGkX=O0a3l}tZZ8nV=5-PE#*me?$x=acl=`VatDu(o?BQ;e<3VTBR)67 zdqRpZr>pe(aha z2g$IGK;q~}%j-{t+}`FG?NX(ymbIjkkTqFa?vvC@J1wOMdwY2eC!5k86MNz)~g=zsH*!c-C6}If9q+3-ltg|L$EE zSbmYU!e%aSW2PWHPPgi=-Lm$T=OECnjmhs*E^%`LX}b1PeiGKa%ind>3^00)w&RM% z+Rh8Bv_@y|ODO2O0lHH$Nx)qA8<3CZgx-xSo;Yb^%5h7P*F@BWx{8b2jmRMIN=(LH znLi)%T6C<1l*asLTH|(y_Q^ICfiLPW3KE6SK2$SE3bLnr(Wo$7jnbLZbFjN_-TKkN zYS=-m^<9nd4tW>fg9T?sIce6Wn-lcQq;LCDdxlGP&KK+>T208;@wH!EzFlc^AT{qz ze;?0>;q#FC^zFVxhM^VJT2-9u1G?T6b<+9c??1&_ejDt*dZoS{j}^y;{eYyhOSs&R z3)M(Q;1$TAIT>cbFhs{j&)m$<`cXzcr1Dp_*`p>Eiou-Vqrm4k zCa%8?sD==eeAL=4PnWrhsTIv}C0`Xsn>pvZd`x!Z{IQFckR=DXke`hjtYynbU!B_T z?%!9wX4N!{lWjRux4j4}MSl~-*1maic2cd|Tubv9pBA-UjE^zwuKP)C+P|#2s>s1u zv(~%m2H}n(1#b7AoyJ>ZnnkZtBFBLPl6tjm_q`3{Yn?6nf)vBq^%DDQ1zO+VZN#IS z3CZO5a@1Locg@il>_;en4y@PH_J=WdVD@LH)}{27wZViuBK|3%I!B&P6XH4g*fnQd zeT*iGwXv4eL7tBk#2z*ueD7LEk2 zQ^mu-^)GQt*gx>{tZEfDh*@#cuQJlouNvR(8Z2hKK5#}7(Z1&)95;sbcY|s=JE8lo z_iTiZwwLgI-GKU=QDS+YJ}gy@-ORS1H%tkUxgzhHs+TKg-z4VqfK|${;9exw@R@H8 zVH4FVAxiC8-}^opCHhsqb@$-E`LtZeoRQuiGd}Z0%1G`Vc`^zBQoaKVAs+Ts&Q*?jfSkcn@ z{29POO-X$V+zEEc_SM0W{ZZLseofj}3;PPIjKYJ0p@!<}t0PbL_y+^>pE)WAjh|U6 zC^CHrWY*%EV-A-h*%8Uxru%09d^++v#L(m5iBfL26r!L(Q@TeUjKAss{QVdo7lltp z&4G~*Pgv2V&cp^k4pl?RW~fx@OE2D-;j(=1L3%!J%5chHbClvpcEW(VtA_Iau<8DT zU~en*{(vy4{@=FK^;te%=KI;!zy5SGl_Y-H<5*0tFVZ(wyruHTMvIob-F#JGt8bfN zRH2X6uOWhrL!=604($?y(qWohbGvzc5;66z!x#t2{kt}=iwzY$?%uT0konMf@}7Dk z)H%Rwqcp(sL)U#d>HDf=Jk7-n4CX{G^~<7n&-Y(a3Va&!TYmnFzu?#H`sEoCVKSPm z{lGw0>S)hr!Op_hf>>Tsx;kTol#8 zVnbQ9{z;r=!ZZ2d#%G_Op(T+Lsm8zmBTRQ04bv~swDQ|I<8eR&k@~&-S5DrRn#znn zzK(y@@u(!27D;(OMS+)MCTHh}Nm1AbK!5*@K?+GL$~=a=_aKOfp_x zuYo*lr#~8u=yB?eO>(qE92m+*C91JRDI6}Bm)9xZ_gTLP2wM&ECS{@z`nbkm`o{fJ z5>6_Ph!>Tc4(BjimSR?Zl)3-?-bAuaVdniOwy(P#ck!>(->xp1Y0$!bRJ)*}75Veh z*;C4ALtgEA-(MGBL5WE=wDvJz#xED>{y8IzA`5>O>~w28e{ItKx(Bgf_E!vYZ;!Y& z9;WiIoE_EJ0@FfbVVukM+^gjB3V(4Q9xPt6I$+9vFyDOdZ)Hx3KNDTt)xhAI@Y~gS zCm)yV=MTR$r}D8(eO%V6D%PzJSdmwlYv>;U7WQzi5j1NPTxYWd3klq zfoDM|DBn|~hxS)ry0k1C)?_bM<_Q*=WxIvB<}GENd8?mjd{!8*oTRSv5A3e31sAtI z!g=_DT(wTRuHVf!_&KqdF9%nM8-tV~x9}ge!DD*v>SPoPdU(knex*C+-}UcLqSFSu zyAu%!%EKME_nwJ9A?1I*&5nCHC**IFF2FU)?Y% zZ*7;*7G)WEf9-vm1ZrxB{CUjWYZbchIDyB4Zs_4@e$VZU^K0%eQ((!vSJ&~aV^Z9f zAf>V#r9Seg^myFRBpY=gDQZ|U*JMc8v#;dkOmfROiY4z=i$Lf3?!GC_-CIdhvwWi% z3mLBojL+$oXSq+mFuh@j^v6uuqCQMbO6hWQyH)E^)2_)@H?YTdNhgD>_Zd$-sq00u z01l;wM)mFBfvin?^`{n=YDx@C$2e^LvSMA`_g5aply@ie z%z*r|W!dXM4px5~kLROS9pbb@Jq)94f9B4~j&bLD#164#Rct1>nGG~-G2%ZkloZR& zU!m-|U*z!k!4ds58S6JOugs;h4!ujQi$=J#5TKc&S%i`UhZuPI0L2|mN}`sGFc z_3q3q77}MgbUq8|vQuSuPd@8Q{e#P+nP0oTzoJ`A27CQ|$n~}I+0ab6e5%Kn$zyJ_ zc0~yldUCfQ5BD&?W;-*vb;S*%Qq?DaUpy5I)*-nRnW9~p7)12(BS+UQ@h}!~vMXCR zri9Q6iM-e_r%0tXadU`VG%0q22<+Sp@iGYZr8F{2HB%iT=$B{Zn|hTpr7{X>L@-z7 zPVDbZVh!<3F8y)D+1!$Acacll8-22evj0rONSk3*bWUe@<(i2_ULMMW-V0r>xcE+* zc#{};li1LNA8h`juJU*5ga;MKP8-%8rmc&J~bvzGyD-zeS5~h>3C8HD$ZU1fR{Kfx>qe8L?r1Cuy-Ur4F$e<)dK8N5-+hCqa{4b8qGAgRB4Z}mjPy-AhAtCV6 zB{6h&NOyOKbcb|z2uMhGcc(N+cPWk1AP9bkZ!LbotOX3`Z1%bL{alwSTyvAy`W&iU zj0%TUOPL5?d)QK;k@}x}R2I6`lcJU*A(zhs{XEL8nsTF9h&+$bBEmK!6J9ITCvd*= zXYV9e!E?PHwIdwdmo`mU)w2B-I4$uLM4yJ9 zAj#3Y(o%jjCijv&5ZOjnL8D3sX$XKXH`p>l|)>j zb-^a*9MwLymg{i--(w|ZRw0tk1r!i)NU};~van!${F#~Zt=89E(My7SgVr21gLktl z$#3#R`J~e7$?4Mxa*z4RiaDPPh8k+=)8Ws{kf_#gIwS?p$$U328YwQf2uORCK||~B z@q%I<8hT7K{_aqU?9JDD%xh{@f;_;=Wh&2){~cfBHI$LRKSdzDi9ppe04YPA zHGYb?_g1YR6Qktk@kAlc+O8UGPHwvq9l4nb`)P}+G$q@Z4V3;l8>}#( zMiTQiP={ZN{V>0P0C5QOnN8q|Ia_F11B$!L*kbEEF?t`g-~a*BSh!TMhNmWicpo#Z zUO%;816x|nlu$S2$?{K1Qh+sE!iPtnVoMwsL!BQ2H9Fz{YTX05X*@&=s68ZIOW`uS z#9YO;QP}r+6Fiq!wR{lGFU}R&^sZn=^8VfI9rlEvozsKq`(~pZh0~8ph&YLVAH~JA z20O_>!IQvD#96N=R&2NUU606{ftbePXgvFgt`pzIU1ZFUF^%N#wdfUES(KSwEt{DV zYKHJNZTBxE+4z!+)n@1HBI)+eAEk6{%>Mb3M%X{;KKl^X*)c+zpR8VtwaqGjp})Y- zcVK{Y-Uq>bLBoahf9;`zUwqCd&~g_XDW^Lc9rm$j8jVP~f>?S}!@luj*%OztC3}g< zs4KRHO`jl$h{T%fOMWc6a*$s%)AN|O2Un;+57ry4x+QoKqRa9xq1#DmL<>4~A~{)f%vW?-xA$fK?QED`d?gkZdBMcF8@iT)3P-zoP)pXh*5*GTB`Hho^piGg*P<1*3QNwfH{N^ zAdi+6B8+6x$;^SD)U`zAVoe&64RO4k_%HMCiyYaBJKhABnn3qdc-da`yAB9e#<9@! zTQ~2j`18^hYfFVES%?}F(puM7`Ta}WXx``F0YTZZv~nFJ5zLJl;yZj{DPJe)BipZV zm1S8uX*{!7aDBsaT*T|Xh<^!z&%{}P_hX2`MW+|j`)N$i={eb ziNV7^B>c#bNaPx~4CE6b;U6EA##C4@y_4AWq$N9XMshm3ny`G2FdRVeE&AKY&fKH)dpUFw zhQOA4xc%DshqXY6G4@GFci>WY*eK@c#r#xMDNP_NVtwJt21Q4#Mw7Qrlswo~*!ZVd zUHs}GU(Uix|EzRD=voUH< ze`!x(NM0$%U5lybPgM%zo&-VtVwT2=Tn(aB`_e7$h>)mwl#!$i19D=$zONzwyqQ)L zi>3C2i4C{#q}YV<4%ugkF~0hif6%u0;~qpK zhaw0UE#Dox%z>wj`9tO2OV^PnRb(*JlP<1+fwq0oea48ZG7J+<<9>dchA4Le)_*^^ z^`k3Z%PM5WWV5t|uFQla+JCX-q0`%JO6Gtvx_v86gf1u0mv?%8dV}U;)T}jw1^Tk3 z0>gxzz-p)+L%gXG7ZzG6TRxlcJ!&wa;;u#K5-hB+6xAd3&FK4FrOt(3r!fP8V+DvO zZL}+@nN<@uD-X&k`;_HR_s-#?z-teku@DWSY;xXEgZkXa%0JBx=r|AWIv9we%&(q- zxf#Z@`peM)zATJy3c6zD=eDwVpBbTG@}9Is3P|+kIcjY9omB4kne-5&k@(ANnCr zn|;((IH+^Rr~;1?F6 zgl)D1e0~hZYx{!|t0Gb?x09fStDhs|Z#G+|;(` zAJH2APnxUHu%I#Z03smH)Rw`z*4$|Yc+ZyKRIam! z|2yT#Uop`;R|QBvCV7%OMourpAwXo#G>8DZmsgc~2c-x>L_Z?Jx&`=*Ftr_saD!w`l%}3V6XxYxgfVx&3tidsiF?y z5Lx*1E$deB1XY{3^q%k9*MHM(IQeI4r-=2q_Re;&r(8VCPV9`GPf@#U5NZfrGFYA(+ zTw~SFjtd|9Rop>ZE(XCwxM)DMgTl_KVXCXeALT{@S5F9m$F0jyz?h`Y9k0o$bsdpi z0`70Uu%uqa+c|aSP;*P+N&-qk$RKLeFhm0r*kt3O$~GgoG|zFnjMwo!dSNaWz@Hsk zBYJ9pj{~=L5D5(2tjpYEs|x3=%!w6jj_x6OyLtx1v=LIcUm7o}os0c1-RCXk zeayR`Q%B$&WI6x4#jvErp}RfS848E~=WISrlENIDDfC`eNJb> z@xku=}^$VRowkB)z1Q?Jbh(Vp3?#kG1OU&_X@tjQ08R|}GHAPNs|fPG@#_YtFTMr2$wOkcG#^V){3og=h8xW%>z(yFTdiQmP!+j( zR)((=JZ2Y(W)#uzZ2{6dQ_OK7L{cM-2qBB-smG;Kr#ST>^>4%|Yh7SY3>-rzwj^Q3itBA}I%@QLGs|L}9oSr6)XYl-0 zBdb;UBuT)Y{WkAI=zvXR$;n(nlaAk&t_qzr4py3l#5;BC)LG`3&s()0!2N_^s&bEf zW{m`A6>OP^=pD>U$JLUOp&Bz~2surn+D0u8e=$N- z{T!JubAdhu`7Tr*B#0*7HY&0(!oB-xQ?#p*-4#LWJJq<1112b`ka~cUCO5S&f~p;j zi~Wre5Bfu)lGF8yEk1B7*9II8YGs3&&MnqtY0nP3&(v_@sa59QVMP&w9)Rn5o=Wxu zEJ?%Tt zMXHD{_&Zv5W4c+yMr$UVOGQ zt|p%l{;n38k?Owl_l5sr+|z`!Y1N6aaDO+yek&pTF{rxA>bFPgV-Qt4mJ#RCK!7Ko zq$@00qKGZZtTH&M_%{AIeJGp&ll(jhh=?Obe1!Q-eg3716W3RB1*bKO{=McG-XjC@ zTT*ECo5ARPxvj`IG=P;Wjpr##0mZ%NmLgQl(z^C+F&kKI3+?#18;u|MTaV$ zbb_&Pd{_)BwO9sP7%eJ}pknCsX>eIG0EZG(j903PBY)NWtY@cJ<<8xw1Ns zPl-wrPP0M(V})RWRDs5Q>$7rM9jydRiSawccxnAb z=K79duBUOdxY2Ner>PF1x8nYODK^#3x=HK!a6l(ONP+&dK@Ra@<|IM`O>+zW*DsS+ zi1jACTN@{%mPdP&0!G=o1=ax{Dr<2d7HT9BiVhsep)|{OKg$aB(1WQ7oG`^zyuJx7 z(x^+yeoEfk#Ws((Q$T%)&dj- z3knp6_#OIweWuXOJ|~zq7ZcH|jNQXcfHey}{rR`(i1y*4TE@1zrWNEAnCabyLxWjg z7Wz+L^I%QbaQzs&3^n{_TahXEkAtToB(Mf;?-Lw+&-QKrDgg~<9;b7n_o9msYNFR5 zrZ_7aB7UgEPPr4Pujd)}!-I7~Xu_TO+A&$hVA0i59>vTQoX;MzqZV7hdgM3^0&=3vVtZXQkoG{$O()AO=5mDP z<&*QY#hjZ{40n`%(wNIJ|2n{Xk%mV+zc@pm7P8j0PlTa2bL)}M-poo_?qr`s-9DxX z#syIvr3a`Wn^3 zi;}FlUJ+{Qi4`KT>TP}Dhh|0R=Ny_QIVeRHB5FQ+nI>=8X{+Dx zfTJRmaS*{Fz|kJXDNL4Y)D~4GO_f{4{t122O>Nd6Eot$Pl?06|8p}2e86P;hQRW)< ziK(A&)bC!n%&(lYtg*VS{Zh4wrYHnk_YBlW` zKxz;Y%@2~h3NdxA_Lu~%YT}VEt~@9-!(W>v!&6!0i=Ws+b1BUwRm5S*9FhjoA)~E2 z2l34<->mJX{+8rY%`wDF$^z7yqosWr6ZrLa^lHY$f&c0^UpR4NqJahkr5v%Yo}abD zxlj0$|eGPs(#;S_E}9#!v8 zS^UIts~)iOXGH-0g?Q0a&Z<8w#$U)sGQZ-}D=<)5GouatYd{to_IW@##;y-%yVXcT z==KFt6OO*;aJv~x*Dpb`;(`@+Q01w&%F-P*G-3S1_|5@1NM;eBg1_HU82Q&JiiCK2 zW1iOvy1OC6K{oyx%&ua|u0|4bZK6JT!1y0lSvf+ny0U_(tr{L(v1k?QNsU5-1?jXm zX%r%46Yc6Z96Zh@Lr%1neqGg*w{!Q3OIEBY|n`C4&f7b!k z1JVYTMzASs)nP8BTlWw{B2Id^`?BsbLngm?E6nNJ6*TDa6Yj=zOnYh5mSSr`OH*pg-cYkE*EmMy-oH)`&VeXLcHuT2|U zs}KU5E$2(`t9VKmoY}wsdZ8@$iL(sTRGwt#gRr%iKt2hPD`F~kPq6NG@WUMzwb`RF zSK6n~0cxei|I!^EAw4Q-`Ke$Q3cWR)vy|Lb;FnL zKK$Fz4E;$OIoIgDo64D>vTewZrU^+c1IgGHj8o^DHwT)rK82^j5&GMWQ5xOxtrXK$ zc23)U3~rc7cE$>OAEOPeHYcxQ+Z1izsMwLU4xRpdqmuI`qZ%9M;@vwBRoxMM_-}3R zy`mUPkK7-fX`9{1DxDkJSYVR%)HWp`%m<9qUVp(xvLyXgy#Xqv1ATW<ontB2RbodmT*!85XW7r_DF=xV_Nrd*4r-!8ZKuI^ z(65)d0Nd8Y^Z{gwk6>6x6h!Zc(SWvJlbAs9Yx1Oh`}k~x;?M2sl<%APQAnHNda>30 z)$cS^!GA=`_kYliclpWY7BweGS!M34Q~u97E8C1dEN*1_h>&}!At(xn%g zsmMQJ>SV?Ilf4B!XoQ6UB-?bGN;g-iJ$#nC?yj;mcNH1IfC;T6^9pyku!wT2VEGaS znmtp22h>QD5sR2K?fV?yrlnX;9qnRr7OnV5I-0XS>bmgbc5t-}Ce^^!VVJwWHc$+c zsQGZac*mGCKrO(^7YU^`7=5otuGxTQl7%v^g6!~f`y&tN=o-(I{vwRoM^hX$O?06o z&vHmOwXzp3f&>z!E|ZgLYFU)OaBzrlG9KcvmiF^r39AgA3#WjnFTP|iL$P!}z5Jj{ zEkb98-=>YGd0WoRyz`eTbntPNXN!^ZE7wVaTA$DGz)We)b-yXA>>ostt-wOQTUK*A z)4vx$(+LFm?gFbWM0SobrRZ!XszW!kN-rjloBkW-N{xFNvM0AiI9(H|(^@GZTFOGb z+T$5MPq-50n$`HlwH>E%sbg~D=g2V!&=8wivuB#9%Ajw3+~=zv3a`7x9YQvQU+<`? zf7U!T`p&L7x65tfuzuobvI8BF3OsmedU#86j*zu{H!alAY?e6jbD-~7m`Tnt*krH1rS9(M&wyQ;AOivq+3O}mtH;@d45J?u(Yl&AIrVIK z`Si+54z4<3xne5vz47_lV0|<`8aoAza!1v34mIbdA%HWFb-4Xp{M^kpFiXh zm@yjG;QV<6uOk}$n)vzh->5`vjl%f*LgCD%o$jUw5B$=~(BR9>6N23vGLH@^P~GC< zME9^A5R&$t@RNXewr$*z zHwIS9tnkaH(Y%9Nv29yiPTe`P`6JXGbi#`0Y*7(!`z63Bs6X4T#swhQ^vbGT^0AhK zM|yYVyv!A3Z}-nI1UV$YaCxmkJa?Y3B8sfp;VXxF6z@CTJeuMKAQv%c7oa4&fHpP$omwpTmMkC3nDrK@(*V1hd=U^X!Xb@ ze>4%8f9=t{CuBKoU4G^>ph2`^*yy%t#Ph@*6eeYhw{R52=yMG*;O<8^pU$!mS@G51 z`h^QpFgf_S{Ob_VwX>w*pDDQ#C1OI)4F+$5XF2m(xKOz^1|g8Nt+4Mge5cg3CziI zq`C3EN$bqgoRaGE+DeSuL?Vsvq#{a_H-DQpso$Rh;mEYsM(*nR@a{Vc?%rK}9IC32 z74%Z)>D2Xgu5?ds`gy_nY39h>bN+43AK)}(uTcu_@yU-d*+|CN>z1+WJ>(k!6Vo4~ zJntQho7qT+aF!bsyY5ksCUtSJn>PP0H!?m*@yI zB~;!^dbHdxSpvns51u$48-YY)3h^irH*%pE;$Fz)_jS@p?CBdoek zH99aP#zQ5KH^QbXP--Ot8QZ4L*t{* zC(@isLSCb<2kww zu#(|ngDr4%k`)k1Oi2#NShC_0e&s3>9q7PB?UGy{Kr_dE?*&=5w=1f*-fj;fYpC$L53W(WrKh0HgBy&4dlKJ;pQ>l zh><1CLyH^SN_wbUnisR9^dCc0h}6DMRFQwB<8I=l`iu)n;sSD6Ddn*o^k}BjH}|Gf z4_%azWXA>$+P2ae^h7$JMMN;(mAi}lFxT>6sr9c;`aI2&F8j>{f0z=7$f%%zW^DH> zp8@HZfK~LiDmhybEci>oWWf8Xdn2wfFT2hk$AM>W{seh~ZCjgl4sJ7BzRGdQlP%U8 z9{ARensc3gl2wfG=diE{n*9&43E$mVjWJ@=x1n;=UTiUH5<$ZPEoV+%RD{~z4)0PW zcgw@7Jm=Z;j)#2u+4T09%rI%-GL0T6PPN?T{iTgPC=y~OLAu%ySW?fYs+R(GUDMioPTBTcaCSi{~{*&8h`@O6CzYzRIa>)@e|G;QB>y+ z2&tEXk<52%VVX(PWR{o$vo8Cwdg@e5duP85QX> z%5T+c#0OEtpP~IqG~8i87DEs1w?RC6Q0*;|3vf;X1Le=M?}*HE)}7ODmI=6$WYrP- zF7tE#Y_;b9XAa{3x;_ic9<=sF?BVPOf36KyMpKm(tYd7!15SJ)4(qKLZWtrjfQ1Sr z$TSZ-c@(o%gh8Z0AFg5@qqi4=YL#p)kw#0G8k(TBo8o?I7&Q}-s2&$dIy&tkh+p!p zQ&HQo-vp9K4Bf<)Zsdu{R9x9h z|Io#Ou1`f!i<3rnAxrKn|N1~lkuDnB60+tYUh_7-K?H9c;jx}bM-}eTEiAyk!iQqz zQ04}Mi?XBas;x$f zY$;8^gj43w{BPgk(`{OH38)8N;W%U9d#LXD~g5+v@!FIF=u4aD9EQh`Xog(|fu<(woJrJ5!b12{s(O@AS=1W}M#L zYC23pjRK%5z^+}HN`r#RN;aExnYpEi_D0JM)aMF;p#>Cxx&<0C!~am-FwBPOC!+s6 zT+eRt%M{aYMmK*8s-+M55kaeq=%I_~TS(s_NrjI>d~(ZCoBgQ}Ug#(tLYaBI{u|*i zr_Izn=)1sof&bR}NtQ@X?Sw)4`D|(*G=QmtO&|MV$ge1mi{QyPiJdbW=k6gFmWj^b z52#{0DLa&29R)-}jp3chGibn%BMAQ{CU35FN>`kL^LtqPw=qi+O>} zdmILkBJyx^%Aj`>L32Ms zY({@YPsb5}Wy9E;usjR*40kxowmVyQa%@HhMFZOVJB6^T;KQ5N_d=ARgYsfWFXc4p4$ zI~9ysbLtPG9PU>}|0A{8bVoI*a^-luioZmLT?q7wy(MUVkDg3_f=>b-FFy?T>&&C_ zzc2q8gnoS7=&(#_h={1t`oKqi5H!gpK$tB2E))RAlRMn+PvO;+{inPz@3Bd7v>b0f ziycQDRH&@>>r}pm7iTGw_uztTz{~ZN1tj3t6%HJBg0|Pw89(Q^vLJnOVe1>ZfD7{Q z!vdEgCES*8^Y!NooIh34?{HC|lI!z$f;vRiM2V1&i*9@=`IrdpPprpMuc=^$h)&Vl z0&AN1`NgY-2X)DAa#jVNsxFC?e!1{EvL~HmK6oG7K4>%Vfrj%l>QiL_y2WL63(0nP8jY|E@#Qun7ULzx)Cv%13h`CMt_A4v(>86BSD=eJI=TG zi(-~%Y8JM)pZ^8@kW)3!CEQKpnnyqVcp7R1oHvDa{|8gne*dK1OH$_RU7(TnS9mF) zikxxUqFqQTyPb(yDaMIqB5L_m1p73`kS7br=rg?BT6I7WOVNfH?7idsJ&(g;LjVSb z$(hD~%hEeVRpg(PkQ#qJz(y^?B8&sz94A`IT2N(jaYnR%19reitD!zP3* zWO)4-HhQuqG}_iZe#>q(?RzLu;opDf3zhJH5n+pYg62Qfy0N3{AiUMsPT#!1t^3RxKY4|G2jDuSl{N* z!Qzd-{tIBIfgx^yTlMO_27HB)5>x>B9=*=@-ce8Z6`1{FEJa0AGaO(jUha>Y0n7~) zd;U(w*KUwHwjEm{L8M$s72^Q+c1)qmuF|j|(%0&0Kh~4>$GZlw@8)C`Hu4gmtXUql zE4s;{7gNt{Zj|wLp!o+*Q+$E;&}y|E;@eyYSO&WOS~bP;V7Nt9J7TB9hK-43wsEFB z;&ukhfW#}h`7h@xWL z`Fp@S2f#xC8Ywmi5-0U4lm4_1W72EEc*QdTh84i&mT!|45eax3#Z;iLUjVSHgRdZ* zS0NN&OMGhjN7QcOh>HRSDsFr3CL2ZsD2t}NQ@5Yj+IFtI@9gj$+N%au$8*JCI_*!4zsP@EalJ8dV7NO}DS(f%GxLDt`>eSjFk(xF!g`XV#RP;N z-G2QB?o5X%^I`DLohqQM8Ypr(X>De;&?xQ)9V9<)a+O0nm(qV_yyXN86o_~K?4FsH zX6-LW8~5Df&kofuMSL7lK&77ZLMeBWcSSMjJNoPg-Lx3K;X6$^giDzxx$O$tUw6D{ zh#s{p0ZwYmKL8>h0050p0OP~}U|Cbq(Xr73@Q=0oMJY;R08tbU1iYg|0JixO03A`_ z&Kax&ptuOY+xGgN0(d+Iz{yt+@K*t@C?P=60f8nzbD;+UVy(+XEu;2F<1^vcc^x{2 z$;wi#p|B!&x2BNTGSr3$)}k~PLsD7Al}+L**nbf}sAfnCGHTh%D@ysR;_R1*OReG0 z)|2ZLz^MZ1dTZ?e4a)>v5CEWtN85L_^@9;C zYrxE1erf^*^2X(5_2un9GQ|4eiVClvX6V4(tJ(!Ez%IY6XG0;t=s7`<1Jb(zXntZyyuTEP34XpSye zLMI|$`GxfhAsnUrk0?@ee27SZCLRr1q|JnMPh(cDkhdYhh`pvX>pkk}zxEC81ty1s zcMotPSDl7W2hoAq33a!HjZ8tr($Nk`!JEe`WWupYT})z4`U z{?lbUj8&#@Z_W0R`kU_bm~B=iT&yfa4hM+7MVjTG!mqA+w)|9@GmD*~kF1`MFhp)r z8p2==xh6cQL0C!n(8TO3Xtxq;{f;6c$XMm@9DzWkJ>eJG+vWH!=C*P#TBx2-cz8`w z4A0}ZOLdD7DWfij>$H2aL1SeIk%*z@9`q3P)5pZwwKdzP?ZfL;#L6@P*9i|G-NXgn zN&`0TS6LE(#ce-f)~*8qY#@MBRiooE$vz5D#&=&y+fIQ`dJvpf7Nzy)aDea+>e#+~ z#UCpGG%VotfY}pZ)xEO)01?s4x^+1E!F#{_x@e)wi}!x^>xDk*$fLu{7lG$z`vb@5 z_WoSC4ph1# zqT+c+th0YQtw$&kM*gj~s##vD*eCtil2l#Yo%=VX^rt|jyd=X`J7oGwdG9CTFZXG$ zT=~^$_S2$K`+$+$Kcv3?SCkpO?OHlLFQYl6--q+wSL$%9OD0gveO5yKfiFwN9BE^P zS>~Y@aIRY)9<@QfOes1^=7?LDXZ7cSP_K6C$>n2?sMRvePH^UT{Pq0bUl+cu0ryul zTUyYlPgIvrmtWCux4M15*454a6#&%GI-{?)F+X4x1%P$h0q_Q%b^(!0(2)tQ^^yaChgXtE<$U`%Yi{GtDp_gDV0+ zq%Pcg_dzXZ3ilZRMnW1*SwGjsN_jqtD^;o$f))1uI6oIpFXw5s!BO=*NG$6-<4@43 zB~U{J9+!>2J+CcaH(zf(q8`3mx*O4AS5F?RE2bCmeK-5-R}8tYswL_1v!o)w2>B_V z#1#SF&u-DMG#T5hShau$(YW=l(-@96A?cIt{c|4-8;X1H%mlm8UeM>vtjS0(-;re6 zKXd67C?G+oP8V5j(u698SEs@chE|qq+(J$H>iH0R<3{RhDnzA*b5GX7a$2BOJpR{z z@&!*97+a&25dd%xCL~t=e*DpXX&3KWzd0nQL=N{(#768-xm=8t+IfQUtIH1Z7U+`BV$IRAnAzU1@uZ*EotlQVBX(QH{ zI(L{LxfqH@G@vLO1H7SQvw`e?AdqUgWm!=HgIC!^??#GWVB?bOGEDm3bpiEDs8aQy zPOqmaC9rF;(W@Rpv6F}*H;$%4n+S=xD&-9tHT55J7eJs~oR=*eod?&tRwg=PQs*Wtz;Kl@^ipStH%fIdQikw;D&DZiP?G+}i&qM|)p<5Ak# z76YHoLJ$k-_a_t%u{LV>nllJp0cxQfo=67;SO(|5dx#KGYYs13I1)&6zFbpMYldj4 zb~v|0n;v3HUY**=FvHUfkM81$CH@Iw&TRzBT8bUUg$)6QzDQ!{QpVDcZHUkLgYnl@ zhe)lrX59{=3-b-g0*37TMt@58cKBV)3d|Sq?XptDv#!UCP{Eu>$BpxvyaAJA+Vf{$ zsy8~BV#lL|5gc?;&Qmab^a?1H4NY4+%E8L|aq4Y|aZ$hPEj}FRSA%KiSiK^B^G6V} zk|h*u`oq(upkv@ie9VQEb|PTyCMn!Zmebnqfd^74tY-W%2`M7vA=Ho@a`xy#t`pKU4JV}sSt3PM2F z1B$i4C;^h@GMA~DJOlxq#6=)HTH?m5lP>IdSx*vl(|rGW{fEZJ%Mg+JX}wH8B=hj*<`!9{cc)n-442{$`EeUjzI}_7mh=1EJpl=<37^`gKi-1F!R7XW}B`qSQSy zk9lHGPa%9g4ENNQ5}TQexegi^Osv~~%Y9cPCA9D&* zoV82p*)=RVbEXB_C7tOdhdTWuE|rjE=T2Q9(K8REEbGG6_qI4Fe9Hv?-^0d|Qy^Tj zZp3Du*0&;QuBByolctiB0_yiK;l$-WEzQd1js~1-9t<|3p(PbHvM%AM$ZknrlMG9R znDVPiu;gU9Bn&;!NK}*aKl8aUtpmGCvkr6ok~^X%r<{I=cQP8!eOk8@8(s2GKzp{0=>)A9 zO%V-?eVFBQvJ4!};_6rXvU3}g!vA_i+Gc5x9cuoQlbcD;w1Ce}7E0K&jbP>#iC(@p z(5C@nI8|bZnit|Qow`t1T`$JXs+==II7qU%#zpt3u|o-QZC!M`W&%SKx_i2c{_?#i z(gm%kX%gY{+?Syz94LBliw{Uqq^)Xxd3BX(4EOiU8|)R>c6JJtDR?#!w6*o7Z%*)Y zeR(km6V2eFm@{8|7x->NseGLO!CT9Kexkv}0hxGoUknKQA{i8fGK1!2mlAql-jX_f zCw*47zwk5Rx%_4Lm}AG;)mE-4pArsH63!)UHhBZ{3tpnK8BhU^qz@W$wN|{cmWLCh zGRfao@gcV%r22~e{BXMOpaf)mA{+Hj4N?0CMUh2oaI%U=PPHCKBPcZ$5&ryD*2k^- z)xI~pR8mB;pd$J=q8m$y73C8`+f?UD18KkEZhxh%GY>Zi|BUXBeE0MzdEP;u`t2-~ z4&LcY3J`3GM2alIl=TquPxcQeMRvR-etev#`k;#ba3wzF-kto$9Z6%S-<_RQcls{1 zrrG_KQx7nIC4O&p&jBpPS1rx&?)$fZ2gP*B1|YEln(z>Sv_9Jy2WWsyj%Ew!SXoB_ zRB0rMQx^`;rW+nI_R_ZID@=EIc=%Q0`K#lU1#q3d+RRq~p(CwQPTM`n#1Ryz_d);k zTz!Ws%OMQoD?0#j3NwhJxd3g-h$boex{NqKnA;u%MH<6)XN2!<#N4Bd>%eboCOf&W zRz7ui`OgHe?K|o$@nUtxC1Rq?Ng*um3%AbL&;u9SG(@BRXI^W3#$lJ4j%`t4SOPqa zWXsj$)Yc!q3Nnh$ha+XZxm_=favHN=OvXip;trAkHR3lbDB|oFrb#&lm_`vjM~VTr zLJ;}=3|dK4SA7L8oSfL>ftfYGEr-b<6#vpP&bBmIxPBO0&a{%YjSEIGB;sGXJ}B4JIPMjV4;3D*n*Xbm4OkLyHq z*CC|DL_QuvJ!FbQn=nI}@ZNebtmiw=lso7Q?r(LZ03{O~-1rKftByEu(W(+hbhLr{ z>Y(z+_0HBx(bh_|aMW}B3$fA3VzW=b2R#>@rAHf{TTR;XK>0JmEz24j&SOMC;TQyZ zZ_{*XY-&6-8qb9=hx{O3e1YO?o?Z$(UxvH9SYC_s1mtxCpqIW5KJqoyzR}xc?=B0& z)}vps;FSg2gnymy#!W^E5;FS;3gwo?tjCUBf7I$}fI96ba?*cJ{)2l!+Dz`W_59W_ zDa37dwbVML2j^vVhUfkKcPg}Ie=_wroX#U2fEt{akVGxCp+7j{0VO}Ee6T8U+nS|w zH*xS@Q*k|8VIEKN_OEDynDqlK=P07G0C`>QW%Gb1O<~)K+aT4708Fi9$A1>JV{@QH z>t!+n`;^}~xD>9{`E3DCIMl)e1*+CPu{1>GSns<99sVH}<0HV8ldAV(HaS!pmO2Sj z;7ix9APjefq@U;Q7-hXa$R*3Oyt2T7QTSKe4&d)Vd^LFK90EvufCCPw>~8G$0n+}k zQ@}L|Ku<0N^zg6h5f^}jo;5KsK3-=&hWpC6h5^{vB)MWXzX#_o;4zz*c`DXF;$7jV z`J}_`prs|vP1&9o4GF4tCu-z{I?T&|{s^5*S38nV1voU%{|d*ci@vO`zc*skg)oRg z7(#a78%Bw3%+d5U+P~m47=h&y8Opg0u@ljG*WU(RR_+mAsp9mK5aAO-z>nli42hvkBd*slK2NNTuhM)s8~3S}Gt3~zc!V%{d}Mn`(*c9cugSVf=}yhS;% zS}de|POEJ2t|{(LR&k^`<2q)i5`4Q|2@m~n{PZ_^fy>)g%Qjh6wslO4Te zQVGP!NwJZq%5pm~Ok#{}h}X=oUtFrGkISJjZ_!ejTf-HR%6Ix_l4 zE)f{uNcks!=&LsW=>|(e#N}_aMj(yrV56U^!>Eh~Y3wTO4#yzU42!0sk~zSKN^K4d zBk>2`4ntDjfDr)< zpbwQJVk;_=;|1#vXshumGa)e_2yGc+(?hictmZo7)u>aI^s*1dLlPGTf0XCWoF%*j z-n|Iue%u$r4$p%JADw&L8vxFx+(zd%HGS%2-0ERnW*t?gKo{UB*dsn3*Z3Uex?TLW2a4%gD z1g|V|pWFVPRPH&)b>8pTmHxCOiL*w{V%|7e_w*n0u#kXqvS9ml zJE660cfn7S=rrF|!MN2yo*(%G2whQDo`y)){Qr7`wnCVmR1EWzA3W!bn8p2+w&aud3(=VF z(Uu%g)FOT%8odac5Z|^=8IW(di;R=iuYIkeE>5H_DG!1fCYFBG{~rJ{LCwDQLrI*? z5#7fzrtu&X|IR&6tZYfioeEt)Ol*c$$uDPKen6iw#<+qoCc~El!yK@y2xjxXM_`yd zMu;T_9TRrjhiP({)^O_wDO(`HNS{Xuh~t6>o9IZv9zJ+Y&4SrBz|xz9@-Rx;3n9d@ z5XVFFA8u8YD4cu({OJr&2nl$BR#r!RB~((yU4JB(W~5k%HXV-gQlT2nr3QYfigx!b z0Q-{d_TDVX&XPw+$Z|TK14?Y+0~cwlsN6wM4K|b*sdYco;V9M$m{|0**8K3ZZX%~(ceU6_`LX${pYKLJnc>~#`S3*bF^~boj zA0>l7^bns2CG*me<8Lf-{Mf=-)R88^D!ipGsAUT2nnYe`dI`tPv<6Ee%w1pX5sBR} zb$W-vznn2;naP$fC#gK30}C!Xr2l@zIAzx@xsTL3||gx z#xk6d&SxYhn{c`Y?6MDYNZ3+ix&&ewk##t4E!6UWHQ~j9Z<_`g5{ZmdX5jd}O%vD6 zZlp-=+RwT^xj`lm1~Eq}N7b5z`^C?p|HvwsW`mh-vf?uWGU}SM>kSP(OG-9~sj)8Q zMv*g9n~!wpdu=ow^Rh&T8b)$e3?t@}#OApzlgD(#Xjqt7$BVpBBuNgCnCv78u{~1DhqcDu&%lMV^&9i~LFyOh4tyOAY=I zzs|shCpR=k$K@l}-7DN28d`0YJQKfVzcGMO9;CyQ=Y>7bvj!*c$2>9d&C5F@?7cS7 zPL=9q7g@gO1EM_=5q2{sierp%1z=2uF9W#efP2|*5weMhb5bhd4uq!IR&2dPU)mXI z!gCGbfq|5%usURgM^;>b8qO2KJ+pGGun_e1jJ(_m7(voVb53a^n+a#3KzJJ zoI`fG>kk)e%H3Ca=U65bb0Iq~Y=jMmJ-D9)+am^$(wT!r!S94GS1f%nf3S zm%OyZ=_D>WR{i7zC$-gZlu6AdCeXwBa^z0SK*9838N=ih;{Rp{>}D{kBqJ+bR=+5i zqTnncg&3vJseW>^?mJab&U1bdSX1SYpnb^lc+3faCly>N-!oS zzB1OgZ#e{$!GarlnE z!ik56Z$=BDc`jMcfV)13Wn`Ww%oAF^5hf?mi%4qt@+SrcF|n;w#ra-NSlmm5%~+%J z!Vl*WL18r&9dy$&5QpVYCS4ESQU~UICHr?M(>pHsU;tw047u|81``?HZ;TYpjUf6B zC0zzegzl{jis_<V1M|tyO?1@YVIBi7d$mBWM7(61 z2u*E1_XymjZYBwieOHfpNYb5?F`xq!+<;!V{6+ z`V1hd^H?)H#ubb)8NOT?)yl)X6p_kWibo;%p9A9hVktgH!%xUzUf5p=pM`D*hy7j*nAlwr6QspX zWKoZzh7G^nrNAhCKu3Im>`6|WnJ7^|S1)b_ath`XZT?AuY!HfxjRw50{~(hHYbUis zNN{R0HDp`}k2@?Oy&2*uB98c;yNZ_97!rECDo8W-(|HeZdl9iUI~f9C}_e7P07ZLT;MlP6zOr@a38V z-fsXtgU`)W2v$ncfi-$w6BD=IggrO>HSB#807z)beeO%~_MY0$QM_|EP^*AFeh!1j z)9%~KcQ1hKnhkDfiszH_;^B`S6aRB2CrJ=W#d4=LMEBhgQRk*6=CM9l8ae+% zu_-V!D}F0^A*^!Y#*;Z>1E zezS;tvR|p;gA0a~jHL6_5oCjyz_Z8Tul2(H7!omgM9YD<)PYg2=r_ATLx3f6h;W>A zdtzTlvOnoOM${&vMX*s^t2H}mZ$g#8O|KP-t(I9xrh3mTTuAt*8%|e@-y(idOzGVUDz+)1@e-+LZZhX`z|J}qwxOG z&xT8*s#VAy4B$WfEdapU&DX*82be5uhyBbc(3^IF+;l58N^w$P5EJ!lZ-e{ie*xp= zZ@?41B>-ZOq*S^qitolYiGlTv6WCU=W8pb3Ck$f3DHK3UyFgY>h>b_($=D_+6*d4E z6b*L?UV>y;Mgg`dqAVH2#QENFoa>o*(T?k3(9glT`yh;$z7c(|4Fe_)z4;*w{^tW& z{7&HY!7|{#VLc$){$xu`XPyq^8&rF1;2Evy^*nz@)H^Ihe$V5zSGdBe9lI05$Ab zG(mNe!MKxZ`&gbiCZN9ShW=q)zXKp1Fh%X3U1nghTg1k|M8Wj2zc#?YH?Z0_V{Klu zeN5U6&opeT4uGb^P@CO}gFk&0CSSP@_kVsJ?Dz%>w{3^<`X9$ih2umESnG>A4ID!W z-XI`}lzgUpCLA1GJP*FS7CoOl6br(ONKz`{F~I4D&z1wA#X9^6@%uA~nGWd-fYjz; zP$59yZfr+szJsHUURZ}LBqtD(K+lyJmV422nkzBfFfGQpZ=KWs_C`U?_OWLolK05| zWf~N=QOdduK-9+`U5omJ{7om(_u8NaL(TTkbfPwpd~?3cu$pKa<~!JU(T$kgy$jx# zz5_B_1(}%=6CyxJYZlMLZ#l4UnuD=_7x?1&&;S7lSC?5U2}zB**2=6}r1RuclJqWY z1DOrNp^vz7#+?qZ7Wh!EP65SxrI*9bbu&7kkKG4MLDcoF5w3{aQ|k4dOyv&)lc`5V~i zCW$bI$HhzBBo;jG;#7xXt#9H9;~5RVBG8?bxVlQ8OHBP8P< zK6hdQ2W#ti)&84Nc$)`%@jS@EeQ3|kfLRmwoA2CSR|UvCH^99Z@V5cu`<;(`6L2xkV_9A=%ZSd*yGDV*;e*PgeG0xH%N ziV)$SW1+PbFz#UBb-;WlQ|Aikm;Ein!G5p8V-SFnCLJQ zO~=H>fF|-}!Fk|ho8V;ILXiRos~m6HH;dX^?u4~?9@u{nYZU|k;~5ht+XUwt6wbhe zU5M&H1Dz_hqyw+>m!wnYz)r9+%|>c>t8FZoC>j6wR)J^cPp&5liGZoLIHT$Yw-BSIY>d_(~TnN z^b{rw97YC7F^Gwc8?J@J+6Zi@BW-Xo2o*0HGp9?9;P*COm=U^X;(kt{fPuduF3%w6 z4R1BIVJu0edaMc8AB4N^PquB)+it}6@+3^w2-6Mx4%nd^fI~N+!`9(=4$wb^qB#L- za4h#v0ej|vJ;L$|cLP8PGX4k2>Ko{Q{?C<#PE2l3sfe7gOeifo`a%U3eqvS zC5C=rAx#ot6(`#S|M&4O{=vQq7EXwzbQPqS=_;3rPQd*Uqo#sH+;0%d`Iyi^mGyyt@O$HfBb`(A|WrqX_z<@4mr&){IK1ivcI zSF9Z{o6F$M^O)Lm3vQe~8(eFEm^0n>4SeY-@WrE%r8SuB@%0A$rx)QZbz(#^1`;hh(_6hF-zu0{SK$N#60UHB`jlr3KC{R#?W8jHp+h?1FVA+<(EWLoR z+#G8q!PF|-*;?lumFd#e%c-&3-B#vcC zEc93tEw>MVXo(a6^aEnnWk$FhPYsTfZ5xZ-t}Hn$gU6O*&vtB_>)D|%))Os?vmN1q zLJbuw{~xFV8xGLXykkywfOEb0WTa>UJ1b7wXDJX_g;Za*>I+bP4otD$$m<*DP;mSD zC{wciO|gT8n-qn-plD`rGH2pr5HsAo2Z(1g@J0*XVj2_$Ly#{Z+f5n`EQ1BpM>oU$ zl-dUdo`LPbV#ukEAjBs-1SdPiFr7MCu?^s0jbq&*IIS#at1oQ%?BsPP+tNoZi!Ff@ z%ZP1|B1I}T=$%@F(d?w2xm%;&0qaZ~Z>QzH>-F4x9?-Y!u&kGV|nSylH zL_|Y=>_ODj{53vtC)?_=b5S{tKY&T4Z*i=^@)+vJPs2a87S;^_x(}X=N2*zIY_KKMgd~N;qrg<`IUCl7 z4_XlAp|?(06`4ZWn-PCPR%Px1d^Le#CbENUmVqcr!Jkksl+mX*`gcz_zfXn z5V}EFA-7yZ*oaw(zhv?Tat%?=v%cnn6Gz!*WASR)}CAYFFk&R^sM);ZjNNCRbg6Npeli$PyNwOIx@& zAYP<)CHvX=3~IAb!-h-5y+gH%^0C2CS<)Fte8VB_R%wxW~nM79uD>V zBV`n!JF|@6xf}zeWjJruZWLsV_nNdos@K1AM;8@32e32o7a%p` zq*(P=8_FfT_{%#<43b(*nTKkf(^OIbH>nO>BlA zJ{uKDF9FHCY$KkJt$B_B(3D1Y4GC7SOX|X7&rc!6Kt$@2q&Rs_-F!vLmiWHb57ViH zICd=X7Q@{@W+VHB;|k)Z_7w?vE?IVYy~aaJ))iw!_s}CUA@AJTzzHZX`D(k8KriP)}f%oKTkvs^PBx}e`z<#QM$!4iL9667(bF2li|w% z1NpvCWg5#U3eB2E5|Q^EP_377LflK77snAxtGhO9X*o$EuC6<%VjJN3!Xh|?=mO9a zaZ$O;C`4HHucS3N=Dtm_ z7H5%Sl^_{a8{G9_RBiZcz3}?vwb}qLO8{MNt5$1s}E`wCNK(T)D)?p2ZT@jn-+THZYQNxdqF~;+ZF&TayktA>w zHay~Ho|oUl(5eOnRW>ywi7=41cnu@MLRMj9rdO{iQ;zAvPGFGOKp~gTlgnyJt8o@7 z9%aLanwMsma@OP{jKq~7!C9`nEQ5n(kYIUU{+}qi82AQyj9`5ry&R;|3PNUT^U)Du z0C@QhM{F*7@@Tw(8dA)e2S`#}F2>1@`dPMde-PWHACeK7uj;xBMFxG^0peRH!64>o=i(*ID#|xD3YiiIxcKtjMaT5CejA#>j3KG0q{yF)MNK zKP1Qjp-NsWH*QJGGDm{=sf1WX)-zWLa+c*-1G7e>dNMCIanliEQYpijE`dT2LvJlE zT2B&WZW)1PG)F>^ENfOcWO)y1X&uE+bO3*?hh9r@DVSj$R_g#DH-x*K>=?o1CvQU` zZ*+i02dH;}`YDj9-6NNMB*-z`&`h2IeISl8#<&78Cc~Ej1~Eo{(Tnu?mSA0w0UZ%m zzY8l`{QR)+w8`{3hxk4`;p5k^6{qg1Q+7pDnzRDzti?&GMV2K)$xCj=0+8v-OGTa! zTa`qc#6ZFDQLsh5+lr+;xfHK{rU`4L&iAZ}VMJIS_qHE`xp)qIHKEU=3G%8!wXkJb zi5(XE9+O-oNwJ!L)^f2*v;)b+NY?!kq78sM#W2 z(@9$+b(E&dF6vsB^ z$w*T`T%Hj&fQB5KA_`vCOE`SSBW^-cB{6wEkyWY7q%HDpGc#BJ4d^#Z>NZ8{pwoG) zL>K^mVowESX2MH^NY`0#7nkRsWuWT)nQeG-riHPs%y~ka`u? z)zffJv{T7d>o6d~xMx8n$!cH@@j1UvF_(Rtb+MK(Mx=hny{5=>t%0G~?7b79l!vYh zw*(_hJjVFZ!I%tR25d&tD%0nFhbfk5p(nygKde-vuhh#U)Lr^%@)zY9eLmHpn4liE zm(9@mJAiy*oJEQggJtsWS~qMmzyJWC2%S?_UE7beLD8ULDrztcf^j&{gNKgj<}J|! z8P>#vRrtZ>GAskwwrhae+_Z>dmRzDvlH!7$c2Sko5ld)DE-5HheVxTQc|6ZTtdqtd zdbyHdBjhMBi3QW3@O+kQO}+nTRSuD>D^3vM+h-X{ zr;fruE;dwYm$(Bm=Qjp0XQQAuyc<001i6*62i|Amnwpie`~r%UqHMvOE&`Sj5!tZf zvePLRVQC@O>4l*XX!Twt8%EVeu^I%hF{AdCq|PW)klAY7^%f9|sF<=2my1BB0HaLd zE$KJS5z7GY2AXB&1wOYE%l1iv9G;6$P(-9Sr7g-u@teqs9_VN!6y+kYZ5nju9I7oh zMrwPF_%m|41}al5e$N12Q=^Y|eW9aPk7=I0tQ(j&)WupD;Z(Z6RL10()F}X`Hn6;w z3Kg#n05ZlHS1`t8_%guohtEI_pTjV17{ml6X?Im&IwCgO8KjvyuKQe~9*SlQeJ|Qk zuk&YY1OYarqxur<DN`~-1w`;jXj z)s0&}a3@unfl;a^n+(Pv3g}QS*5Pp%%uie2liz*ML*MJ6%M37|q)2eh_QJOGxF2Xp z<7`|2?mm9I+`+@yn{dNV(HVTZw{AbfZ8@Dhy-z#!?RqEf?r8 zD`vHq&tiglseauFJe)ZicsBGfuLNMYZhsodgucu$@N-Bks- z^ThxF{`li?zjsPpr&xRGO}ju2?hk%X55aFau-^9aXmY9kuEGMAqvxnTgXF}twJxI9 zIW9m=keMkl&s4}>NPw6JG~0ssQ3|p!hr;2jU@xyl=T$HUvU>q!`$3>M5id*d+b3=x zeC4><{AHRVlH24?kiCF)?RB6}JP!9e$Kjl4i;ZVx3xyxs2XbgHaDENF&psj|?_G08 zFqSak5BL1($bDc^51-I+0{}U&8`ynNOvJ4s{6Z;|V#%>m_B(@^A{_j)$HZ@M*8<3% zTR;GmUi4BF!_BWEAO(Ny7&`ywIGQUF`7QnIEg*B#Q5&CHg!{cyaMt4?$4!$*8wvr@ zANEaxENlzgSY6rSi^~YztmU9p6ajGTVg(Z$!MIwigH>wiut=UIHX>UnPFw?H$MwLG zuYs>OMPHel2BsIHOgn2pqY2FK&As;+V?3W2li|w&cL0Ob_2>F+@Xo5(WHh-GMy~~H z>FIPj<%ME04~0BmpsIDkVW`;@C>A1DJIXmVy*j&}zV2pB%~PE3wQ#Z>k@KY7;!yn{ z_{JIV#iyct)v`% zeeiR~z)vlL%uU0*_C;WDP@z+xMq=Wjye#@g5iPf$B2i`PW2!KZGEw~KT1A}c91Yth z%Nne<-%GZ+xPEF1fBIDPqI=0U2RBa7Vzqx3-&vXnC5)B<{Pg}EKx+j&7GW;#Vl5=a z#X=N~PPU&4dHuFsB80EcfI(O62%ni1ZkQxdQQC%gR>ieycvtlW>-GTz&!o03iejab z9reHTtk7?SQkP+_*bJDcSW__~qMnO=CnnYhZMZ&(J% z&z%s*0*fChQyACm19t3#Hzi1i`6|GyOru#X#_A(Ibi^jhNKc%@)hmz1J(dIn7qyC* z+{ow1yl_JqZz(}^DrKNj1*y)11VIY9H%L8yGPx7${u-EfE-aHlOu!5#{G}qwdu{^&BWjTXqY*J0gX1BH#M zF)8jX>lADF;I~nmfH@zHC!}Np6J?Of4A%WM47?4jZx9T8@m%ApY2vwWo7#r*jWfWR zC&72$gtNhzU=jo7bS0>3O+?(=a|;xeT(_04ZCr zCy>%tOMlTu)rPTqS`gvcpwT@hf^7gmrv)spiAg}Q89u)lg74<+c09J;1<=LqbE5xk zI7>L!I2EgR54Rx*f9^NRX}VCm}`PO zcLZ_Z=QhHywzN_PW;aqr;H@R_mK3YAs8|*(!-)}_x-}2m z^}yGH2|z&Vcka9qtL`G);s7O@ZZ9BuaqgMm*j3pJ$M4}_O|-}U+5iV?SAm@R0d~$_ zh1cvF;AlfwwGY;8@FQOneFM-hU90U%O-WvDWKo&u<#lDUfRd>;Isue>OoMCsXxwFqTaqPq$C1 z^MD!_SVg4_UN`h{RTxCSr>z1ReI-Cu+6EyvPlMLZ1i zD^+0}x-(R4`NaH#uYMq6~IPwotOo? z;DHvl&Lf54kG)%r5n)V*F9UevEV!?D0MO~S&YTt@LmN$?KZuhZ#R?ee^DI;7^@}+bgcuBa&2*yVhOPcU zzpI$BxRqC3{--9;?0`2r!a_wUu+|XTK-Ui~X6$>%U?zh{Fc19n3fSqE@XOii!1&IW zQ967*$V?r8=0&f(ET`-pk@YzC5>+j-fo}865zH)HicZ3)#aN%y;;g$cZVhhkwK z^n?b`W2mEm7YA$XyqB>HJeX{xJOcCwfK?psXkQXxlY-10NT1WeDgtgF#4JQaQYFMj zVBPf@c)uZtu2qbm50KQlsfDv@4}99`d+%v z9B0BM^GtXQ)D)gIe1oLYs`>Kzc0rs2uQ7eE4P!cbjxoz__8qkt>ainOp#mVDkDRc( zeKF~iZIqnks@hwfj$7>?Bf#S>T6_a0wEz$ph#M0e%LEkS7~YzgVDRDZye6C+_}oLo zTaD5vdRFE;=ys#1bLym5{>0Tbn<|LOP|HPXvn&9t50(Hdh56WKeC0{atKqEzv$LV( zK=c7G^^C~e0buTcXg~RT1!A9d*7q1j3>4xYxgXcw_!7|a23GnOHXJ(C>kt66{0&s6 z6&ZvVtpJ1=Y|%t*j4>_&#$@<%puGXe!8~g)vZ+|gQfK(djV!A5RT5*%kMBMYh%ONM zFWoF5CYB)xr`w0E-!~)f=dHyDU|paLbr5D=YLiK9|s$L6{7SLuVv70@r8!1wF zM@~g;0mOEj6U%_}cSm7eJq5C_Ev&*i$a-`)gkMuKHMRiHKze-UL7k-QCP3Srfr(?uCn32*Ygd4y=l zMmSv_hDoytXpqi^1)Eq25+NCy zd*A!s@EGSDzx~_4jU797pj0a1m9Kmy9((Mu*mZ-!0Kfdpzl_=0SyU<&yyY!#!Rgbd zV`Pf0&B>D|@#Z(b8I?)}v$L~!&wJhj$B8dv9yxLZ zuXx2PP%4$MbLUR{?(hCCIKO~FPu*E7m$2oZ3Mms%(@EG?oE$6XLoHz_NHs%!S#q~} z?0X`OL3y;>nVMn%P5!BQ$)#?E3`TWMTodk8r=j0ak%t-Ic`Vb(P{Py{^;X&5Q0Ur4-C>^e@R7_v?|zAVH|urfqOpmxrH;vGyqWei;_aVT-*A&) zQUk5g`vQWXB_{@(iRd@9+(5d{S<)yq&9HkTAuG9n^2v5ogA(Z`N$GI*R`B15{U267 zc`PdcPt3YJq&^qa-?u7?T+C;+d3An!X6hyhVSe z#^?JOKe~8c$nXOXJb?fFpZ_y%y6L9a@!$Ks-^0g0{&D=_AO0a8c;EqS-@YBMeeG+} zYPG^N?|tuk@!8LQ7N7adXYkE$eiQ9>8$bDzKM7BcOM>p z_+i|0&pqLJ&-3u6H@yj+P6yxo<~Q+~&wK{=-g_^8?bm)SOw(*O@!HqE7CUzAzyl9F zfIs+yKfp&n`cZuR;~&4UN@tPa@K|DCQb~_`jU>gA7;8vik`!kWMVTgXEH9#wmK>|r zK5D1QpiG;5d1jGfwM~*i9+JdQQ|>%MY+W~}*S1OM2(ncaOa1E0Z5Sy|)>lV}fz$>! ztxKXj|EtNs2-F1Zve5QsA!mYW4#t1bbwF8?y_ zKdJ>+N0hTHqdxcGaTgxfFXLSD2}W|_CUKFZEsM;n$MK2@K-n&nWT;gP16pH5e>s2~lFK(H-Lo#$_kN?RFdQc*i^N$AA3C zn3|djk8{rPAO6FCz;FH5Z{clkdmC=J;Rby2lb=Ml+r@wTZ~qMd&}cO9Cx7xM_}Irj zhS$92HMr%LTkxq*eF{g89Kn~r{AB>Z6Hh#W`|i6B|K-2@7ucb>&8E=3e)`j&M!(<3 zpZ(dN;f5P-z}w#THoWhB@59GG{_)LQhjqjwNsg&0mbgtb{&LZg!Gu3hl>}-@G4w=H zM;60l)YKEhEGw$cI;#GK<)>+@s8YuiDVG0}R&gWEw`rt8AP!4Ru=CX)5k zU2kZfS?aU$Y_kZlZqlTr%Ou;na^}I@L|Q;=439+BQ1h z;y|_q9*86uKtzPItil)6=9dGpRma3LOFY9Yi9{I5)bpdwvbw)9#&`kXvXkLo`lVmO zo8I&$yyi8pi5)+F{5Z~?JBQc3?seg@LZN_Hyy6x3*0;U|0C@1h2jRMIEX|G`J8;7d zH-u@v{q1j~Ua#YhJ0d5Zciwp?>h*do%?&r)fE_z_glS&?`qyJH7~sJN9}LsH;uWtz zLD?n!`q#f6XV0F+i4!NZbsG!@Xf~U%KL7w#UQAgejGDszS-A*ODCmh(@#wIow#9p3CRY9f!J1S%{4 z%~*nUX;l|BYzo0Ei8BfsfrSo7`yRF&CAc#!9TqGdV#B-OmN( z(a9Q;dHURg<2fmR;#u&O4RKin`;zKyhxOkPq!Pez4;r}`6XP*n0JyBCo6mgaGkEBs zhw#7y52VhWJ16{2&dbLX&a+qP8x+qP|srAgjr zYHA9$ZO78=+qW-uA9?PotFB7j<3k_%5Ps)(en($<9T}8!22w^MkU0WGU*_LDR56Ajmb?^YMxZHnM@Kvhec!%%I3Oc zo#nmMHtA?2?w7UchF^G(mje**oPOh zBoD)uSdxcLE_KgI*+?gm9f4Ghc4~=nD9d25g|I9imbHaC->uARj2ApEn`QXasZ;os zU-=b$>QkRWv6$^tpOE;Bn{%EzmP9g*F8x-dk@ASF^8Ds+{w5lYM)-H?)G2Wy&sv)L ziv~mO<}%e%7<082mkPur5=AP)w(9i38rej6eiWI6Rg5&X5~IowlGfl+H)g;MAeZqr4`(Y@wfb3ymIT+8)xV~laBaM?^S4?g%H&YwSz+itrpJmz^G zzW(*E;}8Gv4?{igxpU{Run>iEJb(UtXp!B%eLEb-!TS1o%sPDj{CT|er7sQBEG;di z?!Uae9Lwjs-~Ddv{QCMjT-S}Ikyc{$K0w-fEm0^GVzLS?hRxc;Wp-%|WvQk8&|+K@ z1T;m>nFrqJgvUwQ67q|32fVAeHR~&%0~c)Ojk|;UkD!H2x)vK+CtHN+9cDq2q)=xS zO}Z8XQdZ(5NRfsX@C(IA)=r6GZpTJ}VlB>;c8u!IYOA2Lj3>|Q>OCqvz3Z{diCo{w zNo)TmHpEG6mJF$uu_}{iaMB=J_8q0=9qpuXs=PM!Qt@{H_Ay^ z8r^J`Re02LUuhUtwwTpebz7+7O5HOs#uyr0w%+>cSHBuZjvR>{`zQb8pWvEnuED?j zm;Vy`_wUE{?c4FCFMSEO+#*8iI*x;{eeG-bcmM9+0RV2h?KW7Jg)e>SOZb_e`56Gf z;^HD6ee_ZM-tYY$0N}2>?n0x{!2S2%kC(jUB>;f$e)qd*G#VjczU!{L@PQ9}0E>%@ zA@Tm=7r%%?p%9YwyY9LR?|a|-;5ZI!+YZz0*s&uepBRc$CxLn;ek{uZ>afhsWhy!1 z!8uYXr}K1}&>uJ3BK^WP5v6FN0djsV$Tu47c(V_`|Q1z^pZXdk41Pt0hVM2JP2>Js*{s^$J52RQZL08V4j;^yQuzi=fZxH>CpE(lwO&$VL zu*GDr-OWs6-2EC6txbL(fmHC$YN{=GuOa#?08C7$pRx2qT?jPs8hMCHSjqij6R)pM z;-rk{>Z?JvAI>l1@dv=47LqWsFb8tuD@LlL0TY%{1SK}i^~Lzftcj}Zqpc_y5Ko2Z zOYF44dj}u!?xrbXHc)r1GWgp!ibNa z7X|Gxh$-B4xj`gD%YuV!?-1ef_Bt%50}DdJ)h{dU(pifq_81CH58yK%DpY^IEW5*w3k7c0t;Uos4_~A{dL4QB7ePAh(K-lQzS?;%@N8C&D%pW%WSzy$BBB00t=| z0Wk~lad1qG$GF0A*?MTTTEz`F+z>lfsZ=mCGZP+v?|a{i4}S22ICSU`4jnp#4}S22 zD3{B4``h0R0I1jNc;`FciC_D*U&GAI45p{2@$0|->$vg88^aBG*Is)q-tdMu;9c)} z7yi?K`cD9WfBH}VDSq-Ne-eiei zLaip^r@#H}Z^!Ta&hOwCe&HAJzW2QkPe1)MKKQ{8;$Q#ke?3&Tk%WJ03I3`bE#oJ= zL8u$$NWspR3dnTzAkKT%PT+wF)Fxu5h-rdrqy}Wxf?0FL_rk>H1}^4BFHN5btMp(1 zES?9Z8z6JjBGj}=#h|>r26nm?k=&q7=&ma0t}3|a34P+~I{M!@h4y&^cG*W^n+0RK zq%8s*7wq^3*y&bCfJxa(Z=iEMaMuSvep=`~cit$<)mjlzwwBLLL3S^It7It0>Pk#1$}T4b&GX`=TB}545CA{$hxwC5keR*u z1VNA%zS6?_mzFT|e<{Q%1M-}VkZ2GSyt5`I9;2)nG&^Df=?<}APM2WbdQg06t%ILh z1bh4(yrmB8Yga&a%?eT+^e^6Tfc?)euv^66zP2iES`t|%vpGA@o08%JyacJh2GyhirM$R6)Tek*hUFe zOn|SP5bXo#Evc<_Sd(+`W_D*kj9wGyJE_TQIDRcI1CA@kT?uN6em)bdruH51#q;n_ zt-(FE4&IF>8Paf2e&q=iXkY>M82IT$^#A5jw9jz(L6p*&S3Cmi&3A*#vM8a)Q`mwH zbky=ew@~NH$C}|W6kJi$wcq%S-$1X|!!Q2gFJgUt9e3Pu2fp~lFQQtFtU&+%-~W41 zO7Sy4^E2r6dU*A#UyVQevp<8WEG2*X)1StB-t(T&>%?2$@)rEzAO2x@-ZV{o{_~&5 zFaF{$;$<&;8A_!R-v0Kta}d^aqvAh7_K$I*BiiEBYkhhH4>?mfk7Mm_yc0V)!aJ< z=E48|QNS`_1d-+V@)~&00VxGm&He!B3%LnjUIRO^Azr=-eXqCFf!`Q_HU=>21+e2A zZ~`MOa|qaJhEn4k=&nx6PjcunqpZ}+_29P>`o7?ve6S;&Csb4HyQ^-`EjMNO*Gz+-H#mew2-r2sW4IC2&2k(=GUG zM?kMSrA@+@)`C9#X#6**px-ia`tKO3M~-6h)-$kv@^)ZyF6@I+hD5mmN-BZ`Z#)++ z!SgdmV3tIG<9Vb?2I~R9AG#lft9A+U_tf$5ccYFUa^tZ3?W33gLg|@SawR7i)P!~N zQS9hD@kxgxHY$hL_L`WP4@|5{KfF4^I5`J+EVAy)XB*@di%{Bq61=ReY$;{qD=qNm zS&&8xq+ShWb-dFB8cjirRfOY>h)C-7INI<33taOrUJJCl7<}PAG>-J31Hb?KAh%u* z)Rf7+$FzNlZ$fW9#u%3ygkMldwJ}CPv)M$wUdQ^Ue-5>Bd~;mNDhz}gP=0PBByw>V zX~Cwj`DqYIM07r9!~B9{YfbP*Gd{p)1%U{xnBo01HroM6xiSmWS&6a)_wvp(;jQ$< zfE!q6@;178OC5CAA}c(#1AU%Cs0_-56Xid8AnbH2MsSg6KlNI+>Y%eh;jyS)Ooc2OLEB91Bq;sV&A|SH+2u`QV;OvTEp=FJ zBi?9%ue8z=4GnnL6?N;ShnOV6^%;Q-3Eo_>;Ple%MJ;j7%++FYQGDaIAlF_uv>fO) z#j?J}>Ys^VB9pQrCg3e~z*aZ+lJB)lbT%k_re9&I&bpZWCs%{qc$4bHyyHFEq|vg+Jbqp@bn>cWp6p~8-qwTrfCB}{BGTW`28^_s+U?vX&tUi zGL-I^hxz)u<1RKeXl}GHdDSnX(P)G#u%ke}N8kFXKZjK=55HhUxZN)P`seQ1ba}@3 z;l%S6j`>Fpc|@2}F>v<>F~XYb38C8;f0+^OGQ1RI1%6P@NzW3Qev5&$Pv5}bZ_EOo zCBJL2aH%gw?#Wf{y5;@&%qcR3FaCKp48eu&p%L*%Yv? zSo_8AZN&eAW74v%hS5%yJE)_qvq^dQ2M7`@iExZ)4)X|-@D3t9n5cg-P!nXfDx@e% zo9q5$ePoz#^)FdRgL1e71B0FsBf`|;;h%(cRUO4UcYs`d^=S2?HZV~JsaCZ0)7G~e z=;$@iGWM60;$$FMe`=-MB-TE36VJ_{K%oFk*G8%zF->7flrpJA9g=l4>V?o7O=fu^ zew&8LQK)#a=cTJZu?!)l5}jGsVCla~SxCQhzdc>xo{aHK);a8_t|uf^eU=Jkue;Xs z2z*B3lh8z4P&;^rIu9**f6{{ukUs{g<7#s31@vPL(#DOf@luYn>e#E+PmVXGJLbhc zj=&$a`lo%SFJOG)6Q96MH{FC%3t#xc7sB&|5bfVbKJpO&z}ngxe)*Sw z8HW!aM!8(Zo;`c;p7*>5jYcDNug`z}^SI-VJ5VZ>FgrVox4rFcm#v;Zs(4}d&KC-X z5#iuFUu}v3O?k;C$)_Cf_`r!aSm~_7F?U``(wlhfIj*|&A)Mo7$;>Aq^)TuMpk9b+ z)O18x+{1)XH(|CMc{O0aWIF3zdw}_%hj5&KTvaI_kuAGCe+sd4i&%bgfUUK*m*BC zwn(e7lv4p|nMm5_d^FyAK|QI>Lo2bYUwPhudBZ+nZdyxp(*bxc&IdK69CQnRYkZS= z?b@{qAO7%%aqys6ZTsXWKZ&=#^{x2+_rH(pufHCPi}B5?U--fo@XmL>6F>daKMepl zd-g2Oo;{0?e)OZb?z-#n+;h+2-S2)k&YnGszxu1c3a`8O-h1(`cfAWA{NM-i<3Il6 z;GCzN4~(((7?a`4i7X;4;rj5q*)QvGpz8+%XF-u(ip4X8t^%%9e$it?a^7YHj;gbUroaf8~={f1;Se^B)o6t+@+Qju> zP#!Kl=MhX&q{4H-sCAQW@c^LQ&EH(+F!B4!Ax^QfB%a+Upmty#9+vlJ{3M-&TO@uL z#V2dB-DY#MZEm&Mwr$(4&9$3t+vaB5*u1^7zxNMlo}QVn?!D)H&R1DvoYcG7DQ6#M zK>LSALYASF{5B7(2mVfnGaMk=(}*YYdd!*F)sWHq`#Y2MmH(PvLpI(MoF{jiYFZd-!;7onP7)bGOr3DB2!B< zQ9Dx4ph8=`q>P3tk2|o0F#7eCBUg51y(+ zFLN~e#=;i(U#AK8XS-rHwd?32=z(HSk7@GD=>bhm1_$Ezt#NGAlSvUu-qXSGr?4 z5f{^!j0vyCGV##a*%CSlbDg6#ek?RnA<;!C->=ypt|k+@xgePPUXsdd10g68MPWi% zFICsG9Q@lF{*JMTdUES!Ac~I^ z7_dl3LV*ps_`eY)PP3UKbnraOrG%Ck$cK0;SPNsy+Lizn%2x9YX+jug@c4|r7Ex>I zgq28lg%6X3aQui;CWl#ws@aRVLlnnCtymenv#DTH<>=4;&}efx_`agB_$PlYRTa%9 zi(n|*9K?6l-|%N+$}bj|fx)HhT%T$2BCBqjl>c4~z^M#E_?8$@9Q9L1B$pR#gR7_Q zHPfXPV{qC&m@jgIdDIO@B85+4hp#@Qe}iS$`7J?UR1sL6Q|xhiN5xMjwGuOl&sZkZ zxS0D$?}`Rt z6xovq$6s$msGZnyxth#JhaXtB@J8QQZm;N|k=St(y?{~T8n;AW;wwl3r#0BcMqkT{ zTi;9&nvAK0&a6qkZ}ag{&xrTe^RI?70G|jOC$2Ufzq?(7IF7gLprP)XY#af1(7(&@ z!;csp9sT*jTrm2)TGoE=|x)bqmm3H^DI_t9{(+At%40C>LK{%iYh zt~b){`*u?o?+g4l!gY8!QI=CQx8Wk(FZ`$9h8UB#zS9U`jtC>Kbb8^I4oSBAy?EHy zDZB!FaO*1dKn**T(ILBU5XXB|E2ZckFd>fgI=h>f#yeoCVS#-d@_gNPfXHH09IUDy zmecgugKezIWXe&lifbPm6~nb~W!*e3ds_6m#4$R=YKcWhR8zFwY6a>3n7Qht>ochJ zUxzVpVs7f80d)03hzr|Eq@kL{%&$Q4nb3tP%Gr&_U4BozqkfKrQ0x1Ngh6VtsQCgh z{XG#AG$F0?AA`fjNM>e=0p0Imi9y={Se?;Kyt|4r*(%aPVII3zojtF*_`Y~s96830 zik)g=yHZ&N8x<_a2^6$I)HfOygq=mASckDl;kYFXfE4#E_7kp$aRNtj=>j%3&P9prLXt#_$7rfdTrL>k(5_=>dp*;_%kvY28iKLJ)a-Dj@#J2mo0whEh1I7d4Esyj8>|3 zpC>?D8OM>x*xJ$b&onV>LKm-4x%kd|){S*J(%=$2h)MukE)4dQj=tds45}dLQ^Sc?k@D=~+&ycJtp@TfUOFK)tj!8LXp;{T2 zGhRkDoQi;2xY{?L0W*#9sU``pGG+$~F%z+#-g#_0N_y-*ZNg{8=qcdvm1V*vLX@3n zwuT!=xFY%UaHi@yxob{m1MQmjks+oqr8_wKLT}rGVMjunrGXho?#c$d)QvHcZDy{(UjM$W&P`%x;i_3d#L{vc)tU9>T7 zn*CtEp~^#j)XD&<0wEmVn3umBxW0jUyaz}qqd8o+KjQ{I_ZnDO`RbDM9Ts$Gxdk2Z zOpar35Qh%Y714D)CznynR2UL7BB!KLk_rrEZ_PaUkFw~HB{GBb*dsx9tdh!sM|@ct z;;xOyq5ImXIs+7dSUzG2Q86pJKc(ixjrEMUuZta~h9LeEYIeCnt<{|UzzO@epPMuO zOzQUM<*E|u)jmXrYtStgJ>&W)$#LS{Bv_6v3kFVqA>%&A=0Xmo##)<$HiI7=Efvcoou+v zVx7>Wt?PIk*^lX1V(aA42h2FV^$ZiXzDNYxuJ1y(gP3WA$b2^dzt1OsLEsG(VEcKP z^Jejz;_knWOrvL`7DMMQqCG6bL>lJDm8qCcstz_h)WvoWF_mKOhRfzK4k6P9(K|T! zws*tq?sQ8)EE_2oL`iSITf%9Vf!o(-+(Ae;h~az~zrU8dVuGjn`h|KBHTE#+E05~| zi#gI7;>_z|GyJQ=e68y+Wm83=90ZE5ix0b^KnG~K6br-@Ifw;b5KW?S8%p1cCt|q? zAkak@gGO=35J>|30IM}7etuwd$?(8cuhP6(Iu1C++u-NSKW10{?S^@>Rh=7hrWaCA zI3vga`@IOlX^AmmlQTpQ+~=zA)*Huz5MvS^KKy%Mo|jxFc`5d6g<|0;ebF^{2Fn}B z70$OJ0CDs){op4&LBkL~vpl@sHd3B9OA^I8JRoXm;MM@sj(GZj}@GxZ10ZM4=l3C1h?)b@cVQ@18RPj#iiFuxn9<{cFp0?~5J+zQWE-2FQ%Q4rVu!9J6`oBw(#j)HVNLNMljk0K=fHRdsT#Zi|3uqNU8j z*jfaSYf&&NA?`{!Y^r8jTVR!OutmL9{Fr)Q?bwc+FDr5oeA1n*pcJkagf03VxXl&R zSJw(zR3BaFFru&vXJW)tUZe)3`a0%kiGm)6iz3}ZY+0n%PyJSnrU#N9I#hfS8Gsl+ zOQqRpP#X^*eA1Nll22$V-Rq74-xP=mb=~#Wy%pB!^mgAlV%YUla-EVYt9>ZH+J(OS zHR<$@AkvE7K%%~X;OI)QBJPfV^i3)4px6R&TjXytpDEQxhqg+$& z?#t$NC2EZSHs4jpH8h~LIvSly!Qgr;<|NhF2JWBPA^+Odz?)!51v88jnMf){%9Y5k zAcRO;QL_nx4oI+`|SY2y4*WsQg1P zCafjuzAG&aRwdXF?YuTtMWZxGSJ-n`>!u7EB>Kb)ZeS5v6-8fg?g;e5H*uoMx`JP; zCb@}Q5%skK`+LBVbD0YbVBQu6B_yWt>baY?q3WH$bwn6x`0xKY7joN-z*-B~4!?$T zS~0bye`1hZlfTGXLvZ#drdG(;rP&#KbbZM12>hb~0b_+p?*`I>t6VxXPdH8;z)h;U z=d*J`$y_9;Qc7b3FeZ{o`l2(Q@GaWt96rFjDxn&rSeyqoK|XjF+aR_}=UrE5O<`Xr zssMw`<;!4ZO45-`%35da(F29&Mfmw_5(H=JzpK^E$ZbwSNEgtVg2i$UD9x^{KDJU} zs7piPa2>1=CbrA0)IPyG&uh{-HmS1?usOXNi)ON|e(Q`WRPIJUzTVDyqQ_T8dNZcj zbQ&rmAIusyQk}Q@mj%XYtB+zCeWt(ZzOTk_$CRC+-;%Jc=!N$^@PSU4eXy6uy&2Kv zk$YSm_x^TwaAbgZ14IQEDwVvOxW*hs!5xlN=ulOvX9cWthp?NwLCT8ZB;*0DED>7^ zelZU+eU8Ls^DknQi2%=iy9Cj2sNd=2t0V^95P}&8+6?^Ge-aojNryz%m6fvMoYBlm%qDn;}I5XZU-+3dO>q1V>?3 z`|(<>7>MK~X={k*>%@3ZP-6$anq2%9dsJmX6lXMna18+AfZA%o$zWY4z2h`a6L+uF zaC2N@DMi0M;mygY3RzGTPzglq{4G0FpAX``O$D|&x-dt;jLvyLC&4o8JMHHfy-=Fs zdF4dpsxdQiLK~Ud+VP~Ah8!ka^6EMqMXF_uYppd%(&vBsW8#RRbQU~cg-~!|&sy`; zb?y5cnfDBLvDJlNrH=5QHg2iL4-=$;)6Xac?Kq~-JEmLEW0&65w_>UP-$c))L-#+S zMZ<3(=k?UoRNq(mMJx8sx6SL}x9v~Af1l+2bcOhV@j2lCjLcNnYz!O#`NGVe(ZBVE zWSDwyKm=h6CDr0E@21Q2c564u_5fy`zZ)c-44psoL92P}wjq#IdQ zRRqQ+(LOefFYLAz!Fb)ff2rz)iD(Y@*945NOJEJ3F+dn(}G+af+;N`)<$_Eb5BYXIC-VHTA>rEWk?``W2lvmPU{p<7HI^IiI;Zp3m^FRAyuRSZ6f_L^ zAow5PG_=W~m9g4IQgYx4Mua{y0tr7lRIoO0h|uix-_^!zx17vPHosbI>{S`;xbJxI zKi~A5lg&ADrW~7u+QO6k!3AW+1%{^u24crzE80aIPqz~SFvQVM%ty;?MHBW(F+()) z(9^v!{C$m}s`ZEB#?bWieqdFQ!_)*ep^P$NIJIUTx)2j(fWA%CNLmfdRX_0%6NLm# zR|xDUXhZEHmAJJvT06gQGyt1z3UvgYDjO!2_VyQG=Qc_YY+j_ilbwFbfN?+{poS22 zuRo*~mWl#%%$wYGQ~JD7L?&{ecU@Q5sSGY9A!$7^pfM?kff7WU@eD9aGH|Ry%*Q|K zgMlz$9&Ju}LU)SC#z{*{a{wuB4ICX&AH4|wF`7YFfIuhc{g1c+QeWkP9TR*$6Myb6 zKK@h5bc2>BxDa(y0vAa12GV)J0G>xB1;Ax!uG)@?9=!NB97hPB$G>+6mC?B2#e_9(QP zqUsJG=}A*v6(38gl4v7Ye+VsQ$rBP&_&;{quvw~EaS=Xb1O^f_yp8dco2J|r}ZSFmhb2fnY$%zpe&kr1$8lMcW~|s#?lkQVWc7GTqzrx6NPs%|E?mKxS;J`0 z84|N~{{hRFl9R@}$2VavGh8p8m{PbwQ=)(ynoSG%%xsw;bZ_FxAgR%uf!;6EH6Jx*@6RCSh?s$Z^iL_6p0oz?UG%kx7gINP4hV;QU9LaEiBPx z`eT{AF>izID?Ilz;-G@1x)wnrGwfRZfM60S`>OdgPV4N3TjZsk^=405qr7nbDzWt_ zo?JXmwytC=NJ3~lkj9F2s9w)+4j)9KMy*uW$&4%=wf~{;UZatn4Ln#7>jk*RC?<~`g)6x{kd>@;0!cg0D6l4IyFKPZFUe%6_(SGK!s`m zU#BjKbU+*6IH2hLpBXyI)S3)#`96GwGq>^j_$sEjvo&`WsAAwTh1N0`zOecb0hyg%^tJ?O8N14JAE$WO^ zDQ~|oqhwv0VrSsH1HtD{#;)pbs`ZMp6ZW~P;6kfcvfkEI#pmYOgKG7Xzl>!S*1}xFqW28SsAPgrjjo#Z!k5ji zB|ZP!@4{L`P|+Yw52~D~>x|XciicF1)Q?bUH=p=q>nvw)6w@V%EDB}L%ZwM~_gEHWwDxnC6?4=Dm7P+j!kp{BOcOm_XO^Ux0n)}$>ikB7b<5qf7>4^Q6 zq0exr4&sBA_tN!|j18Exxq@>8IhxqdIb!^li4sDf^JdM-b)T_2r6IwLs z-xFrAb&zm;#X3$gG9hdz3%1DZubobf!(@pa^l03Zv4&@Qa7N{#Ndc4-oXT-Qh^Nz3 zER`2yJio{_7)Gd{@Qh=QaY39hTmuxcmGNv(T_Q~)7Gx4TLluT59$Whd{whr(iGU?z z%|Q*jKOHEf8Rj5^xMQ*jXBh>NL{!zzbMJZo<33iIAvqT}9IRmS)W-pbHL5yGRI$(& z88Yn{ZAQ2Hd4&QIIZZPtpDO(-i~Nh*2bk8?xRmMqGF4qtzE-%rQNEZpvrj0%ED_Zh zvaryIZP#3~j>H?7vRVuJ8|$qDoB;LnTyw%S+v;3dwCyRBJyOgO-s)(z?~t9iOW*>u zK2~sw#Jx(Sau+g-%S9*QOH=kmy^AQ*%GFB=I}S~~=-ny1E|O&ZtV};BIKKFkq_RdV za-UcB(>j{Q{T0xJ)RPQaatg6K9uDz{p~E(wy19>uZaPDp3I@&dp;^ebf56$=XMA^J z(-Dd|MDlyolm4jnqCfZOQze~26jn*6pZK{D0{+`eT8*mGD$8ZIBE1@J8B6AF&S!)CBOH-r%MNa(gyq9x zogK`h)+X0Oz!9;|6maZCN$V02wS-WDR&){~DIBRTo-07?`%Nb;9Tsz-u!tg_E|=m? z2$A=ujNpkixdcCr8pm%kJ1R@z=jD`>WBMX8RXi2@AR02`cV3rst0{S_5hMQKKLjm#ffyUH0?%@*w$}YXxbr0iwk}~063sOcJ zOmH>V_A9+k<4)t&&EQg2Sqh!Mq|KOUCS&c<*C3WdX{0I~l-RPN+fssaj!F-i9iVAq z?Nx=@?IpHwJL0%F!TqLmtT572Cl&1Ie*VU3W2zaUORRC3t#PVt7}BkgiLP$*0!&hY z1JO8G;X&uIqg_gg2x?GyI0Y9L+)Da=Ntp56aqaIVV>$O)Zb;1D;4t2uar((IDR~FwK{H0aA4j^f zN{^~=8Wj8~&iml^MW^=A!`~qHSylnE!4Kw6Kw3IP3)%`ilvQbT8v!KQouL{|+ns<6 z&ba+04gWq!;wT)#H8F28SY^FfYmBFy>LK+KDrb#5)H*2gC9r&mc0wzs@nXET9$IeI zq>+b;A$Xp+%*vHvPU~IZ#(=8+-Y2Yk#2Cw9Nd+jDOGTcf&KaCxXd*!KG%G9tm5h(A zCfhvI#jNU@xy*JSQLv50^z+WduHM8ue9&PQ!UuXFzixJ0Xl1xNgzdZbf<*N7g z)x)I<;~qEXFxA*z?E%%wVG?tb`5H02a3n^~x`Z+0f%;LMVXr=Zbl-D^4&92J`Gp^@ z0v1OmOPRwcRwP$6G8`(b)th~Sx;KRmN$kOzgtTq(20XeuQHv%q8H0dLI&Gc%3`eu*Hh>S?WJm%{RA?CvZowyv(T%{lN?eA5DlvAP&bQ0fg=d4=7W10^e4NCE za#^q$Ow=quN(I7+lc8&((pZH;Ibe{%`OK+W!;UHJK=k?ZGJK`OPq2O-QM3oK)whlw z@A+9(KTF(MWU*sgs7?bW3SG;Z`kv5b)eEOd;dzO{fB~oTP*#s(czuEbbm7Kvgot`h z?EEqU?`#9IwS8smfvL_M?QcqOoWAG-yiX?YnX2YN{&wuTu>v5!Z+sJSB=sIhT!#_# zg?z6w7P19D*zrpsTp3x@h0^2(`}^=M-@Oy5TiD2U@_Sq`F)x_2A^vFffWx?DTa*i! zIW7UhAq0u+NWi19vOfb>z!aSez}Wowv$X57 zKIMXMLA}^AWU}OoJ8arf2#?qo4PP@8vStnT#=F3F5J|hJQL4zXsQ_f%;9oYQ%aSz# zpvI2OsO4PxTP`wl@1y*z!IH7!oOmYuR22d8AGLL^IdCjqbsJXadpTrYTJ&GDnwR!V zB$Rr)^t*{mVBO9F<;RM;?8x;lawy6GiyE-wm0lXef#~qdrA>g~oo>Rq{*T{{R-3jB zkS?4OWc?#VkZ-R=JJrb41z~OH(Z=xaO++!LXfdo%{9hrQ43L>q<)dDZiNJri&Hva`@UkKdk{)bm%8I(4O^nd|Br$T3$%T#QUe6oBwrRcJ^U#*j z00u;@BTCg%!77G*DeAZ~7a1k&(Va3AKim0iQP3A_2LiyxraTHKCNeg(Z#q{!R360 zcggrZ1K{#iaA9611^}wbOqn@UeMN^K>hI_$gxdiIAS9$egRw7zrpRqY*6||+UyEGr zyy(^UdQjme{8NB-px`8A**+_dHNWvh`90KY3N43;Q9-LSXN&4m%h*_3pn zXq>>hw*cN=n0}nK5-@R@ZRf#P&fH_LA+gnd)_; zg#iA(E4$u1=#28oK|P*tCXyB(ah3|HrWf4S-+v(-j&46d3Zd*TNE)yr`&502a4^Wc z%hQ7t1kvkbI}9^RNoFq@N%XBI5f-92WHjnHwU zDvhHjdiPjc_rVuj6GXtws)Eq&1I+NZl7AL8j(>RO_3kvaL}LcV5`YJnjbvP)GeUsmD?Pi_>fRr7!yy z&oS}kcA7R~M2TK8C`);>e>>i(O1iR_RIY#9DpFm!(CfDf8YWL@#kp`+#>DXQEUhX_ zV8_{z1HrB$5oWRow=iUX_XrHc&dJ;kPIR3ATZN&&LSpX@=WfkoQTNHX0CAqw*tLYO zbN2p4eQO*yuo4=LNRs6cK7v=CB#`MQ5C310;!Up zoqciGOi|%8Sy079#plcEN0OTaCSRgpOXqB&Z*{f&4of*m#%l~lq-&GsK4qGGjAQuB zvGz_~SQ$OH@&Usp|GknyHAC&wzBt~t+T@V2>RCy@Y0i*bDlnpVC3i6`hge>n3rW6E)-J=| zRsPdBQmH8mOsA>;cG~JWa}`sm0yY4Ui;k*ik3!{6yGs-Zyj8&VXva*_CR`PriA1i( zW?U~s_a>+D>*)Is0{blOD4)qz zeGXuU6I^qwB^P6bIz;?{c#+dVR_G{LAnPRkeb8BkIOd#C8l;EJc0A8;LIxPYtzSm> zSvO=COZ2HH>p|81Eg>zsP7=mfZJKwC(;#Qc10(l#rewF-jn@9sPHU6b`)4x0rs56} zT0rj8=M1Oy-o(a~oW3+CX96zwJh;ZK$yfc-xx6y4L%>I32P#eXNGwfvo9yPmT%vd5 z#JO%QOzozivMtmyyui0I&r+U)TGF-|G5GFA572lB5fEvs++DYg4sdIS0{KCfH*;!w zf7utqvIk(CDkSx*;&Y?{ZppSIl>yp>SDNfj-dB z*w>h5ARq(gKOloBVQYXA{TTiai<9NVy#w>5)L6HGZ`G&BcRz9~#5977v#TqO$qdCv z0YV7`d8Z3yVj9WjPBc9CTTIL*nggr_b%hlAlUrKEM=q}=SRE3cs3TQNc%+pgoWcvJ zh9q~vSvg`B>QV=TX0qUXI#GTs;}Y$aUvp=_>npi5vH$>Ay|A#3cu8F0+l1g&BXD+D zeDNVB8h+`Xywa4Z0-!9vX3WY5;W|K(!O=UG= zGO5&O`lBR2Wc~_BHxPEwm5XSlt$%I^7$}(J!8}OBBJ`?vsNetRZ2(=%nBZHc03MP@ z1LJRDYAn#Hau(7s5I-p+bSS?SAydFb7W!|p>QH}Cf{_m{^=&&s*-ezL9SM-#KXRY= z0!NLzE1&Shx{|0}U~WQ^28I@bzMvT@8FbfA8E_&S8shWi_w~V3q?4C(yaFX;gnXd_ zcI{B{Z4i}N?-2U#6pET_iJ=B}u{Sdznk6FLI{E}fa67Oj*tUe~FF-1>l+t*R)rrcr zbWC)f8(!p`g@SqVefHRMw1M*6&%AtTjhWkv0e$hPwu&ndY7Ye0^H_lbfvm?d5@y(f zVZ$%KBk679m8sgOXfa9{3(Cf&M=p&ALd;)8Si5|v5_&V#)riWZ5992I{)1u)BqYf~ z2J55;rs#AX%K6p-7knuy`w0MiiZ=O5Rj`^&Y>22m)cs!)eRj`_Q3vwL`c+!W$y(dJ z?GEQ()fI>&#G<&UnS__D*wH-gxC74N_>0lBzf0zr<{Ealr#sYFdSV%t3mghX*+poYHjnq<|8UeYsDX7MZfT z6>l4tKj|%{D;zvxtuSZDC>TT4xFSI;@v2bH2~xSsM!LM5x6lHuWaZ&%2VklgB#9}V zgcchG8XSY;yivM~wCN%OXfYI7(T(iiMcjyQI~k;rx%(CrONxdJMC$qHDybD@MWgRH2@~)w2qS!MOWY1ymuQk*@`3KC$LvvNzx{a(r z`ig7nhmC{rYvD`}6nRZR zdFN^CT2rS8lY~Ti@~`DZxhrE|!lcPL5Q3d>QU*3c)I8Wg306Mw0a&ES7}CG+-+;9A z-FI*lRsCp-N0zoMcaaWq0wr@8(bm+k_YzcncR9%{X_PgH!+NJ@w&6bQKv^k{xej>)1 z()g_I7CHm4}Zj5X(ox^c)AhMAN{W_wP2I4=ugF|gwuo!n|w?KLJ5fPhE0@Tf4TMt|zT?A>{)=r z@p~0Npqm>6ss!yiGw+Su0YBY22Zc{tR9ZSKU&Yf-7ZGKgB0X_Xi7{2e3{?U^O<-*7 zxtGwZKcUfOUtT5Os=H1RrQ5L+_J^rBV*0#a`8J9ii5Ebs*7KpazVwye+_;S~Q`;E2 zj~+X;_I?pC1K{5==Np9

eE}CSEZTRH2RRtQ(|_sMNn>vp=vYI4Hlb1olH_sm)#8 zc`DH7g8QG;{rcg?)XVEY=aoB)U!Djo`Qy6duEc81Jj2fb&Nb@xn**`_7|S6zVB^yi zq*2l!&VkwoJC*3HQ5ldJ!zgGc>`8ysl~x*1ctWp$9XS^_{r2_~PhI!X6H&}pk<9TX z>hMHQM(|*YA^>WpRuz3E4DZ9oT-Y5^S~gOE z0xvZgyLdh<+)=*GH+-d;P1N#nxscU=my0&MVL_~VG>M!Py4w{ZqgQXYP{iLmP^v;YOdu?DnNz!zHCqcd)I zrV@c1iYLR!o{nR#INAV`2ztmdsUQ zDXbLUqm8jxHe{#k3newO_&xmBH~GxF&Y)I|3S46KSq;O-Ta8i;$w-;&xajqjWAX4G zyXKsEaQM}&-Fbx=RZ}y;+!u5)not2XFrpf0tbJNO>olCcB6P+sY<8AR;tVq@f?x6R z%@CI%cz`^NgzE~Lr#d@|-VB$Z*>Zq`^xPz#y{{Ew#2LiNgJ=jwt17UNF9x@M=%nYJULF#KE=6qsJTfvwsfds9%7L0-QFe3E?>tn<=DzqRFC9~e^aBb&Fi=hoK601KFsA?O! zJmJCH=*38fE3n@9Q9)xWmZ*ej@b7sOyo#KRjtwar@{=T4M z6pS@!!pL!&1g05||PyItYK<}KSkh_}jpQ+#rEm*S5Qy)L{(|d1E#J>%D zdQL?Ipgs*NC!&CZfzLkfzkDjEfu=n#OV1}92R{ZNJ)3hAve$^;Zc7&r1xHZX(?w%% z9uJbexE$BX6t8e~2a?H~A(tNVva5AQ+mUkXwili?vWu}A6@oL#N*A!R3DWOqqRu%9 zGI`*8;6*1TtBeQmee|QQv0%u(5C}5d%gNErk?qfr*l<3!(or7%YpAtB%-t5-yFUJY z2I9CpVi`-ff|PRU9&X+~YSZRMdnPLRtROZG>gt)pr16TC@h?yT6!8234}wr0Q1A{-Op_SGY6oWkWW(p=gI*vPcj~;k zav^5ScV&HdT!U*nA(?$#H1T729XNnp|^C>BgKvpR5Y zF3rr?H^^N3&ey}Bn~c6Q3~I!BWVA8Sxyp+vI0NUIklCn!s|!JbDdG>-17V&wb0sOx z^~h@neXvY@^pP0fO|0~Q(uok?JNGpwWEuU^E_RS~6|jR*R2RLMTFvkm*3}-Ql&t{o zS-zMrTCo5e3F*9Hn+r3|Xj4mHt)-jTSHh!GL%9{D)iz)yyU?F2lo3K`Ai?U&%+Z@V zh)l=Nz*i=vNXgyf>f8)@enyiJ{3gZ=Nn!>@0O&FnY~DmAP=zx|_*rMpJAS>2M6#L= z$`MN3S&gNRuarZ-`LCINi2Gw9zr|@ z8laY|&;&mc9Z5Yt13VUr{!);fWCpIRNDj|5A=jjEIxaxUgK1*t#wRSU2W%m~F1`62 zA$n+dN2hhrt`|5K=z}XuT1kWt6~k*__yY$h$g3pvtf_gYpeg0DIyuZ+0ZV^@Ph&}R zi&)^Pnf$vVWJz6wA&-2J&HMg7l}TDr17WOLw3p-KMsn2t<#&k&<@-R^8Y=7pj zp2lD5M?;#A_Z~j-(FENap)%xN=%)8t|MOQK04O_cCa*Hzf~OWy_=0`_NO0}!b9upI zal_xBB_N#MWQdkXO(&C$toR(h2AOdkAx#+lTK=AwB7!KoZ9PCex*dfO9L?tw48U$} zkqZ;yjG)Q2cc)nD$-EvcRyea?Iwlfg5c*+*MOh!bBQ#3W-<>9&=2{y?va*pF_s#`A zy784+EgqG<-kaCqaVhg~(1q|wmQu{Nq=d~9EOi9~o@9j>vWo~5(^dab>!BAIGEDP5 zU|qjDH92vIEpr2IqZ;L;k{<;v+&;pDibuA69b4TiSpw?`KvUtcQ|-qXVepi{bR^N{=V82NWFGz;m=~v4i_nJP1xxH z?Pf~Z+~*{lPj^gt{-YjVAKpe{JP6^&C>erIV`+odBmJ3>dl&)X`!N2EB&_!1-4<}y zR6sg0CeS|L-~@(t#=Ia`!$>s=jcf>y?*5m0`&7HDtPF$EiW!PgFG^O=4n=(l7S_&Q z#GlZF1%$3VuOC-X1SzJ>dvWM1>_#e)#85V7u6t1dGdG>k=Lu_nqv3ptTwmD9nKs$o zxP9r*+mAdQ;^AKAhKy97Jf%HF^-NkT`50lo?zVvPRzidR#Zj=>pcB@5N{bVXO?4nA zP?i@RlvpK(_w9H85zvHnZ?%pyAER)w4DeA&k_~E^bs`uT(lQE9oyf2IgU^u&KzXXI z6HhZ5hCLC77Fwm%oJ$R;REq;m_U&qNnWWMk&&DT9Tsqie_$d8lHBAf5PJVzz#M2C@ zH!{MhKKZmCSDeL4s;-jXFBv5V+DpJuvV$rL&VLmJsXh9p8S@PgW3sBL^H9?-S=~a~ z?7nh@c6Vw~)=Y|mJjukaL5wsWMZZyQPh}jQ5ezJTjI@63lJx2vD7P9q1?Bo;*lWh= zsYlNU)d&Awjd3u_mu5gK-ii1}Ny{}Ll+SaJGB@38JMuJR`8B9klUpoJZPmEo`hJ2m z9tSfUc<~hkA%+M2E1n|rYb6bS6q^;g)G~|VE)BJs{I}H0yUK=WWQ|D2!rc~OnxSeQ z8;Dniho$LE?>DO@Bu(k#S(O7&DgNX}e8W=tVO>pYbMiYzk&escuGG2q{p`Rgw*&R6 zgu1h$2D><+))H-Y?jSu@+(|Q$!1Lj3S%MuA{M)ZgA6ORQmvwo&ER0|NeJ8^0`Ry79 znhp)qYT){b{H33d_GSwz>RPEL=BHs(Ld2l`)kr{9HGn4Y6vikjBSl*27x!Yiq=WC* zlQYPUtSvtd;onwdRW*V`corg~71q+v<1_X+G=m+vNqg?N%$=4J;z2SM2g^#{c4J0A z5um5F%ksR4CXn+Xi=ySB!CR)jt6bA#!2c(7MG?EyH-@F!Mdyp0K@54bRgrGy_^3NU zwS6ewHUizkk#2?bX!?80jP?mD_>vOIIqr&Lwu3L58B6@Mcb_?`qmANHUtpF)>_e6F zybRUfZ5}Gpt+HZ82|S1Z=PS#c^Ab3zzMHxho@mxcQro6?#2hrvZ)UM!kG7$ z|GZ0^J2-2u#gOqI@El!etT5OJ>1TlhA%<&xt|cd4;@7kV3gloB zy>WbgJaVdL&VWZfA2DKOqEgB2MBx zSL+nz@Fd|R3KEW(vkZsXq^oU|2Z$KB6^J<@ zG6b&fH5V;{c2wEf9h~qFiF>aT zZ%_zi)lQ$9@-^oLPjI$5*CHEQ;n8VGE z+A-1`%DAk)XA+_%(44+BhNvj-5>*O|XN=n`C%h<}rir4FKXOOqVrynpXKdJ}IO`-X z&@#iqSFhE38h0YdI@#9QVpBBM4?=+>f*cAU;lENH-vxCGi#980h<(y}ZqepT|1>ms zmo-L_@=JhKqcl7+1XFVpaCYYxC5PxtvHG-T!838oml_!lhK^|sFCK9`*Amp3YKKZT z1pg&1klSZQR=zuF=K~rxK&^6rK~d6|hDb}GyaTqd|F-@zI)mld>0TiSmH2%6x5LG6 z@1-W{C!HJgc(5vku%D4TtIfJQ3mvl#X}zt%nizqP4MJab)%HjkPGfj)S`mnIVZ#X_ zo8Szo#dN}k)rB^?BXD3N0Qhbcxs>MYG}qXq-&uV;0>E%e5zmx+t&epu4caODg}rS)MgK$MGl-LcXU06_#baVK9;#Ym$^P8^MD%0 zHIMgSBnm07&v_QcGlOhp=WCOLAE4sPVhj?2K6|7bBz?H|s8{Z5V+19m{`w8o`qz?g zfqrLH3-?^%!GtYpJeocaY&T>6aZBhgS?7olmIo`dW}jag3$&pzNw4iY=gquHz`VXlAW)5CkoO%^E_gMemjo&QBoxcSb>P>zWZGEq0co4C zBE>3Yok6cycooc-IZO|`)$V3X7}P`RS0P%fTrVc+C}XhZB7-k6XBq5j43>A!F{Ob1`3zX%Mxh&1MP7h!f zMvN=#XB}S(CV{bozRkGt*7*@Xk)LwnZQC4|+Kq#JT>1yh42)V)!ct8UIBve;ZZsq7 zi{<2$xB+?b>Z@cFoR#IMnPl=qXCenhea}xjVP{W_XDZ^R4JI#QJO0|cz!e|1FaVG8 z;;y(=f7VY^SX-(N34`)xb#*imLsm|A@WUWng9lQZakv#8KA=%JA#MYLPWaT4JlpL z90^go5x$`))aKyyLA<{mFCafABJ)RkPtfO`5@re1|L8i$;K;gYfyTBov2EM-#I|kQ zb~5qAw(W^++t$R%>-k>2pRcNac2(EygS*c@d#{xk|L8{8yfGzCL^@N4r1iTxFdXvR z4}Yh$uLZnbcIsE)pU7QPj9VT7#z#p8B5EqL8sHVS+vgGKmv>{bDtd`zLI7T$3DjI( zez!2nRYz~XRZGGW@0XFMoui3@BV1^Sb9_TYeDH(^Dw2`Y0UIe$eWl@W6kvd032mkG%7m=G^ zyF~qFVg8Vqo<5^5;L8ejZ4t|LOH%2i$ou~Nj7+LXCx^#uBRBA|7A0Sh#0|rQP_ZYC z4g(8L$*!b~&?10PVsKd`mY=L;**iMKit2BBI79a1t$TE8U2Nb`NKggF_s^=&``PCJ zf~u&c=pd?dk`WP2NLSiRCeR5!nBQm@92cNLPyH-PTBr^i6tji}e#9R>q|wMowr(}v zaE!pUy%@)suzR*(^F*MGzfeh%0#eW;q5Yl20{yT9@H5FT0C$NOiBgKgtc>SW1U|>=+?}W0*m98)kJr^#i}nxirN>! z%>}JBO}FD8-q8hgS>QZP$8T`IR!7rAUf?(hkboKsX>Sm^ez|H1CmB&aX=o!C5hndC zy69-aqMI5QM5it?aWljYt`h?2P?rOuUNprc)UL zPjTHa%N&3ZeKGkSGc>BzRio67E3i!u1cEPPlxD6;ezsqChQ)+Pmqv8HERsEo9@Dqt zW~7{qnQ&Cac#3jv_7gpgXv}*tZ|U!qH?J90*i1-`28-EgT+U7Nt!QD;Lv$jmg##|UqdA*(&j?$sOU%4_**8s$tc>1NH2j62s5 zARD9(wf7Jb)cbsTy!Bur8&gO!)GCer_Sv@DzV}*5PlO*f|50U@V$n1{=P2i*!}4)W z{VJMQ_$KueE~4v*TDai`-iHJoUcnYqH{)Prp5e6z^Si1=q2ZF+B;(*Hc6!2_DbHXR zc4zb4USf;%>{a%iVsB99v;4M=AdRH*>d;(jI;nR|$-lBezk&v9%sk;EJJW*jUFRMf zo);8!X7(>mNqL@^{}ypd4dUrrDuUE=!k9Ul-}capPrmV?*@N8ijUz{QB#H>_8t^ZL zrg#1(%ka|=i9nsy_3_@RUDUi6FaXJ(9MDV$`23@t1BgC7NHPyYs0zDu_MWikPuvwt z)Yn}P^4Ywe%)H-#b|sXMgw>syuge*$8xAbE+XBpPs1PLHkK4g4+ZrbJ$a>QkX2IwE zj-)+D4)i2VT{pS@+d_D35yso0KkY@`9%yT#71=H!m@810?4YXBdl-|yREQ(H2x+Vm zV3w|O;Y_RaX!J;p4og@Yc$FsYL3Cnw)Kxwn^2SoVQ=z}^Dg7}x`X~E+m>kOs$ZBr(8Ggc5C&!bmBXeqkI_3+};n%IXl6dYc z`KG+WC$K`HNI_a?At3=xRr^p#A1^kO1ojzgk(Y5!j3U`N3JVHOHDiTlIT=bg^OIJ} z-pRPcYnoJTy!eQ6mhYROrS7uR?P?%g;KLA?*8>UYc1*z!#oqTq`|k6`pI}AbpD)+* z7<<$AdFww0>dtG0eWTLwi+$Hh6vZv4}3`Y?8s0YdVN#)(Jg?UB764>yw|l>UP0-*ICTJ+kXl+(GPhAGZ--wdm~`1t+u5JUIO%aZ z0JFYP$~e;{xemS|A<4spc11>#I6EbT^g&6gD>GcDWrlc2MP%A#lz6N#!FZ{G3K}mV zR~C#8OuNHiA%P&3_DM5yb5wDoJ~C(C+&IKtasx5=(pd_nN}B9mvcZd9$_coLcAyZ+ zD6(kAh44CB>je1FD27B^tf*14o;r1{3eicIbi6vM>&@rj|6v-vRPVgeb=}3<58Zrj z--KEMphkJ)r8@M+?|-k_pWgrzJm4R{zYTz*QeHk`qK5}md`Z24UoKF!`MXpk7fFhbvyx<5CGfnn(%hMBm53u&P7nuYxp(Lw^kgl^ep#<_r zPk=1Cshgt5g`rh4M;A2-cFW@@%dA$I2&VFqnnH3z2X}nX9bwM3mwj06C{NV1NHowT z&7Kt}E0Pi2xk;w0hpt16aW~Z2z4e;-J`_oDdx}-i!t~=D>+7_7kx|@P@pDrtcp!@X zO(si~B=)422`iXUXGjGq01_EH(7cE8v`e|8x>y6U91G#5w-X2C90ljbOdE<=&e;OC z84FW4$3C3Kl?(Wz$P`Y8QPuW}z%Hf58`ok!;UNaMqP=p%|MBBbUAX`04tC%9`M+Oh z4$doU|6J&Qd)aKX!2d&t@;|rF6xVz{mI}lIWF-IiQU9TJo3yG|UyF;${vmb;^1fg5 z3U%m9YX}bJcS9G9{h=I)g7+ToAR~bFtxjG113cy=Ib<|(M3W9Z8m*v~sBtIMN&K-? zQ4HO>64?gH9}JlZ7N3l3b^;{btC9??cZ=i9ks+T#>#>Ea7H}^fGX;};N~9dQV_)(X z@g^>Sm)0}LArf1X!9uv?XqUW4o(7>FBy(lb^pkM^#He_mu4}8;astQ3QLs%*31?69 zY(ZFIFLgoo;6vQvb7&v0YGMM-`u+n@Lq1dKYI@<^*^bgGRtYkMNDZ@IuM8Oyz0b0*Ts5W)U?6j3^2*JZDEd*-RvS^ z$)X-Aks(cJ6l0D^@IQ{^MoH*JC#s0g{OHr6R6vt|*`GEHCL7%!l2=uol6t`b|jSjUMd1)TzQ}s*n@YQ+` z>uGH(&(8>{GLTFW56J@6R3#=|8o~@ajE^b&7@)BOsI%(e@ab3OM3^UeAMmO-2|a0}kt!vn z=^OrRm~4;1yX41dKIlGi&=tC$7GbBXdYpa0xT)IU`r5VGdC;)W>B3}lyTUYU(S7Jq zqA@Sv^ZQ^S3VblKv$OvLpY5Ocf1TVl*ZRUICnp01{KvgJ`TocQ1=4#gz}(Z`dBgZR zjsJrB$6^A4>aH6C5UvA6!V&iVZrG2AAo7K1+jpb;-$MEam^DW3d`#_hfwAF{ApW;K z*DMI_+%sw~GI;W?;M+*^1CmLdH2ZToH(XRXzaL*Kg&~GVLD@LXqK^!KD9Y1ae%3-m z^_EOxf?7qgD=CCQhTe+NZedCh6lsSlk)lvXrXgREir14@BHxP3WgYq1Vl@@nK@maB zXN{^nh9~S79dpJbZG;gvNWoWk@zXjxT$*GVcxQ~bjN^&Vs&o|oNHO$|gsf?g`Guj0 zG9C*&Ebegi$}i+R7X{hfIYLkLFdXLy!eO^#cHwZ<@vG31^ZI8I+#?$ zF)8a>SrbgNHBd24|FdR6?EDj3<~i9% zk2XHSBE-5APyyb|lkDR!0vnj6i=t$l7Zphk2NtnCYtCp!nWRfcOgVEp$LW9(UzZGx z)K#_l_g`r{JlA1u^vImzCvNuM?I9y8fqD$*3>{3D(qWGXOfUctKF92q-}{xvZXo3C zJAfh!@aepODoQ(UxvmV)>w8}{zW{Vf85uj(t=ljY4Y!XA3J1&D_QUEu_vk(V2A&l1 z{Xag>e=-`t8{H|n8OQj){(-(cKHY(DS8Xp0|E9eIoD*7~ZxcS=v?FPm0ay5xakySb zchI!{yU39V!_4&STZfHJLF+lLwU)coMiuLfX1Lun?6@p*FC(rQbF3G$<7jr;XoXvM z^9hYBR2M8pWiY#}JI4(j3b>JvQ7hmbZvB2M{g5kg(U(KA$|RU>+%yWpDyQHqY0(VR z-}ADl-tj+9r=x&}>`b&Zs<;qp%@3^tR4qdgq{c*hjY5yoMvj>9l4hDTqBsJqp5!d= zSVOQBKfED`;?>^;moON7)^xakRwW@UotH%8lP3bgwBQTS=e+vcAw;t}X9ZYyyzAeC zP;t3*yY1%I4qkV#WY3wo7khZ_Y>KT1IFD)GXwM9&ynan#b|b>=`$0bma1^23OUbn!vV$T(*NFBP%u*Y?m%H#0Hp=HqO0$w z4T?Tp2b&Clt0*LC9gEfBcFK0GhFOZQfsu;vo|FXtn>g_?Hf6vwj__A@RYMoaw)C&m zQg5TpggC<%l@&Xq@Y84*~S+&HiMsadhN4 zxRa;tDwEwV6U8!bmGSOV3|2vaDfDa&-|sq3ZIvUQ4chN^6s|)qGs*z>4XD+p>w=Aj zQ^Va@k2BX2*#}S^qNXlg@0CtN@ArCyqeatb<>>Ak^zGr##$HqDdwPxs+T|4<9j-gd2fzHH4o~r;4v^2jII;10p8N5pFf^7SJ&;s1^`p%J=wm4k#EShkxONf* zXp~f_ye#>?Memi1T!mPS4_OH5O(p|C+g_^1+N1LK4pK6%%Gn><=0 z-|B#4ao}N;!Skn!(+23v>JE<@)jyvTV2A`6!kw1kfix}p8^hJD44|_U=v?9>`sRlnbC z5Mg7VCf}Pc#C%*^BR`dsOdNs8b1hML9Zeumh?9zhzkrG8)QZQejAgd<`mOZ}^QDv%Navccvb&xMG(lKzc5>x{ zu27sZp>oKxsHDE;$k!NP_o?&`woWT&Ux=U8>Mj#{a=lB z_F?%m0jLz@27DL$>*ndkM^7j$?Y)|md#UQtGg8*QPgT)lsTRb|O`TyBcFc2b6GB`E zz0j{dfc;{Imo2hfIpUnwgCg zU!UOskVPAb6H64Jld*B@w2Uegg)F}?^~}>?IOv?%e^zXUF0nxg(`$_($LM6AcC)y| zRalL3QDRROZ2~{1 z#isvxuI{+w`wR^9HQf7x`6BUsO0ajt;LoM^RH44t^L{<}{igp7`|oSOKr_4#aQvTV z3J0m?L1MKN>1AmMzPoz*~LV_1cV%OFE$5j+!5FKQ&G1zr|j4T@>)z=2L#Swo^fS*$J zR^9N~n(USr&HHIZtf~H%aq`zQ0X4?VM%lvidSGXLyWn&+d^k$)m*g_2YgovsRd=w6 z#btmv^dQQv?|WxBO`?U=?!_UuK7#h8&_y_5+=Gyvva?I!mVt!V=#Jbg;VkzJ?pl*$ zaC@QHkiUJ9JkJnKG#;zm;!r+noM)^>)2~Mhty<9Za2qfa@Pp>Q^vhnhSz(*h02>bn zOYu1X=?%ve1MknoY4J~IXZF2m0jIoCreb5E<~ONp<5#4X`A~aiQ=!PNui5638ogK0 zhI2|N%}FmJk~~WR`X9&ynFa8m(?)di4C<{5&msnHDq>n5b@OpICV~{@)^R(j@sFeE zrHPnI9em>y{5#`Phf&N3M}M>3*4=)(X8X0okaUt9AF}k#SGlptufDuRu9f*280vc+ zPzUjQ*UEfWCt_dMM3&sr+UF^>%;MQLzm8 z*s7^cF%rcR${;1O+g7+!moTeyu+F~J0!7@43uVY-ygfplqb21_j3#_vJ&-t%`Ep{0 z2l98G99VKba}+EsPyYt&P)70l?P}Rz(Yyh+{cR+fxqP)@0XWe-IO4VmPdOx+4YT5uVlZ>n}6(eR#=S}VlqnRO#PZBEIpYdl2 zCpWDVZ~(TN4V>mzT7uf#Q($CyP(<+4>+cXL9CGeE*jRNu0Jf%|m#HwoJ zd_Sl4Ye6pEJcd9%h7NEe?y?Ik_KD)1=H`lpoc3LQVXQb#(SOc#oSBa<8`=>vqhm}7 zEUyO%_uL2@A=Jf=oft+tQTUjA0XM0lDO3Cyn;jS#D~QjW(RdlZ3(m*4A##(ly(I|uW4epSE&Mr*k5qnor=r^5l z6WbqO7P$DU-2QC}^+988p^zn?Brq{~G}SVkA4e?eQsL5SiwE;K5u)?VwD}jMcTho& zW!wCuiv|>Dk6GFacx=9U+)FzTlp$I*XtL5+@Ax@$fI!aOGpEuD@ zXN7E@wyApH6TD)n6aK4)35W|Y9V2OoaM1IU0-=~e42ng~-&v1A8mPY!fvS@G*DLi=;`Rd zkby&|?xKsqz%odghgG4Jppl?Po=GY+$D7}5eFDNIqzl@ji6Jr zN#9#YN0L}cMJ#1Zl8s3c9-u<eB!B!49^gMu;Vx=TpRWOkV*(KZE1Xz%ir7=z<+$^qmsY;<7 zJRWA9NS6Vcm81a;ECTVXF~wL|c3fk`{nRS{t<-=V9GTvEIb&akAVj3`;AoyY6B8RB z)RuPf{lmfzHc9!riDja;+@7hR(JHKZtJ1X*VYi~kVt|B%^GMpF{fXfWSiEMp#9rFq zyrgxsX@u_kAYnIo**54sVcr8Hads;heWFf-T7Dx61$2E=1zBXMbd($hGFr1h#&l_$5=Tr_qHa5c{ zn9C;oFNG!@TC-!f%DB(LseD3!LE-$(A%VeGapr8ZV|X578}UuI8=Y0NmUI(zhQQYpFIP%Oy_oyFLsb1pn40E=ySFlb#t)w=g%t4!^n z%S{P1QF6*1zh1V(ctctP0ur{$KheZ!m91b?^Jx5`@_i6ui<5VfJNq&#BLvILDplAI z;!(}W6)v6r$KXv=r8tlSXnDxA2XebPT9$Jo9Ad@N3kn@vEYqJf1KF@V3Y{udjh@|N zHkvdwlB@*K%0dDC^pdk#iNzxtT*>zCv9L&0$! z&@K6Og&RhJH0G$R$~iO&qAuB?dQA|(F|Ua~4h5-btBEPG{!SX)7$Vp5jZ)sRTI{cI zTF$%Pp%k(GLOu-Ji>N?p`y#wwhhIH5N>y-|o zbHZ*fp|kJ2ZUMyPBgz|}JB6BNSM?{aj`z!?IF}|^It-|KNrMoR#x<IN;IhFeGQVMzY#q;2hTjnK?1%Gvx|P%JSHr# zJH;dMJnN8XM)6o;T;w)So#zRW2UE@5hE93W%fs#%sgqLo-mAl925~JA<;+m;U07un zhNGLuv5U6Si73*#Jk=_?o;WYZBATsNZQyD(O_uUO&W*v<)|+s5u3fc5jjGe>M(_)Z zQ3IPO5;#O+P|Mm&4lKH-DL}PExNw}ep(sb080Z!0e2ptZyXYXGEy7UoQMRS%bcIw? zqCEAp5yH#ne8n>eP>uw~<_DkEL44faa(|MZ^>Qu8s7X-B`is7>fel}o->ilqBa1d9 zFQ9FSyl3~Et`8$inikFVhx~9ZVjye{V{uP!lGLS}k6WYmMEc>v+0=WUovjY%+ULrl ze#?w}ArX!z?gtn$(Jd2ia;x`GHm|D~cIr=7P(AI^RcmZOQaU;TdEf3BMXDG0sSSNn%g1}!TIHt{k!=_&+v)`X7*Fj{b38o7ULrN!{F;w?pJGTAs>i+12WN7NBHXD&p%PH-xcU2sig3j*)_1g1|$u~ zcHx;#87d)jsfCl%efs6ej^nETWZyjp>qXXGW{?rVC(H*Tt-zRx{s4Gv%2C3hq{1ab zivQ-Ir*nH9KCqo(i-t7;XI|=T1i${kl3Qaa^gJXD?m^Ar$G{vZK1x;jN;(N$IE-e? z>AF^CT^K9~Ke3Gid!m2kE6QiaEsF11z&#|}TjR;sviVMXFpajFOIfBv&LRoy^~mTo zSZmL}aiqiaZ=DmY@U&wd@+r0ux4g$ut7s2lE-ua zowwKO>`j&OeDv=8=+}e$L24?xXPVC7bfhBl3jA`MJuuiByEj?(u|YG=s*?(-uIhJd zvU|zfE_u4L&AcPtU;=iv>@Bm32+?aAy`QuZw#US#Y>ThFN|{wo$~4*7m223B1;$#& z8Msfi?tI=ML5~_j%g;R@fm}G12=@ov!G#|4AriLk?cT7&tRg0!t;0)EV|zBEw|LDE zgSDp9D{$pn_Dwq!$9^sFUX+FRDHo>KU+yB)ROTp61j60dp4n~NUaxbg(oKtYNyo1( z+qj3#EGlsU8MP+6M!GP%c^qjS=3+G$Kz|9o*Mb;PYBw1_y2rZ$I|wvQrdUp0ecjq! z-SXuUnV=E09XPDeFL#lBfA!Biu6oDlIDVZ3Pwu)*g|$%$nw-;lsVRKn#=}pgXQ^h$L9}VlV!pFA(u27)Y~sN z!{h#rweE7X7bN_CjhOEK_71swl{@3(>==)G_R!&2<1c)CS|hBRc+q)pm#Bp&M!4>1 ze)6Teq;h&ysCKyXU~K+g5)A+Nl^8W{9TzC>qgbD3gj0wKaDn(-VJk z33cx^<6BRQocVr$U6AGN1nyhc1pm6o!t^i`iCmY<_`LP@^Gj6N(KPaQ z{%e0bfw}mSZVa*0Q;OdHIN!+Oc_q)|HPdn4_;cmuHb;!`7TM2W^@Inuz`FOZH>dC7 z0i=SNrrzXF`gPiPwgRX^!#7o#y&ej!z5G@X<%goL=vEkWoQEH~!}0&NSc^mWY@6BL zC@@-%1E)PM86D2!#?oDuB*%6OUJ-E`2Q$minH!F_?`0-tw(#{_xLWUFV*AyN-!|nR zgJ%bA9pf3rT=ZBA^?biF%bi{vyn$XS|Ip}g>Y1+K=UADhlxM)G=cpdA@mOc8WrOrR z=-SjyFW}%K%3ECiDtB@ynl{?nbr>$s965H-;%tRJ@}$Ak>OoE*I{SEohTd?O#jt%j(Czv~tze6tQV@zNpbd=|B|6tZnt6PhuwRv zZYtrP5txEcu3r7Ay0WAiGqI^H^98LG` zJYlI0Ok`)27z07x(S&kgSY5$FPvj!S*&;3WgjHJnxS@x%B`2yg7n(BwCsGO=ebw)= zY)V|3xIni|o6}G%_R5tjtoO{wmK+3}%oQHBpcn3jsY9RPk};XvKR1pVV;hhZ+g`O60vgu>?yv4}PNBp<&yny+4K=XfIy z1V;{^oMri+4e^ziwa-c)L-$pc?FP5+xfgNHX64hy7eZO}{BuqK0r94~PJ3VA&)b?* zWU>lxah9ZLjg!CeJUWae4~HEJmPJC2L;I@UwtD=k2QmBdF3qaT-f0Ld>`J964=<^W zpiVs`=?9Q9UX#^E5v`Z4FaA9oxEDB9@TnBk4Nv&Kthk_X4pB@{BR(j|VTm6Mt^Q~N zI0?W?Ind~7&f*}rEcQo{jY_cZN`T9B2Vo`M(Qp$JxmkN zajie5Z@W0Ial}+v<5Y4F?wV~5kv=DX<}5@hGZoA^(D)os>TqisvZ7Lg#hKsTRuCwM z6KYU8kC|l8jz&0Wqivi-cC&UE=z`3L>zt{#FR=aI`>g&#euDU#QA)r__=x^!Y> zHIW6o64H}KD|wTR=bndS*%-MUuwWLsa|sOH4#s{NK|1uWf@$K=iWqOj(G>1G+mj3o zxQd0`Y(41WYw<;0QN{d1@D3|6CgqfE)DVzmD?fEtia@l@#4WcdkFHI+`3zzTpCD(c z=gt^1&pn@_Xeb{@UBIAmjg?qoz0RG2F!7*z5g+Ivg~cLCGK4}qBK5?aqK}ah&=|^a zF7U!$t}I#ujAMUXMg=QnxXsRXJ|Qj3sH&mkxR(MEVT}?tPlWz~X1b+el+R#X?@Ym2 z0hQImv&qJ5%?>fg;2$uYzds+h;n-yCEcx|rRPcsrchRCad&FASf1uIguwCoRheRnX zR!9HA0mha$XnCW3ro~vlelk@?FL_|`xp{#Z0qcB8ms4F8@G)!hJsEILp-Wx4SsN^@ zRCpMzSPg5TX|G+kWXiB*7)icRxI4A#tR12$xzg~`-1-`KeyG1O5jAbH z@Jgu`^-Y{a=rYkUWNk#9sC3+!cVdw?{r#1vmOY?yVCrXZghWy@IQ?OVaS=|X?bO&D zR(ju0aIE>udg@2ZR2UR+?xt6$xBtzQHo}O{!yrKk<7OelIKJXq+1>KP*A*e|15jT8 zT%Jk@!JRrmFLdMVWk4tdzs;%W0855*n+Nes9XHCQg&R4sBXH1Mmu~z>6goG4eZO2T ztRtEFCWD*9=V79FQ1Uaym%N*sRJshTY7S4_#iV+uIGYe-k{`1<`HvWLZ7?C7GE}#; zz4~ques5S5f}zN(u_}dr2d2eC()I^xCrVlR&nFW7u>DAjf|M4l|dA|njOXzB4FrUK&CoJhuiH65%}hE+b~y`or$AJ7Oh@Wg?hXciQGW88pC&^3#3wD((Y>dgLFG#8H4 zk0?(}xI#AN-L~J>)m|qWbi%aD3U{ql@*K~vb_ShzB*S)CEsRGzoJwuNx?G_<)8&&V zCPx$lcW4N4owSo=e|fHUrriY9ear8CiC^Iv1tS2VhuEoTNb3TVCyKTuoT(_M+Xq;L z0|O~%2Eu%4w$Sz|d1T$v9(HNsF5{My$mX@p_8g`TSKvj29@HIsVmNzh8zk{2EcCSm zuslhh<)Jz|jiZIK;hskeoh=73E{()^rLqdfomm{@v_yluwj*#;RCP&;3BdlJdsFaKwj2gV z_(7){Zn_H5uo3&)4ib4=o+UtN`CoBu?XVb!G%b7O$8il08d;7H}89HLRy6h|OQwpyfMdt@Fga?tK zV3-237umoD9$y7&3$raAd&?GJ%&Z(JP;{JAC`BDIJw+*;l1T@cTYu)u0}C_DJT`uY%jts&U-{FHUl$o$_Y;UH76Hq3jR9fqx~ zbWhO;R)O`UC}iY)R$|;^_3BeJ8MTTZxXV{Q{lFkBkv0#_WEUpuf=YjBlNuFlSs18h z7z&SWIaUn2;X3dWc3C;qK3eTcvScD8FYQT&jJQv4ywAeXo?l`grLhz+G_TWdb0gY_ zQKf``X&LnLWR@pRaNT)zO_8I_-v4UI`M)^|UZ;beGi`=U!NY4=3Q?a-?ZX@acv{?j z4>{wWlBQgRc+u5*)yvuHRGT`(${4gDJn(KFWP}M7_s`=1@~?t@qfaIF3O?rL<8DN*~z3D;sHk?3jBf@)9+R3v}$P$e3b)AucU4RMv6F< zB}Pk&Edkh;wV3vgJn9F*t7PT8Z0bG@TxV*~7#_`gN(QRgBL{{p~N@S9dcGk~$} zVFGaXpt@1^$_&@8#Yp5_tPFVA%A6LWwj&&BtsEkn!~Wz)4dhRi7gTD=fc&Y>GkDlWqaVlg1<5LLUmI z1K)!I+fEB-RI=`chfb%#Mt@K>YlbeTEo6qxLqS?&RuB&%vJTGj+*ZqbxfsD6NAOP# zRcDO{-m2R}fvv!HDA2RC*E>;X>G-wg4N|^K0C287-01B?2r07so1rT!`b=wob0Nh1 zgRY8Lw3^$BDuqSDhxqJ^XTm}h6UDiJP5ca9C8$cY5;pm(+_hYtgT(t_qK3c*2m;z!dapB1rRpx%4HdT@YT zrE)-I_8@oQ_e_S*>?p7Dv_lsLD>D%?{f|2LRbn5yID4@nP>`Jg!$FgFHY@oI*UF$P zDma{kh4A8)6}6LDUP#k>INH{*NZ_UB-5;UEY%6g;`m@#G;zSmyICFev%g9-nXpXSp#hGcrIZ)`SpPXIJ%jKLdnjB!^AJ6$SNnbhlUSZQ8l%a<?3~d^WjyinFtc+cV)O({q`xw;LIDP8pK#X36h!KBaep5lE-D-2pxR4G=3ID#} zH~TZ}__)}wMZv(b$APr`9ljj&$$|O%6w#@AkgS8dNH^v1r4k+eAHXCu z%?y9HAXL&0JlTB_XxfvyzM`!hPe-&LmAgXi$v?eo z#k1t(S@K9I$E@x)r#Fn&+;}0lu0Yx}WCoR-ms!m1wj7tS@}?p;f}nBQDx^jsNs8O# z#pB}_Xf0D+@zg`Pgq@d$;qF-Zfx;mHl5Pr2a7*UAJmaFvMm<^wiA%T-%>huoP9+0z zn+Ps|#!)NQP3fuyHyzlKMn!b^8F$TAYNbLI$KSv08I#KMY0RQWcbU0*dc_p8ZmVIc zCiBt5u<XI-{t2Jr9%{$oSuSZuFPEMHej4JZCcG zF5+9fU%u`Kwe}8EuP2PIYPlQn;L_zsp%wKK-R1LZa%uJMl!}-ac7k^47uDb%M9}PH zu#8c1+YHeb80=|)qYM-O^E2fF31zwtLOTXir$g5`_V9wDS^U1hE06|z#sh-j94z4u^Hqjs(3M~g=*X9%X<8U#Plm=q!K6AJ5L>GU6_Ug; zAw{M{MKxGMks}=?sc~{~#Kx@TW>AZrc|+M`AaU>II<@_;C|6xm&VtKL5oY^hyblhaLOMDb)I1P}alwS|T$ORn( zz2WJ7=`uR`->V_-TkMpxM6<9d?=p_tboN_z+LWp|>13o%gsPM~8dXaB0da8CCa^-( ze$Psom+&lkEA^FN<6`7dIPmu*>Z|jg6DoxX;R70Vy}{5S`kHYBD?yYVWnQnX%G@5ZmW_xIsP^yx+ z#DrRZjnX+Z?E{jF*i*85Z*E1CWP4r+YR+%cDn|oX#U1@W@%k`+(4dR(f%VZi4Pw!Z z+^%5UonU~5O04wNBtN+{SONQgV$n`zL17yJ>hQFI*^)#l$k53zFX zy7>bA`#A!n7`GYgcgFiZ-I?%7qI@?!UehXJwBYh_baIP>@ih-2T_{bS9_xDD|DY_0 zxX6&W8J3?$gJ9x{MRfWyY`I^BP&hT)ve2&9Qvy@6jvp}i7wzjY5dN#S^_%v%^c(ml zk%8&{+}U%XU46eCX8f|-qtypTfK;Uz#751q_{e(HUc+FGj%>97G!(vIdJEEFD*!D^ z4iT*;SYPiHH?cBO!=L%l#SsL*Le- zik;O4(e02`Pk=8{U-OUuhfvDG4A6=pZ)f8(`D*FaYv2U_u22mtw8g1YB}h-=_O;$nU~uyobcfSa_N<#W=jTqyFPEILj=_kcq| z#5_Srd!qi4u67o&Q44l{I`))*c!%0ZBt^#P%^)pD=!LC^haqx&C9n2QvL}Dl4LzGb z7j|N#!guB+Sx@u)K80ky$2;80JWEccqm;Pq-M1L`}CpRgw=Z|A04c79bZ@c8-;w?P_Y_SFvOK z;DmeS#Xti_b^M@@S!;j0T>2%HxmGZ#I4|#PX#iO+$70%34bEqRmteVgDsp z3>z_;2XZ$p5Q-$??RzmS_M-`L$Yeysg(Vt#XQHGU+?00{SCp3{+W%4Vc4JY=g>SY# z#5_NAMz~2vuKu~|`ysgse|hflTDkCV<3-HJt9lT(RVVTs?1k0KhHm-627Yd#;`=iJ zp@7|=xYqL~j8DIvtlE8hSpHUmIS1V4awKb}4Z{sJo?Zr;>mB6P}jv6ehORn~Kd}}<^+;D%BayAQDKg14<1e=ji>E;gRy<4k5>Vjh0zA!{%s7W)eTe)Zw@nA(7LNr`%9BrITF_C}9hd zSoNhdB}d0oL^+6QwSlf!Ct5A72ejgMd$F$l$o1p@E^$DbL4$TV{0qWif?)DtLa>6) zDyq3<6gq^H^tfZ&PJi@Vw6OBC6my5*McXX7u?IU|lRn+x#7_Vi2(rpTT_+&_Z?Zb}jXOQjm7m?euYt^vRP8#jkNMa3qBm^mZ$jjE6d2)m z5ORy{JLl@_n)u~F2-l%YzwG!=Zhb=*=Jt%pB6^ek)OYNWb0&?s6OA*dX^C+|7R!_Q z-iu${{pe~^@{HPG(J#ZIR8@h|Ri6RN)nSemwppr7WT28gRo8qCWPc=Cv?C9qRd2!3 zg+V-qhbYUsnTT0EHW9BBa>Df&MpfRtPAl1-1TIx?4xGB*F2*2Lm1{cTx-E zS@(d`{*J`yHT*v8^ILuS%^;49fF6;_j$CG*Q-Z&Yl)w|b!tj&r*?x=OtW>o;P2Qyj zr?NY>PKeb8Zk#60DjXuA!7kb@ctlfJOIEdA1S$-2wn}KH;2KM;(;vOZt@~l`oCMP3 zdY_r@q|%9*68sx*OCcCFx=>Y_$N^fBPL6oJU3X)Ip_{qZ&}fYymDAdoacA#quNvEKlsy?KsDb zydy(Wu<{_gw%`3ku7{5!#A#h&lm!jaDu*~fC%_$kM#*AvU(|!f(*~T_a*Hx+(TW?# zG}x>9{S!@s)(Jaar=-y{bZNFs4Q~8`+*(agg*!uHsKWK(bpoQk=W6&XD7jTK0$>hQ z=f${g40+qx%L3Uia>s#kV35pgAtP#RPJgphC>z+y%(Np%vCN-Zm?SX~#Y(7X0ww0{ zi$(_pFujaurl%F!l$f5}o?30Sg;`0#3iHlhG$brK@l=_6f0C6VCa*-k%3VRMq2)|g z73_ShM_G;RXlD*=C8Jrd(=YJ3ARsp4yL0ldYLmzPnlydFaYHYGOE=DQ-8F^9Lo7>#ntdR+5g}VF0(UT~g z-#0V_)_aH38)!O=GYv`Llc3)Fwsh#k<#x3`?Eii9jkhD<$}awiVybCOrtL7t!cAqb z9nxwD?yssjLnF(^@11S5v{#Wsj~Tnt(v3^Zy#{L!-a~iR=gkD@f&3qy&H|{8F4)!( z5+Jy{1P|`+9^Bo6ySo$I-CcsaI|K;s95lGQyWin|@7^kQ6~#FhJ949=Dp_J=KUIiPl7YO21>) zw{$fDZUx!;XD6%1(=77gN;qCr1FlplzZEp0m3y8vl)^Sysai~oZq%hnNeUJ9-~#lV zbfq)uhI$$^MgAWs%PjGkq`k}fQg~0;YZKkzkkIxcLl=NR{BfKA&Cur}fDrh3@muKF zW9@hxw~dBA&v_ZnxiIy;Gxa(UCfoulmhyo>ppG-=YD2?<-JDyXAS%7y%NFM2i7Ef6 zYu7bC8#}xEhX;_lV4>pJWFVrkMR z8K_yD_I^S5CY)HLO?Tb4&>5Y@?Ro_aXbvK9TV5Lwgc~2mZP}iLqi7cAmIU7PQ!;3m z_>&^qY}9Fz#~&(^hP{7c*Nzvl8@ z1~o=E58gh-PAYoSaBf!juGchi(l9%Ub213H3xgiY1l2X568b=sZO5h9hmZZN?U-(Y z_g)*QivH&RVW8gp=ymXi*@jzCSZTzs`h<7cE6bx|F6RVKdjrKlpf3anko_xFFFd}#b-%|*llMLD=S%`-?w*|2rJPHx z?pv+zlD=8bpGK`(GB$$g9Ji{R#iS`PWDb-Cmv}*EMWa>CKCo5oXtV)(dbX2BZlC&{ zH^#h;gjkEQ3rDy+P)NGM^9(Xs#a^onjdWZ2Lw_d0aS^53KfucM4yo(ilV&+vpOtf5 z%C3!gj4k~0E+6q~Uvnt=)7}06GxpjZU`o!DvE%qjzEaYX%rib!;)R;R8|wKwM)*LJ z=0?R%y{ zOS;;~fX170!KuqYM}Zboc{skm+BT2f_Y38EHdqMA^@Bn~oub;+b)%$b7OZ9pGeiGg zNAT{)qG970LIu=)*C3g@O|$hhTEHC_jP!3_%dNxN$y(CSl|lcfUEz+4(RQk@dO8#k zcz`X+s5}cRyZ_5L>6|8W<(D8kY8Yv}NXz!)_!p<}y!s-++*x8se0Zd7p&(Yd=2xC9T#nW zFTuJp#~~3hGs3*nvjybQ%)u93v!$c(6zi@y+NhwPDT^)9$SI<)jS%mGLvpCN>F#0c zEbN}YznzyVQ)%1xqw_qU)Q?S0I*zk0h?p~_!BzX*mbY$4bN@I0J}SUkEk_qFwK`Jl z=lJq{n5#b~UF-D(H)WC}GBTvw(x|Rjsq$7d_u0lqPr!=%epaUM+vCS4ug7|F1=AbZ zo@bkYL3?k4`+Nr|pUj#jO`g2h?EBoDmX)>J0Fq5uQ!ALxoi>XLaNsmsd4ElD%}o`y z1|^yd?EaIQe?080R3)~W{kB$PZgBunKNpK#CWk<;xr8eQK8noJW(+GpRuHt$61G1^ zI&uS^Da453)N^YM=M1AX-kAj1QZa^FqL+vaM!eckO?3-=(u9$gCAXkGDpw3q@z%#b&0YboQdF%fhJDoB1; zpwQDr%#JWDUyNtSH*i}OCk*tYS2uA5ju@y$clMjJrAsd)BM>Vl+4?x`8Wa_KjapgT zQg@h-N!JrU4GKSvN_i1E;=ErZIlsL$7D&@pY@K%p+7fV&gmi&5YJM%x6IB>@;0(cM zR{6#|dp_#g)?raJ;^iET$iwh=L@`-Yg(AhZ<){LudP&1jobIe})9wr3dlY^x4}FVK zT*|odds_k=uvx}`^e_#^9J-%XaKgYb=lzH3Xa&6<0c40HjH2C)`sXFU-aV)+w8Z0E74Y#Z4c9|qFlLS?A>IIi9I}~c*gH& z;YE4Xwi|ryk?qQs$h)PVj?$Pf!RbDCk7hhXPzx|v<|hX0uls-{&XK*eZp&Bwr9W%= zj;R;P)I`5mtaEc}8Qm(lBUB#F%OlpW@r6cgjxp7@%v*jA&Yge=uVtQH>wFwxtw4}>$8lK?`?Y^Oxj>2W-t?_$f_3fIAM9u+-+2Ci%rr!dkBhM z4wWp6?^qjuGen%~r6lY7sK2bHZU5!gBP%bDsOzDh-T_#14uklvU<|CR=u-Twto@FY zyik8$UU-VknYg(AC7by8@JZGi4n{W}pDossB$K;mO;0OGgCYx;x_y0@oqG+Z_Tw2iK8Xeu_W#B&{nn@y|sHu%(#RcZ({i`t# zZh?;l1wgxg@uq;=)pw$h&BGEMbLdRAD50d{^ya`=16|VAwd&6X#%nmwYm~Jfl=VTE zv!J0)I$x%PvX)Me`b@Ra7Pk_^$2_kqs;Dy^m#8mCVP}JbA2zqRD#3^#n@q(<47)+Y z=;HdF^Dyf2w(+Cks1H_^3oIul-?hLjX=UAn<1xdz#7J5YD?*&z8o4+%1Zr{mRQ(9C|$Knf;}zq>>ruc#Lrg9tJ+Ar3?G?8IYMe zcruUw%8#fj>2YeAAg3v5H>~Gk2huumqAWyC9A@4!o(>e$WnQN2*B zo8((f2j`G?N*m!mp-kmzs=9D$745D1cj|CvhVgC>yZz_;$XVF8mAayWoq97rt`!zj zX63|7;*p(HuZ=iX1v7+E83>oiJhXs=L?0}cq8e;OnX2ROB<&?n=-SIR?Sy{%hW;lH zd?mJZ`teH-u}~cxk0jaLF7Fo`3QSIsS8j#<0x8kNI1NJDjO5LZvctwPS#@fOUd} z+#ivM5sb(7hO&!0XaCn+&!;wU-3N|Bqlb?Nmhby(MP;S^^*H-=ME664*Rj@mcr?X0 zqSyMlMSQF@iBvbfc`tApAGu!ceqDZxjFJ}wv&z1F7Bq@Yfe(=hOcI{@VObdeJyrp;DYKRO4AR6GZ!}+X3}Y+8@(KHF9ax>@pi@bPWlYWV z#ql)1jx)y!gP)!-%#RjUCP+6w^1g7G&KmO6Q&8dhos~a~$_Xd@whZq%%lpGJT+Jfy z2PhAjG=Et&M)P~hUFeFZVDX+3)8SOhJF*QO_B~ur4hX9slVfQN47k{DJ}3l7{tR|@ z9^ZeLsm2Dvl8&v!czqBHr`@;Iw~mv#(TBJD?n%A3UA-&4w^3j4Pjk*DMaJBoFAtYL z;|JUN7|lhZl&|min3wr3|+5g=g(o6O-^*6*ULdJ z)}$y(P_vw-UDooV*T_%jGr6@WpRj%-&}{gbI>VzgnRikJMy3y}Jqw02{xX!jH+Cta7GxG%p=7E^dFB=~-LR=adn$uxO2r zfZ|<;FKRI!v4{G6t077m$*xkj*Ba(QP?o^e`Q`2VK|#lEL$XHvesk9)kh4}hcWO0z zF}sN}W-YWX0*(igdsR(>r$O5UYO(1iYJuZRk^^?;di{OmGed-3J10eK?XvLgb7tdm0R z$vi7sm{Y}&CeejUT#SmUg2242e!Kn7Kh9HB#}6Sn7PK3d!EoXWQ%SQ!z~P2YV#cO# zU}tg&W{MVY-@?|=6M_Aa&-rNe_4Qzxu50cu&F^>XEkHO7*0LFl`w{=5bMF_@dsDiu zI;%DC^7BvnKFPg@RePUWT3K1yU2F)h-FMwzI`ZE;f{jf~T=~AQzq79cv2|)rj_LkH z)(6^Y%hhM!m0^4>02Y3VKN~Y+6RGPQWX8gA+5k$;&fc@sd&a@k^I`-`HomO1^^SOd zqOQ^JUs6uws!U>|W(MRoNxkN}AprSHb`Yd`PG zxV^m%WzYjY`3R$duZ#YDZd$e>Nf@>}EKCtI|F}@rm@U-bRPgAnbNFruk9)rcdZt+A z{v~1+*)umcM6)HbaX|INwnGv?jkLrP$ErMS4C5LP4Z&z|Dj6*-5ZD}E?d9rUFBO3X zm$D#h%ZbYwX*D{aE^xJcgjtp^x^76%(0Ayd60$ejUPARL(pb}?w9M=v8NE;{Jt}Yt zEx?}-r^GEHq&>dfpK(U4h*iauYhUE|%pDq&CV{U~on4dK4f585$hRhY5^No;A=e8m zg~~z9(>qPqQ?A4qs6EUrVt$>7D}{z{v%G_9{tT!3i{?5J%17$|dKJiFa0;^fHYFcA zG-&xqCXUHud(- zqW3*Jk3d@ww;v^TSzGU1*0?rsD*sHURGF zcwRln`e+|qEL#Ar#o>1G4QxT%5q>}0lkS7M_wkPc*Ld&!INZm%c0aG8Mf4=z zaIZhg0&zS0iX8+Z?+wy_2|D183TWNq574Wst_njOS6oQtrT$5ip*Hk@0}nPfq@<=2QwS%TS=@yVoBtxue1c z?`|z&Zrix)LvpXPa`y8YrvJ6=D0U_m7BnRv<}^4UEjhiusII-(1|%XLZ}r}t>AGJW zWcgp6KEQ)1adF6Jo$MDVXz_=ZRjt7wIsPp6&O@1(!S@HkN5Io-CwYE5h+G_5Nkc

lw2u_F?=`zGD*ggX zl$K3vkQLi#lA7-D^7@<0$2IUo8k6jLr(;;w_u08StUhv;xbBw@^djrSfhTWq> za`%|3d5w3Vue^Nb#=!LG0VCShS-DZ@3J6)-48%sPi)EMOz3Vg)gvW1I+|{!7V{XXZ z)95rx7QeQw@pg{Q<}R?j#`mgcYkm7$2P_ixm2(W1ig+Sg-}ui^yGiSE{NZ-Ro<3)| zhuLUNFoX4WJk;O*E<>Zk>o6+t63%gdMR+;&m~5Kh?Q_iS3M;koO}(ZC&gLW$Wu@H@ zEN^+wxvFRM33Rt^)IQ~&LXFXN4!`$*CFS-07?6R-n{EP|tlja+%yVU0Mm*&GnzyC* z!%in<(&w%|PP_uCdEJMb+vQ}VqJH9I1-Jsbvn}*$w=X%*EBopi8a>xMe9udhGiEF; zM`h)T)s02cXA@^iOtzTjl;8*sC&#`S`e9f6%&!o5dnGcC`y@7^+B+kF9m0pu?gCa`&+A=DCpu^BN1V<(2#=-*08-@ zcSIh-mPoX|+cY0g@qoSc$u+tJyMT!CnvKP#E63`t^^Bl(a)WmAbJW9-qzqPN0@Oaq*>uc zCSIw2wXKFd%D=&8*A$`f2%mBWYJ*X`cMuMpSU*n`M4Voz%8(1?Qz?xKi}Kt+z#Wpd zD6L5Z7LmD-pGlB(@TXCo;80~0(hTe}B-Y7Gimf=!orEz2-*#cvwU7nwVV<#-w=Cre z;Ga3fP~m8Jf3E>)d)GC4vFhAh-IG8WyTMFAy{|!OHdS}#2SnAMvuU1_z`?~s>L6-s z%;SQW@_gO<+}V^fvKA4*u+wueMfOHo^FLl;b0k0i1Va9o*>8P z{oa>fB~j`+)EUUnTt&NfkVv||J?=X$8K-=7s!i)|^7qum^S86}y0*5Fh3+?Ja&q#A zLEjhgkAA;Awe`(_rEB@-QVAq(>`xmPt^gKdl<&3e+j!IJJ(vTae1HY(lxA$E%~xv3 z9>>D#HU}LK%aF3D#CR!7Ch#v{WLy(5_HId*K^@3?W`g?e8-)r{ftu;Na>%? z=63=&RY#)LyIu#&gSMqPV_c-qnP4T#+-0@l$vq%=JT(FigXNm2vJ2IkxS-ytC5Aig znklK^N~-kT?JFL#N6IufGn}`l()-`vPPNyr&$yExPoOZEPt4gq?q;!wHaN& zGsZ&tl?_bF^xmP3B^tOm?l)x}B+Z)KqDEMeQVmK35|9Zg;-ajc%KL-t>Y(l8p+n-1 zgaSWzp?-x_Jl7Hn6iw1_U5R$-B_glqQ)DuWENG)ZfGkKuUNt+jEtJaw zx5vk0X2GnxT=7V>JxC)fz}VWyS}L+V-N2Rd;ocMgDLcgCTeR|DSE$Frf}yr%Rc-g5 zz6bn>?Qy>RW3_kuNSCb@AsPuMBPLz%r>E;T{nflCH1~o_mwYg|6KzqRJ?B`p3TFC3-A{uyUbI%MI61iYHJXeAN)l{RQZKq;!(s5|Q%b<6in9g@YGo~&;0g6z z_oj{c8sya;!K@)7q_On%ljDP91o+aViT_Ky!d?6$+o$f%#9%}7*SSDmM;OlahQ=lV z5n-{2lX<+x0t1gp1A^s%6d5vTFNZ%&s{Xxpvk#QVmcNK;636wd5!CUa?oOilt4Aag zRqAX$`{Z*!h4`^_QfrfS+KgjmEqXJvdZ*bYg!+FJUgF` z$^lQO)Z-2X|5CD#UjpC}@%bf~IfKw=G;%Q|NoD~j8olMF>3A79%~ND|XcSaYbTJk@ zDv4io1@D5M_~#V~2iGO5coZAMl8YM_VLwWfHbeiHHU)AzCsrBZwFKUmuL@zrdt~m3 zRZrfP9vEM*LJ!67tq&_@iQts|4)r|=lA%W7;dSl{OT|W3ml3dSkJtU2H+Y*D=06fZdm&z#KI&{ppSZ_BN5G$Kc$Dlu8Kc6CEL(9=Hg+fL)8NL{ z<~ozmsXPU6jOWoS40^ib_K%i6{-t#h?*d4j;=`%4bl%wP{7QKplFAE3js1G(7)|@Eq!qF0@V(Y0Z{!z+Qb1 z1cur`#Coz+9}*P>|8Y`rcs_0ZI7-&FwhsSyEP0x5W@2XU1LBB}m?AYbb;HzW&lHRU zc>Ts{w*dxhjol+a=m9=3IQaPS*Z@Gf)uNWE(fHg0Dr!0(IK;<4P<(&345;O&Z*E+k zGw=ld`oZx}s%KL&I5Y*hiWA4DEhttRyxY55=xo{$oq5Lc$F-l zp8@i~oSln+c_&+Y@_MnY*Gom;R;JjDZBZpOVS`1lp9DJ#2ml|1t;?L5c9-NaIdm;^ zTr$S~MVffAS#dO&5Bv~B>4VJFaNsCdOh3cmCNXP8_b_4|bj93xjFg+lrsLqbRi1Ji zwF)IdVxHhJO|o=(9QO=OsE+*+_M7(LL2G&4mwa$*6@1#+DGIRbw?^>Tdqw@vC#@9BiaL0rTA9EUXM{@zyHyOzTxHtp1E$|xUpkD!GXDbNWI<*|96Iv1>N zjkmq*C>-a28Sk30mbshV&$FJX^l$CnNkadif~?Ey z`(RcK<|3ogF1k`rKdwzuqgeJiEfvqx1_xM5S3!@1&UVcEy|Nqxs~P-!7q6k+urZ9< zaf* zEyEA5l5J!bkCiRdu4DcuAE~J*$oQ{QI)q_Rc!5Gw!+}P#zfvII6f4GY#Ew%81h*?= z+w&(tlWT_-v-@Om<5T@lLrhJki^WpWb$s#O(o@osVNYPM;>*OajQuqT2C?GvIW5fj z+El)v>jT2cU;9gZJ(o+S_wIUfx8b!2cL&Gh^)^a%p8GmAx*FG^{VrjRY%jOKyhgF* z_Gg#Mp*+wikJmC*e-hWb(?7I&OghKQ$Z@A=b)C$y9?QYOhuw4K#fO#&LR~Me?zbZM zwWsujxay@9TkDJc^_m*~HIJO=syaR($999)eUUH-*vdA8Br)oZno%F3pzgQh zZWC+ksI)Zfs;(!C56ZYGK`mV0#s}s4{kHo}?L+19vEqM0K>erX_y}OZ1$hFBvpvE; z+G_iD1ZCg%7Klu||Fo_nP6WKDIX-jNh?WBzV~(nvwj+C82FZQv)C{ajd1f9wwYm|d z(6pb(DQJfK&9)5c#TU>KRG1k3SL{>>)F%dK?qP**r_mFFwTKGPr+5+Nza6?RI$}+p z_ZTLJTZ`|)h2DI2?-c3L?Uh&KY)Ff9u}Wz5`y69ZG-Pqu#Q`L=`*aP)>z25Uz@iSi z`ee`2b@+g1#-r3vcQSbu<1F=1M{&y&0;?w9iiRq1IDGqOR4&WYZ&PlJwq ziFaDsE-q=*#XL4k?Zey6k-3}%&${))lP9)i^3&cSWeK=R&(qF9A*L{9(STilJEze8 zk`p$Q8HFXj@>$tnIge5zHU^U$vd8N0l|i(ORu$adHA25)fcBc8ZCP!99HeK+&O!~( zV#xupoaHIgXJH|W@wF-Rpi#o&!23<#DAsWfOa4U!B>z4f+AGtjQETeiGKA|cR}l_YH+S@#$MiHNi^v_3KPSl5SjMyGO+Jb_^-|N`b>XfiRWe) znP9Qpes8Hf3|uMua#LmEI}RE=!>pGDAJ{s_eEV=eY6KVHrj|3eMjT0=2lUGGGzI%< zWP?g>R^yNu91QWBYXz_@D_)7`3(;l@ZYR1I-Pv^42b#zKEcz!hBi!y4z2qr)M?J5Tw9i3kg6^)Y+j%bHPX0ysm)5 zX3t%^^-n0~%H z0C^VY?E?S{{{ys|q%C+mfBBalyY1h3+H^`(Ne|<`kKfaT$}i!OQNsRnGGBCx21N|M zvSnz*wS<->gvwIcU%BBN$;u~F7vr8#9$1s3Y&8@uHt=7K-HS7=UAl6QUyZTj`aJF!Fe=*U2Vr^^E0uoT0J9VH;NUYwk>gL6``lhrv# z*{g5j?#3WMCun$)SPUB*;}ol(a`yjO{i!yU*Lv>Ix*Wc{sS<^~9Co^}K!X`TfY(aL zR8f!7K^dx-=PBTsix^?Gp&BsKj|OOxw8*;ieq&@3GG3+%-i#Y>%szck4@mQRNp~(z zy1xpRbsvwMnB2t=CzHyL@BeC_%EvKZg%ARrxM_#e&irU+g}$s>stSiE9;HL=-YqN| zvGDenDn*7vfkVqIXb}FK{RJTcvi71?!dTslux{Vz>m#{}*wXdkZ6L8A-P!=&_DvQbmp+eo{||?)FgvTCe}kGybSv+PMVLpI(^E{(gmgY zLBC+ML-d`0uj-WxY0WZBe-;*t6z%1*I5V1+mTR^(!+cI>B>4Nq-{8sb=58LWJRFj* zsmT!RPlz4lSV$PpB6|LkV2OYw7xf4*EvH8E*dOOxG74cL~psI->2DB;en>6 z#oZD0Hxl+Kc$Y-noiFqVJlqb+fWR))-ECOlo41hCtaX&dlR-=@*PlDU`6>(k*I6vD zI5cuk6ux=!PlS2@deJ}P4h`A|SWuv^0T**}%zD#z`?)w zaF-rPy^%9dmkl14e@LWqR_MhlLC*9~uo6`?z8ctl){OLK?v2pH6>hx3>OZK`MMAR~ z@VMoHm4G`c^%8M5dSS3nPI48rEFp($zE0kd-I?`Gl6Z_D+wtl#^q!J0Ll=qHkjVRC zDeP|}ZC$SXH;tX13$MmQEP)qT1$rzN2M?MKS9Yf-0+Ai(oQ^Zsn+8+@kV=mKrdY)A z%tV|H#j+=8D%faMf_qJBRw{Q}Xl~~jWg0__uRlQn>y@R|wmuR5O{`6P8DxzJ7-_i@ zUT^_pIxJ-4Et(){g~2uria{J&*iJDn2eTmKm-biwxU6=q#R z_8x0ywQ65LAiEi>T+HKjzUieo6rk_H58spGHju`7>D9f~@o+uX$;EGp$rdZJ6hh?e zw4W6z502E}(;NAL%c4LwUZV*V(H)lMl%cp1_cL96vR9;$qR$3NaI(#D2uhXp@d}d$ z5=&t0{!YM3B#C;tD}WK-zZD2fh?VIPJ#U9{egF!8wlm=pUI?^Hu256b?ef61$qAlZ z6dLhs1UHfLA{+cr3+r>rx4>U57KkhiWDG(Z4K<^1ZaEu~A@)$fYDX>yw7Zx>ctT>K zd9F$7fn~6hl$V&hDpOo#{=|%Yd@1|ttY-X0mp|XK38IqY}Qh|wBu4znqoeMiv+q5%<N+g(U2%2q&mK((p@8U9~wENHG+T zkqRl@TE7D`9O=WVms`kkwW_?u;2n?VsuW=yZcpKmIp)|}#i(alTEb+ktjt&cPyXd+ zI#p(}m`JJ*EPT=!TMKUKsgrgC#Mv$0K}9~r+@=rru`V>gCnPo}M-?hU3E3|k7a*M; z=F?E^0{&i8-7d+a-LM?$m_b`3;1u=QJPz5g@4~IE;^MDI4MTZ?j_*H5iDvlZ3`tVZ z$PZ<9XO8S9ej#9zV1#K=#3!)76IR0pKUhjdm(B@a@wjSH``B z#BO8*kwz1zbd|TX*NF6LhB2)UE5z%zG0%=nK9)D0qpcJh6ZUrK!##sg({za?MdZC zY|e!r`v&PYZ73fg2OfXsXY>sE!8l|cZfsF2%_vJUX#SZ~8wst=CjohQNLy%b_^>~B ztm?Ppi8%UM!vme5NAo8IGCt&U6d==%qM(Zp?Kne2T#8_eNpxl+z7mBNkcoyX)WvkG zL8De3i1kkfBDY?$0+-;?A2ln5G)2*&0&1V^G$!FUo!t^fi}kXZSnXL6!swZK`|Ku* zW0()LJxzC@!h%Dw2IqCjAGT?c zl{YB8K(WccI~_H4hlRh7DBgsAbxi|>NhwSg_K+(tqg8}mXr)||CScmG@Lc_6bZ_Uh z?nS4&g=7l;q9E$m^cbao-V?x5`qBsHHIIWJQ36~&CbCx?d+ir{e9H*`&YdrIpjM9}ij$xTQhwQ$5-k7S?$Ts(v z5r-On3GFBv$*RvT_}xv>idcxs>rdo9-n=fr?@%Pm4$Ur~Ty)CvzdU--f?(0ny$F?Q zi%84EF;>cTY&lI?>wX&9^H9T}q4X*{D$KTCyfC0S%TmXyebO6=-U3|sV2wk;3SQ0a zFfdj7HTr$&h2mXGeNMqRPP3jN6^me$q+bT9AcH?xStLcmeM*#CIFr@~Cqs??UZjkG z-RqbKek}nCXZbgQiu9^ZA!xD?`U#&1q;reR_fJ(>c~N`;@%VASw9>K z_ZV9DGgm=)nU==%kE65t9gcn8D(?y~B8h90e}J`~ngX6$zx!Cx&gIiF$ zpFGOh@stVUiPCe)_uPjkjtGC9TprDwEpZ?Aa**BDo@5&KRtywB_{ZUf0>rA<)f z$-VsEj#S?azCs%!>Jl6s{DI( z5X>xv&;$j*Hy<_2tHK`|9obt=YyY@nqE)3|ws@$CL3bHmC+%;P$25DHg)BC@CID$H z0B;8Xg&v;CIq zK3|(Ei3Mp2tzZ_vQ7av+Z%Dz~JZ4caCaKeR#{$QCz~aJU-5I^`$$^B;DEO#gq5NTz zH`7CJN|q`J-11z@Sn92Ic(m!)^tjVBq(L;@ z1#nO1Aqv5X*C#HErq99!Ze0;)9uG;zFHhvNBSMeYv4n#3kpU)<=IE$8tPnGi{#A(j z?yOeT(N#?|57d)ijOk@1N6X6jOp_5ds__dMc?89%6BgKk$!)1RDrf&AG~k{!GS9@k z1%18}#!^*VW#W(kWD-3%e{ztSD~n!m%(en^J%@uW1Hl5r)nQ^9#VWPGd<|IyQ@yV9 z0jrA)QsJokta|;pTQ848gaIw;*7PtEZp^L>!1@gF{wsZaM2jWnj zW}N%uRrK&+2q@Qk1P6E1rF{KI=`SA#6aXqJ2U2jocrcI{98=j+V^q$G7${1dSC3eGs;~ItY!gqGH+7X5-3A@x7#3&9xc3uncuhWHFwLwh6|Itxp#w zMhK4QLDUnB183pTHt3)u8!wH%=Hn6MojlAt?#PrLQiKJE?~cKeb#)^P*QnDU^J%06 zNEUf^ICvyd7h|@Z{s{Jcd^4jNdzkR=D>u0-O1|AylDqbuD_ZiB+;6ni*j$(>wR^7R zxo6F(Hv9~3Ie`_dc5207_4&N_T4!XQxOwv71;h+F>1`PL5=^ENuA^gY+p|ymoIy&M z5^jC{r)7|LR0UWsgsp5e(JXFLOxWKe8)uJ<2+|4GZ5Q$g7B!xeb~kYPDcw1Fq27O;_r5_al5ppXdaxGbQC1V@ zQDKo_S#-d$7LT>5^vJ*dacO^C!?6jP6HC)4!F3Lluv(PDtJVOJBmQTK_AE?ggA+nE zSarEE`Q!XwLt-}CE1yb?n7}FNb_8wzg>ef}nC;oSW)8G9{xLJ57I@H2nf8OS+@tawkhO$QHn`ttrfsKXEP`k?inq_`?-X@0?*J7+ z;|z3Jew+qR_Dyz*kFFz`llqF0X_u$ByvSY9Jv zA_RqIo?W7nfDYOBxOga;tUifKZKs)KdYO&;fT5{NcP&&vf&t`gVFvuQwF@BNH6 z#1P?m`m|T9b--Nd-32My9qcE-kD=;~adW>l3GertDqJcK2Ayo?wD3Q2^PD}X-f$m2 z61n3KHrI6KD%eD1i;ZThy7IoXiW4bU8l?S>HPC@#4vHlYbJ8SW+No#YT$L3`I2e3Q zKmPoiRoO2gPqP2C;%h&?BGZ~!O<#xFUM@lWv4>|mk|Fq|!d+&JaVB0rsRq;x23D|n z<8Ggw8QWbnF) zrXRsOeh{wjEm5@2?Zh?G*}Toi0_&&edeQICx~|_MM{7K#=gc>97SQ9P(GE__%vcY$ zM08jSJuc{0+?Fgd+q@w;iMnoo)zX5W7684Ty{nm6nOljRI_=qlkvzDvaBFzo z8n*4N{WKaUyDsVGO@cf7jT?U3=U zykI!!&*mG0_m%6SZQyT?hTDk}0{CiUS<gBO96HS|Lf`3%zDD0>fI zP&p&vNLHM~#`ZTWDQ~*ntL_gc#i%5G7Ti=y4%M=#qpyPOTA=5w*`smvA@ufgkp5D7 z5ydQS);Y*gK3wS`GnGB!)W6K^VJZuHG`jF~bf@5AISUf4Ygs`5`>mTg-=(V<_1`Y+ zLxGydD3LR;XFTQM7tsh9r+9|qxWB5u0tHPdh~a)!vgJl%2sTJ0$89tiny*X7FjJQ0 z=RIj!HBgiEBLSX@8zA&QmTd}+1|UIs`*~8Z&{?mKYj8`J#M1=?x_*- zX{sUn$e2uXzQ_^8WUY(&9U~+%T}2ckZ^|NpusfS^Yo9`skJx#oizy+iY^5aZmTeoF z&c8(=Au{}d#r`n=3zJsV8P=^&wTHtALXns8)V=&Z2x>qj9@M@_#(@qqRwr80tqJ-C+v&qM= z3#L<#5J0h77rCMc!PzUWAQA=7b0e=?$Nz87c!gj16Y+KmoXZ@d6Imb43^kAt>C|2K zB6MrfHkQ$D0sO$NqZWrxc**qUP^&WTurcgq4^ea@cJX68>ovzyB}J*C(9gYX)5G(c zBGnKHe9BtWmLZj&U6!(>(R;VEW)00K+89yu304>iDGR54nvMNu!l0W&6ESBeWi4us zhkQfaotZBW{jhrOm%l3GFv`aNvmr;GO2ZnRK%E4@CK^7rmrk_Av?!u!l2#>O3)%a5 zh|ynD#jFzCQ!8}Iq1=aWhM$&UiGo|Gdr67rWn+=d-uRe#-EW{`V}2070goRKh;L z-j<~R%OqIyd1fl)Yvh8q6~&Wla*-4bgZ1+Iubn&e)|warx=tj0%2G+C073av&l=nF z`n6Kc_V`SzYLu+!fva+C#;c&;RW47dh+)}f2KlQxCUNhLs@ zO4^2``M2%k4Sfzjzt?)SN{R1QSGhK02G3t&ej=)}h2+b}SCb9wb2Y~4=@nB-fwM!| zBX3)CP*TH^?VgkcJ)7@iY2c|rqp$sfc2%+D&edb0d7dz6dddcQ6rt2*kSZXj9sT-T zoIj2#7!GfVIW#MTe7d798!lLd5#Ys``6E);iCC>udYEFkuIfqJWcyTs;u_2M?rpY1 zX+1BLg?QyyfKgj{r5w>^Aq?6+Q51$TdOVRuhAe+uXN>f3t`LL}fB=F2ND*#4+Ia1@ z)4*Q^*;sG-WJJZD&IR=2ZTjqtD91L5nz5=-ln-009G{Ul5&jQb=Nwhp`}W~#vTfH? zlPBBeWKFhhO?FMT&B?ZH8+HSHgZug1*F{CxhxV#4X~EV# zA-3v!7AA1-^fN(v(h_3c?Jr8gmtv>`&?!Qg$yldZDRXR>$Q}MSWe-Xn+MMw-Xdoxr zdn7W3WzT@UvGTGJCgO=`1!-(e)-%)FeenE@;!arg1)~Qda}ToY*t{*^e2*q}wQO9b zH@fDD)r0u?|DtXvZE;KV@wR5prP7@`CV0xC`9H8lY2X8xms(@46*%_JQi|a}X2kVO zaE(v&)LeCaj5+OY3)y&0sBr)7&JkR;$nip3kiwnQ2~LpaP+Riaxm~RmO*ZZ6%-GZnG%4YWxL=q|%B^27k(oj>DL+>q+`XJGx{>>FNlySfN*XK~2U+VIQl6$c|^X zv^)FN>Md=09gHsXoy@PbKf85G_m$^-gLEHD?&>?>quHCgT0|{i!Go(s1>%`3?NUn~ z=|B78W?;3kbSYo6ScKZYak~TcZ{q)mlxb~#yU_ith4HNOv>2XItu(H}XppMa9bD-T zTtj6PH1~{p;!NJtdXP~H6fRz-KABr*xZ}}_dXhS*Rnj_`^%>Pv{czRZ^jPJY>)%Q*ZUw>;pAL>zI1Pl&+O6FOL)_a5i)7h-XZq^? zpgjnB?pIn4FYx_5n$*XG=bc)plAlb+Oy~Yw&lS#}3A43F}9hHR?kzd0114JC|V91HM9F|^VUYU1*!k=-N@e_6=N`(f@lU!>=yl0XLZY4U~e zN*DLPaUrF6Gj0vHj@!oOKjNhAJrw&dQsN)u5Pihu2>K-&_zMQ57ovf6dd=vvF&P&F z^9E~5c~@7rta*0Z<|*Yul_=~We1Hw(OmV%UR~3U$T_r`^X5-aPa3=#L3U1KfQ^y88 zw}_ouFf9TQb?F+@qEQwhQw~HQUe65Oz^Ai5V1i*0*}kllr>a}(eQYdUS;vfX>&m(> z>2x|2EM&ExoyodL{fxF(@2n``-bq8%>+7Q zYmnc>6$mBDe*>5sX7m>9PzI(xqJMPWf!T0rw@E_hNl5}7Yk2S1ytTYoV&y+UqZSqL z(YE$xa|Jt%^YI;hm~-yk&Oavk;Eav1fbL2{9oFy4%PM7cK*AzS1;cLmSUSUdo4BtH z36dNI41z|@sKzH{pta{{UT}V_toI9SR!Hrh%;JWzDxR@kVw^^fksL&Mxip!!4K>^| zip7P)T5dgrN=xb7_qYewk#EOhUsPiR?U{=DL#FG#qEGdxIVXg5>;J1c(Fa)UW<{fS zfBlHN#q}eB$9F0TOLHH0HcerFm0x&G$DmYae_D(lmieds_Kr&Yy3soQ-AWYo7I)Up zOoM8%$3@A|Bc?NTZuN4Z-1rjHPp2L9gDdp0ikppR9;6CteC&r@PUo@=XB1aD^_n9U zgG2MOtL3!lD#G3R>yB#sP|79eNdkoSR7U3<=gTnH+8K_)p96rxA`$+t*BB+PL97?0{xY8kcS~NY{_p(;f5cj z`W7rI&mJOIWzmQn*ky8pNEZ{=ETc)It%Zzg0ncTqqI~iH85z>&%PJjW3{d1#p1G!Y6d ztQtZ>CauaXMZ!JH^M{quv7IUFuy%1;qfXB?mz8SmhbFF-TSuDq!L*5Gto^jO*>@$B zSn?2Z)eMy1?tHMPZ2%*dykA3>B!7S8Sd?jT5z7(aR*eh-3o_EXJmt}Kk+3qY1%*;B zmEiRE+FTdPPLjCegE9(76$QTsDlJV~2PLuF;gU~ecBDQ8V>dsdT#f-=*%Xg7PtB%< z5rOUS40UO zA7Fy&5Oebpp2uhA(@?bj$$Q-{_-*0P_Z!b-PNUF@Ade#OQo9LL&x5i&is|8iCvR@C zwQVGJ;(j^79-jhd!jP+2-@8!YRGdMftpvK#G>zGD} zDGVPy$57W89lQZi*BQT2*$`&;xaC7Rz#)Ai6c4b~V>as(BE{d`i-92L#;@SjrtgOY zAw@x~S)FcvS0}8_yA@emFZk09WYcp)-{!NMcaknC#UEKxu&f$rjZ3K43i)gj04)}?y z2Dsj>2h+>OpVgDN(c8}v$)?eBR?@^Bl+8IE2C5%eMc5Su(uTM+u!kA(4wnQ`&AT(W z^c(#0NAQ%?BvhFh#)ha(xS|<5m%0c8&$1_&9?u$0!^d{gO2MQa9uf2~d#^Dc%FaxY zOCr>Cw(_b#`PLs@Sz9}Q5zj^5GELeF(ojaIlxX~WA8X&(t#nP-x7JxF4kX0b%}XO9 zlWep6+cTjMPsa@37sImL6WlkXiR@mS-oLkzok)_^C>ox4%$zV#{5yP8=8pU&-yk`y zkw@KrVex-9mVZi$F7u&%;J{Cl%`HN znE>L795g=^m961H=3{0Rp}_c~14}k&u4%1;uJC+)PgvICHcf*Pd;jSv5DAgSzNM@p z;;~IfO4N*cS-I0QV{o;KWV+fl9g0+M!yENeE+4&r0;ZmQf2G{b)9P0Ube}Q>)F0tl z@!&I1AIZpizgyKcp>%ad+sN#c_BeCVot-!E!YbHn9`DWVpPTo2YtWS>I~TvJhjwSB z3|EjK1ka@JZotKXbGXRJkB1lh*3;102(3QDlSSn7%tnYr(_djVQPcE&h41w)xsI)dvb9E;2 zWdT+ec(ZuiLv;l+gT1F>UFmRattj6>-iW>bWCFq)jx3?R^NIcGw8CnAcJ6+(Hw*4` zIVZ|4!Pcin34iX`{ijP8QvB?1X7ZG$?R_taJW1`zXc~-jBjcrNM14g`eb*K9FVq7r zK}0b(Yv6QfBClgE(Z8@EsbPwb+DIzqNIYIK6RMn7AHdr5%Q^EG!b-q6TwEKM>0;D1 zwQppNR=2joe(RZ`=ques0d}CLiLWuvgaU)N7_o2BBB9KWm)Z>id!XYh@AQieU4RvaRhlAg#C;Z|@O@Lk&EV}(hA)FVu*bmL^XZ3}~lQ=bkqdK}bamhdzbLUq2Xki((JkK?FakkG(Bj$xT%zKHVWL#2k zciB|i(%hTVC>*b@KNP}`_DWdSs@Ubt;?r_ey24O)2L0Y_ z#SxKLTFW0D8Ldm?LIAd61SCHlGy^%Ihx2UQP;eRoS&=rN&s0gsIx8)uR$CAO(0zH2 zL0UmbQlsMwfH^FLebhvf!-NDph8(F9l^Z~(HG6!#!&Vuo*Vf_N?bOzy(0fU4Ispwb z-HHE2V=0N#!tt0-Js#)DykB8v8wMEd8l_S;{uXS})*B-Gx4`golUtmh>}#5L6cN1z z_3;KnbzniQeF+U^$DlLEdm9+CF`8K1!#U%8eZl^TcO^4Wttdxw_a%714b2v_$mJ)^ zXzW&8bbl-}vBuCk=h*|bJDD|Pda^OJ3~WN{eT%%%PgP+hCTgAa?$PF0W7@p?x;8<8 zCorJ;eO^@?wSy+~a@qnw>^=feUor(*Qu4|7jQGIFHz8ke4)=C7R&^eElkj>K()EZ+ zyJAB+&zrlTkWbj4e*!$fuKaV*?e`@zGV(5Aq+I8o+M#7LWA%e0kErj%hily~SBn2g zR#HxW4(?fYOt_Ij(w|kZrnbYw@ugBY;FK#i?tqvQ(V7q>O(C)O_~go?#xd|bG{G~o zSoc+d9-b8%lv|CJ8xjwC^z^#{C$`~}oSHqI`V?< zJ5H#Ub*}zdGkABKl>e9p`7tvtKNb0v%Z^H06kpnN{#<~jZ*M1x zWTLy_Z%RHV)LsP?bEg{>F{|~~h$Ci8ihq)k|1=tW&Hf%%hsCp8VJ%X!Ftk|m)r2TuDGDNMV zy_vsRm`{vIQM5P?xk>{@fq{&~@Q0;5sL%kT6Uu=bCZWx^aZ0#YU%5naW}H$vvQul3 zY6NcOh*g`BnI~}CeyFw{b_W(|@)yCh*1lr7@>D#^bB;Gn0@LabMv%l}clbZ=fc9Fy zC_{F$R^>vp+wjtk=!HgxE6AA}aT?EyQl+u1fK;NeXD+#b(=`Q=dYD50Tvaac&0i>U zf@I0|DoBFsd0@R_jp;#-#4dUnvSS#2&a^fQfjI@;c8ds&XDxgx0`jZjQ}L7AZntZ1BFwEpbE5lD>GO z^M?lA62{5LVb)kY66}uh1%^?<#LW3|>107#HFY)VQe) z##i_WvD!Io{8m#TC%By|J+yK=tO3#`>E)I2teF+x1M^F3?79{D`e1Pu^39^ZpPA&B zs61R@N8I<78o81df48{kztvX773Y@giZLo0@rWy%B}e^qHmG}Sadt?kTDI7&Rwo15 z1MA~B#(68dn0r|d>pEbbXi9tNPW`za+}s+hs}(bAGUOsYw+O_YvS@f9EYbu2G1fh! zu%!udDvJhq0F@7OYDw!%Fa7q0Ol65Qg&SH1;(nm{MCTi$m0QC2*TqUHtE)H#UJ3_X z2yZZzndKc-j&gEJGIQ|4i$#w5)SVUtGSYnE;4$S*eI`q#Mi!sujJ_W`Hw3J}h-0|s z@V?*JlFO}W&rv_q>A)kICN2~5zQQZ$)7s;(#~4%9=wU8=zrsDQ$I}-7eDafpc$ptQ z|3K&XefT$dinD8cno_iQno>O#m;t=ClrLrnP6BBKUQdfGo|X!fY|H|k{nw7ewi!M4 zut-(2%m7S?QwbrZ$Zi%&_H{z{?@5e0UFb_ae{B6#f_kx~?86y7v}=9bI`QC9d3nvW zP^W0U4x>%Kmt6{Ah^3AkW-7Pcz97330L^3z!9snOreVRbrU|q_=nZZZwbvp|_6*Nu znR`A*4_m?Q{P+#NQSGp^klIm&OziE9Ph|J1-O`1f!&`mNt&+dCQJvk*LHjW5{%KoT z*^hzXk;AlJ*tO!8Y0JMTZnHX^T{NUsGIi}*iboE6D?doIsauAs2>xMvdKKMrjFQ4l>3 zi#G$Ux~XYtLJE*17_UL*ZPi}jwG^GP1Nd36h{{X;&`PQpuzP--0^Vr8h9v4odF(La zCeR&>(P=oaLIrFi+HCCOSwc7}GuW!)SBHfC*}VP$r@_yM(Nh$`^30_BNFQ|%&0dI&>!Sq(!bEZY9@<38Y| ze|EYz?>Q`;TWZBYNu}V2F?A{g&^M=NPgtmI0cB-6$5M#S=ool(zK5TSW~fn>!>U!q%-3+%dMRSQm5er4zUoZ zEX=4dn;d-U=Lr#I#?Wb_X%&S4g~4F1sv~cq;0a zZWUUUw{#3YbUcI3A@tkf2B}`}HszHuq6k`4!c78DnESlqFDa}&8SwuwWoCos93YB8Rn}=4fH& zud1IGTxmwhdRY<@<#}O<<{Qa1Kv(6|hGjNhc-Y^Nl4bAk$s$RpRl+;NF(LZ6gPNhv z+3}08CHPop%1|wvdE|IXVq$zdy)~1lU@$U9yC|j0EQ1PcZ;Z~OVU_d}c<^rW14F-4 zfCW-I)piEqQb0^}3oAJ?$fCSz7?LAD zHS=k+uP69az&jol_v@f$lX3DjFI1hTej3Vf4ESZA_R4Gr^@L?Ac1oH6>^mW5zPU%n zUGSxf*HZ6m!pd@R5vGY*D+wM0i+1{PTG)y0o^oYT-<61!+D!+C4v$m)*&3QD82(n? zLDKhmD?AuEZvLB2uoMf#jmRm|Q1e@lD8K?b6Db0%J<%^=_eSyaP5eS1-fa$o!8+B8 zC0lS~BO#qb@`o#X&ALl`sSeQB9>0<{FG5EhohKI9m=oh5W}k5UMvc&fE01Nlb;pLm zR*W%XE*c!kl>Y3Dc`7DzFH0)vB7AqUT6@lywvPrip#PUsBTycNpPGLB6Q=$7GBGs; z<+yCWeX{*H@3P-;UIGR9*6dfM^4`=glhV2`iU4A)%IuYl=o$JGuHF2&>AAAJtmo|9 zFrmbzm4_hE6xbNRVco2yr#g z{S9bY^0l`YkqG6b{1Fvzj2TMJ0+XHO7gea5HchA5Jp7GEcR^4k;M?Z!?m(sa%xXo% z3uE`vcXc=29n$9ut=zD?CdH?BIB#_ILoa^dMiWR3_s&0Q|&4V-#EjF+UB z8*PkZfyZap{QPgBUZlia@wX=kZC z(9(j)=Yk3}mEavbP_)0diS=4qbJPU+{|j&(LObP39r@10yO_Jv3ocjHcFKX%+hh61 zj4mrv&n+VM7u*X~aGIzRW@(!PYg7D&E%%DG+CDd3QhaKCn58b)j)-JUS;^X&X)}MJ z$K%Du+cnY0cPK=BkZq;x7xd4CQp;uM>*xIjX?|F>{NzdCWExUH`Y%`{TK?%s`h0Eu zJKsvuIn2EDq7;wD-&xeMh1gc}*;i`@p!Cl-$zAJe?odZa+FG-ZT_5iNC>IbpKlM{W zUd+jXbe=+r%-e$r>2V4k64{IqBTqI)f4B74@&64ULJ$~;zSm4A%0dg(KL&Qb4>N@} zne5W7|73u#O_7$H9(C8Qo0xOa zo^g6iV8`8`oh7{N_-Q9n{DxOT{)9yK#>dlHFsa10bL}^U^yKdX9br}9wh6OPcjvN? zk(XJ@))&a6l2(Ol)Q8N>ajLjOS6uS2XNipw=V7(L%h8x1<}bYBr?>b{YD1FY;8SEC zBwjdlNXmwnrArci3NQ5cWouw{#9X;3@Bb8r@BnV!@#IEsQs8u_)15V?e~;Wiglq4V3o zK|-y0LA-%}R|0ZCMvg0Ke_o47Z6pD-X5?L=AURA2Y9>o>I{C2q-)3Ed^)Pf-MTddC zcjVppK%1(5p@C|(`wHvP^SX?1bhL1VY-kXGbht*q9VEh?_{hhm|f&bCX106b5)?3Q)sb zxY#iC57q2Gf_KF3O^b-gtVLl1y|P zw#Th~x8BE*1CJ6pT**eY6aGg3)L^mMujD5 z?8V>IJi}+M3C7`*AFywuOvqHD7QLG-v*5a&m$Zl0HXqm?&ew+OrufD# z-#0I>)0WzUJug~{X<87!^Yb%&odQ5%dOkj#F>TUAdolczlzi7P{{Zbr+Q5J)(3pQ> zJ@PmZT}5|B*Rtq1{d)i6*B5>)v-66(unB3C5SA41pSsp> z8py5nk?@D6i7Rvl%+)rm-nPU6Kkvc~1E(P@Fhn9gnVMxyp7pS1LLRr@ua{lf4GpX| zozEsd*I2%>w%(^&8NkH@*oT*)vzY*z|EJ4}@h5=k6GQi@csOt2Vd|NAd`CkirAdU% z{&+k5PdP#0y53`6oH^*Zc}r*mz&RUxx?^Zs7pFh(B=snWmcVEN;WTO1$enqCI@p$r z0z94EY#enBJ#sHgU6@TEhel_C$A)Cj$$%JB*ffDE(4Cs(d!tbtyQdRs&tLG_B4@%j z14kk!-6aeCzWJ~U+S*AVdL6*0JZ!`ZkHV*0lXWj+Vy3odd;~a;m5SmIi;(xwC2ZSb=T4Zgci3pGef08dw%HsF?kN5j5hwYC`KslJa!~HW!zY?{_a&0-p6>Fh}gw41i9%iy~B4 zru1d%o(%&+YnLoD?ZmFDjNuMd{<#wpKflQ@!W~1=D&tsOXoqqlEou-P6Bq13*u`Z7 znG*I4fluI&LN(pkX4+f2M`#?-gZW^pYJZSOaBWx>L*_#5W+O@S8%fVcMi-^Zo2-Hd z*ysbzo$9~Y2v>!oiannuSKM>!tx(ifo~$*QS<|@J2jM>+``9u}Lv&KYZatc_{H@Cz z8ymyt^GZogP0hM(1EvafUEM%$51S(-gPJ#By6XSi(hQqyt&N=8NosAt|_ zx~|~5x~HdqY`MPy?rj9`rM6Ac2F?9Q=1Jo0sV2G{Esd2l{%ImgDztnmvI$7FCC#WO zlZH|U=o3I%t<0_wYXGxucR8o8yT|TzpQC&iR#+VkU{tZFczN7`G=jW^EtZ&9%GcvL|=XV`ET#t+a( zxTF8P6#}b{bk4bGC!2<~*cCIxLiQuRiD9*F z+Yx?>G58px6EL=Rks$&4%%5{v%RPMWq%!btras68V@5w*v;`La{8oc~5+{Q9FCx#X zt9=Di?MQTav;ix1;0-Z%1^2zL&LA#!2PEq^hgk=~l~@hUYI&YTd+U65j>t6Z` zXupiq;#^>SGK@a4y~}l`NO*X7UJrHI`wwfjhrl|)*wHcmb4~U6B``KI30_&z_+;UJ z|Ngya>TMh#S^>5ZW&rG~B+m;0&NkfF*LSwjmJA>oCpi!Ct2!PuH{UN@#Vv0Cyp8_3 z3TAKDmyS5p`FL5n{bcjv*|x{_g&^HZcil;6*bm}(AKvc$s?vSaeH+lt@Hco1H8g;V zgl|Gy&GkS=&Qr8Tsg!{n_lg9e(JYEW1{y4gh1NRXtBq40wzA58G$vQKv&yiFkNlROa_byJQo|$_0-BYIkt`F!i$%d*=5!8o6Y*mT{gy7$3`%`Mi3lgIq6~#AG`5#}P+f;${%IjZ)wxVw zZ{Erq7W@pDz*vSyCp9*Kl99=Wmv4~hGR!^WVGvv8S?~6>v8RS!t>GYor~QfbwUjX3 z!%LHYrDu`Ou1qk^O3}F?kLgEg<0OW+3_DCZ!y=AK$e;;Lx?I55Uy7{}**+wwJCT|> zyA@)w&+x1fRVf^uqJ5RqcI66gm(@1-mH5_p-5DK@SozF{+x)M>Z*{tZ>@oO;w5K;{ zuexAWePxOVHHG;+P5RZgZc%l`McDTdPa#AWG}(Jv>un|10bdEqM-ETqPTiMvg0uOn zM~nvusy%3zzwsPmlOMp%H0^TH?W>s_5TlY$!JO!CSPX1ZMS!@*96 z$r~;t5lnlJ3hE|mJY{(gM}xl;`NP^uh)n|BIl-z;ri3k)$`hbs3o#T^e%dFNbbXek zDl%>uu{{oPuTk+wKXXoY6b&s_+rcaZ(a-j$@lI(@r8FX@NlZ@XNtF7;kCj%7JbWKw z-0E;3O#e1g)6E=4K&g5mgkjs^XHbIuhpJ(9<c%zwVrwdtdggMHD*|OU4;>%fMco z7(Udvs

l`$hf7ptdPlK-V4ZKczaVLeevSWbQ3p56q9@pLU%^xj(OF*_bYtmcD$? z`{`%k_me_+avZ8xR6nB?v{6m|Yn^)sI=FA`>5b?LFs2EpVL6XZ-U0>ISlO1eia9aN zuUZyUkD}p0K@gu>vV(&Iszj-uZaYEi9;cO`zO8)K^6TvYq?;w*_a(qi@Ew?b7Swbn z4*4EAgF`~{dHCLTkZz%Tub^fgK96@m_?}1P9e`yc$knmDZ`#&V)Yf*IWfiD@4&EnS zu~GTpb20jfmX!yv$zHo?+1vjKLTGfKrF@Q)eZoGG*I!&)z|glI=Xjlv?1ZS2#}cHz zE@nM3hlAlDs^n3%+e#Sq22(GQM|S+y{~f14I<#l8Z-OyMsX3FTcq6)Cj~)|V7rwth z%H5m6hc6PH&pPlePJc~l_?YlDB!J@{sKAP=sQ|f*Mq;)O2NN_U<}a^8`ni+55fFr0 zYT%@3Z(UxqhwC%A2=e;?oCn}ym9VacF?ItimaVS(9+8d}lI01Y$k9EmE)pCN`itw| zyx(F6bZjE9$W=!4{rByyj}A4*OtX9s9>%_;mfPPzWfMMnzYY`!G5e21lIrLa7*6z! z+yP#v;YQ%7*fdG_Qi$p*g?_$G?ipVwI}5IorzpEQNzX({(6CIN*6Q!S^BE2z!DK-- z&uXrg$^@*W9SHJKn{{M?e|gIbm~6&>6&bd$+VHjmbld&f5k;q{*JST#6;1HR@wh$+ z!^-G|PbJLb(_l@`+sF&q?jh2A%kZt9bxqVT1cUBTb)R7_Zz%_{UkZ#owgrzr$5?d@ zEX}Ec9eyDTd@&I;WZ}K6dPWRn#Y|2mBfT1hs8ZypgTP7p7oFEwQ8vQLymY>_1NMlW zd~9m$i5KG%Dh=Kz+Y&1GFX#TeRHlUe1Y3P&81SfK6Pae^j&@dQT9+9sqV#H)Y||>+k0Cy*jpq=qM{JpGPtk9$5uV6=b9-ow z-ZJYp!SLWO?&zK0V%w^E_w$YGj}Y1U08jl(p9CuyUqeve2hO(@2wWuEJZ$RJ(@D{e?VATd zVPl-6gKMOz9Y7Mqg+H%Rn1XOJQMEy}_gYeZj2Z$|X33~d4G*gIsY zLSwd`WIh>Rg!9%|(2jr(3TVm8NT(63U+`i(a=amPPz3kh%gW5-zWT43MJueVFj9&6b z+_*-^&BFcWO#&q4zKm_VvEtga3F&*OJBP3HFFRLO~0_<*YUn2(XQJ(akF^BJVtz> zSb9vmta;ZC1-M4uAGJvMa3}G2?Nb1Rk)NQ990q(T2ujWALOaj>oH2^tYUmWH zTmG^EK(Gnh55R`XK&RsPOL)x9(^k5V6F)T)dXw|znD@GBtD}V0nuA|jn0K^wJ#s#Q#t(ThEayxTl z2~_=0d3~VaF}gHh-tMIeP+wK>Z2RJpC4;3{ZL;>7L1BEJN>fV3o@*dal%^Eg?Qq`5 zO#?EEP*zx88$D)X<};_F>&$K^z_pejk_xCwq`)N2&JDc4?gj& zaQbrpRs|A3czeN(m1o+y*n`cl>S8q~?~nLWKCaXnqLQ9@AT~=anRAxnQKqT|)_cVf z3Z#XGRzt(2h7nVbZcN971R+b`e(ybtfUUL3Ly{Mq>#|_bAt|Vu3tdYKzvNX8n%j0` z+Qt7ss^lU=%;~o*MA07$&_cxd$+VLvLln5H$x_%saAis~*mBq+@fAT*EN7SvgWa$G z>C~8mC!`Iz+`mosl-KGU> zrXmkRYf8myP_mFmBP$eLNZ^P7YcXgg=Xducef3KN1TN6N_NdUX2yXf8Cwn)A6w-y)o$!wB~KsMR~HCcC5U56Tbq^gx0!F9i|_;D!0+|D=G1$K90fV z#KRS#N0|ow40-YM8jJr?N$g5kwC?dtr3r518rcBceA|G_F0dKwudNtn+50S{6{Xu4 zOl9%D0jItsT@RLBgYS=9A8(j95Mbsp7q5IouggOoI__p`lw0l}F%Y%F+iYA6BFOfr z>sCQ7*(7mr7IA+I*BYT?&sJ-;98@?`*-Bw4Nyx_6{Oj#jP^tPLsx!LZa`9vc2IjfT zCvz3i%IJ;tuXD%gborr2oW1KLqhHAcymje~?a<45YkQOqK^0v|@&A21WK0F^$=B+p zTVaa*e4|?a@z7>g8Pht0HS3=sAfh8e6&&8_iEV||w4TdXC>U1^pOr5{jux{v|T}`8UBlhZ?PELSIZC-5pJH_uBEh_4e`nwQ*qVTP~HpGxc zRXO9kneQ22AX89RA5(~NWaEHk#HPPdg!=%9{0=YdVyFh$pbG_KqnV9|YoPGFd7~Fbq^BpSYe>c|wqD?$qL0*0Wt8tgW z1|!DjE}z$wiI;cdz}Vmyoxp;^IGE2Lqh{T^>6tYh?UPVl5yf-qH0i*<6daiRt~6!U zp)9wdzp13{Q6UjZu}7hl*1lc1tj>Z-ImYUU&*OoP*s#nBdxRj5XfMNjo%kk#!*kDt9MKv-m~a0CVP>?5W#nlNn(w&teiq5Om0^4QEB%OzjzwWb^(>Af1OJhe9nD zX?@K(#Oj4Ux^SPnOQq$ijTGH9DYJJpRROvwTJijP%@3J!50PJe>UrOP? zHf)lcff25KKS_(@w4(0mb2RaO+!z8xqA!OnP7JgXS}!XrD@s2jiIm7;H0MBh#IV>| z!5g!EDBA|DMdHpz=d8}vo9-l4uz|c4CCHR3;N+^Dz!O2UZfs2r4Wv$$ss2%n*6W%) z)hkx$s2Pf;pIT{$%k^#eUe>FUkd_{OdIZV(k04vWpi&z3`s&iT+ZBH)?AYw^L*Zhq zjyG#Dis6vp2%fc6F1q*Xv2G^+a2C_m_HRHySe}4%X{+!U{p;4Yx7%; zdMtc7#0c!|zj?=SDQ7>%Zn%0FkDdsm;4M9Q47M#O9 zhESl@Fp-bqkmdKO+G#nXMWl(v4(5$UuASp zRjm@5ONlwO0!riokzEnx9ZQ$Y<{7(L^6p#h6C46#*Gq*!z#oLCrGAzqLhF%*I3Tng z;ewZ&0+C=eV7-L;+ z9MPj!P2Me()9}@~{PCi!>VC1ZZ69+hW_TFL+qFNcIy;y9y=EvC+n9)b{+RGw529Uq zw)(kvJDN7ha7z~$&$2@cLgrW#_0)(yO^xTjT4^TpQc22ZqG?1q|K(I+i@N8rYCbkC zjB|+%k@G1eYnrt+P?!$SB$OGxfeDh(RTSdsZ~Z(W(9_ok1@1)Gf6Ag7xCWQDs81C2 zl;bfy!%tF@edKh+KJaN>xf-36$ll!j&ek2C;UvDCY_Hwkie9Ff=Tc$Wb|-1*ZqVu$ zn&Y%hCfGSOu)|4Hq%zDslkzSe12W{!a0V9J%t^a1b#P^odC8*9TfLmlAH=HqdUm9= ztI?}$b3yaqq}U)vX|D@~uajhN|E}+9WM}&j{i`=+HG)*eP9Tm`q#=Gk=xu$Gie}0gC3; z`Nu3*ne%s`td5pko|!1LEF6L@XfBaipK?_*#cHSeeN2MwvI3>R9P@S%xK0WMrT;W~ zZ50ia|730P3p!gRvg?JJKIvcjUhI=pM|yA)uyI3BrKL^S#VSfrMNE^1Z#9Tk8@Trq_Y2a*WcS#K!o%cCAahVDxNA95e-9eq4AB>wSb z+?=pNG(-_}5l=Ti>K``Lg8S14n4|dJAq_GAwZk&|EeN3~h~*;%$w+1Sp#J7PX@BnG zz@xZJ3+4JbT_vg4#ht(s?RpKAkp&M7>X)mnN<{ymm_Ba{lmXrLLJCJU z;-~uqzUKgSdWDMT6t`D8FA8#tsav8aT%qjlZ%`@CG!D<-+N!>g@=rqkuoHm)(z7#X zmo4>EWwq%Hq{YEiG0O()-%_)#(c-l`2CKT?CfB zPFV*9ECz~tGYU7+!`!;7R+d5n`j5L!Dv6kQ`-s8lETKaZ!euh6=8SetdWn(03A)n1 z5-svxEOh33NwwXxSkZg9GNwc`SwJSvlK)z`ZFA;6?O^M=t zTs+np|3nI|S_p0q#g5yN24U(%s}eT!A4Ne?IrgqMMu{sKK~a5Di~!Bp5gz19#v7(vF~h_&HAgkgZ{z%C65ldKJ9A)!6%P}lDqDgt zr@YGVIXdXMF)S&&Vb%H@7>)LqTY|i=tZcGllytCfx85)-T#A&Yne>lyx^{-PfiSeKI?UYU5zud^-~dgJQi2fxaU zk*|NhS#5wZH6S^whTv7%At96eLOycBR{hDWA_sD1z+{;n6CJpv;Zef3Ta}CW z4;ZvgL#2D-W?nN9>RK4ot9Lui41y1KPl^;MMjtga!z$A39aXY#`x0J*xOsISnQo=) zu6GeNEvoH&Y|A)w+K^!XvMCIN#IWj1 z%x5(NmLW!q6t#5b*jzDDSRe@o5be@0WUjM`SuhX@I7u5CmcoVmRAxED%UItS_4 z`D$+@&}bLQU_tQ5?`I8?(HLm6Af9Rs?9KFd^^e_R!83;oJuHyO-=LKkKK!KBvu7xQ zTfS*(l|}^gTP<*I=Xle1$uoDVyC7`49jSbFtYr+^!cX_Mxvy9FAVgHD&v3^cwABlm z9^8BqBO)6x0K*ziPigx?drj#$6|0wv1H!?Kf4B;7r#GT&Pc9#krwV=(o^ac&(-B|r zDBtPz6vRtRtB54ntuuBER|i;P>{{D;;`v-0`p9{D0ka%~$4tZ(AS=?Y?|m=nM&KgW z|L2q@)81YkVDtN_WI`*$Xoju5Is#*99RF6>A0t^`%N$W9J!TV&TeA4<2NH#b*pV_y zEq&Sr>|}%0c$2%162#`UtFXfnM6F->R`M_t;`$`%< zHNV#E?g904bQ)1raN>K)J`CZrB+M;BIkMKD6?L?JyKTkb204QADo{?L^)y?9g#}M< z5RiC^^TrD{rGgebT(ehn%PhZzW$3{*jWKy4hSL-Mnz67e14_#UZD*9^83eyz;MbGz z_?hsgGzys=Md@0wS3W;1jSz@`Z=7fh8?$2P(*OgGtHA|dmy^?f=pc&Ye2JRy-$`@W zLMy^nzT1UW=m7l{K$TZu;gm#qWaHEsR2oA^%4DzkW3V$~yj@i4xP0H64ZgyjZjo=G zx-%7x_O@5|)h#ZPY^L|tn@zjlx~Uz0@t=}Lc@=8WJCRB9RSaAPxOGQf*!!iA%G>7e zQTQwbwX2a!wP`bo%bu!OjD&GUA3zXHZL!pW?sPiiln(jpwpd@LGWRL3T(HXhTUI5J z9|OX}lfYDx(4RlM3;a_XZ12ah6j|y;-(Vsbc(Hu8;GTRxHl&qia1KoduRK2_uKuEV z34A0QNFJl_;q*lmKS5ka=2%M` zh~8lIB9eueiA9DudODr7n%SOObB6Y#_+;0j366=ydyNJ#S{$<^;=P}_4suci05 zqhsw83Ii=x78~|AQ>gvo_(7Mm4;$XV6prd%==zU8XJbLg(`Y1D~Ai!#mEAVZrQPW^^s5IP1D_`S&3 zJVEh?)HNV{<&V}OHMFroTx+xzo}S`AiTN%fbN^h(FIXDqB*N8IIZ{u%9b^s@fcun( z;Y^-KhWw+_6NHi((^%a(D#c0p{6{Sa#iFWUaAjzB_@2-UF?5Vg*=o_Tw~mB^+H2P# zWbo?y7KjwYw3be=yCnh}UEb=^FWx5srVSj~oxzL#{)7si2Dk#4IuRK|hvhyGGOYw< zX(g|pwO%8OY2iWt(%i_dREyy`MWTu#(Te#G;y&Rw9}P??vJu9JwRN2hn7^d%{pPomLpv%kR z`i4CXR&c2&bzBzSPwHd>s-`1W|Ja~lnl9Iiq*BUCoA)y(!N>k`tF>;8Dz~D~9^k5z zVF5?jCfC`gkg~4bA4<0HATe(<18O$Tt8S@~j1^NE)Jqz+g-gG=JQk6cY~GVV6C z@!8OM(9F`DDrFOJ>r$0Ip0_e%HZ>*62PRsdyn4;JA_42hKf^V{e&a?en&)@EAG%th z!I4_Af928sp6{oP&L-;vLjo{%E%{lvVt%jJR%O{pgu6!dm+OSPMWsc_@a6Y^t^4IW z5^ZyKr8ZUtUoAe%*qhx`Okez%RQ zk0KS083>yVmv}L5og!9FT?j|l`8_~{9Tv(=g83T4J{8LYy|CJZt`#u{mntPQnLGE1 z8O=6w0+n&-6$t=vv;}T6eWIfAQU)ks*^v3tFa_is@X@=$wB{v|f(!ZS)$7KFoss+6 zN#d>q1ZgHZb=u~lk*nTsC|#y#IK*U{8H9u z``%ezCH4C6PGsA?PY%I*Jr2oflHu+V`X)A34xrhe$DBQsZ2aLbGvIc3|43DEf=8XU z0{+()Oy8o&lpj#D%OZ!_-buIz&ON8sw&Zoa0mM@TK>5!Dc4mm=x*w@mH^ifPApYT= zbj97Ze5Yci%S%2g#UP_C4@gsigOWs3L9YXxJFts8;BA7AlC5k1A|zBd-RL+iQrX8V zHUVj`88grJ);UW$lFIVK+CWaVMa#4XIk$6F0wKOd98dDDusbu%?^e0YZwGw$)$f$t zQR(da1MeU9?bsB$i)UN^_LRmXfDh~-47@l4>lj9|S!|8o=7+xM+jPNE@%fjiLg;-Z z%=f&X*bF>IGc+L_4nQGssu(IC}gJzN)GuV$U1sx?S%Ed-9dg=%=6F+c- z0=zROqBvnFVK*Qi<>zXa?W$@e!P- zlEDmKN3l=5m~@l-ld&*mVwQj2!JKB@{M;=J`Xybu=WlZY$O-d~s0=S*EIp@i5=Qg8 z_g>wf6YNiuZk<6{yl%V6I(9u8z|@|saut!sK8gvTrBD-jkFS>w%{YEAT3SKGb^kpO z`AjN7PEKu>3=OANim^k9QQp6wo2QPo2Cl4~+6vDhVgc#w9R2$&^f443Ey$Vp@VrT@ z5H&4#QNO>m4SKY()pns@Cp;noFtS(5_U6`FnfkkjxtCi0rFosh`Mdz@W_DmHhN1hU zl}#QKO+Bj#T9#Y!OnH}OC@m2qGkwGRbKr;w}Z1k5Q!P*%7Jp zY0m0|E%5c{R3QQstQG_V^fC8*hyPNKy}B$K&cS+V7r=Rs@+(^0?cK zL@yE9V9I3Zu1}B;dL&PkTf?_W;@i+*aGq=93G1|IWF_$`7ExLsLe;`P-kx>h93SXA z0^L zDZBIrBD;yE&ti=sx618|jx+bp&u4Ne-V`7*ji36v6f(^C-thHve{UNKbDMS;I-?j# z5mK!vH(3#1m$;3)9wzNsFcBz%HD@+nV1e@i2d9Z)_hBpN$BJV=Mnu?|xdWAJ@fkUX zfZho)CedrP1w?e>OSx@Yc_9Zk?-j58g56=1x9|*LW4`x+U4z*@F^=D?6LFvMc*|sq zm}<+;)TrLe=PSZNv=QE@h}$_^xU>g+ixT(f!dL1#@6Y;$X#!UzEw zpZ-L6u0!Q1e{V+Vg8hO+xJyc!LbK16*8O#6@-{G+>KJ`S@)Cr)>b05`;Vi*}9poG% z7Y+7Q8YA<;koe8RF>5(T!2X*^g=qGGtn)OjWh2eiPp{yyW>N!ca~kE!`GKE7sHWS2 zK5)f#D%nB)!WM&nhjNuhG?-XazoCu&Dj6z5;%huM)LH4CP*u@lpM?S3tS0@wz?Vui zVY2eR>6Rwcyso1v#FpawT@pl*Euk1W&?pmr@S1ccrKd@SwyUqiFRQ7Z`oLTv%w$Y| zRKPe2=HKz^p%jW0ZPt}?%3Fh?Ru&|Au^N453psBuI%VncOZ--)08fQ)2^v`4uZnN? z2gy|3U_RS|^OV=TFkB`*{z40yssrc8%-3@b_6#R+ihI3(ZtHsGjgF1Aj@#(WFe+M?pDbA0 z(qK5syKuTGvJo3MS+OjNCNQx$^Ym3T@NLxI%_2M|$ne!k)y%TL%20@{%`l9D*WupP zf1cX#%B&(N79^Nz$>hzYm9N#AiZqodG}Ry;lb8+1GxaaIfT~HhmBhFj&1@zRa90bP zV(C~3RHffAZ-hC3`P}W`%HLklsn=S2-imlV;zzXN@zCbiGgg@wl{uc1v*@+;n0HYL%CFe^6@gk$z!mRXl&Bq7Uw;iy|Q zde;6&^l4A;LM+aEO#@H<5d=c`ER(AyMRW$SFjP~2DPpMfw-`b!cWb`RDr9~{MlIa) zH-nAG;@J~d-OEo5lEA0*x_XJ<5K=lp2eu79!;krYQODM-GUCk8dPxPs8`Q-~4W!nq zBM^OMY0erIIv;Z5{@{Z05LICr+XA!ZTkIPHaD&UCl^rQjf1aEIwTbMY@oleM-Ot5d zQn6fBF5{+jgM|S>n$*~2Y4to@65M_d5<$X+-|d<|LhNo@IvPQ?Ddq&K${gS8|A}%V zMHpE5tZ)_{f)Ah=Db$Ky)o$>-iUXN4R{Ze z$RfT*z$+4^m}(3tBGU6~hkUqW25i@!my=m0teph1lM}V>vFGYai)-!TxB(2FQ%8a| z5b9@&FM4J@bsWd@L)>|ph@t$ssE0<_p>$*!(*=-JD`XT+!%z0J%(%N@`c#1hP$&!i zsLEexo_%TC`8_8phV0Lhtj-erVY2~tBV|LKkzZuB5hj4EeJ5t|;DO6`cBX@~d-uM6 zV@~<-A)8Q!nU_D3n28T&s=3BwF=|xwov&r>lL}SW-qqMqZ~39Vqkgmi8ye<+k@{T) zzbcT{-<9?4u)E=4veTBVQM~D{l*mJ zK0S(VP$YVlo_VoJC6ueZ2HpxZxjt7UhR-~uU=O!R4Hu4? zLW1vDsq(7mERY>D!FqH@_Ta4~g2xtgJ1FgJ(9NjU8&>iZ{MOdUb^$FPOTJ0DQG$6* zyQlB=&u?+2%S_*7BknAJaStEx@hDzy59JNh8KIR-xxj8Q0(VXeqn5F?<*Inb#;`p@ zJJuGz-ZPUSh3#W2Fv&9ox!j9&%Yr~h|McVBAd~W+T$|riF^wH_syAUWHP3cSJwXU^ z+;*9=9~|y2ppd3gu91GSAu9UJ6~@|9Abp-V!01Cqufi|Iye_lP{#t7SDx8LR92dN4 z*|1nHygLAm*p^gUcXx}bX!FB+m(suc3h3Cb$?q12-BIiZ3^}{HV}mP2+*cx;YcLL1 z(=2wGhQQ5ofMJjKYP&bB`Tbv&I~SL_P^EPrlg72pJ364F`eXwGi3yvjz(Q>XQT=*Y z1deLSeN}Hx@9p7Uz@{KPGD#|V-@*beE16?UE=wsi5(4{oKUl9GnclxL&C;F({J23R znB+Fd3&D|F_Zjp)S@XrK`=97jd?^V33K7L3e}o4r2iuZ^&4gm*o|um;F4keSA)+fE zPjXaJM|Q4t*SQ2}}ben%xgK*vV}_-MvejG~hBomwvIfI|{07Rn80Xrh5c;!4;WDh>>F(xz-@>i)dy2qE9y-O4GXM)!%(Bn? zJ-R((dZ>)JIg4ARfw#*t7zb}a%JzOR-q{}C$k*x$ra{^hk<^3+u=c%qdW$n$_>)FM zL-=DQatbZZrH9AOXia9MemS-8+o_Fkk0`CxRLNh6Hd?qDc81@(li{CCtKa`sXN6$B zXrict^nsU=5g(u$$}SRYFZTgwVb)`?_58n{x11wksUxsW}m$K+b53t`5X%+ls^aK}7P(u_;0H?~{2 zB;^8rOE}(Zf?>Msnv^9SwMJmd9J=av5(aB(HVoWV3Rg6Ynr_`i6i``DpBB zhPvSZ6BQ33SHE;E;?MjOYWx(o3U6;IllG4j^^nJEdIMSZYLa8845oVg&%X3A5CSEh5VE$@XQ)z^fqNsiE_N!;OWbmFuCwdDH_cKdARlieLA=)0ywJ~5rOmFrx8bPW#8&fw>RyqJX$*f0Z__U zJOFZPb;3oIiGpHxXQlrUIw~1Uuvr|{F+KCsWq|xsM|1T+YM(*7b`#0oN$kQ?g+Mat z0bf2f_I>h*`t(~#X65pDC#8h#W@isAC8g>`3t`6Y4-`L|euzqd5bRH#sId-S%1VtF zo1Wy8WHuo$I9II*9cjxNw}Cf<5!LM^rk}FyN5+CjQGHMQnbUu4k-lBZ!y;^ht55aO z3@uU-I)#yXsd-(W-a0H@X#EUsp7CS7Cmeudr7avIF3={S`>*n!OgtkY$SEx!lSe^Vi2CLUF5I{&hbOqsH*hdi{%e+YP0|mAoohR4sOluDbLs2-(I3 z@td48UBhp-Kfn$0E=BbKCF4)wI6 zMDV-w=fI#?!lNBm1WXW0BQ54Po~&_152%*j;h;hQ)IkWGRT4;A6b5{wFj-h(c+O1o z=?)%W)~#+ByBui!@tRu%V$D!nEBO*i4LsV&P#Oc{GpW#=fMdTTl4cRg!qM@4=Q>V| z=jVfw{>CK!b@kE!{s-I6haQeOYhpPv4};OYlNBnh3yA(MQB40vJi`e>Q%%q8zZ-kk z#BCPpMyR}hpb)kE|4uYKb&mZ&)@d5}n|LNNY~0^?@o~U$9wOvb8Pc?QM_00RR-#^x zjh;`W$NgZbMwbCpIvQpMk2ehr+&n^`X8NaDykT-%8)s3BFg%$cv@TIB^D`BOVjX>I z%eC%`4oeTw>Hw}y8I<9p9q9Wm7~E0w|Khp_p{KP)Ppu?;JFWCv#5CUse?yPOQDA!1 zG!J0TgRf&!^>K?~1E?k=JJZ;)gjes~b3nR(UrKg%E(s4{OE2bQ|KOMaNHJuOInH3! z0T3Ci=OS#=?f?L7>+XJX;M72DnGIwKN`WAP{xDyGEvv&ah#?CQaXO6bLeAe62t8q& z3XmgqP!`pC&7@m2J?*?vY8Wy?hU1vHloKaZo$(i?9Jl%i1i-#GwsuqNxgic_-PKCd z82Az-lg8KqYDRpBw_bUccbz=rX#lB^)t|*gP-x(?+*N@LS=(Fr!ka16k^z|RywSrN z!=U~ElE128h!{aq?!gQ3ecfV4ctyW2^G^qaDD7|z{>`w%LHc#p1%pbhlaBJ-mx{ck zjqEEl|53vtM1u9`7%=St)5!wk#X7N`k8i z7&jCjXuJt0588g@8P4C~v*}m7M;7HXaQDUM{lG3DLQ%&eKHkVXKwEBqFUz3i?y$nB zS_P3H7(tDPBC$pGdndkYFN1s%3BQsMq8O9zYKKQFR05-sl%4QG-r=&}xcA)mBRM|$ zQ@C_}ADRi-eP-g!Yw!k5zE2k$jc^J=KI-+CWcZX=Q&BJCYU$LaerLf#EH3%_UwF|C1|Geu3NX9(0?n)-Hi68=iBJTZ4Nf;Z1mBtS^~GHId?Vgr5a zUJ5a;z99VU$-T@T52Ef6NRjJd(MU*1*RQxO`HLs0vM`Vz4ljC=@BC7Pf%Opd!JIq@ zbwB9@bE7(`FJ<31-;!SOaQQ5Aece3c_1J$&EuF2E8uJHZ$9Y#tZfR_Aes6F;4evAw zZuT`spL|Q3*N(ayNT@UOE-RmUMfDY&Z``ua%_UTX6mlfw z$Xw0urSq{qCb^x1j1^?C5Tb*5{Rww&G(JsVHmgwy7$bYp3SlZlGZ-=~uD(1Vyv*j= zAS_nC8wi?DIn7r5U}#+U^f(Tc*EF-tv*gQS+=$vJj=6z!#JbYm_hb&o7!y-@%#dN# zyc_hb0^C+n*bjXkoXPt3x+K7We8RY^r80=wJMayIYZ#A zHug8?Ip*Dhb8=S2;Q4$280wc8liuAzVc<>Jhm(-P580#u$YF=pr_zNZ;+iZoS1yDAroyE8=pC}s9k*u!A zd8@1UK_&h<23AhqQ}*JC{Q%j7jKkU&LJ&*fDH6LlOESO_wEUL#H3LZk*)_N0HGSOR~u?)*GF#W*FBd9RZhYD1#lRlX}Q?{odp4OPw=kX&cs zrqmMbDffP86L@FFuR==9d$z1d%hHc52#>8D%Eat>vY7zE`TSydjlx+1llZb4TL-%k zNHRI26#}xYI~FQ_Mvc2Lv48`a3D4TZol1dy%p^H&M3&XUsK@}~26Yza6khW{=%sf{ zx*bR_T8Z)Tc4+RUL;k(oAzN&h^fY9^2e%(r7dKv&6R#Gik#d3tO|vNjpM1~6=kyZw zEac#2M%?~)mvjd?xs^X2_pf#fW_w`*|4vNf2DuK*2}ff&R?NM-j)*j_1F!Xv_O13Nq z6FC+YrO!6f4;V;Ds@@yp<|ui}g#oAciY^cLY%C50ScZ5V{;A4dP%Kfx+L3P&1d=nj zrZai2(`B{DXPAp4L$^0eA5&UVP;-;0MjkuH)#6dDD^XGNn=cFHb`s@VE&L7Lqofi* zr)`y&R=CSw$5Xis(Y`0IGM)1Hta#ZN6j{pFn{5f7$se9Y;te-rV53LU_FH3t+2*M$ z!@d2$a}ws8y*k6rv)ouq;gvoL-l`&6n+o<(07(mc>^5sDG!&3%u$35oYJtF6?IW}W*~04mbcGuT@5;c8M{vXa8hxW#eM;c zygeoNl=uC85jJNF47uXIRk@%afbABK={E!oVeyh79swfg>?MGf)6#NZ^wU1&@t=Po zA85X=$D-njNahDeK6iw@MeJh$`(Yg~0$QGB9$H1- zn(c%4r;7xVhhg%OzWgFWu}g1+opx0LTq7dX$M#l_@GYKkICM%hydTi`*^~2elCyiY z(?^XN-9~kTN&xFfiTPQP>IdtoNV{3rueTK-$!vm*j)06IF4;VM&az0kdELuC? zZSp;9y4w1D^^=6!|p@8n*m)_w)TBMe;+$~lz98~FZ=#WAXA{P5iS3A*(7%7+}@A3^ET_!(AyjTEBAhV z`LWRjMslVDvpvm1ZRB9V4WkQ^?7b~Q1kGcZ#Um4f>pzTTWrjMo@fUi#0N68$NCsSJ zCpaqgN6(12aRj3M3Q;2l5I;L?b-KVEt`1#a@lmCf@rk@kZE)2xz&PbtL>Q4j0}W9s(t-Fj3IzXFihE+F0&H*~T3%?0N&EgC zBMCj|KtbyhmLZuyhfa-@OBAEfZaXLO?;7eFklJk0tPuZpj zm9ef<)h&SlD+8LvCs#zVFbfslvNkpxDNeYVL!Y=CaLr?|`x3s^$&MxdR)$TK6VTLg z-BLfs{5{l9euo>O`%6*?q*{3&CfrnZV|&W?T-0Sg6$oO)u(Qzf`DYG>LGo(68vq3& zLto6>cB?S&X0^_p87eQL{RO1$GHGhm5{TTzYXolyV2Ok?MyI7i}7FBy>9pLN-9@NrZ%W^FI<4$-g^(v@#W5P9Tg!iHuYzsImzaD3u+MclYWgR_W z*}SiEt32DZEkO1mx5-@#$0TZ)jQ}M&ZZ>2f)QkML3~P+Bor)6h$1JyPu)t$MV{dNx z4KVJc7?HQDfG*LZjjFscU9W%V9K$!Tz(aXDkN^bjoa;0zS z1oHpLRjTv<0ah^&o;=n2dTLT5Aw!(#b&o*DGSQFXvVLRm z98>NChMPKv3%kz>n?l4@3(@v@>Uv8Jg*j=0XfZ}~7U+v_dAdvI3xM%gJI3e{X`&fY<%o+yBf}5hQN8F$|MV)(p8&f|L zl4v@c(l{GA^T(86*~IY=KW@M)brr7YHDrYj$RSNDfuBTwA`jNW-MA|A z6ka#$EfavsTWYjKv0H|uu(Kgx#2#>Whzo0fnfxujx`pt>siX&}K-FB}bmp}w)cJ2{(R&}`5)=aD=D^NRjm6oA%$QMj6 zq=}>0hypm?XC&1_Qg3b7(^S5qt7#ol~bY|7WKHnFmT zHF(>_x`qRC8UX%(&8LiyCbOQ(yI$zpfymiGU<4o}2nuO8FO0CavS||*;C`GJ=CEel zv;(|R0B;U}FGvgS*Qdhabe_g$ZLqJ^_e9p9H)HGVN2Z`3;er*$|9+6y%|~OPCn=^+ zdR$WQMcMmQHK+Gvt{AEgaR_*_<1^TN<3GUJ{4-lIyvyi@Tfhr#YWP)y7t*Dg#uV7C zY}x>ZjR%J58TvQEXHpE6pm6uvT)2nh$L_;qq3TUAo3%trC)$XUiU58$^pB>TAdk6= zXb3Vs?kK~mq`0*d-H9n{m+o{1yZbAjC&fw93P}PEM1)y~p}| zQ!8d&N;V^5QQ7x?kb23@Y3Qsy@Enc&EgLyh-X3j|*uF6w+=_*A$Fp8nL3)IL$T0^- zlB86cY|YJ-1`lVm5+AqiJC}0WuutP_)}27wH|kHV%F!qHg8{N(Gl~ZpjLu`a5ZMKg zN$o|@O-npZvQC;aJ&v@Wm#jm@DrHOOf~%5Hn?88L9wfls(MVRq z8v){v9SswhM%yNG*gP=WH6Q&kWnsabyhsCVbEJS%d(pl%c`z60LB$GaIzwD7 zEs=AB2J2&1Ky%m(jV*UW;kU)tbm{E6eJH8bCgOoQ`d*|2*Ojw$k3!8w6$u`Zq6F*b zb*aShepa=SZ0cgm+anF!i7wY{jPEIK<_K&uisIabcWRwbg)lF~>Yg}YUKPkZH{DRj zfFm(-!QaD~aiP#RP*1seNLCnXf8>k2e>*&Sb1?Lp+f^OK=zG9N>i6(DTXU$Pu3I~r zGNlTK!;)IJlgo}Um={(~{u^6~fg%iQ?iBkB_qw@O==SgKi_Gw=W? zOwyjQNZL@4lqmpP;lZQy2pW}v2<_E5iqz%U&9C+BLDX5{knkG-{EmV@s@VAJpw(V*nmh|0UB77MFVBjE$4@`fBD^j7oj9M#?F|}^D z^hd!Ysv%}=1v{`E;-rciXVzq8`KVXGPX=!za-P$2q;36Hm(xD<$5ZSl z_L80(0YHH49f;<@1tRwQfs-gPJ|@$ruXcsd=T6!COlNBpU-bYgy0$X`oc$N$`;S7D z$b|NruY_ICSJd?fQtF~%r{%z@C-FHC&7|b)uV0DINSsAfoB^Jjb< zX;nI#QJ?tosi+#;zGefo0dzE7aR3AF4Oah&)FwcTj=!=hvw-n~1;LJ>kTRF7k0;@x zZJpKMiY6(d(!DB+QONTF6^4!O6mu%gO`vOZ2_Rf!(F_fFB_nh+8eC zr;GOki)bgFA}uTLQey2smJEL-z*8e+hCabMQPY|Q^b=xdhL>*AzX)q$LX8*{>M=o* zW+gO5xEmm%G+2O;z^M?D-Ox7#rnU%sD(~Hbu#4yuilyCRzJr{+e&-iDUbj7kMD-9( zGktWj?(EED$xE&rscU=>i@zF_D2I;OEBq1c0v!nOyP@(6{P8zp&8`grfE-G4(fMlE z{h5B({&qp2LIxCVW=c3>1wyhA_sQz1*G5T#Yhw#-jA-NNuT z{M!}>m+-0cy;yVX7~OZmJi@UrB`SZf;=oa4-GLP~65VOI(ckESYRHOPst24QjaYS$ zI0?t@yBgUpg2>IjdE6sZVZ@(l_$WbtH2J0h3hY*=60nWYvFG$3FWlwNQEW5@ zg|k0dqQ&&*POon3S&>|wn2Hd%DBj->g(q3784u3>RM{WJ$yPVv#^Oac28yDXVojP(OML8j1)Gcx% z)g5@v4%EB9_Q*K_zxZSn? zQuKS7!^Xk+qAOmsT?(xGeZJRX(TPA`bbb1M?Z+i*wAARZ%}3c@4qHBtf7*=@YM+}; zO;edezW_H+bAs=x-sjc^W5e(d7aLIwI*r>Oua~ipEmcup?b(-(0qTEdOFt&_huiG} zpV05^nrp(gX(QCLBj(ckh}SXQ-tTn{I2kErixvFfn#|(G0!IG3-gUTQ&|*97+Ri!N z-nTyab(iG7N(CJW0g`PlM4$)y6iLW8Y$eM17&=xaMndLI5g$z{yhbj;bPAEiBUp;a z(n{(uAKD${Gsw#J!mkst&ZhSpV|U>k5=UB#)486 z^Bs_^q<;4+{f~k|T=p&orafkMtT1@K%+q5k1SE@z_KgM$^8F#2+TTg#j7-CSGy1J0 zX)`%d-<)Yk$iRb-2VuE-dOB)eUJ8>e1)YY75;N6EdFzS>e}{H6f3N5*bJ3#gY!xEI zG-Hm?z(PO$VAROuaiKNq_XN_yGBO^3&c7#McO47dPoclC2ceuDC-PrNy=!2PyqB2s zMlSIAJoT70@-blWCjNCjp9VQQ1L&&TQSIIP@TN~3R>(}?yFSjkV!rwoAbX|Xt@DG__h{Ab$IZqv8e+A2m*fRe0$FM_S?w`leU;qQ4)I0h061h#e!co~@pYElX2e(j16-T`b2{i57_yMT|Spse{? zW7j~_UzK1 zUCed+-SsU)ply8aTG1%EJP6K92@sBDu9~)Bq`RqcYS1G8UZl0Rj$X|`%NVJn#tf^f z$Mfo!%QZI3&>>XxMm){F+s$4QDCf1hCXSMNsY&bU==&F+hK15)q~O1lYrSWYGdrCZDq%aQ{R+Ai?S1)$;#i$^q;>NXLv%!c8k;(v?X zD!=2NNKCl`0T&;EpSfAGf1PFMoI7vJ9I+EDgxByfTyt&rzc|dWA9U+_)$_hd%;{%e z(ha&jnlb^_RgSB~(EqC|U$|alBy@l=+}+nz{3^h)@$mY-kd`|JZ&7{$)jsFePe9Ud z^ufVFvs}){U9scm`y((_^8~tioBe3B`3ot&m*RDF6WC|~{BwW+Lb>zL^&^2W&aUSP zfd3ajSOTa}R)4-!4+(RAJlKD7JTSupzS<7CxqiIOt5B}v!6U)XXLkxpz}wR2ive(# zYA1W(x&8~>z@GX9-};`Kjj*3aH97+gKJN{NfZEWk+B8Cdc4a6K(@A9SwYKJPJHcrJ zEZe%CGrA(SfVGA0=L8bVceuh0mV*&|)ADa|PnHYFM{FoDF;Q1S+?d)b^#SP+R_tiy z)%zVJ3g*h+nA#2N=*jG_*Smu~$mZ6|Ail-A2mjEXLl8okkb^Jg44Bo#llCBeaEhD# z0L3w`@X79ws?`;^?*z@`bj{z!09(u=j%Im5u~WwM6B6O0c5c-}fSHIhcC3m)hFT}U zqgix1voVAh3IC2t5CEZvJcUm!HS9T-KbLTb$y9e*3c>_AK)kqePamf`hm_zaIDE0q zVSByKa~s#N!c({9Mv_mNRYDiV^9{Kh4z0t5soY^Rzoq>hXUW^+;EjZG+`}+B4=4%) zKQl21PM}|$GRMaax4je~mke?g44}=>Srw*Y7SH_$2p3376}5q7#K9r#&tfJ4Cwkk4 z`XY6IMjNf#avvWh1N2xL-YkI(JRl8_F98E)phu*L&h*UG*1* zlyBIBM_Q9Iu<-pmcJ#|1kA9y!9r6F<3_HSyXqBRn2GP!>t-0RCx+v7 zyAUgw>Hfl(d%vF<3<0SgVG$89a&mHovpUHk!24W3>nzY^kN+|B`9#!wJITw;&K|;Q zKKZ}66FETY`%>(O3rI1K`Sok(OL!Ex3P8%$q~8^MFa8V$cE*++s_?ZQ?jMI+zR}3O z=S1Cz7vS8;mEXQg_r>=?Bj!jn&qLB&Zz?`b{ef}?+52Ae^ALYEfM(xjC3 z&x0Qjk+YPyK^Y&CR}{SX3=1vN5`3Re2>9xNt%q>q+KV z@PiJ%Wcy0owd{Ti$$x>}w@T(nTV)?Xc2GB8jVy;%ZJF(vRN;$OY@>`=Pn zqq=+cV)nuf{Wl>Ye4=)d;R-S|h!ECl5#bf1Hn)Ct(T z3Pifp{4&<Hh5p> z1Zlx|eWX_rXvZCw)BG2c3A^E(MQQimaEy#t-s=VdFJOlP6-nH>;=`4CYRR0DUj8}c zd-Ipe3}Avdb$M)cqo;g7$WotfxH1sBlf-HdU?hZKfL z(EA1X*?T#w?n-TXG>Ij_=>&H_jKy27-Gh>XO zfDb!%ZHOTH9aFIsCGklabnui*8Dz<< zlxXNIi#6!p8iaJ1uE{&wW6=Y?!HxI?^45Z>{j--AIbXB7&*C|kJuHU_V(-`t1My5R zIO>gTU6&c8b~!&*oC_Ly9dlr`f?%t>h7?XZ#E8X)d8#)?%C%-X)MWuXwvqE|sKe!k z|L<73<{Ec6dxKc@)tGdQ=YA7&TLG)5l%i(x+8wKMIrnuEtnKlt9X`>`_b3N~*B4h) z4{T*CVG2s0Dk59c!M$F<-!0XeK_PpP zk{hHRw!7ul@Msc@*NuEiIE;99d5Y;eB-{fPBP}{RV=2)PA^a~mhYun4+927SUao5j zJ66Eoq38Ex*cs5}YiH6FD21L>5mzt;nObK=O3>;0y3{HVxuiP+Y^Cs$`(~ zSrSn|MoM4+y~Hku!qz%3P;DjEfmvK|H@#<`#c)0!cJxgCzvO!{r|N2_=gK3svV}ZM z;j;`G@J4yV(AO#{ZHl2ex6M)xP=Fy;o0w~_=&H4uVnLVj>2^yEl({1x~~9-#Y>g;REK>>l{>&nd`w{^p zg4J`dM%pJ3^am(l^V_ewIiESU=*rd=dH7ntGm3rKFkz`EB`(j5gZA>)7%9AplBJclH04EuR!6vfi&Tu!oL>9n0{A z`UD#jw3dh3<6d8Ff&XQ1F&@tFDf1(D{xLBw4f~EoP#tTKqsgCRRpe>$4Qu0YE#+ZLRgv~;PM7Zk{(SdEBGofVo3cq=?;TH8bbRz;5qrHR+np^nug?41 z3n#czgdid>fNx7rm3-Cgjmw0HMgf$<{AR?P=s(jdlEfBD6uSS!n6+C3BaLR#JmqNd@_4e7un<%2}Q<*$b)_tVx{nQfFB z*ONxYJ7yovYewdh<=~pk^CS~V#m^QQ9>bVj2^4RRVZn`I@SPckNCe;q(p(!BM-qI86A1<-;>3r zKYCT{O+gH+e`*d9g(Dvw#-sfs-y0Df2|}0qEvb_W8D&cIET%bMaEbav{LK~<$zRQh zzN&*URbuh7)*n}xDRQtF)o8n+cQF*oL|2CR z^%6uE`|@=CdWMZF9m-xuZeT0XbEbj~qKNfEFCIN|0y+Ln5qBEyYvd4#z7`SuLn)yM zZeRoMj3ib+Y|6Dn3|p$}ul_I;QR{2sS`hIdmW(09V#X9D@)jHnCTl-(3RtM=6KZ!2 zv|K@xz44X_bWl%(1U53bK)@vg4k&#$!%RLaX-!l|L?en;t`9)n?A=cH1@%vOA#P}n zHB9mt+30VcABC|qQYK3Ga`ee5t?I|>O&L6^!eoFX3nNC?)^O_x_# z=_SJw7r`7_pUTRgL5=jXZ-}f4jX}tLq}~&4KPyTB2rYqqzkhGyOQty;pchR)L-za~s^+@0Uj`EnOs` z(?-iYOlYZ?R81XH{GWp6$(HK%ww9*`dWGi)l0jlM1+Dj=m-^E@SUGalH##~=D~``c48 z`ng1M5S(?9x1i2iS8t8WU$p7Wl$WH*pFZjZuf_q&ti!M=tF;e;tUAQ9wC(<5mY(pf z`;CV=cHO$VkT@wtCAWc9cO)t)qbwsl_nKz}q6oji25kSdUwxNJBwSxksdl+{BB>>n zIrwqN*^i9En5h2oA6@4Z7+1SS;hEUBjmAkE+h&ta%*M7Gqp{6~jnmk+ZQD-T=uH0m zb3K{4$o}@;FV=e2FJvdcsJ+k~MYV^PiLP0}L4q0e-tp(}7h;a;Ls`FVTeO*CS`3uX z8pviUe-~`jHBI1eE!h1efdZ}j3J%$OzY5-`N+kzn@YCZVOez^eSGgIkcsk~zNIFw- zC)u^pu|t*9sbnOuLn?#SZhg=%S0=S)#bKH+|w(m_fXE+ zdYu_IETc9lAg{#j)PJq(f$(4_|C{y)XOb(-w4$z-KCbaQK)Q3cE)+Yhp1(R6W@v-# znw5eKHWL3c>qMdOR-gnBgFR4qQSRBAg?qZE$?<)Q9TM$r6y-F@*g6@>1nfYD2&uSb z_apmbwDKeNSgO~=o+wJpl^B@JTcC5ZT9$Ac=+9IhSIHb!KFR(Sqg*SO-4WiR6$HQI zb7GY1yFV8XWoL{N*a7t|RL?~E+!~lW9+(lUqX<}e*0t8w8r8z6Jy`>U~yl*bwM`LDW2vlTy#eQDpV{O>SBzhje6 zBU`bFa?`@fLb);`{O_dHJ=}>hNY`RPhNo>%_SOi4L~95<;8<unoUGeiC zjgI(ud{{0~L6?H-3Rtgzt59(j>+M6ns2G`Nha^%x$(spqm=O@v4B4bcKZUHm zFx~dJJ1|bIej>V5+nnTQF9})m?JyAkLuASAob|cnD`4cO6+gCP!2qe`=@pvTOPIma zfi47|0AnqCNq5}_@r?nG;mBrXW{l@+n{l(oQ5dT&%w9A{*jm^A@mH@TxkDO8K@FLN zFn)|o-b$xkXSS)Bvy<3wBnd*eZ2ehsLD)z9E<+mIW6cEcFyK|Ow&2*cQGW2*w}X3g zb2(_?Cd~+b%A=EL?F?ATC0yi|so56e*Qrs8-=hplKWqqI!|ioah^vzqozP8*EOkAr z#QWs1Ei*9RX8fJCA!ja@`T#f~%c~Th7Q0Oq#;X>Sw4hYefQ0%x{wjWFx5~fD_XYI7 zFgE}5;vf$d|292|tX<`)O3D0izvSS5S+@7fM~!t336S&`!Er=|^*A6E8OGJ1jen)Z1f|D%xtD{;L-&S02Raa4t>jVyn}DE?7^%=(5EO z%eH;eK)>RG*q^>R`#s}qbna61iKL2h+iFSWg{^9ArR1O0$}_}gsA+bzh1TjS7C-~^ zd)i-64>`E%7NIz$E#pETvw)Bg&&4Kmwqkm8k0c=hz({~Di$t|JV&0R*^f*|cPM-{z zP}e!f(F{cbypV&$vmsXe<1DCvU!1F%Na)1%JaQmwjTw~70zejY0v1DPd@u5x?Nf4moYh{atU`zj<~P!T z5oK{2+FAF~Ct^?;aUxbIk>}GppFNb($N!aF{B`y>4x<=;Xi4mB?NLuxW%e5L6Ts-w zm7ACzwvS9>KjW)}C{0Y@O;^favtUz&xaD2zPmeB8!8CE^n^Nc@O1NJC*G923K;Xo$ z`<*6Z;FRibBJGn)DSYj&)&<1X8ov_lBy-x#R^MmtW9-Upzk;ogA$(DEygWyP91UvkFnCuiVY5L%@C$ag&9hD;x#@$ z0A5sSzUQBj7_(h>y2y$os>_P{%404xp_a@UL3A-UpDF0z0Cnk+Qp?)pcv-nM8r*mA z**;Bp#cJTK1mo`Pw>m@pm?p|o!PcL_YAE1(z1|0FAX*w`>LmBx&CKXWyCVredD*z2 zV&=43qc#}kWj3l$6lR=4tVWrc;?$5q4r1r{41$~OS`-TLJd6k*e}*CKDwiFv0!6bn zEI6V?)8%kHYg7a|#G+|~t4ThtxsoXHn+HHV?mAsACQ z+dfWjCZwwu++mwb|vDvp4!4?#BDHY)~z@Wp*>kRiR@jS5Mz(QBAUU4;~vy& ziU{u3V3Au|5PTFdq4|9rzCZ)9cv&z+z{st#4VxF6Z4M~r^*iy97z|Nb9N98#*KtqkZ1b#wH@Ko`<{n& zs|U_RMVy3rn2-+2Ov?0ZyY)s2wD*&6?g*}=9{-h4kG)`Psq6Sr;vRwE#D zbb}RXahLh14W+sv=xW)C6$!FDz25RBv>Jwy*^i0&_WS~~%l~L;hR60^_qUT~{Aplt zhu}Zmvfh1xo4a{ zPaUzNlvqihSX#a1UmgTtHjT|2MV|ym(N0T$T2872V~p?*^@k55`Z_rt zc^aFgA@>uA_v_zmG5%U;gtwi@vM7WkS&849rHEp=VvEShgfeO;TJ%pKeLjh)cX)yK zt@>luo(<-z!Buu7W74@C><=Z#5MK(Fpz0H+P!2L}FaK&I`h;I8@2Q1~aG1?x^j)Px zF@0^~%xds(Tu?i4h;_PXGTyL*snO5_Xww>3|M@XOnT{+}C1qAMu$%c9_8V`b&%%aQ zNP*WN#cfp=$rl^a_tv6d$ zr3>4?giax(L4GK|yzfu(U61Z1+W5Q>6k8A6G-yv$G~J)jrz8qFVHZ8_1Ywpnb0=Dw3EwXLmk)&BoE0G%l%vN^|o6JZ&RIUb%n!U6rx- z7L>^aV9Zt;%9rN^_l@t=MW=NWtTbgBNz2w80+koGsQO4C#-BCN+1DbE!q+dj zXi_3y@e-z?u1= zs=f4O&5Y}_zXy5hA%*o=@k7}q^yyPgrg(5$=OV>XTN4c#14o3 zYgw6AHsY|Eaw?5KDSCr#iUoWOEiw@l4-Q%ohA#H1*gUqLAV2kEw>ZXFmnz`ni%?7HNzMN*ez~~X3OVp z6Oz>%-WZw*8#m>n93-iOKv#(B=p0$n!_#0gu*E)nfxauh)H5>tddjL7O$h1(b?nDV zR+_$G;mHNjYf?I)O5JrMI4Gn2#ebuZ+s;xuR0Q67CBCQ;q3qb@u}-f<6%qdvdGzEo znz3PcicF2Q4Wjo<3e=zlB!t?m$~{H5^qR+nnN}f%!xC&D8jE65rZURkd_R9lt$+f6NB4VWS(#X za>WPCw`7!w6fD@F3gye1QQw&0B zbf+Vjk`V&?^sZ#&{c~jWqj^Y{wHtkS?eJ9%Z9e7Q!apb&DV2=NjL^<6O{J-vhpful zXHF-GgU}#{>M_hHlpn}?((2;PuzA{FGCT|)tTLnmp3w}59mc3TAkj9)Yq83P#_~&s z$cNh*ha5fA#1U1?D^aEQ=^KpY9ILm7vcdiVdR8zo2Je)-<8|V2gNmXeGXxOvdeczu zgzW)0l%-2zaViCJ5f@qK3R8FIh^0-MB9B2ERj%m!ZB20p|1yMIYadJ-djn0Z8C&7m zSmh!wC>0WI|3Fce!8D5=8y<}y61#8p{8Ld^cZhm3CDw4L4_|sQ%AzKbzXe)OoYnHZ~(U1V#vqxR=r>&mkyMaAxvdlBU%FJtZ>9K=0zqrd#bxoU*gbg*JHG-vmEwd&ncvCsB0FD4 zkpWC>4=q^t-{1VTW9lD7!>WHz6ZMUhQF3`i9NrXQ-1ughh?==9q8s@}c0D4c;smNo z^8%CL5bFqGWEZwn!$jciHzk~KS;^EYl0CExo2?DengNM2apFJ4a>zc*Sn?7NVHhW2 zJ&JYuFOcy*-lJ{vdjyfa>CrO19tTrdQWGC#9%#8vTX()ppXVqFgCTlkk^^KxOLRq( z#A|w84KxLdA-0w#k2FE-z(cBR8OL~Rh5UJ3m&k{WL>n$_wVRGy>(x8 zSE`3#rkoTpBHWINxT6rwLD(AWN(M;{-@F7}r0{FB6poMSD`m_JLI9sR$@rIx25aRf zlG)RcFMUlNXTNIF_0Bs;_Odv_k~A_I!bUu+F1e{v&=AAgywGjcnaNWmHgJMK7grUc zaI^4gwk6_O5r>S?X$`1+H%nA*TJ6%+vVQYN{%prbC->#}qOB;7Yb-C1xf=}5;-9j8 zQ!bRK2YB&=zsLE**qq!ZJnq|^KA`4fF8GsDp2kas`S7CRd~&u$y8kZh{p!15xPGev zUt>v(W6^i-%)3KImKy-NC-2EqqCn*%CmQxjiH3{t>DB>r86XP6Kr9SblJHl;+0@K{ z(_uMdFn5zO`EkIHO=c6aPh-Pn?j9aPD1M3O%L=U;0pm{u@X; zizYHGhgmuvD#v-Rgb0TJs;Q_DjhKdqkjLY`&x|n&&*wBXuR%`itkg8ZH3y^p=gkx$oClFb9%VRejB^Z8L_71E8V+p3DjCj)fMI^ z*w5xoAWto!d3}<5!>>+)m;#^u9ATGqIE{}LYB0dyetPyb8v=pXxe+uMqZo(L%{_69 z?AF!K)h!17`wNK(w`NG?^N^8qNOJ?XOc{p4)h+SVDbZqTd+JG8a3vasWnHh{s}gC_ zuxWRBN?Q%|CBp`|y+?$GU8e*qz(0mGHmXmDFfjV!#e_@4LEPWC%0WNZ!{8#4DPF!s z*k!82?Rp~kKrC4d%N=1luYTr#VMTnvXA)_T|jur2f9aOBs zz+5qsKfh||j?ga>2MJ>Y`ym7&b4^GU9G{Aa`mb?)#~sJNcHzE;rZbUqM$^uZN0Gkayp6>{hz|0|OLks7EkYVL=C^nUCAm$pKa!9zwx;*p(UIxnUgdh@8d1X+| zuOG8J$pq;1BXw}H-ytl;v!W0FIffp3kxN>_NdA^qxJN9}Xl|a(9E+X{%HY~|@HhX` z`l@jmG0_ZOg@mqpQZOH$d&rj&CQaT7gxtW*>vQogewL9B^Rft4do*#t|3EC`ZlYhB zjZ0veX7`Qt(ryu--fW@sHA1XnVT2Lo%!n6a9&Puvk zUdfcp@(r}RHu({q?2r%C)%ZL2Xr6wgycc6qf7KoYj{4QR5e+vh~HtsL} z3a-I}4&9d}{L)4WQcli1utXqNA62nF`F<+kiESekk>43x(vILyEs*qGa&}-5UQoz8 z4x;-Spkw29gy}9FR;`Az3i7Yg@{@9lA;pb`C*l(TM>R}aBrrGlGdDZksHs?H-Lm+qb=Y?<}?1JSxu z8O;ia_YgvfW3M$+P+I+V1O18Is~K;@`K|JLA$V7tmcjs=IYyz_;{y)V@gypw50;NHC%BSfM-VORAGul zTUonvt}v}f{TA-DMER!ibh5e+ya9kwDn7Xz6Ny>=kp>`sy;dW3&!_?COk4uOp)+4-b~9k<&=G|pEL559CcyS7VSdsZ>;=uz2dX{ zQUA?kbayI$CVo(yxnR`v8!Nh?d>Q;ep4J{fwNgey?QCw%J;9#^|T zbLj#WPbe1It1^4kj_yaERjXmHpmx`qMTlacfu~(4EGw^ye8qK1bhMdfd24)Ur%zua}!>K2TA2MY0;_-qd-z+CHcE@50TIFyt# z$0PkN-apIykM6Oq_4AAFA3D(-eKnHQG-T5Le;6@3-`LSBk(qkIkf#6AM9ioF6cI}N zuO4XLzDU2?C+b-#5)$HqQJ#{ye~5gF}~MQR$sOi?HpYa50;h zE=+gl_$8Lm4id2?TxnGKWUmC?@iamhDYSUG1=eImX$ES>ZW9`UbnnDx_^*EsO?SZ2 z3eDC(GE8GutGMs-N4qb=a$yyLYQqlF43{pIWxT$go?lMHXHotpY!1k$!QxF@a4-eJ z8pKYd#FVWVvE3`?m)i2`$!D1(&vp$Mvnk)(XsD zArc2)u>4iNY}e|D7mBxoc_4sv^4^m!l_0kTi(;?19lZ-gg@~;=c-(9=`eO_`u8u)g zuTKC)hxIzW&2rL`&nG}$oNy}rVUP9&Snua|81544r2N%g_S)q?B)@;5hziB{Nd_L4 zFu4<30kVAjXi2W8ERrcPGCNq2 zQ&ZV%+*i7Hj$c>@S|oDyQY1qXtqFL}!6Ow{`k>31F+Qv(m=*=d1xH-h(x`!%uEwHJ zQfpg4j3H|*ITbjph&sUHHdv&V^GftJT(2a9QeydAdg92yTU|uZ1(Ze z9B86r@>g&)R()Q!H7*zGTqDd#CXvm@*NI7i3S3}j8!?@>K25XEDsEJW){;uYIgrTn znRUj2!oTOY>Mh~W-l_=pu~VGu?~u?pyy1+c{?{2qIEkmbTWaufIdvq4A|(-V#Ozll z<9h57k5Yn-Rxxm1BLNZ~3&DY>Ke8NSZ;EoY9{hsH4w<;;WMq&Mx=&96FNRh-2B&Nz zf}J#nW773}5C8qW)nID5xsM^1X}mO|*VPaF2Y=ZptTFKGed!{j>X7Y4yNDm4ACaMzN#Nm}N-g2Xq@iPbJ_ zrr6TS#&|Sgc{NKz7JHikXwQ(K7>d(svcW#qCKnL(xRG|EPz)NRU)?`_>W236K4C$6 zjhKE9xUgVho;~i3=$n~#q2DP1{CDYwDx0)qLaDNyZliUY`j7S^!dnd(Rv92fvRJnc z%kI-+4_tBD7=x3r`(UW1xSDMKe}4ffqs4k+#n&n5qeU>W;`a$ZOBO*@r1zrXDDoj( z5K5jQ?4I*w=7j9@IGb&*y;B78GahD}#pEGPYadM-TuArM1PBxkq>k-^(V5aQH$QAc z?R@c9ld196k*4;mL(!7@>Cam4soT-8(*0XwM?|N{h6aYb$70+eHOMy!-kJmoU4v<$ zoeWHAQw-~G_E^{+r|J{7rdHJSg{{UIe9oio7hcfH9F`NN8B9ip1xyvjv6b)}{RywG zB*upsJ^2zxb7KTxI;>zGlBVM$)qxbwyv#jJ8EsQ=*1}CegFL-Wr_7B9t2;p2)U5K9dW-RUd2CBMTk;2B zB9#2c-Q!0V?Es4#8)>(MWs(z9TMYYc6Mt}U(E@v67z8QwQ{#R+=jlZvzHWie1o0siN$`iehxA4U%g!dKMv~fqU zNoc1KNXIw0dI3SS7=ty&?B(%W3Q^w2u!ISI_apyNlRh37j1g0DJ9q>YySW(QQAV*b zt+J6oMR$b=;53$PuKOsO1r(8TnEKxv7j*>+zeH<_7r+DliZvFohRnH4ka60u^N-RBrMCVU86+tH0uzj~V>YzP4=^uB$p?jv(xTb? z)ZLY>gWwKjY!JR*U>C9P7gnr$yqN;A7)aX8ap;mk~COwADs!i{vt9$Pk}v zJ0w{mzg$TH-d5jI_%~D7QdH+E3s4%`>0K`_W^}^6M%-b1RE29-$GuOiC2$YhYZ{gD zC;-WbSg%UGDMlyXOlw&^Lq6=64=)3oU!*g{k;qSfolEo;pBCl1pZxhb>hA3~VdGRi z5J~i?6L)|XNB?+eL=x}CqhpDD-03OU6*$!(5LpZ!>hHx(My48+Qv6>)QCcfOWxez%nase=R24^)^6Ql+H3mEWBqe;uVD;1D zArO$zSzY#nJgDDIxxG3P-1`#W-1YixU{Q>Q?c8fodm+!M?=)<9JIBHs3PG$*(%yPjwr}*itnf4Evys`w)yRf13^mk5nuYu6 zG?}^|Y1xEDgn>(5tm;Vjr1s`t5T_wF^i~<~eT;3!E?D|Ce1g=eRv+uBJSBq|e7egD zptRI``j6@?{BSk&am5>BMn)+LDof+;o*g13q2}NL#Z74ZBTo8HYP#IBIH=?;G%j}p zMmigYMtz9gT5B$>wQ#GiRfIr5xp!5#)SDpB0XLLa zRc-ZcKTx_`e98WLev+f@gsI0dEqW-?PXcG$d+@IeK3*h6?+zPcQt4-v;pD|p3t;KW+RKPZ=+0(pmOI4R98U*JEk=Uav;TF4@R5^t z?1>Q1P3Ty37EFdNaG4FBof`V>%BNZqbNkO>7q9P6Jj{rmCR6Rq=yy~!BJChHwTW1t z1895FETy%|D5>qDcECoBr=yI*>W+F*ET?#jw#5U?kwTD%vs6eD-Oq+gHZ0lCC<}2x zpHZGemgX_Mp*_%##0{b&J3!O_B8)knS6FS5Z$RYH#W33>QDPROAZ=*H9D5GIsK+z6 zDT`ok7m90lb{?C2)i3N&*GqA>A=c{P?#lX)(R*i0u!&=dD>j9FjD;iVzU39dEJZ1R zq@QBE30rNH9@E5^3*y+T)bvH3uIRzo>XcOK#Mqydy*_x9kE6SD>c2%1Di6=|egG*#>FxFKZEDQpxM ze1E_TGeQ`*0l+7Q?Ary*vL~`ZszC&87nt}^jfC}{b1ICYJE#QblWHZ$`jG7hK2l)i zKA@|~k(UPN4Kfs1(5pR?$8oL-=OxZ-j?Zc)>-XJY&lz$*p=+cZ*^fHUN)9JLozx5^ z1$^+TA7cDnyuoAKo@Z;{coGEE2z*<(yS;J3Mw8Sg{iiz>` z?trU6`B>O@XUM2xt!m%5LNe{D?z!W^tC7whSWfzyqTmyIk@C;}f*0U<9?`W%!<+Mj z*>w>(0F`=lxrLUo(k;HrY3t zKmrj}r&l<)MZYj4tJxu{MH`@N_`60$FFKg;Gj)8!I$owwZ5olH#{BE+fnU(mK(i*m zI}#jEP$tC`IUP1Wj1eyOT+?98lD>h!LhwbzFfg93fSpa5gQjbOKe+|E_8G0m2zu_Z z3rESXF4{>`f|ewp<9Km{f`*#g1qU!}eZFmtda#47|a=1ruGZeYY%M^dWBo6c7 znqcZUAR2c&$Ciw{w2e|Wm+-A)DsmBq6rF7j^v8sPk-{t3KUgEd&^aI%FE|V3m$X3z z@B3H-Ac+m}DJGK)&`2eFHx_H#wo$Z#vlUd}ApM+_#Av~oY))h^j%HO%WN^a- zD>72}q}>+)IC5sY-hv+!lD`^5#j|~;6+~cJ4ZjXG+kOwvA}9%SEOXH&xn*+|!^qaM zg}rG|XPy3?Q6gV&z(X!iE8b|4+sv4+bYmu>0MpqN9z_0=}- z*P8?|x~L{wj3RC=Bh?-BX{mx2ss$#7{9Xt=;+9gasxLg-4VO3jLTOGmMIn zdJcnrAvpxRScmDSOa?A-S|jN;LPFdf0~crD4+wx z>K!GS{Tg2qWMUz`{@yzIbcOLkQDd>E;q5vGo!l89|7!oaW?_n=j`@;o!n}SrnKN(~ZSG3z=?)f4}L@7=PwW)noQ{{=m2Tt^Js>=8+ z$7TKt6I!z-6){j5FRmz!9dh)He`K{PL_G^eQ-Bn=7gble7f|%rLl^0%Atfx~0}-dU z4CQ*EG$PmzS)dc3!tDP=n@keRcSU}PoPMP`-ycsF+Sj@Os%6n%*Gbq4xjK2!Ol#rE z=(CG3t+w`Pe4zqp844V5`UodGeJR=>Q&9;XLgCb>ES=|eE0f$e3teyqZx))v-B?z; zCyNJ%NiQUqTh5utJQ*cm>QsqMN1N*ZOd{Kj07-0NI=7OWx;~d|d<|q%gNdN}6#jk` zb_K`tlXihkykI#WuL`Kx91-_BfnsG2ZuiK8@(Us57szO_W>{p78m-m1{dQ$``(CDF zP4w2(F$zt^Fxm02Kqt7eit4t}ct(+b$l=~Rrha88yxdL{9wEsRtZX(i3yyj;n%e8< zA@sw^XRnek%qjPAS0=+LWIYrF#Vm1(hV9Wm7L8_Lx+qWwIsI7tf~LVAe3+&ck% z**I_jJebH~il6o0b>1Cq{e=?6ZvMF?}`W;Y|U8YvB3OaJP;z_3Ty~P1N&@KJ`ht&4N)1kE%2oO zrb6vcD;kS#Jg&N7|0BG85L*m2acrBmVP5X_-@p9qH_AK!vj`F1UOV3(-S4KQRG3q) z!RBG2A7F2!=kUe-;D>$)eoNPlAwUZ{5pV4$jW#JFCE2$PDEF*884cjxPaiTb3Wi_R zZ{bdI&`VYPP^WV|A9orHR&BjhPt!($t7V!EW{G-pUv6{ixOOszG#I6A(kabw=a63sWs#{5@p5~7I*Mb-;`bO+ zY*4|8zJPgCrPxjzn2zG>ib$LA?#33L;^{cv-MqkqHI9aYY&a8^icFVC3k>O_;!|3P<#uFoiaCdN0QjQb8sJ;ILW6Z< z9tt2ujeJO|XppZ#G(My3?4@w<;rno~{M6zBzG~9V0h&-Qn7b!?hl7Utl_P^RtNzbDjch`}m zo|iyFTPj3rMRBc1e}jVmgFs%{Hmrcm|Fw$r!)L-4Pj2Ij+UNmsedo>7m0jlkELZ++ z_*>_M7j`fYU#>=812O)qNbF|*ogN%`>Sz&bC~>iNgEO9n)17RiF|uCxvu9F>c7; zV!p|hcA#oK?Vn)kHwDAf?CGNb)g_m4M&SWD!~(cPSt?nx71=$->8;=V$(amZ$}ME> zB-M&BtUkBeu&!rI{vVN0OPx8WOPyE2EL;Djp@GA`hHKlBKkU!BpFKj~AK%|LKQh<@K0pTU z{S11*0X!0~Gd7#FkR|?)##lHEKps(7%LpihVV4UG`Uad{9wmYLJi86x{`(1AxSWR6 z$qEOpbjoMXQ)H3ngdesb7Bg0);Rq=GV`x9-PhzOB^si$ZBNN@k(iN?!1q}w3BkCM9 zmvioTc|$)>L~jEddKabT&2(=aA#$fr-7f7Q*`BswcjaGN9{aCn;m}~ClyO_^NfT5b z$Jxg7W>*_p@TR+yx4d5CL9hSFnsBEKCg`p1Kckr^oJzY#xNITM)OZ zR>vJH41Q7e2P9xmQ42015i(bw6bEb-L{P0~%r&b8$rRgCMpMui$T*tWt>~Dtg)x-c zCWQV@VrtXzOZy5Pb=wSlVo04Tv5qJREmxjz~bV9PTK>!f;`3xaX66Bjr zoJB9}cy2_=CU7rkBwkhMpTd6cPqZq@A)L@rv9vh<4icZ&zP*(RDH(YN!;*(?(`OM| z+Bgtj_RR3Sg4jgzH{}(L(~pB|DhI8E2+-n|LYuOD9%fo|Df>K*{rUoDiqLir(S>d~ zgc4TXra}dSz}Nv?RDnA*6k^^WFoiOzboa*<><_<5--kaR51{LjZ#VV$o!5k&{%&o% z#O{+`8<@qdHzN$Yn;n^^~k75nb*{*bWD15C)|hODIEygd-*;_nik zB8Az}l|4(zL%ktfz4PTbfd-PhTEHnz@$tiO@(LU{S;>S=a&Ww0v4}7TgbD{{Jrs5i zG@m-`FCuEywx%hE|KY7Z0bjZ<+(nB&iYCZ_r!y%l`!bb*Z|*22`P6bG%up1hS%_bV z9jl7X8xvla$!J@4TR5pssMR_V{%QV#_5U4_42#<%TORS7o_{B-_V~o9orKUC@fc>f z_Yse`qPkcDZwTLH_%bkypVY{F1CytMK0C*hlht$L`j2{c{R+v=3=nr?f`toA$Yk+3 zmNVzfXaXk(vJdJm{s)-N1Bc0h4Z*O04}9RqGo4L9AS$J8kNU$b;8jOMFOg^-Uw!WoO2mHIl8-77{yt5oQnuu0aSy}Yfvi|b6 zQ!_}?3ufmK4R%+(omA~izMW0lUu|_iJ*9NMe2sKF+5#HY$JMX?%xetuHMewXuhl0%O9ku{8s?I+w{dPWIK1riJU{k@ZQ+RsQ-?rT<4wKM_k}X7~)4n z-qWto+wRwN@GrhTfe|(yYtFL@Phd6)tSH>up3>W1Tw4$_xip)q?O0r1+7G5xd( zn+BTW%^coM370pRo~0q86*Ee)rb^v|BhNAzHco2q=|mxKUgqtaRPEugINsWbyx*IK z!RpAoD?-$Uq%b4G?LLci?a8cu>E06AwE2@#0_J`?6!?`deY(?KuB-`Ux^ zvCa~T236g=xkPDGe4Evyn?rYBvInPl!x7pJI0c~;nDnoV$n)+~@`UMeyXciAyyA_n z(w8|B(`ZZGo=I5427ih{TL@IdwJ+?q5nhmGM3%*%m$0MAlqJl|QU60aqqch7R;M+& z9x4pZt=@{H3Z9pG+w0YO3LP%OrnUe38#NcdH%oP5NveN;-nP&A$Y)ASY`Ad?^Ez{QX0 z+wWy0n0bX1+2lpBY+X|Mx2=72L!sD!uXnUP_($cb*RogT(C%p8K!F854Zc(q&Ho!l? z1?2Z@$^O$jlA7Z*I-VD8z>_3_21H4qd7j!M^&8Q7p~qJA?rgN!Ak1C}r8dPrj|GLM zlwSeZlilY>gG$T{i6;n&`PY^HxL zxd#eJ0i^2@m%S7QWZOiL>X^T0{jGonQ?H)w!SFvrFeKOfGr`kLN=H!DkJr9%1k-66VSity6 zZto}7w-4G7fSc`oUjJ1c{0A>6t`}?J>#c6PyQJ^jfWE&-4i5jVe*~R?1H*vtYn!Zv zFeNGg#y)cU?bNm6PX#{Uy{$_gYGwu)b&~tdHiBf0x2~Mf{NqJOx8*1J9xAx>GF`5|L=QCn)z!SqPudG;P%NJ9)7bGt zm7f?7Y`fyk{hS^}LmOv@@nkSbyiYv2K!4GpAS?D+FhsL)^bs=Gc)pIIK@oRDD0^ga zUm}Yji;fzol>e}eE6d$%Jva>Ic^tedD8Z+=+nbMs<6^uVB%+Yo7lO)#oi#y*WA_+$ z2v0~5@s$NW=;sLDJL$i!9nljsHl&S)5gjMRZytMGyn16Ua=4s2Ag@7@!Gt00t9aIt zw_{26+&hRa_NGj_-%a+V2^7GaFJM2qdGPbIo=@U4b~0E^r0t}WDbc5c;`-~K01TQ` zAeIO>AeXn_2VwNEQV=0l3m?2I_txJU1QLIcG4 zZspPTrCAhx$-RMZOZgZ1UKG>}*my%{Pt{3Y(BgGtXZfPSokO;R>dc?KknlLLZH`=) zi!aU||6I&}71bfRS4oqFxdJCyJ``sn1QY*N!}$Y{>d3jURoCx*Mop)S`OBJBS0{!H zyJ16MUYSZK_y_7)dCJQbN?Hd=@)Dd?Daoty$#3KwQW}SclrL&)$>^r-AsS+K_p0+% z$1>Msy^Uj-1)(&$H==#iBkdzJ9*lG00z>dZ!8|K)IfVkoHj#c%(eq}Hx4^*XCoo~r zFE|()j3L_k2sj2)wG_b34&B7=2Z4<@3&nSr%NJ5kPVPT$CYa1+yxHO7kp5BAvMOMH z{5H4~vTeWD_(1mcE-fwHI;;wD{wFzZ=tSr}%#tN?htv!(P(x%|2pZ&lNwoly-t0dn9{VFxzE{LbvW!U0&x_ zwR*4v=-7L19>jnzYNkqPvdvxX3AIOi*=4vO!e#Fu<^e%Pm#dfox;^ph|I)BK;R=#7 zOK{W}5H89`&4c477ZAd6=JAMms2LV8hqZFRr(-ivC46|3>LL+9x*Yy{!~=Cb$5ood zbG%U-D7BifBGaqgCGPL$jDlRVb0P%K&T|oh<;29X!P3JG38sUysoNW-bDl8M=Hh%W zS=oh44Yi%x>u3lEZqofSi1zyzf1&G>tjdZ4kcQp>Pr<&LKD{PO`p@6;(}i2#*D4r{ zqQvTY8Pt8lyn&^HjMjkNp8j(r$cwtWlC><%bt`93JmEj~#c(W9*v)1;@Mjzbxcck* zF8_YmUt&+B;?%!hm+^g`$2kM0p~Hb;XjCtx{!`2q=gb*J+j|)u zNm*dW%NGz$*>$5dm$adi66C%56rmnQW7?Jf^B-hmPa@|*4H9fNg2bhSTl-EgUWu^& zNX!bJ>oK*axdX$Us&rXt&Cf$H@qTDyh-|(l_=u36DJu?15#g;xB6e*EsT*;1l+8Xe zh^CFc*MzA*mSTJeM}wL`@T?wi_O|ON>|aRq16|hZL_{#Pva!yWnyUW=lio4jz6H`e ztO*R@qApUr{;rBMm2nYAIg6^oZwv-OOpEbt_IB3!HNIMA+GIsflaa&qiSti6%JG=u@x zb~AAkdCmm3iBti0C$doHIO^JPV^bb!o8-hMLtvX zQ2T~Y0}f#uf>8Z%(kfYY=^A02QZ++VOD+L)eef z1y?T1NS@$PUCGeY2o;GfH+4DY%MW}Mra%Ii5>5FNQ0&$b$*U+l;<>R5w@EYOY(lF0 zy-;xbr6G8zyvtjxw##3BedHRHNQI8}iGxFeQ^zYi5K2&7lKdJWd%wNq&{Q@rJO{R*CN!{D!HkAz~Ek!@jen;dEw zFrd0ANH+f3wO{;EC=lvywbYy=wS+lY%?pXpbrmhnyzvk~0+Mj4OsiGZnl4w6Z+Zbd zd|@EtYq$Xxh##m_2UB>J~B3VR|N^As~u zZEoz4>{1x#ljV(!tq+9x@yz3xWm)|KAa9G-OP6U$C{|%gB?B=41@r#RzXGaF1~lA^ zRPZ>y+iG$lcQri82ish;9tejVB^<4a$U{y{ILLofB#%8&z^z9C4CsA<^jt+0e%OEz z+I!6PCEa)H>Nw{vvJXhnA0v>qw_OLKmyng357^-TqOZnlGRLpCe4~}5Kg-pMbLON z(9lYdYqDO-)5L`kfWgNgU6pUYGNjTASmaMb1*1h|be|54jWhne_0J#8XMJFK3f86^ z%bgm4;_UPDg77hpH=lLJib$fDwy)q|%asj~+E11KhLZntu^MicAzD0`bOL$^)@Q{W ztpIJ5CHz;Rvc#&3a=rRa$fh*LM0F^GeLzwS_$l+riKp=(XZ<02^xFH22U%~XMi@?F zx(iq*lWP!lXB|Wowo)Cua2>T;U9AHH8yRXoHH~TDbELDx`uT697Wo;74q-d?rg+rw z@HRET<2ejSh#WFy2kJ|A2L2OvrusvTX%+<-z*K=BGu4jBw*1@@Yj-AesWj%qLTDntf-*H`By;o)oQc=QdemDEVyZP~ zYVgyRlXVb;ZFs_N74asG;RV%XJa13eNUk@G@rz5~FYOP6s@pEUiM83KE5vk84FV&g z)~gK+lh~-MY*pGJO|Lsu_UWD?jKi{2DQok_PngF`mOaBB0vwDaLl4|{k0jKtdtuC} zF@V7!?q8R%0H2btkAq%>rk|Y%|F^#*Ok+q}&q@Y{7LmAf;G)Evcoss`*uUtZBUmH1 z9q~%aLOvDa2n9$~Y8wF1x-;#nKr2B2#9+&V;F97BS|vxogAWF%kXYotm14(hQo)EE zLsVli53*9q+tsCBxi_PrVQZe?E2kSNXe!pM-VEz&@`eoB77zhojmPcnowNcN=%Ga+ zJzQpoWtXEz^APK=JRs`IP{QzO_cd1A(HclSyGx+(tA3l~LjRJFqUFgJkHUlV`=raZ zMdVsM34>&)8NC9z5tIooHjG^~8Onp_aO$~f(eldV1?QJQ(T~)UbDu;+jP{PiupI}f z0d#nO^&PvpSdy@59zR!(dV^UW{_1|~%|3pp+Qm z4gWul7sa#D6|xpJa$wnENH0=)%O$KKn@n27b^EPhM2gd-rXZagdk?CuQ8 zX1sM59b`e?Z82&CKyH&cv-{Tz*S3)Krv!Vj%$v^FQj|!Z021E!!oS^in4YB*xTtQR z`VRXcq4vHz7&phOTMl)cWnt5yxS;}}#CD|oU_ z=S1}u_OWYG+*C^G&96iBbLr-t+9!4nSU4mq(JbxYs_ZkEh@ezg?L-#Xv3xPT;thoM zx(V&XmYM0S_aQ83fLOSsu~+AT6?SzE90Gdru)=(UWA)LqnVLs$Phgu3VmnttcNQy`&qw6srqLLm`X;3YeiP#QGWa= zIwu-70|7D5W3bwYG}moUtUrlHTrBW(ws+3pJ8J(9@2bd*9DaeqwtI)w&uWTX@{1E^ zLk5c;^&@D8;e4fs4xGpb$a}Qbfa7FvoYQgLK`IhQkcFZ|56F=;qCguHYNHN`8@L4V zZL&D&2Oub68DtEA;4E}jPv0i373*!8>^w~ZBxG8mh&oQw|KYkBP~y^s6L@Fm=O3i0 zJZ28aQiq=M?wa-mwmTJ15(4B=w%F7N+E>kO7v|6wm^g=*6Htq3Ivsm>(Owo$Yo5j6L5`isQHE){cq zH!f|=#gWzaHX_B7pnPaeKRA{Pgdy!C1Giv)o^b#Pj^Th7;kmf3Ij z`I0P3mbT3>?3$c1#B~O-Aw68x}S_&HFnlRRZ-A z(bKHZ*s!-%it94^-(`t(D6lP9IP9bGEY`X|=Oz=QEMhDTZL9ljCkH}B2qLu>d4XyH z1c=fj5G3=1R=Ubl&sUd}fJQk0HxBAFAhe77yLdVU5(eZ7#rMeBO`mm@KJuP5wp;gy^?xjl< zglte{M*T=x$Iz2JF%k%M6i*&(BG_OevID~F27^B}{PZDxbcx8}I{>8X5knAg_}~R7 zvh!X)SYv@WjQwvt-lj5)uj?jEdK=-o{^Z5&ODmu8MT->joh> z_;gXe^LultT+;jMF+HV-#8mYp$NU3-1SpUHj{LYi`VL?%g~XmXDvgt7g)mOcB0wzU z?bEBkI&U;vd=eoiAAKMBt=S7U)KWNgnsC-K@JE*Lb+TUL3-c2jnN4`d=17Iz-4R1y+YcePJscsMekh;O5bg4wb(wu@<{G&j z?P`_7hq=*29~EXQtD-?qMJ5XiK4zG5BoJB1^e!5W-1Ze!3;ruJmzLuLV)|Gm*dX18pG!Op;Y{a!CGD!BOrv zwW*V_<&pf)4CyRXo>2eff!s>LW1RQ*50{xFk^A+t!U zhQZa_|M&!0E8(WXWnn9`n>%*8BF5Du2c-O$ZH866J{3d7R#>ry{Y) zqSo)iz(uenB(vl9Iqyt0)Wmc|gl|kO3J>%7>c$^L7;5h4@kgYM+5LX>AAh$>unZjI z7{XTyNqX5@Pm>9mwqUO_62v(3FZuFhp{Tss>Ul^VxlvMCQ0trRaJQE<$VIkF`d@V^ECseZB7$%zahe)A zy+XM{c@;mR*v_jxaNV0rr=xDQ?xzaSkTUn5Ht^_-CN_|{{5c*b$uzognf}Jksl%La z{NP9A!4ws0gSz;pZ_)6Lw2A2hXDC7e(<8L7N*)Ga`)Fn8hrQzNdY;FlCU~+HEM%L3 zm{jg`nL9&&P3ykN30$yBuZdEY@)`FKpcGuuI`u9K5~1Y<3p#qKD+_Bd8w@%FNf5IC zH(`J-aEw-wUCWn+(f-6gU>0tTXPF*oo5cNOXGYQ?nYp4~cpUoPy(TCzKCMj@X&#=bw}i|V z+@ywDS51YZBgagfxp$tLv`g6vLo-OmI0g)fh;7AaG$NQxKG;Oj6?Rl&zoRblMz{`Hn4{e&vY%`TVop9=_!A9TMA2^8uEyUwBbr&5^q}abW-wk(Z^mk5U+NCKK_uI!pCkEp%5PH7YAgsNGJ1Gjpyso#a8%rG!_b z8-Kjz?joNjT3QFBBD3>PK4U14UJrq0fd5SbI)0_hdR|v7&`c-Q@#2}@T*r=|RbyZ~ zkJ0#27cPo>`6krY=6S#0jPSq2E58X2*Cuk?b}L|aY2=(IBFoC` zU^#W~3v#b5!f~VgiAQ3sRY+Y~NSZyINnrm~)-)S#Fu5VwAs2TQ|XjAzDD) zko(Jd$Pa*owycRmSLmC$pez3P4mvS!o{yZAU8v2lXE#~k$~H77Vh<2ZoVWUqhowDb zMNlwoEU#b<9$!rTNf)bn+wZJo8po0s#HnW6bH=yyEl(op8=gA0JjkzWUq}o-r^2az z^zmSoPZnr0XwE%X@`e_&7Xmtr-P?Qp^aD5!cmS#|Zej7LaQs(GIZ_ecq--*L&k7}p zVY1{-81r}QAf{YE1qGYRRS7mstGDq$ z3DP9|`ky*4C^Mr6zGA$dpQ(b>hCXm6u5idqD3y(;{8XI8AaiuOz{ur-i+8rMRX4SH zn#t_ORSOWT=V63Xno0d04;(${1?R8wl(daNTv^?4DGcISk+)=@j;!&cwCcR628g(BtaS($(>WFvF=?b8*nn6jh?Oc)G&B=iieH!PWM zDYq2!0RTe~8SGzwn5aMtQChxmfPA?n7r6}42@0&hD6HBS@0mu+9k#>G|Tf?nij(ZtceWXum4mRu(b-dVRz4d5B=sci+^CUh9;9 z%gyE*Xv3~sk=ZhEB3g$7zHv;AKhbuw_AF2H)>*QVD#36@p`kp85(GpkdkeD5kq4o; ziMq&AI}ReS&7vepp_p6L{Btts0 z8_d5XI^V-tg=i9*pbFy5o*0$FyIUgPi!iFdOp@~V*zv}%BuP8A7uxj#MgamOZ*Qet~%1A7q+My0%p0;Bh{+XL~Y|QPN&qMjH zG@0%Rj#84|91gyYGzu^5&yp9HIN%dXp580R?1dcAjTt5%NG72D^*+vKC6ZZ!`-``V zE>v;K6pa74rC{iaorLo{hl!!9i`ino6%miR1|;|bi3`Pq!6S2>9SkGEmOP_p+A^y?%-;6hUc~jSrtyA&n z@}e>SG@HuQBxTI3)C4xwgu)zhZV2uHSJiM3oL$<#_~J(GLcxHQDABSlI(nWE=9C#U z!@*_GVCs7u7YKKDOQVEd&t2?xx*XJcTA_A$EuYsNv zJnm(m^H-hNUFJ7}LQUCwHT`!fChd03<^7gFFe1wO6#gQ3-Fu>7{dk?MMKN;SX{Ag6 zHEDr#599*_Glh}uHWIO9kqFPSPC_-b>&3C0a#B&Wtg5`;qmUsbU(rXZI5|;&)I9>g zxS$}|I-y2(MSf}MtQB*w*6Tsp%?XRJz#K`7E~}Y9%Hv30SsfUA4&1sfAkn3K&yW|5 zqP1MZ*A|CMrt@4qb}t>~5mS8+uY{a$$9Sm=OHFW=SEhJUByLPOnWxE;Py8O7v@oFAj!8Z#ouK&`j~cRWI-psCyf7a~V(Dh*@q!X@T~#q&^lt`T~*;ammt)1lVC z-ArTU3_HAnd9KANkC#+VX^pTCX;b|Y?1N&?wAIoVH6!?JIRX&dxJV?KjlbB@aq)a0=jWbPwPMSeQrf>;t&6wF6%V@Mw!kt53iryr^`*t{g*3LjRc+MY8tCG@+Ll(Qm?l{0rKn7h#PfIa?SXf;p9cf0X7`y^A zH~2TZEj$=-2SIwHA7+&pQPUc8C1*;hR7IhMKTL(zl#aHmKP#O??t2^Dn)XDR8h7?z z)~<8YGQcnZjF}2?X?+o|MFfI}+rf zRn2;wv&bnaED^Zl3%jup6D{)hh*dxi3p&UOMQ~6|=%*99Dir^g+Wf5nZGdWgJ zFBH@)Sr;6QEHq1wNny$4@J88ffo@v#-HV1~e%Lt?275xe_G9 zGmt#gM?gms6#}5jZN8M4f_WG3Sp;^RA8l|>SJA)QRbn-_Xr%mc4#O5WGQ#3;HHEPY z#P=0t>`>2;%`QeA-;$``dyQ}#UXpwy{i_9;et*Z)1C<^wb4OqZAo&-Zs70exP|Y)# zoariZ5ENJos-hC3s6LOfn8A#YI+VsYAIcJKX>DTYjNEz|=0DCp4ksCW$vxQmPmNbp ziwEdrW5s@ld8E4Z8fR)xRL&I&RD1`iJ_pIe2ks=$)5%A~%uDHi5T4vP{mhn(_EfR$ zAWJ}%sXxb0f{lv?SVrQrH=)A039GLf6Qk>0(?*h}-%)Jyc zM3-jty)6RzoY?b!cu_}L6cZ(!;Xbv^+!l8QCBsdMwTv?x@K9@6tjPW^v_!Q%4oG8a zcW>wS5IZOF6)8JvGRw*U_fS7(^Z*r#xd)Vy8W-Y}Xzc43ig?T~#Z|>(UNJu1!p)sU z2nLBVJ}Uakfz&iZ6MLZ)aF}F$PH^E_QHxX#aqt6JCK-10Us)^G29P{IV+3ONN~b+3 z<%c1ZJ5))v^`kocT?z8_c}2})XnvgIW=dsa-T@7EQ`aSfvY4(UB45~Ut;s-C#8-~R z_~~(_Ultlz**w}YDNQ6J;V$At*wAFc8}^!wFy?P_s=I!$-#SX)dn6^pB}|pW=WV;@ zu@k;sn`5wf8Un~IHuXRNdek%)VTfQUOT3aRQpELoqQkn6qIk@lTGsn`1d@xP%b2r_ z`UO5mr{A~gSI|(bT6sq0BABvbOkq^~r>qtwLODd0!(^|DuIBql?!=FyCnc}yfAUg< z(DZy3pI|)xTl_$DK?-fQ+{4J}cQ7Fhnh74=q0B(0MCo$W20*$5o&D{maU}S?yTqm1GJ+QuX6|p5)Oyv-_{Tqg%^GmQDh!5FtFU!2Qhz?A)f}5ZBMV?!{fbhb@4|dL601#1^S}siHzj+%gMA_wH#1Mus~OZe@GQeX+sl z!hRQ#39X-ELEm8MmT-tifq)86LlyQbIPV&~)^|qC{mZ7;49@vz%f!8{0ZU z&tQvFw?-e$Tn)pwoVQ8E$2_9Qvqk0G<{cwa@@!5v(C|jL6gRP{`4`pB#*7%-w7F46 znjJ@4OkLxr@MDO}010X-(pchj%Z-I8MX+XOoH*51xH11V?YAC=|J5xk%4-p5rHkx2 zg$Ir=_a3(1liEE&2-xZ$wCVsQPJvF7Bgz?V6Pr%jTd^`v&MLPvfaS1P4W3t-$CKIK zOwO^~#3B-5WnRzxIEP~oLG#)3(tmS5B)U6guY1Q^U>M>^Gq=F4g&oJ)fP3<`?3PucvR0{Z#yJ;oqhxU zAFzeFqt`4Bl{wqM$&Iw=3MTZm?U4@`@yrQ8M!cwVz(Z9Hk4X#zf8V= z+NQ>SErBpI)AeNw`Z~O>(!#;tq}%foCw;`5hhs@p|Ht*fPde$nWRCZ-j-y>}aul)_WS)W1kNHJ&0z&`>|^8 zq5~GbJ?yWb6>z}z8ymoD(~M}NVNx`!%;UN<7AMUL_x^;u8fQywtEM4jQ>;zXR6bzs zBC=o?Fa50M_mowYTT1$v_JUsYK})|IUzrXAKvYzhliH{`^O~2FS?sTpA4#z#KE9{y zAvHYl=Y<-!8?wB_NIpE$k+#M4GL4)ix-7qt&mz|)`1>mHbZ?Xm&CR>@y><=3*>2n7 zu`3B7abUrrQz3I)tY`m3za7r+;b>7Um*GdS}-+%F@-zg`>+6cHae zdH`wI|E`4mO6pFjzi9Uf_~Ae+0a5#@QQPlY+m3D^usYBm1ux6n<#w?Eaz>4Kcf+j^^$qa*yh`YJ zYhoQ9GAzTE4He@%bXF|$%<+E8Q9_ zY)ApP?kquAPSv-)Z7}|8l)B3=8$f_@*~(-4$1^v#e#nFvSWut~M7Jxp{}WJgb92N=_0SedDo#mIMk z+3ONKsM;;AxY}%vYoI$d7@*eg1N`%Zn4ra$VfQJwso>Nl-wBkzC=|Zw3{}L6naDjq z4!~auR00=n;3XwHo@q2(0xbYJuIKof{SN4cW^{39PcGN5bOg&W2LR0LcWamuS$Wp) zDdM8Y(TxLG z{)NgaJKV$TGHERxEdf9{!tp5Sui_KT&I5;Kk_4g8#pFthH(#zn*6>Ma#IiyguHH!> zo|{uu?(naQ5IR@*t$CDQn`X!BQ?X;@I3qV-LCq+~MQP%#uXl=8GmO&(#A^7({;2}G zeFc(G->W01Lz}Z1Boy|q16MS@Q(!YaKF|f2!xJ>s#nNlD+E^7Dx*?xbrt1%tEU;{{ zs3+sXKAcYn?J^i#lc^-LVDYCM$I`=UK*mu8Q$c+x`>@cs9d~*icj`o`pkTLgmfRXO z!XDH+sr|2a`dC^9y7GP_ufkpBg>|q;+uGeWad~p<+^blgKruS=eol>ZZ*UD*`D%XO0kW#l~S1ROE!!EhHpYeW+rTs!B}D;e`bQ; z{(eDsxW(>jY+t)^AkW&+Tc!Yclfy_vK##2E_=Qyyqi9HYl>=tz4%CwGS=?dDOVlq> z;ZXXotlv(vEbq~Aml&t*ia#==r7Ix8#$9x_&*p{@rXy{sPA3(G@9XqG#AVm$=<{Hk zSYbTw9ZnwJ=~WWTiddcICa3XcS~Tc@!h@aLUBqTAYtZqfKZJ}_$2)d&@->3|`(bjV z)UvQ8t{KgIID2#&OT>KX;h?MB?U@Zc^!LN&Rs>LN!Lmt-%((Ov6h9bT!qoZy$Cfh< zqx#$fhQNa=$X#<}C{8qJSENQ*#%$ay14>AL1;GBRhJ78AwyI?YTYI3@!pbB1+og!} zWE4h6rfJ(VrzM3&r5Zy&qaD`L4w-EbacDIJQ>fn&N+t($zWUt#C(3c^6Nwt-vKOY- z7Xm5olg2;W2XtSp_dcXp=?Z-xzbJ?$T642ySpZZ5P*lsQ74yJy1%o#1K+m=@_ z?swYUBP2vGX7tks-ik$f^{?|`WxAnK42t*!COpa<|7m`0qSkRIcBI_aaPdto%U;2T zK(~GkIQg~j95H@>kTWz?p1=5a%-5@u&NMTTN*`S*GSd$I(}wN#4Z4WN5G~lq+nNJN zvF?NgS4|CnBs>U4jO-5RU(HGa@>c<;-S`%fL6Beml@Jb|SeCAZ2PsII0FOHxM*{Wh zpQu-4+X~q!$Rin&*9NIvYc(9LP0UnF;t9oJHPfz7r*?Yx|*YGChD;R$s2&7j%<0Qi|-O7UmgGG&!vTW2Gt~rXM5RR1Ag> z3RG{ePnDDEMgY|)w;5)JFu@nzHqJekm2lb?_8v|l_Gvj1p5Q{E_y)?CZUPC zc<fq~X^QC&^fNH%6tE!JW2eEex5g_;l$yPAp>S<26R4zRxOiG?_odH}BkTLi4u2GR8RrUQo99?<14{ zMK=wz5%i63FeZD%cS!D31CmpCfJ>93kxZgHn7RUqRs?GtqZP+y5QWZnD&cwlS5es? zix93O(HK*Hs^J=e%K?ppG7TS#@OnPSJUfL&kmM8CbF+`Yb$M!3qjczGc)(OQ+ia2a zY(U@)baq(l^VAIt$Oracba>QcEF8yhNQ80P?|ry$oRt zho71+x}XoCf8gIqoMAFq>k~I;Vf=%ZI%zAe+dQbYb6o#!$dpB&4Rt9?zl~8vW>%`hu_YtLM$Psz)&E6`YkO6ClX9P0nZ#h=|BLY0~n_KnY@=o zpOo~gA09fUs>D3-W`H{ck|9)5@8(#~UWaYetirK^oNzSE%{)VGhw|Pl!4A6DH)Fw^ z&d7w}MNhOe-xEi}_`eK)<**rV7R10}=BgFP5z8Qdy!cclndlNFp zvJ2)I@~s(+Iv-GO zW^r70|KsjW-V4OsBgN4B6pDe>VX}r^L`n3Cqahm&3Wkh4#-cIW(fj*pwb&3b$NFm% z?rv|LORQ#p;8kR)gvdXDHt|S5SU0Cev^=%EoN&38vWWmxvNEXRZP~JAQ*pckAUbvb z_w9$T1K{9Ad7LcnF*nt}XtTq2K73c?qaij+-qD2OY{y1L`D{ zvh70@2P-?U-W_Ds;z#^jJMd>e(hg?z<}deWPtP?m?y>Pqw60_c7PDW<@g;4Dzd5kq z-ASI!)4#Ux42MNt+8C0q*El_<1;O2GQhAUj)}k%=9I>@;==A(6~Z3!4#a2ujy4h|l1IBCZk zRCKgqWno6D)!+Dv_OG}r#}#m9C#J!|Nh(kSP4UZN!0OQ=Xs^X`X`c1&d_bEd(s7j- zT};7`eNlr-bJXsQtPPa$7>4CGDEx_HJ~{*m^bqNqrdM($A;qZrv(R+58hZTBL6e^M zjC;8iXHKS~`QH_+^}w767_A7zq1Ll|^)s^num$oKmirrhNMvD=+xapb+45qwL| z9pt{Tpud{<-7t@{%(+)Lnl$$n>c~89+i8L>jpRZw6DhQQ%Yt?FS-YWelYPBp$v!aq zbeanqPThb+&p}QR|D+Pcvs5UD156G8MN!8$7Ap%xsLhZIdSA2+Fg#+Q%Fw@nXpfud z&$RDb(FtK=M;=AJM9vHHHHCWNzWmkT&1Z-fPovl;DB>&7=LQf9s&9d}V`)L( zY7kMV0lSVEPN&qhN%YEWt{bD7mmLh{)eZplE}LpbO{y!Kb@LWcz-I@v12}>zEDFbdT@lT%-!48ecm_!#fQa;{q;dSCD=j)kWNpUT-;Dg zZgU{pImkM~0(f4*r#|D7ENf=Hhxo26fGIyZDqqd%kV}Ww6HEvT4UZ}f#4k(eUcbIW zJVxNFPwlgM?P5kl6wRQ_h~RF!P34V9O%1bvv)y8k?a6~`oKkrli3Z0}s~LJP!z9~6 zq#m$(%zb!!>CPxWVdR-(!~0;}ECr?fA3F@`)-6a^ZDE!(iPm^4T<~T-4jk2+Up{LlDi*|6{n-}(Gu;!tT}P$(@}y+acR z5luBKc&Bs1K1Q65VPbn*4`n^(VMKJJ=tFYhYxTlDVl0HQcYD17vRgmhISX|CBzSCg z))BpFa14p`V~dxmErlGEZ6#cNXt*Jek-pqL z=7t+p3MM~{AS8^q3o@B!6ntBq-rXNf0t8gncH{rOW%wJ|aoLX0Y`2%@|B`m&?*HV@ zX)|eOSpHE^4=+%9Z*6-O@?E4iby_ayFn83!u5+?CI?Rh!MluU!=G&W+ne?{ zEn8j;xn8Gq{5Jy_|Ma;n$FlycHxLWS27;RM6|_8ygd8SN#OeV5ipgqMqiTr5p9u6* zVELD2>4}o1!-SfZ3?nQ}M(1|Icr5eBvfbdjj2s2kjRlK*E+ha=x0M?mu8jliP6ZB^ zpL6~I$JDjsYN&wD za~yC1Nhy=X_(JoW#g)tTV%2^oR$%@2x{a$xQ>o?05f$_EvoJCPC;kayfQAjA3A#=t ztl0!Q~#&&bW*wG8%mJ9Ix8thN;Py6g7)p!W`J6^w#%9FdKM^0nB3 z7XxSG6<^4E<#N7$NASi4|V+&@cx-O=1?3K$48<6My3Qo*z(g11NjUkXK8ey{*Y zE$~4Nk|iTv8OtG%*F`cgPP+Dl7#5(0lEAcIi0s({ge`RFg@qa$=JwFc%#r~7MS5{U&Uxx`r{}0jx;x>T+Ce1P2H=JN< zIxcxPKst6nz&}m9$J_dLEDVVcY6ZUCu+Z0?P~63O%U*eD?pkmZQ9cgzPC5&@Chq7D z5)TSVcq6Ia^S|L(iKBC{zqB86me=ir5iz1ljOcBhR6+!`?kRl8Zf`Zl&G-EQdD5(P zARkv_DmP+4LOFkGDovlyQC=fyEK{%wCrak!pfnR-tOjk;j185W=LYf|hsJ~E79u0O zeu3;v%}E&x-kb}$>1DjBC;K(M)c^|fQ^)2^otM5u=|SL%zOVv~Me;!Bp+be_LZ1SE z1kg>J+15x~O)}e6?3X<)ZECXg$2d9ot=X01g_vp^`LLX-iQ1F#3yK{=X%hrG!di2X z+gXdzA#)7MXK#x`E^6gL{QD{Ufv~TMeS^4YC8jIwqKc+fs-k%~gsLnk0O$5Pk>Oyy zRJIV`^OIPFvT{+v1!2xic`Vu8FpE4JZ5!2(yBHKo7qe|Kqlqyb*)YZyP_ynRr}JG2JfKLjJ+P+&5iu)HO7M?y75Qj9pwX z4ZdENZ%Vkk=y)DMlI^P-5NQa~;PW=k>0wa=B^e}%OQrAs2fg~=&&CNn;vOCzUZ>Rh zKwWt)cLaXq9_?uOKWN;9`9Ftg>gf$uw`@g%P;p;;HQleLr1CB6gHl4T%I|{)@Bf%{ ze*02>kpBaaWn?&ddAhn{{X>-n)%rbD0s{V>?dJ&#!JwU;9n#5@`O=$tp^y20AQL58 zOh*v-VQ)U~ljA$PkEh_>1pBl5*X8!kP8iA1@iDF6E{z{J$=CC60qsYO0+E~u4t-O~ z104C8BVM_xD+-i>aT3~MK)jn;9&JnUz_Ol|)R)w)3dI1vu<3!|7dmj%UWiij9A zpy!6Hb&xB0^gvY-D~u*LSDpgc>js)Sfo3dagq|_QPj}0a*}Rh&Mx-gQ5aC`E@w7`m z+VxfM4>vF3r;!gtr6=sf=##85-`k*8oHJ@R+G5dB_jnqmc~|RWYBG=Cv=#;EzBMm_ zZN*S*liXU<5S{ZJH!qHea%inPMW7=duJ*~POKQC^ZfB2B$yVjf28+-M#hV;p_OkfR z!^@V5TSR|{xqmz&UU`*+W$Kxr@8fTmM^e|h_)nT8ZvFvk&60R3L$ZQkfHbcG?)S<` zS6Q2@RXan~@>#-Hn=W#jE^nJVAn#=fu=)qYnJQTfo0w9E`~u(ES&-R9&{GIbh=9F|S`R16 zl(=4hxo0GK+SHwpYgA*iA56pbb6Ojz|th39!G%6FFkD}Cp zq^Mx~$q=O39TOlumExjk>dJupJn*=H!0+^Z5c-1l_q05VA{gAhx}+^Tn$dbh@ll@M z=L?pFw+BG6|iL(}y8`9+Wv6j1(QvZbZABw^kBndUtT;=c~pL-6f zPpEQbOke)ENX9Zht38xOR%hv7gNc$?VaBYG^FvEoo8>if0DR(vcFv>9%I*-}aerM& z1glL3sc@9Rr4dXXV0@FAIg9QYKxyg(fvP<{A2T;Bl3i+)%%ZxzC7PY^WJ4xBVR$e z<;OYbX}6z;xE+sj+;>4VnbxCR?`vQX%I=bm0~FwW`s+pL-`U+6#4#8EQM`Wr%b(Li zU;O4477%-n+n*QPLokBZVDGQBU%d1w@F3FNCt{8Qi~)#B6F+|7ILWyT97&*f&e?t; z^4X^#Ing1Sy1hNxp)6wo(V&X*b)v@jx zWP`k5sPGE|%h-!wE#k#3Wl&EoS{I()@j8oUw$B-DorUl3;HoE^nx<$gw2c>VVZ@eioJvpIQ|R&#y2Lp5Xl0);5yV{|C`mSZ-g z8jQpvjzta1zvSX6>U5cC>^U6w$Uw4+nuY25u@|uK&JJ|#b&&fX7{Wzd<`L#N(Asl} zIMm(XtbBX~-;$(%gw(d~!t=lECu!>F^#6nVb$)$Z4YzbZRKt=r+Ywy(UU~1dGk*e6 zK1o*uzkU1lkIVS{?*;EZ`CUEbSI~bB{(Z*z2eT`9Ay)s_ROIW|?&0{~;IQA%3B~bUwo?VK=+_C$`_)dN;-Abh**?|Cl<*=t$b9 zjZbXbwr$(y#@g7nxyi=1weiNbosGG%ZM?J3|I2&Me9D>WNq0}zeO298{mO{rM3SVN zKQXdQ+Q`SaG0IUq2UR_v93!1XVa}ZPNK%kAahiO>>BYJhs3-8et$k(@0Q6 z1rW%@?`EFnn(y}^)i2T$#K{``j50KsGXYJRcG8W?%s z6z+nNLgY&>9$s>&P)hBQAj~th0?m)$Xk{iI+rU*S)JgN$S#2{Z zAFsB50v|D)o|mkisDH|{=dGg$@4N+gPrPP)9QOucd_T?%f3A{lJB<)YX1fITJugW~Nux{)@~K<_ACn{F zH|@U%a~JM&7vYNg65q&iiU-*wFx(@9JA0HR)Wb?%%8;#B+1(wxe^}Q^(r_*T54vtGuY&H{D+xQa$KGF;qGd`HcIbkRn>Ly@7sMD4RiIfGB;XFw< z2rmQ65|~cFBF1!kh8p&&XSdq)A-AZ3B0C3-SvEdD?BDY1Ik><8oQn?SQVc;+E!amO zqQTVDjNr#TXu#LtUA_C3&9G!CI$I(w;_)hve&U=SHASQnvbkCj+}aM28JN0JTtX5hvlLVgGk<$==|F&s zo@4`Wj)VSA(Z}Mm8QM)scXP2sH71=$@31N=lYsq1I@EarJ|SlTnW)aVnSWZJY9iZb zg!$pK%bhUf)$p!^!x04&KKT|F=`Y4f#n5gFxBrY98Ep>@>Ngpxdsax(HsZU;Cuk`R zK5w&2`f9G?$E1wo9wka9Zjbt!gYmL5A{hR!rorcNDPAum4@>wMeKxMav*6Dhh`Gx)<#EA0_$k_khRmPD2=4 z002;PWAGf!B0s$KIBa)ECIMR{h|=J3ax)7NzmATMfE-x@TcLnY-~3TU1%BT)8Wv(Sh9lEIloFd7a z+Aj0iiwoKm&qT?GOkOqF$fI>ezhmBo!IAW{*1dBGbY-^}7R>>uLXv49C_2V9iH6zMrNQ8)3C6?rbF0{NDTg0|8k_F`k((ir2yopTiiN!Jd2 ztf9ocsuN)pTHUFA=bJ&cu@s#89O?E#LXUMb4~-T5*Z%KEm{E?v8dUf2BSn@}aRIwL zv#$-rYp!vR<08V+^i_7B$JelMLB7d036kk@#q2O#_cA!6bJkT++Ut?q&Z@ib>ypyI z+USNH1pQP;0Lv*hrFRwAKXc>=}+L5Ws21UxV; zXJPEvl>|5)cl<1NxV?ib8Ydlv#sS3)H-?_an5Y3*awLN0ig|HYsnAO6X;5@@O*i3V;>IKrwK3cE;^} zZ+ZPS7=`vPkzwKGjn?mQ-yIJQl^$!u>`nYBTc7>{C;6<@@3*;_~5xpV{KDEt&06wRBUbsBh*S9d` zB{qO-eCugt)phq%7gFBqVp&~7L-4R}s&Gz2 zg%HRBO9jNcy20P39434Kr$vzTy_3=kj)EZrXA;z%ow@%-a;qqY96{Lw2CX}qm+_Wd z7Zv=Js)!$Yu~*H?_$74HzuXC{j!x=3`>pmjcES#k51Cq?nmX;N6Ns@$VI?q@PzWk9 zr);dYB#H=W8^eO5>+K+E|L!)siw#7PaY_!mR@~C9QR9Y#u0J~N@Cq_K&1Y>vp69Ds zMawCt;}3D%G4+n}V0YJpfBc!quj|7lxyFxRL?t8t(QmN|k`c}TSCsC<$eb~BtEKRK~kLDv1q^Tu- z_f5sJsmr}+ENvNJccckJ z7Qo&^Mq^tmIRAe{`(dtbmggCH*sZV6r@ug!IH*4`1th$1#}j%`6T$%BYz4+r6~>6T z>#wtbkJ?!`f`7s`I3Mp{)&{yv4!Hieem`gAy=3&B4f1W>#6>!oDlA;L1iZC8SLD6Y zbUyyBjRoH{D%Y&~Z!O6CJjomWM~Y5JK>3&DMWu_FNqokEjUKVfa(gy_fQO2msx1-4 z+H9cH6D7zoL?l$Ef22cFLDTn2b0I6bG#Vk%v)eOWi)$Ym2Y$^!Gl2Q*j?c3x!P5(n z^>;FD9=3~3q#M<0u0kY_toOwXQA8^ZYB#1P>Ej~Q9+gNR1}hXjyhlt3h>I-HI)OGsZ> zkZ3v9{~g!7&a13zqOaCJDUG;ojkQ-x%G{4U)~&;RP0;q;juJtUH2OwrT0);_-BFB@JF4vA056r#_xJ34Uv!f&<%hd8yIW z0l1M0ch;OIjpMm7r;%~KV?mTU4`bK{L=zsA z`4R9)cLgbz*gr3?UZ9P~g$uL6@z>SUz{pW8WE^5;;v-U*TR}kiz-heZ{AL!Ax_3T@ zAMO`-_PjeKv8V)Ad6=JA3nI<+6S&8qEs!^op{8m3D0|Kqt$`+4bBM$^aDD&dS!%KX zmk7%K|;( zi_+IGT_f;zR*vpw7Hc4+A!P1pKzGMCtM?Z=blF@VyspvywUwE zI$Gx`pGfrWn{=Z`03wv(L4KzcTrCrbVh;Fc+Ct$bh;UhfL_bW#L5ffRju;+Qf{83< zp_}qIgeZ~ja!6Xwc&@V0vI5@fK4$cdcTK#ZuX_?=A#iSR#}CeZWKTt|jp6Pni2$@9 z_HX;aDaNbr#OlK4BqRD#QRye6ppM+)K?!AEu9>>FoQ3Sg5V8c@nlrf#A>K#po51_I z*aL0i!|m0CM;7VxbYya3ZudE;BCCloJw#};UW7JR*S+Tk=sjhH8RzA%h6o`9Xn%7F zmWVe+>*9c0{mnKi>O!TD)qyym9M4qQS07%G&szuqrYXoEynYf_AP9*ErbegFgZu z0=V$wUKXLYBBR@)cGDSxHw|0s94Enizl@k$ZomMWKN!VV9R;(W014RNV}A_y_OzOf zG)(I>`6cx=>T}1Twj!QlY^A*rV;D9yU|}@U&iZ(MHzIFce<*ez&Pl~vw}*2}4_)4< zC}g)K`L64{kuINEPs4-PGDDm- z2Cmaly_(HJti9wBd)4$bD1<{j3yuWB z_w@HNH92TPTrKr3q^ zTPZK3{WS8=vJ)$*Z-Kc{Jj(8rXy$}~f9dxwM0kyc?TMy0#&12ny)%2o3_DZ208k** zLx&efL?KII4W3j!(sw5ZynZ`nYW4>C$)m%dn%|@Y`8$Gljwx{E!2tT_OJMck%4%AW zS%>ZqBptT1y_t!rk?EMzq``!!k0BJE0`2c5QXW+?LJVyolS80H?;>MK`)WJ`V+-__ zK<}^#Wn!d#P<9RMC??Khq&+!B#S@|BnTQr+Gr3=FhWPMd1gbp7=>19s6$V3FJWf z4!g3l719|9cHW@CSl^xd7R5StufRqZH}w>wI-%!zO;&H(3xpRs1@V{8lppLZdJ1J2 z*Ud%`79(NF$RMl^30ckjSRT}-)6lFqH}PP&2Z$5PVoLn&(Piv>*diT!4y8=m%%q*o z(;-;*z@AHCY!)|-fRW_0x-sx2OVI`kOEi>AG`Mm4I&x5XvSa zOWIxt*dQ!dEW)DR%7FT=2-gP-*tD=Dt;_s6Z(tZ~ z_z=dj<5Uh*G0Cwxc>Us)ub zc-tB&=;?wszm4v`^DPlQ-2AI5-c#v_X{(NMxg^;bx^@ZGB~Rs@A?@11cw6Fn2Mw9A z99jJ@uXn8N#Mar5va1b>{vkgR=~%~9@UsnhkA}k`UYI>CzGARGXdWU{rgLLA9qRcL z=q&2NpLJ{dpmfn=T!Y1PQKP7vL^CQUe1jmZ;^ zY^3h!g0ANdTc<0g5nfKB3&$0gH;I4!5Vv%Xrzo~@gg;SonkYn#y4?4?KC-SkvGlhi z=om)=j(_yam~gBR<)p~n-xT8ntWT~+P7PXA^kbReCWMmruOWFU(rPh@(&yIZ`J|&i zptdrTW=jUYS&_*+jNBf*1y##3BXh;99Dl6S|HeJG6QWm(g2LWO2?oL0g5~xlh9=(o zjvdIV8s@z7CvsaG;EbjF+1*=f`{C;1zHgri z+o*3@`0@-}of>`m8=~na2g{c#yV>!+eQ?4AztEp9)X+)4(@)=PP#Sa%`Ktnw;0^_Z zMkX5J97qvvM-9X_RD|Ms$KjZlU*Lg?Y6BT+`p50TU|j2?Jx)l;ejPi%{_N!Fhb~8F zMU}rbi+SK1bwM~(1Wkt=nJkqmq*_X=ib>d)gcz^)^?UGAE3J%P(SnD5W9NbK{V24Pu^T;6nFl4b@fXX}H}c zVc#F(6ppcR%KQfQI%7-jz{3ioD=ye0MT#zsPWTymjH$7+X4%%O?)N+6h?3@Ebg|gSvOG73}(tz||=&I==26+fI*i zVyP|r%zhtdF+3^jz65t`1*QtHZ~aE1GM`I0o`$FIfS4z%O{-&VZn4dxD00v3Am3sn z@6U?s+_UiDU1NpQqRf{_#uW9F56hNKXqw~%hfn{>^J(+U5);9giSY0!nl(w!7AxP5 zzZ00vNEvUVW?3c)fC=b&PX?{+Q{#J%1Is*XzH*NCUMg>cJ)k3#9vFsx2{$4n-wAiY z{MVcjXhMihJD+|DpkLu`CZuwzP!75|fl0nk7(MLd1UJ8gFtSGhJc#EfQ|$_TVJ})E zuKRn!j$`-~OwQ7HT#c$JTT>NS5e{#$Ks@XaV!OojrWy9X{C$c1s52>Nt|g3UaG;t! z&HvE)2{pG*>F$ZWy()2e3)?iN!VRYYue9X!DNg9FH8gFL3G~&Z{wxQSM~QlE49{|M zMUwupn#XvBvUg?ieFIOL-rRKKFAd((+M@lFNz-tm6IyZ9)jI=jP-Q_!ZpWV zEuyMdNSB>M81W;DAXHf*K4%b`+hlw&KuhVre{gd&Yz~Qn^K5z3#AJP|^eTb;Cz=$^ zi(EU=5N(jXXF1cH&nPrgmY>l~Y=R50&R~S8kKKkJC#b~CVxG@?TEMTkF5JDMK% z;=*|=fkC#e_k(k4NADmyd=7@8A)j^3bijKGCWW`>;wG2LRSae{6L_(<9U+o!93b#P zpAxQmbv%PgJN%K7vjV`kZlr>0{g~zzYg^j`yK1dT0*(}^xi$bL?2!B6My|_Ft6x`4 zj<*iH^}nIkwpgf_^ZOuL0-_UpgV6093K%r?6& zDY(WfGC?}RO#X(vj_SG4K>~xnb~X|YZvnkfT*>&xIhp|(2-!47s>~olb68MyU$X4> z##ZgD2Raf%tFO=iD=%Moe;6{mj?fy$nrx3Z{=0?L5GT0d?Nr+PU_2}Tf-kbb#vmVD zcDdj@Tk;?eWQZ&#NVe?iL57*_i26{a^$k;x>ji%!9HPNCjI%o&78_T6b6|yWjfOP| zO5>^S&KYnWd=Gm(QL0U`;#3klzW$_4%HNj(Vab~ur9w?67=@;w;EFb`4e`R~D>~Z4 zO`!~rQ4-LQmT3088*9#Zk&e*Pqr}n_Z`9Cv%Zn~1;ngXJb&Z3&NUF@k9y%`%b>Ku* zsEMHTJAto>fLZ;VZ{K7j6!f&$e|8E;A~0|$y1GoDPi5#;F^ zM_Y+W5}gCUKKNvYVlWY|THqC*miqC=cYcIJfql+jNJ|w?V_^;s@S7CB{6nzo2lQ~C z=fH?HJ*t*)2oyTgkzrs9xl#->3H=;bgLB0DvBMW+GP6uj)w5TOV9M0h(^e(vn9>-& zS>;XsT4>o&@XC2mgoZ0g6+JKQ3}CJw2&!Cg(HgeH=9!|B-`$g!g!D?n2VSqIz+DFq zu`9~$XrS1{89=rjY>;Q*c#Uz$AJ$1^oVAWO%8~I z_T_#doT)pFTB+U2D#x8ZseT_2qeDBf6(=f>9y=&u9!z&E#Gvl)*l%9~p#7EVa>?LF z;r%WzPg;JP59L3IibBYR?M459seYaHH_tQonNwf{;%?m4>+k-Ue7;1i5#8zuZS@Mb z++t%Chnzf6NB-h5wSmGm+amUitYrS$zUi{tpD=C`{A0ns8IvLgE_9vbg=%d6cOu!s zfCLYF>p_k8$HxHuz~ZefdQFv?dqf7ue_XLp)9y$kWAZeiH$wOs^@5C*RxNQ4EkKAA9zPM*CJGQ94gO&P1` ztfZ}W*SvzKBG{q!qUnhYc%7@i?0`;lV6UMsYm%8Y8Q~Q#?0H-!c8&tP*JK10 za`s~W*yCfR?Cvwc2O`{SJtDAw85djdIsqZVRPgqatH9QlaL#@O9O`qK z3usS-0x&Cww}9IZz%FuGNFDrXceJU#vjNNiN69cpi(S2AdD>cG0)$x;O_t@fR`s|Y zA3*c*l=YeHVv?nJgqe9g&E9_(X}-I&%Gl1d1fpzWfhYsbgiLm)5?n6PEMc(K3^oH~GTgeckq?sc z>U$H>QoMXtBVX1x)p(zq_IOdmGYBi(MbNpZjP9UPh<1wqq?#lkCL1bDtPV+JY0i0q z1q-ER7hW<3Bn(9~`NGz;rqC9&b=U{8c7|Xu(wFCtKE+P+Dv#T}Kgae4Ko+eR8n~I+ z)8KeMC3W#%UK?1>cit2;pzmYh-sO4>`q14m<%-99xuC0v zQEp)XsV5eStfK)**e*|j>=h+W3myY#2D4U4GZgZz#m)$^H4C(tZI+Sl5c)l0+gft6 z%297)!MOc?+i+$iF4W36&7n8QHtY@TDGSop0!1&NpELbE+HF*+;dvq%hp|SdG>;wh zHzfU<$x&h<(J;{pjLOPeM$m-NBumaps-6=IAB`z(k`AUrQQ_yGAbatzJF}(B$~xVf z_U}Z2e`wyWPo6th-Tm`yZ!{RoUPr<>|5$TG^smy3i#k4qOs4{Iu2gjxcgXp-7WF1{nV{+qGmEYA(0$pGZ(^f~}LqPb~>`~;N z7lcZq5)*~-+Hb*#3<3_@ln#Zg!Jgs6tIHVBw^3jdbo*Qi?vx-HVAZO8pu^uY=r5E@ z$-|r=|DhD@Y3L(Tib&O#tj58FNiWSQ*PG9i>*^kOKtTtGtPy6u{+v(P`O{P9^~|0n z!Dr%kZ(K$w?us6;hL}9nctCHzTrGB-IOq z)>$^QdmUYBKWWj0u#k5$L@SaY?*8_Hwlc6&w>m3#k*V3<6QzWkJ1<`yRONT#bmwRn zrQZDLGd*R7A;cS7Qc z{-bF@%Pq(csz6>Jq=X+wuFUeAEhAem04p$vwNnC_&&t3LZXUlKQ`r66Zt$gumH@X* zbXH&>e3`I@8?{ALO+-s$`$hwG!We(7jEsg!+Ao`~C7YYf1$3&6UzO$WEZ>zS#g`WI--XT8DQO1*6li}cV|;&snEQoM zn%OU?*0Pv-kkgLUf9d503s@DR(%08coA6C88cVv9iP(a_88e7_i?vt?Yaj8qB~)}3 zqT*8zZFqUEt7M4!j)__<{7lvf482b|CDuzJ#fWHFL2UJ3SqT8~53cG?+A zi$O6-176Ea5%rjtTY$ZI0pz|c3-S{^NxN>56_m{tus+fEUn`(~RM)+@bM>Y(^2H5J zugk1k1C36R7oNms*n(8vViLR!r80ha;mLJFyln(v(|%FD5X+SzGJS;1(<%dURu5zn zRT+Oel}c>Qm7i?Vib*9;8-i)ae~KbdTofLf5&_07>39ucqlsDS);mMA7{x?|0}=C? zL@yLdyepvYI2_>javO@Bzt90RQ3!b{|Gfb0!wFAcndh)c5|XDT6owX~*3Qw>&tOM1F<7N6TK ziPDbw#chr>Nw{uwldHkpbl)N?7|qYKl4r;PpU-R^7V#9VMd!8@K(J5&_I!QYPE zP9^t^U5gbT{zTCl_vWv6H;u%&DBqqgakLzaQ@5;PycJQJvJyZr===c$S^nd0;l_6p zXvMZb+?tQN_g3(^Y4EdxWh1+iPcU1!mpMeG*RO?e3tTi4wdU+2nNt^~X9|$dl#zse zcC8$=rFdLt>PhdJ{1KS2H@u5EdUuyG9?~hZ^p_lh2d3f>%n0ZAFRE^ZFFiQXY8Kp_9yeNQv|5+*^;bZb>C?Sm- z`Mo}8HkKd#hJxbt=XrDBg-@%z-+{RuN;%iSMJS+1gSv!OnBH>1UqBn&;1{BYJB2fD zg%*_X>pcAU=$kZ#0>3Mp9{y;STI6SB+Zp)#n5{vEUImc;vIl!(i7}p=QBGG+-iW{` zbTvf1t2IuMuNy^MuE)-K)mFsfroG97`>+5PO77GJ@iyiHyraWGDyQu~dI%>VX~m4^ zas|oUAj+v()-!_gSyDXVOoMYDTs%8@JlHzpgbS1dDtJc_A}u z9f|9pFhjLaq_PZy`a5_yR~Xl0E<|_E?w7|g`?wHA+-U1TdWBw^&c0&-aRKH z^h#vZZ|Bc1tQ9|}-j*c0lCNp0lp^6Yg7>IDdU&gf>dgTDPXcXO#9FXt`T7ei9;!p# zVg)qQ31yw>vhc-F2iQh|TBQHMt@LiJsZ&sy{V>P(Y>_FoR(TN2t%Y#C0B0N<>~n*r zF(ue92P%sK@@cm6`*!M6u6fmkGNF~0AUEc)EDX}g$ZQZ9>6Gdeva=e?AtoM{j)(y4 zRYY@7DBV!nH7`48Sv$d+6+65zRu{Wg&yjzmjmn-WP4%`p4x=v-YSWH^Cf2aD1R_ai zzXDCC+rZS2?;JEVoVV=QfjZGgNlWO15nOs94b9RaKU~{MNd9n8FK878J*@1?l+vU~ z0=e(9x6xikX87aRh^;&?`Otu5Rh+E>CGja%*Br?MygX3fEC)+o{wkQOT__`b?2-hq zG7Hdt(g(oxUgLe%9icJsZ@W%qEnx+@1i`*6Kc|H{#qUthtvO<8Rl_{=A3PZYv zMQxc=o=?An)kzUS0b8U5)xsOTqsqo1DE8Z=XYjzhjl%wD*@QQ@4yY4o#d^5AR?H1D zSp*RaS#D7AT*q)_2$I{$;fFZN(CM8mkLmYYw}N&85F`Fj#7cS;(-t}_@U{aPet0V^ zi2Y~}*$i6NLtKk`miNrT{RLGGridlmjcXeN(M*Eb70_0&!vlOri*I!4-vviXC0Q@j zDp`WfOVv6%*IU-~O~%f!w7`c}f}TXS0zDr(X+d6}d|Lm!L!PFeYV6dp6u@J4e$Oqn zkmoBqxg*(9ivV2kE~d0E7RgL%di_`1tvF>p%tPNuI?(@N+Y-O65y&YRI;ZXK;eSLTA{~-Ygf8)}yGa`5J^eM2QeYep!SWdz{@ zP;+kcWK-AH?S%g zc#M-WU6`UM5M|`bK9GVATOn6Q+}uRA3Q#&7nmB8mm*p$?&*6=4tBlFk6y&oTUVy=? z3{T)}O-qZv1g#ef`S4f5N%Vcr^k3>uc^mxWl2|oI#4UD^VMKol8q(N-l)YZO?U3e1 z#CTkF2{C_9D2f3ctax7VR&OC^K=S6gl^+<3hU&UXK`HhC8VQT5j3?8rM!s^80j=n| z6QRL+FslFxZJQQ?7*kq)TrRxEK*3xcJO!v<>5tQL1(}x>=p6H%iPf3`n`L9a6OeR= zo+!yTI(5tSzj+W<5bWQCQ+i#Xf5j}7D06%-Pww}DnB~{Y$^D+nmN3UbeL$g`D+*y> z6R3HHuS<>(j&;vFxkpaGerN73Bdr%RP$z9EOBqsWIhr8&ml-y5TM$BTMy0g!VwJEBgZm{k zHqNDEai;!vdujivYQYOd>}aiQuN{nAMFuCs{p>;-v0Br_dC;KMNLD`z`V{wXF*&Qy z1<~YBXSz=dsR;RI@J0C=!Oef%imX#gXHOtB=HjKgxk%h$I^APa+w_%sYQ{OKA-0o+ zHJN-rIMYHtSUB>ifZHH5m&%P4#N@6#eTr#J>#_vt*btK@(&&Eu_~0RP56t}TjS!1% zoEnpAciDQ3zKn1fYvFN(PZPU&OnF6=!reSSonNY)8g5Y6P*^wC&#TO^>pvC6OMQ-E z-MYHx7uX;G`CGuIcqmFE8NoOV!&NO>FX{+H(N!nA`%V*WYhr8v)MQNPN&or&@rCz7 zuy3_AO$fxiAyW9BzbTW0VQTG$M5n;!!kVmCL%(;-)~tg4aQ=AlhTE!eA*NdHw`&do zLY)RjK4-!QScKe;2&nNSufSLfjn`W*i7p93O$h8x_- zyXI1>P;R?jy`B@#{>1&FrO_fA20$e0ZZUw?_Dwg(d()SmNICY>g#3R7}*{tNDO@4*CyJ;aNyc*3a*WN{u=Uo$#QcmhqaY9S2X& z<D>HR(=`PZoF;WCBsknL%vQTf&g_ME{hHZ{DA7L2XmIXi!O z_RzGI34mozM6vL=Aw@clJxbxcBoYDMx8x=I$%pKF5Cma`ifqPTKbw3GX8QtFX;l|s z=Z3X0y&AWHE_Vs$XX%@~+eF{P<5uF|Cx@g|Ml@Ts{f z-!}iKIs#n)QZza>BrQ3ds?ZO3_-C*0mZV(I$ zi|-vOiOKh(W3s`kSL~?tWT84Kvv6(A-E}y!RY&>x8p8Z=UcZ7MJ-iyQ{E~ZzQW$S~ zYBFar*y=7WE8OkStwOPnv(Ui=BI`YEgJH8>>8sY8f}or*EGsc>Bt<%i`7vvD~OU=tfAl_s5M$uM@S%sa2d-W!oT z(KceCbPjmYx8l;P z5=6MSV)L;|)H^HFQ^#Ok_`xU^y!L)*gN%dW@?I zein0lhh-wh#%T34{t#7I1J=Mi2XOnPH3?Qi`Wxd4V$PnMLP4J3upTEgT}YBW3t&Ra z5-%Jb1kIuexrO(?vu0vL9diIhu^{LMLw#P9*VW%dijr-B!6Z>@T99V`>X`&>rWvc* z>E}Q3QrDU=gPliWq#Q%^Wq(^{KsD+XTxnwR@iL55@R(<*EG(&#)#=xwB7iDRvI-~M z$Cj?=!0bC1TC0{09^%wSo_`WG`pIPF!Lq%nLrT!!V^MltLJ|WSDF|I}OXRp)%-z6H z1Nog~WV{CNdUE4LyytY!PyZZyR)g+XDzTUUPu<%}5_1zx)ZOdLn= zMS-rEB*2X~_@a69Ml~V!a@vxVVTsSd1{>S=w1$kyNvhN5STblmbKIiD&(A-jKBWPY z^m{2r@x*q6)to%eyJ>g3PD-{qLcOzz72h*G57vv>AZ5K&1$)ODv{^4&4LHBLpjnU+ zm0O+5fQ1}BWU8TlK|%Ca3l!5dYDdnwnL0U0*#`j0|HcDw+H$#ykl&T|N~4FAo~ojS zUJum*>P%whGR=OMAvmuhrIMi5a8``)ix;ngEi)jT4GzX%iu;D%?uQ1Ot6TGhCsx^7QZhozX=-QxEq^~i9z*<^=Z38lss@=A5RS?jeZ zURwN9I6Sip`JIrZMe0mu0j*YL={8avJ1MBm8cejOp_9p!m>kVlS1-G7O!p03lb0mw zFbeHw;Uy4JPyB-v?N8Kkw@sz+j;H(SIRugxR{<-ROXp7u7Iv00VzgyYbm6D{1BDpj z(ca4{(B5x+c!`WCh#>@z(!t+9Q#XtO}1|p1s&Uulm zrjKnQU72NuF_E)mWX{P4r8XK_wd4CuZ1az!qbG{iPi^e!uw5A(5I^TtFsI);LuMTo z@lbEg?^odp0cox~aT%Jz=PNIyZabC7?SR>^0`COn`A$P+!XL!9`{{P3B0P-Xd&DA5 z1R59!sq5hv?xbMY3FwV)umFZalc~a|giRXiJsbdkum1FMR&&oytn8lp$AfJAi+4H3wg|qS7azhY_2z~XG zJV#8P$Brz86dXF?SQqh53w3j_W?z9N8xmKWBd@Y-!JBV4**@o~%A`=Ak|`hHyH>rh zER1QZ2o9N>BVfj*3lytUu4CzNh6LUbpJ<OK~3itWggk!ZoVvHTsvVjYQBt6X3M)0Qm@4YwhO9`6g3}5-J^nasI zwg613v>Po2mw)6YrE{ipcS`a(Pn4{K_KOsTrhjm%8wF5A*hsF|r{R35HtR#!q{c;c zGH7g?9g_U$te7n%R}>L9o^IHYv2gE8%3gW#!$?gDqH^U=C<;LjsT!b0Ih2X6@vhU) zx3VeMarIGo0s@q?ZE(1k7g?4eW!uAZ5bfw7a&l`G)cMF+59sudsoG_Bk zk~5Ek>&=a??7*6UQPJ6=G0(+d5P;5RY};^_)=>jV!3Tz;>ZEGLNePEPfvP5Wf|daQ z2NdZ_OjxGN!`)c0h&4DlL)u<^dNX|k-~X_zt2;Vs56RQeFN7SqrPE%o(d0>EjufCr zkh#^Z2}E4wkUeMp-=NqF4_C1~S zl(pn(My(I=Rs;wl9B`Z?SLk$G#%;c6LoxKT z0ttAL#&NORDT*+Njcbf6OP&7P?IJ<%5jfNwLA2H#7e(h#IL>v~R()cL0iRvYaXslw zZGew&_4hOZh1&q?DW{Z8m`kZir6vw)CKhTeu)jDpKW5&?`FE$=eHlRS zl9pkt;Y*5PACPbXvEF?1uXX#mqvwqeU&tSS$r{7Kdm-yTbkur_0~DaTx_SpK?-~5E z>&akpdfLR-7ylof=h~*{(WYFp0{P!D-`8qCaR2q?PtMGkzCB(%-w=H{z0Wg!pvt?r zEKkED4*_@GNX%j;*2MdGS>|pp(pK)<=mmaqs?3E)55)yXuLcvu*ITv&r(gX>XZQ0L zkA&?VDw5+R)Tfn-WCZ*;5J3-?Sm+b5z|0b(decE@;2Kq)rkKOz;_P-;Z?1gx>p6!maO&8MT`jFlB#Rg#H;@r96{!}Qt zh#MDE9dUY9XNR~&!avSc_X`js-%WULcAagrimhFPOo%gMk@;KHAmk$uF;;s6dDyE7jZ*K2x3<>H5BU6maH@fbv=LHS8k<7P7tPh#C?QjQnD!8Ts0DC~jcd#XW@b&eYGvfcZCgX#sxjce zA_bWAFR?T)+3Ggu=bDa!1B$^zZ9g(gcJIK^5gGqsP1f#5E*4oX!S_0pXp10M$mQM+ITBC#Doc~&>&Cl* z^$Kh|yJll_otm23{g31a074)Fz5ai~$xdc+2HTxaZqF3_aR9s*bom^f&^!PlV(7m& zd%sr!dg-p)0a!;p%)F1ylREz&KfaI4#{X2MA?A&d3jXhlj2q2AM1pr+fe*dW;20`j zx9vYspNdL~D9eIpW*e0EZnwt9#pw!@aYtp_o@%i>GZD+bF}b>H^0(B2XBN(_iGIDA zhx9%7!ioh=wzxB;B1*L%g@Hv=+P28VGal-0)(;NLp-u}jAIb3yU2JNc8PX|8OiD?U zdncYnMF#0dQVqt`-4_=Do;Nk7$L>g=&3~M=srTdJ6!OHw%qExws%L*NZ;(3$swDDxgWiJoR02z0FqP|zHc(dLs$*)Y z86`eWs2U|gML!MS{6R5_6V%j$Up&zJ+^Ec4(^$vVwK>%Ji)xh_!a=%%Sc#}E(Qw7$ zTvq&Uj8uyov6|DCM``BMsbgJX$sU{E3pCIH8~5~s8x}o(hcF`3xeHlEBXhDSN~zE7A4N0dNBKRB850mIoTNz!hj^mQS6(+{PBM*Qz(=jokz{iO z?7qAx2M5*>RD<1{Qo>OU{McW5)W-lhE^_hD1FT9+L;sFU)?tgb8L)Fjg1yKDlpJ#I zDVu?5uFN(zbuc)De=>Jmi?4(|3a7pd0@6u~KYEqi-w!>`Co^Nu3O@U&uL?hB0#fmw z#~Bv?gCs1T8CqIG8N5wsI4-Mc3@^Cy-~&KWpCAA|`?ct@r>7@2;8yDm`;X})Nq10h zGJ2aa>jTmIwb7e%R{^m`1!4M%4yIHueO~N+OzL^oh>$4Pja+EBc1gteJ~R85!AC&k z*Yx^DNm@-*X&&RZj`|BgnB;6-?$7`!3N6tKnx}uIA%4!lfqeb4EvfdB>@{Vq(UT$C zM#$ban9&3Aw6<(qsw$Z6qNN9KJ`;I_ts?)%rwh(0KUa6p*U-iiQzA#Kn`t>b2Gco+oZwB z$Ig$R&xOuT6p}IE;@^Jh!K}I1M+Bgdir1p!EQ<>kSYhz6h=0d9Mdb5F7 zZuzvyk1zM`*&(pq@n7kZ5og$584{*}6#(l>pL{qAViK(j^5{rWMm0_GbF6pr0hY!H zGMzPjMz;*@?b!itA}#b(;%T-Z;%F(U%ve|D9um{1F+UwW_=L662?z&(zvl9bXD-CN zI4`?h6s~Z$A)Zb2)(kcsF@$JK{xwtzAd-fep4;PQ0gp zO|=*6;6rNPdByR$NBF%54xrO(0m^b|NdH7bue_-2Z)?VQW|OW9ifIJ{^A{0VQ(d!( zg%l5-1Cr$RICTLh`eaS*8X3I;@oy9c82^}6$rLbBLr@z=2aF!P-duxg(E7cc`gP#z z*SIkWAZEzgvNv{&LmALP2?_rrGi@%KVR@P&ssznw$jBZMP_X8WM>R68NB5KK$E`?GGwt6k@P*5TN2(;}dNsvq2 zp+dgafR`uf$0hG0fg2R7H!WIbBl+@D6tB5<9R#mm25XG6{8(^hY+z!S(RxlRioP;! z*%ACP7q12L$PKqo^P({leJx4TANYFNiLbA(*L(+{V*bNg0U#p=U*{T$v!kHh+5FxZ z4n7CCPK$D!d-30=@%a@3>8y1+u>h4@NS*l^)u}yM$AWqOWmd3Tf;~w+GG3Jz77L#2 z;g#wWk=%R|u_9f{^h@>W0I*XvEW*D;vAa0NLMi#q<%-)-qO0K+r3d`XU!U}OG^tq< zl9P$XIK(<=BM<>Exy+8!5pg*pSF%^Nm|8Q1FcOO&W;2!qiOZ1AWOhL~bO^#OTcI`H zMA=lh?2M5s%%n4XrWEML?Hs7xd>*%wDkqB(x1kBU`e2&RUC}3h;Z*Jlmf_TfMa{VG z@yJ%W{F8+h7Tz6bB{6~R{6$dr=+{e6| zcJM=e*>pyPBKCOc+=(3}^v5&!__w;tg>Zaw0<0L1T544|Z@C-Cdo5VGJn*0Nzfivx zGWvyrf+F7vXC{X?e8Zs^ztin%;6Fwn9RmZzNnYlJy^et3&;RN#S$}UocR{5X7Hp$k zCvbjO;6gi0iL6+)a(PP}S47_!%5;Rs6{9xUsR^SjsAGrsYSn>=JUMES6PT+U^Tef; zi>a1pvFY#48w~(Dm1u2EO;cBySeij4k!>G$!4_OZ^;V9|`60H%@+j#FdK+R$T;wwR z6Jt)wj;Q&qGWDx(5wg|`7FDHqvEdmi<1zCJ>E&L23EAz#Yp%Nv37f`&nrBY{4 zE$3|#aOm3$FXfse$3W%f;16g4JuK4e^0q_-527k-ShJ`lHH$!G7&DOSG+2ZfRYo{! zXR$dW;JA_|f`KZT>8*qp!~Zj#&7NW-sibB1(q)-X^t_YogseYkd!8gpGQ@tHwi(~% z2U-sjd5eiG01=M_yJj)-6(;jyDP;APrA`&f);c#MX{|imYiNMjYW+CQgRS53Eio}N z0>1Iy`C#JY47YBM5(!7x`;X?BwexA7&F6{o-;M?bS~c+ZJ#70AkJY;4$4lUS$;|gS zCjx|&uFdpccXS-C zi|vBYWKcWqkVloUw#&9pPi$fnn4YC{i6303`*cs^UDIhvT#VxCsxYpX^Ubtpbah;8 z1Kro++R%j~F=QC}wYeCuygX-RGY4O>HtzUri`-iV(yCAk2Fmaa-rD=G zKd=G^dIC_qnnNRPNrwhH*0K4|1n-F9wuWCWIhL=-Yhmb&LeG*!zF7hN>?!_e5YupR z<#wtf>Y%dVt57n5W>BxoK1u(NEPAd3b$ZV1B4*2+J^WzoYv(j39-0gXl+wKQxn=9) zZWrGx`g3AFc(kX_F*W9oslw6~3evythpW23m4Js%7GTs!xvamI$m9{fMs5gM4u^;% zi=Sjd%r1alg`nUu3G@PnNvGvqjcP*NbR-G{nRvFL7aE3L`L6R+>bhMBI?nqQ`45+F zK|H;k{XW`L1OLEp^z1fldg>nu(4(m z)3rpWl@(t)&%4A2=ULgHpRRf~BT+8uyEfe!gO|{RW5Y8z)G{%FvTemLaw+@#Y?0eS z{AOlT5*Sec-w*}~B+l_=j!D<$AJ5F1{g6QuT#F27*;H~s(Drb1QRQRyX8!sT%vgCz zF`d5B>*t9;UYo;gEu95ctir@eZNTIKlsZ$e838f3HweDeeRJ&!NbPY3~ZGc*%k&@zLF`#IJobHTrW0>01@Rls*UN1Z+1(=oE+6FY3oJN{;>x*939-}|-ga40!d0rNTW zR7tR&2(Ica*_aEu!S#On^ei60*kiFeIt~S0RlIJ4z+2uayiomJhXw5J{kswpgxb&$ z3?Nx{xOlxrm^RNsctO~uSxj{~A9tbtJ&Te2TsJ{D^qi!?KfGCe?C_Vg;X^((@O-U? zyF>FdON&iCJ!X|{S1>q#LlA9^+XXA7AZf3-;c=Yy;ueRcDrwsd6$>xy9lHe|OE`G* zM)Rh^?d0&twz$rAN1SlICpol35KN=q71=6qtabsWhnwClA)|yjK=o=<-G0EWvL3IE z4)KLOD4fJ=o?4(szVvK%^kiy1EV``$q3t9q`VoXDr!+NQ-LXgZOQgV+S*+~nu+Cyr zv#CKRBQwLx;wy0vVnNc)(ZY#_p7jCpI*9)`kdh3=A5Bf|0PcnYdN6s=E4iB5sp0l* zZ6=V0oqGKeZCDMwWQMY_wuz4U))j(EWg)a>?abggKN$1zB)SXy02}6ZQ|qn*WoMew zHpnmd)>j%Scnts5)!$SabgHlnYfYU6$|y5FX{%r45IY&1K@XtGx(#d)ty_xxbZ%&T zU4M5!@$jeaS#`o+R-FdZ<0{2%=~`U76jeZycoJJtuY&Rn*l%yOKmk!tcl6W)GA*{v z5*ab9V)z zrmG>6cI6vdNr~4AL@yr{e>e#rR}$iBZ|A^Gr_58qg-M;Fznd01*ny(qGjEZ{KIgX1 z<}Ws`i|Q1|y*6&C`YHDVz>t)Y@_z+j7kn&io}iOBguO9pPNLr-RLoEDdB@8U(J2mC z9#&phCeCuIbHL21mP4U#o5S_(Fy`*>(zvZ-L6qQd3(%LRx~PCd|9V)i#XB#rrkx zNlSqm`wneV*hnm#ah&ezM6P1;`Qa)_ZPO2vCU7fk*NMiVJw0!xDoy1)QQhn#FU4Gd-N9X8);iqDBMflzcv zC1*Swx&jUDj6R`O!Qat16<;}Jpv!Pjw7LR{F3WP_9$H%NDW^{lWO-)&lBI2W5PFC= zM?O0JJ{vI!EzWZICz)PDEnt&V6@h7%<$Nl9Oc_f)e6>!**t%SR4lwqQt_rqJbX7=|ca-S1}O1mpN-3%jKv1_P}uzhJ|Fy1`^YPwK-s zB|oN~76DC+cs>d3>-M~`DEEOH>odzoI4e&kSRl-wkU<+5gxdKXS{ctK9WPPfE6hoF z{GT-hbcgTHp9^lr!pCt47#TVAcs{jZF8~G@gVY#j|4ah|Rx^`UbdfxvPi2(0KRRZ1 zBVlbV(rs%jM`ytd2|}89wkv?j0j&3eqsQ?1*5&;!E8vSMEHb@sOdxo6w2y3X39?b7wW%u z^c35)z~!%&2JL{zBf8$HgOH8I!_?`?e^*^{iL-dJj3jG{JQ+Gx9BRf@q{9_j>r8lK zfvPC!Y1Tv^p$G+g+pjf}(Ee!VQZ`B}ng^gztFJ^MlMn5Gla1Nx=lR=%%?5A(F&-be zo;+V;2g|-8+t_9OI4<5rx3CB&nZ@&;3BBWZzSMfDRe`?WvfjDyepv+)1$a7kgikoG zV$#E@R&3=H8h)`TM6BNldgOHM6|!s&*AO$N+%^oaTM;BgR2tTp8CNqahC#Nu0P;UZ zQWumfyolUyjD+q-U}-@tW}w0l&CS{8yN#F{P~I}BWg{YaEDug;64S+L++lHjIua=h zF#hT(WRf90-daUHIwlo#_9H3NL*^?SkJ~G-1XQE-pmBXs%~Z|=*~diyVKFHVRf>g| zapxI8m}<5XBZExs4&4Rk+R1qqJ2Urq<5_4we6e>FP@ud&`=j6u0Jd_6 zo$oau^C$ubAP^&$WE~mMtur~xv)zUb9TPxpbk(SsdFDB+jNGF>0RB3YClbO!%Szfe z5U4E%LtxGR2O*DBer2~*p=4a3Y0wlDU9cpas4(EQko3fi@dr!|PEg?}W{2Wpm-GW1 zMecHLh8q?}3}p@e1%y>-UG}l!f(#I?@bp3tc24xAS!!V(b^txwmhpkQQsg}{6uRRa z)sa{vL+tXDz*!x<%gE7(S;$TVjyX^yn+;6i2u~)EQN-f4LUthJlw=2%{fGIwgXoG^ zlfZ4$dt<~y(PfPgu5>g=$WQi6YX_CcCL-aO+xixLgUP_;%f4*l*nkD^zhaxCcgL8R zAgm{bs|n#18S*G%I{VYYsWwO{cikU0REN5kw2MEuc#HNt*>W6z90B?mP{*}@+&RGS zVe;9#qywisPxm&H8+Z4I(f)5wgP7}uZFJ{#HQrRI4dLTO=6JHq z#~4eFjB&-7Kq}bS^XFo_3kf!;r!6v=W8`RgTeKM@SrCbTOWWrz#6pJMN|8BJd+j@w zNv0M`eH)6=`)4Ry%zjmCUPp9NkFz^0xi@kN?j<$>MrbITJ|B$Q1)cvu+U~zGKqNus z*zyu?5>F#Kpe)Fi0gUT4wI+(@CFt^tg?_}1j`3vGpxvBi&^Wlvg>j#mGwAZt29)kzfu7G(m}{eHbeS>zlBE zo7bbAsm2=>8x+U=Nb-o2cIu6pl1#?f zQmw$VNDa=e|GemwF+c@!@H@uOeHnS|&I!tuW{-WP@RNanl=!7Yg;e9Q6TG<+0(&8~ zmXFx}qzsuv;K&j;{`mNPawf=!c#c6i;&50C(6I{a&894?>$7DcT}3R)Qg~&^h)!ey z#Bd-K5xdZK7{+9!XKAu#YWjhSIoA?KDd6!)nDb^<2ve$s_8;HgywY=VZ(=S|6o4Ax z*;|)wDz|6?p$3DnYPP;Ru%a*@y89k}z{{_O^+PVJQqr>ygz4m8#NJE{vPc#^%($%-VEg8{kx)7~wO>DFA7C4W~Ei7W`hqRCc%ZojCis4J>0 zkG|)S4)HFpGwvXJh^#tIQApCJr}Y+qaT1VJ313VwCF%c;PuHJ{4!K+_=ED+w@|ad; zp`QXhC22a6_vw^HzYI5>yq984(Y&V8v@YGrqhnQJA?L5uiiy!IL)NIQG_t40eAP-r z7XJPfcXTS;xlaKFh6`S=Rz-*Ic&J-r@z`DsQQs~11IGk32*477%tfO;NUA(6v{0@i zypX_z4c#~-(M&N$$Y}G8wqVMDrR>@MMr&l8X$Yt>82B?RD9 zY!LGvCa3KKITl$LWBE*D!FZoF9L9C^z9`E&1aR(qvjJUzcIrJw;d}K$mmdxOU`Ik+1744nHUejjiYia^*# z*TGohj(vYzUWQN9)bGA>Pt;AaYbdG|I#tVWy-yJh@gys+ZulbMP-c8HU)mm?v8s2Q z!XTW`MQE8YKTVQnLf+3qY&0ibrAX}3@`8ooAqP!SlCfq04zWYbzw#fg5l6BONt{M) z6kA&P-FAMimR=Fmjsb6psv9ovtGClIIHF4Y2&?-LY{} z`UceqQ3I0~$uQEB-=|H@MEURzI6``HM!q(@C*uJ;$QS*b_+Xuto6j4CSL@u*bUf<^hhWZ!+}1;X#iZwmtMS z*oVtA7IOmquv}rJ)UvSrO)BE>+oqH`BCaUMo07pta4E@j? z8vY+KumdJ7O5(Dem|-UGO?KGl8-sX<9-Ts(;+h1PjzG82;yWo1)H(*Nm(p%F2gC?di2WytO z$&1tr*SY)SOAug{dcKlfm2%Ses|McqIj~5=0(slp8rn8Ri>r(}$HyC4R!7%=;a{$a zUA?NO-gCKD;c(AR6}ZO4xeMB&hi2nK1ND8ZRIkcr^XtjOEdh^>U%Wdah_6EbQ&4nA zL6L<+k1YoYqro_*rD&PvFt%zCq?BhO9r(wo5cMF3+unljn~DQ;2klU1ny)ig!tuaI zykdtbVxxEX@A3EnbjEF5)Mk2U!UGrpj1*cK(1ivh@QXG!{q-j&G@3nC0Xg0{n)*{F zek~z(jqowG%eT7|WHmib*k#wa11;-b3GrrsEzfYi??-45^jc$9<&@d)B<1?u39|c! zSY7dOYj-bG7@luxi;7jqABLiriFRjBvuq8Mljhzq$VFkD$^Xhc=0bq}%MPn_&>c}t z+3g=4Rn)UKY0n;A`<}xnRN{2>v&S-@7B9Ci*t9L+&;0_#$J zf0;Y8?f3oFX9*S(_?em|U@U4$6>)9Dg(K6J1I=l{fc4x-uQ4LQ`x!E9?@K%oVS>X9 ze;y}oUjFBzXtY5yfsU&(Y}(MS E_0O{*dX7pS~XtUSeGg;bn|5TDOq)=zD< z#<2zWP7=^E+&&te?%M|DTo!&&s|WshZMEy}5ugF{U*dj?TB|J~qv80I9n@GhS#Fh9 z7FKt%bXHRWn@&XG_?1QHSu6)YoHDLtfK}B>s%t~vD1g(KHfj1i%;UQ-)+|t=*1cj zt{f#gY+`1?Sl>6IAz5@`zl$A2y~Z*}t%B2Sx8Xvon6xhaY>1q@SGc%fM5-E|@l^{$ zWI)#T7G~DvwlJthYPZ=sIKml^R`-hJOPfjKJ+7kb_k?4=w%jjw07i++^Id--o_wG~ z!3USs_i2e6-shPnKKZe_ zNkfd3ZL}Gm;6N!kUGk<3384T1&NWkWW8_yS29xc=sqd`21oQ7-+-No!V%eOi`-=~v z=?Vu(kT~vqhgsaSCl*AwVW>ujl;PaQ#ZVp+XsLVWos|b+b>y@;$4yZb z6UQmh;on?jaQ&NWwvP{1N(w>?W3|+U%%YwL)7{t|NGc|5op}nB)is6-PG+aM@m&F5 z%iC(MgJh-b+y3@uKq{P{^`(YyP0Vs#A{|OdLOLI_xbgLbv%W zAP2Eu%z%W&QO!Xhcnef5t1i-PAf+&r4W!_}cUhLtd{r+9DdH`h1-jUvPh-$F`C1XN z!=L;Z^lIF49D&RKT0fUYu=spnd0@hjtK}~<@^YK5)#*h%<as9c*LcwjP#n0$yS=@nGIy}uYq*jgYK%%* z)+YnzxHEJp%-fruvI)@mg*N*DLBCH@pkG@AFeKom^dl58`R9Zw+@KDOD-B89B{kzJgiCPJKk3~4MD8#_$~Ik@;wW$?cINPG_*CS3ch*p zmLgCfV`Nmel08P%rGag;f_hsqm&E&z^LF4czwItFL8z6HrM7EC)4d)@G7xJ2JGa(M zryUt%LTaAQ%C_H!*9a@9$F9M1b36zM?&1hBd4lNS%oF(o^mBfXfx~gDF)GvlcoK28 zH{ukOX3dkU1CO4vQKkoXg4Yxo^k4@+TSFt1+>nH@$#iVwzZ`Z&0~mGmWs&X2I7_Et zS}k3?ykek#nLsf+n8HxE4n9*TSR7_&IXADs&n<}93J9XroErRe}CO=sSpr0(=%My$X7li*@cr0rnrPntDu zoUjbM!B8pT#&@9*&{l?H{;P=H*R`iuY|*LU+7lfc>Vw*8o?yqKH4|c!o6$|6D0tXX z$H)#$@DPijx*_t(=skD$!5EZlJ|yl7^TDK%rT?vye)FZ>KTx|mOu8hf%J62scm07P zdFd4=I=1lapU26#!=qjF3}3aJuD_)k~1)kYPZP;?6T!C>d*1}9TU@k4NIUXTa4R z;ncfVwz&D{&Zxv}1NbeuO$KQu{5MmKM-JH0A;xM1BcFL%uR*5q zuAnO#WJSQi`dl&!Tyva%yFWiiN}J8!Xu|dW6oscb5}H(=rdxM_&Xlg^7h=k;Bd!hP zBDi74ZvQPQ$&3OU^D4|NeGBEULx$bHbX((TWu{f@f-QJEWO#N@CoC1Ex4>vPt%%!U zl72xRY!frm4vdWIG0rPV?!~T=$9t+l1KgjiQ)@@tg$`gMU8-~}wS`@@u4tf~Ho*<~ zuK3TV$?JpAO`V*!L@(o$gNvx%aKYzh^aiA7KG7E++XODv0=FqzsyV-KdTDvh)|pn? zv^f_#1*=}uN~)&Lz$>3Fc@(giCYAYAqhXu>Pu&$zd4EE>fuipRB*Rytv<)+jlFZh?<}ar?BDc!H}6ngP4(2 zG1gk!J*}{K&~REp+bN?}riv(1QY#XQb|TaR0AD6BZeg{QlMN{%$Bgh;Kn-q$9gI&`NE&`cWnf99kHm3{j~?vlcq7}^kX~AqC{EG z$4;U)Oeo+n3a`?(h=X%r{lGRhuc;g7(+W&tnwZa9(Xcj{e?i`P*~j7$Oq1a}=JCh< zP%P5|()u2uOp#EHz8!lbrO;-@3o};ypfZoq#e5&c0}W|dlYd%!$wU4nip$)j^$HZ-$J*P^RV^a()oXHM_<{DIVv9cEG<0lbIKVkb*IBJBD0iagiEH2 z6@&je#m*K@qMl!#QaRVEOYB-p{t*8RcOYjV(|sKl>=osjt~OoyT#TFDk3x}rNo~-Q zR1WZDYUFa5j`q}*;+J0q!9DGnaEV0P14tp(u&4%gfb2 z+Z^V}NCs)41n$J2NM0%sW{!LHPM65vuv^k_(%+3=*|a zLu{w2s5Sz%3(GF*r%MB9w~ZA8n2WY1q)1oC*!l=19z}s+4Ymp@-exdPF8&=SIb)uv zvZN&2lFG7G4M8uj3$V7#S>g?lO;ReMsH?%Y0Z?Vt^mp%?1}uF*|IKV{laM7E$SDCY zqsvn5TMb*QqrH5gS?TAR%Rk=h#`|SThef)W|ayvq7Jbe zogej0yGNS56IyC_-Y-@^3w9o@N>Q{D$Z_-!eY~>a9*hRXm~fAafz8RP30~&68u_wB zLq4<&0mQQZ*8=K;ijW09RASa^;!=t9h*)t+qSIjlpBr}W3a7?Kp1D{`iL-A@Oe<-- zPcK+C{_B^xqUDebH919!H6#`yC7MnjvDZ4TY7|y1govaTgP-Qf>uOAk~pso#Vg%b{rc*ELG_P5Ecl zN$E+iqnL)zuMTj2MRafe-l;(`0Se;oWG!Ue>Q1(xjd-4^%C0Y>YJ)TIb;Hdm?!ZwT zg2Hac9zjLM3`ZCCV;-ibZ0w5+@PfVWtVbR{+K9U4Cl2<^9CpWQ4xsS=638)IK~hKP zFgcKYn!2sOm7s~b%zt1-j`)Dc5)93GFTH)GIm!~6K$Q5;0cuZE;xVmcm<*Ob=7gJo zxyA~n2N2+5)IFxyES&LJg{)y&VHG%+9P^5(sguQHjNKu=n7>ZHWrATW>mRK|HF+da zBA9Gc!e|hyX&L%V#!w0zSfTF36GNd!>E9^_@so=-!vL)|E?@iMs zdMRk6tQa5l?M(x9t^N2(+@h>F21SiYsnnsKR(t9_IDkbtZKrgi=3SLj?$}tP$xynq z2F8Ivb>aSNYX=wrfdf(Ey7c1>)=70sF%j0cz+TpdncCG?7nz5iX?e)2fS1CI_j4x^ zsobaI|E=j15~a>~pL9=FkX0wmahAoUWGbMs7vg)Ar5UTnb3(qKI-J{_D)Ya zKw@eq)x?bvDV%8$SrvlS=14MpLM|*GV&-SXOI}nPD*Kge#G25QpSAEWTX)G!gFE^3Qsym$|906O52NsU$vOvc}>peTN@f&vvJ0d5Z=n3ar%n~{ zz78*RN*NI%QLz&y{(x?{Exo37M? zY(BuXSCgrEzQ(njZ^o`_sIfjUgA$o!h3HY9I%+J@FDunwQ=mBiXC0BS^2D)0XhTqB zV9_$Ap+6-ocn~ZMCgv!hkl+|JMEbs?y5B7@5+tzTyiSi13eC6zO1E)*R*X1v=ka&* zNM8^*Q%aJ;bY+Z~bc!&^{C&(2CZ?Wi0%ai5Q1k&&M9} zw5Q9YNss{#I#6X#3jx|tJoi-PpoAP|VGicD#gWK}f^*eSvj`R9#%Y{Mk|jnI7A3zN zU_bP7@{g?UiGrLS@PN^icJraR{vgMTGLfw?iFh1Q11Kg4)*FGJm?lILRyROb3r^a) z;Ir9NLj*>Nf8T+aT>wL@3IBJRcH7y(J8b~WMOY7Gt$sja9|%Cf82tsu<5n9ABD^*B z>WYpMG9U?q$+icPm^pIXAGV%5vmO%bR_!y^8O<{P3_!^ROc`lfw>teNysIoK23?J7 zTT_dZkNj7&Pa7_6+TmSVygQ`{YT#J~XFPXYAWys2*&D`h0#+*hwdy9xCHGB4p_pC* zW6_!~lB3SVzXevW<|SwIJ&=@LOkj*RGZ zKJz>c=0W)~q|VH}HT39#DG`SV7+wKY0Y^~hzpQkdr=XE%hpT#DW>1CGZ;aiYP4oUh zfC#`)64ZqqYF1u0(qk^Lp@8uMeYl#VtSi6)NWKTnUmFAfVh&h#X%3l=u<=41s=-gV z;2JMWRP<;&oIrWFL*n29FU^bdbSfk?7tBHPM=@Dl@M!#lpPlV?$Z@5um+y^Q&ug8| z1?&0qz{F6&h;UOuLpUrFqJSJ5UQFKPAO}1=Wg)@DESLmcBGnSn3KUAWiLoI!+lkV` zWY`EPVXBZ|@OG%%%sygG~W1`PsAF>vb)D^`JMuiWau>UyHso zfOl@*00y#Oif&)Sj@&AS>ZNcp3jNP)1;uG`(F{z zSjfq?lm$&$=*L)u@!%FR^hM=b@vLksZ^K|L3`2k4ebbrG(t`yLc0071tb9lA@|o~w zXv1yMlpYz~X$}5`GdJ=p!`S;=hz@r=@WK6np~&4x=`ZO19wxXL-#_n^v1~=yO)J9j zyI<5A`)tC?rkns@B^*x0^k#mYEUN$TKEZHW(K6xs%@$ka{dF>Vdx>{UpVyaIKo|9K z;NMwOZgM;2)YV&tAFwl;5rofIIdPlk8g~Ud*H&fc^y1I@p{Ft``VR^YIi)bJO1UMQ z{er~>M9{AaC2q&=Tqw0&bwy;)5e8pEMkph)hK<5|QRtXYEnDK^Sd)jMVNSD>{K!TR8>+zlL@n>gmttXoyj&#?Ol4*wN&kYKA)E@S(CAP#C^he$LVQ>YG|#$pKFv7%po&xEQ|G7yjh01 z!Tx;To#1o>vkO=7OM~592b*rE51ve?ZuYv8xB?G6B13~Yc53d(cF@ksUPGYlN`DaR zC=LVLg(8E~yj+WJxuk)iXI1Mc`z3wxe4ZR+a4e`=bpogFr0x8?lImfsH9iB6m+fJM zxJwEC)U?`M3P-^&6o81(aa}+@t%0Y9_Q;UV&al|FZ-Ko@N3aw9SDLNDFlzd;&X5qV z0Vanuy0a8<#vyx^i}vXmZDHrA#x}m*ckd0a9{dJHwLZVE7~Yu!>{WE5rB^ou3q+mA z8PmvdX`SgclzJYqqvsD90vdeGx|M7$FNj5C*nV*&w=<>VG9TuSi7KXE>tYpWmDh-WVoXXRrLI}uB8DDZZ3%e+~_iqbG6`FR5n_wB4?oP zOx|*at-`VxT=&FE1G?bU8fiiTt866wMgQ4VAigu!d5B4%H$$yv@8p>|j*K zYstOcZ@gdKpG5ZA1_OrML*R|NQ!^O1wfttEFaGX(@6qB;TU{g*xp7??;(MD$w)D?? zw}sCSE>qsRbucz5a0aeB!@izoptd=t_W4^(yvFx4V1Z+*=k;Z;lONtA zAe1^|;VLPw>JVHK!-pLh-E3U37lEBuHyVqAsT*>SMTeEgpmxQ6&K$8@;ZhG$pVrCY z+YSGAyi!HR^A&$zwc-xLyVrdl8s~vyR29&2cD?m^$!a^~tKT z(swXNgVN?;FzC4=K_Z&%u0i~2d}OM@p)z4|FfP8_>+_Vj^(*`7Y@`JKB&v@L$yR0~ z=Hlbg8p}S<`~H5(*J{SBukPwny|8p4ulE@r)(ZH3IYHPBdlP5EuZ=PqtpxjV=Z8$q zMfg=|jCD)zZ^V4*(8_Q4(iWMd(+D(q2&csClb<=$y8mXj{8()LfhQrta0B-9vQZ0u zrAj}tAYIjSdhkw4ZRy8a5P0nCh4OP^Vq)2PUfn~Wi^tHh#%Wbx$jLdJ-KqnGd0 zkEWk~1Y>FmtY16Vf#b$hvG0jVfdz$;fnCAA;HaV2Df?CXjg8;CE+=)N{GpC6m{QpV zuUEbqeK63kzRBbG8^-+00_^f_qn)VS>B|~b(UwGKXY}BC@dPuwV+sB@X;J3OlsiB2 zY)k1lu6zDfSff!rEErA87XEi3(cR#Xo{Phh!?h2&cW4xqdPu7l-Y`8I^5xnT9fFz& z=SNi=HKgLZZY#O&K^L6bRZnTQc|5$3Y?AbTC?Z$oeqFH`*b*jvot~tU$n@jpIr+ZB zQmBA0NGvWomP8mEShWp_S&cVvlcy)V?Xu^A19AWDFnmX|rUSK8hI$~TTYoAKkcJfk z40X?*CtglpIs_uK-S#it{|xkJ?)_xD`HqF7YKK`sEq7RH=@Wgb+E{LijMhIHR`+uK z>y$%8uYKpf0K584QZ7{_#T0NW+-&K2_Pooz2d*(KN|z9mmoeNm1Kp&Pq3I5R58>5_ z4#YuGs1gi)4XL##;_l^TBBO#SWWbThKAR<|@h@lLpN+RR73iMojj7Db1(UMdTo&}K z{wb3oPP3ia>dS1(%4OUV+B|W^7aJ`oTF1b7mzLANh-b999A#GCl{9LufRZ#tI!^bV z?XK`D>N)d{Wg)rhuX`~@Zc>Axy+X!>M!B#h?X_#7k}ND0pZ21RuMs=LpW?7Y7^YvT zFjc!L4T0is?nS+Ss0wa%p@VpEaOl!n6DN7cOb;d{K6E>H%^Ku=!o-hWEvE7UNI5#?u29 zwS;O01Nl`yz7)_K-$Wz##UoXdSVE+gwGhXwEhp9Iw7Sy<5`Ta0D0+v(kIplPu_<;7 z99&~R;p8q8JBsUzjGV&c2$-4PB}Vk%*^qqm5SPIKu0>Jw&V}BYmZy$7y$UW>fl9w1 z2RN%SxH3n#Rih@I?!}tul4#Amg|;gxGxCLa%_L@IO|vCmYn?+GR+rp!B4T-g;5>%vJ7wy`We14U^K$WI>B9OET$rJrT$Z zw<u&DrylL?{}M2JU9fkU*pVF>8<0#> z`VBsT&d*Wf*7y|r{cDLSaQ?nRO>3J|DbGzUX5?*&Ll}K>QR<#K1t?WgM4IA)D6Q2* zj0uV3my1ivg|4Xe&Ykd1{o`xfX_)#=5o)U)4;P1T*!Xy`u?GZ`9PlDq|D$6zRVpIs zvUE0C1n_Rk>U+XC&#UMUu`c%u*s=Cem1bkJl#RuYV`W(72c2Y9i(uRq5##2+LoX4EvVRLH%aTR9DJvQnZ zwP$qMLs`SF>Hw{b5e9;uBhT|R$@zJw{8Jq+wWRGACx|BTLbaJb3_N-$Ml1yP$(35II;#Rm2{JOaA)7ra z62D~Lsj8wv`dN_-4mmR~(N#aHZbx*YOBYcc2=L-98(v{SP$o(5s^M9o6>W0)hhOVr zeZWw6o0)(Zc=)=gp6wQ9CAF{Ds>TSZy{h{T$RXP@;W>!Fh75*3`q4L+dQu#Hd}T*0 zo6PV-=(6hS0uvpVe2G!sP>HsKYF>=eM(qp{@SXZf+s?SlBCv$gtcmtGC`U8C-m+Av zvIe+Bn2*3G7cgC(8FlyelPJnXhbn&dzxoWW!D|+&ea<*@7RrjqxWd`&zYaChNda;w zI{jGm^Q$If?I`cS}_&eB}&YDh!rS?b7M;$UFN6B#>8R3Pqj(9WHO@V z_or%bx=lt_1F82@o%dJ0ZP#9~?rIDXs_uGD_5wc<(%_=Usm}7_zt|zhN({?) z-TPYkd|8RBW_LlW;?8rT0{o02mABmvMSdhl#KjS}&jQCB7jAl}&JU8{SA+y6B7W#hm}X8$c70CH7?` zWxfh`c#2-2A}%i1Q%uuD{jiIB?&|iH5il=d9u zslGd6o+4+xR%#epi&6-SG*A8vO;OQsaOUE+`fa6k9G35v+wdYFm0byQ2=Yf|MXfl^ zhpL7FCv-fi;08O-KUmH~s`*B2$;ujo^?)_=Wp!D>$!_wp)byk>G4Ctek<q2@WH*rn7)v&~PS zb?AHEL20X^#SX{!LgJ3U$ouFbwl94ezS@s99OSi67?8J$Clm z#LCmlyR32fdC5@r_wk#uqB>No5h^1lR~j-{CJ8kCgY1Y)u)6O34iYB8OpolnZAJkL zIRS5(t<-Hg41CRiz`&=7#Vdh_=-|jR}kW8Vsv$vcy&hnRyPNB{Fo}sIhcDlS`A6xDFjv%bIhv48~he>_c z<>`+Z$PmvR)r|JVhr7k>!ouC0>PTQ&Xl+$->zN{`MM>*M7OwIH(rsL7700!uPKZZ_ zA`y78CfFHa&%RAE4KQxuAzwzdT-$sX!;_(y+O2pO9X}14;#gf(oKxplL=4ikcXZy z2iBq|B;<-6LsDUGUalyIhc;FuaoP&XE*p1ag|dye*G^ik+G)ov6Dnx42E7k^>VCpJ zPA^I1XhYwKpp-^N;MUN};PPm2A%-W+Y{o{#2m9(Fi_txnl0hNoU`-s@!Eh6+HO4o7 zbD_$df}63Nm8}^VL@bb(d$XO6Ky5=FP(n(=9&I!v{!~n2Q9_*JGXH>(YQN|*b8SVG zMIGNI#~J(a3pQ-+8@cy<%kofqT%LohNlxrD-o`tC%7;DL- zKt@S#jTHC9FR6pHqcqRDP>vN3lc2ENdwqpooqTAY4LF2U)DNUg&y6?e#DjQSs>Y9q zt&y@-PwQVV#%N1e&#KD4i{r9F)N07fzX%dgjj!_I5DH-6WJ*ATD z@r*~zOTo;JHxqk440?6#C6!}+Q#%j{#k*bGv_sE7)PMdUUsqPU?ckl=|0Zb-Jdx#7 z+PA8I7{1s0Le0obBG~ZT{4k$Q=5dtn-D~YKPNN(DC*N?g6Tjr&lj1W3JWQ%fDIee3 zr>I~S-p!3@x8)6;9wNB!lhwEFb0Ai}V2@g3*!`Vv^gu4v0i_t@WHDKOS1>`v4X~kE3?F(n9nX0iN8x*?G zBfvn`^S)ZY++V!6ne)Ec5ACVHJD)xN^*s8~!;o1AQqm&8Z`(W$n}atqpp=lKbq*-0 z)kIMn?0y%fP}uU}Gd#Fvq_ULt;PW-AzP~DxKHc1SmU|KW+pS#!dcawtr_(wl#ocd* zG#M0YMHy!I2QK{&dYc>FM`>8!&wG*Qc`6ILUzRs8?7s=n<7vy{JSQNkC{^7oJ z!ndExgM{$kK%ZQ8&Pn$V)}Zcxi(|>2M>H6iB_WgVYWa}G5vw-Nd$f1p=xp?rvM#n$ z9!i$1zH69k`;$7#m`US2R?s(A5OQ#^o5jn?#N)nGy)i?HrQA98<((I5X?e66e z`-8rzcVzBv?SUmM{!|hBNM5o1@W}rgA3cF=@}7U}Zr;Km ziH`HKVX@7dfrOmz9%Y3zLu+2%<9gU$+NdIKv#<>IR62W?+Wwu5#ZUKgQn($a#e;0j zC5yMd`sgsq(J#DK6JDeY+E2V?Gc%&8dTA|`7u9Sjf0D>;w<<<|IDQDis53sGVYN0S zzcmnw!8q_@idz4eP_&IaNxj2Pb7enAtqv_Go>s?N;EXcBtowN3EA!iOi+wWT3 zCLPlQ-vmR?n^Zkqn3bP)ORBufou~d5Sal$&zpCayu213$2c@}ceT48W$eB_|$cltM zeSoGERQ1!M5gJS+i8RG9JE{5p8~X^$vq- zyR6J(&EJN!mNam;Dic=8pZ7;`i*5DdSh4Z&_V-2BYL^k^u%qO%PHsj3)c$tk&2QY zuN~s#0Mh45$@!JK{9I*kjsqp)92k8ae_nD{i(V$>hr)`cky>km(qm8u ze+3&FmuQw$#%njc`N)jjiZQ9o4;>_^v+ySMA|<=4ujj08X{bSH-EqJ79}VrSPT1F< zI(WZeO#Ft9`>Yh>bf#uzv+7{kd|Jdsb0*@~F9--948;c9@#v!%|fo zzsf7T$jQxH4$HR+G5lIm6<+caY!&v5c8u65^<9k% z9s5&@w9G?TQ1!TH!tYBYWzUu0XANmU%6=lHR}`A$=Ztr;9Lk_O<@&@#ptg!>%8U&hbeh6$ z&ypt8veK|I0Ot*=$Rz?sAfiUG4o~r+@YPz}<^2ULn*YVmmeJ9D{F3-kK zSV_=@XQ3UFXu|Yfu$aI4vy{Q>$R8}LJB1ysQi5J@zjDps?Y?4p`JL7JZQA(9x4KUs z&y0O?cP3JK@c0`@o{nfoBs-)A!#B9Z1?@bpfEv|aU0~>r_tmrHGIZ8 z1FT<)nzt-9pfDjFrReR>)I?h}A1VR1+?@CFPviLwkb{1p+VcOs@gfy;T8N5Qc3ux5 zZdc|~bvb*Jlkdm(^gt1#Ck!=pan+dm@W!#Q1?K+JlZs)0XzV(3;-e~?aHPQ@t!!g* zY$H2mEkVk72)T;&uYIQZ3$JjRf!sztD|8iy31wE~x`@(bB03j!W0CV7NH$-oFqQ36YW^_?X zh^`b^_9wUAMm(9lJ^y`r(n7eXit@^Py6z0?TaoV95T>WN;)INy4oIdruO+5gwdWXieQ$nHD8VvyTjSwW zH0pb6Yt|~EG==AB3O!!Pf-ZZlKh+DBm=lI4CW1buyQ6HTeo`3SY&x6JEjJ%|c6xEK zT3oyE56ex){b}A*ox^j;QmZdgl2D^Jz1#WTG@t#_o6$|0(O~0C0?vdl7G@7zX}sOB z&qC>mkCrB`{3IU^+ptjm|U75}oZj2WoCU!4daPdZwGoytDpH zd>l%G*2pj=LsXGZtzjr`mea3Bl1zxU($ErO;Yx7jsJV;B5aLf#1d%|d2CyQDGmhmUf@cykK^F_k7_P%a4$4Y?h zX(cUtoJnfZ*RdaIR*zM({j}uGUZ`<%sd0~db$+@q%Jdv864FyJyz(H!A?ndqMf%<` zrcYpt@iTqMBQn*>Sy5R$#h+KTa z(aL*V%R-9!9-pH#D^IpvF(rhR2@$Hql^^?16qwp|j$`i~&PRo6GFXt<4OseFt< zins$93uYbJbQBj_kMbDizEEwcC0c4uooOs39X?G)R+Xh_Op3;DQarYpBsG(uJ^5Tz2I{Z+)ARURW8( z3}wwfmFi8KQJFH+5F8m1!{uBl$($M5sSd&Kq8khERO%iGne9wRhhq8WZkB&8!)rAE zB(O|N7uo6XTr+g$V)ywrxc~rESf6}B3I}w z*W;xtpgR-!aboB+B2mWr7zVzvACVx2s|ppHvWSJ3n>zqR(oS;UR7N0Wnt|6%DWRVP zia$vfbwuvq5Oz7=DCx%M=^(Ba5jdt)J>k`bZ5^-fu!$5drpe&+9rEBG8D8rI&m>TX zE%Vc4qEq8!LUxKe9rmT4nSWec#P3q`(~7NaFy18!X0hJlTxt)+5}_YrX%5RKS^{#W zerJ%`Ql^f}l;@6NtM$f!5oyR123qrd-x3SD3j{!}iPbHL5pI?mYh9WHes(ZMZnKjCOkBw?8 z5g8&ZyL0RJe3GqqhsyNlBe4Ok;JB3nUY3w(%&ST()G!IPxn~t-Qr7yn$YY;7d|l@v ze5x=Qa>KBD&PxnFO2~@`f}srkt(T+sm!p5_+(s&i=IeMhrF&kPafexBV{$N85Ajhi z)G%^#BCu;ZMqzKcG={Y9mcpVy{h;SEZOV`{NJ|;EtlIDNXu#=D;wvZJ5Zul;ce0h+ z{i2+r#yq{X+SgyY(O1lhTclONzACbKovo(<`PPbat>T2EfArrrJnC%LS`|N5vq=xj zFYGMW307ZuRBkQXM)_9pI)Z7Jko8wYXHev0#XS0~kWX}>_+1K}uBvzB)p)!+yfF4- zqz1_niHZe>61-TxU3(`(wMzv}oIVq}n6)7ra{(L^wur&+;&&Ew%0_xZFK)Gl{%YOB z&a(KdrK7HwCGmCgjgQ<=xTU%AV51HR<{v1c@Ozba?adbnfPz1ieYwG$4*)2YHr)VP zgqobzXFe{uRNV+#ld%$}?{)2J-xM}_!S6FD-5|Vk_DCqGs9eIrQCMWJmU=|)9dHo$ z0sYccSy8G*0hnxLc)QJra=v80c_K%c0w*%S}1enmrpdLyO%y1$$QTn*HFhZ82 z-z=r6!>hcXlhX1JC)jeNlg#2DWL$%`4EM^7E(=tik5-nWvkkjBsNn6C#~B=0difnP zJ(D9e)EM{sQNzE@QNrfng*Wgew?#=#C>8Q1Y$d0lZ#%~+{Yk}>zfG2RV-GhO9g7H_ z2;6!TN=`jLnmEP+%}1=V?t4!*;AX{eSH zc1-r;0d#M>m2<82rW$f~t<8y?NHVQ-3WM`+klMYkcJ7kZgm)BE!}NwCwC@D@qpL_) zm)iWbD$TGGS+)JFO6pNcVfO;*(0ljWZo69)$P$2bx&ny}Ldfiza3M!mLr_X$12>wM z<48Nmkv^;UX*Shz!){4OES;=9K!A+ScE;U~yNHcQst4Ww_A)puxNpM0(`x?AlgMEh zb?9~I@p5sA$UkwJ>2ec#{}EtLLT-EIJ@!}YU;lxduz2Tu(gaWIyWYOyZ7%oG+~rB@3X&#j=6md*l47i?+mX+bQuRKU2O9` z?{w}czj7%jhF9Vt^^)#AKiGxk;RS5{tKfw-5n=@|MOF?0tF`}HaLfVHp&6^T;)xx*HX#qMyb-M${(;MFMN zJB8Rr@z@7WB|91vOGE*taI;}-Ul!epp_Z_xBXj~RIav)oS`9z+6sg=X&s-;|w|=Ag z*+Fk+u`Zy;;f9^Wu*oDlDd}LYp@zXcp&?*Q4p#>p>NA^2WBR6Sbar@#3oT z3^J_{EcxjDj+}e>iqAb1V%07atUgAC5tizLq@yj&mK1CCzWLGbn*;eQo7KvN*w$2q z$Gu2rC&Q5Y{*1mOW%?kGZ82Y1s9W_wYt*M-kx)0yG*eI_p|{b-$6_)jK<;`^yKB$< zjDD3h)N6*ga^Z|6RVVfbQ!})gw>$!niVOMTe_s5E* zQnOhT%_CVAWv$WD976KD_RR^f&*>&*II^C^fgcQY#>+AX5ozzn+c_q#sjoo`R5zPW zL|Yg-*v@@DkLTF%w$C1kIRT@_dfM;ippm1>3vR4uf|OT@_$~~y1HGR$)v^lNylu-q*9zhI_pzriLUg4Dxb7w?4$=4pRpYW8PO?lVQ zF`SW!%bw1XLRNh@p`VDpARxB%`@tvaS}rroGOXt{(c||C`^q;wC5my^D*HX=&q%au zR)PYh%3wb!{Q5u1Ov;FC>j*3*OPu_E$;>EUM>3i>n5=m$!zi#md?+qaQ~Lo4-{sD# zJ+eHVh*HibJD)$Txw7bgJ1j1Pg!(A>~9@Nw~_PF zU0Y#h(vz~y8avKmjgr!n-RC%#8FEEQz?qqSUlTUE)gqY=J+BnY!AD3izAM3RL)=Sm)sk! zIiHST><;JohA;G=Hu^)ce41_N1#Y_xZzbl>+uC#$bSThi9ziGt#tD-UTHJrK*e4$y z<~1Ppv|V2E2?z=*I`g2RzvY^HG{P4kjZk(7d+?qE*j?L$l%!YA>B?Y{dr~uN zYfRuZQ;n`10s<=?Ph#+~Z|=rgy+wG+7E`3qe2PwY9`oo|ONPKreV42L8sx#x?;{-rCy}|M-z%qDb36CMHJd zn~=x((ngA%q;Q6mogD|9%~OpzLFpTXpvw}-_u{Wox=25!`btr{KccFt&fA?R?&uLd z=c=l$H31#rW%1%Q8(^PiQ46~BUeShm3xO;|No%H6ZAo|!7|)+i4GCwEP892+%8%L) z30*vzow^9Xf%s4}1cDLQ|5YZKiuD+)iiQ zeRJC>$a@4i?teKHa4vGam7UextpECKOx3t2iee>E*A^F0))JbSn7sWacu*&n>d;MU zyxJXU3`V-LQ&>s_AmbK$at6jvcW0B~KzpH@hFQl&IO~MgH;&% zl9p@Ba_3!*a)(t(E>2GBgQk5I-@m6*;%B)OoEKn`M;$=54Fs6uz2)J~Eu*m#g01s># zcGiFWaC-u*(dA%{2@*1C;K9ZS2YwLV0Mb?%j_75U-lX&K{mmh&DWGJ%m(Cfr;1UpE z4!~I{@1ev`OH0dAV@5Uwnq)vhK?&G&XDDMZO9b4Z=n&)4AM&DT=QnbH=I7a30J(Dc z&_^HOz2%@Sg^SVw*f5H5l9wV{%&`0ltx|znnQ0$UkwLS-zcYlQa$%Q5Gk)!xsxXyR+5pCji97)V23=;iD7?4OeADULiV5a~0RdSZq18JBU2n1r2uO*M zpv-cd`TPp=ND6u?Rd?J?=CEHq8B|kwh)#nCe6n@9BY3%ieWU*y{*3U)L2`01N`mnn zfB(H~$vfAjR)icCCMQ={Ue=d@7PVm&kWLD!(SJ@qIIzu8DF`xMdl1Q=R7LXzF_4(* z;j*XPdin)q?;@@@ib4>M#5f5=0>ecbdVPX9$iGQ`ekE-N7X79goLPXhHEW~cg5#t( zkrp4V8h!}Gah`qmqUR5EZRQ zTh6OX+qehB3t4W`zfAZWU($Y&$t^SP!mysJ#m&WG5AaCBcx@1jB&DQ)UhN*48bI#=yGB&dZ#e8V1%pDBHsDeK zfgE%=elIv+w~maMe?W`mc^beCQ%!Tf>b<9@9#{jGhkqbAaPIcb8kO+`uyT)K5M#*N_qG!F(qz(V10+T4Gi7u(%cnXhc$1C9+VeTgz zfufX=5fLE(xCr6!Tz>pd4BgJlAflk4psM>K1z}tm{{hHcIpO~ZR$PdTQOE@lngf`&)BEG06fJ2@cK3q?B zfg~x;oPbBH@1%^=9)@=ON0tK};tZ{wcS*r%$Myh>!r1Tt7Nd~Y#UOl)4w&ephPlGJ zvg$x6kWf^N{$*APkI;C)uh0|t9oItOVwLdlXf(I8BL=avkc5)*NrF2t<*rEH1;&c$ zBH-G%VCEkgn__T8o4}&W3LuBa*>=(a=w^5@mG>nQ@d0BA3?byub5rmwDR7j{3-7}V zzs)y>h8cAm$ySIotdDLy=|jVe&V^{i(P+47k`{vgmBs1*!z^wD&-pliDwHts|EVJq z1C5jZbq7|04tVmX$uZ3&p%3uf(yFtk;gw&FRt_?Vx9E-(C{<2< z!G(@GD-G=Ije9RV0bqh?Qhw0uG3zJ|NE2%`e=xko)ZFT?vOKv23J zDEx6me{I8SjkT&yPR!TGo%n9|SDVLcaf&FjApL}=r&GSZT=K_)EiNoX0S%ZZyXc(( z*}XM1T>Kwbn;x%pY1P_NOn{4kZ7&Cl+|s2SnEoc(JD@PGdcP)8+2 z$Mvlv(qKYBY24Nx_;_Suf@sDC6s4;_IY7;b{RF7^%V_dI3h%1j!@1pY2h}|eeDw~# zDFqr$)V5ZlY2baSh0flqp_8ck7BFUEEx4g5=!SJY`-gPDjp`Pmr1@M2zJo!#qW53? z*Y}sJc@38EQ)&NoDtr?nKur(3E`%XM`ZGkRpeMXgf03&=k+y^RMn#)-V1S;C-@!am z6Rl^e(BaN_Jb&m73PRy2u)tosTG7WY$nJ^`Y*9Q5y+t04hUx_oyIzRLK|LxUZy!SE zUjR3PuL^*8w4c<`04idBp-j^xoWGfCiVvrXVA??=BO|KIj7k1zi>Pl5mU w|4};sr%w03w;~GrUs?Tk1pfbN42cie>RA>T(cz))5b!50p&(u&`rhxq0KVTM5dZ)H literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_30_1.png b/docs/images/specfem2d_example_files/specfem2d_example_30_1.png new file mode 100644 index 0000000000000000000000000000000000000000..4790226edf709f17be73b3e977073dbaf77be661 GIT binary patch literal 79493 zcmeFZc{tYZ`#$(svlZFf(4y6v5@m@50*Lj`idA-6;o={uKvX+HHp{zW5 zMCBBPLR&`uWn#onMk7`#MO)sCP95;1#u(fx#wJ{TNIe*#7#{QC& z*j};SB0|>A&JIrd#l`LZw>OB{U$zq8DJ`gq4`FsVqUS`Ru$z*9X`U!PwxQ5aC`VP4 z&bTEF-F5Ziu9&YDkUcGnNqglsFT!>FQPIpW9U{ zC}sx_ZuAS;DMU-V^SBVVKRxZn;Mv91u7!oIKUxc0-?qN>Y=8Of-OWUA7fY8*uKiB+ z3J1(hA|yHJmB>FqD^3-+@CY#l{QJjB$t?aqe;(C6!p8NVw+OI?nf~YHQuB?H8vpr4 zH<2wN%>VgmRB*Y(zt5uY%8cgU`k#-I=)X#OFer$$D-q% zw*)_1^DFz5L)D^&Z}!Yh{_JVko!i}{si@lb@mANsKGI{# zcF&Pi=bxWOCngTzEn`0)r(FBK^!J;w+utubTKNv9^b8ECs^PpdeYcHkhQ4MPhJQ2m z-EeE?S!I7(hLdlcZ5kKyNAztEI1fe_Yk#aWk+^rc?_)yFhw?BkQwjc)FZA~|F5bCw zCtl8d_fG9}CPhU>?j5J-k0(l3RD|=nCtm!Pk$U>^iS6g|L}=;gR&#O&e9ygTUJ}6Y zzP6U9_m$V|W#^&h)#R2B9;AG{EgrS;P)KKgZKCCQMXwo-vQT!lvF-|TU)Okcb(gU# zsu&q1TN|t`B&6AUUR+{tn%gso(8e!6x% z=ED3PDJzztggrK!<_#Y{d^ncJwN>Nb@b}!+yu6IQzP_=d=XmK>tSY~?OQ+^zij3o? z?w%g40yjr~HpYtSU+e4(XaY-wz6)~Fn+g`(HKb8Co*d~AJeOx%GWYklr1Rj(?8Toy ze;zq@OxepzZquesL;AN{vaQS~2OEzZIa2)b)~>GM&J( ze0p${|A32#ex7aEeYGgF?((pFpT+%gqUS8fW>OD@n*Dfl#cg?UdaRUHymNk}sH)Yz zC^D2?&}?C5tl-Dp1FjAEj^;rjA!gXp(dp@`h&56T4~}xJm-pbt)^*!`dvPu_Cuh&+ z7w7ouljXCwD?ipux&G*QBFiTY2Ac~Pp0zmQ!w#F7ZQ6h3mxWVelAJrIQ-95k0(L=p zk089SyE1YexxNdZpZHHsIxj3t)VnRrNZQ}Nb0@5`(?la-5A(xgx0GF6q;JN=NZK|_ zkWZ+-Ek0oPSmRCrKEMp2x!tHhrY=P>YP!Q$@Z76Q6=7W4X5RGn_opG;@*TSV?b(@h z-PH$N|CBdpnvdaq=1U8+0dF#liv&=T2EXU-A^~~tp3uVVKuW%2Pe}2l&rh`C_t^^^ zj$9jzFzFd;$tIz9T|oZY=g((mW@ea%j6H|<7EII~2*^40@EEg#xPA`Pnl)uRI_Hu04QHR7QA$+~c9K9PgfkWa$RMzyyv5%Yj9i=dd)w!7kaLt{5UvI}3HRfMn$)^&GxH#^nKTUky_wc2MF7ayD&Nb%J_i;sJ| z+uq(j?$)h}#|X;mnm>b$_t_|(2+rA@mFuJ>D7F**wY06c@GM#e7HWs@@?Fh&gsh&4 ziO{;;7FTV(mzL)3`}_JTumW3;7#I1-(-kAow;owh-0tyPw0hgl(qCVmV=0gf!t*|S z_`pUvmuVI(^kXK0g^kUk&~rMjb^vKI-EFMf_D|bu%f*dK98Lo1RbJWC3 z(#34ktX!C#KpLA_jF1#ToaA2kqKrJGeCW{F_lqyPUKTBJ_BP>Moq4Xka(;S5tt@1v z7S%*)^7l9P+v3I{B__p5vQ84Ne+*)GoMu!~QnGHi=ig#}i6Y}N#J}Hpuvn4zh2dN2 zcMId{&+BUW|2WQ*lwn!JucE5Dar<_r;nr7GFV4Lh9ql^AwqAy#tE-ENom~w{er&LD zvy#9gQ%-~Ab<(!QLCjnn8#YAZ;O((*Uq4Wv^6GV+KGkX9gvI&usrDW30w&*i&j(0` zAS~Yt6rHc;m8evS@*VGGcKOrx;jyr=a2JyMVGRwo6yEjgBXo?tc{+UNUkK6PJ4iF{ z8q6-JP>!Dk=jY4BiW?_uzIt@rvMwpibNWwLAiDyG=G7|WnXLm7f8^yN0KyUVgo=L?u9wrtRwbHiMyk%Y!{l^Q&D%T<2SKy>DmJY5U_14+$pR3)SQAg)al!Drd%e9OtL((v1q&3VKhjo*Hfq z#b@1j8mMDpW-h_mknotaPCxhR#29-7R=fw5gRDAEN=P`Lc$)Y8)XmI<^%0UtpgX^( z_r2=yp`)C6X=E5Jz{3+fI_lt4)Ha61$|LuN(GMw$X`BSW(!zwM!jI2WA7ZvyD&G4% z`t_WBNo(u6l9CeZFVA>Z3CLNG#Ye8&w@FHh%l_T$BOyb(M2Dz;K5?T6B;Cd=aOM$K0Y4qC=xU^HJw?U?$CO!E$Zg!d0#ivj9<=;D&)2Cz=3no zD?*Xe*cbzaG_U{t{cW?55XHyG2U)w~+1ck7^$Zj-qk^lb*PXyHw{1Jx+6?5}$LY77 zNIHm(1O&N?SpH(xehQUg1<*%d$BpPT%@hUTrhKp2tS{$R({Bur`td2qCoDYN97j&% zz=1?f&w;zH{1lh2QU--#-{pD1T?YBo+CF4Y2?`r!ouW^{lj9dI?4&DJm>b-zG?#nv zn=aDCI(d(rdrOpNcEtrDYN7K_PP*b}Ixp)`4`wGft6fKCM85FSM~T)0+Ry_c6N;Ld zapUFTsZeCh-Kr6A;1PB;V6wbih0$-Npn^ekd#1S>FE8)bBjI6TtK~fU#%){kUKIbS z7B8}(=%Q?=?cdQNX87j8j6viY2@}f1#01w5olG;;uUY5STYAprSeNWP`)tdb`fuNE zv+pH)T85 z<|6NT7obRzL}*7W06H#wO}CLwJcM&((V2; z3mUezA^<|qp0qbMHfGHqFRVg+^vVx+Y!2UXc|Nu|{!ezU$mt8;G9vN46DjNVU5Yqy zcYmtK-(URl9((k2F9>_I0dhFZjG7kw{dx|#Qs*pRk2f+D!Sb1Qt7J}ADIj_XHv$?l8|$5 z#K&J1^qHZlP28teo3MB6le)O+)KJTlGfz47bFBUGJ7%MuB`8R{S=DE{!^P=S04gJp zW6iOg{0d$&g6$?6moABYP1g$?NcKE2Zp6&aUe$PCZEW)A>7)a$tMK6)5yjVVAUE#Z zd2Etjw(|N0RzX2Qjbyo&v|&^^s#yigm-8I-8`*=8a-$Yt@UtgRX z>?kTKzMlBA3&)8B4t^s9D{DIa=f|^Z5g=ib@EaOV=3Mylama1~c-UVu0$K9_ zFT1dAw4Sg1Kg_(a?<`V#shKR-RZTnIVYE*)ob{E2X#LvK(o*^qZ*TAOO}8|}t$wyW zAjR^9elEA2f%gLmyX?Iezm8t1{`irz#=dI7;9Mj5`6;#tQf}<$2({ILR=_I%Y3<@$G4U6V} z?b>tUGn3(47gZb@vOxsBpt5rI?qHZcG>5QBn~#Z!xe*t)bxz)q6cdEB_2(z6+r1`^ zlW3d4DXn>Ad%E<-W;LpH<0h|}uF&@%KXw;2AqY3_+sB7nD+YKxJD|=HwEw-7##K%Z z4nJ&0PjmC=Q{HoqnXDgsxA_AYaJM{V4PK zkFg~{VhuSqr?Jf}2tgIB5=}2Vl`)WJ#j5oZ;p^yY%$Z+|EjT)~45N{l*XzGL*Qr8tMsE1( zx_+an-s=PX#XO$OlaoK2n3$NTa}~QK`OPWiFJBK0*#b_i%FN7sa`t&#i_b&5aqM#! zpnx0tlQF>j#6GUIYp(%GtOJDSio7MA@%-lPx4*u=V5Oix3n*TyqQAG-qV1jcI$ZnJ zurMXmOJKU7Z$_TA-LheQHZ?dPB##6I(TBS`#%|Z5MbaYQ+HEdVmn_d(8Q*fo^Wf4# zJz{nS`-lwiWWRlYQ0yVI_~-||%S*ah7R;9Q$&vUP-1-W{VQdaN8=Fd^v|aSwyOGy7 z9O$mOBlWC8B3ev&grPaU`Unti?b6bcZlOo+!I>ApIoL~lP;Bk=Eghp0&>)$XwQEa;=$`Am zBpinRt4pcVuQ$-ElrnY@=puQy!)qeaLiegk;T84F@ zPdgwhyN06jTR&Y_(#JAMdXe$qi^9|JYnp+c!l&nQkFFwIf`h@{L3Xa9=*H&%E|kOSJou%V~>!` z=3u7q1FX=}(l(%)lh#L6bR~Y_;E^LtMu?^7)z^V`n7Xl%doH!{1KO#e1#%o}mMob3 zq|U^~R*qBXINGTMw7UT?G_x<3LB#M4x83&~B`i+EV@*MBaijIfX=SgS21WsvI-kFM z_bFXOp7ec3S3l8gWv-NmF5S1$7;~)0)^yBW@eH|)ao}G1X#U`bpD@A`VjD*cV zar^UnprOduSL4oZ1{6@Yu3$du#cyIF=knN=r+t^VF?sXvy}*s*5b84g-4xpfYOM_M zbOTijAI$RW3aA8fKn}j!?g7%|-O}7e%0Yb9tjFKMMmoZqV1YOU1g-&bT zohN-r`us=kwl`N;#S14nukndrM~*casJlBelwIHOP@T`;!D~488`ZpOl}5Y-jp{Y- z)o#v#fq@Ji9q1}g7J6L4hIAp}liOb8C`s3q$>=^2s~yw@V$B(HJr z2*8Pa15wDqooIJmJ^=iP#+p216*Os3Hgy1@mGR>A{0+t*hqUxIt(pn;xJt?>gA>* z2d@0${te=4mv%b;#MqcAs^Sn3x21ZVNSB@Mo#Um>Vw80ITDniy1NIw z52y#2wckO3q zcJ%-LU5&QqeSdw5xPBd$tYp8-(EEVEKs`WFtbJ`Wy2;w1{3)K+h?ik&q%5h(FqzTO z9E6g&#w+>}S+4y0df83-OQVDZ0P~#V+roH!iqx3kcNhcl{&M zA};5%5FfclDugry?w+36z$@=tAU0rNECN8eB-K}S(c7}nhHh3DcG#}$c zs~On^YBG!pFId*sT5rzN`?c%ATp5-;8x4lb@{)H;4|BlDQ2$Kdz$gFYlLk?28X<4d zLf$px32@l;ABifc4o8q}?H+5tqNTa&Uq5#-2XKUzOPK12ywKK0$cBmp|K84T&a2}g zmF#r;pS(5Dt*|qwLHN-`ZNep-ASV}|y`W<%x@Dc5{%{i6s>=(IqnYRFhhbT;cRzl; z7z8of4bY#3{f*Vydxh(t;x!fcKcugd@j;;J<{&q?;072A{D2nGV)p!`W0#Lwt+xq+#m$R_IvsArNt~#UirnBg&|L#Y$rTdbH3wdbTy%9i@SQF6nUF1 zEiKJDi~V&$<-VK$bD&_hKT$W&b`2A%2cOb3p7tZQTT{VO|;G|MSor-2BhJ&_7E(Qm(1ESWcm0$(U^?#>Z!t>FDSf zSa0(;;T-aEac!phP7SSjZt!~dbFKR!wm;UG+k)q0qs${-W^#b%5=pUx?)F|_9ukZc zh+J}kN^>Bq!OGjV?Ec{70ZdfGTils{<#(LkchGV~cleE#*CN@z@Go!7TCwu+n%dg) zdoO%80pGrw5B>aMt`HNn#;z<$CZJW z9dW3E7{1#sgCyhtAu4V6ebfdYco<fYHqZcif=5vU|2GB{pnv63r9&zYg1#zV(wtl;s$7nJ zhX9(4Qiz?B4xI;sLPIyp$*l(wQ2}L;-d)5XpW`34LrVo&hJav@6{*GQkV91ISFE_N zep@WS+;?G2&CT826uP2xO86;odmP-{7TUMbjuI_T#%qRJ(X;F9vmnNmYe#L`+fgPX z_c?$!Hz@MiKyg4TM6^SQZlhC6_QA8DqtnbPu7SDd?0xRMQxQZ6bYkYAm5g*i7CiE~ zopL#qSM+hbc1uYSMWe->eZ&5sf&#f5yH@S!x?nCs>PKfxCZRf8#_>YE;1oXA3EnB8 z?}R=myme(Kv7`X;D|YAEW1mA<4XGid8UoEL8yKvIIxK$iEy!j$ zkIDD8uPqx#xiY1Y11@55rEB=~54k5BD*WkC8f~ZKq0XvRhvqeZsfZSGAUCm0N zI`$l9+pwP-=n=P93VvO}tenZh((;+uzHQr9kemxNG4^3w3enM}ve)df=HTSwYAkSf zvTey?K(ZumG_ha-4apRIthV+jz1EJjE?f@(c^50wt?*|8V3C>f4B#t}egN z@}leKXJ=Uva@zrk0mULvAlt9AzChc=)mvZjXKC*DOYOTc{Jx8S`AGUF{9Lx2larHU zXE9Bq-1JaOAj-)2$cp!pUNa7)?2}G)&+|k{FqkTqmXGcf^O!?BN>kiZakA-=!FsCj zxu?>7KGx^nykZWBE@{cIQ5Gz(sK^AYiMxBZ_HiM^VK&NJD9|ZWMazp(JYojT{o`h4 zX8aUJzeqtvqt9FS?!8500-5H9&>~`%;QmMfdHs{V@p3mUBQkN~Bq`}=76Yor)vm8M zr8MKb%;ca(X5-zg0=ZI^x}b%^uU+dFTz8IZYsrQtbW%zlfLzdl*#*Upj5KF%W@TlK zsX?-h>g(;L;tqG?&o1EYN|um|B|yBzB_w<#JTbZ|Ntd3=mEnI4pl>c0>V6l|0!;e) z?Ch@WNvr{c24JtOs`;52s!|~1orlXPQvsuB(Pjc@OrAb{YMFiMU^f38a`f|a9kMI&^6uj*Um^KAvH1=D zwZ8UA`g}wt+$5Pq82|zfpFNiQ6B&+37oH=9(<1%wnaL>MUfGpN4g+9cDNbI)YbPs+ zX5F|?HNaf5bnO{9a)h0H<2rI3M`Qz}yDSfz1_0D9PugIZfQT<+ z(}4r)2(5VLOl-wmE(!-!fZShg<l>G07U=g7 zl2&@pO)9~$0se9q6)oO=Vw!*{q6g|qysXn!LZsuXR-?X3f zFNZ7niIRf2GXW8{T`%iFtvl^(s*s@9C=E&b1>+xg1$diRT@MD3*s7T_fum>R8w?I!C+8vcv}*({(dxDIy-xUvhr-Ro`AMC>V89Slw)Pyf16^W3CMv z&9rTM>6PAh+U`9u7>Jw7MuXdaDErE9ZAL$kcHe7U087$wI%=w`!`HAeYD34#1FLhk z&$0a;+PQFOeN+hSCE=$aGohdO=&=kNvQ~1E{?ElRIcc0jbY9EG-6;@gGces@g#Zl^0Q_~n= zHG~$(uI<&&LV(dsu#QZutcSoHjuKEkkG2~Q5C`y!KtP{uTeHrG3yEKp_cPF=NL*@@ zfe4Ocf`HV!Tl9hefID~YkbZNta-DrADR$uUwmfFUU3CyFSuk44N)%QiW~lb1>t$DV zU;fl)8HN_H2YJlWXxAUrfo&uC4FJ@;kt9u++EJoN%ImBi(?P zS?-^oo?gMg!d(m&aAr?tz9nTLN54{_1K4aM`YHk&K{-0WS3r0=WQ<~U@xljlNfFf^ z;F~i+C5afnTTgP=7xy*U_$%qvh-D^DM9<7c5qb`9gd|aBz_KqOk?r+@uZQR{a0t=# z8W(}%KMdW{{u}BSa}ZkUY*uaM;;*zC~#c(^j`oLVr|fSNllP0yxhkEyi8lk zKlSHFI6&W#@A?-`2MFc(!?2T#*f0n1iI?{z#<50Fw@YIg{GisXn;xyi-Zw%3hoy#5 zQd08SKZhex&5-xfVB8`EBLPp?%bFxvE@--H;1ca*_lBchG4t#^Q;emMfPnlq?)=I& zA?pQY9&@%7@2NX?>?|#}688!YlsWE!7~7!kg`<=)EAJ?8*sYOb zn#PDvup^>hAL12QdA5TZt!cg7bpSB!5X@ebdqCfW+)!9vaDqeZ8hfa$^B@OtyFtzW za)o{6%HX1+qQQvGD8JiJ-t()V#(++g^PJLZvyh(?c?r(yCMN=$thUq6VoJJxE(;LHUe>?VI52cQAg;^dO7uq_48N9#T_E>l`4b%K z{*SRc0>SW&+U}KYNn%)2%SIQVCeocCYp6~? zw`qcek%sF1zPh>$Rn=l%U6}M)((qcl;S&O}_$C0gUPFmH=or}!LhK;hfz(Ou-;zGYAhMw~aiQvDxIb!h3R+@FJiG^OCas!2G3w zmnE(gV3|OKUk?hgjO(BEKC^v%UXYIyZas`cV_f|08y^whkw^*Q4q-YxNV?A1LzI!q1EHxZNapA_wJMLyxeV@ zsWeEb<*>YoUF||%S0q9)Qb-IR6FTxT^x%!)(n;81$;#k=a#&h$2R*2E5^v0INK<8n ztAGJAZUq!VNtYpAIL2xH8?HgHNCUSp z`1QrQf`S4nxXyHV9|<=E=VGv0;Z!#(DucH$QMj#9wY)4&bl6>Cw7rD$MQb={d(~Mi=|h99SP_4xsXG3%26e-xs5)U`kQxu?ORUdXjF_ z^hjjWrhwVGxh$|NUvn?&OhFuewo~ob%5j8#7Wjcow3Bf+Z9;{y3SAop}6 ztAI6fG9J@^YAIBt1LjXnpFR<$UKf!vF+FXC?YDxC$SVqHX_yXvqNbxGB{(=Z6SQ5J zm{D=9+@`!WzK>z%!IvtSL!vZAQL%&-j38KBhy?+9ItbP(!h3)=DqC1wBv(v`qkmV7 z<6y46)KeAJ0`5W=S^UncSNlLIaH9oTFDPD}>HPDQ_QPX5gn8%X<|h2St#pi^&3u?$ z<+p$_5wS<-G&CZFG+*CQjp#}5`^Yzu&>Ul5 z6y22W`z4;cW?J>a_t@}<(tqwV5yDm+r{v^ZW|He?Z2-QoZ?x?!HA?Al5G(4P!1CMsE>I49i@m(rN zKMtg_Co$FkAN_Cl-^N(DxBh2#MTtzb$OqvBZ4?qJwmrMe99%Us2o{KV>e-jEwUMZB z*^@}`gs%W8dr(_D&a%(u19CEqm4wQ-(y6d(&bDGFkR726iaZq_I=9)r+p|2)vBmsl zK&&T$aOoKtH_6EGR-o>*}RosI(}H{Iqm zQ?xv<2o%F&yA1d57D(Ahe26#VnMK;Kt(*T3dv^02K9u2KuR}NvG*!@k(h#zsSQGW$ zS=A+#0J=8bQ=-GYd^DPXOK~f1E(95wI0KP0%HNK>3rFCy454srKBv=kYmt-;!s)}2 zOY{b!77!vY?aIt#ljeVE3aOBH-Ow`<=J~=~^a)@HHll4^UWKM?E7g5&at9GGLCPm^WOIxjzNxkAyaA0M#-U#r2mBP2^4wZ z;1V44TZDy4QpV@Fyr@RukVIjh9BSc$TEFr*bFUIQc10pQkB(Idn&SWyo2r+WS3`#3 z0jaSa710|H5!dpbi(lDLz{`kT7o=z>xbcEo{3p|8Sf9LxqhEpgu$qrA6dZy{u^&yq z0?GZPSHkKXIdP&A`B@8Ce9M+Coy$uj%WiMCX(s=}2Vr3)V7Lj3MMKAEf|wvK8U#gY zE1a`_k|FTVn4y&;oE4P32qe=k7$8>1F5`%Hf@^?uAP&>oF86jcAV-cL-`h&0YN6#7 z;#CM`vV)`th74LluAW$k(fu_SxMvG>;18x~wg@bTC}Gj605<|U$8t181iyC?!~^Fs z2W|_(XZt0PoM~59!YU1mH^cL@@RyGewFUT*kgQ}Tf{Yg+|J1zXem{mp(g}242^#U* zNYSzYsnXyZ#^8m$^W_TsVgDv!Fv#MC^Fx?@6x^LpwnY~`>qmqWMCt`}ubc0%5q(`C zT+-RMI&7ih{ai zO>W6tf7R|0PGf@Nl&h-^x_~6+*?N$2L+~(Jy1@9)Lsv{BILUh0-J~c(NCv%4<3uJP z9qXHbd+U!U>@g+MF2-2AzJooCN7g3}eulp9gSW{3FprLfF;>04ke|_kM_1^nGXY$FP#07?jZIAum(V54piNQ6q3m+U65I z%o}BBT^d39lH>9B$Q#2C?Q{ z!e54TJClR(D+X$WTQ24W*S-<=BS)?Z$)j?iQcHMVxD^){0_rAJC5&_Q@87<%JtDO) zS5eRa5(npv=x8D9=l>;G1UNwfz;Ni45Y~DHd@`_WuzW&)6AnZ6Js4(S5v8Trw&kxz z7Epz#0HK7S?g)O#QjvBoW?<~Wmh5eDVut@@Qq+g!JGD3x(eR%lv6>@G>E>9ku1k^) z#5X2XNOYj063y6Sa?l?JCI}0$9j_d^l!w|2iK(s(G8P#>AgYMa9O;OG+nFBIZzfD9`VN=`yy#EsL zkr?DV&=C9n5MlF?yHx=MB*9>mmzNgI&G zAPu~j0v^iIbP`NH3WJbknvQdphDO}#?C5?pvr8y%c2@Mf2iDVAwa;L?~ z1`OQu<9+@8{bUkBadDE1c(t&0t3k}(%+b`;tRg}NG;UJ1z2<;Q!cez}VqsZ@i7+|> zo|jLQ*cUA_QXuTVDHcNxfVqFchtgc+tN859(*Rgi?!#&plC#UT5|6uTzUqoP(S7{$!eg zfzZS1ruaa-WAw9Yruu9C({>Ht=5=Zbn@3bsRb`_mU&_qfYs%RsiDSt309L|l3NA>y zM0Ci0CK}<642Z013KkFQ1#jm5pCi84R=@-c_sqDOrvoo_F9T$th zIdwANmkqmxHU>zP@@cAYg6Qo&zp^*Z{$0n9i$&~_8LxEoVV3j6#6*S=1QfisAF*%C zmxRAcGes=n@l6TlKWqE)K^smf+l_B9lumVhM%OJRc9 zk+fNzbln@dwk)nP~{gy&QvN%}6KoKQSq3N})GhYeviwY!r2Zb@oBIC3YjtJ`B2f^Bc zp}1y5aS5gY>M7KEg?SB!q5q~=SX6IgQeMkhCO}XbM1EjYsY-sbFTjbGV+lz=(4W>p zfiDH}FhA=KS|uI&bUFk(C@i|pLc|zB=J~LJghQsHX-WC=;@s_5k#KCGgju>fn7N^8 z4VXmIW%R2}l8uq9YzAkth9YfMw>~>7zqtyM;qFRXt}-+pJP*VT-^2o!_%0U;-3?Fe zR|!wZgXGV<4jSk#t+XH$p?wO*l}lXNa1Fe@HzcecCqWSr6+J$cgptiU5TzF!=W!D} zubKe$n}HZfXz2kRkk0rVuyBQk!+@2?hATtOHy|)2hACc0KS{XyuPCh`iiIyYVM@Sd za!_juz%LVtG8;pM?<;LdB_cgA8h^6@eiL(mn<{+YM<3|kQ$ToxyZ@ScXoXf+P5gez z0w^vY@;?DgNd%S@6N4McmV|%adLrpPHoGQ+-8}Yc7u1tXi0s7aHwD3$igTk4Z+c7f zB7TPowkSSVep?8J%B)@3wuRWY7kuEa<|_lI@n0cz;mftIaSs_}$wO!H74#4<3~;0^Y0n@Lj?`{B-3J+&Ua|;LAF$ZwS{v4dl62>bFX*zH z$|;*MmGmXUFp+1+DV3=eJW3qD&{dcc^IULH(5QH>-H$g=C{Ze;vkl?gya;D7tRH5W zydnFK^sRo@y^YnGXsVbcGDVj^1agbFnIzsUfhwTs@jUPt#7<(__rB19)(?$qFoFY1 zF6tpOJoq7>?J5P_b8{~JNC*xIId)B@a{Q$s_61IY+9^jxX>hBy zc_R?hV3sgVM`JvMi@5fC4@f=Y^@D@UE)Nu^=MZeAR&cPIK0a~xRMG&r#Wj?pn)z!b z+n@#Z_wP%_U`R8(DIcKeOewJf`P_e~lTz%j07Z`1;|nGuE>a&F)P z`)Y4tWtEL)HX9}DpR*!sxVx;P+$VImRK z;Ni2c|IbDbik?_N+<=hYBBQpdhi~LFr+~mJ3O^Vd(iLkZqAC+%W4m2Anvs=Q95RdB z_}10lXBk>xs{36K#aq`7*d4?4sF?9P+p}xH#8-eOa)cN6!_&q8vh0BYzB6pTT*;dF zj?JaJoSAgr$X1YSZnuP=iu;v=nMl%tFQ}VQ9H0r2*Ku2=#9p|TZs+Z7(TXdmq6GaA zV?4$~PeSw7O2q2jhv=5?Hns`PFkx!R+%D8u;Fi3nUgm_AMt(SwOvX?t#UdGND8#4+ zdARYm2V6yw*p~_MOvlVp%)cK-cjWdKmUhfq^8wNKG-0|ub#T8d9J~DH0Z-fg7IeEw zyC5tatchZ+hM0iqLGWs_6=D2MAVYzaOYM}QcrBhtQLvK^ZihI|@b|Xzul?JYN~PiI z69OGtg=Sj&D%^p*Tz zstD8F*s?a_Com%h|NMcI?kr0(P%u=DVIj_fa+mSmqh#%ckHr=vg@SK+_RI(&r%E37 zkY}r>5Xn_aat3?|k*G<}>$u268D9R9IZX!flakhh*D(HC2LK2Hh$ecO6LMMg=*L|z zb+0TRBb@?vD=fJQGZg=(=5Qd>%RY@rhyqnEsHy0z8&cW{JBzg%_s* z06cb=&WS1gn{$$ec!C3Y`~j9g7ImYdDBWwYVI!d+!otFCLW>sPWdA*f85mL8Sdm_d z3F+0Jh;4AN6@v#U=I7dQas?Z|A7Y72AQ4VOUA+vBG1wZ-`c<_Kfy+F|u??FHF9W}f z1JM0&IPylwIwF9x6l&}< z%Rol-EzduF2$STs?`gn5+dl9Je2gwtyBgatYe{DB{Edu&4xtk^l-o)}c^{ za)kzm?!EDoE|93?#HDDyzTD?#KLXi$HO9u_G9so@^iUOqz=2rPg%aI242mcKpri|v zFyz4uFh4RhP4QrS8|^k-v~MIFdlaHnfS0%d)*mt3Ngh{%R=7`6nDmI}3W46R52Tiad(f(Z+h{*9gV$=f(Or8Wn z5({c&1!Pq!dO*?)E=!KW1J(_*ZZV>33|C5qT8^NhfzRU_jRPc;E`z5@ivWD+RXTHbZo$v#%CrSvyDI#-$zYj4@gc4p34)T1HD&jMMoKY#r z$H!Nd?DZL();&Erf^!bff`4p>#nZpKlzCl>Eb*n zoz9Mg5qMSJdi;IXFIlF)`{GxTDLnavih0R@QwrQWN=f^HQR7RN)fGkwm;e4cJB856 zCT{@hMj|gEWM_8=uUf*v6nNy0M3 zyLRnItor#WS~2s8f3^+3dn22els7O|a%KV)(kZec&L5T8Cx(VGf$2W$RM zg_rcwPviI7c0c|@YhKgMauI}|bglD0MI@-lQ7~6oh8tJf@&bccbs1@oAe`#T4PZ-T z-X{Eey4RB+xw4?M>kqhSxcCB<9lI?y9RE?qkJv;1*I|iFnZ5k~K5#DJzYk0N`*jRj zWHzL&bLjJJLjA$G&r8WVoS*Id%z1aw`ZjjNMs!6 z5~%bd8K2cSu7{LUH|#j`goD!g-Pm{IOviF|*DjlpaNE$&>MXC{*aXYhH?IDx6PR73 z8Q{R^@s?e*t7iVQmfiVUS^abSo@VV9P*C}hb$-_IhR`H^nCXGi;KTHMJA=@>Sd{Ud zYDyb$6{<_zW0-MC-?ZMzS!MA{=g>%uP!cnNCn=G0vN{(I3%%26jfuLm|{t2M87 zyQbF6*CH_H%^7qc^|3;^fXw(pTcIfPbWk~!uHh|*OJAM3=9O<{u17gMig`vDto{mn z*zGF(8ZI`HE6bzXH?Jdlprw6(FCd_g5&%bV9$w@SZ!yD^== zD=+3g#%z^c@}@e1p$sf6{#3OJD5t6^D>u6wVd4t9oIkHBKK=4kR@ZNr0Nr6(y>r`M zd>7lbi5GWH2sYs!6ja zH1DP`pN)+tCJ&C|@o$ntN1NXUUa_*LK4)7`pXzFGmV@s4?-d4_k>w5A&YpCmjoZZo zIF!X3WSOkOcW{<|?HL-mF4VSC$9wGajl~;WOa259eM+nNmywlDLzF0p{kGzQI zN*Eys!$`^tF1p|D)alcWFV5{FLJ%qw#+?o#DL7*GzkMru3>>|35F}fEOM^BXYJ1H^ za1?(Nt5(M*JncyOQXk;X`h;86qF$KBy0^_Zp_spqQ(`Nn8{be1P8^ zPyI<*V{T~^H*~z|OaBh?a3x28ZsI+KC9{f<+T_`0pyRWu^iIbeP);`8SK6-JED-(v zbcoeTkDzTm&sd!u+}=Ds%Tnl*f_UUAXA5@^rV)bBii%-r^qI_^xx2_BH>eI578Yt@ zKud4kQ@IK^JnW`2N-zo=n{)BoDhioDPWsPN&6L2yuZC|I%~xBIuW{!Fw9(Rd#Lts_ z5!Yb3vP%Jl``3DU2u^;N{l#2AvBVMdyXT0wLtbsKJeoGE@uGkP*M0WSlFaRebN^xI*Ft|D)dN8=IrP5OHD z9I3Dd6x71zL>{uRG=Wv1p};L&3D$y!f*zM9DcP!|*y zHp25mo)!c%P8og!Pgi{SMzn2Zf>rbNX3u0(94@*rlK_tHjKyGqd7ZsivhtF^F>{Nq zH7k=VGfZ8SD>HtU!QPdO$s<+A{@&jg9KR{mY9FC+1q~=Q33CQ5q5cFQDHvK)wlL9h zOhtYc-(IrryGO{+RGBfsEg^<%I;%^!1S|(K?hg>^6|$F9lHubl6QgG~{pQcOH-NfQ z)R;x;o#5X##T(nVG7TIwYgTP|L-&}I9>L|* z70T@K7HWf zy}!EK0vz~`u>IyQ3_a|2YCwZFUMMN_>&8`a+96K2K!(7sSxyZ-sH`i$#gAE8vH1{( z)2#l^Z_UXPBWgS+bt4%62IO1$?W$4^FUgO`+Vc z+PHB@m#ok4P7S4+TlQY-l{hjqX{>bosDfL99*(I>7pKK0b)k*6@>|@POS7p~L(dYZ%%@|S%!S>5zaF`A zqK&FZQCvB3e??EZZ#4f`W)H4Xk6%}h4ss?3B+S>HiEi*t6V(@qwEdlVeK6E+^%8xT z7<`R24tX4puHSL6%6U_i=gIS>)e)gs}iYI?x)%$x_(CUyKpA&40>87 z{8`A=?)zoY8=blAah9hfjyGi~I^;b5q?Z;imqni{k4WOz;Y1`ct3N5^J<1V(|7ocB zuHP7DS-PoRu8u^SZ1r}ph;tyU~(RE*k`_+qFWnB?LhBRGfkDr_E zN^be~zP?b%T&lfYqm*XwsZ)-te3CrJht$WndH?!lw=aCFF6?a7d7 zzPA@DvN9=oLf1C)Tdg$< zR_uijZ1_anuRN5iI+dnNuO|8>eV@TYMVCIG0HM#yrkwlLUMe@=K@c3bo&7Vp{erDh z?c0kk;nGy@of{ckBifuVK1$`((@Wd7Y1-|Fp;>4J)oL(E>d@Aqbz)r;Bae98*Y>OC z@81&ggZpv#;a&a0w@QBwYzlb3>XV19y1GpFjW?ScFL16n9?ey5)~zjax4P_9I`x=R z`WN{}18&-$VP;lU99%)qmCSUjbX#d;|4Ob8Gf_U&_M-5LaL|`~D*Wq4ZjUonGno~? z)6AM|PH`Aqd}vVkE$ZJ^o^VuoyjfE0XqrCLxiEnhqOSb(={7o69>KA(&#Nw~vix8% z6~5~iPs!V}F8G)dTYg;x>y&c!e64_@MC|AKc12sJQUM&kjo0IqYh{KsKj?1P+qP28 ztIj+sqJX=&)i5nR<6%e)HKrQ^W2-gm#mB}s{a?(-a9C&{q6Q_1f)sQWF&)v z?N1E>5`@5g8)@OxZ5!zuD7ZZ z8_Su){`Wy;nzgxa=pH0h2r6+fG`c>@>Ab4**@E4@h^5|g_U!x(GSbySkEQaWBGuKQ z2?@Qa4*8pOY-0}$(`1EM6zpQ&5FYDv{8?)#+jP3#^evdky!xPM&DuZx1A{8gziRZ4 zo1d(>+!A**0w#sA{bP{GKzV_f-OTr35e1682535vojXjD+i`MkqtVb>G=Mw;u{j$W zKDB`cV-I0-0NJI{Mhe+nzrTHg{TvzwVkG`Fr#14rkUGIL3|)sjMBW zgGEPvTl~)0-Ddb~_wscjJc0S7rRf2nTL=9F0-=Rf$8iuJF_+f@01ttd!CGbtW`W?e zRRXJ9EUewPjZK2R4dVL!c*uuYs1;N%R7t0?xuPKX+PWp zS)r=?IFGZ7?W)30vUBoss%y2>_;0D5sXRNAUL71y*=Z)M@R#2*M~|RM#Mh{uvCN|T z4&FW-tR$Gr+d4a2KsNXjdJ|PYxO_ICMtj2jEH%~X&KS6MV9Y`TN|^U@hQ3-GAQ(Y< zL?{uPLBD;*X$xkU2sams&`Y;&y?M9)iwka&2thTo5Qp!6E9jfHbsw1Z?)rewNcBl=4tDsc~&#M@6_{NrL})DN;UnwRV4jmMF$3cl2R!PyD&N1$or2dycL zyMnhtC;(ffNN#|72s*t4K@t4n_y065FhUz&S&4xOm-Y|{caFhF+ay|2oh{;~_bAuI z>#T);sO$>`U0p$b(o8EwM^m=xvP(-uHNCp+(%KKD3QTI>mkPFh^8fuQs4lKFqsm|C z_deT^%2a$-AZ0Yq+KU|2G=k`7U{8Hkem@XE96r-FR9OiS@05mpf|hX02)|jY$oHWs47PP6U(-!h)Z0Eph@(tKjQ? z;fn*gl*{bk45;dv%75?fUP<7;e9Ps{Ceswm=aE@3T$$uBwF3kif)4conF&JgM%6*t z9|6*BM%c*Dx}aWxBn#mRO}-yt-lS2abfC5^vQ9ijUr4w8Pq~skc~r88;j`c48I>mo zZp)=JhvzT&TCcvY4RzLC)>UL}x}lV7;Tw5#CV(sE|L%&wKNP7qR^$Ki77(0tC^mS%7*RaN1Vh>5@`Uv~;{JwhyFVH5UQ8^j} zVqnj;czBmR%^J^=<5qU?-7j?0V?I{|saQz1rsw^O06_vjydFs3k>8U5793;^1zVcq zsA!J!ClEmy49-cWyEsd2>W@WpUSL3cE&%=n2QFWVz$CmeKz!8T5iA7){{nGCDWFj} zm3-nq`fktDAO4x5JKTcBw>!+;5dsPbHNgFVUUQs9kXm4*f|VW_?-;50Znq`qto3ts zP9mccc{VH)H@ucW-XN_%wv#ssZM(;Pw{;GByYu(!+YQq)r+qc&lSK zPXI;t7h8>`v)}K`AwTQIgMGA`_Ej21l=GNY#S)V_JGCtbXS-b1^T$6~w&lmKmKPY` z0U0(ImthL>|IQc3r%%@ zPx-8f=~P1xE8kD>lsnd4I_#GaAX0LIC{JicGz|>dP5k|uwX0@Mmm z?(qnW^Jl%RT(THE!SQaE$^30z<0qm;oVTM)cJB9WePn6wVN)uQ1e3b|{LQ6u8S0!kqWJL}fE+S=3sd5ZXj z;6Am3zX_6Y8N@+6DhN+)_{o=Ghl4yU0YJb6%B*^DS*{SzZW6`tvNSP-JNrGyOkbd1 zHu?w~*3gc6Ml_RSz0wt5Pg7({gc3NDanr5=x`m(F0a8h`Jp?j=&B1&O*e1w*SO27K%GDp#;HuhL1(>wG=DFYiG^; zt;7!B4K7zREh@_KzN93k=E%(+s`|F-$~KdPZFKh!%F<86Q`{bL3;ku84)UhRCEPlZ zIRScdYN$tKu;MeY)`X?EIurGOWRwha3jUPW zC7?kD7a%~Arw4VMm`#G&43hEl^f4TSUc-O;eoZGfqc``^vmKfV0HWPuDX)7Y1H z8`8U<+ZcDU^M&V8+L~@3S~Lu8m6~$QFU(x%sBUn&=zLo=yv8nV8K1d!VZw`VOBYs8 z*#my`_#$~@8qf#Q*Y0mpBV}1d95!v(TX_}ghd^r!3wAKBBc@enBT$rl*atABAVFIE z3?xT@Wb?h;h(pi4rVH@*>RW}w@%UG_zCF#pZ)X<8XtH(eBR?O`FP@yQQ1IN3XL!PA zN}HniRPs6_!V^rt7TXiP2R-kqviibqr`W8>PR0%-_h*|G$aVX_)WP(ROGyWSo3{F3 zclZw+$`g`3RjFY-QY~U(r&ER^2AypiYn0C1cnPz5kZfm+Ar%MKP2jGI7d}bNOxOZ# ztDVWHe2JfUc6CT4x!9wi7%LuHnp2&FQIwX5!9Hq?CHmD=F6~?iPH7xF!J#@m1+NDa zXGA~)+luww-7xTG!8%+j=r8~(0&TyWP(F05ftgGLoV#Fflyvr5>KFg8xi(UD3O9 zvK_cHCILJk1i>IM%teN)hbb_jg~i`1@J^r}fwLGv$nTMbei^1@vRy8I@X;>s#oJF^U6IKm4pY&+}K%p6-q`vqe; zd*2$JDOBB%UDS~zaC(kfuL^z);jNfExDrhCkk7rY^5edftVQgLKXjyCO;4S;wXR$_ z4qEy6z`0oSeL{IbyZKH-`od$0)A+twTUtL3Gc=#y77cb^^?TO6Qq_XaD{n0%nn%vIC$Xg#2J zH^ky2rEdhKX|P=wSHx`3+Y9cq=o++b)zpZr+>d9am!0#KO?1&kr~Q6Y6*w}L{;`Rv zZt|QaLi|(e9rP5A~LS>oZu&+K5X-g4LYh7TXYO3Uq4}RRi{ls5h^jvULi9^=x!WW~R z6j`+at4Xu`@f!q<&x6v*)lCv&QP(O5>4t~CK&3DYd0_ z^kyce^Ah#V+im5}UVpV*Rf^`GevrE;>{fETw6U1?{m7tp;cTOnx-F^6Z^Y`2Bf3kh?QLE(6b|E{97b*mo>zkG8wAS%vcESJoj>yh& zkltuAliv!x&`=)FvH#0}_er1imVcdjgK5zNv+HQljpJB!k7u(pd^xX+7r1sGS4cPd z$)8b^gelNT6W>tr!n1SBKhUO}C}mpg7wdfco$VSd!yl)`caf%Mw4D~IgWY=+t`%(I zoUs^ua)`2Q}?>;cOrKzPPgH@IxhdY@)Fo+-^6crbdr`PK5g9hezCkCxinmiAc~;kRKYRQtuQcK8XQ`mF zt)aYS-;3Avxl~9nY$~=cFP(R4^J=MC3s{pyB9b%sTj#7NZ@*oygS1TAC}iSi~@zz19CS1fIbxw zcTK)!vJ!&0HHmF(n@{+!Cel(ss3Qn2(7+>+9AI#`wE`Y#3F-R6sGw>zF0x<-EKKl!fMB3vrsv|Kg$+DN0#jzd{sr0t_%AVt%o2=tpp2y_!q^8H z3jjg@8ki;+O~nD*!s6knO1{%!J5kK1@E>X#ichzU+(YH^oVs#1>l2Rh`S>pONsXkT zcE+O?D_d-8LVT}b{nOqvGZg@ZJR zOYdEg`~ajR2PN4!pebNVqXFhmB-v+F5Z()v`mHc6LMkAHFO20f>)omRw6qZg(OiM_39G`tTA=6cb+d@g=G+CV_iYmW2?HnD6Qpr0NQ$f6@6BI;mHhj1ZKm-O{9h!qn)yh9?GD#no< zH<)2Fmp}fDH1#$ym2fxRT&GOu8}TFHfQkJ_y?<@o@2*I<&5-wrR{rJ0?t zu+HSkQnXT2|I|rtyEz2&4&T*l7?lTaL-{m`I2@GW8|!QT0;6&SmI0E;{~D70S1ZFf zJq1D?=tNXipm5=b3jhxy$Dkq9`+YU6+E!K(-5Fpz$e~RV8|hR->>oelaZl$CezBi?T8}DUJJ!FLff{a zAdG?0Dtmwb)^~MvwXcGD0N^U>0D0wA1}!b1@w0vNV8}T%2YfR4!-%M;r)3G>joxvt z%J&2ylFRtG|AxV|(D4Uuhl-has#PPEujxH*&%gufj9qb+KF!A&Bt zv-_LXb+_S$9rwMZdXMd4W39HH?^lX4lsyvqrY$D|yJZFg)`}0m#j~7XU)lJ7&R|(q zZKA=z8E_~1MUMIV^SY*KdFA)g0G$pULmaqi5DhIG=oAo`4rsg!B-(z##+J0y_c1jG zkLIF#^;Btv%XD>9MSt^6Ws6T6pGm$$od$=3`T3T-n?~N!sCMzW-U? z!9DyRdB?5)N#2q3on%wF2{hQ*Kn0$AiSXGFa3KO3Ks|y!d=h4$V9?H*7h}yN^9}oj za`4sfMeASCOt<3`dlp&5?J8ZkBltO3v(1s)&Y?Xor$R@3GOVclp6s$%^3KrdFLwe> zw{*LNHdsC{GOCvYRg+pySb7=a37`!DD>+C;{ zr8Ln!(PyPqtO`yHj#(d=s&m_&+GZogb$INqlVP3RK!$epDsfoh37*NX>Ur;|Xn)J7 z0)zi9$&lpn>HV1$K;A^cjRnUj1;T3vVVXOLV`;dR*#3jBLhzojYax%n=!NLHq&%mu zB4lA$$be!r)FwFsNq<1_q97#?HMR032Qw<7Uq*OXqqAVIg-PtiKV67d1G)`JObml& zrQSx07q&of1!#hpA3-+jyj0;rE=?%(Q7ACUT>&ziG~D~(P^N&EsUGf50(^p?%Kr6^ z#rq60f74a)j2R;yPv>F1)661YT>LxXIeOq7C)WKv z`@IU@``c}IW1B`VM(qS1Iw40WqOV1`R}l200hu5Oy8u+Us5;m=k^i68mi#aKqeE{* z9TU2wjxA37KHwN)Y{t41Tuel2fJL3eA@fB&8u@4gQbQNUTqA@MAG}5Y~{OD!@+MbER6L| zO;L&HWK47L`=iTiq)9bD19*G?rS?C=RFq2;3uZG$r!SpGly2+P0EKZ=uP zlyWog9DfpNlT*r)tU+jMyWc|Gqvx|F^`m^^o{O$v7Jl$f^pknUBNoY!s)ji7Ql92w zeb~`6Gc=xPdKYV~S=!Lw(5Ie&HsKHJi?S(=rz+jo(C@Z7r(cPJA+y5ntimzpJN5~U zH`E1C1DIqc2~{8d(_virf(H`G3hvsU`r3(R`y%uWPImYirAE6XL&j;b;O;e(u8>!* zC3>1Z_A3JT9R`tX(wTXQ52bhcm~I+iKC5L=Hn6~z`Dp+8WxGr74I=U{^jZaLMuM=W zq6}3br_nI9j+Py@y&+=Fy?IuV&4JR^Us$E+W}$`6WN!KC)NLOsy!^i{%pNKFhg2;m z?H0c!Y{oj9$ghx>Pqt^H=bB0wq;cOk3UB-1hpNVVheVrx7N{&Z6J+WKxy?;ejs_SM z)~V96cTJuubei9t;hNp-mhmg$QN2qZXxV2ONr{Y~tHKH-iML#k!@^21z zzmeXK(bOwK#WQ@syBkUj6u9c^EZ(dp z!u)NQ;j10Y2StmMY}};hBkg(;yPVS-AtFXXOhv`r--!GoOpA-ZsmY@-M|N*t|>2s7P2%G z3Z`Z~bgMNBD0NH;O^GoR5T`U={opZw{G;{K$GIZ<*4(|mp#?5yvRu*TKZ_*()~q6{ zv=1^(q8kL!4doyXLcf2HvR+c~6ClMax12Aa5QItJg0+OCQKdVzJw1HiWy-vxms&=Z z1&lsL){N&d8R=!Sca=IG6zy=g4JvS$GQBIF=Su!}n6pYpG1WO~Ci+zoL}{QSv(mrt zM;<$nk}UaYbZTjgr0Zy`HTv*q=%NoVQ|*X#PyWywDem-UGJ<1jBAP}0IvbWj z$Ii;WSSSDAlffq|jKh*)r__B$T(%Ro=9ftPqim}78nzF+QShP`m*5Nj!OhUVsy(l}d|_A=7nNh?rulkX(S)7fc16~W!k~RZWHP0?kt{0+&LR#j zDqGo*DDyLtyYJJab7ijVFVV{Nb?xIB4!^9+#?s2MGy?fZxiNRty5}f{V)hlU7hhqy z)a-YRdZd(G@dxA7g({H^n$LzxrEGqfG*6+ws*@3(z3vud-QFbRx>HqtEL5zB5 zQxaJOgBYc49ge*m_a~~jxt@!A+3kJdRtQBMPY}BCbY+U|rTHD%!!h}eN?unUQ%Qja zB71absRdmr`x+q~U%eHq{aCNjb+ zHIVQ(+Q!Z5sGp8LVz*yphKiNB{+Lcpo#5z1Ui8F9Z7wX29;B9X9{`P{r*0lQf(k|XEFF~o>ykqO}_k@sknHElCW-3Z;7YorM|RUyE`hFCTYJOxJhP}%inK| z@d|a8=GAUKVD}G=nUhXt_+ppE)$&q2=S6PXDqJ6TPKC2SemAX&PYxd7YW`4U_RrNN zlDcANbc5HnP{5BN%kLev>RZso$^3ZYaK%}NJYvCNij{asn-G6i-15&DCbFz-pLI^c z`ZySFD+5kGU{hx~WNfICVr@9QvQRA~7uX^wfL{@gn$hRDQr~yu8hg0RROC!1+dN54 zzczJZK#-?g>}p9mZ}d&`rUg~J!smehJUL@qZiW(sMeOx;#~z4UvK{$`NLn9uo!XzK zIX&!Z|7)v>>-b}gB9&eF6m^zED%g0R)iEsl2ga~C{YBPK*P znmAX*aDA_~_dwDp*PQx;Th#rY!SdpcY4A%PpjqDk3qi&=t?*0gcEkjEe;b2GeKOas z(ps3C&l;s3q^&-|{W(&6NpNJkEOqv9i|R-;YHM|@l@t{hFB!bGZXKb)Z7TM>=I0S= zo$bgklH^fofT~!SaY~4XQfaTWC;uS3!M>YfWWV-zEG{6r+q>tXpo9x1BHx3bGDVv9&_)Igmb&sctw5 zyLOA$8tpKCk$#`-QCIEJ#e?6Hb9}Qn`Dn>qC3{t|xohwQPeR+|sF~#pCGX+VbI<+q zewi4Pn8Bu1LMpB^O6t&aUgX5Jw#o zmSF0=Q*B=r)7R(&*T>pCkEkZ|^fJfk>sqPi_R}tB8r&cK%GzY8COAx>m&m-+D)&EB2c`{!NQSta+~Qpo0*JMr$vDOUw9upM-Sx`$ELS#pwo zrF$;LHm%On)UDGfxIDvEafOK^&-|I|Cp}!Pa50M!PF$-~)7hiwHir|vI*zgiZD)VZ zhp&spW1+oo&eGtk_QaZ=bR+(N7hadbK0$B?eP~@jw{*1TFm?Id>S%}FR7KD?((#?O zqm~a>-F;NAN=!>`DqY8<_4gT1N9A0jw3EhS@dO5g_Lb*a9|UjWYSS~GPW5uS>GejL zU_;+L-CX`DxXO7EM=M8VpHnch;Q05p1C`wahAF(ix}DkFe7Ow0_pX+mbBr`|MEbZa zOXJ9H3GLjQnC% zvXj?iD&3RyD_Xpk-u@sH_XtDFUFix=QD5ZNf1IgN!ijvVaLVK5B76mOf4{Js+>yn) ztXe-#Z)JP5|D=!ZZx%z#1GWtr|8_ z{F5#gX(>Bu zBW-{i8P!q~D!g{yh1DKrVL!A^4|CM`U)T{0*8RzQXMitWs9!cP@X>Qe&UD)88S@H0 zB`D-19u@P*d<(srG9$LEYEtRo6}NHX&cTb5YfDQGVjGIMWSzr zc;xL9RTwHGtUq4+>mXL4zauo_j#A7`vNq zvUvp)&Dbc&XL#n;;)3-u*ZGNK(~{u}-@QD!?Fv2xNk4Y})MbWATkZK5bg4!t`F-D6 zOSN{ZZ_*WZvwHYN7on88%Fgs7wRLr4B^N z&yPoRj4iFvF-g!|3?Vs01;aUWuwgxqCt6F>i!sa9w^D2OX}c0whg&nk^NAm4f~G!Q zU18j7?+YK+S(3OTnIv)B{+r1vn{%Akxz1Qcxi2NlzR?>VT5&g=-J(AX-w^Js-c64v z+W2A-i*0%S!X!-=i3|VVQg1GL(jE_)mjglost%kBQV_L*@Qab|86-hc5ODzJC+q;m z^*CG+9MS$P!m7A@inF^mED~Z$x$d@1O+jjAa7$6y8qqI1C%Veog=FWP6UUbrn;QoA zGf5kWIh0(%TZmeeW4^9NpVA-{QPs=ylvfTtn7=lVN$+&IR9oKN`2GLkaj40SRix`4 zhQSn=-Vo$Ist(!ngKr9%0f2M`v1pWf&0Pma$=LOx84EVHz27$;s(Jmt{9$5_dEPnl z&OGM%3yHmn^>faPsxtleN#&X6ZkTv*5tSd1;*NY&R-+zwA{R&0^K3xqvNknvf!vH z1&UX}ck)M|07bHhK`O&@x@!)|gbfJM89-sMtiRtY<{OrQ{*8*-8)Nu%kRvXK{^}bh zPRrhMUsd(5)nw55l1C`A#t}uak0c^^g6vmcTptm3bLHz)1(aD*6{Z{#S@-5c$}{Et zebzZ=D2?~*>*@Juod|M4MZ*IL+?I5^ET1>G9U;pgcxAz;$MnP2xBs7dP|M8zM1Rl? zAo1TUHD5;PNc316P&Jq4nBL$^4CzX(qzXzl+HU6tkxcN~IyL6J2%PPAn#CO)OaQ7m zIGT_3?-n_SWCu-(buTQ9q%ESzN(Tj+q+Cw*unsrvMh?E{w-(ctxVadrIAt%N*z$PT zGuqN$xT7a^KWW-tPuh{Lq)OCR+{Mva`{FzBk`7<}WsmRs^OwZJsbVCEA{zA4RNZ-y zj|F_Z)Im@rvI6ZECefHTkgLTDoT9R5u)`Vb0f`Z@>cc$osT}f_K0|^h67dQ^<9G9c zs6Q}AUI)kkBI|i7mkIV$wMTtDl_#H=<$D_$;6##1CMKB$r5js(Zr`p4$Li>nY$8W@ zLB}^LTg^y*XN{5(mD0_eZq!aTTl|UFKh%~j6s|AU0mK5_;0skIv0pEAR55Q4A4_vx^f#Mpt zq7a80!Wn?6|JSwe0F-axFVtZxj#xBls+cQt6_#u ziK!Okp<8?xCiZyS(I-xrFv)NNKnDD6GH%NN_2{Us;Dotn_AcTe1kQ6I?en}LPdZNd zM?f*R2dY8#JwE^$Blb&3Is)xiJ-Fq1J9~iNPx0EBuYlPz+YtBCk@NM>{f3r}hG6g4 z53NW@{!)9@c`g&6?#HGRibzvaTPvNW@Xeb>&s-gOc%!A0qhyo68#(Ia2q>0&v}lzI zjv8t6<>us>>NRLn^Es{r7X9Eq90{?D{6!B$0|apk4}7|>3e6}+ zz{=LtKeCfXShfA(@oD?8s)O{DvpZy7lWbp)+9U0ry@yuN{2=j-@L(QOk3OYrwn-5x znFCk!%c1&Zqv7Yb%wM%OO$~#pKIPNCCJ4Irz2I-<)>9~B$f&?;v(16sipie|mTiq7 zR}Mk=vH&Cj;SD=zR_PfTNqK{ct*5Gj+JJEnPz*%)4OUt3?Vp3>%dV~iY80Xa2ls(A zAW3yn&r!lX(+Kn;eE@nj&v+sxWr#Xh8~s(d3TD)~ISHU^RNIV!JP6TArwz9zW%-7! zL@X#ZYN?-ImYyTj%(Am|U>AQ@8>eoJQPAPzPF4AaS3Mj#daxFCG4MIHxYXrHDU(Ij z3h(rMjImK{&igmr)7?qSri%Jl83J~b7yEr6`CmbPNe!-#bFOfUq->|j;@R`p8lT09 z{5a)HOv4IY@O)fY-|ctJoERCQ;go;n3MQC`e4tGT8+yL2k!MCKc5(FFE)8IX?{I44 zmbp&Q9qBP~*cVZJXSc;s_lGID@98YPmeWxC7Fa%NlauLVpIH5B4(;~wsaKCZku1DM z-M?&o8D2GY%d>*FV&>bU4=+V9_;3hO{z3M0{X{8=mg8G|V$lXNK1iUdjTcdO{M3Dr z`?W(Pi%cLSrzSMZ!b9wSbk5Xt?mZ)hDO^XDms~|zNx84cWoo)FMfZMMU`YFK8hQFI zs$#tEc}$mbU$WtSHPb|KRP3vYK>-tq=K7P%$sF5n?4Ibx(b9GOMtQxwuqO3UQdHDh z<3-pt_qSZPdhvW$vy3hCV<=1*cnWXeijwvU?YnCn!w}!x-F3Ees0ZT(1~ci}No*&(?S422KTiJNb8NW#{=g>lyqCUYF~E@S4$*$7RU$^M0WQ|DQc) z4#9~DnMis;7+;+WUrJ$q(Bc_)*nFJSo&?usBPnaCT%7^BfA~4S*3s;C|Sl8x}1F0!ug8wbk zB6V-k7)(P5IUAtA^$38@SLxwDCV=s%gHZSwDd|sO=l(AE=xrR+VC^}VP z|IMA^LkGP1D2U`Z1xh$T7O(-I{{4s0h80l2LB51KScs7XVz_nd`y8^oyx)d3Z@#H6 zZdn*{aAm}XUT<&d?eux}eb~D;=acYd+@)k}m9E69x!BF`Rx8qWa!$>7D7j;A*ol6$ zF65f&#JU_N$KH4r-d&CEQeCLwFCAkY+`kib20u%WH<8z&c@EBXhzM!|H?TXB7QMgO zhTw92>Jc0z;$TMhgord4$TI+8IR==I>8-0eI>-W5&UGXL1jUoE;X-0Jt*p4+dLSMR zv5X@^T?B9jYGg!Ky$4)91jCI)vOsl*EQ%3J)`L;s@Q>fVe!T>1ehdg0U_UeoTqA^& zie$e~lqLEnh|d>4>`=UG|JZTgwBwFQL{(Qyu$f4ZfSG7;jDaH2QNX>3`Gwv6{s?(c zclN53-p(p=q0`>^fG<)TNW#At^%1?970anr9F!E#D~P@=fA41uc(B_ul{tVwjA(_y zFoXbwQGcz*LGId~DoYK%1~mv$f^$0xKy3(G7WD{({fMp=R#aCY^#%!ZLo^w{nwT_o zLsCl+nmHgJxqv#<0EH>SaDZ9_+2~(7d?yZo^LlvFBM2x^4cL!VdLTqdC{s`<7{5P>;l(jl08cOYPZ zo+Jx20@X2~X@y);B=!e5S6Wg)%(P+rFTTPCVo^hs%VPF`Y=4N*UvXf%YoWG9A(14A zG60kYTXMi0tH#XYkZ=k}*wxM)fF0=Hoi8y12ZBur%XQ5SCv|>*3ssG9$<1PH@g3wp zwjwN7`0!jw|0yToi#e_Nw9NX9#aZ4jy9tz7qke!YK**PB}E+S(5cTP@D{lEY#pg!Nr!82b* z^dqcwk8$*PLa#Bgv?S`>_;4221bGd|c?vi|nhF*2_wx~CyUW$v{nAv6r)EzkQD^9j zMvzPtG9^!f74^oYg3E21Td`4&<>68$TYt=`RSTN~bL1>I)xS=C4`w3>MeIx-2%t@y zvp!ry`c@ExHo=XABB zCLWHUn_>1jgm38%&UGTo|*A0j3ejw;E^IlF0@ z&$};Vh?j>y{b#0d{sITK#KV8=l-Bs_jhZQ{opZ%6zdPS3SdeSp+K_>U=7Ne$=)_dtb&d?8(7C6Bx(X-$lr&9gM+|!n+SEq;lzN2NG1nM?e|OfmYk_@>s34)UP4X^&%%0NMfAF zFek3KWifC*eIhAOWuT(}bW%&0> z@K!@Vfx@{_qztWHdb^gTGIjjEcjdF>s{t=7c9)W42bL;TF&5)eUF!fb`I)QBfmr_uv`QV6d=EFR!g1+@@R4HZO;-#!8wlMTcZAOL0HXp^9j2M*|iHaZp8UIEDyase9O z8oWlr>JfG!3Zdr!Oq3n8(RJ`9NKn9((*VmPVy;3V6)Y&vqCgXY9F$P_BYzjkQ96tP z8;>6n>ZuO57Q(`@toA`f46UF;XYM+!Y8GBc$~QyuvjHnSbK~20hNv4x(zkVewH)Lz z>etZ)e{poUzudjt1?QC1#B@8(5-a?CS5_j+<$^Xb+NW4WZoBn1^(~F>^@M;tb@_2) z(>jED#mC1Z?kj!}J|kp7c&-3eh8k4|8nKP(Z;VI~DRO~<(F(DFKoc6#HTA!cTSxcb z*awyzG9e1=kAzSl;C_+s2SP7~wBtxf6%xk;LOOu&lY$dw!Ue&GgX-cxY1h!{z?mQo z4TY)_A=6z;D1=LT$$e%r+~wiE*bXs)!|o`WNCHVIG#5hcJ1funbicuYW#00$fY&YwS~%?Vfm&4 z#6xwiMoON*);#p2ePfKqKKrO#dc((@AO<>w^8a>bybWVv)=Tp@^7-tx91z8$L`IRw%U zL57rb#c7RgSrVF5ln(Z+P))LO|B_>tt=PgisYvl3-QDSytqn z)Ao7Ss_Q6L0eh#`{3;bOO1u31@)OSqbI(rr+jRVPpscYfFcdoQ$d%(ES4-KmcIk1J z<-X96Ke?u7%YbY`mhYIIGQ0UrQEX2w!?L=BovzeUpv=9I*poJWg2=9B8=YuMv{>fz z?3;Gf9VwHYAqFesOAGA7d0Kk!Vet2v-0zd4Mb`-=EoD7(&0nsGWsH}M9F4S4+G+p2 zI+I1#qtsNbViE9iRsO7#$91PI{Uzr6vhUw>`WLy+m>cCPTJ>m2FEB3CpDEng6Ik8+ zLN)Os-ob3{tDnnFDdPqU<7PV14UDJ@3`$b_0X)!5^JLH>q=1sf|4Vi5nX&-K&g7+` zO#SrI+ov_8c)7T<&TQ`|CIFiTOaYvHf;*fdw%Tm3HvWinT*R?!;;v!5Y#B$kot-Y1 zFHjBz3m6oJw~lw#S-DZ3oXcwxElgq^8{PP<1z&KrbBm$blf3=;XYzXG4=Yn=JugcZ zzkIoO-wnS7j)Qmd8#4?wIun8-<2iVOKnWqASMFEdITmx#!kBwW40E|2>BXm6q7$BI zCOMs{l47gd{egCf{$bHVv9zF>Xmadk+(2cNSGW3+lQ`5%mh{Lzqxl9=PbylT67ue|D?1NEVltz(54q;X^(MqF~MP3^- zObj#B7Ap`oET)RZ3>8ZyWAM`3$1)gy6h3p`Zj-t~^gK}!`|)WW?i=ade+=pAy88Nu zcbr6j*UEY{^m97sZJY35r4OuPj?S|*w2Xler}>3T&h)71@J0DjJ?VmQ7Wv6N1OJW) zFf9biT>0i^UNc%;y!=a0iEfkT^I5+Drg<`^W;$)(h#3rZ2Ik4N+3uK&9CKM@+NBK^ zS>Ds$#t+NXbbZKdBmfA<<6PS6?Yb+`^Xum;7aa2w!y6dwxqnwRsg1>zn^t!fGk&mw z6wJPG0pIJL+!;V4c;OfOt4{U8X~{VOxnB;8nF$QH{5H;6Jo{J>tKvD9zwyAa?Qg!p zsoc9er_>!)`mejpid+oi481aHt$k2fuDiCpj#f_6#yEl8^O^ph=&#gDTjeRKyb5-` z(j4J}H_!~r<-TlQJoRymctui8V@;1&j9lk?s8+Nk`t84(UWkj;iXo0Qm^#t~46xC90+E)o6@u4!)Y-bzZuLMR9*)=|hp2CTwJ6ck|U z7#^&S&?oi*i5dA9kd)R#U%UZ0Av$s@c|9s%u-bxe4IEw}J&P#R@fJ2OC)$w|m_$RP z1PR%)WUQisPE$gXg|b`;-J7_DY1~PgH!Y$c{5V(}4kVxF-sg$uQQ=FL*c}}5&e^+A z#&p->iF8qOP0kN=XMtq-7z=Jg$tl4#PC;IQPIJ~RoIoe=@RikQ%sm#EPzqU`BZK-D znLgjM1lHVa`!&r=k2a^oHm0u~zY=3;`V!oA6Cew21#t1-GN=Myfn^JlWU#)DKImN@HjP^MkEdshfBrZzXK>Vj4(z|)VUX`%F? z6+{LH2o^SbtNaY2;)ewnlC}lQ9twb=G(&BkVZsA9Fvc(Dv*+wNXSL2{V>%o?)ijL zhyAh$@Z^y=BPe8Zcx#|<{R409a@;jYnfTxay(o0(VF2Pb=aA5I{@wwL8<6}Wu0xQU z9zy{uKL+f0ub~S>x)}gABcWN)pNZf|hQC2fJG77pkT@G?5eR!3p%zR13V)bXKCx+RvT&=OOn*}XTuKZEeBncb`stV+tW?gP2Q0#|CG}D*@y=3@1<4E z*dlESQQQ7M{MV$B@A#?6F*n<+c++Vr z5)@85n>zh0e1#Pc%dCFYCEM>z5A_r{c{S|hd*`ByMjw{T(J7C7D!$_GPO#Z}mU5>7 zCLQ2zzEfHR9?~l?v%DM!rr^gf4iKX%U=zVFjQr*nMiLbE(R6!4H$R<&Yr^Aj-}i9` z&`&UojHlA#ih#>M1zjT~X<-m>F)T`u%v-Y$cVb*~@12q^B<=OXxoq@*3VuLjDr&GR ziaJ$s89gkTN$gf}{@Hl--EMjkUMq$Fex~1F`d6CULJ?eecKT&BUm@A~yY~%_ksd8w zDJLEy?HjP2{+eL+CEx;*OAXW&+olM51f~t3Ae#RKFuZbSU=>Pq*7aZfW&$rcMhXwumgZ>#EQ}$m>bNG|ymbxBv80Qy+zPDOA zb)u}i93ftykPtOH2rm$llx%ei+~U}Vcy$C8Q`*YSVZkG;1Bd!ak%?U854t9w7liO6 zEj^338U)Q8vuCoqT-DEL_{0d5PRe;-66{sYjdKkp(5O;a9nZOXR?NgSV)pP4AO1j) z#x#}J`0v)sqv-G7wNQ1C1rrHKehdtDnt;gT(Rag?2&O zwr%I^nd>hfUsuK5i!{$-%wAI}B%Roem~ZymY`hj7)iFcysXyktvUSQI`uDi<%i z8{_W^>U_@KlZ(WZe0AUg?)tT}mQ#=#*^;2i9SPql+uD~s2_VVxc&;h%Imowt!^_*0 z2#uLJ94t4VG`Sb)`!KQoTg;6brIMb(Q zX{Yn;KgS-SpENY6l`S8Uet~Q1TiyaKcyIQWCxZD@?c{0X{c~Qa3yf5xok*dOT++s$ zQN1$CGo%&#IB2U}6LX zPXMM%X^SRse~O0`1;N*^uPQw}F^<268!Ee2l?}A!SDJKDpLiQuuj#FCGsxU(5EI%n zm%}xrwvHzEL^CSb^nG*I6fjnk4Ny-Ox=<%FkpB8~r_6*!)p6qy8}n@5vyR6p`QMEI z`l}L9#U8)z4Iok9Z{NK;hB|lt{8Vn5D^=Bl45|N%vbTIkmE&Gl^J}oNro}bjsY0=|5y7oTR z?tu~{six%hpIBClBB~thzUb1|bP?Km_-Zp*jM_217RnXZCwLy4;--1R<04&+>)GAj zH+DX@wcc+?7uyLWN~IujdwJ-BRPK*9I3csuf4%FK;#n_t0-qfusI&n|7!$t;F%At4 zjfqS`k5wG+F^;jry33;{QXP)YF8a-7xy*JCXM0==6ZE7MC8Zk0PCiF59O=bM`5z@t zDQTsJ`j2T2bPDz*<6E{~_(tp|)UETQ6mFE|`A!|O_;LLKms(#| zd+moi;`2Jue^aeG4+7d@$rgXXoz>2_0!NXFv{Il}^-g~!k%d=~Sg(k1#xZh*bZW{y zpt#m>R?loB^Uick)Bze!>F3m6rFFC<47iX{yd_hPgf&O~RLUqt_Xd?14chOku+hC^ z-GQ)4+_G0GPiq68kb4ovmKK*%!6XXH&VEz1@a>>f?koEz$=^U1-CDkh?>{srZqH`l zSF*H8M`misu;YE8sDRxdQi{w-8Q~d= zw2_kBmM@;P%{E+OUE3tmQWyaR`<+^*5p4qId?ySns?^Yl5l`p#7bcoI0_1yOWeTCEH>zuEZmDIqMPT@~PJNtz*TK^k? zETP4@dn`ebtjXnzB3y7GuixlzBUU_a82b{UKN_t~$S%VxAkdtb zlYYldBHoc2Q)U#oO2$2S2kD>e`SIob`4Rf+Q9HU01VXz4)d`Dk)T5Yy`5R?tz~p1X zIRrNApF6E)r_r(TQvTu;A;j}PtKW|#Mi!UudImRM8kn0Z^MS1vx=Xl`@qd0js9Y@| zuV%kZ{wg+G>s^Ft^WP`Z^_YzthU7ShS>qZ@K~Kh$Dq<*71r7u$TLeV&D7W~fMadIf z`E0Kd=Bu3Z)=L@si5sn-2u3L+H}MtlvIaZ+Xxo{%FTR5=`Wcy1#atXMXOzWX9{GQS zR~KvY-@bpx1p~!n1Om}{2)3YYHNDo)F*~2H0NekfHJQkq6RpySA3||0si5`%|_ z6K>N>(B9N8e^z${-ho-!!0ihU@9)&yRWNW8TkyXn^t*=b`7wA9Y8o#Ei|co#KOA=O zV7r9$hq3sNNAN}s_Uf*FTs?l-BInpna9cmN>v?Ow;V>=PfU|+L7WL6t`(}u7h$(Kp z%Bib?>2b#u?8F)|=t6$~>rUy{{Ot<#uTpZnEZ)JeKdZvN|8C_M6o>-vBCx`dNnws? zDSb1-2ep!a|MmGYTaa;~Ieo5jYYe@!OzB?_yP=vB~#x%-7Y} z;Mp_($w`wma820$Y-53|H0!lTlF1Ng{+FhtfFo+$%>1?_Q@;xf^)nx`ly7;3tmP3p z>A$OQ!3&q`H2i#Xlc`qJyHW_|uys9m~AdWtZdH~%i49d2ggsJ>{0uX4UmTu_Fc?T39!gsmVN8VgDs=0!Xkt>PjD8T8 z^oZakJT(eUJyW(YYDu8`5u_Q@n2{-1bAES(O~0o^yz}wR8efW%OZ(RwvdoD|Z81+c zE;9F`0I1V`4ik zq{Wmh4KEG!?&B<$L`s!vPfz5B0=vQ)z8&LE( z4w>vnsL2aqe$VUk=Nrq{>T22~Q#X2xvfJR1MwQmL(_+B9ivfE&ooCP3^*a>snF0Zi zdC)SIBPv5TO+~PHf}{ZlZ_oK_r$S3H;pfI6UbFEgu9e^~p^9uS%zi4~$6~Meb{+fu zQV|Is&0TYF6bLOcCY_GxA`Z1S?tf^q`y2S&MLw$Tr>VJVV6yzh0$J_(Zv8<;#w9Ui zQcsM5oc#~#=PpUXW-_|?_5)%ZXcTy_4zr(wUFSdQXOmPTuWu_@U1ToU@lUS$AfI)h zStk|C6Y9#!;bPrVM(R)5obR1PSkW)atm7I~6u3?9H6x)Sbv3fnzlpj-YrUYQ8~{u~ zlm8Wlb3{qr0CX4Pud1f-@C7AODO@tSKQS&`2ObSw0#wQ_Yzk?>hqMXn{Nr$o>nK|! z2-bxi6btBK_%8JL%Ha&Cm`h|Ss_`7GPcm^?xfCX%XqU%V_$<{w!h+UuMhiTUR$FV_{>>(9hSVn{Ft=-VNUDA-qHq zWWQ^`7lIPqGQ0s*o{O_@hiB`n2r_4Tzj8Y1iyNq7jWmwYR2m#kG zm?z@{CHQV0waBUHrQtWqHj29V>#hVT}I2W57sWb1qr%=dYhS8X6O56P8yUBz8fo_keaqSw<*dZLPvs0`b!4c^dzhrc^CV&)&@|Gq;0dtT73 zohgP)vVT8J9YpgE%UY3B4{0+|dP`z~3!$w~&vzY^sieU;IZ$UFJ~=nGRr=nT#b9dG z8>XvEWr2f_N;ld07EQT6q&nvWSd83^PPm#yk6jdd9kG(5mp(08vpa{9k+=HwMEr6Q zvjxMDDKEJ^g~$)*M3Hw4>vG8NVlFg8l#u*HhFpG+Mu{I>Nx}8tu2OL0j!IbDqsh*ztsDF_)N>Lh{q6Pj}})n6%yS z$jAb8;D9VVrA>Xl7oxHt@cD)7h<@$7|E=UM06Bi5(vqbBuUy$%WS4T*9U+DFw%2oe zkEy!|OefSBjK(qiwOK}0;-fD0yap7_sKEGq4gspxd6$5cr}Be@^mfD1$MK)s*N`zy zEDGDhRhgmjtWoHX@9Uy!f*vwFA8yST%AZoDz8|hY_E&hD?0@N^r%iP){F&7CO za9xdO2L}9rapmw>uQeYEx2%`R^FckvXFEqfPz0RAQasp&Z^l!sjlLvEi3d&5b8d&H z@`QRGj}L56cC`{r9VrXmdqj&=$W|z>>3rOU%3AowdNYe7923sQjR}caD8-Os0EZT{ zdlM@&_0Ei{XMEBDb)xS^nyP41NWCW51P`Q-c2{xm}9cpS!-CGd+|&->!i2 zKMs$MAZJ?H>x-k#ojbvPb??@)000BR$RJZ0P)>iw%N7+CB}={I4v&Z!C@>V(NRy-h z#70L^qW7UK79Jp~7FgO+n6PLBTKsJ|>cs%$-~iD0zvbtLE3&gc(Np1WQXM6%Ceo>Y zNt3X)ay%%!bt(in`c$ojeWS7`D`Ll9ayL2&ESR%UX`!D7`#m4$^2G!+!{v@XU)x`j zg%TXeVzo0WFg^fx?B1I{uO->q3lxI)j5#n1C^EqXha7oa1p5p z6d_cO)4fk7tkR)ymBZzZ+~VTa>x;hYOcd%42p>WNCU?T5DTtPbc$>gE^d*2dL)(_1 z7O)IFtXAn?zTAN>4Fo98zTXnuo~j`OF6{fJkpP3*kld*pLNx%KO0gR$LkIAu(<*QJ z+9P6jkX>|qe9U|It^#}P?-n}qNZ?kww2_n1N^hIy2YL5dTU*C!|IuklV{sZ2x{?i+ zc0);<+BCMf#xowUzWuT!=uRcXHb|FmZFP7^Y|1}<{ppGR^Mr@OjQ|{6Aauy-bJIIZ zgVp|}%CjHpd}kWrs0%werOC8oq5U)0+LgVuI;(yDc4oN$qmgIbmS?a^n~uc2`}g7V zkE%R_A?uQ*C>c_af~c8I0&=OqQxXlFm;HtQ0mG;FP&5*h-}3pj;R`3ct2N&%e8|ZJ zOCw#DUQ<&OqI!Pz?3LaU__H-e<_p@vACvcqaljYK&C6>7S+iuBLwG`hf-T?(fZQ56 zDG33?njBOINp7ulVl2p)Q^(9K3d9pao{Hs4Io$w8c=oHNrUnu&j04{tpMwbVdH2S1 z_WP;I0<;(~ctrxK4u$;LKs1!`2q;=Dd%vvlCft-v^%g_EWt;0Q1smf((D{(r zDQB8Ru5Lz9ax9_wPriaEd@%@l$9c0s072a-CtuRH5vdVbjW^;TwGymBwPkcOtm~sm z#h%%zr9w${#sOwyn^ofe{U0BIagZtqF;Dv7;NSoaJtPv-F`pkIrX|6r4K_Xn4|)AG z;{(8El09tac=h(JDhP*%!dmT0epaiegV)9oH3Q^HUw{32_@n6J;zJ~}+#S2o!Y0VI z($FyEPjm+q0&@eZ{)OzjxqhR7}Ym3OaJUM`ZDsyQQrs@6Q=~c88H}Zf(UTC4~V0S+&!- zx7k1g1dex6%Ao?M7LmQXJ;2$rwG@uoUt+l)FL`Lqq~jbCu&Hk3KfV_bl{7AE{7q+d z^Jk}1$PceH?tqso)`DA$xQ7OM$B*uE$XW+g2NF~Zy`ygCMqS%y`JLi4?OCvJj*Nv00d#>xH7W&We5C~Re;S0QZK zYuNqf(F$*Yl%C>A<2rAs@$os^i_7AG&E{0 z#2}6H8yMkDUknEa2Ma|Ns>w3juI>$d!@o&c6_G&I zbJtNx2?r#`uGC(cNrD4M_ZLI39|&Yx%(%YbLHs;6FrP{cl1Xg_1UB%iEu2oS8o;FS}8%x75EPsSYPXxPmhjU0^*{j zWP)*~C+?+9x?7pY- zqHO9~G3l=rzQ;~`Fj5RD%u|ziisKcQLA!Fg5dD@(!eONA>Ok(Q+8~RTl=i#K_F9jN zTjkEwa}z9N(y%G<33y4hO-(-mN*^=$#76Bry)=PD~BqdBvg#{wRdlk2fnRP%ib${o|xBmp9r zXyCYN0haWTt2@{irlf7N(ni3+3!5zG^#I)TkHDDLvNugi5}?FRpaRq~Kc>I>+a`Zz z(n$J*ST)q8u5cOO2Xs=BXxWQjWa=xwbH0ozb4DVwSR2Cm6Mq}1xJkbqUtYgV^6Tz_R}Ylul1;Zefj?x-)%AO?3jLAgip50`igt3+{eEZmp40HX{`&8KQG__ID!Fm0W7k}zMDezl4{mTTs~`x>78`X zeF4R__qcKnv11qIuMyf(>#s>$^z)}8et&krI6N0SzE#6yz!;Vq?7{vVFQM9jjSG?L zMvW1QK@KPm)4_eGZ|;c4Ow{s&g@ z2j5sO2|!^}k!5ZJommv{_?`EfJ7)%&0~BEgJhqY+%1un9ouY6GeL58hSt^1A>EZLeeS7M?HY-;cYiMHDam{ zXv$S-(mOhCLHYx1f2N736Hcru=}TD3izS7Z(VuP~dCf4cJ*U<0eG(_FrceJe>`;tN zKmaqfA>ml@R)?a=gm{KEzyo79c%Se5^?+vWU}g0tQ`)G3w=0Dr=!uM>x+S?BqqGm+ zXdEn%AMFI5>&3!~UUpH9^`-(xYUD=5=7}zEJx%k5GpkcX6#uf%NYVQMqy|&g%IMYE z4zX9AC;5DL%{JEF_1<3*a$2G{+V?_Ad&?4NnzJrH+AkCC5h?al!K}h%>=!E^ru>rU zUIxkZbipJHqg+38a|r|~{>8=Ij$-wZF3)>xHM+fpZOzZ7gXP^lwjsv?3i4lw6 zjoBsJyZ(sn93)QF2>TQq=2cF8_dVdNJK} zOtEbx{arT~mppT7X7I*#Myla+Z)MiB_nUeD^+`wcHIp*vMVOZu%* zv@N$Nqm%!%)H%iJ%8zTEhArth@)p0&MAxV9;#8|HbEPoA@LG(Ijk{r=Twh|+!PjHA zB;T^cj@eG%>Wn_dM$(t$+ho}aB_I2-Dnx7T^cF62Ca2&q}dvT>L%a^_TK-CYeXTf)a{RV`E2mtla zgMk+V1QIl!g?>UkWHKaPv_!sp)#G&KP=D=rpvUP-N`1pxoq#iE*7G_){Q7plVz zhR*|1f!xPl)%$>bkOIv`pzXW)-!}3`l36%(F;BK96i66iS8#X8g9IaID(U0J3oGOj zoGN6{?5gIjHsrvIZSB$2QG0cXjFlp7tfim~O&X2FuG4TgHYFMtd-*n-F%s}H6xGxS z4NA;D0oCK^%2r-<>wPYtRHYf1w*EcVAA_-o8cW?UM`09`*5YpY2!yy z*4MAtDk>^QD3`m4hJ(i+4qE5{Folmb?YV~h3!;Xj0k@5nho{YnsmC^dZ*t{wVyyvL zTtN7jYir=s(?%DKnq>*Isd&M?nyI{Rg;5WsM<_-$=uwlp6zMRsA4g)sl}S{$y`Cd- zcHX6G;fpzVZbWzf`Vyj>OLR-Z+l`N-zK>Qeum9qg`&+6gN%ml6#T}1V%&JtbuDqKw z&rxZXKhICt42<)pS=hx11#Ki_pJ1&wRFGo<1T7eJ@<0zHl)@t~&jPJZ!Q3GNCNyx< zzyACw$E9U#Ob<~rK(h>8AgDG9(5e%`u_QOX$B~0&0QdnEnhgB_{PTFUA6^ovvDwOpGLKIW?|MsLx|jUrT@Bt$)=i z4_wG3kL98kwZDB6GS38vM+g|Au&{>5#&EEns;lcBCMG6Ann2Cf4q*D)=yQo$7VR1v z8v`4(@9L>sTwHfOw|Ai76}S}K^#rK>^be+Y^yjy=#$0d5K%iRyabLi5=~_BI!qcRLNU9m2p?DBgh9 zl=N#-A$6UW4BTf7vrn9FS7-7|Pp! zy+du5oitS5cwDY~U}>vhMeQerF*J3hNq@h27x0&Et%G&KpzEg=3s7g2K~6Eiub^-c zNPwgiLJEaJ4}jQQ0B3Nexc{$51}rQnOsJw)`WAplFkqVk0>$1`5mIqOnc)9<5O0weqm5u7!T`(`;6-= z1fmt>cZGp!3Wa=uY4T~WC@~gr6D9-tGe3wmT31I8NW?9GTl@JPG0tz0`4$GYi_%hC zP()T4;FK;OLX3m?psbo<@d&57vD z$wPIkqkcJu+qY<(3jMpg3CqzVn)1q`gRm^wS32vewV@g>T*rCb45nMjsFa6++n92? z2&uGB!m|8^zmhR=LF$<971ee|rbF)WF{gFVUk@yE?c1M6ucrW;0X zsm>^PU!gi(*7Z}pHT9fYIJo-Ycil12u!|SIg;F`mEL0~iAbMHyJpk+E8ySda&EMao zs%u3|lGjy&VE|tHlRfS1+u5~_u|y(P)F3exx2(boZ7dHTRy*}uFY9z>#dXFv$YcGQ z9cg1>wmUw%IfDZ<)miGLhl-p=$Ipk}pC-Nwah<)*`|h8S;d4I8maW6Yt|e!qWNVuGz7L=|;u=o&jZ)Dx?C{I(clTz9EF{X%sI;w2isPw!`rS(eZyAm!qwYsP zMY^pgtA3~A48{p`BkfhbFAD&7vOyo2P5~<=E{%rpdEN^*Ge+n0u;A3Qw9T4qsUWjl z=~gkY!IUMiI>T9~YAfGbdk{Qcm@)Qt%c;5RWSiPK3#X{9VbtKKDCS<(9XPnkzhhWW zf~NusVG9(v2(T6}ezjax^kuhF17AV1S$56fas2yF^ogI;5@*u4{l`gQh75Yu4k_bs ziKy~$*3nPvM4Adsey@RL6IqGB5jR=OIb{lI*aA5#@Kv5Lu4}4U5C|%bA{;sZ1uKZtIE^Ix~65)!y8_Qu_fkpnwh7X7gwT$`?qMqPCAr8Ua zVMQ&D^~%n?fK%1r*YYync11Ot9d2?zq1Ya-juaPQFx=KBuQw^ooUdL6N@b*^+8;S zq7AXH*wQKqPfF_ueI2KM9oJWBCU)K7L|o0Wvk91l@TTD&^|OC@Zt@W^(=cXP6wM0F zVan}HZmnHS{8WLZyEtj~rhNVe@jQjvVXQtfDX#NjhBB}y(YI1>ZSW1~2dbAvsE4(z-GRE$H7xYuI z8P=s7c<_9K{PN@j%wmM7@87auMa_cBMR@iLT?!=1iAYO_kZWLsEX5keBbntG&5B6- zWb*2!!e75uJJLV~G5zuPUo$@jmWD-*KQlvxe|-1!U4H!!mFe`tt?u_7X#NtDjKX!g zk-j(TKg>_=o!btG=``w(*F<|;G{2F5Rbzf{w&6-efne&q?ft2xeE@4}lq*0sK~Vxk z9wqRvtLuF*18@jf-o6P%Hh`v@nwHk0J6Y6Y@8{{W!^-Mv3oys>3JE<1b{8VRO$N*$ zN_jg#_CsllbfpFL8!F?6htA-C!O^T>rQ)cAwiQD5*0xH+=ws+n~3HR03EZAtKnw$cP6R2x_hW zH=|ZKfR(VYK+)d^RS@DaLy8HTzVuI^c4rnBlg^y>HEj>OL68^-*ISTi{6}(=lrc2= z;TZwcML>K<+2di|j;j}dk!Mu(h6a>51f%z#0nqONokorD5)Ga+F-8QvtDHSJJRAt> zUvsf3FCX9Hs_rKSw|Buv&9V+@Jb29CjaLzYsYA9$rrffMkJmdwv1)LS8KjGHihaiM zqL1re(F>Q@e<7%Eud*b`(9WCM+NL@YHDn^Isg=vqm7)-npE_p>WTmb8>MQ`hjiUYh zBe2+6IEVq@nvz8aB{dE0)1-HWHFfl5^y2a7OU-~F`w_5UUjoKDlw5!X{Q`1Rp)yA5}2C4uh3BcvrpuAT|RwKok)zpDn1dVA30$%@(5nErx7> zZ&hwdNn5Sc(&yLz{{6cR7W?HIrlw5)HPHZN{hF1DHhe?g|fSim0y__~!ctr@I+Fu_J z0l#Akwp4^rD5V06i)-~7=Wg2IG=Whf2Uou8Xcg6h0qZ}f!6xUO?Hk&hKKi)T#w>5^ zhW0wB8rj(jEgKq$EbM-X;ARpuo^f(WU#1fYJ^!~|(Ff>HpG&~R8JqGJ?6E+g9>uRK z0Px?y0y!k8cnRWw6hzCf7uk_=(e_hNw+ZD~UI0Ns3y|8qg&M@VZE%n%+1c?kdu@xR zId|TLcHck-K+$l}$}o;{Ehv@WAewoUlx=lLZKputdfK5Wm!Fk*I-%Czp2Cp24l>Nq9L&*6x!(XI0vpG%^KQ;OM8*J1J17ta@+bK3 zth@#W8`xN2Yu?u`Y2h4PffX*g3%x5ms!x}HhaXBwxgjtd)3r@-so(zmx#$PVLZ!J{ zVmm4S3LOp-jkm14*DhCOlcsiz4ku%gNhVc3$l8hO>Cug`Fj1-It7iZ_`xYhr^e-PT z?<0ME8p<%-Ss?tdngBa+j@T!hDg{U&_+Vv@{s#D!DWl+P0Db~bm!5$EyM%-US0CVj zl>zyk6|;l`4zgGDqgBJ74xWriXajkDb=nx`36>JR*jNz%ybfDkyq!LZJYVa(x~ls) z3NyMRtGx3v^T@g44YM(P`;YO19!<{_Yj%HL+rF(4Y_~i30}q;fs0kaU486_yB)`c0a+SOySTf=<4F%Ixr0c_2LE=AV?%jyYfLNK2XtR`d(ip zi`$Y$Jv@7r23A3X4kcg(0|ku&Xc`ytaRHLYhY-mVVl>_c!bz<8Nb%m^5bLQ6#7msc zdI^IuN9Moz22d1qrx!IqoBt&a<}aB_D&}+RzA5|omFe>1{6AXNkqqwrBxX|-Em&Lj zb3&mzbDmnhILj(!m-UfPs>iyX_ik29yxn@yTqp)RE_amna}?((o69BG6;Y%q=aNNh zr2~z|3-9BRjuaMdSXw9`M|@wNK)Lc$hAAJOyN;PcJggU5EN@NRQ52ONKHGsuAHQ~|C2Qwg^tZo1z zC4@(I1JnY@aQMKW9|Tc58ZUR=9+Tz?f-_5^d3$=$}bc*j(+bSMiyB?R+r>Om|*hHE* zX(jFkS!>v7*rQ}N>a6j3)_Fo%iLCMTxpW~)bc4t(1D2hC#+Pd?ausJC=%W2k`Ta*? zKTP^BU$QY|kJXW#dOXNGx4)PA;tm?<^8=~j&0MJtkM+s7Xx;M5s>}wBHl*<~pUO|K zzDu3coDhjhWnXBcLJ8>D_q`Qd;tT``Qz7f>j|sdo4SAJgYcZb^+v-RT1xX;C@mJQo z2)Y~iEfhwv{g|^$62pfm>#j8A%lJu-$HrLAZ?D3g_A#OD7pbgMcWQL<3UODrwf)zqSTaOG7+i{$yNE*b+T)vRUZErL&uOVgdLE1k{P(jz645)-m0LPgx8 z*511h462xN#1Oav+1oAY}-MlZDFig#9<2r zRIctuKi-PTENal9`PlUg$i2K}OLfiUkeCst}I?d`!jxf+() zhsKp@W5wV?jNP5`9Vv&iZ)QyW3MuQ=dFVzF2+~xPIYU2_8?>nP=hkAx*vGdptPP>s zG=3#GHOC?Jq!fDFs6ur?D%CEp7v(I)rI8UkoT2)Y&Pz`Uved2WY0x@!e@$M!#&&rq zl4KD~cnjS1cB)Fu{K!natE=Zmp;$u*y!}rb$;O@MTh()Ljht-$KbQ#KQNd7sQ@9T5 z)lZi&t&};|$O#U;!`x;8D%_^vX2)hiem(XlIR>`ReQKR$_0a5kmSIR`$J<$ks_UUo zO?`r2{nfmEt&~uT&+J2Fp<`~maZ=9rj;dg`bWJZK>5%<`wj53fCyHeqBmpl8zst_H zKWVfhB`-pWz-sy>&4GRROMQhMI)z(3F0|3X;yEhQWJ(`S3qLm288)?h^6f`D+rSJ4oWf}LJf|oO1Z(YA5I0A zZbmUZ7bg7?S7EPGO(J}$hOat)i=8cvoK?BWAUz0X9Exb$L8dhoLlQOYCSxZ_J3O_x3$#F| zVwJU8nH{ICA5>G3r0LEdsE-I=`Z1v*`j*~~$z|2@Qvd^+dJa4bDGcf8J9M)nWD;;W z#3Y5FE!)vNeadw`l@4X-h8y}R`35d{y~yt?bStUKf8(y!$1AVXcubJWKAzs|RhD=( z=;8gWgU3Hf`03(r61WT+{$e%pvd5|#FDIl?(sU+fBYKLTBj4Z1rjA!@xH_ox1w3cs zbJhbGZj(QlSrn^-HIyj^nw~F*8nU|9z<5-V9QA;R^Lk1oIoc1Vlm}7S35Ik1BnGGR)e&?d9a> zb?U|U*$r1%@0>J^sIj6bVtj(-l3gQ|%i;i!w@xq&w~*H-na3aOX?+YfYINU| zd+gNriius{XF{7X6cxR<44#@g9#Q!&N6k&4Q|P{){qAp|(BVmRs38~>&*NX03mcd= ztcbaG6z2TY%xTDS;n730DC1AMxS$#WHQNQqZVk9`NMrY3&Mi`$2(Y=ORcjiv<(o(- zknggBZFrVYAhP*Km{8919LrrG#vJCPZ&}=#DNEyscn@!&DDho7FkC0zfGyI8IojqP!tzdNu=Sd8sJ9!s= z-^*L<2v%X?Gt*2~@#|<1-K=S@H`a8)WVMv$c`Q@KaJ&ng@v~Q2lC9kzN9*^YaFbdEWcV|XHxF*Xq`ccn**i*lX5Tftv%+_@>f3RkRZ@H&?RQayS#XNHB_DGWV?DEh0p|ayg zmUTSBBnB6fIKMk2k1Q3kj35uvs!e&*qKcuU}&+Ux})Si>kOHKXVl93p3#Qw3xZ+ofvS?9Ok@6z&W@Sm$lZII__lEbsBllfRk9+^hlP`}O%D#zQ^JE)BNZR}zZ4W>tkf{S_<8N=pic#{UjT=*(~?hq(l$ z!4*TJQaCR>Dl31Qm-m+ZjEv(DphTaaVAs3L$TW$OmTjK8v~(=EIEPtxN(b?H0Kp4| z^MYRQmXeIozspB|A>qIPsi&lEva_jt0vkHuUE!yxDlv9m90qanpkpsXF zScpRmLy*o%&~^L&fHtrF#tTp~07e1-b?43@QhnOT$awkTz|CZxS zTDkLqJ8?Ntx|bbYi!57%tyT`!?9Wu>m`O0tXXBm8^X9W%9)$=8c@X{(E*hPK30qi@DKEE6tx?j;WBZB+s8tj;yEyY@OQtj@u^0k-Pr7YDnz-G zJH9Kej!M|H9d%E1w76tOEWYzxr!;~saf=u0JY?NkZ`@WgX^8xhBuafLUzE{votLtD zf=sfRBTcJjNN`Ygt3&8j_pnwQLM-^N4YL0)ZGtE5Bm1WcwR_&@f))%9cu(8H$R7U1 z;&>eS8>C1;Ht<-`AGG!LgMb>09Ebz9p0$b)Logl?YL1!v%6){<)dGPuutaYL%x(a0 zh&awak_Ed*$n*kh9>{4`Jw2rWsnG9WsjdEv7uc*rq@ewFj%WhBbBIebIQZ=1Almnj z>|>q4G&uWC4B<=+P4lYlK-|i<;<&UIZXZozofyxN)N^e@hnPG}bW+su(P!1xyNP)` zZ%E5Jt2@tn)w?*Ym@LFKZ-%YLdFk|^AkK)etW{2x9DEHSU3K*`I?>uEZ`=JoXSIFD*yp92U_sV`m5X+VXJ zaEw3p34~#g+GYIeCvj0WS>kj?&KkpS3HaHOMa)ZK*t-K1)Nh@O4}`heD|e}QUVJ>3 z$*bP0M2LB&A<8R8IqoRUCNK$GzPXl{xg6`cm$LJytvU-sLwalWEVYr&&fa(<3w816 zxeO?>Yd2?EOtc|_`iK9Upk7>1R8pc9%wPoEZWRDGy@nVoJ~1)-d(!_8-=qHZIq(4C zfIxd-1+gnF2jCL0E5~8>n8!w>yM#20Gy&Z`yZtnQMdsEvg`0vs5j^qe7FIBuPpdZ! zhIpFV5YX6(-RTgjY_xyI&OxN&X+1j7cb%`nqOx*9+hW#I#9)P6CWXN*DJ*&*Rr+!u`~6!bfjR=IJ>LMFt>RK225zBm?m|;9Vv9c2*W{%J9G*3u}3K*~QrA z_D%7baPK+|dN1aLYVd4CoX+{OM9ZDruDJr(IAzsDE3q5o3+!UZkbHSi$ib_t?mIv;D)+X*-(?mK&<3KW37| z>&6j!=^TPx#`>U4tB!k;*?-a|tAWYHi9cK)x9n0rlRbRMnh`rQH}?sjjR!EB_`9Ly z%hxULvHud7S`Y%1N+rn}@UJ!(FTMay1{Sh+7XXW&H-HmChuDD!BhX0zC`iL8gyGH| zkvGG+R^S@}G8G)s2?8yW)rlQQ!IlK@YnjJ^#l<3B<9w0Z<3}LY>Vf|__TluKMAlVr zo1JB2e<(k-1jaT^no0QR=*lo|WyIbS?mG(`*j{GeQd|j6%{-sid;9=4wkK&W;cbyH zlwcU&b~jxz@;YFhb2#vH+}ZAnd2jX9wQYQ9`k$l3iBmt>*n)4GHLlq>EiEmQo4MZt zOZ@$B=;`aT#XfZBxZjp*SX*-ef~@W# z|X8M>)jU@JvYW%{`8L=$c<;V*QDJEegMppi6_ki0Nqy-E(b^+FPV;o@p%Vyu&| z{wD1Rk8_xQ+DmyfztI9^gDe6an&lJJqGi;W;a#^|MlrI{wbws*!)33yi_-qH(*8!Uk!?rwz?qwBB^*WfB9ix48#zFlCYJr0>MENp+TF)yyC5MAoqy0CHs5gh@7<|y zjgJB5y`v6^+T0WXYw2G7z;+(uT=(?!+?H_@fHFRI6XS4GsSiRPA|Z+qur=Zg-VwHwE}2`c zm!r=5^-H|y*RLbjM+6cJ9|<1dIgM5AaE=|$d@)FVkr)@3$|$_G@;1l)+%|z>Z94oF z(!%J}PqGkYRdR3rjh0@bVG?hY(JJRNy&ArgIpneL?o8@sW0GdYn01NyF#f1}%5lFR z3wuJ)_QRI&)B^g3%Is`zV#allP0SIk9Q)X|Ht!owneV0gIUtq1SL_vuZSG5*xp>6Q z9h;=J9Ak`Jz)|#I`B-wgRvHdJR|}XSsa~38N^IJ}9@#6siF5#>{MM?34!gd-F8;IV zgUL9j=$+%U4e~AL&&FFkRNQdEwdLEk9DIhd9#N>VgRYagkL|=jSE_N?&+S@aa=R2k z0GGm?G&~v$xV!h#m-TTi;Uf;|pwj!Y=sV)uf5^$#LIT?tL&jYzG)76B^XD`l(ju4y z%#0Hp33Ie>rd&zY#lzSr0STahOq$VdVs1dF(+bUHw4&^~(Mq86j{?0c%5tG-V?mW@W2Jf_z zEg3sE!dY8=7a+W(4uLrwbz|EZk5GyGx8H21=VmAC`sya#-&yM|Fou!d+xK%M&?QJs zDY7taIZn70P2O^nx2R`eXcWK#D|=%mgJ3e30ALx1z!qhMtc9|9zr?}9MW(0>!V`3HDEEd zM#-{Tf7gG9)OoGvT{d|&tiZ-Xy7}jcZ|_v&G;z@X)!ti2Rk^n9-V;Fy5hf*|qJV@5 z(v6Z66)6!VBqu3?gpwj5Ou7V=kQ5bEY7)}jNQ2T{(h`CQBHwwt*864t7>g2$=rb=4$S-eLMG2!6R@QYU7zJSHzb`gpC@f!AATk2MOPUAXS$QM%CSnC zRJHlb7ifBob0gS6V!z&y>l7c&&7+yo=ekuV;^?Og!v+7r#o4D|R{oj2o!`XQax=)0 zbFx*Dqx5aD7PAZMNg}*`8I;#TXjXGh^6L9lxM5(zqxS1vU%}`{X_qbuKr!D22;PV z*ehy{p@3G_vdu{g0~NxC#oxybjYwFT;CeDUb1T+M@2+G@4gqs6A3B1beQauPPfbJL zXo9Arqq5sAI`N?O5l8y^#}H%dJ%V;LX$*HeO_(4t17q!?OWA1$UT&W|6#1748rn>a zIH;Rhv02k(A;YnXidmbO62L)e=~pe3zq{PUI8SP#b%j-Knd3Gq^Z>Vs8mm$q?sAH0 zA8~Vv;#PS>^Hloj8u-&2U~NLAF|bNc=6W4ie|lKYj|7__B?lglHf;*61#f9=RK~}T zbdUprac~eoW@X6o*Bs8o?Xp2Bt{RodwF<3PSxK1 z!jErlD}a#S1cpKlFw7$k5AYF4kp~OiVr}O?zLhS%>?<54_DLX|d}H_NKrOLL6=5Ul zM)x9`o`Aty&0#bmvj6mZ)=wnaE#OovHhjbM&n8p-^%YXVLTp6>aMd+JCewXO;J13_wLyq*i6JII_WOw9rx_< zIHu9u(VDh&cs|P1WFlzUm8!w>2wlCA*MUeCEWW0&(znk+0!$sCXF(N8Z8L}`fGsHE zZ`grFvRxBoC1C103t=J6dUln5fYO1e8nIZ6}q7+`SD3|XciJE3SdsHg1b<1G3mwEDo0t6nq)}29Zq-?B~Srp>^89F*^e;j8DtSBPXK8!OZUfHMdYKqyJMlKj;yiGjGY{5mXIAMuZX* zQ4t}z4={~KbPY&_Dn1h`ghHub-XMZe>;_C_vEau>oZt9|b2qZ|ijm+DBGl#Y-3o|s zr$1W{!Mq}SC}c=2y}u#^=Oh8jbAM!F8ssaDOfI8OLED1#F78=b)q?B;k!uA9ll^gl zz=0C5?&q0ZsK^wldsDCKc=YJQSo3VD<<0~}p5uCVpK0F&Zb=9LSu@bk@e?vjduxt* znLv2qJdnu1aSz@#Toh(c?1b(PBvQ7UO@M79?Ig1EsX?+yBxceI)$X`T)b zyZV2(LX?>$Lp$WWjEoF>7h)__m;Q-4MB#9q40-se?GPt7r>?VS;_L_WYZ8^x>?YJ) zb_35#PCR;e40WOY>9e4!eIqTgLB~MV0dX<*t2#|oMH#Im*hrz)ySA!Z^&&A&zKZ6F zdz||wQ;m$ycg4i2{q9w+xZReP`j|nO%$>D_){E6^D~Q>WPf1KP)?CjNZ_;oHF!#Ln zBHF@WS$U%lQ$`hkdSU5@3?W$4gxM>hc>!`AD?#%a^30?%i)y zh+L&|oF_;x5x+z060;l>6O+sz%IYZnf?~ljFk3x#IZ;5q=|oY^@wQR{#hBoADi3X? zz8Adbeax2}xW`??Q!h~3Npv|8ebzT|Phcf5;j_-wZu&_#Cz4lI|6whaDc=65A*1_9 zmc#SxzPlXJ2F63%(+`fPZKfUi+%uXze(92M7ys1hNUC~{opr)`{xb^HD{eYJon{5> zl4rIp!59Xr_+)(U5K4-zwp_F3_z<29+auTe7_UCAJ|sqY^r&0Q$i!4k%xBKe@d6F9 zmho5Iy<=kZ5p=Nk&%t@M4eS06cS}-3_fzVZKa@z>9?i&cEEd9)P}K^W47?Au(IMha zVh=VyN6j*FPAK9!Q3&SEjkAmu;+gY1b*!A60~!kn?*jSumGYe|NS6f-rf4;2#{@@S zG8J=TX31z4ubVa4S8VlrfUN}y#BBWzZt^$hPyajN&rcvrmwm1Vt%B4-(TOG3?_yym>a2YHd0m z+Chw3bTuD-y1k-irLyTV4K^8y*5}NxWwLm+MHccd+2)ic>!YAhhO_^wt~Y$oL6lYZ zU-BQ*sX9NDH#p8`=jYRa4Fzb9BdEWN?bo)QzRBzjkO;GbV1}v|R?(M+-9~Pf8AO@obC`q$-%+ zQwVr;k~M_nHu*Pzh@A8IuCcift}ML6%vGey4mk6W` zRRo?5ZcIw((Q?_AEpq(&cKDkQ@wLM$C}M39g`S%2-}SgT#q`~c`0@B#gTA9hWmQ_i zA(S|^IH$Ft=!<7=^L{OJ@OFBltwi&da4AB?ncF96?-gMrw~f&nEg=tC5~?iNM8iF; z?2f5_rDUdBV3B|&%c#vy{WvgUmieo#4_nmkss6h9mWj^;n*W{7s}r!YUDt*s{}9lJ z2!)cpI)UYAto}n%q)>->Ap$>t~Sp25LDB!3gY*of68zx~ROQD4X#GVXn&g!oOs zznNz_pGbnUH>_J`1xdoC= zFdj{R$jtczJphgY7Hm&kSaiIPic0RlP12;UO0oUA5dkUEGlt}xU8O>Pc&B)-XNnM8 zD^@(=^kV95P_NtcfU1Gv{z9S3v7u;s&Q}j4?#iQ3BJ)ZZx!WK1#w5deuq(G?W8<(r zF7bP}jbjVQrYy9M;c9_(ehaFTDPDj;5*&)T}5gD-XmnF5xXHCn_&pSfJ(9BIuw7?t9JJn89*Uh_UX} zq$2sT$YUim)oJF2etGSJOf7~xU*Ep>6vO&)tee>BrYNqq@CwQ3?bq!`v{jw6_j8kv zqlZGWirB&mtEzdg3Q8sX6}`T!k&jM{-A+X(UvLZYIL>YOEbYARV|N}#76lejduD3V zk29~_&K!^>(P%BDk;;0>mdao(sN>_XtOx7+o0%lZQZ`ObiTYyho@ccj?j;3v+|5XE zSl7Jl&*gb%f9@?)QVFRMKE2hmc)*nMHUAb2s4`2cfMl9OY>&5#gHPNeo-1wBrtQ&> zScysMf-@%jlJR&?ZXtsoUKe>-R^A#U$%~UzjUD#to|B7%dCHS|&+Z<^iv(}{Z3p3c zUXf$lZNJRZPMG~gF~6)^ORnxihzseRK{=8YJah-v){rFG79@rVIi zyb(T;1uBO}l{!a!@5oqF7{{O~W~ejo#V?((GaT6}x6S>jIH%)tlg&GO(N>XPonhnGZVG^e@k4$1yBU3RmcOSl7Rg73q}NU^M%P|3K~E!TeL zuCNcP@+j}*v&89#39P8fkE!{BkHQx+*LGNv%kJ~co zdg%Sqv3$s0l`jd)Q+XS9J0OnkaK-TsbD;8pTuGB$A;KKcYP|m@3ct%ZBs1cF76bob!Rp=MfPJhI&k((r}o+G5dy> zqtVi=!PT#R8ZDo>xOsiVZ!S4T|0<(B^W6H_LIg`udghx_ss;z_%@7$Jox2jb; z>R%eg%^lk+vddVlLi_h5gG}ME*nZ<4&vEYRcNEna`)8aHg63S8eOlO{5KX3H;;Ag- z?`JUY>5Qf4ojNvNt6s>~gD*afUlR@JBeUxJ*jnKNW z19=~`-*I2+*;JZ`PVr(5#Fl9;C>|aaveofR#o@yb?QfcsvW~%_x$tU+L$a8nP*Z|V zj)%L~T>b*ayuB#RJEilMPTD{hfSl|TiSQz0kTSC@wA>^~Cuj2@_G|jme)X^dn~qqg zghWH9&KUL)lWT#)o0z_G)dh6jBC~fZ6^9@Q{4iv4xEs4cK-9GLf3zH2s+e2Tt$Z`q z@W46ACu@Qd%QHj1jBdz3RP=DDcOEEadM`f+?7t+=IseFnX^Jg*cGR{#DU+LHfGW=6 zO9NZGDPf0@$}Svk`Qvh=(l2yOIO&_mjWXIkNS=v%7i_}4==lClhPcb=u1mr6E{^~Q z5lCpAP8wr>^2<~|-N`xAF1FfXt!(*0D~llKH_|UU@7nQt6Xw;|5XjjiiFRN(9DRs0 zRc^|Qs}R^kb#jm*!os)(A6u8Wxw_p&*#e8$ZjYZmsvd^Z8BT%s4CF<~^87sY)ttGX zDdyybqD1>#*WR{_y@i)+R<-U zst&%b#uV8c+kEwGLmf3=f*7?2h|m8RDc| zc#+Zq>TdzlCL|(HxfOh_!4MFeR#L(M<$4`rdjv=1^UE%y4#dC*@&my=R1H<_MgP92 z|J{jzauG)Yj3bE=kUJ1vkOGG*La_|O%1DU%36z?{T-ESIc?$)nu@`+$=Y3E>?Q^}X z%t}buel)^2*0R&K=tAc~?_m*Sn#tVHf?M4ljxDGnlvShPPL#uO-P5y|W%jB(G(WVN z&kMHN`qEC?v(TV~mP#TLe=Bj&RS|5a!C3wKt85|89-jZiva8eX-~g9qx-k@3I;9WU zkr_0=J>es{t78GVd{9LTApCs@k_K7$OuJB5!+528v>RfZ0a}9Dbr`Pr(zo@sOtJfwE*8ZngaXPy8d>(9S@^7A3Ww*vr=vtU>AIj_*IPAN)+ zgNPLVFfpJ*SXR*DpL8%wQx3;6TpdhmxeYZw;&QjvJ_02j*5w+b*jm<7p@|`ralB;K z_WCqV(Mph5@=is`9l0i^eWz#J(fECyJrA?rc9*sLe!=?SFFF_-G_Kf|wLP?z-z%wT zB_(MYjVIII+8QYOmfmu-Z2Yz*J7v-@FqrReo&8P6aTC+UUdz{;#7Fq~CUe9v=qY=^^J2K5^$7 zLnmbyTo*UBw2q+=Fdkwp78VwU$sq~C#OJNrHG#q~O|Mw3>pRdN>VS+80L9|${D!7b* zv~VJdJP}yljvD3)<$?TAvv^5L1~1n_Cu0wAAf_$XihIUxZ8% z83a`aWXGp)8UZOvzAOpstNgX>WAkTXR&x!E^(c2gEQsIRShAP;qD{NOdeMCO^HV)B zby1ENQ1)89!1KbSquma|bMyk!~l%)m~1r&*+UXk2xrFDJfEjFK4Vm}@3&zzKdx z?TixDfCmzN$Z2(}jt$DR_@9VJ5MZ68%fm3XM*&hJqfM}$KWt7d#zn_vajox#T%;3y?4pqLIbg( zGUc+5q;b$NY1@hZqt;_}ryh-Q3JWf?Jk(CoH_>$fyXeS>P(8cOa%|b}QnIZRBVSJy zb;;P!H}xOL^4_ZFeo64%tZ?c?j8ywxCwE5g)wnm&8?U0F{q;U>ic!d7GDGIzJ^!B% z6I3uyfDvL411Uq9A?K~BBbo^ugS+K?kFoc`q&&(ThRuLB=pG!5o2C#G7B>F;P9yxF zxacDslIMkBl`kwV<{T*l*fb!>af%@)*|#olG|(WSAmGDt=vCrWDvsrS#z5gMI?Hlo zUs4+xM)-@nCVBYW$r!4FnN*M9ff z&g1#C<(atEI6oaBOdRWA1!-4SuD#devt{Fn%_*vNVeZ@)XGCt-J@Bk<(PGI$ddL90 zVcLS)`|k;Q6A|saQ*!vw6ai1%~v$F~THNAr^luOko`Xk?bl{?6*|Qf4k5 zXhM#Tj>sB`@MM*K z4$$tH0(*^W@U{wEr&FiPj^=%k%GzA8u$JZ{W{^qwV0o=rbB*pw-kaalF*F&PwBX;! z5-wM^X;eZNRE1nW@uH>vDVn(4z3t(n1P9|766+S6?)Vz3iz3_oN)l~O4IaISixmgK z+So*1dGRqnZ8nTItubh!qWbJo1ko z2{nZ?g~0Oiwxk4r6x?T_p)u>CSy2W3D#U|V=JG8Zq5mUOd^PExW{6`LK2?O>9c`{A zbKr>dwRI2;8{m$Rtq~A>09%B?Vp#;KURn-b>-7NBP+C&@J>`XSeF@P+houCO0tFKyKeszc^kPl8Q!b!0$f?8)koX_DPwB3alra~Mb4 zkEVlfJHI&G_KiFUXkR}HpQ1+jqMjdF2uMs6KSsHhXjxLCbGezn`=@QEP`h4dFk`=4 zUm{8IKCQu4!Eys6{(O@=yj(xw``gVw=sQTg>V#OEwHldrgq(Fmc61xr!+l6Z9o&1T zIpv^dOIyL}I^q}GO&Y1pL&zt?J?0p%>qhy#)iIz0P2AVop`fj;U3kJHpp$E3b?qT9 z1<7pZH=d0p(JJkaiJgb310FY?? zIqn`bbaj)8i4EvFlzR-f35)5OdSuJ@|4Ix{BOZLLpwD~DGMrx~K|P6k_;7q=vs9=O z`qlI$CE{PGoI|4V{RdtgRBfCFCdm5%(WoEu7&c?aY?y!fStD<7!BpxC3Wrbe-nJS% z!TZ|@RUT3bY$}pt*sTPSV}rl+y$RLw7QfeRQndXTJ>b*)MImeX4kLqVY`rFsFh$kh zP2$bOXX8OzK;ua^Wiyz9#yp2o>iP_PV5ZKbxqaDgREUArw+Cp9Yd9u<%%`*kyvXKH%8v2Txs$j_(Jm+Rvvb%|Qm0ieZ4mev{c350iv=GIwH9zU&be_GJG<=4 z{=(mxy=&=r0V!)FtLF(tvbMYDc$MwRY6{aMN=k@k$y|%_|1s3-rFkF7uanjg8kQ3FZ53V!sl#r3xArs;|dV zEQD>XcI(hb{)XdUIL(IYl|#2ZQ_ZVad!{@}_ejMtEG$?rOOG}|Y)E3;t}B^P-tos; z=l7g6ar%yqd10-7abqFM?^qiv%_*$+r?pZx%PMn zKBKQl9UV^yx->eu4qhsAIr3*0isaMcBF?FwB)?0W;54it++OOZI(6L9pS!ToF?iv& z3j<0;&c^FP09T;9Zg2KR-NCbHAr!n9GGmZSm<)OfCHDPl?|(m~gQeoZ+Q^Sc$(fym z!!xjs`*7~nagCD=vN%lMib1fnn!sc;gV~3g9o8tfx~}B4@0#xMS5eB^(=v7^ zt3bYC=Diw{#HVvM!i8?6=BYCVdp7GCNzV#Zp+Nxg-z9Y&jqMorj$9V2U_HEx21SQw zG+ld`=L&+q_BzbfNibpq@m7X)9Ik1DWh!jJt8Q5bh5e?Tj5cL8TAbo%iEr!`t!h`u zYRD0E7o$`!xxLGES(D-JfGDu25kUxl2bZ`j#|`xip`c(LGJV>u`R-3Qvt~~1*f9wU zPU|>d6cxi`1o)B%d4oH4R>QLyo2`Sfn!7OhkHS*3dyIJRJ)Wcqd08|r5%Af`qO`7m z*QB5JzVmew8jJ-rvI5!4=9$BNl*w@mw3c{u5se>BD!*d%LPL$!MbUki@d9KR$lxfA~FFWBI%_P zhkzv8npR;sa?Ir?tO_LDRpK|Q-`^w0hz*vKzA%29hsjg9hub!%tFu_Kr*|K^RYP01 zL!WziF@@Bp#ReKV!|OAx4)GTPpH8Oa$9530guni+x2bQMTQ_)?7}+O%U#Oo-Zh*6mHDaM=r3uR(8;6e)HO&=#pG&9Y zz%#>;8Eh6~%Cm)$;%L%+obIXc^rq-?O_%$Exv=s=Si!Wip0 z&5B*dUCK!;I*egU&85DZu82%qOwct|rJrz%9PFYdqJ$fr9T8Vx<;vviY3gWZ zj$0(R0!bV43>cOJFFD^If7wLSSdlQBxYt0_U@(n4&x`AOdSOMIRQ?z|F!vd=mM@V2 z73oSe<+o-}k;ZJjcCymR4ngdJ4P7-4XPlTpf}3fwo6uRl%RZ1&CLxc(dNtNZRB5#H z|2dN;1dbY_rM{_9HOM}0yhQynD44so^mvC7?N++gqZ?mKYtu=bU&f9O)0d-*s&84m z_paYLDZp~(P8$A@jYJH&2gsRozMt`ztVxOsy?aJLHZ3lYguFP8Jvhm>&{U$f;=%YD zk>14Wpe4>&^-I%3AI-Y+X%DHRuq_RbXfSbqx=cH%r+BAueVt!IQp2K9B6iYw)uW$l z_tnt7{LjOj+@XKY@v^oy_)4{tnz7cwj^na28!q0Vj`!;WHL+iV#Tz@EY(7DbPeBaM zf4edEi^231ZRUcAOofkV-{vbCSc`{v zlijdXJLcgdvi_u4naR}v$3u@1RN?)c2xb*TqZZM((V`x}z}#~kt-^3RIZMGt-BhBb z|HpV`qkOT8U1~|(>JhyZljaKD@B-fW3pl55ZD2qoni2ystJPEO*X_$ZCp27w?yx*f zIrhd^svU1-4#_VXi~)oC9ApWT9n@I*+WB(+%d97G_Jd--qRgDUh3ZMs`Xr)n}YJGM> z1>NZRT2Pd&n+g9ruMfk}Mh41lmvSka^dTxg?LiskgXUfplD0L4J_8aO+yop-`TC10 zcQOnKchkf#$dTi`-V5GvWh6G#rEVo(@mlA<6X@gmy!3tei;4H78Ll%bbafmR9`B3_ zuHv7?lNH?gI%Y@oiV^sW(dmq)Ix{ttPZ!b zIFFo2Mz3wAv`#Me{Ti2Ufz~YY(7Q8p4C(tl&1L%2j%23fn?&BYyyL99%?@N9_7}Nt zm^K|vFvFvFPLH3d%crG9Jvb|-`}m9yav}${7+-OH>)ZCJE|Ynl$#^uFSSF}0X@xEL zHKldJq@QeoZ72=ai1(7W`9;o_6CC+)@n9D4XNFTv9GuGQz4xoy&KOtdYaRQZZFgHu ztL2g!C1wQIetA0Wa{I)Xl_@LB3JDAj5>f+f(UIOCXGBbc>hDRB_s;E}c>zrRh`4ak z{(zuNV@eNvbyQr}Z+4ay#^LY^WZDLzBAAT97gQyt;0&mP){-$`H!g56ps6OIXp-G`nk<@`)pvo~6OEdro1U;!~YlJ)&xy}C)j(KaG+CC7P7P^fjN7Slkep?+nX_HVQ) zfINthOodMI8FEw&K=+>l7zv@1Gst*eMj8Lf4~4RdbiWj6d>~;WMye}Aw>dhCWTV5q z0Yn7Pj{w1Z>x^@7fN z{r!UC^;eoCTcgGUbb`AlWy_ml8HM!0v{KP?3H(i|ogG3ChJ^tKc@!uZ9~>(eDJ1F%CU;1!hl2IA`|UE~2F^zQCR(z; z7!|%BX5%o~M`s`pL-<#EMEe~;s*RcU+|>V90}7u5QS(Ts1|)j$mGO*xwAQBoI>2@| zf^fmni}=K;=PGtU{fr4}p1Egjtzc?u8Z0&1-R%vDyQKT(b3ov1h7_9(Xvd=#X!}q% zf$M@$hPUQB>OmtH4)AFzmkAFS!7lhU07mYUu={N=k2T;JGlWTlxa@T_vBJ%WYv~h$ zkERZaJcFh7WT@m)m%ZjMz@qP?ihytA380SzwB?n!TqxXwFh_v$BC2+I1B0r8!vt=s zk~F85XDpD&@-92OkG~0}pP@(J_sIH}gZb7NmIv<+QX4M^~IOtR*M}0+3FEFe5gXAvT zl#cy6IWc)@eXWA28X8kpKN293WdCku{|QaqsRdYL{W{B55UE}XBxywp$sn0N5Yz@x zYo}!`HtL|+AOBfnA=vdl(pVtvS9tv|f7wcQ*i~#CgY{shdC7uE!k>{}{$9rW_n?|1 z4>Bk()Awg_;0RFD4r)qd_6bPDeiL6UUol;=Flz40>W!##M%Svk|6p})pn{Il4I$dN z=AI1H_vgHG?P92O)TaX$L7JDUK7qoLM|qf@lloj2GuwG;k(_ElgOw&5x$&~$I1P@} zPYE3vu%^Np_#IcI`>n;_&5f$odG+Gzu>!JvHk^};{7_f30L>yXjJ6+ivjlT_#xeUm z#o?tLadPYYA2a)CJK86r&ls~RfGZm{|CU=)e4+L+a|=$uJe!cznbn{b_dsxI;qv=f zH#H?4TYfo!?@pmup1w{|K{v(YDTpFZ92yLHxN?N~on!%iWubXz96FvD@bgo%)Gx!m z+dD-^8eBNC>^QOrBMr==)`d38nD#u_`QIhX-ZBm{G{ie7hwNN4)%~%=jBrRWj zVQ0&Ng4Mm7%3|R*F;n#RGplL(mYjo_<%HSWiu}h5G?29m;33|TV_ZL<4kYlp5@Q~w z2ED73w2hXH@g=hV-hCh}!JUlbw|<>=BJBEkgu19syU%1juZZ5V{eI&IA$g?1Gg*u1 zplNy%yTdo`m(Ba@AI$n_v9w#YEPq?SF>9@_n+-I0bNBYM2BFdn;B047)o5S44)O8dm@Ozo2?z|T+)WAThd%pg& z4an6lTpu{`vKwLw(36cP^!l!&X)wa1OG_teImlQU0&R70LC!2ZfmB6@9A)bFkCTyI zFQl&Oy|hAMCZtv{Fc`ZmNrIU(jylmz8hYyJ(M1;F*DJ=Bf*M0ErNcQLIs`#+1Y^A1 z+9c&+MkLHv;f%*M;EB8-SrvgT)6&wWLR8ox#FG?$=@_PeKiVdXjwc~CIe1fW&q~42 zY%iAw=jNk1MLE0k%5E61#UOhR#33hwu*AurB1N`Q(5-Jm^0#1HbQG2(QMh^Kd}JER z)Y6b(He>Y+yHr}g#w?eW;yB`kQ6eg@YdnW>X?faBS2Q!FCdMb$N`)DG#^7wcG2Mue zvykzQ2`r8!u%|>~quwgV-nR=WKL3h|JTm)@FSD9hucH3dyp&$fB8}Vr0O4H9#c`kc zc!!J{xvK3*W)dIfUO(8JvYrg_8$021{V5zK$YJK1I8nb4bqocW zcISbA{^D1aCFqGCFT5Ir2J3@g1bsk(gsmXLMFb2aS-F%hVVJvkcS!(YSovkxsYAvS z?9`8!a})I(rLI2$>u(P{2`?|?4=KzFx@+uNl4^Q4cR7lv{ zP9b{(2)}~>9&Oy1$e({kQg@!sp9%3vSN+;l9tB1m@VYq>0zDx5k#`hszO}XG0Onr- z1x^yLS9z4gr+(O{I>2u(J}u-A$zOiOAx}r*({c+4Cx3r?7n(sta%lL{Jq}ivKYz+< z4b2VYkBH>VF0uK0%u;&o5`u`?2XTRFX-%Iy+`Tqv5KL}Y^^>FX$`8bB!2(=2uY+YH z%^0AJ{!eG(U2pCCHx&|?691h6{BKdEvmmwC;&!Jn6m=TV96WCo%5%zx* zUSc_`AQUzsrX4Rukc@#p--BkLb#B6QKU+gX1N-Lz$Rj~tc?zVtutyMza-$ByY23Yg z{}(XBMMUk!|GcEDDbgOHa5ovLCfGzA^ryY{`cgtK=@l_RRVR#SK4zXNPzb=872B>b zlam6Q(jFw#D=b^D_>^9;tq3A$Jr5HO*cXOi8HDHM)^|qiP6K37G+bhyVdkZEj#7Hx zAPo_g!C%f~kQ3Q^&IEJkTvw8UO+t4LqY@O!QNTd3=0TO{V8wJ;{;B!q!5 zLXhI&0|tLA)K|?d9UUU@aVNJ!;>@pR2nJ3->d$(9a+vK;h@lvuxKp0jEqBf)sM&=$ zCAf%b=YWYSge26kZT*71zbIUKVHj3;C0K~3_2M_li|gs_jcPA|t>o*htoB`a3ButR zJV-4VP@ynSJ?$?ybCwMX8h`=qVozFq5(n@%s6wjuxxaJ}d(Su8AYB!_K+!WWSo&u=-F4(e13`e{YWNutRl~d)zzuI_ z-@kh&tE;Ok*!8anh`)Rf87f&app|$6XvE#wX!Y-uvIr;^g$R}jx=V=VK&bX%V(VcKo1C%u^|yauXX0~IPW4wfXYnxHuh{O_Gl=Pd3ls1H zh?ximy}q#SokYaSkW-QbS7%NN#M6-@d16}Gcm3d|V=H~i-G{k_apx&?M?jlg**5e9 z?!U1@UTNGgH<#5GYmoH(m#3a~{vQhe%RA2C@#+~L=WXxn?nb3%WE$|}}&IClT12=Gp>XHRsBP1)_AB8#& z&H&;8r?+{Wfh)cZc*=i!m%niixphM9o1o|42Kk4-E^>26CL|<8S^iamDGRFqgZ!EN z7x@$Lkx-mDuZ_mH7l6cM_Ul(jB^8YS3b!AX_+wU};D&{%9t0@cl-}xqR6%qU;D-BC zYyvU#4NryxB}F}d_weuy)3x(ROaPRpc@8s8v&*|P5zSqmJ3>f>6u{)n5OzflokZl4 zYv_zs%iaOj1_OAOsx&k;O`#RlhMbsnYj@d@%Vh&Ds#BmU$RVgf%v{L-a%3czgI)|g zbQYHZSI`8{5*ET&6(=#*1FM(~(q#GTwg(BI?OYMaeZ&;R9ZdiP4nry*_;;W>4}<8& zW+d||6cW9}%|E>chdl$t(=-_5t*i)SXu&|KmgJCly#NjFcqeCIYg3({j^ekKd5F5E~Q!;a)+I8~% z7P#HmA*<(A=t4L^vyD9i&q@xN9pn5cM>m6qt?d3-M>TgxSXLP~Tt^|hMhpqLLvHh2 zPJrw@4LK$Jpi;1dQTr(fz~P6r3yMqViwJw}6r?aB>jJDxroUD!WrW~N)ZBamK!7Gd zADAMKIN1LoX3-uODOeeaWk5i-NPDaid6wyo5&@UB(ZYnaK#_4&sLa8ldh2E3wY^fP z%%k>^te#VFOjXIS^{E1s)a4B6d7LD5{N(4G`4=`s|60*8&hi5Fe}CH#0LB0LC7<-q zMj$ZDuYv#1-he3bBXk%4+OFgSlNdGzXJApd3M(jF^LW@&sXK)+3UTNTKqK+v_Xv2V zKnfTK`2?~-Kqk_@gw)r%=ieb@2sT^4_6Dj?##F=Vo%iUg8ni~$50ImaEH&;Qe38fU z{`FXhh;4>bBpAGh(_ltWNk>vz;3I2>Fr|w;6OdAcR1mYXu1nVthX*dd{y40Qd=gL32Tg z+$TYs`3KzUbDUQe`lLvp(i4!xl|b6b1_ThJA@sAqoE2U*h7H+vVcxX1w$?%jvcQvF zd&IC(GUb0-f8fjbII@|ahP99wrSI6I=n6jrgi=OGa|4kws!6R1Blu&f(n&{ zbrT`wV4&%o_h3X6*s}FbSKuwGKt>TjsvF_f(F4NH=Y;SF*&l_W`sjw<=U4Zz_!cR1!ktFXs-G-d>632PhnrJba(@_dLUBM>k|;7#-|Jv|VXRyX_D&g(JEiw+o_uqk==;o#Jmr1p zqoOfQ8<0DkR$0k}vLD0-ywVf<@$~>nzl3l`@>C%U-R)KvPpp|2N;^|4*M%ZHJUq6KqZay1tGm_)keu4U;2p?DPKsMx_uA literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_31_1.png b/docs/images/specfem2d_example_files/specfem2d_example_31_1.png new file mode 100644 index 0000000000000000000000000000000000000000..9e653ad132285dbe59ae36c2618986cadd071ae5 GIT binary patch literal 81881 zcmeFZcQ}@R7&m;2M97}m$=;PcB1Fk3dvA*Dku57*5-O{xl#!LacSa;xSs~f8$o8J! ze$Vmz^*+b*ynnvO@f=5fzjAZm*YzFe`B~p9QbX-J(OJ5)7z~C;MOooC26L(fec|E4 zcQ#^(hxr@QVU{n<3v>v3bqZ_>N%4l{0T<(~v@3def{4n|>4H zPWh9>NNR|jQdjLXZn)*!n&rP8s`5`huqC-aQS)lZoL{tkn|R~R6E)rXqhE$jr)ew+ zapXwQpM-}vi4&M$W<2yqnTjnO|KHyuV!~Pl|Hn@hKc->-_cF6E6PjLpW6rcd47Et7S= z9^FRXb4j1Nx|-t{Bx~)T;a^aSx!Rq~mpDOa{GsX>U7Gt>m3Mb?&TVaNInP9L%oGM5 z@p!IJ7I0Sto&=1$bTBLo|8Zhs2>Y!UKl%cX zFYT<1W^?OmYCh~1XrM1JtWc7Z!`k}&yT9Jw_wZ;v@VcU6n8ra~Zm#pm(cf(A?&MFM zopSIN8?EH(tw{%4-2yHxM4~T0ex%sj+rz^-rB~%@ZB%uCtbBUXcU|%BT`s!Ic0tX} z^6snODNAiW%U`COE1#Y^ITr1eJ@NZiU`Xxl?JYJPO1{yEO*|sOfg!=esVuxZ@b-OI z-QP*yg^3!`8#ivC>s5-Sn@)4}r+E~s$c9@Ndg_UIgpkUTTV5613rqVs~D zD|+q=U$9P}K5aK%Dby>uF6Fn;bjHP+LoMyoeOpII{t8D}3JOpitS)C?k8huDd9*nb zE#Nx5K2|{-O)bzKgoXX3(#0~~FsIM|@5H0FXljlc+G;H=tsmd*3)`Xv>LcFVOqqFM z|Dh>gzw}F~t-6+uPS;$($&pvjiz@`zH7Mq*PU1g-LO-W-}xmrF}WY^DHd%V9)BW#5SlM*Tyf{R~v5`NyX@!R`5 zLU2R1zk4NVq#g)5R?ShVJ{MNhc0AhO)+@2XUmDDNQlN)wtq6smnSL~A)kJl?_&*26gZL|=F&(-hF5K!Uaj6CJK zqt)FJL)!v7WMsYJgkK<9DSPXruzsH#yHO`!k5qS_De$m~n}=sMIi5i>8OyBUa4WiY zW!N;(8W!^k?2b}%$$|`WjKj)Eak$5lroMh>ocJ#q&tK1NbCY@EO(m!pB|TRn45=a& z^g7}gMqzsu8pxP82 z;Nzo%?rxjjv`DpdiC3Ph-#IxsufpyU3^;sn^MDBFROM#-c_F7ssgI5mbg)wvh6>IP zW17_UGggxJw-SkqA+MvSG7#2bs-}+>oB<2TGqQM#Z!MMg^d8i=nV*)c?Ge28+WQ;Am1m)tHq}PXgd%C9n zVQ?cByBpJZVe*)uFaqis*Z@~y2^Yg!L)SFh9!tKH#qA9nU(k2QK{Zu`NTBWy+0Ob@ zJOO_treZ2UQs#KqQflvK;ivOi){9aYHD%!s(#)%g5^M7 zL1amopo}v&H^<4t)6zmL8}sVgqb%>=zrqjpVTXMwGQUPaO`VtQwKAe zEvP27so*{Oh$$e#XM1V7;p9j_!fP$YSu6(CwEgA6>)zf~M!mh_-kWXI2`MR$($eTr zx%~a>^T2&WUaD(sWKB*DN8$M7>_5hw8roJXrZN^-x?vmn{pr7MH&rj~<^Sj$1IgJi zRJn}&w+DCUQcP#MVrYa;J-mvMJ^GVqxyp*iimh_b=moPMDh&EimbBta;9Wg&gZvLx zE4E6`JJlu(zQ4mUeS~G!*4DPt_z-)m(aGVw>{baB z&QdBqgVw=O_)HxW6MliQdVfg*+z^MQZ|~*rlX=53S6`sfEi@_kzIOP#Pq*w=biyr* zfw#8^F}^<@p3&-_3Ow=04YIbi?YRH@>rH|8JF>1nm36eWt-r59_bVMLFmxM+S4-^+ z>ym4FKe0E>rh84AH<>+-Juj+OR_n1m#49SALP-*l?pf6h%;Pw&(5c3~hbV|>D` z;121(<1LsXxa)VxvIi@r4qHDv9Y#y6S3-zo%;3^3x0ePj;p1%@j`#C&SKeu6>v2+8 zpaI?pfUW)!AyplJY}`f@-_sF7X|F|CSlCLEu8Fzt&WbtIHz7&ruIMtW zs;XS(PIhOB%N-{qcACyG6?G}q|eJ(bHPrKO`D!^R!Pwu*#K zBSjBke-{s^%ce8P`016cg_5h8VP*mvm1UzQ{r?(!KOc0+8hh%pM^8_O$a(($EJ~2X zffrnK3IM!W41?5z$LKR*W5cQ&L2rX8+WS4NI$y7HzdhHR z2iUfP1Ic`bG#C;8efPmFSPX)gl|fz8q?E--^GVEmSgA#@VpGfC=jPs6coSn_X#V-d z6QY|=G%mM<$fNK=>^=ZrR zkA+vc&1b!QiAgc>xob3cqgtYGn{HiQcUkYV!wG|g zdn458BL4%=LD#!Mb1EF^R(VI5B9~dEG_Of-yZ)@x$pWTvSy@??!cRo?3Gz1Y@ti5R z=%e<)W2qlzVr8`SOpWKNFkfCrt@m%|&sT=cpq@WidY==DtIj>fEnyZ9#s6%3OD;ZZ z2#vJQCD^egyZd3lQ6w|5C?=|2#*g(B`)yQws=3hf;W^Y(!0vK`4<-Cq-4 zy`rm0{pQDqdjPJlH3S?vl=;Gb7F)0V{pI7`JGBREHSY{7_$$UAvs@FjAL6Y&+8JB; z`X;*8=*6Fzj{|DaW9@6=-fLC!kD{b4s=mf2sp@Mm%04D60;s3XEZr8Zm1#g6_AXp=ihK~1E&a*yIy zZ#s{<48n*pjM8-E?5bBeDbS?`&vmC*0zTP2m^z7rUe`IsB=tap>OG7EmImLx*ZL&i ziQcIor}{nI`E)Nvj2YC|-L;za4Jd-0+w_5lo32Y0GXDENnh69@yC#WlbN+re#~ko( z<;n4Z5Ulkymv-7M&#ZZ?{XdJl09T!1QnG+Aj8wUC{OWlgg05huHPY_O%ZEmuUtY>B ze0xuhx-E>;EEJuV!@b|d_XfESr%sMCx$D07$)50@MC?yLV!~WKUNIF(&)1*syG@}`Yjmau1N^L*}SSn*o2BLgvmFq@f_bKpyD;F^VzmQjbwCmH2?MMP-D+g z>s(c0*2YH}<~h3n2}Uob7&RMwv}u963 z#hgqVfO^(t_XaHhK-oZXwJ~Bp)lPG;I~zX=Tt-ht1;4wu*9QFnT)PFa)W+5EA9a9O zTrODwbtwT*QS|F`YU#>~gD0@ak`AUoDM!<sI`u2cI+7=j;SwIEg<>84gv+EBw4m{dk zfmw?lJAsXJI<}s zCEFmv2sd;cK(D5TM$qA*-$$n@#=w(IC`!a_>8{)hh2@oP*%9~PaI=Fn zR%uQc5X>_vZ{c2<0|&s8*+2>wzP!R_gps5N2JxZScfF1p5PPFg2Ym=od(sO^col(A z%qo8b6MU)lcKbOu_X;`_Cm&xMur(%K5fZ$G`tKj_lItEva%3QOf#@{i4#2Zyb8~aG ztOJg=b;n^!7Dh`spzxr#g>vRLwm)R(G!2_f3E(AEzBiKZ+gc;ZiN>m(r{$|wQcMFP z&pTFPy?OKIQ(xb8W|GFPB%Z46gld zKSF6TEC?l&@Vp3N#f0bid&3`M<7M{o$T`$nYu4+dp=9e`#9{LPqv^gfLW+InTeA@7H3{jSG;j2k-!tkedjI;tt; zOkT2jh7|4J2`{F#>ScaZSz$%A0050X0dWPGO0v<~!Fodnfk15#syEQdJ8lZpy&f9^ z<-roF@D>i$c@c*n$u+-T*jJV=#6qW#J=_SnHvt8$*s7Dveevt*`3ztFNx$E>CXP(u zlJpt^q}kQdA^-wR14V0tI;vq{5CwR=yY$i|++8Iw^s2G>pFdk~nIr<;AePx>cBGXf z3AJS7YY~!TOHgKO2GK2&?+!_wU~f&x3w`yQ6LmcXf$R z)S?v+k#x8o4uP>cU(xQ*pRJ);738k`>`c^WCNVP&*t=M<3d1$4_N9pjc($I+8{erC zYXSnCQ!BZ7AHEj+283sg8Hu9gnJGVkHbR5(T(A3^n;f{+$?+eyBmCO{i(_r463c0t0G3J@L8#`joXlDZQy8r!S z)9&Uh->N7H-jDY4POa!it3B+|Mg#b#S878>*1Gj*xF;> zsO_Wv<+HOAsZ(Ik+1=gM<-EILjtISW01$e!81v327q^6Y?yLV4o9|60XxAIp8qM;s zv9`v-L`6kubuWK=kB!Ogi|+t%0BRiP*jYIem4~f@3B@sVSI$1X%DmS9e@NJ8_f0-O z`2R-Oaa4ucw_&SZ1?3RQBGArfodOTe%N+f=gIa&d)MXgQ!rHB~fMU6#qxE>hc?xUE zVuWg;-)y-ol13_ony5M-^8GJ(y6bab6O2hoNtGZuZ30#@hi&};FhmjP3`jJ6d+?a? zO@-5x$-7%R5p5O`3ale#_SDCFeStGTKbzp|Zsq6ZFalJ@IRrt1BEVdQ>ZsM73cwAf z`qOe9D^)Z?ns$S^lrRl<^WuPgm;n@d0BpV3qU|ibm@@|LeixuU+0cnAfnRu3OjI~A zA=;ScyH+K(Gh#VA#3bR42TU9k5xegnxe%^}7Qy5)hdP6C=4IHhEGjWK$Q8aWLfN+e z@)9dAKmTdUM8Lr+AqH`h(DTCeI4j_~E^|mh0d0>pg&<6R<<%ob;er$BLAHQx9YEL)pIiCP z_Mv7?qUsjlo|Vj#!<Zw}<^z zYt$_SS8XsOAc+!n(~h#ySmu|MJb`Mcv@H%|OTv8sTtz0GPhb@Yv=ty)H*z6fsu>7N zFZzNBX4CT2oc3A(Lo76_&CO!b=RBIWOpQF(4>Ld!di4IrP zNIHN1XbQ=H_b$TNx#@I_P`gRskq0chOj+3vE6{rNp%lP!;w8cR$CDKek}zg~m$dm3 zS&QL=b@@z-Ely)Mn)q*Px9e@2y#*z;7_0z*Lu!AyrrMJ%yewmpndK#*!4&TY%e5MNsA0a~FumWBJ z8!P{A@d!kX3uKW$U>af!b@lZl0i~P+{-X#@XLjhOX25FWXGC=Wu1$z7zD_i{dnq3M z1eE6H;c!Mksi%S}KiYXLeUpQ0aQFWLOArgwePA0?B`o-aIie@jflQ$t?OCbqZ+B4l z1^p)+!0=0Gd)0FQH~Jd_1A*bpWJU8g15|x~fH$J@x?^5kTs(IUQQeBe?P1e+sBxze zivwtG`fr6ok)CCgws&b^e`O6Q9rLoQMC11D;O*t%3v{u$IK@vJbh$hO_vWa@dD;Q* zN{gS|0I}hrnP9|hoFu>F1n8&_p}$*xeXTNn|6qIh(fGJgPo^vrY|`9XKj;gfdRH!F zMUUU}q(|FIMJ1BkK8gVV7X|}7S<|1Y;pAAd{%FS#bpn?$dU01AV5w42eH<6hG=dr$ z4(c@$C2qd^419zPsp&a@Ll#DgFMvXe)lLIwnn4%-Dul$2ct&Z2YtS}@PM`>V%jj|s zAMk;Y*?3t-uL%!o8q0UOg^UP5A|1rV8f>E2`OH8@;Ca^olOUQu4n+}3{QaPciwk#O zkd!x>>~P5&S`{06eA+q@Tl^5(619Z`!LYYF5e}a1UXqe zuNhR{Xk<68Pci_%Zihv<2?S;a>UF#6$-b_);YBp)z$8CZ&YWEne-C$#1R^B+!zg4( zEw%&0aRKq_C9Kult=oogIR60D)~xZok7)!_&YE%nt9_11=pPCngGJZw|28vVpR4|G z>n0Rd6VaMafcuLKgR&c9E%*Qi zRE4GKaHgpleOH8VgFp<3s|jcdKAjH=Jkp?fB_&gno<1$==C4r|9SC7mZoJe(V`=KY zO}Pv_l!uek3(opXnSQe5wv)>@!2D|8a+W8E3k;l7OT9W z{*C~#`~(v9KOG_zpIl4-7F$f5b|;{6_wG%97F2LF9^3-e8Iy3 zj?4OH4~$8d9-$61*p!`)0I0d}6vOeGu~-u#ruWSRm9wW%?xp$Bmx<@h^o_iypI_z^ z{-;752Lo9N#eVjNwN%oO;orB`Kzx87M(=CM0vg4CIU1Cb@#};}iVP%>_m+~Ywz_x{ zK&}L>@xgErp$#x8eV(#^cC%z(lvQ)HyMKW!NYrQB49L^%p1xsP!F!4b%pUfoSXo ziNgN14D;p`q;B3!=50c@KPVk6jz>s$2c|$sBZxsZlsv(uco17DsHkQDY+Zwj2_A7I zGS}axIyM9ALtf>Y=gk!UwkH>FYUt_FRPd8Uz66}N3jlo+G7o5U6+r1n^1vYoe@F(J zEq^X-eHQf7HwHG=5>r4CUfoI+$+dUndNnpv#N`A%g@3!htBF0WT6F zd1~`ls*?rituU~O-GKlb{y_y`M$=3uyJudA+>b)p4xmArtFz!CDY&=@A#hC(8wAWL zp0}#cgJDV0LMM}hl~L8<iBy@Q_z|} z)a@9cDhDL@pM;^F5d#Bh4#qDKU=asmIg-1o!nTLZc+#v1cmR^kp+L`l$ONvA-H4i3 zyrGg^)k;aXo*2E&BVwjF!wL}QJYmxnU1#(T{U;{^zRcZ5wlQ`iaI)710jp)hC1!%3 zjzO>P>V9x(OJDBAtNYN|n#cV17jsa}tlMA88`nRDh~EEOrhrj5XHxMl7Ru9SOUFw__NSIe!r*p z{bWpx)YEzSTy^n~m$az-0wO&=SSN702J2By1iv{YRGx*9NroN-p+?YbXNUSyMTu{{ zxGZ;ad^Bf$$+lMk(ij@hsQ?qcgcVbrATA9n9x=xr_(>G*fwc~FBK(T|P>@jg;y}(U z=+cUiRdDGQpZ@_uRD9knu!k0uBY`gZEmxaB+UHLryimyf8}_p$iUfe4h`btlw;rL& zjb?(`IBg%oV}PL3p!xxv!3Q14Wzu_o8fLcG-NCUROmUnLxls96l^)2ZM-B(P^t@&j zLBp%eFZb!O%%JiB+Xlt2nCCv#tCA8j@T{6giY@yK3`HHEgER=23*J|5ay-2_8Srg+ z7`Sl}oB7ZVP=7W6$ymUZm2YW3l4o)JQv(B!$>kFyV+z=10e>wN0yva_`@*+HAfV!? z57!6_IXCx?{LeH4mj3Yx(5`VXp)G$NKV=rCC2I+FqJ^>pBL_Z5p20DwOy)2|kl(1} zZKUEiLZtu;fP3pqTQrj3Am-EiN0T=mf))g&wtej%?+$FhaG1laAWha8?Dbi=!gkmf zk@}@J(|LvU%^+ttQsC=n1Ri@MQ4l;^y&^L#6Yn`n6i)!wr;R@|6>vZVTfPI{PeVs1 z{N$kF@XF3PIej`$9Mg)v|?{c~JE{&EI6vVHGfnP58!QbDqmJ=VaI1KCyh zS6^m45Kw6~4WyGk0H`hmb?Ji!Zf={VAdP~KPV&7fwq~RQwBEl2LR)ByIh3?4r>Xkg zzYQmR|kWkrBR#u388?EV-;A4P=`)I^$Bt`Huc*)jk0FY83(sud3P-*MWm54 zBCI7y6GJ{h=GoT?mM8|pE!hI{4ju-AE{y=B;sG5a$qWhF2!antKnK2#3{9ix&`;t? z&qVIiL9f?@^@ijh#LYwFI%AaCf}!mCL9MI=iOsp4*7oJ~c*a~|XeB2D}ML>w6f9rLF(RC{xb9-vQsUaG{DK9D}J%uYc3p|On7*3yEI)KW1>wHn&C zm+7pLp8`mKc*2Q|%p7>jKcE2RDlz3|d=t!#pY|TO0%2HYpbCpfG2Zn}7>0JJ+DB{| zb1Pj!dy*X(EkJyZ4?U0q(uXdFTopcnS^ZP5-FEx0Grdoq0#r(fSsuuVuU&!EmSx4b zD}f=X;s*dHMiDh0E5EM~*1om1_1jg@eJVy#fB_Z5a`3ozekQ7yKo2Sb#Sk$!?NMl1 zCHeWhRVH=U{{lv^fr{{JO#rIgKQFp3G8xfPn2{k6z$!f=(-KkM>Wbs|Gr)$otVJuK zNzq_*ATj|A<1^&@q<5f#7b9~Wl&>OKueU0CA>8H(3k(Gdc0fvaHx!vM0I$S?Ruf(a zkYpu0UdBS8cH@-f>c;^Z%nl&Gg*C%g_F@!3y8_C|d?}bJm9Aj%r-MjSy$v|Z1c95+ zFaq6}BG8Cqg>?K&??b*%6117BIRuZ(VIQKPm?0=#K)G`bc0P+v31YZOL5c>GH?FJV z5Ozq{{es-w+jYpyf?{r!V63g(#;%^x^S%6jH<&kCq6@%>I}aYWuG~?Ve)Ih=T9LRx zd`6XDHXd|!caK8p3^jp_AF0H377%8F9JW`ykF;)i7Vc6gY<5VKh zh)f_2(^l=i*!-b-iCbG-T4)^PE5`|hNx_#)oQlpM=Tn#2dwsF+<0o;H+S7*+nm$y{ z5eVG9G!V7vp}}QV^K%-nOu+haylbBS-QEvElciw9K?lw!_p#+j79nTdJWT&zN~1G)8hA8l{ot(5 zc7d{(l9Zf`ygsO(%a9W@toN&W1DT?KlFdNPUHdZv(jcq7?bqcpKsml*=)Y_A2aY;A zI_*g1Md_3w$RQ1Z(>LL7H+C7)Z!NQtZ5A%gM(froAT9`D{%wXBZQ{pgaZWjG&a^o| zq-iS;YHL1}EcB1uhx$P3tpTbe^=Sf{83iqy1~Vb2cjH6Du@7z#Buu{O8~{7-00)k( zArs^S9&T<6fL7__JFs=ru*?vu0=JPkT7eZbDYV9hip*OoC5Y+8UhZRAZ>MoCetkn= zKT`B+X)%IUY5phV$;?0=6wWhkkU4+?Haj#0WcNQGVrJ;d-LIkB>r=9h-VkbpDY9rX z)3`#T-rOZVc&)k@#nsk)B(WF3W6k!>$C0x-_mh_0?-sOc0F4^ ze61`2&9xOiE*N@+Ia~?o`p`pnp`=RR&AU9e1!(&r>{=Jo+jNzP%maVAg1{L7*eqy| z5F|{U6<60SFbIQ!@M;)%yp=uESLS@sd8n?I<)jLQ10&4_4{6IDmiYs)>op+#2Qc!^ zH0jGNs0yo+MnHH9)gDP5UvqGgWBV< zNtjs7AXn4UPyr9I`wIA)U~f{U~9@f@3urwcE|FTxVOCP?$N z&^VY`n4C`j=57Ya7qielo1x_*f{p@mKncI{WoBl^Lk-Rb+(B*ZPKv1fN4x&!ZO@&B zer%u!|LztDWPgzZGfBkx_YDxeIRyB24d^(%{T(pMiec5hD!F*^V)+h|_%V;iCJIeu zy`Mipsp<|!UtW+UyQJHp{-1hBB@NqC5Liv6tj|-FnsKVzra~D7sJz|xk;8>#bd!Qu3dp_)+#ksNxkF5M84tR-00e%5B-d;2@XH1s`yo#X5H@BdGZADI z%)8@r5m{bpY%GTWKxUx5C_;>(a_sN=6cgNdGs=p9HqhA(VYf?2A<9Yjd{G-C6b_LR zv&mZT2LOUS&g{aFN`X(j0fu%qq?6+UWI=-F4!H|YDhoM9| zWiga;@qJOqdm!ly*rOa&HssZzybvH;kB_$?;vM(8=u{8{7|h^BvE}?yXT-2UZAR)S ziphYHN&zI{GzNV14r^UZ5CR)8Esjr*p-+Z@#`_XL%s)REgj9t1^{U<9-(!v7`A~TZ z{8E&<0pAAO5B%E)5FrFb{2W}5srEc1b&4V8aR_~Qi})2 zACglKgScx@R(^(k?s3*HK)bcMM<982z;6pdNEpz3nrjyqidfrxeh~(_&~+q16}X+k z0Doymq!XB|aokgTQfUr^dBGDehBOvv2-peA3RkWfL+HT;Fc3Bdnf55sB@nnrpcF&% z5D1oFZ~%}##YGNW3EpAh0tMp~joETH0NG(nf>2X#eDTN~wbknRDx zUYPxdDy6}42oPjQ`!4m`TqjX@kwEW-E2lS$ItfM(5@MCh)Vz9)0HxaKL>+sOk^_Le z2AJDVRpKmWtiGaFlyE#vZPW+>_YUaGBM^0H;jjF0O1laH6xhY3uvUuU$~WsB?q9)LEV5A`J<>fH(`YSdfw%S2QMfO30Yh&uJ64~7`*2te`5 z%rP*Q^bza>TMx{Jd=#M*|MacI*X{2h*p)&q$Zl_44g^V=XgXzv8#MQCXb{aV*cT zDjda-z0qk1@b?4}qXZyXdzoorFMui<#+pg-^h>tqP#Xmd$%yU;Dl%$vE5N|}3tAjb z0HIx}f&9K6q~!DZu*e~XRN6V(O>`J2zfelhLDWI1#H$G!k;YMnal^{yofz-1B z-2$DU=yW_MN5Xg&djW|`SxCc2*%b~JRT5epMNpR;9m31Z1Q!-KJ^txVx3Q}a$Y~$y z8x(71D_yLK{3k)NVRf;~S>f0$w!Nlr`u80xDyzi*j%dNbEl{!kQ>thQM%j$mz&QXa zcuh|3;p%$}q-L=Wn#Ul*#L30=s;Mh{y0B#&0YB?9j6t#^IB_v9|yd%y8BWy6z|^D?AP z$R`auU8bRD#~yx5=4`gwr^06pi34oE>8o7w7umwgM6E00Vq2Z>{n+*zT&`CpPMA&p zFfAr`ms#ZVQb|-vx@W84OUG;r27O$7S^0K`29ju+hTB99<9_4pG@k2v1BxS?aTn-Z z=6Am?o>7oU(-XBrz0xAi8*oHrI`y=6k5W9k^;DP-Tk z7Io)H41f8-Hp8jgH)FWkaxz}J9~@ZxsnR2D&Gq22*}NbeMR??`R;k3U;8!c7bb;wr zX0cC8oKl*2y@uG{%=gGyA}Z`ZnZHG$=#UToZ*1OKyJ<(s+0UyqeF1EyjF z8tulOMNQphoqfskR5?wRq`8x-NoV5*jiRxSL!M|5=jd*M^odMvUqq z2dAQfO_sV!j6$KdT-sGh6pQHUx-mAkoRFR#3l+O#`QmM2roU^U>ni0}|IDyIU$N}5 zI%JJXtP8ABURBf9;l94@xR`=3t_$X3UmW(`MG#&KnR z!bdrXZv}T^TCVS0)FO@ts*1oij*y&%Si!W1yxRCxVMS(}E|+}<$$0(rEux%U5}haf zS$fe)cqN$)-K<$O&XbO2iup_U7NiYc!GF`>GU;VXh(ivf!}Fa@#M-=M4>d#XC4k&422W>b*zKg@}XDql_Jy00v3OIsp@L-PN&p&^0PMIu4a6*P(-eS zugO$0fmiG*i~pFi_nK$28@$8Q*ALd^FhySEMH0bd>Y{Wd*RA*iiq&2VFY-s-d5$A& zuS|u%7-*cQz`B7`T>iOsIjX)ewC@$q3VcGbq9dy8Q zn!%i*DTgu{r#Ok1(i5i!yQ$V2B%L=b=ycDfIw0b5(1#f}AUue=JL%`vDI6~={z;Dx3~Pbt#0or=uM_mE zg(sL^tydg3-soz45Mm?pbEh&1)RF9H-JK*iHO)bdDaW4Zoj=YfbX#>3yD=6%#7%DI*Z=pQTg8 zJ#{9w{*lhx2Rh&Q2rTX!a-9)Mkk?RuLHL9(IEmp-$=E5jhU`D`&Xpb+>15YTBDi1R zj(98c<}mpLYuE6y^BdeZXEDf+lBuC!hzq?2laXp6LFQ&&eUH`pRmRtwPq?HK`NX!B zZE9jdL#J?@B_ip_+9u8Cxz70WXIR(=rBc+zM&aw+m3@1lY^5Vvx*#aGOH(ah$4qm> z#MX>mBt7Hn9SYe9H&Gm$ta;&dg+f|KpQ!EL3;1>S7No3jgcL{>l&PA9s0zw&ygR$7 z@G42x;L4cY=~{F5XS}x+&OVm&nj~x?wzw0`H1?D;GGa=Vtlmb9mXC_|+jUXfW_z*W zH)}s>biNedY$ZuL!8K=DauB+o`btrLky=eqgXDA8w|k+!UnayRHd255G4xGqRDBr zN3LMGTkj$%e*#u3$?1{)zw$zw>G@<&HU<^#6TTd)lgNZ-kiV9QR8>)x*JG-=!}O^6 z+hWbb)cL0}0<8FA7734w_CwUXKc5kol@LFw=>H+PsHfFI@on^s+%8GA{2j`Ms9O!? z-7yN+HOSX2soKgOGYz^<;7n7p-W^nZeAH}H+Fs@H*`AN=oYm8au#kvw*fVVw6a;K> z^19c!XF`9t@2B{%k}g@9iEa_l#~wc+*Ge;nl=Q{9x`kvl^S73G zR7l9VFvjWcgYPg@4ako;eNmuRVD-djEhFvB`@j}koBtMjjG|TV+Yqxvseh|=va|Eo zSY~QdKRihWbQ^)jXHp@B;M#;f2QohVo3TW*7 zC~I-4)b_7~m1EE5yTcy%uh zzOEl!FxXbfZAO!8ml&bX0)uoubKy;hnyr z|Ch}d^37LDH?KVv`Hbr;9(-O0|3cag*XrM$Dp@#!Mf>&wjMoAx@g9oz}`j(==zxehLW zO1SWL45B@}MwKKGy8&A=*02F+C9iQc1)N6)K@m9J2!ypOdLYRa0m*}GP<>Dy9N0wx z1BE&5(nM{0e7{+v5gtcy2FCL|SwSfI?yWB;faZ18(-Fu9w`EyEO!pFP>qmus2W3T6%yQHe!GGw2@Q9f4V>9!4#^6D zv5ovT+o}&TfrWrb8jbj9*90mbh!DaozV0-w(vUUUuGOXKFWT^XIY^pRTcgDr}3Udo+?!% z|0@n7_qMn{M?2kKg4)?FK}Vi9$6WReuGNHoVwNDk{h98SLf1JKc~8%Bsh|%i^IPG_ zfPxlMa4yF6IZBUD`TZs`fxP5|4+?RDHcIj@u^@wvg<%>YX|HZEqNq%mL-w9Clt`gy zC)~c~n#U3@uj?h{S53lPAxWvuxo7DMm7TAq=>O^cBe^W9xpLa%TvlRM#kteemEu94 z1C&R`1Gx!oq-iW&7-vDrf;Jn(Bwj)M0CdF`hz1G5@k0=K$8Y=M z+rQp5mb$i)N+J@4J4Vu!TgbaNO8r4XR2-tI}4 zr0$@1BZPBAhs>k-ZyJ<+>4Gx4g7N|}l0@A90Mu5-~0nDgpvqOe!<4$Ib;YwY}XkIMGtg|FwU z>4Z<;@35&LA5uDdSrhMiSW!O?b-;5B3#HRYWLl|0uXl+okErs_RiOkGv+*95-m&zz zOhw-~DqUiCw7NfW~GrFLnT2km6>`arnLq;1nwu8sP+8j0aVfSl{ zf-~zFkBXH-xv5i;iMciR4+Y1K=K&dtLeaQ%iU#6i64RpEN{rf?%GrM9j*9ztJH zn+ro;Exc1j<+QlNHzaHxGk+zo9@r(SsB?`xYko#iup(Pk0mqlLK-t6P*GFcJq4|$F zqJw>9Q-b?gEwnFl?7f0^y{5{U)hKK4jLz8L0{PRJY9J zfQ3D0!2OI10yrLmD-NPPUtiwjNDJXV)9~Xhi3s@%AM6<%2hz9)q1#G#mJ=3;zD1F! zogqz&ipcP)Q75c@K{ehN5oK}pVvM4&nq9+eJ!xw|I~-UWrN%cj>5(B=>_}#-WJo&< zVSYkn+_@MYK_ar`UM4>hjyDudhNl>k{)|u|UX`k8k&Lu7cr@1dCim0``Q4gN3c^u# z#X8@X)M{T%#4_O&C-$3*9^j?)KGKY{E4fMXT=neVZqtC@;QEVlc_l80RNp4U`owpS2RCplo`z$u-&ckr#m_0)?`ysEL)tSo}vnT^AW7}bnq-!n(0`*pEM zY$TNOKD!#{QgV~idC`}9>sp)OR1vLJ67yG_>ZnAO64vG$gt%SabVTf=D^l-yLqD?{ zZ_GS;nyCQil|`R!)7}bh>gGBBHR2+Hrp1(0oI0CCTJTXg-<0#)ldCMkQQr=9$nTLA zE71@>E#(d<6BV1b6O1(TQnqH{eMQ;IsLn{LThUK=&+$iV8Sm}uSr!fK63<-A@$-U5 z3IbXE`$~+Jg$@< z$;BHgAIxQbYv+80E%eTr6db|z8vAly+~dTT%-^`a1V8-J&*{SJs>QacP|SWr_v80n z@3P|st>sJfF+ESTgFk64+}I%##qHS)Et(9VCu^=gHk0f(;}W*q9@n^B`9hVl>AiB+ za6Z8)J<%I6*{mY%S$HLMa`c2O@9OT`HB6m#v7t)(lccPs6gWNoS9ed}F7uRY_TSr6 zykrbJjW7zALR-!moNw-_s*ZTdf&DF5ed7k+&A`)ccpSnSarV)IJ6L80gt7X4q7>zLFdlH{yr;EhV2pPL`oN6hVN-?6!B%$?1lv>K&Va-D=$=>-pN zCW$-eJ_~E8x0qe*<05*ZA^XgC@4DSdRcAyQ8>aHft87jy6eXV0vro}TPReQ~)nbhx z3FZxT7OeR$LK=%lR4)7?*Jhq6yM5IXf6by~@d=y7VS%`u=WEjH z*9+u18tl{dY7*nm5_yB)xGMQSq@dJ^GQ$Z{&M(Ars#-^XPy2wBs@4ovmQT5}zzF-@j8FO&@v+5Vjw}U8jNoj*9SsYm6i{6pw zXs?Hnl+)=eYqO||KKs*_OQQA!@7K}Xs=6X`JwN7NHx7xcW0UIR=WmQ~ZvU-u3>~l- z_$g)hf=i>1&io@W+`F>oLhh}LJ*>@SBKf4%dx~Wz=kd+Snk*iZsKsc-F|#v=7JO%! zITj^t{=T2h8?M3pu4YP)`79^y&*dnNDtSdZkx5rZp<5?Ux~2}S%%;=CVNo&PrdZNH zjIr|(Zgjuw)2x4ijI`<0YUxlVMV*5RPL8b7aOr856|2j7Rk0>@QY`t8ezL?BbCQU? zNYs;IpL;1W>7}iuLHqf^b-niDd`6#3lU1sm^lq2S=-h;Foln@pNi3Uvem1RO_0Sg@> zH~_vdf~VTgQJ5T_H^G9Qp9H?qxZm&3;IC^Xjn;Z!LMO7o5ksjd6j!GC%_;gS3CqoA z2Tx65r0Y-DZG$(V*-bvj%6au>b=9}A$eMc}=O%Ea%Ih7Z4=RNe;F;GQ(XvEZl={0I zBrDYCd7dH6p>w2<&M1=$s_fGkyPkMDSozKq*6`s1!$$z|UxDGCJBNHIM(>}b=(#8e zw8AN%eu%NcF)>qqH#nMQ0q!|^&cQLH(PqKXp%FC0Wc6p8&L9g6tSiV_(ZcgziXc7$ zH>_&H6szO{$=R0>{5d)P+fWP#K@lnkF~7#>ZEY<*q)L>)&4E*Ck01|v>SVV=b^`*Q zl@Dz038voDk37vnUvVD0Ce*$huZC4DNhK#$^i}+%M|u!R^2zmYU#MRF4N0kp)n}(| zc~|sM!;3IsoxndQMyS#@!Y2CV_!kBC>8dU<=O364wOco&ApL<(n)3_T#+ZZQSP5ZB zXGkn!V-Rn) zfoVkc;n%OXVFE?%CaSNX2Oq$(y0ZZN72)9WezbP?ST}-TB232VrrO(2c-nMI`0+(Vt!ul42%`(%btq%{5u_ z3z~Vp+0+@iI+{iee}GF*d09L6x@F6Fw0M_ z!es`Oqihk`4;X3TNkqKJBh&A>0kZb#u?nZ_5Nr5p4Y@ZIfs)z#NseiRb1`7}z2UwC zCmJCBs={9isT*)*JLPFGYQR+BukX9igT+cnaDyN!Favybq{uwP=q>nb@Z>Meq&+x? zwE;BHC4LoN;}j6kt>d-q;OLj!h`oEL~P2JHL5X^(|P*I5X59$mR%n7)j8_Bm6Y7;~9MMK24YHyg1^ ztp%hySxt+q0T+cAZPEy9~hw=N`cy^h^V( z)2^ue)_2dl-ETthJeO_M*qAtE)CpwFB`aApLfOYi6)OBq{7k=YOLDP>@Iu4FHJ@&9o4=HXEOaoq0+nL&)Pr0hfXJ+ftO#!hxakr}&?gir|$%~(UoR@t(R z%-B*0gX~I0mXakAD%mPj=X?L2bFTB8bDncu=Q{s&UH)k9`~I$<&-?v)XDP+s0l)PD z(6~*41rP`^B|0GSDP-6LOA8$+W^aQg3}ialJO%V~IN+7A*8dX*GXReTlgupXdal0>wwS(ZoJt;P@^7l%vKLW+7h7g8SsYY=l`H4IVx^}xmo?X7FZPpfgZze zs=mBIs;^&)a^6?v3elw*o~>(i7G3~0{5Mui+_Up6b=2&a?@Jt|ZLfhg%6*O>?rrr( ze(5tqda=(dp4kAcJ*lr@whH)wrHaBb16+WL98e6Dlsa}M&Z$7`j1W2klEgwB4M;Bw z88%=K!Sxox%Yn&~2GwxDjrZ5kg}?DYa?sDX2~|>n&ERJ^!(1god7eg-pZ)gk#s*XJ;#`8yu?c&$tJ2>Hw-O^3nB}-tNP13ZCynQM zzNn@)WHCquMIqJ`Zg-n|lEK1+ljvk{56x-2uh~Xjg&ugioqq zVnza41;n?5fG9w!)Eo5VL*h(u>qtAd#|hTYZ)3G|jBskl3s>*Jtrgu(5^BrRU(dLc z2ONf?*WPa*OdGy)IuU@LU8ihnR+>G&mBA25!Z9ZjhQ2BBX`_?($DWm0AZX9Ln~?O+WKf@{9X1wO_R$POk!<~%V-%_ z;cB7fbQsiO zLx7~SluAVcfh|x|q|QKV2!uX}dL9p?5|@X#MvVxXQyao!0lLBQ+!y&jXf6t$bIo(H z#=xam&!#++u{MKM=%4aU+(Ic`VY;Z2%yi{}q8P(JY8yV2$?@6scTLMLm$ts-O5d!v zuTlRWW#VoKaS-z-8c-j#_yNcVI+MZ1^J?$b0VEPQx_R{95epRp8Wjux`as0I4}Z>I z?&XE5r{Kr}Nv0ts3z$Z`*2l#xKmQ%J;6roaN>xuiy0WxKWS}uzaYx`w!$GUyOXx|7 zVKdBoSD{bdAvYvZynM5|zDNgTu_nG&12_dbXTk!jU41W#~5tw1nQ3e8b0NahYZx6b#kEPw{ zFy1Hqj&?woT7c`_qJq%8gLl$bh*J-bJOLNp4B`V*U8dmA&t|?9Uu`#kM+$v#+E6~z z{MB-dl@7g6TDCBgKB*Kx$sscxtj{(Nm7bw$Dma_)2Xh0@4UpFXj?*Df_r1IZ?9*{z zni7CnEN8m@|8X9e2eNfBpvI{BJz}m-uvHPGU|$Ir-~JY>)hhEA^Nx&`b*PHd*pc!TpuHqN%i$h(Mi+ApB)4 zsCR^9p~(i#fY65V+4syMx`-q97*pOnW0hUw6feGV0He?f?-4P}?!Upq&$}lJh`DmF3&Y9Q!{Pori*C065}5SIPJ3CN?0T zY(6g{#^If{ff5%RzLn*P!@(@Rj~pKMw?F&a5x&*DHDr}-syn>No*Wr3l)~Cdb`v-Q zM!T4N-Qq9O8xD>75ii_>CEq$KxAKdSPyJlu_5V}7d1()PB-*8qdH`qS?%nRVG zfQ8lyAdJ?Uz7EVk1fZE!iyZZqRxOmj8x?F-Z_;0Y6WS(x;&%FGkt`sLmwNcVlL$A? z;@Wr|Rr9XZ@L8AFlo$p{UXU&Af?a?YU=!@=fEUCE4p=PUaGeNt@I}bg1R3aoYIpnF zhjWSz;F1JDZDA`m!9r(scX)uJJ01uuVK7K83-Mbnwf#su{~6pNAdL@pmlsjutE`R0ny%H1~zNfLD(L`eYP|Mfcq7ImiAE zR32&DYw|Qw%Oj_}cp$BR?)UwYtL%lbY0aZx6MI{Gg$uODq}Io3XCLqBMUM+yxl?pu z=sKgJtQ^O}@3>NhC$~+{f_ep_tB`&gRL(A@D;w3_vI-Xq3|k)zmq@V}7+Z7ja`mw_ zTt6um$XpDkk=2d7ba<;2i610{%~=g zyL|lLQaCuw)hV;*P5CQ?gWVqZe0k4=q0ZJj7=nWwHeqp36rqto?GK-05&L%glxFG_ z#)>J!=vDUmQT7sg&Lg)8pLFDi)OrqbcTe(;-`xb_<Hsz{^*UWz;9f3%O9aDM#xsf>T?q8CEeC9Lvwj4FvK9r(><0q0shuY?E5RWsMW<;JbQ`nmkxV_p`lr zQy(CfV({%=uEYJ5^amWAGsCqS-#_a*n9K`;^pf1{h87+Bh56~_^%VbP3)YuVu6hc zPg2~({{5Y;v++w^qo)$%Cm!ifT8Ryxxw=v4c#YT}D&B^)H;$jI`^YT%L*&rm z8H;yS0``G3sPW_V@dl@&5)ru@Kc47WT~?M2)LyEu)TR5knU;TYwq-Ay?bOl#aBu@1 zgKa+P_MM2YF#lbu;S~j?N=_^ta|ObYu0bW869u z-=2QbdlW|f*n7`NQt$eaw$XtNl}Dz_%RUa1vL!`Lelv|Z2z?XspLp&EtwZR^i$COC zoiH%A@hmT{;qHF4nBbI!#I(ONa%}Xj>X<}I@Lgje^-Dz)he~*R(EG!f>tL07c6rYhmYhSg8@(v+ zB09FiDp{o?<(r`etxKR21RDoiOVi1szmaomR)47n|+AVS)Ljwuzxn& zBP7Z7W7+rxT#A{RT_1z&3NCwRehuc5!m^_o&aQt6Lrx2n6zk&(obQ>`x6^$zEZfuU zI`vADc0>lv~G6cqHG!#OI0T1b;FY8|Lku-d!om4LdquhJwX38o|iPb6$eZ<{6caok@O8 z`59ec4m3F$smWdnS%2h&$nZpix=#En-Zf^!v?shTG_b)A_k1&6)f$*wzoyca=qM)0 z>imF>Po1~Z&P0e9y>Z(KUW1`UbVPsU*3zhwzL$0H?4(7PbfCqCN22DF=AXJT{V8)& zDmn49_!&}UJAz*EtE{gd$xfthSiSx(R6|03#-SU>Jl+^uCheHx17(x4zaoR4pjzp# z*Ip_Nq{p=nvg4;-JiOwjrLI#bFf+7s@4D3KmoPE(_4X7FIj$l~ck*{K=!KEJ4GUc8 zw2Nj@X+YGZm)Jw)R7qvESP7>F8z-bH7cjq!hc{cQG(`{iW|Mlf4&?@XO=BasPn7XX6?i}J4TL(kJ#TGBD zZG_|HO8nf;99PZTwi(KJfi|TVsSz`_yF!pCv^SJKhx{9Zq6d>bG_H5VaCfC;nI?5( z_7(MABw;^9SlV`5HoD^(WV#ld{c7vTn!;I!kY``ScENd&g~xFG zgiik*A+NOYqgSYk=$+zA_iyuK6B4#=9Jgwmk8rs6(1j_a0{# zCrraIYhv~KwzR-=(sGww)n<5(1RLiT_VeH!(hC?@!q&pYj;}vLex4S0 z(0PYZ_|Pw(VS2$wl9csB^W*4W!4!^be7x4!Yb+VIKqm?d+O{Xpj+{^gZT-BK4`eCj zTACC5Vrlo~*4N~N!8P?UrTbEv86v{C*^2&+@e) zQtF}&!N`9T)w(NFz%(zZ_wNO_5r6pmfz`KGMCG&WTh}{W7fO2C;L0W;B)Ik0k&iik z96d^}x8%;HqR%O;og$O4Qa9+q@L@|nx+?{f!mz@oUJJ8&q-o7!Na?*~8yRmZ2Fh>u zh3}E&-I6i&+S;I6lIeld#ifZ8#c6}3j&dw7WrCkgcT|7&Yv$5sV&JMe9@3X=bCGh4 zeyA(aVB%uKtX@0M0GSo5Bu+Qpw~#0$^0uM6+}R85y@PCHSk}wzExa}blt}(*w?#>f z3D4)h7^}Xn@;_-}prUCl2L6-M`*^Nl;sYUDO6`MXjfsh)8nI^!rbkNPV?NJpCg#fw zCgdJi%6k(-9)5L4xPQ~LQ$wxuN4%~gTNZrdaZ=WT?VVQ15S=uDj(4pIahgEjvroyrW@ZHxm)5|T_^hj(RKU|FU3wn7x^jK zBZJ|_U^oZK)8K+=GCSQOF^Ep`n&ente^V6^tw6*+)_QUuwPJjGNoZzRWnJoA0+&j{ z1?{ZMzkfCS?+2IujZ1YJICA13$tS}mGv##tU?ug16oscVdRcUkAZy4DoA-za&$eN+ zhRGIS@Aif$qnMDGGGn;2%5%|C)}Hjhn%AH5hLf&cP{=9Y{i27SKx%Z360|Ma4dYA3 zJlj>dXxpmmKACP+Wa6JTGFlk4as8D5Np+nd|$EAu|5eC2=}G zn~?u`%)P2NRah5GUS1~@htE)*s1cl{emr9#Um!-pi7cHwA9A<2O_lh^al9_{i{mkR zv8nPm$H&rFq>uL$`yuyv|CtaN9Di5iU@RB^3a69dp42HRq=< z&%o&F-^-V{diO%^6wA80U66Q@rdZ>DjW;d0CM7W0IL(o9)w1M8;&Y#(ep=&AcQ^7J z`Q-%m0o8tI=7i!ovX$ZYyVT}TU4A{pd~HLPwUx|dAu`)3XP-fri}Tk>)HfCD3a4Zo zr3TnvAxk{4J~6`}VgLk}1lRo%&};w(H4(@O?*UAA5G~o(!GQ?%wE$1!ayWqaF~-F{ zue}6lN&F{$QVyPj67$4y3*3u7-7|-~*M1FapJ|`^cp8K1-29ghFP6Y%$Ky~Pb`rQ_ zT%fTk>(bPiN;St2vMZCAsU5P!TS@R>2|nd*HecpE`8zup<+Gx`%*W91{sm3BPA{EA zCqavujX;q^>HOLeA{NNIj57BlENo6ho}?lG=e?lY>% zL4sQ+0&z0qzUg$Mmq`Nfcie{f5{}=c015B%LLVYk-QU`yu+CZ z)Kw)mG{0xPW*XI8Fv-E=Wd`i8ChEoa+ugqwL-;#HIPf!FqA@!BosYY1+IO9VZ+xv` z@2}e&JU)X-En0ZE5H211Ry>v*g?ZmcUPl~oUA-cR{ zX|+auDQes(G%8Q!;0|nHV6)K{NN~W zqd?+hp;gqoGJV&zQy^uVR$Z-+j|=D$$eeZdO}|6D5|=)ZIs%R>_lXWgCpCV9}@}NS>g!yT0--U8kJR}zydFrhB3mu1=$@inNS~uck zdba=Oew^WXF}>8b+I%vZcDXyd zPxZ@QZ4sxLJG|f+#}K=JeKefA$;)u?TtB7zHeK_&H1W*sG~t_?f@hpk`A0{RUmzB% zMep#|aJ3i5n)5inNHb2B^E9`>8jK02QO7+_xSn@2es5gNJ2388)WPP9+f#0Ym|quc9!N_4)75 z0^@s-mmeruVX*gLe`^5%X@@mHS&aoyX0_mu`zV=AipFGG$l*OFiDMsKCFDJ@q<&kx zOm0YuBinp+DPru9OO%0=BARl@q~tbj(MGXZhb}mW;B=M6c94m-xCu znvfhlA)2AEj(1+^lTn(nU-#*gP2!v^gAH7oJZCgfXXcB|F?2&rLp+Iii}WdhtBMt^ zQMc!l!CS?b2WG=ll0%J$V%%}D>kglUdFkK4+wm#ZHHn_mXmQMkFRp&bHz9pM^#?B| zhU~P8Hb*~K$X&+#`p~a8|0~?{t%&Q$)%8Tt2$cJ|1F!74`O^Jtp$O2r0qr+D@J;|7 zk`XkQ!E=N397fn-PT>^5>|g~lh+cp~NdbjvPhi)EqK$|@GXMY{ATf_Y0QfXPt#~j> zATnJGAXvWFmM=+s`&`>z&_aW;PKS`ubwyof+@Zi9b6Fb66tCjYd+4$|-qCITJd=^j z`1dOTrK(PGXEIn1E^9u~cAFOS_%5O){ZCv#>oywh*n8)SW_;lpE=;!}raoRXQ@~ga z)sxYtoaR0~-j`9pBB;k>tchaWOi5FK(SB#8N8eWPwB@;d$nXuEHZQ7e{T6r5$;JJW zZe5D0Zt%R%tVe^Va`g;nRKW>(&a$o7Y~PkR}Lh1NZjauYhF`0;=cC7)x-F@ti8_E7?Uk{dN01zp`t2F4{TZ%u=v% zl+zDal@HMsD!J+k9QH@mFoED&?8|9_0k-Uy*4*wOhTCOL^^F%`mz%; zBi}!fKF=R3N_SDgNIW1WQjh_!8y(pQ1N!Gb#O(Yt8S-C6@_R|K`5nd3w%zqQroFZ4 zxO476ymqYg*uXYbE`l;k{qVeN-)v)(DjWYNep#QABFU_R>aq4bg-ka=Gi36#+(Z&{ zUumGTO*1$wquW&euVOqdQZmD%++nFc$h2lUNf_(q*8D zs-fw@G?~EY7#|~G!}wv?I^7aWz24|6}Q4hq9u&LQZC+p-({ zY@e!M{Sd8`RwT)t5K?k$1$OBx7kL4r=kI1WmRy6Gank=?h@kg@i@ZS9>o2QF%mGYs zJi6Uvt;-->wrNES9AwAsMf$3JbCVq$O`^Kh$2`iB;JYGgxjHjK;Pch|X>XbGJu_B= zY7|g}ekanMZ9QbJzmXiN!QtjeX}9qN!i>j4D=C{qB6JeMCg~~R#tXPGY7w85)U|%K zLS$Dg4Y}J;PFH;7^uP;2(5OWfM(h3=CDLJOkx%sFsc?x)i# z1uavV87otSs`==Y=*-kx8G;VIv9eY-g+^Ex;PuEfK{qk)ERv5WspkJini&`A!vpe(9Ja)tX1CNW@*o+_IXmoJyX z`De{>o#DyAorqmUoI+EyRj(_fFcN%sDqM38cVWS@*S#t%@A{@xXkaMwof#e1SZAN) z9_6B@ryVE(#t)%0`tD>J_%%mgTwY@*s$4qvb=PS?jiIprsksA_)U$sML>)7d%iC+J67HXe`1R&acL!9J>LMnEM_pbxa5w3;fc3;RAn*9{3Pzf6mLsP)ULeZt0a!;ws zD`eROAN90#=&iQl)sgjTxM=s~(`W3R+@tjQHuxZ0y7jZm5>KL$La=f9urZ2g{Z@5_ zPY&@?&ce+T(PN%cuef{0*LniEV=vzYx>^UP>I=VTrCr%uq*9htwQtE{8~7u$GZk!$ zm!C*Cyvc!gu;Jz2k!RCIyVqi+Y_Jrb81t$ew2U@_Zn1K1UMx`~(;ByR_SJUO5e8Q)Ff&mKYbXMpO$?6m()E z=nfyY^V97u8N-JQeU8Uz|E2mIyE>CEO$!yM3fxio@saVz7@;%Y+sJ``E!#Hxtc`?D zs+(cqH}s@+l#IoBV^WY1au%tTXM_UQ~s@<+??7b8e=&DfINruw|?!eRfs-zA_KX|$%FJryD zW5sM3D7pP-HU>Bb@N}$$FoDf$AiibKQHliyMGZ(x!$nbug;&MY0J|dyvrnrCyrWA3 z7G1zClyg9LvfGem`RG57aBtX&21B_p$Y|QyRVv8-2D@dG$XDn$05g&HY;^EHa7Hj30H-6f?12tJ@_uGj{i@=AtQX^$8SP|aOEj65>Mje*)Rz+ z@!Y7q6Okm$iTZ$&?xp|^aKx#luJyzwd4L*HnAr;_Qp~U;2c6#c}0pPBD3R3gpm-4fmXzf)o#@PAU<|Kg{Vz6^3U#P8!xj=W=4{k?}+4JLc)nHvaAjlXI4WU z!SSbhL2BmJsIn9=RM_InFH9oh0^cd(9gNReKYmjpeKo-{b&g!QB>6Qev(P;g`F#Z(F{F{Sjj3)6Zj(tQa0(!*!Rz2=Mi ztth-bc43;s_hhx%nF7`iv-4)aY?wvQ3!OL|OA)kwrj~HR$ViUp*vtDE{Cee|UwP%W(MGB`nWc_B-y*!KLYN zl^K6Yu z1F5vbf!qUWpfX_umwIhH7Dldue{aFWglT2wk8mjJDwK(sVI&O*lNNSgXwLCHM=BW? z(7on{@@Gf6G+p)Na3`+aR&P2}&)|%KX_*TW+u8={e_YnMCb;PXJ$`hK`ymqouw`O` zkxK{h{=X?ois`ndEk4k>g&#|9=jn+KdR6mo%`nUz6pa#|OvR+=IqN)l>MzNv|52wO zZCJ(-)+@;-5*-uNP3B;{&L!XePROG#Hbhw<1Ls}nc4+X}r+`gPMs@f1{53Q)Q}jk< zP`p%1)U8ho?Y)*)+XFg_65zB6jldJyfs&+}nT0lKr<~=W()Z~^x6AA#UkZ}9!`SGI zgn6I@DYe-#XUjfpgjfH{aV!a&-ff8#z`K|hAP8goWVej`SpKW4&mIDfL;(ONcpnh5 zUwyOCvPW%WX(4I)?q`LdLn%@zMX25gCfZbUiFYAtcwksM zgCkz^ScY%SS+xbZEi;b3W)LSH}9Th9_d$r|iK>UYRI@hPG10_RuM`-{EC+gjr{1-bIhu+}KhuWq2n zv`cV0oz||3_S_0iKDjW0Cefo%bTo-MM7e~=E;_^GVtQ|6yn67fqLI4+PV1-x?M3ky zPW6V;?_8Q}`gf*y`pCwqBR)NEI40gIX62l_;qbMmQ(HrU+q%NJVdk&~vyC?9!OpAJ zm>Yk@6Wh8l`3BCR&lY#y4oC0X8>eI70 zxfE;&q1uPbkkYd%3hW(VIj&Pw@M&hvc(y%_Z&Vy47}*kPnh_c-6I_40%zgxyE1vvL z^^DhCc^GaO@^SkX$@IkOf?y92a0sP50Kl>>4o3pzQ7ET!Gx`NTl=lUAWPtuR57?M5 zpty_bMc~h9`SPd$BG>`oyXRbI+%G^kaP)?FilAx$S+Ic$8?s98e)~`(y9H2%Q1BuK zDBK|;I8bvR1FHOL)dG!6#z5~2f#o3vdzPftAe0%W`M6gM^HCNQ%xA<=4O1_8!_Cq9}gbo>6g#~b9Cc1$ zAMl2RE0;|O^7*fprGn}xXMVdoKFQD(JFc~7j-0=uu(7S;_BaTw`@@o5pfumQg~L_kgj&aeLv)yC;D15j{8;B+Gb z_=OxCxpJCcDxrb>tX?y_yCxaUO=9BkT(4uV0lCHfB+Xr0R?~`0Wx9Tk6b_; zEQ7ZpxdXMEt-=f@<*i7Q9S+x zzOX#Xr8iJ#%uIi~WMX`6n3+~j;Vzjp|KN)0p=C%>gQ7#Y&dF5==R0EYklt8p2DPIiOx*^Zy+W@7=S<0K)Iy2tc(eu ztmPm|E^OR(4l+^!()<5mq$&nO2QpG^ROtUfz%~FvvKS~bam|6p{tqJ+KtgnbS~X-H zI0S?I{$QXUfVYSR6>CUZ?g>Pf5Gx)KFaZVRs3M326sLl$Bw(Z>fD!&5P68k?fLIv@ z18+AGGLk`Y8HX6I#K9brS3%isedebmE8Et%5Se7ayR)b5l3Vob>%*Y4R%K_736aIB zqebx9oBu#{8kDOvc@QN@j>*!$+l@rAJpV41);sysaQ9Z%;bbUH=mKAEEFVcC1M@ge)vJtrp)o!(w}$lrFmqd`|WNDu&$XDXzjxf8?D~(>s79ZK?Hrc_A|RQ z=7SiN&;#c1;%?3DFp)ozL)?{a_oRT2pJkA730}5l+An-3j*0anZC@Km}ZOFt0bw0sAt5qTQ ziae3wA%F*JhJJ#BBznL+RGC-ZAwEM4L4c% zxfdHyrxm%<2Dk`cZZtWfACXZFEtS+fUOKDwTdqqFNdLyX1FVoK2l-f!)K!gorH$zT z4Oa@~Or3)9_o6hUK(OaYqv3P+)3`kK;h|4L?BEvO<+%SYkXukMBR|Zeo!0{JW>i?P=O3;?EdY>0N`E zKJK2^`)&Com4|%vXgz}5tyMeTR$GG3jD+@zb@i<$7jzrramgRzg5Os@HfkdgOf)A) zaC0n$s9tLXp=P;nFa{eVdaS*1N1B;d{Q>=_(O8CZq`i+x%@sHsD&T#zuXBHsYI?=646O*dIUFCVzg9#&TmQilNu znxV&}E*s3^{wdY6+(jb&;KIL{26Jf>wJmp7wH$=_ztTL>Q8u9_^H2VV-~GVUI{`y? z=P2tB;rU;xPQ8BNx}(OY-=lgTh4aHb+oe^$-!xDl)w*&Qrl68p>ssK=v7OdUUD4LY zN$qqQG5P!`Bkv5DlxiTCzB>!kJWJ;BkA#$Yum?h6dQd(gOK!wvfCRfCWPZL&G2;JgoTLID?~A@HXy zse*8UV%ZPVn@dBsz)cCrzS=j@ZFIRBqA63HRFeAFliQpE@C7RR4e>rK2U8!ag;a{) z3FJk`PYp&y@2nus)iBNtGu7YGRmVJU+B+% zl6d{Rao^E;w5!0OJCM%azVnRxD!=6@o>yvZkO$+_&8@J=Q=(tp$Q{~)Ym83XW2$3l z|Ff@auEeZVNO{R>7d`o(D+6*G10*t(QUXa6U{I3HJ&jBE+pK{8t~w2B&VcC*#TG!v zur}ae`Ss?(Um~Ebmx53jSoKaHkZ3?o0oeF)AMnj0f#EnvL=KSZC27rJe13YA5gkpU9y@7mY190;RAUYlp!vz4gI~h3ijsQ<{L93LR7|e>Mqfqhg z&B^4F(-8@x91~@S4h3jm6ap0zALra;#}|kN3i9NL>%+dWV=o(rQlD77C5Xuqu=Z6? zQ^zQmod)3}HqKivvRGPHJkFJaKY0O&a@}2OyeYxH5$6Z!BQk~DwKEgGbJR=kzcqQV ze2eK1W1-Dj7r=yZ3R^wp>+tWi{={{E6m-xm9W_Xm8S&+RyVA3U(5tE2Fk9}g7v3L>=A zAQ2GYcJZqan4okWfE0$50AM-p0dcyH#~uSO-EGhS2W$gA2xtyGxbXnhd>GQrr0M^S zglI_MtDY-VC;|D2P*SN1h!gBfdtkHJjTFmxJ(-Hzvcb@zs!|*@lJA}Vd=v}JU~TnnUtwDasmxRt9-M?Z1@n@Q_bGVw&E)rQS@E9Oc2cz;aWXhe z^RW=$s!Gj;pRIQj?_qCeui1Y)-=k*8C(y+)?-|h=!&vr1$XaZNYnrF>|AkVfP;r|% z7OY&0AZ7(*jVVw8eGE!)(*()8&}qo!JP>;g{WsIVbBhadl!D0$!evyTM}-l1q8RlpdiFofTRxK^M{~03HSx<52yKP z05<^zw}4Q42I%8LTyv05&7~c-0yB``k()oQ=ZIl~sf?{2jr%I0{TJWIr1J3idEW$C zA;TAE)RKyuE==;$qi2p`>Fu4CNVy>fGMP{->Xc(YaY=&2;CZ?K+;U>ayQ*iD^;;O4 zW<;;>S!q|U^lHmvfKE|#?e^H5?uVD}i}#Z+)XB*C+mvrpVbHIHdgtl7yZ26eTmbBG zt5*O94w2Gfv0!Ip04GxkC?{sh^F3hxUk3x~SI577eJHHa=zqNb!eFNEZ)Nn$HSW6S zQ9YT+>c`Hmk3Xi6tTDDcH7o^U`;Icz z61IBxB0Zj;%6noWIuVPlA>QX7S->caP-Tfb(IyCv=lt^2?*_|!MC%lqRTgIk7=@!ooo z6{`*Lw$YQ&ZF8ZA%&+PNhr*ITx*!6?{g?n)xpL%&2MmgEe^u=$cOHZ{0x$L7I55UN zL8vq2r~UzOCJaamPK%aXFUM`7=c0SMFF7HkX2iqS&3`;Lefqgl^e_=z8E<__31l05 z78_|xxt%S4#3%fzLd*`88-J9y7bV+4m2{QI-i?Z%gmYb@-uV?Stxa*x{cwK3X{NOI z%iclSmxrh0R;c%-Cmt{R+_71x_^WTFV$OLDc)}r?AV4?BgNi~jc+n3*`e5YmrQD@$ zDmZ9CmqaM%>^w**haeu%F_W2%Zw>(ebANi~2bpt{``6GE(x))1M_A{SRiOyx-B z;jdNkhU}FXn*A{e*o}ouzK3JXMo58#il(9hiv?~ zM!yVv9#DqN12FoN_j+g*2-s(RPWpYLxu(KiQ#@{7WP+8z)amvp*_g+Kpk5+V8F^_= z;4`@N^c+`W9TxcHBl)YP>IKi(s6(guDa0(Wh*a9uBH#;Nclr&qOHCUptr$c4_U>2{ zq-`S~WZXAM8#<0pWELx|KKUx)kfF)V%Ds6LrFjuk_G?T(A4x0-@B!CYgSkZfl*$^M z@bJ+Y4P;MS-*mCTD>d`s?%*(cBe|rVwl*g-UNOoEuCp}0AfXa_tJcf6!emGCXH^^a zFujW2nN;hNv9qNY4Ss9gGfrUG={Y+1*Zw5nWS}CC-wPhYqi+Cz@6kfOhLW7aHDmZE zwJ77K^30*gAwriiQFD-RUCc>5sRn0o0>@2L@DndNy+&*lQ5e|Vi^i7dt76vfOpw3z z1!ef1kfJ&o1~$bYI@mlO$rn@q+FNxvqknDX?#OZMlqU*_ZpmUoD5KNR!Syj7j}P1voD$S<2zmYCGStH z_XBFI=;8Hp+*X!y^EBU+UVf$cm*;{jteLT6)lIodnV!cJtmA3unp#3sE8ZAZJUEHt@5hLQbcUF>9<1FF!K>&;n5c@NL|ZD0hdtje#fdY!XhYC&9rROHPp17$|m9=a6F z?Hx?>*pD@@dp3Vxa`!|JEd^X`>v=XoJ|0QOagLqueyxh?`JtJSu0DN;}?KNq2YP;#3iKkj5$x_seWMEnT4@}j& z6tvF>Z6^SDV72`6i%#xd$9zKGxKk7yrnbwbqOs@@?oF8Smtn>~HO{ah6os8=}a7ZIMYM+>+DJFAzH^A2UW zy05_xn-U^*7mH?N8c(|Ti&!O-M5KtfiUu^+*BO;ZU6D^xITL8yT-RC`UZ#m!PZB&O zh*5tY+b_JC@48|QIKXr(Fb87m#jPYB_!-X;BQ>~s1{uO$N1ve$&m;hZFAKr{O&LS} z%B4BK=jRX^;E65iNwMLf6WUUj#R>9aLRk(^cz7qK#WBX;lHsRoh8WfkIeu4pZj%Tv zpwDp9C#(LxCZCef-nvhP<(T#y$8VOs-2H7@E=6JzgS(B#UmF?~|-C!z?d;Hc5O?Ikz zj<2~-@vnej<=Gjc57eB>n=eWauZ0O*kg4rk<&u%$hN;lXoF(#>+DsJ=R2 zN&0v3D_5)z<7dp8mDfZIX5*H0bL)+24+|LMfnK_A9uhmJS3Kh+_3hYTvy@*uTr)5W zUiM?h1b4fKYEqV>OFzr_1v6886#H&KUp_EZ`3FjFE#olZ1UhM?q-TI1v%E~9JnmntjChHhw>->s~`4--9J6?Cc+^Y zalQlY`_<~!$vxM7-1)z3MN5a)vXwxd9FT|zkl#M%WKo|wqL#ijayaI7r~cGF zF)zr7o?Kb`prkuGenPr}ijwll+p@<@ez_sbOdGGHeITE<)6x!5RG)(4HmN8c z1rBYmOLh|`P{Ok=QL6KL@`JW+r#bBHxE9j0y!1)ajeydg=rO!^jGg}}9Rnf%B{D(I zmVnUh%B?hwF!B-rvLhmO{23Nh+jJ6g_nQ`#cCUym4=&3bKf=dL)7wCCV;&jkryeA^ ztKp^$UH>q1wupz+zWvhskgcI0lbo)}4;Lfl=h8Xl7fwvna4P@gw&;mU&~hipq3ynV zCuWWLREPs3r8-%ZJ9K4zAQT>_3(1NKY$X z{=QUha&oO&>ABNQH#ou|@PZfEUoRg?VPc^C5Q{0j@3gn|zxhNfH_}t#; zy}fGx_q)Sgoa~}Qn!D(4h&;o7&xE)`MY)6pbQTsB)QO1qMl@J!Hs2Jm7nf2$K72;v zki1=bmh?d%xXS%jG9ym~+lPd;i{eLN<5vXP(p>$jZ)nG>E$! zT9AKV6(_Po;C$t;cx4dwFzf3EbN-K2vbVp3HzjFSIl@XpuVA5+BmDM& zh_O0hps{zS*jIEMGvR6@XT9vA87+C33J1DU4-@`Ul|>0Tb5m(FPwg@+(aq99(jb1j z)`@BCbF?YZkgBoeL?qIX|DD1ta!ZWkWuGDg-YR+d{accR$rQ|pDi|hQQ8fRp zNb%%gm5;z)^;kV`q^8R8VYdTAJVJJ^k~}WK0;&BZ$)cZr7uV-93goQ)s#M3Yp&LQW zwPPv|rA=nISk`ZQ4D!ZBl8@Xd37r)|10bCJv?odE_P!P;p#a1Yhzi< zO-~P&pO;Saz4M$a^7D?0W8Q!ERFH%N6vM9h2+fZ4&?+BB`S@k%U6$*#<*M)+)P9Y7 z9_)npNqq$-#{Di3q4lwt()>J^f6Llm#s+b{?-V4sGGv>+=)~VHlxcsX63^e^R~3e8 z%c7{ja}RHYrCJ=5-#f;{emX3PUbZqAHr{s6iW{h6t8=VbP)R0vEGk#2Fpw2dC>P8; z!SHix83Y9Y*O{N)qlT0)1cDPgg9h{m^No>@RW|P?afru`SVboJz`+NhITZ-u*Rw@R8$= zlT9vZoX_PKOLpX|#QyvZYLNpNsqQE-)^XF{6@vc>+0BmCUhAV%7T;o1pqF!kr360K z&BAnuXy8}r(Pc=><&&_=kP&~-ywAyzC@gy~^0S}2rTtk%_Kc zdMt^^u3{hj`Se&0Jx4Hl%=&9UOiBq%4~!v-fo}*W;nsvF;Q)`y0i8j_-M5J~T&8s_ zS@`%yKY744QPzTO-C+E5yd#I9-ceG^56jn_45PgFkGATWq7^}I;TvpurMklgTCDC~ z;S%QB`KR`t^Qv$1=OA&9wcc11>u?}mQ?HamAF|dDN)1runYwUo+aUk|zyaIVtW~OQ zT=Wh!Vn3KjR$|WK%g)rm@)kKHIU!gj!ew|(I$w{ad(ayuXlumC$&{k#do{2%4C+;Z zAFZPj7ajzujW4S+iY0NkR?B($?;0wEBrdQ`sBruVF;ZyUmVdKE%x!k|5UqHZvo1As za|vI)V}8#gvo%2)xw*$jO{l`=k_X=^wEti@IV4=#V#q;2Uy)9^{N=O7*2ss~-EZe; zg_?Xn8xHOr=7)_4wZamWNuO4f!ppB47ub_&5+M0Lr!J_hBwW_YWZ6p;a~)NMeWRbQ zF@>RH_}hwantFj!l}Z4>+g)rzR3(c~O?F%z@y*;y;+_48sfFw21-YSxKe*bmpAjH? zaNJm%1Lw(eT9#$6i{QM)+XhypQB%9OItKcqRZrMS3*a}!3O=*tTuPk@yxgHSBsT8v zZCS`l(y&Dvaa$64go(Z6<|-xQ7SjMO$mHT8J%=U&kPU$B|6`5Lruf&E$=|V1K2ql| zs5U^3D}?cqntcDKD}nz?YN^KXrp_Y4l(cdk-FJ$5r%{*sS{JNML z;ph|2UZeEbnZ++3nGEvX#qV-UQepL5=@u=th$U_|zBvB$lIcU4-UsQgm%rqVR8)fF5KQiv}EmHVOTcLtby{xAF-MD7K0AqaoexB3HZ70mRDXF#AOzZe1qLpX29 zJOBu7psTZQuK?VK&PPx{#DU4M&-CmD$eiU~botA%t*@fgvA^IZw1lZWT@o?##8qEt zn0bqbE{!PJd~ntBvwWVEGRMIzETh^FF;GC)&H=KEd5^WLS$%NKC(LRq`thH8CN)x$JrdxLn zhZ{6LfpG^GXwT#Ae!e)5Kx>b>3>Hi^HU4+u*BAi#E&81-HJ^hS2_>liWbLRhXsQ2L zPdP1cc?=>_a7ar41m|a4ldZCMf0kZXm56r&`@|kocFY5Fl$?O0_{J+{e8n?fr&_6x zIQ0o4Brl%-vSVi~L#gk9@y()C&h0M+iyXfK?zEaJ5_D7+g0O$u{If;L0<8POCET%& z$<39LnNj{y;^8OPsQ>d=8pvh92uR-8>>&6OzROt30-VkV8F!0&>2*FJpMw!qy`?eoNsQ%^&n6<)D7=4R?NPmrfmm``M}~#8 zEwJ`0&*dw8kYNHfshNBlRL}-l4BltAOOWr9=u2Yx1fwO1^@>7;2Kzs=Mq4P zKu|+T0p`c#KpD^0V~T-R6A0%DX&xYfxDI3x2;T{TM$d_gR)IUF3lJ#wf!)Rg$bp+v zB}uGD`Qo^J$!i9jpeq>S0*{D&C99ZE5J^Z%$^#1Y`Egs=JVDc z$9AdPh{JR1ZT2vaMok`eiw!lsr2JMk;sorYBk9v2Z}*-l689yG^NEM}pO1=`!11A8_+T*um zUEmQK2R+j0`Gn}?4=R4)#XZ%6`9`U_F}}!R z4O#5bmEm?Q9~RFE$pnWRF4i~tO#LD`WutBZ!V8>xlsGHwEXYXQ6IA6F3l4rN+Cdlo ze~UP`$oTx-UbPT;PCsvS+~-ESHz*!A+5yD+)(Rf>N>JA#JR0HFLF5XR27euQJ)?ui)TW zw-sd~7@*zg*|#7<@G``WRt7OA z90Z4Q55Rr`NDATtsMK`e4?~VOKs+9Dha$$nY|;3y9*8K<+mAHV_AW7d$iZB+3417Q@MFGWUsRm}Sx>y;M!3nQ7qnJ>;sm zAnh_wxPW?c>~E z_iqh>bMExIg}P`|jUv!y@c=Za8}LqEfXF|Dy(ujvgI?}HA+7{&8cFcVpKbBvgR}(j zW2}8oGLi@6P5piVIe!DXWR3g-z}^=Z2mF|!kdfg3&O({BIRH4=-+)03wM8aNc=7_Q zaX9G8MnE)b^CScLEf?x!@@&>!R*LL%Q-SL{G&&WJ%wQSB!MBS()?4jA+t}FX_Z&R< zeDkmU%uvZ~ssaWSN81c+m58g=vXI`)F;Vz{Qa`p!N&dY+#nJG7kAY3=+TrD=P z(vX3TwL3^ndPb5Lnjm%gU*$BL zo=6Zgm6%AbWlw4H&rtL<6?VP0Cgu}Ek~pOCFC^ZP?yL!euqLhGT|OM6Y%R(L7Wz+* zgn-xl9nWiT&VWE2or<<-`z#KQgY)o1KZm1$TvU}~yM;66(>jqU<$ZEPo!6Pg0^kX4*7V~s1UG#EyG%o>+USuLAc zpQU&c`=nTaW0F(1j87FsG`!V?m_wSrsO7uI#)a{|G|a6KvV@3O{Kml-?cffA_FoVt z8QeuC;Ql%VZ@PE0vi~~U#BZ7=KlH8tJ+@|?4K0f5dQmxdq`11qPCn{|IkvMm7qSa-+X3s~Xu>-ON zMxkwCBwkngA!WoDV`Qhs#)MsL+N%tGFX_WDkoA1V2h|+o6xZlMNo~+j+za5qPrk~>CYUd^sn?j zvx+-w>CH#|k4G%+sDjYKT_qfgD8ZYJci&PLrO|&p4#J@^a3sh(Fw?-;#&o$>?U=nM zG4wZJ)I94%WsTesJnkOyeNmmoV8JYXd5D;AaHPNi?C877lKUut!J-FEpVaaRN2bTmDJikrQ9lssz*>I zW?pWNWfFaNE}7R&ne{hOwfyDhbMjpX2`n98^FxROX~>(C1r#{hpnVz$aE}Djen@N< zq-wFHt`F~dh%M1{U_3fH)1s8`VuDUb<%DFUDl)C`W!gro<*A79wm*q`-EBJTDSb&C zE+17UFP_o!lUe5HKVJC|+#_$nh!5;~_z_4+ov=497Clqlh{~`-HDEbw^GLC04Nqjk zm7nC*D@x1lY+nTzs0XS@$HgODt(!6I28$3ywvUKJ>RX+thhG_uDe_9m=Rs~+u|RcW z_gi4IQqSh1%fyXd@4ea(H5B3N-`jETyS<$B#bON}4k-Ir*Qg}75@pXD8d~sIjub}5 zv!(JpKJPfD+xuc3+IZ;29x}1$pjQ2`Ew}&kLxonUd+@a%-#f+k+J%m8S=_7ImIf`w z2mJKIijCO37^(237Ecg_{@Dpo(wqe^Kw=&Ssz8@t(u=q&YXXTBy*5MxI9ML%x%? z-J~N~SF(BBYRCbGF+OC8umrK<~hVI!yA5T2t21~nt8Rw5MGuB1S z3lJvAyG*%(tPQWQum!Lb9+=1R4NfVJvcTu+rOiB;x_D#lt}QC7Pn1~Yg2&H3GGAX4 z|L|7uCSUclSkGBHiI5*&aPvG|Zj3L?77uY&^}IAdfrL)^rlg-AM=#(>eVZr8&X5FWK3OKCU9x zuD#A({ORlGXFe6BDvlZBS8nXTVz2(Zu90tl^{}FHT5I?`>jaGVIps60m;FP6yeNbn zSCr2)5<_m{2IwG%qbIp-GPzl}6UUWxc+o;N>3_`MrXdgn-539&DqXUkpokHu@Vt9( z!FVQUh_^*a*f;E*l~6cv$jsHfHODU+3ln1zS*kWYl>_8G`NpT~TK9sF-n+i3@W{yI zujk)X)@3*L>`eF2Q-$9_O3L+=&w0E&SKkvZ>JM)`03~hes9QPbkFnqS-y$$dC*0M; znl{fW_RKv{#d?Ou5@K}}8G$mge8GiX{AoP^*Sw+ zhiYlN>@ypfSKdueHa=7L4qpB~?rp)fVjWC1msd5xkxgNX#20pC(jCt2(PXXlS=bk} zv5EmW>(IO&%1_bcY3Ajyzd5gt@w+~`7JP0tR#)zeo)x0>a*z*wOv8QSQ)|Om_5)-u zKUFuh{)07ke@e?J2OOWIuTJx{_MWO-u&vfM@?bI|ADwPViaT|WQ`cQPzaK@pqvPh4 ztF0%k06XZ(L1*$$0|8XZB3N5TSw%8sj-@f~sj}{aB~u#3lJ{2lI<|>8!+F^r&eet> zIf%fD&Pl_}hViQq!Lg!FBc*)QQP&TS^AJ_*%4Qy$1(q~H)RX=wikl+%>Vm%;)7Ic zk^0G}AQnNa(-J3_csgaxR1xK(gIDGF{X)@+X~Pxro_!Z@S)bk(LBgFIkR6%}?2!gJ zKfZmVQ+C+-o=jB}>nFmUVi_^`oq|h%M5-VoQX-AZu;xB z9OM1Q+xm|Z{IcBTrD(HXv^^;x-kG}ISE(wLll`{1~btp9tJ<2P59po|yhXM-^)3MvF~2Tucl zzo-I}3c%j{0-kU-O_WtJ>7cq}M-rU@BHi}wJ@O&pxx03&uV7KgF+{kXOUCqrNXtIMXl(k8AxUr9zjcgPg!En9Lc! z41JO9o3sb)_G@p!nYSN2Q+r+^f`n}Y`uVeW0>4o8DA#E@?*_e?RvoR-+vu@z1Lx9@ z^>=6R-pf@@P~vtv$xF24j&a_g^K2r3+p&9P(DdYjsme*eZ$;EqTKLmACC+) z>EO_Z-Oh`=?*E9Mn#MYBv-1Im>U9%oit8N2h|TSzd$}34NpTttc|FRk;%RA9^iiD3 zOPEFR6`vUMBmT4f{H5hbRCuquY`8qAik3czM^@`%n04QCSTzl~p{lGBl9Q%nIaz}V zO1+Bf=7exINsWohJ!=Yxn$IT@U9G?DU$CyG!+I==#v}d5w#yLINv(@m!}Sg891_`B zDpg^0h0|jyiM!iN>12^{8DfjQOm=A%Vs8FO#A zz#sy=*54zjdr87xjmxAGo^Lo5plJz&&qh+iR?PC-ztnJkz^f8E8AIHCp89&|B^`(O zve{pUw%0wJ+jTXrjFHjZUk?WBp3au`!+h0P1Bc2m>uF^O*5xc z;#lO!asO~AE-BLb^mjOi*~R?byZiC($hhck?sw{4{gRg@$`a?BWs0 z<5IPBlGvFD8rzwazaQ$%8{x)rL9fD0IJS#JHCR3_HN;icg2VShk_KP-%zF}`=~LiM zUQBdQqMx0v>dDi2j1?V|KAf6Qv(V1;9{D`_^qWALq76IqvIC1Ci(>9?l6vxUb)_u6nACN;Xj}%48mH2ded|D9t9vJII^&6O#WLd>)BgV!~6NM-EF- z;Keljma5&GaM-B*{j?9kyPW-iwLhDXXlk2r3IZUDq24@GCPt4ctG6eM_l7XYDIC z$MUvb%_tvcgbo~yNKknEIoZx2eHejex){J;!wWXtvjUkFXnO#)K7#(AwcH3^EO5N% zadp#m1Ku$d)c~Hqbid=d(?3Ie8s<>_QJOWVsQRP4~y@MQR%Na*I&Dw?!y1%v3wPF7cLI?7s4D=#) zo%40Js+?5(j?0n&;WT>pAmi6-A|Q`RKvqyF7`3znXfcuZA%tGRFev(~viN+fRJZQ> zsN?~e)Wz?|>3}oDNfXLZ38_LL1t()<#B_Fc2ARGOkB`N7B6^V{4>lMeJ{0s2zt>4PCxnFPKw+T=mMGZi{YE`bfUyU*qSVSVd5-F?>#Xc0C9s;FyIvjq=mJ zVEm?jPIH(%nZe(W==k{+X-AJg{^5%f*~!t-8kk%3g47Enrmt~G|0P-W+2MgE7C3{N zYrg{iou5uOw7)qRm1eqcG296iID*O3S4-*hn>g7W9ZZmd)qc|U%NWG2pi$!f*kcM~ zu%Cj08@MVEGxl0t->Y&&`QIFoxnDr+cxNi-8iv-gZu?~Q3^IQ2b#2te=do>Njn3O>3QNCGvPcbrXC zAmbEQL3*~`@^4W=W;hDD_E+C+TrN|P%dwv10DPx4hbJd^IN;;r;ebRIJyd|^eemOf zdG#DOboWD}PMkm}TQAn>a>R^QG^Qz}c3x<7vwS|f&mr%+I}$ z>*eepRoI(OP53|KH-aiSEvU*duAS|eG54Su%PgtWa61Cr;d^Qtd==7Mro}G$gU53e ziC^_=4PeHlH5oR+H$cbvPhTET0*%m(csuIewi^Xy9e5fRgEz7Q7)Pc5NlG20jIO$7 zo$Dvw+u#fM`wVcs$Mg6Wq1rnzpZ1hGS#*uDY+FgQN8Z~0<7K5oQ{MFB*6Xv$Eb#5z z$H9^C*u}vCC6FU(9-t5t$`xe@^6>D`J@j$YxaoTi@FJ_fyD2Jc4#4jx3C0UIANmOC z>gr0G1KYOxRCJpIm<4LslaZ5~I5~~|by-SKNn(_57hZ$S!iBdX;XB!hI_Rz;Y zPgnC^8muXI=8x0WMVXyfxN!nlH{UE(1LW@XYoS;+Mx=^?wX}$xxbRjDl7D2tB)p#p~MBq5PY~ zvd6R2&+j>G>#jOzC4`OEUynfZ$5hVk?$+l%RW(r1&eIS{J8FghQ01oCKgjyW07-5t zDqt+9&Xv>9K>P1v^xrPVlo5JBA5%O;gS_j1seb6FY4e2>=gP7E37LYz=icABauL6w zjFV@_`E7Qka^R=@b)7YmX@M&a#(=awqSaDxz3griUSrv@ywF> zOMs+XFR}#Lwag-p&sXtPuI83d+cKt!nTuM|H&#Ah0O%bH%NePpt- z`F@hHFPzx>-{(ARLDrUu@fHp-!=OA zzf>`Pk=;IF#!0SeEuJtO3%Ca~9FP!!Roz-Q1*CA#Q@ z=NS)Fl-z;>A_(ziX~_Xa$-%H37Y8C~eVDX{-hEhhzV=fSrA*12;4R{{^)bl_6hD9M zxZ3G}GMqRzj`d+yg>$O*Iy69)LqohRfGa9@xnD^U3yHd5VI;yKyK%#Kso5P0KH}m4 zNluOFLQ3WfKL~s-M zm_zS*x`76Cd+ic5^)jb@HUW~Ta>|`&?_XJ25raohIR&H|wVG6B3nf*r=aAfpl8eF@ z2Zx{tyc=;y1UqQf|NflR=yrrw!d@|kP}RF*4^`2ogZdyUL(xy18&X>F=q;nagIZ2tEGS+<2We5@ zT0@V+%H>bbeNaHKx?}WD98jM&)2YBe4NYe;P!J0Acz4-Ww7rGuDpszJ8@{@~h<4kl zj2<;8JFe)XJ$dwAAOtBOI8+g~QbNR>M<2E@&Z2H*ZQTW;s5m&TKZd(NCxO#OhUYr;;mZwL zoW8{=h?|2=2o!aF{qKB*R=GJ#*p@~xh0M@*Pk1<0_}SKH5%>*Z2?@qPN3VGIYap?DCOu0!Xt75tjMoH zM2wHPgwxO5z7Hlg{u#WNQHTJag%R3IS^9A$VnGqA?dv^TqwWH!qq|@;Xbgn9#=Uyb zya+BBz-RVCmlD9d{%Z*bm9UZyFjUW`;iEKj?5noesFE##nElW3&thu_a{Uf#(o<6d z=|8j%gi1z^y-aygVDcvF+MNH+&l)8d(I=5maqTxtJMNdE3e4}#jh&oeZEbDQG9y30 zcpv5H$amHM@01C<2cXF2-wwPtZqyAz?lH6%fd_UKDp3Kag(|Qmg?6G1i!P*K z#|gEot0!gwyAchaVI=4W!NY;PFHm+GdN}@5qrfF;1Yzs(>1l{Q_<*ntNPF}EGn~2c z`B+uq_M3ozCjp}Mzfi)g2hKbWY-(5LHZpmQPm?Lr^G_PaOA~JuqFwN^MgNAk=@dt2 zjW}vn5M^cq_uU!%+fnP&Hu3K|q>a|9yBp-#>y5-^J(>ceFHW}B~r4O->JX+B<3_At)D0`3>sA`h{bg=dpWvZ*s*OCY|2SPJZ z1JCjiW=y$_Gt?1}WcX~;9sTfCLB(8IQ3G?i=eguMZ*bmrR?!M__eRoIXf-prEDTqF z=PT>*4N(K{rB6FG#fjRY&1fTfuA@)KDN7s;oaFZf1|1`{RkkSS1emG{p>*zOl>OWFNgY!Xg0Z~~i+jef#Hx+OJddxi(KuV<%|r0s9r#wJ zOY$oIJ-e!(U=Z1KAWFKNDc-B>3o6<>CM_ao5$3+TIfAxokiSAUKr6ay~%kh@pZ;Zwod{qsdW4Eq=F zG)CZ4RutD{N(IBzHDInBEBo)fPj%)lFM1-B+Q7Ncwt!})$xK`d@rfiDFKo?6RYgW} zqSuR+#F$!%_?1Tr_R6_eCiVlRgB!}}%Qa2Qh2XyZSY@r53a&_Rzn67n3c@r$Jr;w- zo|*;EqFZDzC|Gfo-<}JjD)-=O(wE&BKgMuIrx4{rGMBy5DKl)aahCBUMF;9JWb9_j zC)iM=Ih83?$o9RRwVF*c&U`vm!s_9-;4;;F-BeTi>CU)*1?$T?M*QUV1<=Ceu1%Ea zb3?)71-SqnO-3Od*NiaYE0c&gfs7Ep8+s-_&LO9an(A3&syqT~{3eH2rnf>_dZNh2 zm>W^4Us9<#j?*yb(Oyycb3=~Z3Q)k5~k2Q*Vp&;74yDij`+j;XGB#KFJ;YyFBa1x=zp z^Vv3@1GDF`XaD+)dO&=*g?wMO{7y>MpOVQ@KUtdT&oN@C>hYWxLKlPuVT_C_H1cA79#dioV(AQrSCyxv>M9~x}B5Px;%zzKAYH-6)PmxoOLXBR}#Jzxa&&? zXP6eGLgA#PCih+cnr$DUf3KMRi*p}W=_7L6+vL7&aGlU4_ZDoFH+xmeZjyy}P6?X( zLrP(XOpkSq(FO??#qaFk@HO##I8gJWlmDGEk=8QD7RXM!0TiG}GtZeY;A+EZ#cCw<& zy1ZzLJWtM;4GJAg7mXLit+*34G8+e@i3zeLduZ~=f?5-fRgHMH#BD>k8mJW5Gk=XY1sCh}G7{xzoIornbf~F_k zeLfOx%OXRE?)j~llfp4k^y<&LBNwYaEV$3@2BlTjk&)Ys=~H5bhvUzy%it0A;M%wa zrw`@Y{tBtCOD-ElQ&cTQp9eH#lluPLVm#RW`{_*ZzUI^m=Qnt_1U|@W|B%O(hY>aX zB)WV!AQw#6H8%eI%e0^YMFc8Y#J##~>M7k02Cu`<(&*06BI||h$1rqdIdQbu;A1o7 z?BO>_L$>Rl3k<4cr`i$TYs=~cRX{_^;`Bfq8uNm-UMGtuH(0hd7^!IDU?OYR;rUt4 z_se6`@Zl^167y+vh~QcsztBA90qrjn;=ee^h2;2|onm51a5F(kGNHnqU|W{JpjSxk zJLk7mVvC7&=&5b12A(o}ksU_#BUN|VcNcD`QeLMyL5nvqdwlgAc?-vihw<963?Hn0 zKb0b?Cr_)s-v68vfl}PWu*-`y%UsfvoP2)xp?67(xaKF^UshWKpNP6MeBo}`tN5!y znMtXL_chlhm)@3>%F)S`ejCBwWu@#j=I$%*7pJdC+7QJ3%~L5JrxCm=)vq1Fzhjas z$eWwo=Wx*%waAQNe;a)jC!b!{?VMRVZY4V_@2M1`jrR7(?ur|**ddq8@r~ei^E0A~ z7_o5?WQSp9^7lldo?LDA(mKJFzlTddMIGN|5R2SGm5n=xt*^EJEY?nQ?=5CxUs38E z`(v9JF3(z{ea9u9`EA$=Tm{V$S)s$){0zNUWBsp#ZdviQTxE8o8#eu^<^#=Fa&(t0 zg7=(a-NuaNS!mZ#PeFBF>D zB(PL7>>MYRVo~vrEgz-x^Pobm*Kh`Z+tL3vN9vkD^PLkNkd9x)=~1LaT%wfx_4#{J zfJdV2Y;8Y%PZ3+#U2!Ah@*v_On=5?jay`t%qlKTwH?A&)y2s<@)C)&rbQMWlfp65< z!xQgztPBZaa_;S(G>LgGNp{}r4~S`dY=VHHhUYOmc(Sbr~{uKP>n zz$-4x$(L|!u|F2hHjat9hc5D)Jie*v8W20p_iTzA)|WYEC+s`Iexa z?eiiGi&JReseja1GyjA@VBvksO6!hEtgUCVExS%s7<*9kp+!#urw9w@mdQN@)5wo0 zwd(61&q$0#xl9BUH>%z<<#3^&bIiROD$>@NYY)Tb71i$0^hMUqQsg+%96tz* zK*ic?2P=sjJlPvwr@`v0k65>4aUBtbE!aJ^Li7*^MPD_l4q1^KU+Q)rC!(D=Ur!Ef z_dL~rV|AsvyU_veWv%$yDIXsPnGRMH?fHZ z3aPE8=rXF7XvX4^VO$b&^~^|X!MCk{4^)jGZQhX|p; zq)5%e5G1EA;culbD;7@oNhU5#YU-22qJ4_rpCN_<&d7(s+7`XjpFB9`N3(;qr^1WB z(y%zi6b5^eR}&I|Wyn2hy6NYHaHze|kBuvR$>iiFzmdR=(mR|-e~P`++(neZP4!MYe6^6kHTkSt zJ6L1eRizKndt0;e@OoLd_*J{$v)U|eipM;R)$Xjr{Iav~MM;)hAO6)*)h6smVFbX| zQSk5s)7>CQNYJX!;QmDTYLTlH#lX{5+F2qjE)Xt<(IOIH=(B$;42Mwnam|Q~H?hu-6i97c zH0)46&vrG{CEk&bwh}ZYkeMBeQ~C0iy=8!lXikeKPjD+LbUP%lFkL1~uLu@hLabbH zbgro&di@@s=I3wgVQC$}hgz5O23Wkk{9tluT-7LsygP*&UhPa5~Pl$Cm!u}{P7X<`LmrirP$-U_e; zd%JUynslxpchr_I`9CE5c(B_eL7x$8`_r}Gk^YIDF;5A<3h~f7P3ZG?>b54JT$Pxb ztlgFQL&EiC3W40p@W0z>%)c6FF0XpAze9QY%UuI3rMYHP(!H4GL^6MEw`0LBw;U#t z;rEm%gAJ~+;DWEuQ(ZvN#Yd@_^Ww543>i85{egC`$&^BobhXct`P@OEr~he&M6PQX zE9cTi+s3U`OX_KAtZMAjcn$41>U*01^^|UJ%W7%S`uO<#217Q99mmEs!q-5sP*6}H zl8<4GYI5B$fd-Etv@{#Eylm*^>6w?8hX({=p_ZnYzEJdt5R}m zvJD&gVxNRm{K42DGf@R*H^|qCxSzezAL6!RA4JXhFD?k|@~%B=$2Ys!W6+p3X3XuO zFU}e9a-eB#$8h(zKY4_|BS&LAwS&`A7W3+x6miM)?Ki!eAEOH8Dz|)f#((2gS(F}- zAlO&m>pA?-aSz0ok~(P`T?0)#JwV6V7Y#TNZQLnu`8^)vPX$fUZhJ053dGuIz}0W)wEKmD$G$`xjGw12~#Iy(LtDmKh5bB_RY6g6c1 zeR=fndhTq9GN0MaF2Se zg5VFhdOdmqB43aR2Got=L7ktVg2iik1xyVa0X1$vRQduJG~bEiyaJ+$c9jW%ve+6v zPG`r(P{)6@V_-7((8TLYq3Y((pV3}1#G>EWWz^M5NN@f^rYe;z1#X|(jCzFqrp8KY z5qaFcm!P9Xobv23v-DEz(I>>4d2@RvDdI7uceiA@G$N3^&wCqMhz8~ zg2+#$&ykHjz>9(A+YDBWio~9f-CQ*R$i+zgY&$W8x`3cq3Ayxz6OMTU1~T7%;>hZm ztuoyQ@&u*PDVFv(Py`u)tjUeDx?NJ?F`ov)j?fxH%G=mkMS~cRt>hjm_T-S~!o$M@ z*M2kLAMNJ0O@*iDA#rNiUAwksdyJudF`7-S(CA)7dX})ZyDWnWej4lv`x{I!th}1c z)}n-TDywmg7Prf?NvJh-K(KU+uk>4V7vp1%mC1GY>OHT8kQAjPn#)mrHMba7Pj62* z0uecvSbT(Jhxu*kHD(h{_P0Bmh9dlxOifj^K)YRGmAY)Wx1!)#apCJ$*O0t3dc_ji ze#)|U)tCZC-_Uhh%k=%ZRxS-j=KC@KPGg|9)BUrZ3RB>7hm;IR?NYg|mao(m49DuPW{5tb-p4iH`9!72$K9(_zF>yXdvfSEU3i`QY?^s`t2ePhyuA8^w_;XF9YKkWA((;*Xr=o2t%^to*D?y3K9@3a+5+ zssI=r?k=^^mS~n?Csm}Q+S{cd;UCgoyf-pJf%0`N;Bv>v8FXQN1qw$OZToKmoX&pf zD`%w?K?0-8Z7t^o`-U~3iuXdID)c;o4l}wym)bDsi>;khe$1N$l{z~eO=*1v-B8_e z3XD3VOHBJ?bF!Oo(Gn+o0rX=q>4KMTlj{F1w=p*#BB1O~KXxBNSx`HevDoEtVe%p$ zmtxeZKxLDmx3xj|wDGcsi1@U*VTT>dr)L}7f2gOM$lu(U`(fDE?AntE+D&JIL8>wr zh#f%LRRI4#@c%-}{{0a#JRpAcfOU*R5*RwY{#~9p1M1~^eAWeU+l9?AKi|IsH5`KR4Os$p!o)*|wvf+;hTfttMp< zc}{gNnYv46kr|a6wu9iVk0iPOdjAY>fIyz7x2UK-_%wGrd*>~sNSHztTsO>bks%>Y zJJc`UsZhQ+_BP(#pwmRT;L4d6XT6xY=A9>P=dZ9_>3nalvksKSFmv^+a^E2)7xw5U z2LF-84GTG^7r3RVI5PW*RTca+Qx%V%vyc2`sgrPiQgx3-Vi1xayYj2c@R?Ree1VJ~nnL&86xky7!3=pv0w(%eXN1sOg13 z=Rpl8>Bxnv?&>De9KT3!41P&CrW~%>6>L6M*TpsFcGo1?i{U%IDo3${xD2{-;MQ>X zt2YC1eRacMq+jd9->22l(0hW{!{E_j%Z+!7GAF>Ws!oD%pqYqtFHWu`Z`r9P*$#$- zsM599@fYfYbnu?K%Gq}s$yP8$GK2-cwG6*s4g7reHi`|sw4kALREc-K@VSKSr-|L=>V|2;=&Q)_f_QoY^Cc+mp_iVBcx@%=VEd@wPkpMtCrF4n zD_|`RIebu z-Af!zliXku7KXlw5_%Sy3FXg7wbQ>>gOpy1^(S?d5o4D(ZkVM^7Ozz3Pmn*b959f5 zL#Mw`_8P7^|2khT7zcc1&Uu72HGXd@3#BFhy~-4xfWOjHTf_mH_1DEOIy1^wn*4Okp-_8iqnuIlW|6 z8=BC@>7hFV=wKKl3Dk@Hv%0L7))#ao;kq=5Po9nZp=)`L{=7=l??;)#)pLoeF_zig z5e2eKpcpcoL}oZ&$Ku}xiMVu!!4y$|^!^r2Ve<^|Y1GZg@o4YdtPnH0Hj(f@=sL@& zD8KmI4?Uza#L&_q4FVz{F%Bs$F_eU)v=RzZ!_Y{Glr##`3?Qu_LrN)1hm@dF3Q9=G zJ@dQwzPM}s?^?WaDf2i_ob!D5{_Gu@92Z00&IjXrF1*Mm67Zl0QE?1?fCU#9d1Z8i zxRevK?H9!?HM$J)YkEo3MF-z`^>tV7a?**!1sn;8RQaY3(uW<)x+PagQ`Z+31!Ph@ z{`l#D%cTY%whLDm9EyITy)uoc`! zq(m{cycPmRkMUkS8|Wt)E3);)(%%CDr0B$ENU>YBZBZjlEw=q&NHSI_Y=>r~tz_ z?3XZ4iBx~g5;=l)W#c27VS$PE!+)#THY!d37Q*{v)NO96Cl*7-PyzpUITN8epU=2+bMrdTD? zPU(nMbIfMB4z0!`d8(i4MKR$iD57~=bs@uIc;Yl`fdp3d?OV^LR)VPag7IIJVxEPC8 zBjM&>?A@9a^gjx08az(+cl=84Lf*usa!taHXJm?x9v>BDHe5q;bKOe>**bRv6JD?H zWOAoCPsco-Qq*qWD&96=YE+Q}VFn7~3>XKTw~6`3SiYEd*OU}sX1rr1k2AT$M z;Kiu|Oe87PH6l(*ADRbvm2)%oR)($?&tAf~nSO@~X$rn^gBJ@9w`Fp1?4zUJ?!udw zq?SbT%Arg97a8mUeJ7%SsHd9fs!Tk#q>5D3^|TlpTglLTH^f@^=CAF_tCXN+%VNmt z-_}qR2p=XQcphZgr>Lhu4H5?owV;hl8W<}r;i2koWm6ljhdK)As#;28Jxun06Z-5I z1y_@@>Q|f{K#DD6w~{H< zJ*U^K&3TX*&s>G$f6u)K`aevg1ry{zC~RTPtz-LF>?)(*9QxNJt2ZxqC+HTaWl%b> zDmp5SSWC;Ja%PwwuL|-sP-zKZ<<29#_#*0rYcsgZq&!h1YFbyM?}HC4 zabnBcH~aUFn8#+Wu#UbvtQIaGuQvp8DM{-KJ9@P>Em%nQ{KKJZAH?RkW^YE=g~*83 zm(8PK&(@qMV7)Pm$EWgQsY*O%pEz^^^jm8`mQa&#??=6 zvwoR}0nef8;Nj~wV}|6%9x*A`!WHWlIE)ucR*2ylOTHY^aFgmU-=Vs;#vd5!jnVNr z&JOesga`P{_Z(a`>ITIH6O8W3SF_Muy&^gC@Tr2xjIr?6L@vPE;+e za*%w9J6OeK1;f&9J&&NOJf1!MbSet6o~*S{2aoVC_2gOG7es3Ouq~ z1uLx=yyb=WZ8TnQx2%7jsm%n{qy*Ixw1O?;S zX1U|7we-ZQ5^S=%}+YRK_ z-qJKhrrHq5Q}>9x|{VMj!^wOBl=hvf7H?xC_(25mTI0=Kh!4=)6Zh5wr@J32Z!T1TH_ zaqLI>UG#EzaqQyMiV07oqp|0>ep!tJQJy66=mv?6dNyY@Il2#q&|@O1QT$;jYb>sv z8`#Dz9c{L0ydZx+i}JF_+J;0=W6>t`Be%IjhR)mebLgkb%la!c3MDg`VP{ONwQ{3Z zT3;4R@y9g%iA&=e7Fh}31FG?r*9uJA-;6aQiI|wQ;K2p)dZ*n6TL8k zUb{`Kd$PmTtWEu4=hg|WmO9FOB{;!;QH2ySTABXOv_Bh;f72Oq@&nQEJdLMvj`n*P z+#EI^pdd`S`uZ%$dF$gNh~b zkUhC#`mPG92MFA5HcrU7W~yNq_j%?+WIeBDOrDu@P+W-?^czL2hHnKr5QDoAyxmix za0NDK_OJT@fmcsMOOYflm)pphR_9TL9x{zozDGTrzj8QmXZKH^A#8p)ayfl#;Q$32 zs?}wzYTv-E~+`IKBPX`?RYH7w*UZJlyuZ}=rAGhBGIRqR$_MfQY44PMcw6Gi;F&Q|qB z#4XZW^RTvOGnkoB+YCxa`XLkvQcHaNA&%J@V3+4zgCZkeY!b-ooLh}@_*?3hp)1{? zSH4~nG!_wjD9l%dw2JBJMksQcohsfNQRT$JC!*sRVYg(&*|7M>+ETqjnhM&{w4pN84V8>#Ns5X)85tPzg&Lq*0UQ`sF0baNAjNK4hdxm zalAuG{c;~|b5~;;-*$s|O%HSMY01w{I3u;1JT+s2bE384j#G@Nh1nr|j7!YAe&HYf zJtkVuqvA|;fY;`ZxkTY0f0ZMZXdg>5CYaiRbI$|cAbv}sTU>IlYrQ%v!IA43R;pu6 z#k`GI89O-nCv?Lqn%3$k$HPm4W9U{SE}H2`5bG{(!-qb@`WoS(_Uu$|HDw|G&*%>X z^iY&(OxanfJ@s`gCpf<0Tx{ zzH!-HyKn$akx5YbAD@a%>JqdOly~DxS&SI^`%An@5B?tLPdM}kiv_>++IGN+@RCdF z#@v$9IuJzqi{I97;V@Td*qJ#UYLzwBFL-cD)7Xh89VZ2Qq?ncH&+d@QPm&~#9x+}_ zfo~Cdrj9n>l*K75*iwY%8JE*?QL6r4xc5Xf0SGC$oi! zY0=J2(KzpBx%?e7cpHmp#u}DwZE}S#n}pKV>?m$XrZ`~6Hp}OsTvRPn()WYkdmPDq zoKlOeQqfnxow0$5A_u5_~zzLicyyR-vsvvjMW`4^0{6lY_` z^cxihJ~rT7Tk& z&&n6o+=$l`j08XaWgI&ALnec=n#zYg@p|-wFFC>;j-K3^-On{<98+Iw6al%fBBc`8 zS<|-NU=7FKFPehYJz=JsW}CY!ZQ*hZk;tCXOibfC2q&S-z3Yu zG5Q+LKYvp4bTvC`Vc^NBB7Y^ruQ9ui(acO3uh{dN7s>yOwnzo!oWT4W*x>}*+uMQv zFuI`NvNGT+#!lG1TZsrG!-K*&NUD=qLkC@jiKHJyY~XLK%pGkn ztX2K`=F5<79w3Z9u^dbW1VVC!ZJr~0Dc$GWvGuUwP2+$J-;BLD%Sf2~)AdAGB7;|L zyF6ol_p$;mG8-t=nbOLGZ_sQZctq;hRTs|}&js}~UiOcJnFz7Y-h7+dfxDCgo^;{< zuz0qNGZkc+(D?OD<>)%0vLst2RPo=2&p&byIM1wdGM=*fE|P>$7EfS$&i;M~?{|ph zi~*MWOTg%O*}G#$o)F~b)A?6WqGMZzkUDYPCmFW#y3xLyn2@&qeQS#Z@_1d;PMzQq zJzu(5T>ne($LhBzbJjpiwMtGd@;9#dGp=W6=zMp$cMwsF9Pic0?|KrQF}XK zUoYOUQylT*x>R>4>&PKF=F~qt|85k%&rH>|P8P6qWAbKA7D*d?*_vsWGKqF#HK6`S zkwobrzGTn9ixy;g0afqAGhlhs$~Sdkybd8f_$EN|D)X z%-h$$EPlhzW4yR-R;Sdl&(;rnf2%d@vqLjw__{=NLJvKno|N!a&dZa(w2ocuTlg(B zvz@ow;#K0L>A4+fEEWVIAvsND|J?$d=2~E&{vo-YFi38(3u9|<*w_vti6Z0Jt21;z z8W<(C>@5BaW48OZpH;P0_ve%_IR^&!vBiJiR4=ao`}gzWG6617%BFJ&H!crB<{d$8^7r?*2QnDJ zsw^%0HD9?YV9Px3{?HXS504%#m3{aE5W|XGW1&)eiu&eS^~-Nthc~s$hOfns9VP@Q zBu>l(Iw>V&7*ftA)63MDuV0k#MO>{ZJ%KtPY{0`rsD@N9%dx3g{^I1~)^XHFg4Hp|5 zJ|+C@?$`U*If54a@WGxu1+{rTThn!5eER?^1WTMhfL19>*K-Kr-OF}YUY9SQ#oIBe7O}vlL z>?U{TKNg4z#q7B$S<9;WxP+0)7XUk~b%tRoRLGB7~kt&?+GM5C9p3`w8;ysPpIs z!S_#S!T?JT?*6(ihw?+%CFNfbK(K*`u*i$k@C!-ruJb^f2cvS@{4^&LPn>k42gNDk zP0KhaiI+cMBoGm%-B*7I)j+n%BP(%Rzo>h6Oc~M7>B=mLl~Czii%#ozlD9 zMPU2q z`>@)x7!jL)ulJ2S+&e!!U>Ux$b{UR_{`NgR-|W>3JeM%|O38WliKZ&fPBloH0Y4sE z^I-Zz$42{8S^*Q*Jvqz1b$qQM3N;;4WhBFHRr56Y5hyb$SpPpIQ|}gC0HRB{gb6*Q z1W@zoEs1VW+Q*^(c+UNm15k4QlR3arvPu9Sz{#j0-F^2CLSQ@zPcZO%4yxDOsfQc1 zAE5L+OLPc%gMqXFU;s;7j-&yd2GZM~y%ou=8LLXxRhD zLwvz)0?;;?j;)>)9jlvA=*+lFb#7hP)wkr`6ST-dsK{pcP4<$L?I# zbms0w^vRun&MI{T+#1@5_cn+hH?2Q@q6AMVXVsNvQWGyqevxsZr#n9!z-R_la`(7n zjcw&*_r2b?{d`gdghN`Pl*jqqVV$A-HQnu*_RU_CJLlCM%1_<*v|c4ui|0^Bk0fk$ zd>ObmA}Tbe=_>}UISqW!!qZ3^Qr*u%?Pr9xAmSADMe~R$nV-+m zH+}ndnTWIz0`|MKgP@o53Al8>Jpeou^>Fj+*Y-eG%)aVMmnmtN43=)Xpf8VJHFg5a z1wmod5z5B`b3PXkk^ytt^(q;}$E{X3jv@aKcBSW{K%^TKbS-dq!E$mJEH}&qvhdv( zdS1r|r1N!<8Lr3w17sMIF--$bO!+-mkVgWjgS}@tvhF5kN{8+5(}gUWq!kptKkAc_ zlHy)+$8+VBet0{U9Om%KBJj2_Q1jmJJ9VHcl*c9Vz182dA%@?h?#(#b`1NQzS=$FR z^I4WJ!w6ihh=cw{cXbWs_@%wr0=NXH`Oz|g-y=CS^4aQa#fO3Q| zJa7%BsGJB}SzF&&4+#$bxU`h=tssO>D9@J|Vh>C&1cVH%)Ewn0Shjkl_E`%ekvfVQ z8Id|x%(Hr-5Ai3Bpv!Fml*WDP>}NYXuoCa7igp*xk%&dzmE0^~J<6aq5uyD$Y`FT~ ziS4~9HH4-^$JCoN-jv+DjLB`3IO?XFEBp#%>fhtP8#eGhNJKF`gT!d661FTi>f^nU zE5l8s!<~t9j2Ut(R6GpbWiDsGFE>9dQJWI9HsFtN#-k}Lzsn}$*4qsR>HV?!zGaR~ zft*KyCA1FB?L+%m*Ib9RJV@o~&Nl`QXI&R|P(Aaz=oN3$Y#?f7LN6}7z)S&|)oM~q z&-}$cR8h>bft2u|B{UR+i^_4b((EDNmG_Hyvxo-uhu51kTCg(=kl#{-%%#Vs*{k_kB2OA+_on!o~? z#j69J2)(}GN{wikJc#2<_Rah`*EC!|7#I|E7f^U$r+$cz4ceJoSC*@I;{q%!hon8^ zLvZ2!zi(dAY~cvZBxG{RBbVTqn6`QF73n(_aw2jy~Wz1%xnO%0Z+ca0+Rj+sKF zAo-k#*fP59;MnJb%d1-uH9^Zebb|w?+0AX=->P7*_dCs#Q(nJvQ!r_^edqP>3Yylq z+7B|_i&!{6xLf0awTh5v3E;1*u47=C;v$6764sn>Knni?89}S(M@s_$!ASs2TKe(% z&+wEVpI?y(cRZSF?@2cEZ1kF!|EB+EC_~f_(Bz7{MSwOdkopdBNS@&sPZu)O1mE>k zt!?63it1&x>&oxJgWUJOxML8Y@I+5Aia=R{$2cj3a1@en|Il}WjSs{qWb`Aza|uQy zus==y6$X-qQ%7B-LAdU#k*5N;q=1trGZXP@1aSLR3qqa%$Q~GIb*Buuoz|Uz$f+Xz zxsjy`h4?-d{as@6^-{1#kfJSup=N!JJI#P6?TTS#qeG1q@0QP_eAJu$%nI~f58yHP zA~WBsGmQ+o`^_@qyxK=(${}r;?k;O{i!(zc7T!zrNup7L-mKi<`C7Z`v5$u}*6UV- zcpT@96Z^+Jlu)kT56y3_vf@~0FUm|Mq{7Hwyhoj;`HI53lYi~*US55m%$axb-^6W0 zGpbQV5DBIH=i|+}b3VNB=NCskmsEQR-LKzHLE>@e@EY0=cNg6)Kyo za^kk|`1h!rkIw*xj2Z#~CylVP_XC;gs|3RWVY?4DIGn%=Q_WzDT$k$sOP-Y1oGd`R zRy&r?B~*@=Ngf0D!vKihZ*iPV+8{c zYUAnGL{|QWqhWkGnk8TJZM~R&f5}x>G;4;<&oheb(s_4x*L(i83Vk$;M>|9vlTyIH zG^`6&zcU^&&5E~4`<~V$P#IODW!h5dJR_-8P{{4F3A2jRZ`Fc0J5=(;v6_nYjy)QD ze1wjDG)v+|MfOuBZ4y1;rN&Pc&|6X)U|xT@7UuFnx+OrN46))U9qBl}@OIkC7PWT! zGv6s_;u-+qYkw!oiXo-i0H!wr@9NI~Goy61!c z4>dUyuyzzOnyOp+3xK3-cBgaGzbXtvsQ|=^#@Q1QHpH*=fc1hv{(_gAyJLCR0V^*{ zfa+7&d*k>kjogeUMH|{@!atLFH%q)6O8=g!n?>gDd_P_bI`7T=V`%iMEsEF@%_4S6 z-{DdtWW|GEa5(po+l2B*JPIA((R#+KAad)u-bdp5()c<6f@8th5y zD+AD4!oV@|kjyt@=~wDj$Gl|Mr{uR@e?uVC3`Y;i4tVJJuu)Ja_Ck-!0db@tcJbiH zpVIhheD7fFCu!i}D7_o_LeZGyW1_~7pzdcHNvRpGpRazq^sH;XA}2A4+u&7%=hW6^ zhl`&EO7|{&e8O=uls}h^EcIHi-fg=Wl6zTw9Rg8R)Iq76rY`!HZXK@`h&g+;7TIgp!i+C%YcIT7;v_D5<&JuSr|B9s$2HtK1 zSLQ!b55zOg8C&JSqI*`Tc2eVdcy@=p4aWSo&-6pOfZ^Wp4vPx=q>eK@VL)Wbo{489 z^X}qDG;wPfR)64Zqx4mARo_A@Ee(_J1j))LX$C%u;5R$VEh+*^b1Xi16 zuLX&rEdFTnW1`d7z?2h~7%-vok<^&tyRhIrEyh~<-Bi!R>K`U$j~ho`D>7_AehE#+ zuX;4#;OrvZ{}{YIo`2xyw0`X7+PmLzg#ss>@{p+7Dy32by-piFhE>j>EDOuoLt$88 zr*JKZXdF?pbJkt;=6!(_ff>h|(Lm1HRIGuLFXigc{gf({S=o*0hx4n`J4)4TSqcKM zERiXT=(QQ~d--wlBZ^ho%!zi!)@7ugoYB5-Z&tzi*ufZ4&U@Ud3f)s8Z%QWXBg1JV z9v8WC-_@6-nu-qiyGxeW)1C#uFsIXPCRp$b1ZA+0W z+8TEHpuJ_1vSPino_G?`Zbd(VsrEQOI6cQuxjtFLe~{_7noPnUrZaDR=$DMjzt>B3 z^k}1*z7ff6lqef%Umwe90X0bSnm1G5*jPqKh$6FvFvAF?x=D%nPrv9pc8X2AI17Ax%uMNsIBFYhq@rNNcV^mh-V?_}O=-ZSW0Ku?74`bq&EX%bxtp)Pcb@wb zowgfYz$E0&8>V3!U0e8KXkTh|+9zbxVxaO@GyHAfRO#kJM-5!92ll&ziIbm8O|Ka* zdR1$rmN~;=xc&UeVrMt8@rYF*Q5!*?Hy*6w*F|R0R8)~lZs01pGv8jX$bwCUGQ0@B zktibnhDSG=Gy(W)QK&a5VI^U$>1dQ$i~GWPfbGm|>r1OCPo~In29rcvAGUn<=Q>?> z8D31&>`l)#jOsqtrMt44$B(QACH+Fx*Un?za_Ew{$+?;OywO3Fpn6CHr}t6;;TW{h zrYn3cgxA(gQ&IDnI^B0rtk>J(3U?}O>hSlZx&>)0ywizEP?Ou=lwoB&AOrG8qq#D| z#YZzEkVAch>ha>XiA=avPI$SUp7pgdY{Mq4V*2yegZGce z1rCVIRcdEqZ>Xw!GH`#+3ks>~$zvnJZ)A#_5-`4xYRQkUJqzzs z6uX}VIZoerIL?nb{zL)CmyzMB$8ec;^xeJCm}GCquWA1A&}p)T&QU8*OCXc#Z(-}_A>9Kfxm zfqQZuF5-24E8U&C6j`#WnpcU&EQWhsqst0F+aDaX-a597vOJ0_kH(G3T@`_gRdvuk z)9o3EuQ-9?1y!^Z$7g_-42ntaAeH2ar9LV(dKM#{6yXs!kqnQ!!~L!`+Sd$f<70Gj zFGmW|YCHoKdN5=o`jFxK8EJjVjD9P_03+3;Hwmu=NyN|e;cj-rR@2$O1`n(_mU9^Q zP9NV)-!c7)Web;ah0d@Dd|!(Sp_#`NiH_8b$m|=bY-YRN+-J9hO5_UP9JEzVZa<$|0IDDhyD*E|b%Cf6ebw(Er%`c)V9xkV#HA3ELQLwP*83BY+C6H~ z0&Y;{#dcHryXCzw#01~LwM@%+%NEMXma9qH&9-ED*I1RaplaUIfb6(Ykr}I6ivQ(w zeO|<7zf~8`4+~7nCA0d)j9biAo^_uA=QU~Og;LNW? zgYHK9-=y^&Tz#1KfEiAS(H)uYRm7mO@iu;_F=t)GStNYX54(t*`NA~sm{;AZ$w-|+ z8PG?nOGceDMGu5qH4jVASNj^z4oThzLL@|`x$EhMmkIYCM}{0a$N-zvT9`!&=lc%G zN}fi&oWKkSp3>1WKcbC2Q}+|uH8|yl8tT#2n&^~AjI)iVSn2s@PgQ~RUs!X;0&avp zF%!?A&A^i`>g0=#Le&Ow%=Jz@L^*w9q19HX@;r7p@Xl11!jJn|+B6wo(**prOaGeN z2VtLECD=0*(^F!Wk*>7hQib;(20~Obt8`>hHLp~ao&Ht$sU0~80sD57E)P43Wgeg$ zdF6}?CFl@?<&OXwqwClGhKk)9v)dRfk%y>AcY{x0rKcuB3R*C$)vdtFEu*|<_av+ z_nNItB#hVv>AG|#l2Us}yF~jn*qbfz4Pg{=bh&d3xO0O3(vfT;XAtj{r(rE2*mF*4 zhHicSh+EO5y5ylTS2(Y(lsy{bFOkQFp6@VUdB^{z*$H#iO;|z|wN|=(w{p>(uPB6u zjHx?}wJ*YcpkedphIfikLI7#~Qa0rRFLtHxp(%C`#~nDyDmeOpOn!t7!nkj~?o+zO z6ltwHk66{^ST!x-xHq~ZLPX>G@-A7pqPRchO1suCtklmSx~+j*;HkDroNtU$9&e(L zrMywb`|br}UYQLaUPWzUmE2>WM<{MxJV`V*K317MZL(1RM-6WrXd`aB1^MR2Gu8S95%+EFqEtgulwZS}P`1HK znHNE>Z*G}-dnH$q8barZXHuM=OJeo)8U*0gdKKAfSKL49LD-OlcR1(XSi$*4JPgO{Iaw=xCvFAiv7?p{9!geIx`>r(lipN zSNV0nf!_$1m+D^XNUUQ~>3k|Filsgjx{bhlX_ut73?Wu9(f(6kCL012(saxY$RY*= zUJhyCZ}>_4I1x>_GQxg4-C-Ov@xwxrY)Syi1DHTJDOSa*%fP@kU2E7>P3bRqx3Al- z6~SDsj}O!R`K-^kJylIm)pPWgt4VS|8(Nz?J>ZDX4AHGT zjGH%np5+#`C=`h2ki42NVjO2bsi<#2F9>vDyY7{U=Hn>^G{#EI1 z)&NIyNU@{y@;8Etb-12RX=VD8`RvI89+hU~mj**eS1s_(d}WuxTuv0U6+_L-6>&?r z7G1UGQlIHP9#fZ9K6p(>GEOxWe7vWz{+YwY4*y4B&}S}=H(SI1PBvrjyI)6oRpEuE zPe)s;d*V&0GV|X{c%6PLd-Ee@o@o1n((uzAHTUqp7c{zqe3k{ISz@$&Q5h1h z^tIabW>-`{&Sj#SX$N0trjBK%y4OH=4r!k5u=3Ac)qeeI7`c#tFXstw@#?i|UaUT6 zxG}W@hP(A6s|G5umRnxj-ov@OMnJK+qvT7_q&7#HVBX%QH_D&19xI~md6(-*JuE!U ztW|_9x@tEepjG)?Umy003Zd&><;W?~q3hHjz_{PTurBkLlqy4*{)Zm1mzU1#rYzMQ zPdL!YtdtT4oo;Dw%%y(UzC^v!jHrWY_E}^zTccf=nx`A@Zr{0_DZIdYw#ofjSY1K( zdp_3fA*NNAv?(bWr9NWv^Sr8QvfUVz?=cEa5S1G&(Ij_OMTpE-Z3n&9sGs+lxpAF# z5?oA@-9wC#p*m^!>eh!W{GYVq2B7-XG=sW+y)!JwGlPCrg8KM z(J$|EYHE;j&DbGEnqj-!xP#pRBh%+J@_DV+Mv)d&y+}-K&qj+i7SNltEfI& zyHxyZBSNMoL&}39U6^UOMDF$;?N}h=_!l#^laC1gc_ohNI46n3-ty-Ar_C%e!*WPj z%?3Zm>1f&tgwUWFhMR-!kC-4E-FWmhJ*W60^FbFx-;=LCEP_1h;w8SvO`IAXCG|(t zIf9rcH>*FnYN8b}t-P50*4}8x4B`GT1#bocNQK_4Wr@ITY=-3Nzsq{19MVZ(P>dw5 zcx~qQ1PtHb#U_bdj5^2K@>(^jxrVeERznWYem1bo|EdNnChDWKyn4EIG$rr7?=*a? zi3uJzSyskrN)(1(G8j`j+KPgJouJc_z3~J0^*)}%D&}$nJQ24;;*u$qdAk^f)AN>e z46y8a3K$UMWHeqH8O+;&0jY=`Dx`fGYu(7;Pq>GgTe$y|S45w-dCs29&+Z09x{U^( zm=(-qUEaO4b-DYc4PrMWdj^l~BD)g_jDx&1?K-~56Zj}~{v>J#>d0w+a6r3OrT7Wu zccVsIJv>U73`eQD!F>+>Tszd43o&QSBq zDxQeD5XGC0bPvB=p+{xj2^FC9kG}I5hL_=fC$yLt;l%dPG$ZQg znHI8-Ql=$xYiAMpf!T6XCN{s?4ftiQpie~^4rO$>RXHq6L_|=oNx}=lrx!1FAL4tP1C4qdvVB^tVm1q;~&`WnX2AYe+{}^PM|f+X0?R z;x+4Cvz~n##ijf2%?0Z-Y+31N5&R97-$MTSINMrOUHvP5y_xoXy_YuUc>LE^W9_8N zWJxzj<5QAuuJWx#>@B`?SW9EM3XdOWNMliAjW>?vNmD90Yxyn3Kc_|VL$^yNqpPHs zZ6pdiAyO@4X}oSTal?+?%t-!Tmq0bTo|rJO1_&|1q622d16<)8kkk*~_C|fe7zi*R zApsYNs%Jf_XC$Bt;D#aRtAbz=`grWO2Ow_#(U9JA*^0^$P;6+?crf}!D0Q@TcJ!`$B$zT7n*QyKaX~RY8(FMjfABJKZDBbl*q#p-CwB2P@0)< zIZB_jMQC4AfBDK0jhQi_;RZu%;^dz`B`<2kp3f^qfU3q>V>J(o~nf?RXT09dSi#%#cU(UU$3w^W(k$8}@nSb{Pb688quX-hEKmlPK94 z2l!)qP-1gjc=0=Y6_{*#b{9JcoppIYup= zh1T9Y+lYY*j0K}bd4dWN#I2$LIz4`;dDlfL&5e`HNy%9InUTn4;ULPMgR*gqQze;j z=`fe|_k@NY(x<~sRP(3r9XA)!qeZIM|9V+vr>Ip)K}HHymwtx=ZHK@QgFd|ofZ7eC zI|6H5&o6}^-^}yHQxg0k|0U-Q&;J+RDemO~nBq=nXd{S?G3L@cos5tBEE;rsVpyEF z8fNYn>D%Rv2*tefn13sljGTGfwW}gi3xibJ^4PdhI`oTkrw!3iYaFI~AB25qU0_() zWwcBVK{b=bn^tbCq#5v~jq;`iv{}Axezx`gbuhLvgex7k&8*b9O{$h=rqFlBRSI+2 zlJ!eshy(_tUyp&aCA8%VA`w*DF@a3SSfJ{A=KwtwSYkNt5AqZcDiR5dsx*K!|C_jf zc^gvI{1!w={>SGr6dsd;vcQ<);$pQ^&GMVBoNz-FVznr94#zXI%3JOc`a*VnK>TJ< zA>OKC^RM;LiTLl?fSRL5()nRexR`&6y--p^<{f4{^N^>ATXTVv`s3=>7lycsbZZf$ z!sm^+Rb+)2R99FLIrBGHn^qN`)PeBx>F`I@Ll(9HOrTmV8d&7k+P)R^5VAtO=9^bKPj|24rm=DG zuo#AV!S7@WNeXhTE*|`Rr?z^~l{8_Avwn>uw5y=s9tu}jhFZhh zdx*I5L!(ol7v3*_8LNEj)sVSUOF$bhc39%l&15ieh)a*3_{Cz1!kLZyCX-fT9Xrp; zmwm;SbC=&i7si|uD`M%C!tx84YC=do z`}Vu_dr6{^NQN)qL_?Z`PKiEbOOp^p7(z=QNW~;nr9vXA>N@AHTm@0ZNtbW1G28e? z-W3-tDb^Xg&)YmG@lNnOb}_CwJ)ZSTdl6pIt?NbSm0bFFY7gS=x%0r32<1p?zIW*` zdM7cI?&R$azq+imYTk+n{&7kwy zuVDkGXALv|J9yGh@Z)ICRf=4BFFYZ#6NF(?s98eo2;4MCKn^>dUpkpm@|Y5Hl3{%V zk_VGnT(19knGS)3|NC7Ca$>d9^M9av;2GQ-D;CV6^qRU)FQxOcxT)}Pkf*`u+-U=? zBQwPCo>-{+y2_R)elAD&n^w1L_&!A%>Bpz;4^Z`Q4Z)4{&)zcP+a(&V#^!m_t&n`S z!`MS~G`lUdD$Xz?bpH{x8qHnH%(c6o)GNSpL~D5C;Mr5(P#~kEefZ`Fv|Z>h!AA(; z7Qcyo)jbyIh+1`hQeMhkE1(#fvfA%yMM^Sy1sjEq=6g;48;ffk*`==g06)`A=BD#4 zuu`^E-W8@xv>5D&2MNC8^Ye*2 z^DTT?!w%rG1+K~-R@b~pkXcPaupdB{!BYt9+5uKYD#FSL!kvF{UF>nSg5%o*rYJ|? z%25D?r#Sx~CNE9aAIRp8u7W@ACj_g4G;EH531g5_!PB|-#AhNnC^wm0X)7L{m=G`{ zF%U&sud2>_b3%z+Bn4-FW%6I_K_TPcnmJ*pgDrf7%6>_h{!M4AF{|j*(##F-=3B%z zAmyblq&k5NLh&|0@H37)2WASkE!I$G>Yg9PJAo|MpeZ4w9Tx{G%>k6bkEcvvARTO& zU`6p=e5sRe{}){&1PlbA7*A)I5NrTkjL->HUJly84PcXI+LJc16)fp}1|{#kYbRRe z`!P41F?6rveN|Ehj|c84=!>??R=Lu1!roESD{=8K<&v~@OwjK9)R&jb?aPRsk}&X9 zx0~$>Ew~|D@01rr#c23;+Vl8))aSL6wO}4U{y1wWd-))EblS~f)?Wj+q;H@F)l!G? za0o^6W#^gQ<`K(%^PW|-D@21yJ5plkRnuTMe#sV3wOVd-9ZzNdE>BLO zwkw~j@;viNbPNu6P`qwzZVU2xl@-ui@{zL*O`i{=%-4-T99!i_|~7bxjRqHjqx ztV}~Xg#(d|&M^%4TFLwxtVlyhaf_Mf`Ay`a99;ca-y1?3WL`?zB{^*I%gAnDaz%j3 z+W?dyPT|Fa+wP=99A5>mP*b>I*y5IpjCmI>JS?O5%5fm5!eoGVcK z!;WRNYd8a6`Z}Amj7D~Aw-c?PCY1K!20fPe37ez-fhK*Q=&S;zz448((206FEip`w zfi|@`h7U*efb7MO;}6xUotshY9|B4c5-TYZkdj8CMgK|!%hEfvp%Kcy3G;E~qEPpQx~ zN_+MEw7;5(k8{?N+~Fgl)&T`{6-`&T3tLjJu~p0X1&}-XQFA zeebVBjce{Pn@&ANr=>DqDlc7!_lcP^bqo071N^W!zbt4}JvO?QL`MA?Bg)GtREnup z|9FbYS2cI+2Jbx&-xn<0P&^rDQ}3W)QULmh{FR6Lq<#!sc8j&hg;w70<|WZxGjY!* z+zEw$>~g$4Tz6_&s;lFr?WB?SWq&>zQuTwN3=Y2HzObtd6KvZ@_KVt=Xi%TkwS?d_ z>FG@mN#Tkmxqh$}#zXv$t2*uPlkrO+8gNt4nYUls`p#5~Fj+k^PSy-w?L~XoNSb(N zBFE+X8e3Fx_j5l^DnZO)P@8Wsx2y=+y4n62yQVKo!yiK_hktW_D&Lgebop1a2V?g|Jk{Xaq+wyg^JC=7Ghm2256IVd zPK|`K^#?o~Bue(&AsK2D8F6P4Z73eAEdgu*3ak4D%>>Bq@+Mf|^ozL<+|r41XPCAn zQ6yScddz+9D`@uXi%HoNCdJWGI#6_6$o)vy;h~{1jAOKY@GzbAy*?&R+TWl4@x6Tg zD+W{ZIA$+1>EgSzhYVO59#8x|^v`W8x#u-pDAHm3=;WWI*KPfU)DooDsjIU~tjKPU zbFK16c=3KX`PTm$)(qG9xhy7W**CX)Ro#uAj||xx6HHyGDOe7pTk~PhxP;R^H3k6T zrrgTBt-6ru^IF*9D7TQ3iob~y1#611csCKtdtR3EVwgPqK!Z%@@i&}b%Oc}%H6Hh| zred^=Ig>Oox3mp4oBL{n4*a&^QCu)A8b&_Rm+F3D&wU4pZmNN-F$wxnr(_8S2IKC+q9D7@o{(=mdErv(&Ng++ONw}#MxtO(~TQB$!FP`&LOn8@Y*vsET z)xe-DMOU7Y2#i4{s=GmQLVR_IL!DvFm~+UR&C8cZ|5(RSX`ZrgJf=PkxdrkGcx(dG zxo?ZX?bvMMWm)_Xy-#?tJMD{j9x5W2eL)7ZL0L7)H1c_&zUD5h&5?&C*t#cr6UIM$5#_>`wHbs9vKx~5QXBH&YOo}Wfb zjhBA)s@t5vHMq`^M-@(SPGjOAe!zV!0yf4h_LcU8CRcAqPgaFCn9Rd>RX8rnsLF{= zeSUvlep_F#lIDKrO4y_djaCzl|GcMPbOyskmj9V5XQH& z<3eaBT$DGjOay##cyL+f5iAvkd@ZwU zKI~?GEbrLFkbf#wO#PwPjN3G_Uz2Y^U$nxSQjm8_E7eG^lUZqdloUQm`{YF{XEFzPF@cTpqZ%RxGNzMSDVBKs~`T zx3y?L_vD!3L6!bXZ5Ts+Y_IRzxTr)dm0#oWX2Pn}3jVnzX>Pk^)$3QH5s&8G&`~?N zjbi>;rVx^D!Ty{$NXh52F*!jxUWH_0W9Hd|inJrcm9qq^Ux*%-9c^qC&(c+EpGEFbZ-d8t!0x=PV zdn%qeEU;cV?fJXdDvc#MSz$ogxIqHsF>&c~3L~TX2jpx`+;qC8(veKs7*foZ2$Tju@A(&-(RolflZSQ^{VfRk1Tav zMQ%torN8p3ERRGj@l3Di!_hS}QDRcq$O-$zxmti~ltH_UU+o0nRVR+|(Z?)u#;w_I zXD)aaJR>KD#esioF|w=}&GHW`kTG>3OAPd9EsCR=2ClBavpLmc(YtM7u7t z{&%F618hn$Z~WpnA36`byAk-t&oPDeiyyBN-NNztKL?=(N(u-lL5i7NtNj`gl_Cnr&h>09>=lUFY*% zeFPq?wpQZ5aIdxpuU?ISAr|3n#YQ3)`~Xkt_H3ij>RUdx)9;?9{z4ua{EXX-&%+Ae z9mh*^8dr)wd~~q2@XLu;-Rw9AS$c5*>k?B(`IxR+@cTYmd-=e#{6w1K{5&9eOX~aO z7iD2ptyC*k@V>petHqX)Qq$)R-)sJ57iG5$txVE{COo=vE&l(e`hlvY6hgsH;olM0 zUu_>k=_I?(WFQ1=hVV)kZSCC_-ErO-dP*SM2>8=sOIKg`zi;7=z&!l>+Xt-*)B8i> z|5FVWIhO)5o?Mz$Ug2PtZ{7g(;t1YawbWUtvZ@XKa={$!_bB$ z9-%db$*l!czzenP1bTW+=oVFv)hStS*oz5mq{61r{U*(u(5j+z?H-jB_8ZT80g`oN zDGQ902oCVLqOh{27L#4A*q|<4 zA?;Fz-p^OP_uPBm^RBz@TKAv3)@$u$S=;^%`}_Mo&-eL0&-3|w46ZahXrJePw#WI= zP?~8NX!_9nI@n(7Dh0&ZrIN+s;<`)EZ_-HgiYqQDS(>o3kAR$ToB4oe08yn+<*6o! z1WXmQj>pxxfq6TJPkUv4fDAVw!)m3>8$TVjBsQ}oNx-RVg{HhEeZNq?h#l`K>7~r^ z-saWf7p1CF9~{~(9lZ0x*^4xdPc-Ig$2Bxpu#wJpYY{flUH;Hy(xKL}k0KCML!t2* z{kV#6-aKtqVMmsJ-rWu;so^%=MtgKTy}fN(uBgXrIA7W0M|7i*a~>u6XDG_4DY0rb z?|s^JX}cV0ZKmWQcOZUpqSxe^Bz_|`7~VQezk(b8u0$whGHsbi-J25iJgv|Iihj~> zE$>^_!pBBXqW6f8$p`YY6SvpDvi}sjHS|IL+}n~2cX}9q+XiF9f9 z3&-uvrA0+40E%(mOc=^?@BH!RO&wG!HnQSYSw;f6ddlMDUqfpy@s1ITBoARCJ@B)_ zR1Y6xlWIcU<*N5`WILVlc$6t8d?wRbnbo&Sp;^bKEH3Y4t#&ED-<^hCO2V&~q$o56 zo3C*UP>J!Kdr3-OO1w5gd-2>Ic}kPU@o!u!5~~K|jp;Skd*paP3w%{?jnM(e(QR_I z4uVe?Re8Ufm~;E_fJ|L~H=DhWfOWQP*)q@fWtf7h-ahLTrRMaV33Dj~nxf(SG<3sA zg$Pl$+T(|`%zffekOd&PlyGqmDl(BOC*B>RZ1VB(G4bT5On@OU81hIN!=iM`T>&=F z`B<%>h3zAKa=U&E3Yv*eQ%&OT@xR8o>wT>NC4 zrF_29{E(24r_Z907ovtg8*1&BGk!LPK`O8?O`HMop|Y^1LMNaIe@_WpoK^ zSjB0vkjbE(Eo1q=Mqltzh(Pct+rqUMu7HO^Fl&@1cK7hG3uR!4P5>5!&NK^(Xe8O2 zQ}y|%y-lY|qj*SR>-zbm-jLPu551m;{dXc#weAaaf?tv(i~)Qho%~b4)p2q|e^~O^ zwLqv*SbjX$_{>{ov4Pxh<^h|zCFg$0N%=|L*eIYSJ8@A>Ws=KIqqeFhVVyiXT_Gu* zMiU)s`HORRzpVdqeaQdnD#f}CQGREzZ zMGaV`^DXF});pf75@6L3^o>#v;MRIzVx!4($jucZNJvUgo4!>2Sff-7XJCxk-BOks6+QpU%kc ziq=r%XQlCWslxcJNjv^<`A7qi;OPV`r3}=KqfIMwdw?3huelg>E$9{Fh-X+ z(41diEU?8%=EK_y7NfOGe2P|luV_deuiB8LqODQkm8Pmgot#%)r)yXsz}ii#SrO`? z(xa@_J6}pYc>LI(DmWtcm!cT6~eaK0X^_~7jxLzhrn#!7p9ZcO|y(U7)dy!*gm+4iyOtJ^^&4auydsKQnWj-3TA|Cff^JEX)=)nC{Rg7ivPa%+?sT49eS4HXcMgQA*8&5}~dvV6UvF_F@f7=*|k0r5V0wGQL zy?lN-k5ZB(F!W7jUiQiY85|6ELrcf1bs{Gs=XV-CUWlOhQ!Vp9{1j0OwW z$}nJav$`#1@iDwMZ?Lf@l8v%G3O?*BzPhZ08(ntvqa)5EhzFe=6 zcB-N3>rH(8yy=AjO_nE8Z6}Ra2d}lt2%Z1&ClVmDXOFlQR=0-ym&V&xghbfaYhDo* zzEAf+EyotBg$@AYAif+UI+ER%kqhokc8w4y`Z+0v)F{0NPgT3I#q@V$b2iA7g52ns|TiPpxLzv94%S(FE}0~4HHVcedm*~5Fc%bmN>gI zw?Y_;Te7M}sY|_L`qf~d<^B6*rD}F*c7<+D^t+1*;Q#L8wYpz+Uw5164SxakKW(c3 zu8HAdF`w~oHE&O0H9*XJ;GKNfkK#F}VTQ8jw;deot8Y~m^9z=yP(?>H6Z<3j_tV>cuu=<2h!*EZM#Q zwr4L^JIn;KF{iM~XgL!Krg;Wn_nkcu^Cuf)YXQZ@u)ViHhbyM(a@7ld)(k^ayf4?v zIZ8~u=`MuH(w3x9wZ@y(vae0`E3l#HcF4J-png3H6Ino1J^T#dc9QDa;g=`gx9Mje z`0|;})VEJ{r6CWtY$M;tRjsc*5b>o5k5x0@{s{MKErV08w`fN)}`K55qXSSiKXf z2}RujA1%|H$!^H3!-@TBWTX_QBk)FYc96PyHYpvb>J(#~tT0&-D;TZo+)?a!`MYX! zuq4}=tsO2t1k5ZO3#z`Y6%R-O93>#H$0ozN*I->e{r=hyygKbaC+hNowi-f(Rs{Y0 zr_(g3JSq;P*=eYJ9&cEU!Vd7w?hPaV1c^371q+-d#Q&!^e+{_@71eAT1Ys-PipTyt zM0$*u&A_7?L%T&U%0z1z6m=5XP{>w;f_qM3DiMI^w?N;a*|D0a&5EP|2y?>zQHjoUO%0x`U4$By|Rcvecn)tk@~Nv!cBu zVgYe^7YJ7@#F(e>Ez|<$#kt4+ge#JI-eL$B`VKs zbk;b`$s@c9uR-PSx%u}lFx~81b-7Ryc??HLDznL6$mQ4T7+xlr9c~n#7(e`4?b;_n z&Hgs9F=rD42fIgU^u`ZNd<@jnT~8}c6mt778k(b-XEap%X`y|Lx=W|l>m3I^Um!Fm zufZIhkL|eFs{S^{^dpAZo&Bx8z&>ZAX1n1Ugq}CpIdrxVfW8G8qAWB}m<3|eWuauv z{O!;~Uw~qjSZOM`a>EY7aeB6fG~LBm=HBIg`JBs!mY`j6Q4u)bTRb*1>2X{DPt7Qq zKVIJNamLPUAWt9bYccU^P8yEWAHU2z&xV+)?<+`626@#lG-X1IGymz+r&$P3Ilkz{ z(YBlU%(-X&!vX*N*%boKIBblR(_09~?tKZ=Xc6IGxSgHdBBplu9681D+9hy;)4f80 zc{9%fCtdexB+gzC8`0F>S_x?A264etU8lI^g-bHg8}!WK377DW_reft*xX(K_rSmM z^pQ9G!Ju#7&J?{_D)VhI7eSHh&vkt^7NF@qLfwvp7t~+}bJPdFzPoGw8T8eXcW22I z|Hoj#rcUL^!(~Y9;6+kU#+F$5Gxu^ZtIoZT!HFV-NT3lRS8qdyHK@)EkIb|dR=~%R zn2Ts2Y%9I@$F0P?fJyIuk2^-w$07bXiWomEGlU$y`s>j^s1xM~^cWC^5BpDqI0`P( zAH5oJE(|QdP`kjI9{Q>gp3AM>I{d#Ju1xw+2u%Yqdu-0`=bq$()2n#)oT%a#z4Glj z#pm{`On6UzqvZX^8GGBhyQ4vdPXU(tJ`oXzc7`>U4`z`AJ+j_L7c`K(I(1Q=l^ZtE zcx7zc()5T_z)Y{y%p4M^l-`?m_U{w9Mm6TlOizx5NKH`)yE;0W+|h6LVru;NMwxK& z*@$8y@XN@T-VqGTDELss4ovm^&@xO#EJoi!o(bI%sX&OFp0bTzH;?q_<&+QKt@aui zKS5#}smb<63I%O6b4~(#ZUdh;gaiioT-?C>(F?urr69HDZCi#0FdbU{Ah}f3hY#K) zV*rW(gB~LDEFmLE0fWMQGzC29==j5|1k^7^({h*rV$hnyx4Z&F1-->^H5oJ#MBj7HkH3P=5M%6xYO?D9!0l6M3WH>!6cN-A0TX2=nWc$xa~qLRP|VO!wFFi_V5`# z9Gp9Xj$Kl)v<(a0gyDNKLJ{*Wq>%2lKELOak~2uZEhZi(V1qse`W$t3D0U#e3McJS z^*ln_LDA9Q+kXNo+a1d7;U1S~r)*-Vo{tD3>qYR0wM6$GU4F9MN*E5=L|dWzs@l4X zT>bdwI9z?}G7{4fHk_H686)o1fDauc37Bd{$8foaDB;_m)9Usg-vzN%O0_=Y^X_FA zYpzW`M;s!qwmJJJ3oCj8ruKXlxEG2#NGdw_WAFV221~YO#dHF csdr!I$UGFBPTq1ulY*b0^bB-!HXjWBJC4d5hX4Qo literal 0 HcmV?d00001 diff --git a/docs/notebooks/specfem2d_example.ipynb b/docs/notebooks/specfem2d_example.ipynb index 0a236ac0..110f695d 100644 --- a/docs/notebooks/specfem2d_example.ipynb +++ b/docs/notebooks/specfem2d_example.ipynb @@ -21,16 +21,25 @@ " If you do not have a compiled version of SPECFEM2D, then each example will attempt to automatically download and compile SPECFEM2D. This step may fail if you do not have software required by SPECFEM2D, if there are issues with the SPECFEM2D repository itself, or if the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem using the -r or --specfem2d_repo flags (shown below)." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Image # To display .png files in the notebook" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example \\#1: Simple, default inversion\n", - "Example \\#1 runs a 1-iteration synthetic inversion with 1 event and 1 station.\n", + "Example \\#1 runs a 1-iteration synthetic inversion with 1 event and 1 station, used to illustrate misfit kernels in adjoint tomography.\n", "\n", "The starting model (MODEL_INIT) and target model (MODEL_TRUE) are used to generate synthetics and data, respectively. Both models are homogeneous halfspace models with slightly varying P- and S-wave velocity values. Only Vp and Vs are updated during the example.\n", "\n", - "Misfit during Example \\#1 is defined by a 'waveform' misfit using the default preprocessing module. It also uses a gradient-descent optimization algorithm paired with a bracketing line search. No smoothing/regularization is applied to the gradient." + "Misfit during Example \\#1 is defined by a 'traveltime' misfit using the default preprocessing module. It also uses a gradient-descent optimization algorithm paired with a bracketing line search. No smoothing/regularization is applied to the gradient." ] }, { @@ -42,43 +51,41 @@ "name": "stdout", "output_type": "stream", "text": [ - "1 example: ex1_specfem2d_workstation_inversion\n", - "\n", - " @@@@@@@@@@ \n", - " .@@@@. .%&( %@. \n", - " @@@@ @@@@ &@@@@@@ ,%@ \n", - " @@@@ @@@, /@@ @ \n", - " @@@ @@@@ @@@ @ \n", - " @@@@ @@@@ @@@ @ @ \n", - " @@@ @@@@ ,@@@ @ @ \n", - " @@@@ @@@@ @@@@ @@ @ @\n", - " @@@@ @@@@@ @@@@@ @@@ @@ @\n", - " @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @\n", - " @@@@ @@@@@@ @@@& @@@ @ \n", - " @@@@@ @@@@@@@@ %@@@@# @@ \n", - " @@@@# @@@@@@@@@@@@@@@@@ @@ \n", - " &@@@@@ @@@@( @@& \n", - " @@@@@@@ /@@@@ \n", - " @@@@@@@@@@@@@@@@@\n", - " @@@@@@@@@@ \n", - "\n", - "\n", - "================================================================================\n", - " SEISFLOWS EXAMPLE 1 \n", - " /////////////////// \n", - "This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to\n", - "assess misfit between two homogeneous halfspace models with slightly different\n", - "velocities. [3 events, 1 station, 2 iterations]. The inversion is expected to\n", - "fail after the 5th line search step count of the 2nd iteration. The tasks\n", - "involved include:\n", - "\n", - "1. (optional) Download, configure, compile SPECFEM2D\n", - "2. Set up a SPECFEM2D working directory\n", - "3. Generate starting model from Tape2007 example\n", - "4. Generate target model w/ perturbed starting model\n", - "5. Set up a SeisFlows working directory\n", - "6. Run an inversion workflow\n", - "================================================================================\n" + "No existing SPECFEM2D repo given, default to: /home/bchow/REPOSITORIES/seisflows/docs/notebooks/specfem2d\r\n", + "\r\n", + " @@@@@@@@@@ \r\n", + " .@@@@. .%&( %@. \r\n", + " @@@@ @@@@ &@@@@@@ ,%@ \r\n", + " @@@@ @@@, /@@ @ \r\n", + " @@@ @@@@ @@@ @ \r\n", + " @@@@ @@@@ @@@ @ @ \r\n", + " @@@ @@@@ ,@@@ @ @ \r\n", + " @@@@ @@@@ @@@@ @@ @ @\r\n", + " @@@@ @@@@@ @@@@@ @@@ @@ @\r\n", + " @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @\r\n", + " @@@@ @@@@@@ @@@& @@@ @ \r\n", + " @@@@@ @@@@@@@@ %@@@@# @@ \r\n", + " @@@@# @@@@@@@@@@@@@@@@@ @@ \r\n", + " &@@@@@ @@@@( @@& \r\n", + " @@@@@@@ /@@@@ \r\n", + " @@@@@@@@@@@@@@@@@\r\n", + " @@@@@@@@@@ \r\n", + "\r\n", + "\r\n", + "================================================================================\r\n", + " SEISFLOWS EXAMPLE 1 \r\n", + " /////////////////// \r\n", + "This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to\r\n", + "assess misfit between two homogeneous halfspace models with slightly different\r\n", + "velocities. [1 events, 1 station, 1 iterations]. The tasks involved include:\r\n", + "\r\n", + "1. (optional) Download, configure, compile SPECFEM2D\r\n", + "2. Set up a SPECFEM2D working directory\r\n", + "3. Generate starting model from 'Tape2007' example\r\n", + "4. Generate target model w/ perturbed starting model\r\n", + "5. Set up a SeisFlows working directory\r\n", + "6. Run the inversion workflow\r\n", + "================================================================================\r\n" ] } ], @@ -123,35 +130,37 @@ "source": [ ".. code:: bash\n", "\n", - " ...\n", - " 2022-08-25 17:29:16 (I) | 5800.00 <= vp <= 5800.00\n", - " 2022-08-25 17:29:16 (I) | 3236.17 <= vs <= 3802.01\n", - " 2022-08-25 17:29:16 (I) | trial step unsuccessful. re-attempting line search\n", - " 2022-08-25 17:29:16 (I) | \n", - " LINE SEARCH STEP COUNT 06\n", + " LINE SEARCH STEP COUNT 02\n", " --------------------------------------------------------------------------------\n", - " 2022-08-25 17:29:16 (I) | evaluating objective function for source 001\n", - " 2022-08-25 17:29:16 (D) | running forward simulation with 'Specfem2D'\n", - " 2022-08-25 17:29:20 (D) | quantifying misfit with 'Default'\n", - " 2022-08-25 17:29:20 (I) | evaluating objective function for source 002\n", - " 2022-08-25 17:29:20 (D) | running forward simulation with 'Specfem2D'\n", - " 2022-08-25 17:29:24 (D) | quantifying misfit with 'Default'\n", - " 2022-08-25 17:29:24 (I) | evaluating objective function for source 003\n", - " 2022-08-25 17:29:24 (D) | running forward simulation with 'Specfem2D'\n", - " 2022-08-25 17:29:28 (D) | quantifying misfit with 'Default'\n", - " 2022-08-25 17:29:28 (D) | misfit for trial model (f_try) == 7.53E-03\n", - " 2022-08-25 17:29:28 (D) | step length(s) = 0.00E+00, 1.47E+08, 2.95E+08, 5.89E+08, 1.18E+09, 2.36E+09, 4.72E+09\n", - " 2022-08-25 17:29:28 (D) | misfit val(s) = 8.65E-04, 7.53E-03, 6.28E-03, 5.02E-03, 3.77E-03, 2.51E-03, 1.26E-03\n", - " 2022-08-25 17:29:28 (I) | fail: bracketing line search has failed to reduce the misfit before exceeding `step_count_max`=5\n", - " 2022-08-25 17:29:28 (D) | checking gradient/search direction angle, theta: 0.000\n", - " 2022-08-25 17:29:28 (C) | \n", - " ================================================================================\n", - " LINE SEARCH FAILED \n", - " ////////////////// \n", - " Line search has failed to reduce the misfit and has run out of fallback options.\n", - " Aborting inversion.\n", - " ================================================================================\n", - " EXAMPLE COMPLETED SUCCESFULLY\n", + " 2022-08-29 15:50:58 (I) | evaluating objective function for source 001\n", + " 2022-08-29 15:50:58 (D) | running forward simulation with 'Specfem2D'\n", + " 2022-08-29 15:51:03 (D) | quantifying misfit with 'Default'\n", + " 2022-08-29 15:51:03 (D) | misfit for trial model (f_try) == 4.61E-01\n", + " 2022-08-29 15:51:03 (D) | step length(s) = 0.00E+00, 4.78E+09, 7.73E+09\n", + " 2022-08-29 15:51:03 (D) | misfit val(s) = 1.04E+00, 2.30E-01, 4.61E-01\n", + " 2022-08-29 15:51:03 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", + " 2022-08-29 15:51:03 (I) | line search model 'm_try' parameters: \n", + " 2022-08-29 15:51:03 (I) | 5800.00 <= vp <= 5800.00\n", + " 2022-08-29 15:51:03 (I) | 3431.53 <= vs <= 3790.00\n", + " 2022-08-29 15:51:03 (I) | trial step successful. finalizing line search\n", + " 2022-08-29 15:51:03 (I) | \n", + " FINALIZING LINE SEARCH\n", + " --------------------------------------------------------------------------------\n", + " 2022-08-29 15:51:03 (I) | writing optimization stats\n", + " 2022-08-29 15:51:03 (I) | renaming current (new) optimization vectors as previous model (old)\n", + " 2022-08-29 15:51:03 (I) | setting accepted trial model (try) as current model (new)\n", + " 2022-08-29 15:51:03 (I) | misfit of accepted trial model is f=2.304E-01\n", + " 2022-08-29 15:51:03 (I) | resetting line search step count to 0\n", + " 2022-08-29 15:51:03 (I) | \n", + " CLEANING WORKDIR FOR NEXT ITERATION\n", + " --------------------------------------------------------------------------------\n", + " 2022-08-29 15:51:05 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow\n", + " 2022-08-29 15:51:06 (I) | \n", + " ////////////////////////////////////////////////////////////////////////////////\n", + " COMPLETE ITERATION 01 \n", + " ////////////////////////////////////////////////////////////////////////////////\n", + " 2022-08-29 15:51:06 (I) | setting current iteration to: 2\n", + "\n", "\n", " \n", "Using the `working directory documentation page `__ you can figure out how to navigate around and look at the results of this small inversion problem. \n", @@ -161,21 +170,21 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/home/bchow/Work/scratch\n", + "/home/bchow/Work/scratch/example_1\n", "logs\tparameters.yaml sflog.txt specfem2d\r\n", "output\tscratch\t\t sfstate.txt specfem2d_workdir\r\n" ] } ], "source": [ - "%cd ~/Work/scratch\n", + "%cd ~/Work/scratch/example_1\n", "! ls" ] }, @@ -183,19 +192,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the `output/` directory, we can see the updated model from our first iteration (MODEL_01) and the gradient that was used to create it (GRADIENT_01). The 2nd iteration produced a gradient (GRADIENT_02), but was unable to succesfully reduce the misfit during the line search, which is why we don't have a MODEL_02." + "In the `output/` directory, we can see our starting model (MODEL_INIT), our target model (MODEL_TRUE) and the updated model from our first iteration (MODEL_01) alongside the gradient that was used to create it (GRADIENT_01). " ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "GRADIENT_01 GRADIENT_02 MODEL_01 MODEL_INIT\tMODEL_TRUE\n", + "GRADIENT_01 MODEL_01 MODEL_INIT MODEL_TRUE\n", "\n", "proc000000_vp.bin proc000000_vs.bin\n" ] @@ -211,12 +220,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Because we're working with SPECFEM2D, we can plot the models and gradients that were created during our workflow using the `seisflows plot2d` command. If we use the `--savefig` option we can also save the output .png files to disk." + "Because we're working with SPECFEM2D, we can plot the models and gradients that were created during our workflow using the `seisflows plot2d` command. If we use the `--savefig` option we can also save the output .png files to disk. Because this docs page was made in a Jupyter Notebook, we need to use the IPython Image class to open the resulting .png file.\n", + "\n", + "This figure shows the starting homogeneous halfspace model in Vs." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -225,10 +236,29 @@ "text": [ "Figure(707.107x707.107)\r\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEsklEQVR4nOzdeXhM1/8H8PdkH5EMEVmGIC2CxppYYmkogoq91jaE0Ko1aNVSa0sURUupPfa03xK0NE20lqqEiKYEjWqRkEQsMVmQZJLz+8Mvt8ZEFp0sct+v57nPY8793HPPvdLm48znnqsQQggQEREREcmQUVkPgIiIiIiorDAZJiIiIiLZYjJMRERERLLFZJiIiIiIZIvJMBERERHJFpNhIiIiIpItJsNEREREJFtMhomIiIhItpgMExEREZFsMRkmIiIiItliMkxEREREssVkmIiIiIhki8kwEREREckWk2EiIiIiki0mw0REREQkW0yGiYiIiEi2mAwTERERkWwxGSYiIiIi2WIyTERERESyxWSYiIiIiGSLyTARERERyRaTYSIiIiKSLSbDRERERCRbTIaJiIiISLaYDBMRERGRbDEZJiIiIiLZYjJMRERERLLFZJiIiIiIZIvJMBERERHJFpNhIiIiIpItJsNEREREJFtMhomIiIhItpgMExEREZFsMRkmIiIiItliMkxEREREssVkmIiIiIhki8kwEREREckWk2EiIiIiki0mw0REREQkW0yGiYiIiEi2mAwTERERkWwxGSYiIiIi2WIyTERERESyxWSYiIiIiGSLyTARERERyRaTYSIiIiKSLSbDRERERCRbTIaJiIiISLaYDBMRERGRbDEZJiIiIiLZYjJMRERERLLFZJiIiIiIZIvJMBERERHJFpNhIiIiIpItJsNEREREJFtMhomIiIhItpgMExEREZFsMRkmIiIiItliMkxEREREssVkmIiIiIhki8kwEREREckWk2EiIiIiki0mw0REREQkW0yGiYiIiEi2mAwTERERkWwxGSYiIiIi2WIyTERERESyxWSYiIiIiGSLyTARERERyRaTYSIiIiKSLSbDRERERCRbTIaJiIiISLaYDBMRERGRbDEZJnqJ9evXD0qlEg8ePHhuzNtvvw1TU1Pcvn279AZWCF9fX9SpU6esh/Fco0ePhqurK6pUqQKlUon69evjww8/xN27d3Xijh07BoVCke8WERGh1++5c+fQpUsXVK5cGVWqVEH//v3xzz//5DuG1atXo0GDBjA3N4ezszMWLFiA7OzsIo0/OzsbCxYsQJ06dWBubo4GDRpg9erVxb8RREQywGSY6CXm5+eHx48fY/fu3fnu12g0CA4Ohre3N+zt7Ut5dM83Z84cBAcHl/UwnisjIwPvvvsudu/ejUOHDmH06NHYsGEDPD09kZWVpRe/ePFihIeH62yurq46MX/++Sc6duyIrKwsfPvtt9iyZQuuXLmCDh064M6dOzqxixYtwuTJk9G/f3/89NNPGDduHBYvXozx48cXafzjxo1DQEAAxo8fj59++gn9+vXD5MmTsXjx4he/KUREFZUgopeWVqsVarVauLm55bt/3bp1AoD4/vvvS3lkFc/atWsFAPHzzz9LbUePHhUAxP/+979Cjx84cKCwtbUVGo1Gart+/bowNTUV06dPl9ru3r0rLCwsxLvvvqtz/KJFi4RCoRAXL14s8DwxMTFCoVCIxYsX67SPGTNGKJVKce/evULHSkQkJ5wZJnqJGRsbY8SIEYiKisKFCxf09m/duhWOjo7o0aOH1LZu3To0bdoUlStXhpWVFRo0aIBZs2YV67wKhQITJkzA1q1b4eLiAqVSCXd3d0REREAIgWXLlsHZ2RmVK1fGG2+8gatXr+ocn1+ZRF6fO3bsQMOGDVGpUiU0bdoUP/zwQ7HGVlKqV68OADAxMSn2sVqtFj/88AMGDBgAa2trqb127dro1KmTzix5SEgIHj9+jJEjR+r0MXLkSAghsH///gLPtX//fggh8j3+0aNHCAkJKfb4iYgqMibDRC+5UaNGQaFQYMuWLTrtly5dwpkzZzBixAgYGxsDAIKCgjBu3Dh4enoiODgY+/fvx5QpU5CRkVHs8/7www/YtGkTlixZgj179iAtLQ09e/bEtGnT8Ntvv2HNmjXYsGEDLl26hAEDBkAIUWifhw4dwpo1a7Bw4ULs3bsXNjY26Nev33Prap+m1WqLtBVlHE/3mZGRgd9++w1z5sxB+/bt0a5dO7248ePHw8TEBNbW1ujWrRtOnjyps//vv//Go0eP0KRJE71jmzRpgqtXr+Lx48cAgJiYGABA48aNdeIcHR1ha2sr7X+emJgYVK9eHQ4ODnrnebp/4N+a5/nz5xfYJxFRRVb8KQ4iKlfq1q2L119/HTt37sTSpUthamoKAFJyPGrUKCn2t99+Q5UqVfDll19KbZ07d36h82ZmZiI0NBSWlpYAnszs9u3bF0ePHsW5c+egUCgAAHfu3IG/vz9iYmL0ErxnPXr0CEeOHIGVlRUAoEWLFlCr1fj2228xY8aMAo/Nu+7CbN26Fb6+voXGRUREwMPDQ/r85ptvIigoSPqHBQCoVCpMnjwZHTt2RLVq1XD16lUsW7YMHTt2xKFDh9CtWzcAwL179wAANjY2euexsbGBEAIpKSlwdHTEvXv3YG5uLt3XZ2Pz+nqee/fu5XseS0tLmJmZ6RyvUChgbGwMIyPOixCRfDEZJqoA/Pz8MHz4cBw8eBADBgyAVqvFzp070aFDB9SrV0+Ka9WqFdasWYOhQ4diyJAhaNeuHWxtbV/onJ06ddJJ2Bo2bAgA6NGjh5QIP91+48aNQpPhTp06SYkwANjb28POzg43btwodDyRkZFFGrezs3OR4ho3bozIyEg8fPgQ0dHRWLJkCbp27YpffvkFlSpVAgA0b94czZs3l47p0KED+vXrh8aNG2P69OlSMpzn6fvyrKf3FTXuRWKe3ufp6QmtVltof0REFRmTYaIK4K233sLEiROxdetWDBgwAIcPH8bt27fx2Wef6cT5+PhAq9Vi48aNGDBgAHJzc9GyZUt8+umn6Nq1a7HO+ezso5mZWYHteWUABalWrZpem7m5OR49elTosc2aNSs0BoDOzG5BLC0t4e7uDgB4/fXX0bp1a7Rp0wbr16/HlClTnntclSpV4O3tja+//hqPHj2CUqmUriu/Wd379+9DoVCgSpUqAJ7cg8ePH+Phw4dS0v10rJubW4HjrlatGqKjo/XaMzIykJWVle+sMRGRnPG7MaIKQKlUYujQoQgJCUFiYiK2bNkCKysrDBw4UC925MiROHXqFDQaDQ4dOgQhBLy9vYs0+1qemZqaFmnbtm3bC/Xv7u4OIyMjXLlypdDYvLrkvFnYV199FUqlMt+HHC9cuIC6devCwsICwL+1ws/GJiUl4e7du3pLtj2rcePGuHPnDpKSkvTOA6DQ44mI5IbJMFEF4efnh5ycHCxbtgyHDx/GkCFD9GYWn2ZpaYkePXpg9uzZyMrKwsWLF0txtIYXGRlZpK1Xr14v1P/x48eRm5uLunXrFhiXkpKCH374Ac2aNZMSXBMTE/Tq1Qv79u1DWlqaFBsXF4ejR4+if//+Ulv37t1hYWGBwMBAnX4DAwOluuyC9OnTBwqFQi/pDwwMhFKpRPfu3YtwtURE8sEyCaIKwt3dHU2aNMGqVasghICfn59ezJgxY6BUKtGuXTs4OjoiKSkJAQEBUKlUaNmyZRmM2nDyShr+qx9++AEbN25E7969Ubt2bWRnZ+Ps2bNYtWoV6tati9GjR0uxw4YNQ61ateDu7g5bW1v89ddf+Pzzz3H79m29ZHbBggVo2bIlvL29MWPGDDx+/Bhz586Fra0tpk2bJsXZ2Njg448/xpw5c2BjYwMvLy9ERkZi/vz5GD16NBo1aiTFbt++HaNGjcKWLVswfPhwAMBrr70GPz8/zJs3D8bGxmjZsiVCQ0OxYcMGfPrppzplEseOHUOnTp0wb948rihBRLLFZJioAvHz88PkyZPRqFEjtG7dWm9/hw4dEBgYiG+//RYpKSmwtbVF+/btsX37dmkdXbmrW7cuzMzM8Mknn0ivsK5Tpw78/PwwY8YMqFQqKbZJkyb45ptv8PXXXyM9PR02NjZo3749duzYofePiwYNGuDYsWP46KOP8NZbb8HExARvvPEGli9frnfvZ8+eDSsrK3z11VdYvnw5HBwcMGPGDMyePVsnLjc3Fzk5OcjNzdVpX7t2LWrUqIHVq1cjKSkJderUwRdffIGJEyfqxKWnpwN4smwbEZFcKURxFt0kIqIKY/r06dizZw/++usvqaSDiEhuWDNMRCRTR48exZw5c5gIE5GscWaYiCSFrTlrZGTEFzQQEVGFwt9qRCQpbFmyp99mR0REVBHwAToikhT2FrcXfVsdERFRecUyCSIiIiKSLZZJEL2E+vXrB6VSiQcPHjw35u2334apqam0PBgVX0ZGBoYMGQIXFxdYWVnB0tISr732Gj799FNkZGToxOa9FCO/7dm3wQHAkSNH4OHhgUqVKsHW1ha+vr5ITk7Wi8vOzsaCBQtQp04dmJubo0GDBli9enWRryE9PR3+/v5Qq9WwsLBAs2bNEBQUVPybQURUQbFMgugl5Ofnh/3792P37t0YN26c3n6NRoPg4GB4e3vD3t6+DEZYMWRnZ0MIgalTp8LZ2RlGRkY4ceIEFi5ciGPHjuHIkSN6x2zduhUNGjTQaatWrZrO5+PHj6NHjx7o2bMnDhw4gOTkZHz00Ufo3Lkzzp49C3Nzcyl23Lhx2LFjBz755BO0bNkSP/30EyZPnoy0tDTMmjWr0Gvo378/IiMjsWTJEtSvXx+7d+/G0KFDkZubi2HDhr3gnSEiqkAEEb10tFqtUKvVws3NLd/969atEwDE999/X8ojk4fp06cLAOLvv/+W2rZu3SoAiMjIyEKPb9mypWjUqJHIzs6W2n777TcBQKxdu1Zqi4mJEQqFQixevFjn+DFjxgilUinu3btX4HkOHTokAIjdu3frtHft2lWo1Wqh1WoLHSsRUUXHMgmil5CxsTFGjBiBqKgoXLhwQW//1q1b4ejoiB49ekht69atQ9OmTVG5cmVYWVmhQYMGRZpZfJpCocCECROwdetWuLi4QKlUwt3dHRERERBCYNmyZXB2dkblypXxxhtv4OrVqzrHh4WFoU+fPqhZsyYsLCxQt25dvPfee7h7964U8/jxYzRv3hx169aFRqOR2pOSkuDg4ICOHTsiJyenWOM2tLw3xpmYFP/LtVu3biEyMhI+Pj46x7dt2xb169dHcHCw1LZ//34IITBy5EidPkaOHIlHjx4hJCSkwHMFBwejcuXKGDhwoN7xCQkJOH36dLHHT0RU0TAZJnpJjRo1CgqFAlu2bNFpv3TpEs6cOYMRI0bA2NgYABAUFIRx48bB09MTwcHB2L9/P6ZMmaJX91oUP/zwAzZt2oQlS5Zgz549SEtLQ8+ePTFt2jT89ttvWLNmDTZs2IBLly5hwIABEE89o/v333/Dw8MD69atQ2hoKObOnYvTp0+jffv2yM7OBgBYWFjg22+/RXJysrSUW25uLt5++20IIbBnzx7pup5Hq9UWaRNFfH5YCAGtVovU1FSEhITg888/x9ChQ1GrVi29WG9vbxgbG8PGxgb9+/dHTEyMzv68z02aNNE7tkmTJjrxMTExqF69OhwcHPTinu7reWJiYtCwYUO9pD2/4/NqngMDAwvsk4ioomHNMNFLqm7dunj99dexc+dOLF26FKampgAgJcdPrwn822+/oUqVKvjyyy+lts6dO7/QeTMzMxEaGgpLS0sAT2aL+/bti6NHj+LcuXNQKBQAgDt37sDf3x8xMTFo3LgxAGDs2LFSP0IItG3bFh07dkTt2rXx448/onfv3gCAevXqYdOmTRg8eDC++OIL3L9/H8eOHUNISAgcHR0LHN/169fh7OxcpGs5evQoOnbsWGjcN998g6FDh0qfR44ciQ0bNujEODg4YPbs2WjTpg2sra1x4cIFLFmyBG3atMFvv/2Gpk2bAgDu3bsHALCxsdE7j42NjbQ/Lza/OEtLS5iZmenE5ufevXt45ZVX8j3P02MBnrxQxdjYmC9VISLZYTJM9BLz8/PD8OHDcfDgQQwYMABarRY7d+5Ehw4dUK9ePSmuVatWWLNmDYYOHYohQ4agXbt2L7xmcKdOnaREGAAaNmwIAOjRo4eUCD/dfuPGDSkZTk5Oxty5c3Ho0CEkJCQgNzdXir98+bKUDAPAoEGDcOzYMXz44YfIycnBrFmz0LVr10LHp1arC10vOY+Li0uR4rp164bIyEikpaUhPDwcn332Ge7du4fg4GApeezevTu6d+8uHfP666+jZ8+eaNy4MebOnYsDBw7o9Pn0vSqo/Xlxhe0r7vHDhw/H8OHDC+2PiKiiYTJM9BJ76623MHHiRGzduhUDBgzA4cOHcfv2bXz22Wc6cT4+PtBqtdi4cSMGDBiA3NxctGzZEp9++mmREsynPTtTaWZmVmD748ePATwpdfDy8kJCQgLmzJmDxo0bw9LSErm5uWjTpg0ePXqkd65Ro0Zh3bp1MDMzw6RJk4o0PjMzMzRr1qxIsYWVW+SpWrUq3N3dATz5x8Crr76KIUOG4MCBA+jXr99zj6tTpw7at2+PiIgIqS1vZYn8ZnXv37+vcx+rVauG6OhovbiMjAxkZWXlO2v8tGrVqj33PED+s9NERHLD78OIXmJKpRJDhw5FSEgIEhMTsWXLFlhZWek9MAU8+Wr/1KlT0Gg0OHToEIQQ8Pb2xo0bN0plrDExMfjjjz+wbNkyTJw4ER07dkTLli31lh3Lk5GRAR8fH9SvXx9KpRKjR48u0nmuX79e6Gul87bjx4+/0LW0atUKAHDlypVCY4UQOqUHrq6uAJDvg48XLlyQ9gNA48aNcefOHb11ivOOfTo2P40bN8bly5eh1Wpf6HgiIjlgMkz0kvPz80NOTg6WLVuGw4cPY8iQIahUqdJz4y0tLdGjRw/Mnj0bWVlZuHjxYqmMM+8r+afX0AWA9evX5xs/duxYxMXFYd++fdi8eTMOHjyIlStXFnqevDKJomxubm4vdC1Hjx4F8KRuuyDXrl3Db7/9hjZt2khtNWrUQKtWrbBz506dVTEiIiIQGxuL/v37S219+vSBQqHAtm3bdPoNDAyEUqnUKcvIT79+/ZCeno69e/fqtG/btg1qtRqtW7cu+EKJiGSAZRJELzl3d3c0adIEq1atghACfn5+ejFjxoyBUqlEu3bt4OjoiKSkJAQEBEClUqFly5alMs4GDRrg1VdfxYwZMyCEgI2NDb7//nuEhYXpxW7atAk7d+7E1q1b8dprr+G1117DhAkT8NFHH6Fdu3bSzGx+zMzMpJKG/2r9+vX49ddf4eXlBScnJ2RkZODXX3/F6tWr0bZtW/Tp00eK7dKlC15//XU0adJEeoBu6dKlUCgU+OSTT3T6/eyzz9C1a1cMHDgQ48aNQ3JyMmbMmAFXV1edZdRee+01+Pn5Yd68eTA2NkbLli0RGhqKDRs24NNPP9Upc1i4cCEWLlyIn3/+GZ6engCe1HF37doV77//PlJTU1G3bl3s2bMHISEh2Llzp06ZSGBgIEaOHImtW7fC19fXIPePiOilUEbrGxORAX3xxRcCgGjUqFG++7dt2yY6deok7O3thZmZmVCr1WLQoEHi/PnzxToPADF+/HidtmvXrgkAYtmyZTrtR48eFQDE//73P6nt0qVLomvXrsLKykpUrVpVDBw4UMTFxQkAYt68eUIIIc6fPy+USqUYMWKETn+PHz8Wbm5uok6dOiIlJaVY435Rv/32m/D29hZqtVqYmZmJSpUqiaZNm4pPPvlEZGRk6MT6+/uLRo0aCSsrK2FiYiLUarV45513RGxsbL59h4aGijZt2ggLCwthY2Mjhg8fLm7fvq0Xl5WVJebNmydq1aolzMzMRP369cWXX36pFzdv3jwBQBw9elSnPS0tTUyaNEk4ODgIMzMz0aRJE7Fnzx6941evXi0AiJCQkGLcISKil59CiCIutElERBXWoEGDcO3atSKvxEFEVFGwTIKISOaEEDh27Bh27txZ1kMhIip1nBkmIr3VBp5lZGTElzEQEVGFxN9uRFToEmRPv82OiIioImGZBBEVWif6om+rIyIiKu9YJkFEREREssUyCSIiIiKSLSbDROVQv379oFQq8eDBg+fGvP322zA1NcXt27dLb2AyFh8fj379+uGVV16BpaUlVCoVmjdvjjVr1ug9gDh//nwoFAq9zcLCIt++g4KC0KxZM1hYWECtVsPf3x/p6el6cenp6fD394darYaFhQWaNWuGoKCgIl9DcnIyfH19YWtri0qVKsHDwwM///xz8W4EEVEFw5phonLIz88P+/fvx+7duzFu3Di9/RqNBsHBwfD29oa9vX0ZjFB+MjIyYG1tjTlz5qBWrVrIysrC4cOHMXHiRERHR2PTpk16x4SEhEClUkmf81uRY9euXXjnnXcwevRorFy5EleuXMFHH32ES5cuITQ0VCe2f//+iIyMxJIlS1C/fn3s3r0bQ4cORW5uLoYNG1bg+DMzM9G5c2c8ePAAX3zxBezs7PDVV1+he/fuOHLkiPTWOiIi2SnDF34Q0XNotVqhVquFm5tbvvvXrVsnAIjvv/++lEdGzxo0aJAwMTERjx8/ltry3gZ3586dAo/VarXC0dFReHl56bTv2rVLABCHDx+W2g4dOiQAiN27d+vEdu3aVajVaqHVags811dffSUAiFOnTklt2dnZolGjRqJVq1aFXicRUUXFMgmicsjY2BgjRoxAVFQULly4oLd/69atcHR0RI8ePaS2devWoWnTpqhcuTKsrKzQoEEDzJo1q1jnVSgUmDBhArZu3QoXFxcolUq4u7sjIiICQggsW7YMzs7OqFy5Mt544w1cvXpVr48jR46gc+fOsLa2RqVKldCuXTu9r+KvXr2KkSNHol69eqhUqRJq1KiBXr166V3rsWPHoFAosGfPHsyePRtqtRrW1tbo0qULYmNji3VtJaV69eowMjKCsbFxsY+NiIhAYmIiRo4cqdM+cOBAVK5cGcHBwVJbcHAwKleujIEDB+rEjhw5EgkJCTh9+nSB5woODoaLiws8PDykNhMTE7zzzjs4c+YMbt26VezxExFVBEyGicqpUaNGQaFQYMuWLTrtly5dwpkzZzBixAgpAQsKCsK4cePg6emJ4OBg7N+/H1OmTEFGRkaxz/vDDz9g06ZNWLJkCfbs2YO0tDT07NkT06ZNw2+//YY1a9Zgw4YNuHTpEgYMGADx1II0O3fuhJeXF6ytrbFt2zZ8++23sLGxQbdu3XQS4oSEBFSrVg1LlixBSEgIvvrqK5iYmKB169b5JrmzZs3CjRs3sGnTJmzYsAF//fUXevXqhZycnAKvRQgBrVZbpK2o8vpMSUnBN998g8DAQEybNg0mJvpVZ40bN4axsTHs7e0xfPhwxMXF6eyPiYkBADRp0kSn3dTUFA0aNJD258U2bNhQ7zx5xz4dm5+YmBi98zx9/MWLF6W2vJrnY8eOFdgnEVGFULYT00RUEE9PT2FrayuysrKktmnTpgkA4sqVK1LbhAkTRJUqVf7z+QAIBwcHkZ6eLrXt379fABDNmjUTubm5UvuqVasEAHH+/HkhhBAZGRnCxsZG9OrVS6fPnJwc0bRp0wK/itdqtSIrK0vUq1dPTJkyRWo/evSoACDefPNNnfhvv/1WABDh4eEFXk/e8UXZrl27Vuj9EUKIgIAA6RiFQiFmz56tF7N9+3axaNEicfjwYfHLL7+IJUuWCBsbG2Fvby9u3rwpxS1atEgAEImJiXp9eHl5ifr160uf69WrJ7p166YXl5CQIACIxYsXFzhuU1NT8d577+m1nzp1Sq/8YsGCBcLY2FgcO3aswD6JiCoCPkBHVI75+flh+PDhOHjwIAYMGACtVoudO3eiQ4cOqFevnhTXqlUrrFmzBkOHDsWQIUPQrl27F35RRqdOnWBpaSl9btiwIQCgR48eUCgUeu03btxA48aNcerUKdy/fx8jRozQm2nt3r07li5dioyMDFhaWkKr1WLp0qXYuXMnrl69iuzsbCn28uXLemPq3bu3zue82cwbN26gTZs2z70WNze3Ql8okketVhcpztfXF126dMH9+/fxyy+/YNmyZdBoNFi9erUU4+Pjo3NMp06d0KlTJ3h4eGDp0qX44osvdPY/fV8Lan9eXGH7inv83LlzMXfu3EL7IyKqCJgME5Vjb731FiZOnIitW7diwIABOHz4MG7fvo3PPvtMJ87HxwdarRYbN27EgAEDkJubi5YtW+LTTz9F165di3VOGxsbnc9mZmYFtj9+/BgApCXe3nrrref2ff/+fVhaWmLq1Kn46quv8NFHH8HT0xNVq1aFkZERRo8ejUePHukdV61aNZ3P5ubmAJBv7NMqV66MZs2aFRiTJ78yh/w4ODjAwcEBAODl5YWqVatixowZGDVqFJo3b/7c41q1aoX69esjIiJCasu7rnv37umtCnL//n2de16tWjXcu3dPr9/79+8D0P/7edZ/PZ6IqKJizTBROaZUKjF06FCEhIQgMTERW7ZsgZWVld5DVMCTB6lOnToFjUaDQ4cOQQgBb29v3Lhxo1TGmjcTvXr1akRGRua75SV8O3fuxPDhw7F48WJ069YNrVq1gru7O+7evWvQMR0/fhympqZF2q5fv/5C52jVqhUA4MqVK4XGCiF0lldr3LgxAOg9OKjVavHnn3/C1dVVJ/by5ct6s+55xz4dm5/GjRvn+zBmUY8nIqqoODNMVM75+fnh66+/xrJly3D48GH4+vqiUqVKz423tLREjx49kJWVhb59++LixYuoXbt2iY+zXbt2qFKlCi5duoQJEyYUGKtQKKTZ3TyHDh3CrVu3ULduXYONqSTKJJ519OhRACh03BEREfjrr78wadIkqa1169ZwdHREYGAgBg8eLLV/9913SE9PR//+/aW2fv36YePGjdi7d69O7LZt26BWq9G6desCz9+vXz+MGzcOp0+flmLzym5at279wtdPRPSyYzJMVM65u7ujSZMmWLVqFYQQ8PPz04sZM2YMlEol2rVrB0dHRyQlJSEgIAAqlQotW7YslXFWrlwZq1evxogRI3D//n289dZbsLOzw507d/DHH3/gzp07WLduHQDA29sbgYGBaNCgAZo0aYKoqCgsW7YMNWvWNOiYrKys4O7ubpC+5s2bh9u3b+P1119HjRo18ODBA4SEhGDjxo0YOHAg3NzcpNimTZvinXfeQcOGDWFhYYEzZ85g2bJlcHBwwPTp06U4Y2NjLF26FD4+PnjvvfcwdOhQ/PXXX5g+fTq6du2K7t27S7E9evRA165d8f777yM1NRV169bFnj17EBISgp07d+os7ebn54dt27bh77//lv4hNGrUKHz11VcYOHAglixZAjs7O6xduxaxsbE4cuSIzrXOnz8fCxYswNGjR9GxY0eD3D8iovKKyTDRS8DPzw+TJ09Go0aN8p0B7NChAwIDA/Htt98iJSUFtra2aN++PbZv347q1auX2jjfeecd1KpVC0uXLsV7772HtLQ02NnZoVmzZvD19ZXivvjiC5iamiIgIADp6elo0aIF9u3bh48//rjUxlpc7u7u+PLLL7F//37cu3cPFhYWaNSoEVauXIn3339fJ7ZRo0bYsGEDEhMTkZWVBbVajSFDhmDu3LlwdHTUiX3nnXdgbGyMJUuWIDAwEDY2Nhg+fDgWLVqkN4Z9+/Zh9uzZmDt3Lu7fv48GDRpgz549GDJkiE5cTk4OcnJydJa9Mzc3x88//4zp06dj4sSJePjwIZo1a4Yff/xR7+1z6enpUCgUUm00EVFFphBP/9+SiIhkr1WrVqhduzb+97//lfVQiIhKHJNhIiKSpKamonr16oiOjpaWzyMiqsi4mgSRDBT29rXc3NyyHiKVE9bW1sjMzGQiXApOnDiBXr16Qa1WQ6FQYP/+/WV+PiEE5s+fD7VaDaVSiY4dO+q8nbC47t27h+7du0OtVsPc3BxOTk6YMGECUlNTCzyuY8eOUCgUOtuz5UCF2bdvH9zd3VGlShVYWlqiWbNm2LFjxwtfC1VcTIaJZKCwZcVGjRpV1kMkkp2MjAw0bdoUa9asKTfnW7p0KVasWIE1a9YgMjISDg4O6Nq1K9LS0p57jEKheO7ShEZGRujTpw8OHjyIK1euIDAwEEeOHMHYsWMLHe+YMWOQmJgobevXry/0mKfZ2Nhg9uzZCA8Px/nz5zFy5EiMHDkSP/30U7H6oYqPZRJEMnD27NkC99va2qJOnTqlMxgi0qNQKBAcHIy+fftKbVlZWfj444+xa9cuPHjwAK6urvjss88MssJHfucTQkCtVsPf3x8fffQRACAzMxP29vb47LPP8N577z23r2vXrhX5/yFffvklli1bhvj4+OfGdOzYEc2aNcOqVaueG3Pr1i1MnToVoaGhMDIyQvv27fHFF18UOI4WLVqgZ8+e+OSTT4o0VpIHzgwTyYC7u3uBGxNhovJn5MiR+O233xAUFITz589j4MCB6N69O/76668SOd+1a9eQlJQELy8vqc3c3Byenp44deqUQc6RkJCAffv26a1gkp9du3bB1tYWr732Gj744AOd2emHDx+iU6dOqFy5Mk6cOIGTJ0+icuXK6N69O7KysvT6EkLg559/RmxsLF5//XWDXAtVHFxajYiIqJz5+++/sWfPHty8eVN6IcoHH3yAkJAQbN26FYsXLzb4OZOSkgBA79Xg9vb2//lNlkOHDsWBAwfw6NEj9OrVC5s2bSow/u2334azszMcHBwQExODmTNn4o8//kBYWBgAICgoCEZGRti0aRMUCgUAYOvWrahSpQqOHTsmJfQajQY1atRAZmYmjI2NsXbt2mK/op4qPibDJSg3NxcJCQmwsrKS/mMlIiLKz8OHD6UHy06ePAkhBOrXr68Tk5mZCWtra6SmpuLGjRto0qRJgX2OGTMGy5cvL/R8wJOaYuDJOtNPt2dmZiInJ0dqGzBgAMLDw3X6eu2113R+zyUkJOjsX7BgAd577z2kpKTg448/xtSpU7F27doCx53H1dUV9erVg7u7O86dO4cWLVogKioKV69ehZWVlc5xjx8/xt9//y19trKyQnR0NNLT0/Hzzz9j6tSpeOWVV/gyGdLBmuESdPPmTTg5OZX1MIiIiMqF+Ph4XL9+HR06dEBCQoLeS2ieRwgBc3Nz7NixA4MHD8b777+Pc+fOYdeuXXqx1atXh0qlyref0aNHIz4+ng/RkQ7ODJegvH+xxsd/A2vrSmU8GiIiKq9Uql7YtWsWvL09AABXr96Cm9tY/PjjErRt+1qJnw94knC6uIzAuHF94O8/AACQlZWNunV9MH/+CIwa1eO5fZ0/vwm1a9vnux8AUlMfwslpMKysrKQ3I2ZmZhZ5vBcvXkR2draUPLdo0QLffPMN7OzsYG1tXeR+hBDFOi/JA5PhEpT3lZG1dSVYW1uW8WiIiKg8SU9/hKtXb0mfb99OwT//JMLGxgotWtTH2293wfvvr8Lnn49F8+b1cPeuBr/88jsaN3bGm2+2Mej5atV6kshOmfIWAgJ2o3FjZ9SrVxOLF+9CpUoW8PN7E1ZWz5/UsbLK//fc4cMRuH07BQ0b1gYAhIWFYf78+WjXrp304O6tW7fQuXNnbN++Ha1atcLff/+NXbt24c0334StrS0uXbqEadOmoXnz5mjXrh2AJzXFy5YtQ58+fbBw4ULUrFkTcXFx2LdvHz788EPUrFkTAQEBcHd3x6uvvoqsrCwcPnwY27dvx7p164p976hiYzJMRERUBs6ejUWnTlOlz1OnPknSRozohsDAj7B163R8+ulOTJv2NW7duotq1azh4dEIb77ZukTOBwDTpw/Bo0eZGDfuC6SkpKF164YIDV1aYCJcEKXSHBs3HsKlS08ewJsxYwbeeustzJgxQ4rJzs5GbGwsHj58CAAwMzPDzz//jC+++ALp6elwcnJCz549MW/ePBgbGwMAKlWqhBMnTuCjjz5C//79kZaWhho1aqBz587STHFGRgbGjRuHmzdvQqlUokGDBti5cycGDx78QtdCFRdrhktQamoqVCoVNJrvOTNMRESylZqaAZWqFzQaTbHKGohKA9cZJiIiIiLZYjJMRERERLLFmmEiIiIqtx4/fpzvW+X+KzMzM1hYWBi8X3r5MBkmIiKicunx48ewqeKAR5kag/ft4OCAa9euMSEmJsNERERUPmVlZeFRpgYDvFbB1ERpsH6ztY+wN9QfWVlZTIaJyTARERGVb6YmSpiZGi4ZJnoaH6AjIiIiItnizDARERGVa1pzIyhMjQ3XnxHnAulf/GkgIiIiItliMkxEREREssVkmIiIiIhkizXDREREVK5pTYygMDHc/J1WcC6Q/sWfBiIiIiKSLSbDRERERCRbLJMgIiKici3HxAhGpoabv8thmQQ9hT8NRERERCRbTIaJiIiISLaYDBMRERGRbLFmmIiIiMo1rYkxFCYGfB1zruH6opcfZ4aJiIiISLaYDBMRERGRbDEZJiIiIiLZYs0wERERlWs5plxnmEoOfxqIiIiISLaYDBMRERGRbDEZJiIiIiLZYs0wERERlWtaU2PAzIDrDAuuM0z/4swwEREREckWk2EiIiIiki2WSRAREVG5pjU1Agy4tJo2l3OB9C/+NBARERGRbDEZJiIiIiLZYjJMREREVICAgAC0bNkSVlZWsLOzQ9++fREbG1vocV999RUaNmwIpVIJFxcXbN++XS/mwYMHGD9+PBwdHWFhYYGGDRvi8OHDOjFr166Fs7MzLCws4Obmhl9//dVg10asGSYiIqJyLsfECAoTA76OOad4fR0/fhzjx49Hy5YtodVqMXv2bHh5eeHSpUuwtLTM95h169Zh5syZ2LhxI1q2bIkzZ85gzJgxqFq1Knr16gUAyMrKQteuXWFnZ4fvvvsONWvWRHx8PKysrKR+vvnmG/j7+2Pt2rVo164d1q9fjx49euDSpUuoVavWi98EkiiEEKKsB1FRpaamQqVSQaP5HtbW+f/HQkREVNGlpmZApeoFjUYDa2vrYhz35PdoO///wcS8ksHGo818iN9WDSz2ePLcuXMHdnZ2OH78OF5//fV8Y9q2bYt27dph2bJlUpu/vz/Onj2LkydPAgC+/vprLFu2DH/++SdMTU3z7ad169Zo0aIF1q1bJ7U1bNgQffv2RUBAQLHHTvpYJkFERERUDBqNBgBgY2Pz3JjMzExYWFjotCmVSpw5cwbZ2dkAgIMHD8LDwwPjx4+Hvb09XF1dsXjxYuTk5AB4MnMcFRUFLy8vnX68vLxw6tQpQ16SrDEZJiIiIllKTU3V2TIzMws9RgiBqVOnon379nB1dX1uXLdu3bBp0yZERUVBCIGzZ89iy5YtyM7Oxt27dwEA//zzD7777jvk5OTg8OHD+Pjjj/H5559j0aJFAIC7d+8iJycH9vb2On3b29sjKSnpP1w5PY01w0RERFSuaU0VBl5nWAEAcHJy0mmfN28e5s+fX+CxEyZMwPnz56VSh+eZM2cOkpKS0KZNGwghYG9vD19fXyxduhTGxk9eB52bmws7Ozts2LABxsbGcHNzQ0JCApYtW4a5c+dKfSkUCp2+hRB6bfTimAwTERGRLMXHx+vUDJubmxcYP3HiRBw8eBAnTpxAzZo1C4xVKpXYsmUL1q9fj9u3b8PR0REbNmyAlZUVbG1tAQCOjo4wNTWVkmPgST1wUlISsrKyYGtrC2NjY71Z4OTkZL3ZYnpxLJMgIiIiWbK2ttbZnpcMCyEwYcIE7Nu3D7/88gucnZ2LfA5TU1PUrFkTxsbGCAoKgre3N4yMnqRf7dq1w9WrV5GbmyvFX7lyBY6OjjAzM4OZmRnc3NwQFham02dYWBjatm37AldM+eHMMBEREZVrOcYGXlpNW7y+xo8fj927d+PAgQOwsrKSZmpVKhWUSiUAYObMmbh165a0lvCVK1dw5swZtG7dGikpKVixYgViYmKwbds2qd/3338fq1evxuTJkzFx4kT89ddfWLx4MSZNmiTFTJ06FT4+PnB3d4eHhwc2bNiAuLg4jB079r/eBvp/TIaJiIiICpC3rFnHjh112rdu3QpfX18AQGJiIuLi4qR9OTk5+PzzzxEbGwtTU1N06tQJp06dQp06daQYJycnhIaGYsqUKWjSpAlq1KiByZMn46OPPpJiBg8ejHv37mHhwoVITEyEq6srDh8+jNq1a5fY9coN1xkuQVxnmIiI6L+vM+w+Yx9MLAz3e1T7OANnl/R/4XWGqWJhzTARERERyRbLJIiIiKhc05obQ5gbFx5YRDnCcH3Ry48zw0REREQkW0yGiYiIiEi2mAwTERERkWyxZpiIiIjKNSOTJ5uhCGY/9BTODBMRERGRbDEZJiIiIiLZYjJMRERERLLFqhkiIiIq14xNc2Fimmu4DnMM2Be99DgzTERERESyxWSYiIiIiGSLZRJERERUrpmYGLhMQssyCfoXZ4aJiIiISLaYDBMRERGRbDEZJiIiIiLZYs0wERERlWsmJgImJgas8zURhuuLXnqcGSYiIiIi2WIyTERERESyxWSYiIiIiGSLNcNERERUrpmZ58DEPMdg/RnlGq4vevlxZpiIiIiIZIvJMBERERHJVpklwwEBAVAoFPD395fahBCYP38+1Go1lEolOnbsiIsXL+ocl5mZiYkTJ8LW1haWlpbo3bs3bt68qROTkpICHx8fqFQqqFQq+Pj44MGDBzoxcXFx6NWrFywtLWFra4tJkyYhKytLJ+bChQvw9PSEUqlEjRo1sHDhQgjB5ViIiIhKk7Fx7pNXMhtoMzbm65jpX2WSDEdGRmLDhg1o0qSJTvvSpUuxYsUKrFmzBpGRkXBwcEDXrl2RlpYmxfj7+yM4OBhBQUE4efIk0tPT4e3tjZycf+t/hg0bhujoaISEhCAkJATR0dHw8fGR9ufk5KBnz57IyMjAyZMnERQUhL1792LatGlSTGpqKrp27Qq1Wo3IyEisXr0ay5cvx4oVK0rwzhARERFRaSr1B+jS09Px9ttvY+PGjfj000+ldiEEVq1ahdmzZ6N///4AgG3btsHe3h67d+/Ge++9B41Gg82bN2PHjh3o0qULAGDnzp1wcnLCkSNH0K1bN1y+fBkhISGIiIhA69atAQAbN26Eh4cHYmNj4eLigtDQUFy6dAnx8fFQq9UAgM8//xy+vr5YtGgRrK2tsWvXLjx+/BiBgYEwNzeHq6srrly5ghUrVmDq1KlQKBSlfOeIiIiIyNBKfWZ4/Pjx6Nmzp5TM5rl27RqSkpLg5eUltZmbm8PT0xOnTp0CAERFRSE7O1snRq1Ww9XVVYoJDw+HSqWSEmEAaNOmDVQqlU6Mq6urlAgDQLdu3ZCZmYmoqCgpxtPTE+bm5joxCQkJuH79er7XlpmZidTUVJ2NiIiIiMqvUp0ZDgoKwrlz5xAZGam3LykpCQBgb2+v025vb48bN25IMWZmZqhatapeTN7xSUlJsLOz0+vfzs5OJ+bZ81StWhVmZmY6MXXq1NE7T94+Z2dnvXMEBARgwYIF+V88ERERvRBT01yYmhqwzteQfdFLr9RmhuPj4zF58mTs3LkTFhYWz417tvxACFFoScKzMfnFGyIm7+G5541n5syZ0Gg00hYfH1/guImIiIiobJVaMhwVFYXk5GS4ubnBxMQEJiYmOH78OL788kuYmJjozLo+LTk5Wdrn4OCArKwspKSkFBhz+/ZtvfPfuXNHJ+bZ86SkpCA7O7vAmOTkZAD6s9d5zM3NYW1trbMRERERUflVaslw586dceHCBURHR0ubu7s73n77bURHR+OVV16Bg4MDwsLCpGOysrJw/PhxtG3bFgDg5uYGU1NTnZjExETExMRIMR4eHtBoNDhz5owUc/r0aWg0Gp2YmJgYJCYmSjGhoaEwNzeHm5ubFHPixAmd5dZCQ0OhVqv1yieIiIiI6OVUajXDVlZWcHV11WmztLREtWrVpHZ/f38sXrwY9erVQ7169bB48WJUqlQJw4YNAwCoVCr4+flh2rRpqFatGmxsbPDBBx+gcePG0gN5DRs2RPfu3TFmzBisX78eAPDuu+/C29sbLi4uAAAvLy80atQIPj4+WLZsGe7fv48PPvgAY8aMkWZzhw0bhgULFsDX1xezZs3CX3/9hcWLF2Pu3LlcSYKIiKgUmZjmwsSAdb6CNcP0lFJfWq0g06dPx6NHjzBu3DikpKSgdevWCA0NhZWVlRSzcuVKmJiYYNCgQXj06BE6d+6MwMBAGBsbSzG7du3CpEmTpFUnevfujTVr1kj7jY2NcejQIYwbNw7t2rWDUqnEsGHDsHz5cilGpVIhLCwM48ePh7u7O6pWrYqpU6di6tSppXAniIiIiKg0KARfqVZiUlNToVKpoNF8D2try7IeDhERUZlITc2AStULGo2mWM/T5P0e7bNzB0wrVTLYeLIfPsSBd3yKPR6qmMrsdcxEREREL4OAgAC0bNkSVlZWsLOzQ9++fREbG1vgMfv27UPXrl1RvXp1WFtbw8PDAz/99NNz44OCgqBQKNC3b9//fG4qHibDREREVK6ZmAiDb8Vx/PhxjB8/HhEREQgLC4NWq4WXlxcyMjKee8yJEyfQtWtXHD58GFFRUejUqRN69eqF33//XS/2xo0b+OCDD9ChQweDnJuKh2USJYhlEkRERP+9TGJA0HaDl0nsHTL8hcsk7ty5Azs7Oxw/fhyvv/56kY977bXXMHjwYMydO1dqy8nJgaenJ0aOHIlff/0VDx48wP79+w1+bno+zgwTERGRLKWmpupsmZmZRTpOo9EAAGxsbIp8rtzcXKSlpekds3DhQlSvXh1+fn4ldm4qWLlaTYKIiIjoWaZmOTAzzzFch9onfTk5Oek0z5s3D/Pnzy/wUCEEpk6divbt2+stGVuQzz//HBkZGRg0aJDU9ttvv2Hz5s2Ijo4uUh8vem4qGJNhIiIikqX4+HidMglzc/NCj5kwYQLOnz+PkydPFvk8e/bswfz583HgwAHY2dkBANLS0vDOO+9g48aNsLW1LVI/L3JuKhyTYSIiIpIla2vrYtUMT5w4EQcPHsSJEydQs2bNIh3zzTffwM/PD//73/+kF4QBwN9//43r16+jV69eUltu7pOXgZiYmCA2Nhavvvrqfzo3FQ2TYSIiIqICCCEwceJEBAcH49ixY3B2di7ScXv27MGoUaOwZ88e9OzZU2dfgwYNcOHCBZ22jz/+GGlpafjiiy+kEo4XPTcVHZNhIiIiKtdMTHJhYmK4VyjnFrOv8ePHY/fu3Thw4ACsrKyQlJQE4MnbapVKJQBg5syZuHXrFrZv3w7gSSI8fPhwfPHFF2jTpo10jFKphEqlgoWFhV7db5UqVQBAp70o56b/hqtJEBERERVg3bp10Gg06NixIxwdHaXtm2++kWISExMRFxcnfV6/fj20Wi3Gjx+vc8zkyZMNfm76bzgzTERERFSAorySITAwUOfzsWPHin2eZ/so6rnpv+HMMBERERHJFmeGiYiIqFwzMc2FiakBa4YN2Be9/DgzTERERESyxWSYiIiIiGSLyTARERERyRZrhomIiKhcMzV6shmK4FQgPYU/DkREREQkW0yGiYiIiEi2WCZBRERE5ZqpEWDGMgkqIfxxICIiIiLZYjJMRERERLLFZJiIiIiIZIs1w0RERFSuWRgB5saG60/BqUB6Cn8ciIiIiEi2mAwTERERkWwxGSYiIiIi2WLNMBEREZVrpsZPNkPJNWBf9PLjzDARERERyRaTYSIiIiKSLZZJEBERUblm6Ncx53IqkJ7CHwciIiIiki0mw0REREQkW0yGiYiIiEi2WDNMRERE5ZqpkYCpkTBYfzkG7ItefpwZJiIiIiLZYjJMRERERLLFZJiIiIiIZIs1w0RERFSumXGdYSpB/HEgIiIiItliMkxEREREssVkmIiIiIhkizXDREREVK6ZGAGmBpy+03IqkJ7CHwciIiIiki0mw0REREQkW0yGiYiIqFyzMDb8VhwnTpxAr169oFaroVAosH///gLjjx07BoVCobf9+eefUszFixcxYMAA1KlTBwqFAqtWrdLrJy0tDf7+/qhduzaUSiXatm2LyMjI4g2eCsVkmIiIiKgAGRkZaNq0KdasWVOs42JjY5GYmCht9erVk/Y9fPgQr7zyCpYsWQIHB4d8jx89ejTCwsKwY8cOXLhwAV5eXujSpQtu3br1n66HdPEBOiIiIqIC9OjRAz169Cj2cXZ2dqhSpUq++1q2bImWLVsCAGbMmKG3/9GjR9i7dy8OHDiA119/HQAwf/587N+/H+vWrcOnn35a7PFQ/jgzTERERLKUmpqqs2VmZhq0/+bNm8PR0RGdO3fG0aNHi3WsVqtFTk4OLCwsdNqVSiVOnjxpyGHKHpNhIiIiKtfyXsdsyA0AnJycoFKppC0gIMAg43V0dMSGDRuwd+9e7Nu3Dy4uLujcuTNOnDhR5D6srKzg4eGBTz75BAkJCcjJycHOnTtx+vRpJCYmGmSc9ATLJIiIiEiW4uPjYW1tLX02Nzc3SL8uLi5wcXGRPnt4eCA+Ph7Lly+XSh6KYseOHRg1ahRq1KgBY2NjtGjRAsOGDcO5c+cMMk56gjPDREREJEvW1tY6m6GS4fy0adMGf/31V7GOefXVV3H8+HGkp6cjPj4eZ86cQXZ2NpydnUtolPLEZJiIiIiohP3+++9wdHR8oWMtLS3h6OiIlJQU/PTTT+jTp4+BRydvLJMgIiKics1EYdjXMWcrihefnp6Oq1evSp+vXbuG6Oho2NjYoFatWpg5cyZu3bqF7du3AwBWrVqFOnXq4LXXXkNWVhZ27tyJvXv3Yu/evVIfWVlZuHTpkvTnW7duITo6GpUrV0bdunUBAD/99BOEEHBxccHVq1fx4YcfwsXFBSNHjvyPd4CexmSYiIiIqABnz55Fp06dpM9Tp04FAIwYMQKBgYFITExEXFyctD8rKwsffPABbt26BaVSiddeew2HDh3Cm2++KcUkJCSgefPm0ufly5dj+fLl8PT0xLFjxwAAGo0GM2fOxM2bN2FjY4MBAwZg0aJFMDU1LeErlheFEEKU9SAqqtTUVKhUKmg038Pa2rKsh0NERFQmUlMzoFL1gkaj0XlgrfDjnvwe3XxuAypZVTLYeB6mPYRfi3eLPR6qmDgzTEREROWaqZFhyyQM2Re9/PjjQERERESyxWSYiIiIiGSLyTARERERyRZrhomIiKhce1IzbLjn/VkzTE/jjwMRERERyRaTYSIiIiKSLSbDRERERCRbrBkmIiKics3MOBfmxrkG609rwL7o5ceZYSIiIiKSLSbDRERERCRbTIaJiIiISLZYM0xERETlmomRgIkB1xk2ZF/08uPMMBERERHJFpNhIiIiIpItlkkQERFRufbkdcyG7Y8oD38ciIiIiEi2mAwTERERkWwxGSYiIiIi2WLNMBEREZVrpkYCpgZcDs2QfdHLjzPDRERERCRbTIaJiIiISLaYDBMRERGRbLFmmIiIiMo1YwO/jtmYNcP0FM4MExEREZFsMRkmIiIiItliMkxEREREslVqyfC6devQpEkTWFtbw9raGh4eHvjxxx+l/UIIzJ8/H2q1GkqlEh07dsTFixd1+sjMzMTEiRNha2sLS0tL9O7dGzdv3tSJSUlJgY+PD1QqFVQqFXx8fPDgwQOdmLi4OPTq1QuWlpawtbXFpEmTkJWVpRNz4cIFeHp6QqlUokaNGli4cCGEYI0RERFRaTM3yoW5sQE3o9yyviQqR0otGa5ZsyaWLFmCs2fP4uzZs3jjjTfQp08fKeFdunQpVqxYgTVr1iAyMhIODg7o2rUr0tLSpD78/f0RHByMoKAgnDx5Eunp6fD29kZOTo4UM2zYMERHRyMkJAQhISGIjo6Gj4+PtD8nJwc9e/ZERkYGTp48iaCgIOzduxfTpk2TYlJTU9G1a1eo1WpERkZi9erVWL58OVasWFEKd4qIiIiISotClOF0p42NDZYtW4ZRo0ZBrVbD398fH330EYAns8D29vb47LPP8N5770Gj0aB69erYsWMHBg8eDABISEiAk5MTDh8+jG7duuHy5cto1KgRIiIi0Lp1awBAREQEPDw88Oeff8LFxQU//vgjvL29ER8fD7VaDQAICgqCr68vkpOTYW1tjXXr1mHmzJm4ffs2zM3NAQBLlizB6tWrcfPmTSgUiiJdX2pqKlQqFTSa72FtbWno20dERPRSSE3NgErVCxqNBtbW1sU47snv0d+urUZla6XBxpOe+gjtnCcWezxUMZVJzXBOTg6CgoKQkZEBDw8PXLt2DUlJSfDy8pJizM3N4enpiVOnTgEAoqKikJ2drROjVqvh6uoqxYSHh0OlUkmJMAC0adMGKpVKJ8bV1VVKhAGgW7duyMzMRFRUlBTj6ekpJcJ5MQkJCbh+/fpzryszMxOpqak6GxEREf03pgph8I0oT6kmwxcuXEDlypVhbm6OsWPHIjg4GI0aNUJSUhIAwN7eXife3t5e2peUlAQzMzNUrVq1wBg7Ozu989rZ2enEPHueqlWrwszMrMCYvM95MfkJCAiQapVVKhWcnJwKviFEREREVKZKNRl2cXFBdHQ0IiIi8P7772PEiBG4dOmStP/Z8gMhRKElCc/G5BdviJi8apKCxjNz5kxoNBppi4+PL3DsRERERFS2SjUZNjMzQ926deHu7o6AgAA0bdoUX3zxBRwcHADoz7omJydLM7IODg7IyspCSkpKgTG3b9/WO++dO3d0Yp49T0pKCrKzswuMSU5OBqA/e/00c3NzabWMvI2IiIgqhrVr18LZ2RkWFhZwc3PDr7/+WmD8rl270LRpU1SqVAmOjo4YOXIk7t27pxOzd+9eNGrUCObm5mjUqBGCg4P/83mpeMp0nWEhBDIzM+Hs7AwHBweEhYVJ+7KysnD8+HG0bdsWAODm5gZTU1OdmMTERMTExEgxHh4e0Gg0OHPmjBRz+vRpaDQanZiYmBgkJiZKMaGhoTA3N4ebm5sUc+LECZ3l1kJDQ6FWq1GnTh3D3wgiIiJ6LpP/fx2zIbfi+uabb+Dv74/Zs2fj999/R4cOHdCjRw/ExcXlG3/y5EkMHz4cfn5+uHjxIv73v/8hMjISo0ePlmLCw8MxePBg+Pj44I8//oCPjw8GDRqE06dPv/B5qfhKbTWJWbNmoUePHnByckJaWhqCgoKwZMkShISEoGvXrvjss88QEBCArVu3ol69eli8eDGOHTuG2NhYWFlZAQDef/99/PDDDwgMDISNjQ0++OAD3Lt3D1FRUTA2NgYA9OjRAwkJCVi/fj0A4N1330Xt2rXx/fffA3jy8F6zZs1gb2+PZcuW4f79+/D19UXfvn2xevVqAIBGo4GLiwveeOMNzJo1C3/99Rd8fX0xd+5cnSXYCsPVJIiIiP77ahLn4r4w+GoSLWpNLtZ4WrdujRYtWmDdunVSW8OGDdG3b18EBAToxS9fvhzr1q3D33//LbWtXr0aS5culcooBw8ejNTUVJ33LnTv3h1Vq1bFnj17Xui8VHylNjN8+/Zt+Pj4wMXFBZ07d8bp06elRBgApk+fDn9/f4wbNw7u7u64desWQkNDpUQYAFauXIm+ffti0KBBaNeuHSpVqoTvv/9eSoSBJ19JNG7cGF5eXvDy8kKTJk2wY8cOab+xsTEOHToECwsLtGvXDoMGDULfvn2xfPlyKUalUiEsLAw3b96Eu7s7xo0bh6lTp2Lq1KmlcKeIiIioPMnKykJUVJTOilYA4OXlJa1W9ay2bdvi5s2bOHz4MIQQuH37Nr777jv07NlTigkPD9frs1u3blKfL3JeKj6T0jrR5s2bC9yvUCgwf/58zJ8//7kxFhYWWL16tTSDmx8bGxvs3LmzwHPVqlULP/zwQ4ExjRs3xokTJwqMISIiopfXs0ugmpub6yyrmufu3bvIyckpcNWrZ7Vt2xa7du3C4MGD8fjxY2i1WvTu3Vsnh3ne6lV5fb7Iean4yrRmmIiIiKgwJkYCpgbc8mqGnZycdJZELazsoDirXl26dAmTJk3C3LlzERUVhZCQEFy7dg1jx44tdp8vstoWFV2pzQwTERERlSfx8fE6NcP5zQoDgK2tLYyNjQtc9epZAQEBaNeuHT788EMAQJMmTWBpaYkOHTrg008/haOj43NXr8rr80XOS8XHmWEiIiKSpWeXQ31eMmxmZgY3NzedFa0AICwsTFqt6lkPHz6EkZFumpX3jFPe2gUeHh56fYaGhkp9vsh5qfg4M0xERETlWl55gyH7K66pU6fCx8cH7u7u8PDwwIYNGxAXFyeVPcycORO3bt3C9u3bAQC9evXCmDFjsG7dOnTr1g2JiYnw9/dHq1atoFarAQCTJ0/G66+/js8++wx9+vTBgQMHcOTIEZw8ebLI56X/jskwERERUSEGDx6Me/fuYeHChUhMTISrqysOHz6M2rVrA3jy7oOn1/719fVFWloa1qxZg2nTpqFKlSp444038Nlnn0kxbdu2RVBQED7++GPMmTMHr776Kr755hu0bt26yOel/67U1hmWI64zTERE9N/XGb6csBJWBlxnOC31ERqqpxR7PFQxsWaYiIiIiGSLZRJERERUrhkrjGCsMNz8nSH7opcffxqIiIiISLaYDBMRERGRbDEZJiIiIiLZYs0wERERlWvGRiYwNjJcymLIvujlx5lhIiIiIpItJsNEREREJFtMhomIiIhItlg0Q0REROWaEYxhBGOD9keUhzPDRERERCRbTIaJiIiISLZYJkFERETlmkJhBCOF4UobFHwdMz2FPw1EREREJFtMhomIiIhItpgMExEREZFssWaYiIiIyjUjhbFBa4YN2Re9/DgzTERERESyxWSYiIiIiGSLyTARERERyRZrhomIiKhcY80wlSTODBMRERGRbDEZJiIiIiLZYjJMRERERLLFmmEiIiIq14wVpjBWmBq0P6I8nBkmIiIiItnKd2b4/Pnzxe6oUaNGMDHhRDMRERERvTzyzV6bNWsGhUIBIUSROjEyMsKVK1fwyiuvGHRwRERERFxajUrSc6dyT58+jerVqxfagRACrq6uBh0UEREREVFpyDcZ9vT0RN26dVGlSpUidfL6669DqVQaclxERERERCUu32T46NGjxerk8OHDBhkMEREREVFp4hNvREREVK4ZwRhGMGDNsAH7opdfocmwEALfffcdjh49iuTkZOTm5urs37dvX4kNjoiIiIioJBWaDE+ePBkbNmxAp06dYG9vD4VCURrjIiIiIiIqcYW+dGPnzp3Yt28ffvzxRwQGBmLr1q06GxEREZEcrF27Fs7OzrCwsICbmxt+/fXXAuOPHz8ONzc3WFhY4JVXXsHXX3+tF7Nq1Sq4uLhAqVTCyckJU6ZMwePHj6X9AQEBaNmyJaysrGBnZ4e+ffsiNjbW4NcmZ4UmwyqViusHExERUZkxUhhJaw0bZiv+C3i/+eYb+Pv7Y/bs2fj999/RoUMH9OjRA3FxcfnGX7t2DW+++SY6dOiA33//HbNmzcKkSZOwd+9eKWbXrl2YMWMG5s2bh8uXL2Pz5s345ptvMHPmTCnm+PHjGD9+PCIiIhAWFgatVgsvLy9kZGQU/0ZSvhSikDdrbNu2DSEhIdiyZQuXTyum1NRUqFQqaDTfw9rasqyHQ0REVCZSUzOgUvWCRqOBtbV1MY578nv0Xspeg/4eTU3NQLWqA4o1ntatW6NFixZYt26d1NawYUP07dsXAQEBevEfffQRDh48iMuXL0ttY8eOxR9//IHw8HAAwIQJE3D58mX8/PPPUsy0adNw5syZ584637lzB3Z2djh+/Dhef/31Io2dClboP40GDhyIlJQU2NnZoXHjxmjRooXORkRERPQySk1N1dkyMzPzjcvKykJUVBS8vLx02r28vHDq1Kl8jwkPD9eL79atG86ePYvs7GwAQPv27REVFYUzZ84AAP755x8cPnwYPXv2fO6YNRoNAMDGxqZoF1kCcnJycODAAfTu3bvMxmBIhT5A5+vri6ioKLzzzjt8gI6IiIhKXUm9jtnJyUmnfd68eZg/f75e/N27d5GTkwN7e3uddnt7eyQlJeV7jqSkpHzjtVot7t69C0dHRwwZMgR37txB+/btIYSAVqvF+++/jxkzZuTbpxACU6dORfv27cvk7b+xsbHYsmULtm/fjjt37qBTp06lPoaSUGgyfOjQIfz0009o3759aYyHiIiIqFTEx8frlEmYm5sXGP/shKAQosBJwvzin24/duwYFi1ahLVr16J169a4evUqJk+eDEdHR8yZM0evvwkTJuD8+fM4efJkwRdmQBkZGfj222+xefNmnDp1Cs7Ozhg3bhx8fX31/jHxsio0GXZycipWfQ8RERHRy8Da2rpIOY6trS2MjY31ZoGTk5P1Zn/zODg45BtvYmKCatWqAQDmzJkDHx8fjB49GgDQuHFjZGRk4N1338Xs2bNhZPRvNevEiRNx8OBBnDhxAjVr1izWdb6IiIgIbN68Gd9++y1ycnIwYMAALFq0CJ6eniV+7tJWaM3w559/junTp+P69eulMBwiIiKi8sXMzAxubm4ICwvTaQ8LC0Pbtm3zPcbDw0MvPjQ0FO7u7jA1NQUAPHz4UCfhBQBjY2MIIaRZZCEEJkyYgH379uGXX36Bs7OzoS6rQO3atcO+ffuwdOlSJCUlYdu2bRUyEQaKMDP8zjvv4OHDh3j11VdRqVIl6S8wz/3790tscEREREQlVTNcHFOnToWPjw/c3d3h4eGBDRs2IC4uDmPHjgUAzJw5E7du3cL27dsBPFk5Ys2aNZg6dSrGjBmD8PBwbN68GXv27JH67NWrF1asWIHmzZtLZRJz5sxB7969YWz8ZIzjx4/H7t27ceDAAVhZWUmzzSqVqkRX+erWrRvCwsKwaNEixMfHY+TIkXj11VdL7HxlqdBkeNWqVaUwDCIiIqLya/Dgwbh37x4WLlyIxMREuLq64vDhw6hduzYAIDExUWfNYWdnZxw+fBhTpkzBV199BbVajS+//BIDBgyQYj7++GMoFAp8/PHHuHXrFqpXr45evXph0aJFUkzeUm4dO3bUGc/WrVvh6+tbYtd7+PBh3Lx5E9u2bcOWLVsQEBCADh06YOTIkRg0aFCFWm630HWG6cVxnWEiIqL/vs6woX+Pvuh45Ozo0aPYsmUL9u7dC1NTUwwaNAijRo2Ch4dHWQ/tP8u3Zjg1NbVYnaSlpRlkMERERERU/nTq1Ak7duxAYmIilixZgnPnzqFdu3ZlPSyDyDcZrlq1KpKTk4vcSY0aNfDPP/8YbFBEREREkhyt4Tcq0KJFizBv3jzpc0hICPr06YPZs2dj6NChiIqKwrlz58pwhIaTb82wEAKbNm1C5cqVi9RJ3ptUiIiIiOjlt2fPHixevBgAcO/ePQwYMABDhw5FeHg4xo8fj127dqFZs2ZlO0gDyTcZrlWrFjZu3FjkThwcHPRWmSAiIiKil9P169fx2muvAXjyArb69etj06ZN+P3339GtW7cyHp1h5ZsMc01hIiIiIvlSKpV4/PgxAODIkSPw8vICAFSrVg3p6ellOTSDK3RpNSIiIqIylZsD5Bqwzjc3x3B9VVAdOnTAzJkz4e3tje+++w4///wzAODq1asV5jXMeQp9Ax0RERERycvKlStx9+5dTJ8+HRMmTJCWUHv06BFmzZpVxqMzLM4MExEREZGO2rVr49SpU3rtPXv2LIPRlCwmw0RERFS+GXo5NC6tRk9hmQQRERERydZzk+HOnTtj3759zz3w7t27eOWVV0pkUEREREREpeG5yfDRo0cxaNAgnbePPC0nJwc3btwosYEREREREZW0Assk1q1bhy+++AL9+vWrcGvKERER0UsiV2v4jej/FZgM9+nTB+Hh4bh06RI8PDzwzz//lNa4iIiIiIhKXKEP0DVs2BBnzpyBk5MTWrZsiSNHjpTGuIiIiIiISlyRVpNQqVQ4dOgQxowZgzfffBMrV64s6XEREREREZW4564zrFAo9D4vWbIEzZs3h5+fH3755ZcSHxwRERER1xmmkvTcmWEhRL7tgwcPxsmTJ3HhwoUSGxQRERERUWl47szw0aNHYWNjk+++Zs2aISoqCocOHSqxgRERERERlbTnJsOenp4FHlitWjUMHz7c4AMiIiIieprIyYLIMTZof0R5+DpmIiIiIpItJsNEREREJFtMhomIiIhItp5bM0xERERULuQaeGk1vo6ZnsKZYSIiIiKSLSbDRERERCRbTIaJiIiISLZYM0xERETlW67WsHW+rBmmp3BmmIiIiIhki8kwEREREckWk2EiIiIiki3WDBMREVH5lmPgdYYN2Re99EptZjggIAAtW7aElZUV7Ozs0LdvX8TGxurECCEwf/58qNVqKJVKdOzYERcvXtSJyczMxMSJE2FrawtLS0v07t0bN2/e1IlJSUmBj48PVCoVVCoVfHx88ODBA52YuLg49OrVC5aWlrC1tcWkSZOQlZWlE3PhwgV4enpCqVSiRo0aWLhwIYQQhrspRERERFSmSi0ZPn78OMaPH4+IiAiEhYVBq9XCy8sLGRkZUszSpUuxYsUKrFmzBpGRkXBwcEDXrl2RlpYmxfj7+yM4OBhBQUE4efIk0tPT4e3tjZycHClm2LBhiI6ORkhICEJCQhAdHQ0fHx9pf05ODnr27ImMjAycPHkSQUFB2Lt3L6ZNmybFpKamomvXrlCr1YiMjMTq1auxfPlyrFixooTvFBERERGVllJLhkNCQuDr64vXXnsNTZs2xdatWxEXF4eoqCgAT2aFV61ahdmzZ6N///5wdXXFtm3b8PDhQ+zevRsAoNFosHnzZnz++efo0qULmjdvjp07d+LChQs4cuQIAODy5csICQnBpk2b4OHhAQ8PD2zcuBE//PCDNBMdGhqKS5cuYefOnWjevDm6dOmCzz//HBs3bkRqaioAYNeuXXj8+DECAwPh6uqK/v37Y9asWVixYgVnh4mIiEpT3tJqhtxKSFG+nc7P5cuX0bt3b6hUKlhZWaFNmzaIi4vTixNCoEePHlAoFNi/f7/OvkWLFqFt27aoVKkSqlSpYpgLkoEye4BOo9EAAGxsbAAA165dQ1JSEry8vKQYc3NzeHp64tSpUwCAqKgoZGdn68So1Wq4urpKMeHh4VCpVGjdurUU06ZNG6hUKp0YV1dXqNVqKaZbt27IzMyUkvPw8HB4enrC3NxcJyYhIQHXr1835K0gIiKiCqKwb6fz8/fff6N9+/Zo0KABjh07hj/++ANz5syBhYWFXuyqVaugUCjy7ScrKwsDBw7E+++/b5BrkYsyeYBOCIGpU6eiffv2cHV1BQAkJSUBAOzt7XVi7e3tcePGDSnGzMwMVatW1YvJOz4pKQl2dnZ657Szs9OJefY8VatWhZmZmU5MnTp19M6Tt8/Z2VnvHJmZmcjMzJQ+580yExERUcWX9+10RESENCm3ceNGeHh4IDY2Fi4uLvkeN3v2bLz55ptYunSp1PbKK6/oxf3xxx9YsWIFIiMj4ejoqLd/wYIFAIDAwEADXI18lMnM8IQJE3D+/Hns2bNHb9+z/9oRQjz3X0DPi8kv3hAxeeURzxtPQECA9LWISqWCk5NTgeMmIiKispOamqqzPT2h9SKK8u30s3Jzc3Ho0CHUr18f3bp1g52dHVq3bq1XAvHw4UMMHToUa9asgYODw38aJ+kq9WR44sSJOHjwII4ePYqaNWtK7Xl/sXkzs3mSk5OlGVkHBwdkZWUhJSWlwJjbt2/rnffOnTs6Mc+eJyUlBdnZ2QXGJCcnA9Cfvc4zc+ZMaDQaaYuPjy/gThAREVGRaLMBbZYBt2wAgJOTk84kVkBAwH8aZlG+nX5WcnIy0tPTsWTJEnTv3h2hoaHo168f+vfvj+PHj0txU6ZMQdu2bdGnT5//NEbSV2rJsBACEyZMwL59+/DLL7/olRk4OzvDwcEBYWFhUltWVhaOHz+Otm3bAgDc3NxgamqqE5OYmIiYmBgpxsPDAxqNBmfOnJFiTp8+DY1GoxMTExODxMREKSY0NBTm5uZwc3OTYk6cOKGz3FpoaCjUarVe+UQec3NzWFtb62xERERUPsXHx+tMYs2cOTPfuPnz50OhUBS4nT17FkDRvnl+Wm5uLgCgT58+mDJlCpo1a4YZM2bA29sbX3/9NQDg4MGD+OWXX7Bq1SoDXDU9q9RqhsePH4/du3fjwIEDsLKykv6FpFKpoFQqoVAo4O/vj8WLF6NevXqoV68eFi9ejEqVKmHYsGFSrJ+fH6ZNm4Zq1arBxsYGH3zwARo3bowuXboAABo2bIju3btjzJgxWL9+PQDg3Xffhbe3t1Sr4+XlhUaNGsHHxwfLli3D/fv38cEHH2DMmDFSAjts2DAsWLAAvr6+mDVrFv766y8sXrwYc+fOLbRsg4iIiMq/ok5cTZgwAUOGDCkwpk6dOjh//nyh304/y9bWFiYmJmjUqJFOe8OGDXHy5EkAwC+//IK///5bb4WIAQMGoEOHDjh27Fih10DPV2rJ8Lp16wAAHTt21GnfunUrfH19AQDTp0/Ho0ePMG7cOKSkpKB169YIDQ2FlZWVFL9y5UqYmJhg0KBBePToETp37ozAwEAYGxtLMbt27cKkSZOkVSd69+6NNWvWSPuNjY1x6NAhjBs3Du3atYNSqcSwYcOwfPlyKUalUiEsLAzjx4+Hu7s7qlatiqlTp2Lq1KmGvjVERERUjtna2sLW1rbQuKe/nW7VqhUA/W+nn2VmZoaWLVvqvYjsypUrqF27NgBgxowZGD16tM7+xo0bY+XKlejVq9eLXBI9RSG4aG6JSU1NhUqlgkbzPaytLct6OERERGUiNTUDKlUvaDSaYpUQ5v0effDHAlhb6S8z9sLjSXuMKk3nFXs8RdGjRw8kJCTofDtdu3ZtfP/991JMgwYNEBAQgH79+gEAgoODMXjwYHz11Vfo1KkTQkJC4O/vj2PHjqF9+/b5nkehUCA4OBh9+/aV2uLi4nD//n0cPHgQy5Ytw6+//goAqFu3LipXrmzQ66xIymRpNSIiIqKKqLBvpwEgNjZWet8CAPTr1w9ff/01AgICMGnSJLi4uGDv3r3PTYSfZ+7cudi2bZv0uXnz5gCAo0eP6n0zT//izHAJ4swwERGRvGaG6eVTZm+gIyIiIiIqayyTICIiovItJwfQ5hi2P6L/x5lhIiIiIpItJsNEREREJFsskyAiIqLyTWvgMglD9kUvPc4MExEREZFsMRkmIiIiItliMkxEREREssWaYSIiIirftDmAVmvY/oj+H2eGiYiIiEi2mAwTERERkWwxGSYiIiIi2WLNMBEREZVvWVogy9iw/RH9P84MExEREZFsMRkmIiIiItlimQQRERGVbzlaQGvAMokclknQvzgzTERERESyxWSYiIiIiGSLyTARERERyRZrhomIiKhcEzk5EDmGe4WyIfuilx9nhomIiIhItpgMExEREZFsMRkmIiIiItlizTARERGVb9qcJ5sh+yP6f5wZJiIiIiLZYjJMRERERLLFZJiIiIiIZIs1w0RERFS+aXMArdaw/RH9P84MExEREZFsMRkmIiIiItlimQQRERGVb1nZgKnCsP0R/T/ODBMRERGRbDEZJiIiIiLZYjJMREREZCCLFi1C27ZtUalSJVSpUqVIx8yfPx8NGjSApaUlqlatii5duuD06dN6ceHh4XjjjTdgaWmJKlWqoGPHjnj06JG0PyUlBT4+PlCpVFCpVPDx8cGDBw8MdGUVF5NhIiIiKt9ycv59JbMhtpySW1otKysLAwcOxPvvv1/kY+rXr481a9bgwoULOHnyJOrUqQMvLy/cuXNHigkPD0f37t3h5eWFM2fOIDIyEhMmTICR0b+p3LBhwxAdHY2QkBCEhIQgOjoaPj4+Br2+ikghhBBlPYiKKjU1FSqVChrN97C2tizr4RAREZWJ1NQMqFS9oNFoYG1tXYzjnvweTflmBKwrmRluPA+zUHXwtmKPpzgCAwPh7+//QjOzedd95MgRdO7cGQDQpk0bdO3aFZ988km+x1y+fBmNGjVCREQEWrduDQCIiIiAh4cH/vzzT7i4uLzwtVR0nBkmIiIiKieysrKwYcMGqFQqNG3aFACQnJyM06dPw87ODm3btoW9vT08PT1x8uRJ6bjw8HCoVCopEQaeJNAqlQqnTp0q9et4mTAZJiIiIllKTU3V2TIzM8tsLD/88AMqV64MCwsLrFy5EmFhYbC1tQUA/PPPPwCe1BaPGTMGISEhaNGiBTp37oy//voLAJCUlAQ7Ozu9fu3s7JCUlFR6F/ISYjJMRERE5Zsh64XzNgBOTk7Sw2YqlQoBAQH5nn7+/PlQKBQFbmfPnv1Pl9ipUydER0fj1KlT6N69OwYNGoTk5GQAQG5uLgDgvffew8iRI9G8eXOsXLkSLi4u2LJli9SHQqG/FrMQIt92+hdfukFERESyFB8fr1MzbG5unm/chAkTMGTIkAL7qlOnzn8ai6WlJerWrYu6deuiTZs2qFevHjZv3oyZM2fC0dERANCoUSOdYxo2bIi4uDgAgIODA27fvq3X7507d2Bvb/+fxlbRMRkmIiIiWbK2ti7SA3S2trZSyUJpEUJIZRt16tSBWq1GbGysTsyVK1fQo0cPAICHhwc0Gg3OnDmDVq1aAQBOnz4NjUaDtm3blurYXzZMhomIiKhcE9k5ENmGWw7NkH09Ky4uDvfv30dcXBxycnIQHR0NAKhbty4qV64MAGjQoAECAgLQr18/ZGRkYNGiRejduzccHR1x7949rF27Fjdv3sTAgQMBPCl/+PDDDzFv3jw0bdoUzZo1w7Zt2/Dnn3/iu+++A/Bklrh79+4YM2YM1q9fDwB499134e3tzZUkCsFkmIiIiMhA5s6di23btkmfmzdvDgA4evQoOnbsCACIjY2FRqMBABgbG+PPP//Etm3bcPfuXVSrVg0tW7bEr7/+itdee03qx9/fH48fP8aUKVNw//59NG3aFGFhYXj11VelmF27dmHSpEnw8vICAPTu3Rtr1qwp6Ut+6XGd4RLEdYaJiIj++zrD9wOHGnydYRvfPSW6zjC9PLiaBBERERHJFsskiIiIqHzLzn2yGbI/ov/HmWEiIiIiki0mw0REREQkW0yGiYiIiEi2WDNMRERE5ZrIzIEw0hq0P6I8nBkmIiIiItliMkxEREREssVkmIiIiIhkizXDREREVK6J7FwIE8OtDSy4zjA9hTPDRERERCRbTIaJiIiISLZYJkFERETlGsskqCRxZpiIiIiIZIvJMBERERHJFpNhIiIiIpIt1gwTERFR+abNAbINOH+n5euY6V+cGSYiIiIi2WIyTERERESyxWSYiIiIiGSLNcNERERUronsXAhjrjNMJYMzw0REREQkW0yGiYiIiEi2mAwTERERkWyxZpiIiIjKNdYMU0nizDARERERyRaTYSIiIiKSLZZJEBERUbkmtDkQBnwds+DrmOkpnBkmIiIiItliMkxEREREssVkmIiIiIhkizXDREREVK6Jx7kQwnB1viKTS6vRvzgzTERERESyxWSYiIiIiGSLyTARERGRAVy/fh1+fn5wdnaGUqnEq6++innz5iErK6vA44QQmD9/PtRqNZRKJTp27IiLFy/q9KtQKPLd/ve//0lxV65cQZ8+fWBrawtra2u0a9cOR48eLbHrrSiYDBMREVH5lp1j+K0E/Pnnn8jNzcX69etx8eJFrFy5El9//TVmzZpV4HFLly7FihUrsGbNGkRGRsLBwQFdu3ZFWloaAMDJyQmJiYk624IFC2BpaYkePXpI/fTs2RNarRa//PILoqKi0KxZM3h7eyMpKalErreiUAghRFkPoqJKTU2FSqWCRvM9rK0ty3o4REREZSI1NQMqVS9oNBpYW1sX47gnv0cTx3eCtbnhnvlPzdTC8aujxR7Pi1i2bBnWrVuHf/75J9/9Qgio1Wr4+/vjo48+AgBkZmbC3t4en332Gd577718j2vevDlatGiBzZs3AwDu3r2L6tWr48SJE+jQoQMAIC0tDdbW1jhy5Ag6d+5cAldXMZTqzPCJEyfQq1cvqNVqKBQK7N+/X2d/YV8TAE9+QCZOnAhbW1tYWlqid+/euHnzpk5MSkoKfHx8oFKpoFKp4OPjgwcPHujExMXFoVevXrC0tIStrS0mTZqk9zXGhQsX4OnpCaVSiRo1amDhwoXgvx2IiIgqhtTUVJ0tMzPT4OfQaDSwsbF57v5r164hKSkJXl5eUpu5uTk8PT1x6tSpfI+JiopCdHQ0/Pz8pLZq1aqhYcOG2L59OzIyMqDVarF+/XrY29vDzc3NcBdUAZVqMpyRkYGmTZtizZo1+e4v7GsCAPD390dwcDCCgoJw8uRJpKenw9vbGzk5/37lMWzYMERHRyMkJAQhISGIjo6Gj4+PtD8nJwc9e/ZERkYGTp48iaCgIOzduxfTpk2TYlJTU9G1a1eo1WpERkZi9erVWL58OVasWFECd4aIiIieR2hzIbINuGmfLK3m5OQkTZypVCoEBAQYdNx///03Vq9ejbFjxz43Jq+Ewd7eXqfd3t7+ueUNmzdvRsOGDdG2bVupTaFQICwsDL///jusrKxgYWGBlStXIiQkBFWqVPnvF1OBleo6wz169NCpbXmaEAKrVq3C7Nmz0b9/fwDAtm3bYG9vj927d+O9996DRqPB5s2bsWPHDnTp0gUAsHPnTjg5OeHIkSPo1q0bLl++jJCQEERERKB169YAgI0bN8LDwwOxsbFwcXFBaGgoLl26hPj4eKjVagDA559/Dl9fXyxatAjW1tbYtWsXHj9+jMDAQJibm8PV1RVXrlzBihUrMHXqVCgUilK4Y0RERFRS4uPjdcokzM3N842bP38+FixYUGBfkZGRcHd3lz4nJCSge/fuGDhwIEaPHl3oWJ7NK4QQ+eYajx49wu7duzFnzhy9+HHjxsHOzg6//vorlEolNm3aBG9vb0RGRsLR0bHQMchVuXmArihfE0RFRSE7O1snRq1Ww9XVVYoJDw+HSqWSEmEAaNOmDVQqlU6Mq6urlAgDQLdu3ZCZmYmoqCgpxtPTU+c/jG7duiEhIQHXr183/A0gIiKiUmVtba2zPS8ZnjBhAi5fvlzg5urqKsUnJCSgU6dO8PDwwIYNGwocg4ODAwDozQInJyfrzRYDwHfffYeHDx9i+PDhOu2//PILfvjhBwQFBaFdu3Zo0aIF1q5dC6VSiW3bthXpfshVuXkDXUFfE9y4cUOKMTMzQ9WqVfVi8o5PSkqCnZ2dXv92dnY6Mc+ep2rVqjAzM9OJqVOnjt558vY5OzvrnSMzM1On3ig1NbXgiyYiIqJyz9bWFra2tkWKvXXrFjp16gQ3Nzds3boVRkYFzzs6OzvDwcEBYWFhaN68OQAgKysLx48fx2effaYXv3nzZvTu3RvVq1fXaX/48CEA6J3PyMgIubl8415Bys3McJ6ifk1QUEx+8YaIyXt47nnjCQgI0Kk9cnJyKnDcREREVLhcrcLgW0lISEhAx44d4eTkhOXLl+POnTtISkrSm/Vt0KABgoODATzJKfz9/bF48WIEBwcjJiYGvr6+qFSpEoYNG6Zz3NWrV3HixIl8yy48PDxQtWpVjBgxAn/88QeuXLmCDz/8ENeuXUPPnj1L5HorinKTDBflawIHBwdkZWUhJSWlwJjbt2/r9X/nzh2dmGfPk5KSguzs7AJjkpOTAejPXueZOXMmNBqNtMXHxxd+4URERFQhhIaG4urVq/jll19Qs2ZNODo6StvTYmNjodFopM/Tp0+Hv78/xo0bB3d3d9y6dQuhoaGwsrLSOW7Lli2oUaOGTrloHltbW4SEhCA9PR1vvPEG3N3dcfLkSRw4cABNmzYtmQuuIMpNMvz01wR58r4myHta0s3NDaampjoxiYmJiImJkWI8PDyg0Whw5swZKeb06dPQaDQ6MTExMUhMTJRiQkNDYW5uLi0/4uHhgRMnTugstxYaGgq1Wq1XPpHH3Nxcr/6IiIiI5MHX1xdCiHy3pwkh4OvrK31WKBSYP38+EhMT8fjxYxw/flynBjnP4sWLER8f/9zSC3d3d/z000+4d+8eUlNTER4e/tyFC+hfpZoMp6enIzo6GtHR0QCePDQXHR2NuLi4In1NoFKp4Ofnh2nTpuHnn3/G77//jnfeeQeNGzeWVpdo2LAhunfvjjFjxiAiIgIREREYM2YMvL294eLiAgDw8vJCo0aN4OPjg99//x0///wzPvjgA4wZM0ZKYIcNGwZzc3P4+voiJiYGwcHBWLx4MVeSICIiIqpASvUBurNnz6JTp07S56lTpwIARowYgcDAQEyfPh2PHj3CuHHjkJKSgtatW+t9TbBy5UqYmJhg0KBBePToETp37ozAwEAYGxtLMbt27cKkSZOkrxF69+6ts7axsbExDh06hHHjxqFdu3ZQKpUYNmwYli9fLsWoVCqEhYVh/PjxcHd3R9WqVTF16lRpzERERFQ6cnIUyMkx3ESUIfuilx9fx1yC+DpmIiKi//465hu+nWBtZsDXMWdpUTuwdF7HTOVfuakZJiIiIiIqbUyGiYiIiEi2ys1LN4iIiIjyk5OlgBYGrBnOYs0w/Yszw0REREQkW0yGiYiIiEi2WCZBRERE5VquVoFcI8OVNpTU65jp5cSZYSIiIiKSLSbDRERERCRbTIaJiIiISLZYM0xERETlWm6uArkGfIVybi5rhulfnBkmIiIiItliMkxEREREssVkmIiIiIhkizXDREREVK7laIEchQFfx6w1WFdUAXBmmIiIiIhki8kwEREREckWyySIiIioXMvVKpBrwDIJvo6ZnsaZYSIiIiKSLSbDRERERCRbTIaJiIiISLZYM0xERETlmjZbAS0MV+erzWbNMP2LM8NEREREJFtMhomIiIhItpgMExEREZFssWaYiIiIyrXcHAOvM5zDmmH6F2eGiYiIiEi2mAwTERERkWwxGSYiIiIi2WLNMBEREZVruVoFcgy4znCuljXD9C/ODBMRERGRbDEZJiIiIiLZYjJMRERE5VpujsLgW0m4fv06/Pz84OzsDKVSiVdffRXz5s1DVlZWgcelp6djwoQJqFmzJpRKJRo2bIh169bpxGRmZmLixImwtbWFpaUlevfujZs3b+rELFq0CG3btkWlSpVQpUoVQ19ehcVkmIiIiMgA/vzzT+Tm5mL9+vW4ePEiVq5cia+//hqzZs0q8LgpU6YgJCQEO3fuxOXLlzFlyhRMnDgRBw4ckGL8/f0RHByMoKAgnDx5Eunp6fD29kZOTo4Uk5WVhYEDB+L9998vsWusiPgAHREREZEBdO/eHd27d5c+v/LKK4iNjcW6deuwfPny5x4XHh6OESNGoGPHjgCAd999F+vXr8fZs2fRp08faDQabN68GTt27ECXLl0AADt37oSTkxOOHDmCbt26AQAWLFgAAAgMDCyZC6ygODNMREREspSamqqzZWZmGvwcGo0GNjY2Bca0b98eBw8exK1btyCEwNGjR3HlyhUpyY2KikJ2dja8vLykY9RqNVxdXXHq1CmDj1lumAwTERFRuZajVRh8AwAnJyeoVCppCwgIMOi4//77b6xevRpjx44tMO7LL79Eo0aNULNmTZiZmaF79+5Yu3Yt2rdvDwBISkqCmZkZqlatqnOcvb09kpKSDDpmOWKZBBEREclSfHw8rK2tpc/m5ub5xs2fP18qQXieyMhIuLu7S58TEhLQvXt3DBw4EKNHjy7w2C+//BIRERE4ePAgateujRMnTmDcuHFwdHSUyiLyI4SAQsE1k/8rJsNEREQkS9bW1jrJ8PNMmDABQ4YMKTCmTp060p8TEhLQqVMneHh4YMOGDQUe9+jRI8yaNQvBwcHo2bMnAKBJkyaIjo7G8uXL0aVLFzg4OCArKwspKSk6s8PJyclo27ZtoeOngjEZJiIiIiqAra0tbG1tixR769YtdOrUCW5ubti6dSuMjAquSM3OzkZ2drZenLGxMXJzcwEAbm5uMDU1RVhYGAYNGgQASExMRExMDJYuXfoCV0RPYzJMRERE5VpmVi5Mc3IN158B+3paQkICOnbsiFq1amH58uW4c+eOtM/BwUH6c4MGDRAQEIB+/frB2toanp6e+PDDD6FUKlG7dm0cP34c27dvx4oVKwAAKpUKfn5+mDZtGqpVqwYbGxt88MEHaNy4sU4ZRVxcHO7fv4+4uDjk5OQgOjoaAFC3bl1Urly5RK65ImAyTERERGQAoaGhuHr1Kq5evYqaNWvq7BNCSH+OjY2FRqORPgcFBWHmzJl4++23cf/+fdSuXRuLFi3SefBu5cqVMDExwaBBg/Do0SN07twZgYGBMDY2lmLmzp2Lbdu2SZ+bN28OADh69Ki0bBvpU4in/3bIoFJTU6FSqaDRfA9ra8uyHg4REVGZSE3NgErVCxqNpkg1uv8e9+T36HG37qhsbGqw8aTnZMMzKqTY46GKiUurEREREZFssUyCiIiIyjVttoA213BfZGtz+KU4/Yszw0REREQkW0yGiYiIiEi2WCZBRERE5VqOgcskclgmQU/hzDARERERyRaTYSIiIiKSLSbDRERERCRbrBkmIiKico1Lq1FJ4swwEREREckWk2EiIiIiki0mw0REREQkW6wZJiIionItWyuQbcCaYUP2RS8/zgwTERERkWwxGSYiIiIi2WKZBBEREZVr2ZlAlpEhyyQM1hVVAJwZJiIiIiLZYjJMRERERLLFZJiIiIiIZIs1w0RERFSuZWsFsg1aM8yl1ehfnBkmIiIiItliMkxEREREssVkmIiIiIhkizXDREREVK5ptQJaheHqfLWCNcP0L84MExEREZFsMRkmIiIiItliMkxEREREssWaYSIiIirXtNmsGaaSw5lhIiIiIpItJsNEREREJFsskyAiIqJyLTtbINuAZRLZLJOgp3BmmIiIiIhki8kwEREREckWk2EiIiIiA+nduzdq1aoFCwsLODo6wsfHBwkJCQUe4+vrC4VCobO1adNG2n///n1MnDgRLi4uqFSpEmrVqoVJkyZBo9Ho9JOSkgIfHx+oVCqoVCr4+PjgwYMHJXGZFQprhomIiKhcy87MRZYi13D9CcP19axOnTph1qxZcHR0xK1bt/DBBx/grbfewqlTpwo8rnv37ti6dav02czMTPpzQkICEhISsHz5cjRq1Ag3btzA2LFjkZCQgO+++06KGzZsGG7evImQkBAAwLvvvgsfHx98//33Br7KioXJMBEREZGBTJkyRfpz7dq1MWPGDPTt2xfZ2dkwNTV97nHm5uZwcHDId5+rqyv27t0rfX711VexaNEivPPOO9BqtTAxMcHly5cREhKCiIgItG7dGgCwceNGeHh4IDY2Fi4uLga6woqHZRJEREREJeD+/fvYtWsX2rZtW2AiDADHjh2DnZ0d6tevjzFjxiA5ObnAeI1GA2tra5iYPJnXDA8Ph0qlkhJhAGjTpg1UKlWhs9Jyx5lhIiIiKtceQQsYcDW0R9ACAFJTU3Xazc3NYW5u/p/7/+ijj7BmzRo8fPgQbdq0wQ8//FBgfI8ePTBw4EDUrl0b165dw5w5c/DGG28gKioq3/Hcu3cPn3zyCd577z2pLSkpCXZ2dnqxdnZ2SEpK+s/XVJExGSYiIqJyyczMDA4ODvggyfAzm5UrV4aTk5NO27x58zB//ny92Pnz52PBggUF9hcZGQl3d3cAwIcffgg/Pz/cuHEDCxYswPDhw/HDDz9AoVDke+zgwYOlP7u6usLd3R21a9fGoUOH0L9/f53Y1NRU9OzZE40aNcK8efN09uXXvxDiueelJ5gMExERUblkYWGBa9euISsry+B955ckPm9WeMKECRgyZEiB/dWpU0f6s62tLWxtbVG/fn00bNgQTk5OiIiIgIeHR5HG5ujoiNq1a+Ovv/7SaU9LS0P37t1RuXJlBAcH65ReODg44Pbt23p93blzB/b29kU6r1wxGSYiIqJyy8LCAhYWFmU6hrzk9kWI/3/bXWZmZpGPuXfvHuLj4+Ho6Ci1paamolu3bjA3N8fBgwf17omHhwc0Gg3OnDmDVq1aAQBOnz4NjUaDtm3bvtDY5YIP0BEREREZwJkzZ7BmzRpER0fjxo0bOHr0KIYNG4ZXX31VZ1a4QYMGCA4OBgCkp6fjgw8+QHh4OK5fv45jx46hV69esLW1Rb9+/QA8mRH28vJCRkYGNm/ejNTUVCQlJSEpKQk5OTkAgIYNG6J79+4YM2YMIiIiEBERgTFjxsDb25srSRSCyXARrF27Fs7OzrCwsICbmxt+/fXXsh4SERERlTNKpRL79u1D586d4eLiglGjRsHV1RXHjx/XKcGIjY2VXphhbGyMCxcuoE+fPqhfvz5GjBiB+vXrIzw8HFZWVgCAqKgonD59GhcuXEDdunXh6OgobfHx8VK/u3btQuPGjeHl5QUvLy80adIEO3bsKN2b8BJSiLz5e8rXN998Ax8fH6xduxbt2rXD+vXrsWnTJly6dAm1atUq8NjU1FSoVCpoNN/D2tqylEZMRERUvqSmZkCl6iUtB0ZUnnBmuBArVqyAn58fRo8ejYYNG2LVqlVwcnLCunXrynpoRERERPQf8QG6AmRlZSEqKgozZszQaffy8sp3AevMzEydAvm8r0BSUx+W7ECJiIjKsbzfg/wymsojJsMFuHv3LnJycvSWJLG3t893AeuAgIB81yF0chqs10ZERCQ3aWlpUKlUZT0MIh1Mhovg2XUIn7eA9cyZMzF16lTp84MHD1C7dm3ExcXxP/5SlpqaCicnJ8THx7M+rRTxvpcN3veywftedEIIpKWlQa1Wl/VQiPQwGS6Ara0tjI2N9WaBk5OT813A+nmvcVSpVPwfZRmxtrbmvS8DvO9lg/e9bPC+Fw0nhai84gN0BTAzM4ObmxvCwsJ02sPCwriANREREVEFwJnhQkydOhU+Pj5wd3eHh4cHNmzYgLi4OIwdO7ash0ZERERE/xGT4UIMHjwY9+7dw8KFC5GYmAhXV1ccPnwYtWvXLvRYc3NzzJs377nvOqeSw3tfNnjfywbve9ngfSeqGPjSDSIiIiKSLdYMExEREZFsMRkmIiIiItliMkxEREREssVkmIiIiIhki8lwCVq7di2cnZ1hYWEBNzc3/Prrr2U9pHLjxIkT6NWrF9RqNRQKBfbv36+zXwiB+fPnQ61WQ6lUomPHjrh48aJOTGZmJiZOnAhbW1tYWlqid+/euHnzpk5MSkoKfHx8oFKpoFKp4OPjgwcPHujExMXFoVevXrC0tIStrS0mTZqErKwsnZgLFy7A09MTSqUSNWrUwMKFC/GyPXsaEBCAli1bwsrKCnZ2dujbty9iY2N1YnjfDW/dunVo0qSJ9GIGDw8P/Pjjj9J+3vPSERAQAIVCAX9/f6mN956IAACCSkRQUJAwNTUVGzduFJcuXRKTJ08WlpaW4saNG2U9tHLh8OHDYvbs2WLv3r0CgAgODtbZv2TJEmFlZSX27t0rLly4IAYPHiwcHR1FamqqFDN27FhRo0YNERYWJs6dOyc6deokmjZtKrRarRTTvXt34erqKk6dOiVOnTolXF1dhbe3t7Rfq9UKV1dX0alTJ3Hu3DkRFhYm1Gq1mDBhghSj0WiEvb29GDJkiLhw4YLYu3evsLKyEsuXLy+5G1QCunXrJrZu3SpiYmJEdHS06Nmzp6hVq5ZIT0+XYnjfDe/gwYPi0KFDIjY2VsTGxopZs2YJU1NTERMTI4TgPS8NZ86cEXXq1BFNmjQRkydPltp574lICCGYDJeQVq1aibFjx+q0NWjQQMyYMaOMRlR+PZsM5+bmCgcHB7FkyRKp7fHjx0KlUomvv/5aCCHEgwcPhKmpqQgKCpJibt26JYyMjERISIgQQohLly4JACIiIkKKCQ8PFwDEn3/+KYR4kpQbGRmJW7duSTF79uwR5ubmQqPRCCGEWLt2rVCpVOLx48dSTEBAgFCr1SI3N9eAd6J0JScnCwDi+PHjQgje99JUtWpVsWnTJt7zUpCWlibq1asnwsLChKenp5QM894TUR6WSZSArKwsREVFwcvLS6fdy8sLp06dKqNRvTyuXbuGpKQknftnbm4OT09P6f5FRUUhOztbJ0atVsPV1VWKCQ8Ph0qlQuvWraWYNm3aQKVS6cS4urpCrVZLMd26dUNmZiaioqKkGE9PT52F9bt164aEhARcv37d8DeglGg0GgCAjY0NAN730pCTk4OgoCBkZGTAw8OD97wUjB8/Hj179kSXLl102nnviSgPk+EScPfuXeTk5MDe3l6n3d7eHklJSWU0qpdH3j0q6P4lJSXBzMwMVatWLTDGzs5Or387OzudmGfPU7VqVZiZmRUYk/f5Zf37FEJg6tSpaN++PVxdXQHwvpekCxcuoHLlyjA3N8fYsWMRHByMRo0a8Z6XsKCgIJw7dw4BAQF6+3jviSgPX8dcghQKhc5nIYReGz3fi9y/Z2PyizdEjPj/h1pe1r/PCRMm4Pz58zh58qTePt53w3NxcUF0dDQePHiAvXv3YsSIETh+/Li0n/fc8OLj4zF58mSEhobCwsLiuXG890TEmeESYGtrC2NjY71/zScnJ+v9y5/0OTg4ANCfDXn6/jk4OCArKwspKSkFxty+fVuv/zt37ujEPHuelJQUZGdnFxiTnJwMQH9W6WUwceJEHDx4EEePHkXNmjWldt73kmNmZoa6devC3d0dAQEBaNq0Kb744gve8xIUFRWF5ORkuLm5wcTEBCYmJjh+/Di+/PJLmJiYPHfWlfeeSH6YDJcAMzMzuLm5ISwsTKc9LCwMbdu2LaNRvTycnZ3h4OCgc/+ysrJw/Phx6f65ubnB1NRUJyYxMRExMTFSjIeHBzQaDc6cOSPFnD59GhqNRicmJiYGiYmJUkxoaCjMzc3h5uYmxZw4cUJnGaTQ0FCo1WrUqVPH8DeghAghMGHCBOzbtw+//PILnJ2ddfbzvpceIQQyMzN5z0tQ586dceHCBURHR0ubu7s73n77bURHR+OVV17hvSeiJ0rvWT15yVtabfPmzeLSpUvC399fWFpaiuvXr5f10MqFtLQ08fvvv4vff/9dABArVqwQv//+u7T03JIlS4RKpRL79u0TFy5cEEOHDs13yaOaNWuKI0eOiHPnzok33ngj3yWPmjRpIsLDw0V4eLho3Lhxvksede7cWZw7d04cOXJE1KxZU2fJowcPHgh7e3sxdOhQceHCBbFv3z5hbW390i159P777wuVSiWOHTsmEhMTpe3hw4dSDO+74c2cOVOcOHFCXLt2TZw/f17MmjVLGBkZidDQUCEE73lpeno1CSF474noCSbDJeirr74StWvXFmZmZqJFixbSElYkxNGjRwUAvW3EiBFCiCfLHs2bN084ODgIc3Nz8frrr4sLFy7o9PHo0SMxYcIEYWNjI5RKpfD29hZxcXE6Mffu3RNvv/22sLKyElZWVuLtt98WKSkpOjE3btwQPXv2FEqlUtjY2IgJEyboLG8khBDnz58XHTp0EObm5sLBwUHMnz//pVvuKL/7DUBs3bpViuF9N7xRo0ZJ/x+oXr266Ny5s5QIC8F7XpqeTYZ574lICCEUQvD1NkREREQkT6wZJiIiIiLZYjJMRERERP/X3v2DRrWncRz+znW1GEeMAdFGGRURFcHWYKFgY5sE7LQQsRpII6aQFDZiIYIgQRDJIEIqJSBiJ1aCFgr2GsE/aGUQTRESt1hWEBbhJi6em/d5uvnBeXmnms8cDjNliWEAAMoSwwAAlCWGAQAoSwwDAFCWGAYAoCwxDABAWWIYWHW63W5arVZarVY+f/68ollHjhz5MevFixe/ZT8AmkMMA420uLiYoaGhjIyM/HQ+NzeXbdu25cKFC7+8/uLFi/nw4UM2bty4oj3u3r2bp0+frmgGAM0lhoFGWrNmTfr9fh4+fJg7d+78OO/1ehkcHMzExMQvr9+wYUO2bt2aVqu1oj0GBwezefPmFc0AoLnEMNBYu3fvzqVLl9Lr9fL+/fvMzMxkeno6/X4/69at+1uzpqamMjAwkPv372fPnj1pt9sZHR3N169f0+/30+12s2nTpvR6vSwuLv6f3hEATfOvP70AwK/0er3cu3cvJ0+ezMuXLzMxMZGDBw8ua9a3b99y7dq1TE9P58uXLxkeHs7w8HAGBgby4MGDvHr1KiMjIzl8+HBOnDjxe98IAI0khoFGa7VamZyczN69e3PgwIGMj48ve9bCwkImJyeza9euJMno6Ghu376djx8/ptPpZN++fTl69GgePXokhgGK8JgE0Hi3bt1Ku93O69ev8/bt22XPabfbP0I4SbZs2ZJut5tOp/PT2adPn1a0LwD/HGIYaLQnT57k6tWrmZmZyaFDh3L69Ol8//59WbPWrl370+tWq/U/z5aWlpa9LwD/LGIYaKz5+fmcOnUqZ8+ezbFjx3Lz5s08e/YsN27c+NOrAbBKiGGgscbHx7O0tJTLly8nSbZv354rV67k3LlzmZ2d/bPLAbAqiGGgkR4/fpzr169namoq69ev/3F+5syZDA0NrehxCQD4r9Z3nybAKtPtdjM2NpaxsbHfMm92djY7duzI8+fPl/2zbgA0kzvDwKp0/vz5dDqdzM3NrWjO8ePHs3///t+0FQBN484wsOq8efMmCwsLSZKdO3fmr7+W/73/3bt3mZ+fT/KfZ5b/7j/fAdBsYhgAgLI8JgEAQFliGACAssQwAABliWEAAMoSwwAAlCWGAQAoSwwDAFCWGAYAoCwxDABAWWIYAICyxDAAAGWJYQAAyhLDAACUJYYBAChLDAMAUJYYBgCgLDEMAEBZYhgAgLLEMAAAZYlhAADKEsMAAJQlhgEAKEsMAwBQlhgGAKAsMQwAQFliGACAssQwAABliWEAAMoSwwAAlCWGAQAoSwwDAFCWGAYAoCwxDABAWWIYAICyxDAAAGWJYQAAyhLDAACUJYYBAChLDAMAUJYYBgCgLDEMAEBZYhgAgLLEMAAAZYlhAADKEsMAAJQlhgEAKEsMAwBQlhgGAKAsMQwAQFliGACAssQwAABliWEAAMoSwwAAlCWGAQAoSwwDAFCWGAYAoCwxDABAWWIYAICyxDAAAGWJYQAAyhLDAACUJYYBAChLDAMAUJYYBgCgLDEMAEBZYhgAgLLEMAAAZYlhAADKEsMAAJQlhgEAKEsMAwBQlhgGAKAsMQwAQFliGACAssQwAABliWEAAMoSwwAAlCWGAQAoSwwDAFDWvwGKVZLIUKE27AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "! seisflows plot2d GRADIENT_01 vs_kernel --savefig i02_gradient_vs_kernel.png" + "! seisflows plot2d MODEL_INIT vs --savefig m_init_vs.png\n", + "Image(filename='m_init_vs.png') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we see the gradient created during the adjoint simulation." ] }, { @@ -238,9 +268,16 @@ "scrolled": true }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Figure(707.107x707.107)\r\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XdYVNf2N/DvUAZmYGgqRUVEwYYFG0o0gqKgUVERUS8GKUYQUTS5QWO5lthQgiJG1MSA14CKxB6VgC22mFhjj70SFREQUdqs9w/fOdfDDFVz/d3M+jzPPI/ss84++0xzzT777C0hIgJjjDHGGGNaSOd9N4AxxhhjjLH3hZNhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmjDHGGGNai5NhxhhjjDGmtTgZZowxxhhjWouTYcYYY4wxprU4GWaMMcYYY1qLk2HGGGOMMaa1OBlmrJpu374NiUSCpKSk/+pxGzdujMDAwP/qMRljjDFtwcmwFvL29oZcLsfz588rjPH394dUKsXTp0/f2XEbN26MAQMGqJWvX78eurq66Nu3L169evXOjsfen6ysLEydOhU9e/aEQqGARCLBwYMHq73/li1bMHz4cDRp0gRyuRzNmzfHZ599htzc3Er3u3HjBgwNDSGRSHDy5Em17adOncKAAQNgbW0NY2NjtG3bFsuXL0dZWZkornHjxpBIJGqPsLAwUVxSUpLGOIlEgj///FPt+M+fP0dUVBTs7e1hYGCABg0awNfXF4WFhaK43NxcjB07FvXq1YORkRF69uyJ06dPq9U3efJkdOjQARYWFpDL5WjZsiVmz56NgoICUVxBQQFmzZqFvn37wsLCosofdampqejatSvMzMxQp04duLm54ccff1SLu379Onx9fWFubg65XI7u3bvjwIEDGutUKpVISEiAs7MzZDIZ6tSpg169euHcuXMVtiM5ORkSiQTGxsYVxgBASUkJWrVqBYlEgpiYGLXt8+fPh7e3N6ysrCCRSDB79myN9VT0ukskEjg6OlbahtrYsWMHOnToAENDQzRq1AizZs1CaWmpKMbd3b3CNunr67/zNjGmjfTedwPYf5+/vz927tyJrVu3IiAgQG17YWEhtm/fjr59+6JOnTp/aVuSk5MRGBiI3r17Y9u2bTA0NPxLj/e/6OrVq9DR+d/63Xr16lVER0fD0dERbdq0wfHjx2u0/9ixY1G/fn2MGjUKjRo1wvnz57FixQrs3r0bp0+fhkwm07jf5MmToaenh6KiIrVtp06dwgcffABHR0dMmTIFcrkce/bsQWRkJG7cuIG4uDhRvLOzMz777DNRWbNmzTQed+7cubC3txeVmZmZif7Oy8uDm5sb7t+/j7Fjx8LBwQFPnjzB4cOHUVRUBLlcDuB10ti/f3+cO3cOn3/+OerWrYuVK1fC3d0dp06dEiVlv/32Gz788EMEBQXB0NAQZ86cwaJFi5CZmYmff/5ZeN9kZ2dj7ty5aNSoEdq1a1fpD5P4+HhMnDgR/fv3x6JFi/Dq1SskJSVhwIAB+OGHH+Dj4wMAuHfvHlxdXaGrq4vPP/8cRkZGSExMhKenJ/bt24cePXqI6g0ODkZycjICAgIQERGBFy9e4MyZM3j8+LHGdhQUFCAqKgpGRkYVtvXNNt+9e7fC7TNmzIC1tTXat2+P9PT0CuOWLVum9kPizp07mDFjBjw9PatsR03s2bMHgwcPhru7O+Lj43H+/HnMmzcPjx8/RkJCghA3ffp0jBkzRrTvixcvEBYW9s7bxJjWIqZ1CgsLSaFQkJeXl8btKSkpBIA2btz4To9rZ2dH/fv3F/7esGED6erqUu/evenly5fv5BhKpZIKCwvfSV3l3bp1iwBQYmLiX1L/30l+fj49ffqUiIg2b95MAOjAgQPV3l9T7Lp16wgAffPNNxr32bt3L0mlUpoxYwYBoN9++020/ZNPPiGpVCq0S6VHjx5kYmIiKiv/Xq1IYmKixmNpMm7cODIzM6ObN29WGrdp0yYCQJs3bxbKHj9+TGZmZjRy5MgqjxMTE0MA6Pjx40LZq1evKCsri4iIfvvtt0rfx46OjtS5c2dSKpVCWV5eHhkbG5O3t7dQFh4eTnp6enTlyhWh7MWLF2Rra0sdOnTQeE5btmypsv0qU6ZMoebNm5O/vz8ZGRlVGPfo0SMyNTWluXPnEgBasmSJWsytW7eIiOjJkycEgGbNmlXtdnz55ZcEgI4ePVrtfaqjVatW1K5dOyopKRHKpk+fThKJhC5fvlzpvuvXrycAlJyc/E7bxJi2+t/qbmLvhEwmg4+PD/bt26exVyYlJQUKhQLe3t5C2caNG9GxY0coFAqYmJigTZs2aj1pNZGamopRo0bB3d0dO3bsUOsRViqVWLZsGZycnGBoaAgrKyuEhobi2bNnojjV0Iv09HR06tQJMpkMq1evBgBIJBJERERg27ZtaN26NQwMDODk5IS9e/eqtefBgwcIDg6GlZWVEPfdd9/V+vxUDh48CIlEgtTUVMyZMwcNGjSAQqGAr68v8vLyUFRUhEmTJsHS0hLGxsYICgpS69UsP2ZYdWn+6NGj+PTTT4VL6UOGDMGTJ0/eus3vgkKhgIWFRa33d3d3VysbMmQIAODy5ctq20pKShAZGYnIyEg0bdpUY535+fkwNDRU67G1sbGpsKe5uLgYL168qFabnz9/rjbcQiU3NxeJiYkYO3Ys7O3tUVxcrLH3GgDS0tJgZWUl9MACQL169eDn54ft27dXuJ9K48aNhWOqGBgYwNraulrnkZ+fD0tLS0gkEqHMxMQExsbGoufp8OHDaN++PZo3by6UyeVyeHt74/Tp07h27ZpQHhsbCxcXFwwZMgRKpbLK5/TatWtYunQpYmNjoadX+QXMqVOnonnz5hg1alSFMarnpDZSUlJgb2+PDz74QFReVFSEWbNmwcHBAQYGBrC1tUVUVFSVrw8AXLp0CZcuXcLYsWNF5xceHg4iQlpaWpVtMjIywqBBg0TlWVlZuHLlCkpKSmpwhowxToa1lL+/P0pLS5Gamioqz8nJQXp6OoYMGSL8x5eRkYGRI0fC3Nwc0dHRWLRoEdzd3XH06NFaHfuHH36Av78/evTogZ07d2pMREJDQ/H555+jW7duiIuLQ1BQEJKTk+Hl5aX2RX/16lWMHDkSffr0QVxcHJydnYVtR44cQXh4OEaMGIHFixfj1atXGDp0qGgs9KNHj9C1a1dkZmYiIiICcXFxcHBwQEhICJYtW1arcyxv4cKFSE9Px9SpUxEcHIwtW7YgLCwMwcHB+OOPPzB79mz4+PggKSkJ0dHR1apzwoQJOHfuHGbNmoVx48Zh586diIiIqHK/oqIiZGdnV+vxf4lqDG7dunXVti1btgzPnj3DjBkzKtzf3d0d+fn5CA0NxeXLl3Hnzh2sWrUKW7ZswRdffKEWv3//fsjlchgbG6Nx48aV/vjr2bMnTExMhGTwzUQQeP0+fPXqFRwcHODr6wu5XA6ZTIZu3brh7NmzotgzZ86gQ4cOakNjXFxcUFhYiD/++ENUXlpaiuzsbDx8+BA//fQTZsyYAYVCARcXlwrbWxl3d3fs3bsX8fHxuH37Nq5cuYLx48cjLy8PkZGRQlxRUZHGz65quMepU6cAvE6uf/31V3Tu3BnTpk2DqakpjI2N0aRJE7XvH5VJkyahZ8+e+Oijjypt66+//op169Zh2bJlouT9XTlz5gwuX76Mf/zjH6JypVIJb29vxMTEYODAgYiPj8fgwYOxdOlSDB8+vFr1AkCnTp1E5fXr10fDhg2F7Zo8efIEGRkZGDx4sNoQki+++AItW7bEgwcPqnuKjDGAh0loq9LSUrKxsSFXV1dR+apVqwgApaenC2WRkZFkYmJCpaWlb3VMOzs7ql+/Punp6ZG7uzu9ePFCY9zhw4c1XgLcu3evWrmdnR0BoL1796rVA4CkUildv35dKDt37hwBoPj4eKEsJCSEbGxsKDs7W7T/iBEjyNTUVBh2UZthEgcOHCAA1Lp1ayouLhbKR44cSRKJhPr16yeKd3V1JTs7O1GZnZ0djR49WvhbdWm+d+/eokvZkydPJl1dXcrNza20Tar9q/N4F2ozTEKTkJAQ0tXVpT/++ENUnpWVRQqFglavXk1EFQ9dKC0tpYiICNLX1xfOT1dXlxISEtSONXDgQIqOjqZt27bR2rVr6cMPPyQAFBUVJYrbtGkTBQYG0rp162jr1q00Y8YMksvlVLduXbp7964QFxsbSwCoTp065OLiQsnJybRy5UqysrIic3NzevjwoRBrZGREwcHBam368ccfNb7Xjx8/LnrNmjdvXulzXdUwiUePHpGHh4eozrp169KxY8fUniMzMzPKz88Xlbu6uhIAiomJISKi06dPC+duZWVFK1eupOTkZHJxcSGJREJ79uwR7b9r1y7S09OjixcvEhHR6NGjNQ6TUCqV5OLiIgwdUX0+NQ2TUKnpMInPPvuMANClS5dE5evXrycdHR06fPiwqFz1/VnVkIolS5YQANF7RKVz587UtWvXCveNj48nALR79261baNHjyYAwrAQxlj18A10WkpXVxcjRozA0qVLcfv2beEyYkpKCqysrODh4SHEmpmZ4cWLF8jIyEDfvn3f6rg5OTkoLS1Fw4YNK7w0vXnzZpiamqJPnz6i3smOHTvC2NgYBw4cEPXU2Nvbw8vLS2NdvXv3Fl02b9u2LUxMTHDz5k0AABHhhx9+gJ+fH4hIdDwvLy9s3LgRp0+fRrdu3d7qvAMCAkR3fnfp0gUbNmxAcHCwKK5Lly5Yvnw5SktLq7w8PHbsWFFv2IcffoilS5fizp07aNu2bYX7eXl5ISMjo5Zn8n6kpKRg7dq1iIqKUrurf8qUKWjSpInaTUbl6erqomnTpvDy8sKwYcNgaGiIDRs2YMKECbC2tsbgwYOF2B07doj2DQoKQr9+/RAbG4sJEyagYcOGAAA/Pz/4+fkJcYMHD4aXlxd69OiB+fPnY9WqVQAg3JQlkUiwb98+YXaE9u3bw9XVFV9//TXmzZsHAHj58iUMDAzU2q8aSvTy5UtReatWrZCRkYEXL17g2LFjyMzMVLsJrCZUs3c0bNgQAwYMwPPnz7F06VL4+Pjg8OHDcHBwAADhasTw4cMxf/58GBkZYeXKlcIsHqp2qtry9OlT/PLLL+jSpQuA17Pa2NvbY968ecL3SnFxMSZPnoywsDC0atWq0nYmJSXh/PnzVQ4pqC2lUomNGzeiffv2aNmypWjb5s2b0bJlS7Ro0UL0ndGrVy8AwIEDB9SGVbxJ9dxU9Drn5+dXuG9KSgrq1auHPn36qG1LSkr6r0/9yNjfASfDWszf3x9Lly5FSkoKpk2bhvv37+Pw4cOYOHEidHV1hbjw8HCkpqaiX79+aNCgATw9PeHn51erxNjDwwONGjVCQkICLCwsNF56vnbtGvLy8mBpaamxjvLjnMvfxf+mRo0aqZWZm5sLY4+fPHmC3NxcrFmzBmvWrKnW8WqjfDtMTU0BALa2tmrlSqUSeXl5Vc7kUb5Oc3NzAFAbV12ejY0NbGxsqtXuyhQXFyMnJ0dUVq9ePdF75104fPgwQkJC4OXlhfnz54u2/fLLL1i/fj327dtX5YwbixYtQlxcHK5duyYko35+fujZsyfGjx+PAQMGVPgDRCKRYPLkyUhPT8fBgwcrHZ/avXt3dOnSBZmZmUKZ6offwIEDRdOEde3aFfb29jh27JgoVtO4U9W0g+V/RJqYmKB3794AgEGDBiElJQWDBg3C6dOn0a5du0qfE02GDRsGPT097Ny5UygbNGgQHB0dMX36dGzatAkA0K9fP8THx2Pq1Kno0KEDAMDBwQHz589HVFSUcJ6q9trb2wuJMAAYGxtj4MCB+P7774Uff0uXLkV2djbmzJlTaRvz8/PxxRdf4PPPP1f7DL0rhw4dwoMHDzB58mS1bdeuXcPly5dRr149jfuqvjNycnJQXFwslMtkMpiamgrPSUWvc0UdBTdv3sTx48cRERFR5Y9lxlj18adJi3Xs2BEtWrTAhg0bMG3aNGzYsAFEBH9/f1GcpaUlzp49i/T0dOzZswd79uxBYmIiAgICsG7duhofd8WKFXj27BmWL18Oc3NztTk/lUolLC0tkZycrHH/8v8BVfQfB4AKEzMiEo4FAKNGjcLo0aM1xlbWy1pdFbWjqvbVps6q9n358iXy8vKqrB9ApTddHTt2DD179hSV3bp1661uVirv3Llz8Pb2RuvWrZGWlqaWAERFReHDDz+Evb09bt++DQBCT11WVhbu3r0r/GhYuXIlevXqpTZnrbe3Nz799FPcvn1b6PXURJV0lf8BUFHs1atXhb/r168PALCyslKLtbS0FP2AsbGxQVZWllqcqkxVV0V8fHzw8ccfY+PGjTVOhm/evIm9e/eq/TC0sLBA9+7d1e4TiIiIQFBQEH7//XdIpVI4Oztj7dq1AP4zDV1V515SUiLcUDdv3jyEh4cjPz9f6B0tKCgAEeH27duQy+WwtLRETEwMiouLMXz4cOF1v3//PoDXPwZv376N+vXrQyqV1uj835ScnAwdHR2MHDlSbZtSqUSbNm0QGxurcV/Ve8XHxweHDh0SykePHo2kpCThx2hWVpZaMp+VlVXheO+UlBQAUPuOZoy9HU6GtZy/vz9mzpyJ33//HSkpKXB0dETnzp3V4qRSKQYOHIiBAwdCqVQiPDwcq1evxsyZMytNIDTR0dHBv//9b+Tl5WHOnDmwsLDAxIkThe1NmzZFZmYmunXrVmmi+y7Uq1cPCoUCZWVlQu/a392mTZsQFBRUrdjKEut27dqpDbeo7owF1XHjxg307dsXlpaW2L17t8aFF+7evYs7d+5ovDrg7e0NU1NTYVaFR48eaZztQXVDZvnFDspTDa2pqDewfOybcR07dgQAjTc2PXz4EC1atBD+dnZ2xuHDh6FUKkW93SdOnIBcLq9wrmOVoqIi4epCTT169AgAKnyeND1HRkZGcHV1Ff7OzMwUbg4EXifD1tbWFZ67oaEhFAoF7t69i4KCAixevBiLFy9Wi7W3t8egQYOwbds23L17F8+ePYOTk5Na3IIFC7BgwQKcOXNGdDNtTRQVFeGHH36Au7u7xh8fTZs2xblz5+Dh4VHpjXtfffWV6IeOqi5Vu06ePClKfB8+fCjMQ61JSkoKmjZtiq5du9bqvBhjmnEyrOVUyfC//vUvnD17VuPKTE+fPhVdstfR0RF6S6szjZAm+vr6SEtLg6enJyZNmgRzc3N8/PHHAF5ful65ciW+/PJLLFiwQLRfaWkpCgoK1KbHqi1dXV0MHToUKSkpuHDhAlq3bi3a/uTJk2olP/9L3tWYYXNz83fyA+Lu3bsoLCwUJYR//vknPD09oaOjg/T09ApfgzVr1qit3rZ//37Ex8cjJiZGVGezZs2QkZEhej+XlZUhNTUVCoVCGFuek5MDU1NTUc97SUkJFi1aBKlUKuoN1/T+2L17N06dOiX6gde8eXO0a9cO27dvR3Z2tjAjxk8//YR79+5hwoQJQqyvry/S0tKwZcsW+Pr6Anjd271582YMHDhQGGeam5sLIyMjtVXIvv32WwDqMxVUh4ODA3R0dLBp0yaEhoYKiZ5qCFX37t0r3f/YsWPYsmULxo0bJwwFAoDhw4cjLi4OGRkZwljX7OxsbN++Hb169YKOjg4sLS2xdetWtTqXL1+O48ePY8OGDUKP6sSJE0VjvIHXQxNCQ0MRGBiIQYMGVTp8qiq7d+9Gbm5uhT2wfn5+2L17N7755hu1xPXly5dQKpUwMjISfgSV5+TkhBYtWmDNmjUIDQ0V3msJCQmQSCTC6/4m1cwWM2fOrPV5McY042RYy6nmz9y+fTsAzZffxowZg5ycHPTq1QsNGzbEnTt3EB8fD2dnZ7UbS2pCLpfjxx9/hJubG4KDg2Fqagpvb2+4ubkhNDQUCxcuxNmzZ+Hp6Ql9fX1cu3YNmzdvRlxcnMb/LGpr0aJFOHDgALp06YJPPvkErVq1Qk5ODk6fPo3MzMxqXRb/X/KuxgxXRXVD2MWLFwG8Xnb7yJEjACCaAi0gIACHDh0S9UL37dsXN2/eRFRUFI4cOSLsB7y+3K5KqDStwKXqCXZzcxMlhFOnTsWoUaPQpUsXjB07FjKZDBs2bMCpU6cwb948IancsWMH5s2bB19fX9jb2yMnJ0f4sbRgwQJR7/cHH3yA9u3bo1OnTjA1NcXp06fx3XffwdbWFtOmTRO1a+nSpejTpw+6d++O0NBQ5OXlITY2Fs2aNcO4ceOEOF9fX3Tt2hVBQUG4dOmSsAJdWVmZaCztwYMHMXHiRPj6+sLR0RHFxcU4fPgwtmzZgk6dOqmNa16xYgVyc3Px8OFDAMDOnTuFoQUTJkyAqakp6tWrh+DgYHz77bfw8PCAj48Pnj9/jpUrV+Lly5eiKeju3LkDPz8/eHt7w9raGhcvXsSqVavQtm1btR+xX3zxBVJTUzF06FB8+umnMDU1xapVq1BSUiLEyuVytQQXALZt24Zff/1VtK1Dhw7COGUV1XAJJycntXrWr1+PO3fuCD+cfv75Z+H9+fHHH8POzk4Un5ycDAMDAwwdOlStPap9UlNTERYWhgMHDqBbt24oKyvDlStXkJqaKsx7XpklS5bA29sbnp6eGDFiBC5cuIAVK1ZgzJgxGr9XVcPGKhsiERgYiHXr1r3z4UqM/e29t3ks2P8ZX3/9NQEgFxcXjdvT0tLI09OTLC0tSSqVUqNGjSg0NFRY0aq6KlrV688//yQHBwcyNDQUTQm1Zs0a6tixI8lkMlIoFNSmTRuKiooSTUNV2UphAGj8+PEa2/HmVGVEr6eTGj9+PNna2pK+vj5ZW1uTh4cHrVmzRoh5m6nV3lxNjKji6b9mzZpFAOjJkycVtreifVXHetspzN4VVHPKNjc3N7WyyvZ1c3Or9LiVrQq3d+9ecnNzo7p165JUKqU2bdrQqlWrRDEnT56kgQMHUoMGDUgqlZKxsTF1796dUlNT1eqbPn06OTs7k6mpKenr61OjRo1o3Lhx9Oeff2psW0ZGBnXt2pUMDQ3JwsKCPv74Y42fo5ycHAoJCaE6deqQXC4nNzc3tfO5fv06BQQEUJMmTUgmk5GhoSE5OTnRrFmzqKCgQK1O1TSEmh5vTsVVUlJC8fHx5OzsTMbGxmRsbEw9e/ak/fv3q7Vx0KBBZG1tTVKplOzt7WnKlClqU62p3Lhxg4YMGUImJiYkk8moV69e9Ouvv2qMfVNFU6uVV9nUaqr3mKZH+c9LXl4eGRoako+PT6XHKy4upujoaHJyciIDAwMyNzenjh070pw5cygvL6/K9hIRbd26lZydncnAwIAaNmxIM2bMEE3BqFJWVkYNGjRQW9mvvKFDh5JMJqNnz55V6/iMsdckRNW4U4cxxhhj/6dZWVkhICAAS5Ysed9NYex/CifDjDHG2P+4ixcvwtXVFTdv3tS4SiNjrGKcDLO3plomtyKquTX/TjTNsVvem/OJMsYYY+z/Jk6G2VurbGoh4D9za/6dHDx4UG2O3fISExMRGBj432kQY4wxxmqFZ5Ngb62qabqqWiTgf5GmOXbL0zQHKmOMMcb+b+GeYcYYY4wxprV0qg5hjDHGGGPs74mTYcaq6fbt25BIJH+78c+MMcaYNuNkWAt5e3tDLpfj+fPnFcb4+/tDKpXi6dOn7+y4jRs3xoABA9TK169fD11dXfTt2xevXr16Z8dj70dWVhamTp2Knj17QqFQQCKR4ODBgzWq48GDB/Dz84OZmRlMTEwwaNAg3Lx5Uy3u0aNHCAoKgqWlJWQyGTp06IDNmzdrrHPjxo3o0KEDDA0NUa9ePYSEhCA7O/ut6szMzETPnj1Rt25dmJmZwcXFBevXrxfFvHz5EiEhIWjdujVMTU1hbGyMdu3aIS4uDiUlJRXW26tXL5iamkKhUKBjx47YtGmTWtyOHTuEc2rUqBFmzZqF0tLSt6pT5caNGzA0NIREIsHJkydF2/bt24fg4GA0a9YMcrkcTZo0wZgxY5CVlSWKKywsxNdffw1PT0/Y2NhAoVCgffv2SEhIQFlZmdoxr1+/Dl9fX5ibm0Mul6N79+44cOCAWtw333wDNzc3WFlZwcDAAPb29ggKChJWoXtTXl4eoqKi4OjoCJlMBjs7O4SEhODu3buiuNmzZ0Mikag9DA0NK3yO3kZ1Xjt3d3eNbZJIJGrLcDPGao9voNNC/v7+2LlzJ7Zu3YqAgAC17YWFhdi+fTv69u2LOnXq/KVtSU5ORmBgIHr37o1t27b9Zf/xsP+eq1evIjo6Go6OjmjTpg2OHz9eo/0LCgrQs2dP5OXlYdq0adDX18fSpUvh5uaGs2ddPD3vAAAgAElEQVTPCu/J/Px8dO/eHY8ePUJkZCSsra2RmpoKPz8/JCcn4x//+IdQZ0JCAsLDw+Hh4YHY2Fjcv38fcXFxOHnyJE6cOCG872pS544dOzB48GC4uroKiVRqaioCAgKQnZ2NyZMnA3idDF+8eBEfffQRGjduDB0dHRw7dgyTJ0/GiRMnkJKSIjr/xMREhISEoE+fPliwYAF0dXVx9epV3Lt3TxS3Z88eDB48GO7u7oiPj8f58+cxb948PH78GAkJCbWq802TJ0+Gnp4eioqK1LZNmTIFOTk5GDZsGBwdHXHz5k2sWLECu3btwtmzZ4Ulq2/evIkJEybAw8MDn376KUxMTJCeno7w8HD88ssvWLdunVDnvXv34OrqCl1dXXz++ecwMjJCYmIiPD09sW/fPvTo0UOIPXPmDOzt7eHt7Q1zc3PcunUL33zzDXbt2oVz584JN+0qlUr06dMHly5dQnh4OJo1a4br169j5cqVSE9Px+XLl6FQKETnlpCQAGNjY+FvXV3dCp+j2qruazd9+nSMGTNGtO+LFy8QFhamcSlyxlgtva+l79j7U1hYSAqFgry8vDRuT0lJIQC0cePGd3rc8ksnb9iwgXR1dal379708uXLd3IMpVJJhYWF76Su8mqzHLM2ys/Pp6dPnxIR0ebNm2u8RHR0dDQBEC3Ve/nyZdLV1aUvvvhCKFu8eDEBoH379gllZWVl1LlzZ7K2tqaioiIiIioqKiIzMzPq0aMHKZVKIXbnzp0EgJYvX17jOomI+vTpQ/Xr16dXr14JZSUlJdS0aVNq27ZtlecZERFBAETLMd+6dYtkMhlNnDixyv1btWpF7dq1o5KSEqFs+vTpJJFI6PLly7WqU2Xv3r0klUppxowZGpe2PnToEJWVlamVAaDp06cLZU+ePKELFy6o1R8UFEQA6Nq1a0JZeHg46enp0ZUrV4SyFy9ekK2tbZXLEBO9XkYbAC1cuFAoO3r0KAGgFStWiGK/++47AkBbtmwRyjQthf5Xqe5rp8n69esJACUnJ//VzWRMa/AwCS0kk8ng4+ODffv24fHjx2rbU1JSoFAo4O3tLZRt3LgRHTt2hEKhgImJCdq0aYO4uLhatyE1NRWjRo2Cu7s7duzYodYjrFQqsWzZMjg5OcHQ0BBWVlYIDQ3Fs2fPRHGqoRfp6eno1KkTZDIZVq9eDeD1/McRERHYtm0bWrduDQMDAzg5OWHv3r1q7Xnw4AGCg4OFy65OTk747rvvan1+KgcPHhR6DOfMmYMGDRpAoVDA19cXeXl5KCoqwqRJk2BpaQljY2MEBQWp9cQlJiaiV69esLS0hIGBAVq1aqXW87d//37o6OjgX//6l6g8JSUFEolELf6vpFAoYGFhUev909LS0LlzZ3Tu3Fkoa9GiBTw8PJCamiqUHT58GPXq1UOvXr2EMh0dHfj5+eHPP//EoUOHAAAXLlxAbm4uhg8fLpoTe8CAATA2NsbGjRtrXCfwuhfZ3NwcBgYGQpmenh7q1q1brcVWGjduDADIzc0VylatWoWysjLMnTsXwOtectIw4c+lS5dw6dIljB07Fnp6/7nAFx4eDiJCWlpajetUKSkpQWRkJCIjI9G0aVONMT169ICOjo5amYWFBS5fviyU1a1bV+MUg0OGDAEAUezhw4fRvn17NG/eXCiTy+Xw9vbG6dOnce3atQrbDGh+PvPz8wG8Xqb4TTY2NgCg8XUiIuTn51f6HBUVFWHWrFlwcHCAgYEBbG1tERUVpbEXvbyavHaapKSkwMjICIMGDRKVZ2Vl4cqVKxUOvWGMVYyTYS3l7++P0tJSUXIBADk5OUhPT8eQIUOE/ygyMjIwcuRImJubIzo6GosWLYK7uzuOHj1aq2P/8MMP8Pf3R48ePbBz506N/yGFhobi888/R7du3RAXF4egoCAkJyfDy8tL7cv+6tWrGDlyJPr06YO4uDg4OzsL244cOYLw8HCMGDECixcvxqtXrzB06FDRWOhHjx6ha9euyMzMREREBOLi4uDg4ICQkBAsW7asVudY3sKFC5Geno6pU6ciODgYW7ZsQVhYGIKDg/HHH39g9uzZ8PHxQVJSEqKjo0X7JiQkwM7ODtOmTcNXX30FW1tbhIeH4+uvvxZievXqhfDwcCxcuBCnT58G8Po/xwkTJqB3794ICwurtH2FhYXIzs6u8lH+x8i7plQq8fvvv6NTp05q21xcXHDjxg1hrHtRUZHG945cLgcAnDp1SogDNCc+MpkMZ86cgVKprFGdwOvxnBcvXsTMmTNx/fp13LhxA19++SVOnjyJqKgotTqKi4uRnZ2Ne/fuYevWrYiJiYGdnR0cHByEmMzMTLRo0QK7d+9Gw4YNoVAoUKdOHcycOVNoI/B6mAAAteepfv36aNiwobC9JnWqLFu2DM+ePcOMGTPUtlWmoKAABQUF1VoKWLVq5ZuxNXnuVZ4+fYrHjx/j5MmTCAoKAgB4eHgI2zt16gQjIyPMnDkT+/fvx4MHD3Do0CFERUWhc+fO6N27t1qdTZo0EcZVjxo1Co8ePRJtVyqV8Pb2RkxMDAYOHIj4+HgMHjwYS5cuxfDhw6s895q8duU9efIEGRkZGDx4MIyMjETbvvjiC7Rs2RIPHjyosg2MsXLeZ7c0e39KS0vJxsaGXF1dReWrVq0iAJSeni6URUZGkomJCZWWlr7VMe3s7Kh+/fqkp6dH7u7u9OLFC41xhw8f1ngZcO/evWrldnZ2BID27t2rVg8AkkqldP36daHs3LlzBIDi4+OFspCQELKxsaHs7GzR/iNGjCBTU1Nh2EVthkkcOHCAAFDr1q2puLhYKB85ciRJJBLq16+fKN7V1ZXs7OxEZZqGfXh5eVGTJk1EZS9evCAHBwdycnKiV69eUf/+/cnExITu3LlTZTtVl4irepRvW1VqOkziyZMnBIDmzp2rtu3rr78mAMJl9AkTJpCOjg7dvn1bFDdixAgCQBEREUKdEomEQkJCRHFXrlwRzkv12le3TiKigoIC8vPzI4lEItQjl8tp27ZtGs9tw4YNoueyU6dO9Pvvv4tiTExMyNzcnAwMDGjmzJmUlpZG//jHPwgATZ06VYhbsmQJAaC7d++qHadz587UtWvXGtdJRJSVlUUKhYJWr15NRESJiYkah0lo8uWXX6oNMdGkqKiIWrVqRfb29qJhAgMHDiQzMzPKz88Xxbu6uhIAiomJUavLwMBAeD7r1KkjGvKismvXLrKxsRE9915eXvT8+XNR3LJlyygiIoKSk5MpLS2NIiMjSU9PjxwdHSkvL0+IW79+Peno6NDhw4dF+6u+O48ePVrp+dfktSsvPj6eANDu3bvVto0ePZoA0K1btyo9PmNMHSfDWmzy5MlqX549evQgKysrUeI7a9Ys0tXVpT179rzV8ezs7MjQ0JAA0KhRo0TjN980ceJEMjU1pcePH9OTJ09ED2NjYxozZoyoTnt7e431AKCPPvpIrdzExIQmT55MRK/HGJuZmdHYsWPVjqVKBI4cOUJEb5cML168WFS+bNkyAkCbN28WlU+aNIl0dHREScKbcnNz6cmTJ7RgwQICQLm5uaLtR44cIR0dHXJxcSEAtHbt2mq188aNG5SRkVHlQ/VcVFdNk+G7d+8SAIqOjlbbtnbtWgJAZ86cIaLXP2z09fXJxcWFjh49StevX6cFCxYICdKbye/w4cNJT0+PYmJi6MaNG/Tzzz9Tu3btSF9fnwDQvXv3alxnSUkJzZgxg4YNG0YbNmyg77//nnr06EHGxsZ0/Phxtfb/+eeflJGRQZs3b6awsDBydXVVi9PR0SEAtGjRIlF53759SSaTCYni3LlzCQA9evRI7TgffvghtWvXrsZ1EhEFBARQu3bthPHA1U2GDx06RHp6euTn51dpHBHRJ598QgDoxx9/FJXv3r2bAFC/fv3o9OnTdPXqVYqMjBReoy+//FKtrv3799Pu3bvpq6++ovbt24vGC6ucOHGCPvroI5o/fz5t27aNZs+eTXK5nHx9fatsa3Jysto4ZG9vb3JyclL7vvjjjz8IAM2bN6/SOmvy2pXn6upK9erVq/D7gTFWO5wMazHVDSfz588nIqJ79+6RRCKhyMhIUdyjR4+oZcuWBIAaNGhAQUFBtUqMVTfQjRs3jgBUeENPv379Ku2d9Pb2FtXZq1cvjfUAoLCwMI3tCAwMFM6tqt5Q1U02b5MMl78ZUZVk/PLLL6JyVQ/tm73UR44cIQ8PD5LL5Wpt09TrO378eKH36337K3uGVfXXqVNHeD6sra0pISGBAIjex7m5ueTt7S167kaNGkU+Pj4EgJ49e1bjOkNDQ0WJIxFRcXExOTo6kouLS5XnOn/+fDI2NhbdQGdkZKTxdV23bh0BoEOHDhFRzXoXq1vn8ePHSSKR0P79+4WY6iTDly9fJgsLC3J2dlbr1S1PdYOipsSW6HXPp6q9AMjBwUHYZ+nSpZXWff36dTI0NBRd9blx4wbJ5XJKS0sTxSYlJVXYw1qetbU1eXh4CH+rvgsreqi+154+fUpZWVnCQ/XDtbY9wzdu3FC7OsEYezd4ajUt1rFjR7Ro0QIbNmzAtGnTsGHDBhAR/P39RXGWlpY4e/Ys0tPTsWfPHuzZsweJiYkICAgQTY1UXStWrMCzZ8+wfPlymJubY/bs2aLtSqUSlpaWSE5O1rh/vXr1RH9XdrNSRdMi0f+/OUY1ZnLUqFEYPXq0xti2bdtWWH91VdSOqtp348YNeHh4oEWLFoiNjYWtrS2kUil2796NpUuXqo35LCoqEub0vXHjBgoLC4Uxl5VRjfesznmUf/7fJQsLCxgYGKjNVwtAKFNNmwUAvr6+8Pb2xrlz51BWVoYOHToI59+sWTMhztTUFNu3b8fdu3dx+/Zt2NnZwc7ODh988AHq1asHMzOzGtVZXFyMtWvXIioqSnQjmb6+Pvr164cVK1aguLgYUqm0wnP19fXF9OnTsX37doSGhgrndu3aNbUbviwtLQFAGLOtugEsKysLtra2as+Ti4uL8Hd164yKisKHH34Ie3t7Yb5e1TzMWVlZuHv3Lho1aiSq4969e/D09ISpqSl2796tNk3Zm5KSkjBlyhSEhYVVOB45IiICQUFB+P333yGVSuHs7Iy1a9cCEL+emjRt2hTt27dHcnIyIiIihGO+evVKbX5z1c3BR48eRb9+/Sqt19bWFjk5OcLfSqUSbdq0QWxsbIXxAODj4yO64XL06NFISkqq0Wv3JtUUfOW/nxljb4+TYS3n7++PmTNn4vfff0dKSgocHR1Fd/GrSKVSDBw4EAMHDoRSqUR4eDhWr16NmTNnim4Aqg4dHR38+9//Rl5eHubMmQMLCwtMnDhR2N60aVNkZmaiW7du1bor/23Uq1cPCoUCZWVlGm+med927tyJoqIi7NixQ5SIaFqIAABmzZqFy5cvIyYmBlOmTMHUqVOxfPnyKo8TExODOXPmVBlnZ2encWGDd0VHRwdt2rRRW+QBAE6cOIEmTZqoJVxSqVT0ns3MzAQAja9no0aNhOcxNzcXp06dwtChQ9Xiqqrz6dOnKC0t1bhwRElJCZRKpcZtb3r58iWA14tCqHTs2BHXrl3DgwcP0KRJE6H84cOHAP7zQ1B1k+jJkydFydPDhw9x//59jB07tsZ13r17F3fu3IG9vb1aW729vWFqaiqaqeHp06fw9PREUVER9u3bJyR5mmzfvh1jxoyBj4+P6MZPTYyMjODq6ir8nZmZCZlMhm7dulW6H/D6OX1zRodHjx6BiNReC9VNuBUtUKJCRLh9+zbat28vlDVt2hTnzp2Dh4eHaHaS8r766ivRDaeqH3E1ee3elJKSgqZNm6Jr166VtpkxVgvvtV+avXc3b94kADRo0CACQLNnz1aLKX9jGdF/LllrmkO0IuXnGX7x4gV169aNJBIJ/fvf/xbKDx48SABEc8qqlJSUiC5pl6/zTQBo/PjxGtsxevRo4e/AwECSSqV0/vx5tdjHjx8L/36bYRLlxwZXdPm5/Fyny5cvJwCiG7pyc3OFG4LeHO/9yy+/kK6uLn366adERDR16lSSSCR08ODBKtv5vsYM37lzR21e1UWLFqk9N1euXCFdXV2aMmVKpcf7448/SKFQ0IABA6psW1hYGOno6IjmM65unaWlpWRmZkbNmjUTzT38/PlzatiwIbVo0UIoe/Lkicbx8ap5ht+84Wzr1q0EgKZNmyaUlZWVUffu3cnCwkI0p3GLFi2oXbt2ovH9M2bMIIlEQpcuXapxnenp6bR161bRY8KECcLNa7t27RL2LygoIBcXF1IoFHTy5MlKn79Dhw6RoaEh9ezZU9T+6jh69Cjp6uqKhgaUlJRQTk6OWuyJEydIV1eXPv74Y6EsJiZG42dWNWb/zeFLb37WVVTfc7GxsUKZaoiF6ibDNxUWFlJBQUGV51Xd107l9OnTBIBmzpxZZd2MsZrjnmEtZ29vjw8++ADbt28HoPkS3JgxY5CTk4NevXqhYcOGuHPnDuLj4+Hs7IyWLVvW+thyuRw//vgj3NzcEBwcDFNTU3h7e8PNzQ2hoaFYuHAhzp49C09PT+jr6+PatWvYvHkz4uLi4OvrW+vjlrdo0SIcOHAAXbp0wSeffIJWrVohJycHp0+fRmZmpugS6X+bp6en0CsfGhqKgoICfPPNN7C0tBQNJXj16hVGjx4NR0dHzJ8/HwAwZ84c7Ny5E0FBQTh//rzaVExvatKkiajX8G3NmzcPAHDx4kUAr5fcPnLkCACILpEHBATg0KFDojldw8PD8c0336B///745z//CX19fcTGxsLKygqfffaZ6DitWrXCsGHD0KhRI9y6dQsJCQmwsLDAqlWrRHGLFi3ChQsX0KVLF+jp6WHbtm346aefMG/ePLUrIdWpU1dXF//85z8xY8YMdO3aFQEBASgrK8PatWtx//59fP/990Ls999/j1WrVmHw4MFo0qQJnj9/jvT0dGRkZGDgwIGiOY0HDRoEDw8PLFy4ENnZ2WjXrh22bduGI0eOYPXq1aI5jZcsWQJvb294enpixIgRuHDhAlasWIExY8aIPpfVrVPTimaqnmA3NzfRVGD+/v749ddfERwcjMuXL4vmCzY2NsbgwYMBAHfu3IG3tzckEgl8fX3VlrVu27atMAzpzp078PPzg7e3N6ytrXHx4kWsWrUKbdu2xYIFC4R9CgoKYGtri+HDh8PJyQlGRkY4f/48EhMTYWpqipkzZwqxgYGBiImJQWhoKM6cOQMnJyecPn0a3377LZycnIT5joHXVz2GDx+ONm3awNDQEEeOHMHGjRvh7OwsDGMBgI8//hipqakICwvDgQMH0K1bN5SVleHKlStITU0V5jyvTHVfOxXVkLHKhkgEBgZi3bp1uHXrljDnMmOsmt53Ns7eP1XvR0U3/aSlpZGnpydZWlqSVCqlRo0aUWhoqOjGn+qoqBf3zz//JAcHBzI0NBT1IK5Zs4Y6duxIMpmMFAoFtWnThqKioujhw4dV1klU/Z5hotc30o0fP55sbW1JX19fuGlmzZo1Qsz76BkmItqxYwe1bduWDA0NqXHjxhQdHS2soKXqGZ48eTLp6urSiRMnRPWdPHmS9PT0aNy4cdVu87uASm4wepObm5taGdHrmzl9fX3JxMSEjI2NacCAAaLVylRGjBhBtra2JJVKqX79+hQWFqbxLv1du3YJPZlyuZy6du1KqampGtte3TqJXs824OLiQmZmZiSTyahLly5qN2v99ttvNGzYMGrUqBEZGBiQkZERdejQgWJjYzXOCvD8+XOKjIwka2trkkql1KZNG/r+++81Hn/r1q3k7OxMBgYG1LBhQ5oxY4ZoCr/a1Pmmit6nqikNNT3enH5P9f6v6DFr1iwhNicnhwYNGiS00d7enqZMmaJ2U15RURFFRkZS27ZtycTEhPT19cnOzo5CQkI0Tit2//59Cg4OJnt7e5JKpWRjY0OffPKJ2kpzY8aMoVatWpFCoSB9fX1ycHDQeHyi1zdKRkdHk5OTExkYGJC5uTl17NiR5syZI5qGrTLVfe3KysqoQYMGVa7CN3ToUJLJZKIrZ4yx6pEQVbLMDmOMMcb+z7OyskJAQACWLFnyvpvC2P8cToYZY4yx/2EXL16Eq6srbt68Wa0VABljYpwMs7emWlq1IjKZDKampv+l1vx3FBcXVzmW2NTU9C+fDYMxxhhjb4eTYfbWKpteCPjP/Jp/JwcPHkTPnj0rjUlMTERgYOB/p0GMMcYYqxWeTYK9tYyMjEq3v7lIwt9Fu3btqjxvJyen/1JrGGOMMVZb3DPMGGOMMca0lk7VIYwxxhhjjP09cTLMtNrt27chkUj+dmOaGWOMMVY9nAz/TXh7e0Mul+P58+cVxvj7+0MqleLp06fv7LiNGzfGgAED1MrXr18PXV1d9O3bF69evXpnx2P/m5RKJZKSkuDt7Q1bW1sYGRmhdevWmDdvXo3eH8eOHUP37t0hl8thbW2NiRMnoqCgQC3u2rVrGDFiBBo2bAi5XI4WLVpg7ty5KCwsVIstLi7GggUL0KJFCxgaGsLKygr9+/fH/fv3RXFFRUWYMmUK6tevD5lMhi5dulQ5bjw3NxeWlpaQSCRIS0urdTt/+uknhISEoHXr1tDV1a32CmPJycmQSCQwNjZW2xYYGAiJRKL2aNGihVrs/Pnz4e3tDSsrK0gkEsyePbvCY27cuBEdOnSAoaEh6tWrh5CQEGRnZ6vFaTq2RCLBokWL1GIzMzPRs2dP1K1bF2ZmZnBxccH69esrPfcjR44IdWo6fnXbmZeXh6ioKDg6OkImk8HOzg4hISG4e/dupcevqaysLEydOhU9e/aEQqGARCLBwYMHK4yv7meBMVY1voHub8Lf3x87d+7E1q1bERAQoLa9sLAQ27dvR9++fVGnTp2/tC3JyckIDAxE7969sW3bNhgaGv6lx2P/9xUWFiIoKAhdu3ZFWFgYLC0tcfz4ccyaNQv79u3D/v37q5yV5OzZs/Dw8EDLli0RGxuL+/fvIyYmBteuXcOePXuEuHv37sHFxQWmpqaIiIiAhYWFcKxTp04JS48DQElJCfr3749jx47hk08+Qdu2bfHs2TOcOHECeXl5aNiwoRAbGBiItLQ0TJo0CY6OjkhKSsJHH32EAwcOoHv37hrb/K9//UtjAl7TdqakpGDTpk3o0KFDtW9ILSgoQFRUVKXLcBsYGODbb78VlWmaBnHGjBmwtrZG+/btkZ6eXmF9CQkJCA8Ph4eHh/AaxcXF4eTJkzhx4oTad0GfPn3Uvq/at28v+nvHjh0YPHgwXF1dMXv2bEgkEqSmpiIgIADZ2dmYPHmyWjuUSiUmTJgAIyMjvHjxotbtVCqV6NOnDy5duoTw8HA0a9YM169fx8qVK5Geno7Lly9DoVBU+HzUxNWrVxEdHQ1HR0e0adMGx48frzC2up8Fxlg1va+l79i7VVhYSAqFgry8vDRuT0lJIQC0cePGd3rc8sshb9iwgXR1dal379708uXLd3IMpVJJhYWF76Su8mqzxDKruaKiIjp69Kha+Zw5cwgAZWRkVFlHv379yMbGRrTc7TfffEMAKD09XSibP38+AaALFy6I9g8ICCAAlJOTI5RFR0eTvr6+2jLW5Z04cYIA0JIlS4Syly9fUtOmTcnV1VXjPufPnyc9PT2aO3euxiW5a9LOBw8eCEv19u/fX7TkcUWmTJlCzZs3J39/fzIyMlLbPnr0aI3lmqiWOX7y5InaMsoqRUVFZGZmRj169CClUimU79y5kwDQ8uXLRfGoYLn08vr06UP169enV69eCWUlJSXUtGlTatu2rcZ9EhISqE6dOhQZGam2vHlN2nn06FECQCtWrBDVr1oOfcuWLVW2v7ry8/Pp6dOnRES0efNmAiBanv5N1f0sMMaqh4dJ/E3IZDL4+Phg3759ePz4sdr2lJQUKBQKeHt7C2UbN25Ex44doVAoYGJigjZt2iAuLq7WbUhNTcWoUaPg7u6OHTt2qPUCKZVKLFu2DE5OTsLl6NDQUDx79kwUpxp6kZ6ejk6dOkEmk2H16tUAXl9ajYiIwLZt29C6dWsYGBjAyckJe/fuVWvPgwcPEBwcDCsrKyHuu+++q/X5qRw8eFDonZozZw4aNGgAhUIBX19f5OXloaioCJMmTYKlpSWMjY0RFBSEoqIitXq+//57dOzYETKZDBYWFhgxYgTu3bsnijl8+DCGDRuGRo0awcDAALa2tpg8eTJevnwpigsMDISxsTEePHiAwYMHw9jYGPXq1cM///lPlJWVvfU5vy2pVIoPPvhArXzIkCEAgMuXL1e6f35+PjIyMjBq1CiYmJgI5QEBATA2NkZqaqooFni9PO2bbGxsoKOjA6lUCuD1+zEuLg5DhgyBi4sLSktLK+zFTUtLg66uLsaOHSuUGRoaIiQkBMePH1d73QAgMjISQ4YMwYcffljhOVWnncDr6Qn19fU11qPJtWvXsHTpUsTGxkJPr/ILgGVlZUJbKlKdYRkXLlxAbm4uhg8fLurlHzBgAIyNjbFx40aN+718+bLSoTL5+fkwNzeHgYGBUKanp4e6detqXNQmJycHM2bMwNy5c2FmZvZW7azsNQKgdvwTJ06gb9++MDU1hVwuh5ubG44ePVrhub1JoVDAwsKiyriafBYA4MqVK+98SAdjfzecDP+N+Pv7o7S0VO3LMCcnB+np6RgyZIjw5Z2RkYGRI0fC3Nwc0dHRWLRoEdzd3av9xV3eDz/8AH9/f/To0QM7d+7U+J9UaGgoPv/8c3Tr1g1xcXEICgpCcnIyvLy8UFJSIoq9evUqRo4ciT59+iAuLg7Ozs7CtiNHjiA8PBwjRozA4sWL8erVKwwdOlQ0FvrRo0fo2rUrMjMzERERgbi4ODg4OCAkJATLli2r1TmWt3DhQqSnp2Pq1KWLO9EAACAASURBVKkIDg7Gli1bEBYWhuDgYPzxxx+YPXs2fHx8kJSUhOjoaNG+8+fPR0BAABwdHREbG4tJkyZh37596NGjB3Jzc4W4zZs3o7CwEOPGjUN8fDy8vLwQHx+vcShMWVkZvLy8UKdOHcTExMDNzQ1fffUV1qxZU+W5FBQUIDs7u8pHXl7e2z9xb1CtXljVErLnz59HaWkpOnXqJCqXSqVwdnbGmTNnhDJ3d3cAQEhICM6ePYt79+5h06ZNSEhIwMSJE4VhA5cuXcLDhw/Rtm1bjB07FkZGRjAyMkLbtm1x4MAB0XHOnDmDZs2aiZIPAHBxcQHw+rL1mzZv3oxjx45h8eLFFZ5TddtZG5MmTULPnj3x0UcfVRpXWFgIExMTmJqawsLCAuPHj6/1uFPVDz5Nn32ZTIYzZ85AqVSKypOSkmBkZASZTIZWrVohJSVFbV93d3dcvHgRM2fOxPXr13Hjxg18+eWXOHnyJKKiotTiZ86cCWtra4SGhr51Ozt16gQjIyPMnDkT+/fvx4MHD3Do0CFERUWhc+fO6N27t7Dv/v370aNHD+Tn52PWrFlYsGABcnNz0atXL/z6668VPW01VpPPAgC0bNlS4/cFY+wN77trmr07paWlZGNjo3bZdtWqVWqXzyIjI8nExIRKS0vf6ph2dnZUv3590tPTI3d3d3rx4oXGuMOHDxMASk5OFpXv3btXrdzOzo4A0N69e9XqAUBSqZSuX78ulJ07d44AUHx8vFAWEhJCNjY2lJ2dLdp/xIgRZGpqKgy7qM0wiQMHDhAAat26tXDpmoho5MiRJJFIqF+/fqJ4V1dX0WXt27dvk66uLs2fP18Up7qs/ma5puEhCxcuJIlEQnfu3BHKRo8eTQBo7ty5otj27dtTx44dqzwn1f5VPdzc3KqsqyZ69+5NJiYm9OzZs0rjVJeNf/75Z7Vtw4YNI2tra1HZl19+STKZTNT26dOni2K2bNlCAKhOnTrk6OhIiYmJlJiYSI6OjiSVSuncuXNCrJOTE/Xq1Uvt2BcvXiQAtGrVKqGssLCQGjVqRF988QUR/ef9Un6YRHXbWV5VwyR27dpFenp6dPHiRSKqeDjE1KlTacqUKbRp0ybasGGD8B7o1q0blZSUaKy7smEST548IYlEQiEhIaLyK1euCOf25ufxgw8+oGXLltH27dspISGBWrduTQBo5cqVov0LCgrIz8+PJBKJUI9cLqdt27apteHcuXOkq6srfNfNmjVLbZhETdu5a9cusrGxEb1GXl5e9Pz5cyFGqVSSo6MjeXl5iYZeFBYWkr29PfXp00fj81mRyoZJ1PSz8Fd8bhn7u+Eb6P5GdHV1MWLECCxduhS3b98WLm2mpKTAysoKHh4eQqyZmRlevHiBjIwM9O3b962Om5OTg9LS/8femcdHUaT//0MgkwmEJFwhciPIcsihQSK6LupGsizrsYKoi4KwoiigK18BcRXXC1gXFRWUVRFQFDxxXZBLxBMUCfITdEVd5ZRwKEkIa0hI+vdH6ElPTx/V3dXd1T3P+/WaVzLd1VXV1T1Vn376qadOoE2bNprWFqDWUpaVlYWLLroobsZ2Xl4eMjIysH79evzpT3+Kbe/YsSMKCws18yooKECnTp1i33v16oXMzEx8//33AABJkvD6669j2LBhkCQprrzCwkIsXboUW7ZswbnnnuvovEeMGBH36jo/Px9LlizB6NGj49Ll5+fj8ccfx4kTJ9CgQQO88cYbqKmpwbBhw+Lqlpubi9NOOw3r16/HnXfeCSDeenXs2DH88ssvOOeccyBJEj7//HO0a9curqyxY8fGfT/vvPNMZ90DwOTJk3HNNdeYpmvSpIlpGlamT5+Od955B08++aTm62wlsluI8lW5TDQaTXAb6dChA37zm99gyJAhaNasGVasWIHp06cjNzcX48ePB4CYBfTo0aP4/PPP0bZtWwDAhRdeiM6dO+Ohhx7C4sWLY+Xrla2sHwDMnDkTVVVVsWtoBEs9rVBZWYnbbrsNY8eORffu3Q3TzpgxI+77VVddhS5duuCvf/0rXnvtNVx11VWWym7evDmGDRuGRYsWoVu3bvjjH/+Iffv2YcKECUhNTUVVVVVcO6nfQo0ePRp5eXm48847cd1118Xu/bS0NHTp0gVDhw7F5Zdfjurqajz99NO45pprsHbtWpx99tmxPG655RYMGjQIAwcO5FbPFi1a4IwzzsD48ePRo0cPbN26FQ899BBGjRqFV199FUDtm4Fvv/0Wd911V0K0nt/+9rd44YUXUFNTg5QU5y9jrf4WJFpXiyDM8VeLE7zZvHmzBCBmXdyzZ49Ur1496dZbb41Ld+DAAalbt24SAKl169bSqFGjpJUrV1ouT55Ad9NNN0kApFtuuUUz3aBBgwwtjpdccklcnlpWOEmqtXKMHTtWsx7XXXdd7NyMyoJi4osTy7B6MuKCBQskANInn3wSt122TsnWJrmt9D7KSUG7du2SRo4cKTVp0iQh3aJFi2LpRo4cKUWj0YS6ymV7xdGjR6X9+/fHPgcPHtRMt3TpUk3rnB5WrGFLliyR0tPTpT179sSlu+6666SGDRvGroOc5wUXXJCQ5wUXXCB17Ngx9p3VMvzDDz9I6enp0nPPPRdLo2cZZq2nGiPL8MyZM6UmTZrEJmJJkrWJcv/73/+klJQU3etiZBmWJEkqKSmRLrnkkrj79JprrpEuv/xyCYDpGwD5LdaHH34Y23bjjTdKvXv3lqqrq2PbKisrpdNOO03q169fbNvSpUul1NRUaceOHbFtWpZhK/X873//KzVs2FB67bXX4o5fuHChBEB6++23JUmSpJdfftm0z/n555+l48ePx/0+9u/fr/l2jqdlmCAIc8gyHDLy8vLQtWtXLFmyBHfeeSeWLFkCSZIwfPjwuHQ5OTnYunUrVq9ejZUrV2LlypVYsGABRowYgUWLFlkud86cOThy5Agef/xxNGnSJCEOaU1NDXJycvDiiy9qHt+iRYu473oWZqDWAq6FdNICIvv7XXPNNRg5cqRm2l69eunmz4pePVjqV69ePaxcuVIzrRwTtrq6GhdddBF+/vlnTJkyBV27dkWjRo2wb98+XHfddQn+l3rlslBaWppgUdIiEokYTvKZNWsW7r333tj39u3bY+fOnXFp1q5dixEjRmDw4MGYN28eU/3kCUv79+9P2Ld///64cGNPPvkkzjjjjLiwaEBtLO6FCxfi888/R0FBQewY9eQooPb3ofS9POWUU7Bv3z7NsgHE8po2bRpat26N888/P3besl/0oUOHsHPnTrRr1w4pKSnM9WSltLQUDzzwAG6++WaUlZXFJn+Vl5dDkiTs3LkTDRs2RE5Ojm4e6enpaNasGX7++WfmcpVkZWXhX//6F3bv3o2dO3eiffv2aN++Pc455xy0aNHC9A2AbJ2Xy6+srMT8+fMxefLkOKtqamoqBg0ahDlz5qCyshKRSASTJk3CFVdcgUgkEmt72f9+z549qKysjF0n1nouXLgQFRUVCbHU5YnIH3/8MQYNGhT7Lf7jH/+Im9+gJCMjAx9//DEuuOCCuO0//PADc9xowNpvgSAINkgMh5Dhw4fj7rvvxhdffIGXXnoJp512Gs4666yEdJFIBBdffDEuvvhi1NTU4Oabb8Y///lP3H333ejcubOlMlNSUvD888+jtLQU9957L5o2bYpbbrkltr9Tp0545513cO655xoKXR60aNECjRs3RnV1tSUx4RWdOnWCJEno2LEjunTpoptu27Zt+Oabb7Bo0aK4CTBmCz3Y4dZbb2V6CBowYIDhQgAjRoyIi7mrNdv+j3/8I/r27YtXXnnFNNKBzOmnn44GDRpg8+bNGDZsWGx7ZWUltm7dGrftwIEDmu4c8iTNEydOAAB69uyJ1NRUTZH7448/xj2g9enTB+vXr0dZWVncJLpPP/00th8Adu/eje+++w6nnnpqQp4333wzAODIkSPIzs5mricrR44cQXl5OR566CHNiXsdO3bEpZdeijfffFM3j6NHj+Lw4cMJD6dWadeuXcyFp6SkBEVFRRgyZIjpcbKrk1z+Tz/9hBMnTmhGRKmqqkJNTU1s3549e/DSSy9pTsI788wz0bt374SJjmb1PHDgACRJSihffY1kt63MzEzDPqd3794Jv9/c3Fzd9FpY+S0QBMEGieEQIovhadOmYevWrZqrRf30009xi2+kpKTErKVaYcBYSE1NxWuvvYaBAwfiL3/5C5o0aYJrr70WADBs2DA8+eSTuP/++zF9+vS4406cOIHy8nJTqxEr9evXx5AhQ/DSSy9h+/btOP300+P2Hzp0yPFg74TLL78cU6dOxb333ovFixfHhXeSJAk///wzmjVrFrP0SgqfP0mSHIW/04OXz/Cpp56qKQSB2vBpgwcPRocOHbB8+XLDh6Kvv/4aDRs2jAmVrKwsFBQUYPHixbj77rtjCx288MILKC8vxxVXXBE7tkuXLlizZg2++eabuIeNJUuWxN3njRs3xu9//3ssX74cX3/9dWzltf/85z/YsGFDXDSCoUOHYtasWXj66adx++23A6j9nSxYsAD5+fkxi+YDDzyQsIrZ9u3bcffdd2Py5Mno379/LEoEaz1ZycnJwbJlyxK2P/7449i4cSOWLFkSsypWVFSgqqoqYcGI+++/H5IkOZ5HoGTq1Kk4ceJE3OIYWr/Bo0ePYvbs2WjevDny8vJi55SdnY1ly5bhvvvui4WbKy8vx7///W907do1dh9pnfvSpUvx8ssv4/nnn0+wwLPUs0uXLpAkCa+88gquu+662PYlS5YAqFsgJC8vD506dcKsWbPwpz/9KWHFP/l8mzRp4vgB3cpvgSAINkgMh5COHTvinHPOia1gpXaRAIDrr78eP//8My688EK0adMGu3btwhNPPIE+ffqgW7dutstu2LAhVqxYgQEDBmD06NHIysrCJZdcggEDBuDGG2/EjBkzsHXrVgwcOBCpqan49ttv8eqrr+Kxxx7D0KFDbZerZubMmVi/fj3y8/MxZswYdO/eHT///DO2bNmCd955x/ZrYB506tQJDzzwAKZOnYqdO3fisssuQ+PGjfHDDz9g2bJluOGGG3D77beja9eu6NSpE26//Xbs27cPmZmZeP311xPiMvOge/fuphOunHD06FEUFhbiyJEjmDRpElasWBG3v1OnTujfv3/se7du3RKs0A8++CDOOeccDBgwADfccAP27t2Lhx9+GAMHDowTb5MmTcLKlStx3nnnYfz48WjWrBmWL1+OlStX4vrrr497jTx9+nSsW7cOF154YexNxuOPP46mTZvGTYDLz8/HFVdcgalTp+LgwYPo3LkzFi1ahJ07d2L+/PmxdFor0ckPeWeddRYuu+wyW/X84osv8NZbbwEAvvvuu5hLBFBrbbz44ovRsGHDuPxl3nzzTWzatCluX3FxMc444wxcffXVsYeA1atX4+2338bvfvc7XHrppXF5vPDCC9i1a1csDvMHH3wQK//aa69F+/btAdT+7rZv3478/Hw0aNAAb775JtasWYMHHngg7u3U3Llz8eabb+Liiy9Gu3btsH//fjz33HPYvXs3XnjhhZjorV+/Pm6//XbcddddOPvsszFixAhUV1dj/vz52Lt3b2yCIwDNc5ctwYMGDYoL38daz+uuuw6zZs3CjTfeiM8//xw9evTAli1b8Oyzz6JHjx6xONkpKSl49tlnMWjQIPTo0QOjRo1C69atsW/fPqxfvx6ZmZn497//nVA/NXKbfvnll7F2/+ijjwDUrgIow/pbAGpjs5u90SGIpMcnX2XCZebOnSsBiJtgouS1116TBg4cKOXk5EiRSERq166ddOONN0r79++3VI56BTqZ4uJiqXPnzlI0Go2bBPL0009LeXl5Unp6utS4cWOpZ8+e0uTJk6Uff/zRNE9J0l+1qn379tLIkSPjth04cEAaN26c1LZtWyk1NVXKzc2Vfvvb30pPP/10LI2TCXTqCVHyBLrPPvssbrveJJ7XX39d+vWvfy01atRIatSokdS1a1dp3LhxcROAvvrqK6mgoEDKyMiQmjdvLo0ZMyYWSk5ZZ71JUl5PoNNDbme9j/raQScc1Icffiidc845UjQalVq0aCGNGzdOKisrS0j36aefSoMGDZJyc3Ol1NRUqUuXLtKDDz6oGTKsqKhIKigokBo1aiQ1btxYuvTSS6VvvvkmId0vv/wi3X777VJubq6UlpYmnXXWWZrh/9QYhVZjrad8b7G0nRqte+PIkSPSNddcI3Xu3Flq2LChlJaWJvXo0UOaPn16XLhAmQEDBuiWr/x9L1++XOrXr5/UuHFjqWHDhtLZZ58tvfLKKwn5rVmzRrroooti552dnS0NHDhQWrduneY5vPjii1K/fv2k7OxsKT09XcrPz0+Y1KaF3m+PtZ6SJEl79+6VRo8eLXXs2FGKRCLSKaecIo0ZMyYhT0mSpM8//1y6/PLLpWbNmklpaWlS+/btpWHDhumelxqj34galt/C0aNHJQDSVVddxVQ+QSQr9SSJ4q4QBEEQRNh4++238Yc//AH/7//9P/Ts2dPv6hCEsNAKdARBEAQRQtavX4+rrrqKhDBBmECWYUITORyUHunp6cjKyvKoNt5QWVlp6kuclZXlejQMgiCIMPLBBx/gH//4B4qKirB//34sW7ZM09ebFx06dMCuXbsStt98882YO3eua+USwYMm0BGayLPO9Rg5ciQWLlzoTWU8YsOGDQkxQNUsWLAgblY5QRAEwcaxY8fQu3dvjB49Gpdffrnr5X322WdxYfG2b9+Oiy66iCJuEAmQGCY0MYtlG8bA7loxQNX06NHDo9oQBEGEi0GDBmHQoEG6+48fP46//vWvWLJkCUpKSnD66afj73//O84//3xb5anD982cOROdOnXCgAEDbOVHhBcSw4QmIi5W4TY8YoASBEEQ9hg/fjy++uorLF26FK1atcKyZcvwu9/9Dtu2bcNpp53mKO/KykosXrwYEydOjIvtThAA+QwTBEEQBOEx9erVi/MZ3r17N0499VTs3r077s1jQUEB+vXrl7BYk1VeeeUV/OlPf0rInyAAsgy7Sk1NDX788Uc0btyYnkQJgiCIpEWSJBw9ehStWrVCSkpiIKtt27ahuro6YYn648ePx1ZL/frrr00XhZoyZQpmzpyZsH3+/PkYNGgQCWFCExLDLvLjjz/GlmklCIIgiGRnz549mktjl5eXo379+igqKootRS8jL2996qmn4j//+Y9h/rJwVrJr1y688847eOONNxzUnAgzJIZdRF4z/v339yAjI9N2PmlpbOmOH7ddhOWyeJdrt2w36iHjtD5W4F33ZMbL6+YnQblnRL4ebrShn30oK3aviZN6lpeXYcCAtrFxUc0ZZ5yB6upqHDx4EOedd55mmkgkEls+3AoLFixATk4OBg8ebPlYIjkgMewismtERkambTEcjbKlq6gAUlNtFWG5LN7l2i3bjXrwqAsrFRV1//Oqe7Lh1bUSEaWmUN5LIiLqdWrc2J22s3q+btXDCDvXhEc9t23bFrP0/vDDD9i6dSuaNm2KLl26YPjw4RgxYgQefvhhnHHGGTh06BDWrVuHXr162RayNTU1WLBgAUaOHIkGDUjyENrQBDoXKSsrQ1ZWFoqKSm2JYStC2Cl2hTAPeAhhXngxaIsuXERGVFElAkG5r0S8hiIIYrfqYYTda2GnnuXlZcjL016oSY5bX1VVhQceeADPP/889u3bh+bNm+Pss8/Gvffea3sVvTVr1qCwsBA7duxI8EcmCBkSwy7iRAyLLIRFEp8i1YWFoAgWERBRNAUB0e8xka8r77bj3bdGo/7XUcZqPWQxXFpaisxM+26DBOEG9M5AQEQWwjxJJiEskkDROle/6yeyQAoaclv6fU2DCG+xWVFh7d5mKZ/39bVaR4IIIySGA0oyu0YESQQD/ooS1vNTpnO7vjTweoOooliuj6j3gd+CmBWe9bRTRzes1AThFySGBYOlQyIh7H89WAiK/59WPqK8iiWcI6poEdki6acgNipbnU+yCOKKigpUVlZyzzcSiSAq6k1IeAqJYYEgISx+HVgIqgjWytPOudDYIh5eWv7Dgp/uCFZEZtgFcUVFBdLTswHwjz+Xm5uLH374gQQxQWJYFLz6LQZRCJM1WBsv7hkWQUDjSLAQSRiLbB2W8UNsGpWnlQdP4S6aIK61CB8HMBB8JcsJFBevQWVlJYlhgsSwCHg1Yc4vISyCNdhpPczwSlR42WeznBONIcFGBL9iEsT88uBVT9EEcS0NAFBAdsIdEhcIJzzFCyEcjSa3ELZ7/ixUVHgjJNw8Bxn5XKyck9+WRYIPXtxfRnj1O3ICz/bhJVi14FVPcpEikgmyDAcAp0LY6zJ54LdrBgteiWA34T0o02DoDW4JIb9dKES3EotmIdaDl8XfroWYR9mJRMDXMlyPY15E0CEx7COidvphsAi7aQn2gqDW32r+ov4GggrPBxO/XCiCIIgBd90RWEW3WVvxEO+iXw+C4AGJYZ/wyj3CKn4LUb/LNyKIQthvC78ZWvWjgZcPvNrWj9BsosciBsQJWeeFILaDKO1DECyQz7APeBkFwAp+C1G/yzciSH7BVv1+RSPIdRcdu/eGfG+KLE79gNfv1e08eEzYI4gwQ5ZhgbHbAfkZPs0OIotgIDi+wWEbsIJgHfQLXq+/5byslq083k2C8Io+KBZQp/X0P8IE+QwT7kGWYY8RsWP3c7KayELYy0gRdrAT/YEIDzyjBjixFhNiWF69CIVIESaIsEJiWFC8tArzIEzleikurdY/2cQvDaTG8BakdkWxmwTlfhfB1z8I7UQQIkJi2EO8WlzDCn5aZv1YRMQML9veSv3tCgK19ZisyeGE92+BrMT28HvOBEs+IlixCUI0yGc4RNixMnpdJo+ygzxJTsbpkqy8jhPZL1fEOokMb99VO/dGUPxn3YSHT7Xb7eiH/7BzeK9AJ3HMiwg6ZBn2CNEGdhLCdYhmJXVqBQ4Dov1egoIIb0tYrcRW31AE7f72e0U/M7ysH/2eCdEhMSwYQfEVDpMQFgGnrguitasTRKtP0BDlgdGqG1AYCbMgDus1I5ITcpPwgLQ0v2sQj1++uqIJNr86c/W5iFIPIjy49Zrd6utxo3rYrWMQwq0pses24dXqcV64tvDJP3LyQxD8IctwCAiCBUYkISzS61avQioB8QsniComRK1XEBHFt97KxGErLhNuw7ufMPvd6S3L7BRR+jqCEBmyDAtEEJ7OvY4lLEK4Ih7onQcPq4za8kSCkpAR3UKstZ01bzctxMo6Kf/nUZ6/C1f4VwZBiAyJ4YAT5kkQYRfCyv0iLz6STPhxn7h93UgQW8OorYL6wMlSb6v3SdDagCCMIDGcJPjhJ5zsFmGRQ1Lp1S3ZrEMinK+6Dm6IDNEFMY+8eWDVTcOr+nnVP7hRDr/8UkGh1Qi3IDEcYLxaxIMswtawW383BzzWOokyuc8NgnIuRvV08tsQWRAH9TV90CbziTKhjiBEg8SwQIj9VB6Mcv2sA09/QlHcJrwUx/L9L8oKWSJY6tXouRlYKcctQWylLjwFMU9BaqcOXgliXtfOqSAOkvgnCFYomkSISdYJc15Hi3AjOoNTC6BbA5Y6IoXTCBVax2j5j1r5WIVXPk5wUger6d0UM7x9TlnPze+Hb6/uGV7XjqWuWr9rEsLA3Llz0aFDB0SjUeTn52PTpk26aauqqnDfffehU6dOiEaj6N27N1atWpWQbt++fbjmmmvQrFkzpKeno2fPnti8ebObp0GoIMuwYLBaBr2yRFhFBCHsFaJNfBJhoHIiiPVm8PPGTt7l5fzrAQAZGcb7rfoTs1opRXkVLko9lDipkxe+xH60mQh9CxAFwDNov3Vb4Msvv4yJEydi3rx5yM/Px+zZs1FYWIgdO3YgJycnIf1dd92FxYsX45lnnkHXrl2xevVq/PGPf8SGDRtwxhlnAACOHDmCc889FxdccAFWrlyJFi1a4Ntvv0WTJk0cnyHBTj1JksiL3CXKysqQlZWF7dtL0bhxpuXjnfgOJuOEuTAJYRlWCw4LPF0w3MBPFyG3xK5TzMQyq/DVw0obKYW2meiz8vvQehOgh1k0BF6I4qakB6/fihf9mFzX8vIy5OVlobS0FJmZ7OOhPI4CE8BXDB8H8ISl+uTn5+Oss87CnDlzAAA1NTVo27YtJkyYgDvuuCMhfatWrfDXv/4V48aNi20bMmQI0tPTsXjxYgDAHXfcgY8//hgffvih81MibEOWYYFx4kPnNX4K4TCKYICvEGbNz0/s+mtaxYrw9dsCp1VXpUBW1s8sQojWfqttriVc9Vxd7PoPG9XJKF+/fYe16iPnxRsRLepBpaysLO57Wloa0jSWja2srERRURGmTp0a25aSkoKCggJs3LhRM+/jx48jqroB0tPT8dFHH8W+v/XWWygsLMQVV1yB999/H61bt8bNN9+MMWPGODktwiLkMxwwzHwzRbdo8C7LqwHBTT9cNVb9RZMFKz615eX6H5Z8zfK36sfMmj9LOr3zMau33j4ev0G9c9FCT5TzqJOIvwe36hS0t2mi0rZtW2RlZcU+M2bM0Ex3+PBhVFdXo2XLlnHbW7ZsieLiYs1jCgsL8cgjj+Dbb79FTU0N1q5dizfeeAP79++Ppfn+++/x1FNP4bTTTsPq1atx00034ZZbbsGiRYv4nSRhClmGPeD4cSA1ld8EIz38EsJ2y3XSmSezNVh07EagMBJxerhh5fXyGrDODTASsco2kK3GRhZjtyyWWpZZo20s564nsoMUvQHwxpfYLl61p3N4xxmuAQDs2bMnzk1Cyypsl8ceewxjxoxB165dUa9ePXTq1AmjRo3Cc889V1eLmhr07dsX06dPBwCcccYZ2L59O+bN/u4p1QAAIABJREFUm4eRI0dyqwthDIlhD3Gr0/HTfyzMQphEsD14uvZobdcTwE5e9/NO7wTlfWckgrUEr5EwNhLFvPzJWQWxXC6rewRLOW7A2x2Bd729DLcWVjIzM5l8hps3b4769evjwIEDcdsPHDiA3NxczWNatGiBN998ExUVFfjpp5/QqlUr3HHHHTj11FNjaU455RR079497rhu3brh9ddft3E2hF1IDHuMqJ2OiHVSQ9Zg/8r14/5Q1s+OAHZTHNvNQxYvdlyd9ASrlqgE6tqMRRTL24zEFavwYhHETssIMrytxCSIvSESiSAvLw/r1q3DZZddBqDWqrtu3TqMHz/e8NhoNIrWrVujqqoKr7/+OoYNGxbbd+6552LHjh1x6b/55hu0b9+e/0kQupAYDhjKjtTvQcNLqzBZg/0t1+i1u1PU9dHykTXar7fNyn5ex7DmyZo3i5XYyLoajWqLYpaoDCzl6aEl+LTKdSPCiajWVzU86ynCeOA+kZMfXlgPpDVx4kSMHDkSffv2Rb9+/TB79mwcO3YMo0aNAgCMGDECrVu3jvkdf/rpp9i3bx/69OmDffv24W9/+xtqamowefLkWJ633XYbzjnnHEyfPh3Dhg3Dpk2b8PTTT+Ppp5/mc5oEEySGPYaXewDPjk909wgSwmKVyWsQZxG16gliVo+3Wr5TrOZpJ0SinkA2EsZqUaxnqVVu8ysUn7reRi40Xv1mgyCIeSBafUTjyiuvxKFDhzBt2jQUFxejT58+WLVqVWxS3e7du5GSUheXoKKiAnfddRe+//57ZGRk4Pe//z1eeOEFZGdnx9KcddZZWLZsGaZOnYr77rsPHTt2xOzZszF8+HDPzy+ZoTjDLiLHRywqKkVGRp1PkkiCkIRwsEUwa93daEer7WbFpcHIGswiis3Ks4uIrjpm0Rm0/leGZ9NLq4S1zVnqp1ee3jU2KovFws0TkfphLfycP2JERQWPOMN3gH+c4ZmW60OEE7IMJzGih1ALkxAOkkuEV3mzTI6zKoKtvMIXHTOrsFY6tTXXzMoqW4mV+43EtR03LSNro56/sojWYbO6OIGXHzH5DxOEPUgMe0zQOxivhEQYhLDb52DnFbuf6NVHL/av3nfe7hJBwmjimXq/mbiUXSfMVrlTl+NUEPMWWmERxACfcwmv/3Aq+PoM13DMiwg6tOhGkiKqe0RFRbCFsFz/cA5G1lC2hZYbhNmiEVrHmgnhZG17rfPWakv5f+Vf+RroWaJZ3RxY6mj2P49yzPLlgZviW5T7V5R6EIQXkGU4AAS5U7I7WLpFEPwIWaxDIluFWdwf9NLx3mZWBytW0SDA6jKhhVG0CavuF1YtznrliIzIFmLRrMPKCZwEISJkGU5CvLKyWJncFUQh7Ea9WfIT1dVG3R5Wrb9qa6GZtVO93Qi9gTjMA7SZpVidprxce7sSpaXY7D40ewDiea/7JfzCbiEWoQ4E4QVkGfYQEV71eRmKiAWvOlvePopu4dQiDHg/gGlZBY32s/j8suyzkkaPsFmG1WhNzJKtjup2U1rvjFwj1FZLvfyM6qTOn/VtiNVr7bU/MW+c1D98k+l4L8dczTEvIuiQGCZMcUNceSnYgiKEg4iRELbi62u2nbV8PTIyEkW6k9f4fsDz3tMStID+RDwlWhPh9ASx1vLQevVQ/i/aa34j3K6rCIKYIMIOieEkQgSrMIlg87z16i2SVZiXCHZaX704tVpYjZrgtD48MBKlPPJWRpZQlqXVVix+6nI+Wg8fSj9iPYGn56/M+obAr4eVsItOHm2bxjNEMEFwhsSwwIjQuVqtQ9iEsNfXIKxCmMVXlNWHVG9g1nr1zpIfC7zuJ6PwYlr1tVquXTcCI1cHrTpEUIlIFKhUhbqy4jKhLlurXK0HRVFdJUSdUBceoc57OWYKrUbUQWLYI/z2ufLCX5mEsJhl8ERPCNsRwXbOXTnBi4d/td3jeMSC5ZEny1sFJ768SiKoTMg0EgUQTRTEgLl12ApBEXRhFsTi+A4TBH9IDAsKzw7VK6uIHiSE2RDdKqwsw8wazFsEq+FtqbWbRlRxoOdeYdT2ev7CcSKooiIhE6UgVuevJYjDjqiCOAzlE4RbkBgOOXY7Ll6dOQlh/8vhgZYQtmoN5nW+vKyqrMe6ZYHmgZ7Q1RK2rPkoSRA/FRVASUn8gdEoIic/yI7E7dbyH5b/l5eC5ukqYcUX2U1EFMRBsa4ThB+QGA4xXglho4HUK3gMdDzFml0XAL2Z+2bHsewzEh2s+RsJYdFEsJXzdCJ4nYRn42n117LCqu9FK/emnE4+JlNZ18OH6wo9KYiRnY1oNGIaYSJZCKsg9s86nAaAZ8ESx7yIoENimHCEEx9FN+tgFd6CzWzQ4TFZSi8fve12Jh4pUQthq+4RdmEVwTwsxnZEL88yrKQ3uoeU+8xcFWxfJ9llIhqNNU4kN4qowofYKG/Zf1hrEh+rlVh0glhngkhGSAx7QJBCyljpuEkIx8NaF6evrnnlz5qHln+wX9Zgq9/1tulhZOV14tNtJ63VvIz8hJUiWSmO1fuM8i2riCAzO7tug+wPoVR80Sgys7NRUcFv1n9QXSVk3BLEyWkdJgh3IDEsICJNMLICCWFv4WH9NcuXRQjzFsEsglb53UwQs7ox2HWVcDoJjxdmAlD5v3IbywQ3+brGXCWUvsOym4Ti/6jOhLpkRTRBHPSyCYI3JIZDiBcWRb87QdGFsBX3BdY8zXBLCHshgq0KYPV35f9q8ctrApwfYjgunBkD6ri/WkJY/q7erhTG6vvgpEtwnQguKanzG1YK4cOHa63DuVEAEWRn1ybVE9x2Q60FEZEEcTDdN3jHGablmIk6SAwTAJx1jGQR9j4fdf2tnI/Ra2QZK0LYLl4JYLcn2ZnlYVXQOmncCLSPjagqqbbcKt1/9a5xNAqg5KRilgWx8uCMjFrFfPJ7NBqJ5cHit2zkL0yICV0vIiyQGBYMNyxsbkJCmD1/XlZhJ0KYNU/lNjMhbLV8Jy4PdgWw2/6+poLX6tMKTzQUSwQAotHY38xorVVZ1rVqD4jsbNRtkCNI7N0bX9+9e4Hc3Nr/s7OBaCbPKseKD55Fsw6yDhOEmJAYJmx1iH50okEQwl7jhhAuL9cWwE7cIuwKYCP/Xyei2my7Hoai16xRWBvNauOypNdLo2gAOVZwZnYU2dm1luNIRVmtMi4GyrLb1VmY9+4FNm8GOneuy7+4uPZTUQG0aYMIKqGMLOFkAY4wCbewCWLvrMOpJz+8OMExLyLokBgOEaIItLDD25/XSn5uCwIzIeyWCGZxf7DrQqH1XcayCwNg3AheC2KWdKwKVBEzOCZhS0qA774Dfv1rVFScnEC3dy/w0Ueo+s9/kFpSUieIDx+u3ReN1h4XjQLRHE3BxUNAGQk50V/fh0ncA+K3N0GYQWKYCASiWIXd7vCdCmOl7mGZmKT2EzYSwE6EsNb/VgWwFTGs/q4reu3eFCIIYjvBg43yVPpGyH+VvsFyms2bgc2b8SOApvv3o3FJCdChQ61rRHEx0KZN7GbKzK5Eicmkp2SaRKdEFEEsSj0Iwk9IDAuEkw7JrkgLQicYJCFs5HvrFDM3BbU20hMZWuehDqFmVwizWGu1xLBcT17iF9AQwE6dufVwIoxZ0/ASvmYO38pZbLLrw0lrcUUJgCjqHImVx8irZ2ggJ7fj/RF2ayNvIepnmyXD9SLCC4nhJIaEcDiw4oepbE8tXWRHCLslgI2Esd42UwHsVLgawcMibCXoL+s+ozbQ81+Qb4TDh2vdIKLR2qTZ8Y0eG0CUF0P5isECySqmRBDEvOrg7jVMBd/QauQzTNRBYjgEJOMAwoqXE+bslGUm+LTyVrs2GMHyClpLu6iFsLocs6WJ9f5quUDYFcOarg+spnleFlu7x7I+wdgR72bna3YDKW+IaBTIzo7FL66MZiLSvDnQvDkyf/gB6fXq1UWQiEa1V2kRCFEFtwiCmGfZgJjtTBB6kBhOUgQcpxIQpTMVpR6ANSFsJ28zVwwjtASwWgQbCWAj8evY5cFN/xWWvJxafM3223GJ0EKeRCeTnV3rA3zy8JISIOfXvwbKy9EkGq0Vwsobp02buIl4BDt+++6GSZAThFVIDAuC3U6IOht9RBD8ftfBLBqDHY2oZ921IoLNBDCT+OVlNTXLyy5mApjHRDqn56MVrFn56dwZyM1FcbEqTfPmQN++tW4UshjOza0Vz7GgxPo46be8Eo1+iDme5+anu4SyDnK+BCEyJIaTEL8FGguidJ6s9XCzTVkmy2lhJIStorfAhZ4YVopgFiEcJ36tCF+7PsB+iF8rZTutn5aq0bsJ1E8k2dl1q8llZ6OsQsNPMzs7PoJENFprFZYvuNrCLAhWf8/KJvTqdPy2ELsBn/PhvRwz+QwTdZAYJkIJj87Xy7HcLZ9kZd7qMpSWI/Wgr1eWXRGsZQHWFcC8rMBW0/H2O7FStt20RrDcVOoL2rx5TARXRjNRUlLnHhGrWm4uYjuULhGyxVjxXV7VLgx4aeX0c0KbW2L8+HH+eRIEL0gMBxgBDS9CEJTB1+7105qjpM5LLUqVmkd5jPyGW3m80QBqJIL19in/xgSwWUQDLdwQlG4KYBk3b0i7N5H6wsgXUBbCqqWZ5WaKRoGyiggyZXcI+WbJza07XhbEjGhFFTHC7d83i+t2kAQxQRDmpPhZ+MyZM1GvXj385S9/iW2rqKjAuHHj0KxZM2RkZGDIkCE4cOBA3HG7d+/G4MGD0bBhQ+Tk5GDSpEk4cSL+lcd7772HM888E2lpaejcuTMWLlyYUP7cuXPRoUMHRKNR5OfnY9OmTXH7WerCAy87vCB0riKIfCt1cNMN1U4eamOdrFtysiuRGa1ETnZlbJv8ORkgIPZdeZzeRzYEysfJxyjLjUaBzGglIqj9xBSW0Uc+ca3tyoYxy0OP8vK6j4io/XZ55KG+IeSLl5ERf+FPukXIa21UVOg0k3zTKG8elVUY0WiCu4FXi2u43Yd41Y/61ReK0AcnkurChyBq8c0y/Nlnn+Gf//wnevXqFbf9tttuw4oVK/Dqq68iKysL48ePx+WXX46PP/4YAFBdXY3BgwcjNzcXGzZswP79+zFixAikpqZi+vTpAIAffvgBgwcPxtixY/Hiiy9i3bp1uP7663HKKaegsLAQAPDyyy9j4sSJmDdvHvLz8zF79mwUFhZix44dyMnJYaoLIR5BEPt2kM+LVb/Jg5mseyIVZXGNEzmZIBKNAtl1VkDZGmVUjpHVWfk3Jn7VJ2H0vxIeF9OO4GUt103fFqvlsByndiJX3SSyNVgWwfJ9oPn2QS2s5ZtHIYi1XCREff6wQ1AsxHbrSZZpIpmoJ0mS5HWh5eXlOPPMM/Hkk0/igQceQJ8+fTB79myUlpaiRYsWeOmllzB06FAAwNdff41u3bph48aNOPvss7Fy5Ur84Q9/wI8//oiWLVsCAObNm4cpU6bg0KFDiEQimDJlClasWIHt27fHyrzqqqtQUlKCVatWAQDy8/Nx1llnYc6cOQCAmpoatG3bFhMmTMAdd9zBVBczysrKkJWVhe3bS9G4caZuOjsdjp3Oza+OTf0K3kp6q3itPZy4smr50erloSeG1UJFyyocE8KyylH7M5x8La70C1UaWNV1M3KHSHCD0JqJZNUnWEYUn14j1I3lpwlRL1KE8n+FaFV+5CARQN0tI2vd3Nxaaz+Ki+NVs8rVoqwiXlwD2peQJeyeXA/lX/X/Zs1htF2JV/2xVZzcSn73qQBQXl6GvLwslJaWIjNTfzxUI4+jwCsAGvKpDADgfwCGWa4PEU58cZMYN24cBg8ejIKCgrjtRUVFqKqqitvetWtXtGvXDhs3bgQAbNy4ET179owJYQAoLCxEWVkZvvzyy1gadd6FhYWxPCorK1FUVBSXJiUlBQUFBbE0LHVRc/z4cZSVlcV9zAj7k7eXr9vC3pZayCIlIyNRCOdkVyJScrBWjRQX1yqcvXuB776r+/vdd8DOnYiUHEROtAw52ZXIzYXhR+kqkRmtdb2IVJQlim6lidHMDUJG6cKg/oiMnkuDkbuCkTuEleOUN4D8UbssaPm/nBTCskuE8nLJGP6m1OWrBHYy4UXf45egFdNlwj/M3CuVnH/++ahXr17CZ/DgwQCAqqoqTJkyBT179kSjRo3QqlUrjBgxAj/++KNXp0OcxHM3iaVLl2LLli347LPPEvYVFxcjEokgWxWnsmXLlig+GeiyuLg4TgjL++V9RmnKysrwyy+/4MiRI6iurtZM8/XXXzPXRc2MGTNw7733Gp4/D4LQOWnV0W2rMA/8KJ9XmWrtE1M4spmvpKRWBCtp3rxWKCsmPkVOfjLNKlYBdtcHrYvPS+DqmbC9gGeZLHmZLf2n97/ir9J9Qf1MIl8SI9frWktxJOZqE8tf8WF13zbyIfa7L7CKF24Tye26EAWQzjG/GstHsLhXKnnjjTdQWVkXNeenn35C7969ccUVVwAA/ve//2HLli24++670bt3bxw5cgS33norLrnkEmzevNn+qRGW8VQM79mzB7feeivWrl2LaNB6OgamTp2KiRMnxr6XlZWhbdu2PtaoDi87UD8urR8DhGiDklKPRCrK6sSvLIr37kVs9QT5IimFcElJorVPmbn6f6vuDjzj8Fo5Tq++RufhN2YzzfR8V5T/q/6aiWA9zxa9B9uIMn+FL4WW24UZps9dAl4iLcIqiJNbhNfxyCOPYMyYMRg1ahSAWhfNFStW4LnnnsMdd9yRkL5p06Zx35cuXYqGDRvGxHBWVhbWrl0bl2bOnDno168fdu/ejXbt2rl0JoQaT8VwUVERDh48iDPPPDO2rbq6Gh988AHmzJmD1atXo7KyEiUlJXEW2QMHDiA3NxcAkJubm/BaQo7woEyjjvpw4MABZGZmIj09HfXr10f9+vU10yjzMKuLmrS0NKSlpTG3R9g6F6NBIAjnGuTnswQtVFIRbw0uLo4Xw0Dt6mIAHsJkdM4GLs9+t/aYnTvrVhHTEVa2EeWpRd1gWsrPqK6s7eA0fAKr86uWlfYkRiIYqBPCWj65WsiCrxIRRJTViJrHFc7IqHsm0mqaIP8GZbwSxHJZrDitV1gFsdqdUW8cl90rp06dGtumdq80Y/78+bjqqqvQqFEj3TSlpaWoV69ewltpwl089Rn+7W9/i23btmHr1q2xT9++fTF8+PDY/6mpqVi3bl3smB07dmD37t3o378/AKB///7Ytm0bDh48GEuzdu1aZGZmonv37rE0yjzkNHIekUgEeXl5cWlqamqwbt26WJq8vDzTuviBnc5MdH82p4jYQfs5WTEWxUH2C965M/5vRUWtEO7QARPxCKZMmYQhQ6Zj2LwLgYKC2mV2lccXF9ceW1xc+1E7mGqZALX2iXKhjHx7tbaZ+feqUfrustbHrByjNBrx7ORgdnKYNPm5SB0y7fDhxEvJgpxOLseKRdhK0+iVKzpe1dPrfjcMDytq2rZti6ysrNhnxowZmukOHz6s616p5zqpZNOmTdi+fTuuv/563TQVFRWYMmUKrr76aprU5zGeWoYbN26M008/PW5bo0aN0KxZs9j2P//5z5g4cSKaNm2KzMxMTJgwAf37949Fbxg4cCC6d++Oa6+9Fg899BCKi4tx1113Ydy4cbGnubFjx2LOnDmYPHkyRo8ejXfffRevvPIKVqxYESt34sSJGDlyJPr27Yt+/fph9uzZOHbsWOz1R1ZWlmldiFrC8opTNNTtpudlkLDqm1LxyJbhnTtr/1ZU1C6be/KAw4cBYD9w8rBaa9/JjOR8lMJLuaCClrXYC7OYVdyuj1WXBjvp9HyCFd/lSWtqK7D6f7VLhPJ/oyqoT1OZXi2ErWD38rhVDi8LqIg/BR74ZyHmHRu4Nq89e/bECU8rb3etMH/+fPTs2RP9+vXT3F9VVYVhw4ZBkiQ89dRTrtSB0Ee4FegeffRRpKSkYMiQITh+/DgKCwvx5JNPxvbXr18fy5cvx0033YT+/fujUaNGGDlyJO67775Ymo4dO2LFihW47bbb8Nhjj6FNmzZ49tlnYzGGAeDKK6/EoUOHMG3aNBQXF6NPnz5YtWpV3FOfWV2c4FVnEnYh6tf5eVkuq89lzCoM1Jr8vvuuLpLE9u04+ssvOAGgyebNwMmwg89X3IHnd31dK5QX3wxcXw6cnEQaF31AFsEVFXUuFMpl5+RKKCvstxJwq3wn4pelTnqWa43/tQSw+q+ZCNY6jrXptPLQys8qrN4qZsf6jWg+xLzqEyaXiczMTCYrbPPmzU3dK/U4duwYli5dGqdTlMhCeNeuXXj33XfJKuwDvsQZThaM4gzb6UhEdJHgaRX28/ysls3iV8lapl7ZakFhNP+sTZu6UGcoLgZkwSv/v3kzDkkSfkRtdE0l5QAyAPQBkJ6eXhd6C6hbZaxNG+1X9MqQWqwnxgMeefNaDs2O+LVyjOq7WgAr/9fy/dWKEGEmVpWXUOtSqy+5kRg3w8rtoie+tfJj3W5WjlO8EOdu97M8ynUeZ3glAH1fW+scAzDIUn3y8/PRr18/PPHEEwBq3SvbtWuH8ePHa06gk1m4cCHGjh2Lffv2oVmzZnH7ZCH87bffYv369WjRooXtMyLsI5xlmOBHkISwHUS2TPC2nCiFsJZ1J6EsWdAWF8cOPq7Y3QCIRYI9HcAJAOlNmtQGEm7ePL4gdWElJXVWY71K8VAkPHFrIhtLOqttoSN+AWPrq5EIlv+yiEkz9I7z6gE/aITVXQIIl4WYBTP3yhEjRqB169YJfsfz58/HZZddpimEhw4dii1btmD58uWorq6O+R83bdoUkUhyxev2ExLDPhCGQUO0+jjBb1FvBaPX2RUVQKb8XTblnXw3XqV4ASQL4SiAHACNr7ii9mA5zJqcmVbDeOkUagc7otdu/ayIXAsi2Uz8Kv9nEcDKY9SXzsgtQrlNL8qeWT2NYHl20iuDJU8n8BZ5ongOuYF3gjgCcF3MpcryEWbulbt370ZKSnxcgh07duCjjz7CmjVrEvLbt28f3nrrLQBAnz594vatX78e559/vuU6EvYgMewxYfAV5jVwWc3TSf528VsIs7hjKNsuNgFOmaCiAidi++uEcAMATc46C7jsstqd27fXRZtQ+gcr34vLazar0XvXrf7OyzXBLlZuNKdpzdoCSFipTU+s6v1vJoL13BWM7iu1SDVyY2CtL1GLG6JYhHZOJgvx+PHjMX78eM197733XsK2X/3qV9DzRu3QoYPuPsJbSAwThA5+du5aZRu9no7bJ1uFZbKzkV5cjDRJSly/ST2rSo40ocxQKYjlfdnZiU6kctnKvyIHk3Xi+sCSzsDdQcaq+FX/byaCzcrQqra8zeobE7/8VkUszwxWUexGH+SW20YyCWIifJAY9hC7HYVIVtOwWYXNJq+JgNpfWI1So1ZUoC40WjRa6/97chJc9MgRpAMxK3EDoG4xDiBxoQ3liC37EcvW4YyMeL9hIxFsxY9WD7dvKh7CmKPl12ifWgAr/2cR0HpoWYDtiiZWyzNrGV66SCjz82reg+kcgIDgbps1AN/QaiR/iDrobvCIMLzWd0MIi4jX52Dknqv1v1a68vK6gSjOb1ieSHdSDKdB9aOvqKhzfejQIdGSqw4roBbCWspJGfhYvU8LFiXAQ+nwtAQz+PsC9sWv8rvew5CZGNb6robFu0UdQU+NH7/5MPQzSsJ0PmQhJoIIiWEPOH4cSLX5QGtFA/gthL3AK0uNGTw6fBYRzLJdnaYSEUQUIliOE5xaXIxGv/yCYyfTxoIU7d1buyKd0vor/9VSS0pfYhktS7BdMez2aOpA7Cqx6vag/m60z4oAZimXFfUl13s2sosdq7BTnJRBws4e1G5E0CAxTJjCOpjY6fxEEdmANSGs/Muj02exCuqllQcepXUw5irRpk3dwhvZ2Wjwyy/IQu0EutT0kx7EJxfgQN++2mpIuU2OUKFlLjQSv1ZdJdTimzc2xa4SFr9uq64PZums7DNDz8NF/b8RXvgJs5yjm/1IGIWdW37DSsLYbkR4ITEsMCJYhd0UwlbhXQavwcBJp88yKJnlLecR5yqRfdLPV44JnJsL7N2LxidjWMZZdouLgdNPjxe98opzyo/yhPVmWDFuMxOa8cfXpY2tsMcBO2LXbL8VMWzkC25V8Np1qTYSxFreLlbLtOhiTYQMvoKYd2g1iuFL1EFimNAlmQYrq1Zh3mVr5ctiFVbnIVuIYyHW5KWUmzevdYVQmo/liXFdu9ZFkQDqVp1TTairRASRXPYG0BObTgbHCkWeTq+FHbFrts9MuLK4P7B8N6ufHlrWX1YLsVVjPY/fCi/3D6eQldM+1HZEECAxLCgiWIXdLj9I5wiYW7lY6ygLIqU/Ji9Xi4yMOkEckd0ccnOBw4frdigLy82tFcmyGFZZg9VL/1Y4tKbwvI5a7iI868FDDNt1f7C6jQUrQlgvHDSvh0aeD5VkfbaHF64SMvKbK4IQFRLDhCZhH0Ssztni1R7KAUFLFGulU9fDqJ7xUSUUwrZNm9qNsig24+QJq7WzvE0nuSZOhCcPgWvXt9uOGAaMBbD6u1XLJw+/fFYhrD5OhAdSJV73UWThdEZamt81IAh9SAwLiN8WUy/K9/screCGEFZvt7Iwm/p1tZZoqagAkH3STULekJ1dJ4rlxTa03n0r3CKUm9X/q8u0g13x58X9Y0XwGh1nxwXCrHxWzFweWIUwT0Sah2CVsAliL63DziGfYcI9SAwLht8dU5BEKm+0Bjq3hbDWfrvCWE1ZRSTeOty8ee0JlpTUnSzjCcp6muVVJ0v9nb4yVR/vxirPVgSv2T63fID1YLUGK/8XSQhrYXeSIEEQhBkkhgOMqNEVeOK15duNNjB7ba4u045Q1H2lrY4IIU+q0/J/0KugxSQsGpv3dVUtrS0xAAAgAElEQVQZtbnmaTeN2z7Aeli1BgPeCGEriPygHTbrMEEQJIaFws+ByGrZTgYDUQZcnjiKkGAiHtVGXFbXgdpjInUT6ZQi+PDh+IPKy+uiR+iUr8zXqB4s5+SWmAiKKLaSNwt6lmC9/80myrmBV5PmeJcVdoLjKpEGgGdFqzjmRQQdEsNEQDpCPvh9rmbGWJb6WXVliYVYkzfIhRn5ZlRUnFy4I2IohO0KYrcta8r8eV1zp6LYShoWtM7LTAQr/+e9upwRvNyvRLHKilIPgiD4QGJYELy0zDopl2fZopTjBlb8Rs0mxMlprEa7kPOqjGYiko26SXTKgm2YUrWEsJ1rxXqM00l0PC1fbp6nFewIYS23CL28REN5z4liFQ6TIA6OdZgg3IHEMGEJp51/GDtcq1EHtESxXYuwOi8NA2/dcbJ1+PBh7ffqmn4WkYRkrNEQzPZZSQMkGrJFFiJu1s2qS4Tyfy+twXbKMGs30fqPMAligkhmSAwLQJCswl7h9cQ5uzi1bir3K32CWeuqZ+1T5x1ROh7LCeXIEloHnEwbQSWi0UiCEdktP1jWyYNWJhmKLpxZcSKCAX+swTzdI4hkh0KrEe5BYpggbGInGIMdH1s9kWs5HJvW+3K124ROhZSGYzeEsJ645TFR00g4ezmBzA5O/YIBf6zBXpYjQplheNgiVwkimSExHDDIV9geYezk9YSc1rlWIoJIFOwjnpyuogLRk5Po1FEtVMls4YYINstDWX+98v0UyWYCWP1d738gOL7BQReTLA+KQYAEMZGskBj2mWTqePw6Vy/dI5TbZaHlJIKEnlVPnafZOda6SjAkzMjQ9B9WC2G9UG9WRUFGhvW4yix5G50mS7vbXQSFBSv3I6sIVn+3Yw3mKeiSqV9TEhZRTBDJBonhJCTZrMK84V1HOxPo7Myoj1mHtZDVn0HGaiHM4F0Rt00PLUGsZ22266NtNPnQrC2tLpdtVKad9EaiV+u7E7cIP4RwEH7zVgmy64S41uHUkx+e+RFELSSGA4RfnWtQO3WAf6fuxF/WKBSZnhuCjJNwUoaDG8OBEVTGokroCV2zCXZq1wo1LBZiJ/ehlvWaZZ+MFUFs9cGGdb8bIlj5gBN0ISyagAuylVhcQUwQ7kBiOMmgDs4+VgY1O0sqs8Dl+mk5/epx8qQjUaACEd2kLIJYWbyfAsHNgd4oXzv7rApgs3L09vO4JiSEtQmyKCaIZIHEsI94/frSDl5O2ON9jjwHSCtWXyvHsaAVBMLKcUoqEam19CoT6Pk9yL7DJ79b1dCsFlh5uyzs1B4b6mp5LdqUdbOSH09hrLXNqiXYTcEoshgVhaCJYvGsw6ngGw6N3CSIOkgMJxFidWzu4qcQdssqrMTMQquVNm6flhnXQqMpD1eGLdbKysg3VystqyhW529WXzv7rUTs4LndSp14iGAeIeyskCxWYS3MXIZEwkq3IJ54Jgh2SAwTuojeUYuA3TZSv5a2MojYtTgaVkRTMUNzm9ZuowU/WCevqauhzLO8XN+y5nQAZrG6GqW1InR5iF/W/Fj2O8VvIRx0/HYZYoFF5MrnQIKYCCokhpME0TsoUS1FVifMObUKuylu5GNjrhJKIcwQWkGeSKcXSk2eBGemq7WKMQvbprQW87SssQphVmHrZJtR+azHsuxX4+SBzioiu0L5RRAEsRXsPuQThJ+QGPYJ0f2Fg9o5+9n5qoWwWRvysAabuQwwl6E1IpscrGVUNhOtLK4SehhZi9Xp9OprhF0R7FQAs0SpYGkfr+59u+UEtU8h7MPXUkyh1Qj3IDFMuE5QrQNWrMJe+AkrseODqnuAmVVYY7uRUdnI71eNls+wHWHMUpYWTtwhnIhgJ64PTtMr8UqgkhA2RnTrsBNRS64TRBAgMZwEePXa1C5eRqxgxap7hJ00wsA4ElcazOTWmo8H6Is+FuFq5sqsTGdUFit2xa1TAczD9cUrRHCNkAmbwBJdEDuhogI4ftzvWhCEPiSGBSesnWOYYLUKmw126sGd5zLA6rzjQqxZOVAniZnrsfq8nZybFeuxEVYns5mJYLcFMG/xZ6VvEc01ImxCmCAIfyEx7ANeduSiW4V54ZdVWEsImwlerf3K+vsy0LOYYDUO0XIzNjs/Lexad61M0jOD94Q4OwtiyGlEerUsSj1kRKuPGicTyMJsHXZOBHzjDPPMiwg6JIaJGEGdqCfS4Og05i2LtdFu3mo0rcM6GRi5SGjVwep11RK0WpPxzEQiLxHptQh2et2twnp9guCPLDJ27kflvU4QhDek+F0BQgzodWYtfk6aU7aVFQtpNFr3sQKTmwT0hbCZBdzOR+v4jIy6jzqt0XcrbWJ0DOs2uY5m6bTKFA2n9aL+pA4noeuCeL5hZ+7cuejQoQOi0Sjy8/OxadMmpuOWLl2KevXq4bLLLovbXl5ejvHjx6NNmzZIT09H9+7dMW/ePDeqThhAluEQw9qRBtkC4Zd7hN00ejgVHm4Nmmoh7Pa9ojwPsygV6rS83CW06mK0jdcqdSLAo24khPlCluJaotEU1KvHz34nSSmW2/Tll1/GxIkTMW/ePOTn52P27NkoLCzEjh07kJOTo3vczp07cfvtt+O8885L2Ddx4kS8++67WLx4MTp06IA1a9bg5ptvRqtWrXDJJZdYPS3CJmQZFhgvOr8gd7B+Do5WYwoboWVhNCPI103GinVY+R2Itxar9+nlb7UuWmnUBFUI61nSnVBREY770g14uYOJai0WsU5u8Mgjj2DMmDEYNWpUzILbsGFDPPfcc7rHVFdXY/jw4bj33ntx6qmnJuzfsGEDRo4cifPPPx8dOnTADTfcgN69ezNbnAk+kBhOUrwYuILUQfrhHqH3ql25nxU719LMD9jIKuxU/Jv5TRu5Jaj3a4liFnFsVSircSNUmpd49VaFB0FpUyN4r7Jp1yWIsEdlZSWKiopQUFAQ25aSkoKCggJs3LhR97j77rsPOTk5+POf/6y5/5xzzsFbb72Fffv2QZIkrF+/Ht988w0GDhzI/RwIfchNwmNE6LDCYL3xqh3dco8wE1d+3idWJstZxcp5mblMqPerV6fTKo9XODE7QliE374biCSEba/AyAmztnA7Skg0Go7+3UvKysrivqelpSEtLS0h3eHDh1FdXY2WLVvGbW/ZsiW+/vprzbw/+ugjzJ8/H1u3btUt/4knnsANN9yANm3aoEGDBkhJScEzzzyD3/zmNzbOhrALieGQotfhUkeZiJU24WEVNnOL0LJoamF39TYj7EyW44FWvbVCVGmJYvm7Mr16BTyjcgj7iNSfaNXFqd+4VVjEKAlie0SjQL16/PKTpNp2atu2bdz2e+65B3/7298c53/06FFce+21eOaZZ9C8eXPddE888QQ++eQTvPXWW2jfvj0++OADjBs3Dq1atYqzQhPuQmI4pBhNKAo6QbYK8xLCRvWxcowyvBqrRVh9zm5PmFKLYr3vWun1RLET7C4YIlLsYB6IbBHW2i9S25MgFoc9e/YgMzMz9l3LKgwAzZs3R/369XHgwIG47QcOHEBubm5C+v/+97/YuXMnLr744ti2mpoaAECDBg2wY8cOtGrVCnfeeSeWLVuGwYMHAwB69eqFrVu3YtasWSSGPYR8hpMErztGkQYeI7y2ChthJoRZ29Tqta5ExFAI87x37CzIYeQ/zPId0A575gYsoizoBHW+gWht72Z9RDtXkcnMzIz76InhSCSCvLw8rFu3LratpqYG69atQ//+/RPSd+3aFdu2bcPWrVtjn0suuQQXXHABtm7dirZt26KqqgpVVVVISYmXYvXr148JZ8IbyDIcYtRL5IaBIFuF1Rj5CFsRvkYuBkF5KDFD6z42shLrHcPDUlxebiysvVoYxA9E7Eus1Em0tnerPn70+2Eba7SYOHEiRo4cib59+6Jfv36YPXs2jh07hlGjRgEARowYgdatW2PGjBmIRqM4/fTT447Pzs4GgNj2SCSCAQMGYNKkSUhPT0f79u3x/vvv4/nnn8cjjzzi7cklOSSGBYVXpxKmzon3oOHEKsxr0hxLOieTstwe/HncX6x15CWIgVox67cglusXFLzqS9xuE9EEMcFGWhqQwvFdth3D65VXXolDhw5h2rRpKC4uRp8+fbBq1arYpLrdu3cnWHnNWLp0KaZOnYrhw4fj559/Rvv27fHggw9i7Nix1itI2KaeJEmS35UIK2VlZcjKykJRUSkyMmp9ktx61S0abpynV2JYaztvMaxnFXbiM2zV3YAVIx9hJ6trGX23Uh+tbVb8mp2IYjPXC1aRLzpe9kd2/OS9KMcKTucS+FEHM1jqaPw7K0NeXhZKS0vjfHTNkMfRli1LkZLCfpwZNTVlOHDAen2IcEI+w0QgCKtVWE8I24kb6oa/qleT5axgR2DaCZPGgpmQZvGvFX2xijAKYafHik6Yz40g3IDEsIcEwQLEA97n6WW7eTGIaIkvXudoJqy8GiS9nmDl1ALrpiAG2H3QRRIxXtbHr0Uj5HNUfvxApOuuRbKMXUTyQj7DRNLhd1xhO9uthskz8ov0yl/Va99MFn9htyb5yPeJEz9iq+ncRHRx5iY8fh/JMJnMa6JR/32GifBClmHCV8wmh4lmFeYZQUILszBieum0cGoltnuuLD7FPIQCb39cHqHXWNwmWPBTSAUlDKPb9fS6HUg8E4R/kBgWEOoU3UMUqzBLGpYJcU5Fsd4+Lx4M3MhLhAlrQRbEXvsH+20BN4P6YoJIDshNguCK01eLfuG1+DOz9ro5u9woLjHL8XbKdevasryOtvLK2mnINRkztwnWV/FeukyIPFGOINLSgPr1+eVXXc0vLyL4kGWY8B2vLEReW4XVuDVxzs4M/DBbvESwDsvwuI+8uFYkhPURMXQbQRB8ITFMcCOonb9bVlEn7g9Wj7PT9lZEscjiWSTxq4WRIBah/UW+tnqE1Z83iNdCSVDHAIIgMSwYQe8MRUVEq7AS1omEbljR3fIp9hMnApnHRDo1ogpi8hFmR/R7niAI+5DPMJHUeG0VtprGapl+L0Lgl2Cw6zssSggsP8KukWsEESQyMshnmHAPsgwThAI3rMJKrLpI2HW1cBM3w6VpYdei6KSNvLYOW8FpO4fdZ9xNrLYbPQQQRDAgMSwQQR6gRO70nYg3HlZhJy4SVo9z8zr4LaLMRDFLe1hpM1HdJaym5XGcHeTr5edS6kEk7OdHECJCbhJEqPHbV1gPXgLB6mt+o7Ruhlzj+XrfqWtDGNwl5LQyRscEZRENPUS4LkpEWCHQS5LpXInkhcSwIIjW4RN8UFoXrQ4qXg9Cdu5B0XyEeQtdXnGHlZSX87c6i9J/hF0I28GPBy2eZYoi/tPSgAYcFcuJE/zyIoIPuUkQSYmfE+f00vO0nLoND5cJluPdXKyDtSyR3SVEwA13CL9dcswQuW4yyXQ9CMIpJIY9xOuJR14hgtVAiyC7SFhpUy9XKHMyKPK+z61MLnSyDXBHEBsRhD7BrVBpQTh3q9hZGEdERK0XQTiF3CR8hjoX7/Fq6WUnLhJO4f2aVFScuktYcavg7TJh5i4hyutpGZHqIgKiXR8tRPGF50E0Sm4ShHuQZdhHwtJJiYgfVmERXCR44vWr0SD8HnhbiM3uPRGid3i5WEYQ7gG7+GUdJj9ugjCHxDCRVLgZC1eJnlXYrcU4WI9hXdiB1Xpu9tE6hjdeuksA4RXEfojfoBOUuMNu+HQblUUQQYPEsMc49bskzHFqFQ7LtbEzKFkRwTzyc7ut3RLEvGERxG49SJD4dYab9zDv8YLnAw8JYiJMkM8w4Qjq9OwhuouEHnbDrynP0WosXVZrupW6ieY/DLCFXOMdr5nwHrt+vG74KKt/l1bx0m86LQ1ITeWXX1UVv7yI4EOWYSJpCIKLhMg4aT9elmQ7uNXufi3ZzKONgn4vyohyHl69TRLxrZVenUS5NgTBAolhIlSE2UUigkq/q8ANZTvzcqXgsaiJ3+4SgPuCWGSRImJIQdEQuY9So3TJSEvzuzYEoQ+JYSIp8Moq7PR4s/zcFMRGbcSj/fyOjODG8W7FH/bKQhxUklUIi0oy34tEOCCfYcI2og1IIliFWVwk7LQbiwgOS0xRL/0QeS/fzBM3lm0W7TfLA1Gul5cEIcYxb6JRvj7D9evzy4sIPmQZJkJP0AdKv90jWNqvvNz6hDI3XCXcRJTV6ZSI0C68MYt2IIIrixZBvhZBrjtB8IDEMGELEQafsMHapm6IYyeDoVIEy6LYy+WtWQmauALEbEc/EeW6EImQoCaCDLlJEKHADxcJoygSeumCFl3CrF3sWIPtnrcIr4a9DLUmE7Rlm3mibG+zcxTBXYLlWvhdx6CSlgZEIvzySyFTIKGAbgci1Pg18IgqToIyEItQT6vX0E93CVZEaFerWFkgQtTfnRsE8VoShKiQGCYsI9qA49QqbAdWq3AQ0Gs/p1ZhEV/xW3GVsJqHn5AwCgZ0nQhCTEgME0kP7wHKjluE3j6/J8/pIaLQdQOr4tnPUGushF2Q+f2wEvb2JYgwQj7DhCX8HmisIPKg5LQdI6hEJTg60KkwajuRhTCL36heGqvb9XDTf9iIMPsOhwGR+6MgkJHB12e4Ukw7A+ETZBkmAo3IE+ec4oVV2Or5WxV5IgtnLUR2lyDrcHBQhw1MhvamBzEiyJAYJkIJTZyzj17bBUXYslwDHks3G233y4fcyn0fZoEmwu/QCxEc5mtIEF5CYphgRoQBRokfA4Fdy6Edf2E/oMHVuvD1UhDTMs0E4S9z585Fhw4dEI1GkZ+fj02bNummfeaZZ3DeeeehSZMmaNKkCQoKCgzTjx07FvXq1cPs2bPdqDphAInhJCdZQhZ5sfwyK0Fsy6BYhWWcWodFFsQ8IeFMBIW0tPjVCZ1+0tKs1+Hll1/GxIkTcc8992DLli3o3bs3CgsLcfDgQc307733Hq6++mqsX78eGzduRNu2bTFw4EDs27cvIe2yZcvwySefoFWrVtYrRjjGUzH81FNPoVevXsjMzERmZib69++PlStXxvZXVFRg3LhxaNasGTIyMjBkyBAcOHAgLo/du3dj8ODBaNiwIXJycjBp0iScOHEiLs17772HM888E2lpaejcuTMWLlyYUBezpzuWuhD+YTSIh2GAt+svbEVos7aTUyHsl5D2WhDrwVsQ87YOh+H3okUQHzrtENbrJyKPPPIIxowZg1GjRqF79+6YN28eGjZsiOeee04z/Ysvvoibb74Zffr0QdeuXfHss8+ipqYG69ati0u3b98+TJgwAS+++CJSU1O9OBVChadiuE2bNpg5cyaKioqwefNmXHjhhbj00kvx5ZdfAgBuu+02/Pvf/8arr76K999/Hz/++CMuv/zy2PHV1dUYPHgwKisrsWHDBixatAgLFy7EtGnTYml++OEHDB48GBdccAG2bt2Kv/zlL7j++uuxevXqWBqWpzuzuoiI+smXBZaONFkGFad4vboc7wl2WveCSBZhO23qliC2mtYPCzGJJIIwp6ysLO5z/PhxzXSVlZUoKipCQUFBbFtKSgoKCgqwceNGprL+97//oaqqCk2bNo1tq6mpwbXXXotJkyahR48ezk6GsI2nYvjiiy/G73//e5x22mno0qULHnzwQWRkZOCTTz5BaWkp5s+fj0ceeQQXXngh8vLysGDBAmzYsAGffPIJAGDNmjX46quvsHjxYvTp0weDBg3C/fffj7lz56LyZJyUefPmoWPHjnj44YfRrVs3jB8/HkOHDsWjjz4aq4fZ0x1LXURDayC2KozDiltRJHgcl4zXxmuRJsKEOoCvIGZ9SGFt67AK52T5fTm5fkG59jxdJJTjYtu2bZGVlRX7zJgxQ7P8w4cPo7q6Gi1btozb3rJlSxQXFzOdw5QpU9CqVas4Qf33v/8dDRo0wC233GKvYQgu+OYzXF1djaVLl+LYsWPo378/ioqKUFVVFXeTdO3aFe3atYs9dW3cuBE9e/aMuxkLCwtRVlYWsy5v3LgxLg85jZwHy9MdS120OH78eMJTphewDvZ2LMdBG0y87NjD7i9sJrjk2fLKj1WCMBDz8h8G/BHErAThWhAEb/bs2YPS0tLYZ+rUqa6UM3PmTCxduhTLli1D9GQnUVRUhMceewwLFy5EvXr1XCmXYMNzMbxt2zZkZGQgLS0NY8eOxbJly9C9e3cUFxcjEokgOzs7Lr3yqau4uFjzqUzeZ5SmrKwMv/zyC9PTHUtdtJgxY0bcE2bbtm1Zm4WwgIhRJLx2keCNVR9Tq0s4+x0FQZQJdYD3gjjZRW4Qf4928PM6B7mN5TlM8idNZ2Zd8+bNUb9+/YS5QwcOHEBubq5hGbNmzcLMmTOxZs0a9OrVK7b9ww8/xMGDB9GuXTs0aNAADRo0wK5du/B///d/6NChg+NzI9jxXAz/6le/wtatW/Hpp5/ipptuwsiRI/HVV195XQ1XmDp1atwT5p49e/yukiFB7sBY8TuKhJ02FmEJZj2RxdJ2QRZfXkyoA8QVxEG+dgRdPzeJRCLIy8uLm/wmT4br37+/7nEPPfQQ7r//fqxatQp9+/aN23fttdfiiy++wNatW2OfVq1aYdKkSXHznAj38Xw55kgkgs6dOwMA8vLy8Nlnn+Gxxx7DlVdeicrKSpSUlMRZZJVPXbm5uQlRH+SnNGUarSe3zMxMpKeno379+qZPd7m5uaZ10SItLU33qdItkkHQspKMA4HZssxWlxI2wqr1mPe96TRPnm0hYnm8COOyzkG9FnYI4/UD6kKr+cnEiRMxcuRI9O3bF/369cPs2bNx7NgxjBo1CgAwYsQItG7dOuZ3/Pe//x3Tpk3DSy+9hA4dOsTeLGdkZCAjIwPNmjVDs2bN4spITU1Fbm4ufvWrX3l7ckmO73GGa2pqcPz4ceTl5SE1NTXuqWvHjh3YvXt37Kmrf//+2LZtW1zUh7Vr1yIzMxPdu3ePpVGHLVm7dm0sD5anO5a6hAW/OxeriDig2fW/DlLbi9judiB3CTbCcr2TFXoT4A5XXnklZs2ahWnTpqFPnz7YunUrVq1aFXO73L17N/bv3x9L/9RTT6GyshJDhw7FKaecEvvMmjXLr1MgdPDUMjx16lQMGjQI7dq1w9GjR/HSSy/hvffew+rVq5GVlYU///nPmDhxIpo2bYrMzExMmDAB/fv3x9lnnw0AGDhwILp3745rr70WDz30EIqLi3HXXXdh3LhxMYvs2LFjMWfOHEyePBmjR4/Gu+++i1deeQUrVqyI1cPs6Y6lLmEirFYTP6JIBEng6sFrYpbaQlVeXicARbdeGf0m9PbZ+R1lZPBrb2X76iF6u7tJWPs5PZL5WrvJ+PHjMX78eM197733Xtz3nTt3Ws7fzjGEczwVwwcPHsSIESOwf/9+ZGVloVevXli9ejUuuugiAMCjjz6KlJQUDBkyBMePH0dhYSGefPLJ2PH169fH8uXLcdNNN6F///5o1KgRRo4cifvuuy+WpmPHjlixYgVuu+02PPbYY2jTpg2effZZFBYWxtJceeWVOHToEKZNm4bi4mL06dMn7umOpS6E94iy0Iab/sIi4nbb6g3aYRnMvRRhLIKYlbC0fzJD15Ag2KgnSZLkdyXCSllZGbKyslBUVIqMjExXyuDV0RlZwUTBqhjmYRnWOn+l2DByfTBzi9DK287kObXPsPocld+1/lenV7ebUyGnPE+9tpP/t9NmduDxGtlqRA2jvHiGSWMRw2ENrciK+loozzOs1mO3zpH1Hjl6tAynn56F0tJSZGayj4fyOHrvvaWIRvmNoxUVZbjnHuv1IcKJ7z7DyQQtguEdbkWRMMKKr2lQ7gGvhYFZeWEVKqL6D4e1vZNxIRwn8cAJIuyQGPaIsHawXkEuEt5gZWUzO4tuiLK8Mw/LKM/JdLwRpZ2DQFB/qwRB8MPz0GoEQbgLi4+qW8u3avkohtlv0epkOqNrw3MyHQus1yWs18/sQYcsqGJBb1UJNyHLMGFIEAcEXoLCyqpzyQLP+yEo91ZQrzNPYR2Ua0UQBGEHEsM+IdoAK1p9lPBwkRDJXzgo2G0ztwWzaMJM1NjDgLkgptjD+gT1d0sQhHVIDAcY6qzdwyyKhNVjw4CbYsgPoeVF/OiwCWKCIIgwQj7DRKgIwsQhPSFkJ6yaqKj9TJXfecbC9RI7C3GEjbD6DxPi06gRkJ7OL7/69fnlRQQfsgwTMYI2yPkpPoLWVk7xsq29LIvndUwWd4lkItl+5wSRrJAYJoSGxyDNIw8jcRJGf2EehM2tAvD2eopqPU824ZzMv2GCSBZIDHtAWpr2dhE7WRHr5DVO2iAs7eeV4AmbsApy7GGaTEfYge4FIgyQzzARSNxafpmFsIplt/2t7fqbiuanatc/WITYw2b+2qK1tSgki0+4Xby4b9LS+JZRU8MvLyL4kGWYSECUwTAIgw+vthJ58pxbC3Q4hVfevO933vmRu4QYiNIviorZ/XD8uDf1IAg7kBj2GVE7WLleotbPS+yKkTC3nd3lmGW8suK7hd0FWchdgggzVvsBghAFEsOELkESc16tOufWsYS/iH7tRLUOJxui3yeioBbEJJAJ0SGf4YCSzJ2yn6vOkVg2XxGQx3my5uOnj6uZH6lVH2Ev/VJ5+g4nm58x+Q+zwbuNolHyGSbcgyzDhJCIMtjYDalG1OF2eLwgxpsWIfawGaL8BgmCINyGxLAAkKgSAy8WYEgGrArXMIsukSfT8YxSEeZrqIVspUzm3zlBhAkSwwGEOuB4RFiC2ck1ETmShBpRRQ+PevG28prtD9tkumRFKYxJJLuHXjs7+RDaVFdX41//+hcuueQSv6viGSSGA0ay/4DJX9hb7LajHyIqWYSbqJPpkqX9WQnqb55IXnbs2IEpU6agTZs2GDp0KKqqqvyukmeQGBYElo4zWTpXUQZV8mxVWbUAACAASURBVBd2F7PwakGake61ddhLdwkKtUYQ4eXYsWNYsGABfv3rX6Nbt25YtmwZJkyYgF27dmHlypV+V88zKJpEACDh5T7kL+wuXkUccFqOH5ECRIguYUayRYzghUjXkCCUfPLJJ5g/fz5eeeUV1NTUYMiQIZg+fTp+85vf+F01XyAxLDg0ABnjlb+w0XWgayQWfgk3u6HW7MJzqWazUGtWIOEcDkQT8ryXY66u5pdXEDn33HORnZ2Nf/zjHxg+fDgaNWrkd5V8hdwkBEL5QycH/0T89BcmrLerXnovrk/Q7gERJtOZQe4S9hDpGlqBrmG4GTx4MI4ePYoHHngA06dPx3fffed3lXyFxLBgJLsIFqUD5ukvbJTer0gSRnUSefKbF4LMzYmSyRJqjYgnmft0Qkzeeust7N69G+PGjcOrr76KLl26YMCAAViwYAGOHTvmd/U8h8QwkfSQv7C4OBXmfgj7IE+mM4Osw+GH+rDkITc3F1OmTME333yD999/Hx07dsSECRNwyimnYPTo0fjwww/9rqJnkBgmAotZNAIvoIGDP7yvoZ38RLuuXtWHrMPuIdo9pYVofsJKKM6wu5x33nlYuHAh9u/fj4cffhhffvklBgwY4He1PIPEMCEMYVty1wsqEfG7Co6wI77s3AuiPSTx9hEm63AwELkvIZKLBx98EPfcc0/s+6pVq3DppZdi6tSpuOKKK/Dpp5/iiy++8LGG3kJimCBUUHxhfhjFDfYav8tnxe/JdCwPKCSI7SNyH0LXKnlYsmQJ8vLyAAA//fQThgwZghYtWmDjxo0YN24cAOD000/3s4qeQqHVCMJFRJw8FzR4huryMuyXG6HWjI4RNdQaIT7yb0JkMdyoEd2TPNm5cyd69OgBAHj77bfRpUsXPPvss/j8889RWFjoc+28hyzDRCDhNejzjBwgssVHjciDHgtO6s96rJ/XMwj3ElmH7SPK9VWKYLpGyUV6ejoqTl70tWvXYuDAgQCAZs2aoTwJJw+QGCaEgIe/sBuduSiDlujwiEHspUuFV4O/G6HWjI6hUGvBgfoWwk/OO+88TJ06FU8//TRef/11XHbZZQCA7777Dm3btvW5dt5DYpggFATpNZze5LlksfDwOE8vRLFd0UOT6Qg3ITFuj7lz56JDhw6IRqPIz8/Hpk2bDNO/+uqr6Nq1K6LRKHr27Im33347br8kSZg2bRpOOeUUpKeno6CgAN9++62bpwAAePTRR3H48GFMnjwZ48aNQ//+/QEAv/zyC+68807XyxcNXZ9hO7MIu3fvjgYNyA2ZCAY8F8/gkT7ouOmP67avr59LCPP2HeYJi+8wLb8cDIJ+jXiHQztxwvoxL7/8MiZOnIh58+YhPz8fs2fPRmFhIXbs2IGcnJyE9Bs2bMDVV1+NGTNm4A9/+ANeeuklXHbZZdiyZUtsctpDDz2Exx9/HIsWLULHjh1x9913o7CwEF999RWiHE+4pKQETz31FKZOnQoAaN++PTZs2JCQbvDgwdzKDBL1JEmStHakpKSgXr160Nmtmf6bb77BqaeeyrWCQaasrAxZWVnYvr0UjRtn+l0dobHqJsEjxrBWP6Me+NVLZLPu09umxOkEOlbLsJb7gdY2uU313BVYrpFZO2j9r2xz1vZm2W4HdV48BadZXlaXrzbLj5ebA4ul2co1CLoo440I7jrePFiVIS8vC6WlpcjMZB8P5XG0qKgUGRn8xlE79cnPz8dZZ52FOXPmAABqamrQtm1bTJgwAXfccUdC+iuvvBLHjh3D8uXLY9vOPvts9OnTB/PmzYMkSWjVqhX+7//+D7fffjsAoLS0FC1btsTChQtx1VVXcTjTWr7//nv07t0bR48e5ZZnmDA043766ado0aKFaSaSJCVVCA7CO9wSwiwYDSBOB/QwRZJw2vYiRy4QYRECvToE1TpMlmRvEUEIi0xZWVnc97S0NKSlpSWkq6ysRFFRUcyyCtQaAQsKCrBx40bNvDdu3IiJEyfGbSss/P/snXt8FNX5/z8JYRMwbDaRJEskyFUIxWuQGEWFJgWEr1esoqkijVItWBGsQLVc/Grxq/itN4r154WqUCxWUEGjlCBUjFyCUa75tgqC4BJpTJYAuZDM7484y+5mdndm55yZMzPP+/WaF2TmzJlnzlzOZ595znNGY9WqVQCAffv2wefzobi4OLA9LS0NBQUFqKioYCqGiehEFMNXXnkl+vfvD4/Ho6qiK664Al26dGFmGOEcRHkZiyrInEq4aIokoqySeo1SrRFGQj841BE+WGzu3LmYN29eh3JHjx5Fa2srsrOzQ9ZnZ2dj7969inX7fD7F8j6fL7BdXhepDGEMEcXw+vXrNVUUHhROEHZCtHhhK808FywwY4nNeMWoVQRxvIjgoY6FiO3mVOx4HZKT2Z5XS0v7vwcPHgwJk1DyChP2h7JJEKYiegdP6MeKHbOcZYL1/Ump1tqh554fWu4hug6A2+0OWSKJ4e7du6NTp044cuRIyPojR47A6/Uq7uP1eqOWl//VUifBB1ViWJIkrFixAr/+9a9x44034oYbbghZCMIojJpsQ0u8sEhiz4zOzcjzZ5GP2qqIdJ9Fwu7XQHSscI9YFZfLhfz8fKxbty6wrq2tDevWrQukJQunsLAwpDzQPsGFXL5Pnz7wer0hZfx+PzZv3hyxToIPqvKgTZs2DX/+858xcuRIZGdnIyEhgbddBGHqZBsioyVEQoS20fP5XOu+VvhUryd2OJ7BdKLGDlvhWlkJu7cl69RqcpiEFqZPn46JEydi6NChGDZsGJ5++mkcP34ckyZNAgDcfvvtOOuss7BgwQIAwH333Ycrr7wSTz31FMaNG4fly5dj27ZtePHFFwEACQkJmDZtGh599FEMGDAgkFotJycnMAkGK7p06YIrrriCaZ12QpUYfv311/H2229j7NixvO0hCFOI1sGz7mTslElCDyLEBzsFloI4FnR9jCfe54jQxs0334zvv/8ec+bMgc/nwwUXXICysrLAALgDBw4gMfH0B/dLL70Uy5Ytw8MPP4zf/e53GDBgAFatWhWSfevBBx/E8ePHMXnyZNTV1WH48OEoKytjmmMYAHr06IE1a9YwrdNORMwzHEyfPn3wwQcfYNCgQUbYZBsoz3B04sm7yiqtWvh7Jt78wmr+DodXfmFAXY7hSP/Xm2dYbWhJrFzD0cpHW6dluwjEm3c42rZo+7AUw7G8w5R3WD0sRKkVxLDePMP//jfbfvTYMT/699duj13o1KmTqnkk2traDLDGfFR5hufNm4f58+fjlVdeofRphOXR0/mKHC9sJnrbIdrndyWhzSsrhZHwSLUWDVG9w1a4ViJDbUfEw8qVK0P+fv311/Hee+/hmWeeQY8ePUyyyjxUieGbbroJf/3rX5GVlYXevXujc+fOIdu3b9/OxTjCuYg62YbZWCmlmozI7WlV7DYRh1PRe630xOJbDdap1ZodHq12zTXXBP7/+uuvY9WqVTjnnHOwePFibNiwAWlpaSZaZzyqxPDEiRNRWVmJX/ziFzSAjrAdRsYL84RVB2eFnLaAPbzDsaCJOIhIWP3eJsTgjTfewKRJk7Bw4ULcfffdGDVqFMaOHYt//OMfjooEUCWG16xZgw8//BDDhw/nbQ9BWBre8cKsURJNIgphuw620/PDwwo/WtS2v+jXSTSorQgWLFu2DJMmTcKTTz6JadOmAQBWr16NESNG4IYbbsB7772HpCRVMtHyqMoznJub68gAc4KIhugdktETRrDESWn1WOa8VrMPTcRBEMTy5ctxxx134PHHH8f9998fWO92u/Hhhx/iq6++wm233WaihcaiSgw/9dRTePDBB7F//37O5hCEMkZNtsFrXxZYMV5YBEhkmQu1P1v0voesej3kPMMsFydz++234w9/+ANmzJjRYVtmZib+8Y9/4JNPPjHBMnNQ5f/+xS9+gRMnTqBfv37o2rVrhwF0tbW1XIwjnImZL2ueL0ieIRJW7eC0EOlTuh0+sdNEHO3Y4VryhNqGYMVjjz2GBx54IOL2Xr164cMPPzTQInNRJYaffvpp3nYQhGZ4C0CROh69XmG1+YIB82JReQ7IsoPIckqqNacQz8BIo49J2Jff/va3OHnyJJYuXYrt27cjNTUV559/Pm6++eZAnPDgwYNNttI4VGeTIAiro9SZsBRfduzszRykpSW/sBqxZWdBZoVUa2qx83WKB2qLdlxoZvp1TbTBzEZTU1ODK664AkePHsWAAQOwbds2DBgwAH/4wx/w4YcfomfPnmabaCgRY4b9fr+mio4dO6bbGIKwCqJ3UHoEEEvxJOKgO1FR01as29PI1GhWvz5GwzquldqfCGbmzJk466yzsH//fixbtgwpKSnYvXs3LrvsMsU4YrsTUQynp6ejpqZGdUVnnXUWvv76ayZGEfZHy4vZqE+50dDbKVG8MDtEEfo84DHA06gfJCI8p1YiktilwV2EEbz//vuYP38+UlNTQ6ZlnjZtGj766CMTLTOHiGESkiThpZdeQqpK10FLSwszowjCDKgDio3ez+5a21jrJ3MnhEs4IXbY6tdIC0acp+g/AgnjOXbsmGIoRKdOnZCYqCrRmK2IKIZ79eqF//f//p/qirxeb4csEwTBC9EGz/Hs0FgOnjMSnm0STSxZXUjxmIiDYocJy9PYCLgYppd0+C8EOUSid+/egXXNzc149NFHcfnll5tnmElEFMOUU5gwAyPfTzSVrDJ60nzpxagpfq0utKw8TbPV295qOFzzEREoKirCypUrMWLECADAyZMnkZ6ejl69eqGsrMxc40zAGfPsEY6HZSymSB251umUI6VYCxZCLDpP1gN/tGaQsLrgMmOaZiPDJdRi9etoNiSEiUgsXLgwkCghMzMTixYtQr9+/TBixAjHTMEcjPPOmCAUsOpkG2YRaxIIKyC60OLhoRclXEL0trc6en5Isa6TEJPU1NTAmLBu3brhV7/6lckWmQuJYYIQGJGnYFYSVtE6Uz3ix4neYTWwjhEW0TtMqCOe622p56Opia0ib2piV5cFmTRpUtTtr776qkGWiAGJYcJw7OZhELlDEW2gIQ/0CGLRBTMPT67VvMOiXyOz4eEFJuxPfX19yN/Hjx/Hjh070NDQgKKiIpOsMg8Sw4TQKHmpzBR4WjsQo/ML2+2HRjC8RJHVxRZ5h52L7b3BBDfefvvtDutOnTqFO++8E+ecc44JFplL1GRyRUVFig0mc/ToUfTt25e5UQTBG7UZC8zsOFiHSJjpQdJSRzxCTO2gQSti54k41F4bq19DHogohOUJQ0hwW5OkpCTMnDkTixYtMtsUw4kqhtevX4+bbroJc+fOVdze2tqKb775hothBEHww6rigpfotWp7yFh5mmZCO6IKYa40NrJfCEVSUlIcN5FazGlGFi9ejKeffhrXX389jh8/boRNhEOx4rspWgdgdBaJ8PZT2568P4mL4CWy4r0VjJW9w6yw+jVkhVWEsNXuL6KdvLw8fPXVV46bRC1mzPC1116L4cOH49prr8Ull1yCd955h0IjiLgRsUOz4ktbxHbUSrztHu+AObsPphN1mmZKs8YOOzz3hBj07dsXkiRF3L5v3z4DrTEfVQPo8vLysHXrVtxyyy24+OKL8eabb6K4uJi3bQTBBC0dLa/UYGZjtSmZjZqJLhy7CjOzp2kmzMPy4REyTU0AS2+lw1OrTZs2LeTvlpYW7NixA2vWrMH06dNNsso8VGeTSEtLw5o1azB79myMHTsW//M//4Nbb72Vp20E4VhEyy8c7wQPvODlHRYdoyfiEM07bPXrpwcRwyPUHJ9+bInJb37zG8X1L7zwArZu3WqwNeYTNWY4ISGhw9+PP/44XnvtNfz+97/HnXfeydU4wtnwSqtmhUwSWtESL2xEarpYbceibWkwnTasdD8T1oDuKfsxatQorFixwmwzDCeqGI4UTzJhwgR88skn2LFjBxejCMIKmDV4TuSQB1ZlAH4D+6wudnn80Ii2D6twFUqzFj9W9AoT1mTFihVIT0832wzDiRomsX79emRkZChuu+CCC1BZWYk1a9ZwMYywH07sxEQgWrtrFZxap2DmjVMH08ULfbYm9KL1uWB2zzU2AkkM5wlz+INw0UUXhTg8JUmCz+fD0aNHsXjxYhMtM4eod9aVV14ZdeczzzwTt99+O1ODCGfC671kxOd6p8EjzVck1Ayks6twjQbFDjvnmpNXmODBddddF/J3YmIisrKyMHLkSAwYMMAkq8yDpmMmiB+xaiYJkeKFo2FGG5J3uCPkHbYOIl0nOz4LTmbOnDlmmyAUJIYJR2FEui698cLRMklo7RxF6Uz1dKRmeodFFsR6vMPxpFoj77A1oDYh1HLy5EksXboU27dvR2pqKs477zxMmDABSSzDUSyC886YIFTghPAKXtk6wjG7reycai0W5AV2FqLeyykpDH5IsZ4B1+Ez6tbU1OCKK67A0aNHMWDAAGzbtg0DBgzAggUL8OGHH6Jnz55mm2goMadjJggzMEqo2Q2RQiTUpFhTi5qO1Imp1oyeplm0zBJ2RqS83oT9mDlzJs466yzs378fy5YtQ0pKCnbv3o3LLrsMM2bMMNs8wyExTNgWJ3h3RRUNZrVtPO0hahuywg73eSTsfO1YzZxJGE9tbS1KSkrgdrvh8XhQWlqKhii/AGtra3Hvvfdi4MCB6NKlC3r16oXf/OY3qK+vVyz/n//8Bz179kRCQgLq6urisvH999/H/PnzkZqaGpJVYtq0afjoo4/iqtPKUJgEQYDd4DmR8gubIRR4dsp6p2jWExIhcjiFnlAIM6dpZhU77HQc00aNjUCnTmzr40RJSQm+++47rF27Fi0tLZg0aRImT56MZcuWKZY/fPgwDh8+jIULF2Lw4MH45ptvcPfdd+Pw4cN46623OpQvLS3Feeedh0OHDsVt47FjxxRDITp16oTEROf5SZ13xgQhMEZNw8wjDMWITllvuATLfawEy2tjxCBULdj52kULZWEZhkSwY8+ePSgrK8NLL72EgoICDB8+HM899xyWL1+Ow4cPK+4zZMgQ/P3vf8fVV1+Nfv364ac//Skee+wxvPfeezh16lRI2cWLF6Ourg4PPPCALjvlEIlgmpub8eijj+Lyyy/XVbcVITFMOAa7TcMsUko1I9tMz0AcPW0ksugyOnaYFbxmGbQbweLXKu8np1JRUQGPx4OhQ4cG1hUXFyMxMRGbN29WXU99fT3cbndIZofdu3fjkUcewWuvvabbe1tUVISVK1cG/j558iTS09Oxbds2PPPMM7rqtiIUJkGYjsgiQwkrdEZGtqmI7eHET+w8JuKIBKs0a7GgNGv2Oa/kZLMtUMbv94f8nZycjGQdxvp8PmRlZYWsS0pKQkZGBnw+n6o6jh49iv/+7//G5MmTA+uamppwyy234Mknn0SvXr3w9ddfx20jACxcuDBw7pmZmVi0aBH69euHESNGODK1GnmGCUtgNcEsMixDJMzqqPWES9jVO6wHkTNLEAQAoKmp/QFktTQ1AQByc3ORlpYWWBYsWKB4+FmzZiEhISHqsnfvXt2n6ff7MW7cOAwePBjz5s0LrJ89ezby8vLwi1/8QvcxACA1NRU5OTkAgG7duuFXv/oViouLHSmEAfIMEw5FrYizyuA5M0Ik1LZNNNGkRwjpGVBnV0+ikd5hoyDvMMGTgwcPwu12B/6O5BWeMWMG7rjjjqh19e3bF16vFzU1NSHrT506hdraWni93qj7Hzt2DGPGjEG3bt2wcuVKdO7cObCtvLwcO3bsCAyokzNAdO/eHQ899BDmz58fte5wJk2apLrsq6++qqluK0JimHA8onSgWgbPmS1o1LSZGqGq93M7j4wEdp+mWWsGCREySxAEL9xud4gYjkRmZiYyMzNjlissLERdXR0qKyuRn58PoF3ItrW1oaCgIOJ+fr8fo0ePRnJyMt59912khL1k/v73v+PkyZOBv7du3Ypf/vKX+Oc//4l+/frFtCucSGnbnIqhYRILFizAxRdfjG7duiErKwvXXXcdqqurQ8o0NjZiypQpOPPMM5Gamorx48fjyJEjIWUOHDiAcePGoWvXrsjKysJvf/vbDiMuP/74Y1x00UVITk5G//79sWTJkg72LFq0CL1790ZKSgoKCgqwZcsWzbYQ7DHzs6kdchNHEy4s2paVEI6nLEtoIg79GHXt1La3yNeFcAZ5eXkYM2YM7rrrLmzZsgWbNm3C1KlTMWHChEBYwqFDhzBo0KCA5vD7/Rg1ahSOHz+Ol19+GX6/Hz6fDz6fD62trQCAfv36YciQIYGlT58+geOFxyir4e2331a9OAFDxfCGDRswZcoUfPbZZ4H8e/INIHP//ffjvffew4oVK7BhwwYcPnwYN9xwQ2B7a2srxo0bh+bmZnz66af4y1/+giVLlmDOnDmBMvv27cO4ceMwcuRIVFVVYdq0abjzzjvx4YcfBsq8+eabmD59OubOnYvt27fj/PPPx+jRo0M+b8SyhSCMgLdo01I/ayGsZx8ZHrOZ2V1UaY0RpswShOmwjBeWF04sXboUgwYNQlFREcaOHYvhw4fjxRdfDGxvaWlBdXU1Tpw4AQDYvn07Nm/ejB07dqB///7o0aNHYDl48CA3O4nTJEjBU48YzPfff4+srCxs2LABV1xxBerr65GZmYlly5bhxhtvBADs3bsXeXl5qKiowCWXXIIPPvgA//Vf/4XDhw8jOzsbAPDCCy9g5syZ+P777+FyuTBz5kysWbMGO3fuDBxrwoQJqKurQ1lZGQCgoKAAF198MZ5//nkAQFtbG3Jzc3Hvvfdi1qxZqmyJhd/vR1paGnburEe3brE/w9gdtQOaWA3wCu/AgwVX8DY1/4+2DmATLxwpTELp3IPXRUuxxrptY4kivZ5CPYIo1rF5CECRvxTEG2cez8BDVkI23muotQxhPMeO+TFkSFogZZha5H60/vXX4e7alZk9/hMnkHbbbZrtIeyJqdkk5JiVjIwMAEBlZSVaWlpQXFwcKDNo0CD06tULFRUVANpz+J177rkBIQwAo0ePht/vx65duwJlguuQy8h1NDc3o7KyMqRMYmIiiouLA2XU2EI4C56dLKt4Ya2CRSQhbBbxiD8rEG/Ij5likoWotvp1IwjCeEwbQNfW1oZp06bhsssuw5AhQwC05+dzuVzweDwhZbOzswP5+Xw+X4gQlrfL26KV8fv9OHnyJH744Qe0trYqlpFTo6ixJZympiY0/ZiuBeiYv5AwD55CjWcWCT0YKQpYta+eAXU0mI4vVsxEQdiIxkaA5TTBdDMTQZjmGZ4yZQp27tyJ5cuXm2UCcxYsWBCSrzA3N9dsk4TB6PcOj9RpZiBK3lsj8s2aiV37RaO8wyzvgWg/hux6nQiCMBdTxPDUqVOxevVqrF+/Hj179gys93q9aG5uRl1dXUj5I0eOBPLzeb3eDhkd5L9jlXG73ejSpQu6d++OTp06KZYJriOWLeHMnj0b9fX1gYUC38VExM/DajErRMJIrDaYTtR25IEVnhGCIAitGCqGJUnC1KlTsXLlSpSXlwdSg8jk5+ejc+fOWLduXWBddXU1Dhw4gMLCQgDtOfx27NgRkvVh7dq1cLvdGDx4cKBMcB1yGbkOl8uF/Pz8kDJtbW1Yt25doIwaW8JJTk4O5CxUm7uQIHjAUqDp9QobLaDiDbOwq6i1m3dYDXa9lgRB8MHQmOEpU6Zg2bJleOedd9CtW7dA7G1aWhq6dOmCtLQ0lJaWYvr06cjIyIDb7ca9996LwsLCQPaGUaNGYfDgwbjtttvwxBNPwOfz4eGHH8aUKVMCM8fcfffdeP755/Hggw/il7/8JcrLy/G3v/0Na9asCdgyffp0TJw4EUOHDsWwYcPw9NNP4/jx44FZWdTYQhiDGR1buBDgmUUiXszOk6tl5L/8fxFEihNjh1nG+5odOyx6WxOcaGpiGzMcNL6HIAwVw4sXLwYAjBgxImT9q6++Gpjm8I9//CMSExMxfvx4NDU1YfTo0fjTn/4UKNupUyesXr0a99xzDwoLC3HGGWdg4sSJeOSRRwJl+vTpgzVr1uD+++/HM888g549e+Kll17C6NGjA2VuvvlmfP/995gzZw58Ph8uuOAClJWVhQyqi2ULQfBEi+AwIu2VFmJ5G2Odm1kz04kitIz+8WDm7HMEQRBmY2qeYbtDeYZPoyXWNVwEiZBjWEkgsfIKq80vrDafsFG5hSOJTTViUs3x9Yp41nmHY21Ts10LPIRoPDHnWtez/PGl5x7TUo7gj+48w88/D3eXLszs8Z88ibSpUynPMAHA5DzDBEHEh1EhEjyEsNpyvCfwiCe/sJGD6UTJwCKioCRvNUEQLDEtzzBBEGwQJURCq2gy4hN8rHCJSIgSLsEaI2KH9Ya4sMSu19GRHD8OtLayq49+URFBkGeYIGJgpc7UCM+lkXmFeR+LUq2FIpp3mHIOEwRhBCSGCccSLUbYbGLFC6tBZK+w3v20wCNcIhYiCzXR7nWCIAizoTAJgghDjViwYko1rfvZSTTFGy4RCTt/ftcSSkGhEoRhGDmalHAc5BkmbE+kTBJ2IFoWCR4oCUq9bRprfyPCMsg7zH4fVteNRaiEyNeCIAjzITFMECYSKa2aXkTxyokE6zZRI7CsKsK0CF+7/cAkCMJ5kBgmCMFgES8cq05WsBJCVvUOW1XsAs7zDhMEQUSCYoYJIgqieb3UTrShF6XzNjKLBC/MmJnOqjGrLGKHRcKq14H4EYoZJjhCnmHCEOzUCZk5eE4NRoVIqJmNTV5Y1GeElzEerNynGuEdZgV5hwmC4AWJYcLxiJxijQVmCAU101mLiugz0xkJi9hhO3xRIAjC3pAYJhyJCOJMafBctHhhJ4RIGHVd4vUOW1XURsNK3uFo2HlAI0EQS4wkoQAAIABJREFUfKGYYcJ2iNhRG4UIIRLRZjHTK0aMyl8bT3xprH1EjlmNdm1EyjvMOl80YSGamsSuj7A05BkmbAcr74+ScBE9Xjgc0TxhIolBHjPT2TVcQgmRriVBEIQeSAwbAP0AJdRghxAJFgLJyDRrVg+XCB6kyHPyE5Fih/UOpBPl2hEEIQ4khglCJSy9wjwm2wgXCUbnFmaVNUIk4mlDo7zDSu1odNta6VoSBEFEgmKGDULkeEGnoCYVGBGKWfGZseJUWcYOm5F7mCd6YrN5xw6zgmKHHUhjIyBJ7OqjT7ZEEOQZJmyHHaaSFSVEQm0Zre0oWrsbnXuY96d6PWETPK+lmTMJai1DEIRzIDFMEAoYLdb0ds5GhUgYiQhTNMvEM5hOBFjfx6L9iCEIgmABhUkYiKifVe0Gj3YWPV6YB7zFpmip1uL99B5vGIVR74N42lnrPkrlKVSCYEpTE9swiWZrZQYi+EKeYYIQDK0hEiy8wkaGSGjB6B+Pdp3yl2U76q2LBCxBEKJBYthgrNyhEs5BpBnnrBwuYXbscDC847rN+OoV6ccLvWcJgtACiWHCMKwaIsJ7og2tA35Ye4XVYIZXWAsi5B62Aqyulx3S6JFgJghChmKGTYBih/kSTwq14HU8r02seGGe2SIiYfa9qCa2lHf8qRa0xgiLEjscD7za3ahptQkb0dAAuBiOt6CYYSII8gwTtiO48zbsE7pBSk3PVMBqUdtmok3wILJ3mMftYfaPA7WTfvC+TyhUgiAIvZAYJmwNd+9TY+PpXjf4/xp2j7cMi3NjEbPLAlbHMOrHD+tUa3aKHSYIp1NbW4uSkhK43W54PB6UlpaiQeULW5IkXHXVVUhISMCqVatCtm3duhVFRUXweDxIT0/H6NGj8cUXX/A4BcdBYpgwHZE726jxwowVjBkhElZDzb3CShDH6rucNJiOR90iZJWg54zgQUlJCXbt2oW1a9di9erV2LhxIyZPnqxq36effhoJCQkd1jc0NGDMmDHo1asXNm/ejE8++QTdunXD6NGj0dLSwvoUHAfFDJuEyHGCdiJah2u19jcinZqZIRIixQXLiJ7L1uxcxWqvmVk5h+k9ayOamoC2Nnb1cRKQe/bsQVlZGbZu3YqhQ4cCAJ577jmMHTsWCxcuRE5OTsR9q6qq8NRTT2Hbtm3o0aNHyLa9e/eitrYWjzzyCHJzcwEAc+fOxXnnnYdvvvkG/fv353I+ToE8wwQRDwLECBuBiELCSO9wLMg7rA8RfmiY/YwR9qKiogIejycghAGguLgYiYmJ2Lx5c8T9Tpw4gVtvvRWLFi2C1+vtsH3gwIE488wz8fLLL6O5uRknT57Eyy+/jLy8PPTu3ZvHqTgKEsMmQi9h8TAyk4SaCTXUYPTAOZ6ImLIr3nAJVuWNrk8rogykI4h48Pv9IUtTU5Ou+nw+H7KyskLWJSUlISMjAz6fL+J+999/Py699FJce+21itu7deuGjz/+GG+88Qa6dOmC1NRUlJWV4YMPPkBSEn3k1wuJYZMxuyMTERFEmQiozS0cD6LOOMcSs7NL2G0wHa/rzvt5p3esTZAHKLNcAOTm5iItLS2wLFiwQPHws2bNQkJCQtRl7969cZ3au+++i/Lycjz99NMRy5w8eRKlpaW47LLL8Nlnn2HTpk0YMmQIxo0bh5MnT8Z1XOI09HOCMBQR40IjEXHwnEAnIJApzBAlDjWcaPHDZuceNjs2VulaqF3HCtHjuwkxOXjwINxud+Dv5ORkxXIzZszAHXfcEbWuvn37wuv1oqamJmT9qVOnUFtbqxj+AADl5eX46quv4PF4QtaPHz8el19+OT7++GMsW7YM+/fvR0VFBRIT2/2Yy5YtQ3p6Ot555x1MmDAh1qkSUSAxTDgeTSKCs/pSqp61V1iJcBFhFe9vLIyc3MFqAlZGi0C10o9ZLYhyLQjjcbvdIWI4EpmZmcjMzIxZrrCwEHV1daisrER+fj6AdrHb1taGgoICxX1mzZqFO++8M2Tdueeeiz/+8Y+4+uqrAbTHFCcmJoZkmpD/bmM5sNChUJiEoCh8zSFsRKwYYT35h2Ohp9MXTTAYPZiOdbgEy0lUzJ6xUE+cMIVKEHYhLy8PY8aMwV133YUtW7Zg06ZNmDp1KiZMmBDIJHHo0CEMGjQIW7ZsAQB4vV4MGTIkZAGAXr16oU+fPgCAn/3sZ/jhhx8wZcoU7NmzB7t27cKkSZOQlJSEkSNHmnOyNoLEsEWgl7m1iTUNMxD7GhvlFRYBEWJZIxHtOrCejEMrZvxAEulYNMWzjWlqYhsvrHOgXDSWLl2KQYMGoaioCGPHjsXw4cPx4osvBra3tLSguroaJ06cUF3noEGD8N577+HLL79EYWEhLr/8chw+fBhlZWUd0rAR2qEwCQEI/0QXrUMVzTNnBMJ8muVghNGptkSZcc5ojAyXiEQ88cNGPvMswiX0xAmLcI0IggUZGRlYtmxZxO29e/eGJElR61Da/rOf/Qw/+9nPdNtHdIQ8wxZDCFHIAREEmFE2xCOAWUyyoYSWWGGjr5HdvMPRYBkuYQVE9A7bsZ0JglAHiWELYvWXtkg5YiPRIZOEyQPnWJgiwg8OM2EdDiJquISeY7D4ASJqjmGrvzcJguAHhUlYFKeGTGhFhHjY4HjheAbOOTmDBOtMB6w/xRuVbk3UcAnWx6FQCSIijY0Ay8klTp1iVxdhecgzLAjktQhFBBFrFGZ4hbW2r4hCWQmr2Mn7eddbv96ZAM2+DiSoCYLQAolhAVHbkZCANgiDGtrM6ylSrDDv44sQLhFPeaPvD9ZTY5t9HwH0ziQIQhkKk7A4FC4RnXhmpYo48xxD1IqeYKFlhlfYiveWGdlHjJydzkj0tKWafYXJFPMjIrU9EUZTE9vQhtZWdnURloc8wzYgHu+TiBN6mJHr1Mhjxju5Bm+s0PlrtTFWeaPDcFhdZy31sDomy3R8Rk+SQhAEoQYSwwKhp/NSu68I4iseTBNsOhtMzWQbwYchr3BkrBwuEQmzJ+ngjZn3EMUNEwShFhLDNiLeCRzM8BDbXWhFQ0n4moVo1yEWIuceBoxJt2bGfcNzshajr5MIzx1BEGJBMcOCEm8snZ6YN9Hi5SyZZilCA2odGGWEV1jkQXPRYJlujcc9Fk/8sN6yRsAqvteMFHhaEK3diR9paAA6dWJXH8UME0GQZ9iGKHl67R5GwQqWg+eUQiTUiGLL/QAQHNHih5Xg5R0W4YsPhUoQBCE6JIZtTLyf40VN8WU4HBtC7bUhr7AyVo4fNmMQnGiEXz8r3HMEQdgXEsMCw6KDiLcztXonbDX7RfEKW0mU2C1+2Are4Xhjh+NpfxE89gRBOAOKGRYMkeLVeNuiNQZRiJykwQaobJxwL7DIXmGrIXr8sFaUnjlRpmmWEeI51IlI71lCJU1NQCJD/11bG7u6CMtDnmHBMfuFbfbIdaG8QxoaQ21KteBqWQgxO6VSUwtLu+0aLiFi7LBRoRIsU94RBGFPSAxbALNFiiM7hnhGICpcKNHCVCLdS2bfY0ZhxqQPWsWYFWL8nXK/EAThDChMglAFr8+KdvjkqoZYoRJmp1KzOizDJXgQKd2alimZ9YZLsH6GWbSjFUJXCEFobKQwCYIb5BkmVGOWaA0WEbwEORAlrZrN1bpdRDLLAXVGhufYNbtEPAPpzJ4enSAIZ0JiWECUXtKiCBajOhCW52u0Z0mOF47lDSavMHvsFD/MI1yC9fMrkriNBnmX2WLGrKUEwRMSw4RmjO5QDSf4BA1847OartduOYV5YdX4YdFEiNZ7SOvAObMG0YrWzqJA7ULYEYoZthAixddSaqIwYjSGGq8wp0Mz30907BY/rISWWGM9xzEDkd5zRCimXpemJiAhgV19ksSuLsLykGeYiBveL8ZIKdYM68jjOMFIIRKxqqXwCLbYKX7Y6tklRJuimYgP+oFC2BkSw4IS6cUjWici8gtSFNsiCWPZKxzLTp6DBglzMDtcgsezoeeeihU6weIHCcUNEwQRCRLDFkQ0IcOiY9Ubd6gGVXYyOBk1XmEjJtignMLsyvLwDke6B1hklxDlh6CMqPecaO0kKtROhN2hmGGCCUbkITY056jWeaKhPOtcrKmXKTyCL1adrllrnmG1deipTw162ptihYmoNDZSzDDBDfIMWxQRxY6VOrJwWyPmGGZQP49Bc9Gg7BHxY3T7sEi3Jtpzx+qLhAj3qmhtSxAEH0gMC4wVX8S8YxG1DqRjYo+GpJpasrLF6y2ON55SBHFhBiLnHgb4xg+L/g7Rcm3MSrHmdES/hwiCBSSGLYyo4ibehOw8zydub6xKZRocIqHGK0zhEcbCMn6YByzih+OBV/3xeod5tz0NoiMIQgmKGbY4IsfZxROTGOl8IsUOx3P+Me1SU6FCBZG8wlrDI9S2GQlhbbCKH+YVO6wl/7CWmGIzYodZIfL7zQkI1fYUM0xwhDzDgiPUyygORLNfkz3hhSPsHMsrrMuGIFimrnIqrNrB6E/2VowfVusdZhkqEc/5i9RmBEGYA4lhGyC60Ik3bCIc7pNw6DBSrVc4koDRGydMg+bUo7Y9RAqX0IuVBJ/edrfSuYoMtSPhJEgME4ahVhSbKt5i5UILJiVFlVdYr8AhIcweFoKYl3dYS/wwq8F0ZscO031KxKIFQIsksVvMPiFCKEgMWwDhBaRG4vGEKq1X6x1mntIs7GDhIjiSno50zikp6kUDCWF2sGgfqwniaBgtiNXuQ/ex8ditzyGIWJAYthFWezmxyDoRb7iE6uNGMlJBEGsNj4gFZY4QAzNmpwP4CGKRPn3He/+qae9o50kZJQiCCIfEMGE6KvVmROLNPRxTjIdvDKu8GS5F768IQpiEsjpYxQ8bLYithpp2Zn3PiiT8rQS1m35qa2tRUlICt9sNj8eD0tJSNER5mPfv34+EhATFZcWKFQCAL774Arfccgtyc3PRpUsX5OXl4ZlnnjHqlGwPiWGLoCUllFXR4imONzxA6X3U4ZjRRLBCTINsN6tOhISwsVgxwwQv77DRQkjkwYyEWJzisPCipKQEu3btwtq1a7F69Wps3LgRkydPjlg+NzcX3333Xcgyf/58pKam4qqrrgIAVFZWIisrC2+88QZ27dqFhx56CLNnz8bzzz/P8UycQ4IkUbI9Xvj9fqSlpaGysh6pqW7d9XEJA7A4sQaqKeVQTU09rWnlxZ3SHKpqgyuWKwjaQfYKh8cIK8Una7kWamaXIzHMHrXXSE05Ht7cSEJb6VrrWRdtPQvUiPNYmVkA9SEkkc6FfmBGhpfj5dgxP4YMSUN9fT3cbvX9odyP+gDo70WD6gXgBTTbE4s9e/Zg8ODB2Lp1K4YOHQoAKCsrw9ixY/Htt98iJydHVT0XXnghLrroIrz88ssRy0yZMgV79uxBeXk5E9udDHmGLYQeUWVXwuOH1XZymjy5YQXVhkco7BoVEsLio6Z9jZyymUdcsBV+SLNuYyucsxE4sR38fn/I0tTUpKu+iooKeDyegBAGgOLiYiQmJmLz5s2q6qisrERVVRVKS0ujlquvr0dGRoYue4l2SAwTlic8ckFLRym//INTpEU8QNiBlBzJwXHCJIStg5a2M6ud9UzZLMpgOi0eaoIwgtzcXKSlpQWWBQsW6KrP5/MhKysrZF1SUhIyMjLg8/lU1fHyyy8jLy8Pl156acQyn376Kd58882o4ReEekgMWwzyDkdGqyCORwyEh0ewnkwEUPZuO+1aio7oA+p45iTWi5YfdbxSrNllYCJLRPcK84oZPnjwIOrr6wPL7NmzFY8/a9asiIPc5GXv3r26z/PkyZNYtmxZVK/wzp07ce2112Lu3LkYNWqU7mMSQJLZBhB8SUkR/yWnBblDjJazV94eLkgixRQrxRUHNip4hZVihYPr1xNzR+nTzEPrsxKrfGqqcaJL6R6OeF8LCK/3lJXagDAHt9utKmZ4xowZuOOOO6KW6du3L7xeL2pqakLWnzp1CrW1tfB6vTGP89Zbb+HEiRO4/fbbFbfv3r0bRUVFmDx5Mh5++OGY9RHqIDFsAMnJbOujF3w7Sp1/+LbgdUreumBh64rWIwcNmguul5UQjicsQms5gj1mCOKGhsj3cixBrEU083zP8BK/dvvxLypOfOdkZmYiMzMzZrnCwkLU1dWhsrIS+fn5AIDy8nK0tbWhoKAg5v4vv/wyrrnmGsVj7dq1Cz/96U8xceJEPPbYY9pPgogIhUk4ADu+uCLFHoav1xVioCJ7BKBN7CjZ40QhHB5qwjr0JF7iaU8zQibsED8cjtbwCCNT2dkdEa5/LKySWi0vLw9jxozBXXfdhS1btmDTpk2YOnUqJkyYEMgkcejQIQwaNAhbtmwJ2fff//43Nm7ciDvvvLNDvTt37sTIkSMxatQoTJ8+HT6fDz6fD99//z2nM3EWJIYNwuyE8lYVTeGoOW+l8W4K49+UK5cPELajkmBraIgthCOMvQOgnP0i+NB2RK3YtULnHIwZ10ytINbTllr3daEZLjSrKsvjhwdBiMDSpUsxaNAgFBUVYezYsRg+fDhefPHFwPaWlhZUV1fjxIkTIfu98sor6Nmzp2Ic8FtvvYXvv/8eb7zxBnr06BFYLr74Yu7n4wQozzBH5PyIO3fWo1s3N/MOXmvHYDWBEY1oOVLVTCoQXsbrBbJQ0yFOWM4yUVfXvgTvG+/nby05YyNhRVFgpR9w8T4r0fbjFT+s9geV0leTePaLRrAQjpqh5UfiyTEcK98wj1zDVnzetGDEs6k3z/B+sM8z3Bvs8wwT1oRihg2EdTyb1pi+WIPP7EKsTk1ut2BhXFcHNKZknd63EWisO72fkkdTazwoCxGspnys62t0x27F+41H7CmvAXVKMcQs44fVvmfCPcLy39FEcXg7B/8d6f9aoTEW0bHi80kQrCExbDA0wIMNajq4aN7j4HrC/9VyfWQRoiRyYsU0suqgtd5PSgMNeWHlez2eZ9WsDBNqBXE4aoWiHkHpQrMmQRwLeoc6k1awjfNtZVgXYX0MjxneuHEjrr76auTk5CAhIQGrVq0K2S5JEubMmYMePXqgS5cuKC4uxr/+9a+QMrW1tSgpKYHb7YbH40FpaSkawnqYL7/8EpdffjlSUlKQm5uLJ554ooMtK1aswKBBg5CSkoJzzz0X77//vmZb4oGlAImnU3CalyQ8bjclpX36ZXdKM7I8zfB4AI+nPVTC6wV69w5dlPYPjwGW43+Dl1j2xAvLwWY8B6zZQbBYZUBdJOKJH+Zx3dTGEQPqBs/J0CA6giBYYLgYPn78OM4//3wsWrRIcfsTTzyBZ599Fi+88AI2b96MM844A6NHj0Zj0Bu6pKQEu3btwtq1a7F69Wps3LgxZBYWv9+PUaNG4eyzz0ZlZSWefPJJzJs3LySA/dNPP8Utt9yC0tJSfP7557juuutw3XXXYefOnZpssSp2EMRahJwLzXA1+gMLGhsBnw+oq4Or0Q93Yw1ce79sX/b/3+ml0Q+Pp7295H+DF6V1sRYRscEtzY14rpvIGSbUCOR4Mk7EihHWIoiVsHuGFYIgzMPUAXQJCQlYuXIlrrvuOgDtnticnBzMmDEDDzzwAID24Pbs7GwsWbIEEyZMwJ49ezB48GBs3bo1MPd3WVkZxo4di2+//RY5OTlYvHgxHnroIfh8Prhc7S/oWbNmYdWqVYEZYm6++WYcP34cq1evDthzySWX4IILLsALL7ygypZYhA+gC8bswXS87DALJW+SLGJcaO6onMNdq99+2y6Og3dMSQGGDAG83kBHr1RNMFZvT7NCN3jZwQMt5xarLI+QCVYD6uIZTKdG8EYSzVoGz7EYREcD6OJ/TuNpj6NH/cjPj38A3VcAumk/bESOAegHGkBHtCNUarV9+/bB5/OhuLg4sC4tLQ0FBQWoqKgAAFRUVMDj8QSEMAAUFxcjMTERmzdvDpS54oorAkIYAEaPHo3q6mr88MMPgTLBx5HLyMdRY4seWL9crS7CeNHY+GPnG+zekxXt0aPtiyyE//1vYOfO9uXf/z6dQuJH77ELzSHeYKCj19CqnmEZFveR3e9F0bN+qBGHSuvi9RhrRY1gjhUqIfpzZGfMavsmDgtByAglhn0/euays7ND1mdnZwe2+Xw+ZGVlhWxPSkpCRkZGSBmlOoKPEalM8PZYtoTT1NQEv98fskRDhBe6CDawIJb3KOaOcuBweNwDEFEUBxfRInRFb3Mj89IqIXr7AOwEMa+YV7WCOBZGCuJ4rzvFDceH3X+0EoQWhBLDVmfBggVIS0sLLLm5uTH3MXswHWsbzCSSIFb0Dofv2NgIdO9+WhCnpraXlb3HYaPWZEEMKHuGnYgVhDBLAWAHQWxmmE8sDzF5hO0DCW9CdIQSw16vFwBw5MiRkPVHjhwJbPN6vaipqQnZfurUKdTW1oaUUaoj+BiRygRvj2VLOLNnz0Z9fX1gOXjwoIqzFuMFL4INLFD10pUVa7AKCV7Xvfvp/E2yV1iDIFaD6O2tJ11bvPBoE6XMGywzaLCyWWRBrKWt1Ey0EY1I7Sn680Lwp5XDQhAyQonhPn36wOv1Yt26dYF1fr8fmzdvRmFhIQCgsLAQdXV1qKysDJQpLy9HW1sbCgoKAmU2btyIlpaWQJm1a9di4MCBSE9PD5QJPo5cRj6OGlvCSU5OhtvtDlmMRk8nb5cOJ1z0KHqH5eDfnj3b86lFSgvh9baXkdUKg+BfnunMWKLWRhGFsJFtzCo8xkqCmFXb6skwYZf3lRlY4f1DEEZiuBhuaGhAVVUVqqqqALQPVKuqqsKBAweQkJCAadOm4dFHH8W7776LHTt24Pbbb0dOTk4g40ReXh7GjBmDu+66C1u2bMGmTZswdepUTJgwATk5OQCAW2+9FS6XC6Wlpdi1axfefPNNPPPMM5g+fXrAjvvuuw9lZWV46qmnsHfvXsybNw/btm3D1KlTAUCVLSwRIVyCtR1mouQJbGwE/I0uNKe4QwVx9+6hIRLBixwuETxq7keCvWDRMkyE22UlYp2LaELYrB8adhTEseAliGnwnL2w2juPcCaGz0C3bds2jBw5MvC3LFAnTpyIJUuW4MEHH8Tx48cxefJk1NXVYfjw4SgrK0NK0Btw6dKlmDp1KoqKipCYmIjx48fj2WefDWxPS0vDRx99hClTpiA/Px/du3fHnDlzQnIRX3rppVi2bBkefvhh/O53v8OAAQOwatUqDBkyJFBGjS0skb/Ms6CxkToN4HQ7dGjXFDdcwRsaG9sFr1JOpvBYiJQUNMOlOFAv0vWzcocg2x6cjIMFZmdUYf2MqH1+WT7nWlCapS4a4e2jtr2a4dKdU1iJaO0WPrOfWW1sBchZQhAdMTXPsN2Jlmc4EmYN8OFphwgoeZtknRvouKOd9I87BecbDt+F18h7u8KqYxWpc9diS7SyPPIPy8TKr6v3byC+8IfweONoGWKUnr/gNlP6TRuO2jzDdhOARj8v8vEaGvTlGf4c7PMMXwjKM0y0I1TMMEHhEryIlmnC3+hCM8LCJ35cmlPc7Uv7HHYd4pDDB2cFH4OEsDIsM26I1saiZ5gAOgptHvHDegfS6cVu7y9WiPa8EIQoGB4mQcRGlHAJ1p/FzSaS51Zu75QUoDFKJ65GBNilrXghyo89nmh5frV8+udJrJAII8KuXGgOEdFGhjqQeI6NHq8wQYgOiWEHoLcjs2P8HQsha7c24YnZ8cFGI7ogVoof1iKAeYnlcEEsE/KDVeFfIjbUTgQRGRLDgkIvef1Ear/wTlupnJoyhDpEFcK8vYF2E8RaBXC8A+mCBbGe92CwYI4Xu3iM7fD+agVwinF9BCFDMcMOQe/L0IqdQnjKYBk1bREtHphQj6hC2ChEjyHWmnJNyzbA/Nhhwjys9qwSzobEsMCIJiSsKIiDCRfEsQbBEfoQ7f41C7sL4mj7xYuSR5nl/cRzgKJoWPW5IQgjoTAJwWEdLkHxw9HR8lmbiAwJ4VDsEDIRaZuud4p8olEqCG8Pu7+DRESE913LjwvL+ghChjzDFkA0YSHCi5EQF9HuV1GwuodYrUc4vFzEUIkYlceKN1bTnqzKGIVdvlRZ2XbCmZAYtggkMNjAIsetSJ2naFjlPjXrGtpJEDMPl4iyU7S2kLdZOfQhkvjVe/879T1PEFohMWwhRBJhItkSD0oD69TuRyhjFSFsNlYQxNEm5ohHHKseSBdWSbh32Mjnz6hjxbrP7focEIRIUMywxWA9IYdcp9m2mAkJXH3waD+e95UI11v0GGKgYxxxpDhhNf/XhIod9bx7gs/JzHuB97vTrBSEvM6rFWzToVFqNSIY8gxbEBE6cxmRbCHsgR1+YKlBdA8xoN9DHPz/Dt7haCcVtKPsHbbLu8bq8cAEYUdIDFsUkaa1ZRGHS1gPHtfdaSLB8YLYYFi1U6TUjNGEbrwimN6tBMEfEsMWRiRBDNBL20lYLTRCRsR71ExBrLbNWccQq0LBOwywu4bx1KNW0Jqdw9ysH5VO+zFL2AcSwxaHBDFhNFYVwiKjxcserWxqqnpRLLe5WsEWjyBWWhfiHY510mGV6bn31LRLpIG1ZoY2OP3ZkGnmsBCEDIlhIgQSxEQ0eIRFUGd/GiO9xErTlbMWxEw9xQoY8a5x8v1J73LCKZAYtgEixm3SS9ReUHywcYgeR8xCEMfjHdaTZi28LdTuK8I9Kko2B4KwMySGCUVIEBMyFBZhPGbHEcfy2IfnItYiiDUZoVQp9E8pr7QueD19sdAOtRdhZUgM2wRRPXckiK0LrywhZnWaVrsXtcYRR0KPh1hL2IRaQazoHY50UAUDtF7HWHmF1a6zAiyfLdHaoBXAKYYL5RkmgiExbDNEFcSivViJ6PC6XuQ90g6rgXXxHkeNlzi4bLT/RxTEsXIO19UBPh9cjf4ONqs9by2i14qsJyVqAAAgAElEQVT3qRVtJghRIDFsQ0Qd5ESC2Brw8gaL2llrzRdrBizCJrQMqlNCiyCOFi8c00McyYCUFDSnuFFX166No10jNVk17CSEzYbaLJTa2lqUlJTA7XbD4/GgtLQUDTGmivzqq69w/fXXIzMzE263GzfddBOOHDnSodyaNWtQUFCALl26ID09Hddddx2v03AUJIZtiqift0kQi4vdwiLCiUfwiiSMWQlivV7iSESKI1YjiKMeFAA8HjR7suDzAT4fOghiuR6l8wu/r+34pYr1/Sli+7AMkZAXXpSUlGDXrl1Yu3YtVq9ejY0bN2Ly5MkRyx8/fhyjRo1CQkICysvLsWnTJjQ3N+Pqq69GW1tboNzf//533HbbbZg0aRK++OILbNq0CbfeeivHM3EOCZIkSWYbYVf8fj/S0tKwc2c9unVzm2KDyOmMRBAYRDsUFqEOUUSC2nZV683Vun+sdogUniD/X+nfQLYIpV8fHg/8jS74fNruqXA7NaY1FgIzbOaRwaKhwY/8/DTU19fD7VbfH8r96AcAztBmVlSOA7gK0GxPLPbs2YPBgwdj69atGDp0KACgrKwMY8eOxbfffoucnJwO+3z00Ue46qqr8MMPPwRsqa+vR3p6Oj766CMUFxfj1KlT6N27N+bPn4/S0lJm9hLtkGfY5ojs6RNFWDgZnl4yEYWFXkQ5J1YD69SEEkSahCIaseKIlf5thqs9ZCLCTalkS7SYYbt7g3nhtFRufr8/ZGlqatJVX0VFBTweT0AIA0BxcTESExOxefNmxX2ampqQkJCA5OTkwLqUlBQkJibik08+AQBs374dhw4dQmJiIi688EL06NEDV111FXbu3KnLXqIdEsMGoPPZ0o3ogpg6KePhLYKt3kFGQ5RzYzGwDlCfbUKvII4mhDvUp5DrzNXoRy9vM7xewONR9vqGi2Olc7dTrLAVbRaN3NxcpKWlBZYFCxboqs/n8yErKytkXVJSEjIyMuDz+RT3ueSSS3DGGWdg5syZOHHiBI4fP44HHngAra2t+O677wAAX3/9NQBg3rx5ePjhh7F69Wqkp6djxIgRqK2t1WUzQWLYMYg+KIpEsTHwbmczOmclEcQbUQQ/y3zE8cQSx4qpjhZHrBS7LXuIOyAHCft8cDfWwOuNfj5KgpjeMbER2SvMK2b44MGDqK+vDyyzZ89WPP6sWbOQkJAQddm7d29c55aZmYkVK1bgvffeQ2pqKtLS0lBXV4eLLroIiYntMk2OHX7ooYcwfvx45Ofn49VXX0VCQgJWrFgR13GJ0ySZbYBTaGw0/0WcksLn5cXy3HjZ6HR433tGXzOznyWRkNtCzTWIVTY1NXYscXgdaq5FQ8NpsR38vpD/38GeFBdc4fUGqWZXXQ283vYBdbHstCv0nmSD2+1WFTM8Y8YM3HHHHVHL9O3bF16vFzU1NSHrT506hdraWni93oj7jho1Cl999RWOHj2KpKQkeDweeL1e9O3bFwDQo0cPAMDgwYMD+yQnJ6Nv3744cOBATPuJ6JAYNhASxOrQ0rkTkTHSS2oUZj8/4YjwTMdDtPeALFrVimK1yPWlpqoXxEhxhU7DLMdHNDbChWakpESYuCOCfZHO2WrvGqsMmrMTmZmZyMzMjFmusLAQdXV1qKysRH5+PgCgvLwcbW1tKCgoiLl/9+7dA/vU1NTgmmuuAQDk5+cjOTkZ1dXVGD58OACgpaUF+/fvx9lnnx3vaRE/QmLYgVhBEAPkJdaK0aLMySI4GC0eUp5ofV5YeInjQfYSB7eb0v8D7xPZS5ySgma4ftzuQgoit3mkOpWgd4z5966dyMvLw5gxY3DXXXfhhRdeQEtLC6ZOnYoJEyYEMkkcOnQIRUVFeO211zBs2DAAwKuvvoq8vDxkZmaioqIC9913H+6//34MHDgQQLsH++6778bcuXORm5uLs88+G08++SQA4Oc//7k5J2sjSAwbjF7ByKrj5eV9ZS0MwsbQEBEwsjMjEayMCKI4nh+Q0d4Far3EWgn3Est2KNnQ/s50ISXldG5huWykOGAXmuFKiTLls0XQ4t22O6xzA/PMM7x06VJMnToVRUVFSExMxPjx4/Hss88Gtre0tKC6uhonTpwIrKuursbs2bNRW1uL3r1746GHHsL9998fUu+TTz6JpKQk3HbbbTh58iQKCgpQXl6O9PR0jmfjDCjPMEfk/IiVlfVITQ2NSWLxSYpVp8vr5SpyFgs7QJ5gZUS5R8wW8vG0g5YMEaxQmiQjHHmd13taBIeET4QTpLBPe5NjZLAQEK0ZPFgdJxbx2KE3z/BKsM8zfD3Y5xkmrAl5hi1ArDg3Fl5iXmETcv2sIE8xieBoiHRPmO0pZu0lBvh4ioMH1wUfW+lZb2wE3HUHTv8hbwjPtRbNbWwRRBXCBGFHSAybBMv4WhZ18YzP5TXIyEnC2IwOy0oiWGTMHGQX73OtVhQD+oWxUkq3SLmB3SnN7UZ9+22ogbKi9ngiVmI1r7ComNVurWAb2tDKsC7C+pAYNhG1naSaDs0Kglg+Bg/sKoxJBNsDswWxbAOPfcPFrFpxHCmvcXA7BecK9njQHjT87bft/8qGycHEMkozcuB0cStg1L3ilOePIGJBYpgIgXcGByNEgVGfF3lgZudEItje6Hm2tQhqtTPaRTqG/P9gIawYIxxsTHDhoHVyvHC43SK/E0QWwiK3G0HogcSwybD2Dstl9WCEIJaPYwSRjmPmi10kMWh0O/A6d+qoY6P32Wb9BSbSYLngBfhRCMupJMJ3lv+VVXjQjsFC2MrhEVa0mSCsBIlhGyJ6yISMCAOMlNB73iIJ3WjYRQRbBTNDJYJh9WzH+wUmWm5g+d8Qb7CsaBsbT4dDKLmRw5bgtGpWEcJmOwiiYXbbNYOtYImSi4RwICSGBYBHJ8lKEMt18cRsURyOKHbwwoxOze5tajV4hBLFc40jxQeHEC6ElXbs3r2DEA7W0HI1IiPiFyyCcAokhgVBjXjV6tFhJbKN8BID4oliu2FWp0rXsx1qh1AihUh02Ca/gOSVP05XG7JdXjweWwlhUY4levsRhF5IDNscqwligEQxayg2mlCDURlZoongqDsFi+LwPMIKHmEZ0YUcPSMEYT4khgWCh3dYbb1qMCpsQoZEcfyIIADousVHpGvHsz3D6+bx41dNrLDqHeV8wj9uCxfBVvEIx8Koa2CkDfFipemYCetBYlgweA2yYVmvkV5iQHkAOdERUTotukYdUdMmarPFqK1PL0rH0HqPqflxH1x38A/ulJR2ketCcwfFHGlwnNVEsJOeleRksy0giMiQGLYg8YpR1oJYrtNISBiHIlqnT9ckPoz82qPH86z2uVdrW/h5RBLEwdvD9w//v2jPRCSMflas7BUmCN6QGBYQnimYWNdttJc4GCcKY5E7J6dcA9aY9ZUl0jaWoliLTeF1Kr1b1IhhK8DiS4GVSEkBWlr01UFhEgRPSAwLSizRqkeE2kkQy4Qf3y7CzOx2tRIi3IdKRLsX9dir9TlWeyy1opiVsFaqL9q1jCWQRceMdxN5hQkiOiSGBcZqgliuVwSsLI5FaUO1WKltRUIUj3C0ffTmI473642a41jtOQG0hY8YfUyCcDIkhgXHSoJYrz08MWOEfixEbCetiNbRinb/WX0iBZZ2svqBapW2C0e0ZyUaVm1jgogXEsMGIPIoWicJYiW02Knns7EdEbVzF/3+M3PQqUiIahcPeISzsD4uj+PHa4MSpwDoDDvuUB9ByJAYNgieHly9nT8vQSzXbRfsdC7xIqoADkdUQSyiTYQ9EeFZFcEGglADiWGLwDPDBM/67SiKnYZVOzQRBDHv4/N+LxD6McsrHA9mH58gzCLRbAOchN5OK9qLikWHyPNFSB22tZBnurX6dbO6/SygNjAPJ4dHEISVIDFsMCSICZGxgwAOx27nE07wzGuRthPGYsfnSCusz7+Vw0IQMhQmYQI8P9+yqJvnp1e9qZoI9jih0xYhZII3TpyExi6QV5ggzIU8wyahp7NiNRWqnmOwgjwo5kJtb09ieYsJfmh9pswWwjwQxQ6CUAt5hk1EtBzBSscAjHmxBR+DOnFjcFqH5QTvsBJK19mJ7WAEVhTCVrkXaDpmgifkGTYZXh5ilkLH6JelXQZviQy1rbOh54stVm1PHu92K7YDQZBnWAB4eYjt4AlT82K1+jkaidM7Kjs8Eyyh9tCPCB5ZihMmCH2QGLY5rDo7I0MmtEIhFrER8boRfKFrzh+rCmFeiGQLQWiBxLAg6JmcwkihKnqSfyfFRyrdM0o/DES+XmZA3tBQqD3iw8pC2IrhEc0AOjGujyBkSAwbQFMT0K2burI8OibWdYouiMOxskBW087RwmQioXT+VrqmRkMpAYlgRBKhVrSBIESDxLBBaBGQJIj5I5pANqot9U7OYOVrHoza58Eu5xsL8g7zh8c73Wwb4rWDIESDxLCB8BbEseonQRwdo7x/ZrUZy9jxYJTuKyvcF7Geh0jnQKLRuYjiEbbC80UQVoLEsMFoFcTyPqJiN0EcjJ3Oi+c9JPL9GYtIz5idrj3BBqsLYat7hSnPMMETEsMmoFVAsvTo8vgcyksQk0AhjIJS+FGoRDREefc4VQgTBG9o0g2T0Dpdqpqk7lo9ziwxohOV24w6bPGx8jUKvs/oniN4TYxklB0khI3nsccew6WXXoquXbvC4/HELN/S0oKZM2fi3HPPxRlnnIGcnBzcfvvtOHz4cEi52tpalJSUwO12w+PxoLS0FA0NDbxOw1GQGDYZrS+qSKJY68vJ6i8zEijiY7XrQ/cUEY7VhTAP4rWlqYmtHSLT3NyMn//857jnnntUlT9x4gS2b9+O3//+99i+fTvefvttVFdX45prrgkpV1JSgl27dmHt2rVYvXo1Nm7ciMmTJ/M4BcdBYRICEE+YAYuXox0+i1IuXUIvVn8GlKDnQT+ieGJFEeR6YGFHK9jG+bYyrCuc+fPnAwCWLFmiqnxaWhrWrl0bsu7555/HsGHDcODAAfTq1Qt79uxBWVkZtm7diqFDhwIAnnvuOYwdOxYLFy5ETk4O03NwGuQZFgSzvFJ26TTJqycmol8XkW3TA4V56IOEsDKipHNzAvX19UhISAiEWVRUVMDj8QSEMAAUFxcjMTERmzdvNstM20CeYcEww9NpBw+xDHmKxUTErCN2uefVEul8rZC1xkhICCtjVyHs9/tD/k5OTkZycrJJ1rTT2NiImTNn4pZbboHb7QYA+Hw+ZGVlhZRLSkpCRkYGfD6fGWbaCvIMC4rRLxHRhIperPASNgpR2kIUOwCxbGGBXuFkt/aIBzWDlCNhdyEsAqc4LACQm5uLtLS0wLJgwQLF48+aNQsJCQlRl7179+o+z5aWFtx0002QJAmLFy/WXR+hDvIMC4zRXk47eYiB0HOxm9jXgkjXVUQPsZUwclIdJyGS+BTJFj2IZEs0Dh48GPC+AojoFZ4xYwbuuOOOqHX17dtXly2yEP7mm29QXl4eYpfX60VNTU1I+VOnTqG2thZer1fXcQkSw5bASFGnp0MVWeiIbJvToFAW7Zg5lbud0XsPOkEI2/05dbvdIaIzEpmZmcjMzORmhyyE//Wvf2H9+vU488wzQ7YXFhairq4OlZWVyM/PBwCUl5ejra0NBQUF3OxyChQmYTGMGBAjyguZ9UvYrM/BIuStFbFDo8/zsYnn072I11o09IREAHzuXTtdN6c/1wcOHEBVVRUOHDiA1tZWVFVVoaqqKiQn8KBBg7By5UoA7UL4xhtvxLZt27B06VK0trbC5/PB5/OhubkZAJCXl4cxY8bgrrvuwpYtW7Bp0yZMnToVEyZMoEwSDCDPsAHwisXn6WETxUNspRnzwo8RbxletpHX0FrouQ/0XGul49rhvmH1XIkyOE1GNMcIL3usNB3znDlz8Je//CXw94UXXggAWL9+PUaMGAEAqK6uRn19PQDg0KFDePfddwEAF1xwQUhdwfssXboUU6dORVFRERITEzF+/Hg8++yzHM/EOSRIkiSZbYRd8fv9SEtLw86d9ejWzc29QxFtZjmROx8ZHt5nlvASxqKJG6O9YqKdfzhmPTvRjit6m0VC9PeQnYQwENmmhgY/8vPTUF9fryosQUbuR+cAYPmaaATwCKDZHsKekGfYQHh75nh4ivV6iFnYw7PdRI8l5uX9D65PBJEj+nUwEtbPL6DuGmuZ7l2EeyYaLNtQRBEMWEsIE4TokBg2gKYmoHPn0Dg1q4liPbAQOk4WxABfG52YZ9ZpISO8fkyZ3YYihDvFg8hCOF5EtIkg1EJi2ECCRaoRnbFInlkWtpAg5muj2QLH6GvgNEHMA6O9xUbdHyJ6XWVEtM2Ia2+lmGHCelA2CRORRbEVvBuixN3xbCuR2ikSdhIcSlCWDesKdB7vs+A6rS6EWZyDiPeGiDYRhFbIM2wCSh4w3l45kTyzej2APNuKPMTtOMlrarZHXAkr3IfRCLddS9uacd5WGNwsoo1GPjNNgtdHWBsSwyYRqbMTXRSzsk8kcR6OyGJdxupiKRpmxbyLNkBMtNh/PYh6DiIKTCWsYicPXC4XvF4vnvL5mNft9XrhcrmY10tYDxLDJhJN0BghikUQfCzsEFEQA8ZkD+EdQ2ymKDRT8IvkLbaTKBYFq4QbiSqCjXwuUlJSsG/fvsDkEyxxuVxIoQeLAIlh04nV4YseEsBqcJ0IwjwcUdonGiSI+WL2+QcTbgf14dowVsAZd6x4sYIQlklJSSHRSnCFxLAAqPH82N0DKood4bCyS66LB3b3HAa3mxnnKJIgDobEcWTMul5WyG8MWEsIE4QRUDYJFSxatAi9e/dGSkoKCgoKsGXLFi7HaWyM/rLhNaKaVRYFO46UBtjZZUSmiVj3kNUx6/ysIDSDr7+d7wGg47mKcO4s44NFFMIEYWdIDMfgzTffxPTp0zF37lxs374d559/PkaPHo2amhpux4z1IuQhilm9gPXaJmrqNasIYhmW4sDo1FZqMEP0iHT+ahBBILJE1HNh+WyIGiMM6LctOVnf/gTBkwRJkiSzjRCZgoICXHzxxXj++ecBAG1tbcjNzcW9996LWbNmRd1XnlO9srIeqana5z5X8+Li8fI0+1OfyB5ms9uGBVbpuLVgpFAV6bxZIKrIt0I7W+VZMvudmpICHDvmx5Ahaaivr4fbrb0/JAieUMxwFJqbm1FZWYnZs2cH1iUmJqK4uBgVFRUdyjc1NaGp6XT2wvr6egBAQ4M/ruM3NLT/G+sXdRPjhIlqj6sWrfY1NOg/Nus2kWFhWzC87IyGHc4hHNbnFAsRzpkV8vMejhmePKu0q9w2LS366+J9zsnJ+uzUa598fLkfJP8bISIkhqNw9OhRtLa2Ijs7O2R9dnY29u7d26H8ggULMH/+/A7rr7wyl5uNBEEQBGEVjh07hrS0NLPNIIgQSAwzZPbs2Zg+fXrg77q6Opx99tk4cOAAPfwG4/f7kZubi4MHD9InOQOhdjcHandzoHZXjyRJOHbsGHJycsw2hSA6QGI4Ct27d0enTp1w5MiRkPVHjhyB1+vtUD45ORnJCt8W09LS6EVpEm63m9reBKjdzYHa3Ryo3dVBTiFCVCibRBRcLhfy8/Oxbt26wLq2tjasW7cOhYWFJlpGEARBEARBsIA8wzGYPn06Jk6ciKFDh2LYsGF4+umncfz4cUyaNMls0wiCIAiCIAiddJo3b948s40QmSFDhsDj8eCxxx7DwoULAQBLly7FwIEDVe3fqVMnjBgxAklJ9LvDaKjtzYHa3Ryo3c2B2p0grA/lGSYIgiAIgiAcC8UMEwRBEARBEI6FxDBBEARBEAThWEgMEwRBEARBEI6FxDBBEARBEAThWEgMc2TRokXo3bs3UlJSUFBQgC1btphtkjBs3LgRV199NXJycpCQkIBVq1aFbJckCXPmzEGPHj3QpUsXFBcX41//+ldImdraWpSUlMDtdsPj8aC0tBQNDQ0hZb788ktcfvnlSElJQW5uLp544okOtqxYsQKDBg1CSkoKzj33XLz//vuabbEKCxYswMUXX4xu3bohKysL1113Haqrq0PKNDY2YsqUKTjzzDORmpqK8ePHd5h45sCBAxg3bhy6du2KrKws/Pa3v8WpU6dCynz88ce46KKLkJycjP79+2PJkiUd7In1jKixxQosXrwY5513XmByhsLCQnzwwQeB7dTmxvD4448jISEB06ZNC6yjticIAhLBheXLl0sul0t65ZVXpF27dkl33XWX5PF4pCNHjphtmhC8//770kMPPSS9/fbbEgBp5cqVIdsff/xxKS0tTVq1apX0xRdfSNdcc43Up08f6eTJk4EyY8aMkc4//3zps88+k/75z39K/fv3l2655ZbA9vr6eik7O1sqKSmRdu7cKf31r3+VunTpIv35z38OlNm0aZPUqVMn6YknnpB2794tPfzww1Lnzp2lHTt2aLLFKowePVp69dVXpZ07d0pVVVXS2LFjpV69ekkNDQ2BMnfffbeUm5srrVu3Ttq2bZt0ySWXSJdeemlg+6lTp6QhQ4ZIxcXF0ueffy69//77Uvfu3aXZs2cHynz99ddS165dpenTp0u7d++WnnvuOalTp05SWVlZoIyaZySWLVbh3XffldasWSP93//9n1RdXS397ne/kzp37izt3LlTkiRqcyPYsmWL1Lt3b+m8886T7rvvvsB6anuCIEgMc2LYsGHSlClTAn+3trZKOTk50oIFC0y0SkzCxXBbW5vk9XqlJ598MrCurq5OSk5Olv76179KkiRJu3fvlgBIW7duDZT54IMPpISEBOnQoUOSJEnSn/70Jyk9PV1qamoKlJk5c6Y0cODAwN833XSTNG7cuBB7CgoKpF/96leqbbEyNTU1EgBpw4YNkiS1n1vnzp2lFStWBMrs2bNHAiBVVFRIktT+QyYxMVHy+XyBMosXL5bcbnegrR988EHpJz/5Scixbr75Zmn06NGBv2M9I2pssTLp6enSSy+9RG1uAMeOHZMGDBggrV27VrryyisDYpjaniAISZIkCpPgQHNzMyorK1FcXBxYl5iYiOLiYlRUVJhomTXYt28ffD5fSPulpaWhoKAg0H4VFRXweDwYOnRooExxcTESExOxefPmQJkrrrgCLpcrUGb06NGorq7GDz/8ECgTfBy5jHwcNbZYmfr6egBARkYGAKCyshItLS0h5zto0CD06tUrpO3PPfdcZGdnB8qMHj0afr8fu3btCpSJ1q5qnhE1tliR1tZWLF++HMePH0dhYSG1uQFMmTIF48aN69A+1PYEQQA0HTMXjh49itbW1pCXJwBkZ2dj7969JlllHXw+HwAotp+8zefzISsrK2R7UlISMjIyQsr06dOnQx3ytvT0dPh8vpjHiWWLVWlra8O0adNw2WWXYciQIQDaz9flcsHj8YSUDW8TpfaQt0Ur4/f7cfLkSfzwww8xnxE1tliJHTt2oLCwEI2NjUhNTcXKlSsxePBgVFVVUZtzZPny5di+fTu2bt3aYRvd7wRBACSGCcKxTJkyBTt37sQnn3xitimOYODAgaiqqkJ9fT3eeustTJw4ERs2bDDbLFtz8OBB3HfffVi7di1SUlLMNocgCEGhMAkOdO/eHZ06deowCvjIkSPwer0mWWUd5DaK1n5erxc1NTUh20+dOoXa2tqQMkp1BB8jUpng7bFssSJTp07F6tWrsX79evTs2TOw3uv1orm5GXV1dSHlw9sk3nZ1u93o0qWLqmdEjS1WwuVyoX///sjPz8eCBQtw/vnn45lnnqE250hlZSVqampw0UUXISkpCUlJSdiwYQOeffZZJCUlITs7m9qeIAgSwzxwuVzIz8/HunXrAuva2tqwbt06FBYWmmiZNejTpw+8Xm9I+/n9fmzevDnQfoWFhairq0NlZWWgTHl5Odra2lBQUBAos3HjRrS0tATKrF27FgMHDkR6enqgTPBx5DLycdTYYiUkScLUqVOxcuVKlJeXdwgjyc/PR+fOnUPOt7q6GgcOHAhp+x07doT8GFm7di3cbjcGDx4cKBOtXdU8I2pssTJtbW1oamqiNudIUVERduzYgaqqqsAydOhQlJSUBP5PbU8QBGWT4MTy5cul5ORkacmSJdLu3bulyZMnSx6PJ2REspM5duyY9Pnnn0uff/65BED63//9X+nzzz+XvvnmG0mS2tOZeTwe6Z133pG+/PJL6dprr1VMrXbhhRdKmzdvlj755BNpwIABIanV6urqpOzsbOm2226Tdu7cKS1fvlzq2rVrh9RqSUlJ0sKFC6U9e/ZIc+fOVUytFssWq3DPPfdIaWlp0scffyx99913geXEiROBMnfffbfUq1cvqby8XNq2bZtUWFgoFRYWBrbLqaZGjRolVVVVSWVlZVJmZqZiqqnf/va30p49e6RFixYpppqK9YzEssUqzJo1S9qwYYO0b98+6csvv5RmzZolJSQkSB999JEkSdTmRhKcTUKSqO0JgqDUalx57rnnpF69ekkul0saNmyY9Nlnn5ltkjCsX79eAtBhmThxoiRJ7SnNfv/730vZ2dlScnKyVFRUJFVXV4fU8Z///Ee65ZZbpNTUVMntdkuTJk2Sjh07FlLmiy++kIYPHy4lJydLZ511lvT44493sOVvf/ubdM4550gul0v6yU9+Iq1ZsyZkuxpbrIJSmwOQXn311UCZkydPSr/+9a+l9PR0qWvXrtL1118vfffddyH17N+/X7rqqqukLl26SN27d5dmzJghtbS0hJRZv369dMEFF0gul0vq27dvyDFkYj0jamyxAr/85S+ls88+W3K5XFJmZqZUVFQUEMKSRG1uJOFimNqeIIgESZIkc3zSBEEQBEEQBGEuFDNMEARBEARBOBYSwwRBEARBEIRjITFMEARBEARBOBYSwwRBEARBEIRjIeZqYDYAAATLSURBVDFMEARBEARBOBYSwwRBEARBEIRjITFMEARBEARBOBYSwwRBEARBEIRjITFMEITt6N27NxISEpCQkIC6ujpddY0YMSJQV1VVFSMLCYIgCFEgMUwQhJC0trbi0ksvxQ033BCyvr6+Hrm5uXjooYei7v/II4/gu+++Q1pami473n77bWzZskVXHQRBEIS4kBgmCEJIOnXqhCVLlqCsrAxLly4NrL/33nuRkZGBuXPnRt2/W7du8Hq9SEhI0GVHRkYGMjMzddVBEARBiAuJYYIghOWcc87B448/jnvvvRffffcd3nnnHSxfvhyvvfYaXC6XprqWLFkCj8eD1atXY+DAgejatStuvPFGnDhxAn/5y1/Qu3dvpKen4ze/+Q1aW1s5nRFBEAQhGklmG0AQBBGNe++9FytXrsRtt92GHTt2YM6cOTj//PPjquvEiRN49tlnsXz5chw7dgw33HADrr/+eng8Hrz//vv4+uuvMX78eFx22WW4+eabGZ8JQRAEISIkhgmCEJqEhAQsXrwYeXl5OPfcczFr1qy462ppacHixYvRr18/AMCNN96I119/HUeOHEFqaioGDx6MkSNHYv369SSGCYIgHAKFSRAEITyvvPIKunbtin379uHbb7+Nu56uXbsGhDAAZGdno3fv3khNTQ1ZV1NTo8tegiAIwjqQGCYIQmg+/fRT/PGPf8Tq1asxbNgwlJaWQpKkuOrq3LlzyN8JCQmK69ra2uK2lyAIgrAWJIYJghCWEydO4I477sA999yDkSNH4uWXX8aWLVvwwgsvmG0aQRAEYRNIDBMEISyzZ8+GJEl4/PHHAbRPprFw4UI8+OCD2L9/v7nGEQRB/P/27tC2sSAKoOjbQCs1WI6pSbA7SCWmn7mS4NSSCtyCA1JAkEHALtrlmwRYvufAAU/D5v7RSJ+bIIaBq/T6+jrPz8/z8vIyq9Xq3/rhcJj9fv+t5xIA8Nev304T4MZsNptZlmWWZfmReefzeR4eHuZ0Os3j4+OPzATgOrgZBm7S8Xic+/v7+fj4+Nacp6en2e12P7QrAK6Nm2Hg5ry9vc3n5+fMzGy327m7+/p3//v7+1wul5mZWa/X//3nOwCumxgGACDLMwkAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyBLDAABkiWEAALLEMAAAWWIYAIAsMQwAQJYYBgAgSwwDAJAlhgEAyPoDrWknhOkqWQEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1dfHv5seUjYJIY2S0HsTBEILiPTQVKpGeleKKB1BeSlKERQpIl2KP1FABSIgXToIUqRIkZZQU0gg/b5/xBlmdmdbsrszs3s+zzMP5M6d22b2znfPnnuuhjHGQBAEQRAEQRBOiIvcDSAIgiAIgiAIuSAxTBAEQRAEQTgtJIYJgiAIgiAIp4XEMEEQBEEQBOG0kBgmCIIgCIIgnBYSwwRBEARBEITTQmKYIAiCIAiCcFpIDBMEQRAEQRBOC4lhgiAIgiAIwmkhMUwQBEEQBEE4LSSGCYIgCIIgCKeFxDBBEARBEAThtJAYJgiCIAiCIJwWEsMEQRAEQRCE00JimCAIgiAIgnBaSAwTBEEQBEEQTguJYYIgCIIgCMJpITFMEARBEARBOC0khgmCIAiCIAinhcQwQRAEQRAE4bSQGCYIgiAIgiCcFhLDBEEQBEEQhNNCYpggCIIgCIJwWkgMEwRBEARBEE4LiWGCIAiCIAjCaSExTBAEQRAEQTgtJIYJgiAIgiAIp4XEMEEQBEEQBOG0kBgmCIIgCIIgnBYSwwRBEARBEITTQmKYIAiCIAiCcFpIDBMEQRAEQRBOC4lhgiAIgiAIwmkhMUwQBEEQBEE4LSSGCYIgCIIgCKeFxDBBEARBEAThtJAYJgiCIAiCIJwWEsMEQRAEQRCE00JimCAIgiAIgnBaSAwTBEEQBEEQTguJYYIgCIIgCMJpITFMEARBEARBOC0khgmCIAiCIAinhcQwQRAEQRAE4bSQGCYIgiAIgiCcFhLDBEEQBEEQhNNCYpggCIIgCIJwWkgMEwRBEARBEE4LiWGCIAiCIAjCaSExTBAEQRAEQTgtJIYJgiAIgiAIp4XEMEEQBEEQBOG0kBgmCIIgCIIgnBYSwwRBEARBEITTQmKYIAiCIAiCcFpIDBMEQRAEQRBOC4lhgiAIgiAIwmkhMUwQBEEQBEE4LSSGCYIgCIIgCKeFxDBBEARBEAThtJAYJgiCIAiCIJwWEsMEQRAEQRCE00JimCAIgiAIgnBaSAwTBEEQBEEQTguJYYIgCIIgCMJpITFMEARBEARBOC0khgmCIAiCIAinhcQwQRAEQRAE4bSQGCYIgiAIgiCcFhLDBEEQBEEQhNNCYpggCIIgCIJwWkgMEwRBEARBEE4LiWGCIAiCIAjCaSExTAAAunTpAm9vbyQnJxvM8/bbb8Pd3R0PHjywWr1RUVGIjY3VS//222/h6uqKjh07IiMjw2r1WZP9+/dDo9Fg//79dq03KioKffr0sWud1uLff/9Fv379EBERAU9PTxQvXhxdunQx69rs7Gx88skniIqKgqenJypVqoSvvvpKL19UVBQ0Go3k4eXlpZd/06ZNqFWrFry8vBAREYFRo0YhLS1NlIe711LHsWPHRHm//PJLNGjQAMHBwfD09ESpUqXQo0cPXLx4scBj0qxZM4P1azQaJCYm8nkzMzMxZ84cVKtWDT4+PggNDUXbtm1x5MgRo+O7Z88evrzHjx+Lzm3cuBFNmzZFaGgoPD09ERERgQ4dOhgs8/Hjxxg5ciR/r7g2PH36lM9z9uxZtG/fHqVKlYK3tzeCgoIQHR2N7777Tq88xhiWL1+OOnXqwN/fH0WLFkVMTAy2b99ulzG1Bg8fPkSfPn0QHByMIkWKIDo6Gr///rtevoLeP4IgCo6b3A0glEH//v2xdetWbNiwAcOGDdM7n5KSgi1btiA2NhahoaE2bcucOXMwduxYxMXFYeXKlXBzo8dUyJYtW+Dv7y93MyzmwoULaNasGcqUKYO5c+eiRIkSSEhIwG+//WbW9cOGDcO6deswffp0vPrqq/jtt98wcuRIPHv2DBMnTuTzbdmyBZmZmaJrb9++je7du+sJovXr1+Odd97BgAED8MUXX+Dq1asYN24cLl26hF27dum1YebMmWjevLkorVq1aqK/nzx5grZt26JmzZoIDAzEjRs3MHv2bNSvXx+nT59GxYoVLR6TxYsXIzU1VZT2/PlztGnTBnXq1EFYWBifPnDgQKxfvx4TJkzAa6+9hqdPn2L27NmIiYnBH3/8gXr16un1Ky0tDQMHDkRERATu37+vd/7Jkydo1KgRRo4cieDgYCQkJGD+/Plo2rQpfv/9d8TExPB579+/jyZNmsDNzQ1TpkxB+fLl8fjxY+zbtw9ZWVl8vuTkZJQsWRI9e/ZE8eLFkZ6ejvXr1yMuLg63bt3C5MmT+bxTp07F9OnTMWTIEMyePRsZGRn46quvEBsbix9//BFvvPGGTce0sGRmZqJFixZITk7GwoULERISgq+//hpt2rTBnj17RONXkPtHEEQhYQTBGMvJyWERERGsTp06kueXLFnCALBffvnFqvVGRkay9u3b839PmDCBAWDvv/8+y8vLs0od6enpVilHl3379jEAbN++fTYp35HIy8tjtWrVYrVq1WIZGRkWX3/hwgWm0WjYzJkzRekDBw5k3t7e7MmTJ0avnzZtGgPA9uzZw6fl5OSw8PBw1qpVK1He9evXMwBsx44dfBp3r3/44QeL284YY5cuXWIA2JQpU/i0wo7J6tWrGQD27bff8mkZGRnM1dWVvfPOO6K89+/fZwDYiBEjJMsaPnw4q127Nps8eTIDwB49emSy/uTkZObu7s7i4uJE6Z06dWLFixdnT58+tbhPjDFWv359VrJkSVFa8eLFWePGjUVpL168YFqtlnXs2JFPs8WYWoOvv/6aAWBHjhzh07Kzs1mVKlVYvXr1+LSC3j+CIAoHuUkQAABXV1f07t0bp0+fxvnz5/XOr1q1CuHh4Wjbti2ftmTJEtSsWRO+vr7w8/NDpUqVRBY6S8jLy8PQoUMxa9YsfPzxx/jyyy+h0Wj484wxLF68GLVq1YK3tzcCAwPx1ltv4caNG6JymjVrhmrVquHgwYNo2LAhihQpgn79+uHWrVvQaDSYO3cu5s+fj9KlS8PX1xfR0dF6P3MDwKlTp9CxY0cEBQXBy8sLtWvXxv/+978C9U0I93P7hg0bMG7cOISHh8PX1xcdOnTAgwcP8OzZMwwaNAjBwcEIDg5G37599X6y13WT4MrcuHEjJk2ahIiICPj7++P111/HlStXCt1ma3Dw4EGcPXsWo0aNgqenp8XXb926FYwx9O3bV5Tet29fvHjxAvHx8QavZYxh1apVKFOmDF577TU+/dixY0hISNArs2vXrvD19cWWLVssbqchihUrBgCiXzkKOyYrVqyAr68vunfvzqe5uLjAxcUFWq1WlNff3x8uLi6SbiKHDh3CN998w7smmYufnx+8vLxEfbp16xZ+/vlnDBw4EIGBgRb3CQCCg4P1fg1yd3fX65OXlxd/cNhiTAHz5x9DbNmyBRUrVkR0dDSf5ubmhnfeeQcnTpzAvXv3ABTs/hEEUXhIDBM8/fr1g0ajwcqVK0Xply5dwokTJ9C7d2/+Zblp0yYMGzYMMTEx2LJlC7Zu3YrRo0cjPT3d4nqzs7Px9ttvY9myZVi4cCE++eQTvTyDBw/GqFGj8Prrr2Pr1q1YvHgxLl68iIYNG+r5MCckJOCdd95Br169sGPHDpHbx9dff43du3djwYIFWL9+PdLT09GuXTukpKTwefbt24dGjRohOTkZS5cuxbZt21CrVi10794dq1evtrh/UkycOBEPHz7E6tWrMW/ePOzfvx89e/bEm2++Ca1Wi40bN2Ls2LFYt26d2V8wJk6ciH///RfffvstvvnmG1y7dg0dOnRAbm6u0esYY8jJyTHrKCgHDx4EkC+g2rVrBy8vL/j6+iI2NhaXL182ef2FCxdQrFgxvZ+ua9SowZ83xJ49e3gfUuEXLO4argwOd3d3VKpUSbLM4cOHw83NDf7+/mjdujUOHz5ssN7c3FxkZmbi8uXLGDBgAEJCQkTCuzBjcu3aNRw6dAg9evSAr6+vqO3Dhg3DmjVrsHXrVqSmpuLWrVsYOHAgtFotBg4cKCrnxYsX6N+/P0aNGoVXXnnFaJ1cn7Kzs3Hr1i0MHToUjDEMHz6cP3/o0CEwxhAREYGePXvC19cXXl5eaNasGY4ePSpZZl5eHnJycvDo0SMsXrwYv/32G8aNGyfKM3LkSMTHx2PFihVISkpCQkICPvjgA6SkpGDEiBE2HVPAsvlHigsXLug9Z8DLZ4/zJ7f0/kVFRSEqKspk/QRBmEBGqzShQGJiYlhwcDDLysri08aMGcMAsKtXr/Jp7733HgsICCh0fZGRkQwAA8AmTpwomefo0aMMAJs3b54o/c6dO8zb25uNHTtW1H4A7PfffxflvXnzJgPAqlevznJycvj0EydOMABs48aNfFqlSpVY7dq1WXZ2tqiM2NhYFh4eznJzcxljBXOT4K7p0KGDKH3UqFGSP4N27tyZBQUFidIiIyNZ79699cps166dKN///vc/BoAdPXrUrDaZc9y8edPsvgoZPHgwA8D8/f1Z//792Z49e9i6detYZGQkCw4OZvfv3zd6fcuWLVnFihUlz3l4eLBBgwYZvLZ79+7M1dWV3b17V5Q+Y8YMBoAlJCToXdOqVStWoUIF/u8zZ86wkSNHsi1btrCDBw+ylStXssqVKzNXV1cWHx8vWa+npyc/bhUqVGCXLl0SnS/MmIwbN87gvc3Ly2Mff/wxc3Fx4esvVaoU+/PPP/XyjhkzhpUpU4Y9f/6cMcbY1KlTjbpJVKxYkS8zPDycHT58WHR+1qxZfJ86derE4uPj2Y8//shq1KjBvLy82Llz5/TK5MYBAPPw8GCLFy+WrHvp0qWiMQ0KCmK7d++WLMuaY2rJ/GMId3d3NnjwYL30I0eOMABsw4YNfJol969s2bKsbNmyJusnCMI4JIYJEWvXrmUA2ObNmxlj+X5toaGhrEmTJpL5evTowbZu3WqWj6EUkZGRrFatWqxUqVLM399f8uU+adIkptFo2IMHD1h2drboaNCggcjnLiYmhgUGBuqVwYnh8ePHi9IzMjIYADZ79mzGGGPXrl1jANjcuXP16lq8eDEDwIuawojhZcuWidKXLVvGALDffvtNlM75UD979kw0ZlJieOnSpaJrL1++zACwTZs2GW1TamoqO3nypFlHZmam0bJ0x4zz+x44cCADwFq3bi3K/+effzIAbNKkSUbLbdmyJatUqZLkOQ8PD0mhwRhjT548YZ6eniK/dA5ODCcmJuqda9WqlUHxzZGUlMRKlCjBatSoIXn+9OnT7OjRo+y7775jderUYaGhoezChQv8+YKOSXZ2NgsLC2NVq1aVPD99+nRWpEgR9umnn7J9+/axbdu2sZYtW7Lg4GB25swZPt/x48eZq6urSFCaEsMXLlxgx48fZz/88ANr0aIF8/PzEz3/3JhWqVJF9KXz/v37rEiRIuztt9/WK/Pff/9lJ0+eZNu3b2dDhgxhLi4ubM6cOaI8K1euZJ6enmzMmDFsz549bMeOHaxHjx6sSJEioi8jthhTc+efvLw8vfMc7u7ubMiQIXplc2JY+GXc3PtHEIT1IDFMiHj+/DnTarW8eNi2bRsDwFavXq2Xd+XKlSw6Opq5uroyjUbD6tWrx3bt2mVRfdwCuhs3brDIyEjm7+8vWmTCGGMDBgwwaq0sU6YMnzcmJoZVqVJFrx5ODOu+ZBljDACbOnUqY4yxw4cPm7SOHjx4kDFWODGsuxBr1apVDAA7efKkKF1KnBgSw7plcn1etWqV0TZJvcQNHabQHSuu7vHjxzMAbP78+XrXhIeHs7Zt2xott0ePHqxYsWJ66WlpaQwAmzBhguR1CxcuZADYli1b9M4tXbqUAWAXL17UO1e3bl0WHR1ttE2MMTZkyBAGgLesGiI1NZWFhISIFnsVdEy4z+QXX3yhd+7SpUtMo9HoPedZWVmsXLlyrFmzZnxa1apVWdeuXVlSUhJ/cNbR69evs9TUVKN9ys7OZtWqVRN9GeDGVGqhV3R0NKtcubLRMhnLH1M3Nzf28OFDxhhjT58+Zd7e3mz48OF6eWNiYlhUVBT/ty3G1Nz5h/sMCw+OsLAw1rVrV72yf/31V9GXYEvuH0EQ1oNiVhEivL290bNnTyxfvhwJCQlYuXIl/Pz80LVrV728ffv2Rd++fZGeno6DBw9i6tSpiI2NxdWrVxEZGWlRvaVLl8b+/fvRvHlztG7dGvHx8WjYsCGA/AU1Go0Ghw4dklwUo5sm9Au1lODgYADAhAkTROGahAhDYzkCBw4c0AsXZoibN28a9VE8efKk6O/SpUsD0PfLFcIYg4uL8eUL1atXx6ZNm5CYmCjyG+YWe+qGN+NYsWIFQkNDJWNZV69enS+jSpUqfHpOTg4uX76Mnj17Gm0T13bA9DPHLTC9evUqn1bQMVmxYgU8PDwQFxend+7cuXNgjOHVV18Vpbu7u6NmzZo4cOAAn3bx4kVcvHgRP/zwg145ZcuWRc2aNXH27FmDbXRzc8Mrr7wiWlha2PsMAPXq1cPSpUtx48YNFCtWDFeuXMGLFy/0+gQAdevWxYEDB5CWlgZfX1+bjKm580+HDh30nn+O6tWrSy5M1n1+Lbl/BEFYDxLDhB79+/fH0qVLMWfOHOzYsQN9+vRBkSJFDOb38fFB27ZtkZWVhc6dO+PixYsWi2EgfzEIJ4jbtGmDnTt3olGjRoiNjcXs2bNx7949dOvWrTBdM0nFihVRvnx5nDt3DjNnzrRpXUqhTp06Bl/iukRERBg9X7duXcn0tm3bokiRIti5cydGjx7Np585cwaJiYlo0KCB0XI7deqEyZMnY82aNaLFVatXr4a3tzfatGmjd82pU6fw119/YezYsZKxquvXr4/w8HCsXr1aFD1g8+bNSEtLM/hliCMpKQm//vorv2GHMR4/fozz58+jUaNGfFpBxiQxMRE7duzAG2+8gaJFi+qd5+7PsWPHRLFrMzMzcebMGZQoUYJP27dvn971q1ev5hdvFS9e3GifMjIycOzYMZQrV45Pq1+/PkqUKIFdu3YhNzeXX3B7//59nDt3Dr169TJaJtcuFxcXlClTRq9PvXv35vMxxnDs2DEEBgbCx8cHgG3G1Nz5p2jRopLXA/mbGg0bNgzHjx9H/fr1AeR/6fruu+9Qv359vo+W3D+CIKwHiWFCj7p166JGjRpYsGABGGPo37+/Xp6BAwfC29sbjRo1Qnh4OBITEzFr1ixotVpJC465REZGigTxjh070KRJEwwaNAh9+/bFqVOn0LRpU/j4+CAhIQGHDx9G9erVMXTo0MJ0WcSyZcvQtm1btG7dGn369EHx4sXx9OlT/P333zhz5oykJU3N+Pn5GRSx1iIgIACffvopPvzwQ/Tp0wc9e/ZEYmIipkyZglKlSokifqxduxb9+vXDypUr8e677wIAqlativ79+2Pq1KlwdXXFq6++il27duGbb77B//3f/yEoKEivzhUrVgCA5PML5IcT/PzzzxEXF4fBgwejZ8+euHbtGsaOHYuWLVuKBHavXr1QqlQp1K1bF8HBwbh27RrmzZuHBw8eiCKMpKSkoGXLlujVqxfKly8Pb29vXL16FQsXLkRmZiamTp1aoDHhWLNmDXJycjBgwADJPjVu3Bivvvoqpk2bhufPn6Np06ZISUnBV199hZs3b2LdunV83mbNmuldz+2m2KhRI/5XEgBo2LAhOnbsiMqVK0Or1eLWrVtYsmQJrl+/LgpB5+Ligi+++ALdunVDp06dMHToUKSnp2P69Onw8PDAhAkT+LyDBg2Cv78/6tWrh9DQUDx+/Bg//PADvv/+e3z00Ud8OLpSpUrhjTfewDfffANPT0+0a9cOmZmZWLNmDf744w9Mnz6dt8zbYkwbNWpU6PmnX79++Prrr9G1a1fMnj0bISEhWLx4Ma5cuYI9e/YU6P4B4H+luXXrltH6CYIwgWwOGoSi4XwtpfxvGWNszZo1rHnz5iw0NJR5eHiwiIgI1q1bN/bXX39ZVI/uphsct2/fZmXLlmU+Pj7swIEDjLF8H+X69eszHx8f5u3tzcqWLcveffdddurUKf66mJgYyUUw5voMc5w7d45169aNhYSEMHd3dxYWFsZee+010SI1R/EZtifLly9n1apVYx4eHqxo0aLs7bffZnfu3BHl4cZCt91ZWVls6tSprFSpUszDw4NVqFCBffnll5L1cL7vTZs2NdmmDRs2sBo1ajAPDw8WFhbGRowYIVqwyFh+lIRatWoxrVbLXF1dWbFixViXLl3YiRMnRPkyMjLYgAEDWOXKlZmvry9zc3NjJUqUYO+8846kb7K5Y8JRoUIFFhUVZXRDmuTkZDZp0iRWuXJlVqRIERYSEsKaNWsm2kTEEIYW0I0ZM4bVrFmTabVa5ubmxsLCwliXLl3YH3/8IVnO1q1b2auvvsq8vLz4jTF0+79y5UrWpEkTFhwczNzc3FhAQACLiYlh69at0yvvxYsXbM6cOaxGjRrMz8+PBQUFsQYNGrDvvvtOciysPaZce03NP8ZITExk7777LgsKCmJeXl6sQYMGetEwGLPs/gUHB7MGDRqYVT9BEIbRMPaf0xtBEARBEKrg0qVLqFq1Kn799Ve0b99e7uYQhKqhTTcIgiAIQmXs27cP0dHRJIQJwgqQZZiwCaZ2K+O2HXUUGGMmd3pzdXUtVKQLgiAIgiCsj+OoEUJRuLu7Gz369esndxOtyoEDB0z2ec2aNXI3kyAIgiAIHcgyTNiEU6dOGT0fHBxsNF6t2nj27BmuXLliNE/p0qUNhl4iCIIgCEIeSAwTBEEQBEEQTgu5STghXbp0gbe3N5KTkw3mefvtt+Hu7o4HDx5Yrd6oqCjJncC+/fZbuLq6omPHjsjIyLBafdZk//790Gg0fBxWQppnz55h7NixaNWqFYoVKwaNRoNp06YVuLzJkydDo9FI7jA3adIk1K5dG0FBQfDy8kKZMmUwaNAg/Pvvv6J8d+7cQZcuXVCmTBn4+PhAq9Widu3aWLRokZ5v+7fffovOnTsjKioK3t7eKFeuHIYOHYqEhATJvo4YMQLFixeHp6cnKlSogM8//1zPd7xPnz7QaDQGj2PHjvF5v/zySzRo0ADBwcHw9PREqVKl0KNHD1y8eFFyfL766itUqlQJnp6eKF26ND755BNkZ2eL8uzZswctW7ZEREQEPD09ERISgtdeew07duyQLHPPnj2Ijo5GkSJFEBwcjD59+uDhw4eSeS9cuICuXbuiWLFi8PT0RFRUlGQsX8YYVq1ahXr16sHHxwf+/v545ZVXsG3bNlG+tWvXokePHqhYsSJcXFyM/nr0559/onPnzoiIiECRIkVQqVIlfPrpp3j+/Lkon7ljmp6eztft5+cHHx8fVK1aFf/3f/+H9PR0g+0oDObcPyB/sVzLli0REhLC77T35ZdfmlynQBCEedCmG05I//79sXXrVmzYsEHyxZWSkoItW7YgNjYWoaGhNm3LnDlzMHbsWMTFxWHlypWSO4UR6uHJkyf45ptvULNmTXTu3Bnffvttgcs6e/Ys5s6da/AZTE5ORs+ePVG5cmX4+fnh0qVL+L//+z/8/PPPuHjxIu+Skp6eDn9/f37jhaysLOzYsQPvv/8+zp49K2rj1KlT0bx5c8ycORPFixfHlStXMH36dGzbtg1//vkn35acnBy0bNkSV69exfTp01GhQgXEx8dj/PjxuHv3Lr788ku+zClTpmDIkCF67e/QoQM8PT1Fm9Q8efIEbdu2Rc2aNREYGIgbN25g9uzZqF+/Pk6fPi3aCnzGjBmYMmUKxo8fj1atWuHkyZOYPHky7t27h2+++UZUZtWqVTFgwACEhYXh6dOnWLp0Kdq3b49169bhnXfe4fMeOHAAbdu2Rfv27bFt2zY8fPgQ48aNQ4sWLXDq1CnRdsT79u1D+/bt0aRJEyxduhTBwcG4ffs2/vzzT72+Dh06FKtXr8bo0aMxa9Ys5OTk4Pz583rCdd26dUhMTES9evWQl5cnKQyB/LBiDRs2RMWKFbFgwQIEBwfj4MGD+PTTT3H69GmRyDZ3TLOzs8EYwwcffIDSpUvDxcWFL3P//v2izTGsgbn3b8+ePWjdujWaNm2K5cuXw8fHBz///DNGjhyJ69evY+HChVZtF0E4JTLFNyZkJCcnh0VERLA6depInl+yZAkDwH755Rer1qu7wcaECRMYAPb++++bDHhvLunp6VYpR5eCbLDhjOTl5fH38tGjR5IbmphDdnY2q1WrFhsxYoTBjVSk2LFjBwPAVqxYYTJvt27dmJubG8vIyODTHjx4oJfv5MmTDACbPn06n7Zx40YGgP3444+ivIMGDWIuLi7s8uXLRuvev38/A8AmT55ssp2XLl1iANiUKVP4tMePHzMvLy82aNAgUd4ZM2YwjUZjcIMPjqysLFa8eHHWpEkTUfqrr77KqlSpwrKzs/m0P/74gwFgixcv5tPS09NZeHg4a9++vcnP7pYtWxgA9v3335vsa25uLv//9u3bs8jISMl8kyZNYgDYP//8I0ofNGgQA8CePn1qtB6pMTXE2LFjGQB2/fp1k3nNxZL79/bbbzNPT0+WlpYmytuqVSvm7+9vtTYRhDNDbhJOiKurK3r37o3Tp0/j/PnzeudXrVqF8PBwtG3blk9bsmQJatasCV9fX/j5+aFSpUqYOHFigerPy8vD0KFDMWvWLHz88cf48ssvRSHHGGNYvHgxatWqBW9vbwQGBuKtt97CjRs3ROU0a9YM1apVw8GDB9GwYUMUKVIE/fr1w61bt6DRaDB37lzMnz8fpUuXhq+vL6Kjo0U/SXOcOnUKHTt25H9ur127Nv73v/8VqG9CONeKDRs2YNy4cQgPD4evry86dOiABw8e4NmzZxg0aBCCg4MRHByMvn37Ii0tTVTG119/jaZNmyIkJAQ+Pj6oXr06Pv/8c5HF7Nq1a/D390fXrl1F1+7duxeurq6YMmVKoftiLtxP/4Vl9uzZePr0KWbMmGHRddwWvub8wlCsWDG4uLjA1dWVTwsJCdHLV6dOHbi6uuLOnTt82h9//AGNRiP6jABAbGws8vLyRFsUS7FixQpoNBqzoqpI9Sk+Ph4ZGRno27evKG/fvn3BGMPWrVuNlunu7o6AgABRmffu3cPJkycRFxcnSm/YsCEqVKgg6tMPP/yAhIQEfPTRRybv98KFCxEVFYVu3bqZ7Ku54Rbd3d0BAFqtVpQeEBAAFxcXeHh4GL3e0udEKm9h5g1L7p+7uzs8PDzg7e0tyhsQEAAvLy+z6iMIwgQyi3FCJq5du8Y0Gg0bNWqUKP3ixYsMABs/fjyfxlnB3n//fbZr1y62Z88etnTpUjZixAiL6oyMjGStWrViPXr0YBqNhi1cuFAy38CBA5m7uzsbM2YMi4+PZxs2bGCVKlVioaGhLDExkc8XExPDgoKCWMmSJdlXX33F9u3bxw4cOMBvQxwVFcXatGnDtm7dyrZu3cqqV6/OAgMDWXJyMl/G3r17mYeHB2vSpAn7/vvvWXx8POvTp4/edsCF2Xo5MjKS9enTh8XHx7OlS5cyX19f1rx5c9ayZUv24Ycfsl27drHPPvuMubq6svfff19UxujRo9mSJUtYfHw827t3L/viiy9YcHAw69u3ryjfpk2bGAB+TBMSElhoaCiLiYlhOTk5RtuZl5fHsrOzzTosoaCW4YsXLzJPT0+2fft2xpjhLbY5srOz2fPnz9mZM2dYo0aNWIUKFfS2Uxb28+nTp2zTpk3Mx8eHTZgwwWR7uPsofF4HDRrEXF1d9cbkt99+YwBYz549DZaXnJzMvL292euvv24wT05ODsvIyGB///0369SpEwsJCWG3b9/mz48fP54B0LMWMpa/Ra9U/bm5uSw7O5vdu3ePffzxx8zd3Z39+uuv/Pn4+HgGgB93IW+99RYLDw/n/+7Xrx8DwH7//XfWqFEj5u7uzgICAliPHj3YvXv3+HzZ2dnM09OTdenShc2bN4+VKlWKubi4sNKlS7M5c+YYtSobswzfvHmTBQQEsLfeeotdv36dpaamsl9++YVptVq9zxCHqTHl4J6TlJQUtnPnThYWFqY3nubOG4aw5P4dO3aMeXp6suHDh7N79+6xpKQktnbtWubu7s7mzp0rupbbTpt+wSIIyyAx7MTExMSw4OBglpWVxaeNGTOGAWBXr17l09577z0WEBBQ6PoiIyMZAAaATZw4UTLP0aNHGQA2b948UfqdO3eYt7c3Gzt2rKj93AtZCCeGq1evLhKCJ06cYADYxo0b+bRKlSqx2rVr64ma2NhYFh4ezv9sWxgx3KFDB1H6qFGjGAC9LxOdO3dmQUFBBsvjxMzatWuZq6ur3k/BQ4cOZR4eHuzo0aPstddeYyEhIez+/fsm27lq1Sr+vpg6LKEgYjg3N5fVr19fJAaMieGEhARR++rXry8SY0JmzZrF59NoNGzSpEkm25OamsoqV67MSpYsKRLYCxYsYADYoUOHRPmnTJnCALBWrVoZLJNzQxI+h7p4enryba1QoQK7dOmS6PzAgQOZp6en5LUVKlSQrL9169Z8mf7+/uynn34SnV+/fj0DwI4ePap37aBBg5iHh4deWQEBAWzs2LFs7969bOnSpaxo0aKsXLlyvLsSd3/8/f1ZiRIl2Jo1a9jvv//OhgwZYnQeYMy4GGaMsb///ptVqlRJdP9HjBhhUGCbGlMO7ss/d/Tt21dvfjB33jCEpffvjz/+YBEREXybXF1d2eeff6537SeffMJcXV3Z/v37jdZPEIQYEsNOzNq1axkAtnnzZsZYvhUnNDRUz4+Qy9ejRw+2detW9ujRowLVFxkZyWrVqsVKlSrF/P39JV+6kyZNYhqNhj148EDPKtmgQQNWr149Pm9MTAwLDAzUK4MTw0LrNmOMZWRkMABs9uzZjLF86zgANnfuXL26Fi9ezADwL8zCiOFly5aJ0pctW8YAsN9++02UzvlQC0XXmTNnWIcOHVhQUJCeMD127Jhe/2rXrs28vLyYi4sL27Vrl1ntfPz4MTt58qRZhyUURAzPmTOHBQUFiXx3jYnh7OxsdvLkSXb48GG2fPlyVr58eVahQgXJLwEJCQns5MmT7LfffmPjxo1jHh4e7L333jPYlhcvXrDXX3+dFSlSRG+sHz16xIKCgljlypXZsWPHWFJSEtuwYQPTarUMAGvTpo3BcuvWrcuKFi0q8lXW5fTp0+zo0aPsu+++Y3Xq1GGhoaHswoUL/PmBAwcyLy8vyWsrVKjAWrdurZd+9epVduLECbZt2zbWtWtX5u7uzjZs2MCf58Swbl8ZyxfDQvHWsmVLBoANHjxYlG/r1q0MAFu+fDljjLF79+7xz6vu571z587My8tL0orPmGnLcLly5VijRo3Y5s2b2YEDB9jnn3/O/P39Wb9+/SSvMTWmHE+fPmUnT55ke/fuZTNmzGD+/v6sY8eOvMC1ZN7QPc8JdUvu36lTp1hISAjr0KED++WXX9jevXvZ5MmTmYeHB/v0008lyyAIwjJIDDsxz58/Z1qtll/Utm3bNgaArV69Wi/vypUrWXR0NHN1dWUajYbVq1fPbLHFwS2gu3HjBouMjGT+/v7syJEjojwDBgwwapksU6YMnzcmJoZVqVJFrx5ODM+ZM0fvnFCcHT582KQl9ODBg4yxwonhH374QZTOWWJ1xSX3Eyf3ZePff/9lPj4+7JVXXmHr1q1jhw4dYidPnmRff/21wbbMmTOHAWCvvPKK2e1UipvEv//+y7y9vdnChQtZUlISfzRq1IhVrlyZJSUlsefPnxst486dO8zNzc0sF57Zs2czAOzMmTN65zIyMlibNm2Yl5cX27Nnj+T1J06cYJUrV+aflaJFi7IVK1YwAKx///6S15w7d44BYCNHjjTZPo7U1FQWEhLCOnbsyKdxP7NLLRg15CahS5s2bVhgYCAv8ixxk+jRowcDoGddfvHiBdNoNGzo0KGMsfw5RqPRSC704r4UHj9+XLJ9xsRw9+7dWUhIiJ6bwcqVKxkAk5ZRqTE1BOeCxPXVknlDN51zobDk/tWvX1/vVy7GGPv444+Zi4uLVRf2EYSzQnGsnBhvb2/07NkTy5cvR0JCAlauXAk/Pz+9hVhA/sKOvn37Ij09HQcPHsTUqVMRGxuLq1evIjIy0qJ6S5cujf3796N58+Zo3bo14uPj0bBhQwD5O9NpNBocOnRIFMaJQzetMIu1goODAQATJkzAG2+8IZlHGMrK3mzduhXp6en46aefRGN89uxZyfwXLlzAxx9/jFdffRUnT57E/Pnz8cEHH5isZ82aNXoLeQzBbLhHz40bN/DixQuMHDkSI0eO1DsfGBiIkSNHYsGCBQbLKFGiBCIiInD16lWT9dWrVw8AcPXqVdSuXZtPz8zMROfOnbFv3z5s27YNLVq0kLz+1VdfxaVLl3Dr1i2kp6ejfPnyOH36NACgadOmktesWLECADBgwACT7ePgFqwK+1S9enUAwPnz51G/fn0+PTExEY8fP5aMy6xLvXr1EB8fj0ePHiE0NJS/5vz582jXrp0o7/nz50Vl1qhRA5s2bTJYNrcQztvbG+XLl0diYqJeHu5ZMnfRnJCzZ8+iSpUq8PHxEaVzYeouXLiAmJgYg9dLjakhhM8JYNm8cfLkSVF66dKlAVh2/86ePYuePXuKFnoC+X3Ny8vD33//jTJlypjsB0EQhiEx7OT0798fS5cuxZw5c7Bjxw706dMHRYoUMZjfx8cHbdu2RVZWFjp37oyLFy9aLIaB/A04OEHcpk0b7Ny5E40aNUJsbCxmz56Ne/fumbX6vDBUrFgR5cuXx7lz5zBz5kyb1lUQOKEv/ALAGMPy5cv18qanp6Nr166IiorCvn37MH78eIwfPx6NGjUSvWyl6NChg95LWw5q1aqFffv26aWPGjUKKSkpWLVqFUqUKGG0jH/++Qd3795Fx44dTdbH1VWuXDk+LTMzE126dMHevXvx008/oXXr1ibL4TaGYIxh3rx5iIiIkPxCmZmZie+++w716tUzS6xyPH78GOfPn0ejRo34tDZt2sDLywurV68W3d/Vq1dDo9Ggc+fORstkjOHAgQMICAjg4zEXL14c9erVw3fffYcPP/yQF1/Hjh3DlStXMGrUKP76Ll26YNKkSdi5cye6dOnCp+/cuROMMTRo0IBPe/PNNzFr1iwcOXKE/9ILADt27ICvry+qVq1q9lhwRERE4MKFC0hLS4Ovry+ffvToUQAw+ZxIjakhdJ8TS+aNunXrSqZbcv8iIiJw6tQp5ObmigSxuX0lCMI0JIadnLp166JGjRpYsGABGGPo37+/Xp6BAwfC29sbjRo1Qnh4OBITEzFr1ixotVrRhgGWEhkZKRLEO3bsQJMmTTBo0CD07dsXp06dQtOmTeHj44OEhAQcPnwY1atXx9ChQwvTZRHLli1D27Zt0bp1a/Tp0wfFixfH06dP8ffff+PMmTP44YcfrFaXpbRs2RIeHh7o2bMnxo4di4yMDCxZsgRJSUl6eYcMGYLbt2/jxIkT8PHxwbx583D06FH06NEDf/75JwICAgzWU7RoUV4QWYOdO3ciPT0dz549A5C/QcLmzZsBAO3ateO/bPXv3x9r1qzB9evXERkZiYCAADRr1kyvvICAAOTk5IjO/fXXXxg9ejTeeustlClTBi4uLjh//jy++OILFC1aFB9++CGfd+rUqXjw4AGaNm2K4sWLIzk5GfHx8Vi+fDm6du2KOnXq8Hnfeust7Ny5E5MmTULRokVFofj8/f1RpUoV/u9JkyahevXqCA8Px+3bt7Fy5UocP34c27dv1wuDBeRb+p8+fWrQKpySkoKWLVuiV69eKF++PLy9vXH16lUsXLgQmZmZmDp1Kp83KCgIkydPxpQpUxAUFMRv2jBt2jQMGDBA1M5OnTqhZs2aqFWrFooWLYr79+9j9erVOHDgAL7++mtRyLDPPvsMLVu2RNeuXTFs2DA8fPgQ48ePR7Vq1US/HlSqVAnDhw/H4sWL4efnh7Zt2+Lq1auYPHkyateuLfoi++GHH2L9+vXo2rUrpk+fjhIlSmDz5s34+eefMXfuXNFYXbp0CZcuXQKQbyV9/vw5/+xUqVKF79eoUaPQuXNntGzZEqNHj0ZwcDCOHTuGWbNmoUqVKnzIO0vGdNmyZTh06BBatWqFkiVLIj09HYcOHcJXX32Fhg0bolOnTqK8hZk3LLl/o0ePxogRI9ChQwcMHjwYRYoUwe+//4558+bh9ddfR82aNfm806ZNwyeffIJ9+/ZJfpYIgjCAjC4ahEJYuHAhAyDpf8sYY2vWrGHNmzdnoaGhzMPDg0VERLBu3bqxv/76y6J6dDfd4Lh9+zYrW7Ys8/HxYQcOHGCM5fv+1a9fn/n4+DBvb29WtmxZ9u6777JTp07x1xlaWGWuzzDHuXPnWLdu3VhISAhzd3dnYWFh7LXXXmNLly7l88jhM8wYY7/88gurWbMm8/LyYsWLF2cfffQR27lzp6gty5cvF/kjcvzzzz/M39+fde7c2ew2WwNh1BDd4+bNm3y+3r1766VJIXWfExMT2TvvvMPKli3LihQpwjw8PFiZMmXYkCFD9MJl/fzzz+z1119noaGhzM3Njfn6+rJ69eqxL7/8Us8P2lC7AbCYmBhR3qFDh7JSpUoxDw8PFhwczN58802jn4mWLVsyHx8flpqaKnk+IyODDRgwgFWuXJn5+voyNzc3VqJECfbOO+8Y3ERj4cKFrEKFCszDw4OVKlWKTZ06VRQdhjHGPvvsM/bqq6+ywMBA5urqyooWLcpat24tCqsmZNeuXaxBgwbMy8uLBQUFsXfffVdyM5KcnBw2e/ZsVq5cOebu7s7Cw8PZ0KFDWVJSkl7e27dvsx49erDAwEDm4eHBatSowVauXKmXj/sMSB26n9u9e/eyVq1asbCwMObt7c0qVKjAxowZwx4/flygMf3jjz9YbGwsi4iIYB4eHqxIkSKsZs2abPr06ZK+vebMG6Yw5/4xxtiPP/7IGjduzIKDg5mPjw+rWrUqmz59up7P9JgxY5hGo2F///232W0gCIIxDWM2dAIkCIIgCMIu1KtXD5GRkbL+okUQaoTEMEEQBEGonNTUVBQrVgxnz55F5cqV5W4OQagKEsNEocnJyTF63sXFpUArxpUKYwy5ublG87i6ulplW2KCIAiCIGyL4ygUQjbc3d2NHv369ZO7iVblwIEDJvu8Zs0auZtJEARBEIQZkGWYKDSnTp0yej44OJgPP+UIPHv2DFeuXDGap3Tp0laN0EAQBEEQhG0gMUwQBEEQBEE4LeQmQRAEQRAEQTgtJIYdmC5dusDb2xvJyckG87z99ttwd3fHgwcPrFZvVFQUYmNj9dK//fZbuLq6omPHjsjIyLBafdZk//790Gg02L9/v9xNcRoOHz6Mdu3aITAwkN++d/r06WZfv23bNsTExMDf3x8+Pj6oWrUqvvnmG1GeZs2aQaPR6B1t2rQR5btz5w66dOmCMmXKwMfHB1qtFrVr18aiRYv0Fopu3LgRTZs2RWhoKDw9PREREYEOHTrgyJEjem189uwZRowYgeLFi8PT0xMVKlTA559/bnAhpjljwv7bjbBOnTrw9/dH0aJFERMTg+3bt+uVJ9V3jUaD2bNni/L99NNP6NmzJ8qVKwdvb29ERUXh7bffxrVr10T5UlNTMWPGDDRr1gxhYWHw9fVF9erV8dlnnxn8bF+4cAFdu3ZFsWLF4OnpiaioKAwbNkwv340bN/DGG28gICAAvr6+aNmyJc6cOSNZ5qZNm1CrVi14eXkhIiICo0aNQlpamigP95mWOoSbqgBAnz59JPNVqlRJsv7CcPjwYQwYMAB16tSBp6cnNBoNbt26JZl3wYIFeOONN1C6dGloNBraUIMgrAztQOfA9O/fH1u3bsWGDRskXzopKSnYsmULYmNjERoaatO2zJkzB2PHjkVcXBxWrlwp2vWKcF42bNiAuLg4dOvWDWvXroWvry+uX7+O+/fvm3X97NmzMWnSJAwZMgQTJkyAu7s7Ll++jKysLL28ZcqUwfr160Vpujvzpaenw9/fH1OmTEGpUqWQlZWFHTt24P3338fZs2fx7bff8nmfPHmCRo0aYeTIkQgODkZCQgLmz5+Ppk2b4vfff0dMTAyA/GgrLVu2xNWrVzF9+nRUqFAB8fHxGD9+PO7evYsvv/yyQGMydepUTJ8+HUOGDMHs2bORkZGBr776CrGxsfjxxx/xxhtviPK/9dZbGDNmjCitVKlSor8/++wzhIWFYdKkSShTpgzu3LmDmTNn4pVXXsGxY8f4rZNv376NBQsWIC4uDh988AF8fX1x6NAhTJs2Dbt378bu3btF0VT27duH9u3bo0mTJli6dCmCg4Nx+/Zt/Pnnn6L6Hz16hCZNmiAwMBArV66El5cXZs2ahWbNmuHkyZOoWLEin3f9+vV45513MGDAAHzxxRe4evUqxo0bh0uXLmHXrl3QZebMmWjevLkoTWpbbG9vb+zdu1cvzdr8/vvv2LNnD2rXrg1/f3+jX8CXLl0KHx8fvPbaa/jll1+s3haCcHrk2euDsAc5OTksIiKC1alTR/L8kiVLGAD2yy+/WLVe3Z3mJkyYwACw999/n+Xl5VmlDqkdoaxBQXaaIwrG3bt3mY+PDxs6dGiBrj916hRzcXFhn332mcm8hnYrNJdu3boxNzc3lpGRYTRfcnIyc3d3Z3FxcXzaxo0bGQD2448/ivIOGjSIubi4sMuXL/NploxJ8eLFWePGjUVpL168YFqtlnXs2FGUDoANHz7cZJlSO83du3ePubu7s/79+/NpaWlperufMcbYnDlzGAB26NAhPi09PZ2Fh4ez9u3bm/z8f/TRR8zd3Z3dunWLT0tJSWHBwcGsW7dufFpOTg4LDw9nrVq1El2/fv16BoDt2LGDTzO0E6QUvXv3Zj4+PibzWYPc3Fz+/9y4GdqNUZi3atWqershEgRROMhNwoFxdXVF7969cfr0aZw/f17v/KpVqxAeHo62bdvyaUuWLEHNmjXh6+sLPz8/VKpUCRMnTixQ/Xl5eRg6dChmzZqFjz/+GF9++aXIWsQYw+LFi1GrVi14e3sjMDAQb731Fm7cuCEqp1mzZqhWrRoOHjyIhg0bokiRIujXrx9u3boFjUaDuXPnYv78+ShdujR8fX0RHR2t9/MnkB/1omPHjggKCoKXlxdq166N//3vfwXqmxDuZ9gNGzZg3LhxCA8Ph6+vLzp06IAHDx7g2bNnGDRoEIKDgxEcHIy+ffvq/ZRr7ljs3r0bnTp1QokSJeDl5YVy5cph8ODBePz4sSjftGnToNFocPHiRfTs2RNarRahoaHo168fUlJSCt1na/Dtt98iPT0d48aNK9D1ixYtgqenJ95//30rt0yfYsWKwcXFBa6urkbz+fn5wcvLS/TLxx9//AGNRiP6nAFAbGws8vLysGXLFj7NkjFxd3eHVqsVpXl5efFHQQgJCdFLi4iIQIkSJXDnzh0+zcfHBz4+Pnp569WrBwCivD/88AMSEhLw0UcfmYy9vWXLFrz22muIjIzk0/z9/fHGG2/gl19+4V1Vjh07hoSEBPTt21d0fdeuXeHr6ysaU1uRmpqKDz/8EKVLl4aHhweKFy+OUaNGIT093azrLYm97khx2glCidAnzMHp168fNBoNVq5cKUq/dOkSTpw4gd69e/Mv+E2bNmHYsGGIiYnBli1bsHXrVowePdrsyV1IdnY23n77bSxbtgwLFy7EJ598opdn8ODBGDVqFF5//XVs3boVixcvxsWLF9GwYUM9H+aEhAS888476NWrF3bs2CFy+/j666+xe/duLFiwAOvXr0d6ejratWsnEn379u1Do0aNkJycjKVLl2Lbtm2oVasWunfvjtWrV1vcPykmTpyIhw8fYvXq1Zg3bx7279+Pnj174s0334RWq8XGjRsxduxYrFu3Tu8Lhrljcf36dURHR2PJkiXYtWsXPv74Yxw/fhyNGzdGdna2XpvefPNNVKhQAT/++CPGjx+PDRs2YPTo0Sb7kpeXh5ycHJOHqc1HjHHw4EEEBQXh8uXLqFWrFtzc3BASEoIhQ4YgNTXVrOsrV66MH3/8ERUrVoSrqytKlCiB8ePHS7pJXL9+HUFBQXBzc0PZsmUxadIkvHjxQrJsxhhycnKQlJSE77//HqtXr8aYMWMk3Xtyc3ORnZ2NW7duYejQoWCMYfjw4fz5rKwsuLi4wN3dXXSdp6cnAOCvv/4q0JiMHDkS8fHxWLFiBZKSkpCQkIAPPvgAKSkpGDFihF47N2zYAG9vb3h6eqJOnTpYtWqVkdF9yY0bN/Dvv//yLhLG4NwLhHkPHjwIIH+cGjduDA8PDwQGBqJnz54i148XL17g+vXrqFGjhl65NWrUwIsXL/gvhxcuXODThbi7u6NSpUr8eSHDhw+Hm5sb/P390bp1axw+fFiyDy9evEBYWBj/PL333nt4+vSpKM/z588RExODNWvWYMSIEdi5cyfGjRuH1atXo2PHjmAyBWniDAR9+vSRpX6CUC2y2qUJuxATE8OCg4NZVlYWnzZmzBgGgF29epVPe++991hAQECh64uMjGQAGAA2ceJEyTxHjx5lANi8efNE6Xfu3GHe3t5s7NixovYDYL///rso782bNxkAVr16dZaTk8OnnzhxggFgGzdu5NMqVarEateuzbKzs0VlxMbGsvDwcP5nyIK4SXDXdOjQQZQ+atQoBoCNGDFClN65c2cWFBRUoLEQkpeXx7Kzs9m///7LALBt27bx56ZOncoAsM8//1x0zbBhw5iXl5fJn6u5600dkZGRRssxRsWKFZmXlxfz8/NjM2fOZPv27WOff/458/b2Zo0aNTLZRk9PT+bn58cCAwPZokWL2N69e9mkSZOYq6sr69WrlyjvpEmT2OLFi9nevXvZ9u3b2Xvvvcfc3NxY06ZNRT9Bc8yaNYvvo0ajYZMmTTLaDy5veHg4O3z4sOj8ggUL9FwHGGNsypQpDIDop35Lx2Tp0qXM09OTrz8oKIjt3r1br429evVi69evZwcPHmSbN29mbdu2ZQDY5MmTDQ8wYyw7O5s1a9aM+fv7s9u3bxvNe+7cOebt7c26dOkiSm/dujUDwAICAtjYsWPZ3r172dKlS1nRokVZuXLleJene/fuMQBs1qxZemVv2LCBAWBHjhxhjDE2Y8YMBoAlJCTo5W3VqhWrUKEC//eZM2fYyJEj2ZYtW9jBgwfZypUrWeXKlZmrqyuLj48XXTt//nw2f/58tmvXLrZr1y42adIkVqRIEVapUiX27NkzPt+sWbOYi4sLO3nypOj6zZs367lpmIMpNwkhxtwkbt26xVxdXVm/fv0sqp8gnB0Sw07A2rVrGQC2efNmxlj+Cy40NJQ1adJEMl+PHj3Y1q1b2aNHjwpUX2RkJKtVqxYrVaoU8/f3Z0ePHtXLM2nSJKbRaNiDBw9Ydna26GjQoAGrV68enzcmJoYFBgbqlcGJ4fHjx4vSMzIyGAA2e/Zsxhhj165dYwDY3Llz9epavHgxA8AuXbrEGCucGF62bJkofdmyZQwA++2330TpnA8193K1ZCwePHjABg8ezEqUKMFcXFxEwpTrL2MvxazQH5WxfPEEgCUmJhrt071799jJkydNHn/99ZfRcjjBLjw4ypcvLyl+OPEoJeqEuLu7633pYezll5Br164ZvX7u3LkMAPvpp5/0ziUkJLCTJ0+y3377jY0bN455eHiw9957T7KcCxcusOPHj7MffviBtWjRgvn5+Ymen0ePHrGgoCBWuXJlduzYMZaUlMQ2bNjAtFotA8DatGlToDFZuXIl8/T0ZGPGjGF79uxhO3bsYD169GBFihTRE3lSxMbGMjc3N/bw4UPJ83l5eezdd99lrq6ubOvWrUbLunnzJitZsiSrUKECe/Lkiehcy5YtGQA2ePBgUfrWrVsZALZ8+XLG2EsxLHyOOTgxzM0lnBiWeo5btWrFKlasaLS9SUlJrESJEqxGjRpG8zH2UuDOnz+fT2vUqBGrUaOG3rP97NkzptFo+C+wubm5ovPCL+1CrCWGCYIoGOQm4QS89dZb0Gq1/M+iO3bswIMHD9C/f39RPi7Sw7///os333wTISEhqF+/Pnbv3m1xncWLF8f+/fsRGBiI1q1b4+jRo6LzDx48AGMMoaGhelsZHzt2TM8HNjw83GBduju9cT8/cz+Bc24GH374oV5dnLuFbn0FISgoSPS3h4eH0XQuBJW5Y5GXl4dWrVrhp59+wtixY/H777/jxIkTvH+01E/+psbGEGFhYahVq5bJo0qVKkbLkdq6mgsfxbWtdevWoms431pD4bR0+1bQ69955x0AkPQvDwsLQ926ddGqVSvMnj0bn376KRYtWqQX/QDIdwmoV68e3nrrLcTHxyMyMhIjR47kzwcHByM+Ph4A0KBBAwQGBuL999/H/PnzAeR/ViztU1JSEoYPH44BAwZg7ty5aNGiBdq2bYuNGzfi1VdfxZAhQ4z2net/Tk6O5A6SjDEMGDAA3333HVavXo1OnToZLOfff/9F8+bN4ebmht9//13veTfUp9atW0Oj0fB9CgwMhEajwZMnT/Tq4NwUuLK5Mg3l1W2DLgEBAYiNjcVff/1l8rPQpUsX+Pj4iJ6TBw8e4K+//tJ7tv38/MAY4z+z/fr1E51v0aKF0boIgpAHim/lBHh7e6Nnz55Yvnw5EhISsHLlSvj5+aFr1656efv27Yu+ffsiPT0dBw8exNSpUxEbG4urV6+KFrWYQ+nSpbF//340b94crVu3Rnx8PBo2bAggXyBoNBocOnSIF2hCdNNMLbwxRnBwMABgwoQJeuGmOIQhm+yNuWNx4cIFnDt3DqtXr0bv3r358//884/V2/Tpp59K+nnrEhkZaTA2KgDUqVMHJ0+eFKVFREQAyPf3lBKi7D9/S1OLhmrUqIHExMQCX89hTj5uYdjVq1dRu3Ztg/nc3Nzwyiuv6C3MfPXVV3Hp0iXcunUL6enpKF++PE6fPg0AaNq0KZ/P3DG5cuUKXrx4gVdffVUvb926dXHgwAGkpaXB19fXYFsNjRMnhFetWoUVK1bwXxqk+Pfff9GsWTMwxrB//36UKFFCL0+NGjWwadMmg2Vw9Xt7e6NcuXKSi33Pnz8Pb29vlClTBgBQvXp1Pl34hSwnJweXL19Gz549DdYn7Cdg3tzCGBONU3BwMLy9vfXWYgjPA/kLWd977z0+3c/Pz2RdBEHYHxLDTkL//v2xdOlSzJkzBzt27ECfPn1QpEgRg/l9fHzQtm1bZGVloXPnzrh48aLFYhjI34CDE8Rt2rTBzp070ahRI8TGxmL27Nm4d+8eunXrVpiumaRixYooX748zp07h5kzZ9q0roJg7lhwL21dwbxs2TKrt2nQoEGSG6foIiXehfj5+aFu3bqS5958801888032Llzp0hg7tixA0C+FdUYb775Jnbt2oWdO3eiV69eoutdXFwkhaKQNWvWmFUPkL8AEwDKlStnNF9GRgaOHTtmMF9UVBSAfHE1b948REREiL6Umjsm3BeKY8eOib4YMcZw7NgxBAYGSkZ7ELJu3Tq4u7ujTp06ousHDhyIVatWYdmyZXrRGoTcvn0bzZo1Q25uLvbv329wfujSpQsmTZqEnTt3okuXLnz6zp07wRgTjX+XLl2wYMEC3LlzByVLlgSQv2HJTz/9hI4dO/ILGOvXr4/w8HCsXr0a3bt356/fvHkz0tLSDH7p5UhKSsKvv/7Kb9hhjM2bN+P58+eidsbGxmLmzJkoWrQoSpcubfDaqKgo/p4TBKFcSAw7CXXr1kWNGjWwYMECMMb0XCQAYODAgfD29kajRo0QHh6OxMREzJo1C1qt1qSwMEZkZKRIEO/YsQNNmjTBoEGD0LdvX5w6dQpNmzaFj48PEhIScPjwYVSvXh1Dhw4tTJdFLFu2DG3btkXr1q3Rp08fFC9eHE+fPsXff/+NM2fO4IcffrBaXZbSqFEjs8aiUqVKKFu2LMaPHw/GGIKCgvDLL78UyI3FFBEREbzgshWtWrVChw4d8OmnnyIvLw8NGjTAqVOn8MknnyA2NhaNGzfm8/bv3x9r1qzB9evXedHVt29fLFu2DMOGDcPjx49RpUoV7NmzB19//TWGDRvG5zt06BBmzJjB7yyXkZGBnTt34ptvvsFrr72GDh068PVMnToVDx48QNOmTVG8eHEkJycjPj4ey5cvR9euXUXCsWHDhujYsSMqV64MrVaLW7duYcmSJbh+/bpeaK9JkyahevXqCA8Px+3bt7Fy5UocP34c27dvF23oYO6YlCpVCm+88Qa++eYbeHp6ol27dsjMzMSaNWvwxx9/YPr06fyXpzlz5uDSpUto0aIFSpQogYcPH2LFihXYtWsXpk2bxlsxAWDEiBFYsWIF+vXrh+rVq4us1J6enrxAf/jwIZo3b46EhASsWLECDx8+xMOHD/m8JUqU4K3ElSpVwvDhw7F48WL4+fmhbdu2uHr1KiZPnozatWuLvgB++OGHWLduHdq3b49PP/0Unp6e/IYi06ZN4/O5urri888/R1xcHAYPHoyePXvi2rVrGDt2LFq2bCnaWbBXr14oVaoU6tati+DgYFy7dg3z5s3DgwcPRJFk/v33X/Tq1Qs9evRAuXLloNFocODAASxYsABVq1bFgAED+LyjRo3Cjz/+iKZNm2L06NGoUaMG8vLycPv2bezatQtjxoxB/fr1YYxHjx7hwIEDAMBbw3fu3IlixYqhWLFi/KYtQH5YSO4XmNTUVDDGsHnzZgD5vzpwz/qtW7dQunRp9O7d22pRcgjCKbCzjzIhIwsXLmQAWJUqVSTPr1mzhjVv3pyFhoYyDw8PFhERwbp162ZykZQuuptucNy+fZuVLVuW+fj4sAMHDjDG8hcB1a9fn/n4+DBvb29WtmxZ9u6777JTp07x1xnaMIFbQDdnzhy9cwDY1KlTRWnnzp1j3bp1YyEhIczd3Z2FhYWx1157jS1dupTPU5gFdLpB/VetWsUA6K045xa36S5QNGcsLl26xFq2bMlHUejatSu7ffu2Xn8N1cG1yZyFOvbg+fPnbNy4caxkyZLMzc2NlSpVik2YMEFvc4vevXtLtvvJkyds8ODBLDQ0lLm7u7MKFSqwOXPmiCJEXLt2jbVr144VL16ceXp6Mi8vL1a9enU2Y8YMvXp+/vln9vrrr7PQ0FDm5ubGfH19Wb169diXX36pF4lkzJgxrGbNmkyr1TI3NzcWFhbGunTpwv744w+9fg4dOpSVKlWKeXh4sODgYPbmm28a/FyZOyYvXrxgc+bMYTVq1GB+fn4sKCiINWjQgH333XeiqBM///wza9y4MStWrBhzc3Njfn5+rEmTJnoLDxkTR4LRPYSRQ7hn3tCh+9nLyclhs2fPZuXKlWPu7u4sPDycDR06lCUlJem14Z9//mGdO3dm/v7+rEiRIqxFixbs9OnTkmO1YcMGVqNGDebh4cHCwsLYiBEjRFEfGMuP/FCrVi2m1WqZq6srK1asGOvSpQs7ceKEKN/Tp09Zly5dWFRUFPP29mYeHh6sfPnybOzYsSw5OVmv7rS0NDZ58mRWsWJF5uHhwbRaLatevTobPXq0yQWqpsZQd4Ec9/xLHatWreLznT9/XnJRMUEQxtEwJlNARIIgCIIgrMbixYsxduxYXL9+HaGhoXI3hyBUA0WTIAiCIAgHYN++fRgxYgQJYYKwEBLDhNmY2o0sLy9P7iZaFfbfLmTGDvphhSAIpfDDDz8ocpEwx8GDB9GhQwdERERAo9Fg69atNq0vJycHkydPRunSpfloJJw/PkEIITFMmI1uTE3do1+/fnI30apIxcjVPbiIBARBEIRx0tPTUbNmTSxatMgu9X322WdYunQpFi1ahL///huff/455syZg6+++sou9RPqgaJJEGajGy9WF+GqdEdAKkauLsbCKhEEQRAvadu2Lb+BjBRZWVmYPHky1q9fj+TkZFSrVg2fffYZmjVrVqD6jh49ik6dOqF9+/YA8kPdbdy4UXKjGcK5ITFMmI2heLGOirEYuQRBEIR16du3L27duoVNmzYhIiICW7ZsQZs2bXD+/HmUL1/e4vIaN26MpUuX4urVq6hQoQLOnTuHw4cPY8GCBdZvPKFqSAwTBEEQBCEr169fx8aNG3H37l0+xvmHH36I+Ph4rFq1qkC+0OPGjUNKSgoqVaoEV1dX5ObmYsaMGWbtUEg4FySGbUheXh7u378PPz+/Qm0nTBAEQRBqhjGGZ8+eISIiQnIL9DNnzoAxhgoVKojSMzMzUbRoUQAvNxUxxvDhw3mf5O+//x7fffcdNmzYgKpVq+Ls2bMYNWoUIiIiRDs3EgSJYRty//59fktRgiAIgnB27ty5w+9OKCQvLw+urq44ffo0XF1dRed8fX0BAMWLF8fff/9ttPzAwED+/x999BHGjx+PHj16AACqV6+Of//9F7NmzSIxTIggMWxD/Pz8AAD//nsH/v7+Fl3rAuWHfsmzcjASZ+xzYbFkzJTWdkAd95yQB0d6XpXYF2PY4nOZmpqKkpGR/HtRl9q1ayM3NxcPHz5EkyZNJPO4u7ujUqVKZtf5/PlzPSu0q6srhVYj9CAxbEM41wh/f3+LxLDSBQKJYPkxd8zU2m6C0MURnmWl9cEYtvqsnj9/nrf03rx5E2fPnkVQUBAqVKiAt99+G++++y7mzZuH2rVr4/Hjx9i7dy+qV6+Odu3aWVxXhw4dMGPGDJQqVQpVq1bFn3/+ifnz5ztcGFCi8NB2zDYkNTUVWq0WSUkpZothpYoFW03iSu2vEKW9wEyNmdraSxCWovZnXGntN4a1Pr+pqanQClwYhPTu3RurV69GdnY2/u///g9r167FvXv3ULRoUURHR+OTTz5B9erVLa7z2bNnmDJlCrZs2YKHDx8iIiICPXv2xMcffwwPD4/CdolwIEgM2xBHEcPOKoSV9MIyZ6yU0l6l31fC8VDzs6+UthvDGp9pTgynpJj/PiQIe0FuEgpBiQKCRLD8qEUEK/2eWht7jbmzjWtBEY6TnJ8Hrm5L7huXVwmfY0MUpF8EoSZIDCsAJU0wtp6QldRXKZTyQlKDK4TS72VhUcIYm9MGR78PlqIEYaxbrzn3iEQxQcgHiWGZUdKkouRJ2B4opf+GngkltE9Jz2thUcJ4WgNj/XCk+1UQlCCMhXWbK4qV/mzmwcWuz1ZGRgaysrKsXq6Hhwe8vLysXi6hPkgMy4hSXlT2mHiV0lddlPLSUbIlWKn3zhyUcn/lwtz+q/kem4sShLG5olgJbTWFvazEGRkZCAkpjWfPEq1edlhYGG7evEmCmCAxLBdKePk4s9+jUl4wShXBSrxnplDKPVUjzmZdlltsWmopFl6jNGxtJc7KysKzZ4mYMOEOvLyst/AuIyMVs2aVRFZWFolhgsSwHCjh5eKsQlgpLxQSwYVDKffRGTA01mp5VkwhpzB2FFFsD7cJLy9/q4phghBCYtjOOMoLxBRK7KcSXiJKFMFKvFe6KOHeEWKk7okaniVjyCWMhXWZ60KhtM8ELa4j1AyJYTuilElC7ogR9pw0lfLCUJoIVsqzKIVS7hlhOY4kkOUWxmoWxba4525u+Yc1yyMIDnoc7IRSXghKEcL2QAkvCSWNB6Cc51AXJdwrwjY4gkCWQ3iqWRTbO9oEQRQWEsN2wBkmBXP76OzWYO4l4ewiWCn3iJAHS9wClIQc1mK1imISxISaIDHsRMi1o5yzuUWYihPsjIsXlXBfCGWi1kgW9haflohipXzerCmIyU2CsCX0ODgJtpgcleQCoITJXykvbrnboYR7QTgGahDK9rYWmyOK5Q4dJ0Tu+gnCHEgMOzhyWYO5PPZ8OciJsfFwJkuwEu6Fo1GQ++oM96EgWx7bGntai9XmPiF3/QRhDBLDDootJx5LXjq2fkEpYYKVWwjLKQKUMP5qQgmCzVFRkh+yHKJYWK+hNtHnlSCkITFMmI25Lxh7+AgrYVI35RssV/22RgljLwdyCyxLcHbhoxSrsRx+xea4T6jx2fD0BKy5URxj1iuLUD8khh0Qa090lrxInMEtwhktwXKPuS1Rk8glCobcVmN7W4rV4jpBEEqBxDBhkMKIYFu9cOScvOVeMEgiuHA4g+h1pPtlK+QUxvYSoWrzJyYIuSEx7GBYa1IrqBAmEWz/+m2Bo7wcSQATxpBLGNtTFJu72Nke7SkMFFqNsCX0OBAiCvNCICFs37qtjZJfhObi6OLXEe6RUrFnPHQOe/h2WyL41SCKCcIWkBh2IAo7gZEQfomziGBHeek5sgh2lHukFuwtipXmTwyQKCacDxLDDgIJYesh5wI5EsKW4YgiWMm/hFiKmp8xe28nbG9/YmGdcrfJHMhNgrAl9Dg4AHIKYVugVDHgCNZgJbzUCovSnldLkHv85VowJoXcY2EOcrlOCOu2JWrc4pkgbAGJYZVDQtg6yOUWYY/xd4SXmNKeU1MoZcyVPG5SbVPKuOkix0I7JVllAeW1hyCsCYlhFSJHxAh7IMckSyJYmSjt2TQHpY23GsdQ7o1szMERfYot6RNZiQlHhMSwyrDGJKTEl6QSJ1e1CmEljqU5KPG5NAcljLdax85chP1TwngD8vgUKykUm73vg6urdf18XV2tVxahfkgMqwRHtQYDyrMIkwi2H0p8Hs1BqX7tzoCShLEjLrIz1yWE3CYIR4LEsAqQyxpsj4ne3hOpHG4RthxDtb6I1Cjo7DnWahwfOVCCMHZkf2Jzt3ZW6zxEEBwkhhWOHELYXhMbCeGCo9aXj9pEHglg9aAUYeyIlmIlhGDz8so/rEUefdwIASSGFYyjCmFncIsgEayPWsSePcZYLWNBWI4jWoopBBvh6JAYdmBICNvfGkwiWBoliz97ja2Sx8CRUNJnxdEsxeaIYhLEhBohMaxQlBA/WO27UTmCNdgRXipKFYFkAXYclPw5kWvjDjldJ0gQE2qDxLACUcIkQkLYOnUVBiU8B4VFiWKQRLA6UfvnwdHiE5vqj7UFMW3HTNgSehwUhNzh0xxF1NlzZyuyBqsLR9hSW+nQ82scZxLFZCEm1AKJYYUgtxC2FY4qhEkEm0ZJzyKJYMd7vtSOvRfa2UMUGxLEBKF0SAwrABLChUeORSrWwhFFipKeRUcXwo74/Dgb9rQW29Jaa8pKXBjITYKwJfQ4yAwJ4cJD1mBlobRn0VbQZiqEtbGXKJbLSkwQSoXEsIzIHUfYEXyESQgTxlC6rzg9A4QU9hKTclmJCUJp0EwsEySEC4+9Xha2cItwVBEk94svj79j1h9jYcmFwVbtIxwLWz7LQmwxxzkyixcvRunSpeHl5YU6derg0KFDBvP26dMHGo1G76hataoo34IFC1CxYkV4e3ujZMmSGD16NDIyMmzdFUIAWYZlwN5C2NG2V7ZX2DTyDTYfe79MbT2W1uiPI99vwv7Y2tJqKyuxtazcrq7W9fN1dbX8mu+//x6jRo3C4sWL0ahRIyxbtgxt27bFpUuXUKpUKb38CxcuxOzZs/m/c3JyULNmTXTt2pVPW79+PcaPH4+VK1eiYcOGuHr1Kvr06QMA+OKLLyxvJFEgSAzbGRLChYOEsHMixy8p5kD3lbA3thTFtvIldpTPyfz589G/f38MGDAAQL5F97fffsOSJUswa9YsvfxarRZarZb/e+vWrUhKSkLfvn35tKNHj6JRo0bo1asXACAqKgo9e/bEiRMnbNwbQohjPKEqgYRw4TDUd2v+jGjtnwwd/edwW/7Eas2fiK3p40tuDoQSsOUz6ExfHFNTU0VHZmamZL6srCycPn0arVq1EqW3atUKR44cMauuFStW4PXXX0dkZCSf1rhxY5w+fZoXvzdu3MCOHTvQvn37AvaIKAhkGbYTShLC1hZ7tkaN1mClTvxKR6mLH+l+EkrFVpZiW0ecsBQvr/zDWuTm5v9bsmRJUfrUqVMxbdo0vfyPHz9Gbm4uQkNDRemhoaFITEw0WV9CQgJ27tyJDRs2iNJ79OiBR48eoXHjxmCMIScnB0OHDsX48eMt6xBRKEgM2wGlTCbWRk4hrOQtlR31fuviDGOm1HYRhC62ikDh6LvI3blzB/7+/vzfnp6eRvNrNBrR34wxvTQpVq9ejYCAAHTu3FmUvn//fsyYMQOLFy9G/fr18c8//2DkyJEIDw/HlClTzO8IUShIDKsEcyc5YxOi2sQLCWHHRsljpeS2EYQhbBUxSGlWYmvi7+8vEsOGCA4Ohqurq54V+OHDh3rWYl0YY1i5ciXi4uLg4eEhOjdlyhTExcXxfsjVq1dHeno6Bg0ahEmTJsHFxfHGXInQKCscS3wyuYnK1hOW3K4R1qzD2r6kzkJhxs3eY2VufeQLTDgStgov6Kx4eHigTp062L17tyh99+7daNiwodFrDxw4gH/++Qf9+/fXO/f8+XM9wevq6grGGBhjhW84YRZkGXYQTE16atokwB4WYbIG2x+5x0nu+glCDqztPiGXlVgJ2zF/8MEHiIuLQ926dREdHY1vvvkGt2/fxpAhQwAAEyZMwL1797B27VrRdStWrED9+vVRrVo1vTI7dOiA+fPno3bt2rybxJQpU9CxY0e4FiT+G1EgSAwrGEstwoUtp7D1WAO1CWFnxFrPpRzYa8dCglAStlhk5+i+xFJ0794dT548waeffoqEhARUq1YNO3bs4KNDJCQk4Pbt26JrUlJS8OOPP2LhwoWSZU6ePBkajQaTJ0/GvXv3UKxYMXTo0AEzZsyweX+Il2gY2eFtRmpqKrRaLZKSUszySRJSWMGh1ji5thQrah0TJWDO2ClxPKwZScKR/SYJ50KOX8ZSU1MRGKhFSopl70PuPbprVwp8fCx7jxojPT0VrVpZ3h7CMSHLsAJRs+WtINgjdBq5RZiHo1jNbfGzsC3KtieO/NwSlmFN1wl7fUlUwg50hONCYlhhKFEI27IuEsLyUtixUdp4qFWo2gN7xeu2FsL2KrF9asfarhPO6DZBOA4khhWE0oSwnBOb0oSwI07yjiCESfxaB3uFMbQEJTxfzoC1rcR03wg1QmJYIShtsZytUZNF2JEmd0cYE7U8446AEkWy2lCDQLSmlVgN/SUIXUgMKwAlCmFyjcjHkSZ1NW9LTAJYWejeD0f6nBQGSzc8Utq4WctKbAs/YiWEViMcF3ocVAL5CFunDnNR2kuqsBR2kwy5IBGsDpxZHBfmGVWiXzS5TRDOCIlhmbFWyCo1WEJJCMtDQcdEjnEg8esYOIs4dtS4veQ2QTgbJIZlRGmxW9UshNXwZUAO1CCESQA7PrTZiXkoTTha222iMHh55R/WIifHemUR6kc5nzonw5oWYaVbQ0kIy4PShbC1nl1CndD9l0ZpY6KkX+0IwlY41ttfJTjTpEBCWB4KMi55/8kTW0MiiBCi5mfBVp8XpX1G7DU3EIRckJuEnbFmLGE1C0ElCWFHw9JxkXOrbYIA1O1GYe3NK4Q4qtsEQSgNEsN2xJmEsBoswkp6yVgLpQlhR3txKuGZcbQxNYS9tvlVOiSI86HQaoQtocfBTihtdzlb1kVC+CX2fKErSQirVbApSXQYwlE23jEXpYlBQ9hSJCptDGxpDScIOSAxbAesLYSVLAZJCOdjz5dEQf2DbYWSX5BKEhS2wlgflXxvjKEWK7GtXSZ065EbcpsgHAUSwwqBhHDhyjcXe7sFKOWlxSHHvZcLpY29EjA0Jkq8f1KoSRTbckyVZCm2lyB2dbWua4Orq/XKItQPiWEF4AhC2NZ1Kr3vciwAsmRMHF0EK0UYqBWp8VPKvZVCiVZSXUgQE4R6IDEsM44ihA21z1mFsK2R2wdd7hefUkSAI6M7xnLfc0Mo2VrsTL61JIgJNUNiWEaUOHkXBKULYVtgql1q3sSkoHXbEkf5rKgZpYtjpYtipY2XLbBlP629A112tvXKItSPbLPGrFmzoNFoMGrUKD6NMYZp06YhIiIC3t7eaNasGS5evCi6LjMzE++//z6Cg4Ph4+ODjh074u7du6I8SUlJiIuLg1arhVarRVxcHJKTk0V5bt++jQ4dOsDHxwfBwcEYMWIEsrKyRHnOnz+PmJgYeHt7o3jx4vj000/BGLPqOJiDki2jShfCtggW72xC2IUfRfu9zPNEtSpP3BDKvUdyPK/mYO1xUtKYC1FquwjCGLI8tSdPnsQ333yDGjVqiNI///xzzJ8/H4sWLcLJkycRFhaGli1b4tmzZ3yeUaNGYcuWLdi0aRMOHz6MtLQ0xMbGIjc3l8/Tq1cvnD17FvHx8YiPj8fZs2cRFxfHn8/NzUX79u2Rnp6Ow4cPY9OmTfjxxx8xZswYPk9qaipatmyJiIgInDx5El999RXmzp2L+fPnW2UMHME9wtb+cIXFFv2WUwhL1WVLMSKnACbUhxLvnxKFsTXGR0ljTBCOgIbZ2dSZlpaGV155BYsXL8b//d//oVatWliwYAEYY4iIiMCoUaMwbtw4APlW4NDQUHz22WcYPHgwUlJSUKxYMaxbtw7du3cHANy/fx8lS5bEjh070Lp1a/z999+oUqUKjh07hvr16wMAjh07hujoaFy+fBkVK1bEzp07ERsbizt37iAiIgIAsGnTJvTp0wcPHz6Ev78/lixZggkTJuDBgwfw9PQEAMyePRtfffUV7t69C41GY7Kvqamp0Gq1SElKgr+/P5/u6EK4sHUqsd/mtMmeFmFHcoegF7vjowQxqsTnrKDjosS+6KLbt9TUVGgDA5GSkiJ6H5qCe49evpwCPz/zrzPFs2epqFRJa3F7CMfE7p+o4cOHo3379nj99ddF6Tdv3kRiYiJatWrFp3l6eiImJgZHjhwBAJw+fRrZ2dmiPBEREahWrRqf5+jRo9BqtbwQBoAGDRpAq9WK8lSrVo0XwgDQunVrZGZm4vTp03yemJgYXghzee7fv49bt25J9i0zMxOpqamiQxdHEMLG6iMhbF2EVi1bW97sZUVT6s/rhO1Qwv12FCuxWj4z1m4ntwOdNQ+C4LDrp2rTpk04c+YMZs2apXcuMTERABAaGipKDw0N5c8lJibCw8MDgYGBRvOEhITolR8SEiLKo1tPYGAgPDw8jObh/uby6DJr1izeT1mr1aJkyZKS+dSOLXdZKgxy+Adz9doCXRFsK+wlEOQWQ4QyUJIwVgKO/JmQ+z4ThLnY7Sm9c+cORo4cie+++w5eRpaE6rofMMZMuiTo5pHKb408nEeJofZMmDABKSkp/HHnzh3ReUewCttqwZw1hLC1UYoQtlX5JIJtg9juXbDDWZD72VDKWJs7Bmr9HKm13YTzYLcfCk6fPo2HDx+iTp06fFpubi4OHjyIRYsW4cqVKwDyra7h4eF8nocPH/IW2bCwMGRlZSEpKUlkHX748CEaNmzI53nw4IFe/Y8ePRKVc/z4cdH5pKQkZGdni/LoWoAfPnwIQN96zeHp6SlyqxBi74VVtkDJFmFrI7cQVvvLQ+3tl1skWVK/2scaEPfB3mOvlJBsXP22jNAjJ4VtP+1AR9gSu326WrRogfPnz+Ps2bP8UbduXbz99ts4e/YsypQpg7CwMOzevZu/JisrCwcOHOCFbp06deDu7i7Kk5CQgAsXLvB5oqOjkZKSghMnTvB5jh8/jpSUFFGeCxcuICEhgc+za9cueHp68mI9OjoaBw8eFIVb27VrFyIiIhAVFWVR3y2ZBJQoDAHbLZhTWn+VYJlTszVYbkufJTiKZdYR+iBELjcKpYyboaeSIAjbYTfLsJ+fH6pVqyZK8/HxQdGiRfn0UaNGYebMmShfvjzKly+PmTNnokiRIujVqxcAQKvVon///hgzZgyKFi2KoKAgfPjhh6hevTq/IK9y5cpo06YNBg4ciGXLlgEABg0ahNjYWFSsWBEA0KpVK1SpUgVxcXGYM2cOnj59ig8//BADBw7kV5X26tULn3zyCfr06YOJEyfi2rVrmDlzJj7++GOzIkkUBKUJQ1vXqbT+ymmNs4dbhC1R8staCQJHDhzBwmjKWmoLHOGXGYIgLENR6ynHjh2LFy9eYNiwYUhKSkL9+vWxa9cu+Pn58Xm++OILuLm5oVu3bnjx4gVatGiB1atXw1Xwm8f69esxYsQIPupEx44dsWjRIv68q6srtm/fjmHDhqFRo0bw9vZGr169MHfuXD6PVqvF7t27MXz4cNStWxeBgYH44IMP8MEHH9hhJJSFI7xUrYkt+k0i2Ho4q/g1F6nxUeJ9FGJvNwqluE4QBGEf7B5n2Jng4iMmJZmOY6g0KymHMyyYc1T/TFu7QygFEr+2QUn3WAqKha0uUlNTERhoeVxf7j1654514wGnpqaiZEmKM0zkoyjLsDNCkSMsh4SwNM5kBSYBbHuEY6yke89hT2sxWYoJwrEhMUxI4gyRIxxJUDm6FdiR7pUa0R1/JTwTQuzlW6z0LwgEQRQMEsMqx94TsqMsmLO0Lc764qMYsIQUShXH9lxwRwvt7IuXV/5hLQSBogiCxLCcKEkcCrGFe4SShI0jCWFbjatcfVbSc0KYj9Ispva2FCuhzwRBFBwSw4QIJQphco3Qx5FEsKPcEyIfJQlEe/kVk5WYINQNfXplQkkCkUOJIdTkdo1Q2gvOVhsDOPMmB4RtUNomILZ+vpXST8K2LF68GKVLl4aXlxfq1KmDQ4cOGc1/4MAB1KlTB15eXihTpgyWLl2ql+fHH39ElSpV4OnpiSpVqmDLli22aj5hAGW96Z0EJQphW1GYvsoZNUJNY1xY7NlXJYkja2N4PzvDhzOhhHtvj3GXu4+Oipub9Q9L+f777zFq1ChMmjQJf/75J5o0aYK2bdvi9u3bkvlv3ryJdu3aoUmTJvjzzz8xceJEjBgxAj/++COf5+jRo+jevTvi4uJw7tw5xMXFoVu3bjh+/HhBh4ooABRn2IZIxRlWqhBWmnuEXLvLKVWg2MoabC/UJg6U+hwA6htLY8g9zs4UjlBuChtn2Jx4/bZuT/369fHKK69gyZIlfFrlypXRuXNnzJo1Sy//uHHj8PPPP+Pvv//m04YMGYJz587h6NGjAIDu3bsjNTUVO3fu5PO0adMGgYGB2LhxY0G7R1gIfVIJhxbCllpplCg0rN0me1ollWwlU6vFVq3tlkJua7Gtx03Jzz+RT2pqqujIzMyUzJeVlYXTp0/zO9tytGrVCkeOHJG85ujRo3r5W7dujVOnTiE7O9toHkNlErZBfbOnilGiVdgWE7VSJv+CtsPYD9v2xBZ1OqsIdgThaA5q7ieJYsIYljshmT4AoGTJktBqtfwhZeEFgMePHyM3NxehoaGi9NDQUCQmJkpek5iYKJk/JycHjx8/NprHUJmEbaBoEnZCbRNhQV8MShH8BWlHHlxMXic8b+uXpzWxhyhSyjOuJgFoDwyNh1Luly72+oxJwdVnq7FxAUWdUBp37twRuUl4enoaza/RaER/M8b00kzl1023tEzC+pAYdmJs4R6hZixdZKeEdpiDIwthZ31WrYHU2ClNIHPtcSRRLKfYJ/Tx9/c3y2c4ODgYrq6uehbbhw8f6ll2OcLCwiTzu7m5oWjRokbzGCqTsA30SbQD1rCW2mvSlMtPuLB1C9ug1kUx1m67o66cV6MLgFpQqouFXG4G9nCfINSBh4cH6tSpg927d4vSd+/ejYYNG0peEx0drZd/165dqFu3Ltzd3Y3mMVQmYRvIMqxw7B09Qo7y5HSNUApqswbLJUwI+2JrtwFLkdNSbEvXCa4Owgg5OfmHNcuzkA8++ABxcXGoW7cuoqOj8c033+D27dsYMmQIAGDChAm4d+8e1q5dCyA/csSiRYvwwQcfYODAgTh69ChWrFghihIxcuRING3aFJ999hk6deqEbdu2Yc+ePTh8+LB1+kmYBYlhJ8Ta7hFKeFHaqw1KX8ToKCKYhIGy0L0fcn/m5RCQSvtiQNif7t2748mTJ/j000+RkJCAatWqYceOHYiMjAQAJCQkiGIOly5dGjt27MDo0aPx9ddfIyIiAl9++SXefPNNPk/Dhg2xadMmTJ48GVOmTEHZsmXx/fffo379+nbvnzNDcYZtCBcfMSUpqcDxEe0Vb1ftYdTs8YJyZiFMIpgwhtwC0d7PjS3766ifgcLGGU559MjqcYa1xYpZ3B7CMSHLsIJRw6Qo90vQXm2w5r0glwgxanjOCePIbTW1t6XYHgvs6HOhQ0YG4OFh3fII4j9IDCsUe1oh5XCPcHaLsLVQszVYyeNKFAxnFMUUho0g1A+JYQVCQtj2bTAXe7mpFAS1LK7UhV7wjo/wHsshjO0pim1tJabPC0HYHhLDToASXBmsjTMLYTWKYHqhOy9yCmN7i2ISxAShTkgMKwxHjydsrVjCtoaEsPVw1Be50u+pEpHLjcJeothW/SM/YigitBrhuJAYVhBKj1ZQ2PLUMpE7kxC2lShRy73WRc6f9E2h1jGVQi5rsb2srGQlJgh1QWLYgVGSEFZLG5QaNUItQlgtL2olPMuW4qjbp9tbGDuClVjt95wglAaJYSdEjonUnu4RBX0JKVEIkwguPGoUvpbgSCLZnm4UarYSO6Ugzs21rmtDbq71yiJUD4lhhaD0zTXkdo8wVX9h6yAhXDCU9kJ2dOFrCVJjobT7ZQhbhiwTomYrsVMKYoKwESSGFYBSfVRtVZ6165caP0varMQXitKfCUA54yb386kmdMdKKfdQCnu6T9hTFFtbEHPlEgRRcEgMOxFqdY+wtGy5hLBSLcJK910uCCSArYNwHJVyb6Wwl/uEPayt5DZRQCiaBGFDSAzLDLlHWFa/qTLVLISVLIIB+cUSCWDbogarsT1EsT2sreQ2QRDKgj45DoSS3COUPikrvX2FxVGEsAvy+KPAkAWoQFhl7G2EPZ5He/TdFl+AlXi/CELpkGVYRtSwwYac2OInXCUuSlOyRVhOEWw2psSuG01zhUWJvqmO4jphr8WCBEEYht4SDoIjW4XNLU/JGyYYQmmuGkLsLXwsbr8xEUwC2CYo0cfYEVwnbLGwTin3x2pkZADu7tYtjyD+g94YMqFkq7BSrBSWtN3WodcKUqcplCqEFSuCDYlfEr6yoDRhbC9RbEtBzNVhDRxSEBOEjaC3iAwofdFcYVDi5KtENwQSwma2Wybrr9zPsVK+kJqLktwobO12oCYrMQligjAPEsMOilqjRxQEY21W4otAiUJYUSI4J8ew0LWyAFbi8wEUPna2XCjFWmyPGMW2thKTINaBdqAjbAiJYTtjDyslCWHbtccRXSPsde8K1F4nEb/moDaBrBRrsS0txSSICcIxIDFMFBpnmWSVIoQdWgRb0fLjDM+lNTaesTVKEMW29Ce2Zf9IEBOEfSAxbEeU6Ltqi7LshT3bTELYMgrlD1xAazC96F+iOxZK+HwrwYVCjVZiawp5JXwxIQglQmLYwbD3JKc09whAeRO9koSwvTYrMArnE2wFFwil3WulYg8fWkuQU5SRlVilVmLajpmwISSG7YStrcKFKb+gE6wzCGFHsQgrQgQDVnkBqe4lrjCUJIwdWRQrXRATBPESeqvYASW/vNU2sZJFWJnYWgi/3BhYWfdY7QjHVc6xlXMbYaUutjWEM80rBGEvyDKsQpQwicnx4rR3v5Uwzkp3jTDaPl3xa6FbBAlf+yO31VguS7GtLK626o+12qsqd4mMDOtGl6Ed6AgBJIYdADlCqSkNR3SPUK0QlrIAW/ASU83L2cGRUxjLIYrV5jZhrfbSojqCIDGsOpQgYJVmFSYhbLt2SEEi2Pmwx1bHUshhubRVX8mPmCCUC719nBQ1TZ5qaqsShLAt/T8tapuZQlhuf1XCfOTwL5bLn9gWfVSyH7Ga5lmCsDZkGVYR1txtrqDYuz5TE7SSrMJKeCHJJoKFVmELRDChXuxtkZTLdcIWFmKubGtijbYq2oeYQqsRNoTEsIqxt68wCWHDyC2EZVskx0HuEE6JHO4T9hbFtlxcp1RBzJVFEM4CPe1OhlqEsClICFu3fimM/jxdAKsKuUM4LnK5T9gLW/XNFn2gzxhBWA5ZhlWCNTfZUANqWTAntxC2FWaFTON2kjOBoz+rhBh7RqFwBCuxki3Eivrs5uZa17UhN9d6ZRGqh8SwCrDmFpxqQC3ttAZyC3EpTFqDySWCMBN7+RXbUxSrxY/YIQUxQdgIEsMqxJEXzdl7hzk5xaiqhLCFOMoL1JZCzlHGyBT29Cu2l3hTix8xCWKCMA96wlWGIy+aU9MOc3IKYVtgdvgqE1ZhtfkFizcj1j8ctW45sJdfsb3GTy1+xNZy5XLEZ9JWJCUlIS4uDlqtFlqtFnFxcUhOTjZ6jUajkTzmzJnD50lMTERcXBzCwsLg4+ODV155BZs3b7Zxb5wDsgwrHOEE5MgWYVM4UluUFj7NbLcIM4SwklHby1wJoRRthT2sxWq2EivRQgzIbCVWUWi1Xr164e7du4iPjwcADBo0CHFxcfjll18MXpOQkCD6e+fOnejfvz/efPNNPi0uLg4pKSn4+eefERwcjA0bNqB79+44deoUateubZvOOAkkhhWMM/kKq8Uq7DRC2AKUKtDU8Nxbipxfjm2BrUWxvXyJnUkQE8b5+++/ER8fj2PHjqF+/foAgOXLlyM6OhpXrlxBxYoVJa8LCwsT/b1t2zY0b94cZcqU4dOOHj2KJUuWoF69egCAyZMn44svvsCZM2dIDBcS9c+mToIjW4XtHU9YLlQlhM1cLKe0e+PIbga6OJJbha3dJ+zlNmFtrH1vHTX6TWFITU0VHZmZmYUq7+jRo9BqtbwQBoAGDRpAq9XiyJEjZpXx4MEDbN++Hf379xelN27cGN9//z2ePn2KvLw8bNq0CZmZmWjWrFmh2kyQZVixOJNV2BhK8smTU/jJ5hphp/YUBrU/49bCEazGtrRe2uMnfltZuq3ZdtUuqsvIAFxdrVsegJIlS4qSp06dimnTphW42MTERISEhOilh4SEIDEx0awy1qxZAz8/P7zxxhui9O+//x7du3dH0aJF4ebmhiJFimDLli0oW7ZsgdtL5ENimNBDSVZhpdTnSJEjJNtiQdg0JQgtEsDGUbMwtqXrBLlN5KNaQWwD7ty5A39/f/5vT09PyXzTpk3DJ598YrSskydPAshfDKcLY0wyXYqVK1fi7bffhpeXlyh98uTJSEpKwp49exAcHIytW7eia9euOHToEKpXr25W2YQ0JIYViLU22FC6YLC3e4Rc46EkS7RBIWxm7GC5X35Kf6aViFqFsSNYiUkQKx9/f3+RGDbEe++9hx49ehjNExUVhb/++gsPHjzQO/fo0SOEhoaarOfQoUO4cuUKvv/+e1H69evXsWjRIly4cAFVq1YFANSsWROHDh3C119/jaVLl5osmzAMiWEFI8cko5SJTSntAJTVlsKgNJ9lSyARbB3suTmFNbC1lZgEMS2qM5fg4GAEBwebzBcdHY2UlBScOHGCX+h2/PhxpKSkoGHDhiavX7FiBerUqYOaNWuK0p8/fw4AcHER33tXV1fk5dE9LCzqmBGdCGfxFSb3CNvWa3Y7zAwvJJd4coTFYUpEbQvvbBnT19ZjoKR1D1LIHSHHbLjtmK112Gg75sqVK6NNmzYYOHAgjh07hmPHjmHgwIGIjY0VRZKoVKkStmzZIro2NTUVP/zwAwYMGKBXbqVKlVCuXDkMHjwYJ06cwPXr1zFv3jzs3r0bnTt3tklfnAkSwwrG3i8qewketbhHOIIQNvqy59wjjLhIyLWJhhKEmvEtMSw/lIqahLGtxpEEsUoEsUpYv349qlevjlatWqFVq1aoUaMG1q1bJ8pz5coVpKSkiNI2bdoExhh69uypV6a7uzt27NiBYsWKoUOHDqhRowbWrl2LNWvWoF27djbtjzOgYYwxuRvhqKSmpkKr1SIpKcUsnyS5fYXt8cKWI4yaHOOhlAVzJoWwndphLvZ8qSpJoCpNTChpbAxhizFTwhxoKXaZL8zEWFtSU1MRGKhFSop570PhdVqtFik//AD/IkUK1T5Ruc+fQ9u1q8XtIRwT8hkmFAMJYecVwmq0zFkTqfbJKZDV4FtsC39iNfoRK8mH2Kbjp6Id6Aj1QWJYIZBVWDn1ySUA7GbhUZAQttUzoWQRZy5KEMhqEcXWFpdcubZCyYKYIJwR+vQQdkFpPwPbCiUIcKVYpk1hi5+Lle6fW1jk6qPSfYqV9KuSuShlbYQu5D9MOCNkGVYAjm4VNqddSnkxyOUeYS3UIISVtPBHzQj7bq9nT8mWYjW6TSjVQmwNdwmuHKtBbhKEDVHejEbYFSUIYWev01r3oDDh09QkhJ3BAmwp9h4TJVuKlfLF2lyU2l76fBHOBD3tCsMZJyCl9FmOdthcCAOK8BG2hngiAWweJIqtPwYkiOVtB0HYGnqzOAgFmXSUYBVWyktADvcIZ7EIW8saTFgGiWLl+OKbg9oEvLkopR0EYQzyGVYQjvTCV9ME6JBCGFCMRbigONLnQU5s4UtrCCX6FFvTL1dtodes0V5rtMcq/cnIAFysOPYZGdYri1A9ypmxnBRrTBJKE57mtkcpVmG1omShWVhLoZLElKNgT79ipVmKrW1xVZPbhFJ+mVHS80AQutAbR0bknBxs9UKUq0/O6B5RUJTgHmMI8gu2D84oitX25dsRBTFBKBVyk5AJucOpyY3aJ1a5fbSVet/V+gXBWbGXC4VS3CeUGsrMEEpzmZCV3FzrhkPLzbVeWYTqUfEngygoZBXOR60vhsL015Z9drb74EjY01IsN2pbqKakX0uU0g6CsDb0ZKsYJbxYOCxpi9onVDnHXUn3XAgJYcfAHsJLKa4TahLEgHL8dukzSzgi9FTLgLVcJAqCo01kahFhco+70izCSrJ2Efo4iygmQUwQBEA+w7LjCL7CclmF1bbTnFx1K1EIE+rA2j62Usjty+qMfrmFbac9ngs9aDtmwoYo/1NLWA1bTNJqdI+w9xcQOa05JISJwmIvK7GcqOlLurXuhzV2hCQIR4GeZjsj96RvTchKqrz67FU3CWHnw9HdJtQkiAFlfJ6U0AaCsAbkJiEj9rRQyh1jU+2TphqFv61QwvNnKdb4RdTEhn5OgaO7TajNZaKw7VXKDnVmQW4ShA2h6d2OKE3UFBS1CmE1WoWVZgFXkxC29rtOtzxnFcf2EsRcXfaGBDFBOB/0CbAT1pxc1YTcfspqrK+wKEUI2ztiBGc4srYByVh9zoqjxyUmlwl11U8QhYWeYCdAbRO7Lep3lkVzShLC9qSgwjQjo/D1OrsotjUkiM1Djq3lrVU/QciNk/7QJz8FmTjkFqKWQpNjwVHSvVZSW4SYI0LNEbvG8nh5WdYWZ3SdcGS3CWdymVC8/3BmJqDRWLc8gvgPu80sS5YsQY0aNeDv7w9/f39ER0dj586d/HnGGKZNm4aIiAh4e3ujWbNmuHjxoqiMzMxMvP/++wgODoaPjw86duyIu3fvivIkJSUhLi4OWq0WWq0WcXFxSE5OFuW5ffs2OnToAB8fHwQHB2PEiBHIysoS5Tl//jxiYmLg7e2N4sWL49NPPwVjrEB9V6qYsBS5++FMVmE11auLPdphTAhnZLw8CoulZTmrldhez54cc5DaLMQEQViO3d6eJUqUwOzZs3Hq1CmcOnUKr732Gjp16sQL3s8//xzz58/HokWLcPLkSYSFhaFly5Z49uwZX8aoUaOwZcsWbNq0CYcPH0ZaWhpiY2ORm5vL5+nVqxfOnj2L+Ph4xMfH4+zZs4iLi+PP5+bmon379khPT8fhw4exadMm/PjjjxgzZgyfJzU1FS1btkRERAROnjyJr776CnPnzsX8+fPtMFLWxdmFmb0h9wjb3ndjbgmGRKuuL7GxwxjmimJnFsSO6jahJkEs99wrd/0EURA0rKDmTisQFBSEOXPmoF+/foiIiMCoUaMwbtw4APlW4NDQUHz22WcYPHgwUlJSUKxYMaxbtw7du3cHANy/fx8lS5bEjh070Lp1a/z999+oUqUKjh07hvr16wMAjh07hujoaFy+fBkVK1bEzp07ERsbizt37iAiIgIAsGnTJvTp0wcPHz6Ev78/lixZggkTJuDBgwfw9PQEAMyePRtfffUV7t69C42ZP9WkpqZCq9UiJSkJ/v7+fLo9XSSsNTEpQRTZWyTKIUrlvs9ClHDPhRgTwebmNRdj7g7muk44o8uEEKX7yRYUa/VLqRuZ2OqdkZqaCm1gIFJSUkTvQ1Pw79EZM+Bv7ofPnHIzMqCdNMni9hCOiSxf4XJzc7Fp0yakp6cjOjoaN2/eRGJiIlq1asXn8fT0RExMDI4cOQIAOH36NLKzs0V5IiIiUK1aNT7P0aNHodVqeSEMAA0aNIBWqxXlqVatGi+EAaB169bIzMzE6dOn+TwxMTG8EOby3L9/H7du3TLYr8zMTKSmpooOZ0QJwkyO+hzJCq9WIWzIwmupFdgaOKuFmIOsxMZRqoVYLWKfIKyJXZ/W8+fPw9fXF56enhgyZAi2bNmCKlWqIDExEQAQGhoqyh8aGsqfS0xMhIeHBwIDA43mCQkJ0as3JCRElEe3nsDAQHh4eBjNw/3N5ZFi1qxZvK+yVqtFyZIl9fKo0Sqs9DoNoaS2mIOaBLg92yAlKnVdFqQErinh6+xi1R44qiC2FkoVxAThbNj1k1KxYkWcPXsWx44dw9ChQ9G7d29cunSJP6/rfsAYM+mSoJtHKr818nDeJMbaM2HCBKSkpPDHnTt3jLadUCZqFaXWwpL+yyWEheeFecy1/Lq5SbsxGEoH8t0jLPmV1tndJDjs4Utsb0GsJh/igkDWYcLZsOt07eHhgXLlygEA6tati5MnT2LhwoW8n3BiYiLCw8P5/A8fPuQtsmFhYcjKykJSUpLIOvzw4UM0bNiQz/PgwQO9eh89eiQq5/jx46LzSUlJyM7OFuXRtQA/fPgQgL71Woinp6fItcJRMHdiVMoiLkB9k7BS+qiUF7M5bhFSlmBzMCSChVjRNZH4D1uHYLN3+DW1hF2z23bJtq6ftmMmbIisioExhszMTJQuXRphYWHYvXs3fy4rKwsHDhzghW6dOnXg7u4uypOQkIALFy7weaKjo5GSkoITJ07weY4fP46UlBRRngsXLiAhIYHPs2vXLnh6eqJOnTp8noMHD4rCre3atQsRERGIiooqcH+dIbaw2lGKKJUDpfkJ62JMCJuDm1u+yOWsv25ugK9v/uHl9fL/vr7iPLrWYql0Y/mJlzia24RaLMRyv3scZY4kHBe7TdkTJ05E27ZtUbJkSTx79gybNm3C/v37ER8fD41Gg1GjRmHmzJkoX748ypcvj5kzZ6JIkSLo1asXAECr1aJ///4YM2YMihYtiqCgIHz44YeoXr06Xn/9dQBA5cqV0aZNGwwcOBDLli0DAAwaNAixsbGoWLEiAKBVq1aoUqUK4uLiMGfOHDx9+hQffvghBg4cyK8o7dWrFz755BP06dMHEydOxLVr1zBz5kx8/PHHZkeSkBs5gtMrBSW1xRzUKMBtWb85rhHG8gL6YlQohDlckKdTmPFCPNyk+03C1zK4MbS1lZgsxGKUYCEmCKVit2n8wYMHiIuLQ0JCArRaLWrUqIH4+Hi0bNkSADB27Fi8ePECw4YNQ1JSEurXr49du3bBz8+PL+OLL76Am5sbunXrhhcvXqBFixZYvXo1XF1d+Tzr16/HiBEj+KgTHTt2xKJFi/jzrq6u2L59O4YNG4ZGjRrB29sbvXr1wty5c/k8Wq0Wu3fvxvDhw1G3bl0EBgbigw8+wAcffGDrYSJ0sOfkrZZQanK7RyhBCJtjGRaKVF9fHfGbkfHyZ1dhRu5vYZrAZ8JFQvnSS75g2FoUkyAuPEpqC7lJELZE1jjDjo5unGFLJxWlRJEw1Q5bTpb2FItyuAkoQQwrxT3CGhZhDk7PctZgF+QBaWn6K+ykghQLTci6/3LC2IA5WDHCQWUozUWgoKjBtUCuOSc1NRWBgdqCxxmeMsX6cYanT6c4wwQAOy+gc2boJWkf5I6taes65X6OlCqEhe9IoV51yckCEh+L91UWCmLdl6uvb34eoVMxh5tb/jkvr5eN0BHFirKkqQhb/oRP90SM3O4SBKFEaIZwMBzJV5gmbNujFPcIY5hjBeYWwPn75sHDLQ8eyIJL8lPg1i3g7l3gn3/y/3/58sv/37qV///Hj/OP5GTxkZNjvjXZhrjwwclMH2rGliHY7DU2allQZylKaosamDFjBho2bIgiRYogICDArGv69OkDjUYjOho0aKCX7+jRo3jttdfg4+ODgIAANGvWDC9evLByD5wPsgwrFKVMPsbaoTRriz2two7gK6yUZ0wKQ3pTVxjrLYhLS3tZACdyOaGblpZ/CAv39c1P41wjOKuwMB0QW5B1LcRWtA4X9p4Ir1fa59NcbOVLbC8LsTXbb6s2F8Q6LLuFPTNT2eUJyMrKQteuXREdHY0VK1aYfV2bNm2watUq/m8PDw/R+aNHj6JNmzaYMGECvvrqK3h4eODcuXNwcVHnZ11JkBi2A2p9KRnD0YLoW4Ij3k9T2HPRnDkh1KRCnfHW2+TklwJYKIgfP34pdoUXBwTkH5y45WKreXnp5+eQ8B1W2nOh+xlSWvtMYQtRLLugKwBqbLOz88knnwAAVq9ebdF1np6eCAsLM3h+9OjRGDFiBMaPH8+nlS9fvkBtJMTQJ8yBsOfKaaVBvsK2a4O9o0cYQze2LxcX2CUn66X4TUzMP27dAi5cyD8uX87/99Sp/HPCAnXdIYToLqbTCVYsdFIoTL/sgVpdKqztPkEuE/nIHXtYKaSmpoqOTBtajE2xf/9+hISEoEKFChg4cCC/2ReQv/HX8ePHERISgoYNGyI0NBQxMTE4fPiwbO11JMgyrECUPOEoUQjbE2fvv60xd2MNUaSInKyXIpj79+7dfDHMieL/XCRyHz2C6+PHQFQUEBb20tlYuFhOuAOH7vn/hHEeXAwu+uOMxqbaL4U9YvByqM3iqAb3A12UHnJNVYvpcnIAQRhVq5QHoGTJkqLkqVOnYtq0adarx0zatm2Lrl27IjIyEjdv3sSUKVPw2muv4fTp0/D09MSNGzcAANOmTcPcuXNRq1YtrF27Fi1atMCFCxfIQlxISAw7CPaIPWuvF6dqJucCQFbhlxTUeqonhJOTX1qDuYOzBt+9ixePHiEZ+T+DZQPQJiSgSEICXIsVyy+oXDmgWrX8/3MuE9whWJ3HjUVOzkvRLtUHzm3ZmHeFgWAUPPYSKWr0MbaWKFajIFYCavsSZYo7d+6IQqt5enpK5ps2bRrv/mCIkydPom7dugVqR/fu3fn/V6tWDXXr1kVkZCS2b9+ON954A3l5+c/Q4MGD0bdvXwBA7dq18fvvv2PlypWYNWtWgeol8iExTKgeNblIEObDeTAI/xb+3yUn6+WiuLS0l24Sd+/y1uEXjx7hCYAHyN9gLhj5k56rRpNfSLlyQKVK+f+WK5cvgMPCXgphX19k5bggI+1l3UJvCm79nMQ6Osm2p6WJQxYbWxAofK7tKYzVInSsIYrVJoiVYh12JEHs7+9vVpzh9957Dz169DCaJyoqykqtAsLDwxEZGYlr167xfwNAlSpVRPkqV66M27dvW61eZ4XEsMJQqkAjq7A8IsFRrcJSSEWQkBKavI8wFxmCC4UmDI/23/+zAOQKynsBwAPIF8BhYfn/cmI4KipfoZYogTw3j3xX4mTpXe+4cMVcG6UwtT+AsL+mLMb2tC6qURQred6wNkoRonZvh43cJMwlODgYwcHB1qvfBE+ePMGdO3d4ERwVFYWIiAhcuXJFlO/q1ato27at3drlqJAYdgBs7SKhhInXEGqyCjvTC9sUlryHJLdVFgphziqcliYKpZabnY0s5FuE8/47XgB4DsAvIEAsgqOigBIlAF9fpKa58K4Quu4QuoLYmHVXaAUGDItjLlKbMI+Updneok9NorgwVmK1WYcB67fZ2b5Q2Jrbt2/j6dOnuH37NnJzc3H27FkAQLly5eD739qESpUqYdasWejSpQvS0tIwbdo0vPnmmwgPD8etW7cwceJEBAcHo0uXLgAAjUaDjz76CFOnTkXNmjVRq1YtrFmzBpcvX8bmzZvl6qrDQGKYMIoaXoSEeSjZKmwOvBDm/BSE7hHCAwACAuCanAzfZ8+QCSAIQBaAVAAZAPzS0oDg4JciOCwMeb7+vJ7moqoJRbDU4r40gfsEoC9+haJWV/DqIgxfLKxD13XC3qJFKZZIcyjo+JAgJncJa/Lxxx9jzZo1/N+1a9cGAOzbtw/NmjUDAFy5cgUpKSkAAFdXV5w/fx5r165FcnIywsPD0bx5c3z//ffw8/Pjyxk1ahQyMjIwevRoPH36FDVr1sTu3btRtmxZ+3XOQdEwxpjcjXBUuD3Vk5LM3/vc0snI1js22XOis+fiMnuPMy2cE2Nq+2VdvLwAD7e8l6pU6CP8+PHLHeWEm2o8fpy/w9zduy/jCCcmIjs7G+7NmwM9ery0DgcHA25uyMpxwbFj+cKb2ziK097GrMRCdH2bufYL/5ZKN3ROt0wh9hbGahI+SvjMGcJa900pG/GY047U1FQEBmqRkmL++5C7TqvVImXECPgbWNxWEFIzM6H98kuL20M4JmQZVhBK+ZlKKe0whZpcJORGzX3mQ/1yilTXh4GDC43G/VuiRL7ITUvL/39UFJCWBndu843gYF4Ecz4NyRn+vHYOC9OvQiiEDYlhoUWXswzrLpzjMGYtFp5Tgi8x4DyuE7ZGyQvqFNuOzEzAmra7rCzrlUWoHhLDhEGUMMk6Akq2UMlRtyX+wpxI5MeQU6FCc21GhlgIc74Gbm4vBW+JEi+jRQgty5xS/a+iW3f9kZiYn8RdCui7TOi6TRhrv27ECSkBLHSPAPTzG/MllgOliDBzUKooVqIgJt9hwllRwLRKKAm1TIT2tAqr5aVvCLXcU130djzmFKlubDNuYwzhTnLCbZZ9fYGoKOQFBL1cfCdc5cY5CAcEGLX4ctWZe86Q8DUkii2xEkuFYCNfYuOYM0727pMjCWK1PQ8EIYTEsIqx5cRj70lNrYLNFjiyVdgYUiKQF326YRw4OIswVwC3c5xACHML47xyAI898fkbcqSl5ecTmn8DAlCtVgQfZtjX96ULMmepFRqjOQ1tCKkmGxLFQpFrjpXYVFg3e6EmtwkOpVqKHQGbCuKcHMDFimUrcc90QjZIDCsEZ56YHbnvcvdN7voLAyf0RC4SwpM6WyTDy+vl8Z8YTk1zQU5y/mmPjNR8IXz3bn7CP/+89IcICwPCwuCfnAz/4GAAYYBbMAIC/HlDMmd4FopRU4KYg8tvyPrL1cGl6/4txJCVWE6Rp0aroNSmJnLFEleaddgR2kEQlkBimOBRs3AyB2d0kbAEJfaVv2e6O1QI/Hx5Qcz9GxCArBwXpCW/tOryFtRmzfK3af7nn/xoExyc/zBXxn8XuGRkwN/LC77B/nzUNq4pQndlY1s06y6oE5ZhKvyauVZiucOvAeoWQXK3W2mCuLDtUfOzQDgnJIZVijNPNI7cd2v2Tc1fbkQ//0v9nClUuDpiODXNRbTgTa88zpXC1zd/22YuTVgWV+9/FmYXAEEB+Rty6IZAs9RKzF0j5fbAIRTBhqzExtwm5BTEXP2EuqHFdM5Lbm4ufv31V6xYsQI///yz3M2xCySGFYDSJhylxxZWC47cN1nhlKFwhZ2vL7JyXJCRJg41DLwMMYy0HLFy5XyMhQ7Aycn5F3BmYCE5OfD39YWvr4doARznPsHpc2EEOK55giL4NGPRJQB9q7Du38J07npdtwm5nkESxZajNOuw4tpBPsM258qVK1i5ciXWrl2LR48eoXnz5nI3yW6QGCacAnKRMI6S+qrnK6x7gvv/f6I4z82DF8CcMBVm5wWirj8BJ4g5RermJt7FTpf/1KZLQAACAjxEkdk4dBfXGYtFLHSb4K6VEsRc1cI8hkS1kvyIuXqV9GwpHaUJYnKXcHzS09Pxv//9DytWrMCRI0dQunRpDBs2DH369EHJkiXlbp7dIDFMqAq1TKxyi2+1WqUNRkfg1KVwsZybG/LgwgthLqqaRZUJfR64cBFC52BhKDfOORjgBbFQCHNR3nTdJszZnIP72xwrsW4eJfsRAySILMXR3BPo/iuTY8eOYcWKFfjf//6H3NxcvPnmm5gxYwZiYmLkbposkBhWIbaYWNSy/TJhfez9otK1iArTjaKzkiwrx4W3xHKCWLjfhsENKoQL5bj4acIGcWJYuEGHxB7LLgEB8PX14JN1LdJck40JYkMYshKbcpsgQewYWONeKcU6bDXITcKqNGrUCAEBAfj888/x9ttvw1cYptIJITEsM0qYZJTQBnOwdzB8e+JsQkFXEBsVwsLM/2XUFcK6OzXzWzgbKs+UINZ1BDawMs7Fywu+vv6iy7h/hSLYnHjEut20RBAbulYpC+sAEsRyoBRBrJZ3jDPRunVr7N69GzNmzMCdO3fQt29flC1bVu5myQbNTE6OM0xScuzMJSdy128unM40a+MINzfkuXkgDy6SQpj7V7gxhqThR9fCqxuWjStAWCC3dbPQBJ2czP/fJS0V/r55/EI9X9+X/3Jr/bg0Y33V1eK64dp0N/3Q7avUTtVSZcspSF2Qp5rnU24c7YsD3XdlsWPHDty8eRODBw/Gxo0bUaFCBTRr1gxr1qzBixcv5G6e3XGsT5sT4Ei7zikVZxoHpfZV98WZBxeDYtDQARgRxIIFeCL1KoQTwpwIFgphHUGMtDR4uOXxRXHC1xIBzP2t235D/dUVxMLrhddK1SX3fSdhZB7WuE801oQhSpQogUmTJuH69evYs2cPSpYsiaFDhyIsLAwDBw7E0aNH5W6i3SA3CUIW7DVBq+FFQAvnjMMJYUDaImpubF8A4l3qhOHZAOlgv7r7MAPiEBI6lXv4+sLXV/p+6kaOkIoooZtfanEc1wShS4iwKVJ5uHSlhF4DyG3CXJTiPyz384LMTCDPivVnZ1uvLAegefPmaN68ORYtWoQNGzbg22+/xYoVK5BnzTFXMDQTOTGOKJzkhsbUOuTxP6i/nKJ0hbCUxRQwsi5GaBEWWoY5862UCVdXdRuyFhuxEOtaigGxxdiYq4hun4T91W2esTxcuu74yC1G6fOiLuR+XgjrMWPGDEydOpX/Oz4+Hp06dcKkSZPQs2dPnD59GmfOnJGxhfaFnmwZUdKLQOmTnNLbp0aUOqa6nwtDfrG6og8QG2r1LMZSYlhXGJsSxbriVyrNDEFsjguFsGrhv+aMhdoEsZLmQiVC7hKEtdm4cSPq1KkDAHjy5AnefPNNFCtWDEePHsXw4cMBALVq1ZKxhfaF3CQIQoDcwoAwfQ+Ei+OkrMGcd4Puzm98EDRdAZyTI/YhkHLkzch4GWdYeAgDDetgyGVCKNKFodeMuUwImyJ0mRBeo+tGIeVWYWxzDrnFErlNGMfp3SVycgCNxrrlOTG3bt1C1apVAQDbt29HhQoV8O233+LPP/9E69atZW6d/aGZh7A75C/8EvIXNo4hqzB3TvivId9h0TtP6KcgtAQbsg4bWoEm5T4h0VBjFmLdKgHT7hK6/RWOgdotxIBjPsMEoUS8vb2R8d9EsGfPHrRq1QoAULRoUaQZ+ZLvqJBl2Emhl471oTG1LoYMtIC0mDNGRgbg4eWVb8nlzLFCfwWhdVg3uK/Uwjour6kVfL6+cHPz0AtUwVlquXeOroXYVN8c3ULMtYUQ4/TWYcJqNGnSBBMmTEBsbCw2b96M33//HQDwzz//ONU2zBySYvivv/6yuKAqVarAzayAoQQg73a9UmGrlIzS20fYHl3LqK7102x0/SekfId1K9T1t+Aq5aJKmHCfcPlPEAsX0AkDU3BwgpirRtdtQrdJ5gpi3b/VIIgBcpswhFLuD6FuvvjiC/Ts2RNjx47Fe++9h+joaADAixcvMHHiRJlbZ38k1WutWrWg0WjAGDOrEBcXF1y9ehVlypSxauMI60OTqHKQ00VC6SJDyhVAmM5hSgiL8gvFriGfYaEi1S1AV2EaU+O+vqJ0F19f+Pp68IZpYXFSPsTCJptj/TYmiIUeHySIHQNr7AinOusw+QwXiuTkZCxZsgQTJkwAAERGRuLIkSN6+dq3b2/vpikCg6bc48ePo1ixYiYLYIyhWrVqVm0U4bgo2V+4MC8HJQgHR0NXY5pykeD+FoYGFp7Lf3lDLISFq+1004Xq0FADOaswV4nQYszxn+J08YKeIJbqqykLsaE+F8ZlQlieEgUxoPwvcAShZJ4+fYqZM2fyYpgQIznTx8TEoFy5cggICDCrkKZNm8Lb29ua7SIIwokwZakyFj3ClIFHZNAVxhbmhCtnFuXOS/1fqjAp1cm5SHCWYR1h7OLrBl9fF7MFsVCwWupDzKWbI4iFaUoUxABZiXVxSuswQdgISTG8b98+iwrZsWOHVRrjLMg1eahx0qKXn+Nj7KVsLHqE7v+NpXHpHoDxOMNCgcz93xBCFSm0CgsbLvQp/k/tuvwXci0tTbwRB2C+IJZyadYVxNy5wgpiJUGCWIxTiVFykyBsCM0qBCEDFFItH1u3Xc+lQqg8dZWolD+xLlJpXAXCQ3d7vLQ00f9dkGd0Iw7dJhgLvWboy4HuFwmpTUqk8uiiNPGp5ufdFsjt3qW054MgCoLJ7/6MMWzevBn79u3Dw4cP9fap/umnn2zWOOIlhZ1wDE169pzIyF9YGSjl5WVo3KQMNrr+wrr/N4bkIjpjC+l0zbOGKpRaqSZlKRa6TXBl5uTAw80N8HLhi/H1FUd+EzZB10Ks1y+dZgmbwXVT2FTh/3W9QpS8oI6DLMTWg8aSIMywDI8cORJxcXG4efMmfH19odVqRQdBEISlmBJWFkWJMCOPyOop9Bvm/pYyx3LnOKQiSehWqGuC1bUUc+f+sxS7ueWLYEN7fwibq4tUxDchQqu4big6YbOEeXTHSliu0gSTksS53Mh9b+SunyAKi0nL8HfffYeffvoJ7dq1s0d7CIJwcCwVMQVx7dPdPZkrRy+ihFR4NV3zqzmr18xZWCdhKXbxArhNObhk4UYcwuboRpmQaoYh/2FdH2MpC7FuGWqxEAMkxgDl3Rurk5kJ5OZarzwn8xn29vZG06ZN5W6GYjE5g2i1WoofbEXkmKzUOkE66gvOmf2FLWmvlH+rVTBkEZYyzRpz1jXUKF3rsJSlWGAtdkGewap1m6BrIRaeN4QhC7EwTWprZ91rOfLgorjPpto+B0qDfIcdn/DwcGzfvl3uZigWk0/vtGnT8Mknn+DFixf2aA8hgSNMMo7qL6w25OyrtZ6BglqK+WuFCtLYCjbAsCA2N9SClADWFciCBXW6gphzoRC6TQj/b6w5wnHS3UdEd7GcpYJYiZAgln/tgzPNpWrH1dUVLi4uJg9nweSM3rVrV2zcuBEhISGIioqCu7u76PyZM2ds1jjCtthr4nLkl5Qj982ayDFOuuHBOMHn4Qv9+MJCODcH3fBqxuKNScU8M7WwTqdsbkGd8FKhCwMXik3YNF33B0PN0o1BLLX2T+jtYczdQokh1zjIbcKB3SWs/W1M6d/ubMyWLVtEf3/33Xf4+eefsXDhQoSHh8vUKvkwOa316dMHp0+fxjvvvIPQ0FBorBnnj7A5DjkpEoQBDAlgoQAU+Q1z/0r5EANiR11TvsO62zULG8Gd1w0FoaNK3dw89KrXdWMWXmaqSVLo+habu22z7vVKFl0UIaFg0Lg5Dx07duT//91332HLli2oUKEClixZggMHDjhdgASTYnj79u347bff0LhxY3u0hyAIB8MagsmU4DNXEPL5hGZOQwvodM2u5iym022MqYV1wn8BvQV13GVck42FXDMHc0Ku6S6w07Uac13kBDGgzC/dzizs5PyiouQvSYQ+GzZsQN++fTFnzhwMGTIELVu2RPv27bF7926n2lnY5ExRsmRJ+Pv726MthB1R+kuiIO2jCdg4ctxzudwjpNL0/IYB6dVqUjGIhRjzEzAWE87QwjqdNGML6qQ25ZDyITY2JlL+w1y6oQV25nRPibj8t9zPGVH6HO+o3Lp1C/3790fp0qXh7e2NsmXLYurUqcjKyjJ63bRp01CpUiX4+PggMDAQr7/+Oo4fPy6ZlzGGtm3bQqPRYOvWrQVu66ZNm9C7d2/Mnj0bo0aNgpeXF3799VekpaXhjTfeQI4TuZKY/LTMmzcPY8eOxa1bt+zQHMfG3pOys74ELEHNLwyl318526cnfiXSDYZiMKQ6TS2gk1KRUtEkDMUhFvwtXFAnFLy62tySNX1Swlc3Xfi3MdGs212lf46U/llREopdSCcVkaWwhw24fPky8vLysGzZMly8eBFffPEFli5diokTJxq9rkKFCli0aBHOnz+Pw4cPIyoqCq1atcKjR4/08i5YsKDQLqs//PAD4uLiMHPmTIwZM4ZP12q12LVrF/755x+88847hapDTWgYY8xYhsDAQDx//hw5OTkoUqSI3gK6p0+f2rSBaiY1NRVarRZJSSnw9/dX1M5oSl88Zy/LsL1XX8sZVk3Juw0K2yalF7ndjIX7VugKOiG6llNfX/1/XdJS8wtJS9P/V7diY0pQWCmHVFQKQ/svS4WO8PJCnpuHZJ91d3qWErjGkGqm7pjpNlsqqIbuVtFqEJxKF+22QK55Srfe1NRUaAMDkZKSYtGvzdx7NCU6Gv5WXL2ZmpMD7dGjFrenIMyZMwdLlizBjRs3zL6G6/eePXvQokULPv3cuXOIjY3FyZMnER4eji1btqBz584Wt8nT0xOffvopxo0bJ3n+1q1baNSoEe7du2dx2WrE5JO1YMECOzSDIAhHQYmiSOhbq+c3LPQfFqo+qZVjljrqGlr5JtwVRNd/mHOX+M9/WHdBnbBPUk0TVmNukxx9QR2HM0abKMh9sYa/tRqeByBfdArx9PSEp6enVetISUlBUFCQ2fmzsrLwzTffQKvVombNmnz68+fP0bNnTyxatAhhYWGFatMnn3yCcePGIS0tDZcuXYKLiwuqVKmCIkWKAACioqLw22+/FaoONWFSDPfu3dse7SCsjBomIcLxkOu5M6ZNdcUbl+ZhKIqEl9fLOGa6q9Ys+WlVt2JDi+m4c9zKNYCv18XXDW5uLpJxhaWaZq5W55omtaBOd7GcbgAMqTwcahFAzry4zp5Y9XmwtlvDf+WVLFlSlDx16lRMmzbNatVcv34dX331FebNm2cy76+//ooePXrg+fPnCA8Px+7duxEcHMyfHz16NBo2bIhOnToVul3jx4/HlClTMHfuXGRmZgIAvLy8MHr0aMyYMQMAUK1atULXoxYkZwPdb0qmePbsmVUaQxAEYQpT7rpSSK1ZMyiGdC3EuuiqRFONkPJP1PUF0c1nwH/Y1II6Y82Tahagv0Mdh+5aP6luqtF/mEMNot1a0IJkw9y5cwcpKSn8MWHCBMl806ZNg0ajMXqcOnVKdM39+/fRpk0bdO3aFQMGDDDZlubNm+Ps2bM4cuQI2rRpg27duuHhw4cAgJ9//hl79+612q/1ixYtwrJly/Dtt9/i4MGD8PX1xb59+7B161Z8/vnnVqlDTUj6DLu6uiIhIQEhISFmFeLv74+zZ8/Sts06CH2GA/x9C1RGQV8sSvAXNtUOQ9hz4iafYetRmJenKZ9hXV9Z4f+5a4QIxSHniivpN5yTJfYV5v6v6y9syEnXGLrbPnP/11WwXAOFPsQ6PsWG/IeFrs3cOAjFq6kvCeb4D+v+rZtHt6scahJTahHwhUWuOcMFeYX3GX71Vev7DJ88aXZ7Hj9+jMePHxvNExUVBa//Pgz3799H8+bNUb9+faxevbpAu7mVL18e/fr1w4QJEzBq1Ch8+eWXonJyc3Ph4uKCJk2aYP/+/RaVXaVKFYwfPx7vvvsubty4gZo1a+LZs2fYs2cPBg8ejOvXr1vcXjUj+WQxxvDtt9/C19c8AZednW3VRhGFQ00vIaJgKO0eK609wEtXAF2fWOFh0FVC9yIhXKG6fgqFaaju37r+w/+5S0jtByLsJ4fU5nmGqjbHf5jD0A51BeqzFYVNYSG3CRWQmWldV4ncXIuyBwcHi1wWjHHv3j00b94cderUwapVqwq8rTFjjHdhGD9+vJ51uXr16vjiiy/QoUMHi8u+ceOG5P4R5cqVQ0JCQoHaq2YkZ6NSpUph+fLlZhcSFhamF2WCIBwZua3CSkIOISzlQ2vKR5Zbs2ZW4ZwwlvIdFqpPcwWxUPxJKUyuYbrnBKZvF7eC+Q9zeUwJYnP9h41tyCHspkl/URLEdsdSH15nGBNrc//+fTRr1gylSpXC3LlzRaHRhIveKlWqhFmzZqFLly5IT0/HjBkz0LFjR4SHh+PJkydYvHgx7t69i65du/LXSi2aK1WqFEqXLm1xOwMCAiRdYg8ePIiKFStaXJ7akZyJKKYwQTgWtnqhyWkRFlpGzYUTbpyoc/N1gYtuVAlAOmwChyEzrLFKTZlSdR1xhdElBGkubm7w8nLRXWcn2YyCGK+ldpnTTZdaUCfMY5YgFob2UJggBhz3iysgzyJHRx5PXbgYvf/88w9KlCghOif0Sr1y5QpSUlIA5LumXr58GWvWrMHjx49RtGhRvPrqqzh06BCqVq1qk3a+8sorOHLkCGrVqgUg/xf+gQMHYv369Vi3bp1N6lQyypmFCKugpJ+rldQWKZxpgnYECquZDIpmKVcJziIsRFd9C0WxOarTlHVYNzSDhLsEvLz4cGucqDdXEJsbDU7oCqEreHWbxf3N5SmQhViBkEWUKCh9+vRBnz59TOYTCmMvLy/89NNPFtdlYpsIo0ycOBE3b94EkB9O7pVXXsGLFy/w22+/oUmTJgUuV62QGHYyaIInrIVaBI6uF4LQKJnvN6xzge7KMN3VaLpWXqEgFlZqCClrqK4fh65VWCCiTfkPC7vBFV0Q92ZD/sO6et6Q0duk0VdBFmEpHFkQW/IFxVrjUOgycnKAQog/PSz0GXY0GjduzPsMFy9eHEeOHJG5RfKi7NnIyXHUidgYzthnNWJtIWzuC5cz2pqL1CI64TlJV4m0NGnrsJRzrqVIKUaubOHfgGET7X/+w4Bx/2EpA7Yh67CuiJbyHxY2SarJjhB/WBdHFsSEc3PgwAGj52NiYuzUEmVAYtgOqPEloCZofB0Xc3/a18WQ+BUKNtFiOl1XCWOL5AwtphMi5fJgjq9BAd0ldJslZdAuqLuEsAxdAWzKx9hsdwmF+Q4LcVQ/Yjmsw4RyeO2118AYg0aj4dOEbhd5ec71XqWnmyAIi7DXlw9hPFupdEN/G0oDxCJQ6CohwlAwXUsaaQnGlKmhjTkyMuCCPL1YwNbakEOqeYKqRed03TOEQlm3e0YFleTNUA70pVtmhB9Yax1OTFJSEpKTk5GUlISkpCTcvXsXP//8M2rWrIn4+Hi5m2d3DM5MLVq0MOrQ/fjxY9pkQ2HYerKml4EykPM+KOUZMCWATb3ndL0R8uCiL4KFf+sqS928hhplTuW656R2HOHy6rzMOUFsqGlcs6Q0vTlfGKQErZQAltLsFqFrlVcoSnn+rQVZe50Xf39/0REeHo7Y2FjMnTsXkyZNkrt5dsfgJ2Hfvn3o1q0bpk6dKnk+NzcX//77r80aRlgfpe8858jQS6dw6HoOABBZRY2hK950taWoQKFqNMc6bK7CNNQwYUN0RaCUGVu3Izn62zXr6nldhGmWCmJjAthQHt3y1P5ZcNa5zVn77WyUKVMG58+fl7sZdsforLRkyRIsXLgQXbp0QZolq1YIQuHYextmR8Ce/TYkfguLruVS8hdToYo0ZR2Wapw5CtNYA4XWYF0RbMBnwZgh25i7hKmmcOi6RkjpdkN5zN0a2mDlCsSR5gC1fzkhrItWq8Vvv/2GXCeLtmH09dKpUyc0btwYnTt3RnR0NLZt20auEU4KN/nTQgr1YY37pZSXvzEDrW5EBENI/ZQviirBRZHQFbhSAs3QnshS+aXijnH/SsUpkwrdwDVWZ5c6bnc6YVZL4g/rjochhOvchE20NNyaWqNLCKG50M5kZgIF3NZYEidbIKYLt4DOEPv27bNja+TH5JNVuXJlnDhxAiVLlsSrr76KPXv22KNdhIpR+0uOEGPv+2nKAmyOVdNcDLpKCCsytEJNyhpsjrOuKaRUqa512AJ3CSnMtRAbsw4L0811lxBiUkgq3DoM5H82HGG+M1fUO0JfiXxq1aqF2rVr80e1atWQl5eHs2fPokaNGnI3z+6YNUtrtVps374dEyZMQLt27fDZZ5+hV69etm6bU2OpxYEmKULtWGJpE1oehVZPYwJQaLXUDa3GiTcPN7yMCaZrveUy6qJrdjVlFdZFt3xD1mHdTgjb81+HOL3OCVRT4daE6YaM34asu0IjuG5TzN2dThJh4SYzKwOyEhNqY/78+ZLp06dPd0q3WIOzjDD2HPf37NmzUbt2bfTv3x979+61eeMIgpAXJXzJMhZgwFTwAUN6Vkpv8a4SXMG6K9E49wkpnwNzGmMKQ0F7DXVM142igO4SQkwJYilBa65ml+qOQXcJKfWtcNQuiBXvupKTQ24SdqBXr16oV68e/r+98w+Porr3/zshJAFClmCAGEVD1SKIikKrUK9oVaAFuWi9Ymmj3np59KtgEesP+ktq7zXo49W22tr22lbrtcW2iNr644JWUR5BFJKW1EprKwJCiNT8IBQSQub7R5jN2ZNz5sfu7M6ZnffrefbJ7szZmc+cnZ157zuf8zl333132KHkFO2ZpcslmTdvHtatWxfL0YZRJgoDxqJ8IyHZwa0ygg7VIC95vep1d7dip16qSsi5vV7Emy5AXR0z1WA60ep1SJfQDUhUpUu4hR5EukQ+VZcQMVpMEuKB119/HcXFxWGHkXO0l72XX34Zw4cPV66bOHEiNm3ahGeffTZrgRHiBd58skfYfaua+dgtD9bNmBXTI2z30l5mv7cH0kA6ecdO7rDfgMT3i9aruEzeh9wJstpUpEuIb3OartkpdF26hOq5HUpG6RJOOzeYKDvEXtzhKB8f6eOSSy5JeW1ZFnbv3o233noL3/zmN0OKKjy0Vxe3eamPOuooXHnllYEHRPyTa9HidDEMW0CReGBrVfG1Lm1XTpVQ5bqKWrSsDH22qZ1429GhT7q1N6ZKvvWax6FbrlOW4usM0yXsXah+fOgQBa14mIGnS4hQEBMSGBUVFSmvCwsLMX78eNx111244IILQooqPKJxZSGhQXEbT6LwuatMUz/onM9+A+nkndmvnRSlH0EsB+BkncousJz/ICrSomJPAlc3GNEpRHn3uuWyWyy3Ed/nmD8cgcoSMvax5KMoDkXsM2c4UH7605+GHYJRUAyTtKDzQUxHHjinwnaClakS4kbc3GGnahNBoLJd5QOR1vVO1VzoWl1C1uxu1SVUoakcd1XYcUqXiCrGD6QjgfLiiy9i8+bNKCwsxJlnnolPf/rTYYcUCryqxIB0RSsviCTX2D+ydOJKTo+Q8Zs3DKgzEpKpEuJGndxhcaeZuMNikG62q/xarh1XWppWuoR8iE5hu1WXkMOOW7oEkN8OMYku+/fvx2c/+1msX78eVVVV2LVrF4YOHYpTTjkFzz33HMrLy8MOMafw20lIHhP1G7BbFQS3tkD/6gb2X7HSgVyYIfke1QxwoqrTBaZ6n07AqQLUBSyvE6tLOCz3MhmHrrqEU7hu63Rh23iuLhEh8asj38yFnB+P+KUN6hFjvva1r2Hfvn149913sXbtWgwaNAjNzc0YMWIEvvKVr4QdXs6J9p0yT4m6gCEkF3idbc0NUUuK7nDyeyjWJ5PFrW65iBdBLCIGIb5WBSy/Ty7DBjtdIjVMse/8hK96rQpT/HEhh+b1MPuRaZK4AURFEPMelP+sXLkSy5cvx3HHHZcspTtw4EB885vfxNNPPx1ydLmHZ3zEydbFNSoXbRI8Uf/s0xXGsiDu7kZqkV4xbUJnncoOcpABisGJr2URLKpQofawuHtRBMvPVeGLh64Kxa32sCpkJ/JZjOXLFM4k2nz44YcYO3Zsv+Xl5eU46LWsTB6Rv1ccQjTk8402n0nHAXZ6j+q/pbJLmeIOA+pJOJzsVVW6hJ+D8aMydQd3ZBuy6PWbLuHFmNVldah0utgmTu6wTT4I4nw4hrhSVVWFDz74oN/yH/3oR/jEJz4RQkThEv1ELOJIOsKPFzgSJrpBdPZzp/JfXishqMah2YPq7PFZ2oF09nPVaD6nqhKqoLyqe13JBlkge6g9LIbtpbqEV3I2VbNNnuQRm/rj3LiqEp2dQEFBcNvTzLIbF84991w8//zzmDp1KgDg4MGDOOmkk9DW1oYXX3wx5OhyT/SvJoSQvMaL+LXxIt5ksabSlaL2TNYctmekE9WknFegmvnDz2wWqiB1JdWcSq3J2xKqS+DIDw1V2EFNxiEfgrg9eZl8mK7FIvJABIt4EZymCmYSXerq6rBnzx4AwLBhw/CVr3wFJ5xwAi677DIMGzYs3OBCIL+uKoQQ4hPxX/VyzeGDB4GissJeEalS0E5T4cluLuDfbpUDld1hL6XWJMSKcOLxq0hXzzu5w+JruUvlkI1zJ0PCZAeZRJNjjjkGxxxzDABg+PDhqKurCzmicKEYJinwxkNMQpdZ4FRv2Ktw003gpkrP8OwO65Rlpu6wapluvSyI7fwPRe1hO3wnd9hJv6tCUE3VLC53c4t129UGoNpAHmJqveKcCfXubqZJBMi3vvUtz23vuOOOLEZiBvl/Bclj3IRrNi9Qpl2QSTCY/GNITmcQzVm/qRJOqMp/pcxIZ6/QCTCdmvQ7tZuIrNx1aRSqmOS84iPi2OtUzap0CfkQnLpDl+bsdWY6R3c4E6c9ouTSJaYzn794LZ9mWVYsxHDOFE1dXR0+8YlPYOjQoRg5ciTmzp2LrVu3prSxLAvLli1DdXU1Bg0ahPPOOw9/+tOfUtp0dnZi0aJFqKysxJAhQzBnzhzs3LkzpU1LSwtqa2uRSCSQSCRQW1uL1tbWlDbbt2/HxRdfjCFDhqCyshI33ngjurq6Utps2bIF06ZNw6BBg3DMMcfgzjvvTNbjy0d40SP5hNdiDYrCCykDyZKCUVVmDXAu0eBUsiEIvJZaE0s3HCm1JhfB8FJ7WK4uIWpRp6oc9nNZfOtqD8vwx7fZ8N4RPTZv3uzpUV9fH3aoOSFnV5i1a9fihhtuwIYNG7BmzRp0d3dj+vTp2L9/f7LNPffcg/vuuw8PPvgg3nzzTVRVVeGiiy7Cvn37km0WL16MVatWYcWKFVi3bh06Ojowe/ZsHD58ONlm/vz5aGhowAsvvIAXXngBDQ0NqK2tTa4/fPgwZs2ahf3792PdunVYsWIFVq5ciZtvvjnZpr29HRdddBGqq6vx5ptv4oEHHsC9996L++67L8s9RQiRb65exon5ae+lKpnYrrvbocyaSgB7VZNuOClMP6XWxO1lUHvYD05uvVx6TW7judSa0wbzGIpPQoKlwArJ6vzwww8xcuRIrF27Fueeey4sy0J1dTUWL16M2267DUCvCzxq1CjcfffduPbaa9HW1oYRI0bgsccew7x58wAAu3btwujRo/Hcc89hxowZ+POf/4zx48djw4YNOOusswAAGzZswJQpU/DOO+9g7NixeP755zF79mzs2LED1dXVAIAVK1bg6quvRnNzM8rLy/HQQw9h6dKl2LNnD0pKSgAAy5cvxwMPPICdO3eiwEPuUnt7OxKJBNpaWnzN8+3VBQk6TcLPBVa37Uwu0rkqA5epyxTGPtONIZvnQLaxYxcdWrmOrWh6dnSkrnfTh7rSwWVlfSJQfl6Inr4diTuVg5EDEMWa35wO2YUWl4l/xXVu6vbIgfWgUNuP6R6CLlw5VHGZ/FpnwivPT3mAYozIhWMe1LWmvb0dFRUJtLW1+bofJu+jRUUoDzBnuN2ykOju9h0PyU9C+99TW1sbgN5RjADw3nvvoampCdOnT0+2KSkpwbRp0/D6668DADZt2oRDhw6ltKmursaECROSbdavX49EIpEUwgBw9tlnI5FIpLSZMGFCUggDwIwZM9DZ2YlNmzYl20ybNi0phO02u3btwrZt24LsiqwQhhAmJBuoDFZdO69ZCoD+3/M6AZhso8stkMmlO6zKQRAPRlasgjssh+Bnqmavh6A6jMDcYS8DGPOUXPx45fWexIFQznLLsrBkyRKcc845mDBhAgCgqakJADBq1KiUtqNGjUqua2pqQnFxMSoqKhzbjBw5st8+R44cmdJG3k9FRQWKi4sd29iv7TYynZ2daG9vT3kQQsLBa2qFbhCZbiBdin3pN3c4XUHsB9GdFtElSCtCl/tOdahOuxd3KS7TCWBd7rD82WiFWcwcYRMx6b9KhPglFDG8cOFC/PGPf8Qvf/nLfuvk9APLslxTEuQ2qvZBtLEzSnTx1NXVJQftJRIJjB492jFuQkzCtJtZunnDsnDz6g7br3UucYpgE4OR7VM5aFkI64L2ixd3WDeYTlivGkxnh6QTxvah+QlfNZjOqf+9DKxTBkZ3OD8Rf8gF9SDkCDkXw4sWLcIzzzyDl19+Gccee2xyeVVVFYD+rmtzc3PSka2qqkJXVxdaWloc29izqoh8+OGHKW3k/bS0tODQoUOObZqbmwH0d69tli5dira2tuRjx44dDj1BCEkXp5TYdHEajyY+TxlIJ6tHnTvsli4ht3HCS71it5u9JI7THUyn+4GicodV6+RQvOD4b3s6xISQNMiZGLYsCwsXLsSTTz6J3//+9xgzZkzK+jFjxqCqqgpr1qxJLuvq6sLatWuTc2dPmjQJAwcOTGmze/duNDY2JttMmTIFbW1t2LhxY7LNG2+8gba2tpQ2jY2N2L17d7LN6tWrUVJSgkmTJiXbvPrqqynl1lavXo3q6mrU1NQoj7GkpATl5eUpjygQG2eBRBavTq9MEKkS4r/6tWXWZOUIRTtV8F4FsU7YurnDqsF9crqEFKpTBQldFohT6IC6f3UCWOXOi4foiZi5fqZcw02JgxC/5EwM33DDDfjf//1f/OIXv8DQoUPR1NSEpqYmHDhwAEBv6sHixYtx1113YdWqVWhsbMTVV1+NwYMHY/78+QCARCKBa665BjfffDNeeukl1NfX44tf/CJOPfVUXHjhhQCAcePGYebMmViwYAE2bNiADRs2YMGCBZg9ezbGjh0LAJg+fTrGjx+P2tpa1NfX46WXXsJXvvIVLFiwIClg58+fj5KSElx99dVobGzEqlWrcNddd2HJkiWeKkkQQjInkxJr6QhoL8Ugursd3GFxh06j+TJ1ML1UpPAqCDWD6Zw0vr0eUNce1qFKgbBf63S8HaIIB3X1J9+F6GEAhy0ruEcWY50zZw6OO+44lJaW4uijj0ZtbS127drl+J4nn3wSM2bMQGVlJQoKCtDQ0JCy/qOPPsKiRYswduxYDB48GMcddxxuvPHGZDECkhk5u6I89NBDaGtrw3nnnYejjz46+XjiiSeSbW699VYsXrwY119/PSZPnowPPvgAq1evxtChQ5Nt7r//fsydOxeXX345PvWpT2Hw4MH47W9/iwEDBiTbPP744zj11FMxffp0TJ8+Haeddhoee+yx5PoBAwbg2WefRWlpKT71qU/h8ssvx9y5c3Hvvfcm2yQSCaxZswY7d+7E5MmTcf3112PJkiVYsmRJlnuKEOIFP//Od0InuMT1vt1hOVCVO+w3XUI1IE633q877DCYTkRVAk2HLlxV7rDczou+dxXEMXOHiTmcf/75+NWvfoWtW7di5cqV+Nvf/obLLrvM8T379+/Hpz71KSxfvly5fteuXdi1axfuvfdebNmyBY888gheeOEFXHPNNdk4hNgRWp3hOBBmnWE/zolfR8Fp26wznJ19phtDNs+DXCEegyxMvWYBBFFzuLS0b31pKVBc1JO6w4MHvQlO1Sgxt8RaOVAbnchWlX5TLZMPsKiv9rCuhLJiQjvH8FVVKORQ5XrE8ueg+nwAh3PWDiCGOcTZcs0zLb+ZaZ3hjwAEmXjYDmA4kJM6w8888wzmzp2Lzs5ODBw40LHttm3bMGbMGNTX12PixImObX/961/ji1/8Ivbv34+iGJ7rQcL/NUUUU4VLFGDfRYtcVJUQcRtIZ79OKbNm70BlnepyicW/brXMdHitC6cbUKfLC1GE7uS++83N9usOuw5m1EF3mLggl0Pt7OwMdPsfffQRHn/8cUydOtVVCPvFFvIUwplDMUwIiTReqkqoZjNT4ZYqoXSa/ZZa0AXhd85pL3gttSaIRl2pNRWyaysvV71fl+6ctYk4YoYJP/azEUNPFh4AMHr06JSSqHV1dYHEe9ttt2HIkCE46qijsH37djz99NOBbNfmH//4B7797W/j2muvDXS7cYVimJAIEtcBRLIRG5Tm0Q3oUhim3t1hVfBO7nA6gQLOs9Kpgnbats9Sa15D1pnSTuud3GFCgmLHjh0pJVGXLl2qbLds2TIUFBQ4Pt56661k+1tuuQX19fVYvXo1BgwYgCuvvBJBZaW2t7dj1qxZGD9+PO64445Athl34vvzmRASWUpLvdWltQWbnMPqJKwOHlSbtLZWLCtLbVdcJAQk70gMVBWEHIx8YKpg7fepELdptxEPSLS27WWaA3YKX27ntF6FvUv5UMRQxOW6wwF6f5A4OpFO/ZWnFKIntj+Y/eK1DOrChQtxxRVXOLYRy65WVlaisrISH//4xzFu3DiMHj0aGzZswJQpUzKKd9++fZg5cybKysqwatWqwFMv4kq8rhCEkLxFFG4qbSqu96sx5Xb2NoAjYkyVA6wSx+I6MQjxuUoQuwXppOBFteo1D7m0FIVFRSgq6hNUsjh262M/qMa72T8+RBdadzhKQez2q4dECjG1Iajt+cEWt+lgO8KZ5iO3t7djxowZKCkpwTPPPIPSbKRWxRT+dCQkB5iQxxdldP3nlJsqt/OLrlqFuD5F+KlyB9ySmMXgvASZbkpFgKXWVPdfXe6wEzrHWVf5Q3c4noihKA76muPXaY7rNW/jxo148MEH0dDQgPfffx8vv/wy5s+fjxNOOCHFFT755JOxatWq5OuPPvoIDQ0NePvttwEAW7duRUNDQ3Im3H379mH69OnYv38/fvKTn6C9vT05X8Phw9msmhwPKIYJIZHCj+jyW/VAV+lMRFVaLEUoOJVd8FriIhPHx2kEmh9R2N2dMphORJc77KTVvaQsq0LPqLJEzNIjSPgMGjQITz75JC644AKMHTsWX/rSlzBhwgSsXbsWJSUlyXZbt25NmTDjmWeewRlnnIFZs2YBAK644gqcccYZ+OEPfwgA2LRpE9544w1s2bIFJ554Ysp8DTt27MjtQeYhrDOcRbJZZ9jtV3dYdYbT2Z7X7Ya9rzD3mW4c+VBnWMQ+Hrmqg1zzVmd42u8RtyEji23ZFRXrDduPsrIj/WfvVKw97BaMbuBbOvkGqoRb2baVy77p6qYded1TVKw1j730s9zXTpU+VKHKolt3OEA0zuFcElZ9c9X+M60z3Izg6wyPRG7qDBPzoTOch3DgRDwI8nOOmohIp6qEn+oHbutVbqWjOywHorJTvZZm8xqk6rUqB0FX0+wIfkqtAfpSa5mEHljd4ZgR9vc6yP1nq7QaIQDFMCG+4Q03PLxOwOGUqSA7kTqc0mxVy5MbTTd3WGzrBV09Mnm9/FcOXn6/yv6VwlP1rdcfJXIoqon5xFC8vpcQQtKFd/UIEvavfUJMxGmAl9jGLzpBlrY7rBr159cd9qM8Zdzc4TQm4lDlFMvL/f7wcAs7LQFM1UwIUUAxTAiJJF4Hbtnr/Qyks1FN4CbTT7w5lVxQqUY3d9jvYDqv7rCc5KtCEMdeJ+Jw+izcPievGRxOjjH/c2MWQZk33Vl4EGLDqwaJNLzxEZVWlEWaiCqDQcZJbMkmqo29PHlOyiPv3FSj7A5nIojd8DNNs9AZmeYOy7vU6XA/7nA64wzjBP+TSIg7VBJ5BsWhuWTjphTHz9upHzN1JnW4madad9irasym2PXiDnvZXhrusJ/+dqs77MUdtnH8XjBVghAiEb87KckYOg3EFLykSvgZuyaiKsXmVFbMbuuaO5wrd1hlmapGn4nrfLrDQfzwyNQdFg/FVedmkmtNCMlbKIZJLKGgjzZuVSWcjFm5Tq29LFNy4g6n6yA72appuMPyjxBdTWBV2OmkqTi5w/KPFmIeQVxvWVqNZBOK4Twi6v8yp0ANlqifD+mQrTQJEZ07bJOROyzPLhFU0PIBiMG6HZhsiUuhuvW3n9xhNzNbDNtNv8fx/CeEpAevFoSQSAsHJzHmZSCdF3fYy7/hA8kdVj13C84J3TRw8munXAXFsnTcYRGvfa2qO+xWe5gpwf2h0UCIM9G9A8YUXtTMwCTxaFIsucQpVcLJsfSTNurXRBXbZuQOi++RCWKwndcDEw8mTXcYcHeH3UL1mlcsO8tx/W7kI0yTINmEV4o8Id2LPsV1bmF/Zx+nPOEgyqxlzR2WVWVQg+nSdYddrFiv7rDTjxK3kHUusKqkGt1hs+G1j5gMxTAheUBcHTD7BqtzHp3GpaWjLbPqDosEXWpNRFVizW0KuADd4UzC1g2SY5m13BDX6wzJf3hmE0LyEp34Us2O7Jecu8Oq1+m6wzJyOoT8PgcrNh132GkgnS5knUPsVGaNpEJnlhA9FMMGwouWP5gi0kvcXRudhvRaF1f1Xjdy5g4HUVHC60Qc4oHJBOwOy6+9DI5zqiShS5XQfjdYczgyHAYCnYr5cG7DJ4YT77tnBFFd1E0TQabFQ+KFVw3pddyavI2sVpawg8pG7rAXvLjDkuIM0h12QtffqtRmusOEED9QtRhKvrmW+QhFvxnovisqo9XrQDpxmVLYCgTqDsuEPU2zl4MWQlVpeRkv7rBcd9jn2D7lc0II0cG7OTEK/gjIjLgLdNVAOj9l1ryIZCAgd1gXWLbdYTfb1Os0zcJ62x0WQ/FTWcJrOH7KrMnE/bsBRPv6ytJqJJvw6hBxeIGPHlG+IZmKV3fYXubVHXbCi2YU2ybdYb+WdZBzRst4cYed3qsQx15Fr1s6i5eSdrqxfYC3HyyEEAJQDEcSCmDiRjrnSL6cV07usMpEzTSf1Ytb2W+9kzvsdSKOoNxhr6XWnNxhwDV32F4mvvaa360LRwcFMCHED/lx94shPSjMWLxk06HMF2EVRdj3qWTTHRbxlTvsRQCrgnJLuA0CP0m3CnGsO5SgJ86TlzsNpLOX8bvB/0wRooJXhhiTTzeGfDoWkh5ebvI6d9heZ6NzLHU1bb3mDqe4mbI7nOtpmoNyh4X3eKksYS8PMi1FBd3h/II5wySbUEEQkgGscWwWTjPS6UxXL5NweBHE8jKH8WZ97rBXAZvrUmt+SzJ4dIeBYBxjL4a1Dv5wJoTI8KpgMBRM2Yd9nL84CVxduV+vutJpMJePamR9O03HHQ4Ct1JrWXCHRfyUWZPDFA/BIZWZNYcV8LpHSCoUwyQtsnkx5YWaBIlbmTUnd9jJWdZlFNjrQnOHg8YpF0FEU3dYJh2NL9cdtpf5cYiZNhFtDmfhQYgNxTAhJK8Qf0xl6g77WQekXY0sWHfYr6WdzkQcTu5wd+qsdE6VPNLF67g+G/nHClMlCCEivCIQEhJ0wHOHl0k4vLjD4nI3PFQjS3WH3TYsB55O7rBuH34n4tDh4g6rNL7cz7oQVe6wuEuWXCOEpAvFMMkauXZfwnJ78sllypdjSWeKZqd2XhArS/hxhz1N06xKws0WTu6w6gA0eSB+3OF0+99r9gaJPkyTINkkP+58hGQAHdr8Rpf/m27usIjTv+PdMgr6pUm4zVnspNq95g47KXUvpda85if4dIe94iUHWDOuj6kShBAtvBoQQvISv+6wWzs/OFWbEFG6w/bOvU7TrEM33Z4uGDsgFRnkDou7dutTr4a3048Ot/BJLzQBCOmDYpiQEOENKTcE7Q47iTpdTqu43pM7LApeL/XJ/OQOe0HnDnt975G2sm5XHUa6qSrppElQGBNCZCiGiZFETSTyX65mkk132G9GQlrTNDvtSBbLQQUehDsstBMnQvHa707oBtLZy1hzOD/hDHQkm/AOTvIKzghHdOQyd9jLOllPJsnlNM1eC/W6ucMqO1zjDjsVz0hnbKDSZde0k5/zRywhBKAYJoTkOZm4w34HeNmIlSVsPJio/ibi0JVa073W4ZY7rBu1JqvQNNzhdAfS+YWpESSXzJkzB8cddxxKS0tx9NFHo7a2Frt27XJ8z549e3D11VejuroagwcPxsyZM/HXv/41pU1nZycWLVqEyspKDBkyBHPmzMHOnTuzeSixgWKYkJChK507dG6kzh1Wvddv7rDfUmv9AnMrteYlKC9TvLnlFIii1y0xWrFNlTusI8iaw0yVCJbwSlhGJ03i/PPPx69+9Sts3boVK1euxN/+9jdcdtll2vaWZWHu3Ln4+9//jqeffhr19fU4/vjjceGFF2L//v3JdosXL8aqVauwYsUKrFu3Dh0dHZg9ezYOH2ahuEwpsCzLCjuIfKW9vR2JRAItLW0YVl6W1jayfeHJRIh5jS3dfYSR8pBpf+f6WLNBvopzu49lISWbm6rcXlUbG1Fs6TSqqt6u/Ly0tO95IXr6dmQH5BSYU7A2OnEr4kVkqwb36Q5MOLieomLHQ+roUPex7oeE/OPES2aJ6j1A/p7zbuTyGtve3o5ERQXa2tpQXl7u732JBOoBDPW9Vz37AJwB+I4nHZ555hnMnTsXnZ2dGDhwYL/1f/nLXzB27Fg0NjbilFNOAQAcPnwYI0eOxN13343/+I//QFtbG0aMGIHHHnsM8+bNAwDs2rULo0ePxnPPPYcZM2Zk9RjyHXPuwERJXC/SQLyPnWQPrw6v7F56SdPVuZBeqx74mohDRidc/eDVRlX9InBxh1WTcIj4TZVwGkina890iVR4jc0+H330ER5//HFMnTpVKYSB3vQHACgVvsMDBgxAcXEx1q1bBwDYtGkTDh06hOnTpyfbVFdXY8KECXj99dezeATxgGKY5B0muaxe4U0p+3jJHdZlIaQj0nTrdP/K91RqTRW8LnfYyeX1c1CyoleVyNAdpKKd2L9O1eLSqQrnpcAFISLt7e0pD1uYZsptt92GIUOG4KijjsL27dvx9NNPa9uefPLJOP7447F06VK0tLSgq6sLy5cvR1NTE3bv3g0AaGpqQnFxMSoqKlLeO2rUKDQ1NQUSc5yJnmogxGCiKMTjSCbusFNVCvuhyk5Qma6+S635cYedDswJr8pR107lGHtwhzOdGtuP4GXecPSwEGy+sJ0fOnr0aCQSieSjrq5Ouf9ly5ahoKDA8fHWW28l299yyy2or6/H6tWrMWDAAFx55ZXQZaUOHDgQK1euxF/+8hcMHz4cgwcPxiuvvILPfOYzGDBggHO/WBYKCgpc+484k8XxuyQK9KAw665kLvZBgiOfP69C9Ch/sIgC1taZsqMot3EqpWb/tYXcwYO923TKL5YFdJk9zMAOBorX8jpdgPZrub0OMXj5AOxtyQcn70s+ELtdUTFKS3tzhO1DsJ/7xQ5DDsHPoQH5fc4TZ3bs2JGSM1xSUqJst3DhQlxxxRWO26qpqUk+r6ysRGVlJT7+8Y9j3LhxGD16NDZs2IApU6Yo3ztp0iQ0NDSgra0NXV1dGDFiBM466yxMnjwZAFBVVYWuri60tLSkuMPNzc2YOnWq18MlGiiGCRHQiaV833ccUelDlYYE9G28aksVtiNsi7ikVizqW19UVIhCnTrXHZTdVtxQugE6CWJVG5UIFgU67HSVQu0mRLz0r1MIct8KYbjum8SD8vJyTwPobHGbDrYj7CUFI5FIAAD++te/4q233sK3v/1tAL1ieeDAgVizZg0uv/xyAMDu3bvR2NiIe+65J624SB+88+aIuIucXFeGiHt/Ez1+codF/E7EIZNxqTV7p07lEsRgVQfmtk4VjJd1XnKHhee6Mmu6FGmmSpDuLDyywcaNG/Hggw+ioaEB77//Pl5++WXMnz8fJ5xwQoorfPLJJ2PVqlXJ17/+9a/xyiuvJMurXXTRRZg7d25ywFwikcA111yDm2++GS+99BLq6+vxxS9+EaeeeiouvPDCLB1NfOBv4ghAxzBa8F+u0UF2h2UzVXQmdSkTum2qBJz873ydOyzSA8kddjsgMVgvuR1OB2NvS5Xv4eYOy9sQ9lVYVATbHZaM45zAVAmSLQYNGoQnn3wSd9xxB/bv34+jjz4aM2fOxIoVK1JSMLZu3Yq2trbk6927d2PJkiXYs2cPjj76aFx55ZX4xje+kbLt+++/H0VFRbj88stx4MABXHDBBXjkkUdc84qJO6wznEXEOsPl5eWh1r91Ilfua1TqDQfR16Z+1l6JgyjwW3dYfi0XV5BTd53+9Q+oa9+KpXll47cQPX3FeL2WpZCDV43sEw9Ch8p1lqtWqKpfiK/LylKe96Aw5XDE5/KhuGWIyC69UwjietYbTu96E0ad4Y0Aylxbe6cDwCeRmzrDxHzCv+sSYhhxvCHGEXGKYKC/kLJJd5pmZbk0qOfLEN+jEoL9gtFVlHDLMUjXfnUqj+HkBMvLpPeoyqzpcFqXaQEMQki8oRgmOSOKDm+6mODuZkLU4/eLSmjpynylM02zmwhzq42bUmpNJ4C9TsShWucFJ0EsH4TqoKTtyGXWdGH6CdVvHjDzhtMjjOvD4Sw8CLGJ1x0vZOImMEh60JnOHXJfqyoOiP9qFxHFsl9BnPFgOl0egJcRaDrlnwm6wXO6QXbSJBx2CG4D6fyG5HX8HyEk3lCdRYRsCiSK9P5QkMYPL4JWZcL6EWtOKbteUoBT3GEvO84kWK8HoHKHRVRJ1oI7LIeVaSaH/MNB16eq9/JaSEg84TefkCzBG2u0CaLUmhdh55Qz7DoznZs77HRA6QQrBywu07nAIrI7jP6HYj8PYjI9kj9YWXgQYsO7NckpccobzgQTnOmo9p1fxL724w7Ly7ziN13C82A6FV6sbL+5w3ZQ4gGo1onB69zh7m4UoqffQDo5fFXlh6CQDyEu5z0hpA9+6wnRYIIgJblBJYhVz2WhJoo4UZO6Ga66dAl7ndO/9rWD6VTusIjOys4UJ0XvJXcYqX1o/00nPDlVwmtpNkJIvKEYzjH54jrky3Fkm0z6iWI8XPyWWpOfp5Mu4aUQQ0q6hBig18F0TgHplLtToi2gT4AWUZXIEP6qnF8309ptkJyqvSoXmxASb6hoIgQH0RGSPbykS8iiN+jBdDqBpq097JQjrCLTOaWdBLHqtZOiF9rraj7by/xq93SgMDabniw8CLGhAiI5J0p5w3Rn44Xu887WYDq3PGHPtYfl4IJ2h51Q5Q/rnGTVjHgOqRJyWLrSd17C8wPNAULiBb/xhGQZ3lijiZugVRmybgat0zpVpTJxuY1SHLvNTCfi1x2Wg/ZbwFeVsCu7w8JAOnGXbofihGr+D6e2hJD4wrs0IQZDZzr3qPpcN1DORpUu4TUDwalSmcpElddpaw/7cYczKY8hHoSTO6zKJVYMpFONAfTTn25h6kIgZtOdhQchNhTDIUCnkKkSJBq4DZST9aeXgg1O6RK6SmW6dIm0ag+rlKZ4AF7RqUhVPodqmTSATjeQzqm6h9/Q5DYUwoQQgGKYCFCkZw+K8Wihc4dtVCLZSTj70ZhulcrE547pEl7ItNSaqjqEHKBqmX2Q0gA73UA6VY52OiEG2ZYQkj9Q/UQMCiNCcoNqqmD5tSo9IojBdLIgllNsXdMl5GB07rAKv3kIKkHsNNe0vFw8KGSWuaHLt6YLTAhxgmKY+CaqDnLY7mxU+430F7Si+aoSwHKbdHDSk3Leq6faw04H55bP4adkg5NbLB+MHby4HPofDl76VM6+EOHkG9GFpdVINuHdOSQojHKfNxxl4njMJpDuVM1eBtN5LbXmVrjBc+1hN3dYFagfNe9UBkNOcpaXC+tFR96Llk8HVXUJTstMSHzht50QooWCQI9TugSQWbqEnG0gi15ddYmUwXS6dAlx59lUm/JztxQJ4bWcKpHNMJlCQQjhnS6CcCa69IlyqgTd4XBwcodlfelWezgdMeclXUJZXULcuSiOvaRNpIubO6wLWFwPKGsOi+Gp+lOXnaGaBM/PIRAzsBBsioSV2/CJ4eS38iF5C4UhySVBT9XsZYyaStCJ62SR55guoQpMlVcsW7Fi4E42tkvqg2PusPweqeawGLqI3z6UNk+Q/+YHIV7hNyFEonghimLM+QR/BJhHptUlRE3qhs7hdE2X8JMSka4z7JYaIR6A7A6Lf6WDlE3tIKD7SwgRobIh/cil4A1DXIct6MPeP0mPdNIlRNJJl/BSbs13uoT92mkiDrGNGHA6VSVUZdXENiqH+MhAOl31jiByhymICSE2vCsT4gMTnNlcx0DxriaMdAnVOt/pErJTrDqwoEeqiQE71YaTRLNTqoRqkJ28K5I/sLQaySa8y0UUE0RZUIRRYi1sgRf2/kl6OJ1zmaZLOKGrLiHjK11CDMRJHPsts+aSC+yprcdUCa99pxtEJxvWzCcmJJ7wjhwypooiVVymxppr8umHCPGP19rDKgGsGqcm4qQ3ZUFsL3Mqt+aYLuFlMJ0qIL+usa60gyiQVTnGUqqE0679hKRzjE11knndJST78FtGjIATcPgjrsdtCipBLD73U27NbuMFp4pkqtnpUjIPnNIl3Ehn5JqcP+ykQsWgNakSTpUlMkU1zs8E7OsiBTHQnYUHITb8hhEt4oU4Hy/GYdf8zbRPcymI8/HzzxRZEKvGmnnJH1YNxnPCiyAWl9nLHdMlvLrDbom6umDF107usOohIGp5r9U3VHhNhzDpvA86FpOOjZCw4bchwuRCDPGCSYh3VIJWlYqryx/WvXZCV6RBNbAuKYid0iVU6PKJZQ4e7HvIATrZr7ocECFVQuWkew1LhSnuLyEkfKh0SOSJcsoAf2xEG6/5w/ZyP+kSfvKH3cqt9SvU4JQuoXKHRZwC0ylTWfiqRgLqBtt1d/fT7W5hkPyD1SRINuGd2AAoiHqJWs1hE0S4CTHEHdVnIP87P510CTfSFcS+0iVEVEGLf8Vg5Ody0LI61wWssW/TFcJ0gwkhKqjCCAmZqOQO80ebHvsz0JmoOgGsE81+q5mpKkyIaMutuaVLpOMOy4E5VYyQA1ZVnpBSJby656pQ5F1ETRzzO0hIdsjpN+vVV1/FxRdfjOrqahQUFOCpp55KWW9ZFpYtW4bq6moMGjQI5513Hv70pz+ltOns7MSiRYtQWVmJIUOGYM6cOdi5c2dKm5aWFtTW1iKRSCCRSKC2thatra0pbbZv346LL74YQ4YMQWVlJW688UZ0dXWltNmyZQumTZuGQYMG4ZhjjsGdd94Jy7IC6w/SnzjWHCb5hZOgVaXmuuUPOyHqSFXNXNdya6qpmp3SJdJVoypBrHKH5YNywM8PhqiJXhv5usb/BBGSHXKqAvbv34/TTz8dDz74oHL9Pffcg/vuuw8PPvgg3nzzTVRVVeGiiy7Cvn37km0WL16MVatWYcWKFVi3bh06Ojowe/ZsHD58ONlm/vz5aGhowAsvvIAXXngBDQ0NqK2tTa4/fPgwZs2ahf3792PdunVYsWIFVq5ciZtvvjnZpr29HRdddBGqq6vx5ptv4oEHHsC9996L++67Lws9w9JicScqgjwqcYZBOtM16/KHVdUpnFBVMfOUPyzvSLRfVY6wiF8Fr7Jm5QPQpUpo8oZt/FSJiypxv9YzZ5hkkwIrJKuzoKAAq1atwty5cwH0usLV1dVYvHgxbrvtNgC9LvCoUaNw991349prr0VbWxtGjBiBxx57DPPmzQMA7Nq1C6NHj8Zzzz2HGTNm4M9//jPGjx+PDRs24KyzzgIAbNiwAVOmTME777yDsWPH4vnnn8fs2bOxY8cOVFdXAwBWrFiBq6++Gs3NzSgvL8dDDz2EpUuXYs+ePSgpKQEALF++HA888AB27tyJgoIC12Nsb29HIpFAS0sbysvLXdune7HLR4GSTl+ElW4QVP9nerPL1XkQ95uyE/Jn4FYGTX4tt7HfK25Lh06Ay9q2rCz1eSF6gI6Ovp3qnqtKoqlSHNzqlqkClIOy/5aWpvzt6i5ER0fvLjo6kHyuCkfuG1nr28/FXat+hOTj+R7EtcJvv7S3tyNRUYG2Nm/3w5T3JRL4LYAhPmN0Yj+AiwHf8ZD8xBgV9d5776GpqQnTp09PLispKcG0adPw+uuvAwA2bdqEQ4cOpbSprq7GhAkTkm3Wr1+PRCKRFMIAcPbZZyORSKS0mTBhQlIIA8CMGTPQ2dmJTZs2JdtMmzYtKYTtNrt27cK2bduC7wCSMWHdtILabz7+qIkbXqZr9pI/LLbXvZbxOqBOmT8sKkI5LUKlEv24wrJC9Tots+q9CjJ1gzkFM8kWnZ2dmDhxIgoKCtDQ0ODa/s9//jPmzJmDRCKBoUOH4uyzz8b27duT65uamlBbW4uqqioMGTIEZ555Jn7zm99k8QjigzF336amJgDAqFGjUpaPGjUqua6pqQnFxcWoqKhwbDNy5Mh+2x85cmRKG3k/FRUVKC4udmxjv7bbyHR2dqK9vT3lkQvy0bkIg6iLUZ4HZuCWLiGu8zJds+1iyu9XoSvXKzrRnvOHdQHJwcoHqwpIfi4GJtvkotUrtdWlSvgVxFHNIY4z3Vl4ZJtbb701xXRz4m9/+xvOOeccnHzyyXjllVfwhz/8Ad/4xjdQKvxqrq2txdatW/HMM89gy5YtuPTSSzFv3jzU19dn6xBig3F3fzn9wLIs15QEuY2qfRBt7IwSXTx1dXXJQXuJRAKjR492jFsm6mIsSKLWF3ESolH7bMLAa/6wLj1XpT8zmbJZXOeaP+zkCPtJznXKDdZNyqF6qMTxEdKdcINkRpyud+ny/PPPY/Xq1bj33ns9tf/a176Gz372s7jnnntwxhln4GMf+xhmzZqVYu6tX78eixYtwic/+Ul87GMfw9e//nUMGzYMmzdvztZhxAZj7mpVVVUA+ruuzc3NSUe2qqoKXV1daGlpcWyzZ8+eftv/8MMPU9rI+2lpacGhQ4cc2zQ3NwPo717bLF26FG1tbcnHjh073A+cBErUL9JRKbNG/KEStDpHWJeNoHqfDlX5XrcBdf3KramEsRyIShy7KVRdIrWs3hXLVLPR+f2xQEi22bNnDxYsWIDHHnsMgwcPdm3f09ODZ599Fh//+McxY8YMjBw5EmeddVa/ilvnnHMOnnjiCXz00Ufo6enBihUr0NnZifPOOy87BxIjjBHDY8aMQVVVFdasWZNc1tXVhbVr12Lq1KkAgEmTJmHgwIEpbXbv3o3GxsZkmylTpqCtrQ0bN25MtnnjjTfQ1taW0qaxsRG7d+9Otlm9ejVKSkowadKkZJtXX301pdza6tWrUV1djZqaGuUxlJSUoLy8POWRK/JRBEVtEo44wX5yR/edDGJCjqAEsTJ/WDXKTFeCTfVaDNxvcPY62QWW26B/loaX3aqIm4jmdzcVObWxs7Mzo+1ZloWrr74a1113HSZPnuzpPc3Nzejo6MDy5csxc+ZMrF69GpdccgkuvfRSrF27NtnuiSeeQHd3N4466iiUlJTg2muvxapVq3DCCSdkFDPJsRju6OhAQ0NDMpH8vffeQ0NDA7Zv346CggIsXrwYd911F1atWoXGxkZcffXVGDx4MObPnw8ASCQSuOaaa3DzzTfjpZdeQn19Pb74xS/i1FNPxYUXXggAGDduHGbOnIkFCxZgw4YN2LBhAxYsWIDZs2dj7NixAIDp06dj/PjxqK2tRX19PV566SV85StfwYIFC5ICdv78+SgpKcHVV1+NxsZGrFq1CnfddReWLFniqZJEuvBCFV1MGUiXjz+MoooqXUJ+7XdAnd8JOWx0mQf98oeLitXiV2Vf61CtV4leGZ1SFxxinUmdTp9kix4UKh8kfbJVWm306NEp6Y11dXXK/S9btgwFBQWOj7feegsPPPAA2tvbsXTpUu/H1tMbzb/+67/ipptuwsSJE3H77bdj9uzZ+OEPf5hs9/Wvfx0tLS148cUX8dZbb2HJkiX4t3/7N2zZssXzvoianF463nrrLZx//vnJ10uWLAEAXHXVVXjkkUdw66234sCBA7j++uvR0tKCs846C6tXr8bQoUOT77n//vtRVFSEyy+/HAcOHMAFF1yARx55BAMGDEi2efzxx3HjjTcmq07MmTMnpbbxgAED8Oyzz+L666/Hpz71KQwaNAjz589Pye1JJBJYs2YNbrjhBkyePBkVFRVYsmRJMmZiLoXoyejG04NCCkoSGOL5WFTUq+lKS3v1nf3aXmcvt5fZr4HeZWJ7L9jvOXiwd1u6og7ifkpLgWI7GDE48a/8XEQ+KF3usL3ODk5eb3eQ/fdI0IVlRQAKU3R5R4en7sgJTteeOF9bTP0xsGPHjpT/4ooVpEQWLlyIK664wnFbNTU1+M///E9s2LCh33YmT56ML3zhC3j00Uf7va+yshJFRUUYP358yvJx48Zh3bp1AHoH2D344INobGzEKaecAgA4/fTT8dprr+H73/9+imgm/gmtznAc8Ftn2CbseremEaWaw0HsO4gYgozDibje2NNB/Dx0ZdDs53LNXFU2ga7+sK0zRXSD+IqK+qqqybV3U+oP29Mqiw9xuSr/wm0aZjEwMRDxuV1jeNiwlOdd3YVobUVKzWExFHlXqowOcRe68YKAv3Pc63curO9NmNem1vYOVFQk0q4zvBLB1xn+HIKvM7x9+/aUSlK7du3CjBkz8Jvf/AZnnXUWjj32WOX7pk6dihNOOAGPPfZYctkll1yCQYMG4Re/+AW2bNmC0047DW+//TbGjRuXbDNjxgwcf/zx+PGPfxzYMcQRQ/6plN/k6sKXqSNqKum4KXSHiWk4OcTiMqC/I2yvt9G5y+J6ub3oEIvLZHFtO61lZYUoLCvrfSE6xfYGZLvZydbWIQYqD54TXWHRQe7uBlCsFfxeCDqdwu+1xm6vusaotsVrEWAh2FnjsuUCHnfccSmvy8rKAAAnnHBCihA++eSTUVdXh0suuQQAcMstt2DevHk499xzcf755+OFF17Ab3/7W7zyyivJ9ieeeCKuvfZa3HvvvTjqqKPw1FNPYc2aNfjd736XpaOJD/mnnPKAfBS0cSJOucM8V/2h+kx0A+p0KbpuA+pU2lJ8rSvioDJ3kwPq5OnanCpNeBlIJ1vh2npvSA36yDpVH6WDU6aHVzL90e0lr5jfs/xj69ataGtrS76+5JJL8MMf/hD33HMPTj31VDz88MNYuXIlzjnnHADAwIED8dxzz2HEiBG4+OKLcdppp+HnP/85Hn30UXz2s58N6zDyBjrDhBCSQ2yHWHZ07deymBWFn60JVYJXlaorb0PlEAP9HWPAdoeBoqJiFJYqAlIlQKfjDqtQDaITgitED4qKKBD9EGaKRJzFfE1NDVTZqKplX/rSl/ClL31Ju62TTjoJK1euDDQ+0kt8z9AcE/V/c8n+Ra5J52IaZs5tnNxhkj46h1eVv6qrMOG3NJhbyTU7TTjFoFW5wrrSa2LATgHYzzVVI5S5yNL7vTi7XlxeXZEMt+9PnEUeIfkEv8mGku5FNpf5yWEJ47hhuiCmIPCPlymb3Uquie106RI6TeomiOXxcV3dhakBqUSwW+6CqiKFGJAuV0MMVkikVk2Mp6s97DUMP+T6vI/79+xwFh6E2MT720UCIVeCOK7uMMlPvAhi+7mcV+xVEItoMg6UgliuzJCcoU5V8UFVqkGlVGXEHckB6oJTlYrQ4NUdTkcUx12YEpJv8BudQ6IqjrzETZc4u9AdTg9T47JxE8QqAWyTjiC28SKI5cppHR2KAXVOg+mcbGk5j1j12sktPjKIzk+aiEqTpzP7nOnnlIowY45if5H4wbPUYExPlTBt3zqiUK+XBIc8Mt/02b/SEcROGQlBCWK5xHCywoQ4Q51d+1euNqFziuUgnQKQc4vTQNcHTiLYqd9MPo/yHaZJkGzCbzZxJB0hmU1BHLWbUZB9YfqxmxCf2+xfJsSoIihBLL/XDT+CWHzdU1Tcf0CdavYO8YBUScy6AMTncr7Gkde9FSVSd+EF1Xu8OMymnjuEkMzht5tkBRMd4kzIhxthvn0mMl4/I1M/y0wEsdhG5xp7dYp1glj+m+IMy46waoCd2+g2tzxhjXOcyYA4VR/KmPwjygtBxu73GhLlfiPxgmdqjslltYewyVYMYQykywST3OF8zR1OdwYw00hXEKumWZbfK/4V8TKoTiWIUypM2MJYHlSnEsFugtipvIWUPuE3XzioShKEkPyClwTD4bTAwZEvUzSbEkfUMbUfnaZttkWcrQfFOS3kNnY7ed4Le5sy3d39RaIqbdeejOPgQQClhSg+Mt1sysQbIvJyMUg7GDkgceplJ4FcWpzcjA7doDm54IUKU380xZEeBDsds3nffBIm/KaHgIk34GwRp2N1wqR+yDd3ONMfOKajc4hV6RBubeRtqhDdYfu16Arbz+303WTJNTtdQpUmoUqXUIlmcaf2X3kWEKlvVMelSk9WOcNe+ySqROH8JsQE8vDrn3+Y6mDFEVM+i0zjyNQlzydM+UxF5M9H5xAD/d1ftza2zlQ5xLY7LAtiW7farrD93KasrBCF9gonRBdYpz5tV1ieI1p0iw8e7AtEQnbCxR8C8ri+fBTA2YL5wiSf4dmax5hyg89GHCw7Zza5uhEGtR8Tb9xy7W4nh9hPDrFb7qxbDrHKIe5Xg1iVOyw/xIORA7D/6nKGFbnDqk3Js/fZf3UCmZhLTxYehNjwEhASUXHmTHTNbMKKzZQ+MSWOfMHU/vSaQ2yLPNnNFV3SdHKI7b+2MSs+B2SHuBiFpUfe7OYUqyxqUX2LB6DJH+4tr6a+jso/CFTV3tKZdCMqROH+QogpUAxHBFNv1FEkzB8iQe87k/Mi2/0QxXPW7g/T4k5XEKvEr9eUCbutjS2CxTFvdhGJfoLYSQjbb7bfaAtdead20PZoPbHOsBi8hJyO7OSg2+uBvs+cIjJz2IckalAM5zmmONCmxBEUJotQP5gUi0mYKOTTFcRA/9fiMjdBbG/Xxtav4mvPglgcCKdKmRA3IpavKCpKFc66QCXkVAhd2WPTPutMCfo7nW/9Q4gMxTCJNOmKlnwSgSYKNxuTY3PDxNjTEcQ6x1i3zEkQ2+vFLAagv0AGNIJYTocQXeLW1tQd2AcJaOsM9z4v7herqqqEKIjt56rP19Rrg2nnYq5haTWSTcz7xscIjs4Nl3waTJfJuRH3m6wTJn7n0p2YQ5ci4GViDhvV2DbR7LUH0x082Kttk9M224Pq7OfDhvWfvU41Ck7ecGsr8J3vAHv3Ak1NQGurNjXZPk7d5HjJfpTUv4mfeZRg/5EowrM2BuS72InKrGdxJer9ZGL8fqtMiMtlgexXENvIglhM5xUFcReKe8WvLILt13IFCnHgnDhhR00NcOKJQGNj7+PEE5NtxRLFqmMVN+0khJ2O1WPT0DHxfCXEdJgmQXKGif9+DHNWujgNpssWuYo7SikTQGp6BNC/soQuh1h+r9ugOtU25UwIoLcOcfGwYb3qeNiwvhWtrb1KVRyRZx+QGGRlJXDsseg6bzq2rWvubbL3SJO9/bMqRBdY1N7FRcJnKNcuVvwC0NVhjhOmnPfdRx5Bbo8Qm5h9rc3D7808jJuyiUJAJgoxmk42hWU+fD4mHoMsiAF1BQkbt9JrYhtR+LkNrJPLrYnzZtgUFRWifNiwvkFyTqqytbW/8iwtTbrOcuy2+yvGYy9LEcKKWezEWMTz3y132kTC/kEb9v4JSRdDv9L5hQkXCFOcP1PiCBKTHFkTBVs+YWL/6s6hICpNiO/zUmlCFMFy+944ClFWVt4brS65WdxwR0dvfvC77wKtrSgHcOLEc9HU1L8ihKhz5cyLQvT0ba9/UI7HZAKmnXOE5BsUwwYQBXc4CkS1soRJgjiK7nCuPz8TaxGLNXJF4aqamllcrnttLwP6L1eJY12lCTt32BanfcUjylGsE8BinWF7urt33ulNlejoQHlHB8pmfhZ79/Y2szchZ1kMGwYUdncBHQdTt203lDol6j/SsxG/Sed4D4DDAW+PEBuKYZJzTCxuH2busGmE/eMgKpgqim1BDPjPIxZfq0q3yYLTSRDb2xSXiZUfysqKe/OI7YZNTal2tJ0qYT/eeQdoaAAOHkThwYMYeeGFaEd5SgEKW3gXF/X0KXHZuu7dubYPTXOFvWDC99WEGAhJF4rhHBF1sZSN+MXtBXUhjWo/m+QOZ5N8cYdFTOtr1cA6wD2PWBa/TsJZzM0VX9vY71XVIxa3k5JHfOyxvSJ1796+HAixDISYa3xkWVlR3zEDQHHZkZ23HinDJh+wnUgsLTNZyJl0bhGSr1AMR5R0bsAmO37ysYQRZ765w6amS2SLsAWxHYMJuAliVdoE4M0lFpd7QTdBR982juQR26PdVKUg7EoUNTW9j5kzgaKi3v7eu7e/+2sLYXG5vR0bsYwboukIA9m7VppyLhOSCyiGc4iTOImi+MgmmaRShCkCTROgpsUDmPejIUhMOja3ShNy2gOgd4ll5NQEt6oToiCWa/baNYJLSwVRvHdvn0tsi9iDB4EJE3of9obsyTfEjdoD5Vpb+3bqkK/B627m5KIPrSOPILdHiA3FcITJtTts0o0+X+GPouhj0vdEPp+8OLzyOrtkmSiSbWTB7CSKbUFsb0Ms7GDPyNz7txAYNhLFlZV9jrDt6E6Y0LfDvXv7HqqBd7boFWe2k23qIwGr0orFvgiLsM4jU85fQnIFxXCOMelGmQ65jj8Mcch0iT6i5g6b8mPCpHNA/i+LbnCdjB9RrEqr0G3PxnalOzp6t23r1z6nuRBFRSNRVjMSxVVVQFlZb7/ubQbWresTwqLCth+trb3VJ+xgxDwRe1lpKXpQmKKhZWTtbBqmnOuERB2KYYMw5UaeD5gkRvzCdInMMOV7ZHIeMeAtl9heBziLYvuvOPGFF+SBdvJEdH2Tw5WjrBsoPtgOLFvWXwxPmACcfHJfoDt3AhMn9g7Kk2fikOeehloIhw1d4VR6EGw5NDOPkoQFxXDECWMgXZSFplfYRyQoTDoX0nWJAb0otpfJwtgNsUSbuEyeTKO0FChHO9B6EHjqKeB//xd79u3DPwHsBzD00CGMXL8eg959FzjxxL7UCFEEizWNjzxsV9hEIewFE37wEZIvUAyHAAfSxQPT3FjT4gHy3x22MUkQA2qXGPAvilWOsOwwi8JYV8XCXm5XUrMroBWjqzflYdu23lnoXnwRH+7bh+0Auo88DgMYAGDEhx+ipKiot9rEkbSKlIoUYrWKsrK0hXAupmKOiits0neMkEygGM4D6A5nh7AFVVwEcVww7Tuj+jxV6bVenWJRGAN6d1h2gu1tCToVyZJpra29j3ff7RXEjY3YA6AYQCF6b2DFAEoAlBQU9Ilee/DdsGF9r0Ux7BFT84X5PSQkWCiGQ8K0G2M+EkQfh/2jIQ6COC7uMGDe914niAF9PrEqT1hsD7jnH4v7sZ3g8rIjs8a1dvfVCt67t88Vfvdd4J13MAjAAfSK4MMABgMoA3oDGTasV/jKD7Fu8ZEUCbkMcS4cXy/QFVZj/ycgyO0RYmPI15+IpHMTD+Mma9qNXYUJMZoQg+lQEIeHro9UqRM2KrdYdJV1sx3LrrBt1Baip88Ftkujtbb2DoSzxfA776DNslAEYJCwzcHoFcZJISwKYtsZPvLoKSpOpkfoZs2zUbnC2RbMXs6LbJzPJp2PhISBWXcJklOCuABmW2iYIGTCvlFkY/+Z9GvY/ZEP9KDQiHPbpjAZUf/PVhx3ZiMZrSkD35weti4dNqzXCS5GFwo72lNTIuyJNN55p88RPlI5IjFwIIYDycfII38HjB7dO3iupqa3gkRVVe9j2LCUAHVCmJAgqampQUFBQcrj9ttv9/z+a6+9FgUFBfjOd77Tb9369evx6U9/GkOGDMGwYcNw3nnn4cCBAwFGH0/oDIeIaQ5RuuTLcWQTpktkNx4nTHSHbUz87jj1l2pSDa95taKYLkRPX302W53aD/m1bTPX1ABFRRi6d29fLTY7L7iyslcMn3hi7/Njj+3LExaqR5gshMNyhdMhjDiiVlrtzjvvxIIFC5Kvy3T/LpF46qmn8MYbb6C6urrfuvXr12PmzJlYunQpHnjgARQXF+MPf/gDCgvNOC+iDMVwHhHGQLpM9u1lm6ZggqAyTYCa0CdeMTlW0+oRA+7TocvpAiqBKbdJHp9YdkIlgO11QJ/gBXoFblFRr+N78GCqELYfNTW9f6uqUsUwUvW1Kt0hzBSJMIWwSeddPjF06FBUVVX5es8HH3yAhQsX4v/+7/8wa9asfutvuukm3HjjjSku80knnZRxrIRpEqGju8DxAhUcQd1EMv1Mgogj31MmTBWsuaAvUcGcPvD6+UolfJPCMSX9QhS+4nRz9qOjI1UQ2/kUogNcU9P7OPvsvsfkyX2Pmpo+d3jYMHShGO0dhfiotTC5eZIZJp2fJnP33XfjqKOOwsSJE/Ff//Vf6Orqcmzf09OD2tpa3HLLLTjllFP6rW9ubsYbb7yBkSNHYurUqRg1ahSmTZuGdevWZesQYgWd4TwjzH+7BulwmeSA5mMcccRkd1jGJLc44xjkMhMq5NnhxOX2XM32++12KrFsD5qT0iLcRLDprnA+7tsU2tvbU16XlJSgpKQko21++ctfxplnnomKigps3LgRS5cuxXvvvYeHH35Y+567774bRUVFuPHGG5Xr//73vwMAli1bhnvvvRcTJ07Ez3/+c1xwwQVobGykQ5whFMMGk6ubt2kiwaRYZEzoq3xPl8jmDwYTPj8/iLGaJlwy/pzEIsN2DrD91xbBtmsM9OU32OtUori0FD1FxSkucKZusAlC2JRzNsw4spUzPHr06JTld9xxB5YtW9av/bJly/Ctb33LcZtvvvkmJk+ejJtuuim57LTTTkNFRQUuu+yypFsss2nTJnz3u9/F5s2bUVBQoI63pzfia6+9Fv/+7/8OADjjjDPw0ksv4ac//Snq6uocYyPOUAwbQNA3/yi7j9m82AbltoVdeziIGFSYJIizSZRiFcmGMM60H1Tv7xeb2/R2Yl6FaoSeOOpNnlpZmF0uOb1yhzc3WA4PMHeSjWyQ63uEqfekHTt2oLy8PPla5wovXLgQV1xxheO2ampqlMvPPvtsAMC7776rFMOvvfYampubcdxxxyWXHT58GDfffDO+853vYNu2bTj66KMBAOPHj09577hx47B9+3bHuIg7FMOGE8UbdzqiKmrHmCkUxNmLIw6Y/H3RinY3UTxsWKqC1Y3KE1MqjqRDqMbg6VDNgAeYmx5hymdtShxBU15eniKGdVRWVqKysjKtfdTX1wNAUtDK1NbW4sILL0xZNmPGDNTW1iZd4JqaGlRXV2Pr1q0p7f7yl7/gM5/5TFpxkT4ohg0h7Jt/mKI71/s1RYiaEoeMKYI4m0QlzqijdI51ClQ1bZ1qijhJBPshakI4X/YfxP4OIVjBcijAbYmsX78eGzZswPnnn49EIoE333wTN910E+bMmZPi/J588smoq6vDJZdcgqOOOqqfYzxw4EBUVVVh7NixAICCggLccsstuOOOO3D66adj4sSJePTRR/HOO+/gN7/5TZaOJj5QDOcpYYtrr4QpwE0UolGOw8bkcn0ipvVbXEhxjkXFWVamr3smvdceTyfi5grrhLBb26Dxc06bMtscvyfeKSkpwRNPPIFvfetb6OzsxPHHH48FCxbg1ltvTWm3detWtLW1+dr24sWLcfDgQdx000346KOPcPrpp2PNmjU44YQTgjyEWFJgWZYVdhD5Snt7OxKJBFpa2jz9GwbQX6jSuRiFnargtn8TLrD5VC4t15+fG6aUtHPDhPMw3/EqUp3aiuPo/OxH3n4UplwGzKorHET5xfb2diQqKtDW5v1+mHxfIoF7kDoNd6YcAHAr4Dsekp/QGc5j/DprUXXKxGP0G78JM8MF5YBGqaqDSUT1vDcZP+kLXiqvydtLZ3Cc/NpkIWzS/vndIHGAYpiEQjYusGFdtE0SxEETh/xhIFqx5iM6EQzo3V4/brP82nQhbEp6hElYRx5Bbo8QG4phwwi7zFouKgLkkxC2MUUQc0Bd+kQp1nzBSQQD3gSvWHXNqR2gL51mkhA2iUy/D1E9bhI/KIYjQlRv1LKQMvEYTJrtKwhMFMT2NnK9b79kGivxlsKQiQiWUQlZ1bKoCGFTXGEKYRInKIYNRHfzT1fkhJ07bO8/WwO8TKlta4o7HFQsMib0jxeC+HFDURw9dKLWaSKNOAjhfMFCsDPQMU2CiFAMR4woO8RBYqpYoSB2Jps/6OTtepodzYWoft/CxC2fF+ibedlpGza6bbkJ2TBFMGCOM0pXmBB3KIYNJewBVaaLgGzFFna/Bx1HPgniIJD36+U4TP3hZTJeBTHgnjLhR7i6TaecCxEMmFO1wYRrGSFRgGI4gqQjJkwReVEgymIvVwTRR/Z2wkQ7dbACU2KOCl4EMdB/Ejo/uIlfOZ5cEHUhTFeYxBGKYYMJW8DGQdRlC9PSJeztBYmp1S/SxatrTFHsHbnigxt+xK2f/ecKU4RwupgUi0wPgs0ZpmQnIuae+SRwTL7Q5SNBCFnTP7OgZuBzE55h/CjsORKZDqe4SSpFRX2PXO4vl5gkhMM6L/l9IFHF7Dst0V4sc11qKm64CSGvmCSIs/VZBhmf/LCXe31/NnA7Popif2RTqIYhggGzrpNMjyDEP0yTiBlhp15EDVP6y+QBdYA5/ZQtvBwf0yf8oRKtmdYXDoOwxGeQmBSLju4jjyC3R4iNIZcT4kS+1R2OGvk2oC6fBXE2+9rrYDuK4vQxReB6xTQhzPQIQtKDV2tCckBQ6RJRSJmIgwj0coxMn8hv8kUIMz2CEDrDkYHucLiY4HoGTbZd1DBdqlzNdMc6xfEjk/M634RwLmE1CZJNovNNIKGTb2LQL6Y4KEHewLL5mUbpRpsufo6RTnH0MVEIp4spA4QJMQGzvp0kLXLpCsT94kdB7I+wBEAuz1O/x0hRHE1MFcLMEyYkcyiGI4RpzgJJDwri3GCyIAYoiqNEvglh3ksISYU5w3lCrnKHM9lXvmDSzGtB5ubmohJDPou/dI+ROcXmYqoIBsIVwuFMgsOcYZI9ePWNGNkqiWUaposmk/osKg4xkPt+M3HmOh3yZCMkXCiECYkP/GaQtOAN25z8YYCC2ImwztVMysxRFIdHpn2f70I47P0Tkg2YJhFBgi6z5rRNJ+KeLhEEQfZhVFImgNynTYR5rmbyucjv4/cte2R6Lubiswn7B1KY+2eaBMkmvLJGFN2FN+yLZVBE5aZvWv5dlBxiILefc7g38mAmI2EqRfAE0Z+mC+Gwr6dh758QN3iGkiQstZYeFMSZERdBDAQ/iyCFcfoE1XdxEcJMjyD5DM/SHJDNqW9NgDdjcz4LGwpiPSacrz2ClA2CwpQtUiA7EaQIjosQJiTfYc5wjshWzmLQ097m47TDuSLTvgv6HIlSDjGQ23PPpHz3bB23apumHHOuCbp/c9WPpghhE1zh7iOPILdHiE08r4x5Thj5bxTQvZhUYQIw44boh7g5xDa5FFdxcY6zcay5coMBCmFCcgnP1hySy3SJMG52cbjB5gIK4mgIjqAJOnXCjXxMq8jW8eTycwEohAnJNTxjc0xUBHEm9VHjjmkD6oDgb5D55BKbeM6GISZUeccm9o1NrmI1ri52t/4f/CYIYUKiCHOGiRbmD6dPEH1ncg5xrshVzCblENvkuhazDt3+o+KUpotxItimSH3bNkUIm/Y9IsQLFMMhYF9ogr5oqIRDGDd5E4VFGOS7IM7V5xxnQQykXifCFsYiXmLx258mHF9YrnwmUAgTkhkUw8SRdIVItgR/HDFdENvbzCa5cklNFcQ2prjFXolKnEB41yqT+shkIdxp+PZItKEYDpFs3HhVLlKm+8lEPJkuLqKCyYIYyC+XOArnrKlucdQI83P29Ll1d2vTIgBzzIZsxlFcXIyqqirc39QU+LarqqpQXFwc+HZJ9KAYDplc3XgpiMMhSCfPdEGcKyiIU4maW2wCxotgwHGgHBD8MZhaOaK0tBTvvfceurq6At92cXExSktLA98uiR4UwwYQFUFM0icoAWeyIM5lagwFcX8oit2JxOdpu8E5dIRNP2dKS0spWklWicCVgaRLNlMw/GJ6maZcENTnYXLZNSB3N9Zc1H6N4nmb63rFpmNKf3g6l1zcYMCcMokm9CkhQcEz2QM/+MEPMGbMGJSWlmLSpEl47bXXAt9Hrm64Jo1ajiMUxMGTq/+qRBFThGCuMe24gzp/TKkaQUi+YcaVwmCeeOIJLF68GF/72tdQX1+Pf/mXf8FnPvMZbN++PfB9ZePiFPRkHLpteoUX4OCIgiDOpUucbaLoEouYJhCDxtTj8+QG2w/A+DrCAE0Rkn8UWJZlhR2EyZx11lk488wz8dBDDyWXjRs3DnPnzkVdXZ3je9vb25FIJNDW0oLy8nLP+8zGhUa++AWxD5PL8JhOkKIqCq5urj7vXIjVfDt3oyrwo/A5OPatKiUij4Vwe3s7KioSaGtr83U/JCQXcACdA11dXdi0aRNuv/32lOXTp0/H66+/3q99Z2cnOjv7qhe2tbUB6L0I+CEXYjiI/eSDuyAOksr1gCkK4uxBUZwZJgrkKPV3WrnBCiGcq3uBHzIRwwBA/42YCMWwA3v37sXhw4cxatSolOWjRo1Ck6LmYV1dHb71rW/1Wz76+OOzFiMhhBASFfbt24dEIhF2GISkQDHsgYKCgpTXlmX1WwYAS5cuxZIlS5KvW1tbcfzxx2P79u388ueY9vZ2jB49Gjt27OC/5HII+z0c2O/hwH73jmVZ2LdvH6qrq8MOhZB+UAw7UFlZiQEDBvRzgZubm/u5xQBQUlKCkpKSfssTiQQvlCFRXl7Ovg8B9ns4sN/Dgf3uDZpCxFSik4QVAsXFxZg0aRLWrFmTsnzNmjWYOnVqSFERQgghhJCgoDPswpIlS1BbW4vJkydjypQp+PGPf4zt27fjuuuuCzs0QgghhBCSIRTDLsybNw//+Mc/cOedd2L37t2YMGECnnvuORzvYVBcSUkJ7rjjDmXqBMku7PtwYL+HA/s9HNjvhOQHrDNMCCGEEEJiC3OGCSGEEEJIbKEYJoQQQgghsYVimBBCCCGExBaKYUIIIYQQElsohrPID37wA4wZMwalpaWYNGkSXnvttbBDMoZXX30VF198Maqrq1FQUICnnnoqZb1lWVi2bBmqq6sxaNAgnHfeefjTn/6U0qazsxOLFi1CZWUlhgwZgjlz5mDnzp0pbVpaWlBbW4tEIoFEIoHa2lq0tramtNm+fTsuvvhiDBkyBJWVlbjxxhvR1dWV0mbLli2YNm0aBg0ahGOOOQZ33nknojb2tK6uDp/4xCcwdOhQjBw5EnPnzsXWrVtT2rDfg+ehhx7CaaedlpyYYcqUKXj++eeT69nnuaGurg4FBQVYvHhxchn7nhACALBIVlixYoU1cOBA63/+53+st99+2/ryl79sDRkyxHr//ffDDs0InnvuOetrX/uatXLlSguAtWrVqpT1y5cvt4YOHWqtXLnS2rJlizVv3jzr6KOPttrb25NtrrvuOuuYY46x1qxZY23evNk6//zzrdNPP93q7u5Otpk5c6Y1YcIE6/XXX7def/11a8KECdbs2bOT67u7u60JEyZY559/vrV582ZrzZo1VnV1tbVw4cJkm7a2NmvUqFHWFVdcYW3ZssVauXKlNXToUOvee+/NXgdlgRkzZlg/+9nPrMbGRquhocGaNWuWddxxx1kdHR3JNuz34HnmmWesZ5991tq6dau1detW66tf/ao1cOBAq7Gx0bIs9nku2Lhxo1VTU2Oddtpp1pe//OXkcvY9IcSyLItiOEt88pOftK677rqUZSeffLJ1++23hxSRuchiuKenx6qqqrKWL1+eXHbw4EErkUhYP/zhDy3LsqzW1lZr4MCB1ooVK5JtPvjgA6uwsNB64YUXLMuyrLffftsCYG3YsCHZZv369RYA65133rEsq1eUFxYWWh988EGyzS9/+UurpKTEamtrsyzLsn7wgx9YiUTCOnjwYLJNXV2dVV1dbfX09ATYE7mlubnZAmCtXbvWsiz2ey6pqKiwHn74YfZ5Dti3b5910kknWWvWrLGmTZuWFMPse0KIDdMkskBXVxc2bdqE6dOnpyyfPn06Xn/99ZCiig7vvfcempqaUvqvpKQE06ZNS/bfpk2bcOjQoZQ21dXVmDBhQrLN+vXrkUgkcNZZZyXbnH322UgkEiltJkyYgOrq6mSbGTNmoLOzE5s2bUq2mTZtWkph/RkzZmDXrl3Ytm1b8B2QI9ra2gAAw4cPB8B+zwWHDx/GihUrsH//fkyZMoV9ngNuuOEGzJo1CxdeeGHKcvY9IcSGYjgL7N27F4cPH8aoUaNSlo8aNQpNTU0hRRUd7D5y6r+mpiYUFxejoqLCsc3IkSP7bX/kyJEpbeT9VFRUoLi42LGN/Tqqn6dlWViyZAnOOeccTJgwAQD7PZts2bIFZWVlKCkpwXXXXYdVq1Zh/Pjx7PMss2LFCmzevBl1dXX91rHvCSE2nI45ixQUFKS8tiyr3zKiJ53+k9uo2gfRxjoyqCWqn+fChQvxxz/+EevWreu3jv0ePGPHjkVDQwNaW1uxcuVKXHXVVVi7dm1yPfs8eHbs2IEvf/nLWL16NUpLS7Xt2PeEEDrDWaCyshIDBgzo92u+ubm53y9/0p+qqioA/d0Qsf+qqqrQ1dWFlpYWxzZ79uzpt/0PP/wwpY28n5aWFhw6dMixTXNzM4D+rlIUWLRoEZ555hm8/PLLOPbYY5PL2e/Zo7i4GCeeeCImT56Muro6nH766fjud7/LPs8imzZtQnNzMyZNmoSioiIUFRVh7dq1+N73voeioiKt68q+JyR+UAxngeLiYkyaNAlr1qxJWb5mzRpMnTo1pKiiw5gxY1BVVZXSf11dXVi7dm2y/yZNmoSBAwemtNm9ezcaGxuTbaZMmYK2tjZs3Lgx2eaNN95AW1tbSpvGxkbs3r072Wb16tUoKSnBpEmTkm1effXVlDJIq1evRnV1NWpqaoLvgCxhWRYWLlyIJ598Er///e8xZsyYlPXs99xhWRY6OzvZ51nkggsuwJYtW9DQ0JB8TJ48GV/4whfQ0NCAj33sY+x7QkgvuRurFy/s0mo/+clPrLfffttavHixNWTIEGvbtm1hh2YE+/bts+rr6636+noLgHXfffdZ9fX1ydJzy5cvtxKJhPXkk09aW7ZssT7/+c8rSx4de+yx1osvvmhtIgGd4AAAB6lJREFU3rzZ+vSnP60seXTaaadZ69evt9avX2+deuqpypJHF1xwgbV582brxRdftI499tiUkketra3WqFGjrM9//vPWli1brCeffNIqLy+PXMmj//f//p+VSCSsV155xdq9e3fy8c9//jPZhv0ePEuXLrVeffVV67333rP++Mc/Wl/96letwsJCa/Xq1ZZlsc9ziVhNwrLY94SQXiiGs8j3v/996/jjj7eKi4utM888M1nCiljWyy+/bAHo97jqqqssy+ote3THHXdYVVVVVklJiXXuuedaW7ZsSdnGgQMHrIULF1rDhw+3Bg0aZM2ePdvavn17Spt//OMf1he+8AVr6NCh1tChQ60vfOELVktLS0qb999/35o1a5Y1aNAga/jw4dbChQtTyhtZlmX98Y9/tP7lX/7FKikpsaqqqqxly5ZFrtyRqr8BWD/72c+SbdjvwfOlL30peR0YMWKEdcEFFySFsGWxz3OJLIbZ94QQy7KsAsvi9DaEEEIIISSeMGeYEEIIIYTEFophQgghhBASWyiGCSGEEEJIbKEYJoQQQgghsYVimBBCCCGExBaKYUIIIYQQElsohgkhhBBCSGyhGCaEEEIIIbGFYpgQknfU1NSgoKAABQUFaG1tzWhb5513XnJbDQ0NgcRHCCHEHCiGCSFGcvjwYUydOhWf+9znUpa3tbVh9OjR+PrXv+74/jvvvBO7d+9GIpHIKI4nn3wSGzduzGgbhBBCzIVimBBiJAMGDMCjjz6KF154AY8//nhy+aJFizB8+HB885vfdHz/0KFDUVVVhYKCgoziGD58OEaMGJHRNgghhJgLxTAhxFhOOukk1NXVYdGiRdi1axeefvpprFixAo8++iiKi4t9beuRRx7BsGHD8Lvf/Q5jx47F4MGDcdlll2H//v149NFHUVNTg4qKCixatAiHDx/O0hERQggxjaKwAyCEECcWLVqEVatW4corr8SWLVvwzW9+ExMnTkxrW//85z/xve99DytWrMC+fftw6aWX4tJLL8WwYcPw3HPP4e9//zs+97nP4ZxzzsG8efOCPRBCCCFGQjFMCDGagoICPPTQQxg3bhxOPfVU3H777Wlv69ChQ3jooYdwwgknAAAuu+wyPPbYY9izZw/Kysowfvx4nH/++Xj55ZcphgkhJCYwTYIQYjw//elPMXjwYLz33nvYuXNn2tsZPHhwUggDwKhRo1BTU4OysrKUZc3NzRnFSwghJDpQDBNCjGb9+vW4//778fTTT2PKlCm45pprYFlWWtsaOHBgyuuCggLlsp6enrTjJYQQEi0ohgkhxnLgwAFcddVVuPbaa3HhhRfi4Ycfxptvvokf/ehHYYdGCCEkT6AYJoQYy+23346enh7cfffdAIDjjjsO//3f/41bbrkF27ZtCzc4QggheQHFMCHESNauXYvvf//7eOSRRzBkyJDk8gULFmDq1KkZpUsQQgghNgUW7yaEkDyjpqYGixcvxuLFiwPZ3rZt2zBmzBjU19enXdaNEEKImdAZJoTkJbfddhvKysrQ1taW0XY+85nP4JRTTgkoKkIIIaZBZ5gQkne8//77OHToEADgYx/7GAoL0//d/8EHH+DAgQMAenOW/c58RwghxGwohgkhhBBCSGxhmgQhhBBCCIktFMOEEEIIISS2UAwTQgghhJDYQjFMCCGEEEJiC8UwIYQQQgiJLRTDhBBCCCEktlAME0IIIYSQ2EIxTAghhBBCYgvFMCGEEEIIiS0Uw4QQQgghJLZQDBNCCCGEkNhCMUwIIYQQQmILxTAhhBBCCIktFMOEEEIIISS2UAwTQgghhJDYQjFMCCGEEEJiC8UwIYQQQgiJLRTDhBBCCCEktlAME0IIIYSQ2EIxTAghhBBCYgvFMCGEEEIIiS0Uw4QQQgghJLZQDBNCCCGEkNhCMUwIIYQQQmILxTAhhBBCCIktFMOEEEIIISS2UAwTQgghhJDYQjFMCCGEEEJiC8UwIYQQQgiJLRTDhBBCCCEktlAME0IIIYSQ2EIxTAghhBBCYgvFMCGEEEIIiS0Uw4QQQgghJLZQDBNCCCGEkNhCMUwIIYQQQmILxTAhhBBCCIktFMOEEEIIISS2UAwTQgghhJDYQjFMCCGEEEJiC8UwIYQQQgiJLRTDhBBCCCEktlAME0IIIYSQ2EIxTAghhBBCYgvFMCGEEEIIiS0Uw4QQQgghJLZQDBNCCCGEkNhCMUwIIYQQQmILxTAhhBBCCIktFMOEEEIIISS2UAwTQgghhJDYQjFMCCGEEEJiC8UwIYQQQgiJLRTDhBBCCCEktlAME0IIIYSQ2EIxTAghhBBCYgvFMCGEEEIIiS0Uw4QQQgghJLZQDBNCCCGEkNhCMUwIIYQQQmILxTAhhBBCCIktFMOEEEIIISS2UAwTQgghhJDYQjFMCCGEEEJiC8UwIYQQQgiJLRTDhBBCCCEktlAME0IIIYSQ2EIxTAghhBBCYgvFMCGEEEIIiS0Uw4QQQgghJLZQDBNCCCGEkNhCMUwIIYQQQmILxTAhhBBCCIktFMOEEEIIISS2UAwTQgghhJDYQjFMCCGEEEJiC8UwIYQQQgiJLRTDhBBCCCEktlAME0IIIYSQ2PL/AfxHFBDdtuuZAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] @@ -251,29 +288,74 @@ } ], "source": [ - "# Because this docs page was made in a Jupyter Notebook, we need to use IPython to open the resulting .png\n", - "from IPython.display import Image\n", - "Image(filename='i02_gradient_vs_kernel.png') " + "! seisflows plot2d GRADIENT_01 vs_kernel --savefig g_01_vs.png\n", + "Image(filename='g_01_vs.png') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally we see the updated model, which is the sum of the initial model, and a scaled gradient." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Figure(707.107x707.107)\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADlQUlEQVR4nOzdd3RU1doG8GdqekIgkhC6BulNakAFRJp0uYCAESQiioAoXlS4F7BQrmBBUFRqBCEWBFEgAgpYqCIoTVAEgQ9CDWmkzcz+/pick3OmJ0zqPL+1ZknO7DlzZhLhyZ53v1sjhBAgIiIiIvJB2tK+ACIiIiKi0sIwTEREREQ+i2GYiIiIiHwWwzARERER+SyGYSIiIiLyWQzDREREROSzGIaJiIiIyGcxDBMRERGRz2IYJiIiIiKfxTBMRERERD6LYZiIiIiIfBbDMBERERH5LIZhIiIiIvJZDMNERERE5LMYhomIiIjIZzEMExEREZHPYhgmIiIiIp/FMExEREREPothmIiIiIh8FsMwEREREfkshmEiIiIi8lkMw0RERETksxiGiYiIiMhnMQwTERERkc9iGCYiIiIin8UwTEREREQ+i2GYiIiIiHwWwzARERER+SyGYSIiIiLyWQzDREREROSzGIaJiIiIyGcxDBMRERGRz2IYJiIiIiKfxTBMRERERD6LYZiIiIiIfBbDMBERERH5LIZhIiIiIvJZDMNERERE5LMYhomIiIjIZzEMExEREZHPYhgmIiIiIp/FMExEREREPothmIiIiIh8FsMwEREREfkshmEiIiIi8lkMw0RERETksxiGiYiIiMhnMQwTERERkc9iGCYiIiIin8UwTEREREQ+i2GYiIiIiHwWwzARERER+SyGYSIiIiLyWQzDREREROSzGIaJiIiIyGcxDBMRERGRz2IYJiIiIiKfxTBMRERERD6LYZiIiIiIfBbDMBERERH5LIZhIiIiIvJZDMNERERE5LMYhomIiIjIZzEMExEREZHPYhgmIiIiIp/FMExEREREPothmIiIiIh8FsMwEREREfkshmEiIiIi8lkMw0RERETksxiGiYiIiMhnMQwTERERkc9iGCYiIiIin8UwTD5j4MCBCAgIwM2bN52OGTFiBAwGAy5fvlxyF+bGqFGjUKdOndK+DKeeeOIJNGnSBJUqVUJAQADuvvtu/Pvf/8a1a9dcPm7p0qXQaDQIDg62u+/dd99F+/btERERAT8/P9SqVQuPPPIIjh07Zjf2nXfewcMPP4y6detCo9Ggc+fOHl/72bNnodFoHN4SExPtrnfAgAGoU6cOAgICEBMTg6effhqXLl2yO29aWhqmTZuGu+++G4GBgahevToGDx7s8PoPHTqEAQMGIDo6GoGBgWjQoAFeffVV3Lp1y27sr7/+igcffBDBwcGoVKkSHn74Yfz9999245KTkzF+/HjceeedCAgIQO3atREfH49z586pxq1cudLp609OTlaNzc3NxfTp01G3bl0YjUbUrl0bL7/8MrKyslTjzp8/j4EDB+LOO+9EUFAQwsLC0LJlSyxatAgmk0k1tk6dOk6f39/f36OxTz31lN3rJyIqDH1pXwBRSYmPj8eGDRuwZs0ajBs3zu7+1NRUrF+/Hn369EFkZGQpXKFj//3vf/Hss8+W9mU4lZmZiSeffBIxMTHw9/fHL7/8glmzZmHz5s04dOgQjEaj3WP+7//+Dy+88AKio6ORmppqd//169fRq1cvNG/eHOHh4fj7778xd+5ctGvXDgcPHkT9+vXlsR988AGCgoLwwAMP4Ouvvy7Sa5gwYQKGDx+uOlavXj3V1zNmzECXLl0we/ZsVK9eHSdPnsRrr72Gr776CocOHVL9zPTt2xe//PILZs6cidatW+PChQt49dVXERsbiyNHjqB27doAgOPHj6NDhw6oX78+3nnnHUREROCHH37Aq6++ioMHD+Krr76Sz/nHH3+gc+fOaNGiBT777DNkZ2dj+vTpuO+++3D48GHccccdAICcnBzcf//9SElJwSuvvIJGjRrh5MmTmDFjBr799lucOHECISEhqte2YsUKNGjQQHWsSpUqqq+HDRuGzZs3Y/r06WjTpg327NmD119/HceOHcPGjRvlcZmZmQgNDcV///tf1KpVC7m5udi8eTMmTJiAw4cPY+nSpfLY9evXIycnR/U8586dw9ChQzFw4EC771PHjh0xf/581bGy9P8qEZVTgshHmEwmER0dLVq1auXw/sWLFwsA4uuvvy7hK6t43n//fQFAfPfddw7v79Onj+jbt68YOXKkCAoK8uicx48fFwDEf//7X9Vxs9ks/7lx48aiU6dOHl/nmTNnBAAxb948t2MvX75sd+zAgQMCgHjttdfkY3/++acAIP7zn/+oxu7evVsAEG+99ZZ8bNq0aQKA+Ouvv1Rjn3zySQFA3LhxQz42ePBgERERIVJTU+VjZ8+eFQaDQUyZMkU+tm3bNgFALF26VHXONWvWCADiyy+/lI+tWLFCABAHDhxw+dr37NkjAIg333xTdXz27NkCgNi6davLxwshxJAhQ4RerxfZ2dkux82cOVMAENu3b1cdr127tujdu7fb5yEiKiyWSZDP0Ol0GDlyJA4ePIgjR47Y3b9ixQpUq1YNvXr1ko8tXrwYzZs3R3BwMEJCQtCgQQNMnTq1UM+r0Wgwfvx4rFixAvXr10dAQABat26NvXv3QgiBefPmoW7duggODsYDDzyAv/76S/V4R2US0jlXrVqFhg0bIjAwEM2bN8c333xTqGsrLtIspV5v/+HT6tWrsWvXLrz//vteOadWWzJ/jVWtWtXuWKtWraDT6XD+/Hn5mMFgAACEhYWpxlaqVAkAVB//uxqr1WrlWXWTyYRvvvkGgwYNQmhoqDyudu3a6NKlC9avX1+k5/fUzz//DAB46KGHVMf79OkDAFi3bp3bc9xxxx3QarXQ6XROxwghsGLFCtx555144IEHCn2dRERFUtppnKgk/fnnn0Kj0YhJkyapjh87dkwAEC+99JJ8bO3atQKAmDBhgti6davYvn27+OCDD8TEiRML9ZwARO3atUWHDh3El19+KdavXy/uvvtuUblyZfHcc8+J/v37i2+++UZ88sknIjIyUjRr1kxYLBb58SNHjhS1a9e2O2edOnVE27ZtxWeffSY2b94sOnfuLPR6vTh9+rTba8rLy/PoprwOT86ZkZEhfvrpJ9GgQQNx7733CpPJpBpz+fJlUaVKFfHee+/Jr83VzLDJZBLZ2dnixIkTon///qJq1ari3LlzTscXdWa4SpUqwmAwiICAANGxY0fx1VdfefT4HTt2CABiwYIFquP9+/cX0dHR4vvvvxfp6enixIkT4sEHHxS1atVSzfaeOXNGVKpUSfzrX/8Sp0+fFmlpaeLrr78WYWFhYsKECfK4P/74QwCQ3zelF154QWg0GpGVlSWEsH4fWrVqJRo3biz2798v0tPTxcGDB0WLFi3EPffcI3Jzc+XHSjPDkZGRQqvVivDwcDFw4EBx5MgR1XNIM8B///236vjJkycFABEbG2t3XRaLReTl5YkbN26IxMREERQUJF5++WWX7+fWrVsFAPH666/b3Ve7dm0REhIigoODhV6vFw0bNhTz58+3+xkTwvr/R2F+DojItzEMk8/p1KmTiIiIUIWCyZMnCwDi1KlT8rHx48eLSpUq3fbzARBRUVEiIyNDPrZhwwYBQLRo0UIVON955x0BQPz+++/yMWdhODIyUqSlpcnHkpOThVarFXPmzPHomjy5rVixwqPXKH2MLt0eeugh1bVJBg0aJDp06CC/Zndh2M/PTz7n3XffLY4fP+7yOgobhi9evCjGjBkjPvvsM/Hjjz+KTz75RLRv314AEEuWLHH52LS0NNGwYUNRs2ZNkZ6errovNzdXjBkzRvWeNGvWTJw5c8buPCdOnBANGjRQjZ04caLq5+Lnn38WAMTatWvtHi8F1YsXL6qurW/fvqpzdu7cWVy/fl312C1btohp06aJr7/+WuzatUssWrRI1KhRQwQFBYnDhw/L46Sf11WrVqkev2zZMvl7Y2vOnDnyc2s0GjFt2jSX76cQQgwdOlTodDpx4cIFu/vGjRsnli9fLnbt2iU2bNggRowYIQCIRx991G6sTqcTDzzwgNvnIyISgmGYfNDHH38sAIgvvvhCCGGdSYuMjBT33Xefw3GPPPKI2LBhg7h69WqRng+AGDZsmOqYNKNmO1P27bff2tUtOwvDjzzyiN1zRUVFiaeeesrtNR04cMCj27Vr1zx6jRkZGeLAgQNi165dYsGCBaJatWqiXbt2IjMzUx7zxRdfCKPRKI4dO6Z6ba7C8MGDB8WePXvE6tWrRatWrURkZKQ4evSo0/GFDcOO5ObmipYtW4oqVaqIvLw8h2OysrLEgw8+KAIDA8XevXvt7o+PjxeVK1cWb7/9tti1a5f49NNPRevWrUXdunXF2bNn5XFnzpwRMTExomPHjuKLL74Qu3btEm+88YYIDQ0Vo0ePlsdJYTgxMdHuuaQwfOnSJfn6e/XqJWrWrCmWLFkifvjhB5GQkCDq1asn7rnnHnHz5k2Xr//MmTMiODhY9OvXTz6Wk5MjYmJiRHR0tNi6datISUkRW7ZsEZGRkUKn04kGDRrYnefSpUviwIED4ttvvxUvvviiMBqNYvz48U6f9/r168LPz69QdcHjx48XAMSvv/7q8WOIiGwxDJPPuXXrlggLC5P/0f3qq68EALFy5Uq7scuXLxexsbFCp9MJjUYj2rZt69FiISUA4plnnlEdc7ZwS/rY/fPPP5ePOQvDtucUwvpR8siRI91eU3GUSSjt3btXtVgsPT1dREZGismTJ4uUlBT5NmzYMBEUFCRSUlJUM+eOpKWliapVq6pCmi1vhGEhhJg7d64A4HAmOjs7W/Ts2VP4+/vbLfISwjrbavs9FEKIlJQUERYWJkaNGiUfGzp0qKhatarda1++fLkAIHbu3CmEKFyZhLQQ1HZR3OnTpwUAMXPmTLevv2fPnqJq1aqqY3/++ac8aw5ABAUFiQULFoiIiAjRtWtXt+eU3lNnwXXBggUCgFi/fr3bc0mkn7P333/f48cQEdniAjryOQEBARg2bBiSkpJw6dIlLF++HCEhIRg8eLDd2Mcffxy7d+9GamoqNm3aBCEE+vTpg3/++acUrtx7DAaDR7eEhIQinb9169bQarU4deoUAODatWu4fPky3nzzTYSHh8u3tWvXIjMzE+Hh4RgxYoTLc0oLGKVzFichBAD7xXk5OTkYMGAAduzYgQ0bNqBr1652jz18+DAAoE2bNqrjlSpVQkxMDI4ePaoa26hRIwQFBanGSo+Vxt51110ICAhwuPDzyJEjcls76Zw6nQ733HOPatydd96JKlWqqJ7f1eu3fe0xMTHYs2cPLly4gN9//x1XrlzB4MGDce3aNdx///1uz9m2bVsAcPr9W7ZsGSIjI+VFeZ5w9n0iIioM9hkmnxQfH48PPvgA8+bNw+bNmzFq1CgEBgY6HR8UFIRevXohNzcXAwYMwLFjx+ReseXRgQMHPBpXt27dIp1/165dsFgsiImJAQBERUVhx44dduPmzp2LXbt2YcuWLYiIiHB5zmvXruHIkSPo2LFjka7JU3l5efj0008REREhXz9gDcIDBw7E999/jy+//BI9evRw+Pjo6GgAwN69e1U/I9evX8epU6dUATo6OhpHjx5FRkaGavORPXv2AABq1KgBwNpBo2/fvvjyyy/xxhtvyH2Cz507hx07duC5555TndNsNuPAgQNo166dfPzUqVO4fv26fE5nzpw5g59//hkPPvigw/urV6+O6tWrAwD+85//ICgoCPHx8S7PCUD+/ivfU8kvv/yC33//HVOmTHHYgcSZjz/+GADQvn17jx9DRGSLYZh8UuvWrdGsWTO88847EEI4/Md8zJgxCAgIQMeOHVGtWjUkJydjzpw5CAsLs5v1K29at27tlfN88803WLJkCfr164fatWsjLy8Pv/zyC9555x3ExMTgiSeeAGBt5+VoZ7iVK1dCp9Op7ktNTUW3bt0wfPhw1KtXDwEBATh16hQWLFiAnJwczJgxQ3WOX375BWfPngVg3flNCIEvvvgCgHWGVQqkH3/8MUaPHo3ly5fjscceAwA8//zzyMvLQ8eOHREVFYXz589j4cKFOHz4MFasWKFqA/avf/0LW7ZswbRp01ClShXs3btXvi80NBSNGjUCADz88MOYPn06nn76aVy4cAH33HMPLl26hHnz5uHWrVuqDVQmTZqEAQMGoFu3bnjuuecQERGBvXv3Ys6cOWjUqJGqzd8rr7yCNm3aoE+fPnjppZfkTTciIiIwefJkedzjjz+Ot99+G4MGDcJ//vMf1K9fH3///Tdmz56NoKAg1Y5tDz74IO6//340a9YMoaGhOHLkCN544w1oNBq89tprqvf5jTfeQFRUFGrVqoXLly/js88+w4YNG7Bq1So5HAPWzUkuX76M+++/H9WrV8fNmzeRlJSEJUuWYPDgwWjVqpXdz8GyZcsAwGmoXrNmDb788kv07t0btWvXxs2bN/H5558jMTERo0aNQvPmzVXjNRoNOnXqhJ07dzo8HxGRSmnWaBCVJqlGsVGjRg7vT0hIEF26dBGRkZHCaDSK6OhoMWTIEFWnB0+gDNYMe8uJEyfEv/71L1G7dm3h7+8v/P39RYMGDcS///1vu84FjjhaQJednS2eeOIJ0bBhQ7mNVo0aNcSjjz6qWnynPAc86IYhtRFTHlu2bJlo27atqFy5stDr9SI8PFz06NFDfPvtt3bP4+w54KCN16VLl8T48eNFTEyM8Pf3F9HR0aJ3795iz549duf9/vvvRffu3UVUVJQICAgQd999t5g8ebLDxYu//PKL6Nq1qwgMDBShoaFiwIABdht2CGGt742LixN16tQRfn5+olatWmLo0KF279+kSZNEo0aNREhIiNDr9SI6Olo8+uij4uTJk3bnfOWVV8Rdd90l/Pz8RKVKlUTPnj3FDz/8YDdu48aN4sEHHxSRkZFCr9eL4OBg0bZtW/Huu+86XJAo1fDff//9dvdJ9uzZI7p27SqioqKEwWAQgYGBok2bNuL9999XbboihLU+HU4WmBIROaIRIr/oioiIqJzbvHkz+vTpg99++w1NmzYt7cshonKAqw6IiKjC2LFjBx555BEGYSLyGGeGiYrIZDK5vF+r1XKVOxERURnHf6mJishdW7LRo0eX9iUSERGRG+wmQVRE7tqTuWsVRkRERKWPZRJERERE5LNYJkFUDg0cOBABAQG4efOm0zEjRoyAwWDA5cuXS+7CKpjMzEw88sgjqF+/PkJCQhAUFITGjRvj9ddfR2Zmpmps586dodFonN6Sk5Plsbm5uZg+fTrq1q0Lo9GI2rVr4+WXX0ZWVpbdNeTl5eGVV15BnTp14OfnhwYNGmDhwoUev4aMjAxMmjQJ0dHR8Pf3R4sWLZCYmFj0N4WIqIJhmQRRORQfH48NGzZgzZo1GDdunN39qampWL9+Pfr06YPIyMhSuMKKIS8vD0IIPP/886hbty60Wi1++OEHvPrqq9i5cye2b98uj33//feRlpamevytW7fQs2dPtGrVClFRUfLxYcOGYfPmzZg+fTratGmDPXv24PXXX8exY8ewceNG1TnGjRuHVatW4bXXXkObNm3w7bff4tlnn0V6ejqmTp3q9jU8/PDDOHDgAObOnYu7774ba9aswbBhw2CxWDB8+PDbfIeIiCqAUuxxTERFZDKZRHR0tGjVqpXD+xcvXiwAiK+//rqEr8w3TJkyRQAQp0+fdjlu5cqVAoBYunSpfGzPnj0CgHjzzTdVY2fPni0AiK1bt8rHjh49KjQajZg9e7Zq7JgxY0RAQIDbjU02bdokAIg1a9aojnfr1k1ER0cLk8nk8vFERL6AZRJE5ZBOp8PIkSNx8OBBHDlyxO7+FStWoFq1aqrtfBcvXozmzZsjODgYISEhaNCggUczi0oajQbjx4/HihUrUL9+fQQEBKB169bYu3cvhBCYN28e6tati+DgYDzwwAP466+/VI/ftm0b+vfvjxo1asDf3x8xMTEYO3Ysrl27Jo/Jzs5Gy5YtERMTg9TUVPl4cnIyoqKi0LlzZ5jN5kJdt7fdcccdAAC93vWHa8uWLUNwcDCGDh0qH/v5558BAA899JBqbJ8+fQAA69atk49t2LABQgg8/vjjqrGPP/44srKykJSU5PL5169fj+DgYAwePNju8RcvXsS+fftcPp6IyBcwDBOVU6NHj4ZGo8Hy5ctVx48fP479+/dj5MiR0Ol0AIDExESMGzcOnTp1wvr167FhwwY899xzdnWvnvjmm2+wdOlSzJ07F2vXrkV6ejp69+6NyZMn4+eff8aiRYvw0Ucf4fjx4xg0aBCEYo3u6dOnERsbi8WLF2Pr1q2YPn069u3bh3vvvRd5eXkAAH9/f3z22We4cuWK3J7OYrFgxIgREEJg7dq18utyxmQyeXQTHq4fFkLAZDIhLS0NSUlJePPNNzFs2DDUqlXL6WP+/PNP/Pjjj3jkkUcQHBwsH8/NzQUA+Pn5qcZLX//+++/ysaNHj+KOO+5QlVgAQLNmzeT7XTl69CgaNmxoF9odPX7lypXQaDRYuXKly3MSEVU0rBkmKqdiYmJw//33Y/Xq1XjjjTdgMBgAQA7Hyj7HP//8MypVqoR3331XPta1a9ciPW9OTg62bt2KoKAgANbZ4gEDBmDHjh349ddfodFoAABXr17FpEmTcPToUXk3sKeeeko+jxACHTp0QOfOnVG7dm1s2bIF/fr1AwDUq1cPS5cuxdChQ7FgwQLcuHEDO3fuRFJSEqpVq+by+s6ePYu6det69Fp27NiBzp07ux336aefYtiwYfLXjz/+OD766COXj1m2bBkAa323UqNGjQBYvyfK6/zpp58AANevX5ePXb9+HZUrV7Y7d1BQEIxGo2qsI9evX8edd95pd1w6p/LxWq0WOp2OG8UQkc9hGCYqx+Lj4/HYY49h48aNGDRoEEwmE1avXo377rsP9erVk8e1bdsWixYtwrBhw/DII4+gY8eORe6D3KVLFzkIA0DDhg0BAL169ZKDsPL4P//8I4fhK1euYPr06di0aRMuXrwIi8Uijz9x4oQchgFgyJAh2LlzJ/7973/DbDZj6tSp6Natm9vri46OdtsDWlK/fn2PxvXo0QMHDhxAeno69uzZg//973+4fv061q9f7zA8mkwmJCQkoHHjxmjfvr3qvl69eiEmJgYvvvgiIiMj0aZNG+zduxdTp051GEaV76ktV/cV9vGPPfYYHnvsMbfnIyKqaBiGicqxf/3rX5gwYQJWrFiBQYMGYfPmzbh8+TL+97//qcbFxcXBZDJhyZIlGDRoECwWC9q0aYPXX3/do4CpZDtTaTQaXR7Pzs4GYC116N69Oy5evIj//ve/aNq0KYKCgmCxWNC+fXuHbcVGjx6NxYsXw2g0YuLEiR5dn9FoRIsWLTwa667cQhIeHo7WrVsDsP4ycNddd+GRRx7BV199hYEDB9qN37x5M5KTk/Hiiy86vL4tW7YgLi4O3bt3B2Cd6Z09ezZee+01VK9eXR5bpUoVHD582O4cmZmZyM3NdThrrFSlShWHs8c3btwAYP89IyLyRfw8jKgcCwgIwLBhw5CUlIRLly5h+fLlCAkJsVswBVg/2t+9ezdSU1OxadMmCCHQp08f/PPPPyVyrUePHsVvv/2GefPmYcKECejcuTPatGmDKlWqOByfmZmJuLg43H333QgICMATTzzh0fOcPXvW7VbZ0m3Xrl1Fei1t27YFAJw6dcrh/cuWLYPRaERcXJzD+2NiYrBnzx5cuHABv//+O65cuYLBgwfj2rVruP/+++VxTZs2xdWrV1U9igHIiyabNGni8jqbNm2KEydOwGQyFenxRES+gGGYqJyLj4+H2WzGvHnzsHnzZjzyyCMIDAx0Oj4oKAi9evXCtGnTkJubi2PHjpXIdUofydsuHPvwww8djn/qqadw7tw5fPnll1i2bBk2btyIt99+2+3zSGUSntxatWpVpNeyY8cOANZQays5ORmbN2/GgAEDnAZ9SfXq1dG0aVMEBgZi3rx5CAoKUtUY9+/fHxqNBgkJCarHrVy5EgEBAejZs6fL8w8cOBAZGRmqDhUAkJCQgOjoaLRr187l44mIfAHLJIjKudatW6NZs2Z45513IISwW7AFAGPGjEFAQAA6duyIatWqITk5GXPmzEFYWBjatGlTItfZoEED3HXXXXjppZcghEDlypXx9ddfY9u2bXZjly5ditWrV2PFihVo3LgxGjdujPHjx+PFF19Ex44d5ZlZR4xGo1zScLs+/PBD/Pjjj+jevTtq1qyJzMxM/Pjjj1i4cCE6dOiA/v372z0mISEBJpPJ5Uz2G2+8gaioKNSqVQuXL1/GZ599hg0bNmDVqlWqMonGjRsjPj4eM2bMgE6nQ5s2bbB161Z89NFHeP3111VlDq+++ipeffVVfPfdd+jUqRMAa31yt27d8PTTTyMtLQ0xMTFYu3YtkpKSsHr1alWZyMqVK/H4449jxYoVGDVqlBfePSKi8oFhmKgCiI+Px7PPPotGjRo5nO277777sHLlSnz22WdISUlBREQE7r33Xnz88cdyz9ziZjAY8PXXX+PZZ5/F2LFjodfr8eCDD2L79u2qFmVHjhzBxIkTMXLkSFUomz9/Pvbs2YOhQ4fi0KFDqFSpUrFfc9OmTfHNN9/g5ZdfxrVr16DX61GvXj1MnToVzz//vMM+w8uXL0edOnXw4IMPOj1vdnY2Xn31VVy4cAEBAQFo3749du7cifvuu89u7Pvvv4/q1atj4cKFSE5ORp06dbBgwQJMmDBBNc5iscBsNtu1i/vyyy8xbdo0TJ8+HTdu3ECDBg2wdu1aPPLII6pxGRkZAOC2WwcRUUWjEZ422iQiogpryJAhOHPmjMedOIiIKgrODBMR+TghBHbu3InVq1eX9qUQEZU4zgwTkV23AVtarZabMRARUYXEf92IyG0LMuVudkRERBUJyySIyG2daFF3qyMiIirrWCZBRERERD6LZRJERERE5LMYhqncGDhwIAICAnDz5k2nY0aMGAGDwYDLly+X3IX5sPPnz2PgwIG48847ERQUhLCwMLRs2RKLFi2yW5Q3c+ZMaDQau5u/v7/DcycmJqJFixbw9/dHdHQ0Jk2aJPfCVcrIyMCkSZMQHR0Nf39/tGjRAomJiR5d//bt29GtWzdER0fDz88PVatWxQMPPIDNmzfbjf3mm2/w2GOPoWnTpjAYDPKOeracvU7pZntt69atQ8eOHVG5cmVUqlQJbdu2xapVq1xe9+XLl1GlShVoNBp88cUXLscuXboUGo0GwcHBdve9++67aN++PSIiIuDn54datWrhkUcecbgr4aVLlzBq1ChUrVoV/v7+aNasGZYtW+bwOa9cuYJRo0YhIiICgYGBiI2NxXfffWc3LicnB/PmzUOTJk0QFBSEyMhI9OrVC7t373Z43qNHj2Lw4MG444474Ofnhzp16mDcuHF24z755BO0bNkS/v7+iIiIwPDhw3H+/HmX7xMR+TBBVE58/fXXAoB47733HN5/8+ZNERAQIAYMGFDCV+a7Tpw4IR577DGxfPlysX37drF582Yxfvx4AUDEx8erxs6YMUMAEElJSWLPnj3ybd++fXbnXb16tQAgnnjiCfH999+LDz74QISFhYlu3brZje3WrZuoVKmS+OCDD8T3338vnnjiCQFAfPLJJ26vPzExUTz77LMiMTFR7Ny5U3z55Zeie/fuAoBYtWqVauzo0aNFvXr1xJAhQ0SrVq2Es78+z58/r3p90q1JkyYiICBApKSkyGOXLVsmAIhBgwaJzZs3iy1btohHHnlEABBvvfWW0+seNGiQiI6OFgDE559/7nTchQsXRFhYmIiOjhZBQUF290+fPl3MnDlTrF+/XuzcuVMsX75c3H333SIoKEj88ccf8ribN2+KO++8U9SoUUOsWLFCJCUliZEjRwoA4s0331SdMzs7WzRp0kTUqFFDrF69WmzdulX0799f6PV6sXPnTtXYuLg4odVqxbRp08R3330nPv/8c9GqVSuh1+vtfi6+//57ERAQILp37y6++OILsXPnTvHxxx+L5557TjXu3XfflX92kpKSxNKlS0W1atVE7dq1xY0bN5y+V0TkuxiGqdwwmUwiOjpatGrVyuH9ixcvFgDE119/XcJXRraGDBki9Hq9yM7Olo9JYfjq1asuH2symUS1atVE9+7dVcc/+eQTAUBs3rxZPrZp0yYBQKxZs0Y1tlu3biI6OlqYTKZCX3tubq6oXr26uO+++1THzWaz/OdnnnnGaRh25MyZM0Kj0YhHH31Udbxjx46idu3aqnNbLBbRoEED0axZM4fn+uKLL0RwcLBISEhwG4b79Okj+vbtK0aOHOkwDDty/PhxAUD897//lY/NmTNHABC//PKLamz37t1FUFCQKuC/9957AoDYvXu3fCwvL080atRItG3bVj6WnZ0tdDqd3Xty8eJFAUBMnDhRPpaZmSmqVasmevfuLSwWi9Nrz87OFmFhYaJv376q47t37xYAxNSpUz16D4jIt7BMgsoNnU6HkSNH4uDBgzhy5Ijd/StWrEC1atXQq1cv+djixYvRvHlzBAcHIyQkBA0aNMDUqVML9bwajQbjx4/HihUrUL9+fQQEBKB169bYu3cvhBCYN28e6tati+DgYDzwwAP466+/7M6xfft2dO3aFaGhoQgMDETHjh3tPjb+66+/8Pjjj6NevXoIDAxE9erV0bdvX7vXunPnTmg0GqxduxbTpk1DdHQ0QkND8eCDD+LkyZOFem3F5Y477oBWq4VOpyv0Y/fu3YtLly7h8ccfVx0fPHgwgoODsX79evnY+vXrERwcjMGDB6vGPv7447h48SL27dtX6Oc3GAyoVKmS3VbLt9Nnefny5RBC4IknnrB7ruDgYNW5NRoNQkNDHZaP3LhxA8888wxmzZql2sLakdWrV2PXrl14//33C3Wt0vbcytf/888/IzIyEq1atVKN7dOnDzIzM5GUlCQfW79+PerXr4/Y2Fj5mF6vx6OPPor9+/fj//7v/wAU9K4OCwtTnTM0NBRarVb1+j///HNcunQJ//73v52WpwDWMorU1FQ89NBDquOxsbGoXLky1q1b5+nbQEQ+hGGYypXRo0dDo9Fg+fLlquPHjx/H/v37MXLkSDmAJSYmYty4cejUqRPWr1+PDRs24LnnnkNmZmahn/ebb77B0qVLMXfuXKxduxbp6eno3bs3Jk+ejJ9//hmLFi3CRx99hOPHj2PQoEEQiiYtq1evRvfu3REaGoqEhAR89tlnqFy5Mnr06KEKxBcvXkSVKlUwd+5cJCUl4b333oNer0e7du0chtypU6fin3/+wdKlS/HRRx/hzz//RN++fWE2m12+FiEETCaTRzdPSedMSUnBp59+ipUrV2Ly5Ml2gRIAmjZtCp1Oh8jISDz22GM4d+6c6v6jR48CAJo1a6Y6bjAY0KBBA/l+aWzDhg3tnkd6rHKsKxaLBSaTCRcvXsSMGTNw6tQpTJ482aPHenLulStXIiYmBp06dVLdN2HCBJw4cQKzZs3C1atXce3aNcyfPx8HDx7ECy+8YHeuiRMnom7duhg/frzL57xy5QomTZqEuXPnokaNGm6v0Ww2IycnB3/88QeeeOIJVK1aVfXLSG5uLvz8/OweJx37/fff5WNHjx61+94BBd8TqR7ZYDBg3LhxSEhIwIYNG5CWloazZ89izJgxCAsLw5gxY+TH/vDDD/J13nvvvTAajQgPD8ewYcNw8eJF1XUqr8v2Wv/8809kZ2fLx0aNGgWNRoOzZ8+6fY+IqAIr1XlpoiLo1KmTiIiIELm5ufKxyZMnCwDi1KlT8rHx48eLSpUq3fbzARBRUVEiIyNDPrZhwwYBQLRo0UL1se0777wjAIjff/9dCGH9eLdy5cp2H9uazWbRvHlz1cfGtkwmk8jNzRX16tVT1UXu2LFDABAPPfSQavxnn30mAIg9e/a4fD3S4z25nTlzxu37I0TBx+gAhEajEdOmTbMb8/HHH4tZs2aJzZs3i++//17MnTtXVK5cWURGRooLFy7I42bNmiUAiEuXLtmdo3v37uLuu++Wv65Xr57o0aOH3Tjpo/bZs2d7dP09evSQrz80NFR8+eWXLscXpkxiy5YtAoCYM2eOw/s3bNggwsLC5OcPCAgQq1evthv3zTffCIPBII4cOSKEKPg+OiqTGDRokOjQoYP8s+muTMLPz09+/rvvvlscP35cdf+kSZOEVqsV//zzj+p4XFycACCefPJJ+ZjBYBBjx461ew6pVEFZ0mKxWMT06dOFVquVn79WrVri0KFDqsdK359KlSqJKVOmyHXkVapUETExMSIzM1MIIcT169eFVqu1q1f/66+/5PNfvHhRPj569Gih0+nE2bNnnb43RFTxcWaYyp34+Hhcu3YNGzduBGDdSnj16tW47777UK9ePXlc27ZtcfPmTQwbNgxfffUVrl27VuTn7NKlC4KCguSvGzZsCADo1auX6mNb6fg///wDANi9ezdu3LiBkSNHqmZcLRYLevbsiQMHDsgz1SaTCbNnz0ajRo1gNBqh1+thNBrx559/4sSJE3bX1K9fP9XX0syb9NzOtGrVCgcOHPDoFh0d7dH7M2rUKBw4cADffvstpkyZgnnz5mHChAmqMXFxcZg6dSp69eqFLl264MUXX8SWLVtw9epVvPHGG3bndPZxuO1xVx+bu7pPaeHChdi/fz+++uor9OjRA0OHDsXatWs9eqw7y5Ytg16vx6hRo+zuS0pKwqOPPoqHH34YW7ZswbZt2/DEE09g1KhRWLFihTwuNTUVY8eOxYsvvogmTZq4fL5169bh66+/xpIlSzx+/bt378aePXuwevVqhISEoEuXLqqOEk8++SQMBgNGjBiBY8eO4fr163jvvffw6aefArAvIfH0ezJr1izMnz8fM2fOxI4dO/DVV1+hfv366NatGw4dOiSPs1gsAIChQ4fif//7H7p06YKxY8di2bJl+Ouvv7BmzRoAQOXKlTFixAh8/PHH+PDDD3Hjxg38/vvvGDFihPyJkfJaly1bBpPJhNq1a3v0PhFRBVXaaZyosG7duiXCwsJE7969hRBCfPXVVwKAWLlypd3Y5cuXi9jYWKHT6YRGoxFt27YVW7duLdTzARDPPPOM6tiZM2cEADFv3jzVcdvZOqkrgqvbuXPnhBBCTJgwQWi1WvHyyy+LpKQksW/fPnHgwAHRvHlz0alTJ6fPYXtNK1ascPl6LBaLyMvL8+hWVHPnzhUAxK+//up2bIMGDVQz5B988IEAII4dO2Y3tnXr1iI2Nlb+un379qJNmzZ2444ePSoAiA8//LBI19+zZ08RHh6uWtim5OnM8NWrV4XRaBT9+/e3u89isYhq1arZzfALIcRjjz0mgoKC5E8jnnnmGVGnTh2RnJwsUlJSREpKitxdJSEhQaSkpAiLxSLS09NFZGSkmDx5sjwuJSVFDBs2TF7opvyEw5G0tDRRtWpV0a9fP9XxzZs3i5o1a8o/tzVr1hQLFy4UAMRrr70mj4uKihKDBw+2O+8333wjAIhvv/1WCGFdqKfRaOz+H8rNzRUxMTGic+fO8jGpw4btjH1WVpbQaDTi6aeflo9lZGSIRx99VJ5t1mq1YuTIkaJfv37Cz8/vtn6uiahi4swwlTsBAQEYNmwYkpKScOnSJSxfvhwhISF2i6gA60Kq3bt3IzU1FZs2bYIQAn369HE7e+ot0jbGCxcudDr7GhkZCcBaW/zYY49h9uzZ6NGjB9q2bYvWrVvf1oy2I7t27YLBYPDoVtRayrZt2wIATp065XasEEI1W9e0aVMAsFs4aDKZ8Mcff6hmRps2bYoTJ07Y1TdLj3U3i+rq+lNSUnD16tUiPV6yatUq5Obm2i2cA6y9gi9duiS/V0pt2rRBZmam/P4fPXoUZ8+eRVRUFMLDwxEeHo6+ffsCAEaOHInw8HCkpqbi2rVruHz5Mt588015XHh4ONauXYvMzEyEh4djxIgRLq9ZWmhq+73r1asX/vnnH5w6dQrHjx/HmTNnUKVKFQDA/fffL49r2rSpwwWutt+T3377DUIItGnTRjXOYDCgefPmqnpvRzXISsqfn6CgIKxatQrXrl3Db7/9hsuXL2PlypU4efIkOnTo4LCOnYh8G/9WoHIpPj4eH3zwAebNm4fNmzdj1KhRCAwMdDo+KCgIvXr1Qm5uLgYMGIBjx46VyEejHTt2RKVKlXD8+HG3i540Go3dwp9Nmzbh//7v/xATE+O1a5LKJDzhaZmErR07dgCA2+veu3cv/vzzT0ycOFE+1q5dO1SrVg0rV67E0KFD5eNffPEFMjIy8PDDD8vHBg4ciCVLlmDdunWqsQkJCYiOjka7du0Kfe1CCOzatQuVKlWSw15RLVu2DNHR0aoOJ5Lw8HD4+/tj7969dvft2bMHWq0W1apVAwC88847dpvNHD58GM899xxmzpyJTp06ITg4GP7+/vJ7rzR37lzs2rULW7ZskX9Bc+batWs4cuQIOnbsaHefRqORS5Fyc3OxYMECtGjRQhWGBw4ciHHjxmHfvn3y+y+VMrVr107+mZL+u3fvXtXCwpycHPz666+qhX8DBw7EtGnTsGXLFgwcOFA+vmXLFggh0L59e7trlX4RAICNGzfi5MmT+N///ufytRORb2IYpnKpdevWaNasGd555x0IIRAfH283ZsyYMQgICEDHjh1RrVo1JCcnY86cOQgLC7ObjSouwcHBWLhwIUaOHIkbN27gX//6F6pWrYqrV6/it99+w9WrV7F48WIA1jZVK1euRIMGDdCsWTMcPHgQ8+bN86gbQGGEhISgdevWXjnXjBkzcPnyZdx///2oXr06bt68iaSkJCxZsgSDBw9WteJq3rw5Hn30UTRs2BD+/v7Yv38/5s2bh6ioKEyZMkUep9Pp8MYbbyAuLg5jx47FsGHD8Oeff2LKlCno1q0bevbsKY/t1asXunXrhqeffhppaWmIiYnB2rVrkZSUhNWrV6tau8XHxyMhIQGnT5+WfxHq378/mjdvjhYtWqBKlSq4ePEiVq5ciV27dsndPCT//POP/EvE6dOnAUDe/a1OnTp27+m+fftw7NgxTJ061WGLOT8/P4wbNw5vvfUWHnvsMQwdOhQ6nQ4bNmzAmjVrEB8fj8qVKwMAWrRo4fR70LhxY3Tu3BmAtYWZ9GellStXQqfTqe5LTU1Ft27dMHz4cNSrVw8BAQE4deoUFixYgJycHMyYMUN1jgkTJqBz586oUqUK/v77b7z77ru4cOECdu3apRo3evRovPfeexg8eDDmzp2LqlWr4v3338fJkyexfft2edy9996LNm3aYObMmbh16xbuv/9+pKamYuHChThz5oxqF74GDRrgmWeewfvvv4+QkBD06tULp06dwn/+8x+0bNkSQ4YMkceuW7cOFy9eRMOGDZGdnY2dO3diwYIFeOqpp9C/f3/VtY4aNQoJCQk4c+YM6tSp4/Q9JqIKrjRrNIhux4IFCwQA0ahRI4f3JyQkiC5duojIyEhhNBpFdHS0GDJkiNzpwVO4jZphya5du0Tv3r1F5cqVhcFgENWrVxe9e/dWjUtJSRHx8fGiatWqIjAwUNx7773ixx9/FJ06dfJqzbA3bdy4UTz44IMiMjJS6PV6ERwcLNq2bSveffddu9rMRx55RMTExIigoCBhMBhE7dq1xVNPPaVa3a+0Zs0a0axZM2E0GkVUVJSYOHGiSE9PtxuXnp4uJk6cKKKiooTRaBTNmjUTa9eutRsn7Zim7JDxv//9T7Rp00aEh4cLnU4nqlSpInr06CG++eYbu8evWLHCad33yJEj7caPGTNGaDQacfr0aafvn9lsFkuWLBGtW7cWlSpVEqGhoaJly5Zi0aJFqm4pjrjqJuHotdt2k8jOzhZPPPGEaNiwoQgODhZ6vV7UqFFDPProow7rtfv37y+qVasmDAaDiIqKEqNGjXLahSE5OVk89thjonLlysLf31+0b99ebNu2zW7czZs3xbRp00TDhg1FYGCgqFq1qujcubNqYxWJyWQSc+fOFTExMcJgMIhq1aqJp59+WrXhhxBCrF+/XrRo0UIEBQWJgIAA0bp1a7Fs2TKHm3UMGjTIbldAIvI9GiEUDVGJiIh8RFRUFOLi4jBv3rzSvhQiKkUMw0RE5HOOHTuG2NhY/P33327rqImoYmMYJp/lboc1abtYIiIiqrj4Lz35LHdtxUaPHl3al0hERETFjN0kyGe5ay/Gj06JiIgqPpZJEBEREZHPYpkEEREREfkslkkUI4vFgosXLyIkJAQajaa0L4eIiKhUCCGQnp6O6OhoLkymModhuBhdvHgRNWvWLO3LICIiKhPOnz/v9V01iW4Xw3AxCgkJAQCciLsXIUa+1URE5JvSc01ouOon+d9ForKECa0YSaURIUY9QhmGiYjIx7FkkMoiFu4QERERkc9iGCYiIiIin8UwTEREREQ+i2GYiIiIiHwWV3URERFRmZWdnY3c3Fyvn9doNMLf39/r56Xyh2GYiIiIyqTs7GyEV4pCdk6q188dFRWFM2fOMBATwzARERGVTbm5ucjOScXAngtg0Ad47bx5piysT3oWubm5DMPEMExERERlm0EfAKPBe2GYSIkL6IiIiIjIZ3FmmIiIiMo0i0EDs8F783cWcCc8KsCZYSIiIiLyWQzDREREROSzWCZBREREZZpJr4VG7735O5PgXCAV4E8DEREREfkshmEiIiIi8lkMw0REREQuLF68GM2aNUNoaChCQ0MRGxuLLVu2yPdrNBqHt3nz5sljkpOTERcXh6ioKAQFBeGee+7BF198oXqelJQUxMXFISwsDGFhYYiLi8PNmzdL6mX6LNYMExERUZlm1muh9WJrNXMha4Zr1KiBuXPnIiYmBgCQkJCA/v3749ChQ2jcuDEuXbqkGr9lyxbEx8dj0KBB8rG4uDikpqZi48aNiIiIwJo1azB06FD88ssvaNmyJQBg+PDhuHDhApKSkgAATz75JOLi4vD111/fzsslNxiGiYiIiFzo27ev6utZs2Zh8eLF2Lt3Lxo3boyoqCjV/V999RW6dOmCO++8Uz62Z88eLF68GG3btgUA/Oc//8Hbb7+NX3/9FS1btsSJEyeQlJSEvXv3ol27dgCAJUuWIDY2FidPnkT9+vWL+VX6LpZJEBEREXnIbDYjMTERmZmZiI2Ntbv/8uXL2LRpE+Lj41XH7733Xnz66ae4ceMGLBYLEhMTkZOTg86dOwOwhuWwsDA5CANA+/btERYWht27dxfra/J1nBkmIiIin5SWlqb62s/PD35+fg7HHjlyBLGxscjOzkZwcDDWr1+PRo0a2Y1LSEhASEgIHn74YdXxTz/9FEOHDkWVKlWg1+sRGBiI9evX46677gJgrSmuWrWq3fmqVq2K5OTkor5E8gBnhomIiKhMM+l1Xr8BQM2aNeXFamFhYZgzZ47Ta6hfvz4OHz6MvXv34umnn8bIkSNx/Phxu3HLly/HiBEj4O/vrzr+n//8BykpKdi+fTt++eUXPP/88xg8eDCOHDkij9Fo7LeJFkI4PE7ew5lhIiIi8knnz59HaGio/LWzWWEAMBqN8gK61q1b48CBA1iwYAE+/PBDecyPP/6IkydP4tNPP1U99vTp01i0aBGOHj2Kxo0bAwCaN2+OH3/8Ee+99x4++OADREVF4fLly3bPe/XqVURGRt7W6yTXODNMREREPklqlSbdXIVhW0II5OTkqI4tW7YMrVq1QvPmzVXHb926BQDQatWxS6fTwWKxAABiY2ORmpqK/fv3y/fv27cPqamp6NChQ6FeFxUOZ4aJiIioTDMbSre12tSpU9GrVy/UrFkT6enpSExMxM6dO+UWaIC1/vjzzz/Hm2++aff4Bg0aICYmBmPHjsX8+fNRpUoVbNiwAdu2bcM333wDAGjYsCF69uyJMWPGyLPNTz75JPr06cNOEsWMYZiIiIjIhcuXLyMuLg6XLl1CWFgYmjVrhqSkJHTr1k0ek5iYCCEEhg0bZvd4g8GAzZs346WXXkLfvn2RkZGBmJgYJCQk4KGHHpLHffLJJ5g4cSK6d+8OAOjXrx8WLVpU/C/Qx2mEEKK0L6KiSktLQ1hYGC7Ed0aokb93EBGRb0rLNaHGsp1ITU1V1ei6fVz+v6PdR6+GwRjotevJy72FrcsfLfT1UMXEmmEiIiIi8lmcriQiIqIyzaLXwqz33vydxcK5QCrAnwYiIiIi8lkMw0RERETks1gmQURERGWaSa8FvNhazcQyCVLgTwMRERER+SyGYSIiIiLyWQzDREREROSzWDNMREREZZpZr4XGi63VzGbOBVIB/jQQERERkc9iGCYiIiIin8UwTEREREQ+izXDREREVKbl+mlh8dN57XwmzgWSAn8aiIiIiMhnMQwTERERkc9imQQRERGVaWadl1urmTgXSAX400BEREREPothmIiIiIh8FsMwEREREfks1gwTERFRmWYxaGE2eG/+zsLtmEmBPw1ERERE5LMYhomIiIjIZ7FMgoiIiMo0i967rdUsXjwXlX/8aSAiIiIin8UwTEREREQ+i2GYiIiIiHwWa4aJiIioTNMZLNAbLN47odmL56JyjzPDREREROSzGIaJiIiIyGcxDBMRERGRz2LNMBEREZVpep0Fer0X63x1rBmmApwZJiIiIiKfxTBMRERERD6LZRJERERUpum93VrNxDIJKsCZYSIiIiLyWQzDREREROSzGIaJiIiIXFi8eDGaNWuG0NBQhIaGIjY2Flu2bJHv12g0Dm/z5s2zO5cQAr169YJGo8GGDRtU982aNQsdOnRAYGAgKlWqVMyviiSsGSYiIqIyTa8X3m2tpheFGl6jRg3MnTsXMTExAICEhAT0798fhw4dQuPGjXHp0iXV+C1btiA+Ph6DBg2yO9c777wDjUbj8Hlyc3MxePBgxMbGYtmyZYW6Rio6hmEiIiIiF/r27av6etasWVi8eDH27t2Lxo0bIyoqSnX/V199hS5duuDOO+9UHf/tt9/w1ltv4cCBA6hWrZrd87zyyisAgJUrV3r3BZBLDMNERETkk9LS0lRf+/n5wc/Pz+VjzGYzPv/8c2RmZiI2Ntbu/suXL2PTpk1ISEhQHb916xaGDRuGRYsW2YVnKl0Mw0RERFSmGfzMMPiZvXY+jcV6rpo1a6qOz5gxAzNnznT4mCNHjiA2NhbZ2dkIDg7G+vXr0ahRI7txCQkJCAkJwcMPP6w6/txzz6FDhw7o37+/d14EeQ3DMBEREfmk8+fPIzQ0VP7a1axw/fr1cfjwYdy8eRPr1q3DyJEjsWvXLrtAvHz5cowYMQL+/v7ysY0bN+L777/HoUOHvP8i6LaVWjeJOXPmQKPRYNKkSfIxIQRmzpyJ6OhoBAQEoHPnzjh27JjqcTk5OZgwYQIiIiIQFBSEfv364cKFC6oxKSkpiIuLQ1hYGMLCwhAXF4ebN2+qxpw7dw59+/ZFUFAQIiIiMHHiROTm5qrGHDlyBJ06dUJAQACqV6+OV199FUIUruieiIiIyiapO4R0cxWGjUYjYmJi0Lp1a8yZMwfNmzfHggULVGN+/PFHnDx5Ek888YTq+Pfff4/Tp0+jUqVK0Ov10Outc5GDBg1C586dvf66qHBKJQwfOHAAH330EZo1a6Y6/sYbb+Ctt97CokWLcODAAURFRaFbt25IT0+Xx0yaNAnr169HYmIifvrpJ2RkZKBPnz4wmws+Phk+fDgOHz6MpKQkJCUl4fDhw4iLi5PvN5vN6N27NzIzM/HTTz8hMTER69atw+TJk+UxaWlp6NatG6Kjo3HgwAEsXLgQ8+fPx1tvvVWM7wwRERGVB0II5OTkqI4tW7YMrVq1QvPmzVXHX3rpJfz+++84fPiwfAOAt99+GytWrCipSyYnSrxMIiMjAyNGjMCSJUvw+uuvy8eFEHjnnXcwbdo0uc4mISEBkZGRWLNmDcaOHYvU1FQsW7YMq1atwoMPPggAWL16NWrWrInt27ejR48eOHHiBJKSkrB37160a9cOALBkyRLExsbi5MmTqF+/PrZu3Yrjx4/j/PnziI6OBgC8+eabGDVqFGbNmoXQ0FB88sknyM7OxsqVK+Hn54cmTZrg1KlTeOutt/D88887bYtCRERE3mXQW2Dw5nbMeYU719SpU9GrVy/UrFkT6enpSExMxM6dO5GUlCSPSUtLw+eff44333zT7vFRUVEOF83VqlULdevWlb8+d+4cbty4gXPnzsFsNsuhOSYmBsHBwYW6ZvJcic8MP/PMM+jdu7ccZiVnzpxBcnIyunfvLh/z8/NDp06dsHv3bgDAwYMHkZeXpxoTHR2NJk2ayGP27NmDsLAwOQgDQPv27REWFqYa06RJEzkIA0CPHj2Qk5ODgwcPymM6deqk+sikR48euHjxIs6ePevwteXk5CAtLU11IyIiovLt8uXLiIuLQ/369dG1a1fs27cPSUlJ6NatmzwmMTERQggMGzasyM8zffp0tGzZEjNmzEBGRgZatmyJli1b4pdffvHGyyAnSnRmODExEb/++isOHDhgd19ycjIAIDIyUnU8MjIS//zzjzzGaDQiPDzcboz0+OTkZFStWtXu/FWrVlWNsX2e8PBwGI1G1Zg6derYPY90n/I3OcmcOXPkHoFERERUMXiyAcaTTz6JJ5980uNzOlqDtHLlSvYYLgUlNjN8/vx5PPvss1i9erVqhaUt2/IDIYTbkgTbMY7Ge2OM9IPr7HpefvllpKamyrfz58+7vG4iIiIiKl0lFoYPHjyIK1euoFWrVvJKyl27duHdd9+FXq9XzboqXblyRb4vKioKubm5SElJcTnm8uXLds9/9epV1Rjb50lJSUFeXp7LMVeuXAFgP3st8fPzs1uZSkRERLdHr7d4/UYkKbEw3LVrVxw5ckS1krJ169YYMWIEDh8+jDvvvBNRUVHYtm2b/Jjc3Fzs2rULHTp0AAC0atUKBoNBNebSpUs4evSoPCY2NhapqanYv3+/PGbfvn1ITU1VjTl69KhqL/GtW7fCz88PrVq1ksf88MMPqnZrW7duRXR0tF35BBERERGVTyVWMxwSEoImTZqojgUFBaFKlSry8UmTJmH27NmoV68e6tWrh9mzZyMwMBDDhw8HAISFhSE+Ph6TJ09GlSpVULlyZbzwwgto2rSpvCCvYcOG6NmzJ8aMGYMPP/wQgLWOp0+fPqhfvz4AoHv37mjUqBHi4uIwb9483LhxAy+88ALGjBkjz+YOHz4cr7zyCkaNGoWpU6fizz//xOzZszF9+nR2kiAiIiKqIMrUDnRTpkxBVlYWxo0bh5SUFLRr1w5bt25FSEiIPObtt9+GXq/HkCFDkJWVha5du2LlypXQ6XTymE8++QQTJ06Uu07069cPixYtku/X6XTYtGkTxo0bh44dOyIgIADDhw/H/Pnz5TFhYWHYtm0bnnnmGbRu3Rrh4eF4/vnn8fzzz5fAO0FEREQSvUFAb/DeplfCi+ei8k8juKVasUlLS0NYWBguxHdGqLFM/d5BRERUYtJyTaixbCdSU1MLtZ5G+nd04JpVMAQGeu168m7dwvrhcYW+HqqYSm07ZiIiIiKi0sYwTEREREQ+i5/dExERUZnm7XZogq3VSIEzw0RERETksxiGiYiIiMhnsUyCiIiIyjSd3gK9wXulDRaWSZACZ4aJiIiIyGcxDBMRERGRz2IYJiIiIiKfxZphIiIiKtO83VqNNcOkxJlhIiIiIvJZDMNERERE5LMYhomIiIjIZ7FmmIiIiMo0vcHLfYa9eC4q/zgzTEREREQ+i2GYiIiIiHwWyySIyKeZzRoAgE4nSvlKiMgZg9Z68xbBqUBSYBgmogpJCrmeYBAmIvJdDMNEVO55GnwZeomIyBbDMBGVOwy/RETkLQzDRFQueBKAGX6JKiZ/HeCn8975tF48F5V/DMNEVCaV5uyvVl+6odpi8rzemYiIbg/DMBGVObZBuLhmfEs79Drj7LoYkomIvI9hmIjKBLNZA51OFEsQLquht7BcvQ4GZarIDBrvtlaz8H8XUmAYJqJSpQy/yj8XNQRXlOBbWI5eNwMyEZF7DMNEVKLc1QIXJQT7agB2R/m+MBgTETnGMExEpeJ2yx8YgAvH9v1iOCYismIYJqJiJ9UDSzj7W/oYjqk8MeisN2+xsLUaKTAME1GxsC2HKMz2yBIG4JLDcExEvophmIi8ylXo9XRGmCG49EnfA4ZiIqrovNiohIh8mdmscRqEdTrhNghr9UK+VRQVIUhWxO8LUWEtXrwYzZo1Q2hoKEJDQxEbG4stW7bI92s0Goe3efPmyWNycnIwYcIEREREICgoCP369cOFCxfk+8+ePYv4+HjUrVsXAQEBuOuuuzBjxgzk5uaW6Gv1RZwZJqLb5igEV4RZYG+E2ds9R1l6fzhbTKXFoAWM3uwzXMhz1ahRA3PnzkVMTAwAICEhAf3798ehQ4fQuHFjXLp0STV+y5YtiI+Px6BBg+RjkyZNwtdff43ExERUqVIFkydPRp8+fXDw4EHodDr88ccfsFgs+PDDDxETE4OjR49izJgxyMzMxPz582/7NZNzGiFE2fmbtoJJS0tDWFgYLsR3RqiRv3dQxeNqJtidshLyynOwKwvvYXl+/6jkpOWaUGPZTqSmpiI0NNTzx+X/O/qfH5bAPzjQa9eTnXELr98/ptDXo1S5cmXMmzcP8fHxdvcNGDAA6enp+O677wAAqampuOOOO7Bq1SoMHToUAHDx4kXUrFkTmzdvRo8ePRw+x7x587B48WL8/fffRbpG8gzLJIio0ByVREilEJ6WQ5QGi0ljdyvPysLrKQuBnKio0tLSVLecnBy3jzGbzUhMTERmZiZiY2Pt7r98+TI2bdqkCskHDx5EXl4eunfvLh+Ljo5GkyZNsHv3bqfPlZqaisqVKxfyVVFhcbqSiAqlqCURpRGaynvYLQpHr7m433tu7kHFzaAVMGi993Nszj9XzZo1VcdnzJiBmTNnOnzMkSNHEBsbi+zsbAQHB2P9+vVo1KiR3biEhASEhITg4Ycflo8lJyfDaDQiPDxcNTYyMhLJyckOn+/06dNYuHAh3nzzzcK8NCoChmEi8pij2WBXSjoAM4g5Zvu+FOf3hcGYypPz58+ryiT8/Pycjq1fvz4OHz6MmzdvYt26dRg5ciR27dplF4iXL1+OESNGwN/f3+3zCyGg0dj/f3Lx4kX07NkTgwcPxhNPPFGIV0RFwTBMRG4VZTa4pIIwA1fhlVQ45oI7Kuuk7hCeMBqN8gK61q1b48CBA1iwYAE+/PBDecyPP/6IkydP4tNPP1U9NioqCrm5uUhJSVHNDl+5cgUdOnRQjb148SK6dOmC2NhYfPTRR0V9aVQIrBkmokJxVxdcEjXBFaXmt6wo7veTdcVUEQkh7GqMly1bhlatWqF58+aq461atYLBYMC2bdvkY5cuXcLRo0dVYfj//u//0LlzZ9xzzz1YsWIFtFrGtJLAmWEicki5hXJZqQlm+C1+yvfYm99TzhLT7TCWcmu1qVOnolevXqhZsybS09ORmJiInTt3IikpSR6TlpaGzz//3GGNb1hYGOLj4zF58mRUqVIFlStXxgsvvICmTZviwQcfBGCdEe7cuTNq1aqF+fPn4+rVq/Ljo6KiivZCySMMw0SkUthtk0tiFphKR3EEY9YUU3l0+fJlxMXF4dKlSwgLC0OzZs2QlJSEbt26yWMSExMhhMCwYcMcnuPtt9+GXq/HkCFDkJWVha5du2LlypXQ6XQAgK1bt+Kvv/7CX3/9hRo1aqgeyy64xYt9hosR+wxTeVPY2uDiCsIMSWWbt7/v/H5XfLfbZ3jO7o+83mf45Q5P3lafYao4mNCICEDhOkUwBPs26fvk7dlifv/JGb3Wugudt5hYiksKDMNEPq4szAYzBJVP3i6jYCgmotLAMEzkwwoThBmCyRVvzhYzFBNRSWIYJvJRyiBc0j2DGXIqruLqRkFEVFwYhol8lE4nVO3THGEIpttxu7PF7DxBEgNrhqkY8ceByIeVVBDmBhm+zRvff84yE1Fx4cwwkQ+RSiNKqiyCAZiUbreEgrXERFQcODNM5EPcbaUMMAhTybid2WLOEhORN3FmmIgAMART6fB2z2KqmLy9HbOZU4GkwB8HogrM062VGYSptBV2plirF/KNiOh2cGaYqIKSgnBJdIzwhRDs6H3yhddd0ooyU6zVC34viKjIGIaJKiBPewj7ehC+3dfPgFx8ChuKubiuYvPTAv46753Pws/FSYFhmKiCKakgXN5CR0l9nM5Q5l0Wk4azxERUrBiGiSoQBuECpVFLWh7el/KIs8REVJwYhokqoOIKwmU9XBRXAC7rr9tXFLZPMWeJicgTDMNEFUhx9hCu6KGior++iqaw5RNUvnl7O2ZvnovKP4ZhIh9R0YJwYV9PWXwNdHs8mSnm7DARucMwTFTBVZT64KK+jrJy/VS8XM0Us4aYiFxhGCYqx9z1EL4dZSk4FCUIl6Xrp5LhrnSCobj8spZJeO/vOpZJkBLDMFE55W53ufJeT8kATEXhqPOE7TGWThCREsMwUTkkBeGKOCtcmBDMQEPOuPvZYCAmIgnDMFE540lpRHmsr+WCOCppDMREBDAME5UrFTEIMwQTkTt6rYDeizXD3jwXlX8sISeqQCpyELaYNAzCdFsc/QyV99p6Irp9nBkmKifczQqXpyDMumAqTYXd3pmIKjaGYaJyoLg6R5TlIMwQTMWNP2NEBDAME5V57jpHlKcg7Imyel1EVHr0WuHVPsOsGSYl1gwTlWEMwkRERMWLM8NEZVhx9BEu6cDpSWBnCCYiotLCMExUTpX1HdoYgonIWwxeLpPw5rmo/GOZBJGPYBAmIiKyxzBMVA6V940qytr1EBGR72KZBFE5Utb7orq7PoZgIiIqaxiGiSq4kgqgDMJEVFy4HTMVJ5ZJEJUTZXnBHIMwERGVVwzDROUAgzAREVHxYBgmqoDKQhC2mDRlLgibzZpC34io9Emt1bx5K4zFixejWbNmCA0NRWhoKGJjY7FlyxbVmBMnTqBfv34ICwtDSEgI2rdvj3PnzqnG7NmzBw888ACCgoJQqVIldO7cGVlZWfL9/fr1Q61ateDv749q1aohLi4OFy9eLPobRx5hGCYq48rqojl3Qbgs8EawZTgmoho1amDu3Ln45Zdf8Msvv+CBBx5A//79cezYMQDA6dOnce+996JBgwbYuXMnfvvtN/z3v/+Fv7+/fI49e/agZ8+e6N69O/bv348DBw5g/Pjx0GoLoliXLl3w2Wef4eTJk1i3bh1Onz6Nf/3rXyX+en2NRghRNv+lrQDS0tIQFhaGC/GdEWrkWkUqvPJYHlGaQbg0wmpx7BJIVNGk5ZpQY9lOpKamIjQ01PPH5f87+t1f7yEoJMBr15OZnoWuMc8U+nqUKleujHnz5iE+Ph6PPPIIDAYDVq1a5XR8+/bt0a1bN7z22mseP8fGjRsxYMAA5OTkwGAwFOk6yT3ODBNVIL4ahEtz1pYzxkTlV1pamuqWk5Pj9jFmsxmJiYnIzMxEbGwsLBYLNm3ahLvvvhs9evRA1apV0a5dO2zYsEF+zJUrV7Bv3z5UrVoVHTp0QGRkJDp16oSffvrJ6fPcuHEDn3zyCTp06MAgXMwYhonKqLK4sYZWL8pUEC5LQbQsXQtRRWPUCfh58WbM/0SnZs2aCAsLk29z5sxxeg1HjhxBcHAw/Pz88NRTT2H9+vVo1KgRrly5goyMDMydOxc9e/bE1q1bMXDgQDz88MPYtWsXAODvv/8GAMycORNjxoxBUlIS7rnnHnTt2hV//vmn6nlefPFFBAUFoUqVKjh37hy++uqrYnpXScLP7onotpTmbHBhFOU6i1KmYjZrWDpBVE6cP39eVSbh5+fndGz9+vVx+PBh3Lx5E+vWrcPIkSOxa9cuVKpUCQDQv39/PPfccwCAFi1aYPfu3fjggw/QqVMnWCwWAMDYsWPx+OOPAwBatmyJ7777DsuXL1eF8H//+9+Ij4/HP//8g1deeQWPPfYYvvnmG2g0/GW7uJTYzLC7lZhCCMycORPR0dEICAhA586d5cJ0SU5ODiZMmICIiAgEBQWhX79+uHDhgmpMSkoK4uLi5N/y4uLicPPmTdWYc+fOoW/fvggKCkJERAQmTpyI3Nxc1ZgjR46gU6dOCAgIQPXq1fHqq6+C5dVUUsrqrHBpPK8tT2ZgpU4WyltRFPXxnCUmKh+kTCLdXIVho9GImJgYtG7dGnPmzEHz5s2xYMECREREQK/Xo1GjRqrxDRs2lLtJVKtWDQBcjpFERETg7rvvRrdu3ZCYmIjNmzdj79693ni55ESJhWF3KzHfeOMNvPXWW1i0aBEOHDiAqKgodOvWDenp6fI5Jk2ahPXr1yMxMRE//fQTMjIy0KdPH5jNZnnM8OHDcfjwYSQlJSEpKQmHDx9GXFycfL/ZbEbv3r2RmZmJn376CYmJiVi3bh0mT54sj0lLS0O3bt0QHR2NAwcOYOHChZg/fz7eeuutEninyNeVxSBcFhQmBHt0PpNGvnmiqKGYiComIQRycnJgNBrRpk0bnDx5UnX/qVOnULt2bQBAnTp1EB0d7XKMs+cA4FEtMxVdiZVJ9O3bV/X1rFmzsHjxYuzduxeNGjXCO++8g2nTpuHhhx8GACQkJCAyMhJr1qzB2LFjkZqaimXLlmHVqlV48MEHAQCrV69GzZo1sX37dvTo0QMnTpxAUlIS9u7di3bt2gEAlixZgtjYWJw8eRL169fH1q1bcfz4cZw/fx7R0dEAgDfffBOjRo3CrFmzEBoaik8++QTZ2dlYuXIl/Pz80KRJE5w6dQpvvfUWnn/+eX5UQWVGaS6YK8kQ7kmodHQ9ngZd5TidB5uIFOYXFpZNEN0+PQT0Gi9ux4zCnWvq1Kno1asXatasifT0dCQmJmLnzp1ISkoCYC1tGDp0KO6//3506dIFSUlJ+Prrr7Fz504AgEajwb///W/MmDEDzZs3R4sWLZCQkIA//vgDX3zxBQBg//792L9/P+69916Eh4fj77//xvTp03HXXXchNjbWa6+d7JXKAjrblZhnzpxBcnIyunfvLo/x8/NDp06dsHv3bgDAwYMHkZeXpxoTHR2NJk2ayGP27NmDsLAwOQgD1lYmYWFhqjFNmjSRgzAA9OjRAzk5OTh48KA8plOnTqqPS3r06IGLFy/i7NmzTl9XTk6O3cpUosIoqz2FbZWlIOxoxrYwM752z1cMr40zxETl2+XLlxEXF4f69euja9eu2LdvH5KSktCtWzcAwMCBA/HBBx/gjTfeQNOmTbF06VKsW7cO9957r3yOSZMm4eWXX8Zzzz2H5s2b47vvvsO2bdtw1113AQACAgLw5ZdfomvXrqhfvz5Gjx6NJk2aYNeuXS7LN+j2legCuiNHjiA2NhbZ2dkIDg6WV2JKQTUyMlI1PjIyEv/88w8AIDk5GUajEeHh4XZjkpOT5TFVq1a1e96qVauqxtg+T3h4OIxGo2pMnTp17J5Huq9u3boOX9+cOXPwyiuvuH0fiLyhtMojykoQ9nQm2OLkHFoHs7XuZoWB8vMLCxF5z7Jly9yOGT16NEaPHu1yzEsvvYSXXnrJ4X1NmzbF999/X6Tro9tTomHY2UpMiW35gRDCbUmC7RhH470xRqrbcXU9L7/8Mp5//nn567S0NNSsWdPl9RNJykPIKqtBuLhCcHn4nhD5gqJsoezufESSEg3D0kpMAGjdujUOHDiABQsW4MUXXwRgnXWVVlwC1ibV0oxsVFQUcnNzkZKSopodvnLlCjp06CCPuXz5st3zXr16VXWeffv2qe5PSUlBXl6eaow0S6x8HsB+9lrJz8+PH2VQiSjpWeGSfj5nQdhdCHYXgJWh11HQlWp7pTpfb5Q3sF6YiKhsK9VNN6SVmHXr1kVUVBS2bdsm35ebm4tdu3bJQbdVq1YwGAyqMZcuXcLRo0flMbGxsUhNTcX+/fvlMfv27UNqaqpqzNGjR3Hp0iV5zNatW+Hn54dWrVrJY3744QdVu7WtW7ciOjrarnyCyBsKMwNZ0btHFDUIS7Q6oboZ/Cww+Off/BzfjMGAMRjQBWigC9DA4GeBVm99rE4nbutGRERlW4nNDLtaianRaDBp0iTMnj0b9erVQ7169TB79mwEBgZi+PDhAICwsDDEx8dj8uTJqFKlCipXrowXXngBTZs2lbtLNGzYED179sSYMWPw4YcfAgCefPJJ9OnTB/Xr1wcAdO/eHY0aNUJcXBzmzZuHGzdu4IUXXsCYMWPkxtvDhw/HK6+8glGjRmHq1Kn4888/MXv2bEyfPp2dJMjr+FF8gdsNwhLbGWCdzrpznsZg/f1f468HDM7nAjR5loI/Z5sgFF87uh4iIiq/SiwMSysxL126hLCwMDRr1ky1EnPKlCnIysrCuHHjkJKSgnbt2mHr1q0ICQmRz/H2229Dr9djyJAhyMrKQteuXbFy5UrodDp5zCeffIKJEyfKXSf69euHRYsWyffrdDps2rQJ48aNQ8eOHREQEIDhw4dj/vz58piwsDBs27YNzzzzDFq3bo3w8HA8//zzqnpgotJQkUNYUYKws7IIoOCXDIOfBRqDFhp/A2DQQmPQFYTi/P/ahl3pa5FnhsZghCbPApFtKjg3GI6JSpLeyzXDetYMk4JGcFu1YpOWloawsDBciO+MUCN3viZ7LI8o4CgMexKEDX7qYKqcCdZFBlmDsEELTaBBDr8w6qDxs/4SLdILyqEKQrAFyDND5Fnyb2ZAui8/FHO2mMhzabkm1Fi2E6mpqartj90+Lv/f0cPnFyAkNMBr15OeloUWNZ8t9PVQxcSERkSlzpOFaq5mhJWBWKsX0IYYoQ3zgy4iAJoQIzQBRsDfD9AXfIok/VkTngtk5+/uZDLDkpELDQDkmmG5ZQJu5QGA3KJfAz1EtsluVlmrFwzERETlEMMwUSnhrLCVJ+URLhfL6QvqgaVaYF1EILSV/KCNCAaCA6EJCACCAwC9g7/ysnOA7FyI9AzrOf1zAJMZIivXWjscaCgIxHlma6lFfiC2ux4GYqJiodcKr5Y2sEyClBiGiajMcRUopVlhrU6oFspp/PXQhvlZZ4Qjg6whODwMqBQCBAQB/qHQGAIg8rLUJ8y9BeRkQBMcAGRkQeh1QHYuNCYzNEEGIDPPPhDnP5+jQExEROULwzBRKeCssFVhyyMAdc9gqf2ZNsQIXUQAtHcEQlspAIgIh+aOykDYHdAYAoDgCGQjGxZhhn9wOLQZKepQbPAHTGbA3whk5R9XllQ4wCBMRFQxMAwTUam4nfIIZRDWRQZZg3Blf2juqGQNwVWqQhMaCUtACPIsuci1pCE97xrScnUINV5GiH8EgkNqAunXrLXAFhOg1QOm69AEBECYzNZwnGudBUb+bLA0KyyR6oUr8i8sREQVHcMwUQnjrPDtMfhb5G4R2sr+0EUEQFc9FKgUYi2LqFYHIjwa6Xk3cDPzb/yd5oc8iwZ5lkBkmbQINZpRKzgFlfxSEOAXCn1AKPx1wdCkXARw3fokJrMcfAs6SuQv0stvsybyLOrg7maWmxtwEBUdt2Om4sQwTERlhqvwL9UHK4OwNtBgreuV6oOrVIUm5A5kmlJxLTsVf9wMwNEULa5maWDQAgYdUNVfh7TcAFTxNyHCPx3VAg0I1IdBWEz5C+eygIxbEDnWbhLiVh4st/LsQrDZrN60w9G1K3/xsQ3LDMdERGUDwzBRGVWRZ4U9qRUGrAHYbNLIQVjqHKENMUJj0FkXzFUKgCZE6hoRBpNOi5zcTNwyWcNqnkWT/1/geg5QNxgI0FsQoLcgUG9BgD4UyM4AstKA7Fwg4xYsN7JgSc2xhuE8M0R6LsxZIv/atfL3xt1OeLachePCBGNXnyxU5J8ZIqLiwjBMVIK49XLhKYOwTpcfhAMN0Abq5VlhBAcAfsGAXzByLVnItWQh02REVn4gzjID6Zl6ZKQZcCX0Fu6vlo0Qox4BusoIFH4QN05D/N8l4FoKLFcyYL5mDcMi2wRzloDZrIEl/1xmk0buaKEMwzoH31uLWSMv+LNV1GBsMWmc/hwpjzMYExF5hmGYqAyqyEHG022XlaQgrAvQAAYttIF69aywvx80AWGAfzBMuVeRZ9Egy6RFeh6Qa7HOCt+84YfUm344Vy0LV7P1qBEUCaNFA3H1NHApGUi+BtOFdIhbeTBdSIfFpEFejhZmkxYWs0a96Uf+n015GugNwuH1S8FUObPtijzerPFKCQWDMVUkWo0OWo3rDi+FPR+RhGGYqIRwVrholNsra/wN0Bh01uJfo65gVzmDP2Dwh0WYYYEZJosGeRYNcvPXvGVn6ZGZYUB2lh5ZOVpkmbSwwAxx9R/gUjLEpSswnbkJ04V0mLMEsjP1cgC2mDQw5dkHYUmukxAMRVC2e006IYdrKSgrZ3zdBWJXs8PO3kNH105ERAzDRGUOA4uaHIQNWuvub9LNL39mR9EPWGvKQ6jhjvyvMmDQGmHU6lE9MA83I1NwLkODAJ21ZlivMQLpqRBXr8P8f2kwX8uy7mCXlWc3EwxYvy/OtoRWlkIoZ4LlTsT5wVgKsY5mi3V6YReIpdfvSGEDMcBQTETkCMMwUQngrLCVpwvnAPV7Jm21rDHoCsKwQf0xp8hOh8ZsghZAJUMwAoPCEGK8jDtDM+Gn08JPF4QsUxrScnUwaAX0ZgssKWmwXMuAJTUH2jA/iDwLzNesEVZavOeIFISlUCn9Vw6b+bXCjoKxo790lTPFtq/f1SxxUQKx6joZiqmcYJkEFSeGYaIyhOHESgpr0qwwoJFnheUSCb2uYFY4LxsA8tuj5QIADMZA3BFWA/DXA7duQlz7P4QBiDIarNsyp18FbqZBZOZBE2iwnudWHjKuW/9s8LfIs7VKyiBsyrMJonmA3lBwv1Yv7IJxbv5x5V++0n3KccqA7WqWuKiBWDq3dA4iIl/FMExEpc5dGNP4O/+rSqRnQmMyA8FmORTDZAZSr0NcPQ9k50KkpMJy4Tp0Te8E/I0Q/n6AyQxNzWrQBQcCGbes13ExFQb/bITW1kBkm5F9UwqkGuRmWbtJ6PQCeTnqHsN5JqH6s0Gf/3ryw7GjwOpqpljiqHTC24EYsIZiBmIi8lUMw0TFjCUS7mltZkIBm1phQC6L0Bi01m2STWYgO8e6UUbGLSA9A9Dn/5Vmsm6ggYxbEFm5MF++BWPcQGQEGqHV6KDX5P9Xa4Tm1k2ItMtAZiq0lW7gjqrBsFzJgOlSJvyRBUOWCXk5WmsIztbClKeBNj/86uFgdhgF4digL7hfD3UolmaAnYViV7PExRWIpfMQEfkShmGiMsLXQ4gyyNmFPUPBTKzIs0Bj0ELkmaHR54diQJ7dBSBvmmFOzYFIz4WxcQTgFwyLyLLerzEDAjBZcqE3+APGQMBiguYOQJisdcd6AGaDFppbedCl50KbYYZWJ6DNnxW2mDTIgxZ6aKA3WEOvcobYUUgGXIdiT2eJnZVN3G4gBhiKqWzSQgctvFgz7MVzUfnHMExEZZLTUJdnhsjTQtzIhibIrLpLZOZZt0tOzbH2C07JQ3amDjh2DdpfdiKkQWPAlAtNQBgsofldJ7RaaPxDAJ0BQquHJjwHwmSGFgCMOmhu5sBi0MGILOh0Zuj0Qp4lBgCzzroJhx75O915EIgByOOVHNUTK3kyS+yNQCydn4GYiHwBwzBRMfI0lDB0uJFnsS6cyyfyrA2Exc2c/PvN1hB8Kw/Is8CUkpe/YYYOOr2Axl8Py9kr0ObXCSMgDFqNDhZhBnR6a59is8k6QxwcCE12rjUQV1JfhuZWHrTpuarvqylPI88SG/WA3qSVQ7AyDDsKxo4CMQC7WWJd/kI81deKWeLiDMTS+YiIKiqGYSIqUxy2Ecsvk5BCsBTNpK+lEGxJz5V3jsvO1MHgZ7EGOqnMIr/OWORlWduw6fL/CtRaA7HGYoIw+AP+Rus2z3odlEvlRH6vY8MN60I9qWxCCotSezRlyLUNwaY8IXecUNYT2/K0lthZ2YRtDfbt4CwxlTatVg+d1uDF8+V57VxU/jEME1GZpVHVCpsVf7aojon0XJizBMxmLfKytcjLD6gWvXXWVNWT2GQGcm9ZO09Y9NYgDFhniLX6/NnhbGj0OiAjCwKQA7FQXI8UiAHAoi/Ynlkqn3AXiOXz5C+yczdLLG3WATgOxIDjbhMsmyAico1hmKiYsESi8JxuQZwffgFAKI6JbBNEniU//FpDsBRG7eQq6ovNJnUY1tkEYr9g69cmMzQIlgOxBVDNFBvTcwFYFN9D66jCBmIlZ7PEnvxlzbIJIqLCYxgmojLBURCWO0dkmwp6DeeHYAAOZ4NN+VsfOyS1XLOYrKUSCLAGY+UMMQDojUCeHsjvRwy9DvD3g7aSOhBbABiRC3OWRfEk1kBsMWlg1mmg1WuALA0Meg3yTMJp2YTUn9jZLLFt2YRUR+ysbKK4AjHAWWIiqlgYhomo1DmdEVaQAjBgDckWkwZms7UswWK2LmLLzdJCqxfOA7HJDJGXZ92kw2Ky3rR6ayAGCv4LWBfVWUyAXgdNQIA8I60NNtsFYh1y8/+UP0axSQcA6A3q2WopACsX2kmBWH6Mh4vrgMLVETMQU3nE1mpUnBiGiYoBSyQc0+kKQpqnpNlh6c8A7IJwXrYWuVnagppaV++/yWTdrCPgFgQAjSGgIBBbTOqx2vzZYVgX7cmBGPYzxOpArIUxwCIHdMACU44yHDuY+VUsrHMXim+njpiBmIhIjWGYiEqNJzPCgH0Itpg0MJs0chA25RV8LTHBOrlrfbxZPofMbAJMuQWBWEmrt/7taDEBRsXxvDxAbwb8jXIg1uRZ5D/bBmLrqaTXqK44VgZe+Zql7hJOyiakwCu9Pk9miIHiD8TSOYmIyiOGYaJS4qvhwdMArCS3LjMXtDBTBmFlqQRgrad1yGQGsnOtt+D8RXSA40AMFMwY63X55RL+UJ5ZCwC5BWUTtoFYq7NeT0HJhAVavUb1vXe0kM7TbhMmAHqD49nZkgzEAGeJiaj8Yhgm8jJvBgxfZhuszIqwazFbZ4KlDS88IfIssGTkQutvtNYNZ+cA/igIxMoFdLblEhK9DhqDAcJkAvR6QG+GJsSoKptQB2LpCFQ1xIDrThO2x5WBWGuzAYdtIFZu0MFATBWFVqODVuPFmmEvnovKP4ZhIirzlHXGZqlEwqQul3AWwsxmDfR5FkDRp1juKmEyA0Z9wWI6V/T5f13aLKhTN1UreiAGCsJvbo6A0U+9MYfyMY4CsfU+K9sd6wAwEBMROeGkIScRFSeGhcKzDb7KOmHp/ZSCo9nZ+5trLgjBJrM1FEsh2JSrHit9LfUe1ufPJMn/1ReUTxh0gFEHjUGbf9NBE2KELkADg58FOr2Awc8CY4D1ptML6+51euuiOUP+ph3SAjopCMuXkv+6pNZs0i8C0gx5wesv+AUBgByIlWMA2C1i9PbPIz8doYpm8eLFaNasGUJDQxEaGorY2Fhs2bJFNebEiRPo168fwsLCEBISgvbt2+PcuXMAgBs3bmDChAmoX78+AgMDUatWLUycOBGpqakOny8nJwctWrSARqPB4cOHi/vl+TzODBNRmWa7YE4Oejb/lQKjxWTtvQsUhGJpcw6RZ7EJw/k3ZFtX27mZHIZeL/cd1gAF5RL+yvnf/D/fAuCvhw4mSDPEFrP1uowBFnXrNRR0kVC2XHNEWninN9jPhstt5fK/VvYilt8bzhBTOVTaZRI1atTA3LlzERMTAwBISEhA//79cejQITRu3BinT5/Gvffei/j4eLzyyisICwvDiRMn4O9vXcV78eJFXLx4EfPnz0ejRo3wzz//4KmnnsLFixfxxRdf2D3flClTEB0djd9+++32Xyy5xTBM5EWcESsZpjz1zKer8GgNZAX3izwzNCaTtW5Yr7PODut16h7Druh1+QEact2w9c9maPx0QK4ZwqCDNlARjvNyYbDpMmEMsDjcvrm4ArH8Z0X7OdtexMURiKXzEpVnffv2VX09a9YsLF68GHv37kXjxo0xbdo0PPTQQ3jjjTfkMXfeeaf85yZNmmDdunXy13fddRdmzZqFRx99FCaTCXp9QRzbsmULtm7dinXr1tnNPlPxcBiGf//990KfqFGjRqpvJhE5xmDgOeXH+bYlAWaT+yCsJM0MixwzNAFmdd2wyawsuHV/svxSCXl2OP+YxqADpAV1twCNwQIEGqzxNz0XWrPID8VSAAYsDnoKOwrEyj8rN+goSiB2xduBmKiiMZvN+Pzzz5GZmYnY2FhYLBZs2rQJU6ZMQY8ePXDo0CHUrVsXL7/8MgYMGOD0PKmpqQgNDVVlp8uXL2PMmDHYsGEDAgMDS+DVEOAkDEt1KkJ49heiVqvFqVOnVL8FERHdDikIK2tggYK62IJa4YJ6WsDxhhbWIGy2LqLLzZ/JlXajk2aHAfXfiFIoVs4Y620+WjWZFQvrrOUSGuRCGHUFZRO38iAMWmhDjDAgF3nQqgJxUUombHesK+oMsbOSCW/jDDGVVWlpaaqv/fz84Ofn53DskSNHEBsbi+zsbAQHB2P9+vVo1KgRkpOTkZGRgblz5+L111/H//73PyQlJeHhhx/Gjh070KlTJ7tzXb9+Ha+99hrGjh0rHxNCYNSoUXjqqafQunVrnD171quvlZxzOgWyb98+3HHHHW5PIIRAkyZNvHpRRESAfXhyFqYcbWChHGsxadSrhZUL6OS64XzWrd08K5tQ1Q5LC+us5RIC1g05YNBCG2iA5VYeNAZrELYNxLYzsYUpmQAKwrG3ArGylMKbWEdMRVVcNcM1a9ZUHZ8xYwZmzpzp8DH169fH4cOHcfPmTaxbtw4jR47Erl27UKlSJQBA//798dxzzwGwTiru3r0bH3zwgV0YTktLQ+/evdGoUSPMmDFDPr5w4UKkpaXh5Zdf9tKrJE85DMOdOnVCTEyM/A125/7770dAgIOG9UQ+hB8tFy/l7LCyRMJhEDYX7MJmNmlg8AMglUnkzxJrTCbApCuYHVbO+lpM1kDsjDQbrKwdlu/TQRNgBJBrnYUONAC38uQSCqTnQpd/zVIg1huE3do9TwOxaqc6g7qWGri9GeLiKJlgIKay5Pz58wgNDZW/djYrDABGo1FeQNe6dWscOHAACxYswMKFC6HX69GoUSPV+IYNG+Knn35SHUtPT0fPnj3lmWWDwSDf9/3332Pv3r1219C6dWuMGDECCQkJRX6d5JrDv+137NhRqJNs3rzZKxdDVNExBHjGtq+wMtypu0g4LiEw2vzNZjZroMs2QQQabOqGnc0O69z3HZbGIb92GFCVTSjDr7yg7haAEKO1B3GW9dq1JgGDvzUUFyYQu9q62bYPcVkqmZCuh/8vUFkgtUorCiEEcnJyYDQa0aZNG5w8eVJ1/6lTp1C7dm3567S0NPTo0QN+fn7YuHGj3GlC8u677+L111+Xv7548SJ69OiBTz/9FO3atSvSNZJnuOKNiMoN2y4Srtj22pVJdcNyEFbMDivZfq26EOc71Mn3SyUUUv2wtKAOKGi5liUAfwvysrVuA7H81DYzxMr6YXeBGCj4ZcJVIFYqrgV1DMRUGFrooIUXyyQKea6pU6eiV69eqFmzJtLT05GYmIidO3ciKSkJAPDvf/8bQ4cOxf33348uXbogKSkJX3/9NXbu3AnAOiPcvXt33Lp1C6tXr0ZaWppcr3zHHXdAp9OhVq1aqucMDg4GYO08UaNGjdt8xeSK2zAshMAXX3yBHTt24MqVK7BYLKr7v/zyy2K7OCIiSVGCkylPA0P+5Iu8iA76glIJvc3ssCPKUKwsi1B0kQAczw4DUNcP55dMCIMWGuihzbNu7GHJD5tavYAeBe2OpbCqnBV2VDLhaSD2dOvmkiiXkF4vAzGVB5cvX0ZcXBwuXbqEsLAwNGvWDElJSejWrRsAYODAgfjggw8wZ84cTJw4EfXr18e6detw7733AgAOHjyIffv2AYBcaiE5c+YM6tSpU6Kvh9TchuFnn30WH330Ebp06YLIyEhoNPyLi8gW64W9z7aLhMTRMWVQdDTeYtIAirphDWAtlTC4mB2WNtRwFpIBdc9h5TH5HGZruQRQ0MVCsaBOm19GYVBs25wHrRyItaaC2VzptUklE8rXLf3ZWSBWvm+OArF0PwMxkWPLli1zO2b06NEYPXq0w/s6d+7scYcuSZ06dQr9GCoat2F49erV+PLLL/HQQw+VxPUQVVj8B7/onAVgaXti5TGDXqPahU56vNRRQigCsfqENrPD8oYchew77Oy4Mb9swmD9r8aQP2Ns0EILC7T5u9NJu9TZ9iC2DcSOOAvEAKDVCaeBWHl/aQRiIqLS5PZv+bCwMPYPJqJS42jxnMePtRkvsk3QBBrkumFVqYQ+f3ZY+QBngdhZzbAtRdcJZbmENQQX1A8DJrsOE4B9D2KgiF0mXARioOCXjdIKxJwdJne0Gq2XW6tp3Q8in+H2p2HmzJl45ZVXkJWVVRLXQ0Q+zuzB4jhPWBSbdkjnlWqFlbvRqTtK2IRcaabY0/CrJLVr0+vl3ek0fjpoDFr1LdAAjb8eugBr6NTqBbQ6AZ0+/8/6/D/bdHgw6AvqiVWXrAjHeTYzy7a/WEgbmADqrh22M/G235PiCK6ccSai0uJ2Znjw4MFYu3Ytqlatijp16qh64gHAr7/+WmwXR1RRcNardKk6SuRZZ2RFngUaT2aHgYIZYg9oDIb8hXT2O9c5KpcA4HRBHQCnPYilkhBPNuZwtCmHNPtrgrTPiLCbIQbAlmtEFZDZbMY333yDZcuWYePGjaV9OaXObRgeNWoUDh48iEcffZQL6IioTHDWYxhQLzBTznBaTBpYdAV1w5r8zhIAVG3WkH9mDaBolWZ23WpNolxQZ1daYT1uVy4B+/ph293plB0m5KeCOgArA7HTHsQOArF1vEYOxID1lwetYjc6Z7vUcUEdUfly8uRJLF++HB9//DGuXr2KLl26lPYllQluw/CmTZvw7bffyu1BiEiNH++WDKnHsGdjCzbeMOVpoNVroNVZd6IT2SbAoIXUYg05io4PjkKvdMxdIFYEYY3BAJGXZ38/UDDrnN9dQuSZoTHkV6zl1w87W1DnqgexsiRC2W3CUSC2nvf2N+VgIKaSUlzbMfuCzMxMfPbZZ1i2bBl2796NunXrYty4cRg1apTddtS+ym0YrlmzZpF3ZyEiKi22HSUAa5DTSq3V8iyAbakE4Hx2GFDM+noWilXHlPLMgItyCWcL6qRArJzxtu1B7Iy7lmvclIOoYtm7dy+WLVuGzz77DGazGYMGDcKsWbPQqVOn0r60MsdtGH7zzTcxZcoUfPDBB2wKTUS3zTZ0FSeL2VoWYDFpYNGr64alUgmRp82fHXYyA+woALvqPZxPrh12MF6aiXZaLqGoHwYK+g1br10jlzcAzluuOaohlgKx9DjAdYcJT3sQFxcGYqKi69ixIypVqoQ33ngDI0aMkHe0I3tuw/Cjjz6KW7du4a677kJgYKDdArobN24U28URVQT8x9z7tHoB5LkfZ0uqG9ZILdZsSbvH5YdXax2voeA+wLPaYVsOHlOw8YdW8VwWxZ+t9cOA+wV10s+YtKBO9ZIUpRFAQWBW1g8r64NdLahzFoiLs/8wAzEBLJMoih49emDbtm2YNWsWzp8/j8cffxx33XVXaV9WmeQ2DL/zzjslcBlE5AuUgakkQ45UN2zwKzgmpFlhZakEYNc1osiL6STKrZttyIvppAMGRbdLB/XDgPsFdcoOE9bXLhyWUXjaYQJQL6hTYiAmKrs2b96MCxcuICEhAcuXL8ecOXNw33334fHHH8eQIUMQEBBQ2pdYZrgNwyNHjiyJ6yAi8hpp9tOot37Er6yP1erz64YdlkroHM4Ay+3WXAViu93r3NQNoyAEC8Da8s1N/TDgfkGdMhA742pBnW2HCelYadYPE1HR1KhRA9OmTcO0adOwY8cOLF++HE8//TQmTpyIIUOGYPTo0YiNjS3tyyx1DjfdSEtLK9RJ0tPTvXIxRORbiiM4KWtllbOJtptO2MmfHS44kWJDDuUx2/tdkEssbNus5W/EIW3GYR1r3YQDBmljDh1g0ELjr7duvOFgQw6pvldiPVZQMgHYzwZLbDfkAKyBWNq6WnmfcsGe9GflZiYlgSGb6PZ06dIFq1atwqVLlzB37lz8+uuv6NixY2lfVpngMAyHh4fjypUrHp+kevXq+Pvvv712UURU8dxumLENfnqDBga9xmUHBaBgEZ38dX7YE9km1W50ABQ70tmHXLlVmu19HoTigovWOZ4h9tNZu0soyiRUgdiglQOxTu9+hzrb90Rv0KjKJiR5poISCotN4JV2qFMds9mhzlEgLs5yBgZiH2Y2ef9Wwc2aNQszZsyQv05KSkL//v0xbdo0DBs2DAcPHuTGafkclkkIIbB06VKPVx7m2fbTJPIR7v5xZp1j2WI2FdQNCwelEhqjLr/NmoMd5/R6a7mEwVCoumGHPYfzzyePQX4QhzUEK+uIRZ4Zmvz6YZiE6mfObNK4XVAHwGXJBAC7conCLKiTr4X1w0Rlytq1azF79mwAwPXr1zFo0CAMGzYMe/bswTPPPINPPvkELVq0KN2LLCMchuFatWphyZIlHp8kKirKrssEEZGkNGb0bOuGTXkaGPMDnVavDmvKnsPw09nX/wLWcKwMxIWlXEjnoKbYdjGdu3ZrgGf1wwBcbtvsqP+ws/phdzvUqa6NgZioVJ09exaNGzcGYN1A7e6778bSpUtx6NAh9OjRo5SvrmxxGIbPnj1bwpdBRL6qMMFGOTt5O5Qt1qQyBADyjnQArLPDgHpBXX4gtjteGE62bLYNwdbrsW29VtBuDVD3H/Zky2aJbXcJ2/7DykAMeL4hh23/YS6oI6+xmAGLF0sbLB6WNpVjAQEByM7OBgBs374d3bt3BwBUqVIFGRkZpXlpZY7bbhJEROWZtBOdcvMN5cf7yg04YNBat0m2nR2W5Adf1eyws006HHEzO2xH0V0CgKrdmtls8zoAwGbLamsbNsct12zZ9h+23aGOG3IQlS/33XcfXn75ZfTp0wdffPEFvvvuOwDAX3/9xW2YbThcQEdEVFbZBUC43oYYgGqW05zfHcFs1sgL5wDYLaRTdZZQyg+zqjpgk/OFdwDsyyqU4dmms4RyMZ2yuwQAubuExqCVu0soF8/pDZ4tqHNFuaDOYrMwzpRXsBjR0YI6CRfUEZW+t99+G9euXcOUKVMwfvx4uYVaVlYWpk6dWspXV7ZwZpiIilVxBBZpptcZ213XAHXdMOCkVEJaSAe4nR0uMlezw3qdXbmEFNCV5RLIht1COumXBEflEs62bLZVmP7D7uqHS2pBHRE5Vrt2bezevdvueO/evUvhaso2hmEiKnXF9ZG3chGdxLZUQtVVwqAt+K9t7bBEUe9b5MV0gOPaYQfh27a7BABVuQSg3q4ZcB6IAcdbNjuiXFAHFMz+Oqoflu53tSFHcWG5hI/wdjs0H2itRp5jmQRRMeE/0N4h9dS1O56/wYS08MuWo803bHvpKj/Ol3oOW/9cUD6h2nxDtemGg3KJorAN2y7KJWSKcgkAqtIIqf+wLUcbcjhiG5SdlUtIWC5BROWd0zDctWtXfPnll04feO3aNdx5553FclFE5LuKuviqsHXD8vH8DTgAqcVafuDNNTuuHVbWBisCcZFCsaPaYQUpEMtf5wdjaTMOAKrd6ZS/NLirH/YkENvWDyvfN2X9MAC7wOwIAzERlUVOw/COHTswZMgQ1e4lSmazGf/880+xXRgRkTLcOdp+uLDMillN5c50Up9h6c/KxXQAHG/NXEiqcgq77Zl16j8rtmm2PtZ2q2brX93S7LAUiAHYbdesDMSuAqOj/sO2x91t16wMzCW9XTMRUVG5LJNYvHgxFixYgIEDB7InHRGVCYWdAVRuOSxRdkSwLZWwPkg9O+yQzeyw9fG3WzKhDskOyyUU9xWmXEIZiB3NDrudWfdgu2bbP3O7ZvIai8n7N6J8LsNw//79sWfPHhw/fhyxsbH4+++/S+q6iMo8/sNbemxriItSN6wMbHalErBptZZndlw7XIhA7DQoS7PCDmaHHVLMDhemXELJNhA7e/+clUtIXLVbs8VATERlldsFdA0bNsT+/ftRs2ZNtGnTBtu3by+J6yKiCuB2gom7x9rOcnpCCmrKUgmJbamELNfNzLADUg1xkWqJPZkdvs1yCfmpPHjvXJVLSBzVD9vODgMsmSCissmjbhJhYWHYtGkTxowZg4ceeghvv/12cV8XEVGhFSoYOyiVENkmVamE3SYcjmqHHcwO23IYiJWht7CzwwqelksUpn7YFUflEsr7XJVLODuPt3F2uAKSWqt580aUz2mfYY1GY/f13Llz0bJlS8THx+P7778v9osjKq/YVs27tDph17arsEx5Aka9orbVYD2ncsMInQHy9syANWiKPEvBJhyqE9psnKHXWY/ZLo4rCpuNOWw34rD9s/S17WYcAJyWLQCOt2t2xHYzDunnW/ne2W7XLN2v3BDEVnH2JGb/YSLylNOZYSEc/wU1dOhQ/PTTTzhy5EixXRQR+R7VYi+deuGX9F9XHSU8aRVmsfloH3DQVQLwbHZYPpHz+mG33AVnJ63WHG7VjKKVSxS2/3BhyyXkP7O7BBGVUS5bq1WuXNnhfS1atMDBgwexYsWKYrswIiJn7BeJud6aWclhQLMplQDUdcOqGmLVyZ0E36K0YLMtlbApo1C2WrOlXEznSbkEgCL1H1a6nXIJLqYjorLE6bREp06dXD6wSpUqeOyxx7x+QUREnlJ+TF8YjkolLCYNLLqCUgkoSyQMWmubtfzHy88mBVe5TMLsUZ2vW6qtmnWqmWiNn851uUR+cHdVLmFbQuBpSYFtuYR0XpZLULHzdjs0tlYjBW7HTERlVlECkrNZYqnfsLNSCcA6YynyLPJCOrs2a446S3hzdtiWB7PDrrZqLmp3CU9mh5XvJcsliKg8YxgmogrD44/4He2UZtv5wFGbNRSidhgofCB2NqusV+5Gp261VnBca1cuISlMdwl3HTlsF9m5KpeQjtn+meUSRFSWeGHZMxGRd7j6SFs1gwnABMXH8IquCIA10NnWCjtiMWnsSiV0OmEtj/C3LqTTGLTWhXT5j7HrLCGXM+gdl0vIXSE8/OtW1Z3CbNdZQhW2jU46TeQvANQYtNBCHebddZeQ3v/CdJeQzmtXLoGCIKq83xmWS5AzwmyCMN/mDo825yOScGaYiMo8Z7Wmth/zO+MqGDsqlQDUC+lczg7LJyriP66FCcn55NlhJ2wX0ykDprfLJQA4LZeQ7vN0dpiIqDQwDBNRheTo435l3bCnpRK2bdYcdpZwVy4B3GaHCQcbdEic7Eyn3KoZgGqrZmUglu93shlHYbZqlkjlEtIvGvIxs/p9lu9juQQRlSKGYSIqk3SKPriF4elspsRZEJYW0kl/Vsk1u54ddhWIbUOxo5BcmNphN2wX09m+n9LssJKn21w76z2s5MliOoAzxFS2LV68GM2aNUNoaChCQ0MRGxuLLVu2yPePGjUKGo1GdWvfvr3qHMnJyYiLi0NUVBSCgoJwzz334IsvvlCNqVOnjt15XnrppRJ5jb6MNcNEVK5IJRN6ALk27cGUdcOFYcrTwKgXsJit7b+kYOaozZoAVAvXCk7ipK2ao+OF2pjDde2w21ZrADRSlbWpoMew6ims98qkwCrVXruqH1ZS1vwq67ml+5TPLbVac1QnzNphsiO83FpNFO5cNWrUwNy5cxETEwMASEhIQP/+/XHo0CE0btwYANCzZ0/V/gtGo1F1jri4OKSmpmLjxo2IiIjAmjVrMHToUPzyyy9o2bKlPO7VV1/FmDFj5K+Dg4ML/fKocBiGiajc0OqEXb9ciauFYQBUi70A+3BmyQ9nUoizXUgHFIRgZTAG8sOnqjew3nk4vl3KIGzQFZRxKK8PnvUelijDoTIoK487C8TlcatmosLq27ev6utZs2Zh8eLF2Lt3rxyG/fz8EBUV5fQce/bsweLFi9G2bVsAwH/+8x+8/fbb+PXXX1VhOCQkxOV5yPtYJkHkZZx1uj3OApCz0OSIu1IJ5eyxsh2Yqq5VuZBO2WYtz6b0QT5pIcolPKEM0i5qh5Wt1pxy0ntYolxMZ3+86OUSZbX3MEM23Q6z2YzExERkZmYiNjZWPr5z505UrVoVd999N8aMGYMrV66oHnfvvffi008/xY0bN2CxWJCYmIicnBx07txZNe5///sfqlSpghYtWmDWrFnIzc0tiZfl0zgzTERllk5nLVko6kfbjlqsSTOZtkx51mICaXZYek4t7GeHpZlW1eywtPFFYcolisq2/ZrESau1gq/1EHnWf1gdBcKSKJeQjjkrlzCbNXJY5+wwFbe0tDTV135+fvDz83M49siRI4iNjUV2djaCg4Oxfv16NGrUCADQq1cvDB48GLVr18aZM2fw3//+Fw888AAOHjwon+/TTz/F0KFDUaVKFej1egQGBmL9+vW466675Od49tlncc899yA8PBz79+/Hyy+/jDNnzmDp0qXF9A4QwDBMROWMo37DSp7WDZvyrDXG8nkV4UzZcxiwzg5rDNb6P9UWzQoiz1xQLgFYZ4dvt1zC0bbMUu2wTbkEYG355s7t9B52xV3vYaDgF47C9B4uLqwdLmdMuYDJi2VHJusvhTVr1lQdnjFjBmbOnOnwIfXr18fhw4dx8+ZNrFu3DiNHjsSuXbvQqFEjDB06VB7XpEkTtG7dGrVr18amTZvw8MMPA7CWRaSkpGD79u2IiIjAhg0bMHjwYPz4449o2rQpAOC5556Tz9OsWTOEh4fjX//6lzxbTMWDYZiIKiRHs5hSUHM0OyzVtrpaSKdcPGc7O6yx3YijuGeHJUWYHQZM0MIivz5Xv2CUxmI6zg5TSTl//jxCQ0Plr53NCgPWBXHSArrWrVvjwIEDWLBgAT788EO7sdWqVUPt2rXx559/AgBOnz6NRYsW4ejRo3KNcfPmzfHjjz/ivffewwcffODwOaWOFH/99RfDcDEqsZrhOXPmoE2bNggJCUHVqlUxYMAAnDx5UjVGCIGZM2ciOjoaAQEB6Ny5M44dO6Yak5OTgwkTJiAiIgJBQUHo168fLly4oBqTkpKCuLg4hIWFISwsDHFxcbh586ZqzLlz59C3b18EBQUhIiICEydOtKvLOXLkCDp16oSAgABUr14dr776KoTgX8pkxVml4nO7dcPKOldPal6VVPXDTtqsOew1DLhvtWb756JysFGHo1Zrtr2HbTnrPexuq+bC9B62rQ121nvYVknUDzNkk9QqTbq5CsO2hBDIyclxeN/169dx/vx5VKtWDQBw69YtAIBWq/7/UKfTwWJx/PcJABw6dAgA5PNQ8SixMLxr1y4888wz2Lt3L7Zt2waTyYTu3bsjMzNTHvPGG2/grbfewqJFi3DgwAFERUWhW7duSE9Pl8dMmjQJ69evR2JiIn766SdkZGSgT58+MJsL/oEZPnw4Dh8+jKSkJCQlJeHw4cOIi4uT7zebzejduzcyMzPx008/ITExEevWrcPkyZPlMWlpaejWrRuio6Nx4MABLFy4EPPnz8dbb71VzO8UUcXhjV8YbBd7uVPYgGO7AQfgeCEdAOebcOT3HVaRF895MRDbzirLC+sU/YfzF9M5Cr+OdqZz1HvYEU/fV0ezxp4sprPb8ET5eP7iSRaT92+FMHXqVPz44484e/Ysjhw5gmnTpmHnzp0YMWIEMjIy8MILL2DPnj04e/Ysdu7cib59+yIiIgIDBw4EADRo0AAxMTEYO3Ys9u/fj9OnT+PNN9/Etm3bMGDAAADWbhNvv/02Dh8+jDNnzuCzzz7D2LFj0a9fP9SqVcvb7ygplFiZRFJSkurrFStWoGrVqjh48CDuv/9+CCHwzjvvYNq0aXJ9TUJCAiIjI7FmzRqMHTsWqampWLZsGVatWoUHH3wQALB69WrUrFkT27dvR48ePXDixAkkJSVh7969aNeuHQBgyZIliI2NxcmTJ1G/fn1s3boVx48fx/nz5xEdHQ0AePPNNzFq1CjMmjULoaGh+OSTT5CdnY2VK1fCz88PTZo0walTp/DWW2/h+eefh0bDv5yJSpKyxtOTj/XdkUKbbbs1qVQCgMOFdICiRMJgX/JgVzvsjKclE7ZlEG5qhz1qtQb1YjrA+72Hla3WCruYzpHiKpdg7TB54vLly4iLi8OlS5cQFhaGZs2aISkpCd26dUNWVhaOHDmCjz/+GDdv3kS1atXQpUsXfPrppwgJCQEAGAwGbN68GS+99BL69u2LjIwMxMTEICEhAQ899BAAa4nGp59+ildeeQU5OTmoXbs2xowZgylTppTmS/cJpVYznJqaCgCoXLkyAODMmTNITk5G9+7d5TF+fn7o1KkTdu/ejbFjx+LgwYPIy8tTjYmOjkaTJk2we/du9OjRA3v27EFYWJgchAFrzU1YWBh2796N+vXrY8+ePWjSpIkchAGgR48eyMnJwcGDB9GlSxfs2bMHnTp1Un1k0qNHD7z88ss4e/Ys6tatW2zvDRE5p+wF7IoUcvNMQtVVwrbfsESqEwagCt0WRYAT2SZrza0UgvPMql7DTmuHvbGYzh0HG3Eg1/UMdGEW0yn7Bks87T0sndfTxXSOaoeJStOyZcuc3hcQEIBvv/3W7Tnq1auHdevWOb3/nnvuwd69e4t0fXR7SqXPsBACzz//PO699140adIEgHWbQgCIjIxUjY2MjJTvS05OhtFoRHh4uMsxVatWtXvOqlWrqsbYPk94eDiMRqPLMdLX0hhbOTk5SEtLU92IqOQVpVQCUNcJA/a9cIXcb9jstG5Yut+jUojbrR+WaodttmmWGRX1woraYdtyCSVntcOqpzWoA7E7FtsSFJtfZmxLVJSPMTvoR+xtrB0m8m2lMjM8fvx4/P777/jpp5/s7rMtPxBCuC1JsB3jaLw3xkiL55xdz5w5c/DKK6+4vFYiKjyp37Aj1m2YnZdKSLOXjnoOA45nim17DkvXADhus3Zbs8OezBbblkp4ME7jp3PYaq2gG0bBfa7CoKP2dRaTxun7acvZ7LC8Mx3KRqs1KuPMZsDsxe2YzV5YyEoVRonPDE+YMAEbN27Ejh07UKNGDfm4tPWg7azrlStX5BnZqKgo5ObmIiUlxeWYy5cv2z3v1atXVWNsnyclJQV5eXkux0i7ydjOGEtefvllpKamyrfz58+7eCeIyBVHAU15TJrBvB3Kj/g9WUgnz0zmL6TzeHbYNsi6+9od1e50hZsdVo1xszOdI1oHC+4czQ7blk9I753teyzdx9lhIiotJRaGhRAYP348vvzyS3z//fd2Nbd169ZFVFQUtm3bJh/Lzc3Frl270KFDBwBAq1atYDAYVGMuXbqEo0ePymNiY2ORmpqK/fv3y2P27duH1NRU1ZijR4/i0qVL8pitW7fCz88PrVq1ksf88MMPqnZrW7duRXR0NOrUqePwNfr5+dm1aSEi7/MkBDvaSlhv0DisF7ad4XTYAsxBmzXpa5edJRy1WrM97uhrW846SbgY567VmhSIldy1WlM9lYdt65zNINu+z4DnCyCJiLylxMLwM888g9WrV2PNmjUICQlBcnIykpOTkZWVBcBaejBp0iTMnj0b69evx9GjRzFq1CgEBgZi+PDhAICwsDDEx8dj8uTJ+O6773Do0CE8+uijaNq0qdxdomHDhujZsyfGjBmDvXv3Yu/evRgzZgz69OmD+vXrAwC6d++ORo0aIS4uDocOHcJ3332HF154AWPGjJED7PDhw+Hn54dRo0bh6NGjWL9+PWbPns1OEqTCVeju3c57pJytk2Ytnc0Y2/bGVXJV1+qqI4LdjKWDNmtOew7nmFWlCHat1hwpcss1z2aHnXHUas3ZLxzOeg87wtlh8ppSbq1GFVuJ1QwvXrwYANC5c2fV8RUrVmDUqFEAgClTpiArKwvjxo1DSkoK2rVrh61bt8qtSQDg7bffhl6vx5AhQ5CVlYWuXbti5cqV0OkK/uL/5JNPMHHiRLnrRL9+/bBo0SL5fp1Oh02bNmHcuHHo2LEjAgICMHz4cMyfP18eExYWhm3btuGZZ55B69atER4ejueffx7PP/+8t98aIioiKfR60l3Clm2tsO32zAAAQ0EtKwBVmzXAde0wjCWwI52zWuL847bbNLtrtQaYAJO6FEU+pfVep0HU084Sti3S5Nphg037NdYOE1EJ0QhuqVZs0tLSEBYWhgvxnRFq5M7XFZXtbBJni+3dzoybxcHMrKr7Q/4so/SRuzTDaFGMNeUJVVCTPra33VFNb7AGNUclAgY/i3zM4Gexlhn46wGDFtpAg/1ub/lhWOOns4ZS2w0yHMzmOvxayVHwdbbjXf5xaXZa5JitJRxSOYeitEPkma0z3dkmiDyL9T00F7yXeTla1furfO+lr6X31FEgVs7MS+8xoO5cYb3PfnZfmqGWxijrmotrJpf/D3tfWq4JNZbtRGpqaqFKCKV/R28eeQ2hIf7eu570bFRq+t9CXw9VTKXSWo2IyFOFCTyelkrYfrTvbiEd4LzNGgCHAdOux69djbCDnemkr92FXiU3tcO2G4N40mrNdjGd7S8GSp58f5yVSwDOW62xdpiISgqnK4mo3JBarDnbjc7ZjF5R2oBJ57PdkU6i3IRDLo+wrcvNVWzKIYVSR6URnhzzpL2a7a50RdiIQ8lR0PXWznTSY91txAFYw7ijjTiKa1c6KoOc/ZJ4O+cjyseZYSIqt9x1lbBtA+bp7LAt29IL6Zjt4jm72WFbtq3WXHWXcHRMr3M8E+ym7rgoG3F42moNKL7Z4dLCgE3kWxiGiajYlWQNprM2YI4424RDWSrhqs0aYN2EQ+os4YxdZ4niZFuLXMyt1lSL7GxqsG1JgVj5vtuWQyjrkiWl0VmCiHwHwzARlXmetFhTLsRyxF1Qc8dRmzXbIFao2mFPWq1J42xvjhRhdtjpWAet1twpymyqt2qHiyMQc3aYyHewZpiIyjWdTX2pLeX2v7Y83TRCSfk8Op3IL4coqB12FjIL2pvpHNcIA7ffak3irnbYdptmg85hqzWRV7DpkN2GGyha7bCjVmsAXNYOA9Zg7Kx2mHyA2eT+F8fCno8oH2eGiahC8WTHNE8+xndUKmE3c1mE2WG3G3F4e2GPJ9s0O+FoIw5n/X893abZFXezw6VZR0xEFRfDMNFtYs1iyXBXKiHVtHry+Nuh7G0skbdodrIbHQDX2zQD3pn1UnWf0Du8T2PQqWqHPVlMZ6sw2zQ7CsRFqR22XbwIFH/tMEsliHwDyySIqNzT6YXDWUPVTmce9q2VPsYH7AOWss2a7f06g/W/yplf1a50ilAp8syFb7XmKU9asEmMOo9arbmsxQaQa1PqUNhgqmyRJu9A56BEgnwYW6tRMeLMMBGVCG/P3DmrF1XOWjriaZ2ws77EyjZrXpsd9nQxXWE56SxRlNlhV4HY3eywI+WlswRnh4kqPs4ME1G5odxsw9ExrU54vJDO1eYQ7maH9VAs3PPG7LAjJbWYDvB4Iw6nC9YUreeKc3ZYeX4iIm/hzDARVQiOPkb3pKa1qBy1/fL67HBRP8r1IER7Y5tm+em8sGBRUpjZYflrbt1MRLeBM8NEVGK8vX2utD2z3XEHs7YS5UxyYbcOlo/D+RbNEq/MDntbIWaHVdcJANkF93myTTNgff/dbYVtOwtfmNlhRz9PxbFFs6NPJKiEmSxerhl28Qsr+RzODBNRueIo6Nh2lXDE2W5pzihDsqMg5GqLZre70pX07LBtZ4l8rrZptht7m9s0u2uzJgVmi4MZd0edJVzVDhMRFQbDMBFVGLYf0yvbf9kel3ga0pQc9sI1aRwGMod9h1X3exB2vTEjVohtmgF4dZtm+ZRe6jvsDmdxiagwWCZB5AX8x7dkKT+2lkolbBfSAY6Dk6NFdu7KJQCbhXJ6Ie+SpjwmjdOiYFc6R7OsIs8il07IQVRZvqDX5S96u82/oj1os6Yx6AoCubFgJzrb0A5YZ4cBU/7rs3IXTrV6AT08K5WwLUsp7K50xYmlEqWMrdWoGHFmmIhKVHEHCm8upHO0wMsZZ7PDQjkjnP9n1f055oIw6mojjhKeHXa1mE7J09lhd4vplJQ/I+52pVMdL+Y2a0RUMTEME1GFJQU0W462DvaEsy2abWdHbWuHHfFom2ZvKGxnifzaYdfj1ds0u1OY99pVZwnAcYkKEdHtYBgmonLJk+2ZHT3GG+2/HFGG5KLMDsuKYzGdkoezw+5arSkVtnbYEdsyFUezw6Y8m186SmGLZiKqeFgzTEQlrrhrPG23Z7bWrcIuTEl1oO7af/1/e/ceH1V954//deaahCTDTRIiEfBGuYjtwq6GtovgBfkhutV23WpT7FoXtwW0tO4qdgvrPix0tRbrhXXrDVu76e4i1oeXCC2C9QsoAqlBt9pWENQAXsiNJDNn5nx+f5z5nDnnzJmZM8lMMpN5PR+PPCAzJ5OZA8pr3nmf99vOPmZN/o/UHPzsvcMC9rFqeiBWAH0tMlyOWuvPMo5UvcPmEWvx3mG3izgUvyer3mEAxnnOdqSdPVAb/eKmMWyDsa6ZfcOZWVag5/BciagKoeaufieias4ei4ofwzARFS03G+mA5KBmXOzmchyX5QIvpA7y9sezH2cJwObQG4kN7sV0ciud7T7LxXRIhHchn7N8HYAe8NWIcVtSxR3Oc4fTkQHZae6w/DwKWFZtO4VlIqJssE2CiIYF++zbfIxZk/rbO2zpCx6KUWtOs4dTtUsE3PQaZ9c7DLjf/mfvHXaqPDudb4CtEkSUHVaGiWhIDMY4LMneNiGZx6xlsyktHdfVYftFaoNRHXYh2+owEAXiFd1sqsNuxtnJ4x2rw3Aes+bmMQaCrRJEww/DMBEVNTczh80B1ecXRkAzr/zNxYpmN3OHzY+c9ZpmcyDuT+9wKlmsaXaStBI5TfuJee5wqnOdau4wkBy4U61ojsUU15vyKDecfuqSszcO0SgQzeHq8qj9bRqVMoZhIhq2zBVhczg1c1rC4UamamNSn7LfxYNmqg7nQrre4biUiziQuToMWC8ktFeHc3Wu0y3hoKExmD/tIcol9gwT0ZDJx4+bB3vMWqreYXvos/cO93tNcy5GrWXTO+zSYPQOA85LOID+hWzKLQZhKlasDBNR0Uv341g3Y9bMP2J3O2Yt02QJoICrw6k4jFoDkHV12Kl3OOLQzgCkbkux92jbJ4TYbzd/T6dWCVYtixzXMVMesTJMRCVBLoWw3OZQHZbcTpYA8lMdzvuaZqfqsMN9jtVhv/OWOnN1OJtznUqqhSeplnDI+yyf56FizFDtzOkNKc8VFQOGYSIaUoPRKpFqzJqdm3+41aiwVDIzPX/zVjrXr3Uw1jS74LSm2RyC7Vvp7AHZvpXOcp9PZGxLsdMc3mBI9jcfjq0UnAKRVwy+VKwYholoWHD7D7FTddK+NthtSMt373De1zQPpHfYRXXY8b4sVjQDyWuazczn2szNNjwaPMMhJG/YsAEzZ85EdXU1qqur0dDQgBdeeMG4/7rrroOiKJaP888/3/GxhBBYuHAhFEXB008/nXT/c889h/POOw/l5eUYO3Ysrrzyyny9LIpjzzARDUv2MWtOW+fkmDVzmLL3H7uZh5vtZAkPNChlqR9PqNrgrGm2k9Ml3PQO2+YlZ9s7DLgbs2a8PBdj1uR99rCdj95hzhtOlte+7KiW455hLfMxJhMmTMC6detw5plnAgA2btyIK664Avv378f06dMBAJdeeikee+wx42sCgYDjY61fvx6K4vx3Z9OmTbjhhhvwwx/+EPPnz4cQAq2trVk9V8oewzARDbnBDihOY9bsYdntEg5zSAMSwdc+d1g+P0n0pZ47bJk5HI4N3prmFPfJIG6uVCt+j+ViOnM7h33cmZllgUaW67CB1H9X0l1IRzRQixcvtnx+5513YsOGDdi9e7cRhoPBIGpra9M+zu9//3vcc8892LNnD8aPH2+5LxqN4qabbsJdd92F66+/3rh9ypQpOXoVlArbJIhoWDGHn0xj1tysaAbcjVpL188qmXuHjXaJFISqpe4dzrUs1zQ7tUek6h2WbRHpLp4b6Jg1NxfSETnp7Oy0fITD4YxfE4vF0NTUhJMnT6KhocG4ffv27Rg3bhzOPvts3HDDDTh+/Ljl63p6evDVr34V999/v2No3rdvHz744AN4PB587nOfw/jx47Fw4UK8+eabA3+hlBbDMBEVhMH4kbM5kGXTO5yNdL3DjjNyU/QOm+W9d9gFpzYNxe8xeoeTLp5z6B02v/mQ59p8f7oebXsLRbo3HryQbmikq8IPuEIfjeb+A0B9fT1CoZDxsXbt2pRPobW1FZWVlQgGg7jxxhuxefNmTJs2DQCwcOFCPPnkk9i2bRt+/OMfY8+ePZg/f74lXH/nO9/BnDlzcMUVVzg+/rvvvgsAWLNmDb7//e/j2WefxahRozB37lx8+umnAzt/lBbbJIhoWMtmRbNT77Bsl3AzD9ftj+XluC/zmmaYw6YaS6xpBpJ7h9P1B/e3d9hpM53DmmbEn48CJIV2xe/N2DucKogOdL6z3Ehn/34S1zOTkyNHjqC6utr4PBgMpjx2ypQpaGlpQXt7OzZt2oQlS5Zgx44dmDZtGq6++mrjuBkzZmD27NmYOHEinnvuOVx55ZV45plnsG3bNuzfvz/l42ua/t/T7bffjquuugoA8Nhjj2HChAn4n//5HyxdunSgL5dSYBgmomHH7RION73Dbjld4AU49w4DSApm5jaIpDYE+yIO48Fz2DsMpO8fBpJ6h60Xz+mceoftbzLsK5rNx7i5YNH4mpj1ce3yvZ6ZF9FZFWOPtpwO4UYgEDAuoJs9ezb27NmDe++9Fw899FDSsePHj8fEiRPxxz/+EQCwbds2/PnPf8bIkSMtx1111VX44he/iO3btxs9xLLaDOjh/PTTT8fhw4f78/LIJbZJEFHByFewcLOiOV3vsNs1zUDya0jZ02rvHc7lmuZ0fF53lWMXvcNOzL3DUn9GqknmarHb+c6pZg7nYwEHlS4hRMoe408++QRHjhwxAu6tt96KN954Ay0tLcYHAPzkJz8xJlDMmjULwWAQb7/9tvE4qqri0KFDmDhxYn5fTIljZZiISk6+q8OOj5UivLmupGWzpnkgY9bStUvANmoN6avDit8TbwVJnvaQbsya5en4kyd22D+Xjy+r8PZpFo4j2IqwilnSYjlexxzL7rFWrVqFhQsXor6+Hl1dXWhqasL27dvR3NyM7u5urFmzBldddRXGjx+PQ4cOYdWqVRg7diy+9KUvAQBqa2sdL5o77bTTMHnyZAB6lfrGG2/E6tWrUV9fj4kTJ+Kuu+4CAHzlK18Z4AumdBiGiWhYSvUj7P72DkuZeofdjFozV0i1qGLpHXYatQbYxq0NZO5wjoKyEtT7g80TLyRz77BQIwBMLRMpWhvMt6drlbD3aEv5bIcgOnbsGBobG9HW1oZQKISZM2eiubkZF198MXp7e9Ha2oonnngC7e3tGD9+PObNm4df/epXqKqqyur73HXXXfD5fGhsbERvby/OO+88bNu2DaNGjcrTKyOAYZiICkwuK3bmICsvpJOyrQ67vcDLzGkBhPkxzbz+1I9jLLgA0leH3fYOmwOxU7Utj9Vhy/mwtY/0dwmHk5jpDY/xvX2CF9JRvzzyyCMp7ysvL8eLL76Y9WMKkfz30O/34+6778bdd9+d9eNR/7FnmIhKhlMIytQ7bB7/5bZ3WM4dlga6ptlOhGOJMGoPs7katZaqepyD3mHjoWxj1gbCfo7t9znhxW+5xbYTKlasDBNRwclXddh+m5vq8ECWN2i26qSd05pmIArFn7zG1VwddlzTnE37g2XJRpoKsXFM8qg1Bc4TMGR12Hzhn6wOGyPlvMnnOu3TdegbljKd41TVeSoy0Rz3DOdxJjcVH1aGiajkZdpKl011WDK3VGRaxJEkU3U4EnNexGF83o/qsFOQdhGuU1WH9UUcenVYSreEw/JtMyw7MVfgU5Hn2H4bkNupEqyGEhU/hmEiKki5/BF2uhXN6bbS2X+s7yb4JG1Kc/E6HNc0xwNx4oFdjFobaLUrXSB2GLVmuYgvYNpE57eubJYrms3n3F6tdbORLlPPdrr1zEREqbBNgohKVqrJEsZiCFOoMt/vdiud06g1IPUiDvm9zYz2iEyLOPp7MZ1dusUbsl3CxL6Iw3pfonUCffpt8s2IZeSZQ3jNdMGi01SJdO0QHLFW3PSflOSutSGXj0XFj5VhIioJTtVh4/McV4fTsVcvnX6Un7NFHFJSG0WWQcBeMXZYxCGZq8OW2+PVYclcHbZfSJdNddhNq4TTAg4iIolhmIgK1mAEl1Rb6WQ/q+VY0/3ZTJYA9NdinyAhX5+5p1i2S7iSqnfY+DXNVrq0F8yl6RW2t0tArw479Q7LYGzuHfb4hOXNiNeX3DPs+G0d+oiTWlJsvdnpcBsdEUkMw0RUMtxUhz1ekbPqcKoLvQY6ai0n1eFM7GubXYxaA5DUO2xmrg6nGrNmeegMF9KZuXkDwRFrROSEPcNEVNDy2dMpF3E4jVoDknuHUy3iyLQgQsrlqDVAD8w5W8ThhvG4zos4gOTeYevmPD3AG9voTEs47OuazbfZuVnPbGZfwEHFR0RiEN4c9gw7bE6k0sXKMBGVFDfB2l4ddqpa2j932y4BZB61lhQCU1SHzdIu4pD6M20iZUXY53iMbJcwqsNmDks4zL+3t6UYX5ZmjJ35TYhmO4dOCzjkcUREEsMwERW8wewdtl9MZw+99rFgbn6Ubw9sZim3pqUYtebYLmGqcjmOWkvVO+x2kUG6dolUo9Ykv9faOwykHbNmv5DOfH7t1eD+MFff2TdMRADbJIioBJlHqslWiaRjTKPUAL06HEVyq4MWVVy3S5h/nC8f2xy+U/W0ev3uXpcIx5LbJZKeRBab6jJxGLUG6NVhuYkOsAV0vwcKfBBqxPWYtVTM5zNTqwSQfhsdR6wVuIgG5LBNAhEt8zFUMlgZJqKikM/qcKZFHPYf56e7mM5Nu4T5teTsYrr+VofdylF1WLJXh42HcmhJARLnNdNUiVStEgNZq50JQzRRcWMYJqKS5LZ32Hy8m1FrbjmNWjOzj1qz9wg7yrSmOdPtmTgFYodRa0Dq3mGnFc1Acp92qlaJdNy2Tjj2ZYO9xESlimGYiIpGrsNKrtc0Zzt7GMjuYrp+j1rLVXXYzh6I47e5qQ6nGrOWq5nDqdjfgLBvmIjYM0xEFOc0ag1AyjXN9vvdsK8RNoc/LaoYq5otvcTy+8tRa/DpPbm2aQ1pR63lStp1zQ6j1pDcO6z4vcaKZo8v0bPt8eqj7WR/tpvWhlS9wuY/MynVSmYqfELVIHy56/N19ZMWKhmsDBNRUclndTjlMVmMWstUHZbsm+nswc9eHXbaTOd61BqQXB2OuminSCVdu4T9fjOH6jCgvwmxTJewTZqQrRLmc5qqdcLek51uxJoTtkoQlR6GYSIik2wupjNu8zr/iD+bdgkgPxfT6d8oDwsGXG6kM/cOW26P9w6nu5AuW25bJSQZfNkqQVTaGIaJqOgMVXXYfLy9OlxwF9Mhz9VhwDJFQv/VdDGdQ++wXNFsuaDOVB0GrFV4e282kLni7lY+p0sQUXFhzzARkU26Nc1OK5sB08pfn/XH9KlmD8veYafZwwCM3mEnHp+A6Ev0DkuyX1j+HoF4364a0z/vb++wDLnpLsCzr2o2P6/43GGYQrwMxELV9N9H9TcX5vMoZw7LNxo+KI4TIxzXM8Madu3nk6uZiwt7himfWBkmoqI0WNXhVNVf+6i1gWymM/e5upmR67SZzpF91BqQvjrsxJehZpKuXcJWHTb6hc3VYdNECcB6HjO1SjhtpMu2VYKIiGGYiIrWYIxaMz5PMWrNqV0i24vppHSvJ9uL6RxHrWUKvv0NxqnaJeIUvzcx3cJyu3XMmv1COiC/rRKA8znnRXREpYVtEkREKaQbtWb83vxjfaRul0ilP+0S8nvpgTdzu4Rl1BqQGLcWjcbbGkzj1+yj2OQxUqaWCfPoNfNjAvqFdPHDZNuE05g1r09fhZ1NqwQNc9EYoOawfpePi0qpaLEyTERFrVAupkt1v5vqsJtVzWb2i+lEn7tlGq6qw27Zq8RJK5ozV4dTjVkD4LpVwswckuW5tLedmJnbTzhRgqh0MQwTEdn0ZzOdbJdIt5nOLafpEk6b6SwBLsOotaQ1zdn2Djvx+ZznC9vnEJs/N69ojvcTK8avyf3D5s/N3Ly5cJJqZB0RlS6GYSIqeoPV4+l0kVem2cNmbnpds1nVDGS+mM4eiB1HrQ1UqkDssKZZzh2W0l1IZ/88US1mkCWi3GHPMBENC/bVxgNl7vmVvcNJx3hF8qpmmPqIvYm+Yp9f73VNN2oNQKJ/GEpSH7J9VbP5TYAHGpQy/ffy4jkFMKqvSSx9wra+4P6scHYYqWbcLh/TJDFaLQbF79F/LfNBqBF4vfq5N69njrjsxU61njkd+XcnFlOSLpykwiBUDcLL0WqUHwzDREQu5HL2cDqWC+pgDdWS08IIt7OHjd/7HS6Y608IdmK+iM6BEvRCyC15fv2iOnkhneL3wAMNnph+Tr3xc+exnWM37POGc/lmiYiGD7ZJENGwUSyzh7MZDeZ0EZhT36vr2cNmlg10aXqH0y3bMEt1UZ3Plzx32Nw7DDheSJeqVUI/zwr8PiVlFdip+p7pIjr7sURUGlgZJiJKI127hKwIy8Arg5XPL/rdLgE4j1szPz5Mgdse5lK1S7iuDkv9rRLLdgljI52tSuwzjVczVYeNMWu2jXSeaHKrRCaZWiUs7SVsiygKbJOgfGJlmIiGlXxX9DJNl7BUjVNMl5CyGbdmmT3scDGdebqEuTrstIBDShq15rYCnImsENsvprOH64A3qTJsv5AOSD9VgohooFgZJqJhJ9cX06XitIxD3u4DjB/Jm+/X78t+cYQ95KdaxqFFFXiQWMZhXECnxtwt4jD/Plc9xHa26rDi98T7hbXkC+lsCzjkQg435BuKAP+lI6I0+L8IIqIMZLB2M10C0FsXUk2XkEGuv+0STtvp0k2XMPcOp2yXAFJPljC+WfLtit9v+VyoauITp3YJ47FM1ej4VjrZHmG+kC5Vq4R5G50aFca5TMVyXrJ4kzRYb6qIaGgxDBPRsJTvIJPP6RLm8GufLuH0mtxOlzBaERy/qcMK5Syrw4rfnz4QG7fHl2wAxjIQY7yaacyaR42Y1jM7T5VI92bCiRZVLD3X5ts5Xq1wiWgMIofrmAXXMZMJe4aJaNgayukSsn841XQJOREByO10iVTLOACk3EyXNHkiVe+wi55ie7XYwr6IA7Au4bBtpANgCaZOfdrGQ9sumEtXKXY7UYLcYwWdihnDMBFRP9kriMaFXg7j1lKNY3MKxPYf+5svppNSBWIAxsV0MhADSFrV7Chqv6Cuf9UzSyC2X0wnb7ONWnO6kM68njmxfS75HPeH+XwRUWljGCaiYS3f1eFU0yU8XuskCRmIzfdnU02zT5eQZCCW3EyXAFysaTZXgfsRilMGYoeWC1kdVvwefQmHaeaw01QJO/MbiUg4ywsTXV6MR6Vtw4YNmDlzJqqrq1FdXY2Ghga88MILxv3XXXcdFEWxfJx//vmWxwiHw1i+fDnGjh2LESNG4PLLL8f7779v3L99+/akx5Afe/bsGbTXWooYholo2BuqQCx/n2ncWqrqMADHCjGQaJeQctYuYQ++A+itdAzEgHXUWorqsPk2r9d5RJ3bNxNO4+moyKha7j+yMGHCBKxbtw6vv/46Xn/9dcyfPx9XXHEF3nzzTeOYSy+9FG1tbcbH888/b3mMm2++GZs3b0ZTUxNeeeUVdHd347LLLkMspv83NmfOHMvXt7W14Zvf/CYmTZqE2bNnD/wcUkq8gI6IqB9SXQRnvt08PSLduDXA3XQJIBGIfX4l6fvbx61lnC7hz3BhnHmChHFBXYppEykkX1TnvKpZrmi2XEjn9wB9iWOMarppxJq9pSQQVBAJCwSCiduz6ckmcrJ48WLL53feeSc2bNiA3bt3Y/r06QCAYDCI2tpax6/v6OjAI488gp///Oe46KKLAAC/+MUvUF9fj9/85jdYsGABAoGA5etVVcUzzzyDZcuWQVH4dzifWBkmopKQj2Uclh/hp+kfdmqXMB7D1C6RbmuanQx6ThfUSenaJQCkrw67qAhbQm4aRoXY3i5hqg4DSLqQDki0Snhs5xBI3TccCKY+j9n2Cbv5e8PVzcWrs7PT8hEOhzN+TSwWQ1NTE06ePImGhgbj9u3bt2PcuHE4++yzccMNN+D48ePGfXv37oWqqrjkkkuM2+rq6jBjxgzs3LnT8fs888wz+Pjjj3Hdddf1/wWSK6wME1HJGOpxa/I5yHXNgPO4NXN1WFY+zUE51bpmySmcaV7rMg77qmbHsWv2cWhux6yZx7PFJVWIbYwqtbGi2WNZz+yNygUcqUesAemnSEiZxqtR4RF9MQiRuzcdcqRffX295fbVq1djzZo1jl/T2tqKhoYG9PX1obKyEps3b8a0adMAAAsXLsRXvvIVTJw4EQcPHsS//Mu/YP78+di7dy+CwSCOHj2KQCCAUaNGWR6zpqYGR48edfx+jzzyCBYsWJD0HCn3GIaJiAYgU7uEuR3CvhzDHLzs2+mcArH8PZA8f9jM3i7h9SWWhKRqlxCqlnoRB2DbUJeiVcIelG0tEYrfj7RRU43p1WFVi19IpyW1SgAwWiXk7+0b/WSbBFEmR44cQXV1tfF5MBhMeeyUKVPQ0tKC9vZ2bNq0CUuWLMGOHTswbdo0XH311cZxM2bMwOzZszFx4kQ899xzuPLKK1M+phDCsQXi/fffx4svvoj//u//7ucro2wwDBNRSclH9c8ciNNtp8u2f9hJuoUcluOQ+B+8x2u9TzEt41D8HsdVzfL3hiz6hC0cqsRJ98XvV/xeiLDsG45Xrv1eIL6AwxNLbKMDkNVqZruoqiDAKnBOFHM1XU6HcCMQCODMM88EAMyePRt79uzBvffei4ceeijp2PHjx2PixIn44x//CACora1FJBLBiRMnLNXh48ePY86cOUlf/9hjj2HMmDG4/PLL+/OyKEuD2jP88ssvY/Hixairq4OiKHj66act9wshsGbNGtTV1aG8vBwXXHCB5UpNIPNoEgA4ceIEGhsbEQqFEAqF0NjYiPb2dssxhw8fxuLFizFixAiMHTsWK1asQCQSsRzT2tqKuXPnory8HKeeeiruuOMOCFG8/9ET0eDIdtyaZO8fdpouYec0YcI+f9g+bs08XcI8e9j4fSrmXuL46DW3fcPG1jl7/7D9ftOYNXPrhnmqhNe2zGQosV+4dAkhUvYYf/LJJzhy5AjGjx8PAJg1axb8fj+2bt1qHNPW1oYDBw4khWEhBB577DF8/etfhz/dEhvKmUENwydPnsS5556L+++/3/H+f//3f8c999yD+++/H3v27EFtbS0uvvhidHV1GcdkGk0CANdccw1aWlrQ3NyM5uZmtLS0oLGx0bg/Foth0aJFOHnyJF555RU0NTVh06ZN+O53v2sc09nZiYsvvhh1dXXYs2cP7rvvPtx9992455578nBmiGgw5ftiOmDg49YkN4EYSN8rm27cmuMyDqeL6Vxsn8vIHojlbbJCbB+zJmcOp1kj7XQRnVOLhH0+MxUXEU28ccvJRzS70WqrVq3C7373Oxw6dAitra24/fbbsX37dlx77bXo7u7G9773PezatQuHDh3C9u3bsXjxYowdOxZf+tKXAAChUAjXX389vvvd7+K3v/0t9u/fj6997Ws455xzjOkS0rZt23Dw4EFcf/31OTt/lN6gtkksXLgQCxcudLxPCIH169fj9ttvN/prNm7ciJqaGvzyl7/E0qVLXY0m+b//+z80Nzdj9+7dOO+88wAAP/vZz9DQ0IC3334bU6ZMwZYtW/DWW2/hyJEjqKurAwD8+Mc/xnXXXYc777wT1dXVePLJJ9HX14fHH38cwWAQM2bMwDvvvIN77rkHK1eu5JgToiKX73YJp9ud+odlu4S9fxjIPG5Ntkxk0z9sfn5eP/TqcPxzS3sCAAQdLpaTleF+jFlLfF0s0T8sQ7ZphJscsyafk1OrhJwwEZN/jrYCtblvWJ4fO/OfCeVXsb8ROXbsGBobG9HW1oZQKISZM2eiubkZF198MXp7e9Ha2oonnngC7e3tGD9+PObNm4df/epXqKqqMh7jJz/5CXw+H/72b/8Wvb29uPDCC/H444/D67X+d/bII49gzpw5mDp16mC/zJJVMD3DBw8exNGjRy1jR4LBIObOnYudO3di6dKlGUeTLFiwALt27UIoFDKCMACcf/75CIVC2LlzJ6ZMmYJdu3ZhxowZRhAGgAULFiAcDmPv3r2YN28edu3ahblz51qa6RcsWIDbbrsNhw4dwuTJk/N8Rogo3wq5f1g+P3sgtvcTZxuIzf3DHjUxXQK2i+gUv8e44n5AvcNOPcPmC+vMjxeN6tVhACLghWIeA5fp2zgsKcm3Yg945N4jjzyS8r7y8nK8+OKLGR+jrKwM9913H+677760x/3yl7/M+vnRwBRMGJajRWpqaiy319TU4L333jOOyTSa5OjRoxg3blzS448bN85yjP37jBo1CoFAwHLMpEmTkr6PvM8pDIfDYUv/UGdnZ/oXTURDbqjGrckf78vKpg96aDUv7JDPL1MglswV0FQLOTRThdQ8bg2W/twU0yXs4kFXqKre+mAfveb0e1NlWYGt59hWHUYkBmGaKmEfsebzC2jR/l9ER8VDiyrQPLn7c+YbGTIruKUb9vaDVGNH0h3jdHwujpEXz6V6PmvXrjUu2guFQpwNSFSi3PYPp7qgznx/qoUc5s+jqjDCsRoVKRdyANb+4VhMMfqH5TIOp1XNOWULyIrfn7x8w7SEQ15Ip/i9UMqc6zeplm8A+asUM0wRDR8FE4blCkL78Onjx48bFVnzaJJ0xxw7dizp8T/66CPLMfbvc+LECaiqmvYYuU3GXlWWbrvtNnR0dBgfR44cyfzCiWjIDZcL6pwCsRQzTZeQgVgzB2LTdjpzIAbgfDFdpgvr0i3nsN1nvaDOZ7mQTn/Rid/LXmHzGwXLQ2fY4tefKjKDb2rFPFaNSCqYMDx58mTU1tZaxo5EIhHs2LHDGDviZjRJQ0MDOjo68NprrxnHvPrqq+jo6LAcc+DAAbS1tRnHbNmyBcFgELNmzTKOefnlly3j1rZs2YK6urqk9gkpGAwaMwuzmV1IRENvMAOPORDLqqYMxMaq4XggNlc9ZdBzuhjMiZygIAOgZgvEGcetAZZVzem4HrFmvBhbFdihOqwEvcZ4NTlVwr4pT55Leyjj0o3CwTcTVOgGNQx3d3ejpaUFLS0tAPSL5lpaWnD48GEoioKbb74ZP/zhD7F582YcOHAA1113HSoqKnDNNdcAcDeaZOrUqbj00ktxww03YPfu3di9ezduuOEGXHbZZZgyZQoA4JJLLsG0adPQ2NiI/fv347e//S2+973v4YYbbjAC7DXXXINgMIjrrrsOBw4cwObNm/HDH/6QkySIhrFc/6PtsVV8vSl+nG8OvOZADCQCs71dQgbidNVh+bmb+cNO49bss4ddVYeNOcQu2ivsgdi4XW+HUPzepFYJeR69puq5N0UrSb4w3A2+WEzJ+QeRNKgX0L3++uuYN2+e8fnKlSsBAEuWLMHjjz+Of/qnf0Jvby++9a1v4cSJEzjvvPOwZcuWrEeTPPnkk1ixYoUxdeLyyy+3zDb2er147rnn8K1vfQuf//znUV5ejmuuuQZ33323cUwoFMLWrVvx7W9/G7Nnz8aoUaOwcuVK4zkT0fA0WBMmsrmgLtWECam/F9R5LBVmD/zQ9HXN8XFrQvUkpktEYqlXNccZF9I5cWqbkBfcmUetmY+3XUgHRKHER6whLF+7QCSLcGp/45ENhmCi4UkRXKmWN52dnQiFQnj/+gtQHSiYwR1ElEE++iDtQSoWs4ZUYyGG7YI3c1uDvD9xn7BUgO2cqsiy39brEwiUa5Z2DH+ZplddyxUoZT4oFf5EVTb+ewS88FQGEi0N5vYGny9+QZy9BSJN/7C5khyN6e0W0SjQFwH6whC9EYiuCLSeKESPCq1HhfZpH9SwB+GTXqh9HkR6PVDDHmhRBb29WtK5kNv8fH4FvqBmtKQEyjXjtZv7tlNV8CmZm/9WtKiCzkgUEx7Zjo6OjqxaCOW/o+9dNy+n/452RqKY+PhLWT8fGp6Y0IiIbIZqIYcMvMZyjqgCn19ANiHI++XXyLArx60BSDuDWD5m4n7FcSGHnD8MAKiIV3pNyziEGkuMWnOaO2wfsZaOeeaw/fb4hXRy5jDM/cNhW5XXyw1zhYh/JlQMGIaJiBwM5kIO8+1yIUeqQAzo1WHz16TaUAdYAzGgV0nl12lRxXEhhxpvmTDPH1bURJsE5DIOuYXORF/YEQ/QpjYI60g1OU9Ybp9L3GfMNo7G4lVnU6sEYGyj8/aq0HzWTXROUvURm/uyqX8Gc5IE5wxTPjEMExGlMNiB2PK9bYHYfowMxD5kXsghA7H99zJAykCswgNArwDLhRzp+ocVv62iaw68qarD5kqyz2cN0/HjFQBCXqAnq8MAIBdwyHMRRhJZAR/MTXREVNwYhomI0hiKlc1GCDYFYrmy2R6IgcQFdJkqxGapVjYnNtTFq8NdEXiqAtB6VHgq/NbtdLJdwrZdzlIdzsSyjjlmvd0nt9XF9KkS8WBu3pbn9Zk30QnAYcKbDMipxrARUWljGCYiymCwJ0wYx3gTq4aNCROqta9YPj9zRTjVdImkCrFDIAY88Jdp8e+p36/0RaHAp49Y61ETfcRGu4S9QtyPf1psX2OpDgNGq4R5znCq6rDjw/vNy6UT7BfPUWHSogpibJOgPGEYJiJyIR+B2CxXI9cApGyXABIVYr9PSRmIZQhW+zxAmQb0CnhNF9TJ/uGkdglTL7AATBfZOfUN21ooZI+w/XOfqVUi4I23SniNi+gGwssAnFcMnFQsGIaJiFzKdSC2V4L7E4iBxFQF+wV1qQIxAEs7hT0QR3o9CJRrlsc0Jkz4PYn+YePXeLuEwwVxjhx7ib3WQOzzJqrD5pYJ6NMklPhFdKnWMqfizdAqwbFq7rCSTsMJwzAR0RAaaCA2bvPK3uLEY6W7oA5A2paJxHPSe4flhAlF1Yz+YTluLaldIqqHXYH4xIn0J0B+Q+vt5nAsq8Px9cxOMSyblgkiIjOGYSKiLAzGDOKBBmK3FeJ0F9WZq8Ny5JrmVYwL6sz9w0ntEuYL4eTvXU2asK9lNlWHAaM9QvF7AL/HWBiixkOwxyvg83ssc5flsg25bASwjlVjq0Rx0DTF6J/P1eMRSQzDRERZKoZA7Gbkmpkxh9ghECdGrpkmTABG/7DWA3jg3C4hVDV5fbP8vcf0T5C5QmxsrjP1IpcF9RAd7xs2yybQGlvmTOGYm+dyj/3CVEwYhomI+mG4BGLzhAnjc5g/V2wziOPtEn36d9QAeCr0/mF0RYCqgLVdwrioznaRnfEiTZ/HoqaAnKgeK35/vHc40Sohq8TZtEek6xdmEHaP/cI03DAMExH1U6EEYgBJa5v700MMJE+ZUPv0EGwOxB6fkpgw4fcYlWFU+IFwzNouYZ4sYd5Y59QmYQ7GPtsyDp8P8Pn0DXSAZcSafP1qX+I1mC8QdGqR4Ei14hKLAjEld9XmWDTzMVQ6GIaJiAagEAKxlK6H2M3YNXl/ukCs+RTbyDW9GixUj35B3UlVrxZXBvTg2wegzHYxndMcYnPLhBavEMubfDG9OuzzxsesxVdEl/mA7mjSeZBkvzBgDb72tgpWhXOLLRJUbDyZDyEionTy8Y+/PWB77f2tPmuFU97n8wvjwjJ5v/mx5DY2c2uEJAOyrKpGVT18azE9AEdV/Vf5eSymQKgaRFcEWo8K0aPqF9ZFYhBqzKgMW34FEtVh+wSJxIvXq8QeX7wqLEN0/PeBRCA2B1mvw+uU50B/zdZAzKowEQGsDBMR5UQhVIhz1UNsZ68Qyy11+ucwLqrT74HxKwAo5YHEmmZV1avDTks4jG8WiD8R820xoCwAqPquZSUYv4jOn76eI6dI2KvC5koyq8LZ4RsIGo4YhomIciTfW+qA/gViMzc9xEDiwjr7lAktqljWNpsDsaJqEKqmb6hTPYn+4b5wfBqErBKblmvEooC/LP7kAg4v2Kf3D/u88VYJn2nEmtc43+bzLl+T7BU2V8z1h2RVOF/y1SKhRRVoOewZZisHmTEMExHlUD621MnHlQZzdbN5MUfApz+2ftGeU4U4klQZtvQPR72J6nDUNEJNiwKBCvmC9V/Nad5flqgk2/qGAVhmDUvmXmFz64g8R+aKsMd2boiotDAMExHlWCG2TAwkEAN6D64WVYzXpvZ5oEWTq7IpA7E8QLZIGBVi6NXfaCQRiPUHBQLxf6IiPUAgCPjCmVc9m86XuV9aBmFzVZjVYSICGIaJiPJisFsm0knVMpFtIJaTJlIv5tA5BWIR9Orzh/siequDuTos5wtr5jnDgOL1618bqNDvGzUa3Wd9BlWd3fC88v/g6YlCqDF4whHja4yg601Uhf1lmiUIe73Zt0nEYtY3IqWIbx5ouGIYJiLKE1nJzVWISNcyIe83V4C1WOL38n/2mfqIAeeL6Nysbk4XiIUchwbom+kQH7UWjSUqwHEyBMtgrADAyFNx59u92PyLsbjkgii+e+lcjP7zIeClAwiqGrRoDH1detVYBt9AuWZUiP1lmmUih7nNQqiaw1lJiOVwDfBwls8Wk6iqIIrcPX5U5Z8pJTAMExHlWT76iPsTiPVKsEgZiOWkCSlTKLYHYvtrNAdiwDRhQrY6+P2Jg70+AKYL6GSFOL6Io9On4rW3R+D03x9Hy/gqtE74FBdMPgfKK28Bfg88vqgefKOJICwrwjIIy+dnX9ih+D0pA7FTEI7FlJKtDhMNRwzDRESDYCgDsV0uJk2Yv0afRSzgh4ZIrzVopgzEiC/iQKXeKqH2WfuEpVgUItyFqvZO/PryiXj3/+vC6eUhxJ5+Cb0txwEAvUdj6Pw4AC2qwF+mGefAHIS95Ur8u8a/f5n+fURf6lVkrAgnsEWChjOGYSKiQTIYgRhA1tvq7OxtE0Byldipj1iFJykQa1EF/qiqb6+TzxvQ1yr7fBC9vfHZwz7Arz8jEVP1Z+DxAWWVUMoqIaIRiCNvoX57Kz58qVN/vca51Ns05Lnwl2nwB/UPAPCWK3r4tc8lTtMekSkIszo8uDhajfKJYZiIaBDlOxA73WeZItGPPuJ0Czrss4hVeOCJmo+Ldw2fUOHtiwIoN+5R1BiUqvJ4hdjyxCF8ASjBKsBfhqgWgW/MRGDkqfBdGsS4Eb/Hia0fWV+rVwBB/fcyDHuqEm0XSoUfdvbWCAYkZ27+vvLcUTFjGCYiGmSD3TIhv2e2bRP6femrxOmWc0R6PUbrQiyqwB/TEEAvhKqHVEXV9CoxYA3EPi+ASqDCB03E0Bfrjr8WLzwTpiA4vwxjKvfj5JbDSRVc2RKhVJXBYwvAsldYxJeDpML2CKLSwjBMRDQE8r2cw9wyIe/PdmOdFpP3pV/j7DRpQlaItahAVFUQKJfhU4Nf7QNUDZ6QfpsSjukTJ+TItcoKfRudRw/DmoihN9YJTcSgagrG1UxE8K+AET4vTj5/0HIOPFUBKBV+eCp8ztXgHjXxid8DBT5oXZGk48g9VoWp2DEMExENkVyPXpOP5ebCulR9xEAiFMvjAP26NjehR42KRB+x3wMtJoy2Cf1CO/2CuyD0ACpUDR5VgxL0QvH59ApxWVBfwqFF4fNUwqN44VMC0JQYPEoMPiUAqH0QvRH4T62wTIdQKvzwjAzqW+8ACDVm3Ce6IhB+r6VXWF5AJ18bq8JWhXLhnBZTEMtlzzD/nMmEYZiIaIgN9aQJcx8xkH3bhBpNfu72tgnzxjrJH9X7iIUaA9QYPF0ReMaFIfrCUE4JQ6h9QF8XKqtOQUUwBE+4V7/o7oP/g9j/f9A+7YNv/AggkNhK5xlZDpQFjU11Sl98T3NfBCLgBXriF+mpsaQL6BiEiUoTwzARUQEYzLYJN33EgXhojsIarj1eAS2muArFSX3EprAZiypGH7Ff7YPoisDTE4VX1eAZHQH6wlBOiQAjwxCRHiiBCoiTnwKdnRB/fA+xYyfhrRkBlMUvkvPF/zmrrIBSXqaH4b4IRFkQ6Avryz0Qnylse978Mb8zXjhHpcKT+RAiIhoMWlTJebiwBxqvV1g2sXl8+pIKb3wur9zeJlcX+/z6R9JxvsQSC7nS2e9TLEs7AD0QR1VhvDY17EFvlxd9XV6ET+ofPR0+RLqB2LGTiLZ1I/Z+F7QPOyCOtEEcaQOOtQEfHYF47wjEwfeBsSPh+8I0KLPOgTJ9CpTx46CMPwVKfS2U8acANeP1vuPK8kQw9nmhBOPVYr8Hit8L0Rc1LqSzV4Xz8WdB/afFlJx/ZGPDhg2YOXMmqqurUV1djYaGBrzwwguOxy5duhSKomD9+vVJ9+3atQvz58/HiBEjMHLkSFxwwQXo7e017n/nnXdwxRVXYOzYsaiursbnP/95vPTSS1k9V8oeK8NERAUmH2uc7cHObS+xvM0HAH5hrLE1H6vFFNc9xfIYLaZXhs0X12lRBZ5wBN7jYfhG+eHtCMMT6oVndJceZs+aCPH5heiLdSOi9aI32glVUzC6th6VqAB62oGKkYh4BALecoj39uoVYZ8vUTmOM/cSy/PA8JtQKL3ChWLChAlYt24dzjzzTADAxo0bccUVV2D//v2YPn26cdzTTz+NV199FXV1dUmPsWvXLlx66aW47bbbcN999yEQCOD3v/89PJ5EXXLRokU4++yzsW3bNpSXl2P9+vW47LLL8Oc//xm1tbX5f6ElimGYiKhA5bp1ws6pdUIyB11ZEbaHYqcQnSkY27+P2qcHAfNr9foEPCc1eI92o2xkF5SqAIJfmIzeM6Zj37H38WmfD0d7FfREKwEAZ4d68JmRn2JseQgBTxQn1RMIaiNQOXoiRN87+jeKRiHCMctYNaFq/Q7AXLhRWm8eFi9ebPn8zjvvxIYNG7B7924jDH/wwQdYtmwZXnzxRSxatCjpMb7zne9gxYoVuPXWW43bzjrrLOP3H3/8Mf70pz/h0UcfxcyZMwEA69atw4MPPog333yTYTiP2CZBRFTAcvXjenNbg529dQJAUuuEbJ/wl2nw+AQC5Rp8fv1XT/x2r0/oyy68Ar6g5vjh9HjG84h/vT+ooSIURXm9H/6zRyN4fj2UGdPxbucn2HnMj93HPfhjh4I/deofB7s8+HNnEO2RdkS1CILeEQh4yiHCXfoDR6N6hTiiX6gnVA2IB+FYfLpFKQW7TEqpKtzZ2Wn5CIfDGb8mFouhqakJJ0+eRENDAwBA0zQ0NjbilltusVSKpePHj+PVV1/FuHHjMGfOHNTU1GDu3Ll45ZVXjGPGjBmDqVOn4oknnsDJkycRjUbx0EMPoaamBrNmzcrdi6YkrAwTERWBXLVOpNtYJ1snnL6H0yg2yfiHxFQxNj9n8/e2fF28F9kf1IweZa9XwDfKD0+oAt6x5fCcNgZKfS1EzZl4/Z1j+KhXQacKRFUPolEPoqoHx8siqC334tOwDyN8J1HlH4uApkBEI8aFc4gmqsJCjRkj1TKdKyoMWlSB5nDR5kAeDwDq6+stt69evRpr1qxx/JrW1lY0NDSgr68PlZWV2Lx5M6ZNmwYA+NGPfgSfz4cVK1Y4fu27774LAFizZg3uvvtufPazn8UTTzyBCy+8EAcOHMBZZ50FRVGwdetWXHHFFaiqqoLH40FNTQ2am5sxcuTI3LxwcsQwTERURPIxm9gs3bKOlF9jmUdsCsL+xNeYn698LKM6HNT0rXFl+qIMTyiozwquHQmlvhY4pR4nwh+iPeKF3KPR69Gg+jWgHBgVECj3aaj2x+D3VMLnCQA9JwC1D+iLAN090LojED2qURUWqoZYzNOvivBwbpFw+/dquFTSjxw5gurqauPzYDCY8tgpU6agpaUF7e3t2LRpE5YsWYIdO3agt7cX9957L/bt2wclxSxkTdN/ArJ06VJ84xvfAAB87nOfw29/+1s8+uijWLt2LYQQ+Na3voVx48bhd7/7HcrLy/Hwww/jsssuw549ezB+/PgcvnIyYxgmIipCAwnF6arDktNKZ/l9nYKx7Bc2vt52jP2iPPmY/qAGT1UAnlAQSoUfit8Dz+gyKOPHQDllNHBKPcSoOrSdeA8VPi8imsAIH6BqCiLxDovacmBMWRQj/AoC3nJ4wr0QJz/Rx7B1dUN09UJrD0PrieqBuC9qtEbEMgR9Gt7kdAg3AoGAcQHd7NmzsWfPHtx7772YOnUqjh8/jtNOO804NhaL4bvf/S7Wr1+PQ4cOGUFWVpKlqVOn4vDhwwCAbdu24dlnn8WJEyeM5/Tggw9i69at2Lhxo6XXmHKLYZiIqIj1NxSnamUwM1dAnYJx0vEZnoPRjxwfzab4PVCqyuCJV4OVEX59acbYUfqItKpxUEbXoyNyFCejHlRbtisLY2dGdUDDyEDM6BVG+CMg3A3RdRJo74L2aZ8egntU0+pl68zjpPBeggG51KrCAyWEQDgcRmNjIy666CLLfQsWLEBjY6NRBZ40aRLq6urw9ttvW4575513sHDhQgBAT08PAFimS8jPZWWZ8oNhmIhoGDAHlHwEOXv7hNP3SfcczBfoKX4PlDI/EJ/3q8/99egrlMuC+mxgfxkUfzk0EUNMUzHCp6E6oMF83bffoy+RG1MWxcggUOatTFSF27uA9k5on/bqITgehM0XzcXYIlE0oqpAVOTu3Ecdtiams2rVKixcuBD19fXo6upCU1MTtm/fjubmZowZMwZjxoyxHO/3+1FbW4spU6YAABRFwS233ILVq1fj3HPPxWc/+1ls3LgRf/jDH/C///u/AICGhgaMGjUKS5YswQ9+8AOUl5fjZz/7GQ4ePOg4nYJyh2GYiGiYcarcpQuu2bCHwXTh2HysvE8Pwj5LEIbfa1mpLFcpQ4vCE+7FCP8ojK84Ab8njPaI1/wtMDIQQ3Ughip/Dco0H0R3G9DVAfHRp9A+7tZbI0zTI9SwHqbTBWFWhVMr1arwsWPH0NjYiLa2NoRCIcycORPNzc24+OKLXT/GzTffjL6+PnznO9/Bp59+inPPPRdbt27FGWecAQAYO3Ysmpubcfvtt2P+/PlQVRXTp0/Hr3/9a5x77rn5emkEQBEih2+1yKKzsxOhUAjvX38BqgN830FEpcUcsBS/HkLtQVip8MNT4YNSFYBSHtDXKZ8yGqiuBsqrofjLgcqx6EMf+mLdULU+4zH9njIEPOV6RTiqQnzyHvDJcYgTHdAOHYf2UU88DMcguiKIdCfmGtuZ2yTSjaAbjrIJ//0Nw52RKCY8sh0dHR2ue3SBxL+jO/9qISp9/sxf4FJ3VMWc117I+vnQ8MSERkREOZUyBANJrRGK3wMEvFD83kRFOBoDImEAnRAAlO6PUVYxEmWBWkRi+uragLdcnxbR2w1x8k8Q4W6gvQui7ThEVy9iH3ZD6wgbK5f1C+Y80GLJI+LcBGEaWmpMQEXu/mzUGP+cKYFhmIiIhlYkBqHGoPj0mcCit0+/vK0SADr1ecFqLxR/OQIeH6BFIXoPA+FuoLsnfqFcpx6Cj/XoITjeI6yGPdCiXsSiSsYgnA6rwqXbIkHDH8MwERHljD1cCVWD4vdA9EWN6rBQ9dCr+D3GamTEpzwogL4gIxoFevv0i+l8etVY+HyJbXJ9EYjeXqC7B+iLQOuOQGsPI/ZxD0RXBLFegVjMA7XPYxn5ls1zl4ZrECYiHcMwERHljBZ13mBnUDV9DAQArScKxa/B2KTRFYEIx6AEI0bbhJCtEzIIA3pY7o1AdEX0FoiOMLQe1fhcrwZ7jGpwKqXeHsGqMJGOYZiIiHLKPvvYXB0GAAU+vSIcD8XoUQG/R+8I9SemRRg9xSZypTJUfb2yDMF6JVgB4LFMjTCzL/4wbk83O5lV4YIQVQWiWg5Hq7FnmEwYhomIKC/ModhohwAAxCu8fQDKfPEQHL/QzhaGJfn1Qo3p65RNF8YBsMwOdqoGF3oQdrMVMNffzy1WhWm4YxgmIqK8si/jkMHWXi0GYAnNTnHNHIJjsURYThWEi+GCucFu0SjFlhCidBiGiYho0FiCMUzBV404He74tbGYx1W1MlU1GCisinAhK5SqsBoWiOTwz4Wj1ciMYZiIiAYs5nJiQ3++xh7IzNvjUl0gxyBcON+TqNAxDBMR0YD0JwibZao+pludbGZviQDct0UAQxuEB6MCm20QLpSqMFG+MQwTEdGgcxu0MgVhpwAMZFcNBoZ/RZiIUmMYJiKiQZWrIGyXqgpc6EGYVeHMVFVAzeFoNfYMkxnDMBERFRy3QThdG4SbADjUQXg4f1+iYsEwTEREAyIDpdveYTczdbPp9bU/thuFEoILrQILFOZzIsonhmEiIsoJr1dkFYilgYavbCufpRSEi709gmgwMAwTEVHOZFslBrKfrNDfH/sP9mrlYgvChSwazfE65hw+FhU/hmEiIsq5/oRiKdchbrBDcLFiVZhKFcMwERHlTTatE/n6/oNtqCvCmZ6DEwZhKmUMw0RElFf2QJrvcDyUlWAG4fyIqUDUk7s/15iW+RgqHQzDREQ0qMxhNRfBuFDaIAqhR7cQngNRsWEYJiKiIdPfqnGhBGCpWENoMVSFifKNYZiIiApGoYVcNzIF4UJtjyAiHcMwERFRPxVrEC62irAaFVBz2DOcy9XOVPwYhomIiLJUSFXYQnouRMXIM9RPgIiIqJi4DZ9crEFUHFgZJiIicslN+Cz0FoRCf35OolGBqJLDDXSCbyIogZVhIiIiFwotCPenKlyMQZgo3xiGiYiIMmAQJhq+2CZBRESURqFMjJAYhIlyi2GYiIjIQaGFYKB0L5iLquwZpvxhGCYiIjIptJYIqb9BmFVhovQYhomIiFBYI9PsGISJ8odhmIiISl6hVoMBBmGifGMYJqKi4hQM+I8+9Uc2IZNBeGipqoCaw55hlT3DZMIwTERFI1UwkLcPtwBAuZdtuBzKv1MMwkSDg3OGiWjY8PhEyV5tT+n15+/GcAvCsZiCWIxBuT82bNiAmTNnorq6GtXV1WhoaMALL7zgeOzSpUuhKArWr19v3Pbpp59i+fLlmDJlCioqKnDaaadhxYoV6OjosHztvn37cPHFF2PkyJEYM2YM/uEf/gHd3d35fGkEhmEiKiJuwwlDMQGJvwfZtkPIj6GSryAMAF5vcf53EVOFPl4tRx8xNbvzMGHCBKxbtw6vv/46Xn/9dcyfPx9XXHEF3nzzTctxTz/9NF599VXU1dVZbv/www/x4Ycf4u6770Zraysef/xxNDc34/rrr7ccc9FFF+HMM8/Eq6++iubmZrz55pu47rrr+n3eyB22SRBRUdGiiuuwwPaJ0jOQN0FD/fckX8+92INwIVi8eLHl8zvvvBMbNmzA7t27MX36dADABx98gGXLluHFF1/EokWLLMfPmDEDmzZtMj4/44wzcOedd+JrX/saotEofD4fnn32Wfj9fjzwwAPwePRa5QMPPIDPfe5z+NOf/oQzzzwzz6+ydLEyTERFJ9vQwkrx8NafCrDZUFeCAQbhYhKLxdDU1ISTJ0+ioaEBAKBpGhobG3HLLbcY4TiTjo4OVFdXw+fT65LhcBiBQMAIwgBQXl4OAHjllVdy/CrIjGGYiIpSf8ILA/HwMdAADBRGCAbyG4S9XjEsgnAvougVOfxAFADQ2dlp+QiHwymfQ2trKyorKxEMBnHjjTdi8+bNmDZtGgDgRz/6EXw+H1asWOHq9XzyySf4t3/7NyxdutS4bf78+Th69CjuuusuRCIRnDhxAqtWrQIAtLW19ffUkQtskyCiopVNy4TE1onilYs3M4X05z7Q1+OmIlzsAoEAamtrsfLo/8v5Y1dWVqK+vt5y2+rVq7FmzRrH46dMmYKWlha0t7dj06ZNWLJkCXbs2IHe3l7ce++92LdvHxQl83nv7OzEokWLMG3aNKxevdq4ffr06di4cSNWrlyJ2267DV6vFytWrEBNTQ28Xu+AXiulpwjBYXv50tnZiVAohPevvwDVAb7vIMqXYu4TpYR8Vu4L7c95MIJwIVWEOyNRTHhku9EakI2+vj5EIpGcPychRFJ4DQaDCAaDrr7+oosuwhlnnIGpU6di5cqVlvaGWCwGj8eD+vp6HDp0yLi9q6sLCxYsQEVFBZ599lmUlZU5PvaxY8cwYsQIKIqC6upqNDU14Stf+Ur2L5JcYUIjoqLXnwqx5PGJggtKw9Vgt6kU6p9rqQXhgSorK0sZGoeSEALhcBiNjY246KKLLPctWLAAjY2N+MY3vmHc1tnZiQULFiAYDOKZZ55J+5pqamoAAI8++ijKyspw8cUX5+dFEACGYSIaJgYaiOVjUG4MVX92If8Z5rvNQ/YIU+6tWrUKCxcuRH19Pbq6utDU1ITt27ejubkZY8aMwZgxYyzH+/1+1NbWYsqUKQD0ivAll1yCnp4e/OIXvzB6lAHglFNOMdog7r//fsyZMweVlZXYunUrbrnlFqxbtw4jR44c1NdbahiGXXjwwQdx1113oa2tDdOnT8f69evxxS9+caifFhHZDCQQAwzFAzUYAbhY/2zyGYSHS39wITt27BgaGxvR1taGUCiEmTNnorm52XXFdu/evXj11VcBIGlE2sGDBzFp0iQAwGuvvYbVq1eju7sbn/nMZ/DQQw+hsbExp6+FkrFnOINf/epXaGxsxIMPPojPf/7zeOihh/Dwww/jrbfewmmnnZb2a9kzTDQ0htuFVsUgX0F4OPw5DGYQLtTK8EB6honyjaPVMrjnnntw/fXX45vf/CamTp2K9evXo76+Hhs2bBjqp0ZEKeQiQHE28dAphC1wuZCrv0NO58FptXKhBmGiQsdyZRqRSAR79+7Frbfearn9kksuwc6dO5OOD4fDlhmFcud4VySa3ydKRMkiuatWFnsoGxS5v9i/qHl8IifnJKuKcGzg3y9f5L+D/GE0FSKG4TQ+/vhjxGIx46pOqaamBkePHk06fu3atfjXf/3XpNun/pybY4iIiLq6uhAKhYb6aRBZMAy7YJ9D6DSbEABuu+02rFy50vi8vb0dEydOxOHDh/kf/yDr7OxEfX09jhw5wv60QcTzPjR43ocGz7t7Qgh0dXWhrq5uqJ8KURKG4TTGjh0Lr9ebVAU+fvx4UrUYSD2sOxQK8X+UQ6S6uprnfgjwvA8NnvehwfPuDotCVKh4AV0agUAAs2bNwtatWy23b926FXPmzBmiZ0VEREREucLKcAYrV65EY2MjZs+ejYaGBvznf/4nDh8+jBtvvHGonxoRERERDRDDcAZXX301PvnkE9xxxx1oa2vDjBkz8Pzzz2PixIkZvzYYDGL16tWu95xT7vDcDw2e96HB8z40eN6Jhgcu3SAiIiKiksWeYSIiIiIqWQzDRERERFSyGIaJiIiIqGQxDBMRERFRyWIYzqMHH3wQkydPRllZGWbNmoXf/e53Q/2UCsbLL7+MxYsXo66uDoqi4Omnn7bcL4TAmjVrUFdXh/LyclxwwQV48803LceEw2EsX74cY8eOxYgRI3D55Zfj/ffftxxz4sQJNDY2IhQKIRQKobGxEe3t7ZZjDh8+jMWLF2PEiBEYO3YsVqxYgUgkYjmmtbUVc+fORXl5OU499VTccccdKLZrT9euXYu//Mu/RFVVFcaNG4e/+Zu/wdtvv205huc99zZs2ICZM2caixkaGhrwwgsvGPfznA+OtWvXQlEU3HzzzcZtPPdEBAAQlBdNTU3C7/eLn/3sZ+Ktt94SN910kxgxYoR47733hvqpFYTnn39e3H777WLTpk0CgNi8ebPl/nXr1omqqiqxadMm0draKq6++moxfvx40dnZaRxz4403ilNPPVVs3bpV7Nu3T8ybN0+ce+65IhqNGsdceumlYsaMGWLnzp1i586dYsaMGeKyyy4z7o9Go2LGjBli3rx5Yt++fWLr1q2irq5OLFu2zDimo6ND1NTUiL/7u78Tra2tYtOmTaKqqkrcfffd+TtBebBgwQLx2GOPiQMHDoiWlhaxaNEicdppp4nu7m7jGJ733HvmmWfEc889J95++23x9ttvi1WrVgm/3y8OHDgghOA5HwyvvfaamDRpkpg5c6a46aabjNt57olICCEYhvPkr/7qr8SNN95oue0zn/mMuPXWW4foGRUuexjWNE3U1taKdevWGbf19fWJUCgk/uM//kMIIUR7e7vw+/2iqanJOOaDDz4QHo9HNDc3CyGEeOuttwQAsXv3buOYXbt2CQDiD3/4gxBCD+Uej0d88MEHxjH/9V//JYLBoOjo6BBCCPHggw+KUCgk+vr6jGPWrl0r6urqhKZpOTwTg+v48eMCgNixY4cQgud9MI0aNUo8/PDDPOeDoKurS5x11lli69atYu7cuUYY5rknIoltEnkQiUSwd+9eXHLJJZbbL7nkEuzcuXOInlXxOHjwII4ePWo5f8FgEHPnzjXO3969e6GqquWYuro6zJgxwzhm165dCIVCOO+884xjzj//fIRCIcsxM2bMQF1dnXHMggULEA6HsXfvXuOYuXPnWgbrL1iwAB9++CEOHTqU+xMwSDo6OgAAo0ePBsDzPhhisRiamppw8uRJNDQ08JwPgm9/+9tYtGgRLrroIsvtPPdEJDEM58HHH3+MWCyGmpoay+01NTU4evToED2r4iHPUbrzd/ToUQQCAYwaNSrtMePGjUt6/HHjxlmOsX+fUaNGIRAIpD1Gfl6sf55CCKxcuRJf+MIXMGPGDAA87/nU2tqKyspKBINB3Hjjjdi8eTOmTZvGc55nTU1N2LdvH9auXZt0H889EUlcx5xHiqJYPhdCJN1GqfXn/NmPcTo+F8eI+EUtxfrnuWzZMrzxxht45ZVXku7jec+9KVOmoKWlBe3t7di0aROWLFmCHTt2GPfznOfekSNHcNNNN2HLli0oKytLeRzPPRGxMpwHY8eOhdfrTXo3f/z48aR3/pSstrYWQHI1xHz+amtrEYlEcOLEibTHHDt2LOnxP/roI8sx9u9z4sQJqKqa9pjjx48DSK4qFYPly5fjmWeewUsvvYQJEyYYt/O8508gEMCZZ56J2bNnY+3atTj33HNx77338pzn0d69e3H8+HHMmjULPp8PPp8PO3bswE9/+lP4fL6UVVeee6LSwzCcB4FAALNmzcLWrVstt2/duhVz5swZomdVPCZPnoza2lrL+YtEItixY4dx/mbNmgW/3285pq2tDQcOHDCOaWhoQEdHB1577TXjmFdffRUdHR2WYw4cOIC2tjbjmC1btiAYDGLWrFnGMS+//LJlDNKWLVtQV1eHSZMm5f4E5IkQAsuWLcNTTz2Fbdu2YfLkyZb7ed4HjxAC4XCY5zyPLrzwQrS2tqKlpcX4mD17Nq699lq0tLTg9NNP57knIt3gXatXWuRotUceeUS89dZb4uabbxYjRowQhw4dGuqnVhC6urrE/v37xf79+wUAcc8994j9+/cbo+fWrVsnQqGQeOqpp0Rra6v46le/6jjyaMKECeI3v/mN2Ldvn5g/f77jyKOZM2eKXbt2iV27dolzzjnHceTRhRdeKPbt2yd+85vfiAkTJlhGHrW3t4uamhrx1a9+VbS2toqnnnpKVFdXF93Io3/8x38UoVBIbN++XbS1tRkfPT09xjE877l32223iZdfflkcPHhQvPHGG2LVqlXC4/GILVu2CCF4zgeTeZqEEDz3RKRjGM6jBx54QEycOFEEAgHxF3/xF8YIKxLipZdeEgCSPpYsWSKE0McerV69WtTW1opgMCj++q//WrS2tloeo7e3VyxbtkyMHj1alJeXi8suu0wcPnzYcswnn3wirr32WlFVVSWqqqrEtddeK06cOGE55r333hOLFi0S5eXlYvTo0WLZsmWW8UZCCPHGG2+IL37xiyIYDIra2lqxZs2aoht35HS+AYjHHnvMOIbnPff+/u//3vj/wCmnnCIuvPBCIwgLwXM+mOxhmOeeiIQQQhGC622IiIiIqDSxZ5iIiIiIShbDMBERERGVLIZhIiIiIipZDMNEREREVLIYhomIiIioZDEMExEREVHJYhgmIiIiopLFMExEREREJYthmIiGnUmTJkFRFCiKgvb29gE91gUXXGA8VktLS06eHxERFQ6GYSIqSLFYDHPmzMFVV11lub2jowP19fX4/ve/n/br77jjDrS1tSEUCg3oeTz11FN47bXXBvQYRERUuBiGiaggeb1ebNy4Ec3NzXjyySeN25cvX47Ro0fjBz/4Qdqvr6qqQm1tLRRFGdDzGD16NE455ZQBPQYRERUuhmEiKlhnnXUW1q5di+XLl+PDDz/Er3/9azQ1NWHjxo0IBAJZPdbjjz+OkSNH4tlnn8WUKVNQUVGBL3/5yzh58iQ2btyISZMmYdSoUVi+fDlisVieXhERERUa31A/ASKidJYvX47Nmzfj61//OlpbW/GDH/wAn/3sZ/v1WD09PfjpT3+KpqYmdHV14corr8SVV16JkSNH4vnnn8e7776Lq666Cl/4whdw9dVX5/aFEBFRQWIYJqKCpigKNmzYgKlTp+Kcc87Brbfe2u/HUlUVGzZswBlnnAEA+PKXv4yf//znOHbsGCorKzFt2jTMmzcPL730EsMwEVGJYJsEERW8Rx99FBUVFTh48CDef//9fj9ORUWFEYQBoKamBpMmTUJlZaXltuPHjw/o+RIRUfFgGCaigrZr1y785Cc/wa9//Ws0NDTg+uuvhxCiX4/l9/stnyuK4nibpmn9fr5ERFRcGIaJqGD19vZiyZIlWLp0KS666CI8/PDD2LNnDx566KGhfmpERDRMMAwTUcG69dZboWkafvSjHwEATjvtNPz4xz/GLbfcgkOHDg3tkyMiomGBYZiICtKOHTvwwAMP4PHHH8eIESOM22+44QbMmTNnQO0SREREkiL4rwkRDTOTJk3CzTffjJtvvjknj3fo0CFMnjwZ+/fv7/dYNyIiKkysDBPRsPTP//zPqKysREdHx4AeZ+HChZg+fXqOnhURERUaVoaJaNh57733oKoqAOD000+Hx9P/9/0ffPABent7Aeg9y9luviMiosLGMExEREREJYttEkRERERUshiGiYiIiKhkMQwTERERUcliGCYiIiKiksUwTEREREQli2GYiIiIiEoWwzARERERlSyGYSIiIiIqWQzDRERERFSyGIaJiIiIqGQxDBMRERFRyWIYJiIiIqKSxTBMRERERCWLYZiIiIiIShbDMBERERGVLIZhIiIiIipZDMNEREREVLIYhomIiIioZDEMExEREVHJYhgmIiIiopLFMExEREREJYthmIiIiIhKFsMwEREREZUshmEiIiIiKlkMw0RERERUshiGiYiIiKhkMQwTERERUcliGCYiIiKiksUwTEREREQli2GYiIiIiEoWwzARERERlSyGYSIiIiIqWQzDRERERFSyGIaJiIiIqGQxDBMRERFRyWIYJiIiIqKSxTBMRERERCWLYZiIiIiIShbDMBERERGVLIZhIiIiIipZDMNEREREVLIYhomIiIioZDEMExEREVHJYhgmIiIiopLFMExEREREJYthmIiIiIhKFsMwEREREZUshmEiIiIiKlkMw0RERERUshiGiYiIiKhkMQwTERERUcliGCYiIiKiksUwTEREREQli2GYiIiIiEoWwzARERERlSyGYSIiIiIqWQzDRERERFSyGIaJiIiIqGQxDBMRERFRyWIYJiIiIqKSxTBMRERERCWLYZiIiIiIShbDMBERERGVLIZhIiIiIipZDMNEREREVLIYhomIiIioZDEMExEREVHJYhgmIiIiopLFMExEREREJYthmIiIiIhKFsMwEREREZUshmEiIiIiKlkMw0RERERUshiGiYiIiKhkMQwTERERUcliGCYiIiKiksUwTEREREQli2GYiIiIiEoWwzARERERlaz/H3hmXjX1FgJ3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "! seisflows plot2d MODEL_01 vs --savefig m_01_vs.png\n", + "Image(filename='m_01_vs.png') " ] }, { "cell_type": "raw", "metadata": {}, "source": [ - "Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory." + "Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory. You can also run Example \\#1 with more stations (up to 131), tasks/events (up to 25) and iterations (as many as you want). Note that because this is a serial inversion, the compute time will scale with all of these values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "! seisflows examples run 1 --nsta 10 --ntask 5 --niter 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Example \\#2\n", - "Example \\#2 runs a 1 iteration inversion using SPECFEM2D, the Pyaflowa preprocessing module and an L-BFGS optimization algorithm. It successfully completes the line search and is meant to illustrate the output of the Pyaflowa preprocessing module." + "## Example \\#2: Pyaflowa, L-BFGS inversion\n", + "\n", + "Example \\#2 runs a 2 iteration inversion with misfit quantification taken care of by the `Pyaflowa` preprocessing module. Optimization (i.e., model updates) are performed using the `L-BFGS` algorithm. This example is more complex than the default version of Example \\#1, using multiple events, stations and iterations. Example \\#2 also includes smoothing/regularization of the gradient before using it to perturb the starting velocity model." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 12, "metadata": { "scrolled": true }, @@ -282,7 +364,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2 example: ex2_specfem2d_workstation_inversion_w_pyatoa\n", + "No existing SPECFEM2D repo given, default to: /home/bchow/Work/scratch/example_1/specfem2d\n", "\n", " @@@@@@@@@@ \n", " .@@@@. .%&( %@. \n", @@ -307,16 +389,17 @@ " SEISFLOWS EXAMPLE 2 \n", " /////////////////// \n", "This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to\n", - "assess misfit between a homogeneous halfspace and checkerboard model using\n", - "Pyatoa for misfit quantification [2 events, 5 stations, 1 iterations]. The tasks\n", - "involved include:\n", + "assess misfit between a starting homogeneous halfspace model and a target\n", + "checkerboard model. This example problem uses the [PYAFLOWA] preprocessing\n", + "module and the [LBFGS] optimization algorithm. [4 events, 32 stations, 2\n", + "iterations]. The tasks involved include:\n", "\n", "1. (optional) Download, configure, compile SPECFEM2D\n", "2. Set up a SPECFEM2D working directory\n", - "3. Generate starting model from Tape2007 example\n", + "3. Generate starting model from 'Tape2007' example\n", "4. Generate target model w/ perturbed starting model\n", "5. Set up a SeisFlows working directory\n", - "6. Run an inversion workflow. The line search is expected to attempt 4 evaluations (i01s04)\n", + "6. Run the inversion workflow\n", "================================================================================\n" ] } @@ -338,7 +421,206 @@ "metadata": {}, "outputs": [], "source": [ - "! seisflows examples run 2 -r path/to/specfem2d" + "! seisflows examples run 2 -r ${PATH_TO_SPECFEM2D}" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "Succesful completion of the example problem will end with the following log message\n", + "\n", + ".. code:: bash\n", + "\n", + " LINE SEARCH STEP COUNT 01\n", + " --------------------------------------------------------------------------------\n", + " 2022-08-29 18:07:14 (I) | evaluating objective function for source 001\n", + " 2022-08-29 18:07:14 (D) | running forward simulation with 'Specfem2D'\n", + " 2022-08-29 18:07:20 (D) | quantifying misfit with 'Pyaflowa'\n", + " 2022-08-29 18:07:29 (I) | evaluating objective function for source 002\n", + " 2022-08-29 18:07:29 (D) | running forward simulation with 'Specfem2D'\n", + " 2022-08-29 18:07:35 (D) | quantifying misfit with 'Pyaflowa'\n", + " 2022-08-29 18:07:43 (I) | evaluating objective function for source 003\n", + " 2022-08-29 18:07:43 (D) | running forward simulation with 'Specfem2D'\n", + " 2022-08-29 18:07:49 (D) | quantifying misfit with 'Pyaflowa'\n", + " 2022-08-29 18:07:58 (I) | evaluating objective function for source 004\n", + " 2022-08-29 18:07:58 (D) | running forward simulation with 'Specfem2D'\n", + " 2022-08-29 18:08:04 (D) | quantifying misfit with 'Pyaflowa'\n", + " 2022-08-29 18:08:13 (D) | misfit for trial model (f_try) == 4.73E-03\n", + " 2022-08-29 18:08:13 (D) | step length(s) = 0.00E+00, 1.00E+00\n", + " 2022-08-29 18:08:13 (D) | misfit val(s) = 5.30E-02, 4.73E-03\n", + " 2022-08-29 18:08:13 (I) | pass: misfit decreased, line search successful w/ alpha=1.0\n", + " 2022-08-29 18:08:13 (I) | line search model 'm_try' parameters: \n", + " 2022-08-29 18:08:13 (I) | 5800.00 <= vp <= 5800.00\n", + " 2022-08-29 18:08:13 (I) | 3193.01 <= vs <= 3821.37\n", + " 2022-08-29 18:08:13 (I) | trial step successful. finalizing line search\n", + " 2022-08-29 18:08:13 (I) | \n", + " FINALIZING LINE SEARCH\n", + " --------------------------------------------------------------------------------\n", + " 2022-08-29 18:08:13 (I) | writing optimization stats\n", + " 2022-08-29 18:08:13 (I) | renaming current (new) optimization vectors as previous model (old)\n", + " 2022-08-29 18:08:13 (I) | setting accepted trial model (try) as current model (new)\n", + " 2022-08-29 18:08:13 (I) | misfit of accepted trial model is f=4.727E-03\n", + " 2022-08-29 18:08:13 (I) | resetting line search step count to 0\n", + " 2022-08-29 18:08:13 (I) | \n", + " CLEANING WORKDIR FOR NEXT ITERATION\n", + " --------------------------------------------------------------------------------\n", + " 2022-08-29 18:08:15 (I) | thrifty inversion encountering final iteration, defaulting to inversion workflow\n", + " 2022-08-29 18:08:21 (I) | \n", + " ////////////////////////////////////////////////////////////////////////////////\n", + " COMPLETE ITERATION 02 \n", + " ////////////////////////////////////////////////////////////////////////////////\n", + " 2022-08-29 18:08:21 (I) | setting current iteration to: 3\n", + "\n", + "\n", + "As with Example \\#1, we can look at the output gradients and models to visualize how the inversion performed." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/bchow/Work/scratch/example_2\n", + "logs\tparameters.yaml sflog.txt specfem2d\r\n", + "output\tscratch\t\t sfstate.txt specfem2d_workdir\r\n" + ] + } + ], + "source": [ + "%cd ~/Work/scratch/example_2\n", + "! ls" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " PLOT2D \r\n", + " ////// \r\n", + "Available models/gradients/kernels\r\n", + "\r\n", + "GRADIENT_01\r\n", + "GRADIENT_02\r\n", + "MODEL_01\r\n", + "MODEL_02\r\n", + "MODEL_INIT\r\n", + "MODEL_TRUE\r\n" + ] + } + ], + "source": [ + "! seisflows plot2d # to check what models/gradients/kernels are avilable for plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The starting model is a homogeneous halfspace but for Example \\#2 the target model is a checkerboard." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Figure(707.107x707.107)\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gUVbr/vxU7TfdkJhBFMgoqQREVs+siIrq6uAZUdMWwev15r+6aMFxX7rKm1bu4BoK6hlUvuCqLrIKsiyLBLCpBoszA5NA9Harq/f1RXdWVuqcHENmd83mefqbn1KlzToWu+tZb73lfjogIDAaDwWAwGAxGN4T/sQfAYDAYDAaDwWD8WDAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzOjWTJkyBYFAAM3NzVnrXHTRRZAkCbt37z5wA+uEyy67DP369fuxh5GVK6+8EocddhiKiooQCAQwaNAg/Nd//Rfq6+tt9dra2nDLLbfg9NNPR3l5OTiOw9133+3Z5mWXXQaO41yfIUOGeNZ/7LHHMGTIEPh8PhxyyCG45557kEql8hp/KpXCPffcg379+sHn82HIkCF47LHHPOsSEebNm4exY8ciFAohEongqKOOwuuvv27Wee+99zzHbnxmzJhh1v30008xceJE9OnTB4FAACUlJRg3bhyef/55z76feuopjBo1CpFIBKWlpZgwYQLeeustW70NGzbgP//zPzFq1CgUFRWhpKQE48ePx6uvvuq5TcuXL8dpp52GHj16oKCgACNGjMAf/vAHqKpqq/fmm2/i0ksvxeGHHw5JksBxnGd769atw3XXXYfDDz8c4XAYFRUVOPXUU7Fs2TJX3bvvvttzH/n9fs+2GQwGY18Rf+wBMBg/JtOnT8eiRYvwwgsv4Nprr3Utb2lpwcKFC3HWWWehoqLiRxihN3feeSduvPHGH3sYWYlGo/jlL3+JAQMGwO/3Y+3atbj//vuxePFifPLJJ5BlGQDQ0NCAJ598EiNHjsQ555yDp59+Ome7gUDAJaACgYCr3v33348777wTv/71r3H66adjzZo1uOOOO/D999/jySef7HT81157LZ577jncd999GDNmDN5++23ceOONaGtrw2233Ware80112D+/Pm46aab8MADD0BRFHzxxReIxWJmnaOOOgoffvihq585c+bg2WefxZQpU8yy5uZm9O7dGxdeeCF69uyJaDSKP//5z7jkkkuwdetW3HHHHWbdmTNn4r777sOMGTMwa9YsxONxPPbYYzjrrLPw2muv4dxzzwUALF26FG+99RYuueQSjBkzBoqi4OWXX8b555+Pe+65B3fddZfZ5jvvvIMzzjgDJ5xwAp566imEQiH89a9/xY033ojNmzfj0UcfNesuXLgQq1atwpFHHgmfz4d169Z57s8XX3wRq1evxhVXXIGRI0ciGo3iiSeewCmnnIIFCxbg0ksvda2zZMkSFBYWmv/zPLPdMBiMHwhiMLoxiqJQdXU1jRo1ynP5nDlzCAC98cYbB3hk/3788Y9/JAD07rvvmmWappGmaUREVFdXRwBo5syZnutPmzaNQqFQp/3U19eT3++nX/7yl7by+++/nziOo6+++irn+l9++SVxHEe//e1vbeVXXXUVBQIBamhoMMsWLlxIAOjll1/udFxONE2j/v37U9++fUlV1U7rH3300dS7d29bWc+ePem4446zlXV0dFBhYSGdffbZZlldXZ25n61MnDiRgsEgxeNxs+yiiy4in89H7e3ttrqnn346RSIRW5l13Ndddx1lu6Xs3r3bVaYoCo0YMYIOPfRQW/nMmTMJANXV1Xm2xWAwGPsb9qjN6NYIgoBp06Zh3bp1+OKLL1zL582bh6qqKpx55plm2Zw5czBy5EgUFBQgHA5jyJAhLmthZ3Ach+uvvx7z5s3D4MGDEQgEMHr0aKxatQpEhNmzZ+OQQw5BQUEBTj75ZGzatMm2vpebhNHmc889h6FDhyIYDGLkyJF48803uzS2H4ry8nIAgChmXkgZr8D3J0uWLEE8Hsfll19uK7/88stBRFi0aFHO9RctWgQi8ly/o6MDS5YsMcseffRR9OvXDxdccEGXx7l8+XJ89913uPzyy/OyepaVldn2HQBIkmSzngKA3+83P9Z1vfbz2LFjEYvF0NjYaGtTlmWXxb2oqMjlqpCvtbZHjx6uMkEQMGrUKOzYsSOvNhgMBuOHgolhRrfniiuuAMdxmDt3rq18/fr1WL16NaZNmwZBEAAAL730Eq699lpMmDABCxcuxKJFi3DTTTchGo12ud8333wTTz/9NGbNmoUXX3wRbW1tmDhxIm6++WasXLkSjz/+OJ588kmsX78e5513Hoio0zbfeustPP7447j33nvx2muvoaSkBFOmTMF3333X6bqKouT1yWcc1jaj0ShWrlyJO++8E8cddxzGjx+f9/pOOjo6UFlZCUEQ0KtXL1x//fU2IQcAX375JQDg8MMPt5VXVVWhrKzMXJ6NL7/8EuXl5aisrLSVjxgxwta+oij48MMPceSRR+Khhx5C3759IQgC+vfvj9///ved7qdnnnkGPM+7RLeBpmlQFAV1dXX44x//iLfffhu33nqrrc6NN96IJUuW4JlnnkFTUxNqamrw//7f/0NLSwtuuOGGnP0DuiAvLy+3idUZM2YgmUzihhtuwK5du9Dc3IznnnsOCxcuxC233NJpm/miKAref/99DB8+3HP54YcfDkEQUFFRgUsvvRTbt2931TH8yLdu3brfxsVgMLohP6ZZmsE4WJgwYQKVlZVRMpk0y26++WYCQBs2bDDLrr/+eioqKtrn/gBQZWWl7VX0okWLCAAdccQRtlfajzzyCAGgzz//3CybNm0a9e3b19VmRUUFtba2mmW1tbXE8zw98MADeY0pn8+8efPy2sYPP/zQtt5Pf/pT29icdOYm8dBDD9FDDz1ES5cupaVLl9Ltt99OwWCQhgwZQm1tbWa9q666inw+n2cbgwYNotNPPz3nuE877TQaPHiw5zJZlk33i5qaGgJAkUiEevXqRQsWLKB3332XZsyYQQDotttuy9pHU1MT+f1+OuOMM7LWufrqq819J8sy/fGPf/Ss98QTT5DP5zPrlpSU0N///vec20hE9NRTTxEAevTRR13LVq5cSdXV1WabgiDQ7373u5zt5XKT8OL2228nALRo0SJb+bPPPkv3338/LV68mJYtW0azZs2ikpISqqiooJ07d9rqXnHFFSQIAm3dujXvfhkMBsMJE8MMBuk3YAD06quvEhFRKpWiiooKOv744z3rTZ06lRYtWrTXfo0A6MILL7SVffvttwSAfvOb39jK3377bZffcjYxPHXqVFdflZWVNGPGjE7HtGbNmrw+9fX1eW1je3s7rVmzhlasWEGPPvooVVVV0dFHH03RaNSzfmdi2ItXX32VANBDDz1kll111VXk9/s96w8aNCinACXSxfCQIUM8l8myTFdffTUREX3//femWPzwww9t9c455xzy+/02kW7l8ccfJwD0yiuvZB3Htm3baM2aNfTWW2/RjBkziOd5mj17tq3O3Llzyefz0c0330zvvPMOLV68mKZOnUrBYJCWLFmSte3FixeTLMv0s5/9zOVLvHbtWurRowdNmjSJ3njjDVq2bBndcccdJMsy3XvvvVnb7IoYNoT4zTffnFf9jz76iHiepxtuuCGv+gwGg9EVmBhmMIgoFotRYWEhTZw4kYiIXn/9dQJA8+fPd9WdO3cujRs3jgRBII7jaOzYsbR06dIu9QeArrvuOlvZli1bCIBL8CxfvtwlnLKJYWebRER9+/aladOmdTqmVCqV18drIlY+rFq1yiVcreyNGFZVlUKhEF1wwQVm2a9//WsC4Cm6y8rKXA8hTqZOnUrl5eWu8vb2dtvDSiwWI47jXJPKiIj+9Kc/EQD66KOPPPs48sgjqby83PYmojNmzJhBoijSnj17iIiosbGRAoGA5zGfMGEC9evXz7OdJUuWkN/vp4kTJ1IikXAtP/roo+nwww8nRVFs5XfddRfxPE+bN2/2bDdfMTx37lzieZ5++ctfdulcGjJkCI0dOzbv+gwGg5EvzGeYwYAenuvCCy/EkiVLUFNTg7lz5yIcDuP888931b388svxwQcfoKWlBW+99RaICGeddRa2bdv2I4x8/yFJUl6fBQsW7FX7o0ePBs/z2LBhw34dNxHZJnIZvsLOCZG1tbWor6/HYYcdlrO9ww8/HHV1daitrbWVG+0Z6wcCAQwcODDrmADvCWaffPIJPvnkE1x66aWQJCnnWKyMHTsWiqKY/t/ffvstOjo6MGbMGFfd0aNHY+vWrWhvb7eVv/322zjnnHMwYcIEvPbaa2aIOyuffvopRo0aZfrJG4wZMwaapuHrr7/Oe8xO5s2bhyuvvBLTpk3DE0880aXJk87jzGAwGPsLdmVhMNJMnz4dqqpi9uzZWLx4MaZOnYpgMJi1figUwplnnonbb78dyWQSX3311QEc7f5nzZo1eX0mTZq0V+2vWLECmqZhwIAB+23Mr776KmKxGI455hiz7Cc/+Qn8fj/mz59vqzt//nxwHIdzzjknZ5uTJ08Gx3Eu0T9//nwEAgH85Cc/McvOO+88tLa24oMPPrDVXbx4MQoKCjwnhz3zzDMA9POtKyxfvhw8z6N///4AgOrqagDAqlWrbPWICKtWrUJxcTFCoZBZvnTpUpxzzjk47rjjsGjRIvh8Ps9+qqursXbtWleCDSNOcq9evbo0boP58+fjyiuvxMUXX4ynn366S0J41apV2Lhxo+04MxgMxv6CJd1gMNKMHj0aI0aMwCOPPAIi8hQrV111FQKBAMaPH4+qqirU1tbigQceQGFhoaeF7l+J0aNH75d23nzzTTz11FM4++yz0bdvX6RSKaxduxaPPPIIBgwYgCuvvNJW/29/+xui0Sja2toA6FE8jMxoP/3pTxEMBrFt2zb84he/wNSpUzFgwABwHIcVK1bgkUcewfDhw21tlpSU4I477sCdd96JkpISM+nG3XffjSuvvBLDhg0z6z777LO44oorMHfuXDPxw/DhwzF9+nTMnDkTgiBgzJgxWLp0KZ588kn893//N0pKSsz1//M//xN//vOfcf755+O+++5Dr1698Oqrr+Kvf/0rfv/737vCk8Xjcbzwwgs49thjMXToUM/998tf/hKRSARjx45FRUUF6uvr8corr+Dll1/Gf/3Xf5kh6vr06YNzzz0XTz75JHw+H376058ikUhgwYIFWLlyJe677z5TcP7zn//EOeecg8rKStx222349NNPbX0OGzYMkUgEAHDTTTfhhhtuwKRJk3D11VcjGAzi3XffxYMPPohTTz0VI0eONNfbtm0b1qxZAwDYvHkzAJjHrl+/fuY59corr2D69Ok44ogjcPXVV2P16tW2/o2kHQAwcuRIXHzxxRg6dCj8fj9Wr16N2bNno7Ky0hXN4rLLLsOCBQuwZcuWgzojI4PBOMj5MX00GIyDjUcffZQA0LBhwzyXL1iwgE466SSqqKggWZapurqaLrjgAlukh3zAQegzvL/4+uuv6Wc/+xn17duX/H4/+f1+GjJkCP3Xf/2XLWGFdXzIErliy5YtRKT7x06ZMoX69etHgUCAZFmmgQMH0i233ELNzc2e43j00Udp0KBBJMsy9enTh2bOnOny0Z03b55nhIxkMkkzZ86kPn36kCzLNGjQIPrDH/7g2c/27dtp6tSpVFxcTLIs04gRI2ju3Lmedf/85z8TgKzLiXSf2uOPP57KyspIFEUqKiqiCRMm0HPPPeeq29HRQbNnz6YRI0ZQOBymkpISOuaYY+j555+3+eMaiSyyfZYvX25r97XXXqPjjjuOysrKKBQK0fDhw+m+++5zJeIw9p/Xx3rOTZs2LWf/xnEm0n22BwwYQKFQiCRJor59+9KMGTNo165dru0/77zzKBAIUFNTU9b9yWAwGJ3BEXUhaCiDwWAwGAcJlZWVuOSSSzB79uwfeygMBuNfGCaGGQwGg/Evx1dffYVx48bhu+++Q1lZ2Y89HAaD8S8ME8MMxn5EUZScy3meZzPiGQwGg8E4iGB3ZQZjP9JZWLIrrrjixx4ig8FgMBgMCyyaBIOxHzFm1meDvc5lMBgMBuPggrlJMBgMBoPBYDC6LcxNgtEtmTJlCgKBAJqbm7PWueiiiyBJEnbv3n3gBvZvRjQaxdSpUzF48GCEw2GEQiEMHz4c//3f/41oNOqqv3z5cpx22mno0aMHCgoKMGLECPzhD39wJYCw0tHRgUGDBoHjOPz+9793Ld+wYQPOO+88FBcXIxgM4uijj8Zf//rXvLdh9erVOOOMMxAOh1FQUICTTjoJK1eudNX7wx/+gGOOOQZlZWXw+Xzo06cPpk6d6krGsmHDBvznf/4nRo0ahaKiIpSUlGD8+PFmfF4vXn/9dUyYMAGRSMTch08++aStzptvvolLL70Uhx9+OCRJyprU4u677wbHcVk/L730kln3q6++wrXXXotx48YhFAqB4zi89957nu22trbi9ttvx6BBgxAMBtGzZ0+cf/75ru2/7LLLcvZvTSKSre6QIUOy7isGg8HoKsxNgtEtmT59OhYtWoQXXngB1157rWt5S0sLFi5ciLPOOgsVFRU/wgj/PUilUiAi/L//9/9wyCGHgOd5/OMf/8C9996L9957D++8845Z95133sEZZ5yBE044AU899RRCoRD++te/4sYbb8TmzZvx6KOPevZx5513egprANi6dSvGjRuHqqoqPPHEEygoKMCcOXNwzjnn4JVXXsF5552Xc/xr1qzBCSecgLFjx+K5554DEeF3v/sdTjnlFCxfvhzjxo0z6zY0NODMM8/EyJEjUVxcjO+++w6zZs3C0UcfjXXr1mHw4MEA9Exwb731Fi655BKMGTMGiqLg5Zdfxvnnn4977rkHd911l20Ms2bNwu23344ZM2bgN7/5DSRJwjfffINkMmmrt3DhQqxatcpMYLFu3TrPbbryyittWfQMrrrqKmzevNm2bO3atVi0aBGOPPJInHLKKXjjjTey7qtJkyZh7dq1uPvuuzF69Gjs3LkT9957L8aNG4cvvvgCffv2BaAfrxkzZniu7/P5XMlrAoEAli1b5ipjMBiM/caPFeCYwfgxURSFqquradSoUZ7L58yZQwDojTfeOMAj6x7ccsstBIA2b95sll100UXk8/lciR1OP/10ikQinu189NFHJMsyvfLKK54JS66++mry+/20c+dOs0xRFBo6dCj17t2bVFXNOc4zzjiDKioqKBqNmmWtra1UVlZGxx57bKfbuX79egJAd955p1lWV1dnS4hhMHHiRAoGgxSPx82ytWvXEs/z9D//8z+d9mXdluuuu466cnnfsmULcRxHF198cdY2jX3sTNBBRLRx40YCQHfccYet/IMPPiAA9NBDD+Xs/7333vNcf9q0aRQKhfLeDgaDwdgbmJsEo1siCAKmTZuGdevW4YsvvnAtnzdvHqqqqnDmmWeaZXPmzMHIkSNRUFCAcDiMIUOG4LbbbutSvxzH4frrr8e8efMwePBgBAIBjB49GqtWrQIRYfbs2TjkkENQUFCAk08+GZs2bbKt//e//x2TJ09Gr1694Pf7MWDAAFx99dWor68368TjcRx55JEYMGAAWlpazPLa2lpUVlbixBNPzOl2cCAwUgqLYubllCRJkGXZZfUrKiqC3+93tZFMJnHFFVfguuuuy5pKeuXKlRg5ciR69uxplgmCgDPPPBM7duxwpQX2Wv/EE09EMBg0y8LhME444QR88MEHqKmp6fJ2lpWVebowjB07FrFYDI2NjWbZ448/Dp/Ph1/96lc5+wGwTyH75s6dCyJypcrOt01JkgAAhYWFtvKioiIA8Dx+Vp555hlwHMeirTAYjB8FJoYZ3ZYrrrgCHMdh7ty5tvL169dj9erVmDZtGgRBAAC89NJLuPbaazFhwgQsXLgQixYtwk033ZT19Xwu3nzzTTz99NOYNWsWXnzxRbS1tWHixIm4+eabsXLlSjz++ON48sknsX79epx33nkgyxzXzZs3Y9y4cZgzZw6WLl2Ku+66Cx999BGOO+44pFIpALrw+Mtf/oI9e/aY4kLTNFx00UUgIrz44ovmdmVDUZS8PpTn/FsigqIoaG1txZIlS/Dggw/iwgsvRJ8+fcw6M2bMQDKZxA033IBdu3ahubkZzz33HBYuXIhbbrnF1ea9996LaDSK++67L2u/yWQSPp/PVW6Uff755znH3dn6Xg9SqqoikUjgm2++wZVXXokePXrg8ssvz9kPoPtLl5eXo0ePHmbZP/7xDwwdOhSvvfYaBg8eDEEQ0KtXL/z61792uUnsLZqmYf78+RgwYAAmTJiwV2307dsXkydPxsMPP4zly5ejvb0d33zzDW644QbTdzobLS0tePXVV3HKKafgkEMOcS3v6OhAZWWlue3XX3+97YHB4MQTT8zqJ81gMBg5+THN0gzGj82ECROorKyMksmkWXbzzTcTANqwYYNZdv3111NRUdE+9weAKisrba4AixYtIgB0xBFH2F6fP/LIIwSAPv/8c8+2NE2jVCpF27ZtIwD0+uuv25a//PLLBIAeeeQRuuuuu4jneVq6dGmnY9yyZQsByOvj9crcixdffNG23uWXX06pVMpVb+XKlVRdXW3WEwSBfve737nqffLJJyRJEi1ZssQ2ZqebxDnnnENFRUXU1tZmKz/++OMJAP32t7/NOe4jjjiCBg0aZHMXSKVS1L9/fwJAL7zwgmsdn89njn/QoEG0fv36nH0QET311FMEgB599FFXW+FwmIqLi+nxxx+nZcuW0e23306CINAvfvGLrO11xU3ib3/7GwGgBx54IGe9XG4SRETJZJKuuuoq23EeMWIEbdmyJWe7hkvSiy++6Fr20EMP0UMPPURLly6lpUuX0u23307BYJCGDBniOqYnn3wyCYKQsy8Gg8HwgolhRrfm2WefJQD06quvEpEudCoqKuj444/3rDd16lRatGgR1dXV7VV/AOjCCy+0lX377bcEgH7zm9/Yyt9++22X3/Lu3bvp6quvpl69ehHP8zbhMWvWLFd/11xzDUmSRDzPu/wxs5FIJGjNmjV5fVpbW/Nqs7GxkdasWUPLli2j+++/nyKRCJ199tk2kbl27Vrq0aMHTZo0id544w1atmwZ3XHHHSTLMt17771mvVQqRUceeaTNvzWbGH7nnXeI4ziaMmUKbd68mWpra+mOO+4gQRCy7jMrzzzzDAGga665hnbu3Enbt2+n6dOnm+u/9NJLrnXWrVtHH374IT3//PM0atQoqqiooC+//DJrH4sXLyZZlulnP/uZy5dYkiRPofgf//EfBIA2btzo2WZXxPDPfvYzEkWRampqctbrTAxPnz6dSkpK6OGHH6YVK1bQyy+/TKNHj6ZDDjmEtm7dmrXd0aNHU2lpqc1XOhevvvpqXn7IDAaDkS9MDDO6NbFYjAoLC2nixIlERPT6668TAJo/f76r7ty5c2ncuHEkCAJxHEdjx47Ny9JqBQBdd911trJsQm758uUEgF555RUi0iczjRw5ksrLy+kPf/gDLV++nFavXk2rVq0iADRz5kxXf2vWrCEAJMsy7dmzJ+9xplKpvD5eE8Hy4aWXXiIA9H//939m2dFHH02HH344KYpiq2tYtY3JdrNnz6bCwkLauHEjNTU1UVNTE3322WcEgO677z5qamqytTF//nwqLS01HxqGDRtGv/3tbwkAPffcc52OddasWVRQUGCuP27cOLr11lsJAL3//vs5121tbaUePXrQ2Wef7bl8yZIl5Pf7aeLEiZRIJFzLKysrCQA1Njbayo0HpZdfftmz3XzFcF1dHcmyTJMnT+60bi4xbFiXjXPVoKmpiQoLC+myyy7zbNM4bjfeeGOn/RuoqkqhUIguuOCCvNdhMBiMXDCfYUa3JhAI4MILL8SSJUtQU1ODuXPnIhwO4/zzz3fVvfzyy/HBBx+gpaUFb731FogIZ511FrZt23ZAxvrll1/is88+w+zZs/GrX/0KJ554IsaMGYPS0lLP+tFoFJdccgkGDRqEQCDgmhyVja1bt3aaVtr4rFixYq+2ZezYsQD0mLsGn376KUaNGuXyZx4zZgw0TcPXX38NQN8PLS0tGDhwIIqLi1FcXIyRI0cC0MN2FRcX23x5p02bhtraWqxfvx4bN240495yHIfjjz++07HeeuutqK+vxxdffIGtW7figw8+QFNTE0KhEEaNGpVzXWOipXU7Dd5++22cc845mDBhAl577TXIsuyqM2LECM92Ke2rvS+T5gDgueeeQzKZzPvcyMann34KAK6waEVFRRgwYAC+/PJLz/WeeeYZAOhy/0S0z9vOYDAYBizOMKPbM336dDzxxBOYPXs2Fi9ejMsuu8wWPcBJKBTCmWeeiWQyiXPOOQdfffWVGUP1h8SYHOSc0PWnP/3Js/6MGTOwfft2rF69Gt988w1+9rOf4eGHH8ZNN92Us5/q6upO00obGLFzu8ry5csBAAMGDLD1u3btWqiqahPEH374IQCgV69eAIBf//rXuOyyy2zt1dbW4sILL8SMGTPw85//3NYuoEdzGDp0KAB9wtaTTz6JyZMn533cfD4fDjvsMADA9u3b8fLLL+Oqq67qNN6tIaLHjx9vK1+6dCnOOeccHHfccVi0aJHnJD0AOO+887B06VL87W9/wy9+8QuzfPHixeB53iU+u8ozzzyD6upqW9SUvaG6uhoAsGrVKts+bWhowIYNG3DKKae41kkkEnj++ecxduxYc9/mw6uvvopYLIZjjjlmn8bMYDAYBkwMM7o9o0ePxogRI/DII4+AiDB9+nRXHUP4jB8/HlVVVaitrcUDDzyAwsLCfRYk+TJkyBAceuih+PWvfw0iQklJCd544w38/e9/d9V9+umn8fzzz2PevHkYPnw4hg8fjuuvvx633norxo8fb1pmvZBlOWuosq7ypz/9Ce+//z5OP/109O7dG9FoFO+//z4ee+wxHHvssZg8ebJZ96abbsINN9yASZMm4eqrr0YwGMS7776LBx98EKeeeqpp/R0yZIgrA9nWrVsBAIceeihOPPFEs3zPnj148MEHMX78eITDYXzzzTf43e9+B57n8b//+7+2Nu69917ce++9ePfdd82oCl9++SVee+01jB49Gj6fD5999hlmzZqFgQMH2qJYtLS04LTTTsMvfvELDBw4EIFAABs2bMCjjz6KRCKBmTNnmnX/+c9/4pxzzkFlZSVuu+0206pqMGzYMEQiEQD624g//elPuPbaa1FfX49hw4bhnXfewf/+7//i2muvtQnPbdu2mQ8xmzdvBgAzq12/fv1cx/Sjjz7CV199hdtuuy1rdJFYLIbFixcDgJkZbsWKFaivrzcfCgHg3HPPxV133YVrrrkGO3fuxFFHHYWamhrMnj0bsVgMN954o6vtRYsWobGxMatVeNu2bfjFL36BqVOnYsCAAeA4DitWrMAjjzyC4cOHu9Y78cQTsWLFirwjnDAYDIbJj+mjwWAcLDz66KOmP6kXCxYsoJNOOokqKipIlmWqrq6mCy64IGukh2xgH3yGifQkDqeddpoZYeD888+n7du323yGP//8cwoEAjRt2jRbe/F4nEaNGkX9+vWjpqamLo17b1m5ciWdddZZVF1dTbIsUzAYpJEjR9J9991nS2Rh8Nprr9Fxxx1HZWVlFAqFaPjw4XTfffe5EnE4ybYPGxoa6PTTT6fy8nKSJIn69OlDv/rVrzwnQM6cOdPlE/vtt9/SCSecQCUlJSTLMg0YMIDuuOMO13ji8ThdeeWVNHToUCooKCBRFKlXr1508cUX01dffeXZT7aP0ye3oaGBrr76aqqoqCBJkmjQoEE0e/ZsV8KQefPmZW3TeS4QEV111VXEcZwt8Um2/er16du3r61uTU0NXX/99TRgwADy+/1UXV1NEydOpA8//NCz7dNOO41CoVDWSZiNjY00ZcoU6tevHwUCAZJlmQYOHEi33HILNTc3u+qPGjWKKisrs24Lg8FgZIMjYo/RDAaDwfjXpa2tDSUlJXjkkUdw3XXX/djDYTAY/2KwGQgMBoPB+JfmH//4B3r27Imrrrrqxx4Kg8H4F4RZhhmM/YCiKDmX8zzPZr8zGAwGg3EQwu7ODMZ+oLMQZEZaZAaDwWAwGAcXLJoEg7Ef6CwUWVlZ2QEaCYPBYDAYjK7A3CQYDAaDwWAwGN0W5ibBYDAYDAaDwei2MDHMOCiZMmUKAoEAmpubs9a56KKLIEkSdu/efeAG1o3ZsWMHpkyZgv79+yMUCqGwsBBHHnkkHn/8cdcEwrvvvhscx7k+fr/fs+2XXnoJRxxxBPx+P6qrq/Ef//EfaG9vd9Vrb2/Hf/zHf6C6uhp+vx9HHHEEXnrppby34e2338b48eMRCARQWFiISZMmmemZnUSjUdx1110YNGgQfD4fSktLcdJJJ2Hjxo22eqlUCvfccw/69esHn8+HIUOG4LHHHnO19+KLL+KEE05ARUUFfD4fqqurMWnSJHzwwQeuuq2trbj99tsxaNAgBINB9OzZE+eff75rrMuWLcMVV1yBIUOGIBQKoWfPnpg8eTLWrVvnavOf//wnrrzySowaNQo+nw8cx5nJSpzU1tbi+uuvR//+/REIBNC3b19Mnz4d27dvt9V75513cNppp6G6uho+nw89evTAySefbCbqsJJIJDB79mwcdthhCIVCqKiowJlnnuna/q6cZ/369fM8z5zn2nvvvZe1HsdxmDFjhud+YDAY3QPmM8w4KJk+fToWLVqEF154Addee61reUtLCxYuXIizzjoLFRUVP8IIux/RaBSRSAR33nkn+vTpg2QyicWLF+NXv/oVPv30Uzz99NOudZYsWYLCwkLzf6+IGn/+859x8cUX48orr8TDDz+MDRs24NZbb8X69euxdOlSW91zzz0Xa9aswaxZszBo0CC88MILuPDCC6Fpmi1dsRevv/46pkyZgsmTJ+O1115DS0sL7rnnHhx//PFYs2YNDj30ULNue3s7TjrpJOzatQu//vWvMWLECLS0tOCDDz5ALBaztXvttdfiueeew3333YcxY8bg7bffxo033oi2tjbcdtttZr2GhgaMHz8eN954I8rKylBTU4OHHnoIJ5xwgi3rHQBMmjQJa9euxd13343Ro0dj586duPfeezFu3Dh88cUXZua5OXPmoKGhATfeeCOGDRuGuro6PPjggzjmmGPw9ttv4+STTzbbfPfdd/HOO+/gyCOPRCQSwXvvvee5nxKJBE444QQ0NTXhnnvuwbBhw/Dtt99i5syZePvtt/H1118jHA6b22Rkg6usrERjYyOeeOIJTJw4Ec899xwuvvhis92rrroKf/7zn/Gb3/wGJ598MhobGzFr1ixMmDABK1euNLMiduU8W7hwIRKJhG3827dvx89//nNMmTLFLDvqqKPMtN5W5syZg2effdZWl8FgdEN+zIwfDEY2FEWh6upqGjVqlOfyOXPmEAB64403DvDIGE4uuOACEkWR4vG4WWZkWfPK9GZFURSqqqqi008/3Vb+5z//mQDQ4sWLzbK33nqLANALL7xgq3vaaadRdXU1KYqSs6/BgwfTiBEjSNM0s2zr1q0kyzL94he/sNW98cYbKRQK5czORkT05ZdfEsdx9Nvf/tZWftVVV1EgEKCGhoac6zc3N5MkSXTJJZeYZRs3biQAdMcdd9jqfvDBBwSAHnroIbNs9+7drjbb2tqooqKCTjnlFFu5NWPd7NmzCQBt2bLFtf7f//53AkBPP/20rfyFF14gAPR///d/ObcpmUxSz5496fjjjzfL4vE4CYJAF198sa3url27CADdcMMNOdsk8j7PvLj77rsJAL3zzjs562maRv3796e+ffu6svkxGIzuBXOTYByUCIKAadOmYd26dfjiiy9cy+fNm4eqqiqceeaZZtmcOXMwcuRIFBQUIBwOY8iQITbLXD5wHIfrr78e8+bNw+DBgxEIBDB69GisWrUKRITZs2fjkEMOQUFBAU4++WRs2rTJ1cY777yDU045BZFIBMFgEOPHj8e7775rq7Np0yZcfvnlGDhwoPkafNKkSa5tNV7vvvjii7j99ttRXV2NSCSCU089Fd9++22Xtu2Hory8HDzPQxCELq+7atUq1NTU4PLLL7eVn3/++SgoKMDChQvNsoULF6KgoADnn3++re7ll1+OXbt24aOPPsraT0NDA7799luceeaZ4DjOLO/bty8OO+wwLFq0CKqqAgBisRiefvppnH/++ejfv3/O8S9atAhE5Br/5Zdfjo6ODixZsiTn+uFwGH6/H6KYeUknSRIA2CzqAFBUVAQAttf/PXr0cLVZUFCAYcOGYceOHbbyfONcd6X/bOsXFRXZtsmIs+1sMxKJgOf5TtsE8jvPiAjz5s1D//79bVZxL5YvX47vvvsOl19+OYsBzmB0c9gVgHHQcsUVV4DjOMydO9dWvn79eqxevRrTpk0zb4wvvfQSrr32WkyYMAELFy7EokWLcNNNNyEajXa53zfffBNPP/00Zs2ahRdffBFtbW2YOHEibr75ZqxcuRKPP/44nnzySaxfvx7nnXceyBKQ5fnnn8fpp5+OSCSCBQsW4C9/+QtKSkpwxhln2ATxrl27UFpailmzZmHJkiX43//9X4iiiKOPPtpT5N52223Ytm0bnn76aTz55JPYuHEjJk2aZAq4bBARFEXJ65MvRptNTU14+eWXMX/+fNx888028WNw+OGHQxAEVFRU4NJLL3X5nH755ZcAgBEjRtjKJUnCkCFDzOVG3aFDh7r6Mda11nWSTCYBAD6fz7XM5/MhFoth8+bNAIB169YhGo1i4MCBuOaaa1BcXAxZljF69Gi89dZbrvGXl5ejsrIy7zGpqopUKoWtW7fimmuuARHZUgj37dsXkydPxsMPP4zly5ejvb0d33zzDW644Qb06dMHU6dOzbqdgO5C9PHHH2P48OE562Vj/PjxGDVqFO6++26sWbMG7e3t+Pjjj3HbbbfhqKOOwqmnnupaR9M0KIqCXbt2YebMmdiwYQNuvvlmc7kkSbj22muxYMECLFq0CK2trdi6dSuuuuoqFBYWemaO68p5ZvDOO+9g27Zt5rUjF8888wx4nnc9yAD6Q/GJJ56Yc30Gg/FvxI9nlGYwOmfChAlUVlZGyWTSLLv55psJAG3YsMEsu/7666moqGif+wNAlZWV1N7ebpYtWrSIANARRxxhe8X+yCOPEAD6/PPPiYgoGo1SSUkJTZo0ydamqqo0cuRIGjt2bNZ+FUWhZDJJAwcOpJtuusksX758OQGgn/70p7b6f/nLXwgAffjhhzm3x1g/n4/XK3MvHnjgAXMdjuPo9ttvd9V59tln6f7776fFixfTsmXLaNasWVRSUkIVFRW0c+dOs979999PAKimpsbVxumnn06DBg0y/x84cCCdccYZrnrGq3anq4IVVVWppKTE5TrQ1NRE4XCYANAHH3xAREQvvvgiAaBIJELjx4+nv/71r/Tmm2/SSSedRBzH0ZIlS8z1TzvtNBo8eLBnn7Is0y9/+UtX+eDBg839V1VVRf/85z9ddZLJJF111VW24zNixIi8jtFFF11EoijS2rVrs9bJ5SZBRNTa2kqTJk2y9X/iiSdmdfs444wzzHqRSMTTlULTNLrrrruI53mzbp8+feiTTz7xbDOf88zJz3/+cxIEwXaOedHU1ER+v9/zfCIiEgSBTj755E77YzAY/x4wMcw4qHn22WcJAL366qtERJRKpaiiosLmj2itN3XqVFq0aFGnvqrZAEAXXnihrezbb78lAPSb3/zGVv7222/b/JYNX8tXX32VUqmU7XPrrbcSx3GmyE6lUnT//ffT0KFDSZIkm+j4yU9+YvZhiNknnnjC1vc333xDAOill17KuT2tra20Zs2avD6JRCKvfVRTU0Nr1qyht99+m2699VaSZZmuv/76Ttf76KOPiOd5m3+oIYZra2td9U8//XSb0Bw4cKBt3xgYYviBBx7I2f+dd95JAOjee++l3bt308aNG2nixIkkCAIBoFWrVhFRxl+5rKyMWltbzfWj0ShVV1fT+PHjzbLTTjuNhgwZ4tmfLMt09dVXu8q//PJL+uijj+iVV16hU045hcLhMC1fvtxWZ/r06VRSUkIPP/wwrVixgl5++WUaPXo0HXLIIbR169as23jHHXcQAHrsscdy7otcYjiZTNKZZ55JvXv3pqeeeor+8Y9/0IIFC2jgwIF01FFHUXNzs2udDRs20OrVq+n111+n888/nyRJcvl233fffRQMBunee++l5cuX0+uvv06nnXYalZWV0ccff+xqs6vnWUNDA/l8Ppo4cWLObScievzxxwkAvfLKK53WZTAY//4wMcw4qInFYlRYWGje4F5//XUCQPPnz3fVnTt3Lo0bN44EQSCO42js2LG0dOnSLvUHgK677jpb2ZYtWwgAzZ4921ZuCFXjhvr88893an3dvn07ERH96le/Ip7n6Te/+Q0tWbKEPvroI1qzZg2NHDmSJkyYkLUP55jmzZuXc3s0TXMJ82yfvWXWrFkEwFPQOBkyZIjNQv7EE08QAPrqq69cdUePHk3jxo0z/z/mmGNozJgxrnpffvklAaA//elPOftOpVJ00003kSzL5vGYOHEiXXnllQSAduzYQURES5YsIQB09tlnu9q48MILKRAImP9PnTqVysvLXfXa29s9H6C8xnTYYYfRiBEjzLK//e1vnse8qamJCgsL6bLLLvNsy5g4dv/99+fskyi3GDYmp65Zs8ZWvnnzZgJAd999d6ft/+QnP6Hi4mJzYtr69euJ4zjXbyiZTNKAAQPoxBNP7LTNzs6zRx99lADQwoULO23ryCOPpPLyctsbJwaD0X1hPsOMg5pAIIALL7wQS5YsQU1NDebOnYtwOOyaRAXok5Y++OADtLS04K233gIR4ayzzsK2bdsOyFiNlMuPPfYY1qxZ4/kxwsA9//zzuPTSS/Hb3/4WZ5xxBsaOHYvRo0ejvr5+v45pxYoVkCQpr0+2mLOdYYTE2rBhQ6d1icg2Wenwww8HANfEQUVR8M033+Cwww6z1f36669d/s3Guta6XoiiiIceeggNDQ34/PPPsWvXLrz55pvYvn07DjnkEPTq1QuA23+5s/HX1dWhtrZ2r8d01FFH2fbdp59+CgAYM2aMrW5RUREGDBjg6Yd8zz334O6778bdd9/d5UmjTj799FMIgoCjjjrKVt6/f3+Ulpbm9M02GDt2LJqamlBXVwcA+Oyzz0BErm2SJAkjR47Mu00g+3n2zDPPoKKiAmeddVbOdj755BN88sknuPTSS83JggwGo3vDxDDjoGf69OlQVRWzZ8/G4sWLMXXqVASDwaz1Q6EQzjzzTNx+++1IJpNZkyrsb8aPH4+ioiKsX78eo0eP9vzIsgxAn6DjnMz11ltv4fvvv9+vYxo1alRWYe78VFdX71Ufy5cvBwAMGDAgZ71Vq1Zh48aNOOaYY8yyo48+GlVVVZg/f76t7quvvor29nace+65ZtmUKVPQ3t6O1157zVZ3wYIFqK6uxtFHH53XeAsKCnD44YejqqoKH3/8Md59913ceOON5vKqqiqMGzcOK1euRGtrq1kei8WwYsUK2/gnT54MjuOwYMECWx/z589HIBDAT37yk5xjicfjWLVqlW3fGcdh1apVtroNDQ3YsGGDKdoN7rvvPtx999244447MHPmzLz2QS6qq6uhqirWrFljK9+wYQMaGhpc/TshIqxYsQJFRUUoLS012wTc25RIJPDxxx932iaQ+zxbu3YtPv/8c0ybNi3nBDtAF82Afl1hMBgMgCXdYPwLMHr0aIwYMQKPPPIIiMjzJnbVVVchEAhg/PjxqKqqQm1tLR544AEUFha6rFE/FAUFBXjssccwbdo0NDY24mc/+xl69OiBuro6fPbZZ6irq8OcOXMAAGeddRbmz5+PIUOGYMSIEVi3bh1mz56dlyjoCuFwGKNHj94vbc2cORO7d+/GCSecgJ49e6K5uRlLlizBU089hfPPPx+jRo0y644cORIXX3wxhg4dCr/fj9WrV2P27NmorKzELbfcYtYTBAG/+93vcMkll+Dqq6/GhRdeiI0bN+KWW27BaaedZhOTZ555Jk477TRcc801aG1txYABA/Diiy9iyZIleP75520ht6ZPn44FCxZg8+bNZoKK9957D2vWrMGIESNARFi9ejX+53/+Bz/5yU9w/fXX27b197//PU466SScccYZuPXWW8FxHB588EHU19fjvvvuM+sNHz4c06dPx8yZMyEIAsaMGYOlS5fiySefxH//93+jpKTErHvsscfi7LPPxtChQ1FYWIitW7dizpw52Lx5sy2E3Lnnnou77roL11xzDXbu3ImjjjoKNTU1mD17NmKxmE24P/jgg7jrrrvwk5/8BBMnTnSJTatwr6urw4oVKwBkLNd/+9vfUF5ejvLycjPpx+WXX46HH34Y5513Hu644w4MHjwY3333HX77298iFArZsrVNnjwZI0eOxBFHHIHS0lLs2rUL8+fPx4oVK8wIKQBw3HHHYcyYMbj77rsRi8VwwgknoKWlBY899hi2bNmC5557bq/OM4N8BW48HscLL7yAY489FkOHDs1aj+M4TJgwIWtiEgaD8W/Gj+iiwWDkjeEPOGzYMM/lCxYsoJNOOokqKipIlmWqrq6mCy64wIz0kC/YB59hgxUrVtDEiROppKSEJEminj170sSJE231mpqaaPr06dSjRw8KBoN03HHH0fvvv08TJkzYrz7D+5O//vWvdOqpp1JFRQWJokgFBQU0duxY+sMf/uDyOZ46dSoNGDCAQqEQSZJEffv2pRkzZtCuXbs8237hhRdoxIgRJMsyVVZW0g033EBtbW2uem1tbXTDDTdQZWUlybJMI0aMoBdffNFVb9q0aS6f2JUrV9LRRx9NkUiEfD4fHXbYYfT73/8+q9+ocTyCwSAFg0E6+eSTaeXKla56yWSSZs6cSX369CFZlmnQoEH0hz/8wVXv5ptvppEjR1JhYSGJokiVlZU0ZcoUzzZramro+uuvpwEDBpDf76fq6mqaOHGiK3rIhAkTcvqoW8kVWcR6zhHpiT8uueQS6tevH/l8PurTpw/9/Oc/d/l2/8///A+NGTOGiouLSRAEKi0tpTPOOIPefPNN1zY1NzfT7bffTkOHDqVgMEg9evSgE0880ZZYhahr5xlRZl7BCSec4FrmxJgcOXfu3Kx12trazMm4DAaje8ARWYKkMhgMBoPRjVm8eDHOOussfPbZZ6ZPO4PB+PeG+QwzGAwGg5Fm+fLlmDp1KhPCDEY3glmGGd2CzjKsGeliGQwGg8FgdC/Y3Z/RLegsrNgVV1zxYw+RwWAwGAzGjwCLJsHoFjjDRDkxYgQzGAwGg8HoXjA3CQaDwWAwGAxGt4W5STAYDAaDwWAwui3MTeIHRNM07Nq1C+FwGBzH/djDYTAYDAbjR4GI0NbWhurqajZZmXHQwcTwD8iuXbvQu3fvH3sYDAaDwWAcFOzYsWO/Z9pkMPYVJoZ/QMLhMABgx5ZnEQkHO62vCBw+2rMHH+zWD4vE6+7ccvohWuQBfzrj7O4ODikN+L4184QtSlp6Pdj+WklpermxzC9kvqc0oDEBdCR47KnVxyul2xQlDaKoj0eSVb1M1CBKGpoa/OiI2U8l63oA0BEToao8WltkqCm9QyG9zGhL/5txYVcUzlYm+1QIgpZzXGY7kmbbTom3b+vXu3zY9mkBBFWDKuiFik/fuXx6U4zxiaIGRbHvTKMfY3yKwiFVz8EXV231FMn+RsDoyxdXEWhPwokmZPpRLAdQFfXvCb8ArojT932W/SJKmX2Z7z6ReMKZveI4JFLlGpM5NujbppEKlVLQyL6tzv8BgOcESLzf/O7ZLqlIaXGoWsqzP3MfaN7h8QReNJeplDkuKS2z75X0d8VSliDes66qcRB4QpGkIGA5zs56VsoD5QiSL91AjjB+/hCSahwKuY99po84UlocSTWJnVGfq9+UfUi2bSr2qyiSFLPM2EZjfTX916s9Y52kytvKrf0p6Z9n0lIWVwFFA75t4bBja0RfnhDM36/x21FTPKyH8M4LanBKYhfQ1AoI6R+dLAJi+jwx/gpCZrmqAKqaKQcyy0TJMtBU5n9ezNThRfMHzgmyWZ3U9PEwBuisY10fAFJxUKwx059guf7x3t+t/bnac7UhuMqM35f1d8ZzAniN3OvD/XvM9vvbF7L95m2kfw+trTH07neReV9kMA4mmBj+ATFcIyKFYUQiIb0wyw0dAJI8IdQRgD+qX8StYtgqXmUeKIwA26McZNVbDMsegjilAenbtS6EjPsPn+mrkgeiCgc5BDTW+23tWsWXVWAFUj4oyNyInEJYFAkB/R6JcAmwuyYAJcVnlltEp9F+MiEACm8rs9Zxij7r8mz7wSfq/zfEASnog+gPQVA0cGmhSQ4xbB2fCNjGbO5zYz8ASKZkiJQwlykSb/uBqaL+f8onQKQEpKT752eIXnPQlvUAQPWL4Pxc+iFAy2u/OMWw1z6ReEJBhEMk4n5oc4pSLzGcTRiLvAyeEyBwknmT9LqBpjQeipb07C8jgvVzzBC8Amd9QJFcQtgPb0EMAAmNN8/YlMbB51gu8oQCWUFQ1GxtONs0CAUlhNH5Ay8kP+IqQSMxvS0pr0oAwlC0JMjfgbq4BBkZUWpIKmO8PgAJlYdP0FDgV1EgZ8SwpNnFsOIQwylNb09J74OEmj5HNQ5SenlmP+nfkxoQgC6CAf17SgNkhYMYCCKZECAGABgPkCkeSoqHIACc5fIXCgcQCYSAZAIQRV0IA/p3QBfDolsUIpHwLhctYhMB/Y/5ZGsRn4IhdH1mbUoaD+GSrb5ZxyF2KZ4ChECmzEsMC1Yh7Mtd1zlGj7pev7dcYthZ74egUzGsKsjcdXSYyyDjYISJ4QMNn2uXZ26MTqswkLEKe+G0Crta1rzLvTD6trVvEcLOPs31rJZeh4A21o13CLb1nELYWtf4m0zYN1ySurAxcO+Tmnof4h16m4b4TPm8d67XWJ3jtY4xERDh61A8rbrWftqLfBAUvQ1fh+Kqp3gcSK8yK7b9L+5bkBinIHUt97BSef2vaEmIvIxcGMK6M0uwVezmIuVh/XQK4VzLAf03oGicZ1te62ikeooRJxqp5sOE17Js/9uss9ZtsTwM69/VjFU4DyFsLU+ovOdy63fDImx9AZLS7JbiLiN67Dcx18XOY5khhHkxu8HB69orOIRrLqu+sdz4ONvI1kc+5HHu7Mv6GqldEsSd1leVfR8zg3EQwc7mA4Egel84HBdeQww4hbCXBjJebVsFmlHPuZ5TCFvbk7N8B9xi1yz3EK6SlLlwZhPCrnY82ndaOrOVZcZClu/ufeGkJgZ8v6MASopHysdDSjheJTqswta2FYul2jk22adCDmhAgLO5VHgJYaOfWFiGoGgQHQcom5BWRR5qSICIfVEeuckmgq3CzBByOS3DlnYULQnZYkXztoZm6EwEpzTO9cBm1MklhA1xmG25URYQNfh4zVXPWndvyfYQ4VkXKhIa7xKtgF0EG2M0BLwXeyuEraemUwi73DVS+zApymkVtpJNdJnuEY6HrVyCOAucHAJUBWQReTZrrgVKRoFU3D22LBbdvKzC+0KeojRfQWw9Rzurn+ttD4PxrwQTwz8mzotYjuuJYRV2ClaDbELYIKk5rMyWrq3CQuL1uqKHldHLKizxQNxRZl3HuZ5zfb2utyuEl6+u1/r5YGxvQ6MPsVYR/mgKUhetp14C3TrOSJHuIlHfEXCJbKcQBgA1JEBoyU8IK1JaCGexpHc69k72l9d5lesGl68Q7qwtpzi0CmEvEeyFUwhbySWErcLRuq7EE0TLb8JLYFrbM8efjyjRkq6HgWz7RtUUdChSpyLY+n8qi1XYi/0lhJNa7n66jNNn2CyXASW7r3VWcelxXLIJ3bzW1zysovkI4X9HmIWY8W8CO4sPAMar0XzqmX6BHqLWWtaQyL0csAhei5EkX6uwk1zWWaBz8RyL6oPp6LCfck4h3BleLhLZXDec25RtG1M5fIWtY/Qap1W4x6ISFMVtbfYSwkJUr2O4SOTCEMiaAkDq+oOAF9bzoEgmRCQgIue2WnZmEc7lWtEVC1IuEWy1gnrVtdbpqhA2fnsdCm9ahq04BbCxXpGs5PUbN+pkq+ssa0pwaE063SDsfVvH7aQz94h8ySaEna4RxpsTp1tTNhIqrwupXFZhA9Fj8pmz3Mn+srxa2+NFQE1ffFVF/1FmmwTn5IewCncCzwk/nN9wZy4lTjRmPWYcvDAxfBBhiA2XqPW4hjUn7ZaYbEJY5qEfZct1y9/JUTejV2SxnDr9k70iQTgtp4AeUSIWlVzlXnVzRW/IlHVu2XVayI2+OvMVzjVG53gkSUMqxSPeIeoThdKi0Nm28/7ndJHIZhXuDFtkCym7cPdC5oEhRQqCIqHYV+Ep0pwi2OtVv1UIG9ZdgRfBQ7DdkJ2YbaXXzxYNwssKKghwLfcSu846uYQwAMQUDoCIIlnfjmwi2CAsISfGNiqUREqLu8q9aEvFURfXrYr5iGAjSkxKc4/Xul5X3SPyEcIpjTP/DwQV2298r10nvCbIAXbrsFUIWyetqUqXrMTm+nlaOW0uFTmEcFb3iHzHlINcv6l9qeukq77GPxTxeBzJZI63AnuJLMvw+/37vV3Gvx5MDB8A8rUMA9l9XZ1W4Ya4vbyzdWVZv4HFHQ/zThcJz/VzWIVlHuiAtxB21vcSwlbyffXvZRnNx184F9mswkD27bFaqY3vmgJoOUSw0S7BbhXO5R5h9pFQoYjCXluGs+2XiKyhd8jpp+vt15uvEDbgOcF2M81mEeUhmO14CV8DxWIZzuUnbJBtEpl9PbiWxRRA5AXz95HNd7hIVhAQw1m3zbqNCTXa6f4D9H3YnBTRoXAusWodb+7v2R8K9pcQdu4Tf0CBKGpoa5Xztg6bWCNIdBXXU6botlrmssR6LPOMIpGrra4I4S6OxVzkELVdEakHg6DdW+LxOIqLKhFPtOz3tisrK7FlyxYmiBlMDB+MWEWL1SrsnBBn9QO2rWO1CiMjeJMa51rm/O4XMlYmK9bwXM7+REnLaTm1xgJ2LvMKDQa4LcPWZVbycZHIZgl3ukfkwmkJti2TNDPsWrLDPm4vIewkHyHsZSnO17UkG9b9EpHL9X46mdwG5O8a4aybzzKB45GCW4A6RV2HwiOVPq+dk+m83COsdOZioItEDUp6ol6uSXTFPoJGKkJisTuSBtn9g60PxRrsDwBWVNKQ0kRPIew17n2K5LAfMPovkoGUqKE1kkRDXSD3SgaBCNDSai9zWoW9XCGs0SMMPIRrqryPbR/7UwDFW1z1W/go4AN4LiNiQ2IxFC1piQmt6rGkVQXwFaBdyghuHx+C1NYIAOBCpYjzinmsg1wISLS7x2sZQ4NaBw0qRE1GsdjDvb0W2lL1NteHsFR2UInd/W1NTiaTiCdaMOUnj0IS8zyv8iCldGDhkhuRTCaZGGYwMXygEInXZyBLfiTTIdTklJqZlQwgHC4DsB0AMCCi4piKTIxWAEioUbxfQ+gd4jBtkH4T/t1nIvwicPmgdhT7IgAyVgCBk/B9tA718YxF1joTX+TJ/O7jNTQnRaxvytTNJrack/Uu6J/Cs19lTiVR1HBaHxXLa+w38dLyDttN0iqEw5EULjy8A+UBBSJP+KZJxstrwp4RHPR13C4SRTJwcrViTn4yI25YRJPE+5Ac3ox4h4Dvt4dtk85FSUNFVRQzxrUiImsQecLqPTL+9mkYN53YhOpgyjaxyinC6uISOhQeq/aIiCocln9Uing6GYkoaRh6eAOOrda3uSEBbG/nTFFj7NNNmyJo3yRCKxNw/DF1pmD9fHMQO74Lgwdw1vh69All1llew+H77zMxbo19U1mooCpI+Lq588lNQS6ENq3ZVhYSi8ErFnHMATE+gQ5FFy9Oi7DAi+gROMSMe6pwGnZ3bIXA8fAJ+vg8LcPWdkgDwGUVwsU+QlOCQ0LjkdCAkKiiUNZjeCfUGJoSHAKiZpaZfZCKtlQcNbGMsHIK4T4FSWxscd8UC8Tsgr62QwCQQO9QPcJSmW2bVErZxFShVAGeExBVmpDUOiALAQSEiGe7pf4k+oebEFc7sGp3gW1ZUCS0pN2kXH67DuE8oJDgFwqgaElsak0ileRxTEVmHxjHoz4ew7q6ICQeOLE6Bp8QNJftiCr4pslI/pFpW/89wVVe6o8D/eIokgkpDVi5KYBtmwtd2xhTOHAlfUGpONDSnNsqrCQzLhJe4thDCLeXlmJ1bR0A4NBIAj0CPQAInpPakloHPqyVACgoDygYVMjrDzhQ0Zqsw470nId+YaBYrsYnDTuxvU1GgaTisJIOlPtD4PyFiIkqmhLbsb1d70PkCdXB3egZGgTEmvXOHIk9AKAxkcA/aoIIicAZvfd0Kog3tSahaBz6FLSjUCgFEs2Zhb6CfZrUllXIdtVH2Kjfxcge2ZDEAGRp/4lhBsMKE8MHAJF4UOM2cP5CQLLfbCneAtTXAooCFEbQp7gAXzTqh4XnBBQ0NIDWrwd31FgkAplXxMVJHxAuA1BjtlWYEKAueQvq7hiQ0m9kh47siYETJiGJlO0iZ3t9nZ4Iogg8gBp8XC/ZLKtOq7CVa4ZF0ZwUzTon9lJxcs929AwNwim9tuLDWglLv+dRWpLABf1TGFTYgMteqXK1DQA+QcPI0iIEmuqxXdT9D5UUj1SKdyXysO3fdBt+ETispAMVgX6Z7TMmuaQvzL0HN+E5Po4v6nQx7BVKTeQJR/foBW73JqxG5sY75LutoIYmIJkWiIq+jym9r/uU6sLm+KPGojUo4JTqWry1XcKH60pN38lyP2F8pYaAGEFTYrcp+ra3+/B+rYStDuF/SnUKEVnF+u36eXPmSbvxH4cVQ9Y4c5tO7tmK1X1a8cZ2Ebv3ZM4vvwicWJ3A4SUCvmkW8XUz5zmJsH9Y0B/K0qdDSCwG39EGqvsGFG3LbGtZJVBc5m7AATVuA2p3Qhs21vTt7Yq1yEsIR2QVVcFDwdV8g4pgET6DLjCLfCJCYjE61FbX+iExvZ8AKAKPttQ2TytrqV9F3wIfin19EBA34vOGzIOFMZHO+uAo8QSB49GWApqTvB7FIZBAW6re9RszUDUFLandCEtlSGodZrnIy0BbPSjakBmQpkAA4PMVYJflclEgqQiI+jh8Ao+mhGBzZbC+ReoXBkp9vcE17gQXKUATGm3bHPl+u35Mw8VIlfdBPWK25cViD9D2T4B4EiVllSivasc3zf709mceMiWe4OM12wPnqHIOZf4g6uMx/KMmeyKShgSg8Rz4op6gznx8Jb9+vstZLMHW9TUFXKgU0VQzmhN6/583CBhYWI/qUAF8wcyDki74VWxtAuri+rnRkpSQ0hQMKtyCthTwXWtG2EZTCYhcPWqiEmo7AHQIaE8VYETp96gMFiGp6ElSjImP+j6SUO7v0K8kqbgemi09fk4OmfeE2g7dUFEfj0Hx7QQPAUhl3iIY7OlIojEuQ+QJfiEAav4+Y3kGAF8BuEDhvonizoSvVeA6+rBddxmMfxGYGD4QpBKApoDqtwAFJZD9hYAg6hexhnoglrYOFwRRKIdw8UABhUIP0KcroKzdBEppwGcLUXTq4Th72HhAEJF8+HEAwH03TEdCiwIoBuIAJwlIbdBvfJrCQegVBq1fqedV6j0AXLgiLQ4t6UfTFz4xWIQ+BQlUBZOoi0totDgYixYrkNXaGpaAgb4y4PB6FIgqBhb2hlDbBEp9D3+oAH3CbbhyiC4qhnB+YNtuzD8f2NAi2yzU5f4U+gnl0D74B0hRcN4xJ2FYcQOakyK2tUnmDRjQRbN1TEb5IeEUKqU+gKrp25feNlIT5sVZLCzAOf1acX5/wq7DO9Ch8LZx9AsDZY1RaC8+Cy2l4bpzJ+OcfjWo3tOC1Icb0sfTEMGa+Zcv9EEaPQxc1VBAU1AoFOCEHsDI0gas7VWLXVERo8s7MLCwN8RoK5BKQQ71g0YqOtRWFPuAQYVtOLxYwxfDePQJEY6viqJXqC8A4P8dW4OPBnSg1AfIQgDUvM282QRKKlDir8eUfgSpvy7Ut7WJ6BtWUBlQkdI4VAaAyoAhpDLiJSgSeE4CNWxDuPxQfX81bwXV1+rbqqTPgaQCbN+KgORHMKS7VNjiuUqifqPf+jFoy05AUSEVfIl+fY6ExnNoSe5O72O3VVLkZFM4ilwSBZKgW7uciRCUlC7OJT+OKD8UDfEd4DkBshCALATgE0LwCa0QeVkX9IkOc3xiCqgO9kJYqrdZonWRIerjSsXRT6pCqLIePATsSft0O98G2DPf6dR2CPDxSct5SZ7121L1AHShHiQfqG6z/iBiDRlmbK+vAH4hgAJJtbUrpj/FPhXFPtjehFQFk+hdUKlvm0a61ZUXIULGoELBfMBGY/rhoTUKqa4WAw8diR59EpB4PwLtBO3TpeZwuMIi+IVI2hJMrjdKxv/GtoYlHwJiBAMLeqDy0GYMLGzDF4P0BwCrBdkU77wILlLh3n4HpCY8y13rWdMvW9jY4seuWAIRuSO9vzLb0Bi3W5t3RUXUdYiua05dXML2dgUpLdN+cxJYtTuIHoGO9LGwP/T5eM0UiOY2aPr1iFQFnKqgyJdp7x81QTPrqH7NFWy/22jKD5+gYUhRHDxXAAgeT7iqYhfIkt9liPEkX+sv7yGAf2A0iYO6NxNCsrUHlgmPkYEjon1LVcXISmtrKwoLC9G84SFEQhKQiJnWRABAPKGLDENwBP1AUgG1tELb0QhKi1EyZ7aoQDq5hdaiX1T5oAguKNnqpLboPnGawsE3ULdWSscOBDf6FKQXuF9hOWdS+wqgcJp5kXM97Vu+U7RBv9Cm4plyyZ8RS0ZfTboQMKzgZjsAsKcRpKr6/knvD66qB7i+w6H4g56WbNd4AMBf4KpjimHoM8HN/xtrgNao2R+pKuj7OvOObexTLihCa4xn9rFxLGx1JEgTR4M7ZIx9PKZY9APxdvd4w2WmUDRcYlJaHD4hZEZiMJYltQ7IfAB8okPf5+m2OH9hevz6OZEIF6I5UQuJ95nCz2jLuh8FToLIyZATCVDrbr096zlq/rUIYsBunTPKFAWUSGbqptfnqspBhx1n20ar6w/PCa6x0fZPQFt3utrK9KkLfm74APv+NsJcWc856zEAXBZE27GA/qaG8xeixadiV1QXE3Y3m4y4bUvB5oKUzVJqrCOk+w5LZfDH4hlrsHV8ShIIlegWw2ARvm7dhuZ02m4vEerso9LXD7T7W+94vMZ2tqetwEnFvjzo1x/Mjf1e1QMQZXAlffFptA6tScFlEbaOyxiDxPsQkorhR0Z8JWH3RTcffnhZ/1048bIqegg1p0A29puiJbGmrga7LKntnQ/RQGZ+RF2HiOb0LrMLUdiEqMQDHQqHnVHBnFjoF3KvUx1MYXBRP3CNO7NuW31YwJNf+2wJlyTeHl9eMj+EEaUx9JOqMueQxd3OhaCHhOOKema3FHfVBWIvaG2NorBkClpaWhCJeLsHea+n30d/NuUpSFIeKc/zJJWK4dWFV3V5PIx/T5hl+ECgKYCSfuYQhbTgs9zcRVEXE21RXSC36q/ROL8IiivgJN4mdimlmWVaTAFZhVpKNZfxIkHoFQZXUQIMGGIfk8eMa/P1HQCOFyEKIgDNLuys1g2rGDWEsIFh7TKtempm2wF90oxFSNkQRXChIBAKgpJRiJI/PY6O7GNQ9VejnUHxFqBdt5xTXSPQ2JIZn0E6RpWxHymWFp3pOx2lNP2hxLKvKZYC7agFItv0ukU97R173fCzIPHeFhy/UADE2zMTgIxtsr5il/zgIUDi069201ZXqwB2ClCoUf0hQk2LYSfp8xOyqB8z6wMc9IcIW10AUBRwVeVAdb+s2+kaB6CfN4kE0GrZX5ZjY7ikAAAXT+r1vQRuNiyiwSakrFZFuC1dTv9wXdgqCIgaOrIkhvFC5GTwEOx9Wy3saX/YZDCEqLIHdXHJ1bfTGgvAFKHmAw1gP6c9rjeuhxrjDZWxXJTBVQ9HU2IXWpP7ZvmTkX5oMI9P+nqlZhFxXlnkPK5Zhv+vdX82JXZBoSR2RXOnAZd4QnNC3wcx4zmPd9fZV3oEZPDtTTBb8jhfS329MbpsFwDg6+bO97Vf4Ezrck4EEZD8+kNCV8O7HQCBzGAcLOy/dw6MvUP2vkAZwouzpYoTbMu86nvV4QYNcouzHwKvC6pXmSGYvLbdmERTXgKuuPf+G5sVRdWtY+0xQJZs/XJGWmlj/3sch2z7Wv16F7BrKxC1+2f+YFhjq+4L/gLTugwAWTOAAZ4JEjjBo74oAtX9oBZXdT3GqSjox8V6bCzHh5PyEGZ5JDjIOw5sGqcwknhCSFRNt4XO6gNAQIxkXEVypPJtS9VjW3tG4Hm174ktfIlg/+48PtYkF7Jo/z2KujWxIb4D3zSnupyoI6/xGeSK/etVN0tGOU7wAbyIhBrD102WkISWfee1H2MKZ5uI6Ly8GhZlL7xiwFv7K/WrKJQrdLHuNfZ0Ig+ucSdGliYwstTtCtJZQiQAmbatn3T7nD/tP9xVvNrsyofB+BeCieEDST4XiCxZmJwCzFpmCDUvkcZJgm71yyeY/P5KHep1E8s1Uzy9zYao4oojuhAOl+k+zh50eayO7ae2aGZM+0kQUywF2ryjS+PxEoo5/e9+gJuMJkq6G4cts5dD4DqFk6PMKYi58hJQSS80JXeZLhJ7hZxxQ7CeQ56COJ8YeXnuP9OfOYcI9QscwhLM5BydWRFFToYffvAdbd5xbB3jz9caa/NhNlIFm2HJnCI4iyi2PqBahLEGNZ2E5Acmm4Aysr5lq++xjkoa6hyZLq2C1ip2fYKG6F4YQPMSqAB6h0R9joCVLKKxR+CQvPtXScvsG+vH2Y/X9wPFfhbIisjv9w+DYcDOhh+TbOlHxYzAAhzW4TRcFqHmKZq7IBw5OZSZ4ZyPRS0XnvFBPcSVk6Tdz/cHwXhtvBeCONe+Nny5O8VXAASLbJEF9gqndTjHDcfw082JpyV/LwSxotjcILqMVbR5WYlLCnM/YOVCsI7Zwzqc/uslhK3CU+J9EHgRQVHLKoSt5T5BjzdLHS12VxenIFb1fWd1g3C2lZVscXezieJc1uI8xEtOi3VXLL75rJMr4kQWsdWZVdhKrgRGudb1EsY+QUOJX0VIKgaQsVx7XjvTY1e0LmZYy2FpNj/MQstg5AUTwwcKL2HogLPml3WIMNt3x+v5fARx3vBifrOOrfU7w2qlcuIQVZwggBIJoHUPqG03qC1Pq+L+vOh3IoiBLPtaEjxdWGyk95fGc1A4DQlV99POJRidyzjB98Pe5LyOV2eC2GHdp7YoqGEbin3Vtvi7eWPNSOYhirnelUAonH97Oc7TztwlconQaCplC9dmTCrLazzZhGsqjmJfNQ4JpzCgMD/3CIEXTeFlu9Y4haKnCHaUGccznU671L9vyV086UwQdyaKcwhjZ7QPLzcH6zHNZuV1u8Xof/N2WcmCVRibHzmEXbGdiKv5tW0LEfgjuioYiWTy/TAYByvssfHHwjqZDMhMWsmCazJdegJX1vrWSXe5cE5UESxieG8ss16pUJ0Y2+6cmJX+nxMEoC7tdxvJHXx+rzFu/IqSGY8sZWIIp8s4SdAnbVkm1QH6JDrrMTHKsuKxX6yxcfcJ4xjuz5ufMV7reeo8bkDm2AH24wcAu7aCE0TwhelQX121EFv7MY+XCq68BCiu1t9g5LMNeSzjBF/nobscpLQEOhTelenOKZZs4swp4qy/P0soOarbjJKSnmhL1UPkM7/zbGLbcMHIFKQFsTWqhDNUnVUQO9+UpCn2VUPk69Ga7Nq+yQuvSXJWnOP1Wt/Aox2vhxhb5sxOlgP5+wvnfAbOY3JaTOawbnv289mzfV50WZpd0TX2w4PzwSJiVZEHvx9Dq6nEbIGMDEwMHwh4EVy4AtTUiT9p33565MOOVn2mvEUcqx9vMsUXAIjDKnWx0Jh53WqdaW/MeOF6V6WTcyAjAKziyXpRTsei3C/pNI0+jKxRXYQSCXDRGLhin7fY64JQN4SOMaOaeBGccdNvj9lDTFnFnRHizdKWtr3WFmnCOCZCRQjoUQLO5wPXYyAULn0TFfjMvhQz4cRgsZY497XVWmx1beA5ATwvQA6XAc3fd/rg4Ww3pcWhaEl79IY0Eu9HsKgnECp1t2kVGtYwZE079KggTkEMAIcO0euqCuJqO2JKu7470iHG/EJB9nNMEMENH5F1DJy/EG1+QNFigBYDT/ZoGbaU0gLMCBr+lIg2IRO9QJCdbiOS2U5Hoh71cQkBUUORrNiElREiLa4S2hX9e2uSRzQlZI2BLfKE3qiD7O8DIS6CCivNYwHox4qr36pvX6gUkPyQhQAa2xPY3qaHkzLCdZX4VdNPeVdMhqJxGFCYhManz9SqId771nrs2nYDrXvswlgQwfU83LYKpxEKuUJUBXfi6yY9+1cmTrXgyvKY7gjl/hqELW+YAmLEPK8NrDGnw1KZd3gwXkSM0wWeSimEVftbq6QkQKEkgunjAF6EShm3FevxMPByncjlImHFKz13Puu5cFzLWpN12Jw+zvn4I9fFJVQHU3C+b9xv8z6w7yLYuf7BIqoZDC+YGD4AdJRWoENoRqS6P4JJAu3eaLcKyyK4Q0fie9qj/x8uhCzolzk1LQIqD58A+nollH98CXFEL7QcPQoaqSjVwnpoLV70DCGuFlcBWtJ7Brs1Bm7QD0VLQlM7bDcpLzwtaF5xXZ2h1WyW8CzWYaRDdcUTmfEaH1XZa2s1FRSjQ21HSosDYT+kwkG6IGtvss28tn0H9EQSWz4DN3S8XjxgG7B1E7Rvt9sEMUQB/LE/RVuqHtFULYRkZj+rFiEXEMMIicUQVQ0+IWQTCEm1A3G10TZxyrA6+ngN1aEC7OloAwD0CIb1WeoN2zLjtfQj8rJ589FIRVOiFTUxOT0ZSgGgQNE4JFS9/ZDUgojc5HmzN7LAiTyZ3/sUJFAtyvbjB4AbOAq1Wi2+alIBcFA0DoFkC3ZF9dns5QEFh0YSnrPwrXClffF102ZLemS9/ZTGAW1JNCf1DGYhESj16VnEhhQncGgkjGiqGZ81+LCnQ+9E4pOY2FfGF23tWFkrWyIHZB7SjG3OxHkNIqpwCImEoUUi+kcSCHqkBS8QVSQ0Hgu3SuhIOCzEjmyJQ4tkXDRwF8rDvaCSim3t32PV7iCSmr4dx1ep6OnvDyTa0YAm7Gnajbd3BvFJjS7aS8MKjizlUOJXUR+XsL5Jwuo6fdxFMnBYcXaXIqtQKw8oOCUS1EN9OayGMYriw90tWFcvpvcDcO2wYtTHJazcrTfiT0888hJt29uNbz4UyUCpn3BSdRLDi4Ft7Qm8t8uHqGKMOYmIBPQNKziuUgVvPYd5EU3KHmxqTmJ7m4zaDiCqAJP6tGBoQU8kedL33/YgWlPA2B5JDC8uhhGFtiqUQnUwCVmQ04lVOLSl4maaZCtBMRNaLbO/9PMgImumq4ru/y7i4/r8rkEFogq/UACKbs4Uel2/NAWh8gqMLOlAQuXhEzRsanX/QIxj6BM0NMYFrG+uxUjw+kOM1QKsphM8AXpZIGI+YLmwjseI0W48lIi55xjwiezzHRS5c7dABuNggonhA8COtga0dkTQp6AOPUPlCFYMdCWDaODbsGpXgSuEUUrTLyqjyzdj8JBjIIoCuH5H4M0tjQAEHF9Vhz5l/c361qdvjVSAVMgaB9q8CjRgjLmMt4g+jeegqB2utJ82nIkMrEkOjOWGBVhVMuLXmrDB+B7JEuZHUUDRGNAaBcVSgCiC6+uRypc3/FMdr1GDRRYxmx6fT4TCaYim6tGhtFl88lpRKEcRDpVlRCNUaJTQLYua3q9PCsEXCiKpdqAtVY9wUQ9Ih4rgDfFu2aamxK50OCwBvvSrbV3MCqbYqg62gOcEhMRi+DndCp9Qo0hqHYimUqiLy2YqV6tYHVgYR4fShu3tcnpZOzRSUVza174PVQUyAFEqQ1NiF1JaAm0pPd3zrqiI1lQmC5ghClMaB4nXUzWHJZjJBJz1jLoAcNmghB6uzxqyL1iErW0b8db2ED5vzAhqidfFnl8EUpqIoEjwC80Q0j6pgD0JQ7jHQNTGNuGD3UG8szFzA1fSIspIbQ0AkaIkwiElnZTAhyK5CTUxGV83C/iiTm/z2GoVSbUDr37nw1ebCiztZdpJJuznvexTEY4kUdEjDokXAPhQ4lfTIklPOJFIZyF7cZMfn39WCi+sYw2NrcPWNiDq34IegR7mvjW2MaoAp/TUl31VR9gVDeCTGgkbvy5GpCiB0rDuVvN5g4zVdRw2fl2MeDpqQqQoge8iSYhi5z6nR/aJY3ylH3LBCJe1bkPT9/hHrR/LP9JTiJeUdeD8/jvwyndhNLTZbxei4+Ggsd6PhvqAraxn73aU+oAiuQ5fNOjCfnc6RXM4kkSkMIljq4GRpfWO/ZbEhhYNH+2R8XUzh8Z6Pzpiev+VQxqxrTWBlbVB/PM7P+IdApqTHBStGcOK4yiQCjGoEAiJ1RA2f6y71gw6Gm2pLTZLPaBnYAyKKbQm9fTWTkSeEBKLEWiqB+q/BxQFpwwbj5e27EFSyx2XWORJzzK6fastsY8tmU36e8GRfkyoroBGKgLt7TijNIitah3er8m4Tgwr7sDQQAUo2oBlcQ4NcQFqVSX4Ve8Avar0CDzG9U9RQVt2Qqtp0aMKRfzgRh/l/XZN8oMLlWaus/F2vV4WMcwrKVDrblBjjdu9pqg8awQgBuNghonhA0xrsg5NpAE8IAi8HiIHgJ4orMBwTTWxWnT2dGwBepZBUGsxoJDLO+SRIvAQBx4DslgKNVIBThchXXl9ZU1trDeWFsmGFTiLCDZuApxPTt8EFHv2MuMmEYuDYimojXGIZQk9EUggPVFKEKHx9put1fqpUFQ3eqZRkRG1XcH6qj2hRqFV97f9UKiwElqk3NZ/h9qK2mg7fJ284twVk7Er1o7qYCMEjkdc1S2xusU1+8oJjceGFvvNuj4eQ318k2mttVqR2xUBHQpvPkwpml2cGueYzAOyJbW2FaOezGcEsWE53tzqx2bo4sw8X5taoWh+T6uvERBlUxuHTW0yBoQl12vlqKJbC4EkFm8NQ1F4yD7VJVRFSYOS4uEPZI5rUgOW13D4vKkADXH7b0jmgUVbBTiDsoiiZgpi2afayiVJQzCkmONaWy8CEG1ipyHOIaUBn35RbGvLOVZAF8VRBXj6Gx+KZB/6FEThF9zZtN79PoS2VBQ1Mcm2DaKooaFNxDttwO6aIFqb7RbOZEJAW6uM4hKPOLU++/n/1W4JT/CtSGqtrrcAb3+YebgRJQ2xqIT/XFbm2j9e2+kPqAiG9N9NLJ35bXdNEH+uCeKDAQK+3+F+CBYlDZ80cJB51XE+CJB4ww1DLwkEFYRE4KlvAMC+/RJP+GiPhI/2ZNrpHarDpPLeSD3/V0iKgn5DjkaPQDpzZ/rhy3gzoz+Mxs22DD/viFyOQFM96IvPoe3Q5zEIpWU4vkoyXX6ciWOMv3FVBeIAtbTq17ZkShepqczTJqU03c0q9iF8Rw3Xi/+6CuKIXug37jSE+9SZ21jqPxT00duI/XktTpl1HZqEdHKVPY2AIOiWflEGEjHQjhooG+qAlArp2IF6NkHAnvrbuF77fCAAvFZoWo8p2gA+iyWZog26i43VRS+deIdTVJCqQIxUuHy6xfi+Rc5RRCHj3rYfULT91xbjXx8mhg8A9QkJIRmmVQ+wixMASKi8KTSsNwXjhvhZg10EHl/VjohcAo32zUfMCOdjpO3tMlZhnAekqkBTeuKYYRkxJq0ZNwqJh1ARBAqC4PyFIOs4STXHaghRlVI2UWz7C9V0U9B9CZHV5y8bCTWKDmqFBhUtqd1QNcV8iElpnKU9zuabqGhc2oLI29wPFI3D9nafmUXMWm4cf+O4+wQNCZXH7piIgMXqZ5xLhuXYGIuTlOZt4QUyVq2wlPme1PSJQYZ1OJsgfr9WsrWZdmU3+3I+1Bn9GfU3tXGu9Yx4r1ZrKgBTEBtWT0XhTIuwc2wNFrdTQ4j+czcHJcWjtUWGlC5LpfswhJ0hZEVRQziSMkVdR4LHt1nmjrW2yGhrzfymnSLRKo5FScPXX+jW40hhAtsjKVNgGn//sd3+NBKLimhrlSFKGlpbfGht8f6ti5IuxBWFRyCgIFKU3UffGOPKTQE01AU8BbwVY2zZBLCVSFECwVAKrS2y6wHGSwhb+aiOy+m3W9EjDpmHaQm2jkGUNKz5LmCeH8aYoxUpTCoiaC0JxP+yBkLFevgH6Q+xhjD1VZUDvXsBvIgywP2Ga89mc56ASUM9qmsUUM0eUEe6riWFO8UVcH4RBWOHAKH80gcrO9sgpD43v4v92qG9vRDFgGl9VS1zQpJzX0TRuEF6nwCopg6oqQOlVFBMQWpTEyilQawI6q5MsmUcznkciQQQ3Qny7wECEd0qnIpnXLCs+0XNWLO9oLpGffJzcW16oBaDR/QHmITJYOwnmBg+gFgFgtX/EsiIHsPylPFhzKzvFBdGyKpsls9sVt+8rMH5+OZ2VifpsTyeyFxMrZYSy82EryoEV1oMVFVC8wXcbXiQa5sEXrT57foFfd/6hE6iETj7gJDzocE5O904xoYgdtJpkgZjfXPCUuYcsi6zCmIvrOedIXS9xCqQEZaGddda1yqYO0O3OGf6D4m66He24Rczgtg819OWX6tQtVqIRZHgD+hWQquF29qu1+9GF0t629lEMWARgA6x5xTpzvqA3d0ilziWfaqnwHT25xSVZttS9nU7bbcTAWxd3/ierT+naI07tjFX20qK1z8ACgPeSTH8YuatQptD41vHZHUP6VeqoFgmjK9MgtavB6BH41F3R6HsbDOj8FBKgzSoDWJLG+BPP2h4PKAbGHMElA++gVrfgfj2DiRj+mA1lYOaflOnpf+WbfoQvlGVoJQKLiBb2hHsk53Tbau7Y2aK9+hi3edXVTkoSXu7gTAHpFSk/vG1PmchKAEp1YxmY/zlJB7K7hjEhiZwJRF9W5zhCK3RYtrTlmbT/cyS1jvb2z44QoKmobpG93U+1vWJ1AzGgYKJ4QOAZLEAGhd6Q9AAGSuxMfPZKor1um5hnA2nKNznqBAHEFtosp69wBX1hJdczCVKc4ri9KvPgKjfEOS0y0VXXUWMtgzrcK4Z5laMeqLrgYdc37OJVb2OtyDOrGtv38AqdA2Ra2BM4nKKXmfdzPKMuE1qGVFrHbfE6+UZUZwZl60PEfAjI3ZSWsYVAsi4M3iJK6fodfpwJrV0HatwsrguOEWxJGmmAA34DOu/fT2zHZFclmXnGL3EsSRpeQlWL6HeGaLHdjppbZGhpLz3pxfWetmuQcZ5EIuKrnW8xm/sd0XJPPQ4RbC1bWO57FNN33G9bUu8YEufFw1MolzqhcQ//+oOM+kIS6nVtIA/xBHC0Rpm0ejc8YMUhNwPs9GdCvhwIziJhzi80t5eFxBlgpLkwIsETdH/qo1xUEqDUJJxZbBupzXykLqlAYLfp7uo5YrNbUSCMay/ebokGKJYb8MjFKPxncE4iGFi+ABiFQNeohiAKW4MsgnjrpCPIO7M6rnf6ezGIPn12c17GY7HELhe26Vn9/LvlQgG7JZmpxC2Rl4w/mZzl3DifFvgLPNa10sQWzHu4U53B6srhPFX5t3+xNmsxNbxeAliQP8/JJJNoOri1FsUh2VdEJti3yJanT65htA2sPart53ZBgNdLAmmmPISxaKkId6h1/EHFJvPqhPZp0KSBKQsVmzAbQHORi7rbmuLnNVnOhu6tZlyWnE7Ero1tsORrjjbOA3h7twHXpEkOhK8OcktlwC2EouKiBQmXcczWx9WsglhmQfKUQZt5d9yNwDo8xNiKfCFLXpWQwDOGPBOSy7nF83Y4oZABQBBJKhKRrS21UvwbW2Hb2DEMmhHfHnYhauB0YYgEFTV/pvXFA5ag/7kKJSkCy0C3yaKJR6pLS3g/CKEw/rZN94rNKM16o9TwHrFws+nrvPBYi9J+QRA3n+iOvUvZChi/PAwMXwAENJxOK2iBnCLYiC7tRiwC2NnlqUfjc78hXMkEvGC4kreF86uiFm3q0RBpy4k2b53htMX2IlzmbOec7kRs9a6zMvlxuky4aybzdpsLMuslym3+uM6rcSGsPUSxAZeAtu6rrH9Vutf0jFW0eE2YW3b6m5h4BTGRn/m/rT4HhvtA5nX9s4+srVjkMvlwsDpPyxKboFp4PK1ztOCa46nk0tDyrKN2do2tiHVyf6w9uXlfuElgF0WdknztARn+tCPl1/kIIpaVhGcsTAToClQ1m1zWYWdQlFLv46gWApcCTolWzIjXiBoDtEqSoRoswifkcnSQxTmmxzJah0GdPcJuVgAX+jLur5VZGttyWxxgtIdpEW6EdJS7Lo04ATBbiX26oPBOEhhYvgA4Aznk0sU6/+7/U+dFmMrXq4R+foK2wRf7svl/ifHRIyuTMozoj+Y1uC9tPh2FaerhIHx3eoW4fQddrpGALDV1cu9xWtngtjA6jphxWnxNf4GjdDKFjeHbG4TXuNxCmLZImydD33ZRLF1fLa3JxbBal3faXUG3MLYqGcVqc4JeYC3D2q2cet1NJs7h1P4WYWkKGoIBPXBRAqTCOW48so8EA8pUFK8S4xmw+hb9qk5LaodHuPsDD0yRAoBn7eAN/Z3OKQgmdDFnnWSG+BtBQ+GFIiihpCYXQAbyDyQ4jPtdOaG4YWXBVaoCOmhxyqLjMbsD/BWS276B+Fsw9Ze2jq8V6T9fg1x67QOWwWxEBH1yXFwC3ynOBYrghCNiYP5JkNyWXrdFm1rPZvfcDZXCQbjIIaJ4QOEU/AYKBYfT2O55+SfTiZbHczktBZko75W9xcu67fX/TpdJQRnKty9abMTdxLDPxwwjmVuQQzAc4JdNsELZM6ZbILYe1ze7hIATGHm5dfu9hW24wy5ZhXExj5IaWTGL87m45vUMuulkk6xnKlvFVXO342XFdcUxkom6gKQEVNWUQzowjgYUkwXCev+cyJaXCusZBPHokgIhlKmL3IudGEp5C2GjQgSTmHoHHcu14xsIllROH2/pcftdGcwKPUDqaJEeh2PsFywuzYY+7jUb4zVLYC9yBbhwhTKxnq5Utanl3ESD6FnxDKBzlI/y+t9iqVMizJgd5VwlvG5/IodT7umEE6Pi1KaZ9ucxEOsCIIv0ec8mOI8i6uEOLBUz0Sa7S2dTbx6uELkgBME2zo267DTVYJNoGMcxDAxfADwce4buGEFy2YtNuo4b2bGtbMzYbfP1tFOUv3a2It0y5Ale8xNB7R5O7hYHHz5oT+IlbezNq2xhr32ZTa/4VwRIqyC2AuncM6U29s1lnc2KdM9sc4tiJ3tO99W5AqVBnjHIDbKzHKLmwVgD9tmjNu+H9x+y85yiXf3bWC1MBsYEdeyTXhzRqooSk/+zyb8AEBS3C4XQHZxLPtUFAayu0fY2uZ1YakoXNYoFlZEUTNFdrb2/WJ6zHlahp31ZN57YpuVIhlodkZ98EgEIvtUUwh3JoKtLkISz0HJIoKtdZ3kdEcoKTQtm66RpsUwl3Z10GKKPnktljJdFgysrhKCSBCsyx2WVuNsIfO7CM4Q2R4i3mod1jdUABfUZ7xykmyGdIPEA7FURgj3CoM7tA9QVqmv57ymW5NwOC26vnQ4NsGSSVTMiF8OsLtTKAoQi3u3JYpAjrl7+aAJPFRx/7kHap1E4WF0L5gYPkAYAshpFQT0m3fAcYG3WpCN+LP6evryTS0ceOxAqb931j5zuUUYk+q8RKGSTt/MC2Kn7gpcuEJPxNG0K/frsPQyLhQEgn4gqYDEVnCtUVMQcxIPvjSiC2W/D6iq1C/CvNvaabp0eBhCra4STuuwsZ6ReETPOucetyGEO8NwlfASwdboDl7+wzbhmsM6bP3fq40OxTinvN0mnA9chl9xSzLTdnlAcfgxA9GUgKK0WLSK8/aUgJSmp0N2WnetgjhkcTUIiZnxOV0EUhrMzHjO0Gju9vXvUQVoSnIolu37JKkBRY4yvV0OkgI4w7YBsEWqEEUNRTIQyZJN1hWr2REiLVfYsnBIMa2gnbULAJUigLI4GuuzrGRBlLSsbbvqpkPMBUOKGf2h83U08wHEifW8LPUDUYXzFMCRtNXYOIZVQaA1CU83iUpLRMXaDv1YN8Rhpry2hmKLOnzEnYLYy29YKPHrLhL9KsD1P9QUhZwRNz0R02P3xuJAJASuMAJEQhAUFcKQdiRXfIuOzVHTdcGKIBJCRQpCFx+htykIQN9+mVi9La2gukZwVT3062E6eoPQ2AJa8S3Uxrht3K7JdJKgXyv79wLKSzJCNZ4Ebd4OZWMD+EIfhKHV4Ab0B1fSFxRvgZlmmRcByQ+uvAKuFM1GW4KYSc6UxnrPsE7K5hMdZvploakG3NZNoIR+rLnyEnD9hkMJRaC1RgH8EQzGwQgTwwcA0TKBzmoVTGg8yv0plPqrzUxIBnqa3hhqOwTTCijyhOpgEnVxCR0Kj+/aVPDcLhT7qm0XJ+cFjNcISLVnyiz98P4CKFrSJQhdKZCtGDeOUCkQLAKnKqB4O9BUn9+ruIK0r5ssgvw+cI0tQABApEC/OURCQLhYjyaRaAfPi+Y4DXErCwEg1mzvI1gEjVQktQ7X/uQ5AQEhApGTTTcHhZI5RW/W+M1GCmFe/yuk20uqSZeF2CmIvSZSKg7B62UdBoDeaRXpdNNoTiRRH5eyhmSLyBoGRGSEpbJ0pr4ktrXVm4lc+oSTGFPSy6wfoyg2tDQimhIQkTUMLy5GUMmcC4os6xn3Ys34vCGIHeldbVhqR5cpGFmaQEAMI6l1QORkV3Yur32tkZrOLpZJyGEVxSERGF+hoSXJ4aM6XRzJPGeK31IfMKQ4gZ6hzH4zrPdfNcl4a7vk6X/sGfmAdwpqt7VZ5vWYtqNKNUsd1bFe5nuxx2Q164NJTYd9MmVlgNAnBLQVdWBTK4fde7Kr3WxC1YnMA1VlCZzRS0FAJGxrE/FRnd52Z6mc/WL2Nx/O/WL16R1ekcLxlSlUBZO29Z/8JozmpD4xTpb1SaIDIirG9hBQzKdns6kKmrhW3Pdxxk3m3H4K+kcS+LwhiJW7M29G+hQQjq9MYUiRBCQV8GEZFFf0WLzQxSWCoi6Cy8LgCsNA337gyg+1vQmjtt2AkgTn8wF9q4HSMv06J4fMOrIoQmv7BBRLQUqppiuDEflBCHC6EBx4TGbHpOJ6euZoTH/Y98tAqARcRE9fTMo604dZi6XHknaB4NInkpB2oeDSJnqux0DAX6C3W7MVACCO7AnukF7gKgZCC4TBaQTs+FK/pkp+cJEKKAKPqNIELdFou84Z1xY1kUlUBMDxoJz53regJ2QAO6Pb0JwU0bfAh+IR44Gar4FQCVJFPbArthPbd8cQbdu3DHQMxg8JE8MHgGKfD5LHDbdAKkChXAGq2wy/vxAIZ5JoRJUmKJSEj1fhk3XrXonPh5BUjYgcx852PRWmyLtNWG7BYRGoqbhuyU3DaQpEXwE0PmNF9hSBvAjwIjjDkmCkYU7FM1norELYkXCD8/mAYr+3WC4p9LYqG6k/edEyTk7fvnS/FG0wrRtGQmN/sAg8BCS0KDRSIfKyLoSJBxLtgK8ACtI3F4s7hGuT84jZbFid9bZ4pKD7DBvRPrJZjQGg2BdJf2sFAIhaRhwbYdjE9I2n3J9CSKrybEfkWhEU282HJEMciLwGReNQ7k8hIJZBjLaC2nZDrh6OskATygP6sRhZUgH6dIV+bKp6INjnSPQMNSGlpdA7pCAoFoJ2rNHTvkYKIAAoKCzCwOrhKPHtwFdNhF1pC+PI0g4cEqmAr60FiLanjw0BUDJWJ+Ntg/WVraYAvgJM6ZfC0p1BXUSmT+2kpgvdUeUJDCosSZdFUduhC+FSH1AdUjCoMIkSX0/I1lfMPABBhFRah2+aCXvilsx3cuY3aYjWsAz08HsdL3dZkQwMKVIwvNjuF2CmWDfb5nL+r2gcmpMigqKE2g4yXVn6hRWU+lV0KDwqAxI2B+P4rslb8Zb6dUt8Zy4YxphHl/vgE0IYWRrFkOIOfF5KWF2X3d88JALFMtlSdmdzZ0hq6eMNYGw54ZiKKPoU9Aff3gRoekr3en8KMg/0KdAt+ZUB4MRqFaVaGPTpR9Bq9DTElFJRNH40JvYJY+lOCYcVE46tDCCp6m8z+hSIiCocDg3r/VQHe0Fq3AWq3aiHElMUUCKZue5YE2pkgQuVAqFSUGi3LoANV4K0RRUAEAnBf8EYW4Y1wJKWOBwC13+0vWFeBFfSFwhXAD0awBWlU1+nfw/cgFEQRAGC81rodc30+9wxg/0yuBFD3HVjzUB5b3Dhisy2aF1zbcv2dmtb+/foW9ATsOxSReCBXsP3u3ubkivO4d6055EIidF9YWL4AFAiVSAiZ0mbHNcttqQm9Fd0AMBzEDgJfqEAvTyymIb5IvQq0IVckAvl59ubtnyYQli1C2QeAK8pgOSHJloEdloEe6IpukUiFQca6vUyr5uDogI+6JYQIZjp2+8D55y4YmSA0jzSPCfawRvWG+trPwBcoDBTT1UgCwHdemzFEO6JdvCBzI1E4OxpcL3EcS7Lu4FPCELgk+AheLqhGD6zhrsGzwkQOAk9AhmLn9G3zVpDKjTShbnIyWYbVmRBRs8QYBVtMh9ASCyGqGqg778GGftu4yqUhcI4pedwc3+Rcbx21oC27kRZv14oLzsE1Pw9tH++CiRT4MpLgOIyXRCkH4ZkIYAjy4DR5VJ6myP6w0G+/uZA5jhrCiqDRZh6aIdt+zJRTvTzMNiRws/6C2hPtcBvHmMO+knmaNc4f1VgYh/72wKvm3tQ1NCa1PvzyhrotY7hv29Yoa0PQoB7noDTRcpwYynyKSgyfg5pK7+P19AB/QHn0DDh0LDq6WMdFAk+QcPgojjygef0tzM+IYTDS0LoH27CsGK3iJd4QkDUEBJVBEUNsqCff9ZzXG8vcz5HlSY0JxRzO42Mj1ZETsaMoQrCUhl4TtDP0W/SIjgtVs35BEoSoyt96FPQlm5TRqlQjhOq/BhevAMpTb+mCXz6dyz5gep++vFPxcFZ0wg7M6nlgAvp6bNt1yFeBARRt/g6H+aAzDU8F5I/I4SdffYfbffjzROuqCdQ1NN23SDo145k0A+NJICiUFPu60uuORHWiDnm8B3CeHPrLgA8fLyGbe0JAN/bliuanHMuBYNxMMDE8AGAdnwOCqcFj/Wp3zrBoDzt+6sp4DUgCB9cN3cAukFTQRgF6aT0eyE6LBds6mjJlPMiOF4Eb4rfPNpWFaCl2V7msJJ0Smehd1JxkCF8nQJZSeq7yXoTcrhPWC3hAAA1AV7ym24OrhuBQxw76+RKYiJzgU7rGPj4EGQ4+vIyzgmiy5XFGgYvIEY8VtLFMNdSC3K6kwBASzOoYYX+3UMU0NadoE1bcx4batyGAtXy0GJMpDSORUFJpnIuq7BBRysKeFG3xhl9WI+dqgBoBgkiCrVCFHql006pnn7upVIVSt2H1Y4gIq62IyLr55rzgcTrO5B5MMlXFANuYVwVTHoKbUXjUCQrKJLt2+Ql1AGgUA6Zadq98HolDujn0MjSTD3joUzgJMh8QH8DZRxry9/Mw3XcLAuGSlEeTD/FG8e5o802jqL2lP5wWrcaSCrQojE9xq1X9IatOxGJ9EBh0QD7eZSKoxTFMK9TKQUUb8y67d47pIvXz67U39/9/4DkSlJknRfhlTXTC+ty64RfBuNghb0nOFBYM/tYvxuoe3mhVZX8P9Z+rB8rzmW5PkabuSwtTotvLsuJ1+tAD+uLXjeZEV+aAkrarX6ALqTcQjgzbtP3N23Vsn4MDGHsVSfXR+CkrB+DTgWz5fg4x2WFh2B+bGVe9XOJW+vDi83lJeVeDngfy65YhAG3kM72G3C8yTA/2dqz/t+F3xUPPTuhxNv9c72soNZ1rPte4EVbtBeB482PgRGCzxmf2llmzDcwPgY+XvP8OMfq2j7HuL3K9TFnznvnRKp9wfZ7FER9/kAwi/sUoPuvdDFxj020702km1ztWq+fBvtL0OYT+tF6Ld8fXXqcK6bbl+McBrzjqTvPS+dyZ51/VebMmYMRI0YgEokgEolg3Lhx+NvfMlkOOY7z/MyePduss3nzZkyZMgXl5eWIRCK44IILsHv3bls/GzZswOTJk1FWVoZIJILx48dj+fLlB2w7uytMDB8IVA9rMJAWiEqmrCvCNt+LonHhTsU9BaOtrXwv6rn69rIKe93MrA8G1jpJY58kcwth53gsvtCdiWDzf2RPNGIVPLmErVPgGvWdbTiXC1zarSDXw4ZlrLkEu23caWFmm2CYSxDkelXs9RYD8D5P9qfoSOM6hpa+KRl1L99XUaIqEHkZMh/wfJjw+j8fUbyvwjiXOBazCI5c50g2sglihZJQuuhjmjdG+C4r+SZpyFcUetXrxEUiK9kewvYGr/M1m4tEntd7z3PU4xrnKYK9rlVdEMTG+Wd9MLOev8I+CmJV5Pf7pyv06tULs2bNwtq1a7F27VqcfPLJmDx5Mr766isAQE1Nje0zd+5ccByH8847DwAQjUZx+umng+M4LFu2DCtXrkQymcSkSZOgaZmHiIkTJ0JRFCxbtgzr1q3DEUccgbPOOgu1tbX7tP8YuWFuEgcKpwh24nVh3F8WB9ViOc31mtq44PJ59msVbbmswtnKnUI4H6yiy9iGZEz/LojuaU7ZbiCCCMO/Npsg1uAdUcPLSuYUxE5L4j6R3s88L8L6ZtLZrjV1NGLN+uRCL3JN0HEuc7621pTOfRoV1Tv1qvPcy+Ze4cSrPBUH4M/4BXv9VtQ8xmodBy/qkVcsOH2/vXzBXXUs55PThQJwu1EA3q4UBqkcr5itPscST1kFfDYfUedrcaf/qDmpFiogBPb/a/0s1tBs8cez4nWO7OdU8UB6bgcAp3fTPpP2Rfaki5bgXDHmvSYMe4bgtJwX1pjqnblMWKPgeCUY+ldm0qRJtv/vv/9+zJkzB6tWrcLw4cNRWVlpW/7666/jpJNOQv/+/QEAK1euxNatW/HJJ58gEtFd2+bNm4eSkhIsW7YMp556Kurr67Fp0ybMnTsXI0aMAADMmjULf/zjH/HVV1+5+mDsP5gYPhAoKsyrp1fEhaQCdLSCjKgIsocvpJUuXhxJTdjdGqw4J4fkIs8boZevMKmqpzusjWzWGqdoAuzbkrBMCpQ8llvaMSfFSH7wFmuXZ/pqIyaxw4cuH3GbT2prjdSMf3auhxRru6KUPeRbely6f2er3drvbDeXEOiKSHBYsD3Zm/O1s746K8/3rYnX/x6/g70RxcDeCWNzWScCOdsyL3LFFc8liM2QeLkmRVrL/QV5jcekK2+juoLrfN9HN490e5zgy/8BK9e25fvwtpcuEV6RcLLFnLd+z/aglI8gBtzx8a3x9f8dBLGBqqp45ZVXEI1GMW7cONfy3bt346233sKCBQvMskQiAY7j4PNl5gL5/X7wPI9//vOfOPXUU1FaWoqhQ4fi2WefxVFHHQWfz4c//elPqKiowKhRow7ItnVXmBg+kGQLPaYoQEurni+eFwEhS+SJHGQVEEB+VhMlCYhpy0e+s5mdPnleFsZsVkcv9wjr/7ncNtQsbeYj+AFA8rte++aKf5uPsPWisyyAGqmAIHfJDzBfS3VXcT3AZHOR6Aq53jJkswpbH2is5c52O+vXawzZLMgeY+MFwbT2Wy1p2URxZ2VA58IYyIhjoOsC2dl3tuVO0WOMzSmIrctEXga0TsQML4LzF+auA9iPT7Qtez1r2IxoIyCHgGBR5+0DFlG5j+4dHteOvC24qXgmFFs+hoaupIs3+spxrbY+HCtaMnPOdZJds6uCGEBeVuIU5wiDcpDQ2tpq+9/n89kEq5UvvvgC48aNQzweR0FBARYuXIhhw4a56i1YsADhcBjnnnuuWXbMMccgFArh1ltvxW9/+1sQEW699VZomoaamhoAut/x3//+d0yePBnhcBg8z6OiogJLlixBUVHR/ttohgvmM3ygsIo+q/AzfGzbonpUBsfF1/B/7ezjwukLbH01nW0iWi5y+StbhL1nBIl9tcoY4zTG4WzXa0Ii4Ol7q4stf/4+uF2cOOdsr7M6OYVsromOOcZom+Vv24dOF4j8rWeu19aq4xxytpGtrb2d/JOn5TyrS0Uq3rkQzvJQ4uUX7nXOeJ1L2c4x66THbH7Gnfkce33yIZe/uVdZvv7HnBzSxZ8zq1k2VEWPINGaTgjkFUkiLYhpZw2odlN+7VqxhoncH9chQcwdbhKwn2f5+Bdbr837cXKcQWfXOGs9z++O89P87vB7t3738iXeVxSJgyLx+/GjC/XevXujsLDQ/DzwwANZxzB48GB8+umnWLVqFa655hpMmzYN69evd9WbO3cuLrroIvj9md9CeXk5XnnlFbzxxhsoKChAYWEhWlpacNRRR0Ew0oET4dprr0WPHj3w/vvvY/Xq1Zg8eTLOOussUzAzfhiYZfhA4JOB8h769yyTj/Q877IeLzKbmAH27WLZ2SQ042+efZhjDPqBqn4AHHE2W/eAtuxM95enVbhHCVBcnXFnUNOJNZRGtxAOhTPpoJ0TW5z72bJuUu2AQpntl/mA62ahaEkolIRfyP3a1/O18976COcj1vbGVzFUksmwpSlAeyPQ7u6LH3tSZhzp/UVNO0Af6xNE8hYT5b1BhZVIapmMU374QY3bvOuLMrg+R+rf4+16DGkg93mYj2uEvwCamJnMiHh7xpIm+dGWqgcAPRRZvB2dkctSDHi7TOQqty7zEqJWS63TgmxgsyTzIgROsu13L6KpJqS0BMr8fcz+E1oUDfEmSDyh2FdhG2d9fDuKfJXwI7fIbZKTiMW/y4yH481x87ygm14kgE/vx7BUBbFyMACAPlispz72OMe0HXq4NL49Bq7nEDTwbQhJxfA7qwaL0K41A/DpMdjJB6rbbK9TWASuYnC6YQVxXkGHsgdQYLsmAOljwpv/AABSqWaopKEqeKjLv9yTfH+z1nPXOEf3c9QInoROrcNZv3diIQa842lbrcQHa0SJHTt2mD68ALJahQFAlmUMGDAAADB69GisWbMGjz76KP70pz+Zdd5//318++23ePnll13rn3766di8eTPq6+shiiKKiopQWVmJQw45BACwbNkyvPnmm2hqajLH9Mc//hF///vfsWDBAvz617/eL9vMcMPE8AGAK+0Lrrw67/q0+1v9i88ixBprMsISAHdkWjx8Z7GW9CjRY7um4kBNbUZslhTq2YpamjNloqgnwbASjen9ew3K63WcqgByEFzVUDRpRnzPzJU/VHQYpOJqYMcm0LZderuiAC4c0vsHMkK4JAKu7BAooQiiShNAuiAKSBH3vcQXBFfRE4o/iKjSBJ7zISRWgldSunC2imLnDUXy62lILQIlxcfhE0KQ+YAtnbNGKgJNumCisn5eewVC7UZgR/q4BP2gw47zrOcFt/VjvW1B1NOyBjxeMTtf+afi4DtxY6Fk1BVrmZNDmfPJXwgKNOjps9NWOX7MyVjT7J6t3LssjMqJPwNtWgftkw16W6EgUF5it7qpClBcjVS4BI2J77FlT+ZcrQom0S94iHugxgOZkkRMacGGlkYUyQr6FQ3Uk7kYZLMKG6LdkkpX374CKAKPDrUVyURGGAbECIKcHzGKojW2EzuiIhSNQ5+CRhT7KvQENqk4EG8HX1Cc1c/WSxQDQKFiuYnyIuISkFCjWQUwoAsOnxAyH7riajs6FP21bS73HKebhV8ogMBJ5nmbjbZUHOvqQogpQYwu34G+4TI0JXbjm2Y/vmkOwS8AAwtbcGgkjmJfBVbXNWJjSxADCxtxTI9yyDk8/1uSUby1vcDMoJcLPQFNPWQeOLufgHCOukZKYhQEUYt6vLcziOpQIwYVJlHm7wORL0BTYhdqW7dhfVMAEk8oD0RxSDiFyqKeoN0b7Q0KIhriO7AjqqBD0QcaUzjUdciuhCYGSbNcj35xbMVWDC0+FGirBzXtyJx/igqEi/UUy9nEbCquX6csD51mEo5UHNTgeGjMFr0l0qPz+SVpeF4EJPvbqFyCmOf09PUGUaXJ5mrhE4IIicXm8pbUbiRV/fcs8YSIXGKmf29K7EJbKo4ewTxcaH4EjFBpewMRIZGwG66eeeYZjBo1CiNHjsy6XlmZHgt82bJl2LNnD84++2wAQCym34N53v4D4nneFnGCsf9hYvhAkMvPzAE1bEPy+Xf11Ub3BjdkkL6+ogKxOBLraiEPLTUtsBSNgRpawfUsB2fE8VX09KNU1wjqSIKPFJjCg5pawflkIGIR2vEk0NoOSmQs1CbWWc7WbbBc6DVRgpJwu1oktChkfyGovBJceWXmoh4sAif43NZvfwGSWofdn1fIpEc11tcCYbSm6qEkM/6GGql6trVQqW5dNNp2KmlBhKaqrklxhggGdJGjkV6nPiygrKYOSkk1RF52CRtSkqCaOnQs24bgtGO6ZBWm9hi0b7aCqygBV9wKKozoojjHDY6S0YzYz8f/NVik+3Faz0EhfUwLi/SPkkSSJ7Qm3QqmSeRQ4iNIVf3AV/XL3LxL+yKpdrgs6gmlCU0JDjHFLpqSSAEl1dmjbKjtaWGiJ75AuNAlBm2uJ0pKz5aYZQKbkj6P4mqHLTlAitf3XVwldCg8UhoQU3gExShUPoWwvwz02UpwA4YARaWucVr7s7pOBNrbQd+uywxWFOHr2Qv+0r6IcQmktMwDmtGexPsRFAuBtnoATUC4rNPX2dksyRLvzxkP2Djfm5MiYgrQkADe3hnA0T2asamlAA0JXfClNKBD4RBTeMSUOjQnAmhIAOUJAY2JzAOKwIsAD/CSAIAHzwl4a5OE5mS2lM72R+yo49Tlj/2p/sXpMuBwc2pKtKAhAQRFAXGV0JLcDZ4TkFBjqIvLiCmAxHNoTfJoSwE9ImGg31F6H2kXIqMP/fjr421OiIgqQNyx+7KJ4+akiKTaAUlN6G+vdujGB66qh307rGjpt1yte/Q5IkYYSQCkKRlB3NYEqqnLPt8i7U7Cle8B9e6V2y3Fsj/lisGII/uDktNtSyQe0BQoAm+ekzIfQECIQNY4UFsDoOrj5iFA4HhE5HLTIk9SC/jyQ811vZIZdQVV4MF1MRxazvaUrrV122234cwzz0Tv3r3R1taGl156Ce+99x6WLFli1mltbcUrr7yCBx980LONefPmYejQoSgvL8eHH36IG2+8ETfddBMGD9bfVowbNw7FxcWYNm0a7rrrLgQCATz11FPYsmULJk6cuPcby+gUJoYPFPm+8tIUUEoDxRVQbTOoYS0AILWhCc1fJZGK86gaoIE2bAAUBckPdSsCv7MN4iGNuhW4tR3q961Q63VxJ2ETuNII0BrVrZfxBJBI6qI4jZ42WcnE+DUwzhBVseWft46X57xjWWqkooWPAiVFtvLMzd75OqodILv46FBb0eF4VaklY+4sYKSiQ21FSCwG7y8Ah+zuDWGpDAolTQucRioSqj0GM88Jpom8saoSAUpC+uZjaDtqMmHDFBXxZd+h5jMRvOhH8ZOrEZmWAFecnwUk9c4X4EsC4OIJ/RWx3weoezKW+WxuCTle49mI9NAfJHjHa1deBBeusFWNKk2mNc8qANoVAZ816kHhbYKmYUuODFSCzTJYF5dQF/dow4W+0jfNdQDsAfytiDwhLAEBytgTc1lDm5MiUhqHurgKwLAUS+mxcGhOimhOJgEk0TvUjIqSQtD778N31HBHx7L9t2G4nwCgzz+211VVcMkYKNqAAAAzabTxYGJgxMeONQPRBvhDpfAHe2SWp7PidYZx/mbzQzd+n71DAJDAujof2lLAx/WSebxlXrfo7owK2NRqj/+7I8phxxaPmMAWokrXQmjJ6XPkr1tVALtsy5yW5cz/AfgF3ZK7anfIssw+NmPy1rfNWwF4Z+wTef38zYSu48yU6YYodo7jnH7tphuJ1LgL+G4TqKYOFEuBUhq42mZwvRqB4rSlsTCinzeS3+6KFovb5ldwiRiofktaWNdkfvtWP2rL9YBSqn4NV5Ju/2WvydEAkGjXHV1sk++cEiBzraC4fm8RJD/CoVJovowlGKkOM709bf8EpRUDAakcVL8NtG2rXqdvPyAVR7HYA8W8gpbtn+Bfmd27d+OSSy5BTU0NCgsLMWLECCxZsgSnnXaaWeell14CEeHCCy/0bOPbb7/Fb37zGzQ2NqJfv364/fbbcdNNN5nLy8rKsGTJEtx+++04+eSTkUqlMHz4cLz++us5Lc2MfYcjooPTkeffgNbWVt1Jvv5VRCK5byQG1LAN8f99A7vW8uBF+6ERJf3/osokpJ7Z2zNfK1oQKkIQKoLgArLHGmlkCVxVuZ4VKl8KSpAqqTZdD/bGX3Z/RUjgOUG3Dqudv05K8qS7Y+TAOoaStiRa7vgL9nznhyC6fzLGsQoVKSjoyUGscO9DcpiZKKVB7BUGX5WfeOYKw7orTD74grrgzSPUlSLw2Bndhu3tXY9iYrAvYZM68yX0arvcn4JfCHR6viXUGJoSuuDNl3FlPUFr3wWpKtQvdpjlzuMnVATBVaSPh1c4OlF0lXOhoH4MrckmvCawpiPLcEU9O52QlkQKHWrmwS4XMUUX1ptb/fii0b5PsllBf2hyuVT4sxxe2WMdox2JB8oDCgJi5xtkuEl0KBz2dOidJbOsFleB3iHC2aU+UO0mUF0jtI32SU3GtZfzi+CrCvXfrHV5tgRMZpmil+cSwWm4ihJwvSu9E5cA9knH8SxRfwyck2lLIpl06l6RK4yyjlagsdXWrrGNnCBktldR0doSQ/HZf0JLS0uX3BKM++joX/8fRH9+biH5oMSjWDvr3C6Ph/HvCbMMHwi6MCnNsAyrigBV4UzhxYsEJcVBlAgdbQKERt3CxQU7f/XEh/OcUS1L+kXRuLhFOr/wcOEK80acKyJDV9jbCWiZaAqdR8fgBbnTaA7GOAJiBFD1V8SpBA9NTR8TgVzCWFM5UCwFLeY+3l4PKRRXPGfRu45TJJROW5vnQ4KQ1MPkqZ3P7I/+f/b+PFpy4z4Php8CCujtdvdd586dnbNwuFNcJJISrcVaLVlSLH9xHMk8do6OEn32a1mxHedY/hLZTrTEWhLHfj85cRxbn6VEjs1IdqKIryTL2qyFFClSw3U45Axnu3Pnrr13AwXU90ehgAJQQPeduTMcSv2cc8/tBgqFqkJ14alfPfX78Q6W+9ZFEdokLmSzzLD7Jy3FPjxQkj2587kXaGq9oeVhipV72T2N2cM3gCyfAu9GG8JSk5kuE1Z9amYQm4R1rxw8i/6Q/mlSQYClxW+IRwLDjtpg2G/H9cXEYLlHh1pBLzeyiC+gJ7+A3oIs+1FeoJL4d9FfLUN8Tt5LkuOiCSz3CdZtB1OH7gRf/j9hGvW3zV0f3HVAyh2x2qOsJKWQJKapgDhekKdyXPZDSZzNEd3HMabxIBP/zj1PrGxJyZ0KXT9MbIZWyS9nXn5AnzHGuIIwJsOXA8McsKsIZvO+R2CYPEaIJQYdE3bbh2lymNZw6wcpWyDBSJ9HCYjjggeb6EjBHj54Tc2C2TbA0puE8jBK2gshxLEQx0PzH25VlCicfAL86QxPCAl4gVZWR3wlVFLFXX8kl2akWIg2HY7yUqEazaUGfqmKdvcsAPuS7fbeLMnOkkdIyHI6ngNKbOEDF2mrqNxBTw02lBipdT/T4SjWCphY9LTW/PCzbiKjm9gAAPOEVVgS4mHP0KCjbY7y2ab6MgCs9k10mSB9jp9PQpNIamqHYTN5A9mkV0JH2PXHuLYfJYM/9BCfCCXz0pHjbyxy/NjCWdSRJsEqvKUuqGUK6ZpEXmh6CcfNtAZLIsxdX+wRid0w47cuSWnSl7vMX5VrFArRxuq8sUOzmqES4dR9toAIs4IJXrjIaJ4KPL51eY3xwseYDF8ObMYynJHOZyQmm3C6BuyyD3NI2FJjugRiGZF1OG8t1PKANeHFgW+bBhkSiYxUZuD4vU0T181upEju2s+6PrlBJg8GMUcqR9WahfvFz6H/yCqYZoOZbrLiMwIy6pqz6w0NPUtKNoipsS7lRpEzU5uPdOh7bTQd87JEhxpGclUMI+aSxOa5LZPHdMRoWJhYx4u8UCRJDpCY7CQJsO7FXy6KyQyl+ekkZNjrkSZ2o/VlQNS340btNIx8JiUDmyW3KobdS0WelTqL/EoUTD/lyksN/hC/zsCGJzc0RsflI9fdK9wcGlptlTwTv2W/MYBRHqTDk+eFPc+zBifvxzwx8c3LOyPsvTbQTpXqZRdZvugDoj0SEXYzJopjjHEFYEyGLwO454B72W8RsomIc1Iq4Q6EpthWbL1DX9oZacJzDeGBgZSpsDpkhUdWcDGShlHgc2/oiz70MgAz2pA0BMRjI5Wh77Vhz1fw9INdFAoXuI6cQ3a56w8Xa8rdV3nkN/msKB06MRDtZAWk4fIJRjdjgR6FpOf1D594wt+pEg0LGE7MDWKKl7y0xOkkLjlW/eQEJ7XVcJRJzSYm0MP6cuROy0DB9GEZw+QU4v9mCOxmMKokIytdVr8omKLgLCGFGKXPqX5ys+47YYl2rFrz4Etr0XiqPG91jPXXemI8rWus/DmTqCxrcHherkowJia+OsQ8UCgW7KG65RzZRV6fTBJhjQeMMca4UjEmw5cDQ6w7MfKmDCBSKpGdLRlqVQSkhm0TZMf1I88SWaAU3Bug6E+gf5EvzNxwx9luTWPX22Yp2AG9Fj+ZNXj7TAQCGCF/cueLcfiOv8KJh4dvRguheS5Zz4C7PohlZJ4nzBNavhEmJ9GLSGr48icGBjGxrVTF+V5OWNxLhM1Yo/PCD+cRQWE1FR100zIQh+VPJl0P3lIH5nwl+3co0zsu+GAAYucMufL5BhMZ3m+MFM2NIPoNJV0GSoTurQyK6aKHtqtvszyL6KXCsHvl9RNJflXQINgD88nQTXTU4GEeAy97tUCuRLxkmwhNbT73CNylbiYJjn1Xj4+wihD2pQxrcNgnRw2ZHozluSRYHes7XaASWIfzpBfBdcITkd76DCCq81gzPMYVjDEZvlwY1crDvBSRylqKRyH4nwPi+mIpPkfDmrrGEnphbWhlmQYIooW1QbdddUHeH0ZBLlGWaWR0scDVz0jwGAzTzogwkki67SqUXrcfePj8aFl7BMaQyYd8bjzL6qOAS0u9OfozhMNGCu9qGyXYRgltt5HjKu3SYjOkOBlyOMutX5TegmlQWMbmLFPSMgxoJjFutDzOGwOQIgUpy81umtUZqe9ca4BL7XAeGANa68KFXl7YXwmfhW4Hh/1eDJjYXRETpMVOZFGPooYNv92lwCh9QEd8gexJTpuZKFE/Vy9uBXIK5hNt/kmCbBCKiY0GvK//IJMIaye1Q0hwajI1ZFwIjzssIb0Z4ikijwQHvuwBCFmHKu0YhcjqpBFbSISHRcHeLPiY/YyhYNwdLgOIVQaxh7wAAwsQr6zBnK9g36vlIEjgnunC2lkWm+CA8P/GQx2U716IeZRILc+WbJC56XDjDn/uLNiJDXHLF++PD6QA3G8fFS9vAOTQ4Wj0yYoCBkEcel4zFrHockJumuNOB/CZ8OWaA95vAD6Dz81UCFZK0oE1el4TE7fehD03/DXsfRMASGjJfe5L8fae2s9RvHM3UKuAPX4Og8fT7tvKdy+A7JoNbmiK55Pz4uGPHRP/cyYnSRBKxXKnNUT33RBR56Ym5rE+WBo5/0uBJNHNggz/CgQBNnj2sq7r9+F4DnrBUjJNyCVUUIOHLtgqVg+oTcC+dgaDHyynJqjFH9sNsntBfLEpMDMrfit5Ic8BYPF8/oqLhMMAeyBcrBUm8leX5MRuBFQs6Sv2HNb6Zq419PlAFuFVkUV+s4h8sl+p4YMLhpSMpPPUEWSDmMCzx+Cv9cL9GBIxeUTLgbfUgVGv6De7QUOAJXKIcJx0e2JfR7I/6TxG1CaiRbBRXKs1O2lvQpXATVzMD70ZjDUJ38nhpr1oM+Aoq5hjjPF8YUyGLwNYpQpWyd8Z3vOa8LmH+p5bUPjn1wIA+PIz8L96P9wzXdgv3gXykrtCoscf+y4mraPw/tHPhkujqlXIHgzgP/wtAMDazdfB9QeYLGyH/cwp0Jt2gdx0KzZKcVJgEBP1a2+D++d/AePlb8ATvSUAYpCkVLoriu/GNomB9Y0T2FayY+E5LycMYsIpFEBLu0BWToiNR+XJ2CYoFTYAGBQNdwlegmRYRgG2KaIsGcTE+d5xnOuZeNGO62HQz8G6+yCMl74Rfa8NAyYOvfkhDP7nA1j8TuD1wTLgv+VnsNQ7gZlXvBYTzz6Kwf/4Dvone6jcOg365rvRnpvHan8dy/1oEsM0Xg32V01Md3wAx8TGxukEyadmuLEuXKqkptgRLr0WDLOUe23ApLCNOZjEiBHNUaEjsZZRADXsWDRBdZLBuJNq+1ieOSagvuuG/mFdvwMgHjBF7Z9dZmCxW8TGwETB9LG/NsDAN7DaN2NtXrN9TNoMzzRsrA6ApsNQm92Jgz99FSZfuQ73f34d7PgGCrdth/H6H8dKheNEC1jrizoNHEMJ3iAgiZR8pnsmHBxcPA++vBY9nzwUC8KLSFIq4THA6YbPlgOgxTr8CfH7M4iZDukLgNTmYVAhQN9ubEdpvoOjjV5YhywkJxCSQM+VGJZ70XOaKzHcMC3GuW+d0//2RkHN9rFnIpL3yP5lGhS2Ucq6DEDUxx5di/qE/E0n0ffaoAZDzfbQdKI2kHxzvsywmmgb5jvYeNGNmNy9C96XvgMyWwWZmRITIkBIaxbPw285sG+ag7F/F/ji+dAAAQhXl1krCUmNutbKrFqk8+RTkvQubAOZDcKhj7hyxp0OsBb4UK5OAcWJbCODz8B7DaB5Pk76mQe+3hArIr0R3b+NMcbzhDEZvgzoeS1YntzAot/s43g99L0e2m4jSGdgcn4vCnc7qNSKILe9GM0yBfOFpXHm6pthTdfwvUR0sILhY7ZkYg6Twp3T9Tfhe8vAwCvhUH0J19x8GKhtQ7NMcWQ1euGI611cXXcwfftBLGMF31suKedVp/Y89qK3DGBbaYRNcdLV1wg6yM2g77Ux8DqweBHlygxQmAiPSahls8uTaPkb2OgmiTCHx8VL3CQWPO7iVIdirW/iCeMZHP4H14Vpv7+yCtcnuPPqW1F4G7B715Mw6mIjJOMePndiAgdr63jV/ptReJsHe/E8yMF9aM/N4+/ODHCqU8HJNoHrR+1aDH6NtgEcqHLsr3rC0n04eJFVykCpBqycA19vCCIcWPYJEPj19OKB/bIIZwbZHGadrViTqNApnO8d1563jAIq1hSKEOGfY6G1FTDuYOB1wHwnU+cK6Jf9LcPBhi/IZ5tJTwBpy17B8NFmJjYGJhoOgWWY6DATTcfExoAm8mTBeeBkm+Bk20KRAgerHG/ZN4vaW+6EtXge2H8QaxUD/+MZEyfbBOcaFM7AhF2I6kADnSq1pAVSHD9Yo3jvjXcAK8fBT5wGP72SrFjsKynZwFRdT2A8BrS7QXj1NXAA5PANIkiHx4Rk6LkTIqzvdB1k3y6gJiKnobsB/swjqAF48YGb0agP8Ph6PxVCW+LVO/fggeUTIWm+ba6D+dI+UM/Hur+GI2sMveDaiY0GyNwBAKdS+VCD40UzBNN9A6RYx9+uxvX9Zcpxdd3AjLUTfCMI/SwDPbh94OQz4INsDbwM8mDc8TpQow3L4LAMDoOYKBgV2D4RcqryJProw/F6qFoM20plMN/B0YYP1yeYKXo4UKui2gf86Sksdp/BM00xZh1ZE8/ipdsPwZj5gQiqMTcdhbBnDghjoMwTwVUWtoPYFN53z4CtOuEKn86i7K/14HcZjPKQ17IV/CZcX/QBOQk2NeNvuQjUtgHlyfw8k23pTYL7QT8qTohIljnjNvEYeKEc+TwOojUSxoQ0yB6A0IsLxzzGGJcSYzJ8mTCq6yOVjGwMzsHcNoXi618rrJwKsVi1epjadyustZPafJxCAXjZa/D4xjlIQeHTjSLo9BQmCxxGBkkxiImNG66Fw9oIbKgjbXAxCBUvGjOnS43g9zZemBG6Z+J+TqGAgb8hLs8g5w1vNbVhLEmmeqwJ1x+Eu+5Ptm3Q227E9vIkTNYI0w38DtihG4BDN6DD1uF4DtA/haI5AWpwLPdPAXvmgD3C8gp3A0AJMwWgw8Q9V/sRCVF37z/b8nDKMFDYvj24l4GdFYLZjcgaLK/knvJCtKni6D8julniORjExGRhe67mVAa5MAY9TBa2p88HEQiLKIK3lkCKddCMF6gRWPjkM9JZ8bOen/obySLBScg+/ExD77llY2Cixwj6HjBT5OgoxPB4qwtUJoGDkyLvnoOiWQrSMbglhn5gIU0SYRUn2wT/9/Eu/sG+ChZOiKV0FaSY6O+uDyye1+/xbLaFT/BmBxwA77owahPg3Q2AOeAnTsN74iz8xgCk3AJlgX68VBOWvOeC8MfFAur7XoTrptJ+muXz5MvP4GCtBL8qzlesHTCby+DN85jacwtunD4bXGuAmDvheD28ZJspgtUoKHb78L/1DfQ+/yRK734VXrb/BnRcMbk3iIkpug186SnwxaORpTWY7PH1BvynF+EtdWJEMgXLhGX+LW6+/eVhUB1q2DB6LfDmkuj3/QaK1XkYlpAq2d0OeKeLm2e3w/X7MIiJqlcEP/coyPQC5iZ3Y8JqxiZu5uop4PBVUWh09Xe2sA1k23QUvCiw3DZXLNTQBe+zeCAk2d4tB7zrglj5q4hG2YIxXYyiicoNcjQ9XpIRvMpo4TNBgCU8BhgZechgHGobMCe8JwlCU5P2cC8/eTAtX/u7umCMEKl0jB8djMnwZYCOCKsvevnSUV/y6jKxXJJPXr/YfQZAlLckARsDho3BmYAoUFCDY+CJZdtnm4Vg2ZbHLL2AsNwcazpgPsFyLz4gJ9PK9BIlWgPfWNVUXtPFnMhim+lWTl6nRuLSwWMwIDwKeNxN+SSOZUks9FgTLbcPgGiJFAD0A2LWZUa4HE8NjpNtG4vdriw5LIPHlmPPdmyc69mhL9YTLYqzHeGBQg0VK/8fqAIbDtDRvGNOdoBzvfhkpGgCOytO2mcpEFmFVF+26gtQfQ5Msd7I6xvnUHD7+ihTsv1NsYOFmxSFvKBoZnAyZ+JjEDPcvAeIZzPwRgveYhoUBUOQLyDbTRoNLIMF00c3w/2U2gcGnoHtwWLIqY4gxCc7BCc7xTCdOlmxDeBgjWPdITitLGerL2z57OR1J9vSRy2LLYETy4htkCJFKjbonVqD0eyknrlcdiaBldBb68P/+qMgRRrqVUNy3XXhfu8UjKfPCxJlmYJ01UREQ37sQdTU/DU+cSfb6rFzUTmOP4BJpW9xrMDyGOrHT8M/tRbWDQC6D56LrKAPPwX7sWOwt02D7BLaa754JLg/DTTTSjhr5uVLB+R9XA/ut54GbbRAFuZgbt8lPHM43VhavvYcrGBs4QMRorr0xMMoSfItowquLcJaWxSjbKEAVKbF76C9LNrJY/oxzqTCYsyc8Fn7zMDGORvWhg9aEOWhtuhXZuA1yCyRoZ5/YuczwjaHaakJspmgTypGWcEbtKNJBpAm3RPKXhn+PIc4HGOMHIzJ8GXAKO6fRHAAQQzVZWOdpU7NK0kEkptLxHkzpV8c1X+nLp26qcQygNmiG/r4DSFfELpBWCG3XEPYiFmIv2TyBnINUc6zwssgDCp0pNgkRmySINLpr1E1lWpQAjtBgJP3bDhxm5+tmXBIFE2gIqvK4ppBQCHDckNNVohgIGpX5kRW4uZ54VJJ7iZXXYBJck3NyBIWnktbuDggXqR2JfvZ+Qxqs1DDhkvEvUchxDrfyHmu07KeHRDvzxVLPMuqZYaTFN3zkPltJJ5hHhGW38NJr9R+WmYmMSZFCr8xiJ1TbxC54fLgd114xxuxPCSpBkQACL8xEMv0ZQtm2QJ/RllZsoPfzbAAEZrJWGwjbn8A54HTaB8TzzNO+ETwoP43ToNYBqyrOzCzlvklIQ6Q5SJStol6jh1dBi0WQCYUKYba79X/yv1Ci7kK2S7FAshcN6q//L9Jq6vHCDxmwqQcbIDQfWapKiIeDvX8I2UUoTuzjN+5HAOkZThv1W4UZI3lJhXeT4ZhExuAxxjjcmNMhp8nJEluwYwssY7fG0qCgbS+UyUDVuwzwDKMDUnCFz+X/K+3Cm8vT0ZhkA2NVRKID8TqoKqSWWVDEDEDt1LDBnGfwTDzI3DpyFUWAU5CWBfjhEfXDtIKOVdEjOQmuEvs+qabDveatECq179yRxcVOgewM/EXIDXjpFj1VxvKJbz4yztJDJJaTJmHap3TWcKyZBie8O5BvBE04ibNnDBqV1VgAmA5XgWUTWyGHz4bFUkvAcm8bCOej615jgDQlEZ2DQlWr0vqwmPPTyHFQETqkqQ4eU7dfEXKlvi+1g/TqYQ4dizwFsPdQGYj+4XjCuKn9hUJeS5Zdnm9xkOBjJrJHAJqc3gegWny8HhIboPJG/c80X+Z4i4sYSFOWs/VNgmPqw8g2e/zwJi+btL6Kuup/qaGodmB9+RpkTwImCTrL11m+h4BLeS7ZktKQ/y1vpBaaGbacrUg9OjQa4KbFKQ6P7y8FwKrKNqkf2k3yVG6xTKJrJfiGD+SGJPhywAD+b5QZRrLKArNmkYSkfcdUK2XcULcS5wXxxFLq7s2a2k5SSKurjuoYhvg+cIiOIToAtAT46SF18y4NokcIqWDlKNIrwk6AiwlKlbCZVfWZMAKnPxPBpuouozGNsbprJINh6SsillEuGgCkzawvbAv2ljEFMIrX8qSUISFpHEykEWIBwPhSimZLxC3zg17+asE2xYacm4xkORkJvmsPQaDlkbW1UvrftJ7g4owmpjBY+2fR4KjdGlJRPy8eCarAyFxUbnLKERY9q+kNTjmvk2xFmeRYpUgGVUb3PVhVG34a73w+uS12gAvSv+JEWIJSQZ1UcSSaYN08p7DCHGsDHmEGAhCl0f11llQwzq6nj4SWhIK6edeFBo9RihjdVPKNQK8R09g8KCUlWSPUdTmMCiP+oEVTxtz29ZlIMFEwpxPu+xUXZgR5oEvLoNUu0CxfvHWYQ2IXRGb59rd9MlRw4+PMcbzjDEZfh6RJHAUNjziZp6X38PQqgYFVTY1JIkwkLZ4DSPCQlZhZKZXrylTjunCTmCQ2EAhl86Ty2pJq3EWKR5lw4eal2aXctbkI4zElSDBWa68LIODZZBgeV7+nyi6GPgGeoxgfSC9HKTTCkJmavPREWEAePkOR2wuevJovIAaUsyZB0hSXC7GyY76WbZxfxDbpR+SEZmv6rpJJ7/QWd6kRtNnwiplKxr0DOnEZiY0o0hdVKgkOOs3oX7XWfSBuAzG9YmWCOusyKqnEAOCdMbIbhYxziHFMStx8D8kyAGhSl4rN25JyzJHgviphFhF1jNXCXKW5VgDs0ajejIvNnHTEWJSKcOYLoFCEENvLS5aTxJkbhmBZTRHQpAsa1Y4ZHkPaWkdxU90AH+th15LcSmYYR1W6wAgN4S7nOwYweQnb0Mhb3SARgeod4H6KZCp3SOXfSTIMdzQTJ4BfSCOMca4AjEmw5cBBjFGftGL9PmWYF2QAR0RVr8LK1r8/LDwtMn0Oof4Pjzh49ewFafuqlN2RVOatALrrMVJqUWWJUPJS27GApDpyktFng9blUSbxEDB8FGwRb3biqU8uRSvfqYJa6TO96yKYURYHve2H4K5eA58NaHPownyqkK1sGVZiR0W+x6TXCRJsZp/1nKxSrQDycRI1v0Rog2GlxAD0GycS05ypHstK9CtSvdhaQIcPSNdNLZiomhSRpGU0AwjwtfUg/vEiFec1MalEKORYr/lhOGhQ+upYmFULarEMmKeK2LW0DxCHKQN06lQ5QTB/WQ4eZ112KrawoVYwgKaSYgphbFQB7EMsNOtTGlJDI6bJq7qbyEJljDza/IbKSy6Qgbp9dtRdc/COdFGQ7ZDQIhjWXcNmKYXt5ZnQO0Xoh/kvMZlnym5Qro0JDz70HsnNjzzTrBpurUeTZqz2meUcPJjjPE8YUyGrwCoZNckFhicTPIcuaJyYpu8gDQJjrug0qdRj6mkLrURL2MD3sZALAFuK12lJ7c6YqyTRiSIL/cG0Ua6YfCCzVgBqcqDSSwYMLWBSnSo2SJd00lbI3WbF5PRzbKCMFg5mlQdhIeQkzh07W3gX/lCcFHCEpfUbpqK3jKLEAPp5WSFFMc25slIU0BcnhE2gIYcmyIKXtZLOHzGI25CUiUxeT6RVanLpC3ybjMzV/8N6DdL6jZF6qDTeatEGAB+Yk8FZWbCS4RI11l6N0OK/cYAvM/g9TgMikxCLPMIoeh5YkQ3QW5BzdCDRWwZXiMnUM9nEWIAMOeV1QKWmGhpQGZEUBF+PHJtmLKgJuuqEjBV/56BXL2utDRnhUVPyjoAkHoV1tXTcE60U8lV6zAgwrhnQSXJamAO8Tm/TjGXfZt1sZYwRqR+x72myHOtgaHY7L0ToJSHrgu3BCNMPMb40cGYDF8GbEbTKtPnfocplmihJ8JJP6xUo6/UyyPUXfpp8hflGX0+1aGYoB62l83Q+TuAfGKcRYoTg2Xy7lo3bDLAAACgCJ1TVl3bj7RB0aBhKmowDIJxOM+Dh47o5i3RAxnWxIRV+MHlMiwD2LZrgNrctIhillyiTpLigp12UZXUEUtoSC4pKFZ9ncU5eTzPQqyTxiB6uZJgI+QoMIkF06DwfJZr5RdpDUwVODzuB2Q43f7JZyI33BVNvf9nVQ6RqytOEOHbZxlKp47CPy42VGmXuAMy5zcGMGejoDe8GzzrBLmVsgfeZ+KampWy/AKKlKJswZwuApYREdmw4rLTKRZhaSHW6YWhEGj1XiUbRtVGsRoEsDGj9pWkzihTkNlq3PUWEIuomLIOl4tApwCjTOEt6TfNEcsA7waaZeYFPrcTy/ZJghyei09QRKQ4pS3KRfGbyIoe6GgkFOUisG0adOYcqi03Rmp7jfgzcroGKlMsfs8AXlOjj3Z9oaNWj2mevawbmDfUxVoY4VS6v1TG5JjUKQCnNrC8lgoVrw0AMsYYVzDGZPgywPCHz0ANn8MwbRjEBCVpd1VhOiI22hmkmTqu+1yiHopmC30v2lGv82dsBAE2pKP6Eu3jqY0iBp6RsgpLUINj0maoWgBaK+JgHiEaRopVV18GBfwEcXL7kSsf1Y1bP3AnVZmBUaommwzGIAroUC7W4XEXzE9b35Pffc9D3+uhywwwn6RIcM32wrb0uB9oSONsXEeEpSa1QoHtJeBU8N7JIsIpSWBi0xyAiKwo3gC45wmn+7FNcCxOiJkH7N0H4jOhR2YMpFIW0bNK8aAJ4fPbWAYq6XYOwRyxKU/xy6q+SLnTSVuJgk10o0BKKgxj+MZSDwwtF+gwK2a1l89ignqpft0J5DB5RFc+w6oNVKjewp98ntTgIAsi1Do5SGHfoanc4nl4T54G3VUFufPFAAD++ONwv3dKXKdYe+lNu0AO7g9+Tw/Bbzmw3vbyaHKp/q7CApaj56g+g+TEtLUuotc5LkBNkJkpMc9UyF5IgJgHNNuC+FEKsjCHwuGrYC+vRedVMAayewFk+0GgOBEvS/DbJ24ffOW42PxlmiKS2+ROkL2Ade11oE88Dvc7x+GcaIuNZ2ULhR/bB3JoL3B+Db3PPiIi711zRzCWMOEP9/zpyH1gUg+f0HEDADmwG9h9UEzErSL8QimUYsmxUvY7g5giHPyzx8Rvb9cCyJ5bQACUXvRSFMPNryIgBX/sGDr/5ziaKxH5Lf3sLSBz01Ebn1qE+71TcNbjIcdNk0cbCgHRH/ZNgixsC9tYXdnhi8sI3azloFUUAXDsYgUTG8G4WqyDVWrosEieJTYiWyhOXANjx/XAka+BrzdFX5mbBqYXokw7a0CjCczvzb33GGM8nxiT4csBdwCD1PXn+m3wzqrYZDS5E0avBWvp6XQ65YViMg+FPF+gqnXCYajZFCgWIlc7yjk1vTq7n77uZkzNU5zvtXCyHZHzpNziUP0g+MYZ8MWnonzVskl3O+oxHSlmjvBz2zyftuQA4th0TYQW9YS7ICyeBx8oL/p9u2DsuQUpuH3wc8fATy2CzE3DvPZFYHBQoVOgRmLiobws+kYRLbefIlFl6mOqMI8yUfzoWkWc6RwN2ybLGqy230u2ubh+agp/+lT0onvJNgc3Ts9itX8W31maCCWMlgH89P4dQGsFPBZhLu5iLSTFxUIUjU62nwp5/bZdIoSvz4BBV+wIn5kVbpgkUVHahndWxbVqeFf1Bev2AQTPpLYtimKlkh31v/Ss0G+EUpdhrtgMmKhYUzEiop6LfScm1gdtuD6JPYcJ6mFbyUbVmg/Tyf+O38NSdx1yk2PeZrqXbmO4dc5Dx3WVNPFJp7Rie9xHy+yjtPdmbb1ovwve6cKoF0Bedhd6U7MomhMgz50QxwKLHylTGNfsA3bsgzclSIf5KsCsTKNZLcbqIz10xCbLSE+cw9Urj8U9lgQEF7WKmNzI58i8cEMZbylBdCploFIFqc6DBEEKuTdIPX8yuRPr/hqYdy4sk0FMwAwm/KUiyntuASaeAzaWQeYPo4+AxBbmUXzJPOy5adDvH4XfckBftA84fAPc6jTsPRaKjRbItddh3V8DhY2qMSnuLesUa/jgt1GbgDkfjSekZAMTZZDKDNb9NQy8DaxvEAx88Vzjq2niuW+b2obyjTPAmSfBd9+Es8GYYBID5nQlqGtNRNzbcwsm9v49Cl97HOz4BmCZIFN1uPtvFmSzuQyy1gApW7AnkNJXS3/RRtWGsXtaEOHZoNE9JoJtAECnBSyviUlAsRk+vxiC7+bsdjy23gXQxe1zov9tOEs41zgVq3fkrvA8LINj5zV3AD/4ezFpqc4D1VnRl1pLYRuTYmJyPcYYVxDGZPhyQRfZy+0LcrGxDFSnBDHuNcQsXtVg6fR40pF+y4l0bnJThaJ7i32WGrNEOj+hWSvuKaFQraB+6DYUJiqoWudwrhcNxPIlULM9oLsh/nSO+IG09wF1h3dSUhFYM9DpijSS2DEPqFVAbAqYa4I8dwRx4Oc2wrC2tFIGZjdSReCtJfDlNXhPnwedmw432wEQZc+wlhSrs6hYFizDiRGbujUP2/XA14IJQEDqd+68EavuItziACWabi8genHumeDYVdkLx+/hYE20x/7aAAdqV4Gc+gF2zl6F1+wa4GhDWLUP1mzwI18TfQPQL12r7UpNYPcuxCL4ZXn38FkUqndiOtt6ZFKQ2jxQSiylmjS6xiqK77Sv1wIbgZVYkbxwbxAcG2E48hhsswSfeykyHCPG4WpEDSXaTLnCmyrUULVmYbTXIx1kcE2xVMfhyT5oEAQnazPknirHNZMTmOgMMFXbEStDWBZlVWTY5k6/VAWuuRNkYV84XvS9NooveQ3o/hPx/JLNsut6sbHW62jPbxrVKZBrAuv/oKt/NkEfJ1P1dDCWTSBPt0+q84AaFlhFpQzj7heJSVSiXcg1B9J5Te4EJnem0vqFYDy4BjAHvdgEd91fg+8tx9JnRTwM8ytVYRy6M1Rs5WnbMTML6y13hnFE3Z3XhKe82hyMl7wG1v4TsFbO6Q0ZQOAxJsfiWyiAHL5KfFbHX1UyEoy95Z6LuaKL5b6FR1Y3MGmvBBuHhcQos+4GBfbsSx8PxhUyexXARnOdmAW74IEWts4jheGPvVuMEWFMhi8DeOMsuK94ANDpts6cFiFDG02gP4iTHcUKGOrzLFPo9YoU3HXCY3C92AaclE/RRDru+jCo2OBimjy1icOAienCTkxr3nW2WRJWpMKEGAx7zXSi5Iat/kC/q5ixuJVXXf6nJtDsgDc7wkJFKbDWENpA1w8tZux7x2Amg0cwD/z0CtjplvDL2erA+M6XUTp8PchMHYDmRa+8LKfsHZH1OPYSVS2ygW7zzBHMLFyLmXoxbQnVLUn3u6CFCbx+h2JhHvSEBtBjqKOAFwdr7LyXsQs8mGykPAL0B4BVHO5oXxJhk4LMHUif08EqAm4fxCxERFIlxEZg3fUZeL8hiK5VjJ8Plq4BCD/EVhF+4CJvyF5CkWYTGvxtpW2ZltEYlDrsKO/CjnL6XrrPHGfCJfNMeAzUFJ41fIOk0qr58vp2QZwDrzF9rw1jOnqOMctu9h21GOqxI1ihAiCej5ywu30x6ZNtlJzkqtpbnY5b7R8jwOMuWnwDJrUAEBiIGxMcywQU4hjemphg8OHvvCacHPjcQ8NbjdIoelbmO+h2o6hz6qRX/sTVNpsqiMlQy0VqsywArA+WACyF+dhmfOVJzavhrQKzs6HkQPQBL/WMyNwBYO6AaD/5ewVin3XW9xhGDBTiH7kf1974EtDyBlb6FjYcOtTrEAC0/A1UpxUZhBetAIQYbNFEbYwxLgHGZPhyoL0ByME8azCyqVjKUmf4yY0sqvVVEmPLj+8+D4guEPkv3SwhJpYhCKfbh63fNyPu563FB2BdoAx1EGZeapNJbOOFfMGqXguSFtBmJ7GbPaobKVJ4R05FbQHEdpsTy4Dzd0dhXT0Fsq8trMI6yHp0N4RfU2c5suyrL/SkxZXa4MvPhJpAbbhUWa/khCAhVeEnTsfTS6jtqbQNCSZHKBdB6lWgNhF/EWURkbwNaAph1Z7TRRlUCW/yvnmEaMhGOF0ehkmzCWiQzoYFm1gJEiEtweLlHCP1AHivAaujlFNHMpgTTlowFbcKa+GzuNtABcM8x4wC2Q6buWZLoPvN5iGvTyG//JtxvRd6ixkhYNGoKJhidsS4A8twwRTpzTA/188L1LZWf3vqRMaOdNPEFPsM+OMP4qoXvwor/cUwq6yAQ0WTwDSskQPmjDHGlYrNGha2DB/60IdACMF73/ve8BjnHL/927+NHTt2oFQq4ZWvfCUee+yx2HWDwQC//Mu/jNnZWVQqFbzlLW/B6dOnY2nW19dxzz33oF6vo16v45577sHGxkYszcmTJ/HmN78ZlUoFs7OzeM973gPHiS9jHjlyBK94xStQKpWwc+dO/O7v/i44v4BBT91ZK5ew5Z8KKRNQ00nYVpwcK+dDLWEoSDVDfVlyt3rseyKNQXm025maYgBN/ql5yaVuhQxGdU5cE+5Up6HfUJGHGd95LNPJUMLUFPVW2iKyjqeDDWjbQvlOLAPG/l0g03sjC6X6p0EYGlqtl4rktTShQ1afo9Qn2jRuTUtCbQf5X2m3eJ6yjsGxhW3Atl3x/DKe4VDo2kXdYZ708JHMP+9+iXw363XlorGJsqWOyWe8mfY04u2fV99wk2BSA63R+wKCoCUnBpuJ6De03EC6zlnSKDXNsHsjISu5gPLJdlSDEukmSelw9lbw34j9H1Y+eSwrAE/MujykPhfU37cqilzMZ7g+T7WOqkRC1rVEqyiaEyiaE9GEL+vvImGavgjJvEV/psbn+xg/unheyPADDzyA//yf/zNuuumm2PHf+73fw8c//nH84R/+IR544AFs374dr33ta9FqtcI0733ve/HZz34Wn/nMZ/DNb34T7XYbP/mTPwlPsTC+/e1vx8MPP4z77rsP9913Hx5++GHcc8894XnP8/CmN70JnU4H3/zmN/GZz3wG9957L37t134tTNNsNvHa174WO3bswAMPPIA/+IM/wEc/+lF8/OMfv7BKZ5Hg8FhiYFJJj3qNJMWSGGtIYJIUZxJFmSZxLC+ikZYcq9Y+aqfJoEybfHlmkWK1TZJBHpLET1PuPEJsXTen17ZJ6AiyVRRL/erLbRgpTtZXR4iB1AY3rUuiPP+rycAI1ATsstD2ZiFngpOJJCn2hxBiNd9kuyXz3SwuhAwYI9ZVlyarLgG0Lv8y7j+qBVdHlLMsoz734HEXHtcv41zyCUZy4iZxkaQti8yr5FdXNx/p9sgiwtF3nYeddN66+z2vVmEz47elflbH47wJDOLjzyjyCIOYKJk1GCxnCVFirNEd4wrGZSfD7XYb73jHO/DHf/zHmJqaCo9zzvEf/sN/wG/91m/hbW97G2644QZ88pOfRLfbxX/7b/8NANBoNPAnf/In+NjHPobXvOY1uOWWW/CpT30KR44cwZe//GUAwBNPPIH77rsP/+W//BfcdddduOuuu/DHf/zH+N//+3/jqafEhqcvfvGLePzxx/GpT30Kt9xyC17zmtfgYx/7GP74j/8YzabQvX76059Gv9/Hn/3Zn+GGG27A2972Nrzvfe/Dxz/+8c1bh3XEI0mOqSmWuE0z/nLRkcGEP1CVBGpJMfREUUcWw2PU1BPDLCuqzjqq/oXlp2mrqFLHFCmW/5NWcSQIsWL5TdZTrSOm68LDwRCrdyaS9dRdb2ieWeqz8myzCLFu0qSkyyTbunLmwdxEWkBr5SFmYbiV+ErBqIQ2i8SrltLkxC8HuZri5K0TRE/nJSPMF17KGqojkpuRGUQX0ah/GDTbOpxFiKG0baINsyQMW0He1UlHMqiR2jY63+JAtgUeiCQYQESEs6zCF9TmlwOxVcfEM0s8wyyJRBjJ1POjzbK6vzHGeAHgspPhX/qlX8Kb3vQmvOY1r4kdP378OM6dO4fXve514bFCoYBXvOIV+Na3vgUAePDBB+G6bizNjh07cMMNN4Rpvv3tb6Ner+OOOyInnnfeeSfq9XoszQ033IAdO3aEaV7/+tdjMBjgwQcfDNO84hWvQEHZJf36178eZ8+exYkTJ7R1GwwGaDabsT8AAFVeTFkkjJrC/Vm5CFIo6IlT8kWjaGmTUoEYGQysw0miGJ4H4m575OdhZEa+KFUXXFlkWUcaVFKsq18qvWIRVwixzkoMIO183jLzncHrnk3WEp+ujrHnaacnP9rPIxDiPNILpNokRdxGkIJcEDT9I0kqtSRTZx3e7DJqIo+hBCor/81YgnVpVRdzo5ZlCJLL6KMQqiwr6cXIDwCIDXWBj90tm9xo5DEXlZ3GSqzLMzlBCN3PBeXRyRqSefrcg+M5KX/iWfCVDXFZBPuS6m2H9d8RpBLAcA8auRgT4zFeALisppvPfOYzeOihh/DAAw+kzp07J/xNzs/Hl3fn5+fx3HPPhWls245ZlGUaef25c+ewbdu2VP7btm2LpUneZ2pqCrZtx9Ls27cvdR957qqrrkrd40Mf+hB+53d+R195HRmUfnblIKUMVkTqhxOb5mJhdSUsI4pBn9hQFiQGRxScTfXAwPssukYlxJoy6SCDKXBPIY3JTVRqnlSzmUwSQYdFZBDK5rpkneXGMWUjSLiBzDLEtcqGwdQGwpwl/xSkw35voJeF6PIx6fCNK+pGuOTmo+C73NCihbxG5hm2yQg/6YslxMmNOYBWR5wVgjm8Tm1HjwFGIs/LjEzvGDoEE0FSrI+uj83xOHExESqTGEauNk0+raL4TQXBbUK/4EnPEkkPE5cQuZsOEwt3Wit5hkUYyNAJB58Zd9BlYtI9ilXYhxezJA/DlliSh00udc9J2UgnkR2BVI12aolxKMtgsIWwLB+WtYU6363Ma4wXPC6bZfjUqVP4lV/5FXzqU59CsZjtVJ+Q+Iybc546lkQyjS79VqSR8ois8vzmb/4mGo1G+Hfq1ClxIs9amvqLBkPt5jLVUhhztRaXCsQkEkUqwrbq9MEa2UR4fhSZhFWMNLUSo8oPktbgUTeVAXFraFI2odRBq5NOIq+OOlKUVTe1XbIsMnmWXk3d1eevlU9sJS5UOiKvTWAkLa2KLdhkMzKGWcxGSEuKdfiFUugSbtNFyNG95l1zQfe6XMv1cuPtiMiSRiSDhagEdajeOkiblEQk76m7b55OWFqFR4WOBF+qZz30t6YzxujGEc1kOhlcZGRcgk10Y4xxqXDZTDAPPvggzp8/j9tuuy085nkevv71r+MP//APQz3vuXPnsLAQhXI8f/58aJHdvn07HMfB+vp6zDp8/vx5vPSlLw3TLC0tpe6/vLwcy+e73/1u7Pz6+jpc142lkVZi9T5A2notUSgUYrIKLYbN2sNldmkNZaml/dBiXBMENEXNmQfe6ITHSdkS8otyB7yruDXrK58DF2zmjbuD+4+ghUy6FhtaJ1uE6R1mQZKkUGcVTboWA1JW4iRIkYYW8AvFSNZOiWFux0aBYi3OlHaM6s5qq6CzjCfP6+o9Kjy967HLiVzfyUlr/yY2xElslgypluRMGYTCUfL0sJcESetwdSqKOpiXPgMXUuaYfjpor1GsweHxETfKSVga3WyWVXjUcl9pGFa2mNVYdVuo4krdMzDGGBpctt766le/GkeOHIkd+yf/5J/gmmuuwb/8l/8S+/fvx/bt2/GlL30Jt9wiQuo6joOvfe1r+Hf/7t8BAG677TZYloUvfelL+Jmf+RkAwOLiIh599FH83u/9HgDgrrvuQqPRwP3334+XvOQlAIDvfve7aDQaIWG+66678IEPfACLi4sh8f7iF7+IQqEQkvW77roL73vf++A4DmzbDtPs2LEjJZ8YilMngXolfizLAuqwzM1lKjniwTlSKafzdJjQHzfbIv3CNhGlaKIBcn4tyDca7HizD7/lCK3xvr0g84fFiWGDmcfAn/2e+Dy9IAhD8zyw1hT3q0+mQ+uuNaIoahqQhbkoXOr5NRGmNIAxXYKxUI+sq6psotsHO90S36Wf5SBUqZRIcNeH/8xZGNueANl1Y7xsMnRovx0vkNMVEZSKIupaSJbcPtBei9KZFKhMp1/2y2vgnW70nSlSkIW5+HNYPA9+bkNIPeanQQo5ExLVvysA/9QavKUOSHkDlJrArqbwKpFHTFQkta9uH7y5BAzaQGFCeKcI+gM//giwsA+kWBdBV86cjq6zKbB9l7hvEP2OnzkS+U0eAlKwxWSv3c1MY9z9GhGtTX4fgVTwzmqqLXivIforAExMp5+x9ENdCDTxGnmISljJ/WITr69O4qSM5+qrQbYfzi/j8QfAnxaSMLIwB3LjK0aqowETllEEJTbM9cX4yayJquyjrSgYEE+F6E1cO7c9aoNGE3y9CbJ7e3R+ci4M8sJbS+B//+0oGMxMDeSaq8O25BtnUK/NA7YIxsKIj54XBe0xiCncdblBJEPLgoNs7xDh8fY6LKcDC0LC1S8r7dJZiyf2GAqFMmTAoI0dO9P5Je5jmzYWyrtxsv1spoyAEhuTbRcrypBfNCdQoVNRnqrvapkNY3CyFhnk79Hti2vKk/HVOInOWuSvftu0iCrZ2BCh6OtVcUwiGIuTUU1hGSC3io+TNsO+4m7wxSfCNhNl9UD2vQgO4QAGKSMBMQvxcXBMjMe4wnHZemi1WsUNN9wQO1apVDAzMxMef+9734sPfvCDOHToEA4dOoQPfvCDKJfLePvb3w4AqNfreOc734lf+7Vfw8zMDKanp/Hrv/7ruPHGG8MNeddeey3e8IY34F3vehf+03/6TwCAf/pP/yl+8id/EocPi5fR6173Olx33XW455578JGPfARra2v49V//dbzrXe9CrSbip7/97W/H7/zO7+AXfuEX8L73vQ9PP/00PvjBD+Jf/+t/PVS2kYR/agn+qh0t4ye8Qagb5UjBzpcKyHT1IM571k7ggQnUJmKniGmCa6QGZNaCWXPF98LE5gYu5kUvTZ8Jq/RgACyeB6YbIHPTItS0ScWgvLwGdroVkdygTeiuKuiuKrjnCX3i6jr63ziF9nkDdtlHYZsFY7qkLQIcF+z4BtjpVkiASdlKb6BzPXDXBz9+Wug9d94oytVaEVG2ls+Bt9JRkshUF3ybCCPMnY4giJ0W0EykpXacVMqXQX8Af7ERWuJJkcK4Kq1rBwRhd59YhTnfhTlfjpHiTP1wAL/lYPBMB2XXA213QXYvgKtkKMfqSkwqyi4nBc3z4qVaq0RkEAA/+X3wxfMiZLCSNz+1CFATZO8OrZXI/c5x9J5Jt61pxgmF5xF01in6LY21LvCBvWflszDf9g+jMLpDwFtLwKlj4LuFtAFuXxxbXQG6fWC6ni5zvw3+qCAAZGYKWNgea4dYuYgJfOP/YPVPH9OeB4DJV56H+ZNFkJm9+gRBkBa+0sL6l5Yw838pxCkD8pyMkGgQE7yzJiYeo6wYNDtiAukOsWBOl2DeelB8aa2Dn1oEe/wcvKUO7GtXQHbNClIc9C/eb4D9zy/j5Oei512snsfs7adg3b47JMV840zY7mZxAtXKDJhpwPF70c3dPnivATK5M9/bRGslfKZ8vSnG1OtuBlAU6X0GLJ6H/8xZeGvxaHZwPVgvvxZ011WxkNmpjYzExGTTBb/vv2PHm38ay30hg1OtwnP+JPyHv4Xe3zyK2fe+FSuTBdhGCVVMgK+cEO0D6C2prXVYk3PwZnZnP4xeE+g7qclrOH4tLgOOK8ZdCWqKfj4TrKb2HfDF8/BPrcE9tg7ejSYZ0nBQfuUJFGhgAfYY+OlF9P/mUbTPcPhBlNKZVzwC6813g8uyKKHHU9iCDXTU8kG3UOfLx5rhMRRcUdO13/iN30Cv18Mv/uIvYn19HXfccQe++MUvolqNrED//t//e1BK8TM/8zPo9Xp49atfjT/7sz+DqSwlf/rTn8Z73vOe0OvEW97yFvzhH/5heN40TXz+85/HL/7iL+JlL3sZSqUS3v72t+OjH/1omKZer+NLX/oSfumXfgm33347pqam8Ku/+qv41V/91QuqWyYRToA3WoKE6PzHyrzqtWzrcfA9NhiuNcDXG8BaI31vxTUSqZSBQRv8+ANiwNXcOwbmwf/+UcAyYASR5fjyGnjPASkFVs3+AOgLuQlfXgM7sSFevgl9r7fUgd8YgDYGMOoFsOMbcAIjLXMI2GmGUuMc6K5Oyk9y6DGjrNTL9eC3Evq+4J58tQlSXwOnT8UJIqUZfn5NoLMG3lnL9ooBAKdOAxAWUO6JkMj83IZmQ6OAtJDzpTXA9eEeb8Bf60Vt4/rgp1eS+4HgLUUkg7s+uOujf7IXEEgTeLKFMgA6UQaZmk2XVyL50pKTArWMy2sgaw3whTXALoM//Ry846sw6UPAVC3WRuzEBsiZJsxDa0D9tJgUMQ/swedCIpwkvyrCgC8jHPe/fp/os7e+BNBZyIDo5ev2xW+keR5cWoIBgFIRAnxxGaTZAZ9Wwokr/Z8PBsCJ59L5T9XFxG29geanHx2qLOJPPQaOgDDL36IE89D54kmcP15EdZaAN5og3Q0YBs3f2BFMSHhzCdxnkQV+lI2UCDaX5iVwPbDTLfhrR0CvOqVNwpfWgj78aPw3qKDfMnH67xiqR45i8tYzsH7ydmByLuyDUoZEuQFKKoIEbzwXLsHzM0dglkR/43mkSgbrAcAfuh+Fq3YJ8vfU8fB3o44fcuOw++2jmABC6ZlWciUnGNSEdfJR7Og78UmHIzYqh9f2mpiZD0ysST+8OsI4OQd4LLLuy2cb5BWLUNp9ErysrGwpZeMrLfDmWZBGC6ReDWV1vNMFGk1BjFWE442ISOr1ONrv/wtc8y9eC7S7GHzhPjSO9KADv//7ILdeD9SUyb3HtH2Kb0JvPcYYlxuEX1BItTFGQbPZRL1ex/qnfw61cnxzXMoqDIQaUH5uIyRycRdpwaaw+WkQSUR0PmfD/IJja03wRjM+wGcFgQismOH9MzbbAUi5MgvTWYmyBPfyzjThrfTEgBtYZ/I2unlLHXTXIis8tQN9nkKoDMqFFVhTzlT5lc/mrirIzrkLCHKRc85hwuKyml7i1+qVAy8g7HQrRnCRaD/1WrbqoLNB4bGoXUyFLBpB20zsJCj91M3A/oPZ5U1iYxl8eS11WG0j3miBr7TSEw0NeNcVdeulh5gkwfUZgQwJ3lyx4PTS7UUtcc3M1WJyUXzjtSDXXje0HOg1xbK+xuqfiWAik7IiJuAtdcBWN/eS77VMdDYofKZfYarOupj9J1eD3HiT9rwWG8siVPlgBE07IMaCZhv+aje2dwBAKnS73xiI5+162mcp4XkE/ZYJt2+AufG6Jeu661UU9s/+mJAW6ZCUd7h9oLERSr/yEK6gMA9Ya8BvpNskuV8CCOq51ksd19Vj0DMw6Jip4xKlOsP0PYdBbr51aHkTNxDyq3Y3HbJdLX+nK9qCebHw9CF0ZW858BuDSDamaQNA/G7dgfj9MSeql1pHaR2uTDKU7piH+fq74y42NWhutDB51S+i0WiEK7CjQL5H3/qpP4dVLg+/YES43S7++ufu2XR5xvjhxPMWjvlHDnlEmFIxcPcHMcKa6wmh2xd/mRHtMrwUZAV+UM5JzxKZfouBtE/fwN9vzAKeKAcpUpizJRj1Qm4IZXnOmC6hUPJBbZ5JhNW8s4KO6KPyBZ46VB/OyUAYur+wrTTX2RSwrVj7xe9txP+CY9KyrYbRTpU7qKOss0l5+AcIEiyJcIxoDvMIkvAOIj2YqH8xUBNktiqkKEqb6/5kfWSYb/UvWUeDcrgDA4OeESPC1OLhn4R1VR3FO3eAXH31aPWiNjBRBqlWtPXT1rcb6Og1zzL2l5TiZCBZf2ql2yTWPnQTz82gQKEATNdGqh8xTWFJlDKpRB2SdTTqhdAbTWZ5IX6bhslRqHix56WrP7EMIaUSnVnXYOm/SllIv3S/PV3gnozxTNY57KeuJyRUfZYKZa+71vMIfEbik9BEW1A7eIY6Dy15f9KDDZA/BqnjanLsBfRjDdLGjazxUo6z6tir1k+ON6U75sU+jsAftfqnfaYvYHziE5/ATTfdhFqthlqthrvuugtf+MIXwvOEEO3fRz7yEQDA2toafvmXfxmHDx9GuVzGnj178J73vAeNRiN1r89//vO44447UCqVMDs7i7e97W2XrZ4/qnhh984XCoYR4eA7X22KAU15ySbJpxzw+MCJNljprMIxd15J0pt47DmuuvQhnONlycwnIfUw6gWgXohp1HREWNzDhFE3YbYceOvBDnEN2cuKtJcuc5xkxqLh5WHYcnPMD3TCkjOq5VzjEi78riEqhhnp9gwzTTrCfCjVE40syDbJQ1G85IjjggcW8CwvHfLZ8Jw0alpn3YDvkRSRAtKWZHL9waGWqBCB+z+YNNfaFmLgCKnPCERXEvmthCBS5uaeXSAhQN9JL4MnwYQ+GY4b+uDOqysJVuMFWRTPMWk1lW1QqnrwPAJ3YGS+XKTVmD18AnTbNDC1Y3hdfSrqSG2ArcTPyWea6LsEALctwAos94HHHB1SVuDkbzSQEIBxMIeEvz+VEMvVmrA/UHNk94IxDybU1v8OFb/shDFRt9h5LzW2SKuxlFMBaZlI2ud8NN56QT2pzUMrsaxfed6AecM+YG5aS3TTAXguzgc1pRx0C39rfJN57dq1Cx/+8Idx8KBYbfvkJz+Jt771rfj+97+P66+/HouL8c2rX/jCF/DOd74TP/3TPw0AOHv2LM6ePYuPfvSjuO666/Dcc8/h3e9+N86ePYu/+qu/Cq+799578a53vQsf/OAH8eM//uPgnKecD4yx9RiT4cuJLCIs4frwu9kv63Cg6wcDZ0GRXuT68zX1hDfh0xgAOKVCdhC8OHjyBaIjwjqyr7uP1ON1NzKlDEmY00VY3Va4RJckwsM+Z0oObEsQ4RG1lUN9+8oIgsUCSFmQEe6mX06pa5intVoloZ7XkS/1GLW5yMOmm/L1y83hkwMSnOfMA+k56eVYnfWtm9BL6trE9WBQHi495xFMUqTCc8GodZNu8QCg3M3fXOYw8fvKIU6xsiSe3SigdmAdHpb3Zvw0Sw8YlfLQzXN8MAC6/ViQmmFITdIy6mxagOH6sAo+XBhaKQi1OAZPC3125arnYNyVDmCUzlh5hsVCfOPusAmtRNZzsszQ5WSyXiFJDvqs4Yq+rE5CdcTYNLkYU7PG5YTuWX3W3KCJSXYi+JCEmka6l1QRkGMurd7yXpaRIsYxUuz6MFxXWL+DenoeCS3EkhTb184Ae/aN7rHmBe5R4s1vfnPs+wc+8AF84hOfwHe+8x1cf/312L59e+z8X//1X+NVr3oV9u/fDwC44YYbcO+994bnDxw4gA984AP4uZ/7OTDGQCkFYwy/8iu/go985CN45zvfGaaVm//HuHR4YffOFwqsdBhhrdbXMmLkQitJoKYY+Gwr2/KX3MlDbZD+QGhaB0kXOAmyWLDBaxUY0nWXJDIxspnYDAjkbviL1TeVl+azQpbkoJ1FgmGZgnAlX3Q5ultzvpIu06iBLPLSURNkqhZuHiHqJinddRpJjAq9ztgEkG4TINJUA0JKsCnLsMeyLVIqpNVREhFNGcPVC8g0+jaLWagAUNtDoeKFekUJM2kVtozQz++mIElGMtqfCie7XpnIm/BoYJosVScV/ZaJ2lojjPg2CtngTqCH9tjQZ0iqFfD+AFgNNgyOQvqDiY1OR5tKi6BvDrInNc0VMV6UFhsgTgekVB+aLwDlGXrD+yoQyCSynw8PLL5GvQC1ZqHnl9S4YqBQ8jHoRURfR4yHrhZkeFzg3kDohnXRKmP1omJSIF0QquOv48auI0Dw7BzRV6WVO2wDP0aKJWQdskixv9aD2WsK8i6jMebhCpVJNJvN2PdR4gV4noe//Mu/RKfTwV133ZU6v7S0hM9//vP45Cc/mZuP1CvToC8/9NBDOHPmDAzDwC233IJz587hRS96ET760Y/i+uuv32TNxtgMrsze+cOKPCIMgNQrICUX/mo3Ux6RzjNnC7s6+EyUhaVgTYR5TmtBFUttpQxOqdigYSmELc8aPGI0oyhaXIalSb2HxiOENp2KUSQH04qv4ozyDUUWEavXxPJsqzNUNsKb/Vi5dORX107U9qDalVQSbJocxZtnYNy4X9x/My+gpEVKBxkmvNvPt3ojrrnMTVekABisggtTkYCkiqdKQp47Adw4v7n6mXS4FMTOb4M8icswyHYYRpQ8RuA8soTC3DHhc/uQPshPDK6cpHjp8ic9I0jXjMwbLqlAtNSe9Sx1EgNqe2CDdD29hKWYWEaklR0FUltLR1xypxnPUwnjHvoil64XM2QjUlNswkMBghBL6IhxqPseEbwXTJ5ZMObl/RZtCmJTMfHuKwYONRiRegyKRVjxHiGPqyCBzlg1RMj6qaS4+2QLtWMnQOprIFffPDwoz0XCsj3YhS0M9x20y+7dcVd273//+/Hbv/3b2kuOHDmCu+66C/1+HxMTE/jsZz+L665Lb+L95Cc/iWq1mqv1XV1dxb/5N/8G/+yf/bPw2LPPPgsA+O3f/m18/OMfx759+/Cxj30Mr3jFK3D06FFMT2dsOB3jojEmw5cDyU1r8liAMIiGJKxy+TlJhJNu2dTlwbxB1wz0dr2meBGG5UpcI/OzRRr1VaYlwsNkH4l66vLSSRrkMa8xCPXFefrfcAOaLk/Era7GTFl44gi0r5kvnFGtjrrJyEQZaHUy3eep99R67Rhi5Ra3jRMNVU9t3rgb2H0wOLFJspgoX/rGFBiM8LIGACuyQA3T35IihVmkMPoMRc+F080m0Nz14T15GubCNpCFa/PLkMQoRIrSoURf4kJkEkBa653ExmMOZmZPgL78hpGC3wAIXMiZGvKrqUutIqJBOm76XOJ6sY/Bj20YTC67q+CuH26mS05sUhZxyxASgRH7KTEL4NQejXDJiUGO1RQASDnQF/cZeGOQKZWQkzZYBky4oF5aRwsIYkwsQ4ynm129kJOavOs8JsYYAMRhUbAUxvQToWATIe/HZRFJwwOgH4e468esxEA03rBHzoBe1RFkWCKr7FeoTOLUqVMxbxJ5VuHDhw/j4YcfxsbGBu699178/M//PL72ta+lCPF//a//Fe94xztQLBa1+TSbTbzpTW/Cddddh/e///3hcd8Xfe23fuu3Qq3xn/7pn2LXrl34y7/8yxhxHmNrcWX2zh8ykL07QKpF4Pya8GuqDsTVCjAzKwiqQQGnKyyznS740lo2EZbfy5NxvZnTibklIsV6FDlMWlWS7ox0g5TbB9m2BqL6G+72xUtUHXBNCnS6MZdcZKomolWpOHMamK4JUj5Vh1VTfMNmWMrNtUZ6qTBwJURkRL/A0hduJiwXwVsd+E+LzQzG7mmQ3QuKbnmbWHY2h08k+MaZVNskdZy8syraW+ZhFUEmdwIT08C502G7kLlpYGY2ntfcCkjga9h0XLCnFR+/SjASTNfDpX2/8RxM0wk3tqjeNeiMjcKrDsC49eVic9kwwhCrW19vGU72DZuC7Lku3WadNfAnnxH1WpgDduwDcfsw1ldgdfvgnW7kDhDInDjxp47D/+KzMTI8sZOgcNNcKjk/cRpk543wDcXlE08TXXnM1hGpUi2RmInNSRCSoWFL8WZ5PeaaKw9GmYJeNYn+N06lrMP1G0spH73c9cXzsIqxYBAARKANpR6kMhN/JlnL8GvPRX10bhVYPxv3EZuqYLBq0W/D6DVTp93Pfy9Wb+uqOry1PrzHRWQ7HemvXVMQm2kREO2kZThZdo+lXa3FNghnr46FgYbkOFKbyIzsaJaLMBqdWCQ23mUxt4fEEtd6ro/SAT3R0UKNXqgeixWAAgOWrg9z0ukkykUxqdHJRlRybDmpjXISSWuxOnE15ysxjbFME8NmN3teYZDeIUaBbdvhBrrbb78dDzzwAH7/938/DPAFAN/4xjfw1FNP4S/+4i+0ebRaLbzhDW8ILcuWFf3uZURclVwXCgXs378fJ0+e3HTdxhgdL9we/AIC33uz0OHOt4CNMyI4A6XAwnaQ6b1gdjT4GcQEdgPGoAd+/mnhRD/poF+iXgOvbweX1/XbgNScSVhFMNuGzz3Yxjy42wepzaOFNhxP+tT04UMMcAZMlGgNlEwD0ztgEBO03wVfejqI1rUAPr0rjBIl8i2JIAz9AbBjH/j0LnSYeBlWrVnw1eeA6RrcPTeg5zVR2XYV6N6unoTqXoSyHc8/LQhXowNy1S6Q3TeEXgJ87sHxexh4HRTMCgqHV8Gfeky8JKYX0KtPoukso+85mDH7KBgVPNc+A+anl+SnChyzxT0wTQpe3w6fezGSJdsKAIrVw/FgFW4fzuQ29OgEKjN3wWwuA6eOCcJenUe/XESPCVJRX7gGZPe5MPyvdeCEiO51dBnmfBnG/l3RBpWgHWxK4f3VD+JNVqPC1djNh0GuerEgTr4DEITRyVTI+vjB8zeICSpdOuW91Eo1NLfvwPleCxtO4M+YejhQ2wFr0AaZmQK5/g4sYwVPrBOUaAE79sxhwqqj+r0Hgbnt6M1ux/leFPjCVdqf+QS79h1E8cy96H0nChNMLBNk+yTIddcJEifLaFD00YfL+uHzkf+pYaNgiAlTw10S7V2eh9XR1LE4EekdfQZuUJCZWW00xtSmtnPHQLt94b81uVFQva5swXr9LcD0Aoq1h9D986fi5y0D9KZdwl2cUj9ZJ8YdDLxOSIqpYaNk1mCbJTDiY93bgOczeFyQFtclsbadLZYxVdwBFCawVHJxrrmIA7UqJpoU3tQCjrdOYqUfvZTlta4v2tMySnBtEfFP/c382LvfjtKpo3A/913QqyZBrj8Io9mB3ziCwbG4BKOyi6Jwx07hCWRiOqqjVQwnNMl+aRAThhkQSbcfaaNVwij7rhJenZgFcKshQsMDyuqVKdyzVcqAHfdZS3pNkLWm4r6MAt0+jIV14Xtd8UFcvHt34OYt4X5Qdc1IqbD0qu7hBu2ozHL8C0K4E7MgVuPkcXUc10V3G+ZTWpW+Bdb9pAQkRYwBGGUAZQq/K86ZV82IKIwa8MFAGHlWjmf7jA7KzTv6wB0vZHDOMUg8hz/5kz/BbbfdhptvvjmVvtls4vWvfz0KhQL+5m/+JmU5vu2221AoFPDUU0/h7rvvBgC4rosTJ05g796M6JVjbAnGZPgyoO91YHscxVIVhjcPHkiUSHUefqGEHltPWbQKVgXF2avEILigWMUU7xFkzy3osUYYNtQulMSLw1VeQsUJ9NwVMN/BwLRRnT+MhreK872WlghSg2ES67CNUlimgl1BeeFa8KkGvNocGoOzMULYQxPTc7uBfhtkciea7grariDwjtdDfWoB/uQ2nO2eBgAw30G1MBuWO153ZbkRXugJu4hiWH/j9utAdt2IFtqA34fvCXLXZW0s9y1M2k3smtoLc38fKE6gXSngyfV19Jh4gfZYAwdqFSx2bbg+Uu1wtstxzeQJzFR3oDU4BUrskFQmSRcAFMuTIMGLmPcbaLkrcP0BeqwFs0gxc8PdMHotdG2CM+1z4XUGWUF9cieAYJnW7YMwJiLHmSawcxfI5E741ArSmyALcyj+2K4wD7lyQA7sBpk/pExwELZ1MnxtSIYR1cWHCbsyA2Rt1jIofIPg+NpJnGyV0HAInMBY1GZLuH7bLpQnd2KdNPHQeROPrIl7LpRsvGFPD+TQYbQn67h/qYGOW1bIFmL/l/td/NiP34yp6hPxIDPXXofB9Dx87sHjAfn14s9D1sfzGRh3wrp3Ag8ARbMDqzgRJ012RVjRJaHyGEiFxa2VeasIc7tBdndglNdhzATkKkseM7cbpDoPLJxG7baoHxDLgHnjbpBDhwXZlyTYIGC+Az+Y5Dl+D04QxcuGB4OY8OGhx5o40+FwfXEd80mqfVf6Lg7WT8ArMfz9OVHOAzWATO0Or3ko2NQmr3HCZxM9a6mOkGlKtIGX7r0Z1j+uAesrIora5BwKr2Ew6s/G6mhMF0EO7AGZPxSbaIT9UT5LObYEQ4HPPcA0QI0JEIOKFa5+O2rXYEKckltYRaBcjHvLKBeB+mTs/kT1VDENRS5kA3WALGyHubACIwh1zHuOWOmR4e5VGZx0jSZDU/ca0UpUQGgloSc+i1z+qeVW0oI58ZUMuXF0MIgHyNF4BpIILeNy45xi+SZlGnqciJ5VMC43BmJlbW46lGWE5ZNpO11w5olVmspa2rNHLKBT9mRxFFDqg9KtC6HsbzKv973vffiJn/gJ7N69G61WC5/5zGfw1a9+Fffdd1+Yptls4i//8i/xsY99LHV9q9XC6173OnS7XXzqU59Cs9kMN+/Nzc3BNE3UajW8+93vxvvf/37s3r0be/fuDf0U/8N/+A8vorZjDMOYDF9m+BNTwISYZXvcA4IXQJKwGDDhl0rAvlu1S78A0HNXYJLoxev4PRiGCaMYDVwOa6DvteH5DAOvi1VvPXxRUiPQfSlk0DI4DMTLMvA6GBAAJQLfWUqVwyAm2hUbqBQAfyN2ru/10O+dCL4RfV2Jqa2jATNGusnOG0F23ogu78Dj7VR6FQ1nCf5kASu9PtobLphPYBkcrk+w3LdAjTMA7LAdWMJC+ehaCdRYQ80GDuasoPncQ4tvAGbwUi8RuIHPUI/78DwHi10hH3B7JGwDHUhlBjgwk5nC5x6M7QdhvuFgdHCI3EM34VA/u34ffS9qSy+wRkkLo0hDlP9p/ekPVm38YLWDQ3UWvGejGiz2gGMNgmOgaJ7rYeCJ6+WzkO9m9R3t7r8Z9vaDEVkqVTHwe7Fy6/qM2l88n8GDtJQSFE2CCp0CKSqThayNW6NITAKQYh18zz6QnbtSFt3wHhJuX/xVyrDecmdk3TRo3OKtYOB34Hg9+PDCZyPRcTeU52SFbQog9hkAmo6Bh5aBgReNF09uiOfOuh0AFEUT6GfIqW1DkOMiFYRYGhOXexR/fWIFrl/FjskSXl6dFqskB6+BtRDILxRyuJnldB8emO/A4xGJKlgV2H5FhGROkFl1Axf3BmFbo1KO2toqbn5TKQBs3yVWCzqtbC8xurr5DLzfEL8In4lNcm5flMNjgMEArx0R4sKEsAgnJRXJeyR13UnrtEJKicPA211BcqkJlJCS25GAtJKCLSYMDoN5gGaSYHGtDaAb5sEHA2AwyLaU9xNyjxcYlpaWcM8992BxcRH1eh033XQT7rvvPrz2ta8N03zmM58B5xz/+B//49T1Dz74IL773e8CQCi1kDh+/Dj27dsHAPjIRz4CSinuuece9Ho93HHHHfjKV76CqSm9dX6MrcE4HPMlhAwjubj6adRq+WEk1QF/FPhcWIZMYoGSwGqJ9Jts4HXQYy143I+9HAGkvgPiJVq1irHl9SwilXVP9aWtkiqJMp1A1ZpNHR8lf/W8bDNpVWo4HfSYgYEfLfvJOqpk1419jvLWWcqnix4O1mxte+isxCoZE2XMIpXAtlIVdTvuKSBr4pOFVHslvmdZtGU5e6yJRmCpUttKtmGy/VyfoMcI1gcmXD+yHqokKmlZnCkAc0WOgikODLx43uo1Zcpx13YXU/aOVHnl5+Rz19VLlQzYpo26NQ8bGRZbCWmR81mcDOdNONx+nLjoiLA85vYjd2kqgUsSRasopBG+g57XFNZhhQyrv2XXJ5nPS7UOy+c38IxMq7zjR89RZx1WvyctxI4PVCjw6zcPMNshYX1i1lo1upryWWcZVp+1+oxLtIaiK1ZgYpIV9Rl5goBqn6GGlIeW4c4q4ASuypSJSiy9x4BWJOEJoepms8i/6g4wa8LkMSGl6LTy9ftBOGYZejqMpgnEZR6A8CndaAqZm0qCE3s1iBlISIqKBGWY685OK75fRBJh1SIclKfZHmDypR++4HDMP/c3fwK7snXhmJ1OF596yzvH4ZjHAIBxOObLgVD7FvzpYBJL+5eXp/ofEJYx+aemM4OB1zI4LEPxRRt8Tx7TWW6TdUneM1YXZaA3iRH+6fLT1SuZfxZk+zDfAeNO+MIuGBEBlXWjBg8t4WqdAy9CqTRZ98oqc3YZo3pbmvtvJq9R0+v6Rt71RZOkyiPbUG0/IB1jw5YyFuVWsj1nCoIgVShQsbwwD0mK4/1O/K9Ym5sM5NVVtr3jCVKZa5W8mB3wo2jfN5m37NPJjXNZUPu8DjTxGxf/0+nkcwxj0wx5Q6jpYg5DtnBDlUFMWEYRBbMC2yiliXASwzbkJcCdTmrjcSo/INQ3o1IV4a8lVNJKM4hk0i+2Tg+cV9bkhkFqCgsu0rKIFFLSBY2Hn2QeSekGtaM/zbWxUOYaIpx13zHGuFIwlkk8D8gjKUnL3oWSMJVEUmIDJkK9YZL4uH5EhiSBSC5DJ5fbU9+D+0nLnCTEqpVYJYa6e4xyTnfchxfUzQglD5IcDHwjtmSsSkOskOCR8KXu+nriMGoZ5VK9adCw7iYxQitlcvl6s8hrM3le/h/WP3x4KJgVMN+BBSGZGFY25hMMPCPWXuESenC7vidIkm0AkzYwYXmhDCJ8PqYf5BO1R5lyHKgNgAwL7rC6q/VKosdaKJiVSHt+IcgjvVlE6gLhw4Pr92N1VvtUsk9Ly2+eVAJA2O4q5LNRn2NSLiHzSsol1OsvFmpdk89a6vaNQQ9IEuFRiXeWVCP00SxdBiaswklIqcWwDWxZZdR5kUgiS34hy0ZNYKIs5BfdfrZVWEVedFB5TdIzhM5Th5FDcHVEODx2cb8Ravmg1hZqhrcwrzFe+Bhbhi8DVIutznobS5uwIuv+wnQyrxyrs0ksFMwKKLFjVtqkxVK1VuYRKt33PEuxadDwT5dHHmkLy4H8MgDxJXeVzKoWTpXYJgmvzlKsXj/s/jprdtJCrt4vD1n5b8ZqnJVedyzpcSK04Casw25AhNW21lkQi2ZEjCcLDDXbj6XVWYgtg+NQvY+pQg22UcqtW94EMUwTtL1sd4/76LFmzA1blPgCrcLSg4H8GwHELIwcZnmzkhkV8f6tOxa3DmuDHSaerbwmXA2g8bTDrMgXC4O58c3BQPoZZRHNDGIbPovNTGZ0z3oEV40xDxK663TXZxHTUuCmcqKc7/4vy7+96mkiFYBJYwVWPWKk7kGjP0CQYB0pH1uGx7iCMSbDzyOySHIeWQYUIpxBVnV/BbMCy4i/hHXE2NQMdinCm3NfXd3UvHX5J8utPZ9BiE1iheeyyG7B8LWkOCmLyCPF8l66cus+h9fkEOLNyEWy7pl1383AMorK57gsIkmI49fF/9sJQpRHsJKEuGJ52FYS7sKy9ORJbEYOkomt9I+q69sXEYI2W1Kln1jpnpXuuelkKhJJ2ctmCLEECTykXHKMSoQzENNtD7r6vHK0xiORuywSOcyNYepeCWKqQ5KAJss3UY6CDenOJzGs7Mk6qCRYLcco9xpjjOcZYzJ8GWAQI9fKm3ldHlkeMQ8gbmFSLbU6bW/0Pa1ZHkaA1WNZxFhu9rsQIphnIdbpcZNkN6klHkaKreD4wOvC9eMWqWEkODkJCD+Tzf3kNmsRVjGKpEDeIw8qySqYvlbrq04eJCm2jGgjl+6aJCF2/QFa7spIZdLWJ7GSoFqHTWKgRGswfIUAZpERYwSiomIz4WdHsSB7DJTYsIxoI2ve5BiAVuueZx2Wba6eSxLfzRDiIhXHO66LVVcEvBnVAj4qfGoJTx/AUCJM7ErU1qPoh9XNb6PA1BDOUa7VkOBwtcATvpThdEcjwjIvnSU2IX8glTKI1DnrrMIqcWWO/j5ZBF5HgtVyhG7nxoR4jCsXY83w84yLteoNzYMjJHIGMSPfnQltb5hXcjNcQIjlDn71Xkn9sHos63jBVCLPDUFSlyzLp9OEAtl6SVUnrGqJZTpASABU8sCUXfnrA8A0erCMIkxixdoipRlWdY9KWZMaYvF/+HL/hUCWIUnYh2mNI3dnPGwPnYcNIN5uCdelMf1o2zUBeLBsnng+cQ2xZQDneiYqdICK1QulEqPohEdBiVZFnj4ffVNclpcIFcOioyWPK54l8kANO/CpHPcyk6UbligYfsybippOp+3NcnGX1A8njyc1xBIPLlcwWWB41Y7tIG3F68JFWMiBYF+A34NNA1/qKpJ5B9+JSYULNgmNB4lLhiw/1QpSZUh6MQHyifAokD6GZcTP5UF0PAlJaHUBPnRlkOWjNIh2lzxnJj5fnJ9h3WrdxYCPTYFjKBh3h8uAUXTAm7H0yjxHSoc0oZTHs2QZWdrjrHrpjumO22YJlNgxonMhls9kWZMW4iyvDaoFWJVO5KVtMxNtJgI3yEnFZuQSWRbirYZu4pG3OXEYdHIJ2SZxq2JaViI/u774UzdsZVmIXR9Y7ZtY6VthhL5YmRNWbPkMklIJnXXYMgoomBVxbpSlafmXp5NUN855GhKjgxpgIWv53YgISWgVHvK89BKW+PNTkeXV42IsxLYhJkY/WCd4coOiofFHfiGQz3ngdcLAIzHretazkZvcNmPhz3KnNsxH8gV4Kckk444i19gsEU7pgoP/RTv0fiFcsOV4f2Ce+EtOBLN+B/I+SUmEWgZqAoUyUMjfCzDGGM8nxpbhywSDmPGoSQr8xCBxQYQ4y9JkxK1r1LBjGlGVeEj5hUxrGcW4xEIhgarFKstanLTsyrCyBkzYZLQ6Jy2D0h+panUt0Vr8PvBgJ7LzfIa+x2MWYNVSDESeJySSVjeDmGFkPin30EFGBZMbF1VLts+9MFR1mdYz84ih3xYvp/JkbrJke4fEcNADfAbDoLHQ30Da0h737uBjwqqH+THuwPH6eHStFPMZnOWVY29V9BFqcMwV3TDvDYeix4xMa6UuhPQo9VYt4rKPyON5zysTaiQw+T0JqwgYSppRNmKNQp5DiYcFhrh7NcsowJQrDkT0ayAiudTwAou+kVopkZsZJRY72fYQywB2VKJyqr6KAeDJBon1l0mbY3sJ2FFxMUV3grfPhO1BinW9RKS7AaMwAfWnplv9kWMWJTbgZoRyB2LPiLeWgF4zbumUUeCSPntZkGZmNrM9RoJars5atnSiqvgXV/xLx0I26/JMumvzGOAofUlqglWrrCS4/YGQTAQu2eCwtNs1NmQ1JPkbKE+CVOfB10+lvWuoZTAoSH1HOr8xxrhCMCbDlwEGMcHPPgY0NsQBZeAlkzvDlzk/9xTI3IHRrBktoa1ENRi8++240/hg0Ldnr8KgGJHTqksBzxURmgCUqwvocmF1kVDJq06qAMQtc+pyrlhuL4bkQ/j/7YfXu34/stINQ78NuH2xLBr4+FRfmkVzQtS730CxWAeKE1prKPMddNh6GLVO+NUtYC0YvOVLXiXG28slFMwKjjaEQ3nL4KhiAry5DDO5NC6/B66ZyMK1kHHO7MEA/MyT4mVUnwTZcb3wagAP/NxTQHEie8OR2wc/fQT8sWNAbQLk4H6QHdfH2l0FWTkB/vRToHe8Dr5BYm3MV46DHzsBc2EbyK7DcMppuYp0AWcZHAvlAyBLx4D1Y1F/LRaAyTlMzNv43vIgdJEG6EnxpM1w7cTOqH2sIhq8gY2gj+qW76nBUaFTgsAXSiNLJNTgM1uKC/UX7LM0mZCa0GDiyr0B4A0ivSgQrSQXJwAjvgIh3Yupk1kAaLkrSshp0Zf7ng8wwPVN0GDVY0/RRZkKza0cD/ZV2zjRAhY7Vmwyc/NMDzsqE6jQWe1v1SAmXuEs4ZHVAb5zPqrnT101D7J0TBBRAGivAefXwCkNw4uH7dXdAD/yXZDbX53ZtGrdbbMEdDdGI8LHHgT7+qPgrg8ooYa564tjCvy1HozpEowyBT00A3JgDzCVTYr5Dx4C2bcrPlnKIL38oR+ID4mIcbxWAblqF8jsVeExYovfJAciQpxHhJfPAQ4Dl1HfksRWxVpDWG/LI2jWVUKsu7da3iCsNTEp+Mrx6GSyPawicDFuDbH1HkvGMokxVIzJ8GUAXzsFrJ4TUYCYBzjixUUcBg4leK3TBW8tCStKnoXJoMJJ/NkTIIduC0N+orUuBj0gjEwEk6K063r43INtlsBXnxLWEgBgHrjHUK7Ng1JhwZRWGUrsmKU1i7xKy6e6PG0QE9Sww4AByc14oXQgzzom6yQt3lYRBACVG2g8Jl6mvQYwaIN3N4DCBIySYm2VE4LyJEBFKEsZxUqUeynQX8aXkks0iAzn9rGzQuD5DCVaB28uAWuLgaVFscgwJtqbeSCVMrAAVK1ZUM8HX3kCfHEZ/PQKyL55wCpianZf0DYngVPHkF7IDsq+tgj+2DH0v3MW5nRReN8tT4KYBXBvAAKEn9HdAD/2LNiDz8Fa+D7I1I64P9agLfxHj8FgDNbug6KfmRQABbVmUTCFVtdcPQX+yP8DduQUAISEwpguwZgpo3bXS3H9lBtaJFXro/p978RO8If/PirDwnbU5w9j74SHgScIcTJCYZlOCFJvUBiYgSGft+wW0krtO/EVD2KH/e6KgI6wBURYTkQlwu/K74GYFIZBY3UyiQXbKKXq6Pp9dNx1WAaHachJQReAH1qLqxZQonWUzJrw10tMwGMoGBXsqy7BMhz0mBFa8beVtqHscPC149FEz2OhlZEzhtrug7hltgzL6KDpGJgvM5DFJ4HFc8DOXfE6Lp4HQfBLk890WfQvdDeiF1EsQp3svwWg2wZvPTtKywMGhf/oMTS+sw6fEfgeCZqXwGfBXgBXfC5WPVgFA3ZbTF9Lrg8LANmraGDVJf92F94TZ0ELyjNQXYopcgG+3gB7ehV+N7BGB46ZueuD7qqKOjNPBPFQrebttYg8Z3lhaHfBF5fFu8S2wIuFeBh3VbbQ7YMPnDDksmiAxNgrx7LpGsKw0CqGrZAUJkCmduvLCohn3t6EX+YxxrjMGJPhy4HlM2lyyzzwU4vAqUVg4TQwXRcD3/pZcJyNlrbC9MH1DhMDVkH4l+Tnnw7usYYUmAd4DOb6IkyTiheRLIfM22fgzSVY8ngw6JHJneGS+jA3bwC0VjmD5MghsmQdctBNtle/Dd5vR7pLmVaxyKIAPcHubsDyBpiqzMReOlNkR2j9jmlOlWXsOWtXqAvlyN/0BEAQ49NHYDIPfK0hiHBgmfKfXgQ/cgrmjbthmaYg0O0uIF9qzAvTijZKWLEYA3/ofnBlQsWD56he53/7UQCPgmyfVK5VrGOLy8DiMrjjAtN1kEIBZq2CEvOAZhvek6ejtMr9eZ/BO9MEPXsC8zOzkSYz+cyC58Ef+TIgw6cyBpw6Df/Ec5jctzd62SYt7K2TQt9YqgnrorQwyn4JAFYR9sxeMaEIGMBlIcGb8RpxkfnxziqIx1AsT4KaUd3C349yrUmswCJMwt9qiVZRonrZUhIVOoWr60GamMvG1tAqVDGBu+rFcBzhTx4Vk0I5QQTCvscHA+Do0eAYi45/+6thf06RwOA34a/1o77oyj4fn0jJ70Z9c5vj7LK4jjkE3PXBnl4Ff3w5lTexDJjzFXDXh/vAs6lyEGV3F3d9eEsdGNOlVD6yDvzchvhzfRgzZREKmTERRENF0qosx5O1Psz5igim0WyL8V1afuWmNiDKr2DHSbCT0f9KtXxjjDxnFuLpdDIued6gAMZkeIwrF2MyfBnAV9bBC2bmoMafOQvSaAk/kCqkBVJ+li+MThdkblp8biibjYK04UsIAM4HVoaCshTLlJfUyrnYtXCY2HmsLN1nLZOmPsde7kzszkwNqq6eBCTTqbpKNb2qp2OJULWaAVy1wvHOaviZ2BVQqwiAAJ4TEV5vECd3KuEegQzxThd4uhWSWx3YQ8+JD64XLtuqViN5XBSBwCwF1qxHzoRp8q4ZPC36hLWzIYiB8tIWadbB+0xYqOZXxQs10CrIPGTespwA4DcCWcm3nhTXKIRF5B/UN3BLQOaDPprol/zEc0ofjOsdSaEATJtx65hyDwBiCdvti8Frs5ukRsFWk14Fsf6lIqPvkkEbVLXScY5YJC+fASR7cyY1bOGLWyG6KmyfwPbMoK+r8g0GPkz/fOoYuPNkbGUkLKacnMsJnuuDr3a1fVbtc6qsgbs+fEbgBZZd5kSWXd8j8ORnRsDc6HOx2oZV8KGsuYVph6F9rJ9pTTYoR222DYPy8F4AtOUDgIltUb6x3xMAdroFdroV1t2cr8Cob6QINYAU6U6Rfkfx0tDsBGnik2pSK4J7HoiOAKu/wb4DFALynLfh12fgBgUZMdgMfAb4F+8VZowxLhXGZPhyQx24gFAsyRudaOjWkeLkZ9WVjXaAU67pD/KdnqtEWIOkm66sYyNhRCIAQJAcn+nTqURYk2dyKTrz3i8wZFnDMqGxoiVfzN5aH+Z0+qUWu0Z5Ecet1RoirEI3QdMRYSDyg5qcRGhWSOTEZksCPFyKfjHKRrqsNJ7QV19QdLQxAADuwAgIcRqSOIffHQJqxwluFjyPhGRYfpd5JMFdH/5aD6Rshd9F4eK/SZ8RGH0GH4A5W8pNG/vtuWKiQWjc0JIiwmVLWIyZJ1bPwopH/Ur+PkmzHb0rqkJaltv/3D5gTmSfB/RGjQvAVrtW88ea4TEUjMnwFQLeZQA6IPVgY1OGVTEGlUxoSQcDpyaIXCZTow8lCYmif90yXCghUAdNg6Z9ueYQ4ZFJsMeAS+Pmd8shCSgZ4U2Q9zLXkVuhZ2QglgEShBPTWYVHgvLCJoDoS4WEfCHZ7+T3iXJ6c49OJgSITaJOF7DFpPGCJ2bAxRPhzRBVdaVhWDmkezAdEmkNK9sTyyWDugyvg22lJ/4ASJGmJmPEMnIndabJQ9I5CkLrMSUwzPzQ53nIsybrfmeq1dowOXotE9TmsK04gQXiRBgAeNcF77owyhSQzzODCIftVw5e3xqpVGxSWi5GYz9LjpeJ1cqBA9LsiGt0/VQdey2xr0NKl8YY44WMMRl+PpCSSwSDXJeBlFy95Ux9sQzTfSWswhwAPE9soFCtCFkvMw0RvyjCIZF84eukEcOgI8JSt6ojuLp7buXS+lZOHkZEijgoL0HVajUSeW45gOsJPaQSW1dHnGWeYb66l3CyrHkWYaWfSf+nyeOx9IDo71IaNBetoOgCwAzFhRDhC7XSZk3IdPkbNO6Hdkg5h0Wne8HBMjc3CQNALR5afOXmOPW3MAw6y27svEtgZ+Snu9b3hNSCDQDTZDBr6d9WTGbRCwj/Uhd0vpxKq5MvcenI2zK1RDicQFPFp7C8Vve7lOc6XRCbpmVoKjwWbsTmEBs+h2K8wjHGFYwxGb4cYB5QSAxGicGe91lomUtdq/vc7acsaUmrcHiNahXQySUuhVU4iU0SYa2FN8siTO20K5+c+4WhWpNRxq5wDJVEBCBlK0ZaMyUSCS1x0mKXdEll1AsglgGjaivH4/KI8EXfcmCWI3d9oaRHQ4TDiV5/oE8LxCd9cqVD8+xGnrRthghvto9k5S2twiNIhbg30OsxtWX5ISPDOTAoD0mkSbnWekstDlg8lEn4OVZlrYVXSa877w6MmLRCTadqjeMX6cm9tHgPegbK0zz1m4v9V/XWCnQSpayxIo8E547/WZO5QjkyRGQR4i2SSYwxxqXEmAxfLowge0iREV0a1xMuijrdyFVOTC6Rvg8p2ArBY0Y8ywABAABJREFUyJdHcM/D6AuSObgIkrkpIsw8oETj1uFhZZFE+AUEv+XAqNoRwU30FfXlZ1RtsdyagSyr7yjnjaodaiBDZLy0/cZAbKKkZrRTHtASYe55QEuQZ1JN+EBWifDltMSP2ocv9CWftQxNc85rsGVyiGSQkSwkNKqjntfJIYZJJDYLg3IYlMPchFV4M3C6BnyPgBYiDxRJqBv7DCosvvIJJa3CEtTmaW0x8olwTD6l0RSLaygI80YnwfKckzGWJq8Nxl7p6vFSomgChS0cti+limiMFx5eWIzghw2jvgSS2rvAMsYpFUQXae0XgMgqLDVjo+iQFSStbFu2aS7HKpwiwn5CY5kkwhK6cKG6+xQnIvdsLyBLBe+68ANfvyMhQ3c4MnSWLNeL7WDRySPUlzZ3xQTGmCnrSazqTqsdBIspJtxiaVYtws0+GUXfEknPMCI6St/RWHsz804uSY8qq/ghQ5Icq5bgLOjSXIhWWM1DZ3H2GcGAmVH+dvweeRZo3X3UzXflaR5bcQGGWIQzZBHhtVmGlSwd/igEOZlPpRx3dYkMQ0Z4Lkd2McYYzzPGZPgyoHHnbSD1KgBhxZGujoAoSIUZfO977dQ51QcuP/l9EbVIEr/AgT0BUsuwfOMMuPTrqYIxYG47yMzeuFTAYyA+AwoTaHirYK4T978bwCAmCkYlFjLV9fuBv9MJGH76ReQr0cQMUoLhczDix/IM/3c3xEHpt1K3vKz6RZbp1A1Kcol5GBEfFVKGYVKAMgDxFxfR+YXu9oWLqSH6R/uuvekNSboXkOPGJzaMwXv6PNyjcR/TRr0A68X7wZfXwJ6O3MllbYwr/b9uErrCQgFgDP7Jc/BOt0DKFui1O0QgEUDcm5rwDtyKlf7J0J0XJTYmV9eBwgSaVdHu8nlOLJ4Cf+ixqJ12L8A7cCt6ntAbqpEMpfZ14HdQMmswzz0tAjjIdtk2DbLnFnCDgNz/ZZDpvVgfnAXjAelGvK9Sw0bJFKG6Hb+X+l1JUMNO9xOrCMfrRWVT+6caVl31eQ1EfU8jcfCK5eheSj/kzSWABc+wVBPXhhr4YhSkIsxIuVdQtyyoY00uggiP8BkIJkRwkJ4I4EMqMyIATjsoIzVFoAgJ5oDIMvUd8MXz4rqFbcB0Lf7bSASrAcTkxv3mMfA+YB2cgnHVtui86lJScdMGCPLnHlsHW3VQOFQLj3lrfbTPAKWqh/LdC+FxQHHfBsA9uoa10wXUbpqAuasKompvEy7fvJUevKUOrKvqMOcrILtmAWrCf3oRG1+N+yQGgNqsi8o/uFp8mSiDn1lG/xuR/25JhIt7SrBvngdsK3xHcM+D83dHw3sbVRv0qnq0uToItEFmptJR55KTR0qFq8xmR6wm7tsVFEBZpdGtFk7XovMSyTFps5uXX0CStDF+9DAmw5cB/5/vmChPioHVMnzYhhsa2IpUhJiU0bvswH1MMXh/ye83z/RwqL5bvO4Niq+vyzDBguzIkKsFw8dUgWNb6arQcsaX10DqNUFm6pMgcwfQQhur/VNhGS2DwySGIDjuBjqum4osZhkctmnDNiLrZI81wbgDx3NgEgMDs4MSraFoTaQCa/S8JnzuiXC7vg+YBhy/h4HXgUFMlMyaCLkKwCkU0HOWwmsNYobSSEGgAt+fpAgEwTCoaYPK8dqg8A0CFpQ9IgQ2DEKwKa86cuKRF+5Up5dz+yDlIrDeBF9aC1/iqvXLuvMqkOtvys8ngLqpiq+fAj8RvVxlnka9AOsV14EcuBloLoGyB0KyHNvJH2xSKv3sLTBe+sawvOi3YWw7DjJ/Dt4TZ8Xx6ZqYgBUnwBefgEFM/Mtv1nHqRBVvuWsN9xyKXpI91sL/7+kyHnjWxk/f2MM/CuYMZGEb+DV34smNE/ifj6xisSv7dhBGWPkd2AYwU1jBj++0sHPHq8GPPwCy60as+2s4cv4seozgVbe/HLbr4bn2AD0mniY1PFgGR4UOMFmgoMGEpeWuxAizJLdyYupzLxaVzTcI+qwRhihX01JigxbEZC426ZIBWYoTcLwefK8d3i9sm6D/y75YMmuwZXxxuwxSmREhxakVkm5m23BYI8xDnTQYclOULwJnqOcNYoJxJ5yAFs3g9yitc3IjaUDcfe6JtKYBqsSpJdV5ETLcKoJLYlOcCEMHA4gm304H6Ed9EoDoz1M7RLRDeV/lGgDA0UdAd1VB9s2D7FoII5npfH4T6fN7eQ3+s+JecqMcPTQDMjcNPnBgfOMZ2C/eBXLDteJ6aXn3GHB+LQwsM3O1D3rHfuG3vTolNoKp9+y0wJ86Dm9FTDjozTtBrrsOZPthOF4P1nVrmLnmUbjfehprD3RjVScLcyDXvQy8tQR+5suxc5IEk8NXgey8JjJKeAz8yP2xtKHFd6IMsjAHTEwr0SPjzyBsN/W4Kybl5OB+kLkD0fGkb3X12fgMGHT1FmNJuLt94Zd4dnt8Vc5nYuJkUqAyHT9+EdjqcMxj12pjqBiT4ecJQVwC5TsJSScA9L2IEAPA4+slPL6+gjvnK3hmfS28PnmdCjK5E+QlO8XLziBhCFuDmABLh9FNgvkE1OCxezieA89n4Ut94HWDsLwEMHx0WRuMO3D9PiwjsBIaJny/B+aLlzPjDnrow3Eiy5vPPfS8JgZ+B4VCJbQcSqgkwuNuaFFMLYmbek8RarrQQp30Yxy7gEX5bRbyxWCI8KxkqgYyVYvOq9abwzdkZhPzKJA8N7Vb/O07BfPGxeh4tSKIsEGF5f/HirAPn86QKbDouOqZw6QglTLoj98MzO0WJA3AE+0zeNrfhpcNzgIogjEDf/PtafzNt4F/+uMmVteBLz82GWZ/75ES5l4yg5vecLdojsFZDHwDzhDFhjzv+gQtdwXm7qthEAbf8+D6wMAz4MPDw51lNB3xTNU+zHyCjQFDma6B0dGWZmN9gmdb8n14YL4jLLyGBcdrx8i0kXOtei+DmBj4HTBioTi9C0YviPYW9B2fezCsIhjvx/q7LINKsovmRDzwjUnDUOhAPPw57zcEqSzV4ReCSa0Muy5DXRPAKFVhqBbu4gRIbT476qBEfRKkPgkgItJhuXQwKci1t8GwaXZENB3mpmFM11DYuQysNUD27hDHHQYMHNjXz+b7VgdgXT0tPKlITyY5v3VztgTr6imQg/tEOwQgZgEcAL1jP7bdERxUCWSQp7FnO8rv2A4g2JcxNx2R4NiNKIhpwn7V1VE+1BQkuFTDpmFSkNI8cIhmR/3MuTa0LqgBoACEgVY6XRDGgO2BxbnXBJbXwBvNYOxrAvWacIP4IyDzGeOFizEZvkxgrgFq6VmA48dnvEmirB57cLmCgumDZhBYAGi5QMs9DisgshstChYQX9WCTEeYGUtCnDrOHTjMQZcZAEh4L8vg8HyGjr8B06Cxl7brC4vFxuBcuMRuwAzJgXwZSyKsHhsFjDtgYZ0YDD87UEj4WVnyTllIdNjMxjurCCzsGylpHvENoXlZk9mrhNVWQi2fJMQze/PzlS9JT1gLybZDwDb9/f78+2V8+KRYzqWWD8YMUOrjz/5eWP4o9WEp/fy/PCTIkF3wQKkPwAa1/LB/6/o6AKwOgM+frKBoOrANQewswwwc73N87ew6aPA9s1o+QZe1YRKRKCtKmw9P+IfaBJjviEkdi/qq/J+UQg1D32vDKMjfiguDizx8gwAXuLdMhkI3iCmeb3cl1b+Z78SkTupv1eceQC1AnWwWJrKD4EDIKcK+lkWWdbCKINfckY78OALI3DQwVY8RNbJ7O3D11ZnlxHQd5ksmRG2lpTNpAZXXFAog1x8EvR5AqQay/bB4XoGExilXgNtfrpWTkeAzmdwJ3K4Q6Kw9EBKHb4hkJzpLutsXVnqTRhb3ACmrcOCvmswd2NwzkRi2WVJi5ZzSlkF7Uiqsx90+uOeBN7rD8xljjOcJYzL8PCBJfi8UWURiVOiIruezTNKQZ4XOQtKKNSp0RGJk63DOvWNp3b5Y2k3dfBM/i01ajkcivZvJO6usgYU3azIRa6+ki7mc+zL3hbe26HE/JMTPF1TSqSJp9c3CqOkAAG5fyIDyXLmpFugX4rZ6XZ2GWZZ11xQL4k/VQA9B3nh2ydtT/k6DoDPcG2xuTBmGC7De8mUldHoQhp67HrDSAgdCt42smb25bowxnm+MyfBlAGNGYrtVhD4TekkJHVHeLOnNsuZuJbyEdUElyjrykSQDknRLwqpah/NCP2cR4izkEuKtDL6BTRJdFZspwxa5hFNJsrGF+V4sNjvhutgJ4Rhbg0y/yHkYNf3FaE3zrmUMKNrxaH8xbzUJiU1rHbx4BnZlJrbBckugK+cm652yCl8KbEbKggvwYpMDK1jV3Cp4l/gdOcYLC1fGG/BHCFv18t4M4WU+SZGMgW+gYOgHKs9noZ5YYlSSEiPFGivzqFa6zbp1S0otYtdmEGLAEJq/4CWypRYW4OKI9oWQ0wu9n3qd7gUclGUw4o4T1zViUokfBWxmdeKKgM/wvAbrkNr+iwl8o3X5NSQv3TV2OX0s67rmeXCPCfnRxWJU93lJeUNeZLisPC4HNOG3xxjjhYIxGX4eMWwTHbB5SUUeyc27D5AmqqPkpWqRh8HjvvY+WQh3uGuOZ8kldGmAfFKSS4K30HIcw8VaYoeVy6Cx9hs2kQAQ97CxRZZixgjoRQZA2CpZ0ZWArFWOLccobq+eL0iXcerKzKV0uzWMPCZ/S1lloWbonQGIjynDVrQuCVT3fLrnq+qNR1TYJPPVYpOBb0YJJjXGGM83xmT4MiJvE91mMPAMFMyttbzlWX6TVmhJZvOsxyrhzdRLZkglJJJkbrNEIo8QX7RM4lLKCi4BAY/JIrLa7SLu6wxM2IXNBXX5YcBmN3leLC4FwQpXVS7Ein0pw1qPch+dpbfvAIU8ecQmnpd634npmNb6grBZOUSWVdhjoe/zyyKPGBWbDOw0xhhXCsZk+HlC0tqls34l3atdKErUh3SzsFk98SjW4VFhEiO0DudBvmiGWYVVeNwN7mHlppcv/PDYpSC1l8qarMMFlH8kYjzGSKCGvbXa0U3gYolx1iR1KJ5vwjUMzXbkVq2Qseqjs26OQLilWzU5gl4yGcxmQoHrxptLHOBCG/E0L/0WaIftsZ/hMS4hxmT4MkG6oLpY5Flws85VAl+RPab/9W9m01JWWpVkZ+mGzUAf6HE/tBwnrcMSPveGLkNKSCKsfo75ZdVcG36/nMQ1D1tNygN/uaNqrccYHeqESlqGt8I6fMn1xc8Xid0q63HWOZaUhHggzY4IMiS58GYsy4BeWuEx+NQSPpz9SxBaeFg7qVbhUa+/YD32hddPF6Z9jDGudFwhTGCMJLZqo12Zysh3HK5vhRrfCyvT5l2rSciX/LfPW+gyAtVQIOsZ10+bcH0zZjGPznvBZxFxbE/VwYGacI30rXPSSif+3zonIt6ppE9GGgOAc+5pnOulCUjB8LG3OosyiSJttfwNnG43UmmzsK1kY8ZaCK9d7a/HpCWWwbGvfFXqOkZ8rPRPxqzoO4v7AQBd3kGHraNuzcNOCAH76KPlrogvrmhz6dsZ0PvZpcRG1ZqNhVe+Ijd8XQA2HBpOACdthqkCw8pAvKipsjNdjb5oGyUUzAp6rIm1wQBl6mPCqqfyltHk6rawFEp/w3nI07SrYNyBwYVsQY2Cl4d+EPzDICYMw4Rh2sF1peh6Re8qoU4kAYjAjjx+vzDIyCaw7EaR6MKVGDPIlwI+b8J31wEX4W9kZFSmhe9eIIqidurRmKcDPhiI6I952LFPTBpHCUahkOYwmmHGM0mubFHDHi3iZbChkJgUkBt7LYjyWQqxlwTXKsYjAQJRNMA8jbhVFPkGrveIV4zasbOafZ0CMlUHirbwcV6dhf/FvxrpujHGuFIxJsOXAa/d56JeFy8d1wfuXyaxKFxJ92p5mCww7JlwYBkcJ9vREuBc0UXRJEGgCzs2UBvERNvVkzjVols0SzHyNAwVy0LFAlZ60YtCEuasvLqM4D9/ZRqMGVqftfJYON4PPJjMhxdECHELSr2CNtu5p4X3v3oNT64X8P/9oiAn1964itft5PCy6hNYhD3u48hqGf/nqSJaTUEub7umjTfscrBXSQcAvufhbNfCF09bOPqc2IEuNeBykxhjJPy+MDvA63ct4vY5wDZLWOza+MY5C880RZq37WPYV9VEy/N66HscP1it4MFVUe837DqDm2cm8eXTbTzbsnHt5ApumO5hrihC164NzuCxdRsnWoK0VChQphyuX05NYFS9OTUYbp1dwakOxZPr4lp1UmIZwJ6qg/1VE7srFDcd6OJoyUNtchCe7w0MnDk1EbvHtoUu1lbiZIRaPraX1ckNT010iqYIGmMZwExB1EGWWRBYoMfyJ3RtZmKxY2G5T9ByRT63zzE8slrA6Y7oPzLMuby3bKPJwgAHag0s9y2cbJVQsTzsKLcxWzJRoVPouOtouX0s98XE8prJJZSoPjJYpoeJhBVZ3QDq8n6KTA1zJdj32mg6y/E8lYmPARMVawpFiOfRt4K8lW4RI8UKIZaBOXzPS02+kuD9BgiAVazj009HfSkeWj6quwiiwvGy7YuYMedy806CER/rztlw7Nl71bUo91zwE48BrU6Gp4ng2LZd4NO70HCWwLiDWRSB9bNAIeFV4iIt6Yw78LgLH54Ihx0EtQlhKERchsZWQNy+iBgIiAAbdiWeJmc1Ke8XIlcyfHiAARimDepRwGvnXBVguibCQVdm0LUJ/vSpDp5pLuLDr34T6Bc+l10ey0DvZ98M/EZ2mjHGeD4xJsOXAW/cW0GlauF0u4FHVksXlIdlAAfqA+yuUFQtYRUpmmdwtBFZbApmGRU6lWnFsYyu1jJctYASraFk1tBh6xh4o0UK8nyGglnGtpKH8z0nlZcMy+z4wkprmyXMlbro9yiMFQ+2G0gaWEAoA3OxyXxY0oIXvMCYElpVJcQeNXCuU8aTt3Zw/zKBcVKkf+rkJJov62HDAXZVhNWOhpZAoaNmPsE3zk3gKw/X0T5GQ8L9+VMVnHvZEt60u42Fyrq4v09wrGHhyydKeOwhEZ5YvouyNkX2ex08MdHBdNHBYmeAry7aePyoIE6U+vifaGPPxDOp69rMxP3nK3hoyQQLLJvHqhwL5fN4slHBuS6BZZio2QW4/mk80yzgyFoZ6070bCuUwzZIQEai44J8Ru3n+EDH5TjVsbHhxC3/kqhuODZ6jAkrfIVj2/4+ZgqiHZ9pAU8p8435hS4Oz3g4UAX+zuhjdS2u2bQNYHuJYzLoour9CqaP8wkrfcXyMFMUz1Rq19vMRNMRhdsYUHRZmtg2HILVAdBhBFWL4+lGEU824u2gEnCAwDYA16eo2RaajhmsYFCUKUfNHmBjsIyVvoWmExGSJzdcXDPZRJcJIqFGu1M3a/rcQ9/rhRZodcOo60eWyaTkIrlBTyXYJrFgwESHrQch0RV4bti+tmkHEeUo+kAqap56L0mKY0SYewABnm6fCfOU1nSYQV0tWdcmzncdnGyXo/alapvzWPsXTYK1wQBGcQ2GYQpyRkyYtgWDFGP6ftkWjt/DmdZJPNssADBBDY6pwjLK1YMgB24G8Zjwe1ydj8uglOh7bbaOlb4YD+em9gFmAShPRmlVTwzKZ9d3Ys9LfRZycpHcBOz6fVBig5qacVmSZJ1cy5wQVuJ+W5Dg4kQ6zYjwuQefiN+P73uhdRsIooAaJuzypLhf0H5ZQVtIsQ4UJvDY2ml89Wgdq8slPH71Im5440+H9Q9XIpTrv3/izAWXHwCoEZ+oXywyVINj/IhiTIYvA4pmBRVawaF6DVOFk5gr2TFSKi1eEpbBY8u4EhXqwSCFkOzOFvfA4ydgEgMVawoVOpVbjrliZP2RL2UVPrwwD49HVgK1HMkyDbwuLKOAbSVRphKtoWhOiJd28CIrmtEgHrpiG2FDBd3EzuSPf247AKCMiJmdur+C//JQFaUFkY/0diC1281GISTPsBBaoK2Bhwf/fh7fp8C2BbFMzZiBxongZRbwOz8w9EgvISopZq4B1zXw98dK+PtjJawuR5Mgu+CBMQNnTk7go4p1XF7f71E4AzOW/tF1gmMt0Y6OD2w4BF85awOwsdqPvySKVJBA1xCkODxuIlyRkES35QLnekYoR1GlMPJYywWOrNEwj6Ip7jdXYpgsCMvrY6VIJiBJz0KZYKY4QMsJLL1FjoUSUKZpEiyxo8JgGTTMv2br+0CZcjQdA/cvpyU3RUpidVwdiDpGaaS2XaRXN6q6PvDkeiF2frlHsdyjocRFXl8wfTQdA09uuIjWsNVJlyQR4n/BMDFVEOfk5jXH7w2NaKb+ByKyxSAIjeezcMLTcpN1JDAJQ4eto8PWQ40+JbbWe4uEain2uYcvnPTwd4uVsI2BxISCqhb/Uqz98tD3gB+sitWLginqI8dDWQd1LOwxA8s9CqAU6zfrA4L1wTNRWhNw2yfQYaJ+Ivx8JIsREG12rnsMMAGvvxbmFwvhbQTSIQMwmBMjkoCUFYkJf3JFTm3DTF25QYCsc9QCJoJx/SJ06T4XBNjnXmqFQVqJGRzQQgHUqMakZKPgDx4pg1pCYpHsH3Iy5HfHdGOMKxfj3nkZoA6Es8U9eNl2Z+iGm1H8wgIIl8mHuXgqmcJaOwwGMVGitSCv0XbJu/4AFWsyzD/UymmtIfE8pVX4YlBb64O1oreutPDK/HuLoi2bBTu05voMmNjIl4T4DDgfEACzoyzvDryYdVpCkmIp9VhbEaQgklKk67q0GC3NykAVKqmmlMMZmDjXENfLc4uK8V6Q2CCPhIcSSyEk/aAKKimW6eR/SYhFXlw5pieOlgEcqjPsqsQndwBw5zZxQ0Ek0z615T0GnjhRMIW1fkeFCQ8oiJNzGfRjItgQ+lyrhA0n7rLQMoAOi+vM+4zEyFq8rlG5HD/eLgACHktilmdZJunisOkYMQ8tliHq1kOc0BWMwNd2YlOTF5DlrDDoEupmUhWWIcl71J/V9u17PGYphs+ErlgzZuiOne+18ESjgvOLkTRIyoLUCWb0DOKTEVUGpj5P2fYbDmAbBIAZkOD4hENF2zXDeqguJs92rRSBlsGGBEwtuS4YPtYHURoV4pmyIK0bXpPyka5+zdhSEVrYtxib2fwqiTCQ7X2HcQfwhc4Zxmj7SxgzcPyY0NWr/UEdzyjlcLvjjXVjXLkYLxRcBvjcj3RagcWUEjv3z4CZ+afmFd3Dy/0bvayRnswNXibqn4T0CCE3eQ27/1btuB8GSYRZwiSVJK9ShrEZjELcJRFW9dDhsWBdTlp9WWKdztVdm9DHynOuHxFglcS5viAfsXz9ePq+FxFjJ0gvr1HJoHzeat7yeteXkQ3FZxqsZpRotMrRcU10XDP87ir5RJ+j+klSDIi85SpCsu8NfCMVDU9tF12Z48fSL/m+F/+stk+y7CpkmePljc7LezGfYOAL39zqb0fdJOn5TPsn4cNL/anwuB+WI6vt5GdJzpK/yVF/q7JfqisYyWeQ/JyaaCD7XPIZDTwDA8/Q9humqZ96f90ilK4P6PqVDkn3kMlnFH7exPh8oWPkZvNN5u9xN72JEkMs2QGYT7T7PrRph+j8R4FcldrKv83gE5/4BG666SbUajXUajXcdddd+MIXvhBL88QTT+Atb3kL6vU6qtUq7rzzTpw8eTI8/8pXvhKEkNjfz/7sz2rvNxgM8KIXvQiEEDz88MObba4xNomxZfgyQPfiupLhcTcVkllddk3B8KMNGUMw8MTGuaS9eBTZRKqcdIQX1whpNgNVSuEWzJhUIom8ICtqkArV7Z4MZaxeK14kYuSmNLI8U8tPWTZV62dk5Y02qqkWZEFqo+cpLXiqlEJa8nSWVCAdgVDmz3yCruYFqN5f5pW0ElPDC++h5p/sj+G9gvaTbaZbnlfrZifaS03fH/FnGrNYJyzbNChbNAkg2t+PGqBGB2mB9BKWZNWCrP7mkr/NTHeH3IfnObBNO5xcS+hkE8l9Brp+vVnXkepzSPpT1z0/1ydQJySjaEdHCSmv86Muj0XPkgT9jWifmeoiEki7yAsDBSnPahRpzIUgz1IsSW9yY6Z6ziRWyqXlKNA9/x+2sOy7du3Chz/8YRw8eBAA8MlPfhJvfetb8f3vfx/XX389nnnmGdx999145zvfid/5nd9BvV7HE088gWIxvjHyXe96F373d383/F4q6fcR/cZv/AZ27NiBRx555NJVaowQYzJ8GXC5rKJbBbGc5kNdONCSYM11lwJZm+cuBm7BRKG39X5XVd6i6onD/4mXhrQOy/+U+lpCrKaX16vkDxAEQRLZpFMp1fKmyiqABEFWlrSTOmKVPLp+mgRKqMS46caJjkrKLSNJjrNJY5p0k7ANspCSeGQs10tIIpyUhCTzUUm8modcts8ixFRDznTIIsmjkGPVsikJHZCeTAQtBFu6YNOQH5Us9Vma3MhQ27GJndJnY4R3SNsPg+xzSRKsSiXySLJ6LklyAaQswqMQYomkz3Qg7ota5wHkYowjW0Wks0ixKpXZrA9yXSTKrYq8+nzjzW9+c+z7Bz7wAXziE5/Ad77zHVx//fX4rd/6LbzxjW/E7/3e74Vp9u/fn8qnXC5j+/btuff6whe+gC9+8Yu49957U9bnMS4NxjKJywC5FPVC+VMtQnl/QPTilnq05F8So5DqzSIpidgqWAMPZif4G0EiMcy/vU4uIf/CNMG5pGSCMRKTV4Qk2jW0EoE+i8sC1HZXZRWOhhSrMouktEC9Th6TS9iqZECVPCRlBzoJg7r8LeUX0bmo/GrfU8uutkeyLZLQ6aWTUCUh8XZIl1eF2gbJOrKwbvq/ZH3zpEk6eUWqLArBG+ZfXLd6JSfxaj46KU94D0X2kyWVSCJ5LkuGos9XL5UAogBDyeNZ8gh5bpTxKevZAGnJhDoubkbSkGdA0cllsqQz6jWA3jCjldzJ/HLKU6I+iiVP6MUTVuGkBOxKRrPZjP0NBsPdi3qeh8985jPodDq466674Ps+Pv/5z+Pqq6/G61//emzbtg133HEHPve5z6Wu/fSnP43Z2Vlcf/31+PVf/3W0Wq3Y+aWlJbzrXe/Cn//5n6NcLqeuH+PS4IXTY38IcCGD4fPxB4gBX2rodH+AeNFIN0tZG0SS5HizagjVKhzLVyN/GFUSYXa8kTXDJvNhMh/U9WOu34BId6ySYGvgpY5nEQf1hbEZQqzTHOv0mkCSfKZJcTqN+J/UHcvrAdXamSYGkbaTBIQ5TSzVe8f1wwjzSJ5Lll+SHMaMVHvo2ltXrzgBjY4nNc5JQpzOO90GahnVvAe+oZ1UJvPZLDnOLEvi96pCWjOzdMnxOurrvlktaN5EJKt9k4Q4rzziHIn1Hd1EIG9yoLadmlZHlIcSYmVcHWaE0GGryLLMK5lv8l6iHm523sq9r65P4zWH+njxzeuoT47un/5CIcMxb+UfAOzevRv1ej38+9CHPpRZhiNHjmBiYgKFQgHvfve78dnPfhbXXXcdzp8/j3a7jQ9/+MN4wxvegC9+8Yv4qZ/6KbztbW/D1772tfD6d7zjHfjv//2/46tf/Sr+1b/6V7j33nvxtre9LTzPOccv/MIv4N3vfjduv/32S9aWY6QxlklcBuQNPFcifO6lXrwqLIOHLwqT8LiGcUi9NkOGk0R4VImEtBQnyXEQDRrlTcgjLkTLrCLpfi25ZKjKI3Q64qRkIrk0rV6vyiZcH9Kjl1YHDASeBhJWYJ2sIKlFVpGUAqhQya8qPQDi8gP1vPwfX95HUN74fWLkWrM8K/PSlV+nHR5Wv+SxLG2r6ukgKZkQZQ/kJYFWVUfMdLKGYbpj5id+LwkZgCqbsAweLu8DcQKnLvVr20SjBd2sVGIUJCUJWc9JlUqI68TmzaQnCp28Rf2clJTIcU7VFGfto1CfQzLMPPMdrdwgeSyLEKtISi6yxttk3skNdKGOWfNd9Tcto3fopBmU2Hjp/Ap2VWwcfW64bngrNtFdCpw6dQq1Wi38XigUMtMePnwYDz/8MDY2NnDvvffi53/+5/G1r30Nk5OTAIC3vvWt+Of//J8DAF70ohfhW9/6Fv7oj/4Ir3jFKwAIvbDEDTfcgEOHDuH222/HQw89hFtvvRV/8Ad/gGazid/8zd+8BDUdIw9jMnwZcK7TQd/yMFvUL3k81x5sSj5gGRy7K+LRne85KZ2g9PmrQgbFyAM1OGaL5WAAJ6mXdFKvCQi/pswXA2qJNlFPhgeF8EUs3RdJH6RbhVEkEiqJlhHtJEaxJqsR8EZNm+V+bRi0pG4IIQbSm8hU9IeQ4qTmOI8Q24YgskkNrbw+LHNw7GSbYHuZx3TKHUbQVLqjGpRhe4kHrrmMmBZZEsqNAcVGcO35PkFzw4brGqjWXG07rK4VwjaaqbJc7XCHpeUgEmrUvPj39K50GexErYMkWHGSm+5TWQRZt4FQll/9rtNW6wix1L9CIXoqMVYnuKE1Pql3H6IFzdfwxtv9fJ9gT4Vrrz3VIdhwoj5TpMC19XT9AODpBsVckQeTeROuD8gI7TFf3Gb8GVoGsKMSJ6NNx8TZDlXc6iX8vlseDtQG2nIAoh3P9Uz0mB9sCtXrpJMb+FRIN3AzReFrOIswS5LscRdNZy1xzoDHfXSZWJXYVtL7mJbfO+6GuC4ROEbndm97uYTH14FeL+ovujHsSob0DjEKbNsON9DdfvvteOCBB/D7v//7+IM/+ANQSnHdddfF0l977bX45je/mZnfrbfeCsuy8PTTT+PWW2/FV77yFXznO99JEfLbb78d73jHO/DJT35yk7UbY1SMyfBlwJ89XcL/dVt6Fn+04eMb5yx8/2Q9PJblSkvCdQ2Uygy/cXcDlsHxicfLYZqX7vBw29xAa9E52bbxlbNUa5m1DOCWGY6bZ3piOc9nGPhm5os2LItP8Hdny1jtE3QYMFMEbpvxcdtcJwzH/MhqAd86X8FqX4TtBUT45CWrkgq9HJYnIKxyg5tKRJlloNJME3uPGujOigHEbmRbWKw5Dq9n5GqAVWmEDknJRL9iheWWx+UxHZLPtFiKN4Bq9U1p8TSEGFD8ewYhj1f7QNUWL3zZXDpSrJIO1eqmix4mkQxlrIPrA/efsfDED2awc08Ldx3uoMMIjp4t4Llna3B68Qsl95qe6+EddzVQt+Mb9JZ7FPcvEzx+tIZux0K54oJSHxtPionf2mwJ8wsd1CYdMGZgdbmItZVSeB+Din539d7IQXPSOgwAj54uoN/TT2JU/7oSM9MDLATtLbG9LIKL6NoEzIAMqqMjt8mNXDpynHWtCtWPrgpJiHvMSAX2kcv8yc1gO8oO9kzYWF0Qbaf2SdW/s2zLRi/dKWo2MGnzMNx2JxjnOozgbx+YQr9HsXd/EzfsGuBANV6fDgP++m/n4bPIx/eDuzu47Zo2bpoSaZ/YMPH9RQtPPzGF6dkefu6OVtg3jzUJfvDIDLpNmopgHPoAt3y86zUrOFh3Y144nmkRfO/pMlZXSrF6lysufvnlG1ors2pxd32C/3h/NTauq33o6h0DvHqHi4dWKI4sJ/wcWz7unue4c76benfkWZWbjonvLZdwshMfrx0feMMuB9uCvqmzCjecDr4R+Fav2zwMg75noottpSoaTgcn24XYe+TvlyyUSiwm9dJhaqafe/6FCM45BoMBbNvGi1/8Yjz11FOx80ePHsXevXszr3/sscfgui4WFhYAAP/xP/5H/Nt/+2/D82fPnsXrX/96/MVf/AXuuOOOS1OJMQCMyfBlwbHjE3h8v4cNJxqwuozg6+dsfPfRGvpPxMmZSsKSpM0auHAA/NWOAmo28IOvzAIAyCRBqbCMCi2g6aRlAI+smfj2gzPajQ4zsz0UaRdlWsSGw0ANiqZjYGOQ3z1OdYDvnyxifa2A5kYBxRLD6vXr6LIJ7K26eK5Vxv3LBA8fmUK7aYeBK7Zf28Wtty8D0MsmJFnsdiysrxVgQU3ko7lRAt/gKLeUkKL7CW65dgnMNbC2UsTSYgXYiF465RrDfBBNbvlk0tdCBEmCk+0uv+tIdLHjol+xYLP4dckXr+oSTYVdEJtQVP1rkhDrlqYlIZaYrfjYM8Fxvi80k30GXDvDca4HrDskJMOqZdQyBGnOQnJZ2jLESxJIB0QAEOqFF3vA009MYeHJDQyOm/g2KlharKD6bA8LjfXM+7XrRXx1t4n9U5JkcQAmnmkSPHFkBhOP9TDX6WJpdw1O3cLC4gYo87DqTmAJFbiu0GKvLJZQX+lhUplQnUEVtUkn/A1Qyw8IkwjF7PgiCEq7aWdaPHXHXX+AtZUiKOXBpITBNjgcn8A2ZJCIKH2ZRiRDh/gEQ1yvRo9UyZq4v37Zv0I9lKkfSp5kNDZ16T+0BmvcuzmeA9cn6DETN04zVJX5nU6uYBnAVMHDt85TnOtG6a6f4jhUF8ErznYsrCry0odPFGE95qLa6aJx1MTnr57DtTeuKs9f1MnseNh3dA00+H0trdTwXVZD/5omarYgrOsP2dh3fBmdagFfmLOwb4ahz4ATJyZgPevi2meXY+X1EjO5v1ko4ZVXi89Ja7/1rIvJlWgitbS7hiduMtF2y0E5478J+XyWexTPPDWJqVOd8Fp1Nav/EhNTtjj31N9NRscrFm5+yTIADx1m4nhLibKDbGsyNTgeXy/j0XWCx45FkT8tS2x2u2mKo0QHqetleZ9YL+O7y+L3ULUJpmwShl63jCYWuzbOdmjsGVZt4PZDXTh+FydWaSyQUFhn14CVXjTcFCgZzaXeqHA3qdp43/veh5/4iZ/A7t270Wq18JnPfAZf/epXcd999wEA/sW/+Bf4R//oH+HlL385XvWqV+G+++7D//pf/wtf/epXAQDPPPMMPv3pT+ONb3wjZmdn8fjjj+PXfu3XcMstt+BlL3sZAGDPnj2xe05MiGd44MAB7Nq16+IqPEYuxmT4MuD8mTL++BsGpqbFCJK0/o5OhCPrwAOPTIXWQJP5wArw8H3T+MECwfxCJ2V9PPdEMEDNGSHxklhdKeFLixX8YKGDbQtdbC/HLYoSw+SzjBnoDQx86SQAmLk7ihfKaYtWZO0SN2pWBihXXDQbabbWRAHdwFuxWzBx1VwDeyYAx/cB9OG6BrolC4wZsMAwM9tDre5gbaWI9mQB9ZVe2HYeNbRu1tRnwSxDayn2qDg+sTEAs4zQim0NPHgZm/90G7yy/HFK4qaeL1dYaE1WrbozRY6ZAnC+D0za4nuZcswUhK/hjhG39APAlC2IchbyAiXoNjZJHKgCh65dx/JRG9bAw+BrJhY6ehJsJvr8I/fPIcuz5lTwGyj0WOqZ2Ysu2otB2GgrvjpgMh8+A574wUzsuGoZZK4BY8WDST1wAF7FjKUB4s+OWj7OnJrA+loBlPoolRkYE6G0V1seqpWofCp5nCkSTNrZbZ4kYvuqLIc4R1HRStQPI/dJIqxCJUAyPx0Jlsdcn2Cxa6PpiMLvqoy29F2hHNvLglBN2hy7Kh7mii5KITGncH2OT3+7jpXFEmYgyKA18LDw/XWcfraMI7sj5uQzwNKsdjVO2Pj6idmofmBhX3rmGzU8A/Eb3n10DVOacpquHyPEx5+q4/hTYpVOnchSy0cJ8Q1i86ea+Kv/MQN7d/RcVGmA/N2urZRiRBhBmSQhbt5P8VdHZrBwa5zsWgMP3Y6FL58w8OUT0SwkPZGLIPvY40fjS/5yMg0Af3PMwtVz6XFAp6mX/xd7wGKP4rlWnASLPIBtwbgjmp6B0nZsL4Ms785NutO70rC0tIR77rkHi4uLqNfruOmmm3Dffffhta99LQDgp37qp/BHf/RH+NCHPoT3vOc9OHz4MO69917cfffdAITE4m//9m/x+7//+2i329i9ezfe9KY34f3vfz9Mc2tcho5x4SCc8xd2D72C0Ww2Ua/X8aL3/zWKRFgjJcHVkd4k2VLJcNL7AWUeGDXRnixgUIpG7rw8ulUb1lz8cSeJGbV8zC90UFZe5LrlL5XQry6X0G7qzYs6d2O797dw+6Fu+gTi5KvlAKstim4nPmdrJe5FqY+ZuT6218XNNnLk0bK+TxyZQelUNLJf7EY5QBDmQYmGhHiYZli+cCdqzsi7sWuTDl6y09X67nV8oEKjSUvdltrJ7PxWB0KvqfMekUSRAlM2x/aSsG6OgnuP2lj+axulTvyhmFvQ3knLnoTOA4l8Fh41tDrzpCacWQb6FStzWT15rFxxUa3pO15SWlGuuJit+JmbyVRiMmlz3DrrYs/EaP0jKW1Sj+mQ5++3ywwsdm1sDFn+lpBW0fWBiamCh5odtdWkzVCzxRjWdEz8P6dL+Nynp1BuObGxjbLoc7KP0Dxp00X0p6x+BAAs0S+SaXU+0JOyLnWlKXkueUw9rjsn72HQQLaT6I/qyl+SnEvrcFLPm1wtlHlO2kLeAuj7SWyCF0hcdZNnma7ut/DWa//faDQaI2t0geg9+icP/WeUq1vnaqzb6uKdt/7TTZdnjB9OjC3DlwF04AFF/RJ7lnZ1GBGW/6nrY1DKJ8HqMeaaoRVMhbqEz1xjKAFOXgcM97MLiEG8NhmRhizLo/ST6wzMVFlLpfSNnIGJjUAeMpmz7I/gBT0920PvlN7aq2KYf2H1ZSWfhbxmlA101PJhF7zQcgPorcSyza6eY9hdySYwYpk8+gzkLy1uhkP0GeBQQaAtY7Q1xn0zDI/tnsHeJ1fDY1tBhNV8kgRFThRVqBsa5TNXSYdKVtTj0huIRNIyLKHrp/EIgnGo3j4k1GAn6fSbW9MdNX1eOtXf8yiEWq4UTBU8TBe9mLRDzaNE9WObSoQ3g4vtT0kL8eVG3gbdJIlObsxNSq/UfQbqfoLQUmv5gOIZIumRRuapBvMB9F401M24jg/MFaNxSSeh6rQuzpuE3Oi4VXgeH/kYVyDGZPh5gI6AZckjsohwXn5JAifPD4KNE6Hf2owQwrHvQwiwSGNoibDOl299wcFMlcVe+KNYJV1NWXXnyxUX7ghhYXUSjlECa+Rdo8otBiU61JcxKZFgU1b8vrq6FksMFSq8LYwWGGCU0gtUKEcrRyoRz5dgwwGKJkdlxNFDtsNWkeAkdGRGR4iBOPHQkWIJlZwk+7Ykx5I0JENpS2STYyOQ8wiEoaC1vp2T/pAvn3uqgW/AMgSx6TL9xE4Npx3BAPP93LLmyW+uZIxCnJPkVh0jkv1P1/eS8ixdnj4DGJSQ7aoxI0Fuk27vgGgjqJYwy5Dv1Nd6VUkS4/Tkm+dKqMYY40rEmAw/j9iMpRgYbjnJIsEqVH+3KsIXviVe6qkwwLpABoljw8ifVzExNT0I3Vul8vPT3xkjqftkaZFbTeFlQGLYC1e3Ue5iIL1QeNSAR0dzx5bUb+dhzwSPWb1H4ZbD0khri2WIXfvDIL0mqN4D8iCf8zAinLcELpFcslahsxInCbG0qiWJhUqKTRYRFLU/q9Y4+VuRpFhddtZNZKwEYXEGJqDIkLKaRg2vnSSWwyLKbRWEFdfA+iDfhV4c8cAoOgwj9aNKJLZylUFHcinzc/vdViHLOqwSZp3bxpRlWBm7dVbipM/fLFJMAyKseqAB0mHdAZ2rxfSztQwOZ0yQx7iCMSbDlwlZuuCsY8BwcqnLPy9P6vpwkC9tUM/p3LrF0gbeD/pdvRU0Wab6nIOaoo3Neo9JUiZDDW8mtGfS6pZ1L2dgJrxUxLGZtgfiZCnP80SsDK4FjOh2mbkGLMPTttmofEC//L75fERaAscfrhselucoJFiXNougJElNnoUYSMtc1I2S6jkdMfYZAMXDgtpPVWu//N2oVuO8dlEDkUjNdx6xTLpj20pYBgcLrH+RZGLYNaLcWeXK86v7wwbdODzMOpzsm5mEGGZqlUJ+BvRWYnUMly4aw++Kq0YAcAOphM54EblnFJtzswwPqtX4Ei0MjTHGlmBMhp8nXKxVWL7gpTUrllYjm5ADq9RA6nz7AoBHhRcIlQjrrF2MGWhuiF0T0mXaUPI3MHF+sYzK7vjmueRAylwD3U7aT+8wP5Yyipur0RQnIbxMxLFZApx1rbQ+jhIQpN20MZGx8UoFYwaeafooTnGtRfZClp37XuRJIm/ToQo1+EQ/p7nUDX66frEZEqyDvF5HivMIcVJzqbMSSw8hEkmLnXzWMp+kr2cgvXpB6f+fvT8Pk+Uo73zxT661dVf1err77JKOdLQLLRYIsUhghGSz2Ri4xuhn+Xqwx8zY5npWY3uM51oejx+8XZgrzHqxDQZsgQcQlgUGYUALoAXtu1pn6+7Te3XXluvvj6zMisyKrKVPnyMJ6vs8/XRlZmRkZGZkxDe+8cb7thY7hemS5CAsctv30IFYijhZJhQhkemljiWJvIg0X8o/DkjWGZkSLDOv6GZSIdq0d1OJIT5Ia7c3VmJKceixRqynbSY9euA3GhA8SrTSbnWwLUMwg7V96/0HNsMDiBiQ4ecZvajCMvMI2eKsTrbDoscJkQgnCWB4LI0Ax7btwFY468iDXCTLs1nORD5cp3bEHbCLSR1HpV7TojKkkWCxPPmCTS7vROXqBZrjnRAB7oZui/Pc5iCibugdI3npuke1EnjVMNQ6Z5XSO4ROBFWa3gmU+F6fGbrHsElXe+GwHDICdaJEOJlXv9PYMkIMLdIbbotqXIikWuzoWqTuy+qpGCHQsVWyObdlk0l8EZ6MHFtey3dzr9huE4qwXL0OfoaMVgTLpD/kEC9Wm+GTgaTyK6ITaQ7rcdJsJ6kSy8K/Q7v5jqgU67ofLKQWVHxTbSe7dQdWUSjofmxBHZw4+R1ggFOJARk+BdBcD/Te3Xf1StB6dakWrpBPm/YV09sZDauhtVYWS0wUxE4/W2kR4W73l18KTCSWiznGJuTRiMKG2RbU4V7MJHS9PTpYr+dK8+tzZXvSNjWwG+587XCx3WYm05EMO44aBBEh8DE8k7d7UjV67Yw2Kv00A15bp9hrGbaTBIuQEeJu5hJJpQ5aJKNlJhEnxWGaEOH7lanAIcRvRdcD11YiZIOQsC6EgVNsSWj0frFV1bgVzEP+ziOlsHlbIyYxApxW7l4WzZ5qPN9eJbqhm/2wSIqT3oFCk4lkIB/oTIpDMwlotxeOzGasIAR53Q0iDKa5V3MGTlwHeAFjQIafB8imjR2jRVhLjVq0X0bKNkvZKFJaeSz4HXqKKJSttvzLY1mMSR8VH7scJ8JhYAG36W4nn3eo13TGJ2uBnapA0tbX4vHSs3mHqtMyNuhE4sVocbZjpC7kg+7mELJzyutB2UJ1uBNEZa7tWAoJrhU6+WtrQXwG4mAlRNhxDa3F/caKC/+qFSOVJA0XnK4LmMJIYcngDTJlL6sHnipCk5d8wU4l5o6txpzx94NeibDsmSUhDZDSgRDXCmZEGpJ1NKkShwhJh0iEpfadFZc6euTzNekZRIa0AZrsXNuD+RoYTdkvo3nkJIO+E50+FhfHpeWVVP6S54XT5Is1nbzuUzTTw6KH522OBPUu+T2koTIcpI++0xzkJeHZO6FabP+W82WLatGU1i0RmyOBv3iZv2DZuaHvcS0Xf7fRQKp5bjLEfKVoRmnyG1aquYQyomCsxQd2SdOJoaIVi3IJrcV1oe/hWJmbRNhx2l2sJYmxqQbht5c3VLI5h+l8EIQjRNgGWR48c4Ku1QYY4GRiQIafZ5THskyfU2XHzCbnjPicPuyzWFf44j3DaN+Mdya1gknpWpfr9m9wxx9ruIbK239tg8mszzMbCl+6cwzth+0d6rmvXOHNpzv8v98awV4MGiRlROFlly9y5VRL+QH45pzCw7eN4cyo/NsryjRclQdXVX7wZODsPLlI6NfeMt9GsmQE7dZ7S9gPBr9li+KS24bhMTVTbR5T2CibqSQxzLO8nmG4GAQ0qDiB4inac+q6Ry4ThCw+OtKIEaPNkQzGBXB0LhfziQuw+vJhpmaqjI81unpQWN7Qmb+l2WEWNK67eoHX7kz6W4Ubb9mB8kQzPPWeCr9/TeuaZUvllkMGd31vMnbeb167xKt2WizVXH64nGO+NWaKkdMRE66crkqji7XKENoK69iewsceg/JaBsdRuWTK5fId7QTjgWWTJ9aV2Pnd4NjdfTlDyytAbcLkql+pdEz7+X+a5qz7Frrm+cwFk7zslQtsVILQ0ABWTaW0VIuRryQhXp5pRT8L7evDGZCQjMjcXEHwTYSmEWHdEwlIQDTifl7TEEYRtD1YtxTyOmS0dA8OaSQ2fFcyUjOZtaM6EKbJ6T4jphPlV3NUFmutriI5EJrJwWWTNUYzPp99Oo+hwhklmwvGJkhiw17iqWYdOv+Na7xxb0Ag//mIzr3/e4Tx+U3pPTi6yo73eFw32T6j9PXZILDL+Fz7uUevDSIO7rq19X0t7Cly+U+tcPF4MLX/1T8ORo+X/KbDQ0cyrN+qxUIviyj8pMdbL6hJj4VtZ3ElXkb1dIV3v2Y92paJz//zC9NMPLsBwNpZBf7rmxd4ZkOJ2k2Z/fB7fn6RT99ZYn0tIPdJlTgkxHv2b/DLF9T4l2MG376nFbn00rM3ee1OO3rPuuqzUtf48J1FIPARfmDY5zsLomu/9ns4fdTjB09mWV7MUi7aLI81ogijYfpVS+G+J1rhobcCU/Ok/ou3Cmcb8xrgxY8BGT4FaOQNnGzQ4IoELDfjcuE5S1w45rOn4DOScbloPENGK3BmaYXP7ze4/9YxMjWH2p4Mr3vFIm/Y26BsqfzD6eO4usqZpTkuGNOxPZiaqXL4cHsA+KvGK1w4XmXXHp1qZZSpmQpXnVXjNTtrnFacAsDzXWyvztMbHg9OaOyYqXJwpM5i3eBwxaQ4YrXZEefyDrsLLpdNgieES3UFo+SQkJ0+7PP/MsL6rMn4RC0Wqtb24raT2ZzD+FjLmXut0bpuZDqRQoqLIw2yzShsotKWzQWKakGH5XrQuNcLQV7LMwXOPG+N83c3mDtQ5pGxUZQnXDI1h7WzCvz0Tyxy2YTDVF4ss8T/sqegqw3+btjhO9+dYtfeDc4p+Zw3qjBuN6V7LfjkKtcs84flGQB+88o5fiI7FB1jcoS9Q09xRtHn6w8XqNV0XvOSda7bWyDvFCkVNYrmYR5byzK7Ef+E6y6MZByK5iR5RagLWvun7vkue5v/f3b/Al+YpenLOCBJ0/kZdKWlok1mnwMK0YKZXlDKeWyOZFibaI8cJZtJOL5nmEsn1rlsMj4L4fmttKY6zz/NDZOt2FJV19VVjMvhXRfOc9XOBl+czcI5q1gNjY2ywUouRyOnt5EWkeDmiy37c8tpVwEhbmKRjAYmurQS62GtqjMuIXRJOLZKRfUYp6X0214Q3U1EXNGFncIMQ6cBi+3BeNZlIqeR0y3WLJ2ypUX5OZ5CXvcwNZOCAZM5h4rTXod2F1wumXSZzJ7B0coTjGeCcpxVypFZEQYsqo4/thtdMRkxa/z8AZ+zSjlKjRxoOpdMrvGl0VX+/u7WoBlaplfG5fC7Fy8wndnfVpdfOfMkn58q8I+3TzH5YDnav3F5nk/8/GGeLmf4/DkGT/3vIkNrDcw9PmcUfV63u8qzGwY3nT1NaanG20bX+Nn9q3xhd55b/nWS4WfaSW8Rh6t2VpnOH2g7dunkU9wy4nPrvSXKs63v5twDK7xut8t4dk/q+1h7wzE+9rlg8Pue645zZqnOY+tBm7E+0XI5ExLcV1y5wIFS8K6VESWqe0YzkotY5/aPO1wwpvPkuk9ppEFxxOJVe21ePlXjjOJOdLVV1nuWDjM2UaeU8/iVswNyviOX4wdLesytYoi37Lf4f743HOsbag2VJyqy9R59NBwDDHCKMQjHfBIRhpH8L7d/FD8bkAFRnQkVlnNGAjJsewo7CzbnjxV4aKUSqTFip3ZGqcH5o7u4Y2EeQ/W5YmJXdGy+Mcv3jrcazvC8N+4bRVU0jlSe4/G1bOQQ/cxSndOKUzGi0XArfOMoXDpZYTQTKASOZ/Hwqh9ThyBYKHPJZJzQyIhwWJZ7FgscrgTEONlRy3wMl214dE2h1lAprwcNdicvF4bhsWOmyt6mAFG2Wm7aQtu3UNl94pkg0dRMNVLuzpp0mKvGFeXxsQYvnfQ5e1Q+FZu0iTxt2GYss4uny8fYkTMZqwd5K1qT3DU78js31mMRuX4iO9Q6nh9hduPJmGIHcMHYBFkbLENj3Y4ro+JzbyPCwnVFhO/d810eWj2K7SmMmA57hqZjJDhMs1g/TDWp6HdRiA9tmhypaKmLr5Lv/YIxh8smM7E6mcRnnurNJ7KpwpXTFit1jUfXNO6ezQZkeCn4RsK6JAsYI5JhCBTlJHkXzS6MST9YxJlzonoZ1quk2U9ppMGOmao0KIds396hICwzyFVhccp6TyEgrlEZO4hf41mXaWGKfMOOv8+i6aIpavP3ZNv5rt8iN8PGBBv2UvTeDDVLbmk+Xu9UHcUs4BSKOL5FttoaFCwbNe5fToSKT9Sti8YbARlOYLb6LPcsFtru9WVTFabzM3zv+ArHBLv4l01V2D98ZrR958JzlC2V1+/Zw6OrT/PIqtiGtiu5r9ppMZltL8eT60/x6Gq7r8Qrpu1Yelnd/spz87HtM0t1Dm2abcErRGW0aHqUrUR9kcwOvGRcYTSzE8urcd/ScjNKZaD+n1acwlTjZX5g5RAjpsPO/G4W64cpW3KztYan8sEf5lmYa80ats2GCAGe3HqFe3/vzVsOx3zzwx+mMNyjL8oeUNmo8dbz/u0gHPMAwIAMn1SEH/FXH78Js9DsgIUGPmzoRMIzmXO4eCLPsDoS7Gh2JiJxAYLRvF2Px4oVOh6xwU2eC3ElV9wvdnD95JFGgpP3J/5OdnZJl0sLVZ07juvMV4VGNUEwkn4yZyYajGdbBEFcqBN2luGxvUM+ewsSH8SJ7cmsT8FwMdSAuCbLHd7TZNbm4Mh+lKXZ1nsR3kmSEEdpbEEpTJCHrpCQXOl5Hchwp33SNMiJqiytWJ86pdvS/pRyRNf2HA5XdGqOypPrOrc+GifBaaRV1pFH12zWp+QCvOKYRWmk0ZanmG+I0kiDsYl6fJW/6N9bODebc9g7FEQJFJG2SGk6FyfDUZ5CnQ0JU5IMQ/u3G2I0M0VufQ3Kx4MdYX3ShUFTWn2V1enmvuibSEufPKeXb6IbZN/MNqPTYO7FkH8vuG/5GB9+MMfCXL7jNxR9b5sV7v+DARke4IWJgZnEKYDtgUmrQxJH+3GiuIXMReOwrZx+EolwpzCysUFBggTbiefUCxEOw4xaXjsRlqnx4XVsIXBELES00NesWwq2pzOZc6Jyy6agY/cRvhfXSe98m8/NdxstUiCmT75b2bvulH+f6KWDlRHQEyHBve5Lu3Z0PZm8S1DPHlzReXStuShoG4kwgNlcGJUv2D0R4aSNcBoJDs8NIoF5FGgnwMk6OJ5p2WjKFPvweyqawY0UdDeV/Ip5FwyjNVPguKBrrXrnWC1CLNZP8besTjf3+W5gux0jxW4YtjDlOzhRuEJdOYXfzqnM52TlJ8LxFA6OuyzMJfY77d/OdkBXfanyfSL5DTBAiAEZPkXoRIS30zF5EltpDGVEOHb8BIhwLyQ4mQ7Sp5xB3ugmibDV4RmnkeAw3XJD3O5s3tEXXDmB64heCPE2kYc2lbgHItwLCe5HAU4jwGnkVzYrcWhTYeF4ti1tNyIcK0fKq0p6kJDVU5HklkYaschgyeNpnlTSwjKH+wu6H/l+lrU1ImxPoWi6zQVO3RdClowpzEYDP+0hiBDT9FEPU0lxkqzKynAidT1JvPvEVsnmiZDUbSPeXWZWesHLdjgc2r/JU08Vu3oBGmCAFzIGZPgUwPEUMsjNImQhTk/6FJukEexGYqTqXx9EuJNJRBoJtj0l1R9p5P4nofSFvlnD39AbEZaRYPG45QVlE1dIJ8tsewqe76L1qNaGBCD8LVWHZdgGstuNoG4HEd5OM4xeyW8I2TeWrCvdILMpDlXhKDCHrUVu8boR4XzBpjhiSY8lzwuOK0EAGsfDVOUkOERBh3zTlCJt5ime3u2aBoLFe2ajgb/0rFCwDuqw07w/PeG+LE0dhlhdj30HyfPSsB0EeQszLP200/226Vsm2SdIcPu57lklFQ+XV0z5PPWUPE0nu/wBBnghYUCGTxF6JcLbHT2qE7YybR02tt2IcC9qcCcSXHOUKERwmnlEJ3KTJMIyt1KhS6GQCKeZU8jylb0nx1NwfAt9fB/+2tHeTCV67YSTvUmSEHdTh7fRnALSzWuSx9L29UKCZQS4F/Ib3y/d3Zd5RIg0P9rVihER4jQiHOZXregUS1aqGhzW7XzBAQIziWzztSXrZNpAUfYskrNPbTMvKc8vo+XwN9dhvQy6HpDgNDhW/LdupptLiEjsbyPEYjro73vphxT3+I30ShhPFlnul/CeiLgiE0lCmFpgvzuaqZHLOfF6vM0mEtDymLKd+Q0wQIgBGT4FsFwVnc5mESc7PGmnBrGTKnwyiHAnEhzieE1jvqa0nk+PRNixVezQrZVssGGrjBSCHQW9OxEOy1R3/eaAJv6i4lPRHvPVOUYzRWTLMVI7+U7HQzIh2mKeZHRThfshwltRnJMkWEaA5YRPPkCZzvuslyxWlrI9q8JR+SR2wmJQG6umYtXUtoAZaSYXG+VAMc0XHCkJjvJtaBRHGpHpg2xBKMS9HXRbfyAO5IJvsT1R0nSprd0IVWGZOpxEJ0KcJKsJohszm3BT0oboNosinnuK0I2AbtU+/0TyE9GJ5PZ7LbEN3GrEzwEGeL4xIMOnCL0S4ahh2e5FI010amA7Nahy04reiHCvanCItYbGoYrCoc2mn9ceiHDblHOCCCdJyXi23VWVjAQn90O7LWaYtmyplK0sU/kqLxnbh7/yHFIkO3OZItXr9PA2qL/9vPetEuFuJLgXFbgfAizijGGwPY+VpXi6bqqwbNwhEmHd9qLgHZt6hqGiJc0vRHkt0wp5K3iHaF8ICroeeC8ZblobyEiw+DstXLJsX8NVm88tnbiEzzV4T0pY0EAdDomwDGnqbVp71qUOdxtAxq4pu654Hdh286JtP96FAPdKevshu6fK7lnvEKF0gAGebwzI8POEJBFO+mF1NBXPt8G1owbS811URYtWdtdVJ2iQ/EbQ+HmQ04oxJ+pbQUcVudmppNkIR+XvQlxkXhlaZiNKYKMriVQnQ79EWIZuRDggGwpijIfkfW/awcGc5eMoXhBnrM9BTdfOX9XlLG2b4PhWqi2w57sYapaGW4m2QyRnDVzfI6vlsL0GdddPHQRBsKp72Ijt6li/Otm4JvMey7qMZV3A5JmJeswNVK9I2gkDqVH1ZEQ46ZGiWjEYLlroui8lwkE+zRkJCQm2JMS34igcqrQW0YVpob1uT3uQ0TR01adoxjNaqWtRPQYY0muURnZiHJuV3GxCHRYhsydOHhMfSi+DOrHep31T3Uwpun2PPQwow3qvKpp0f6dzpMe6CBSub1N3N9t8icuQRoL7Ne1w/GBgp6K13SdAww0i9GW0fNdFmAN74QFeDBiQ4VOAiZzDOoH/z5l80Mg8U85wvBY0MiERLhqwd9gifC2Ob0XEAwLfwmHDZLk1ak6ZdauC7SkMG5DTh6XX11bn0DwHZfIMLLeGiQHVteAahSI1144awZxWDI5D1Ck4nsW6tYDtNdryFhXhvO4FzuybeaPqeJkchzafYbHejByXogaLkbR+crfGNXs07piv8c9HdBh2YqRUJMniVLNsWlkkGLrhRVPKy3UFM+9jqGJgDqVZBj/aNlV4++kVpvMj5LQiqqKxbi3w7bm4W56XTW0ynt0JQMVeTTykOqwE+3xRURMVNsFvq6/qkB1CkalrJ9vtFEGH6vluzFRGHJABVJ3Npmu61gLJYAZAi/YN6RajGZirmlQdIV1TWS8YLkXTY8R0IvKb1XKMGzPRPS7XD2N79dQBl6767Bma7uoicMTcYMjIcP5L18nrQ7F7Egl8YK+ucv1fnQbI7YRFIvwX/ykIlvBbN890JMJJQqDrPmbGxXH01MFaJy8z4TcQ1v+H1oL9MxMNhk35ItLwd9lSqLsa0znI6za66sc8UFQdmKsF9f9wJQes8gtn7mP863eCaYCuoUyOQTYDx1fwG1ZMKVZmEkTNsQKb4/GJdlOH1aZcXxoBIyu1L/bdBlSW43k2fQ4ruZK8/otqcejHW/RTvIVvJvwmZGR4O31ky2ZYXM9htaFwrBq0o2cUjzOdn2k7R1OM2OC1l7LIru96DnXXB2yymoKm6qho0eC25qg0PJURswIUOG1PlYoQSEZsn48eHqJa1intO7EIdIbqp4Yc32p+AwwQYkCGTzEM1Wc8O8pE1mK+WuOR1RzztYAIv3Kmwo7cDnTFxPJqNNxKrNN2XAvHs1AVDc93WbcqUaNUcaCgbzCSqaErZovI4DI5vr9FUJvwrQqszKEVhhke20fdICLe/spzsLkCmTzKyC7IxkPppi1iivJeeBLvB4+gXnYu7L+k6zMJO+lLJnRG3Tz+fXfjr29wzfnnMHVWntuPBUqp5YWqsUe9qdLZTZaxdyhQF+tuQG6X660FeCEJNiULMIpN3i+LaBY2lnuGpjE+9/co0yMol1wOuRYxu3C8yhnF01Bmj+I/+QBYNpnzDkDRCzrhygasrOOvb7QyDomDsCBJ0bRgG8DUoVTEzxVRCuMtJtWLK7YwjefEyYUESbtwD7etw0+SRhcHQ81ERFg0hRGJcUgqG54bRclqTc8TpXM8hTVLBxzyTbtbf+0o2HWU6YOpZQ+vu2domszi0XggE00XApxkQNUp5UscWHkQ63/didsMw6wYKkpWR2lWCsVQ8W0PtZThpl9+Pb/28b1dHjZM51xGMtPyMqaQXF332vwNp0G2EFQkwknToYoT1HEZCY7Mi3SPigOHKwBxSX6+BsfrLS8uYejyp9YVJvbtxHvwGZTpkWaGzXuoN/CXNvA2LJSsjkqTELsOrJTxK1Uob8JGBWW0BKMTwXmrS/iHm05qV9eDY6URyAwF+5Iq7epSy1SjkIfCWLC/gwmEX1mOH9eCKHioevB99AjZGgrHa9lJy4IYbdVvO8TNhuquz2LdYKWuRQPJmqPi+W7Q1uNGfUIv5Q+vpSKQ+cTAUJzNqTkKuupgqHbzm9ZiIsgZpQaQoeqA5bnN810ObSocOj5wtzbAiwMDMnwKcM5oHrKBkhYSrJI5RUG3mMgtcLTiM5m1Gc1M4fp2pMwl4XoOVnP6SlTlwu2lusFSHcAWGisVQz0EwCtywxgrx/DXFvHnFgOFR9fArpP1dLJqAX/9GCzNN0laFX/pWbTCGOPj+6LGP2xQdcVEWz7c6oRqdbzv/gP2/ccAUI7cjX7pPPvOu5D9I1Pxzsqut0di03T85efwGxb+0gZKo0oml4117sHzU0AP1C+R3IahlisOZHUYIej4xWnirA6jzdC207lWvqYKptoegMP2FP70gQ3+r7f/LOan/wHvkS8x8upzedO5V+KpCsrsvXi3fBs/JFSlAmxWYaXla8hvWGDZLSXYsgOFDaLO3Qdw3YAUm00PFK6DX17oHJGriVh0u6T6liAJMrIr68BFiOqp69YQ/S2LNuFx5R+W60FnGHf3FfxfbWisNjRsD3bkNF4/PYlfWcZ//EGU088A12E8u4fxbLzM4n2oihaQHdFzh6fjh0TKbcDhp/DnFql/4xnKh5qPRPNRdQdw0E0fTfObj8onu3uYPQWHr/zGM2iq3qYcB/egMJLRKfzO3+PaHrf9xX9i3VqQqs1heoBPPzXEtx9oLa8MbIcFP8UJAp0kwUBMEU6e49gqmPEFpLJ8w2/lcCVe161Orgmt5oFqPWg/AH9pA3ehAkZYHgccF/9wM7ywrgVkuWahOC5U61A9EtRxywm+BQgGjPUGSnkTxkqtc0NsVoNz9eZ5TvP7CNuRJBEWv5kkqQ6/C7ENCiFx+Sate5JvJvldhenS6kJyMCkeczwj2pZ5/+gHMvId5N2a6ZOVLShH8L/iaMJ5IUlWWalnIrMasS0Wzf527dnEcRR2DJf5ly3fxQADnFwMyPApwLCtUxw5PdjQ9KhR0lWTUXMnw0aLZKZBVAqSqpwIcaGeOCVtewob9hLFQ7P4oZskxw2mOVfKQecUQk9Ui8oKfmMTrak0alqLbPn33ReR31AZUoRW0XngCMqjx1DHsijNDtNbb+BtBPecVOe2w99NQW8SW1NUk+NpxgWz3KIRpKu7yanp4FlaHqw2Fpg5bQfeA0ewv/UIyh2PoQ6beLYnKIsB0fWfPoxftWP3oxh9KCSWE3T+m9WWeiyaU4Q2mE2lC4jInwLxzj+FEEN7fevFRRq0D8Rkx0N0M4sJ38umrQVlPNwcRDw3i3/0SPDb1FF0PdCxhGehhc9CtEtNsfes//OTrB7W0fTuU6P2s+uM/PlXgjpquxHRC+tq+NtdqePbHp6jUPv3HyA/bsaOt+q0Fv1+35uv4m8LPrcf0XActakQazHbYdtWY6GaY95QYsE6uruTazOvcAIvEhVHiZkDgdwfd1vUu2fXgfXYN64Yauw5uY8eax0Tnod/ZKk1aEx+D7oWkGzHhUq11QaJ5hea1lKGIfg+6oKJhq61h4lORnCE5sCzaZvvxWcUkmZHUkVXDDrUBxGWEc12EtxKk3TjKAuikjRfSppIyMqURDciLFsA7TTLt2lrwlqP4L8Y7n4mX4/21TcHZgkDvHAxIMOnCoIKoQqEGILpqq06S0+6QpJeOo246Bq+67Y0PjOlOoQdi2zVdjaDce4k9e8cjnWQSfhVBx8HxVDxNiy89UbQQQJK1Y4RBiWro11yAH//JbA22/FeRNdSvaDuAGYQVW66GeY+2eGL220u74RO308wDd8OnqVvu9GxsLQ+TQIg2gmn/m4+5/B9hNPR4WIliL+TflffbxGdzGM6kWOZKiwiHITUqZM9+6X4d34trpSfYrgLFeyGilVVARVV99BNH3DRNAu1SahDwqs2lV1n2QLix5NEup8Gt17TcXQvRow7IZtrtSEyV42RHacHy3WYFqyf0ly3JeFHCQSSGw4IbZd2upNIH+bT/C8dJDqStjDpvcJy4t9H6O4N4gv3+rGp78MbSz9eIWTfTZqfcpB/S0k/9Q1PxfVt6eK2XtBJrU4rn+xYOFN3KlyEatscjlkb2AwPIGDgFPAFiLSGtputbogTChGcVIW7QNkzjXLGXvTd8sV7nZAkk7F8z72Sp8vPph7vBWlBClYthVVLicIsQ7s3j17gd2MOxO/Rt4WLWIIK63TIp9OxU4BOg7ROgRt6qYPJ9/PgyhJHrUMoewIb3J6JcNJbQQe4gprqpSirnqNgVVU8V1C4rfTzwkGc60ryE955L/VFRHnNpFppLjwVzBzSTCTCwB9JJE0kag2V9ZrKcj2u8KeZR4SeVHCcqD6H99L2Ddtu60843pY+3B8+n5DIht+FhBD7rqQuyr6PfsKcbyUkegKdXAgm0at7wE7BfbYLSSIsQyfl2vEUMpoXReVMekZqr0cn714GGOBEMSDDPwLo1bWZDCekvGk6ysRpMLMf/Sy5q59+EHaU2vn7mW/MctdCnjsWciecbxIbVvCXXDQnM5FI224nAV3YX2yuO73DlHb4aeedBJ9F/XbmnWYmuplIQKvjnK/Bd+dNvj03hHLaT8gzFAdqnSKhnYB3Dc9RaNTiRHgreWwFImndKJvUajobZYN6rfv9FEcschmPXKazeYXV0KhWDMrrJmtWQFQ6mUfEqnXz+csGsb7txf6Ck7dIiEWEZFc8Fu6zhPrf4ZsC4qR3GwhwL0iatiUhs7WX+mlPqMLdmppuJhJpoc3TzCNkRBiQqrQDIjzAixUDMvw8YivOzk+4UTH1dvW3bVtCNCQEo5/p+FhHaLsdVTK/UiWnD5PXiflN7QbZFJ3MrKLf/NqKasffW5rC3ZMSGOvkE/XB6rPT3kInv1XznDS0keUUE4k0Atb2KHudqdgm93Kuq+A5SqqCLFV/hTTi8fisgId5zvi2lFEGXfeatvKdF86B3NZYVlWl1VqidKeRYzF9N0IcQ7/qsIjY9ySJivcCQNogsbWv/ZwkEbY9hbq7GUuzlahy3eyEO5lNQECIo4WXXYjwCc1YDjDAScYpI8M33XQTF154IcVikWKxyBVXXME//dM/Rcd93+f9738/O3fuJJfLcdVVV/Hwww/H8mg0Gvz6r/86ExMTFAoF3vSmN3HkyJFYmtXVVa6//npKpRKlUonrr7+etbW1WJpDhw7xxje+kUKhwMTEBL/xG7+BZcUbzgcffJBXv/rV5HI5du3axX//7/8d3z91Nkb9EmVZYyVbcNEzOilvW4S3YQV/VVnPK0w1PnucYtXhqp0uF43Xtr0cIjrZC28Fvi3pwHsxlUgiOf3bTfmSYZuU46SS1E0179TpyVRhiD93z0/YCpspivAWou2dKsTU4eY7V1/3KspjI1vOs5fFc50gmldAO1FOs/t0bLXtnSbJrQw9E2I6mEuA3BRC3Pc8mRKluk5LsRcWvxPZjEonVViGoxWfmlPuK7SzLGhSP0gS2zSSnCTC22FLHPoZ3s6/AQYIccrI8O7du/njP/5jfvCDH/CDH/yA17zmNbz5zW+OCO+f/Mmf8Gd/9md86EMf4vvf/z7T09O87nWvY2Oj5Z/1ve99L1/84hf57Gc/y3e+8x02Nzd5wxvegCuoBe985zu5//77ufXWW7n11lu5//77uf7666Pjruvy0z/901QqFb7zne/w2c9+lptvvpn/8B/+Q5SmXC7zute9jp07d/L973+fD37wg3zgAx/gz/7sz07Bk+qONHW4kz2a7SUIdpLspi2eE9Ej+UhVSqt2zJNExzzu/R7jXv92yL3a/oZeJmTnyOwoo3IlF82lkIGowxePdzKV6LdDT6pe22gy0Uvn2sleOInnZYq0WVe3spiwVxOJZF0Q7YqTyFw4ydKwxpdm3ZO2yCjNi0Q3Et1JFZb6Su4y4JPuTxBi2cVkA8mOMyeQbiohzpJ48t++2x5EqBu2eyYFutvat6vCMFcxeHo9w1K9Ki9nijs1eb79mUckiXAn7yUDDPBiwSmTVt74xjfGtm+88UZuuukm7rrrLs4991z+4i/+gt/5nd/hZ3/2ZwH41Kc+xdTUFJ/5zGf41V/9VdbX1/n4xz/O3/zN3/CTP/mTAPzt3/4te/bs4etf/zqvf/3refTRR7n11lu56667eOlLXwrARz/6Ua644goef/xxDh48yG233cYjjzzC4cOH2bkziBj2p3/6p9xwww3ceOONFItFPv3pT1Ov1/n//r//j0wmw/nnn88TTzzBn/3Zn/Fbv/VbKEp/nfsCy2y4m+CGLnPirnVGTCcWTehUQdk90+6my663fguuuxQtg19fb89keALFdeDMfWRCNacZpco7vBIjvoqhYpw1Rv2uY2ReuT+IYJUMOiGYcfgLT8LIWF/3JJ11be6rOPFO3sp6zNfafavKfLvecqjAv7v4Csz9u4NnJjyb5HMCUK1KayV7kphJ/CsnfQf7849D6Fos9EV84CdQZu+N3VttYjoKzhLAQ1UCrwZRh+i6uLYjXTAznZ/h8OY8FSdwpD9iOkwkgqxAoCTdtTAUPZfwOV4wLicUj63pzefdutYZw4ES89SGQlgtQtOIiHSNu1hejUzS12zSpZyIxPOLPeeQFBkaYweDsihZI9X1mW97ZNcbzUGMgrfeoLIa5J3ZYaBNFdpcrHkbFrrtYVbtyIOE6BlFMVTUC07ngWWV7yyc3IFBNxOJJJJEuOP5zQV0iqGijWVR8gbuQgW/7kTPI4RaysSeEQCGGnmPcBcqwbOZGI7esb9cbl5H7o9b2dNsI2Uu1NbXgv+ZDBR3BNdt1gN/Y6Hrc9hupNkLdzORECEzMQr/LzaDoSzVDabzNpoSPKde3HNuVRXuVEbZLE9SFd7KIuUBBjhVeF7mGV3X5e///u+pVCpcccUVPPvss8zPz3PNNddEaTKZDK9+9au54447+NVf/VXuuecebNuOpdm5cyfnn38+d9xxB69//eu58847KZVKEREGeNnLXkapVOKOO+7g4MGD3HnnnZx//vkREQZ4/etfT6PR4J577uHqq6/mzjvv5NWvfjWZTCaW5rd/+7eZnZ3ltNNOk95Xo9Gg0WiRg3I5aNz//Zd3oJhDbdOUZsbl2kvW+em9rVYibNQg3rBpaugDs9WQGapPDi9a2RtGAcsRNLplC0Alo4XnNInnzCTK9AGcQjEWdMH1bQx1ClPNxZQFU8u1RbADYHiCxfosKhq5PWeR331BjPypG0v4sw/jPfhMcPVf/AUc0yQ79s9Qb6BceAnlvN6Keibzy9mH4LncgPlq0AAPm1BouriqO7BmQXktg+MoUSdfXg+ei2Or2JIwomJ43UcfhHsvWGZ3aTrKE2T2ceHUqdn8I8oD3GaeYRq7WSes5rVbneNL9hf5lfPOYGKlAstLfCFzGv/wlXX+/LWjTC2s4u+/hG8eO8qHvgC1WgmroUVRzXI5hx0zVSA91O/Ld7q8aqbKfHWODzwwxMpSllpVJ5d3uOqsGq/ZWWNHLu6l4XAFPv+NHbE8L7hkkZfvdDl31I517rYHX/nuBPVqUBeuu3qBQxW471CWJx8eIVuRm4gcPeDw9tOPsX/6QLBDNnCAgOTKwuwmgyu4wUAi98uvCvYliVRyUOM5QfTFUGUsV8g8NEvjnnmUbBb93GmUc88NopdpOszNoiyuoOzf3XLNJeYr5P+SrMfnn2m/ZzPjcvHe4Pkt1+GJZ4akzwZapg7n7q1H9sGmCtM5n4dXg+df0OHySR+7GQ3M9kI12o750jbUINrcjmxruvjRNUU6oMw3vyW1lME8Zxxl/xSKpqGvb+A+u4y7VGsR5akC6pkz8QEuBL/Lm/iLK0Awa6KUhmHffgCU1SX8ueNQrsQv7rgoF1+MMrYv5qdd9O1rjrlB5EKrij08RsVZBSxG1TGYf6p9UNUMeR4hHLjWN1vvzQ7cYKLqqJoZXdPy5KZbMiKqKSp2wuFc0kRCV31OHw7caz6wrHYlzGFbU9BhItvdTjhNzTZUn6I5FoVwPrK5jq767B4axvNdnlivYTTLJubjeg7PbhiUmzMhl05Wo8F0GH3S9uCu40bPLvt6QUbxyKjbR+RtZSBjD9DCKSXDDz74IFdccQX1ep2hoSG++MUvcu6553LHHXcAMDU1FUs/NTXFc889B8D8/DymaTI6OtqWZn5+PkqzY8eOtuvu2LEjliZ5ndHRUUzTjKXZv39/23XCY2lk+H/8j//BH/zBH7TtL/7TJobEV+j8a4N7WbN0drgVDLVzeFBNDQIPaEoQEldXzRiRhKCh2rBphrgNkNODCHcFfScM5WF0J06hGEXMcr2WaqgpKjl9OBbe0/Etsrlh1ISSWXXWWaq56KrDCKs0FBPPdfGa053Z7BDDZ1wU2OKUisx786yuK5xz2SvxywvUhob44eI6rQAhBrZnRspjv9PJFUdhvdYKWFBvksuKE/hsrdc07GYoWwBrLU54Q5IXijpGI7gPrUmMnr6tyNOA1gwFrQusIdwXngOgJ6Z1NdtDjDamOx6KwPYNId03Th/B+vkyv3K2RX78TP7nB6c5eMccfzJR4PcvHeYHx47y4e8NM/TZTZLUqZHTeWqmCICrqzRywXuzM4JLrkuWMdU8ZRse+MYEmZpDfsNiJWdyezPNgaKLrqo4XoaGq3LfnMHMfavN+wjwQ2cS55JlNoQ+OTRBcWyVPQ8t89zZ4xxZV3n0wXEmHyxzVlOpc/Q4KXANlWV7iMfXsuyfHooRyeS0r65mW8pvGhlWg2er7D7YnqaZt5RYTZ4RzZD4GwtoQNZQUYpZlAP7UaYPYrm16J0ppRGUyTPiZdGEQV4z33Etx6+d+yw3PRJ857ruccmUy+U7LPYUHL53PMftc71brl0w6nHheJWsFhKmPPctB0RkyHC5bBLGs3ti5QgHvmVrkc8+3ZoBOFB0mco77CmYPLau8HS5RcKu2u1y7mgW/3EL48Aoyu6JINyypqPks2iAOtw0ZzNUlPEiyuSYfOCRNVFoDstNA3aMoRSD6JR+GDSmsBkPTa7rKCO7qPoVXNtuux+AYWOC7Pg+qG+yYS9xvGYxmvHxN+0oWh66FhD04lAQ9jkBv7IMjU1pPVG0DGhBqOlsfoSqsx7Vm06Yzuxn2Z5jpdE+g2KoPvuGMozqO/BXngNV57xRix8uZ6S2wuIgpaDDvmEbQ/VxPAvLD+qjLOKdqbW7HiyaYwy7Wfy5J1F2nMmG1vqAh+vA8BQw2zw/F6RdO4oysotVrYzdvMY5ozXONCaCDyExADxv9Cm+O5/ngdXBAroBXvg4pWT44MGD3H///aytrXHzzTfzi7/4i3zrW9+KjifND3zf72qSkEwjS78dacLFc53K89u//dv81m/9VrRdLpfZs2dPavp6Tefz39jB54FLLlvkxp+oY6jZmDocXLz108NFU3V01cRQs+0RkFQw1GBfTvfR1ZA8+Hi4+PsvkYYXFbFpr2NqZqQQ15wyNaeMqQXbnufiuUEo3KLpoilqTE0WYWUyeOdeGhyzgk5pw3B4TMtQaxLh7cBcNSABIRGuOKSGr02Dbng9TS2HcAw1RoghIJwhIXZ0rY0Q94O7Hypy90PF2L77HxzlZx5sbe9CbjM4shTsX5vIx0hwiEcfGOfRB2DfGevkmzYLbpOcLi/m+HK5vQNVv+eQo93e++F7xwmXuoY8wnMgW7HRbI+htQZzN2fZv7SYeq/rE3mKVzlMUo9nlAJPVUA1ggFawl46IriKh5rJoRrZgOT0AA+XuruJrplEwepmplF37UYZ2YWXyeGGYclxaQyXUIfH0FUDtYs3D8932TeU4eqZlmq7b9jh9GGN0cwerpg+TEbTGM9uRqY7RRNGTJ+sBuBSd4Nv++wRhwvHPUrGbjxcbK/O/uEqpqpzoGRz/liBoUoDf+VhlGbUSE3VUQrjOGaODTsIOjOd89lZcJjJWwwbUHMc1i2DoNFxOWMYXja1SXEjgw8txTeErqPsmUE5bXdAfjer+BsJZVfE0BgMjaHMlEE3UUZ2tY6pOszsR9mdaTdBUnXw0218Pd9lgzqWUWsSTyWYTbPrUN6MTLeawdwj+M2omkCQtrLRIvEhgRfDewOKkcXUcuh+IWYKlRxY6aqJP/cYozNnM2xY0hDOBX0Uf2kWZWwfq85xnl0LXZaF7Uow2xdamtjNmYC87nOsYmB7CjP5amxmEPRIoQU4Z9RjPLMnKhuA7qv4y09Dk6RrisHuocA0ya80UICzSjkyWoFstY4/e0/wXkeXGD3tIi4ar1BzNsjpw/jzz8ZDWOsmGFnGxnZx4fhRhoxghnV1zef/Ta8ZAwzwvOKUkmHTNDlwIJj+vOyyy/j+97/PX/7lX/Jf/st/AQLVdWamZTt7/PjxSJGdnp7GsixWV1dj6vDx48d5+ctfHqVZWGi3D1tcXIzlc/fdd8eOr66uYtt2LE2oEovXgXb1WkQmk4mZVoRwdBVFbydZu7+3HP2+f2mMb+1a4po9LUU2GV3I892eotUZqs/OvBWzTwbYsJdSSSs07ZnxsT0VsFDRojJ4uFTsNSAeWrRgmNI8Xc+h7K4AK1E5wgb7sbXNnvwgJ91EpSFUkUXbU5EAi6YRLwa4hsrOZ9ZAmFKfZA2AXbcuS88Rkak5UINq0YwIrgiRZ87dm6dgtwiubnvwsIdPQPZj+Uqute+x9vKEgwDN9tAdj53PrnUtc2mpymWnu/zSwd7cYTlNQmpquY6LBz3fDaa4ZcpxBwT1WUUpjDdVsua5iXoeqpM6vQX+KOijvOW0llmS57e+8VFzJ1fvdLlo/Gj0jWU1pW2mxvNdSuautkHtheMeV04XyWysw5Fn43bWiTIPG/DKmWCAkNeH8HwF22uQ0z3OHrU4ezSYrTlt2GaaHfjHHw7UYIiTxdF8i6w234PSzR2eqkNxR9vixlAhTqrqHg6d7KVcz6FsLQrtUoe2RdfxGxasrqOEoZ3FcOe9wHXQKuv4h59qLeBrhgxH19B0LVC+HRdW1lEOH8EQ10PEwqsfjrKdr9bQVY283rLL11W3OWumAgEptj1Yb5oorDU0croeM08AonNCsjyx8hjMzTcVeR0/LAfgzz1KTgxtXqniz81S1DUoV/DWy61ylzfxf/hdijvGKBZ3QDh4FSNoNmFicGbpAGcUg/e4NrTBixk33XQTN910E7OzswCcd955/Lf/9t+47rrrALjhhhv41Kc+FTvnpS99KXfddVe0PT8/z3/6T/+Jr33ta2xsbHDw4EHe97738XM/93MAzM7O8n//3/833/jGN5ifn2fnzp28613v4nd+53cwzd6DCw3QP54Xm+EQvu/TaDQ47bTTmJ6e5mtf+xoXX3wxAJZl8a1vfYv/+T//JwCXXnophmHwta99jbe//e0AzM3N8dBDD/Enf/InAFxxxRWsr6/zve99j8svvxyAu+++m/X19YgwX3HFFdx4443Mzc1FxPu2224jk8lw6aWXRmne9773YVlWVAFvu+02du7c2WY+sZ1YtxQeW1vkrFJ80ZjYEUIQvhnkfiVVNLJaLlCQFYestr0LJkTYnkLFtqP5fV3p/2MNG/fe0/sn3TuBRGyMwdXVyCziRODoKvo25CODKxDZNJE1VNFlCneSCAMxYu1KjkNAhLeKr3x3grNLixQMl9dObzkbOYxsy8ZYQPLb6heqokXfYy8ww+lyVYfm1LuoKgKMZVpqqapo6JYVpUuajYTQFIOCPhqoeIuHu5K7gjHSRqY1VWc650Sk0vYUMloef1OycLZX9BHi+EQgtnEjGV0YyHfwGFGtxxft9lp37TqUjwfmF+IiP12L8lG0INQ9x1eCMO1h2Gldi1TqWNrCUSYKGqOew+FK+Lxa5DZY96HG2j5DhYLRe931D8+llgFaAZj8SjV4NuJ9JbFShs1q+nNzHfzFpwMTk+bMhFk9sRV0+jaHY+43r9AjVijofepTn+LNb34z9913H+eddx4A1157LZ/85Cejc5IE9vrrr2d9fZ0vfelLTExM8JnPfIZ3vOMd/OAHP+Diiy/msccew/M8/uqv/ooDBw7w0EMP8e53v5tKpcIHPvCBE7zjATrhlMll73vf+/j2t7/N7OwsDz74IL/zO7/D7bffzi/8wi+gKArvfe97+aM/+iO++MUv8tBDD3HDDTeQz+d55zvfCUCpVOKXf/mX+Q//4T/wL//yL9x33328613v4oILLoi8S5xzzjlce+21vPvd7+auu+7irrvu4t3vfjdveMMbOHjwIADXXHMN5557Ltdffz333Xcf//Iv/8J//I//kXe/+90Ui8GU9Dvf+U4ymQw33HADDz30EF/84hf5oz/6oy15kugVrq7ypYdz3HYkUEvaTCUS8Hw3UsdEpMWql9mNJRH6XczrHprSXjU0CauyPQXLlat5sjxeTEiaF8gIYj9II5AnmrbTucky64YX/UHLptgx1NhfLD9d7ZsIdyPFMnvhye+tc/MT5raHoPV8NzCrMDrb5AN9EdsQutrbIDDt20xLG0zFb/83ZGq5ru3Lix3j2iSjevv6EeCk+FA/YRybZTyzJzYQ6gSjaSpRNNsH09v2/Uj8oMtDYv94uIl44xvfyE/91E9x1llncdZZZ3HjjTcyNDQUU34zmQzT09PR39hYXNi68847+fVf/3Uuv/xyTj/9dH73d3+XkZER7r038BIUkulrrrmG008/nTe96U38x//4H/nCF75wSu/1xxGnjK0sLCxw/fXXc/DgQV772tdy9913c+utt/K6170OgP/8n/8z733ve3nPe97DZZddxtGjR7ntttsYHm75mv3zP/9z3vKWt/D2t7+dK6+8knw+z5e//GU0wYbt05/+NBdccAHXXHMN11xzDRdeeCF/8zd/Ex3XNI1bbrmFbDbLlVdeydvf/nbe8pa3xEZdpVKJr33taxw5coTLLruM97znPfzWb/1WzB54O+AaavQ3erxK5esqt949xsOrq9L0Ymfq+BaOb3VUtULyqikqumJGym2nTtlQfbJaDkPN9Nx5V53nj/QmeZkuWajYCbrePb3M1KDXNP2SwlieWyDEsnOSBFjc7xY0rJIhLX+SBAflld9PP4pwp3t+7hvpnhS2CsezcDwrIMTbCBUNXTFRPR/VOwkO/O16z7bOPcNzoL6JqW5/mPMtYRtDI4uqqb/4NP6h+6BW7i+TLvV4K36re0K1jrJypOeBlaHCSMZNDRzRtgDPseR+nKF3MtsP6T0JoeJfSHBdl89+9rORR6wQt99+Ozt27OCss87i3e9+d2ReGeIVr3gFn/vc51hZWcHzPD772c/SaDS46qqrUq+1vr7eRqoH2H6cMjOJj3/84x2PK4rC+9//ft7//venpslms3zwgx/kgx/8YGqasbEx/vZv/7bjtfbu3ctXvvKVjmkuuOAC/vVf/7Vjml7h6ipqF2KTqwTq6vGVYVbqrQa52zSu57tdSWvoeSJML4OmqLh+oAjrqhldt9sUsuMp2zp11Srzi3f1sbiILgnXUGPeGLqhn/QyIuzqasyCUkaIATZHMpSWatE5STiGiiYZ9MhIcKf7P1GE9fJEzRv6RspUv+6rJ6/j75MoBu1AZ1dbvlVB0TLoRvbkP0OJHelWsZVy+k8+lxrlMbYIcDsguU9F0/DzWZQO4aVjODYLY7u7XspQA28hRbO/Z6Jedi4A/sNPtXaGdtMiHLdlRtGtzLLzX2QIXaCGSFv7A+kesQCuu+463va2t7Fv3z6effZZfu/3fo/XvOY13HPPPVF+n/vc53jHO97B+Pg4uq6Tz+f54he/yBlnnCG93tNPP80HP/hB/vRP/3Qb73gAGV7ctfhHEF0W0UfQFbOtgxA7t3ChnabqqIqG41k9qw7ScqUs3DsRItyv/W+vC+qi9Bk3WkQneorQdS8WlSt5vB/I7G37zqOL7fBWTSZCoipTy0NFPPQDDOkkuFPeSYSmJXYm7kkjvD+ZKuwaKpulLMblMJSyUEpG3HTV7IkwhvW+F7K4JYTmF+42q7jZoUAd7nKPKhpZfSiw01x9srd8NV308vcjB2V4Cs4H/94HWravvaKDjbPvNlrvIwwMkgZdD1xZ1hsBqTwJ5gS9tp/K3ouDMOdzj3VPnBWIYFhmGem1HHnkUseSLtw8UejbHEI57LuSHp9+//d/P1WUS/OIde655/KOd7wjSnf++edz2WWXsW/fPm655ZYomNjv/u7vsrq6yte//nUmJib4x3/8R972trfx7W9/mwsuuCB2rWPHjnHttdfytre9jX/zb/7Ntt33AHIMyPALAL1MMbctolO0ns0YHL9p0+vJTSQ0VY98U8rsgrcCMc9The1Qk3slxbJFdOK+Ti7WZGrvyVpMZ2c0DJyO5iBaxY1ZyqYRYFdXpW7awuskUSuYGA0X3XHRHS+VCIfXfPul/S3UUhUNvPZFcdJ0rtNT2n7hKB54VnMh3fbCcmvoutnVZRsQBJwAqFQ7qrGKlsHTDRxXHjhi27CNqvBWsJGFwtDZMPZcsNBLhq0qmuXj8jwl+SmZDGga/vqp96QgEuUn158K/Br3cJ6SCYis3+jNs8uLHYcPH47WCwGpqjCke8T6q7/6q7a0MzMz7Nu3jyefDAaoTz/9NB/60Id46KGHogV3F110Ed/+9rf5X//rf/HhD384OvfYsWNcffXVXHHFFXzkIx/ZlvscoDMGZPgUwNE1lD46hk5qa0hmI5dnwkK6ZPANMZAGgKrGz03C9hTMlGJ2c+e2neiV1Gb1E4tsJCrHSYQeJUJSGxLd7VCC03CyCHGSCIeR6kKEBL4TCQZS71tGhEWVWXfcjnbCISazPldM27ieg6N4weDPtaO6Jw4Go5kR3Wjub6VPnQFxHRwzNBey8dx6lG/omSWjFuLnGNmmb+3gG0t+O+FA01RykB1quT/zrFiQCwATuZ2u48Xt/4NIkMF18cBs5uv5Lp5bi0WMDE1GTLOAX16A0QlpsIig8DpeJseGvRTYUDef61a8wEBTfRWu5ZcXmteyYGK6PRS5GJFPDP/eLJvoKSMZJCR8LsljyQG37Sks1Vwa3gbTuTWmzjyIf999LY8JhXy7izNZREJZ2QkCc/hziwHZz2aC/JJR9pL5NgK/vZSGY2n91YQ9cwo537S1tkBEQ0aL7NYctaNies9iHtuDl00lCHxywDJWgsJw1Pgp62uBIiyUzV9tDlgdB/bsjj+vykqUVbJuBH6iO/iffh5RLBZjZLgfhB6xZFheXubw4cOR16pqNXj+qhpvCzVNw/NabevRo0e5+uqrufTSS/nkJz/Zln6Ak4MBGX6BQZzSDsNkyvDQSiVqDEWO4nhac/GE0TymcOlkhaym8MyGy0odpvINdhWUwP0QGht2nafLGRZrOjsLDueNWi2bYYFcJxGaORiqH/NJHAUJUYki5iV5lK76fa16FgnyiOlH923prU4hDFSA6WF7HpYHyw0NXfejUMeG4UWhl3tBccwSotQF92ehpUarA3mEutJSraM6vDnS7ukgze62sBFvfCvDciWjXjAwcx75QvpUbjbvYFfUWLlBbjLRyOlojhcd6+RdI0wTBvQIzpdPV9sZjeqwyUjGZdiY4B+fLQNLbaGu68LjGM9UohDB4fufzDlcMKZTMuO+wI9WnuCexQKvnFHIeAV+uLzGvUvh99FKZ3lw0ViNq3dOoCoaR2vPRHmXzALDxkRb2UPvE3PVp6k6auRLWyzXzrxF0ZQsgFF1Fu0jPLCsUrG12Pd8RmmT80ZHWbcX+NfngqiMhgoXjleZyOa5d8lhdkOn7kJWc3ntrlXWDJNDG2aiXbCwm0Te8mC+ttH8TnRsT8dQg9DNL5uq9eRxBsDddxF3LMzz3JyFJXi02T+s8JriDpQdJT4+2yJ6QQjoeFrbUyjoPu85d5SaW8ZzWpErk1ExQ3/LIQw1Q92txZ637QVdmehvN6N6jI3txHzVFP7co/iH56FYQDn9Mja8tYhUZ7QCqqKxYS81r+tie14UWt1x6jSs4J2+ZHgKzs2yYNZi/tZDP+pAFPwi3M4VPBibiu0DuOicEXKHn4DjK5DP8u2RPdjHjlJsvobFms73FhUOHc+0+Uq/7MwqF4yq3HZUZXklw1k7G1w67kldre0sBO3vjtwwX17NcflrfoKpsov/QBC9R8mY1C59GTc/U6G8SlTXpnOjDA0F+V02CWMr5cA/80VX8mhtgR8u54Loni6MZ+AdpYBQLg1rfPrJ1vsO+4h6mkLfI4xtNpPoN6/3ve99XHfddezZs4eNjQ0++9nPcvvtt3PrrbeyubnJ+9//ft761rcyMzPD7Ows73vf+5iYmOBnfuZnADj77LM5cOAAv/qrv8oHPvABxsfH+cd//Ee+9rWvRWuYjh07xlVXXcXevXv5wAc+wOJiK1DR9PR2+5scQMSADD/PWJ4pMHK2hXdHIpKZ11KtYv9xeWpd4W4h7nuQPk4s48cKnD3a4LYjGcoW7B3SOFB0Ob3YwPEUnlzP89i6wnxVYW9Np2g22FWIk+A0X8UjGZ2CPhr4Q22qdTLl2VAXOF5rn3abzNqMZnw2bDi0acZIQRLDBpxZcjij2JruFjsjaLkVemQ1x3cX5PmMT9YZLjg89VTQeMtsiCEQM848Z5VrdvnNe4iTr5BIiaQt6Phb299/Jsfi3QHRdXSNzZEMuYs9lp/KsvPZNTTb4/ieIue/cS0+qBGCh4iYvyUbkeHKcIa5s0fYd8Z67BwA21YxgF35DYql1nNP5mcYHut6hnpNx12Tk1s7o2HmPIojDayGRs0JiOTUTKXtmi14HJ8rkKk51Aomx/cMky868XsT0u+YqWCoPp9+sswX7xmOlbMVPKW1L1+wGS627mvPdJ2rZjQabpV603bX9W3K1gr/z0PDPPzUEPecvcm/P2+VxZrBvQsaD94bBJEQx3n/uqfC3p86RtF0uWcxUIn3DlsUjEC9DQd64feY1YZYbRzj23NDkXIXknbbg3NGXEZMlbxuUXc3yeZHAKi7mxzenOWexTzfnFPa3vd0SWHorCW+fCjHnY8X2DFT5RVTwcUbbpW1Rp7vLSo8+uA4AJe+o8FyXeOP//dUTwM1aA3Wvj1jcMllClfP+JxR8gEtIm6GWmG0uCe4bU1nwaxx86NLfO5b09iL8e9LGVHI/x9HuftwmX/62HBXX9xX/puAHK02ytQcNTaIcLzWYD4kZ0XTZcR0mgNjhYqjUba06Fm3glOEPtA1FuuL5HSPAzt3Mbr7Avzl53AUj+X6avR+r9pZRldNvjRrUnfN2Pdre0prMOZA5qwFzslNcfPTCg+sBO8tCu/e0KJBd/gO7MRx8R1fdvEy/7+zJnjJ3ot5cnOW37opWDz3slcusHfI575DWZ58eIShtUbbu/t2rcih08s8fNsYxZU6/3TaFLMXLnPxjM10jlhdnMzBa8fH+OXvVNj4uM4fXnw6v/6med76mteRr9ncb23w59+wsD/eep+OrrI+kWfj9By/8JPHuWwyqEMbl13Kl2bLfPTre1APudFg96pfqVDeO8SXZl0++cUxsj9sV0tt6+T6hz/ZCD1izc3NUSqVuPDCCyOPWLVajQcffJC//uu/Zm1tjZmZGa6++mo+97nPRR6xDMPgq1/9Kv/1v/5X3vjGN7K5ucmBAwf41Kc+xU/91E8BQTyDp556iqeeeordu+OLKcMouAOcHAzI8CnAynQePROfftVtD2vG4MxzVjlvyua+YpbD3yswNVOhaHo8sV6LqQgtAiYnLMnFaOJis0fXFQ5VMjGC3HBVHljOx9L3C0P10RWThlshoxXQPQ9QIOl32HMYz+/BY5aKbUflDIj0BHm9RMFewlBXObSZkXZsk7mABI9mpshq6b44Pd9lw15izbLZO2QAjei+w07uml0+F45X+UtgeSVQVWWdWIhzR2vsHiq1pq4hFgY7/O/4VkzRemglx3K9zsLeAsdzw5T2W1x2dpkrpzxu2bvJ47eMoDke+16zyc/sb6pQ0X2HqpMblfvRdYWHZwpojkcjp+OfpXHxOQucMxI0kq37VGLboSlJkI8XOwbBbMTyYo5NW64M5vMOxVKDXN5Bb6qxxZEGe4fk17A82KjoHJ8rUCma1AsGpx1cJ18IEomRAcVn/iffGumo2ouDlqTpx+H5LH8zD/fsVTmnVBEGFkPNa6l8+55Rluur3PuDyRgRTwZZOVY1yOktVfLp9QxPr8Pe4aW272zEXGwOkhLmFU38cEXj0bU8pw/7FIwV8vqy8C13VmLvWGg3q7hrIc99ywqPPFGMmfj8xud2pdq6d/PuYc7ZPPTlER7Yq3Hm2auJAVOe8eFVzigaFA0w1HxqPgDfONa7ycUTizob9lJPaW0PypbWJMcN1iyj55klx1N4bM0GFjgwkuHeows03HyU79eOaFF47F7wv54u8+ha69rxetmaheoFhzZMDm0sYHtBeYyGyz1fn+DeEQV1yWXITg8a8twz8an95cUsX19szTCFUThvBqZmqlg3B8ugAco2fPLxwGzB9pptYAczrduPacAoHJE/p9s/UuBfX67i3eGR7RTo5EWMTh6xcrkc//zP/9w1jzPPPJObb7459fgNN9zADTfcsJXiDXCCUPzBcOOkoVwuUyqV+M1/+SiZQqvxDRESib1DPnsL8L1FhYvH/TabWZG4iKqTiE4qcfJ4GupOUJYrpxvsKehtJhLitKX431B9duR2kPeb0/Xigh+RZeRHsNxaZGeZ1YYC/6xa0CkmvQWItoEFfZS8XurqYkk8vmodY6kWbDcSg4izRyY5vDnPUr01dZ9UfMPO9vRig12FydgiRhkZFu0YxSnUexYLHK4EKuFU3sH2FL5yKHhWIYn86b12NAgAYgMBsUyPrivMLgdjWKuhURxpRGQYuhNiMS/Lg1ojuE55PSAxMkJl2yqG4ZHNtZ7t+FiDmXz8mnWnlffyhk55zYzOz+UdiiVLopLFCXGYPjjWrg6HCJThcBq7M/lwbBXbVqlWDBxHjV0reb9DRYvX/sQql004UThbaIXHDe83/A6LBrHwuUllWHwfsudkCfkmVUbZ8+mkNMoU917VYREyRTcMzpK0D0/mm6k5Pec589Y6v35RlYLuppoYiCGGoaUQy9IkB9CG6sd88SbTJd+t7N3J3ps4uO4W/r2f9+U5nc2t0t6buD856NFTPFj04q5xeWaI9Yl0f9TZStPOvuYEIeC7wLaqfP1jv8D6+npfNrphP/rosT9nuLh9/rE3yjXO2fl/9V2eAX40MVCGTwFes9OhMNxS/iDuFD1slK+c8qOGXyTEosqb1YIGOzTXFNNAkC5pC2V7SpvyKyPH2WZtyKg9MOc0dFr5Xl3DVHVMo6mihYEKXIdhdaTdX6tCW9Qw0QRDRoxFwjpq7mTUTE+3b2gX+5oxHsQFgmL6gPT21gCrigY+uAn3YBeOV7lwnMi+0VB93rA3UE9CG8cQoS11RvNouGqbEnlg2OfAsN18f3bb4CisK+F54ba42DCsW6YKZi6wrc7tqMfygTipkpmRyBDmPT7sMNxUgkWyF6po4eLFUEkTvXiEdt2h+humhzihCIliqFYH+9uJsZ6wE4+52QtDUvfpVi/8DsX7kx3rF2kmO7I0rWcYbIf3Jd5fciEoxL2ehHbfW10UKpJjMc9kft0C1yTXEIjbYlsotm2ydQdB2GLYznhSSZeO4naa95lurhzT0NFHeQ9h4JPnJz3ZRHl18F8eenjpJdhQN4h5eMlAIH1CU9RtjWr6Yo+QOsD2YlAbTgHEdUahp4iM5kUNt9jAi2nF36baIrxZLfgL04R/Yjozlo/ftvhATJdMHyJcHCRGshPLK+Yn9VCRJLdpbts8Jz1wQQdy3at7uWSafsLiaoqBphhtXjzCcLZt3j2avp1BvkBDNtBoPc/0coTHxPcM8XoQwozS+vG0emvAI0uf3C9GrdN1L/oLSa4sf1kZw20xL2h5tQjJrHg9Q1hIKppEiJ4wHDtQec2MG8tL/Ivuy/Bi5yYj8oXbSU8bad8mtJ69nSBKIswennPy+Yj3KT6bXhA9YyF9+NmJxLUtsqBQIFnkwfB8tekYQPwLUS8YNHJ6LLx3N3T6HkTkdZ+87nf0tBMe01WfguFGi8nSzpFdJ9t709CGZN1JO95L1Eug40LV5PsS0RZGPsWTURj9NLlvs5QN/ka6R9vTbQ/d9qI6k/wbYIAXCwa19RRBJKxi4ywSYpEUieSnGynuhRiLBCn5J+bdrTOQEeIoj27+ULWmmx0vxYxii0iSYhnZ7bZPRX5+mLdK914yMqFI3JOs0zWEjjsJccAkpj1RQiwjrcm6ktwP7cRxPBv8JfMX805DN0IspjEMLyLFIREXz6nV4hcLSXGM9IbEWJKP7N7Ee2qpjOmDB8trmTokOUuc8LbuT3xGskFoJ7JkpD6/+D2J/yFOiEOylCQsSQIrkppOxFYkxjKSLf7F7tOI12/p/QrfSU73GNLdrudAQJ63GKtGev3Wtvy3iOQgLA3J9yQbtCSRfF+y/bI8OvmyT5LiRk6nUjSlA5/ku+6mVMfKsB0vZIABThIGtfMUQKYu6aqfqhJ3IsUy8gJxUixLL57TSTk21ThBS6rDPUMkhCJJFuWkkxiUI4389qMKR+f1QISTkE3BRe+7B3X4RAhxuzIbH/BAu0rcKyku5TwKuk9B7PClZD9ZhrYkPRFiSFeJw3Siah3dp0CMpYQxhRTLiGgndbjuyk0ielEYuxGrNHW4F0IcQkaIoXeVWISqC88p8RflVdA6qoIiMT4+l+dYNe5uT/w2dLU14E4eSyJZZF31KZputBAyCXGgE6LbIuJOA71uam+vanASMnX4RAhxN1Icwip1jtonvvPkgCftb4ABXsgY1NBThDSSK1OJO6VPbifJragWyxTjTuTYbB6vOBq2174iWGYuYah+z/5J+4bg+P5UIE0dTkPSVEIGmUlJ8liy0z9RQiw7JtYnmUocntOJFBsqDJtQ0IO/NJOAXs0lQE6I08wmkipxeG4yPxk5DvNsV47b0wIcqcjcA0ruVetOfNNMJWT70pTzbkgS4qQJSIhOhLibSpzMS4SUGHeZMl+91+Su4y3SpaudB1jhItgkKU5TicNFdFtFJ3Ise2dAmylO23kp76kXdbgXQtmNEEN3UgxBVMq0gU9YVreg0cjpp8wkQlP1bf8bYIAQAzJ8CqClNPLdVOIwfZIUd1OLZYpxJ3KczHO5rjFfa6moMmVUVD6z2lD8YJoqnJZGRJh+Cw2VzDa4G6ntdFy0A+71HOisoifV4X47614IcdJsImkmE0KmEofnpc1AJNHJPllWvl4IcbCvu0o8XLTbiHObLbBAdI0EaZERY8PweLqs8MR6sDCrk11/2nNJtw2Wm0ok08pIVDd1OJ62P0LcKykWiVsnkpQ2zS8jxz94Ms/ja+0BZ2SwhYAmaQi/r1ozIEenNCI6mbjA1lxPRnl1eFe9QEY009RhWfrkO47Oa5JikRg7uobmeJH/4E7vOpt3Ijvx8Lrd/gYY4IWKQe08RRAJbyeVOEmKZeYTyfPE7U72wtBOjpNqYtWBYxWdhapO1dmMjsnMJTRFJa8PkdOKWw7pGkNIhMP/SVXYdeR/TaS5XevHNCLNJMLD7WoukbxO0r66E3pVh2VpZOSsmx1xmkrczXxCRvROhBDLlNBeVOJc3iFfsMkXbOmsR7LjFhW5TiYVtq1y9NAQh45nuqrDsv2G5B2I95783YlYd1poGD4HWTpxX+wZJwhxmkoM7aTYzmipJimxMofeOXqcIl+91+SO43rsG5GZSjhNV2pJt5EyYut4CjVHoeq0p5cVpd8Z/DTzFtlMhAxbUYf7MZdIHgvRyRZZJMVDaw0yNQer1v3BmDkPt6ANzCAGeNFjUINPAZLugGT700gxyG2KZWqxTDFOI8dpBDlcEBS6fpMRychcQtXJ6cWgzK6kc+xHFe60+C5BercCUSU+Ee8SSYSmElFeHQhz0iwiqQ5vFyHuZkfcjRSDnBQbQr4y9VksV6+EGNpNA6CzSqwbHvmCE52XJJdScqwH5yXtj5OkLnDZFrht22hGse6mDsvuabvU4TRziX4IcSy/hHLeSSWGdM8SYf4ysxTZxEgnW9INS+4bXXxWtheQW8dTWLN0ao4a/dmCC7bYNT2FmqNStoK/mhOQ5DQ/wyGSZi/d3lkSMlOJTgvpOqGbuUQ3QtyrSiyD0XCl71j8y+bk7bL8Xb+4I9AN8KONgdHMKYKh+oyYDgXDAHzWGg5LdaONKJ+Rb8VzF89N4p7FQltnEaRtpRkyXPYOWWw6QeM3VzGoOkE0t515OzbluFDVOV5rNZIzBZup3P44yU32cp7Doj2PrpiMunn8ynKwP0lcjSxKrgR2Hb+2jlIYD1Tf+iZ+fT12jlIYByPbcrd2AnZdqqIF+Xot0wsVFXwfVC2mJKuKFtyrXW85ZzWyYGRxPCsKFBLCVHNR1Lnw/DAUdU4rklcCX8qO4rFuLQC1yIZRfLe7Cgqu57Bhw5qlR75Tw3SGGnTUe4es2AApJAXHKgaGCjsLNiOmQ8NTKVsaz23o7Mi1gnwkMVcxeGYjCChQ0P0owEBI4gq6z+t315jIxT1uqIrW9iyg5UGj7vrcs1jgsXWFC0d9zig1eHo9w/cWW/fS8oUcnGt7AWkYMWGp0ry/hG/hPdN1Lp9seQi47ahCeS1DvmCzd8jn0KY8HLmhwoGiz7Dhcl+mztGj+YiYjE3UOTjeqgNhgIV7HhtC132GDaS+bMP7CMuyr+lDXFQxw/xEknWsojNXgxvO2mDIiAeQ+d5xl38+okfPJXwm54z4XDldi97ZbUdVllcyXLy3ztU7rdi1/uQbo7Hnlss5vPqcCnsSwfE++8McRw8N85arjjOeSfeJ/Oiawj1fnwCai+d0jz37N7h4xpaqqbYHq5bCP31zKiBiBY0zDq4xPtaIpUnibadbUX2XPe/wPMdTKAshfUVf7eGARfxGGq7Kpq3E8uiGM0sOtgeLNZ35Wquuivi1cze5Z7HAdxcUrprxuHpXRgi+Y/OV5+Crj7d8aIfYtXeTa3b5jGQcHlzR+foDw1EgmNAvcTbv8J5rWlH5ZMGVvvJAgcUHs5Ev51f8fJmC7vP9Z3KsfNfE1VX2vWaT86bstm//0CZRCOcQMr/GjZzONW9YYke29TyP1xUeeDrP+lqmjfBbJYPzXroQ+6ZFHD00xNIPUx56j1DpzatPP/kNMECIARk+BcgoXqQCqmjk9CJZzWYksxmR4pzusaegk9OnpC6/xH2r1rGYShgGZwhRaJLgsUyGYWMnNbfMaqPMSl3D9jQMNeg0djRtvY7XAnIjNmSG6qPXq/jPPZx6X8qBSwHBPGFtMXHjGTCDMGW+VYHqWrOA4600rgMbq6BrkCviuw0U0f2ake2ZEMcUXtcBezPIJ0HO/fo6arYEQ6N4vovueviVZfz6JtTKQvnzkB9BL4yDZgZpFRNdNQPSjIKuD2F5NWyvjq620vgrzwVlL05Ky6qrPmeWDuCvHaUxPEFGK5PXNylbGmtWy09xSIiD9zWMoWZpuBXWrQprVlxVzuke02aOx9bs6JygThWj6zbcCvPVGhlNAzQKOrxmZ401S+fb8wamCq/fXeOM4k6MhVU4sgRW8/nls1AaIRYIRXi2/tQB5qpPR2U3VJ+zSmMc2tgkqyvUHdoIcZA2WJD3b86u8Ew5w+efNNsCboRK74Xj1ebzCXygvnyny4XjFqc3yf1cVYnyD2GosH/Y4eFVA93wGJuoc0bR5+ySz97hFrG3PYXbjgT5mhmXERPGs25TXSQWBCW8jzNKFvuHk2/Xb3OvN1/TOFbRMdXAfKb4+GP4iyvBQcflmkt/gssv8fnGUfjmnDgQhrNHhqi7m8xV4lcxVJ+LxqYw1o4DPsZPrnDj18cwDI9Xn1Phqp0NziqNRQMzgNnqs3ypEDwHU4WfO10jo8lDSa815vlD4K5vT0VTiLruYahwyYTNWaXWQ/ZwsVyLY1WT5SsWIhJtZlz2DvlcOuGQ19sH7yFqzaAU4QA9GWEuiUYfARx6IcGGGgxqcrrHcl1OkkwV3n56hX2WyT3NczKah6YYDB15FjSd8vRODLVdxY8Cyqg+F457vHJ6lCunF7jtSIZ/+f5oLMz4zoLDq2b2ppb15VNP83/Vptl8Sue1b1nh186pcPuxPPc1n69jBAFrzhiGV+1sMGwE78LzXcrWIrfP+PzTMwbPfWOI/IYlVYpdXWVvwect+5skH5eKbfPAuMc9y1UeeDofuTYsjjR46fllrt0dHySLyvvs5Aafrw7I5wAvXAzCMZ9EhGEkn134MMPFHKaWI6cVURWNurtJzSnHbFF11aSgj7bZvsqm95cbh3E9h7obVxpF7wVZLcewMYGHi+3VKVsrlC0tUk/GMkHHv9JoROcMG9mIPOVrNv7swy0yJIFy3ksDxffI4/EDTvMcXYesGSjB6+Ugr8mxiCTjOVDZgHKzpx8rBiQ0RH4ExZR31q0H1CGYh+vguwnPGHY9UKu14P6j49W1oCwhMhkojLXU6mQemh7fb9ehHthZ+5Xl4BrFKXk5PQf/ge/C/gPYIzuiRXo1pxwpryKhKhgjGGq8DDWnzLpVwVD9wHa7+d4aboXVRplhIxt1hEls2Escr1k0PJWC7lJxNDKqx85CsBiyoI+izT8Jh4/gu636qGQyASku5EFv2ok7Qido5nF3nMa6tcBoZifK+jyN4RKHN+ejJKLyF5KfmqMyYjos1g0pedmZt9k9VCKjFmh4Fe6Yr0UzGReMN1io6qkEae+wxWTW5rG1LLMbOpNZnzNLdam9acXR+O58UC/2FIJ04cyKiPAewkFsEslFlwCT2f3U3U0yj9yDP7cIVtMOw3FRrryCzZFScK7vcry2gdNUSncVJqk5ZQ5XgvqQUT32DU+QW12KDUYey+ix5zeedTl7ZJKsHRYqSHvUP85dC8F7vmaPSU5rDZZi9+C7LNYP84+zQxQNmjMQDueMephqLkoTouFW2bCDZ/jF2SwF3eeisWB2IkSS2KYtchPTxaIipqRPIhnOXH6N+PYZJYsh3Y09w2TE0CunPcYqHrXSCKqikVk8iveNO3BX6hhvehm1nafj+nZkPmV7dR5ZDVTYvUMNdhXOwl87ij08xiNr8xHxDoWInO7xEyPT6TfmOjxaW+AHi7loMPlzp2sMGxMc2nyGfzlawFThdburTGTjhNrzXdbtBf71mMlj6/LnEua5t+Dzc6dr0XkAVWeTh1Zybbb0oTnRldMthV98dgBPrRt8e7bGR1//7i2HYw770e3CRrnGaVP/dhCOeQBgQIZPKsKPeHn1ZorFgNCl2aeG0+zhn7g/+Ts87vhW9Dvp+SF5Hce3sL2gUW6LnkbLnlZ3Pfy5RyFUrWKZpJBiXQczhZAmiXRaHjLkszA53U5Ek+jH/ZrrBKQ1VICToUrF7awJxR1SMt5GsMO8V+agHpLrenuaEGMB8VH2nI9lnBzFJFkH0hYYhmm15cNwaDb2jiIiLDwXpZAPBi2yBY5JaHowoMiV5BcOz8mP4Ci92VVaXi0aSEbZdPFZ7fpNTwc9kKl+PHxoikpGy0cmMp2e8Xh2D/49/4K/vBojwiF8O/itGBrKwdNgx+7gQPLexOcsHssMBQO3JGTPJjOEp7aeRVq5La/WDElOx7Se70ZkOIRs0BOiGymWvSfZICmNHHdSjtPqwN5hiz3N6IphfUmm3zt0Osq9t+M+NAuAX3fwxYI132G4Ty1l0F91Psrug8F+WbsBLTMxswDZIemxCM1BeKe6lkTUt+BKzxPfcfK4uB2ZgwjfnuValK2grRGVfYibDFU2avzUwV/bMhmePf4RisV89xN6zrfK/h2/MiDDAwADM4kXBJIktxta9mkJBVliA9WpAUyeE9jYWkHj24G0ikohQE9aTTO/5LlpUDIZyGY6h2reKsJIeAD1dvvX6N4dLVBw0zqwEGFnFZYzm4F6o+O9KsOjoOl4mRxqH53aiaCrG7nme4+VWxwcRM+lAzkTz9G11gxAygLIwCwmeM+qnu7oP1l/ddXE8YR312HW3PUcNEXF9b2eia4saEpbvk3ClDZ4TR6LnkGCCIckOGR7vu3B4gpK6PJqeLT94slvwrECy5FO30p4fSMb1P8O5Q7LHu4XyZKsvVIVDU3VMdSWnapoQx2aiYVkKbneIWkP3209RMg/k+p+SL5kQTWg3aRMhLg/rC/h/hiBPuNs1PUy7pPHW0Q4QYLb/qcNnkP04o5ymyCro8mFwOH+MH3yd9hvhKQ4tPXOqB4Nr2VOJK6BOBGfzwMMcLIxIMOnEJ3ISFIR7gZxZJ7mHUFUm5PqTkc4bm+kNSQ9mnD9Xkh0Uo2VYTQbmCk4VqqN6glBN1vT+53U6s0VyBW7q9Nh2ZqmJ9Qbne/Tc1CKU/icmDeL7YKqaPjQnQjLjqXty+Sj8NudBhS+20BhKPV4WD7xd0YrxL4Z6UCw+Y1E7gD7HFTJ/EWLCnSSMKeRxFaBhEFmJyIMga02oIwWQbRJlpHgtGNp30qPMymqoqH6Wmy0KyPFEL/nkPR0IsXQToyT6cNzkiQqtNlOwvbkrtbCfCCdJENgfqKpevSOw/crDqIsrwbDJTJnnwVPHo+d30aA6w6UMvKLpRHhThDTGb23G7H6iJbqNz1MpykGrm9LSXDbb7S27yCNEA8wwAsZAzL8PEMkrLJjst/Qu4oMQQcmqjyy/KTohbQSEKhkU5dKpsM8OxHQbCZQFUOb1H5ctGl674Q5qYB3sI1G6zGMtJkPjlud1XUAMkMvCCIMxL1upJHgkMCJ7zvNzETXgueVNohIviPXQe1lwAGRT+uMVqDhVtqOpxLkLmJvjOg233VSAUsLqNLXt9qNCAPehoW6sBKQ4Win+C4SMxpJH90S+G4jmIYP761L3fN8N1oU6mC1KYhJYqyiYaiWoOSmk2KgjRjL1OAkMRbzTaZNI8jJfLohfMciKQ5V4uX6MQB2TR1E2/UAzuxapAqL8OvN92C7nWdSEoqw7zZQkt9BmivKHgc1baZ3EkIMcVLcDyGG1jsR322SEA8wwAsZAzJ8ivCCIT29QO9N6RUhberSyLQjIV2y88IOv1sttaot4pxEJ+LquHICHJYvaQfdTXkLjzeq+I0uynCSzDzfsOvQqKaYRQj7wrrRydZaRK8Dkz5UW9Frh60EdtmdTBXC453UY2gnujEToh7cMKUppdF+t2WC0okIt4iUF9TPTmqw68h/h3l1M/HpgBjB99sJVBoxTpLabiYR0JkYy84Tz+8cjll+b/F0LSItEkWZSmyoCaU3xTwiFf2YRmyTeZisXiYHecn0yfrbCyGGuCvCJCHWTpAQ9xJRtN/8BhggxIAMnwJ0WjQX/u9H6e0l7zTIbMPaUNyB4rj4h+da+2RkJyJGXRrtblPsVsKEo2lzS70RLM7r4kwiyLMLcZaRzw5mAJH6mc0E0/3dSJ3nBNeoVIOFcyvrndO7EpLzPMLfWAg8HIBUDQaC9zSUR4mZxSRJcaKzbzSjGGaGWvvS0IcJjNdcbCf6d5amSywwbdvfgeT2Fbmwj0AuvRBhKalKU4NBUO17sG/vs96pWruSnGyvNMVAVayYaQG0q8PdTCKgnRiL54WQnZ/Mp5uNqqgoF003yitJiKGlEo8bM8Hzs1uLY6XmEcI2lpM+cIb2AU23byT0g94jwvcnnX0U6r+MGEfpOhBiTdXBtaVmESIhHmCAFzIGZPgFiu0ctXYjwLFraXpgy+o5MLfY8owA7aRVTymjjBx3I8BiOsfB3wimv5XhQu8kSdN7U1xjJKL1u820w3JgKLF6uUtH5a+ud7cXhtbxFwIhrm8GPqIdV06Ew3dlGsHCRlOXDHAS5ia63nJTVxhOv89O0/tp5xhZHFcIFd6BCHdVazugXzIs+85itvqe03qmErKbJFERmeqBBKeizRNBig1rF8jUQhHt5FhOikGuFoN8MZxIjEN0Ile9TMknybKu+kxm4+1RJ/MYf/b+1LxT36GINCLc60AxXFTcqw9214kIcZRFCjGOzZQ0TSWi413MJMSgQgNCPMCLDQMyfArg+W585bssDfKFbm3hfpuNkO3Vg8Uc4X7kylSQtkVoNVUnq8ltVevuJrYfKB7DE/tRzmo2wM1G2n/siUD1dFyUS85rBdR45BGUA6cH5gHPHgnOkXTSSmkYdozhP/xUeideLKDM7Aiuk8/C6ETLF3EvGN3Z+t2JRHsObAZlbSPB0cLA5vn5EXkergMVwQWd4waq6Wm7g+3jK5HaqsxMwo6x+DV6IPleJseGvRQRu5LXLpNvaHWpS75eZhtURaNQGEUrDIMz17qP8VE44+yYpwz/0UdgZhpl6mBXd19+ZTlw86U2PWYoGv7i0x3vuU49CGoiC+0tQc1pBUgRO2ldNaPfjmdFZhX9DjC7LXjtBfHv10eZHEOZHAsGfE8fxlsPvs02NdF2UUsZwWQn33rmon9nkeT04uoudhO9DcTq1LG9elfXfOHz2rBFl2fBvpzeWoRmqD6L9dZzEUMqi0jyyIqtCcdahFYMnOJ4CscqhpAORjOtSIxlS2WxFn9OOwsOpmbGXEzKzAlmN2BJf45zdp2NX15AuWwUrXwHzpGNGOlVh03Mn7m8dYGyYNfefObK2D7q1Nu8+Xi+S8OroCkGecuXv8PmPivj0/DWEqQ0GwuyEsJyazS8Std6m1zDktEKXRdfJ/ueNEK8KTt5gAFeIBiQ4VOAmruB4gjENaWTNdQsFXuNuit3QxMGVrC9Opv2OseqJiv1MGBHMn3QYAaNUSZ2fGd+nYncpjQgw7HKJmuWzkz+GSgE6s50fh+ZlQUAlIOnoZx+GfONWVzfY5e5F852WBoroCujjM6cg//sDwMTC0H9VSbHsC97FRVnlZFMHu+7P4hdV8mZKBeejbLrAja8NTJqARMjIFaLT3dXwHQNZeI0rHwhFshERPK5a3Ydf+O55uOSTPdnzGi/mxZJrjCOv7EQeJ1wXNgxhr33fCrOKoW952OsHMN/9JHA7KK4g8bIODWn3CS2zUxkpCQ/wmrjGM+tLHJow2SxrlB3Xd562jzTxN+bp7o8sV7jgWWTugtZDd6y3+L2YxrzzWqXTeV1LrDEheMFLjv7LDh8BOWiK5n35vnhsgeoXDLpMmmXoJDnWMngoWNzsRzidcvmzNIetMoyT9pLzFVNDNXniql9HVUwp1DkweVjjJgOZxRPQ23USIURLKJzfIu1RiufYQNy+jCaYtBwKzi+hes5eL6LqfXmrD9pBxtuJwlBkjR4vounCFPHEpXYymRwzjw/qofZ/eehzD6Me+9TQJwI65fuQ9m/O/7MQlOTaDtZeL3ztrivRyK8wSbl+kpH/8wFwyCrDWGoWRzVYqnuRYSzYLgUTY+c7sXUYttTovDw8zWicOBpmKtCrRE3AD591OPsUtyswlYVHlhVmF1u3ftwQeGcEY0LxoJ7Xm4EoaY3KkGai2dgJl9lLBMnphAnxY7n8dHH8gybNfYWAhcfb/rZq5lYa2D/3dfwbY/MO19NeddevnKk1Z687OxNdkpcjm/YS9w5b7AuhJgObZcN1eLSyQo787sxqwGZFk1glGyJmlvmB4uNKDjLGcUG41kNfMm7VWG+usaapUd9i/jcdGGgEj235kK+pEKcRqhFF3TJhXN53UPPbs0UMLqFgc3wACcRAzJ8CuB4Fo7fCsecFmEOgo6i5mjIqcBmlL7qqJQtNYrCJaLbopEgVK+FymqsDI5vcWjTpOG21JO9wxbTecB1UM4+C2VkF6vOcR5eNTFU2FWqszCS4YlVFXDI6UucfeAgw7sPBiQRAgUrV2SxfpjFusHo1EHUy6rCAwqeh7LjTNbdZVYbZWCVklmgZE4Fq6tLI11uKgv5EWructuhtAVVuanTMZL2d8kp6UYDVo9BcTKmxIfQsyUUz8FXdZSJwGH+sephao7KaKbK9OSBIMBHYYzGyDjPlhda5RrSmlHl2j9D215iqV7l0EYuCjNcceDhVZPcZNwu9NmNKt87nuHRtVaneu6ox/cWdSqhsNilTszXMlx04RTm8BTLrPLd+TwPrCocGPahOXWqnHURdy1YsehVYudpqvDYmo6uHuK08b2wcYgn13XOHQ28mTB1oHXviXey0TjGXMWgbKnsyC2RMeSG4ioauMF7cD0n1rkbqoOhBu/P84PwwEHn3MDUch3NhUJvCGk+v9P8sLb5X03pYG2vTtlZjMwGNEVlLL8LY+d+NMHzSDhLoYyWUEb3BGHMQ7vr5tS4skVTh6CggleULvBUhXpjMwqokAZDtVCpYWo0Vfl6RPCqjg44GKpOQQ/uzfE0ypbKuqUwV4P5qhJFPpOh1lApr5vUqq1yj0/WMVQXQ/V5cr3lfaHqKDxxLMPqSusZlXMOBb1K0dCxvIAIz84ORSGQ76PKnkKeyZxDTreaZUyP0PbA03keEPb93Ok5iu+4Oijrjt3802yF//1oFjMT3O/TG0P82rmBmh/Wo3Jjlu/O52Oht82ICENWhyEjS1Y7SiE70jyvNTBzvDKe57LW0FmzYHehNSjbUFoabHi9ml3m0GZrkXHQR2gxUxGRJIckVpwRkHk+Cuu76MdbJMRZTSGj5cnpRTLW1hdzDjDAycaADJ8i9KJUytxEiapb1VGpOlWGm/2yoXYnviGS6eaqJnNVUYH2KFtaLHJTRvPIqB7z1TmMYQUwwD8OTqBiG6rPPEs8sd5qZB1P4aGVCiOmw8RYSGgKMRKz6hyHnbskzyF+/1VnMwhRPbEf1Uso30llS9WlEcxk5ERTDBzPYt1eIDs+Hu2TnaMrJrqvovvgpJBqcsOQG2bTWaVsHaImhO9dtxZgeierjTL25jyi09a6u8mRzfXYlHEcJhnNYzqnYXk+RU9hsabzD8/EidrDqwEZEAnv3z9jtu1LIlknbj0cmnyE9n3BavwHllUgHLzozXPj7yO8ju3BbUfyjGeW2DcchqRV+M780bbzxLod7A/K/MR6DUMNrpe0GRUVrORzqzkqNceiaAb1TFNUbPzI3jN0yRbz0S2Zpk7zw5pERitICUIakdZUHddtLTLzcLFHdsBLdsQW0wIojRp+vbkIM+Fn+0QsL5XsUM+R/hzPQkVDV8VZpnYE7VKDvF7D9hSqTiZWtxZrOmsNnSGj9VxWG8F9ml3aMMsD3fDQdR/D8LDtILGuezy+rPF4YuzrOCob5Xi90A2PpYrK7RVYWcrG8gBYXszyVd1DN3rzPhHmGSL4HkeDb2AzaMNCIhzi448FJDscrD1dLsQGACIRDrHa0Lj9WB6wovNE29ykr8CnyxmgIajLLaIbzCDK7anTbKzrbg3cWlRfRbvp8LuRmSAlyXJGK6ArJqY28DU8wAsXAzJ8CuALoT07eZYI/Duq0sZJJBF1NyTCfs+Nt5jHWiNeBtERfdIp/bFqvGOJR4FSeGLdlJp0bDoamxvidR3AaJLrlsLaTojisNwahprFVBPT3Gq8XJ7v4vgtVTeNBLu+Hflddj2HirfWOp7S2Ge0QqrXgdAW3MOl7m5SdVrvb8OGDTu0dW73tbpUc1msG202jDLsLUDF8Xl0XWGjD69svdSPrB6QjnuWg8Rhx2yq8PSGwtMbRuzdhL+TRFu8VsWBR1aDd/Tchi5Nk+y0IXgucdMfTZouOa0rkuaq03TnhFjmbItwpoQsh3a1N4lkPciohSjUeS92xGKAgg17SVoeVdHIGAWylPAry+1K7okEnnEd0MyeypocGHRbmBYqyMlBemj9sWnHn52YTpYeWnVsfKwRKcSOrbKy1O6TOiS50CK6ALWqHlOVZZDlF+VleKnbX3+ydV6SAIdleHxZi50j3qsp+R5CPL3RPgNjqqHqGvwPzZ/CGcLk84y+D0mwEVl7GzM5CQc/4T7PaXM/qCkGOW0QyniAFz8GZPgUQFFUecea4o6p26pbccQv298NnaIwpXV4yYZadq1u5ZHZqMnSGqqPqZnNdGY7EZagE4ERVd/IxjPpM1VChJPo5ms2CDrQW6S/iqNhewo1p7taYqhxgtDPAEhEtsPXnqYgy95zJxKctE1O6+xlBFesly2y214mmX1j8ljrOn5g/kBne8PkSnlpmrTZHV/4nUBY9ww1GwycEvcjI8IxbLO3Eb++jm5M4anBdTot7O21PQpRcVrp49Pl7WnDfVktqJd1p/1YiMCemMisIQ2G0Zvi3QuSBDh2TE/MiqSQYFle3Yiw7BtNDj57nw2ME2HZN9XpW+oG0aSoN5v8PqKgSqApRm+uQfvIb4ABQgzI8ClEL52xpuoYfu/Sn3R034HsiuiV+Ha6Vi+EvFcSLG4H07NmT6qDbGob0hs7x7Ok0cbC60a/mws2uhEpAPwgfa+diu0pOJ5Cw+3N5dCapbBhNzvEE/xqO5tOdCe/Qbr4tkiCO5Hl+O92IhyfKWhPJ+u8w/qVPJa8lxNZMNPJzKlXH8OmlsPxrNT6KsV2hR+P8tsELRNE+8t2joAYBioJp+i7IazTIXr7FpSuddr2Arthqzmj1YmoAjh2d7bYLY9YWl3yTWTa39+JkGBoEWFT8o3IiHD4zSWPdR5AxvMVkfyORIgzGuK3EC6sU72WF5cBBngxQtoEPfDAA7LdHXHuueei6wNuLYNsFWyaUiyL9Z4GQ/W3pPLG8+icfy95diPAsvPSSDC0Gt6cVuxJcQgJRnBu50VSkB5aN0mExd+9+qXt592VLbWngcumrbFhQ6WDitxtgVxaGfrJqxMBlp3XDwmG7SXCInolweF7ToauTUvbbX/SDj08ZjVt5zuZawDtqvA2qcR+fR2aYX9VtcMA3de2VKeh9wG5qYYDyPS6HVMyE8TUkXwT/RDd2HkS0iuiXwIM6SRYPCaqwdtFhDuZR0Rl7fDNpA0okwjNilRFQ2dAhgd48ULKXl/ykpegKAq+35vKpaoqTzzxBKeffvq2Fu5HCf2oUkmSloaM6p4w4W2lkeeTrh53J8Cy8zuRYGgR4e1ye5M2COmVCAeRtfogw328O9B6en9J9Ep8e1WpeyW/IHfR1snucaskOJm+FyIcv26wbyv1aStR6drc9qUMysJIbbJVcKLSHCw4rXcJJ76FkN66GURPU9ujysnKs5U6Db0NxB0hXHJahDkIyKJueBEZtYQ1D90I7FYhI76ta0rauQ4kGLqrwWKapIeWtnP6JMLbpQr3Wg9OFgau1QY4mUit3XfffTeTk3LfqiJ83+f888/f1kL9qKGbHSsQLeqC7rapIXTV6ct+tBs56tSBpZ27FQIs2ydTnxzfCqbf/A43KYSK7WbzGVw321r0JovCpLSTYsezAoW6w5S1qukB0enj3RVNj1oXO8igzD7DhoKV9KjRB7oR6E71qBsBlp2fRmqhPyKctsBS1nn3qmZtFVvtPOMBcOrSYzL4bmNrhLcTwvyM7mGZVTUgH7rSfcFdONsy3vQl280dG0DFVjHUVl0SvSuI79BqkmZH93ActSNRTSIkzv2ck4SM/EJ/BDh5vFc1WDxPZoq0VSLci61wp2Mte/L0hYcDDPBigpQMv/rVr+bAgQOMjIz0lMmrXvUqcrnenNr/OKIfw/9+OtxwoUo/6E1JTk/TC/lNy0O2L0mCNUGxsr16c/qtQ4PrOpGS5iAnDm0eAJpRlcLp6vB6sXOE7YiUe52nX/tRLgw1CAE7VzU7BhsIyusxYgb5bpzYGpSug6e04By92A13W2S5VTVY3J9mfy4jwm2qcDf7W1mQCrqrp0mVN81NXyePE1L7Y9fZfpvhPvJWtSwZtRAFMekIH3K6TQ6vuTA0vaKF9b3qKNhe8P5tL33AZqtQ0AE8qf/1TgvreiXBaYQ3lkZifiH7nk6EBLfvb563BSLcDclvqheCLIt02qsAMMAAL2RIW/9vfvObfWXy1a9+dVsK8+MCWecaLUTokwxvZZo9PLcTZKQ3RD+mE70QYGifggvVW1XRyBpDHTvucOGG57YWJnVqoEN/s6piSQMlxIOgBO/F801A6awOd7C/TOYdRneysw2WUv0MhwWGnO5gqBp1d3t8daZHpAvQC/mV7etEgKE3Eiymk6nB7fmkE2FxcEUPZl/dgmck00K8rqUR4dC2UhawYNsgi9Kop1wjJP5ifZaEczYx0DUzNnOVhrBOb9j12PtJ+icObYttL1CDu9VFQ/UZz0LWUZhvDkidFDdq24FuNsf9EmBIJ8FB2nQ1GNrNIsTjnUwfuqnCnZA0M+pkIhFbOOc6qYPKAQZ4IWNQa08BQsUwdBHmeBYebsxlmIpGw6tIp52SU6sQdLqmVosarclsu2RoewprVudX3In0Aoxm5A1nsnGs2K3rR4170z2aSBZsrxWFSNbAiv59g7yygY1jN2i6VKUT84qpvY7Vti/wBtHyRyt77qlTy56DmR+J+TpOg+vbUUS0CaWCoVY6BN6AEdNBV31yug4YXZVkEVWHtuheI2Z7GkOFvN6uLDXc9kV+SX+xICfBU/nWsypbWuQerhOBDjvqEdPpaF8uDqi0hM9pt8M7aoNYB10HNaxHYpIupDWsN72gk4vFZF1UciUw5ZH4ZPDdBszNBhtZE4bGULKleKKQqIShnZvflpfJYXm1wP92GHrXCxax6o6HoWaj76GTuh08ixpDusumk24/HEQ8a9XNToQ4qwV1tur4FPSgXQuj2R3aVKIoi1vF3qGgbtmeIg2EkYblRPMgtbHXYUe2df9ZLfATnyxzkuiOZ9IHi1VHYTTjRgGSOnliSZ6f5p+7HxdrYn21vTq2V0dTDPJ6s64JhFgcAHZy49cLQheJ24WBoj2AiK5k2Pd9/uEf/oFvfvObHD9+HC8xVfyFL3zhpBXuRwUqGpm1ZfAclJFdoDY/bM+H6hq+VcEsTuE1g0uom6utkzWdrDGEo6mxcMBRw8MKGdWjaI4x7GajqFX28BiL9cOpZHcipzFq7sTzXVYaRztOv49kpsl6kqrSJBIWNpZ7WHrfOb1IVmu5cNqwl6i7m23pkjDUbHCP9U16bbNURUO3mvbAmVzchri6hl9bj9Jmx3ZH09aqogWeKzwFapuE/jCz+RE2mkE5VEWDejl4vmkqSW2dfGG8tZ1USJpR8iwvIMR5vUReKTBseJTMJdatSmzwklE9JnIaBX0CVdHY4VY4qyQnI2kEpe7WOLSZ4bkNIyKjQ4bLVN5hMmtTtjR+uJzDUOHyHTUMNQhj23L95ba5oTtacTi00b5yPEmaR0yH/dk9QX66wXLjMI+utnppQ/XZO9RgPLuT+epcNCDYPwyj5l7p/ciQJJh1d5OaU45HmlO0KAJiDG1Kfxa9GZQirBvBuU0bW1UHTY/VLXElvee70WA3iYxWaJ2DFgXrSEJTjMA0JzfcHnkxljBevxTXwa9vglWFwhhKcYowel2yfni+GwwSPT1oWxLPLHznjmcxqu9AFUaZyeedVLvz+hB5HRpuldWGQsNrZ4mGCmeULGqOGgvKEsJqmk3sG3bYO9SgYBhReO3p/Ay2V+e+pSpzVSNG/Ow+ROLwvGt2Nzh9WON4rT+ytlg3eHJd54n1+OBUVIEvHfc4Z7RV7w5tmjy21kogU3v3FHwunay0zaDN1zQObZgYKoxlXUbMRpvYEZLZ0M1dK1pdOADxyaie9J0k8wBwfa9lbkT7ew/7pKzWHFwJdVIkwsHv7VXwBxhgO9GVDP/mb/4mH/nIR7j66quZmppCUQYhFfuFabuwfASyJr6RxRyeCg5U14IIU1YVCuOBOUB9E39jIVjoojcJR2YIvTCOmhkKQqQ2yV02N8yeQhlV0RhWR/DnHsSfPYIyM4lpFhjNTJHVym3lKZlTaOVFePb7aDt2s2PsNDLagpRQ5fQiWU/HXzsKtWZeukCEjCzq+B7y+lDbuRmtEBBhIbRsoTTdU/QrXTEDIgzthEUkAaoeqFs2qHYdf+lZyBVRi1OoofpV3wyIcGUFGoEyreZKZDKF6Fq6ZQXPvSY8L6tCYWx3RBz8+npLpZYRYk0P8hAhpFNyJfTMEKi5ptkF+BsL6FqG0eGd6OoSWW0Nt9lp5PUhCvpoQNIdhyyF9vuXlUVQZQCK5ip7h1Y4tJmh6iiMZ12mcy4FYwxNWWMyFyzEzOnDDBsT0tDCovmJmztK2XJTVaRQZSqZBfzl52BxHqVUZHLmHMzxdTbtoC6YmsmouR9tdY6dI7vJakdxfY+SsQe90l5ve4Kmk8+PoCsmNTfII5pd6MU1mReQXlXVUZszG7hO2+yEKpoZhMc0HVXV0VUzZuYDxDyHRTMVXrsrt9g5W4BSGAdxQEY7EQ4VYMurBaY9fsscSAarOTgMTUBapkNu23/LraGrpuCJohbNGokzGgXdZdgIbOBlgWdyejBQGs0UKejT0X7dsvAPPUp24jTOG1VYa3isW63zLS9QXnuF7QVhvAvGKPv03k9UFY0duVWKZoMRM8N8k+8mbXsvHK8ynZ8BoOaUcbwajqdE4aihXQE+Z7TGeHZncJ0mAa25ZSaz69jNCI01R2Uy6zNittfpwCwlyDRpThQq6roav9e0xachEXY9JxJxxIFguLgyHAQmTYPE/2qPLvoGGOD5QFcy/Ld/+7d84Qtf4Kd+6qdORXl+JOEvPh20TcdXYKWMP7MWHFhv/s+aAYlKkjERdh3VcyJPjv7Ssyi6yZiqg1XFe+puaPp59ucW8ecWye2ZJjc0FpwgEqZnvw/VOph6oFavzzMSJELRMvGybyzhb64EGyEBEIm666BbFqPaWOuk8FqNTXxrHh+ifBVFo2ROtQiuoLKJnbbuenHyIiOf4T5ND0hXrQx1CzIOfnkBaBLTcD9ENpR+bZ1MKNhoeqB7SRYVKevzaEisL2RlE+6pLZ2qB4S8to6eKzVJfED2fbeBAhT0UQr6qGSwcGKKSk4rkssVGTJWcTyLnN56VwVjhPNG19BUvacAJ45voak6540q6GqrrsgGOKOZnfjew8GG60B9kxIaJcZat2WX8T0Hs1phmhHIjwTvw13Z0r0qzWuZGJiaQAr9HhajaXqc9IbvVXzXwvuU2diGphZmaLohGy80XZvpmonqb+NUrabD8ERsV/K9OF48dLTs2xNnAhzfouaWMdRsGwlOOz/yvgKYag7djM8iiGnzeo2LxhvRjEQIXc3ESHD8Jlz8R+5hDHjTBS9tmXw0n0Hd3ZSbOElQdzex3HaTqV6gKhqT2ZrURC0qjqJGhLagj3JGcZTp/CoNtxpPF2vf9DYVNqcVyWlFhowym/l1FutGTPVNIkl2Q/Tq2rLtPprlEwfFYeQ5WYRPET8qLsxuuukmbrrpJmZnZwE477zz+G//7b9x3XXXAXDDDTfwqU99KnbOS1/6Uu66665o+yMf+Qif+cxnuPfee9nY2GB1dbXNUcHq6iq/8Ru/wZe+9CUA3vSmN/HBD36wZ4cGA2wNXclwqVQa+A8+QfjH5qGYb+2Ymw+IKAQEtm6Bs9jcbjYcYkdr1/HtenxfpQrl4/jrG63zHKeVJ+AfngfmY4toFC3RMB2abZUF8MXAKeF54X9xcURIiD0nUI2TZRaIKjQJn5aBjaVWmtAtWrjIKTxf1UFVgynekMCEU9SdsFIO7mV5qf1YeF/hIqPjR+L3Fkvb3Fc+3lbWeDqzVbaw3JBOipvHI3MN4bi/dhS1OWBQZddL2LZuZZFKTiviae3kpWCMSNOnKfgFfTRQ04WFM7JpeMutYQ5P4as61Mr4j9zTeg8J+BC8u1IRCmPSNB0h1DOS6nwHxAZ/SbLcaUbC6+KarBcvEJ6TjM4cR7f6vs2LlZKmHa7vdbRQ6jbDE5qFJNOFpFpTDHJ6EV0xu0bCa204sYWC/oN3xxPrOpnJMTI91qHhwgROrrvrOBnCwWuvaC2enWB4i5GAC/oohppFUxapu3I1t5PdbzvZbVflOy2Wk5m0iWtfOuFESbGqqNvsZ7g/pXr37t388R//MQcOHADgU5/6FG9+85u57777OO+88wC49tpr+eQnPxmdYyYGgtVqlWuvvZZrr72W3/7t35Ze553vfCdHjhzh1ltvBeBXfuVXuP766/nyl7/cV3kH6A9dW9L3v//9/MEf/AGf+MQnBu7TTgC+6wZE1HECQmA5QecfbssgEM62jjFrgl6CkAyHHYSEFOO4LUU0LAfEywLt5QnPE86XdsBh+WTHOnXY3TrzJLnshJCYWJK04X2JSJJjaN2jbJ9s1X3os7VXUiw7LhLicMAgOdZxMNDLQOF5gjc0iqrp+OGMR/I9SE/qIU3yfnt1QZaob77bkCZLzpCkXkNWf7vNaIh5dar/yfrSJ7r6BpaoulHxEvadncwokud3GiSJ+UjdyXXIV4Tvyo+FMwM9R+vzHHRXx0mKBM8jeiF8GS0PVGPvqddIgVH6LvWq2wKzIDqhEf3+Uccb3/jG2PaNN97ITTfdxF133RWR4Uwmw/R0yowG8N73vheA22+/XXr80Ucf5dZbb+Wuu+7ipS99KQAf/ehHueKKK3j88cc5ePDgid/IAFJ0bWXf9ra38Xd/93fs2LGD/fv3YxjxIe2999570gr3I4MmuYoRUVmaJPFMQiRIQ2PgOiildfzF5pSyaaSTYmG/lBCDnKB3IsSiuUSyjB0IWoz0pUEkCb0SnTTCmyTIaeS4X2LciRR3UnLF4/0Q4pOEbq7EQsWwV/WsbcrcyAZT22kERqyLnfzfysxPekHyXaQh8R5kaKu3ndRj6E6MO7k2ex6Q9MQR2oqG6GReAa0FhdK8JYRaRrg61jO1+e3K3MgRzDAojtt7m+E64G6i50fw1BfHehhV0SLVPWluAf1HiuuF9J7I8X7TnWqUy3HTxEwmQybTuX9yXZe///u/p1KpcMUVV0T7b7/9dnbs2MHIyAivfvWrufHGG9mxY0fPZbnzzjsplUoREQZ42cteRqlU4o477thWMuy6Ll/5ylf4+Mc/Hplk/Dij61dzww03cM899/Cud71rsIBuu9CLOtyJcELTlECHvODSyWp2NjJSnCC3ITGJqdXQOyGO7qWDep1AKgnudm4vxMex4vcEvZHj0ERETNuNGHcixZ1U4h4JcQzisV7PkUCu/p1gBI9erosLNJ9nih/c+ODMbX/f/cwQhOiVOHcjyl2U5I7kOI0Yd1KL05TmPglOv9P+Mu8XWzlfV0wMNdvmU1msayKR7uSZomP5Os0wyOpQCvzKMhAoymrC3vqFitAsIVx82end9eM+rB/f2sntU0F0T1Y45j179sT2//7v/z7vf//7pec8+OCDXHHFFdTrdYaGhvjiF7/IueeeC8B1113H2972Nvbt28ezzz7L7/3e7/Ga17yGe+65pyu5DjE/Py8lzzt27GB+fr6Pu0vH448/zic+8Qn++q//msXFRa6++uptyffFjq4t7C233MI///M/84pXvOJUlOdHFwIJbSOgiTRSpHWIltNO0iw7IMRinkmVOGk20S8h7oXAScwn0hS3NjQXGXX0MZx8JgmiH0JKjnshxklTik6kuBeVWGY2ISG3PSnn24jQR+52dDSxxVVhJ+06TTVP8vzDZ5nJBM8/k2kfAPaqAm9BAe7F93DqucTrcyox7ocU90uI+xgUheRTXPAk8/0aTr3bnoKmBWligRU6IPQoEBLirul9C1PJReVrK3Ma0UsLMBLWs57DWFuQKwbf3MmK9rfN8BQvFtq7F8K7lcWBfaXdYnTHFwIOHz5MsdhaPNyJuB48eJD777+ftbU1br75Zn7xF3+Rb33rW5x77rm84x3viNKdf/75XHbZZezbt49bbrmFn/3Zn+25PDLB0ff9ExIiK5UKn//85/n4xz/OHXfcwWmnncZ73vMebrjhhrbBwI8rutbQPXv2xCrKAFtAypQe0CKeyfRppFgC33ZRDC1O0pIqsS4QwjSziW6EOFm+pHrdScHqxUYyidAdVgdy3ZZ/8lmnkeNeiHE/pLibSpxmNtELIU5Lv00I/d722gG6vh1F8YM+VMhkPQwRPl+xnvVMZmhX42XoRwFOU6aT56YQ4xMmxSfZPCZ8z0kinBaspO7WMIUgQW2mEoJvYhenjXDLVGFxv+PLgylIibDWnFGzhFkNceAPwfF+bMiNbPDO+jG92Qq28bt1fKvNlVnPxdhGYqzSAxGGzuZPzzOKxWLPHMc0zWgB3WWXXcb3v/99/vIv/5K/+qu/aks7MzPDvn37ePLJJ3suy/T0NAsL7QuAFxcXmZqa6jmfEHfddRcf//jH+fznP4/rurz1rW/lxhtv5NWvfnXfef2oo+vX+ad/+qf85//8n/nwhz/M/v37T0GRfoTRSR0WSWqnxWpJYtQkFb7dNBEwtHgeoUrcg9lEV0LcD0lPsx1u7u9J/fT6bEB7tAMWyXFXYtwrKe6mEncym9gqwd1iHm12nmhdlb/wnMi9Vj/T6iGBgc4DQ73HjlXMFzoT505EuVcFOM3uN4UYp6rFnUhxL4T4BAZCscAYaF3fX+gTOAjGowJWV68PIRpuNVKH04hw0owio7Yi7cnK1kqrt2yGxTYuhGl0tCluQ66IEkb565es9Ttg2Sayrerbt2htK3m0hRz36X5vL9AFvicK3/dpNOSzncvLyxw+fJiZmZme87viiitYX1/ne9/7HpdffjkAd999N+vr67z85S/vu3xXXnklIyMj/Mmf/Am/8Au/wNDQUN95/Ligaw1917veRbVa5YwzziCfz7ctoFtZ2Zo/0B8nKBOjKCPNBlfXWo34ZrWpcgjqsK4FU8W6GXdPlvRrKpgPqKfvjqvL1XqwqC7sMJqEWCkNQ3GovRzhNcJrGtkgFKzox7eyDIuHY52Qu+8ioNVRqYoWBPOob6IUxqnnszTcSqzTG3Xz+FYl/oBUnXW1wmq9HHXCoXug3YV9UQAGJ5vnSOU51iw9Suc0/4+MjHHOa34C/9HvtvJ1HPyNCtQbKIU87BgL7mX2COgayv59UYSu6F7tOizOt8hbN1KcRojDZwrpKnGXwc7ztZgu9h+3jQiHsLyaVFFueJUgClvzvA1cRi9+ZRQdMLq/Iw/iP/lc057YwT79IkwM/Gd+EKTLZFB2XUDVr5BXCvhHHwyCpiSes7L7Ala9lXb3bgKpcj2HaXcEf/WwnCCneacwsvLnnuaGrRe1uFeie5LeuTgTkLQ5TXqROBUQyVVXuE5rMJu2iM51g0V0aehkihaiF/L2PCmdqpGNb2+jHW1f74JAoVbVHKqW7W7S5p2YXfrJshnuFe973/u47rrr2LNnDxsbG3z2s5/l9ttv59Zbb2Vzc5P3v//9vPWtb2VmZobZ2Vne9773MTExwc/8zM9EeczPzzM/P89TTz0FBDbIw8PD7N27l7GxMc455xyuvfZa3v3ud0dq86/8yq/whje8YUuL517/+tfzta99jRtvvJHDhw/zS7/0S5xxxhl95/PjgK5f/F/8xV+cgmL8iGNiB4wMtxPaoXoQEKJSbRGtTAbMfIwAK1qmjRD7leUgQtu+/W1pfauCsuM4HF9peZoYysOe3UHnLssXot+eqlC2l7C8NUw1R8mQT894vssPVxYiQqqrPqcPa5SKp0UEdtNe56GVHJu2xsumNhntENhhzdJ5cDnDUxtBfnUHXrNzgdfummKpfogfHs3wjWNDrFng2MESd8cJ/lsNjbN2zvHe809jpFyDzRXYDBQiZWYHTEyjDE+1SL9joew8L0baPNzAf25xKgjasTgfDCxcFyWpHpt6fFo/2cHWLXCqQZpsUnW1ojJQqbbOFX1MNwmbL9YZVYfGZiubToMlgFK6i59+IRLhjFqg4qxGkfkMNYuumDi+RcOt0HCrUXjvsG4crRxtG8CcvXMXozPn4D/7Q/yzX8Y3jxxjLOvyE/tfAq7DqlLmsaWjPLdhsG94jbOnphj1i/iHH2orn+Nb3Luo8YMlHavJ5+pO63nYXoafP7DJZcUdsHos2Ck85xgk5gvRt+I6LeVXZuYgEiTPCeph3WrF3iiNBPVQSOdvLAS+sbMZGJsJosilIUGa/Y2FwB+26zT9ihMM9ESvNboeGCEIvs01XSNTGEaZPINVbwXHj6vrw0aW8eyeVkTMY4vgzAX1WayvYZ3TTcoTE5FdcmiHDoFvXGXhqaCtSw4WZo+gvuqNWM1Q2bpqohx+IBqwilAyGfzJscAziR0nVu5CFW+9gWKoGK8otdrTapOg5bPtMzvlTfy5RRidF0x1Et9icUcgDIhlrq237zv6WFDGXWcjg7/0LP5TsyilIuw/EDvfX3oW/8hccL6moVzw0jYy7tfXAzGiXIFigVwmQ87MB8JFYZy6AbZXTyWzeb0UBH+y6/JF2Qm/8EBXF3XKzvOou5uRTbmarNNGFiVbas/3RYqFhQWuv/565ubmKJVKXHjhhdx666287nWvo1ar8eCDD/LXf/3XrK2tMTMzw9VXX83nPvc5hoeHozw+/OEP8wd/8AfR9qte9SoAPvnJT3LDDTcA8OlPf5rf+I3f4JprrgGCoBsf+tCHtlTmr371qxw5coRPfepTfOITn+B//I//wStf+Up+6Zd+ibe//e0Dd7kCFN/30z10D3BCKJfLlEol1p74M4oCGQ5Voii8b0hkwoYq1ySMvZBhkJJhysfjauVmFcYnWtGaUvJF1XEUj4qziuXVIjvCnD4cRI6jNcUpkmHbU8jpHvuHgzj1dXeTR1dVFms6tiA2vXJmE1MzA/tCYaHOPYsFHltXBCIT/L980ufc0RoNT+Xp9QzfnFOoNdqJMMD4WIPfv7TBRL3ZIdjNwYbrwNBYRIaDiIA6/tSB1r0IkZVM241UDn/+KfzDLRKgaFqr4wwJcaiyO4JiVd4MjuWzARkOn69IllbK+AIZjvJO5hu+Y92EykbQIYrXh1baJmGjbqHsPog3NBpTe0U3aSHBzaiFyEyiW9qQ5NScckSGI4Wx+Vd3a1QdNSK9DU+N3rMjhOQ9q6QybsyApmO5NW49vMJIxuWyyVJ0jfuXfY5VWgT3zJLDBWOtjtXzXZ5Y9/jGsaD8yfoj4ucP1LnI82BtsY3IBS9f6LDDY6E9qTgggZgJTxhqPII4y7CxCivrUXAcpTQMpx8IBqX1TVicjwas0aCtMC5XJkVTjMpyQOqbA177kUU2Hq2imz6a5jeL4aMYKhjN+mWoKFk9+G+oKHkD7YI9KGcexB3fw6oVDBJGzZ1oq3NwbBbvsVka9yxgrbpomt/KE8DQot/aWBbjrVfS2HVmVEZdMdGWD+M/+TjOvc9FZFWJxR/WMP/N9ThmM+2DD9D45tMsPRyUX9ODe3EdBSPjMXJJAW2qZVIRwl2o4CxUccsO+VfMoB7ci99o4M8u4Nse6kwpePa6jt9owGYVf72CX3WE+1EDMzMI6kc+G5DXybEgEIymB+9sYxXGgnpL+Tj+Y09j338M3/YwL5pCOXgayvSB1rvaWMD58ndQh03Ug3th736UbAl/YwF/9jn82QUaDyyiGCqZ685FveDy9kFDZRmW5vEPz+E+u4w6HNRZpZgN6s2u3Sjj+6ir7RXfVHMoC0/hP/M0/tFF/KoT1QfpfYfXrFnStCHUlxxEOfNlQXAdLQfVtaCcmytBtNV8Nuhz8iMo2RLlcpXS1P/B+vp6X+uQwn50ff3LFIvt736rKJcrlEpv7Ls8L2Z885vf5BOf+AQ333wzhmHw9re/nf/z//w/Y+7hflwhHa6Vy+W+KsfGxkZs9DNAD9D0VqcXKk4bC9tiW6XkSlAYbzWo9U383HJX/79JhETY9T1WG2WO14IO3fEUGp4aKX0hypbKA8vgeDUabrtCYXtw6+GAjNddMyLJlkcsr5DI2B58d0Hhm3P5aFumCAfb7SttlWzzOSQUVGVn4CDdlyz8cnyLhmbjNcOZlk6/DOrfxV9NCZOdxMp6MI3ruBApykOAEA66zT1dfwsmpbbmIjJ5yOTxVw+j1NcDv6NaoA7GZwM0HLM9+pYs3G74OzR7CfeLAybX95rvsf1diO83/H3/sg8cC+qTG7zPxZrOPx2qNOuGhu0JBNeFB1d07l2iee0wjS5sx+sPwE/vtblsMkNxxQqITAiZGYJIetPULK15zCD4th59JD6gacJ3XVgRiLJpBO9qab41WArTzq/hL5dRdq0H5AuCPOtWK3S6mH51PSAc/dQbGZo+ebXlw0yE30m9GQ1TFsAG8G0vTmhDVKpknvhh8Ltax69Use95DnclGFgq2cTzbBIw+1OfRttVxDc7T9F7roL97Dr2s+tt17c2ob6hkR1Wgus9fggMFb9ZCfz1SqQS+1Ubb8OSl0mGSjVunuO4AQl++KmYqUb5sQbqU89RvHAZ/cxng52mEdk0+7aHP3cclleDmYJwDYOoFtQbePfd2doOr7myjjO7hl+1UUsZlLwRHBOemb/8HBmxzsrUXsCvO233HVuEHV5TKFf0zsN9hhoo9Ifuw6AZQVJmO9uoQqOKz7GIWA/w/OHqq6/m6quv5kMf+hCf+cxn+NjHPsbHP/5xPO/Um0e90CBtCUZHR5mbm+vZWfSuXbu4//77B2GbTwTNKaXQ7+XzVQbHs3B8C8urnXB2cQLU2l8XuJflyX8n99myYxIi7HoOuErXaTmpGyeZV4S0fJIeQJqIiLAICZmJICrK3dCPh4UQS/MxwuyLCrJuog9PQdO/ai9eIaSu04jbmorvPVSF0+B4MuIc/w+tOiMOoMRrpRFhy4NbDhlcMuGiTB+E4lo0pb0d8GcfxrnnuUglDUlGoMg2FTeBtPjrZTg8h7sQqPuhUhvh+Ap+SKCbRMpbrkYEJsw3uEacCOengv1uuQfS0TzXe/Y4ypGleJ4JktULvKqD9eV7om13pQ62G1OPQyTJtPXwEvP/WEFtqsB6yqUrqzqVVV1I11LAQwXZqqpoj6yiFVvPVXzGSaU8WZ6IFEJA6B0X1oXZoJDAzi6w+rUFGhUNTfdRtdYEa/mBTfTHNiKFHsB1W/VcVO7FMvm2R/22lucBsfzidlTOsCzLq7DeHKwLZixts1gJxAiuobZ7JSIgzmEZYu/N9vAeeqpZLtEkp/nbNILoqJHZiY5f6dGtZhq22yPFC9S7xXbixhtvxLKsyDTj1ltv5aabbmLPnj384R/+Ib/2a7/G/fff//wW8gUCaY/u+z4f+9jHel55aNsn33n/jwWyQ+A2Oi9EEHES3GyFdp8hkgtqkuSl27YIkezasd9yVTiZNqkKJyEjzNuCtHDZEijDBbCcwPyhG0wdxdQ7q86hUhOqLmVh8aHMLV8/CMl1fbNJjvsjQH1fLmVwFKrCssFT5wFSdyIc/v/2nM+F40+yX5tsFkZc/CjYUPa7aK2PutEX0oKUQEReRCiGir57GGwXt9yhPqVBkqcMnqNEJA6SRNKLyJNftVPIZoqq3AeSZUjCdRU0O7ArVvJG+3WbJB0SKmmnZ5CYgfETjY3nKjFCHJVD83FdBcdqrqsw/Wh/7D6EMoW/wzKHZYy2xWuL3oJki3nFAE/hPQr3nSTE0f1V7eB9SsoAyEm0eO1kuXoJwz7AtuPv/u7v+KM/+iMg8G7x1re+lZ//+Z/nzjvv5N/9u3/Hpz/9aV7ykpc8v4V8gUDaku/du5ePfvSjPWcyPT3d5mVigC1A1VHMAn6vZLhf9NDR215d6ohfRFLtS5pLhOQmOBY/dyuqsIg084iQKEtxEgYNqRjKB1PbKe522tICSnORXkfUGwHJbjTSQ3qHEMld2AklzSlEF3cAXjoZ7hSpTvRNK9YDR2IW0SlN63jrt2gekTzWliaFCIf7bjmsktGy7B9JuOXqhC16czhRshcitLHtBdruYRRDw3l2rWvabkot0CIzfY4w/WqirogkL4lOx/qE6yhxdVhz0XKS4AUpxLztGaSRyy7X7kbUZWgj6uH/NEIsK2O0T5gFEiM7humF66WZS4RpooGNJH2qqiyDGLBpgFOK2dlZzjsvMAu85ZZbOOuss/jYxz7Gfffdx+tf//rnuXQvLEhb+tnZ2VNcjB9TJAla0wE8Rhc3NQS2n34nu8ZtRJLsytNs7Vi39ElVGPokwicAz3dxPAutzRtEE222upmIhCqZTLBQpxPCd5fPwkalc1qIE2GZrXAaOinI9U18rR4sLhTQyQ9tr0E2xEFTmirc2tftePA/qQrL0sj2pdaRXn01pxFjx0HJG21KoRR92vf6dQe/l3GxaaD0adbQEQLJUvIGiqGiaQ6qHqiZERJkNiRPbs2XPkYZ+cLeOkFybCUylRCh6oH6qjaJY+p1U8hbR2LXAaI67FhKpALHyizsl6rDkjJKyavttcovRhzdApLE1lupt+qzpAyAVFVuszs+wXINcOLI5XLU60Ej8vWvfz3yUDE+Ps7m5ubzWbQXHE4Oixjg5KLpC5jsUMtP7nbAdTDUbOSHtBO6EeTk8X5MJJLpQ6SZR4TYJkEuhg17CWXqzN6JjGNFfnM7YiuKYyYTEOdO6MUOTlRowsFXduvO2NPshXtB2ixCUhUW96WZR7SnC/6frMFSCO2cne07t6kyhtPV0bZUHreDv2o9WqzWc/4ytxsi8ln03cMYu/KRyUHPeXcot297eFUH3/aobbR/W2nqqitZKCuDpvltJgVpA5bYM0imEQN6OE7glWezirdSo7auxwcHTaTtC/eHJhOxMiTKGSOjwnG/7sRJs9PLb8HlWZiPmJ8I20sdsMTKKKjG4XnBdsIHdPj8tkMV9tymv+Lt+vvRV6pf+cpX8tu//dt85CMf4R/+4R94y1veAsBTTz01CMOcwIAMv1jRXHDXNYpbP/CcwM+u2h5pSkZyutkLb8VE4kRU4Wt2nbjRcNIkwPNd6hkdZXfvUYQoV/AbW1jslkQsep4OxULgi3YboZgFlGypq9rbc8hl+jeR6FUVFtHNPKInItypg+41WlipiLJ/N9rYNg5KtwD3aBnnyAaN493Xb/i2B7YrJYdJ/73oGtquYmCPvM1wFyo4/3/23jTKkqM8E34icrtL3Xtrr94XdUstdaMNSQiBQRYYgQw2M/Y3eAZ/GvDng7ENw2BjPCwzGM8x2+BjwcGDDp6DgWEWZjxjj22wZYvBYLAkwEKgtSV1q/fuqq711q275Rbfj8jIjIyMvPdWdXWrgfucU6duZkZGRkZGZjzxxhPve7qBdn1zZ7dMO0ukZdI3CEEGoG0fwbFF+M/Mo/tsWpc9KElPnRNZjXXkOVU2jfU8bLjpZ6WSdpGHTn6lI7fSb2JR0IqdHkzI8gmFSF9SQjzEunDPPfdgYWEBv/3bv423v/3tsQu1druN973vfc9z6S4vXCIh5RCbDsME0F9OsV6YjMKh5b664TzIlj6gn3ziwqzCMtH5qUNNvHRLCMABsLkr6ZreMgrTVwLnzmcPqhbjZqu/PGIjEL6KLzRvnc5wA7MLqoyil0W438I5df8gVmFgcCIs2o7aNtOF1AQiGABkmvvVpfvOI/z+8fSxTdLDDoKw3k1ZhVXL6gXpmEsFkPZg3wNOjEj+4jAk0/Jel6LTMOC2N39BHd8mqeupv/PK1Q/eM0tYOMXfGZ1MQ0BIImRLsCirOCajn9QmtYCu5YEVTJDagG4ae8xU6WQkxKIIG4kVmcshpIWHOYv7ekomhrjk2L17Nx544IHM/te+9rXPQ2kubwzJ8KVAFCVIDW4BADDMxG9r6MIEkghUUfpUIAQWIEQHCPi2WSrDrkymfL8mARN8vq9ooVQ5kIRNXltOomhFCE0LDW8BoR9ow1SuuCbavlj1j5Rv2FEnQNMz4IUEXpgmJ4LQFLKuKweCzrKn+hQ2rRB37mhhIuQuwhjqmXMuBCECzGMBU9feCtauJwFSFma16YnjgFzLQ1WngppIz1O2tNKdBqjvxcfZ/FGwyT2pdJbsDmznDh6xTPUDq3aEqmRCBHQAkrKYFo8mF+jaD1LBUUqmXkrhhQTzUaCTUZtfs5dLNT8kWO4aaEbF6wRZQjvhiLz5vsUOibfldEkZlGt4FL5P4XYN2I7GIhXVFdl1IzropAKL8DKKyIQhQnBt3VRhTxLoBojlSg1vAeUX/RTMnYeT9/rMaR6sRYdSAdYbX6ON/hgH1Xn4/wJzR/TnKyA/8XLYN/MAHkUAa/cmIcmtq8Zh3vUixKHWxfdHdrkn3O0trSJ87vRA1yzcsQdkajwJEgPw360OgsePw31qEcVfvJUvEpWDm0hlsL0Oaqf49eY++YNYLlGs+Zh4+y18JiRqz/Mf+BpCn8ApB5i4K3L5KbuuAyI/zgZQcEAMA8Hh03CfSlxV2rfsALlyd1Kebhf+17hfZNbxeQASx4nvhzWasZ9oMjUO1KowTBPGQhvbr+INNOO+TXJRFy8mtGgmeEXnobPwujSlHS7/9N4oSI+TcYvGjp5C5yEe2CNsuJy8Wi5IyeSUX0uAle+B7ycWckULLMppvCYhSbS5iO5n/zom4DIhNg9u4XUinjvAXa1FHQApWSDXH+A+z0Ub/+73s2VcD4au1Ya4iBiS4UsAMr4TrkNjgsoREVXpfbRpER3qo+3zKbgwCIDoe5ry6Rr6KFuj8EMX5920tVJYzkYdE2VzDADwTH0JwFKcZnuZoFaagd3t8s4ca5hdncXJNRsWBa6fSD6gq66B+Y6F+baJlp+12m0pAitdA/MdoiU1Nk3LJy0K/PN9Cdk6Uie477SNiQLDz+xqw6QsFblMDuErfqtk3AsJKhZ4CGWZYGwQKlkFeJ3PYgHFCo/ExxZPJAflDqc2Cu+qK3B09ay2/KLsAPCiaR657etn+fm7Ki4OjY2hSDlhfnz5DP5h1oEXAr90YBuqR4+A7L8JLmWwp/aBrZzJJeQpbN0CMrUPdVaHG65wDxAhgBDodBhWXDNVTgDwYjJro2oHmCpkLTtB6GO2bWCuZeJ8m9/DdNFA1Q5RNNPsVGc5bnjAsksQxT+I28zWEtAJWOpcLwSaPtBpm3C7RjwgKpWTF8g0Q5hWCN+jaDUtdNoGPI/CsgwUioqGUlp8uNg5i/tOjWAxGh++5Wruiu0f5niaGycMvGyrRILFYrrQB5t7Gp3xMh5famK0WMB00cYExsDORKRSjui1uApSK+PorTfgfx7xAHh8wOhn35tf3L8ft9ZX4f/gTHK+biEYgG6lhm80QhQn9+JlRQPAP6QTFKs4Wwpw36kRdALg6lEfL9p/ID5s0QKcRh1Y0rhk8wPA9WIyV/qJraA/cQO87VfHIblDBKlB08QNt8L5H38CmCbaO6/CV0+v8WfoJoMbAOgERVTHxvAv9k8C4KQ0trTaJlZ27cJ/Ogw0fYL3f/4d8H7jD1B6zz+BN3MFQgTxAEaOfijKAgCTt9wB+4tfBCmZoD/5E1itjeBYowWHhriythPG0e/xevVCmNftAL3hJXFkQLZwjC9qHa+BXLEPZMsBuEEbVrEK8tAxWP/ip0Hscu5gFwCMkAGtFX4/IrDS7BGE33+aV61kHS7fuQt47RvQ9JfR9FbiADbivZk+cDWqL11D+PVvofvwHAAfKJn5C+l6LLDVWno7PkjJRN0J8L+eC2BT4O5d21PpmRfCOjgFcmg/yK4b4cKLv+NOow48rgzeDB7gaL5zHEHoo3T76wB8RlumIYZ4vpHLGl75ylfibW97G37u535Oe3xhYQEvetGL8Nxzz120wv2owA06IGH+dJpMvLywg26Q+KjNW5xk0Ta8sIsV18wc80OCFZdhW2kOVZuP3hc7SafsUA8mWUboVBGyLpruCs61bMy3eV5TBd7xd0Nu7W37BC0fWPWynfZsGwBIar+8wMmjgEVZbAUEANsoYuTI0wgO3AIgbT3bV90LcuS7fEMKDgEqBa2gJmAYSpjcKhjOIIMNusfSIWAh1rw63LCN2ugM7GJN2xHWu6dwcs1GN6AxkQMSIiAGEkXTx81TNRyut2BRhl2RLLM7OoFH5s/h/xwvYCUiis/U27h5egdcytAOVkHNMZjlCR75SQnzDasQW6/ZWBPEcOBShrVOHauuATlC3JpvYtXVe30AAJMm7bbuNlOkuRsaaPsUa56B1dgIxttZy09CL+vqYbHLifBiJ2vVXXURl9ENgYbLifDqipPRireaJkzhUkuyAvs+gRdZhwX+/DkTL93SRu3QbTFxOrV2HF85OYLH5o047dcqHv7quInVug3fo3jubIjFLvCKbUdRNDlJEfc2OV7GU8sUD503sa9i4cll4Kapc9j1wp8E2TebaqNiVuHPjhP847MleJKMI9HC8302XcRtt7wM1v5TWauuEqb9H2aX8I8LnARtvaKJ/e9+VfzekMoMng1X8MnvV9BoJu/BrpEVlMwwfp5jpSpq170UdOvRdJsGgPOnYUytofiiq0GueSmerR+BLw32+EDPlkKvr+LVP8/dNv3pkSaeWKYpCYsvPRd+3wv4f//dS1PRGedmxvB7/0jw5BN8QP+XY0v4uX/3z8Em92C+dTQmimo0TFEWLwT2VU9g94uuBkwDwcROPDl/DkfqDtwQONuaxYv27MfIz03x+wx9hMUKbxelMuwd1wLFE0B7FaQ6g5ZfRzdoYpSafCGhYcIvV+N2FLIugnAtNcNCiQGnVEbIgmhRsgNz/y2g5QqKtTKKEnmld/4/mO8cx0I7wNmWHQ/2xX3tqrRx48ROGDcfRPFlL+bPv1DjC1+VWUYgPaC3wa9BAJDrzyR6eKlNibb0F8db+M48QdkE/sneDsq37U4FHCGOAzK5Fy3WTKJRIoBXHsHIzQfjcsC0wbZejRONZ6NZIxPTyJkpGWKIywCEMaZlaZRSUErx/ve/P45eImNubg7btm1D0M8/6o8xREz1+aU/QamSdEQ6v63JtCzghWkJgxr4ohV1JKIjEFCtewAnMxZlWHWNmHRU7VCyACbWVkGGrYjAiuNC+iAIj26q2qbpfV5Iclf7v+cGhtr93wBKBdBbXoZ5aw02LaLa6IA9+EAy3RlN4cbuxMSUrDy1C6QJs0RMY3LYw3ojW5RUS1N8XLJ8ydaaioXUPtmiPdcyU52ZqEOZDHshcEWF4bFlCosybC3y/efawGyLRAMLvu/n9vh4yZYiHFpGN2zCoeW4PuVZAzlksopO0EbLp6n2seYbKfmLgEhTNGULLdD0jPj5yucIq6qQw8h6X9kaKM5bddX96bJKga7QidqlbBEWZNi0QpgmS0lnxDGVDI+Nd7FruouraiyexTiySjIEDeAkW+QlSGux5MeWaHkhZ7tlYs+eNdyxVbwzPI+poh/XpZjFaPkERxv9yfDNNy7itbs8bCt5KdIp6lCeHTlcJ6n37boxFre3k02Ck2vp+3vRdg937milyLDIf8xhUljt9H7+XFmGhIpZj7NNE7Pt5JnK0pZeZNj3CW65op0aRH/78Wqqng8e4mG079we4qapppYMq/Wza8RNvZNtn+JI3Uq9g/urAboBhWOEePGMjaLBryveKZPwcOUiGNGYsw1oLHAyXCj1/HYAiaGjbI2BwkjlS4kRp294CwgRRGTYypDhbeWkz1h1KU43DTS8rPEByM40bC0BV9ey3bxO0vboEs+rbAL/8qoObqhuTZFmUV43bKfIcBD6KJqV1Pd0oR2kBioFdxXX7Xgn6vU6qtVqpjx5EP1ofe5LqFZLA5/XP98WajP/fN3lGeJHEz1NZvfeey/e/e5349FHH8UXv/jFgSPSDZEG/wAmVW2QtIsiQY7Fh9KIRvpius8gUZjViBRblMUfGIeGMSEW+4U1z486CNXatxRZidMLmEhKzqDT/xaMNMnpB5vme4oAADa7guAv/xITOyaBThdsI34pL4Gf5Twsdwm6oZUiBEB/XbRcj4frJH5uRxrZgYNYk3K+baATJFP13VDvl1h03G7gRmWRn30UBUuy9lqUoR3/Tsou0rQlktkNKFp+b+2uTirTyxWaaCPyteXfqmZcEF/TCuNteb9MhGUI0uWFwDN1kiJoSd5hipiqaKzaaKzaUV40Vb6rrkj77PRC4HjDTA183JAPcs4t9PcI8o+PTABYxKExnseWYv6ASsV35vX3J6PpGyiZ2QSzbQNeaKZkPQCw4jJMFry+HuMEOdNdu9d78d3niqmBB4DUAOHRH0zA9yja3UWMOgXsGum/kPS5VSczK6GW56kVIyqrgZlSCwdHE1IUsgDtcDVFcBveAsoj3FqNHh5WZN296qZS5BunYwG8sMtnnnxb65XnSJ1/F90QmG0TnGsB7W52UAEg8w7MlXysbutgosBS76K8AFV+Xr5H4VK+w6UMgIcw6GQIvzrgXvPqKWOBPAPlhwSnmxfoCUe4RNssbGZeQ/zQo+en7fWvfz0efPBBPPnkk7jtttuGkogLACVG6k+GQazYt6/84TSoGRNjno7GxBhICItDQzg0IcrqcQHRkcXnGX1YG6Dt/MQ+W3NMt08jc0xlxuaWgJbkFUO3GORihb3dACyql7zo9uelzYOuruRnYBAr9dcPVjQzoG7L+4pmGG9La4AA5LchAfG8C0Y2jTgm8o7Tmnnp9O3NjEibkECYPSJ8CZI8CHRtNbmmVGeaPE0NkVzvs+4F36M4NVvAE8skJTHaLBytO8pA6cJRMhnKJlAeMAKbPOjo5wt6UF/RG72nfZFESbd4+GJBJpOdgKHl01iy1NPzCRTvK5p6lGcdBs1nvYube0EXXXKIIS5n9P3CXHPNNfjOd76DnTt34pZbbsFXv/rVS1GuH3nkEWMAuaRYEOM8wisTYpHGjElOQnbk/YIQ60iSTExU0iMTGbFILr1QLk2AxDk6sjOwC6q8KGobcInVD+vtFFXSCOgHGyoB60XI1GO6QCgqOabEgElsFIxiauCkf74MDg0xYgapNPx3uq2YlMExwihN+rjcNnTtoxfy0sXXji3A6bo0TRYTVp23CEs5T+tR4jLHmZMVnJrdfP/F5zsEjy4THF11+hL49XhkK1sBqhaXDwnovHz0Qz8CdzGwr9aNv5/PB7yQxOs/8qBa2zdaT71mDNYboKZXpMohhvhhwkAtv1ar4Stf+Qre8pa34Kd/+qdxzz33XOxy/UhBkFv1Lz6eYzVW0wEYmBDLaQYlxOp5yTb/n0eIVazbOqzDZWQJlnEh1j+1vvKsrL3Sqm1F/TOIBZPywCkGNePZhDxiXDRDmNF/9bi4rtxeBCFWyyWXXW4fVjxY0luH1TzEn64OAE5q1T+BXhbjfsizKMv7ddZg0wp7WqMLF2hobLc2/z145qyDZ846eGzJjNcfbBZKm1zczSTGeZbPq2sMu0ccbCkVN+1aG0FbuVedlTtPpiZr5gexCvfz674Z6OVecYghLjfkfroIIZntj370o7jxxhvxy7/8y/ja17520Qv3ow5BdNXRtSDE8apkiRCHCGAQCg8JYVF1woIQd0Oa0hfLELpM4crMMcLU1Jw4T/KjDi/M6oB1pC3RfvI8xDlVu8eHd9Bwx+slyZdAU6yrY9lF3EbzkPHIIsHVYz6mCmcxYtUyC30EBCmONX00qz0XkDXoDg3h0fQCTLl9ye0FCOGFYiFdum0Aib4cSHfeansQhLjjp9uNCuEuTWh6gTQx9X0K2wni6WKR3rJCeNF5/Jw0ic+7npxXr+OiPKYZDmxB3ayQ4evV728E/dqkDiNWgNn2pZMa6LDe6f4rax2EbPNnly4FBpGa+B7tWyd6TfVlJnUY+hke4iIilynkOJnAL/zCL+DAgQNxjOsh+oMS2nvanYl0RjoYg3SOTIwD+KmOSv4tkzB5cZ3Ynz5vMEKsQ57FS3TQKmm2KfBze4TLuCJfKGcpUa3UxXODEmTggn0Lp7JSnoOAQWjGs8egUMlXLzJTMBPLjajHpg88tuhgW9nAzVNSWTXSCQDy2pWU7hxIk2MvanzywEkeWPGyJ6QYSDyUqIMlnkZPisW2Sojl+5XrSF1YJxPiXlA9S1hWmPYxrEEvYiznoy7KA4C9+3lQhheMZb+X6juwEVSqg0fu2ozrbQbUb0PPaXmNRfNSoxtSPNcIYFGG2kXgxINKrvIW+W0EOquw+i3vlfeNE4PPsgQ9FqJddoR6iCFykPv1+bu/+zuMj49rj91www14+OGH8bnPfe6iFezHDWIxVJ6WODUVrpFKqDpheXFdnlyC/0bqmGOEGtlE+r88JS5Pa6vp1WttKRVxTXU3d080IGK3ajLWQ5IvMnQ6w6y1PN2x9NIN95JKPLJIsNI1+0olRNvRLcoEshr0tP/qbDtK2g1Po5JkWUqh05mr27JkQreoTrewDughZciRL8TXdQJUR7uojnZh0d6SHTmvQWQXW2o+rpryMd2HcAN99OEaTfPuK1axa3rzQnv3G0ik0m5ADiSeUz+L9SDSh16W+c3G4WUHh5cvwroDGLBpEY5R7p+4B/oR4l4DivXUo7As76iFuG7Cjd/ToS54iB8H5HYLt99+e88TJyYm8C//5b/c9AL9KCJvoVwKDBmrsCqXUH+n3dhkIVuJZatfPwsxgNhK3EsuISOe+jay1mH5Wuwf/28sdSBFO/EpDCT+gwEe+UqgVEgf6wXVx7C070JgULOnBUSg39SyaoXUyUpUiHqULWx51uv4OLL6cxUhgviasrRGlAVIW4PlbbV9yPeisxLL22qbkGUTwiI+iLVWRSJfSNyviQ5+Synrtk6+9qCQpRoCOh+uF2JtBjiZ3zXdxQvG2IatvZeLpfhyglofbggcbfB2eO1E+pgXdlLvkM9chEEAg1goGCOZtDo4Rjl/9kaDQaRVbrj+hW7yub22AeAl0z6uqnH9tOxDOQ+JX2p92TfLswQLXLBg8wZJLHD7JxrixwaX5yqlHzG4YQdAvnVAJr0Nj39ULcpQMIowKbdYqL5jLQqsuCbafuLUvGiGGLX9VDAOT7HiCbR8EgdQcIwwJsIp7bFCeLaV/QxhO9s0UTIZRp0g8Q0bpkMlz7aBph9df7wG9vQxAOCx7asjaZLb6YI1JB+64zWgXElFWeIZdwBf+ZjJhFcNtNGn7sHSeltxzKKFeDsvIAeAOCjHyTUHW0sumj4PU6xKT2SI6eSdZTnACcNTdZIihjIsylKzCDrkSW3U43InLZ7/qJ2+qBzIZcU1YVFgW8mNI7GJYwDw5HIxRYTF7/01L+Xr9XjDxGI3TYjHbIYt0fqlRxaT9mVToGIjjlQnLL77qrzOTq7xfK8Yi/yihn7KfyoAbCkx7Ipev6ONrA/c/VFebhjACwmemddrkGXIltxdFTfyy8uDXYj2X3dli/vg5N40Q9xw7TJesY3fiBx8waLA7oofv8/fPp91r1e1gX2VJAAI90sc4OgqwWKD38fWyS52lnnYdhEMgrdh8awIFjpWfE0dHBqibLJU4AuLEuws0/javF5l38MhOn4ILwTqZohW08Ku6S6eOTFYMAXTEh5N5O9ZCCD6TrnZ9j5iBXE91l29D2QZ3bCJTrCGpufBogy2YcMkNoLQx5k2g0MXsK3cQdkcg89cNP1lLLT5Nap2gIJRTGZpYMCkttYvL5B+V6t2GPuAV5HxiW2F2FELUTa9jO9g1c/3RAF48mQB9ZqLK8ZCjNosNlrIPoafXuT5nm4a+OrpAD+5LYAf8m+sSe3c703Lp7EnDLH+QIf6JbT2DzHEejEkw5cAbX8VIRvtmy5EELvYsSjDqN1B2Qq4Tjj0U5bggsGteXPRR8ikDEUkxEQOBCF3HmJfOkiEwT9iRhgTYllHXLVD7K14qNpTqQ/iSnc2jlp37bgZTwcKK0InWMOROsFsm3eqC50WRse3gkzVwbouJ8K10YSsRpZX4vqAA+5KrTKGOLywDGoClrSgQo48Z5ej4xq3VBoLMSVGPOhQrfCm64I1FpJryuFL5fyoiTptAuCDmevGd2GxfApH6gTzbWFt1ROiF023UbZGMdtawcPzpZRFL++cfpZhOZ2ARXl9BMyLOzl5Ud1k0UDZnEyCwEQdeDdoYbnL29iukS62h+NgbjO5f8LrY8dO4OhqA0frTkyg7txpo4JxgJrooINjq3M43jBTFmJxn6/eCZxY6+KpegEdn3fiL572cPVoBw/Pl/EPczQOT33TpI9tJQ//6XAJXgiM2gzXjvvYNdKN27dA1Q5gGzbuO5meChd1O+EAV4+5mCp4eGiujGfm9XWps+ROFBh2lv1o5sCLNeUtn+Jcy8bZpjnwQjfbCXDw0DJunGC4bsLFLeM78ODCmbj97K54ODhWQK1rwy9X8Wz9FAC9r+ndFQ8vGC+jaFTRDlbxyEILJ9d42l3TXfz29T5so4iKlUiW5GhoC52WNt9MnVCGigUYlMQDwl0jXeyqWKnBkhyQxg8JlrsG7j/J83jRFMNLZ9bw9XMUzzyXDeykDkSKZoiCUYRtJAPRhheg6WfJ1tayF7sOFFHozjatKIx8Gm2fouEtoOWvYb5jwQt5fY2YAYomb+88nLmBorkKixZiIszT84iOo3Y3di9XbflgtS1wwzZMki/FqFjA9vIYlrtzeHypt1cLmwLXjTO8cT9S363UQD0a3ADAf362hLlzZbRbJorOGkZtYE/Fx74ql+CcXHPwvYUk4uLfn6QoFH2MWMD1E10Y1IQfuilSLxsB/JDEnjB8yuDRZOZRDt7SGq5XG+IyxpAMXyI0/eXMvryRtjy6dgNXIsGJlbcTAGt+8vj8kGDVpZkpKR5m2YrPE5B1wTp3YdtKybTYmMMw6mxBwUMqas+oswW7KgvRNS2U4s6I/y/aVeyvnYUX+lgRVgHDBKojIOUSYEvWICMimqMFbgmWIRFYQUJZ4HOya0X7JFKqJcFyPoEPKpPiwAfAoxtRkQcACsot0GtLQEeyQpsGX3Ymh4MGUNt1I/ZWjqBoVkAWjmPSKqA2OY75zinMR1a2vGh1laAAlEZx9VgDFnXiY6qV57qJFkrmdl6+HoRYWLXF9K1BrLgzlmciLOqgYvFOsWCMoGCMpCzfPuP3XbXXUDRDzBT3gD3xYGy9F5puViqgsucQ9lUrKJsr8aCq4pXAznwfMA0UJvdid2US3XAJi5EFTLTX8UKAMXMHzOoKrhvj15wq+rhmLMSYvQc3TR0HUMapJk9/aMxF2RrFi6ZcLHaBa8d52pq1I57alXG+fR4WtTMWU4BbrvdUgJq1A9dPnMXJprCI+6lIXep5ALC1CBTNCq9TIxlMlcwAo46LqUIbZ1sWVromvBDYUmSo2l0sdpLnKp5x2eQLl/bXPFw9OgJ28hFcvW07do2swQsJJgpjqHQA9swPYGzfgb1T2/HSLQvR7BDi+iyaDAfHCjztwg9QmdyLa8dNtH0fp2sMP7cXGF11ARqCGd3oOTqghglKTZStMYROAKAr5RmibFkIQh9W9G3yQsIH5UaJ3z9NSNnOMlJhzEV60e4fni+hVgxRK3axq8IHIl5YBrCWiVopk+E7tnI3aACf2QhZAEqNqA1zY4IwCpg0xLaSPHsUHTdDjDoG5ttmFNCEt4n5tonJQgt+5ClFELo138Cab2S+refb5wEAJk2s9gCfsVuIQlEfg4/i0knsHnFQYkY0aOeyL/k9K5sB7FYTdnkPvNET8XdCnuGTvxtTBQ9jwQTY6mJ++HmL/3/ZljM4ef0iJgrANTWGqSInwhOFMRjEgkXn0PaLkgU/xJjNsGuE152YkUTQzjxHMWMko+1TrIbJu53MbAxlCUNcviAsz23EEBcMEVP9mXOfxOhomuCpOjJBbBpeJ/64CEKshs8VmO9Y8bSaushJpGv5BGebZtzBiAAZalpBjkU+u0Zc7K3sSpEKOyScHEqyg45kmCoI/qxYX13K0A2bcGgZVmMJ6Eiha3UWXxkaIpw5NoAcIpXe0+v7tNf3OmBLJ4BuZCkTWmZZ2iHyNW2Q8d1gjbmUxZqUJxAWk+evWnAAoND1YyLfCFdSHaX8f6KwM1W8ftbh3OnZ6Lqy1tGiBdi0mLkmwKeOQxagRmpgh7+dIcMoFYCd+7MW88AHWziW2kemr0ToFFPXMIMQbHUOMEx0K7WUNKVoVNH0l1PlEYsw6+4c/NBFzZ7J1KmsdVx1lwAAtmHHsgCBmjWTqpv5zilpsJImQHEHH5EUh4bYMVJL6lVXd0ELDS8516QMTd9IWbDlwVHVDrGnAkw2gqStyjKhk8fBuhGJPXg9nwkRaQwT6KyBzR5JD9aitunbNozFU6n0GRIFAFYBHXRSkiG5TsV+ixYyMwk662SiK+X3+txq8i6/cCqAG7i5Po9lErqtPJKpX3m7IxG2gpGcJxNygfmOlSG4QiakyszkdLI3Ffn55cnEtpU93FapgT32bb72wTbTayBMI3lfyuPp2SdZ7gXEv0MWgLYbYM0eZFh6nrPd4/Egu2hWYRI7pQcOWYCzzbX4vstmEFu3xbOT60LIYsS27v7lNu2FQHuthbfe9Cuo1+uoVqsYFKIfXTn2aVQrm+cLerXRxujeX193eYb40cTQMnwJoLq20hFhFXovBVnvEWminE7Hj3F9satZ9KbmqeYTsgB2t5smiMq9FOR1FTmL1OyQwMYI0FpD6mpGfr5qXrlEWPwelAjLkCUWebC4xRbUBNwWJ8M5RBgAJ86Kvpk1F0Ha9XifAcCU70e+vtdBxRhJ1qIYZjbNAEgtnstx0ReyAA4ta9OJbZn0AABaa8DEJNBoJkTYNAHXB04diSzmok40nb1pgy2dAInqyBB1JD2/ggjNbZgATCBwUUNZ+5wr1mTqvvJQtcdhEAs2ze9MRR5T0YBDJsxq/oIACv22usAoXXcOxp30sUkpX34dliKObgCwyX0g3/s62OJyepEpAJgGr/+nHwcTBEs5roItneDfokHel9BHgRZ4O4zIV8gCgAAhs1MDDhWDSHiE1ZHDwERhG6aU76LqxUAmbhlf7NE1CwZ/vrKEAkjcIso69alC+pnJ5E64pVQXHg8Keb3FZMEDW50DOxfpb0wjcSNpGiliTIzzMWGO3yXTyA5saHR8wO/CltL+zGBFxbbyiCSD4Pc6yKLhPGzET/UQQzxfeH4cO/4Yox8RVhcg6N2h5RPYvP2qmyo5vWoVrtoBRh3JEpEHIW0Qf/0g9LyqBvhCiPBGQCXLSb+8DBOkUAMpR0vNexDhOG/d9XrkfyHo56Wk1/H1hpwGwOtjdDtf/Agk5CuPjA3qASTKe7MhyOogWE9difDX6nW04dVlV3c6t4nRN0EdNJ9vHwP27M8Wpl+d6toosKm+uAeFfE95UTMBvbcTNVpnr7oVv+O61tSp0MfnRZHcSHRJnTFCxlTRx86RLdIJhv73RrCJ78sg34JsZFJ9pFL9uRsq1hBDXDIMm+glQK8QzHnbaf+ueiLcy3o8iJ/QPFK9pRigbI5lT1gv+QUS4im0vFYhPa17oUR4Ix38esoPAIWR2CKTWw61LLrjlyAaXj8M0un1SuM6DlzHAaZ25qbJhai/jZDfTe74B6qHAWZw+l1H/T1IHoK0BSyENzoNsnMrP6CLvijvS/3e/JX7Gxo8aaB+d3qRXTWNSNfr26liPYQYkHyuR99X3TdVtXjqiL5jhLh+YhTO/JnUWov0xZKyZXyqq8/7En4/1Lbfb6CgHk+vSdm8cg0xxMXC8987/5hBNxWtIk8jLP9OPurIHJdJdBtZ/6+9rMIAXxAU+9E0Bo+AxW+oR5OSSVAfEgxsIhHO60Some6kNpKfSvDU45o8M/eVd+0By6ObMh4UA3uliHS2Yuqa2GWwUoHLI/pZhS+kE1/HYKev7+Ue75463R6nUfTFg9SX6p5P/i221f956IZNWGVpoWk8nS7di92njvIGcRfwXOR6MYgVy0RS95tKM1j0xn6uAPOuJW/H/+XrS37CdZIJAVUWoZNLqGnT5yc+27eVPBSXF8AefSx9Q2qkTRnrDTevYoBnOug73wtydFMVOv/2AGBeqGIi9PMHFRvNb4ghIgzHbJcAJArH3M+aQYmRcnXVjwjLyIsyJ7uuSv/Pl1osd1fR8BZi91s9IVt+B9AhIlTiy2ustMRwLj4R3ih0RDjv+CW2FA9q8cw7r6/kAkbscYKtzvUmwhtEZgHeBpAX5EANRJI6pkTu65VfXh6ybGLdVmRlWj/zjvezCsf7ciQS/bBJJLkfVAuq+F71k6gM8tx0+cjPLs9CnPVbnIZsIVa/q+I+1H3x/sAHqzeBlrJod1C5hHpM/eZsgvRlPVIiIDvr2E8qMsQQPwwYWoYvMXrp3pIFN/n6YPERN6gJk/raj7IK1YIhztFZhQHgXMuGResoGtXN1RkGnAwztzmYJRjoL0fQYSOduS5PLQF3B+uQcoiw9h57XfMi4IIsQ60V/vzmZ3tbJFWrcJ5E4iLqhcV9GsQaXBqRUzcbsRDLaTcCg9A0UdFZheNjfervEuuF5frRRW+Uv0m9JCRqgBs5jbxoMW9BHYC+FmK1TL0WzXFiTDMW4/S9iZk45Xvcg/T2tPRf4vDzatvuZdXvtUhODjg0JMlDXO4YNtFLAJ3lLc8al7fghHeMNJNGQCetUDXFug9Snks2LyQXJyZ94A9mCQYGJ8LyYriLTSbVxXL9rL95eJ4XNg0KLZFbPc+twgIXQx6xyTCJHUfRGmTRoXbQqrEQ6xbWycfz8tf+z1lIB9POEmF54WKvRYu62YuL1N761atuRqvfuT21wMoiRpFeR657WYh1s3HqTJtDw/h7qlurkZ2RS44RSya68uBGfc5meqZFtfLLA8rnSW/fy4KeZ5jZyMLEIYa41Lh8eqsfYeg+zrqPeMh4+MuCIYgGiS0Z4gMuf9Qrlo+mH+qtvtEHe9T20fIJvNBMHzc2uPhO1VnlBbgINPqu0AcLuvGmTIBla3G8wE5FL+tt0EP/1a8zGIQciDS+xjKsXmOjVuFe6HV/unJIgw6dFXMQfa1WR+uM8GAp9irfHkQeodNVi/KFkX9lsa1ajC8QlBhaeUQvkpWnHwayFmI5r9gSquhaxTEug7Iybth0EO97219Faduh5D1rrwLNFo/cKPbprOudNe4KEODPTPihVf3WCp/fAxCs9bpRo8QAGHeRFn/HCAVo+ptFiQE/dHs+E5+5ufWmc2+X9+yApDwColx51k/ZQpz+Nor0UfS1Xm7E8mQR4vcV++PnSQq15DmJb2iP94E15rI7DROhaaETrKHbbfZ8/3VGD3lgludeTdYNp3XCiW5arqMLtg4H/uDfwUHzG2KICJeMDH/kIx/Bn/7pn+Lw4cMoFot4yUtego997GM4cOBAnIYxht/93d/FH/3RH2F5eRm33nor/uN//I84dOhQnKbb7eK3fuu38N//+39Hu93GK1/5Snz605/Gjh074jTLy8t4xzvegb/4i78AAPzsz/4sPvWpT2F0dDROc/LkSbztbW/D1772NRSLRbzxjW/E7//+78O2E6Lz2GOP4e1vfzu+853vYHx8HG9961vx7/7dvwMh61sJ4NAyKGFwaDkJXAGWfOBCHwg6YJ06SoUagMgXamUSy92zCOCjYIygQkeB7lqScVDEjNFFuzaCE42FVCAAIPlw3751C+bax/HwPCeZqjxC/UjdOLEtCXKgWC9YYw6YPwWsNoFqGeTKF2ful62cAc4dB1vmvnWJYST5bN0CUkmCHLBOHezZp8GOz4FsGQW5+iogIsPs6A9A9l2f3xEYUv0B+cE08kj0egmX2wKiYAeZ6HkCXoeTD2U/yfMrPCBYYw5orSQ7fEXPbZdAqjPcJ7LXAVudAynW+HYORIdoUjuquzQZSDcL0eZ9kPIEWOgD9ag8us691z26Ld4R6QKYzFypfy6i4xL/PXDyQPXvIgUPsU19LxqYNWJvJv2gEtg8UgUgDofrhu3U+TYtxiSvG/IAJQ4tw4784LpBO96vW/RlEjsOb+4GbdgimIvXAUzu+5sUlOdrJFHNaNnjARkishu7NLQK8VoAk4npoMjVoaibHiRh0BDgIp1tFJMBgMHvJYgCY/BQzgVYtACfuWmPEYqHCTmEuGxc0Lm3E/+9MBs0RM473k+j5xdFy1PlEkAS0lstl5zvmlfH2ZYdXZskFlHhV1j2Fa2RvHiVcXTDJvxwlb+KoVTGQPot3W/BGAGBEoXTGYELD11/GZ1gDStdPxWqWu4fVEt4bCXP8UnvSYMCscDQoTwMtUhjUoattp+xCDcsTQzsIYa4THDJyPA3vvENvO1tb8Mtt9wC3/fx/ve/H3feeSeefPJJlMv8o/8f/sN/wB/8wR/g85//PK666ir83u/9Hl71qlfh6aefRqXCI3i9853vxF/+5V/iS1/6EiYmJvCud70Lr3vd6/Dwww/DiD4sb3zjG3H69Gncd999AIBf+ZVfwd13342//Mu/BAAEQYDXvva1mJqawre+9S0sLi7iTW96Exhj+NSnPgWAR7151atehTvuuAPf/e538cwzz+DNb34zyuUy3vWud63r3m2jEH0kbKDbiBYftdKJAh/ouGAtHl2K7NgKYhXgmBGBpWWgu8ajedVX49PY/BKKO7fimj03YDlcQt3lHWxqyopRbKt7MKbbONbgHUWerGJLqQj60FdRnRoH2XNDlmB6HWC1CXbqHHf5JB8PfLClE2BHnoP/6GkEc02QggliUZCIcZt7zwEvPAQUq8BzR+B//zia31uCPWagULKAZgOs1ASWz8L76mOwRkogk3v1FSkBxmsAAQAASURBVBsmzZe165wU55CdlBU66CbkAMi3vsikwOukt4VFU6QT5DqywqlgQTcpgyoVyVvVLKfzOsCp02CBREYiMknKJWCKW9eJVeBpvQ5QnojzyNNjmtQGWzwBeJ3El3IPxJZ9agLl0mCBSwRkEtyJ8hFyi+18MMtW50BGt+vPV+vJ64AWRjLeGYCI6LUbqXZBrMJgMwiBnyLZOq8T6jEKAyDgJDhkgNvhLvmgzAJFz8a2CqBGFW7YTkUBFHnJhBoAQAxeL+UJoLLGSbBhptqIWjZil/nAUgzOFPgkhFka3fCqekHcZcKqPgeh17ZpEW7YBiVubB0uGMV4cJCHvPrOlEXa3w34N1BdAKwSWNU3dDtspDxNAPzbaBt2LLOJ9ecSKRbnF40qSuYy6m4T8x0LtmED7XmQ667m37u4IFlLPrHL8JmbW+Y8hCxAWBlPthEA6OQuIl0PVrq8XVhR8CY54p5A0QxTBHnU9lGxAMcoxYM5gYKn9HlDDHEZ4XkLxzw/P4/p6Wl84xvfwMtf/nIwxrBt2za8853vxL/5N/8GALcCz8zM4GMf+xje+ta3ol6vY2pqCl/84hfxC7/wCwCAs2fPYufOnfirv/orvPrVr8ZTTz2FgwcP4qGHHsKtt94KAHjooYdw22234fDhwzhw4AD++q//Gq973etw6tQpbNvGw7p+6Utfwpvf/GacP38e1WoV9957L9773vdibm4OjsNJzEc/+lF86lOfwunTpweyDsdhJJ/5A9S27ADr1Pk0pwx1yt13gfoqmIjwtXsP71RXzwPzS5nFFWx5FWTrFDAe+SIVUoOIeLGgC/bo98DmlkCv3gNs25MmciqJ6ayBPXcU/refg3nT7owFIzw5i2CulZDbl1zNz2t1wJotbvXwffhPziKsRyFjBRmOtHNhvQtac9B6bAWN+ahDMhkMk2H0kA3rKu7jODjdgLl3NLGo2NnFRCkrS6WcDgncCzp5RQ9Cx9p1/gw6bnJ900ism44DVKcz15ZlITJS5Hz2SPqgn7W+seV6yoqUS4rHq7yMY5O83ciEuhcR9Drcsqwi5xzmNtMDIZVQqZZrOS+ZDAts2ZGQ4H7Tl+q15Cl+ZcCSIsPKgChTNsNMZi0Gtd6LOhADK3nQpBB1AJwoex3AKiDMIdwin9DMD+ShllsnM0htK3UaUpKxmsbpNYM+Ob24J/k8EbnMZ+nnbpLk+ybSiQGAGIwJgpkqu0LmuMXU7UtoAU6GhaVeR1pVoi7OafsNvl8aFMczDMo5ufkGPnwSoh2s8pk8r4PQKfb1zOMzNybxcn3lbRvEghd24jLH+xU5XYggZRlWZw1l0i+vSVnp+ljoJIYTVX4nny/IcByoCXxQaNFCqsyrqy3MjP/zjYdjPvwfNj8c89W/PXB57r33Xtx77704fvw4AODQoUP4wAc+gLvuuiuT9q1vfSv+6I/+CPfccw/e+c53pvZ/9atfxdmzZzEyMhLPkF999dVxmmeeeQbvfve78Q//8A9wXRfXXnstfu/3fg933HHHBd/zEPl43jTD9TqfQh8f56PaY8eOYXZ2FnfeeWecxnEc3H777XjggQfw1re+FQ8//DA8z0ul2bZtG17wghfggQcewKtf/Wo8+OCDqNVqMREGgBe/+MWo1Wp44IEHcODAATz44IN4wQteEBNhAHj1q1+NbreLhx9+GHfccQcefPBB3H777TERFmne+9734vjx49i7N8daqUO7AbZ8Kr0v1yMB/2jGxOfM6SRNzup99sQRwDwWpeEfMCaTRd8HvBDhY88hfOAwz78QkWbF5xpr+QjmmggbLoL7n44tu3FaaTEIKZgIvncErOMjWGgjXGrHx4lFU+fKCOaaOPdQAMCGaaXHYitPuKCHZ0HNSL98uAHDYPG2XAb5GtbBKaBSzifCMrkJIo8WmYLpiSuArIXcD9Kk1W8BxQ6gXD+vPCzoJqSj001CtQq4ij5yvKbkaySEOCLlrNkCmi2QsSofdLVXM/edgbiH0SltObWkMNb7mkmesuQHSNq3IMWyLMIPknbZ65p5pFjWUkY6QqaSa/ncSJPMxDNUyZ4op2nz51cazb92nhVVl3dnDTRKT0U5pPRUvgekCfogVnoZA3usEDrywAfoAOdEJD+UyJyQhgjyB/igoQ9qFVSlTaZ8lHD3fDYtwmdurueOXnkMil7BPHRrNlQS3GtxZC+YQYgKImu8JEvJLWekrc7sy9mOBx6DuL5E/4h78vFOwIDAw4qbf68yERZ/BaOIolld9zP6YcKOHTvw0Y9+FPv37wcAfOELX8DrX/96PPLIIykp5//5P/8H3/72t1P8QuCmm27CL/7iL2LXrl1YWlrCBz/4Qdx55504duxYPLP92te+FldddVUs4fzEJz6B173udTh69Ci2bNmSyXOIzcHzQoYZY/jN3/xN/MRP/ARe8IIXAABmZ2cBADMzaevUzMwMTpw4EaexbRtjY2OZNOL82dlZTE9PZ645PT2dSqNeZ2xsDLZtp9Ls2bMncx1xTEeGu90uut2kQ1tdjazAvXzTaleOSyuKBVQiLPutVC2nMhGO/pNqtDjDC8E66iI4QXYNwEp6M0GY+TGq/Q0ArJUmbjoC3Ou4ILoAQA1J3mHnT1rIedCaA7J7G7/fQcNC90+Vth7GLsKUj72ie2Vuk2t1VSjkihgOWGsF8F2wRjOdrx8kz1KQYj8Ag6S/9v14wMSCIDnfD3jbEBbzPP+xojzyddW2mEf8DDMZOKjEVSXFOgiLuqpHby6mSWA/Ii+BGE72eannCBItHxP7dIsideh3f7rr9kN0TuYeMAABlHTCgyJkAahhAgOcp1qD14te5whpSb/zB5VKyDCJnbvgrx8ymuKNQjybPgMEAZP2L7NBrJgIe2G6regWWfPfXsoDRq8F0m0/vRhwkEimttHbS0s8KNkE6cbziZ/5mZ9JbX/oQx/Cvffei4ceeigmw2fOnMHb3/52/M3f/A1e+9rXZvL4lV/5lfj3nj178Hu/93u4/vrrcfz4cezbtw8LCws4cuQI/viP/xjXXXcdAD4j/elPfxpPPPHEkAxfRDwvZPjtb387Hn30UXzrW9/KHFPlB4yxvpIENY0u/WakEYqSvPJ85CMfwe/+7u9mD5jWYL5pxep6IO06Kc5H0sh21QVUChFOXd/glsU1rtnKWIWhuP+RkCKumjRhw0XY6kNUNORYtQhfCIwrp4EtO/IXxOlI3gBEKz2trpyjLv4yDW4dpCagI8M6ku673DOAaimVia14rp0uUHAA2bVWlF4lxSwIQHw/knJoZDhqeQJfX3d59RkK4iZ5DMkjxZDaqSwrkX8DibwgzyKqq79QM8DoR4j7HRtUHjEI6RfpVFnSAMQeGJyIqd4s+kFYFgfJX6RdLwYinZK3iXhfDhG1aAEhC1IeI/IstYKYuUF6UePzATVCXh5EmfMW/QHp+1U9QOjcbeoGEnlBmWT3cmu+vpwyoZatybK2/YeR8MZGqwiO46RmhHUIggB/8id/gmazidtuuw0AEIYh7r77brz73e9OWYrz0Gw28bnPfQ579+7Fzp08vP3ExASuueYa/Of//J/xwhe+EI7j4DOf+QxmZmZw0003bfAOhxgEl9zP8L/6V/8Kf/EXf4G/+7u/S3mAECMeYZkVOH/+fGyR3bJlC1zXxfLycs80c3NZVzPz8/OpNOp1lpeX4XlezzTnz58HkLVeC7z3ve9FvV6P/06dUqQRukhtqn9cmmhg84gw3zY4Qep09US4j8srVR6hHsuzCsf7ouOs5XFC3HAzEooUcsi2gGH2J8dqOUjBBC2ZIFPjIJUZblVUI+INQvLkZ5D3B6SJpdAMiz+AE023xSUYunKoZbJLQKsD4kT5mmb6Oav5izQpX6TSczKMRF7T6vDztDMPdnIvpg04Jf395kHOM68u5eulrm/ofzcbQHuVe0BYDzQ+q3uWp1d72Ig7N10b0wZryTlXwYW430t5TBiQ6G42elkIdenyvDyoaU1ip/TH6nE5D4tyDxWy1jcPsuV706A810HqRNxfXoCYXhINVd4hrrkR6AKN9ArsZBt2XN/9iDDt4Wd6IPge/8Zu2h8fWO3cuRO1Wi3++8hHPpJbhMceewwjIyNwHAe/+qu/ij/7sz/DwYMHAQAf+9jHYJom3vGOd/S8jU9/+tMYGRnByMgI7rvvPtx///2xFytCCO6//3488sgjqFQqKBQKuOeee3DfffelvGENsfm4ZGSYMYa3v/3t+NM//VN87Wtfy8gM9u7diy1btuD++++P97mui2984xt4yUteAoDrbSzLSqU5d+4cHn/88TjNbbfdhnq9ju985ztxmm9/+9uo1+upNI8//jjOnTsXp/nbv/1bOI4Tj75uu+02/P3f/z1c102l2bZtW0Y+IeA4DqrVauoPQH6H2Yt06AiPSo5GSvxPHBNQiLBMkmTPDil5hEgfaXJT6SRkJBJeCHgB/4Nqbe5/vg6ybMIwLsCC3IvY9iOr6p84Ly8/w+Qrxsvj3OVV/5vk5H28CkyPp5+reOYqMZZh9ybFqXPzBgemzT0NOCPZMveqO90Ctl4BSExbGVTI92okVmI/SKzUvQYzIn/12cT3P0A4b3VfZMFlbjMJG34x0MtSHSHWk2+2X9VNxIVYWlUiTGFkiJQuf9mVWi9yKPLrV0ZKDATMgxd2enpxWO/vQSHXg+qFQyAvsEh8XEOEVQh3Z/2swqp1WSa+ukAjFmUxiVcXFOr+LlecOnUqZcR673vfm5v2wIED+P73v4+HHnoIv/Zrv4Y3velNePLJJ/Hwww/jk5/8JD7/+c/3ncn+xV/8RTzyyCP4xje+gSuvvBJveMMb0Olw2SNjDL/+67+O6elpfPOb38R3vvMdvP71r8frXve6FF8ZYvOxAVPIxvC2t70N/+2//Tf8+Z//OSqVSmx1rdVqKBaLIITgne98Jz784Q/jyiuvxJVXXokPf/jDKJVKeOMb3xin/eVf/mW8613vwsTEBMbHx/Fbv/VbuPbaa/FTP/VTAIBrrrkGr3nNa/CWt7wFn/nMZwBwnc7rXve62KfxnXfeiYMHD+Luu+/Gxz/+cSwtLeG3fuu38Ja3vCUmsG984xvxu7/7u3jzm9+M973vfXj22Wfx4Q9/GB/4wAfW7Wc4hq5Dlj9Aoc/dT6maXyBDhkglclvT6iSL5eRzdKFbNVbiFBEWxRwvILQownpXIs49rL490I8c0wEswinoLMyDaoUFeqXtIZlg1Ey/MbLkwLS5xwK7PHhZjBGgOg1015IFcap2WG0DIuKYkFQIQuz6SVrf5/tlAqouKIvLYK6vzKG02KtX3qoUBVJdyXplVW7S7x1Robp2k8oie1RJXVtegKfqh4VbOiDXJZkWcp5qvusEMRxeBnmg9TxhXSRGcUl3QXlpzpWDmmjTIEskfUmmo3qgABIZyEWJtqlctx8y0occEhwwj9+r9DnNk5fwAQRFyQzR8tdv+9ItvtPtu5zJbj+kDFd9YNt2vIDu5ptvxne/+1188pOfxDXXXIPz589j165dcdogCPCud70Ln/jEJ2IPFABiC/SVV16JF7/4xRgbG8Of/dmf4V/8i3+Br33ta/jyl7+M5eXluEyf/vSncf/99+MLX/gC3vOe92zejQ+RwiX7yt57770AgJ/8yZ9M7f/c5z6HN7/5zQCA3/7t30a73cav//qvx0E3/vZv/zb2MQwA99xzD0zTxBve8IY46MbnP//5eCUmAPzX//pf8Y53vCP2OvGzP/uz+MM//MP4uGEY+MpXvoJf//Vfx0tf+tJU0A2BWq2G+++/H29729tw8803Y2xsDL/5m7+J3/zN31z/zQ8yVQuk3TLlyRxkqzCQ+GnVEOc0EY6Oi/BAORZaUrSBmgVqNROrr+S9IU5nUTAvvGCyLCNv8dzAhHkj09yqBTCPeIRmWtMNQA3NTAynN4HSWBtJeSL2cpDS/gIZYqx9nr1IsVw+9b4CoTd2ouAVA9adIIwy+hFuURZ/QEI8KHS6XQ0JzZBica6OEAfcHRsp1nLrbGAMQohVEh2BBV0QzxwoSMh6y6LTkuYWL7LqqQEvBsUg1tn1LJBT0w+Sfz/I7uA2bfHcOvOQtdk6st93IaImnagrizowEMALE711L6tw3qK5vP0Z13x55fwhJsx5YIyh2+3i7rvvjg1yAq9+9atx991345d+6ZcGygMAWi2+rodSZZE5pQjDnJWYQ2wKLhkZHsSdMSEEH/zgB/HBD34wN02hUMCnPvWpODiGDuPj4/gv/+W/9LzWrl278OUvf7lnmmuvvRZ///d/3zPNutCLcIQ+0G0lfmx1WC9ZiM/TXzdjFZa0x6Rog1gdME9x5K/REtPxIsKGO5AEQodB9MLpcmuusxEiPMh5OklAr+MXcq0IKbdpAqpf5ZhASlbi9UC1iK4TWoKpW5QoLyAzkV3AF/jJ/RQH9z3aE4P4Ve4FrzP4IkiB9S7UGyRt4AODefO6eBAEmg5GoC+U8OSd74cuQuQv5tMSwufFg/76IMqa5yYt3y1c2o+ymlYmqIIUFwwfnYBpF80JyFZf1bewLt2gRHhT8DyHY37f+96Hu+66Czt37kSj0cCXvvQlfP3rX8d9992HiYkJTExMpNJbloUtW7bEM9LPPfcc/sf/+B+48847MTU1hTNnzuBjH/sYisUifvqnfxoAl2eOjY3hTW96Ez7wgQ+gWCziP/2n/4Rjx45pvVMMsXl4/ubffowQfu0fwA7uBDkQrTBVScORwwgOn0a41AYp8d5P+M+lB3YB41Wwc/MInz2XIoJhwwVreQiWOvE5Ahl5QkR8/dMNEIvCGC/wgBYA/GcXEbZ8GJNF7pkhAmt58OdacR7GeCFj9TV3VMC8MPZNLHuqYF6IYKmTWpAXNvr43NTohdsNA343It4GAzX5R8y0PRgGgzHzDKggi5K/WbLnEFCZ7Hk9AImf15Uz3CIoR5HzOknwBiBLiJYX4oAYbHw5Nd1Ppq9MQt3K12qt8EiC1ekkj3ojcaNmKwyo4PBFdqr13w+A1TV+rkCUB2u7gPdc7FIvBSl/NlICveEluZHz0FgAO/10QrhbHWD/1VxagWxkvxhqXmqwGRkdFyiXQCZ286AvZx7jdVfoYWWPPFmwxRPJgMQZSbu1U0lxZy1dDk1wE7GPtVd5EJXqzODW2Rwrr0xyWXMxbVk3zNidHGvX4/bGI/xpFtN5HX4fPdr1er1Q9Dwn9Pl7MXsahuzNRk3nSzMSkdtHcs1N+nDgrRWwE09w94Db9sC2pUhlhRH4huQ2MSJyMhEWPop1sI1iXL+mVUPIRuJ76wRrPNAHsWFHowzbKmK5exYhAozZ21LktB0kbcUgVs/rxvWycgZoLvHnXayCbjmQn7izFi8Yte0yUOL1YMsjIE178g0bgeElEg9Fa6z+dijP12cuLE35hVW4YIygYABjDs/v6GryXVH1xjK0mmDZ04xIt5FB+2WEubk53H333Th37hxqtRquu+463HfffXjVq1410PmFQgHf/OY38YlPfALLy8uYmZnBy1/+cjzwwAOxO9jJyUncd999eP/7349XvOIV8DwPhw4dwp//+Z/j+uuvv5i392OPIRm+BHjmjxvYseMJTN32HKyXXwPsi6LNnDoC/4HDWPxGHWePWnAcCsvxYBVCzFzlwrkp7VOQdXy0v72IlVkb7YYBLyKI3S7/EDmOrNeLRv8mg+X4oCaDaTFQk2B0SxfGeLqDD+aaWDvSwWjBBN05DvgB/LkWWnPCKhCiWK/DaPmgNYefLwXj6GUVDutdhIv8I9xcMQGx2KKPRTgICNwWxcqsHd+rsCILSYVhMmwxz8KOSHaw0IZ11RiPtjcgWGMOOHcc7OhJsPEayJ7dIFP7YiLLOvXeFuBOF8GpJbDO8XgXrdig+84Du/fwvAyTd37nnwU7fhpYXQPZx8vMTp1DcCzrRUEMIGjNAZseB5Gi7YlAHeG5OoK5JIAIsSjClo/Vw110m0Zcx4bGlzM1GcZ+eivYgToINbmGOQfh4ePoPjwHYlE4d7SAF75ocM8HXieJnlhweLQ+gHeYay1OnsYmOQG0CsC582DnzgM7dyTPQYcg0tjPL/GFiHkSFZmMnpvXk2ANiLMENn0eGNvGI9NdoHaXNReBs8f5/ZYK0QLY8XQilwdOwZhCdgNOSrF0DlhtAlu38DIppHizLXRsdQ7BX30d3YcTzzqqNEp+9/1FF+0Gb3ejP3kcxgv3g1x5Ex/YdNbATj0O9sQRdB46C1qxYe19DvTaK3hdVKdBeg2AwImw2VyFaRUQOsU40pxJbVDfA2uc4YOF6FkRACjUgNJoHD46vrfGHGgl8QxkUpsTf2kfJQaKRhWm64J15kFrW/oHu6ivgp04C/LC63qnC33+biwvgI1NwhbPsrHQ06uKWZ5AeWQMnWAtG8o7hxTbrSZspwg34GWX5RE2LaJsjvF7jK7bro1qLcKA3h1bjMCPdfepwEaGCdZsZ9P/EOGzn/3sutLLOmGABwj7q7/6q77n3Xzzzfibv/mbdV1riAvHkAxfAizNe5iesBG2fIRPnwSePhkfC+tdeB0aEWH+8fE6FKcfLWD0/HnUTjdgzJThPrWIxWco3DYnBpzchPC6FJ0WP6/TCmFa6QUs5RED1OD7XJ//n20UUWusoRxZlJunfTQWCiiP+giX2mCd8/H5usAXrOXBjwJtxBbgiJCxlpfoh70AQZvHtY/LM+qj26bwOsmHNPAJDJMhDJJ0gnp6XZrar0vbXDZBTzfi+gzmmjCP1WHdvASyNRuABQBQSPS07Nhp+E9Gnf3xFRjH50D3neZeHtZaiS47Llyyzc7Nwz+2klnYx7yQ+/ttr4KdfEQ6N4jPZ+d4PctEOFdvvdYCW2sB585zy64kmZG128wLuau7gMBtR9Z0iQgL/87UZEAXWP6rcxgvPgBMjWvlNGxxGe53T8M704I5YcPcUeGEdv7U4LPQS5FV3Taj+29l05w4DmaYQHsV4clZkO1TIN0W2Lmn+HF1SjPyPsHml/h2swUy5YLV1vRl8F1Omgckwil4HbClE+s/TzcNK+rY9YGlVX4PIl1jmc9smNzCzJZPcfd7MkT78SPi0qlnr6Gzwgs/2aYNQk0+HG0sJ5bwuHwaLw4TJdCaA3/RRbdN42+CYUQSCql9tRsmmismipUA4VIbtNEEfvAPqXtnLQ+0YsN+2T4eQtz1+exA5zSY14Gp+JqmhgnTKgA0rW2nIUMB0UAplFqjMmhhnTrgNmGXJ2BbZf48m+c5aRvdjhrh5JfNH40jFdrlCdgl2YWmy72U+B5sELDVucTCH/q8/nwX7PhphMf4e02/92giCyorgx6AW5DnlyKrugFUV3g5BnAvSH0PJTiAXRtMc210UTTKKBp6KVJ8juQTe8dIMsuSt5iPwgD1PSDQEN3nceHnEEOsF4QNIuYdYkMQMdX/9po7MVFx4Di9NbWFco4ezmQIff0q7U7TQHNNf55pkZhkxxZVhRj5Hol/U5PBKQdwiolFIJBI53rdnOVZftsNA92msvI7Jwqd16VoLpsZy7BIZ5gMlUkP5bFoQZjqi1iSnaTKVjJBx4upaHzMS1tCBtFAq+fI5210IWGva4cNF8FCO/c4sSiCpQ7qR0M+SMgjwkjq0nRCmDaLn698jmh31GSgNQfW/jGQkqkP0pJx/xZ1oCOl9OI/BSl9tB8AS/VMVMM4rVTftObwActFRK9y5yJHo69FToh1uD4Pr93p6t0mxttK+c4vIaxzuUo6YI7iRhF8Nsg/3cgE4dEtig3rXXhnWgoZTodJZx5vc2JGwnLC+Ljavqy9NVgvuRKoKpZgnR9q2c/3ejx8yMib2Rk0eIqKlXmwY6dTkUCZF/DFyTIsCjIzzkOky1AH2OPV7CzBoNCtY9joGgqBTSayxHCwutpCbcebUa/XB/beACT96Mr3PoDqyCYtKAWwutbB6Av//brLM8SPJoZDt0uETiuMLbgqTIvAtAgsh8Aq6NOoxFJYVrvddHrVMqwjwen02f1BQOKOqx8BHsTTg0rcTJuh28wunJNJcJxv7BUrPy3ASZtRjO7dSltNOZTOp2RmwlJvZAFgr3NYxx+IEOfmkRPsJOPJQ8mDFEyUR1ugBotkKflEWNSj7xL4IDBtFg+AVHIsrr0umEbW77GAGkEvisanEmHdgEPkLZ//vGEQ8ptHenvkQXybWxxlQixrc1VEESaTdi2R3KgOdW+rml60Ld3wWybCcTlVEh3B61IYAU8X+ixFjMnpBsz5JZDqiH5hcIoU24mEZlCSpgvF3QvrIY9eh892qEQYSL+zXsgHH7r7k9uDIMYXSmAF1pvPJhDfCwkWM8QQlwOGZPgSwLAITKO3b2LfYwiDwYlGGBAEPoHvBRkCLMAt0aIzIrCLvYm2EVmgfQBWZf1uXPoSpYikGoafawmWyyPKlDpmpI/RSDLRbVOUiizt4k0Tsa7X9sXEQCQy19orkXukLeD6cNk+rO0lGEttdJvZAUae9w4d0ZEtf0RjXcy1BsfHozrWdf4yqfN9bhV2vaQeIgLXq+5yifalRj+yK9CrrGpdlgogpgnma+pLTesHycI13ULaPqHXe0WcDFs+woYLarLUQHlQl4fq+w0AQZvBP74Ca+s0UC3ne8oRRE348M5BavGmfN7FwOoqH7hJYdPVOmVekFjj+wwGMz7Bn2dsGrFV7+cyub8hhtBh2DovE5gWJ7e9SKsMz2BoNZmWCKtyjDAgafLZoxMLAxLLMmJL60bQJ/yyroNMTelHxMzv6smbvM/rUAQ+QbHigpbSZExHeIV3jY26grsg9LmmVn4AJFZQ3WJFZQBgTBbj38WlFtp1U0uEaTTNLevC84hwqvx9CbDqG1t5BnnE0TRS1rZ+dYVSAanw1Dqo09F5GJTM9sOgxLyXm8Q4Qp8NdFwQ3wfrutrzYqv6WitlUddJJPj+tD/wzABRM8gKl9qx9j8zWyBLKryAy2l6DLrktuafbsBcXAYZl6ao84Ku9CFSl8oyyTr1WOsdQw2UA8VtpbzwVUqTHtzYl6919XIhsSJK5WbmN8QQES6TVv6jDXMAy3A/9CKweVpkXWek5pNnJeTpNGXuQ3JVyJ2qbrpbLY+6YE8QtiDSrqqk3rS4zhng1m+KHgRY3X4+yHB8/T71mEeWhJs8KRgKz09jBa93Ydp6cqIORnQkOJVvvCgyBKwoUp5MgrVT3REJEFHz+sEU0/o99MVeAFKL3LqVS5wQq5BdOG2U5F6otXlQn+D90slhqyVkpCGuF79f/bTCAnkyIfmZsxbPN4hmrbSyKZG3ZQBIv+O0hxWZtTywhQbI3iDxMCIgB4wZNDDOpUDgg0UBEjKDQNdL+2wvONHCuHL/4DIDEP7LDuuVY2yWDGSIIS4Chq3zMoAgs2Laf5DpR8NkcByNQ3YdAZY6pFzy26uT64OBLayRri6IrM8yVBKsWqAycglpu1gJ4n3qYqB+5dSSBG9jFoO+BFeHXmRI7WwBoM2Dm4i77yUFkY/luVbLWzink18ESx3QmsMHHNUcLaRCIuMp4kHIoZmTJ5C2uAm/y0Jvqlp4Nls2sdFgN+s5txcRMk0gCLIEWL5P2xrIGgzTQLjY4m1I8giTpM0unjNmyiCxdThnxiBzO/lW4QyhNo00+VVBuWs8BnCpxPNMqohhgOlkKsrgkJRL0UBQP6BJQTz/HyXCOJRJDPFDhGHrvARwbArHHNwKOUhEtl662jiNYu3rZRmU05k26+s7OA+9dLis5XGtoMvzzSPAclkAvvjLlbwaqGmEpwMgxwKswjKixWAS+ZII1YZIrYr1ECgd6c3JS5RNXTAnQyY0hqF/7nI9qnWqI8Kx67aWhxCAMRmFSNcRT10I8QHqgxgGmM7apuZpGgkR1l3vYmKj1xqUCKikMPAB2wSRrd29yH4PEpzs5x5HwpbfkwgTiwIlK54fYoo/azUt88J4cSzQ2yoc71PfzzwyqIbcfr5gRLMcajh0nTSoVADKims8FXKkxh9G6/AQQ/yIYPjmXQIYPSyyMqjBtN4d8mA5YcrfrpyPev28Y7lW6IgwbgbkjjOI3MDl6VR7lUvnJiw+VkmTiDwSnDquc+N0MdCP7OqQVx6TPxcxxZ1LhBXoPHXIVuHMuRoJBimYCFs+zPFiooXsV+b1aGhLBUC4WYs8I+jqjlubByPYFw260NO6Y/3QyyKqyytPf20a/YlwXJcdsJbXcxFmHGpdeq9ExEsVapsT/tKBdFsD0u7YxAAWhtnbIirXwWZNza/XlVoEUpkBG1/igVGA7PNQo6zlPV81LLn6ezMhh0RX0c8NW696UiMu9vXYcYHvq+SjfVMw1AwPIWFIhi8B7FIAJ89vrE9iPaxV4H45dVZblfTaxRB2MUSnYcTnq+mMXuQxR6bgu9H5XpBLrIQ2ce1IJ3VuXLYRPrUaLHXgLgcx4eq2Kdp1C8Wa39Nlm+zL1O9S+B6vI+Fr2FH8Ma/M2qj6a9r7AjQE0TIQ1ruwry8AtgX/mflYwiFgzJRBIusnqzcRzGkCRUSgFRt0ay33eIweHgAGRVjvpkJaM4//lkNeMy8E6/hgLQ/dNs0QYUGCew2ERJ4C2oGRaSQBNXSwLR4oRF55nwOyYytQq4IUnMjPcCe6lwCkaGcCjfBQ1M04cEk/kEP7s2QjiDxYqHrVdYIdO53dWXD4PWnIEDv8TDa90Es7NrB7DzA/C9Zo8kiDi6uRVlud9UjqQwSbkUFrDozt0eI0eVARzfqo7vl0gWOIIsn2upS/u8JVmlIue8yAPRLAXUvO0clwjJky7DuuAqmUkzqaT6LcaTFSAvM63MWajqRRE2R0O9BNwhyT8d36vCLixhpzPF1lJpvG6yT5lCf4dakJsuNa7gLw3DxPJ88umdLgxDQ46RWu4YCk3KYNNBsJwTNtsJWEmJLqzLqIP2vMxYMyMro9934zCPr7JGYrZzL7SIWXTxwT2zFkkm0o/4cY4jLEsHVeAphWvsVXfNLFYrBekgfhTs0w04vG2g3+MRbHRXoVumO6CHO+S2D3kEh0TrZx/rkCZk+lm0+hRLF9fwB7JJl+7TQMLJ524sAgpkWwq6bErI/uWQTYaCxYKI/yNCIoCAC0moxH2VshGJ2gsVY49AmefbgYp1MXFOos49NXtGFfj7gj6z67ioVTDoqVALV9FMaOSAbQ6qD1d2dif71yHgBQ2WOkrdLrsFayhQb8043EQgbNIkOxUC4i62ErSwLi6ewCODHxQgQL7YgcGRnSK4jwoDIYrQ5ZsoiFi61MSGgBXxpEaDXbUd7OTxnAzh1cG1pv8Kh+ApYBY7zAByemwYN0nDuP8NQSVr4+j6XTvcmsYTJsPXgcxX/9mngfO3Ic3b87CtbyUHjZTpAXHkpO6GetlcAefwoLXzya2kdNBqcYonjrORgv2ANs3ZImCqtNnP+fZ5P00fOovXgM5s37ozKY6PzF42jNheg2Db44VCONkqUI3aYBt01hF0OM7fRhzESuyAaZmZCJsBfAO91AsOqjcP1E3L7d5QCd6FujSiBMm/FB8HgBzAthI9EYy+lEG7CuGuODhaLkScI0U6HJ5XfBmCnFCye13ht2bgW27omtzOzZp3n+eQSssRCFYecEnO3xQSYi4ux1OMlbmOVEdWpLVAiJ1I1OAafOSWXXSK6W6vw92bolSSe3g2gwyeoNHolOxs6twNTOdBjw1grYwjEg8EF23Zi6N2I4YMtnwU7NAlvPpc8NfLCTj3ASL0KbNxZ4hMNmC5jcwgcNuroKfU6YTxzn0R6jcPWxK7j2Ki/7dduTazXmgOWzgFPShgwfYojLEUMyfBlAdBS+R0DNfK8Tgszy/zTyM0xia3D6eBq+R7QPW6fFDX3CQynPNVMWHoHlszYWZkOcOuGm9lsWAcCJSXmtERPhp59IQnWWRyjGpi10I/dxMlENfILmsonVlRD6psnTLi/66LQoJqYtFMoBAp9gecFHs8nzdJzk/k2pPi1LtqAXUfjBHGjJROtwA+efK2JhNkShZAHwUMM8jJkW4AVYXbDQWFDCkcaE2MWItwgb61hICMSR8QDEEcPiu1QIMetkrcdqGuqF3JrfSZfTyXHTxz1v6I/FGtH4Wm6iGe7wa1tRFLqw3oV/uoFwSQnHGnkiaC6b0mwFv17aUu1zInVuPrluvQl/rpWSZxCLglpNbg1dbcJ9YgGdk210myYOP+bC93rLi+yihe3feyImLN6T81h6muHxbxvY/+R5bLt5Fs6tkUVtUFmLacB/Zh6nn+FkUV4I65QDzFQXUag5Gct455uncPJwQuCFe8RdWEYNR2B0k/awcKKA1ZUQvsdgRvUh0svXE2g1k6iSYzjPw2crln4xUNItlhMWY058TVgL7bh9+i6Jg/3EC1uloBr2CA8FzrwQQTvtk1ggZY2ur/I/cezcPPxn5uFHodXFAJB5IcJ6F7TGB1aCnMveMAzX4y7ovA6wtoTw2XMwDAOsmrVq8oewBiwugC0u8+3uE8CB6NjSOW71XapzWZLrg4W+Pvpdq8PlPfL0vRzi2jRA8ryprK6BzS8hXMzOOlHTBDGNJFR3dw04dRrhyVnAC0EBoCqFml86B3bqHNjsCr+mfC543WLkTELGu2vA/BJYs8XTqlZdAa8DdvwEwmc58afjfAZMWITZ8dO8nrafAApR/ayeB84vAaUWr4PIBzRb1YRsHmKIywTDcMwXESKM5BOvexUqlpWycvbCILpht03RiUIaq1HodK7WLCeEVQhTeedNkwvN3+lnbKzV9boqz2OYPZvVD1pRNL3JKRMrKwG35Cq+kMsjFJUqL7t8TPz2PQbfY2i3Qvg+yxDadju530rV4GnbIbrd5H50hNhSyjExbcFyQsyeCjLlKI8YqE4m97cakeE8/fXoFhflMT9FcnlFpetPkFhjpgxac1IazCwJ9rXn9spfXJ95oVbfqYb1zgv13VduEvlpVom86kovTYaVa0T1Z5dCFHYVQUtJhyxblGnFzgw06o+1cfwJfq+zZ72eZNi0CK6+lhModeblyJNJHe8/qA9fHZcjxy3h2aO8HCoZrkx6Wg8K554tYmVRvk6a3M7sa8fnzT5blMgw0abPkmG+LbdheQFtu5G1NPeLUCggh1GX01KDwS7pB1c6t33W3lqGpHvHIsmN1KblNk8sCnNHJfOOxWm8AObeUQRzTbCWB2NHBfSKHdkCScSV1RvJIk0RGlqS/gjPMqRop0NHR0FiWD0tTUnBC7PfAwlhvZt5xwE++FNlV6zeRLjUyU0TnkvKTLfW+s9QyQsA1eA3q834vlnLj2d9xDcrycOAf3wlkYmNZBcLyh5QVptdjL7yExsPx/z130J1ZPN8Ma+udTH6k78/DMc8BIChZfiSwPd4qFsZOgIi4PY4JhD4JCbBKhHQRaUzTBJHl4vhic5V6fB8A+2GgflZDwvnB1+wYElkVhBltRymRdDtMnTn/Z4WXM9jqK8EmXOBNNFtRyGu5fNlUizD81icNwAsnk/Iokw2AKC5FqC5RqVr8v1CpgJEAUqijr6xYCEMCAqVpMxcf83PT543RRgQVMA7GGGJE+hLgDVu31LnK+S0VzvrdVy735fqtS3KmZ5ZyFispbpSfUULkuy2KHCyDcsJtdZ1WSMN8DobmQ4xOstnRWYjxUFeJEYAOPxYOg+5DQkcfyZdt1ZmoJYmo/L1VGLqdSiWTjta2RPXvgepPOTzF04Ucr29rAfdboj5M0ambOLbIbtmVMlvrzDu4nshCLV4rm6LZs5Rw3uLc2Lrr+q5RUOEiUVBSlZ2sChvR+f5x1ZAx4uJfl5YfmW40iBRXkQVkeCMa0Uv5Bbn1fQMTW6YcEjvsdJ2+4F5IZjnImzMp/ar7wXr+LGcRIW8v9ci6LyZLFnyJMuygrlmfEwELorLU28C9WY2Eh8QE3PWWl9dDDHEpcSQDF8i9CMl64XsZ7gTfbDkzlkQZLEv8AksJ10OWZ4hsB5vFjJUq6tangvJZ1CYJoEfEbZul2kJjycNHAQ5FhCEWCXGPL8wJhUyqROETiU98UJEpOtcpA99AgNJh9qTBPchwLrr6BDkWGg3Ctnip7M4A1ym0W3zAYBKnlRSDGQtgQCS+486WuaFgGWgOuWh3TC0zzkPurSmRpqUJcLZ30meWQutCqHpBRDr5/shDAhazQsnxXmQ23RuGTTP1feI9jshBoey1dl3SWzlFrKJ0CcwdAZTDREWaWNphBfGYbrzztEG1HGVWRJfnbHJEmAVundOZ9ntd85GsN58ElmT3vKsyzMemMcBdgKwjp9KH+frhSDR7BCJ1inAoql6jInx0GvDED8EGJLhS4AwIKma1ml6NwLDZKnOUiXA8j7HSVs1gd7EOG9qW4dBCWzakqa3Cqvpdfe0XqhSCxkqIY7P0RBjYYmXSbFsbQt80pcEx2kDAlPTUfUiwWrnlUd+ByG9cjkHhbrYMu86gvCk0vppC7lKin2XwDDyrcy8w5XqwzJQ3RrEi0d7oRdZVtuF2hbyiLBq0ZWRZ12lBsPaanYWQgdBhPtpoXVQ224v0iuOibYsCK3atuOBi7DsRoRYHuDI58vPWbQ1YSU2DMbJlCwhyCHC8jYpWek2IGmKVZBitAiyBwnuR4DXQ377ktUNBvJZN+QBowbEorkEWY1gGEYyK9mNYyqNF0QEOEwIcVwODTG+UFIc+IC/ie4UVZeIQ/xYY0iGLwFCnyDQhTYWx9dBPFOLjwxBYJmWAANIETlDQwjlTi7OdwCfyEBvEqyTR1xIfoOc622AOABpQizXpUwqgHRd6gixjF5EWIc8EjwIAc4jpRshvL3QKz+ZKOvKE0aLPeUpdiAhxdQgKcuhDGqy3sQYvQmvtrx9rMFAfyIsI09jq2IQ7e9mSCR0yGurvdLrzh2EEAPItRJnIlD2IMKZtJJnFTm9/Jt5YfZrm0eC+xBgHXHMJb4DEN7NshSryMyiqMghyb0syHJ6mUQLUqyuD0jlKbZjS3Kw4cieQwxxKTAkw5cY6yG+/c7n3iQirZyGAIv98rascxV5CMidXR5p60dYdURB3TeIVXgzkCeV0CGPEMtQrcSqbCL0CfzIF7JwhSeQ8gUdWZCterevdUw+R4aOcPYiq5st0xGQiY4KQZDla/uKTl1dyCXfl5BhyMQZSNeNabGUPKYX8tpaLxKsbvfSCcvopbkdFKUyQeDTvrKK9Lva+3oirePQeKYjzzosoLMWC+QRYvk8HSEOfQIjZ+ZDJsIAX/BXWupwjylAvNBSJr9xHh0f4VI78UQivV8XQoIHWbzaM+0FpMtDHhnVptOV1TJ63lew1IldO6qkOLYSeyGEg1BVfpGxFg8xxGWMIRm+BAgDgpDkTGlvgKQYUaeT10mqlkxB4lTLDQAtMfa6FPVl/oFbj7X2QoiwqtEcxMqrIzd5i+fypBLyfp1kQmd11xFifozA9wyYFoNVSDoBlQgLtBsGStbgUohBCXDfRXMXMCBTrZZ5WmG5bGEQuQCUSZFEikOfIDRJajodyBJjlRT3Q7+B1iA69/UQ4Tx5hCD+Xict/emFJGolHeic5lp20Wy//NHtn05AJcTqIEbGIITYKKbPzSPCok24ywFsr80X0mlIoExeg6VO7O2EqtrhHiT4QhevrudY7jk5FlrdQrh++cv6Xt1+VXYk9oUtn5dDHBe+zpHohlnHB7FsritGVn6hk10MifEQlzOGZPgSI4/8CoI7aB7NNe62bFD4HtPrhjXEuL7so7GaXu2+HuSdM4iVVpwriMp6r+84JJcQC4i8exFuVS4hl0XeFoRY7vCtQgjTCVNuqESdi+csjpm2Dzvy2CR3Wr1IsEqA1eiBMeno6vWsGUK7DnLcL/z3oN4rdEQqnn6X7k8lxjoZhWWRgQZt6vOT9+Vt6/YPohPWgR8j65JHiH06DxYqdG4M9WVAfP1+1mHd81YJsWodFmnE9XQ64iAgoIJY9SHCoU8iDzshHMl7l44Ii33BXDMJOgKkiFgvK/BGCfBAniUuAOvJI2+BHJD1XiP2yfepht1OHZesxNzzRQhihYBkgddJKjYDLAh4wJ1NwmbmNcQPP4Zk+BLAdEKUK9mIanLnUJF82oY+iaOxra1Ci9EJAkwYOPWcj2KJojZmZjpiEbGtUKK5U7qqFUcs2pnawj9uU1JanXVK+AOWyYjnsTgAhoBKhPOswvFxi2B0lBNG1YdwfO0eC+MEZKnERq3Dcboci3u3G6I6GWD7/7edB2wocD9sbG4J3YfOYvGYhfKYj9K1ozwIQoSw3sXSVxdQ/cWDAIDgqbPo/CBxiyST4NK1ozD3jKLzrVPw50KEPkFljwH7molk5bwybewdWUb9KP9dqATcl6/wEyoHNGi4WHpaP9VfHvVhVHM+Ez00gHIH2Fw2Y+lNsRLAKQcpMtxtGj391MoQdWKPccvf5EQSnrvbNLC6YMXl1pQK82cMrNUDjNQM1MbzLZthQLC6kiWXjkNT5FWVFAioVmGrwP1820WZSAeZ9KFP4LYpqMlgF8PoG2HA6xraAbNhJm1S+OcGBl9EpxvYyYQ4VzesWIrdiAiLliL8V4tvnFUI43oKfQLYaclL6BN02zQ5juzAy21R2C0PoXRern4YkQcKjSVYDRCTWcyn5KvmrdsGBvAsIfv9Vl3KKdcdhEAShYAKhA03zkek6etBQoHcN2UXzRnxdTjxBShkS3QQW+blOgnbWb/nQwxxuWBIhi8BCiMBnMhIYWl0pIbJUKwEMVHhARPcKFCGiVbdTAXWGJsO484+DBysroSxo3/T4pYaESnKtAhKZQJqRJ2O5vpyh+d7IUZqBkaqSE31C6hWubnTnMyO1ISbN+FxgWg1u/1W74vOuVCSpofbeiIu5+15TKsblc/zPYbyCNVfNzrXNElMiHtph1P3ZHEZAEoF0BffEe9nzUUUZp7EzMMn4B3r8uARO7cC23kgAPLNhzD+U5Mg172Q5zNWRXnmFLoPz/KIW4Lo7KjAuv0gUKuiYFvA3zwLc28N5lVTPL/kJvh/l/+nEyVUW8cBy4C1dxzG9iqPlgUkC4pcD+4P5mCY3AeoThdKLApjppyddtUQEd20c9F30VwxUYiIcLESxJ2w8AZBTRYHe+m3SFCE/RXlqVVCBHNNhOd42UWAmcqkl+rseRRBA9v3UhQqfiqkOZC8G0FM4szYW4s8mKRGfth0cS9A1k2h6YQoVIJcbXfoE3hIiLBTDuB3aWoArSPeKmnMk1QI/+OlcpK+oQTVUd8LdfZEfk9UVGoGtu5JCK/vEbTqJhbPeyiUTEzMIDXo96KZC6EN7zYNNBasKAJlGuURA5YTorEgyiP0+lkfbYKob/XX4sFnatal5WP1cBeNBQuBT1Cd8lDb58IYL6Ty6UeA88ivv+hidcHC2BVJ3bXmQrTrSVmtAv+GG0Xpe9xmWJm14bYp6kv9Zzq27fNQ3aUpmxdg9ZyBlVkbTjnAlhtYpqw6cixHH/RdCicajMla/Twrcew3WgKtOanvRrA4jEA3xOWLIRm+BDDMxFISW0eCwVZ2FysB7GKaJIhOHOCd49R2BrvoxWl4JxyiZpIoSl32OoIAyyQ7S/JkIpmd3g59gvEpI5VXoZSQ8OI6vTuohFaQ4W437dVBR1J9n8XWY/U+ZDlJcy2MCbF8LdnyrCPE/TSboU9yXQeZ12+H9fJrgF17kp2BD/rSm8G+96iU0ASmx+G8qpYQW02ehTv28P2mkUSa0l3btmBdNZ7ahmlGUaciV0e2Bfv6GYxZ3Ml/tsPPWhN1/kjFvpQf0qjDpWYXY9vc1PnccsQ1007Rg1EkYBFPyoQGR9qnMfNYppx0vIhayUd5tAVqssgNV7bsM7v91PvTC9RgGKnGJeHlyHlnZQuxLB8A+HskPGbAZhkXdTFsbh23HJryyMAlCGn5ga6cjsMHzap8St7m7yfPo7kWxO9Nr/YtjvWTFe3d78BtZ+vc8xgWTrjwPQuBb6M85sPrUq08JPAJGvUgE92yUuvvT1qdPSqPWXCiIBGZRXYBQX2J4PQJF1u2WdjuBxg/kA17rp7Lbyh/oWu7YaA+W8DcaYZOg2B6b4cHMDpRTK3xqI6aaDcMlEd9FKNAPQunHJw7DizMe1he6C+L8L0irqp0MyGvg4Cg3TCwuhKicSJEsZKeeQQA1LvZoBuRp47lszafeZr0koGdaLNd6V1s+/xdsyhCn19THpiZDR/F+hKPXFcyEa4NLcNDXL4YkuFLAGckACKLTzz9ZKRdEKkQUbaYF6a0dLKODgCqU17Gh6tsSSqUg+S4ZPlSoXaGhslS5c0jxtRPpm6F9Uwmxbq85elcIOlkZXLabocwPZKSW6iEWBDV9bjVarfS+ek0xjKxFiiXaa58otMK4XVN7tOUmkAo9HI1kBtvAwu6iU/LUOrkqAly64tADIen2boHZNpP0gTSb98FAh/k6n3J+YGfJsGC6Nom4PogE2Mwa5FlTOjj/EBLiK2DU8lxSCvvda6rOn56ejXqRNMO+ZPfxkyZBxjRaTMtgwdgkM6Xj6vaYjH1TqKpbjpeTJ1nTti5077lUV+rRwX070axEmhlTWo63WyLJ+m1u0BsTS5UApTH/BSBUTXhslxEpUS9B9AhAJohw+rAUYR31mmne5HiXu4LTYvg1AkXnmcp6RJvN77HMHsqAE5x3bRe36wfqDTqAToWiSRfyXm91gd8+/8GOKgllaLb4zKy2bMeqqMOQj+PgEaD56gteB1rAJ19gCce8dBpliMSnL4vMfvQWLCiGQtgcQ6YPTt4lDbfY3jmu3w2UV3ke/qEC99jmJgysXjaweLp/DDGukWgXpdGhpRsGjnt6BYXdimE79LMOxT4BrpNA9ZyF3apjcbSwLemhx9sbgCPYTCQISQMyfAlgmnzhUGyNvBC/YleqJs2XThntTPUWekEMfY9oS1MW61kUszT9+9oAWRcZPk+y5BV1Uq7kaAE7VaIYkmUMX1+cy1NJPKkEp5iLeu7+NEw007erUKyH0gIcR5MO2e/kViJZaK7XtgWJ/NRPsQyIu1f4h4ptv4WzJgQA8i1EotzRJp4alY6N3O+lIcMlRwzj+Wulhd55B3LI8KDIo8Ie8qCRXnWhYPrf51ykPKmoFr2gIQg5y041ElJDJPB6+qD7sjbvsfQbouFc1nJj5pefuf6+fNWLbry9Y8dSbfvYildX4P6Ce+3QFbGo//Y7puv6TGcOOpibCLbHerqb2XF1X53dJ5zTp/oolLN6oPryz7qy+l9C/N+vAZjEDz7VGLJ1n2jLItgcd7H4nz/70EvP9p5URvHJk0UK0aukUW00W5Eij1vaBke4vLFkAxfAojOTl71nyLFpr5jl3/L1iNdR6hahWNrco7lK9tR663D8jkqMTYtFq3yTtLLH0SVFOdB7mCFFlEmxf0I8UaglVpoOj4d8nSUsHUxZhVIlmMYJoihsdjIaeTfghD7A1iPIuuwIMfEMLh1WCXNYluUP48QA4C0+l8ltr2sxEA+KVaPxXkIiIVAOeQ43o7y0r0/qpeCPPSaYVHfJyA/mEq/d8u0WV/3cEFA4LYSa5tYCyCQd75qweuneRdEJ49g6oj1hQS4kbGePPr5AJfLp15Dp/GXEcumBpBE9ZOKqNdYrx/1QokOTIY3Ak96hjJ61atoGzIpFt+8dsPQGkzSeWffpyGGuNwwJMOXCIbB4s5YWIkBJZDABlzQXGho57wPv/yBU0mxfFxIJYC0DlpHioEwtXpdvrbawapW4kFcpm0mBiHCac1xmIR+lQlsHgQRVi3GvSDyNW1OiMW5edbhzSTEQGwlTll+B7ASx/uhJ8VA1lqcyUtAJseWEQcA0KWRMag8YrOJsK4dGQbL6jWRJvJiAC3nrS7IS66R/gb0sgyL46aXfb+Se9Cf0+t93QgGCUutlkGXx0auK/IrlihMk6TI9mZcA0Cc76Dnl8u8TXRaF5cQA+vzmiOgkmLfY1hbJTBMI17XkuShMdhc4EzmEENcTAzJ8CWAII5xBxeQjG/YFGSfj7KnB1ffGcfH12kV1skN5A5KjUKlc8sGpK1R4lo6Uiwgu3ySr70eQtzLgtPrWJ7/4n4dluqpYpCIZ32JrrGO149e4Kt6gYQYQEo20U/+kEeK43PUbYUYAznWYIkcq6Fke1mFZWwWEV4PCS6P8HLb0WJBuW7U+wEAwwJom8EIWGbGRb0nWbakSq96Eci8yH3qtHjeOzeIv+5+GMTSK/TF/Uh+3vn9rm2tI2/f773YUM7D9/MJpw4b9a2eJ5HoB5UQ6wIM6fIXXoKEJxLHsWMyrJLgTY186Qcbk4D1ym+IISIMyfAlgiyL0JHiGBqt46ASiY1ikI+7SowBTnhNiwHRFG6geMsQaQQcUIhV+fJ1VU0igJRsIo94bkQuMUjwArUT7ncN2ZLGzj8LACCTe+N9sR5YkGNBbAOf75NJc95vgY1ahyVshBADyJVNAIOTYp6P3lqs5hPvyyHHQGKZjjGAVXhQbIQI50ltCmXuFaYy5aWt3Xn+ZgEUKx68aBYp8JN0OomE8OIQBkSx8mYtjMIi2m6FqWn8vPes36xML1K8UUmTOlAfNI9BpU5518lDRhrVT4e8zoHCekjzRnAh0jIdKZbbQ3MtQKFMe8olEneFQwxxeWJIhi8BiJl04rKHBpkUe10K2woyVrNe0FldN2IVFkhr3rK6RtkThsg7dr0DIJQ8S6ikGODE2IlXZgepD3SvaViZEOv0wxcTjpP1VpHnko2tdsC+9X2QagHkFXvRDyzoggxiHV6vVbiPXKJnWtlVm0yIo306KzGAjHQC6EGKgVzvEdp9ulC0ijyin1V4vfKIzSTCApUpD870ALpygZIFCx581+jpRaIX0dAH2ghShFggjxgPqtffLC2xDqkZowFmddZbjs3IQ0VsUR9AN+wNSMo3G/2swzLUY8JCzMubfm8ELlTGN8QQlwpDMnyJIJMC2UoMSKS4zXlPr84c6C2RWC96fXjzwvyKssmhfbuR5Sqz6E4jtUjrIEnG8tCvM7hQ/fB6JRIyGc8jCb7HsPjX5wEAk7+wq38hhMV3UL2wjH7WYR3y9MOA3hOF5HYNwLqtxICeFMfHB/Ae0UtXqy7CE/mo0C2au9hEWEeKA5/CHtET+/je1MAIFgVKFsxuEPsZ1r37wg2iCLSTJ2cSEJKN5lqQS2DVhazq4rD1EOL1WiV7DdRV4rbefHSQCWE/AtzPJ/N6rr3exXXaPC6iMSBvkbFKiCvItrGMZ4mAXLhmeOhabYiLiCEZvhSwjHiVvbmjAuuGbSlrm//ELLxjdRRfsTs+JZhrwn1iAaFPYI8ZKO+tAUhH/5p/sJ0ZiVMRzU7yYywsRyIkamPBwuIcTz+5hcZO3wUZ6DYpKlNdONMWDyG6JnX0GmJc3mFixAvBWtx1UugTrC5Y6ETRxWTn7eJaoU9SREW13IlrVK8bAQCsfK+JR/4+OeY4BHuvsrDzxQFIwUTYcPHVzzO86i3CcpmOyJSARRbNfMf5SRkYjCLD4jELlak0UcmW18sNzZuCLH0IfTC3CWKXs+kGWYSXl6+MHq7WiGGA3PzKZIfi35ideALs1Dm+L7ISk0P7gfGtQOhzW5DqPznyh8yOnQabXQHZMQkyJQX+8H2wRhPhs+fAOn6KGBOLwrhmW5yO/w8QHFuEMVPOkH3mBXAfnU/cro1H4aa9AN6xenJJTdviVaaQNkS6W2n2BuhNhHl0R4aVKIq27zEUSjQO1pGENA77htjVEnwFeRHoRGCOjL5Y0fqLYzP72jBtlvJYIY6nBuEejUNpy1hbBU6fcDM+jffsd9BphTh1IvF4MjltolI1MgTx2JFuhmxVaga2bLNi/7+6hWRyqHYVInCPaXIf5WrwCtMiqQAexSLNuBVTyykTZH4e9+WsEudeUgedlxxVllIsJgGL8lAsJeW95XYzE9o89Pks4+GHEbtUm5gycfVNwImnaMa9nbasFsGhG/vPYAQ+weHH+HMuVgJYBR5RUgzKrEKYWvTptobkc4jLF0MyfAlALAJjvADrhm0gV+4G2XoNYJhgiyfAnnkGsAwU/5/rQA5dx08IfZhrSzD2noD/xCz8uRYAwLhyOiYW/gOHAaTDW8qhM+1SCHtEOmgZMGdKgGVg5HQD5ZPAyqwNgCWha0sWglUfZw6XYI8ZsPaPgXV80IU2wqU23DWkNM6+S+B3KWjFhhmR9eB0IyYilUkPI9NhKiQnHS+CTpSSKXgA8INMkAf/dAONp1qwfv6lIFuvwdTpx/DKv38Uc19ZQmPBwu6X+nDuOgB67YvA3CY6n/gTvObfFGD90j/l+cjEMNRYYWWiKbsqk9P4AdjTx0BPnUb1rp3A9Hi8n/9XosS5HmBbIFcmgxpBUnP9CHfXgIgMa9PIJNdtAXaJ/1atwxHY/BLQ6fIwzatNsGaLl1Muo1TmgIT4xrlZAHyMYFGGq0ctjNGIzckSiUP7sbZjL5reCi8aNUFhg5IopDIxUDMmwM48lroFsvsQwmIF1PfAFk+AtI5zWUUnLYsgBRNkrAps4eGqsTALdu48J4mmAYzXQMZqycI+34cNwHtmGcZkkRPm8RrQ6YKOF+GfbiA4qbwjSqAb/r7QjNcGHxEx1FizZCIsInuFgYVWk2F0gqAYhZ0Oo0hgrTr/zLYbBorgEdHiWaGqGYcBDuaaaElheJ1oUZLbyuqFxfnCtzE1s7ImoeFX70GUv/zCcVQqPEhJahGiF2TCa4uBC2t5WJm1sbZqRnWV5H3gUBFTuztRmWy02yHGJngY5kIlyFjgTasQkzNBgkXI5jAgmN5WxJkTXuy7WCWbImw8r/9kwCJCcntdC888iQwhdhyCStWIAnjo3T+mLOHS4mLLIigWgRUAnhLKWibHYlGe45AU4W63Qq02u1ikcUj7lZUsaSyWaBxwRBBrpxxg8i0HQcql+FvEggDodDHx4AnMP0zwzA8YbvsnPgov24nxh2fh/4mdGqiIcqt1Wx7zMXZDEp5abgfytlUw0aqbqEy1YDkhTCdEt2mguSyiT/JnQU0Gv7iJi9+GGGKTMSTDlwCF114Pe8ThH6xilQdcMEyQqX0g5QlYY0/wiGERKWJBF3BKwEgJxo4KzENbQLZOASMREfIDmDfvx2T9CfinGxk/qvYIeDhaALRiJ75hSxZIwYS1t4bxGQ+VY3VuMd5eAmCDdXyYEzbGt3dh7qiCWBTEsrnltWSCLHVSlmnLC+DZDLTmxFpSY0cFpGRhrFRHsBoAlhm7waIVG6RkAqXoIytNxRNB0ixOjM29NVRLFsjYToSmBVKdBt1aw9TLXUx5AUipyIlRYQSkMILC/3c7H2QIaAhwimjKFk0RAEO1ckYugLf8k0mQA3v583N9wIg6BCUUMpkY43KE6vRgDaO9itxgGiqWF8Dml0D27EgIsYz5JbBz5+EfX4F5cEuyf3UN4SIfTMWWWGmRpuO6aHr8PhwjRBsE31vwsa96DjsO3AJzr5uqSzdooxMFWbGYC4NQGJGmmTIDy+w8ytuvhlWdBlk9HxfDD11QwwCm98IojIBWR0BFfQKRXtkEdu5Pyj69A6RcglEugTVbIEYUftpMyCEp2rCigRhKBX5spAS614Fdc0BrDbCWx2da1vhiNHVAJ1tby5KlTVjZBEKfwPcIStHvQsWPra6WE6IWtZfY7aDBUB71uT/uNoXfpWgI8mqweJZEhYhI1pasatRkSfhikxNcr0PRjmZfipUg44tYReATdLshZnb7qN5UgzFTBoskKon/6IjwCDmKJ9YxRKTZohivAU65i5GqkyLa1Ajj6HkjNRsjNQOOQ7kHDTOxWtuR5b1QMnDDLelZEbuYzCJZTohKzYiDcwirrbC8y5IsQfoNiXw5ZoCrDjo4cyJ5hpZFMDFtSdZyXiZZW93thinJluz9Rvwul/WR8GTJlyDCIhqnL5FOYb2Of0tkdMu2rFVWjoB58DYfpXGGwh17eL8AxJ4WCAAYBozJIoq1ZVz/cm6AQLUMY6aMfdetYd91VmoGQac3H39JOb0OQGkHop1suYGhe74Fe8wAPKA0zlCsuLAcfp5o40FAYODSaaEvBu69917ce++9OH78OADg0KFD+MAHPoC77roLAPDBD34QX/rSl3Dq1CnYto2bbroJH/rQh3Drrbem8nnwwQfx/ve/H9/+9rdhWRZuuOEG/PVf/zWKxWKc5itf+Qr+/b//93j00UdRLpfx8pe/HH/6p396ye71xxFDMnwJ4F13K4JaBZQY3IomWx8LIyBX3gR4nfRJVgHkin0geyIro7D+iXNLBdivPATr1Dn4pxsZLxSytUeErJX3wTJg7a1lLUBeiMqe7BQkKVkwIqmHnJZqpnTpeAFOxUbYcON0xngBZLICFJzstL1irRQwr9uRXH90O8grt8N+JbREl+y4dnD9rS6dbp/vghzYCyJIu++nLTBqmW0TqFW5xKC5mM1blhJIYI25ZL9IK/Rxoq4EaZxfAvzz6evLFmovgPePp2CtNhHWE/KvTr0ng5oOfnYLJ5P/dzGJl3pyzcG51jkUzRAODWHSiKAMoIVsB6volh1YlSsBABTp9sRqW0BHt/M2L9dNIOpWGrQUq8DuEkjop+snAtm9DUQi1HG9AEC1DPNgGWx2BcwLYXlNWE5WogMkluJiJYBRjT6LXgAhb+gVEh0AJnZ1Y1/ivpuWGliFMGO19boUXpfCaoQorq4BQCwtCiJJkw5elwLdhJjH+yL0DtcMbNvnYeL2Gozt1XhBpJiVSQVPyYHw3lGaoSjNeFxGJdVFEBDYpRC7Dna1Ef4ECbMKIa68yU0NPFSvH5VJD+UxkiFtfg+3eQLx9Hw5wJ6rePtLrP9hqlzqOgfHoRlLsUxWC5JUQZDfovReCAuxLGmQYUXu3PIWzZkWwZZtVsrdpYrCz1/PiXCO7tW4difGr92Z+j6YV01h657R6IJS2HXNLEDGSwukCJRKJEpn2krkTtHgqjyWnCt7ULogeB6wTo8wffNbB3bs2IGPfvSj2L+fD9i/8IUv4PWvfz0eeeQRHDp0CFdddRX+8A//EFdccQXa7Tbuuece3HnnnThy5Aimpvig5cEHH8RrXvMavPe978WnPvUp2LaNH/zgB6A0eYf/9//+33jLW96CD3/4w3jFK14Bxhgee+wxbZmG2DwMyfAlQIgAIYu0siwApQYyS4OEVwHR2cseBDTT4QA4+SoVQKwmH3NrFhCp0H3kekHXOeo8B6SQE5BBtugBSH/I5Y+zlIdASKPpbWJkXZSp2lqN1lYrUeglnxB17TiSTGGAegt8YG0pdU/Z35p8XD8hcyrBdb1YSsK8hXhQo1p55f3siQXQmgNjvJDquATEM+ze+9/AvBCF33hzfExet+aFXCPZDQGHRlOjdMCFSWEHBrEAkiXEAPReMnoNaIQVXaSR21O0OJBAGqiIxYKTFdAlPtgMGy6w6qeC4KSLJN2b1LlThEmnbiOOIimkSXJnb9pcZjGIK6luk4eqlS26OkLrtqnWU4z4vbbKZRt5ZFhe0EorUT32WHCphtRWvwMyMQIACuU7YQPqk0y5ZHRC7m858kIgzhfuJkX9USn4iKrlzrtPSwrqKCQvunSqhETVW/PzSYaoyvvV/3nI85rTC7q8Mwv85GcYe4QxQaLfTE5jmumFsa7Haz8aEJHYh7idffbSu6AjxHnpgMSD0qYQ4ucRP/MzP5Pa/tCHPoR7770XDz30EA4dOoQ3vvGNqeN/8Ad/gM9+9rN49NFH8cpX8rUZv/Ebv4F3vOMdeM973hOnu/LKK+Pfvu/jX//rf42Pf/zj+OVf/uV4/4EDBy7GLQ0hYTAfXkP8WCPXqqg5pk3Ty9rkakbnXsgXXu3ZkT22HvSyAOsWp+n2yZbaCBmrsGQxRsfNpNemG4RYDwgdUaGlwca563Hl1wtasruZUImzOrDqA2O8wBfXabNOZA0A+OxHa3CrUcZXeA5koiVLHi4EIh+dCzUdcq+naLeT/dkgJ7rjujYk6iVTvwr6WaMHgaqLlgcXwkqsi6opPOKIsunqc70eG3QL6QbJw/cYOq2wp0UYyBlkye+DnTwfYmjeEzmtKZ6fZjYwes7xs1Wetdoe8tIBF97OLzcEQYAvfelLaDabuO222zLHXdfFH/3RH6FWq+H6668HAJw/fx7f/va3MT09jZe85CWYmZnB7bffjm9961vxed/73vdw5swZUEpx4403YuvWrbjrrrvwxBNPXLJ7+3HFkAz/mEFHXvM6o0E7KW6VlBbB5UG1eMr7gdT5ZOcWkOkrAcOMreobhdYqLJAjj8g7piXCAq0OsLqWT4QFXIkQ55Fic/BJG5WIGOMFvlAxsgBmiEqPQA9xEsX6K6zCecd1MMg6fOpKIIaetPaE3YMsmwbIZIVLdfoQf69L4a5JhEOqK7lDH5QADwodYVP1v5tKKOzk2RAN4e31O7NPU0fCCtiLEA/yfennjkvnxzbwSezRQKAXIVbRa4ChCwCiC+SzkSAaMhFWr7khyN8Q3eBRtAH52DqJ7iDp4tmDy5QQr66upv663fz+4rHHHsPIyAgcx8Gv/uqv4s/+7M9w8ODB+PiXv/xljIyMoFAo4J577sH999+PyclJAMBzzz0HgGuL3/KWt+C+++7DC1/4Qrzyla/Es88+m0nzb//tv8WXv/xljI2N4fbbb8fS0hKGuHgYkuEfBlxoKN51II8sqB1Xbkc2gNU4Rp5VeMsoyORe+LYNv6BZLCZjPe7Hek3B5+h5+b4c7xHyth+ANVvce0Onm2h+5XRAesFYnpV4nVZPGaRgxi7GSMlMax6gIc6TxXixpQpzQDmEgPAqsenoF5hEGThorWESenXKbovCbfX+LMrTvevt4HXWYR3CyMWZbkFc3nl93frpoCFCwDqtw8qx9RBiHfIiBQ4awSyMghipddePEOvKJQjxen2Trxeex/r6OM4cF+9FauCneS6G5rjmGxMPihSi2w/9CPF68uqJeB3FJv4B2LlzJ2q1Wvz3kY98JLcIBw4cwPe//3089NBD+LVf+zW86U1vwpNPPhkfv+OOO/D9738fDzzwAF7zmtfgDW94A86f5wuJw5D3jW9961vxS7/0S7jxxhtxzz334MCBA/jjP/7jVJr3v//9+Pmf/3ncdNNN+NznPgdCCP7kT/7kwutwiFwMNcM/zHB9PaGUkCya668VJgUz/mgJd08XOoUpL7aLuxONTrGvVXkzoWqFB5FH5PjqTaHVSf5XR7LnyUQY3MpMgP5WYNvK1XYKjd5GQCwK8+UvSLLq01+p5Nggz9NYOs+nMpD1q9zDzzIQ6Xsl8iW8IajQ6WY3Yh02TJbRqgpNpfAGkbJAW/nXkD0oxJrgHF2tTg87CHTaYa2eWKMVBRBrs0U9q+XTBRgaBL3St5oMAEPBJ6DFdP5qHYc+yfVKoS6o0+mHdVbijVh3hbu1TQvLrAnDrtWIK2HX5QWVAoPogntqiAGe3rw8bW+nTp1CtVqNtx0nf2bKtu14Ad3NN9+M7373u/jkJz+Jz3zmMwCAcrmM/fv3Y//+/Xjxi1+MK6+8Ep/97Gfx3ve+F1u3bgWAlCUZAK655hqcPHkSALRpHMfBFVdcEacZ4uLg8mydP45Yr/V3dY1bIlfTXijUEXjYcBHWuwgbbsZzhA6kZMXaykw65SM5iF44dV6rk/0Yy9spq3IdJltH8+xFbAeFKo8Q1oNOF3ClxW1A1kosDUoSKUVvIpxKG6GfVbMf0lPb6by0Ws/dh0CueSngjCSHJNKryiEGXTx3ydDLii4fa3UGGthZThi75kp26qUShsHiv0EgiDCAjEY1DmtuJf/lkOg6q2Ye+qYRbWQAqURyzgCa0gHLIAix/LcZ6EX2ZT/MpuKyLg86C7xwr6ZKI3SaYCGpGCTCpe7cXgifPZcdEOrehWig3dM6bGtmhjagC9al1VmJLzdUq9XUXy8yrIIx1lNWIR/fs2cPtm3bhqeffjqV5plnnsHu3dxr1E033QTHcVJpPM/D8ePH4zRDXBwMLcOXO3KsYKzrckI8iO6u4YJ4Ye4CIiBxp0Msmqw216UbVEesIcphvctHX6VCmjwq0eAIAJw8DuZ1gC1XqtkMBtVNl0qW10OeXR9M/uDlEWE/kIJU9CfCGeismPFK8KwFeBBXWIOkfbZ+JCK5+vah6oVlGMogTpVK9NvuCzUSn86rioDOGhYhrHcRLqUDcMgeJQRBIxbNyEZ0XhUEAdaFVtd5qQCixVpK+l7oR9Q2YunVQrYYRh4FAI1FEHrrcAzFYih7EZCtw+Leum0K0+4/mLiQ+8yEh5es8AAylnjVy4SoZ2EdzgvSIUO2DutCGvdDr9DeAmsPnEe19jTI9ZGXAZ1XiV7W4R7fmlSo9QE9RwBItQvZe03GSrxBDLQuZZ35rQfve9/7cNddd2Hnzp1oNBr40pe+hK9//eu477770Gw28aEPfQg/+7M/i61bt2JxcRGf/vSncfr0afyzf/bPAACEELz73e/G7/zO7+D666/HDTfcgC984Qs4fPgw/tf/+l8AODH/1V/9VfzO7/wOdu7cid27d+PjH/84AMT5DHFxMCTDlwg+cwHGyQBl3N8wpQaoUQAsxCFw4ZjcpyqkfYGfJnWhD5ybB2u7oFdulS6id8nVeegsAB/G3hrInpkknWyVFYRuvAYAYMe571vxQTN3VIBqOU0AI3dfwVwr4woNSBPncKnNScYEDyYiLBWxVCACicrG6qtAtwtzah98YwMTGJGejrva6ib6OhERbjwaZYc+2PzRrFXYKQFjo8C54zwfwwC2TqfTxFbigA9Mzs2DvPA6oDSajSYnkW8S+GDPHeUdz9Yp7r5NSkM0PoZZt8v3A6Bj1bQrtk4X3j+eytflRZ0anSglAU+i9uEXSji5bMfJBHrphds+RTtO48OiDBZ1Y9mEQU2YxIYPNxWdziAWb/eR5wkbGotULwmEisoY/x/6wOJC6hAxDN62ylxzTld55Dc6Xsx1Sxc2XFh7x0HHk8hb8JIwyv7pRjKg9ALAMricKKq4cKmTIgHyNYKlDmiF+/tefZT7FZan5Ktbc1ycRcRcDnaj+j0GEEeDFEE4AKA6xX0Ky+euPgqQWhnk6n18X+DHMyAESLe5+ir3Cw7EMyT+E7MxubH21kBKVsYdonesjnCpnSLElsOD/tii7qJ7IiUrFRjI7PiwlXsFRLTM7KJCQL/IbsdVLip7DBgzFW3oddmn7uz3s+7VVEJcHvVRmUoG8LK0RvannAqFHflTFrMAR76f7m5VX8P7D5ooj/kwnbS0Qw0H3m0aaK6YKD6zBPtQ0Ht2BEhcDEbvRPqYRjpRKoDK7QNIFjkfO43g2GLyvPaOAtPj8L/9XGqgZN28M8kvCqmOw4u9y3mZY25uDnfffTfOnTuHWq2G6667Dvfddx9e9apXodPp4PDhw/jCF76AhYUFTExM4JZbbsE3v/lNHDp0KM7jne98JzqdDn7jN34DS0tLuP7663H//fdj3759cZqPf/zjME0Td999N9rtNm699VZ87Wtfw9jY2PNx2z82GJLhS4C2vwrD551KHHgDWYJgUwst1oTHOvyYaQEgoKQAinLqPDJ2GsSxQW59dXIhnfUz9FGYfgD+906AvurlnASGPti5p8AOHwUAHiJ6JrHAsqcejmMFGTNlkH07gW17QIq11HVY0AV5+nEEp59Nzs2xPpKSBfOuFwHlKKSxRFa16Q2Hh6xenYM5uh1gUYl0330deRIWS2qCGGZ6H4B6sIizzTWYlGH79A6UXAa2cAxwSiBT+9AiXbT9VUxc81Kwx74BcsPtaIQrGUJnUhtk4TiwegTkJ+/AYdZBN3BxQ3kCJCigTptY8+qAxTW24852WEtnk3JWxkCmog+hCDwhPT8WdDl5j/axyT1oB2txGSgxYFIb9v5HwB49DO/J+eg5BPHUN6mVOenesoNH25PaScNbwESBd3QODbHi6j8JMjnuhhRzLTPeL8I4A0DRDDFVcGGaNuouJ6AWZaja4wiYh27Q5L62iQHfKKNgjoD6ku5dfZZSMA4ASAXeKIyAVGb4/ZZGgdXzPCiJbPWyTWDLDpBde2C0VxPyByQDjlYH4dGz6D46D+PandlAN/NLYKfOgcw1YcyUQHdt4YOKkRLI5F7AKoA9+zDY947AuHoHcMX+5F7mZxE+9hyYF8L+py8CTANjM49j+f652I9uGBDAMmBfMwG6czwuf/fvjsK56yCPtCii9cmBReRBreuBtV0s/9U5dJsGtr5xK8jLXoa1Ko/wNtLsIrz/qygeq4O+/DVYJqvxt0g3SGFzTwP1VdAbXhK3mfCB+7MNY3ocdMdWHhUxGpTYk/Nwv3s6RYjFjBOtOfHMU7jU5mHir5pKSFk0yAaSgBDMCzF+ZBkLA3qX2nGVi4m7pkFvvAqY3pG0I7l9SQtmt37xG5h/2I99G8uEuFgJMHkIcG7dDjI1Hl+Ddd20QUETWp4U7di4sPqFH/Qs8/6DJvbcPcYXD9ci/aqvkWZJdUQO7I2vGbeFWALRQzvfw7+0gLf9apxtnY7faxFpcmzfC2HOPgv2nUcA0wC965+hgw6cShneVx+D9eK9IFddBTbD3wHaboAd/QHIuTrIZumhnyd89rOfzT1WKBQGjhD3nve8J+VnWIVlWfj93/99/P7v//66yzjExjEkw5cAAfNiw6lBTVCWkNqQcGJg0QJgFOG5Hbghn84VZEekFb8NYqE4MQlsKWC5ezY+Lv83iAWYACUmnCv2wex0wSb3YM1fRoWO8sLI0eCoCdcyYIfRdOK+bXx/qQBs2wM2vgNe6KamuSkxQPA4zJt2gziJtEL7AS843FVaIdKm9rL+GSb80EXIAtil3UBjgZPnKIx1DJU8xgUzs9vReQ1wq5wfuDi5ZqMbUFj0PLaUtqKw9Rog8NEiXSx35zDfsWDSOVR37kc9WMRydxUWZXHHIMjDxNQ+sMDHEdLGDxa4JXL3yBJAgCN1F0udYkwa91VPYWZiDwwxoJjZjzV/GQ4tgxoGqFlM6liQ4Oge/UIJC+1jSThkuSzTk5h49T+Fve9hsHPn4zqnU+M8rPHodoSUJBEQozorUh+7R1bj5zlZbKPpeVpS3PQNODRE2Qyw3HWiMvByOAaPUueFPI1BeAjotk9h2TzojB+68EJuLTeoCRryNm2bRVBqAt21qP109aRYjdAX+PAJf7HM8gRYkCY8xA8AxwEpT/D9hVo6b1G3Z07zPHZUQPbsBhndnsqHFasg4BM4ZOdWYCsPd01Gt6PjcNd/pT2HeGvYuZ9H2BPPsDoDCsDwjkQu3vaCHlhFda6ZslJa0axNTLj8APY1KyA7tvIBpETmUtH4hFV3xwGwoIvxie8Aq02Ql70MC2WGR8+3sK/aRcXgVqXCi7ehTpuYbfJvDG+XLNWWTGJjbOZAPBhokS5KMICCA/Om3anZJx4i2wapRoMSAKTVgbmjgrBkxlZ3YlEYM2VuWTcNwLb4TIVt8TDmQIbok+jbQUwDzs5xTFdOIZDqTRe1DgDGXjUDetsLQPbeAj/k96B+H+V3wL7tOKZwgpdfzBpIcG7axonn6FTStkIf6LZSXgnEgCUuyXiVR1CM2tdVN3speYxs8R0/EILecg2fJRIGg2gWCZrnHV9PDmmuuhcU+8RxNSiNilhmwevo0UX+LXOM6B2jDPuqJ7Br69Ug17cAw8S8dxorXR9X7rselusD23eAzezHYvdUdPkiavuuhwHAGR8BPq6/9BBDPN8YkuFLgCD0Ad2UsIJOsDawT11v5gr+w18GgNjapgMZ3Q7yku2pGFFk+7Ug26/VhzY+dGvGnZWwC6rXIQdvArGkaeVQ6gx0hEa3X0XgwwQFDBvorEUEppu2IutIMKBfiCjdixu08cSyuBueY9unOLU2C4ATOytIrKBu2MZSwQDVPJcQASgMLHfPgo6PYqXexlTRx3zbxNfOCGupFXcmAA9zfHLtHPaPOqAw0GkdRcEowqHl3nUyAJbDJZj7D6By1a0J0SuMRIQgzAbGCHzYZhGhEckviIGiUUXZdFGxVuGF3UgTzK2GK26Ak40C6i7p6XlixTWx5jOM2vz5eCHBmleHF5KYdAG8LXWDJrywA4sWULAKQLAmVbCvbysyIRCgJidkgviKc0Xb7KUNt03QA7tAbTO1kBCIiLlVAPbsB9m6JWVZZ6tzKEztQ4d00CkZoAdfFFlYJTgjIFffCmPbHqAZ+Qkdr8J63c2JNc/1AUGCJcs1vfaKJOpeD5Ddh/D99jIcGmLsxdcCAAxF5lJ3AtB/8lo+SA47umxihCzAsn8e5tadqFijgF8HrALoLa/ISrdy3kO6cxx0q2I1FQu1Iu8FZGIsIXB9gtCQWhX2XdeDLa9mLbJ+WktKbz4IsvcWuEF7II06ufoqOPv38A118SyQ1dYC+br1HFTfdH2Sr5yn2B4pcbI9yEJq2bIrzRYQ2TKsWoW1+uGsbph5QSzHSiWV2tNi9xTo1mjAx3g9NCwfxvU38/YfJnXjhy6WjQDFgzeB7ggAfKb//eXBC7VyvAvKb4ghIgzJ8CVAJ2AosTAhARGJkuHldFA6kuuFHbTD1XhbPq5L34n6IC8izo1wBQCSULnEACh3LeJSBlADAEMIqYMJk4+huEbIAoTlxCUNL0sxpxaQWCUHQegDrRUuxTAkTW2wlu93tg8RFljpGlGYYU5YT67Z8cdeWDqFxWyhHQAIYstubnFZgCsqBkIEeHTRx0rXjMmfDLHveAOwqA+HGijkV9m6EbIgeb6mBRqspWYYBoFNiyg4nESLGQl+/imcbAw21emHBCuuye/fB7yoPtWyyu21YE0CnTVddlkoOkmfhKCmBSrIryI36YmJycHIjTLog1UAWzqBwuh2dGgfMleeAIo1XpaxbSlSqfVxXbAB2Olr5qBlExw+68ALRftNrPUAcHTVgUW7qXbt0P5+pEMWoOEtwCBcvkVptM6B2EmbUO+DmkB1BKRU4B485PDiYopfQGfJBPKn8AsOt5zL/rkFEZTPq07DDdr6PDSQ1w8AyK7RkI/lQSaV8u/QB7ZuicqnzGzI/2ujIIVovYZuZmQAsK4LNFtSOSK5Rq2iD0qTV8+ul/u9OLnmRO0oiL5fIQCC2dZKZoZB7uO6QRNrYY/gR0MM8TxjSIYvI/hh7w5ZJg6CqOaFwQ2Yt+4IYDJJl4nwuvJgiZVx3VCJq2HmaoozGJAICwji0A/dkGq9KQShn/KkELIAS90umr6B+TbfP0j+RTOESftb/9aLQZ89DRlMor++bRR5p8wYEHZgUhsW9ZGv9L6EGJ16vksQyy/czXY3Zxp8ASeQ1njnoMQc7Kvxge7JRvpZrjdwygWjMAKUW7zMrd4W6HWjj86Vp/GB5hLsSLbhr/czNAgJDSVCm1qErJzrB4mDlnVaki8IyqBDXaTcC7qwzAKbETdjiCEuVwyb92UAYSHzmbuh0MPiHN256r5B0mivsU5ynJunYeb/9UNeuk2I0OeH2e7C0+zrhYWOFS8s00E3K1e2LDjGYBKJixLhzevANoqc+F6uUK1ypgFSmYl1qpuS56CQyRI1ERYrGx449oRVyEg28sCOfx9Xj47g6tHB0l9MEMPhOtlB0EsaoU7fd7tpcq0jniLt6XNgK2fAVucGK8egUPW7F4r1BPQRuIDolAIX6stcxSUfcA0xxEXA0DJ8iaFaFAXcsA034NYDMc2kk1MAg5HXXucIC3M/67EquUhZjntolHPPH+AcLdYji+iXXlN13YCmdL0XgvNtfn+DWFHKZgCbVgbOe73PfeC69jqXNOT3BaM6Dd+2eX1stE2tBz2Ijxu2N96u+4DY5bR7vjz4ASodoFW0AKzPArnpQVTEQtdeUC28eaRYTtfpgvkBSJ60QsZaC5g9DWzb0z+tQK/Bke6YXLY8iYQKVSJxuWEALxPrbS+b+V4wn11wRFQ1vyGGEBhahn9IsB4ilJf2Qkn0RnBB59MeluCNEOF1QGcpFgjY5nyQRceSpxe/ZBjQykWJsWmDhlzkPT/NNLOwyPZsY5thwcvDhUQ77IUNkCV2PN/v2A/99HarA6w2gdW1tHVYJZ66QDc6DNom8tLp9kvXY0GQ9tjQSyIRL6QbYBAzyOxZP/QJ/U6uPwByaD/m2scBQPu+6yzBl11kyiGGWCd+2D+TP1TQkSi5I7cNG7bBNX9Bj47WpDZMYqe0nhdKWnthIBlFJPW4mOXoS4IHIMIhAmwtJ3q69UohNgoduV5xzWhGYLDFPsLKMmiZB34WhZGBOtoKRnBgtIOrx1yMOcGmk6yQBYNJA1bPw3RdFFC4MMuTSmqEl4h2nf/lWWWld9OmmyQvuZSaUgXPG5EZxKIqtK+lAlCN2kZPeUUUhGL7js0po0CeV5Ne8IPsc1UXzklgnR5t7mIj8vRB9t4CtueFeHh+/d5thoR4iB9mDMnwZQIaua/KWxCXSU/6ewgImJd7TBAlkSbWHffRP8rHe2mVddcSv9dFmAUB3ggJFufLmzCws+xjzMkvQy+yudnkuenlP6MLQa9nn4JVgBsMSMgDH9PFaVxRuTiyBDdswydh4j0kD34A1pgDa2yyJhTgkhHxJyNncErbjdwFiJcTLpSoXAwZCGu2Bl9kV3DiaIKpPDQ+c8nOrSATuzesKd8wIR1EIqFLL8i9CAqzGbA18rcBJCZ+6OLo6rHUvgu1BF90GdMQQ2wCfoiEgj/c0LnZkiE8Cvihi0BxwwblNBGkQze9nqdfDJiXIqHCNVrehypkQYpQCX1xXvpuyKONGcTKlFdcD+Bk1KR2hhBn8jVMwEishKmy+wMSPWoipCR1btniDv6vqM7GTuWfL3iR+7GK0m/FLseicN2hycvfCdaw3CWxh4vYXVngwaJpvTl3p9YjHDIFqGHDDZvoBs04jUULsCP3eDJBFgFBSsRA21/Fcld+XgR8XB0iCrsAINuJxgMJGgKhD0rTenIv7AAUMAsjQBS9jqeP/KQKQmqYwNoSUJ3O1GnszUSOOigRW1KeSLsDA7L+ckVgBbucDKZ0YdGjbdsZQT3grg7Lpj5kaugUQduNpByj23tHHCxP8Ah7Yv/SieRcEXVPKXfbX4UXGimLfdPj0pY2SORWjcCnDB4lsR/oPMSzPSTov8hT8udMADCnBBbM56ePSDADYpKbGwyiOsJdqhXstGXV90EiIsn8yKVYwQHGt6LO6pHrt8SzShzpU+fzXcxIhD4IRuJ6Ze16Op1s6S2XgPoqekIsJpRdtPku9zIha4i73ciqbfPnK8K5Uz924xc/a8MFfMmFWqnA20nkai6uS+FarVLm9dLJknxSLiVpo8V5Ty1nZzsuB6kN6/hgZPOMESJs+hBDAEMyfElgUYaCQQCQjP9FAR6AgH/gWj6NSQ6Hl8rLIBRla5SfF1lqhXUqj6z6oYtu0IqlGoJsA4BjlFKdnR85UhdRw2RrsElsOEY5ZQ3rhk0cXuntH1YMBLaXCSrWZGZ6WSXqvB7qONFYiPcXzRAThTEeQa+XXlNxeVZ357DU7Ub1QFA0Q0wWyhh1fPghSZE21eWaQ8NUlC5AJZxGPLDg95n1GtENRIYJWRTEsA0AGp7R9JfR9hsIWIhV18DZloWzTRNumNSbndNBifLz/6JeA1i0m9EArnmGdJ6PslXHobF5TBZ2AQDmO6dweKWQyvd7C9nPhkUJCoaRKlPNZtha9uCFBkYiQu+HBG1wolwy2ygM4sXCMLkPVjl6YWEkXkAH8Ofshu14ACcvDC04I6DtBupOgLNrZ+L98XO1WBwTh78XBqr2FEouQ8cCVrqzfIBqUBiWCZsWUTNmcLx1DI+ulICVOZxqEhQM4CUzp7C3OoNCNJBb9s/jsSUfZ5smXr0TGAtsHCFtPHzsvJZgWBRwDAq0lqOIh3z/vhrFC8a2wzh/DCiN4kznOTy+UoRJCSzKC/+VH5io2sC1YyFaPsFzDQPLLoFNqZQ/i5/RrdMEW0vJIEpFyAKcb/Pjk8U2Ktak9tl00EHbX0rq1bJRGd0OhhPZ9AKlAo+IJqy9GqsqmRgDtu9ILLzOCH/vvU7WgrpwDOzcPI9YV53BP54/n6pTizLsrXgYd7anz4vyWfTOoRENmuT33BkpYczcDjZ/NPXNIVe+GC2/jtJWB+zcUzwMOBRCP7kF7TFeZ7IxILUt/RfGiU4UeIairE0HAGz2aWB+Fth3deyfOFU+6d6EP2yZDJOpce6e0CrwKHfdNeDUaZiui1FHfMt4PSQ+2Fnqe6iDQSg6AYPn+bCoh7JlxYPrIYa4nDEkw5cABqFwjFJK2qBKB1r+GuY7WYuF6uNW2OoMupYhlDrphBd24n0ND/DDLFmu2jzynW0UMzKGEAHcwEXL551lxfLjtAKPLzVxpN5/qni6GMALA+wsz2LU2dJXEtINmji5ZuN8m1u79tVclK21OHRxXMaM7MJL5dEJ2jjXKuBskzf3bWUfu0aa2Fai6Ib8vto+RcvPWh2KZoiaXdYOMoS1VRCwrSUXW0suHprj7JaT4iS4ByfFISzK4IWJjrgTtGEbzZTl3Q9dNDzE5X6qTrB4wevshAU3C06QCCxKsdI1cd3ESUwWSpjvcBL++HK6bgqm7vwEFmVY9Qgcw0DVTtpwN6SS1MQHwAlxbLmO2kTsSYEmHXpoWnxQhw6aLR4xsGhW4lkSdeAmEDAPhm3hoXMunlopRuWT7kV6tHY8kGji1Tt5EZe7BE8uc3I7YgV4wXg9tgB/8ZESGqtJ25+9juBlW5Zw7fgqZlttPDBXxN+fLGLuXAmLN9fxhn1r+OTDZRw5ku9+zDR1ixQruOuGBbx2F8WeyOp9umngvqeK0nkML9jRxakmwfkOwWwL6LRN6XiSr2mFsKiFl24JY4LD75vPMhiEImAh5jsFrHQNrPkerqgso2hW+SAwCinfDlax5tXjb5dDQ1TtNVTIdBQgQ4qyByRBMhyHhysW8KPIZ4IUb9kBMr4b9WARgLDGd/nshVMARVpKY2+9hvtmPnUay+ESHjqffEtHbYZrx3m+IYLY3wY1DMDgAUQ6rbN4aG4kqoOECI46Pq4ZO42x6b0wVrmlm5QncKb5DM62bOws+5jeeR1I8TiwMp8E//B9BBM7caLOwxLLhFL+LwYhBjXjdSKytyH5GykT4vL0XpjlCTQKABB9GKKkyUCQ/7epDaMZzUqUCsDYJB9glEbhhy5MaoMtngCqI2ArZ3Dj5AR0kC3sMpreMhpeB15I0AqBpp8EHPJCHxWrAccoXdz1JEMMcYEYkuFLAIOamcAKqsuxPC2qIGsqgtCPosZlP5YyOKnqRB9fmsnPoWF07TY60bS4XJa2zy1l8XVZAIRdeGEXp5om/JDgyeXBAjyseUZsiQzY2dx0ooM41TSx3LXhhoAbAo8u2jhaB/bV+mtFRWez6ho40RiR9ouontwiXDR9tH0KjxJYNCGuqvXDor3dRdlGERPRYGJfrY2j0eAgsRKTaNtAN0hbVeY7Flbd9HTs2ZYFIDvA2MwIojIhdKV8vZBPldZd4JHFgvYceYaxYKbPt6loQ3wA4IUMK276U2NSBj8kaPk0CsfcRtU2YBIboWkBI2m5QTdsAyFvn4nePYQfuqlgNfLCU5lUNP1ldAMLbijKl9xPJ+qjC0b6Pv7mlPiVEOg1z8DD82WMOrO4ZsxCtebCNBmWl5y4Hr+3YOKh88l5bteA2zXghcD/PGrDC/m+uL4U/brvp99RQWL/+vsVfPWJMl533VmM2rxN+56cNsS5FrDYSd5fcR3bCeD7NM7L9yi8MMDXzzqwaDIgUAc1ixEP9UIbgItRez4zSyKDD3ZCdEomcMULMtEPk0Wgbmrwrn676u4cQv985rxeIJUZ4OAMimYBZXMVTV+8c/zvmboNYCll8RS/H1tMiDA/J5G1BaGPZfcsUIi+t4r8oxOsAWOToOMzGcvvRiC739S5swxZgKa/DFpIZqTk66kuM92wDXvfC2H+/+z9eZjkxn0ejr84+5runnNnZnf24i6Xy2t5ihR1WJQtkWJ0xpEVhbEi/X6KYsfO48iy4tiyZcWPY1uxZCe2HCtyvvpZ/vqSrSiyFdmmKYXUad73seRy79ndmdk5u3v6AgrA749CAYVCAY2enR0upX6fp5/uBgqFQqFQeOutT30+lhVRj9mxxLWAkWnowzsATUcZiNvMA6H5myLQBmME59sLWCfMrSTzksMG+x4cbx0dcmGLAz3bhScdKG48vwEGYBiQ4S2AoeYzjYr7WZzFzB0YyU60/YWDNlGxmBiKSUXX6m0QxhTquhXms9LRcLSevdOfD0xQzZh5Ag+mmLaIAtsNyQpAfy+fj5LEfIYimMFLLnoOgL4Uh02CIT1a//zLMmlBmqYYgTqsKYZPzmQBPOi3ocbvMx81TDRjYHV0ZdXDaR04VlcEAtQfdCPMX/YusF3guwvUpEcETyKBODFmajEjlHaEYIcDDYDW/zrXJg3Vg6mt0zp05J4V+FkV1v47koV/jKAxYtzBOpbaDmqWGSmfjBSztmRJrpOZ0NiugrWuhgfmNdw+4+DZVRcLc3S6/zuPyW2GAeCrD4xKt1tdeQNmJJknx4So+MpjUd/UhhES3LNni5F7rOtecA5GiOl2F88s0vOy9Ow6eULMtlmuB8BEPadyZjjxaXSAeklpk3DAqkcGlWFaZm7EIJspEmfSApMkoXlahgYYJT8f4K27Wvjb00U0iYImUfDgeSM4d6j+0++8Fr1m8T4/tZzjrsPzlWO6bbapw2hTE4mowk6/C3r0eQ8VU/rNrw9hdeG4JJEQM8iCKfUixMTQooq6a0WOIYoL+EpxP64o26SONUtHiygwVDp7yQSFpv+M51QXnYuzVniAATYFAzK8BcjiQYFXW9qkN9mxXQVt0kBBLwfnSELXVWMETRdG72nlYnnE8nXUDSmVTJlNQosoaNoaWkQJlCl52eh3p8c4Q1T8iKsE07oT+bCHlpFzTVEj908cdIiLDBlk9SLaE/MqFP3vcfbFlBgTV0HTJ5tNkkyEk9TEWLoUIs1IkVj2kBCF22TEWKYW264iHQgYvjIMROtdHHTwL3SxjYttKBy4RO3iHZeg62pBeVhakRTLVGKRMPNEyVA9VE1qAy7W/0Yg3rMk9ZgntABg+/eUJ8UAvZ/EV0d13UtViXXDDa6NXXcSxDpgA1teTeXDmPMDX54MsoWUPOkDoqRYFrhHFihINI+ZKg7j2tEWvj3PTAXCc8uuj7/X/H0G5EF5+Gvlf4uDfHataYN/QB6MSbaNrw9Z3QBhHyULqiQS66R+rV+w50pcc9Fr4fgAA1wqGJDhLYDnuVKyyndApmaipNMFXXWJXa+INqHTz4ZqpXZkjktgu3qEOPBEJA3sBSeDIdlnyfmXFLw9rQjiKqhZCup2nIDF80hGEllet6mpQk5zYy9tBp0nVm7X3xb3giGCmbzIyi2Sx/j/6D3iifHppoIzNTUz6eqHnPGkKLJdQo5FYixeG68Wl4TehX9RigQC8JVcoSnLFHlqs27CdqP7RPU56tdbtKUPz59kOsETYr78IhkU22EW5Z5Xb4PjJPeM3RsZMebT67orJcXsPIQoUpW4FyGO3jNwxDcbIQaoKigjxAyiraxIimUkT4TYB9LFv5y5iIQA8wMg8V6HaZKJrriN70tkJFCsI1kaxyURtZgR4l7RSJMiffKEuJf3IJaP6zmb4nO11wBggAEuJQzI8BbAhRNRLsROnm0r6hYWO0YmtXWxY/hqcgfllPCn1K4ySjqzqsEywiwqyv0Q4PD80W8RXUdF3UagiDJkPZeMfDIYKrBmAYCCiTxNKLOjDk016L6i3kYx4UUihqy2XTXRDpWVL4kYy9TijgPMt4BWM5ttdhbIlEaGNHIsljtJLWZEyXajCnCSSgzQtpo02BDtTlVoMNRwYWdYpuggjVfvOo5oIhFViUXSm5UQy+qqF7Io9ECc8ALpxFgkxWkqsWg2kUaImQ14VshUYpEQAwBUN2bWkpUU85B5owHooIxf7Cmqw+K9pmnS1WFR/ewHMoLIyC9v784T4uAafUIsu1aZSpykEMveRbHj+ol2x9ZG9iC/WQSY9PM4wAWYiEnzG2AAHwMyvAUQo8klBbbQFDWYUksDIxXUVEJFyRB89koUhCwEWyRi8f1RRbmXuUMSLDddmWZT6/3mzSt9Ingyw+pi2FSkxClKjkOlh3iWdMFimlrMq9KiPapMVU0ixSKIxPNFEpgiyENmpypTHOnxcXKcRox5Umy7IZEQSbHsGpMIj4wAaIoaM7UQCXZAVtliHhJd8CdOn/PlFwmxuI+1peWGvml23ECyQp9GjPl7x5tPpKnEjBDzx6WZTPD29r3UYZo+nRAzyMxaACTazIrPW8wUwDdrYjMr/D3Pai7BI0kd7mUqwbc9XjUW07M6EMkvT5JFcwn+WmV21eI+RohjpFlimrIZEK8vaSH4AANcKhiQ4S1CWnjlII2v4vLT4wy8zRpPJLuumqioAPQFU9BdAKpPnuUkilftRCQRM9vtTxku+aSspEN6jXy+QLa8owtfkkl8Ul5RgiYnxszjhiMJFCHCcQmIm4vVJW+PCsQVY5ltKv+b2GpfBDhyjT2O46fPeSRNxwNRu1QgWl6Lu391G6BeOkJljSdT7BiaR5wU8+Bf4pbbRoObLe9Fivky8mohT5BY+jTVkM/LUIFnVxWcOFqNlbUfyIh0RB0WBiFA3G5YtAdm+9JU4n4IMbun/MBGRohFZFGI02y90xaRMfBmEzJ7YiBOiKNlTFaHeSSpw0mKKPGFDUYERUKcdP3Ra4sS4qTFdGnmD7KBZWyb4LUCyG5HPHCZNsD3AwZkeAvgeK60oxNBFVFF+iJPI4/BeRIId8kPeNDqaLF8eIIiQxJJZi/JfoL4jJj0uF6qJyPZaXmLngtkMBPOE6o5UVWLQSTGJZ0tblQSVX32InE8F11HTVR/6fmjC7X465CRYsulROVC1EcR0al4YXGlhBwnEWMZKeZJxJpFp9eL3ABIphIz+/G0yIT8vqZto0mi3Rdv3iKSYmbHHRAfzgNGVP1Mn0bn0y53gePn8mjVL7wbFYU/GQHmt6eR4qwqcT+EmIdIiCPlFp61pIV1hOvjZOYySYQ4LbolPZZfxBpdvMkPgpLuMyA3i8kKnvAyEiwOFGT21bK+MG3hmcyEJMlkgkG0HwbiJl6iGcZGMFhEN8ArEQMyvAXgCW7vdNH/WY7pRbSLOlMp9NiLJ4lkJ5FknSOSyWWSb7dcYCwXljsNYl2IL6SNEmVeBbRduYooEirm6cPxvFjkO5kaz+63qEjLzCKS1GLRrliE3ScxNnpMxQOITKNHtnOeCAC5nSpP0li5WZAQy1VQMWg7ZAsDRZUYoPWWZCfKoCoauk4La5akLQsLtgC5hxAZQUoym0gjxIfXFJw9XY7lvxHIxrGMIEuV4RRSnKYSZyHEDDwh7pDQO4hIbNLUYRnxix4rNzXgVWJZMIpI3SUsIoutxvQhmkvwSFKH+zWV4K+P35ekDvPfYn4ydTi4Tokf4rTfMfvhBLMJNujIqg6LJjQXA57twtPS33X95jfAAAwDMnyJIUmFSFJne2GxY6BNVNQtNRJ6N63jFj0ZMPCKXtYyiljuUlIkHrfRBSn8eWUBIRjEiGls6jft3Cx0M/OJmgZelWcqsmh2keYZIwsYmemXCIt5iJDZlaYhzU615/kvUCViPoZtN1vXlWXRjrjIKitsF7DaKowurQc715/dJTsuyE843iV9uXuNQab4ZiHEsvsp1o/M3Vi/EG1rZR4WZLa0SUgzF0hDVldyQPaFdMQfEKcNypLPt/FnZCOEWJqPRCXeiGI88CgxwCsFAzK8BdhR2okRp9UznaLlcPn0eGx7zVrAgwsWVv0oVgBQNT28Y+ck0Fpja7wo8kOoeTWsdusAaMd6rhl6qHj3ZePQnehLzNUNHKufwNPLNHDAG7br+NY50lNFvrxK8MHLtwcrjx9YOIUvHTcD0nfDmIcf3QuUjXGoioY/enEBz60q+JlrtkFZOAoAWBku4u9OayjqHt40M4RCbQ3QdCjD29GwlzK5Mvu1x0MflzeM0Sn5hxejJKhDgB/eTnDLNg1/fASwrHBxy9UjXYznd8XyVhUNqhtXg6OJdDTcNTTdNQBUyXrDdh23bGvge/NFvFCLqj6sPi0XeN/l4Qsq7SXeJg38104Jy4vAv3ttDU1bw188UwiinsnwL2+r4Z/sCuvuuVUPf3w4h7OzNNIWT3ZGxzv4rddYQYhtUWk7Vm/g/3khj4XzodcSXi2uDHfxrw92cd3oZKAsrXXn8fkXaRCEqYIXIQ23bGtj0ioAjl+vmg7YHeD0WXiNZpBOmRiFs+9GGv0LVC0eM6bR0ps411oNXrTXNdfCzM0i2uNTONVYitTHD23bjuvGlrFu1yLk6rlVM/BFC9DQvf9sbysy21K3NDy1XMByF5jIezg01kJeU/DEcilI45Q0/Mq75+I3IgHPrKr4hwfGYHPt1Og6MCY83HnbMgDgK/8wiX1XrOED1zeTsgnAE457zxh45Cka/IMnxHv2rOPtuwgKuoe/PmngxGwxMgB63WUd3LLNQpuoePC8jheXaRj06SKtF95V3q6yhd1DuVhkTYDa7Yqh4hmY666lzmmsdpWYylrUXYzlt8N2O6hbKwBCQlw1JmG2mvA6NS5Dv1B+H6RoGhp5SuYmCh7+7VUWdg5NRcigCg3nWmfw1ydLaBJKPD981TbuAvzZHs/Bi2sn8fxq9FquG+viudXodR8cHoKh5nGiLo+OecPYdmjPPQBMzWClZOJ82wque09xL7znvwfoOqBrOLptPCDE7Lugl1FpEWCVi9zJrnl8L2p6N4jEmNVkwlDzsftkue3g+WfPcvCd0BfTwDf5yECB+W9fTwz2NMAAlxYGZHgLoKsmvEe/CW9+bUMSaGXXFO689lYsqw18b54uhHvHzkm4/+eLgC50NpUhVA4cQHXqCix2TmLN8oJO9a27Tajf+CrsE/Rlq+R1aLcchHrg1sAU4PXTCsrf/A5e/4bX4L6zyWVinZ63eAztT/1vKEUDr/5Xr8N1r7oSXz3ZxMOLCko6vXbt1FMAgIn8dhiqQn2Afv7vkbv7tTDHxmCoFkqGQzvmc0+i/WcPwbxyDKXpavz69GiTVUYq+LlD0/i9Z8uYLnr4sX0VmGoBh8ZO4NtzRRypKbhmxMPrp5vYU74cxLVQNpawarF740FTdaiKRgn64nwkf09PeURGxqGM7ZaqLFPOMN65p4JDjdN4cKGI083owIIpUcPnEiqZc22kTu+E7dp0EZSr4O3DwG1vruOrJ0185bFyzPvDrdfU8b5dFTj/58tQL5uBd+PtAMLz8ES4XLHx6dc6qH7rIbhzNbgrbcDwI5PNlKH+yFswbBKM5QHZa/5f37iON27fATzwD7Du/2sAgGKo2Pa6/fg3N16F/3smJA1XjbRx5cg+eI/9X3T++gl4LTs4F2wH6+d9G8uuivGbczDvui5wo1Y2xmGcfQHk/ntRODiDiasuw2LHwM1wUPv1e2C1VKi6h0LZQeFdV+HgjbdgraBgvtXGVLEA7/QTqGg6KnqUxEzt2I+rR47i4fMFPLOqomIAw7kp5LuUqLdMBS2yGDy2OY3OFIzmZvCvDszj0ScIOi0dn/6XZ/BD1Yr8XkrwphkFr942j6+cNPDgdyYBAK9+/QL+6R4bt2wr4veetaHqdKBxyzYNI04xW8aqjkNjS/j2xAruPavg1PEKRka7+CdXdIJnAJ117Bqaw28SYGUpj+v3dPD6KRvXjeUAFPD8agemSk0wTJUSYWbeNFEgOFC1MJrbAaOxAjgSou4SYH0F6FjR59f/rQGY2nUDHO94JKLlVHEYZQzBO3sYuUIF5YkDqFkLaJMGhnNTMBZPwz1+DFipUbdYLG/TCH+XiihfeytgDOE1kxVozz0A5/FvAaDtUtkzCfX61yCvKSgbAECJcOeTv0/3B+H1NGiTRRx87c3Yt3s7nl+bx+mGiddOuRhd6cIZdnGsnseBqoUpdQre0w/Ba7Zw8OpD6A6PYXZ9PliLcNVIHt7//CO4ZRPq1AytCtXDzqEp5E4fhn3v53Hma+vQDQ8z/+V1ETvq4LYqGuB04J04g869L8Fr2bSshobcTZOoXH8FlD3XY9VdSXQzx6ApBnTFhK6aUEnUZ7OpF2h4acRJcFIUTlbWnOaiYroYz9sYzulQoaHitNEiahCJboABLlUMyPAWwP3W1+B1OjEirBjZOghvbhHe4t9jdPd2vOOq19I8//5L0ZcBA9vWWsMEhjExPIRDo0rQ6bmgJDgo2xNHgCeOYPdt12DPzE54T38PmJ7AiDqKHx1dRixGvUNCoqbqgE8aWJ5FpYT37q/ivfsB79xzsD/3bXRrNGjF216/D28/dCNQX8Ta0Q4Wf+5bmPzhR/HP3/FqoN5C53/8FZaOuSiP+x09uxaRkEZesDqGjCp+/rpoCN/RXA7v2sMrGVTV1E49hfddfg3aTh0FrQJV0aCtzgEnHpSfS3ZOhsYqvMYqCqPTKA7vEXauAQDG80W8bTcAeBLbRv87zaenT94+dLAFHGyhYjqATRXJt+xcx1t2rsdenHlNAVCOtK+rRxT81mssACsxP6NlYzJGhBVDhbPQhPu//wa7do7iV9/wdjQO0WsqaJXgOpSHH0Hnf/xVcP8Vro1PYBzvnQFgd+BZTcDV4S2fkl6mUjRQOajDbVion/Zw4h4Xue88ipm3vYCRa3dC0cJr8RwHu5fWsFuWDzv/6jkM13WMjOyEa45AGTfhNTg6z9kfaKqOW7a1ccu2KBEGgKLl4fLiDLYVamiTBirmBIpWGeh2cX1hBL/9Y+dQt9TeRFiMLubR5+qOHS7ueG9cUb55nODmf34WN08AI94IMkdB0HTAoaT1X+4HsH85Mp3PB1T4wAELOBA+N67nYEQdxW2jVRyoLmK2STBsEr89ATmtCPrKSGmvLgHa9ShZFZ8dv71PF/dhhykhWGzA0llHFSVUjSrQWoe3ugScX4nmacYHol67hiFLB+zZ+L6zi3DO/g0mD+7BB699Aw2f/id/nHw9AEzbwfWVaVw/TMvtoY4d2nZsL9QAqwAPVKkmT58Bnj6D3G0HsH/fQShmDijo8FYWELSo40cxCmBU1wFTMhCuN7Gb+b9l10gceHPPoX3vS3DqBKrEVSKIA+/MMxhmfQnrp7nBn1KeBCkJ7VTVIzNfKrGR14dAXAttp55aLzx2DclDqGuKirIBlA0HDfvCzCUGNsMDXEwonucNDHouEur1OqrVKlb/7MdRKcanEyOQkS0ZJJ1/zzxaHbjLcTMNnriIRN1ZaME+soJ2w1cJTdpMNI1+sw6ZV1L4/zzhZtusk+tYmg2n9nUjmpfmf5fHbeRfvR3KDGcyIrm2gCAV80A+2WRgU5H1PonI4sRe79FGAKDZAOq+GmeKgwT/f6sDb3kVaHWi5ZUNmgB482twG1bwchDvId9OnJUOyJlG8F+WNtquNLi1LiXWRJG2Gz4Pr0NQO+aivkjLytoEO043vFh7UbVwm256kTZqHBiFcdsBYMeMpDJ9cPdGyVejg72tRD+BDrYaDqHmCY5gMsSX2SFAd522UQa+/YnX5xBghRIur9uNDHiCtmxybXpxJa4I8+fgB7K6Rgniwgq8FuHamxoOEjmySc40oBhqZLZCMVQoeV16LGvTnu2GbV5oy+y3s9LByj82sHwmF2mztEq8xLatcu2Y738jz5B/ztjzJ5RF3TkK5dpDUIZ39GzXRHFBPAttkp0MZ0G93sKebf8GtVoNlUr2WRT2Hl345btQyW9e4KF6x8bkf/77vsszwPcnLuHe9/sIurY5ZJfPL3Gf5JaaBu3o/Y47Au6/4hMXt2HBWWj2RYT5fGUkih2nGx6IrSQSYfYCAAAQEiO5kRcmu17f1m7LsRHykoXwJr2srBYlA0kkmMHU421OJA7sOEKgFA2ohgpnoSUdzASIzWwkk2YAcFsEAIHbsODKfB1zyrX0fAJYm+HBtxfWTgFE1TNCwtVoafdMrPdLmZwybBVhdwgULQePnxkSoQlkNHGfGX5XqAqqrHAkWyTCDKaRHDWMHeOTYKy3AMuG1+Ly5dsnT6hNA9ooVaidFv2O9ZMJ6JnuQlYGX8h5k9CrvWg6LEKV7s32H+xlcC86wAAvF14Bvf33AQwjG8nlkYXcpdmzypTUBCVYNNdwFppwa10AWmZFOMhLQozEjlskwgyM2CiGCnKmAR2AsmdSToAj/7WXl7hkIbgispIYftrTIZTYBedNMB8hhCMUcjU4JA86UClBIQ4024XbsKSqPoT7GajIwv2ODpBcOCsdOHXiX7LQdpD+UhdV4Y3Cm1uEouvArj3RHUnk1yGAkd96ZfhShqYDNqTPmaLRAavndGmdpanB/LOi6kAuB3S73H6BCCe1cdngjkerA8/2iXZSX8floVTy8OpRk7DIAK0P8pllYAeE7XvLICw2lMFy2uj6duBJPtX7Pu0mRbfzugQeLjCks5DfAAMwDHr7rUA/ynDs2CzT6/K8GYn0dE3amUdeDHo4NejZLtqN7ESYn6bj94tEJ4n4iC8Fz3aDqXhjZhzQtATFm1ODNkJILwY2QqCyEHmX+FPEKfbTwbYUIixOJXPfSqsDhbOjE4mwYmhQyybcWhdK6FhCkp4zwWjZgOwFJlGFFUOF1xFmBwSIMwn8NiBsq0F+LRvkxBp0XYOyY4aSXBn8e+A5XUrutB4q8g8iNB1wKHFlBJiHouXgYT2ankF8PtlzYhbp4INvl6IiDAj7E8wjhGchURWWoZgH2lZscM+DN6/IOqC75NCjTRPPAvFC+98skVMj2Uv6P9ErxQADXIoY9PZbAT2BzPWbRwpi6mnkWB2KoXFKSZwExw7pRYRlZUh6QXDnU3UvYjsqmkeouhcQcbVhAZ0uUOJW0stMBDT90lPxNkKk0q5B3BfzssH9Z3aVaZ44uH2KpsFznOg2CREGALWao/cF8GcPerSJogFwi376JRG8PWVsXwppDtJUc9AmS7RO2nVKhnvdm/wQXN0ABmFmA7A7JSPBAHyi7BOnXBEgzF1LAglOAv98py6clRNhRdMiQeqkqrAsn8Rjwt9B/wkENvaJM2QpbVvWbmXtW4TWo73Lzimq1L18MTPvLQBgu93EdElII8/9EusBBthKXGIM4gcAF2Dbmkp4g/wlt7RLX0ypJJipLYbld6pOOhFOWGSSRIL5/2lEGIjaftKy9bCRpZnFt10q2ChR56/JRoIKLLHN1B0o5RKgafCarVQSzP/2IDelEUmENpqnK7tboScA6UJKQ4U2mgfQiaSVqW/seLJsAdBSp5Bl+5LshZW8DmXnNG1DCWpvhOAZecDIw3Xlq+NfydhIQIoAbMDJ+4aWpWHKO1lJJ8KMPFvcwl4ZEQ7MIvp/hmQmPuG5+FkTSZuQmEiwNRUeSOjaLA3C/qxmEUmzHvH8N3Y/02yBmcs1gPkP3jz0ipQ6wAAvJy5hBvF9hBQziUwEN5ZfH+oKAHS1cGFJkncBVk4fWYkwjyxpNN2DI1tMJUDTPPpCSlPVA3XIjBPOflSIV4LXgLTFSbL91QpdfOg44aKjBCLMFtLR9uDbTSYQYZgGlAoAzr4y0aNI0YCC0Aach7j4zrNduCtttBsaXEcIB51gY560LYbRCjA06l93D68jRh7WJpOAi4l+CO6FLIgKztOj7SqFKvU84ZLQLWPawkRmLyyzEZbNbERctsVV4eix/GAtmyqcBe5KGy7voSI4R//mEhdqD98XNF0aujpSHkVDTiuhTeoxl40XigvNz7M9eOpmulYbONIaIMSADG8BFE3rTXpFwkdI+n4ZEhRURdPg8cQ3hQQrhkZd8ehdblsyyWWqcKoiHMmHdmaZVeEk9HqRbQbBfZnUZilhYyv5XUKnoHkXV2I5mX9Rh9B7LwyCpC6s2HfatDJrNzxpTrsOjujC0ABbTsaYnbq1DjTXdBTKDvJlB1Y7LIuRp+2Gd6MmeqgQ7YXDHTp1mRZJLLm3qg5XVaIRHTmwELVJuBCbSDFf0Rd04jk3wZTjghTjIBNd/j+NCFstagbVD5J8jychyYOEBIroFSdh4V2//mnVsonSMIHdCfPj2zZDruTE+kHWph1/gCiS516EXJ2uQqmWqakc168ktRtV0aArVBnebDKcJTT6AAO8XBiQ4S2AO7sAb3ok6JREeMurUMZGwg2E0EAbthM1bSjmoUxP0GPmFmP5KNUyUBmKF0DmeizJnlTXYL5qBt5SA93HotHYnLYHZ92JkA5V7yYrIv7LRZ8pRwN9ECUgMkbehZ5z4RIFdlcF6YYkuf1CFxWcgrF3zc9Pfh6lWoJyww3hFK3dgXf4eXnaQzfKy5oRvZRFL2WBUZCmuQylNBb8dx/4Zpj/3hlgx0H5uSuT8No1eM8+AneuljgNzNqMZztwFlrxKV1+8Zq/Xbtye+x85MQa9L3D9I+wGM8+UYN9tpW4qFItm1CL9J6LHiVY+UR7RiPnYnxnF1pFB2wCax3oNDQ4RAlIcK4QEhHHUUAsJdmlGk9u+hjY6KoJZelkhECTUgXEtZDXh+CtyaMGetWpSDjbvqAAuUYN6KxDKY2hU+RCX6tmEL7cm9wPy40r17kFGsykOykLRRKFSK61+iJQP0+LseuGmDKuKhq8xWPA/Jn0S9hzNS2j06WqMLHgnYkHWYkMxrjr9FbrITkWPZ/U18O0fB9KCA12wfL2F016tgt9puxvSzEvEvpjfvEuyy/Sd620Y7bColtJ9t9tWFDLJpSiAWNHEcNoodtW0W3Gy2PkXZRGwgFumCftJzVcgJJ5xTVBf5OmDOuWBW/lFDQAI6O7MS9pZwwF3YXtKn0R3AEZHuBSxoAMbwG6j8zDmm7C2FuFMjMOxV8Q5jVbcA6fg31kBfk37oGyeztgEZAnT8I+QX09wnYAQ4OxtwptL7cS3rJBTq4B8InHmCRca5J6mrawyifTSsWGOlqAs9CE3VVhtVTY3bDTZ4vg+G8R5QkbuW2CUqFRP8MuUWAW4gpLu6FF8mp810X+qaXgv8zubuJtE1DsDqDqUMwSPJsGmyAPHUf9abq6nRGmykoNyu1v7D1dvgF4Thf2H30Fxg9dCRy4Lr7fasJ78TmQh45Dv3wM6hveDAAgz81j7fEmRt80Dm1vSnAIADj6As7+j5NortF7xjvvZ+CVU7ur+mYpDqfG25FjHKJg56tfRO6mKfr/TAP2iRpWzuQweuIUjAOj0A/QQRjfds6fyEfOxy8CMvIWyuNNKIYKp00XRbJwyWnQKnpgk2yiDcABsRTkCm5IvIt+QA7Q6GD0hFybTlCgU+ErmGq3De+5h2jQkmoZ2DYKZXxvNK3dAU6fhFerR/zeKjunkZveA7s8GlmRnwUBgT57Bs7xB5F/6zvRMhUaovw7fwePECgHDyRnMHuGksUMZFiqOs+dh/3IcegHjsG45kp40wdBXIsqhZ4Kr12H/Y1nQBbiwXsASt5ydzWhXH5FOGvh2wx7JxdgHV6OpNcmSzBedZmfLux/vFoT5EQt5hPdODAaPSEhIM/Po/v8qrQdFqoEFUOF5hPiAEkuLoU+sbXgorFk+PmFJJXYJnTDg5F3/WfPA+BwgzAS9DVWS0W3aWF0pgGlaEArKCgWPOgmiT6vmofSCAnaNQ9WB7Q+kmdXesFSo/0mP2AzYcA7/iicRw6DnGlAreZg3D2ZmNe+ynYYi6cBTccLP0AM4rOf/Sw++9nP4uTJkwCAq6++Gr/yK7+Cu+66C7Zt45d/+Zfxd3/3dzh+/Diq1Sre9KY34ZOf/CS2bw+FhmPHjuGjH/0ovvvd76Lb7eItb3kLPvOZz2ByMl7f3W4Xt956K5566ik88cQTuP7667foSn8w8QPUlF8+WE2qKDjVHDRjBR5WAH+qza11Ya0D5nILKs4BoO6omJJGp8ccWKsryC+1YextQBkv0+hKvgLiLDShrbSh1Tt0HwBYdtjxWzbc5Ra8TjR0ctJ/AHCW2uicbgNQQSwFrkMJLLE50msrMRLM2wO3GxoqDRvl2hKUooH6aaDd0GF3VLiOAsfPz/SVYqsdJdzBaSTbAM7E4u/PY8x4FEq1RN3I1ZvofGcWc8/nANAXMntZNf7feezA/fBGfdWvvi7LujcSXqpkoQV97jy82nfiO3UdWKnRF85oAXjkO/CW63j2izbWaxp2rq1h+syDMF91JnEgs/RHR3DkKRXMHtIwaH3rRvQ+EJu+qNttAl1XpGnDb7pwzXvwXHB8c1VHu6Ghuaqj7Pud5snJ8lM2Ok2TvtR9Mc/miLnVpiTcyLlwHQV2Rw0GTQXie5cQ8tRF4mJoMEd8wmvogO0EJEmbLPknpS91NnXt2W7Qjj3bpdtrdXi1p2j95yUu+PhADis1GukMgFdrALUGsFKHtmMGhfwQvPpxeCfPwFsIn2F2bnWoCKW6BsMhCFpHFtt13/zFe+EIrAdOUY8da2dR8EPleis1tO87hfyr16Beu4Tc2Lhfbp9wd7to/9XjUIoG8v/fYrIKLkaP8+E9dxSd+0+itaKgaqjQx+ahdFvBNXjrLcAi8GwX62fldtu66SB3fgVe5+lwR6sD8tIyWi9E7cU1zQNZtqCNnqME0G/rztk6FQF4wsdmEc40oI3aQdQ3cqaB8yfyWD1fQC4X7R/yJQe5kgK3ReD5okIvUy8AIGcacBaaaCwZqC/m4Dp0RoKPSK/pHggAVQ+fN1WLigEW5y2nPBFfOGqOAOZQlNQqxfTBeVDWMm2/7krbj5YXkmWWjqrTLjwA7pPnoNe+AeOa/fKMdbpw1ltcATnTgHVyHVqhCe3/3oMr3/7eaFrWruwODY1dKuLKXTfA9ZyeXioAoK42U/f3hO0A6iaqy30OLGZmZvDJT34S+/fTuvzjP/5jvPOd78QTTzyBmZkZPP744/j4xz+O6667Dqurq/jwhz+Md7zjHXj00UcBAM1mE3fccQeuu+463HfffQCAj3/843j729+OBx98EKoabcc///M/j+3bt+Opp57ahIsdoBcG4ZgvIlgYyVMfeCNGCmFHwey/iBWSydIIgVr1ndfbboQME4umYSpscVKFPln0I3wh8vJXy2bkfwCfSDCw8zrcYiV2HgCRqTyWlifCfOeftCCOLYRSNQ+a7sVILTuOVyiT0GsldnncDtI0V/VY3gwsCl6hStCu6agvGdJ0ImTukGR5M/AqacQPLve73dCwel5Fp+WC2F5ATidnlMS85k6qaNTCTjyJ4HZaLmxhWlVGnHVDgW4oKJaUSP3LIgLyZe9w7UNUuSLHS1RjVfdi+Q9tC6e1AxIL2raDduu3YeYujQ/+wbdvnhCr5ZD86jPlQH1jbrJEQqsUdSjVUlhplk9miANUSvCW69LjvA4JCHpS3gz8oJMvP5ueD4g+B+tkOGgzdhSjebRstFbovStOpiziSnj51+d80xbNw9A2uT0sK2djyZA+CzLV3+6qkT5Fth7AHEJgT+60vUi7FwmsYqggyxaWZnNo1eSEX9M95EoOSsNx4p+0WE03PRBLQbepBWY5snz5tpwrxetSln+u4EIrKFLVV4a0gB1iWHSnTuA4imC2Fl/w7LQ9dH0bZf4eyI5jbi1z2wyYhya4c6eY2ZlGLFKoDPVmFyP/5A82HI557qffiEpu8/S7epdg+r/ff0HhmEdHR/GpT30KH/zgB2P7HnnkEdxyyy04deoUdu3ahXvvvRd33XUXVldXg/Otrq5idHQUX//61/GmN70pOPbv//7v8ZGPfARf/vKXcfXVVw+U4S3AlirD3/72t/GpT30Kjz32GObm5vCVr3wF73rXu4L9nufhV3/1V/GHf/iHWF1dxa233or//t//O66++uogTbfbxUc/+lH8xV/8BdrtNn7kR34Ef/AHf4CZmXB6eXV1FT/zMz+Dr371qwCAd7zjHfjMZz6D4eHhIM3p06fx0z/907jvvvtQKBRw991349Of/jRMM3x5PvPMM/h3/+7f4eGHH8bo6Ch+4id+Ah//+MehKP2NTh1LQRcqtZX1CSLrcBmpVHUPBV9ikxHVgJB2VZ8ot6TE111pR/9H8lIjxBpAZOU+/xLgyW4/JFj0BMC2Jam7SflkTcNIFZvSZGAvbJEUu0SBRRRYbRO1FQWrS/LpbMOQn09UYKPEMrxGXq1KIpasbPmiinWO4C4vAIASyZv4xLbTyrZ4hx0rEmKWl5h3fc0Dsb3IPpE0A0pMhQNoHQf166tpbBsbwPEhuMU2lMnlVEYVhyeenk0j4MF2oBQNOCsdqBx5jaT389eKnDrNE2EglQgDiHrMkCjWfFqxrPz18flE6or1HafpMx4SzTCNTLkF2HOZrty5jhIQ4zi0SDrZsY2umuj7WdU9KTG21gHejSPfH/JqJx3sOOi21chCNFnbcYkSDObZwktWRln5LN+cyCVKrJ/RhEEpP5Bj5RTBL37TCkqoRGeMTAf09uce2PpLCC3AzCrCPLpNDVZb7TlIL4/T9QXaaB7OmUaqG8Qgn7IJpdjpvai5dWm6K6zX65H/uVwOuVw6uXccB1/60pfQbDZx2223SdPUajUoihLwjm63C0VRInnn83moqorvfve7ARleWFjAhz70Ifz1X/81ikWJ+eMAFwVbGjqn2Wziuuuuw+///u9L9//Wb/0Wfud3fge///u/j0ceeQRTU1N485vfjEYjfDl8+MMfxle+8hV88YtfxHe/+12sr6/jbW97GxwnfJncfffdePLJJ3HPPffgnnvuwZNPPon3ve99wX7HcfDWt74VzWYT3/3ud/HFL34RX/7yl/FzP/dzQZp6vY43v/nN2L59Ox555BF85jOfwac//Wn8zu/8zqbVh8zOVgT/AuHh1EniC11OhJGJCPOL24gdmkXw2/n0LB/24ffzHxHdrtv3R1oPCedIKk8aDEMJPiKYgpr2n0FGhHmwbZruYahC04skWwQjqjJyK4NYvo2ASM6VdE9kdSsO+MT21As8cUzFBu0opc9NL08BCeRWRmwzEWHbiaTnn13++RVncPh+gaV1E55JkbyKz+aFfngknVcsI7sGdh3iNfJpRWVd8wmp7NliAzHWzlTNi3xi6SWeSWT5s3RGji74VfWoiq2bXvABQiKsFI3YIjwGRmpln7Q0AHyPP+Hsi6io8wv8GIHvRYRVzYNSNKgJl6HFFtqK52cfGColwqaR/jGyqeNJ8IgbPCOb8iG0Xe3cuRPVajX4/OZv/mZiGZ555hkMDQ0hl8vhJ3/yJ/GVr3wFV111VSxdp9PBL/zCL+Duu+8OVOBXv/rVKJVK+I//8T+i1Wqh2WziP/yH/wDXdTE3N0ev0fPwgQ98AD/5kz+Jm2+++YLqa4D+sKXK8F133YW77rpLus/zPPy3//bf8Eu/9Ev40R/9UQDUJmdychJ//ud/jp/4iZ9ArVbD5z//efzJn/xJMIr60z/9U+zcuRPf+MY3cOedd+Lw4cO455578OCDD+LWW28FAPzP//k/cdttt+HFF1/EFVdcgXvvvRfPP/88ZmdnA+P23/7t38YHPvAB/Pqv/zoqlQr+7M/+DJ1OB1/4wheQy+VwzTXX4MiRI/id3/kdfOQjH+lbHc7y8ufhJKgvAJ3KAoCS3g2n3zaJCDNkUYNlClES8d0MyPLhiadsmp831eDTsP1JCjAQV4GTtmchwkkL3VTBfESmyuZyKojtoVFzQIgXswHOWnbb9lKPYRCVY3Eb/7vbdYNrDtRgToETFWJ6PFWJ+XaVxV1VjFwKKnDwmyfRwnMR2y87v8XZeTJVWEK4N0KEk9Rg8bkF4n2ASIBFZH0eY8f10TfJlNAkswKxTKpE/QXC69JNL7hmXinmVWJeoU6LQOgSBSq36DINrhOS5zTVVyS/IkSVVimaETOdNPQO4CGqrtTPscr5AUxzbym6sATk/RNAozZmiWYXBlrSkhcmvgIwOzsbMZNIU4WvuOIKPPnkk1hbW8OXv/xlvP/978e3vvWtCCG2bRvvfe974bou/uAP/iDYPjExgS996Uv4t//23+L3fu/3oKoq/sW/+Be48cYbofkeVj7zmc+gXq/jF3/xFy/ClQ6QhksmqPqJEycwPz+PO+64I9iWy+Xwhje8Af/4j/8IAHjsscdg23Ykzfbt23HNNdcEaR544AFUq9WACAN0RFatViNprrnmmsgqzzvvvBPdbhePPfZYkOYNb3hD5MG48847ce7cuWA16UYhvjySiKdIYHths4lwRJ0SVKAkFZghTdFlKudGPiKSziMrb5JJCA+mqMoIby91uF8iLDu3CJlZQpbjLhSsrvk65+8B/1umEPcz2EpDvz5dZccxW3opMUlTlUUinGADLObVDxEW1WCGJCU4TQEGkmdkeGVW/PSDrPlIyyCUVTwuSSkWz6HqcpWXV3RFcwYGXsHllVx+cBZTfY1QVRWfW03zgg+DTKXt9QnAFFnxI8lL3BY5XrKvFxGmbg8FZZpXgGXnCypJy/a5BFGpVCKfNDJsmib279+Pm2++Gb/5m7+J6667Dr/7u78b7LdtG+95z3tw4sQJfP3rX4/ZIt9xxx04duwYzp8/j6WlJfzJn/wJzp49i7179wIA7rvvPjz44IPI5XLQdT1YrHfzzTfj/e9//0W4+gEYLhlvEvPz1Ket6GJkcnISp06dCtKYpomRkZFYGnb8/Pw8tm3bFst/27ZtkTTieUZGRmCaZiTNnj17Yudh+1jj5dHtdtHthk7kRVskGaTEM0UVdoiCvL9QRVSFpfmnEGrZNHZwvoxqsEgqk8jvZkHMiyeC/Ll5tRKQK1W5nIKOkU62ZERT3NaLBMe2C4vKxJc2y19GhHU9Xh5ZuZIGD5sBmXLMK8QMSQoxgJgdMUMv8usShfpcbdm0/UvUVRFK0QgWp8rSxn63rfiCoV4ENysR7kMNTlOCez2HsmN4ZB2M9AJ//8TzsXbea8ZGphQzkioO6Nk5XZLRXCgliE8QZVOjC+LEOhHbpvicilE6eQSmERsMmdxLKabhzrXA9WbqsYaGQpl6cCHcLJSaROATFOBonkIwkyxBUPQLDxBzqcHzvOCdz4jwSy+9hPvvvx9jY2OJx42PU48w9913H86fP493vOMdAIDf+73fw3/+z/85SHfu3Dnceeed+Mu//MuIwDfA5uOSIcMMovmB53k9TRLENLL0m5GGOd5IKs9v/uZv4ld/9VcTyyna0GVBUjoj54KfMkxShZPKcKFEuBcJ7kXENkrU5C7E4vtYeZJIcavpgfoI7X2OpO0i+dsIERbzzqry9jJ32AgZZjbJ/ZhSyEwmZAvqAGGhHeEW1vl59qMCOysdaIi/qGUmEtpoPlCFZfv5c7sNC4rMMwS2jghnJcExe92EviIr8e3VJ8lInyxv2UJJkRj3IsW86QTLS2YGklQu3aDqsZZiSsFgFv174TiRxXmy/FkZNYkJhsz7hYh+QzYnLbpjC+T4EoiKbggCfcyEWuuiKbnHfNQ7PmhIBNJr4SL6ZVF9L1AZdolCI0RuEvqdFfnYxz6Gu+66Czt37kSj0cAXv/hFfPOb38Q999wDQgje/e534/HHH8fXvvY1OI4TCGujo6PBwvw/+qM/wpVXXomJiQk88MAD+Pf//t/jZ3/2Z3HFFVcAAHbt2hU559AQ9fu/b9++iJOAATYflwwZnpqiDv/n5+cxPT0dbD9//nygyE5NTcGyLKyurkbU4fPnz+M1r3lNkGZhYSGW/+LiYiSfhx56KLJ/dXUVtm1H0rDGzJ8HiKvXDL/4i7+Ij3zkI8H/er2OnTt3Zrh6Cq3gvwxsNxrgQiCwxFJgDvn7JapwL/OILER4s0nwRshvvih/cYgktLnuoDSkoblO60IkxWL6VjMkilnIZxbzhQshwjKw/DU9vZy6oWB6D/tN7wWx6Wr6s6fsSNpyVUNlWI2UkS+f3dXRanqxc7P0fPuprfKBCLzAPRsbYPB1wBMeGSEWESPFQhv3WrbfTjvQJ4vpJNrQYm6tklRhlrcHf3q4yPyqxvPfTCKcRQ3uhwSnkd9+CUDWY/n7yJ9fJMYbJcUAIkQ1iy0wv8AsSzpiKT3P4ToK9Fy0PciUWLY91StERu8SmVTilHx58yCza8Nqxc0m2KAjfi3y6JbhgaH5QySyoKycPfZf6lhYWMD73vc+zM3NoVqt4tChQ7jnnnvw5je/GSdPngy8V4ku0O6//37cfvvtAIAXX3wRv/iLv4iVlRXs2bMHv/RLv4Sf/dmf3eIrGUCGS4YM7927F1NTU/j617+OG264AQBgWRa+9a1v4b/8l/8CALjppptgGAa+/vWv4z3veQ8AYG5uDs8++yx+67d+CwBw2223oVar4eGHH8Ytt9wCAHjooYdQq9UCwnzbbbfh13/91zE3NxcQ73vvvRe5XA433XRTkOZjH/sYLMsKRnX33nsvtm/fHjOfYMjikiUJpREC8xAdEHgdAqNlg5xpYP28/MXHIhIpRSP4DdsBSLyDI4iTXOkCnIxEOI0Ay0hvGhHmlUjRU0J1RMfYTDdxoUy3qaG5pqM0pGFspothouDsUS1GdLtdF8WS4qvpQBEqWs3kcvHEM8mVGbGdSLqiHnfbZHdV2F36wmfnFolwu6Ghvsb2JZtHpKE0TDB8awX6nmG/cNQN1c7vnMF3/8ZAoaBi3yEPY9ep0MYLvtcELnKb76OX+ud14Nl2fPrVT8PayNxLBSzNu5E6UDXqa5Z3Z9Vc1UMbUYfeA1FpI349lBrU9ZKS1+F1CNxaN0IYiUV9oGoVHQYX7hmIklqybAX+uQtlmwYn4NwQsusBQjdm/Hly2wwaMUySP58HObEWKMjMhVsQgKOaSyTM7HzthiZ9vgyObF0oCWbuwrKYVYgwctFBOQugIk2L6HPCL5ZkEBdNqpx7wV6wuyqstipVaWVQCy500+tJhNsNDYWyE7Gr7fjREsGVnUXLtDvUtZtLHD/YiAd0OX/JPgIf2Nw9dxZo0AltNE89NnDgfWYnh7dXY+mtVQe8azoKK2a3rM+UoeR1aJolJcEAt2ixYdG+oGWH5TG0MCiOJIKpomUwldBe2WYSn//85xP37dmzB1lCNnzyk5/EJz/5ycznzJrvABeOLSXD6+vrOHr0aPD/xIkTePLJJzE6Oopdu3bhwx/+MH7jN34Dl19+OS6//HL8xm/8BorFIu6++24AQLVaxQc/+EH83M/9HMbGxjA6OoqPfvSjuPbaawPvEldeeSXe8pa34EMf+hA+97nPAQD+zb/5N3jb294WTEXccccduOqqq/C+970Pn/rUp7CysoKPfvSj+NCHPhQYvN9999341V/9VXzgAx/Axz72Mbz00kv4jd/4DfzKr/xK354kCttUDKnRhTJiMA1jbxXqdJUeYNnw2pQYDKEBa923o8v55KGrotFVUR63oU6WAJB0dQzyleaR/SJZTiHB/CIqPsgDECW0RLDr63bjD3WppAbHEeKhuU7zKfnKt55zURyVq4eMXI3vtlAcpSvOrXYeq+fpsbzCaeTc4IXmEOYvt/e0vG4okSAXIgpFFdURHaoWzWtp3kWjHiqzhYKKsW0GKuPhtnZDw4kjNkbGdKnyK9ooGoYC2/Zw4Do+LffSm94G7KBTaYpLUJgcxTXzL8DIORi+sQT91sugsMEaIfAchy4SIySMwmbZAZmGLQl+4RO+0XYLdrcQKaORp0SYBTzo+uRFFdoBPyBgA7XGkgGXEEqmd9Buye6qaCwasPyAAfmyA930g2kU412XfbblB2QoBW11qAJMk3UYtgttPCQgZKGF1eMKFk5RP56sTU/s8DA5El0wF9Q050945UUPzdU8dt1Op6vrp4Hmag75soPKuA1FQoRdomBpNofxnb4/cUdBfdHA2jI9d2VYpXXn36KVszmUx6PqPtB7IaLMtKK+5mJ1OSTy/LOYy0XTs7bqOgq6XReL8zYmpgwYOfrsNNed4JkI278/oO2q9Hnjni2RGCepxWkL+lhEQxY0h+XFk/XAbzcXECOJWFrrdKBmtdWgf9FND10/SFqrpgezSnx+xFawel5FLmcEAT7K4zZMbkEbg9uwghXqS4920VzVse2yDop+wJhYmQ4vQzFUmFf6tqYpirDXsrHwnIbV80biLBfr/3Zc2ZK+6GVE2FnpUDLcsrFwxIRLFGzb20H+ujG5mQPzIpHFZniAAS5hbGkLfvTRR/HGN74x+M9MCt7//vfjC1/4An7+538e7XYbP/VTPxUE3bj33ntRLoeO8P/rf/2v0HUd73nPe4KgG1/4whcC1yQA8Gd/9mf4mZ/5mcDrxDve8Y6Ib2NN0/C3f/u3+Kmf+im89rWvjQTdYKhWq/j617+On/7pn8bNN9+MkZERfOQjH4mYQWRF/o4DyOc0Sjh4sgEEhEPqU9UfjWvcFCwfkUsth5GqmP2YBicILMBINxBOc7NgDyw0bi/wRFjmYYD/zwgtA3vhytIzTwwsPSPCvC/d5rpDy5hgr1bZBZTH28GLxSWKT8RYs5aTXRoNr+elR8ucsGCH2B410xACGjTqNmqrTnAt5aoG3VCg6XqgIDMS1Gm5MTVa9FpBbA/ttos3/ocyjFddBgAhmaUFlJZv6se2RUjtZiFXcLHjylbwn6qwtCysXemmh/K4jW5Tk5rkiOY5zTWqIpf1Jv2/aqDd0LBeF9VyGnQGQEDO1+ZNrM2XcOZUF4ATtL3xCR2lEQO5dgfFlXaghNfnNCyc0nH0cEeYkcijPO6iiAbcGm0kkSh4AFaP0xmIRo1gdMaBbnpYmy9gZdHB+BRteyUu9DEd9GroNmnEwUKZpmmu6lhb9jB/zsb4hB74xyVrOrpNDUee72Jqu4Ex3yorS5AbWRpGXvn2GN6DuM39+DYdtVUSBIOprTooFFQAGohN82o26bPKnovqiI58yYEmWSQl9jMWR4JFtZiWKTp7leR9x+H208EPM/1hCrIOYjkR0scEiHZNR3ON1vn6eQKz6KLT0IKQ8KzOCkUVrD9hg2lie0GwnqkdJvU2Ydpy+2R/luLs0RyGfY7r+OHNRdRPA6rmoJKvAUg3j3AWmlg9n8eZU1Zs9krsO4pVE0au5g8uw/D0jPhHzKEaHgAHdlfH3EmA2C5UPYfJwoof/jm+WE8tm4Aswp5Ant3l9XiaPiD6or5QbGZeA7zyMQjHfBHBwkiuPfvrqBR1X4XzlTjLf1nKFDqfMAOIKHSy0LQ8keaVO0CuQPN2nyJBYVOqQNy++ELIsHhMkh9bW0izd38OB1/loLxHC68vAU6dBP6X06LdAUCnoUXCCYfllXvC4EMbJ5FiShaidVBbDYlBvqgGKniQN6eEp6E6rMEwFNz8VhvF//QhID8EOARw/TbkEHhON9zGvolFfxOBNFvkgpVh2XYgVEBlIcddR4mY6cgCcDhEgZGneXSaWmw2ojSkBUod31bPnrKDeufb3fiEHtS/CGJ7OHm0GyOIe/fnYullbf7EUUpWDc7FHmvboxPRsL7idQDA6jIJyjo8rAWDHgBYW3OCRZBjE701C9m1M8hCcyddF7sOw1CQL6rBsYahoDqiBQNWPi1A2+iO3UbExCOLF5p8yQlIJi1POhEW8wuJcPRaSkP0+U6KbsjyXT5vY6iqBYMtXvXmUSiqkXvcFgjo1A4z9VxscNHLBCoW4l0g2Pz+2ooSI8Myl5DE9jCz2+xJmvnfnZaLpcVwQDc+oWN8SpWugeDvX9o1NCyC/X/1fzccjvnUB96IirmJ4Zgtgt1fuLBwzAN8/2Awt/EDAN2MLkTZcD6c9wCRGGeNjMbAv7hkx7LOWbR9k8GzXTiOErgO6hXel/kgFV+0shcVsyrQe3hnYCS42/Wkdsadlhvbbgt1mITX3KmiNGwj/85rgeJwSIK3CJkjwV0gmG1rt6klkqDaKkFtNXu7mz8XmhmI9Zx07EuHO5nLvLxISc44R1iJ7UUWL/YyFyK2FyEeYlmXF7PXvy1pp/34oWbPt217sAVSyA/u+DLqhoLamoNyVcPwmBJ5tmSDanos/WYqLm/6kBZQJD7AiD9DxPZiCzxF8Pd+dSm9fgnx0KiH1y5zbzh/Nh5qmF8L0WzGn//sXmsEgpviXjEpnzOnrJ7tIq2dLC0SNOrxchh+mPYsea6/sk2GB/g+x4AMv8LAL7QItvkLjtLSMPBeAbKaSvQDXVcS1dMgDUemgdAWVprWd/eTDgJzyIFhO1LXQfHze+giWTUSURqiCuV6iu0wQK9dpswlgXdh1osQl959JdRb3pia5oJhxe1TtwpZF1IloVeby5xPn4O66ojW13EyInyhZWCQEeHNQprLPX6mZ70ODFWy38u0+y5bv8DAz+KkLeDNOgACsrchWToZQU2bTdoMIkyIfOCdBLHflc3Q8RD3d7terDxiuxBnDXqdY4ABLhUMyPClCl0Lp663EDLF9OVGb9+cejAgKBArMJdIAz8o6AVN94Bu9EWV9lIVg19sBpSDB0LziI0iwa54gI2hXNUC8xgeSYtIexHhXm0ly+yLSHg2QkSSCEwvH9SNmgPDUFAs6TFXfIB8AW54Trl5RC9vNklEuJcaHKTbrEEU78VHIKzsvve6F/0qwmJ7ykKws/ZHskXS7JwyQgzEB/c8IQZwwfFuHUsBwea9m5xNmC0d4PsHAzL8csHUQ7vh7wPI1N1cTom8CNI6YtnxuqFA07w+HNXrUPVuZr+iSS7bZMjl1IgKIyMFaeYeMmR9MfVTzpcTaTbdGwk4wyCSp4ulfm4USW17M4hwv+ZHYrlkSHJlmAUy4gP4pglr1N1gvqgG/qyzgPmbTmsXF0KEN0KCs87wiMRQzLvb7a3Wy/2YpxPhXqpwNEw8q7v+iDD/X1ZGQrxIucS2IR7nXGLP7QAD8BiQ4VcQRHMIIN0kAqAuc3qtmuXt9RiyKqe9SG4/x6WZS6RBMVS4LRL8TgvBCgDdZmgisZkquGEoyOXoJ8vCOP44hsS67LYuTBX+AUQvG+9+0mdFlvZ7MYnwVk1LJ6mB/PdGkWRvzCMLEe6HBPdj3pR0nIwYpyHpPqUR4YBoxtwVXtx7Ho00GarDrBwiKTYEVXhgKjHApY4BGb4UYRobt99kwTck4NWXrOYQLF0up6LbdaWL6ETwdsNp6nAWIq3qXsydTwy2A7cRLmAJfGYmkHlN94K6yGo37Dq9SQaxPRQKKuwe9ZOG2NQiy/vex6G/vQhl8oq+83ylQubd41JEv6pwFmxUEe7VRrOE2u4HvUwneplIdLsu8qV08wgGmdeIrER4s0lwr7wYWeSJba+BioxMy4hwsC+hj7kQ4ik1b5BANJeQqcSxgdIFmkm83OGYB/j+xoAMvxzQdbn9JnNcLtoKGyoUCNPQhhbZRheZha7XFEOFCjfi81XmUYKRQt3wIpHqUoufQIizKLu9CLE4hdsrpClA15MrhhpETGKQ+v1EaHaQJaRrcAzpT3HLohKJ7uR48Odqrulofm0du8oPQ/uxfZnLcKlCNiWe5N1DNgDbzNmIzcRmqcIXYhqRhCTC2g95TipXL0Isnq+fe5gU9RK4MCKcRoL7aSNJ9cfy5/uBrEowEDeL2Oj92yy1GuhtPyxTiQcY4JWCARneCjh8IAgg4mcYgDJShXLg1ojfWAByF1r+vsCvbP18dD/ny9g7dQ7ucgvqztGAYLe/9iIaSwaq+1TkbpoKs11oovn4CqyWiuq1BbSPNTH/UjRk6ORugpHLPD/WvRKEzH3q/nzwAikUVUzvoSGCu00Nsy8pQJ0GQThwVQ65Eg2ksXDGi/mtBIBOU8OZU13ouoIDN9vIv3EPlH274K3W4J1dhNeKm4mo+7ZDdxxgvQVvqYHOg+di1aZNlmhIUkNFbqWDYdvBwnc6KE/YyO8qBIRbNDkJfDi3OjEfukGVc478Z1+iPmevOaSAuRxqruqYPU7QbEbzPnRzIQh5+9gDLSThH79BHfSXxxcwdvsxKKO7w50yH8PcvtjASvQxvEUoDRPkLq8EYWhFn9lK0QjMgKJ+ixU/HW1vjZMOTj5nZCYse/bnMLk7rJNjTysRd2siylUNV1xdQG2V9HSxNj6hY2ybERB55l6L90kLhOQqX1RRLCk4dcwK/PWOTegYGad9w+K8jaXzBIWiiqntNIhBo+5g6Twtv2EoGJvQM9ur836sdd+Eh0dt1cHV1xex9zVdaKP56LFnGph9toR9/zzsA858bT1oizxe9boCdr7aoeF+xwuwT9Rw+uHobM7INhdT13vQZ8oxX+mnvu4Edbjtsg4K+8JgQkn+1Rl4X+r8AIv3ad1p6Fg4Q92jiSR434F8pA96/qnwnuuGguFhTeqjmvmILpVU6f1ot90IKZSRb/5+zOzOZZqlYj6Ly4aGiSnaRni3aXy748sWtg+Z+8hkm2KRAMsIsXgtV9/qYfQ15WifajuoNbrAJ3pe4gADvCwYkOGtQLMNlPNAvQlveRVodYBiHhgq0pjuACzYOLYeJ3GpUIHx6QmU9JHI5rw2BGXuBWBuEQD1RKCUJ+E9/xjUag7bfngKyhV7oczQKXfvyFNQaiehaR7G3jEF9eAeGHOLwJdfwvnj+Yj9sGKoMK8eh7JvJ9DqoP1XjwfR5CZ2eBjf2UXu8gq0yVE4C00MT9Vx/kQedlfFzmuaUIoGlo+oAKiJQnncxtA2N4gi1mnSFfoHbnQxfPsElJtvhDK2G0pnHd70CXhzi/BOLoQXa6hAMQ9lagZo1+E99DQULhqSYqgw9o9A3TkKZWIU0HX6OiAEk8bz6D6/CrWoQ987DGwLBw2Bcs+CoLDfQCR6IP1PX9hDS21YbRfVKQuVQ0NwWwTrRzvoNLTAnphh/1U6pq+j5OnMY4Yf6SpEEtnzXjgCTCzFg7YAUKYngILvPH5uHt7sXKy8rKzaZAkYrdLtrex+dbMiUOVNgB++qNNVKDuno95SCAGGikCu6P+3QlLvD+68xRWQx04BJ5tBe+sFVt8jOwn0vcPoPr8K3ciF0Q8lNuvX3WJi296m75EkjxNHKflLuh/FKoFueKgv0XvICC+bfWDPjZFzUR63YBZdGLkcjj5PMDFloDrqoTxO20F11MDImI75czbyRRUj21yMNs3gXOWKhtEJLbKgMsljw3rNCZU6v+3xni90QwnImmKoMN9wBZRrbwUcAveR78BZeIGmu34PlJt/BN7xR4GvfS/STq+4uoC9r2ohf+dOKDfcAKU0BuSGYHTXcdn/7y9w8m86sbUH2t4xKNdcCaj+q8cl2DfzMBrfmkfxYBn61TtpOwY2JTgMQEMMl8c9rJzN4ewpOzYoHd9N2//SqeiAgK+roUrUFaNuGDhzygr2M8JM7OjCtkJR9dtOb5Of4anQ1EucJXGJ4oek1lAd0f1256C+FPZ17Jlg9zrvD8qI7QV+0nUJ4eZN2hj6Uc51g5rCXfsqHdtfb9C2dNVNdJBOLwZwCcy1BvCJv+1ZDwMM8HJgQIa3Au1O2JlbNsiZBoAGtMkiUC1BKeahq/Sl13X7M6xyXALHiypdTbIKTEyi9OaD0NsNuIUylG4byrW3Il8ZgrL76kh65cqboO07iKFrXqAESteh7JxG5Z8BxSOLgUqn7/VJMDPnKOZRuPsWXDf5HNyGBbJshTa+hgoYGlTdw9gu2ikykwdV97DzcgDwgvQK6MumWCXYcaWNytv3UCI8wZkFaDqUiVEoIz6JE01NdBPKWAX5O3xCyL84JVAMFaV/speSZPjhjWUu7ZgNt79PMbSQYLK88joUQ0V5vEsX8Bka1CJQOTSE0kwH5XEnolYNT7WRO7QdMFTsO+Rix5XnQrtJLnobD5cosB44BX1mJRJ1UBvNQ5kZBzoWkCNAswH3+BlYTy9GFDUANMT3ZBFey4ZSoXmQl5b9+zvs5xklGOw8oionhilmZQQAfcxE7tYd4X0o5qHsnQlDtPZSpTU9onIrIxUYP3Qlxi8/j8pTC3AbjOA7gWLP1x2rv+KkDWMvvb+5q0ZwlbOG3at6JPqiaLKh+jbloxMaRieK0khyADCxw4Gq03NXxm0YOc0nTOHiTEYGeZMcVfew94Dhb3dD7ya6h9KQjoPXKiiNkKA+R8b0iCLHm5SInkZyoKYlQ1WqaBYKrnTgcMO7PJiHtkHdNQXlutfCPxnN81WvR+Gqq3DgwUfCewFg5m1D2HEnd79tB0A5FnYXDoG+Zxj7/z0CwqpUS5QE54bCc/n3V33d9aiMH6ODJEBuQtYDUv/rwrbSMMFlJRWAGtzzsV3hjMz47g6uQt6/hLh5hmjeMy5EBszlVBD/OWNrBxhk3iB4iKow/9/xvW3ky2G0PtZmNN2LlUMEP/CTeRJhZePLlGZeIRsY3vVTOoz9wyzD1PJsFK6rZHaHmTW/AQZgGIRjvohgYSSXP/seDM9U4S634CzQgPBqNeebGwBKJQ/l0EGgsg1PORbsPh7S7UULQ0Y1NU1Bq8B0lWzeCOwOvMYC0GzI9yeQGG9xBVippWbtLDThLLVp+pSoZsb+EWh3vg7KlL9YTAg9HAtDnJaGWOG2QIkUQhOz30DUfIBXh4F4mGwgog7z1yWSUJFYGnurUPdtD8/JzpOgSIvqLjsXfx5tsgRlvEz31Zqwnl5MLItiqNBnysF/z3ahVnNBOi/DdclCLzMUJ1UU/ul1wO49dAMLDw3E7wUhQD4X/i8Vo+n4epGZefQIYy6rK2lIaeHaeYLNhzQH4oosH146cqz/beRdlMdt5Hwyk2RqIx7vOgrsjpoYnU0MecyHJwbidrV5X6m89q0u8h/+MSiVybCuOYLKniulNAYY+ajpFpc29vwZeShajvrEFvINzHnEfPoJGw5E7jW7z4BgUsG1dVnIevY7a+hwWn9K7L7250uZ/pb5od69z8TojqgJShrxY+ez2irsjir1x8zQ7dLod/3Yp/P+kXsFhnnbh4DCx+6mbSmlbdTXGhg+8JENh2M+8u43oWxsHtFu2AQH/tc3BuGYBwAwUIa3BG7DCtQ3Zkfl1rpwa6zzawDPL8I4MIpD7/wXeGxpFgBAMpJi10tX2Vw4cPUCoBtQXS9ui8yTZE2nU5ii2sNeUuJ2Bl1L3ucfr+R1qNUc3Fo3Maqc1yG0jrQNNE1VD6+N/82XMab6Svw9s3SyhY6iOmyogE8uPdsN7F4DVcr37sHbzymGChhqSIIj+XPn5LyK8Go0r3jx53EWmvDONMLziGXh4Nkuui/VAVBiZg5JCC8QI/NRgqhFtkVe3rYDz3GiLvJ1MyTEIjpdeh8qJfn+rBDusbSueuxjv3klkC1ATfOHK3NRyOASJUK8RI8nzB0gI8WikqyDkjG2nfcKA4QqNEDVYQCRxYe0fAquuJUqobm7boAyvIMVLiyooMj3jc46UMpt/PiNwH8Go9uiXnVkbikZePeTvTzu8F5o0rzxpC0U5Bca8553xHsr8y+eRJB5cxRRZc5BlZJyVhYgOVAMfy2ybVdfXwTQ2lh/PcAAlxAu0NnJAJlhaOEHoclAxFuCrsH1HBBXiRFh21USPwAlxGkfy23DctvyTkvTww+/jQcju7IPQG2fTSP6EY5XDBXaaB5qUZdfP3yvGJmDbGSAbkq2SUi7P7XHbLil6dk1sWtmLt/88rLrYEQ/uC7ONVzEM8Z6i376gVhXAhShLNFjtci+YKpVeOlGjhXaK0/SGIHjg5jwL3BF05JfkmkDJ2l6ST5iHmKbS2lHsTYXHBMvl8wrCbtOTY/WgW5E//Nk1e6qsFrxumcfgNYp+/Dp+LzZdn6fbPFVLqf6x4U21mo1h8LbroB67S2x9JcE0tpFxun3nkF6erlqRJSIpnmdEdsBq3MZeHMVftGdaELB7q14j9n5Ant0EjXxEZ+/tHKIpjOGoaR6BJGZ2uiGgn13esi9envPcw4wwKWOwXBuC8CIRKBKiZ0xpxy6npNqJhHxrqZSkiwqwy6i/7sONc3QVRN5bShcvCKDypHifkb7OqcmM2VOICeKPxOl2i7cFd9cglPjgnQZXlZBWi0XTscxyNQt2TamwmZRh9n/JPvhLAoxEFWJa/S+KEPF6DnTfgd1JFeHRR/TaUp1RP00tIAUBuo8ECt7UJ2+miZTTFXNi7dxmVIv3oc+oGiaXFln+wW77ogyyNVTL3U4UkzhWpMC0zCFWFQROw0NLlFgFqN2n4ESKVGLiRX6wmYuEAEECrSYBxBVNJl7Olouf8HcoWuB8vimBHGRPn9puFDlWTy/xH4/niY5MJFM/U+CeF97QaYOJ7mUUzUvFixINkvAoDmedHaA5SUrCxBVhWXb+KAevI94WfrrbjGRe8u1wI6ZhBrYXDgEcJTNs/MdxDAagMdAGd4C8EqhTA0NFGPTgAsHtovEDw/bpaYULpzIR0TXaaHrtAKVOKIEyz6qThXVrJ+sKnIxTxdSFfVEhTx76OUMkJH+DMpToA73q172UoiB4LqdhRachVZwvogizStgJu8ZI6pEJ51DVIeTlGpe7RWVUrHNsuN4dZhXM4G4WpmIpEGWeQEqckqavtsUR+ST1HMeojrMg1eIHY708vUqqoC8WqybntQvtm54EaU4OJ+gVAJRtZLOvMi9JlzSyPgsJplfBfsztIVeiru4L4s6LFNWRSWWnyEAorME/GwBA282w87PPkmQqcJp3lmkPpD9tNNXdYF9B6FMXQGlPBlLp2hbbC4zwAAXgIEyvEUQO2lefQvSHLoWQHZb4YLuQVc9OEmKm4CADKdAVXUoZomuh7ezutyyKJHJPI1JSVVil61rvdVr8ZrTFCeZraqo/MrU4SBtRnUYSFWIAcQU3FQVvA91OICg/Pa0ZS4aUIBgMWdQRkTV1KD8QGRUJirEACUT1qqLfK0BZX2FJmRu01KvMWN3JCrJsf9cnoI9aaISLLGvzmI7zNRhRnYjQWwE+2EtQnpDt2ZAWOc8uZGpvaISHCjF3Hl421GZQnzJQmbTj5RZgIT0kWNTVGF+X6+w9Wn3VQYxYEyk2IJ3B9uOElhx4MWXixFil3gRpZpBVIv58gBuRKEG5EoxEPcsIbpao2kHa+8H+P7BgAxvARRdib30RHKs3XIQ7fEpwHPQdbIpWaN5G0XdhdNHn9STDGsmUByGounwspBshwDdbtRMohd0LYiYxyN4aZkG0FwBzBJQHM6WJ0PadDwjzGkvUZ9YBS/gfs0lgERCDAgmDQl1k+jaDdy0MEfyeplCpBFiUTUOFvghXIQHRL1/sOiGAH358oQYoNO7xFJgP3kOhq5BKRWB3RV6X/iBiUiE8wn23Xx9pA1ahLoSkcVUIoDE5CTJNKQXIZZOq/P3nzOdAeLEWNXD/AFESDEQmk8Q/7e4mIonxKkERnh2NqTsbdVCKsl9jt3HtEV03L4kUwnxvvIQTWDS0jIkmUswhVicWRDNZ8Tz8wsr+e3i8QD1c63pClrNFAIsuFuTuVqLkOI+zNk2Ay5R4G6imcQgHPMAPAZmElsB33sAIDcLUAwVypWvxaOLNTy6GLonS1s0VzIcDOlOahrx43q+KUXKQjviWiCKSwlxvkpfkGkfl1BPAD6B7PUBEEz989PxfN0AgHdmDt7SifR6TXvxsn1pCjMj70yRZNP0SeYSLF2vBXWA1GRCajbBIdFUQiwvf0yaSUYK+HSqxGwl9tsvv5i/zIyAkeLG4RbI8/OZyoO8SdXjJAU5CanmEfKFi4m/UxYk9hO6m08vW1CXaCYlMR3iFycyiFPhATEyvEh6fvo+S3SzvtEn8U0l14kLLTOeo0e779dUJs3kJSv4BYwMSb9VSbsQF9IlmSExkxnRdIalN/IunZXQPORyamAW0ctcQteV2OK+XC4eyXCAAb4fMFCGtwDqVZdBHcrDmzsPb7ke7rBdKONlKNdcicOrx7DYLkiPj4lWKlDUPRT0/qY9RXti9l9FSBqIZ7Gd0I08FPElJfqP7LaA7Xu4TH3lZW0RqDfD7YQAo1UopTJALGjTfj1YBF6tDnd2JXIaqVcHQPrSDMrI+0gVTTx0M1wcyJtTiP6IuesE/MlsXplcqcFrtuIK8WgVyp6ZqCuxJLMNLj/vxSjhV8oloFqJKqhcNDbvuaMxdVjdORr10wuEJHG9BfvJc1AMFcaBUeq6jL8eywYqQ2HRnj4jdQWn761CKZjBOTrfmY0omEwhBhCop8w2Vkpo+EWaOglt1QHaKxErfq94c4idM1D4AA58PXHb6P2zgG4X7iOH4fHNwtCgH5iAUvX9LTsOHdixiHz8fRL8SrO6CX53COwTNWijOek+AJh/0r+MmTL0q8NQ6AAiKic5uQZyYi34X331SOSc5MRaECCFVz6dlQ7mnwzV4OEpC0M7ou7uzNdfQ30HXwQo+Wp/6SuTkSAc3uIxgCT4N2fHlIrA9Db6hz2jov/wVoc+o3zEOgaZr3AgsN9P8gsO+P6oWzY828X5E/lEdbhYJSgNEzTXdHTP0+fo0D9TwzxsF8tHVIztDe+5cWAUqhASW+z4+TKpj8371Ua9lPAqJ0+IC1WC4ij9vzqro7FkAH73PbmbIFcK66Bd0zF3UsW+Q6EpzpGnvJhKDKQH5RhggFciBmR4C6Bc8WoolRIwfRbK4mwQJlfZOQ1laj8aeQDrNdw00cRji6UY+eVR1D1Ml2xM5G1UzXSfrKJJhKpoAfFlCjEtSJQQMwWZmCZUJUrQVdeDYndocA4AGNkOZXgHWoQq2nltCEptPq7YbRuFMnNtuHjHIUB3naq/zVZUudE1YP9BKGO7w7QyhZeRH0ZyfaFWcfKAloNnNSkpNvI0GIBZiueT1RTEhzdcg7K2SIOMdLohIdY1KNNXooH12OFJpimVRgfACUryinlgZBzK8A64OfmgCACUUhnew09EzTJ0nUblG58CfJtvaDo8qwnv4QdgHBilkQOnZgLCIvUA8OKz9JvzHmEcGKXhcae3haGeHYJ8MY/OP7xE8xLsajWNKlKFd10FZf+e6H0CqALP1zsj/mn+r3nsmEF7fAptwgaWpvAdha6aKOkj0Epl4JsPw20IA59to1Cmr4SSH6KDvcZCbDCV+OpnA7BHHwc504A+U4ayZxJKjg1OwmuYmTkJ+8gKjLfdDGVqf7A9uBf18/BOnoFi1AFDg9eyUXjbFXQtgUvgnTwF55lZwNCoi8J922kIcQAgDoxOF5P2Q1g/66F6bQHG9fuioY39uoPdgddcDtqJ+Ex4nRqtB6wDThdKvhpsiwW2IRa9f7mh4DmD3YG3fIqm49NwJk9KeRKrSh3d7lKwbXTyMpjdLryFl4D1uB2/kjOhXHsrSD46e6Aqfp/mObSPUzQojSV4nRq8Z56mZkw7p+nzId5ThwDtOtSVutSjScxWeb0Fb6mBqeoy5p8U3JPlXYxst5DfVYA2PoTKUht40MGufzUO9Ydvp/fw8PPofv1FAIA2WYLxuv1QZqYBswjv+edpWQ/uCzPlnwGO9BeqOSjfmYW1LvdowpPj3E1TUMbLmDiyCOsfWhieclDZBZhXjkEp6vBaBNbT59FtethztY3RN40DAFa+sQQ2eSyLUrfwnIY9Lz4L3BxfPOc1l4HVpTB4CgDUmrF0AwxwqWBAhrcAltOB5agwS2PwOutQ9vpkY2iUviDcNeytTCLXqGGxbOFYLf5SN1Rge8nGdNFC2chDVwsoaJSc6KrZ0xaYR1JaVdGCfS4cuXmhqkE18jQ0skE7zZq1AOJSgtEmdZTKI8iXxoDxKDHsqAS2veRfTx5qLgdz1w1AoQJlejFMWB6BNzoDz3+5yQvLmWnIiLLLvGNQ5UkxS/JV9Fmmeg2ELyWnC5TKUXJEnGDRX7O7Js3C8SQjnHIVldf9EHVP1alRopofguXECTVDvjwJXLGXmqUA9EUzMQplZGdIbPz7A6sJDBXpp1oJo4kBUBCqwQGhu2w/dC4anpIzqQIrWSmOahn51+8M/sbcW9kulGolJNDceQDE75l4G5h/aGbjHbjt06AM70CTLMFyLP9UcZ/cPMpGF67nILdtBoUf1qGylzQATM3AG9+DtrMOkBpURUN+eAclw1kXkDoEuHo/cgCU3dtpfQMxVVLbUaGmGMMTITF0SXgv8lWgUIFeKkLbcR5e24IyPREquVcNQy+XoI6eDFXDodGwDCUCfaaM6qhNSfnYCJ1l4MvZrsNr12F96QGYb7+JRvsrVGjb458FqwU0W0CVwHMIrYvVpVA1Z6iUwnsF0DxcnZ5nljOR0TUo5SVankIFbq6AVuscWiQcBBf0OsziJB0082V2SUhci8OwSGhKJoOqaMiXx+ngZj8dMAXPhwQeAFS4e8UHbRET+zNW2mgTkwcasWA0WoUGFmIq77a9S1AvmwkCnCi37UB+pILtL5yEev0VUHYcDJ8LFo665N9TccaDn8UarSJ3kw3TdlFcaUuVbAr/moeK0CaL2LZ3hdqYT1agjhWpd58xIFfUMTa6CnelDbWaC57nq28VbaBD38ZjBxw4L5yBVvwelIO30nN3asDcSXizc3DnapG1Bna9Dxd8EhBbAUkelm4ovwEGYBiEY76IYGEkF1e+hEqlKCWtrueAeBZ0xUSTrOJoPR6hi7gKxvM2RnO5mApS0CvUd7CQZy+w8zJFmBFh3pSCV4uDbRw5tdw2uk4zcj7+eF0JX5I8ydYVEwU9Gv7SVAtBGlYuXTXjZNgh2XyVJim+G1GGeSQRJFVHxwDWupQASMkv4kStZBgwuYENwJmqSFDUq0BrLXbuCBgZ7nCkml1nbkh+zaw+7U4YileceeAV8k4tcV/knKIpQ69jktICgdmIMn0lLJV2W4ud2QihiiT361r305YNoGQMo6BVgrbWdaNqlabQ6QVV0ZBHvjchdgm8do2WuV1Pv67KNigF35RAVi98/TaXg/0xNZ8n6vwAz+5QsyUgJHQ5wU6XL9tKHZgYBcxiSBR9whwEg9H1MDx2swXUuTZVzFPznFwufC4LFdqGjh73y+GfL5+jJkC+OY9y+atxsvES2hEy3Nvsq2QYsf5ORKZ76Ap1vb7S0zMFAKDehFerByZgST6OFV/ZVyp5KIcOQtlxbfS8YlhqIGp+lpQWCMx+0sLK0/yiA1uvKbQNIDqDRxx4tSaUggmvbcVCzQPRhbRq2YRnu9Cu2QOMcv35egveqXMgJ9fCbbaDesfGxMf+z4bDMT915x0oG0bvAzKiYdu47h/uHYRjHgDAQBneMrigUeCAOFl1PBuOZ0NVNOyvRFVhllZVitJjY+fpYz9PVuk5qBlFWh48qXU8O6okC+g60ehqjCDquhmQeQbLbUfOm6gI87amaYQ4beFcv+l4wpLko9XIo2stAIgS4aQAKmz7WpdgNGeBqFEC7HhyjwiW04aZRGhF5H3SINZTmscNIw+FXWOK+zrRPlRqdpGkBLN8JfbosbR8el+B9JZPwQCgTF0R1GOaO0K2z/EXibadeixN0I79b0PNw9UUqGkzBw6hpjhdQcmXHVOoUBtZ3kwoBQFp5tIGAS6MvLw+k7YDof05/9yMVkLyK9rdMvtsQoBaaN8fsf+2SEwp9pw5/3jOC4ufr7fK1fvEWRiGhzU3JMNdKzqo4Z8dwx/Q2C7BaK4NXZWbxAB8n6nB1AvyVeJcPSn5Kjy7A+QQDiaSwFxIFtkMiwTM80tFo/b4hR5Ey78nwf1l94g9p+J/psTn4N9LM37/+Jkjfzyk+IManiQH8D3lKFU6AFZ4Dza87XyRu//+egL3+BngeLiNIeZOklzirv0G+IHGgAxvAXiiKCPCPHgSKBLGCJH1VVOZ+ppYjgwkN3G/hOyKSjKD6PdYVElF4pH1fDHISMfFCCuUlVgD0FQdHTtOZGWkmLgKdNULBhZpcD0HhuoTqYvhvko2uGDXzd9PYbEiA/MUECHFfDl7EWMxPX+M1AyGBNEaeSLcdePUZ9ik+ZgafVayzJywgV6qD4JYsJkEgiYuzuTBD0z6ic7Gp03Kg9/OL8hMuIc0ncTvM1MbmbcV3rWd4OM54hNYUB15KFoOQ4aOxU4rNeImQJ+TIT06+5TVLMz1nPQBDUBNqZwurY+0e+XQwYBSKlLTCtHGWBZ5s9/APRtFMPhI8Z+e5DaS2xeJIsq7j/S3MQ8twQJeIHFRqehjXUmYwRlggEsBAzL8MoInQDLziaR9AJDT6Ag+TSFJOz7TvhRCKjuuFwlmL7285P2QNijoCxshiptAoNnAxVQLaIJeSxIBFv87LgG0DD6gN1on0swk6nASGUtKC2QjxXx68Zg0s5W0wY6qc6YO8ZcsX/e2q6BsoOeshxQ9BkKKloOXlIYnon0MqILzSghuJPzxRggxIFeJeRIkhlXvRYp5tdgnWzwC4iWgqo1h2KxjsWP0DDTUddVgUANkG9AE6dTeU+tKvkrNO0SVnyfHmg7oDlApQQFCswMgSiQvJnh1WOZxhUdWQgxECTQQ9ZYDZCbFSf70efOKjcJ1NtnPcEqQlQF+8DAgw1sIvgPfCBEWFWZmZ7tRkpT0QslKgtnvNBIsI4RZldALuba+sBlKq+egoFVAPAt5rYEGd3myF32UwMWVLvG/rprQFTOw7e6pdm0UaYQY6JsUAz2IsXhsggqcdCyr27SBB3EVaKoWa0uZZlK0HoNNFsKcIelatuJ+pRFiIJtKLCPFwf8o6Y2Ez04gxkDcTaLnONRjR2MBU5O7Mdei9tFpCrHuKjBUD5qiwnEJVJWbMUvor4I1D1nqXhuitsWyuooUJPyvEAKvywLIyM+haD2iaSaWJ8FUIi2tqA6zcvUixIDErIVE8+GDnHDbe5Fiuo8G71EGy5MGuIQxIMNbhCQinJYuiQgDQNdp0pe7R92ZJRLbPrYnvVTSSANPhLPYymbNX1OM/lW8lxGMaOkwYag5AN0YCZYpmDnVX43ep3qfpW56DiSSbIfTptF7kWLJcWKwhb7IMX9OAa7noOuqPe2Gu26cQEXykSwa5ReqpkHlvZrIriXDdaSm76UOC/ukZcmqEvNpY+pwgloMxIkxELcvZungE8TZM8D0NrRJXeINJFYTsC0VQ7qG8ULoGlIE64vo8xdiQzMuaffK9YmirgOyMNEAda1XzAOlIrUV7wXRbjglTUwd5rEZhJg/RjSbAGIqMZBAioEIMVYG3hsGuIQxIMMvMxLJbwIRZh2+AxL41ExaXd0PiUqyCRYhU7TTSDD/v8wCtinJruDCPOl5VFfLZArSDy4myQ58NPvXLRJgvj7YtC97eV+ITXfSMaqipatKWcJXJx0HpJNphh7kGEixNRbB5cXarEiCxTZYENL3QmCPL2l3Md/dWSIdwr9mpvClIYsCiD4IsWwfcOGkOLItrgZnIcfKrhvwzNzpRL/q4n1d7BjQVSvoR5LAPNaw+9iTDBPa13hWM5uKHAlZHSfSAbkcn4ovaoydPOX5y5JGZi6xAUIclFs0mwCykWJ/X4QUAz0jAw4wwKWCARneAmQxj+iHCNN8XFhu+4KJ8EZIcHS7nAiLhIS+2Dxoqp5pupqZSQDZ7KJlx19MpA0qHJeg60avUaaUG6oXrJKPmUlkvC9pyGxi0osQM6QpxQwbIMdAcqjeXioyCzUugidYtqvA8dzAUaBo1hOB6vvAzkCiksoUwBEIqcwdGpBe/yn7ehJiIHlx3kZJMZCdGAPJ5HhqBoudk7BdNdVeuOtw3iYcoKDrKOopi9wAwCXIG0PhglNxd+y+KuG96aXeu4R6nCBO/Jp45dukMwZKeVI+wMmyWDLtuF42/70IMRAOULhyp6rEbDsQJ8XCPj4U+mYRY5cocDbRz7BLBkr1ACEGZHgL4Hg2bDd0QSTzpsBIFIOm6lIThPDFrwCwYovRmmS1pw1y2Q+WIRKuNqnHPESk2QPXLQ3rxMSQ7kR8hPLkhH/RNWxgNKeBuFYqUeOJMM2jEEvfr/1nFvRSq7PYUttuJ7AXTpq+t337R/Yt5t20bRiqB1Mzg/on8N2vedREpqSPQIaavRD8HjG3R+tJ0xOvUdXyiEQYk4G5agNCv7K8L2MgJBN8Wlycwcla+wRWOiGJ5okTj6LuYbFjIIwiE9aJ6L5rqkDgeHbq7AUPVzehMjdzvI9mMTQxpyAT1wIUQPfk5U2LQMjA7qsCwFs7G5IuEQ4BWmvULzRXBhYEIghaI7vvnXV4q7PRvABKeka2U5dks8+G2wAoU/upPXC3BWXy8vixDPkhnFybj3oCSbh/QHif2kRFi6goJvQ39PrciM9yETH/6X6gGiXJbSIPh9AFk3YHyLWS3c7pesSe3PIX1ULlTHACO/aoP3Wpb3UG/z55y6eC+6bsuBauqoTHddbhzR2OEGJlx0F4p56LEtvpKRr85dgL9L+gEis5E9i9J3Jemi5hMLK4EuTtOU6omvsEW2leWNCNAQa4mBiQ4S1A12nCdF04LoHjuZHOO68pMNQczjY92C69HRN5G3kQdBzmW1MBQBUUNu2eU10YZkiqm2QVy53VYGU2OwdTyIir4HxbQ93WcHB4EVePWBjOheFJGQF9ctkDcbXgxWS7ZpAH+7b874ZNf5d04I6ZVkDs2PkideCq6LoA0IWhepFQ0rxfUB6MIPLkmG1jQTkuBOIgQbQdVRUNltuG7XYiAxiRFLP7CgAtomLNoveR3QdxGthQ6T09vU7Lv6/SQckwsNR2cK5lYK1bwpDhYDTvYHvRhaaosN0uXLKKxxc1rHY17C6fx/6qh6pB7REXO7N4dqWAw2smDJXej6rBXZ+qwHWtoPzibIWmGDSgR3BAnBy5noMOHx2PALphwtQKMVLseg5Wu+eCugrMe4SZBPkMQmhekrQfAI7WikFb7HC3xHZpHVcMoGp6ONUwsNwN9zGwY00V2FkCdpWtoHxJgy1xEStxrLAO7A6U0hiIpgY+xek120F6l4R1b2o02AojxURT0SSraLcb0rpi3+w5q5olVM1JqMM78FLtaKKLuamCg9HRHTAaK4BDsFCwMbtyBhN5G3uKe7Fsz+FILTxXQXexr1JGWdPji+0q21Av6nh0sYvFpTpev30UO/KXwTv9BJTpK/FIYwkTZRO7VR1uoYzT68dxel2i+q+3sK9iYaVTiJDgtLUGhuphIm8H168pfhuBFzuW+G2dgZmUaYoRcw5cc+o9F7BG+oaSBlMbw9Ai94yIKjGnmtesBZz372lRd1ExR1HQKmiSVcy32tgILt+2F9r5E/SPpuNY7Si+PVdExwHGcsCbZ6YwZhfgLZ1AfccufPVkC2/ePYnJUwvA2DjsyctwrH4Oi20H115zJUYsE96Rp6Lqtq5DKY2hlnOw2qWk31A9DBnjqHY1wMjjrHPOv64hjIzsDAaDKjfTw6pbrffw4TzAAC8jBmR4C2A5Fpo2rWp+WpCpqR2njTbJoUWUYCaJvggVtIkaIQbBC08H6hagKWs+8ajj9HoOi20dtktf+jxpXbUUzLcAYqtYs2g+14yek5g2mDi8Rjtyy6XbAsJBooSY/TZUYH8lh2tG27GXGf9Stl0Fa5aOibwtVd1k5iGMvKnQoiROQURhzrLgSWZ2wZOc2Pl9FZaVgSd0PJGjgxSDq8MoEeZJiq56sF2gaWuoWXR7UfcwbBKcaxk419Qx1wZKuoadDm0rBZ2er01UPLqkY7kDLHcN2C7BgepZdBwPTy+X8NiyipPLOvaMcXa1TCFzreAaI+Qs8NpBoyCamq9KSlRG4oQDA57QAYAuqJmW20bD7nDtV4vVDa0vjgA7UQLMD8JE0isOzNgxPMG1XQ+AgtNNBcudcB9/PLFV6IYLy/UAmBg2CUZyRs/2xNu2s/o0i8OwYKPr1GE57cSBACtryd9f0CpwVQ9Newk1q+mr2HFPGTyRJ66CyyotAAtwPQdPLxdj18a+FwoOrhmdxVh5O1zPwcNn1jHbVHBwWMVMKSzTg+d1mCrw2imfSBbHoRSHI3Ww2j2H750j+JvjOdRrJubbwFt3ncS+PTdioX0C954pYdg08f+5ogTTP+5UQ8ezq3GSe6Cq44emWzi8WkgJTkO/DRU4NEYH3C2iBoTYUHPQVAeWY0UGDLbbhaHmwsGzR8mwq8RJb81qRuqZr3sg3ocBDibyqyiP7obHwmoLULQcSKkCi9Rwvt3A6XUTRd3DriFKFptkFUudFs61TDRt+UyFrB4AYLkLPL+6hDt2jiGnlrDSOooHF4q453AB7ZYOw3DRJE28ddcatu25EV99aQF/+UgZc23go4dejY6zjqeWzuO+c0Usd4DFtocf2r6OiStvoso387ms6WgVDJyoNfDMciheHBxp4+qRETheB/edpjNAN0+0Ua6OB8+NB8mAwr1A8eJldq322c9+Fp/97Gdx8uRJAMDVV1+NX/mVX8Fdd90F27bxy7/8y/i7v/s7HD9+HNVqFW9605vwyU9+Etu3bwcArKys4BOf+ATuvfdezM7OYnx8HO9617vwa7/2a6hWqRBx8uRJ/Nqv/Rruu+8+zM/PY/v27fjxH/9x/NIv/RJMc3PXzgwQxYAMbyFki8vaRME6MdHy7ZfY9LksPY82UdGGisWOgorZgh2QsWi6jgPMtRQ0fX5EiArAxaNLOh5dKkeILgCM5T2YapQ4iJDtk01xiuoee8HkNUVKSJP+y+B6DmwvND3hzQZE9ZYnLq7noIBKoqociarHyGLGhVdZoqE1bS12XxfbOs41jQjpA4CapWCxY8QIIPv9zIqOx5f8aVhuH7uXWT0iMDCyLLNfd+Gg6zTjx3g0ohuveLpw0LTtSKhdBr5upF4DJEQ4noZ+JxHhDgE6AOqWglVLTMuVxVaD7+cWVByrE6xZRbz7sk7PkL9AVPFtO3UQ30ZVbnMvmjlRNO01NO01br9fph5EGAAOrxYAeNhVJqCDjTAN/7vrqDi9nsPp9WWfKOpB+yHuQhCumqFuqXh0sQvizmLd1rBm8cp73Lzp3jNF2O4CykYxGCR/Z64OoA4gL617AHhuVUHHKeKHt7exTsJ8k8yKyr4Zg6Z0oXGuBolrQVPUyMwUoESeW9ulJFTzzXhE86/sRJhirmXCzs9jOK9LTclst4V2rRYMBIk/MF7sGFjsNLDc0dC05YOApAWFbPuapeDxBRUPL9oYy6/iidOjaNQNv2+nWO4C/+9LRQALKOlAoUhQ0oGvnZr3z2nAckNR44F5A0ATOc3FZJEgp7roOi6eOd6E5UaV/aeXTTy9HO8LeoG46e40L3XMzMzgk5/8JPbv3w8A+OM//mO8853vxBNPPIGZmRk8/vjj+PjHP47rrrsOq6ur+PCHP4x3vOMdePTRRwEA586dw7lz5/DpT38aV111FU6dOoWf/MmfxLlz5/C//tf/AgC88MILcF0Xn/vc57B//348++yz+NCHPoRms4lPf/rTL9u1/yBA8byB87+LBRZT/fC5/4r8UFFQEtVA6WXbJ/J28GJipJhPy47lp955VY3fzojVchc4va6g3VWDztLqaiA++WaEwPa/C0WCy7Z3MJYPSbnlhgSLJ2y2S48v5FzcscPFTRPNQDHlTTrE69xX6WAsT0fLSUole5HpiomCXokow4yw8qSjpI9AV83I8SIJZv9zWinijo5Pn0aGZcowP63P/xfvEbs/rN54QseTXZ7giQMVse75+8ff213buviZaxqYLu5LvEaxvlVFQ04rBb6rAUjrMKleRLInqxtWF1lVYZH0ylRhkQiL9cXvkxJhjkBYXQ3T413826ua2FfZG1xr5FuoE2mahDYj1g+rD1ZHsu0yc6ek+mIQrxuI1524nydlfLtbaqpoNY2gvwDCuguO9f8bhovR8Q7GS7x5RySpdCD9nsts3DAeDzcvW1tR0Cuw3U5kgSNx6YgnadCavvZCPohNIsFEcpzsOtNsobMS4CRSfLSh4PnTeTTq8gG91Y0OWIolG2MTHZRLJDFPHruGgKlCnBZ05NULAHjtVBfXjOxIjJjqeg7q9RYmRn8MtVoNlUqld0F8sPfoI6+/C0N67wAqWbFObLzqO3/fd3l4jI6O4lOf+hQ++MEPxvY98sgjuOWWW3Dq1Cns2rVLevyXvvQl/PiP/ziazSb0BF/Vn/rUp/DZz34Wx48f31AZB8iGgTJ8iaCguyjoLvKaErMr7hfiSnoeYkcJhC8zRgyaBMgTBaYg7CUpTxtBsIjFL16vIBwXA2keA5K2i1H1eiGucoW/ZdP29Hd4jEjs+N8yIixDL5OUfgKbZFGZ7QRS0a8qDPQ2jxDRiwjzRE4kwix9r2hoMsiIm4iXgwiLttQMoqrOb+PTE6LGBs7B/oT/WQgwAOwaooRrumihpO9InJHg/wPx9hr85/ibOBgBNo8IbxYJFo+VPROyuuuQ+L1Ievbp/YvfF/H46DndVOIrK6t4bRdjwezFQr1ej/zP5XLI5eTebRgcx8GXvvQlNJtN3HbbbdI0tVoNiqJgeHg4MR9GxJOIMEszOjqaWp4BLhwDMvx9AJmJgki0iGzKOqFDXF7JwR7uYtdQurkEn3/yvs2z8bpUkeZLGEhfJc+/dCwJWeEh2yYSYbJBd0FpixE3MlBJVtDi5YsuoIp+88hiHiFP55dJQoR5EtGr7rKayzDIFg2K2CwinDaA4Pf3UoOBsB6tBPJkJwwowv9u7HixjABw0zg90c6hKWSFqMbLsBlEuF81OIkE90uApeQ34VJlBFjWz7O0ui5vh/wxuu5G1ob0Qpb3w2YRY2eTXas5/vO+c+fOyPZPfOIT+E//6T9Jj3nmmWdw2223odPpYGhoCF/5yldw1VVXxdJ1Oh38wi/8Au6+++5E1Xl5eRm/9mu/hp/4iZ9ILOOxY8fwmc98Br/927+d8aoG2CgGZPgVBFGxSuqke+YjeemzDpFNvRGiYNjsIC/6zs+oLnw/Qz7N2eull66Kpp8v/ltW9xdChHNqqW+yB0QJR78Dn17tV0bqLjYR7vfeSFX3lHrMYle+mUS4HzW4w5m+BvXY1WKmVECcdFldDWbOieUZU075PFwFN07QsPI8srgyjKVNIVybQYQ3kwRvlADz9zvtXgTbbYlZXEJalo4iLFAWssvAzK1eaZidnY0Q1jRV+IorrsCTTz6JtbU1fPnLX8b73/9+fOtb34oQYtu28d73vheu6+IP/uAPpPnU63W89a1vxVVXXYVPfOIT0jTnzp3DW97yFvzYj/0Y/vW//tcbvLoBsmJAhrcQ/OK4rUCvqS4gPtUZKIy2Ss0l9OhLciPYyLTzZkFUNV3Pge12oCuU9Pfyd5yEC72P/ZhIiOkZeplHZIGqaDDUfKAMZyEiWesli4lEL1VYRuoY+iXCMrOIJFvYXi92mVrez8I5IFkVliHNNIIhi0lJmo11Ur4iZPXIfltdDZDYpsoGb11HRdX3eZ4G0UY7NW2KKz+GzSbCm0WCxf466R5HBAnuXiSJEyxN0n2L5N/VYLtEoup//87wVSqVzDbDpmkGC+huvvlmPPLII/jd3/1dfO5znwNAifB73vMenDhxAvfdd58030ajgbe85S2BsmwYcTvoc+fO4Y1vfCNuu+02/OEf/uEFXN0AWTEgw5cQ2kSF7XoobvCuyDrPku6hpCtAgaDTDjOWdZwhQVDj9oCSTl03XOwaoufYVe4RFaoPqIoWBD3IaaXMARCygrgWugpdDV3QsnWC2fJNVu6B+P3JYiLRrypMbDWzuskIXywIQULaJGS1o84y9cwgqwOZspmcxj9PajuPE2FiqzjXMqCrp2OL6PqBLMpdGuntZR6RhCyLDMXzpy02FPebOQeEKCC2mkqmCFGDafikuk9TJfuBbMEikE2R3ygR7lcNTiLBGyXAIgzDRbFko9U0Iv16UEau7nXDBbHVBLOKaPvSdS+yMDVLWfaXo4vtZLbfQP9mRq8EeJ6Hbpd6KmFE+KWXXsL999+PsbGxWPp6vY4777wTuVwOX/3qV5HPxwO9nD17Fm984xtx00034Y/+6I+gqj+YM7BbjQEZvoSwZuko6G4kutJmoOybg3aQbiKxERysehgyHEzk7VT1IE3RkiFQLJXN963owgFxrQsO2pFF8Y4voklOu9Wq8IUg7cW2UfMdmj78LZ8qlptHSMuRYhohWxTGBoD3njFwzYiOnUPtTO2vF1nOogpH0/tlzmgekdUHcyRtghosDkJ03YWueyCcKBs1L4nWMSPOPGQmFWK5NhO9PHjwSFPn04jwhZDgXgRY9ryL56gMU/Gh1QxVxURlOPIcJNc5TecmlkFEx585PDhiYUi/+ES3a7kwnM17N3b7zOtjH/sY7rrrLuzcuRONRgNf/OIX8c1vfhP33HMPCCF497vfjccffxxf+9rX4DgO5ufnAVCPE6ZpotFo4I477kCr1cKf/umfol6vB4v3JiYmoGkazp07h9tvvx27du3Cpz/9aSwuLgbnn5rKbls/QP8YkOEtQJuo8PzgA0ku0myLdcoacqobCW/MQ9Zptzh7R+aqi+9gS7qHjqQTtG1VQhLSVhmHv1mwAkP1cFklHmZT5jqOlalFVKmbNF7h0WHCVAtBFLi0tMztmhhYgqWJuPvxg2c4ILFpcDGghGwhThKYT13bRRA4JUs9yshxUnAToLcqHB6jJAbaEN0fyVbsyyDuZ4EO+EAyfBtnfl+Jq6BFlAiRSHKhJvq4limczNWf3B42Xm5C1J5mEYwIn50dwlkA89MtXDu2iIPDE1JXajJVkrVDBpliLiNbsmeEYauIcFqbNHMOGnUjkQQDUWVd1oekDdpkz5zMNCKrKzV6XDLRkXnxSLsHseO49ssgkmAZ+c1ryd49ANmCQ/mMiaECRokE7jJlfUIkejKiM31MKZZBnFnqZSK3q+ThsrIG3bf75p8Lsd99pWNhYQHve9/7MDc3h2q1ikOHDuGee+7Bm9/8Zpw8eRJf/epXAQDXX3995Lj7778ft99+Ox577DE89NBDABCYWjCcOHECe/bswb333oujR4/i6NGjmJmZiaQZeMG9uBiQ4S3A7zw5BLNUTH1JTI938dZd2Vbt2y7w54fp9Mo/O2DhWEPBkUUdraYeWewyOd3CFWMOljth0A2Adnjttk79h2ZYBNckQKOpB4tk8oUws9mmghYp4vXT637ZQhVmrmlgsaNEyLmhAt+eN3BltR6QxpAQadhWcHDFsI28BlguVea6ThNHam2cbpiRtDQ/zc8ndI/D0rD8d5c72Fu2kdOKOLyqYrFNfZpuL3Vw07gD4lk421wMImHZLs3TCKanDFxe7WAkF++M1iwdjy8ZeHqFEUDqMoqtlOfrBKA+Qo+cy4EQBa/dT0OxikTPdoHlho7lxXyEyO3c04DV1dBpa9ANqtjJcPZsEb+nArdPrwQDLv4Ft7/awYGqGgnK0SSr0BQjtpgJAOZba3hwoYjlLvCuPU2UjTy+etLE6SZdaCJOtU8V6fWP5cMXYNPW8MyqiuOrof2iSJAqw128bpJek0wVnm8pmJ3P0xe20G4Nw434u80XHBRLNghR0WrqaLf04Lw8+BX2kaAFi3l85ikX/2RP1O0SENr+8+2wqKt47VQyAROJTZuoaBEliD7G7x8y5MQhiaT1S4Rl6wD4QQgNFx5dgMUjzU51Ya6EdltHoUAwOt4J0rLFdTzun1OwvXQeuurBUD3k1PACeXtzfvu5loGTDd2/7rBc144SHKhSktywgeP1AgpcxLc0d3YPnzfRJNFZh5LuYV8ZGM6RmFlEzVJQ97vqvEbD0TM0CfXtvtyJEuuxvNx3L4PUFEKNh5k2VZoXAJxsRuueJ8B+bBG4hH7Oz5WQLxIUSzYKEAKOcPfQMFx02jrO2G7EX7QMtksDp8yUgILexbWjq/Sc3KDZ1ArIqaWkLF5R+PznP5+4b8+ePT3J6u23394zzQc+8AF84AMf2EjxBrhADMjwFmD+q3kYZtw2yOiGncbD06Mw3raC105StXWdeIkBHP73SR3zf0vz+ws/yEJ9zcT84SKKDQuOrsLdpWFsooMmcbHUVFGv+V4ibBW1tRw6bR1WO+wEWeepG/RE7CU23wLqa7kgwpGuuygUCYolglbTwDfmNOQL9DpummgFwTbYy54F/QCA/RUPUwXgu8dzePqYFpyPkbprZrqomlR1YVG58n643zZRcawBPHE6rEcz50DXXdRrZkB2DL/8fL7T4wpuGDNwcMSC7ar43gINaPFP9yio2Qs4vKri8aUiDq+FhBYATDUMj12zCrh5og1AC9TPF1ZNfHdBweFnxqCedkAMFZ2SgZM7m8A1Dewrh8R8rg08t2DgxNEq1NO0vr5lq7jtChqohA9sYrlAq0kHK+05DRpx4Y7TxUmrK7lgUKLrbnC9QPSlNjufx5/Mh21NHCTdOOngxnEbe8s2WoQOZIr6UDSqGmng4fMF3Hu2hMcfnQCxVcy9fgG3THj4s2+Por4SNyHYeVkD5X0tNG0tJFW+Mly3gIW5ItZeiB/n6Cquer2N5W7UIwGrmzM1FQtzRczPloLnxs7F1UbWjvNFgkq1i0KRYHmxgE5bD9o2EJJgRvRkZG1lKY8/XQqfCdaeWFqWh264uGMHYLtdwUe4GLI7JGBMjWyRcKBqqkBRp4Qrp7kxBZ3/FtGPIlzSPYyY9LlkaryhUnMqprgH/Q23+CpJDRZ/19dyKFcsVAsu2LS7oVISznyX1/0lBt+ZN4LzA5RcsjQGt91QPSx2FDy8qOD8HB3M8jNbh/fXccOYjqtGbCy2dbxQUwKSOpG3E+2Cn1818PBZA62mHlzH6HgHl424aBEPhqrF7gFAo8CxuivpHspGGPZ+uROKBwANejFVdGCqyTMfPEwVKBv8gNAL0tJjaXl0nSq8sokr1v4JUVE7aQJdoAMdxZIdG0gG9eHf43Zbp3lPdDBWJsG9KwmDbyay/J/TOm6d8LBrqBkbdFTMNvJaG6ZW6DnzNMAALycGZHgLYHQdGBk6gueODuHIKTcgcoQoMfWPn+bViIuVbxh4aXoYY3NNVNABMVRoxIV23MWxuQpmd/pKG7fIgicFDC6hRIKZPwDAwvm8VH0kNlXb+H3zbRqWlaFJ6MuWV4SvHHbQdVSYOQeddpzIHFnUcXzVxfGJIqYK4XHHGsAjxwtB2ZIU0TRYLvDCqomHFsNofH/+ooq1PfH7wqvK7PdyF/jCkWKEdBw9WsH6UR2AB/71QoiKF5c1PLcQKmurKzmsH9Wh2+H55g8X8UTBiS5+81/wS3MF5Js2NGbD11YDIgyEtoJJyma9RlXbYslGwVfyI6YAs8DjO9dxxZgRIQjDphVc41yrhAceG0OnFe0mHl6Mqpz8oG7+cBHzh4t4/tA6Kr5SR4gaDNY0ImdzGnHx4v3DWLm2EykrD5GMyUgxIwadlo5OS8dQJVzYyQibbrhBXjLfq8n+WOnzyLsRY7j3LJ0hCcqmRr950mOoQIsgUBcBSgLDdAoASoTn23HCxJvh5LXwWEbQRDACJrpJlJnz5HUAxN/H9ROsDfEqcaTtcZkVSzYmt3Uwlg/VTUZ4WVl3lej18ySfZcFIprhdBl0P7+V8W8F824yQtnNNHeeaesR0QRbxEQjbx8JcEQtzwPHpFgo5N0jLp5mphgdaLj03P6CNlNFwUdLpQEdGfsVtZQMYNuMmRCFCr0SBeCGYQRRLNgpFAl330GoaaNX1oI/iZ1HSPIOUKzaMKkHFDAk/wNWfmb4GouuqONfSADgYNtfQabeSE2cAsT0Qd/NMBYgzMDsYIMSADF8iGJtrAnNUR7H8D+CB99HAv/QZSdKIS4/1odtu8GLKtQlwhKpuJuiblxgqXACe7sFAssJWX8uhvpbzySc9F11ZHiqMRqAiK/je0UJEOeNVM/Yy+4czOpoEgQqThMNrCg6v0d8rS3m0W3pEAe0Xyw0d/9gOFW/+/P/rOS+i9MkGCktNFY88VcV63QzIFiNiGuLpVxYLWJorRNMlkMBTxyvBi4zP25DY2Il23cRWgw9/PMvDKWkoluh9l738Thyt4sTR5GnviKsxP+//e/9kahnZdc49XsQcitF9fl3pKW/Q1cfNCLESkUfIIB1dDcrCwNoyK+86F7KWJw78DIiuuxGCy7axNs6n58HSsf3fXVC4WQVO7dTDbQAliLz6KYIRYkaGVi0lcqzsOEYyeTLGlFhD9WBwquRYjqqYDKJqW8p7GANTUV1YrovlEkGDe27YsyIr/1ieJ7NKUGaAEilW1ooRJcTi/iTIbF6ff24Ez4Pek2LJxu7L6tg1BJzvJNvgM/vmpOAVZ2eHIs8cf86F8Tb27Fn3r1MJ8t1q3+t799cARH0J67qHynDXFy0MVKrdoB9g/TJPiNnxQHiduuGiMtzFriEvlfCyxdlpHpCIq2CuZWKtMVCGB7h0MSDDLyN0Eu0ciJ7+FpC99AFKQBgxAKKEWNzP9vHbjK4DO6dJ1WEgThh4N0oiZNPNG8VGXiwiSWcEPa3MESLEXTuvUF0sMFMVNeVJZOQx7Rp48O0EkBNh2YLJXkRYljeQTPTTSG8ako4TSTI7L9/2RbWYtWlAIMEbJMSiOiwSYh5ZFlMCcvK35o+CV63eHhcY8S7pHup+elEFZmmylIelL+lesOjLVBWUdBLkzUg2nzczcVjuRgm8DHW7N+mNztD073mibsXr4eWAoVLiz/9PezSy9DmG6uGyETpQAYAOIRGlm+VfLNkwc0408IbE5h4I27yuU2V5n2/WxvIT8y/pXjB5EA7SttaX/gADbBYuga7i+x86caCrvUmiSI6BZILMCCyDSAxEQiyDSKIj52Uv/wRVDEBP5YzfJuvgI/sFEk3s0M45CwpFEtgN9wIzQdlM9KrrJOSbNhxdhePf515KMq8K89+iYs22ycKwphHhJBIs5p1Uxo0QYBmplYHPWxzsicfzzwe7DjbQAxBr2xdCiHkwAscPpNiiNQARlZRvMuLz0bDji6r4Y4HeZPJiD+RE1VeEOJgUBwf8NZpqb1OJtCBCjPCxtl5fy4GU7MCcIY2A0nuoRdzH8eYXFwIz52DXkIeqmU4SRVvizUKWaxCV8b37ayjkXOwr0/8bHNNuOpxNNpNwBmYSA3DY2jmdAfqGTpzgI8LoOqkEhScPvbazfJK8iPXya8vb8fLki3/59cMX2aK4LOqwrnsolrKHyaNmHEwx5hbUcC+OpBcAUxkZ0epF4NKQaxPotksXyCUUn90rmSKbBpGoprnQ60WExXamETeWv267UiLM0qZ9sqQVwc4ntmU+rVjuiLspyTVv1HezOEDhkbRAioEntPzzYblAc5MHbOL5LgaSCJ1sOx/cIc0PbxLSTKdWV3JYWcqj0UcsoKRB/0Zh5hxMVQl2cc4UNjhmToVop3yh5HWm6mJ/xUsd6GwEF+PaBxhgszBonq8gpJFiHv0SYhGMNKQRUd52mCGLiQRv4yqCkejAFtZf2dwLxZIdeLkwuGnwpHPkCyRW1ogPVeZ5wYVv42z0pRJlcEucSvR6oZcqvNlEWCwzg4yQXui1JSELMU4q54UQYrGdh6GdFWk6QL7oSSQsvYgBT5iTfsv+i7gQQmO7VL1l0+ObrRDKgmGI52DT8y3f7lcWbU1Eq2mg1TRQW8uh1lYzLRy8GNB1F9NFz18wmTyw2UqS2EtcIETFcgeYKgC1HiY6F0PJHmCAlwsDM4kthNbn28RJ6CV14sTMJ2RmEzKTCZlpBNsm5sEQTg/LbVazmkgwYhlJtwHPELJzddp6LFIWAz+dHbrJ6n0vOm3qHqlRz+Z9SR2UAABRPUlEQVSPGZB7OJCBvwdZ1eU0k5XEY4gaTCGz/3x+/DeQToR5yAhwGjZqPywzP+HPldVWXjSbEO2I00wmeplLRMqbYjvMAiaI4AltFmIkpumXTGVVXoFQne5HYZUFjxAX0WVpDsxUom77/ns7StCO+UV0SSYNZs7p+bxsljlEkB9XLkJUnF53AVBCPBV34R2A9z6y2eQ4aaYj6bpPnhzCWJ66Wzw0Erp1SwIdzKT345utMg8wwGZjoAxvATTi9k2EAUqek46TqcRpU+kyMrJRgiIjVqLvVSBuItHuqlKXajLohotCgWRaqMdcvRGiJPrQTEOSqQQAdNpa4KaMvVjTTCX6UUOJoYIYKpxS9rnrrKqwo6upi/I2SoR7qbBiuiTziazolU+SWi0rez8KcT9IU4fTkGQiwf6PmF7Mi4Ts2KQ8GET1eM1SMi3MA+gitOVOfLtMFeyHZMvySTOVWO4oWGqm358sM1MyJT2rWYyMWKcRV6urYW4pF/hZlxFC/j6O5ehCu+ImCAQbBbFVrCwVcORcrmf0ua0Gsb1N/wwwAMOADL8C0IsU80hT89K2J9kO9yIKhsTvb5IqzC+IS1o8x7YXSwSV4WxyFLMvzrKArl/Ck8VMQ0RWQuzoNEjHRo9PzbukIV+M+oZNWnwHyImwjGj2Kmcv8pvFhjjt+tNMM8R04jn5awPSCXG/5hI8+HoVSSPvco39Z+C3j+XoRzw2CbwbtzQPCg2bEtyGld3bheX2PyXOB5DhkRw0JJ2cN4lcyZTZDWeZ9QGifdBGFtRmXaDYzEgqDTXuoiyrSizWa7/9nFi3Z2eH+jo+DfpAFR7gFYCBmcQrCJrtSk0nRLMJfko4zWMEIPc6YXQd6VS0DQW2H362DQ12ToNZ4MiS75PYzDmYnG7h1FwxmGpuNQ10Wjq2TTdTF76sLOWxvFgICDI7jr248gWCsYk2TI4oLC8WsF436fkNF2Pj7cT8gdD8IfrCcEGIDt4VWxbYOY369NXVDZFYXr3td5Fckm2yo6tB6FWgt/KVRIR5JKmtsv0iNlIv+WbU3sXOabF2zBYfylwOtspm6JJOMBHinw+zZiPXJpG8WXoLCjolA5VRS2ouAYRtD6Dtf8euRhBshJHNE7NF1NZyuOrqVZiqgrkWDWgTXIdOfV3fssPGVCH0C1zzg2g8fayI0fEOrp2g13l6XcHp8/QBYD69dcPFodEo6ZhrAcsr+Zgf7ZJOSWqjSUN+G/5zMzpOJeD6WnhMfc1EbS0HM+dgZLSL1ZXwwWMREKOR/TzcsIvmw7xoHF9VsbKUD9KNjndw5bCHZ8/ksLqSC8jrgcvWA7+2aSSw3dKxslSIRF9j90iGI+dy6LS1IKANbxpBXY7JB4l8n8OD2CrOz5VgGC62Tbci4ZgBBL7MWdh7M+cgr8Xtt3gPEsfqCk6rQMUEAAUHq+G9rNvA+Y6ChhV1bTZVjGUJADg/R9sbf12hyBAG4ekHp5sKTq+HvpnzBYJ9Feoh49kzOTx7BnhhVxhx8WDVw75qt+/zDDDAy4UBGd4CeO804RXpC/Ps6TJmHl6GnkIQlqeGoNwoIb2c4rGyVMD0E6vhPokdMY/2FTnYiwqKvvFfGklWhhXkZgkN2iEBbxcrEpHVbUVgmjvvnIb8+S5Gul0sT5dQ2Ec4Wz+uw18zsTBXgjlno9gIO9GC7qKALoihojZeQF5id0eIiuISPcaaNiJkRUSraQShpRmi9qB0G3uxshdHfS1qKgEDkZcxg1indk5DsUKwd38dRx4Ypnn4JO2mNy3BVIHvfm8ySAsAe25sYGy0i0ZTx3OPj2ForYux/R3s2EXt+FaW8jh1rBo5z8yhdYyOd0BsFYWcGwkAwPvWrddMnD1dTgzUAcjJ6/pwDkbXCdpPUHcSEkwMFY2pAoYqFuorJrbNNmJpskAnTjAjwto3T4rzTRu5th19lhoA8Qlvp2SgW9ClNvM8IdZtF0NrXeTa9ObzA852yURrzcTKeAGjE9FB1sJcCcZxG9Nra8Gx5+cqWL6sgJ17GlhezGN+toRtsw2Mr9Xw4Mokrr5xGafuG8K22XqQj2WoaOka/vLGKg5dt4zXTVI18UhNwXcenMDEM3UcG6/g7JUu9u+vo6RTJfPEi9Ug4M7om2xglJLQ+RYlRAtzJahL9J4GA9qchqtvXMZUleDBx8dQXWpjuZzH2P7QFqJRN3B+bhhmzUapbqHcbKE2XgBeS/evH9UxyZWf1T7RNeCtocI6X9Mxe7IMa1ZBZaWDesGEd0BDpWrh8JqL89/KYXipFRz77dlJ7L2ihqt2dbAtT/sGtnBvLA8ABMtMqbdVlOfbwfFr40XUyiaMCQ+VahdjEx3kCwTDJlD371Vhtgvddv2wLf5MAVwo/v1mczTiwKheMoNBP//Mzx4vo7aWQ3W4GwwkWk0DnbYWC3nfmK5hIhz/xGC5wJHjQzAMF4f2ySO11dp0UGHbKsoVG1PFZLK5XjdRnm8HfXirbKJb0IFS4iFSzDZpEKSXDo+gPafBKWnYNt0M+iKAtsW5x4uYfbgEc6eH669dBfzuaeB3eIBXCgZkeAvwE69aR0tXcP+cgrOny6lpl6eGsOfd67hlInRoz8NQaejj0+vreNQYw8TDtZ7nb1xWwJUHl/H84mhqOo24sKoGdLgRIixTLGU2yzpxUDhhYa1RxOH6GMrzbWxfWgv2W1UDC3OlSHjfwA53ycHEXB0ieOK9bbaBejOPBVKKRMVjZWcvscDGV0ij627gGYIp2DLQKVMavW3bdCtQktlK9mARnuGi09JhI1SHmf2vCiBfJLj5hmW8dtLDVSNt3LfDxjePFLD4EH0rmip7yVNcfvUabtjVwU3jBCcbOv6x60aU41smPAybwPxoG4e3dXDy5BDmZ8O321QRODTioEVo4AP4EeKCKXTNwfxIB5WqhYW5Is7P9X4zdkoGxqfbuGLnGghRcew7lcRBEgAsT5cwtbOJ/bsWMGzS6H3Pd0cxcj45FGsWRZw3E+LT80SYT+MQBxrRYuRdtnh0aK2TODgtNC10Czq0poMlEo7E2H0ZarehEyeok1yboNEu4KXDIwAoYR9a6yDXJhha62L2ZBnVpVa0Dn2OfX6xjOWVHP6+6QQhvL01D7m2jWJDw9paCQvn8wEJ3720HAyA575XwOMlGytLeZw9XUZ5vo0CQrLErlsjLuprdGBOBwDUvd/6MzoO18botZ12UEQXGnGRb9rQiYOx+XWcfHwYlZUOti+tSetL0114MPHI8QKWFwuwZpUIae4WdBqau2Zi8aE8tvnPu05c5EDrp1E38dgLYaPnlWdd94Kw5tNz4QCE1Xu3oMNeVHG+VQqOPSuYC/AzDr1mzxxdhW7TmQcLGlSdDh75gVSnraNYsiMmYEyBJjYddNVOmvhWoYSjO6LPAOvbLZcuWmP91kNtHcv7w3qz3XDGDKD92epKDmf88zLzMBZNrz2nYXp2za9bvw/oOlgfzmFprgCz4MYGw+Ez5QV9WJMAR+sK6j6xz7VtoE2wvqTjmaUJrOyig1xi03rKtQnwHPDw7Chmb2zhsu1KxLOKldVeJAE28WBvop/hzcxrgFc+FM/zBi3iIqFer6NareI7J34fQ2XakT2znMM3z2gRrwqMlDHPBXv2rON1k56wAC28TYsdBaebCr7z2EigcPKqccQG199+08F1PPZC2OHy+3iyuLJUQPl4O6YOJhEWmau3JPSKsJcE3jMDe2kxpY9/yTu6GjH54NUwBlWnJJa5V4ss+ONILh9a2upqWJgrxsgwELXNm5xu4g1XhqGxGa4cdnDjhIO8NoRj9Qa+N59DkwD/6vIWGjbwV8dLwfTniOnhxnGCl2o6nlsNFZXbp10M5xy0iYLzbQ3PripBlLKSDtww5mF/1YbtKjjX1H0yTMEW6ZgqMNem0+ztLi33yhJl48wWVmqD6U+h08U1ND2bhhXb3eR0C1NVEtitzreAx743ibG5plRxFtuV2J6SbeUv3K5aBiKQIqYS821XbI9DtQ6KdSuSXoRo4iS7rm4hJIFiWr4cfB3x5eqUDBBDjZmHiEonI8BAnAjyx9CBQjei0DPI6p/oKroFI5gx4sspu34xD7Huk5B0biBab2J/I5vJYpDVAdsuq0d2POtPgLinGmY+ozV9db6kRdNxoe55FRkI+ylx0R7fZ7eaBtw5L3Y/o4PFaFthbQRA5BgerbKJ9WH6nuDzYgM40YSO/RfzY7Mywfm7Ldz3uX+BWq2GSqWCrGDv0b/Z8yaU1Pgai42i6dp458lv9F2eAb4/MVCGtwA5xUVOpZ3CzRNt3DwBdN14x2+7ClY6Gla7GudqJzpWyWku4Nvtvuq61YB0RBfihMeEC9gU7Ni1jrF2J+hQ+Y6WeXtgaqFoA8teHCJ54V84vYhxv+Gn09yT8WGlZdsB+ZS4SxDOh3IwjHidBOXkFteILzxml6vrlDDeOE5wnbjyyb9fmmLgQHUUB6qA49nQlBIMtY5/uX89NpW4a6iLH9nBlU/10CIqljq08HeUwnssrj4PleBwG2sH0wVguuDB8CMizk80MdcKzy22Jz7kLuDAmGxizVIw12qh3Q1tEQ01eXEYU1H5gYsMWYjwxSLBQDoZY2UjuhaZrcg37Ug507zG9PIow18b/5voanBs0roBIFwomBhV0uAUvIsAnbhA2068j/z1y+7jhdxbnbiRemLn4+uKv4dA9rUVshD2PET3fGyQOFShdswrKNB+hy1KTli3zrcrl9B0LE9pv2SrKLS7ge18vE4SBIyUoEsAgHJ83UjSmgCxLfHHsH3BdVkSv5cDDHCJYECGtxD8qloWnpnZVK1ZOtpERddRY+SGEuAQpk88TH9mTkZ+6Xb+twdDVUB0N0Jg+OPEZWeyRWFJpBjYuPIrQkaCxZeQuOgvaZpTRBCStxASWpEI86ow/z/JZ2nUnZwHQ00xDvShKQZURYOqaP4x8QkaTeHLH/pqLXDtw4i0qfB3xYiHw+V9mbJjpwoKLNcL/MnKSXCUYNN9CnTDDbZHoqrxiwL97bximbTYUFQ9HUONEUiiqxeFEMuIsEg6Ze2bN5G4lLDR8OCbja0c0DBCLJ4/afCQmI9kUXGQn0+IUwfq4oyb4cLKsCA3cLEoaU6i/+r6Wg5WW0WK6+LY82TntMhzmOZtaKORTHn0uyC4FwgByCZ6priI4+oBXoG4NHrM73PoqhchKoz88ESGuAragnufnOZGiDDLhzpmj+bBCDLNP0peeIUwiQizfbrhxqYJZaTSzmk9A0v0i6Q8+yHCspcYy5O3vyWE2vX1JsLRF1vStmCfpLNmpFf8yKApavAJtqk6NL/wLH/+3ovta8hwUOV81NL04jdNX9S9mAsvETKlmYdImEWkBT7oGZxEkinR1cxT6lmwkbzYlPtG/IdvJS4kXPjFQL9EOM2tZNb8047P4ooSSPeWsllIUoB5MLM4b82LeVxJPU7XAhvovsp0iRDhAQa42Bgow1sAXaL8JUXkEVVgkVz1E8FKnCY31bhv0SQiwysIQPIUN09m+u0A+4nSxpcrKU0ve2EGPkoU+98vRLLML/RJIro8VN90QlU0QQGm0CQRMwyOCAOytkH/V0wXtuvBdvWI/1GZ6U1OczGRV9FxaDAGfn+SH1V+4CVCZrbDILYpBt6WU1SzALlCTNNemEqcRoKzqsIX02xjIxDt5hleDqV4o4GGsmxPU3tlCnF0f7rnnch5E0wjIt5IUkyssoL3+NILbDGbRrIHtElThRPXg2yACKetLfH6WF8ywABbjQEZ3iIkkV9NUQHVFUwo4mnFaG4yLxMMPAlu+OLBqu+zVDatLaqGDDLykmb3uVlKcb8kWNyfZB4BpL+4+lGF08CIbhqIRxdcETf0diAjwCo02C5dDddiiyVTBlZDOi1r11XRJgpWfVdUSUQYAEqGg4qho0ni5jaiKiy2O9lgKmpqIXerlOaXuV9CzJCVmPZSgnsRYdbOia4hB5JYtpcbSc9RopmK5Bmzc/ReZL3GtHuQtq/f+uvX/KHf9GmmElmQJRpe5Hx6nAzzYcNFMBvmpAFmJK0e99HdszybRIT7WWA9wAAvJwZkeAvACIhMAeRRMV20OFOJeIjWdJIsWzAF0MVzvIcpGRHO69SVjm64kZeluPKYoddiqH6R1llvlAjLzCMYxEWESUSYLYjht8lUYYakQQ8QVYwdl3k7dWIkWEamO46HJommixBbVULuVblHEtH0hu4L022UCMsin4nHJNkOiyv9+yHE4TEXpn7KTTLkRJj97hK976n8rOem579wRVd8ProFPVAVez2/zMNFPyYhvZRZERutuzSC2486zKu8/SCtX+kF2WDczDmBxxoeor1wvkBQL5lwdDXmOjD1nBnrmQWh4b2b9Dp+K4iw1fU2NZqdNXCtNgCHARneAshsQCNwCYZNAuIqsN2oqwORXDGTC0PlPAAkkGBmO+x7fUo2p5C0AlE96kWKeWQhyFmUCpkyk2Yf3IsI86ow8wIBpBPhMI2bGsmNT5vFTEJTDHSdZqqKzOfT5hbgxDyMqHFyS4MKaLH0aURYOkgSiDBrU4YqD60rLsBjyBKhbzMI8UaRhQjHjtFVEF2jCvEWLaLLqm6mLSgNybCcSPHH8mSYR78mKklpL/RebmSBXGp+PSJ2imk2w0RiIyhWCPXXvrF4NgFEN2zMW4rRdVKV8TQziyQSvFnCyQADXAwMyPAWgF8ABQAnG3TBHMOwSb1JMB+xtgvsr4ZkbbGto2aF6Vl4TlMFpgrJwTmSIFPymB2orrtBRCmZ+st3kElKwYUs2knqgPtZRJeFCDMb315E2FABIvHhLFeFQ2KahRADwEo3GkXKUD3kNQU5LYy1StuOg7qloWLS84tKsKiYrBPNH1whcNtGCWxIkLsOJcdxe3b6LSPCImRtSbQ5FolCmmeJrIQYuHAixeclQkaEZX5pOyWjr4VM/ZRhM5C0oJTVeZZn9VJbhCciKyG+UOKcZjoRRtWk9cqHebbaatS/MbTAuwQfJZKlj5DLrm/vy7lZY+fhn6s0Dy19XSP3rPHX22vBXBrYczqgwgNcyhiQ4S3AwwsG3lzRcL5t4anlAh5eVAK3V7dMeBgeI/jrkyZOn6fL+l93WSdGbo42FDx/Oh9EG2o1DZg5Bx+7YzlIQ33RKlj0p9oMlRKaigmUdC9GcgCgw/W7UwXAunoVJ0tDIERF5zA9gL0M3V3hgbxtGwtzyqNZMdEpUZWbRbqqj0ZdjiW9kHkn7uIUr9gRy47ViBucG5CrNvlCeOEHtnd9H7khiVu1FCz7EWpnqi6AFs7ODtH8ElyyAaAu8pw6SvpI7Jw8VEWDrppY6tg41aBlNVRgV9nCzhKJkmkPeKmWx2JHwUxJwa6hUNGT2Q8fq+dwskHbQEPC02iVssGVhoPDBIYKjOWAoh7mA4RK8rqtwXaBiQKBoeqwXS8IFGKqCFyzyc9FIZrf9HK1xsCCBTCVkk/LwvH2Isa8opxGiJanhtAaz2H6hTUAoCHAr6THLc0VsG22IVddeyjWswdG0S3o2P/U+dhxSSC6itkDo9h5ZAWOoaLtT40H+yXHilPbaQtJe4Hln0gAdRW18aJ0/9jcelDmJKxfXcDubywG/198zXTsWS3MdrH9+BoAoD5awNn9wxiba0bCWYtYGy+iPpoPjhOxPDWE9eFcMFgemQ0DwqxuKwYDsqTQ9axvURGGZ2YEdt02kS8SGu2yrtMIhHY3Ypoim0UghopO1YBuxPfn2iSw9SYlLUaCxb6X7/tY2fNNOxLKnE/LD+aIrqE2XkCxYQXnZJCJH62yCa1Ay2x0HTRuKQaBikb+8QJl6wEG2EIMyPAW4Lk1BbtrLs41C3hiWcGR40OBCgDUYagFHDlVxIIf8GJ6vIuKQV8ihgqcbgJHzuVw4sVq0OlqxEW9VMBiW8ebZvyAEp4D4llYardxrmVgraujpAPXjrjYVY5Oidqu4iuHSmS6e6ak4MxYA195rAxi0OahTivYu7+GPWMEpkr913ZIOE3+ICZQmKUKZ7egQ51WMD3dBLFVek1r/sKdkoYduxpBtLNAOelqQQdKtymwF5Wg87WqtHN3STz6EQ9x6s72zQR4J/fEVjE53cT0eBdHjg9hbKIDUwUOVj3sq3bRJipONQys+tU1lgdes43gz5d7+w4GgBZRQFwLxLVS1WFdMaFrJgp6A/Pt0CewoRowVA/DZviyP72ewws1SjZLuobJohoow/wMg656aBMVi20agU4M5CGDoXpY6+qYKBAUdBfDZvRFTFwFix3j/9/euQfJUd33/tuvee5bu9Jq0eqBkYVAiIdkQGAMGCIggJ1rOxc7lIJvHBxSQUCRmwqQXCBUpUSqEid2ysjEdmzKpqKUC4hJQiiEgwW5CPDVwwjLlh2DkECvlbTP2Xn049w/ek7P6Z7u2Vk9VoL5fqq2NOo+033O6Z7u7/md3/n9UHb9xXA5U2BWpgxLT8H2NCX1c+14QHK0iSThG/UfBuqnX8tZE9m5LqxqKLijQ9kgQ1pjUWlg/9ldGHzrSGIZWc6xdNx2wwE8ac1G3w7/GnT3lHHt4hJS+ih+/J6Bn77Rh1n7/UyD2kU6xss55H9UjhXE+87sQvZCD79xzgiOlIDtc2fhjOf9ekxlpRxb3QZ7f+0eKmdNTLangsxnXoxnhjoboi7Aip5pOtbeUt4KFtLFCf7x/ixmzy0Eg8O9b7dj1v6J4DxjPZlaDN0qpuVh8VnDqAxmYX6nFuH80ouHcON8G/sKJp7blcGhvf7FHuvJ4uq7S2i3DuCXoxp+8tNZyPy0HJwnygXXH8WWF3sx+Mujsft75xZx1lljOHI0jaN7/efL8Owc5i2fwJGhLIr743+7rqlj8MxxvL+nHYDfx5mCHTyryvCfdY7tC9C4rG1x938z+11Tx0TaCAwRlaKOrFK2nDXrMnQCQH6sEo7fbepBlrlU1kPhcAodR0tBmYmuNCZ700HmPFWcR+vmWDomutKYvbeamtnRccWKYVwzYONHKyy89Pos9P/f4di+nC6OI+BoJzDOMJPvEgWK4RngaBl48r/jLSQ7f9mBX77thdIkv/ZGH/bOHw8eegf35+um2i64/ihmZYBr5xnIm93whAsPLmyvhO70CMqei46UB8fTMDdXQd6y4HoOXOFVBbAWCKmypyviGFjY7vjpm+FbQrM5B/2dDs5q9x8eFa9mUS44QE9vEWNWOqhvX28BPb0lHNrvT/VP9qbhOUDK8pDJuujoqlSFr39+dYpRCuQxO40yaumPZZlmX+LRwPFAzbIxdDiD97Jt0Lo0XLt8HEu7XJzZUUZPOg0PLrJmGZaext6C39bhsoFM1sGCM8caLjTrUC5x0U22XKlIX2B5rLfHNewtpNGfTQeDjQNVrZA3fcts0dFRVOSNah0uOnps5IhGdKUdzM1V0JU2oT4SXM/BcNk/TpeyOr4r5WAsbWCkbMDSNbRbQLsVPpdsT8UTmNVbxEE7Xxc2ShVzSSGZ5DWsdFro6Suiu8dX3h1d/r/vO10N2yatXj19RRzpbwvti7Noer0GMgaweOkwxuamsGTuCFafIXB5/yQOFA2M2WlMnjsCZ4mG4qSJOXMncNU8F990en0fzghtHRV89MwxnNft/+4q3jDeGJsbCI0k7LSB8weHcHQoi9HeXGhfKhueIk8Mx9Ugc61A2IqcFJZQN4Fczp/VmWxP1UUvqMy1sGD+KHp6SygVTRwZyqCjpxJYjCfbU7D6BLKmP7pUoywc3J/DGYMTcO5I4eD+HD69/CBunF/CYN7EBbNczM4W8K89Zfz3f3fh+otGcd28IsqejryZRuHcYWwt9uHwovY6a3KlqKOvUIHVJ/B2ui+0TzeB2XML+OiZE7hwlsB/Z8r4j8EuGAUXVp/AnNkl5PIODqZzGBtRUtdbHuwhDYbjYe/b7TWjBOqts2JEBFZgOciLhqmME7yN/M7lNWkbKcMp6LBNHW3FcnDtVBEcfUb61zkDx9IDwWynDeQ6HMzqLcLu1XH0cB5jhzPIj1XQNlLGZG86GMBMVDMtujGLAyudFi5ddRAHD2Xg2AY+s/QwrhooYzBvYqTs4cB5R/B+p/+7sycB/CCxiYScUjQhODw6Wcic6p/+/vegWbUXsa28vFTraHQlsXzJxVmA/vfnDuCG+UYwHa+KYcerBP93PQeWng4+q2IY8C1/YTHsb7c9YPe4iZJbswDL5AxRMXygms634vll1fSkavscR0Mu7wT/99uvBe1ULcbSSqy+6OP6IylofjOhgeZ9ehL/52NjaLfqrb4eXBwuutg3aaFgNzfFnLdcDORs9Oca5YUK84sRG1sP+6ql0Ux/uwX0ZcKiNA7bA/YVzJC1dioumW3jrE5Rt5hP3jNRSq7A/skUxirJAxMp0IeKJt4Y0rD/cE1YOAkuFY1irHZ0hWc2ZrU3t2Ct4ABHD2eait8KAD29JfzPxRX0ZPx+HshVkDP93+6ByWIojfqRkoGhoomBvIN9BROFapXirOKzs/7gdOewhT2FcHQXSZyh+O19mcAKCfh9lMkd22I91T81TrjHuxM5mNVXrItoIOnpLQWfjx7O4MiQf++XimbVJ9//TjTUmBp14X+sGMeKvjIWtNVnf/GEi70FB3nTxUjFr/Oe8RQmq10Q12d7Cr7bTqlaJrpAWA7q5azbriNG4HbWnneC6zdarPWXbJ86Owc0SC1+EkPtqX68jRYZR2PAu3kjSBEtyWadoH3FSRNHD2chRkTIkh+NgazeBxetHMLvn11C3nTheBoG8v5vxfEq2FsI36cT40VcsehOjI6OoqOjo+n2yvfo97o/iZx24ux3k8LBmuH/nHZ9yIcTWoZnCNW6aVleIPxUa2jcQ8ex9WCqMyQCdWDncAkfCxs+YGgWoFfFsXBhGil44thC3MzLuyi7ekggy2d8xvAFcUoH+nOiul+rulBUp7tNDxWv+jnrBO1yIqlJo0kwgPBCtWh56fbgOeEFV81ELJCMn5nFvM4JtFuZWHcGHQZ6sxUANiaiU4MJ7gdZ00N3enpjS1MXQV82mjXPm0BX2p3S2mt7WigD4VTvZEv36zBSdtCbCc9e6DBgGrVtZdf3z5XW7I7UFNEhqv00KwMUusLqvFlx2oj2FNCdUjM71pcpOICll1AsN3e+3ryHrCnQZrrVQU2t/fJFLzkjX8Thoi+Qs02G1FrY7iClmxhTfLmjmf3GbWD/pIaRCjA+lgqs4JWygUb5d6O/kyih8FwJgjoaGiyXt5HLO8hk48tH+1y6O2WyTnyGRuX4Z8yfgKUDizsdLGrP1ZUFfN/6Re0pTNijcDz/eB/pbDzS606bOFSMH8DW1VcHOrMeOrPRhaz+vSDJmIDTWUGuw4E9VPv9TxWz+USJ4kaJVJIyhEpSWQ/IamjLVtBZvZfCkXL831B7hw3H0TGGNFC9P+PuGfUantUhcEZeQ8boCp0/ZWTxkYi+HGsi/johpwqK4RlEFbvSv8629bqwXao4VD+rfoJvDGnIDKdwdtdhtFu9066LpYtYn9K47UllJdKPWJIxEVhl1H1qW+RLM3Se6iAhTgDHIfsjGoEASF6gJV8gV1w6hJSOhqmRdWHA1J1AgMo+aBTr0tDNpiNJADVXhqRUx7Vyftmp4mxaulaXoKURGQMYq+goOin0pF2YevKCJ0M3UbBtTDhmU/E+9xWswMUjKs6bCUXVSDBbevUeS8W3UfZnwfHvwaKyb6pz/2rURNHRMJBvfFEyRhs6UkcBuBgqWUrUjuS+kQOVuOutut2MVICxkXTotxAVl9HfT7Mxbo+HpPvJj0Qj0N1TxvDRsIU3rl6W5eHiPj9l+NJub8rfTMbIwkiXUXIFyhU9Nq52s/WN/j7UMIHR8qpVWd43UZ92VYzG+dQ2QhXL00nyMZUAlkhDSibrIJe3Y0UwEDY+dHSV61xEat/xQt+x9Pi46IZW76MTt206ODZ9hsnJg2J4BjBNAdMUwfRwnCiWDyPVSpwkiAHgldf6kMk6+ET/IVw59wTVUxd1Vs+04aHsRqy2EfHb7L7gPKo1XOmXumNVBbMsL/shzpIsBXEzEQvERw2snmf7D3ItnSyGNSMkbKayyvov6GRxnfSdpMVmaj9GUzEn4TQprlX2FUzkTGC8rYBZmcYuHr7leeqXSNHRcaDoWzhVkt73cQa0RqJVzsAWHC0ILxhHUni3pDrZHvCzYQ3jtoEzO8bRn+tK/B4A5My2ajbB+pTrcYLN0vXYDJJxdSlVrZuqAFEHiY2ynDWKiR2l0XGsqqtDnEU1irRgl4pGyBVMPVaUlX1F5M2pB/NZ04LuFlByCwlxtX0cT6tLNgMkiWI/jGF0f9StQm2rei3iFno2WtQbx/EKYLUeKtGwkrm8jWxg2Y3496tuE7maG5t0dQmOExNiEpAp5RsL3UZGB0JOByiGZwArJUfd/kMoThRLktwmomUdW0cJZkN/Vl0zYl0kprL0NmyLHhYuSckXovviyqnWYSlwm7UOqy4kUbfWRoIYALq7yuhI+fF1Gz3IHVRg6aJpK5Sp+36307GAxL24ZT9FBYfZRF1s3RerKX1611fGI25Ud98C5DTVH+oCP9tLFn8V5f44VpKOLY+ruo00S8XzhdVU19IwLDhOpWGfxKVab1SfjFHbr84gAfFW1rjfyXTTAUdRz2NayQM2tR1d1UmFUlcFR4Z8P/w4ASyfZSm93vVEEuu6VB2c2rGZOMPuMkniN45mMieqiY6iz5yob65KkoBNEsnTifIxlQgGGg8C49LMd3RW08Qr6z3U/er31G0UuuSDDsXwDCEfIL6ls/ZQdhzNX2giw4hVLaH+vngrMeAvXEjpwKr+4wv4L4kTyFFLcVTQSl/XuGM04yoRnOcYrMMqce4SSYIYAIa3pvDSkhTyJvDRTquhZdjQdHSnBVzhYXIK1w0prqf7Yoi6EMS9yNOGh6Kjo810Q+Iqasm3dFFNpNF8HQbyvitIbybXsO5SjEjrWyN6MzYG87XHy56JWj3Ve6iRkG0GawpxOSsN2J7AcDVpTbPZa+dmq4ObJq6lDt+dpvm6isC3O44gAU5knYGKbccLlRONrENF95BPeFtExaRpenX1jRNlsv3N/l7k77HRzETO9NCRcoN7LGosUDMwAkBKN9Cd8u+PuHtRPVdKrz3HoyHsJFGBmhQl5VgSmSTFio5NCx1j0S1OmsjmnFgRXPcdJbmHJO57GaNq9W3CH7iZMo2wbQH7BLpJ2HSTIAoUwzNA3AMlsIhWhaD68qjtS15cd/Vcga60g+7UwLTqYmg6XDH1y7ORxTeOZtwj1GPGWX6TrMPNuEtMVxC//FY7PrFsvOGDXNeMIBNc2Z2c0j0gEMPTeOhb1fTajcQR4Asz2/Mzy6mxgOtFqRdrbY6iCu/5bWVkDA15c3bD7zSyzMm2qPixrVPYW9BCg6NmrLTN3nupJiy/fhQUEUoM0qj8/DaBs7v9WYGmXvIRd5pGyMGKzAQot4XLKLGjo9n7EsSxSpyLwpT1Sjie/3zSYVf3x1lRJfIZYFpeokUyOkU/nd+LoVkwdBOWaDyi6cv4BgI1fGRdPZRB1Ky0HwIwyee7boYm8ixOEsbAsSU7aYY4AQzU3y9BXaPPWjN5sCJ/G1MJYXnPTDWArn0+zpEvIScRiuEZImrtDU9jGjBNF6blBRnmgGQrMeA/sC/qNRNdIZK2x5HWvVDIqDiiluNm/YbjRHXcQjo5KIiz/MZxrIIY8BetjPwihdRy31qR9DC39AwsPRMkM2n0EpZ9E3741z7LUHf152jOF1hauHJmvW9q/TGndoVRYxFbukBHanZdPziR9sr9zQg/SxeBKBkq+YtxGgmpUkRETMetIbwgqr5unSkA0KqRJeq/H63XRb02zupIAUjVXcM4ksRwnLhK63KwUl9eWi1tz4Cl17tVAfEW1ujvpZFQbpaaiNLgONUOUgZhSRb9uO1RAQz4v3vbqyUKqj9Ove+6DqPqhjT1zdGVcjBU8l1ckmYxLB3oDp7DBvYXw1bgaFn/mtRbT9X+j4rUuLCYx0KS+FXr0WibTGzkr1+Jtwarv41omnp/m1JWcXUxNGvKa1jxiqh4pboyhJwuUAzPANJS4lStnYAfticQidWYqfsPp4OHTHtHvftD4GtsCizuLKEztbCp8+ua4UfZ11EXNzZu0ZyMWmBX48hGF9E18huWIiylA/lMOApDxQMOTNb6JOiDdicQz7YHHNqfC1mHAT8LmGy/zNQXtKHBgjrAz6Cn7q/AT2nqL6CrF8PyBe0JP24zgLqXcNS67qfC1mF7w8hbE8gYbaGUzI6ooGAPo+TW4hr4/aLVTd1GiS5glOdLQlof44xS0WP5VkoNY5UhzM4uAuC/uMbtwxgpO6F7o+zpKDppTDp+Suic6SUKE1eEhYUaAq3ihe8JoLFQlseIo+IBkyGRW1vgN1rRguPnzeqCKbOxL3VKB145YKE3M4mPdPj94XgVlL1CKH53lGg/uMJ3a5GxcVUsvSZ8y66Oyep9PekYQTsyZk2IpGR8b2VR3FQCWUX6gfrfa26UYZoexkZT1c81AaVeh6QBgCrkVaJ+zD9+z4Clu7D0gvJ9/9/u9BjOn1UO7kkAgKi6SjRShlUycILnWK2+9eWy1cHlhG0gb/rnT3S5yYgg/BigXI8sghjxcS5cU12f6YQZVI0AEhkpwrI8HDkcHkSYpodZff4zJ5d30F6N8x4n9lWKeTsIw6aeO4qlA5sPjsauXclbo1g+y8Os9CCKzhg27p1G8PPTkPXr12P9+vXYvXs3AODcc8/Fgw8+iBtuuAEA8PTTT+Pxxx/Hli1bcOTIEWzbtg0XXHBB6BhXXXUVNm3aFNp2yy23YMOGDcH/h4eHcdddd+HZZ58FAHzqU5/C3//936Orq+uktY1QDM8IwbST5aE/B6yY5WFpd00UScExVLLxt690AvBfHBefYePi2ZU6sWrqAos7B0Pb5HSjfFG7wq5tV8Seo1VQdidhI15MSXHcZroYzDs4UDRwMCZAv0T1G5YW4Y+0i8APVSLFz9bDJn4+4n+e3yZwXo+DvowdWKZtT8Ov5wr889Z8IIj/x4pxLKwOGBxPw89Hinh9dwbv721rGJNZTlF25v3Uq0u7/Pp0WMBZnfG+1lII217J/+xVgj41dDMYTCSJQD8Gr42MEbYkShE1VjECi5Xa55KOlIeBXAVDJQtHSgYcLyyWzeoKeEO3YhNiQPdTKpsRn+Gio1eFhhc6p6X76Z4BIG0chK4ZGC6PYc9EGkNF30VEHfio7hUf7az4oeTiQitVE3akdQ8L2h0MhMcvGCmbOFAERirNLfSzdIG8GY6SIRPCqLMQcjAm00RXvGqM5pR/f0rdkTcFlna5yJoCvxo1caCo+jRr2DKUQ096H/JWN8puAUVnPDFhDQB0pWqRCaIMVYWSailOGx4mbAOTDoKYwxnDr6dsq0wsEgwUq7F+5eImVRzP7S2j4gFHjqYDoXzmQAkXzhLoU2IEF2wDo1P0uTzfkVlFbNtTS0iTMWsCWLqnqPeGOlOUtIAvOj2/cY9MvhMWmLm8jfcKBi6bsxsL2nuRMzuhw0DW7IAnXLjCrrPUy9jqAAAdSOtune980iDS0gX6s7V46hL1/soYwIXzSzhQ7Wu5/9D+XJAgKCoYO7rKaO+oLUoLjlv9PFmwMGH7gw6ZEKOWkKj+GRMnhP/XVUdR8fxwm1IMq/3c0VnBp8/07wF57Ru5we0vArMyLo7kJ+vKqGH/HEfDfx3UMCtj4Uip1h81dOw4KnDJ7PewqN3GL8eObdG2xD3BodXcafoMz5s3D48++ijOOussAMATTzyBT3/609i2bRvOPfdcFAoFXH755fjt3/5t3H777YnHuf322/HII48E/89mwwOY3/md38F7772H559/HgDw5S9/GWvWrMG//uu/Tqu+ZHpQDM8An5wrsMcTOLtTYPmsSfTn5iKl94fKeMJFf+4wrlxawM9HNMxvA87ucrCwHei04n055YM/atk0lUQBnnBhaLVFYvKzoRdRcSvKVLqHtO5b//xpcxd5qwf9GAEAjFWM4EHneFpsMo6cCQzkbczNVapZ3bTqkV0A0krsYLhiIaUDg3mB+W1l9OfmBoLKg4uB3D78erGGPRNAfw74xNxJzM62B+2Zkyuj3QJezdsYG03FvmSiL5JU1Tfw7O5ydWGXHriSxE1/G5pV61+lbqogjmIpVvaSO4GSOxHsK9g2hkoWHC/eUpg1PbSZLrrTAnmrBxmjiLxZxuGIcO7L2EgbeXjCha4rgx9FpHekXGRNL/CZnHDkNL4GPwRYrb6qQButFKrXSAvtb/TilG4mUXcCHQZ03UB3uoysWa5z2fDdPcxgMDUdH+GcCbRZLobLRhBireKFLc4qBQdBam1LF5ib9QdDi9ptGLqJrFlBfjQFNWFWd9pFysii7BbqjheH7WkoOpribmQEg5k4JhRLmuyDkuun3s4YWnXhX61tQM2VpKB7sKshz+R9ftVcD31ZBz9427+fLpwlcHa3zOrm33P+TEcRw2Wtzi0qrt/8gV0Jvx7TkDdr1n0ZJ1kOfkuhn48fySRpUd9Ubh6qGEzpwE+PZPH/hgq4Yu4hLGxfHPxePZEK7n0pjuVnlazpBdcg6i4h72/H04LMjrZXe77JfrEU4Tsr7Q+k5P/3TGjo6KqgWDRjw9nNmTuJ9rxTe3YqURrGRlJIpd0gmYW07kZd41RxHF0Yd8WKYVwxt4A9E2kcKZsYG6w9c2R/ntntG18cT6ubqYhe96KjAdXn3ay0iFxbf/Bqe4CT9y3kebO24LPi1Yvsn49o+PlICh/psLB75INtGb755ptD///Lv/xLrF+/Hq+99hrOPfdcrFmzBgACy3ESuVwO/f39sft+/vOf4/nnn8drr72GSy65BADwzW9+E6tWrcKuXbuwZMmS428IiYVieAb45LwOeOkxdKT6kDHifwRSUFw3bwLXzQN6s0bd4riopVF+L+5YKS0LR/j7VDHnLwrLw9IzMLVC+Jioib+s2QPAt4aekQfOyIdfYq5XrrOUWbpAZyoPwArXUTl/zhS4aX4ZfRkb/bm5MLW+urYBwOp5/oPTicS1le1d2O5g3mIXQCU09a8K9Nq22ue07uFo2T92V9qM9XVTkUkoHC+5XM1lwj930dFRdNyQ4LC9mqiNJvHw+8K3Dqj90JNOoysdToksLWNT16WGPJ+piyCBWVSk2Z6GX4+l6/ZFBXHY1zgNU0/V+aer96Slp+GKqGuIX5eutIuuqgvAiCIk1Bd0nEi2dBFc86jv+lhCcBVZ5ub5xWq0Ad9FBfD7X12U6HgaerMGKm4xMSV1FCky1JTmkqibkXSLiGubHFhK4R4nUoMpbmWhWtrw8NFOHV84qwxLF1jQloau5equi6Gb1cgXtZPLAXAURxc4v8dF3jTQkRBhThVCUtTPygCWLv2f478H1NK3A+E1Fam0C8fR8dyu2kmPlIE1i/eiO117JqozYWobZZujg8Io6u8z2tfqNWsURWd+m8CsjIP2/BhkKnpJkkuKHMR0dFWQybrIZh3YSsz5aLnoAmLAF85fvHwUfVl/Bu68HhNLuytY0Vt/r85vq6DgGLAjUWCiz1YAsKoDnrKrY6ik1cUr70oJdKWAkYwHwENXStTN7sRlv/z1mNZUop0PCq7r4gc/+AEKhQJWrVo1re8++eST+P73v485c+bghhtuwEMPPYT2dt/Ys3nzZnR2dgZCGAAuvfRSdHZ24tVXX6UYPolQDM8AGSOPjlzNupskZtqtXizp6m24UCf6/UYreU0tORWzFMUSaVmRlmMpYDutObV6R148jaYr4+qrw8BHO31BlzHaEus2KzOgLGxBndVnQVsaC9rUc3l1FlL/e/KFHJ4CbxZLz1S/E174EbUOqxE6VB/suIWJ6n75IpqdTQVZBGUb5bmTrF7NLJCsvehqVn+/PVpQj+nEnJZuCIAfOi2lpGBNGpQ5XgWGpgduOfL7fRk7dN6OlFF15YgXwlExU3b1QKSogjga7k8Kx4oHnN/jYiDv+3Krvr95M3wfJ80W1Pqh1mdTLT6NXu8kS7uakrsuHrcUm9WIHFJsyO0p3fd93VvwM4KpqY2j10UXBnJmBZOOHrpPVWR7pJA8q8MNWUpVouEA/f4W1XbUyqoDlpITbmModGSD+OLjdgmdqcb3fNBeAaSMFAzNQcYAXOHWubgE54+sm4hbRyGJWxxs6QLz2/z2yvTzvhXfUwY2ftm49Q2ZrFuXiCkaEUQVxABwybIx9GUdrOxLA/BHlCkti5V99UaTcTv825sqk2ZHysNQUQ/5Fau/LwChRDdqDGa1fNQPucmohokU4SDBu+/YjwdgbGwstD2dTiOdTsd9BTt27MCqVatQKpXQ1taGZ555Buecc07T57z11luxaNEi9Pf346233sL999+Pn/70p9i4cSMA4MCBA5g9u34mePbs2Thw4EDT5yHTh2L4FDCVkGlm/zGdN8aSIokmF/Dg1vmCRv/vwQ2+10ioyfpKK6tcZdyondPdJ9sW9et1hVfnDhBEfpgiW5wq6uUiRNV/GAi7J9hKFrKoIFZfRGakzFQYmhUI4rq+iGl3FPlyV+sSJ4iDF7YsX7WOqX02v913relJpxsmpFB91qPhsBqlLVb7SbUwRfvM96PWYelaoiBWv5/Sk1/+QV8q95X6We1btS/ihG70syQuk2OcmJfUpp1rC1KjglhNZjJUNDFUNNGXdRre0ykjCw8uJh0nNnsbEBbHWVMDoMPUXRRso05QRbP3SRcKP3JHraw6KMmYAJxkkahaRIGam8CWoTwsfTfmZBcmti9K9HfRTJSV8OJgEWqrHbnHgPD1a3wt60NLJkXTiUs+FHUh2XLYxPw2P0viVAYSddDWTDQYNVZ5UtIctc3R/okT0seaWCeVSqG/vx/3Hvi/x3aABrS1tWFwMLz+5qGHHsLDDz8cW37JkiXYvn07RkZG8NRTT+G2227Dpk2bmhbEqi/xsmXLsHjxYqxcuRJbt27FRRddBADQtPr7UwgRu52cOCiGTxHNCt5mw6MlHfdYBKcn3JAf6FSWalfY9VbgmO8amgVTSx27mI8TwTHbmhHEzZ5P4lTtGqrLhzwX4IvijKEFriNJFuKomDrRRNsbFb7HI4hlW/qzAnkrnEK37hpEhLJqPY/2v12tl61rdVbzJFEMADKfQVQYqlP2cv9MERbI4b70t9W7nUQFVlQkTyWILR34xah//IG8mDJrXkrPot0aR8md2lLYZlY70dFDETDirqHaz+q1iBPFJdSLxFDGzYjbxJ4Jfw2BpeexerASu2hzOuEkJY3EcSNXidr36yPpAPXXSEWNLHSsgnj7bn/maH4euHFBYwOJpQsUEZ8eXEV9RslY5UnRNaICOTprIcsAtXLiGH+HmUwG77zzDiqV47Ut1xMnMpOswoAvzOUCupUrV+InP/kJvvrVr+Lxxx8/pvNfdNFFsCwLv/rVr3DRRRehv78fBw8erCs3NDSEOXPmxByBnCgohk8hzTy8m4lzOq1zRqzDjeoQFcV1+1BblKdaAuOsFHKbtA43W7/o8ePqLT+r351KEMvvNRPwX/pah9qVIIrhOSGhCSAQoQDqrMRx7UkiaGfk3xPFVIJYkre6YusWhyts6DDgwokNPybPK72KoxbgJFEMIEheob6wVREpp3RVUXw8aWOjgr6Rq0Qj63Dcvqjf7XQEMQAcKfmf47LmRe8RS8/AM1y4YiIYMMUh7+E20/V9oXXURTepicV6wSvbBdSL4owJ2JWwIPb31VuJAeDIuP/72ttho2APB25FjYg+S+r8giPXLcnqH2WqBEPNWIeT4qk3K4iPDPmzaweKRVTcIrJmR2xd/AXUesOBd9yMgLQKJ6WKD8f2rl5nRU1EhTEAHM/yuUwmg0wmM3XBGUYIgXL52Fv2s5/9DLZtY+7cuQCAVatWYXR0FG+88QYuvvhiAMDrr7+O0dFRXHbZZSekziQeiuFTzHQEzXTSljZ0W4gRxED9S7PpzEIwQmI1ybdZ+pDGCeJmrb5JU9lxbUsSxMD0hKhsT9zARBXT0l1BugTEvVjjRPFUbZ6KqKvEsVqHVeIEsWxLwR5BT/qMKesVLMiMxIaNC0+nJqKIcyWJE8VOxHdT/Ry1EjfqN78u8QO6Rq5Fst5xrhKSOOtwdF9U+E5XEMtjJZHkz21oOhBjLYzOoET9aSVRYVw9MvxYz/JY/r/1ojhsSY764UYTWqhi8HgGNEk0Er/TcZVoZB2OE8lR63Bo3xSCWJJksJD7DN2Epde7WSXNCIxUTFh6ODFMnFuMJGPUrimguMJUmU7mydOZBx54ADfccAMGBwcxPj6ODRs24Mc//nEQAu3o0aPYs2cP9u3bBwDYtWsXAKC/vx/9/f349a9/jSeffBK/+Zu/id7eXuzcuRN//Md/jAsvvBCXX345AGDp0qW4/vrrcfvttwfW5i9/+cu46aabuHjuJPMBvz1nhsceewyLFi1CJpPBihUr8Morr5zQ4zd6mJ2o79YtpEmYZpT/SneG6F/ssWH4qVIj07OxCS3QeHFSEuqxk17uan2C7ykiTBVfVtWCprY56S+uLXF9Es2Qpb5QTD2cAECK4qSpy+mkdJ4Osg7yvGr91P/7n8PfAXwBNFzWUHTHprwv1IVo0Wui/snz5k03+BztN7V+8k8V0GpKZvWzjHYQbdt0Ue+juOOo1zGuL4NyRrjf1TrHEV6YVvue/L8qOmQcYHkfNvyriiRD04M/tX3yz/b8MGxy2jyUpSxybWT7pN+wrH/UfcKPUSzQkZJ1jl4n5RyRUGLyuMcriBtZStXzq2I/zg1E3R5nEY9LJqPGnQdq1m8pcNWEJUHGUaVsXNi6pOtsaBZ0GKFrWquHqPsDwn756v2aVD7qT5yKXM+MWf07OY+0GePgwYNYs2YNlixZgmuuuQavv/46nn/+efzGb/wGAODZZ5/FhRdeiBtvvBEA8PnPfx4XXnghvvGNbwDwXSx+9KMf4brrrsOSJUtw1113YfXq1XjxxRdhGLXOefLJJ3Heeedh9erVWL16NZYvX47vfe97M9/gFoOW4Sn453/+Z9xzzz147LHHcPnll+Pxxx/HDTfcgJ07d2L+/Pkn9FxJ7ggni6TQRI0Wlk1VRyla4yzFQTY3vbGAV+s1ncWGSRa9OAtxUptiU1vDqCubtGClFg0ifkFVnOvEVBZ4GSta+mbHuUo0ax2OI8l/2N8X9tXdN+lf347UaCjDXlwbXM+um5FQUa+PnzHMCyWySFr9HpcxUZaLsxIDyRnsGjHVvRdvCZ7aOhy3mE4StQ7H7YuzEEfrPRVSJKlZKePcWNRQcaobjUrUlzvIoqe4qUR9SWXUCUBDCXFWcOXYTYTkirpSRa9d3O++Vt/Gix/ry8dbh+OOF/1OkrtEkv8wUG8hBmoCOimLZtAPgStbss++ihrRJTorpKK6x1i6plxPH3kM9XfXIOjKB4Jvf/vbDfd/8YtfxBe/+MXE/YODg3XZ5+Lo6enB97///elWjxwnH/Db8+Tzla98BV/60pfw+7//+1i6dCn+7u/+DoODg1i/fv2MnL+RxbJZN4aG2xDvN3u8IjzOUhwcu8G081THlESttLGfG1iIDU2P7cOk/k2yescdQ7V21iyAYauMalU7GdO+Kmod5LmBqI9gvYU4ar1UsT0t5FM+1X0Z29eKBcvS00gZKWRND2ndq6tbtP8kYctdspW42Snaqa5FXObBOCtj1Docd/4k63AqIibjLJJxVrmU7l/TqZ4Zdfd2xFKvWuzj6lxvYfT/HE+riueIZdCo/anlpYVYivl4a/7xT69H26LWvdGisrDAj0kvPU3rcL2Vv3qeY7AQS3wXhWRfWtWwoc4CJP3Vwi/W+iD6B9TSuNueFiSric7CNPrdEnK6QctwAyqVCrZs2YL77rsvtH316tV49dVX68qXy+WQM/3o6CgAYGxs8uRWFMniNT5aRPwLIORHDAOmbjUl1ByvAkexyiTVRVpuLN1DSnkJheNiKtvhxpZxE86lfhYJxwFqljDXSsE1k6NbeMJFpZqWOXre6Pn849qhJA2qJSpqKVKtmxnbgLBqCVBkH6gZttTzq/Fwo+2NxluOi7Uszy3/LSvLvGU5VymvfndRe8kPI1cAJtwSzOp1jL/PDDjChO2VGiYtUetfcosoKTFwJWodS1XrlcwWJqmEkq+g7nNJtzFmarANI7aP1f6V7VH7Na5Pk/pS7cdoIhhZtuKGhUewv6odgsxzStdKP+laOuCaRfPKMyooTbgY06fOmlfxSig65dDvREW2t2QDE3b9a8KNsZ4WKjoKtl7XDrW+EtmmkgOUHQ1apJ1JSXPcSYGxMVR/L17I7SoaK1qIcPxxGekFqAl3wL9mSddLvVbqdYq7RknXxvYQap9MrBJtnxPJnmlXlGg2VSuxLHP9sgIGch4um92OSkFDBeFY6BL/GaZVF5rGl5G4ngO7rKFQjjdiRKNiTJYNjNrx96eK7A+36C+TFdNMg0zITEAx3IDDhw/Ddd26kCZz5syJDYC9bt06/MVf/EXd9sHBW05aHQkhBAAeOtUVmAG+eaorcJrw76e6AsfB+Pg4Ojs7T3U1CAlBMdwE0TiESQGw77//ftx7773B/0dGRrBgwQLs2bOHP/4ZZmxsDIODg9i7dy86OuLDDpETD/v91MB+PzWw35tHCIHx8XEMDAxMXZiQGYZiuAG9vb0wDKPOCnzo0KHYANhJaRw7Ozv5oDxFdHR0sO9PAez3UwP7/dTAfm8OGoXI6QoX0DUglUphxYoVQd5wycaNGxkAmxBCCCHkQwAtw1Nw7733Ys2aNVi5ciVWrVqFf/iHf8CePXtwxx13nOqqEUIIIYSQ44RieApuueUWHDlyBI888gj279+PZcuW4bnnnsOCBQum/G46ncZDDz3UMNc5OTmw708N7PdTA/v91MB+J+TDgSYY54QQQgghhLQo9BkmhBBCCCEtC8UwIYQQQghpWSiGCSGEEEJIy0IxTAghhBBCWhaK4ZPIY489hkWLFiGTyWDFihV45ZVXTnWVThtefvll3HzzzRgYGICmafiXf/mX0H4hBB5++GEMDAwgm83iqquuws9+9rNQmXK5jLVr16K3txf5fB6f+tSn8N5774XKDA8PY82aNejs7ERnZyfWrFmDkZGRUJk9e/bg5ptvRj6fR29vL+666y5UKpVQmR07duDKK69ENpvFGWecgUceeQQftLWn69atw8c+9jG0t7dj9uzZ+K3f+i3s2rUrVIb9fuJZv349li9fHiRmWLVqFf7jP/4j2M8+nxnWrVsHTdNwzz33BNvY94QQAIAgJ4UNGzYIy7LEN7/5TbFz505x9913i3w+L959991TXbXTgueee0782Z/9mXjqqacEAPHMM8+E9j/66KOivb1dPPXUU2LHjh3illtuEXPnzhVjY2NBmTvuuEOcccYZYuPGjWLr1q3i6quvFueff75wHCcoc/3114tly5aJV199Vbz66qti2bJl4qabbgr2O44jli1bJq6++mqxdetWsXHjRjEwMCDuvPPOoMzo6KiYM2eO+PznPy927NghnnrqKdHe3i7++q//+uR10EnguuuuE9/5znfEW2+9JbZv3y5uvPFGMX/+fDExMRGUYb+feJ599lnx7//+72LXrl1i165d4oEHHhCWZYm33npLCME+nwneeOMNsXDhQrF8+XJx9913B9vZ94QQIYSgGD5JXHzxxeKOO+4IbTv77LPFfffdd4pqdPoSFcOe54n+/n7x6KOPBttKpZLo7OwU3/jGN4QQQoyMjAjLssSGDRuCMu+//77QdV08//zzQgghdu7cKQCI1157LSizefNmAUD84he/EEL4olzXdfH+++8HZf7pn/5JpNNpMTo6KoQQ4rHHHhOdnZ2iVCoFZdatWycGBgaE53knsCdmlkOHDgkAYtOmTUII9vtM0t3dLb71rW+xz2eA8fFxsXjxYrFx40Zx5ZVXBmKYfU8IkdBN4iRQqVSwZcsWrF69OrR99erVePXVV09RrT44vPPOOzhw4ECo/9LpNK688sqg/7Zs2QLbtkNlBgYGsGzZsqDM5s2b0dnZiUsuuSQoc+mll6KzszNUZtmyZRgYGAjKXHfddSiXy9iyZUtQ5sorrwwF1r/uuuuwb98+7N69+8R3wAwxOjoKAOjp6QHAfp8JXNfFhg0bUCgUsGrVKvb5DPBHf/RHuPHGG3HttdeGtrPvCSESiuGTwOHDh+G6LubMmRPaPmfOHBw4cOAU1eqDg+yjRv134MABpFIpdHd3Nywze/bsuuPPnj07VCZ6nu7ubqRSqYZl5P8/qNdTCIF7770XH//4x7Fs2TIA7PeTyY4dO9DW1oZ0Oo077rgDzzzzDM455xz2+Ulmw4YN2Lp1K9atW1e3j31PCJEwHfNJRNO00P+FEHXbSDLH0n/RMnHlT0QZUV3U8kG9nnfeeSfefPNN/Nd//VfdPvb7iWfJkiXYvn07RkZG8NRTT+G2227Dpk2bgv3s8xPP3r17cffdd+OFF15AJpNJLMe+J4TQMnwS6O3thWEYdaP5Q4cO1Y38ST39/f0A6q0hav/19/ejUqlgeHi4YZmDBw/WHX9oaChUJnqe4eFh2LbdsMyhQ4cA1FuVPgisXbsWzz77LF566SXMmzcv2M5+P3mkUimcddZZWLlyJdatW4fzzz8fX/3qV9nnJ5EtW7bg0KFDWLFiBUzThGma2LRpE772ta/BNM1Eqyv7npDWg2L4JJBKpbBixQps3LgxtH3jxo247LLLTlGtPjgsWrQI/f39of6rVCrYtGlT0H8rVqyAZVmhMvv378dbb70VlFm1ahVGR0fxxhtvBGVef/11jI6Ohsq89dZb2L9/f1DmhRdeQDqdxooVK4IyL7/8cigM0gsvvICBgQEsXLjwxHfASUIIgTvvvBNPP/00/vM//xOLFi0K7We/zxxCCJTLZfb5SeSaa67Bjh07sH379uBv5cqVuPXWW7F9+3aceeaZ7HtCiM/MrdVrLWRotW9/+9ti586d4p577hH5fF7s3r37VFfttGB8fFxs27ZNbNu2TQAQX/nKV8S2bduC0HOPPvqo6OzsFE8//bTYsWOH+MIXvhAb8mjevHnixRdfFFu3bhWf/OQnY0MeLV++XGzevFls3rxZnHfeebEhj6655hqxdetW8eKLL4p58+aFQh6NjIyIOXPmiC984Qtix44d4umnnxYdHR0fuJBHf/iHfyg6OzvFj3/8Y7F///7gb3JyMijDfj/x3H///eLll18W77zzjnjzzTfFAw88IHRdFy+88IIQgn0+k6jRJIRg3xNCfCiGTyJf//rXxYIFC0QqlRIXXXRREMKKCPHSSy8JAHV/t912mxDCD3v00EMPif7+fpFOp8UnPvEJsWPHjtAxisWiuPPOO0VPT4/IZrPipptuEnv27AmVOXLkiLj11ltFe3u7aG9vF7feeqsYHh4OlXn33XfFjTfeKLLZrOjp6RF33nlnKLyREEK8+eab4oorrhDpdFr09/eLhx9++AMX7iiuvwGI73znO0EZ9vuJ5/d+7/eC50BfX5+45pprAiEsBPt8JomKYfY9IUQIITQhmN6GEEIIIYS0JvQZJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoR86Fi4cCE0TYOmaRgZGTmuY1111VXBsbZv335C6kcIIeT0gWKYEHJa4rouLrvsMnz2s58NbR8dHcXg4CD+/M//vOH3H3nkEezfvx+dnZ3HVY+nn34ab7zxxnEdgxBCyOkLxTAh5LTEMAw88cQTeP755/Hkk08G29euXYuenh48+OCDDb/f3t6O/v5+aJp2XPXo6elBX1/fcR2DEELI6QvFMCHktGXx4sVYt24d1q5di3379uGHP/whNmzYgCeeeAKpVGpax/rud7+Lrq4u/Nu//RuWLFmCXC6Hz33ucygUCnjiiSewcOFCdHd3Y+3atXBd9yS1iBBCyOmGeaorQAghjVi7di2eeeYZ/O7v/i527NiBBx98EBdccMExHWtychJf+9rXsGHDBoyPj+Mzn/kMPvOZz6CrqwvPPfcc3n77bXz2s5/Fxz/+cdxyyy0ntiGEEEJOSyiGCSGnNZqmYf369Vi6dCnOO+883Hfffcd8LNu2sX79enzkIx8BAHzuc5/D9773PRw8eBBtbW0455xzcPXVV+Oll16iGCaEkBaBbhKEkNOef/zHf0Qul8M777yD995775iPk8vlAiEMAHPmzMHChQvR1tYW2nbo0KHjqi8hhJAPDhTDhJDTms2bN+Nv//Zv8cMf/hCrVq3Cl770JQghjulYlmWF/q9pWuw2z/OOub6EEEI+WFAME0JOW4rFIm677Tb8wR/8Aa699lp861vfwk9+8hM8/vjjp7pqhBBCPiRQDBNCTlvuu+8+eJ6Hv/qrvwIAzJ8/H3/zN3+DP/mTP8Hu3btPbeUIIYR8KKAYJoSclmzatAlf//rX8d3vfhf5fD7Yfvvtt+Oyyy47LncJQgghRKIJvk0IIR8yFi5ciHvuuQf33HPPCTne7t27sWjRImzbtu2Yw7oRQgg5PaFlmBDyoeRP//RP0dbWhtHR0eM6zg033IBzzz33BNWKEELI6QYtw4SQDx3vvvsubNsGAJx55pnQ9WMf97///vsoFosAfJ/l6Wa+I4QQcnpDMUwIIYQQQloWukkQQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQlqW/w9VomkKj4uJeQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "! seisflows plot2d MODEL_TRUE vs --savefig m_true_vs.png\n", + "Image(filename='m_true_vs.png') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following gradient Vs kernel, we can see how the 5km x 5km smoothing blurs away some of the detail of the raw graident. The blue colors here suggest that the initial model needs to be sped up to best fit waveforms (and vice versa, red colors suggest slowing down the initial model)." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Figure(707.107x707.107)\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUxfvHP0c6CQkJgRRK6E2qQaoYkA4BQQQEDFWqXzAg0pv4kyKIiHTpKEXFAGJAQCGAhiogAgIqTSAUgQQCIYX5/RF3vb3b3du927vbu3ver9e+kpt9dmZ2bnfmc88+O2NgjDEQBEEQBEEQhAdSwNkVIAiCIAiCIAhnQWKYIAiCIAiC8FhIDBMEQRAEQRAeC4lhgiAIgiAIwmMhMUwQBEEQBEF4LCSGCYIgCIIgCI+FxDBBEARBEAThsZAYJgiCIAiCIDwWEsMEQRAEQRCEx0JimCAIgiAIgvBYSAwTBEEQBEEQHguJYYIgCIIgCMJjITFMEARBEARBeCwkhgmCIAiCIAiPhcQwQRAEQRAE4bGQGCYIgiAIgiA8FhLDBEEQBEEQhMdCYpggCIIgCILwWEgMEwRBEARBEB4LiWGCIAiCIAjCYyExTBAEQRAEQXgsJIYJgiAIgiAIj4XEMEEQBEEQBOGxkBgmCIIgCIIgPBYSwwRBEARBEITHQmKYIAiCIAiC8FhIDBMEQRAEQRAeC4lhgiAIgiAIwmMhMUwQBEEQBEF4LCSGCYIgCIIgCI+FxDBBEARBEAThsZAYJgiCIAiCIDwWEsMEQRAEQRCEx0JimCAIgiAIgvBYSAwTBEEQBEEQHguJYYIgCIIgCMJjITFMEARBEARBeCwkhgmCIAiCIAiPhcQwQRAEQRAE4bGQGCYIgiAIgiA8FhLDBEEQBEEQhMdCYpggCIIgCILwWEgMEwRBEARBEB4LiWGCIAiCIAjCYyExTBAEQRAEQXgsJIYJgiAIgiAIj4XEMEEQBEEQBOGxkBgmCIIgCIIgPBYSwwRBEARBEITHQmKYIAiCIAiC8FhIDBMEQRAEQRAeC4lhgiAIgiAIwmMhMUwQBEEQBEF4LCSGCYIgCIIgCI+FxDBBEARBEAThsZAYJgiCIAiCIDwWEsMEQRAEQRCEx0JimCAIgiAIgvBYSAwTBEEQBEEQHguJYYIgCIIgCMJjITFMEARBEARBeCwkhgmCIAiCIAiPhcQwQRAEQRAE4bGQGCYIgiAIgiA8FhLDBEEQBEEQhMdCYpggCIIgCILwWEgMEwRBEARBEB4LiWGCIAiCIAjCYyExTBAEQRAEQXgsJIYJgiAIgiAIj4XEMEEQBEEQBOGxkBgmCIIgCIIgPBYSwwRBEARBEITHQmKYENCpUycEBATgwYMHkjY9e/aEj48Pbt26pVm5pUuXRnx8vFn68uXL4eXlhQ4dOiArK0uz8rRk3759MBgM2Ldvn0PLLV26NPr06ePQMrXi008/ReXKleHn54cyZcrgvffeQ05OjqJjc3Jy8N5776F06dLw8/ND5cqV8emnn4ra/vXXX3j11VdRuHBhBAUFoUWLFvjll1/M7NauXYvXX38dlSpVQoECBVC6dGnR/LjvWmw7dOiQwFbKzmAwoHLlypq0ycSJE2EwGFCtWjXR/ZmZmZg8eTIqVqwIPz8/FClSBE2bNsXFixd5m2vXrqFTp04oW7YsAgMDERISgtq1a2PBggXIzc0V5Ld8+XJ07NgRpUuXRkBAAMqXL48hQ4bg5s2bZmU/fPgQw4cPR/HixeHn54eKFSviww8/RF5enmhdDx48iLZt2yI0NBQBAQGoUKEC3n//fYENYwzz58/n2ykqKgpDhgzB/fv3zfKTavuZM2cK7Jo0aSL7XaWlpfG2EyZMQO3atREWFgZ/f3+ULVsWAwcOxJUrV8zKnzhxIuLj41G8eHEYDAbF9+obb7wBg8Eg2h8SBGEfvJ1dAUJf9O/fH1u2bMH69esxdOhQs/3p6elISkpCfHw8IiIi7FqX2bNnY/To0UhISMDKlSvh7U2XqzFJSUkIDg52djVU88EHH2DSpEkYO3YsWrZsiaNHj2LixIm4fv06li1bZvH4oUOHYt26dXj//ffxwgsv4Pvvv8fbb7+Nhw8fYvz48bzdnTt30LhxY4SGhmLlypXw9/fHjBkz0KRJExw9ehSVKlXibdetW4e0tDTUrVsXz549syhCp0+fjqZNmwrSTAVpamqq2XGHDx9GYmIiOnXqZHObnDx5EnPmzJG8Dx89eoSmTZvixo0bGDt2LGrUqIH09HT8/PPPePz4MW+XmZmJ4OBgTJo0CaVKlUJ2djaSk5MxbNgwnDx5EsuXL+dtp0yZgqZNm2L69OkoXrw4zp8/j/fffx9bt27FiRMn+Lrk5uaiRYsWuHDhAt5//31UrFgRO3fuxNixY/H3339j/vz5grquX78eCQkJ6Nq1K9auXYugoCD8+eefuHHjhsBu1KhRmDdvHkaNGoXmzZvj7NmzmDx5Mo4ePYrU1FT4+PgI7F977TW88847grRSpUoJPi9atAgZGRmCtMePH6N169aIjY1FZGQkn/7gwQN0794dVapUQaFChXD27Fn83//9H7Zt24YzZ86gSJEivO3HH3+MGjVqoEOHDli5cqXod2TKd999hy1btrjkfU0QLg0jCCNyc3NZdHQ0i42NFd2/ePFiBoB9++23mpYbExPD2rVrx38eN24cA8CGDRvGnj17pkkZmZmZmuRjyt69exkAtnfvXrvk707cvXuX+fv7s4EDBwrSP/jgA2YwGNiZM2dkj//tt9+YwWBg06dPF6QPGDCABQQEsH/++YdPe/fdd5mPjw+7fPkyn5aens7Cw8NZ165dBcfn5eXx/7dr147FxMSIls9911999ZVsPaXo06cPMxgM7OLFi3yaNW2Sk5PDatWqxYYPH87i4uLYc889Z2bz9ttvs8DAQPbnn39aVdeuXbsyb29vlpWVxafdunXLzO7o0aMMAHv//ff5tA0bNjAAbPPmzQLbgQMHsgIFCrDff/+dT/v7779ZYGAgGzJkiGx9/v77b+bl5cWGDRsmSF+/fj0DwJYtWyZIB8DeeustyycqwurVqxkAtnz5cou2ycnJDABbsWKFIN34mgoMDGS9e/eWzefBgwesePHibO7cuWb9IUEQ9oXCJAgBXl5e6N27N44fP47Tp0+b7V+1ahWioqLQpk0bPm3x4sWoWbMmgoKCUKhQIVSuXFngoVPDs2fPMGTIEMyYMQOTJ0/G/PnzYTAY+P2MMSxatAi1atVCQEAAQkND8dprr+Gvv/4S5NOkSRNUq1YN+/fvR8OGDVGwYEH069cPly9fhsFgwJw5czB37lyUKVMGQUFBaNCggdljbgA4duwYOnTowD8WrV27Nr788kurzs0Y7nH7+vXrMWbMGERFRSEoKAjt27fHrVu38PDhQwwcOBDh4eEIDw9H37598ejRI0EepmESXJ4bNmzAhAkTEB0djeDgYDRv3hznz5+3uc5asHPnTmRlZaFv376C9L59+4Ixhi1btsgev2XLFjDGRI9/8uQJdu7cyaclJSXh5ZdfRkxMDJ8WHByMV199Fd9++60gBKBAAft3hQ8fPsRXX32FuLg4lC9fnk+3pk1mzpyJe/fu4YMPPhAt6/Hjx1i+fDm6dOmCsmXLWlXfokWLokCBAvDy8uLTihUrZmYXGxsLLy8vXLt2jU/76aefYDAYBP0EAMTHx+PZs2dISkri05YvX47MzEyMGTNGtj6HDh1CXl4e2rZta5YnAGzevFn5yVlgxYoVCAoKQrdu3SzaFi1aFADMnlypvabeeecdREVFYfjw4aqOIwjCdkgME2b069cPBoPB7NHe2bNnceTIEfTu3ZsfIDdu3IihQ4ciLi4OSUlJ2LJlC0aMGIHMzEzV5ebk5KBnz55YunQpPvnkE7z33ntmNoMGDUJiYiKaN2+OLVu2YNGiRThz5gwaNmxoFsN88+ZNvPHGG+jRoweSk5MFYR8LFy7E7t27MW/ePHzxxRfIzMxE27ZtkZ6eztvs3bsXjRo1woMHD7BkyRJs3boVtWrVQrdu3bB69WrV5yfG+PHjcfv2baxevRofffQR9u3bh+7du6Nz584ICQnBhg0bMHr0aKxbt07xD4zx48fjypUrWL58OZYtW4aLFy+iffv2krGaHIwx5ObmKtqs5bfffgMAVK9eXZAeFRWF8PBwfr/c8UWLFhU8ugaAGjVqCPJ/8uQJ/vzzTz7d1PbJkydmP6DU8NZbb8Hb2xvBwcFo1aoVDh48aPGYjRs3IjMzE2+++aYgXW2bcI/mFy9ejKCgINGyjh8/jszMTFSoUAFDhgxBaGgofH19UadOHXz33Xeix3Df//3797Fp0yasXr0a77zzjsXwpJSUFOTl5eG5557j07Kzs1GgQAGzsAU/Pz8AwK+//sqn7d+/H2FhYfj9999Rq1YteHt7o1ixYhg8eLAgfCE7O1uQB4ePjw8MBoMgT47169cjICAAfn5+iI2NxapVq2TPBQAuXryIAwcO4PXXX5ds39zcXDx58gQnTpxAYmIiKlasiFdffdVi3lLs2bMHa9eu5d+RkKJPnz4wGAy4fPmy1WURBCGCM93ShH6Ji4tj4eHhLDs7m0975513GAB24cIFPu1///sfK1y4sM3lxcTEMAAMABs/fryoTWpqKgPAPvroI0H6tWvXWEBAABs9erSg/gDYDz/8ILC9dOkSA8CqV6/OcnNz+fQjR44wAGzDhg18WuXKlVnt2rVZTk6OII/4+HgWFRXFPwa1JkyCO6Z9+/aC9MTERAaADR8+XJDesWNHFhYWJkiLiYkRPHrl8mzbtq3A7ssvv2QAWGpqqqI6KdkuXbqk+FyNGTBgAPPz8xPdV7FiRdayZUvZ41u0aMEqVaokus/X15cPNbh+/ToDwGbMmGFmxz1W//nnn0XzkQuT+OWXX9jbb7/NkpKS2P79+9nKlStZlSpVmJeXF9u5c6ds3evVq8cKFy7Mnjx5IkhX0yZ5eXmsXr16rHv37nyaWJgEF6YQHBzMGjVqxLZt28a2b9/OmjZtygwGg2hdZ8yYwX+/BoOBTZgwQfZ8GGMsIyODValShZUsWZI9fPiQT583bx4DwA4cOCCwnzRpEgMgOKdKlSoxf39/VqhQITZ9+nS2d+9e9uGHH7KAgADWqFEjPkzq5MmTZuEYjDH2ww8/MADM19dXkN6jRw/2xRdfsP3797Ovv/6atWnThgFgEydOlD2nMWPGyN4vN2/eFNwL9erVY9evX5fNUy5M4uHDh6x06dJs3LhxfJpUmES/fv2Yl5eXIPSHIAjboTeSCFH69++PXr16Ydu2bejcuTNyc3Px+eefo3HjxqhQoQJvV7duXSxYsADdu3fH66+/jkaNGiE8PNyqMmvVqoV79+5hwYIFaN++PerXry/Yv337dhgMBrzxxhsC72RkZCRq1qxpNptDaGgoXn75ZdGy2rVrJ/DAcB5E7q3wP/74A7///jvmzJkDAILy2rZti+3bt+P8+fOoUqWKVefKYfrGOJdfu3btzNK3bNmCR48eSXqrODp06CD4bHxupm1qTGxsLI4ePaqo3tHR0bL7Tb3HXl5efLiLcdiLKXL7lNiY7rO1LFNq166N2rVr858bN26MTp06oXr16hg9ejRatWoletyZM2dw+PBhvPXWW/D391dVF+N9c+fOxcWLF7Ft2zbZej579gwA4Ovrix07dqBQoUIAgKZNm/KzNJjWtU+fPmjevDnu3buHH3/8EbNnz0Z6errkTB1ZWVl49dVXceXKFfz444+C67Jnz56YNm0aBg4ciFWrVqFSpUrYsWMH/+KccQjBs2fPkJWVhSlTpmDs2LEA8sOcfH19kZiYiB9++AHNmzdHzZo18dJLL2H27NmoVKkSWrRogbNnz2Lw4MHw8vIyC0v44osvBJ87d+6M9u3bY+bMmRg+fDgf3mBMbm4u1qxZg+eee07yXgkPD8fRo0fx9OlTnDt3Dh9++CGaNm2Kffv2ISoqSvQYOcaOHQsfHx9MnjzZou2KFSuwYsUK1WUQBCEPhUkQorz22msICQnhHysmJyfj1q1b6N+/v8COm+nhypUr6Ny5M4oVK4Z69eph9+7dqsssXrw49u3bh9DQULRq1crsbfxbt26BMYaIiAj4+PgItkOHDuHu3bsCe7mByfitb+C/R69PnjzhywLy3143LYsLtzAtzxrCwsIEn319fWXTlUwvZ+ncpAgKCkKtWrUUbVx9pDBtszVr1vB1y8rKEsxmwHHv3j2z8xY7t3/++ccsPTMzE9nZ2fzxoaGhMBgMorb37t0DYN7G1lK4cGHEx8fj119/lWxjTsCYhkgAytvk6tWrmDx5MqZMmQJfX188ePAADx48QG5uLp49e4YHDx7w5XPXQMOGDXkhDAAFCxZEXFyc6PRykZGRqFOnDlq2bImZM2di2rRpWLBgAU6cOGFm+/TpU3Tq1AkHDx7Etm3bUK9ePcH+8PBwPn67fv36CA0NxbBhwzB37lwA+fe68fkDMBPnXLyxcV2/+uorNGrUCF27dkVoaCiaNm2KV199FbVq1RLkKQX3Q/rYsWOi+5OTk5GWlib6PXF4e3ujTp06aNSoEd588038+OOP+Ouvv8ymbFPCkSNHsGjRInz44YfIysriv9Nnz54hNzcXDx48wNOnT1XnSxCEOsgzTIgSEBCA7t2747PPPsPNmzexcuVKFCpUCF26dDGz7du3L/r27YvMzEzs378fU6ZMQXx8PC5cuCB4eUkJZcqUwb59+9C0aVO0atUKO3fuRMOGDQHkD7AGgwEHDhwwixsEzGMJrfH8cXDe7XHjxknGAhpPzeUOpKSkmE0XJsWlS5ck5+IFYOZhLlOmDID/4mJPnz4tEFBpaWm4e/eu5Hy5HNWrV8fGjRuRlpYmiBvmXvbkjufmwBV7CfT06dMICAiw+sUyMRhjAMSvuezsbKxbtw6xsbGoVauW2X6lbfLXX3/hyZMnePvtt/H222+b5RMaGoq3334b8+bNE42VNq6rkpe76tatCwC4cOGCwBv+9OlTdOzYEXv37sXWrVvRrFkz0eNfeOEFnD17FpcvX+bjl48fPw4AeOmll3i7GjVqiL68yrWpcV2LFSuG5ORk3L59G2lpaYiJiUFAQAAWLVqE1157zeI5ieVpzIoVK+Dr64uEhASLeXGUKFEC0dHRuHDhguJjOM6ePQvGmNlUe0D+/M+hoaH4+OOPkZiYqDpvgiCUQ2KYkKR///5YsmQJZs+ejeTkZPTp0wcFCxaUtA8MDESbNm2QnZ2Njh074syZM6rFMJA/SwIniFu3bo0dO3agUaNGiI+Px8yZM3H9+nV07drVllOzSKVKlVChQgWcOnUK06dPt2tZekHLMIk6deqIprdu3Rr+/v5YvXq1QPitXr0aBoMBHTt2lM33lVdewcSJE7FmzRrB7AOrV69GQEAAWrduzad16tQJ8+bNw7Vr11CyZEkA+TM6fPPNN+jQoYNm81bfv38f27dvR61atURDILZt24a7d+9i2rRposcrbZNatWph7969ZscnJiYiPT0dq1atQokSJQDkPxVp0KABfvrpJ2RkZPDz1j5+/BgpKSmy4TIcXFnGM19wHuEff/wR33zzjWRYiDHcjybGGD766CNER0cLflR37twZy5Ytw44dOwSiOzk5GQBE61qsWDF+Zov58+cjMzMT//vf/yzWZd26dfDx8UFsbKzZvrS0NCQnJ+PVV181e7oixx9//IG///7bLDxJCa1btxb9Tl9//XWUKVMGM2bMELQ/QRD2gcQwIUmdOnVQo0YNzJs3D4wxsxAJABgwYAACAgLQqFEjREVFIS0tDTNmzEBISAheeOEFq8uOiYkRCOLk5GQ0btwYAwcORN++fXHs2DG89NJLCAwMxM2bN3Hw4EFUr14dQ4YMseWUBSxduhRt2rRBq1at0KdPHxQvXhz37t3DuXPn8Msvv+Crr77SrCw9UKhQIUkRqxVhYWGYOHEiJk2ahLCwMH6BialTp+LNN99E1apVedu1a9eiX79+WLlyJXr16gUAeO6559C/f39MmTIFXl5eeOGFF7Br1y4sW7YM//d//ycIfRg1ahTWrVuHdu3aYdq0afDz88PMmTORlZWFqVOnCup19uxZnD17FkC+KHr8+DG+/vprAEDVqlX5evXo0QOlSpVCnTp1EB4ejosXL+Kjjz7CrVu3JGcYWbFiBQICAtCjRw+b2qRw4cJo0qSJ2fGFCxdGbm6u2b45c+bwT1jGjBkDg8GAjz76CHfv3hWs7DZlyhTcunULL730EooXL44HDx5g586d+Oyzz9ClSxeBcHzttdewY8cOTJgwAUWKFBF4dIODgwXf34QJE1C9enVERUXh6tWrWLlyJQ4fPozvvvsOAQEBvF3Lli3Rvn17TJs2Dc+ePUP9+vVx7NgxvPfee4iPj8eLL77I23722WcAgHLlyuHBgwfYsWMHVqxYgenTp+P555/n7WbPno2zZ8+iWbNmKFGiBG7fvo0VK1Zg165dmDp1quh7DWvWrEFubq5kiMSvv/6KESNG4LXXXkPZsmVRoEABnD59Gh9//DGKFCmCUaNGCexTUlJw584dAEBeXh6uXLnCX1NxcXH8rCimM6MAgL+/P4oUKWL2nfbp0wdr1qyx+GSGIAiVOO/dPcIV+OSTTxgAVrVqVdH9a9asYU2bNmURERHM19eXRUdHs65du7Jff/1VVTlSb09fvXqVlStXjgUGBrKUlBTGGGMrV65k9erVY4GBgSwgIICVK1eO9erVix07dow/TmohAm42idmzZ5vtA8CmTJkiSDt16hTr2rUrK1asGPPx8WGRkZHs5ZdfZkuWLOFtbJlNwnTxhlWrVjEA7OjRo4L0KVOmMADszp07fJrUbBKmeXLnvGrVKsX1szeffPIJq1ixIvP19WWlSpViU6ZMEcxcwth/bWFa7+zsbDZlyhRWqlQp5uvryypWrMjmz58vWs4ff/zBOnbsyIKDg1nBggVZs2bN2PHjx83suPYV24yviRkzZrBatWqxkJAQ5uXlxYoWLco6derEjhw5Ilr+1atXWYECBVivXr00aRMxpK51xhg7cOAAi4uLYwULFmQFCxZkL7/8Mvvpp58ENtu2bWPNmzdnERERzNvbmwUFBbG6deuy+fPnm82kItVGAFhcXJzAdsiQIfx3FB4ezjp37izZLzx+/JiNGTOGlSxZknl7e7NSpUqxcePGCRb8YIyxpUuXsipVqrCCBQuyoKAg1rhxY7Zlyxaz/LZt28ZefPFFVrRoUebt7c0KFSrEGjduLJgtxpSKFSuy0qVLSy7yk5aWxt544w1Wrlw5VrBgQebr68vKli3LBg8ezK5evWpmz81oI7ZZ6iuk+sPOnTuzgIAAdv/+fdnjCYJQh4Gxf4OoCIIgCILQLZGRkUhISMDs2bOdXRWCcCtIDBMEQRCEzjlz5gwaNGiAv/76y+rpKwmCEIfEMGFXLK1WVqBAAYcshesoGGMWV3oznnOXIAiCIAjn4j4qhNAlpvPNmm79+vVzdhU1JSUlxeI5c3PuEgRBEAThfMgzTNgVqcntOcLDw93qreiHDx/i/PnzsjZlypRRNXUTQRAEQRD2g8QwQRAEQRAE4bFQmISH06lTJwQEBODBgweSNj179oSPjw+/RLEWlC5dGvHx8Wbpy5cvh5eXFzp06KBo6WFnsG/fPhgMBuzbt8/ZVdE9jx49QmJiIqKjo+Hv749atWph48aNio+/ffs2+vTpg/DwcBQsWBANGjTADz/8IGq7Z88eNGjQAAULFkR4eDj69OmD27dvm9lNnDgR8fHxKF68OAwGA/r06SNZ/ubNm9GoUSOEhYWhcOHCqFu3LtatW2dm9+abb6JatWooXLgwAgICULFiRbz77ruSS3YfPHgQbdu2RWhoKAICAlChQgXB3L9Afvz5/PnzUblyZfj5+SEqKgpDhgzB/fv3zfKbN28eXn31VZQpUwYGg0F0PmIA+Oabb9C9e3eUL18eAQEBKF26NHr27ImLFy+a2W7fvh29evVC9erV4ePjIxnnfvz4cbz11luoXr06ChUqhIiICDRv3hw//vijqL0xb7zxBgwGg2hfYMytW7dQpEgRGAwGfq5ejocPH2L06NFo2bIlihYtCoPBYDaPNIfBYJDcKleuzNtxC55IbcZLLytt04yMDHzwwQdo0qQJIiMjERQUhOrVq2PWrFlmfZ0tbUoQhHpIDHs4/fv3R1ZWFtavXy+6Pz09HUlJSYiPj0dERIRd6zJ79mwMGDAAPXv2xDfffCO6mhfhWrz66qtYs2YNpkyZgh07duCFF15A9+7dJa83Y54+fYpmzZrhhx9+wCeffIKtW7ciIiICrVu3RkpKisA2JSUFbdq0QUREBLZu3YpPPvkEe/bsQbNmzfD06VOB7ccff4x//vkHHTp0gK+vr2T5K1euxGuvvYaoqCh88cUX2LhxI8qVK4devXrh448/FthmZmZi4MCBWL9+Pb777ju8+eabWLZsGeLi4pCdnS2wXb9+PeLi4hASEoK1a9ciOTkZY8aMgelDulGjRmHEiBF45ZVXsH37dowdOxbr169HixYtkJOTI7BdsmQJrly5gpdffhlFixaVPKdZs2bh8ePHmDBhAnbu3In/+7//w4kTJ/D888/jzJkzAtukpCQcOnQIVatWRc2aNSXz3LBhA44cOYJ+/fph69atWL58Ofz8/NCsWTOsXbtW8rjvvvsOW7Zs4VfHk+Ott96S7A/++ecfLFu2jF8mWo7U1FSzbd68eQAgWBK5Xbt2orYtWrQws1XaplevXsW8efPw/PPPY9myZdi2bRtee+01TJ06FfHx8YLv39o2JQjCSpwxuTGhH3Jzc1l0dDSLjY0V3b948WIGgH377bealms6qfy4ceMYADZs2DDJSe/VkpmZqUk+plizyIYn8t133zEAbP369YL0Fi1asOjoaJabmyt7/MKFCxkA9vPPP/NpOTk5rGrVqqxu3boC2xdeeIFVrVpVsEjETz/9xACwRYsWCWzz8vL4/wMDAwULlxjTqFEjFhMTI7B/9uwZq1y5MqtRo4Zs3RljbNGiRQwA++GHH/i0v//+mwUGBrIhQ4bIHvv3338zLy8vNmzYMEH6+vXrGQC2bNkyyXN67rnnzBbA4Lh165ZZ2vXr15mPjw/r37+/ZJ5vvfUWkxouxPLMzc1lNWrUYOXKlRM95sGDB6x48eJs7ty5kgtMcHz99dcsKCiIrVmzRnRRmWfPnvF9xp07d0QXz5GjT58+zGAwsIsXL8raPXr0iAUFBbEXX3xRkK60TR89esQePXpkZjt79mwGgB04cEA2T0ttShCE9ZBn2MPx8vJC7969cfz4cZw+fdps/6pVqxAVFYU2bdrwaYsXL0bNmjURFBSEQoUKoXLlyhg/frxV5T979gxDhgzBjBkzMHnyZMyfP1/wOJYxhkWLFqFWrVoICAhAaGgoXnvtNfz111+CfJo0aYJq1aph//79aNiwIQoWLIh+/frh8uXLMBgMmDNnDubOnYsyZcogKCgIDRo0ECwly3Hs2DF06NABYWFh8Pf3R+3atfHll19adW7GcKEV69evx5gxYxAVFYWgoCC0b98et27dwsOHDzFw4ECEh4cjPDwcffv2xaNHjwR5LFy4EC+99BKKFSuGwMBAVK9eHR9++KHAS3jx4kUEBwejS5cugmN//PFHeHl5YdKkSTafi1KSkpIQFBRkVpe+ffvixo0bOHz4sMXjK1WqhAYNGvBp3t7eeOONN3DkyBFcv34dAHD9+nUcPXoUCQkJ8Pb+b4X5hg0bomLFikhKShLkq3QqPx8fHwQFBQnsDQYDgoODFT214Dy0xnVavnw5MjMzMWbMGNljDx06hLy8PLRt21aQzoUTbN68WZCu9JyKFStmlhYdHY0SJUrg2rVrmuXp5eWF2NhYszw53nnnHURFRWH48OGyed+7dw9vvfUWPvjgA5QqVUrUhgtdsIaHDx/iq6++QlxcHMqXLy9ru2nTJjx69MhsuWalbRoYGIjAwEAz27p16wKAwNaaNiUIwnpIDBPo168fDAYDVq5cKUg/e/Ysjhw5gt69e8PLywsAsHHjRgwdOhRxcXFISkrCli1bMGLECGRmZqouNycnBz179sTSpUvxySef4L333jOzGTRoEBITE9G8eXNs2bIFixYtwpkzZ9CwYUOzGOabN2/ijTfeQI8ePZCcnIyhQ4fy+xYuXIjdu3dj3rx5+OKLL5CZmYm2bdsiPT2dt9m7dy8aNWqEBw8eYMmSJdi6dStq1aqFbt26YfXq1arPT4zx48fj9u3bWL16NT766CPs27cP3bt3R+fOnRESEoINGzZg9OjRWLdundkPjD///BM9evTAunXrsH37dvTv3x+zZ8/GoEGDeJsKFSrgs88+w9dff4358+cDANLS0tCjRw80btxYMpaSgzGG3NxcRZslfvvtN1SpUkUgBgGgRo0a/H5Lx3O2Ysdzj6C5fKRsLZUjxbBhw3Du3Dl88MEHuHPnDu7evYs5c+bg+PHjGDVqlOgxubm5yMzMxE8//YRJkybhxRdfRKNGjfj9+/fvR1hYGH7//XfUqlUL3t7eKFasGAYPHoyMjAzejgut8PPzE+TPxe7++uuvVp2TGH/99ReuXLmC5557TrM8c3NzceDAAdE89+zZg7Vr1/LvB8gxfPhwlClTBv/73/80q5sxGzduRGZmppnAFWPFihWiPzTFUNOmXBywJVupNuV+aFu6twmCkMHZrmlCH8TFxbHw8HCWnZ3Np73zzjsMALtw4QKf9r///Y8VLlzY5vJiYmIYAAaAjR8/XtQmNTWVAWAfffSRIP3atWssICCAjR49WlB/mDySZoyxS5cuMQCsevXqgsfyR44cYQDYhg0b+LTKlSuz2rVrCx61M8ZYfHw8i4qK4h8bWxMmwR3Tvn17QXpiYiIDwIYPHy5I79ixIwsLC5PMLy8vj+Xk5LC1a9cyLy8vdu/ePcH+IUOGMF9fX5aamspefvllVqxYMXbjxg2L9Vy1ahX/vVjaLFGhQgXWqlUrs/QbN24wAGz69Omyx/v4+LBBgwaZpf/888+C8IsvvviCAWCpqalmtgMHDmS+vr6SZciFSTDG2JYtW1hISAh/zgEBAezzzz8XteWuV25r27Yty8jIENhUqlSJ+fv7s0KFCrHp06ezvXv3sg8//JAFBASwRo0a8Y/7T548yQCw999/X3D8Dz/8wADInpNcmIQpOTk5rEmTJiw4OJhdvXpV0k4uTEKMCRMmMABsy5YtgvSHDx+y0qVLs3HjxvFpUmES27dvZz4+Puz06dOMsf/uIdMwCWPUhknUq1ePFS5cmD158kTW7ty5cwyA6PVoitI2ZYyxU6dOsYCAANapUyeL+Uq16b59+5iXlxd77733LOZBEIQ4QpcN4bH0798fvXr1wrZt29C5c2fk5ubi888/R+PGjVGhQgXerm7duliwYAG6d++O119/HY0aNbJ6adBatWrh3r17WLBgAdq3b4/69esL9m/fvh0GgwFvvPGGwBMZGRmJmjVrms3mEBoaipdfflm0rHbt2gm8UJwX8cqVKwCAP/74A7///jvmzJkDQLhyXtu2bbF9+3acP38eVapUsepcOUzfmufya9eunVn6li1b8OjRIwQFBQEATpw4gSlTpuCnn37CvXv3BPYXLlxAvXr1+M8ff/wxDh06hKZNmyI7Oxs7d+5EVFSUxfq1b98eR48etercxJB7fK3k0baa46VsrX2EvnPnTrzxxhvo0qULunbtCm9vb2zbtg19+vRBdnY2+vbtK7CvXr06jh49isePH+PkyZOYOXMmWrRogR9//BEFCxYEkB8WlJWVhSlTpmDs2LEA8kN8fH19kZiYiB9++AHNmzdHzZo18dJLL2H27NmoVKkSWrRogbNnz2Lw4MHw8vLSZNVGxhj69++PAwcOYPPmzShZsqTNeQL5oSAffPAB3nnnHbzyyiuCfWPHjoWPjw8mT54sm0d6ejoGDRqEMWPGoFq1aprUy5QzZ87g8OHDsi/ncaxYsQIALHqQ1bTp5cuXER8fj5IlS2L58uWy+cq1aVxcnKInNQRByOBsNU7og8ePH7OQkBDeQ7N161YGgK1evdrMduXKlaxBgwbMy8uLGQwGVrduXbZr1y5V5XHeoL/++ovFxMSw4OBgwYtSjDH25ptvynomy5Yty9vGxcWxqlWrmpXDeYZnz55ttg9GHqSDBw9a9ITu37+fMWabZ9jUq8V5Yo8ePSpInzJlCgPA7ty5wxhj7MqVKywwMJA9//zzbN26dezAgQPs6NGj/EtmYnXhXsx5/vnnFdfz2bNnLCcnR9Fmifr167MXXnjBLP23335jANjSpUtlj4+MjGRdunQxS9++fTsDwL7//nvGGGM7d+5kANh3331nZvvaa6+xqKgoyTKkPMPPnj1jUVFRrG3btmb7evXqxQIDA0VfhjLm0KFDDACbO3cun1a/fn0GgP3yyy8C2/PnzzMAbNasWXzarVu3WJs2bfjrz9fXl40ZM4bFxsbKvkSlxDP87Nkz1q9fP1agQAG2bt06WVvGlHuGV65cyQoUKMAGDhxo9iLs4cOHmcFgYElJSez+/fv8VrJkSdaqVSt2//59lpWVxZdXunRplpaWxtt9++23DABbs2YNu3//vuiLtmo8wyNGjGAA2IkTJ2TtsrOzWbFixVjNmjVl7dS06eXLl1np0qVZmTJl2LVr12Rt5dqUIAhtoJhhAgAQEBCA7t27Y+fOnbh58yZWrlyJQoUKicbH9e3bFz///DPS09Px3XffgTGG+Ph43suqhjJlymDfvn0ICwtDq1at8PPPP/P7wsPDYTAYcPDgQRw9etRs27JliyAvaz2AXFkAMG7cONGyjh49ilq1almdv61s2bIFmZmZ+Oabb/DGG2/gxRdfRJ06dSSnBvvtt98wefJkvPDCC/jll18wd+5cReWsWbPG4nLS3GaJ6tWr49y5c2ZeK+5FTUsev+rVq4u+1Gl6PPdXytYaz+KtW7dw8+ZN/uUmY1544QVkZmbi8uXLsnnUqVMHBQoUwIULF/g0sbhmAPy0WsYe32LFiiE5ORm3bt3CqVOncPv2bUybNg0XLlzASy+9pPqcjMt68803sWrVKixfvhxvvPGG1XkZs2rVKrz55pvo3bs3lixZYnY/nj17FowxdOrUCaGhofx27do1fP/99wgNDcXixYsB5F+/ly9fRmRkJG/Xvn17AEDv3r0RGhoqiPdXS3Z2NtatW4fY2FiL9/X27dtx+/ZtWa+wmja9cuUKmjRpAsYY9u7dixIlSkjaWmpTgiC0gcIkCJ7+/ftjyZIlmD17NpKTk9GnTx/+8a4YgYGBaNOmDbKzs9GxY0ecOXMGMTExqsstXbo09u3bh6ZNm6J169bYsWMHGjVqhPj4eMycORPXr19H165dbTk1i1SqVAkVKlTAqVOnMH36dLuWZQ3cIGj8QhVjDJ999pmZbWZmJrp06YLSpUtj7969GDt2LMaOHYtGjRoJQinE0DJMolOnTvjss8+wefNmdOvWjU9fs2YNoqOjLdalU6dOGDp0KA4fPszbcuE79erVQ3R0NACgePHiqFu3Lj7//HOMGjWKD4c5dOgQzp8/j8TERNV1Dw0Nhb+/v+iMI6mpqShQoIDFsJOUlBQ8e/ZMMEtB586dsWzZMuzYsQO1a9fm05OTkwHALFQIyBfF3OwC8+fPR2ZmptUvlDHGMGDAAKxatQpLly41C/WwltWrV+PNN9/EG2+8geXLl4uKttatW2Pv3r1m6a+//jrKlCmDGTNm8G01b948s4WATp48iREjRmDq1KmIi4vjw4esYdu2bbh79y6mTZtm0XbFihXw9/dHz549RferadOrV6+iSZMmyMvLw759+2T7SyVtShCENpAYJnjq1KmDGjVqYN68eXzsmykDBgxAQEAAGjVqhKioKKSlpWHGjBkICQnBCy+8YHXZMTExAkGcnJyMxo0bY+DAgejbty+OHTuGl156CYGBgbh58yYOHjyI6tWrY8iQIbacsoClS5eiTZs2aNWqFfr06YPixYvj3r17OHfuHH755Rd89dVXmpWllhYtWsDX1xfdu3fH6NGjkZWVhcWLF4uuRjZ48GBcvXoVR44cQWBgID766COkpqbi9ddfx4kTJ1C4cGHJcooUKYIiRYpoUuc2bdqgRYsWGDJkCDIyMlC+fHls2LABO3fuxOeffy6I4e7fvz/WrFmDP//8kxcI/fr1w8KFC9GlSxfMnDkTxYoVw6JFi3D+/Hns2bNHUNasWbPQokULdOnSBUOHDsXt27cxduxYVKtWzUycpKSk4M6dOwCAvLw8XLlyhV/VLC4uDkWLFoWfnx+GDh2KuXPnolevXujWrRu8vLywZcsWrF+/Hv3790dYWBiAfM/hZ599hg4dOiAmJgY5OTk4duwY5s2bh/Llyws8ii1btkT79u0xbdo0PHv2DPXr18exY8fw3nvvIT4+Hi+++CJvy/3QKVeuHB48eIAdO3ZgxYoVmD59Op5//nnBOR07doz3VGdkZIAxxp/TCy+8wLfp8OHDsWLFCvTr1w/Vq1cXiH0/Pz+BQL9y5Qr/w+jPP/8EAD7P0qVLo06dOgCAr776Cv3790etWrUwaNAgHDlyRFC32rVrw8/PD5GRkYiMjIQp/v7+KFKkiGDVPDlv7XPPPWe2wt6OHTuQmZmJhw8fAsj3QnN1bdu2rdmP+hUrViAgIAA9evSQLAcAbty4gZ07d6Jbt24IDQ0VtVHaprdv30bTpk1x8+ZNrFixArdv3xaskFiiRAneS6y0TQHw/eaUKVNoRgmCsBYnhWcQOuWTTz5hAETjbxljbM2aNaxp06YsIiKC+fr6sujoaNa1a1f266+/qipH6g3yq1evsnLlyrHAwECWkpLCGMuPmatXrx4LDAxkAQEBrFy5cqxXr17s2LFj/HFxcXHsueeeM8tPacwwx6lTp1jXrl1ZsWLFmI+PD4uMjGQvv/wyW7JkCW/jjJhhxhj79ttvWc2aNZm/vz8rXrw4e/fdd9mOHTsEdfnss88YALZq1SpBfn/88QcLDg5mHTt2VFxnLXj48CEbPnw4i4yMZL6+vqxGjRqCGTw4evfuzQCwS5cuCdLT0tJYr169WFhYGPP392f169dnu3fvFi1r165drH79+szf35+FhYWxXr16iS5ewM08IrYZf6d5eXnss88+Y3Xq1GGFCxdmwcHBrHbt2mzBggWCWVfOnTvHXnvtNRYTE8P8/f2Zv78/q1y5Mnv33XfZP//8Y1b+48eP2ZgxY1jJkiWZt7c3K1WqFBs3bhwfL8uxdOlSVqVKFVawYEEWFBTEGjdubDaTgGn7iW3G14LxLC6mW0xMjCBPuZlFjOOs5coW+05NsbToBofcbBJy52Va/tWrV1mBAgVYr169LJb5wQcfMADsxx9/lK2/kjbl6i+1GfdFatqUi6U27qMIglCHgTGTNUAJgiAIgnAJRo8ejQ0bNuDixYu0hD1BWAm9QEcQBEEQLsrevXsxadIkEsIEYQPkGSY0xdJ8lwUKFNBkjlS9wBhDXl6erI2Xlxe9/EIQBEEQOsV9VAmhCyxNx9WvXz9nV1FTUlJSLJ7zmjVrnF1NgiAIgiAkIM8woSnHjh2T3R8eHo7SpUs7pjIO4OHDhzh//rysTZkyZTSboYEgCIIgCG0hMUwQBEEQBEF4LBQmQRAEQRAEQXgsJIY9hE6dOiEgIMBsVSdjevbsCR8fH9y6dUuzckuXLo34+Hiz9OXLl8PLywsdOnRAVlaWZuVpyb59+2AwGLBv3z5nV8Vt2LNnD1q0aIHo6Gj4+fmhWLFiePnll/kV2JTAGMOqVatQt25dBAYGIjg4GM8//zy2bt3K29y8eRMTJ05EgwYNEB4ejuDgYMTGxmLZsmVmLzyePHkS7dq1Q6lSpRAQEICwsDA0aNAAn3/+ucAuLy8Pc+fORevWrVGiRAkULFgQVapUwdixY83uq8zMTLz++uuoVKkSChUqhMDAQDz33HP4v//7P2RmZgps//77byQmJiIuLg6FCxeGwWDA6tWrzc778uXLMBgMklvr1q0F9hcuXEDnzp0RGhqKggULol69eti2bZtZvmfOnMHQoUPRoEEDBAYGyl7zb775JqpVq4bChQsjICAAFStWxLvvvou7d+8K7Pr06SNbV9OV/X755Rc0b94cQUFBKFy4MF599VX89ddfonX49NNPUblyZfj5+aFMmTJ47733kJOTI2q7detWxMXFITg4mP8Oli1bJrB5+vQpZs+ejWrVqiEwMBARERFo06aNYGl4LdmzZw8aNGiAggULIjw8HH369BEsvgHIf9cbN260S70IwpMhMewh9O/fH1lZWVi/fr3o/vT0dCQlJSE+Ph4RERF2rcvs2bMxYMAA9OzZE9988w1NCeRB/PPPP3juuefw8ccfY9euXVi6dCl8fHzQrl07M/EpxZAhQzBkyBA0a9YM27Ztw1dffYUePXrg8ePHvM3x48exdu1aNGvWDGvXrsXmzZsRFxeHIUOGYMCAAYL8Hjx4gJIlS2L69OlITk7G2rVrUbp0aSQkJOD//u//eLsnT55g6tSpiImJwbx585CcnIwBAwZg2bJlaNSoEZ48ecLb5uTkgDGGkSNHYvPmzdi6dSs6d+6MadOm4ZVXXhGU/8cff+CLL76Ar68v2rZtK3neUVFRSE1NNdvGjBkDIP8HL8fly5fRoEEDnD9/HkuWLMFXX32FokWLomPHjti8ebMg32PHjmHLli0ICwtDs2bNZNs+MzMTAwcOxPr16/Hdd9/hzTffxLJlyxAXF4fs7GzebtKkSaJ1DQ8PR/HixQWrVf7+++9o0qQJsrOz8eWXX2LlypW4cOECGjduzK8UyPHBBx/g7bffxquvvorvv/8eQ4cOxfTp0/HWW2+Z1XXmzJl49dVXUa1aNXz55ZfYtm0bhg4dKqgnkL+q5tixY9GxY0d8++23WLhwIe7cuYO4uDizld9sJSUlBW3atEFERAS2bt2KTz75BHv27EGzZs3w9OlTM/thw4aZtWGLFi00rRNBEKAV6DyF3NxcFh0dzWJjY0X3L168mAFg3377rablmq4uNW7cOAaADRs2jD179kyTMjIzMzXJxxRrVpoj1JOdnc2KFy/OGjdubNE2KSmJAWCbNm2Stbt3755glTiOt956iwFgV69etVhWvXr1WMmSJfnPubm57O7du2Z2X331FQPA1q1bZzHP0aNHMwDszz//5NPy8vL4/48ePSq6gqAcTZo0YQULFmTp6el82qBBg5i/vz/7+++/BfWvUqUKK1mypKBM4/+5c1FzzS9atIgBYD/88IOs3b59+xgANnHiREF6ly5dWHh4uKD+ly9fZj4+Pmz06NF82t27d5m/vz8bOHCg4PgPPviAGQwGdubMGT7t2LFjrECBAmzWrFmydcrKymJeXl7sjTfeEKTfuHGDAWDDhw+XPV4tL7zwAqtatSrLycnh03766ScGgC1atIhPk1s5kyAI7SHPsIfg5eWF3r174/jx4zh9+rTZ/lWrViEqKgpt2rTh0xYvXoyaNWsiKCgIhQoVQuXKlTF+/Hiryn/27BmGDBmCGTNmYPLkyZg/f75g7l3GGBYtWoRatWohICAAoaGheO2118welTZp0gTVqlXD/v370bBhQxQsWBD9+vXjHyvOmTMHc+fORZkyZRAUFIQGDRqYPZIF8r1hHTp0QFhYGPz9/VG7dm18+eWXVp2bMVxoxfr16zFmzBhERUUhKCgI7du3x61bt/Dw4UMMHDgQ4eHhCA8PR9++ffHo0SNBHkrbYvfu3XjllVdQokQJ+Pv7o3z58hg0aJDZI+upU6fCYDDgzJkz6N69O0JCQhAREYF+/fohPT3d5nO2FR8fHxQuXBje3t4WbT/55BOULl0aXbt2lbULDQ2Fj4+PWXrdunUB5IcmWCI8PFxQJy8vL9FZQbg8r127ZjHPokWLAoAgX1vm3f7zzz+RkpKCrl27Ijg4mE//6aefULNmTRQvXlxQ/zZt2uDatWsCj6et836LnZMYK1asgMFgEEyvmJubi+3bt6Nz586C+sfExKBp06ZISkri03bu3ImsrCz07dtXkG/fvn3BGMOWLVv4tAULFsDPzw/Dhg2TrRM373lISIggPTg4GAUKFDB7apWWloZBgwahRIkS8PX15cM0LM2vDgDXr1/H0aNHkZCQIGirhg0bomLFioJzJQjCsZAY9iD69esHg8GAlStXCtLPnj2LI0eOoHfv3vDy8gIAbNy4EUOHDkVcXBySkpKwZcsWjBgxwizeUQk5OTno2bMnli5dik8++QTvvfeemc2gQYOQmJiI5s2bY8uWLVi0aBHOnDmDhg0bmsUw37x5E2+88QZ69OiB5ORkDB06lN+3cOFC7N69G/PmzcMXX3yBzMxMtG3bViD69u7di0aNGuHBgwdYsmQJtm7dilq1aqFbt26isZrWMH78eNy+fRurV6/GRx99hH379qF79+7o3LkzQkJCsGHDBowePRrr1q0z+4GhtC3+/PNPNGjQAIsXL8auXbswefJkHD58GC+++KJoDGXnzp1RsWJFbN68GWPHjsX69esxYsQIi+fy7Nkz5ObmWtwsLT4ilueNGzcwZcoUXLhwAe+8847sMbm5uUhNTUXt2rUxd+5cxMTEwMvLC2XLlsWcOXPAFEyM8+OPP8Lb2xsVK1aUrNOdO3ewaNEifP/993wIgqU8AeC5554z28cYQ25uLjIyMrBz50589NFH6N69O0qVKmUxXyWsXLkSjDG8+eabgvTs7Gz4+fmZ2XNpv/76q03l5ubmIjMzEz/99BMmTZqEF198EY0aNZK0T09Px9dff41mzZqhTJkyfPqff/6JJ0+eoEaNGmbH1KhRA3/88Qf/TsFvv/0GAKhevbrALioqCuHh4fx+ANi/fz+qVKmCzZs3o1KlSvDy8kKJEiUwduxYQZiEj48Phg4dijVr1mDLli3IyMjA5cuXMWDAAISEhAhCatLS0lC3bl18//33mDx5Mnbs2IH+/ftjxowZZqE3YnD1kzpX4/pzzJw5E76+vihYsCBefPFF0Zhv7gf41KlTLdaBIAgJnOmWJhxPXFwcCw8PFzxCfueddxgAduHCBT7tf//7HytcuLDN5cXExDAADAAbP368qE1qaioDwD766CNB+rVr11hAQIDgUWlcXJzoI1nusWL16tVZbm4un37kyBEGgG3YsIFPq1y5Mqtdu7bgUSVjjMXHx7OoqCj+sbE1YRLcMe3btxekJyYmij527dixIwsLC7OqLYx59uwZy8nJYVeuXGEA2NatW/l9U6ZMYQDYhx9+KDhm6NChzN/f32K4Cne8pS0mJkY2H2NatWrFHxccHMy++eYbi8fcvHmTty9RogRbs2YN++GHH9jgwYNlry+O77//nhUoUICNGDFCdP+gQYP4Ovn6+goeW0vx999/s4iICFanTh1BuAHHhg0bBG3Ut29fs+vOGDVhErm5uax48eKscuXKZvs6duzIChcuzB4+fChIb9y4MQPApk+fLpqnkjAJ7hrltrZt27KMjAzZunJhWMb3IWP/hQiYpjPG2PTp0xkAduPGDcYYYwMGDGB+fn6i+VesWJG1bNmS/+zn58cKFSrEQkND2YIFC9iPP/7IJkyYwLy8vFiPHj0Exz579oxNnjyZFShQgD+nUqVKsRMnTgjsBg0axIKCgtiVK1cE6XPmzGEABGEaYnzxxRcMAEtNTTXbN3DgQObr68t/vnHjBhswYAD78ssv2YEDB9gXX3zB6tevzwCwzz77THDsvn37mJeXF3vvvfdkyycIQhoSwx7G2rVrGQD29ddfM8YYy8nJYREREWbxmpzd66+/zrZs2cLu3LljVXkxMTGsVq1arFSpUiw4OFh0IJgwYQIzGAzs1q1bLCcnR7DVr1+f1a1bl7eNi4tjoaGhZnlwYnjs2LGC9KysLAaAzZw5kzHG2MWLFxkANmfOHLOyuNjHs2fPMsZsE8NLly4VpC9dupQBYN9//70gnYuh5kSLmra4desWGzRoECtRooRgIDc+X8b+E7O///67oOwlS5YwACwtLU32nK5fv86OHj1qcfv1118Vt9OFCxfYkSNH2NatW1mXLl2Yj48PW79+vcV6cOdneh117NiR+fv7m4k/juPHj7OQkBDWsGFDlpWVJWpz5coVdvToUfbdd9+xwYMHswIFCsjGbP7zzz+sRo0arFixYoIYYGPu3bvHjh49yn788Uf2wQcfsODgYNahQwdR4cyYOjG8fft2ybjSPXv2MIPBwDp16sT+/PNPlpaWxiZOnMi8vLzMrg9jlIjhR48esaNHj7KUlBT2ySefsKioKFavXj3Z2P06deqwIkWKmLU9J4Y3btxodgwnhm/evMkYyxfD/v7+ovlXrFiRtWrViv/s4+MjKrK5H6UXL17k095//31WsGBBNm3aNLZ37162detW1qJFCxYeHs5++eUX3q548eKsffv2ZvflmTNnBDG/ubm5gv3cd82J4UOHDpnVf+DAgZJCnyM7O5vVrl2bFSlSRPYHFUEQ6iEx7GE8fvyYhYSE8C+1bd26lQFgq1evNrNduXIla9CgAfPy8mIGg4HVrVuX7dq1S1V53At0f/31F4uJiWHBwcHs559/Fti8+eabsh7HsmXL8rZxcXGsatWqZuXIvXACgE2ZMoUxxtjBgwctejj379/PGLNNDH/11VeC9FWrVjEA7OjRo4J0TqhyPzaUtkVeXh6rWbMmK1q0KJs/fz7bu3cvO3LkCDt06JDgfMXKMK3TpUuXZM8pLy/PTACIbcYeebW0bt2ahYaGSopExvKvXYPBwIKDg832cT82Dh8+bLbvl19+YWFhYaxOnTrswYMHius0ePBg5u3tzW7fvm227969e+z5559nRYoUYadOnVKc58aNGxkASU+4GjHcqVMn5uPjw27duiW6f/Xq1axIkSL8tVO1alVeYEq97GfNC3TcNTd37lzR/adOnWIA2Ntvv2227/fff2cA2MKFC832jRo1ihkMBvbkyRPGGGNjx45lAERFd3h4OOvevTv/OTIykgFg9+7dE9h9//33DPjvBcyzZ88yg8Fg1m9kZ2ez8uXLsyZNmvBp3t7esvfmtGnTGGP/Pb3itt69ezPGGNu5cycDwL777juz+r/22mssKipKrPkEzJw5U/CDnSAIbbD8xgrhVgQEBKB79+747LPPcPPmTaxcuRKFChVCly5dzGz79u2Lvn37IjMzE/v378eUKVMQHx+PCxcuICYmRlW5ZcqUwb59+9C0aVO0atUKO3fuRMOGDQHkv6hkMBhw4MAB2ThHDuMX79QSHh4OABg3bhxeffVVUZtKlSpZnb+tKG2L3377DadOncLq1avRu3dvfv8ff/yheZ2mTZsmGudtSkxMDC5fvmxVGXXr1sXOnTtx584dyan9AgICUKFCBaSlpZntY//GC5u+DHbixAk0b94cMTEx2LVrl9mLUpbqtGTJEvz111/8S2IAcP/+fTRv3hyXLl3CDz/8IBoDKpcnkD8HsC3cvn0b27dvR4cOHVCsWDFRm969e6Nnz564ePEifHx8UL58ecyYMQMGgwGNGze2qXxj6tSpgwIFCkie04oVKwDALK4ZAMqVK4eAgADRl3pPnz6N8uXL8y+xcbHCp0+fRr169Xi7tLQ03L17F9WqVePTatSooeg6OXXqFBhjgqnegPxY4po1ayIlJYVPCw8PR40aNfDBBx+Inmd0dDQAYOnSpXj48KHgOAB8/U6fPm02hd7p06cF9ZdC6jonCMI2SAx7IP3798eSJUswe/ZsJCcno0+fPihYsKCkfWBgINq0aYPs7Gx07NgRZ86cUS2GgfwFODhB3Lp1a+zYsQONGjVCfHw8Zs6cievXr1ucJcBWKlWqhAoVKuDUqVOYPn26XcuyBqVtwf0gMBXMS5cu1bxOAwcOFF04xRQx8a4ExhhSUlJQuHBh0dkajOncuTNmzJiBn3/+mf8xBQDJyckICgoSvMR28uRJNG/eHCVKlMDu3bsRGhqqql579+5FgQIFULZsWT6NE8J//fUXdu/ejdq1a6vOEwDKly+v6jhT1q5di5ycHPTv31/WztvbG1WqVAGQ/xLbsmXL8Morr1h1/0qRkpKCZ8+eiZ7T06dP8fnnn6Nu3bqiYs/b2xvt27fHN998gw8//BCFChUCAFy9ehV79+4VvODZunVr+Pv7Y/Xq1QIxvHr1ahgMBnTs2JFP69y5M3bt2oUdO3agR48efHpycjIKFCjAi19OwB46dAhxcXGCev/yyy8oUaIEnxYfH4/k5GSUK1dO9lqS+jFdvHhx1K1bF59//jlGjRrFv6x86NAhnD9/HomJiZJ5AvkvIm/atAnh4eE2Xz8EQQghMeyB1KlTBzVq1MC8efPAGBMdUAcMGICAgAA0atQIUVFRSEtLw4wZMxASEmLmRVFDTEyMQBAnJyejcePGGDhwIPr27Ytjx47hpZdeQmBgIG7evImDBw+ievXqGDJkiC2nLGDp0qVo06YNWrVqhT59+qB48eK4d+8ezp07h19++QVfffWVZmWppVGjRoraonLlyihXrhzGjh0LxhjCwsLw7bffYvfu3ZrXKTo6mhcNtvLKK6+gZs2aqFWrFooUKYIbN25g9erVSElJwcKFCwVTTjVr1gwpKSmCaatGjRqFL774Al26dMH777+PEiVK4Ouvv8a2bdswZ84cBAQEAADOnz+P5s2bA8hfqOHixYu4ePEin0+5cuV4b+/AgQMRHByMunXrIiIiAnfv3sVXX32FTZs24d133+Xtnjx5glatWuHEiROYN28ecnNzBdP2FS1aFOXKlQOQf40dOHAALVu2RMmSJZGZmYkDBw7g008/RcOGDc0W3vj6668BgJ8+79ixYwgKCgIAvPbaa2btuGLFCpQsWRKtWrUSbefbt2/jo48+QqNGjVCoUCH8/vvv+PDDD1GgQAEsXLhQYPv48WN+BUDufFJSUnD37l3+hzAAbN++HZ999hk6dOiAmJgY5OTk4NixY5g3bx7Kly8v6vndsmUL7t27J7qP47333sMLL7yA+Ph4jB07FllZWZg8eTLCw8MFM4yEhYVh4sSJmDRpEsLCwtCyZUscPXoUU6dOxZtvvomqVavytn379sXSpUsxdOhQ3L17F1WrVsWePXuwcOFCDB06lP8x8OKLL+KFF17A1KlT8fjxY7z00ktIT0/Hp59+ikuXLmHdunV8ntOmTcPu3bvRsGFDDB8+HJUqVUJWVhYuX76M5ORkLFmyRCCexZg1axZatGiBLl26YOjQobh9+zbGjh2LatWqCaaMGzlyJHJyctCoUSNERkbi2rVr+PTTT3Hy5EmsWrWKF9IA+P50ypQpNKMEQViLE0M0CCfyySef8HGEYqxZs4Y1bdqURUREMF9fXxYdHc26du2q6iUpxswX3eC4evUqK1euHAsMDGQpKSmMsfwY5Xr16rHAwEAWEBDAypUrx3r16sWOHTvGHxcXF8eee+45s/yUxgxznDp1inXt2pUVK1aM+fj4sMjISPbyyy+zJUuW8DbOiBnmUNIWZ8+eZS1atODfmu/SpQu7evWq5jHDWjJr1iz2wgsvsNDQUObl5cWKFCnCWrVqxbZv325my8VemnL16lX2+uuvs9DQUObr68tq1KjBVq5cKbDhzk1qM47JXblyJWvcuDELDw9n3t7erHDhwiwuLs4srpa7xqQ2LjaUsfwXw+Lj41l0dDTz9fVlBQsWZDVr1mTvv/++aMyrXL6mcC+dTZ48WbKd//nnH9ayZUtWtGhR5uPjw0qVKsWGDRsm+iKs3HkZzxBy7tw59tprr7GYmBjm7+/P/P39WeXKldm7777L/vnnH9F6tGjRggUGBlqcbeLYsWOsWbNmrGDBgiw4OJh17NiR/fHHH6K2n3zyCatYsSLz9fVlpUqVYlOmTBFdYOWff/5hgwYNYhEREczHx4dVrFiRzZ492ywu/cGDB2zChAmsSpUqrGDBgqxYsWKsSZMmLDk52SzPO3fusOHDh7MyZcowHx8fFhYWxmJjY9mECRPYo0ePZM+RY9euXax+/frM39+fhYWFsV69epnFfa9YsYLVrVuXhYWFMW9vbxYaGspatWpl9gIuY4x9++23DICg7yIIQh0GxhRMzkkQBEEQhO4YPXo0NmzYgIsXL9LS9gRhJRSFTxAEQRAuyt69ezFp0iQSwgRhA+QZJqzC0vKj3DKn7gJjzOIKa15eXjbNdEEQBEEQhONxH7VCOBQfHx/ZrV+/fs6uoqakpKRYPOc1a9Y4u5oEQRAEQaiEPMOEVRw7dkx2f3h4OEqXLu2YyjiAhw8f4vz587I2ZcqUsTg1GEEQBEEQ+oLEMEEQBEEQBOGxUJgEQRAEQRAE4bHQoht25NmzZ7hx4wYKFSpEL1YRBEEQHgtjDA8fPkR0dLRbvVxNuAckhu3IjRs3ULJkSWdXgyAIgiB0wbVr1yyu1EcQjobEsB0pVKgQAODaX38h+N//s+Erae+LbIfUSwq5ummFPc/REfVXg7O/T4JwBnq7Dy3hzPvUUW1lzTlaWzepsjIePkTJsmX5cZEg9ASJYTvChUYEFyqE4OBgZMMXUtOi53cgzps0Xa5uWmHPc3RE/dXg7O+TIJwJCWLl6NUJobUY5qCQQUKPUOCOg9CzR9gReIpH2BfZHvF9EoQ7oac+xB448vzcvS0J94TEsAPQuxB25c5LT3XXw3dJEHrAFe8FZ/Ulem0rvdaLIOwBiWEnoofORq+P6JRAQpgg9Isr3hPuLIj11F8ShN4gMexA9DY4kBC2HQqLIAhpXPHe0EvfYg/Unpu13587tyHhntALdA5GL4MDCWHb0ct3SRB6xhfZurlnlcLV15H3uCu2k6PIyspCdrb234Wvry/8/elFZ4LEsEdCQth2SAgThHK4+0Uv969SsuHrdoJY7TlZWyet2i4rKwsBAYUBPLU5L1MiIyNx6dIlEsQEiWFPw1WFsB4GURLABGEbruj9JEHsXPI9wk8BNIe2kiUXaWl7kJ2dTWKYIDHsSdi7g3Vnb7CrDBwEoXdcVRADjusHXLGNxNBWdHsD8NEoL4IQQi/QOQhniykSwtbj7O+OINwNV33x1JH9kb3bSM25uOJ3ZS8WLVqEMmXKwN/fH7GxsThw4ICsfUpKCmJjY+Hv74+yZctiyZIlZjabN29G1apV4efnh6pVqyIpKUmwf//+/Wjfvj2io6NhMBiwZcsWszwePXqE//3vfyhRogQCAgJQpUoVLF68WGDz9OlTDBs2DOHh4QgMDESHDh3w999/q28EN4TEsANw9upGriiEHVFvpWTzw5L6jSAIaVxRZDn63nbFNjJGu7YqYIdNHZs2bUJiYiImTJiAEydOoHHjxmjTpg2uXr0qan/p0iW0bdsWjRs3xokTJzB+/HgMHz4cmzdv5m1SU1PRrVs3JCQk4NSpU0hISEDXrl1x+PBh3iYzMxM1a9bEggULJOs2YsQI7Ny5E59//jnOnTuHESNGYNiwYdi6dStvk5iYiKSkJGzcuBEHDx7Eo0ePEB8fj7y8PNVt4W4YGGPM2ZVwVzIyMhASEoL0O3cQHBzs8PJdUQQD+vAGOwNXH/QIwlpc9Z539D1rj3ZSeg62lO2L7PzxsGhRpKenqxoPuXEUaAttwyRyACSrqk+9evXw/PPPCzyuVapUQceOHTFjxgwz+zFjxmDbtm04d+4cnzZ48GCcOnUKqampAIBu3bohIyMDO3bs4G1at26N0NBQbNiwwSxPg8GApKQkdOzYUZBerVo1dOvWDZMmTeLTYmNj0bZtW7z//vtIT09H0aJFsW7dOnTr1g0AcOPGDZQsWRLJyclo1aqVojZwV8gz7KaQEHY9yLNMeCquHDbhTqETlsq2Fnfoy7Kzs3H8+HG0bNlSkN6yZUv8/PPPosekpqaa2bdq1QrHjh1DTk6OrI1UnlK8+OKL2LZtG65fvw7GGPbu3YsLFy7wIvf48ePIyckRlBUdHY1q1aqpLssdoRfo3BASwu6DM+Y7JQhCHa4844QrzSxhDzIyMgSf/fz84OfnZ2Z39+5d5OXlISIiQpAeERGBtLQ00bzT0tJE7XNzc3H37l1ERUVJ2kjlKcX8+fMxYMAAlChRAt7e3ihQoACWL1+OF198ka+Lr68vQkNDbS7LHSHPsJthT0FpL68EeUEtQ+1DeAKuLMo8yUvsHHztsAElS5ZESEgIv4mFOxhjMBgEnxljZmmW7E3T1eYpxvz583Ho0CFs27YNx48fx0cffYShQ4diz549ssdZU5Y7Qp5hN8LeQtgekMhThmcNeoQn46oLdHB4uqdVCr1+n9euXRPEDIt5hQEgPDwcXl5eZl7U27dvm3l2OSIjI0Xtvb29UaRIEVkbqTzFePLkCcaPH4+kpCS0a9cOAFCjRg2cPHkSc+bMQfPmzREZGYns7Gzcv39f4B2+ffs2GjZsqLgsd4U8w26CvToae3of9No56gnP8/4QhOvjSC8x9Q+2ERwcLNikxLCvry9iY2Oxe/duQfru3bslxWSDBg3M7Hft2oU6derAx8dH1kaNQM3JyUFOTg4KFBBKOi8vLzx79gxA/st0Pj4+grJu3ryJ3377jcQwyDPsFthTCNsLEsLy0ABHEK6Pu3mJ3WUxEGsZOXIkEhISUKdOHTRo0ADLli3D1atXMXjwYADAuHHjcP36daxduxZA/swRCxYswMiRIzFgwACkpqZixYoVglki3n77bbz00kuYNWsWXnnlFWzduhV79uzBwYMHeZtHjx7hjz/+4D9funQJJ0+eRFhYGEqVKoXg4GDExcXh3XffRUBAAGJiYpCSkoK1a9di7ty5AICQkBD0798f77zzDooUKYKwsDCMGjUK1atXR/PmzR3RfLqGxLCL42pC2JM7UiW408BJEIRjXoL1DJHqC22nVlMfJ9utWzf8888/mDZtGm7evIlq1aohOTkZMTExAPI9rcZzDpcpUwbJyckYMWIEFi5ciOjoaMyfPx+dO3fmbRo2bIiNGzdi4sSJmDRpEsqVK4dNmzahXr16vM2xY8fQtGlT/vPIkSMBAL1798bq1asBABs3bsS4cePQs2dP3Lt3DzExMfjggw94oQ4AH3/8Mby9vdG1a1c8efIEzZo1w+rVq+Hl5aW6LdwNmmfYjth7nmESwu4DiWCCEOKu/YUe+1c1dbK2nIyMDBQtGmLDPMNdof08w1+qrg/hnpBn2EVx5uTranHXQc1WSAAThOdB0yUShP4gMeyCkBB2XWgAJAgCEPaN1C8owRvaeobpoTjxHySGXQxXEcIkgv+DBjqCIOQgbzFBOBcSwy4ECWHXgQY1grANLV8KM74f9dw/kSgmCOdAYthF0LoDp7AI7aEBjCC0RStBzE1x5ir9k1pR7CrnRRB6hcSwB0LeYO0gAUwQ9kVLQWyaryUbZ0Nxxcb8t4QyQWgNiWEXQMsOmoSw7dCgRBCujdQ9rOeloPVYJ4JwF0gM6xi9h0Z4UudMApggnIfWIQ6WVoZzlRhjgiC0gcSwh0BCWD0kgAlCP9hDEHP5WirX2J4gCPeDxLBO0XNohDsPCiSACUK/2OMlOEteYuOyOXt3Qm2f57wXEX1A8wwT9oLEsA4hIexYSAAThOvgTEHMlW98HEEQrk8BZ1eAsB8khKXxRTa/EQThWujlRWDqQwjCPSDPsM6wxyTztuLqIpgGK4IglGDtohfkLSYI14bEsI4gIWw9JHgJwrOwZ+yqmrAJU5QIYyV567nvdU7csD8APw3zowfjxH+QGNYJehPCeuqISegSnoKa+85UkNB9oi1aLI1s67GO6IdtEf4E4S6QGCbMcLYQpo6ZcGe0ur+cfZ/qAUcIRi1EsbW46wwWBKE3SAzrAL15hZ2BK9edIMRwtIBxpofPlnAAW/EED6rzpjPTE1pPrfZMw7wIV4fEsJPRkxB2RmdLIphwVUicWMbdwjhIEP+H3upDELZAYtiJeLIQdoeBkXBPaIBXj5LH+fYUko4UZs4Om7DHeVLcMOHpkBh2Ep4qhKnDJdQgd23aci2R4LUPlmZSME3Tsj9wtKfSWaKYPLIEoT0khl0YVxLCJIIJS6i9FkkQmKOphy8r67///f21ydMEd/BIOuMc9CKIHVsP3383raDlmIn/IDHsBLToPEgIE+6CHgZ1j8ZY9Cq1USCOlQolLT2szhKJzvASa32u7vDDhCCshWaddjCeJIRpqVJCDm5BbMKJKBHCUsdxmwxq+gB3uBY88d0LPdSBIGyFxLAD8TQhTLgG2bxk8XWYQHUH4aNXFLettUJYLB8FolgJeukjbcGVf+S5ar0JwlYoTMIB6KlztHc9nD0QyaGnlxb1gLPe/NfLveDRWBMaYYppqARnLxFCoXQBCXd5XO+o0Am9xA/bHx9oGzNM8wwT/0Fi2IXQ+9vzehrA7Hm+zpxaSSs8Y/AkJPH3lxe7asWysQC2IIodgZ4EoiP6Cy3P15ofI3pqb4KwBgqTcBH0LLycHRvsjMf8noC95jMl7I/D21ksVEIifEJJf+EO4RKm2Ltv0vJ8ramn3tqbINRAYtgFsLWTcZUOWA0kfK3HldvM/GcPvaRpFyx5daU8x1KiWARHLdWsN1ylP3blfoIg1EJhEjpHr0LYmSKYcE1s+e70KGpsQc27a3aLNrAUKiEFd4zcdGumoRJZWaInIvd43V1ih8WwZ+iEM0Mm7Bsu4fPvphV5GuZFuDokht0Up4tGK+YllcLp5yKCqw7SemxLSzjikboj0WoSB02QE8Ri4lYsncvDUqywSkGs1T2m53hWe4liZ8cQE4SrQWJYx1jbATn1MRyJYEJD3K29dSWE1aBEGBvvl/IIywhiwL5PsvTYn3Do/aVcvdePIGyFxLBOcUSnIzEuSaJaCFuJHgctdxgErGlXZ3qFlJSrx2tFCt0KYSWdgJgAtjQbhUpBDLjOjAv2Qsv7zR4/MJTUz94/bAjCHpAY1iGOmELNOOxPyVgoWScNR3i9dp7uIIRdDWpznSEVDyz2v7GdFYLYnriKIAb0GyaitH7at7UvaJ5hwl6QGHYT1IpgNVgthBUOdnodnNxJkOm1jcXwpOV7LWGNXtT6ujVuZ19ky4dGKPUWOxFXEMSA9l5irc9ZqZfYFdqaIGhqNZ1hTwGmVghLTlulYPlVJYOeXqdGo+m69I89f/zZC6U60N//v00tWk+tZdrOZlMacpU0/cth2ldI/e9gXOX+1rJ/tEe/pqQPd5W2JjwbEsNugKXOSEy7WhpwrRbBXOYy6FUEA+7Zceu1ra1B7trhLk/jzThdDxjfd1KbNSgWOmKNpLCBTM3478K08mpOxMmC2BXud63vX3ucsxJBbHu53vhvejUtNusejC9atAhlypSBv78/YmNjceDAAVn7lJQUxMbGwt/fH2XLlsWSJUvMbDZv3oyqVavCz88PVatWRVJSkmD//v370b59e0RHR8NgMGDLli2yZQ4aNAgGgwHz5s0T3c8YQ5s2bRTl5SmQGNYR1nQW9hA6kkJYCTKDoN5FsCsMjGrRa3vLIVZnS9eO0tWD9SKKtULRdatU8MrsN3XoGmcn8BIb3/9SCl9nX4Ir3Pda95329BK7Yp+jlE2bNiExMRETJkzAiRMn0LhxY7Rp0wZXr14Vtb906RLatm2Lxo0b48SJExg/fjyGDx+OzZs38zapqano1q0bEhIScOrUKSQkJKBr1644fPgwb5OZmYmaNWtiwYIFFuu4ZcsWHD58GNHR0ZI28+bNg8FgUHHm7o+BMcacXQl3JSMjAyEhIbhzJx3BwcGytvYQwnJjjmqPsBIsCGE94goDoS3obVlbNfVR+la6tdpKB+GrVqHJrC6WpkA0+sy1v9R7c4I6SS3IYYqpaNYBeu2jTLFnTLiWmNYzIyMDIUWLIj3d8nhodlxICIA5AAI0rOETAKNU1adevXp4/vnnsXjxYj6tSpUq6NixI2bMmGFmP2bMGGzbtg3nzp3j0wYPHoxTp04hNTUVANCtWzdkZGRgx44dvE3r1q0RGhqKDRs2mOVpMBiQlJSEjh07mu27fv066tWrh++//x7t2rVDYmIiEhMTBTanTp1CfHw8jh49iqioKMm8PA3yDOsAlxfCMo9F9eopcFdPsDF6bHc1KLl2bHEy6sxBKYuipaelvL9KQiJkQie4MuWcvIKQCc5YKTr5IlylT7BH2IS9QidcoQ/KyMgQbE+fPhW1y87OxvHjx9GyZUtBesuWLfHzzz+LHpOammpm36pVKxw7dgw5OTmyNlJ5SvHs2TMkJCTg3XffxXPPPSdq8/jxY3Tv3h0LFixAZGSkqvzdHRLDbogmQliDZ8p67QhdYcCzFU9oey00lN5DJxQLYLFpzSylK91EipT7bJUg1hGu0D+4itAEtAyf8LXDBpQsWRIhISH8JubhBYC7d+8iLy8PERERgvSIiAikpaWJHpOWliZqn5ubi7t378raSOUpxaxZs+Dt7Y3hw4dL2owYMQINGzbEK6+8oipvT4CmVnMyWnuFNZk6TU0mIgOeXjtpVxjktEDr2EJPwPSxv7OxOhRCyuur9Hip+virvK64WAqp6dZ0Ms2aFK4yJZjep19zBa5duyYIk/Dz85O1N421ZYzJxt+K2Zumq83TlOPHj+OTTz7BL7/8Innctm3b8OOPP+LEiROK8/UkyDPsRBwthMXGHquFsERohF47U08Rda6AFt+Fvby5zvQUWwyFUOMFVpJm6gF+8ED6/wcP4JuVAV9kq5/1QsxYx0KYw5XCJrTqd13hfLUmODhYsEmJ4fDwcHh5eZl5bG/fvm3m2eWIjIwUtff29kaRIkVkbaTyFOPAgQO4ffs2SpUqBW9vb3h7e+PKlSt45513ULp0aQDAjz/+iD///BOFCxfmbQCgc+fOaNKkieKy3BXyDDsJZwthrV+UIxGsD/T6Pbgalt4v0xK7eoHlPov9b+yx5f43OXlf7qO/hWtN7E07F8RVPKZaeYld5Xwdja+vL2JjY7F792506tSJT9+9e7dk2EGDBg3w7bffCtJ27dqFOnXqwMfHh7fZvXs3RowYIbBp2LCh4rolJCSgefPmgrRWrVohISEBffv2BQCMHTsWb775psCmevXq+Pjjj9G+fXvFZbkrJIadgLOFsFWZyGRm7QIIThUYbobDptjTAc7w3BqXqdV1q5kIViuKpUSw2H7TSZALF+bTxUSTlo/t9YTSmU2cjbu2fz5aL8ecp/qIkSNHIiEhAXXq1EGDBg2wbNkyXL16FYMHDwYAjBs3DtevX8fatWsB5M8csWDBAowcORIDBgxAamoqVqxYIZgl4u2338ZLL72EWbNm4ZVXXsHWrVuxZ88eHDx4kLd59OgR/vjjD/7zpUuXcPLkSYSFhaFUqVIoUqQI72nm8PHxQWRkJCpVqgQg3wMt9tJcqVKlUKZMGdVt4W6QGHYwehDCNoVGmKBkcHC0eHG3wUCvA7B7D7zS2BruapUItiZNShBbEsNyPHggEMecl1jyGrW0RLOL4QpeUy3uS1c4T2fQrVs3/PPPP5g2bRpu3ryJatWqITk5GTExMQCAmzdvCuYcLlOmDJKTkzFixAgsXLgQ0dHRmD9/Pjp37szbNGzYEBs3bsTEiRMxadIklCtXDps2bUK9evV4m2PHjqFp06b855EjRwIAevfujdWrV9v5rD0DmmfYjpjOM2xtByW34pYczhTCmnirVeJOwkwPA5FcexrXz9GLxehJW6m9ji3ODKEk3VoRbPy/1F+OR4+AoKD8/009w2JL5sk1hJIvzAXDKPRwj8pha3+o9fllZGSgaNEQG+YZXgLt5xkerLo+hHtCnmGdo0chbOvcrySEpdH7AAuY19FTPcRqUS2E7RETbPy/6d9Hj8zTTW/WBw/+C5XgsHRDW/IOK1i+3Ri9XGt6957ael/q/fwIQktIDDsAa99KtusUWRoLYRsczDahl4HRFvQ44Ei1q1RdHSWI9eQVVoPsDBHWpFkjiuXSHj3SZlo2qRtcShCrFMJcml7ue70LRvcSxN4AfDTML0fDvAhXh8SwTrHbzBE2zCFMQlg79DPAaIeeRIpLoLXoNf2s1DPMeYTFbE1FrKUZIuQCqo3TbQy81tO15iov1xEEIY3T5hmeMWMGDAaDYN1sxhimTp2K6OhoBAQEoEmTJjhz5ozguKdPn2LYsGEIDw9HYGAgOnTogL///ltgc//+fSQkJPAryiQkJODBgwcCm6tXr6J9+/YIDAxEeHg4hg8fjuxsYed6+vRpxMXFISAgAMWLF8e0adPgiBBru0+hpgSNhLBpaKFW6GUgVIsrrRxlilb1dtXztxbF0xg6Uwirmb7NeJ/xpgYFHYKl60Rv15Fe+yRb20mv50UQWuIUMXz06FEsW7YMNWrUEKR/+OGHmDt3LhYsWICjR48iMjISLVq0wMOHD3mbxMREJCUlYePGjTh48CAePXqE+Ph45OX9N01Kjx49cPLkSezcuRM7d+7EyZMnkZCQwO/Py8tDu3btkJmZiYMHD2Ljxo3YvHkz3nnnHd4mIyMDLVq0QHR0NI4ePYpPP/0Uc+bMwdy5c+3YMvLYLIQ1DI2wZvzTAleZCJ/DeClSvQ3ecojFBVtznDuj5AeeLoWwHJZs5G58tTNTyOCq15Gr9U9KccdzIghjHB4m8ejRI/Ts2ROfffYZ/u///o9PZ4xh3rx5mDBhAl599VUAwJo1axAREYH169dj0KBBSE9Px4oVK7Bu3Tp+gunPP/8cJUuWxJ49e9CqVSucO3cOO3fuxKFDh/ipST777DM0aNAA58+fR6VKlbBr1y6cPXsW165dQ3R0NADgo48+Qp8+ffDBBx8gODgYX3zxBbKysrB69Wr4+fmhWrVquHDhAubOnYuRI0eqWipRDdYOAhYHZo2FsCZ1UoErdcauOpBLoeX5uFvbaIK1QletraV0QDwsQmkeGoVBqLlG9BQuYYzS0AmxutvjHnGP6da0nmc4V8O8CFfH4Z7ht956C+3atTNbLeXSpUtIS0tDy5Yt+TQ/Pz/ExcXh559/BpC//nZOTo7AJjo6GtWqVeNtUlNTERISIpijr379+ggJCRHYVKtWjRfCQP5qLU+fPsXx48d5m7i4OMHSjK1atcKNGzdw+fJl0XN7+vQpMjIyBJsa7PbCnNKXYFTOGiGHpwlhV/T+WsLa87FXG+jp5TnNvMJqP2tlK4e9YpvshJ7vOeFzIfNN7hg9otd6EYStOFQMb9y4Eb/88gtmzJhhto9bm9t0Pe6IiAh+X1paGnx9fREaGiprU6xYMbP8ixUrJrAxLSc0NBS+vr6yNtxn03XEOWbMmMHHKYeEhKBkyZKidmJYihNW8wK3IiFsepAFIawmNNCThLC7CWCtkJoFwFOwixDWShiLIXfTqrmh1YZlmGDtNeKO15bWolirNtJ7n0wQ1uAwMXzt2jW8/fbb+Pzzz+Ev07mahh8wxiyGJJjaiNlrYcO9PCdVn3HjxiE9PZ3frl27JltvJWg+c4SVQlgpWghhS54TPUAi2DLu2j6WrnGrrlsthbGlvKUQOzEujVuAw47Yer246/VGgpjD3w4bQeTjMDF8/Phx3L59G7GxsfD29oa3tzdSUlIwf/58eHt7S3pdb9++ze+LjIxEdnY27t+/L2tz69Yts/Lv3LkjsDEt5/79+8jJyZG1uX37NgBz7zWHn58fgoODBZsS7NJBiQ2eCuL4jOui9iU5a4WwkkeHesAdQyHsjVZtpqcQCTkUzydsi5dXS6Fsitjqcqb7pLChXJqpRB499ot6rBNBWIvDxHCzZs1w+vRpnDx5kt/q1KmDnj174uTJkyhbtiwiIyOxe/du/pjs7GykpKSgYcOGAIDY2Fj4+PgIbG7evInffvuNt2nQoAHS09Nx5MgR3ubw4cNIT08X2Pz222+4efMmb7Nr1y74+fkhNjaWt9m/f79gurVdu3YhOjoapUuX1r6BRFDjFbYohBVkYiqE1WDNsrR6F78cJIAJm7Bn+IOtvxKUeHzVeoVtDJWwFXe9V7XqK+26mBNBuCgOm02iUKFCqFatmiAtMDAQRYoU4dMTExMxffp0VKhQARUqVMD06dNRsGBB9OjRAwAQEhKC/v3745133kGRIkUQFhaGUaNGoXr16vwLeVWqVEHr1q0xYMAALF26FAAwcOBAxMfHo1KlSgCAli1bomrVqkhISMDs2bNx7949jBo1CgMGDOC9uT169MB7772HPn36YPz48bh48SKmT5+OyZMnazqThN1mj+CQezPcCULYlTpPdx1UXQ2X9gormapMjb0llAb1G9sFBZkvvMGlGx8j9r8G6HX2BD2i1YwOWraP82eZIAjb0dUKdKNHj8aTJ08wdOhQ3L9/H/Xq1cOuXbtQqFAh3ubjjz+Gt7c3unbtiidPnqBZs2ZYvXo1vLy8eJsvvvgCw4cP52ed6NChAxYsWMDv9/LywnfffYehQ4eiUaNGCAgIQI8ePTBnzhzeJiQkBLt378Zbb72FOnXqIDQ0FCNHjsTIkSM1O19rFtcQG4esWmHOwUJYaccr1iaOHNSoUyesQfE16kwvsBxy3l/uJreDILbn/UaC2HE4pk4+0HZqNVqOmfgPA3PEkmoeSkZGBkJCQpB+545Z/LC1q8xZ9cKc6YEuJITV5mENehtYCCF68wxb/EHKoXXsr1JxrHQqRbU/nI3/mv4vZmN6vAiOuPfcURAD2rSd1m0jV6eMjAwULRqC9PR0xe/TcMeFhIQASAIQaHsleTIBdFJdH8I9cdpyzIR6VAthsQN1KISVxORqvfADvQxHaPW036rwCEs44heAkgawUuTqCXe9z7UQslq3i7v+8CDcH12FSXgKWoVHKELiQHsLYS28wVrijoOhJ6ClJpSaOcwhnmdbQyBsraTUiXKNomTVOaX7FeLoe5Irz50Em9KV7uTQOpxEj2EcBGEJEsM6Qs14p2j2CAvzCVuDXeZYVYg1nTZ1ygRgeU0JTQWx3uI6lKBk0Q0X8QRbwh1jiW0Vxa4hiH3+3bTMjyDyITHsYKQ6CE2FsNzk+bDeKyw3FlrTkdpLqJIAJjiU6jdrBbGi695e8wTLeXvVpFsqw5b9OsUdvcSA8HzU9oNatwl5iAlXgmKGHYjm06g5cOYIvQhhuePcNTbQk7FFa6k9Vk0IrSR69wqraRSx+GCNvMR6uU/1Ug97YO1c7jQPMeGJkGfYQdhl9ggb6uDoJZal6qHH/AjXRzcOS0dOj6YUSx5ia8OrdNPo6nBXL7ExasMotJ6HmCD0DolhB5ANX6tWQVc8e4SCgc0ei3s4KzSCxK9noebpvlP1mDVC117iWKngVbBEu9kxlrzELiyKSbjZD9vb1hc0zzBhLyhMwslYNXuEFdOoKT1cKXqKESbcHyWhq2qm+5N6fKzpaop68AJbwt4xwS4mjN091EpNv+3O7UAQppBn2EWQ7MSkZo4wQuvwCPKeEM5AC11ly7Vrc/lKbj6t55KzNj8pb68GscOuILLc2Uus5sU2d24HgjCGxLATUeoVtmW5ZS2FsFbxyoRrIPZ9u/L3qPT6NdWQiu4Fa2KD9eo5tibswcU8wErwhFhigiDyITHsBDQbA1XEWDjzhTnCtZAb/N1RIIvVX/N7wFnCV613WE4IK/EGWwjTcsVrxR29o67pHfaBtjHDejgnQi+QGNYZVnmFLawy5+zQCFccAD0NW75fqWP19L1bEvhq6qqJV1gNzlqa2dL7B262GIccjhCElq5BfQhSgnBPSAw7GKsX15DKSMKTQ3NFeg6m349Nwk5DbKmXPeshZaOkfhaFsBhiNo70FMt5h6WErKV0K8Sznn4cWYM9wibUtIkzV4nTj3eYIOwDiWEHkJUF+Croc6yeQUImA2fGCQOuPwDqGanvRq+Dlq1LxtpSpl3y0VrkWnOs0jAI46nUjD/L2Up9VrrPCHfqB4zPxdrry9ZFh5yxSpzzBTEtx0zYDxLDOkGVELYwoGkVHqFXUUW49nfjCFFsTfuoOkapENbbS3K2LMtnpVfYnYSwKWrFqTu3BUG4MiSGdYps5yozGGnV2Wohtqjjtx/u8Ka7cd21uFYc1ha2CmG9CWRj1IRNeECssFLErl+1sehqy3PGve987zBB2AcSwzrA5jGFZo/gsWoRE8LpWPsSnkMHZi3ErdYCWet5ieU+K0nzIK+wJex97loJU3uKdoJwFUgM6xCr5hWGdZ2vO4VHyDWVmlVnCf2gi2vR0oWl9hg9omRKNTl7EUhguSfO8w5rvRwzXZ/Ef9ByzE5Gdio1azKAbeOwLsSHFSh9qd/VNIolSHDYCe5ikRO7aoWwNRefM6ZVszZUgn5tOhxnhcVZVa67db6EW0GeYT1jhVdYL+ERehZp7uYldof4YaeiRZiDvfY5G/IKEwThAZBn2Ilo5RXW20tzNBA6B2p3BRh7fNU+KnBHIewEr7AtXwFhjst4h93EA7Fo0SKUKVMG/v7+iI2NxYEDB2TtU1JSEBsbC39/f5QtWxZLliwxs9m8eTOqVq0KPz8/VK1aFUlJSYL9+/fvR/v27REdHQ2DwYAtW7aY5cEYw9SpUxEdHY2AgAA0adIEZ86cEdikpaUhISEBkZGRCAwMxPPPP4+vv/5afSO4ISSG9YoVI4SzvcKuJMbcdQCmHyNGaKG6bAmX4PZbi70vUkudgMZeYVuakZDHWfe8Y8v1xn9zDWuxqX8wvmnTJiQmJmLChAk4ceIEGjdujDZt2uDq1aui9pcuXULbtm3RuHFjnDhxAuPHj8fw4cOxefNm3iY1NRXdunVDQkICTp06hYSEBHTt2hWHDx/mbTIzM1GzZk0sWLBAsm4ffvgh5s6diwULFuDo0aOIjIxEixYt8PDhQ94mISEB58+fx7Zt23D69Gm8+uqr6NatG06cOKG6LdwNA2OMObsS7kpGRgZCQkJw7Vo6goODBfssvrhmaWQQ8QrbIobdYXENZ/8Y0CseET7h6CWQbd3vqDLkUOPtFZtjWOJ/sb6A7k3H4KwpMZWUm5GRgZCiRZGebj4eWjwuJATALwAKqa6bNA8BPK+qPvXq1cPzzz+PxYsX82lVqlRBx44dMWPGDDP7MWPGYNu2bTh37hyfNnjwYJw6dQqpqakAgG7duiEjIwM7duzgbVq3bo3Q0FBs2LDBLE+DwYCkpCR07NiRT2OMITo6GomJiRgzZgwA4OnTp4iIiMCsWbMwaNAgAEBQUBAWL16MhIQE/tgiRYrgww8/RP/+/RW1gbtCnmGdYI0QthatBxtbhbAar5Bcp6v0vDxtsHULb7GYl9cez9mVeHr1IIRtxRohrMBWi+uMPMTW4xkeYueQnZ2N48ePo2XLloL0li1b4ueffxY9JjU11cy+VatWOHbsGHJycmRtpPIU49KlS0hLSxPk4+fnh7i4OEE+L774IjZt2oR79+7h2bNn2LhxI54+fYomTZooLstdoRfonIBWXllrvMJ6EIJqBzvT9pFbwcz0/EzLUnL+1q6Kq3dcZsJ8R6shLcSrUhs1dnrDyovc2ugUV7in9IitL9RaO++wy/QvJmRkZAg++/n5wc/Pz8zu7t27yMvLQ0REhCA9IiICaWlponmnpaWJ2ufm5uLu3buIioqStJHKU6oc7jjTfK5cucJ/3rRpE7p164YiRYrA29sbBQsWRFJSEsqVK6e4LHeFPMMOxmIHb2evsCm+//oNrcWZHgEl9fb3F272wlViHnXrwXH021RKy9PKRq2dPXGR1eRc4X7SM9l8767+yZAWDhrt8bXDBpQsWRIhISH8JhbuYIzBYBB8ZoyZpVmyN01Xm6e1dZs4cSLu37+PPXv24NixYxg5ciS6dOmC06dPqy7L3SDPsAOxeYELGx9H6nC847G2beS8xLbWxV09Wrrx4DhD7Wg1e4TWednLzhpo7mC3xLiPtOf9r5v+RSHXrl0TxAyLeYUBIDw8HF5eXmYe29u3b5t5ZDkiIyNF7b29vVGkSBFZG6k8pcoB8j3EUVFRovn8+eefWLBgAX777Tc899xzAICaNWviwIEDWLhwoegsF54EeYbdAGd5UNQIUDlHnGIhLJOJrR5uMaz1JruCR8tpHmJnzKeltkwt4oattXU17CyW9dokvmZ+V/NNzyjxFrvqE0O1BAcHCzYpMezr64vY2Fjs3r1bkL579240bNhQ9JgGDRqY2e/atQt16tSBj4+PrI1UnmKUKVMGkZGRgnyys7ORkpLC5/P48WMAQIECQtnn5eWFZ8+eKS7LXSHPsINQJPjsOJ2aM1+ak6ujovhpsQyM04wyMT5eqw7Z31/9V0MeYiP0GANszXH28ARba28tWoRISNjbOouEFHq5l9TeK9bG3joSe/YB2i8G5PzlmEeOHImEhATUqVMHDRo0wLJly3D16lUMHjwYADBu3Dhcv34da9euBZA/c8SCBQswcuRIDBgwAKmpqVixYoVgloi3334bL730EmbNmoVXXnkFW7duxZ49e3Dw4EHe5tGjR/jjjz/4z5cuXcLJkycRFhaGUqVKwWAwIDExEdOnT0eFChVQoUIFTJ8+HQULFkSPHj0AAJUrV0b58uUxaNAgzJkzB0WKFMGWLVuwe/dubN++3aoWdCdIDDsATTpyjd/YBpwfF2Zz/LSpnUmGWoZQ2BI6oWfsKogd0VhaqS0tyrCXCNeqHFtwshp1tiB29MtojsTeP4r1fv5q6NatG/755x9MmzYNN2/eRLVq1ZCcnIyYmBgAwM2bNwVzDpcpUwbJyckYMWIEFi5ciOjoaMyfPx+dO3fmbRo2bIiNGzdi4sSJmDRpEsqVK4dNmzahXr16vM2xY8fQtGlT/vPIkSMBAL1798bq1asBAKNHj8aTJ08wdOhQ3L9/H/Xq1cOuXbtQqFD+dHQ+Pj5ITk7G2LFj0b59ezx69Ajly5fHmjVr0LZtW7u1matA8wzbEW5+xDt3zOcxVO0VlhDDSsZFm2OVTVDSual9D1ByajlrTlCF54rIxy6Dob1Em1b5OlsEW3usLeUp8QxrOL8woO1l4CxB7A7zsFtC6hy1qntGRgaKFg2xYZ7hC9B+nuGKqutDuCfkGXYC1i67DFi/yIZW2CqErRbBcnOkmXqGLXiKAdcYnAgTtJ5P2NayHC2CbUWJktT5y3PO9hBbC3mICULfkBjWA3YcGLX2CtuCpBAWE8FqxIqUCJYQxYKy/0XvA5W90Xwg1Pqa1pMQtrUuriaiFeIKgo9wZbhllLXMjyDyITHsYFz5l7ctA52xHhX1BouJYKWxFpZEsMTLdsbY+xEhYQN6CYtwpgi2FSl3qiu6WZ2AFi+DucKPBbEfxa5Qb4KwFRLDDsSqjlRHscLWwtVDkQhWIobVimCxkAqx/ERQ0l40ULgAzhTCOvbmOgJrZmORw1VDJQDXEJYULkF4IiSGHYSrdy6WOnBLutXM2Fj8KhHCamKE5TzDYpVSE+QsgtLvVs+DoG6vT0d4Y+0lhPUSKqID5egus7FoIRRdURC7Qp0JwhZIDDuA/E5FYkCyUYipOdRegkeJEPZFtrQAtjZEwtrwCDXeYVUqXx7yMjsYZwlheyk+rV2sWmDiprUkmvR4CoQ4+vMQ+wMI0DC/HA3zIlwdEsPOxAVGBbXizKII58SvEjFsyRusZXiE2rng1NorxNGrPulrsDPB2R5ZV5j/1xI68AqbovZWkjrOWWjlHeby0jN6rx9BaAWJYb1i0vPrtVOyNJAJZowQ20wzEfvfVLQq9QRrIU6UPt/VOPTCGnQtbB2Fmu9czlarfJyJpevMjtehmv5KLyJXDVp5TWlWG4LQBySGnYUbTKdmsxA29Q7LiVwpQSxWESVCWAsbJZ5lsS9Dw9ALXeIscegJQljpjzx7XkuW7kcPwR5hBDQXOkE4BxLDboZexiRZIfzggfgsEpZCIZSGPWjlEbYkWpXEHlt6eU/OVulx7ogrhCg4S/Rbus6tvVY0vMY85YUre8bVukooheOgeYYJ+0Fi2BmofOSux85Q0TtockLYVAw/egQEBclnaMkDZY1HT60AkBLJSgWytQLGFbzJeg0XMEULr7AeztWW794B1w0JYm3wlHYkCGdCYtjRODg8AnBMLKnozBFyQthYBAP5QpjLxPSvGFq+JCUVyqBUMNgqkJXaiKEHkexsYejosAZnn68zUPJDVGalR3cXc1osykEQhPMgMaw3dOTps3l2AjkhzIlgU/z9pcWwWGiF2H4lSHlrLcVCKhXJ9hLIYnZiWCuulWBvMeiJYtOROKGP8SRRbA9BTN5hgrAvJIYdiRO8wo5AMjzC+H9TIWwsKjmvsOnGHW9ckJQgNhbXSkSksb1xeIYWLweJCWElC4AojS9WE4csd5wesWcdLeWttGx3nCxX7TVu5Q9FT3hBjASxvfCBwaBdnC9jFDNM/AeJYUfhpDfA7f3YTlF4hJxHOCgIKFxYKIILF/5vv1h8sWmYhZiNWCUtCVTus3HoBrdf67fnrRHHpvvV2ukdawSmK8X46gF7Xxcq7g13nlaMwiYIwrUgMewIsrIAX+s6eiUDhD3GN6sHJmuFsOlfLi9TuHALYxH84IG0PSDeQMbePSVTuom94KcUU0+iGs+xaf2t9R7L2TobVxSqrugdlvr+pe4PB+PO4lgryDtMEPaBxLBeUDn4OFvXmJYvutyyWGgER3i4UAAb/c8/ZuQEh1i8sXG6JTEsVmHjuGQ5ESz1v7XiWEoIWxs+oSZkQg8v2xljq5h0tlfYlQSxo1+o1KA8dxDH+lvS2HXx9wcMBu3yY8x1bl/C/pAYJrTFuHeRCl0wFsDGIRKFCyMj698Bz//fx4z+/9o/eCAUv9xf06napDAenMUEsGmalAgWQ04YWxJMYl5jrkyp+ovZi+0T2y+GI0N43G30kfPo6wF7imC5+8L0/tIAdxDHWkDeYYLQHhLDesDZbl4bEcQKA5a9wtwLc0aCOBu+gkMEocOc8P37byAtzVwY370rXTnjtuUEq6kANhW/HFa+JCRbF7lwCaXhE2o8w1qFS+hN7DnbK2yKpVhvR6P0O1YaImHtNW8HUczhKuKYvMMEoX9IDDsbHQphNYOKWScv9rKbMaYzRvzrDTbVz/yEEv6+8DWODTYWw3fvCj3Dpt5f0/+NB+agIHMhrLUw5soQQ4kwNq6zVJrpuSrxDLtSPLEYehCbcij5QeKIcrW2F0Ppj0M7imIOVxHHWkDeYYLQFhLDzsSVBIgSLAlhwGwatWz4iq7FwR0e7G+yrPODB8AffwjDJLiYYUDo9TX+3zjNuCBuH1cvJcLYGoyFsVoPsRrvsJwQc6V4YinUCEu9iGY1Lzlak481qHmZTkuUXo8a4AnTuHkSFDNM2BMSw87CASLDYY/mTEMkjP8aY+oV9vcXFcECTL3AJt7hp4zh8b+m3gB8nzzJv6ifPIGXwWAuio0FsanY5WJ/LXmMtRLIXJ2cIYzF9othKd7ZUbjjqOWsHxp6+YHjQcLYHqESevIO66kuBGENJIYJ7ZF7DG8ihh+kyUdU4EFWvvjltj/+AC5fxkPGkAsgC0Duv/beJpsvY/B+8gRepiLWVBBzhWsxIEvF/Rp7hY3nMZYSvmKhHcafLaWZppvuE9svZiOHGoGq5EeEloLXHcWzrVj6bm2JC7b13vEgYawlehKheqoLQaiFxLAz0ItnRmtMBYjpZ+MX2P4NkZAyLVz43xCJtLT8F+cuXwZ++w24fBl3GEMW/hPCuTAXwv5G6bwoNn7GJiWE7SmK5VAbRsHVVUkahzPjieWeGOgBvdZLC5R8f3I2ju6vnCCMXVnE6UGEOrt8grAVEsOOxl2FsCkqY1BN33crXBj/eYMvX/7PI/zkCR7gPyGc+e8xfsgXwJwYhtH/uQAKAvlBYsaeYmsxDZlQYmvpf1u8xcZpYnam6XLHiOEq8cQc7ixs1aD0+9GTEDbFmtAeK3B1Uezq9VeCnx9QoIB2+T17pl1ehOtDYtiROHtgUYDVM0lIDVpZWeZTmv2b7ots+P87n7BpFEUwMv7zCv8rivPu38cDAI+QL4Lz8F+IRB5XLJe90f8A8Bj/eokBgLF8QSyGVJiDcTyx1DFyItkaUfxvO4nWS8pbbHyM0nTTfVI2puglntgYEsLq2l6r70nLOHpL5RijcZmuHkKhBy8xQbgiJIYdhQsIYauwFBph4Vh/f19+PmFeCPtnA5eNvML/hklkIF8IZ+A/EfwEgM+//z/99y/nIeZsOIwv9jxjQSznSbUkmpUIYKVCWKkolvtsnKY03XSflI2UnRhKrwMtQzA8FWva0NbQCb1gr7AeaOttdeQ8wySICUI9JIYdgZMGFadM9m7Jg2lMVhaCC/sjy8g7nO8RfvDfy3L/CuKnT57gEcDHCuf8m0WeUXbeyBfEUkI41+QzVwezuoqJVOO/nFCVO39bvMO2iGKxc7KUbmmflJ0Se0s4W8g6u3y1aBXPbo9yHOUdVlIPY2yskyuKS08ImyAILSExTNiOEo8q5/YVgfMM+2Zl/DdtGhcv/G+YBOcVzoRwBgnuJTkY/c2FcIYJwFwcA8gPlzAY5EMfxNJMwybs5R22RhQbp1mTbrpPbL8prhZTbC1Kzkdrca1lG2oRQ2wJvQhiYzR4Ic8WcenM1edcUchL4e9PMcOE/SAxTNgHY5Em9Qj+X8Hn6//vZ+NFNO7ezU/jtn/JA+D17//Gs0hweEFILuQv8jxOEJvW1VTkiqVJCWIxW1uEsBJRzO2XSrMmXWy/nJ2S49Qcb0/UilZbhaSS8uzRJu4cP2wNNgpjpavc6Wn5ZWcKYncS44R7Q2JY5+i1MxF09kpia40xFYic4DUWw9z2rw3n7fXCfzHCHKZpphe1lCAWpIsJWak6WxLExuctlSZXptz/XD6moth0v1yaknQONeJOjbhwllC2xnPrqNAELXGGCDZGz4KYQ+oeUIGeRK8cJIgJQh4Sw4Q2iHklTfeZYuL1NVtt7l+BnMcYgPyL1Q/5oRLG4tcH5h5iY8TSswG+e1bsHVYqiMWONU3j2kXt/1w+3Gfj+GWpEArjNKXpYvulbKRslRxjz3ws5eduqG0fe4tVDcSmQ3CVetqIM+KIufdWuI0g9AqJYUJblD5mf/BAeAznGX706D8hzIVKQLiQRiDywyWML15v5HuI/WC+AIdVKBXCYoLY+JwsiVw13mAxUWzc3kpCKKxJN20XY2wJl9BKJNsbvXs59SaCTdEgZtchkCjWNX5+gJdpHJwN5OVZtiE8BxLDLoCuHzPJhUiY2ijxEJv+9feHl8EAb8YEgjgX/02lxsEJYYchJYjF9hmnme4HlHmDLYllDrkQClNbe4RLyNlbOtbNhYhmWNNOemhbVxCcriLebcRVRTFB2AMSw4RVWJy2zVRwWfIYc4LYWBgHBeUf5++Pgk+e8CLY3+Qvh+nKc3IeYqu6fzGBa7rPWBCb7tP6f0C9KJay1TJcQsxeyTG2HOcpOFoE2+L5V3KM3r9bV6mnDcj14ySUCU9Bw4lKCHviEvFW/wpXfuAw/SsFN+CIzd/r7w8ULgw/gwH+AIKQL4L98V/ohNhfMREsFTbBxwtL1UtusBfbx52Hqdi35X/jukjtE/vM1YfbTOsuZi+VLmVjyVbuGGuPczTOjjs2vq/seYzxcUqPVWtvjLPbVSnOvPaciK3xvlqOW8aXmVabNSxatAhlypSBv78/YmNjceDAAVn7lJQUxMbGwt/fH2XLlsWSJUvMbDZv3oyqVavCz88PVatWRVJSkupyDQaD6DZ79mwAwL179zBs2DBUqlQJBQsWRKlSpTB8+HCkp6db1xBuBolhQhuMexYpQWypBzL2YBYuLDymcGEUxH9CWE4QmwphUxHsa5RuNWKDoqU0LYSvVFlSgtYUMVEsZ69GhForWrUQyO6MI0SwrQrBOB+1uNp36EnXnhFqRbFLOHBUsmnTJiQmJmLChAk4ceIEGjdujDZt2uDq1aui9pcuXULbtm3RuHFjnDhxAuPHj8fw4cOxefNm3iY1NRXdunVDQkICTp06hYSEBHTt2hWHDx9WVe7NmzcF28qVK2EwGNC5c2cAwI0bN3Djxg3MmTMHp0+fxurVq7Fz507079/fTq3lWhgY+/dVfUJzMjIyEBISgvQ7dxAcHCxpp3SlOGsfWanplNSUwedr6kE1FXTGf00x3m88kwS38Ma/i25waXlPnvDLMRsvrmGKmBDm/pqKYd4zLOfRFvvfkp2xuLeUl+n/1tqJfZZLNw2hUJKPWhtbj3NEGc7MU6uy7G2vBmtFoiuHI7hy3a1EbLyQGm8yMjIQUrQo0tPTZcdD0eNCQlCjRjq8vJQfZ4m8vAz8+muIqvrUq1cPzz//PBYvXsynValSBR07dsSMGTPM7MeMGYNt27bh3LlzfNrgwYNx6tQppKamAgC6deuGjIwM7Nixg7dp3bo1QkNDsWHDBqvKBYCOHTvi4cOH+OGHHyTP56uvvsIbb7yBzMxMeHt7dtQseYadCPcAivvfErr9pS02CMh5hi0NGsZ2QUH5XuJ/N6+AAATD3DsstwEqhLA1yHls1djLeXu18AqrCaEwtlcbLqF16IO1njh7ePAc5QlU+2PBESENarA2f63b15EeXA/2Frvy9GkZGRmC7elT01ez88nOzsbx48fRsmVLQXrLli3x888/ix6TmppqZt+qVSscO3YMOTk5sjZcntaUe+vWLXz33XcWvb7cDwFPF8IAvUDnFKSEr1IPsV4wq6/xy2WmfwHhIGFqw6WZfubWauZs/f3hlZWFgowhF/nzBRsvzQyYX9QWhbAxWooEsdklxDBtI9MX28T2idmZ1l8sTS5d6oU742M4lMaB23KMXHspzdOa/JXkY08xaQ+vuSt5LW1pX0s/qsSwR9tI3WOE1fj5AVpqttx/B4ySJUsK0qdMmYKpU6ea2d+9exd5eXmIiIgQpEdERCAtLU20jLS0NFH73Nxc3L17F1FRUZI2XJ7WlLtmzRoUKlQIr776quh+APjnn3/w/vvvY9CgQZI2ngSJYUKA1dO4GYtYqXRTUWwqlgHh4hUmMcPGeGVlwSsrC95Gotgb0qvNyQphR4kia0Sv3D6x8qXSAPWiGJAOo9BC7Fo6RonotVYYGx9rbZyrs8Mw9C6EpfoEJVhzb1mLNdeymrxJEOuaa9euCcIk/Pz8ZO0NJk4UxphZmiV703Qleaopd+XKlejZsyf8Ja69jIwMtGvXDlWrVsWUKVMk6+5JkBh2MXQ95zAg7g0WE8HG+0wFjdgmNj3YgwfwysoC/p2DOBfyU6aJXuzWxPKKIXXOYlOtiR1j7T4tPMJygtI0fEIuxtgaz5tSIWJPYWytKHam0LFnPLeWOEIQ2yMsQaunCMZ56eH7IMwIDg5WFDMcHh4OLy8vM2/s7du3zby2HJGRkaL23t7eKFKkiKwNl6facg8cOIDz589j06ZNonV6+PAhWrdujaCgICQlJcHHx0fUztOgmGEHo2shqxVyolJsn2kco9H8wsbxwoJ0o31eAQH5C3PAcuywl8FgW5ywrQOamse4auOExfJTk25pHyCMMZaKNZbKU2lMpSU7tXHGSrEm3lNLIaalp1dPwksLIWntfq3QIv7cg2KJ3RFfX1/ExsZi9+7dgvTdu3ejYcOGosc0aNDAzH7Xrl2oU6cOL0KlbLg81Za7YsUKxMbGombNmmb7MjIy0LJlS/j6+mLbtm2SnmNPhDzDHoA9Y5EFeZuGRMiFR3CfxTzD3N/ChfNnkTAWwOHh/x1rvKQz8pdj5vLKM5okRVFssFpPsBo7OeRCItTaSh1rjUdYjWdMTBDLeZDV5G/J26vE66bWM2dve1uwVIY7Dm5i14CzhaUtTxOsOY6Av799YobVMHLkSCQkJKBOnTpo0KABli1bhqtXr2Lw4MEAgHHjxuH69etYu3YtgPyZIxYsWICRI0diwIABSE1NxYoVK/hZIgDg7bffxksvvYRZs2bhlVdewdatW7Fnzx4cPHhQcbkcGRkZ+Oqrr/DRRx+Z1f3hw4do2bIlHj9+jM8//5x/YRAAihYtCi8t17p2QUgMOxAlXmFXe4nODClBzH0G5GOGuf2cmDL1BHPiGMj/zIlik7KMhbFZ/ZSkKdmnFNNQCTWiVq0Alhtsrd1nvJ/DUruoFchK8ldSf7m6qQ2jsCZu1Zkixx5POrQSnbaESxjnoTdIFHsU3bp1wz///INp06bh5s2bqFatGpKTkxETEwMgf65f47l/y5Qpg+TkZIwYMQILFy5EdHQ05s+fz8/9CwANGzbExo0bMXHiREyaNAnlypXDpk2bUK9ePcXlcmzcuBGMMXTv3t2s7sePH+fnLi5fvrxg36VLl1C6dGmb28eVoXmG7YjpPMNKQyTsMeewveYaFs1b6tG8VJrx3wcPhI8juXmHuX3c/3fvij9+lwstMEWJMFbqQbZ0nKkQVFOOpbKk0uTSlexXO1BbM7Bb8iBbyteW+qupr71s1RznrPMBtPXEWpOXo0S7LdgibD1AFNs6z3Djxunw9tZunuHc3AwcOKBunmHCfSHPMGGG2pf0RKdYAyw/3jT2DEu9CGYcS2zsHQ4P/08UG2OtB8oaYWwL1oY8cPtM66M2RELJfrXeYKWeeGOUvKDnCG+3knPTY9gEh71De7Tw7FqTl5rzcrYgtuXJgLOfKhCEh0NimNAE0fAOsQFKaaiElK3xX9P/jZEKv5AqQ2m60v2myM0qoQQlg6W9haFacSx2jKXj5KZ1UxLjbM25cza2tK+1eSpFCw++rXXRWhAD1l1TcnnqQRBzdXHksR5AYCCg5cQH/655QRAASAx7DE6LRZYb9KRii02PDQ/P9wBznznvMLcvKytfRJmGSXCoHWTUhCFIoVRcqY0HVhIfrFVsrT08wUrrAChbBERLUazmvPXsJRZDS1GupeDUul2k+htHQ15ignApSAw7CE+YUk1WcMuFSRjvl8I4RAIQ/i9lz4ljMQEpVje5vLRAzDusxUta1ghDNfs57OEJVlKGEm+xWlGspE622qgp056QsHIOal/YFDtWwXFcv2s8xrj0S9gE4QRIDLso9l58w9r8LXqgxTydlgaNrCzh7BIclgSxWD5qByUtvMTGWAqXUBI7LBcfbM/YWWsfaauNzZWzlfIWa90mcseqtVFqq9X1qWa/NeghHMESequjtU8ILFwTXB9t2le7/KxEIvj7axsm4eEziREmkBgmNIfrmBV3xnKP/sUGA2MBbMtgLzVYaiVIpAZAS1OtieWjhTdYa4+nNV52NYJari5iotiZXmJX8BBrid7Ephh6rKO1T1vc4ZohCB3jsBXoFi9ejBo1avBLHzZo0AA7duzg9zPGMHXqVERHRyMgIABNmjTBmTNnBHk8ffoUw4YNQ3h4OAIDA9GhQwf8/fffApv79+8jISEBISEhCAkJQUJCAh6YeA+vXr2K9u3bIzAwEOHh4Rg+fDiys4XC7fTp04iLi0NAQACKFy+OadOmwdVnoXN0qIbF8qS8rsbp3GduE1uFTszG1M54k8rbdL+luilFbECWW7lNLu5ZLF3KXu0xYjZqxYTxcUqOVWIrt1+sHeXOW23+lo5Vk4fSvAjPQem9IrHfF9n8ZoonhOYRhFY4TAyXKFECM2fOxLFjx3Ds2DG8/PLLeOWVV3jB++GHH2Lu3LlYsGABjh49isjISLRo0QIPHz7k80hMTERSUhI2btyIgwcP4tGjR4iPj0deXh5v06NHD5w8eRI7d+7Ezp07cfLkSSQkJPD78/Ly0K5dO2RmZuLgwYPYuHEjNm/ejHfeeYe3ycjIQIsWLRAdHY2jR4/i008/xZw5czB37lwHtJR7kS3orn3NO2hjgWn8V81mKoi5z8aCWCp/JVgrgo1RO9hpJXCtFZlidtaIOC2FsdQ+sWWhrW0PS/WzhK1C15WEsit4K12hjhxKrn+VkCAmCGU4ddGNsLAwzJ49G/369UN0dDQSExMxZswYAPle4IiICMyaNQuDBg1Ceno6ihYtinXr1qFbt24AgBs3bqBkyZJITk5Gq1atcO7cOVStWhWHDh3iV285dOgQGjRogN9//x2VKlXCjh07EB8fj2vXriE6OhpA/qotffr0we3btxEcHIzFixdj3LhxuHXrFvz8/AAAM2fOxKeffoq///4bBrHlfUUwXnTDPzhccbs4dIEMjfNXg+RiHcYDgqmnkVt0w3j2CEsb8J9YMh5QtBIeagZcU1vjx/ym+6yNB7U2ztla4WDNcWp+iKjZJxaPrbY9tGgrW/JQU19nxAwb4wri3RXqKIXCa0Gun9ZL7LCti25065YOX1/tFsfIzs7Apk206AaRj8M8w8bk5eVh48aNyMzMRIMGDXDp0iWkpaWhZcuWvI2fnx/i4uLw888/A8hfSjAnJ0dgEx0djWrVqvE2qampCAkJESxjWL9+fYSEhAhsqlWrxgthAGjVqhWePn2K48eP8zZxcXG8EOZsbty4gcuXL0ue19OnT/n1vo3X/SbEkezAxcIZTPfJhUGIbaahE8Z52SIC7Sk2rH00r9Yjaik/pcepDRVQE66hdJ/SsAlbPeZahE2oaWu9CjpX8Ly6Qh2lELuOVF4L5B0mCMs4VAyfPn0aQUFB8PPzw+DBg5GUlISqVasiLS0NABARESGwj4iI4PelpaXB19cXoaGhsjbFihUzK7dYsWICG9NyQkND4evrK2vDfeZsxJgxYwYfqxwSEoKSJUvKN4gE9uy89NYxCuoj5hmVC51QK4gB4awUluKHxbBVQKtFy0fzjopptYcwVvP4WAtBrMV+pTZaHEPI48qCGLAoiPXi/SUIV8Whs0lUqlQJJ0+exIMHD7B582b07t0bKSkp/H7T8APGmMWQBFMbMXstbLhoErn6jBs3DiNHjuQ/Z2RkWC2IPQnB7BP+/vkdvfFfe/HokTB/0wFH67LlQiTksNQOauqptE25ttAqVlppPpbspfabnpfSOZ0ttYeS+lg6NzkbW69xe98jSuDuVb3jCvU0rp/Ka1Wr6TbF8iCxTbg7DhXDvr6+KF++PACgTp06OHr0KD755BM+TjgtLQ1RUVG8/e3bt3mPbGRkJLKzs3H//n2Bd/j27dto2LAhb3Pr1i2zcu/cuSPI5/Dhw4L99+/fR05OjsDG1AN8+/ZtAObea2P8/PwEoRWOQK/zDduEqSDm0uyJqTAG7BtTbMvSzNaUZy1yg7M1+Wgpih0liC3VR8m5qRWt1tbT1nLdHa4t9CSKlTzxMK632P8aIdXX62HeYn9/wFfDoaiAU4JECb3i1MuBMYanT5+iTJkyiIyMxO7du/l92dnZSElJ4YVubGwsfHx8BDY3b97Eb7/9xts0aNAA6enpOHLkCG9z+PBhpKenC2x+++033Lx5k7fZtWsX/Pz8EBsby9vs379fMN3arl27EB0djdKlS2vfEA5Gb6ESHJIhE1LhE7aETIiFT3CbXDlKETvGUhlyecmVIfVZ6jysxZrYYKk8tLBXEvqgJmTC1rAHa8MqtAhLsWW/Fria4HZ0uJOWSHyftvbrlo7X67hBEFrgMM/w+PHj0aZNG5QsWRIPHz7Exo0bsW/fPuzcuRMGgwGJiYmYPn06KlSogAoVKmD69OkoWLAgevToAQAICQlB//798c4776BIkSIICwvDqFGjUL16dTRv3hwAUKVKFbRu3RoDBgzA0qVLAQADBw5EfHw8KlWqBABo2bIlqlatioSEBMyePRv37t3DqFGjMGDAAP6N0h49euC9995Dnz59MH78eFy8eBHTp0/H5MmTFc8kQViHwAMh5QHRwlsp5VXJyhKKVVMxZU15Smc4EENOCKv5bA9s+R7UHqs0PEIsTc0y2LZ6ee3tibU2f/IQSyMXKmVv1MTV6+D704OHmCDsgcPE8K1bt5CQkICbN28iJCQENWrUwM6dO9GiRQsAwOjRo/HkyRMMHToU9+/fR7169bBr1y4UKlSIz+Pjjz+Gt7c3unbtiidPnqBZs2ZYvXo1vIzWVfziiy8wfPhwftaJDh06YMGCBfx+Ly8vfPfddxg6dCgaNWqEgIAA9OjRA3PmzOFtQkJCsHv3brz11luoU6cOQkNDMXLkSEE8sJ5wSiiDHTHrcOXih219/Cz12JEbpOSEsSVMBZjawcwaIeysAVMLYaxUFNtbECupk6WwCbVi2dawCFtjl7VAjyEIanGmMHYRSBAT7ohT5xl2d6ydZ5jDnvMNOyJ/KZTqJr5+3AHGj7JNH9mbphvPQ2xqb5qnaaWk/jfFVBxLxQFLhS5Ygx6FsBS21MfSsUrb1DTNWi+9tWEsao5Rc51YU6YaG1txJyFpz3NRk7dMSJSl/tlSX2/v8QOwfZ7hQYO0n2d46VKaZ5jIx6Ev0BGE1AxBsuOzqWdYzSNzuXSpCioJzwDkX4KzR9iCKwlhwDZPpLUv0Jkeo9RDLFeWJRt7PbWwJg+l5QD29xK7iyC2p8dbaTvJ3Ovu9FSQIJwFiWE3wRVCJSy9e2Q6NpvFD8uFOFhbIeN8LYVMSIkvDlu9fXINpFQIW5O3PbFVeFkSoWL7pH7EcGmcR19N2IQlG63SlaLVDz9jtBbH1tZDr9hL4KvJl2vTf/+a9vmO+J3DQeEShDtBYthB6FGs6q0zsyiIjZHz3toaO6nUO6z0MbjSkUlOwCnJ21J9nCk6tBDFjvQSy9VVqycT1sY/W5tuCUcqKWMs/cjUE864j0wEsJgQ1nOTEYQrQGKYUISjxLzYeMwLYiVeXKlMxOYRNj7WGu+wrZ5hNZ5gsXS1gtvZghiwTXBZ+2KacXlKvcRK6uqosAZr0CJEhcMZ4tjZ16kc9gibsNTGEkJYqgpqvn5b+nVHOlT8/PI3raCJoQhjSAzrGLUdjR69z9Zi2pmrFsRqC5Dbr0RsmyIX1iCWpjZu0NWxVhQrCZsQ2y8mii15iW2tq2kejvQOc/sA268bsWvT3tei3gUx4Lg6qhTCjkZvTxgJwhpIDLsiGnqf9NyRSZ6mnCDm9otlkJUl/9KbJRFizUtUUvZSNlIjnBJx7YrYIoot/ZjhkAqVUCOIpcrUSrgqwdp87eGtdrb3WC+o/UFrbd4yQthZ0S0E4U6QGHYgmnpunfA41tb62+pIkXyhTk4EywliMUEtlS4XO2xctqU0S3iqx01pLLbUMXLHqbk+LAliqfy1Dpew55MOe2DN92cJvV6rUij9caY2HwVCmPtfbdNrNR45wqni709hEoT9IDHsZlgjWF3JOyz7Qp1cvK8aD7FcJbRww9jTm+QO2BpCYYyUV9ha7CFy1eRpTdy0NeXYgj2Esatjhx/G1HUQhHYUcHYFCCvwsAHGtNPnxb5JLJ3gr9z/3MYJYkv5SOWhBNM8xLw+Wnyf7jgyanFOavNQ6xV2NbKyHHutcOVZU6Y7XtNKMekT7BEnrPX7Je7yvgrhmZBnWOfIem1dMFTCWlTFDyvxECttO7VxmtZ6NS3FDIvZWoOrCQx7vrymJ7R8ac6W69qeUJyxZSREMCAdHqEn9PyUkSDkIDHsYBwhJvUcKmFLGKDx+C0bP2waR2xJEHNhE9z0a2pFtekJ2oIlUayHx+DOwF5vCRnnp8QrrJUX397xu0oFMeC8a8ZSWIun/OiTOE+1fbia5nJFL66fn/t2b4TzITHsqjjx5RK9TOEmKuClhLAlr7CpIDbdpzQWWSusjXWVEuemcZyuJBaMkYtHlWonuTAYwPbQCGeM0FrGB+vpR5RWAl2P17iKc9JD/2ot5B0mXBESwy6AxVXYRNCzd9gWJF+oMx38lIZPSAkBUy+xaeFavFSndLC2h4dM7jG7q2BNXdUKYUeKRK1npbDmR5ReRLEWOEsQ29iGUkssqylSrgqOENquMJYQhDH0Ap0T0KyTcPTLMEbYcg62jreSp2zJA2j6EpycTVBQ/mZqK/e/NXHC1hxnT/RWH1sx/V6N/zcWwsbfhZrvxZltpeTeV9s/OLFPMauHFjji+1F7zYiQDV9+M0bJb1m93q6u7N0mPA/yDLsyenwU6AQUxQ9LeYjlEAudEItJ5tKNPxvnoQRLscJaoXTkdFR9tEJNeARgLoQdUR9rscd0bvYu093RoG1sFYtSVRBL5/pIRwtULT3E7vY7ndAX5Bl2Y6zphNR0ls58DCY53RqgzkOs5C/nJTbdZ+qekRJkevE0WpO3q44+ct+p8Xdpy/mpUSOmaPUjQ2k+1k5t5io/hhyFRt5fS/2stU3v7PAIPZVLEGogz7CTUPsr3Zq4YT3jMKe2Gk+xpSmrpLzExjamn8XqI7ff2EYvQkTvTyAsBUzKhUqIfbZ0rnL3nBYxQPa6p63NW+6lRXuiF++0DXVQKwT1fJvZAgliQu+QZ9jNcWfvsCmi3mHj/8X+SsWJStmaeonlvMOWPMKWvExaPhe0NR89iBIxlApTYy+/pTwsfWfW1MWeqFFQtqotV/QWW/u9WHn/KfX+cnBNamuz6vUWdTcWLVqEMmXKwN/fH7GxsThw4ICsfUpKCmJjY+Hv74+yZctiyZIlZjabN29G1apV4efnh6pVqyIpKUl1uVOnTkXlypURGBiI0NBQNG/eHIcPHzbLJzU1FS+//DICAwNRuHBhNGnSBE+ePFHZCu4HiWFH4GqDh4OwR+etWhDL7RMLiZAKnbAUMuFMUay3UVIrQSUVliL2F1AmhMX2KwlzsXcba9mHaJGXq4lipd+PmpAmE5whgF0JW73D3DzDWm1+furrsGnTJiQmJmLChAk4ceIEGjdujDZt2uDq1aui9pcuXULbtm3RuHFjnDhxAuPHj8fw4cOxefNm3iY1NRXdunVDQkICTp06hYSEBHTt2lUgZJWUW7FiRSxYsACnT5/GwYMHUbp0abRs2RJ37twRlNW6dWu0bNkSR44cwdGjR/G///0PBQo4Twrm5eVh69at6NChg9PqAAAGxhhzag3cmIyMDISEhCD92jUEFysmauMoL6w1HZHS8mzp5GwZDKTGK7N6GxfC/S+XpnYfkB8+IZYu9tnadKX7ObQUaFqLMa3FvaXQCM6rL7XfFmzxPGqRbo86ODoPR+Zvh7APJX2gXt6NdRYZGRkoWjQE6enpCA4OVnVcSEgI5sxJR0CA8uMs8eRJBkaNUlefevXq4fnnn8fixYv5tCpVqqBjx46YMWOGmf2YMWOwbds2nDt3jk8bPHgwTp06hdTUVABAt27dkJGRgR07dvA2rVu3RmhoKDZs2GBVucB/7bZnzx40a9YMAFC/fn20aNEC77//vqLztSfnz5/HypUrsXbtWty5cwdNmzbF7t27nVYf8gy7EHqNu3LmNGtimLWTlBdYjSdYbh8gPk2X1GexeilJN83PWk+zWvTkvlJyXnLeYaV52Bt7Cjy1x+k9dELrvG3w/ppij5fhPM1j7CpkZ2fj+PHjaNmypSC9ZcuW+Pnnn0WPSU1NNbNv1aoVjh07hpycHFkbLk9rys3OzsayZcsQEhKCmjVrAgBu376Nw4cPo1ixYmjYsCEiIiIQFxeHgwcPKmwB28nMzMSqVavw4osvokqVKvj6668xdOhQXLp0yalCGCAx7Dic3LvZO3bYFqwdk+SaVJEgNv7fFpEsFjphuk/ss1SaXLqUnYYDvAB7XLfW1NGS+Lclb1twVHmOCMPQQhTbCx2qQ61EsHHIhOmDJ08Mp3A0GRkZgu3p06eidnfv3kVeXh4iIiIE6REREUhLSxM9Ji0tTdQ+NzcXd+/elbXh8lRT7vbt2xEUFAR/f398/PHH2L17N8LDwwEAf/31F4D82OIBAwZg586deP7559GsWTNcvHhRsn204NChQxgwYACio6MxbNgwlCtXDnv37sWff/6JSZMmoWTJknYtXwk0m4ST0WxWCReHG+u17PTN2srfXzgfsOn/xpUwTpPbZ5zG/c8JYi50wvTkxE5WqgHs0TBK0cMIrCY0QO5Hjq1LLisp3x2Qmi/bUcdbylsHba5VSITa28vS6eukeeyG1r/1uQBRUyE2ZcoUTJ06VfI4g8Fgkg8zS7Nkb5quJE8lNk2bNsXJkydx9+5dfPbZZ3zscbFixfDs2TMAwKBBg9C3b18AQO3atfHDDz9g5cqVkuEWWtCoUSMULlwYH374IXr27Ikge/THNkKeYQ9Cz95hDjUdnhI7ix5isUfpaj3CUp5JZ3iKtcKVhbAa9HCeWqG3l+zsgZPrpYUQtsXTq9evxZW5du0a0tPT+W3cuHGiduHh4fDy8jLzxt6+fdvMa8sRGRkpau/t7Y0iRYrI2nB5qik3MDAQ5cuXR/369bFixQp4e3tjxYoVAICoqCgAQNWqVQXHVKlSRfIFQK1o1aoVMjIy8MEHH2DmzJn4888/7VqeNZAYdiTUkylGSVisUszi+sREqWm6rWmmoliu8mrjie0pivXyTNYWIay2fbRe3cCWY/Xk2tOranPC9al0pgit3n21Ng893LquRnBwsGDzk5hmwtfXF7GxsWaxrbt370bDhg1Fj2nQoIGZ/a5du1CnTh34+PjI2nB5WlMuB2OMD/soXbo0oqOjcf78eYHNhQsXEBMTI5uPrSQnJ+PSpUsYNGgQNmzYgIoVK6JJkyZYs2aNbqZ1IzGsA9R6bG3x1rqCd9gUrcJirYojtkUI2yue2NI+a9HDSKr2nJWESpgidp56+RGgR/QoiB2EGhHsCCGsBDdodlECA//rRrXYAgPV12HkyJFYvnw5Vq5ciXPnzmHEiBG4evUqBg8eDAAYN24cevXqxdsPHjwYV65cwciRI3Hu3DmsXLkSK1aswKhRo3ibt99+G7t27cKsWbPw+++/Y9asWdizZw8SExMVl5uZmYnx/9/em4dJUd1t//cAs7FMswwzzegoqIiQ0RhHxcEoKAoaEeMSiCQTfSWIUdAReFyjgm8EQYPGYHjcElyDb1yiRkTGnwbjxSIZ5QFcyGNEkcg4oEMP6GyO9ftjqKa65pxT51SdWrr7+7muvrr71NnqdFfVXXd969RNN2HdunX49NNP8c477+CXv/wlduzYgZ/85CcAOsMs/uu//gv33XcfnnnmGXz00Ue45ZZb8OGHH2Lq1KkufhE1Dj74YNx8883497//jddeew3l5eX41a9+hXg8jmnTpiVn1wgLihnOQtw8oz5TYpUd44iB1Lhgax7ZOGNWveZnVjyxU+ywKG44zJhinTgJexn3XMfJgUzgpV+usB/t6cJtQKpfgaw+B8iq7B/9iA+Wqc8pfhiIxl8nk5g8eTK+/PJL3H777di5cycqKiqwYsWKpLO6c+fOlJCDIUOGYMWKFbj22mtx//33o6ysDPfddx8uvPDCZJ5Ro0Zh+fLl+PWvf41bbrkFhx9+OJ5++mmMHDlSut3u3bvjww8/xKOPPordu3djwIABOOGEE/CPf/wD3/ve95L11NTUoKWlBddeey2++uorfP/730dtbS0OP/xwv4cuhdNOOw2nnXYalixZgqeeegoPP/wwHnnkkWRccxjQPMM+kjLPsHUeQ8YeSlWcehWmuucdDts9dkPK+ojmBpaZf9jNZ+vcxE59EKWpLHdTzs8jq1vhqRoq4RSqoqNPTsiUUwmZcduGW4I+CQihTt0iWCWfG9z+pcLA6zzDf/pTAj176ptn+JtvmvB//o96fwh17rjjDrS1tWHevHkAgJUrV2Lp0qUoLy/Hb37zG/Tt2xcbN27EscceG1ofKUwiIgQZKuGmPbNNVrvpKIQBxtPqZMImWGmi5aLPbkMnRHiNJbHiNnRAJtRBpo9uhbAMQQdeBqVIMixWV4jm/vghhP0mDFeaIFT585//jMrKSgDAl19+iQsvvBADBw7E2rVrcdVVVwFAqEIYoDCJrMZNuAQQbfGrevVUy/RrouVOn4FOQWx1iVmhE6LvPKwD4faI6MV68sNJjIrN5Qe61o03PV+Y+BHWoKk+P0VwVIRoJky7pvs2iRCvyGcdn3zySTJc4+WXX8aRRx6Jhx9+GO+++y7Gjx8fcu86IWc4y8mEOGCvKN9YZ/3sxRlWdYl5fZTByY1VvTyv04Fm1ctb5jYtTGT7w1NOXhVVVBRZxJC9OQ5wd5EkajfM0d+ACIvCwkK07P8Dvvbaa8mn6Q0YMAD77OGCIUFiOAw4e6WgQyXctpsOmAcv60uEJ0Fs/Swrjln5AXFsq47wAC/lzLJ+iU0d9UZNCKtCgjgQ/A6JCHq4SRATUeaUU07BjTfeiAcffBDPPPMMfvzjHwMAPvroo0g8fQ7ghEls2rRJuaIRI0agRw+KuiDCx0lP8PQSM2TCLCj7WTZswprH3pbTjBM6YNXJa0clVEI1fEOWKDnAKtecoyTOM+FauQZU3GBZoiAyaQYJIqrcc889uPjii3HddddhxowZqKqqAgA0NzfjpptuCrl3nTDV67HHHoucnBzITjTRrVs3/Otf/8Jhhx2mtXOEM7qmPHMbP5yOiDSBOQbcMfUaU2x+tneENw2bXRC7jR/mrYu1bWuaUxm3ywlneH9QHWLWax1pLqgzVQhbkZl2TfYndDq2BHnMyM/X+9fr6NBXF5HKnj17sHTp0uTT/A499FCsWbOmS75zzjkn6K5x4Vq569evx8CBAx0rMAwDFRUVWjuVzWSTKPUDWW3odEBIOclwcnRVxLGoHms+3s11rJVUOUI4Ob8y9pKOG/NUkTmC85bbQ0+ciILYyzSbLwLroVsIR00EqyCzOcmYLNY8dNwiTL766ivMnz+f+2jrKMIUw6NHj8YRRxyBvn37SlVy6qmnorCwUGe/CAXIHU7FF0Fsr9jrZ3sHWCJaFMbg1hF2ErKqcck8B5PQg/1PmubObNTJlKnKwvibZMrxg8hOmGL4jTfeUKpkxYoVWjpDhE+27dC0CmJ7hTLOMC+f9Z3lDtvbd4OuuFfeVF7poBrckI7xwmESgXHQtU/z4y/t9cKOKK/bcAm389ATRLpCd7xFkEwWpOZO1u/1U9GJ2gSxaJlKuIRIEHsJkbCusBNON6yx+sATxSrtukU1RIKXPwLCrQvkBgeC098zbCFsz6/j6hcPXVcb7X3xQkEBxQwT/uEohg3DwDPPPIM33ngDDQ0NXZ4d/dxzz/nWOUIenTsv3WKc1a+oxZp5FsRmJTLL7A06OcMsQWztuB3VUAgeqnHDTo6wV3EcBVEYRvvWNmVFvOxv4IY0m00jCvsXP9ARuh/UJpWpF4mIzMFRDF9zzTV48MEHcdppp6G0tBQ5OTlB9IvIIvxywlWjCDwJYvt3kQi2f5cRwlZBbGIXxixUY3pZ+XnuKm/qN9mBV/2BeKIwKFc4ikI4nRxuIgWdP5HXiCk/iWq/CMKKoxh+4okn8Nxzz+FHP/pREP0h9uNGIEbZHQ6rPd2C2LEBFRFsL28Vvk6dBNRnSbCKVxmc6mdN/WbilyBmlef1TSV/ugnhdBC76dDHDEL1vNeah1XWj1AJIjsoLCzEqaeeGnY3lHAUw7FYjOYPJtIanYKYeYBgNeDVGbbWaxfJbm5Qs7rKTo+/VBHZToJYpp9OP5CKIyzqu1tx5qacFyEoEr4kMAkFgvq78IwMna6w7nmGv/1WX11EKoMGDcLLL78cdjeUcBTDc+fOxbx58/DHP/6Rpk9zi13E+Eg6u8PpAlcQA/Ki2EzjhUjYl7OQEZss8S0SxSwxqRLrKzoxEJV1Kmf/bl/mJOBl459VlunGjQjWETjqB0EFotLJgRbIHSb8pHv37lIPcbPfkxYkjmL4Jz/5Cf785z+jpKQEgwcPRm5ubsryd955x7fOZRQudtpREKNB9sHPtnyPH7Y2ZFbglC4KkVAVxSrXQ2XDLEQCzNqefeo3UX9EAl5WlFo/y7jYQYtdlTqd4oBVXOEgA0ezUIhGOS7XT9wK4mwcK4LN888/n/L9iSeewIsvvojf/e53GDRoUEi9SsVRDF966aWoq6vDz3/+c7qBLk2gs3k2ug9mwnHmOXYyMcOsz06wVk7GeRbVp9IeSxCL2nDTB1URzKpDdpnMcq/oFMLWfEGokCwTwtmAcniYZVkQFBRQmES6MnHixOTnJ554As8//zyOPPJILF26FKtXr0YsFguxd504iuGXX34Zr776Kn74wx8G0R8ignh1bKMkzgMVxNZGTXgxwyrTsonaYa0ca1YKUX63wov36GjrOji1xToiq4hglb77gdv2ZUWw25CTTEWjQy0zbNk0tHZY+7qwr1wS6cVTTz2F//N//g/uuusuXHHFFTjzzDNxzjnnoLa2NvQw3G5OGcrLy1FUVBREXwgGbkWk7p2UVzEbpZ2mbh3UhjzmS6pxVjw5K481n8yLl1emLRVYsbu8uGMZa4fVd3u9Tuut2me3eax5dbXP+m149YvaJefWN3QNbRRFtVOfpPZxBMFg+fLluOSSS3DnnXeipqYGBQUF+Nvf/oZ9+/bhggsuwLchW/WOYvi3v/0trrvuOnzyyScBdIfQiR+C2IsojtLOU+aA5vVgxT1wyAgYVZHLW8aqV9QWD9FyVjpPFPP6yOqHWYddBLtF93VWXfXJ/k72ZW7SdBA1oe2woarss8K+sBAFoijSifTmL3/5C6qrqzF//nzMnj07mR6LxbBq1Sp89NFH+PnPfx5iDyXCJH7+85/jm2++weGHH46ePXt2uYHuq6++8q1zRCdRuJHOipf+mOV4B6gg1zXoS57Cm+6cQhfMZbw00eVipwd78HASWKxYaHu6XRCzZrBgucu8ZaJ1FKFbvbitT2Z9eELYTZu6/+SZrAL3IztkQe8/RP2woqNPUbw/Uve5LMUMB8fPf/5z/OY3v8F//dd/dVlWUlKC2tpanHzyySH07ACOYvjee+8NoBuEX/gVr6sjjtheXxg4HdB0HxRSfg+Zo6msILKLUZ7Atgthq0gW1S/TplM6wHaL9+3rms5ySWX7ki7IOsE62wmKKKopBVQEMRANUWyiSxy72SWw+hGlsSHCYd68ebj++uuxb98+vP/+++jWrRtGjBiBnj17AgAGDx6MV199NdQ+5hgyk78RrmhqakIsFkNi1y7Pcdde3VK/xGaUHGsveJlYgVefqFzy9zAbVjny8jplrcNaL++zU7uiFZCZ21ilDK/NMAWVSliIm/pEYljFlRelhU2Qv5+gLbf7KdUhVc2vM8pGBrd/Ea/9bGnpPB6Wl8eQSCSUjofmcbSuLoHevfXdv7RvXxMqK9X7Q7jjlltuwd13343W1lYAQEFBAa699lrccccdIfesE6Yz3NTUpPTn2Lt3L/r06aOtU0RXojqjg1lnuotir5c8nbSJ48FENmTBKa7XbJjl/MqEVMgisp9kHGPV+nlpURSALGSEsBNuTkDCJkscYmt+wN15XxC43c+53YytZdqiMaEQEQJLlizBAw88gIcffhiHHnoofvSjH6G2thaXXXYZYrEYrrvuurC7yBbD/fr1w86dO1FSUiJVyUEHHYSNGzfSY5sjjp9TnEUtrtkNvAMF73KhykHFrgmSv4UoXtjBJeWGmohCIXQegUV99TJoKu5w0IGbbpWAX3WnA0EJYp/acfMXi/JP6TV8wWv4hFt0P465vV1fXYSYP/zhD7j77rvxs5/9DB9//DEMw8DIkSPxu9/9DtOnT4+uGDYMAw8//DB6S05s307/qkDQIThJELvHq+biHqvtgpi1fD+i8U25OZEniHUgI3RlxbEOghLEqn2XCbPQMR5RdYWthOwQe903RTn+1e3Q6roaFmXhT0SDjz/+mPmsiiOOOAI7d+4MoUddYYrhQw45BA899JB0JfF4vMssE0R0IUGcJjg4wQD7gNTFddYhjL26wE7xrixUwyr8VCqyYRu6kP2doqLOWP1g/R/8Vk4+txH0hQi/0SHy0zwShgiAvn37oqmpqUv6m2++iWHDhoXQo64wxTDNKRxdSGz6i98HO+uBo8vMEhysv7fTvWld6na6Cc7pKKbTBZYNndB1g5oIr1OxBdFHJ/z6o/L66OZuMhLEgRB1Qep1jnoivTnuuOOwZs0aHHvssQA6owmmTZuGJ598Eo8//ni4nduP49RqRGZC7jCbIA5ydkEsk9+pHnveggJ5sa2ELnHs9Y4cr8j2RWdIg0ostIigRbB9Oc8F5gXch/H7MtrVuV/KNEGsI2SC17au40xBAcUMpys33XQTtm3bBgDIz8/Hcccdh+bmZrz66qs45ZRTQu5dJzS1mo/onFrNjq6dup9n6+koiIM+wMlMkOA2qsD+nflbq8xQoDKdl2x61BSFFXMAZUIkVJ1m2bALN+ElblBVGSr/haBDTBza0blfitrf1+uwelkfVtvWfU5TUxNiAwe6nlrto48S6NNH33F0794mHHEETa1GdELOcACYj+ON4mUicogPEMaBzYu+dDJnWaETXSgQPxEwpXKWMHMbIuHkFocJzw12mtVCV5tWonhjoFkmKr+XiCxziKMULhHF4x0RDqtXrxYuHz16dEA94UNiOEB0Cs90E5rZDutKvKqp6pSPp1VF9fGEckq8sX16Nl5j9nRWft53mc6q4DYWmlWe5+q67auucImwsf9evN80bAIQxGYzUSDMcAk/0T21Gs17HBynn346DMNATk5OMs0alPDdd9+F0a0USAwT5A7DvwOAjPOr4g5b0RGaywv/7DJNm5lZxR1mdYYlit0IYj+cWFVHWDVUQlRXWOgYR9UbIHWPgexMFrZ03fumKAnJSAriqAwOETiNjY0p37/++mvU1dXhlltuwcKFC0PqVSpcMTx27FhcddVVuOCCC5jLd+/ejRNPPBEff/yxb53LRKIaLkHox2nf70YUywhd2UkbWNjDK7iiWLUz1nS7KFYRxLqElKojLBPG4HSDmUo/0gkZa9SP9ZSNd+edkMEfQezUtaCIlCCOwoAQoWGPyS4qKsKECRNQWFiIG264AePGjQupZwfgiuE33ngDq1evxs0334x58+Z1Wd7R0YFPP/3U185lKroEsc4deTa7w37sp1WEMO+zUzknAaxq2JllWJqVOTOF2xkk7IqbJ4h59djR6RLLxgjb80QtNEAWnUGmQa63ykbLuqLhoyAGoiOKw4ohJsOHkOGwww7D5s2bw+4GAKCbaOHSpUvxu9/9Dueffz727dsXVJ+ygiiLQz+I6s4x7IOVFa8TM4jymstEL1Yd1mXmjaBJCgoOvOywljl9FtXDq9vtzV/28k6fWS97nW76kU6IxkL0W8jm8xOHyzB+7Z/CWl0rukLbw0bm76f6csMf/vAHDBkyBAUFBaisrMQ//vEPYf7Vq1ejsrISBQUFOOyww/Df//3fXfI8++yzGDFiBPLz8zFixAg8//zzyu0ahoG5c+eirKwMhYWFGDNmDN57772UPK2trZg5cyaKi4vRq1cvTJw4ETt27HAxCnqIxWJ49dVX0dHREVofTIRi+LzzzsPatWvx/vvvo6qqikIiIkhURSbBR9YJtgpRu2AVlefl9dIv6/cuohiQE8asz9Y89uUy9Xs9AsoIYh6iupyIktLQeUaoKpCDxGE985L/bP0PiAjzPADIHEEcNk8//TRqampw8803491338Upp5yCs88+G9u3b2fm37ZtG370ox/hlFNOwbvvvoubbroJV199NZ599tlknrVr12Ly5Mmorq7G//zP/6C6uhqTJk3C+vXrldpdtGgRFi9ejCVLlmDDhg2Ix+M488wzsXfv3mSempoaPP/881i+fDneeust7Nu3DxMmTPBdjJ5++uk47bTTurwuvPBCzJ07F927d/e1fRm48wx369YN9fX1KCkpQSKRwMUXX4z169fj6aefxhlnnIEvvvgCZWVlkVD0UcWcH3HXLv48hjp2ujpdZr/FdZQc8SBvmuMtdxMuIdIXqmVk8vIMXSvc/41IVVuVPi+/U+dU4Qltp892VPqcTrj4E6ls08pzXYtwU0729xWgax8W9N/Gy6bj5t5Q+2/d1NCAWHm563mGRcdRNzQ1NWHgQLV5hkeOHInjjjsOS5cuTaYNHz4cP/7xj7FgwYIu+a+//nq8+OKL+OCDD5JpV1xxBf7nf/4Ha9euBQBMnjwZTU1NeOWVV5J5zjrrLPTr1w9//vOfpdo1DANlZWWoqanB9ddfD6DTBS4tLcXChQsxffp0JBIJDBw4EI8//jgmT54MAPj8889RXl6OFStWYPz48bJDp8ysWbNSvre3t2PTpk3YtGkTfvGLX+B3v/udb23LIjWbRCwWw8svv4wbb7wRP/rRj7Bw4UJMmTLF775lBdl2Q11U4oejpl9U44ZZBzZRfKDKPV2iEEteCK/1N035P7MKiuKFnRpy6rwsbhS/PT+vz+mMTIy2BdVtOeWGTBPrWAaJy4Bas+9e92NBr7af8cPp7CA3NTWlfM/Pz0d+fn6XfG1tbairq8MNN9yQkj5u3DisWbOGWffatWu73Bw2fvx4PPLII2hvb0dubi7Wrl2La6+9tkuee++9V7rdbdu2ob6+PqWt/Px8jB49GmvWrMH06dNRV1eH9vb2lDxlZWWoqKjAmjVrfBXDixcvZqb/3//7fyMTgssVw9b54Mzvd955J37wgx9g6tSpeP31133vHJGZhC2IM0Gz6EBF97AEsomUMLYKRtZnO6ohCjKddqrHlpf1HxWKuLBEnR9IjB1rfFROujzDOyOUyaehUzpEcbqcR2npp8cx1x2+YtZVXl6ekn7bbbdh7ty5XfLv3r0bHR0dKC0tTUkvLS1FfX09s436+npm/m+//Ra7d+/GoEGDuHnMOmXaNd9ZecyJDurr65GXl4d+/fpJ999vpkyZghNPPDES06txxTDvKc2TJ0/GsGHD8OMf/9ivPmUdUXKHg+pLWILY74OOl9g8WaNR5uq9ynGHpXucJoNg5WUt6+IE8lZU9UApIzxlhbaECLYucxTEJrr/bKKB9wPB72IfI6fYdyAg91DW1deILqc4CLy6w7IXbtKJzz77LCVMguUKW7EbhfaHScjkt6fL1Kkrjx2ZPH6xZs0a5OVFY7sRTq3Wv39/5rJjjz0WdXV1ePnll33rGJH5hO0QRx2W3pM9+Kge9FRCL2RmVLMvY85XzGpA5SirOVRC9r/oKIhZ9fshXP2u36zXYZwj7WoGqNa8iOJ0u6ggM6xRMnlEFBUVScUMFxcXo3v37l1c1IaGhi6OrEk8Hmfm79GjBwYMGCDMY9Yp0248HgfQ6f4OGjSIm6etrQ2NjY0p7nBDQwNGjRrluP5eOP/881O+G4aBnTt34p///CduvfVWX9uWhTubxOjRo9GjBz+keMCAAfjFL37hS6eyES+iMB12ODyC7HtUDjYq92vJ3JjPQ3V9RVO4OS1j5WGlO07PxpqNQPXFg5OPOTuGA9zZNJzadotMuIfXNnzG/j/Qhpv/go/4NSOFLoLcD2aS2ZGXl4fKykrU1tampNfW1nLFZFVVVZf8q1atwvHHH4/c3FxhHrNOmXaHDBmCeDyekqetrQ2rV69O5qmsrERubm5Knp07d2LLli2+i+F+/fqlvIqLizF27FisWrUKt912m69ty0KPYyZCJwiHOIgDgI42dDtEOm+akXGpnSIGzDRRXLHb/0KX+GQHeO3Ihp0ynS8nt5b3A3uJnxbl9+GPbx03bdXL/vE9/rZWohYOFqQ77OfNdHa07dtbWgCdl9RdDPasWbNQXV2N448/HlVVVXjwwQexfft2XHHFFQCAG2+8Ef/5z3/w2GOPAeicOWLJkiWYNWsWpk2bhrVr1+KRRx5JzhIBANdccw1OPfVULFy4EOeddx5eeOEFvPbaa3jrrbek283JyUFNTQ3mz5+PoUOHYujQoZg/fz569uyZnOwgFoth6tSpmD17NgYMGID+/ftjzpw5OProo3HGGWe4HkYZ/vjHP/pavw5IDEeIdLms5Ad+CuKoOMI8/L4PS+XAp5rXRCSMnaIgvIorlsBWRXY6PFZMNHeb5QV/q8S/6AwF8TK4jH6oVmetgjlmHuKC3Pz2zJktfCCq4WBBCmIgM1ziyZMn48svv8Ttt9+OnTt3oqKiAitWrMChhx4KoNNptc79O2TIEKxYsQLXXnst7r//fpSVleG+++7DhRdemMwzatQoLF++HL/+9a9xyy234PDDD8fTTz+NkSNHSrcLANdddx2am5tx5ZVXorGxESNHjsSqVavQp0+fZJ577rkHPXr0wKRJk9Dc3IyxY8di2bJlgc3z+9prr+Gdd95Bt27dcNxxx+H0008PpF0ZuPMME95xMz+i2x1zOs01LELnegQ9bZHX/LJpblA56GkOxVWq24vAkm3DbVsy9Qu3HVYciZuGeCJbBZW2bSElbpt2FMMukJ3RQtQXYX/cBu0zkNm3hXHirvp/druPdjOvr1kuFoshYbvRzStNTU2u5j0m1Pn666/xox/9CGvXrkU8Hsfnn3+OPn364Hvf+x5WrFgRifEnZzhiRMEdDsoxYRFVF0U3PBNMJs0NfrnDvPImohvsZMqLsI5NEPeS2evnhU6YMEMoWIPjZLGruMYqg6eQz8m9d1oFnaiEt/CQ+o+rhrM4ENV9m+oqpdPsGUQ0uPnmm7F371589NFH6OjowDHHHIOGhgZMmjQJc+bMwYMPPhh2F0kME3zCEuY6DhpRdoVV0SH03AoUlfZktBmvH7KuOC/kwo0Y83vdHOdbFlXOSJM6SVUZYInyMiEsLMPb6Tdws29REcFaDN0gg3jDa9I1Kvtp0U240rS26h2c1lZ9dRFCnn32WTzyyCM45JBD8PHHHwMAcnNzceutt+Kss84iMUzowatwFJ3pi+r2Uyi7FcTpciBxi44r5H7VrXqDnUwdouXW/vrtDHu5eRDgzLfsAO//7/gwEBYKalA0h7DOsZUVxKL9gGzkCe8KQtATTmSKO2zitD6Zvj8m5Ni1axeGDRvWJb2oqAgtEfmTkBiOIH46sqJ6VXfUwkvChCu83FTvZZ/CCRH1hMysDG7ipFkiOMjL9DLt8Zbbty+nS868sZByoSVxirt187+SFVe8fZ3TfshtfD2vX9x9rv0PFuGp66JERPQNERHi8Tj+85//pNzwBwAPPPAATjjhhJB6lQqJ4YiiUxAHIVTDjDM2CWMH7JdD6/YGJdlpwWSWB+GwummPJYKDihl2Ey4hWu50QxpPg8m40Co4Oay8kBRW+9YyMk6san/9vNGUi0YR7GQ6pFOoBBCg293SAuyfm1dbfUQgnHrqqXjllVeS8xm3tLRg6NChSCQSeO2110LuXSckhtMcp51Q0OI0CjcAZgJeBLGf+Xm4CUlVuZmOJwaDdobdhIKIhKwpEEViWLTczWxkMrG/svHB1jSZcfdisKr0iQgP+j0IOwsWLMAXX3wBAOjbty/mzJmDww8/HBdddBH69u0bbuf2Q2I4wngVlmGJUl0useoNGoQ+VO/M15XXjUPqZsYKN8iGpqj0R+bGIpHY9eKMy7rBLHhj4XTS4pTu1EfV5SrQibx/tLTQ/WrZzEEHHYSDDjoIANC/f38sWLAg5B51hcRwhhKFnTodXLzh9+VSrw6qm5AHr+EMMuLPL2dYNgRFdb1U8svMzsbql6yr6uQOOznxKicton7J4Me2Qfss/ZBRQcybN086b1iPZyYxHHGC3Dn7Efflpf9RvOs6kxDFgcqWdUpzk0e1/ag5w7y8vDIqISa88BBVN9ptf3jur6pjr2sea1Vk+hmF+x/SLW44EFpb9cYMk1UdGC+88IJUPsMwQhPD3YJqaMGCBTjhhBPQp08flJSU4Mc//jG2bt2akscwDMydOxdlZWUoLCzEmDFj8N5776XkaW1txcyZM1FcXIxevXph4sSJ2LFjR0qexsZGVFdXIxaLIRaLobq6Gnv27EnJs337dpx77rno1asXiouLcfXVV6OtLXXnt3nzZowePRqFhYU46KCDcPvtt4Me2KdOporaTDlYBSWERfWpvJzK+4Vsf5zWye068z6r1mcvYy/PqpO1bvY00RjIjI/sOAZFG/K6vIIi6H0LTZJB+Mk777wj9Xr33XdD62NgzvDq1atx1VVX4YQTTsC3336Lm2++GePGjcP777+PXr16AQAWLVqExYsXY9myZTjyyCPxm9/8BmeeeSa2bt2afL52TU0NXnrpJSxfvhwDBgzA7NmzMWHCBNTV1SWfrz1lyhTs2LEDK1euBABcfvnlqK6uxksvvQQA6OjowDnnnIOBAwfirbfewpdffolLLrkEhmHg97//PYDORzWeeeaZOO2007Bhwwb861//wqWXXopevXph9uzZQQ0bkeUE7RCFLYzdtBmUM6yzPZVxszvCIkdfdWYQWVeY50Db88i2rztkQhaRYy07FZwVN+5x1MwBEsIEAeQYIVmdu3btQklJCVavXo1TTz0VhmGgrKwMNTU1uP766wF0usClpaVYuHAhpk+fjkQigYEDB+Lxxx/H5MmTAQCff/45ysvLsWLFCowfPx4ffPABRowYgXXr1mHkyJEAgHXr1qGqqgoffvghhg0bhldeeQUTJkzAZ599hrKyMgDA8uXLcemll6KhoQFFRUVYunQpbrzxRnzxxRfIz88HANx55534/e9/jx07diAnJ8dxHc1nqu/a5f3Z57ydrqsJ+CXr0Y1Kv3RMt+Q3XtuULe+326mjrI4+OtUR1kwZutpTEZ5OD6XzMi+0lxMYe1tup+1zm08HMm156Y/KvpqHU6gKCzd9dioju88WPanQ/L53bxOOOCKGRELteGgeRxN1dSjq3Vu6nGO9+/YhVlmp3B8iMwktZjiRSADovLMQALZt24b6+nqMGzcumSc/Px+jR4/GmjVrMH36dNTV1aG9vT0lT1lZGSoqKrBmzRqMHz8ea9euRSwWSwphADjppJMQi8WwZs0aDBs2DGvXrkVFRUVSCAPA+PHj0drairq6Opx22mlYu3YtRo8enRTCZp4bb7wRn3zyCYYMGeLb2Lgl6jd+6HjiFOEdWZfQTV1hCPcg50kWte325MZJnIoeMuL1yoGbKwEqT3GT/c1UxThrfGSRdbnd1u/n/ktGJOsU+5G6obClBeihUbKE4aAQkSUUMWwYBmbNmoUf/vCHqKioAADU19cDAEpLS1PylpaW4tNPP03mycvLQ79+/brkMcvX19ejpKSkS5slJSUpeezt9OvXD3l5eSl5Bg8e3KUdcxlLDLe2tqLVEpTf1NQkGAU96NhRBSk+nXauJIT147TPj1JohKieMEUvr323bauU44VI2OvxMk2ZyrizBLFM+07tqcxTLOqPah9Uxi0IB9vryarTeLgR9yrHGbr5j0hHQhHDM2bMwKZNm/DWW291WWYPPzAMwzEkwZ6HlV9HHjOihNefBQsWKE0hokKkztB9wKsI5k0xpZonm/Aa5hB0vLDuMIog29chRFnOsDWPjpMaXj63QpWH2zmbndrW9TAPpxOvqMfZyoTaBAWJYyIdCFwMz5w5Ey+++CLefPNNHHzwwcn0eDwOoNN1HTRoUDK9oaEh6cjG43G0tbWhsbExxR1uaGhIPuYvHo8nn3RiZdeuXSn1rF+/PmV5Y2Mj2tvbU/KYLrG1HaCre21y4403YtasWcnvTU1NKC8vFw1H6IThxPrZpuwlwijsnMPshxshrDO8wk07gHvB6QduL/W7cYXN9nSIYDeohkfI1GfHSSDLCnIdgs+p3aBFcdj7q0w3YwgisKnVDMPAjBkz8Nxzz+H111/vEmYwZMgQxONx1NbWJtPa2tqwevXqpNCtrKxEbm5uSp6dO3diy5YtyTxVVVVIJBJ4++23k3nWr1+PRCKRkmfLli3YuXNnMs+qVauQn5+PysrKZJ4333wzZbq1VatWoaysrEv4hEl+fj6KiopSXjqhEAJ9RN3ZCYuWFv6Ll0+1HqeX2/7JlHe7/jrXUaUOVl5WWZ3rKnvSo9K+bB7Z8Q4SJ1c/bKEaFF6ml9Oyv/WyU/FjZ0FkFIE5w1dddRWeeuopvPDCC+jTp0/SdY3FYigsLEROTg5qamowf/58DB06FEOHDsX8+fPRs2dPTJkyJZl36tSpmD17NgYMGID+/ftjzpw5OProo3HGGWcAAIYPH46zzjoL06ZNwwMPPACgc2q1CRMmYNiwYQCAcePGYcSIEaiursZdd92Fr776CnPmzMG0adOSAnbKlCmYN28eLr30Utx000343//9X8yfPx+33nqr1EwS6QCJ6/RAt4NsF1Ruyrkpr8q+ffxlopvK/ehTWMdNlgMZhDvMc0Z5zqsOQey0jva6RKEMuk92nZxg+7rpbt/tg3H8OOmXcYlZ/bXci04QkSMwMbx06VIAwJgxY1LS//SnP+HSSy8FAFx33XVobm7GlVdeicbGRowcORKrVq1KzjEMAPfccw969OiBSZMmobm5GWPHjsWyZcuScwwDwJNPPomrr746OevExIkTsWTJkuTy7t274+WXX8aVV16Jk08+GYWFhZgyZQruvvvuZJ5YLIba2lpcddVVOP7449GvXz/MmjUrJQwinSEhTNiRFbs6hZdI8HotJxLMbttVbUcXInFqxQ/xYxdVTsLQSzuselXT3bTJQlWEe6k33bAL4jy00TGFSGtCm2c4G9A5z7CJrrgt2nF5E3V+ObV+tMe6vO30WeY7oFdUsuCtdyYIChVEgtuPseDVqTrPsBU3AlH2JjC3/ZLZroK8EU3kAIvS/fi9ZLAej1jHFGufO++h8TDP8P/3/+mfZ3jsWJpnmAAQ4jzDRHiQEE4/dIZKuL3kasUPEew1ZINHFG6Y9CpC7ONt1QR+uMOyYRIy4Qwq7TlN48ZL85Og+8D7v4rSo4rWba+1Ve88w5ZpUAmCxHCWQUI4eoQp1uxz1wbZj6Da8ktk89A9bRgLFXGsgszMCbLC1U0/RDHSTqI8aFHoR7iITFx12Cd2VtzGDxNE1CAxTESeMA46fpX1gtuDilM5VSfKqyvstA7pfuCUDe3wup7W+qy/iZcrySKXWUaA6tpWZdxYHQJYdptyumHPrEsXov9KVOdLp7hhIp0hMUxEGlZMa5QvC7pF9qCsSxCrCmCvpIMA9qMPKiEFqvDqE7nGbtoQubR+OrJhuL0inPqj+v9RWTeWAI7SDBMmPEFcUAB4fiBrSwtguVHeM1HY6RCRgcRwFpFOZ+1+7qfS0RW2okuw8kIkWPVb03r3lnOHdd4YKHP5WFdbKjjF6/KW64i1lZ3hQdbJ54lmmTAFXv9kT4Jkp0lzcmhlbiQT/beDRPQf4K0LL1QlCvslE5EgJoioQmI4AOjJPWpEacceJCoHZTcH8KDKeBXBXmJNveBXHbKhBV7a4okiFQHi5CjzBJqMCJURxW7Ekqwod+qTjnAJL6he9WJd6bHW49SW38KUQiaIdIPEcEDQziEaRN0VVhXEgPcbpty4wzy8LA9ifHW2IetWy96A5rZ+UZ1eQjNMcWy/OY8VImH9zHM03QpiN7HCupzroBH12zRVzOMIbxv12o41j0qdduiYR6QTJIYDhHYOzkQ1PCJIVA/SfjvKLGRDJUy8iuAo/HZeHHL7iYab+pzqt6Y5hV6oOsYygpi1PAhk+gPoE8ey6+c2htisn9dv63HEy/bsFHKiA63HvNZWvTHDNLUaYYHEcMCQIPaG24OsTuERBG4EMRCuaOS1rZrutEwHQTjEPOdWRpR6jRmWjUmW3Z7sgtgNTlcbVLZtmdhhN46yiiDWjegKTUHBgWnM7McPr4JYJg/F+xKZDonhECBB7A7aITvjx6Vft+ERYYvgsK8yyDi3KvXIhECw8jq5xW4EMcuNdSuadPxnecI3ikLO6eSJJYStgphXNgpXT1jQ8Y5IB0gMhwTtILri18483VxhE7cHuCgcGHW6xF7y6iZIEezUtowzLBtX7FUQs/qqIkJ13DwnEsRmG7KOu+7/mJv/jV0IR1HY083hRKZAYjhLSHfhnS3hEVGENQbWeGH7cl0uscxyFcI42eLFDbuFJW6t6TKhATpFlUiwuQl/cNu+9bu1TZbLGiRu/t8iISxahyicBPPQIppbWoBu3bzXY62PIPZDYjhEyB12xsvBKxOEsO4DnGxdKoJWlCesUIkgfjuZdeCJVztOjjFvOW9mB1YZ0bbkRSg6CTZdv6dTfLWTKNYZry2DHyeAIkEchf0VQaQrJIbTDJlnwacrOh2lTBDCQWBdT1kBzHOFvTjETstEhPFb6RD99nxOYtUKz/nkLbO34UX8iqZcUxGdunEKT1EJJdHVD5llTic4onCPIG6cjVpoBkH4gcZrDoQbMlXYeqGggISwiY7YUl66ioBzSnOqu6VF3J6s68x6ycIrr1qfrOgX1c9qS6Vf9jT7Z9EyUb9V2LePfWLEaj9ot1803rz+RUEI2/vHevdjbIMgm451jY2NqK6uRiwWQywWQ3V1Nfbs2SMsYxgG5s6di7KyMhQWFmLMmDF47733UvK0trZi5syZKC4uRq9evTBx4kTs2LFDqe0vv/wSZ511FsrKypCfn4/y8nLMmDEDTbbnZRuGgbvvvhtHHnlkMt/8+fM9jUuUIWeYICxE4cDipQ863VWRK6wqhGXbdJNHd1mRwyiqX8UFVikjmi7N7vaKlql8VsF+U53ZB5F76TUkw20ZHesrakdlmdNvz3KG/ep7WvD118B33+mrr7lZX102pkyZgh07dmDlypUAgMsvvxzV1dV46aWXuGUWLVqExYsXY9myZTjyyCPxm9/8BmeeeSa2bt2KPn36AABqamrw0ksvYfny5RgwYABmz56NCRMmoK6uDt33z8Hs1Ha3bt1w3nnn4Te/+Q0GDhyIjz76CFdddRW++uorPPXUU8n+XHPNNVi1ahXuvvtuHH300UgkEti9e7cv4xUFcgzDMMLuRKbS1NSEWCyGxK5dKCoq4uZTjRt2c4adTbHJOgVhkPjpaIuEm9Nn810mPEJG6MmIALcE9Rs6raeuftgFj/W7aBkvr2yaCLvItWMNn1Cp2+vsE/YxVx0Pt7g9qVM5ETI/2/sdhCAWtaFyLGpqakJs4EAkEgnh8ZBZLhZDYskSFBUWSpdzrLe5GbEZM5T748QHH3yAESNGYN26dRg5ciQAYN26daiqqsKHH36IYcOGdSljGAbKyspQU1OD66+/HkCnC1xaWoqFCxdi+vTpSCQSGDhwIB5//HFMnjwZAPD555+jvLwcK1aswPjx4121DQD33Xcf7rrrLnz22WfJdTjmmGOwZcsWbplMg8IkIoCquM0mYatKuglhXZdo3QphXrpdCDvlE322ponadjMOolAC2TJuLr9bv4uWWzHDCmReMu05XTJ3+j15aU6/kf27Pd26DiouuJvfQfQbqo6HG3QKYdb68NZBV/+JTrFtfbV6fDLd2rVrEYvFkmIUAE466STEYjGsWbOGWWbbtm2or6/HuHHjkmn5+fkYPXp0skxdXR3a29tT8pSVlaGioiKZx03bn3/+OZ577jmMHj06mfbSSy/hsMMOw9/+9jcMGTIEgwcPxi9/+Ut89dVXLkYkPSAxTGQ9QR9QdAlga32idkR5ZQ/UrEcvqwph2T6K8CpiZcS46MXrN6tunsDltc0qa80j27aMAGSJKpHQlRV9dlEs6o+ojiC3STdtqYyJrj6EIXwjFYohu5GqvACUl5cn42tjsRgWLFjgqZv19fUoKSnpkl5SUoL6+npuGQAoLS1NSS8tLU0uq6+vR15eHvr16yfMI9v2xRdfjJ49e+Kggw5CUVERHn744eSyjz/+GJ9++in+8pe/4LHHHsOyZctQV1eHiy66yGn10xYSwxEhm24uiBJBH3R1tuck7pzS3AhYliMlqkfWtRPhViD5cdLBcu3sAlAkflUEtlkfb7nT78kTvyIhrGO8vApia74wBKAIv/okIzr9ngouW/nss8+QSCSSrxtvvJGZb+7cucjJyRG+/vnPfwIAcnJyupQ3DIOZbsW+XKaMPY9s2/fccw/eeecd/PWvf8W///1vzJo1K7nsu+++Q2trKx577DGccsopGDNmDB555BG88cYb2Lp1q7A/6QrdQJemZPIUa0ERdffJTT2qopb32UnQyKAi1N3k0VlOpS5WupPz66ZdU/xYb1Azl8vOKczLa6az0tz02dqmvV1ev2VdR/s6hYXf+wvRwzScUBlPr/3JNIqKiqRihmfMmIGf/vSnwjyDBw/Gpk2b8MUXX3RZtmvXri7Or0k8HgfQ6ewOGjQomd7Q0JAsE4/H0dbWhsbGxhR3uKGhAaNGjUrmkW07Ho8jHo/jqKOOwoABA3DKKafglltuwaBBgzBo0CD06NEDRx55ZDL/8OHDAQDbt2/PyDhicoazAIox7kq6CWEnR0rkwIryOTl2bsMj3LjBYTnAgiuowjZELrCoTzLtmfmsbfGWWetkfef95jyX2+1Y8tqRnZdatX6duNm23Nbp14kxOcT+UlxcjKOOOkr4KigoQFVVFRKJBN5+++1k2fXr1yORSCRFq50hQ4YgHo+jtrY2mdbW1obVq1cny1RWViI3Nzclz86dO7Fly5ZkHjdtA53OMYBkvPTJJ5+Mb7/9Fv/+97+Tef71r38BAA499FC5AUszyBmOEKpPpEtHd9i6w9btPETtYKDzcrNqHllh7PRZNs1NeZllIoIoZ8/r1QF2GgfRNsFyiAG1xxGL4D3YwZ5HJ25cX7/2IXa3PJvxwxX2bMq0tgIOIQPK9fnA8OHDcdZZZ2HatGl44IEHAHRObzZhwoQUR/Woo47CggULcP755yMnJwc1NTWYP38+hg4diqFDh2L+/Pno2bMnpkyZAgCIxWKYOnUqZs+ejQEDBqB///6YM2cOjj76aJxxxhnSba9YsQJffPEFTjjhBPTu3Rvvv/8+rrvuOpx88skYPHgwAOCMM87Acccdh8suuwz33nsvvvvuO1x11VU488wzU9ziTILEcJqTToI4mw4yfgs1XSLY/l3kRqr0T7aMG3fQDV7bEcUA62zfLojt33lPfwPkRbH9u4xIttfLW87qs9lv61zErDJO9bJwOoFwMyex36gI7jBCFbIlPMJPnnzySVx99dXJmR8mTpyIJUuWpOTZunUrEolE8vt1112H5uZmXHnllWhsbMTIkSOxatWq5BzDQGecb48ePTBp0iQ0Nzdj7NixWLZsWXKOYZm2CwsL8dBDD+Haa69Fa2srysvLccEFF+CGG25I5unWrRteeuklzJw5E6eeeip69eqFs88+G7/97W/1DlSEoHmGfUR2nmErbs+eeYI4KiESQbpMuvL53Q/VvKL8btxc+3eeEOZdYneqQ7W/InSLcNkyOk4IVPOztguZOX1Vy/PmAFaZy1ilPt78wzK4Ebwq8zD7gdPvrnISouP3kUG1vIoRs7upBQMHxtzPM3zHHSjS+KM1tbQgdvPN2ucZJtITcoYjhmqohIlZxm15Gew7Ptl2yBFWzyOT360AZqWpCGFZdAjhsEQw4Byn6xci55TluALyTrE1neUOiz7z6pGF96Q6GUT5ndzhqOImFEX1ASmq/SGIbIXEcIYRpBPsRXjL7nj9FPe68MuRlhWTOkMmvDxlTveJQJghFKLY4CDgCTw3otie354uEsK8MAtWH+35Wf3nxT2z+snCrfCNqtDzMqVa0P1gIRum17kP93g2qftsNJtcGsIREsOEFGHEJZttRlUQ6xZ2qrG1XtJY6ToFoEo/3OZzm99N2TCOmyLhxxO6LFFsz28t4ySEWc6wrCDmpdkFsUw/RfVlMn6vZ7aMI0E4QWI4gkRN/IUphKOIThHsRiTLOMMqbrHMtF0qn70QBSEctitsRSacgJXHvg48ccybj5jlDMvMZWxvg9dvkSAW9ZNXtxuB7Leo9jozhd8xziSECeIAJIaJwHHaCUdRCOuMXXXrErsRxaJ0mZvDghK5QYpgUXldM2joRiZWVyScrevFiy/mOcMyrrBTiAQrjdcn3roFJd6cfu8w3Nqwb5TzQpSMHYLgQWKYEBJFYcrDqxPDQmccqh8usJt2ZKcJk3WIVdsPOr/u8mHj5BY7CWdefDHPGZZ1hZ1EsKxYt/eNVZfMd1FZa7oqMm69ico+SXZWDK+krSOse15gn+YZJtITEsMRJWqhEjpI252wIiruqqyb6yRE3V7yd9O+bB06ynrNr7t8lNDlFjvN/+sUO6wSYuHUJ17f7P1xg253WVYUewnnkHGJndJV8+gk045hROZCYpjgossVVnFHouRE6wiNcOPcysblysT/OtWv2jfZPLoJQgTzxs4pNla1HacybgSLkzAWLWc9EEMmBELVFWYtF/XZ3jcWQYZP6OiDVyHshbDHiSCiDInhCBN1d1ilbzI74kwXwioiVFYQe308sFNeP51b2bxehLBO4e72srjoZFD2ZElFyMiGUahMY6byWbSc166sWLfXKdt/1bJhIuqf276Hsc5RPnYRhB0Sw0QkiJIQVsVJ0Ki4wzIi2OvDILyIUBWBrwO39YcZDhFU7LqsSy0TR8t7XLIfrrCMi+0kiFXacuNIq6JLZLsVwlEX+FpoaQF0PjCXYoYJCySGicgTtMPg1d2UdXV56awyvIdhyPTHDekaW+u232FMp6Yr9MOLKNYtiFVdYVG6aL10iU+Z3yCM2SNU8qjELBMEwYbEcMQJK1QiSKdWZ1t+uHI8VMIiVGOJnURwGKJXR+iISl1+hmj4TRj/Q5WwBx5+CmJRX1np9rIqcxOr3rDnVJ+X8iL8FrJhCWEKkSDSDRLDhCt07eyCDo9wEihuQwhk3GAV8WyKYFVB7RdBC810FsKy6BbMMmJXJo7WiyBm1SkKVXDqi2id3IRHeBGHOt1qXTM/+Cl2Ixdf3dqqN0yiLX1D8wj9dAu7A9lAG/Iy6kw5k9ZFlZYW70LYWof52eoE79vHzsPKHwRe3N0gDqbpKIT9wq3jbk+TuSLB+izzn1ftC69fTuV4dXvZfnT814ISwl6ccC/rmc3HByJ9IWc4QNqQlxY3igXVx6iNhdcwAFVxYEXkBPsRHhFl/A7dsBNEvHDQYRNhOsS6HVsvDqWTs2xFtg0v/UkHR9gLIiGcDfsuIn0hMRww5s5CRQhGfYo1N0RNCMsg4wiriFkn941VntcXHlE9aOogXYSwCL9Eskycqx+CmFUPSxDb+6YSHiHqr5fwCOvvEEZ8cNB5WLD2cZm8DyEIExLDIZEuLrGdTBPlJiJB4iRGReKVlcYSwX45wqJyXuMn052whXAU0C2I3QpmXh7WMjcP4pA5OXCqw2/CFsJe8d0VbmkBvvtOQ0X7oZhhwgKJ4RBJV0HslXRaZ6c4RJ4QFolgXaEVMjg5gzL5oojXg2uUhLB9+jGdBBkywSqrKohV+65ar4oodtM3tyJa1/aX7Se4BOEWuoEuZKLmtKaTUFWFt7OXTXcrhFVuiuOl2UUxbxlrHXTmY42DG8IU32EJYZkbnsIaF97VDzdhPW7aES1nIfPgGZn/uxNREojpdsJKEOkEieEIEDVBzENHP6MmtlUFsrlMRgibItieznuxlvPSeH1SySeCly9K4sANYTvCYVzmlv3NZLYFp4e/OF3dkOmP2ysjqoJYZrkoT9S2hbBcYafZkqI2TgTBgsIkIkK2hkxEEdHBW+SIWcUjSwSr1OXUDzuiS8JOy2Uuo3shyJkURHgRwqwYVaf6eOstMx5+hk6I4P0nWlrYMbtmunU5q4x9udN3GVixw7x+sNZJdnkQuFn/IIhUn1paKGaY8A0Sw0RghCn2ZV0jGSHs9G6GRLCWOaWJPouw51MRBDrFQFSErw5knnbmFtlxYs3CEARO4lYkRGWFnRsB6EU0RlVw6iCqscKZsi8gMh8Kk4gQ6RIuwUI2Bi8q+CGErbHBZppsWITos7UPMqEQvPKidNb6+w3vAB62YOndW04Iy+QTxQGrxgib+VXKeYlDdtpGWDeE2vO5DXOQLcdy5522C93LZPEasuHH9plO+2yC8BNyhiMGhUt0JYh5lt0KYRk3WDVUQtQvp+WyjrBqulei7hh7cYF793YfMuG0zKlOv1F1eb2GS7hBNlwiKLy610Bws1gQBNEJieEIEkVBnM43SIiErug7TxA7hUW4FcOiNFlEIlflIBr2wdVJILoRkH6GPZh1i0SxkyAGorktiQSsKH6YJ4JF9al+Vum3U3oQeO27zjIy/zUdwl4bra16Y4bb2/XVRaQ9FCYRUax36KZz+IQu8vaPiFd0CmH7lGmyL1ZdvOUydcmsp71Np7yidCdUwh9EB9p0dLq8hE3ILA8L0XYjOgHQ/d/iEfYsIXactk1ZIapaN0EQ7iAxHHGiLoSdxKWJLqdbp2PuVQhb0728rG3JHihlyqiI3zAPvG7FXxRFI+A9llhmeRjICGLWNiRTXuazqC5rH5zyidKDRGZb96v/UVh/gogSJIaJtENFEMseZO0HcZGj68YNlnF/rZiuM+sls65O6VETxDyiJghVkBXFTsujNAYyJ7+sbUmmvKowzBRB5+Yqj468fhKVfhCELBQzTGQUbnbCvIM3yxW2C2HrclE5Vt/cXto1y7GEVkuLP+JJV71u5t714+azIHGKJ5aJF/ZzijV7fTLzTrNift3ED7O+89LCxE1fVNfB/B1k45x59Tu1G/XthUtLC9DRoa8+ihkmLJAzTDgSxVANGXdY5TKskxBWjQ/es6drmorDK3MJlVeHFydY14HSTSyw2/hh3e6pfQoz3ksVJ6dYtl4vfZDBzeV768kiLy/rhNGpXnuam20iTPHn9uRcx9UcXdt32opnglCAxDCR8XgVwtb8qi+r+JUtY++7SJzwhLUfgljnQVG3IJZZ7kQQ8/4CcqLYTR/cIprGS/SbOwliJxEru12KSAeh5raPOk5gVU4kCCKboTAJwjVR3rnKHnxlHGHrd554tX/nPZBAdsx4lz95y4KipUXtgQ+i9dUdMmEuN/sp0z+dsC5jixCFT7iZas1tKIWsCyxzSd78boZMWJebn631sZbz+qDb/fcjLw/rGKuGTsiERziNXZD41t7XXwM9NEqWb7/VVxeR9pAzTGQMqk6KDiHc0tIZEmGGRTi5wKz6eOui4tB6cYdl21CtA3Dv5orcTtVQAl1hDqrItiVyit32VaWcbD7ef1J01cK+XNYBllmmm6BOMp2uBvHy29NY+fwiysYHQeiAxDChlSjc9MI6kMoIYPPdFLVOItj6sopgVryw6MAns8xP/K7fy4wJbsRyFJEVxV7K88rpxkmIWT+rCmJdJ2G6CEMgi/KIvvPSdEGCmMhkKEyCyHicDrg8IWymicQtkCqc7fXLHkDsl8VV7+j3A6dLr24uNYvGQxQ2wSure5YFmXXy0o7TOOiYeYJVxim/TB4rrP+p9T9h/SwKmeDVbQ2hYOWVrcveRy95gkK0D7Cvq9PY+NE3Ud0kmIl0hZxhQoiOmST8eLS0vV+yzq+9jJMjLBLC+/YBu3c7O8EyDrHq93TFyeF0collyjqFJ3gNndARcuFUzutDO1j5/UD0P5V1iGVcYZ3oCh8J4mRUJj3oK0qiq1i+4mYnq7IT1khjYyOqq6sRi8UQi8VQXV2NPXv2CMsYhoG5c+eirKwMhYWFGDNmDN57772UPK2trZg5cyaKi4vRq1cvTJw4ETt27FBqe9myZcjJyWG+GhoaAAB///vfcd5552HQoEHo1asXjj32WDz55JNaxiaqkBgmsgqee2sXxTwhvGdPpwDevZud11qGJ5JZ7dr7xPruJ0GLbT9FMSuv37HCbtsQ5Vd5kl2Y7qcfgphXZ6acFMqiIojDEsU+68q0ZMqUKdi4cSNWrlyJlStXYuPGjaiurhaWWbRoERYvXowlS5Zgw4YNiMfjOPPMM7F3795knpqaGjz//PNYvnw53nrrLezbtw8TJkxAh2X+Zae2J0+ejJ07d6a8xo8fj9GjR6OkpAQAsGbNGhxzzDF49tlnsWnTJlx22WX4xS9+gZdeeknzSEWHHMMwjLA7kak0NTUhFoth164EioqKwu6OFHYXV+QMs3aArAOu386wrCvMerd+trrCdiFrvUGOdRBwc7C2jpXqZ9Z3lnBi/R5u4nN56BJYTuMmM65RPiDr6L/sQ1q8jKWXMRT9P62fzf+pmeb2nZdm3w6cthuVbUR2uW5Uts0gtlc3NDU1obw8hkRC7XhoHkcTJ5yAIo2zSTR9+y1iGzYo98eJDz74ACNGjMC6deswcuRIAMC6detQVVWFDz/8EMOGDetSxjAMlJWVoaamBtdffz2AThe4tLQUCxcuxPTp05FIJDBw4EA8/vjjmDx5MgDg888/R3l5OVasWIHx48e7anvXrl046KCD8MgjjwgF+znnnIPS0lL88Y9/9DxGUYScYSLtkAndkBXE5mfRk+XsQtg6ewTPFZa5MifzOVtQCW2QqcOPl47185JHximWqSdqDrHKtsr6zkvLJGQdYjNNlD+MsfLzqoxXmpqaUl6tra2e6lu7di1isVhSjALASSedhFgshjVr1jDLbNu2DfX19Rg3blwyLT8/H6NHj06WqaurQ3t7e0qesrIyVFRUJPO4afuxxx5Dz549cdFFFwnXK5FIoH///g5rn77QDXREWuMkcp3eWWELLIFrD4vgOcMizINBSwv7M9GJdWxEy0V5/ID1O6m277RuMnmcbrKz1iMaQ96VHS9jav8/O/3XzTSZ7UDHtqLDFQ4L3vqbvxdrbFnporr8QFs7ra165wbeH1pQXl6eknzbbbdh7ty5rqutr69PhhtYKSkpQX19PbcMAJSWlqakl5aW4tNPP03mycvLQ79+/brkMcu7afuPf/wjpkyZgsLCQu46PfPMM9iwYQMeeOABbp50h8QwwUU1RCJs3AhioOvsEXZBbAphlvMLAIYhfsZ9Tk5uSpu8g7/KAcptiERY8PoiIwpFeWXW0c//qkwfReX8FsVexa0bZASxOcMEr6ysSGYt59WtizC3KyeBy1omSlfZflTXO0r7HxGfffZZSphEfn4+M9/cuXMxb948YV0bNmwAAOTk5HRZZhgGM92KfblMGXselbbXrl2L999/H4899hi3/r///e+49NJL8dBDD+F73/uesC/pDIlhwlf8iBc2cRK/Tq4tKzzCLnp5Qri52RTAYiEMANao/JycXOUDfth46Z9q7KVXceymD06oiElV11qXKHYjiP1yhwGxIDaxT7km2h6C2maivB1acSuKVQSx/T+gIorTZRwBoKioSCpmeMaMGfjpT38qzDN48GBs2rQJX3zxRZdlu3bt6uL8msTjcQCdzu6gQYOS6Q0NDcky8XgcbW1taGxsTHGHGxoaMGrUqGQelbYffvhhHHvssaisrGT2a/Xq1Tj33HOxePFi/OIXv+CtdkZAMcOENoLYAfLcapYg5n1m7eRZgtgqhK2vTiHcDqAJQPP+V5Pl1Wx5YX/eTtHs5CLrQuWGm6D74FRGNk7X7zhfN31ildOVV5THKZ44jP+D6CTUhPfYcmuaX8622/9nlLCe9POW2feBPJGro023daYDxcXFOOqoo4SvgoICVFVVIZFI4O23306WXb9+PRKJRFK02hkyZAji8Thqa2uTaW1tbVi9enWyTGVlJXJzc1Py7Ny5E1u2bEnmUWl73759+H//7/9h6tSpzD79/e9/xznnnIM777wTl19+ueJopR/kDBORow15TEfZ6cY5uxvME8VO5a2OsVUEdwrZdnSKXFPUyjrfqfFYOh0uPy8Ju0WnEGXhlyus4ubKlpFxf1XqFtUncolVnGA/witY4RK8PG7CiKJ+hcVPWL+ffbnusRHV6cvv0NICdO+urz7LdGQ6GT58OM466yxMmzYtGWN7+eWXY8KECSmzORx11FFYsGABzj//fOTk5KCmpgbz58/H0KFDMXToUMyfPx89e/bElClTAACxWAxTp07F7NmzMWDAAPTv3x9z5szB0UcfjTPOOEOpbQB4+umn8e233+JnP/tZl3UwhfA111yDCy+8MBlvnJeXl7E30ZEYJtICp4dssJaxvtvLsd6t7vABIfwNDojgNsiJ4Lz9+XP3f7d+VsN6cFENPfCK6gEvCEHih8jl1Ssrdp3yqohimbp5gtWNIPYLUbiE+ZkXLmHNI0rTJfQySUhbf2P7/07nembzCYiIJ598EldffXVy5oeJEydiyZIlKXm2bt2KRCKR/H7dddehubkZV155JRobGzFy5EisWrUKffr0Sea555570KNHD0yaNAnNzc0YO3Ysli1bhu6WkwSZtgHgkUcewQUXXNDlhjyg88Ec33zzDRYsWIAFCxYk00ePHo2///3v7gYl4tA8wz6SzvMMy7iwdlg7RTcxwyxnWCSG7S9rOq/f5rs9FKK+vjOtvr7zdUAIN+GACDYFcde17STX8t2aVphclpOTmxwv6+Vvp3f7Z5Ub59yKaJ1iWPeBOKy6ZK806GpPVJZXlyiOWOYkUlS3KvbfnfV/7t2b/b+XTbPXZa9f1AfWd5n10IEfIpWF7D7FipurGby0pqYmDBzoYZ7hI49EkUZnuKmjA7F//Uv7PMNEekLOMJHEz5vd/EAmJpGXT+SQWZ3hA0J4H4Cv9+ewimH7SYPdDbbj3h2Wwe0B1e+wBp1tuK1PxrWVyWvPz8sr+o/x2pNxj+31+ukQ63KSWesnEyZhLefkGGcjKlc8eI661/HL9t+AyAxIDBNM8tAmdbNaGLBuCGE5w/a8QNeDKe9gfyBGuAlAIzqFsDU8whoz7PQQEOeHhMjih9h1s0zWDXKq300+Fm4dLF5ZlXAJp1AGmf45uZROIRJuBDGrDzoca9nf0S7KZMIlWOVEdenGD+HnV8iPvYxMaIns/yoUWluBbhrv+f/uO311EWkPzSZBANDjCuvaaXrtiyie2IR1OdXqCHeWtQph0xk2X6Ywtn8XzRbRLFimjtNjZ53S3aJSn5PQtr689knm5aUfMvWJ0r3Aqlf2Mj9PFMr2U6bvvBNUVj57Xus7a3YJ3mdVdO2fwhSHTm3zzAFrWdUTM4LIBsgZJiIPy6F2OtDKuH0s18M67/CBcAhTCJuZrWJdxfWVC48Qxfap4lRWV1iDH06xal47bh1fN66wjCMs6xKLcOvc8RxiHc6fTGw0y+mWcXWd3GFW+SAIIzRARgiL0r3sCwgi0yExTKQtTg6I+dnuqvEcta4HA9PpbUenEHZyfgGdIREquDmQ+Rke4UYIB+VgO4lfGREtGw7BEpsyYRV2ZAWwaJlsyASvz7wTUBl4JwUiQWxv1/7ZXoe1rSCEHWudwkLld5Dpq5eTJF79nq8+trRQmAThGySGibS7cU4WkdDo2/dAnn37Or+3tADFxZ2zSBzAGg7BGie3LnHXPqk4NzLxkG6Fpx9C2ItL7FVoqIpfVXHs5P46iVcZ7PXyRKJTeyxBrMMdVsFNLLD9s9MyoGsMsp+E4RRb2xali8bIxGl/4PX/kYc2BPgXIwhlSAwTGYHdIXYSH+a7KYLtDnLnzXOmELZOq2ZiOsS99n/O27/cDIWwh0SYU6vpR6f4DEoIh+kQ6xbHMgJYR4iEvV63DrFqO34gEvXmWFnFrLncXtb8LiP4ZPqkIywnbJcYYF8dk8E6tWbQJ0kEESYkhomMw74Dtx8M+vY9IHxbWlIFMR9eiITMbBJWusYNq4pFJ3SHKAQhhJ3W1+vMAFY3VKc4Fglenkhm1clCNfRCVrgE4Q7LOuE8Z9jMa48fttbhRhTrEs4iwnSJzfajRKZeeSQyCxLDWU467KhE07wB/HhhoOsUS6YINsMkrOESu3cfWJ6Tk4sDj6MxH57BEsOsfuXZPqfmsT5ww449nZXPjTDUFRbBS5dJUxHBsusoE9Jgr48lBEV18MSvdZmTKyxTp9N488I1dIVLqOImhtjp5IEniHn5rfWyxi/IUIl0J/LHgtZWICdHX330vDHCAolhgouTCI0aLCFsxRS65isPbSiI5yXLHnww8MknnQK5b1+gsbE3UoVsLsQ30NnHSjx7hPXgrCt8QUfIhB/iWLZfKtOAqeSz/jfsbaiIY7eusJOglUE2RIJXxo5dEHt1h1XL8pxdUcywPb+JSCir9imqolnHby6C9eRPr0ReYBPEfkgME1qJysFE5HqZQhgtLchDC+LxA4/ijMcPiOLGxiIA/ZB685wpeK3fcwEU2L7bRfSBRzHb+yKTZsJ6zKxqXbpcYp0OscpjpZ2WywhOt+LYSRg7ubMqYRIsnEIkvIZQ6Chnx+n3cHKGzc/W+GFRHdY0N6ESUdmHySK68uBmXUwDxOn+C15fCCIdITFMZBxSl39bWjqfrgEgry8Qjxcl3eH6+k5RXF/fE83NvdB5k5z9yXMmpvC1i2Br+gHMEAmWK8wTjTIHGBnB6Xe6G3EuK4JVDrI8AcTLY18mEsciYaziCoval0VFrPJEuNtwCVZcvui7qDzPGeYJYlY9IkHrJlQiqoJY9QTFvp9xWic3VwJ5dZIrTKQTgT6B7s0338S5556LsrIy5OTk4K9//WvKcsMwMHfuXJSVlaGwsBBjxozBe++9l5KntbUVM2fORHFxMXr16oWJEydix44dKXkaGxtRXV2NWCyGWCyG6upq7NkvfEy2b9+Oc889F7169UJxcTGuvvpqtLWlbrybN2/G6NGjUVhYiIMOOgi33347DIozUiLMMAvzpjjrgzSSN8oxjgzx+IHXwQd3vgPFAErQ6RAXARiATnHcj5HWG6ki2BTIna6wPVZYJIhZQpjnCsuKUFY+nemiPtjz9O7NfoKeTN28PonyipY7lTf76tRf3kkO77toHUR9cjpZ8CLidAhAN+ESdhfS+m79bN+WRXVZ67ELftF9BlHHzcmi6v8jkmNi34nreBHEfgIVw19//TW+//3vY8mSJczlixYtwuLFi7FkyRJs2LAB8XgcZ555Jvbu3ZvMU1NTg+effx7Lly/HW2+9hX379mHChAno6OhI5pkyZQo2btyIlStXYuXKldi4cSOqq6uTyzs6OnDOOefg66+/xltvvYXly5fj2WefxezZs5N5mpqacOaZZ6KsrAwbNmzA73//e9x9991YvHixDyNDOKHrcdG8fWAe2lBQ0BkrbArhwYOBfv164oDwLd3/PgCdItgMo+iNTjFsffGFsFXg2D9b3624FcIqAlNHupNABNyLYDfC1434FS1nCWORCOaNh6ro1JXfD7fTSVjK6hG7AGYJYqc6ef0SpcmsV9SQ+d/a/2ui/QZvXSlEgsgWAg2TOPvss3H22WczlxmGgXvvvRc333wzLrjgAgDAo48+itLSUjz11FOYPn06EokEHnnkETz++OM444wzAABPPPEEysvL8dprr2H8+PH44IMPsHLlSqxbtw4jR44EADz00EOoqqrC1q1bMWzYMKxatQrvv/8+PvvsM5SVlQEAfvvb3+LSSy/FHXfcgaKiIjz55JNoaWnBsmXLkJ+fj4qKCvzrX//C4sWLMWvWLOTovKs1wqTDTXQFBXKXZa07686bRSwLW1qQV1CAvn2L0LdvpxDes6czZKKlZQCamwGgEQce0WyGS/BCI9wJYft6Ae6EsIp75DWvbB0sEeylL7I4HfhVlluXmevDe1qaNb/9u6heFext8kI3eGXM9fA6swQL2XVi9V+0XgD/RktR+AUrb7YIOFlBLLMvZdVLEOlOoM6wiG3btqG+vh7jxo1LpuXn52P06NFYs2YNAKCurg7t7e0pecrKylBRUZHMs3btWsRisaQQBoCTTjoJsVgsJU9FRUVSCAPA+PHj0drairq6umSe0aNHIz8/PyXP559/jk8++UT/AISEzhixsOH1i3V5dc8eHJhw2LLAnEmib99Od/iIIzrfc3IGACjDgZCJvvtfVjfYdIhN1zg3JUZYxhG2p8kIYZEzyVpuTfPDNZZ1g0VlnPon+2LhxRl2Wjc3v4Vovex5VD47tacDnius6hBbl1vLs5bzQp+cnGBT8Ks4xlF3h2V+R5WTZl3rS/HCRLoRmRvo6vc/A7e0tDQlvbS0FJ9++mkyT15eHvr169clj1m+vr4eJSUlXeovKSlJyWNvp1+/fsjLy0vJM3jw4C7tmMuGDBnSpY3W1la0trYmvzc1NYlXmnCFyNEwl7FiBK1CuKAAaGrJQ5HtEXTmAaa4OFUUd5briZaWnjCMInQ+lQ7odIitT5frnDFCxg22rgvLuTFFlorwEX1XSdOVLiOCZepxK954jqAoD285z3UE1Fxie5siAWIva69XxvkV5TWxusOq7qAdmXAFXhl726xxlK3TWiaTXWDZ9eJtC6Lyov+CaF/kCy0tNM8w4RuREcMm9vADwzAcQxLseVj5deQxb57j9WfBggWYN2+esK/ZADskwbtTwAvZsAph0UHSerBP3k/ZNw8FBXnI29/hlpbUJ9SZMcRAZ5k9e4CWllzs2TMAgPnY5k7xa9bNe2cJXnsaTzyquDtuBaeudLczRLgRwTJi16mMbFgEK50limUfEiHbHzOPSASLRKRKHhm8OKvm9sIiJyfXUeibqIgv+0mydWYJ6zJd4RRRFN0y25odtydE5AoT6UhkxHC889Z91NfXY9CgQcn0hoaGpCMbj8fR1taGxsbGFHe4oaEBo0aNSub54osvutS/a9eulHrWr1+fsryxsRHt7e0peUyX2NoO0NW9Nrnxxhsxa9as5PempiaUl5dLrH20iVLcsL0vdiHMc4ZN9u2zCGFLHQUFeck6TOfYdIVT89kPoLkpy+31it6tn2XnD46yMxyECJY5iPPyyDhc9nxOApYl3lgusWy9TstYfVeJGVYVwKr5eaESIhFsz2OKYtmTXCeywR1mofMKi6iebBpTInOJjBgeMmQI4vE4amtr8YMf/AAA0NbWhtWrV2PhwoUAgMrKSuTm5qK2thaTJk0CAOzcuRNbtmzBokWLAABVVVVIJBJ4++23ceKJJwIA1q9fj0QikRTMVVVVuOOOO7Bz586k8F61ahXy8/NRWVmZzHPTTTehra0NeXl5yTxlZWVdwidM8vPzU2KMCX9hCWGrIBGJD6sgNkWu6Rib5Q4+uGsdpvPHEjis/jl9lo0J5tXr5jsvzU26yhPj/HKHZZF1kWUFsD2N5RIDYlEsas9c5hQi4UUQ27cZlRvpRP99vhB2EsW5yfz2E02n30qEV3fYT9y0pzoWOtcpLPHbAaBDY2hDh3MWIosIVAzv27cPH330UfL7tm3bsHHjRvTv3x+HHHIIampqMH/+fAwdOhRDhw7F/Pnz0bNnT0yZMgUAEIvFMHXqVMyePRsDBgxA//79MWfOHBx99NHJ2SWGDx+Os846C9OmTcMDDzwAALj88ssxYcIEDBs2DAAwbtw4jBgxAtXV1bjrrrvw1VdfYc6cOZg2bRqKijqfRjZlyhTMmzcPl156KW666Sb87//+L+bPn49bb701a2aSEOHk1vh9UOEd9HkHet6lXdMFtrq+VoqLD4ROmHXu2ZMqHFQu57pxgHV8V0kTpQPqj0x2K4Kd+qEDkStsX+4UAywKnQC6imJRe6K6VWOGvTqrToi2MWch3Gz5XJiSxzC6hk7w2mbB+k38RqUdL33y0o7Odu3fKUSCSFcCFcP//Oc/cdpppyW/myEFl1xyCZYtW4brrrsOzc3NuPLKK9HY2IiRI0di1apV6NOnT7LMPffcgx49emDSpElobm7G2LFjsWzZMnTv3j2Z58knn8TVV1+dnHVi4sSJKXMbd+/eHS+//DKuvPJKnHzyySgsLMSUKVNw9913J/PEYjHU1tbiqquuwvHHH49+/fph1qxZKWEQmYJMTK/XUAmdz703+8LbMTsJHF4MJ8+5M4WwdZkpkEVCgNU3t991leGlidJ54tdNXV776LRMBtmTFyehbTlaQgAANeZJREFUqvrdOo4sYexUl5eYYdF3mfpUYJezCuFmVgawhLFpBFpdYhG8bdraL6f/TxDucBDi3MtJqNMygsg0cgx6pJpvNDU1IRaLYdeuRNJxjioyQtUuhlUFoE7XwOxLS0vXlxnqsGcP370tKOgUJ1YBzRImLS3A7t1d67aLYFnh4EUMBpEGuBO/omVehbHMMh3IXvbnpal+N2GFJvBib1mfRe3ILjM/W/vC+4/Lvh9whXlCmBcyYRW+B2ZpYU1TaL769j2wPVvTrNu1dRnQdbYWlSszLHTl8YLq9qPTJXbavzc1NSE2cCASCbXjoXkc/QqdE1bqoglAf0C5P0RmEpmYYSL98PvyqwieO2x1dZxcN3t+HlZxaJ2JzVqnm3HwUzyGKX5V++WlHZ24CV+wpsl+t9djD6Mw88rGB6u4vk6OsK4HcLBvmDOFsH2ZKaLybMtz95c54BKzHGL7OpmwfiszXfd/Kiwh7KVdnUI4CL7d/9JZH0GYkBgmfMN+0NEZKgGkhm7YBbA97EEk+Mw8LMwDrdVFsrrQVkHCqot3CZpHEAIzSPHrtNxvESyqw024hBdR7JRmD6Pg/Zd5gthev4wgFqWpwD8pNIWtXQiz9gPO+wa7IHZaT1Y/01EIuynv17bFKkuxwkS6Q2KYABBM3LBfsJwhlivMc71YAoNVP2sOYJYQDuMSq2iZ6g1vXtvzu26v+UXlWIJQJICt6W5FME8Y8x7gwRPEsp/t66ZDBLOREcLqIsoUxKJ15fXNOtaiWSVk0S2E/T4B9NoGCWEiUyExTHjC68HUK7xwib59u84nLOMQm/ms9bEOAKxL2364TqI+8PrkpnzUl3vN76ZekaMv4wyz0lQEtfU/plsQ+7ndskMk7EK4jbFMpY1Uh5gV/+x0VSCIS/1BuMZBtBNGWARBBAmJYSLtsYdLWA+G9rAGp4Omm1AE3mVuHciId3t/vObRJVzTRQDLtOcmhpiVpiKo7S6xnw6xdRmrPfewZo4whTAvdhjojB8Wi2SWGC4o4I+V9XMUHNigQif8bCdIV7gNbq4jiOsjCBMSw0QS3TG9Xtowxa1Kf3Rf6uRdRueFUcjUKSsugjhQ6nST/LoUHJRrBuiPIbamq6S5EcRmHSoimCWoeesu879NzcOaX5jlBvO2b6ftvhCG0Z4SLsF6N/vF+iwLK7+oDr9EcJAnjzJlKTyCyCRIDBOeER0svbow1hhl0c6XFy7hBt7BT7QuIhfRqW6/0S1ogxCzQblmojIiB9W+XJdYFok41tMP3bjFbh1fb06xNTzCLoTVwyRMx9kaLmFdN+sTKEX/BTNuWIWghLCO/3BQZQki3SExTCih4yY6tw60UzkVQSwr0mVCKERlzLaigJ/OUlii18/6nE5wnASwNd1NeATrM+vGOhVBbG2X56bq+7/aQyRYN845OcTOWN1hcx14s3GkltO7TegQwukggMkRJjIREsNECkGESviJXRCzboZz64q5Ra/A0EtQl179dp2CrN8PYSzjDOsQxLL/RX1xw3bXtx2pQtjLzBKdJ+WGkZviDvNCJQD1cAkdeXSHTYRx1cQkzGMDzTNM+AmJYUILQQk+lVhiJxfH3l+ny6o6HJioimIr6XSpVac4dxvPLYoXd3ODnUyIA2umCZZwFtXh1hUW5WPPJMHaVq1C2GlmiXakPpXOWm8ugAOxw8ABQWydNs1EJnSCB6tMUEI4TAFsks4mCUE4QWKY6IJud5jlwvjpQLNml9B9+dFNfV7ip3WIaF1CNQqxhX5cTnYrkEWusYwANtN47qXI3ZWZaUL1RFXkQLvHGissShftE0wBbQb55sLuDlu3MWuohBNO26Z9WRAiOAoC2ISEMJHpdAu7A0T6wdsxBrnzdYpbzkNbsg6zX9Z3+4uVbkVlmWz9MmVU2lCpT4Suepzq9FKHm3JuUO23zO/H6xfruz2dlWZ9OiKrrJt3e99Zn3n5xZji1z5RVhuAJgAtnFeTpey+/e/tlrT2pCNsvkx0X43hrbPMf0R2udftg4RwuDQ2NqK6uhqxWAyxWAzV1dXYY5/43oZhGJg7dy7KyspQWFiIMWPG4L333kvJ09raipkzZ6K4uBi9evXCxIkTsWPHjpQ8d9xxB0aNGoWePXuib9++zLa2b9+Oc889F7169UJxcTGuvvpqtLWl/s6vvvoqTjrpJPTp0wcDBw7EhRdeiG3btimPRbpAYpgIBNYBSceNeE6wBLHosxthKoMbsapDAPspmr2sm5v1c9sv3cj2y+l3FX0XfWaJY6sg1iGE7fXal7O+A0BODiucQYQpaFtwQCB/vf9l/2zmsYpp89XMCdHoxEkQO50EOKU5/c+8imRRGb/+50C0hHAHDsQN63h1+NjXKVOmYOPGjVi5ciVWrlyJjRs3orq6Wlhm0aJFWLx4MZYsWYINGzYgHo/jzDPPxN69e5N5ampq8Pzzz2P58uV46623sG/fPkyYMAEdHQfWpq2tDT/5yU/wq1/9itlOR0cHzjnnHHz99dd46623sHz5cjz77LOYPXt2Ms/HH3+M8847D6effjo2btyIV199Fbt378YFF1zgcWSiS45hGEbYnchUmpqaEIvFsGtXAkVFRWF3Rxk37qzqtGJeHWCZOqz18OKERWkyBzpVvLhVQcYd+3WQ9ZOw+yz6fWT+bzxX0/zslGaGNtiXid5Fy6z12fOy0jpFaTs6Z5OwClfz89e276bIBbreVGclD52hEUX7P/cC0G9/Wm8AA1BYmIu+fYF4vPMplL17d74XFBx4t7969xafaPBOTljf7ejcdwT9v9YthJuamhAbOBCJhNrx0DyO/htAH4392QvgcEC5P0588MEHGDFiBNatW4eRI0cCANatW4eqqip8+OGHGDZsWJcyhmGgrKwMNTU1uP766wF0usClpaVYuHAhpk+fjkQigYEDB+Lxxx/H5MmTAQCff/45ysvLsWLFCowfPz6lzmXLlqGmpqaLI/3KK69gwoQJ+Oyzz1BWVgYAWL58OS699FI0NDSgqKgIzzzzDC6++GK0traiW7dOz/Sll17Ceeedh9bWVuTmqp70Rh9yhgmtiHbYfok4VYfYfsDjOXWyjq0bvDihOl1g3W5smESlz6J+sJaJvss6w9Z89rAJFSdYVB+vv7y0rvDihoHUsAf762ukCuom27J2Sx2d2EMldMDaR/DyybrFMm2G8b+OkiPsN01NTSmv1tZWT/WtXbsWsVgsKYQB4KSTTkIsFsOaNWuYZbZt24b6+nqMGzcumZafn4/Ro0cny9TV1aG9vT0lT1lZGSoqKrj18vpXUVGRFMIAMH78eLS2tqKurg4AcPzxx6N79+7405/+hI6ODiQSCTz++OMYN25cRgphgG6gC4Rs2rGoIjt3sNd6zLrMvMCBA4yXO8ytuC3PO2jL1hfWDBUq6+tnH/0UCva6VW9E45Xj/fd4M0mYy+zpvGnE7DfWid7tdbPaYPWRl8bH/ohluytsPsOcdUOd1Um27g9Mt9gfZNxhp3Q3+cI6qYvyscqvqdXKy8tT0m+77TbMnTvXdb319fUoKSnpkl5SUoL6+npuGQAoLS1NSS8tLcWnn36azJOXl4d+/fp1ycOrl9eWvZ1+/fohLy8vWc/gwYOxatUq/OQnP8H06dPR0dGBqqoqrFixQrqddIPEMMEl3eYclu2vXWBbD/iq6Dho8epwO9VXFPEiKmXr1IFbN082JpUlimVmlbAu4wlYe5pXQWxNA1JnlpBdbz72xzW32d5N7NOumcI3DweEdK9kPl0nXSqCV6e4TYdtOdP47LPPUsIk8vPzmfnmzp2LefPmCevasGEDACAnJ6fLMsMwmOlW7MtlysjkcWrHXk99fT1++ctf4pJLLsHFF1+MvXv34tZbb8VFF12E2tpa5fbSARLDhGt4rq1IXLqZXkzlqXey8xCzBLG9nzyCOmCJ2gnLDdYFa93CGnPdJzQy6yFyV51cYllx7FUQ29szwyVY65e6/rkK8w3b5xq2zz9sF8bW/UAuUsMrmgH0ZLThDZY7zPrOK6fSRpikk/Ghk6KiIqmY4RkzZuCnP/2pMM/gwYOxadMmfPHFF12W7dq1q4sjaxKPxwF0itBBgwYl0xsaGpJl4vE42tra0NjYmOIONzQ0YNSoUY79t7a1fv36lLTGxka0t7cn27r//vtRVFSERYsWJfM88cQTKC8vx/r163HSSSdJt5cukBgOgDbkIQL7OlcE4Q7Lhjh4nX2CVafZvh0dBye3j5yWQaZ/6SaYgxYEfrUnI4xZJ4yyLrHos05BzPrMWkf2euai6+OY7ZiFWDNEmCLYvAnPrK9wf3oeut6cx59Nwo17KyrjNVTCbX6/yFYhrEJxcTGKi4sd81VVVSGRSODtt9/GiSeeCABYv349EokEV7QOGTIE8XgctbW1+MEPfgCgc1aI1atXY+HChQCAyspK5Obmora2FpMmTQIA7Ny5E1u2bEkRrTL9u+OOO7Bz586k8F61ahXy8/NRWVkJAPjmm2/QvXv3lHLm9++++066rXSCxDDhCTfucBCoiHiRKHaDlwMLr6ybvgV9oE0n8R20uy9yU3W7xLJXX1QEsbUvvPXpiilcZbcHa5hEs+27NS44F503zvVCasxxKgUFB16yyIhct6ESbvKysO4jdOyz0kUIp8vjmIcPH46zzjoL06ZNwwMPPAAAuPzyyzFhwoSUmSSOOuooLFiwAOeffz5ycnJQU1OD+fPnY+jQoRg6dCjmz5+Pnj17YsqUKQCAWCyGqVOnYvbs2RgwYAD69++POXPm4Oijj8YZZ5yRrHf79u346quvsH37dnR0dGDjxo0AgCOOOAK9e/fGuHHjMGLECFRXV+Ouu+7CV199hTlz5mDatGlJh/ycc87BPffcg9tvvz0ZJnHTTTfh0EMPTYr1TIPEMOEbugWxqjus8uhmaz4vBxg/n6pnR7dT7hU9saT+EpYTp1MUyzjDrDS7S2zFSRCzvotIDZXIw4EQB7t7y3Jzm3FglghryIRZ3u4id0Ukar0IVydRLFuPKrz9ildhnC5CON148skncfXVVydnfpg4cSKWLFmSkmfr1q1IJBLJ79dddx2am5tx5ZVXorGxESNHjsSqVavQp8+BCeXuuece9OjRA5MmTUJzczPGjh2LZcuWpbi4t956Kx599NHkd1O8vvHGGxgzZgy6d++Ol19+GVdeeSVOPvlkFBYWYsqUKbj77ruTZU4//XQ89dRTWLRoERYtWoSePXuiqqoKK1euRGFhITIRmmfYR9J9nmErop2maCesMlOCynzBqqju9NP1wBI1gQyEL4yjcinaiiim3imN992abk+zv4vmIhZ9tqbt29c13Xzt2WOdb9icCo31II0my/fG/e/2/CZ5+199ARSjc47hEgCDAJQC6IecnDgGD+6cZ7i4WDzHMND5bs4zzFvOihnWedOcCLf7FF3zs+vE6zzD70H/PMPfg/55hon0hJxhwjMix1bFHfYzdlg19lnFJY6CCDZxe9LiJ0E4xlEUvCJ424WX0AmRSywDLz8r3XSZWXkP9Ml0h80QB9PJzUNXV1e0DX2Hzinx7e5yLg4I5M7vLPHqNr5XtZzO/6DXfUqU9kkEkQ6QGCak0H0jnZtZJUy8CGKzvEpb1rLpTBDuuBPpJlr9xM/QCTc311lxu33ayzQ3W2N9rULW/JyHTgfYekNcLlJnjjA/m0+dK9r/3tvyuTO9b99OF7i4ONURdouTsNb9fyYRyyddYoaJ9ITEMKGFIN1hp/Zk2jDrkMUuirPhoJUOccqZgG5RLIr79Zu+fTtDJEw63WHzmzUG2PxcgANOsen0wvIOy/fc/S9T/A5AZ6hEPwDFyUcxm+ER1tAIgB0vbH0UsxN+CuFs2J8QRJQhMUxI48Ud9mN2Ca/TrXkRxdlKJjnlUUOHKFa5wY4FyyVWxVq+Uxybgtgqds3P7Tjw0Awzxth+g47pLttdYVMUF6OwsCfi8c5YYbsQlhGxrHhhXn4v45Pt+w+CiCokhgklRIJYVZzyDsxBP/nO2mc6WMlBotg/RDHWTqLY6bO1XlbohEofeSe3dnf4QPywVeRaZ4UowAFBbDq/5gM1rPMMF6FTBPeD1RW2CmH7TXPW8VHBLoqd4o/t0H6EINILEsOEMm7FKusA6lUQ634Yh2xddLDrxI+HoWQKOsaG5xazBLMbUey2T05Xefr2PTCrxIHPPWEYuZwSZkzw1wD2WdJNwdxr//J+6Jw9ogTAoRg0KBeDB3fmPPhgYPDgA0LWbJfnBMugMl60T/CXDuiN8+3QWBeR/pAYJrTiJADSQRDLkE2xw06QS9wVc0x0jY2KW6xbFJs32Tn1b8+eA0J09+7O9K6iOBfNzeY0VtY4YDNcwpxaDUDyuZ0tOBAe0TmdWmHhABx11AEBbPYhHld3ce3rwQuLsKfTtk8QmQOJYcIVQc0uEWVBDJAotkKimI8fTxYMWhSbddpDNMy5hU3hC3SGK7S0dIroVHcYAExBbH8ohymIe1nSrfHC/ZCTMwCDB3cKYFMIm2LYfjOc0/zM1qnhWGERLGFsQts7QWQWJIYJ1/CEqh+hC1EWxECERLHsXYo+TjHgxxhkqsD2IpJ5ws+e7vRTe5lGTfbvZn+AR0FB7v4b6+yxwdaQCFMMFyInpzMuePBg4IgjkIwRNj/b+2SNWZZxtWXW1ST0bZwgCO2QGCYCh3cQ1RHTGHYMa2REcYZhH89MFccmqtPaOQljkVssi3W7tYZOWN1h1stcbs5UsWePNT13/6tnl/ass0LE46lO8MEHH1gej3cV28CBdkRhHqyQCNHsEbRdhwfNM0z4CYlhwhNu3WFVQawiMsMWxEDERXGQE8/6RJRDMvz6zWVPCEQ315lpXsImeKLYukwkiu15rP201mPOGWy6wFYnOB4HSvq27Ve8QFFBAdC3AE0teaivd+4/K80pTCKS2zJBEFogMUx4JkpPpzOJilgKXBTz5tDKUKzjGvZvHTQy4lh2KjY3sEQxL57YLorN9u2OrRnHa4phU/gefDCSYRIlfduA+nrgE4uatt45h9R1ZrnC1vhi1hRqdkgIE0RmQ2KYiCS65iCOgksMhOgUZ7AQthOFE6AwRZPoxMBpKjb7d97fhnVFhyeKRcLYbMecC9javunImg/QMEMiUoQwo0Ab8pKhEWbMsF2gs9bH2qb9M0BCOCpQmAThJySGCS24cYedbsDJNEEMRDx8IkMIK744Sr+paAxEN9i5CZVgpbFEsUxohPVlFcJm7HAXe9lSwBTC9hev/yqfCYLIbEgME9rw48lxmSiIgeCfspfNBCGOo/5b8lxjr8LYHgdsTQNSRbHVHba2Ya3L+rIK4b59gaKCNqB+T9fOFXTGCpuOsCmKZWaR4DnDJlH/XXnY/+Ppuh4EERQkhgmtWEWezGVrlemZRG3JEIXL6FbIJQ4HXeI49N9NxvZkwFt/Nw4xq2m78LXPJiHqthnLazrDKa4w0PWxcmZ4RD1SnGGrK213e3nzC9s/h/77KiL6H9O+hiDEkBgmIo/owOzGYSWXmLCSNmOvMqmvFUlxLOMYq4pklmMs80Q7K8mQh4I8FBTkoaBv0QGHuQUpjrA9VIK1PuZ3Xowwd/0ifDOq7P4snfc1FDNM+AmJYUI79h2u22nWrGS6ICYIIW4vn/DKMjYmp1AKL6LYLeYjns1+WNtnvczHQLNW2TpThb0++1Rq6SQYaT9GEN4hMUz4gqpA9SqI3RClsIl0dmwIn/EihGXrtG1YLGHsRQjbwydkt3fed7sIZs1gwesH62UlZTv0Y+w14mbfFca+pg15kdjPEgQPEsOEbwQpiL3s4KPiEpMgJlIIUogJxLFdGOuILXZq3prGE8W8m+Sc+sQTxF3ihCMuhNOBKOxXCUIGEsOEr5AgVoMEMREJ7JMP78d+NcWtW8wKueDNMmH9bBW/LCeYN12beWOeeTMeLzyCW5GZOUJEYX/Fw4++Ucww4SckhgnfMQVeEDvvTBHEQHrFLRKaiYorybkLzUkU86Zpc0rnucGmCHaal9zaF7sQtr9SZqmAw/YWMSEcVaKw/yQIN5AYJgJBZSep44Y6wJ2YjFocMUCimIgIDLeYJYqdbrRjOcG8bd7uBFvf7dhnhGBN1cZyglPCI6JyEpJhyMRzE0SYdAu7A0T2oBou4YTTztWLoI2SADVvPrG/3NTB+04Q0jCUjXV7YU1TJprBwYo9v3VOYFb99nTrSySEmXHCLudtTjf82Lfx9ickgol0gZxhIjBUxZfVXeLhFKvoNWzCrCOKuL2T3CRKgp+wIXN5JGJYw4ys3WfNJAHw44bt7+a8xCK32S6eeWER9mWO20CGCWE/4O2HdP992wC0aq6PIEzIGSYij9PxyE+HGCDRSBBMGBuerENsT2M5yNb33r3FQrd3b6C4mO0CW59ix7xZjrMumSiEde/LghLCBOE35AwTaYFXo8zrLA1Rd4lVIYGfBqSDO8ywaWUcYmtRGYfYXCYKm+DNEmEXwea7MDwiDYRw2Df8khAmMgkSw0TaELYgBjJDFJMQTiNkYoUiiKogVoUVJiEjiq39S3bAqfIMQed2H4YQ7tj/0lkfQZiQGCZCw42zwRPEnGlRu6BrHt9MEMV+ozI2JNAdsP6x00QYywpioOt3uztsptkRhVfYP0v9x9JMCMvuQ9NdCBOE35AYJkLDKkxVp14D+KI4KEEMhH+pMkp4GQdeWRLJDOx/8DBViIJ4lLmpjpXfqQmneONMFcImvH2oX7NGsJCZCrNV591vBKEZEsNEqJjCVKdLrNKuDtLJJfZLXPq17jT7hQQiEeeHUFYQjfbt2skhdtsNnhDu8p/J4OnT/N4+yBEmMhkSw0Ra4+UYpvvRx7pc4nQKYwzyBICEsQsi+MdxCn1wKitKY8YFm2SwEPYb3hzCshQUAG0eN1l6HDPhJySGichgPXilg8vKwqsg5h1g3IoHP4nCnewkiqMPa5vghUCzbowTYV8uLYBlKifIDSayBhLDROiwHNqgYnF1u8OA+77LHGC8XFYG9K1vVE5WyC1OD0TbhMw84qI8zN/daWMiIewICWEim6CHbhCRgLXjNWOJw2g7DNLl+ByV8bJDj5iONtaHiatgD32wv5KYz/4lIewZ2o680djYiOrqasRiMcRiMVRXV2PPnj3CMoZhYO7cuSgrK0NhYSHGjBmD9957LyVPa2srZs6cieLiYvTq1QsTJ07Ejh07UvLccccdGDVqFHr27Im+5mMXOXz55Zc4+OCDkZOTw+3fRx99hD59+jjWle6QGCYiTzoKYrd9Fh2nuU/PUsSPWR+iBIni6MMSteY2w1vmeT+gawPKcETbjhtXWPjkPwW+9eHlF1OmTMHGjRuxcuVKrFy5Ehs3bkR1dbWwzKJFi7B48WIsWbIEGzZsQDwex5lnnom9e/cm89TU1OD555/H8uXL8dZbb2Hfvn2YMGECOjoOzJrc1taGn/zkJ/jVr37l2M+pU6fimGOO4S5vb2/HxRdfjFNOOUVirdMbCpMgIoPoEn4QYRN+hEy4IYjjtUrMbboKS4orTj9c/VbkBGvBDxGcjXzwwQdYuXIl1q1bh5EjRwIAHnroIVRVVWHr1q0YNmxYlzKGYeDee+/FzTffjAsuuAAA8Oijj6K0tBRPPfUUpk+fjkQigUceeQSPP/44zjjjDADAE088gfLycrz22msYP348AGDevHkAgGXLlgn7uXTpUuzZswe33norXnnlFWaeX//61zjqqKMwduxYrFmzxtV4pAvkDBNpg1aXiEO2uYp8Dy4vY8Yik9ZFNzK/f+T+G9ZwCKcb5LJVkSmiUwizhj2okLcosHbtWsRisaQQBoCTTjoJsViMKyi3bduG+vp6jBs3LpmWn5+P0aNHJ8vU1dWhvb09JU9ZWRkqKiqUher777+P22+/HY899hi6dWPLwNdffx1/+ctfcP/99yvVna6QM0xEChV31s/5faPiEhN6yRa3OCihGsSDHpLIqjISwNI4/U/cCGEr6bCdNTU1pXzPz89Hfn6+6/rq6+tRUlLSJb2kpAT19fXcMgBQWlqakl5aWopPP/00mScvLw/9+vXrkodXL4vW1lZcfPHFuOuuu3DIIYfg448/7pLnyy+/xKWXXoonnngCRUVF0nWnM+QME2mPX66DFweMXMhoEwmH0wORdGzh85UVa/Cp6EVIoVMI89xg1xUy+BZAu8aXGTNcXl6evNEtFothwYIFzPbnzp2LnJwc4euf//wnACAnJ6dLecMwmOlW7MtlysjksXLjjTdi+PDh+PnPf87NM23aNEyZMgWnnnqqdL3pDjnDAeD2CWvZiltX1m+nmNcekf4E6nAqko77jWxx4NMVXUKYde6hWwT7zWeffZbifvJc4RkzZuCnP/2psK7Bgwdj06ZN+OKLL7os27VrVxfn1yQejwPodH8HDRqUTG9oaEiWicfjaGtrQ2NjY4o73NDQgFGjRgn7ZeX111/H5s2b8cwzzwDoFNMAUFxcjJtvvhnz5s3D66+/jhdffBF33313Ms93332HHj164MEHH8Rll10m3V66QGI4QEgQB0NQj0em3zJz4f22foo7+j8RQaDrf+YohCMugk2KioqkQgGKi4tRXFzsmK+qqgqJRAJvv/02TjzxRADA+vXrkUgkuKJ1yJAhiMfjqK2txQ9+8AMAnbNCrF69GgsXLgQAVFZWIjc3F7W1tZg0aRIAYOfOndiyZQsWLVokta4A8Oyzz6K5uTn5fcOGDbjsssvwj3/8A4cffjiAzrhn6wwVL7zwAhYuXIg1a9bgoIMOkm4rnSAxTEQSHTG7QYliInug/5IaFHuvFy9XqGT/uzIaVjkkoqUFaG2Vaj/dGT58OM466yxMmzYNDzzwAADg8ssvx4QJE1JmkjjqqKOwYMECnH/++cjJyUFNTQ3mz5+PoUOHYujQoZg/fz569uyJKVOmAABisRimTp2K2bNnY8CAAejfvz/mzJmDo48+Ojm7BABs374dX331FbZv346Ojg5s3LgRAHDEEUegd+/eScFrsnv37mS/zbmEhw8fnpLnn//8J7p164aKigqtYxUlSAwHDLnDwUNjThBEusPbhzmdcKjs+3wTwhro2P/Shc667Dz55JO4+uqrkzM/TJw4EUuWLEnJs3XrViQSieT36667Ds3NzbjyyivR2NiIkSNHYtWqVejTp08yzz333IMePXpg0qRJaG5uxtixY7Fs2TJ07949mefWW2/Fo48+mvxuOs1vvPEGxowZ48fqZgQ5hhkwQminqakJsVgMiV27ulyGIXEmh05XicacIIKHnGHvOO277GPsZl/H06zSj8J2EMFNe/cidsQRSCQSSjMUmMfRpwD0lC7lzDcApgDK/SEyE5pNgog0OgUsHZQJgkg3ZPaBZp6gZhNhPgrbSprECxOECYVJEJGH7kwniPSEtlnvyIZ5eRHBdu0q7QazCvskhHU/QtnPxzET6QeJYSJt0CGKKX6YIIKBhLA+dIRB8DC1q9MUzczfkxxgIkMgMRwA5qUrOjjowXogyIQxZa0DCXYiXcmEbTLq6Dypl3lOSVhuMEEEBYnhACGBo59MEMaZsA4EkQ3/Xdl9eCaNhRYhXFAAtGXOmBCZB4nhiOHkEpqOgMzONtvEdyasbyasA5FdZJLwM/G6Hfp9JTCom+RSYIleXrBxS4v2R2NTzDDhJySG0wD7Tkl2J0sPnSDSBbdXWTUfbwlJMk0A+/UIdz/Gye/9uXRssGijpQ2TSDNIDAdASwuQt3//FcY+Qrco9vNmDiJ70BFm6FQHHZP1kGniF8iu/Zbrm+RURTALs1EKkyAiDInhgJHdKfmB15sueAdEcqCJqMI6bpNAloMEcPTQ/TQ5K56EMGujog2NSCNIDIcETxT7HWvmRRDzbvRK9wMMkV2QQGaTieIXCG//pHs8ZdbDbeSCViHMacjr7/AtgHZPNXStjyBMSAwHQGsrX/yy7jOIsiA2yUQBrDLmmbj+2Yz1OJ9NwjhTBTCQOSIY8C6EeXieKUJCCB/oO02/RkQXEsMBwxLFYQhiwhs0N7B3CgqiOT1pmKFMQZHJ+5Ywt8MwhLDszGZ2/BbCtD8k0gkSwyFhP+CyDsB+PoaYnsSmH4qdVieqghjITFFMItg/whhbX4Swm7tSLWl+/Q7NEa+PSG9IDAdASwvQpw9/mZNL7AdhHzgyGRLFakRZEAOZKYozibC3szDmE/ayvaT016sbbEsT9ddtn/Py8hCPx3FNfb27CgTE43Hk5dF+miAxHBiimEQnQUwhE+kJue/y2K+QRJF0F8WZtg+JwrYVdSFs/696EsIODbD6q2N7LigowLZt29Dmw9RseXl5KEjXDZrQConhEODFDVvTSBATRDQJ6uoNwSYKIhiIbliEiXYhLIgRtv8muk9qCwoKSLQSvtIt7A5kM06z19iX6zoIROVgkg3QCYwaBQXpITSj7GBnMlHZd7nars1YAYmYAd0uK1cIu41fCCBGmCCChMSwBH/4wx8wZMgQFBQUoLKyEv/4xz+01c3aF6ncy0AQmQgJYv2ks2hpQ15k+q8shHmCU+EP5Pahb9qwVhhAaARBBA2JYQeefvpp1NTU4Oabb8a7776LU045BWeffTa2b9+utR3Zq1ZROSBkIn6NLbnD7iBBrJ90239ESQS7wsUfRHfIgdAVtuPhTjcvN8kRRNiQGHZg8eLFmDp1Kn75y19i+PDhuPfee1FeXo6lS5dqb4u3I6EdDJGtpIMgTjfSRVxGsZ/SJ7ZRVIYiISzqr4QrHLVVJQhV6AY6AW1tbairq8MNN9yQkj5u3DisWbOmS/7W1la0trYmvycSCQDAvn1N0m3u3Xtgf7N3L5Cf3/m5qSl1n+TFbYziQSYqhHF3OOFMlA+29m0zXYjqFYuoPrEsD21yPVL5s9pmSOhc9wPlWVVZDjEADhwjWNWm9NmszF4Bq5F2y4OPrX1ss04bKe6nnb17O4+DhmE4ZyaIgCExLGD37t3o6OhAaWlpSnppaSnqGXMeLliwAPPmzeuSftJJ5b71kSAIgiDShb179yIWi4XdDYJIgcSwBDk5OSnfDcPokgYAN954I2bNmpX8vmfPHhx66KHYvn07bfwB09TUhPLycnz22WcoKioKuztZA417ONC4hwONuzyGYWDv3r0oKysLuysE0QUSwwKKi4vRvXv3Li5wQ0NDF7cYAPLz85HPuGYVi8VoRxkSRUVFNPYhQOMeDjTu4UDjLgeZQkRUoRvoBOTl5aGyshK1tbUp6bW1tRg1alRIvSIIgiAIgiB0Qc6wA7NmzUJ1dTWOP/54VFVV4cEHH8T27dtxxRVXhN01giAIgiAIwiMkhh2YPHkyvvzyS9x+++3YuXMnKioqsGLFChx66KGOZfPz83HbbbcxQycIf6GxDwca93CgcQ8HGneCyAxyDJrnhCAIgiAIgshSKGaYIAiCIAiCyFpIDBMEQRAEQRBZC4lhgiAIgiAIImshMUwQBEEQBEFkLSSGfeQPf/gDhgwZgoKCAlRWVuIf//hH2F2KDG+++SbOPfdclJWVIScnB3/9619TlhuGgblz56KsrAyFhYUYM2YM3nvvvZQ8ra2tmDlzJoqLi9GrVy9MnDgRO3bsSMnT2NiI6upqxGIxxGIxVFdXY8+ePSl5tm/fjnPPPRe9evVCcXExrr76arS1taXk2bx5M0aPHo3CwkIcdNBBuP3225Fu954uWLAAJ5xwAvr06YOSkhL8+Mc/xtatW1Py0LjrZ+nSpTjmmGOSD2aoqqrCK6+8klxOYx4MCxYsQE5ODmpqapJpNPYEQQAADMIXli9fbuTm5hoPPfSQ8f777xvXXHON0atXL+PTTz8Nu2uRYMWKFcbNN99sPPvsswYA4/nnn09Zfueddxp9+vQxnn32WWPz5s3G5MmTjUGDBhlNTU3JPFdccYVx0EEHGbW1tcY777xjnHbaacb3v/9949tvv03mOeuss4yKigpjzZo1xpo1a4yKigpjwoQJyeXffvutUVFRYZx22mnGO++8Y9TW1hplZWXGjBkzknkSiYRRWlpq/PSnPzU2b95sPPvss0afPn2Mu+++278B8oHx48cbf/rTn4wtW7YYGzduNM455xzjkEMOMfbt25fMQ+OunxdffNF4+eWXja1btxpbt241brrpJiM3N9fYsmWLYRg05kHw9ttvG4MHDzaOOeYY45prrkmm09gTBGEYhkFi2CdOPPFE44orrkhJO+qoo4wbbrghpB5FF7sY/u6774x4PG7ceeedybSWlhYjFosZ//3f/20YhmHs2bPHyM3NNZYvX57M85///Mfo1q2bsXLlSsMwDOP99983ABjr1q1L5lm7dq0BwPjwww8Nw+gU5d26dTP+85//JPP8+c9/NvLz841EImEYhmH84Q9/MGKxmNHS0pLMs2DBAqOsrMz47rvvNI5EsDQ0NBgAjNWrVxuGQeMeJP369TMefvhhGvMA2Lt3rzF06FCjtrbWGD16dFIM09gTBGFCYRI+0NbWhrq6OowbNy4lfdy4cVizZk1IvUoftm3bhvr6+pTxy8/Px+jRo5PjV1dXh/b29pQ8ZWVlqKioSOZZu3YtYrEYRo4cmcxz0kknIRaLpeSpqKhAWVlZMs/48ePR2tqKurq6ZJ7Ro0enTKw/fvx4fP755/jkk0/0D0BAJBIJAED//v0B0LgHQUdHB5YvX46vv/4aVVVVNOYBcNVVV+Gcc87BGWeckZJOY08QhAmJYR/YvXs3Ojo6UFpampJeWlqK+vr6kHqVPphjJBq/+vp65OXloV+/fsI8JSUlXeovKSlJyWNvp1+/fsjLyxPmMb+n6+9pGAZmzZqFH/7wh6ioqABA4+4nmzdvRu/evZGfn48rrrgCzz//PEaMGEFj7jPLly/HO++8gwULFnRZRmNPEIQJPY7ZR3JyclK+G4bRJY3g42b87HlY+XXkMfbf1JKuv+eMGTOwadMmvPXWW12W0bjrZ9iwYdi4cSP27NmDZ599FpdccglWr16dXE5jrp/PPvsM11xzDVatWoWCggJuPhp7giDIGfaB4uJidO/evcvZfENDQ5czf6Ir8XgcQFc3xDp+8XgcbW1taGxsFOb54osvutS/a9eulDz2dhobG9He3i7M09DQAKCrq5QOzJw5Ey+++CLeeOMNHHzwwcl0Gnf/yMvLwxFHHIHjjz8eCxYswPe//3387ne/ozH3kbq6OjQ0NKCyshI9evRAjx49sHr1atx3333o0aMH13WlsSeI7IPEsA/k5eWhsrIStbW1Kem1tbUYNWpUSL1KH4YMGYJ4PJ4yfm1tbVi9enVy/CorK5Gbm5uSZ+fOndiyZUsyT1VVFRKJBN5+++1knvXr1yORSKTk2bJlC3bu3JnMs2rVKuTn56OysjKZ580330yZBmnVqlUoKyvD4MGD9Q+ATxiGgRkzZuC5557D66+/jiFDhqQsp3EPDsMw0NraSmPuI2PHjsXmzZuxcePG5Ov444/Hz372M2zcuBGHHXYYjT1BEJ0Ed69edmFOrfbII48Y77//vlFTU2P06tXL+OSTT8LuWiTYu3ev8e677xrvvvuuAcBYvHix8e677yannrvzzjuNWCxmPPfcc8bmzZuNiy++mDnl0cEHH2y89tprxjvvvGOcfvrpzCmPjjnmGGPt2rXG2rVrjaOPPpo55dHYsWONd955x3jttdeMgw8+OGXKoz179hilpaXGxRdfbGzevNl47rnnjKKiorSb8uhXv/qVEYvFjL///e/Gzp07k69vvvkmmYfGXT833nij8eabbxrbtm0zNm3aZNx0001Gt27djFWrVhmGQWMeJNbZJAyDxp4giE5IDPvI/fffbxx66KFGXl6ecdxxxyWnsCIM44033jAAdHldcsklhmF0Tnt02223GfF43MjPzzdOPfVUY/PmzSl1NDc3GzNmzDD69+9vFBYWGhMmTDC2b9+ekufLL780fvaznxl9+vQx+vTpY/zsZz8zGhsbU/J8+umnxjnnnGMUFhYa/fv3N2bMmJEyvZFhGMamTZuMU045xcjPzzfi8bgxd+7ctJvuiDXeAIw//elPyTw07vq57LLLkvuBgQMHGmPHjk0KYcOgMQ8SuximsScIwjAMI8cw6PE2BEEQBEEQRHZCMcMEQRAEQRBE1kJimCAIgiAIgshaSAwTBEEQBEEQWQuJYYIgCIIgCCJrITFMEARBEARBZC0khgmCIAiCIIishcQwQRAEQRAEkbWQGCYIgiAIgiCyFhLDBEFkHIMHD0ZOTg5ycnKwZ88eT3WNGTMmWdfGjRu19I8gCIKIDiSGCYKIJB0dHRg1ahQuvPDClPREIoHy8nL8+te/Fpa//fbbsXPnTsRiMU/9eO655/D22297qoMgCIKILiSGCYKIJN27d8ejjz6KlStX4sknn0ymz5w5E/3798ett94qLN+nTx/E43Hk5OR46kf//v0xcOBAT3UQBEEQ0YXEMEEQkWXo0KFYsGABZs6cic8//xwvvPACli9fjkcffRR5eXlKdS1btgx9+/bF3/72NwwbNgw9e/bERRddhK+//hqPPvooBg8ejH79+mHmzJno6OjwaY0IgiCIqNEj7A4QBEGImDlzJp5//nn84he/wObNm3Hrrbfi2GOPdVXXN998g/vuuw/Lly/H3r17ccEFF+CCCy5A3759sWLFCnz88ce48MIL8cMf/hCTJ0/WuyIEQRBEJCExTBBEpMnJycHSpUsxfPhwHH300bjhhhtc19Xe3o6lS5fi8MMPBwBcdNFFePzxx/HFF1+gd+/eGDFiBE477TS88cYbJIYJgiCyBAqTIAgi8vzxj39Ez549sW3bNuzYscN1PT179kwKYQAoLS3F4MGD0bt375S0hoYGT/0lCIIg0gcSwwRBRJq1a9finnvuwQsvvICqqipMnToVhmG4qis3Nzfle05ODjPtu+++c91fgiAIIr0gMUwQRGRpbm7GJZdcgunTp+OMM87Aww8/jA0bNuCBBx4Iu2sEQRBEhkBimCCIyHLDDTfgu+++w8KFCwEAhxxyCH7729/iv/7rv/DJJ5+E2zmCIAgiIyAxTBBEJFm9ejXuv/9+LFu2DL169UqmT5s2DaNGjfIULkEQBEEQJjkGHU0IgsgwBg8ejJqaGtTU1Gip75NPPsGQIUPw7rvvup7WjSAIgogm5AwTBJGRXH/99ejduzcSiYSnes4++2x873vf09QrgiAIImqQM0wQRMbx6aefor29HQBw2GGHoVs39+f9//nPf9Dc3AygM2ZZ9cl3BEEQRLQhMUwQBEEQBEFkLRQmQRAEQRAEQWQtJIYJgiAIgiCIrIXEMEEQBEEQBJG1kBgmCIIgCIIgshYSwwRBEARBEETWQmKYIAiCIAiCyFpIDBMEQRAEQRBZC4lhgiAIgiAIImshMUwQBEEQBEFkLSSGCYIgCIIgiKyFxDBBEARBEASRtZAYJgiCIAiCILIWEsMEQRAEQRBE1kJimCAIgiAIgshaSAwTBEEQBEEQWQuJYYIgCIIgCCJrITFMEARBEARBZC0khgmCIAiCIIishcQwQRAEQRAEkbWQGCYIgiAIgiCyFhLDBEEQBEEQRNZCYpggCIIgCILIWkgMEwRBEARBEFkLiWGCIAiCIAgiayExTBAEQRAEQWQtJIYJgiAIgiCIrIXEMEEQBEEQBJG1kBgmCIIgCIIgshYSwwRBEARBEETWQmKYIAiCIAiCyFpIDBMEQRAEQRBZC4lhgiAIgiAIImshMUwQBEEQBEFkLSSGCYIgCIIgiKyFxDBBEARBEASRtZAYJgiCIAiCILIWEsMEQRAEQRBE1kJimCAIgiAIgshaSAwTBEEQBEEQWQuJYYIgCIIgCCJrITFMEARBEARBZC0khgmCIAiCIIishcQwQRAEQRAEkbWQGCYIgiAIgiCyFhLDBEEQBEEQRNZCYpggCIIgCILIWkgMEwRBEARBEFkLiWGCIAiCIAgiayExTBAEQRAEQWQtJIYJgiAIgiCIrIXEMEEQBEEQBJG1kBgmCIIgCIIgshYSwwRBEARBEETWQmKYIAiCIAiCyFpIDBMEQRAEQRBZC4lhgiAIgiAIImshMUwQBEEQBEFkLSSGCYIgCIIgiKyFxDBBEARBEASRtZAYJgiCIAiCILIWEsMEQRAEQRBE1kJimCAIgiAIgshaSAwTBEEQBEEQWQuJYYIgCIIgCCJrITFMEARBEARBZC0khgmCIAiCIIishcQwQRAEQRAEkbWQGCYIgiAIgiCyFhLDBEEQBEEQRNZCYpggCIIgCILIWkgMEwRBEARBEFkLiWGCIAiCIAgiayExTBAEQRAEQWQtJIYJgiAIgiCIrIXEMEEQBEEQBJG1kBgmCIIgCIIgshYSwwRBEARBEETWQmKYIAiCIAiCyFpIDBMEQRAEQRBZy/8Pvt8kdYdZg3QAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "! seisflows plot2d GRADIENT_01 vs_kernel --savefig g_01_vs.png\n", + "Image(filename='g_01_vs.png') " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Figure(707.107x707.107)\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZjURPrHv33MxTAz3Awjl4pyySWIjqiIyqUIIuqKilyirnihux6oC+JyKKvi8VsUOT3xYMEDHPEAdBXkEFw81hMVV04FBoZjprvr98dMQpKuJJV0kk53v5/n6Wemk0qlkk5Xvv3mW28FGGMMBEEQBEEQBJGBBJPdAIIgCIIgCIJIFiSGCYIgCIIgiIyFxDBBEARBEASRsZAYJgiCIAiCIDIWEsMEQRAEQRBExkJimCAIgiAIgshYSAwTBEEQBEEQGQuJYYIgCIIgCCJjITFMEARBEARBZCwkhgmCIAiCIIiMhcQwQRAEQRAEkbGQGCYIgiAIgiAyFhLDBEEQBEEQRMZCYpggCIIgCILIWEgMEwRBEARBEBkLiWGCIAiCIAgiYyExTBAEQRAEQWQsJIYJgiAIgiCIjIXEMEEQBEEQBJGxkBgmCIIgCIIgMhYSwwRBEARBEETGQmKYIAiCIAiCyFhIDBMEQRAEQRAZC4lhgiAIgiAIImMhMUwQBEEQBEFkLCSGCYIgCIIgiIyFxDBBEARBEASRsZAYJgiCIAiCIDIWEsMEQRAEQRBExkJimCAIgiAIgshYSAwTBEEQBEEQGQuJYYIgCIIgCCJjITFMEARBEARBZCwkhgmCIAiCIIiMhcQwQRAEQRAEkbGQGCYIgiAIgiAyFhLDBEEQBEEQRMZCYpggCIIgCILIWEgMEwRBEARBEBkLiWGCIAiCIAgiYyExTBAEQRAEQWQsJIYJgiAIgiCIjIXEMEEQBEEQBJGxkBgmCIIgCIIgMhYSwwRBEARBEETGQmKYIAiCIAiCyFhIDBMEQRAEQRAZC4lhgiAIgiAIImMhMUwQBEEQBEFkLCSGCYIgCIIgiIyFxDBBEARBEASRsZAYJgiCIAiCIDIWEsMEQRAEQRBExkJimCAIgiAIgshYSAwTBEEQBEEQGQuJYYIgCIIgCCJjITFMEARBEARBZCwkhgmCIAiCIIiMhcQwQRAEQRAEkbGQGCYIgiAIgiAyFhLDBEEQBEEQRMZCYpggCIIgCILIWEgMEwRBEARBEBkLiWGCIAiCIAgiYyExTBAEQRAEQWQsJIYJgiAIgiCIjIXEMEEQBEEQBJGxkBgmCIIgCIIgMhYSwwRBEARBEETGQmKYIAiCIAiCyFhIDBMEQRAEQRAZC4lhgiAIgiAIImMhMUwQBEEQBEFkLCSGiYxm8ODByMvLw969e3XLXHnllcjKysKOHTu8a5gJI0aMQMuWLZPdDF2uueYanHTSSahTpw7y8vJw4okn4q9//St2796tKrd//37ccccd6NOnDxo2bIhAIICJEydy62SM4fHHH0ebNm2Qk5ODJk2a4M9//jP27NmjKldRUYHLL78crVu3RkFBAfLz89G+fXv8/e9/R0VFhVD7q6qqcP/996Nly5bIyclBmzZt8MQTT8SV+/LLL3HDDTegtLQU+fn5CAQCWLlyZVy5bdu24d5770VpaSkaNGiAwsJCdO3aFbNmzUI0GuW24d///jfOP/981K1bF3l5eTjhhBPwwAMP2DonABAIBLivadOmqcq999576N27N0pKSpCTk4NGjRrhnHPOwbJly+LqfOutt3D11VejQ4cOyMrKQiAQ4B7Lhg0bMHbsWHTo0AEFBQVo3LgxzjvvPHzwwQdxZSdOnMhtZ25uLrdugiCIRCExTGQ0o0ePxuHDh/Hiiy9y1+/btw+LFy/GgAED0LhxY49bp899992HxYsXJ7sZulRUVODaa6/Fiy++iKVLl+Kaa67BrFmz0LNnT1RWVsrlfv/9d8yaNQtHjhzBRRddZFjnX/7yF4wbNw6DBg3CW2+9hbvuugsvvvgievfujaqqKrlcVVUVGGO47bbbsGjRIrz++usYMmQIJk2ahEGDBgm1/4YbbsDUqVMxduxYvPPOOxg8eDBuueUWTJkyRVVu/fr1WLJkCerVq4dzzz1Xt74NGzbg2Wefxbnnnotnn30WixYtQs+ePfHnP/8ZY8aMiSv/4osvomfPnigqKsKzzz6LZcuW4c477wRjzNY5kbjkkkuwevVq1evqq69Wlfn999/Rvn17PProo1i+fDmefvppZGVl4YILLsDzzz+vKrt48WKsWbMG7dq1Q6dOnXSP/6WXXsLatWsxatQovP7665g9ezZycnLk88GjrKxM1c4PP/xQt36CIIiEYASRwUQiEVZSUsK6du3KXT9z5kwGgL355psetyz9+Oc//8kAsPfff19eFovFWCwWY4wxtmvXLgaATZgwIW7bX3/9lYVCIXbTTTeplr/44osMAJs1a5bp/u+44w4GgP3www+G5b744gsWCATYlClTVMvHjBnD8vLy2O+//y4vi0aj8v+vvvoqA8BWrFgRV+cff/zBKisr45aPHTuWAWC//PKLvOzXX39l+fn57M9//rNhO62eEwBs7NixhnXqUVlZyY455hh25plnqpYrj186Fh47duyIWxaJRFjHjh3Z8ccfr1o+YcIEBoDt2rXLVlsJgiCsQpFhIqMJhUIYPnw4NmzYgM2bN8etnzdvHpo0aYL+/fvLy2bOnIlOnTqhdu3aKCgoQJs2bTB+/HhL+w0EArjxxhsxb948tG7dGnl5eejWrRvWrFkDxhimT5+OY489FrVr18Y555yD77//XrU9zyYh1fncc8+hbdu2qFWrFjp16oS33nrLUtvcomHDhgCAcDgsL5MegZuxZs0aRKNRnH/++arlAwYMAAAsWrTI1v55LFmyBIwxjBw5UrV85MiROHToEMrKyuRlwaBYF1q3bl1kZWXFLe/evTsA4Ndff5WXzZ49GxUVFbjzzjsN63TinIiSlZWFOnXqxJ070eNv1KhR3LJQKISuXbti69atjrSRIAjCLiSGiYxn1KhRCAQCmDt3rmr5V199hbVr12L48OEIhUIAgIULF+KGG25Az549sXjxYixZsgTjxo0T9qIqeeuttzB79mxMmzYNL730Evbv348LLrgAt99+Oz7++GM8+eSTmDVrFr766isMGTIk7hE5j6VLl+LJJ5/EpEmTsGjRItSrVw+DBw/Gjz/+aLptJBIReom0Q1lnRUUFPv74Y9x3330444wz0KNHD+HtJSRrRU5Ojmq55FP9z3/+E7cNYwyRSATl5eUoKyvDww8/jKFDh6J58+aG+/riiy/QsGFDFBcXq5Z37NhRXu8UH3zwAcLhME488UR52Ycffoh69erhv//9Lzp37oxwOIxGjRrh+uuvR3l5uVzOzjl58cUXkZeXh5ycHHTt2hXz5s3TbVssFkMkEsFvv/2GCRMm4Ntvv8Xtt9+e6CHLRCIRfPTRR2jfvj13fYcOHRAKhdC4cWNcffXV+OWXX+LKjBgxAoFAAD/99JNj7SIIIgNJalyaIHxCz549WYMGDVSPsm+//XYGgH377bfyshtvvJHVqVMn4f0BYMXFxezAgQPysiVLljAArHPnzrJ1gDHGZsyYwQCw//znP/Ky4cOHsxYtWsTV2bhxY1ZeXi4v2759OwsGg2zq1KlCbRJ5zZs3T+gYV69erdru/PPPV7VNi5FNYtOmTQwAe+CBB1TL33//fQaAZWdnx23z0ksvqfY/cuRIVlVVZdru3r17s9atW3PXZWdns2uvvZa7zsgmweOdd95hwWCQjRs3TrW8devWLDc3lxUUFLApU6awFStWsIceeojl5eWxHj16yNeG1XNyxRVXsBdeeIF9+OGH7LXXXmP9+/dnANi9997LbV/fvn3lc1dYWMj+9a9/GR6PkU2Cxz333MMAsCVLlqiWP/vss2zy5Mls2bJl7IMPPmDTpk1j9erVY40bN2a//vqrquyoUaNYKBRiP/30k/B+CYIgtJAYJghWfQMGwF577TXGGGNVVVWscePGcR5Jqdzll1/OlixZYtvXCIANHTpUteybb75hANjdd9+tWv7OO+/E+Zb1xPDll18et6/i4mJ2/fXXm7Zp3bp1Qq/du3cLHeOBAwfYunXr2KpVq9hjjz3GmjRpwk499VRWUVHBLW8khhlj7KyzzmKFhYXslVdeYXv27GEff/wxO+GEE1goFGK5ublx5f/44w+2bt069sEHH7DJkyezwsJCNnDgQJXPlUfv3r1ZmzZtuOuys7PZddddx11nRQxv2LCBFRUVsdNPP50dPnxYte6EE05gAOJ+wEg/it599115mdVzomXAgAEsHA6znTt3xq379ttv2dq1a9nrr7/OLr30UpaVlcVefPFF3bqsiOFnnnmGAWC33367UPlPP/2UBYNBdvPNNwuVJwiCsAKJYYJgjB08eJAVFRWxCy64gDHG2Ouvv84AsPnz58eVnTt3ListLWWhUIgFAgHWvXt3tnz5ckv7A2cw05YtWxgANn36dNXyFStWMADs1VdflZfpiWHeAKkWLVqw4cOHm7apqqpK6KWMWlthzZo1DAB75JFHuOvNxPCOHTvkaKYU+bzzzjtZ165d4wZh8Vi4cCEDYBrhvPzyy1nDhg3jlh84cID7Y0VCVAx/9tlnrF69eqxbt25s7969cetPO+00BoB99tlnquXSj6UHH3xQXubUOVm2bJlp2X79+rG6devq/pgQFcNz585lwWCQXXvttZaupTZt2rDu3bsLlycIghCFPMMEASAvLw9Dhw5FWVkZtm3bhrlz56KgoACXXnppXNmRI0fik08+wb59+7B06VIwxjBgwAD8/PPPSWi5c2RlZQm9FixYYKv+bt26IRgM4ttvv7W1faNGjbBs2TLs2LEDn3/+OXbu3IlJkybh22+/xVlnnWW6vTRYzWz/HTp0wK5du7B9+3bVcmmA5UknnWSr/QCwceNGnHfeeWjRogWWL1+OoqKiuDKSN1kLq/FqKwetJXpOeHXq0b17d+zZswe7du0yLavHvHnzcM0112D48OF46qmnhAZPKtsqOmCPIAjCCsbDqgkigxg9ejSeeuopTJ8+HcuWLcOIESNQq1Yt3fL5+fno378/KisrcdFFF+HLL79EixYtPGyxs6xbt06o3LHHHmur/lWrViEWi6FVq1a2tpdo1KiRnJ3g8ccfR0VFBW688UbT7VasWAEApvsfNGgQ7r33XixYsECV0WH+/PnIy8tDv379bLV706ZNOO+889C0aVO8++67qFu3LrfckCFDMGvWLLz99tvo0qWLvFya9OK0006L28buOXnuueeQlZWFrl27GpZjjGHVqlWoU6cO6tevb1ovj/nz5+Oaa67BVVddhdmzZ1sSwmvWrMF3332Hm2++2da+CYIgjCAxTBA1dOvWDR07dsSMGTPAGMPo0aPjyowZMwZ5eXno0aMHmjRpgu3bt2Pq1KkoKirCKaeckoRWO0e3bt0cqeett97CM888g4EDB6JFixaoqqrC+vXrMWPGDLRq1QrXXHONqvzbb7+NiooK7N+/H0B1Fo/XXnsNAHD++efLP0ieeeYZAMDxxx+PvXv34u2338acOXMwZcoUnHzyyXJ9Tz/9ND766CP06dMHzZo1Q0VFBT766CM88cQTOP3001UTbzz77LMYNWoU5s6dK08+0b59e4wePRoTJkxAKBTCKaecguXLl2PWrFn4+9//jnr16snbHzx4UBapa9asAVAt+nfv3i3/WAKAb775Bueddx4AYPLkyfjuu+/w3XffyfUcf/zxcuq3Pn364MILL8SkSZMQi8Vw2mmnYf369bj//vsxYMAAnHHGGfJ2oudk+vTp+Oqrr3DuueeiadOm2LlzJ+bMmYPly5dj4sSJaNCggVx20KBB6NSpEzp37oz69evjt99+w/z587Fq1Sr83//9nyq92s8//yz/iPrhhx8AQP7sWrZsKV9Tr776KkaPHo3OnTvjuuuuw9q1a1XXQJcuXeSsGJ06dcJVV12Ftm3bIjc3F2vXrsX06dNRXFyMO+64Q7XdiBEjsGDBAmzZssXXMzISBOFzkunRIAi/8dhjjzEArF27dtz1CxYsYL169WKNGzdm2dnZrKSkhF122WWqTA8iwIeeYaf4+uuv2SWXXMJatGjBcnNzWW5uLmvTpg3761//qpqwQtk+6GSu2LJli1zu6aefZm3btmW1atVitWvXZmeeeWZcJgLGGPv444/ZgAEDWElJCcvOzma1atVinTp1Yg888EDc4L158+ZxM2RUVlayCRMmsObNm7Ps7Gx24oknsscffzxuX9JnxnspPx9pP3ov7f4PHjzI7rzzTtasWTMWDodZ8+bN2d133x032E70nLzxxhvsjDPOYA0bNmThcJgVFBSwM888k7300ktxZR988EF2yimnsLp167JQKMTq16/P+vbty9566624skbHpbzmhg8fbnj8ys/58ssvZ61atWL5+fksKyuLtWjRgl1//fXst99+i9v/kCFDWF5eHtuzZ0/cOoIgCFECjFlIGkoQBEEQPqG4uBjDhg3D9OnTk90UgiBSGBLDBEEQRMrx5ZdforS0FD/++KPK5kEQBGEVEsME4SCRSMRwfTAYpBHxBEEQBOEj6K5MEA5ilpZs1KhRyW4iQRAEQRAKKJsEQTiIWXoyepxLEARBEP6CbBIEQRAEQRBExkI2CSIjGTx4MPLy8rB3717dMldeeSWysrKwY8cO7xqWZlRUVODyyy9H69atUVBQgPz8fLRv3x5///vfUVFREVd+xYoV6N27Nxo1aoTatWujY8eOePzxxxGNRuUy5eXlmDx5Ms4++2wUFxejdu3a6NChAx588EEcPnw4rs57770XAwYMwDHHHINAIIARI0YIt3/Tpk244IIL0Lx5c+Tl5aFevXooLS3F888/H1c2EAjovtq0aRNX/oknnkCbNm2Qk5ODY489Fvfffz+qqqpUZX799Vfceuut6NmzJ+rUqYNAIID58+dz2/rWW2/h6quvRocOHZCVlaU7qcXEiRMN27pw4UK57JdffokbbrgBpaWlyM/PRyAQwMqVK7n1lpeX45577sGJJ56IWrVq4ZhjjsGll16KL7/8UlVuxIgRhvuX8jUbleWdT4IgCLuQTYLISEaPHo0lS5bgxRdfxA033BC3ft++fVi8eDEGDBiAxo0bJ6GF6UFVVRUYY7jttttw7LHHIhgM4sMPP8SkSZOwcuVKvPfee3LZ9957D3379sVZZ52FZ555Bvn5+XjjjTdwyy234IcffsBjjz0GAPjll18wY8YMDBs2DLfddhtq166Njz76CBMnTsS7776Ld999VyUEH330UXTs2BEDBw7E3LlzLbV/7969aNasGYYOHYpjjjkGFRUVeOGFFzBs2DD89NNPuPfee+Wyq1evjtv+008/xa233orBgwerlk+ePBn33Xcf7rrrLvTp0wfr1q3Dvffei//973+YNWuWXO7777/HCy+8gM6dO+P888/HSy+9pNvWxYsXY82aNfIEFhs2bOCWu+aaa7iz6I0ZMwY//PCDat369euxZMkSdOnSBeeeey7efPNN3f1feOGFWL9+PSZOnIhu3brh119/xaRJk1BaWorNmzfLszPed999uP7667nb5+TkxE1ek5eXhw8++CBuGUEQhGMkLcMxQSSRSCTCSkpKWNeuXbnrZ86cyQCwN9980+OWZQZ33HEHA8B++OEHedmVV17JcnJy2IEDB1Rl+/TpwwoLC+X3Bw4ciCvDGGPTp09nANhHH32kWh6NRuX/8/PzHZmA5NRTT2XNmjUzLTdixAgWCATYd999Jy/bvXs3y83NZddee62q7OTJk1kgEGBffvklt+3r1q3jTtDBKzt27FhmpXvfsmULCwQC7KqrrtKt89VXX2UA2IoVK+K2/+677xgAdu+996qWf/LJJwwAe+SRRwz3v3LlSu72w4cPZ/n5+cLHQRAEYQeySRAZSSgUwvDhw7FhwwZs3rw5bv28efPQpEkTeTpdAJg5cyY6deqE2rVro6CgAG3atMH48eMt7TcQCODGG2/EvHnz0Lp1a+Tl5aFbt25Ys2YNGGOYPn06jj32WNSuXRvnnHMOvv/+e9X27777LgYNGoSmTZsiNzcXrVq1wnXXXYfdu3fLZQ4fPowuXbqgVatW2Ldvn7x8+/btKC4uxtlnn62yHSQDaeph5dS+WVlZyM7Ojov61alTB7m5ufL7/Px85Ofnx9XZvXt3AMDWrVtVy91IZdegQQNV23ns378fr776Knr27IlWrVrJy8vKynD48GGMHDlSVX7kyJFgjGHJkiXyMittT+Q4586dC8ZY3FTZonVmZWUBAIqKilTL69SpAwCqz4/HnDlzEAgEKNsKQRBJgcQwkbGMGjUKgUAg7tH5V199hbVr12L48OEIhUIAgIULF+KGG25Az549sXjxYixZsgTjxo3j+l7NeOuttzB79mxMmzYNL730Evbv348LLrgAt99+Oz7++GM8+eSTmDVrFr766isMGTIETDHG9YcffkBpaSlmzpyJ5cuX429/+xs+/fRTnHHGGbLfNDc3F6+88gp27twpi4tYLIYrr7wSjDG89NJL8nHpEYlEhF5McPwtYwyRSATl5eUoKyvDww8/jKFDh6J58+Zymeuvvx6VlZW4+eab8dtvv2Hv3r147rnnsHjxYtxxxx2m+5Aepbdv316oTVaIxWKIRCLYtWsX/vnPf+Kdd97BnXfeabjNwoULUVFREScwv/jiCwBAhw4dVMubNGmCBg0ayOu9IhaLYf78+WjVqhV69uxpq44WLVpg0KBBePTRR7FixQocOHAA//3vf3HzzTejefPmuPzyy3W33bdvH1577TWce+65OPbYY+PWHzp0CMXFxQiFQmjatCluvPFG/PHHH3Hlzj77bF2fNEEQhCFJjEoTRNLp2bMna9CgAausrJSX3X777QwA+/bbb+VlN954I6tTp07C+wPAiouLVY/5lyxZwgCwzp07s1gsJi+fMWMGA8D+85//cOuKxWKsqqqK/fzzzwwAe/3111XrX375ZQaAzZgxg/3tb39jwWCQLV++3LSNW7ZsYQCEXrxH5jxeeukl1XYjR45kVVVVceU+/vhjVlJSIpcLhULsoYceMq3/888/Z3l5eWzw4MGG5ezaJK677jq5TdnZ2eyf//yn6Tannnoqq1OnDjt06JBq+ZgxY1hOTg53mxNPPJH16dOHu87MJqHEik3i7bffZgDY1KlTDcsZ2SQYY6yyspKNGTNG9Tl37NiRbdmyxbBeyZL00ksvxa175JFH2COPPMKWL1/Oli9fzu655x5Wq1Yt1qZNG7Z//35V2XPOOYeFQiHDfREEQfCgAXRERjN69GhcffXVeOONNzBkyBBEIhE8//zzOPPMM3HCCSfI5bp3744nn3wSQ4cOxeWXX44ePXrYzhncq1cv1WP+tm3bAgD69++vimxJy3/++Wc5irhz50787W9/w9KlS/Hbb78hFovJ5b/++msMHDhQfn/ZZZdh5cqV+Otf/4poNIrx48ejd+/epu0rKSkxzZcs0bp1a6Fyffv2xbp167B//36sXr0aDz74IH7//XcsXrxYfhS/YcMGDB48GKeeeiqefvpp5Ofn44MPPsC9996Lw4cP47777uPW/dNPP2HAgAFo1qwZZs+eLdQeq4wfPx7XXHMNdu7ciTfffBM33ngjKioq8Je//IVb/ssvv8Snn36KsWPHci0CRhFMr6Obc+bMQTgctpRlg8ef//xnLF68GI8++ihOPvlkbN++HdOnT8c555yDFStWyAPoePuvX79+3CBDABg3bpzqfe/evdGlSxdccskleOaZZ1Tr33///YTaTxBEBpNsNU4QyeTgwYOsqKiIXXDBBYwxxl5//XUGgM2fPz+u7Ny5c1lpaSkLhUIsEAiw7t27C0ValQBgY8eOVS2TIrHTp09XLV+xYgUDwF599VXGWPVgpk6dOrGGDRuyxx9/nK1YsYKtXbuWrVmzhgFgEyZMiNufFE3Mzs5mO3fuFG5nVVWV0EsZybbCwoULGQD2r3/9S1526qmnsg4dOrBIJKIqK0W1lYPtJH766SfWsmVLduyxx7KtW7ea7tepAXTXX389C4fDuud03LhxDADbuHFj3Lq77rqLAWAVFRVx6xo0aMCGDh3KrdONyPCuXbtYdnY2GzRokGlZo8iwFF2WrlWJPXv2sKKiIjZixAhunZ9//jkDwG655RbT/UtEo1GWn5/PLrvsMuFtCIIgjCDPMJHR5OXlYejQoSgrK8O2bdswd+5cFBQU4NJLL40rO3LkSHzyySfYt28fli5dCsYYBgwYgJ9//tmTtn7xxRf4/PPPMX36dNx00004++yzccopp6B+/frc8hUVFRg2bBhOPPFE5OXlxXlX9fjpp59Mp5WWXqtWrbJ1LNJgt2+//VZetmnTJnTt2jXOz3zKKacgFovh66+/Vi3/+eefcfbZZ4MxhhUrVqBp06a22mKH7t27IxKJ4Mcff4xbV1lZieeeew5du3ZF586d49ZLUX7twM3t27dj9+7dOOmkk1xpM4/nnnsOlZWVwteGHps2bQKAuLRoderUQatWrXR90HPmzAEAy/tnjLkyMJIgiMyEbBJExjN69Gg89dRTmD59OpYtW4YRI0agVq1auuXz8/PRv39/VFZW4qKLLsKXX36p+wjYSaTH5zk5OarlTz/9NLf89ddfj19++QVr167Ff//7X1xyySV49NFH4x49a3HDJqFlxYoVAKDKslBSUoL169cjGo2qBLGUv1cpdn/55Rc5K8bKlSs9Of9KVqxYgWAwiOOOOy5u3RtvvIHdu3dj0qRJ3G379euH3NxczJ8/H6eeeqq8fP78+QgEArjooovcanYcc+bMQUlJiSprih1KSkoAAGvWrFF9Fr///ju+/fZbnHvuuXHbHDlyBM8//zy6d+9u6QfAa6+9hoMHD+K0005LqM0EQRASJIaJjKdbt27o2LEjZsyYAcYYRo8eHVdmzJgxyMvLQ48ePdCkSRNs374dU6dORVFRUVw0zC3atGmD448/HnfddRcYY6hXrx7efPNNvPvuu3FlZ8+ejeeffx7z5s1D+/bt0b59e9x4442488470aNHDzkyyyM7OxvdunVzpM1PP/00PvroI/Tp0wfNmjVDRUUFPvroIzzxxBM4/fTTMWjQILnsuHHjcPPNN+PCCy/Eddddh1q1auH999/Hww8/jPPOOw+dOnUCUO2b7tWrF7Zt24Y5c+Zg586d2Llzp1xP06ZNVcJ51apV2LVrFwAgGo3i559/xmuvvQYA6Nmzp5zmbdKkSZg0aRLef/99OavCtddei8LCQnTv3h2NGzfG7t278eqrr+Lll1/GX//6V3lbJXPmzEFeXh6uuOIK7jmpV68e7r33Xtx3332oV6+ePOnGxIkTcc0116Bdu3aq8lJbpSj0+vXrUbt2bQDAJZdcIpf7+eef5R8xP/zwg2rbli1bxn2mn376Kb788kuMHz9eN7vIwYMHsWzZMgCQZ4ZbtWoVdu/eLf8oBICLL74Yf/vb3/DnP/8Zv/76K04++WRs27YN06dPx8GDB3HLLbfE1b1kyRL88ccfulHhn3/+GVdccQUuv/xytGrVCoFAAKtWrcKMGTPQvn37uO3OPvtsrFq1SjjDCUEQhEwyPRoE4Rcee+wxBoC1a9eOu37BggWsV69erHHjxiw7O5uVlJSwyy67TDfTgx5IwDPMGGNfffUV6927NysoKGB169Zll156Kfvll19UnuH//Oc/LC8vL84be/jwYda1a1fWsmVLtmfPHkvttsvHH3/MBgwYwEpKSlh2djarVasW69SpE3vggQe4ntlFixaxM844gzVo0IDl5+ez9u3bswceeECVfUM6L3ovrXe6Z8+eQtkwJkyYELds7ty57Mwzz2QNGjRg4XCY1alTh/Xs2ZM999xz3OP95ZdfWDAYZFdffbXpuXnsscfYiSeeyLKzs1nz5s3ZhAkTVFlNJIyOVcm8efN0y/F80mPGjGGBQIDrxZYwyizSokULVdlt27axG2+8kbVq1Yrl5uaykpISdsEFF7DVq1dz6+7duzfLz89n5eXl3PV//PEHGzx4MGvZsiXLy8tj2dnZ7IQTTmB33HEH27t3b1z5rl27suLiYt1jIQiC0CPAGP2MJgiCIFKX/fv3o169epgxYwbGjh2b7OYQBJFi0AgEgiAIIqX58MMPccwxx2DMmDHJbgpBECkIRYYJwgEikYjh+mAwSKPfCYIgCMKH0N2ZIBzALAWZNC0yQRAEQRD+grJJEIQDmKUisztbHUEQBEEQ7kI2CYIgCIIgCCJjIZsEQRAEQRAEkbGQGCZ8yeDBg5GXl4e9e/fqlrnyyiuRlZWFHTt2eNewDGbr1q0YPHgwjjvuOOTn56OoqAhdunTBk08+aTqA8KqrrkIgEMCAAQPi1u3fvx8333wzjjnmGOTk5ODEE0/EQw89hGg0qiq3cuVKBAIB7kuaEMIIaYY33mv79u262x06dAgnnngiAoEA/vGPf8Str6qqwv3334+WLVsiJycHbdq0wRNPPGHaHr1zYnScgUAA119/veVzEo1G8cgjj6Bfv35o2rQpatWqhbZt2+Kuu+7S/Y79/PPPGDVqFEpKSpCTk4NjjjkGgwcPVpX517/+haFDh6JVq1bIy8tDy5YtceWVV+K7774zPHajc/rTTz/pHtPChQtVZb/88kvccMMNKC0tRX5+PgKBAFauXMnd5zXXXIOTTjoJderUQV5eHk488UT89a9/xe7duw3bShBE+kOeYcKXjB49GkuWLMGLL76IG264IW79vn37sHjxYgwYMACNGzdOQgszj4qKChQWFuK+++5D8+bNUVlZiWXLluGmm27Cpk2bMHv2bO52S5cuxZIlS1BYWBi3LhKJoHfv3vj222/xwAMP4MQTT0RZWRnuuusu/Prrr3j88cfjtpkyZQp69eqlWmZlOt958+ahTZs2qmX169fXLX/fffehoqJCd/0NN9yA5557Dg888ABOOeUUvPPOO7jllluwf/9+jB8/nruN0Tk5+eST5SmolcycORPPPvtsnCAFzM/JoUOHMHHiRAwdOhTXXHMNGjRogM8++wx///vf8eabb2L9+vXIy8uTy3/xxRc4++yzcdxxx+Ef//gHmjZtim3btuGdd95R7ePBBx9EcXEx7rnnHhx33HHYunUrpkyZgpNPPhlr1qxB+/btucdvdk4B4Kabboqbxe+EE05QvV+/fj2WLFmCLl264Nxzz8Wbb76pW19FRQWuvfZatGrVCrm5uVi/fj0mT56MZcuWYePGjcjOzjZsD0EQaUwyZ/wgCD0ikQgrKSlhXbt25a6fOXMmA8DefPNNj1tGaLnssstYOBxmhw8fjlu3d+9edswxx7BHHnmEtWjRgl1wwQWq9S+99BIDwBYtWqRafu2117JgMMj++9//yst4M/JZQZqhbd26dcLbfPrppyw7O5u9+uqr3FkCv/jiCxYIBNiUKVNUy8eMGcPy8vLY77//Hlen2TnhEYvF2HHHHcdatGjBotGovFz0nEQiEbZ79+645dJxKWfUi8VirHPnzqxz587cz1TJjh074pb973//Y1lZWWz06NHcbczOqd6MjDyU50KqTzmDoBn//Oc/GQD2/vvvC29DEET6QTYJwpeEQiEMHz4cGzZswObNm+PWz5s3D02aNEH//v3lZTNnzkSnTp1Qu3ZtFBQUoE2bNrqROT0CgQBuvPFGzJs3D61bt0ZeXh66deuGNWvWgDGG6dOn49hjj0Xt2rVxzjnn4Pvvv4+r47333sO5556LwsJC1KpVCz169MD777+vKvP9999j5MiROOGEE1CrVi0cc8wxuPDCC+OOVXoM/tJLL+Gee+5BSUkJCgsLcd555+Gbb76xdGxu0bBhQwSDQYRCobh1t99+O5o0aYKbb76Zu+3HH3+MQCCg+hwBYMCAAYjFYli8eLErbRahsrISo0aNwtixY9GtWzdumSVLloAxhpEjR6qWjxw5EocOHUJZWVncNmbnhMeKFSvw448/YuTIkbbyVYdCIW70u3v37gCqLTASH374ITZt2oRbb70VOTk5hvU2atQobllJSQmaNm2qqlNC5JxaIdHc3Q0bNgQAhMP0kJQgMhkSw4RvGTVqFAKBAObOnata/tVXX2Ht2rUYPny4LMAWLlyIG264AT179sTixYuxZMkSjBs3zvRRLI+33noLs2fPxrRp0/DSSy9h//79uOCCC3D77bfj448/xpNPPolZs2bhq6++wpAhQ8AUCVmef/559OnTB4WFhViwYAFeeeUV1KtXD3379lUJ4t9++w3169fHtGnTUFZWhv/7v/9DOBzGqaeeyhW548ePx88//4zZs2dj1qxZ+O6773DhhRfG+Wq1MMYQiUSEXqJIde7Zswcvv/wy5s+fj9tvvz1OULz33nt49tlnMXv2bK5QBqrFUTAYRFZWlmq5JML+85//xG0zduxYhMNhFBYWom/fvvj3v/8t3HagWmiHQiHUq1cPF198Mb744gtuuUmTJqGiogIPPPCAbl1ffPEFGjZsiOLiYtXyjh07yuuViJwTHnPmzEEwGIwT3RJ2z8kHH3wAACo7w4cffggAKCgowPnnn4/c3FzUrl0bAwYMwH//+1/TOn/88Uf8/PPPXIuEyDmVmDZtGrKzs1GrVi2cccYZeOONN4SOyYxIJIKKigp8/PHHuO+++3DGGWegR48eqjKBQABnn322I/sjCCIFSGpcmiBM6NmzJ2vQoAGrrKyUl91+++0MAPv222/lZTfeeCOrU6dOwvsDwIqLi9mBAwfkZUuWLGEAWOfOnVksFpOXz5gxgwFg//nPfxhjjFVUVLB69eqxCy+8UFVnNBplnTp1Yt27d9fdbyQSYZWVleyEE05g48aNk5dLj8HPP/98VflXXnmFAWCrV682PB5pe5HXli1bTM8PY4xNnTpV3iYQCLB77rknrsz+/ftZy5Yt2d133y0v41kCpHP40UcfqZbfd999DADr06ePvOyzzz5jt9xyC1u8eDH78MMP2dy5c1nbtm1ZKBRiZWVlpu1+++232T333MPefPNNtmrVKvbkk0+ypk2bsvz8fLZp0yZV2Y0bN7KsrCy5Xr1H971792atW7fm7i87O5tde+21ls+Jlj179rDc3FzWt2/fuHWJnJNff/2VNW7cmHXr1k1lN7juuusYAFZYWMhGjx7N3nvvPfbcc8+xFi1asAYNGrDffvtNt86qqip29tlns8LCQvbLL7+o1ome099++42NGTOGvfLKK+yjjz5iL7zwAjvttNMYAPbMM8/o7lvEJrF69WrVNX/++eez8vLyuHKhUIidc845uvUQBJFekBgmfM2zzz7LALDXXnuNMVZ9s23cuDE788wzueUuv/xytmTJErZr1y5b+wPAhg4dqlr2zTffMAAqEcMYY++8847Kt/zuu+/Kba2qqlK97rzzThYIBGSRXVVVxSZPnszatm3LsrKyVDfofv36yfuQxOxTTz2l2vd///tfBoAtXLjQ8HjKy8vZunXrhF5HjhwROkfbtm1j69atY++88w678847WXZ2NrvxxhtVZcaOHctOOOEEdujQIXkZT/jt2rWL1atXj7Vt25atWbOG7dmzh7344ousqKgo7lzw2LNnD2vatCnr2LGjUNu1bNmyhdWuXZsNHDhQXlZVVcW6dOnCrrrqKlU5PTHcpk0bbt3Z2dnsuuuuk9+LnhMtTz75pCWvtMg5+f3331nHjh1Zo0aN2A8//KBaN2bMGAYgTnxv3LiRAeD++GGs2mt89dVXs1AoxJYsWaJaZ+Wc8qisrGRdunRh9evXZ1VVVdwyImL4wIEDbN26dWzVqlXsscceY02aNGGnnnoqq6ioMG0DQRDpC4lhwtccPHiQFRUVyYLh9ddfZwDY/Pnz48rOnTuXlZaWslAoxAKBAOvevTtbvny5pf0BYGPHjlUt07tpawcvPf/886bRVyladtNNN7FgMMjuvvtuVlZWxj799FO2bt061qlTJ9azZ0/dfWjbNG/ePMPjicViccJc72WXadOmMQDss88+Y4xVD5AKBAJs8eLFbM+ePfKrWbNmrG/fvmzPnj2qgVlr165lbdu2lc9R/fr12Zw5cxgA3UFYSq6//noGgB08eNBW+/v168caNWokv58+fTorKipi3333ndz2zz//nAFgDzzwANuzZw+LRCKMMcYuv/xy1rBhw7g6Dxw4oPoBZfWcKOnSpQtr2LCh6umIGUbn5I8//mAnn3wyq1+/Pvv888/j1t91110MAHvkkUfi1jVp0oT1798/bnksFmOjRo1iwWBQNRhPwso51UO6zr766ivuejsD6NasWaN7rARBZA7kGSZ8TV5eHoYOHYqysjJs27YNc+fORUFBAS699NK4siNHjsQnn3yCffv2YenSpWCMYcCAAfj55589aas05fITTzyBdevWcV9SGrjnn38eV199NaZMmYK+ffuie/fu6Natm+M5T1etWoWsrCyh108//WRrH9IgrG+//RZAtaebMYbBgwejbt268mvr1q145513ULduXcycOVPe/pRTTsFXX32FLVu24IsvvsBvv/2Gtm3bAgDOOuss0/2zGs92IBCw1X7GmGog1hdffIF9+/bhhBNOkNveqVMnANUpwerWrSsPdOzQoQN27doVl6dYWi+lN7N6TiQ2btyIjRs34uqrr47zVZsdExB/Tvbs2YPzzjsPW7Zswbvvvit7m5Xwlinr1Q5aY4zhmmuuwbx58zB79mxcddVVcdtZOadmx5TooDkl3bp1QzAYlK9dgiAyExpCS/ie0aNH46mnnsL06dOxbNkyjBgxArVq1dItn5+fj/79+6OyshIXXXQRvvzyS7Ro0cL1dvbo0QN16tTBV199hRtvvNGwbCAQiBupv3TpUvzvf/9Dq1atHGtT165dsW7dOqGyJSUltvaxYsUKAJDb3a9fP3mZkssvvxzHHnsspk6dyj3Gli1bAqgWPQ8//DBKSkq4P3qU7NmzB2+99RY6d+6M3Nxcy23fsmULPv74Y5x33nnysrvuugsjRoxQldu+fTuGDh2K66+/Hn/605/k9g8aNAj33nsvFixYgDvvvFMuP3/+fOTl5aFfv34A7J+TOXPmAKj+Doiid04kIfzjjz/i3XffRZcuXbjb9+/fH7Vq1cLbb7+NcePGycs/++wzbN++Haeddpq8jDGGMWPGYN68eXj66ad1B/hZOac8qqqq8PLLL6NBgwaOfj9WrVqFWCzmaJ0EQaQeJIYJ39OtWzd07NgRM2bMAGOMKwzGjBmDvLw89OjRA02aNMH27dsxdepUFBUV4ZRTTvGknbVr18YTTzyB4cOH448//sAll1yCRo0aYdeuXfj888+xa9cuOfo3YMAAzJ8/H23atEHHjh2xYcMGTJ8+HU2bNnW0TQUFBY6ksAKACRMmYMeOHTjrrLNwzDHHYO/evSgrK8MzzzyDSy+9FF27dgUAFBcXx2VXAIDc3FzUr18/bpT+Pffcgw4dOqBJkyb45ZdfMHfuXHz66adYunSpaiKIK664As2bN0e3bt3QoEEDfPfdd3j44YexY8cOzJ8/X1Xn6NGjsWDBAvzwww/yD6HzzjsPZ511Fjp27IjCwkJs3rwZDz30EAKBgCq7QZs2beIm5ZCi5scff7yq/e3bt8fo0aMxYcIEhEIhnHLKKVi+fDlmzZqFv//976hXr56tcwIAhw8fxosvvojTTz9djpRrET0nhw4dQt++fbFx40bMmDEDkUhENUNdw4YNcfzxxwMA6tSpg0mTJuEvf/kLRowYgaFDh2L79u3yZCvKSXBuvvlmzJkzB6NGjUKHDh1Udebk5MiC28o5ve2221BVVYUePXqguLgYW7duxRNPPIFNmzZh3rx5qiwcBw8exLJlywBA3veqVauwe/du+UcxUJ0h5plnnsHAgQPRokULVFVVYf369ZgxYwZatWqFa665RtW2QCCAnj176s5mRxBEmpEcdwZBWOOxxx5jAFi7du246xcsWMB69erFGjduzLKzs1lJSQm77LLL5EwPoiABz7DEqlWr2AUXXMDq1avHsrKy2DHHHMMuuOACVbk9e/aw0aNHs0aNGrFatWqxM844g3300UesZ8+ejnqGneSNN95g5513HmvcuDELh8Osdu3arHv37uzxxx8X8hzrDRb785//zJo3b86ys7NZgwYN2JAhQ7if29SpU1nnzp1ZUVERC4VCrGHDhmzw4MFs7dq1cWWHDx8elyHj1ltvZe3atWMFBQUsHA6zkpISdtVVV7FvvvnGtO1Gg70qKyvZhAkT5GM48cQT2eOPP25aJ2PGA+heeOEFBoDNnTtXd3vRcyK1X+81fPjwuLqfeeYZdtJJJ7Hs7GxWv359duWVV7KtW7fGtV+vzhYtWhgeu945nTNnDuvevTurV68eC4fDrG7duqxv377snXfe0a3DbP9ff/01u+SSS1iLFi1Ybm4uy83NZW3atGF//etf4yZG2b9/vzwYlyCIzCDAmCJJKkEQBEFkMMuWLcOAAQPw+eefo0OHDsluDkEQHkAD6AiCIAiihhUrVuDyyy8nIUwQGQRFhomMwGyGtWAw6OgodYIgCIIgUgO6+xMZgVlasVGjRiW7iQRBEARBJAHKJkFkBGbpxaQcwQRBEARBZBZkkyAIgiAIgiAyFrJJEARBEARBEBkL2SRcJBaL4bfffkNBQYHtqWIJgiAIItVhjGH//v0oKSmhwcqE7yAx7CK//fYbmjVrluxmEARBEIQv2Lp1q+MzbRJEopAYdpGCggIAwNYtz6KwoJZx4WDIeL1ELJpgqzxG9LicIpnnx+ljDdHX0zJR4xR6RJJJ1vfT635ID7PjV16/2u+/8hhE+wY73wdtG5V1xAzqCyraxGl7eflBNGt5pXxfJAg/QXdbF5GsEYUFtVBYaCaGTT4Ko07Ir5gdk9Mk8xy5cazpJIa1N2W3jo3EcGrg9XfV675ID5Hjlq7hOEFpIDbN6rKKsp12xDCgbqNiHVkGCT9Cxh2/EIsYv1INv9x83CYYdu9Y00XY8Y4jGnHn+NLpB0Q6kyn9gxYrx+2X77+OqI1De58SFdEE4QNIDBPOk4wbXTIiTV4cp19uiHYxa78kilP9OAnrePUdAlJLjCnFp56gdPv7YvS5WBHEqnUpZvEjMooM/XlOuEYmRHy8PkYjH6GfsXrDjkacOb5QOPni2onjSPYxeEUwnFpiNROx+51y6jtNEC5DVynhDMkUwV7eSJMt9kVuSG7ffJSeRp6/MRERl4o3T7faa6XeVBfOyu9Vugtj6ViNjlP7fQoptvGqD9L+SFF+341+wGjbmIrfaSLjoCuUSJxMEMLJFsFW8EoYRV16bKs3gCjZ+K09SnhtS1WBrP2upbs4FoEnKEVEZqJPSYxEr1VBnEA7Dh8+jMrKStvb65GdnY3c3FzH6yVSDx/37oTvSbZA9OImmexjzGT8IoqTvX+7SO1OVVEsofcdTHWRLBIh5n12BtHhGKv25QYDOqnklPsS7duUoteKuI4posgJcPjwYdStU4zDR/YlVA+P4uJibNmyhQQxQWI4reF1Qk7cQDJFIGbKcfodO49ZnfINp6oQVpIuoliLlQiyn7/LIqIYcN5uYEWs6gliEb93gvecyspKHD6yD4P7PYascF5CdSmpihzC4rJbUFlZSWKYIDGcdph1bKIdr936vSLVo0KENaxGiZ0Sfunkd0xXUSzhl77JLiLCUroepeiwE1YJUR+y3Qixcj8JkBXOQ3aWc2KYIJSkeO9BALB3E7A6gttPNxqyR2QufrFOpDLpLopTmQQya0gWCel/XatEIvAEsbbNvOuKvq+Ez6ErNJVJVLCJdLyZKgrTbTa7dENPFLsh8NJVgPshBR1hHcGnFZYEsZUsFXYEuwO5xGNZAUSznJsaIQaaCY84Spr17hmCk2KJl9KIxFhySVXvYzLwUsyloygmQew/RMWm02nWePXp/diU2qgXHSaIFINmoEsl3J6xycsZoRIhVdrpBqk6PXc6kW6z5qWTuE9XpO+99N0XvPZk64Re6j2r1zBvama6fog0gK7iVCFTxZ8RFI0gkk26+CMpQpw8rHq4DSa14KVW49oltDnCrUzqoXetmOUdTrCvjoSDCISdi99FGMUCiaPQ1eB3MjkKKkKmnhv6EeBfUjVynIoiPpUJhdXnnBd1tYlyMJ0KvXrtRoh50WHtdUR9FZECkBj2I5IAzlShJ0qmWQaU1wVdG6lBqgljEsTeoHeerU7BbdD/xVhULYqNBKtUHyDep2oFMUGkMHQV+w3qWPhkkuhVQtdD+qAVxCQ8CbtYGDxnOiudEWaZK5SWCaXVwgWi4SCCDmaTiJJNglBAvbFfINETDwng1MKLNGfphF/FMfmH3cUvnzMQn0FIO6mHsqhRqjatX5iuISLF8NG3MoNJVfHjJpkmhFP1GjCLGknQjdEcPw3GIzHjTyyk99ONCPMGuglGmrVe5GAg5Gl0mCDcIkXvwGlCqgogN/FDJ6onApwUJl589lb9h07Xqd2OxJV1zM6Zn6KMhDl2Pi+LfaJWsCrfB42+h1ameFbULQtibVspBzGRQlBPmgySLYKVHVOy2wIkv6P0QnC4dZ6dEkNeiCqaBth5SCynH3qCVbssJi5abWEhWqyKPrsUHY6EQwiEnZtiOhJzYbpqImWhntJLkik8ky049Uhmu4yEhN8EcDqJGhLF3mHnKQd9Lp5ia4CbFL2NiglWaT+m+0hkVjuz6DBB+Bi6Qr0gGEpeZ2AmNp2e0lMUP4hzNwRmoucynUSvGW56ivXOIwm9aug8ZAQxRBFESBbCMRattkqoCulEoZU/WjXbaAW8YXSYLFJECpBBd94Mww9iU4sf25QoiYjfTBK+ZjgZLRYZ1Ec3Z8JrONel7uQYVtCxS8QQlf8GYSHqbDFtm6FFQukXTjBQEM2i1GqEe9DdON3wm+D0W3ucwE6nTsJXjESjxaLnmUQxkap4+TRPJ8Wa9r0cddYKYwvZLwgimdAVmi7YFZ1udqrpJIStnifq/BPHqjC2c87pES6RAcQQBdjR90IxUZ2sEpLw1UVrkdD+TxA+hJ4TpDqJTElMQlgfu1Mfh8LU6buBm+eUPi8iCThikZCw+oNOec0HOT86Of230eA76VhUxxTU2QdB+BC6QlMVv4pNv7bLjERHUBPuYxbFtZAf1XLdBOEVImnVTJD9wmazxrl1zWstEg5klIiFg4iGnYvfxWIUCySOQldDKuKE4HT6l3oiEepkYDfyCxyN/pIQ9h6KEBOpiE+urbhotGi7BESzYXTYJ8dPEHqQGE4lnBKcTgrhVBHBiYhfgARwqkDRXUKJ1D+lSj9lhaj+MSmzR8giFRyxqlevErvnTeorSRATKQBdnamCUx2500LYb9BEF0QidgkitRHJq64kjbyspgPbFMRY1NYgOrN9xGWWcHDSjUg4CDiYWi1CNglCQfr0BOmKk4IzHYUwid/MQjTyayelE0WVUxs7fZJDOXAN0bkGlRNWJIRGbAqL4pAmB7D2/DmVwk0WxDT9MeFf6O7vV5wWm0519nbaZWdKWD2cvmmRAE4d7IhVUVFMQjiz8UIUK3enmMGNO8DNZv9vJTpcvYF7+baFpn8mCJ9ASsCPpEM02KxztSJCKfqbmTh5gyaxS4jgsSh2G0fFqMIyYSS6lSJYZZcgCB9DV6jf8KMQToYIduNmRB2yPk7+eEl0XwSRbDwQxY4KVacmtfBxtpZoOIiAg6nVolHyDBNHIXXgJ1J1kJyouDHrDJ1qN4leYxKxG0g4mJKJIByB53tNFKP6EuivdIVwIt+XaAQIBkyL6doXjM6fwj9s1YpBdgkiFaCfRn7AybQ/XgrhaER8mlwj8WR3lje9VyYhfQZWXl7ul7CGNhVYOqcGS3VEPg+n+iML9Ug+ZGV6NQnd9Go22ikyI106MXPmTHTs2BGFhYUoLCxEaWkp3n77bXl9IBDgvqZPnw4A+Omnn3TLvPrqq3I9LVu2jFt/1113eX68mUaGKQcf4kdbBCAmhBNFtL2ZInBJPKYXbohXZZ1p4msldNDrDww+d8vp1aS+1eha9Umqwkg4CDhok4hYtEk0bdoU06ZNQ6tWrQAACxYswKBBg7Bx40a0b98e27ZtU5V/++23MXr0aAwZMgQA0KxZs7gys2bNwkMPPYT+/furlk+aNAljxoyR39euXdtSWwnrJP8Kz2T8KISdFMF6HahZW33Q8ZpCwjWz8UOUNs0GezmCG1YJI5xKP+YRvGixJQSFsTZqnA6R4gsvvFD1fvLkyZg5cybWrFmD9u3bo7i4WLX+9ddfR69evXDccccBAEKhUFyZxYsX409/+lOc2C0oKIgrS7gL2SSSgdO2CC+EsFVLhLbDNJr9zUubgx1bAT3+JwD/2hXstsnMbpTpFqQ0IGHxa1Y/xyqRav7g8vJy1evIkSOm20SjUSxcuBAVFRUoLS2NW79jxw4sXboUo0eP1q1jw4YN2LRpE7fMgw8+iPr166Nz586YPHkyKisrrR0UYRnq3bzGj9FgwFwIJ4KeAHYbEq2EE/hN/DqB3e+fcju/fr+8jg47hUhGF2UZN/pQwXNnOZ+xA0SzAgg4OANdNFY92LBZs2aq5RMmTMDEiRO522zevBmlpaU4fPgwateujcWLF6Ndu3Zx5RYsWICCggJcfPHFuvufM2cO2rZti9NPP121/JZbbsHJJ5+MunXrYu3atbj77ruxZcsWzJ492+IRElYgMewVfp1EA9Bvm9WbHS8abFbGLfx6oybcJRVFkFOIPrJ3Y1AXfd98gzIyWz3tckgeOGeIVmxr0bm+lMI4FQfVbd26FYWFhfL7nJwc3bKtW7fGpk2bsHfvXixatAjDhw/HqlWr4gTx3LlzceWVVyI3N5dbz6FDh/Diiy/ivvvui1s3btw4+f+OHTuibt26uOSSS+RoMeEOJIa9IOZgJ+C0P80JIewXEUw35PTAajqrTBbALqEnXHTFjvT99st3MFWjw4D9dkvbcfpaQ7uEyCA6E1LNGqFEyg4hQnZ2tjyArlu3bli3bh0ee+wxPP3003KZjz76CN988w1efvll3Xpee+01HDx4EFdffbXpPk877TQAwPfff09i2EVIDKcSqSiEDUSw9oZru0N16gYscjNIocEyKYOVm3CqChyvSHBAl1n0zvQ76zdR7AVeDqKTorcOBRe4OYDNfkjY3H8qC2Y9GGNxHuM5c+aga9eu6NSpk+52c+bMwcCBA9GwYUPTfWzcuBEA0KRJk8QaSxhCd/ZUwQshnIgtQkAEi9xoLXWYVtvrhJDi1ZHqAtmliQUS3neq46QgtCI+bIozO4+xlduovrtWRbEbgjKVosNG50l7HBZzDrtlT/DaNxwNOZtaLRqxVtf48ePRv39/NGvWDPv378fChQuxcuVKlJWVyWXKy8vx6quv4uGHH9at5/vvv8eHH36IZcuWxa1bvXo11qxZg169eqGoqAjr1q3DuHHjMHDgQDRv3txSewlrpPhdPEPwmxA2igbbEMGWsXKD9YIUS68kI3J+3Do2u5+Nti1+EjtuRkOtDpxy6XMz+sHK9Y2KiGLpM0zV75FPScYgt3Rmx44dGDZsGLZt24aioiJ07NgRZWVl6N27t1xm4cKFYIxh6NChuvXMnTsXxxxzDPr06RO3LicnBy+//DLuv/9+HDlyBC1atMCYMWNwxx13uHJMxFECjDGW7EakK+Xl5SgqKsK+3a+hsLCW9Qr8ZouwKIIBa0LYNCps1s5kCaNUvIHbOVde5bK2sn+/iOFk2AJERLHeZ2bj+2q0TijFlujgLKdFsdvXSKJ507XnRWqvcrnZ0xtpH4r/Yywqf2Y8e4v0+QQDoep9KffLy2EdUqTGVOxDhGAghPLyChQVXYh9+/YJe3SBo/fRruMXI5SbL7ydGdHDFdgwZbDl9hDpSQrexTMELwSW3WiwiSXCTjTCUAj7VQRnGk6IFKdFuB8ehSfLHyvi3dT7zKQ2a7aXvodWv8M8u0RcpNgoSsyL+Kfij0weRp+TG2krBT29cVF+5XfJwRRrTnmFo1lBwMnUahZnoCPSG7oaMgVtx2a3E9ZGCjRRCEeFsNEEF36ZACEVb9iJnLNEznmyPys3SPZAMZFJYNzMIc7bnaYfsNQnuHGN+PU7yjv3Dh+/KvqrQ4xF+eLZ6ElMsq97gnAYn/YSGY7b9ggnIsKK5a740oxEcCLbK0lkRLZfb7BeYWUq4ERu8Jl+nkUxiwYaRVo52zrhN1VGHlVRSKN8tm5F+pP9BMEN8ejWd8Ms37C2GQbXSjpmkCDSE7rT+A23vXKJCmEHRTC3o0xEBHsRrUh1cea0IFDW57SnN9XPtd8w+gHDGaCna3eA+HfftiBOFbxqqwNinidaLWfwIYg0JYV6nQwghYUw7+Zo1MkKD65x6xGv1ahwKt2g9XA7MpaONohUQjT/q1lUX+Mn5olgK95iW4LYDZIdHXYSvc9O8QRAL2JrKH5tniMvBHUw7Gw3zNKgSyecgy4Hv+CmEDYTmnoD4gRsEY54hPVGU+uR6A3UihBOBxGcioied7tPDLyaFtzPiIpiQCWMRTJOaL/jvhHEfsbsWrbZFwlbXsw+C+nHliS4HZz8gyCSDV3J6YaIEDbqdLVC2IYI1osSCEWDnZgMRI9MFsHpEhGzgtmNXUsq39gTabvIRDKKaLFW1OpOvKHdjR8EsZPRYTf7CJfOh1GOaLJLEJlMCvf+aYRb+VvNIq5mEWG3osGikWCvRXC6CWCJdBXCTl83OunGfI0Tg0B551FPIGtEMU8Q+x4nBLHf+4pEo7Y+jNiHsmIIZ8WcqzDqYF1EyuPzb3QGkAwhzNunjhC2KoJNk++bJZJ3ugNOZGKCdCBdhbAeTlw/qSCKnXzKITrwkbMsmECOcbJLKHDpeyryQ8Uw37AZZJUg0gS6ipNJsiLCSgwGynkaDSYR7DypLITNJl3w4oeUn0Sx0083lPUZTYLByysb0oglC1Fi3zyOTyQ6nIL9hi3fcKb/QCEyitT7VhNqErFGGAyUsyp+tTc44WgwiWB3SGUhLKEVxB5PHhFXt9EMam7gxLUsUkeiYr8mOphytgmrgtitfsMn31VLP1TSaYZAggCJ4eThREfipBDWEcFWrRFJE8GA+U09Ezpvn9xYHcNPx+O2CHYi+qtTh11xqrJB6FknFJkFlILY8r79HIn0su+weg60n7lgtge9zB/VC3V+KPDq9MgqEQ477BmOkGeYOEoGqAMfkgwhrMQhfzBgQwgbdfR2ow0UDa7GT8LRS/wqoERIggA2Wq7r+Zf2obVNGFgmlNvr1Z1024RZdDgN+g3LvmGyShAZSOp/01MNNzpXESGszRChI4StRJC4QtiqCNa21aogpmhwNSSEUweXBDDvu2u2LAb+k6Ag1CnQgoHQ0ShxLHJUJPFEsSb9GuDzaXm1/uhU6zMcjMySVYLIVOhK9hI3BszxhLDefhwSwrr+YDvRYCkyY/XcUDS4mkwVwalIotesCwJYN0qMoyI2xqIIshpBHAwhqL1taL/fCnFmFpX0lUhORn/h4fdX+VlonwJyo/dS3ywSHfbAKhEOM4TDDlobwsy5uoiUJwPUgk/wSghLfwVzCCcyUI5rizATwWa5js3I9JzBEiSCU4dERLBNARz3XkcAm/0QlqLCMUQRRnbNwpC+iOX4VVNmQF0qoydG7YpUskcQGUaaKwafEHQo+iEihHk4aI2QsBwN1mufqKjLdBFM4jcev9+sE7lmBUSwkwJYa5dQlpWiwhFUIogQgiyEcDC72jYRjQgNtjKanplwAU1AxMoPEu5nQ+KYSHPSVDmkIUZiyAMhbOgPtivSle3SIxOnUCbha0463JiTLIKlckZ9gRQVVopgBIBIrLL6/2DgaH/AezKlE5kkIexPLP9IEfisnSLs9Ax0lE2CUJAm6iHNMcoc4eBgOb3BLkJCmESwfUj8ph92BnaazOZm9F5vIJze/0ohbCSGVeJIKYIDHOFkJR0Xj3T4gZNMtOdZMMUaYCCCnZi6miBSgBRXERmAFSFsIY+wqBBWVe+FELYaWUhVIUw3mPTFqhBOkgjm/eXtT0Ugvi4AassEED9uwUyQmaVcBFL3u26E02LT5DxbmilQzxphtA+anplIUeiqTSXMIsISNqwRuvlFtf8bCWESwWKQEE6MVI4gJiCErdoh4v43EcLa+qMshlAgqLvfWCAKKAbk64onuUJFGjbech4xTf+Syt/7ZGDhnDmSVYIgUhTqWfyMaHoywHQ0esJZIxIRwQLts9a4FL1sSQSnP0bXswUh7GQ0WLmNXr08IayH5CGOsSgQOJqTWD4m5aA63ndVVFAZzXhHWMaxrB56M965TCgcczS1GnMyTRuR8gSTteOpU6ciEAjg1ltvlZcxxjBx4kSUlJQgLy8PZ599Nr788kvVdkeOHMFNN92EBg0aID8/HwMHDsSvv/6qKrNnzx4MGzYMRUVFKCoqwrBhw7B3715VmV9++QUXXngh8vPz0aBBA9x8882orKxUldm8eTN69uyJvLw8HHPMMZg0aRIY8yg3oZUBc3r2CE5E2Mr0ylJapYSjwXr+SKu+YL26UgESws6QqpEpm0JY+53VRoOtCGG9/RkhiWKzfXH7lkS+q3YHDKcabhyLnrVBgLjPUNtHkwWCSFOSIobXrVuHWbNmoWPHjqrlDz30EB555BE8+eSTWLduHYqLi9G7d2/s379fLnPrrbdi8eLFWLhwIf7973/jwIEDGDBgAKLRo1/iK664Aps2bUJZWRnKysqwadMmDBs2TF4fjUZxwQUXoKKiAv/+97+xcOFCLFq0CLfffrtcpry8HL1790ZJSQnWrVuHJ554Av/4xz/wyCOPuHhmajCbalmJBSEctxsDu4Rrtgi7IjiVSaebN6GP3nWdgBCW/0fU0Bah94OXt41ZJhnDqLCBUHcMke8LfaeMMbhniGaLoNzQRCbhuco4cOAArrzySjzzzDP4+9//Li9njGHGjBm45557cPHFFwMAFixYgMaNG+PFF1/Eddddh3379mHOnDl47rnncN555wEAnn/+eTRr1gzvvfce+vbti6+//hplZWVYs2YNTj31VADAM888g9LSUnzzzTdo3bo1li9fjq+++gpbt25FSUkJAODhhx/GiBEjMHnyZBQWFuKFF17A4cOHMX/+fOTk5OCkk07Ct99+i0ceeQS33XYbAoGANydMdHCa1icMscExSn+YsBC2a4vIpAwRAN2wncbPUWFRIaxBRAjb3UZkpjntOiMhrCyvFFSSbUImEW+ple8MWSaOXndmvmuL50k4UwgPlwbRZYVjyHIytVoV2SSIo3geGR47diwuuOACWcxKbNmyBdu3b0efPn3kZTk5OejZsyc++eQTAMCGDRtQVVWlKlNSUoKTTjpJLrN69WoUFRXJQhgATjvtNBQVFanKnHTSSbIQBoC+ffviyJEj2LBhg1ymZ8+eyMnJUZX57bff8NNPP3GP7ciRIygvL1e9LGPHJ8wZMCeaR9iyEDaDF8kVjQanuhVCCQlhZ0lFIWxSVngSBIGBcqLbmDYvEEQoYP22YDVvOb8SG59xpn7PtH2q3uxzGmzldyZrBJEBeCqGFy5ciM8++wxTp06NW7d9+3YAQOPGjVXLGzduLK/bvn07srOzUbduXcMyjRo1iqu/UaNGqjLa/dStWxfZ2dmGZaT3UhktU6dOlX3KRUVFaNasGbecLqIdu1IweimEYxHjNlqNBivFb7oIYLNzRGQOJvYIJSJ+X9HorhGimWQkUSwJY3n8gGjdVgRUot+ZTPrOWbWZKbHrGyaIDMAzMbx161bccssteP7555Gbm6tbTms/YIyZWhK0ZXjlnSgjDZ7Ta8/dd9+Nffv2ya+tW7catluFWT5how5fK4xhPsBFd2INpfCNRsStEVaiwekifiUy6WacDLyOCiu/b2afq8s+Yd5yo2202zmNiCg2xcr5tVpvOmNHBBv03yKfIwljIlPwTAxv2LABO3fuRNeuXREOhxEOh7Fq1So8/vjjCIfDulHXnTt3yuuKi4tRWVmJPXv2GJbZsWNH3P537dqlKqPdz549e1BVVWVYZufOnQDio9cSOTk5KCwsVL1sYXXAnOJ/s4T9gE7+YOV+YxHxaLC2Tdp2aculgwh262ZOJB8nPk8LPmE7uCFQhCbbEUS3fV58X9L1OykihC2IZVs/aIyuaw/OebgmtZqTL4KQ8EwMn3vuudi8eTM2bdokv7p164Yrr7wSmzZtwnHHHYfi4mK8++678jaVlZVYtWoVTj/9dABA165dkZWVpSqzbds2fPHFF3KZ0tJS7Nu3D2vXrpXLfPrpp9i3b5+qzBdffIFt27bJZZYvX46cnBx07dpVLvPhhx+q0q0tX74cJSUlaNmypbMnx8gnrFxnMXOEWbYIlT1CTwibISKE000EE97hB6+wlc/colUoUXtEIvCeDvFevLJCaI/byz6Avqe6UDYJgojHs96poKAAJ510kmpZfn4+6tevLy+/9dZbMWXKFJxwwgk44YQTMGXKFNSqVQtXXHEFAKCoqAijR4/G7bffjvr166NevXr4y1/+gg4dOsgD8tq2bYt+/fphzJgxePrppwEA1157LQYMGIDWrVsDAPr06YN27dph2LBhmD59Ov744w/85S9/wZgxY+Ro7hVXXIH7778fI0aMwPjx4/Hdd99hypQp+Nvf/uZsJgkrPmEJgcwRoh2ZY0LY5mj6lIBurJmBWW5bCx5gvTLC0x67hHbiBSsTMYg+Vk/YRuEU6TKNs5MD2Gi6ZILg4qtvxR133IFDhw7hhhtuwJ49e3Dqqadi+fLlKCgokMs8+uijCIfDuOyyy3Do0CGce+65mD9/PkKhox3wCy+8gJtvvlnOOjFw4EA8+eST8vpQKISlS5fihhtuQI8ePZCXl4crrrgC//jHP+QyRUVFePfddzF27Fh069YNdevWxW233YbbbrvNvRNgJQrm1IA5O0JYNBqc6pAITi5eR4WtpI/S216JyVTLeuvc9PzaQddWJYI2zVqi59gOqZyCzapw5aW1MxDAwj+GzNLleXB+w1kM4SznJr1iDtZFpD4B5tmUaplHeXk5ioqKsO+PxSgszI8vYNUeoezQNPYIM6+wqRCW2kBCuBoSwsnHDTFsdlO3cv2b2QBcmG5Z6L3J9mbLeIJXZa+C2molLeNZsACI50p3Ez/2SXrnIdHoLe/61tjqtBO18NBaZQzvDwL3hfLyChQVXYh9+/ZZGk8j3UcHv/gcsmrVEt7OjKqDB7H4imGW20OkJ0mbjjnjsWqPMBDC3M04fj+u/89pIZzqkC84PVFmN5H+52U8sSuaHIoKu4GRuNUuE438Wkqz5gcy6Tudjv0yQbgMieFkIDrdMu/GLDDDnHAKNSeFsFP5gpORpYEyQ/gPp6LCInlZnRYPJkLYilC0IypVs8FJyxLw8SY0iI5wh2TlZ/djhN0jZs6ciY4dO8qZokpLS/H222/L6wOBAPc1ffp0ucysWbNw9tlno7CwEIFAAHv37o3bz549ezBs2DB5voJhw4ZxyxHOQmI42fAeIWo9boITaxjdOOMeW1qZWU5ECCcKT4y6KU5JAKc/NmeG8xIvcwRrMYsEc58uIQH/sLxhkgRVunzXtefP5fPplyh/slOrNW3aFNOmTcP69euxfv16nHPOORg0aBC+/PJLANWZrZSvuXPnIhAIYMiQIXIdBw8eRL9+/TB+/Hjd/VxxxRXYtGkTysrKUFZWhk2bNmHYsGH2ThohTOb+zEsWIhFYozI2pnPl+oQBsQFzXglho3VOdfbpcjMkzElE3Fod5GVwfSYSFRbePWcQVBChOGGtN1jKqqhN6QixXwbTGfmFncDMG4+j14OVjCLC++bgF1FtlwsvvFD1fvLkyZg5cybWrFmD9u3bo7i4WLX+9ddfR69evXDcccfJy2699VYAwMqVK7n7+Prrr1FWVoY1a9bg1FNPBQA888wzKC0txTfffCNnxCKcxwe9QgZhZo+QOmrBNGpalJ2bcpn81yhzhNmgDbcGynmRhJ9IPQRu5rrb6aF3vUrXiHKfPEEskkrQ535NO8LHKCqcksLYL4LYDinabj8L4fLyctX7nJwc5OTkGG4TjUbx6quvoqKiAqWlpXHrd+zYgaVLl2LBggWW2rJ69WoUFRXJQhgATjvtNBQVFeGTTz4hMewiqfnNSjViUTEhrEXQHqGH7oA5uynURNeJIipUrd68SABnHmYi1Oxa5gniBLGaBcJpeNFhQFwQCw+843iUCY+x+DTD8WiwAU7tJxSOIZzl3KxxsRqbRLNmzVTLJ0yYgIkTJ3K32bx5M0pLS3H48GHUrl0bixcvRrt27eLKLViwAAUFBbj44osttWn79u1o1KhR3PJGjRrFzYhLOAuJ4WQgcrPV3twFHz0JDZgDjNO6AdZSSNnBDcFKIji9kK47o++LSCRW5Ho1iwSL1J1gVDgRv7BVcSP1C6K2CdFBeSkTKU5mdJj6KV+xdetWVWo1o6hw69atsWnTJuzduxeLFi3C8OHDsWrVqjhBPHfuXFx55ZXIzc213B7epF6MMWcn+yLiIDHsNbwbu9FMSTZnmRMeMBdVRMQ4+9RdnghO3gzoxpL+JOr/tVI2FjGPDgu0J9lRYQm96LC8XkC8KvMK622j+yOch1++s4k8GXMDp/NqO/iUI52RskOIkJ2djVatWgEAunXrhnXr1uGxxx6TZ7sFgI8++gjffPMNXn75ZcttKS4uxo4dO+KW79q1C40bN7ZcHyEOZZPwEiMhzIOTY1hYAEvvzQbMaVNP+VUI87bzy02VSD3M8gyLeIIdjAq7iV0bQxChOCEsr+P4iNMON7LNZFif5WevsBMwxnDkyBHVsjlz5qBr167o1KmT5fpKS0uxb98+rF27Vl726aefYt++fTj99NMTbi+hj3978HQiGtH/hS5Fo/RurDqTaxjZI+JSJun5hLWD5ty+uVNEmPASvR9wote2ncF4sBcV5kVvnRQSZhFiXnn5f5PpmA0H06VDZNILS0U6nCeXsZMOzYiYxbrGjx+P/v37o1mzZti/fz8WLlyIlStXoqysTC5TXl6OV199FQ8//DC3ju3bt2P79u34/vvvAVR7kAsKCtC8eXPUq1cPbdu2Rb9+/TBmzBg52nzttddiwIABNHjOZSgynCyUeW5NskfIm1gd9GLkE1buS4sbHmEnoNzAhAhGkxHwrnmr17tBusFk2SFEEIniKqPBAF8Im0WFU8IiQRAW2bFjB4YNG4bWrVvj3HPPxaeffoqysjL07t1bLrNw4UIwxjB06FBuHU899RS6dOmCMWPGAADOOussdOnSBW+88YZc5oUXXkCHDh3Qp08f9OnTBx07dsRzzz3n7sERCDDGWLIbka5Ic6rv27EQhYWKOdWNPMKaOeQBvkdY+l84jZqoP84tIZzsm6A28uLjx9pEAphdr0afu9XoHKcup6LCemXtLDfbn4io1RPCvKiwatCuascpLoSdmF1TD9H+yagNvPq1Y0I0mYmMxp8oP1v5nqJ3DJyAjrbO8vIK1K1zEfbt2yfs0a3ervo+etUbc5CdX8t8A0EqKw7i+YGjLbeHSE9IEfgJwZzCPCEsoWuPMEKvg011IWx07Mp1JIxTG9HrVGRaZlFB7DMhbAWhCLGJNUJkOxWpLoTdJB0sEgJWkkSv3XCWw6nVHKyLSH1IBXiBnUf7mputsiMxFcFmadSsDg5KNazeXEgYpx5uXZ9m6dwERLDeslRBTwibRYXj+iAJN4WwyHXgByHuhzY4jdlETQSRQtCV7BcMosKWpl3WZo8QzSfslhD2+iaQaJSFhHE8ybgenNynnc9RcBtRIeyXqLAZVoUwFy8inXZS5nm1Py3pKIQtkso/DonMgO72fsIsrZPeZkbZIyTM8gmnA07fhHnnLJNw4/rw+ppz4bNzwstrVQh7gZ7ANRK+ptMyG/lYlbj9HXNCELtBqlskDKLDTs9ylxWsfjkFo/QBhIIMvcv7AME0ZmadiaXsEXqkg0B286aSadHiVL0GJDwUwEbrdcWxDSFsZ/9WEJk0Q2TyDUN7hIiH383vl11BTFHheFJdxBOEhhS/66UBnFG+gLU0anE3Jb2osGpjzkef6iLIC9JdGKfiNeDg52BVVFqOErsghBPBbPyBiD2Cmz3CihDWljP7PBO5Rv0UIXZSUIpG4N1A+sySOcU1QSQIXbnJwI1Rt3pRYZ5482rmLL/cdNwi3YRxqtzIkih+zbaxKoLt1me1DA9RIWy0LbeMXSEsSqKiS1QQu5lKzWtsDHaLsailTCKJ7Isgkg1dsclEJyosITL1su6Uy3r70lvmZyGkbJufbjBKUl0Y+/XzT4Llwc42hoLWpj/YTSHMQ3fwnFV7hMhyI7wQU0aC2K/fBSDxHwIG20vXqRtTbNsS1RqygkA2eYYJl/Dxtz5NcTAqbDrlsqg9wmm8SKXkV1EMpN7AOz/d/H0ifkW2M13vYjTYSjkeouLESBiZRoX1hLCyjN61ZyaInXgk76frPhGSaZFQ7i9V+juC4EBXr5cYTbss2JGY+oN5HaPIFLROYVWk2o2o+sn7p0cqiOJkCQKXzkmikVJHorU2RbBo/VbKiWJmj7CcSo23jPd9NZqN0wtB7BaJ9E1m3w3lcbvQB8YQtR8d1nwmTmeUIAi38GlPQvDQvWHpdYjaGbXcnGnOTqfMG+hnZTpopSC2MnuY16SCKHYSj47TiZusk+LTSASb1WHlWJzOHGFnWyGvsOi6RPCzIDYjkT7LD4EAiz9kErVKOJ1aLUY2CUJBivYiKYhAVNjyTU45aM6uV9gJnBDCdtEKYifrdhq/PUp0SkSkkPi1UpcTAliknmRFgyV08wuLRAdFvmsi/YOeqBX5zvDqT1WB7AQW+j+K3BJENRncY3iIxewNvM7J8DGmSOfnZlTYKqKdtWjbtJYJP0eJ/YITn7vLIthr8StaVkQAC9WTZBHMw8giIRzZSyTaaVcQ8+pS4ldxrO2r3PxOWTiPlqwS0uemTbFW854EN5EK+LSHyABsRoVVOT21Hb5IBCbZGSSMbpRGHTVvndYCohXEIvvMRHwuhJ26cfpRAIuWsVLOayxZJKw+NXJSEKcK9OOdIJJOmvYuPsXmoDlDEokKO4GVm52oEBaNpGsFr96gEjvn2cmbU7rexB0mEfHnRsYIJwWwlbJ+EMFupNdKmEQEsZG/1Q841Uf41CLhRGq17IDDqdUCztVFpD4+7RnSEAemXHY0KuwEHgphM+uIyi/sRF5is0i01W3TiSRPepHIdiLbJjIQLpFtvBAmTogSGbeimUaD4lJlMGoqZLvREERI+AdgHCZWCYLwO3SVegFP7Ol0ENoboqE/WJtXmEeyvcJmN0y9jlLAPqJcJ58nvQwaTtyY0qFTT/Rzd+gcuCUoE9k+kZRoiWzjh0gwYCOlGg8vpwAG7HmJ/Rod9pIkiFRHf4gRhMNQr+AlnE5YeSM0EsIJdyTJ8Apb8QcbeKhFIudSmWAgxM8qkQqz2GUA6S6CvUyR5gSuCpREvmeiotWOKM4kQZxMe4jD0eFwCMhy8sEGaXNCQYb0CD7AYkYJQ5Q3GTtRYScwu9ElYIuQRIKZIJZu5EohzBXF2vbonZd0F8lJEgB+tEIAiYvgZBxXSpGoVcCKaLWakcELQey1VUI0Km9w7KZWCZFjImsEkYLQFesFQY63FcY3RW5UmGeR0K1AR3x7McGGVSEcClefCxY1FcBSRx2EevCHVgirRLF2v3rtEzk3qSiYk5hP2EvBKGxL8GCGOLe29z1+yIzgJzGWgt5h24h4vQnCp/ikx8gQDISw8E3S7x2riBDmWCK00WDTQUyK9UphbCqKle0QbbcSu8LS688tyY+BvcoMYdnGoHNdOTU7nBvby/WYfCc8zwAhIny9jA4rEZ2sw4vviR8EsYllQZtZwrFrSXmOSRATPobEsA8xjQpL6HWwbkaFjTCbBc+CCLaSd5kXLdYTxdpt49ooitWOPdU9ij6bZc4pEWxUVzJSvanqsDiy39JECalEIoIYML52M0kQC+LINeRCdN7p6ZijNB0zoSDF79AphA17hC7J/IWt16FbEMJKARxj0TgBbEkIKwWviShWbie6H93Pw0pHn2EREbetEX4Two7OlGc3tZVLxFg07jvAWxY3LbrRhDh+w0tBLO3PznZ2tvUDmTRgkUhZ6Ar1AhMh7KhFIllRYR46QlgVEYbmvQWBqhW88nIDX7HZPng3ftH26GIknFNBKFsQ/n4Swm6JYDd8v34TwY6TSIrDRPsuP1kmAPEfB7z2uPDDgqZLJggSw75CK6oMLRJ+gtc+EyGsFMGqQXMGokB6fKf1AUtCOG5AnY6vWLd+CzcF5WclOmkKF78LZQ/sEakihFNBBHtuldDzDestT1Rwuukh9hK9HwcUQdUlO8iQHWSO1RdzsC4i9aFvnocYRYWF830aTbThdlSYt0+jlEYcIRxhlbo2CWmZFl7EV1lWRMTGwHm0qy3D1PXrIbI/UbFsWygrcVo02xQNbkaXnMgUYVSPmwPodOt1IRrsphDm2iNUO9dELd3ILJFIX2YmiJPxON/O/hyMDnsWFU5FeweRUZAY9gBt9FOJ3s0lLips1pm43YknMK2xVghro8Nxu9KJ/MrrNdEvnic4kR8esujWK2cQUDCzYojaMCxNhmBVNLsQIXPTHkFC2BtMxa6dsn5ItabEj4KYIIikQ9/6dMSrx4Fm+XprhHAkVikLX+X/QPwPBV5ElZcizVBMmDz9shyN125vFGXW2beRSObV5YhI1uLSdeG2T1iorhQRwn4UwTws2S2UgpcXteTNCJlM0kEQJ2tQYkJp8hK79imbBOEmPv/GE0IYddzJ6tRNhDBPDPN8v1riosS8CDBHcIgITu3N35ZoDsQv0vMrW40iWy3rNomIRSd9wm4IzEwWwlqsRIwB6As1rQBNpjhOB0GsxW9ReIJIIVLs254emIksXYtEsjo6M6+wkmBYPViOI4QjscqjVSsHzyluutq/quZothE6BAERqRpwx4tQa6wZwgLBhkDWa7PePr0UyYkKRS8jwkb7SySjhBW8EsFeDJxTZW1RfgfspFNLZPIbL4hpjocgiLSFvuHpRjLSqWkzR0AxOE4hhCOxo55hEcyEnx1RrK2f5zfW1hc3gE+b2s2iCNFmulDW4aRA1iufTCxlhHCg7V4JXu4+UjQS7Bh20qmJTJvuFFYyTBgdQ7KEsstWCcd/SAfTcEIYIm0gMewhIjdg4Q7Ir5EKTlRYK4SjLHa0eOCocSsYCKkiwkaDzZSiWqqvKsYJwRqQFaxSNz0Q5ItgkQF9ynUOiGNAXyCLDMJLhm3CiGTYDuzs06l2ei2ERa45t54S6EaH5R3bzDHsJ1uFETGFXzqTcfn4s4JANnmGCZfI8G+vN1iJhsqIZpFQkow8msqosMYnrBTAeucgymIqQQwA4WB2dZVQC04AKptFlMVwMBIEEESkRghXMb4gzgrEj2yr0uSZzIp7Xy2WpfbpPiLWEDfAzmI6S71BgqLRY70yvHJuk6zBdcnIEJEsfDUFs5FvVSuWEhHHfhTGfvQZJ2ugHTfN5hHv20EQgtBvI8IYCx1pXESYqdOpRVlMFRVWEg5my68gQggHstWR4pobfiRWiSiL4XCUobwyhP1V1a9y6VUZwqFIMO5VrihzKBrEoWgQ+xX/R2IBVfmqWAAHa/4ejjIcjjJEWQxVsSq1/YPzv/YVYTV+aajPjXYQIe+9KhqurEMjlM1+dOiVs/IS+uwtbGNUl2kZn1sQggjFvdzah1BZgR9BVtKqGSL6ozwYVr+sEAobv/TK6713ikSFp9lxaNGeN71t/CbSU5CZM2eiY8eOKCwsRGFhIUpLS/H222+rynz99dcYOHAgioqKUFBQgNNOOw2//PJLXF2MMfTv3x+BQABLlixRrWvZsiUCgYDqddddd7l5aAQoMuwr/PZo2xCtNzkUBrRiSCH8lFYGZQQ2FAiqRHAwEJL/56VgOxxlqIpVC1hJuEr1ShziNFe5z0MAwjXvpeURxfpwkKEqWl1fJMaOLqtpexWObquMbItGjlUD6kyixoa+Zp3IsbR/Xl2J4InP1kWfsFP12yUuW4lNQe+UsLZyPRg+CeGts5NOTSnYnBCVVpb7AT0RD/gzEu4xTqdWi1isq2nTppg2bRpatWoFAFiwYAEGDRqEjRs3on379vjhhx9wxhlnYPTo0bj//vtRVFSEr7/+Grm5uXF1zZgxA4GAvq1v0qRJGDNmjPy+du3a1hpLWMbHPUMGw+v4zDpDvdnfPEQSwPL/mgihJFiVglgSv1IkWBkRjrEoKlm1tI2wSkRilaiKBbC/KoSDighuJBYw9AtnBZkskPVEME8gZwUZIgjI4jgrwGQ7hlYcS9vwbB+GKJqtzTChJ4TtiGPAP9YJHpYG1tkUkSLRbS/h2YBEylrejwefr65YtivmErVUJBM7dgkzkZ5I2rRkR4WTvX+HuPDCC1XvJ0+ejJkzZ2LNmjVo37497rnnHpx//vl46KGH5DLHHXdcXD2ff/45HnnkEaxbtw5NmjTh7qugoADFxcXOHgBhCNkkkoT2xsG9kfj1BqBNoaQcNGcQFdaSFcyShbDqLwsiGGOyOI6wShyKVGDPkQD+OBLG74fD+ONwGL8fDmHbwSB+OxjArsNQvfZWHn3tqwzIr/LKGttEjZ3ioOJ1KHLULqG0ScjLo0FUsQCqWLUA55WtigVkO4jSUiH00tgguFYJwWWAsa1CVc4Bm4Qd3Kg7Vf3APFuFExYL0/SNNrF8nq08+ueRiKUiGXjZd4taJZyCotSIRqNYuHAhKioqUFpailgshqVLl+LEE09E37590ahRI5x66qlxFoiDBw9i6NChePLJJw3F7oMPPoj69eujc+fOmDx5MiorK3XLEs6QAr0KYYrXj/5M9scTOcrIbVaQIRQIIjuUpxLCwUAIwRiTIytSloVIrBLllSH8fiSM8soQyiuDqIig5hVAlUZrV486Zqr3QPVIZPX/AQABeVkkyORBdcrIsSoKXPNXihgDUEWNlWUBAEH+DwEz4jJMMM56C1FjQD/6KCq2RAWQlclCrOJWVDgdSUTw2hHghtYgJU5kieAJYi8EqLKtyeh3ExWimjZn4vdCS3l5uep9Tk4OcnJyuGU3b96M0tJSHD58GLVr18bixYvRrl07bN++HQcOHMC0adPw97//HQ8++CDKyspw8cUXY8WKFejZsycAYNy4cTj99NMxaNAg3fbccsstOPnkk1G3bl2sXbsWd999N7Zs2YLZs2c7d9BEHCSGk4BhVNhPv7rNbi41N6S4aDD0hbC8aaA64pUdzKv2CMcYEK2qPv6qw0BubVXdVSxQLYgPB7GnsloE7z1SLYiVSKl3soKBasEbkt5XZ4+QhG9VnDCW7Bs1YlcjbHnL1KJXOmf8U6W0UlhFK4x5dgrpXBktUy5XYiQw7Yoip0lkcg1ReD8mUhUjUcpb55SVQlgQK3EqhZpexNgpkaxtVzrOYuc0Dh5/tkup1Zo1a6ZaPmHCBEycOJG7TevWrbFp0ybs3bsXixYtwvDhw7Fq1SrUqVMHADBo0CCMGzcOANC5c2d88skneOqpp9CzZ0+88cYb+OCDD7Bx40bDdknbA0DHjh1Rt25dXHLJJXK0mHCHDP+mpiledsCKgXM8qi0S8VFhyRccDIQQjFRVC+BoBIhFwKJVCGTlIhbOQqSqElWxKhyKZONQJIidh4G9RwLYUwkcOhLEgf3Zct3hcAzhrJj8V5mXsvr/ALJCamGcHQSqYtD8H1CI42oRXFUjiJXLuMJYEtuaaLEKTrRYKcT0/pff2xTG2uW89VoSjSY7QaKZI9JF4IpgJkSd9A/rCV9bgliJ0/mFnRDJem3wWhAb5XL2i63Oz4MUOWzduhWFhYXye72oMABkZ2fLA+i6deuGdevW4bHHHsMTTzyBcDiMdu3aqcq3bdsW//73vwEAH3zwAX744QdZOEsMGTIEZ555JlauXMnd52mnnQYA+P7770kMu0hqXbVpgPBNQrRj81HHI+ozlTNGSKnTopVA1WGwaJXquCOxSlTGDtVEhMP430HgfxUB/L4/jMOHwjh8KIRDh44efzgcQ1aNGM7Ni8YJ46ogkBWrEb2hgEoUV8aORosrY0pLRUDRHo6w1WAlWlxdRtxGoRXJ1VWrZ8GzEx22M7DOaJIQJ7AqgDNJ8OphVwi7PhlHorg1+YZXg/SSESG2ku85w5FSpdmBMYYjR44gOzsbp5xyCr755hvV+m+//RYtWrQAANx111245pprVOs7dOiARx99NG5wnhIpkqw32I5wBvpWJBnfWiQsYEWIyFFhKZdwjFUL4aqjCdECWXlAVi4irAJHooex41Auth0M4n8VAfxvZy72l2fViOEwKg8F5b49nFUtfHPzIjh0KIa8vAjCWQy5eRFEwjFUGYhiyWMsCWEJKWpsVRSrsCmKE4kWA/oiWDQ67FQU2W2cTKWWalYJUcHppRCW0Hs6kTB6AQCnIsg8UZyoX9dJQeyEdzgFCQecTa1WZW3CUowfPx79+/dHs2bNsH//fixcuBArV65EWVkZAOCvf/0r/vSnP+Gss85Cr169UFZWhjfffFOO+BYXF3MHzTVv3hzHHnssAGD16tVYs2YNevXqhaKiIqxbtw7jxo3DwIED0bx584SOlzCGxHAq46eoMMyzAlRHTAMqi4RkjZBvFsFwtRAOxHA4cgC/12SP2Hk4gO37wti1Iw8HyrMROBRDOBJD4aFKRMJBRLOCiISDiOSFEakKIjev+maRFakWmeFwDLmIVKtgLoEaIXxU5B4Vwu6IYslmoT1Hetk3uFWaCOPq3ZpHiN0SyG7jhnD1uyC2er4tl+dE+N3IPuH4dWPUH1rNd+yGIHYSXlv8ZJXg4aP7lR127NiBYcOGYdu2bSgqKkLHjh1RVlaG3r17AwAGDx6Mp556ClOnTsXNN9+M1q1bY9GiRTjjjDOE95GTk4OXX34Z999/P44cOYIWLVpgzJgxuOOOO9w6LKKG1L46UxxLNwOvO2KRwXM1KdVUm2lEcSgQBIIxVMUCcV5hVV3hXARCWdXvc2qjMlaBQ5EK/HE4tzpd2iFg7x85KP8jGzmHIghVxZBzOIKcQxFEw0FEsoI4khtGNBLEkbwwjl7a1ceRmwccPhRGOBID8oyOLQCx+ZOPeoctY1EUhwJB0wix4SA6TtRYW1ZZXm89r4xIPW7hZt5gs2MwqtsPeZslLA+k89IL7uUPK6vRZBFBbFXceW2X0N4zdNrr5x9+fmLOnDmmZUaNGoVRo0YJ18mY+l5z8sknY82aNZbbRiQOiWEPMezolZ2WyK/7FPiVrRRrUlRYSYxFgaw8oOowArGs6htFbm05Kix5hXcervYJ7y+vFsI5hyIIRWKyKA5VxVB9KUdwBGGEwrHqKHFWEJGaaYbC4RiAIMJZMUQkn4SGrBBq0rRVC2LJP1zdfvX/R8tp6hAYZCcLaBdEsfRePr/aZTrCWFteuY1eGaMZyfSwK3as3rDdvsH7SfDysCqC/YLnP6yMJgUxEsROYzYQj0ciAZIUuH8QhJfQNyKVSJEOTCvOQoGgLOgkv7BEjEURzKqZrrImg0Rl9AAqo4fw+5Gs6okzjgAHanzC+fsPI1wVQyhSLYJzDlUhmhWsmYM5jGg4hmgkhiORICJV1dYJADWiOCa/r96fNUHMQ5t1QhSVWGY12yUoivXeA+bCGLAuju0IFy+iUJkc6Uokm4ReVNhvNhhX2qMnip22HlC6Nds4PR2zk3URqQ99Kz0iZXILO4QkyqS/kkWCXzgM5FRHhCOxQzgcPVA925wyKrw/G9Fy1ESGq2qiwUA4EquxPgA4BESygtXRYkV0GACqZFGssUAICGKJbDkirP6/mqPiVS8azBO5qm10RHGWYjsjUQxA973Zsurdei+OnSYThXCig+gAb+0RieJEPmldUtGLq0TbVj/5nAnCx5AY9hup0unqEET8AC7Ver1H68FAdSq16CFEYpXVUx/HqmeXi1RVR3nDNdFgpRAOVcUQrRHAkXAI4aoYjtQEmmOR6m2rLRJiyFaIkPQ+EJdpQiuIs1R/zaPDRtYJSRRLOYqViIhiwGJ02MKMdUbiWHSwnRYnJ3vINJwQwYCxEPazpcIuplafZAliN60SnHo9/c6EwgCOeLc/grAIiWEPMIwKpxF6j+yl41U+no+xqBxMjQUDqIwdqhbCrHqSjYORHFTFgCpNfx3NCuIIshCOHF0hZZOIZh2NBAM14/I0kd9IVQBhzlWv9ANL8LJJKFOvKcWxVhCbeYb1rBBa64R2mmepnJ4oBhKMDhsIhUT9xjzsTPGcicIXcD6LhFk02MsJPJKF9rsioyeIVRunSOBCQGC78p1y2A5SbZOwN4unXn0EIUFiONmk2SMspSdYaZPgEUMUkVglgOoJNiKsOjJ8MBJEJBaQp1qWBsFFwkFEw+oeLFrTox3Jy5LXScJYtK9Til55WTQ+Omwkju0IYsB6lNiOKAYSF8Zx6wyEMW9b7fZWyTQBnMi5SlQEJ7r/VIQ7SYhZ1JUn9hIVyHaiw1YgvzJBcKFvBuEIPHuEXmRYIhKrlJdFWCUisUocjjLsrwqjvDKEqhhkQQzURIXzwsg5FJHfS5YJKb2aUixro8LyfiNBeV2kKhhXThn9PSp6+XYJu4IYQEJR4uq2HZ3tjieKAf1osdky7XKjdWZ2Ct72PLwUYK5NCGGCm/sSqdspIZyOYllXEAPiQQujiTtESVQQJ8PjTCKbSHHoCvYYw4FzqfLYTQdZ/CIEBIwjw9p1yjKSsJOsC9XTK0dwOC9cnQ0iL4xQJIYwRwhHwkF1xgioRXE4iwl7iJXR4aNt4wtgK4IY4Kdgk47dbpRYee6k93ajxUbLTdfZnKrZrdy9ovmInRZ4XglGL0WwlXLJxK5fXXcaaa9FsdsR4hpS6YlLOMisTXIkUB9BSJAYJhLCKLWXNjIsLZNQbhdjUVTFqlAVOypks2tS6eTmRZCXF8LhvAjKC49OunEkt3oQHQDVLHTRrCCy86qnZpaEb5bifyV60WMn0BPE1evEbBOAcZRYuY1UVqpf+d4oWgy4J4zlMjqDKkWzGHiVki1Roee3KLPTlgi/C2Er14nejyDD64AnUEWsFH5KqZYiKToJwkvoW+EhhjeSVIwK10QvuGm9pB/d0iA5pV1CO/hKMWudUuBlBQPIzwL2ZsWQmxeVo8NV4TCORFCdSUIhhoFq64Q0cC4cVgtiPcwGUmg9xaLRYXUd5oJYOv6wZhl325oosXIbqWz1MfHfA/HRYsCaZUJUGOuVUZVPUCQ7jV1BnO4i2E55L0nkxxLvM7f0tEApLo1mtLOKR9FhR0m19hJEDXTlJos0GzgHQLZHSEiWiRj0BYZWDEmiLivIkB0E8sMM+eEAInkRFBRWzygXqTr6t6pKfQlnZ8XihHCW/J4JC2QeSt+wGVq7hBK3BLHy/OmJYuUy0Wix6HLtOr0yRmXlbWxaLZzAiQixG5AIjsepJwZ6n7nlLClO5/VNBUFsJvT93n6CAIlhwkVUHmILZMmCuPpVJwcAYohEIigoCCASCeLQobBqUg0JSeTqCWFVWYVFIpsTHZb8wlZS8CgH32nhCV6z9XqCGECcbULaTlonbVN9DEy1H+0y0WixcrnZOt56o7Km5T2MIvtFEAv7eEkEO1Kn2TELXd9uCGKpXr11Ijhl0xA5PhcsIdVPC8kzTLgDiWGPSDuLhMYDJx8fgyo6LBc3SbOmROr0soJAfhioijFURQOozK8+T4cPhREOx2RRrNpWIXh5EWGpjPS/UuhK/+uJWdGosBZedBgwFrxW1gPqKLG0DnBWFAPW/cJWo8J2UrK5JZKtCGI3xLNTQjidPMGAu/5xq5+jYZ5iwL0ocYL1OnIOU2lmPoIwgcRwMkgni0Q0gmAoHO8X1mST4KVX09ooQoFoTeSTIS8cQ144hoORIPLDRzNLVMUiCIdjOHwojEiEyaJYiVIQ84SwhJn4tQLfJ6zvHY7f3hlBDEBIFAPWLRSAc37hRMoKC9QkWi3sYkm4ZpgI9go7afccy0Jhht/uHcoIMNkhiBSGrt50JEkjl3mZJXiIRCWyaqLDtWoOozJWrbDrxICKYAzhrMpqQRwOIhLhR2yVlgnte60QjnvvsDZQT9ihI2YTEMQALIliqQ5APFoM6AtjQDwynKhAtiuOgaMC2UoWCz+lSJPLOjCFcioKYK9TgVlJ92c46E5PKPpA3Lp6Th0UyNI9wcn6CEKCxLAHpJ1FgoM2pZqUTUKK+upN0yxFh4OB6ldWsApVQQZEgbxwrEacBWsiw0dTiFXFgKz8CA4dqZmdLqIf3tWKYjMhrMSLKTt5/mE99AQxrx6nRTGgL4wB+2JWrxyvrFPi2GwGPW39QnUmIJy9FMKpKIL9iNGgO+FzrBWLPhDHCeOXFHIEYQG6ar0mHTo7CSkCrfCy8YSuXjYJrY1CaZXIC9WkTIsFEIkFkB+WRHB1hLgqClRr2+pyVVkxRKriJ9vQzjAnIoR5UWGlX9gJgWzXLmFURltOrtOiKAaMLRQSSmEMxItjwHmBbOXJg1U7hZHI9EIQi5CIECYR7DyOCGIlTtgqBAMsfoqyE0SyITGcTESjwrxf2j6MKMcJYeWguhpk4aHITawVxFJ0OMyYKjoMBGrsBgwVkQBQBSBcHSUGgKwcTro0hSVCQiuEVcUV9y8rolekrN5AOsCaXYJXproNfNuEvH8DUawtbxQt1i6XEBHHgHgk18rgPLvCWVUexplPki2I7QphN/Mmeylw/CqmRLKu8NYb4nRGCrfh2SHIQ0ykEHS1+p1kPXKyOlJYMQGHNnOE6v+aG7oyWmw0kC4SrBbEAFAVCyE/LEWEqyPEWTHIUeIqjhbWGxynFKVODKBzExFBzHtvRRTrldcTwMrl2nUSWnEM2I8eiwpfu8JaLudTQeyFEKbIsT4iTxvMPnPLmVLsRIkdDpJYviZ07ldO/JCh6ZgJNyExnKqYiVWvBtEp98MRxED8TULPPiHd8IOBEHJDUQCx6pRhQaUoDgIR1Fy5DFUxoDJ4VBRXcgSxHloRrBcV1rNIJCqijSwOejYKszp4EV3d6C9TCF0TC4Wybm392nV6ZQB70WO7eY7t2ijMbBPJjhArcUIIJ9JG0XSJqQjvuER+dDmSms0OLj0tpB9JRCZAYthLUumxV4LEDagD4iLFSkEsT84ROFo+K1gle4c1tUOyAVdEADlKHIS8vMrC/VnrEdYTwsnEaMIOnnDWGwDnhIVCWb+Env/ZrIxI9DhRYWxXuBhFib0UxHpt0KvX60F0XgliL4W32X6MPlc7n7lpJgo/3zvIIkGkAXTFJgsfen5tw4kOA3wRLL3XHWDHgHAwG5FYZZxdAsoZ5GryDwM1XtwYq7FJSCLwqG2CJ4x5g+TivcVMd71qwJ2FCLHWN2wlOmwmiKvb4rwoVpbnbaPcj4RdcQyIZ6wQFb9GQkMkSmwkiI22VZbzU3TNFT9zGkWIRY/DTBAbYVlImwli0fuJXZGagBh36rqg1GqEm5AYTmX8YpXQ7ks5UxL0RbGMdtY6BnkwnWSXqKkJVUGGWpIorhHEVTEAkWqBelQUAzxhrEVPyBoJYSO01gmjQXNHy+hbIozWiaZJM1puZqHQimLtNtrttPuTcCJyrCeMnRLFdgSx2baiZZwSzMnMKJEOgjgZkWerTzTiK/NJYIVSqhEpDF29fiaVOxcpkmAgilXLmSb3ayAkR4iV2SVq1cxKpxTEAFSz1B3lqLjKDgKVHF+rEj1LhF42CruYCWQjG4SRJ9iKKOat49aj4yvmbSdhJo6NhL9RGd5U0YCx+LUifA3FsgeC2ApuZojIVJIl5IWvXw/tEtxrxUb0OdV/HBGZQwqrLcJ38CLROqJYO8BOWi5TEy1WZpcAYjiEYJwgzooFcDCiFFJ6kWBrj8V4gjVu0J3NlGpW7BL8OuMjxlayQSjXWbVQyPXZFMeJRo3NZsTTDtbULpOWW31U7cTAOjctE06nV7PbBjcFUDpEn/XQu359/SOGvMFEmkBXcrrj9dTMevtTRjRqMk4Ams7e1C7BF8TVf2sEoiLFmlIUV8aJT37zjcRtIhFhO4JYXdaBQXIO+Yrl7Vh8pN3MVpGopUJv4g+tKBYRv27YJhIRxK7lJ/ZYTKWzYLWKHe+w3hgLAMmPDieRsMOeYUqtRighMZzqWM0H7EXd0jZ6IlxnxjoAcYI4iKN2CTNBXI25T1grjEVwYqpmEUGsxOogOe06p0Uxry4tZrYKkbr02mG0LspiQlFiq7YJNwfWEf7BSfFupS4z77BjgjjooHVBcN/0g4hIJTybbmDmzJno2LEjCgsLUVhYiNLSUrz99tvyesYYJk6ciJKSEuTl5eHss8/Gl19+qarjyJEjuOmmm9CgQQPk5+dj4MCB+PXXX1Vl9uzZg2HDhqGoqAhFRUUYNmwY9u7dqyrzyy+/4MILL0R+fj4aNGiAm2++GZWVlaoymzdvRs+ePZGXl4djjjkGkyZNAmP0S9ISsYi+mFZ0qFInL0WBgwjF/R8OZiMYCMkjivNCMYRrBtNJf/NqXrXCrDrNWrBaxGYHqz3FyqmXrb602J2SuYozOYjyvTZKqrUcSGWkl946bR1G9YguV9alfOlRxQLyy6wu7vYWjzPKYnGp2rQ3ZL0btNXlgNrjbnlbG/tLJdweqOdHYiya0Ocnba+sQ/leVbeRPSEaOfpKEOFzLfD0MV2ubSI98UwMN23aFNOmTcP69euxfv16nHPOORg0aJAseB966CE88sgjePLJJ7Fu3ToUFxejd+/e2L9/v1zHrbfeisWLF2PhwoX497//jQMHDmDAgAGIRo9+ya644gps2rQJZWVlKCsrw6ZNmzBs2DB5fTQaxQUXXICKigr8+9//xsKFC7Fo0SLcfvvtcpny8nL07t0bJSUlWLduHZ544gn84x//wCOPPOLBmXKBZI82lkSxth2KDlvZ6UoiWPm/JI6zglmyIM4KMJUglpYf/R+oVSOCJWGcpXlZxWw70Uk/9KLW1evMBbGyrBOi2ErdWkTEsZEo1tZh1BZte/REsRInBLHuOhcEcbrgV9GaCvBEsfKvk/vREve5KUV1EvMdh2v6e8deOmMeiMwkwJIY7qxXrx6mT5+OUaNGoaSkBLfeeivuvPNOANVR4MaNG+PBBx/Eddddh3379qFhw4Z47rnn8Kc//QkA8Ntvv6FZs2ZYtmwZ+vbti6+//hrt2rXDmjVrcOqppwIA1qxZg9LSUvz3v/9F69at8fbbb2PAgAHYunUrSkpKAAALFy7EiBEjsHPnThQWFmLmzJm4++67sWPHDuTk5AAApk2bhieeeAK//vorAgFzgQBUi+qioiLs2/cmCgvz1R2JiEAV9fo6WZeduu2gbU9NpEMZHYkhqnofYZXy/1WxKlTFAjgUCaKKVYso+b1CIEUU/2ujslZmqxPFqq9YKay1IptnEzCzKfC2sVKPmSfPimfPtK0CNyOjOrRt0b7XZp3Q3uTtTFqhu41Bpgmr++Iug3nbE5mEw228EHFe18cbqGm4D5MfTnK9Bp+18ikagKP3lJiOYJUiyFJ/GwrrR5s5+wgGQup9aMUwp34Jbd1795Wjft0h2LdvHwoLC+P2q4d0H/14yxOoXZgnvJ0ZB8oPocexN1luD5GeeBYZVhKNRrFw4UJUVFSgtLQUW7Zswfbt29GnTx+5TE5ODnr27IlPPvkEALBhwwZUVVWpypSUlOCkk06Sy6xevRpFRUWyEAaA0047DUVFRaoyJ510kiyEAaBv3744cuQINmzYIJfp2bOnLISlMr/99ht++ukn3eM6cuQIysvLVS9PSMUUbNpIsSJCzLVLaF6hQLDaLhGOyRFi6X21VSKmiRKzuKiwmRXCCk7UEW+fiP/RZWpNEIz8mkVgjeo3si/w2mo3WqysQ68tRu+djhAbbmMzQsxbno4RYz8IcrdwUghLZaWXVL9WvOru063IbYJBkXS8pon0wlMxvHnzZtSuXRs5OTm4/vrrsXjxYrRr1w7bt28HADRu3FhVvnHjxvK67du3Izs7G3Xr1jUs06hRo7j9NmrUSFVGu5+6desiOzvbsIz0XirDY+rUqbJXuaioCM2aNTM+IV6SbKuEHkpRrPER6/mHJQ+xUhBLHuJ4q0T1+rCOIFbaHkS8wkqcEtJ2cEoQiwpNo32JiGMRUWzHRqHdr/Z9IoLYsp0iActEJiBHGh2qK5no5UznYUUI87ZViuK4fWq9ww6lOkv0/LpxrWcFmOMvgpDw9DbeunVrbNq0CWvWrMGf//xnDB8+HF999ZW8Xms/YIyZWhK0ZXjlnSgjuUmM2nP33Xdj37598mvr1q2GbVfh17nnvY46RyO6A+rCwWxdQawcVMcTxNL7vJqIMaAWwno+YiuD6lIVu1FiO9skOuhOqoO3Xz20gliL3YFu3KiuQryIYkc42M1Y4AecEsVOCWKr58fKfkV+IBm9tPUoBbGq3SL9tEYoC6V984lfmCDcxtNbenZ2Nlq1aoVu3bph6tSp6NSpEx577DEUFxcDiI+67ty5U47IFhcXo7KyEnv27DEss2PHjrj97tq1S1VGu589e/agqqrKsMzOnTsBxEevleTk5MjZMqSX44TC/F//frNKKEc0815aNJYJI/+jmSDOCx21SuRpBtfxRLJWCCcywM4K8R7h+DJWxWh1Pc5GPNwSxaZ1GAhjvSgx739ALYitWhOcjBKLCq+4CLaAwE61wXpORoq9wikhLJp5QmWRACcybBE/XgcE4QeSGt9ijOHIkSM49thjUVxcjHfffVdeV1lZiVWrVuH0008HAHTt2hVZWVmqMtu2bcMXX3whlyktLcW+ffuwdu1aucynn36Kffv2qcp88cUX2LZtm1xm+fLlyMnJQdeuXeUyH374oSrd2vLly1FSUoKWLVs6fyK8wiurhEgEgSeKNe0z9A8bCOKwItOEngCWRLJyORAvgvVsFSKC2cp2evXoCVurA+DMBLKQOBX0CvO20dunWaRYrsdAFGv3x/sfSEwQG613QhA7FR1ONUEMJBbh1RtT4IbQ9kq484Sy6WfHsZrZgXuMfrXYeYxZetgRI0YgEAioXqeddpqqju3bt2PYsGEoLi5Gfn4+Tj75ZLz22muqMiLpYQnn8SycOH78ePTv3x/NmjXD/v37sXDhQqxcuRJlZWUIBAK49dZbMWXKFJxwwgk44YQTMGXKFNSqVQtXXHEFAKCoqAijR4/G7bffjvr166NevXr4y1/+gg4dOuC8884DALRt2xb9+vXDmDFj8PTTTwMArr32WgwYMACtW7cGAPTp0wft2rXDsGHDMH36dPzxxx/4y1/+gjFjxsiR3CuuuAL3338/RowYgfHjx+O7777DlClT8Le//U04k4QrpOPUl9rpmqUZ7DQTcwDgzlAnvZfLBBWPxGOQf+5lBZmwkKue7U27TL+81QiyaHkrQtiuCFZiNgW0EpFZ47TljcqYzXYn18MCcV4/3uQk0r60+1VOzsGbVMNswgy99boTdxhMzmEVJ+vKFERmwxMt4xSiP6q0E3LEWLR6ivoErwG9/fs9Si8FL5yszwpSethWrVoBABYsWIBBgwZh48aNaN++PQCgX79+mDdvnrxNdna2qo5hw4Zh3759eOONN9CgQQO8+OKL+NOf/oT169ejS5cuAKr1x6+//oqysjIA1Rpm2LBhePPNN20fK2GOZ+pqx44dGDZsGLZt24aioiJ07NgRZWVl6N27NwDgjjvuwKFDh3DDDTdgz549OPXUU7F8+XIUFBTIdTz66KMIh8O47LLLcOjQIZx77rmYP38+QqGjX+IXXngBN998s5x1YuDAgXjyySfl9aFQCEuXLsUNN9yAHj16IC8vD1dccQX+8Y9/yGWKiorw7rvvYuzYsejWrRvq1q2L2267Dbfddpu7J0khAE2xOy2n19Mzi6I8doUgDtakAgJqOmsdQRwOZleXi1XGCeKsEDPNWqDH0RnPtMuNt0vUYiEqYkVTqbmN0axxVsoIzVBX81kqRbGTglhaDhiL4kQEsV5Zq2Wsbmd2XMnCzSmcE63b1mfgsG/c7rVgB+5+yC+MCy+8UPV+8uTJmDlzJtasWSOL4ZycHNn2yWP16tWYOXMmunfvDgC499578eijj+Kzzz5Dly5d8PXXX6OsrEyVHvaZZ55BaWkpvvnmGzmoRzhPUvMMpzuW8gxrI6SAbi5e7nZ69fKwI4ZFH5Ul2mnyjp+TG1ObgzjuPYsiymJyNDgSC6jyEQNHxVkkFp+RQFquxI5/F3BWnCoFnxtC2KnIi5P5igEDWwhnRLjROVK+N8tDLLLObp5g0W3j3gvWY7RcdH0ycEsQ27HAiJwfO5lF7Npk9CxjiEb4OYABdR5gkxzD3PzCZvYLnTzDvCh3eXlFQnmGP/vlMcfzDJ/c/BZs3bpV1Z6cnBxVWlUe0WgUr776KoYPH46NGzeiXbt2GDFiBJYsWYLs7GzUqVMHPXv2xOTJk1UZrvr164dwOIxnn30WderUwSuvvIJrrrkGn3/+OY4//njMnTsXt912W5wtok6dOnj00UcxcuRIx46fUOPDECGR0tiNWPNQRLF5qYxUNyttxFguFG+bCAeZYQYFnlCLmDzmF0Up1ES8srztAPMJJ5KNWRRYJEqsRM/CYWab0O5H+fkqI8SAvYiqaITYbnQ4rh0W6jGrX/e7lIaYRYeV61PuXMQ0QRYbwQ7hY3a7fgOk8R1OIfUR2hSoEyZMwMSJE7nbbN68GaWlpTh8+DBq164tp4cFgP79++PSSy9FixYtsGXLFtx3330455xzsGHDBllcv/zyy/jTn/6E+vXrIxwOo1atWli8eDGOP/54AGLpYQl3IDHsJU4KxUTwq1UC4FtFapZpxW8MUXuCGDAdOqp9zK4VYmZCViTCqlfGzLubZRIdttpWNzHzCiuj7aKD/LTHl4htgieIgcTtEaKC2Kz+RIW1qOBOWSHoIH4+dmVUWLlMvp8oo7ja/l0RFZawFYHXq1+nvX4dsKmFFxnWQ0oPu3fvXixatAjDhw/HqlWr0K5dO3lmXAA46aST0K1bN7Ro0QJLly7FxRdfDKDaFrFnzx689957aNCgAZYsWYJLL70UH330ETp06ABALPUr4Tw+VUQEADHR6heB7SQ6/mHHBDGgGlxnhSodQcZDNIqhtV/YFcJ62xlFwr3ATBArywGJiWKtIFaWU9ZvJIgBY3HIW+eGv9epuqzsg0SxOHbFHk8oWhGPqkwZevYInXuH0eA93c/cofuLX68pK2lQpfSwANCtWzesW7cOjz32mDxgX0mTJk3QokULfPfddwCAH374AU8++SS++OIL2WPcqVMnfPTRR/i///s/PPXUU0LpYQl3IDGcbgTD7qTCcatePVwSxJIQqq5XWq7fjIhORFEUq1kWjHzJekLYahQ6GcLYyrkTjRbzIuh6UWJALYpFBDFgbp0wEsR2o8MibbBaj1WRq+cndZNUiSSKEETI8iA6PZGsC28MipVB2Dpt8Kto9SNSelgev//+O7Zu3YomTZoAAA4ePAgACAbV/UwoFEIsVn0zUqaHlQbZadPDEu5AYjhZ6InLBDszYfxslZAwsEwA6pRrwoIYsBUl1nqGRUWrhJ4YzeJELc2wKoT12qIVxU6mLeJh1Scsso2ZdQI4KoyVZa0KYsBmVgEbWSOErQ02fMiJRLCVkGBKDN4YCOVyXvm4gXOxw/xBbjbuIXH71Q7K80GuYWU+eKfqs4JRetgDBw5g4sSJGDJkCJo0aYKffvoJ48ePR4MGDTB48GAAQJs2bdCqVStcd911+Mc//oH69etjyZIlePfdd/HWW28BEEsPS7iDz9VQeuB6xMNvVgkn2yN17Erxrki55qggBoSsE6KD6YxsC8q6gHhRrIeVLA1mdbktfvWwE2EXFcUSKr+wJlosRZR5gtgIEW+wkPh1KDqsV5fdXMlW26PF6fr8jumgPIHosJ4o1q7nZpBQ4qf+P00xSg976NAhbN68Gc8++yz27t2LJk2aoFevXnj55Zfl9LBZWVlYtmwZ7rrrLlx44YU4cOAAWrVqhQULFuD888+X92OWHpZwBxLDXuOFcE0Xq4QETxDj6M1IK4ilddIyYUEMqESxUxkkAH2Rqo3SGolZv2WMSAQ7UWIr2/HyFfMyT2jRiw57jZU8xlbq0K4HnIvy2hHIqSiCraD8oWIkjA3T+kEn5Zle9DaZT/w0T+7S6fOdM2eO7rq8vDy88847pnWccMIJWLRokWGZevXq4fnnn7fcPiIxSAynEk5bKNy0Sjgt+rWCWOEf1gpiBMBdpotGFEdiNaIpqHhv4BvmRWCNxBovCswb5GYm+LipxhTRzlTASjYJ3nYi26hSrQkI4mSQyEA6o0izqE0DcMf6kE5iKFF4n5GeQI7LGmGGBSGcqjPQhQJBR3+o+uFHL+EfSAx7BPemJOIbFhWsfrNKJILZMesIYqCmQzcQxLzH2qFA0DRKzMNudFNCK4r1vLxWSRUhrCURT7EWbR2iU027cYN0Ks2a3jKz+kTFLmWSsE6i0U+ja0D5OZhGhQH1xBfK/lMz2YZlEngamG7RYSJ9ITHsF5wWs6KWBqvRYbetEka5LAVyEMtiwUaEOMpifCFWI4qrWEAlWBOxLWgjojzrhLQfLcny+npFoj8yROuQ1onux22RaCUnsFVBbLV+Cb8LYzPPrVdtcHL/WhGsXcbfiNOHa0Wx6L6NZrSzAQliIhUgMZwM0imKa4TV49SKbCNBrHwsaFEQxw2008KLEgNHI8VAXLTYajRXL4uElZzD6Y5TothoFjyj6Zn9gGWfsIAgBuylWPOTMLbaFrfFGC+Cz1tup065Dm1U2Asc2g+lbCP8DonhdEIrPlM1OqzEYoQYUEciggjxI8SAsY8Y0BXFsqe4BmXE2AieYNZGhUWzSmQSdn3FvPLKz02ZqoknhEVu3sm6wRvmPxa0YADW2u+H9GqpIqjstpMXFQbgaPBEG6lNpXPqZFtT5bgJbyAx7CG2B8mkQk5gPaxEh/VEttHx62SYUP7PE8R6y+Vqa7zEutaJGnjCWA/RXMPSMhLE8TiRjzmsyVeqFMKJ3iB52yeaAcJOvyGavi3RHMp2t/UjXOuJCxFlyz+yrOT6tTnAOl0+Q4KwS4oqrDRCKQCTaZ9INcEtOkMd9IWvcrmqLOfGwBPFVZpBWVphDOiLY95gOb0osbSvVEVvYoxEsBMtzgowVRuygkwWwnbEgHYbrwWFaeo0C/mME4kUehVldKtuw7RmDvldbT1l0JthTg+pPwyGTUUx77gcO79eTRxFEA5CV2yysCt8zToau1YJq1ip1wmRb2aXMEm5xhO+MqK2CegPsuMJYwCm4libUk3PJuFUpFiv7W6gtYV4PeOd3n60M1lpH02LiB8nhIOdyTfs7AMwzloQt40PhbETEXu74s+OIE7YYmMkhHn9rlPi0+HBc05CNgnCTUgMe4CyI00kn2hG4IR4NxHEygF00npDsczbhUIUKwdiadOkAZrob+BovlsJkSixtEzCioB1ctY6J3EjYiwhHZNUtxQV1tojREbuiwg8q8sB6wJV7zG+UIYIm8LbD8LYqf7SiTYkOvOesACWSMQaYfKkz/b5SKUniAQhCF3VfkUbAbZiY7AbifXLQDor9ZrkZBYRxCoUUWKVUNbUI+9eRxRL7wEdsasjikWixGbrtGWskIwBfKI5gO2ijc5L9gjRtFV215tt50VkWLs/wJoIV23vU3+xl2m7nLDTqNDrp7X9n145v9oRpPb6tX0EoYGu1GQiiVarvmGrnqxkTaOsxKpAt9tmjV1CVaXypmQmeg2ixCKiGBCbVEMrikWjxMp1buC1KLYriHnHr40KS/9r7RGAOwPmROtNZNa4RPCDKLa7fapgSwAD/D6PZ5kQReA+odtWJ+4ZyrYnaL0IOGyTCKTx9UdYh8SwR6SMPcJPA+lE26EXRdfJPyxsjTDxEivrkQZiJSKKzaLEyRhE5+esFiJCWDtoDoi3R9glESHsBxKNTCca7U2ZPtECusdjVQCLbOcgtj4HivoSaYT/ssxnAJ481tN2VG4JXL8IZ+1NgzP6WvtYXP4LneUC65UvoFpoScJYG4nUvg8HNdkNNI/zzQZ++R0rkV6rUWEjISy/18kp7ARuCuFE07NZIYao6mWrjkSm+jXB1Grio5nNuG2N6gxGi0WOvnjwtnP76Z6I8PZLf08QDkNXtl8QsQUoo7Zupq9xKzrsduo4kwgxgPjIsHQDM8soobOeV5dIpFg7/bI2+4SZbULCi6itn6LDeoLWKKewEidmmfNTRNjpfSoFsdWosd2JPFI5OmwpEmzWv9uJHjt9H0i2nY4gkgSJ4WTDE4jSskQHIXiVZi0VUJxL7qA6hW1CGlynZ6vQrlciKorNrBNmtgkJv89Yp9dubRkRrAhhbVTYCczy0Vqqy8OBc3axK4y9mozDrfy/CafWsxLRFQkOGAnhBNGNZpuhvCd5FC0OOmRvUtZHEBIkhj2EJ8B8i5+8w1bgRYeBuIi6mY/YSPBqo8R60WFlflJpNjtAHWnliWIrUWIJPcGXqEh2QmQbCWI3hLDVukVwUgg7hZf7teMv9nMf58rnKRoNFhWxPvASE0SmQD+N/IpeNFjZQVr9BQ+4I3Ct1OnFoAuzm5KJjzgYCCGImpfCDyziJdarDzD3E0vEeYU5XmIrIlLvZYaT0WapzdqXGXpt5fmv5XUBfnkeiUYXbaXaMhCVXvqFrWLHUyxyfo3K6K2z+7kpv4+Ooefv5aVHM+uzzbzEUj1G7wURTS14dIMUDI4QhCB0dfsJr2wMovtJVe8wwPfSaT3XNW1J1DYBQChKLP0vEiXm2SYA88k6nMIPtguRaDDAF8KyXUJAcHsZwXTKHpEsgZzKEWJX2iASDRYRwHb3JYDQRCFW6k6CRQKAHKBwsj6CkKDIsB/Qi5aGNMKNR6o+LvMqQmwWsalZLxoB5r20ZfTqU/7vVJRYKuNUjl4g+UJYNBoMmEeE9bASWXRqwJydm68fI8V2s044tn8bUyMnNRrMQyQCLFKPkyjbom0XRYWJNIfEcCriROJ10c7NzUh1KJxytgm9MkC8aObVo1wGqLMb6KVh46Vgc1IU+wUj+wZvuZ4QthIVlnA7RZeIEE62yHWTRM6vlLrNago3z0QwIG6JsCKAlXU5UcYuevcKqwI55p80eAShhX7ueYwrg+jsptdJtl1CQtl2tzp1XmYO5eA6B2wTAOTBdbwBeImmYYubiEOTcUIiEfuE3aiw3XRvZoLVTAQDfCFsZR9uY/dxrB+jwqmC0Hlyoq+xMkDOaRHsQL9s2S5BE20QaQpd2X5DT6Dq5dAVxQufrhNoO1un26wnih3INmFUBoBhecA444SRIAbguCi2QtxkFw6JTyeEsFuIilJRIUwi1xlMz6NT/YmVdGduPF2T6rRwH9DNjmMHy1FhZ9LAOZtajb5zxFHIJuEXzHzDZtjJLAFYs0vodWipaKUwygUqOGudSLYJvTLa8npeYgmjmesAY7+sm/YJN6KuenYJK0LYTruSNZtZqt2UnfI+O01ShbCofUIUu9M3O70v5f2BosJEGkNimKju8OyKYq8m8fCZIDYaOCdSxkgcA+AOrjMaPAaYDyATsRCIikg3poY2qtPKsXox7bLQti6MVk/29MNuHJMTQtmwDpGUZiJYSZdmxxvsAXr9jbVKOH2xUdDCh+eBILTQTz0/YtcqIeIddsoukYwOzg2rh9Y2oTPltdYqoVqm4yPWKwNYT8EmYTY1spFtAtCf3rlK895NrNYvknfZqX15jZEg8UtKMgknvc9O4Xo02M7EF070jXp9nVv9rlm9ok8uXbTjkU2CcBPuFf6f//zHckXt2rVDOEza2ip+u+H5Hrc6W+UPCQFBDOh7hJXwchKb+Y2V+5IEsaiHWEJEFBsJYhG8EJpm9g4r9oiQyfSrjt5oXcxh6nWfkcixJLVvs9tPmAlDN0WwR8ifi6hFgiDSHO7V3rlzZwQCATAmdrMLBoP49ttvcdxxxznauIxDT+gplyc6kM5oP15N+pEoXgliQDfTBBAfLZYEMXedUvSaRIlFBLESo+mOzQbYaQUxYJwNwqtIq54ItmKPcKutTgk8kXqS+WM5pSclcGqiC5F6/dRnJiJglcem5xU28xALWs8Iwm/ofnM+/fRTNGzY0LQCxhhOOukkRxtFcBCZgENan4i/NlUEsVsYnT9FpgkjQQwIpFYzKCeVNUIrjM0yRyhFpNksdmYiUilUI5zZ8rwilXMqWyGVIsGqegTanJAnW29btwaf+V0ICxIXFdYeg0iAhQbTEWkG94ru2bMnWrVqhTp16ghVctZZZyEvL8/JdhFWRGkyvcPJws3260WIFetMU6aJplbTiRIr/xexS0hoBaKohcKusFRu54Q4tSuo3YgC+8m+xPux5Eb7nBDCwmnn3Di/bgjhVLBFhPQjtso+yBSjY3Iq6mwT8gwTbsK9ulesWGGpkmXLljnSmEwgoS+gnlXCLqlul3ATIzuKQS5iwHzQnHYbXpRYVY9FQaxEG8VVwrMcVLGApWmNlds5gVPR3lQeOJcsvLJFeH7sXkeDldsk0k8n8oNfR7jqRoXdCCxk+j2ESCkotZqH6N0EVL/a7XaevJQ/IujtLxUGTyRyoxHpqG2kXtPLNay7XicFG6+cEt7UzWbpzqR8w4bZFzS5e81eyu30ponONLwQlU4LSq+sEa4KYadtDFYFIi/NmttP35T9tEGfbTuqKvWxieQb1rNjEISPML2qGWN47bXXsGLFCuzcuROxmDrV07/+9S/XGpcu2O6ItBFao4F0hDWkc2sm+gUixAB0I7qA2g6hu95CCjYAhgPq9AQxz2NshlldXM+xSSYLpxEZOKfNJKH9PvoxUusVXghhx8W725+XVWuEXyxnBnaJOFIsKqwMLDhVH0FImKqpW265BbNmzUKvXr3QuHFjBALeDpIhEkBUMKeyXSLRR4kuC2Ll/1o7BGA+3bNeGVncBdU/TrUY5Q+2IqSVy6tigbjME7yMFtoosZPiOFMGz0koxV+ckNfc1KUfXaZ1OiksPBTCXLwY3GZXCDsZuFD2yVIfpK1bpD/j/e9GX09RYSJFMLVJPP/88/jXv/6Ft99+G/Pnz8e8efNUL8JjjDrVRDqcVLZLJAMDy4SebULPOsH9q7FM6NUlTd+sfUkYWSi060StF3qz4olYMBKxUohsJxIVFiERAWcmRq3WrSeE9SJl8jTgJi8vSMmIu1+ivEZo+2Wr/TQvg0SipLnwnTlzJjp27IjCwkIUFhaitLQUb7/9trx+xIgRCAQCqtdpp52mqmPWrFk4++yzUVhYiEAggL1798btp2XLlnH13HXXXW4fXsZj+g0qKiqi/MF+RSTi4ERUwu8RYhcGmsTBO4/aCLHUFiAuqsv9XxIkegFTpp96TdqH6ChxaSY7bYRXi4iYVNYlRYm1FgyzrBBZAWY7UhzWiHajtqc6PCHst8e7eoI3JYWwG7hpZ7NiiwD4UWG3+naHB+kFA0GHs0lY+5HctGlTTJs2Da1atQIALFiwAIMGDcLGjRvRvn17AEC/fv1UQcLs7GxVHQcPHkS/fv3Qr18/3H333br7mjRpEsaMGSO/r127tqW2EtYx/fZMnDgR999/P+bOnUvp07xCKe6sClE7k3Dw9kvEYyaIOWVERTFvOudgIARI+i5wtD6lALaUNglQTe9sJh6tRFTtCmLA3D6hHdSn3CfvfyW8Y0gFv7CoCLaSm9pL3DynwnXb/RFvtR90cxIgHkb9Oz3Jc40LL7xQ9X7y5MmYOXMm1qxZI4vhnJwcFBcX69Zx6623AgBWrlxpuK+CggLDegjnMb3bXXrppdizZw8aNWqEDh064OSTT1a9iCQj0gk70VH7vZP1ajChiDdRGlXOyTgh/S9qi5Bfisfb4UC2al04mK2/nWY/WhsFD7MyWhsG739ALHsFoG9/0FoqwgprhpkQFjlOO7gtnI2sNcplvEG5tgfqJtheX5PsfsuLqHAwHL8fUTudU1FhvSwafn6imADRaBQLFy5ERUUFSktL5eUrV65Eo0aNcOKJJ2LMmDHYuXOnrfoffPBB1K9fH507d8bkyZNRWVnpVNNlotEoXn/9dQwcONDxulMR02/qiBEjsGHDBlx11VU0gM4vmEUieNHhRAfTAf63SySKaFRdL0IM8M87EJeXGFBnlRCZlU5JEJwIMcerqjcldKJCUcp5DKijwkZTRgNiM+TxCHM8ylaiwRLJFm+iA814ItioDu21oF3mJSK2CU/b5kW/xes3ExHCdgIYegPqnKpfBL9n2+BQXl6uep+Tk4OcnBxu2c2bN6O0tBSHDx9G7dq1sXjxYrRr1w4A0L9/f1x66aVo0aIFtmzZgvvuuw/nnHMONmzYoFsfj1tuuQUnn3wy6tati7Vr1+Luu+/Gli1bMHv2bPsHqeCbb77B3Llz8eyzz2LXrl3o1auXI/WmOgHGmOFdKD8/H++88w7OOOMMr9qUNpSXl6OoqAj79r2J2gW53DK6N0ejHLfaMrzOjyfqrHTObk1p6iaJdrhWLSZm51Nbl6a8JAiUwkD1P/jLeXXE1Ql13Wb70j0EzfWp3UYSxFoBbDQRiITIbHM8W4QdESwhapFI1Aer5+s1q1c7QC5umcH+eZ+nm6Iz0XNnt23c+kW/+6J9V7JnnRM5nlBYLYB5EWJenbEIP3Kr/JGvFdZGeYZ5GSk4fuHy8oMoajoC+/btQ2Fhofnx1SDdR/fsXYLCwnzh7czrrUDdOhfFLZ8wYQImTpzI3aayshK//PIL9u7di0WLFmH27NlYtWqVLIiVbNu2DS1atMDChQtx8cUXq9atXLkSvXr1wp49e0xn+l20aBEuueQS7N69G/Xr1xc9PBUVFRV45ZVXMGfOHHzyySc49thjMWLECIwYMQLNmjWzVWe6YXrnb9asmaULl+DDi4q4GqVKJDpshl8jxIl696w+UjU7nzw/MRCXik03JRsnFVtck/U8wxqvMRA/U54ZvH3qba9NtWY2UA/Qnzpau1wvGmw1up3sqLAeIkJYK4h5nwFvuVtRYid+RFj1uxvVL16BYN+VzHSTokKY978Gw2m7E5meWtqnoBD2M1u3blVpHKMobnZ2tjyArlu3bli3bh0ee+wxPP3003FlmzRpghYtWuC7775LqH1SRorvv//eshhes2YN5syZg1deeQXRaBRDhgzB5MmT0bNnz4TalI6Y3v0ffvhh3HHHHXjqqafQsmVLD5qU/gh16G4OykjULgH4VxB7jVF0HlCfI4PcxFpBLG+uzDqhg55FAoAqI4VcH8c2oa3PdH812yjtEgDfJiEijAH3RLDUZicwFBfKcjD/3AAdkWiSdk/7v9UIf6LC2NkR/dYFMRcr/aWf+65EsuLoPHlSLzR4wmgFnwtcK0ip0uzAGMORI0e4637//Xds3boVTZo0SaR52LhxIwDYqqdHjx6oU6cOHnroIVx55ZWUlcIAU1V01VVX4eDBgzj++ONRq1YtZGVlqdb/8ccfrjWOUMDrwEVmGOJFO0kQOw/vPJmlYtOsN4rsmWIQCZYEsXIfeuJbFDNBDJinbhNJ7WYkgkWjnnYsD6KiNxFEPMI8IczLWMJ7siCyX8CaOLZ7Tgz974KC2HTfTgcQvI4OW227E4MDnTpfRufDoc/F6QGiVusaP348+vfvj2bNmmH//v1YuHAhVq5cibKyMhw4cAATJ07EkCFD0KRJE/z0008YP348GjRogMGDB8t1bN++Hdu3b8f3338PoNqDXFBQgObNm6NevXpYvXo11qxZg169eqGoqAjr1q3DuHHjMHDgQDRv3tzyMfbt2xfvvvsuJk+ejK1bt2LkyJE4/vjjLdeTCZh+m2bMmOFBMwjXIEGcPHhRY44gFhEzdkWxKkVbQCwyLIpWEEskktOYt87KVMqeWJAEsJILWO94uEJYsD4vBK5VvPiBIUyi/Zb0Hfai7zMayyASDdbiZlQ3jbNI7NixA8OGDcO2bdtQVFSEjh07oqysDL1798ahQ4ewefNmPPvss9i7dy+aNGmCXr164eWXX0ZBQYFcx1NPPYX7779ffn/WWWcBAObNm4cRI0YgJycHL7/8Mu6//34cOXIELVq0wJgxY3DHHXfYavOyZcvw66+/YsGCBZg7dy6mTp2KM888EyNHjsRll11G6XIVmA6gI+wjD6D7YzEK6xZZr0BkEJ0Igh2ppbZo8Uvn5+fHd8rzzRn5bdfLqx0UpxxEJ73XLrOyPx56A/eUKKPFWvTsEnoi2A0RJVKnntfVdDuBAXRxolckKqyDyOfhJSJWGx4J/RBUItIPJDqYzmo9dvehFcPalGqKvsTw/EUj8YPn9DJg8DJT6N1HeLNxctJNJjqAbt++Nx0fQFdUdKHl9qQyK1aswNy5c7Fo0SJkZWXhsssuw6hRo1Tp4TIVrvlOm2rEjP379zvSmLQmmbl+nUh3YzVzAuE4eo8JlctV/4OTbxj6uYgTaQuvLt700BK8qaC9FMLJQDQrhFWSLXx5KH+AWVmvvY5tnycn8/uK9H1u9X+iQltkJlI30JmWPg6v8sAThvTq1QvPPfcctm3bhmnTpuGzzz5Djx49kt0sX8AVw3Xr1rWULPqYY47Bjz/+6Fij0hY/Ri3TSRD78fwqMRp5DWNva5xnVPtCvJAAdMQvOOU4AtnopW2bFWFsNqGHmRB2QkjarSORqLBdzESln9E+meCt1+LYD4WQSaoxJ9MoWq0vUUQHzOnBE9kiY1C0LyskKoh5/V6irzRn8uTJmDBhgvy+rKwMgwYNwj333IOhQ4diw4YN+Oyzz5LYQv/AvToZY5g9e7bwyMOqqipHG5XWmGUfcAsj35mVlGvkIXYVQyFgdN41/mOlHziIkGpgHQD1pB0W5tHRy3ghsky53O6kH8kUwqb1OiyClWj9tlbEpV/Q8wzbHjTqNSIDwZz0EovUYSLAVefSbJCbYJ1ceD/0iaTz0ksvYcqUKQCqs1sMGTIEQ4cOxerVqzF27Fi88MIL6Ny5c3Ib6RO4V33z5s3xzDPPCFdSXFwcl2WCMMGpnL9WIEGcfJTnWfo8jH4giUz/rDMgT3UjrBlAx0POZ2wUgYQ1wasn3EQyGbgphhKpmxul9oEAFl1vBaPzZFWIa4/Bc7HrZJYJXn5dHlb6wESfziUy9sPLe1CynxxmID/99BPat28PAFi6dClOPPFEzJ49Gxs3bkTfvn2T3Dp/wb06f/rpJ4+bkebEdG5SdgSxX4SmW3mQ7eKntvA+H+3kG1pBLC23Wq9yuUJYB2sG06iEMSf9mgi8XMe8iUB08yQbCDqrwigRwee0CEskY4TZcqsk+7yYWTlEBbFrQtmrtGtKEumrjbYTFJWe/ejQngflcavaWpnYfmJRZ+99evflNCIvLw+HDx8GALz33nvo06cPAKB+/fo4cOBAMpvmO+inmlckmuLM7XY43Ra/iHa/wJuNTimIgfjPRTRBPq+eaARBvc+yRhQHA+rJOngpufTErFIIikaNrUY6ncTuIEHu/y5GgwH1eTKLpCZbBIsiPFmJhXJmxNXDE7CJ9FNOCWK9dpltI4qVHwFG0y5bqZuiwL7gzDPPxN13340BAwbgtddew/vvvw+gejY7moZZjT3jHmEPo6wO2k7FzUinUefs5IC6TMTo3HLSDcV57bSDU0QGfPDqkZbDeHBcOJBdPchOemmzT5i8B6DaXl5mMLDOqIyTJJotQ/u/9hjt1GWHuPR4JoPS3G5Tsj29osfNPUe8PisR4eblwDrtvjT1GmYrseo/TkQI8zAbzEi4wqOPPordu3fjjjvuwI033iinUDt06BDGjx+f5Nb5C7o6vcYsMusHnPIPexUd9st5E0FvemaR8kZovcdaPzKgHylWosw6zpvNTue9vMzETqE32QcvKm0FJwWanhA22p9Xk1z4cYCcnTbZ8Q7bPfa4faWaZcJs30Yo22U0IYZVwU5Bk5SgRYsW+OSTT+KWX3DBBUlojb+hqzQZGAniTGpDumH1ZidSXjR3J8c3rELpJ9ZsqxSiKlFqQRhL28YtkwbnIb5+rSjmiWQj3IhQGglho/2ZDSK0iq9ma3MIJy0QdvYNKD4nrYBNVKy6LYi1k2FYwekUaMkSwk6nQ0ulIArhOqSGMhkvskuQd9gYO4PmeBFlowF5IfPPwChqrIz4KiO9VtKsmW1vNUrsViRYu4wnhEVEezoIWbOBj2ZTiBvV5+T5sXKtqAQ5TxCrKrYhIr0QWAbfVdV5tRMVtiteefcSbbq2YOp/J4j0RdczfO655+Jf//qX7oa7d+/Gcccd50qj0g6R9FhWcDKi65R/OFn4pY1W0ijxPMC8hPaxCFi0CiyqyePNS3qvrE9vndH+dCbvkP7yfLNGvmA9r7DWV8z7n/eeV5coRp5p3n6DgXgPNW/fTvudlYMZAX9ZIsyO0yxqniwhLJXRTlkuhDSznPJlhpsTEwXD/P+NsHKfSUQIE0SKoyuGV6xYgcsuu0w1e4mSaDSKn3/+2bWGZQSp0Ik4ITbdsmP4RQgngka4SuJXK4L1lnOFr3adnjC2MOhOWiZhd8CcdltRESUiPEXErtl2UvtU7TWpx4q480vEWFREGqH7Q8Lkx4YTiEz3LLLMVmpLr+1ldkSqW15hOzi1D52AQUIvgqjBMJvEzJkz8dhjj2Hw4MGUky5R9ISbH76QZm3wo+j0U5vsJtfniGB5uUnnzRXFyv3w9sW7AWgjypplRlFiAEKZJIwENW8fWsyixFYjtHrb8TJqaI9Bd1uHo8QSyY4Om2WuEPmhYPYEwclzp826YVROxo7YNBJ4bkaHQxYsDcm8t9CgOSLFMBTDgwYNwurVq/HVV1+htLQUP/74o1ftSk/8JOC0uC2InYxA+Ok8OnDD0RW1AvszjRLrWXR4olhbP0cQ88ShhJ4w1v7PEz5mglhZTk88mdkhuJFKTlo53WMWSKuWaARZa5UAzKOgdnGyXtGosBPCN9k/EGTMBLETgpA3cM6sLxWNCvP2o9yHlSi4ExYSgkgipnmG27Zti7Vr16JZs2Y45ZRT8N5773nRrszCD9FhEfTy3YqK00QFsdOjib3EICpsCK+ckSDmbWMkinltNBDE2v+l93oiU7s+7i9HOIsIWbuRRZX41Wkfr41yWQOxb+X8SHAf53MEsV5Z5Tq74tbqNiIRcbciv1bbJoxdoebk5BhObuvlmBSzgXNOobV4OfEiiBqEJt0oKirC0qVLMWbMGJx//vl49NFH3W5X+uLnL6CVDtTrDsWP583pHzHK+pTRW14k16ogBvTtE2Zt0RHERgJVXqYjdlV/ORYLLabWBsEXr069/40m2RARxKIiMFFBzJs10CpKMS0iqs1+nMg4LEJEs1bYEt9SNFf5EsGOILYjEkUsEkZRYe15p9SaBCGj+20IBAJx76dNm4YuXbpg9OjR+OCDD1xvXEbhl7y/brfDTqq1TBDCovtUfjaa9yxahUAoS70eiP88tWnztOnY9NK0hcKyyNCmQjNapk2rJqW3Uv3l5CPmYXcqZBH7gp6Il9a5+Xjej3mFeWnyTBH9rnJSN7p9jm0LZAmjY3MzT7GoRULk3Ot9v43qp/SYRAag+81ijHGX/+lPf0Lr1q1x0UUXudWm9MdKDt9k4EdB7CfcEvPK86IVvdplOsQJYml7M0EsgmIbpbAwmjRDKXCCCMXNSBd/APqrnBKLZtYGI8+z6thqjoe3zg5xk5kgfkY/Hm6LaCGhLjJA2IE+hXeNiZTXew+An6+bR0jxw5C7M4XI5G2byGQVVr6r2idMgP5EPHbwKp8yQXiI7rdhxYoVqFevHndd586dsWHDBixdutS1hmUkVkRoqgvKVG+/lxhdE5xrhiuIzRCJDkvrgLgZ7AB9UayNEhtFf+MEp4tCj+dzNlovUp/TgthLbEWCAft++ASw0kZTAWwVMzGo17fZEZG87z5PGJtZItIBp9Oh0f2HUKB7l+3Zs6fhhvXr18fVV1/teIMyBr3IXKbYJYDUFMROtVdx7IFQ1lHPr1vnxGp0WCuIpbYp1wOWRbHSEgHAcEY7u6LQKA0Yd7kFEWwmeJ0WxKLR4UT3x3uvjf6bikqRTCjaa8ilJ2RxbXVaHIpEic3Oh5Fo1itvBTeFsZ6wN/o801GgE2mDD1QX4Vv8Iswz7bGcA4JY2C5htJ7nLZbapywDCIviuHVKoacYpmBVACoHnImIaF79dsS3MtKtrcc3KcDcwooQ5uGgEBaO/nrZp1n9HvPSm/GWm5FJfSVBOIQPlA5hGy8iqxb8qrZIpeiwnXYK3phU0WHA2H+oxO0bOy96l4AoNnoUbzcCqo02WyVROwRPECvrTUQUJ2rdcArDaL1e5hIXx0XongcRgW7kY7babqsR4kR/2Ls91kTvxwKvnxY5Fgd/fLBoJD5rToL1EYQEieFk4nerhBI32+SVINbuw2fnOE4QA8bnxqv2c4QuAFui2Fb0lTNYT/leW6fVaYRF1mnr5AligJ8Szap1QtfO4ZIQ1ovkG2I0mYO0zmFBbFkAG4kdo4wKfkAbFRZpo+jAOSdRCmI/DwonCBPo6vUrop20l5FVt6PETiM6m5vVG40oTt2I3Drfeo9l9TD68abd3kAUA3zBaip2FKndpDqMslqIIFqWJ2i5y3REsWiUmJfVQigjggWseKq12TQA6AthB653s6cHuvvTE8G8721QI+CcEMRmqdGMftDqrRMVl7zcwl7i52mhCUKQFFE1hK9wQxQ7KerdnAxDFD8+gnPi8zKKAvEeP+ukrRKK8hmtMxHGbiCaYxlA3CBBZXkRMcoTwk6nlhMVxQmJYNFBmgb7526nhBcFNfrOmonfZKa+1LMopAOxNPfQEylNmnzLUhgnOt5k+W69fMQo6rWzcx6MjsPj88q1StisxxCrUWEtZrlZjaLFIhidd21kD/b8uaLikhcR1i43inrbmVBEz6Nr1RJihLAdgyeC7f7YS6TPMErhZhYlFoleJtKXuZWtQuRpDSBukRC51/jVOsIizvbHzIcBCyJp+PCKJ2T82ikp8ZN1IpGO0slONtWiwol+dkbCWHTSBSPvqbZebU5kxXo3osN6QtfycgsTaIhGhF2Lhtvx4YrOeCi6Tm9/RpFpPSGoFcXSNaS3fzsD6US/99qyIt8/kbY42e+kwr2HIByErvZ0IdlZGZwQxYkcg198aQ7ckBKNDluOCjuJqDAW2d6oXu31JjqLmNE+tBg8wteLFmvXmfmktWW4EWGRgWCJYifqqodVIaXdt5GwtBIN1tuXVS+u15YJbVTYDwPT/NK/EoRL+OBbRhh20Kn2Cz3V2ptmWJ55zs3PSuQxrUhqJiDebiEyIUii8ERaDUZ2Bb11ZgPUVO9FBoHx2mgXkWir3nqA/8PHymdmVLeV9iVyPvT6Li+f9FgRvkYWCbO63Ro0zEOZXSQRaAY6wkVItaQCfswsYYSfrBNe4pQn1ia6QthPn4Oo+NVbrmOPcOW65z3uV2IyIFAkK0J8BDjCF3dmUfZExY3IoDQjeO3kfWZmk7iItNdpIWxFqHtFIh5+v9i0/NIOghDAR3dJwhH8IogB724sfjneJCIcEfbikavoRCFODHZ081G2UURWuW8lIhkzlJj5Xc3Okd0fA07aIsw+DwOPt/A+tO3Sbue08ErGEy7eoDkjrzVQ3U6jnM9W9uskJISJFIPEsF8w87Klsv1AtO2pLGqT2Plbtka4gZXPzo53WE88OW0X4GEm3BKxaGgFsKjAc+K4BQSwnndddc2J5Jm2+yPGqmXCLrz+1070nYfI9c47D3by9+qdCz2LhB/8yAThA4Je7Wjq1Kk45ZRTUFBQgEaNGuGiiy7CN998oyrDGMPEiRNRUlKCvLw8nH322fjyyy9VZY4cOYKbbroJDRo0QH5+PgYOHIhff/1VVWbPnj0YNmwYioqKUFRUhGHDhv1/e+ceZUdV5/vvefXpV/qQEEgTE0g0TCQJQZIINHovICGAEHQYRAzTA3dcUUYIBHAU4lwD3BUCiiDKEBG4wpI4YWmIMih9CSNEGZIQCBkDKBe54Z2HSNId8ug+j7p/nFPVVfvsvWvvql3n1Onz+6x1Vvep2rX3rn3q8a1f/fbvhz179njKvPXWW5g/fz46OjowduxYXHnllRgaGvKU2bp1K0455RS0tbXhIx/5CG666SZYlmVuUHRRFRxxFM2NLHRNU8ux8HvVbwLRTTnMR1Yf2zb7kfXT78PDr4+q9bHr8geH67KXuet318G2q7rPfuPEqxNlEewIYU47nvVsG7yxE9SjdRyI6g+KrK+i8jpjzmvDbseNri8vzyUiyL2h0YRw2GuKynWGaFpqJobXrVuHyy+/HBs2bMDatWtRKBQwb9487Nu3zynzne98B7fffjvuuusubNq0Cd3d3TjjjDOwd+9ep8zixYuxZs0arFq1Cs888ww+/PBDnHvuuSgWhyewLFiwAFu2bEFfXx/6+vqwZcsW9Pb2OuuLxSLOOecc7Nu3D8888wxWrVqF1atX49prr3XKDAwM4IwzzsD48eOxadMm/PCHP8Rtt92G22+/PeKRMkRcBbGfT2gj0shWYd2bO297N7W4yfjdzHSEruq2MqGnIuB4ota9jrdMpQ7dfrN9dZWxBa5VzPsL+gqBRDFvn0T4jX1Y/B7kVPsW9JjTnTDHE7/u4yJsGwTRpNRMDPf19eHSSy/F9OnTcdxxx+EnP/kJ3nrrLbzwwgsAylbh73//+/jWt76F888/HzNmzMCDDz6I/fv342c/+xkAoL+/H/fffz++973vYe7cuTj++OPx0EMPYevWrXjyyScBAH/84x/R19eH++67Dz09Pejp6cG9996Lxx57zLFEP/HEE3jllVfw0EMP4fjjj8fcuXPxve99D/feey8GBgYAACtXrsTBgwfxwAMPYMaMGTj//POxZMkS3H777dFZh1Uu7o0sGm2CChUiWnRu6CpWOhWxoPthicJaFNYKLKtHJGxdy9yi1CNQeeMeZD9K/Pa49ctEsQupKBb1V2dMRdsGQcXizGvT9EOeLPGNn8uc3TeeEBbtSyNbhWPAihUrMHPmTHR1daGrqws9PT14/PHHuWW/+tWvIpFI4Pvf/75n+amnnopEIuH5XHTRRZ4yKm+2CfPUTAyz9Pf3AwDGjBkDANi2bRt27NiBefPmOWWy2SxOOeUUPPvsswCAF154Afl83lNm/PjxmDFjhlNm/fr1yOVyOPHEE50yJ510EnK5nKfMjBkzMH78eKfMmWeeicHBQUecr1+/Hqeccgqy2aynzHvvvYc33nhDb2dTabMXn2YUj3F9pRXXfsnQfXWoKlLY8lEQhcBWEf9hhTJPALtEsNAq6+qP0HWB12efPviKbAUBzCtTVS+vPypjqnJcyvbZD5XjXLRdEGGss51qgg1WCKvuey2EcCQTWouGz3W97I0TJkzALbfcgueffx7PP/88PvOZz+Bzn/tclSvnL3/5S2zcuNGjL9wsXLgQ27dvdz733HOPZ73fm20iGuryeGhZFq655hp8+tOfxowZMwAAO3bsAACMGzfOU3bcuHF48803nTItLS0YPXp0VRl7+x07duDwww+vavPwww/3lGHbGT16NFpaWjxlJk2aVNWOvW7y5MlVbQwODmJwcND5bluZHewLhKnXe36uEGFm7TcScYqgYQiVxBuRTZxTed3Ks65xMJFaWkRk+69zLLlTQwes3yNI/con054xdcbAp8/C34EVwH7YZdzXHt4yTpvSvuq4dan2UzWVMSBPKQ74xx/2i/rgh6h+9p7BexDlLVfZf0KL+fPne74vW7YMK1aswIYNGzB9+nQAwLvvvosrrrgC/+f//B+cc8453Hra29vR3d3NXWe/2d6wYYNj0Lv33nvR09ODV199FVOnTjW4R4SbupwtV1xxBf7whz/gmWeeqVqXSCQ83y3LqlrGwpbhlTdRxnaPEPVn+fLluPHGG6V9BSAXFUTjMFJ+O5m48IuUIBJ2NaCWbbGoilARnr6rCFL2wbbyXXsMRFZkHjKxxxNbbD2q4ljWhzDoCEL22NZNK27qWuBuV5SJz7YKi4Qwj7DZ7Oy2okpRXUdYo1U2m/W8EeZRLBbx85//HPv27UNPTw8AoFQqobe3F//8z//siGMeK1euxEMPPYRx48bh7LPPxtKlSzFq1CgA/m+2SQxHR83F8KJFi/Doo4/id7/7HSZMmOAst5+UduzYgSOOOMJZvmvXLsci293djaGhIezevdtjHd61axdOPvlkp8zOnTur2v3LX/7iqWfjxo2e9bt370Y+n/eUsa3E7naAauu1zfXXX49rrrnG+T4wMICJEyfKhiOctVj1Yt/oltMGuKBGgcw6bGTinKFyUkHWyMcdj6AilIeOVZa1voYZV962fucYTwwJLMLSdlzlVccw1LEe1ELq9yAAmLO8qtZjC2DOccN9WwDIxSvPus/CHhdua3WtMe23XamLvUcvXboUN9xwA3eTrVu3oqenBwcPHkRnZyfWrFmDadOmAQBuvfVWpNNpXHnllcImL774YkyePBnd3d146aWXcP311+O//uu/sHbtWgBqb7aJaKjZUW1ZFhYtWoQ1a9bg6aefrnIzsA+QtWvX4vjjjwcADA0NYd26dbj11lsBALNnz0Ymk8HatWtx4YUXAgC2b9+Ol156Cd/5zncAAD09Pejv78dzzz2HE044AQCwceNG9Pf3O4K5p6cHy5Ytw/bt2x3h/cQTTyCbzWL27NlOmSVLlmBoaAgtLS1OmfHjx1e5T9ioPFEKoQkNjUWNBDpPECuLAw2RIhMmvPa45U0LXx2LV5TtqogGUXm/7USvvVlEyTXCxO8OcgzzxJBun/ys3wy6x6ZyeyJE4Qh1rcXuMiq/k25kCY4QNoro+NARxA1gHX777bfR1dXlfJfdw6dOnYotW7Zgz549WL16NS655BKsW7cOBw4cwJ133onNmzdL32QvXLjQ+X/GjBk4+uijMWfOHGzevBmzZs0CoPbWmjBPzRTY5Zdfjp/97Gf41a9+hVGjRjlPOblcDm1tbUgkEli8eDFuvvlmHH300Tj66KNx8803o729HQsWLHDKfvnLX8a1116LQw89FGPGjMHXv/51HHvssZg7dy4A4JhjjsFZZ52FhQsXOo7pX/nKV3Duuec6rxjmzZuHadOmobe3F9/97nfxwQcf4Otf/zoWLlzonBQLFizAjTfeiEsvvRRLlizBa6+9hptvvhnf/va343VQjnTrsI7PXa32r8YX90CWMYMiMTLLr4nfqxa/ua4PsaqV10bleBJZKnX6JmvHrx6dhBlBxaequ44LoUU0DCKRK9tvld+83j689TK4xFwQ29EhVGhpacGUKVMAAHPmzMGmTZtw55134phjjsGuXbtw5JFHOmWLxSKuvfZafP/73xdOup81axYymQxee+01zJo1S+nNNhENNTs7VqxYAaAcWsTNT37yE1x66aUAgG984xs4cOAAvva1r2H37t048cQT8cQTTzj+NABwxx13IJ1O48ILL8SBAwdw+umn44EHHkAqNZz6dOXKlbjyyiudqBPnnXce7rrrLmd9KpXCr3/9a3zta1/Dpz71KbS1tWHBggW47bbbnDK5XA5r167F5Zdfjjlz5mD06NG45pprPG4QRMToXkCbZcJgvZCNq+kxj/HNk0uQtMiiffSznJqagBukvMiHPIzQUplQp2KFjQLZfuvus0wQB8k2hzpYhd3rdf2HRyCWZWFwcBC9vb2OQc7mzDPPRG9vL/7H//gfwu1ffvll5PN55w21ypttIhoSVl1Tqo1sBgYGkMvl0P/+L9DV1R5dQzo+Z41CPW74KpgSaVH+FgFenWu5PZjse8hIDEaEUdj9qWcfTJz7fr8BT8hEJUhFoonXHmdZEOuwsl++bJ9lk6JF8YRTaf+Jbe5Jcu6Jc24XCUZkO/1OukJ6uv/n7U+QtxWaAndgYD9yYy9Af3+/siW2vF35Prrnv25E16hWrTal9e49iEOOW6rcnyVLluDss8/GxIkTsXfvXqxatQq33HIL+vr6cMYZZ1SVnzRpEhYvXozFixcDAF5//XWsXLkSn/3sZzF27Fi88soruPbaa9HW1oZNmzY5Br2zzz4b7733nufN9lFHHYV///d/N7bvRDUj83EtbiRT/mVqQaO4SpgSnKb3t9GslRqohHIDoDf5ir1Zqo6fzm9WrweeoK4KYfoR5PW8Sr065VkLuGlR7OcOwgq4CK3EVjHPj3ihG01C05Jcssrxb5OJlJqLgWqITWGDAYRwE7Jz50709vZi+/btyOVymDlzplAI82hpacF//Md/4M4778SHH36IiRMn4pxzzsHSpUu13mwT0UBiuFZEJUTr7YdmGtMXYlPjHtd+8eoN2L6vINa9aZoSvzpj7yc4TP2OqvXoTooKul7WTtjfibV66kSUYNGZgCgS4TqCWGESqey4rxLEKm1GjYpLTpiJlQSX+++/X6s86yc8ceJErFu3zne7MWPG4KGHHtJqiwjPCFNSMadRLLP1giwS4dC9QXN8rD3CQHa8RunGEqbuoBESTGMqwY5pq7tuWXd5dp9YURw0ioSoHOunKxLEIvxEsmJ/hIJY1E4U/s0ClwZWyIeeRMhLphNkH6K41xWLQEEva5xvfQRRgcRwram3IK53+zziLoKj6p+p3yLsDZfph7IgDkIQAVzr4yPMDTdded3J67OqlVg3uoRfGyr1yfaZ3Se3KA4zMcpvjFhRLBLEBgSb31sRriBm+ylbZ2cqNDmRrNJ/Y1E0RFklVa3/7Hqa0Ew0ECSGiZFLHN0jWMKITZOvalX64S6jEy4pyOStWglgk5YmUX0ygQz4W5FFfUxz5iLojJvqvtvl3Psh8l8Oe0z6CUYfC7FUtALVx21YC3EQfIR8MiGZY8K6rNj959XHe3ugmjbab0xkk/FY4miAIQgGEsP1gC4Ow0QlehpBCNvovF4OIzb8RJfIUhbkeA3iB6w63m4RxxOEftuEKaOD3Te//vL2O0h//cYi7P4VitWCWMfaqXoc8fySVc4R1WgPAkGsMolUVRBzJ9/xknn4Wdn9/MSLTL1+48RrpxbXuWQ6PhPJCYIDieF6UU9BPNLFeCMJYRVMCGB2mcL+ccVBkKQSbnREcNQCVmfbgsbxkE5X168qjHl9UrUMRzUW7nbcgjhKZILYhLtBiEQQqrF97XIeUSzK4JfU7I99HooecINOqAxy7azVZMKCYZ9h0w+/RENDYpioH6YF50gW+EGoR6B7HZ/goBbRIPjVqyN2fdty1cUKY1ZYSuvRXK8jUrUeBJi+24I4iHVYB5V6DUd2UA4xGBadqBgq1zUT4x82OgVBNDB0hNeTkW6hrRUUS7iaRhPCYYWhLkHFr04/0qlqYSwTsFyrsE8/067fuZksXRILq+OiwFqTgbqcF1LXCt1Mb0H8nU1G+gBGbDY5ormho7pZqbcQj2Mmt0YXwrrpUaPe37DW4FoL4Kgm0zkW1Ur7fgJWR6jzrNBR4XaREFmHVeL+BpmECVTXzWuTJ4jtdu1tfPoVyDrMuw7xQq4lmbHyq9PPfUIW1s2POESy0aFQNPwGp4keHglfSAw3OvUOAF9PTAnhRhfBQP2tNX4JOVRFsKkblMpN08SEMj/SqWo/YdUbumr9Tnmm3qjFcZyQCWJ2vel2VfrELhPFaga863Qnz/qJ4zj7BBNEHaGjvN7QRLr60uhCOKgIVthvrnVMNRqA7HsYERzWMhREAJuamMYK46Bti1wrqibUccYqrEAOax0Oe70RWYfddbvCjXkmsZnsl2Z5oauELKSZqL9BxGmzX+cJwgcSw0TtiYMAjUMfwhCFJVh0w+QtLxb464uC/wF9EWzqlai0jfCWaMsnk1UixYkkEQaRAFYJOcdz1QjSvoogtok6+QJrZWXb4blNBMXEPkjqqHoAFYnoEGnXQ1HvN1AEERF0ZI8EwrwCbGTrcJC+N7oIBsLfkExahYMKYaGfsIHfp0aT8fxEsG45VRxxDQQXxoVC9ILYJkjWQXcZ3kQ5gB+314bjk2u5/pfFChb6C4e8Toqsw057gvqtyvU9AVQ/WJhIcuJGN5lGLaHQakSEkBiOA40sSOuNztiREBaPgWsMPWJAZhVWEcJRi2DdLGoG4IpbkxN7RFTEq7t9rjAWxR82HR9YJIhZgqaI9kN03itMOnMf426BGkgIa/j1ut02qkQwz2fYvS1QFsScddqMhGshQRiExPBIoZkn0qlg8uJvKiNcEILGdA0SaJ/1X3TXY0oIRz3RTbKtEYttGBEcdIKcy6Jr74OytZitz4QPsd2O+3+3oAt77uke8+z5yfoyM1bVUHGFAxoxpEJY5kYBRhAHue4H/T3IRYIYwdDRTdTWMl0Pi0SYNnWyrdVKGOuIA799Z18ly9wj/EKliYSwrgiOOMpDZCLY9OQ8XiQKd9scUQz4WIt54d5UBbEsWoWfKHYT9GEuyHaicGZJDSHp5x4UFpEQNuEKEaafcTOukJsEESExO9qbGBOCtFl9h6MgyFjU0jrvJw40RTAgcI+QCQGeEPazBkclgmshgIFgIlgl+x1PkKoIWRsVa7HIShzUQswTxyJR7Cbs2w1REgoW94Q6tyB243fOhhHCOokubCHM8+Hl+D4Htg6bsgrHTSgTREjoiCZGNrpB/RsJ9809pMXdVwiz7hF+QlhVBAcVwIrbKYlgk/7KQdM+i5azAtPdhq4LRRhBrOTOwikjEsVhLMaqxzobr5fnMgHwLbA6kVWC4D7HWIsw62KiMi6imMZu/MaN3CCIJoaO/pFGnK3DcZ600WhC2EZ3TINYhHl+wuw6XSFsIt6uBF8RbNrXN0iIONE2Ir9enpjllQfEolgmrLUy3/n03e43b5KdCDYaRK3RcYni4b7uqlibdcWqHybfTMXQ8muVikYjs1glcpMghonfEU+EJ4yvWSO6S4Tts2n/vxjeSHxFsKCMdMKcSlY5VmBFGP0hMitwkHTRYdxBZBPduAJYIoqBqigUHlFsb6cScULlN+FZm1lB7NcOUBthrHOumrYI26hkapQhshzr9peswkSTQ2dAnDAtRIMKsyiC5Otc5NkLc5QW5SiEf5wEsSh2qUwIq0yY402WCyuEoxLAvL74lg+QqMOvDZ3984v8oCqK3f3iiWJ2uzAWe5G1mRXEdhnVUG9hhLEJkad7jdA993m+wkEJE9PZhu0/CWWiCaCjfKQT1m3CrqMWiC66JsIz8Yhyv+opiHUyXLFleUJYJo5VhGEEGeCMi+AgQj1M3UouEoIJc6qimK2TsRZXRaBQyWAn67tMjIsEsV9bLEF9jU2mMOZZY4MIYBl2/bUQoiR2CYLEcFMQNkSPysSSsPhdkKMSxFGiMlZhBbPi7+GbUU4UNziIn7CKEI7SCsz2wbesplg3JbBF2/iJQ5koBsRJN9zrdYRxUHj7IlrGQ8dyzLt+hBF5OhZWia+wJ7mGSl08kunyvkTxcN1IUSIKBaBgMHFMLRLlEA1DjI98wjgm4lYGsRabmsVsUhDHxS9adVJOgP4qZ9NSEcKqfsIRJNGIjSuEqX3T9hlWc3+Q1i9L1SwQxp7QbDpwBa9kIqCsHjc6FuSUWKB6UInCAKhdd1z1uLPaSQUx25a737zrYpBrd5hrJlmNiSaBjvRmxJQoNiEo6WIrR2OMpZm0VOKl+glhNypiMUjosQqRWYFV+qEqhE0n2WDLqVhV2b6JwqOptOsWxoy12A+hcBb2OYCLRJBtWIJMNvNJ7cziFsJcVM5pu58q9QeJ22xKaBPECIGO/rhRy2gOYf1aw/aVhHAofNPI6sRKVRHCWj7DwYRw5CJYsR++7dQre5WfIFQZE5XMcSoC24VVLPpbknmxjP3GUSSkwwhiVUQiWFNIcs9TlWQhdp1hrpOqPtaNIIQLRbPnXb3OYSKWNMAZQERKvSZ6kRDWwlf4AvIHE1UfSBUhHIFFVDt+aFRCOIoYyUGRiT7VyW7cbZl98sscpyiMPYJYZsXWyXYn2s+ggljViqrjFiFwj6iCdw6yBgWREDZ1jda57tI1mmgi6Ggn4p2og6URJ9IpoiR43QRNEsAbP5nLhEgIq06ak4jH2IjguGIq/i+LSmIPke+vpx6F6wYvTJy0bxJXD9E4BE3xLKorADwhrPz2RjYBkCO6q1DZf9H6oJE2GsGaTBCK0NFM1J4oLA4NlCxEW/TahMmQJbrBB50sFJJYiuCoBXOY+sNYglXqc0/GE8UdVrD0Cq3DOv6+Mku0n1gPQy0esnUjzDBC2BHcPCEapP+1FLSU8Y2IMSSGiTL0pB8pgQRwFOJXtp0syQZg3CqsRBwtwazAqzU6MYpFiFwOdNM/s9vw+hrGvUEURi6MIC66rLEq54n7uiiw1mpNmlOZkMcxGPi2ISKIRTiOLhKFkmGf4ZK5uoiGJ4ZHPDHicN904niRjRCjrg9Bs0sFnS0f1k9YQGRpk4HaClRZlARR+Sj7p2sFVxXEgFr6Z1eGO89kOpGolqEjuG1kqYl1LalsDO6oDQUKgjuy9liiuEY3yFs7onlpLmVCyIn6ol8PIVxHH+PA0R5k68MKX5U6/NarxhXmiB5fIdwIIlhG1ILXJKqCmFeWu72GIFbpG6Dm28yDFcYq1zbRuSPazqc+5/y36xVNoHNjWgjrRo5oMmMFQdjQkU/Uhia7yCoH2VctozLpjYfqg4ConEGfW6kQjqsITqf1+1ZHNworL28zkfETtD6CGJC7PfgJYhGyqBkiQSwqo4uu1VJBoAZyi1KNLRyVwUL3Gq1qPDFlFS4UgELSTF12fQRRobkUCjEyEFl7YzKJzjf1MQ8VAWxqspvqNiGSZrDljAvhRrC+8qzEISzHfkJXpw6PKPYTxIBcFPsIYkAhm50s25wscQe73G0R5lmHwxDkgV5mFebVy5k8Z9RXWCRem8xYQRAsdAbUgkaaRdssE+kiEs7KQlh18pss5JnftkHQycwmmzin1NYIFcGGMSGCeXUqC2LA3yLrU979MKSU5jnsxDsbnZBr7nPHbxtJbGEtqzBPCMviFodNklRrYmCcIAgVDL5zIKSUCt4PMaKwivnqmyDvtxb9/sXC8Ictx65zf2c/KtiZnHgf2Tae7+q+wlyrsK4QNp19SgedJBFV23IEXC2ypwXBLxJIoVD9u4kijNjlOVjFYtVHqT+yet1l2fOAd374nTuic4kjKN3nveca4GcV1hXCUZBKk1VYkRUrVmDmzJno6upCV1cXenp68Pjjjzvrb7jhBnz84x9HR0cHRo8ejblz52Ljxo2eOnbs2IHe3l50d3ejo6MDs2bNwi9+8QtPmUmTJiGRSHg+1113XU32sZmhs6BeuC+QSYOv8ohqIp5Ep2QNDuIHLEuFXMssaCbKRNl+3Nsx7C7hS74EZPztHFXWYR6ixBuqoc54bha8vogsx75JQATrRRZh1esAu62PYOQ+CKvWHYXFVqWNqEWw6XtZ0fADsWas8wkTJuCWW27BlClTAAAPPvggPve5z+HFF1/E9OnT8Td/8ze466678NGPfhQHDhzAHXfcgXnz5uHPf/4zDjvsMABAb28v+vv78eijj2Ls2LH42c9+hi9+8Yt4/vnncfzxxztt3XTTTVi4cKHzvbOz08AOEzJIDMeBRhbAYfvOXqRN1FfD8dQWwqayv8mWyfCzSiqJX/XxDWUVjpNLRJCJdJ7tBYIYMLef+VL1/wqi2INOKDVAnLlOVN69jYCqiXfcfnLcNlhMhHMMmp2N979f/WF9hHUwJYRFbnWNfE8TMH/+fM/3ZcuWYcWKFdiwYQOmT5+OBQsWeNbffvvtuP/++/GHP/wBp59+OgBg/fr1WLFiBU444QQAwL/8y7/gjjvuwObNmz1ieNSoUeju7o54jwg35CZBVFOrCxnvIppMq92A6vhqz3aJ8BXCPFcHdh0rlFlXCJlLQyA/3ZD1yV6T874HoZYuESbaSqf5n6pyAoHn84Dia70FvEJYZbkfqg9eQRKu2O4Wph6KZK4agNytKIibkYwohLB9TQxqQa61r3CDCeGBgQHPZ3Bw0HebYrGIVatWYd++fejp6alaPzQ0hB//+MfI5XI47rjjnOWf/vSn8fDDD+ODDz5AqVTCqlWrMDg4iFNPPdWz/a233opDDz0Un/jEJ7Bs2TIMDQ2F3k9CDlmGieCEueg16CQ95ZBpImuw34Q4niVYNa6vH2F8XwO0G8gqHLUIDlO/7vjxrMki94gwbhNBBS98XCVEbgmAevxfXnlPfXyLsdA6LAr95meZNoFOnGKTQtg0pg0JbutwlELY9ENypa6JEyd6Fi9duhQ33HADd5OtW7eip6cHBw8eRGdnJ9asWYNp06Y56x977DFcdNFF2L9/P4444gisXbsWY8eOddY//PDD+OIXv4hDDz0U6XQa7e3tWLNmDT72sY85Za666irMmjULo0ePxnPPPYfrr78e27Ztw3333Wdu34kqGlOREI2NygU+jLtDLSNFAGIhrCqCRf7AIhHsd0NQER4m0LUK11IIx8XFolaCWERY32GRsJRFj1AV0aYRCXEZQftjC0CVSDGyiBZRi91aGR0azBrs5u2330ZXV5fzPZvNCstOnToVW7ZswZ49e7B69WpccsklWLdunSOITzvtNGzZsgXvv/8+7r33Xlx44YXYuHEjDj/8cABlt4jdu3fjySefxNixY/HLX/4SX/jCF/D73/8exx57LADg6quvdtqbOXMmRo8ejQsuuMCxFhPRkLAsy6p3J0YqAwMDyOVy6H//F+jqaq93d/QImq0pbL26bYhebaqEJFOoXyuLnJ81WHVCHE8EmxBJJoWIghCusgxrZqsL1Z+44RcBwWe5NLyayDKs6S+s5I7BHkNV39PidbLteNuDmUyXFv3PXFN0j3N3eXd0BTZFcpAEEzy/ZR0/4SBiViaG6+heNjCwH7mxF6C/v98jPv23K99Hd6/8e3S1t5jrz/4hjL74Ie3+uJk7dy4+9rGP4Z577uGuP/roo/GP//iPuP766/H6669jypQpeOmllzB9+nRPHVOmTMGPfvQjbh3vvvsuJkyYgA0bNuDEE08M1E/CH7IME/o0sBVAB6kQ1rEGq06I8xPBOoJPlKRApZwMxT74pl02QdwFsJuQFuJEJiUWxJmkVxDrTpqrwE3IwaIT/9dvHeAfqUIFUaY8Xv1B8BOQQZPhyIRuI7hH1BgrXzQac9tIEhvLkvoYu9fv378fAJBMes/PVCqFUkns6vTiiy8CAI444oiw3SUkNPbZQURHFMk3GshP2LgQFolgFVcI1/8ykSlNfesnSniovrYPG4FCR9Q2kgBm0RHEugQUwDx8RbFMEKukcJbVxfbF7TvsF8KNJ6JFY8vrf5gMczZ+Itgv1bKgjLDNWgvqJmbJkiU4++yzMXHiROzduxerVq3C008/jb6+Puzbtw/Lli3DeeedhyOOOAJ//etfcffdd+Odd97BF77wBQDAxz/+cUyZMgVf/epXcdttt+HQQw/FL3/5S6xduxaPPfYYgHK0iQ0bNuC0005DLpfDpk2bcPXVV+O8887DkUceWc/dH/HQ2ULoETercAQxhEMJYRURrOoLXPmuamVlywUSx5z2dctEZhVuZCFsoyqIo4xDrIhUFOsIYl55aV2K1mHedjY61mVev2whyUvnLPIV1rkOhQ3Z5l7GunPElQhjvdeCnTt3ore3F9u3b0cul8PMmTPR19eHM844AwcPHsSf/vQnPPjgg3j//fdx6KGH4pOf/CR+//vfOy4RmUwGv/nNb3Dddddh/vz5+PDDDzFlyhQ8+OCD+OxnPwug7K/88MMP48Ybb8Tg4CCOOuooLFy4EN/4xjfquetNAfkMR0hD+wwD5mcI694AVNvVjd0rqVtZCPP8g0VCWEcEi6zAKpPfJALAN25rkNfJArGmFUXClOW50VDxIdb1HY4QoZVY5kMcJryca9uqY9fPb1mEyLfY/ptyCWCeGBahIvJYP2STmeZEYjhG/sIAMLB7ALlxFwX2Gf7ggS8Z9xkec+m/hfIZJkYOMX6MJOqOSStwA7yyCxw2TRQrmBXBQdwgRKKJ6xMstowJM3zx+gPIBUYtxamptoL4ouqg64YSNolHjRFaiX3cHJSRWId9k3CoRqqQHQMpgfiVRYKw17txW4/ZuutJvftgwiqcL4UKI8itjyAqxOAsJQgONXbHCBw2TWYNZkVwUAGsmgBB8ZWxrzAW1a9ATSbO+SG0QrPuCYYuf6aidLCuEboT6eJAGHeJIG2wy92otCNzkZCh+KZJu956w+5XvUU0QdQIOtKJxkfXb5i5cSkJYVW3CLc1mBXBqi4QKiG3/MSALHWuC7sfvm4UYQhqAdUV5LrtmLAW+wkume9vQOuwbZ1Viv5QwZSA5sYk1hW4AQRxlXVYxRosa4cNp+b+KyOICI4DfhZuu0xUbRNEzCExTBAsqm4RftZgRgQLBbCq5Ve2XjVTmFM+gLXYB22rsEkXiDDbRuk+AVRnRvOsYwSxxsQ5pbjATNmaW5V1xjfIRDo/Ya0qiG1E1tuAccpVcD+M2/7DsrkLoX2MeYgEq4qIrhFWwYJl0LXBKtB0KWKYeBzlBFEnqm46QYSwyBrMimCFyBFcVF7vC+O2ipabtRYbd49QFcr19LsNktxB9wHAcFQJE24W0ox1qpiwDrvrsgnqghHELzgCfJP8VMoYEcS1sNiSVZhoEEgME2YwaUEwfbMRpEVWFsJ+bhECa3CVCJYl0NARdTJxHIEoBuTCuG5+wo0khN3bVVn1fdwlYiiIq5DFAFbZRrSMsQ6Hmkxn18NzkVBFFqWGV5eo/pBx3AMJYvc1mkQqQXggMUyEZyRcWHX8g1m3CMYaLBTBvKgSPPwSYVSV5whamSgW1SF5JR2LiXFuGlEI69QvcoPxmzgpKsMQVhAbsQ4DgS3EgKY7DyuE3Uk2eOmXWcLGFZbVybYrMgaI+qcjrIP0OaihYyTcF4imgcQwEQ421XBM/MscVKzCPCHMbifyD7atwW6XCI6rhK+PsCoyy5fq7P0AVmKiggkhHMbSqxshQdJOzSJT+Pn+yhJ4SLb3tRKL0P0NDWSZ06rfr1zSDjlnyF1ChRhc2618EVbafKZFggBIDBNxowazs32FsKg/PP9gnjXYL6wa77sMWeQInqBVDWcV0EpsjBhkWQudqSxwu2wYteAT6XzbAeo/zhEdU75WYk8SkAARJHSFcC0I6WJRE+IwTgShQczPKCLWxPWC5ydqectErhF+/sG2EGajR8jCqvlYJLihq2x0okZE6DYROXEQym6ido0A+IIYMCeKOfUYtQ77+Q3LjqmA1mEl3Nvp+AvrCGEVf2E/EetnCAhicTYpmmNgHSaIqKAjm4gPUU6cq+BYhYMKYZFbhMB/GBCIXztEUKb6tZ+7vFAYq4paFpVJS87yGLtNhM3gFsd9EqEqxP1Es2FB7Os3LBLEgDgiiglBzKZZZv/nCTo/v13VB38/8ekWqLrXO5m4tddFLVjrGa84XwLSlIGOiIYGuiMQI5oo3SMqdXPDFqn4CHOEcJUIBqqFsi0wZBdd3jqXQA6VBjdMjNeg9egiTUrhYx0OKoh19yUqq3CQyBJ+9dlojqkxC7GfoHWWB3zQ0vUfZq3Cfu4RQSbKhY1I4dcWr/6K+PX1G47CpYIsxMQIhI5oYmQhCofGKyMTwpKJclxrMCuCXSJXJVB8wm0h5liNlWbvq76a1vUhjpqwgtjGT0QGEfR1GY9KP0NZvn2iTxgSxEoZ6XQmfaqIac4x7QhhkVXY73c0ES3CLTp1xaKsLbf4VBG3rFgVRa1gcY+Bbhvu5QTRgJAYJoJh8qIX1iqs0Jcq9wi/mMKAthB2i2DL+asa5qpU+Z8RxTJBXEvxGtZn01eo+ghiQMENwODlrFbj6peumYeOSBbVX2tBbC+z2/YsDyeIxZPn0no+wm5Ur29hLaSq7ahYY91CmVde5zqrKroJYoRAYpgYOQiswkIhrJJMgxXCBweFIrhKAMsswgKRWyWKGUHsS5TW4XoKYnu93ccoqIcV2G5XK7oI+1sGHNd6CGLRct3wazzcVmHRpDkVggjhIK4IshTPfhPtkmm+q4SfINYhZlErrEIRVt5gaLU4TdAl6k58jnRi5BJmBrUfPjcuXyHM1iMSwoODVcutA0PlbSpCuNo9gn+xTWRSXqGcSVaJCStf8lqJXXXWzTocFlVBDNROFMdl7AIkzhjeVsGtop6C2G6HXS4b+6DHtcg9wi0KdVIvB0FFgPqleFZ1baggFcSqfeKh2Q+CaFToCCdGJrxoEaEmy7mWHxzyWIO97hG23zDfKpyoCN/y/5UbdcX6K/QL1rUOq1Jr6zCgPkFMRxSzuAVYIz0suPHbN+42PqJYNKaGBbG9rQeeKPaLFiFzl2CPQY8ITovHT0cIs99FglpHKMqswTxUXB94SThYq64JUUyCmBjB0NFNmKOeM4w5QpebXEOQkc7rKyxwjaj8tfJFWPsLVSLYEcBDHCHckqyUG3aD8IhfjiAWWYfrjglBbNfjW1YhQoJsmzj4/ppux8bP11gmijUEMaCfrUv4YKcbPs3nYcbjL6zqHsGKSp5AlQlhGTpiO8xbMTZEm0gQA+ZEcRhBnEqHvj9Y+RKslLlwaCoTm4nmgcQwUT+icpFgrcIyIcyLHFH5nxXC1oGhKmuwI4KH+O4RjiCw17tEcZUgjhO1sKjqRIIAwrkSmIY3NiYFcYgwacPrJVZ4kSAWtGfMbcKu32SCDfa3YL/zhK/o2qHiJiGyCkclhDX9gG0jgK8orpUgpjBsRANARykxcmCtwqJkGpzyVf7AAiFc2p+vEsF+rhE2iUzKI4qrBLGfu8RIRlcYA/F0fwjjzyzaH9lDgF97MiuxpttEEJTjZAcQxEpWYRMRJEy4R7hRCeOm0m9RAg+XlRiQiOKgVmIdQUxCmGgQ6EglGh/GElzlHiETwhw/YWtwaNhVQiSE9xU8rhE6r9wcUdyi4QIRld9wHDERUqze6AhKXVHPE7FRWImZZWEScyjHI1bxYWdFr8gtJopQajasGAwzKS/MpD2e1ZdZxhXFYa3EKoLYtBAeKgFJg64NPHc2omkhMUw0Jn6TXWz3CD8hbMPGDj44NGwZrghha3/esQaX7P8BQCQQmPjBPB9gZb9gUZk4WkejIqifclxFtOy346YrZvaDFayqCUpEVuKIBTEXVUHMUBVbOGgoNZ3sckHEnZ97RBAh7BdDWGAt9ohiExPiZHWQRZhoMOiIJaIl6hnIPKuwKEwRwL/5uG74w5EjKlbi/flhIeyyBltuMQygVEgAAJJpy1mWsP+piGJb9PKsZMZcI3TFcaNGW9AhiIg2IaBVEolULZf0lSdmdQWxqB7RtgYFsbbLhJ+rhMwq7EcYa6zKNU0lakSYPshcHNh27JjE9v8moSgTxAiBjmJiZGJbhf2EsBv3Tb8SNcIthN3W4VIhgWJRbNFNpq1hAZwvAs3mA1xBmB2sBljFEBZMFQGtOulPNFEtSJt2uSAxhVXqUdw2cpcJHirj5i7Ds6DqCNAgVmGVSb26/QjSHuBN4Qw4otiCy2WCh1s8s22RxZcYodCRTdQP0UVXl4rodazCqjeeVLq8zrZCARUXiUoItf0FRwgX+wfLVuKKCC4VEigWEki5LMHVu2dVuUF4vuv6DUdBRFbheopg3T4EFs2qk/5UxpgRwry+e/rpFrKakSGq2g3ofhFWENt1OCgJ4rT8d2Xr0HkAVolNXAsrqCnB6d73VLraimt/t9tLcvazxNThE+s4Sqx8EVbKYAY6k+4+RMNDYphoXGRC2rYKy2Zp2xf2QrEiRoacVWV3iKJHCOcHh0VwqVh2grD/JlPDojgpEMhV/sH1FsJBkVgwA4vgqFw1VKycCn32FcyqyUR42yn2x17u9MVPENvLgeCT69z1RBDKrkoUq7rthDleVPZDV5DKRLeOVTisEJZdE1PDxgdf67ANz2BBFmJiBEJHNDEi8KRdVn0F6bYMHxz0rqv4BduuEfnBJPIHk44gtnEL32TKQtG1jl0vI3ah1AKIDWUhXEsfZb+2FAUeu29ccayTTMRdXtKOqC9cQSxtyyduMVuPKfHLpB0XESjNuCxLn6mY1GGtwjpvvkQC069dP6OASwRL2xC5lNiC2H1dlQliEspEA0JHLdF4sBdlNt2y/b/IKszeXIoFr2W4UJkkt6/gCOHBfSnkDyZRKia8bx+LCY9VuNwMRwDX0284TLY4xbp8RVwQAWxKNAdJ6eyzXZWV1lOngihWEcISQecRxO7ySr7CovjCPoJYdzIdG26QF36QJ5BNTOoMI+RNiTmVeMJ+bcqEsGr9rCBWTRRiGwtE1NhCbBVKRrPGWQUKrUYMQ2KYGFmwk+Zs3EI4la72iSsUgdYWoOi9EZcny6UqVuGEYxUe9hcuW4MzTjPV1uFUBvGcQKea5MFZHkAIq4qaKK3FAQWvinVRSRQr4CuE7WV+Vl3d+MZRZfFTFS12OVmyGVULsExE+/kG85aFEXomhLAurJHAr52k4Jpow+6DnziWkUwDyRheAwmiAolhorHgxQ22v7ORI+yyLa3DF3r7ou++ERQLQDYLFIpli1s67WSGK1dV9hHOHyxbsdz+wsmChUxrqfw/xyJcXlYun8gkq2IKK8UYjoJ6C2Ed8WvCsi1LOMEtL/G/5ayXimIflIQwu84+VrkiPITI1fR95lqFDVrvHHgPJs5YuEKwhRX3JoRpLVwjWPyEcFDCCGAbCr1GNAB0lBL1JUxECZEVmJeQw2X9SGTaPBdoyxbSrS3lG2v/cEa5UiFR8RdOVFwkGJ/glIVSxUpc8okuYePnH1w3/2FTQjiMCDbp0qFSr4pIFgljiaUYUBPGxqJuBPX59U3UYcZ6LHq9bexhsCoiBi9KhkswR/UmQnQtU023HFY4su3Y+8q4NFRNnnP7DLO+wgTRBJAYJobhhdNpAKrSLwNia4ZtFXa9FkxUYm8CANJDnuLFYsKJIDF4AMi7buqZTAKpdKLiGuF9C5hMW0il1CbPDVcYgdWYJwINWGW1hbButjWd7VURuRhUleOEGuPV4SOYAwldVfeIyjKhddhdl294NYOuFYzo9fPxHI7FHTDduDCFM+f8Zy3I9nb2X1lc4bCT2NxEJYRZJL+TVcwj4b4WujFhDbYxuE9W3oJlMB2zlde8PhMjGhLDRBk2xmSDCWIA/hfwZLpsEcm0VvnIJVCxEHcUgM52JNr3ItGRQSZ7oCxsXe4OPLz3UYWLrCusWiwiSXBFmIYQNuR24btdGFRdImTxg4WTz3wsyUFxC7YgMYOD9C1omDgGnhB2u1XYx71fdsaqOorlh4DhTHUKYt/GL6udLn7XSTbWr4goXAncY8O0nUhlwk2eI4gRRoMGOiUIBrdF2L6Iu28EnAl0pWQCpWSiLI6znUhkRwGZViQ62pAY1YZkewaJ9gwy2RKSaQvZNqCtPYlMJoFMJoF0phxJwvYVTqatqnjDiUwSyKQcf2H3jV7Z8ptRFM5B47MqCuFEKqUuhNlUue56RWLE3kYmrMN+VOpV6W+QfvpR1bbad89vovKQEZWLgEv8skLYjtvNLlOGEbyONbxQ5H8k2/qikuKYl9zHjfs6JKoT8M5f0IUXFYJth/2to47+UOsEJTVkxYoVmDlzJrq6utDV1YWenh48/vjjzvobbrgBH//4x9HR0YHRo0dj7ty52Lhxo7P+gw8+wKJFizB16lS0t7fjyCOPxJVXXon+/n5PO7t370Zvby9yuRxyuRx6e3uxZ8+eWu1m0zKyjlbCHI1qHZbBCOFCqewSkU62IJlpLZcp5oHOD4HOdiRz+5DKZZHZvR/ZjlIlkkSyYjQpu0fYVuBkyvW/n4sEzypcEbxaVmJd/1s/ccXbpkJoa7BMAIuolXVYJXubKFyaQsQJadu6hLEQy+pRdZVwlfGIWYEQNpLli2cBTqe57iHOcWqXdf+WsgdBFZGoej0M6xYhKq8bP9393f0mTEWkxtEqnC8CSfHbuUD1aTBhwgTccsstmDJlCgDgwQcfxOc+9zm8+OKLmD59Ov7mb/4Gd911Fz760Y/iwIEDuOOOOzBv3jz8+c9/xmGHHYb33nsP7733Hm677TZMmzYNb775Ji677DK89957+MUvfuG0s2DBArzzzjvo6+sDAHzlK19Bb28v/v3f/93cvhNVJCzLIseZiBgYGEAul0P/+79AV1d7vbsjh3eB1PGDs9H1tfNrR9S2HUfYTsNcOFj+nq/8dd842zvK1t90KxKto4BspyOGSyginWhBOtlS3jZ/EFb/dmDHdljv7kTx7X7k/7wbB/cksL8/7QmvBgCZVgvpbPnmn8mWkEpbjiVZaBVuGY4qkcikuJZfj9VYZBlOC/4HjAlhLd9gEyJYJhijCEHFwhOEIpGo6koQxG3CTzgXit6/4EzY8+ufzILq3tazXC6GpUKY4xfsOd7d54Tbgm0fQ6yPrxvZsctu565PxV9YFZVwZoC+CPZrg42iI6rbNgakW4fdxdzzJ9jsnO63baJkRmzsdlEsdwADA/uQG/O36O/vR1dXl8+Ourcr30e3X34aurLm7HcDgwUc8a9PaffHzZgxY/Dd734XX/7yl6vrr/T7ySefxOmnn87d/uc//zn+/u//Hvv27UM6ncYf//hHTJs2DRs2bMCJJ54IANiwYQN6enrwpz/9CVOnTg3UT8KfmrpJ/O53v8P8+fMxfvx4JBIJ/PKXv/SstywLN9xwA8aPH4+2tjaceuqpePnllz1lBgcHsWjRIowdOxYdHR0477zz8M4773jKqLxmeOuttzB//nx0dHRg7NixuPLKKzE05J08tXXrVpxyyiloa2vDRz7yEdx0002gZ4cIMPE6TVZHseC9uMvqSKbLN4nO9op1OIvU2HZkO4qVTwnZjhIyrVbl/6IjgDOtpfoIYRZdIcxxBZC6RPDqC+NeIHMlsK1afkJBtRxblvdaWbV/9j66PzzCuksolq0O0Sbpk187On61Pr7ByJeGy7j/l+F2d7CFucwlolAY/th9KFY/MERGGCGsetyKyrLuEryPKJYwuw+se4dK6ugR5g6hQrFYxKpVq7Bv3z709PRUrR8aGsKPf/xj5HI5HHfcccJ6bCGerpxv69evRy6Xc4QwAJx00knI5XJ49tlnze8I4VBTMbxv3z4cd9xxuOuuu7jrv/Od7+D222/HXXfdhU2bNqG7uxtnnHEG9u7d65RZvHgx1qxZg1WrVuGZZ57Bhx9+iHPPPRdFl1VkwYIF2LJlC/r6+tDX14ctW7agt7fXWV8sFnHOOedg3759eOaZZ7Bq1SqsXr0a1157rVNmYGAAZ5xxBsaPH49Nmzbhhz/8IW677TbcfvvtEYxMDGgklwjVizvvJigQxSWr6PgPJzJtQHsHEh3tSHS1InlYG1Jj29CeK6DVEcXlTzI1LIRTFf9hZSHsIpQQ1nE18LEgRyKChWIygAAW3exVyqjU6dc3X//jAOJYVyzbdajiJ4oD1Mlzf7Ac6zDffcIX3vaO6HWJXZEoZoWxDBMuKzzxKEMkhIOgs12Qt3NsNk/TfYoRAwMDns/g4KCw7NatW9HZ2YlsNovLLrsMa9aswbRp05z1jz32GDo7O9Ha2oo77rgDa9euxdixY7l1/fWvf8X/+l//C1/96ledZTt27MDhhx9eVfbwww/Hjh07Quwl4UdNj96zzz4bZ599NnedZVn4/ve/j29961s4//zzAZR9csaNG4ef/exn+OpXv4r+/n7cf//9+OlPf4q5c+cCAB566CFMnDgRTz75JM4880z88Y9/RF9fn+c1w7333ouenh68+uqrmDp1Kp544gm88sorePvttzF+/HgAwPe+9z1ceumlWLZsGbq6urBy5UocPHgQDzzwALLZLGbMmIH/+3//L26//XZcc801SCQM+i6NZEqFyC0HiVSmHAkC4M+CLhaAVMEz6SWZGL4ZlqwiSlaxvCyZQtK2EHe2A4OjkDwwBGt/Hla+hNZMHsUDJSfkmts/WFsIM9+VhDCLTNwGEMK+9YuWcerT3l4kVHVQCQ/I1smb6GQvc/dVFkFCWIZpy0CUhipc/rTyUGtpvs9zGMsp4x4RWAjzcPv96sRMdv0uTuQJHfzSDKuIXz93MRPC0X2tc9fPu+a6kg0lUhnxNVnF5cKuT0RE13urUDIbWq2SjnnixIme5UuXLsUNN9zA3Wbq1KnYsmUL9uzZg9WrV+OSSy7BunXrHEF82mmnYcuWLXj//fdx77334sILL8TGjRurBO7AwADOOeccTJs2DUuXLvWs42kLy7JIc0RMbKJJbNu2DTt27MC8efOcZdlsFqeccorzeuCFF15APp/3lBk/fjxmzJjhlFF5zbB+/XrMmDHDEcIAcOaZZ2JwcBAvvPCCU+aUU05BNpv1lHnvvffwxhtvmB+AkUI9J164Z1TbVjaRdbhCEpwbZaa1/GltAdJpJNpakMy1InlIFslcFulDW9DSCWQ7imU/4bYEUm0JJCrRJ5Lt6WEh3JJEomP4u+Ma4fruyUzn8p0EOBZhkZ8wa/1jy0nKcq3BupZgtm3V7f2suzySafFHp4ysLZkLhcyK67vex2rMKyfaRnAsCK37dr21QFEI2+LZcrtRgIk+IbMEe6zGHAtxUFhXAR0rcFghLDtW/doStefnHgEEswCzvsINyNtvv43+/n7nc/311wvLtrS0YMqUKZgzZw6WL1+O4447DnfeeaezvqOjA1OmTMFJJ52E+++/H+l0Gvfff7+njr179+Kss85CZ2cn1qxZg0xmOAFKd3c3du7cWdXuX/7yF4wbN87A3hIiYnME268A2B983LhxePPNN50yLS0tGD16dFUZe3uV1ww7duyoamf06NFoaWnxlJk0aVJVO/a6yZMnV7UxODjoecUyMDAg32nCH5mlz73Ojn5hp1d2UyiWLcPJ8mS7RKk80S6dbkHJGhbLyURq2GJcccNIZFtgdbYjWajcnNszKO3Pw8okPZOFqqy+LUlneWhLsI6FV1bWpCVYJ5mHyBVCZRlg3tLEWtHY9kUhsXhCyM86LLUsB9gvWaY55uFPmCI6aLa6gi1cK2VlVmE/ZEk22MgUbDlZLGJZljlZ5jmeNTjIg31QISw6xkXHqqxOdl9cUSQcq3CKuXa6t3HvN+/8GGHYodKCYFmW1K2CXT8wMIAzzzwT2WwWjz76KFpbWz3le3p60N/fj+eeew4nnHACAGDjxo3o7+/HySefHKiPhBqxO7rZVwEqrwfYMiqvGYKUsSfPifqzfPly3HjjjdK+xhr29Votw6uFaSuZLodEYy/qnhn3lQtSKg3ky0/iyWQayVQLAAy7SVRuBIlUBlamFWjNAoNDQGcRKQDW/nz55lwRxQCAoRITLs2QO4Smm4PQaswpy7UEy76L2hSVNeEKIRPBpmb88x62eKJA1iZbTiSAZcJYB1noNI6w5bpOyBJ0hJ1wpmIVdh33dqINYba6yvKEZ5thkZwAqvvt5xMcZUpmGxUhrPOgpyKM2XZE4dRMiH+eVThCl7hSoRIX3mB9OixZsgRnn302Jk6ciL1792LVqlV4+umn0dfXh3379mHZsmU477zzcMQRR+Cvf/0r7r77brzzzjv4whe+AKBsEZ43bx7279+Phx56yPFRBoDDDjsMqVQKxxxzDM466ywsXLgQ99xzD4ByaLVzzz2XIklETGzEcHd3N4Cy1fWII45wlu/atcuxyHZ3d2NoaAi7d+/2WId37drlPDWpvGbo7u72BMMGyhEo8vm8pwzrsL5r1y4A1dZrm+uvvx7XXHON831gYKDKH2nEwPPNFRHUb5gV5nZdnPYdv+EUR1TbN73Ka04rf6B8A02mgVK53mQyDWDYr9hJ8dzagkShzUnXnEgPIplJwtpfQNK+ObM3cYHA9bhCcNZ7+ir6DtReBOuER1O1AouWRyGARXW4j1+ZKHajEjXAXUZFGKvAsyrbYpYnBFUEsQECWYW59fhvz2anSwBAJlleDsjHVJi2uei9PoQ5xmTbBgk5KUMmjNm67bTzqQy4iK7PMsHdhBEkdu7cid7eXmzfvh25XA4zZ85EX18fzjjjDBw8eBB/+tOf8OCDD+L999/HoYceik9+8pP4/e9/j+nTpwMou3nausOOVWyzbds25030ypUrceWVVzruoOedd54w6ABhjtgc0ZMnT0Z3dzfWrl2L448/HkA5PMm6detw6623AgBmz56NTCaDtWvX4sILLwQAbN++HS+99BK+853vAFB7zdDT04Nly5Zh+/btjvB+4oknkM1mMXv2bKfMkiVLMDQ0hJaWFqfM+PHjq9wnbLLZrMfHuGkJe1ORwYoWmasE7+aXPwgAcJIr86JS5A96RXc6XRYTreXjIJFOIZEpT6qzYa1aIutveZ1EvPKWqVhjayWCa20FVvGvVIF3Y+dZgP2sbyrWYZHgDmMZtrdlE4GEEcQB0i6zLhJVqE6a47o/+G9rW4RtS7ItiB3YZBvQnEQnm0zpRue4NC2EZW0JljtCOMz5wmuvRlbhOMD6/rppbW3FI488It3+1FNPVQrNOmbMGDz00EPa/SPCUdOj98MPP8Sf//xn5/u2bduwZcsWjBkzBkceeSQWL16Mm2++GUcffTSOPvpo3HzzzWhvb8eCBQsAALlcDl/+8pdx7bXX4tBDD8WYMWPw9a9/Hccee6wTXULlNcO8efMwbdo09Pb24rvf/S4++OADfP3rX8fChQsd36EFCxbgxhtvxKWXXoolS5bgtddew80334xvf/vbNKszLjCzqRPAcFSJEuMq4fl/WBAjmUai5J1dbRXz3ptBOlW2ENvbFCruDm7BwbFs+Vp9ecvCWGGD+AQHEd6y5SaswFHMVJeJXJHokbUlqoOtR1S3qmXYLzuenyBm6hBaiE24RwBlYaojiBlULMTOech891iHedkDbQoF7zKR1VjHbUAkCnXEoq51VrEerhBmzzG3dTimFuFiMYFi0dy912RdRONT0yP7+eefx2mnneZ8t10KLrnkEjzwwAP4xje+gQMHDuBrX/sadu/ejRNPPBFPPPEERo0a5Wxzxx13IJ1O48ILL8SBAwdw+umn44EHHkDKdeP3e82QSqXw61//Gl/72tfwqU99Cm1tbViwYAFuu+02p0wul8PatWtx+eWXY86cORg9ejSuueYajxvEiCSqUGhR1Suyuth/0wVuti6kypPokEqXBXRlcolHCNtuF+nKzTNdRAJZWBgs+xK7Zq0nWiEWE2H9bzXqCCSAeX3R7UeUIjgqS5pM0AJyMSQTLjxhHNQ/U+ZmIRLEsrJgBLGqdVhHKOsIYngFcJXf8JDru9svv9KOvW35ewDXE/d4BfUhDiOEgwhkG59rqsctQiaE3fXp9KWJrMLEyIfSMUdIQ6VjdqM6UQPQi0Xpd8GURYyQlWfTM+cPlL/bqZmLjCBOp4Bs1useYf/vTjtq/29vf7AyCe/gUFlMuDNjuf/KNaSsOQAAPzpJREFUkN1wpev446CcLtm0G4SOf6SNbtIBlRusShkV61rQyZt+6XFl5YLUDQjTI1eJWkm6ZY91WHQcs5nfII4k4VknghG6XBE8JPdBdsIV2lFanBCFw+EK7ZCIwyHuym5OznHs/E17v9v4iWJeGD4b1UllEYrHKt9gFSHMlmPd0FgCuH6ETcf85qWnoavF3LgNDBVw1APh0jETIwd6nCMaF1u8+lmHeaiKE3dkCvvm2QokCkXAtrA54ZwCCiqFEFtSn0cdK24UAjiIoA1qBQ4zETPM61+VsFaiBAhsOXdZGTLfY144Nb+Qaa7vyhPqfB7wEq4Qg2U/XjULclV84aFS9TJRmxh2k3BcJFi/YeY4t4qSSXasVZjjdyxEV/RGJIKFk+P8hHAQi3XUPtAEUQfoKCZqRxSuEu6QbPas6VKmfLPMtDoT5gDwJ9WJ4muysBEbKsH+E25rms8kHVt8aGfE8rspB7Aoj3gBrFqPqkVY5Q2FzoQ8lQmmfpnxRIIYEPsRRwAriAGOZZdjQbbyJY8l2GKtzXYdrpCETjtwCeLKco+rRFWmPdd42+LX7TusGpc4JRCXKtZXhePYLWqdiDbMOquYF4tfUVumBGwdhXC9Q6sRIxsSw0Q1btFaq1jDojZUBTRvMh1QLYiB4XJuIVwSCBi7brYNwCs0/F5RozLhTged8r4ZzUJOggvqzhBku1pamoK0JQplJfMZFrWlGi/W7XvsJ4gB8cS6iMSxW6iWvwtEcQVbCLuFsZUvOQLYYx3Ol8r1s222uEIbutoTnWce67BIENvrdVDxExYcZzJRK1qnZAXm9cenL1JM1UMQMYWOZiIcOvGGgWitw8wF24kukWmttFsQ+3O6t9UJqeW+sQLVFrpaEtSCrGv99fv9ggpnjePCzzLGWtWMwvaTF+bPxi+DnWrECvd55rYSs0IXUIs0gWCxhx1XCE6MbdtVQebm4FiAK0KYJ4LLFjuv1S6J0vASu+2hUsVFIlWJQVxZXmUl53wXCWIW97nNswoHFMK+ll0dai2Cg9ZFEDGGjmgiOkzFG1YR0KwgtjPJZdr0hZHuhZ4VJ24ifkVdha6fo8ryMOLXb3vNV8eq8LYRvXbWpep4YkWwrmuE6GFSZHFmrcRVIljiR8yuF5Vhy7r9jd2+wQJRzFp2AbkQdotgUcirJEpClwypqwQv5rCqIJa9OamXENZ9E6N6PYsqNrwhSoUEiuQmQUREvI9+on64k1hEVbdp3P11XdjZuKRa1mwVgagTUotdbxqdG5pJv1+VbRXXG7WaRVCv0K+TZxlWiczid4zwRLGu24RomQ6MIAYgFcVuWHcJnhC2RbBMpDgWYnfmuUooN3siXVVGOkb4C5NwyCzEblcpIJAQ1vbz1UFXBIcRvmQVJkYgdFQT4dF1lQD0RbaqgGZvRpV2HEHMCnzd7FIyf1qZf6hfTFs3poSy6g0vzE1T9cZYJwGshM7Nnfkd3ZOauPXJfNEl9QKoPq7Yhz0/QWwTINOcd3uxyOaK4nyp2joMVFmFWSFcKiRQVLDWJVFyRLedia78f8U6LHKXAPiT5njRJIL40gcRwqYFsKzOsJZfEsHECIaObmLkkXSJCNcF3L7NWmxZ3fjGfu2qpv71q8fGhHVedRJi2DoUyzWM+JVt6/pdfK3FnG2kfRL5C+sIYl3rMLudbBKem0JRa8JcaX/BI4Tzg0lHBJcq1uFiIYFUmh8CP5m2yttX2nNbh5FJDVuJnX6zk14L5fUpjhBmxwMQR1AII4RN+u/61UkimCB8oaOcEGNChJnyGwb03StsgeC+eRUL5ZuknW0OMCuI3dvJ6tQZWx0hrVOfDIPC1yb2AljXWq8rjGX9UIlQoSOIbXjC1r3cD3eoNpE/PKeushtEsSxMnclx1RZhWwi7RbCN/X8qbTnrk2kLpUKi4j+cqliC3X9tNw6XdVhg9fW4S/hZg1n3iKiFsM41MyoRLKu7DpRKw8eJqfoIwiY+RzrR2ARxlQiCjrsELyGHC/elUJSGMYyAa4jUjhGIXiDAuIVwVQhcb1D/apkwFrhR2Agnc8pcK3gT6PwEsaLYTbgTxxQK1W4DIlcDgO+Ty8EbT7hU2cWya4QthB3LsMBNwrYSu9enGOuwlSkOT6BzW4fdOH2W+AeLYguzQpg9tvyEsEkf3ij8gWMkfAmi1tDRT0SPSeswoO8/bIviong7XxtBgBuFtE63ZVqFqCYdskQtegO0Idxe1eWAJeyxKBPGPhPmVKJcCKNTsOKXd3y718vcHmT4uEQIhTFHFIuswsViskr4lgrqlr9UynKiR1h5e/Jekm8dZpG5RtikU3zrL08Ih7EGm7AAq9ZFYpcghNDZQYx83FZit1WNtbRF0S4Pe1KfgpD0uHLUgUjDQIUlaAg83bpUEmOoxBAW1CP1N5ZZiVm3CdW3M4xItl0FnDcZPJcIQG4x5lmHPamWhz+lwvBkOdsqXPK4SrAVVQvkZLriNlGZTJfIJMvt6FiH2WXptFrGOR0hHGVUFtW6RogILhaAYsKca0MtXmQSjcPIOEuI5kPXUsoTxHY9vJuJX2i0ILChsmQEEcwBMOLHG/ebbdjEAUHCo6km2PCLTsGzEvMEsbsfxYK6ddgdLs3tMsHiFsg8UezCyrOZ5SplKn/dcYTdQtjeFdtinKy4RhQLlQl1xQRKBQuZ1hLyB5NAa1lsp/JFlPYDyXYALisxILEOy+BZhVkhHJU1WHdOhIy4n5cEESPobCHMIbNMmXaVAMIJYlmdgLkblkrSBTcRCeZARHkzrYWPeRTZs1SEMdu2bD8lk/CEVmKeIBZNAhUhyFzHjb8Ljv+7nz+yLYI5vsIAPJPm3LhdJ6r9h8t2Xta/OOlyl0gMleSRJXRIpflWYHeEmlqKYBOhEgmC4EJnDdHYBBHE9nYAP5arSTRErac/PGT+qXFA92EnqoQktUohG0QY24gsx5yoFNyoJzJBrGod5mWu4+F2pXBbjmWuES5sIVz+m6gSvLZV2C2UnfV2FImULcctAEkAJQBJZFBCKZWArUnLESyS1SmaVUinhq3CrHuEihCOQgSb9CkmCEIInT1E7fCzDutat2yCTC5j2zIZvkzX6qkabqsW2exinpJVShgRHPb3VxXGfu1xJgcmRGEAeeeLSBDbuAUxIPYPtmEmmyXgEsRV4dSKzF93Sma+iwQLazFmhXGyYFXcI8qCOJlKIJlOIJl3+Q4D6kLYFsA81xC3e4T9HTETwU0kgEuFBEoGfYYpHTPhpnnOJKI2hH397RcpwCS8tmSCM2goLj9E46XgY6rdViOgewwFFcF+GcWAYMey6u/mbo8ninUEsd+YCdwihOHFeFSE8bAgdtUZJs1zBTbMGgAU8lblb6XrFYFbStsW4koc4lSiHGrN7SoBDGekYwV/Oi10CeG6R/CEMO93DuvHSyKYIOoCnVFEPNG1EocJPaYiwKMUnKZcI8I+QNTiBmvyISeI5S2MK4eJhzwbkdWfTemtIojddfi5SwD+bhEyFEUvayV2upiyuBa5EkcAA0A+bznf0xm7TMUqXLCQTJXFczKdgHRv3BZujjD2uEg4nfWKYkcIs7+licgQJqNLEAShDZ1dhHmCTqRjBW0tBbHdnl1PXNCxVDbCzVJ1jGXHUC1EsF8dYV1TROPA7reKIJadJ25BbPc7UhFc7TMMwJnM5u1atTAuW4UtRwQXCuX/ASBTSKCQT1REcbK8fRrID5b/d2e8S1RubY6rBE8I2wLYj2SaL4RNTLIlEaxMqZhAKWnQTcJgNjui8aGzjIg3tRbEdpt2XWG2D4qOhTrKiAyqAjKoK4GKINapL2wdOpgaG5mFV1CmKtKEu4xq6EDVvrMZ6QC1zHZMquTysiRQsJyQaaViAklXqmX7LyuEC/YnUxbCbUiikLfKFuGChXTW3tWydTiRSVX1BYDHJaTKRcI9cS7p+iuKKcwbU5Nh0YLU6VcvBdYlCCEkholoMBk6qx6C2G7Xrk+1rAl0JmPFwV+4FhP7RNRaBOuiYk0OIIi5y9nQgawoZvtjb+NGdLy5BXA6BRT5gjiRSXoywFkAEpWYvxaAZD5faSaBZKoiaFNWWXcWLMdf2BbCB/eXkC+UxXC6kEAmP2zNS2dSjnW5WEggk3X3I1UWwTzLsNtPmpdog90ndsIcLzOdKlGIYNU6TU4SJogRRkzuGERTEUXMYRaT6YtFE6Jq8fpSN0pBnIjy5ht3EczDL1udhiBWijDBE8Xu5TJUM9qlU8MRKRwRnCrHJXZ9B4YnsyVRQrJoW4f5PsS2RdgWwvYH7Umk8xYKGcuxDjvh19JW2frcwkSRUHGREFiFq9wj2OQbMoIeiyZdLETbNaAgLmegM1sfQdjE+M5BNDz1tA4D0QrWevjxReXTHGZfwvQlyG/aiCKYRXRemBTEwPD3TKt/n1SSzbisw4lUCpadyS5t++emvOmP2wHszzvLku1AaX/5/wxKyCNZngSXtsrZ5dIW8oOVLmcSrkgSVSk/0NqWRLYNyLSWkM6WkGmtCO32DJLtGSTaM0i0p8tC3J1qmY0ioeI3rCKETR1/UQthgiC40BlFRIuuIDYtYGtlwa0lOqG7ot531Ugcpiac8epuRHQEsYQqQWxjH/dBfn+RVbgqGoWr7op1uDz9TU0QpwoWSmmrYh0uu0pksiUU8sMT5TL5BAqVKBLpTAJtbUm0tZc/mWwR2Y4SWjuKyGRLSObakOhIDwvhthavEEbFV5gXW1hmFbbXs2PsXh6WKNwi/Oog0yhBODTonYRoeIK4SgS1jI5EQcxS7/2rtdW6UUVwEBQm1AGoTt8Mjr+rgCrbq+x3tEWx22/YPTkN1YI4kS/ByhSBfcOCOIUiypnkKk0WUyilLaQzybIQLpSFcFslnnA6k0BbexKtbUlksiVkO0rIZEsVIZxFokNmERYk1mDDqbHYAtn+3ybs8Rf0fG2m454gagidWUT0mLYOx81lYqQRZkJckN+GV4eIkSQGDLlL2HCFr+IxbwtXrpUZ4PYzkUpVi2hXfW5B7PzfAY8gTubzSBatSlSIEoqFpGMdRkUEH9hfFsy2EO7sSqC1s4hMa9kqnOpKl90jctmyi0QmBbS2VAnhKquw2z2CZxXWiSTBK2eakXTsB6BUNJyBjkKrES6a++wi6otOzGGWoILY3pYInoDC5OtVUz6SqlERoqBWbfMEsV95FVyJOhKpTFngKqYCt0Wvh3QaKBSQSBeBTBHIF5HIJ8sh1iqRJZBPVlJnABnkK01YSKUt5LMWMq2VMGsHkygVy6I1U/ENznYU0d5VQPrQFiTbOxzXiGQui8SotnL7thiGyzVCNEaycWLXhQ2pFifIVYIgHBr0LCYaDtGFN0xkiaBWyGYWxY3kbxgmIUEtonD4tR1Fu6Kx9wuZJoKNQ6zSZ0ZYOoK4IoKduMSFYpUoxn44bhMlAKlM2VmiJVOElS/7/h5MpRwxjFwRxUICqbRVcY0oli3Ah4wq/81lh10iWrNAZ3u5T6wA9vzvshjb8KzCrHtE0DE2QZNbhQkiaugMI+KLimtDGOHRDKI4yqQTUQliXStwral3+6Lx0fVp5cUh9qsXqE7CASBhi99UCla6LIIdbEsxhipCuGwlTgKwMkWkUE7bXNpfQCpfRHu64IRbsxN0JNozSLa3IHlIFslcK5K5bNn629nudYFozXr6VZ7Ylx7uD+sewaRcFu57mNjChL8FXoFSIYEiDLpJcEL6Ec0LndVE7QhiHVb19Q3jqzrSRHE9rUhBf4MoBbAJP+Yg/QjTrsq2ssgGOv1kzknHVYK33m7DLYhtsVkRxIl0yiuK7egTrfBaiQEgn0Qik0Jpfx6pTApWvggrX0IqkxzOHNeSdHyCE12tZQHcmkWio82xBFftPwAMDroy6DHr2IlzPKswCWEzkFWbaADoKCXigYlEHGFFj3vbRrvpxf2GE6R/cfoNgoYoi7p9kVALmpZXNHmP1y6brtkWnXaYNdZSXPC6TiQyKVj7KxP2MkkgPxxZoioqRGc7Eh3tFSHcArS0lvua7Rzuk93vUmF4H3n76hbCbncIP0z4twd5mxLluV3PNzwEESOS/kUIwiBBbhQ6oiJobNUwbdYTA68fA8H7rUyMmf37xUUIR9kXPxEiGgv7N3f5uTqirvIpWcWqj2d7u362Xl4f7HVsOy2t5b/ZbMVFoaXyyVYmsZVdGRLZFiSyWed7+W9lXVerM/ktObYNybFtSB3RieS4UUiMHgWMPQSJj4xD4iPjgPHdwGHjkRgzEYnRE5EYOxmJUYchkTui/LfzMCTaRwPpSr8ylb+ixBrMg4TUKqwyWVHlXNQ9XxtVUDZqvyWsWLECM2fORFdXF7q6utDT04PHH38cAJDP5/HNb34Txx57LDo6OjB+/Hj8wz/8A9577z1PHaeeeioSiYTnc9FFF3nKTJo0qarMddddV7P9bFZG3hFLxJ8g1gjd0GgmXo3HPRxbvW44pi1JcRzjsH2KavKcDccK7BG8vC5ZRSQTPtnWKniiSvBEs30M2OeZO9JIKg2kC97kHIWC2FIMIGH79gKO72+io60smts7gGwnEtlRQGsnkGllBH4JyXQGyWQayB9EItMGy7YOu/tqC2L3g4TMZ1hF2AaFIjloU+/QahMmTMAtt9yCKVOmAAAefPBBfO5zn8OLL76ICRMmYPPmzfif//N/4rjjjsPu3buxePFinHfeeXj++ec99SxcuBA33XST872tra2qrZtuugkLFy50vnd2dlaVIcwSw7sQ0dSY8B+2GcmCOG5C2FRa5Xpiqk8qY6EjhDREsEgQq4pgpw13mDWg+jxwn1tuIewWx6mCVxRXqIo+AQBoqZ4I19Fetu5mO5FoHQVkO1FIlFAqHih3CcP1ptGCZKoFKKXLH1voirLpMfvLtQrb+8li6tyThSqs5fltWpiPQKswAMyfP9/zfdmyZVixYgU2bNiAL3/5y1i7dq1n/Q9/+EOccMIJeOutt3DkkUc6y9vb29Hd3S1ta9SoUb5lCLOQmwRRH0z71YmI0yt3U9TLLSKsEFZxgXC/bhZ9gsBr270sjkLYvb/uPjKuEACqXSFcaAlhxi0gkcoMC0X2k271fs+43BPc7hRZjntEtgWJVKrsPpFOI5HNIpF1uVm0tpTrybR6hKp7H5MQ7Bc7vuwEQJFVOMX8H6UQZus0cYwTgRgYGPB8BgcHfbcpFotYtWoV9u3bh56eHm6Z/v5+JBIJHHLIIZ7lK1euxNixYzF9+nR8/etfx969e6u2vfXWW3HooYfiE5/4BJYtW4ahoaFA+0aoQ2cdEU9EFuKgltqwIdjiIqhrfaM05cctQ3efwlqy6vlbyvot89l1rfezBNvLbBEsdI9gJ4yyll4XwhfKbCpotp5kQXysuKNPsKmTWypCONPmiOJCqSwISig6Qtj5m0gNP7CVCt5JdNx+D4t+T7a5oC4TjU4DuG0UDYdWK1ZCq02cONGzfOnSpbjhhhu422zduhU9PT04ePAgOjs7sWbNGkybNq2q3MGDB3HddddhwYIF6OrqcpZffPHFmDx5Mrq7u/HSSy/h+uuvx3/91395rMpXXXUVZs2ahdGjR+O5557D9ddfj23btuG+++4zsNeEiBF+hhOxJugFOIw4NRlmayQj+11MCOGRKC78xkX3WGcmcfFEsJ+fsKc6HQuxq92q/4HqcGyu88oCqs+zZMVtwnGd4IQ8S6fKVmS3dbkihMsuD0OOa4QtiJOJ1PAYVESwVczzBTE7Gc79l500pxqZYyRhShAXmYcqWWSPGPD22297BGs2mxWWnTp1KrZs2YI9e/Zg9erVuOSSS7Bu3TqPIM7n87joootQKpVw9913e7Z3+wHPmDEDRx99NObMmYPNmzdj1qxZAICrr77aKTNz5kyMHj0aF1xwgWMtJqKhSc5yIrbILsAm/YfdiLaTiRneuqDCOmi/o74pmxLAQHOJYCCcEGbHRGINVvEP9oXti30O+r09ca+X/I62MK5K0+wHm8ijYnUGxG4gttW7bBk+MGwZ5olg9//uuMJumlUI25i0EMdU/LLY0SFUaGlpcSbQzZkzB5s2bcKdd96Je+65B0BZCF944YXYtm0bfvvb3/rWO2vWLGQyGbz22muOGGY56aSTAAB//vOfSQxHSJOd6UTDEZUg5uFXFysSRkqSD5MiGGg+IRwGkRAOaQ12W4GVLMJshAhp5T7rK8LamSjnR8Fnf/IHkQTQkmlzRLG9T457RP5gWYDnDwwfs7bbBOt7nRr2h/ZYhRtdCKuIT5V98nkLQAxjWZbjY2wL4ddeew1PPfWUknB9+eWXkc/nccQRRwjLvPjiiwAgLUOEp8HOdmJE4meNqKUgriU6fY/ixmxaBAPNKYSDWIUjtAbzhLCzzO4Lr88R/EaOIA5wnlrFfNlDNJkGcBAoFpBMpcsh1Ip5776wvsI8n2G34E2mq4Wwm0Y7XlUFa5DkRrzydRDIhbyFgqX9vkFcX0GvriVLluDss8/GxIkTsXfvXqxatQpPP/00+vr6UCgUcMEFF2Dz5s147LHHUCwWsWPHDgDAmDFj0NLSgtdffx0rV67EZz/7WYwdOxavvPIKrr32Whx//PH41Kc+BQBYv349NmzYgNNOOw25XA6bNm3C1VdfjfPOO88TkYIwT4Od8QTBoZEFca2JQgDb1Gr2vWlEfVS54esK4Rq6RAiFsNLGmr+bxHVCKohl4qxwsBwvOJkG8ihPpst723Qm7rmFcP6guJ+se4RbCLOJNhoFXWFqIttnEEoB3Xpiws6dO9Hb24vt27cjl8th5syZ6OvrwxlnnIE33ngDjz76KADgE5/4hGe7p556CqeeeipaWlrwH//xH7jzzjvx4YcfYuLEiTjnnHOwdOlSpFLlczSbzeLhhx/GjTfeiMHBQRx11FFYuHAhvvGNb9R6d5uOBjvriRGLinXYLseDBLE/QSJD1DsGKo+wVinV/of1nxT5rdooCGFdEcwKYN8oEry+uFEZK9bf2D1utksCXIKYV697rIoFAAe9dSbTsAaZEFRudwhbCBcLw+mh7XYYNwiPewS7//U+tnUJenzWUhCPkAnL999/v3DdpEmTYPlYrSdOnIh169ZJy8yaNQsbNmwI1D8iHA125hMjGhXxMVJdJqLElAgGxGNfK6tw0Jt/FH3xu8mrjJUha7CSa4RfX5g+KcP6G7utxC7/eI8PMVuGd+7b1t6k4LrgFsOifrmFcLpV7ifcaEK4Xqieg4ZFcL5gIW/QTSJfNFcX0fjQ2U80HvV6zddoYdl0RbDfTU5HCEdBECEcJ4EjmJxVUyEsm7zJGSu/fjjtiB5k7XYq66qy2rGC2C5bZSlmcC9zT8Cz4xT7WYSbXQhHub9Bry8EUUea7ApAxJ6wr6ab2TrsN25hblK6QtjUzTZOlmA3QWMtGxTBAN8dwtcirCCEVfvhSejhDtHGjo9L9HoEcVWFHCux7BiwhbA7LBtZhOsDiWCigaGrABE/wrpLREm9rMMyn+l6iGAgmocOEzfOegtxoHpsOCKY/V+repk1GFAXwgGswcqw5zFPEPs9vLLnObtfthXYXT8TNaJKCPvgSfmsm6ik1piMC+yH7uRbw/0q5i0USuZcG4rkJkG4IDFMxJMwF3lV67D7tawOpgRxEDGp09cgPsFuwrhFiB5Wor5x10oIi46BgCJYmDLZXTWzXssazCOgNVjWJ34h11ipWoh5iI4pnpVXJIQ58YYB/r6HFsK1emCPWhDrPmyTJZhoQEgME/GlllYPXcIK4qhcOcIKYMCcNTiuv50fqv2WjYWGCBat8zQlSKKhZA326Z9f28qIIo+wrhOuthOVv4FtdLwUyiJrsKJl2AjuFMS1EsTudv3KqWLKGmxPhiSImEJimIg3tRDEQdtw31hVL/RR3IzDpAJmqfckuTCYEB0Gw7apimA/tFwiNK3Vun0JhFsQA9yYxEJRzIponrsQK4LtZTxrMLOtaN8DWYXj8PAnE8X1EMIkgIkGoQHucETTE5VlxeTNq5ZiUeUGY0IA20S9b377o9p+WCucocl6ftbeIEJYySWixkJYSzCy4dcAvih2QrNlhhNquAVxsloEewSw3Zb9nbUGKxwfxoRwPSfmBW07SKKZGongQsFwBjryGSZckBgmiDijc1NpBAEc5CYpCwdmghqI4KBRItz/a1mDI6ZKMOr6oPtYioGKMHbWZwQd4Qhg9rvgWGd/EyOT5RoxMkWYuMFkDSZGCA145hKEAo0aYk31RhLFK9k4CWBRPX591LEORyyCw05ICy2CI7AKcwWj6fjPrD++6oMbz3WiFi4hbBi4RhLEtRTCjXg9JpoGOjqJkUsjCWLTrg8y2Ju13xjJQlvJiMJCpCqIAbEoMSTegojgEopIgm+BVE6eoTKuCiHUdAlkDXb3R9TvMH3jCWBBnZH5Rot8meOMaRHMK1t1ng6ptSkgn7eQNxhajTLQEW4a5MwliDqhc3MLIrLCTn7TscTw9kU3aYbqZMOg+6Uy3qoPORHFLFYVwSVwwnVxhLBxlwiDsYSFrgMyQZQURG1QfTAVuE341hVwP5vOPSJqa3CjGCAIwgUdtcTIJox1WPcGp2tB1U2GETTrGaBmDTZxQw8r7lUtbLWw+gd0h+CJYBFK1uAwv7ukXdVQbh50IwwEQfV3lRwjocV+MxPUGuz3YN1IDwxE00FHJxEMk5O1eAQROqKbcRDhFPbC7WdBDfP60Q9dIWzqJmUixjFbXta3KAWxQog0VRGsbQ32swSL/FI1H3C0hKCpY9PGsDCKLGHISCPIm6agQrjqutOE4000DCSGCTXCvHLWnVQSVODwtmsUv2FTs7KDWIR10BVFYV0V/I4d069oJTFoTVuDpeHSZL+9ASGsjGkRDBgVwiSCNaiVEBZecwbl7ftQKJhNx2yyLqLxaQCVQNSViPwuuUQhWuslhHVEhEq8WBWido2otRB216PazyAxizX8grnfK0JYNDHOadrkBDlPxYaP8SgEsA0JYQe7/zXpk0khDAxPiBRdc3iTGclNgogxdHQSfGqdTSlO1tuwF21VMaFjDfYThDIhbMJqWO/sWjWarR9EBMtghY7vBDlddCdAijDlC6yYoloFU9Ef4iSAbSLP+ufGtBC2EUXv4CwvWcXa7jNBaBIjBULEhnoLn0YmqBAO428blQ+wSvtRW4X96jXh211BJ1SarhD2zSAnOz50UmQHGY8oLcEBGMkiGKihEDYR9UUFSXznsHG33RTzQCFpzrWhWDJWFTECIDFcCxpp4oBJEVNP94h6EIUQBtTFkGn/YCBeQli1rQDjFSZxRs0myDkVGjpfYiaCTRJXIcxivJ8mzr2gk6MFQpgswkQjMEJUSAMgCzofF0gI66MjFqOaJAfUbqIcYDZqRK0QCOGgKZQDJc4A1KzBQYSwiax7Ya9Phs5le7zqHh7N9FuICkb7G+Z8C/t7S/yDWSFcdpMgUywRXxpciTQYcRbEjSKE7brdwiEKAWbyJhNVyDRAL5EG2yd227CvVRtBCCtYg3nfhVULfIKr1qlYg5n+eSs24Bsc5jg0kWZYs46aW3dVYmDXexJYHM4xTf9gRxBrRFwhiFpDYrjWxFEQR5XmV0YYISz7n0fQGLc6RBU3WEcE6Y6p7n5GLYRVAvj7IbOQ10gIa2ePC+oWEdYabNLNpVHf8MRBXPoRRR/9QvepZIhkzi2eNdhpzoAQzhcs5A36DJtM7Uw0Pg16BWtw4iiIg1CrZBpB2/LbNuxNJqoMcrriJ2ohEjarXJB6deMHKyYWCSp8nWp1LcGqbwm4jdXYJUJWvt4WUVOYiHsN1GY86inUddJhcx4yeUKYfIeJODNCrnBEYFQvuGEv/o1qOWKptQAG6iOCVV+dR1U3bxtVcRjAGixC9Ko+VHQIN1G5RZi0BusIo7gQtZCM0mWiFiI4jEHGxzWChDDRiMTwKtYkxMU6HNUFPY43yCAEdQ0YqVZgoLYi2EZlnAJEi+A2pSOAAXV/YBYdV5d6JUcxLYRNi8h6Wk8bfV9070EKD5luTPsIFwoWCgmDGegscpMghhkhioWoO40mfoMEovfbbiRbgYHaz1zXGSdRAgCEs0rJ3CICWYJtokqpHCbzoW67tTzn4+rbG1YQ13u/3L8h7xjxOSZFfsJuIUxWYaIRaDAFQ8SCeghfU756puPmjnQBDETnW83DkG8wEPwmLBXAQHBLMBAfa7CIuIRErLdI1EElQYpsm7ig8pv6+Adzq02kSBATsYfEcL2Ig4uECnGz+OqK4jDhwppZBJu6Wau0pyuAedtoWIPtm7MsdJdUAAPBJsaZiACi06bONSYOIjiOAlEX2fWpkfdP4fyKWvAW8uQmQURHzJTOCKVUlE8AihOm+hhV/F8b06G8VOo2ERcYMC+KVKi1CPZD0wol3C6gSwRPCEcigG1Uk6KY8kFVjQBSKxFsOvxh3Bkp+8P53bgxhAP64RNEXGgAdTaCiJM1OMzNTfUGGrUgDkpUMYFtGk0ER/kb6e5f0NTTCGaZ0hLAQcYpqt887FuLWlqCZW3F8frQ7Eh+ryARWWxIEBNxhsRw3Iib9bjR44uGiZEb1St+1W2DUm8BrEqQSAWCbUKFSvOzAPPK+BGlC0yUKZVtTD0sy/oah2OQKKNwnVdxPXK+I0UZ54iGosGVzgijnkI4KtEblXU4zE3fRH+CiuB6CmCgcQL562xnb+4SulKfYN4Y6LhA+Lk8BbEGq5wnjSSCZcsAEsL1RvN6H+itC1LS77rk8xbyBn2G8+QzTLggMVwL4nDhbzQLr6mbe5gJdDziNCEurgLYxCt4zeNVKwIEEMz6G9T9QHU/g066MnGu1CMzZBzRzXwYNVG4mGj8ZsIYwhQdghhhJOvdgaahWBj+hCWV1v80AqXC8EcH99iyH792/NpKpr0fFtkYi7YJi1+/VcbABKrHGjuGvHGJ6nhlx8A9drxxYo8N3nEiOw7c+P3+YSeVBTlXWIIco2F/pzgYB1hMjGUYgly3g/wGBoSwCL/oLMlEY8uNFStWYObMmejq6kJXVxd6enrw+OOPO+sfeeQRnHnmmRg7diwSiQS2bNlSVcfrr7+Ov/3bv8Vhhx2Grq4uXHjhhdi5c6enzO7du9Hb24tcLodcLofe3l7s2bMn4r0jGvvobFR0J2tFJBTsFJp+n8D4iTEdUaoreHn169zwZCJBVfiZQqX/9RC/LEFEb1TiVyRweeOkc2yo+jEH/f11jusw6B6jpn6ruArhWhHF8a8zoVmBMNf9suit/pigmLfK4dUMfYp5PTeJCRMm4JZbbsHzzz+P559/Hp/5zGfwuc99Di+//DIAYN++ffjUpz6FW265hbv9vn37MG/ePCQSCfz2t7/Ff/7nf2JoaAjz589HqVRyyi1YsABbtmxBX18f+vr6sGXLFvT29gYfOEKJBjEZNjj2zct98zGVRAIxe2UV9lWzzs3S9E0sqBUvKuuvDNVxUrF8ywiy3yEn4zjV69xEdaNAmIoSEkYI6wrDWvsFm36j1EhCOOpQcrVGQwiroJNIwz6PGz2axPz58z3fly1bhhUrVmDDhg2YPn26I1jfeOMN7vb/+Z//iTfeeAMvvvgiurq6AAA/+clPMGbMGPz2t7/F3Llz8cc//hF9fX3YsGEDTjzxRADAvffei56eHrz66quYOnVqdDvY5MTsjB3h2BdeVhTLLlSGQkgFRekCFmZiT618ImUEEXVxFMBBxkk0GUxV5IWM7iDDrkN5IpxMAOvElA4Q35hbxhT1mBzXDEKYRy1CTprG0NgGcYvgbdPooleFYrGIn//859i3bx96enqUthkcHEQikUA2m3WWtba2IplM4plnnsHcuXOxfv165HI5RwgDwEknnYRcLodnn32WxHCEkBiuBzwrsX0h9ZmpXish7HtBM53WWLadCmzdKjcmXRFcD7ETZQSBICJY8+HMLxyTH76h0GRRIIJMkouTEDb5EFgvazAQbyFcRwtwzRJVRCjSVftowl3iAAqAwQAQB1A+LgcGBjzLs9msR7C62bp1K3p6enDw4EF0dnZizZo1mDZtmlJ7J510Ejo6OvDNb34TN998MyzLwje/+U2USiVs374dALBjxw4cfvjhVdsefvjh2LFjh87uEZqQGK4Ftg+g+6IkE8TstjWwOISyAEedyc30zTQOIjiIAI5SHPEmfwnWm0rF6mf5lUaE0LECqx4/cRHC9RDBQPMJ4TDUIDSZ75sRINbja0rMt7S0oLu7G9fs+E8j9bnp7OzExIkTPcuWLl2KG264gVt+6tSp2LJlC/bs2YPVq1fjkksuwbp165QE8WGHHYaf//zn+Kd/+if84Ac/QDKZxJe+9CXMmjULqdTwWCUSiaptLcviLifMQWK4lrB+wjy3CXu5xk0sEusboCfKglowa30xj3oClB8mHxzCiDwZAkuwLPtUmOxvvJu+55hUEcFhUiUDwYRwnEUwUF9r8EglwmgM2hi+dur4AavU5SHE5N7W1lZs27YNQ0NDBnrmhScyRVZhoCzMp0yZAgCYM2cONm3ahDvvvBP33HOPUnvz5s3D66+/jvfffx/pdBqHHHIIuru7MXnyZABAd3d3VXQJAPjLX/6CcePGqe4WEQC6CtYDkZU4gBXY7+IlTT6AgP6YojKicrLyInj1hLm511sEA3oPESayoKlij4OPCFYVwLzMU4ED7vMEr6qFmFdG9fetpRDW8RVPKV4n4iCEY2y11MbwBLS4wrsf6OyTb3zvgLS2tqK1tdVIXSaxLAuDg4Pa240dOxYA8Nvf/ha7du3CeeedBwDo6elBf38/nnvuOZxwwgkAgI0bN6K/vx8nn3yyuY4TVZAYrgUiYSNzi1C0DrPWNd462XZVbbOoWNyiSmAg2kbHzSGuIhgIN8krDDzRay/zEcFVglgx5WoJRakg5lqF3aHRbGTLnMZCWoVrJYSDTJhUORZICJvFUHSUIGi/tWMx8BvL7jFsGQ9V52VjPygsWbIEZ599NiZOnIi9e/di1apVePrpp9HX1wcA+OCDD/DWW2/hvffeAwC8+uqrAMrW3u7ubgDl6BHHHHMMDjvsMKxfvx5XXXUVrr76amdi3DHHHIOzzjoLCxcudKzNX/nKV3DuuefS5LmIoTjDCtx9992YPHkyWltbMXv2bPz+97/Xr4QXG9Rvsg/HEibzr1SJ7Vi1TiXuql9iAraMqK6gSTVUUH3NrZsYwb2dbkxQ0b7KEkGwZUQPH0HHVUEIu+OMuv86/6PofJwuKcSpFglnJSFsjwXvmGPHJgz1FsIqcYZrHeWkWVE431Vj8hqN5V6nBw3e/UV4rzF9XsaAnTt3ore3F1OnTsXpp5+OjRs3oq+vD2eccQYA4NFHH8Xxxx+Pc845BwBw0UUX4fjjj8ePfvQjp45XX30Vn//853HMMcfgpptuwre+9S3cdtttnnZWrlyJY489FvPmzcO8efMwc+ZM/PSnP63djjYpCcuiBN0yHn74YfT29uLuu+/Gpz71Kdxzzz2477778Morr+DII4+UbjswMIBcLof+t+5DV1e7d6Xopsta6DjiJYx/poPupKOgFmIXVjEvXe8mkcqIVwYRLLqixkR2MJVtVH1ddW4msvERHV/MscW1CkNsIfbtklvwwht3tCoOKU8I8747nTE8Nrx1ojJBCPsGwMRET7IKy1EQwSqEcjHgLTPhCx81gvNzYGA/cmMvQH9/vxNnlyDiAolhH0488UTMmjULK1ascJYdc8wx+PznP4/ly5dLt5WKYUBfEPvM6OehFZoqrECuoCN6/agSxSGiIAjL+JXnoTthMIgPdhhrioorhKIQlolgnVenjuiViWFVIWwiaYbs2KmlEDYlcOLgHgE0vhg2IISNGCx4y+IuhiXXsIHdA8iNu4jEMBFL6J2ahKGhIbzwwgu47rrrPMvnzZuHZ599tqr84OCgx5m+v78fADCw94C4EdENuEq4pKrLQHzR9RfBRcFyfQFsyS7Qls/FOyE/BBMpRlhXjdcQs25Ist4eE86EB2dcFSdDCC24nN/DsJXdPd4JP2HkHgP3smQKwGBl/SBHCJfTg9pCWOY3LIPnAjEshpN8q7A9hopCmD3+fMfEpup8Y48d97aV8QqDyrHhB3tM2+j0j6zCYirngwiVCctBET08OgQZ23qKYeYeM7B3P4DypDOCiBskhiW8//77KBaLVSFNxo0bxw2AvXz5ctx4441VyydOXxRZHwmCIAiiUdi7dy9yuVy9u0EQHkgMK8DGIRQFwL7++utxzTXXON/37NmDo446Cm+99Rad/DVmYGAAEydOxNtvv02v5GoIjXt9oHGvDzTu6liWhb1792L8+PH17gpBVEFiWMLYsWORSqWqrMC7du3iBsAWpXHM5XJ0oawTXV1dNPZ1gMa9PtC41wcadzXIKETEFQqtJqGlpQWzZ8/G2rVrPcvXrl1LAbAJgiAIgiBGAGQZ9uGaa65Bb28v5syZg56eHvz4xz/GW2+9hcsuu6zeXSMIgiAIgiBCQmLYhy9+8Yv461//iptuugnbt2/HjBkz8Jvf/AZHHXWU77bZbBZLly6V5jonooHGvj7QuNcHGvf6QONOECMDijNMEARBEARBNC3kM0wQBEEQBEE0LSSGCYIgCIIgiKaFxDBBEARBEATRtJAYJgiCIAiCIJoWEsMRcvfdd2Py5MlobW3F7Nmz8fvf/77eXYoNv/vd7zB//nyMHz8eiUQCv/zlLz3rLcvCDTfcgPHjx6OtrQ2nnnoqXn75ZU+ZwcFBLFq0CGPHjkVHRwfOO+88vPPOO54yu3fvRm9vL3K5HHK5HHp7e7Fnzx5Pmbfeegvz589HR0cHxo4diyuvvBJDQ0OeMlu3bsUpp5yCtrY2fOQjH8FNN92ERpt7unz5cnzyk5/EqFGjcPjhh+Pzn/88Xn31VU8ZGnfzrFixAjNnznQSM/T09ODxxx931tOY14bly5cjkUhg8eLFzjIae4IgAAAWEQmrVq2yMpmMde+991qvvPKKddVVV1kdHR3Wm2++We+uxYLf/OY31re+9S1r9erVFgBrzZo1nvW33HKLNWrUKGv16tXW1q1brS9+8YvWEUccYQ0MDDhlLrvsMusjH/mItXbtWmvz5s3WaaedZh133HFWoVBwypx11lnWjBkzrGeffdZ69tlnrRkzZljnnnuus75QKFgzZsywTjvtNGvz5s3W2rVrrfHjx1tXXHGFU6a/v98aN26cddFFF1lbt261Vq9ebY0aNcq67bbbohugCDjzzDOtn/zkJ9ZLL71kbdmyxTrnnHOsI4880vrwww+dMjTu5nn00UetX//619arr75qvfrqq9aSJUusTCZjvfTSS5Zl0ZjXgueee86aNGmSNXPmTOuqq65yltPYEwRhWZZFYjgiTjjhBOuyyy7zLPv4xz9uXXfddXXqUXxhxXCpVLK6u7utW265xVl28OBBK5fLWT/60Y8sy7KsPXv2WJlMxlq1apVT5t1337WSyaTV19dnWZZlvfLKKxYAa8OGDU6Z9evXWwCsP/3pT5ZllUV5Mpm03n33XafMv/3bv1nZbNbq7++3LMuy7r77biuXy1kHDx50yixfvtwaP368VSqVDI5Ebdm1a5cFwFq3bp1lWTTutWT06NHWfffdR2NeA/bu3WsdffTR1tq1a61TTjnFEcM09gRB2JCbRAQMDQ3hhRdewLx58zzL582bh2effbZOvWoctm3bhh07dnjGL5vN4pRTTnHG74UXXkA+n/eUGT9+PGbMmOGUWb9+PXK5HE488USnzEknnYRcLucpM2PGDIwfP94pc+aZZ2JwcBAvvPCCU+aUU07xBNY/88wz8d577+GNN94wPwA1or+/HwAwZswYADTutaBYLGLVqlXYt28fenp6aMxrwOWXX45zzjkHc+fO9SynsScIwobEcAS8//77KBaLGDdunGf5uHHjsGPHjjr1qnGwx0g2fjt27EBLSwtGjx4tLXP44YdX1X/44Yd7yrDtjB49Gi0tLdIy9vdG/T0ty8I111yDT3/605gxYwYAGvco2bp1Kzo7O5HNZnHZZZdhzZo1mDZtGo15xKxatQqbN2/G8uXLq9bR2BMEYUPpmCMkkUh4vluWVbWMEBNk/NgyvPImyliVSS2N+nteccUV+MMf/oBnnnmmah2Nu3mmTp2KLVu2YM+ePVi9ejUuueQSrFu3zllPY26et99+G1dddRWeeOIJtLa2CsvR2BMEQZbhCBg7dixSqVTV0/yuXbuqnvyJarq7uwFUW0Pc49fd3Y2hoSHs3r1bWmbnzp1V9f/lL3/xlGHb2b17N/L5vLTMrl27AFRblRqBRYsW4dFHH8VTTz2FCRMmOMtp3KOjpaUFU6ZMwZw5c7B8+XIcd9xxuPPOO2nMI+SFF17Arl27MHv2bKTTaaTTaaxbtw4/+MEPkE6nhVZXGnuCaD5IDEdAS0sLZs+ejbVr13qWr127FieffHKdetU4TJ48Gd3d3Z7xGxoawrp165zxmz17NjKZjKfM9u3b8dJLLzllenp60N/fj+eee84ps3HjRvT393vKvPTSS9i+fbtT5oknnkA2m8Xs2bOdMr/73e88YZCeeOIJjB8/HpMmTTI/ABFhWRauuOIKPPLII/jtb3+LyZMne9bTuNcOy7IwODhIYx4hp59+OrZu3YotW7Y4nzlz5uDiiy/Gli1b8NGPfpTGniCIMrWbq9dc2KHV7r//fuuVV16xFi9ebHV0dFhvvPFGvbsWC/bu3Wu9+OKL1osvvmgBsG6//XbrxRdfdELP3XLLLVYul7MeeeQRa+vWrdaXvvQlbsijCRMmWE8++aS1efNm6zOf+Qw35NHMmTOt9evXW+vXr7eOPfZYbsij008/3dq8ebP15JNPWhMmTPCEPNqzZ481btw460tf+pK1detW65FHHrG6uroaLuTRP/3TP1m5XM56+umnre3btzuf/fv3O2Vo3M1z/fXXW7/73e+sbdu2WX/4wx+sJUuWWMlk0nriiScsy6IxryXuaBKWRWNPEEQZEsMR8q//+q/WUUcdZbW0tFizZs1yQlgRlvXUU09ZAKo+l1xyiWVZ5bBHS5cutbq7u61sNmv99//+362tW7d66jhw4IB1xRVXWGPGjLHa2tqsc88913rrrbc8Zf76179aF198sTVq1Chr1KhR1sUXX2zt3r3bU+bNN9+0zjnnHKutrc0aM2aMdcUVV3jCG1mWZf3hD3+w/tt/+29WNpu1uru7rRtuuKHhwh3xxhuA9ZOf/MQpQ+Nunn/8x390rgOHHXaYdfrppztC2LJozGsJK4Zp7AmCsCzLSlgWpbchCIIgCIIgmhPyGSYIgiAIgiCaFhLDBEEQBEEQRNNCYpggCIIgCIJoWkgMEwRBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCGLEMWnSJCQSCSQSCezZsydUXaeeeqpT15YtW4z0jyAIgogPJIYJgoglxWIRJ598Mv7u7/7Os7y/vx8TJ07Ev/zLv0i3v+mmm7B9+3bkcrlQ/XjkkUfw3HPPhaqDIAiCiC8khgmCiCWpVAoPPvgg+vr6sHLlSmf5okWLMGbMGHz729+Wbj9q1Ch0d3cjkUiE6seYMWNw2GGHhaqDIAiCiC8khgmCiC1HH300li9fjkWLFuG9997Dr371K6xatQoPPvggWlpatOp64IEHcMghh+Cxxx7D1KlT0d7ejgsuuAD79u3Dgw8+iEmTJmH06NFYtGgRisViRHtEEARBxI10vTtAEAQhY9GiRVizZg3+4R/+AVu3bsW3v/1tfOITnwhU1/79+/GDH/wAq1atwt69e3H++efj/PPPxyGHHILf/OY3+H//7//h7/7u7/DpT38aX/ziF83uCEEQBBFLSAwTBBFrEokEVqxYgWOOOQbHHnssrrvuusB15fN5rFixAh/72McAABdccAF++tOfYufOnejs7MS0adNw2mmn4amnniIxTBAE0SSQmwRBELHnf//v/4329nZs27YN77zzTuB62tvbHSEMAOPGjcOkSZPQ2dnpWbZr165Q/SUIgiAaBxLDBEHEmvXr1+OOO+7Ar371K/T09ODLX/4yLMsKVFcmk/F8TyQS3GWlUilwfwmCIIjGgsQwQRCx5cCBA7jkkkvw1a9+FXPnzsV9992HTZs24Z577ql31wiCIIgRAolhgiBiy3XXXYdSqYRbb70VAHDkkUfie9/7Hv75n/8Zb7zxRn07RxAEQYwISAwTBBFL1q1bh3/913/FAw88gI6ODmf5woULcfLJJ4dylyAIgiAIm4RFdxOCIEYYkyZNwuLFi7F48WIj9b3xxhuYPHkyXnzxxcBh3QiCIIh4QpZhgiBGJN/85jfR2dmJ/v7+UPWcffbZmD59uqFeEQRBEHGDLMMEQYw43nzzTeTzeQDARz/6USSTwZ/73333XRw4cABA2WdZN/MdQRAEEW9IDBMEQRAEQRBNC7lJEARBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCIIgCIIgmhYSwwRBEARBEETTQmKYIAiCIAiCaFpIDBMEQRAEQRBNC4lhgiAIgiAIomkhMUwQBEEQBEE0LSSGCYIgCIIgiKaFxDBBEARBEATRtJAYJgiCIAiCIJoWEsMEQRAEQRBE00JimCAIgiAIgmhaSAwTBEEQBEEQTQuJYYIgCIIgCKJpITFMEARBEARBNC0khgmCIAiCIIimhcQwQRAEQRAE0bSQGCYIgiAIgiCaFhLDBEEQBEEQRNNCYpggCIIgCIJoWkgMEwRBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCIIgCIIgmhYSwwRBEARBEETTQmKYIAiCIAiCaFpIDBMEQRAEQRBNC4lhgiAIgiAIomkhMUwQBEEQBEE0LSSGCYIgCIIgiKaFxDBBEARBEATRtJAYJgiCIAiCIJoWEsMEQRAEQRBE00JimCAIgiAIgmhaSAwTBEEQBEEQTQuJYYIgCIIgCKJpITFMEARBEARBNC0khgmCIAiCIIimhcQwQRAEQRAE0bSQGCYIgiAIgiCaFhLDBEEQBEEQRNNCYpggCIIgCIJoWkgMEwRBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCIIgCIIgmhYSwwRBEARBEETTQmKYIAiCIAiCaFpIDBMEQRAEQRBNC4lhgiAIgiAIomkhMUwQBEEQBEE0LSSGCYIgCIIgiKaFxDBBEARBEATRtJAYJgiCIAiCIJoWEsMEQRAEQRBE00JimCAIgiAIgmhaSAwTBEEQBEEQTQuJYYIgCIIgCKJpITFMEARBEARBNC0khgmCIAiCIIimhcQwQRAEQRAE0bSQGCYIgiAIgiCaFhLDBEEQBEEQRNNCYpggCIIgCIJoWkgMEwRBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCIIgCIIgmhYSwwRBEARBEETT8v8BIdIM/Z5DpDcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "! seisflows plot2d MODEL_02 vs --savefig m_02_vs.png\n", + "Image(filename='m_02_vs.png') " ] } ], diff --git a/docs/specfem2d_example.rst b/docs/specfem2d_example.rst index 384fd59e..1a4bbc4e 100644 --- a/docs/specfem2d_example.rst +++ b/docs/specfem2d_example.rst @@ -1,12 +1,10 @@ Specfem2D Workstation Example ============================= -To demonstrate the inversion capabilities of SeisFlows, we will run a -**Specfem2D synthetic-synthetic example** on a **local machine** (tested -on a Linux workstation running CentOS 7, and an Apple Laptop running -macOS 10.14.6). Many of the setup steps here may be unique to our OS and -workstation, but hopefully they may serve as templates for new Users -wanting to explore SeisFlows. +SeisFlows comes with some **Specfem2D synthetic examples** to showcase +the package. These examples are meant to be run on a **local machine** +(tested on a Linux workstation running CentOS 7, and an Apple Laptop +running macOS 10.14.6). The numerical solver we will use is: `SPECFEM2D `__. We’ll @@ -17,25 +15,28 @@ activate the required Conda environment. -------------- -Option 1: Automated run ------------------------ +.. warning:: + If you do not have a compiled version of SPECFEM2D, then each example will attempt to automatically download and compile SPECFEM2D. This step may fail if you do not have software required by SPECFEM2D, if there are issues with the SPECFEM2D repository itself, or if the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem using the -r or --specfem2d_repo flags (shown below). + +.. code:: ipython3 -We have set up this example to run using a single command line argument. -The following command will run an example script which will (1) download -and compile SPECFEM2D, (2) setup a SPECFEM2D working directory to -generate initial and target models, and (3) Run a SeisFlows inversion. + from IPython.display import Image # To display .png files in the notebook -.. warning:: - If you do not have a compiled version of SPECFEM2D, then this example will attempt to automatically download and compile SPECFEM2D. This step may fail if you do not have software required by SPECFEM2D, if there are issues with the SPECFEM2D repository itself, or if the configuration and compiling steps fail. If you run any issues, it is recommended that you manually install and compile SPECFEM2D, and directly provide its path to this example problem using the -r or --specfem2d_repo flags (shown below). +Example #1: Simple, default inversion +------------------------------------- -Example #1 -~~~~~~~~~~ +Example #1 runs a 1-iteration synthetic inversion with 1 event and 1 +station, used to illustrate misfit kernels in adjoint tomography. -Example #1 runs a 2 iteration inversion using SPECFEM2D, the default -preprocessing module and a gradient descent optimization algorithm. +The starting model (MODEL_INIT) and target model (MODEL_TRUE) are used +to generate synthetics and data, respectively. Both models are +homogeneous halfspace models with slightly varying P- and S-wave +velocity values. Only Vp and Vs are updated during the example. -.. note:: - Example number 1 is meant to **FAIL** during the line search of Iteration #2, after exceeding the maximum allowable line search step count. This is meant to illustrate line search behavior and allow the User to explore a working directory mid-workflow. +Misfit during Example #1 is defined by a ‘traveltime’ misfit using the +default preprocessing module. It also uses a gradient-descent +optimization algorithm paired with a bracketing line search. No +smoothing/regularization is applied to the gradient. .. code:: ipython3 @@ -44,7 +45,7 @@ preprocessing module and a gradient descent optimization algorithm. .. parsed-literal:: - 1 example: ex1_specfem2d_workstation_inversion + No existing SPECFEM2D repo given, default to: /home/bchow/REPOSITORIES/seisflows/docs/notebooks/specfem2d @@@@@@@@@@ .@@@@. .%&( %@. @@ -70,90 +71,97 @@ preprocessing module and a gradient descent optimization algorithm. /////////////////// This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to assess misfit between two homogeneous halfspace models with slightly different - velocities. [3 events, 1 station, 2 iterations]. The inversion is expected to - fail after the 5th line search step count of the 2nd iteration. The tasks - involved include: + velocities. [1 events, 1 station, 1 iterations]. The tasks involved include: 1. (optional) Download, configure, compile SPECFEM2D 2. Set up a SPECFEM2D working directory - 3. Generate starting model from Tape2007 example + 3. Generate starting model from 'Tape2007' example 4. Generate target model w/ perturbed starting model 5. Set up a SeisFlows working directory - 6. Run an inversion workflow + 6. Run the inversion workflow ================================================================================ +Running the example +~~~~~~~~~~~~~~~~~~~ + You can either setup and run the example in separate tasks using the -``examples setup`` and ``submit`` commands. or directly run the example -after setup using the ``examples run`` command. Use the ``-r`` or -``--specfem2d_repo`` flag to point SeisFlows at an existing SPECFEM2D/ -repository (with compiled binaries). If not given, SeisFlows will -automatically download, configure and compile SPECFEM2D in your current -working directory. +``seisflows examples setup`` and ``seisflows submit`` commands, or by +directly running the example after setup using the ``examples run`` +command (illustrated below). + +Use the ``-r`` or ``--specfem2d_repo`` flag to point SeisFlows at an +existing SPECFEM2D/ repository (with compiled binaries) if available. If +not given, SeisFlows will automatically download, configure and compile +SPECFEM2D in your current working directory. .. code:: ipython3 - ! seisflows examples setup 1 -r path/to/specfem2d + ! seisflows examples setup 1 -r ${PATH_TO_SPECFEM2D} ! seisflows submit + # The above commands are the same as the below - ! seisflows examples run 1 --specfem2d_repo path/to/specfem2d + ! seisflows examples run 1 --specfem2d_repo ${PATH_TO_SPECFEM2D} A successfully completed example problem will end with the following log messages: .. code:: bash - ... - 2022-08-25 17:29:16 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-25 17:29:16 (I) | 3236.17 <= vs <= 3802.01 - 2022-08-25 17:29:16 (I) | trial step unsuccessful. re-attempting line search - 2022-08-25 17:29:16 (I) | - LINE SEARCH STEP COUNT 06 + LINE SEARCH STEP COUNT 02 -------------------------------------------------------------------------------- - 2022-08-25 17:29:16 (I) | evaluating objective function for source 001 - 2022-08-25 17:29:16 (D) | running forward simulation with 'Specfem2D' - 2022-08-25 17:29:20 (D) | quantifying misfit with 'Default' - 2022-08-25 17:29:20 (I) | evaluating objective function for source 002 - 2022-08-25 17:29:20 (D) | running forward simulation with 'Specfem2D' - 2022-08-25 17:29:24 (D) | quantifying misfit with 'Default' - 2022-08-25 17:29:24 (I) | evaluating objective function for source 003 - 2022-08-25 17:29:24 (D) | running forward simulation with 'Specfem2D' - 2022-08-25 17:29:28 (D) | quantifying misfit with 'Default' - 2022-08-25 17:29:28 (D) | misfit for trial model (f_try) == 7.53E-03 - 2022-08-25 17:29:28 (D) | step length(s) = 0.00E+00, 1.47E+08, 2.95E+08, 5.89E+08, 1.18E+09, 2.36E+09, 4.72E+09 - 2022-08-25 17:29:28 (D) | misfit val(s) = 8.65E-04, 7.53E-03, 6.28E-03, 5.02E-03, 3.77E-03, 2.51E-03, 1.26E-03 - 2022-08-25 17:29:28 (I) | fail: bracketing line search has failed to reduce the misfit before exceeding `step_count_max`=5 - 2022-08-25 17:29:28 (D) | checking gradient/search direction angle, theta: 0.000 - 2022-08-25 17:29:28 (C) | - ================================================================================ - LINE SEARCH FAILED - ////////////////// - Line search has failed to reduce the misfit and has run out of fallback options. - Aborting inversion. - ================================================================================ - EXAMPLE COMPLETED SUCCESFULLY + 2022-08-29 15:50:58 (I) | evaluating objective function for source 001 + 2022-08-29 15:50:58 (D) | running forward simulation with 'Specfem2D' + 2022-08-29 15:51:03 (D) | quantifying misfit with 'Default' + 2022-08-29 15:51:03 (D) | misfit for trial model (f_try) == 4.61E-01 + 2022-08-29 15:51:03 (D) | step length(s) = 0.00E+00, 4.78E+09, 7.73E+09 + 2022-08-29 15:51:03 (D) | misfit val(s) = 1.04E+00, 2.30E-01, 4.61E-01 + 2022-08-29 15:51:03 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit. + 2022-08-29 15:51:03 (I) | line search model 'm_try' parameters: + 2022-08-29 15:51:03 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-29 15:51:03 (I) | 3431.53 <= vs <= 3790.00 + 2022-08-29 15:51:03 (I) | trial step successful. finalizing line search + 2022-08-29 15:51:03 (I) | + FINALIZING LINE SEARCH + -------------------------------------------------------------------------------- + 2022-08-29 15:51:03 (I) | writing optimization stats + 2022-08-29 15:51:03 (I) | renaming current (new) optimization vectors as previous model (old) + 2022-08-29 15:51:03 (I) | setting accepted trial model (try) as current model (new) + 2022-08-29 15:51:03 (I) | misfit of accepted trial model is f=2.304E-01 + 2022-08-29 15:51:03 (I) | resetting line search step count to 0 + 2022-08-29 15:51:03 (I) | + CLEANING WORKDIR FOR NEXT ITERATION + -------------------------------------------------------------------------------- + 2022-08-29 15:51:05 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow + 2022-08-29 15:51:06 (I) | + //////////////////////////////////////////////////////////////////////////////// + COMPLETE ITERATION 01 + //////////////////////////////////////////////////////////////////////////////// + 2022-08-29 15:51:06 (I) | setting current iteration to: 2 + -Using the `working directory documentation page `__ you can figure out how to navigate around and look at the results of our small inversion problem. We will have a look at a few of the files and directories here. I've run the example problem in a scratch directory but your output directory should look the same. +Using the `working directory documentation page `__ you can figure out how to navigate around and look at the results of this small inversion problem. + +We will have a look at a few of the files and directories here. I've run the example problem in a scratch directory but your output directory should look the same. .. code:: ipython3 - %cd ~/Work/scratch + %cd ~/Work/scratch/example_1 ! ls .. parsed-literal:: - /home/bchow/Work/scratch + /home/bchow/Work/scratch/example_1 logs parameters.yaml sflog.txt specfem2d output scratch sfstate.txt specfem2d_workdir -In the ``output/`` directory, we can see the updated model from our -first iteration (MODEL_01) and the gradient that was used to create it -(GRADIENT_01). The 2nd iteration produced a gradient (GRADIENT_02), but -was unable to succesfully reduce the misfit during the line search, -which is why we don’t have a MODEL_02. +In the ``output/`` directory, we can see our starting model +(MODEL_INIT), our target model (MODEL_TRUE) and the updated model from +our first iteration (MODEL_01) alongside the gradient that was used to +create it (GRADIENT_01). .. code:: ipython3 @@ -164,7 +172,7 @@ which is why we don’t have a MODEL_02. .. parsed-literal:: - GRADIENT_01 GRADIENT_02 MODEL_01 MODEL_INIT MODEL_TRUE + GRADIENT_01 MODEL_01 MODEL_INIT MODEL_TRUE proc000000_vp.bin proc000000_vs.bin @@ -172,11 +180,35 @@ which is why we don’t have a MODEL_02. Because we’re working with SPECFEM2D, we can plot the models and gradients that were created during our workflow using the ``seisflows plot2d`` command. If we use the ``--savefig`` option we can -also save the output .png files to disk. +also save the output .png files to disk. Because this docs page was made +in a Jupyter Notebook, we need to use the IPython Image class to open +the resulting .png file. + +This figure shows the starting homogeneous halfspace model in Vs. + +.. code:: ipython3 + + ! seisflows plot2d MODEL_INIT vs --savefig m_init_vs.png + Image(filename='m_init_vs.png') + + +.. parsed-literal:: + + Figure(707.107x707.107) + + + + +.. image:: images/specfem2d_example_files/specfem2d_example_13_1.png + + + +Here we see the gradient created during the adjoint simulation. .. code:: ipython3 - ! seisflows plot2d GRADIENT_01 vs_kernel --savefig i02_gradient_vs_kernel.png + ! seisflows plot2d GRADIENT_01 vs_kernel --savefig g_01_vs.png + Image(filename='g_01_vs.png') .. parsed-literal:: @@ -184,28 +216,48 @@ also save the output .png files to disk. Figure(707.107x707.107) + + +.. image:: images/specfem2d_example_files/specfem2d_example_15_1.png + + + +Finally we see the updated model, which is the sum of the initial model, +and a scaled gradient. + .. code:: ipython3 - # Because this docs page was made in a Jupyter Notebook, we need to use IPython to open the resulting .png - from IPython.display import Image - Image(filename='i02_gradient_vs_kernel.png') + ! seisflows plot2d MODEL_01 vs --savefig m_01_vs.png + Image(filename='m_01_vs.png') +.. parsed-literal:: + Figure(707.107x707.107) -.. image:: images/specfem2d_example_files/specfem2d_example_15_0.png -Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory. +.. image:: images/specfem2d_example_files/specfem2d_example_17_1.png -Example #2 -~~~~~~~~~~ -Example #2 runs a 1 iteration inversion using SPECFEM2D, the Pyaflowa -preprocessing module and an L-BFGS optimization algorithm. It -successfully completes the line search and is meant to illustrate the -output of the Pyaflowa preprocessing module. + +Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory. You can also run Example \#1 with more stations (up to 131), tasks/events (up to 25) and iterations (as many as you want). Note that because this is a serial inversion, the compute time will scale with all of these values. + +.. code:: ipython3 + + ! seisflows examples run 1 --nsta 10 --ntask 5 --niter 2 + +Example #2: Pyaflowa, L-BFGS inversion +-------------------------------------- + +Example #2 runs a 2 iteration inversion with misfit quantification taken +care of by the ``Pyaflowa`` preprocessing module. Optimization (i.e., +model updates) are performed using the ``L-BFGS`` algorithm. This +example is more complex than the default version of Example #1, using +multiple events, stations and iterations. Example #2 also includes +smoothing/regularization of the gradient before using it to perturb the +starting velocity model. .. code:: ipython3 @@ -214,7 +266,7 @@ output of the Pyaflowa preprocessing module. .. parsed-literal:: - 2 example: ex2_specfem2d_workstation_inversion_w_pyatoa + No existing SPECFEM2D repo given, default to: /home/bchow/Work/scratch/example_1/specfem2d @@@@@@@@@@ .@@@@. .%&( %@. @@ -239,16 +291,17 @@ output of the Pyaflowa preprocessing module. SEISFLOWS EXAMPLE 2 /////////////////// This is a [SPECFEM2D] [WORKSTATION] example, which will run an inversion to - assess misfit between a homogeneous halfspace and checkerboard model using - Pyatoa for misfit quantification [2 events, 5 stations, 1 iterations]. The tasks - involved include: + assess misfit between a starting homogeneous halfspace model and a target + checkerboard model. This example problem uses the [PYAFLOWA] preprocessing + module and the [LBFGS] optimization algorithm. [4 events, 32 stations, 2 + iterations]. The tasks involved include: 1. (optional) Download, configure, compile SPECFEM2D 2. Set up a SPECFEM2D working directory - 3. Generate starting model from Tape2007 example + 3. Generate starting model from 'Tape2007' example 4. Generate target model w/ perturbed starting model 5. Set up a SeisFlows working directory - 6. Run an inversion workflow. The line search is expected to attempt 4 evaluations (i01s04) + 6. Run the inversion workflow ================================================================================ @@ -256,4 +309,143 @@ You can run the example with the same command as shown for Example 1: .. code:: ipython3 - ! seisflows examples run 2 -r path/to/specfem2d + ! seisflows examples run 2 -r ${PATH_TO_SPECFEM2D} + +Succesful completion of the example problem will end with the following log message + +.. code:: bash + + LINE SEARCH STEP COUNT 01 + -------------------------------------------------------------------------------- + 2022-08-29 18:07:14 (I) | evaluating objective function for source 001 + 2022-08-29 18:07:14 (D) | running forward simulation with 'Specfem2D' + 2022-08-29 18:07:20 (D) | quantifying misfit with 'Pyaflowa' + 2022-08-29 18:07:29 (I) | evaluating objective function for source 002 + 2022-08-29 18:07:29 (D) | running forward simulation with 'Specfem2D' + 2022-08-29 18:07:35 (D) | quantifying misfit with 'Pyaflowa' + 2022-08-29 18:07:43 (I) | evaluating objective function for source 003 + 2022-08-29 18:07:43 (D) | running forward simulation with 'Specfem2D' + 2022-08-29 18:07:49 (D) | quantifying misfit with 'Pyaflowa' + 2022-08-29 18:07:58 (I) | evaluating objective function for source 004 + 2022-08-29 18:07:58 (D) | running forward simulation with 'Specfem2D' + 2022-08-29 18:08:04 (D) | quantifying misfit with 'Pyaflowa' + 2022-08-29 18:08:13 (D) | misfit for trial model (f_try) == 4.73E-03 + 2022-08-29 18:08:13 (D) | step length(s) = 0.00E+00, 1.00E+00 + 2022-08-29 18:08:13 (D) | misfit val(s) = 5.30E-02, 4.73E-03 + 2022-08-29 18:08:13 (I) | pass: misfit decreased, line search successful w/ alpha=1.0 + 2022-08-29 18:08:13 (I) | line search model 'm_try' parameters: + 2022-08-29 18:08:13 (I) | 5800.00 <= vp <= 5800.00 + 2022-08-29 18:08:13 (I) | 3193.01 <= vs <= 3821.37 + 2022-08-29 18:08:13 (I) | trial step successful. finalizing line search + 2022-08-29 18:08:13 (I) | + FINALIZING LINE SEARCH + -------------------------------------------------------------------------------- + 2022-08-29 18:08:13 (I) | writing optimization stats + 2022-08-29 18:08:13 (I) | renaming current (new) optimization vectors as previous model (old) + 2022-08-29 18:08:13 (I) | setting accepted trial model (try) as current model (new) + 2022-08-29 18:08:13 (I) | misfit of accepted trial model is f=4.727E-03 + 2022-08-29 18:08:13 (I) | resetting line search step count to 0 + 2022-08-29 18:08:13 (I) | + CLEANING WORKDIR FOR NEXT ITERATION + -------------------------------------------------------------------------------- + 2022-08-29 18:08:15 (I) | thrifty inversion encountering final iteration, defaulting to inversion workflow + 2022-08-29 18:08:21 (I) | + //////////////////////////////////////////////////////////////////////////////// + COMPLETE ITERATION 02 + //////////////////////////////////////////////////////////////////////////////// + 2022-08-29 18:08:21 (I) | setting current iteration to: 3 + + +As with Example \#1, we can look at the output gradients and models to visualize how the inversion performed. + +.. code:: ipython3 + + %cd ~/Work/scratch/example_2 + ! ls + + +.. parsed-literal:: + + /home/bchow/Work/scratch/example_2 + logs parameters.yaml sflog.txt specfem2d + output scratch sfstate.txt specfem2d_workdir + + +.. code:: ipython3 + + ! seisflows plot2d # to check what models/gradients/kernels are avilable for plotting + + +.. parsed-literal:: + + PLOT2D + ////// + Available models/gradients/kernels + + GRADIENT_01 + GRADIENT_02 + MODEL_01 + MODEL_02 + MODEL_INIT + MODEL_TRUE + + +The starting model is a homogeneous halfspace but for Example #2 the +target model is a checkerboard. + +.. code:: ipython3 + + ! seisflows plot2d MODEL_TRUE vs --savefig m_true_vs.png + Image(filename='m_true_vs.png') + + +.. parsed-literal:: + + Figure(707.107x707.107) + + + + +.. image:: images/specfem2d_example_files/specfem2d_example_28_1.png + + + +In the following gradient Vs kernel, we can see how the 5km x 5km +smoothing blurs away some of the detail of the raw graident. The blue +colors here suggest that the initial model needs to be sped up to best +fit waveforms (and vice versa, red colors suggest slowing down the +initial model). + +.. code:: ipython3 + + ! seisflows plot2d GRADIENT_01 vs_kernel --savefig g_01_vs.png + Image(filename='g_01_vs.png') + + +.. parsed-literal:: + + Figure(707.107x707.107) + + + + +.. image:: images/specfem2d_example_files/specfem2d_example_30_1.png + + + +.. code:: ipython3 + + ! seisflows plot2d MODEL_02 vs --savefig m_02_vs.png + Image(filename='m_02_vs.png') + + +.. parsed-literal:: + + Figure(707.107x707.107) + + + + +.. image:: images/specfem2d_example_files/specfem2d_example_31_1.png + + From 06c947cce6c328cfd100fa76c3616ece91cba08e Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 30 Aug 2022 10:57:57 -0800 Subject: [PATCH 154/195] bugfix forward workflow failing check with no 'data' even though preprocessing module was not set' --- seisflows/workflow/forward.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index e0f94790..4e46ac5e 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -173,7 +173,10 @@ def check(self): f"'{self.__class__.__name__}' workflow may be " f"skipped") - if self.data_case is not None: + # If we are using the preprocessing module, we must have either + # 1) real data located in `path.data`, or 2) a target model to generate + # synthetic data, locaed in `path.model_true` + if self.data_case is not None and self._modules.preprocess: assert(self.data_case.lower() in self._acceptable_data_cases), \ f"`data_case` must be in {self._acceptable_data_cases}" if self.data_case.lower() == "data": From 7d483b5a28e81775056f335da5b5ffea94d2cfb9 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 30 Aug 2022 10:58:26 -0800 Subject: [PATCH 155/195] updating docstrings --- seisflows/examples/ex3_fwd_solver.py | 6 ++++-- seisflows/examples/sfexample2d.py | 8 ++++++-- seisflows/seisflows.py | 2 +- seisflows/solver/specfem.py | 6 ++++-- 4 files changed, 15 insertions(+), 7 deletions(-) diff --git a/seisflows/examples/ex3_fwd_solver.py b/seisflows/examples/ex3_fwd_solver.py index 6324a6f0..8e4d7167 100644 --- a/seisflows/examples/ex3_fwd_solver.py +++ b/seisflows/examples/ex3_fwd_solver.py @@ -30,11 +30,13 @@ def __init__(self, ntask=None, nsta=None, method="run", specfem2d_repo=None, :type ntask: int :param ntask: number of events to use in inversion, between 1 and 25. defaults to 3 - :type niter: int - :param niter: number of iterations to run. defaults to 2 :type nsta: int :param nsta: number of stations to include in inversion, between 1 and 131 + :type method: str + :param method: method for running the example problem, can be: + * 'run': setup and run the example problem + * 'setup': only setup the example problem, do not `submit` job :type specfem2d_repo: str :param specfem2d_repo: path to the SPECFEM2D directory which should contain binary executables. If not given, SPECFEM2D will be diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 3ad3f660..03802c36 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -58,6 +58,10 @@ def __init__(self, ntask=None, niter=None, nsta=None, method="run", :type nsta: int :param nsta: number of stations to include in inversion, between 1 and 131 + :type method: str + :param method: method for running the example problem, can be: + * 'run': setup and run the example problem + * 'setup': only setup the example problem, do not `submit` job :type specfem2d_repo: str :param specfem2d_repo: path to the SPECFEM2D directory which should contain binary executables. If not given, SPECFEM2D will be @@ -342,7 +346,7 @@ def finalize_specfem2d_par_file(self): Need to tell them to read models from .bin files, and to use existing station files rather than create them from the Par_file """ - print("> Finalizing SPECFEM2D Par_file for SeisFlows inversion") + print("> Finalizing SPECFEM2D Par_file for SeisFlows example") cd(self.workdir_paths.data) self.sf.sempar("model", "gll") # GLL so SPECFEM reads .bin files @@ -354,7 +358,7 @@ def finalize_specfem2d_par_file(self): with open("STATIONS_checker", "r") as f: lines = f.readlines() - print(f"> Using {self.nsta} stations in this inversion workflow") + print(f"> Using {self.nsta} stations in this SeisFlows example") with open("STATIONS", "w") as f: f.writelines(lines[:self.nsta]) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 7b4c38ea..23cdd49f 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -924,7 +924,7 @@ def examples(self, method=None, choice=None, specfem2d_repo=None, self._print_examples() sys.exit(0) # e.g., $ seisflows examples 1 - elif method and choice is None: + elif method and (choice is None): try: choice = int(method) except ValueError: diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index d32199dd..31ef8f16 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -54,10 +54,12 @@ class Specfem: attenution (Q_mu, Q_kappa) model :type smooth_h: float :param smooth_h: Gaussian half-width for horizontal smoothing in units - of meters. If 0., no smoothing applied + of meters. If 0., no smoothing applied. Only applicable for workflows: + ['migration', 'inversion'], ignored for 'forward' workflow. :type smooth_h: float :param smooth_v: Gaussian half-width for vertical smoothing in units - of meters. + of meters. Only applicable for workflows: ['migration', 'inversion'], + ignored for 'forward' workflow. :type components: str :param components: components to consider and tag data with. Should be string of letters such as 'RTZ' From d744eeb484ac8787c7c1421eb4267977230e7834 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 30 Aug 2022 11:18:23 -0800 Subject: [PATCH 156/195] bugfix forward workflow w/o preprocessing module kept hitting errors looking for true model and preparing data for solver. added logic statements to sidestep all data preparation if forward workflow does not include preprocessing module --- seisflows/solver/specfem.py | 35 +++++++++++++++++++++++---------- seisflows/solver/specfem2d.py | 7 +------ seisflows/system/workstation.py | 5 +++-- seisflows/workflow/forward.py | 18 ++++++++++------- 4 files changed, 40 insertions(+), 25 deletions(-) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 31ef8f16..7d08cb65 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -405,16 +405,7 @@ def setup(self): Exports INIT/STARTING and TRUE/TARGET models to disk (output/ dir.) """ self._initialize_working_directories() - - # Export the initial and target models to the SeisFlows output directory - for name, model in zip(["MODEL_INIT", "MODEL_TRUE"], - [self.path.model_init, self.path.model_true]): - dst = os.path.join(self.path.output, name, "") - if not os.path.exists(dst): - unix.mkdir(dst) - for par in self._parameters: - src = glob(os.path.join(model, f"*{par}{self._ext}")) - unix.cp(src, dst) + self._export_starting_models() def forward_simulation(self, executables=None, save_traces=False, export_traces=False, **kwargs): @@ -823,3 +814,27 @@ def _initialize_working_directory(self, cwd=None): logger.debug(f"linking source '{source_name}' as 'mainsolver'") unix.ln(cwd, self.path.mainsolver) + def _export_starting_models(self, parameters=None): + """ + Export the initial and target models to the SeisFlows output/ directory. + + :type parameters: list + :param parameters: list of parameters to export. If None, will default + to `self._parameters` + """ + if parameters is None: + parameters = self._parameters + + # Export the initial and target models to the SeisFlows output directory + for name, model in zip(["MODEL_INIT", "MODEL_TRUE"], + [self.path.model_init, self.path.model_true]): + # Skip over if user has not provided model path (e.g., real data + # inversion will not have `model_true`) + if not model: + continue + dst = os.path.join(self.path.output, name, "") + if not os.path.exists(dst): + unix.mkdir(dst) + for par in parameters: + src = glob(os.path.join(model, f"*{par}{self._ext}")) + unix.cp(src, dst) diff --git a/seisflows/solver/specfem2d.py b/seisflows/solver/specfem2d.py index 8bb4e009..996ecc91 100644 --- a/seisflows/solver/specfem2d.py +++ b/seisflows/solver/specfem2d.py @@ -66,12 +66,7 @@ def setup(self): super().setup() # Copy in coordinate files to the Model definition so we can plot - for name, model in zip(["MODEL_INIT", "MODEL_TRUE"], - [self.path.model_init, self.path.model_true]): - dst = os.path.join(self.path.output, name) - for par in ["x", "z"]: - src = glob(os.path.join(model, f"*{par}{self._ext}")) - unix.cp(src, dst) + self._export_starting_models(parameters=["x", "z"]) def smooth(self, input_path, output_path, parameters=None, span_h=None, span_v=None, use_gpu=False): diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index c0af8830..f7cd980e 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -1,7 +1,8 @@ #!/usr/bin/env python3 """ -This is a subclass seisflows.system.workstation -Provides utilities for submitting jobs in serial on a single machine +The `workstation` class is the foundational `System` module in SeisFlows, +it provides utilities for submitting jobs in SERIAL on a small-scale machine, +e.g., a workstation or a laptop. All other `System` classes build on this class. """ import os from contextlib import redirect_stdout diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 4e46ac5e..7f91b4a5 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -320,13 +320,17 @@ def evaluate_initial_misfit(self): _model = Model(os.path.join(self.path.model_true)) _model.check() - self.system.run( - [self.prepare_data_for_solver, - self.run_forward_simulations, - self.evaluate_objective_function], - path_model=self.path.model_init, - save_residuals=os.path.join(self.path.eval_grad, "residuals.txt") - ) + # Define the tasks that will be run through `system.run` + run_list = [self.run_forward_simulations, + self.evaluate_objective_function] + # Only need to prepare data for solver if we are preprocessing + if self.preprocess: + run_list = [self.prepare_data_for_solver] + run_list + + self.system.run(run_list, path_model=self.path.model_init, + save_residuals=os.path.join(self.path.eval_grad, + "residuals.txt") + ) def prepare_data_for_solver(self, **kwargs): """ From 70635db68eda7c2a6d0aeda7da2a7228676396e7 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 30 Aug 2022 12:08:34 -0800 Subject: [PATCH 157/195] feature: added a very simple stream plotter to look at output waveforms --- seisflows/seisflows.py | 59 +++++++++++++++++++++++++++++++++--------- 1 file changed, 47 insertions(+), 12 deletions(-) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 23cdd49f..066a6382 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -21,8 +21,10 @@ import traceback from glob import glob from IPython import embed +from obspy import Stream, read from seisflows import logger, ROOT_DIR, NAMES +from seisflows.preprocess.default import Default from seisflows.tools import unix, msg from seisflows.tools.config import load_yaml, custom_import, import_seisflows from seisflows.tools.specfem import (getpar, setpar, getpar_vel_model, @@ -121,18 +123,6 @@ def _format_action(self, action): swap.add_argument("module", nargs="?", help="Module name to swap") swap.add_argument("classname", nargs="?", help="Classname to swap to") # ========================================================================= - init = subparser.add_parser( - "init", help="Initiate working environment", - description="""Establish a SeisFlows working environment but don't - submit the workflow to the system and do not perform variable error - checking. Saves the initial state as pickle files to allow for active - environment inspection prior to running 'submit'. Useful for debugging, - development and code exploration.""" - ) - # init.add_argument("-c", "--check", action="store_true", - # help="Perform parameter and path checking to ensure that " - # "user-defined parameters are accepatable") - # ========================================================================= submit = subparser.add_parser( "submit", help="Submit initial workflow to system", description="""The main SeisFlows execution command. Submit a SeisFlows @@ -245,6 +235,23 @@ def _format_action(self, action): plot2d.add_argument("-s", "--savefig", type=str, nargs="?", default=None, help="optional name and path to save figure") # ========================================================================= + plotst = subparser.add_parser( + "plotst", formatter_class=argparse.RawDescriptionHelpFormatter, + description="""Plots waveforms output by the solver. Uses ObsPy's +Stream.plot() function under the hood. Example call would be +`seisflows plotst scratch/solver/mainsolver/traces/syn/*` + """) + + plotst.add_argument("fids", type=str, nargs="*", + help="File IDs to be passed to plotting. Wildcards " + "acceptable") + plotst.add_argument("--data_format", type=str, nargs="?", default="ASCII", + help="Data format of the files. Must match file type " + "that SeisFlows can read. These include:" + "['SU', 'ASCII']. Defaults to 'ASCII'. See " + "SeisFlows.preprocess.default.read() for " + "all options.") + # ========================================================================= print_ = subparser.add_parser( "print", formatter_class=argparse.RawDescriptionHelpFormatter, description=""" @@ -1000,6 +1007,34 @@ def print(self, choice=None, **kwargs): acceptable_args[choice](*self._args.args, **kwargs) + @staticmethod + def plotst(self, fids, data_format="ASCII", **kwargs): + """ + Simple stream/waveform plotter to visualize synthetic waveforms created + by the solver. Uses ObsPy under the hood to generate a large stream + and then plots all waveforms together. + + .. note:: + Very simple function to look at waveforms. If you want more + sophisticated plotting tools, look at Python packages `Pyatoa` + or `PySEP` + + :type fids: list + :param fids: list of file ID's to plot + :type data_format: str + :param data_format: + """ + # Take advantage of the Default Preprocessing module's read() function + plotter = Default(data_format=data_format) + assert(data_format.upper() in plotter._acceptable_data_formats), \ + f"data format must be in {plotter._acceptable_data_formats}" # NOQA + + st = Stream() + for fid in fids: + st += plotter.read(fid) + + st.plot(**kwargs) + def plot2d(self, name=None, parameter=None, cmap=None, savefig=None, **kwargs): """ From 259f567f80b22d930eaede534f1f0a77cf60d3e8 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Tue, 30 Aug 2022 12:19:20 -0800 Subject: [PATCH 158/195] forward workflow example working, fixed up the stream plotter, fixing some example print dialogues --- seisflows/examples/ex3_fwd_solver.py | 24 ++-- seisflows/preprocess/default.py | 104 +++++++------- seisflows/seisflows.py | 11 +- seisflows/solver/specfem.py | 8 +- seisflows/system/multicore.py | 196 +++++++++++++++++++++++++++ seisflows/workflow/forward.py | 17 +-- 6 files changed, 283 insertions(+), 77 deletions(-) create mode 100644 seisflows/system/multicore.py diff --git a/seisflows/examples/ex3_fwd_solver.py b/seisflows/examples/ex3_fwd_solver.py index 8e4d7167..9ed7b2b6 100644 --- a/seisflows/examples/ex3_fwd_solver.py +++ b/seisflows/examples/ex3_fwd_solver.py @@ -43,7 +43,7 @@ def __init__(self, ntask=None, nsta=None, method="run", specfem2d_repo=None, downloaded configured and compiled automatically. """ # Setting default values for ntask, niter, nsta here vvv - super().__init__(ntask=ntask or 25, niter=1, nsta=nsta or 131, + super().__init__(ntask=ntask or 10, niter=1, nsta=nsta or 25, method=method, specfem2d_repo=specfem2d_repo) def print_dialogue(self): @@ -53,19 +53,18 @@ def print_dialogue(self): """ print(msg.ascii_logo_small) print(msg.cli( - f"This is a [SPECFEM2D] [WORKSTATION] example, which will " - f"run forward simulations generate synthetic seismograms through " - f"a given starting model. This example uses no preprocessing or " - f"optimization modules" - f"[{self.ntask} events, {self.nsta} stations, {self.niter} " - f"iterations]. " + f"This is a [SPECFEM2D] [WORKSTATION] example, which will run " + f"forward simulations to generate synthetic seismograms through " + f"a homogeneous halfspace starting model. This example uses no " + f"preprocessing or optimization modules. " + f"[{self.ntask} events, {self.nsta} stations] " f"The tasks involved include: ", items=["1. (optional) Download, configure, compile SPECFEM2D", - "2. Set up a SPECFEM2D working directory", - "3. Generate starting model from 'Tape2007' example", - "4. Set up a SeisFlows working directory", - "5. Run the forward simulation workflow"], - header="seisflows example 2", + "2. [Setup] a SPECFEM2D working directory", + "3. [Setup] starting model from 'Tape2007' example", + "4. [Setup] a SeisFlows working directory", + "5. [Run] the forward simulation workflow"], + header="seisflows example 3", border="=") ) @@ -90,6 +89,7 @@ def setup_seisflows_working_directory(self): self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion self.sf.par("attenuation", False) self.sf.par("components", "Y") + self.sf.par("export_traces", True) # copy waveforms to disk self.sf.par("path_specfem_bin", self.workdir_paths.bin) self.sf.par("path_specfem_data", self.workdir_paths.data) diff --git a/seisflows/preprocess/default.py b/seisflows/preprocess/default.py index 38147999..5fc71741 100644 --- a/seisflows/preprocess/default.py +++ b/seisflows/preprocess/default.py @@ -243,9 +243,9 @@ def read(self, fid): """ st = None if self.data_format.upper() == "SU": - st = obspy_read(os.path.join(fid), format="SU", byteorder="<") + st = obspy_read(fid, format="SU", byteorder="<") elif self.data_format.upper() == "ASCII": - st = self._read_ascii(fid) + st = read_ascii(fid) return st def write(self, st, fid): @@ -550,54 +550,54 @@ def _apply_normalize(self, st): return st_out - @staticmethod - def _read_ascii(fid, origintime=None): - """ - Read waveforms in two-column ASCII format. This is copied directly from - pyatoa.utils.read.read_sem() - """ - try: - times = np.loadtxt(fname=fid, usecols=0) - data = np.loadtxt(fname=fid, usecols=1) - - # At some point in 2018, the Specfem developers changed how the ascii files - # were formatted from two columns to comma separated values, and repeat - # values represented as 2*value_float where value_float represents the data - # value as a float - except ValueError: - times, data = [], [] - with open(fid, 'r') as f: - lines = f.readlines() - for line in lines: - try: - time_, data_ = line.strip().split(',') - except ValueError: - if "*" in line: - time_ = data_ = line.split('*')[-1] - else: - raise ValueError - times.append(float(time_)) - data.append(float(data_)) - - times = np.array(times) - data = np.array(data) - - if origintime is None: - origintime = UTCDateTime("1970-01-01T00:00:00") - - # We assume that dt is constant after 'precision' decimal points - delta = round(times[1] - times[0], 4) - - # Honor that Specfem doesn't start exactly on 0 - origintime += times[0] - - # Write out the header information - net, sta, cha, fmt = os.path.basename(fid).split('.') - stats = {"network": net, "station": sta, "location": "", - "channel": cha, "starttime": origintime, "npts": len(data), - "delta": delta, "mseed": {"dataquality": 'D'}, - "time_offset": times[0], "format": fmt - } - st = Stream([Trace(data=data, header=stats)]) - return st +def read_ascii(fid, origintime=None): + """ + Read waveforms in two-column ASCII format. This is copied directly from + pyatoa.utils.read.read_sem() + """ + try: + times = np.loadtxt(fname=fid, usecols=0) + data = np.loadtxt(fname=fid, usecols=1) + + # At some point in 2018, the Specfem developers changed how the ascii files + # were formatted from two columns to comma separated values, and repeat + # values represented as 2*value_float where value_float represents the data + # value as a float + except ValueError: + times, data = [], [] + with open(fid, 'r') as f: + lines = f.readlines() + for line in lines: + try: + time_, data_ = line.strip().split(',') + except ValueError: + if "*" in line: + time_ = data_ = line.split('*')[-1] + else: + raise ValueError + times.append(float(time_)) + data.append(float(data_)) + + times = np.array(times) + data = np.array(data) + + if origintime is None: + origintime = UTCDateTime("1970-01-01T00:00:00") + + # We assume that dt is constant after 'precision' decimal points + delta = round(times[1] - times[0], 4) + + # Honor that Specfem doesn't start exactly on 0 + origintime += times[0] + + # Write out the header information + net, sta, cha, fmt = os.path.basename(fid).split('.') + stats = {"network": net, "station": sta, "location": "", + "channel": cha, "starttime": origintime, "npts": len(data), + "delta": delta, "mseed": {"dataquality": 'D'}, + "time_offset": times[0], "format": fmt + } + st = Stream([Trace(data=data, header=stats)]) + + return st diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 066a6382..e762c699 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -251,6 +251,8 @@ def _format_action(self, action): "['SU', 'ASCII']. Defaults to 'ASCII'. See " "SeisFlows.preprocess.default.read() for " "all options.") + plotst.add_argument("-s", "--savefig", type=str, nargs="?", default=None, + help="optional name and path to save figure") # ========================================================================= print_ = subparser.add_parser( "print", formatter_class=argparse.RawDescriptionHelpFormatter, @@ -1008,7 +1010,7 @@ def print(self, choice=None, **kwargs): acceptable_args[choice](*self._args.args, **kwargs) @staticmethod - def plotst(self, fids, data_format="ASCII", **kwargs): + def plotst(self, fids, data_format="ASCII", savefig=None, **kwargs): """ Simple stream/waveform plotter to visualize synthetic waveforms created by the solver. Uses ObsPy under the hood to generate a large stream @@ -1022,7 +1024,10 @@ def plotst(self, fids, data_format="ASCII", **kwargs): :type fids: list :param fids: list of file ID's to plot :type data_format: str - :param data_format: + :param data_format: data format used to determine how to read data files + :type savefig: str or None + :param savefig: full path and filename to save the output figure. If + NoneType, will not save the figure """ # Take advantage of the Default Preprocessing module's read() function plotter = Default(data_format=data_format) @@ -1033,7 +1038,7 @@ def plotst(self, fids, data_format="ASCII", **kwargs): for fid in fids: st += plotter.read(fid) - st.plot(**kwargs) + st.plot(outfile=savefig, **kwargs) def plot2d(self, name=None, parameter=None, cmap=None, savefig=None, **kwargs): diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 7d08cb65..524103d7 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -453,14 +453,18 @@ def forward_simulation(self, executables=None, save_traces=False, for tag in ["d", "v", "a", "p"]: unix.rename(old=f"single_{tag}.su", new="single.su", names=glob(os.path.join("OUTPUT_FILES", "*.su"))) - + # Exporting traces to disk (output/) for more permanent storage if export_traces: + if not os.path.exists(export_traces): + unix.mkdir(export_traces) unix.cp( src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), dst=export_traces ) - + # Save traces somewhere else in the scratch/ directory for easier access if save_traces: + if not os.path.exists(save_traces): + unix.mkdir(save_traces) unix.mv( src=glob(os.path.join("OUTPUT_FILES", self.data_wildcard())), dst=save_traces diff --git a/seisflows/system/multicore.py b/seisflows/system/multicore.py new file mode 100644 index 00000000..f7cd980e --- /dev/null +++ b/seisflows/system/multicore.py @@ -0,0 +1,196 @@ +#!/usr/bin/env python3 +""" +The `workstation` class is the foundational `System` module in SeisFlows, +it provides utilities for submitting jobs in SERIAL on a small-scale machine, +e.g., a workstation or a laptop. All other `System` classes build on this class. +""" +import os +from contextlib import redirect_stdout + +from seisflows import logger +from seisflows.tools import unix +from seisflows.tools.config import Dict, import_seisflows +from seisflows.tools.config import number_fid, set_task_id + + +class Workstation: + """ + Workstation System + ------------------ + Defines foundational structure for System module. When used standalone, + runs tasks in serial on a local machine. + + Parameters + ---------- + :type ntask: int + :param ntask: number of individual tasks/events to run during workflow. + Must be <= the number of source files in `path_specfem_data` + :type nproc: int + :param nproc: number of processors to use for each simulation + :type log_level: str + :param log_level: logger level to pass to logging module. + Available: 'debug', 'info', 'warning', 'critical' + :type verbose: bool + :param verbose: if True, formats the log messages to include the file + name, line number and message type. Useful for debugging but + also very verbose. + + Paths + ----- + :type path_output_log: str + :param path_output_log: path to a text file used to store the outputs of + the package wide logger, which are also written to stdout + :type path_par_file: str + :param path_par_file: path to parameter file which is used to instantiate + the package + :type path_log_files: str + :param path_log_files: path to a directory where individual log files are + saved whenever a number of parallel tasks are run on the system. + *** + """ + def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, + workdir=os.getcwd(), path_output=None, path_system=None, + path_par_file=None, path_output_log=None, path_log_files=None, + **kwargs): + """ + Workstation System Class Parameters + + .. note:: + Paths listed here are shared with `workflow.forward` and so are not + included in the class docstring. + + :type workdir: str + :param workdir: working directory in which to look for data and store + results. Defaults to current working directory + :type path_output: str + :param path_output: path to directory used for permanent storage on disk. + Results and exported scratch files are saved here. + :type path_system: str + :param path_system: scratch path to save any system related files + """ + self.ntask = ntask + self.nproc = nproc + self.log_level = log_level.upper() + self.verbose = verbose + + # Define internal path system + self.path = Dict( + workdir=workdir or os.getcwd(), + scratch=path_system or os.path.join(workdir, "scratch", "system"), + par_file=path_par_file or os.path.join(workdir, "parameters.yaml"), + output=path_output or os.path.join(workdir, "output"), + log_files=path_log_files or os.path.join(workdir, "logs"), + output_log=path_output_log or os.path.join(workdir, "sflog.txt"), + ) + self._acceptable_log_levels = ["CRITICAL", "WARNING", "INFO", "DEBUG"] + + def check(self): + """ + Checks parameters and paths + """ + assert(os.path.exists(self.path.par_file)), \ + f"parameter file does not exist but should" + + assert(self.ntask > 0), f"number of events/tasks `ntask` cannot be neg'" + assert(self.nproc == 1), f"system.workstation rqeuires `nproc`==1" + assert(self.log_level in self._acceptable_log_levels), \ + f"`system.log_level` must be in {self._acceptable_log_levels}" + + def setup(self): + """ + Create the SeisFlows directory structure in preparation for a + SeisFlows workflow. Ensure that if any config information is left over + from a previous workflow, that these files are not overwritten by + the new workflow. Should be called by submit() + + .. note:: + This function is expected to create dirs: SCRATCH, SYSTEM, OUTPUT + and the following log files: output, error + + .. note:: + Logger is configured here as all workflows, independent of system, + will be calling setup() + + :rtype: tuple of str + :return: (path to output log, path to error log) + """ + for path in [self.path.scratch, self.path.output, self.path.log_files]: + unix.mkdir(path) + + # If resuming, move old log files to keep them out of the way. Number + # in ascending order, so we don't end up overwriting things + for src in [self.path.output_log, self.path.par_file]: + i = 1 + if os.path.exists(src): + dst = os.path.join(self.path.log_files, number_fid(src, i)) + while os.path.exists(dst): + i += 1 + dst = os.path.join(self.path.log_files, number_fid(src, i)) + logger.debug(f"copying par/log file to: {dst}") + unix.cp(src=src, dst=dst) + + def submit(self, workdir=None, parameter_file="parameters.yaml"): + """ + Submits the main workflow job as a serial job submitted directly to + the system that is running the master job + + :type workdir: str + :param workdir: path to the current working directory + :type parameter_file: str + :param parameter_file: paramter file file name used to instantiate + the SeisFlows package + """ + workflow = import_seisflows(workdir=workdir or self.path.workdir, + parameter_file=parameter_file) + workflow.check() + workflow.setup() + workflow.run() + + def run(self, funcs, single=False, **kwargs): + """ + Executes task multiple times in serial. + + .. note:: + kwargs will be passed to the underlying `method` that is called + + :type funcs: list of methods + :param funcs: a list of functions that should be run in order. All + kwargs passed to run() will be passed into the functions. + :type single: bool + :param single: run a single-process, non-parallel task, such as + smoothing the gradient, which only needs to be run by once. + This will change how the job array and the number of tasks is + defined, such that the job is submitted as a single-core job to + the system. + """ + if single: + ntasks = 1 + else: + ntasks = self.ntask + + for task_id in range(ntasks): + # Set Task ID for currently running process + set_task_id(task_id) + log_file = self._get_log_file(task_id) + + # Redirect output to a log file to mimic cluster runs where 'run' + # task output logs are sent to different files + with open(log_file, "w") as f: + with redirect_stdout(f): + for func in funcs: + func(**kwargs) + + def _get_log_file(self, task_id): + """ + To mimic clusters which assign job numbers to spawned processes, our + on-system runs will also assign job numbers simply be incrementing the + number on the log files on system. + """ + idx = 1 + while True: + log_file = os.path.join(self.path.log_files, + f"{idx:0>4}_{task_id:0>2}.log") + if os.path.exists(log_file): + idx += 1 + else: + return log_file diff --git a/seisflows/workflow/forward.py b/seisflows/workflow/forward.py index 7f91b4a5..1cb8936e 100644 --- a/seisflows/workflow/forward.py +++ b/seisflows/workflow/forward.py @@ -320,12 +320,14 @@ def evaluate_initial_misfit(self): _model = Model(os.path.join(self.path.model_true)) _model.check() - # Define the tasks that will be run through `system.run` - run_list = [self.run_forward_simulations, - self.evaluate_objective_function] - # Only need to prepare data for solver if we are preprocessing + # If no preprocessing module, than all of the additional functions for + # working with `data` are unncessary. if self.preprocess: - run_list = [self.prepare_data_for_solver] + run_list + run_list = [self.prepare_data_for_solver, + self.run_forward_simulations, + self.evaluate_objective_function] + else: + run_list = [self.run_forward_simulations] self.system.run(run_list, path_model=self.path.model_init, save_residuals=os.path.join(self.path.eval_grad, @@ -387,8 +389,9 @@ def run_forward_simulations(self, path_model, **kwargs): f"'{self.solver.__class__.__name__}'") # Figure out where to export waveform files to, if requested + # path will look like: 'output/solver/001/syn/NN.SSS.BXY.semd' if self.export_traces: - export_traces = os.path.join(self.path.output, + export_traces = os.path.join(self.path.output, "solver", self.solver.source_name, "syn") else: export_traces = False @@ -417,8 +420,6 @@ def evaluate_objective_function(self, save_residuals=False, **kwargs): logger.debug(f"quantifying misfit with " f"'{self.preprocess.__class__.__name__}'") self.preprocess.quantify_misfit( - # observed=self.solver.data_filenames(choice="obs"), - # synthetic=self.solver.data_filenames(choice="syn"), source_name=self.solver.source_name, save_adjsrcs=os.path.join(self.solver.cwd, "traces", "adj"), save_residuals=save_residuals From a8c87fac62afa3535e3986ac7b37a5705b7b47f6 Mon Sep 17 00:00:00 2001 From: bch0w Date: Thu, 1 Sep 2022 17:55:41 -0800 Subject: [PATCH 159/195] reworking example problems to be more dynamic and modular workstation system now allows for multicore runs and accepts mpiexec parameter to do so bugfix two arguments called 'setup' for seisflows --- docs/notebooks/parameter_file.ipynb | 4 +- docs/parameter_file.rst | 368 ++++++++++++------------ seisflows/examples/ex2_hh_w_pyatoa.py | 77 ++--- seisflows/examples/ex3_fwd_solver.py | 73 ++--- seisflows/examples/ex4_multicore_fwd.py | 102 +++++++ seisflows/examples/sfexample2d.py | 99 ++++--- seisflows/seisflows.py | 48 ++-- seisflows/solver/specfem.py | 6 +- seisflows/system/multicore.py | 196 ------------- seisflows/system/workstation.py | 36 ++- 10 files changed, 483 insertions(+), 526 deletions(-) create mode 100644 seisflows/examples/ex4_multicore_fwd.py delete mode 100644 seisflows/system/multicore.py diff --git a/docs/notebooks/parameter_file.ipynb b/docs/notebooks/parameter_file.ipynb index fe727007..bc1567b5 100644 --- a/docs/notebooks/parameter_file.ipynb +++ b/docs/notebooks/parameter_file.ipynb @@ -116,7 +116,7 @@ "cell_type": "raw", "metadata": {}, "source": [ - "* For an explanation of base classes and Python inheritance, see the `inheritance page.`__ " + "* For an explanation of base classes and Python inheritance, see the `inheritance page `__ " ] }, { @@ -183,7 +183,7 @@ "cell_type": "raw", "metadata": {}, "source": [ - "This is also covered in the `command line tool page.`__" + "This is also covered in the `command line tool page `__" ] }, { diff --git a/docs/parameter_file.rst b/docs/parameter_file.rst index 148abdf5..d49e6ff2 100644 --- a/docs/parameter_file.rst +++ b/docs/parameter_file.rst @@ -22,17 +22,17 @@ will create the template file. .. parsed-literal:: - usage: seisflows setup [-h] [-f] - - In the specified working directory, copy template parameter file containing - only module choices, and symlink source code for both the base and super - repositories for easy edit access. If a parameter file matching the provided - name exists in the working directory, a prompt will appear asking the user if - they want to overwrite. - - optional arguments: - -h, --help show this help message and exit - -f, --force automatically overwrites existing parameter file + usage: seisflows setup [-h] [-f] + + In the specified working directory, copy template parameter file containing + only module choices, and symlink source code for both the base and super + repositories for easy edit access. If a parameter file matching the provided + name exists in the working directory, a prompt will appear asking the user if + they want to overwrite. + + optional arguments: + -h, --help show this help message and exit + -f, --force automatically overwrites existing parameter file .. code:: ipython3 @@ -42,7 +42,7 @@ will create the template file. .. parsed-literal:: - creating parameter file: parameters.yaml + creating parameter file: parameters.yaml .. code:: ipython3 @@ -52,36 +52,36 @@ will create the template file. .. parsed-literal:: - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print modules - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # workflow (str): The types and order of functions for running SeisFlows - # system (str): Computer architecture of the system being used - # solver (str): External numerical solver to use for waveform simulations - # preprocess (str): Preprocessing schema for waveform data - # optimize (str): Optimization algorithm for the inverse problem - # ============================================================================== - workflow: forward - system: workstation - solver: specfem2d - preprocess: default - optimize: gradient + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: forward + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient How do I choose modules? @@ -90,7 +90,7 @@ How do I choose modules? As seen above, each of the modules comes with a default value which represents the base class\* for this module. -* For an explanation of base classes and Python inheritance, see the `inheritance page.`__ +* For an explanation of base classes and Python inheritance, see the `inheritance page `__ These default values are likely not suitable for all, e.g., if you want to run an inversion and not a forward workflow, or use SPECFEM3D not @@ -104,34 +104,34 @@ SPECFEM2D. To see all available module options, use the .. parsed-literal:: - SEISFLOWS MODULES - ///////////////// - '-': module, '*': class - - - workflow - * forward - * inversion - * migration - - system - * chinook - * cluster - * frontera - * lsf - * maui - * slurm - * workstation - - solver - * specfem - * specfem2d - * specfem3d - * specfem3d_globe - - preprocess - * default - * pyaflowa - - optimize - * LBFGS - * NLCG - * gradient + SEISFLOWS MODULES + ///////////////// + '-': module, '*': class + + - workflow + * forward + * inversion + * migration + - system + * chinook + * cluster + * frontera + * lsf + * maui + * slurm + * workstation + - solver + * specfem + * specfem2d + * specfem3d + * specfem3d_globe + - preprocess + * default + * pyaflowa + - optimize + * LBFGS + * NLCG + * gradient How do I change modules? @@ -141,7 +141,7 @@ Feel free to use any text editor, or use the ``seisflows par`` command to make changes directly from the command line. For example, say we want to use SPECFEM3D as our solver module. -This is also covered in the `command line tool page.`__ +This is also covered in the `command line tool page `__ .. code:: ipython3 @@ -151,7 +151,7 @@ This is also covered in the `command line tool page.`__ .. parsed-literal:: - solver: specfem2d -> specfem3d + solver: specfem2d -> specfem3d .. code:: ipython3 @@ -162,7 +162,7 @@ This is also covered in the `command line tool page.`__ .. parsed-literal:: - solver: specfem3d + solver: specfem3d How do I create a full parameter file? @@ -181,19 +181,19 @@ file. .. parsed-literal:: - usage: seisflows configure [-h] [-a] - - SeisFlows parameter files will vary depending on chosen modules and their - respective required parameters. This function will dynamically traverse the - source code and generate a template parameter file based on module choices. - The resulting file incldues docstrings and type hints for each parameter. - Optional parameters will be set with default values and required parameters - and paths will be marked appropriately. Required parameters must be set before - a workflow can be submitted. - - optional arguments: - -h, --help show this help message and exit - -a, --absolute_paths Set default paths relative to cwd + usage: seisflows configure [-h] [-a] + + SeisFlows parameter files will vary depending on chosen modules and their + respective required parameters. This function will dynamically traverse the + source code and generate a template parameter file based on module choices. + The resulting file incldues docstrings and type hints for each parameter. + Optional parameters will be set with default values and required parameters + and paths will be marked appropriately. Required parameters must be set before + a workflow can be submitted. + + optional arguments: + -h, --help show this help message and exit + -a, --absolute_paths Set default paths relative to cwd .. code:: ipython3 @@ -233,86 +233,86 @@ required by SeisFlows. Section headers will look something: .. parsed-literal:: - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print modules - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # workflow (str): The types and order of functions for running SeisFlows - # system (str): Computer architecture of the system being used - # solver (str): External numerical solver to use for waveform simulations - # preprocess (str): Preprocessing schema for waveform data - # optimize (str): Optimization algorithm for the inverse problem - # ============================================================================== - workflow: forward - system: workstation - solver: specfem3d - preprocess: default - optimize: gradient - # ============================================================================= - # - # Forward Workflow - # ---------------- - # Run forward solver in parallel and (optionally) calculate - # data-synthetic misfit and adjoint sources. - # - # Parameters - # ---------- - # :type modules: list of module - # :param modules: instantiated SeisFlows modules which should have been - # generated by the function `seisflows.config.import_seisflows` with a - # parameter file generated by seisflows.configure - # :type data_case: str - # :param data_case: How to address 'data' in the workflow, available options: - # 'data': real data will be provided by the user in - # `path_data/{source_name}` in the same format that the solver will - # produce synthetics (controlled by `solver.format`) OR - # synthetic': 'data' will be generated as synthetic seismograms using - # a target model provided in `path_model_true`. If None, workflow will - # not attempt to generate data. - # :type export_traces: bool - # :param export_traces: export all waveforms that are generated by the - # external solver to `path_output`. If False, solver traces stored in - # scratch may be discarded at any time in the workflow - # :type export_residuals: bool - # :param export_residuals: export all residuals (data-synthetic misfit) that - # are generated by the external solver to `path_output`. If False, - # residuals stored in scratch may be discarded at any time in the workflow - # - # - # ============================================================================= - data_case: data - export_traces: False - export_residuals: False - # ============================================================================= - # - # Workstation System - # ------------------ - # Runs tasks in serial on a local machine. - # - # Parameters - # ---------- - # :type ntask: int - # :param ntask: number of individual tasks/events to run during workflow. - # Must be <= the number of source files in `path_specfem_data` - # :type nproc: int - # :param nproc: number of processors to use for each simulation - # :type log_level: str - # :param log_level: logger level to pass to logging module. + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: forward + system: workstation + solver: specfem3d + preprocess: default + optimize: gradient + # ============================================================================= + # + # Forward Workflow + # ---------------- + # Run forward solver in parallel and (optionally) calculate + # data-synthetic misfit and adjoint sources. + # + # Parameters + # ---------- + # :type modules: list of module + # :param modules: instantiated SeisFlows modules which should have been + # generated by the function `seisflows.config.import_seisflows` with a + # parameter file generated by seisflows.configure + # :type data_case: str + # :param data_case: How to address 'data' in the workflow, available options: + # 'data': real data will be provided by the user in + # `path_data/{source_name}` in the same format that the solver will + # produce synthetics (controlled by `solver.format`) OR + # synthetic': 'data' will be generated as synthetic seismograms using + # a target model provided in `path_model_true`. If None, workflow will + # not attempt to generate data. + # :type export_traces: bool + # :param export_traces: export all waveforms that are generated by the + # external solver to `path_output`. If False, solver traces stored in + # scratch may be discarded at any time in the workflow + # :type export_residuals: bool + # :param export_residuals: export all residuals (data-synthetic misfit) that + # are generated by the external solver to `path_output`. If False, + # residuals stored in scratch may be discarded at any time in the workflow + # + # + # ============================================================================= + data_case: data + export_traces: False + export_residuals: False + # ============================================================================= + # + # Workstation System + # ------------------ + # Runs tasks in serial on a local machine. + # + # Parameters + # ---------- + # :type ntask: int + # :param ntask: number of individual tasks/events to run during workflow. + # Must be <= the number of source files in `path_specfem_data` + # :type nproc: int + # :param nproc: number of processors to use for each simulation + # :type log_level: str + # :param log_level: logger level to pass to logging module. .. code:: ipython3 @@ -322,16 +322,16 @@ required by SeisFlows. Section headers will look something: .. parsed-literal:: - path_model_true: null - path_state_file: /Users/Chow/Repositories/seisflows/docs/notebooks/sfstate.txt - path_data: null - path_par_file: /Users/Chow/Repositories/seisflows/docs/notebooks/parameters.yaml - path_log_files: /Users/Chow/Repositories/seisflows/docs/notebooks/logs - path_output_log: /Users/Chow/Repositories/seisflows/docs/notebooks/sflog.txt - path_specfem_bin: null - path_specfem_data: null - path_solver: /Users/Chow/Repositories/seisflows/docs/notebooks/scratch/solver - path_preconditioner: null + path_model_true: null + path_state_file: /Users/Chow/Repositories/seisflows/docs/notebooks/sfstate.txt + path_data: null + path_par_file: /Users/Chow/Repositories/seisflows/docs/notebooks/parameters.yaml + path_log_files: /Users/Chow/Repositories/seisflows/docs/notebooks/logs + path_output_log: /Users/Chow/Repositories/seisflows/docs/notebooks/sflog.txt + path_specfem_bin: null + path_specfem_data: null + path_solver: /Users/Chow/Repositories/seisflows/docs/notebooks/scratch/solver + path_preconditioner: null How do I know how parameters need to be set? @@ -349,13 +349,13 @@ verifies that parameters are set correctly. .. parsed-literal:: - - ================================================================================ - PARAMETER ERRROR - //////////////// - `path_specfem_bin` must exist and must point to directory containing SPECFEM - executables - ================================================================================ + + ================================================================================ + PARAMETER ERRROR + //////////////// + `path_specfem_bin` must exist and must point to directory containing SPECFEM + executables + ================================================================================ .. code:: ipython3 diff --git a/seisflows/examples/ex2_hh_w_pyatoa.py b/seisflows/examples/ex2_hh_w_pyatoa.py index 2faaa5c4..3e662639 100644 --- a/seisflows/examples/ex2_hh_w_pyatoa.py +++ b/seisflows/examples/ex2_hh_w_pyatoa.py @@ -26,8 +26,8 @@ class SFPyatoaEx2D(SFExample2D): advantage of the default SPECFEM2D stuff, onyl changes the generation of MODEL TRUE, the number of stations, and the setup of the parameter file. """ - def __init__(self, ntask=None, niter=None, nsta=None, method="run", - specfem2d_repo=None): + def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, + method="run", specfem2d_repo=None): """ Overload init and attempt to import Pyatoa before running example. @@ -44,7 +44,8 @@ def __init__(self, ntask=None, niter=None, nsta=None, method="run", contain binary executables. If not given, SPECFEM2D will be downloaded configured and compiled automatically. """ - # Setting default values for ntask, niter, nsta here vvv + # We set defaults here because `seisflows examples` may input these + # values as NoneType which would override __init__ defaults. super().__init__(ntask=ntask or 4, niter=niter or 2, nsta=nsta or 32, method=method, specfem2d_repo=specfem2d_repo) @@ -59,6 +60,25 @@ def __init__(self, ntask=None, niter=None, nsta=None, method="run", ) sys.exit(-1) + # Define the main SeisFlows modules, which will be different to the + # base example + self._modules = { + "workflow": "inversion", + "preprocess": "pyaflowa", + "optimize": "LBFGS", + } + + # Adjust the existing parameter list + self._parameters["smooth_h"] = 5000. + self._parameters["smooth_v"] = 5000. + + # Pyaflowa preprocessing parameters + self._parameters["unit_output"] = "DISP" + self._parameters["min_period"] = 10. # filter bounds define windows + self._parameters["max_period"] = 200. + # self.sf.par("pyflex_preset", "") # To turn off windowing completely + + def print_dialogue(self): """ Print help/system dialogue message that explains the setup of th @@ -75,11 +95,11 @@ def print_dialogue(self): f"iterations]. " f"The tasks involved include: ", items=["1. (optional) Download, configure, compile SPECFEM2D", - "2. Set up a SPECFEM2D working directory", - "3. Generate starting model from 'Tape2007' example", - "4. Generate target model w/ perturbed starting model", - "5. Set up a SeisFlows working directory", - "6. Run the inversion workflow"], + "2. [Setup] a SPECFEM2D working directory", + "3. [Setup] starting model from 'Tape2007' example", + "4. [Setup] target model w/ perturbed starting model", + "5. [Setup] a SeisFlows working directory", + "6. [Run] the inversion workflow"], header="seisflows example 2", border="=") ) @@ -95,46 +115,7 @@ def setup_specfem2d_for_model_true(self): cd(self.workdir_paths.data) assert(os.path.exists("Par_file")), f"I cannot find the Par_file!" - print("> EX: Updating SPECFEM2D to set checkerboard model as " - "MODEL_TRUE") + print("> Updating SPECFEM2D to set checkerboard model as current model") self.sf.sempar("model", "legacy") # read model_velocity.dat_checker rm("proc000000_model_velocity.dat_input") ln("model_velocity.dat_checker", "proc000000_model_velocity.dat_input") - - def setup_seisflows_working_directory(self): - """ - Create and set the SeisFlows parameter file, making sure all required - parameters are set correctly for this example problem - """ - cd(self.cwd) - - print("> EX2: Setting SeisFlows parameters for Pyatoa preprocessing") - self.sf.setup(force=True) # Force will delete existing parameter file - self.sf.par("workflow", "inversion") - self.sf.par("preprocess", "pyaflowa") - self.sf.par("optimize", "LBFGS") - self.sf.configure() - - self.sf.par("end", 1) # only 1 iteration - self.sf.par("ntask", self.ntask) # 3 sources for this example - self.sf.par("materials", "elastic") # how velocity model parameterized - self.sf.par("density", False) # update density or keep constant - self.sf.par("data_format", "ascii") # output synthetic seismograms - self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion - self.sf.par("attenuation", False) - self.sf.par("components", "Y") - self.sf.par("smooth_h", 5000.) - self.sf.par("smooth_v", 5000.) - - # PYATOA preprocessing parameters - self.sf.par("unit_output", "DISP") - self.sf.par("min_period", 10) # filter bounds define window selection - self.sf.par("max_period", 200) - # self.sf.par("pyflex_preset", "") # To turn off windowing completely - - self.sf.par("path_specfem_bin", self.workdir_paths.bin) - self.sf.par("path_specfem_data", self.workdir_paths.data) - self.sf.par("path_model_init", self.workdir_paths.model_init) - self.sf.par("path_model_true", self.workdir_paths.model_true) - - diff --git a/seisflows/examples/ex3_fwd_solver.py b/seisflows/examples/ex3_fwd_solver.py index 9ed7b2b6..d4364130 100644 --- a/seisflows/examples/ex3_fwd_solver.py +++ b/seisflows/examples/ex3_fwd_solver.py @@ -11,19 +11,20 @@ .. rubric:: $ seisflows examples run 3 """ +import os from seisflows.tools import msg -from seisflows.tools.unix import cd +from seisflows.tools.unix import cd, ln, rm from seisflows.examples.sfexample2d import SFExample2D class SFFwdEx2D(SFExample2D): """ A class for running SeisFlows examples. Overloads Example 1 to take - advantage of the default SPECFEM2D stuff, onyl changes the generation of - MODEL TRUE, the number of stations, and the setup of the parameter file. + advantage of the default SPECFEM2D stuff, only removes the generation of + MODEL TRUE and makes the parameter file more bare bones. """ - def __init__(self, ntask=None, nsta=None, method="run", specfem2d_repo=None, - **kwargs): + def __init__(self, ntask=None, nsta=None, nproc=None, method="run", + specfem2d_repo=None, **kwargs): """ Overloads init of the base problem @@ -42,9 +43,19 @@ def __init__(self, ntask=None, nsta=None, method="run", specfem2d_repo=None, contain binary executables. If not given, SPECFEM2D will be downloaded configured and compiled automatically. """ - # Setting default values for ntask, niter, nsta here vvv - super().__init__(ntask=ntask or 10, niter=1, nsta=nsta or 25, - method=method, specfem2d_repo=specfem2d_repo) + # We set defaults here because `seisflows examples` may input these + # values as NoneType which would override __init__ defaults. + super().__init__(ntask=ntask or 10, nsta=nsta or 25, nproc=nproc or 1, + niter=1, method=method, specfem2d_repo=specfem2d_repo) + + self._modules = { + "workflow": "forward", + "preprocess": "null", + "optimize": "null" + } + + self._parameters["export_traces"] = True + self._parameters["path_model_true"] = "null" # overload default par. def print_dialogue(self): """ @@ -68,47 +79,43 @@ def print_dialogue(self): border="=") ) - def setup_seisflows_working_directory(self): + def setup_specfem2d_for_model_true(self): """ - Create and set the SeisFlows parameter file, making sure all required - parameters are set correctly for this example problem - """ - cd(self.cwd) + Overwrites MODEL TRUE creation from EX1. The same as in Example 2 - print("> EX2: Setting SeisFlows parameters for Pyatao preprocessing") - self.sf.setup(force=True) # Force will delete existing parameter file - self.sf.par("workflow", "forward") - self.sf.par("preprocess", "null") - self.sf.par("optimize", "null") - self.sf.configure() + Make some adjustments to the parameter file to create the final velocity + model. This function assumes it is running from inside the + SPECFEM2D/DATA directory + """ + cd(self.workdir_paths.data) + assert(os.path.exists("Par_file")), f"I cannot find the Par_file!" - self.sf.par("ntask", self.ntask) # 3 sources for this example - self.sf.par("materials", "elastic") # how velocity model parameterized - self.sf.par("density", False) # update density or keep constant - self.sf.par("data_format", "ascii") # output synthetic seismograms - self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion - self.sf.par("attenuation", False) - self.sf.par("components", "Y") - self.sf.par("export_traces", True) # copy waveforms to disk + print("> Updating SPECFEM2D to set checkerboard model as current model") + self.sf.sempar("model", "legacy") # read model_velocity.dat_checker + rm("proc000000_model_velocity.dat_input") + for i in range(self.nproc): + ln("model_velocity.dat_checker", + f"proc00000{i}_model_velocity.dat_input") - self.sf.par("path_specfem_bin", self.workdir_paths.bin) - self.sf.par("path_specfem_data", self.workdir_paths.data) - self.sf.par("path_model_init", self.workdir_paths.model_init) def main(self): """ Setup the example and then optionally run the actual seisflows workflow + Mostly the same as Example 1 main() except it does not generate + MODEL_TRUE, and instead sets MODEL_TRUE as the starting model. """ print(msg.cli("EXAMPLE SETUP", border="=")) # Step 1: Download and configure SPECFEM2D, make binaries. Optional self.download_specfem2d() - self.configure_specfem2d_and_make_binaries() + self.configure_specfem2d() + self.make_specfem2d_executables() # Step 2: Create a working directory and generate initial/final models self.create_specfem2d_working_directory() # Step 2a: Generate MODEL_INIT, rearrange consequent directory structure print(msg.cli("GENERATING INITIAL MODEL", border="=")) - self.setup_specfem2d_for_model_init() + self.setup_specfem2d_for_model_init() # setup SPECFEM run directory + self.setup_specfem2d_for_model_true() # Use checkerboard model self.run_xspecfem2d_binaries() self.cleanup_xspecfem2d_run(choice="INIT") # Step 3: Prepare Par_file and directory for MODEL_TRUE generation @@ -117,6 +124,4 @@ def main(self): print(msg.cli("COMPLETE EXAMPLE SETUP", border="=")) # Step 4: Run the workflwo if self.run_example: - print(msg.cli("RUNNING SEISFLOWS FORWARD WORKFLOW", border="=")) self.run_sf_example() - print(msg.cli("EXAMPLE COMPLETED SUCCESFULLY", border="=")) diff --git a/seisflows/examples/ex4_multicore_fwd.py b/seisflows/examples/ex4_multicore_fwd.py new file mode 100644 index 00000000..c67fd099 --- /dev/null +++ b/seisflows/examples/ex4_multicore_fwd.py @@ -0,0 +1,102 @@ +#!/usr/bin/env python3 +""" + SEISFLOWS SPECFEM2D WORKSTATION EXAMPLE 4 + +This example mimics Example 3 (mass forward simulations) but uses the +parallelized version of SPECFEM2D to test out multi-core functionality. + +.. note:: + See Example 1 docstring for more information + +.. rubric:: + $ seisflows examples run 3 +""" +import os +import subprocess +from seisflows.tools import msg +from seisflows.tools.unix import cd, rm, ln +from seisflows.examples.ex3_fwd_solver import SFFwdEx2D + + +class SFMultiCoreEx2D(SFFwdEx2D): + """ + A class for running SeisFlows examples. Overloads Example 1 to take + advantage of the default SPECFEM2D stuff, onyl changes the generation of + MODEL TRUE, the number of stations, and the setup of the parameter file. + """ + def __init__(self, ntask=None, nsta=None, nproc=None, + method="run", specfem2d_repo=None, **kwargs): + """ + Overloads init of the base problem + + :type ntask: int + :param ntask: number of events to use in inversion, between 1 and 25. + defaults to 3 + :type nsta: int + :param nsta: number of stations to include in inversion, between 1 and + 131 + :type nproc: int + :param nproc: number of processors to be sent to MPI executable + :type method: str + :param method: method for running the example problem, can be: + * 'run': setup and run the example problem + * 'setup': only setup the example problem, do not `submit` job + :type specfem2d_repo: str + :param specfem2d_repo: path to the SPECFEM2D directory which should + contain binary executables. If not given, SPECFEM2D will be + downloaded configured and compiled automatically. + """ + # We set defaults here because `seisflows examples` may input these + # values as NoneType which would override __init__ defaults. + super().__init__(ntask=ntask or 10, nsta=nsta or 25, nproc=nproc or 4, + niter=1, method=method, specfem2d_repo=specfem2d_repo) + + self.mpiexec = "mpirun" + self._parameters["nproc"] = self.nproc + self._parameters["mpiexec"] = self.mpiexec + + # Overwrite configure cmd to get MPI + self._configure_cmd = \ + "./configure FC=gfortran CC=gcc MPIF90=mpif90 --with-mpi" + + + def print_dialogue(self): + """ + Print help/system dialogue message that explains the setup of th + this workflow + """ + print(msg.ascii_logo_small) + print(msg.cli( + f"This is a [SPECFEM2D] [WORKSTATION] example, which will run " + f"forward simulations to generate synthetic seismograms through " + f"a homogeneous halfspace starting model. This example uses no " + f"preprocessing or optimization modules. This example uses MPI to " + f"run the external solver, SPECFEM2D." + f"[{self.ntask} events, {self.nsta} stations] " + f"The tasks involved include: ", + items=["1. (optional) Download, configure, compile " + "SPECFEM2D w/ MPI", + "2. [Setup] a SPECFEM2D working directory", + "3. [Setup] starting model from 'Tape2007' example", + "4. [Setup] a SeisFlows working directory", + "5. [Run] the forward simulation workflow"], + header="seisflows example 4", + border="=") + ) + + def run_xspecfem2d_binaries(self): + """ + Runs the xmeshfem2d and then xspecfem2d binaries using subprocess and then + do some cleanup to get files in the correct locations. Assumes that we + can run the binaries directly with './' + """ + cd(self.workdir_paths.workdir) + + mpicmd = f"{self.mpiexec} -n {self.nproc}" + cmd_mesh = f"{mpicmd} bin/xmeshfem2D > OUTPUT_FILES/mesher.log.txt" + cmd_spec = f"{mpicmd} bin/xspecfem2D > OUTPUT_FILES/solver.log.txt" + + for cmd in [cmd_mesh, cmd_spec]: + print(f"Running SPECFEM2D with command: {cmd}") + subprocess.run(cmd, shell=True, check=True, + stdout=subprocess.DEVNULL) diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 03802c36..9bb1ae94 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -44,8 +44,8 @@ class SFExample2D: A class for running SeisFlows examples. Simplifies calls structure so that multiple example runs can benefit from the code written here """ - def __init__(self, ntask=None, niter=None, nsta=None, method="run", - specfem2d_repo=None): + def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, + method="run", specfem2d_repo=None): """ Set path structure which is used to navigate around SPECFEM repositories and the example working directory @@ -71,6 +71,8 @@ def __init__(self, ntask=None, niter=None, nsta=None, method="run", self.sem2d_paths, self.workdir_paths = self.define_dir_structures( cwd=self.cwd, specfem2d_repo=specfem2d_repo ) + # We set defaults here because `seisflows examples` may input these + # values as NoneType which would override __init__ defaults. self.ntask = ntask or 1 assert(1 <= self.ntask <= 25), \ f"number of tasks/events must be between 1 and 25, not {self.ntask}" @@ -79,8 +81,9 @@ def __init__(self, ntask=None, niter=None, nsta=None, method="run", f"number of iterations must be between 1 and inf, not {self.niter}" self.nsta = nsta or 1 # -1 because it represents index but we need to talk in terms of count - assert(1 <= self.nsta <= 131), \ + assert(1 <= self.nsta <= 132), \ f"number of stations must be between 1 and 131, not {self.nsta}" + self.nproc = nproc or 1 # must be 1 for Examples 1-3 # This bool information is provided by the User running 'setup' or 'run' self.run_example = bool(method == "run") @@ -90,6 +93,35 @@ def __init__(self, ntask=None, niter=None, nsta=None, method="run", sys.argv = [sys.argv[0]] self.sf = SeisFlows() + # Set the main SeisFlows modules prior to running the configure() cmd. + self._modules = { + "workflow": "inversion", + } + + # SeisFlows parameters are set as an attribute so that other examples + # can overwrite or override + self._parameters = { + "ntask": self.ntask, # default 3 sources for this example + "materials": "elastic", # how velocity model parameterized + "density": False, # update density or keep constant + "data_format": "ascii", # how to output synthetic seismograms + "start": 1, # first iteration + "end": self.niter, # final iteration -- we will run 2 + "step_count_max": 5, # will cause iteration 2 to fail + "data_case": "synthetic", # synthetic-synthetic inversion + "components": "Y", # only Y component seismograms avail. + "attenuation": False, + "misfit": "traveltime", # cross-correlation phase measure + "adjoint": "traveltime", # cross-correlation phase measure + "path_specfem_bin": self.workdir_paths.bin, + "path_specfem_data": self.workdir_paths.data, + "path_model_init": self.workdir_paths.model_init, + "path_model_true": self.workdir_paths.model_true, + } + + # Used to configure SPECFEM2D binaries + self._configure_cmd = "./configure" + def print_dialogue(self): """ Print help/system dialogue message that explains the setup of th @@ -103,11 +135,11 @@ def print_dialogue(self): f"[{self.ntask} events, 1 station, {self.niter} iterations]. " f"The tasks involved include: ", items=["1. (optional) Download, configure, compile SPECFEM2D", - "2. Set up a SPECFEM2D working directory", - "3. Generate starting model from 'Tape2007' example", - "4. Generate target model w/ perturbed starting model", - "5. Set up a SeisFlows working directory", - "6. Run the inversion workflow"], + "2. [Setup] a SPECFEM2D working directory", + "3. [Setup] starting model from 'Tape2007' example", + "4. [Setup] target model w/ perturbed starting model", + "5. [Setup] a SeisFlows working directory", + "6. [Run] the inversion workflow"], header="seisflows example 1", border="=") ) @@ -167,7 +199,7 @@ def download_specfem2d(self): f"does not exist, please check your path and try again." ) - def configure_specfem2d_and_make_binaries(self): + def configure_specfem2d(self): """ Run ./configure within the SPECFEM2D repo directory. This function assumes it is being run from inside the repo. Should guess @@ -177,10 +209,10 @@ def configure_specfem2d_and_make_binaries(self): cd(self.sem2d_paths.repo) try: if not os.path.exists("./config.log"): - cmd = "./configure" - print(f"Configuring SPECFEM2D with command: {cmd}") + print(f"Configuring SPECFEM2D with command: " + f"{self._configure_cmd}") # Ignore the configure outputs from SPECFEM - subprocess.run(cmd, shell=True, check=True, + subprocess.run(self._configure_cmd, shell=True, check=True, stdout=subprocess.DEVNULL) else: print("SPECFEM2D already configured, skipping 'configure'") @@ -190,6 +222,10 @@ def configure_specfem2d_and_make_binaries(self): f"to configure SPECFEM2D manually.\n{e}") sys.exit(-1) + def make_specfem2d_executables(self): + """ + Run `$ make all` in SPECFEM2D to create binary executables + """ try: if not glob.glob("./bin/x*"): cmd = "make all" @@ -248,6 +284,7 @@ def setup_specfem2d_for_model_init(self): print("> Setting the SPECFEM2D Par_file for SeisFlows compatiblility") + self.sf.sempar("nproc", self.nproc) self.sf.sempar("setup_with_binary_database", 1) # create .bin files self.sf.sempar("save_model", "binary") # output model in .bin format self.sf.sempar("save_ASCII_kernels", ".false.") # kernels also .bin @@ -318,26 +355,14 @@ def setup_seisflows_working_directory(self): cd(self.cwd) self.sf.setup(force=True) # Force will delete existing parameter file - self.sf.par("workflow", "inversion") + for key, val in self._modules.items(): + self.sf.par(key, val) + self.sf.configure() - self.sf.par("ntask", self.ntask) # default 3 sources for this example - self.sf.par("materials", "elastic") # how velocity model parameterized - self.sf.par("density", False) # update density or keep constant - self.sf.par("data_format", "ascii") # how to output synthetic seismograms - self.sf.par("start", 1) # first iteration - self.sf.par("end", self.niter) # final iteration -- we will run 2 - self.sf.par("step_count_max", 5) # will cause iteration 2 to fail - self.sf.par("data_case", "synthetic") # synthetic-synthetic inversion - self.sf.par("components", "Y") # only Y component seismograms avail. - self.sf.par("attenuation", False) - self.sf.par("misfit", "traveltime") # cross-correlation phase measure - self.sf.par("adjoint", "traveltime") # cross-correlation phase measure - - self.sf.par("path_specfem_bin", self.workdir_paths.bin) - self.sf.par("path_specfem_data", self.workdir_paths.data) - self.sf.par("path_model_init", self.workdir_paths.model_init) - self.sf.par("path_model_true", self.workdir_paths.model_true) + # Adjust the parameters.yaml file + for key, val in self._parameters.items(): + self.sf.par(key, val) def finalize_specfem2d_par_file(self): """ @@ -351,6 +376,7 @@ def finalize_specfem2d_par_file(self): cd(self.workdir_paths.data) self.sf.sempar("model", "gll") # GLL so SPECFEM reads .bin files self.sf.sempar("use_existing_stations", ".true.") # Use STATIONS file + self.sf.sempar("nproc", self.nproc) # Assign STATIONS_checker file which has 132 stations rm("STATIONS") @@ -366,8 +392,14 @@ def run_sf_example(self): """ Use subprocess to run the SeisFlows example we just set up """ + print(msg.cli("RUNNING SEISFLOWS EXAMPLE WORKFLOW", border="=")) cd(self.cwd) - subprocess.run("seisflows submit", check=False, shell=True) + try: + subprocess.run("seisflows submit", check=True, shell=True) + except subprocess.CalledProcessError as e: + print(msg.cli("EXAMPLE FAILED", items=[str(e)], border="=")) + sys.exit(-1) + print(msg.cli("EXAMPLE COMPLETED SUCCESFULLY", border="=")) def main(self): """ @@ -377,7 +409,8 @@ def main(self): # Step 1: Download and configure SPECFEM2D, make binaries. Optional self.download_specfem2d() - self.configure_specfem2d_and_make_binaries() + self.configure_specfem2d() + self.make_specfem2d_executables() # Step 2: Create a working directory and generate initial/final models self.create_specfem2d_working_directory() # Step 2a: Generate MODEL_INIT, rearrange consequent directory structure @@ -396,7 +429,5 @@ def main(self): print(msg.cli("COMPLETE EXAMPLE SETUP", border="=")) # Step 4: Run the workflwo if self.run_example: - print(msg.cli("RUNNING SEISFLOWS INVERSION WORKFLOW", border="=")) self.run_sf_example() - print(msg.cli("EXAMPLE COMPLETED SUCCESFULLY", border="=")) diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index e762c699..8e4db1d1 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -203,21 +203,14 @@ def _format_action(self, action): # ========================================================================= check = subparser.add_parser( "check", formatter_class=argparse.RawDescriptionHelpFormatter, - description=""" -Check parameters, state, or values of an active environment - - model check the min/max values of currently active models tracked by - optimize. 'seisflows check model [name]' to check specific model. - iter Check current interation and step count of workflow - src List source names and respective internal indices - isrc Check source name for corresponding index - """, - help="Check state of an active environment") - - # check.add_argument("choice", type=str, nargs="?", - # help="Parameter, state, or value to check") - # check.add_argument("args", type=str, nargs="*", - # help="Generic arguments passed to check functions") + description="Run check functions to ensure that the provided parameter " + "file has been set correctly" + ) + # ========================================================================= + init = subparser.add_parser( + "init", formatter_class=argparse.RawDescriptionHelpFormatter, + description="Run check and setup functions to generate a SeisFlows " + "working directory") # ========================================================================= plot2d = subparser.add_parser( "plot2d", formatter_class=argparse.RawDescriptionHelpFormatter, @@ -660,6 +653,24 @@ def check(self, **kwargs): except AssertionError as e: print(msg.cli(str(e), border="=", header="parameter errror")) + def init(self, **kwargs): + """ + Run check() + setup() functions for a given parameter file and each of + the SeisFlows modules, ensuring that parameters are acceptable for the + given set of user-defined parameters and running setup procedure + which may create directories and perform some file management. + """ + unix.mkdir(self._args.workdir) + unix.cd(self._args.workdir) + + workflow = import_seisflows(workdir=self._args.workdir, + parameter_file=self._args.parameter_file) + try: + workflow.check() + workflow.setup() + except AssertionError as e: + print(msg.cli(str(e), border="=", header="parameter errror")) + def submit(self, **kwargs): """ Main SeisFlows execution command. Submit the SeisFlows workflow to @@ -817,7 +828,7 @@ def sempar(self, parameter, value=None, skip_print=False, delim="=") except KeyError: print(msg.cli(f"'{parameter}' not found in {par_file}")) - sys.exit(-1) + return # Option 1: Simply print out the value of the given parameter if value is None: @@ -888,7 +899,7 @@ def par(self, parameter, value=None, skip_print=False, **kwargs): except KeyError: print(msg.cli(f"'{parameter}' not found in " f"{self._args.parameter_file}")) - sys.exit(-1) + return # Option 1: Simply print out the value of the given parameter if value is None: @@ -950,6 +961,9 @@ def examples(self, method=None, choice=None, specfem2d_repo=None, import SFPyatoaEx2D as Example elif choice == 3: from seisflows.examples.ex3_fwd_solver import SFFwdEx2D as Example + elif choice == 4: + from seisflows.examples.ex4_multicore_fwd \ + import SFMultiCoreEx2D as Example else: print(f"no SeisFlows example matching given number: {choice}") sys.exit(0) diff --git a/seisflows/solver/specfem.py b/seisflows/solver/specfem.py index 524103d7..345355bc 100644 --- a/seisflows/solver/specfem.py +++ b/seisflows/solver/specfem.py @@ -839,6 +839,6 @@ def _export_starting_models(self, parameters=None): dst = os.path.join(self.path.output, name, "") if not os.path.exists(dst): unix.mkdir(dst) - for par in parameters: - src = glob(os.path.join(model, f"*{par}{self._ext}")) - unix.cp(src, dst) + for par in parameters: + src = glob(os.path.join(model, f"*{par}{self._ext}")) + unix.cp(src, dst) diff --git a/seisflows/system/multicore.py b/seisflows/system/multicore.py deleted file mode 100644 index f7cd980e..00000000 --- a/seisflows/system/multicore.py +++ /dev/null @@ -1,196 +0,0 @@ -#!/usr/bin/env python3 -""" -The `workstation` class is the foundational `System` module in SeisFlows, -it provides utilities for submitting jobs in SERIAL on a small-scale machine, -e.g., a workstation or a laptop. All other `System` classes build on this class. -""" -import os -from contextlib import redirect_stdout - -from seisflows import logger -from seisflows.tools import unix -from seisflows.tools.config import Dict, import_seisflows -from seisflows.tools.config import number_fid, set_task_id - - -class Workstation: - """ - Workstation System - ------------------ - Defines foundational structure for System module. When used standalone, - runs tasks in serial on a local machine. - - Parameters - ---------- - :type ntask: int - :param ntask: number of individual tasks/events to run during workflow. - Must be <= the number of source files in `path_specfem_data` - :type nproc: int - :param nproc: number of processors to use for each simulation - :type log_level: str - :param log_level: logger level to pass to logging module. - Available: 'debug', 'info', 'warning', 'critical' - :type verbose: bool - :param verbose: if True, formats the log messages to include the file - name, line number and message type. Useful for debugging but - also very verbose. - - Paths - ----- - :type path_output_log: str - :param path_output_log: path to a text file used to store the outputs of - the package wide logger, which are also written to stdout - :type path_par_file: str - :param path_par_file: path to parameter file which is used to instantiate - the package - :type path_log_files: str - :param path_log_files: path to a directory where individual log files are - saved whenever a number of parallel tasks are run on the system. - *** - """ - def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, - workdir=os.getcwd(), path_output=None, path_system=None, - path_par_file=None, path_output_log=None, path_log_files=None, - **kwargs): - """ - Workstation System Class Parameters - - .. note:: - Paths listed here are shared with `workflow.forward` and so are not - included in the class docstring. - - :type workdir: str - :param workdir: working directory in which to look for data and store - results. Defaults to current working directory - :type path_output: str - :param path_output: path to directory used for permanent storage on disk. - Results and exported scratch files are saved here. - :type path_system: str - :param path_system: scratch path to save any system related files - """ - self.ntask = ntask - self.nproc = nproc - self.log_level = log_level.upper() - self.verbose = verbose - - # Define internal path system - self.path = Dict( - workdir=workdir or os.getcwd(), - scratch=path_system or os.path.join(workdir, "scratch", "system"), - par_file=path_par_file or os.path.join(workdir, "parameters.yaml"), - output=path_output or os.path.join(workdir, "output"), - log_files=path_log_files or os.path.join(workdir, "logs"), - output_log=path_output_log or os.path.join(workdir, "sflog.txt"), - ) - self._acceptable_log_levels = ["CRITICAL", "WARNING", "INFO", "DEBUG"] - - def check(self): - """ - Checks parameters and paths - """ - assert(os.path.exists(self.path.par_file)), \ - f"parameter file does not exist but should" - - assert(self.ntask > 0), f"number of events/tasks `ntask` cannot be neg'" - assert(self.nproc == 1), f"system.workstation rqeuires `nproc`==1" - assert(self.log_level in self._acceptable_log_levels), \ - f"`system.log_level` must be in {self._acceptable_log_levels}" - - def setup(self): - """ - Create the SeisFlows directory structure in preparation for a - SeisFlows workflow. Ensure that if any config information is left over - from a previous workflow, that these files are not overwritten by - the new workflow. Should be called by submit() - - .. note:: - This function is expected to create dirs: SCRATCH, SYSTEM, OUTPUT - and the following log files: output, error - - .. note:: - Logger is configured here as all workflows, independent of system, - will be calling setup() - - :rtype: tuple of str - :return: (path to output log, path to error log) - """ - for path in [self.path.scratch, self.path.output, self.path.log_files]: - unix.mkdir(path) - - # If resuming, move old log files to keep them out of the way. Number - # in ascending order, so we don't end up overwriting things - for src in [self.path.output_log, self.path.par_file]: - i = 1 - if os.path.exists(src): - dst = os.path.join(self.path.log_files, number_fid(src, i)) - while os.path.exists(dst): - i += 1 - dst = os.path.join(self.path.log_files, number_fid(src, i)) - logger.debug(f"copying par/log file to: {dst}") - unix.cp(src=src, dst=dst) - - def submit(self, workdir=None, parameter_file="parameters.yaml"): - """ - Submits the main workflow job as a serial job submitted directly to - the system that is running the master job - - :type workdir: str - :param workdir: path to the current working directory - :type parameter_file: str - :param parameter_file: paramter file file name used to instantiate - the SeisFlows package - """ - workflow = import_seisflows(workdir=workdir or self.path.workdir, - parameter_file=parameter_file) - workflow.check() - workflow.setup() - workflow.run() - - def run(self, funcs, single=False, **kwargs): - """ - Executes task multiple times in serial. - - .. note:: - kwargs will be passed to the underlying `method` that is called - - :type funcs: list of methods - :param funcs: a list of functions that should be run in order. All - kwargs passed to run() will be passed into the functions. - :type single: bool - :param single: run a single-process, non-parallel task, such as - smoothing the gradient, which only needs to be run by once. - This will change how the job array and the number of tasks is - defined, such that the job is submitted as a single-core job to - the system. - """ - if single: - ntasks = 1 - else: - ntasks = self.ntask - - for task_id in range(ntasks): - # Set Task ID for currently running process - set_task_id(task_id) - log_file = self._get_log_file(task_id) - - # Redirect output to a log file to mimic cluster runs where 'run' - # task output logs are sent to different files - with open(log_file, "w") as f: - with redirect_stdout(f): - for func in funcs: - func(**kwargs) - - def _get_log_file(self, task_id): - """ - To mimic clusters which assign job numbers to spawned processes, our - on-system runs will also assign job numbers simply be incrementing the - number on the log files on system. - """ - idx = 1 - while True: - log_file = os.path.join(self.path.log_files, - f"{idx:0>4}_{task_id:0>2}.log") - if os.path.exists(log_file): - idx += 1 - else: - return log_file diff --git a/seisflows/system/workstation.py b/seisflows/system/workstation.py index f7cd980e..ca61ad0c 100644 --- a/seisflows/system/workstation.py +++ b/seisflows/system/workstation.py @@ -5,6 +5,7 @@ e.g., a workstation or a laptop. All other `System` classes build on this class. """ import os +import subprocess from contextlib import redirect_stdout from seisflows import logger @@ -17,8 +18,9 @@ class Workstation: """ Workstation System ------------------ - Defines foundational structure for System module. When used standalone, - runs tasks in serial on a local machine. + Defines foundational structure for System module. When used standalone, + runs solver tasks either in serial (if `nproc`==1; i.e., without MPI) or in + parallel (if `nproc`>1; i.e., with MPI). All other tasks are run in serial. Parameters ---------- @@ -26,7 +28,10 @@ class Workstation: :param ntask: number of individual tasks/events to run during workflow. Must be <= the number of source files in `path_specfem_data` :type nproc: int - :param nproc: number of processors to use for each simulation + :param nproc: number of processors to use for each simulation. Choose 1 for + serial simulations, and `nproc`>1 for parallel simulations. + :type mpiexec: str + :param mpiexec: MPI executable on system. Defaults to 'mpirun -n ${NPROC}' :type log_level: str :param log_level: logger level to pass to logging module. Available: 'debug', 'info', 'warning', 'critical' @@ -48,10 +53,10 @@ class Workstation: saved whenever a number of parallel tasks are run on the system. *** """ - def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, - workdir=os.getcwd(), path_output=None, path_system=None, - path_par_file=None, path_output_log=None, path_log_files=None, - **kwargs): + def __init__(self, ntask=1, nproc=1, mpiexec=None, log_level="DEBUG", + verbose=False, workdir=os.getcwd(), path_output=None, + path_system=None, path_par_file=None, path_output_log=None, + path_log_files=None, **kwargs): """ Workstation System Class Parameters @@ -70,6 +75,7 @@ def __init__(self, ntask=1, nproc=1, log_level="DEBUG", verbose=False, """ self.ntask = ntask self.nproc = nproc + self.mpiexec = mpiexec self.log_level = log_level.upper() self.verbose = verbose @@ -92,10 +98,24 @@ def check(self): f"parameter file does not exist but should" assert(self.ntask > 0), f"number of events/tasks `ntask` cannot be neg'" - assert(self.nproc == 1), f"system.workstation rqeuires `nproc`==1" assert(self.log_level in self._acceptable_log_levels), \ f"`system.log_level` must be in {self._acceptable_log_levels}" + if self.nproc > 1: + assert(self.mpiexec is not None), ( + f"Multi-core workflows (`nproc`>1) require an MPI executable " + f"`mpiexec`" + ) + # Make user that `mpiexec` exists on system + stdout = subprocess.run(f"which {self.mpiexec}", shell=True, + text=True, stdout=subprocess.PIPE).stdout + assert(stdout.strip()), ( + f"MPI executable {self.mpiexec} was not found on system with " + f"cmd: `which {self.mpiexec}. Please check that your MPI " + f"module is loaded and accessible from the command line" + ) + logger.debug(f"MPI executable is located at: {stdout.strip()}") + def setup(self): """ Create the SeisFlows directory structure in preparation for a From 6a5c0c8a62c945fc5ea2de5c6dfd70e50d900629 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 2 Sep 2022 16:44:55 -0800 Subject: [PATCH 160/195] bugfix specfem model not able to get min or max val from multi processor model, used np.hstack to merge model values --- seisflows/tools/specfem.py | 21 +++++++++++---------- 1 file changed, 11 insertions(+), 10 deletions(-) diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index dfe70801..cbc1d1a8 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -331,22 +331,23 @@ def check(self, min_pr=-1., max_pr=0.5): if pr.min() > max_pr: logger.warning(f"minimum poisson's ratio out of bounds: " f"{pr.min():.2f} < {min_pr}") - - if "vs" in self.model and self.model.vs.min() < 0: + + if "vs" in self.model and np.hstack(self.model.vs).min() < 0: logger.warning(f"Vs minimum is negative {self.model.vs.min()}") - if "vp" in self.model and self.model.vp.min() < 0: + if "vp" in self.model and np.hstack(self.model.vp).min() < 0: logger.warning(f"Vp minimum is negative {self.model.vp.min()}") # Tell the User min and max values of the updated model for key, vals in self.model.items(): + min_val = np.hstack(vals).min() + max_val = np.hstack(vals).max() # Choose formatter based on the magnitude of the value - if vals.min() < 1 or (vals.max() > 1E4): - parts = "{minval:.2E} <= {key} <= {maxval:.2E}" + if min_val < 1 or max_val> 1E4: + parts = f"{min_val:.2E} <= {key} <= {max_val:.2E}" else: - parts = "{minval:.2f} <= {key} <= {maxval:.2f}" - logger.info(parts.format(minval=vals.min(), key=key, - maxval=vals.max())) + parts = f"{min_val:.2f} <= {key} <= {max_val:.2f}" + logger.info(parts) def save(self, path): """ @@ -530,8 +531,8 @@ def _read_model_fortran_binary(self, parameter): ) for fid in sorted(fids): # make sure were going in numerical order array.append(read_fortran_binary(fid)) - - array = np.array(array) + + array = np.array(array, dtype="object") return array From e4e6236ab14f498e6adb98ba1c58a55eae9aa976 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 2 Sep 2022 17:32:32 -0800 Subject: [PATCH 161/195] feature allow tape2007 example problems to set event id (with '--event id' so that we can recreate panels from Figure9 of 2007 paper, which show misfit kernels for single statios --- seisflows/examples/ex2_hh_w_pyatoa.py | 10 ++++-- seisflows/examples/ex4_multicore_fwd.py | 40 +++++++++++++++++++++-- seisflows/examples/sfexample2d.py | 42 ++++++++++++++++++++++--- seisflows/seisflows.py | 10 ++++-- 4 files changed, 92 insertions(+), 10 deletions(-) diff --git a/seisflows/examples/ex2_hh_w_pyatoa.py b/seisflows/examples/ex2_hh_w_pyatoa.py index 3e662639..9f446af4 100644 --- a/seisflows/examples/ex2_hh_w_pyatoa.py +++ b/seisflows/examples/ex2_hh_w_pyatoa.py @@ -27,7 +27,7 @@ class SFPyatoaEx2D(SFExample2D): MODEL TRUE, the number of stations, and the setup of the parameter file. """ def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, - method="run", specfem2d_repo=None): + event_id=None, method="run", specfem2d_repo=None): """ Overload init and attempt to import Pyatoa before running example. @@ -39,6 +39,10 @@ def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, :type nsta: int :param nsta: number of stations to include in inversion, between 1 and 131 + :type event_id: str + :param event_id: allow user to choose a specific event ID from the + example problem. Must match source files in SPECFEM2D example DATA/ + directory. Overwrites `ntask` to be 1 :type specfem2d_repo: str :param specfem2d_repo: path to the SPECFEM2D directory which should contain binary executables. If not given, SPECFEM2D will be @@ -47,7 +51,8 @@ def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, # We set defaults here because `seisflows examples` may input these # values as NoneType which would override __init__ defaults. super().__init__(ntask=ntask or 4, niter=niter or 2, nsta=nsta or 32, - method=method, specfem2d_repo=specfem2d_repo) + event_id=event_id, method=method, + specfem2d_repo=specfem2d_repo) # Make sure that Pyatoa has been installed before running try: @@ -119,3 +124,4 @@ def setup_specfem2d_for_model_true(self): self.sf.sempar("model", "legacy") # read model_velocity.dat_checker rm("proc000000_model_velocity.dat_input") ln("model_velocity.dat_checker", "proc000000_model_velocity.dat_input") + diff --git a/seisflows/examples/ex4_multicore_fwd.py b/seisflows/examples/ex4_multicore_fwd.py index c67fd099..8539d3f1 100644 --- a/seisflows/examples/ex4_multicore_fwd.py +++ b/seisflows/examples/ex4_multicore_fwd.py @@ -15,10 +15,10 @@ import subprocess from seisflows.tools import msg from seisflows.tools.unix import cd, rm, ln -from seisflows.examples.ex3_fwd_solver import SFFwdEx2D +from seisflows.examples.sfexample2d import SFExample2D -class SFMultiCoreEx2D(SFFwdEx2D): +class SFMultiCoreEx2D(SFExample2D): """ A class for running SeisFlows examples. Overloads Example 1 to take advantage of the default SPECFEM2D stuff, onyl changes the generation of @@ -55,6 +55,15 @@ def __init__(self, ntask=None, nsta=None, nproc=None, self._parameters["nproc"] = self.nproc self._parameters["mpiexec"] = self.mpiexec + self._modules = { + "workflow": "forward", + "preprocess": "null", + "optimize": "null", + } + + self._parameters["export_traces"] = True + self._parameters["path_model_true"] = "null" # overload default par. + # Overwrite configure cmd to get MPI self._configure_cmd = \ "./configure FC=gfortran CC=gcc MPIF90=mpif90 --with-mpi" @@ -100,3 +109,30 @@ def run_xspecfem2d_binaries(self): print(f"Running SPECFEM2D with command: {cmd}") subprocess.run(cmd, shell=True, check=True, stdout=subprocess.DEVNULL) + + def main(self): + """ + Setup the example and then optionally run the actual seisflows workflow + Mostly the same as Example 1 main() except it does not generate + MODEL_TRUE, and instead sets MODEL_TRUE as the starting model. + """ + print(msg.cli("EXAMPLE SETUP", border="=")) + + # Step 1: Download and configure SPECFEM2D, make binaries. Optional + self.download_specfem2d() + self.configure_specfem2d() + self.make_specfem2d_executables() + # Step 2: Create a working directory and generate initial/final models + self.create_specfem2d_working_directory() + # Step 2a: Generate MODEL_INIT, rearrange consequent directory structure + print(msg.cli("GENERATING INITIAL MODEL", border="=")) + self.setup_specfem2d_for_model_init() # setup SPECFEM run directory + self.run_xspecfem2d_binaries() + self.cleanup_xspecfem2d_run(choice="INIT") + # Step 3: Prepare Par_file and directory for MODEL_TRUE generation + self.setup_seisflows_working_directory() + self.finalize_specfem2d_par_file() + print(msg.cli("COMPLETE EXAMPLE SETUP", border="=")) + # Step 4: Run the workflwo + if self.run_example: + self.run_sf_example() diff --git a/seisflows/examples/sfexample2d.py b/seisflows/examples/sfexample2d.py index 9bb1ae94..5c201f4e 100644 --- a/seisflows/examples/sfexample2d.py +++ b/seisflows/examples/sfexample2d.py @@ -44,8 +44,8 @@ class SFExample2D: A class for running SeisFlows examples. Simplifies calls structure so that multiple example runs can benefit from the code written here """ - def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, - method="run", specfem2d_repo=None): + def __init__(self, ntask=None, event_id=None, niter=None, nsta=None, + nproc=None, method="run", specfem2d_repo=None): """ Set path structure which is used to navigate around SPECFEM repositories and the example working directory @@ -53,6 +53,10 @@ def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, :type ntask: int :param ntask: number of events to use in inversion, between 1 and 25. defaults to 3 + :type event_id: str + :param event_id: allow user to choose a specific event ID from the + example problem. Must match source files in SPECFEM2D example DATA/ + directory. Overwrites `ntask` to be 1 :type niter: int :param niter: number of iterations to run. defaults to 2 :type nsta: int @@ -71,6 +75,15 @@ def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, self.sem2d_paths, self.workdir_paths = self.define_dir_structures( cwd=self.cwd, specfem2d_repo=specfem2d_repo ) + + if event_id is not None: + assert(1 <= event_id <= 25), \ + f"event id must be between 1 and 25, not {event_id}" + self.event_id = f"SOURCE_{event_id:0>3}" + ntask = 1 # hard set 1 event if we choose a specific event + else: + self.event_id = None + # We set defaults here because `seisflows examples` may input these # values as NoneType which would override __init__ defaults. self.ntask = ntask or 1 @@ -268,11 +281,20 @@ def create_specfem2d_working_directory(self): # Make sure that SPECFEM2D can find the expected files in the DATA/ dir cd(self.workdir_paths.data) - rm("SOURCE") - ln("SOURCE_001", "SOURCE") rm("Par_file") ln("Par_file_Tape2007_onerec", "Par_file") + rm("SOURCE") + # Check if user-chosen source file exists + if self.event_id is not None: + assert(os.path.exists(self.event_id)), \ + f"{self.event_id} chosen but does not exist. Please check DATA" + rm("SOURCE") + ln(self.event_id, "SOURCE") + print(f"> Setting {self.event_id} as SOURCE") + else: + ln("SOURCE_001", "SOURCE") + def setup_specfem2d_for_model_init(self): """ Make some adjustments to the original parameter file to. @@ -388,6 +410,18 @@ def finalize_specfem2d_par_file(self): with open("STATIONS", "w") as f: f.writelines(lines[:self.nsta]) + # Assign unique event id if necessary, move all the other sources + # out of the DATA directory so that SeisFlows does not see them + if self.event_id is not None: + print(f"> Assigning {self.event_id} as only source for workflow") + rm("SOURCE") + mkdir("SOURCES") + for event_id in glob.glob("SOURCE_???"): + if event_id == self.event_id: + continue + mv(event_id, f"SOURCES/{event_id}") + ln(self.event_id, "SOURCE") + def run_sf_example(self): """ Use subprocess to run the SeisFlows example we just set up diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 8e4db1d1..969e4967 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -333,6 +333,11 @@ def _format_action(self, action): help="User-defined number of iterations to run for " "the example problem (1 <= NITER <= inf). If " "not given, each example has its own default.") + examples.add_argument("--event_id", type=int, nargs="?", default=None, + help="Allow User to choose a specific event ID from " + "the Tape 2007 example (1 <= EVENT_ID <= 25). " + "If not used, example will default to choosing " + "sequential from 1 to NTASK") # ========================================================================= # Defines all arguments/functions that expect a sub-argument subparser_dict = {"check": check, "par": par, "inspect": inspect, @@ -913,7 +918,7 @@ def par(self, parameter, value=None, skip_print=False, **kwargs): print(msg.cli(f"{key}: {cur_val} -> {value}")) def examples(self, method=None, choice=None, specfem2d_repo=None, - nsta=None, nevent=None, niter=None, **kwargs): + nsta=None, nevent=None, niter=None, event_id=None, **kwargs): """ List or run a SeisFlows example problems @@ -970,7 +975,8 @@ def examples(self, method=None, choice=None, specfem2d_repo=None, # Run or setup example, or just print system dialogue example = Example(specfem2d_repo=specfem2d_repo, method=method, - nsta=nsta, ntask=nevent, niter=niter) + nsta=nsta, ntask=nevent, niter=niter, + event_id=event_id) example.print_dialogue() # e.g., $ seisflows examples run 1 From 01a59145250fe312fc2250d14e28a854ac51bf7e Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Wed, 7 Sep 2022 14:01:22 -0800 Subject: [PATCH 162/195] small docstring change specfem model tool --- seisflows/tools/specfem.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/seisflows/tools/specfem.py b/seisflows/tools/specfem.py index cbc1d1a8..704f7a3e 100644 --- a/seisflows/tools/specfem.py +++ b/seisflows/tools/specfem.py @@ -531,8 +531,11 @@ def _read_model_fortran_binary(self, parameter): ) for fid in sorted(fids): # make sure were going in numerical order array.append(read_fortran_binary(fid)) - - array = np.array(array, dtype="object") + + # !!! Causes a visible deprecation warning from NumPy but setting + # !!! array type as 'object' causes problems with pickling and + # !!! merging arrays + array = np.array(array) return array From 1d4b8695785723cf16be9315459680b890391366 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 9 Sep 2022 11:21:33 -0800 Subject: [PATCH 163/195] bugfix pyaflowa preprocessing failing when not set as it was trying to add NoneType windows to an integer --- docs/notebooks/specfem2d_example.ipynb | 634 +++++++++++++++++++++---- seisflows/preprocess/pyaflowa.py | 4 +- seisflows/seisflows.py | 1 - seisflows/workflow/inversion.py | 5 +- 4 files changed, 542 insertions(+), 102 deletions(-) diff --git a/docs/notebooks/specfem2d_example.ipynb b/docs/notebooks/specfem2d_example.ipynb index 110f695d..341114f5 100644 --- a/docs/notebooks/specfem2d_example.ipynb +++ b/docs/notebooks/specfem2d_example.ipynb @@ -23,11 +23,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "from IPython.display import Image # To display .png files in the notebook" + "from IPython.display import Image # Used to display .png files in the notebook/docs" ] }, { @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -80,11 +80,11 @@ "velocities. [1 events, 1 station, 1 iterations]. The tasks involved include:\r\n", "\r\n", "1. (optional) Download, configure, compile SPECFEM2D\r\n", - "2. Set up a SPECFEM2D working directory\r\n", - "3. Generate starting model from 'Tape2007' example\r\n", - "4. Generate target model w/ perturbed starting model\r\n", - "5. Set up a SeisFlows working directory\r\n", - "6. Run the inversion workflow\r\n", + "2. [Setup] a SPECFEM2D working directory\r\n", + "3. [Setup] starting model from 'Tape2007' example\r\n", + "4. [Setup] target model w/ perturbed starting model\r\n", + "5. [Setup] a SeisFlows working directory\r\n", + "6. [Run] the inversion workflow\r\n", "================================================================================\r\n" ] } @@ -110,10 +110,11 @@ "metadata": {}, "outputs": [], "source": [ + "# Run command with open variable to set SPECFEM2D path\n", "! seisflows examples setup 1 -r ${PATH_TO_SPECFEM2D}\n", "! seisflows submit\n", "\n", - "# The above commands are the same as the below\n", + "# The following command is the same as above\n", "! seisflows examples run 1 --specfem2d_repo ${PATH_TO_SPECFEM2D}" ] }, @@ -130,28 +131,6 @@ "source": [ ".. code:: bash\n", "\n", - " LINE SEARCH STEP COUNT 02\n", - " --------------------------------------------------------------------------------\n", - " 2022-08-29 15:50:58 (I) | evaluating objective function for source 001\n", - " 2022-08-29 15:50:58 (D) | running forward simulation with 'Specfem2D'\n", - " 2022-08-29 15:51:03 (D) | quantifying misfit with 'Default'\n", - " 2022-08-29 15:51:03 (D) | misfit for trial model (f_try) == 4.61E-01\n", - " 2022-08-29 15:51:03 (D) | step length(s) = 0.00E+00, 4.78E+09, 7.73E+09\n", - " 2022-08-29 15:51:03 (D) | misfit val(s) = 1.04E+00, 2.30E-01, 4.61E-01\n", - " 2022-08-29 15:51:03 (I) | pass: bracket acceptable and step length reasonable. returning minimum line search misfit.\n", - " 2022-08-29 15:51:03 (I) | line search model 'm_try' parameters: \n", - " 2022-08-29 15:51:03 (I) | 5800.00 <= vp <= 5800.00\n", - " 2022-08-29 15:51:03 (I) | 3431.53 <= vs <= 3790.00\n", - " 2022-08-29 15:51:03 (I) | trial step successful. finalizing line search\n", - " 2022-08-29 15:51:03 (I) | \n", - " FINALIZING LINE SEARCH\n", - " --------------------------------------------------------------------------------\n", - " 2022-08-29 15:51:03 (I) | writing optimization stats\n", - " 2022-08-29 15:51:03 (I) | renaming current (new) optimization vectors as previous model (old)\n", - " 2022-08-29 15:51:03 (I) | setting accepted trial model (try) as current model (new)\n", - " 2022-08-29 15:51:03 (I) | misfit of accepted trial model is f=2.304E-01\n", - " 2022-08-29 15:51:03 (I) | resetting line search step count to 0\n", - " 2022-08-29 15:51:03 (I) | \n", " CLEANING WORKDIR FOR NEXT ITERATION\n", " --------------------------------------------------------------------------------\n", " 2022-08-29 15:51:05 (I) | thrifty inversion encountering first iteration, defaulting to standard inversion workflow\n", @@ -160,7 +139,10 @@ " COMPLETE ITERATION 01 \n", " ////////////////////////////////////////////////////////////////////////////////\n", " 2022-08-29 15:51:06 (I) | setting current iteration to: 2\n", - "\n", + " \n", + " ================================================================================\n", + " EXAMPLE COMPLETED SUCCESFULLY\n", + " ================================================================================\n", "\n", " \n", "Using the `working directory documentation page `__ you can figure out how to navigate around and look at the results of this small inversion problem. \n", @@ -170,21 +152,21 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/home/bchow/Work/scratch/example_1\n", + "/home/bchow/Work/work/seisflows_example/example_1\n", "logs\tparameters.yaml sflog.txt specfem2d\r\n", "output\tscratch\t\t sfstate.txt specfem2d_workdir\r\n" ] } ], "source": [ - "%cd ~/Work/scratch/example_1\n", + "%cd ~/sfexamples/example_1\n", "! ls" ] }, @@ -192,27 +174,45 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the `output/` directory, we can see our starting model (MODEL_INIT), our target model (MODEL_TRUE) and the updated model from our first iteration (MODEL_01) alongside the gradient that was used to create it (GRADIENT_01). " + "### Understanding example outputs\n", + "\n", + "In the `output/` directory, we can see our starting/initial model (*MODEL_INIT*), our true/target model (*MODEL_TRUE*) and the updated model from the first iteration (*MODEL_01*). In addition, we have saved the gradient generated during the first iteration (*GRADIENT_01*) because we set the parameter `export_gradient` to True." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "GRADIENT_01 MODEL_01 MODEL_INIT MODEL_TRUE\n", - "\n", - "proc000000_vp.bin proc000000_vs.bin\n" + "GRADIENT_01 MODEL_01 MODEL_INIT MODEL_TRUE\r\n" ] } ], "source": [ - "! ls output\n", - "! echo\n", + "# The output directory contains important files exported during a workflow\n", + "! ls output" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "proc000000_vp.bin proc000000_vs.bin\r\n" + ] + } + ], + "source": [ + "# A MODEL output directory contains model files in the chosen solver format. \n", + "# In this case, Fortran Binary from SPECFEM2D\n", "! ls output/MODEL_01" ] }, @@ -220,9 +220,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Because we're working with SPECFEM2D, we can plot the models and gradients that were created during our workflow using the `seisflows plot2d` command. If we use the `--savefig` option we can also save the output .png files to disk. Because this docs page was made in a Jupyter Notebook, we need to use the IPython Image class to open the resulting .png file.\n", + "### Plotting results (only available w/ SPECFEM2D)\n", + "\n", + "We can plot the model and gradient files created during our workflow using the `seisflows plot2d` command. The `--savefig` flag allows us to save output .png files to disk. The following figure shows the starting/initial homogeneous halfspace model in Vs.\n", "\n", - "This figure shows the starting homogeneous halfspace model in Vs." + ">__NOTE:__ Because this docs page was made in a Jupyter Notebook, we need to use the IPython Image class to open the resulting .png file from inside the notebook. Users following along will need to open the figure using the GUI or command line tool." ] }, { @@ -250,6 +252,7 @@ } ], "source": [ + "# Plot and open the initial homogeneous halfspace model\n", "! seisflows plot2d MODEL_INIT vs --savefig m_init_vs.png\n", "Image(filename='m_init_vs.png') " ] @@ -258,7 +261,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Here we see the gradient created during the adjoint simulation." + "We can also plot the gradient that was created during the adjoint simulation. In this example we only have one source and one receiver, so the gradient shows a \"banana-doughnut\" style kernel, representing volumetric sensitivity of the measurement (waveform misfit) to changes in model values." ] }, { @@ -296,7 +299,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Finally we see the updated model, which is the sum of the initial model, and a scaled gradient." + "Finally we can plot the updated model (*MODEL_01*), which is the sum of the initial model and a scaled gradient. The gradient was scaled during the line search, where we used a steepest-descent algorithm to reduce the misfit between data and synthetics. Since we only have one source-receiver pair in this workflow, the updated model shown below almost exactly mimics the Vs kernel shown above." ] }, { @@ -328,11 +331,20 @@ "Image(filename='m_01_vs.png') " ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Closing thoughts" + ] + }, { "cell_type": "raw", "metadata": {}, "source": [ - "Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory. You can also run Example \\#1 with more stations (up to 131), tasks/events (up to 25) and iterations (as many as you want). Note that because this is a serial inversion, the compute time will scale with all of these values." + "Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory that was created during this example.\n", + "\n", + "You can also run Example \\#1 with more stations (up to 131), tasks/events (up to 25) and iterations (as many as you want!). Note that because this is a serial inversion, the compute time will scale with all of these values." ] }, { @@ -341,6 +353,7 @@ "metadata": {}, "outputs": [], "source": [ + "# An example call for running Example 1 with variable number of stations, events and iterations\n", "! seisflows examples run 1 --nsta 10 --ntask 5 --niter 2" ] }, @@ -348,14 +361,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Example \\#2: Pyaflowa, L-BFGS inversion\n", + "## Example \\#2: Checkerboard inversion using Pyaflowa \\& L-BFGS \n", + "\n", + "Building on the foundation of the previous example, Example \\#2 runs a 2 iteration inversion with misfit quantification taken care of by the `Pyaflowa` preprocessing module, which uses the misfit quantification package [Pyatoa](https://github.com/adjtomo/pyatoa) under the hood. Model updates are performed using an [`L-BFGS` nonlinear optimization algorithm](https://en.wikipedia.org/wiki/Limited-memory_BFGS). Example \\#2 also includes smoothing/regularization of the gradient. This example more closely mimics a research-grade inversion problem.\n", "\n", - "Example \\#2 runs a 2 iteration inversion with misfit quantification taken care of by the `Pyaflowa` preprocessing module. Optimization (i.e., model updates) are performed using the `L-BFGS` algorithm. This example is more complex than the default version of Example \\#1, using multiple events, stations and iterations. Example \\#2 also includes smoothing/regularization of the gradient before using it to perturb the starting velocity model." + ">__NOTE:__ This example is computationally more intense than the default version of Example \\#1 as it uses multiple events and stations, and runs multiple iterations. " ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": { "scrolled": true }, @@ -364,7 +379,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "No existing SPECFEM2D repo given, default to: /home/bchow/Work/scratch/example_1/specfem2d\n", + "No existing SPECFEM2D repo given, default to: /home/bchow/Work/work/seisflows_example/example_1/specfem2d\n", "\n", " @@@@@@@@@@ \n", " .@@@@. .%&( %@. \n", @@ -395,16 +410,17 @@ "iterations]. The tasks involved include:\n", "\n", "1. (optional) Download, configure, compile SPECFEM2D\n", - "2. Set up a SPECFEM2D working directory\n", - "3. Generate starting model from 'Tape2007' example\n", - "4. Generate target model w/ perturbed starting model\n", - "5. Set up a SeisFlows working directory\n", - "6. Run the inversion workflow\n", + "2. [Setup] a SPECFEM2D working directory\n", + "3. [Setup] starting model from 'Tape2007' example\n", + "4. [Setup] target model w/ perturbed starting model\n", + "5. [Setup] a SeisFlows working directory\n", + "6. [Run] the inversion workflow\n", "================================================================================\n" ] } ], "source": [ + "# Run the help message dialogue to see what Example 2 will do\n", "! seisflows examples 2" ] }, @@ -412,7 +428,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can run the example with the same command as shown for Example 1:" + "### Run the example \n", + "\n", + "You can run the example with the same command as shown for Example 1. Users following along will need to provide a path to their own installation of SPECFEM2D using the `-r` flag." ] }, { @@ -428,32 +446,11 @@ "cell_type": "raw", "metadata": {}, "source": [ - "Succesful completion of the example problem will end with the following log message\n", + "Succesful completion of the example problem will end with a log message that looks similar to the following\n", "\n", ".. code:: bash\n", "\n", - " LINE SEARCH STEP COUNT 01\n", - " --------------------------------------------------------------------------------\n", - " 2022-08-29 18:07:14 (I) | evaluating objective function for source 001\n", - " 2022-08-29 18:07:14 (D) | running forward simulation with 'Specfem2D'\n", - " 2022-08-29 18:07:20 (D) | quantifying misfit with 'Pyaflowa'\n", - " 2022-08-29 18:07:29 (I) | evaluating objective function for source 002\n", - " 2022-08-29 18:07:29 (D) | running forward simulation with 'Specfem2D'\n", - " 2022-08-29 18:07:35 (D) | quantifying misfit with 'Pyaflowa'\n", - " 2022-08-29 18:07:43 (I) | evaluating objective function for source 003\n", - " 2022-08-29 18:07:43 (D) | running forward simulation with 'Specfem2D'\n", - " 2022-08-29 18:07:49 (D) | quantifying misfit with 'Pyaflowa'\n", - " 2022-08-29 18:07:58 (I) | evaluating objective function for source 004\n", - " 2022-08-29 18:07:58 (D) | running forward simulation with 'Specfem2D'\n", - " 2022-08-29 18:08:04 (D) | quantifying misfit with 'Pyaflowa'\n", - " 2022-08-29 18:08:13 (D) | misfit for trial model (f_try) == 4.73E-03\n", - " 2022-08-29 18:08:13 (D) | step length(s) = 0.00E+00, 1.00E+00\n", - " 2022-08-29 18:08:13 (D) | misfit val(s) = 5.30E-02, 4.73E-03\n", - " 2022-08-29 18:08:13 (I) | pass: misfit decreased, line search successful w/ alpha=1.0\n", - " 2022-08-29 18:08:13 (I) | line search model 'm_try' parameters: \n", - " 2022-08-29 18:08:13 (I) | 5800.00 <= vp <= 5800.00\n", - " 2022-08-29 18:08:13 (I) | 3193.01 <= vs <= 3821.37\n", - " 2022-08-29 18:08:13 (I) | trial step successful. finalizing line search\n", + "\n", " 2022-08-29 18:08:13 (I) | \n", " FINALIZING LINE SEARCH\n", " --------------------------------------------------------------------------------\n", @@ -472,33 +469,50 @@ " ////////////////////////////////////////////////////////////////////////////////\n", " 2022-08-29 18:08:21 (I) | setting current iteration to: 3\n", "\n", + " ================================================================================\n", + " EXAMPLE COMPLETED SUCCESFULLY\n", + " ================================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Understanding example outputs\n", "\n", - "As with Example \\#1, we can look at the output gradients and models to visualize how the inversion performed." + "As with Example \\#1, we can look at the output gradients and models to visualize what just happenend under the hood. Be sure to read through the output log messages as well, to get a better idea of what steps and tasks were performed to generate these outputs." ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/home/bchow/Work/scratch/example_2\n", + "/home/bchow/Work/work/seisflows_example/example_2\n", "logs\tparameters.yaml sflog.txt specfem2d\r\n", "output\tscratch\t\t sfstate.txt specfem2d_workdir\r\n" ] } ], "source": [ - "%cd ~/Work/scratch/example_2\n", + "%cd ~/sfexamples/example_2\n", "! ls" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Running the `plot2d` command without any arguments is a useful way to determine what model/gradient files are available for plotting. " + ] + }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -519,19 +533,23 @@ } ], "source": [ - "! seisflows plot2d # to check what models/gradients/kernels are avilable for plotting" + "! seisflows plot2d" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The starting model is a homogeneous halfspace but for Example \\#2 the target model is a checkerboard." + "### Visualizing Initial and Target models\n", + "\n", + "The starting model for this example is the same homogeneous halfspace model shown in Example \\#1, with $V_p$=5.8km/s and $V_s$=3.5km/s. \n", + "\n", + "For this example, however, the target model is a checkerboard model with fast and slow perturbations roughly equal to $\\pm10\\%$ of the initial model. We can plot the model below to get a visual representation of these perturbations, where **red==slow** and **blue==fast**." ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -543,12 +561,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gUVbr/vxU7TfdkJhBFMgoqQREVs+siIrq6uAZUdMWwev15r+6aMFxX7rKm1bu4BoK6hlUvuCqLrIKsiyLBLCpBoszA5NA9Harq/f1RXdWVuqcHENmd83mefqbn1KlzToWu+tZb73lfjogIDAaDwWAwGAxGN4T/sQfAYDAYDAaDwWD8WDAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzGAwGAwGg8HotjAxzOjWTJkyBYFAAM3NzVnrXHTRRZAkCbt37z5wA+uEyy67DP369fuxh5GVK6+8EocddhiKiooQCAQwaNAg/Nd//Rfq6+tt9dra2nDLLbfg9NNPR3l5OTiOw9133+3Z5mWXXQaO41yfIUOGeNZ/7LHHMGTIEPh8PhxyyCG45557kEql8hp/KpXCPffcg379+sHn82HIkCF47LHHPOsSEebNm4exY8ciFAohEongqKOOwuuvv27Wee+99zzHbnxmzJhh1v30008xceJE9OnTB4FAACUlJRg3bhyef/55z76feuopjBo1CpFIBKWlpZgwYQLeeustW70NGzbgP//zPzFq1CgUFRWhpKQE48ePx6uvvuq5TcuXL8dpp52GHj16oKCgACNGjMAf/vAHqKpqq/fmm2/i0ksvxeGHHw5JksBxnGd769atw3XXXYfDDz8c4XAYFRUVOPXUU7Fs2TJX3bvvvttzH/n9fs+2GQwGY18Rf+wBMBg/JtOnT8eiRYvwwgsv4Nprr3Utb2lpwcKFC3HWWWehoqLiRxihN3feeSduvPHGH3sYWYlGo/jlL3+JAQMGwO/3Y+3atbj//vuxePFifPLJJ5BlGQDQ0NCAJ598EiNHjsQ555yDp59+Ome7gUDAJaACgYCr3v33348777wTv/71r3H66adjzZo1uOOOO/D999/jySef7HT81157LZ577jncd999GDNmDN5++23ceOONaGtrw2233Ware80112D+/Pm46aab8MADD0BRFHzxxReIxWJmnaOOOgoffvihq585c+bg2WefxZQpU8yy5uZm9O7dGxdeeCF69uyJaDSKP//5z7jkkkuwdetW3HHHHWbdmTNn4r777sOMGTMwa9YsxONxPPbYYzjrrLPw2muv4dxzzwUALF26FG+99RYuueQSjBkzBoqi4OWXX8b555+Pe+65B3fddZfZ5jvvvIMzzjgDJ5xwAp566imEQiH89a9/xY033ojNmzfj0UcfNesuXLgQq1atwpFHHgmfz4d169Z57s8XX3wRq1evxhVXXIGRI0ciGo3iiSeewCmnnIIFCxbg0ksvda2zZMkSFBYWmv/zPLPdMBiMHwhiMLoxiqJQdXU1jRo1ynP5nDlzCAC98cYbB3hk/3788Y9/JAD07rvvmmWappGmaUREVFdXRwBo5syZnutPmzaNQqFQp/3U19eT3++nX/7yl7by+++/nziOo6+++irn+l9++SVxHEe//e1vbeVXXXUVBQIBamhoMMsWLlxIAOjll1/udFxONE2j/v37U9++fUlV1U7rH3300dS7d29bWc+ePem4446zlXV0dFBhYSGdffbZZlldXZ25n61MnDiRgsEgxeNxs+yiiy4in89H7e3ttrqnn346RSIRW5l13Ndddx1lu6Xs3r3bVaYoCo0YMYIOPfRQW/nMmTMJANXV1Xm2xWAwGPsb9qjN6NYIgoBp06Zh3bp1+OKLL1zL582bh6qqKpx55plm2Zw5czBy5EgUFBQgHA5jyJAhLmthZ3Ach+uvvx7z5s3D4MGDEQgEMHr0aKxatQpEhNmzZ+OQQw5BQUEBTj75ZGzatMm2vpebhNHmc889h6FDhyIYDGLkyJF48803uzS2H4ry8nIAgChmXkgZr8D3J0uWLEE8Hsfll19uK7/88stBRFi0aFHO9RctWgQi8ly/o6MDS5YsMcseffRR9OvXDxdccEGXx7l8+XJ89913uPzyy/OyepaVldn2HQBIkmSzngKA3+83P9Z1vfbz2LFjEYvF0NjYaGtTlmWXxb2oqMjlqpCvtbZHjx6uMkEQMGrUKOzYsSOvNhgMBuOHgolhRrfniiuuAMdxmDt3rq18/fr1WL16NaZNmwZBEAAAL730Eq699lpMmDABCxcuxKJFi3DTTTchGo12ud8333wTTz/9NGbNmoUXX3wRbW1tmDhxIm6++WasXLkSjz/+OJ588kmsX78e5513Hoio0zbfeustPP7447j33nvx2muvoaSkBFOmTMF3333X6bqKouT1yWcc1jaj0ShWrlyJO++8E8cddxzGjx+f9/pOOjo6UFlZCUEQ0KtXL1x//fU2IQcAX375JQDg8MMPt5VXVVWhrKzMXJ6NL7/8EuXl5aisrLSVjxgxwta+oij48MMPceSRR+Khhx5C3759IQgC+vfvj9///ved7qdnnnkGPM+7RLeBpmlQFAV1dXX44x//iLfffhu33nqrrc6NN96IJUuW4JlnnkFTUxNqamrw//7f/0NLSwtuuOGGnP0DuiAvLy+3idUZM2YgmUzihhtuwK5du9Dc3IznnnsOCxcuxC233NJpm/miKAref/99DB8+3HP54YcfDkEQUFFRgUsvvRTbt2931TH8yLdu3brfxsVgMLohP6ZZmsE4WJgwYQKVlZVRMpk0y26++WYCQBs2bDDLrr/+eioqKtrn/gBQZWWl7VX0okWLCAAdccQRtlfajzzyCAGgzz//3CybNm0a9e3b19VmRUUFtba2mmW1tbXE8zw98MADeY0pn8+8efPy2sYPP/zQtt5Pf/pT29icdOYm8dBDD9FDDz1ES5cupaVLl9Ltt99OwWCQhgwZQm1tbWa9q666inw+n2cbgwYNotNPPz3nuE877TQaPHiw5zJZlk33i5qaGgJAkUiEevXqRQsWLKB3332XZsyYQQDotttuy9pHU1MT+f1+OuOMM7LWufrqq819J8sy/fGPf/Ss98QTT5DP5zPrlpSU0N///vec20hE9NRTTxEAevTRR13LVq5cSdXV1WabgiDQ7373u5zt5XKT8OL2228nALRo0SJb+bPPPkv3338/LV68mJYtW0azZs2ikpISqqiooJ07d9rqXnHFFSQIAm3dujXvfhkMBsMJE8MMBuk3YAD06quvEhFRKpWiiooKOv744z3rTZ06lRYtWrTXfo0A6MILL7SVffvttwSAfvOb39jK3377bZffcjYxPHXqVFdflZWVNGPGjE7HtGbNmrw+9fX1eW1je3s7rVmzhlasWEGPPvooVVVV0dFHH03RaNSzfmdi2ItXX32VANBDDz1kll111VXk9/s96w8aNCinACXSxfCQIUM8l8myTFdffTUREX3//femWPzwww9t9c455xzy+/02kW7l8ccfJwD0yiuvZB3Htm3baM2aNfTWW2/RjBkziOd5mj17tq3O3Llzyefz0c0330zvvPMOLV68mKZOnUrBYJCWLFmSte3FixeTLMv0s5/9zOVLvHbtWurRowdNmjSJ3njjDVq2bBndcccdJMsy3XvvvVnb7IoYNoT4zTffnFf9jz76iHiepxtuuCGv+gwGg9EVmBhmMIgoFotRYWEhTZw4kYiIXn/9dQJA8+fPd9WdO3cujRs3jgRBII7jaOzYsbR06dIu9QeArrvuOlvZli1bCIBL8CxfvtwlnLKJYWebRER9+/aladOmdTqmVCqV18drIlY+rFq1yiVcreyNGFZVlUKhEF1wwQVm2a9//WsC4Cm6y8rKXA8hTqZOnUrl5eWu8vb2dtvDSiwWI47jXJPKiIj+9Kc/EQD66KOPPPs48sgjqby83PYmojNmzJhBoijSnj17iIiosbGRAoGA5zGfMGEC9evXz7OdJUuWkN/vp4kTJ1IikXAtP/roo+nwww8nRVFs5XfddRfxPE+bN2/2bDdfMTx37lzieZ5++ctfdulcGjJkCI0dOzbv+gwGg5EvzGeYwYAenuvCCy/EkiVLUFNTg7lz5yIcDuP888931b388svxwQcfoKWlBW+99RaICGeddRa2bdv2I4x8/yFJUl6fBQsW7FX7o0ePBs/z2LBhw34dNxHZJnIZvsLOCZG1tbWor6/HYYcdlrO9ww8/HHV1daitrbWVG+0Z6wcCAQwcODDrmADvCWaffPIJPvnkE1x66aWQJCnnWKyMHTsWiqKY/t/ffvstOjo6MGbMGFfd0aNHY+vWrWhvb7eVv/322zjnnHMwYcIEvPbaa2aIOyuffvopRo0aZfrJG4wZMwaapuHrr7/Oe8xO5s2bhyuvvBLTpk3DE0880aXJk87jzGAwGPsLdmVhMNJMnz4dqqpi9uzZWLx4MaZOnYpgMJi1figUwplnnonbb78dyWQSX3311QEc7f5nzZo1eX0mTZq0V+2vWLECmqZhwIAB+23Mr776KmKxGI455hiz7Cc/+Qn8fj/mz59vqzt//nxwHIdzzjknZ5uTJ08Gx3Eu0T9//nwEAgH85Cc/McvOO+88tLa24oMPPrDVXbx4MQoKCjwnhz3zzDMA9POtKyxfvhw8z6N///4AgOrqagDAqlWrbPWICKtWrUJxcTFCoZBZvnTpUpxzzjk47rjjsGjRIvh8Ps9+qqursXbtWleCDSNOcq9evbo0boP58+fjyiuvxMUXX4ynn366S0J41apV2Lhxo+04MxgMxv6CJd1gMNKMHj0aI0aMwCOPPAIi8hQrV111FQKBAMaPH4+qqirU1tbigQceQGFhoaeF7l+J0aNH75d23nzzTTz11FM4++yz0bdvX6RSKaxduxaPPPIIBgwYgCuvvNJW/29/+xui0Sja2toA6FE8jMxoP/3pTxEMBrFt2zb84he/wNSpUzFgwABwHIcVK1bgkUcewfDhw21tlpSU4I477sCdd96JkpISM+nG3XffjSuvvBLDhg0z6z777LO44oorMHfuXDPxw/DhwzF9+nTMnDkTgiBgzJgxWLp0KZ588kn893//N0pKSsz1//M//xN//vOfcf755+O+++5Dr1698Oqrr+Kvf/0rfv/737vCk8Xjcbzwwgs49thjMXToUM/998tf/hKRSARjx45FRUUF6uvr8corr+Dll1/Gf/3Xf5kh6vr06YNzzz0XTz75JHw+H376058ikUhgwYIFWLlyJe677z5TcP7zn//EOeecg8rKStx222349NNPbX0OGzYMkUgEAHDTTTfhhhtuwKRJk3D11VcjGAzi3XffxYMPPohTTz0VI0eONNfbtm0b1qxZAwDYvHkzAJjHrl+/fuY59corr2D69Ok44ogjcPXVV2P16tW2/o2kHQAwcuRIXHzxxRg6dCj8fj9Wr16N2bNno7Ky0hXN4rLLLsOCBQuwZcuWgzojI4PBOMj5MX00GIyDjUcffZQA0LBhwzyXL1iwgE466SSqqKggWZapurqaLrjgAlukh3zAQegzvL/4+uuv6Wc/+xn17duX/H4/+f1+GjJkCP3Xf/2XLWGFdXzIErliy5YtRKT7x06ZMoX69etHgUCAZFmmgQMH0i233ELNzc2e43j00Udp0KBBJMsy9enTh2bOnOny0Z03b55nhIxkMkkzZ86kPn36kCzLNGjQIPrDH/7g2c/27dtp6tSpVFxcTLIs04gRI2ju3Lmedf/85z8TgKzLiXSf2uOPP57KyspIFEUqKiqiCRMm0HPPPeeq29HRQbNnz6YRI0ZQOBymkpISOuaYY+j555+3+eMaiSyyfZYvX25r97XXXqPjjjuOysrKKBQK0fDhw+m+++5zJeIw9p/Xx3rOTZs2LWf/xnEm0n22BwwYQKFQiCRJor59+9KMGTNo165dru0/77zzKBAIUFNTU9b9yWAwGJ3BEXUhaCiDwWAwGAcJlZWVuOSSSzB79uwfeygMBuNfGCaGGQwGg/Evx1dffYVx48bhu+++Q1lZ2Y89HAaD8S8ME8MMxn5EUZScy3meZzPiGQwGg8E4iGB3ZQZjP9JZWLIrrrjixx4ig8FgMBgMCyyaBIOxHzFm1meDvc5lMBgMBuPggrlJMBgMBoPBYDC6LcxNgtEtmTJlCgKBAJqbm7PWueiiiyBJEnbv3n3gBvZvRjQaxdSpUzF48GCEw2GEQiEMHz4c//3f/41oNOqqv3z5cpx22mno0aMHCgoKMGLECPzhD39wJYCw0tHRgUGDBoHjOPz+9793Ld+wYQPOO+88FBcXIxgM4uijj8Zf//rXvLdh9erVOOOMMxAOh1FQUICTTjoJK1eudNX7wx/+gGOOOQZlZWXw+Xzo06cPpk6d6krGsmHDBvznf/4nRo0ahaKiIpSUlGD8+PFmfF4vXn/9dUyYMAGRSMTch08++aStzptvvolLL70Uhx9+OCRJyprU4u677wbHcVk/L730kln3q6++wrXXXotx48YhFAqB4zi89957nu22trbi9ttvx6BBgxAMBtGzZ0+cf/75ru2/7LLLcvZvTSKSre6QIUOy7isGg8HoKsxNgtEtmT59OhYtWoQXXngB1157rWt5S0sLFi5ciLPOOgsVFRU/wgj/PUilUiAi/L//9/9wyCGHgOd5/OMf/8C9996L9957D++8845Z95133sEZZ5yBE044AU899RRCoRD++te/4sYbb8TmzZvx6KOPevZx5513egprANi6dSvGjRuHqqoqPPHEEygoKMCcOXNwzjnn4JVXXsF5552Xc/xr1qzBCSecgLFjx+K5554DEeF3v/sdTjnlFCxfvhzjxo0z6zY0NODMM8/EyJEjUVxcjO+++w6zZs3C0UcfjXXr1mHw4MEA9Exwb731Fi655BKMGTMGiqLg5Zdfxvnnn4977rkHd911l20Ms2bNwu23344ZM2bgN7/5DSRJwjfffINkMmmrt3DhQqxatcpMYLFu3TrPbbryyittWfQMrrrqKmzevNm2bO3atVi0aBGOPPJInHLKKXjjjTey7qtJkyZh7dq1uPvuuzF69Gjs3LkT9957L8aNG4cvvvgCffv2BaAfrxkzZniu7/P5XMlrAoEAli1b5ipjMBiM/caPFeCYwfgxURSFqquradSoUZ7L58yZQwDojTfeOMAj6x7ccsstBIA2b95sll100UXk8/lciR1OP/10ikQinu189NFHJMsyvfLKK54JS66++mry+/20c+dOs0xRFBo6dCj17t2bVFXNOc4zzjiDKioqKBqNmmWtra1UVlZGxx57bKfbuX79egJAd955p1lWV1dnS4hhMHHiRAoGgxSPx82ytWvXEs/z9D//8z+d9mXdluuuu466cnnfsmULcRxHF198cdY2jX3sTNBBRLRx40YCQHfccYet/IMPPiAA9NBDD+Xs/7333vNcf9q0aRQKhfLeDgaDwdgbmJsEo1siCAKmTZuGdevW4YsvvnAtnzdvHqqqqnDmmWeaZXPmzMHIkSNRUFCAcDiMIUOG4LbbbutSvxzH4frrr8e8efMwePBgBAIBjB49GqtWrQIRYfbs2TjkkENQUFCAk08+GZs2bbKt//e//x2TJ09Gr1694Pf7MWDAAFx99dWor68368TjcRx55JEYMGAAWlpazPLa2lpUVlbixBNPzOl2cCAwUgqLYubllCRJkGXZZfUrKiqC3+93tZFMJnHFFVfguuuuy5pKeuXKlRg5ciR69uxplgmCgDPPPBM7duxwpQX2Wv/EE09EMBg0y8LhME444QR88MEHqKmp6fJ2lpWVebowjB07FrFYDI2NjWbZ448/Dp/Ph1/96lc5+wGwTyH75s6dCyJypcrOt01JkgAAhYWFtvKioiIA8Dx+Vp555hlwHMeirTAYjB8FJoYZ3ZYrrrgCHMdh7ty5tvL169dj9erVmDZtGgRBAAC89NJLuPbaazFhwgQsXLgQixYtwk033ZT19Xwu3nzzTTz99NOYNWsWXnzxRbS1tWHixIm4+eabsXLlSjz++ON48sknsX79epx33nkgyxzXzZs3Y9y4cZgzZw6WLl2Ku+66Cx999BGOO+44pFIpALrw+Mtf/oI9e/aY4kLTNFx00UUgIrz44ovmdmVDUZS8PpTn/FsigqIoaG1txZIlS/Dggw/iwgsvRJ8+fcw6M2bMQDKZxA033IBdu3ahubkZzz33HBYuXIhbbrnF1ea9996LaDSK++67L2u/yWQSPp/PVW6Uff755znH3dn6Xg9SqqoikUjgm2++wZVXXokePXrg8ssvz9kPoPtLl5eXo0ePHmbZP/7xDwwdOhSvvfYaBg8eDEEQ0KtXL/z61792uUnsLZqmYf78+RgwYAAmTJiwV2307dsXkydPxsMPP4zly5ejvb0d33zzDW644QbTdzobLS0tePXVV3HKKafgkEMOcS3v6OhAZWWlue3XX3+97YHB4MQTT8zqJ81gMBg5+THN0gzGj82ECROorKyMksmkWXbzzTcTANqwYYNZdv3111NRUdE+9weAKisrba4AixYtIgB0xBFH2F6fP/LIIwSAPv/8c8+2NE2jVCpF27ZtIwD0+uuv25a//PLLBIAeeeQRuuuuu4jneVq6dGmnY9yyZQsByOvj9crcixdffNG23uWXX06pVMpVb+XKlVRdXW3WEwSBfve737nqffLJJyRJEi1ZssQ2ZqebxDnnnENFRUXU1tZmKz/++OMJAP32t7/NOe4jjjiCBg0aZHMXSKVS1L9/fwJAL7zwgmsdn89njn/QoEG0fv36nH0QET311FMEgB599FFXW+FwmIqLi+nxxx+nZcuW0e23306CINAvfvGLrO11xU3ib3/7GwGgBx54IGe9XG4SRETJZJKuuuoq23EeMWIEbdmyJWe7hkvSiy++6Fr20EMP0UMPPURLly6lpUuX0u23307BYJCGDBniOqYnn3wyCYKQsy8Gg8HwgolhRrfm2WefJQD06quvEpEudCoqKuj444/3rDd16lRatGgR1dXV7VV/AOjCCy+0lX377bcEgH7zm9/Yyt9++22X3/Lu3bvp6quvpl69ehHP8zbhMWvWLFd/11xzDUmSRDzPu/wxs5FIJGjNmjV5fVpbW/Nqs7GxkdasWUPLli2j+++/nyKRCJ199tk2kbl27Vrq0aMHTZo0id544w1atmwZ3XHHHSTLMt17771mvVQqRUceeaTNvzWbGH7nnXeI4ziaMmUKbd68mWpra+mOO+4gQRCy7jMrzzzzDAGga665hnbu3Enbt2+n6dOnm+u/9NJLrnXWrVtHH374IT3//PM0atQoqqiooC+//DJrH4sXLyZZlulnP/uZy5dYkiRPofgf//EfBIA2btzo2WZXxPDPfvYzEkWRampqctbrTAxPnz6dSkpK6OGHH6YVK1bQyy+/TKNHj6ZDDjmEtm7dmrXd0aNHU2lpqc1XOhevvvpqXn7IDAaDkS9MDDO6NbFYjAoLC2nixIlERPT6668TAJo/f76r7ty5c2ncuHEkCAJxHEdjx47Ny9JqBQBdd911trJsQm758uUEgF555RUi0iczjRw5ksrLy+kPf/gDLV++nFavXk2rVq0iADRz5kxXf2vWrCEAJMsy7dmzJ+9xplKpvD5eE8Hy4aWXXiIA9H//939m2dFHH02HH344KYpiq2tYtY3JdrNnz6bCwkLauHEjNTU1UVNTE3322WcEgO677z5qamqytTF//nwqLS01HxqGDRtGv/3tbwkAPffcc52OddasWVRQUGCuP27cOLr11lsJAL3//vs5121tbaUePXrQ2Wef7bl8yZIl5Pf7aeLEiZRIJFzLKysrCQA1Njbayo0HpZdfftmz3XzFcF1dHcmyTJMnT+60bi4xbFiXjXPVoKmpiQoLC+myyy7zbNM4bjfeeGOn/RuoqkqhUIguuOCCvNdhMBiMXDCfYUa3JhAI4MILL8SSJUtQU1ODuXPnIhwO4/zzz3fVvfzyy/HBBx+gpaUFb731FogIZ511FrZt23ZAxvrll1/is88+w+zZs/GrX/0KJ554IsaMGYPS0lLP+tFoFJdccgkGDRqEQCDgmhyVja1bt3aaVtr4rFixYq+2ZezYsQD0mLsGn376KUaNGuXyZx4zZgw0TcPXX38NQN8PLS0tGDhwIIqLi1FcXIyRI0cC0MN2FRcX23x5p02bhtraWqxfvx4bN240495yHIfjjz++07HeeuutqK+vxxdffIGtW7figw8+QFNTE0KhEEaNGpVzXWOipXU7Dd5++22cc845mDBhAl577TXIsuyqM2LECM92Ke2rvS+T5gDgueeeQzKZzPvcyMann34KAK6waEVFRRgwYAC+/PJLz/WeeeYZAOhy/0S0z9vOYDAYBizOMKPbM336dDzxxBOYPXs2Fi9ejMsuu8wWPcBJKBTCmWeeiWQyiXPOOQdfffWVGUP1h8SYHOSc0PWnP/3Js/6MGTOwfft2rF69Gt988w1+9rOf4eGHH8ZNN92Us5/q6upO00obGLFzu8ry5csBAAMGDLD1u3btWqiqahPEH374IQCgV69eAIBf//rXuOyyy2zt1dbW4sILL8SMGTPw85//3NYuoEdzGDp0KAB9wtaTTz6JyZMn533cfD4fDjvsMADA9u3b8fLLL+Oqq67qNN6tIaLHjx9vK1+6dCnOOeccHHfccVi0aJHnJD0AOO+887B06VL87W9/wy9+8QuzfPHixeB53iU+u8ozzzyD6upqW9SUvaG6uhoAsGrVKts+bWhowIYNG3DKKae41kkkEnj++ecxduxYc9/mw6uvvopYLIZjjjlmn8bMYDAYBkwMM7o9o0ePxogRI/DII4+AiDB9+nRXHUP4jB8/HlVVVaitrcUDDzyAwsLCfRYk+TJkyBAceuih+PWvfw0iQklJCd544w38/e9/d9V9+umn8fzzz2PevHkYPnw4hg8fjuuvvx633norxo8fb1pmvZBlOWuosq7ypz/9Ce+//z5OP/109O7dG9FoFO+//z4ee+wxHHvssZg8ebJZ96abbsINN9yASZMm4eqrr0YwGMS7776LBx98EKeeeqpp/R0yZIgrA9nWrVsBAIceeihOPPFEs3zPnj148MEHMX78eITDYXzzzTf43e9+B57n8b//+7+2Nu69917ce++9ePfdd82oCl9++SVee+01jB49Gj6fD5999hlmzZqFgQMH2qJYtLS04LTTTsMvfvELDBw4EIFAABs2bMCjjz6KRCKBmTNnmnX/+c9/4pxzzkFlZSVuu+0206pqMGzYMEQiEQD624g//elPuPbaa1FfX49hw4bhnXfewf/+7//i2muvtQnPbdu2mQ8xmzdvBgAzq12/fv1cx/Sjjz7CV199hdtuuy1rdJFYLIbFixcDgJkZbsWKFaivrzcfCgHg3HPPxV133YVrrrkGO3fuxFFHHYWamhrMnj0bsVgMN954o6vtRYsWobGxMatVeNu2bfjFL36BqVOnYsCAAeA4DitWrMAjjzyC4cOHu9Y78cQTsWLFirwjnDAYDIbJj+mjwWAcLDz66KOmP6kXCxYsoJNOOokqKipIlmWqrq6mCy64IGukh2xgH3yGifQkDqeddpoZYeD888+n7du323yGP//8cwoEAjRt2jRbe/F4nEaNGkX9+vWjpqamLo17b1m5ciWdddZZVF1dTbIsUzAYpJEjR9J9991nS2Rh8Nprr9Fxxx1HZWVlFAqFaPjw4XTfffe5EnE4ybYPGxoa6PTTT6fy8nKSJIn69OlDv/rVrzwnQM6cOdPlE/vtt9/SCSecQCUlJSTLMg0YMIDuuOMO13ji8ThdeeWVNHToUCooKCBRFKlXr1508cUX01dffeXZT7aP0ye3oaGBrr76aqqoqCBJkmjQoEE0e/ZsV8KQefPmZW3TeS4QEV111VXEcZwt8Um2/er16du3r61uTU0NXX/99TRgwADy+/1UXV1NEydOpA8//NCz7dNOO41CoVDWSZiNjY00ZcoU6tevHwUCAZJlmQYOHEi33HILNTc3u+qPGjWKKisrs24Lg8FgZIMjYo/RDAaDwfjXpa2tDSUlJXjkkUdw3XXX/djDYTAY/2KwGQgMBoPB+JfmH//4B3r27Imrrrrqxx4Kg8H4F4RZhhmM/YCiKDmX8zzPZr8zGAwGg3EQwu7ODMZ+oLMQZEZaZAaDwWAwGAcXLJoEg7Ef6CwUWVlZ2QEaCYPBYDAYjK7A3CQYDAaDwWAwGN0W5ibBYDAYDAaDwei2MDHMOCiZMmUKAoEAmpubs9a56KKLIEkSdu/efeAG1o3ZsWMHpkyZgv79+yMUCqGwsBBHHnkkHn/8cdcEwrvvvhscx7k+fr/fs+2XXnoJRxxxBPx+P6qrq/Ef//EfaG9vd9Vrb2/Hf/zHf6C6uhp+vx9HHHEEXnrppby34e2338b48eMRCARQWFiISZMmmemZnUSjUdx1110YNGgQfD4fSktLcdJJJ2Hjxo22eqlUCvfccw/69esHn8+HIUOG4LHHHnO19+KLL+KEE05ARUUFfD4fqqurMWnSJHzwwQeuuq2trbj99tsxaNAgBINB9OzZE+eff75rrMuWLcMVV1yBIUOGIBQKoWfPnpg8eTLWrVvnavOf//wnrrzySowaNQo+nw8cx5nJSpzU1tbi+uuvR//+/REIBNC3b19Mnz4d27dvt9V75513cNppp6G6uho+nw89evTAySefbCbqsJJIJDB79mwcdthhCIVCqKiowJlnnuna/q6cZ/369fM8z5zn2nvvvZe1HsdxmDFjhud+YDAY3QPmM8w4KJk+fToWLVqEF154Addee61reUtLCxYuXIizzjoLFRUVP8IIux/RaBSRSAR33nkn+vTpg2QyicWLF+NXv/oVPv30Uzz99NOudZYsWYLCwkLzf6+IGn/+859x8cUX48orr8TDDz+MDRs24NZbb8X69euxdOlSW91zzz0Xa9aswaxZszBo0CC88MILuPDCC6Fpmi1dsRevv/46pkyZgsmTJ+O1115DS0sL7rnnHhx//PFYs2YNDj30ULNue3s7TjrpJOzatQu//vWvMWLECLS0tOCDDz5ALBaztXvttdfiueeew3333YcxY8bg7bffxo033oi2tjbcdtttZr2GhgaMHz8eN954I8rKylBTU4OHHnoIJ5xwgi3rHQBMmjQJa9euxd13343Ro0dj586duPfeezFu3Dh88cUXZua5OXPmoKGhATfeeCOGDRuGuro6PPjggzjmmGPw9ttv4+STTzbbfPfdd/HOO+/gyCOPRCQSwXvvvee5nxKJBE444QQ0NTXhnnvuwbBhw/Dtt99i5syZePvtt/H1118jHA6b22Rkg6usrERjYyOeeOIJTJw4Ec899xwuvvhis92rrroKf/7zn/Gb3/wGJ598MhobGzFr1ixMmDABK1euNLMiduU8W7hwIRKJhG3827dvx89//nNMmTLFLDvqqKPMtN5W5syZg2effdZWl8FgdEN+zIwfDEY2FEWh6upqGjVqlOfyOXPmEAB64403DvDIGE4uuOACEkWR4vG4WWZkWfPK9GZFURSqqqqi008/3Vb+5z//mQDQ4sWLzbK33nqLANALL7xgq3vaaadRdXU1KYqSs6/BgwfTiBEjSNM0s2zr1q0kyzL94he/sNW98cYbKRQK5czORkT05ZdfEsdx9Nvf/tZWftVVV1EgEKCGhoac6zc3N5MkSXTJJZeYZRs3biQAdMcdd9jqfvDBBwSAHnroIbNs9+7drjbb2tqooqKCTjnlFFu5NWPd7NmzCQBt2bLFtf7f//53AkBPP/20rfyFF14gAPR///d/ObcpmUxSz5496fjjjzfL4vE4CYJAF198sa3url27CADdcMMNOdsk8j7PvLj77rsJAL3zzjs562maRv3796e+ffu6svkxGIzuBXOTYByUCIKAadOmYd26dfjiiy9cy+fNm4eqqiqceeaZZtmcOXMwcuRIFBQUIBwOY8iQITbLXD5wHIfrr78e8+bNw+DBgxEIBDB69GisWrUKRITZs2fjkEMOQUFBAU4++WRs2rTJ1cY777yDU045BZFIBMFgEOPHj8e7775rq7Np0yZcfvnlGDhwoPkafNKkSa5tNV7vvvjii7j99ttRXV2NSCSCU089Fd9++22Xtu2Hory8HDzPQxCELq+7atUq1NTU4PLLL7eVn3/++SgoKMDChQvNsoULF6KgoADnn3++re7ll1+OXbt24aOPPsraT0NDA7799luceeaZ4DjOLO/bty8OO+wwLFq0CKqqAgBisRiefvppnH/++ejfv3/O8S9atAhE5Br/5Zdfjo6ODixZsiTn+uFwGH6/H6KYeUknSRIA2CzqAFBUVAQAttf/PXr0cLVZUFCAYcOGYceOHbbyfONcd6X/bOsXFRXZtsmIs+1sMxKJgOf5TtsE8jvPiAjz5s1D//79bVZxL5YvX47vvvsOl19+OYsBzmB0c9gVgHHQcsUVV4DjOMydO9dWvn79eqxevRrTpk0zb4wvvfQSrr32WkyYMAELFy7EokWLcNNNNyEajXa53zfffBNPP/00Zs2ahRdffBFtbW2YOHEibr75ZqxcuRKPP/44nnzySaxfvx7nnXceyBKQ5fnnn8fpp5+OSCSCBQsW4C9/+QtKSkpwxhln2ATxrl27UFpailmzZmHJkiX43//9X4iiiKOPPtpT5N52223Ytm0bnn76aTz55JPYuHEjJk2aZAq4bBARFEXJ65MvRptNTU14+eWXMX/+fNx888028WNw+OGHQxAEVFRU4NJLL3X5nH755ZcAgBEjRtjKJUnCkCFDzOVG3aFDh7r6Mda11nWSTCYBAD6fz7XM5/MhFoth8+bNAIB169YhGo1i4MCBuOaaa1BcXAxZljF69Gi89dZbrvGXl5ejsrIy7zGpqopUKoWtW7fimmuuARHZUgj37dsXkydPxsMPP4zly5ejvb0d33zzDW644Qb06dMHU6dOzbqdgO5C9PHHH2P48OE562Vj/PjxGDVqFO6++26sWbMG7e3t+Pjjj3HbbbfhqKOOwqmnnupaR9M0KIqCXbt2YebMmdiwYQNuvvlmc7kkSbj22muxYMECLFq0CK2trdi6dSuuuuoqFBYWemaO68p5ZvDOO+9g27Zt5rUjF8888wx4nnc9yAD6Q/GJJ56Yc30Gg/FvxI9nlGYwOmfChAlUVlZGyWTSLLv55psJAG3YsMEsu/7666moqGif+wNAlZWV1N7ebpYtWrSIANARRxxhe8X+yCOPEAD6/PPPiYgoGo1SSUkJTZo0ydamqqo0cuRIGjt2bNZ+FUWhZDJJAwcOpJtuusksX758OQGgn/70p7b6f/nLXwgAffjhhzm3x1g/n4/XK3MvHnjgAXMdjuPo9ttvd9V59tln6f7776fFixfTsmXLaNasWVRSUkIVFRW0c+dOs979999PAKimpsbVxumnn06DBg0y/x84cCCdccYZrnrGq3anq4IVVVWppKTE5TrQ1NRE4XCYANAHH3xAREQvvvgiAaBIJELjx4+nv/71r/Tmm2/SSSedRBzH0ZIlS8z1TzvtNBo8eLBnn7Is0y9/+UtX+eDBg839V1VVRf/85z9ddZLJJF111VW24zNixIi8jtFFF11EoijS2rVrs9bJ5SZBRNTa2kqTJk2y9X/iiSdmdfs444wzzHqRSMTTlULTNLrrrruI53mzbp8+feiTTz7xbDOf88zJz3/+cxIEwXaOedHU1ER+v9/zfCIiEgSBTj755E77YzAY/x4wMcw4qHn22WcJAL366qtERJRKpaiiosLmj2itN3XqVFq0aFGnvqrZAEAXXnihrezbb78lAPSb3/zGVv7222/b/JYNX8tXX32VUqmU7XPrrbcSx3GmyE6lUnT//ffT0KFDSZIkm+j4yU9+YvZhiNknnnjC1vc333xDAOill17KuT2tra20Zs2avD6JRCKvfVRTU0Nr1qyht99+m2699VaSZZmuv/76Ttf76KOPiOd5m3+oIYZra2td9U8//XSb0Bw4cKBt3xgYYviBBx7I2f+dd95JAOjee++l3bt308aNG2nixIkkCAIBoFWrVhFRxl+5rKyMWltbzfWj0ShVV1fT+PHjzbLTTjuNhgwZ4tmfLMt09dVXu8q//PJL+uijj+iVV16hU045hcLhMC1fvtxWZ/r06VRSUkIPP/wwrVixgl5++WUaPXo0HXLIIbR169as23jHHXcQAHrsscdy7otcYjiZTNKZZ55JvXv3pqeeeor+8Y9/0IIFC2jgwIF01FFHUXNzs2udDRs20OrVq+n111+n888/nyRJcvl233fffRQMBunee++l5cuX0+uvv06nnXYalZWV0ccff+xqs6vnWUNDA/l8Ppo4cWLObScievzxxwkAvfLKK53WZTAY//4wMcw4qInFYlRYWGje4F5//XUCQPPnz3fVnTt3Lo0bN44EQSCO42js2LG0dOnSLvUHgK677jpb2ZYtWwgAzZ4921ZuCFXjhvr88893an3dvn07ERH96le/Ip7n6Te/+Q0tWbKEPvroI1qzZg2NHDmSJkyYkLUP55jmzZuXc3s0TXMJ82yfvWXWrFkEwFPQOBkyZIjNQv7EE08QAPrqq69cdUePHk3jxo0z/z/mmGNozJgxrnpffvklAaA//elPOftOpVJ00003kSzL5vGYOHEiXXnllQSAduzYQURES5YsIQB09tlnu9q48MILKRAImP9PnTqVysvLXfXa29s9H6C8xnTYYYfRiBEjzLK//e1vnse8qamJCgsL6bLLLvNsy5g4dv/99+fskyi3GDYmp65Zs8ZWvnnzZgJAd999d6ft/+QnP6Hi4mJzYtr69euJ4zjXbyiZTNKAAQPoxBNP7LTNzs6zRx99lADQwoULO23ryCOPpPLyctsbJwaD0X1hPsOMg5pAIIALL7wQS5YsQU1NDebOnYtwOOyaRAXok5Y++OADtLS04K233gIR4ayzzsK2bdsOyFiNlMuPPfYY1qxZ4/kxwsA9//zzuPTSS/Hb3/4WZ5xxBsaOHYvRo0ejvr5+v45pxYoVkCQpr0+2mLOdYYTE2rBhQ6d1icg2Wenwww8HANfEQUVR8M033+Cwww6z1f36669d/s3Guta6XoiiiIceeggNDQ34/PPPsWvXLrz55pvYvn07DjnkEPTq1QuA23+5s/HX1dWhtrZ2r8d01FFH2fbdp59+CgAYM2aMrW5RUREGDBjg6Yd8zz334O6778bdd9/d5UmjTj799FMIgoCjjjrKVt6/f3+Ulpbm9M02GDt2LJqamlBXVwcA+Oyzz0BErm2SJAkjR47Mu00g+3n2zDPPoKKiAmeddVbOdj755BN88sknuPTSS83JggwGo3vDxDDjoGf69OlQVRWzZ8/G4sWLMXXqVASDwaz1Q6EQzjzzTNx+++1IJpNZkyrsb8aPH4+ioiKsX78eo0eP9vzIsgxAn6DjnMz11ltv4fvvv9+vYxo1alRWYe78VFdX71Ufy5cvBwAMGDAgZ71Vq1Zh48aNOOaYY8yyo48+GlVVVZg/f76t7quvvor29nace+65ZtmUKVPQ3t6O1157zVZ3wYIFqK6uxtFHH53XeAsKCnD44YejqqoKH3/8Md59913ceOON5vKqqiqMGzcOK1euRGtrq1kei8WwYsUK2/gnT54MjuOwYMECWx/z589HIBDAT37yk5xjicfjWLVqlW3fGcdh1apVtroNDQ3YsGGDKdoN7rvvPtx999244447MHPmzLz2QS6qq6uhqirWrFljK9+wYQMaGhpc/TshIqxYsQJFRUUoLS012wTc25RIJPDxxx932iaQ+zxbu3YtPv/8c0ybNi3nBDtAF82Afl1hMBgMgCXdYPwLMHr0aIwYMQKPPPIIiMjzJnbVVVchEAhg/PjxqKqqQm1tLR544AEUFha6rFE/FAUFBXjssccwbdo0NDY24mc/+xl69OiBuro6fPbZZ6irq8OcOXMAAGeddRbmz5+PIUOGYMSIEVi3bh1mz56dlyjoCuFwGKNHj94vbc2cORO7d+/GCSecgJ49e6K5uRlLlizBU089hfPPPx+jRo0y644cORIXX3wxhg4dCr/fj9WrV2P27NmorKzELbfcYtYTBAG/+93vcMkll+Dqq6/GhRdeiI0bN+KWW27BaaedZhOTZ555Jk477TRcc801aG1txYABA/Diiy9iyZIleP75520ht6ZPn44FCxZg8+bNZoKK9957D2vWrMGIESNARFi9ejX+53/+Bz/5yU9w/fXX27b197//PU466SScccYZuPXWW8FxHB588EHU19fjvvvuM+sNHz4c06dPx8yZMyEIAsaMGYOlS5fiySefxH//93+jpKTErHvsscfi7LPPxtChQ1FYWIitW7dizpw52Lx5sy2E3Lnnnou77roL11xzDXbu3ImjjjoKNTU1mD17NmKxmE24P/jgg7jrrrvwk5/8BBMnTnSJTatwr6urw4oVKwBkLNd/+9vfUF5ejvLycjPpx+WXX46HH34Y5513Hu644w4MHjwY3333HX77298iFArZsrVNnjwZI0eOxBFHHIHS0lLs2rUL8+fPx4oVK8wIKQBw3HHHYcyYMbj77rsRi8VwwgknoKWlBY899hi2bNmC5557bq/OM4N8BW48HscLL7yAY489FkOHDs1aj+M4TJgwIWtiEgaD8W/Gj+iiwWDkjeEPOGzYMM/lCxYsoJNOOokqKipIlmWqrq6mCy64wIz0kC/YB59hgxUrVtDEiROppKSEJEminj170sSJE231mpqaaPr06dSjRw8KBoN03HHH0fvvv08TJkzYrz7D+5O//vWvdOqpp1JFRQWJokgFBQU0duxY+sMf/uDyOZ46dSoNGDCAQqEQSZJEffv2pRkzZtCuXbs8237hhRdoxIgRJMsyVVZW0g033EBtbW2uem1tbXTDDTdQZWUlybJMI0aMoBdffNFVb9q0aS6f2JUrV9LRRx9NkUiEfD4fHXbYYfT73/8+q9+ocTyCwSAFg0E6+eSTaeXKla56yWSSZs6cSX369CFZlmnQoEH0hz/8wVXv5ptvppEjR1JhYSGJokiVlZU0ZcoUzzZramro+uuvpwEDBpDf76fq6mqaOHGiK3rIhAkTcvqoW8kVWcR6zhHpiT8uueQS6tevH/l8PurTpw/9/Oc/d/l2/8///A+NGTOGiouLSRAEKi0tpTPOOIPefPNN1zY1NzfT7bffTkOHDqVgMEg9evSgE0880ZZYhahr5xlRZl7BCSec4FrmxJgcOXfu3Kx12trazMm4DAaje8ARWYKkMhgMBoPRjVm8eDHOOussfPbZZ6ZPO4PB+PeG+QwzGAwGg5Fm+fLlmDp1KhPCDEY3glmGGd2CzjKsGeliGQwGg8FgdC/Y3Z/RLegsrNgVV1zxYw+RwWAwGAzGjwCLJsHoFjjDRDkxYgQzGAwGg8HoXjA3CQaDwWAwGAxGt4W5STAYDAaDwWAwui3MTeIHRNM07Nq1C+FwGBzH/djDYTAYDAbjR4GI0NbWhurqajZZmXHQwcTwD8iuXbvQu3fvH3sYDAaDwWAcFOzYsWO/Z9pkMPYVJoZ/QMLhMABgx5ZnEQkHO62vCBw+2rMHH+zWD4vE6+7ccvohWuQBfzrj7O4ODikN+L4184QtSlp6Pdj+WklpermxzC9kvqc0oDEBdCR47KnVxyul2xQlDaKoj0eSVb1M1CBKGpoa/OiI2U8l63oA0BEToao8WltkqCm9QyG9zGhL/5txYVcUzlYm+1QIgpZzXGY7kmbbTom3b+vXu3zY9mkBBFWDKuiFik/fuXx6U4zxiaIGRbHvTKMfY3yKwiFVz8EXV231FMn+RsDoyxdXEWhPwokmZPpRLAdQFfXvCb8ArojT932W/SJKmX2Z7z6ReMKZveI4JFLlGpM5NujbppEKlVLQyL6tzv8BgOcESLzf/O7ZLqlIaXGoWsqzP3MfaN7h8QReNJeplDkuKS2z75X0d8VSliDes66qcRB4QpGkIGA5zs56VsoD5QiSL91AjjB+/hCSahwKuY99po84UlocSTWJnVGfq9+UfUi2bSr2qyiSFLPM2EZjfTX916s9Y52kytvKrf0p6Z9n0lIWVwFFA75t4bBja0RfnhDM36/x21FTPKyH8M4LanBKYhfQ1AoI6R+dLAJi+jwx/gpCZrmqAKqaKQcyy0TJMtBU5n9ezNThRfMHzgmyWZ3U9PEwBuisY10fAFJxUKwx059guf7x3t+t/bnac7UhuMqM35f1d8ZzAniN3OvD/XvM9vvbF7L95m2kfw+trTH07neReV9kMA4mmBj+ATFcIyKFYUQiIb0wyw0dAJI8IdQRgD+qX8StYtgqXmUeKIwA26McZNVbDMsegjilAenbtS6EjPsPn+mrkgeiCgc5BDTW+23tWsWXVWAFUj4oyNyInEJYFAkB/R6JcAmwuyYAJcVnlltEp9F+MiEACm8rs9Zxij7r8mz7wSfq/zfEASnog+gPQVA0cGmhSQ4xbB2fCNjGbO5zYz8ASKZkiJQwlykSb/uBqaL+f8onQKQEpKT752eIXnPQlvUAQPWL4Pxc+iFAy2u/OMWw1z6ReEJBhEMk4n5oc4pSLzGcTRiLvAyeEyBwknmT9LqBpjQeipb07C8jgvVzzBC8Amd9QJFcQtgPb0EMAAmNN8/YlMbB51gu8oQCWUFQ1GxtONs0CAUlhNH5Ay8kP+IqQSMxvS0pr0oAwlC0JMjfgbq4BBkZUWpIKmO8PgAJlYdP0FDgV1EgZ8SwpNnFsOIQwylNb09J74OEmj5HNQ5SenlmP+nfkxoQgC6CAf17SgNkhYMYCCKZECAGABgPkCkeSoqHIACc5fIXCgcQCYSAZAIQRV0IA/p3QBfDolsUIpHwLhctYhMB/Y/5ZGsRn4IhdH1mbUoaD+GSrb5ZxyF2KZ4ChECmzEsMC1Yh7Mtd1zlGj7pev7dcYthZ74egUzGsKsjcdXSYyyDjYISJ4QMNn2uXZ26MTqswkLEKe+G0Crta1rzLvTD6trVvEcLOPs31rJZeh4A21o13CLb1nELYWtf4m0zYN1ySurAxcO+Tmnof4h16m4b4TPm8d67XWJ3jtY4xERDh61A8rbrWftqLfBAUvQ1fh+Kqp3gcSK8yK7b9L+5bkBinIHUt97BSef2vaEmIvIxcGMK6M0uwVezmIuVh/XQK4VzLAf03oGicZ1te62ikeooRJxqp5sOE17Js/9uss9ZtsTwM69/VjFU4DyFsLU+ovOdy63fDImx9AZLS7JbiLiN67Dcx18XOY5khhHkxu8HB69orOIRrLqu+sdz4ONvI1kc+5HHu7Mv6GqldEsSd1leVfR8zg3EQwc7mA4Egel84HBdeQww4hbCXBjJebVsFmlHPuZ5TCFvbk7N8B9xi1yz3EK6SlLlwZhPCrnY82ndaOrOVZcZClu/ufeGkJgZ8v6MASopHysdDSjheJTqswta2FYul2jk22adCDmhAgLO5VHgJYaOfWFiGoGgQHQcom5BWRR5qSICIfVEeuckmgq3CzBByOS3DlnYULQnZYkXztoZm6EwEpzTO9cBm1MklhA1xmG25URYQNfh4zVXPWndvyfYQ4VkXKhIa7xKtgF0EG2M0BLwXeyuEraemUwi73DVS+zApymkVtpJNdJnuEY6HrVyCOAucHAJUBWQReTZrrgVKRoFU3D22LBbdvKzC+0KeojRfQWw9Rzurn+ttD4PxrwQTwz8mzotYjuuJYRV2ClaDbELYIKk5rMyWrq3CQuL1uqKHldHLKizxQNxRZl3HuZ5zfb2utyuEl6+u1/r5YGxvQ6MPsVYR/mgKUhetp14C3TrOSJHuIlHfEXCJbKcQBgA1JEBoyU8IK1JaCGexpHc69k72l9d5lesGl68Q7qwtpzi0CmEvEeyFUwhbySWErcLRuq7EE0TLb8JLYFrbM8efjyjRkq6HgWz7RtUUdChSpyLY+n8qi1XYi/0lhJNa7n66jNNn2CyXASW7r3VWcelxXLIJ3bzW1zysovkI4X9HmIWY8W8CO4sPAMar0XzqmX6BHqLWWtaQyL0csAhei5EkX6uwk1zWWaBz8RyL6oPp6LCfck4h3BleLhLZXDec25RtG1M5fIWtY/Qap1W4x6ISFMVtbfYSwkJUr2O4SOTCEMiaAkDq+oOAF9bzoEgmRCQgIue2WnZmEc7lWtEVC1IuEWy1gnrVtdbpqhA2fnsdCm9ahq04BbCxXpGs5PUbN+pkq+ssa0pwaE063SDsfVvH7aQz94h8ySaEna4RxpsTp1tTNhIqrwupXFZhA9Fj8pmz3Mn+srxa2+NFQE1ffFVF/1FmmwTn5IewCncCzwk/nN9wZy4lTjRmPWYcvDAxfBBhiA2XqPW4hjUn7ZaYbEJY5qEfZct1y9/JUTejV2SxnDr9k70iQTgtp4AeUSIWlVzlXnVzRW/IlHVu2XVayI2+OvMVzjVG53gkSUMqxSPeIeoThdKi0Nm28/7ndJHIZhXuDFtkCym7cPdC5oEhRQqCIqHYV+Ep0pwi2OtVv1UIG9ZdgRfBQ7DdkJ2YbaXXzxYNwssKKghwLfcSu846uYQwAMQUDoCIIlnfjmwi2CAsISfGNiqUREqLu8q9aEvFURfXrYr5iGAjSkxKc4/Xul5X3SPyEcIpjTP/DwQV2298r10nvCbIAXbrsFUIWyetqUqXrMTm+nlaOW0uFTmEcFb3iHzHlINcv6l9qeukq77GPxTxeBzJZI63AnuJLMvw+/37vV3Gvx5MDB8A8rUMA9l9XZ1W4Ya4vbyzdWVZv4HFHQ/zThcJz/VzWIVlHuiAtxB21vcSwlbyffXvZRnNx184F9mswkD27bFaqY3vmgJoOUSw0S7BbhXO5R5h9pFQoYjCXluGs+2XiKyhd8jpp+vt15uvEDbgOcF2M81mEeUhmO14CV8DxWIZzuUnbJBtEpl9PbiWxRRA5AXz95HNd7hIVhAQw1m3zbqNCTXa6f4D9H3YnBTRoXAusWodb+7v2R8K9pcQdu4Tf0CBKGpoa5Xztg6bWCNIdBXXU6botlrmssR6LPOMIpGrra4I4S6OxVzkELVdEakHg6DdW+LxOIqLKhFPtOz3tisrK7FlyxYmiBlMDB+MWEWL1SrsnBBn9QO2rWO1CiMjeJMa51rm/O4XMlYmK9bwXM7+REnLaTm1xgJ2LvMKDQa4LcPWZVbycZHIZgl3ukfkwmkJti2TNDPsWrLDPm4vIewkHyHsZSnO17UkG9b9EpHL9X46mdwG5O8a4aybzzKB45GCW4A6RV2HwiOVPq+dk+m83COsdOZioItEDUp6ol6uSXTFPoJGKkJisTuSBtn9g60PxRrsDwBWVNKQ0kRPIew17n2K5LAfMPovkoGUqKE1kkRDXSD3SgaBCNDSai9zWoW9XCGs0SMMPIRrqryPbR/7UwDFW1z1W/go4AN4LiNiQ2IxFC1piQmt6rGkVQXwFaBdyghuHx+C1NYIAOBCpYjzinmsg1wISLS7x2sZQ4NaBw0qRE1GsdjDvb0W2lL1NteHsFR2UInd/W1NTiaTiCdaMOUnj0IS8zyv8iCldGDhkhuRTCaZGGYwMXygEInXZyBLfiTTIdTklJqZlQwgHC4DsB0AMCCi4piKTIxWAEioUbxfQ+gd4jBtkH4T/t1nIvwicPmgdhT7IgAyVgCBk/B9tA718YxF1joTX+TJ/O7jNTQnRaxvytTNJrack/Uu6J/Cs19lTiVR1HBaHxXLa+w38dLyDttN0iqEw5EULjy8A+UBBSJP+KZJxstrwp4RHPR13C4SRTJwcrViTn4yI25YRJPE+5Ac3ox4h4Dvt4dtk85FSUNFVRQzxrUiImsQecLqPTL+9mkYN53YhOpgyjaxyinC6uISOhQeq/aIiCocln9Uing6GYkoaRh6eAOOrda3uSEBbG/nTFFj7NNNmyJo3yRCKxNw/DF1pmD9fHMQO74Lgwdw1vh69All1llew+H77zMxbo19U1mooCpI+Lq588lNQS6ENq3ZVhYSi8ErFnHMATE+gQ5FFy9Oi7DAi+gROMSMe6pwGnZ3bIXA8fAJ+vg8LcPWdkgDwGUVwsU+QlOCQ0LjkdCAkKiiUNZjeCfUGJoSHAKiZpaZfZCKtlQcNbGMsHIK4T4FSWxscd8UC8Tsgr62QwCQQO9QPcJSmW2bVErZxFShVAGeExBVmpDUOiALAQSEiGe7pf4k+oebEFc7sGp3gW1ZUCS0pN2kXH67DuE8oJDgFwqgaElsak0ileRxTEVmHxjHoz4ew7q6ICQeOLE6Bp8QNJftiCr4pslI/pFpW/89wVVe6o8D/eIokgkpDVi5KYBtmwtd2xhTOHAlfUGpONDSnNsqrCQzLhJe4thDCLeXlmJ1bR0A4NBIAj0CPQAInpPakloHPqyVACgoDygYVMjrDzhQ0Zqsw470nId+YaBYrsYnDTuxvU1GgaTisJIOlPtD4PyFiIkqmhLbsb1d70PkCdXB3egZGgTEmvXOHIk9AKAxkcA/aoIIicAZvfd0Kog3tSahaBz6FLSjUCgFEs2Zhb6CfZrUllXIdtVH2Kjfxcge2ZDEAGRp/4lhBsMKE8MHAJF4UOM2cP5CQLLfbCneAtTXAooCFEbQp7gAXzTqh4XnBBQ0NIDWrwd31FgkAplXxMVJHxAuA1BjtlWYEKAueQvq7hiQ0m9kh47siYETJiGJlO0iZ3t9nZ4Iogg8gBp8XC/ZLKtOq7CVa4ZF0ZwUzTon9lJxcs929AwNwim9tuLDWglLv+dRWpLABf1TGFTYgMteqXK1DQA+QcPI0iIEmuqxXdT9D5UUj1SKdyXysO3fdBt+ETispAMVgX6Z7TMmuaQvzL0HN+E5Po4v6nQx7BVKTeQJR/foBW73JqxG5sY75LutoIYmIJkWiIq+jym9r/uU6sLm+KPGojUo4JTqWry1XcKH60pN38lyP2F8pYaAGEFTYrcp+ra3+/B+rYStDuF/SnUKEVnF+u36eXPmSbvxH4cVQ9Y4c5tO7tmK1X1a8cZ2Ebv3ZM4vvwicWJ3A4SUCvmkW8XUz5zmJsH9Y0B/K0qdDSCwG39EGqvsGFG3LbGtZJVBc5m7AATVuA2p3Qhs21vTt7Yq1yEsIR2QVVcFDwdV8g4pgET6DLjCLfCJCYjE61FbX+iExvZ8AKAKPttQ2TytrqV9F3wIfin19EBA34vOGzIOFMZHO+uAo8QSB49GWApqTvB7FIZBAW6re9RszUDUFLandCEtlSGodZrnIy0BbPSjakBmQpkAA4PMVYJflclEgqQiI+jh8Ao+mhGBzZbC+ReoXBkp9vcE17gQXKUATGm3bHPl+u35Mw8VIlfdBPWK25cViD9D2T4B4EiVllSivasc3zf709mceMiWe4OM12wPnqHIOZf4g6uMx/KMmeyKShgSg8Rz4op6gznx8Jb9+vstZLMHW9TUFXKgU0VQzmhN6/583CBhYWI/qUAF8wcyDki74VWxtAuri+rnRkpSQ0hQMKtyCthTwXWtG2EZTCYhcPWqiEmo7AHQIaE8VYETp96gMFiGp6ElSjImP+j6SUO7v0K8kqbgemi09fk4OmfeE2g7dUFEfj0Hx7QQPAUhl3iIY7OlIojEuQ+QJfiEAav4+Y3kGAF8BuEDhvonizoSvVeA6+rBddxmMfxGYGD4QpBKApoDqtwAFJZD9hYAg6hexhnoglrYOFwRRKIdw8UABhUIP0KcroKzdBEppwGcLUXTq4Th72HhAEJF8+HEAwH03TEdCiwIoBuIAJwlIbdBvfJrCQegVBq1fqedV6j0AXLgiLQ4t6UfTFz4xWIQ+BQlUBZOoi0totDgYixYrkNXaGpaAgb4y4PB6FIgqBhb2hlDbBEp9D3+oAH3CbbhyiC4qhnB+YNtuzD8f2NAi2yzU5f4U+gnl0D74B0hRcN4xJ2FYcQOakyK2tUnmDRjQRbN1TEb5IeEUKqU+gKrp25feNlIT5sVZLCzAOf1acX5/wq7DO9Ch8LZx9AsDZY1RaC8+Cy2l4bpzJ+OcfjWo3tOC1Icb0sfTEMGa+Zcv9EEaPQxc1VBAU1AoFOCEHsDI0gas7VWLXVERo8s7MLCwN8RoK5BKQQ71g0YqOtRWFPuAQYVtOLxYwxfDePQJEY6viqJXqC8A4P8dW4OPBnSg1AfIQgDUvM282QRKKlDir8eUfgSpvy7Ut7WJ6BtWUBlQkdI4VAaAyoAhpDLiJSgSeE4CNWxDuPxQfX81bwXV1+rbqqTPgaQCbN+KgORHMKS7VNjiuUqifqPf+jFoy05AUSEVfIl+fY6ExnNoSe5O72O3VVLkZFM4ilwSBZKgW7uciRCUlC7OJT+OKD8UDfEd4DkBshCALATgE0LwCa0QeVkX9IkOc3xiCqgO9kJYqrdZonWRIerjSsXRT6pCqLIePATsSft0O98G2DPf6dR2CPDxSct5SZ7121L1AHShHiQfqG6z/iBiDRlmbK+vAH4hgAJJtbUrpj/FPhXFPtjehFQFk+hdUKlvm0a61ZUXIULGoELBfMBGY/rhoTUKqa4WAw8diR59EpB4PwLtBO3TpeZwuMIi+IVI2hJMrjdKxv/GtoYlHwJiBAMLeqDy0GYMLGzDF4P0BwCrBdkU77wILlLh3n4HpCY8y13rWdMvW9jY4seuWAIRuSO9vzLb0Bi3W5t3RUXUdYiua05dXML2dgUpLdN+cxJYtTuIHoGO9LGwP/T5eM0UiOY2aPr1iFQFnKqgyJdp7x81QTPrqH7NFWy/22jKD5+gYUhRHDxXAAgeT7iqYhfIkt9liPEkX+sv7yGAf2A0iYO6NxNCsrUHlgmPkYEjon1LVcXISmtrKwoLC9G84SFEQhKQiJnWRABAPKGLDENwBP1AUgG1tELb0QhKi1EyZ7aoQDq5hdaiX1T5oAguKNnqpLboPnGawsE3ULdWSscOBDf6FKQXuF9hOWdS+wqgcJp5kXM97Vu+U7RBv9Cm4plyyZ8RS0ZfTboQMKzgZjsAsKcRpKr6/knvD66qB7i+w6H4g56WbNd4AMBf4KpjimHoM8HN/xtrgNao2R+pKuj7OvOObexTLihCa4xn9rFxLGx1JEgTR4M7ZIx9PKZY9APxdvd4w2WmUDRcYlJaHD4hZEZiMJYltQ7IfAB8okPf5+m2OH9hevz6OZEIF6I5UQuJ95nCz2jLuh8FToLIyZATCVDrbr096zlq/rUIYsBunTPKFAWUSGbqptfnqspBhx1n20ar6w/PCa6x0fZPQFt3utrK9KkLfm74APv+NsJcWc856zEAXBZE27GA/qaG8xeixadiV1QXE3Y3m4y4bUvB5oKUzVJqrCOk+w5LZfDH4hlrsHV8ShIIlegWw2ARvm7dhuZ02m4vEerso9LXD7T7W+94vMZ2tqetwEnFvjzo1x/Mjf1e1QMQZXAlffFptA6tScFlEbaOyxiDxPsQkorhR0Z8JWH3RTcffnhZ/1048bIqegg1p0A29puiJbGmrga7LKntnQ/RQGZ+RF2HiOb0LrMLUdiEqMQDHQqHnVHBnFjoF3KvUx1MYXBRP3CNO7NuW31YwJNf+2wJlyTeHl9eMj+EEaUx9JOqMueQxd3OhaCHhOOKema3FHfVBWIvaG2NorBkClpaWhCJeLsHea+n30d/NuUpSFIeKc/zJJWK4dWFV3V5PIx/T5hl+ECgKYCSfuYQhbTgs9zcRVEXE21RXSC36q/ROL8IiivgJN4mdimlmWVaTAFZhVpKNZfxIkHoFQZXUQIMGGIfk8eMa/P1HQCOFyEKIgDNLuys1g2rGDWEsIFh7TKtempm2wF90oxFSNkQRXChIBAKgpJRiJI/PY6O7GNQ9VejnUHxFqBdt5xTXSPQ2JIZn0E6RpWxHymWFp3pOx2lNP2hxLKvKZYC7agFItv0ukU97R173fCzIPHeFhy/UADE2zMTgIxtsr5il/zgIUDi069201ZXqwB2ClCoUf0hQk2LYSfp8xOyqB8z6wMc9IcIW10AUBRwVeVAdb+s2+kaB6CfN4kE0GrZX5ZjY7ikAAAXT+r1vQRuNiyiwSakrFZFuC1dTv9wXdgqCIgaOrIkhvFC5GTwEOx9Wy3saX/YZDCEqLIHdXHJ1bfTGgvAFKHmAw1gP6c9rjeuhxrjDZWxXJTBVQ9HU2IXWpP7ZvmTkX5oMI9P+nqlZhFxXlnkPK5Zhv+vdX82JXZBoSR2RXOnAZd4QnNC3wcx4zmPd9fZV3oEZPDtTTBb8jhfS329MbpsFwDg6+bO97Vf4Ezrck4EEZD8+kNCV8O7HQCBzGAcLOy/dw6MvUP2vkAZwouzpYoTbMu86nvV4QYNcouzHwKvC6pXmSGYvLbdmERTXgKuuPf+G5sVRdWtY+0xQJZs/XJGWmlj/3sch2z7Wv16F7BrKxC1+2f+YFhjq+4L/gLTugwAWTOAAZ4JEjjBo74oAtX9oBZXdT3GqSjox8V6bCzHh5PyEGZ5JDjIOw5sGqcwknhCSFRNt4XO6gNAQIxkXEVypPJtS9VjW3tG4Hm174ktfIlg/+48PtYkF7Jo/z2KujWxIb4D3zSnupyoI6/xGeSK/etVN0tGOU7wAbyIhBrD102WkISWfee1H2MKZ5uI6Ly8GhZlL7xiwFv7K/WrKJQrdLHuNfZ0Ig+ucSdGliYwstTtCtJZQiQAmbatn3T7nD/tP9xVvNrsyofB+BeCieEDST4XiCxZmJwCzFpmCDUvkcZJgm71yyeY/P5KHep1E8s1Uzy9zYao4oojuhAOl+k+zh50eayO7ae2aGZM+0kQUywF2ryjS+PxEoo5/e9+gJuMJkq6G4cts5dD4DqFk6PMKYi58hJQSS80JXeZLhJ7hZxxQ7CeQ56COJ8YeXnuP9OfOYcI9QscwhLM5BydWRFFToYffvAdbd5xbB3jz9caa/NhNlIFm2HJnCI4iyi2PqBahLEGNZ2E5Acmm4Aysr5lq++xjkoa6hyZLq2C1ip2fYKG6F4YQPMSqAB6h0R9joCVLKKxR+CQvPtXScvsG+vH2Y/X9wPFfhbIisjv9w+DYcDOhh+TbOlHxYzAAhzW4TRcFqHmKZq7IBw5OZSZ4ZyPRS0XnvFBPcSVk6Tdz/cHwXhtvBeCONe+Nny5O8VXAASLbJEF9gqndTjHDcfw082JpyV/LwSxotjcILqMVbR5WYlLCnM/YOVCsI7Zwzqc/uslhK3CU+J9EHgRQVHLKoSt5T5BjzdLHS12VxenIFb1fWd1g3C2lZVscXezieJc1uI8xEtOi3VXLL75rJMr4kQWsdWZVdhKrgRGudb1EsY+QUOJX0VIKgaQsVx7XjvTY1e0LmZYy2FpNj/MQstg5AUTwwcKL2HogLPml3WIMNt3x+v5fARx3vBifrOOrfU7w2qlcuIQVZwggBIJoHUPqG03qC1Pq+L+vOh3IoiBLPtaEjxdWGyk95fGc1A4DQlV99POJRidyzjB98Pe5LyOV2eC2GHdp7YoqGEbin3Vtvi7eWPNSOYhirnelUAonH97Oc7TztwlconQaCplC9dmTCrLazzZhGsqjmJfNQ4JpzCgMD/3CIEXTeFlu9Y4haKnCHaUGccznU671L9vyV086UwQdyaKcwhjZ7QPLzcH6zHNZuV1u8Xof/N2WcmCVRibHzmEXbGdiKv5tW0LEfgjuioYiWTy/TAYByvssfHHwjqZDMhMWsmCazJdegJX1vrWSXe5cE5UESxieG8ss16pUJ0Y2+6cmJX+nxMEoC7tdxvJHXx+rzFu/IqSGY8sZWIIp8s4SdAnbVkm1QH6JDrrMTHKsuKxX6yxcfcJ4xjuz5ufMV7reeo8bkDm2AH24wcAu7aCE0TwhelQX121EFv7MY+XCq68BCiu1t9g5LMNeSzjBF/nobscpLQEOhTelenOKZZs4swp4qy/P0soOarbjJKSnmhL1UPkM7/zbGLbcMHIFKQFsTWqhDNUnVUQO9+UpCn2VUPk69Ga7Nq+yQuvSXJWnOP1Wt/Aox2vhxhb5sxOlgP5+wvnfAbOY3JaTOawbnv289mzfV50WZpd0TX2w4PzwSJiVZEHvx9Dq6nEbIGMDEwMHwh4EVy4AtTUiT9p33565MOOVn2mvEUcqx9vMsUXAIjDKnWx0Jh53WqdaW/MeOF6V6WTcyAjAKziyXpRTsei3C/pNI0+jKxRXYQSCXDRGLhin7fY64JQN4SOMaOaeBGccdNvj9lDTFnFnRHizdKWtr3WFmnCOCZCRQjoUQLO5wPXYyAULn0TFfjMvhQz4cRgsZY497XVWmx1beA5ATwvQA6XAc3fd/rg4Ww3pcWhaEl79IY0Eu9HsKgnECp1t2kVGtYwZE079KggTkEMAIcO0euqCuJqO2JKu7470iHG/EJB9nNMEMENH5F1DJy/EG1+QNFigBYDT/ZoGbaU0gLMCBr+lIg2IRO9QJCdbiOS2U5Hoh71cQkBUUORrNiElREiLa4S2hX9e2uSRzQlZI2BLfKE3qiD7O8DIS6CCivNYwHox4qr36pvX6gUkPyQhQAa2xPY3qaHkzLCdZX4VdNPeVdMhqJxGFCYhManz9SqId771nrs2nYDrXvswlgQwfU83LYKpxEKuUJUBXfi6yY9+1cmTrXgyvKY7gjl/hqELW+YAmLEPK8NrDGnw1KZd3gwXkSM0wWeSimEVftbq6QkQKEkgunjAF6EShm3FevxMPByncjlImHFKz13Puu5cFzLWpN12Jw+zvn4I9fFJVQHU3C+b9xv8z6w7yLYuf7BIqoZDC+YGD4AdJRWoENoRqS6P4JJAu3eaLcKyyK4Q0fie9qj/x8uhCzolzk1LQIqD58A+nollH98CXFEL7QcPQoaqSjVwnpoLV70DCGuFlcBWtJ7Brs1Bm7QD0VLQlM7bDcpLzwtaF5xXZ2h1WyW8CzWYaRDdcUTmfEaH1XZa2s1FRSjQ21HSosDYT+kwkG6IGtvss28tn0H9EQSWz4DN3S8XjxgG7B1E7Rvt9sEMUQB/LE/RVuqHtFULYRkZj+rFiEXEMMIicUQVQ0+IWQTCEm1A3G10TZxyrA6+ngN1aEC7OloAwD0CIb1WeoN2zLjtfQj8rJ589FIRVOiFTUxOT0ZSgGgQNE4JFS9/ZDUgojc5HmzN7LAiTyZ3/sUJFAtyvbjB4AbOAq1Wi2+alIBcFA0DoFkC3ZF9dns5QEFh0YSnrPwrXClffF102ZLemS9/ZTGAW1JNCf1DGYhESj16VnEhhQncGgkjGiqGZ81+LCnQ+9E4pOY2FfGF23tWFkrWyIHZB7SjG3OxHkNIqpwCImEoUUi+kcSCHqkBS8QVSQ0Hgu3SuhIOCzEjmyJQ4tkXDRwF8rDvaCSim3t32PV7iCSmr4dx1ep6OnvDyTa0YAm7Gnajbd3BvFJjS7aS8MKjizlUOJXUR+XsL5Jwuo6fdxFMnBYcXaXIqtQKw8oOCUS1EN9OayGMYriw90tWFcvpvcDcO2wYtTHJazcrTfiT0888hJt29uNbz4UyUCpn3BSdRLDi4Ft7Qm8t8uHqGKMOYmIBPQNKziuUgVvPYd5EU3KHmxqTmJ7m4zaDiCqAJP6tGBoQU8kedL33/YgWlPA2B5JDC8uhhGFtiqUQnUwCVmQ04lVOLSl4maaZCtBMRNaLbO/9PMgImumq4ru/y7i4/r8rkEFogq/UACKbs4Uel2/NAWh8gqMLOlAQuXhEzRsanX/QIxj6BM0NMYFrG+uxUjw+kOM1QKsphM8AXpZIGI+YLmwjseI0W48lIi55xjwiezzHRS5c7dABuNggonhA8COtga0dkTQp6AOPUPlCFYMdCWDaODbsGpXgSuEUUrTLyqjyzdj8JBjIIoCuH5H4M0tjQAEHF9Vhz5l/c361qdvjVSAVMgaB9q8CjRgjLmMt4g+jeegqB2utJ82nIkMrEkOjOWGBVhVMuLXmrDB+B7JEuZHUUDRGNAaBcVSgCiC6+uRypc3/FMdr1GDRRYxmx6fT4TCaYim6tGhtFl88lpRKEcRDpVlRCNUaJTQLYua3q9PCsEXCiKpdqAtVY9wUQ9Ih4rgDfFu2aamxK50OCwBvvSrbV3MCqbYqg62gOcEhMRi+DndCp9Qo0hqHYimUqiLy2YqV6tYHVgYR4fShu3tcnpZOzRSUVza174PVQUyAFEqQ1NiF1JaAm0pPd3zrqiI1lQmC5ghClMaB4nXUzWHJZjJBJz1jLoAcNmghB6uzxqyL1iErW0b8db2ED5vzAhqidfFnl8EUpqIoEjwC80Q0j6pgD0JQ7jHQNTGNuGD3UG8szFzA1fSIspIbQ0AkaIkwiElnZTAhyK5CTUxGV83C/iiTm/z2GoVSbUDr37nw1ebCiztZdpJJuznvexTEY4kUdEjDokXAPhQ4lfTIklPOJFIZyF7cZMfn39WCi+sYw2NrcPWNiDq34IegR7mvjW2MaoAp/TUl31VR9gVDeCTGgkbvy5GpCiB0rDuVvN5g4zVdRw2fl2MeDpqQqQoge8iSYhi5z6nR/aJY3ylH3LBCJe1bkPT9/hHrR/LP9JTiJeUdeD8/jvwyndhNLTZbxei4+Ggsd6PhvqAraxn73aU+oAiuQ5fNOjCfnc6RXM4kkSkMIljq4GRpfWO/ZbEhhYNH+2R8XUzh8Z6Pzpiev+VQxqxrTWBlbVB/PM7P+IdApqTHBStGcOK4yiQCjGoEAiJ1RA2f6y71gw6Gm2pLTZLPaBnYAyKKbQm9fTWTkSeEBKLEWiqB+q/BxQFpwwbj5e27EFSyx2XWORJzzK6fastsY8tmU36e8GRfkyoroBGKgLt7TijNIitah3er8m4Tgwr7sDQQAUo2oBlcQ4NcQFqVSX4Ve8Avar0CDzG9U9RQVt2Qqtp0aMKRfzgRh/l/XZN8oMLlWaus/F2vV4WMcwrKVDrblBjjdu9pqg8awQgBuNghonhA0xrsg5NpAE8IAi8HiIHgJ4orMBwTTWxWnT2dGwBepZBUGsxoJDLO+SRIvAQBx4DslgKNVIBThchXXl9ZU1trDeWFsmGFTiLCDZuApxPTt8EFHv2MuMmEYuDYimojXGIZQk9EUggPVFKEKHx9put1fqpUFQ3eqZRkRG1XcH6qj2hRqFV97f9UKiwElqk3NZ/h9qK2mg7fJ284twVk7Er1o7qYCMEjkdc1S2xusU1+8oJjceGFvvNuj4eQ318k2mttVqR2xUBHQpvPkwpml2cGueYzAOyJbW2FaOezGcEsWE53tzqx2bo4sw8X5taoWh+T6uvERBlUxuHTW0yBoQl12vlqKJbC4EkFm8NQ1F4yD7VJVRFSYOS4uEPZI5rUgOW13D4vKkADXH7b0jmgUVbBTiDsoiiZgpi2afayiVJQzCkmONaWy8CEG1ipyHOIaUBn35RbGvLOVZAF8VRBXj6Gx+KZB/6FEThF9zZtN79PoS2VBQ1Mcm2DaKooaFNxDttwO6aIFqb7RbOZEJAW6uM4hKPOLU++/n/1W4JT/CtSGqtrrcAb3+YebgRJQ2xqIT/XFbm2j9e2+kPqAiG9N9NLJ35bXdNEH+uCeKDAQK+3+F+CBYlDZ80cJB51XE+CJB4ww1DLwkEFYRE4KlvAMC+/RJP+GiPhI/2ZNrpHarDpPLeSD3/V0iKgn5DjkaPQDpzZ/rhy3gzoz+Mxs22DD/viFyOQFM96IvPoe3Q5zEIpWU4vkoyXX6ciWOMv3FVBeIAtbTq17ZkShepqczTJqU03c0q9iF8Rw3Xi/+6CuKIXug37jSE+9SZ21jqPxT00duI/XktTpl1HZqEdHKVPY2AIOiWflEGEjHQjhooG+qAlArp2IF6NkHAnvrbuF77fCAAvFZoWo8p2gA+iyWZog26i43VRS+deIdTVJCqQIxUuHy6xfi+Rc5RRCHj3rYfULT91xbjXx8mhg8A9QkJIRmmVQ+wixMASKi8KTSsNwXjhvhZg10EHl/VjohcAo32zUfMCOdjpO3tMlZhnAekqkBTeuKYYRkxJq0ZNwqJh1ARBAqC4PyFIOs4STXHaghRlVI2UWz7C9V0U9B9CZHV5y8bCTWKDmqFBhUtqd1QNcV8iElpnKU9zuabqGhc2oLI29wPFI3D9nafmUXMWm4cf+O4+wQNCZXH7piIgMXqZ5xLhuXYGIuTlOZt4QUyVq2wlPme1PSJQYZ1OJsgfr9WsrWZdmU3+3I+1Bn9GfU3tXGu9Yx4r1ZrKgBTEBtWT0XhTIuwc2wNFrdTQ4j+czcHJcWjtUWGlC5LpfswhJ0hZEVRQziSMkVdR4LHt1nmjrW2yGhrzfymnSLRKo5FScPXX+jW40hhAtsjKVNgGn//sd3+NBKLimhrlSFKGlpbfGht8f6ti5IuxBWFRyCgIFKU3UffGOPKTQE01AU8BbwVY2zZBLCVSFECwVAKrS2y6wHGSwhb+aiOy+m3W9EjDpmHaQm2jkGUNKz5LmCeH8aYoxUpTCoiaC0JxP+yBkLFevgH6Q+xhjD1VZUDvXsBvIgywP2Ga89mc56ASUM9qmsUUM0eUEe6riWFO8UVcH4RBWOHAKH80gcrO9sgpD43v4v92qG9vRDFgGl9VS1zQpJzX0TRuEF6nwCopg6oqQOlVFBMQWpTEyilQawI6q5MsmUcznkciQQQ3Qny7wECEd0qnIpnXLCs+0XNWLO9oLpGffJzcW16oBaDR/QHmITJYOwnmBg+gFgFgtX/EsiIHsPylPFhzKzvFBdGyKpsls9sVt+8rMH5+OZ2VifpsTyeyFxMrZYSy82EryoEV1oMVFVC8wXcbXiQa5sEXrT57foFfd/6hE6iETj7gJDzocE5O904xoYgdtJpkgZjfXPCUuYcsi6zCmIvrOedIXS9xCqQEZaGddda1yqYO0O3OGf6D4m66He24Rczgtg819OWX6tQtVqIRZHgD+hWQquF29qu1+9GF0t629lEMWARgA6x5xTpzvqA3d0ilziWfaqnwHT25xSVZttS9nU7bbcTAWxd3/ierT+naI07tjFX20qK1z8ACgPeSTH8YuatQptD41vHZHUP6VeqoFgmjK9MgtavB6BH41F3R6HsbDOj8FBKgzSoDWJLG+BPP2h4PKAbGHMElA++gVrfgfj2DiRj+mA1lYOaflOnpf+WbfoQvlGVoJQKLiBb2hHsk53Tbau7Y2aK9+hi3edXVTkoSXu7gTAHpFSk/vG1PmchKAEp1YxmY/zlJB7K7hjEhiZwJRF9W5zhCK3RYtrTlmbT/cyS1jvb2z44QoKmobpG93U+1vWJ1AzGgYKJ4QOAZLEAGhd6Q9AAGSuxMfPZKor1um5hnA2nKNznqBAHEFtosp69wBX1hJdczCVKc4ri9KvPgKjfEOS0y0VXXUWMtgzrcK4Z5laMeqLrgYdc37OJVb2OtyDOrGtv38AqdA2Ra2BM4nKKXmfdzPKMuE1qGVFrHbfE6+UZUZwZl60PEfAjI3ZSWsYVAsi4M3iJK6fodfpwJrV0HatwsrguOEWxJGmmAA34DOu/fT2zHZFclmXnGL3EsSRpeQlWL6HeGaLHdjppbZGhpLz3pxfWetmuQcZ5EIuKrnW8xm/sd0XJPPQ4RbC1bWO57FNN33G9bUu8YEufFw1MolzqhcQ//+oOM+kIS6nVtIA/xBHC0Rpm0ejc8YMUhNwPs9GdCvhwIziJhzi80t5eFxBlgpLkwIsETdH/qo1xUEqDUJJxZbBupzXykLqlAYLfp7uo5YrNbUSCMay/ebokGKJYb8MjFKPxncE4iGFi+ABiFQNeohiAKW4MsgnjrpCPIO7M6rnf6ezGIPn12c17GY7HELhe26Vn9/LvlQgG7JZmpxC2Rl4w/mZzl3DifFvgLPNa10sQWzHu4U53B6srhPFX5t3+xNmsxNbxeAliQP8/JJJNoOri1FsUh2VdEJti3yJanT65htA2sPart53ZBgNdLAmmmPISxaKkId6h1/EHFJvPqhPZp0KSBKQsVmzAbQHORi7rbmuLnNVnOhu6tZlyWnE7Ero1tsORrjjbOA3h7twHXpEkOhK8OcktlwC2EouKiBQmXcczWx9WsglhmQfKUQZt5d9yNwDo8xNiKfCFLXpWQwDOGPBOSy7nF83Y4oZABQBBJKhKRrS21UvwbW2Hb2DEMmhHfHnYhauB0YYgEFTV/pvXFA5ag/7kKJSkCy0C3yaKJR6pLS3g/CKEw/rZN94rNKM16o9TwHrFws+nrvPBYi9J+QRA3n+iOvUvZChi/PAwMXwAENJxOK2iBnCLYiC7tRiwC2NnlqUfjc78hXMkEvGC4kreF86uiFm3q0RBpy4k2b53htMX2IlzmbOec7kRs9a6zMvlxuky4aybzdpsLMuslym3+uM6rcSGsPUSxAZeAtu6rrH9Vutf0jFW0eE2YW3b6m5h4BTGRn/m/rT4HhvtA5nX9s4+srVjkMvlwsDpPyxKboFp4PK1ztOCa46nk0tDyrKN2do2tiHVyf6w9uXlfuElgF0WdknztARn+tCPl1/kIIpaVhGcsTAToClQ1m1zWYWdQlFLv46gWApcCTolWzIjXiBoDtEqSoRoswifkcnSQxTmmxzJah0GdPcJuVgAX+jLur5VZGttyWxxgtIdpEW6EdJS7Lo04ATBbiX26oPBOEhhYvgA4Aznk0sU6/+7/U+dFmMrXq4R+foK2wRf7svl/ifHRIyuTMozoj+Y1uC9tPh2FaerhIHx3eoW4fQddrpGALDV1cu9xWtngtjA6jphxWnxNf4GjdDKFjeHbG4TXuNxCmLZImydD33ZRLF1fLa3JxbBal3faXUG3MLYqGcVqc4JeYC3D2q2cet1NJs7h1P4WYWkKGoIBPXBRAqTCOW48so8EA8pUFK8S4xmw+hb9qk5LaodHuPsDD0yRAoBn7eAN/Z3OKQgmdDFnnWSG+BtBQ+GFIiihpCYXQAbyDyQ4jPtdOaG4YWXBVaoCOmhxyqLjMbsD/BWS276B+Fsw9Ze2jq8V6T9fg1x67QOWwWxEBH1yXFwC3ynOBYrghCNiYP5JkNyWXrdFm1rPZvfcDZXCQbjIIaJ4QOEU/AYKBYfT2O55+SfTiZbHczktBZko75W9xcu67fX/TpdJQRnKty9abMTdxLDPxwwjmVuQQzAc4JdNsELZM6ZbILYe1ze7hIATGHm5dfu9hW24wy5ZhXExj5IaWTGL87m45vUMuulkk6xnKlvFVXO342XFdcUxkom6gKQEVNWUQzowjgYUkwXCev+cyJaXCusZBPHokgIhlKmL3IudGEp5C2GjQgSTmHoHHcu14xsIllROH2/pcftdGcwKPUDqaJEeh2PsFywuzYY+7jUb4zVLYC9yBbhwhTKxnq5Utanl3ESD6FnxDKBzlI/y+t9iqVMizJgd5VwlvG5/IodT7umEE6Pi1KaZ9ucxEOsCIIv0ec8mOI8i6uEOLBUz0Sa7S2dTbx6uELkgBME2zo267DTVYJNoGMcxDAxfADwce4buGEFy2YtNuo4b2bGtbMzYbfP1tFOUv3a2It0y5Ale8xNB7R5O7hYHHz5oT+IlbezNq2xhr32ZTa/4VwRIqyC2AuncM6U29s1lnc2KdM9sc4tiJ3tO99W5AqVBnjHIDbKzHKLmwVgD9tmjNu+H9x+y85yiXf3bWC1MBsYEdeyTXhzRqooSk/+zyb8AEBS3C4XQHZxLPtUFAayu0fY2uZ1YakoXNYoFlZEUTNFdrb2/WJ6zHlahp31ZN57YpuVIhlodkZ98EgEIvtUUwh3JoKtLkISz0HJIoKtdZ3kdEcoKTQtm66RpsUwl3Z10GKKPnktljJdFgysrhKCSBCsyx2WVuNsIfO7CM4Q2R4i3mod1jdUABfUZ7xykmyGdIPEA7FURgj3CoM7tA9QVqmv57ymW5NwOC26vnQ4NsGSSVTMiF8OsLtTKAoQi3u3JYpAjrl7+aAJPFRx/7kHap1E4WF0L5gYPkAYAshpFQT0m3fAcYG3WpCN+LP6evryTS0ceOxAqb931j5zuUUYk+q8RKGSTt/MC2Kn7gpcuEJPxNG0K/frsPQyLhQEgn4gqYDEVnCtUVMQcxIPvjSiC2W/D6iq1C/CvNvaabp0eBhCra4STuuwsZ6ReETPOucetyGEO8NwlfASwdboDl7+wzbhmsM6bP3fq40OxTinvN0mnA9chl9xSzLTdnlAcfgxA9GUgKK0WLSK8/aUgJSmp0N2WnetgjhkcTUIiZnxOV0EUhrMzHjO0Gju9vXvUQVoSnIolu37JKkBRY4yvV0OkgI4w7YBsEWqEEUNRTIQyZJN1hWr2REiLVfYsnBIMa2gnbULAJUigLI4GuuzrGRBlLSsbbvqpkPMBUOKGf2h83U08wHEifW8LPUDUYXzFMCRtNXYOIZVQaA1CU83iUpLRMXaDv1YN8Rhpry2hmKLOnzEnYLYy29YKPHrLhL9KsD1P9QUhZwRNz0R02P3xuJAJASuMAJEQhAUFcKQdiRXfIuOzVHTdcGKIBJCRQpCFx+htykIQN9+mVi9La2gukZwVT3062E6eoPQ2AJa8S3Uxrht3K7JdJKgXyv79wLKSzJCNZ4Ebd4OZWMD+EIfhKHV4Ab0B1fSFxRvgZlmmRcByQ+uvAKuFM1GW4KYSc6UxnrPsE7K5hMdZvploakG3NZNoIR+rLnyEnD9hkMJRaC1RgH8EQzGwQgTwwcA0TKBzmoVTGg8yv0plPqrzUxIBnqa3hhqOwTTCijyhOpgEnVxCR0Kj+/aVPDcLhT7qm0XJ+cFjNcISLVnyiz98P4CKFrSJQhdKZCtGDeOUCkQLAKnKqB4O9BUn9+ruIK0r5ssgvw+cI0tQABApEC/OURCQLhYjyaRaAfPi+Y4DXErCwEg1mzvI1gEjVQktQ7X/uQ5AQEhApGTTTcHhZI5RW/W+M1GCmFe/yuk20uqSZeF2CmIvSZSKg7B62UdBoDeaRXpdNNoTiRRH5eyhmSLyBoGRGSEpbJ0pr4ktrXVm4lc+oSTGFPSy6wfoyg2tDQimhIQkTUMLy5GUMmcC4os6xn3Ys34vCGIHeldbVhqR5cpGFmaQEAMI6l1QORkV3Yur32tkZrOLpZJyGEVxSERGF+hoSXJ4aM6XRzJPGeK31IfMKQ4gZ6hzH4zrPdfNcl4a7vk6X/sGfmAdwpqt7VZ5vWYtqNKNUsd1bFe5nuxx2Q164NJTYd9MmVlgNAnBLQVdWBTK4fde7Kr3WxC1YnMA1VlCZzRS0FAJGxrE/FRnd52Z6mc/WL2Nx/O/WL16R1ekcLxlSlUBZO29Z/8JozmpD4xTpb1SaIDIirG9hBQzKdns6kKmrhW3Pdxxk3m3H4K+kcS+LwhiJW7M29G+hQQjq9MYUiRBCQV8GEZFFf0WLzQxSWCoi6Cy8LgCsNA337gyg+1vQmjtt2AkgTn8wF9q4HSMv06J4fMOrIoQmv7BBRLQUqppiuDEflBCHC6EBx4TGbHpOJ6euZoTH/Y98tAqARcRE9fTMo604dZi6XHknaB4NInkpB2oeDSJnqux0DAX6C3W7MVACCO7AnukF7gKgZCC4TBaQTs+FK/pkp+cJEKKAKPqNIELdFou84Z1xY1kUlUBMDxoJz53regJ2QAO6Pb0JwU0bfAh+IR44Gar4FQCVJFPbArthPbd8cQbdu3DHQMxg8JE8MHgGKfD5LHDbdAKkChXAGq2wy/vxAIZ5JoRJUmKJSEj1fhk3XrXonPh5BUjYgcx852PRWmyLtNWG7BYRGoqbhuyU3DaQpEXwE0PmNF9hSBvAjwIjjDkmCkYU7FM1norELYkXCD8/mAYr+3WC4p9LYqG6k/edEyTk7fvnS/FG0wrRtGQmN/sAg8BCS0KDRSIfKyLoSJBxLtgK8ACtI3F4s7hGuT84jZbFid9bZ4pKD7DBvRPrJZjQGg2BdJf2sFAIhaRhwbYdjE9I2n3J9CSKrybEfkWhEU282HJEMciLwGReNQ7k8hIJZBjLaC2nZDrh6OskATygP6sRhZUgH6dIV+bKp6INjnSPQMNSGlpdA7pCAoFoJ2rNHTvkYKIAAoKCzCwOrhKPHtwFdNhF1pC+PI0g4cEqmAr60FiLanjw0BUDJWJ+Ntg/WVraYAvgJM6ZfC0p1BXUSmT+2kpgvdUeUJDCosSZdFUduhC+FSH1AdUjCoMIkSX0/I1lfMPABBhFRah2+aCXvilsx3cuY3aYjWsAz08HsdL3dZkQwMKVIwvNjuF2CmWDfb5nL+r2gcmpMigqKE2g4yXVn6hRWU+lV0KDwqAxI2B+P4rslb8Zb6dUt8Zy4YxphHl/vgE0IYWRrFkOIOfF5KWF2X3d88JALFMtlSdmdzZ0hq6eMNYGw54ZiKKPoU9Aff3gRoekr3en8KMg/0KdAt+ZUB4MRqFaVaGPTpR9Bq9DTElFJRNH40JvYJY+lOCYcVE46tDCCp6m8z+hSIiCocDg3r/VQHe0Fq3AWq3aiHElMUUCKZue5YE2pkgQuVAqFSUGi3LoANV4K0RRUAEAnBf8EYW4Y1wJKWOBwC13+0vWFeBFfSFwhXAD0awBWlU1+nfw/cgFEQRAGC81rodc30+9wxg/0yuBFD3HVjzUB5b3Dhisy2aF1zbcv2dmtb+/foW9ATsOxSReCBXsP3u3ubkivO4d6055EIidF9YWL4AFAiVSAiZ0mbHNcttqQm9Fd0AMBzEDgJfqEAvTyymIb5IvQq0IVckAvl59ubtnyYQli1C2QeAK8pgOSHJloEdloEe6IpukUiFQca6vUyr5uDogI+6JYQIZjp2+8D55y4YmSA0jzSPCfawRvWG+trPwBcoDBTT1UgCwHdemzFEO6JdvCBzI1E4OxpcL3EcS7Lu4FPCELgk+AheLqhGD6zhrsGzwkQOAk9AhmLn9G3zVpDKjTShbnIyWYbVmRBRs8QYBVtMh9ASCyGqGqg778GGftu4yqUhcI4pedwc3+Rcbx21oC27kRZv14oLzsE1Pw9tH++CiRT4MpLgOIyXRCkH4ZkIYAjy4DR5VJ6myP6w0G+/uZA5jhrCiqDRZh6aIdt+zJRTvTzMNiRws/6C2hPtcBvHmMO+knmaNc4f1VgYh/72wKvm3tQ1NCa1PvzyhrotY7hv29Yoa0PQoB7noDTRcpwYynyKSgyfg5pK7+P19AB/QHn0DDh0LDq6WMdFAk+QcPgojjygef0tzM+IYTDS0LoH27CsGK3iJd4QkDUEBJVBEUNsqCff9ZzXG8vcz5HlSY0JxRzO42Mj1ZETsaMoQrCUhl4TtDP0W/SIjgtVs35BEoSoyt96FPQlm5TRqlQjhOq/BhevAMpTb+mCXz6dyz5gep++vFPxcFZ0wg7M6nlgAvp6bNt1yFeBARRt/g6H+aAzDU8F5I/I4SdffYfbffjzROuqCdQ1NN23SDo145k0A+NJICiUFPu60uuORHWiDnm8B3CeHPrLgA8fLyGbe0JAN/bliuanHMuBYNxMMDE8AGAdnwOCqcFj/Wp3zrBoDzt+6sp4DUgCB9cN3cAukFTQRgF6aT0eyE6LBds6mjJlPMiOF4Eb4rfPNpWFaCl2V7msJJ0Smehd1JxkCF8nQJZSeq7yXoTcrhPWC3hAAA1AV7ym24OrhuBQxw76+RKYiJzgU7rGPj4EGQ4+vIyzgmiy5XFGgYvIEY8VtLFMNdSC3K6kwBASzOoYYX+3UMU0NadoE1bcx4batyGAtXy0GJMpDSORUFJpnIuq7BBRysKeFG3xhl9WI+dqgBoBgkiCrVCFHql006pnn7upVIVSt2H1Y4gIq62IyLr55rzgcTrO5B5MMlXFANuYVwVTHoKbUXjUCQrKJLt2+Ql1AGgUA6Zadq98HolDujn0MjSTD3joUzgJMh8QH8DZRxry9/Mw3XcLAuGSlEeTD/FG8e5o802jqL2lP5wWrcaSCrQojE9xq1X9IatOxGJ9EBh0QD7eZSKoxTFMK9TKQUUb8y67d47pIvXz67U39/9/4DkSlJknRfhlTXTC+ty64RfBuNghb0nOFBYM/tYvxuoe3mhVZX8P9Z+rB8rzmW5PkabuSwtTotvLsuJ1+tAD+uLXjeZEV+aAkrarX6ALqTcQjgzbtP3N23Vsn4MDGHsVSfXR+CkrB+DTgWz5fg4x2WFh2B+bGVe9XOJW+vDi83lJeVeDngfy65YhAG3kM72G3C8yTA/2dqz/t+F3xUPPTuhxNv9c72soNZ1rPte4EVbtBeB482PgRGCzxmf2llmzDcwPgY+XvP8OMfq2j7HuL3K9TFnznvnRKp9wfZ7FER9/kAwi/sUoPuvdDFxj020702km1ztWq+fBvtL0OYT+tF6Ld8fXXqcK6bbl+McBrzjqTvPS+dyZ51/VebMmYMRI0YgEokgEolg3Lhx+NvfMlkOOY7z/MyePduss3nzZkyZMgXl5eWIRCK44IILsHv3bls/GzZswOTJk1FWVoZIJILx48dj+fLlB2w7uytMDB8IVA9rMJAWiEqmrCvCNt+LonHhTsU9BaOtrXwv6rn69rIKe93MrA8G1jpJY58kcwth53gsvtCdiWDzf2RPNGIVPLmErVPgGvWdbTiXC1zarSDXw4ZlrLkEu23caWFmm2CYSxDkelXs9RYD8D5P9qfoSOM6hpa+KRl1L99XUaIqEHkZMh/wfJjw+j8fUbyvwjiXOBazCI5c50g2sglihZJQuuhjmjdG+C4r+SZpyFcUetXrxEUiK9kewvYGr/M1m4tEntd7z3PU4xrnKYK9rlVdEMTG+Wd9MLOev8I+CmJV5Pf7pyv06tULs2bNwtq1a7F27VqcfPLJmDx5Mr766isAQE1Nje0zd+5ccByH8847DwAQjUZx+umng+M4LFu2DCtXrkQymcSkSZOgaZmHiIkTJ0JRFCxbtgzr1q3DEUccgbPOOgu1tbX7tP8YuWFuEgcKpwh24nVh3F8WB9ViOc31mtq44PJ59msVbbmswtnKnUI4H6yiy9iGZEz/LojuaU7ZbiCCCMO/Npsg1uAdUcPLSuYUxE5L4j6R3s88L8L6ZtLZrjV1NGLN+uRCL3JN0HEuc7621pTOfRoV1Tv1qvPcy+Ze4cSrPBUH4M/4BXv9VtQ8xmodBy/qkVcsOH2/vXzBXXUs55PThQJwu1EA3q4UBqkcr5itPscST1kFfDYfUedrcaf/qDmpFiogBPb/a/0s1tBs8cez4nWO7OdU8UB6bgcAp3fTPpP2Rfaki5bgXDHmvSYMe4bgtJwX1pjqnblMWKPgeCUY+ldm0qRJtv/vv/9+zJkzB6tWrcLw4cNRWVlpW/7666/jpJNOQv/+/QEAK1euxNatW/HJJ58gEtFd2+bNm4eSkhIsW7YMp556Kurr67Fp0ybMnTsXI0aMAADMmjULf/zjH/HVV1+5+mDsP5gYPhAoKsyrp1fEhaQCdLSCjKgIsocvpJUuXhxJTdjdGqw4J4fkIs8boZevMKmqpzusjWzWGqdoAuzbkrBMCpQ8llvaMSfFSH7wFmuXZ/pqIyaxw4cuH3GbT2prjdSMf3auhxRru6KUPeRbely6f2er3drvbDeXEOiKSHBYsD3Zm/O1s746K8/3rYnX/x6/g70RxcDeCWNzWScCOdsyL3LFFc8liM2QeLkmRVrL/QV5jcekK2+juoLrfN9HN490e5zgy/8BK9e25fvwtpcuEV6RcLLFnLd+z/aglI8gBtzx8a3x9f8dBLGBqqp45ZVXEI1GMW7cONfy3bt346233sKCBQvMskQiAY7j4PNl5gL5/X7wPI9//vOfOPXUU1FaWoqhQ4fi2WefxVFHHQWfz4c//elPqKiowKhRow7ItnVXmBg+kGQLPaYoQEurni+eFwEhS+SJHGQVEEB+VhMlCYhpy0e+s5mdPnleFsZsVkcv9wjr/7ncNtQsbeYj+AFA8rte++aKf5uPsPWisyyAGqmAIHfJDzBfS3VXcT3AZHOR6Aq53jJkswpbH2is5c52O+vXawzZLMgeY+MFwbT2Wy1p2URxZ2VA58IYyIhjoOsC2dl3tuVO0WOMzSmIrctEXga0TsQML4LzF+auA9iPT7Qtez1r2IxoIyCHgGBR5+0DFlG5j+4dHteOvC24qXgmFFs+hoaupIs3+spxrbY+HCtaMnPOdZJds6uCGEBeVuIU5wiDcpDQ2tpq+9/n89kEq5UvvvgC48aNQzweR0FBARYuXIhhw4a56i1YsADhcBjnnnuuWXbMMccgFArh1ltvxW9/+1sQEW699VZomoaamhoAut/x3//+d0yePBnhcBg8z6OiogJLlixBUVHR/ttohgvmM3ygsIo+q/AzfGzbonpUBsfF1/B/7ezjwukLbH01nW0iWi5y+StbhL1nBIl9tcoY4zTG4WzXa0Ii4Ol7q4stf/4+uF2cOOdsr7M6OYVsromOOcZom+Vv24dOF4j8rWeu19aq4xxytpGtrb2d/JOn5TyrS0Uq3rkQzvJQ4uUX7nXOeJ1L2c4x66THbH7Gnfkce33yIZe/uVdZvv7HnBzSxZ8zq1k2VEWPINGaTgjkFUkiLYhpZw2odlN+7VqxhoncH9chQcwdbhKwn2f5+Bdbr837cXKcQWfXOGs9z++O89P87vB7t3738iXeVxSJgyLx+/GjC/XevXujsLDQ/DzwwANZxzB48GB8+umnWLVqFa655hpMmzYN69evd9WbO3cuLrroIvj9md9CeXk5XnnlFbzxxhsoKChAYWEhWlpacNRRR0Ew0oET4dprr0WPHj3w/vvvY/Xq1Zg8eTLOOussUzAzfhiYZfhA4JOB8h769yyTj/Q877IeLzKbmAH27WLZ2SQ042+efZhjDPqBqn4AHHE2W/eAtuxM95enVbhHCVBcnXFnUNOJNZRGtxAOhTPpoJ0TW5z72bJuUu2AQpntl/mA62ahaEkolIRfyP3a1/O18976COcj1vbGVzFUksmwpSlAeyPQ7u6LH3tSZhzp/UVNO0Af6xNE8hYT5b1BhZVIapmMU374QY3bvOuLMrg+R+rf4+16DGkg93mYj2uEvwCamJnMiHh7xpIm+dGWqgcAPRRZvB2dkctSDHi7TOQqty7zEqJWS63TgmxgsyTzIgROsu13L6KpJqS0BMr8fcz+E1oUDfEmSDyh2FdhG2d9fDuKfJXwI7fIbZKTiMW/y4yH481x87ygm14kgE/vx7BUBbFyMACAPlispz72OMe0HXq4NL49Bq7nEDTwbQhJxfA7qwaL0K41A/DpMdjJB6rbbK9TWASuYnC6YQVxXkGHsgdQYLsmAOljwpv/AABSqWaopKEqeKjLv9yTfH+z1nPXOEf3c9QInoROrcNZv3diIQa842lbrcQHa0SJHTt2mD68ALJahQFAlmUMGDAAADB69GisWbMGjz76KP70pz+Zdd5//318++23ePnll13rn3766di8eTPq6+shiiKKiopQWVmJQw45BACwbNkyvPnmm2hqajLH9Mc//hF///vfsWDBAvz617/eL9vMcMPE8AGAK+0Lrrw67/q0+1v9i88ixBprMsISAHdkWjx8Z7GW9CjRY7um4kBNbUZslhTq2YpamjNloqgnwbASjen9ew3K63WcqgByEFzVUDRpRnzPzJU/VHQYpOJqYMcm0LZderuiAC4c0vsHMkK4JAKu7BAooQiiShNAuiAKSBH3vcQXBFfRE4o/iKjSBJ7zISRWgldSunC2imLnDUXy62lILQIlxcfhE0KQ+YAtnbNGKgJNumCisn5eewVC7UZgR/q4BP2gw47zrOcFt/VjvW1B1NOyBjxeMTtf+afi4DtxY6Fk1BVrmZNDmfPJXwgKNOjps9NWOX7MyVjT7J6t3LssjMqJPwNtWgftkw16W6EgUF5it7qpClBcjVS4BI2J77FlT+ZcrQom0S94iHugxgOZkkRMacGGlkYUyQr6FQ3Uk7kYZLMKG6LdkkpX374CKAKPDrUVyURGGAbECIKcHzGKojW2EzuiIhSNQ5+CRhT7KvQENqk4EG8HX1Cc1c/WSxQDQKFiuYnyIuISkFCjWQUwoAsOnxAyH7riajs6FP21bS73HKebhV8ogMBJ5nmbjbZUHOvqQogpQYwu34G+4TI0JXbjm2Y/vmkOwS8AAwtbcGgkjmJfBVbXNWJjSxADCxtxTI9yyDk8/1uSUby1vcDMoJcLPQFNPWQeOLufgHCOukZKYhQEUYt6vLcziOpQIwYVJlHm7wORL0BTYhdqW7dhfVMAEk8oD0RxSDiFyqKeoN0b7Q0KIhriO7AjqqBD0QcaUzjUdciuhCYGSbNcj35xbMVWDC0+FGirBzXtyJx/igqEi/UUy9nEbCquX6csD51mEo5UHNTgeGjMFr0l0qPz+SVpeF4EJPvbqFyCmOf09PUGUaXJ5mrhE4IIicXm8pbUbiRV/fcs8YSIXGKmf29K7EJbKo4ewTxcaH4EjFBpewMRIZGwG66eeeYZjBo1CiNHjsy6XlmZHgt82bJl2LNnD84++2wAQCym34N53v4D4nneFnGCsf9hYvhAkMvPzAE1bEPy+Xf11Ub3BjdkkL6+ogKxOBLraiEPLTUtsBSNgRpawfUsB2fE8VX09KNU1wjqSIKPFJjCg5pawflkIGIR2vEk0NoOSmQs1CbWWc7WbbBc6DVRgpJwu1oktChkfyGovBJceWXmoh4sAif43NZvfwGSWofdn1fIpEc11tcCYbSm6qEkM/6GGql6trVQqW5dNNp2KmlBhKaqrklxhggGdJGjkV6nPiygrKYOSkk1RF52CRtSkqCaOnQs24bgtGO6ZBWm9hi0b7aCqygBV9wKKozoojjHDY6S0YzYz8f/NVik+3Faz0EhfUwLi/SPkkSSJ7Qm3QqmSeRQ4iNIVf3AV/XL3LxL+yKpdrgs6gmlCU0JDjHFLpqSSAEl1dmjbKjtaWGiJ75AuNAlBm2uJ0pKz5aYZQKbkj6P4mqHLTlAitf3XVwldCg8UhoQU3gExShUPoWwvwz02UpwA4YARaWucVr7s7pOBNrbQd+uywxWFOHr2Qv+0r6IcQmktMwDmtGexPsRFAuBtnoATUC4rNPX2dksyRLvzxkP2Djfm5MiYgrQkADe3hnA0T2asamlAA0JXfClNKBD4RBTeMSUOjQnAmhIAOUJAY2JzAOKwIsAD/CSAIAHzwl4a5OE5mS2lM72R+yo49Tlj/2p/sXpMuBwc2pKtKAhAQRFAXGV0JLcDZ4TkFBjqIvLiCmAxHNoTfJoSwE9ImGg31F6H2kXIqMP/fjr421OiIgqQNyx+7KJ4+akiKTaAUlN6G+vdujGB66qh307rGjpt1yte/Q5IkYYSQCkKRlB3NYEqqnLPt8i7U7Cle8B9e6V2y3Fsj/lisGII/uDktNtSyQe0BQoAm+ekzIfQECIQNY4UFsDoOrj5iFA4HhE5HLTIk9SC/jyQ811vZIZdQVV4MF1MRxazvaUrrV122234cwzz0Tv3r3R1taGl156Ce+99x6WLFli1mltbcUrr7yCBx980LONefPmYejQoSgvL8eHH36IG2+8ETfddBMGD9bfVowbNw7FxcWYNm0a7rrrLgQCATz11FPYsmULJk6cuPcby+gUJoYPFPm+8tIUUEoDxRVQbTOoYS0AILWhCc1fJZGK86gaoIE2bAAUBckPdSsCv7MN4iGNuhW4tR3q961Q63VxJ2ETuNII0BrVrZfxBJBI6qI4jZ42WcnE+DUwzhBVseWft46X57xjWWqkooWPAiVFtvLMzd75OqodILv46FBb0eF4VaklY+4sYKSiQ21FSCwG7y8Ah+zuDWGpDAolTQucRioSqj0GM88Jpom8saoSAUpC+uZjaDtqMmHDFBXxZd+h5jMRvOhH8ZOrEZmWAFecnwUk9c4X4EsC4OIJ/RWx3weoezKW+WxuCTle49mI9NAfJHjHa1deBBeusFWNKk2mNc8qANoVAZ816kHhbYKmYUuODFSCzTJYF5dQF/dow4W+0jfNdQDsAfytiDwhLAEBytgTc1lDm5MiUhqHurgKwLAUS+mxcGhOimhOJgEk0TvUjIqSQtD778N31HBHx7L9t2G4nwCgzz+211VVcMkYKNqAAAAzabTxYGJgxMeONQPRBvhDpfAHe2SWp7PidYZx/mbzQzd+n71DAJDAujof2lLAx/WSebxlXrfo7owK2NRqj/+7I8phxxaPmMAWokrXQmjJ6XPkr1tVALtsy5yW5cz/AfgF3ZK7anfIssw+NmPy1rfNWwF4Z+wTef38zYSu48yU6YYodo7jnH7tphuJ1LgL+G4TqKYOFEuBUhq42mZwvRqB4rSlsTCinzeS3+6KFovb5ldwiRiofktaWNdkfvtWP2rL9YBSqn4NV5Ju/2WvydEAkGjXHV1sk++cEiBzraC4fm8RJD/CoVJovowlGKkOM709bf8EpRUDAakcVL8NtG2rXqdvPyAVR7HYA8W8gpbtn+Bfmd27d+OSSy5BTU0NCgsLMWLECCxZsgSnnXaaWeell14CEeHCCy/0bOPbb7/Fb37zGzQ2NqJfv364/fbbcdNNN5nLy8rKsGTJEtx+++04+eSTkUqlMHz4cLz++us5Lc2MfYcjooPTkeffgNbWVt1Jvv5VRCK5byQG1LAN8f99A7vW8uBF+6ERJf3/osokpJ7Z2zNfK1oQKkIQKoLgArLHGmlkCVxVuZ4VKl8KSpAqqTZdD/bGX3Z/RUjgOUG3Dqudv05K8qS7Y+TAOoaStiRa7vgL9nznhyC6fzLGsQoVKSjoyUGscO9DcpiZKKVB7BUGX5WfeOYKw7orTD74grrgzSPUlSLw2Bndhu3tXY9iYrAvYZM68yX0arvcn4JfCHR6viXUGJoSuuDNl3FlPUFr3wWpKtQvdpjlzuMnVATBVaSPh1c4OlF0lXOhoH4MrckmvCawpiPLcEU9O52QlkQKHWrmwS4XMUUX1ptb/fii0b5PsllBf2hyuVT4sxxe2WMdox2JB8oDCgJi5xtkuEl0KBz2dOidJbOsFleB3iHC2aU+UO0mUF0jtI32SU3GtZfzi+CrCvXfrHV5tgRMZpmil+cSwWm4ihJwvSu9E5cA9knH8SxRfwyck2lLIpl06l6RK4yyjlagsdXWrrGNnCBktldR0doSQ/HZf0JLS0uX3BKM++joX/8fRH9+biH5oMSjWDvr3C6Ph/HvCbMMHwi6MCnNsAyrigBV4UzhxYsEJcVBlAgdbQKERt3CxQU7f/XEh/OcUS1L+kXRuLhFOr/wcOEK80acKyJDV9jbCWiZaAqdR8fgBbnTaA7GOAJiBFD1V8SpBA9NTR8TgVzCWFM5UCwFLeY+3l4PKRRXPGfRu45TJJROW5vnQ4KQ1MPkqZ3P7I/+f/b+PFpy4z4Php8CCujtdvdd586dnbNwuFNcJJISrcVaLVlSLH9xHMk8do6OEn32a1mxHedY/hLZTrTEWhLHfj85cRxbn6VEjs1IdqKIryTL2qyFFClSw3U45Axnu3Pnrr13AwXU90ehgAJQQPeduTMcSv2cc8/tBgqFqkJ14alfPfX78Q6W+9ZFEdokLmSzzLD7Jy3FPjxQkj2587kXaGq9oeVhipV72T2N2cM3gCyfAu9GG8JSk5kuE1Z9amYQm4R1rxw8i/6Q/mlSQYClxW+IRwLDjtpg2G/H9cXEYLlHh1pBLzeyiC+gJ7+A3oIs+1FeoJL4d9FfLUN8Tt5LkuOiCSz3CdZtB1OH7gRf/j9hGvW3zV0f3HVAyh2x2qOsJKWQJKapgDhekKdyXPZDSZzNEd3HMabxIBP/zj1PrGxJyZ0KXT9MbIZWyS9nXn5AnzHGuIIwJsOXA8McsKsIZvO+R2CYPEaIJQYdE3bbh2lymNZw6wcpWyDBSJ9HCYjjggeb6EjBHj54Tc2C2TbA0puE8jBK2gshxLEQx0PzH25VlCicfAL86QxPCAl4gVZWR3wlVFLFXX8kl2akWIg2HY7yUqEazaUGfqmKdvcsAPuS7fbeLMnOkkdIyHI6ngNKbOEDF2mrqNxBTw02lBipdT/T4SjWCphY9LTW/PCzbiKjm9gAAPOEVVgS4mHP0KCjbY7y2ab6MgCs9k10mSB9jp9PQpNIamqHYTN5A9mkV0JH2PXHuLYfJYM/9BCfCCXz0pHjbyxy/NjCWdSRJsEqvKUuqGUK6ZpEXmh6CcfNtAZLIsxdX+wRid0w47cuSWnSl7vMX5VrFArRxuq8sUOzmqES4dR9toAIs4IJXrjIaJ4KPL51eY3xwseYDF8ObMYynJHOZyQmm3C6BuyyD3NI2FJjugRiGZF1OG8t1PKANeHFgW+bBhkSiYxUZuD4vU0T181upEju2s+6PrlBJg8GMUcqR9WahfvFz6H/yCqYZoOZbrLiMwIy6pqz6w0NPUtKNoipsS7lRpEzU5uPdOh7bTQd87JEhxpGclUMI+aSxOa5LZPHdMRoWJhYx4u8UCRJDpCY7CQJsO7FXy6KyQyl+ekkZNjrkSZ2o/VlQNS340btNIx8JiUDmyW3KobdS0WelTqL/EoUTD/lyksN/hC/zsCGJzc0RsflI9fdK9wcGlptlTwTv2W/MYBRHqTDk+eFPc+zBifvxzwx8c3LOyPsvTbQTpXqZRdZvugDoj0SEXYzJopjjHEFYEyGLwO454B72W8RsomIc1Iq4Q6EpthWbL1DX9oZacJzDeGBgZSpsDpkhUdWcDGShlHgc2/oiz70MgAz2pA0BMRjI5Wh77Vhz1fw9INdFAoXuI6cQ3a56w8Xa8rdV3nkN/msKB06MRDtZAWk4fIJRjdjgR6FpOf1D594wt+pEg0LGE7MDWKKl7y0xOkkLjlW/eQEJ7XVcJRJzSYm0MP6cuROy0DB9GEZw+QU4v9mCOxmMKokIytdVr8omKLgLCGFGKXPqX5ys+47YYl2rFrz4Etr0XiqPG91jPXXemI8rWus/DmTqCxrcHherkowJia+OsQ8UCgW7KG65RzZRV6fTBJhjQeMMca4UjEmw5cDQ6w7MfKmDCBSKpGdLRlqVQSkhm0TZMf1I88SWaAU3Bug6E+gf5EvzNxwx9luTWPX22Yp2AG9Fj+ZNXj7TAQCGCF/cueLcfiOv8KJh4dvRguheS5Zz4C7PohlZJ4nzBNavhEmJ9GLSGr48icGBjGxrVTF+V5OWNxLhM1Yo/PCD+cRQWE1FR100zIQh+VPJl0P3lIH5nwl+3co0zsu+GAAYucMufL5BhMZ3m+MFM2NIPoNJV0GSoTurQyK6aKHtqtvszyL6KXCsHvl9RNJflXQINgD88nQTXTU4GEeAy97tUCuRLxkmwhNbT73CNylbiYJjn1Xj4+wihD2pQxrcNgnRw2ZHozluSRYHes7XaASWIfzpBfBdcITkd76DCCq81gzPMYVjDEZvlwY1crDvBSRylqKRyH4nwPi+mIpPkfDmrrGEnphbWhlmQYIooW1QbdddUHeH0ZBLlGWaWR0scDVz0jwGAzTzogwkki67SqUXrcfePj8aFl7BMaQyYd8bjzL6qOAS0u9OfozhMNGCu9qGyXYRgltt5HjKu3SYjOkOBlyOMutX5TegmlQWMbmLFPSMgxoJjFutDzOGwOQIgUpy81umtUZqe9ca4BL7XAeGANa68KFXl7YXwmfhW4Hh/1eDJjYXRETpMVOZFGPooYNv92lwCh9QEd8gexJTpuZKFE/Vy9uBXIK5hNt/kmCbBCKiY0GvK//IJMIaye1Q0hwajI1ZFwIjzssIb0Z4ikijwQHvuwBCFmHKu0YhcjqpBFbSISHRcHeLPiY/YyhYNwdLgOIVQaxh7wAAwsQr6zBnK9g36vlIEjgnunC2lkWm+CA8P/GQx2U716IeZRILc+WbJC56XDjDn/uLNiJDXHLF++PD6QA3G8fFS9vAOTQ4Wj0yYoCBkEcel4zFrHockJumuNOB/CZ8OWaA95vAD6Dz81UCFZK0oE1el4TE7fehD03/DXsfRMASGjJfe5L8fae2s9RvHM3UKuAPX4Og8fT7tvKdy+A7JoNbmiK55Pz4uGPHRP/cyYnSRBKxXKnNUT33RBR56Ym5rE+WBo5/0uBJNHNggz/CgQBNnj2sq7r9+F4DnrBUjJNyCVUUIOHLtgqVg+oTcC+dgaDHyynJqjFH9sNsntBfLEpMDMrfit5Ic8BYPF8/oqLhMMAeyBcrBUm8leX5MRuBFQs6Sv2HNb6Zq419PlAFuFVkUV+s4h8sl+p4YMLhpSMpPPUEWSDmMCzx+Cv9cL9GBIxeUTLgbfUgVGv6De7QUOAJXKIcJx0e2JfR7I/6TxG1CaiRbBRXKs1O2lvQpXATVzMD70ZjDUJ38nhpr1oM+Aoq5hjjPF8YUyGLwNYpQpWyd8Z3vOa8LmH+p5bUPjn1wIA+PIz8L96P9wzXdgv3gXykrtCoscf+y4mraPw/tHPhkujqlXIHgzgP/wtAMDazdfB9QeYLGyH/cwp0Jt2gdx0KzZKcVJgEBP1a2+D++d/AePlb8ATvSUAYpCkVLoriu/GNomB9Y0T2FayY+E5LycMYsIpFEBLu0BWToiNR+XJ2CYoFTYAGBQNdwlegmRYRgG2KaIsGcTE+d5xnOuZeNGO62HQz8G6+yCMl74Rfa8NAyYOvfkhDP7nA1j8TuD1wTLgv+VnsNQ7gZlXvBYTzz6Kwf/4Dvone6jcOg365rvRnpvHan8dy/1oEsM0Xg32V01Md3wAx8TGxukEyadmuLEuXKqkptgRLr0WDLOUe23ApLCNOZjEiBHNUaEjsZZRADXsWDRBdZLBuJNq+1ieOSagvuuG/mFdvwMgHjBF7Z9dZmCxW8TGwETB9LG/NsDAN7DaN2NtXrN9TNoMzzRsrA6ApsNQm92Jgz99FSZfuQ73f34d7PgGCrdth/H6H8dKheNEC1jrizoNHEMJ3iAgiZR8pnsmHBxcPA++vBY9nzwUC8KLSFIq4THA6YbPlgOgxTr8CfH7M4iZDukLgNTmYVAhQN9ubEdpvoOjjV5YhywkJxCSQM+VGJZ70XOaKzHcMC3GuW+d0//2RkHN9rFnIpL3yP5lGhS2Ucq6DEDUxx5di/qE/E0n0ffaoAZDzfbQdKI2kHxzvsywmmgb5jvYeNGNmNy9C96XvgMyWwWZmRITIkBIaxbPw285sG+ag7F/F/ji+dAAAQhXl1krCUmNutbKrFqk8+RTkvQubAOZDcKhj7hyxp0OsBb4UK5OAcWJbCODz8B7DaB5Pk76mQe+3hArIr0R3b+NMcbzhDEZvgzoeS1YntzAot/s43g99L0e2m4jSGdgcn4vCnc7qNSKILe9GM0yBfOFpXHm6pthTdfwvUR0sILhY7ZkYg6Twp3T9Tfhe8vAwCvhUH0J19x8GKhtQ7NMcWQ1euGI611cXXcwfftBLGMF31suKedVp/Y89qK3DGBbaYRNcdLV1wg6yM2g77Ux8DqweBHlygxQmAiPSahls8uTaPkb2OgmiTCHx8VL3CQWPO7iVIdirW/iCeMZHP4H14Vpv7+yCtcnuPPqW1F4G7B715Mw6mIjJOMePndiAgdr63jV/ptReJsHe/E8yMF9aM/N4+/ODHCqU8HJNoHrR+1aDH6NtgEcqHLsr3rC0n04eJFVykCpBqycA19vCCIcWPYJEPj19OKB/bIIZwbZHGadrViTqNApnO8d1563jAIq1hSKEOGfY6G1FTDuYOB1wHwnU+cK6Jf9LcPBhi/IZ5tJTwBpy17B8NFmJjYGJhoOgWWY6DATTcfExoAm8mTBeeBkm+Bk20KRAgerHG/ZN4vaW+6EtXge2H8QaxUD/+MZEyfbBOcaFM7AhF2I6kADnSq1pAVSHD9Yo3jvjXcAK8fBT5wGP72SrFjsKynZwFRdT2A8BrS7QXj1NXAA5PANIkiHx4Rk6LkTIqzvdB1k3y6gJiKnobsB/swjqAF48YGb0agP8Ph6PxVCW+LVO/fggeUTIWm+ba6D+dI+UM/Hur+GI2sMveDaiY0GyNwBAKdS+VCD40UzBNN9A6RYx9+uxvX9Zcpxdd3AjLUTfCMI/SwDPbh94OQz4INsDbwM8mDc8TpQow3L4LAMDoOYKBgV2D4RcqryJProw/F6qFoM20plMN/B0YYP1yeYKXo4UKui2gf86Sksdp/BM00xZh1ZE8/ipdsPwZj5gQiqMTcdhbBnDghjoMwTwVUWtoPYFN53z4CtOuEKn86i7K/14HcZjPKQ17IV/CZcX/QBOQk2NeNvuQjUtgHlyfw8k23pTYL7QT8qTohIljnjNvEYeKEc+TwOojUSxoQ0yB6A0IsLxzzGGJcSYzJ8mTCq6yOVjGwMzsHcNoXi618rrJwKsVi1epjadyustZPafJxCAXjZa/D4xjlIQeHTjSLo9BQmCxxGBkkxiImNG66Fw9oIbKgjbXAxCBUvGjOnS43g9zZemBG6Z+J+TqGAgb8hLs8g5w1vNbVhLEmmeqwJ1x+Eu+5Ptm3Q227E9vIkTNYI0w38DtihG4BDN6DD1uF4DtA/haI5AWpwLPdPAXvmgD3C8gp3A0AJMwWgw8Q9V/sRCVF37z/b8nDKMFDYvj24l4GdFYLZjcgaLK/knvJCtKni6D8julniORjExGRhe67mVAa5MAY9TBa2p88HEQiLKIK3lkCKddCMF6gRWPjkM9JZ8bOen/obySLBScg+/ExD77llY2Cixwj6HjBT5OgoxPB4qwtUJoGDkyLvnoOiWQrSMbglhn5gIU0SYRUn2wT/9/Eu/sG+ChZOiKV0FaSY6O+uDyye1+/xbLaFT/BmBxwA77owahPg3Q2AOeAnTsN74iz8xgCk3AJlgX68VBOWvOeC8MfFAur7XoTrptJ+muXz5MvP4GCtBL8qzlesHTCby+DN85jacwtunD4bXGuAmDvheD28ZJspgtUoKHb78L/1DfQ+/yRK734VXrb/BnRcMbk3iIkpug186SnwxaORpTWY7PH1BvynF+EtdWJEMgXLhGX+LW6+/eVhUB1q2DB6LfDmkuj3/QaK1XkYlpAq2d0OeKeLm2e3w/X7MIiJqlcEP/coyPQC5iZ3Y8JqxiZu5uop4PBVUWh09Xe2sA1k23QUvCiw3DZXLNTQBe+zeCAk2d4tB7zrglj5q4hG2YIxXYyiicoNcjQ9XpIRvMpo4TNBgCU8BhgZechgHGobMCe8JwlCU5P2cC8/eTAtX/u7umCMEKl0jB8djMnwZYCOCKsvevnSUV/y6jKxXJJPXr/YfQZAlLckARsDho3BmYAoUFCDY+CJZdtnm4Vg2ZbHLL2AsNwcazpgPsFyLz4gJ9PK9BIlWgPfWNVUXtPFnMhim+lWTl6nRuLSwWMwIDwKeNxN+SSOZUks9FgTLbcPgGiJFAD0A2LWZUa4HE8NjpNtG4vdriw5LIPHlmPPdmyc69mhL9YTLYqzHeGBQg0VK/8fqAIbDtDRvGNOdoBzvfhkpGgCOytO2mcpEFmFVF+26gtQfQ5Msd7I6xvnUHD7+ihTsv1NsYOFmxSFvKBoZnAyZ+JjEDPcvAeIZzPwRgveYhoUBUOQLyDbTRoNLIMF00c3w/2U2gcGnoHtwWLIqY4gxCc7BCc7xTCdOlmxDeBgjWPdITitLGerL2z57OR1J9vSRy2LLYETy4htkCJFKjbonVqD0eyknrlcdiaBldBb68P/+qMgRRrqVUNy3XXhfu8UjKfPCxJlmYJ01UREQ37sQdTU/DU+cSfb6rFzUTmOP4BJpW9xrMDyGOrHT8M/tRbWDQC6D56LrKAPPwX7sWOwt02D7BLaa754JLg/DTTTSjhr5uVLB+R9XA/ut54GbbRAFuZgbt8lPHM43VhavvYcrGBs4QMRorr0xMMoSfItowquLcJaWxSjbKEAVKbF76C9LNrJY/oxzqTCYsyc8Fn7zMDGORvWhg9aEOWhtuhXZuA1yCyRoZ5/YuczwjaHaakJspmgTypGWcEbtKNJBpAm3RPKXhn+PIc4HGOMHIzJ8GXAKO6fRHAAQQzVZWOdpU7NK0kEkptLxHkzpV8c1X+nLp26qcQygNmiG/r4DSFfELpBWCG3XEPYiFmIv2TyBnINUc6zwssgDCp0pNgkRmySINLpr1E1lWpQAjtBgJP3bDhxm5+tmXBIFE2gIqvK4ppBQCHDckNNVohgIGpX5kRW4uZ54VJJ7iZXXYBJck3NyBIWnktbuDggXqR2JfvZ+Qxqs1DDhkvEvUchxDrfyHmu07KeHRDvzxVLPMuqZYaTFN3zkPltJJ5hHhGW38NJr9R+WmYmMSZFCr8xiJ1TbxC54fLgd114xxuxPCSpBkQACL8xEMv0ZQtm2QJ/RllZsoPfzbAAEZrJWGwjbn8A54HTaB8TzzNO+ETwoP43ToNYBqyrOzCzlvklIQ6Q5SJStol6jh1dBi0WQCYUKYba79X/yv1Ci7kK2S7FAshcN6q//L9Jq6vHCDxmwqQcbIDQfWapKiIeDvX8I2UUoTuzjN+5HAOkZThv1W4UZI3lJhXeT4ZhExuAxxjjcmNMhp8nJEluwYwssY7fG0qCgbS+UyUDVuwzwDKMDUnCFz+X/K+3Cm8vT0ZhkA2NVRKID8TqoKqSWWVDEDEDt1LDBnGfwTDzI3DpyFUWAU5CWBfjhEfXDtIKOVdEjOQmuEvs+qabDveatECq179yRxcVOgewM/EXIDXjpFj1VxvKJbz4yztJDJJaTJmHap3TWcKyZBie8O5BvBE04ibNnDBqV1VgAmA5XgWUTWyGHz4bFUkvAcm8bCOej615jgDQlEZ2DQlWr0vqwmPPTyHFQETqkqQ4eU7dfEXKlvi+1g/TqYQ4dizwFsPdQGYj+4XjCuKn9hUJeS5Zdnm9xkOBjJrJHAJqc3gegWny8HhIboPJG/c80X+Z4i4sYSFOWs/VNgmPqw8g2e/zwJi+btL6Kuup/qaGodmB9+RpkTwImCTrL11m+h4BLeS7ZktKQ/y1vpBaaGbacrUg9OjQa4KbFKQ6P7y8FwKrKNqkf2k3yVG6xTKJrJfiGD+SGJPhywAD+b5QZRrLKArNmkYSkfcdUK2XcULcS5wXxxFLq7s2a2k5SSKurjuoYhvg+cIiOIToAtAT46SF18y4NokcIqWDlKNIrwk6AiwlKlbCZVfWZMAKnPxPBpuouozGNsbprJINh6SsillEuGgCkzawvbAv2ljEFMIrX8qSUISFpHEykEWIBwPhSimZLxC3zg17+asE2xYacm4xkORkJvmsPQaDlkbW1UvrftJ7g4owmpjBY+2fR4KjdGlJRPy8eCarAyFxUbnLKERY9q+kNTjmvk2xFmeRYpUgGVUb3PVhVG34a73w+uS12gAvSv+JEWIJSQZ1UcSSaYN08p7DCHGsDHmEGAhCl0f11llQwzq6nj4SWhIK6edeFBo9RihjdVPKNQK8R09g8KCUlWSPUdTmMCiP+oEVTxtz29ZlIMFEwpxPu+xUXZgR5oEvLoNUu0CxfvHWYQ2IXRGb59rd9MlRw4+PMcbzjDEZfh6RJHAUNjziZp6X38PQqgYFVTY1JIkwkLZ4DSPCQlZhZKZXrylTjunCTmCQ2EAhl86Ty2pJq3EWKR5lw4eal2aXctbkI4zElSDBWa68LIODZZBgeV7+nyi6GPgGeoxgfSC9HKTTCkJmavPREWEAePkOR2wuevJovIAaUsyZB0hSXC7GyY76WbZxfxDbpR+SEZmv6rpJJ7/QWd6kRtNnwiplKxr0DOnEZiY0o0hdVKgkOOs3oX7XWfSBuAzG9YmWCOusyKqnEAOCdMbIbhYxziHFMStx8D8kyAGhSl4rN25JyzJHgviphFhF1jNXCXKW5VgDs0ajejIvNnHTEWJSKcOYLoFCEENvLS5aTxJkbhmBZTRHQpAsa1Y4ZHkPaWkdxU90AH+th15LcSmYYR1W6wAgN4S7nOwYweQnb0Mhb3SARgeod4H6KZCp3SOXfSTIMdzQTJ4BfSCOMca4AjEmw5cBBjFGftGL9PmWYF2QAR0RVr8LK1r8/LDwtMn0Oof4Pjzh49ewFafuqlN2RVOatALrrMVJqUWWJUPJS27GApDpyktFng9blUSbxEDB8FGwRb3biqU8uRSvfqYJa6TO96yKYURYHve2H4K5eA58NaHPownyqkK1sGVZiR0W+x6TXCRJsZp/1nKxSrQDycRI1v0Rog2GlxAD0GycS05ypHstK9CtSvdhaQIcPSNdNLZiomhSRpGU0AwjwtfUg/vEiFec1MalEKORYr/lhOGhQ+upYmFULarEMmKeK2LW0DxCHKQN06lQ5QTB/WQ4eZ112KrawoVYwgKaSYgphbFQB7EMsNOtTGlJDI6bJq7qbyEJljDza/IbKSy6Qgbp9dtRdc/COdFGQ7ZDQIhjWXcNmKYXt5ZnQO0Xoh/kvMZlnym5Qro0JDz70HsnNjzzTrBpurUeTZqz2meUcPJjjPE8YUyGrwCoZNckFhicTPIcuaJyYpu8gDQJjrug0qdRj6mkLrURL2MD3sZALAFuK12lJ7c6YqyTRiSIL/cG0Ua6YfCCzVgBqcqDSSwYMLWBSnSo2SJd00lbI3WbF5PRzbKCMFg5mlQdhIeQkzh07W3gX/lCcFHCEpfUbpqK3jKLEAPp5WSFFMc25slIU0BcnhE2gIYcmyIKXtZLOHzGI25CUiUxeT6RVanLpC3ybjMzV/8N6DdL6jZF6qDTeatEGAB+Yk8FZWbCS4RI11l6N0OK/cYAvM/g9TgMikxCLPMIoeh5YkQ3QW5BzdCDRWwZXiMnUM9nEWIAMOeV1QKWmGhpQGZEUBF+PHJtmLKgJuuqEjBV/56BXL2utDRnhUVPyjoAkHoV1tXTcE60U8lV6zAgwrhnQSXJamAO8Tm/TjGXfZt1sZYwRqR+x72myHOtgaHY7L0ToJSHrgu3BCNMPMb40cGYDF8GbEbTKtPnfocplmihJ8JJP6xUo6/UyyPUXfpp8hflGX0+1aGYoB62l83Q+TuAfGKcRYoTg2Xy7lo3bDLAAACgCJ1TVl3bj7RB0aBhKmowDIJxOM+Dh47o5i3RAxnWxIRV+MHlMiwD2LZrgNrctIhillyiTpLigp12UZXUEUtoSC4pKFZ9ncU5eTzPQqyTxiB6uZJgI+QoMIkF06DwfJZr5RdpDUwVODzuB2Q43f7JZyI33BVNvf9nVQ6RqytOEOHbZxlKp47CPy42VGmXuAMy5zcGMGejoDe8GzzrBLmVsgfeZ+KampWy/AKKlKJswZwuApYREdmw4rLTKRZhaSHW6YWhEGj1XiUbRtVGsRoEsDGj9pWkzihTkNlq3PUWEIuomLIOl4tApwCjTOEt6TfNEcsA7waaZeYFPrcTy/ZJghyei09QRKQ4pS3KRfGbyIoe6GgkFOUisG0adOYcqi03Rmp7jfgzcroGKlMsfs8AXlOjj3Z9oaNWj2mevawbmDfUxVoY4VS6v1TG5JjUKQCnNrC8lgoVrw0AMsYYVzDGZPgywPCHz0ANn8MwbRjEBCVpd1VhOiI22hmkmTqu+1yiHopmC30v2lGv82dsBAE2pKP6Eu3jqY0iBp6RsgpLUINj0maoWgBaK+JgHiEaRopVV18GBfwEcXL7kSsf1Y1bP3AnVZmBUaommwzGIAroUC7W4XEXzE9b35Pffc9D3+uhywwwn6RIcM32wrb0uB9oSONsXEeEpSa1QoHtJeBU8N7JIsIpSWBi0xyAiKwo3gC45wmn+7FNcCxOiJkH7N0H4jOhR2YMpFIW0bNK8aAJ4fPbWAYq6XYOwRyxKU/xy6q+SLnTSVuJgk10o0BKKgxj+MZSDwwtF+gwK2a1l89ignqpft0J5DB5RFc+w6oNVKjewp98ntTgIAsi1Do5SGHfoanc4nl4T54G3VUFufPFAAD++ONwv3dKXKdYe+lNu0AO7g9+Tw/Bbzmw3vbyaHKp/q7CApaj56g+g+TEtLUuotc5LkBNkJkpMc9UyF5IgJgHNNuC+FEKsjCHwuGrYC+vRedVMAayewFk+0GgOBEvS/DbJ24ffOW42PxlmiKS2+ROkL2Ade11oE88Dvc7x+GcaIuNZ2ULhR/bB3JoL3B+Db3PPiIi711zRzCWMOEP9/zpyH1gUg+f0HEDADmwG9h9UEzErSL8QimUYsmxUvY7g5giHPyzx8Rvb9cCyJ5bQACUXvRSFMPNryIgBX/sGDr/5ziaKxH5Lf3sLSBz01Ebn1qE+71TcNbjIcdNk0cbCgHRH/ZNgixsC9tYXdnhi8sI3azloFUUAXDsYgUTG8G4WqyDVWrosEieJTYiWyhOXANjx/XAka+BrzdFX5mbBqYXokw7a0CjCczvzb33GGM8nxiT4csBdwCD1PXn+m3wzqrYZDS5E0avBWvp6XQ65YViMg+FPF+gqnXCYajZFCgWIlc7yjk1vTq7n77uZkzNU5zvtXCyHZHzpNziUP0g+MYZ8MWnonzVskl3O+oxHSlmjvBz2zyftuQA4th0TYQW9YS7ICyeBx8oL/p9u2DsuQUpuH3wc8fATy2CzE3DvPZFYHBQoVOgRmLiobws+kYRLbefIlFl6mOqMI8yUfzoWkWc6RwN2ybLGqy230u2ubh+agp/+lT0onvJNgc3Ts9itX8W31maCCWMlgH89P4dQGsFPBZhLu5iLSTFxUIUjU62nwp5/bZdIoSvz4BBV+wIn5kVbpgkUVHahndWxbVqeFf1Bev2AQTPpLYtimKlkh31v/Ss0G+EUpdhrtgMmKhYUzEiop6LfScm1gdtuD6JPYcJ6mFbyUbVmg/Tyf+O38NSdx1yk2PeZrqXbmO4dc5Dx3WVNPFJp7Rie9xHy+yjtPdmbb1ovwve6cKoF0Bedhd6U7MomhMgz50QxwKLHylTGNfsA3bsgzclSIf5KsCsTKNZLcbqIz10xCbLSE+cw9Urj8U9lgQEF7WKmNzI58i8cEMZbylBdCploFIFqc6DBEEKuTdIPX8yuRPr/hqYdy4sk0FMwAwm/KUiyntuASaeAzaWQeYPo4+AxBbmUXzJPOy5adDvH4XfckBftA84fAPc6jTsPRaKjRbItddh3V8DhY2qMSnuLesUa/jgt1GbgDkfjSekZAMTZZDKDNb9NQy8DaxvEAx88Vzjq2niuW+b2obyjTPAmSfBd9+Es8GYYBID5nQlqGtNRNzbcwsm9v49Cl97HOz4BmCZIFN1uPtvFmSzuQyy1gApW7AnkNJXS3/RRtWGsXtaEOHZoNE9JoJtAECnBSyviUlAsRk+vxiC7+bsdjy23gXQxe1zov9tOEs41zgVq3fkrvA8LINj5zV3AD/4ezFpqc4D1VnRl1pLYRuTYmJyPcYYVxDGZPhyQRfZy+0LcrGxDFSnBDHuNcQsXtVg6fR40pF+y4l0bnJThaJ7i32WGrNEOj+hWSvuKaFQraB+6DYUJiqoWudwrhcNxPIlULM9oLsh/nSO+IG09wF1h3dSUhFYM9DpijSS2DEPqFVAbAqYa4I8dwRx4Oc2wrC2tFIGZjdSReCtJfDlNXhPnwedmw432wEQZc+wlhSrs6hYFizDiRGbujUP2/XA14IJQEDqd+68EavuItziACWabi8genHumeDYVdkLx+/hYE20x/7aAAdqV4Gc+gF2zl6F1+wa4GhDWLUP1mzwI18TfQPQL12r7UpNYPcuxCL4ZXn38FkUqndiOtt6ZFKQ2jxQSiylmjS6xiqK77Sv1wIbgZVYkbxwbxAcG2E48hhsswSfeykyHCPG4WpEDSXaTLnCmyrUULVmYbTXIx1kcE2xVMfhyT5oEAQnazPknirHNZMTmOgMMFXbEStDWBZlVWTY5k6/VAWuuRNkYV84XvS9NooveQ3o/hPx/JLNsut6sbHW62jPbxrVKZBrAuv/oKt/NkEfJ1P1dDCWTSBPt0+q84AaFlhFpQzj7heJSVSiXcg1B9J5Te4EJnem0vqFYDy4BjAHvdgEd91fg+8tx9JnRTwM8ytVYRy6M1Rs5WnbMTML6y13hnFE3Z3XhKe82hyMl7wG1v4TsFbO6Q0ZQOAxJsfiWyiAHL5KfFbHX1UyEoy95Z6LuaKL5b6FR1Y3MGmvBBuHhcQos+4GBfbsSx8PxhUyexXARnOdmAW74IEWts4jheGPvVuMEWFMhi8DeOMsuK94ANDpts6cFiFDG02gP4iTHcUKGOrzLFPo9YoU3HXCY3C92AaclE/RRDru+jCo2OBimjy1icOAienCTkxr3nW2WRJWpMKEGAx7zXSi5Iat/kC/q5ixuJVXXf6nJtDsgDc7wkJFKbDWENpA1w8tZux7x2Amg0cwD/z0CtjplvDL2erA+M6XUTp8PchMHYDmRa+8LKfsHZH1OPYSVS2ygW7zzBHMLFyLmXoxbQnVLUn3u6CFCbx+h2JhHvSEBtBjqKOAFwdr7LyXsQs8mGykPAL0B4BVHO5oXxJhk4LMHUif08EqAm4fxCxERFIlxEZg3fUZeL8hiK5VjJ8Plq4BCD/EVhF+4CJvyF5CkWYTGvxtpW2ZltEYlDrsKO/CjnL6XrrPHGfCJfNMeAzUFJ41fIOk0qr58vp2QZwDrzF9rw1jOnqOMctu9h21GOqxI1ihAiCej5ywu30x6ZNtlJzkqtpbnY5b7R8jwOMuWnwDJrUAEBiIGxMcywQU4hjemphg8OHvvCacHPjcQ8NbjdIoelbmO+h2o6hz6qRX/sTVNpsqiMlQy0VqsywArA+WACyF+dhmfOVJzavhrQKzs6HkQPQBL/WMyNwBYO6AaD/5ewVin3XW9xhGDBTiH7kf1974EtDyBlb6FjYcOtTrEAC0/A1UpxUZhBetAIQYbNFEbYwxLgHGZPhyoL0ByME8azCyqVjKUmf4yY0sqvVVEmPLj+8+D4guEPkv3SwhJpYhCKfbh63fNyPu563FB2BdoAx1EGZeapNJbOOFfMGqXguSFtBmJ7GbPaobKVJ4R05FbQHEdpsTy4Dzd0dhXT0Fsq8trMI6yHp0N4RfU2c5suyrL/SkxZXa4MvPhJpAbbhUWa/khCAhVeEnTsfTS6jtqbQNCSZHKBdB6lWgNhF/EWURkbwNaAph1Z7TRRlUCW/yvnmEaMhGOF0ehkmzCWiQzoYFm1gJEiEtweLlHCP1AHivAaujlFNHMpgTTlowFbcKa+GzuNtABcM8x4wC2Q6buWZLoPvN5iGvTyG//JtxvRd6ixkhYNGoKJhidsS4A8twwRTpzTA/188L1LZWf3vqRMaOdNPEFPsM+OMP4qoXvwor/cUwq6yAQ0WTwDSskQPmjDHGlYrNGha2DB/60IdACMF73/ve8BjnHL/927+NHTt2oFQq4ZWvfCUee+yx2HWDwQC//Mu/jNnZWVQqFbzlLW/B6dOnY2nW19dxzz33oF6vo16v45577sHGxkYszcmTJ/HmN78ZlUoFs7OzeM973gPHiS9jHjlyBK94xStQKpWwc+dO/O7v/i44v4BBT91ZK5ew5Z8KKRNQ00nYVpwcK+dDLWEoSDVDfVlyt3rseyKNQXm025maYgBN/ql5yaVuhQxGdU5cE+5Up6HfUJGHGd95LNPJUMLUFPVW2iKyjqeDDWjbQvlOLAPG/l0g03sjC6X6p0EYGlqtl4rktTShQ1afo9Qn2jRuTUtCbQf5X2m3eJ6yjsGxhW3Atl3x/DKe4VDo2kXdYZ708JHMP+9+iXw363XlorGJsqWOyWe8mfY04u2fV99wk2BSA63R+wKCoCUnBpuJ6De03EC6zlnSKDXNsHsjISu5gPLJdlSDEukmSelw9lbw34j9H1Y+eSwrAE/MujykPhfU37cqilzMZ7g+T7WOqkRC1rVEqyiaEyiaE9GEL+vvImGavgjJvEV/psbn+xg/unheyPADDzyA//yf/zNuuumm2PHf+73fw8c//nH84R/+IR544AFs374dr33ta9FqtcI0733ve/HZz34Wn/nMZ/DNb34T7XYbP/mTPwlPsTC+/e1vx8MPP4z77rsP9913Hx5++GHcc8894XnP8/CmN70JnU4H3/zmN/GZz3wG9957L37t134tTNNsNvHa174WO3bswAMPPIA/+IM/wEc/+lF8/OMfv7BKZ5Hg8FhiYFJJj3qNJMWSGGtIYJIUZxJFmSZxLC+ikZYcq9Y+aqfJoEybfHlmkWK1TZJBHpLET1PuPEJsXTen17ZJ6AiyVRRL/erLbRgpTtZXR4iB1AY3rUuiPP+rycAI1ATsstD2ZiFngpOJJCn2hxBiNd9kuyXz3SwuhAwYI9ZVlyarLgG0Lv8y7j+qBVdHlLMsoz734HEXHtcv41zyCUZy4iZxkaQti8yr5FdXNx/p9sgiwtF3nYeddN66+z2vVmEz47elflbH47wJDOLjzyjyCIOYKJk1GCxnCVFirNEd4wrGZSfD7XYb73jHO/DHf/zHmJqaCo9zzvEf/sN/wG/91m/hbW97G2644QZ88pOfRLfbxX/7b/8NANBoNPAnf/In+NjHPobXvOY1uOWWW/CpT30KR44cwZe//GUAwBNPPIH77rsP/+W//BfcdddduOuuu/DHf/zH+N//+3/jqafEhqcvfvGLePzxx/GpT30Kt9xyC17zmtfgYx/7GP74j/8YzabQvX76059Gv9/Hn/3Zn+GGG27A2972Nrzvfe/Dxz/+8c1bh3XEI0mOqSmWuE0z/nLRkcGEP1CVBGpJMfREUUcWw2PU1BPDLCuqzjqq/oXlp2mrqFLHFCmW/5NWcSQIsWL5TdZTrSOm68LDwRCrdyaS9dRdb2ieWeqz8myzCLFu0qSkyyTbunLmwdxEWkBr5SFmYbiV+ErBqIQ2i8SrltLkxC8HuZri5K0TRE/nJSPMF17KGqojkpuRGUQX0ah/GDTbOpxFiKG0baINsyQMW0He1UlHMqiR2jY63+JAtgUeiCQYQESEs6zCF9TmlwOxVcfEM0s8wyyJRBjJ1POjzbK6vzHGeAHgspPhX/qlX8Kb3vQmvOY1r4kdP378OM6dO4fXve514bFCoYBXvOIV+Na3vgUAePDBB+G6bizNjh07cMMNN4Rpvv3tb6Ner+OOOyInnnfeeSfq9XoszQ033IAdO3aEaV7/+tdjMBjgwQcfDNO84hWvQEHZJf36178eZ8+exYkTJ7R1GwwGaDabsT8AAFVeTFkkjJrC/Vm5CFIo6IlT8kWjaGmTUoEYGQysw0miGJ4H4m575OdhZEa+KFUXXFlkWUcaVFKsq18qvWIRVwixzkoMIO183jLzncHrnk3WEp+ujrHnaacnP9rPIxDiPNILpNokRdxGkIJcEDT9I0kqtSRTZx3e7DJqIo+hBCor/81YgnVpVRdzo5ZlCJLL6KMQqiwr6cXIDwCIDXWBj90tm9xo5DEXlZ3GSqzLMzlBCN3PBeXRyRqSefrcg+M5KX/iWfCVDXFZBPuS6m2H9d8RpBLAcA8auRgT4zFeALisppvPfOYzeOihh/DAAw+kzp07J/xNzs/Hl3fn5+fx3HPPhWls245ZlGUaef25c+ewbdu2VP7btm2LpUneZ2pqCrZtx9Ls27cvdR957qqrrkrd40Mf+hB+53d+R195HRmUfnblIKUMVkTqhxOb5mJhdSUsI4pBn9hQFiQGRxScTfXAwPssukYlxJoy6SCDKXBPIY3JTVRqnlSzmUwSQYdFZBDK5rpkneXGMWUjSLiBzDLEtcqGwdQGwpwl/xSkw35voJeF6PIx6fCNK+pGuOTmo+C73NCihbxG5hm2yQg/6YslxMmNOYBWR5wVgjm8Tm1HjwFGIs/LjEzvGDoEE0FSrI+uj83xOHExESqTGEauNk0+raL4TQXBbUK/4EnPEkkPE5cQuZsOEwt3Wit5hkUYyNAJB58Zd9BlYtI9ilXYhxezJA/DlliSh00udc9J2UgnkR2BVI12aolxKMtgsIWwLB+WtYU6363Ma4wXPC6bZfjUqVP4lV/5FXzqU59CsZjtVJ+Q+Iybc546lkQyjS79VqSR8ois8vzmb/4mGo1G+Hfq1ClxIs9amvqLBkPt5jLVUhhztRaXCsQkEkUqwrbq9MEa2UR4fhSZhFWMNLUSo8oPktbgUTeVAXFraFI2odRBq5NOIq+OOlKUVTe1XbIsMnmWXk3d1eevlU9sJS5UOiKvTWAkLa2KLdhkMzKGWcxGSEuKdfiFUugSbtNFyNG95l1zQfe6XMv1cuPtiMiSRiSDhagEdajeOkiblEQk76m7b55OWFqFR4WOBF+qZz30t6YzxujGEc1kOhlcZGRcgk10Y4xxqXDZTDAPPvggzp8/j9tuuy085nkevv71r+MP//APQz3vuXPnsLAQhXI8f/58aJHdvn07HMfB+vp6zDp8/vx5vPSlLw3TLC0tpe6/vLwcy+e73/1u7Pz6+jpc142lkVZi9T5A2notUSgUYrIKLYbN2sNldmkNZaml/dBiXBMENEXNmQfe6ITHSdkS8otyB7yruDXrK58DF2zmjbuD+4+ghUy6FhtaJ1uE6R1mQZKkUGcVTboWA1JW4iRIkYYW8AvFSNZOiWFux0aBYi3OlHaM6s5qq6CzjCfP6+o9Kjy967HLiVzfyUlr/yY2xElslgypluRMGYTCUfL0sJcESetwdSqKOpiXPgMXUuaYfjpor1GsweHxETfKSVga3WyWVXjUcl9pGFa2mNVYdVuo4krdMzDGGBpctt766le/GkeOHIkd+yf/5J/gmmuuwb/8l/8S+/fvx/bt2/GlL30Jt9wiQuo6joOvfe1r+Hf/7t8BAG677TZYloUvfelL+Jmf+RkAwOLiIh599FH83u/9HgDgrrvuQqPRwP3334+XvOQlAIDvfve7aDQaIWG+66678IEPfACLi4sh8f7iF7+IQqEQkvW77roL73vf++A4DmzbDtPs2LEjJZ8YilMngXolfizLAuqwzM1lKjniwTlSKafzdJjQHzfbIv3CNhGlaKIBcn4tyDca7HizD7/lCK3xvr0g84fFiWGDmcfAn/2e+Dy9IAhD8zyw1hT3q0+mQ+uuNaIoahqQhbkoXOr5NRGmNIAxXYKxUI+sq6psotsHO90S36Wf5SBUqZRIcNeH/8xZGNueANl1Y7xsMnRovx0vkNMVEZSKIupaSJbcPtBei9KZFKhMp1/2y2vgnW70nSlSkIW5+HNYPA9+bkNIPeanQQo5ExLVvysA/9QavKUOSHkDlJrArqbwKpFHTFQkta9uH7y5BAzaQGFCeKcI+gM//giwsA+kWBdBV86cjq6zKbB9l7hvEP2OnzkS+U0eAlKwxWSv3c1MY9z9GhGtTX4fgVTwzmqqLXivIforAExMp5+x9ENdCDTxGnmISljJ/WITr69O4qSM5+qrQbYfzi/j8QfAnxaSMLIwB3LjK0aqowETllEEJTbM9cX4yayJquyjrSgYEE+F6E1cO7c9aoNGE3y9CbJ7e3R+ci4M8sJbS+B//+0oGMxMDeSaq8O25BtnUK/NA7YIxsKIj54XBe0xiCncdblBJEPLgoNs7xDh8fY6LKcDC0LC1S8r7dJZiyf2GAqFMmTAoI0dO9P5Je5jmzYWyrtxsv1spoyAEhuTbRcrypBfNCdQoVNRnqrvapkNY3CyFhnk79Hti2vKk/HVOInOWuSvftu0iCrZ2BCh6OtVcUwiGIuTUU1hGSC3io+TNsO+4m7wxSfCNhNl9UD2vQgO4QAGKSMBMQvxcXBMjMe4wnHZemi1WsUNN9wQO1apVDAzMxMef+9734sPfvCDOHToEA4dOoQPfvCDKJfLePvb3w4AqNfreOc734lf+7Vfw8zMDKanp/Hrv/7ruPHGG8MNeddeey3e8IY34F3vehf+03/6TwCAf/pP/yl+8id/EocPi5fR6173Olx33XW455578JGPfARra2v49V//dbzrXe9CrSbip7/97W/H7/zO7+AXfuEX8L73vQ9PP/00PvjBD+Jf/+t/PVS2kYR/agn+qh0t4ye8Qagb5UjBzpcKyHT1IM571k7ggQnUJmKniGmCa6QGZNaCWXPF98LE5gYu5kUvTZ8Jq/RgACyeB6YbIHPTItS0ScWgvLwGdroVkdygTeiuKuiuKrjnCX3i6jr63ziF9nkDdtlHYZsFY7qkLQIcF+z4BtjpVkiASdlKb6BzPXDXBz9+Wug9d94oytVaEVG2ls+Bt9JRkshUF3ybCCPMnY4giJ0W0EykpXacVMqXQX8Af7ERWuJJkcK4Kq1rBwRhd59YhTnfhTlfjpHiTP1wAL/lYPBMB2XXA213QXYvgKtkKMfqSkwqyi4nBc3z4qVaq0RkEAA/+X3wxfMiZLCSNz+1CFATZO8OrZXI/c5x9J5Jt61pxgmF5xF01in6LY21LvCBvWflszDf9g+jMLpDwFtLwKlj4LuFtAFuXxxbXQG6fWC6ni5zvw3+qCAAZGYKWNgea4dYuYgJfOP/YPVPH9OeB4DJV56H+ZNFkJm9+gRBkBa+0sL6l5Yw838pxCkD8pyMkGgQE7yzJiYeo6wYNDtiAukOsWBOl2DeelB8aa2Dn1oEe/wcvKUO7GtXQHbNClIc9C/eb4D9zy/j5Oei512snsfs7adg3b47JMV840zY7mZxAtXKDJhpwPF70c3dPnivATK5M9/bRGslfKZ8vSnG1OtuBlAU6X0GLJ6H/8xZeGvxaHZwPVgvvxZ011WxkNmpjYzExGTTBb/vv2PHm38ay30hg1OtwnP+JPyHv4Xe3zyK2fe+FSuTBdhGCVVMgK+cEO0D6C2prXVYk3PwZnZnP4xeE+g7qclrOH4tLgOOK8ZdCWqKfj4TrKb2HfDF8/BPrcE9tg7ejSYZ0nBQfuUJFGhgAfYY+OlF9P/mUbTPcPhBlNKZVzwC6813g8uyKKHHU9iCDXTU8kG3UOfLx5rhMRRcUdO13/iN30Cv18Mv/uIvYn19HXfccQe++MUvolqNrED//t//e1BK8TM/8zPo9Xp49atfjT/7sz+DqSwlf/rTn8Z73vOe0OvEW97yFvzhH/5heN40TXz+85/HL/7iL+JlL3sZSqUS3v72t+OjH/1omKZer+NLX/oSfumXfgm33347pqam8Ku/+qv41V/91QuqWyYRToA3WoKE6PzHyrzqtWzrcfA9NhiuNcDXG8BaI31vxTUSqZSBQRv8+ANiwNXcOwbmwf/+UcAyYASR5fjyGnjPASkFVs3+AOgLuQlfXgM7sSFevgl9r7fUgd8YgDYGMOoFsOMbcAIjLXMI2GmGUuMc6K5Oyk9y6DGjrNTL9eC3Evq+4J58tQlSXwOnT8UJIqUZfn5NoLMG3lnL9ooBAKdOAxAWUO6JkMj83IZmQ6OAtJDzpTXA9eEeb8Bf60Vt4/rgp1eS+4HgLUUkg7s+uOujf7IXEEgTeLKFMgA6UQaZmk2XVyL50pKTArWMy2sgaw3whTXALoM//Ry846sw6UPAVC3WRuzEBsiZJsxDa0D9tJgUMQ/swedCIpwkvyrCgC8jHPe/fp/os7e+BNBZyIDo5ev2xW+keR5cWoIBgFIRAnxxGaTZAZ9Wwokr/Z8PBsCJ59L5T9XFxG29geanHx2qLOJPPQaOgDDL36IE89D54kmcP15EdZaAN5og3Q0YBs3f2BFMSHhzCdxnkQV+lI2UCDaX5iVwPbDTLfhrR0CvOqVNwpfWgj78aPw3qKDfMnH67xiqR45i8tYzsH7ydmByLuyDUoZEuQFKKoIEbzwXLsHzM0dglkR/43mkSgbrAcAfuh+Fq3YJ8vfU8fB3o44fcuOw++2jmABC6ZlWciUnGNSEdfJR7Og78UmHIzYqh9f2mpiZD0ysST+8OsI4OQd4LLLuy2cb5BWLUNp9ErysrGwpZeMrLfDmWZBGC6ReDWV1vNMFGk1BjFWE442ISOr1ONrv/wtc8y9eC7S7GHzhPjSO9KADv//7ILdeD9SUyb3HtH2Kb0JvPcYYlxuEX1BItTFGQbPZRL1ex/qnfw61cnxzXMoqDIQaUH5uIyRycRdpwaaw+WkQSUR0PmfD/IJja03wRjM+wGcFgQismOH9MzbbAUi5MgvTWYmyBPfyzjThrfTEgBtYZ/I2unlLHXTXIis8tQN9nkKoDMqFFVhTzlT5lc/mrirIzrkLCHKRc85hwuKyml7i1+qVAy8g7HQrRnCRaD/1WrbqoLNB4bGoXUyFLBpB20zsJCj91M3A/oPZ5U1iYxl8eS11WG0j3miBr7TSEw0NeNcVdeulh5gkwfUZgQwJ3lyx4PTS7UUtcc3M1WJyUXzjtSDXXje0HOg1xbK+xuqfiWAik7IiJuAtdcBWN/eS77VMdDYofKZfYarOupj9J1eD3HiT9rwWG8siVPlgBE07IMaCZhv+aje2dwBAKnS73xiI5+162mcp4XkE/ZYJt2+AufG6Jeu661UU9s/+mJAW6ZCUd7h9oLERSr/yEK6gMA9Ya8BvpNskuV8CCOq51ksd19Vj0DMw6Jip4xKlOsP0PYdBbr51aHkTNxDyq3Y3HbJdLX+nK9qCebHw9CF0ZW858BuDSDamaQNA/G7dgfj9MSeql1pHaR2uTDKU7piH+fq74y42NWhutDB51S+i0WiEK7CjQL5H3/qpP4dVLg+/YES43S7++ufu2XR5xvjhxPMWjvlHDnlEmFIxcPcHMcKa6wmh2xd/mRHtMrwUZAV+UM5JzxKZfouBtE/fwN9vzAKeKAcpUpizJRj1Qm4IZXnOmC6hUPJBbZ5JhNW8s4KO6KPyBZ46VB/OyUAYur+wrTTX2RSwrVj7xe9txP+CY9KyrYbRTpU7qKOss0l5+AcIEiyJcIxoDvMIkvAOIj2YqH8xUBNktiqkKEqb6/5kfWSYb/UvWUeDcrgDA4OeESPC1OLhn4R1VR3FO3eAXH31aPWiNjBRBqlWtPXT1rcb6Og1zzL2l5TiZCBZf2ql2yTWPnQTz82gQKEATNdGqh8xTWFJlDKpRB2SdTTqhdAbTWZ5IX6bhslRqHix56WrP7EMIaUSnVnXYOm/SllIv3S/PV3gnozxTNY57KeuJyRUfZYKZa+71vMIfEbik9BEW1A7eIY6Dy15f9KDDZA/BqnjanLsBfRjDdLGjazxUo6z6tir1k+ON6U75sU+jsAftfqnfaYvYHziE5/ATTfdhFqthlqthrvuugtf+MIXwvOEEO3fRz7yEQDA2toafvmXfxmHDx9GuVzGnj178J73vAeNRiN1r89//vO44447UCqVMDs7i7e97W2XrZ4/qnhh984XCoYR4eA7X22KAU15ySbJpxzw+MCJNljprMIxd15J0pt47DmuuvQhnONlycwnIfUw6gWgXohp1HREWNzDhFE3YbYceOvBDnEN2cuKtJcuc5xkxqLh5WHYcnPMD3TCkjOq5VzjEi78riEqhhnp9gwzTTrCfCjVE40syDbJQ1G85IjjggcW8CwvHfLZ8Jw0alpn3YDvkRSRAtKWZHL9waGWqBCB+z+YNNfaFmLgCKnPCERXEvmthCBS5uaeXSAhQN9JL4MnwYQ+GY4b+uDOqysJVuMFWRTPMWk1lW1QqnrwPAJ3YGS+XKTVmD18AnTbNDC1Y3hdfSrqSG2ArcTPyWea6LsEALctwAos94HHHB1SVuDkbzSQEIBxMIeEvz+VEMvVmrA/UHNk94IxDybU1v8OFb/shDFRt9h5LzW2SKuxlFMBaZlI2ud8NN56QT2pzUMrsaxfed6AecM+YG5aS3TTAXguzgc1pRx0C39rfJN57dq1Cx/+8Idx8KBYbfvkJz+Jt771rfj+97+P66+/HouL8c2rX/jCF/DOd74TP/3TPw0AOHv2LM6ePYuPfvSjuO666/Dcc8/h3e9+N86ePYu/+qu/Cq+799578a53vQsf/OAH8eM//uPgnKecD4yx9RiT4cuJLCIs4frwu9kv63Cg6wcDZ0GRXuT68zX1hDfh0xgAOKVCdhC8OHjyBaIjwjqyr7uP1ON1NzKlDEmY00VY3Va4RJckwsM+Z0oObEsQ4RG1lUN9+8oIgsUCSFmQEe6mX06pa5intVoloZ7XkS/1GLW5yMOmm/L1y83hkwMSnOfMA+k56eVYnfWtm9BL6trE9WBQHi495xFMUqTCc8GodZNu8QCg3M3fXOYw8fvKIU6xsiSe3SigdmAdHpb3Zvw0Sw8YlfLQzXN8MAC6/ViQmmFITdIy6mxagOH6sAo+XBhaKQi1OAZPC3125arnYNyVDmCUzlh5hsVCfOPusAmtRNZzsszQ5WSyXiFJDvqs4Yq+rE5CdcTYNLkYU7PG5YTuWX3W3KCJSXYi+JCEmka6l1QRkGMurd7yXpaRIsYxUuz6MFxXWL+DenoeCS3EkhTb184Ae/aN7rHmBe5R4s1vfnPs+wc+8AF84hOfwHe+8x1cf/312L59e+z8X//1X+NVr3oV9u/fDwC44YYbcO+994bnDxw4gA984AP4uZ/7OTDGQCkFYwy/8iu/go985CN45zvfGaaVm//HuHR4YffOFwqsdBhhrdbXMmLkQitJoKYY+Gwr2/KX3MlDbZD+QGhaB0kXOAmyWLDBaxUY0nWXJDIxspnYDAjkbviL1TeVl+azQpbkoJ1FgmGZgnAlX3Q5ultzvpIu06iBLPLSURNkqhZuHiHqJinddRpJjAq9ztgEkG4TINJUA0JKsCnLsMeyLVIqpNVREhFNGcPVC8g0+jaLWagAUNtDoeKFekUJM2kVtozQz++mIElGMtqfCie7XpnIm/BoYJosVScV/ZaJ2lojjPg2CtngTqCH9tjQZ0iqFfD+AFgNNgyOQvqDiY1OR5tKi6BvDrInNc0VMV6UFhsgTgekVB+aLwDlGXrD+yoQyCSynw8PLL5GvQC1ZqHnl9S4YqBQ8jHoRURfR4yHrhZkeFzg3kDohnXRKmP1omJSIF0QquOv48auI0Dw7BzRV6WVO2wDP0aKJWQdskixv9aD2WsK8i6jMebhCpVJNJvN2PdR4gV4noe//Mu/RKfTwV133ZU6v7S0hM9//vP45Cc/mZuP1CvToC8/9NBDOHPmDAzDwC233IJz587hRS96ET760Y/i+uuv32TNxtgMrsze+cOKPCIMgNQrICUX/mo3Ux6RzjNnC7s6+EyUhaVgTYR5TmtBFUttpQxOqdigYSmELc8aPGI0oyhaXIalSb2HxiOENp2KUSQH04qv4ozyDUUWEavXxPJsqzNUNsKb/Vi5dORX107U9qDalVQSbJocxZtnYNy4X9x/My+gpEVKBxkmvNvPt3ojrrnMTVekABisggtTkYCkiqdKQp47Adw4v7n6mXS4FMTOb4M8icswyHYYRpQ8RuA8soTC3DHhc/uQPshPDK6cpHjp8ic9I0jXjMwbLqlAtNSe9Sx1EgNqe2CDdD29hKWYWEaklR0FUltLR1xypxnPUwnjHvoil64XM2QjUlNswkMBghBL6IhxqPseEbwXTJ5ZMObl/RZtCmJTMfHuKwYONRiRegyKRVjxHiGPqyCBzlg1RMj6qaS4+2QLtWMnQOprIFffPDwoz0XCsj3YhS0M9x20y+7dcVd273//+/Hbv/3b2kuOHDmCu+66C/1+HxMTE/jsZz+L665Lb+L95Cc/iWq1mqv1XV1dxb/5N/8G/+yf/bPw2LPPPgsA+O3f/m18/OMfx759+/Cxj30Mr3jFK3D06FFMT2dsOB3jojEmw5cDyU1r8liAMIiGJKxy+TlJhJNu2dTlwbxB1wz0dr2meBGG5UpcI/OzRRr1VaYlwsNkH4l66vLSSRrkMa8xCPXFefrfcAOaLk/Era7GTFl44gi0r5kvnFGtjrrJyEQZaHUy3eep99R67Rhi5Ra3jRMNVU9t3rgb2H0wOLFJspgoX/rGFBiM8LIGACuyQA3T35IihVmkMPoMRc+F080m0Nz14T15GubCNpCFa/PLkMQoRIrSoURf4kJkEkBa653ExmMOZmZPgL78hpGC3wAIXMiZGvKrqUutIqJBOm76XOJ6sY/Bj20YTC67q+CuH26mS05sUhZxyxASgRH7KTEL4NQejXDJiUGO1RQASDnQF/cZeGOQKZWQkzZYBky4oF5aRwsIYkwsQ4ynm129kJOavOs8JsYYAMRhUbAUxvQToWATIe/HZRFJwwOgH4e468esxEA03rBHzoBe1RFkWCKr7FeoTOLUqVMxbxJ5VuHDhw/j4YcfxsbGBu699178/M//PL72ta+lCPF//a//Fe94xztQLBa1+TSbTbzpTW/Cddddh/e///3hcd8Xfe23fuu3Qq3xn/7pn2LXrl34y7/8yxhxHmNrcWX2zh8ykL07QKpF4Pya8GuqDsTVCjAzKwiqQQGnKyyznS740lo2EZbfy5NxvZnTibklIsV6FDlMWlWS7ox0g5TbB9m2BqL6G+72xUtUHXBNCnS6MZdcZKomolWpOHMamK4JUj5Vh1VTfMNmWMrNtUZ6qTBwJURkRL/A0hduJiwXwVsd+E+LzQzG7mmQ3QuKbnmbWHY2h08k+MaZVNskdZy8syraW+ZhFUEmdwIT08C502G7kLlpYGY2ntfcCkjga9h0XLCnFR+/SjASTNfDpX2/8RxM0wk3tqjeNeiMjcKrDsC49eVic9kwwhCrW19vGU72DZuC7Lku3WadNfAnnxH1WpgDduwDcfsw1ldgdfvgnW7kDhDInDjxp47D/+KzMTI8sZOgcNNcKjk/cRpk543wDcXlE08TXXnM1hGpUi2RmInNSRCSoWFL8WZ5PeaaKw9GmYJeNYn+N06lrMP1G0spH73c9cXzsIqxYBAARKANpR6kMhN/JlnL8GvPRX10bhVYPxv3EZuqYLBq0W/D6DVTp93Pfy9Wb+uqOry1PrzHRWQ7HemvXVMQm2kREO2kZThZdo+lXa3FNghnr46FgYbkOFKbyIzsaJaLMBqdWCQ23mUxt4fEEtd6ro/SAT3R0UKNXqgeixWAAgOWrg9z0ukkykUxqdHJRlRybDmpjXISSWuxOnE15ysxjbFME8NmN3teYZDeIUaBbdvhBrrbb78dDzzwAH7/938/DPAFAN/4xjfw1FNP4S/+4i+0ebRaLbzhDW8ILcuWFf3uZURclVwXCgXs378fJ0+e3HTdxhgdL9we/AIC33uz0OHOt4CNMyI4A6XAwnaQ6b1gdjT4GcQEdgPGoAd+/mnhRD/poF+iXgOvbweX1/XbgNScSVhFMNuGzz3Yxjy42wepzaOFNhxP+tT04UMMcAZMlGgNlEwD0ztgEBO03wVfejqI1rUAPr0rjBIl8i2JIAz9AbBjH/j0LnSYeBlWrVnw1eeA6RrcPTeg5zVR2XYV6N6unoTqXoSyHc8/LQhXowNy1S6Q3TeEXgJ87sHxexh4HRTMCgqHV8Gfeky8JKYX0KtPoukso+85mDH7KBgVPNc+A+anl+SnChyzxT0wTQpe3w6fezGSJdsKAIrVw/FgFW4fzuQ29OgEKjN3wWwuA6eOCcJenUe/XESPCVJRX7gGZPe5MPyvdeCEiO51dBnmfBnG/l3RBpWgHWxK4f3VD+JNVqPC1djNh0GuerEgTr4DEITRyVTI+vjB8zeICSpdOuW91Eo1NLfvwPleCxtO4M+YejhQ2wFr0AaZmQK5/g4sYwVPrBOUaAE79sxhwqqj+r0Hgbnt6M1ux/leFPjCVdqf+QS79h1E8cy96H0nChNMLBNk+yTIddcJEifLaFD00YfL+uHzkf+pYaNgiAlTw10S7V2eh9XR1LE4EekdfQZuUJCZWW00xtSmtnPHQLt94b81uVFQva5swXr9LcD0Aoq1h9D986fi5y0D9KZdwl2cUj9ZJ8YdDLxOSIqpYaNk1mCbJTDiY93bgOczeFyQFtclsbadLZYxVdwBFCawVHJxrrmIA7UqJpoU3tQCjrdOYqUfvZTlta4v2tMySnBtEfFP/c382LvfjtKpo3A/913QqyZBrj8Io9mB3ziCwbG4BKOyi6Jwx07hCWRiOqqjVQwnNMl+aRAThhkQSbcfaaNVwij7rhJenZgFcKshQsMDyuqVKdyzVcqAHfdZS3pNkLWm4r6MAt0+jIV14Xtd8UFcvHt34OYt4X5Qdc1IqbD0qu7hBu2ozHL8C0K4E7MgVuPkcXUc10V3G+ZTWpW+Bdb9pAQkRYwBGGUAZQq/K86ZV82IKIwa8MFAGHlWjmf7jA7KzTv6wB0vZHDOMUg8hz/5kz/BbbfdhptvvjmVvtls4vWvfz0KhQL+5m/+JmU5vu2221AoFPDUU0/h7rvvBgC4rosTJ05g796M6JVjbAnGZPgyoO91YHscxVIVhjcPHkiUSHUefqGEHltPWbQKVgXF2avEILigWMUU7xFkzy3osUYYNtQulMSLw1VeQsUJ9NwVMN/BwLRRnT+MhreK872WlghSg2ES67CNUlimgl1BeeFa8KkGvNocGoOzMULYQxPTc7uBfhtkciea7grariDwjtdDfWoB/uQ2nO2eBgAw30G1MBuWO153ZbkRXugJu4hiWH/j9utAdt2IFtqA34fvCXLXZW0s9y1M2k3smtoLc38fKE6gXSngyfV19Jh4gfZYAwdqFSx2bbg+Uu1wtstxzeQJzFR3oDU4BUrskFQmSRcAFMuTIMGLmPcbaLkrcP0BeqwFs0gxc8PdMHotdG2CM+1z4XUGWUF9cieAYJnW7YMwJiLHmSawcxfI5E741ArSmyALcyj+2K4wD7lyQA7sBpk/pExwELZ1MnxtSIYR1cWHCbsyA2Rt1jIofIPg+NpJnGyV0HAInMBY1GZLuH7bLpQnd2KdNPHQeROPrIl7LpRsvGFPD+TQYbQn67h/qYGOW1bIFmL/l/td/NiP34yp6hPxIDPXXofB9Dx87sHjAfn14s9D1sfzGRh3wrp3Ag8ARbMDqzgRJ012RVjRJaHyGEiFxa2VeasIc7tBdndglNdhzATkKkseM7cbpDoPLJxG7baoHxDLgHnjbpBDhwXZlyTYIGC+Az+Y5Dl+D04QxcuGB4OY8OGhx5o40+FwfXEd80mqfVf6Lg7WT8ArMfz9OVHOAzWATO0Or3ko2NQmr3HCZxM9a6mOkGlKtIGX7r0Z1j+uAesrIora5BwKr2Ew6s/G6mhMF0EO7AGZPxSbaIT9UT5LObYEQ4HPPcA0QI0JEIOKFa5+O2rXYEKckltYRaBcjHvLKBeB+mTs/kT1VDENRS5kA3WALGyHubACIwh1zHuOWOmR4e5VGZx0jSZDU/ca0UpUQGgloSc+i1z+qeVW0oI58ZUMuXF0MIgHyNF4BpIILeNy45xi+SZlGnqciJ5VMC43BmJlbW46lGWE5ZNpO11w5olVmspa2rNHLKBT9mRxFFDqg9KtC6HsbzKv973vffiJn/gJ7N69G61WC5/5zGfw1a9+Fffdd1+Yptls4i//8i/xsY99LHV9q9XC6173OnS7XXzqU59Cs9kMN+/Nzc3BNE3UajW8+93vxvvf/37s3r0be/fuDf0U/8N/+A8vorZjDMOYDF9m+BNTwISYZXvcA4IXQJKwGDDhl0rAvlu1S78A0HNXYJLoxev4PRiGCaMYDVwOa6DvteH5DAOvi1VvPXxRUiPQfSlk0DI4DMTLMvA6GBAAJQLfWUqVwyAm2hUbqBQAfyN2ru/10O+dCL4RfV2Jqa2jATNGusnOG0F23ogu78Dj7VR6FQ1nCf5kASu9PtobLphPYBkcrk+w3LdAjTMA7LAdWMJC+ehaCdRYQ80GDuasoPncQ4tvAGbwUi8RuIHPUI/78DwHi10hH3B7JGwDHUhlBjgwk5nC5x6M7QdhvuFgdHCI3EM34VA/u34ffS9qSy+wRkkLo0hDlP9p/ekPVm38YLWDQ3UWvGejGiz2gGMNgmOgaJ7rYeCJ6+WzkO9m9R3t7r8Z9vaDEVkqVTHwe7Fy6/qM2l88n8GDtJQSFE2CCp0CKSqThayNW6NITAKQYh18zz6QnbtSFt3wHhJuX/xVyrDecmdk3TRo3OKtYOB34Hg9+PDCZyPRcTeU52SFbQog9hkAmo6Bh5aBgReNF09uiOfOuh0AFEUT6GfIqW1DkOMiFYRYGhOXexR/fWIFrl/FjskSXl6dFqskB6+BtRDILxRyuJnldB8emO/A4xGJKlgV2H5FhGROkFl1Axf3BmFbo1KO2toqbn5TKQBs3yVWCzqtbC8xurr5DLzfEL8In4lNcm5flMNjgMEArx0R4sKEsAgnJRXJeyR13UnrtEJKicPA211BcqkJlJCS25GAtJKCLSYMDoN5gGaSYHGtDaAb5sEHA2AwyLaU9xNyjxcYlpaWcM8992BxcRH1eh033XQT7rvvPrz2ta8N03zmM58B5xz/+B//49T1Dz74IL773e8CQCi1kDh+/Dj27dsHAPjIRz4CSinuuece9Ho93HHHHfjKV76CqSm9dX6MrcE4HPMlhAwjubj6adRq+WEk1QF/FPhcWIZMYoGSwGqJ9Jts4HXQYy143I+9HAGkvgPiJVq1irHl9SwilXVP9aWtkiqJMp1A1ZpNHR8lf/W8bDNpVWo4HfSYgYEfLfvJOqpk1419jvLWWcqnix4O1mxte+isxCoZE2XMIpXAtlIVdTvuKSBr4pOFVHslvmdZtGU5e6yJRmCpUttKtmGy/VyfoMcI1gcmXD+yHqokKmlZnCkAc0WOgikODLx43uo1Zcpx13YXU/aOVHnl5+Rz19VLlQzYpo26NQ8bGRZbCWmR81mcDOdNONx+nLjoiLA85vYjd2kqgUsSRasopBG+g57XFNZhhQyrv2XXJ5nPS7UOy+c38IxMq7zjR89RZx1WvyctxI4PVCjw6zcPMNshYX1i1lo1upryWWcZVp+1+oxLtIaiK1ZgYpIV9Rl5goBqn6GGlIeW4c4q4ASuypSJSiy9x4BWJOEJoepms8i/6g4wa8LkMSGl6LTy9ftBOGYZejqMpgnEZR6A8CndaAqZm0qCE3s1iBlISIqKBGWY685OK75fRBJh1SIclKfZHmDypR++4HDMP/c3fwK7snXhmJ1OF596yzvH4ZjHAIBxOObLgVD7FvzpYBJL+5eXp/ofEJYx+aemM4OB1zI4LEPxRRt8Tx7TWW6TdUneM1YXZaA3iRH+6fLT1SuZfxZk+zDfAeNO+MIuGBEBlXWjBg8t4WqdAy9CqTRZ98oqc3YZo3pbmvtvJq9R0+v6Rt71RZOkyiPbUG0/IB1jw5YyFuVWsj1nCoIgVShQsbwwD0mK4/1O/K9Ym5sM5NVVtr3jCVKZa5W8mB3wo2jfN5m37NPJjXNZUPu8DjTxGxf/0+nkcwxj0wx5Q6jpYg5DtnBDlUFMWEYRBbMC2yiliXASwzbkJcCdTmrjcSo/INQ3o1IV4a8lVNJKM4hk0i+2Tg+cV9bkhkFqCgsu0rKIFFLSBY2Hn2QeSekGtaM/zbWxUOYaIpx13zHGuFIwlkk8D8gjKUnL3oWSMJVEUmIDJkK9YZL4uH5EhiSBSC5DJ5fbU9+D+0nLnCTEqpVYJYa6e4xyTnfchxfUzQglD5IcDHwjtmSsSkOskOCR8KXu+nriMGoZ5VK9adCw7iYxQitlcvl6s8hrM3le/h/WP3x4KJgVMN+BBSGZGFY25hMMPCPWXuESenC7vidIkm0AkzYwYXmhDCJ8PqYf5BO1R5lyHKgNgAwL7rC6q/VKosdaKJiVSHt+IcgjvVlE6gLhw4Pr92N1VvtUsk9Ly2+eVAJA2O4q5LNRn2NSLiHzSsol1OsvFmpdk89a6vaNQQ9IEuFRiXeWVCP00SxdBiaswklIqcWwDWxZZdR5kUgiS34hy0ZNYKIs5BfdfrZVWEVedFB5TdIzhM5Th5FDcHVEODx2cb8Ravmg1hZqhrcwrzFe+Bhbhi8DVIutznobS5uwIuv+wnQyrxyrs0ksFMwKKLFjVtqkxVK1VuYRKt33PEuxadDwT5dHHmkLy4H8MgDxJXeVzKoWTpXYJgmvzlKsXj/s/jprdtJCrt4vD1n5b8ZqnJVedyzpcSK04Casw25AhNW21lkQi2ZEjCcLDDXbj6XVWYgtg+NQvY+pQg22UcqtW94EMUwTtL1sd4/76LFmzA1blPgCrcLSg4H8GwHELIwcZnmzkhkV8f6tOxa3DmuDHSaerbwmXA2g8bTDrMgXC4O58c3BQPoZZRHNDGIbPovNTGZ0z3oEV40xDxK663TXZxHTUuCmcqKc7/4vy7+96mkiFYBJYwVWPWKk7kGjP0CQYB0pH1uGx7iCMSbDzyOySHIeWQYUIpxBVnV/BbMCy4i/hHXE2NQMdinCm3NfXd3UvHX5J8utPZ9BiE1iheeyyG7B8LWkOCmLyCPF8l66cus+h9fkEOLNyEWy7pl1383AMorK57gsIkmI49fF/9sJQpRHsJKEuGJ52FYS7sKy9ORJbEYOkomt9I+q69sXEYI2W1Kln1jpnpXuuelkKhJJ2ctmCLEECTykXHKMSoQzENNtD7r6vHK0xiORuywSOcyNYepeCWKqQ5KAJss3UY6CDenOJzGs7Mk6qCRYLcco9xpjjOcZYzJ8GWAQI9fKm3ldHlkeMQ8gbmFSLbU6bW/0Pa1ZHkaA1WNZxFhu9rsQIphnIdbpcZNkN6klHkaKreD4wOvC9eMWqWEkODkJCD+Tzf3kNmsRVjGKpEDeIw8qySqYvlbrq04eJCm2jGgjl+6aJCF2/QFa7spIZdLWJ7GSoFqHTWKgRGswfIUAZpERYwSiomIz4WdHsSB7DJTYsIxoI2ve5BiAVuueZx2Wba6eSxLfzRDiIhXHO66LVVcEvBnVAj4qfGoJTx/AUCJM7ErU1qPoh9XNb6PA1BDOUa7VkOBwtcATvpThdEcjwjIvnSU2IX8glTKI1DnrrMIqcWWO/j5ZBF5HgtVyhG7nxoR4jCsXY83w84yLteoNzYMjJHIGMSPfnQltb5hXcjNcQIjlDn71Xkn9sHos63jBVCLPDUFSlyzLp9OEAtl6SVUnrGqJZTpASABU8sCUXfnrA8A0erCMIkxixdoipRlWdY9KWZMaYvF/+HL/hUCWIUnYh2mNI3dnPGwPnYcNIN5uCdelMf1o2zUBeLBsnng+cQ2xZQDneiYqdICK1QulEqPohEdBiVZFnj4ffVNclpcIFcOioyWPK54l8kANO/CpHPcyk6UbligYfsybippOp+3NcnGX1A8njyc1xBIPLlcwWWB41Y7tIG3F68JFWMiBYF+A34NNA1/qKpJ5B9+JSYULNgmNB4lLhiw/1QpSZUh6MQHyifAokD6GZcTP5UF0PAlJaHUBPnRlkOWjNIh2lzxnJj5fnJ9h3WrdxYCPTYFjKBh3h8uAUXTAm7H0yjxHSoc0oZTHs2QZWdrjrHrpjumO22YJlNgxonMhls9kWZMW4iyvDaoFWJVO5KVtMxNtJgI3yEnFZuQSWRbirYZu4pG3OXEYdHIJ2SZxq2JaViI/u774UzdsZVmIXR9Y7ZtY6VthhL5YmRNWbPkMklIJnXXYMgoomBVxbpSlafmXp5NUN855GhKjgxpgIWv53YgISWgVHvK89BKW+PNTkeXV42IsxLYhJkY/WCd4coOiofFHfiGQz3ngdcLAIzHretazkZvcNmPhz3KnNsxH8gV4Kckk444i19gsEU7pgoP/RTv0fiFcsOV4f2Ce+EtOBLN+B/I+SUmEWgZqAoUyUMjfCzDGGM8nxpbhywSDmPGoSQr8xCBxQYQ4y9JkxK1r1LBjGlGVeEj5hUxrGcW4xEIhgarFKstanLTsyrCyBkzYZLQ6Jy2D0h+panUt0Vr8PvBgJ7LzfIa+x2MWYNVSDESeJySSVjeDmGFkPin30EFGBZMbF1VLts+9MFR1mdYz84ih3xYvp/JkbrJke4fEcNADfAbDoLHQ30Da0h737uBjwqqH+THuwPH6eHStFPMZnOWVY29V9BFqcMwV3TDvDYeix4xMa6UuhPQo9VYt4rKPyON5zysTaiQw+T0JqwgYSppRNmKNQp5DiYcFhrh7NcsowJQrDkT0ayAiudTwAou+kVopkZsZJRY72fYQywB2VKJyqr6KAeDJBon1l0mbY3sJ2FFxMUV3grfPhO1BinW9RKS7AaMwAfWnplv9kWMWJTbgZoRyB2LPiLeWgF4zbumUUeCSPntZkGZmNrM9RoJars5atnSiqvgXV/xLx0I26/JMumvzGOAofUlqglWrrCS4/YGQTAQu2eCwtNs1NmQ1JPkbKE+CVOfB10+lvWuoZTAoSH1HOr8xxrhCMCbDlwEGMcHPPgY0NsQBZeAlkzvDlzk/9xTI3IHRrBktoa1ENRi8++240/hg0Ldnr8KgGJHTqksBzxURmgCUqwvocmF1kVDJq06qAMQtc+pyrlhuL4bkQ/j/7YfXu34/stINQ78NuH2xLBr4+FRfmkVzQtS730CxWAeKE1prKPMddNh6GLVO+NUtYC0YvOVLXiXG28slFMwKjjaEQ3nL4KhiAry5DDO5NC6/B66ZyMK1kHHO7MEA/MyT4mVUnwTZcb3wagAP/NxTQHEie8OR2wc/fQT8sWNAbQLk4H6QHdfH2l0FWTkB/vRToHe8Dr5BYm3MV46DHzsBc2EbyK7DcMppuYp0AWcZHAvlAyBLx4D1Y1F/LRaAyTlMzNv43vIgdJEG6EnxpM1w7cTOqH2sIhq8gY2gj+qW76nBUaFTgsAXSiNLJNTgM1uKC/UX7LM0mZCa0GDiyr0B4A0ivSgQrSQXJwAjvgIh3Yupk1kAaLkrSshp0Zf7ng8wwPVN0GDVY0/RRZkKza0cD/ZV2zjRAhY7Vmwyc/NMDzsqE6jQWe1v1SAmXuEs4ZHVAb5zPqrnT101D7J0TBBRAGivAefXwCkNw4uH7dXdAD/yXZDbX53ZtGrdbbMEdDdGI8LHHgT7+qPgrg8ooYa564tjCvy1HozpEowyBT00A3JgDzCVTYr5Dx4C2bcrPlnKIL38oR+ID4mIcbxWAblqF8jsVeExYovfJAciQpxHhJfPAQ4Dl1HfksRWxVpDWG/LI2jWVUKsu7da3iCsNTEp+Mrx6GSyPawicDFuDbH1HkvGMokxVIzJ8GUAXzsFrJ4TUYCYBzjixUUcBg4leK3TBW8tCStKnoXJoMJJ/NkTIIduC0N+orUuBj0gjEwEk6K063r43INtlsBXnxLWEgBgHrjHUK7Ng1JhwZRWGUrsmKU1i7xKy6e6PG0QE9Sww4AByc14oXQgzzom6yQt3lYRBACVG2g8Jl6mvQYwaIN3N4DCBIySYm2VE4LyJEBFKEsZxUqUeynQX8aXkks0iAzn9rGzQuD5DCVaB28uAWuLgaVFscgwJtqbeSCVMrAAVK1ZUM8HX3kCfHEZ/PQKyL55wCpianZf0DYngVPHkF7IDsq+tgj+2DH0v3MW5nRReN8tT4KYBXBvAAKEn9HdAD/2LNiDz8Fa+D7I1I64P9agLfxHj8FgDNbug6KfmRQABbVmUTCFVtdcPQX+yP8DduQUAISEwpguwZgpo3bXS3H9lBtaJFXro/p978RO8If/PirDwnbU5w9j74SHgScIcTJCYZlOCFJvUBiYgSGft+wW0krtO/EVD2KH/e6KgI6wBURYTkQlwu/K74GYFIZBY3UyiQXbKKXq6Pp9dNx1WAaHachJQReAH1qLqxZQonWUzJrw10tMwGMoGBXsqy7BMhz0mBFa8beVtqHscPC149FEz2OhlZEzhtrug7hltgzL6KDpGJgvM5DFJ4HFc8DOXfE6Lp4HQfBLk890WfQvdDeiF1EsQp3svwWg2wZvPTtKywMGhf/oMTS+sw6fEfgeCZqXwGfBXgBXfC5WPVgFA3ZbTF9Lrg8LANmraGDVJf92F94TZ0ELyjNQXYopcgG+3gB7ehV+N7BGB46ZueuD7qqKOjNPBPFQrebttYg8Z3lhaHfBF5fFu8S2wIuFeBh3VbbQ7YMPnDDksmiAxNgrx7LpGsKw0CqGrZAUJkCmduvLCohn3t6EX+YxxrjMGJPhy4HlM2lyyzzwU4vAqUVg4TQwXRcD3/pZcJyNlrbC9MH1DhMDVkH4l+Tnnw7usYYUmAd4DOb6IkyTiheRLIfM22fgzSVY8ngw6JHJneGS+jA3bwC0VjmD5MghsmQdctBNtle/Dd5vR7pLmVaxyKIAPcHubsDyBpiqzMReOlNkR2j9jmlOlWXsOWtXqAvlyN/0BEAQ49NHYDIPfK0hiHBgmfKfXgQ/cgrmjbthmaYg0O0uIF9qzAvTijZKWLEYA3/ofnBlQsWD56he53/7UQCPgmyfVK5VrGOLy8DiMrjjAtN1kEIBZq2CEvOAZhvek6ejtMr9eZ/BO9MEPXsC8zOzkSYz+cyC58Ef+TIgw6cyBpw6Df/Ec5jctzd62SYt7K2TQt9YqgnrorQwyn4JAFYR9sxeMaEIGMBlIcGb8RpxkfnxziqIx1AsT4KaUd3C349yrUmswCJMwt9qiVZRonrZUhIVOoWr60GamMvG1tAqVDGBu+rFcBzhTx4Vk0I5QQTCvscHA+Do0eAYi45/+6thf06RwOA34a/1o77oyj4fn0jJ70Z9c5vj7LK4jjkE3PXBnl4Ff3w5lTexDJjzFXDXh/vAs6lyEGV3F3d9eEsdGNOlVD6yDvzchvhzfRgzZREKmTERRENF0qosx5O1Psz5igim0WyL8V1afuWmNiDKr2DHSbCT0f9KtXxjjDxnFuLpdDIued6gAMZkeIwrF2MyfBnAV9bBC2bmoMafOQvSaAk/kCqkBVJ+li+MThdkblp8biibjYK04UsIAM4HVoaCshTLlJfUyrnYtXCY2HmsLN1nLZOmPsde7kzszkwNqq6eBCTTqbpKNb2qp2OJULWaAVy1wvHOaviZ2BVQqwiAAJ4TEV5vECd3KuEegQzxThd4uhWSWx3YQ8+JD64XLtuqViN5XBSBwCwF1qxHzoRp8q4ZPC36hLWzIYiB8tIWadbB+0xYqOZXxQs10CrIPGTespwA4DcCWcm3nhTXKIRF5B/UN3BLQOaDPprol/zEc0ofjOsdSaEATJtx65hyDwBiCdvti8Frs5ukRsFWk14Fsf6lIqPvkkEbVLXScY5YJC+fASR7cyY1bOGLWyG6KmyfwPbMoK+r8g0GPkz/fOoYuPNkbGUkLKacnMsJnuuDr3a1fVbtc6qsgbs+fEbgBZZd5kSWXd8j8ORnRsDc6HOx2oZV8KGsuYVph6F9rJ9pTTYoR222DYPy8F4AtOUDgIltUb6x3xMAdroFdroV1t2cr8Cob6QINYAU6U6Rfkfx0tDsBGnik2pSK4J7HoiOAKu/wb4DFALynLfh12fgBgUZMdgMfAb4F+8VZowxLhXGZPhyQx24gFAsyRudaOjWkeLkZ9WVjXaAU67pD/KdnqtEWIOkm66sYyNhRCIAQJAcn+nTqURYk2dyKTrz3i8wZFnDMqGxoiVfzN5aH+Z0+qUWu0Z5Ecet1RoirEI3QdMRYSDyg5qcRGhWSOTEZksCPFyKfjHKRrqsNJ7QV19QdLQxAADuwAgIcRqSOIffHQJqxwluFjyPhGRYfpd5JMFdH/5aD6Rshd9F4eK/SZ8RGH0GH4A5W8pNG/vtuWKiQWjc0JIiwmVLWIyZJ1bPwopH/Ur+PkmzHb0rqkJaltv/3D5gTmSfB/RGjQvAVrtW88ea4TEUjMnwFQLeZQA6IPVgY1OGVTEGlUxoSQcDpyaIXCZTow8lCYmif90yXCghUAdNg6Z9ueYQ4ZFJsMeAS+Pmd8shCSgZ4U2Q9zLXkVuhZ2QglgEShBPTWYVHgvLCJoDoS4WEfCHZ7+T3iXJ6c49OJgSITaJOF7DFpPGCJ2bAxRPhzRBVdaVhWDmkezAdEmkNK9sTyyWDugyvg22lJ/4ASJGmJmPEMnIndabJQ9I5CkLrMSUwzPzQ53nIsybrfmeq1dowOXotE9TmsK04gQXiRBgAeNcF77owyhSQzzODCIftVw5e3xqpVGxSWi5GYz9LjpeJ1cqBA9LsiGt0/VQdey2xr0NKl8YY44WMMRl+PpCSSwSDXJeBlFy95Ux9sQzTfSWswhwAPE9soFCtCFkvMw0RvyjCIZF84eukEcOgI8JSt6ojuLp7buXS+lZOHkZEijgoL0HVajUSeW45gOsJPaQSW1dHnGWeYb66l3CyrHkWYaWfSf+nyeOx9IDo71IaNBetoOgCwAzFhRDhC7XSZk3IdPkbNO6Hdkg5h0Wne8HBMjc3CQNALR5afOXmOPW3MAw6y27svEtgZ+Snu9b3hNSCDQDTZDBr6d9WTGbRCwj/Uhd0vpxKq5MvcenI2zK1RDicQFPFp7C8Vve7lOc6XRCbpmVoKjwWbsTmEBs+h2K8wjHGFYwxGb4cYB5QSAxGicGe91lomUtdq/vc7acsaUmrcHiNahXQySUuhVU4iU0SYa2FN8siTO20K5+c+4WhWpNRxq5wDJVEBCBlK0ZaMyUSCS1x0mKXdEll1AsglgGjaivH4/KI8EXfcmCWI3d9oaRHQ4TDiV5/oE8LxCd9cqVD8+xGnrRthghvto9k5S2twiNIhbg30OsxtWX5ISPDOTAoD0mkSbnWekstDlg8lEn4OVZlrYVXSa877w6MmLRCTadqjeMX6cm9tHgPegbK0zz1m4v9V/XWCnQSpayxIo8E547/WZO5QjkyRGQR4i2SSYwxxqXEmAxfLowge0iREV0a1xMuijrdyFVOTC6Rvg8p2ArBY0Y8ywABAABJREFUyJdHcM/D6AuSObgIkrkpIsw8oETj1uFhZZFE+AUEv+XAqNoRwU30FfXlZ1RtsdyagSyr7yjnjaodaiBDZLy0/cZAbKKkZrRTHtASYe55QEuQZ1JN+EBWifDltMSP2ocv9CWftQxNc85rsGVyiGSQkSwkNKqjntfJIYZJJDYLg3IYlMPchFV4M3C6BnyPgBYiDxRJqBv7DCosvvIJJa3CEtTmaW0x8olwTD6l0RSLaygI80YnwfKckzGWJq8Nxl7p6vFSomgChS0cti+limiMFx5eWIzghw2jvgSS2rvAMsYpFUQXae0XgMgqLDVjo+iQFSStbFu2aS7HKpwiwn5CY5kkwhK6cKG6+xQnIvdsLyBLBe+68ANfvyMhQ3c4MnSWLNeL7WDRySPUlzZ3xQTGmCnrSazqTqsdBIspJtxiaVYtws0+GUXfEknPMCI6St/RWHsz804uSY8qq/ghQ5Icq5bgLOjSXIhWWM1DZ3H2GcGAmVH+dvweeRZo3X3UzXflaR5bcQGGWIQzZBHhtVmGlSwd/igEOZlPpRx3dYkMQ0Z4Lkd2McYYzzPGZPgyoHHnbSD1KgBhxZGujoAoSIUZfO977dQ51QcuP/l9EbVIEr/AgT0BUsuwfOMMuPTrqYIxYG47yMzeuFTAYyA+AwoTaHirYK4T978bwCAmCkYlFjLV9fuBv9MJGH76ReQr0cQMUoLhczDix/IM/3c3xEHpt1K3vKz6RZbp1A1Kcol5GBEfFVKGYVKAMgDxFxfR+YXu9oWLqSH6R/uuvekNSboXkOPGJzaMwXv6PNyjcR/TRr0A68X7wZfXwJ6O3MllbYwr/b9uErrCQgFgDP7Jc/BOt0DKFui1O0QgEUDcm5rwDtyKlf7J0J0XJTYmV9eBwgSaVdHu8nlOLJ4Cf+ixqJ12L8A7cCt6ntAbqpEMpfZ14HdQMmswzz0tAjjIdtk2DbLnFnCDgNz/ZZDpvVgfnAXjAelGvK9Sw0bJFKG6Hb+X+l1JUMNO9xOrCMfrRWVT+6caVl31eQ1EfU8jcfCK5eheSj/kzSWABc+wVBPXhhr4YhSkIsxIuVdQtyyoY00uggiP8BkIJkRwkJ4I4EMqMyIATjsoIzVFoAgJ5oDIMvUd8MXz4rqFbcB0Lf7bSASrAcTkxv3mMfA+YB2cgnHVtui86lJScdMGCPLnHlsHW3VQOFQLj3lrfbTPAKWqh/LdC+FxQHHfBsA9uoa10wXUbpqAuasKompvEy7fvJUevKUOrKvqMOcrILtmAWrCf3oRG1+N+yQGgNqsi8o/uFp8mSiDn1lG/xuR/25JhIt7SrBvngdsK3xHcM+D83dHw3sbVRv0qnq0uToItEFmptJR55KTR0qFq8xmR6wm7tsVFEBZpdGtFk7XovMSyTFps5uXX0CStDF+9DAmw5cB/5/vmChPioHVMnzYhhsa2IpUhJiU0bvswH1MMXh/ye83z/RwqL5bvO4Niq+vyzDBguzIkKsFw8dUgWNb6arQcsaX10DqNUFm6pMgcwfQQhur/VNhGS2DwySGIDjuBjqum4osZhkctmnDNiLrZI81wbgDx3NgEgMDs4MSraFoTaQCa/S8JnzuiXC7vg+YBhy/h4HXgUFMlMyaCLkKwCkU0HOWwmsNYobSSEGgAt+fpAgEwTCoaYPK8dqg8A0CFpQ9IgQ2DEKwKa86cuKRF+5Up5dz+yDlIrDeBF9aC1/iqvXLuvMqkOtvys8ngLqpiq+fAj8RvVxlnka9AOsV14EcuBloLoGyB0KyHNvJH2xSKv3sLTBe+sawvOi3YWw7DjJ/Dt4TZ8Xx6ZqYgBUnwBefgEFM/Mtv1nHqRBVvuWsN9xyKXpI91sL/7+kyHnjWxk/f2MM/CuYMZGEb+DV34smNE/ifj6xisSv7dhBGWPkd2AYwU1jBj++0sHPHq8GPPwCy60as+2s4cv4seozgVbe/HLbr4bn2AD0mniY1PFgGR4UOMFmgoMGEpeWuxAizJLdyYupzLxaVzTcI+qwRhihX01JigxbEZC426ZIBWYoTcLwefK8d3i9sm6D/y75YMmuwZXxxuwxSmREhxakVkm5m23BYI8xDnTQYclOULwJnqOcNYoJxJ5yAFs3g9yitc3IjaUDcfe6JtKYBqsSpJdV5ETLcKoJLYlOcCEMHA4gm304H6Ed9EoDoz1M7RLRDeV/lGgDA0UdAd1VB9s2D7FoII5npfH4T6fN7eQ3+s+JecqMcPTQDMjcNPnBgfOMZ2C/eBXLDteJ6aXn3GHB+LQwsM3O1D3rHfuG3vTolNoKp9+y0wJ86Dm9FTDjozTtBrrsOZPthOF4P1nVrmLnmUbjfehprD3RjVScLcyDXvQy8tQR+5suxc5IEk8NXgey8JjJKeAz8yP2xtKHFd6IMsjAHTEwr0SPjzyBsN/W4Kybl5OB+kLkD0fGkb3X12fgMGHT1FmNJuLt94Zd4dnt8Vc5nYuJkUqAyHT9+EdjqcMxj12pjqBiT4ecJQVwC5TsJSScA9L2IEAPA4+slPL6+gjvnK3hmfS28PnmdCjK5E+QlO8XLziBhCFuDmABLh9FNgvkE1OCxezieA89n4Ut94HWDsLwEMHx0WRuMO3D9PiwjsBIaJny/B+aLlzPjDnrow3Eiy5vPPfS8JgZ+B4VCJbQcSqgkwuNuaFFMLYmbek8RarrQQp30Yxy7gEX5bRbyxWCI8KxkqgYyVYvOq9abwzdkZhPzKJA8N7Vb/O07BfPGxeh4tSKIsEGF5f/HirAPn86QKbDouOqZw6QglTLoj98MzO0WJA3AE+0zeNrfhpcNzgIogjEDf/PtafzNt4F/+uMmVteBLz82GWZ/75ES5l4yg5vecLdojsFZDHwDzhDFhjzv+gQtdwXm7qthEAbf8+D6wMAz4MPDw51lNB3xTNU+zHyCjQFDma6B0dGWZmN9gmdb8n14YL4jLLyGBcdrx8i0kXOtei+DmBj4HTBioTi9C0YviPYW9B2fezCsIhjvx/q7LINKsovmRDzwjUnDUOhAPPw57zcEqSzV4ReCSa0Muy5DXRPAKFVhqBbu4gRIbT476qBEfRKkPgkgItJhuXQwKci1t8GwaXZENB3mpmFM11DYuQysNUD27hDHHQYMHNjXz+b7VgdgXT0tPKlITyY5v3VztgTr6imQg/tEOwQgZgEcAL1jP7bdERxUCWSQp7FnO8rv2A4g2JcxNx2R4NiNKIhpwn7V1VE+1BQkuFTDpmFSkNI8cIhmR/3MuTa0LqgBoACEgVY6XRDGgO2BxbnXBJbXwBvNYOxrAvWacIP4IyDzGeOFizEZvkxgrgFq6VmA48dnvEmirB57cLmCgumDZhBYAGi5QMs9DisgshstChYQX9WCTEeYGUtCnDrOHTjMQZcZAEh4L8vg8HyGjr8B06Cxl7brC4vFxuBcuMRuwAzJgXwZSyKsHhsFjDtgYZ0YDD87UEj4WVnyTllIdNjMxjurCCzsGylpHvENoXlZk9mrhNVWQi2fJMQze/PzlS9JT1gLybZDwDb9/f78+2V8+KRYzqWWD8YMUOrjz/5eWP4o9WEp/fy/PCTIkF3wQKkPwAa1/LB/6/o6AKwOgM+frKBoOrANQewswwwc73N87ew6aPA9s1o+QZe1YRKRKCtKmw9P+IfaBJjviEkdi/qq/J+UQg1D32vDKMjfiguDizx8gwAXuLdMhkI3iCmeb3cl1b+Z78SkTupv1eceQC1AnWwWJrKD4EDIKcK+lkWWdbCKINfckY78OALI3DQwVY8RNbJ7O3D11ZnlxHQd5ksmRG2lpTNpAZXXFAog1x8EvR5AqQay/bB4XoGExilXgNtfrpWTkeAzmdwJ3K4Q6Kw9EBKHb4hkJzpLutsXVnqTRhb3ACmrcOCvmswd2NwzkRi2WVJi5ZzSlkF7Uiqsx90+uOeBN7rD8xljjOcJYzL8PCBJfi8UWURiVOiIruezTNKQZ4XOQtKKNSp0RGJk63DOvWNp3b5Y2k3dfBM/i01ajkcivZvJO6usgYU3azIRa6+ki7mc+zL3hbe26HE/JMTPF1TSqSJp9c3CqOkAAG5fyIDyXLmpFugX4rZ6XZ2GWZZ11xQL4k/VQA9B3nh2ydtT/k6DoDPcG2xuTBmGC7De8mUldHoQhp67HrDSAgdCt42smb25bowxnm+MyfBlAGNGYrtVhD4TekkJHVHeLOnNsuZuJbyEdUElyjrykSQDknRLwqpah/NCP2cR4izkEuKtDL6BTRJdFZspwxa5hFNJsrGF+V4sNjvhutgJ4Rhbg0y/yHkYNf3FaE3zrmUMKNrxaH8xbzUJiU1rHbx4BnZlJrbBckugK+cm652yCl8KbEbKggvwYpMDK1jV3Cp4l/gdOcYLC1fGG/BHCFv18t4M4WU+SZGMgW+gYOgHKs9noZ5YYlSSEiPFGivzqFa6zbp1S0otYtdmEGLAEJq/4CWypRYW4OKI9oWQ0wu9n3qd7gUclGUw4o4T1zViUokfBWxmdeKKgM/wvAbrkNr+iwl8o3X5NSQv3TV2OX0s67rmeXCPCfnRxWJU93lJeUNeZLisPC4HNOG3xxjjhYIxGX4eMWwTHbB5SUUeyc27D5AmqqPkpWqRh8HjvvY+WQh3uGuOZ8kldGmAfFKSS4K30HIcw8VaYoeVy6Cx9hs2kQAQ97CxRZZixgjoRQZA2CpZ0ZWArFWOLccobq+eL0iXcerKzKV0uzWMPCZ/S1lloWbonQGIjynDVrQuCVT3fLrnq+qNR1TYJPPVYpOBb0YJJjXGGM83xmT4MiJvE91mMPAMFMyttbzlWX6TVmhJZvOsxyrhzdRLZkglJJJkbrNEIo8QX7RM4lLKCi4BAY/JIrLa7SLu6wxM2IXNBXX5YcBmN3leLC4FwQpXVS7Ein0pw1qPch+dpbfvAIU8ecQmnpd634npmNb6grBZOUSWVdhjoe/zyyKPGBWbDOw0xhhXCsZk+HlC0tqls34l3atdKErUh3SzsFk98SjW4VFhEiO0DudBvmiGWYVVeNwN7mHlppcv/PDYpSC1l8qarMMFlH8kYjzGSKCGvbXa0U3gYolx1iR1KJ5vwjUMzXbkVq2Qseqjs26OQLilWzU5gl4yGcxmQoHrxptLHOBCG/E0L/0WaIftsZ/hMS4hxmT4MkG6oLpY5Flws85VAl+RPab/9W9m01JWWpVkZ+mGzUAf6HE/tBwnrcMSPveGLkNKSCKsfo75ZdVcG36/nMQ1D1tNygN/uaNqrccYHeqESlqGt8I6fMn1xc8Xid0q63HWOZaUhHggzY4IMiS58GYsy4BeWuEx+NQSPpz9SxBaeFg7qVbhUa+/YD32hddPF6Z9jDGudFwhTGCMJLZqo12Zysh3HK5vhRrfCyvT5l2rSciX/LfPW+gyAtVQIOsZ10+bcH0zZjGPznvBZxFxbE/VwYGacI30rXPSSif+3zonIt6ppE9GGgOAc+5pnOulCUjB8LG3OosyiSJttfwNnG43UmmzsK1kY8ZaCK9d7a/HpCWWwbGvfFXqOkZ8rPRPxqzoO4v7AQBd3kGHraNuzcNOCAH76KPlrogvrmhz6dsZ0PvZpcRG1ZqNhVe+Ijd8XQA2HBpOACdthqkCw8pAvKipsjNdjb5oGyUUzAp6rIm1wQBl6mPCqqfyltHk6rawFEp/w3nI07SrYNyBwYVsQY2Cl4d+EPzDICYMw4Rh2sF1peh6Re8qoU4kAYjAjjx+vzDIyCaw7EaR6MKVGDPIlwI+b8J31wEX4W9kZFSmhe9eIIqidurRmKcDPhiI6I952LFPTBpHCUahkOYwmmHGM0mubFHDHi3iZbChkJgUkBt7LYjyWQqxlwTXKsYjAQJRNMA8jbhVFPkGrveIV4zasbOafZ0CMlUHirbwcV6dhf/FvxrpujHGuFIxJsOXAa/d56JeFy8d1wfuXyaxKFxJ92p5mCww7JlwYBkcJ9vREuBc0UXRJEGgCzs2UBvERNvVkzjVols0SzHyNAwVy0LFAlZ60YtCEuasvLqM4D9/ZRqMGVqftfJYON4PPJjMhxdECHELSr2CNtu5p4X3v3oNT64X8P/9oiAn1964itft5PCy6hNYhD3u48hqGf/nqSJaTUEub7umjTfscrBXSQcAvufhbNfCF09bOPqc2IEuNeBykxhjJPy+MDvA63ct4vY5wDZLWOza+MY5C880RZq37WPYV9VEy/N66HscP1it4MFVUe837DqDm2cm8eXTbTzbsnHt5ApumO5hrihC164NzuCxdRsnWoK0VChQphyuX05NYFS9OTUYbp1dwakOxZPr4lp1UmIZwJ6qg/1VE7srFDcd6OJoyUNtchCe7w0MnDk1EbvHtoUu1lbiZIRaPraX1ckNT010iqYIGmMZwExB1EGWWRBYoMfyJ3RtZmKxY2G5T9ByRT63zzE8slrA6Y7oPzLMuby3bKPJwgAHag0s9y2cbJVQsTzsKLcxWzJRoVPouOtouX0s98XE8prJJZSoPjJYpoeJhBVZ3QDq8n6KTA1zJdj32mg6y/E8lYmPARMVawpFiOfRt4K8lW4RI8UKIZaBOXzPS02+kuD9BgiAVazj009HfSkeWj6quwiiwvGy7YuYMedy806CER/rztlw7Nl71bUo91zwE48BrU6Gp4ng2LZd4NO70HCWwLiDWRSB9bNAIeFV4iIt6Yw78LgLH54Ihx0EtQlhKERchsZWQNy+iBgIiAAbdiWeJmc1Ke8XIlcyfHiAARimDepRwGvnXBVguibCQVdm0LUJ/vSpDp5pLuLDr34T6Bc+l10ey0DvZ98M/EZ2mjHGeD4xJsOXAW/cW0GlauF0u4FHVksXlIdlAAfqA+yuUFQtYRUpmmdwtBFZbApmGRU6lWnFsYyu1jJctYASraFk1tBh6xh4o0UK8nyGglnGtpKH8z0nlZcMy+z4wkprmyXMlbro9yiMFQ+2G0gaWEAoA3OxyXxY0oIXvMCYElpVJcQeNXCuU8aTt3Zw/zKBcVKkf+rkJJov62HDAXZVhNWOhpZAoaNmPsE3zk3gKw/X0T5GQ8L9+VMVnHvZEt60u42Fyrq4v09wrGHhyydKeOwhEZ5YvouyNkX2ex08MdHBdNHBYmeAry7aePyoIE6U+vifaGPPxDOp69rMxP3nK3hoyQQLLJvHqhwL5fN4slHBuS6BZZio2QW4/mk80yzgyFoZ6070bCuUwzZIQEai44J8Ru3n+EDH5TjVsbHhxC3/kqhuODZ6jAkrfIVj2/4+ZgqiHZ9pAU8p8435hS4Oz3g4UAX+zuhjdS2u2bQNYHuJYzLoour9CqaP8wkrfcXyMFMUz1Rq19vMRNMRhdsYUHRZmtg2HILVAdBhBFWL4+lGEU824u2gEnCAwDYA16eo2RaajhmsYFCUKUfNHmBjsIyVvoWmExGSJzdcXDPZRJcJIqFGu1M3a/rcQ9/rhRZodcOo60eWyaTkIrlBTyXYJrFgwESHrQch0RV4bti+tmkHEeUo+kAqap56L0mKY0SYewABnm6fCfOU1nSYQV0tWdcmzncdnGyXo/alapvzWPsXTYK1wQBGcQ2GYQpyRkyYtgWDFGP6ftkWjt/DmdZJPNssADBBDY6pwjLK1YMgB24G8Zjwe1ydj8uglOh7bbaOlb4YD+em9gFmAShPRmlVTwzKZ9d3Ys9LfRZycpHcBOz6fVBig5qacVmSZJ1cy5wQVuJ+W5Dg4kQ6zYjwuQefiN+P73uhdRsIooAaJuzypLhf0H5ZQVtIsQ4UJvDY2ml89Wgdq8slPH71Im5440+H9Q9XIpTrv3/izAWXHwCoEZ+oXywyVINj/IhiTIYvA4pmBRVawaF6DVOFk5gr2TFSKi1eEpbBY8u4EhXqwSCFkOzOFvfA4ydgEgMVawoVOpVbjrliZP2RL2UVPrwwD49HVgK1HMkyDbwuLKOAbSVRphKtoWhOiJd28CIrmtEgHrpiG2FDBd3EzuSPf247AKCMiJmdur+C//JQFaUFkY/0diC1281GISTPsBBaoK2Bhwf/fh7fp8C2BbFMzZiBxongZRbwOz8w9EgvISopZq4B1zXw98dK+PtjJawuR5Mgu+CBMQNnTk7go4p1XF7f71E4AzOW/tF1gmMt0Y6OD2w4BF85awOwsdqPvySKVJBA1xCkODxuIlyRkES35QLnekYoR1GlMPJYywWOrNEwj6Ip7jdXYpgsCMvrY6VIJiBJz0KZYKY4QMsJLL1FjoUSUKZpEiyxo8JgGTTMv2br+0CZcjQdA/cvpyU3RUpidVwdiDpGaaS2XaRXN6q6PvDkeiF2frlHsdyjocRFXl8wfTQdA09uuIjWsNVJlyQR4n/BMDFVEOfk5jXH7w2NaKb+ByKyxSAIjeezcMLTcpN1JDAJQ4eto8PWQ40+JbbWe4uEain2uYcvnPTwd4uVsI2BxISCqhb/Uqz98tD3gB+sitWLginqI8dDWQd1LOwxA8s9CqAU6zfrA4L1wTNRWhNw2yfQYaJ+Ivx8JIsREG12rnsMMAGvvxbmFwvhbQTSIQMwmBMjkoCUFYkJf3JFTm3DTF25QYCsc9QCJoJx/SJ06T4XBNjnXmqFQVqJGRzQQgHUqMakZKPgDx4pg1pCYpHsH3Iy5HfHdGOMKxfj3nkZoA6Es8U9eNl2Z+iGm1H8wgIIl8mHuXgqmcJaOwwGMVGitSCv0XbJu/4AFWsyzD/UymmtIfE8pVX4YlBb64O1oreutPDK/HuLoi2bBTu05voMmNjIl4T4DDgfEACzoyzvDryYdVpCkmIp9VhbEaQgklKk67q0GC3NykAVKqmmlMMZmDjXENfLc4uK8V6Q2CCPhIcSSyEk/aAKKimW6eR/SYhFXlw5pieOlgEcqjPsqsQndwBw5zZxQ0Ek0z615T0GnjhRMIW1fkeFCQ8oiJNzGfRjItgQ+lyrhA0n7rLQMoAOi+vM+4zEyFq8rlG5HD/eLgACHktilmdZJunisOkYMQ8tliHq1kOc0BWMwNd2YlOTF5DlrDDoEupmUhWWIcl71J/V9u17PGYphs+ErlgzZuiOne+18ESjgvOLkTRIyoLUCWb0DOKTEVUGpj5P2fYbDmAbBIAZkOD4hENF2zXDeqguJs92rRSBlsGGBEwtuS4YPtYHURoV4pmyIK0bXpPyka5+zdhSEVrYtxib2fwqiTCQ7X2HcQfwhc4Zxmj7SxgzcPyY0NWr/UEdzyjlcLvjjXVjXLkYLxRcBvjcj3RagcWUEjv3z4CZ+afmFd3Dy/0bvayRnswNXibqn4T0CCE3eQ27/1btuB8GSYRZwiSVJK9ShrEZjELcJRFW9dDhsWBdTlp9WWKdztVdm9DHynOuHxFglcS5viAfsXz9ePq+FxFjJ0gvr1HJoHzeat7yeteXkQ3FZxqsZpRotMrRcU10XDP87ir5RJ+j+klSDIi85SpCsu8NfCMVDU9tF12Z48fSL/m+F/+stk+y7CpkmePljc7LezGfYOAL39zqb0fdJOn5TPsn4cNL/anwuB+WI6vt5GdJzpK/yVF/q7JfqisYyWeQ/JyaaCD7XPIZDTwDA8/Q9humqZ96f90ilK4P6PqVDkn3kMlnFH7exPh8oWPkZvNN5u9xN72JEkMs2QGYT7T7PrRph+j8R4FcldrKv83gE5/4BG666SbUajXUajXcdddd+MIXvhBL88QTT+Atb3kL6vU6qtUq7rzzTpw8eTI8/8pXvhKEkNjfz/7sz2rvNxgM8KIXvQiEEDz88MObba4xNomxZfgyQPfiupLhcTcVkllddk3B8KMNGUMw8MTGuaS9eBTZRKqcdIQX1whpNgNVSuEWzJhUIom8ICtqkArV7Z4MZaxeK14kYuSmNLI8U8tPWTZV62dk5Y02qqkWZEFqo+cpLXiqlEJa8nSWVCAdgVDmz3yCruYFqN5f5pW0ElPDC++h5p/sj+G9gvaTbaZbnlfrZifaS03fH/FnGrNYJyzbNChbNAkg2t+PGqBGB2mB9BKWZNWCrP7mkr/NTHeH3IfnObBNO5xcS+hkE8l9Brp+vVnXkepzSPpT1z0/1ydQJySjaEdHCSmv86Muj0XPkgT9jWifmeoiEki7yAsDBSnPahRpzIUgz1IsSW9yY6Z6ziRWyqXlKNA9/x+2sOy7du3Chz/8YRw8eBAA8MlPfhJvfetb8f3vfx/XX389nnnmGdx999145zvfid/5nd9BvV7HE088gWIxvjHyXe96F373d383/F4q6fcR/cZv/AZ27NiBRx555NJVaowQYzJ8GXC5rKJbBbGc5kNdONCSYM11lwJZm+cuBm7BRKG39X5XVd6i6onD/4mXhrQOy/+U+lpCrKaX16vkDxAEQRLZpFMp1fKmyiqABEFWlrSTOmKVPLp+mgRKqMS46caJjkrKLSNJjrNJY5p0k7ANspCSeGQs10tIIpyUhCTzUUm8modcts8ixFRDznTIIsmjkGPVsikJHZCeTAQtBFu6YNOQH5Us9Vma3MhQ27GJndJnY4R3SNsPg+xzSRKsSiXySLJ6LklyAaQswqMQYomkz3Qg7ota5wHkYowjW0Wks0ixKpXZrA9yXSTKrYq8+nzjzW9+c+z7Bz7wAXziE5/Ad77zHVx//fX4rd/6LbzxjW/E7/3e74Vp9u/fn8qnXC5j+/btuff6whe+gC9+8Yu49957U9bnMS4NxjKJywC5FPVC+VMtQnl/QPTilnq05F8So5DqzSIpidgqWAMPZif4G0EiMcy/vU4uIf/CNMG5pGSCMRKTV4Qk2jW0EoE+i8sC1HZXZRWOhhSrMouktEC9Th6TS9iqZECVPCRlBzoJg7r8LeUX0bmo/GrfU8uutkeyLZLQ6aWTUCUh8XZIl1eF2gbJOrKwbvq/ZH3zpEk6eUWqLArBG+ZfXLd6JSfxaj46KU94D0X2kyWVSCJ5LkuGos9XL5UAogBDyeNZ8gh5bpTxKevZAGnJhDoubkbSkGdA0cllsqQz6jWA3jCjldzJ/HLKU6I+iiVP6MUTVuGkBOxKRrPZjP0NBsPdi3qeh8985jPodDq466674Ps+Pv/5z+Pqq6/G61//emzbtg133HEHPve5z6Wu/fSnP43Z2Vlcf/31+PVf/3W0Wq3Y+aWlJbzrXe/Cn//5n6NcLqeuH+PS4IXTY38IcCGD4fPxB4gBX2rodH+AeNFIN0tZG0SS5HizagjVKhzLVyN/GFUSYXa8kTXDJvNhMh/U9WOu34BId6ySYGvgpY5nEQf1hbEZQqzTHOv0mkCSfKZJcTqN+J/UHcvrAdXamSYGkbaTBIQ5TSzVe8f1wwjzSJ5Lll+SHMaMVHvo2ltXrzgBjY4nNc5JQpzOO90GahnVvAe+oZ1UJvPZLDnOLEvi96pCWjOzdMnxOurrvlktaN5EJKt9k4Q4rzziHIn1Hd1EIG9yoLadmlZHlIcSYmVcHWaE0GGryLLMK5lv8l6iHm523sq9r65P4zWH+njxzeuoT47un/5CIcMxb+UfAOzevRv1ej38+9CHPpRZhiNHjmBiYgKFQgHvfve78dnPfhbXXXcdzp8/j3a7jQ9/+MN4wxvegC9+8Yv4qZ/6KbztbW/D1772tfD6d7zjHfjv//2/46tf/Sr+1b/6V7j33nvxtre9LTzPOccv/MIv4N3vfjduv/32S9aWY6QxlklcBuQNPFcifO6lXrwqLIOHLwqT8LiGcUi9NkOGk0R4VImEtBQnyXEQDRrlTcgjLkTLrCLpfi25ZKjKI3Q64qRkIrk0rV6vyiZcH9Kjl1YHDASeBhJWYJ2sIKlFVpGUAqhQya8qPQDi8gP1vPwfX95HUN74fWLkWrM8K/PSlV+nHR5Wv+SxLG2r6ukgKZkQZQ/kJYFWVUfMdLKGYbpj5id+LwkZgCqbsAweLu8DcQKnLvVr20SjBd2sVGIUJCUJWc9JlUqI68TmzaQnCp28Rf2clJTIcU7VFGfto1CfQzLMPPMdrdwgeSyLEKtISi6yxttk3skNdKGOWfNd9Tcto3fopBmU2Hjp/Ap2VWwcfW64bngrNtFdCpw6dQq1Wi38XigUMtMePnwYDz/8MDY2NnDvvffi53/+5/G1r30Nk5OTAIC3vvWt+Of//J8DAF70ohfhW9/6Fv7oj/4Ir3jFKwAIvbDEDTfcgEOHDuH222/HQw89hFtvvRV/8Ad/gGazid/8zd+8BDUdIw9jMnwZcK7TQd/yMFvUL3k81x5sSj5gGRy7K+LRne85KZ2g9PmrQgbFyAM1OGaL5WAAJ6mXdFKvCQi/pswXA2qJNlFPhgeF8EUs3RdJH6RbhVEkEiqJlhHtJEaxJqsR8EZNm+V+bRi0pG4IIQbSm8hU9IeQ4qTmOI8Q24YgskkNrbw+LHNw7GSbYHuZx3TKHUbQVLqjGpRhe4kHrrmMmBZZEsqNAcVGcO35PkFzw4brGqjWXG07rK4VwjaaqbJc7XCHpeUgEmrUvPj39K50GexErYMkWHGSm+5TWQRZt4FQll/9rtNW6wix1L9CIXoqMVYnuKE1Pql3H6IFzdfwxtv9fJ9gT4Vrrz3VIdhwoj5TpMC19XT9AODpBsVckQeTeROuD8gI7TFf3Gb8GVoGsKMSJ6NNx8TZDlXc6iX8vlseDtQG2nIAoh3P9Uz0mB9sCtXrpJMb+FRIN3AzReFrOIswS5LscRdNZy1xzoDHfXSZWJXYVtL7mJbfO+6GuC4ROEbndm97uYTH14FeL+ovujHsSob0DjEKbNsON9DdfvvteOCBB/D7v//7+IM/+ANQSnHdddfF0l977bX45je/mZnfrbfeCsuy8PTTT+PWW2/FV77yFXznO99JEfLbb78d73jHO/DJT35yk7UbY1SMyfBlwJ89XcL/dVt6Fn+04eMb5yx8/2Q9PJblSkvCdQ2Uygy/cXcDlsHxicfLYZqX7vBw29xAa9E52bbxlbNUa5m1DOCWGY6bZ3piOc9nGPhm5os2LItP8Hdny1jtE3QYMFMEbpvxcdtcJwzH/MhqAd86X8FqX4TtBUT45CWrkgq9HJYnIKxyg5tKRJlloNJME3uPGujOigHEbmRbWKw5Dq9n5GqAVWmEDknJRL9iheWWx+UxHZLPtFiKN4Bq9U1p8TSEGFD8ewYhj1f7QNUWL3zZXDpSrJIO1eqmix4mkQxlrIPrA/efsfDED2awc08Ldx3uoMMIjp4t4Llna3B68Qsl95qe6+EddzVQt+Mb9JZ7FPcvEzx+tIZux0K54oJSHxtPionf2mwJ8wsd1CYdMGZgdbmItZVSeB+Din539d7IQXPSOgwAj54uoN/TT2JU/7oSM9MDLATtLbG9LIKL6NoEzIAMqqMjt8mNXDpynHWtCtWPrgpJiHvMSAX2kcv8yc1gO8oO9kzYWF0Qbaf2SdW/s2zLRi/dKWo2MGnzMNx2JxjnOozgbx+YQr9HsXd/EzfsGuBANV6fDgP++m/n4bPIx/eDuzu47Zo2bpoSaZ/YMPH9RQtPPzGF6dkefu6OVtg3jzUJfvDIDLpNmopgHPoAt3y86zUrOFh3Y144nmkRfO/pMlZXSrF6lysufvnlG1ors2pxd32C/3h/NTauq33o6h0DvHqHi4dWKI4sJ/wcWz7unue4c76benfkWZWbjonvLZdwshMfrx0feMMuB9uCvqmzCjecDr4R+Fav2zwMg75noottpSoaTgcn24XYe+TvlyyUSiwm9dJhaqafe/6FCM45BoMBbNvGi1/8Yjz11FOx80ePHsXevXszr3/sscfgui4WFhYAAP/xP/5H/Nt/+2/D82fPnsXrX/96/MVf/AXuuOOOS1OJMQCMyfBlwbHjE3h8v4cNJxqwuozg6+dsfPfRGvpPxMmZSsKSpM0auHAA/NWOAmo28IOvzAIAyCRBqbCMCi2g6aRlAI+smfj2gzPajQ4zsz0UaRdlWsSGw0ANiqZjYGOQ3z1OdYDvnyxifa2A5kYBxRLD6vXr6LIJ7K26eK5Vxv3LBA8fmUK7aYeBK7Zf28Wtty8D0MsmJFnsdiysrxVgQU3ko7lRAt/gKLeUkKL7CW65dgnMNbC2UsTSYgXYiF465RrDfBBNbvlk0tdCBEmCk+0uv+tIdLHjol+xYLP4dckXr+oSTYVdEJtQVP1rkhDrlqYlIZaYrfjYM8Fxvi80k30GXDvDca4HrDskJMOqZdQyBGnOQnJZ2jLESxJIB0QAEOqFF3vA009MYeHJDQyOm/g2KlharKD6bA8LjfXM+7XrRXx1t4n9U5JkcQAmnmkSPHFkBhOP9TDX6WJpdw1O3cLC4gYo87DqTmAJFbiu0GKvLJZQX+lhUplQnUEVtUkn/A1Qyw8IkwjF7PgiCEq7aWdaPHXHXX+AtZUiKOXBpITBNjgcn8A2ZJCIKH2ZRiRDh/gEQ1yvRo9UyZq4v37Zv0I9lKkfSp5kNDZ16T+0BmvcuzmeA9cn6DETN04zVJX5nU6uYBnAVMHDt85TnOtG6a6f4jhUF8ErznYsrCry0odPFGE95qLa6aJx1MTnr57DtTeuKs9f1MnseNh3dA00+H0trdTwXVZD/5omarYgrOsP2dh3fBmdagFfmLOwb4ahz4ATJyZgPevi2meXY+X1EjO5v1ko4ZVXi89Ja7/1rIvJlWgitbS7hiduMtF2y0E5478J+XyWexTPPDWJqVOd8Fp1Nav/EhNTtjj31N9NRscrFm5+yTIADx1m4nhLibKDbGsyNTgeXy/j0XWCx45FkT8tS2x2u2mKo0QHqetleZ9YL+O7y+L3ULUJpmwShl63jCYWuzbOdmjsGVZt4PZDXTh+FydWaSyQUFhn14CVXjTcFCgZzaXeqHA3qdp43/veh5/4iZ/A7t270Wq18JnPfAZf/epXcd999wEA/sW/+Bf4R//oH+HlL385XvWqV+G+++7D//pf/wtf/epXAQDPPPMMPv3pT+ONb3wjZmdn8fjjj+PXfu3XcMstt+BlL3sZAGDPnj2xe05MiGd44MAB7Nq16+IqPEYuxmT4MuD8mTL++BsGpqbFCJK0/o5OhCPrwAOPTIXWQJP5wArw8H3T+MECwfxCJ2V9PPdEMEDNGSHxklhdKeFLixX8YKGDbQtdbC/HLYoSw+SzjBnoDQx86SQAmLk7ihfKaYtWZO0SN2pWBihXXDQbabbWRAHdwFuxWzBx1VwDeyYAx/cB9OG6BrolC4wZsMAwM9tDre5gbaWI9mQB9ZVe2HYeNbRu1tRnwSxDayn2qDg+sTEAs4zQim0NPHgZm/90G7yy/HFK4qaeL1dYaE1WrbozRY6ZAnC+D0za4nuZcswUhK/hjhG39APAlC2IchbyAiXoNjZJHKgCh65dx/JRG9bAw+BrJhY6ehJsJvr8I/fPIcuz5lTwGyj0WOqZ2Ysu2otB2GgrvjpgMh8+A574wUzsuGoZZK4BY8WDST1wAF7FjKUB4s+OWj7OnJrA+loBlPoolRkYE6G0V1seqpWofCp5nCkSTNrZbZ4kYvuqLIc4R1HRStQPI/dJIqxCJUAyPx0Jlsdcn2Cxa6PpiMLvqoy29F2hHNvLglBN2hy7Kh7mii5KITGncH2OT3+7jpXFEmYgyKA18LDw/XWcfraMI7sj5uQzwNKsdjVO2Pj6idmofmBhX3rmGzU8A/Eb3n10DVOacpquHyPEx5+q4/hTYpVOnchSy0cJ8Q1i86ea+Kv/MQN7d/RcVGmA/N2urZRiRBhBmSQhbt5P8VdHZrBwa5zsWgMP3Y6FL58w8OUT0SwkPZGLIPvY40fjS/5yMg0Af3PMwtVz6XFAp6mX/xd7wGKP4rlWnASLPIBtwbgjmp6B0nZsL4Ms785NutO70rC0tIR77rkHi4uLqNfruOmmm3Dffffhta99LQDgp37qp/BHf/RH+NCHPoT3vOc9OHz4MO69917cfffdAITE4m//9m/x+7//+2i329i9ezfe9KY34f3vfz9Mc2tcho5x4SCc8xd2D72C0Ww2Ua/X8aL3/zWKRFgjJcHVkd4k2VLJcNL7AWUeGDXRnixgUIpG7rw8ulUb1lz8cSeJGbV8zC90UFZe5LrlL5XQry6X0G7qzYs6d2O797dw+6Fu+gTi5KvlAKstim4nPmdrJe5FqY+ZuT6218XNNnLk0bK+TxyZQelUNLJf7EY5QBDmQYmGhHiYZli+cCdqzsi7sWuTDl6y09X67nV8oEKjSUvdltrJ7PxWB0KvqfMekUSRAlM2x/aSsG6OgnuP2lj+axulTvyhmFvQ3knLnoTOA4l8Fh41tDrzpCacWQb6FStzWT15rFxxUa3pO15SWlGuuJit+JmbyVRiMmlz3DrrYs/EaP0jKW1Sj+mQ5++3ywwsdm1sDFn+lpBW0fWBiamCh5odtdWkzVCzxRjWdEz8P6dL+Nynp1BuObGxjbLoc7KP0Dxp00X0p6x+BAAs0S+SaXU+0JOyLnWlKXkueUw9rjsn72HQQLaT6I/qyl+SnEvrcFLPm1wtlHlO2kLeAuj7SWyCF0hcdZNnma7ut/DWa//faDQaI2t0geg9+icP/WeUq1vnaqzb6uKdt/7TTZdnjB9OjC3DlwF04AFF/RJ7lnZ1GBGW/6nrY1DKJ8HqMeaaoRVMhbqEz1xjKAFOXgcM97MLiEG8NhmRhizLo/ST6wzMVFlLpfSNnIGJjUAeMpmz7I/gBT0920PvlN7aq2KYf2H1ZSWfhbxmlA101PJhF7zQcgPorcSyza6eY9hdySYwYpk8+gzkLy1uhkP0GeBQQaAtY7Q1xn0zDI/tnsHeJ1fDY1tBhNV8kgRFThRVqBsa5TNXSYdKVtTj0huIRNIyLKHrp/EIgnGo3j4k1GAn6fSbW9MdNX1eOtXf8yiEWq4UTBU8TBe9mLRDzaNE9WObSoQ3g4vtT0kL8eVG3gbdJIlObsxNSq/UfQbqfoLQUmv5gOIZIumRRuapBvMB9F401M24jg/MFaNxSSeh6rQuzpuE3Oi4VXgeH/kYVyDGZPh5gI6AZckjsohwXn5JAifPD4KNE6Hf2owQwrHvQwiwSGNoibDOl299wcFMlcVe+KNYJV1NWXXnyxUX7ghhYXUSjlECa+Rdo8otBiU61JcxKZFgU1b8vrq6FksMFSq8LYwWGGCU0gtUKEcrRyoRz5dgwwGKJkdlxNFDtsNWkeAkdGRGR4iBOPHQkWIJlZwk+7Ykx5I0JENpS2STYyOQ8wiEoaC1vp2T/pAvn3uqgW/AMgSx6TL9xE4Npx3BAPP93LLmyW+uZIxCnJPkVh0jkv1P1/eS8ixdnj4DGJSQ7aoxI0Fuk27vgGgjqJYwy5Dv1Nd6VUkS4/Tkm+dKqMYY40rEmAw/j9iMpRgYbjnJIsEqVH+3KsIXviVe6qkwwLpABoljw8ifVzExNT0I3Vul8vPT3xkjqftkaZFbTeFlQGLYC1e3Ue5iIL1QeNSAR0dzx5bUb+dhzwSPWb1H4ZbD0khri2WIXfvDIL0mqN4D8iCf8zAinLcELpFcslahsxInCbG0qiWJhUqKTRYRFLU/q9Y4+VuRpFhddtZNZKwEYXEGJqDIkLKaRg2vnSSWwyLKbRWEFdfA+iDfhV4c8cAoOgwj9aNKJLZylUFHcinzc/vdViHLOqwSZp3bxpRlWBm7dVbipM/fLFJMAyKseqAB0mHdAZ2rxfSztQwOZ0yQx7iCMSbDlwlZuuCsY8BwcqnLPy9P6vpwkC9tUM/p3LrF0gbeD/pdvRU0Wab6nIOaoo3Neo9JUiZDDW8mtGfS6pZ1L2dgJrxUxLGZtgfiZCnP80SsDK4FjOh2mbkGLMPTttmofEC//L75fERaAscfrhselucoJFiXNougJElNnoUYSMtc1I2S6jkdMfYZAMXDgtpPVWu//N2oVuO8dlEDkUjNdx6xTLpj20pYBgcLrH+RZGLYNaLcWeXK86v7wwbdODzMOpzsm5mEGGZqlUJ+BvRWYnUMly4aw++Kq0YAcAOphM54EblnFJtzswwPqtX4Ei0MjTHGlmBMhp8nXKxVWL7gpTUrllYjm5ADq9RA6nz7AoBHhRcIlQjrrF2MGWhuiF0T0mXaUPI3MHF+sYzK7vjmueRAylwD3U7aT+8wP5Yyipur0RQnIbxMxLFZApx1rbQ+jhIQpN20MZGx8UoFYwaeafooTnGtRfZClp37XuRJIm/ToQo1+EQ/p7nUDX66frEZEqyDvF5HivMIcVJzqbMSSw8hEkmLnXzWMp+kr2cgvXpB6f+fvT8Pk+Uo73zxT661dVf1err77JKOdLQLLRYIsUhghGSz2Ri4xuhn+Xqwx8zY5npWY3uM51oejx+8XZgrzHqxDQZsgQcQlgUGYUALoAXtu1pn6+7Te3XXluvvj6zMisyKrKVPnyMJ6vs8/XRlZmRkZGZkxDe+8cb7thY7hemS5CAsctv30IFYijhZJhQhkemljiWJvIg0X8o/DkjWGZkSLDOv6GZSIdq0d1OJIT5Ia7c3VmJKceixRqynbSY9euA3GhA8SrTSbnWwLUMwg7V96/0HNsMDiBiQ4ecZvajCMvMI2eKsTrbDoscJkQgnCWB4LI0Ax7btwFY468iDXCTLs1nORD5cp3bEHbCLSR1HpV7TojKkkWCxPPmCTS7vROXqBZrjnRAB7oZui/Pc5iCibugdI3npuke1EnjVMNQ6Z5XSO4ROBFWa3gmU+F6fGbrHsElXe+GwHDICdaJEOJlXv9PYMkIMLdIbbotqXIikWuzoWqTuy+qpGCHQsVWyObdlk0l8EZ6MHFtey3dzr9huE4qwXL0OfoaMVgTLpD/kEC9Wm+GTgaTyK6ITaQ7rcdJsJ6kSy8K/Q7v5jqgU67ofLKQWVHxTbSe7dQdWUSjofmxBHZw4+R1ggFOJARk+BdBcD/Te3Xf1StB6dakWrpBPm/YV09sZDauhtVYWS0wUxE4/W2kR4W73l18KTCSWiznGJuTRiMKG2RbU4V7MJHS9PTpYr+dK8+tzZXvSNjWwG+587XCx3WYm05EMO44aBBEh8DE8k7d7UjV67Yw2Kv00A15bp9hrGbaTBIuQEeJu5hJJpQ5aJKNlJhEnxWGaEOH7lanAIcRvRdcD11YiZIOQsC6EgVNsSWj0frFV1bgVzEP+ziOlsHlbIyYxApxW7l4WzZ5qPN9eJbqhm/2wSIqT3oFCk4lkIB/oTIpDMwlotxeOzGasIAR53Q0iDKa5V3MGTlwHeAFjQIafB8imjR2jRVhLjVq0X0bKNkvZKFJaeSz4HXqKKJSttvzLY1mMSR8VH7scJ8JhYAG36W4nn3eo13TGJ2uBnapA0tbX4vHSs3mHqtMyNuhE4sVocbZjpC7kg+7mELJzyutB2UJ1uBNEZa7tWAoJrhU6+WtrQXwG4mAlRNhxDa3F/caKC/+qFSOVJA0XnK4LmMJIYcngDTJlL6sHnipCk5d8wU4l5o6txpzx94NeibDsmSUhDZDSgRDXCmZEGpJ1NKkShwhJh0iEpfadFZc6euTzNekZRIa0AZrsXNuD+RoYTdkvo3nkJIO+E50+FhfHpeWVVP6S54XT5Is1nbzuUzTTw6KH522OBPUu+T2koTIcpI++0xzkJeHZO6FabP+W82WLatGU1i0RmyOBv3iZv2DZuaHvcS0Xf7fRQKp5bjLEfKVoRmnyG1aquYQyomCsxQd2SdOJoaIVi3IJrcV1oe/hWJmbRNhx2l2sJYmxqQbht5c3VLI5h+l8EIQjRNgGWR48c4Ku1QYY4GRiQIafZ5THskyfU2XHzCbnjPicPuyzWFf44j3DaN+Mdya1gknpWpfr9m9wxx9ruIbK239tg8mszzMbCl+6cwzth+0d6rmvXOHNpzv8v98awV4MGiRlROFlly9y5VRL+QH45pzCw7eN4cyo/NsryjRclQdXVX7wZODsPLlI6NfeMt9GsmQE7dZ7S9gPBr9li+KS24bhMTVTbR5T2CibqSQxzLO8nmG4GAQ0qDiB4inac+q6Ry4ThCw+OtKIEaPNkQzGBXB0LhfziQuw+vJhpmaqjI81unpQWN7Qmb+l2WEWNK67eoHX7kz6W4Ubb9mB8kQzPPWeCr9/TeuaZUvllkMGd31vMnbeb167xKt2WizVXH64nGO+NWaKkdMRE66crkqji7XKENoK69iewsceg/JaBsdRuWTK5fId7QTjgWWTJ9aV2Pnd4NjdfTlDyytAbcLkql+pdEz7+X+a5qz7Frrm+cwFk7zslQtsVILQ0ABWTaW0VIuRryQhXp5pRT8L7evDGZCQjMjcXEHwTYSmEWHdEwlIQDTifl7TEEYRtD1YtxTyOmS0dA8OaSQ2fFcyUjOZtaM6EKbJ6T4jphPlV3NUFmutriI5EJrJwWWTNUYzPp99Oo+hwhklmwvGJkhiw17iqWYdOv+Na7xxb0Ag//mIzr3/e4Tx+U3pPTi6yo73eFw32T6j9PXZILDL+Fz7uUevDSIO7rq19X0t7Cly+U+tcPF4MLX/1T8ORo+X/KbDQ0cyrN+qxUIviyj8pMdbL6hJj4VtZ3ElXkb1dIV3v2Y92paJz//zC9NMPLsBwNpZBf7rmxd4ZkOJ2k2Z/fB7fn6RT99ZYn0tIPdJlTgkxHv2b/DLF9T4l2MG376nFbn00rM3ee1OO3rPuuqzUtf48J1FIPARfmDY5zsLomu/9ns4fdTjB09mWV7MUi7aLI81ogijYfpVS+G+J1rhobcCU/Ok/ou3Cmcb8xrgxY8BGT4FaOQNnGzQ4IoELDfjcuE5S1w45rOn4DOScbloPENGK3BmaYXP7ze4/9YxMjWH2p4Mr3vFIm/Y26BsqfzD6eO4usqZpTkuGNOxPZiaqXL4cHsA+KvGK1w4XmXXHp1qZZSpmQpXnVXjNTtrnFacAsDzXWyvztMbHg9OaOyYqXJwpM5i3eBwxaQ4YrXZEefyDrsLLpdNgieES3UFo+SQkJ0+7PP/MsL6rMn4RC0Wqtb24raT2ZzD+FjLmXut0bpuZDqRQoqLIw2yzShsotKWzQWKakGH5XrQuNcLQV7LMwXOPG+N83c3mDtQ5pGxUZQnXDI1h7WzCvz0Tyxy2YTDVF4ss8T/sqegqw3+btjhO9+dYtfeDc4p+Zw3qjBuN6V7LfjkKtcs84flGQB+88o5fiI7FB1jcoS9Q09xRtHn6w8XqNV0XvOSda7bWyDvFCkVNYrmYR5byzK7Ef+E6y6MZByK5iR5RagLWvun7vkue5v/f3b/Al+YpenLOCBJ0/kZdKWlok1mnwMK0YKZXlDKeWyOZFibaI8cJZtJOL5nmEsn1rlsMj4L4fmttKY6zz/NDZOt2FJV19VVjMvhXRfOc9XOBl+czcI5q1gNjY2ywUouRyOnt5EWkeDmiy37c8tpVwEhbmKRjAYmurQS62GtqjMuIXRJOLZKRfUYp6X0214Q3U1EXNGFncIMQ6cBi+3BeNZlIqeR0y3WLJ2ypUX5OZ5CXvcwNZOCAZM5h4rTXod2F1wumXSZzJ7B0coTjGeCcpxVypFZEQYsqo4/thtdMRkxa/z8AZ+zSjlKjRxoOpdMrvGl0VX+/u7WoBlaplfG5fC7Fy8wndnfVpdfOfMkn58q8I+3TzH5YDnav3F5nk/8/GGeLmf4/DkGT/3vIkNrDcw9PmcUfV63u8qzGwY3nT1NaanG20bX+Nn9q3xhd55b/nWS4WfaSW8Rh6t2VpnOH2g7dunkU9wy4nPrvSXKs63v5twDK7xut8t4dk/q+1h7wzE+9rlg8Pue645zZqnOY+tBm7E+0XI5ExLcV1y5wIFS8K6VESWqe0YzkotY5/aPO1wwpvPkuk9ppEFxxOJVe21ePlXjjOJOdLVV1nuWDjM2UaeU8/iVswNyviOX4wdLesytYoi37Lf4f743HOsbag2VJyqy9R59NBwDDHCKMQjHfBIRhpH8L7d/FD8bkAFRnQkVlnNGAjJsewo7CzbnjxV4aKUSqTFip3ZGqcH5o7u4Y2EeQ/W5YmJXdGy+Mcv3jrcazvC8N+4bRVU0jlSe4/G1bOQQ/cxSndOKUzGi0XArfOMoXDpZYTQTKASOZ/Hwqh9ThyBYKHPJZJzQyIhwWJZ7FgscrgTEONlRy3wMl214dE2h1lAprwcNdicvF4bhsWOmyt6mAFG2Wm7aQtu3UNl94pkg0dRMNVLuzpp0mKvGFeXxsQYvnfQ5e1Q+FZu0iTxt2GYss4uny8fYkTMZqwd5K1qT3DU78js31mMRuX4iO9Q6nh9hduPJmGIHcMHYBFkbLENj3Y4ro+JzbyPCwnVFhO/d810eWj2K7SmMmA57hqZjJDhMs1g/TDWp6HdRiA9tmhypaKmLr5Lv/YIxh8smM7E6mcRnnurNJ7KpwpXTFit1jUfXNO6ezQZkeCn4RsK6JAsYI5JhCBTlJHkXzS6MST9YxJlzonoZ1quk2U9ppMGOmao0KIds396hICwzyFVhccp6TyEgrlEZO4hf41mXaWGKfMOOv8+i6aIpavP3ZNv5rt8iN8PGBBv2UvTeDDVLbmk+Xu9UHcUs4BSKOL5FttoaFCwbNe5fToSKT9Sti8YbARlOYLb6LPcsFtru9WVTFabzM3zv+ArHBLv4l01V2D98ZrR958JzlC2V1+/Zw6OrT/PIqtiGtiu5r9ppMZltL8eT60/x6Gq7r8Qrpu1Yelnd/spz87HtM0t1Dm2abcErRGW0aHqUrUR9kcwOvGRcYTSzE8urcd/ScjNKZaD+n1acwlTjZX5g5RAjpsPO/G4W64cpW3KztYan8sEf5lmYa80ats2GCAGe3HqFe3/vzVsOx3zzwx+mMNyjL8oeUNmo8dbz/u0gHPMAwIAMn1SEH/FXH78Js9DsgIUGPmzoRMIzmXO4eCLPsDoS7Gh2JiJxAYLRvF2Px4oVOh6xwU2eC3ElV9wvdnD95JFGgpP3J/5OdnZJl0sLVZ07juvMV4VGNUEwkn4yZyYajGdbBEFcqBN2luGxvUM+ewsSH8SJ7cmsT8FwMdSAuCbLHd7TZNbm4Mh+lKXZ1nsR3kmSEEdpbEEpTJCHrpCQXOl5Hchwp33SNMiJqiytWJ86pdvS/pRyRNf2HA5XdGqOypPrOrc+GifBaaRV1pFH12zWp+QCvOKYRWmk0ZanmG+I0kiDsYl6fJW/6N9bODebc9g7FEQJFJG2SGk6FyfDUZ5CnQ0JU5IMQ/u3G2I0M0VufQ3Kx4MdYX3ShUFTWn2V1enmvuibSEufPKeXb6IbZN/MNqPTYO7FkH8vuG/5GB9+MMfCXL7jNxR9b5sV7v+DARke4IWJgZnEKYDtgUmrQxJH+3GiuIXMReOwrZx+EolwpzCysUFBggTbiefUCxEOw4xaXjsRlqnx4XVsIXBELES00NesWwq2pzOZc6Jyy6agY/cRvhfXSe98m8/NdxstUiCmT75b2bvulH+f6KWDlRHQEyHBve5Lu3Z0PZm8S1DPHlzReXStuShoG4kwgNlcGJUv2D0R4aSNcBoJDs8NIoF5FGgnwMk6OJ5p2WjKFPvweyqawY0UdDeV/Ip5FwyjNVPguKBrrXrnWC1CLNZP8besTjf3+W5gux0jxW4YtjDlOzhRuEJdOYXfzqnM52TlJ8LxFA6OuyzMJfY77d/OdkBXfanyfSL5DTBAiAEZPkXoRIS30zF5EltpDGVEOHb8BIhwLyQ4mQ7Sp5xB3ugmibDV4RmnkeAw3XJD3O5s3tEXXDmB64heCPE2kYc2lbgHItwLCe5HAU4jwGnkVzYrcWhTYeF4ti1tNyIcK0fKq0p6kJDVU5HklkYaschgyeNpnlTSwjKH+wu6H/l+lrU1ImxPoWi6zQVO3RdClowpzEYDP+0hiBDT9FEPU0lxkqzKynAidT1JvPvEVsnmiZDUbSPeXWZWesHLdjgc2r/JU08Vu3oBGmCAFzIGZPgUwPEUMsjNImQhTk/6FJukEexGYqTqXx9EuJNJRBoJtj0l1R9p5P4nofSFvlnD39AbEZaRYPG45QVlE1dIJ8tsewqe76L1qNaGBCD8LVWHZdgGstuNoG4HEd5OM4xeyW8I2TeWrCvdILMpDlXhKDCHrUVu8boR4XzBpjhiSY8lzwuOK0EAGsfDVOUkOERBh3zTlCJt5ime3u2aBoLFe2ajgb/0rFCwDuqw07w/PeG+LE0dhlhdj30HyfPSsB0EeQszLP200/226Vsm2SdIcPu57lklFQ+XV0z5PPWUPE0nu/wBBnghYUCGTxF6JcLbHT2qE7YybR02tt2IcC9qcCcSXHOUKERwmnlEJ3KTJMIyt1KhS6GQCKeZU8jylb0nx1NwfAt9fB/+2tHeTCV67YSTvUmSEHdTh7fRnALSzWuSx9L29UKCZQS4F/Ib3y/d3Zd5RIg0P9rVihER4jQiHOZXregUS1aqGhzW7XzBAQIziWzztSXrZNpAUfYskrNPbTMvKc8vo+XwN9dhvQy6HpDgNDhW/LdupptLiEjsbyPEYjro73vphxT3+I30ShhPFlnul/CeiLgiE0lCmFpgvzuaqZHLOfF6vM0mEtDymLKd+Q0wQIgBGT4FsFwVnc5mESc7PGmnBrGTKnwyiHAnEhzieE1jvqa0nk+PRNixVezQrZVssGGrjBSCHQW9OxEOy1R3/eaAJv6i4lPRHvPVOUYzRWTLMVI7+U7HQzIh2mKeZHRThfshwltRnJMkWEaA5YRPPkCZzvuslyxWlrI9q8JR+SR2wmJQG6umYtXUtoAZaSYXG+VAMc0XHCkJjvJtaBRHGpHpg2xBKMS9HXRbfyAO5IJvsT1R0nSprd0IVWGZOpxEJ0KcJKsJohszm3BT0oboNosinnuK0I2AbtU+/0TyE9GJ5PZ7LbEN3GrEzwEGeL4xIMOnCL0S4ahh2e5FI010amA7Nahy04reiHCvanCItYbGoYrCoc2mn9ceiHDblHOCCCdJyXi23VWVjAQn90O7LWaYtmyplK0sU/kqLxnbh7/yHFIkO3OZItXr9PA2qL/9vPetEuFuJLgXFbgfAizijGGwPY+VpXi6bqqwbNwhEmHd9qLgHZt6hqGiJc0vRHkt0wp5K3iHaF8ICroeeC8ZblobyEiw+DstXLJsX8NVm88tnbiEzzV4T0pY0EAdDomwDGnqbVp71qUOdxtAxq4pu654Hdh286JtP96FAPdKevshu6fK7lnvEKF0gAGebwzI8POEJBFO+mF1NBXPt8G1owbS811URYtWdtdVJ2iQ/EbQ+HmQ04oxJ+pbQUcVudmppNkIR+XvQlxkXhlaZiNKYKMriVQnQ79EWIZuRDggGwpijIfkfW/awcGc5eMoXhBnrM9BTdfOX9XlLG2b4PhWqi2w57sYapaGW4m2QyRnDVzfI6vlsL0GdddPHQRBsKp72Ijt6li/Otm4JvMey7qMZV3A5JmJeswNVK9I2gkDqVH1ZEQ46ZGiWjEYLlroui8lwkE+zRkJCQm2JMS34igcqrQW0YVpob1uT3uQ0TR01adoxjNaqWtRPQYY0muURnZiHJuV3GxCHRYhsydOHhMfSi+DOrHep31T3Uwpun2PPQwow3qvKpp0f6dzpMe6CBSub1N3N9t8icuQRoL7Ne1w/GBgp6K13SdAww0i9GW0fNdFmAN74QFeDBiQ4VOAiZzDOoH/z5l80Mg8U85wvBY0MiERLhqwd9gifC2Ob0XEAwLfwmHDZLk1ak6ZdauC7SkMG5DTh6XX11bn0DwHZfIMLLeGiQHVteAahSI1144awZxWDI5D1Ck4nsW6tYDtNdryFhXhvO4FzuybeaPqeJkchzafYbHejByXogaLkbR+crfGNXs07piv8c9HdBh2YqRUJMniVLNsWlkkGLrhRVPKy3UFM+9jqGJgDqVZBj/aNlV4++kVpvMj5LQiqqKxbi3w7bm4W56XTW0ynt0JQMVeTTykOqwE+3xRURMVNsFvq6/qkB1CkalrJ9vtFEGH6vluzFRGHJABVJ3Npmu61gLJYAZAi/YN6RajGZirmlQdIV1TWS8YLkXTY8R0IvKb1XKMGzPRPS7XD2N79dQBl6767Bma7uoicMTcYMjIcP5L18nrQ7F7Egl8YK+ucv1fnQbI7YRFIvwX/ykIlvBbN890JMJJQqDrPmbGxXH01MFaJy8z4TcQ1v+H1oL9MxMNhk35ItLwd9lSqLsa0znI6za66sc8UFQdmKsF9f9wJQes8gtn7mP863eCaYCuoUyOQTYDx1fwG1ZMKVZmEkTNsQKb4/GJdlOH1aZcXxoBIyu1L/bdBlSW43k2fQ4ruZK8/otqcejHW/RTvIVvJvwmZGR4O31ky2ZYXM9htaFwrBq0o2cUjzOdn2k7R1OM2OC1l7LIru96DnXXB2yymoKm6qho0eC25qg0PJURswIUOG1PlYoQSEZsn48eHqJa1intO7EIdIbqp4Yc32p+AwwQYkCGTzEM1Wc8O8pE1mK+WuOR1RzztYAIv3Kmwo7cDnTFxPJqNNxKrNN2XAvHs1AVDc93WbcqUaNUcaCgbzCSqaErZovI4DI5vr9FUJvwrQqszKEVhhke20fdICLe/spzsLkCmTzKyC7IxkPppi1iivJeeBLvB4+gXnYu7L+k6zMJO+lLJnRG3Tz+fXfjr29wzfnnMHVWntuPBUqp5YWqsUe9qdLZTZaxdyhQF+tuQG6X660FeCEJNiULMIpN3i+LaBY2lnuGpjE+9/co0yMol1wOuRYxu3C8yhnF01Bmj+I/+QBYNpnzDkDRCzrhygasrOOvb7QyDomDsCBJ0bRgG8DUoVTEzxVRCuMtJtWLK7YwjefEyYUESbtwD7etw0+SRhcHQ81ERFg0hRGJcUgqG54bRclqTc8TpXM8hTVLBxzyTbtbf+0o2HWU6YOpZQ+vu2domszi0XggE00XApxkQNUp5UscWHkQ63/didsMw6wYKkpWR2lWCsVQ8W0PtZThpl9+Pb/28b1dHjZM51xGMtPyMqaQXF332vwNp0G2EFQkwknToYoT1HEZCY7Mi3SPigOHKwBxSX6+BsfrLS8uYejyp9YVJvbtxHvwGZTpkWaGzXuoN/CXNvA2LJSsjkqTELsOrJTxK1Uob8JGBWW0BKMTwXmrS/iHm05qV9eDY6URyAwF+5Iq7epSy1SjkIfCWLC/gwmEX1mOH9eCKHioevB99AjZGgrHa9lJy4IYbdVvO8TNhuquz2LdYKWuRQPJmqPi+W7Q1uNGfUIv5Q+vpSKQ+cTAUJzNqTkKuupgqHbzm9ZiIsgZpQaQoeqA5bnN810ObSocOj5wtzbAiwMDMnwKcM5oHrKBkhYSrJI5RUG3mMgtcLTiM5m1Gc1M4fp2pMwl4XoOVnP6SlTlwu2lusFSHcAWGisVQz0EwCtywxgrx/DXFvHnFgOFR9fArpP1dLJqAX/9GCzNN0laFX/pWbTCGOPj+6LGP2xQdcVEWz7c6oRqdbzv/gP2/ccAUI7cjX7pPPvOu5D9I1Pxzsqut0di03T85efwGxb+0gZKo0oml4117sHzU0AP1C+R3IahlisOZHUYIej4xWnirA6jzdC207lWvqYKptoegMP2FP70gQ3+r7f/LOan/wHvkS8x8upzedO5V+KpCsrsvXi3fBs/JFSlAmxWYaXla8hvWGDZLSXYsgOFDaLO3Qdw3YAUm00PFK6DX17oHJGriVh0u6T6liAJMrIr68BFiOqp69YQ/S2LNuFx5R+W60FnGHf3FfxfbWisNjRsD3bkNF4/PYlfWcZ//EGU088A12E8u4fxbLzM4n2oihaQHdFzh6fjh0TKbcDhp/DnFql/4xnKh5qPRPNRdQdw0E0fTfObj8onu3uYPQWHr/zGM2iq3qYcB/egMJLRKfzO3+PaHrf9xX9i3VqQqs1heoBPPzXEtx9oLa8MbIcFP8UJAp0kwUBMEU6e49gqmPEFpLJ8w2/lcCVe161Orgmt5oFqPWg/AH9pA3ehAkZYHgccF/9wM7ywrgVkuWahOC5U61A9EtRxywm+BQgGjPUGSnkTxkqtc0NsVoNz9eZ5TvP7CNuRJBEWv5kkqQ6/C7ENCiFx+Sate5JvJvldhenS6kJyMCkeczwj2pZ5/+gHMvId5N2a6ZOVLShH8L/iaMJ5IUlWWalnIrMasS0Wzf527dnEcRR2DJf5ly3fxQADnFwMyPApwLCtUxw5PdjQ9KhR0lWTUXMnw0aLZKZBVAqSqpwIcaGeOCVtewob9hLFQ7P4oZskxw2mOVfKQecUQk9Ui8oKfmMTrak0alqLbPn33ReR31AZUoRW0XngCMqjx1DHsijNDtNbb+BtBPecVOe2w99NQW8SW1NUk+NpxgWz3KIRpKu7yanp4FlaHqw2Fpg5bQfeA0ewv/UIyh2PoQ6beLYnKIsB0fWfPoxftWP3oxh9KCSWE3T+m9WWeiyaU4Q2mE2lC4jInwLxzj+FEEN7fevFRRq0D8Rkx0N0M4sJ38umrQVlPNwcRDw3i3/0SPDb1FF0PdCxhGehhc9CtEtNsfes//OTrB7W0fTuU6P2s+uM/PlXgjpquxHRC+tq+NtdqePbHp6jUPv3HyA/bsaOt+q0Fv1+35uv4m8LPrcf0XActakQazHbYdtWY6GaY95QYsE6uruTazOvcAIvEhVHiZkDgdwfd1vUu2fXgfXYN64Yauw5uY8eax0Tnod/ZKk1aEx+D7oWkGzHhUq11QaJ5hea1lKGIfg+6oKJhq61h4lORnCE5sCzaZvvxWcUkmZHUkVXDDrUBxGWEc12EtxKk3TjKAuikjRfSppIyMqURDciLFsA7TTLt2lrwlqP4L8Y7n4mX4/21TcHZgkDvHAxIMOnCoIKoQqEGILpqq06S0+6QpJeOo246Bq+67Y0PjOlOoQdi2zVdjaDce4k9e8cjnWQSfhVBx8HxVDxNiy89UbQQQJK1Y4RBiWro11yAH//JbA22/FeRNdSvaDuAGYQVW66GeY+2eGL220u74RO308wDd8OnqVvu9GxsLQ+TQIg2gmn/m4+5/B9hNPR4WIliL+TflffbxGdzGM6kWOZKiwiHITUqZM9+6X4d34trpSfYrgLFeyGilVVARVV99BNH3DRNAu1SahDwqs2lV1n2QLix5NEup8Gt17TcXQvRow7IZtrtSEyV42RHacHy3WYFqyf0ly3JeFHCQSSGw4IbZd2upNIH+bT/C8dJDqStjDpvcJy4t9H6O4N4gv3+rGp78MbSz9eIWTfTZqfcpB/S0k/9Q1PxfVt6eK2XtBJrU4rn+xYOFN3KlyEatscjlkb2AwPIGDgFPAFiLSGtputbogTChGcVIW7QNkzjXLGXvTd8sV7nZAkk7F8z72Sp8vPph7vBWlBClYthVVLicIsQ7s3j17gd2MOxO/Rt4WLWIIK63TIp9OxU4BOg7ROgRt6qYPJ9/PgyhJHrUMoewIb3J6JcNJbQQe4gprqpSirnqNgVVU8V1C4rfTzwkGc60ryE955L/VFRHnNpFppLjwVzBzSTCTCwB9JJE0kag2V9ZrKcj2u8KeZR4SeVHCcqD6H99L2Ddtu60843pY+3B8+n5DIht+FhBD7rqQuyr6PfsKcbyUkegKdXAgm0at7wE7BfbYLSSIsQyfl2vEUMpoXReVMekZqr0cn714GGOBEMSDDPwLo1bWZDCekvGk6ysRpMLMf/Sy5q59+EHaU2vn7mW/MctdCnjsWciecbxIbVvCXXDQnM5FI224nAV3YX2yuO73DlHb4aeedBJ9F/XbmnWYmuplIQKvjnK/Bd+dNvj03hHLaT8gzFAdqnSKhnYB3Dc9RaNTiRHgreWwFImndKJvUajobZYN6rfv9FEcschmPXKazeYXV0KhWDMrrJmtWQFQ6mUfEqnXz+csGsb7txf6Ck7dIiEWEZFc8Fu6zhPrf4ZsC4qR3GwhwL0iatiUhs7WX+mlPqMLdmppuJhJpoc3TzCNkRBiQqrQDIjzAixUDMvw8YivOzk+4UTH1dvW3bVtCNCQEo5/p+FhHaLsdVTK/UiWnD5PXiflN7QbZFJ3MrKLf/NqKasffW5rC3ZMSGOvkE/XB6rPT3kInv1XznDS0keUUE4k0Atb2KHudqdgm93Kuq+A5SqqCLFV/hTTi8fisgId5zvi2lFEGXfeatvKdF86B3NZYVlWl1VqidKeRYzF9N0IcQ7/qsIjY9ySJivcCQNogsbWv/ZwkEbY9hbq7GUuzlahy3eyEO5lNQECIo4WXXYjwCc1YDjDAScYpI8M33XQTF154IcVikWKxyBVXXME//dM/Rcd93+f9738/O3fuJJfLcdVVV/Hwww/H8mg0Gvz6r/86ExMTFAoF3vSmN3HkyJFYmtXVVa6//npKpRKlUonrr7+etbW1WJpDhw7xxje+kUKhwMTEBL/xG7+BZcUbzgcffJBXv/rV5HI5du3axX//7/8d3z91Nkb9EmVZYyVbcNEzOilvW4S3YQV/VVnPK0w1PnucYtXhqp0uF43Xtr0cIjrZC28Fvi3pwHsxlUgiOf3bTfmSYZuU46SS1E0179TpyVRhiD93z0/YCpspivAWou2dKsTU4eY7V1/3KspjI1vOs5fFc50gmldAO1FOs/t0bLXtnSbJrQw9E2I6mEuA3BRC3Pc8mRKluk5LsRcWvxPZjEonVViGoxWfmlPuK7SzLGhSP0gS2zSSnCTC22FLHPoZ3s6/AQYIccrI8O7du/njP/5jfvCDH/CDH/yA17zmNbz5zW+OCO+f/Mmf8Gd/9md86EMf4vvf/z7T09O87nWvY2Oj5Z/1ve99L1/84hf57Gc/y3e+8x02Nzd5wxvegCuoBe985zu5//77ufXWW7n11lu5//77uf7666Pjruvy0z/901QqFb7zne/w2c9+lptvvpn/8B/+Q5SmXC7zute9jp07d/L973+fD37wg3zgAx/gz/7sz07Bk+qONHW4kz2a7SUIdpLspi2eE9Ej+UhVSqt2zJNExzzu/R7jXv92yL3a/oZeJmTnyOwoo3IlF82lkIGowxePdzKV6LdDT6pe22gy0Uvn2sleOInnZYq0WVe3spiwVxOJZF0Q7YqTyFw4ydKwxpdm3ZO2yCjNi0Q3Et1JFZb6Su4y4JPuTxBi2cVkA8mOMyeQbiohzpJ48t++2x5EqBu2eyYFutvat6vCMFcxeHo9w1K9Ki9nijs1eb79mUckiXAn7yUDDPBiwSmTVt74xjfGtm+88UZuuukm7rrrLs4991z+4i/+gt/5nd/hZ3/2ZwH41Kc+xdTUFJ/5zGf41V/9VdbX1/n4xz/O3/zN3/CTP/mTAPzt3/4te/bs4etf/zqvf/3refTRR7n11lu56667eOlLXwrARz/6Ua644goef/xxDh48yG233cYjjzzC4cOH2bkziBj2p3/6p9xwww3ceOONFItFPv3pT1Ov1/n//r//j0wmw/nnn88TTzzBn/3Zn/Fbv/VbKEp/nfsCy2y4m+CGLnPirnVGTCcWTehUQdk90+6my663fguuuxQtg19fb89keALFdeDMfWRCNacZpco7vBIjvoqhYpw1Rv2uY2ReuT+IYJUMOiGYcfgLT8LIWF/3JJ11be6rOPFO3sp6zNfafavKfLvecqjAv7v4Csz9u4NnJjyb5HMCUK1KayV7kphJ/CsnfQf7849D6Fos9EV84CdQZu+N3VttYjoKzhLAQ1UCrwZRh+i6uLYjXTAznZ/h8OY8FSdwpD9iOkwkgqxAoCTdtTAUPZfwOV4wLicUj63pzefdutYZw4ES89SGQlgtQtOIiHSNu1hejUzS12zSpZyIxPOLPeeQFBkaYweDsihZI9X1mW97ZNcbzUGMgrfeoLIa5J3ZYaBNFdpcrHkbFrrtYVbtyIOE6BlFMVTUC07ngWWV7yyc3IFBNxOJJJJEuOP5zQV0iqGijWVR8gbuQgW/7kTPI4RaysSeEQCGGnmPcBcqwbOZGI7esb9cbl5H7o9b2dNsI2Uu1NbXgv+ZDBR3BNdt1gN/Y6Hrc9hupNkLdzORECEzMQr/LzaDoSzVDabzNpoSPKde3HNuVRXuVEbZLE9SFd7KIuUBBjhVeF7mGV3X5e///u+pVCpcccUVPPvss8zPz3PNNddEaTKZDK9+9au54447+NVf/VXuuecebNuOpdm5cyfnn38+d9xxB69//eu58847KZVKEREGeNnLXkapVOKOO+7g4MGD3HnnnZx//vkREQZ4/etfT6PR4J577uHqq6/mzjvv5NWvfjWZTCaW5rd/+7eZnZ3ltNNOk95Xo9Gg0WiRg3I5aNz//Zd3oJhDbdOUZsbl2kvW+em9rVYibNQg3rBpaugDs9WQGapPDi9a2RtGAcsRNLplC0Alo4XnNInnzCTK9AGcQjEWdMH1bQx1ClPNxZQFU8u1RbADYHiCxfosKhq5PWeR331BjPypG0v4sw/jPfhMcPVf/AUc0yQ79s9Qb6BceAnlvN6Keibzy9mH4LncgPlq0AAPm1BouriqO7BmQXktg+MoUSdfXg+ei2Or2JIwomJ43UcfhHsvWGZ3aTrKE2T2ceHUqdn8I8oD3GaeYRq7WSes5rVbneNL9hf5lfPOYGKlAstLfCFzGv/wlXX+/LWjTC2s4u+/hG8eO8qHvgC1WgmroUVRzXI5hx0zVSA91O/Ld7q8aqbKfHWODzwwxMpSllpVJ5d3uOqsGq/ZWWNHLu6l4XAFPv+NHbE8L7hkkZfvdDl31I517rYHX/nuBPVqUBeuu3qBQxW471CWJx8eIVuRm4gcPeDw9tOPsX/6QLBDNnCAgOTKwuwmgyu4wUAi98uvCvYliVRyUOM5QfTFUGUsV8g8NEvjnnmUbBb93GmUc88NopdpOszNoiyuoOzf3XLNJeYr5P+SrMfnn2m/ZzPjcvHe4Pkt1+GJZ4akzwZapg7n7q1H9sGmCtM5n4dXg+df0OHySR+7GQ3M9kI12o750jbUINrcjmxruvjRNUU6oMw3vyW1lME8Zxxl/xSKpqGvb+A+u4y7VGsR5akC6pkz8QEuBL/Lm/iLK0Awa6KUhmHffgCU1SX8ueNQrsQv7rgoF1+MMrYv5qdd9O1rjrlB5EKrij08RsVZBSxG1TGYf6p9UNUMeR4hHLjWN1vvzQ7cYKLqqJoZXdPy5KZbMiKqKSp2wuFc0kRCV31OHw7caz6wrHYlzGFbU9BhItvdTjhNzTZUn6I5FoVwPrK5jq767B4axvNdnlivYTTLJubjeg7PbhiUmzMhl05Wo8F0GH3S9uCu40bPLvt6QUbxyKjbR+RtZSBjD9DCKSXDDz74IFdccQX1ep2hoSG++MUvcu6553LHHXcAMDU1FUs/NTXFc889B8D8/DymaTI6OtqWZn5+PkqzY8eOtuvu2LEjliZ5ndHRUUzTjKXZv39/23XCY2lk+H/8j//BH/zBH7TtL/7TJobEV+j8a4N7WbN0drgVDLVzeFBNDQIPaEoQEldXzRiRhKCh2rBphrgNkNODCHcFfScM5WF0J06hGEXMcr2WaqgpKjl9OBbe0/Etsrlh1ISSWXXWWaq56KrDCKs0FBPPdfGa053Z7BDDZ1wU2OKUisx786yuK5xz2SvxywvUhob44eI6rQAhBrZnRspjv9PJFUdhvdYKWFBvksuKE/hsrdc07GYoWwBrLU54Q5IXijpGI7gPrUmMnr6tyNOA1gwFrQusIdwXngOgJ6Z1NdtDjDamOx6KwPYNId03Th/B+vkyv3K2RX78TP7nB6c5eMccfzJR4PcvHeYHx47y4e8NM/TZTZLUqZHTeWqmCICrqzRywXuzM4JLrkuWMdU8ZRse+MYEmZpDfsNiJWdyezPNgaKLrqo4XoaGq3LfnMHMfavN+wjwQ2cS55JlNoQ+OTRBcWyVPQ8t89zZ4xxZV3n0wXEmHyxzVlOpc/Q4KXANlWV7iMfXsuyfHooRyeS0r65mW8pvGhlWg2er7D7YnqaZt5RYTZ4RzZD4GwtoQNZQUYpZlAP7UaYPYrm16J0ppRGUyTPiZdGEQV4z33Etx6+d+yw3PRJ857ruccmUy+U7LPYUHL53PMftc71brl0w6nHheJWsFhKmPPctB0RkyHC5bBLGs3ti5QgHvmVrkc8+3ZoBOFB0mco77CmYPLau8HS5RcKu2u1y7mgW/3EL48Aoyu6JINyypqPks2iAOtw0ZzNUlPEiyuSYfOCRNVFoDstNA3aMoRSD6JR+GDSmsBkPTa7rKCO7qPoVXNtuux+AYWOC7Pg+qG+yYS9xvGYxmvHxN+0oWh66FhD04lAQ9jkBv7IMjU1pPVG0DGhBqOlsfoSqsx7Vm06Yzuxn2Z5jpdE+g2KoPvuGMozqO/BXngNV57xRix8uZ6S2wuIgpaDDvmEbQ/VxPAvLD+qjLOKdqbW7HiyaYwy7Wfy5J1F2nMmG1vqAh+vA8BQw2zw/F6RdO4oysotVrYzdvMY5ozXONCaCDyExADxv9Cm+O5/ngdXBAroBXvg4pWT44MGD3H///aytrXHzzTfzi7/4i3zrW9+KjifND3zf72qSkEwjS78dacLFc53K89u//dv81m/9VrRdLpfZs2dPavp6Tefz39jB54FLLlvkxp+oY6jZmDocXLz108NFU3V01cRQs+0RkFQw1GBfTvfR1ZA8+Hi4+PsvkYYXFbFpr2NqZqQQ15wyNaeMqQXbnufiuUEo3KLpoilqTE0WYWUyeOdeGhyzgk5pw3B4TMtQaxLh7cBcNSABIRGuOKSGr02Dbng9TS2HcAw1RoghIJwhIXZ0rY0Q94O7Hypy90PF2L77HxzlZx5sbe9CbjM4shTsX5vIx0hwiEcfGOfRB2DfGevkmzYLbpOcLi/m+HK5vQNVv+eQo93e++F7xwmXuoY8wnMgW7HRbI+htQZzN2fZv7SYeq/rE3mKVzlMUo9nlAJPVUA1ggFawl46IriKh5rJoRrZgOT0AA+XuruJrplEwepmplF37UYZ2YWXyeGGYclxaQyXUIfH0FUDtYs3D8932TeU4eqZlmq7b9jh9GGN0cwerpg+TEbTGM9uRqY7RRNGTJ+sBuBSd4Nv++wRhwvHPUrGbjxcbK/O/uEqpqpzoGRz/liBoUoDf+VhlGbUSE3VUQrjOGaODTsIOjOd89lZcJjJWwwbUHMc1i2DoNFxOWMYXja1SXEjgw8txTeErqPsmUE5bXdAfjer+BsJZVfE0BgMjaHMlEE3UUZ2tY6pOszsR9mdaTdBUnXw0218Pd9lgzqWUWsSTyWYTbPrUN6MTLeawdwj+M2omkCQtrLRIvEhgRfDewOKkcXUcuh+IWYKlRxY6aqJP/cYozNnM2xY0hDOBX0Uf2kWZWwfq85xnl0LXZaF7Uow2xdamtjNmYC87nOsYmB7CjP5amxmEPRIoQU4Z9RjPLMnKhuA7qv4y09Dk6RrisHuocA0ya80UICzSjkyWoFstY4/e0/wXkeXGD3tIi4ar1BzNsjpw/jzz8ZDWOsmGFnGxnZx4fhRhoxghnV1zef/Ta8ZAwzwvOKUkmHTNDlwIJj+vOyyy/j+97/PX/7lX/Jf/st/AQLVdWamZTt7/PjxSJGdnp7GsixWV1dj6vDx48d5+ctfHqVZWGi3D1tcXIzlc/fdd8eOr66uYtt2LE2oEovXgXb1WkQmk4mZVoRwdBVFbydZu7+3HP2+f2mMb+1a4po9LUU2GV3I892eotUZqs/OvBWzTwbYsJdSSSs07ZnxsT0VsFDRojJ4uFTsNSAeWrRgmNI8Xc+h7K4AK1E5wgb7sbXNnvwgJ91EpSFUkUXbU5EAi6YRLwa4hsrOZ9ZAmFKfZA2AXbcuS88Rkak5UINq0YwIrgiRZ87dm6dgtwiubnvwsIdPQPZj+Uqute+x9vKEgwDN9tAdj53PrnUtc2mpymWnu/zSwd7cYTlNQmpquY6LBz3fDaa4ZcpxBwT1WUUpjDdVsua5iXoeqpM6vQX+KOijvOW0llmS57e+8VFzJ1fvdLlo/Gj0jWU1pW2mxvNdSuautkHtheMeV04XyWysw5Fn43bWiTIPG/DKmWCAkNeH8HwF22uQ0z3OHrU4ezSYrTlt2GaaHfjHHw7UYIiTxdF8i6w234PSzR2eqkNxR9vixlAhTqrqHg6d7KVcz6FsLQrtUoe2RdfxGxasrqOEoZ3FcOe9wHXQKuv4h59qLeBrhgxH19B0LVC+HRdW1lEOH8EQ10PEwqsfjrKdr9bQVY283rLL11W3OWumAgEptj1Yb5oorDU0croeM08AonNCsjyx8hjMzTcVeR0/LAfgzz1KTgxtXqniz81S1DUoV/DWy61ylzfxf/hdijvGKBZ3QDh4FSNoNmFicGbpAGcUg/e4NrTBixk33XQTN910E7OzswCcd955/Lf/9t+47rrrALjhhhv41Kc+FTvnpS99KXfddVe0PT8/z3/6T/+Jr33ta2xsbHDw4EHe97738XM/93MAzM7O8n//3/833/jGN5ifn2fnzp28613v4nd+53cwzd6DCw3QP54Xm+EQvu/TaDQ47bTTmJ6e5mtf+xoXX3wxAJZl8a1vfYv/+T//JwCXXnophmHwta99jbe//e0AzM3N8dBDD/Enf/InAFxxxRWsr6/zve99j8svvxyAu+++m/X19YgwX3HFFdx4443Mzc1FxPu2224jk8lw6aWXRmne9773YVlWVAFvu+02du7c2WY+sZ1YtxQeW1vkrFJ80ZjYEUIQvhnkfiVVNLJaLlCQFYestr0LJkTYnkLFtqP5fV3p/2MNG/fe0/sn3TuBRGyMwdXVyCziRODoKvo25CODKxDZNJE1VNFlCneSCAMxYu1KjkNAhLeKr3x3grNLixQMl9dObzkbOYxsy8ZYQPLb6heqokXfYy8ww+lyVYfm1LuoKgKMZVpqqapo6JYVpUuajYTQFIOCPhqoeIuHu5K7gjHSRqY1VWc650Sk0vYUMloef1OycLZX9BHi+EQgtnEjGV0YyHfwGFGtxxft9lp37TqUjwfmF+IiP12L8lG0INQ9x1eCMO1h2Gldi1TqWNrCUSYKGqOew+FK+Lxa5DZY96HG2j5DhYLRe931D8+llgFaAZj8SjV4NuJ9JbFShs1q+nNzHfzFpwMTk+bMhFk9sRV0+jaHY+43r9AjVijofepTn+LNb34z9913H+eddx4A1157LZ/85Cejc5IE9vrrr2d9fZ0vfelLTExM8JnPfIZ3vOMd/OAHP+Diiy/msccew/M8/uqv/ooDBw7w0EMP8e53v5tKpcIHPvCBE7zjATrhlMll73vf+/j2t7/N7OwsDz74IL/zO7/D7bffzi/8wi+gKArvfe97+aM/+iO++MUv8tBDD3HDDTeQz+d55zvfCUCpVOKXf/mX+Q//4T/wL//yL9x33328613v4oILLoi8S5xzzjlce+21vPvd7+auu+7irrvu4t3vfjdveMMbOHjwIADXXHMN5557Ltdffz333Xcf//Iv/8J//I//kXe/+90Ui8GU9Dvf+U4ymQw33HADDz30EF/84hf5oz/6oy15kugVrq7ypYdz3HYkUEvaTCUS8Hw3UsdEpMWql9mNJRH6XczrHprSXjU0CauyPQXLlat5sjxeTEiaF8gIYj9II5AnmrbTucky64YX/UHLptgx1NhfLD9d7ZsIdyPFMnvhye+tc/MT5raHoPV8NzCrMDrb5AN9EdsQutrbIDDt20xLG0zFb/83ZGq5ru3Lix3j2iSjevv6EeCk+FA/YRybZTyzJzYQ6gSjaSpRNNsH09v2/Uj8oMtDYv94uIl44xvfyE/91E9x1llncdZZZ3HjjTcyNDQUU34zmQzT09PR39hYXNi68847+fVf/3Uuv/xyTj/9dH73d3+XkZER7r038BIUkulrrrmG008/nTe96U38x//4H/nCF75wSu/1xxGnjK0sLCxw/fXXc/DgQV772tdy9913c+utt/K6170OgP/8n/8z733ve3nPe97DZZddxtGjR7ntttsYHm75mv3zP/9z3vKWt/D2t7+dK6+8knw+z5e//GU0wYbt05/+NBdccAHXXHMN11xzDRdeeCF/8zd/Ex3XNI1bbrmFbDbLlVdeydvf/nbe8pa3xEZdpVKJr33taxw5coTLLruM97znPfzWb/1WzB54O+AaavQ3erxK5esqt949xsOrq9L0Ymfq+BaOb3VUtULyqikqumJGym2nTtlQfbJaDkPN9Nx5V53nj/QmeZkuWajYCbrePb3M1KDXNP2SwlieWyDEsnOSBFjc7xY0rJIhLX+SBAflld9PP4pwp3t+7hvpnhS2CsezcDwrIMTbCBUNXTFRPR/VOwkO/O16z7bOPcNzoL6JqW5/mPMtYRtDI4uqqb/4NP6h+6BW7i+TLvV4K36re0K1jrJypOeBlaHCSMZNDRzRtgDPseR+nKF3MtsP6T0JoeJfSHBdl89+9rORR6wQt99+Ozt27OCss87i3e9+d2ReGeIVr3gFn/vc51hZWcHzPD772c/SaDS46qqrUq+1vr7eRqoH2H6cMjOJj3/84x2PK4rC+9//ft7//venpslms3zwgx/kgx/8YGqasbEx/vZv/7bjtfbu3ctXvvKVjmkuuOAC/vVf/7Vjml7h6ipqF2KTqwTq6vGVYVbqrQa52zSu57tdSWvoeSJML4OmqLh+oAjrqhldt9sUsuMp2zp11Srzi3f1sbiILgnXUGPeGLqhn/QyIuzqasyCUkaIATZHMpSWatE5STiGiiYZ9MhIcKf7P1GE9fJEzRv6RspUv+6rJ6/j75MoBu1AZ1dbvlVB0TLoRvbkP0OJHelWsZVy+k8+lxrlMbYIcDsguU9F0/DzWZQO4aVjODYLY7u7XspQA28hRbO/Z6Jedi4A/sNPtXaGdtMiHLdlRtGtzLLzX2QIXaCGSFv7A+kesQCuu+463va2t7Fv3z6effZZfu/3fo/XvOY13HPPPVF+n/vc53jHO97B+Pg4uq6Tz+f54he/yBlnnCG93tNPP80HP/hB/vRP/3Qb73gAGV7ctfhHEF0W0UfQFbOtgxA7t3ChnabqqIqG41k9qw7ScqUs3DsRItyv/W+vC+qi9Bk3WkQneorQdS8WlSt5vB/I7G37zqOL7fBWTSZCoipTy0NFPPQDDOkkuFPeSYSmJXYm7kkjvD+ZKuwaKpulLMblMJSyUEpG3HTV7IkwhvW+F7K4JYTmF+42q7jZoUAd7nKPKhpZfSiw01x9srd8NV308vcjB2V4Cs4H/94HWravvaKDjbPvNlrvIwwMkgZdD1xZ1hsBqTwJ5gS9tp/K3ouDMOdzj3VPnBWIYFhmGem1HHnkUseSLtw8UejbHEI57LuSHp9+//d/P1WUS/OIde655/KOd7wjSnf++edz2WWXsW/fPm655ZYomNjv/u7vsrq6yte//nUmJib4x3/8R972trfx7W9/mwsuuCB2rWPHjnHttdfytre9jX/zb/7Ntt33AHIMyPALAL1MMbctolO0ns0YHL9p0+vJTSQ0VY98U8rsgrcCMc9The1Qk3slxbJFdOK+Ti7WZGrvyVpMZ2c0DJyO5iBaxY1ZyqYRYFdXpW7awuskUSuYGA0X3XHRHS+VCIfXfPul/S3UUhUNvPZFcdJ0rtNT2n7hKB54VnMh3fbCcmvoutnVZRsQBJwAqFQ7qrGKlsHTDRxXHjhi27CNqvBWsJGFwtDZMPZcsNBLhq0qmuXj8jwl+SmZDGga/vqp96QgEuUn158K/Br3cJ6SCYis3+jNs8uLHYcPH47WCwGpqjCke8T6q7/6q7a0MzMz7Nu3jyefDAaoTz/9NB/60Id46KGHogV3F110Ed/+9rf5X//rf/HhD384OvfYsWNcffXVXHHFFXzkIx/ZlvscoDMGZPgUwNE1lD46hk5qa0hmI5dnwkK6ZPANMZAGgKrGz03C9hTMlGJ2c+e2neiV1Gb1E4tsJCrHSYQeJUJSGxLd7VCC03CyCHGSCIeR6kKEBL4TCQZS71tGhEWVWXfcjnbCISazPldM27ieg6N4weDPtaO6Jw4Go5kR3Wjub6VPnQFxHRwzNBey8dx6lG/omSWjFuLnGNmmb+3gG0t+O+FA01RykB1quT/zrFiQCwATuZ2u48Xt/4NIkMF18cBs5uv5Lp5bi0WMDE1GTLOAX16A0QlpsIig8DpeJseGvRTYUDef61a8wEBTfRWu5ZcXmteyYGK6PRS5GJFPDP/eLJvoKSMZJCR8LsljyQG37Sks1Vwa3gbTuTWmzjyIf999LY8JhXy7izNZREJZ2QkCc/hziwHZz2aC/JJR9pL5NgK/vZSGY2n91YQ9cwo537S1tkBEQ0aL7NYctaNies9iHtuDl00lCHxywDJWgsJw1Pgp62uBIiyUzV9tDlgdB/bsjj+vykqUVbJuBH6iO/iffh5RLBZjZLgfhB6xZFheXubw4cOR16pqNXj+qhpvCzVNw/NabevRo0e5+uqrufTSS/nkJz/Zln6Ak4MBGX6BQZzSDsNkyvDQSiVqDEWO4nhac/GE0TymcOlkhaym8MyGy0odpvINdhWUwP0QGht2nafLGRZrOjsLDueNWi2bYYFcJxGaORiqH/NJHAUJUYki5iV5lK76fa16FgnyiOlH923prU4hDFSA6WF7HpYHyw0NXfejUMeG4UWhl3tBccwSotQF92ehpUarA3mEutJSraM6vDnS7ukgze62sBFvfCvDciWjXjAwcx75QvpUbjbvYFfUWLlBbjLRyOlojhcd6+RdI0wTBvQIzpdPV9sZjeqwyUjGZdiY4B+fLQNLbaGu68LjGM9UohDB4fufzDlcMKZTMuO+wI9WnuCexQKvnFHIeAV+uLzGvUvh99FKZ3lw0ViNq3dOoCoaR2vPRHmXzALDxkRb2UPvE3PVp6k6auRLWyzXzrxF0ZQsgFF1Fu0jPLCsUrG12Pd8RmmT80ZHWbcX+NfngqiMhgoXjleZyOa5d8lhdkOn7kJWc3ntrlXWDJNDG2aiXbCwm0Te8mC+ttH8TnRsT8dQg9DNL5uq9eRxBsDddxF3LMzz3JyFJXi02T+s8JriDpQdJT4+2yJ6QQjoeFrbUyjoPu85d5SaW8ZzWpErk1ExQ3/LIQw1Q92txZ637QVdmehvN6N6jI3txHzVFP7co/iH56FYQDn9Mja8tYhUZ7QCqqKxYS81r+tie14UWt1x6jSs4J2+ZHgKzs2yYNZi/tZDP+pAFPwi3M4VPBibiu0DuOicEXKHn4DjK5DP8u2RPdjHjlJsvobFms73FhUOHc+0+Uq/7MwqF4yq3HZUZXklw1k7G1w67kldre0sBO3vjtwwX17NcflrfoKpsov/QBC9R8mY1C59GTc/U6G8SlTXpnOjDA0F+V02CWMr5cA/80VX8mhtgR8u54Loni6MZ+AdpYBQLg1rfPrJ1vsO+4h6mkLfI4xtNpPoN6/3ve99XHfddezZs4eNjQ0++9nPcvvtt3PrrbeyubnJ+9//ft761rcyMzPD7Ows73vf+5iYmOBnfuZnADj77LM5cOAAv/qrv8oHPvABxsfH+cd//Ee+9rWvRWuYjh07xlVXXcXevXv5wAc+wOJiK1DR9PR2+5scQMSADD/PWJ4pMHK2hXdHIpKZ11KtYv9xeWpd4W4h7nuQPk4s48cKnD3a4LYjGcoW7B3SOFB0Ob3YwPEUnlzP89i6wnxVYW9Np2g22FWIk+A0X8UjGZ2CPhr4Q22qdTLl2VAXOF5rn3abzNqMZnw2bDi0acZIQRLDBpxZcjij2JruFjsjaLkVemQ1x3cX5PmMT9YZLjg89VTQeMtsiCEQM848Z5VrdvnNe4iTr5BIiaQt6Phb299/Jsfi3QHRdXSNzZEMuYs9lp/KsvPZNTTb4/ieIue/cS0+qBGCh4iYvyUbkeHKcIa5s0fYd8Z67BwA21YxgF35DYql1nNP5mcYHut6hnpNx12Tk1s7o2HmPIojDayGRs0JiOTUTKXtmi14HJ8rkKk51Aomx/cMky868XsT0u+YqWCoPp9+sswX7xmOlbMVPKW1L1+wGS627mvPdJ2rZjQabpV603bX9W3K1gr/z0PDPPzUEPecvcm/P2+VxZrBvQsaD94bBJEQx3n/uqfC3p86RtF0uWcxUIn3DlsUjEC9DQd64feY1YZYbRzj23NDkXIXknbbg3NGXEZMlbxuUXc3yeZHAKi7mxzenOWexTzfnFPa3vd0SWHorCW+fCjHnY8X2DFT5RVTwcUbbpW1Rp7vLSo8+uA4AJe+o8FyXeOP//dUTwM1aA3Wvj1jcMllClfP+JxR8gEtIm6GWmG0uCe4bU1nwaxx86NLfO5b09iL8e9LGVHI/x9HuftwmX/62HBXX9xX/puAHK02ytQcNTaIcLzWYD4kZ0XTZcR0mgNjhYqjUba06Fm3glOEPtA1FuuL5HSPAzt3Mbr7Avzl53AUj+X6avR+r9pZRldNvjRrUnfN2Pdre0prMOZA5qwFzslNcfPTCg+sBO8tCu/e0KJBd/gO7MRx8R1fdvEy/7+zJnjJ3ot5cnOW37opWDz3slcusHfI575DWZ58eIShtUbbu/t2rcih08s8fNsYxZU6/3TaFLMXLnPxjM10jlhdnMzBa8fH+OXvVNj4uM4fXnw6v/6med76mteRr9ncb23w59+wsD/eep+OrrI+kWfj9By/8JPHuWwyqEMbl13Kl2bLfPTre1APudFg96pfqVDeO8SXZl0++cUxsj9sV0tt6+T6hz/ZCD1izc3NUSqVuPDCCyOPWLVajQcffJC//uu/Zm1tjZmZGa6++mo+97nPRR6xDMPgq1/9Kv/1v/5X3vjGN7K5ucmBAwf41Kc+xU/91E8BQTyDp556iqeeeordu+OLKcMouAOcHAzI8CnAynQePROfftVtD2vG4MxzVjlvyua+YpbD3yswNVOhaHo8sV6LqQgtAiYnLMnFaOJis0fXFQ5VMjGC3HBVHljOx9L3C0P10RWThlshoxXQPQ9QIOl32HMYz+/BY5aKbUflDIj0BHm9RMFewlBXObSZkXZsk7mABI9mpshq6b44Pd9lw15izbLZO2QAjei+w07uml0+F45X+UtgeSVQVWWdWIhzR2vsHiq1pq4hFgY7/O/4VkzRemglx3K9zsLeAsdzw5T2W1x2dpkrpzxu2bvJ47eMoDke+16zyc/sb6pQ0X2HqpMblfvRdYWHZwpojkcjp+OfpXHxOQucMxI0kq37VGLboSlJkI8XOwbBbMTyYo5NW64M5vMOxVKDXN5Bb6qxxZEGe4fk17A82KjoHJ8rUCma1AsGpx1cJ18IEomRAcVn/iffGumo2ouDlqTpx+H5LH8zD/fsVTmnVBEGFkPNa6l8+55Rluur3PuDyRgRTwZZOVY1yOktVfLp9QxPr8Pe4aW272zEXGwOkhLmFU38cEXj0bU8pw/7FIwV8vqy8C13VmLvWGg3q7hrIc99ywqPPFGMmfj8xud2pdq6d/PuYc7ZPPTlER7Yq3Hm2auJAVOe8eFVzigaFA0w1HxqPgDfONa7ycUTizob9lJPaW0PypbWJMcN1iyj55klx1N4bM0GFjgwkuHeows03HyU79eOaFF47F7wv54u8+ha69rxetmaheoFhzZMDm0sYHtBeYyGyz1fn+DeEQV1yWXITg8a8twz8an95cUsX19szTCFUThvBqZmqlg3B8ugAco2fPLxwGzB9pptYAczrduPacAoHJE/p9s/UuBfX67i3eGR7RTo5EWMTh6xcrkc//zP/9w1jzPPPJObb7459fgNN9zADTfcsJXiDXCCUPzBcOOkoVwuUyqV+M1/+SiZQqvxDRESib1DPnsL8L1FhYvH/TabWZG4iKqTiE4qcfJ4GupOUJYrpxvsKehtJhLitKX431B9duR2kPeb0/Xigh+RZeRHsNxaZGeZ1YYC/6xa0CkmvQWItoEFfZS8XurqYkk8vmodY6kWbDcSg4izRyY5vDnPUr01dZ9UfMPO9vRig12FydgiRhkZFu0YxSnUexYLHK4EKuFU3sH2FL5yKHhWIYn86b12NAgAYgMBsUyPrivMLgdjWKuhURxpRGQYuhNiMS/Lg1ojuE55PSAxMkJl2yqG4ZHNtZ7t+FiDmXz8mnWnlffyhk55zYzOz+UdiiVLopLFCXGYPjjWrg6HCJThcBq7M/lwbBXbVqlWDBxHjV0reb9DRYvX/sQql004UThbaIXHDe83/A6LBrHwuUllWHwfsudkCfkmVUbZ8+mkNMoU917VYREyRTcMzpK0D0/mm6k5Pec589Y6v35RlYLuppoYiCGGoaUQy9IkB9CG6sd88SbTJd+t7N3J3ps4uO4W/r2f9+U5nc2t0t6buD856NFTPFj04q5xeWaI9Yl0f9TZStPOvuYEIeC7wLaqfP1jv8D6+npfNrphP/rosT9nuLh9/rE3yjXO2fl/9V2eAX40MVCGTwFes9OhMNxS/iDuFD1slK+c8qOGXyTEosqb1YIGOzTXFNNAkC5pC2V7SpvyKyPH2WZtyKg9MOc0dFr5Xl3DVHVMo6mihYEKXIdhdaTdX6tCW9Qw0QRDRoxFwjpq7mTUTE+3b2gX+5oxHsQFgmL6gPT21gCrigY+uAn3YBeOV7lwnMi+0VB93rA3UE9CG8cQoS11RvNouGqbEnlg2OfAsN18f3bb4CisK+F54ba42DCsW6YKZi6wrc7tqMfygTipkpmRyBDmPT7sMNxUgkWyF6po4eLFUEkTvXiEdt2h+humhzihCIliqFYH+9uJsZ6wE4+52QtDUvfpVi/8DsX7kx3rF2kmO7I0rWcYbIf3Jd5fciEoxL2ehHbfW10UKpJjMc9kft0C1yTXEIjbYlsotm2ydQdB2GLYznhSSZeO4naa95lurhzT0NFHeQ9h4JPnJz3ZRHl18F8eenjpJdhQN4h5eMlAIH1CU9RtjWr6Yo+QOsD2YlAbTgHEdUahp4iM5kUNt9jAi2nF36baIrxZLfgL04R/Yjozlo/ftvhATJdMHyJcHCRGshPLK+Yn9VCRJLdpbts8Jz1wQQdy3at7uWSafsLiaoqBphhtXjzCcLZt3j2avp1BvkBDNtBoPc/0coTHxPcM8XoQwozS+vG0emvAI0uf3C9GrdN1L/oLSa4sf1kZw20xL2h5tQjJrHg9Q1hIKppEiJ4wHDtQec2MG8tL/Ivuy/Bi5yYj8oXbSU8bad8mtJ69nSBKIswennPy+Yj3KT6bXhA9YyF9+NmJxLUtsqBQIFnkwfB8tekYQPwLUS8YNHJ6LLx3N3T6HkTkdZ+87nf0tBMe01WfguFGi8nSzpFdJ9t709CGZN1JO95L1Eug40LV5PsS0RZGPsWTURj9NLlvs5QN/ka6R9vTbQ/d9qI6k/wbYIAXCwa19RRBJKxi4ywSYpEUieSnGynuhRiLBCn5J+bdrTOQEeIoj27+ULWmmx0vxYxii0iSYhnZ7bZPRX5+mLdK914yMqFI3JOs0zWEjjsJccAkpj1RQiwjrcm6ktwP7cRxPBv8JfMX805DN0IspjEMLyLFIREXz6nV4hcLSXGM9IbEWJKP7N7Ee2qpjOmDB8trmTokOUuc8LbuT3xGskFoJ7JkpD6/+D2J/yFOiEOylCQsSQIrkppOxFYkxjKSLf7F7tOI12/p/QrfSU73GNLdrudAQJ63GKtGev3Wtvy3iOQgLA3J9yQbtCSRfF+y/bI8OvmyT5LiRk6nUjSlA5/ku+6mVMfKsB0vZIABThIGtfMUQKYu6aqfqhJ3IsUy8gJxUixLL57TSTk21ThBS6rDPUMkhCJJFuWkkxiUI4389qMKR+f1QISTkE3BRe+7B3X4RAhxuzIbH/BAu0rcKyku5TwKuk9B7PClZD9ZhrYkPRFiSFeJw3Siah3dp0CMpYQxhRTLiGgndbjuyk0ielEYuxGrNHW4F0IcQkaIoXeVWISqC88p8RflVdA6qoIiMT4+l+dYNe5uT/w2dLU14E4eSyJZZF31KZputBAyCXGgE6LbIuJOA71uam+vanASMnX4RAhxN1Icwip1jtonvvPkgCftb4ABXsgY1NBThDSSK1OJO6VPbifJragWyxTjTuTYbB6vOBq2174iWGYuYah+z/5J+4bg+P5UIE0dTkPSVEIGmUlJ8liy0z9RQiw7JtYnmUocntOJFBsqDJtQ0IO/NJOAXs0lQE6I08wmkipxeG4yPxk5DvNsV47b0wIcqcjcA0ruVetOfNNMJWT70pTzbkgS4qQJSIhOhLibSpzMS4SUGHeZMl+91+Su4y3SpaudB1jhItgkKU5TicNFdFtFJ3Ise2dAmylO23kp76kXdbgXQtmNEEN3UgxBVMq0gU9YVreg0cjpp8wkQlP1bf8bYIAQAzJ8CqClNPLdVOIwfZIUd1OLZYpxJ3KczHO5rjFfa6moMmVUVD6z2lD8YJoqnJZGRJh+Cw2VzDa4G6ntdFy0A+71HOisoifV4X47614IcdJsImkmE0KmEofnpc1AJNHJPllWvl4IcbCvu0o8XLTbiHObLbBAdI0EaZERY8PweLqs8MR6sDCrk11/2nNJtw2Wm0ok08pIVDd1OJ62P0LcKykWiVsnkpQ2zS8jxz94Ms/ja+0BZ2SwhYAmaQi/r1ozIEenNCI6mbjA1lxPRnl1eFe9QEY009RhWfrkO47Oa5JikRg7uobmeJH/4E7vOpt3Ijvx8Lrd/gYY4IWKQe08RRAJbyeVOEmKZeYTyfPE7U72wtBOjpNqYtWBYxWdhapO1dmMjsnMJTRFJa8PkdOKWw7pGkNIhMP/SVXYdeR/TaS5XevHNCLNJMLD7WoukbxO0r66E3pVh2VpZOSsmx1xmkrczXxCRvROhBDLlNBeVOJc3iFfsMkXbOmsR7LjFhW5TiYVtq1y9NAQh45nuqrDsv2G5B2I95783YlYd1poGD4HWTpxX+wZJwhxmkoM7aTYzmipJimxMofeOXqcIl+91+SO43rsG5GZSjhNV2pJt5EyYut4CjVHoeq0p5cVpd8Z/DTzFtlMhAxbUYf7MZdIHgvRyRZZJMVDaw0yNQer1v3BmDkPt6ANzCAGeNFjUINPAZLugGT700gxyG2KZWqxTDFOI8dpBDlcEBS6fpMRychcQtXJ6cWgzK6kc+xHFe60+C5BercCUSU+Ee8SSYSmElFeHQhz0iwiqQ5vFyHuZkfcjRSDnBQbQr4y9VksV6+EGNpNA6CzSqwbHvmCE52XJJdScqwH5yXtj5OkLnDZFrht22hGse6mDsvuabvU4TRziX4IcSy/hHLeSSWGdM8SYf4ysxTZxEgnW9INS+4bXXxWtheQW8dTWLN0ao4a/dmCC7bYNT2FmqNStoK/mhOQ5DQ/wyGSZi/d3lkSMlOJTgvpOqGbuUQ3QtyrSiyD0XCl71j8y+bk7bL8Xb+4I9AN8KONgdHMKYKh+oyYDgXDAHzWGg5LdaONKJ+Rb8VzF89N4p7FQltnEaRtpRkyXPYOWWw6QeM3VzGoOkE0t515OzbluFDVOV5rNZIzBZup3P44yU32cp7Doj2PrpiMunn8ynKwP0lcjSxKrgR2Hb+2jlIYD1Tf+iZ+fT12jlIYByPbcrd2AnZdqqIF+Xot0wsVFXwfVC2mJKuKFtyrXW85ZzWyYGRxPCsKFBLCVHNR1Lnw/DAUdU4rklcCX8qO4rFuLQC1yIZRfLe7Cgqu57Bhw5qlR75Tw3SGGnTUe4es2AApJAXHKgaGCjsLNiOmQ8NTKVsaz23o7Mi1gnwkMVcxeGYjCChQ0P0owEBI4gq6z+t315jIxT1uqIrW9iyg5UGj7vrcs1jgsXWFC0d9zig1eHo9w/cWW/fS8oUcnGt7AWkYMWGp0ry/hG/hPdN1Lp9seQi47ahCeS1DvmCzd8jn0KY8HLmhwoGiz7Dhcl+mztGj+YiYjE3UOTjeqgNhgIV7HhtC132GDaS+bMP7CMuyr+lDXFQxw/xEknWsojNXgxvO2mDIiAeQ+d5xl38+okfPJXwm54z4XDldi97ZbUdVllcyXLy3ztU7rdi1/uQbo7Hnlss5vPqcCnsSwfE++8McRw8N85arjjOeSfeJ/Oiawj1fnwCai+d0jz37N7h4xpaqqbYHq5bCP31zKiBiBY0zDq4xPtaIpUnibadbUX2XPe/wPMdTKAshfUVf7eGARfxGGq7Kpq3E8uiGM0sOtgeLNZ35Wquuivi1cze5Z7HAdxcUrprxuHpXRgi+Y/OV5+Crj7d8aIfYtXeTa3b5jGQcHlzR+foDw1EgmNAvcTbv8J5rWlH5ZMGVvvJAgcUHs5Ev51f8fJmC7vP9Z3KsfNfE1VX2vWaT86bstm//0CZRCOcQMr/GjZzONW9YYke29TyP1xUeeDrP+lqmjfBbJYPzXroQ+6ZFHD00xNIPUx56j1DpzatPP/kNMECIARk+BcgoXqQCqmjk9CJZzWYksxmR4pzusaegk9OnpC6/xH2r1rGYShgGZwhRaJLgsUyGYWMnNbfMaqPMSl3D9jQMNeg0djRtvY7XAnIjNmSG6qPXq/jPPZx6X8qBSwHBPGFtMXHjGTCDMGW+VYHqWrOA4600rgMbq6BrkCviuw0U0f2ake2ZEMcUXtcBezPIJ0HO/fo6arYEQ6N4vovueviVZfz6JtTKQvnzkB9BL4yDZgZpFRNdNQPSjIKuD2F5NWyvjq620vgrzwVlL05Ky6qrPmeWDuCvHaUxPEFGK5PXNylbGmtWy09xSIiD9zWMoWZpuBXWrQprVlxVzuke02aOx9bs6JygThWj6zbcCvPVGhlNAzQKOrxmZ401S+fb8wamCq/fXeOM4k6MhVU4sgRW8/nls1AaIRYIRXi2/tQB5qpPR2U3VJ+zSmMc2tgkqyvUHdoIcZA2WJD3b86u8Ew5w+efNNsCboRK74Xj1ebzCXygvnyny4XjFqc3yf1cVYnyD2GosH/Y4eFVA93wGJuoc0bR5+ySz97hFrG3PYXbjgT5mhmXERPGs25TXSQWBCW8jzNKFvuHk2/Xb3OvN1/TOFbRMdXAfKb4+GP4iyvBQcflmkt/gssv8fnGUfjmnDgQhrNHhqi7m8xV4lcxVJ+LxqYw1o4DPsZPrnDj18cwDI9Xn1Phqp0NziqNRQMzgNnqs3ypEDwHU4WfO10jo8lDSa815vlD4K5vT0VTiLruYahwyYTNWaXWQ/ZwsVyLY1WT5SsWIhJtZlz2DvlcOuGQ19sH7yFqzaAU4QA9GWEuiUYfARx6IcGGGgxqcrrHcl1OkkwV3n56hX2WyT3NczKah6YYDB15FjSd8vRODLVdxY8Cyqg+F457vHJ6lCunF7jtSIZ/+f5oLMz4zoLDq2b2ppb15VNP83/Vptl8Sue1b1nh186pcPuxPPc1n69jBAFrzhiGV+1sMGwE78LzXcrWIrfP+PzTMwbPfWOI/IYlVYpdXWVvwect+5skH5eKbfPAuMc9y1UeeDofuTYsjjR46fllrt0dHySLyvvs5Aafrw7I5wAvXAzCMZ9EhGEkn134MMPFHKaWI6cVURWNurtJzSnHbFF11aSgj7bZvsqm95cbh3E9h7obVxpF7wVZLcewMYGHi+3VKVsrlC0tUk/GMkHHv9JoROcMG9mIPOVrNv7swy0yJIFy3ksDxffI4/EDTvMcXYesGSjB6+Ugr8mxiCTjOVDZgHKzpx8rBiQ0RH4ExZR31q0H1CGYh+vguwnPGHY9UKu14P6j49W1oCwhMhkojLXU6mQemh7fb9ehHthZ+5Xl4BrFKXk5PQf/ge/C/gPYIzuiRXo1pxwpryKhKhgjGGq8DDWnzLpVwVD9wHa7+d4aboXVRplhIxt1hEls2Escr1k0PJWC7lJxNDKqx85CsBiyoI+izT8Jh4/gu636qGQyASku5EFv2ok7Qido5nF3nMa6tcBoZifK+jyN4RKHN+ejJKLyF5KfmqMyYjos1g0pedmZt9k9VCKjFmh4Fe6Yr0UzGReMN1io6qkEae+wxWTW5rG1LLMbOpNZnzNLdam9acXR+O58UC/2FIJ04cyKiPAewkFsEslFlwCT2f3U3U0yj9yDP7cIVtMOw3FRrryCzZFScK7vcry2gdNUSncVJqk5ZQ5XgvqQUT32DU+QW12KDUYey+ix5zeedTl7ZJKsHRYqSHvUP85dC8F7vmaPSU5rDZZi9+C7LNYP84+zQxQNmjMQDueMephqLkoTouFW2bCDZ/jF2SwF3eeisWB2IkSS2KYtchPTxaIipqRPIhnOXH6N+PYZJYsh3Y09w2TE0CunPcYqHrXSCKqikVk8iveNO3BX6hhvehm1nafj+nZkPmV7dR5ZDVTYvUMNdhXOwl87ij08xiNr8xHxDoWInO7xEyPT6TfmOjxaW+AHi7loMPlzp2sMGxMc2nyGfzlawFThdburTGTjhNrzXdbtBf71mMlj6/LnEua5t+Dzc6dr0XkAVWeTh1Zybbb0oTnRldMthV98dgBPrRt8e7bGR1//7i2HYw770e3CRrnGaVP/dhCOeQBgQIZPKsKPeHn1ZorFgNCl2aeG0+zhn7g/+Ts87vhW9Dvp+SF5Hce3sL2gUW6LnkbLnlZ3Pfy5RyFUrWKZpJBiXQczhZAmiXRaHjLkszA53U5Ek+jH/ZrrBKQ1VICToUrF7awJxR1SMt5GsMO8V+agHpLrenuaEGMB8VH2nI9lnBzFJFkH0hYYhmm15cNwaDb2jiIiLDwXpZAPBi2yBY5JaHowoMiV5BcOz8mP4Ci92VVaXi0aSEbZdPFZ7fpNTwc9kKl+PHxoikpGy0cmMp2e8Xh2D/49/4K/vBojwiF8O/itGBrKwdNgx+7gQPLexOcsHssMBQO3JGTPJjOEp7aeRVq5La/WDElOx7Se70ZkOIRs0BOiGymWvSfZICmNHHdSjtPqwN5hiz3N6IphfUmm3zt0Osq9t+M+NAuAX3fwxYI132G4Ty1l0F91Psrug8F+WbsBLTMxswDZIemxCM1BeKe6lkTUt+BKzxPfcfK4uB2ZgwjfnuValK2grRGVfYibDFU2avzUwV/bMhmePf4RisV89xN6zrfK/h2/MiDDAwADM4kXBJIktxta9mkJBVliA9WpAUyeE9jYWkHj24G0ikohQE9aTTO/5LlpUDIZyGY6h2reKsJIeAD1dvvX6N4dLVBw0zqwEGFnFZYzm4F6o+O9KsOjoOl4mRxqH53aiaCrG7nme4+VWxwcRM+lAzkTz9G11gxAygLIwCwmeM+qnu7oP1l/ddXE8YR312HW3PUcNEXF9b2eia4saEpbvk3ClDZ4TR6LnkGCCIckOGR7vu3B4gpK6PJqeLT94slvwrECy5FO30p4fSMb1P8O5Q7LHu4XyZKsvVIVDU3VMdSWnapoQx2aiYVkKbneIWkP3209RMg/k+p+SL5kQTWg3aRMhLg/rC/h/hiBPuNs1PUy7pPHW0Q4QYLb/qcNnkP04o5ymyCro8mFwOH+MH3yd9hvhKQ4tPXOqB4Nr2VOJK6BOBGfzwMMcLIxIMOnEJ3ISFIR7gZxZJ7mHUFUm5PqTkc4bm+kNSQ9mnD9Xkh0Uo2VYTQbmCk4VqqN6glBN1vT+53U6s0VyBW7q9Nh2ZqmJ9Qbne/Tc1CKU/icmDeL7YKqaPjQnQjLjqXty+Sj8NudBhS+20BhKPV4WD7xd0YrxL4Z6UCw+Y1E7gD7HFTJ/EWLCnSSMKeRxFaBhEFmJyIMga02oIwWQbRJlpHgtGNp30qPMymqoqH6Wmy0KyPFEL/nkPR0IsXQToyT6cNzkiQqtNlOwvbkrtbCfCCdJENgfqKpevSOw/crDqIsrwbDJTJnnwVPHo+d30aA6w6UMvKLpRHhThDTGb23G7H6iJbqNz1MpykGrm9LSXDbb7S27yCNEA8wwAsZAzL8PEMkrLJjst/Qu4oMQQcmqjyy/KTohbQSEKhkU5dKpsM8OxHQbCZQFUOb1H5ctGl674Q5qYB3sI1G6zGMtJkPjlud1XUAMkMvCCIMxL1upJHgkMCJ7zvNzETXgueVNohIviPXQe1lwAGRT+uMVqDhVtqOpxLkLmJvjOg233VSAUsLqNLXt9qNCAPehoW6sBKQ4Win+C4SMxpJH90S+G4jmIYP761L3fN8N1oU6mC1KYhJYqyiYaiWoOSmk2KgjRjL1OAkMRbzTaZNI8jJfLohfMciKQ5V4uX6MQB2TR1E2/UAzuxapAqL8OvN92C7nWdSEoqw7zZQkt9BmivKHgc1baZ3EkIMcVLcDyGG1jsR322SEA8wwAsZAzJ8ivCCIT29QO9N6RUhberSyLQjIV2y88IOv1sttaot4pxEJ+LquHICHJYvaQfdTXkLjzeq+I0uynCSzDzfsOvQqKaYRQj7wrrRydZaRK8Dkz5UW9Frh60EdtmdTBXC453UY2gnujEToh7cMKUppdF+t2WC0okIt4iUF9TPTmqw68h/h3l1M/HpgBjB99sJVBoxTpLabiYR0JkYy84Tz+8cjll+b/F0LSItEkWZSmyoCaU3xTwiFf2YRmyTeZisXiYHecn0yfrbCyGGuCvCJCHWTpAQ9xJRtN/8BhggxIAMnwJ0WjQX/u9H6e0l7zTIbMPaUNyB4rj4h+da+2RkJyJGXRrtblPsVsKEo2lzS70RLM7r4kwiyLMLcZaRzw5mAJH6mc0E0/3dSJ3nBNeoVIOFcyvrndO7EpLzPMLfWAg8HIBUDQaC9zSUR4mZxSRJcaKzbzSjGGaGWvvS0IcJjNdcbCf6d5amSywwbdvfgeT2Fbmwj0AuvRBhKalKU4NBUO17sG/vs96pWruSnGyvNMVAVayYaQG0q8PdTCKgnRiL54WQnZ/Mp5uNqqgoF003yitJiKGlEo8bM8Hzs1uLY6XmEcI2lpM+cIb2AU23byT0g94jwvcnnX0U6r+MGEfpOhBiTdXBtaVmESIhHmCAFzIGZPgFiu0ctXYjwLFraXpgy+o5MLfY8owA7aRVTymjjBx3I8BiOsfB3wimv5XhQu8kSdN7U1xjJKL1u820w3JgKLF6uUtH5a+ud7cXhtbxFwIhrm8GPqIdV06Ew3dlGsHCRlOXDHAS5ia63nJTVxhOv89O0/tp5xhZHFcIFd6BCHdVazugXzIs+85itvqe03qmErKbJFERmeqBBKeizRNBig1rF8jUQhHt5FhOikGuFoN8MZxIjEN0Ile9TMknybKu+kxm4+1RJ/MYf/b+1LxT36GINCLc60AxXFTcqw9214kIcZRFCjGOzZQ0TSWi413MJMSgQgNCPMCLDQMyfArg+W585bssDfKFbm3hfpuNkO3Vg8Uc4X7kylSQtkVoNVUnq8ltVevuJrYfKB7DE/tRzmo2wM1G2n/siUD1dFyUS85rBdR45BGUA6cH5gHPHgnOkXTSSmkYdozhP/xUeideLKDM7Aiuk8/C6ETLF3EvGN3Z+t2JRHsObAZlbSPB0cLA5vn5EXkergMVwQWd4waq6Wm7g+3jK5HaqsxMwo6x+DV6IPleJseGvRQRu5LXLpNvaHWpS75eZhtURaNQGEUrDIMz17qP8VE44+yYpwz/0UdgZhpl6mBXd19+ZTlw86U2PWYoGv7i0x3vuU49CGoiC+0tQc1pBUgRO2ldNaPfjmdFZhX9DjC7LXjtBfHv10eZHEOZHAsGfE8fxlsPvs02NdF2UUsZwWQn33rmon9nkeT04uoudhO9DcTq1LG9elfXfOHz2rBFl2fBvpzeWoRmqD6L9dZzEUMqi0jyyIqtCcdahFYMnOJ4CscqhpAORjOtSIxlS2WxFn9OOwsOpmbGXEzKzAlmN2BJf45zdp2NX15AuWwUrXwHzpGNGOlVh03Mn7m8dYGyYNfefObK2D7q1Nu8+Xi+S8OroCkGecuXv8PmPivj0/DWEqQ0GwuyEsJyazS8Std6m1zDktEKXRdfJ/ueNEK8KTt5gAFeIBiQ4VOAmruB4gjENaWTNdQsFXuNuit3QxMGVrC9Opv2OseqJiv1MGBHMn3QYAaNUSZ2fGd+nYncpjQgw7HKJmuWzkz+GSgE6s50fh+ZlQUAlIOnoZx+GfONWVzfY5e5F852WBoroCujjM6cg//sDwMTC0H9VSbHsC97FRVnlZFMHu+7P4hdV8mZKBeejbLrAja8NTJqARMjIFaLT3dXwHQNZeI0rHwhFshERPK5a3Ydf+O55uOSTPdnzGi/mxZJrjCOv7EQeJ1wXNgxhr33fCrOKoW952OsHMN/9JHA7KK4g8bIODWn3CS2zUxkpCQ/wmrjGM+tLHJow2SxrlB3Xd562jzTxN+bp7o8sV7jgWWTugtZDd6y3+L2YxrzzWqXTeV1LrDEheMFLjv7LDh8BOWiK5n35vnhsgeoXDLpMmmXoJDnWMngoWNzsRzidcvmzNIetMoyT9pLzFVNDNXniql9HVUwp1DkweVjjJgOZxRPQ23USIURLKJzfIu1RiufYQNy+jCaYtBwKzi+hes5eL6LqfXmrD9pBxtuJwlBkjR4vounCFPHEpXYymRwzjw/qofZ/eehzD6Me+9TQJwI65fuQ9m/O/7MQlOTaDtZeL3ztrivRyK8wSbl+kpH/8wFwyCrDWGoWRzVYqnuRYSzYLgUTY+c7sXUYttTovDw8zWicOBpmKtCrRE3AD591OPsUtyswlYVHlhVmF1u3ftwQeGcEY0LxoJ7Xm4EoaY3KkGai2dgJl9lLBMnphAnxY7n8dHH8gybNfYWAhcfb/rZq5lYa2D/3dfwbY/MO19NeddevnKk1Z687OxNdkpcjm/YS9w5b7AuhJgObZcN1eLSyQo787sxqwGZFk1glGyJmlvmB4uNKDjLGcUG41kNfMm7VWG+usaapUd9i/jcdGGgEj235kK+pEKcRqhFF3TJhXN53UPPbs0UMLqFgc3wACcRAzJ8CuB4Fo7fCsecFmEOgo6i5mjIqcBmlL7qqJQtNYrCJaLbopEgVK+FymqsDI5vcWjTpOG21JO9wxbTecB1UM4+C2VkF6vOcR5eNTFU2FWqszCS4YlVFXDI6UucfeAgw7sPBiQRAgUrV2SxfpjFusHo1EHUy6rCAwqeh7LjTNbdZVYbZWCVklmgZE4Fq6tLI11uKgv5EWructuhtAVVuanTMZL2d8kp6UYDVo9BcTKmxIfQsyUUz8FXdZSJwGH+sephao7KaKbK9OSBIMBHYYzGyDjPlhda5RrSmlHl2j9D215iqV7l0EYuCjNcceDhVZPcZNwu9NmNKt87nuHRtVaneu6ox/cWdSqhsNilTszXMlx04RTm8BTLrPLd+TwPrCocGPahOXWqnHURdy1YsehVYudpqvDYmo6uHuK08b2wcYgn13XOHQ28mTB1oHXviXey0TjGXMWgbKnsyC2RMeSG4ioauMF7cD0n1rkbqoOhBu/P84PwwEHn3MDUch3NhUJvCGk+v9P8sLb5X03pYG2vTtlZjMwGNEVlLL8LY+d+NMHzSDhLoYyWUEb3BGHMQ7vr5tS4skVTh6CggleULvBUhXpjMwqokAZDtVCpYWo0Vfl6RPCqjg44GKpOQQ/uzfE0ypbKuqUwV4P5qhJFPpOh1lApr5vUqq1yj0/WMVQXQ/V5cr3lfaHqKDxxLMPqSusZlXMOBb1K0dCxvIAIz84ORSGQ76PKnkKeyZxDTreaZUyP0PbA03keEPb93Ok5iu+4Oijrjt3802yF//1oFjMT3O/TG0P82rmBmh/Wo3Jjlu/O52Oht82ICENWhyEjS1Y7SiE70jyvNTBzvDKe57LW0FmzYHehNSjbUFoabHi9ml3m0GZrkXHQR2gxUxGRJIckVpwRkHk+Cuu76MdbJMRZTSGj5cnpRTLW1hdzDjDAycaADJ8i9KJUytxEiapb1VGpOlWGm/2yoXYnviGS6eaqJnNVUYH2KFtaLHJTRvPIqB7z1TmMYQUwwD8OTqBiG6rPPEs8sd5qZB1P4aGVCiOmw8RYSGgKMRKz6hyHnbskzyF+/1VnMwhRPbEf1Uso30llS9WlEcxk5ERTDBzPYt1eIDs+Hu2TnaMrJrqvovvgpJBqcsOQG2bTWaVsHaImhO9dtxZgeierjTL25jyi09a6u8mRzfXYlHEcJhnNYzqnYXk+RU9hsabzD8/EidrDqwEZEAnv3z9jtu1LIlknbj0cmnyE9n3BavwHllUgHLzozXPj7yO8ju3BbUfyjGeW2DcchqRV+M780bbzxLod7A/K/MR6DUMNrpe0GRUVrORzqzkqNceiaAb1TFNUbPzI3jN0yRbz0S2Zpk7zw5pERitICUIakdZUHddtLTLzcLFHdsBLdsQW0wIojRp+vbkIM+Fn+0QsL5XsUM+R/hzPQkVDV8VZpnYE7VKDvF7D9hSqTiZWtxZrOmsNnSGj9VxWG8F9ml3aMMsD3fDQdR/D8LDtILGuezy+rPF4YuzrOCob5Xi90A2PpYrK7RVYWcrG8gBYXszyVd1DN3rzPhHmGSL4HkeDb2AzaMNCIhzi448FJDscrD1dLsQGACIRDrHa0Lj9WB6wovNE29ykr8CnyxmgIajLLaIbzCDK7anTbKzrbg3cWlRfRbvp8LuRmSAlyXJGK6ArJqY28DU8wAsXAzJ8CuALoT07eZYI/Duq0sZJJBF1NyTCfs+Nt5jHWiNeBtERfdIp/bFqvGOJR4FSeGLdlJp0bDoamxvidR3AaJLrlsLaTojisNwahprFVBPT3Gq8XJ7v4vgtVTeNBLu+Hflddj2HirfWOp7S2Ge0QqrXgdAW3MOl7m5SdVrvb8OGDTu0dW73tbpUc1msG202jDLsLUDF8Xl0XWGjD69svdSPrB6QjnuWg8Rhx2yq8PSGwtMbRuzdhL+TRFu8VsWBR1aDd/Tchi5Nk+y0IXgucdMfTZouOa0rkuaq03TnhFjmbItwpoQsh3a1N4lkPciohSjUeS92xGKAgg17SVoeVdHIGAWylPAry+1K7okEnnEd0MyeypocGHRbmBYqyMlBemj9sWnHn52YTpYeWnVsfKwRKcSOrbKy1O6TOiS50CK6ALWqHlOVZZDlF+VleKnbX3+ydV6SAIdleHxZi50j3qsp+R5CPL3RPgNjqqHqGvwPzZ/CGcLk84y+D0mwEVl7GzM5CQc/4T7PaXM/qCkGOW0QyniAFz8GZPgUQFFUecea4o6p26pbccQv298NnaIwpXV4yYZadq1u5ZHZqMnSGqqPqZnNdGY7EZagE4ERVd/IxjPpM1VChJPo5ms2CDrQW6S/iqNhewo1p7taYqhxgtDPAEhEtsPXnqYgy95zJxKctE1O6+xlBFesly2y214mmX1j8ljrOn5g/kBne8PkSnlpmrTZHV/4nUBY9ww1GwycEvcjI8IxbLO3Eb++jm5M4anBdTot7O21PQpRcVrp49Pl7WnDfVktqJd1p/1YiMCemMisIQ2G0Zvi3QuSBDh2TE/MiqSQYFle3Yiw7BtNDj57nw2ME2HZN9XpW+oG0aSoN5v8PqKgSqApRm+uQfvIb4ABQgzI8ClEL52xpuoYfu/Sn3R034HsiuiV+Ha6Vi+EvFcSLG4H07NmT6qDbGob0hs7x7Ok0cbC60a/mws2uhEpAPwgfa+diu0pOJ5Cw+3N5dCapbBhNzvEE/xqO5tOdCe/Qbr4tkiCO5Hl+O92IhyfKWhPJ+u8w/qVPJa8lxNZMNPJzKlXH8OmlsPxrNT6KsV2hR+P8tsELRNE+8t2joAYBioJp+i7IazTIXr7FpSuddr2Arthqzmj1YmoAjh2d7bYLY9YWl3yTWTa39+JkGBoEWFT8o3IiHD4zSWPdR5AxvMVkfyORIgzGuK3EC6sU72WF5cBBngxQtoEPfDAA7LdHXHuueei6wNuLYNsFWyaUiyL9Z4GQ/W3pPLG8+icfy95diPAsvPSSDC0Gt6cVuxJcQgJRnBu50VSkB5aN0mExd+9+qXt592VLbWngcumrbFhQ6WDitxtgVxaGfrJqxMBlp3XDwmG7SXCInolweF7ToauTUvbbX/SDj08ZjVt5zuZawDtqvA2qcR+fR2aYX9VtcMA3de2VKeh9wG5qYYDyPS6HVMyE8TUkXwT/RDd2HkS0iuiXwIM6SRYPCaqwdtFhDuZR0Rl7fDNpA0okwjNilRFQ2dAhgd48ULKXl/ykpegKAq+35vKpaoqTzzxBKeffvq2Fu5HCf2oUkmSloaM6p4w4W2lkeeTrh53J8Cy8zuRYGgR4e1ye5M2COmVCAeRtfogw328O9B6en9J9Ep8e1WpeyW/IHfR1snucaskOJm+FyIcv26wbyv1aStR6drc9qUMysJIbbJVcKLSHCw4rXcJJ76FkN66GURPU9ujysnKs5U6Db0NxB0hXHJahDkIyKJueBEZtYQ1D90I7FYhI76ta0rauQ4kGLqrwWKapIeWtnP6JMLbpQr3Wg9OFgau1QY4mUit3XfffTeTk3LfqiJ83+f888/f1kL9qKGbHSsQLeqC7rapIXTV6ct+tBs56tSBpZ27FQIs2ydTnxzfCqbf/A43KYSK7WbzGVw321r0JovCpLSTYsezAoW6w5S1qukB0enj3RVNj1oXO8igzD7DhoKV9KjRB7oR6E71qBsBlp2fRmqhPyKctsBS1nn3qmZtFVvtPOMBcOrSYzL4bmNrhLcTwvyM7mGZVTUgH7rSfcFdONsy3vQl280dG0DFVjHUVl0SvSuI79BqkmZH93ActSNRTSIkzv2ck4SM/EJ/BDh5vFc1WDxPZoq0VSLci61wp2Mte/L0hYcDDPBigpQMv/rVr+bAgQOMjIz0lMmrXvUqcrnenNr/OKIfw/9+OtxwoUo/6E1JTk/TC/lNy0O2L0mCNUGxsr16c/qtQ4PrOpGS5iAnDm0eAJpRlcLp6vB6sXOE7YiUe52nX/tRLgw1CAE7VzU7BhsIyusxYgb5bpzYGpSug6e04By92A13W2S5VTVY3J9mfy4jwm2qcDf7W1mQCrqrp0mVN81NXyePE1L7Y9fZfpvhPvJWtSwZtRAFMekIH3K6TQ6vuTA0vaKF9b3qKNhe8P5tL33AZqtQ0AE8qf/1TgvreiXBaYQ3lkZifiH7nk6EBLfvb563BSLcDclvqheCLIt02qsAMMAAL2RIW/9vfvObfWXy1a9+dVsK8+MCWecaLUTokwxvZZo9PLcTZKQ3RD+mE70QYGifggvVW1XRyBpDHTvucOGG57YWJnVqoEN/s6piSQMlxIOgBO/F801A6awOd7C/TOYdRneysw2WUv0MhwWGnO5gqBp1d3t8daZHpAvQC/mV7etEgKE3Eiymk6nB7fmkE2FxcEUPZl/dgmck00K8rqUR4dC2UhawYNsgi9Kop1wjJP5ifZaEczYx0DUzNnOVhrBOb9j12PtJ+icObYttL1CDu9VFQ/UZz0LWUZhvDkidFDdq24FuNsf9EmBIJ8FB2nQ1GNrNIsTjnUwfuqnCnZA0M+pkIhFbOOc6qYPKAQZ4IWNQa08BQsUwdBHmeBYebsxlmIpGw6tIp52SU6sQdLqmVosarclsu2RoewprVudX3In0Aoxm5A1nsnGs2K3rR4170z2aSBZsrxWFSNbAiv59g7yygY1jN2i6VKUT84qpvY7Vti/wBtHyRyt77qlTy56DmR+J+TpOg+vbUUS0CaWCoVY6BN6AEdNBV31yug4YXZVkEVWHtuheI2Z7GkOFvN6uLDXc9kV+SX+xICfBU/nWsypbWuQerhOBDjvqEdPpaF8uDqi0hM9pt8M7aoNYB10HNaxHYpIupDWsN72gk4vFZF1UciUw5ZH4ZPDdBszNBhtZE4bGULKleKKQqIShnZvflpfJYXm1wP92GHrXCxax6o6HoWaj76GTuh08ixpDusumk24/HEQ8a9XNToQ4qwV1tur4FPSgXQuj2R3aVKIoi1vF3qGgbtmeIg2EkYblRPMgtbHXYUe2df9ZLfATnyxzkuiOZ9IHi1VHYTTjRgGSOnliSZ6f5p+7HxdrYn21vTq2V0dTDPJ6s64JhFgcAHZy49cLQheJ24WBoj2AiK5k2Pd9/uEf/oFvfvObHD9+HC8xVfyFL3zhpBXuRwUqGpm1ZfAclJFdoDY/bM+H6hq+VcEsTuE1g0uom6utkzWdrDGEo6mxcMBRw8MKGdWjaI4x7GajqFX28BiL9cOpZHcipzFq7sTzXVYaRztOv49kpsl6kqrSJBIWNpZ7WHrfOb1IVmu5cNqwl6i7m23pkjDUbHCP9U16bbNURUO3mvbAmVzchri6hl9bj9Jmx3ZH09aqogWeKzwFapuE/jCz+RE2mkE5VEWDejl4vmkqSW2dfGG8tZ1USJpR8iwvIMR5vUReKTBseJTMJdatSmzwklE9JnIaBX0CVdHY4VY4qyQnI2kEpe7WOLSZ4bkNIyKjQ4bLVN5hMmtTtjR+uJzDUOHyHTUMNQhj23L95ba5oTtacTi00b5yPEmaR0yH/dk9QX66wXLjMI+utnppQ/XZO9RgPLuT+epcNCDYPwyj5l7p/ciQJJh1d5OaU45HmlO0KAJiDG1Kfxa9GZQirBvBuU0bW1UHTY/VLXElvee70WA3iYxWaJ2DFgXrSEJTjMA0JzfcHnkxljBevxTXwa9vglWFwhhKcYowel2yfni+GwwSPT1oWxLPLHznjmcxqu9AFUaZyeedVLvz+hB5HRpuldWGQsNrZ4mGCmeULGqOGgvKEsJqmk3sG3bYO9SgYBhReO3p/Ay2V+e+pSpzVSNG/Ow+ROLwvGt2Nzh9WON4rT+ytlg3eHJd54n1+OBUVIEvHfc4Z7RV7w5tmjy21kogU3v3FHwunay0zaDN1zQObZgYKoxlXUbMRpvYEZLZ0M1dK1pdOADxyaie9J0k8wBwfa9lbkT7ew/7pKzWHFwJdVIkwsHv7VXwBxhgO9GVDP/mb/4mH/nIR7j66quZmppCUQYhFfuFabuwfASyJr6RxRyeCg5U14IIU1YVCuOBOUB9E39jIVjoojcJR2YIvTCOmhkKQqQ2yV02N8yeQhlV0RhWR/DnHsSfPYIyM4lpFhjNTJHVym3lKZlTaOVFePb7aDt2s2PsNDLagpRQ5fQiWU/HXzsKtWZeukCEjCzq+B7y+lDbuRmtEBBhIbRsoTTdU/QrXTEDIgzthEUkAaoeqFs2qHYdf+lZyBVRi1OoofpV3wyIcGUFGoEyreZKZDKF6Fq6ZQXPvSY8L6tCYWx3RBz8+npLpZYRYk0P8hAhpFNyJfTMEKi5ptkF+BsL6FqG0eGd6OoSWW0Nt9lp5PUhCvpoQNIdhyyF9vuXlUVQZQCK5ip7h1Y4tJmh6iiMZ12mcy4FYwxNWWMyFyzEzOnDDBsT0tDCovmJmztK2XJTVaRQZSqZBfzl52BxHqVUZHLmHMzxdTbtoC6YmsmouR9tdY6dI7vJakdxfY+SsQe90l5ve4Kmk8+PoCsmNTfII5pd6MU1mReQXlXVUZszG7hO2+yEKpoZhMc0HVXV0VUzZuYDxDyHRTMVXrsrt9g5W4BSGAdxQEY7EQ4VYMurBaY9fsscSAarOTgMTUBapkNu23/LraGrpuCJohbNGokzGgXdZdgIbOBlgWdyejBQGs0UKejT0X7dsvAPPUp24jTOG1VYa3isW63zLS9QXnuF7QVhvAvGKPv03k9UFY0duVWKZoMRM8N8k+8mbXsvHK8ynZ8BoOaUcbwajqdE4aihXQE+Z7TGeHZncJ0mAa25ZSaz69jNCI01R2Uy6zNittfpwCwlyDRpThQq6roav9e0xachEXY9JxJxxIFguLgyHAQmTYPE/2qPLvoGGOD5QFcy/Ld/+7d84Qtf4Kd+6qdORXl+JOEvPh20TcdXYKWMP7MWHFhv/s+aAYlKkjERdh3VcyJPjv7Ssyi6yZiqg1XFe+puaPp59ucW8ecWye2ZJjc0FpwgEqZnvw/VOph6oFavzzMSJELRMvGybyzhb64EGyEBEIm666BbFqPaWOuk8FqNTXxrHh+ifBVFo2ROtQiuoLKJnbbuenHyIiOf4T5ND0hXrQx1CzIOfnkBaBLTcD9ENpR+bZ1MKNhoeqB7SRYVKevzaEisL2RlE+6pLZ2qB4S8to6eKzVJfED2fbeBAhT0UQr6qGSwcGKKSk4rkssVGTJWcTyLnN56VwVjhPNG19BUvacAJ45voak6540q6GqrrsgGOKOZnfjew8GG60B9kxIaJcZat2WX8T0Hs1phmhHIjwTvw13Z0r0qzWuZGJiaQAr9HhajaXqc9IbvVXzXwvuU2diGphZmaLohGy80XZvpmonqb+NUrabD8ERsV/K9OF48dLTs2xNnAhzfouaWMdRsGwlOOz/yvgKYag7djM8iiGnzeo2LxhvRjEQIXc3ESHD8Jlz8R+5hDHjTBS9tmXw0n0Hd3ZSbOElQdzex3HaTqV6gKhqT2ZrURC0qjqJGhLagj3JGcZTp/CoNtxpPF2vf9DYVNqcVyWlFhowym/l1FutGTPVNIkl2Q/Tq2rLtPprlEwfFYeQ5WYRPET8qLsxuuukmbrrpJmZnZwE477zz+G//7b9x3XXXAXDDDTfwqU99KnbOS1/6Uu66665o+yMf+Qif+cxnuPfee9nY2GB1dbXNUcHq6iq/8Ru/wZe+9CUA3vSmN/HBD36wZ4cGA2wNXclwqVQa+A8+QfjH5qGYb+2Ymw+IKAQEtm6Bs9jcbjYcYkdr1/HtenxfpQrl4/jrG63zHKeVJ+AfngfmY4toFC3RMB2abZUF8MXAKeF54X9xcURIiD0nUI2TZRaIKjQJn5aBjaVWmtAtWrjIKTxf1UFVgynekMCEU9SdsFIO7mV5qf1YeF/hIqPjR+L3Fkvb3Fc+3lbWeDqzVbaw3JBOipvHI3MN4bi/dhS1OWBQZddL2LZuZZFKTiviae3kpWCMSNOnKfgFfTRQ04WFM7JpeMutYQ5P4as61Mr4j9zTeg8J+BC8u1IRCmPSNB0h1DOS6nwHxAZ/SbLcaUbC6+KarBcvEJ6TjM4cR7f6vs2LlZKmHa7vdbRQ6jbDE5qFJNOFpFpTDHJ6EV0xu0bCa204sYWC/oN3xxPrOpnJMTI91qHhwgROrrvrOBnCwWuvaC2enWB4i5GAC/oohppFUxapu3I1t5PdbzvZbVflOy2Wk5m0iWtfOuFESbGqqNvsZ7g/pXr37t388R//MQcOHADgU5/6FG9+85u57777OO+88wC49tpr+eQnPxmdYyYGgtVqlWuvvZZrr72W3/7t35Ze553vfCdHjhzh1ltvBeBXfuVXuP766/nyl7/cV3kH6A9dW9L3v//9/MEf/AGf+MQnBu7TTgC+6wZE1HECQmA5QecfbssgEM62jjFrgl6CkAyHHYSEFOO4LUU0LAfEywLt5QnPE86XdsBh+WTHOnXY3TrzJLnshJCYWJK04X2JSJJjaN2jbJ9s1X3os7VXUiw7LhLicMAgOdZxMNDLQOF5gjc0iqrp+OGMR/I9SE/qIU3yfnt1QZaob77bkCZLzpCkXkNWf7vNaIh5dar/yfrSJ7r6BpaoulHxEvadncwokud3GiSJ+UjdyXXIV4Tvyo+FMwM9R+vzHHRXx0mKBM8jeiF8GS0PVGPvqddIgVH6LvWq2wKzIDqhEf3+Uccb3/jG2PaNN97ITTfdxF133RWR4Uwmw/R0yowG8N73vheA22+/XXr80Ucf5dZbb+Wuu+7ipS99KQAf/ehHueKKK3j88cc5ePDgid/IAFJ0bWXf9ra38Xd/93fs2LGD/fv3YxjxIe2999570gr3I4MmuYoRUVmaJPFMQiRIQ2PgOiildfzF5pSyaaSTYmG/lBCDnKB3IsSiuUSyjB0IWoz0pUEkCb0SnTTCmyTIaeS4X2LciRR3UnLF4/0Q4pOEbq7EQsWwV/WsbcrcyAZT22kERqyLnfzfysxPekHyXaQh8R5kaKu3ndRj6E6MO7k2ex6Q9MQR2oqG6GReAa0FhdK8JYRaRrg61jO1+e3K3MgRzDAojtt7m+E64G6i50fw1BfHehhV0SLVPWluAf1HiuuF9J7I8X7TnWqUy3HTxEwmQybTuX9yXZe///u/p1KpcMUVV0T7b7/9dnbs2MHIyAivfvWrufHGG9mxY0fPZbnzzjsplUoREQZ42cteRqlU4o477thWMuy6Ll/5ylf4+Mc/Hplk/Dij61dzww03cM899/Cud71rsIBuu9CLOtyJcELTlECHvODSyWp2NjJSnCC3ITGJqdXQOyGO7qWDep1AKgnudm4vxMex4vcEvZHj0ERETNuNGHcixZ1U4h4JcQzisV7PkUCu/p1gBI9erosLNJ9nih/c+ODMbX/f/cwQhOiVOHcjyl2U5I7kOI0Yd1KL05TmPglOv9P+Mu8XWzlfV0wMNdvmU1msayKR7uSZomP5Os0wyOpQCvzKMhAoymrC3vqFitAsIVx82end9eM+rB/f2sntU0F0T1Y45j179sT2//7v/z7vf//7pec8+OCDXHHFFdTrdYaGhvjiF7/IueeeC8B1113H2972Nvbt28ezzz7L7/3e7/Ga17yGe+65pyu5DjE/Py8lzzt27GB+fr6Pu0vH448/zic+8Qn++q//msXFRa6++uptyffFjq4t7C233MI///M/84pXvOJUlOdHFwIJbSOgiTRSpHWIltNO0iw7IMRinkmVOGk20S8h7oXAScwn0hS3NjQXGXX0MZx8JgmiH0JKjnshxklTik6kuBeVWGY2ISG3PSnn24jQR+52dDSxxVVhJ+06TTVP8vzDZ5nJBM8/k2kfAPaqAm9BAe7F93DqucTrcyox7ocU90uI+xgUheRTXPAk8/0aTr3bnoKmBWligRU6IPQoEBLirul9C1PJReVrK3Ma0UsLMBLWs57DWFuQKwbf3MmK9rfN8BQvFtq7F8K7lcWBfaXdYnTHFwIOHz5MsdhaPNyJuB48eJD777+ftbU1br75Zn7xF3+Rb33rW5x77rm84x3viNKdf/75XHbZZezbt49bbrmFn/3Zn+25PDLB0ff9ExIiK5UKn//85/n4xz/OHXfcwWmnncZ73vMebrjhhrbBwI8rutbQPXv2xCrKAFtAypQe0CKeyfRppFgC33ZRDC1O0pIqsS4QwjSziW6EOFm+pHrdScHqxUYyidAdVgdy3ZZ/8lmnkeNeiHE/pLibSpxmNtELIU5Lv00I/d722gG6vh1F8YM+VMhkPQwRPl+xnvVMZmhX42XoRwFOU6aT56YQ4xMmxSfZPCZ8z0kinBaspO7WMIUgQW2mEoJvYhenjXDLVGFxv+PLgylIibDWnFGzhFkNceAPwfF+bMiNbPDO+jG92Qq28bt1fKvNlVnPxdhGYqzSAxGGzuZPzzOKxWLPHMc0zWgB3WWXXcb3v/99/vIv/5K/+qu/aks7MzPDvn37ePLJJ3suy/T0NAsL7QuAFxcXmZqa6jmfEHfddRcf//jH+fznP4/rurz1rW/lxhtv5NWvfnXfef2oo+vX+ad/+qf85//8n/nwhz/M/v37T0GRfoTRSR0WSWqnxWpJYtQkFb7dNBEwtHgeoUrcg9lEV0LcD0lPsx1u7u9J/fT6bEB7tAMWyXFXYtwrKe6mEncym9gqwd1iHm12nmhdlb/wnMi9Vj/T6iGBgc4DQ73HjlXMFzoT505EuVcFOM3uN4UYp6rFnUhxL4T4BAZCscAYaF3fX+gTOAjGowJWV68PIRpuNVKH04hw0owio7Yi7cnK1kqrt2yGxTYuhGl0tCluQ66IEkb565es9Ttg2Sayrerbt2htK3m0hRz36X5vL9AFvicK3/dpNOSzncvLyxw+fJiZmZme87viiitYX1/ne9/7HpdffjkAd999N+vr67z85S/vu3xXXnklIyMj/Mmf/Am/8Au/wNDQUN95/Ligaw1917veRbVa5YwzziCfz7ctoFtZ2Zo/0B8nKBOjKCPNBlfXWo34ZrWpcgjqsK4FU8W6GXdPlvRrKpgPqKfvjqvL1XqwqC7sMJqEWCkNQ3GovRzhNcJrGtkgFKzox7eyDIuHY52Qu+8ioNVRqYoWBPOob6IUxqnnszTcSqzTG3Xz+FYl/oBUnXW1wmq9HHXCoXug3YV9UQAGJ5vnSOU51iw9Suc0/4+MjHHOa34C/9HvtvJ1HPyNCtQbKIU87BgL7mX2COgayv59UYSu6F7tOizOt8hbN1KcRojDZwrpKnGXwc7ztZgu9h+3jQiHsLyaVFFueJUgClvzvA1cRi9+ZRQdMLq/Iw/iP/lc057YwT79IkwM/Gd+EKTLZFB2XUDVr5BXCvhHHwyCpiSes7L7Ala9lXb3bgKpcj2HaXcEf/WwnCCneacwsvLnnuaGrRe1uFeie5LeuTgTkLQ5TXqROBUQyVVXuE5rMJu2iM51g0V0aehkihaiF/L2PCmdqpGNb2+jHW1f74JAoVbVHKqW7W7S5p2YXfrJshnuFe973/u47rrr2LNnDxsbG3z2s5/l9ttv59Zbb2Vzc5P3v//9vPWtb2VmZobZ2Vne9773MTExwc/8zM9EeczPzzM/P89TTz0FBDbIw8PD7N27l7GxMc455xyuvfZa3v3ud0dq86/8yq/whje8YUuL517/+tfzta99jRtvvJHDhw/zS7/0S5xxxhl95/PjgK5f/F/8xV+cgmL8iGNiB4wMtxPaoXoQEKJSbRGtTAbMfIwAK1qmjRD7leUgQtu+/W1pfauCsuM4HF9peZoYysOe3UHnLssXot+eqlC2l7C8NUw1R8mQT894vssPVxYiQqqrPqcPa5SKp0UEdtNe56GVHJu2xsumNhntENhhzdJ5cDnDUxtBfnUHXrNzgdfummKpfogfHs3wjWNDrFng2MESd8cJ/lsNjbN2zvHe809jpFyDzRXYDBQiZWYHTEyjDE+1SL9joew8L0baPNzAf25xKgjasTgfDCxcFyWpHpt6fFo/2cHWLXCqQZpsUnW1ojJQqbbOFX1MNwmbL9YZVYfGZiubToMlgFK6i59+IRLhjFqg4qxGkfkMNYuumDi+RcOt0HCrUXjvsG4crRxtG8CcvXMXozPn4D/7Q/yzX8Y3jxxjLOvyE/tfAq7DqlLmsaWjPLdhsG94jbOnphj1i/iHH2orn+Nb3Luo8YMlHavJ5+pO63nYXoafP7DJZcUdsHos2Ck85xgk5gvRt+I6LeVXZuYgEiTPCeph3WrF3iiNBPVQSOdvLAS+sbMZGJsJosilIUGa/Y2FwB+26zT9ihMM9ESvNboeGCEIvs01XSNTGEaZPINVbwXHj6vrw0aW8eyeVkTMY4vgzAX1WayvYZ3TTcoTE5FdcmiHDoFvXGXhqaCtSw4WZo+gvuqNWM1Q2bpqohx+IBqwilAyGfzJscAziR0nVu5CFW+9gWKoGK8otdrTapOg5bPtMzvlTfy5RRidF0x1Et9icUcgDIhlrq237zv6WFDGXWcjg7/0LP5TsyilIuw/EDvfX3oW/8hccL6moVzw0jYy7tfXAzGiXIFigVwmQ87MB8JFYZy6AbZXTyWzeb0UBH+y6/JF2Qm/8EBXF3XKzvOou5uRTbmarNNGFiVbas/3RYqFhQWuv/565ubmKJVKXHjhhdx666287nWvo1ar8eCDD/LXf/3XrK2tMTMzw9VXX83nPvc5hoeHozw+/OEP8wd/8AfR9qte9SoAPvnJT3LDDTcA8OlPf5rf+I3f4JprrgGCoBsf+tCHtlTmr371qxw5coRPfepTfOITn+B//I//wStf+Up+6Zd+ibe//e0Dd7kCFN/30z10D3BCKJfLlEol1p74M4oCGQ5Voii8b0hkwoYq1ySMvZBhkJJhysfjauVmFcYnWtGaUvJF1XEUj4qziuXVIjvCnD4cRI6jNcUpkmHbU8jpHvuHgzj1dXeTR1dVFms6tiA2vXJmE1MzA/tCYaHOPYsFHltXBCIT/L980ufc0RoNT+Xp9QzfnFOoNdqJMMD4WIPfv7TBRL3ZIdjNwYbrwNBYRIaDiIA6/tSB1r0IkZVM241UDn/+KfzDLRKgaFqr4wwJcaiyO4JiVd4MjuWzARkOn69IllbK+AIZjvJO5hu+Y92EykbQIYrXh1baJmGjbqHsPog3NBpTe0U3aSHBzaiFyEyiW9qQ5NScckSGI4Wx+Vd3a1QdNSK9DU+N3rMjhOQ9q6QybsyApmO5NW49vMJIxuWyyVJ0jfuXfY5VWgT3zJLDBWOtjtXzXZ5Y9/jGsaD8yfoj4ucP1LnI82BtsY3IBS9f6LDDY6E9qTgggZgJTxhqPII4y7CxCivrUXAcpTQMpx8IBqX1TVicjwas0aCtMC5XJkVTjMpyQOqbA177kUU2Hq2imz6a5jeL4aMYKhjN+mWoKFk9+G+oKHkD7YI9KGcexB3fw6oVDBJGzZ1oq3NwbBbvsVka9yxgrbpomt/KE8DQot/aWBbjrVfS2HVmVEZdMdGWD+M/+TjOvc9FZFWJxR/WMP/N9ThmM+2DD9D45tMsPRyUX9ODe3EdBSPjMXJJAW2qZVIRwl2o4CxUccsO+VfMoB7ci99o4M8u4Nse6kwpePa6jt9owGYVf72CX3WE+1EDMzMI6kc+G5DXybEgEIymB+9sYxXGgnpL+Tj+Y09j338M3/YwL5pCOXgayvSB1rvaWMD58ndQh03Ug3th736UbAl/YwF/9jn82QUaDyyiGCqZ685FveDy9kFDZRmW5vEPz+E+u4w6HNRZpZgN6s2u3Sjj+6ir7RXfVHMoC0/hP/M0/tFF/KoT1QfpfYfXrFnStCHUlxxEOfNlQXAdLQfVtaCcmytBtNV8Nuhz8iMo2RLlcpXS1P/B+vp6X+uQwn50ff3LFIvt736rKJcrlEpv7Ls8L2Z885vf5BOf+AQ333wzhmHw9re/nf/z//w/Y+7hflwhHa6Vy+W+KsfGxkZs9DNAD9D0VqcXKk4bC9tiW6XkSlAYbzWo9U383HJX/79JhETY9T1WG2WO14IO3fEUGp4aKX0hypbKA8vgeDUabrtCYXtw6+GAjNddMyLJlkcsr5DI2B58d0Hhm3P5aFumCAfb7SttlWzzOSQUVGVn4CDdlyz8cnyLhmbjNcOZlk6/DOrfxV9NCZOdxMp6MI3ruBApykOAEA66zT1dfwsmpbbmIjJ5yOTxVw+j1NcDv6NaoA7GZwM0HLM9+pYs3G74OzR7CfeLAybX95rvsf1diO83/H3/sg8cC+qTG7zPxZrOPx2qNOuGhu0JBNeFB1d07l2iee0wjS5sx+sPwE/vtblsMkNxxQqITAiZGYJIetPULK15zCD4th59JD6gacJ3XVgRiLJpBO9qab41WArTzq/hL5dRdq0H5AuCPOtWK3S6mH51PSAc/dQbGZo+ebXlw0yE30m9GQ1TFsAG8G0vTmhDVKpknvhh8Ltax69Use95DnclGFgq2cTzbBIw+1OfRttVxDc7T9F7roL97Dr2s+tt17c2ob6hkR1Wgus9fggMFb9ZCfz1SqQS+1Ubb8OSl0mGSjVunuO4AQl++KmYqUb5sQbqU89RvHAZ/cxng52mEdk0+7aHP3cclleDmYJwDYOoFtQbePfd2doOr7myjjO7hl+1UUsZlLwRHBOemb/8HBmxzsrUXsCvO233HVuEHV5TKFf0zsN9hhoo9Ifuw6AZQVJmO9uoQqOKz7GIWA/w/OHqq6/m6quv5kMf+hCf+cxn+NjHPsbHP/5xPO/Um0e90CBtCUZHR5mbm+vZWfSuXbu4//77B2GbTwTNKaXQ7+XzVQbHs3B8C8urnXB2cQLU2l8XuJflyX8n99myYxIi7HoOuErXaTmpGyeZV4S0fJIeQJqIiLAICZmJICrK3dCPh4UQS/MxwuyLCrJuog9PQdO/ai9eIaSu04jbmorvPVSF0+B4MuIc/w+tOiMOoMRrpRFhy4NbDhlcMuGiTB+E4lo0pb0d8GcfxrnnuUglDUlGoMg2FTeBtPjrZTg8h7sQqPuhUhvh+Ap+SKCbRMpbrkYEJsw3uEacCOengv1uuQfS0TzXe/Y4ypGleJ4JktULvKqD9eV7om13pQ62G1OPQyTJtPXwEvP/WEFtqsB6yqUrqzqVVV1I11LAQwXZqqpoj6yiFVvPVXzGSaU8WZ6IFEJA6B0X1oXZoJDAzi6w+rUFGhUNTfdRtdYEa/mBTfTHNiKFHsB1W/VcVO7FMvm2R/22lucBsfzidlTOsCzLq7DeHKwLZixts1gJxAiuobZ7JSIgzmEZYu/N9vAeeqpZLtEkp/nbNILoqJHZiY5f6dGtZhq22yPFC9S7xXbixhtvxLKsyDTj1ltv5aabbmLPnj384R/+Ib/2a7/G/fff//wW8gUCaY/u+z4f+9jHel55aNsn33n/jwWyQ+A2Oi9EEHES3GyFdp8hkgtqkuSl27YIkezasd9yVTiZNqkKJyEjzNuCtHDZEijDBbCcwPyhG0wdxdQ7q86hUhOqLmVh8aHMLV8/CMl1fbNJjvsjQH1fLmVwFKrCssFT5wFSdyIc/v/2nM+F40+yX5tsFkZc/CjYUPa7aK2PutEX0oKUQEReRCiGir57GGwXt9yhPqVBkqcMnqNEJA6SRNKLyJNftVPIZoqq3AeSZUjCdRU0O7ArVvJG+3WbJB0SKmmnZ5CYgfETjY3nKjFCHJVD83FdBcdqrqsw/Wh/7D6EMoW/wzKHZYy2xWuL3oJki3nFAE/hPQr3nSTE0f1V7eB9SsoAyEm0eO1kuXoJwz7AtuPv/u7v+KM/+iMg8G7x1re+lZ//+Z/nzjvv5N/9u3/Hpz/9aV7ykpc8v4V8gUDaku/du5ePfvSjPWcyPT3d5mVigC1A1VHMAn6vZLhf9NDR215d6ohfRFLtS5pLhOQmOBY/dyuqsIg084iQKEtxEgYNqRjKB1PbKe522tICSnORXkfUGwHJbjTSQ3qHEMld2AklzSlEF3cAXjoZ7hSpTvRNK9YDR2IW0SlN63jrt2gekTzWliaFCIf7bjmsktGy7B9JuOXqhC16czhRshcitLHtBdruYRRDw3l2rWvabkot0CIzfY4w/WqirogkL4lOx/qE6yhxdVhz0XKS4AUpxLztGaSRyy7X7kbUZWgj6uH/NEIsK2O0T5gFEiM7humF66WZS4RpooGNJH2qqiyDGLBpgFOK2dlZzjsvMAu85ZZbOOuss/jYxz7Gfffdx+tf//rnuXQvLEhb+tnZ2VNcjB9TJAla0wE8Rhc3NQS2n34nu8ZtRJLsytNs7Vi39ElVGPokwicAz3dxPAutzRtEE222upmIhCqZTLBQpxPCd5fPwkalc1qIE2GZrXAaOinI9U18rR4sLhTQyQ9tr0E2xEFTmirc2tftePA/qQrL0sj2pdaRXn01pxFjx0HJG21KoRR92vf6dQe/l3GxaaD0adbQEQLJUvIGiqGiaQ6qHqiZERJkNiRPbs2XPkYZ+cLeOkFybCUylRCh6oH6qjaJY+p1U8hbR2LXAaI67FhKpALHyizsl6rDkjJKyavttcovRhzdApLE1lupt+qzpAyAVFVuszs+wXINcOLI5XLU60Ej8vWvfz3yUDE+Ps7m5ubzWbQXHE4Oixjg5KLpC5jsUMtP7nbAdTDUbOSHtBO6EeTk8X5MJJLpQ6SZR4TYJkEuhg17CWXqzN6JjGNFfnM7YiuKYyYTEOdO6MUOTlRowsFXduvO2NPshXtB2ixCUhUW96WZR7SnC/6frMFSCO2cne07t6kyhtPV0bZUHreDv2o9WqzWc/4ytxsi8ln03cMYu/KRyUHPeXcot297eFUH3/aobbR/W2nqqitZKCuDpvltJgVpA5bYM0imEQN6OE7glWezirdSo7auxwcHTaTtC/eHJhOxMiTKGSOjwnG/7sRJs9PLb8HlWZiPmJ8I20sdsMTKKKjG4XnBdsIHdPj8tkMV9tymv+Lt+vvRV6pf+cpX8tu//dt85CMf4R/+4R94y1veAsBTTz01CMOcwIAMv1jRXHDXNYpbP/CcwM+u2h5pSkZyutkLb8VE4kRU4Wt2nbjRcNIkwPNd6hkdZXfvUYQoV/AbW1jslkQsep4OxULgi3YboZgFlGypq9rbc8hl+jeR6FUVFtHNPKInItypg+41WlipiLJ/N9rYNg5KtwD3aBnnyAaN493Xb/i2B7YrJYdJ/73oGtquYmCPvM1wFyo4/3/23jTKkqM8E34icrtL3Xtrr94XdUstdaMNSQiBQRYYgQw2M/Y3eAZ/GvDng7ENw2BjPCwzGM8x2+BjwcGDDp6DgWEWZjxjj22wZYvBYLAkwEKgtSV1q/fuqq711q275Rbfj8jIjIyMvPdWdXWrgfucU6duZkZGRkZGZjzxxhPve7qBdn1zZ7dMO0ukZdI3CEEGoG0fwbFF+M/Mo/tsWpc9KElPnRNZjXXkOVU2jfU8bLjpZ6WSdpGHTn6lI7fSb2JR0IqdHkzI8gmFSF9SQjzEunDPPfdgYWEBv/3bv423v/3tsQu1druN973vfc9z6S4vXCIh5RCbDsME0F9OsV6YjMKh5b664TzIlj6gn3ziwqzCMtH5qUNNvHRLCMABsLkr6ZreMgrTVwLnzmcPqhbjZqu/PGIjEL6KLzRvnc5wA7MLqoyil0W438I5df8gVmFgcCIs2o7aNtOF1AQiGABkmvvVpfvOI/z+8fSxTdLDDoKw3k1ZhVXL6gXpmEsFkPZg3wNOjEj+4jAk0/Jel6LTMOC2N39BHd8mqeupv/PK1Q/eM0tYOMXfGZ1MQ0BIImRLsCirOCajn9QmtYCu5YEVTJDagG4ae8xU6WQkxKIIG4kVmcshpIWHOYv7ekomhrjk2L17Nx544IHM/te+9rXPQ2kubwzJ8KVAFCVIDW4BADDMxG9r6MIEkghUUfpUIAQWIEQHCPi2WSrDrkymfL8mARN8vq9ooVQ5kIRNXltOomhFCE0LDW8BoR9ow1SuuCbavlj1j5Rv2FEnQNMz4IUEXpgmJ4LQFLKuKweCzrKn+hQ2rRB37mhhIuQuwhjqmXMuBCECzGMBU9feCtauJwFSFma16YnjgFzLQ1WngppIz1O2tNKdBqjvxcfZ/FGwyT2pdJbsDmznDh6xTPUDq3aEqmRCBHQAkrKYFo8mF+jaD1LBUUqmXkrhhQTzUaCTUZtfs5dLNT8kWO4aaEbF6wRZQjvhiLz5vsUOibfldEkZlGt4FL5P4XYN2I7GIhXVFdl1IzropAKL8DKKyIQhQnBt3VRhTxLoBojlSg1vAeUX/RTMnYeT9/rMaR6sRYdSAdYbX6ON/hgH1Xn4/wJzR/TnKyA/8XLYN/MAHkUAa/cmIcmtq8Zh3vUixKHWxfdHdrkn3O0trSJ87vRA1yzcsQdkajwJEgPw360OgsePw31qEcVfvJUvEpWDm0hlsL0Oaqf49eY++YNYLlGs+Zh4+y18JiRqz/Mf+BpCn8ApB5i4K3L5KbuuAyI/zgZQcEAMA8Hh03CfSlxV2rfsALlyd1Kebhf+17hfZNbxeQASx4nvhzWasZ9oMjUO1KowTBPGQhvbr+INNOO+TXJRFy8mtGgmeEXnobPwujSlHS7/9N4oSI+TcYvGjp5C5yEe2CNsuJy8Wi5IyeSUX0uAle+B7ycWckULLMppvCYhSbS5iO5n/zom4DIhNg9u4XUinjvAXa1FHQApWSDXH+A+z0Ub/+73s2VcD4au1Ya4iBiS4UsAMr4TrkNjgsoREVXpfbRpER3qo+3zKbgwCIDoe5ry6Rr6KFuj8EMX5920tVJYzkYdE2VzDADwTH0JwFKcZnuZoFaagd3t8s4ca5hdncXJNRsWBa6fSD6gq66B+Y6F+baJlp+12m0pAitdA/MdoiU1Nk3LJy0K/PN9Cdk6Uie477SNiQLDz+xqw6QsFblMDuErfqtk3AsJKhZ4CGWZYGwQKlkFeJ3PYgHFCo/ExxZPJAflDqc2Cu+qK3B09ay2/KLsAPCiaR657etn+fm7Ki4OjY2hSDlhfnz5DP5h1oEXAr90YBuqR4+A7L8JLmWwp/aBrZzJJeQpbN0CMrUPdVaHG65wDxAhgBDodBhWXDNVTgDwYjJro2oHmCpkLTtB6GO2bWCuZeJ8m9/DdNFA1Q5RNNPsVGc5bnjAsksQxT+I28zWEtAJWOpcLwSaPtBpm3C7RjwgKpWTF8g0Q5hWCN+jaDUtdNoGPI/CsgwUioqGUlp8uNg5i/tOjWAxGh++5Wruiu0f5niaGycMvGyrRILFYrrQB5t7Gp3xMh5famK0WMB00cYExsDORKRSjui1uApSK+PorTfgfx7xAHh8wOhn35tf3L8ft9ZX4f/gTHK+biEYgG6lhm80QhQn9+JlRQPAP6QTFKs4Wwpw36kRdALg6lEfL9p/ID5s0QKcRh1Y0rhk8wPA9WIyV/qJraA/cQO87VfHIblDBKlB08QNt8L5H38CmCbaO6/CV0+v8WfoJoMbAOgERVTHxvAv9k8C4KQ0trTaJlZ27cJ/Ogw0fYL3f/4d8H7jD1B6zz+BN3MFQgTxAEaOfijKAgCTt9wB+4tfBCmZoD/5E1itjeBYowWHhriythPG0e/xevVCmNftAL3hJXFkQLZwjC9qHa+BXLEPZMsBuEEbVrEK8tAxWP/ip0Hscu5gFwCMkAGtFX4/IrDS7BGE33+aV61kHS7fuQt47RvQ9JfR9FbiADbivZk+cDWqL11D+PVvofvwHAAfKJn5C+l6LLDVWno7PkjJRN0J8L+eC2BT4O5d21PpmRfCOjgFcmg/yK4b4cKLv+NOow48rgzeDB7gaL5zHEHoo3T76wB8RlumIYZ4vpHLGl75ylfibW97G37u535Oe3xhYQEvetGL8Nxzz120wv2owA06IGH+dJpMvLywg26Q+KjNW5xk0Ta8sIsV18wc80OCFZdhW2kOVZuP3hc7SafsUA8mWUboVBGyLpruCs61bMy3eV5TBd7xd0Nu7W37BC0fWPWynfZsGwBIar+8wMmjgEVZbAUEANsoYuTI0wgO3AIgbT3bV90LcuS7fEMKDgEqBa2gJmAYSpjcKhjOIIMNusfSIWAh1rw63LCN2ugM7GJN2xHWu6dwcs1GN6AxkQMSIiAGEkXTx81TNRyut2BRhl2RLLM7OoFH5s/h/xwvYCUiis/U27h5egdcytAOVkHNMZjlCR75SQnzDasQW6/ZWBPEcOBShrVOHauuATlC3JpvYtXVe30AAJMm7bbuNlOkuRsaaPsUa56B1dgIxttZy09CL+vqYbHLifBiJ2vVXXURl9ENgYbLifDqipPRireaJkzhUkuyAvs+gRdZhwX+/DkTL93SRu3QbTFxOrV2HF85OYLH5o047dcqHv7quInVug3fo3jubIjFLvCKbUdRNDlJEfc2OV7GU8sUD503sa9i4cll4Kapc9j1wp8E2TebaqNiVuHPjhP847MleJKMI9HC8302XcRtt7wM1v5TWauuEqb9H2aX8I8LnARtvaKJ/e9+VfzekMoMng1X8MnvV9BoJu/BrpEVlMwwfp5jpSpq170UdOvRdJsGgPOnYUytofiiq0GueSmerR+BLw32+EDPlkKvr+LVP8/dNv3pkSaeWKYpCYsvPRd+3wv4f//dS1PRGedmxvB7/0jw5BN8QP+XY0v4uX/3z8Em92C+dTQmimo0TFEWLwT2VU9g94uuBkwDwcROPDl/DkfqDtwQONuaxYv27MfIz03x+wx9hMUKbxelMuwd1wLFE0B7FaQ6g5ZfRzdoYpSafCGhYcIvV+N2FLIugnAtNcNCiQGnVEbIgmhRsgNz/y2g5QqKtTKKEnmld/4/mO8cx0I7wNmWHQ/2xX3tqrRx48ROGDcfRPFlL+bPv1DjC1+VWUYgPaC3wa9BAJDrzyR6eKlNibb0F8db+M48QdkE/sneDsq37U4FHCGOAzK5Fy3WTKJRIoBXHsHIzQfjcsC0wbZejRONZ6NZIxPTyJkpGWKIywCEMaZlaZRSUErx/ve/P45eImNubg7btm1D0M8/6o8xREz1+aU/QamSdEQ6v63JtCzghWkJgxr4ohV1JKIjEFCtewAnMxZlWHWNmHRU7VCyACbWVkGGrYjAiuNC+iAIj26q2qbpfV5Iclf7v+cGhtr93wBKBdBbXoZ5aw02LaLa6IA9+EAy3RlN4cbuxMSUrDy1C6QJs0RMY3LYw3ojW5RUS1N8XLJ8ydaaioXUPtmiPdcyU52ZqEOZDHshcEWF4bFlCosybC3y/efawGyLRAMLvu/n9vh4yZYiHFpGN2zCoeW4PuVZAzlksopO0EbLp6n2seYbKfmLgEhTNGULLdD0jPj5yucIq6qQw8h6X9kaKM5bddX96bJKga7QidqlbBEWZNi0QpgmS0lnxDGVDI+Nd7FruouraiyexTiySjIEDeAkW+QlSGux5MeWaHkhZ7tlYs+eNdyxVbwzPI+poh/XpZjFaPkERxv9yfDNNy7itbs8bCt5KdIp6lCeHTlcJ6n37boxFre3k02Ck2vp+3vRdg937milyLDIf8xhUljt9H7+XFmGhIpZj7NNE7Pt5JnK0pZeZNj3CW65op0aRH/78Wqqng8e4mG079we4qapppYMq/Wza8RNvZNtn+JI3Uq9g/urAboBhWOEePGMjaLBryveKZPwcOUiGNGYsw1oLHAyXCj1/HYAiaGjbI2BwkjlS4kRp294CwgRRGTYypDhbeWkz1h1KU43DTS8rPEByM40bC0BV9ey3bxO0vboEs+rbAL/8qoObqhuTZFmUV43bKfIcBD6KJqV1Pd0oR2kBioFdxXX7Xgn6vU6qtVqpjx5EP1ofe5LqFZLA5/XP98WajP/fN3lGeJHEz1NZvfeey/e/e5349FHH8UXv/jFgSPSDZEG/wAmVW2QtIsiQY7Fh9KIRvpius8gUZjViBRblMUfGIeGMSEW+4U1z486CNXatxRZidMLmEhKzqDT/xaMNMnpB5vme4oAADa7guAv/xITOyaBThdsI34pL4Gf5Twsdwm6oZUiBEB/XbRcj4frJH5uRxrZgYNYk3K+baATJFP13VDvl1h03G7gRmWRn30UBUuy9lqUoR3/Tsou0rQlktkNKFp+b+2uTirTyxWaaCPyteXfqmZcEF/TCuNteb9MhGUI0uWFwDN1kiJoSd5hipiqaKzaaKzaUV40Vb6rrkj77PRC4HjDTA183JAPcs4t9PcI8o+PTABYxKExnseWYv6ASsV35vX3J6PpGyiZ2QSzbQNeaKZkPQCw4jJMFry+HuMEOdNdu9d78d3niqmBB4DUAOHRH0zA9yja3UWMOgXsGum/kPS5VSczK6GW56kVIyqrgZlSCwdHE1IUsgDtcDVFcBveAsoj3FqNHh5WZN296qZS5BunYwG8sMtnnnxb65XnSJ1/F90QmG0TnGsB7W52UAEg8w7MlXysbutgosBS76K8AFV+Xr5H4VK+w6UMgIcw6GQIvzrgXvPqKWOBPAPlhwSnmxfoCUe4RNssbGZeQ/zQo+en7fWvfz0efPBBPPnkk7jtttuGkogLACVG6k+GQazYt6/84TSoGRNjno7GxBhICItDQzg0IcrqcQHRkcXnGX1YG6Dt/MQ+W3NMt08jc0xlxuaWgJbkFUO3GORihb3dACyql7zo9uelzYOuruRnYBAr9dcPVjQzoG7L+4pmGG9La4AA5LchAfG8C0Y2jTgm8o7Tmnnp9O3NjEibkECYPSJ8CZI8CHRtNbmmVGeaPE0NkVzvs+4F36M4NVvAE8skJTHaLBytO8pA6cJRMhnKJlAeMAKbPOjo5wt6UF/RG72nfZFESbd4+GJBJpOdgKHl01iy1NPzCRTvK5p6lGcdBs1nvYube0EXXXKIIS5n9P3CXHPNNfjOd76DnTt34pZbbsFXv/rVS1GuH3nkEWMAuaRYEOM8wisTYpHGjElOQnbk/YIQ60iSTExU0iMTGbFILr1QLk2AxDk6sjOwC6q8KGobcInVD+vtFFXSCOgHGyoB60XI1GO6QCgqOabEgElsFIxiauCkf74MDg0xYgapNPx3uq2YlMExwihN+rjcNnTtoxfy0sXXji3A6bo0TRYTVp23CEs5T+tR4jLHmZMVnJrdfP/F5zsEjy4THF11+hL49XhkK1sBqhaXDwnovHz0Qz8CdzGwr9aNv5/PB7yQxOs/8qBa2zdaT71mDNYboKZXpMohhvhhwkAtv1ar4Stf+Qre8pa34Kd/+qdxzz33XOxy/UhBkFv1Lz6eYzVW0wEYmBDLaQYlxOp5yTb/n0eIVazbOqzDZWQJlnEh1j+1vvKsrL3Sqm1F/TOIBZPywCkGNePZhDxiXDRDmNF/9bi4rtxeBCFWyyWXXW4fVjxY0luH1TzEn64OAE5q1T+BXhbjfsizKMv7ddZg0wp7WqMLF2hobLc2/z145qyDZ846eGzJjNcfbBZKm1zczSTGeZbPq2sMu0ccbCkVN+1aG0FbuVedlTtPpiZr5gexCvfz674Z6OVecYghLjfkfroIIZntj370o7jxxhvxy7/8y/ja17520Qv3ow5BdNXRtSDE8apkiRCHCGAQCg8JYVF1woIQd0Oa0hfLELpM4crMMcLU1Jw4T/KjDi/M6oB1pC3RfvI8xDlVu8eHd9Bwx+slyZdAU6yrY9lF3EbzkPHIIsHVYz6mCmcxYtUyC30EBCmONX00qz0XkDXoDg3h0fQCTLl9ye0FCOGFYiFdum0Aib4cSHfeansQhLjjp9uNCuEuTWh6gTQx9X0K2wni6WKR3rJCeNF5/Jw0ic+7npxXr+OiPKYZDmxB3ayQ4evV728E/dqkDiNWgNn2pZMa6LDe6f4rax2EbPNnly4FBpGa+B7tWyd6TfVlJnUY+hke4iIilynkOJnAL/zCL+DAgQNxjOsh+oMS2nvanYl0RjoYg3SOTIwD+KmOSv4tkzB5cZ3Ynz5vMEKsQ57FS3TQKmm2KfBze4TLuCJfKGcpUa3UxXODEmTggn0Lp7JSnoOAQWjGs8egUMlXLzJTMBPLjajHpg88tuhgW9nAzVNSWTXSCQDy2pWU7hxIk2MvanzywEkeWPGyJ6QYSDyUqIMlnkZPisW2Sojl+5XrSF1YJxPiXlA9S1hWmPYxrEEvYiznoy7KA4C9+3lQhheMZb+X6juwEVSqg0fu2ozrbQbUb0PPaXmNRfNSoxtSPNcIYFGG2kXgxINKrvIW+W0EOquw+i3vlfeNE4PPsgQ9FqJddoR6iCFykPv1+bu/+zuMj49rj91www14+OGH8bnPfe6iFezHDWIxVJ6WODUVrpFKqDpheXFdnlyC/0bqmGOEGtlE+r88JS5Pa6vp1WttKRVxTXU3d080IGK3ajLWQ5IvMnQ6w6y1PN2x9NIN95JKPLJIsNI1+0olRNvRLcoEshr0tP/qbDtK2g1Po5JkWUqh05mr27JkQreoTrewDughZciRL8TXdQJUR7uojnZh0d6SHTmvQWQXW2o+rpryMd2HcAN99OEaTfPuK1axa3rzQnv3G0ik0m5ADiSeUz+L9SDSh16W+c3G4WUHh5cvwroDGLBpEY5R7p+4B/oR4l4DivXUo7As76iFuG7Cjd/ToS54iB8H5HYLt99+e88TJyYm8C//5b/c9AL9KCJvoVwKDBmrsCqXUH+n3dhkIVuJZatfPwsxgNhK3EsuISOe+jay1mH5Wuwf/28sdSBFO/EpDCT+gwEe+UqgVEgf6wXVx7C070JgULOnBUSg39SyaoXUyUpUiHqULWx51uv4OLL6cxUhgviasrRGlAVIW4PlbbV9yPeisxLL22qbkGUTwiI+iLVWRSJfSNyviQ5+Synrtk6+9qCQpRoCOh+uF2JtBjiZ3zXdxQvG2IatvZeLpfhyglofbggcbfB2eO1E+pgXdlLvkM9chEEAg1goGCOZtDo4Rjl/9kaDQaRVbrj+hW7yub22AeAl0z6uqnH9tOxDOQ+JX2p92TfLswQLXLBg8wZJLHD7JxrixwaX5yqlHzG4YQdAvnVAJr0Nj39ULcpQMIowKbdYqL5jLQqsuCbafuLUvGiGGLX9VDAOT7HiCbR8EgdQcIwwJsIp7bFCeLaV/QxhO9s0UTIZRp0g8Q0bpkMlz7aBph9df7wG9vQxAOCx7asjaZLb6YI1JB+64zWgXElFWeIZdwBf+ZjJhFcNtNGn7sHSeltxzKKFeDsvIAeAOCjHyTUHW0sumj4PU6xKT2SI6eSdZTnACcNTdZIihjIsylKzCDrkSW3U43InLZ7/qJ2+qBzIZcU1YVFgW8mNI7GJYwDw5HIxRYTF7/01L+Xr9XjDxGI3TYjHbIYt0fqlRxaT9mVToGIjjlQnLL77qrzOTq7xfK8Yi/yihn7KfyoAbCkx7Ipev6ONrA/c/VFebhjACwmemddrkGXIltxdFTfyy8uDXYj2X3dli/vg5N40Q9xw7TJesY3fiBx8waLA7oofv8/fPp91r1e1gX2VJAAI90sc4OgqwWKD38fWyS52lnnYdhEMgrdh8awIFjpWfE0dHBqibLJU4AuLEuws0/javF5l38MhOn4ILwTqZohW08Ku6S6eOTFYMAXTEh5N5O9ZCCD6TrnZ9j5iBXE91l29D2QZ3bCJTrCGpufBogy2YcMkNoLQx5k2g0MXsK3cQdkcg89cNP1lLLT5Nap2gIJRTGZpYMCkttYvL5B+V6t2GPuAV5HxiW2F2FELUTa9jO9g1c/3RAF48mQB9ZqLK8ZCjNosNlrIPoafXuT5nm4a+OrpAD+5LYAf8m+sSe3c703Lp7EnDLH+QIf6JbT2DzHEejEkw5cAbX8VIRvtmy5EELvYsSjDqN1B2Qq4Tjj0U5bggsGteXPRR8ikDEUkxEQOBCF3HmJfOkiEwT9iRhgTYllHXLVD7K14qNpTqQ/iSnc2jlp37bgZTwcKK0InWMOROsFsm3eqC50WRse3gkzVwbouJ8K10YSsRpZX4vqAA+5KrTKGOLywDGoClrSgQo48Z5ej4xq3VBoLMSVGPOhQrfCm64I1FpJryuFL5fyoiTptAuCDmevGd2GxfApH6gTzbWFt1ROiF023UbZGMdtawcPzpZRFL++cfpZhOZ2ARXl9BMyLOzl5Ud1k0UDZnEyCwEQdeDdoYbnL29iukS62h+NgbjO5f8LrY8dO4OhqA0frTkyg7txpo4JxgJrooINjq3M43jBTFmJxn6/eCZxY6+KpegEdn3fiL572cPVoBw/Pl/EPczQOT33TpI9tJQ//6XAJXgiM2gzXjvvYNdKN27dA1Q5gGzbuO5meChd1O+EAV4+5mCp4eGiujGfm9XWps+ROFBh2lv1o5sCLNeUtn+Jcy8bZpjnwQjfbCXDw0DJunGC4bsLFLeM78ODCmbj97K54ODhWQK1rwy9X8Wz9FAC9r+ndFQ8vGC+jaFTRDlbxyEILJ9d42l3TXfz29T5so4iKlUiW5GhoC52WNt9MnVCGigUYlMQDwl0jXeyqWKnBkhyQxg8JlrsG7j/J83jRFMNLZ9bw9XMUzzyXDeykDkSKZoiCUYRtJAPRhheg6WfJ1tayF7sOFFHozjatKIx8Gm2fouEtoOWvYb5jwQt5fY2YAYomb+88nLmBorkKixZiIszT84iOo3Y3di9XbflgtS1wwzZMki/FqFjA9vIYlrtzeHypt1cLmwLXjTO8cT9S363UQD0a3ADAf362hLlzZbRbJorOGkZtYE/Fx74ql+CcXHPwvYUk4uLfn6QoFH2MWMD1E10Y1IQfuilSLxsB/JDEnjB8yuDRZOZRDt7SGq5XG+IyxpAMXyI0/eXMvryRtjy6dgNXIsGJlbcTAGt+8vj8kGDVpZkpKR5m2YrPE5B1wTp3YdtKybTYmMMw6mxBwUMqas+oswW7KgvRNS2U4s6I/y/aVeyvnYUX+lgRVgHDBKojIOUSYEvWICMimqMFbgmWIRFYQUJZ4HOya0X7JFKqJcFyPoEPKpPiwAfAoxtRkQcACsot0GtLQEeyQpsGX3Ymh4MGUNt1I/ZWjqBoVkAWjmPSKqA2OY75zinMR1a2vGh1laAAlEZx9VgDFnXiY6qV57qJFkrmdl6+HoRYWLXF9K1BrLgzlmciLOqgYvFOsWCMoGCMpCzfPuP3XbXXUDRDzBT3gD3xYGy9F5puViqgsucQ9lUrKJsr8aCq4pXAznwfMA0UJvdid2US3XAJi5EFTLTX8UKAMXMHzOoKrhvj15wq+rhmLMSYvQc3TR0HUMapJk9/aMxF2RrFi6ZcLHaBa8d52pq1I57alXG+fR4WtTMWU4BbrvdUgJq1A9dPnMXJprCI+6lIXep5ALC1CBTNCq9TIxlMlcwAo46LqUIbZ1sWVromvBDYUmSo2l0sdpLnKp5x2eQLl/bXPFw9OgJ28hFcvW07do2swQsJJgpjqHQA9swPYGzfgb1T2/HSLQvR7BDi+iyaDAfHCjztwg9QmdyLa8dNtH0fp2sMP7cXGF11ARqCGd3oOTqghglKTZStMYROAKAr5RmibFkIQh9W9G3yQsIH5UaJ3z9NSNnOMlJhzEV60e4fni+hVgxRK3axq8IHIl5YBrCWiVopk+E7tnI3aACf2QhZAEqNqA1zY4IwCpg0xLaSPHsUHTdDjDoG5ttmFNCEt4n5tonJQgt+5ClFELo138Cab2S+refb5wEAJk2s9gCfsVuIQlEfg4/i0knsHnFQYkY0aOeyL/k9K5sB7FYTdnkPvNET8XdCnuGTvxtTBQ9jwQTY6mJ++HmL/3/ZljM4ef0iJgrANTWGqSInwhOFMRjEgkXn0PaLkgU/xJjNsGuE152YkUTQzjxHMWMko+1TrIbJu53MbAxlCUNcviAsz23EEBcMEVP9mXOfxOhomuCpOjJBbBpeJ/64CEKshs8VmO9Y8bSaushJpGv5BGebZtzBiAAZalpBjkU+u0Zc7K3sSpEKOyScHEqyg45kmCoI/qxYX13K0A2bcGgZVmMJ6Eiha3UWXxkaIpw5NoAcIpXe0+v7tNf3OmBLJ4BuZCkTWmZZ2iHyNW2Q8d1gjbmUxZqUJxAWk+evWnAAoND1YyLfCFdSHaX8f6KwM1W8ftbh3OnZ6Lqy1tGiBdi0mLkmwKeOQxagRmpgh7+dIcMoFYCd+7MW88AHWziW2kemr0ToFFPXMIMQbHUOMEx0K7WUNKVoVNH0l1PlEYsw6+4c/NBFzZ7J1KmsdVx1lwAAtmHHsgCBmjWTqpv5zilpsJImQHEHH5EUh4bYMVJL6lVXd0ELDS8516QMTd9IWbDlwVHVDrGnAkw2gqStyjKhk8fBuhGJPXg9nwkRaQwT6KyBzR5JD9aitunbNozFU6n0GRIFAFYBHXRSkiG5TsV+ixYyMwk662SiK+X3+txq8i6/cCqAG7i5Po9lErqtPJKpX3m7IxG2gpGcJxNygfmOlSG4QiakyszkdLI3Ffn55cnEtpU93FapgT32bb72wTbTayBMI3lfyuPp2SdZ7gXEv0MWgLYbYM0eZFh6nrPd4/Egu2hWYRI7pQcOWYCzzbX4vstmEFu3xbOT60LIYsS27v7lNu2FQHuthbfe9Cuo1+uoVqsYFKIfXTn2aVQrm+cLerXRxujeX193eYb40cTQMnwJoLq20hFhFXovBVnvEWminE7Hj3F9satZ9KbmqeYTsgB2t5smiMq9FOR1FTmL1OyQwMYI0FpD6mpGfr5qXrlEWPwelAjLkCUWebC4xRbUBNwWJ8M5RBgAJ86Kvpk1F0Ha9XifAcCU70e+vtdBxRhJ1qIYZjbNAEgtnstx0ReyAA4ta9OJbZn0AABaa8DEJNBoJkTYNAHXB04diSzmok40nb1pgy2dAInqyBB1JD2/ggjNbZgATCBwUUNZ+5wr1mTqvvJQtcdhEAs2ze9MRR5T0YBDJsxq/oIACv22usAoXXcOxp30sUkpX34dliKObgCwyX0g3/s62OJyepEpAJgGr/+nHwcTBEs5roItneDfokHel9BHgRZ4O4zIV8gCgAAhs1MDDhWDSHiE1ZHDwERhG6aU76LqxUAmbhlf7NE1CwZ/vrKEAkjcIso69alC+pnJ5E64pVQXHg8Keb3FZMEDW50DOxfpb0wjcSNpGiliTIzzMWGO3yXTyA5saHR8wO/CltL+zGBFxbbyiCSD4Pc6yKLhPGzET/UQQzxfeH4cO/4Yox8RVhcg6N2h5RPYvP2qmyo5vWoVrtoBRh3JEpEHIW0Qf/0g9LyqBvhCiPBGQCXLSb+8DBOkUAMpR0vNexDhOG/d9XrkfyHo56Wk1/H1hpwGwOtjdDtf/Agk5CuPjA3qASTKe7MhyOogWE9difDX6nW04dVlV3c6t4nRN0EdNJ9vHwP27M8Wpl+d6toosKm+uAeFfE95UTMBvbcTNVpnr7oVv+O61tSp0MfnRZHcSHRJnTFCxlTRx86RLdIJhv73RrCJ78sg34JsZFJ9pFL9uRsq1hBDXDIMm+glQK8QzHnbaf+ueiLcy3o8iJ/QPFK9pRigbI5lT1gv+QUS4im0vFYhPa17oUR4Ix38esoPAIWR2CKTWw61LLrjlyAaXj8M0un1SuM6DlzHAaZ25qbJhai/jZDfTe74B6qHAWZw+l1H/T1IHoK0BSyENzoNsnMrP6CLvijvS/3e/JX7Gxo8aaB+d3qRXTWNSNfr26liPYQYkHyuR99X3TdVtXjqiL5jhLh+YhTO/JnUWov0xZKyZXyqq8/7En4/1Lbfb6CgHk+vSdm8cg0xxMXC8987/5hBNxWtIk8jLP9OPurIHJdJdBtZ/6+9rMIAXxAU+9E0Bo+AxW+oR5OSSVAfEgxsIhHO60Some6kNpKfSvDU45o8M/eVd+0By6ObMh4UA3uliHS2Yuqa2GWwUoHLI/pZhS+kE1/HYKev7+Ue75463R6nUfTFg9SX6p5P/i221f956IZNWGVpoWk8nS7di92njvIGcRfwXOR6MYgVy0RS95tKM1j0xn6uAPOuJW/H/+XrS37CdZIJAVUWoZNLqGnT5yc+27eVPBSXF8AefSx9Q2qkTRnrDTevYoBnOug73wtydFMVOv/2AGBeqGIi9PMHFRvNb4ghIgzHbJcAJArH3M+aQYmRcnXVjwjLyIsyJ7uuSv/Pl1osd1fR8BZi91s9IVt+B9AhIlTiy2ustMRwLj4R3ih0RDjv+CW2FA9q8cw7r6/kAkbscYKtzvUmwhtEZgHeBpAX5EANRJI6pkTu65VfXh6ybGLdVmRlWj/zjvezCsf7ciQS/bBJJLkfVAuq+F71k6gM8tx0+cjPLs9CnPVbnIZsIVa/q+I+1H3x/sAHqzeBlrJod1C5hHpM/eZsgvRlPVIiIDvr2E8qMsQQPwwYWoYvMXrp3pIFN/n6YPERN6gJk/raj7IK1YIhztFZhQHgXMuGResoGtXN1RkGnAwztzmYJRjoL0fQYSOduS5PLQF3B+uQcoiw9h57XfMi4IIsQ60V/vzmZ3tbJFWrcJ5E4iLqhcV9GsQaXBqRUzcbsRDLaTcCg9A0UdFZheNjfervEuuF5frRRW+Uv0m9JCRqgBs5jbxoMW9BHYC+FmK1TL0WzXFiTDMW4/S9iZk45Xvcg/T2tPRf4vDzatvuZdXvtUhODjg0JMlDXO4YNtFLAJ3lLc8al7fghHeMNJNGQCetUDXFug9Snks2LyQXJyZ94A9mCQYGJ8LyYriLTSbVxXL9rL95eJ4XNg0KLZFbPc+twgIXQx6xyTCJHUfRGmTRoXbQqrEQ6xbWycfz8tf+z1lIB9POEmF54WKvRYu62YuL1N761atuRqvfuT21wMoiRpFeR657WYh1s3HqTJtDw/h7qlurkZ2RS44RSya68uBGfc5meqZFtfLLA8rnSW/fy4KeZ5jZyMLEIYa41Lh8eqsfYeg+zrqPeMh4+MuCIYgGiS0Z4gMuf9Qrlo+mH+qtvtEHe9T20fIJvNBMHzc2uPhO1VnlBbgINPqu0AcLuvGmTIBla3G8wE5FL+tt0EP/1a8zGIQciDS+xjKsXmOjVuFe6HV/unJIgw6dFXMQfa1WR+uM8GAp9irfHkQeodNVi/KFkX9lsa1ajC8QlBhaeUQvkpWnHwayFmI5r9gSquhaxTEug7Iybth0EO97219Faduh5D1rrwLNFo/cKPbprOudNe4KEODPTPihVf3WCp/fAxCs9bpRo8QAGHeRFn/HCAVo+ptFiQE/dHs+E5+5ufWmc2+X9+yApDwColx51k/ZQpz+Nor0UfS1Xm7E8mQR4vcV++PnSQq15DmJb2iP94E15rI7DROhaaETrKHbbfZ8/3VGD3lgludeTdYNp3XCiW5arqMLtg4H/uDfwUHzG2KICJeMDH/kIx/Bn/7pn+Lw4cMoFot4yUtego997GM4cOBAnIYxht/93d/FH/3RH2F5eRm33nor/uN//I84dOhQnKbb7eK3fuu38N//+39Hu93GK1/5Snz605/Gjh074jTLy8t4xzvegb/4i78AAPzsz/4sPvWpT2F0dDROc/LkSbztbW/D1772NRSLRbzxjW/E7//+78O2E6Lz2GOP4e1vfzu+853vYHx8HG9961vx7/7dvwMh61sJ4NAyKGFwaDkJXAGWfOBCHwg6YJ06SoUagMgXamUSy92zCOCjYIygQkeB7lqScVDEjNFFuzaCE42FVCAAIPlw3751C+bax/HwPCeZqjxC/UjdOLEtCXKgWC9YYw6YPwWsNoFqGeTKF2ful62cAc4dB1vmvnWJYST5bN0CUkmCHLBOHezZp8GOz4FsGQW5+iogIsPs6A9A9l2f3xEYUv0B+cE08kj0egmX2wKiYAeZ6HkCXoeTD2U/yfMrPCBYYw5orSQ7fEXPbZdAqjPcJ7LXAVudAynW+HYORIdoUjuquzQZSDcL0eZ9kPIEWOgD9ag8us691z26Ld4R6QKYzFypfy6i4xL/PXDyQPXvIgUPsU19LxqYNWJvJv2gEtg8UgUgDofrhu3U+TYtxiSvG/IAJQ4tw4784LpBO96vW/RlEjsOb+4GbdgimIvXAUzu+5sUlOdrJFHNaNnjARkishu7NLQK8VoAk4npoMjVoaibHiRh0BDgIp1tFJMBgMHvJYgCY/BQzgVYtACfuWmPEYqHCTmEuGxc0Lm3E/+9MBs0RM473k+j5xdFy1PlEkAS0lstl5zvmlfH2ZYdXZskFlHhV1j2Fa2RvHiVcXTDJvxwlb+KoVTGQPot3W/BGAGBEoXTGYELD11/GZ1gDStdPxWqWu4fVEt4bCXP8UnvSYMCscDQoTwMtUhjUoattp+xCDcsTQzsIYa4THDJyPA3vvENvO1tb8Mtt9wC3/fx/ve/H3feeSeefPJJlMv8o/8f/sN/wB/8wR/g85//PK666ir83u/9Hl71qlfh6aefRqXCI3i9853vxF/+5V/iS1/6EiYmJvCud70Lr3vd6/Dwww/DiD4sb3zjG3H69Gncd999AIBf+ZVfwd13342//Mu/BAAEQYDXvva1mJqawre+9S0sLi7iTW96Exhj+NSnPgWAR7151atehTvuuAPf/e538cwzz+DNb34zyuUy3vWud63r3m2jEH0kbKDbiBYftdKJAh/ouGAtHl2K7NgKYhXgmBGBpWWgu8ajedVX49PY/BKKO7fimj03YDlcQt3lHWxqyopRbKt7MKbbONbgHUWerGJLqQj60FdRnRoH2XNDlmB6HWC1CXbqHHf5JB8PfLClE2BHnoP/6GkEc02QggliUZCIcZt7zwEvPAQUq8BzR+B//zia31uCPWagULKAZgOs1ASWz8L76mOwRkogk3v1FSkBxmsAAQAASURBVBsmzZe165wU55CdlBU66CbkAMi3vsikwOukt4VFU6QT5DqywqlgQTcpgyoVyVvVLKfzOsCp02CBREYiMknKJWCKW9eJVeBpvQ5QnojzyNNjmtQGWzwBeJ3El3IPxJZ9agLl0mCBSwRkEtyJ8hFyi+18MMtW50BGt+vPV+vJ64AWRjLeGYCI6LUbqXZBrMJgMwiBnyLZOq8T6jEKAyDgJDhkgNvhLvmgzAJFz8a2CqBGFW7YTkUBFHnJhBoAQAxeL+UJoLLGSbBhptqIWjZil/nAUgzOFPgkhFka3fCqekHcZcKqPgeh17ZpEW7YBiVubB0uGMV4cJCHvPrOlEXa3w34N1BdAKwSWNU3dDtspDxNAPzbaBt2LLOJ9ecSKRbnF40qSuYy6m4T8x0LtmED7XmQ667m37u4IFlLPrHL8JmbW+Y8hCxAWBlPthEA6OQuIl0PVrq8XVhR8CY54p5A0QxTBHnU9lGxAMcoxYM5gYKn9HlDDHEZ4XkLxzw/P4/p6Wl84xvfwMtf/nIwxrBt2za8853vxL/5N/8GALcCz8zM4GMf+xje+ta3ol6vY2pqCl/84hfxC7/wCwCAs2fPYufOnfirv/orvPrVr8ZTTz2FgwcP4qGHHsKtt94KAHjooYdw22234fDhwzhw4AD++q//Gq973etw6tQpbNvGw7p+6Utfwpvf/GacP38e1WoV9957L9773vdibm4OjsNJzEc/+lF86lOfwunTpweyDsdhJJ/5A9S27ADr1Pk0pwx1yt13gfoqmIjwtXsP71RXzwPzS5nFFWx5FWTrFDAe+SIVUoOIeLGgC/bo98DmlkCv3gNs25MmciqJ6ayBPXcU/refg3nT7owFIzw5i2CulZDbl1zNz2t1wJotbvXwffhPziKsRyFjBRmOtHNhvQtac9B6bAWN+ahDMhkMk2H0kA3rKu7jODjdgLl3NLGo2NnFRCkrS6WcDgncCzp5RQ9Cx9p1/gw6bnJ900ism44DVKcz15ZlITJS5Hz2SPqgn7W+seV6yoqUS4rHq7yMY5O83ciEuhcR9Drcsqwi5xzmNtMDIZVQqZZrOS+ZDAts2ZGQ4H7Tl+q15Cl+ZcCSIsPKgChTNsNMZi0Gtd6LOhADK3nQpBB1AJwoex3AKiDMIdwin9DMD+ShllsnM0htK3UaUpKxmsbpNYM+Ob24J/k8EbnMZ+nnbpLk+ybSiQGAGIwJgpkqu0LmuMXU7UtoAU6GhaVeR1pVoi7OafsNvl8aFMczDMo5ufkGPnwSoh2s8pk8r4PQKfb1zOMzNybxcn3lbRvEghd24jLH+xU5XYggZRlWZw1l0i+vSVnp+ljoJIYTVX4nny/IcByoCXxQaNFCqsyrqy3MjP/zjYdjPvwfNj8c89W/PXB57r33Xtx77704fvw4AODQoUP4wAc+gLvuuiuT9q1vfSv+6I/+CPfccw/e+c53pvZ/9atfxdmzZzEyMhLPkF999dVxmmeeeQbvfve78Q//8A9wXRfXXnstfu/3fg933HHHBd/zEPl43jTD9TqfQh8f56PaY8eOYXZ2FnfeeWecxnEc3H777XjggQfw1re+FQ8//DA8z0ul2bZtG17wghfggQcewKtf/Wo8+OCDqNVqMREGgBe/+MWo1Wp44IEHcODAATz44IN4wQteEBNhAHj1q1+NbreLhx9+GHfccQcefPBB3H777TERFmne+9734vjx49i7N8daqUO7AbZ8Kr0v1yMB/2jGxOfM6SRNzup99sQRwDwWpeEfMCaTRd8HvBDhY88hfOAwz78QkWbF5xpr+QjmmggbLoL7n44tu3FaaTEIKZgIvncErOMjWGgjXGrHx4lFU+fKCOaaOPdQAMCGaaXHYitPuKCHZ0HNSL98uAHDYPG2XAb5GtbBKaBSzifCMrkJIo8WmYLpiSuArIXcD9Kk1W8BxQ6gXD+vPCzoJqSj001CtQq4ij5yvKbkaySEOCLlrNkCmi2QsSofdLVXM/edgbiH0SltObWkMNb7mkmesuQHSNq3IMWyLMIPknbZ65p5pFjWUkY6QqaSa/ncSJPMxDNUyZ4op2nz51cazb92nhVVl3dnDTRKT0U5pPRUvgekCfogVnoZA3usEDrywAfoAOdEJD+UyJyQhgjyB/igoQ9qFVSlTaZ8lHD3fDYtwmdurueOXnkMil7BPHRrNlQS3GtxZC+YQYgKImu8JEvJLWekrc7sy9mOBx6DuL5E/4h78vFOwIDAw4qbf68yERZ/BaOIolld9zP6YcKOHTvw0Y9+FPv37wcAfOELX8DrX/96PPLIIykp5//5P/8H3/72t1P8QuCmm27CL/7iL2LXrl1YWlrCBz/4Qdx55504duxYPLP92te+FldddVUs4fzEJz6B173udTh69Ci2bNmSyXOIzcHzQoYZY/jN3/xN/MRP/ARe8IIXAABmZ2cBADMzaevUzMwMTpw4EaexbRtjY2OZNOL82dlZTE9PZ645PT2dSqNeZ2xsDLZtp9Ls2bMncx1xTEeGu90uut2kQ1tdjazAvXzTaleOSyuKBVQiLPutVC2nMhGO/pNqtDjDC8E66iI4QXYNwEp6M0GY+TGq/Q0ArJUmbjoC3Ou4ILoAQA1J3mHnT1rIedCaA7J7G7/fQcNC90+Vth7GLsKUj72ie2Vuk2t1VSjkihgOWGsF8F2wRjOdrx8kz1KQYj8Ag6S/9v14wMSCIDnfD3jbEBbzPP+xojzyddW2mEf8DDMZOKjEVSXFOgiLuqpHby6mSWA/Ii+BGE72eannCBItHxP7dIsideh3f7rr9kN0TuYeMAABlHTCgyJkAahhAgOcp1qD14te5whpSb/zB5VKyDCJnbvgrx8ymuKNQjybPgMEAZP2L7NBrJgIe2G6regWWfPfXsoDRq8F0m0/vRhwkEimttHbS0s8KNkE6cbziZ/5mZ9JbX/oQx/Cvffei4ceeigmw2fOnMHb3/52/M3f/A1e+9rXZvL4lV/5lfj3nj178Hu/93u4/vrrcfz4cezbtw8LCws4cuQI/viP/xjXXXcdAD4j/elPfxpPPPHEkAxfRDwvZPjtb387Hn30UXzrW9/KHFPlB4yxvpIENY0u/WakEYqSvPJ85CMfwe/+7u9mD5jWYL5pxep6IO06Kc5H0sh21QVUChFOXd/glsU1rtnKWIWhuP+RkCKumjRhw0XY6kNUNORYtQhfCIwrp4EtO/IXxOlI3gBEKz2trpyjLv4yDW4dpCagI8M6ku673DOAaimVia14rp0uUHAA2bVWlF4lxSwIQHw/knJoZDhqeQJfX3d59RkK4iZ5DMkjxZDaqSwrkX8DibwgzyKqq79QM8DoR4j7HRtUHjEI6RfpVFnSAMQeGJyIqd4s+kFYFgfJX6RdLwYinZK3iXhfDhG1aAEhC1IeI/IstYKYuUF6UePzATVCXh5EmfMW/QHp+1U9QOjcbeoGEnlBmWT3cmu+vpwyoZatybK2/YeR8MZGqwiO46RmhHUIggB/8id/gmazidtuuw0AEIYh7r77brz73e9OWYrz0Gw28bnPfQ579+7Fzp08vP3ExASuueYa/Of//J/xwhe+EI7j4DOf+QxmZmZw0003bfAOhxgEl9zP8L/6V/8Kf/EXf4G/+7u/S3mAECMeYZkVOH/+fGyR3bJlC1zXxfLycs80c3NZVzPz8/OpNOp1lpeX4XlezzTnz58HkLVeC7z3ve9FvV6P/06dUqQRukhtqn9cmmhg84gw3zY4Qep09US4j8srVR6hHsuzCsf7ouOs5XFC3HAzEooUcsi2gGH2J8dqOUjBBC2ZIFPjIJUZblVUI+INQvLkZ5D3B6SJpdAMiz+AE023xSUYunKoZbJLQKsD4kT5mmb6Oav5izQpX6TSczKMRF7T6vDztDMPdnIvpg04Jf395kHOM68u5eulrm/ofzcbQHuVe0BYDzQ+q3uWp1d72Ig7N10b0wZryTlXwYW430t5TBiQ6G42elkIdenyvDyoaU1ip/TH6nE5D4tyDxWy1jcPsuV706A810HqRNxfXoCYXhINVd4hrrkR6AKN9ArsZBt2XN/9iDDt4Wd6IPge/8Zu2h8fWO3cuRO1Wi3++8hHPpJbhMceewwjIyNwHAe/+qu/ij/7sz/DwYMHAQAf+9jHYJom3vGOd/S8jU9/+tMYGRnByMgI7rvvPtx///2xFytCCO6//3488sgjqFQqKBQKuOeee3DfffelvGENsfm4ZGSYMYa3v/3t+NM//VN87Wtfy8gM9u7diy1btuD++++P97mui2984xt4yUteAoDrbSzLSqU5d+4cHn/88TjNbbfdhnq9ju985ztxmm9/+9uo1+upNI8//jjOnTsXp/nbv/1bOI4Tj75uu+02/P3f/z1c102l2bZtW0Y+IeA4DqrVauoPQH6H2Yt06AiPSo5GSvxPHBNQiLBMkmTPDil5hEgfaXJT6SRkJBJeCHgB/4Nqbe5/vg6ybMIwLsCC3IvY9iOr6p84Ly8/w+Qrxsvj3OVV/5vk5H28CkyPp5+reOYqMZZh9ybFqXPzBgemzT0NOCPZMveqO90Ctl4BSExbGVTI92okVmI/SKzUvQYzIn/12cT3P0A4b3VfZMFlbjMJG34x0MtSHSHWk2+2X9VNxIVYWlUiTGFkiJQuf9mVWi9yKPLrV0ZKDATMgxd2enpxWO/vQSHXg+qFQyAvsEh8XEOEVQh3Z/2swqp1WSa+ukAjFmUxiVcXFOr+LlecOnUqZcR673vfm5v2wIED+P73v4+HHnoIv/Zrv4Y3velNePLJJ/Hwww/jk5/8JD7/+c/3ncn+xV/8RTzyyCP4xje+gSuvvBJveMMb0Olw2SNjDL/+67+O6elpfPOb38R3vvMdvP71r8frXve6FF8ZYvOxAVPIxvC2t70N/+2//Tf8+Z//OSqVSmx1rdVqKBaLIITgne98Jz784Q/jyiuvxJVXXokPf/jDKJVKeOMb3xin/eVf/mW8613vwsTEBMbHx/Fbv/VbuPbaa/FTP/VTAIBrrrkGr3nNa/CWt7wFn/nMZwBwnc7rXve62KfxnXfeiYMHD+Luu+/Gxz/+cSwtLeG3fuu38Ja3vCUmsG984xvxu7/7u3jzm9+M973vfXj22Wfx4Q9/GB/4wAfW7Wc4hq5Dlj9Aoc/dT6maXyBDhkglclvT6iSL5eRzdKFbNVbiFBEWxRwvILQownpXIs49rL490I8c0wEswinoLMyDaoUFeqXtIZlg1Ey/MbLkwLS5xwK7PHhZjBGgOg1015IFcap2WG0DIuKYkFQIQuz6SVrf5/tlAqouKIvLYK6vzKG02KtX3qoUBVJdyXplVW7S7x1Robp2k8oie1RJXVtegKfqh4VbOiDXJZkWcp5qvusEMRxeBnmg9TxhXSRGcUl3QXlpzpWDmmjTIEskfUmmo3qgABIZyEWJtqlctx8y0occEhwwj9+r9DnNk5fwAQRFyQzR8tdv+9ItvtPtu5zJbj+kDFd9YNt2vIDu5ptvxne/+1188pOfxDXXXIPz589j165dcdogCPCud70Ln/jEJ2IPFABiC/SVV16JF7/4xRgbG8Of/dmf4V/8i3+Br33ta/jyl7+M5eXluEyf/vSncf/99+MLX/gC3vOe92zejQ+RwiX7yt57770AgJ/8yZ9M7f/c5z6HN7/5zQCA3/7t30a73cav//qvx0E3/vZv/zb2MQwA99xzD0zTxBve8IY46MbnP//5eCUmAPzX//pf8Y53vCP2OvGzP/uz+MM//MP4uGEY+MpXvoJf//Vfx0tf+tJU0A2BWq2G+++/H29729tw8803Y2xsDL/5m7+J3/zN31z/zQ8yVQuk3TLlyRxkqzCQ+GnVEOc0EY6Oi/BAORZaUrSBmgVqNROrr+S9IU5nUTAvvGCyLCNv8dzAhHkj09yqBTCPeIRmWtMNQA3NTAynN4HSWBtJeSL2cpDS/gIZYqx9nr1IsVw+9b4CoTd2ouAVA9adIIwy+hFuURZ/QEI8KHS6XQ0JzZBica6OEAfcHRsp1nLrbGAMQohVEh2BBV0QzxwoSMh6y6LTkuYWL7LqqQEvBsUg1tn1LJBT0w+Sfz/I7uA2bfHcOvOQtdk6st93IaImnagrizowEMALE711L6tw3qK5vP0Z13x55fwhJsx5YIyh2+3i7rvvjg1yAq9+9atx991345d+6ZcGygMAWi2+rodSZZE5pQjDnJWYQ2wKLhkZHsSdMSEEH/zgB/HBD34wN02hUMCnPvWpODiGDuPj4/gv/+W/9LzWrl278OUvf7lnmmuvvRZ///d/3zPNutCLcIQ+0G0lfmx1WC9ZiM/TXzdjFZa0x6Rog1gdME9x5K/REtPxIsKGO5AEQodB9MLpcmuusxEiPMh5OklAr+MXcq0IKbdpAqpf5ZhASlbi9UC1iK4TWoKpW5QoLyAzkV3AF/jJ/RQH9z3aE4P4Ve4FrzP4IkiB9S7UGyRt4AODefO6eBAEmg5GoC+U8OSd74cuQuQv5tMSwufFg/76IMqa5yYt3y1c2o+ymlYmqIIUFwwfnYBpF80JyFZf1bewLt2gRHhT8DyHY37f+96Hu+66Czt37kSj0cCXvvQlfP3rX8d9992HiYkJTExMpNJbloUtW7bEM9LPPfcc/sf/+B+48847MTU1hTNnzuBjH/sYisUifvqnfxoAl2eOjY3hTW96Ez7wgQ+gWCziP/2n/4Rjx45pvVMMsXl4/ubffowQfu0fwA7uBDkQrTBVScORwwgOn0a41AYp8d5P+M+lB3YB41Wwc/MInz2XIoJhwwVreQiWOvE5Ahl5QkR8/dMNEIvCGC/wgBYA/GcXEbZ8GJNF7pkhAmt58OdacR7GeCFj9TV3VMC8MPZNLHuqYF6IYKmTWpAXNvr43NTohdsNA343It4GAzX5R8y0PRgGgzHzDKggi5K/WbLnEFCZ7Hk9AImf15Uz3CIoR5HzOknwBiBLiJYX4oAYbHw5Nd1Ppq9MQt3K12qt8EiC1ekkj3ojcaNmKwyo4PBFdqr13w+A1TV+rkCUB2u7gPdc7FIvBSl/NlICveEluZHz0FgAO/10QrhbHWD/1VxagWxkvxhqXmqwGRkdFyiXQCZ286AvZx7jdVfoYWWPPFmwxRPJgMQZSbu1U0lxZy1dDk1wE7GPtVd5EJXqzODW2Rwrr0xyWXMxbVk3zNidHGvX4/bGI/xpFtN5HX4fPdr1er1Q9Dwn9Pl7MXsahuzNRk3nSzMSkdtHcs1N+nDgrRWwE09w94Db9sC2pUhlhRH4huQ2MSJyMhEWPop1sI1iXL+mVUPIRuJ76wRrPNAHsWFHowzbKmK5exYhAozZ21LktB0kbcUgVs/rxvWycgZoLvHnXayCbjmQn7izFi8Yte0yUOL1YMsjIE178g0bgeElEg9Fa6z+dijP12cuLE35hVW4YIygYABjDs/v6GryXVH1xjK0mmDZ04xIt5FB+2WEubk53H333Th37hxqtRquu+463HfffXjVq1410PmFQgHf/OY38YlPfALLy8uYmZnBy1/+cjzwwAOxO9jJyUncd999eP/7349XvOIV8DwPhw4dwp//+Z/j+uuvv5i392OPIRm+BHjmjxvYseMJTN32HKyXXwPsi6LNnDoC/4HDWPxGHWePWnAcCsvxYBVCzFzlwrkp7VOQdXy0v72IlVkb7YYBLyKI3S7/EDmOrNeLRv8mg+X4oCaDaTFQk2B0SxfGeLqDD+aaWDvSwWjBBN05DvgB/LkWWnPCKhCiWK/DaPmgNYefLwXj6GUVDutdhIv8I9xcMQGx2KKPRTgICNwWxcqsHd+rsCILSYVhMmwxz8KOSHaw0IZ11RiPtjcgWGMOOHcc7OhJsPEayJ7dIFP7YiLLOvXeFuBOF8GpJbDO8XgXrdig+84Du/fwvAyTd37nnwU7fhpYXQPZx8vMTp1DcCzrRUEMIGjNAZseB5Gi7YlAHeG5OoK5JIAIsSjClo/Vw110m0Zcx4bGlzM1GcZ+eivYgToINbmGOQfh4ePoPjwHYlE4d7SAF75ocM8HXieJnlhweLQ+gHeYay1OnsYmOQG0CsC582DnzgM7dyTPQYcg0tjPL/GFiHkSFZmMnpvXk2ANiLMENn0eGNvGI9NdoHaXNReBs8f5/ZYK0QLY8XQilwdOwZhCdgNOSrF0DlhtAlu38DIppHizLXRsdQ7BX30d3YcTzzqqNEp+9/1FF+0Gb3ejP3kcxgv3g1x5Ex/YdNbATj0O9sQRdB46C1qxYe19DvTaK3hdVKdBeg2AwImw2VyFaRUQOsU40pxJbVDfA2uc4YOF6FkRACjUgNJoHD46vrfGHGgl8QxkUpsTf2kfJQaKRhWm64J15kFrW/oHu6ivgp04C/LC63qnC33+biwvgI1NwhbPsrHQ06uKWZ5AeWQMnWAtG8o7hxTbrSZspwg34GWX5RE2LaJsjvF7jK7bro1qLcKA3h1bjMCPdfepwEaGCdZsZ9P/EOGzn/3sutLLOmGABwj7q7/6q77n3Xzzzfibv/mbdV1riAvHkAxfAizNe5iesBG2fIRPnwSePhkfC+tdeB0aEWH+8fE6FKcfLWD0/HnUTjdgzJThPrWIxWco3DYnBpzchPC6FJ0WP6/TCmFa6QUs5RED1OD7XJ//n20UUWusoRxZlJunfTQWCiiP+giX2mCd8/H5usAXrOXBjwJtxBbgiJCxlpfoh70AQZvHtY/LM+qj26bwOsmHNPAJDJMhDJJ0gnp6XZrar0vbXDZBTzfi+gzmmjCP1WHdvASyNRuABQBQSPS07Nhp+E9Gnf3xFRjH50D3neZeHtZaiS47Llyyzc7Nwz+2klnYx7yQ+/ttr4KdfEQ6N4jPZ+d4PctEOFdvvdYCW2sB585zy64kmZG128wLuau7gMBtR9Z0iQgL/87UZEAXWP6rcxgvPgBMjWvlNGxxGe53T8M704I5YcPcUeGEdv7U4LPQS5FV3Taj+29l05w4DmaYQHsV4clZkO1TIN0W2Lmn+HF1SjPyPsHml/h2swUy5YLV1vRl8F1Omgckwil4HbClE+s/TzcNK+rY9YGlVX4PIl1jmc9smNzCzJZPcfd7MkT78SPi0qlnr6Gzwgs/2aYNQk0+HG0sJ5bwuHwaLw4TJdCaA3/RRbdN42+CYUQSCql9tRsmmismipUA4VIbtNEEfvAPqXtnLQ+0YsN+2T4eQtz1+exA5zSY14Gp+JqmhgnTKgA0rW2nIUMB0UAplFqjMmhhnTrgNmGXJ2BbZf48m+c5aRvdjhrh5JfNH40jFdrlCdgl2YWmy72U+B5sELDVucTCH/q8/nwX7PhphMf4e02/92giCyorgx6AW5DnlyKrugFUV3g5BnAvSH0PJTiAXRtMc210UTTKKBp6KVJ8juQTe8dIMsuSt5iPwgD1PSDQEN3nceHnEEOsF4QNIuYdYkMQMdX/9po7MVFx4Di9NbWFco4ezmQIff0q7U7TQHNNf55pkZhkxxZVhRj5Hol/U5PBKQdwiolFIJBI53rdnOVZftsNA92msvI7Jwqd16VoLpsZy7BIZ5gMlUkP5bFoQZjqi1iSnaTKVjJBx4upaHzMS1tCBtFAq+fI5210IWGva4cNF8FCO/c4sSiCpQ7qR0M+SMgjwkjq0nRCmDaLn698jmh31GSgNQfW/jGQkqkP0pJx/xZ1oCOl9OI/BSl9tB8AS/VMVMM4rVTftObwActFRK9y5yJHo69FToh1uD4Pr93p6t0mxttK+c4vIaxzuUo6YI7iRhF8Nsg/3cgE4dEtig3rXXhnWgoZTodJZx5vc2JGwnLC+Ljavqy9NVgvuRKoKpZgnR9q2c/3ejx8yMib2Rk0eIqKlXmwY6dTkUCZF/DFyTIsCjIzzkOky1AH2OPV7CzBoNCtY9joGgqBTSayxHCwutpCbcebUa/XB/beACT96Mr3PoDqyCYtKAWwutbB6Av//brLM8SPJoZDt0uETiuMLbgqTIvAtAgsh8Aq6NOoxFJYVrvddHrVMqwjwen02f1BQOKOqx8BHsTTg0rcTJuh28wunJNJcJxv7BUrPy3ASZtRjO7dSltNOZTOp2RmwlJvZAFgr3NYxx+IEOfmkRPsJOPJQ8mDFEyUR1ugBotkKflEWNSj7xL4IDBtFg+AVHIsrr0umEbW77GAGkEvisanEmHdgEPkLZ//vGEQ8ptHenvkQXybWxxlQixrc1VEESaTdi2R3KgOdW+rml60Ld3wWybCcTlVEh3B61IYAU8X+ixFjMnpBsz5JZDqiH5hcIoU24mEZlCSpgvF3QvrIY9eh892qEQYSL+zXsgHH7r7k9uDIMYXSmAF1pvPJhDfCwkWM8QQlwOGZPgSwLAITKO3b2LfYwiDwYlGGBAEPoHvBRkCLMAt0aIzIrCLvYm2EVmgfQBWZf1uXPoSpYikGoafawmWyyPKlDpmpI/RSDLRbVOUiizt4k0Tsa7X9sXEQCQy19orkXukLeD6cNk+rO0lGEttdJvZAUae9w4d0ZEtf0RjXcy1BsfHozrWdf4yqfN9bhV2vaQeIgLXq+5yifalRj+yK9CrrGpdlgogpgnma+pLTesHycI13ULaPqHXe0WcDFs+woYLarLUQHlQl4fq+w0AQZvBP74Ca+s0UC3ne8oRRE348M5BavGmfN7FwOoqH7hJYdPVOmVekFjj+wwGMz7Bn2dsGrFV7+cyub8hhtBh2DovE5gWJ7e9SKsMz2BoNZmWCKtyjDAgafLZoxMLAxLLMmJL60bQJ/yyroNMTelHxMzv6smbvM/rUAQ+QbHigpbSZExHeIV3jY26grsg9LmmVn4AJFZQ3WJFZQBgTBbj38WlFtp1U0uEaTTNLevC84hwqvx9CbDqG1t5BnnE0TRS1rZ+dYVSAanw1Dqo09F5GJTM9sOgxLyXm8Q4Qp8NdFwQ3wfrutrzYqv6WitlUddJJPj+tD/wzABRM8gKl9qx9j8zWyBLKryAy2l6DLrktuafbsBcXAYZl6ao84Ku9CFSl8oyyTr1WOsdQw2UA8VtpbzwVUqTHtzYl6919XIhsSJK5WbmN8QQES6TVv6jDXMAy3A/9CKweVpkXWek5pNnJeTpNGXuQ3JVyJ2qbrpbLY+6YE8QtiDSrqqk3rS4zhng1m+KHgRY3X4+yHB8/T71mEeWhJs8KRgKz09jBa93Ydp6cqIORnQkOJVvvCgyBKwoUp5MgrVT3REJEFHz+sEU0/o99MVeAFKL3LqVS5wQq5BdOG2U5F6otXlQn+D90slhqyVkpCGuF79f/bTCAnkyIfmZsxbPN4hmrbSyKZG3ZQBIv+O0hxWZtTywhQbI3iDxMCIgB4wZNDDOpUDgg0UBEjKDQNdL+2wvONHCuHL/4DIDEP7LDuuVY2yWDGSIIS4Chq3zMoAgs2Laf5DpR8NkcByNQ3YdAZY6pFzy26uT64OBLayRri6IrM8yVBKsWqAycglpu1gJ4n3qYqB+5dSSBG9jFoO+BFeHXmRI7WwBoM2Dm4i77yUFkY/luVbLWzink18ESx3QmsMHHNUcLaRCIuMp4kHIoZmTJ5C2uAm/y0Jvqlp4Nls2sdFgN+s5txcRMk0gCLIEWL5P2xrIGgzTQLjY4m1I8giTpM0unjNmyiCxdThnxiBzO/lW4QyhNo00+VVBuWs8BnCpxPNMqohhgOlkKsrgkJRL0UBQP6BJQTz/HyXCOJRJDPFDhGHrvARwbArHHNwKOUhEtl662jiNYu3rZRmU05k26+s7OA+9dLis5XGtoMvzzSPAclkAvvjLlbwaqGmEpwMgxwKswjKixWAS+ZII1YZIrYr1ECgd6c3JS5RNXTAnQyY0hqF/7nI9qnWqI8Kx67aWhxCAMRmFSNcRT10I8QHqgxgGmM7apuZpGgkR1l3vYmKj1xqUCKikMPAB2wSRrd29yH4PEpzs5x5HwpbfkwgTiwIlK54fYoo/azUt88J4cSzQ2yoc71PfzzwyqIbcfr5gRLMcajh0nTSoVADKims8FXKkxh9G6/AQQ/yIYPjmXQIYPSyyMqjBtN4d8mA5YcrfrpyPev28Y7lW6IgwbgbkjjOI3MDl6VR7lUvnJiw+VkmTiDwSnDquc+N0MdCP7OqQVx6TPxcxxZ1LhBXoPHXIVuHMuRoJBimYCFs+zPFiooXsV+b1aGhLBUC4WYs8I+jqjlubByPYFw260NO6Y/3QyyKqyytPf20a/YlwXJcdsJbXcxFmHGpdeq9ExEsVapsT/tKBdFsD0u7YxAAWhtnbIirXwWZNza/XlVoEUpkBG1/igVGA7PNQo6zlPV81LLn6ezMhh0RX0c8NW696UiMu9vXYcYHvq+SjfVMw1AwPIWFIhi8B7FIAJ89vrE9iPaxV4H45dVZblfTaxRB2MUSnYcTnq+mMXuQxR6bgu9H5XpBLrIQ2ce1IJ3VuXLYRPrUaLHXgLgcx4eq2Kdp1C8Wa39Nlm+zL1O9S+B6vI+Fr2FH8Ma/M2qj6a9r7AjQE0TIQ1ruwry8AtgX/mflYwiFgzJRBIusnqzcRzGkCRUSgFRt0ay33eIweHgAGRVjvpkJaM4//lkNeMy8E6/hgLQ/dNs0QYUGCew2ERJ4C2oGRaSQBNXSwLR4oRF55nwOyYytQq4IUnMjPcCe6lwCkaGcCjfBQ1M04cEk/kEP7s2QjiDxYqHrVdYIdO53dWXD4PWnIEDv8TDa90Es7NrB7DzA/C9Zo8kiDi6uRVlud9UjqQwSbkUFrDozt0eI0eVARzfqo7vl0gWOIIsn2upS/u8JVmlIue8yAPRLAXUvO0clwjJky7DuuAqmUkzqaT6LcaTFSAvM63MWajqRRE2R0O9BNwhyT8d36vCLixhpzPF1lJpvG6yT5lCf4dakJsuNa7gLw3DxPJ88umdLgxDQ46RWu4YCk3KYNNBsJwTNtsJWEmJLqzLqIP2vMxYMyMro9934zCPr7JGYrZzL7SIWXTxwT2zFkkm0o/4cY4jLEsHVeAphWvsVXfNLFYrBekgfhTs0w04vG2g3+MRbHRXoVumO6CHO+S2D3kEh0TrZx/rkCZk+lm0+hRLF9fwB7JJl+7TQMLJ524sAgpkWwq6bErI/uWQTYaCxYKI/yNCIoCAC0moxH2VshGJ2gsVY49AmefbgYp1MXFOos49NXtGFfj7gj6z67ioVTDoqVALV9FMaOSAbQ6qD1d2dif71yHgBQ2WOkrdLrsFayhQb8043EQgbNIkOxUC4i62ErSwLi6ewCODHxQgQL7YgcGRnSK4jwoDIYrQ5ZsoiFi61MSGgBXxpEaDXbUd7OTxnAzh1cG1pv8Kh+ApYBY7zAByemwYN0nDuP8NQSVr4+j6XTvcmsYTJsPXgcxX/9mngfO3Ic3b87CtbyUHjZTpAXHkpO6GetlcAefwoLXzya2kdNBqcYonjrORgv2ANs3ZImCqtNnP+fZ5P00fOovXgM5s37ozKY6PzF42jNheg2Db44VCONkqUI3aYBt01hF0OM7fRhzESuyAaZmZCJsBfAO91AsOqjcP1E3L7d5QCd6FujSiBMm/FB8HgBzAthI9EYy+lEG7CuGuODhaLkScI0U6HJ5XfBmCnFCye13ht2bgW27omtzOzZp3n+eQSssRCFYecEnO3xQSYi4ux1OMlbmOVEdWpLVAiJ1I1OAafOSWXXSK6W6vw92bolSSe3g2gwyeoNHolOxs6twNTOdBjw1grYwjEg8EF23Zi6N2I4YMtnwU7NAlvPpc8NfLCTj3ASL0KbNxZ4hMNmC5jcwgcNuroKfU6YTxzn0R6jcPWxK7j2Ki/7dduTazXmgOWzgFPShgwfYojLEUMyfBlAdBS+R0DNfK8Tgszy/zTyM0xia3D6eBq+R7QPW6fFDX3CQynPNVMWHoHlszYWZkOcOuGm9lsWAcCJSXmtERPhp59IQnWWRyjGpi10I/dxMlENfILmsonVlRD6psnTLi/66LQoJqYtFMoBAp9gecFHs8nzdJzk/k2pPi1LtqAXUfjBHGjJROtwA+efK2JhNkShZAHwUMM8jJkW4AVYXbDQWFDCkcaE2MWItwgb61hICMSR8QDEEcPiu1QIMetkrcdqGuqF3JrfSZfTyXHTxz1v6I/FGtH4Wm6iGe7wa1tRFLqw3oV/uoFwSQnHGnkiaC6b0mwFv17aUu1zInVuPrluvQl/rpWSZxCLglpNbg1dbcJ9YgGdk210myYOP+bC93rLi+yihe3feyImLN6T81h6muHxbxvY/+R5bLt5Fs6tkUVtUFmLacB/Zh6nn+FkUV4I65QDzFQXUag5Gct455uncPJwQuCFe8RdWEYNR2B0k/awcKKA1ZUQvsdgRvUh0svXE2g1k6iSYzjPw2crln4xUNItlhMWY058TVgL7bh9+i6Jg/3EC1uloBr2CA8FzrwQQTvtk1ggZY2ur/I/cezcPPxn5uFHodXFAJB5IcJ6F7TGB1aCnMveMAzX4y7ovA6wtoTw2XMwDAOsmrVq8oewBiwugC0u8+3uE8CB6NjSOW71XapzWZLrg4W+Pvpdq8PlPfL0vRzi2jRA8ryprK6BzS8hXMzOOlHTBDGNJFR3dw04dRrhyVnAC0EBoCqFml86B3bqHNjsCr+mfC543WLkTELGu2vA/BJYs8XTqlZdAa8DdvwEwmc58afjfAZMWITZ8dO8nrafAApR/ayeB84vAaUWr4PIBzRb1YRsHmKIywTDcMwXESKM5BOvexUqlpWycvbCILpht03RiUIaq1HodK7WLCeEVQhTeedNkwvN3+lnbKzV9boqz2OYPZvVD1pRNL3JKRMrKwG35Cq+kMsjFJUqL7t8TPz2PQbfY2i3Qvg+yxDadju530rV4GnbIbrd5H50hNhSyjExbcFyQsyeCjLlKI8YqE4m97cakeE8/fXoFhflMT9FcnlFpetPkFhjpgxac1IazCwJ9rXn9spfXJ95oVbfqYb1zgv13VduEvlpVom86kovTYaVa0T1Z5dCFHYVQUtJhyxblGnFzgw06o+1cfwJfq+zZ72eZNi0CK6+lhModeblyJNJHe8/qA9fHZcjxy3h2aO8HCoZrkx6Wg8K554tYmVRvk6a3M7sa8fnzT5blMgw0abPkmG+LbdheQFtu5G1NPeLUCggh1GX01KDwS7pB1c6t33W3lqGpHvHIsmN1KblNk8sCnNHJfOOxWm8AObeUQRzTbCWB2NHBfSKHdkCScSV1RvJIk0RGlqS/gjPMqRop0NHR0FiWD0tTUnBC7PfAwlhvZt5xwE++FNlV6zeRLjUyU0TnkvKTLfW+s9QyQsA1eA3q834vlnLj2d9xDcrycOAf3wlkYmNZBcLyh5QVptdjL7yExsPx/z130J1ZPN8Ma+udTH6k78/DMc8BIChZfiSwPd4qFsZOgIi4PY4JhD4JCbBKhHQRaUzTBJHl4vhic5V6fB8A+2GgflZDwvnB1+wYElkVhBltRymRdDtMnTn/Z4WXM9jqK8EmXOBNNFtRyGu5fNlUizD81icNwAsnk/Iokw2AKC5FqC5RqVr8v1CpgJEAUqijr6xYCEMCAqVpMxcf83PT543RRgQVMA7GGGJE+hLgDVu31LnK+S0VzvrdVy735fqtS3KmZ5ZyFispbpSfUULkuy2KHCyDcsJtdZ1WSMN8DobmQ4xOstnRWYjxUFeJEYAOPxYOg+5DQkcfyZdt1ZmoJYmo/L1VGLqdSiWTjta2RPXvgepPOTzF04Ucr29rAfdboj5M0ambOLbIbtmVMlvrzDu4nshCLV4rm6LZs5Rw3uLc2Lrr+q5RUOEiUVBSlZ2sChvR+f5x1ZAx4uJfl5YfmW40iBRXkQVkeCMa0Uv5Bbn1fQMTW6YcEjvsdJ2+4F5IZjnImzMp/ar7wXr+LGcRIW8v9ci6LyZLFnyJMuygrlmfEwELorLU28C9WY2Eh8QE3PWWl9dDDHEpcSQDF8i9CMl64XsZ7gTfbDkzlkQZLEv8AksJ10OWZ4hsB5vFjJUq6tangvJZ1CYJoEfEbZul2kJjycNHAQ5FhCEWCXGPL8wJhUyqROETiU98UJEpOtcpA99AgNJh9qTBPchwLrr6BDkWGg3Ctnip7M4A1ym0W3zAYBKnlRSDGQtgQCS+486WuaFgGWgOuWh3TC0zzkPurSmRpqUJcLZ30meWQutCqHpBRDr5/shDAhazQsnxXmQ23RuGTTP1feI9jshBoey1dl3SWzlFrKJ0CcwdAZTDREWaWNphBfGYbrzztEG1HGVWRJfnbHJEmAVundOZ9ntd85GsN58ElmT3vKsyzMemMcBdgKwjp9KH+frhSDR7BCJ1inAoql6jInx0GvDED8EGJLhS4AwIKma1ml6NwLDZKnOUiXA8j7HSVs1gd7EOG9qW4dBCWzakqa3Cqvpdfe0XqhSCxkqIY7P0RBjYYmXSbFsbQt80pcEx2kDAlPTUfUiwWrnlUd+ByG9cjkHhbrYMu86gvCk0vppC7lKin2XwDDyrcy8w5XqwzJQ3RrEi0d7oRdZVtuF2hbyiLBq0ZWRZ12lBsPaanYWQgdBhPtpoXVQ224v0iuOibYsCK3atuOBi7DsRoRYHuDI58vPWbQ1YSU2DMbJlCwhyCHC8jYpWek2IGmKVZBitAiyBwnuR4DXQ377ktUNBvJZN+QBowbEorkEWY1gGEYyK9mNYyqNF0QEOEwIcVwODTG+UFIc+IC/ie4UVZeIQ/xYY0iGLwFCnyDQhTYWx9dBPFOLjwxBYJmWAANIETlDQwjlTi7OdwCfyEBvEqyTR1xIfoOc622AOABpQizXpUwqgHRd6gixjF5EWIc8EjwIAc4jpRshvL3QKz+ZKOvKE0aLPeUpdiAhxdQgKcuhDGqy3sQYvQmvtrx9rMFAfyIsI09jq2IQ7e9mSCR0yGurvdLrzh2EEAPItRJnIlD2IMKZtJJnFTm9/Jt5YfZrm0eC+xBgHXHMJb4DEN7NshSryMyiqMghyb0syHJ6mUQLUqyuD0jlKbZjS3Kw4cieQwxxKTAkw5cY6yG+/c7n3iQirZyGAIv98rascxV5CMidXR5p60dYdURB3TeIVXgzkCeV0CGPEMtQrcSqbCL0CfzIF7JwhSeQ8gUdWZCterevdUw+R4aOcPYiq5st0xGQiY4KQZDla/uKTl1dyCXfl5BhyMQZSNeNabGUPKYX8tpaLxKsbvfSCcvopbkdFKUyQeDTvrKK9Lva+3oirePQeKYjzzosoLMWC+QRYvk8HSEOfQIjZ+ZDJsIAX/BXWupwjylAvNBSJr9xHh0f4VI78UQivV8XQoIHWbzaM+0FpMtDHhnVptOV1TJ63lew1IldO6qkOLYSeyGEg1BVfpGxFg8xxGWMIRm+BAgDgpDkTGlvgKQYUaeT10mqlkxB4lTLDQAtMfa6FPVl/oFbj7X2QoiwqtEcxMqrIzd5i+fypBLyfp1kQmd11xFifozA9wyYFoNVSDoBlQgLtBsGStbgUohBCXDfRXMXMCBTrZZ5WmG5bGEQuQCUSZFEikOfIDRJajodyBJjlRT3Q7+B1iA69/UQ4Tx5hCD+Xict/emFJGolHeic5lp20Wy//NHtn05AJcTqIEbGIITYKKbPzSPCok24ywFsr80X0mlIoExeg6VO7O2EqtrhHiT4QhevrudY7jk5FlrdQrh++cv6Xt1+VXYk9oUtn5dDHBe+zpHohlnHB7FsritGVn6hk10MifEQlzOGZPgSI4/8CoI7aB7NNe62bFD4HtPrhjXEuL7so7GaXu2+HuSdM4iVVpwriMp6r+84JJcQC4i8exFuVS4hl0XeFoRY7vCtQgjTCVNuqESdi+csjpm2Dzvy2CR3Wr1IsEqA1eiBMeno6vWsGUK7DnLcL/z3oN4rdEQqnn6X7k8lxjoZhWWRgQZt6vOT9+Vt6/YPohPWgR8j65JHiH06DxYqdG4M9WVAfP1+1mHd81YJsWodFmnE9XQ64iAgoIJY9SHCoU8iDzshHMl7l44Ii33BXDMJOgKkiFgvK/BGCfBAniUuAOvJI2+BHJD1XiP2yfepht1OHZesxNzzRQhihYBkgddJKjYDLAh4wJ1NwmbmNcQPP4Zk+BLAdEKUK9mIanLnUJF82oY+iaOxra1Ci9EJAkwYOPWcj2KJojZmZjpiEbGtUKK5U7qqFUcs2pnawj9uU1JanXVK+AOWyYjnsTgAhoBKhPOswvFxi2B0lBNG1YdwfO0eC+MEZKnERq3Dcboci3u3G6I6GWD7/7edB2wocD9sbG4J3YfOYvGYhfKYj9K1ozwIQoSw3sXSVxdQ/cWDAIDgqbPo/CBxiyST4NK1ozD3jKLzrVPw50KEPkFljwH7molk5bwybewdWUb9KP9dqATcl6/wEyoHNGi4WHpaP9VfHvVhVHM+Ez00gHIH2Fw2Y+lNsRLAKQcpMtxtGj391MoQdWKPccvf5EQSnrvbNLC6YMXl1pQK82cMrNUDjNQM1MbzLZthQLC6kiWXjkNT5FWVFAioVmGrwP1820WZSAeZ9KFP4LYpqMlgF8PoG2HA6xraAbNhJm1S+OcGBl9EpxvYyYQ4VzesWIrdiAiLliL8V4tvnFUI43oKfQLYaclL6BN02zQ5juzAy21R2C0PoXRern4YkQcKjSVYDRCTWcyn5KvmrdsGBvAsIfv9Vl3KKdcdhEAShYAKhA03zkek6etBQoHcN2UXzRnxdTjxBShkS3QQW+blOgnbWb/nQwxxuWBIhi8BCiMBnMhIYWl0pIbJUKwEMVHhARPcKFCGiVbdTAXWGJsO484+DBysroSxo3/T4pYaESnKtAhKZQJqRJ2O5vpyh+d7IUZqBkaqSE31C6hWubnTnMyO1ISbN+FxgWg1u/1W74vOuVCSpofbeiIu5+15TKsblc/zPYbyCNVfNzrXNElMiHtph1P3ZHEZAEoF0BffEe9nzUUUZp7EzMMn4B3r8uARO7cC23kgAPLNhzD+U5Mg172Q5zNWRXnmFLoPz/KIW4Lo7KjAuv0gUKuiYFvA3zwLc28N5lVTPL/kJvh/l/+nEyVUW8cBy4C1dxzG9iqPlgUkC4pcD+4P5mCY3AeoThdKLApjppyddtUQEd20c9F30VwxUYiIcLESxJ2w8AZBTRYHe+m3SFCE/RXlqVVCBHNNhOd42UWAmcqkl+rseRRBA9v3UhQqfiqkOZC8G0FM4szYW4s8mKRGfth0cS9A1k2h6YQoVIJcbXfoE3hIiLBTDuB3aWoArSPeKmnMk1QI/+OlcpK+oQTVUd8LdfZEfk9UVGoGtu5JCK/vEbTqJhbPeyiUTEzMIDXo96KZC6EN7zYNNBasKAJlGuURA5YTorEgyiP0+lkfbYKob/XX4sFnatal5WP1cBeNBQuBT1Cd8lDb58IYL6Ty6UeA88ivv+hidcHC2BVJ3bXmQrTrSVmtAv+GG0Xpe9xmWJm14bYp6kv9Zzq27fNQ3aUpmxdg9ZyBlVkbTjnAlhtYpqw6cixHH/RdCicajMla/Twrcew3WgKtOanvRrA4jEA3xOWLIRm+BDDMxFISW0eCwVZ2FysB7GKaJIhOHOCd49R2BrvoxWl4JxyiZpIoSl32OoIAyyQ7S/JkIpmd3g59gvEpI5VXoZSQ8OI6vTuohFaQ4W437dVBR1J9n8XWY/U+ZDlJcy2MCbF8LdnyrCPE/TSboU9yXQeZ12+H9fJrgF17kp2BD/rSm8G+96iU0ASmx+G8qpYQW02ehTv28P2mkUSa0l3btmBdNZ7ahmlGUaciV0e2Bfv6GYxZ3Ml/tsPPWhN1/kjFvpQf0qjDpWYXY9vc1PnccsQ1007Rg1EkYBFPyoQGR9qnMfNYppx0vIhayUd5tAVqssgNV7bsM7v91PvTC9RgGKnGJeHlyHlnZQuxLB8A+HskPGbAZhkXdTFsbh23HJryyMAlCGn5ga6cjsMHzap8St7m7yfPo7kWxO9Nr/YtjvWTFe3d78BtZ+vc8xgWTrjwPQuBb6M85sPrUq08JPAJGvUgE92yUuvvT1qdPSqPWXCiIBGZRXYBQX2J4PQJF1u2WdjuBxg/kA17rp7Lbyh/oWu7YaA+W8DcaYZOg2B6b4cHMDpRTK3xqI6aaDcMlEd9FKNAPQunHJw7DizMe1he6C+L8L0irqp0MyGvg4Cg3TCwuhKicSJEsZKeeQQA1LvZoBuRp47lszafeZr0koGdaLNd6V1s+/xdsyhCn19THpiZDR/F+hKPXFcyEa4NLcNDXL4YkuFLAGckACKLTzz9ZKRdEKkQUbaYF6a0dLKODgCqU17Gh6tsSSqUg+S4ZPlSoXaGhslS5c0jxtRPpm6F9Uwmxbq85elcIOlkZXLabocwPZKSW6iEWBDV9bjVarfS+ek0xjKxFiiXaa58otMK4XVN7tOUmkAo9HI1kBtvAwu6iU/LUOrkqAly64tADIen2boHZNpP0gTSb98FAh/k6n3J+YGfJsGC6Nom4PogE2Mwa5FlTOjj/EBLiK2DU8lxSCvvda6rOn56ejXqRNMO+ZPfxkyZBxjRaTMtgwdgkM6Xj6vaYjH1TqKpbjpeTJ1nTti5077lUV+rRwX070axEmhlTWo63WyLJ+m1u0BsTS5UApTH/BSBUTXhslxEpUS9B9AhAJohw+rAUYR31mmne5HiXu4LTYvg1AkXnmcp6RJvN77HMHsqAE5x3bRe36wfqDTqAToWiSRfyXm91gd8+/8GOKgllaLb4zKy2bMeqqMOQj+PgEaD56gteB1rAJ19gCce8dBpliMSnL4vMfvQWLCiGQtgcQ6YPTt4lDbfY3jmu3w2UV3ke/qEC99jmJgysXjaweLp/DDGukWgXpdGhpRsGjnt6BYXdimE79LMOxT4BrpNA9ZyF3apjcbSwLemhx9sbgCPYTCQISQMyfAlgmnzhUGyNvBC/YleqJs2XThntTPUWekEMfY9oS1MW61kUszT9+9oAWRcZPk+y5BV1Uq7kaAE7VaIYkmUMX1+cy1NJPKkEp5iLeu7+NEw007erUKyH0gIcR5MO2e/kViJZaK7XtgWJ/NRPsQyIu1f4h4ptv4WzJgQA8i1EotzRJp4alY6N3O+lIcMlRwzj+Wulhd55B3LI8KDIo8Ie8qCRXnWhYPrf51ykPKmoFr2gIQg5y041ElJDJPB6+qD7sjbvsfQbouFc1nJj5pefuf6+fNWLbry9Y8dSbfvYildX4P6Ce+3QFbGo//Y7puv6TGcOOpibCLbHerqb2XF1X53dJ5zTp/oolLN6oPryz7qy+l9C/N+vAZjEDz7VGLJ1n2jLItgcd7H4nz/70EvP9p5URvHJk0UK0aukUW00W5Eij1vaBke4vLFkAxfAojOTl71nyLFpr5jl3/L1iNdR6hahWNrco7lK9tR663D8jkqMTYtFq3yTtLLH0SVFOdB7mCFFlEmxf0I8UaglVpoOj4d8nSUsHUxZhVIlmMYJoihsdjIaeTfghD7A1iPIuuwIMfEMLh1WCXNYluUP48QA4C0+l8ltr2sxEA+KVaPxXkIiIVAOeQ43o7y0r0/qpeCPPSaYVHfJyA/mEq/d8u0WV/3cEFA4LYSa5tYCyCQd75qweuneRdEJ49g6oj1hQS4kbGePPr5AJfLp15Dp/GXEcumBpBE9ZOKqNdYrx/1QokOTIY3Ak96hjJ61atoGzIpFt+8dsPQGkzSeWffpyGGuNwwJMOXCIbB4s5YWIkBJZDABlzQXGho57wPv/yBU0mxfFxIJYC0DlpHioEwtXpdvrbawapW4kFcpm0mBiHCac1xmIR+lQlsHgQRVi3GvSDyNW1OiMW5edbhzSTEQGwlTll+B7ASx/uhJ8VA1lqcyUtAJseWEQcA0KWRMag8YrOJsK4dGQbL6jWRJvJiAC3nrS7IS66R/gb0sgyL46aXfb+Se9Cf0+t93QgGCUutlkGXx0auK/IrlihMk6TI9mZcA0Cc76Dnl8u8TXRaF5cQA+vzmiOgkmLfY1hbJTBMI17XkuShMdhc4EzmEENcTAzJ8CWAII5xBxeQjG/YFGSfj7KnB1ffGcfH12kV1skN5A5KjUKlc8sGpK1R4lo6Uiwgu3ySr70eQtzLgtPrWJ7/4n4dluqpYpCIZ32JrrGO149e4Kt6gYQYQEo20U/+kEeK43PUbYUYAznWYIkcq6Fke1mFZWwWEV4PCS6P8HLb0WJBuW7U+wEAwwJom8EIWGbGRb0nWbakSq96Eci8yH3qtHjeOzeIv+5+GMTSK/TF/Uh+3vn9rm2tI2/f773YUM7D9/MJpw4b9a2eJ5HoB5UQ6wIM6fIXXoKEJxLHsWMyrJLgTY186Qcbk4D1ym+IISIMyfAlgiyL0JHiGBqt46ASiY1ikI+7SowBTnhNiwHRFG6geMsQaQQcUIhV+fJ1VU0igJRsIo94bkQuMUjwArUT7ncN2ZLGzj8LACCTe+N9sR5YkGNBbAOf75NJc95vgY1ahyVshBADyJVNAIOTYp6P3lqs5hPvyyHHQGKZjjGAVXhQbIQI50ltCmXuFaYy5aWt3Xn+ZgEUKx68aBYp8JN0OomE8OIQBkSx8mYtjMIi2m6FqWn8vPes36xML1K8UUmTOlAfNI9BpU5518lDRhrVT4e8zoHCekjzRnAh0jIdKZbbQ3MtQKFMe8olEneFQwxxeWJIhi8BiJl04rKHBpkUe10K2woyVrNe0FldN2IVFkhr3rK6RtkThsg7dr0DIJQ8S6ikGODE2IlXZgepD3SvaViZEOv0wxcTjpP1VpHnko2tdsC+9X2QagHkFXvRDyzoggxiHV6vVbiPXKJnWtlVm0yIo306KzGAjHQC6EGKgVzvEdp9ulC0ijyin1V4vfKIzSTCApUpD870ALpygZIFCx581+jpRaIX0dAH2ghShFggjxgPqtffLC2xDqkZowFmddZbjs3IQ0VsUR9AN+wNSMo3G/2swzLUY8JCzMubfm8ELlTGN8QQlwpDMnyJIJMC2UoMSKS4zXlPr84c6C2RWC96fXjzwvyKssmhfbuR5Sqz6E4jtUjrIEnG8tCvM7hQ/fB6JRIyGc8jCb7HsPjX5wEAk7+wq38hhMV3UL2wjH7WYR3y9MOA3hOF5HYNwLqtxICeFMfHB/Ae0UtXqy7CE/mo0C2au9hEWEeKA5/CHtET+/je1MAIFgVKFsxuEPsZ1r37wg2iCLSTJ2cSEJKN5lqQS2DVhazq4rD1EOL1WiV7DdRV4rbefHSQCWE/AtzPJ/N6rr3exXXaPC6iMSBvkbFKiCvItrGMZ4mAXLhmeOhabYiLiCEZvhSwjHiVvbmjAuuGbSlrm//ELLxjdRRfsTs+JZhrwn1iAaFPYI8ZKO+tAUhH/5p/sJ0ZiVMRzU7yYywsRyIkamPBwuIcTz+5hcZO3wUZ6DYpKlNdONMWDyG6JnX0GmJc3mFixAvBWtx1UugTrC5Y6ETRxWTn7eJaoU9SREW13IlrVK8bAQCsfK+JR/4+OeY4BHuvsrDzxQFIwUTYcPHVzzO86i3CcpmOyJSARRbNfMf5SRkYjCLD4jELlak0UcmW18sNzZuCLH0IfTC3CWKXs+kGWYSXl6+MHq7WiGGA3PzKZIfi35ideALs1Dm+L7ISk0P7gfGtQOhzW5DqPznyh8yOnQabXQHZMQkyJQX+8H2wRhPhs+fAOn6KGBOLwrhmW5yO/w8QHFuEMVPOkH3mBXAfnU/cro1H4aa9AN6xenJJTdviVaaQNkS6W2n2BuhNhHl0R4aVKIq27zEUSjQO1pGENA77htjVEnwFeRHoRGCOjL5Y0fqLYzP72jBtlvJYIY6nBuEejUNpy1hbBU6fcDM+jffsd9BphTh1IvF4MjltolI1MgTx2JFuhmxVaga2bLNi/7+6hWRyqHYVInCPaXIf5WrwCtMiqQAexSLNuBVTyykTZH4e9+WsEudeUgedlxxVllIsJgGL8lAsJeW95XYzE9o89Pks4+GHEbtUm5gycfVNwImnaMa9nbasFsGhG/vPYAQ+weHH+HMuVgJYBR5RUgzKrEKYWvTptobkc4jLF0MyfAlALAJjvADrhm0gV+4G2XoNYJhgiyfAnnkGsAwU/5/rQA5dx08IfZhrSzD2noD/xCz8uRYAwLhyOiYW/gOHAaTDW8qhM+1SCHtEOmgZMGdKgGVg5HQD5ZPAyqwNgCWha0sWglUfZw6XYI8ZsPaPgXV80IU2wqU23DWkNM6+S+B3KWjFhhmR9eB0IyYilUkPI9NhKiQnHS+CTpSSKXgA8INMkAf/dAONp1qwfv6lIFuvwdTpx/DKv38Uc19ZQmPBwu6X+nDuOgB67YvA3CY6n/gTvObfFGD90j/l+cjEMNRYYWWiKbsqk9P4AdjTx0BPnUb1rp3A9Hi8n/9XosS5HmBbIFcmgxpBUnP9CHfXgIgMa9PIJNdtAXaJ/1atwxHY/BLQ6fIwzatNsGaLl1Muo1TmgIT4xrlZAHyMYFGGq0ctjNGIzckSiUP7sbZjL5reCi8aNUFhg5IopDIxUDMmwM48lroFsvsQwmIF1PfAFk+AtI5zWUUnLYsgBRNkrAps4eGqsTALdu48J4mmAYzXQMZqycI+34cNwHtmGcZkkRPm8RrQ6YKOF+GfbiA4qbwjSqAb/r7QjNcGHxEx1FizZCIsInuFgYVWk2F0gqAYhZ0Oo0hgrTr/zLYbBorgEdHiWaGqGYcBDuaaaElheJ1oUZLbyuqFxfnCtzE1s7ImoeFX70GUv/zCcVQqPEhJahGiF2TCa4uBC2t5WJm1sbZqRnWV5H3gUBFTuztRmWy02yHGJngY5kIlyFjgTasQkzNBgkXI5jAgmN5WxJkTXuy7WCWbImw8r/9kwCJCcntdC888iQwhdhyCStWIAnjo3T+mLOHS4mLLIigWgRUAnhLKWibHYlGe45AU4W63Qq02u1ikcUj7lZUsaSyWaBxwRBBrpxxg8i0HQcql+FvEggDodDHx4AnMP0zwzA8YbvsnPgov24nxh2fh/4mdGqiIcqt1Wx7zMXZDEp5abgfytlUw0aqbqEy1YDkhTCdEt2mguSyiT/JnQU0Gv7iJi9+GGGKTMSTDlwCF114Pe8ThH6xilQdcMEyQqX0g5QlYY0/wiGERKWJBF3BKwEgJxo4KzENbQLZOASMREfIDmDfvx2T9CfinGxk/qvYIeDhaALRiJ75hSxZIwYS1t4bxGQ+VY3VuMd5eAmCDdXyYEzbGt3dh7qiCWBTEsrnltWSCLHVSlmnLC+DZDLTmxFpSY0cFpGRhrFRHsBoAlhm7waIVG6RkAqXoIytNxRNB0ixOjM29NVRLFsjYToSmBVKdBt1aw9TLXUx5AUipyIlRYQSkMILC/3c7H2QIaAhwimjKFk0RAEO1ckYugLf8k0mQA3v583N9wIg6BCUUMpkY43KE6vRgDaO9itxgGiqWF8Dml0D27EgIsYz5JbBz5+EfX4F5cEuyf3UN4SIfTMWWWGmRpuO6aHr8PhwjRBsE31vwsa96DjsO3AJzr5uqSzdooxMFWbGYC4NQGJGmmTIDy+w8ytuvhlWdBlk9HxfDD11QwwCm98IojIBWR0BFfQKRXtkEdu5Pyj69A6RcglEugTVbIEYUftpMyCEp2rCigRhKBX5spAS614Fdc0BrDbCWx2da1vhiNHVAJ1tby5KlTVjZBEKfwPcIStHvQsWPra6WE6IWtZfY7aDBUB71uT/uNoXfpWgI8mqweJZEhYhI1pasatRkSfhikxNcr0PRjmZfipUg44tYReATdLshZnb7qN5UgzFTBoskKon/6IjwCDmKJ9YxRKTZohivAU65i5GqkyLa1Ajj6HkjNRsjNQOOQ7kHDTOxWtuR5b1QMnDDLelZEbuYzCJZTohKzYiDcwirrbC8y5IsQfoNiXw5ZoCrDjo4cyJ5hpZFMDFtSdZyXiZZW93thinJluz9Rvwul/WR8GTJlyDCIhqnL5FOYb2Of0tkdMu2rFVWjoB58DYfpXGGwh17eL8AxJ4WCAAYBozJIoq1ZVz/cm6AQLUMY6aMfdetYd91VmoGQac3H39JOb0OQGkHop1suYGhe74Fe8wAPKA0zlCsuLAcfp5o40FAYODSaaEvBu69917ce++9OH78OADg0KFD+MAHPoC77roLAPDBD34QX/rSl3Dq1CnYto2bbroJH/rQh3Drrbem8nnwwQfx/ve/H9/+9rdhWRZuuOEG/PVf/zWKxWKc5itf+Qr+/b//93j00UdRLpfx8pe/HH/6p396ye71xxFDMnwJ4F13K4JaBZQY3IomWx8LIyBX3gR4nfRJVgHkin0geyIro7D+iXNLBdivPATr1Dn4pxsZLxSytUeErJX3wTJg7a1lLUBeiMqe7BQkKVkwIqmHnJZqpnTpeAFOxUbYcON0xngBZLICFJzstL1irRQwr9uRXH90O8grt8N+JbREl+y4dnD9rS6dbp/vghzYCyJIu++nLTBqmW0TqFW5xKC5mM1blhJIYI25ZL9IK/Rxoq4EaZxfAvzz6evLFmovgPePp2CtNhHWE/KvTr0ng5oOfnYLJ5P/dzGJl3pyzcG51jkUzRAODWHSiKAMoIVsB6volh1YlSsBABTp9sRqW0BHt/M2L9dNIOpWGrQUq8DuEkjop+snAtm9DUQi1HG9AEC1DPNgGWx2BcwLYXlNWE5WogMkluJiJYBRjT6LXgAhb+gVEh0AJnZ1Y1/ivpuWGliFMGO19boUXpfCaoQorq4BQCwtCiJJkw5elwLdhJjH+yL0DtcMbNvnYeL2Gozt1XhBpJiVSQVPyYHw3lGaoSjNeFxGJdVFEBDYpRC7Dna1Ef4ECbMKIa68yU0NPFSvH5VJD+UxkiFtfg+3eQLx9Hw5wJ6rePtLrP9hqlzqOgfHoRlLsUxWC5JUQZDfovReCAuxLGmQYUXu3PIWzZkWwZZtVsrdpYrCz1/PiXCO7tW4difGr92Z+j6YV01h657R6IJS2HXNLEDGSwukCJRKJEpn2krkTtHgqjyWnCt7ULogeB6wTo8wffNbB3bs2IGPfvSj2L+fD9i/8IUv4PWvfz0eeeQRHDp0CFdddRX+8A//EFdccQXa7Tbuuece3HnnnThy5Aimpvig5cEHH8RrXvMavPe978WnPvUp2LaNH/zgB6A0eYf/9//+33jLW96CD3/4w3jFK14Bxhgee+wxbZmG2DwMyfAlQIgAIYu0siwApQYyS4OEVwHR2cseBDTT4QA4+SoVQKwmH3NrFhCp0H3kekHXOeo8B6SQE5BBtugBSH/I5Y+zlIdASKPpbWJkXZSp2lqN1lYrUeglnxB17TiSTGGAegt8YG0pdU/Z35p8XD8hcyrBdb1YSsK8hXhQo1p55f3siQXQmgNjvJDquATEM+ze+9/AvBCF33hzfExet+aFXCPZDQGHRlOjdMCFSWEHBrEAkiXEAPReMnoNaIQVXaSR21O0OJBAGqiIxYKTFdAlPtgMGy6w6qeC4KSLJN2b1LlThEmnbiOOIimkSXJnb9pcZjGIK6luk4eqlS26OkLrtqnWU4z4vbbKZRt5ZFhe0EorUT32WHCphtRWvwMyMQIACuU7YQPqk0y5ZHRC7m858kIgzhfuJkX9USn4iKrlzrtPSwrqKCQvunSqhETVW/PzSYaoyvvV/3nI85rTC7q8Mwv85GcYe4QxQaLfTE5jmumFsa7Haz8aEJHYh7idffbSu6AjxHnpgMSD0qYQ4ucRP/MzP5Pa/tCHPoR7770XDz30EA4dOoQ3vvGNqeN/8Ad/gM9+9rN49NFH8cpX8rUZv/Ebv4F3vOMdeM973hOnu/LKK+Pfvu/jX//rf42Pf/zj+OVf/uV4/4EDBy7GLQ0hYTAfXkP8WCPXqqg5pk3Ty9rkakbnXsgXXu3ZkT22HvSyAOsWp+n2yZbaCBmrsGQxRsfNpNemG4RYDwgdUaGlwca563Hl1wtasruZUImzOrDqA2O8wBfXabNOZA0A+OxHa3CrUcZXeA5koiVLHi4EIh+dCzUdcq+naLeT/dkgJ7rjujYk6iVTvwr6WaMHgaqLlgcXwkqsi6opPOKIsunqc70eG3QL6QbJw/cYOq2wp0UYyBlkye+DnTwfYmjeEzmtKZ6fZjYwes7xs1Wetdoe8tIBF97OLzcEQYAvfelLaDabuO222zLHXdfFH/3RH6FWq+H6668HAJw/fx7f/va3MT09jZe85CWYmZnB7bffjm9961vxed/73vdw5swZUEpx4403YuvWrbjrrrvwxBNPXLJ7+3HFkAz/mEFHXvM6o0E7KW6VlBbB5UG1eMr7gdT5ZOcWkOkrAcOMreobhdYqLJAjj8g7piXCAq0OsLqWT4QFXIkQ55Fic/BJG5WIGOMFvlAxsgBmiEqPQA9xEsX6K6zCecd1MMg6fOpKIIaetPaE3YMsmwbIZIVLdfoQf69L4a5JhEOqK7lDH5QADwodYVP1v5tKKOzk2RAN4e31O7NPU0fCCtiLEA/yfennjkvnxzbwSezRQKAXIVbRa4ChCwCiC+SzkSAaMhFWr7khyN8Q3eBRtAH52DqJ7iDp4tmDy5QQr66upv663fz+4rHHHsPIyAgcx8Gv/uqv4s/+7M9w8ODB+PiXv/xljIyMoFAo4J577sH999+PyclJAMBzzz0HgGuL3/KWt+C+++7DC1/4Qrzyla/Es88+m0nzb//tv8WXv/xljI2N4fbbb8fS0hKGuHgYkuEfBlxoKN51II8sqB1Xbkc2gNU4Rp5VeMsoyORe+LYNv6BZLCZjPe7Hek3B5+h5+b4c7xHyth+ANVvce0Onm2h+5XRAesFYnpV4nVZPGaRgxi7GSMlMax6gIc6TxXixpQpzQDmEgPAqsenoF5hEGThorWESenXKbovCbfX+LMrTvevt4HXWYR3CyMWZbkFc3nl93frpoCFCwDqtw8qx9RBiHfIiBQ4awSyMghipddePEOvKJQjxen2Trxeex/r6OM4cF+9FauCneS6G5rjmGxMPihSi2w/9CPF68uqJeB3FJv4B2LlzJ2q1Wvz3kY98JLcIBw4cwPe//3089NBD+LVf+zW86U1vwpNPPhkfv+OOO/D9738fDzzwAF7zmtfgDW94A86f5wuJw5D3jW9961vxS7/0S7jxxhtxzz334MCBA/jjP/7jVJr3v//9+Pmf/3ncdNNN+NznPgdCCP7kT/7kwutwiFwMNcM/zHB9PaGUkCya668VJgUz/mgJd08XOoUpL7aLuxONTrGvVXkzoWqFB5FH5PjqTaHVSf5XR7LnyUQY3MpMgP5WYNvK1XYKjd5GQCwK8+UvSLLq01+p5Nggz9NYOs+nMpD1q9zDzzIQ6Xsl8iW8IajQ6WY3Yh02TJbRqgpNpfAGkbJAW/nXkD0oxJrgHF2tTg87CHTaYa2eWKMVBRBrs0U9q+XTBRgaBL3St5oMAEPBJ6DFdP5qHYc+yfVKoS6o0+mHdVbijVh3hbu1TQvLrAnDrtWIK2HX5QWVAoPogntqiAGe3rw8bW+nTp1CtVqNtx0nf2bKtu14Ad3NN9+M7373u/jkJz+Jz3zmMwCAcrmM/fv3Y//+/Xjxi1+MK6+8Ep/97Gfx3ve+F1u3bgWAlCUZAK655hqcPHkSALRpHMfBFVdcEacZ4uLg8mydP45Yr/V3dY1bIlfTXijUEXjYcBHWuwgbbsZzhA6kZMXaykw65SM5iF44dV6rk/0Yy9spq3IdJltH8+xFbAeFKo8Q1oNOF3ClxW1A1kosDUoSKUVvIpxKG6GfVbMf0lPb6by0Ws/dh0CueSngjCSHJNKryiEGXTx3ydDLii4fa3UGGthZThi75kp26qUShsHiv0EgiDCAjEY1DmtuJf/lkOg6q2Ye+qYRbWQAqURyzgCa0gHLIAix/LcZ6EX2ZT/MpuKyLg86C7xwr6ZKI3SaYCGpGCTCpe7cXgifPZcdEOrehWig3dM6bGtmhjagC9al1VmJLzdUq9XUXy8yrIIx1lNWIR/fs2cPtm3bhqeffjqV5plnnsHu3dxr1E033QTHcVJpPM/D8ePH4zRDXBwMLcOXO3KsYKzrckI8iO6u4YJ4Ye4CIiBxp0Msmqw216UbVEesIcphvctHX6VCmjwq0eAIAJw8DuZ1gC1XqtkMBtVNl0qW10OeXR9M/uDlEWE/kIJU9CfCGeismPFK8KwFeBBXWIOkfbZ+JCK5+vah6oVlGMogTpVK9NvuCzUSn86rioDOGhYhrHcRLqUDcMgeJQRBIxbNyEZ0XhUEAdaFVtd5qQCixVpK+l7oR9Q2YunVQrYYRh4FAI1FEHrrcAzFYih7EZCtw+Leum0K0+4/mLiQ+8yEh5es8AAylnjVy4SoZ2EdzgvSIUO2DutCGvdDr9DeAmsPnEe19jTI9ZGXAZ1XiV7W4R7fmlSo9QE9RwBItQvZe03GSrxBDLQuZZ35rQfve9/7cNddd2Hnzp1oNBr40pe+hK9//eu477770Gw28aEPfQg/+7M/i61bt2JxcRGf/vSncfr0afyzf/bPAACEELz73e/G7/zO7+D666/HDTfcgC984Qs4fPgw/tf/+l8AODH/1V/9VfzO7/wOdu7cid27d+PjH/84AMT5DHFxMCTDlwg+cwHGyQBl3N8wpQaoUQAsxCFw4ZjcpyqkfYGfJnWhD5ybB2u7oFdulS6id8nVeegsAB/G3hrInpkknWyVFYRuvAYAYMe571vxQTN3VIBqOU0AI3dfwVwr4woNSBPncKnNScYEDyYiLBWxVCACicrG6qtAtwtzah98YwMTGJGejrva6ib6OhERbjwaZYc+2PzRrFXYKQFjo8C54zwfwwC2TqfTxFbigA9Mzs2DvPA6oDSajSYnkW8S+GDPHeUdz9Yp7r5NSkM0PoZZt8v3A6Bj1bQrtk4X3j+eytflRZ0anSglAU+i9uEXSji5bMfJBHrphds+RTtO48OiDBZ1Y9mEQU2YxIYPNxWdziAWb/eR5wkbGotULwmEisoY/x/6wOJC6hAxDN62ylxzTld55Dc6Xsx1Sxc2XFh7x0HHk8hb8JIwyv7pRjKg9ALAMricKKq4cKmTIgHyNYKlDmiF+/tefZT7FZan5Ktbc1ycRcRcDnaj+j0GEEeDFEE4AKA6xX0Ky+euPgqQWhnk6n18X+DHMyAESLe5+ir3Cw7EMyT+E7MxubH21kBKVsYdonesjnCpnSLElsOD/tii7qJ7IiUrFRjI7PiwlXsFRLTM7KJCQL/IbsdVLip7DBgzFW3oddmn7uz3s+7VVEJcHvVRmUoG8LK0RvannAqFHflTFrMAR76f7m5VX8P7D5ooj/kwnbS0Qw0H3m0aaK6YKD6zBPtQ0Ht2BEhcDEbvRPqYRjpRKoDK7QNIFjkfO43g2GLyvPaOAtPj8L/9XGqgZN28M8kvCqmOw4u9y3mZY25uDnfffTfOnTuHWq2G6667Dvfddx9e9apXodPp4PDhw/jCF76AhYUFTExM4JZbbsE3v/lNHDp0KM7jne98JzqdDn7jN34DS0tLuP7663H//fdj3759cZqPf/zjME0Td999N9rtNm699VZ87Wtfw9jY2PNx2z82GJLhS4C2vwrD551KHHgDWYJgUwst1oTHOvyYaQEgoKQAinLqPDJ2GsSxQW59dXIhnfUz9FGYfgD+906AvurlnASGPti5p8AOHwUAHiJ6JrHAsqcejmMFGTNlkH07gW17QIq11HVY0AV5+nEEp59Nzs2xPpKSBfOuFwHlKKSxRFa16Q2Hh6xenYM5uh1gUYl0330deRIWS2qCGGZ6H4B6sIizzTWYlGH79A6UXAa2cAxwSiBT+9AiXbT9VUxc81Kwx74BcsPtaIQrGUJnUhtk4TiwegTkJ+/AYdZBN3BxQ3kCJCigTptY8+qAxTW24852WEtnk3JWxkCmog+hCDwhPT8WdDl5j/axyT1oB2txGSgxYFIb9v5HwB49DO/J+eg5BPHUN6mVOenesoNH25PaScNbwESBd3QODbHi6j8JMjnuhhRzLTPeL8I4A0DRDDFVcGGaNuouJ6AWZaja4wiYh27Q5L62iQHfKKNgjoD6ku5dfZZSMA4ASAXeKIyAVGb4/ZZGgdXzPCiJbPWyTWDLDpBde2C0VxPyByQDjlYH4dGz6D46D+PandlAN/NLYKfOgcw1YcyUQHdt4YOKkRLI5F7AKoA9+zDY947AuHoHcMX+5F7mZxE+9hyYF8L+py8CTANjM49j+f652I9uGBDAMmBfMwG6czwuf/fvjsK56yCPtCii9cmBReRBreuBtV0s/9U5dJsGtr5xK8jLXoa1Ko/wNtLsIrz/qygeq4O+/DVYJqvxt0g3SGFzTwP1VdAbXhK3mfCB+7MNY3ocdMdWHhUxGpTYk/Nwv3s6RYjFjBOtOfHMU7jU5mHir5pKSFk0yAaSgBDMCzF+ZBkLA3qX2nGVi4m7pkFvvAqY3pG0I7l9SQtmt37xG5h/2I99G8uEuFgJMHkIcG7dDjI1Hl+Ddd20QUETWp4U7di4sPqFH/Qs8/6DJvbcPcYXD9ci/aqvkWZJdUQO7I2vGbeFWALRQzvfw7+0gLf9apxtnY7faxFpcmzfC2HOPgv2nUcA0wC965+hgw6cShneVx+D9eK9IFddBTbD3wHaboAd/QHIuTrIZumhnyd89rOfzT1WKBQGjhD3nve8J+VnWIVlWfj93/99/P7v//66yzjExjEkw5cAAfNiw6lBTVCWkNqQcGJg0QJgFOG5Hbghn84VZEekFb8NYqE4MQlsKWC5ezY+Lv83iAWYACUmnCv2wex0wSb3YM1fRoWO8sLI0eCoCdcyYIfRdOK+bXx/qQBs2wM2vgNe6KamuSkxQPA4zJt2gziJtEL7AS843FVaIdKm9rL+GSb80EXIAtil3UBjgZPnKIx1DJU8xgUzs9vReQ1wq5wfuDi5ZqMbUFj0PLaUtqKw9Rog8NEiXSx35zDfsWDSOVR37kc9WMRydxUWZXHHIMjDxNQ+sMDHEdLGDxa4JXL3yBJAgCN1F0udYkwa91VPYWZiDwwxoJjZjzV/GQ4tgxoGqFlM6liQ4Oge/UIJC+1jSThkuSzTk5h49T+Fve9hsHPn4zqnU+M8rPHodoSUJBEQozorUh+7R1bj5zlZbKPpeVpS3PQNODRE2Qyw3HWiMvByOAaPUueFPI1BeAjotk9h2TzojB+68EJuLTeoCRryNm2bRVBqAt21qP109aRYjdAX+PAJf7HM8gRYkCY8xA8AxwEpT/D9hVo6b1G3Z07zPHZUQPbsBhndnsqHFasg4BM4ZOdWYCsPd01Gt6PjcNd/pT2HeGvYuZ9H2BPPsDoDCsDwjkQu3vaCHlhFda6ZslJa0axNTLj8APY1KyA7tvIBpETmUtH4hFV3xwGwoIvxie8Aq02Ql70MC2WGR8+3sK/aRcXgVqXCi7ehTpuYbfJvDG+XLNWWTGJjbOZAPBhokS5KMICCA/Om3anZJx4i2wapRoMSAKTVgbmjgrBkxlZ3YlEYM2VuWTcNwLb4TIVt8TDmQIbok+jbQUwDzs5xTFdOIZDqTRe1DgDGXjUDetsLQPbeAj/k96B+H+V3wL7tOKZwgpdfzBpIcG7axonn6FTStkIf6LZSXgnEgCUuyXiVR1CM2tdVN3speYxs8R0/EILecg2fJRIGg2gWCZrnHV9PDmmuuhcU+8RxNSiNilhmwevo0UX+LXOM6B2jDPuqJ7Br69Ug17cAw8S8dxorXR9X7rselusD23eAzezHYvdUdPkiavuuhwHAGR8BPq6/9BBDPN8YkuFLgCD0Ad2UsIJOsDawT11v5gr+w18GgNjapgMZ3Q7yku2pGFFk+7Ug26/VhzY+dGvGnZWwC6rXIQdvArGkaeVQ6gx0hEa3X0XgwwQFDBvorEUEppu2IutIMKBfiCjdixu08cSyuBueY9unOLU2C4ATOytIrKBu2MZSwQDVPJcQASgMLHfPgo6PYqXexlTRx3zbxNfOCGupFXcmAA9zfHLtHPaPOqAw0GkdRcEowqHl3nUyAJbDJZj7D6By1a0J0SuMRIQgzAbGCHzYZhGhEckviIGiUUXZdFGxVuGF3UgTzK2GK26Ak40C6i7p6XlixTWx5jOM2vz5eCHBmleHF5KYdAG8LXWDJrywA4sWULAKQLAmVbCvbysyIRCgJidkgviKc0Xb7KUNt03QA7tAbTO1kBCIiLlVAPbsB9m6JWVZZ6tzKEztQ4d00CkZoAdfFFlYJTgjIFffCmPbHqAZ+Qkdr8J63c2JNc/1AUGCJcs1vfaKJOpeD5Ddh/D99jIcGmLsxdcCAAxF5lJ3AtB/8lo+SA47umxihCzAsn8e5tadqFijgF8HrALoLa/ISrdy3kO6cxx0q2I1FQu1Iu8FZGIsIXB9gtCQWhX2XdeDLa9mLbJ+WktKbz4IsvcWuEF7II06ufoqOPv38A118SyQ1dYC+br1HFTfdH2Sr5yn2B4pcbI9yEJq2bIrzRYQ2TKsWoW1+uGsbph5QSzHSiWV2tNi9xTo1mjAx3g9NCwfxvU38/YfJnXjhy6WjQDFgzeB7ggAfKb//eXBC7VyvAvKb4ghIgzJ8CVAJ2AosTAhARGJkuHldFA6kuuFHbTD1XhbPq5L34n6IC8izo1wBQCSULnEACh3LeJSBlADAEMIqYMJk4+huEbIAoTlxCUNL0sxpxaQWCUHQegDrRUuxTAkTW2wlu93tg8RFljpGlGYYU5YT67Z8cdeWDqFxWyhHQAIYstubnFZgCsqBkIEeHTRx0rXjMmfDLHveAOwqA+HGijkV9m6EbIgeb6mBRqspWYYBoFNiyg4nESLGQl+/imcbAw21emHBCuuye/fB7yoPtWyyu21YE0CnTVddlkoOkmfhKCmBSrIryI36YmJycHIjTLog1UAWzqBwuh2dGgfMleeAIo1XpaxbSlSqfVxXbAB2Olr5qBlExw+68ALRftNrPUAcHTVgUW7qXbt0P5+pEMWoOEtwCBcvkVptM6B2EmbUO+DmkB1BKRU4B485PDiYopfQGfJBPKn8AsOt5zL/rkFEZTPq07DDdr6PDSQ1w8AyK7RkI/lQSaV8u/QB7ZuicqnzGzI/2ujIIVovYZuZmQAsK4LNFtSOSK5Rq2iD0qTV8+ul/u9OLnmRO0oiL5fIQCC2dZKZoZB7uO6QRNrYY/gR0MM8TxjSIYvI/hh7w5ZJg6CqOaFwQ2Yt+4IYDJJl4nwuvJgiZVx3VCJq2HmaoozGJAICwji0A/dkGq9KQShn/KkELIAS90umr6B+TbfP0j+RTOESftb/9aLQZ89DRlMor++bRR5p8wYEHZgUhsW9ZGv9L6EGJ16vksQyy/czXY3Zxp8ASeQ1njnoMQc7Kvxge7JRvpZrjdwygWjMAKUW7zMrd4W6HWjj86Vp/GB5hLsSLbhr/czNAgJDSVCm1qErJzrB4mDlnVaki8IyqBDXaTcC7qwzAKbETdjiCEuVwyb92UAYSHzmbuh0MPiHN256r5B0mivsU5ynJunYeb/9UNeuk2I0OeH2e7C0+zrhYWOFS8s00E3K1e2LDjGYBKJixLhzevANoqc+F6uUK1ypgFSmYl1qpuS56CQyRI1ERYrGx449oRVyEg28sCOfx9Xj47g6tHB0l9MEMPhOtlB0EsaoU7fd7tpcq0jniLt6XNgK2fAVucGK8egUPW7F4r1BPQRuIDolAIX6stcxSUfcA0xxEXA0DJ8iaFaFAXcsA034NYDMc2kk1MAg5HXXucIC3M/67EquUhZjntolHPPH+AcLdYji+iXXlN13YCmdL0XgvNtfn+DWFHKZgCbVgbOe73PfeC69jqXNOT3BaM6Dd+2eX1stE2tBz2Ijxu2N96u+4DY5bR7vjz4ASodoFW0AKzPArnpQVTEQtdeUC28eaRYTtfpgvkBSJ60QsZaC5g9DWzb0z+tQK/Bke6YXLY8iYQKVSJxuWEALxPrbS+b+V4wn11wRFQ1vyGGEBhahn9IsB4ilJf2Qkn0RnBB59MeluCNEOF1QGcpFgjY5nyQRceSpxe/ZBjQykWJsWmDhlzkPT/NNLOwyPZsY5thwcvDhUQ77IUNkCV2PN/v2A/99HarA6w2gdW1tHVYJZ66QDc6DNom8tLp9kvXY0GQ9tjQSyIRL6QbYBAzyOxZP/QJ/U6uPwByaD/m2scBQPu+6yzBl11kyiGGWCd+2D+TP1TQkSi5I7cNG7bBNX9Bj47WpDZMYqe0nhdKWnthIBlFJPW4mOXoS4IHIMIhAmwtJ3q69UohNgoduV5xzWhGYLDFPsLKMmiZB34WhZGBOtoKRnBgtIOrx1yMOcGmk6yQBYNJA1bPw3RdFFC4MMuTSmqEl4h2nf/lWWWld9OmmyQvuZSaUgXPG5EZxKIqtK+lAlCN2kZPeUUUhGL7js0po0CeV5Ne8IPsc1UXzklgnR5t7mIj8vRB9t4CtueFeHh+/d5thoR4iB9mDMnwZQIaua/KWxCXSU/6ewgImJd7TBAlkSbWHffRP8rHe2mVddcSv9dFmAUB3ggJFufLmzCws+xjzMkvQy+yudnkuenlP6MLQa9nn4JVgBsMSMgDH9PFaVxRuTiyBDdswydh4j0kD34A1pgDa2yyJhTgkhHxJyNncErbjdwFiJcTLpSoXAwZCGu2Bl9kV3DiaIKpPDQ+c8nOrSATuzesKd8wIR1EIqFLL8i9CAqzGbA18rcBJCZ+6OLo6rHUvgu1BF90GdMQQ2wCfoiEgj/c0LnZkiE8Cvihi0BxwwblNBGkQze9nqdfDJiXIqHCNVrehypkQYpQCX1xXvpuyKONGcTKlFdcD+Bk1KR2hhBn8jVMwEishKmy+wMSPWoipCR1btniDv6vqM7GTuWfL3iR+7GK0m/FLseicN2hycvfCdaw3CWxh4vYXVngwaJpvTl3p9YjHDIFqGHDDZvoBs04jUULsCP3eDJBFgFBSsRA21/Fcld+XgR8XB0iCrsAINuJxgMJGgKhD0rTenIv7AAUMAsjQBS9jqeP/KQKQmqYwNoSUJ3O1GnszUSOOigRW1KeSLsDA7L+ckVgBbucDKZ0YdGjbdsZQT3grg7Lpj5kaugUQduNpByj23tHHCxP8Ah7Yv/SieRcEXVPKXfbX4UXGimLfdPj0pY2SORWjcCnDB4lsR/oPMSzPSTov8hT8udMADCnBBbM56ePSDADYpKbGwyiOsJdqhXstGXV90EiIsn8yKVYwQHGt6LO6pHrt8SzShzpU+fzXcxIhD4IRuJ6Ze16Op1s6S2XgPoqekIsJpRdtPku9zIha4i73ciqbfPnK8K5Uz924xc/a8MFfMmFWqnA20nkai6uS+FarVLm9dLJknxSLiVpo8V5Ty1nZzsuB6kN6/hgZPOMESJs+hBDAEMyfElgUYaCQQCQjP9FAR6AgH/gWj6NSQ6Hl8rLIBRla5SfF1lqhXUqj6z6oYtu0IqlGoJsA4BjlFKdnR85UhdRw2RrsElsOEY5ZQ3rhk0cXuntH1YMBLaXCSrWZGZ6WSXqvB7qONFYiPcXzRAThTEeQa+XXlNxeVZ357DU7Ub1QFA0Q0wWyhh1fPghSZE21eWaQ8NUlC5AJZxGPLDg95n1GtENRIYJWRTEsA0AGp7R9JfR9hsIWIhV18DZloWzTRNumNSbndNBifLz/6JeA1i0m9EArnmGdJ6PslXHobF5TBZ2AQDmO6dweKWQyvd7C9nPhkUJCoaRKlPNZtha9uCFBkYiQu+HBG1wolwy2ygM4sXCMLkPVjl6YWEkXkAH8Ofshu14ACcvDC04I6DtBupOgLNrZ+L98XO1WBwTh78XBqr2FEouQ8cCVrqzfIBqUBiWCZsWUTNmcLx1DI+ulICVOZxqEhQM4CUzp7C3OoNCNJBb9s/jsSUfZ5smXr0TGAtsHCFtPHzsvJZgWBRwDAq0lqOIh3z/vhrFC8a2wzh/DCiN4kznOTy+UoRJCSzKC/+VH5io2sC1YyFaPsFzDQPLLoFNqZQ/i5/RrdMEW0vJIEpFyAKcb/Pjk8U2Ktak9tl00EHbX0rq1bJRGd0OhhPZ9AKlAo+IJqy9GqsqmRgDtu9ILLzOCH/vvU7WgrpwDOzcPI9YV53BP54/n6pTizLsrXgYd7anz4vyWfTOoRENmuT33BkpYczcDjZ/NPXNIVe+GC2/jtJWB+zcUzwMOBRCP7kF7TFeZ7IxILUt/RfGiU4UeIairE0HAGz2aWB+Fth3deyfOFU+6d6EP2yZDJOpce6e0CrwKHfdNeDUaZiui1FHfMt4PSQ+2Fnqe6iDQSg6AYPn+bCoh7JlxYPrIYa4nDEkw5cABqFwjFJK2qBKB1r+GuY7WYuF6uNW2OoMupYhlDrphBd24n0ND/DDLFmu2jzynW0UMzKGEAHcwEXL551lxfLjtAKPLzVxpN5/qni6GMALA+wsz2LU2dJXEtINmji5ZuN8m1u79tVclK21OHRxXMaM7MJL5dEJ2jjXKuBskzf3bWUfu0aa2Fai6Ib8vto+RcvPWh2KZoiaXdYOMoS1VRCwrSUXW0suHprj7JaT4iS4ByfFISzK4IWJjrgTtGEbzZTl3Q9dNDzE5X6qTrB4wevshAU3C06QCCxKsdI1cd3ESUwWSpjvcBL++HK6bgqm7vwEFmVY9Qgcw0DVTtpwN6SS1MQHwAlxbLmO2kTsSYEmHXpoWnxQhw6aLR4xsGhW4lkSdeAmEDAPhm3hoXMunlopRuWT7kV6tHY8kGji1Tt5EZe7BE8uc3I7YgV4wXg9tgB/8ZESGqtJ25+9juBlW5Zw7fgqZlttPDBXxN+fLGLuXAmLN9fxhn1r+OTDZRw5ku9+zDR1ixQruOuGBbx2F8WeyOp9umngvqeK0nkML9jRxakmwfkOwWwL6LRN6XiSr2mFsKiFl24JY4LD75vPMhiEImAh5jsFrHQNrPkerqgso2hW+SAwCinfDlax5tXjb5dDQ1TtNVTIdBQgQ4qyByRBMhyHhysW8KPIZ4IUb9kBMr4b9WARgLDGd/nshVMARVpKY2+9hvtmPnUay+ESHjqffEtHbYZrx3m+IYLY3wY1DMDgAUQ6rbN4aG4kqoOECI46Pq4ZO42x6b0wVrmlm5QncKb5DM62bOws+5jeeR1I8TiwMp8E//B9BBM7caLOwxLLhFL+LwYhBjXjdSKytyH5GykT4vL0XpjlCTQKABB9GKKkyUCQ/7epDaMZzUqUCsDYJB9glEbhhy5MaoMtngCqI2ArZ3Dj5AR0kC3sMpreMhpeB15I0AqBpp8EHPJCHxWrAccoXdz1JEMMcYEYkuFLAIOamcAKqsuxPC2qIGsqgtCPosZlP5YyOKnqRB9fmsnPoWF07TY60bS4XJa2zy1l8XVZAIRdeGEXp5om/JDgyeXBAjyseUZsiQzY2dx0ooM41TSx3LXhhoAbAo8u2jhaB/bV+mtFRWez6ho40RiR9ouontwiXDR9tH0KjxJYNCGuqvXDor3dRdlGERPRYGJfrY2j0eAgsRKTaNtAN0hbVeY7Flbd9HTs2ZYFIDvA2MwIojIhdKV8vZBPldZd4JHFgvYceYaxYKbPt6loQ3wA4IUMK276U2NSBj8kaPk0CsfcRtU2YBIboWkBI2m5QTdsAyFvn4nePYQfuqlgNfLCU5lUNP1ldAMLbijKl9xPJ+qjC0b6Pv7mlPiVEOg1z8DD82WMOrO4ZsxCtebCNBmWl5y4Hr+3YOKh88l5bteA2zXghcD/PGrDC/m+uL4U/brvp99RQWL/+vsVfPWJMl533VmM2rxN+56cNsS5FrDYSd5fcR3bCeD7NM7L9yi8MMDXzzqwaDIgUAc1ixEP9UIbgItRez4zSyKDD3ZCdEomcMULMtEPk0Wgbmrwrn676u4cQv985rxeIJUZ4OAMimYBZXMVTV+8c/zvmboNYCll8RS/H1tMiDA/J5G1BaGPZfcsUIi+t4r8oxOsAWOToOMzGcvvRiC739S5swxZgKa/DFpIZqTk66kuM92wDXvfC2H+/+z9eZjkxn0ejr84+5runnNnZnf24i6Xy2t5ihR1WJQtkWJ0xpEVhbEi/X6KYsfO48iy4tiyZcWPY1uxZCe2HCtyvvpZ/vqSrSiyFdmmKYXUad73seRy79ndmdk5u3v6AgrA749CAYVCAY2enR0upX6fp5/uBgqFQqFQeOutT30+lhVRj9mxxLWAkWnowzsATUcZiNvMA6H5myLQBmME59sLWCfMrSTzksMG+x4cbx0dcmGLAz3bhScdKG48vwEGYBiQ4S2AoeYzjYr7WZzFzB0YyU60/YWDNlGxmBiKSUXX6m0QxhTquhXms9LRcLSevdOfD0xQzZh5Ag+mmLaIAtsNyQpAfy+fj5LEfIYimMFLLnoOgL4Uh02CIT1a//zLMmlBmqYYgTqsKYZPzmQBPOi3ocbvMx81TDRjYHV0ZdXDaR04VlcEAtQfdCPMX/YusF3guwvUpEcETyKBODFmajEjlHaEYIcDDYDW/zrXJg3Vg6mt0zp05J4V+FkV1v47koV/jKAxYtzBOpbaDmqWGSmfjBSztmRJrpOZ0NiugrWuhgfmNdw+4+DZVRcLc3S6/zuPyW2GAeCrD4xKt1tdeQNmJJknx4So+MpjUd/UhhES3LNni5F7rOtecA5GiOl2F88s0vOy9Ow6eULMtlmuB8BEPadyZjjxaXSAeklpk3DAqkcGlWFaZm7EIJspEmfSApMkoXlahgYYJT8f4K27Wvjb00U0iYImUfDgeSM4d6j+0++8Fr1m8T4/tZzjrsPzlWO6bbapw2hTE4mowk6/C3r0eQ8VU/rNrw9hdeG4JJEQM8iCKfUixMTQooq6a0WOIYoL+EpxP64o26SONUtHiygwVDp7yQSFpv+M51QXnYuzVniAATYFAzK8BcjiQYFXW9qkN9mxXQVt0kBBLwfnSELXVWMETRdG72nlYnnE8nXUDSmVTJlNQosoaNoaWkQJlCl52eh3p8c4Q1T8iKsE07oT+bCHlpFzTVEj908cdIiLDBlk9SLaE/MqFP3vcfbFlBgTV0HTJ5tNkkyEk9TEWLoUIs1IkVj2kBCF22TEWKYW264iHQgYvjIMROtdHHTwL3SxjYttKBy4RO3iHZeg62pBeVhakRTLVGKRMPNEyVA9VE1qAy7W/0Yg3rMk9ZgntABg+/eUJ8UAvZ/EV0d13UtViXXDDa6NXXcSxDpgA1teTeXDmPMDX54MsoWUPOkDoqRYFrhHFihINI+ZKg7j2tEWvj3PTAXCc8uuj7/X/H0G5EF5+Gvlf4uDfHataYN/QB6MSbaNrw9Z3QBhHyULqiQS66R+rV+w50pcc9Fr4fgAA1wqGJDhLYDnuVKyyndApmaipNMFXXWJXa+INqHTz4ZqpXZkjktgu3qEOPBEJA3sBSeDIdlnyfmXFLw9rQjiKqhZCup2nIDF80hGEllet6mpQk5zYy9tBp0nVm7X3xb3giGCmbzIyi2Sx/j/6D3iifHppoIzNTUz6eqHnPGkKLJdQo5FYixeG68Wl4TehX9RigQC8JVcoSnLFHlqs27CdqP7RPU56tdbtKUPz59kOsETYr78IhkU22EW5Z5Xb4PjJPeM3RsZMebT67orJcXsPIQoUpW4FyGO3jNwxDcbIQaoKigjxAyiraxIimUkT4TYB9LFv5y5iIQA8wMg8V6HaZKJrriN70tkJFCsI1kaxyURtZgR4l7RSJMiffKEuJf3IJaP6zmb4nO11wBggAEuJQzI8BbAhRNRLsROnm0r6hYWO0YmtXWxY/hqcgfllPCn1K4ySjqzqsEywiwqyv0Q4PD80W8RXUdF3UagiDJkPZeMfDIYKrBmAYCCiTxNKLOjDk016L6i3kYx4UUihqy2XTXRDpWVL4kYy9TijgPMt4BWM5ttdhbIlEaGNHIsljtJLWZEyXajCnCSSgzQtpo02BDtTlVoMNRwYWdYpuggjVfvOo5oIhFViUXSm5UQy+qqF7Io9ECc8ALpxFgkxWkqsWg2kUaImQ14VshUYpEQAwBUN2bWkpUU85B5owHooIxf7Cmqw+K9pmnS1WFR/ewHMoLIyC9v784T4uAafUIsu1aZSpykEMveRbHj+ol2x9ZG9iC/WQSY9PM4wAWYiEnzG2AAHwMyvAUQo8klBbbQFDWYUksDIxXUVEJFyRB89koUhCwEWyRi8f1RRbmXuUMSLDddmWZT6/3mzSt9Ingyw+pi2FSkxClKjkOlh3iWdMFimlrMq9KiPapMVU0ixSKIxPNFEpgiyENmpypTHOnxcXKcRox5Umy7IZEQSbHsGpMIj4wAaIoaM7UQCXZAVtliHhJd8CdOn/PlFwmxuI+1peWGvml23ECyQp9GjPl7x5tPpKnEjBDzx6WZTPD29r3UYZo+nRAzyMxaACTazIrPW8wUwDdrYjMr/D3Pai7BI0kd7mUqwbc9XjUW07M6EMkvT5JFcwn+WmV21eI+RohjpFlimrIZEK8vaSH4AANcKhiQ4S1CWnjlII2v4vLT4wy8zRpPJLuumqioAPQFU9BdAKpPnuUkilftRCQRM9vtTxku+aSspEN6jXy+QLa8owtfkkl8Ul5RgiYnxszjhiMJFCHCcQmIm4vVJW+PCsQVY5ltKv+b2GpfBDhyjT2O46fPeSRNxwNRu1QgWl6Lu391G6BeOkJljSdT7BiaR5wU8+Bf4pbbRoObLe9Fivky8mohT5BY+jTVkM/LUIFnVxWcOFqNlbUfyIh0RB0WBiFA3G5YtAdm+9JU4n4IMbun/MBGRohFZFGI02y90xaRMfBmEzJ7YiBOiKNlTFaHeSSpw0mKKPGFDUYERUKcdP3Ra4sS4qTFdGnmD7KBZWyb4LUCyG5HPHCZNsD3AwZkeAvgeK60oxNBFVFF+iJPI4/BeRIId8kPeNDqaLF8eIIiQxJJZi/JfoL4jJj0uF6qJyPZaXmLngtkMBPOE6o5UVWLQSTGJZ0tblQSVX32InE8F11HTVR/6fmjC7X465CRYsulROVC1EcR0al4YXGlhBwnEWMZKeZJxJpFp9eL3ABIphIz+/G0yIT8vqZto0mi3Rdv3iKSYmbHHRAfzgNGVP1Mn0bn0y53gePn8mjVL7wbFYU/GQHmt6eR4qwqcT+EmIdIiCPlFp61pIV1hOvjZOYySYQ4LbolPZZfxBpdvMkPgpLuMyA3i8kKnvAyEiwOFGT21bK+MG3hmcyEJMlkgkG0HwbiJl6iGcZGMFhEN8ArEQMyvAXgCW7vdNH/WY7pRbSLOlMp9NiLJ4lkJ5FknSOSyWWSb7dcYCwXljsNYl2IL6SNEmVeBbRduYooEirm6cPxvFjkO5kaz+63qEjLzCKS1GLRrliE3ScxNnpMxQOITKNHtnOeCAC5nSpP0li5WZAQy1VQMWg7ZAsDRZUYoPWWZCfKoCoauk4La5akLQsLtgC5hxAZQUoym0gjxIfXFJw9XY7lvxHIxrGMIEuV4RRSnKYSZyHEDDwh7pDQO4hIbNLUYRnxix4rNzXgVWJZMIpI3SUsIoutxvQhmkvwSFKH+zWV4K+P35ekDvPfYn4ydTi4Tokf4rTfMfvhBLMJNujIqg6LJjQXA57twtPS33X95jfAAAwDMnyJIUmFSFJne2GxY6BNVNQtNRJ6N63jFj0ZMPCKXtYyiljuUlIkHrfRBSn8eWUBIRjEiGls6jft3Cx0M/OJmgZelWcqsmh2keYZIwsYmemXCIt5iJDZlaYhzU615/kvUCViPoZtN1vXlWXRjrjIKitsF7DaKowurQc715/dJTsuyE843iV9uXuNQab4ZiHEsvsp1o/M3Vi/EG1rZR4WZLa0SUgzF0hDVldyQPaFdMQfEKcNypLPt/FnZCOEWJqPRCXeiGI88CgxwCsFAzK8BdhR2okRp9UznaLlcPn0eGx7zVrAgwsWVv0oVgBQNT28Y+ck0Fpja7wo8kOoeTWsdusAaMd6rhl6qHj3ZePQnehLzNUNHKufwNPLNHDAG7br+NY50lNFvrxK8MHLtwcrjx9YOIUvHTcD0nfDmIcf3QuUjXGoioY/enEBz60q+JlrtkFZOAoAWBku4u9OayjqHt40M4RCbQ3QdCjD29GwlzK5Mvu1x0MflzeM0Sn5hxejJKhDgB/eTnDLNg1/fASwrHBxy9UjXYznd8XyVhUNqhtXg6OJdDTcNTTdNQBUyXrDdh23bGvge/NFvFCLqj6sPi0XeN/l4Qsq7SXeJg38104Jy4vAv3ttDU1bw188UwiinsnwL2+r4Z/sCuvuuVUPf3w4h7OzNNIWT3ZGxzv4rddYQYhtUWk7Vm/g/3khj4XzodcSXi2uDHfxrw92cd3oZKAsrXXn8fkXaRCEqYIXIQ23bGtj0ioAjl+vmg7YHeD0WXiNZpBOmRiFs+9GGv0LVC0eM6bR0ps411oNXrTXNdfCzM0i2uNTONVYitTHD23bjuvGlrFu1yLk6rlVM/BFC9DQvf9sbysy21K3NDy1XMByF5jIezg01kJeU/DEcilI45Q0/Mq75+I3IgHPrKr4hwfGYHPt1Og6MCY83HnbMgDgK/8wiX1XrOED1zeTsgnAE457zxh45Cka/IMnxHv2rOPtuwgKuoe/PmngxGwxMgB63WUd3LLNQpuoePC8jheXaRj06SKtF95V3q6yhd1DuVhkTYDa7Yqh4hmY666lzmmsdpWYylrUXYzlt8N2O6hbKwBCQlw1JmG2mvA6NS5Dv1B+H6RoGhp5SuYmCh7+7VUWdg5NRcigCg3nWmfw1ydLaBJKPD981TbuAvzZHs/Bi2sn8fxq9FquG+viudXodR8cHoKh5nGiLo+OecPYdmjPPQBMzWClZOJ82wque09xL7znvwfoOqBrOLptPCDE7Lugl1FpEWCVi9zJrnl8L2p6N4jEmNVkwlDzsftkue3g+WfPcvCd0BfTwDf5yECB+W9fTwz2NMAAlxYGZHgLoKsmvEe/CW9+bUMSaGXXFO689lYsqw18b54uhHvHzkm4/+eLgC50NpUhVA4cQHXqCix2TmLN8oJO9a27Tajf+CrsE/Rlq+R1aLcchHrg1sAU4PXTCsrf/A5e/4bX4L6zyWVinZ63eAztT/1vKEUDr/5Xr8N1r7oSXz3ZxMOLCko6vXbt1FMAgIn8dhiqQn2Afv7vkbv7tTDHxmCoFkqGQzvmc0+i/WcPwbxyDKXpavz69GiTVUYq+LlD0/i9Z8uYLnr4sX0VmGoBh8ZO4NtzRRypKbhmxMPrp5vYU74cxLVQNpawarF740FTdaiKRgn64nwkf09PeURGxqGM7ZaqLFPOMN65p4JDjdN4cKGI083owIIpUcPnEiqZc22kTu+E7dp0EZSr4O3DwG1vruOrJ0185bFyzPvDrdfU8b5dFTj/58tQL5uBd+PtAMLz8ES4XLHx6dc6qH7rIbhzNbgrbcDwI5PNlKH+yFswbBKM5QHZa/5f37iON27fATzwD7Du/2sAgGKo2Pa6/fg3N16F/3smJA1XjbRx5cg+eI/9X3T++gl4LTs4F2wH6+d9G8uuivGbczDvui5wo1Y2xmGcfQHk/ntRODiDiasuw2LHwM1wUPv1e2C1VKi6h0LZQeFdV+HgjbdgraBgvtXGVLEA7/QTqGg6KnqUxEzt2I+rR47i4fMFPLOqomIAw7kp5LuUqLdMBS2yGDy2OY3OFIzmZvCvDszj0ScIOi0dn/6XZ/BD1Yr8XkrwphkFr942j6+cNPDgdyYBAK9+/QL+6R4bt2wr4veetaHqdKBxyzYNI04xW8aqjkNjS/j2xAruPavg1PEKRka7+CdXdIJnAJ117Bqaw28SYGUpj+v3dPD6KRvXjeUAFPD8agemSk0wTJUSYWbeNFEgOFC1MJrbAaOxAjgSou4SYH0F6FjR59f/rQGY2nUDHO94JKLlVHEYZQzBO3sYuUIF5YkDqFkLaJMGhnNTMBZPwz1+DFipUbdYLG/TCH+XiihfeytgDOE1kxVozz0A5/FvAaDtUtkzCfX61yCvKSgbAECJcOeTv0/3B+H1NGiTRRx87c3Yt3s7nl+bx+mGiddOuRhd6cIZdnGsnseBqoUpdQre0w/Ba7Zw8OpD6A6PYXZ9PliLcNVIHt7//CO4ZRPq1AytCtXDzqEp5E4fhn3v53Hma+vQDQ8z/+V1ETvq4LYqGuB04J04g869L8Fr2bSshobcTZOoXH8FlD3XY9VdSXQzx6ApBnTFhK6aUEnUZ7OpF2h4acRJcFIUTlbWnOaiYroYz9sYzulQoaHitNEiahCJboABLlUMyPAWwP3W1+B1OjEirBjZOghvbhHe4t9jdPd2vOOq19I8//5L0ZcBA9vWWsMEhjExPIRDo0rQ6bmgJDgo2xNHgCeOYPdt12DPzE54T38PmJ7AiDqKHx1dRixGvUNCoqbqgE8aWJ5FpYT37q/ivfsB79xzsD/3bXRrNGjF216/D28/dCNQX8Ta0Q4Wf+5bmPzhR/HP3/FqoN5C53/8FZaOuSiP+x09uxaRkEZesDqGjCp+/rpoCN/RXA7v2sMrGVTV1E49hfddfg3aTh0FrQJV0aCtzgEnHpSfS3ZOhsYqvMYqCqPTKA7vEXauAQDG80W8bTcAeBLbRv87zaenT94+dLAFHGyhYjqATRXJt+xcx1t2rsdenHlNAVCOtK+rRxT81mssACsxP6NlYzJGhBVDhbPQhPu//wa7do7iV9/wdjQO0WsqaJXgOpSHH0Hnf/xVcP8Vro1PYBzvnQFgd+BZTcDV4S2fkl6mUjRQOajDbVion/Zw4h4Xue88ipm3vYCRa3dC0cJr8RwHu5fWsFuWDzv/6jkM13WMjOyEa45AGTfhNTg6z9kfaKqOW7a1ccu2KBEGgKLl4fLiDLYVamiTBirmBIpWGeh2cX1hBL/9Y+dQt9TeRFiMLubR5+qOHS7ueG9cUb55nODmf34WN08AI94IMkdB0HTAoaT1X+4HsH85Mp3PB1T4wAELOBA+N67nYEQdxW2jVRyoLmK2STBsEr89ATmtCPrKSGmvLgHa9ShZFZ8dv71PF/dhhykhWGzA0llHFSVUjSrQWoe3ugScX4nmacYHol67hiFLB+zZ+L6zi3DO/g0mD+7BB699Aw2f/id/nHw9AEzbwfWVaVw/TMvtoY4d2nZsL9QAqwAPVKkmT58Bnj6D3G0HsH/fQShmDijo8FYWELSo40cxCmBU1wFTMhCuN7Gb+b9l10gceHPPoX3vS3DqBKrEVSKIA+/MMxhmfQnrp7nBn1KeBCkJ7VTVIzNfKrGR14dAXAttp55aLzx2DclDqGuKirIBlA0HDfvCzCUGNsMDXEwonucNDHouEur1OqrVKlb/7MdRKcanEyOQkS0ZJJ1/zzxaHbjLcTMNnriIRN1ZaME+soJ2w1cJTdpMNI1+sw6ZV1L4/zzhZtusk+tYmg2n9nUjmpfmf5fHbeRfvR3KDGcyIrm2gCAV80A+2WRgU5H1PonI4sRe79FGAKDZAOq+GmeKgwT/f6sDb3kVaHWi5ZUNmgB482twG1bwchDvId9OnJUOyJlG8F+WNtquNLi1LiXWRJG2Gz4Pr0NQO+aivkjLytoEO043vFh7UbVwm256kTZqHBiFcdsBYMeMpDJ9cPdGyVejg72tRD+BDrYaDqHmCY5gMsSX2SFAd522UQa+/YnX5xBghRIur9uNDHiCtmxybXpxJa4I8+fgB7K6Rgniwgq8FuHamxoOEjmySc40oBhqZLZCMVQoeV16LGvTnu2GbV5oy+y3s9LByj82sHwmF2mztEq8xLatcu2Y738jz5B/ztjzJ5RF3TkK5dpDUIZ39GzXRHFBPAttkp0MZ0G93sKebf8GtVoNlUr2WRT2Hl345btQyW9e4KF6x8bkf/77vsszwPcnLuHe9/sIurY5ZJfPL3Gf5JaaBu3o/Y47Au6/4hMXt2HBWWj2RYT5fGUkih2nGx6IrSQSYfYCAAAQEiO5kRcmu17f1m7LsRHykoXwJr2srBYlA0kkmMHU421OJA7sOEKgFA2ohgpnoSUdzASIzWwkk2YAcFsEAIHbsODKfB1zyrX0fAJYm+HBtxfWTgFE1TNCwtVoafdMrPdLmZwybBVhdwgULQePnxkSoQlkNHGfGX5XqAqqrHAkWyTCDKaRHDWMHeOTYKy3AMuG1+Ly5dsnT6hNA9ooVaidFv2O9ZMJ6JnuQlYGX8h5k9CrvWg6LEKV7s32H+xlcC86wAAvF14Bvf33AQwjG8nlkYXcpdmzypTUBCVYNNdwFppwa10AWmZFOMhLQozEjlskwgyM2CiGCnKmAR2AsmdSToAj/7WXl7hkIbgispIYftrTIZTYBedNMB8hhCMUcjU4JA86UClBIQ4024XbsKSqPoT7GajIwv2ODpBcOCsdOHXiX7LQdpD+UhdV4Y3Cm1uEouvArj3RHUnk1yGAkd96ZfhShqYDNqTPmaLRAavndGmdpanB/LOi6kAuB3S73H6BCCe1cdngjkerA8/2iXZSX8floVTy8OpRk7DIAK0P8pllYAeE7XvLICw2lMFy2uj6duBJPtX7Pu0mRbfzugQeLjCks5DfAAMwDHr7rUA/ynDs2CzT6/K8GYn0dE3amUdeDHo4NejZLtqN7ESYn6bj94tEJ4n4iC8Fz3aDqXhjZhzQtATFm1ODNkJILwY2QqCyEHmX+FPEKfbTwbYUIixOJXPfSqsDhbOjE4mwYmhQyybcWhdK6FhCkp4zwWjZgOwFJlGFFUOF1xFmBwSIMwn8NiBsq0F+LRvkxBp0XYOyY4aSXBn8e+A5XUrutB4q8g8iNB1wKHFlBJiHouXgYT2ankF8PtlzYhbp4INvl6IiDAj7E8wjhGchURWWoZgH2lZscM+DN6/IOqC75NCjTRPPAvFC+98skVMj2Uv6P9ErxQADXIoY9PZbAT2BzPWbRwpi6mnkWB2KoXFKSZwExw7pRYRlZUh6QXDnU3UvYjsqmkeouhcQcbVhAZ0uUOJW0stMBDT90lPxNkKk0q5B3BfzssH9Z3aVaZ44uH2KpsFznOg2CREGALWao/cF8GcPerSJogFwi376JRG8PWVsXwppDtJUc9AmS7RO2nVKhnvdm/wQXN0ABmFmA7A7JSPBAHyi7BOnXBEgzF1LAglOAv98py6clRNhRdMiQeqkqrAsn8Rjwt9B/wkENvaJM2QpbVvWbmXtW4TWo73Lzimq1L18MTPvLQBgu93EdElII8/9EusBBthKXGIM4gcAF2Dbmkp4g/wlt7RLX0ypJJipLYbld6pOOhFOWGSSRIL5/2lEGIjaftKy9bCRpZnFt10q2ChR56/JRoIKLLHN1B0o5RKgafCarVQSzP/2IDelEUmENpqnK7tboScA6UJKQ4U2mgfQiaSVqW/seLJsAdBSp5Bl+5LshZW8DmXnNG1DCWpvhOAZecDIw3Xlq+NfydhIQIoAbMDJ+4aWpWHKO1lJJ8KMPFvcwl4ZEQ7MIvp/hmQmPuG5+FkTSZuQmEiwNRUeSOjaLA3C/qxmEUmzHvH8N3Y/02yBmcs1gPkP3jz0ipQ6wAAvJy5hBvF9hBQziUwEN5ZfH+oKAHS1cGFJkncBVk4fWYkwjyxpNN2DI1tMJUDTPPpCSlPVA3XIjBPOflSIV4LXgLTFSbL91QpdfOg44aKjBCLMFtLR9uDbTSYQYZgGlAoAzr4y0aNI0YCC0Aach7j4zrNduCtttBsaXEcIB51gY560LYbRCjA06l93D68jRh7WJpOAi4l+CO6FLIgKztOj7SqFKvU84ZLQLWPawkRmLyyzEZbNbERctsVV4eix/GAtmyqcBe5KGy7voSI4R//mEhdqD98XNF0aujpSHkVDTiuhTeoxl40XigvNz7M9eOpmulYbONIaIMSADG8BFE3rTXpFwkdI+n4ZEhRURdPg8cQ3hQQrhkZd8ehdblsyyWWqcKoiHMmHdmaZVeEk9HqRbQbBfZnUZilhYyv5XUKnoHkXV2I5mX9Rh9B7LwyCpC6s2HfatDJrNzxpTrsOjujC0ABbTsaYnbq1DjTXdBTKDvJlB1Y7LIuRp+2Gd6MmeqgQ7YXDHTp1mRZJLLm3qg5XVaIRHTmwELVJuBCbSDFf0Rd04jk3wZTjghTjIBNd/j+NCFstagbVD5J8jychyYOEBIroFSdh4V2//mnVsonSMIHdCfPj2zZDruTE+kHWph1/gCiS516EXJ2uQqmWqakc168ktRtV0aArVBnebDKcJTT6AAO8XBiQ4S2AO7sAb3ok6JREeMurUMZGwg2E0EAbthM1bSjmoUxP0GPmFmP5KNUyUBmKF0DmeizJnlTXYL5qBt5SA93HotHYnLYHZ92JkA5V7yYrIv7LRZ8pRwN9ECUgMkbehZ5z4RIFdlcF6YYkuf1CFxWcgrF3zc9Pfh6lWoJyww3hFK3dgXf4eXnaQzfKy5oRvZRFL2WBUZCmuQylNBb8dx/4Zpj/3hlgx0H5uSuT8No1eM8+AneuljgNzNqMZztwFlrxKV1+8Zq/Xbtye+x85MQa9L3D9I+wGM8+UYN9tpW4qFItm1CL9J6LHiVY+UR7RiPnYnxnF1pFB2wCax3oNDQ4RAlIcK4QEhHHUUAsJdmlGk9u+hjY6KoJZelkhECTUgXEtZDXh+CtyaMGetWpSDjbvqAAuUYN6KxDKY2hU+RCX6tmEL7cm9wPy40r17kFGsykOykLRRKFSK61+iJQP0+LseuGmDKuKhq8xWPA/Jn0S9hzNS2j06WqMLHgnYkHWYkMxrjr9FbrITkWPZ/U18O0fB9KCA12wfL2F016tgt9puxvSzEvEvpjfvEuyy/Sd620Y7bColtJ9t9tWFDLJpSiAWNHEcNoodtW0W3Gy2PkXZRGwgFumCftJzVcgJJ5xTVBf5OmDOuWBW/lFDQAI6O7MS9pZwwF3YXtKn0R3AEZHuBSxoAMbwG6j8zDmm7C2FuFMjMOxV8Q5jVbcA6fg31kBfk37oGyeztgEZAnT8I+QX09wnYAQ4OxtwptL7cS3rJBTq4B8InHmCRca5J6mrawyifTSsWGOlqAs9CE3VVhtVTY3bDTZ4vg+G8R5QkbuW2CUqFRP8MuUWAW4gpLu6FF8mp810X+qaXgv8zubuJtE1DsDqDqUMwSPJsGmyAPHUf9abq6nRGmykoNyu1v7D1dvgF4Thf2H30Fxg9dCRy4Lr7fasJ78TmQh45Dv3wM6hveDAAgz81j7fEmRt80Dm1vSnAIADj6As7+j5NortF7xjvvZ+CVU7ur+mYpDqfG25FjHKJg56tfRO6mKfr/TAP2iRpWzuQweuIUjAOj0A/QQRjfds6fyEfOxy8CMvIWyuNNKIYKp00XRbJwyWnQKnpgk2yiDcABsRTkCm5IvIt+QA7Q6GD0hFybTlCgU+ErmGq3De+5h2jQkmoZ2DYKZXxvNK3dAU6fhFerR/zeKjunkZveA7s8GlmRnwUBgT57Bs7xB5F/6zvRMhUaovw7fwePECgHDyRnMHuGksUMZFiqOs+dh/3IcegHjsG45kp40wdBXIsqhZ4Kr12H/Y1nQBbiwXsASt5ydzWhXH5FOGvh2wx7JxdgHV6OpNcmSzBedZmfLux/vFoT5EQt5hPdODAaPSEhIM/Po/v8qrQdFqoEFUOF5hPiAEkuLoU+sbXgorFk+PmFJJXYJnTDg5F3/WfPA+BwgzAS9DVWS0W3aWF0pgGlaEArKCgWPOgmiT6vmofSCAnaNQ9WB7Q+kmdXesFSo/0mP2AzYcA7/iicRw6DnGlAreZg3D2ZmNe+ynYYi6cBTccLP0AM4rOf/Sw++9nP4uTJkwCAq6++Gr/yK7+Cu+66C7Zt45d/+Zfxd3/3dzh+/Diq1Sre9KY34ZOf/CS2bw+FhmPHjuGjH/0ovvvd76Lb7eItb3kLPvOZz2ByMl7f3W4Xt956K5566ik88cQTuP7667foSn8w8QPUlF8+WE2qKDjVHDRjBR5WAH+qza11Ya0D5nILKs4BoO6omJJGp8ccWKsryC+1YextQBkv0+hKvgLiLDShrbSh1Tt0HwBYdtjxWzbc5Ra8TjR0ctJ/AHCW2uicbgNQQSwFrkMJLLE50msrMRLM2wO3GxoqDRvl2hKUooH6aaDd0GF3VLiOAsfPz/SVYqsdJdzBaSTbAM7E4u/PY8x4FEq1RN3I1ZvofGcWc8/nANAXMntZNf7feezA/fBGfdWvvi7LujcSXqpkoQV97jy82nfiO3UdWKnRF85oAXjkO/CW63j2izbWaxp2rq1h+syDMF91JnEgs/RHR3DkKRXMHtIwaH3rRvQ+EJu+qNttAl1XpGnDb7pwzXvwXHB8c1VHu6Ghuaqj7Pud5snJ8lM2Ok2TvtR9Mc/miLnVpiTcyLlwHQV2Rw0GTQXie5cQ8tRF4mJoMEd8wmvogO0EJEmbLPknpS91NnXt2W7Qjj3bpdtrdXi1p2j95yUu+PhADis1GukMgFdrALUGsFKHtmMGhfwQvPpxeCfPwFsIn2F2bnWoCKW6BsMhCFpHFtt13/zFe+EIrAdOUY8da2dR8EPleis1tO87hfyr16Beu4Tc2Lhfbp9wd7to/9XjUIoG8v/fYrIKLkaP8+E9dxSd+0+itaKgaqjQx+ahdFvBNXjrLcAi8GwX62fldtu66SB3fgVe5+lwR6sD8tIyWi9E7cU1zQNZtqCNnqME0G/rztk6FQF4wsdmEc40oI3aQdQ3cqaB8yfyWD1fQC4X7R/yJQe5kgK3ReD5okIvUy8AIGcacBaaaCwZqC/m4Dp0RoKPSK/pHggAVQ+fN1WLigEW5y2nPBFfOGqOAOZQlNQqxfTBeVDWMm2/7krbj5YXkmWWjqrTLjwA7pPnoNe+AeOa/fKMdbpw1ltcATnTgHVyHVqhCe3/3oMr3/7eaFrWruwODY1dKuLKXTfA9ZyeXioAoK42U/f3hO0A6iaqy30OLGZmZvDJT34S+/fTuvzjP/5jvPOd78QTTzyBmZkZPP744/j4xz+O6667Dqurq/jwhz+Md7zjHXj00UcBAM1mE3fccQeuu+463HfffQCAj3/843j729+OBx98EKoabcc///M/j+3bt+Opp57ahIsdoBcG4ZgvIlgYyVMfeCNGCmFHwey/iBWSydIIgVr1ndfbboQME4umYSpscVKFPln0I3wh8vJXy2bkfwCfSDCw8zrcYiV2HgCRqTyWlifCfOeftCCOLYRSNQ+a7sVILTuOVyiT0GsldnncDtI0V/VY3gwsCl6hStCu6agvGdJ0ImTukGR5M/AqacQPLve73dCwel5Fp+WC2F5ATidnlMS85k6qaNTCTjyJ4HZaLmxhWlVGnHVDgW4oKJaUSP3LIgLyZe9w7UNUuSLHS1RjVfdi+Q9tC6e1AxIL2raDduu3YeYujQ/+wbdvnhCr5ZD86jPlQH1jbrJEQqsUdSjVUlhplk9miANUSvCW69LjvA4JCHpS3gz8oJMvP5ueD4g+B+tkOGgzdhSjebRstFbovStOpiziSnj51+d80xbNw9A2uT0sK2djyZA+CzLV3+6qkT5Fth7AHEJgT+60vUi7FwmsYqggyxaWZnNo1eSEX9M95EoOSsNx4p+0WE03PRBLQbepBWY5snz5tpwrxetSln+u4EIrKFLVV4a0gB1iWHSnTuA4imC2Fl/w7LQ9dH0bZf4eyI5jbi1z2wyYhya4c6eY2ZlGLFKoDPVmFyP/5A82HI557qffiEpu8/S7epdg+r/ff0HhmEdHR/GpT30KH/zgB2P7HnnkEdxyyy04deoUdu3ahXvvvRd33XUXVldXg/Otrq5idHQUX//61/GmN70pOPbv//7v8ZGPfARf/vKXcfXVVw+U4S3AlirD3/72t/GpT30Kjz32GObm5vCVr3wF73rXu4L9nufhV3/1V/GHf/iHWF1dxa233or//t//O66++uogTbfbxUc/+lH8xV/8BdrtNn7kR34Ef/AHf4CZmXB6eXV1FT/zMz+Dr371qwCAd7zjHfjMZz6D4eHhIM3p06fx0z/907jvvvtQKBRw991349Of/jRMM3x5PvPMM/h3/+7f4eGHH8bo6Ch+4id+Ah//+MehKP2NTh1LQRcqtZX1CSLrcBmpVHUPBV9ikxHVgJB2VZ8ot6TE111pR/9H8lIjxBpAZOU+/xLgyW4/JFj0BMC2Jam7SflkTcNIFZvSZGAvbJEUu0SBRRRYbRO1FQWrS/LpbMOQn09UYKPEMrxGXq1KIpasbPmiinWO4C4vAIASyZv4xLbTyrZ4hx0rEmKWl5h3fc0Dsb3IPpE0A0pMhQNoHQf166tpbBsbwPEhuMU2lMnlVEYVhyeenk0j4MF2oBQNOCsdqBx5jaT389eKnDrNE2EglQgDiHrMkCjWfFqxrPz18flE6or1HafpMx4SzTCNTLkF2HOZrty5jhIQ4zi0SDrZsY2umuj7WdU9KTG21gHejSPfH/JqJx3sOOi21chCNFnbcYkSDObZwktWRln5LN+cyCVKrJ/RhEEpP5Bj5RTBL37TCkqoRGeMTAf09uce2PpLCC3AzCrCPLpNDVZb7TlIL4/T9QXaaB7OmUaqG8Qgn7IJpdjpvai5dWm6K6zX65H/uVwOuVw6uXccB1/60pfQbDZx2223SdPUajUoihLwjm63C0VRInnn83moqorvfve7ARleWFjAhz70Ifz1X/81ikWJ+eMAFwVbGjqn2Wziuuuuw+///u9L9//Wb/0Wfud3fge///u/j0ceeQRTU1N485vfjEYjfDl8+MMfxle+8hV88YtfxHe/+12sr6/jbW97GxwnfJncfffdePLJJ3HPPffgnnvuwZNPPon3ve99wX7HcfDWt74VzWYT3/3ud/HFL34RX/7yl/FzP/dzQZp6vY43v/nN2L59Ox555BF85jOfwac//Wn8zu/8zqbVh8zOVgT/AuHh1EniC11OhJGJCPOL24gdmkXw2/n0LB/24ffzHxHdrtv3R1oPCedIKk8aDEMJPiKYgpr2n0FGhHmwbZruYahC04skWwQjqjJyK4NYvo2ASM6VdE9kdSsO+MT21As8cUzFBu0opc9NL08BCeRWRmwzEWHbiaTnn13++RVncPh+gaV1E55JkbyKz+aFfngknVcsI7sGdh3iNfJpRWVd8wmp7NliAzHWzlTNi3xi6SWeSWT5s3RGji74VfWoiq2bXvABQiKsFI3YIjwGRmpln7Q0AHyPP+Hsi6io8wv8GIHvRYRVzYNSNKgJl6HFFtqK52cfGColwqaR/jGyqeNJ8IgbPCOb8iG0Xe3cuRPVajX4/OZv/mZiGZ555hkMDQ0hl8vhJ3/yJ/GVr3wFV111VSxdp9PBL/zCL+Duu+8OVOBXv/rVKJVK+I//8T+i1Wqh2WziP/yH/wDXdTE3N0ev0fPwgQ98AD/5kz+Jm2+++YLqa4D+sKXK8F133YW77rpLus/zPPy3//bf8Eu/9Ev40R/9UQDUJmdychJ//ud/jp/4iZ9ArVbD5z//efzJn/xJMIr60z/9U+zcuRPf+MY3cOedd+Lw4cO455578OCDD+LWW28FAPzP//k/cdttt+HFF1/EFVdcgXvvvRfPP/88ZmdnA+P23/7t38YHPvAB/Pqv/zoqlQr+7M/+DJ1OB1/4wheQy+VwzTXX4MiRI/id3/kdfOQjH+lbHc7y8ufhJKgvAJ3KAoCS3g2n3zaJCDNkUYNlClES8d0MyPLhiadsmp831eDTsP1JCjAQV4GTtmchwkkL3VTBfESmyuZyKojtoVFzQIgXswHOWnbb9lKPYRCVY3Eb/7vbdYNrDtRgToETFWJ6PFWJ+XaVxV1VjFwKKnDwmyfRwnMR2y87v8XZeTJVWEK4N0KEk9Rg8bkF4n2ASIBFZH0eY8f10TfJlNAkswKxTKpE/QXC69JNL7hmXinmVWJeoU6LQOgSBSq36DINrhOS5zTVVyS/IkSVVimaETOdNPQO4CGqrtTPscr5AUxzbym6sATk/RNAozZmiWYXBlrSkhcmvgIwOzsbMZNIU4WvuOIKPPnkk1hbW8OXv/xlvP/978e3vvWtCCG2bRvvfe974bou/uAP/iDYPjExgS996Uv4t//23+L3fu/3oKoq/sW/+Be48cYbofkeVj7zmc+gXq/jF3/xFy/ClQ6QhksmqPqJEycwPz+PO+64I9iWy+Xwhje8Af/4j/8IAHjsscdg23Ykzfbt23HNNdcEaR544AFUq9WACAN0RFatViNprrnmmsgqzzvvvBPdbhePPfZYkOYNb3hD5MG48847ce7cuWA16UYhvjySiKdIYHths4lwRJ0SVKAkFZghTdFlKudGPiKSziMrb5JJCA+mqMoIby91uF8iLDu3CJlZQpbjLhSsrvk65+8B/1umEPcz2EpDvz5dZccxW3opMUlTlUUinGADLObVDxEW1WCGJCU4TQEGkmdkeGVW/PSDrPlIyyCUVTwuSSkWz6HqcpWXV3RFcwYGXsHllVx+cBZTfY1QVRWfW03zgg+DTKXt9QnAFFnxI8lL3BY5XrKvFxGmbg8FZZpXgGXnCypJy/a5BFGpVCKfNDJsmib279+Pm2++Gb/5m7+J6667Dr/7u78b7LdtG+95z3tw4sQJfP3rX4/ZIt9xxx04duwYzp8/j6WlJfzJn/wJzp49i7179wIA7rvvPjz44IPI5XLQdT1YrHfzzTfj/e9//0W4+gEYLhlvEvPz1Ket6GJkcnISp06dCtKYpomRkZFYGnb8/Pw8tm3bFst/27ZtkTTieUZGRmCaZiTNnj17Yudh+1jj5dHtdtHthk7kRVskGaTEM0UVdoiCvL9QRVSFpfmnEGrZNHZwvoxqsEgqk8jvZkHMiyeC/Ll5tRKQK1W5nIKOkU62ZERT3NaLBMe2C4vKxJc2y19GhHU9Xh5ZuZIGD5sBmXLMK8QMSQoxgJgdMUMv8usShfpcbdm0/UvUVRFK0QgWp8rSxn63rfiCoV4ENysR7kMNTlOCez2HsmN4ZB2M9AJ//8TzsXbea8ZGphQzkioO6Nk5XZLRXCgliE8QZVOjC+LEOhHbpvicilE6eQSmERsMmdxLKabhzrXA9WbqsYaGQpl6cCHcLJSaROATFOBonkIwkyxBUPQLDxBzqcHzvOCdz4jwSy+9hPvvvx9jY2OJx42PU48w9913H86fP493vOMdAIDf+73fw3/+z/85SHfu3Dnceeed+Mu//MuIwDfA5uOSIcMMovmB53k9TRLENLL0m5GGOd5IKs9v/uZv4ld/9VcTyyna0GVBUjoj54KfMkxShZPKcKFEuBcJ7kXENkrU5C7E4vtYeZJIcavpgfoI7X2OpO0i+dsIERbzzqry9jJ32AgZZjbJ/ZhSyEwmZAvqAGGhHeEW1vl59qMCOysdaIi/qGUmEtpoPlCFZfv5c7sNC4rMMwS2jghnJcExe92EviIr8e3VJ8lInyxv2UJJkRj3IsW86QTLS2YGklQu3aDqsZZiSsFgFv174TiRxXmy/FkZNYkJhsz7hYh+QzYnLbpjC+T4EoiKbggCfcyEWuuiKbnHfNQ7PmhIBNJr4SL6ZVF9L1AZdolCI0RuEvqdFfnYxz6Gu+66Czt37kSj0cAXv/hFfPOb38Q999wDQgje/e534/HHH8fXvvY1OI4TCGujo6PBwvw/+qM/wpVXXomJiQk88MAD+Pf//t/jZ3/2Z3HFFVcAAHbt2hU559AQ9fu/b9++iJOAATYflwwZnpqiDv/n5+cxPT0dbD9//nygyE5NTcGyLKyurkbU4fPnz+M1r3lNkGZhYSGW/+LiYiSfhx56KLJ/dXUVtm1H0rDGzJ8HiKvXDL/4i7+Ij3zkI8H/er2OnTt3Zrh6Cq3gvwxsNxrgQiCwxFJgDvn7JapwL/OILER4s0nwRshvvih/cYgktLnuoDSkoblO60IkxWL6VjMkilnIZxbzhQshwjKw/DU9vZy6oWB6D/tN7wWx6Wr6s6fsSNpyVUNlWI2UkS+f3dXRanqxc7P0fPuprfKBCLzAPRsbYPB1wBMeGSEWESPFQhv3WrbfTjvQJ4vpJNrQYm6tklRhlrcHf3q4yPyqxvPfTCKcRQ3uhwSnkd9+CUDWY/n7yJ9fJMYbJcUAIkQ1iy0wv8AsSzpiKT3P4ToK9Fy0PciUWLY91StERu8SmVTilHx58yCza8Nqxc0m2KAjfi3y6JbhgaH5QySyoKycPfZf6lhYWMD73vc+zM3NoVqt4tChQ7jnnnvw5je/GSdPngy8V4ku0O6//37cfvvtAIAXX3wRv/iLv4iVlRXs2bMHv/RLv4Sf/dmf3eIrGUCGS4YM7927F1NTU/j617+OG264AQBgWRa+9a1v4b/8l/8CALjppptgGAa+/vWv4z3veQ8AYG5uDs8++yx+67d+CwBw2223oVar4eGHH8Ytt9wCAHjooYdQq9UCwnzbbbfh13/91zE3NxcQ73vvvRe5XA433XRTkOZjH/sYLMsKRnX33nsvtm/fHjOfYMjikiUJpREC8xAdEHgdAqNlg5xpYP28/MXHIhIpRSP4DdsBSLyDI4iTXOkCnIxEOI0Ay0hvGhHmlUjRU0J1RMfYTDdxoUy3qaG5pqM0pGFspothouDsUS1GdLtdF8WS4qvpQBEqWs3kcvHEM8mVGbGdSLqiHnfbZHdV2F36wmfnFolwu6Ghvsb2JZtHpKE0TDB8awX6nmG/cNQN1c7vnMF3/8ZAoaBi3yEPY9ep0MYLvtcELnKb76OX+ud14Nl2fPrVT8PayNxLBSzNu5E6UDXqa5Z3Z9Vc1UMbUYfeA1FpI349lBrU9ZKS1+F1CNxaN0IYiUV9oGoVHQYX7hmIklqybAX+uQtlmwYn4NwQsusBQjdm/Hly2wwaMUySP58HObEWKMjMhVsQgKOaSyTM7HzthiZ9vgyObF0oCWbuwrKYVYgwctFBOQugIk2L6HPCL5ZkEBdNqpx7wV6wuyqstipVaWVQCy500+tJhNsNDYWyE7Gr7fjREsGVnUXLtDvUtZtLHD/YiAd0OX/JPgIf2Nw9dxZo0AltNE89NnDgfWYnh7dXY+mtVQe8azoKK2a3rM+UoeR1aJolJcEAt2ixYdG+oGWH5TG0MCiOJIKpomUwldBe2WYSn//85xP37dmzB1lCNnzyk5/EJz/5ycznzJrvABeOLSXD6+vrOHr0aPD/xIkTePLJJzE6Oopdu3bhwx/+MH7jN34Dl19+OS6//HL8xm/8BorFIu6++24AQLVaxQc/+EH83M/9HMbGxjA6OoqPfvSjuPbaawPvEldeeSXe8pa34EMf+hA+97nPAQD+zb/5N3jb294WTEXccccduOqqq/C+970Pn/rUp7CysoKPfvSj+NCHPhQYvN9999341V/9VXzgAx/Axz72Mbz00kv4jd/4DfzKr/xK354kCttUDKnRhTJiMA1jbxXqdJUeYNnw2pQYDKEBa923o8v55KGrotFVUR63oU6WAJB0dQzyleaR/SJZTiHB/CIqPsgDECW0RLDr63bjD3WppAbHEeKhuU7zKfnKt55zURyVq4eMXI3vtlAcpSvOrXYeq+fpsbzCaeTc4IXmEOYvt/e0vG4okSAXIgpFFdURHaoWzWtp3kWjHiqzhYKKsW0GKuPhtnZDw4kjNkbGdKnyK9ooGoYC2/Zw4Do+LffSm94G7KBTaYpLUJgcxTXzL8DIORi+sQT91sugsMEaIfAchy4SIySMwmbZAZmGLQl+4RO+0XYLdrcQKaORp0SYBTzo+uRFFdoBPyBgA7XGkgGXEEqmd9Buye6qaCwasPyAAfmyA930g2kU412XfbblB2QoBW11qAJMk3UYtgttPCQgZKGF1eMKFk5RP56sTU/s8DA5El0wF9Q050945UUPzdU8dt1Op6vrp4Hmag75soPKuA1FQoRdomBpNofxnb4/cUdBfdHA2jI9d2VYpXXn36KVszmUx6PqPtB7IaLMtKK+5mJ1OSTy/LOYy0XTs7bqOgq6XReL8zYmpgwYOfrsNNed4JkI278/oO2q9Hnjni2RGCepxWkL+lhEQxY0h+XFk/XAbzcXECOJWFrrdKBmtdWgf9FND10/SFqrpgezSnx+xFawel5FLmcEAT7K4zZMbkEbg9uwghXqS4920VzVse2yDop+wJhYmQ4vQzFUmFf6tqYpirDXsrHwnIbV80biLBfr/3Zc2ZK+6GVE2FnpUDLcsrFwxIRLFGzb20H+ujG5mQPzIpHFZniAAS5hbGkLfvTRR/HGN74x+M9MCt7//vfjC1/4An7+538e7XYbP/VTPxUE3bj33ntRLoeO8P/rf/2v0HUd73nPe4KgG1/4whcC1yQA8Gd/9mf4mZ/5mcDrxDve8Y6Ib2NN0/C3f/u3+Kmf+im89rWvjQTdYKhWq/j617+On/7pn8bNN9+MkZERfOQjH4mYQWRF/o4DyOc0Sjh4sgEEhEPqU9UfjWvcFCwfkUsth5GqmP2YBicILMBINxBOc7NgDyw0bi/wRFjmYYD/zwgtA3vhytIzTwwsPSPCvC/d5rpDy5hgr1bZBZTH28GLxSWKT8RYs5aTXRoNr+elR8ucsGCH2B410xACGjTqNmqrTnAt5aoG3VCg6XqgIDMS1Gm5MTVa9FpBbA/ttos3/ocyjFddBgAhmaUFlJZv6se2RUjtZiFXcLHjylbwn6qwtCysXemmh/K4jW5Tk5rkiOY5zTWqIpf1Jv2/aqDd0LBeF9VyGnQGQEDO1+ZNrM2XcOZUF4ATtL3xCR2lEQO5dgfFlXaghNfnNCyc0nH0cEeYkcijPO6iiAbcGm0kkSh4AFaP0xmIRo1gdMaBbnpYmy9gZdHB+BRteyUu9DEd9GroNmnEwUKZpmmu6lhb9jB/zsb4hB74xyVrOrpNDUee72Jqu4Ex3yorS5AbWRpGXvn2GN6DuM39+DYdtVUSBIOprTooFFQAGohN82o26bPKnovqiI58yYEmWSQl9jMWR4JFtZiWKTp7leR9x+H208EPM/1hCrIOYjkR0scEiHZNR3ON1vn6eQKz6KLT0IKQ8KzOCkUVrD9hg2lie0GwnqkdJvU2Ydpy+2R/luLs0RyGfY7r+OHNRdRPA6rmoJKvAUg3j3AWmlg9n8eZU1Zs9krsO4pVE0au5g8uw/D0jPhHzKEaHgAHdlfH3EmA2C5UPYfJwoof/jm+WE8tm4Aswp5Ant3l9XiaPiD6or5QbGZeA7zyMQjHfBHBwkiuPfvrqBR1X4XzlTjLf1nKFDqfMAOIKHSy0LQ8keaVO0CuQPN2nyJBYVOqQNy++ELIsHhMkh9bW0izd38OB1/loLxHC68vAU6dBP6X06LdAUCnoUXCCYfllXvC4EMbJ5FiShaidVBbDYlBvqgGKniQN6eEp6E6rMEwFNz8VhvF//QhID8EOARw/TbkEHhON9zGvolFfxOBNFvkgpVh2XYgVEBlIcddR4mY6cgCcDhEgZGneXSaWmw2ojSkBUod31bPnrKDeufb3fiEHtS/CGJ7OHm0GyOIe/fnYullbf7EUUpWDc7FHmvboxPRsL7idQDA6jIJyjo8rAWDHgBYW3OCRZBjE701C9m1M8hCcyddF7sOw1CQL6rBsYahoDqiBQNWPi1A2+iO3UbExCOLF5p8yQlIJi1POhEW8wuJcPRaSkP0+U6KbsjyXT5vY6iqBYMtXvXmUSiqkXvcFgjo1A4z9VxscNHLBCoW4l0g2Pz+2ooSI8Myl5DE9jCz2+xJmvnfnZaLpcVwQDc+oWN8SpWugeDvX9o1NCyC/X/1fzccjvnUB96IirmJ4Zgtgt1fuLBwzAN8/2Awt/EDAN2MLkTZcD6c9wCRGGeNjMbAv7hkx7LOWbR9k8GzXTiOErgO6hXel/kgFV+0shcVsyrQe3hnYCS42/Wkdsadlhvbbgt1mITX3KmiNGwj/85rgeJwSIK3CJkjwV0gmG1rt6klkqDaKkFtNXu7mz8XmhmI9Zx07EuHO5nLvLxISc44R1iJ7UUWL/YyFyK2FyEeYlmXF7PXvy1pp/34oWbPt217sAVSyA/u+DLqhoLamoNyVcPwmBJ5tmSDanos/WYqLm/6kBZQJD7AiD9DxPZiCzxF8Pd+dSm9fgnx0KiH1y5zbzh/Nh5qmF8L0WzGn//sXmsEgpviXjEpnzOnrJ7tIq2dLC0SNOrxchh+mPYsea6/sk2GB/g+x4AMv8LAL7QItvkLjtLSMPBeAbKaSvQDXVcS1dMgDUemgdAWVprWd/eTDgJzyIFhO1LXQfHze+giWTUSURqiCuV6iu0wQK9dpswlgXdh1osQl959JdRb3pia5oJhxe1TtwpZF1IloVeby5xPn4O66ojW13EyInyhZWCQEeHNQprLPX6mZ70ODFWy38u0+y5bv8DAz+KkLeDNOgACsrchWToZQU2bTdoMIkyIfOCdBLHflc3Q8RD3d7terDxiuxBnDXqdY4ABLhUMyPClCl0Lp663EDLF9OVGb9+cejAgKBArMJdIAz8o6AVN94Bu9EWV9lIVg19sBpSDB0LziI0iwa54gI2hXNUC8xgeSYtIexHhXm0ly+yLSHg2QkSSCEwvH9SNmgPDUFAs6TFXfIB8AW54Trl5RC9vNklEuJcaHKTbrEEU78VHIKzsvve6F/0qwmJ7ykKws/ZHskXS7JwyQgzEB/c8IQZwwfFuHUsBwea9m5xNmC0d4PsHAzL8csHUQ7vh7wPI1N1cTom8CNI6YtnxuqFA07w+HNXrUPVuZr+iSS7bZMjl1IgKIyMFaeYeMmR9MfVTzpcTaTbdGwk4wyCSp4ulfm4USW17M4hwv+ZHYrlkSHJlmAUy4gP4pglr1N1gvqgG/qyzgPmbTmsXF0KEN0KCs87wiMRQzLvb7a3Wy/2YpxPhXqpwNEw8q7v+iDD/X1ZGQrxIucS2IR7nXGLP7QAD8BiQ4VcQRHMIIN0kAqAuc3qtmuXt9RiyKqe9SG4/x6WZS6RBMVS4LRL8TgvBCgDdZmgisZkquGEoyOXoJ8vCOP44hsS67LYuTBX+AUQvG+9+0mdFlvZ7MYnwVk1LJ6mB/PdGkWRvzCMLEe6HBPdj3pR0nIwYpyHpPqUR4YBoxtwVXtx7Ho00GarDrBwiKTYEVXhgKjHApY4BGb4UYRobt99kwTck4NWXrOYQLF0up6LbdaWL6ETwdsNp6nAWIq3qXsydTwy2A7cRLmAJfGYmkHlN94K6yGo37Dq9SQaxPRQKKuwe9ZOG2NQiy/vex6G/vQhl8oq+83ylQubd41JEv6pwFmxUEe7VRrOE2u4HvUwneplIdLsu8qV08wgGmdeIrER4s0lwr7wYWeSJba+BioxMy4hwsC+hj7kQ4ik1b5BANJeQqcSxgdIFmkm83OGYB/j+xoAMvxzQdbn9JnNcLtoKGyoUCNPQhhbZRheZha7XFEOFCjfi81XmUYKRQt3wIpHqUoufQIizKLu9CLE4hdsrpClA15MrhhpETGKQ+v1EaHaQJaRrcAzpT3HLohKJ7uR48Odqrulofm0du8oPQ/uxfZnLcKlCNiWe5N1DNgDbzNmIzcRmqcIXYhqRhCTC2g95TipXL0Isnq+fe5gU9RK4MCKcRoL7aSNJ9cfy5/uBrEowEDeL2Oj92yy1GuhtPyxTiQcY4JWCARneCjh8IAgg4mcYgDJShXLg1ojfWAByF1r+vsCvbP18dD/ny9g7dQ7ucgvqztGAYLe/9iIaSwaq+1TkbpoKs11oovn4CqyWiuq1BbSPNTH/UjRk6ORugpHLPD/WvRKEzH3q/nzwAikUVUzvoSGCu00Nsy8pQJ0GQThwVQ65Eg2ksXDGi/mtBIBOU8OZU13ouoIDN9vIv3EPlH274K3W4J1dhNeKm4mo+7ZDdxxgvQVvqYHOg+di1aZNlmhIUkNFbqWDYdvBwnc6KE/YyO8qBIRbNDkJfDi3OjEfukGVc478Z1+iPmevOaSAuRxqruqYPU7QbEbzPnRzIQh5+9gDLSThH79BHfSXxxcwdvsxKKO7w50yH8PcvtjASvQxvEUoDRPkLq8EYWhFn9lK0QjMgKJ+ixU/HW1vjZMOTj5nZCYse/bnMLk7rJNjTysRd2siylUNV1xdQG2V9HSxNj6hY2ybERB55l6L90kLhOQqX1RRLCk4dcwK/PWOTegYGad9w+K8jaXzBIWiiqntNIhBo+5g6Twtv2EoGJvQM9ur836sdd+Eh0dt1cHV1xex9zVdaKP56LFnGph9toR9/zzsA858bT1oizxe9boCdr7aoeF+xwuwT9Rw+uHobM7INhdT13vQZ8oxX+mnvu4Edbjtsg4K+8JgQkn+1Rl4X+r8AIv3ad1p6Fg4Q92jiSR434F8pA96/qnwnuuGguFhTeqjmvmILpVU6f1ot90IKZSRb/5+zOzOZZqlYj6Ly4aGiSnaRni3aXy748sWtg+Z+8hkm2KRAMsIsXgtV9/qYfQ15WifajuoNbrAJ3pe4gADvCwYkOGtQLMNlPNAvQlveRVodYBiHhgq0pjuACzYOLYeJ3GpUIHx6QmU9JHI5rw2BGXuBWBuEQD1RKCUJ+E9/xjUag7bfngKyhV7oczQKXfvyFNQaiehaR7G3jEF9eAeGHOLwJdfwvnj+Yj9sGKoMK8eh7JvJ9DqoP1XjwfR5CZ2eBjf2UXu8gq0yVE4C00MT9Vx/kQedlfFzmuaUIoGlo+oAKiJQnncxtA2N4gi1mnSFfoHbnQxfPsElJtvhDK2G0pnHd70CXhzi/BOLoQXa6hAMQ9lagZo1+E99DQULhqSYqgw9o9A3TkKZWIU0HX6OiAEk8bz6D6/CrWoQ987DGwLBw2Bcs+CoLDfQCR6IP1PX9hDS21YbRfVKQuVQ0NwWwTrRzvoNLTAnphh/1U6pq+j5OnMY4Yf6SpEEtnzXjgCTCzFg7YAUKYngILvPH5uHt7sXKy8rKzaZAkYrdLtrex+dbMiUOVNgB++qNNVKDuno95SCAGGikCu6P+3QlLvD+68xRWQx04BJ5tBe+sFVt8jOwn0vcPoPr8K3ciF0Q8lNuvX3WJi296m75EkjxNHKflLuh/FKoFueKgv0XvICC+bfWDPjZFzUR63YBZdGLkcjj5PMDFloDrqoTxO20F11MDImI75czbyRRUj21yMNs3gXOWKhtEJLbKgMsljw3rNCZU6v+3xni90QwnImmKoMN9wBZRrbwUcAveR78BZeIGmu34PlJt/BN7xR4GvfS/STq+4uoC9r2ohf+dOKDfcAKU0BuSGYHTXcdn/7y9w8m86sbUH2t4xKNdcCaj+q8cl2DfzMBrfmkfxYBn61TtpOwY2JTgMQEMMl8c9rJzN4ewpOzYoHd9N2//SqeiAgK+roUrUFaNuGDhzygr2M8JM7OjCtkJR9dtOb5Of4anQ1EucJXGJ4oek1lAd0f1256C+FPZ17Jlg9zrvD8qI7QV+0nUJ4eZN2hj6Uc51g5rCXfsqHdtfb9C2dNVNdJBOLwZwCcy1BvCJv+1ZDwMM8HJgQIa3Au1O2JlbNsiZBoAGtMkiUC1BKeahq/Sl13X7M6xyXALHiypdTbIKTEyi9OaD0NsNuIUylG4byrW3Il8ZgrL76kh65cqboO07iKFrXqAESteh7JxG5Z8BxSOLgUqn7/VJMDPnKOZRuPsWXDf5HNyGBbJshTa+hgoYGlTdw9gu2ikykwdV97DzcgDwgvQK6MumWCXYcaWNytv3UCI8wZkFaDqUiVEoIz6JE01NdBPKWAX5O3xCyL84JVAMFaV/speSZPjhjWUu7ZgNt79PMbSQYLK88joUQ0V5vEsX8Bka1CJQOTSE0kwH5XEnolYNT7WRO7QdMFTsO+Rix5XnQrtJLnobD5cosB44BX1mJRJ1UBvNQ5kZBzoWkCNAswH3+BlYTy9GFDUANMT3ZBFey4ZSoXmQl5b9+zvs5xklGOw8oionhilmZQQAfcxE7tYd4X0o5qHsnQlDtPZSpTU9onIrIxUYP3Qlxi8/j8pTC3AbjOA7gWLP1x2rv+KkDWMvvb+5q0ZwlbOG3at6JPqiaLKh+jbloxMaRieK0khyADCxw4Gq03NXxm0YOc0nTOHiTEYGeZMcVfew94Dhb3dD7ya6h9KQjoPXKiiNkKA+R8b0iCLHm5SInkZyoKYlQ1WqaBYKrnTgcMO7PJiHtkHdNQXlutfCPxnN81WvR+Gqq3DgwUfCewFg5m1D2HEnd79tB0A5FnYXDoG+Zxj7/z0CwqpUS5QE54bCc/n3V33d9aiMH6ODJEBuQtYDUv/rwrbSMMFlJRWAGtzzsV3hjMz47g6uQt6/hLh5hmjeMy5EBszlVBD/OWNrBxhk3iB4iKow/9/xvW3ky2G0PtZmNN2LlUMEP/CTeRJhZePLlGZeIRsY3vVTOoz9wyzD1PJsFK6rZHaHmTW/AQZgGIRjvohgYSSXP/seDM9U4S634CzQgPBqNeebGwBKJQ/l0EGgsg1PORbsPh7S7UULQ0Y1NU1Bq8B0lWzeCOwOvMYC0GzI9yeQGG9xBVippWbtLDThLLVp+pSoZsb+EWh3vg7KlL9YTAg9HAtDnJaGWOG2QIkUQhOz30DUfIBXh4F4mGwgog7z1yWSUJFYGnurUPdtD8/JzpOgSIvqLjsXfx5tsgRlvEz31Zqwnl5MLItiqNBnysF/z3ahVnNBOi/DdclCLzMUJ1UU/ul1wO49dAMLDw3E7wUhQD4X/i8Vo+n4epGZefQIYy6rK2lIaeHaeYLNhzQH4oosH146cqz/beRdlMdt5Hwyk2RqIx7vOgrsjpoYnU0MecyHJwbidrV5X6m89q0u8h/+MSiVybCuOYLKniulNAYY+ajpFpc29vwZeShajvrEFvINzHnEfPoJGw5E7jW7z4BgUsG1dVnIevY7a+hwWn9K7L7250uZ/pb5od69z8TojqgJShrxY+ez2irsjir1x8zQ7dLod/3Yp/P+kXsFhnnbh4DCx+6mbSmlbdTXGhg+8JENh2M+8u43oWxsHtFu2AQH/tc3BuGYBwAwUIa3BG7DCtQ3Zkfl1rpwa6zzawDPL8I4MIpD7/wXeGxpFgBAMpJi10tX2Vw4cPUCoBtQXS9ui8yTZE2nU5ii2sNeUuJ2Bl1L3ucfr+R1qNUc3Fo3Maqc1yG0jrQNNE1VD6+N/82XMab6Svw9s3SyhY6iOmyogE8uPdsN7F4DVcr37sHbzymGChhqSIIj+XPn5LyK8Go0r3jx53EWmvDONMLziGXh4Nkuui/VAVBiZg5JCC8QI/NRgqhFtkVe3rYDz3GiLvJ1MyTEIjpdeh8qJfn+rBDusbSueuxjv3klkC1ATfOHK3NRyOASJUK8RI8nzB0gI8WikqyDkjG2nfcKA4QqNEDVYQCRxYe0fAquuJUqobm7boAyvIMVLiyooMj3jc46UMpt/PiNwH8Go9uiXnVkbikZePeTvTzu8F5o0rzxpC0U5Bca8553xHsr8y+eRJB5cxRRZc5BlZJyVhYgOVAMfy2ybVdfXwTQ2lh/PcAAlxAu0NnJAJlhaOEHoclAxFuCrsH1HBBXiRFh21USPwAlxGkfy23DctvyTkvTww+/jQcju7IPQG2fTSP6EY5XDBXaaB5qUZdfP3yvGJmDbGSAbkq2SUi7P7XHbLil6dk1sWtmLt/88rLrYEQ/uC7ONVzEM8Z6i376gVhXAhShLNFjtci+YKpVeOlGjhXaK0/SGIHjg5jwL3BF05JfkmkDJ2l6ST5iHmKbS2lHsTYXHBMvl8wrCbtOTY/WgW5E//Nk1e6qsFrxumcfgNYp+/Dp+LzZdn6fbPFVLqf6x4U21mo1h8LbroB67S2x9JcE0tpFxun3nkF6erlqRJSIpnmdEdsBq3MZeHMVftGdaELB7q14j9n5Ant0EjXxEZ+/tHKIpjOGoaR6BJGZ2uiGgn13esi9envPcw4wwKWOwXBuC8CIRKBKiZ0xpxy6npNqJhHxrqZSkiwqwy6i/7sONc3QVRN5bShcvCKDypHifkb7OqcmM2VOICeKPxOl2i7cFd9cglPjgnQZXlZBWi0XTscxyNQt2TamwmZRh9n/JPvhLAoxEFWJa/S+KEPF6DnTfgd1JFeHRR/TaUp1RP00tIAUBuo8ECt7UJ2+miZTTFXNi7dxmVIv3oc+oGiaXFln+wW77ogyyNVTL3U4UkzhWpMC0zCFWFQROw0NLlFgFqN2n4ESKVGLiRX6wmYuEAEECrSYBxBVNJl7Olouf8HcoWuB8vimBHGRPn9puFDlWTy/xH4/niY5MJFM/U+CeF97QaYOJ7mUUzUvFixINkvAoDmedHaA5SUrCxBVhWXb+KAevI94WfrrbjGRe8u1wI6ZhBrYXDgEcJTNs/MdxDAagMdAGd4C8EqhTA0NFGPTgAsHtovEDw/bpaYULpzIR0TXaaHrtAKVOKIEyz6qThXVrJ+sKnIxTxdSFfVEhTx76OUMkJH+DMpToA73q172UoiB4LqdhRachVZwvogizStgJu8ZI6pEJ51DVIeTlGpe7RWVUrHNsuN4dZhXM4G4WpmIpEGWeQEqckqavtsUR+ST1HMeojrMg1eIHY708vUqqoC8WqybntQvtm54EaU4OJ+gVAJRtZLOvMi9JlzSyPgsJplfBfsztIVeiru4L4s6LFNWRSWWnyEAorME/GwBA282w87PPkmQqcJp3lmkPpD9tNNXdYF9B6FMXQGlPBlLp2hbbC4zwAAXgIEyvEUQO2lefQvSHLoWQHZb4YLuQVc9OEmKm4CADKdAVXUoZomuh7ezutyyKJHJPI1JSVVil61rvdVr8ZrTFCeZraqo/MrU4SBtRnUYSFWIAcQU3FQVvA91OICg/Pa0ZS4aUIBgMWdQRkTV1KD8QGRUJirEACUT1qqLfK0BZX2FJmRu01KvMWN3JCrJsf9cnoI9aaISLLGvzmI7zNRhRnYjQWwE+2EtQnpDt2ZAWOc8uZGpvaISHCjF3Hl421GZQnzJQmbTj5RZgIT0kWNTVGF+X6+w9Wn3VQYxYEyk2IJ3B9uOElhx4MWXixFil3gRpZpBVIv58gBuRKEG5EoxEPcsIbpao2kHa+8H+P7BgAxvARRdib30RHKs3XIQ7fEpwHPQdbIpWaN5G0XdhdNHn9STDGsmUByGounwspBshwDdbtRMohd0LYiYxyN4aZkG0FwBzBJQHM6WJ0PadDwjzGkvUZ9YBS/gfs0lgERCDAgmDQl1k+jaDdy0MEfyeplCpBFiUTUOFvghXIQHRL1/sOiGAH358oQYoNO7xFJgP3kOhq5BKRWB3RV6X/iBiUiE8wn23Xx9pA1ahLoSkcVUIoDE5CTJNKQXIZZOq/P3nzOdAeLEWNXD/AFESDEQmk8Q/7e4mIonxKkERnh2NqTsbdVCKsl9jt3HtEV03L4kUwnxvvIQTWDS0jIkmUswhVicWRDNZ8Tz8wsr+e3i8QD1c63pClrNFAIsuFuTuVqLkOI+zNk2Ay5R4G6imcQgHPMAPAZmElsB33sAIDcLUAwVypWvxaOLNTy6GLonS1s0VzIcDOlOahrx43q+KUXKQjviWiCKSwlxvkpfkGkfl1BPAD6B7PUBEEz989PxfN0AgHdmDt7SifR6TXvxsn1pCjMj70yRZNP0SeYSLF2vBXWA1GRCajbBIdFUQiwvf0yaSUYK+HSqxGwl9tsvv5i/zIyAkeLG4RbI8/OZyoO8SdXjJAU5CanmEfKFi4m/UxYk9hO6m08vW1CXaCYlMR3iFycyiFPhATEyvEh6fvo+S3SzvtEn8U0l14kLLTOeo0e779dUJs3kJSv4BYwMSb9VSbsQF9IlmSExkxnRdIalN/IunZXQPORyamAW0ctcQteV2OK+XC4eyXCAAb4fMFCGtwDqVZdBHcrDmzsPb7ke7rBdKONlKNdcicOrx7DYLkiPj4lWKlDUPRT0/qY9RXti9l9FSBqIZ7Gd0I08FPElJfqP7LaA7Xu4TH3lZW0RqDfD7YQAo1UopTJALGjTfj1YBF6tDnd2JXIaqVcHQPrSDMrI+0gVTTx0M1wcyJtTiP6IuesE/MlsXplcqcFrtuIK8WgVyp6ZqCuxJLMNLj/vxSjhV8oloFqJKqhcNDbvuaMxdVjdORr10wuEJHG9BfvJc1AMFcaBUeq6jL8eywYqQ2HRnj4jdQWn761CKZjBOTrfmY0omEwhBhCop8w2Vkpo+EWaOglt1QHaKxErfq94c4idM1D4AA58PXHb6P2zgG4X7iOH4fHNwtCgH5iAUvX9LTsOHdixiHz8fRL8SrO6CX53COwTNWijOek+AJh/0r+MmTL0q8NQ6AAiKic5uQZyYi34X331SOSc5MRaECCFVz6dlQ7mnwzV4OEpC0M7ou7uzNdfQ30HXwQo+Wp/6SuTkSAc3uIxgCT4N2fHlIrA9Db6hz2jov/wVoc+o3zEOgaZr3AgsN9P8gsO+P6oWzY828X5E/lEdbhYJSgNEzTXdHTP0+fo0D9TwzxsF8tHVIztDe+5cWAUqhASW+z4+TKpj8371Ua9lPAqJ0+IC1WC4ij9vzqro7FkAH73PbmbIFcK66Bd0zF3UsW+Q6EpzpGnvJhKDKQH5RhggFciBmR4C6Bc8WoolRIwfRbK4mwQJlfZOQ1laj8aeQDrNdw00cRji6UY+eVR1D1Ml2xM5G1UzXSfrKJJhKpoAfFlCjEtSJQQMwWZmCZUJUrQVdeDYndocA4AGNkOZXgHWoQq2nltCEptPq7YbRuFMnNtuHjHIUB3naq/zVZUudE1YP9BKGO7w7QyhZeRH0ZyfaFWcfKAloNnNSkpNvI0GIBZiueT1RTEhzdcg7K2SIOMdLohIdY1KNNXooH12OFJpimVRgfACUryinlgZBzK8A64OfmgCACUUhnew09EzTJ0nUblG58CfJtvaDo8qwnv4QdgHBilkQOnZgLCIvUA8OKz9JvzHmEcGKXhcae3haGeHYJ8MY/OP7xE8xLsajWNKlKFd10FZf+e6H0CqALP1zsj/mn+r3nsmEF7fAptwgaWpvAdha6aKOkj0Epl4JsPw20IA59to1Cmr4SSH6KDvcZCbDCV+OpnA7BHHwc504A+U4ayZxJKjg1OwmuYmTkJ+8gKjLfdDGVqf7A9uBf18/BOnoFi1AFDg9eyUXjbFXQtgUvgnTwF55lZwNCoi8J922kIcQAgDoxOF5P2Q1g/66F6bQHG9fuioY39uoPdgddcDtqJ+Ex4nRqtB6wDThdKvhpsiwW2IRa9f7mh4DmD3YG3fIqm49NwJk9KeRKrSh3d7lKwbXTyMpjdLryFl4D1uB2/kjOhXHsrSD46e6Aqfp/mObSPUzQojSV4nRq8Z56mZkw7p+nzId5ThwDtOtSVutSjScxWeb0Fb6mBqeoy5p8U3JPlXYxst5DfVYA2PoTKUht40MGufzUO9Ydvp/fw8PPofv1FAIA2WYLxuv1QZqYBswjv+edpWQ/uCzPlnwGO9BeqOSjfmYW1LvdowpPj3E1TUMbLmDiyCOsfWhieclDZBZhXjkEp6vBaBNbT59FtethztY3RN40DAFa+sQQ2eSyLUrfwnIY9Lz4L3BxfPOc1l4HVpTB4CgDUmrF0AwxwqWBAhrcAltOB5agwS2PwOutQ9vpkY2iUviDcNeytTCLXqGGxbOFYLf5SN1Rge8nGdNFC2chDVwsoaJSc6KrZ0xaYR1JaVdGCfS4cuXmhqkE18jQ0skE7zZq1AOJSgtEmdZTKI8iXxoDxKDHsqAS2veRfTx5qLgdz1w1AoQJlejFMWB6BNzoDz3+5yQvLmWnIiLLLvGNQ5UkxS/JV9Fmmeg2ELyWnC5TKUXJEnGDRX7O7Js3C8SQjnHIVldf9EHVP1alRopofguXECTVDvjwJXLGXmqUA9EUzMQplZGdIbPz7A6sJDBXpp1oJo4kBUBCqwQGhu2w/dC4anpIzqQIrWSmOahn51+8M/sbcW9kulGolJNDceQDE75l4G5h/aGbjHbjt06AM70CTLMFyLP9UcZ/cPMpGF67nILdtBoUf1qGylzQATM3AG9+DtrMOkBpURUN+eAclw1kXkDoEuHo/cgCU3dtpfQMxVVLbUaGmGMMTITF0SXgv8lWgUIFeKkLbcR5e24IyPREquVcNQy+XoI6eDFXDodGwDCUCfaaM6qhNSfnYCJ1l4MvZrsNr12F96QGYb7+JRvsrVGjb458FqwU0W0CVwHMIrYvVpVA1Z6iUwnsF0DxcnZ5nljOR0TUo5SVankIFbq6AVuscWiQcBBf0OsziJB0082V2SUhci8OwSGhKJoOqaMiXx+ngZj8dMAXPhwQeAFS4e8UHbRET+zNW2mgTkwcasWA0WoUGFmIq77a9S1AvmwkCnCi37UB+pILtL5yEev0VUHYcDJ8LFo665N9TccaDn8UarSJ3kw3TdlFcaUuVbAr/moeK0CaL2LZ3hdqYT1agjhWpd58xIFfUMTa6CnelDbWaC57nq28VbaBD38ZjBxw4L5yBVvwelIO30nN3asDcSXizc3DnapG1Bna9Dxd8EhBbAUkelm4ovwEGYBiEY76IYGEkF1e+hEqlKCWtrueAeBZ0xUSTrOJoPR6hi7gKxvM2RnO5mApS0CvUd7CQZy+w8zJFmBFh3pSCV4uDbRw5tdw2uk4zcj7+eF0JX5I8ydYVEwU9Gv7SVAtBGlYuXTXjZNgh2XyVJim+G1GGeSQRJFVHxwDWupQASMkv4kStZBgwuYENwJmqSFDUq0BrLXbuCBgZ7nCkml1nbkh+zaw+7U4YileceeAV8k4tcV/knKIpQ69jktICgdmIMn0lLJV2W4ud2QihiiT361r305YNoGQMo6BVgrbWdaNqlabQ6QVV0ZBHvjchdgm8do2WuV1Pv67KNigF35RAVi98/TaXg/0xNZ8n6vwAz+5QsyUgJHQ5wU6XL9tKHZgYBcxiSBR9whwEg9H1MDx2swXUuTZVzFPznFwufC4LFdqGjh73y+GfL5+jJkC+OY9y+atxsvES2hEy3Nvsq2QYsf5ORKZ76Ap1vb7S0zMFAKDehFerByZgST6OFV/ZVyp5KIcOQtlxbfS8YlhqIGp+lpQWCMx+0sLK0/yiA1uvKbQNIDqDRxx4tSaUggmvbcVCzQPRhbRq2YRnu9Cu2QOMcv35egveqXMgJ9fCbbaDesfGxMf+z4bDMT915x0oG0bvAzKiYdu47h/uHYRjHgDAQBneMrigUeCAOFl1PBuOZ0NVNOyvRFVhllZVitJjY+fpYz9PVuk5qBlFWh48qXU8O6okC+g60ehqjCDquhmQeQbLbUfOm6gI87amaYQ4beFcv+l4wpLko9XIo2stAIgS4aQAKmz7WpdgNGeBqFEC7HhyjwiW04aZRGhF5H3SINZTmscNIw+FXWOK+zrRPlRqdpGkBLN8JfbosbR8el+B9JZPwQCgTF0R1GOaO0K2z/EXibadeixN0I79b0PNw9UUqGkzBw6hpjhdQcmXHVOoUBtZ3kwoBQFp5tIGAS6MvLw+k7YDof05/9yMVkLyK9rdMvtsQoBaaN8fsf+2SEwp9pw5/3jOC4ufr7fK1fvEWRiGhzU3JMNdKzqo4Z8dwx/Q2C7BaK4NXZWbxAB8n6nB1AvyVeJcPSn5Kjy7A+QQDiaSwFxIFtkMiwTM80tFo/b4hR5Ey78nwf1l94g9p+J/psTn4N9LM37/+Jkjfzyk+IManiQH8D3lKFU6AFZ4Dza87XyRu//+egL3+BngeLiNIeZOklzirv0G+IHGgAxvAXiiKCPCPHgSKBLGCJH1VVOZ+ppYjgwkN3G/hOyKSjKD6PdYVElF4pH1fDHISMfFCCuUlVgD0FQdHTtOZGWkmLgKdNULBhZpcD0HhuoTqYvhvko2uGDXzd9PYbEiA/MUECHFfDl7EWMxPX+M1AyGBNEaeSLcdePUZ9ik+ZgafVayzJywgV6qD4JYsJkEgiYuzuTBD0z6ic7Gp03Kg9/OL8hMuIc0ncTvM1MbmbcV3rWd4OM54hNYUB15KFoOQ4aOxU4rNeImQJ+TIT06+5TVLMz1nPQBDUBNqZwurY+0e+XQwYBSKlLTCtHGWBZ5s9/APRtFMPhI8Z+e5DaS2xeJIsq7j/S3MQ8twQJeIHFRqehjXUmYwRlggEsBAzL8MoInQDLziaR9AJDT6Ag+TSFJOz7TvhRCKjuuFwlmL7285P2QNijoCxshiptAoNnAxVQLaIJeSxIBFv87LgG0DD6gN1on0swk6nASGUtKC2QjxXx68Zg0s5W0wY6qc6YO8ZcsX/e2q6BsoOeshxQ9BkKKloOXlIYnon0MqILzSghuJPzxRggxIFeJeRIkhlXvRYp5tdgnWzwC4iWgqo1h2KxjsWP0DDTUddVgUANkG9AE6dTeU+tKvkrNO0SVnyfHmg7oDlApQQFCswMgSiQvJnh1WOZxhUdWQgxECTQQ9ZYDZCbFSf70efOKjcJ1NtnPcEqQlQF+8DAgw1sIvgPfCBEWFWZmZ7tRkpT0QslKgtnvNBIsI4RZldALuba+sBlKq+egoFVAPAt5rYEGd3myF32UwMWVLvG/rprQFTOw7e6pdm0UaYQY6JsUAz2IsXhsggqcdCyr27SBB3EVaKoWa0uZZlK0HoNNFsKcIelatuJ+pRFiIJtKLCPFwf8o6Y2Ez04gxkDcTaLnONRjR2MBU5O7Mdei9tFpCrHuKjBUD5qiwnEJVJWbMUvor4I1D1nqXhuitsWyuooUJPyvEAKvywLIyM+haD2iaSaWJ8FUIi2tqA6zcvUixIDErIVE8+GDnHDbe5Fiuo8G71EGy5MGuIQxIMNbhCQinJYuiQgDQNdp0pe7R92ZJRLbPrYnvVTSSANPhLPYymbNX1OM/lW8lxGMaOkwYag5AN0YCZYpmDnVX43ep3qfpW56DiSSbIfTptF7kWLJcWKwhb7IMX9OAa7noOuqPe2Gu26cQEXykSwa5ReqpkHlvZrIriXDdaSm76UOC/ukZcmqEvNpY+pwgloMxIkxELcvZungE8TZM8D0NrRJXeINJFYTsC0VQ7qG8ULoGlIE64vo8xdiQzMuaffK9YmirgOyMNEAda1XzAOlIrUV7wXRbjglTUwd5rEZhJg/RjSbAGIqMZBAioEIMVYG3hsGuIQxIMMvMxLJbwIRZh2+AxL41ExaXd0PiUqyCRYhU7TTSDD/v8wCtinJruDCPOl5VFfLZArSDy4myQ58NPvXLRJgvj7YtC97eV+ITXfSMaqipatKWcJXJx0HpJNphh7kGEixNRbB5cXarEiCxTZYENL3QmCPL2l3Md/dWSIdwr9mpvClIYsCiD4IsWwfcOGkOLItrgZnIcfKrhvwzNzpRL/q4n1d7BjQVSvoR5LAPNaw+9iTDBPa13hWM5uKHAlZHSfSAbkcn4ovaoydPOX5y5JGZi6xAUIclFs0mwCykWJ/X4QUAz0jAw4wwKWCARneAmQxj+iHCNN8XFhu+4KJ8EZIcHS7nAiLhIS+2Dxoqp5pupqZSQDZ7KJlx19MpA0qHJeg60avUaaUG6oXrJKPmUlkvC9pyGxi0osQM6QpxQwbIMdAcqjeXioyCzUugidYtqvA8dzAUaBo1hOB6vvAzkCiksoUwBEIqcwdGpBe/yn7ehJiIHlx3kZJMZCdGAPJ5HhqBoudk7BdNdVeuOtw3iYcoKDrKOopi9wAwCXIG0PhglNxd+y+KuG96aXeu4R6nCBO/Jp45dukMwZKeVI+wMmyWDLtuF42/70IMRAOULhyp6rEbDsQJ8XCPj4U+mYRY5cocDbRz7BLBkr1ACEGZHgL4Hg2bDd0QSTzpsBIFIOm6lIThPDFrwCwYovRmmS1pw1y2Q+WIRKuNqnHPESk2QPXLQ3rxMSQ7kR8hPLkhH/RNWxgNKeBuFYqUeOJMM2jEEvfr/1nFvRSq7PYUttuJ7AXTpq+t337R/Yt5t20bRiqB1Mzg/on8N2vedREpqSPQIaavRD8HjG3R+tJ0xOvUdXyiEQYk4G5agNCv7K8L2MgJBN8Wlycwcla+wRWOiGJ5okTj6LuYbFjIIwiE9aJ6L5rqkDgeHbq7AUPVzehMjdzvI9mMTQxpyAT1wIUQPfk5U2LQMjA7qsCwFs7G5IuEQ4BWmvULzRXBhYEIghaI7vvnXV4q7PRvABKeka2U5dks8+G2wAoU/upPXC3BWXy8vixDPkhnFybj3oCSbh/QHif2kRFi6goJvQ39PrciM9yETH/6X6gGiXJbSIPh9AFk3YHyLWS3c7pesSe3PIX1ULlTHACO/aoP3Wpb3UG/z55y6eC+6bsuBauqoTHddbhzR2OEGJlx0F4p56LEtvpKRr85dgL9L+gEis5E9i9J3Jemi5hMLK4EuTtOU6omvsEW2leWNCNAQa4mBiQ4S1A12nCdF04LoHjuZHOO68pMNQczjY92C69HRN5G3kQdBzmW1MBQBUUNu2eU10YZkiqm2QVy53VYGU2OwdTyIir4HxbQ93WcHB4EVePWBjOheFJGQF9ctkDcbXgxWS7ZpAH+7b874ZNf5d04I6ZVkDs2PkideCq6LoA0IWhepFQ0rxfUB6MIPLkmG1jQTkuBOIgQbQdVRUNltuG7XYiAxiRFLP7CgAtomLNoveR3QdxGthQ6T09vU7Lv6/SQckwsNR2cK5lYK1bwpDhYDTvYHvRhaaosN0uXLKKxxc1rHY17C6fx/6qh6pB7REXO7N4dqWAw2smDJXej6rBXZ+qwHWtoPzibIWmGDSgR3BAnBy5noMOHx2PALphwtQKMVLseg5Wu+eCugrMe4SZBPkMQmhekrQfAI7WikFb7HC3xHZpHVcMoGp6ONUwsNwN9zGwY00V2FkCdpWtoHxJgy1xEStxrLAO7A6U0hiIpgY+xek120F6l4R1b2o02AojxURT0SSraLcb0rpi3+w5q5olVM1JqMM78FLtaKKLuamCg9HRHTAaK4BDsFCwMbtyBhN5G3uKe7Fsz+FILTxXQXexr1JGWdPji+0q21Av6nh0sYvFpTpev30UO/KXwTv9BJTpK/FIYwkTZRO7VR1uoYzT68dxel2i+q+3sK9iYaVTiJDgtLUGhuphIm8H168pfhuBFzuW+G2dgZmUaYoRcw5cc+o9F7BG+oaSBlMbw9Ai94yIKjGnmtesBZz372lRd1ExR1HQKmiSVcy32tgILt+2F9r5E/SPpuNY7Si+PVdExwHGcsCbZ6YwZhfgLZ1AfccufPVkC2/ePYnJUwvA2DjsyctwrH4Oi20H115zJUYsE96Rp6Lqtq5DKY2hlnOw2qWk31A9DBnjqHY1wMjjrHPOv64hjIzsDAaDKjfTw6pbrffw4TzAAC8jBmR4C2A5Fpo2rWp+WpCpqR2njTbJoUWUYCaJvggVtIkaIQbBC08H6hagKWs+8ajj9HoOi20dtktf+jxpXbUUzLcAYqtYs2g+14yek5g2mDi8Rjtyy6XbAsJBooSY/TZUYH8lh2tG27GXGf9Stl0Fa5aOibwtVd1k5iGMvKnQoiROQURhzrLgSWZ2wZOc2Pl9FZaVgSd0PJGjgxSDq8MoEeZJiq56sF2gaWuoWXR7UfcwbBKcaxk419Qx1wZKuoadDm0rBZ2er01UPLqkY7kDLHcN2C7BgepZdBwPTy+X8NiyipPLOvaMcXa1TCFzreAaI+Qs8NpBoyCamq9KSlRG4oQDA57QAYAuqJmW20bD7nDtV4vVDa0vjgA7UQLMD8JE0isOzNgxPMG1XQ+AgtNNBcudcB9/PLFV6IYLy/UAmBg2CUZyRs/2xNu2s/o0i8OwYKPr1GE57cSBACtryd9f0CpwVQ9Newk1q+mr2HFPGTyRJ66CyyotAAtwPQdPLxdj18a+FwoOrhmdxVh5O1zPwcNn1jHbVHBwWMVMKSzTg+d1mCrw2imfSBbHoRSHI3Ww2j2H750j+JvjOdRrJubbwFt3ncS+PTdioX0C954pYdg08f+5ogTTP+5UQ8ezq3GSe6Cq44emWzi8WkgJTkO/DRU4NEYH3C2iBoTYUHPQVAeWY0UGDLbbhaHmwsGzR8mwq8RJb81qRuqZr3sg3ocBDibyqyiP7obHwmoLULQcSKkCi9Rwvt3A6XUTRd3DriFKFptkFUudFs61TDRt+UyFrB4AYLkLPL+6hDt2jiGnlrDSOooHF4q453AB7ZYOw3DRJE28ddcatu25EV99aQF/+UgZc23go4dejY6zjqeWzuO+c0Usd4DFtocf2r6OiStvoso387ms6WgVDJyoNfDMciheHBxp4+qRETheB/edpjNAN0+0Ua6OB8+NB8mAwr1A8eJldq322c9+Fp/97Gdx8uRJAMDVV1+NX/mVX8Fdd90F27bxy7/8y/i7v/s7HD9+HNVqFW9605vwyU9+Etu3bwcArKys4BOf+ATuvfdezM7OYnx8HO9617vwa7/2a6hWqRBx8uRJ/Nqv/Rruu+8+zM/PY/v27fjxH/9x/NIv/RJMc3PXzgwQxYAMbyFki8vaRME6MdHy7ZfY9LksPY82UdGGisWOgorZgh2QsWi6jgPMtRQ0fX5EiArAxaNLOh5dKkeILgCM5T2YapQ4iJDtk01xiuoee8HkNUVKSJP+y+B6DmwvND3hzQZE9ZYnLq7noIBKoqociarHyGLGhVdZoqE1bS12XxfbOs41jQjpA4CapWCxY8QIIPv9zIqOx5f8aVhuH7uXWT0iMDCyLLNfd+Gg6zTjx3g0ohuveLpw0LTtSKhdBr5upF4DJEQ4noZ+JxHhDgE6AOqWglVLTMuVxVaD7+cWVByrE6xZRbz7sk7PkL9AVPFtO3UQ30ZVbnMvmjlRNO01NO01br9fph5EGAAOrxYAeNhVJqCDjTAN/7vrqDi9nsPp9WWfKOpB+yHuQhCumqFuqXh0sQvizmLd1rBm8cp73Lzp3jNF2O4CykYxGCR/Z64OoA4gL617AHhuVUHHKeKHt7exTsJ8k8yKyr4Zg6Z0oXGuBolrQVPUyMwUoESeW9ulJFTzzXhE86/sRJhirmXCzs9jOK9LTclst4V2rRYMBIk/MF7sGFjsNLDc0dC05YOApAWFbPuapeDxBRUPL9oYy6/iidOjaNQNv2+nWO4C/+9LRQALKOlAoUhQ0oGvnZr3z2nAckNR44F5A0ATOc3FZJEgp7roOi6eOd6E5UaV/aeXTTy9HO8LeoG46e40L3XMzMzgk5/8JPbv3w8A+OM//mO8853vxBNPPIGZmRk8/vjj+PjHP47rrrsOq6ur+PCHP4x3vOMdePTRRwEA586dw7lz5/DpT38aV111FU6dOoWf/MmfxLlz5/C//tf/AgC88MILcF0Xn/vc57B//348++yz+NCHPoRms4lPf/rTL9u1/yBA8byB87+LBRZT/fC5/4r8UFFQEtVA6WXbJ/J28GJipJhPy47lp955VY3fzojVchc4va6g3VWDztLqaiA++WaEwPa/C0WCy7Z3MJYPSbnlhgSLJ2y2S48v5FzcscPFTRPNQDHlTTrE69xX6WAsT0fLSUole5HpiomCXokow4yw8qSjpI9AV83I8SIJZv9zWinijo5Pn0aGZcowP63P/xfvEbs/rN54QseTXZ7giQMVse75+8ff213buviZaxqYLu5LvEaxvlVFQ04rBb6rAUjrMKleRLInqxtWF1lVYZH0ylRhkQiL9cXvkxJhjkBYXQ3T413826ua2FfZG1xr5FuoE2mahDYj1g+rD1ZHsu0yc6ek+mIQrxuI1524nydlfLtbaqpoNY2gvwDCuguO9f8bhovR8Q7GS7x5RySpdCD9nsts3DAeDzcvW1tR0Cuw3U5kgSNx6YgnadCavvZCPohNIsFEcpzsOtNsobMS4CRSfLSh4PnTeTTq8gG91Y0OWIolG2MTHZRLJDFPHruGgKlCnBZ05NULAHjtVBfXjOxIjJjqeg7q9RYmRn8MtVoNlUqld0F8sPfoI6+/C0N67wAqWbFObLzqO3/fd3l4jI6O4lOf+hQ++MEPxvY98sgjuOWWW3Dq1Cns2rVLevyXvvQl/PiP/ziazSb0BF/Vn/rUp/DZz34Wx48f31AZB8iGgTJ8iaCguyjoLvKaErMr7hfiSnoeYkcJhC8zRgyaBMgTBaYg7CUpTxtBsIjFL16vIBwXA2keA5K2i1H1eiGucoW/ZdP29Hd4jEjs+N8yIixDL5OUfgKbZFGZ7QRS0a8qDPQ2jxDRiwjzRE4kwix9r2hoMsiIm4iXgwiLttQMoqrOb+PTE6LGBs7B/oT/WQgwAOwaooRrumihpO9InJHg/wPx9hr85/ibOBgBNo8IbxYJFo+VPROyuuuQ+L1Ievbp/YvfF/H46DndVOIrK6t4bRdjwezFQr1ej/zP5XLI5eTebRgcx8GXvvQlNJtN3HbbbdI0tVoNiqJgeHg4MR9GxJOIMEszOjqaWp4BLhwDMvx9AJmJgki0iGzKOqFDXF7JwR7uYtdQurkEn3/yvs2z8bpUkeZLGEhfJc+/dCwJWeEh2yYSYbJBd0FpixE3MlBJVtDi5YsuoIp+88hiHiFP55dJQoR5EtGr7rKayzDIFg2K2CwinDaA4Pf3UoOBsB6tBPJkJwwowv9u7HixjABw0zg90c6hKWSFqMbLsBlEuF81OIkE90uApeQ34VJlBFjWz7O0ui5vh/wxuu5G1ob0Qpb3w2YRY2eTXas5/vO+c+fOyPZPfOIT+E//6T9Jj3nmmWdw2223odPpYGhoCF/5yldw1VVXxdJ1Oh38wi/8Au6+++5E1Xl5eRm/9mu/hp/4iZ9ILOOxY8fwmc98Br/927+d8aoG2CgGZPgVBFGxSuqke+YjeemzDpFNvRGiYNjsIC/6zs+oLnw/Qz7N2eull66Kpp8v/ltW9xdChHNqqW+yB0QJR78Dn17tV0bqLjYR7vfeSFX3lHrMYle+mUS4HzW4w5m+BvXY1WKmVECcdFldDWbOieUZU075PFwFN07QsPI8srgyjKVNIVybQYQ3kwRvlADz9zvtXgTbbYlZXEJalo4iLFAWssvAzK1eaZidnY0Q1jRV+IorrsCTTz6JtbU1fPnLX8b73/9+fOtb34oQYtu28d73vheu6+IP/uAPpPnU63W89a1vxVVXXYVPfOIT0jTnzp3DW97yFvzYj/0Y/vW//tcbvLoBsmJAhrcQ/OK4rUCvqS4gPtUZKIy2Ss0l9OhLciPYyLTzZkFUNV3Pge12oCuU9Pfyd5yEC72P/ZhIiOkZeplHZIGqaDDUfKAMZyEiWesli4lEL1VYRuoY+iXCMrOIJFvYXi92mVrez8I5IFkVliHNNIIhi0lJmo11Ur4iZPXIfltdDZDYpsoGb11HRdX3eZ4G0UY7NW2KKz+GzSbCm0WCxf466R5HBAnuXiSJEyxN0n2L5N/VYLtEoup//87wVSqVzDbDpmkGC+huvvlmPPLII/jd3/1dfO5znwNAifB73vMenDhxAvfdd58030ajgbe85S2BsmwYcTvoc+fO4Y1vfCNuu+02/OEf/uEFXN0AWTEgw5cQ2kSF7XoobvCuyDrPku6hpCtAgaDTDjOWdZwhQVDj9oCSTl03XOwaoufYVe4RFaoPqIoWBD3IaaXMARCygrgWugpdDV3QsnWC2fJNVu6B+P3JYiLRrypMbDWzuskIXywIQULaJGS1o84y9cwgqwOZspmcxj9PajuPE2FiqzjXMqCrp2OL6PqBLMpdGuntZR6RhCyLDMXzpy02FPebOQeEKCC2mkqmCFGDafikuk9TJfuBbMEikE2R3ygR7lcNTiLBGyXAIgzDRbFko9U0Iv16UEau7nXDBbHVBLOKaPvSdS+yMDVLWfaXo4vtZLbfQP9mRq8EeJ6Hbpd6KmFE+KWXXsL999+PsbGxWPp6vY4777wTuVwOX/3qV5HPxwO9nD17Fm984xtx00034Y/+6I+gqj+YM7BbjQEZvoSwZuko6G4kutJmoOybg3aQbiKxERysehgyHEzk7VT1IE3RkiFQLJXN963owgFxrQsO2pFF8Y4voklOu9Wq8IUg7cW2UfMdmj78LZ8qlptHSMuRYhohWxTGBoD3njFwzYiOnUPtTO2vF1nOogpH0/tlzmgekdUHcyRtghosDkJ03YWueyCcKBs1L4nWMSPOPGQmFWK5NhO9PHjwSFPn04jwhZDgXgRY9ryL56gMU/Gh1QxVxURlOPIcJNc5TecmlkFEx585PDhiYUi/+ES3a7kwnM17N3b7zOtjH/sY7rrrLuzcuRONRgNf/OIX8c1vfhP33HMPCCF497vfjccffxxf+9rX4DgO5ufnAVCPE6ZpotFo4I477kCr1cKf/umfol6vB4v3JiYmoGkazp07h9tvvx27du3Cpz/9aSwuLgbnn5rKbls/QP8YkOEtQJuo8PzgA0ku0myLdcoacqobCW/MQ9Zptzh7R+aqi+9gS7qHjqQTtG1VQhLSVhmHv1mwAkP1cFklHmZT5jqOlalFVKmbNF7h0WHCVAtBFLi0tMztmhhYgqWJuPvxg2c4ILFpcDGghGwhThKYT13bRRA4JUs9yshxUnAToLcqHB6jJAbaEN0fyVbsyyDuZ4EO+EAyfBtnfl+Jq6BFlAiRSHKhJvq4limczNWf3B42Xm5C1J5mEYwIn50dwlkA89MtXDu2iIPDE1JXajJVkrVDBpliLiNbsmeEYauIcFqbNHMOGnUjkQQDUWVd1oekDdpkz5zMNCKrKzV6XDLRkXnxSLsHseO49ssgkmAZ+c1ryd49ANmCQ/mMiaECRokE7jJlfUIkejKiM31MKZZBnFnqZSK3q+ThsrIG3bf75p8Lsd99pWNhYQHve9/7MDc3h2q1ikOHDuGee+7Bm9/8Zpw8eRJf/epXAQDXX3995Lj7778ft99+Ox577DE89NBDABCYWjCcOHECe/bswb333oujR4/i6NGjmJmZiaQZeMG9uBiQ4S3A7zw5BLNUTH1JTI938dZd2Vbt2y7w54fp9Mo/O2DhWEPBkUUdraYeWewyOd3CFWMOljth0A2Adnjttk79h2ZYBNckQKOpB4tk8oUws9mmghYp4vXT637ZQhVmrmlgsaNEyLmhAt+eN3BltR6QxpAQadhWcHDFsI28BlguVea6ThNHam2cbpiRtDQ/zc8ndI/D0rD8d5c72Fu2kdOKOLyqYrFNfZpuL3Vw07gD4lk421wMImHZLs3TCKanDFxe7WAkF++M1iwdjy8ZeHqFEUDqMoqtlOfrBKA+Qo+cy4EQBa/dT0OxikTPdoHlho7lxXyEyO3c04DV1dBpa9ANqtjJcPZsEb+nArdPrwQDLv4Ft7/awYGqGgnK0SSr0BQjtpgJAOZba3hwoYjlLvCuPU2UjTy+etLE6SZdaCJOtU8V6fWP5cMXYNPW8MyqiuOrof2iSJAqw128bpJek0wVnm8pmJ3P0xe20G4Nw434u80XHBRLNghR0WrqaLf04Lw8+BX2kaAFi3l85ikX/2RP1O0SENr+8+2wqKt47VQyAROJTZuoaBEliD7G7x8y5MQhiaT1S4Rl6wD4QQgNFx5dgMUjzU51Ya6EdltHoUAwOt4J0rLFdTzun1OwvXQeuurBUD3k1PACeXtzfvu5loGTDd2/7rBc144SHKhSktywgeP1AgpcxLc0d3YPnzfRJNFZh5LuYV8ZGM6RmFlEzVJQ97vqvEbD0TM0CfXtvtyJEuuxvNx3L4PUFEKNh5k2VZoXAJxsRuueJ8B+bBG4hH7Oz5WQLxIUSzYKEAKOcPfQMFx02jrO2G7EX7QMtksDp8yUgILexbWjq/Sc3KDZ1ArIqaWkLF5R+PznP5+4b8+ePT3J6u23394zzQc+8AF84AMf2EjxBrhADMjwFmD+q3kYZtw2yOiGncbD06Mw3raC105StXWdeIkBHP73SR3zf0vz+ws/yEJ9zcT84SKKDQuOrsLdpWFsooMmcbHUVFGv+V4ibBW1tRw6bR1WO+wEWeepG/RE7CU23wLqa7kgwpGuuygUCYolglbTwDfmNOQL9DpummgFwTbYy54F/QCA/RUPUwXgu8dzePqYFpyPkbprZrqomlR1YVG58n643zZRcawBPHE6rEcz50DXXdRrZkB2DL/8fL7T4wpuGDNwcMSC7ar43gINaPFP9yio2Qs4vKri8aUiDq+FhBYATDUMj12zCrh5og1AC9TPF1ZNfHdBweFnxqCedkAMFZ2SgZM7m8A1Dewrh8R8rg08t2DgxNEq1NO0vr5lq7jtChqohA9sYrlAq0kHK+05DRpx4Y7TxUmrK7lgUKLrbnC9QPSlNjufx5/Mh21NHCTdOOngxnEbe8s2WoQOZIr6UDSqGmng4fMF3Hu2hMcfnQCxVcy9fgG3THj4s2+Por4SNyHYeVkD5X0tNG0tJFW+Mly3gIW5ItZeiB/n6Cquer2N5W7UIwGrmzM1FQtzRczPloLnxs7F1UbWjvNFgkq1i0KRYHmxgE5bD9o2EJJgRvRkZG1lKY8/XQqfCdaeWFqWh264uGMHYLtdwUe4GLI7JGBMjWyRcKBqqkBRp4Qrp7kxBZ3/FtGPIlzSPYyY9LlkaryhUnMqprgH/Q23+CpJDRZ/19dyKFcsVAsu2LS7oVISznyX1/0lBt+ZN4LzA5RcsjQGt91QPSx2FDy8qOD8HB3M8jNbh/fXccOYjqtGbCy2dbxQUwKSOpG3E+2Cn1818PBZA62mHlzH6HgHl424aBEPhqrF7gFAo8CxuivpHspGGPZ+uROKBwANejFVdGCqyTMfPEwVKBv8gNAL0tJjaXl0nSq8sokr1v4JUVE7aQJdoAMdxZIdG0gG9eHf43Zbp3lPdDBWJsG9KwmDbyay/J/TOm6d8LBrqBkbdFTMNvJaG6ZW6DnzNMAALycGZHgLYHQdGBk6gueODuHIKTcgcoQoMfWPn+bViIuVbxh4aXoYY3NNVNABMVRoxIV23MWxuQpmd/pKG7fIgicFDC6hRIKZPwDAwvm8VH0kNlXb+H3zbRqWlaFJ6MuWV4SvHHbQdVSYOQeddpzIHFnUcXzVxfGJIqYK4XHHGsAjxwtB2ZIU0TRYLvDCqomHFsNofH/+ooq1PfH7wqvK7PdyF/jCkWKEdBw9WsH6UR2AB/71QoiKF5c1PLcQKmurKzmsH9Wh2+H55g8X8UTBiS5+81/wS3MF5Js2NGbD11YDIgyEtoJJyma9RlXbYslGwVfyI6YAs8DjO9dxxZgRIQjDphVc41yrhAceG0OnFe0mHl6Mqpz8oG7+cBHzh4t4/tA6Kr5SR4gaDNY0ImdzGnHx4v3DWLm2EykrD5GMyUgxIwadlo5OS8dQJVzYyQibbrhBXjLfq8n+WOnzyLsRY7j3LJ0hCcqmRr950mOoQIsgUBcBSgLDdAoASoTn23HCxJvh5LXwWEbQRDACJrpJlJnz5HUAxN/H9ROsDfEqcaTtcZkVSzYmt3Uwlg/VTUZ4WVl3lej18ySfZcFIprhdBl0P7+V8W8F824yQtnNNHeeaesR0QRbxEQjbx8JcEQtzwPHpFgo5N0jLp5mphgdaLj03P6CNlNFwUdLpQEdGfsVtZQMYNuMmRCFCr0SBeCGYQRRLNgpFAl330GoaaNX1oI/iZ1HSPIOUKzaMKkHFDAk/wNWfmb4GouuqONfSADgYNtfQabeSE2cAsT0Qd/NMBYgzMDsYIMSADF8iGJtrAnNUR7H8D+CB99HAv/QZSdKIS4/1odtu8GLKtQlwhKpuJuiblxgqXACe7sFAssJWX8uhvpbzySc9F11ZHiqMRqAiK/je0UJEOeNVM/Yy+4czOpoEgQqThMNrCg6v0d8rS3m0W3pEAe0Xyw0d/9gOFW/+/P/rOS+i9MkGCktNFY88VcV63QzIFiNiGuLpVxYLWJorRNMlkMBTxyvBi4zP25DY2Il23cRWgw9/PMvDKWkoluh9l738Thyt4sTR5GnviKsxP+//e/9kahnZdc49XsQcitF9fl3pKW/Q1cfNCLESkUfIIB1dDcrCwNoyK+86F7KWJw78DIiuuxGCy7axNs6n58HSsf3fXVC4WQVO7dTDbQAliLz6KYIRYkaGVi0lcqzsOEYyeTLGlFhD9WBwquRYjqqYDKJqW8p7GANTUV1YrovlEkGDe27YsyIr/1ieJ7NKUGaAEilW1ooRJcTi/iTIbF6ff24Ez4Pek2LJxu7L6tg1BJzvJNvgM/vmpOAVZ2eHIs8cf86F8Tb27Fn3r1MJ8t1q3+t799cARH0J67qHynDXFy0MVKrdoB9g/TJPiNnxQHiduuGiMtzFriEvlfCyxdlpHpCIq2CuZWKtMVCGB7h0MSDDLyN0Eu0ciJ7+FpC99AFKQBgxAKKEWNzP9vHbjK4DO6dJ1WEgThh4N0oiZNPNG8VGXiwiSWcEPa3MESLEXTuvUF0sMFMVNeVJZOQx7Rp48O0EkBNh2YLJXkRYljeQTPTTSG8ako4TSTI7L9/2RbWYtWlAIMEbJMSiOiwSYh5ZFlMCcvK35o+CV63eHhcY8S7pHup+elEFZmmylIelL+lesOjLVBWUdBLkzUg2nzczcVjuRgm8DHW7N+mNztD073mibsXr4eWAoVLiz/9PezSy9DmG6uGyETpQAYAOIRGlm+VfLNkwc0408IbE5h4I27yuU2V5n2/WxvIT8y/pXjB5EA7SttaX/gADbBYuga7i+x86caCrvUmiSI6BZILMCCyDSAxEQiyDSKIj52Uv/wRVDEBP5YzfJuvgI/sFEk3s0M45CwpFEtgN9wIzQdlM9KrrJOSbNhxdhePf515KMq8K89+iYs22ycKwphHhJBIs5p1Uxo0QYBmplYHPWxzsicfzzwe7DjbQAxBr2xdCiHkwAscPpNiiNQARlZRvMuLz0bDji6r4Y4HeZPJiD+RE1VeEOJgUBwf8NZpqb1OJtCBCjPCxtl5fy4GU7MCcIY2A0nuoRdzH8eYXFwIz52DXkIeqmU4SRVvizUKWaxCV8b37ayjkXOwr0/8bHNNuOpxNNpNwBmYSA3DY2jmdAfqGTpzgI8LoOqkEhScPvbazfJK8iPXya8vb8fLki3/59cMX2aK4LOqwrnsolrKHyaNmHEwx5hbUcC+OpBcAUxkZ0epF4NKQaxPotksXyCUUn90rmSKbBpGoprnQ60WExXamETeWv267UiLM0qZ9sqQVwc4ntmU+rVjuiLspyTVv1HezOEDhkbRAioEntPzzYblAc5MHbOL5LgaSCJ1sOx/cIc0PbxLSTKdWV3JYWcqj0UcsoKRB/0Zh5hxMVQl2cc4UNjhmToVop3yh5HWm6mJ/xUsd6GwEF+PaBxhgszBonq8gpJFiHv0SYhGMNKQRUd52mCGLiQRv4yqCkejAFtZf2dwLxZIdeLkwuGnwpHPkCyRW1ogPVeZ5wYVv42z0pRJlcEucSvR6oZcqvNlEWCwzg4yQXui1JSELMU4q54UQYrGdh6GdFWk6QL7oSSQsvYgBT5iTfsv+i7gQQmO7VL1l0+ObrRDKgmGI52DT8y3f7lcWbU1Eq2mg1TRQW8uh1lYzLRy8GNB1F9NFz18wmTyw2UqS2EtcIETFcgeYKgC1HiY6F0PJHmCAlwsDM4kthNbn28RJ6CV14sTMJ2RmEzKTCZlpBNsm5sEQTg/LbVazmkgwYhlJtwHPELJzddp6LFIWAz+dHbrJ6n0vOm3qHqlRz+Z9SR2UAABRPUlEQVSPGZB7OJCBvwdZ1eU0k5XEY4gaTCGz/3x+/DeQToR5yAhwGjZqPywzP+HPldVWXjSbEO2I00wmeplLRMqbYjvMAiaI4AltFmIkpumXTGVVXoFQne5HYZUFjxAX0WVpDsxUom77/ns7StCO+UV0SSYNZs7p+bxsljlEkB9XLkJUnF53AVBCPBV34R2A9z6y2eQ4aaYj6bpPnhzCWJ66Wzw0Erp1SwIdzKT345utMg8wwGZjoAxvATTi9k2EAUqek46TqcRpU+kyMrJRgiIjVqLvVSBuItHuqlKXajLohotCgWRaqMdcvRGiJPrQTEOSqQQAdNpa4KaMvVjTTCX6UUOJoYIYKpxS9rnrrKqwo6upi/I2SoR7qbBiuiTziazolU+SWi0rez8KcT9IU4fTkGQiwf6PmF7Mi4Ts2KQ8GET1eM1SMi3MA+gitOVOfLtMFeyHZMvySTOVWO4oWGqm358sM1MyJT2rWYyMWKcRV6urYW4pF/hZlxFC/j6O5ehCu+ImCAQbBbFVrCwVcORcrmf0ua0Gsb1N/wwwAMOADL8C0IsU80hT89K2J9kO9yIKhsTvb5IqzC+IS1o8x7YXSwSV4WxyFLMvzrKArl/Ck8VMQ0RWQuzoNEjHRo9PzbukIV+M+oZNWnwHyImwjGj2Kmcv8pvFhjjt+tNMM8R04jn5awPSCXG/5hI8+HoVSSPvco39Z+C3j+XoRzw2CbwbtzQPCg2bEtyGld3bheX2PyXOB5DhkRw0JJ2cN4lcyZTZDWeZ9QGifdBGFtRmXaDYzEgqDTXuoiyrSizWa7/9nFi3Z2eH+jo+DfpAFR7gFYCBmcQrCJrtSk0nRLMJfko4zWMEIPc6YXQd6VS0DQW2H362DQ12ToNZ4MiS75PYzDmYnG7h1FwxmGpuNQ10Wjq2TTdTF76sLOWxvFgICDI7jr248gWCsYk2TI4oLC8WsF436fkNF2Pj7cT8gdD8IfrCcEGIDt4VWxbYOY369NXVDZFYXr3td5Fckm2yo6tB6FWgt/KVRIR5JKmtsv0iNlIv+WbU3sXOabF2zBYfylwOtspm6JJOMBHinw+zZiPXJpG8WXoLCjolA5VRS2ouAYRtD6Dtf8euRhBshJHNE7NF1NZyuOrqVZiqgrkWDWgTXIdOfV3fssPGVCH0C1zzg2g8fayI0fEOrp2g13l6XcHp8/QBYD69dcPFodEo6ZhrAcsr+Zgf7ZJOSWqjSUN+G/5zMzpOJeD6WnhMfc1EbS0HM+dgZLSL1ZXwwWMREKOR/TzcsIvmw7xoHF9VsbKUD9KNjndw5bCHZ8/ksLqSC8jrgcvWA7+2aSSw3dKxslSIRF9j90iGI+dy6LS1IKANbxpBXY7JB4l8n8OD2CrOz5VgGC62Tbci4ZgBBL7MWdh7M+cgr8Xtt3gPEsfqCk6rQMUEAAUHq+G9rNvA+Y6ChhV1bTZVjGUJADg/R9sbf12hyBAG4ekHp5sKTq+HvpnzBYJ9Feoh49kzOTx7BnhhVxhx8WDVw75qt+/zDDDAy4UBGd4CeO804RXpC/Ps6TJmHl6GnkIQlqeGoNwoIb2c4rGyVMD0E6vhPokdMY/2FTnYiwqKvvFfGklWhhXkZgkN2iEBbxcrEpHVbUVgmjvvnIb8+S5Gul0sT5dQ2Ec4Wz+uw18zsTBXgjlno9gIO9GC7qKALoihojZeQF5id0eIiuISPcaaNiJkRUSraQShpRmi9qB0G3uxshdHfS1qKgEDkZcxg1indk5DsUKwd38dRx4Ypnn4JO2mNy3BVIHvfm8ySAsAe25sYGy0i0ZTx3OPj2ForYux/R3s2EXt+FaW8jh1rBo5z8yhdYyOd0BsFYWcGwkAwPvWrddMnD1dTgzUAcjJ6/pwDkbXCdpPUHcSEkwMFY2pAoYqFuorJrbNNmJpskAnTjAjwto3T4rzTRu5th19lhoA8Qlvp2SgW9ClNvM8IdZtF0NrXeTa9ObzA852yURrzcTKeAGjE9FB1sJcCcZxG9Nra8Gx5+cqWL6sgJ17GlhezGN+toRtsw2Mr9Xw4Mokrr5xGafuG8K22XqQj2WoaOka/vLGKg5dt4zXTVI18UhNwXcenMDEM3UcG6/g7JUu9u+vo6RTJfPEi9Ug4M7om2xglJLQ+RYlRAtzJahL9J4GA9qchqtvXMZUleDBx8dQXWpjuZzH2P7QFqJRN3B+bhhmzUapbqHcbKE2XgBeS/evH9UxyZWf1T7RNeCtocI6X9Mxe7IMa1ZBZaWDesGEd0BDpWrh8JqL89/KYXipFRz77dlJ7L2ihqt2dbAtT/sGtnBvLA8ABMtMqbdVlOfbwfFr40XUyiaMCQ+VahdjEx3kCwTDJlD371Vhtgvddv2wLf5MAVwo/v1mczTiwKheMoNBP//Mzx4vo7aWQ3W4GwwkWk0DnbYWC3nfmK5hIhz/xGC5wJHjQzAMF4f2ySO11dp0UGHbKsoVG1PFZLK5XjdRnm8HfXirbKJb0IFS4iFSzDZpEKSXDo+gPafBKWnYNt0M+iKAtsW5x4uYfbgEc6eH669dBfzuaeB3eIBXCgZkeAvwE69aR0tXcP+cgrOny6lpl6eGsOfd67hlInRoz8NQaejj0+vreNQYw8TDtZ7nb1xWwJUHl/H84mhqOo24sKoGdLgRIixTLGU2yzpxUDhhYa1RxOH6GMrzbWxfWgv2W1UDC3OlSHjfwA53ycHEXB0ieOK9bbaBejOPBVKKRMVjZWcvscDGV0ij627gGYIp2DLQKVMavW3bdCtQktlK9mARnuGi09JhI1SHmf2vCiBfJLj5hmW8dtLDVSNt3LfDxjePFLD4EH0rmip7yVNcfvUabtjVwU3jBCcbOv6x60aU41smPAybwPxoG4e3dXDy5BDmZ8O321QRODTioEVo4AP4EeKCKXTNwfxIB5WqhYW5Is7P9X4zdkoGxqfbuGLnGghRcew7lcRBEgAsT5cwtbOJ/bsWMGzS6H3Pd0cxcj45FGsWRZw3E+LT80SYT+MQBxrRYuRdtnh0aK2TODgtNC10Czq0poMlEo7E2H0ZarehEyeok1yboNEu4KXDIwAoYR9a6yDXJhha62L2ZBnVpVa0Dn2OfX6xjOWVHP6+6QQhvL01D7m2jWJDw9paCQvn8wEJ3720HAyA575XwOMlGytLeZw9XUZ5vo0CQrLErlsjLuprdGBOBwDUvd/6MzoO18botZ12UEQXGnGRb9rQiYOx+XWcfHwYlZUOti+tSetL0114MPHI8QKWFwuwZpUIae4WdBqau2Zi8aE8tvnPu05c5EDrp1E38dgLYaPnlWdd94Kw5tNz4QCE1Xu3oMNeVHG+VQqOPSuYC/AzDr1mzxxdhW7TmQcLGlSdDh75gVSnraNYsiMmYEyBJjYddNVOmvhWoYSjO6LPAOvbLZcuWmP91kNtHcv7w3qz3XDGDKD92epKDmf88zLzMBZNrz2nYXp2za9bvw/oOlgfzmFprgCz4MYGw+Ez5QV9WJMAR+sK6j6xz7VtoE2wvqTjmaUJrOyig1xi03rKtQnwHPDw7Chmb2zhsu1KxLOKldVeJAE28WBvop/hzcxrgFc+FM/zBi3iIqFer6NareI7J34fQ2XakT2znMM3z2gRrwqMlDHPBXv2rON1k56wAC28TYsdBaebCr7z2EigcPKqccQG199+08F1PPZC2OHy+3iyuLJUQPl4O6YOJhEWmau3JPSKsJcE3jMDe2kxpY9/yTu6GjH54NUwBlWnJJa5V4ss+ONILh9a2upqWJgrxsgwELXNm5xu4g1XhqGxGa4cdnDjhIO8NoRj9Qa+N59DkwD/6vIWGjbwV8dLwfTniOnhxnGCl2o6nlsNFZXbp10M5xy0iYLzbQ3PripBlLKSDtww5mF/1YbtKjjX1H0yTMEW6ZgqMNem0+ztLi33yhJl48wWVmqD6U+h08U1ND2bhhXb3eR0C1NVEtitzreAx743ibG5plRxFtuV2J6SbeUv3K5aBiKQIqYS821XbI9DtQ6KdSuSXoRo4iS7rm4hJIFiWr4cfB3x5eqUDBBDjZmHiEonI8BAnAjyx9CBQjei0DPI6p/oKroFI5gx4sspu34xD7Huk5B0biBab2J/I5vJYpDVAdsuq0d2POtPgLinGmY+ozV9db6kRdNxoe55FRkI+ylx0R7fZ7eaBtw5L3Y/o4PFaFthbQRA5BgerbKJ9WH6nuDzYgM40YSO/RfzY7Mywfm7Ldz3uX+BWq2GSqWCrGDv0b/Z8yaU1Pgai42i6dp458lv9F2eAb4/MVCGtwA5xUVOpZ3CzRNt3DwBdN14x2+7ClY6Gla7GudqJzpWyWku4Nvtvuq61YB0RBfihMeEC9gU7Ni1jrF2J+hQ+Y6WeXtgaqFoA8teHCJ54V84vYhxv+Gn09yT8WGlZdsB+ZS4SxDOh3IwjHidBOXkFteILzxml6vrlDDeOE5wnbjyyb9fmmLgQHUUB6qA49nQlBIMtY5/uX89NpW4a6iLH9nBlU/10CIqljq08HeUwnssrj4PleBwG2sH0wVguuDB8CMizk80MdcKzy22Jz7kLuDAmGxizVIw12qh3Q1tEQ01eXEYU1H5gYsMWYjwxSLBQDoZY2UjuhaZrcg37Ug507zG9PIow18b/5voanBs0roBIFwomBhV0uAUvIsAnbhA2068j/z1y+7jhdxbnbiRemLn4+uKv4dA9rUVshD2PET3fGyQOFShdswrKNB+hy1KTli3zrcrl9B0LE9pv2SrKLS7ge18vE4SBIyUoEsAgHJ83UjSmgCxLfHHsH3BdVkSv5cDDHCJYECGtxD8qloWnpnZVK1ZOtpERddRY+SGEuAQpk88TH9mTkZ+6Xb+twdDVUB0N0Jg+OPEZWeyRWFJpBjYuPIrQkaCxZeQuOgvaZpTRBCStxASWpEI86ow/z/JZ2nUnZwHQ00xDvShKQZURYOqaP4x8QkaTeHLH/pqLXDtw4i0qfB3xYiHw+V9mbJjpwoKLNcL/MnKSXCUYNN9CnTDDbZHoqrxiwL97bximbTYUFQ9HUONEUiiqxeFEMuIsEg6Ze2bN5G4lLDR8OCbja0c0DBCLJ4/afCQmI9kUXGQn0+IUwfq4oyb4cLKsCA3cLEoaU6i/+r6Wg5WW0WK6+LY82TntMhzmOZtaKORTHn0uyC4FwgByCZ6priI4+oBXoG4NHrM73PoqhchKoz88ESGuAragnufnOZGiDDLhzpmj+bBCDLNP0peeIUwiQizfbrhxqYJZaTSzmk9A0v0i6Q8+yHCspcYy5O3vyWE2vX1JsLRF1vStmCfpLNmpFf8yKApavAJtqk6NL/wLH/+3ovta8hwUOV81NL04jdNX9S9mAsvETKlmYdImEWkBT7oGZxEkinR1cxT6lmwkbzYlPtG/IdvJS4kXPjFQL9EOM2tZNb8047P4ooSSPeWsllIUoB5MLM4b82LeVxJPU7XAhvovsp0iRDhAQa42Bgow1sAXaL8JUXkEVVgkVz1E8FKnCY31bhv0SQiwysIQPIUN09m+u0A+4nSxpcrKU0ve2EGPkoU+98vRLLML/RJIro8VN90QlU0QQGm0CQRMwyOCAOytkH/V0wXtuvBdvWI/1GZ6U1OczGRV9FxaDAGfn+SH1V+4CVCZrbDILYpBt6WU1SzALlCTNNemEqcRoKzqsIX02xjIxDt5hleDqV4o4GGsmxPU3tlCnF0f7rnnch5E0wjIt5IUkyssoL3+NILbDGbRrIHtElThRPXg2yACKetLfH6WF8ywABbjQEZ3iIkkV9NUQHVFUwo4mnFaG4yLxMMPAlu+OLBqu+zVDatLaqGDDLykmb3uVlKcb8kWNyfZB4BpL+4+lGF08CIbhqIRxdcETf0diAjwCo02C5dDddiiyVTBlZDOi1r11XRJgpWfVdUSUQYAEqGg4qho0ni5jaiKiy2O9lgKmpqIXerlOaXuV9CzJCVmPZSgnsRYdbOia4hB5JYtpcbSc9RopmK5Bmzc/ReZL3GtHuQtq/f+uvX/KHf9GmmElmQJRpe5Hx6nAzzYcNFMBvmpAFmJK0e99HdszybRIT7WWA9wAAvJwZkeAvACIhMAeRRMV20OFOJeIjWdJIsWzAF0MVzvIcpGRHO69SVjm64kZeluPKYoddiqH6R1llvlAjLzCMYxEWESUSYLYjht8lUYYakQQ8QVYwdl3k7dWIkWEamO46HJommixBbVULuVblHEtH0hu4L022UCMsin4nHJNkOiyv9+yHE4TEXpn7KTTLkRJj97hK976n8rOem579wRVd8ProFPVAVez2/zMNFPyYhvZRZERutuzSC2486zKu8/SCtX+kF2WDczDmBxxoeor1wvkBQL5lwdDXmOjD1nBnrmQWh4b2b9Dp+K4iw1fU2NZqdNXCtNgCHARneAshsQCNwCYZNAuIqsN2oqwORXDGTC0PlPAAkkGBmO+x7fUo2p5C0AlE96kWKeWQhyFmUCpkyk2Yf3IsI86ow8wIBpBPhMI2bGsmNT5vFTEJTDHSdZqqKzOfT5hbgxDyMqHFyS4MKaLH0aURYOkgSiDBrU4YqD60rLsBjyBKhbzMI8UaRhQjHjtFVEF2jCvEWLaLLqm6mLSgNybCcSPHH8mSYR78mKklpL/RebmSBXGp+PSJ2imk2w0RiIyhWCPXXvrF4NgFEN2zMW4rRdVKV8TQziyQSvFnCyQADXAwMyPAWgF8ABQAnG3TBHMOwSb1JMB+xtgvsr4ZkbbGto2aF6Vl4TlMFpgrJwTmSIFPymB2orrtBRCmZ+st3kElKwYUs2knqgPtZRJeFCDMb315E2FABIvHhLFeFQ2KahRADwEo3GkXKUD3kNQU5LYy1StuOg7qloWLS84tKsKiYrBPNH1whcNtGCWxIkLsOJcdxe3b6LSPCImRtSbQ5FolCmmeJrIQYuHAixeclQkaEZX5pOyWjr4VM/ZRhM5C0oJTVeZZn9VJbhCciKyG+UOKcZjoRRtWk9cqHebbaatS/MbTAuwQfJZKlj5DLrm/vy7lZY+fhn6s0Dy19XSP3rPHX22vBXBrYczqgwgNcyhiQ4S3AwwsG3lzRcL5t4anlAh5eVAK3V7dMeBgeI/jrkyZOn6fL+l93WSdGbo42FDx/Oh9EG2o1DZg5Bx+7YzlIQ33RKlj0p9oMlRKaigmUdC9GcgCgw/W7UwXAunoVJ0tDIERF5zA9gL0M3V3hgbxtGwtzyqNZMdEpUZWbRbqqj0ZdjiW9kHkn7uIUr9gRy47ViBucG5CrNvlCeOEHtnd9H7khiVu1FCz7EWpnqi6AFs7ODtH8ElyyAaAu8pw6SvpI7Jw8VEWDrppY6tg41aBlNVRgV9nCzhKJkmkPeKmWx2JHwUxJwa6hUNGT2Q8fq+dwskHbQEPC02iVssGVhoPDBIYKjOWAoh7mA4RK8rqtwXaBiQKBoeqwXS8IFGKqCFyzyc9FIZrf9HK1xsCCBTCVkk/LwvH2Isa8opxGiJanhtAaz2H6hTUAoCHAr6THLc0VsG22IVddeyjWswdG0S3o2P/U+dhxSSC6itkDo9h5ZAWOoaLtT40H+yXHilPbaQtJe4Hln0gAdRW18aJ0/9jcelDmJKxfXcDubywG/198zXTsWS3MdrH9+BoAoD5awNn9wxiba0bCWYtYGy+iPpoPjhOxPDWE9eFcMFgemQ0DwqxuKwYDsqTQ9axvURGGZ2YEdt02kS8SGu2yrtMIhHY3Ypoim0UghopO1YBuxPfn2iSw9SYlLUaCxb6X7/tY2fNNOxLKnE/LD+aIrqE2XkCxYQXnZJCJH62yCa1Ay2x0HTRuKQaBikb+8QJl6wEG2EIMyPAW4Lk1BbtrLs41C3hiWcGR40OBCgDUYagFHDlVxIIf8GJ6vIuKQV8ihgqcbgJHzuVw4sVq0OlqxEW9VMBiW8ebZvyAEp4D4llYardxrmVgraujpAPXjrjYVY5Oidqu4iuHSmS6e6ak4MxYA195rAxi0OahTivYu7+GPWMEpkr913ZIOE3+ICZQmKUKZ7egQ51WMD3dBLFVek1r/sKdkoYduxpBtLNAOelqQQdKtymwF5Wg87WqtHN3STz6EQ9x6s72zQR4J/fEVjE53cT0eBdHjg9hbKIDUwUOVj3sq3bRJipONQys+tU1lgdes43gz5d7+w4GgBZRQFwLxLVS1WFdMaFrJgp6A/Pt0CewoRowVA/DZviyP72ewws1SjZLuobJohoow/wMg656aBMVi20agU4M5CGDoXpY6+qYKBAUdBfDZvRFTFwFix3j/9/euQfJUd33/tuvee5bu9Jq0eqBkYVAiIdkQGAMGCIggJ1rOxc7lIJvHBxSQUCRmwqQXCBUpUSqEid2ysjEdmzKpqKUC4hJQiiEgwW5CPDVwwjLlh2DkECvlbTP2Xn049w/ek7P6Z7u2Vk9VoL5fqq2NOo+033O6Z7u7/md3/n9UHb9xXA5U2BWpgxLT8H2NCX1c+14QHK0iSThG/UfBuqnX8tZE9m5LqxqKLijQ9kgQ1pjUWlg/9ldGHzrSGIZWc6xdNx2wwE8ac1G3w7/GnT3lHHt4hJS+ih+/J6Bn77Rh1n7/UyD2kU6xss55H9UjhXE+87sQvZCD79xzgiOlIDtc2fhjOf9ekxlpRxb3QZ7f+0eKmdNTLangsxnXoxnhjoboi7Aip5pOtbeUt4KFtLFCf7x/ixmzy0Eg8O9b7dj1v6J4DxjPZlaDN0qpuVh8VnDqAxmYX6nFuH80ouHcON8G/sKJp7blcGhvf7FHuvJ4uq7S2i3DuCXoxp+8tNZyPy0HJwnygXXH8WWF3sx+Mujsft75xZx1lljOHI0jaN7/efL8Owc5i2fwJGhLIr743+7rqlj8MxxvL+nHYDfx5mCHTyryvCfdY7tC9C4rG1x938z+11Tx0TaCAwRlaKOrFK2nDXrMnQCQH6sEo7fbepBlrlU1kPhcAodR0tBmYmuNCZ700HmPFWcR+vmWDomutKYvbeamtnRccWKYVwzYONHKyy89Pos9P/f4di+nC6OI+BoJzDOMJPvEgWK4RngaBl48r/jLSQ7f9mBX77thdIkv/ZGH/bOHw8eegf35+um2i64/ihmZYBr5xnIm93whAsPLmyvhO70CMqei46UB8fTMDdXQd6y4HoOXOFVBbAWCKmypyviGFjY7vjpm+FbQrM5B/2dDs5q9x8eFa9mUS44QE9vEWNWOqhvX28BPb0lHNrvT/VP9qbhOUDK8pDJuujoqlSFr39+dYpRCuQxO40yaumPZZlmX+LRwPFAzbIxdDiD97Jt0Lo0XLt8HEu7XJzZUUZPOg0PLrJmGZaext6C39bhsoFM1sGCM8caLjTrUC5x0U22XKlIX2B5rLfHNewtpNGfTQeDjQNVrZA3fcts0dFRVOSNah0uOnps5IhGdKUdzM1V0JU2oT4SXM/BcNk/TpeyOr4r5WAsbWCkbMDSNbRbQLsVPpdsT8UTmNVbxEE7Xxc2ShVzSSGZ5DWsdFro6Suiu8dX3h1d/r/vO10N2yatXj19RRzpbwvti7Noer0GMgaweOkwxuamsGTuCFafIXB5/yQOFA2M2WlMnjsCZ4mG4qSJOXMncNU8F990en0fzghtHRV89MwxnNft/+4q3jDeGJsbCI0k7LSB8weHcHQoi9HeXGhfKhueIk8Mx9Ugc61A2IqcFJZQN4Fczp/VmWxP1UUvqMy1sGD+KHp6SygVTRwZyqCjpxJYjCfbU7D6BLKmP7pUoywc3J/DGYMTcO5I4eD+HD69/CBunF/CYN7EBbNczM4W8K89Zfz3f3fh+otGcd28IsqejryZRuHcYWwt9uHwovY6a3KlqKOvUIHVJ/B2ui+0TzeB2XML+OiZE7hwlsB/Z8r4j8EuGAUXVp/AnNkl5PIODqZzGBtRUtdbHuwhDYbjYe/b7TWjBOqts2JEBFZgOciLhqmME7yN/M7lNWkbKcMp6LBNHW3FcnDtVBEcfUb61zkDx9IDwWynDeQ6HMzqLcLu1XH0cB5jhzPIj1XQNlLGZG86GMBMVDMtujGLAyudFi5ddRAHD2Xg2AY+s/QwrhooYzBvYqTs4cB5R/B+p/+7sycB/CCxiYScUjQhODw6Wcic6p/+/vegWbUXsa28vFTraHQlsXzJxVmA/vfnDuCG+UYwHa+KYcerBP93PQeWng4+q2IY8C1/YTHsb7c9YPe4iZJbswDL5AxRMXygms634vll1fSkavscR0Mu7wT/99uvBe1ULcbSSqy+6OP6IylofjOhgeZ9ehL/52NjaLfqrb4eXBwuutg3aaFgNzfFnLdcDORs9Oca5YUK84sRG1sP+6ql0Ux/uwX0ZcKiNA7bA/YVzJC1dioumW3jrE5Rt5hP3jNRSq7A/skUxirJAxMp0IeKJt4Y0rD/cE1YOAkuFY1irHZ0hWc2ZrU3t2Ct4ABHD2eait8KAD29JfzPxRX0ZPx+HshVkDP93+6ByWIojfqRkoGhoomBvIN9BROFapXirOKzs/7gdOewhT2FcHQXSZyh+O19mcAKCfh9lMkd22I91T81TrjHuxM5mNVXrItoIOnpLQWfjx7O4MiQf++XimbVJ9//TjTUmBp14X+sGMeKvjIWtNVnf/GEi70FB3nTxUjFr/Oe8RQmq10Q12d7Cr7bTqlaJrpAWA7q5azbriNG4HbWnneC6zdarPWXbJ86Owc0SC1+EkPtqX68jRYZR2PAu3kjSBEtyWadoH3FSRNHD2chRkTIkh+NgazeBxetHMLvn11C3nTheBoG8v5vxfEq2FsI36cT40VcsehOjI6OoqOjo+n2yvfo97o/iZx24ux3k8LBmuH/nHZ9yIcTWoZnCNW6aVleIPxUa2jcQ8ex9WCqMyQCdWDncAkfCxs+YGgWoFfFsXBhGil44thC3MzLuyi7ekggy2d8xvAFcUoH+nOiul+rulBUp7tNDxWv+jnrBO1yIqlJo0kwgPBCtWh56fbgOeEFV81ELJCMn5nFvM4JtFuZWHcGHQZ6sxUANiaiU4MJ7gdZ00N3enpjS1MXQV82mjXPm0BX2p3S2mt7WigD4VTvZEv36zBSdtCbCc9e6DBgGrVtZdf3z5XW7I7UFNEhqv00KwMUusLqvFlx2oj2FNCdUjM71pcpOICll1AsN3e+3ryHrCnQZrrVQU2t/fJFLzkjX8Thoi+Qs02G1FrY7iClmxhTfLmjmf3GbWD/pIaRCjA+lgqs4JWygUb5d6O/kyih8FwJgjoaGiyXt5HLO8hk48tH+1y6O2WyTnyGRuX4Z8yfgKUDizsdLGrP1ZUFfN/6Re0pTNijcDz/eB/pbDzS606bOFSMH8DW1VcHOrMeOrPRhaz+vSDJmIDTWUGuw4E9VPv9TxWz+USJ4kaJVJIyhEpSWQ/IamjLVtBZvZfCkXL831B7hw3H0TGGNFC9P+PuGfUantUhcEZeQ8boCp0/ZWTxkYi+HGsi/johpwqK4RlEFbvSv8629bqwXao4VD+rfoJvDGnIDKdwdtdhtFu9066LpYtYn9K47UllJdKPWJIxEVhl1H1qW+RLM3Se6iAhTgDHIfsjGoEASF6gJV8gV1w6hJSOhqmRdWHA1J1AgMo+aBTr0tDNpiNJADVXhqRUx7Vyftmp4mxaulaXoKURGQMYq+goOin0pF2YevKCJ0M3UbBtTDhmU/E+9xWswMUjKs6bCUXVSDBbevUeS8W3UfZnwfHvwaKyb6pz/2rURNHRMJBvfFEyRhs6UkcBuBgqWUrUjuS+kQOVuOutut2MVICxkXTotxAVl9HfT7Mxbo+HpPvJj0Qj0N1TxvDRsIU3rl6W5eHiPj9l+NJub8rfTMbIwkiXUXIFyhU9Nq52s/WN/j7UMIHR8qpVWd43UZ92VYzG+dQ2QhXL00nyMZUAlkhDSibrIJe3Y0UwEDY+dHSV61xEat/xQt+x9Pi46IZW76MTt206ODZ9hsnJg2J4BjBNAdMUwfRwnCiWDyPVSpwkiAHgldf6kMk6+ET/IVw59wTVUxd1Vs+04aHsRqy2EfHb7L7gPKo1XOmXumNVBbMsL/shzpIsBXEzEQvERw2snmf7D3ItnSyGNSMkbKayyvov6GRxnfSdpMVmaj9GUzEn4TQprlX2FUzkTGC8rYBZmcYuHr7leeqXSNHRcaDoWzhVkt73cQa0RqJVzsAWHC0ILxhHUni3pDrZHvCzYQ3jtoEzO8bRn+tK/B4A5My2ajbB+pTrcYLN0vXYDJJxdSlVrZuqAFEHiY2ynDWKiR2l0XGsqqtDnEU1irRgl4pGyBVMPVaUlX1F5M2pB/NZ04LuFlByCwlxtX0cT6tLNgMkiWI/jGF0f9StQm2rei3iFno2WtQbx/EKYLUeKtGwkrm8jWxg2Y3496tuE7maG5t0dQmOExNiEpAp5RsL3UZGB0JOByiGZwArJUfd/kMoThRLktwmomUdW0cJZkN/Vl0zYl0kprL0NmyLHhYuSckXovviyqnWYSlwm7UOqy4kUbfWRoIYALq7yuhI+fF1Gz3IHVRg6aJpK5Sp+36307GAxL24ZT9FBYfZRF1s3RerKX1611fGI25Ud98C5DTVH+oCP9tLFn8V5f44VpKOLY+ruo00S8XzhdVU19IwLDhOpWGfxKVab1SfjFHbr84gAfFW1rjfyXTTAUdRz2NayQM2tR1d1UmFUlcFR4Z8P/w4ASyfZSm93vVEEuu6VB2c2rGZOMPuMkniN45mMieqiY6iz5yob65KkoBNEsnTifIxlQgGGg8C49LMd3RW08Qr6z3U/er31G0UuuSDDsXwDCEfIL6ls/ZQdhzNX2giw4hVLaH+vngrMeAvXEjpwKr+4wv4L4kTyFFLcVTQSl/XuGM04yoRnOcYrMMqce4SSYIYAIa3pvDSkhTyJvDRTquhZdjQdHSnBVzhYXIK1w0prqf7Yoi6EMS9yNOGh6Kjo810Q+Iqasm3dFFNpNF8HQbyvitIbybXsO5SjEjrWyN6MzYG87XHy56JWj3Ve6iRkG0GawpxOSsN2J7AcDVpTbPZa+dmq4ObJq6lDt+dpvm6isC3O44gAU5knYGKbccLlRONrENF95BPeFtExaRpenX1jRNlsv3N/l7k77HRzETO9NCRcoN7LGosUDMwAkBKN9Cd8u+PuHtRPVdKrz3HoyHsJFGBmhQl5VgSmSTFio5NCx1j0S1OmsjmnFgRXPcdJbmHJO57GaNq9W3CH7iZMo2wbQH7BLpJ2HSTIAoUwzNA3AMlsIhWhaD68qjtS15cd/Vcga60g+7UwLTqYmg6XDH1y7ORxTeOZtwj1GPGWX6TrMPNuEtMVxC//FY7PrFsvOGDXNeMIBNc2Z2c0j0gEMPTeOhb1fTajcQR4Asz2/Mzy6mxgOtFqRdrbY6iCu/5bWVkDA15c3bD7zSyzMm2qPixrVPYW9BCg6NmrLTN3nupJiy/fhQUEUoM0qj8/DaBs7v9WYGmXvIRd5pGyMGKzAQot4XLKLGjo9n7EsSxSpyLwpT1Sjie/3zSYVf3x1lRJfIZYFpeokUyOkU/nd+LoVkwdBOWaDyi6cv4BgI1fGRdPZRB1Ky0HwIwyee7boYm8ixOEsbAsSU7aYY4AQzU3y9BXaPPWjN5sCJ/G1MJYXnPTDWArn0+zpEvIScRiuEZImrtDU9jGjBNF6blBRnmgGQrMeA/sC/qNRNdIZK2x5HWvVDIqDiiluNm/YbjRHXcQjo5KIiz/MZxrIIY8BetjPwihdRy31qR9DC39AwsPRMkM2n0EpZ9E3741z7LUHf152jOF1hauHJmvW9q/TGndoVRYxFbukBHanZdPziR9sr9zQg/SxeBKBkq+YtxGgmpUkRETMetIbwgqr5unSkA0KqRJeq/H63XRb02zupIAUjVXcM4ksRwnLhK63KwUl9eWi1tz4Cl17tVAfEW1ujvpZFQbpaaiNLgONUOUgZhSRb9uO1RAQz4v3vbqyUKqj9Ove+6DqPqhjT1zdGVcjBU8l1ckmYxLB3oDp7DBvYXw1bgaFn/mtRbT9X+j4rUuLCYx0KS+FXr0WibTGzkr1+Jtwarv41omnp/m1JWcXUxNGvKa1jxiqh4pboyhJwuUAzPANJS4lStnYAfticQidWYqfsPp4OHTHtHvftD4GtsCizuLKEztbCp8+ua4UfZ11EXNzZu0ZyMWmBX48hGF9E18huWIiylA/lMOApDxQMOTNb6JOiDdicQz7YHHNqfC1mHAT8LmGy/zNQXtKHBgjrAz6Cn7q/AT2nqL6CrF8PyBe0JP24zgLqXcNS67qfC1mF7w8hbE8gYbaGUzI6ooGAPo+TW4hr4/aLVTd1GiS5glOdLQlof44xS0WP5VkoNY5UhzM4uAuC/uMbtwxgpO6F7o+zpKDppTDp+Suic6SUKE1eEhYUaAq3ihe8JoLFQlseIo+IBkyGRW1vgN1rRguPnzeqCKbOxL3VKB145YKE3M4mPdPj94XgVlL1CKH53lGg/uMJ3a5GxcVUsvSZ8y66Oyep9PekYQTsyZk2IpGR8b2VR3FQCWUX6gfrfa26UYZoexkZT1c81AaVeh6QBgCrkVaJ+zD9+z4Clu7D0gvJ9/9/u9BjOn1UO7kkAgKi6SjRShlUycILnWK2+9eWy1cHlhG0gb/rnT3S5yYgg/BigXI8sghjxcS5cU12f6YQZVI0AEhkpwrI8HDkcHkSYpodZff4zJ5d30F6N8x4n9lWKeTsIw6aeO4qlA5sPjsauXclbo1g+y8Os9CCKzhg27p1G8PPTkPXr12P9+vXYvXs3AODcc8/Fgw8+iBtuuAEA8PTTT+Pxxx/Hli1bcOTIEWzbtg0XXHBB6BhXXXUVNm3aFNp2yy23YMOGDcH/h4eHcdddd+HZZ58FAHzqU5/C3//936Orq+uktY1QDM8IwbST5aE/B6yY5WFpd00UScExVLLxt690AvBfHBefYePi2ZU6sWrqAos7B0Pb5HSjfFG7wq5tV8Seo1VQdidhI15MSXHcZroYzDs4UDRwMCZAv0T1G5YW4Y+0i8APVSLFz9bDJn4+4n+e3yZwXo+DvowdWKZtT8Ov5wr889Z8IIj/x4pxLKwOGBxPw89Hinh9dwbv721rGJNZTlF25v3Uq0u7/Pp0WMBZnfG+1lII217J/+xVgj41dDMYTCSJQD8Gr42MEbYkShE1VjECi5Xa55KOlIeBXAVDJQtHSgYcLyyWzeoKeEO3YhNiQPdTKpsRn+Gio1eFhhc6p6X76Z4BIG0chK4ZGC6PYc9EGkNF30VEHfio7hUf7az4oeTiQitVE3akdQ8L2h0MhMcvGCmbOFAERirNLfSzdIG8GY6SIRPCqLMQcjAm00RXvGqM5pR/f0rdkTcFlna5yJoCvxo1caCo+jRr2DKUQ096H/JWN8puAUVnPDFhDQB0pWqRCaIMVYWSailOGx4mbAOTDoKYwxnDr6dsq0wsEgwUq7F+5eImVRzP7S2j4gFHjqYDoXzmQAkXzhLoU2IEF2wDo1P0uTzfkVlFbNtTS0iTMWsCWLqnqPeGOlOUtIAvOj2/cY9MvhMWmLm8jfcKBi6bsxsL2nuRMzuhw0DW7IAnXLjCrrPUy9jqAAAdSOtune980iDS0gX6s7V46hL1/soYwIXzSzhQ7Wu5/9D+XJAgKCoYO7rKaO+oLUoLjlv9PFmwMGH7gw6ZEKOWkKj+GRMnhP/XVUdR8fxwm1IMq/3c0VnBp8/07wF57Ru5we0vArMyLo7kJ+vKqGH/HEfDfx3UMCtj4Uip1h81dOw4KnDJ7PewqN3GL8eObdG2xD3BodXcafoMz5s3D48++ijOOussAMATTzyBT3/609i2bRvOPfdcFAoFXH755fjt3/5t3H777YnHuf322/HII48E/89mwwOY3/md38F7772H559/HgDw5S9/GWvWrMG//uu/Tqu+ZHpQDM8An5wrsMcTOLtTYPmsSfTn5iKl94fKeMJFf+4wrlxawM9HNMxvA87ucrCwHei04n055YM/atk0lUQBnnBhaLVFYvKzoRdRcSvKVLqHtO5b//xpcxd5qwf9GAEAjFWM4EHneFpsMo6cCQzkbczNVapZ3bTqkV0A0krsYLhiIaUDg3mB+W1l9OfmBoLKg4uB3D78erGGPRNAfw74xNxJzM62B+2Zkyuj3QJezdsYG03FvmSiL5JU1Tfw7O5ydWGXHriSxE1/G5pV61+lbqogjmIpVvaSO4GSOxHsK9g2hkoWHC/eUpg1PbSZLrrTAnmrBxmjiLxZxuGIcO7L2EgbeXjCha4rgx9FpHekXGRNL/CZnHDkNL4GPwRYrb6qQButFKrXSAvtb/TilG4mUXcCHQZ03UB3uoysWa5z2fDdPcxgMDUdH+GcCbRZLobLRhBireKFLc4qBQdBam1LF5ib9QdDi9ptGLqJrFlBfjQFNWFWd9pFysii7BbqjheH7WkoOpribmQEg5k4JhRLmuyDkuun3s4YWnXhX61tQM2VpKB7sKshz+R9ftVcD31ZBz9427+fLpwlcHa3zOrm33P+TEcRw2Wtzi0qrt/8gV0Jvx7TkDdr1n0ZJ1kOfkuhn48fySRpUd9Ubh6qGEzpwE+PZPH/hgq4Yu4hLGxfHPxePZEK7n0pjuVnlazpBdcg6i4h72/H04LMjrZXe77JfrEU4Tsr7Q+k5P/3TGjo6KqgWDRjw9nNmTuJ9rxTe3YqURrGRlJIpd0gmYW07kZd41RxHF0Yd8WKYVwxt4A9E2kcKZsYG6w9c2R/ntntG18cT6ubqYhe96KjAdXn3ay0iFxbf/Bqe4CT9y3kebO24LPi1Yvsn49o+PlICh/psLB75INtGb755ptD///Lv/xLrF+/Hq+99hrOPfdcrFmzBgACy3ESuVwO/f39sft+/vOf4/nnn8drr72GSy65BADwzW9+E6tWrcKuXbuwZMmS428IiYVieAb45LwOeOkxdKT6kDHifwRSUFw3bwLXzQN6s0bd4riopVF+L+5YKS0LR/j7VDHnLwrLw9IzMLVC+Jioib+s2QPAt4aekQfOyIdfYq5XrrOUWbpAZyoPwArXUTl/zhS4aX4ZfRkb/bm5MLW+urYBwOp5/oPTicS1le1d2O5g3mIXQCU09a8K9Nq22ue07uFo2T92V9qM9XVTkUkoHC+5XM1lwj930dFRdNyQ4LC9mqiNJvHw+8K3Dqj90JNOoysdToksLWNT16WGPJ+piyCBWVSk2Z6GX4+l6/ZFBXHY1zgNU0/V+aer96Slp+GKqGuIX5eutIuuqgvAiCIk1Bd0nEi2dBFc86jv+lhCcBVZ5ub5xWq0Ad9FBfD7X12U6HgaerMGKm4xMSV1FCky1JTmkqibkXSLiGubHFhK4R4nUoMpbmWhWtrw8NFOHV84qwxLF1jQloau5equi6Gb1cgXtZPLAXAURxc4v8dF3jTQkRBhThVCUtTPygCWLv2f478H1NK3A+E1Fam0C8fR8dyu2kmPlIE1i/eiO117JqozYWobZZujg8Io6u8z2tfqNWsURWd+m8CsjIP2/BhkKnpJkkuKHMR0dFWQybrIZh3YSsz5aLnoAmLAF85fvHwUfVl/Bu68HhNLuytY0Vt/r85vq6DgGLAjUWCiz1YAsKoDnrKrY6ik1cUr70oJdKWAkYwHwENXStTN7sRlv/z1mNZUop0PCq7r4gc/+AEKhQJWrVo1re8++eST+P73v485c+bghhtuwEMPPYT2dt/Ys3nzZnR2dgZCGAAuvfRSdHZ24tVXX6UYPolQDM8AGSOPjlzNupskZtqtXizp6m24UCf6/UYreU0tORWzFMUSaVmRlmMpYDutObV6R148jaYr4+qrw8BHO31BlzHaEus2KzOgLGxBndVnQVsaC9rUc3l1FlL/e/KFHJ4CbxZLz1S/E174EbUOqxE6VB/suIWJ6n75IpqdTQVZBGUb5bmTrF7NLJCsvehqVn+/PVpQj+nEnJZuCIAfOi2lpGBNGpQ5XgWGpgduOfL7fRk7dN6OlFF15YgXwlExU3b1QKSogjga7k8Kx4oHnN/jYiDv+3Krvr95M3wfJ80W1Pqh1mdTLT6NXu8kS7uakrsuHrcUm9WIHFJsyO0p3fd93VvwM4KpqY2j10UXBnJmBZOOHrpPVWR7pJA8q8MNWUpVouEA/f4W1XbUyqoDlpITbmModGSD+OLjdgmdqcb3fNBeAaSMFAzNQcYAXOHWubgE54+sm4hbRyGJWxxs6QLz2/z2yvTzvhXfUwY2ftm49Q2ZrFuXiCkaEUQVxABwybIx9GUdrOxLA/BHlCkti5V99UaTcTv825sqk2ZHysNQUQ/5Fau/LwChRDdqDGa1fNQPucmohokU4SDBu+/YjwdgbGwstD2dTiOdTsd9BTt27MCqVatQKpXQ1taGZ555Buecc07T57z11luxaNEi9Pf346233sL999+Pn/70p9i4cSMA4MCBA5g9u34mePbs2Thw4EDT5yHTh2L4FDCVkGlm/zGdN8aSIokmF/Dg1vmCRv/vwQ2+10ioyfpKK6tcZdyondPdJ9sW9et1hVfnDhBEfpgiW5wq6uUiRNV/GAi7J9hKFrKoIFZfRGakzFQYmhUI4rq+iGl3FPlyV+sSJ4iDF7YsX7WOqX02v913relJpxsmpFB91qPhsBqlLVb7SbUwRfvM96PWYelaoiBWv5/Sk1/+QV8q95X6We1btS/ihG70syQuk2OcmJfUpp1rC1KjglhNZjJUNDFUNNGXdRre0ykjCw8uJh0nNnsbEBbHWVMDoMPUXRRso05QRbP3SRcKP3JHraw6KMmYAJxkkahaRIGam8CWoTwsfTfmZBcmti9K9HfRTJSV8OJgEWqrHbnHgPD1a3wt60NLJkXTiUs+FHUh2XLYxPw2P0viVAYSddDWTDQYNVZ5UtIctc3R/okT0seaWCeVSqG/vx/3Hvi/x3aABrS1tWFwMLz+5qGHHsLDDz8cW37JkiXYvn07RkZG8NRTT+G2227Dpk2bmhbEqi/xsmXLsHjxYqxcuRJbt27FRRddBADQtPr7UwgRu52cOCiGTxHNCt5mw6MlHfdYBKcn3JAf6FSWalfY9VbgmO8amgVTSx27mI8TwTHbmhHEzZ5P4lTtGqrLhzwX4IvijKEFriNJFuKomDrRRNsbFb7HI4hlW/qzAnkrnEK37hpEhLJqPY/2v12tl61rdVbzJFEMADKfQVQYqlP2cv9MERbI4b70t9W7nUQFVlQkTyWILR34xah//IG8mDJrXkrPot0aR8md2lLYZlY70dFDETDirqHaz+q1iBPFJdSLxFDGzYjbxJ4Jfw2BpeexerASu2hzOuEkJY3EcSNXidr36yPpAPXXSEWNLHSsgnj7bn/maH4euHFBYwOJpQsUEZ8eXEV9RslY5UnRNaICOTprIcsAtXLiGH+HmUwG77zzDiqV47Ut1xMnMpOswoAvzOUCupUrV+InP/kJvvrVr+Lxxx8/pvNfdNFFsCwLv/rVr3DRRRehv78fBw8erCs3NDSEOXPmxByBnCgohk8hzTy8m4lzOq1zRqzDjeoQFcV1+1BblKdaAuOsFHKbtA43W7/o8ePqLT+r351KEMvvNRPwX/pah9qVIIrhOSGhCSAQoQDqrMRx7UkiaGfk3xPFVIJYkre6YusWhyts6DDgwokNPybPK72KoxbgJFEMIEheob6wVREpp3RVUXw8aWOjgr6Rq0Qj63Dcvqjf7XQEMQAcKfmf47LmRe8RS8/AM1y4YiIYMMUh7+E20/V9oXXURTepicV6wSvbBdSL4owJ2JWwIPb31VuJAeDIuP/72ttho2APB25FjYg+S+r8giPXLcnqH2WqBEPNWIeT4qk3K4iPDPmzaweKRVTcIrJmR2xd/AXUesOBd9yMgLQKJ6WKD8f2rl5nRU1EhTEAHM/yuUwmg0wmM3XBGUYIgXL52Fv2s5/9DLZtY+7cuQCAVatWYXR0FG+88QYuvvhiAMDrr7+O0dFRXHbZZSekziQeiuFTzHQEzXTSljZ0W4gRxED9S7PpzEIwQmI1ybdZ+pDGCeJmrb5JU9lxbUsSxMD0hKhsT9zARBXT0l1BugTEvVjjRPFUbZ6KqKvEsVqHVeIEsWxLwR5BT/qMKesVLMiMxIaNC0+nJqKIcyWJE8VOxHdT/Ry1EjfqN78u8QO6Rq5Fst5xrhKSOOtwdF9U+E5XEMtjJZHkz21oOhBjLYzOoET9aSVRYVw9MvxYz/JY/r/1ojhsSY764UYTWqhi8HgGNEk0Er/TcZVoZB2OE8lR63Bo3xSCWJJksJD7DN2Epde7WSXNCIxUTFh6ODFMnFuMJGPUrimguMJUmU7mydOZBx54ADfccAMGBwcxPj6ODRs24Mc//nEQAu3o0aPYs2cP9u3bBwDYtWsXAKC/vx/9/f349a9/jSeffBK/+Zu/id7eXuzcuRN//Md/jAsvvBCXX345AGDp0qW4/vrrcfvttwfW5i9/+cu46aabuHjuJPMBvz1nhsceewyLFi1CJpPBihUr8Morr5zQ4zd6mJ2o79YtpEmYZpT/SneG6F/ssWH4qVIj07OxCS3QeHFSEuqxk17uan2C7ykiTBVfVtWCprY56S+uLXF9Es2Qpb5QTD2cAECK4qSpy+mkdJ4Osg7yvGr91P/7n8PfAXwBNFzWUHTHprwv1IVo0Wui/snz5k03+BztN7V+8k8V0GpKZvWzjHYQbdt0Ue+juOOo1zGuL4NyRrjf1TrHEV6YVvue/L8qOmQcYHkfNvyriiRD04M/tX3yz/b8MGxy2jyUpSxybWT7pN+wrH/UfcKPUSzQkZJ1jl4n5RyRUGLyuMcriBtZStXzq2I/zg1E3R5nEY9LJqPGnQdq1m8pcNWEJUHGUaVsXNi6pOtsaBZ0GKFrWquHqPsDwn756v2aVD7qT5yKXM+MWf07OY+0GePgwYNYs2YNlixZgmuuuQavv/46nn/+efzGb/wGAODZZ5/FhRdeiBtvvBEA8PnPfx4XXnghvvGNbwDwXSx+9KMf4brrrsOSJUtw1113YfXq1XjxxRdhGLXOefLJJ3Heeedh9erVWL16NZYvX47vfe97M9/gFoOW4Sn453/+Z9xzzz147LHHcPnll+Pxxx/HDTfcgJ07d2L+/Pkn9FxJ7ggni6TQRI0Wlk1VRyla4yzFQTY3vbGAV+s1ncWGSRa9OAtxUptiU1vDqCubtGClFg0ifkFVnOvEVBZ4GSta+mbHuUo0ax2OI8l/2N8X9tXdN+lf347UaCjDXlwbXM+um5FQUa+PnzHMCyWySFr9HpcxUZaLsxIDyRnsGjHVvRdvCZ7aOhy3mE4StQ7H7YuzEEfrPRVSJKlZKePcWNRQcaobjUrUlzvIoqe4qUR9SWXUCUBDCXFWcOXYTYTkirpSRa9d3O++Vt/Gix/ry8dbh+OOF/1OkrtEkv8wUG8hBmoCOimLZtAPgStbss++ihrRJTorpKK6x1i6plxPH3kM9XfXIOjKB4Jvf/vbDfd/8YtfxBe/+MXE/YODg3XZ5+Lo6enB97///elWjxwnH/Db8+Tzla98BV/60pfw+7//+1i6dCn+7u/+DoODg1i/fv2MnL+RxbJZN4aG2xDvN3u8IjzOUhwcu8G081THlESttLGfG1iIDU2P7cOk/k2yescdQ7V21iyAYauMalU7GdO+Kmod5LmBqI9gvYU4ar1UsT0t5FM+1X0Z29eKBcvS00gZKWRND2ndq6tbtP8kYctdspW42Snaqa5FXObBOCtj1Docd/4k63AqIibjLJJxVrmU7l/TqZ4Zdfd2xFKvWuzj6lxvYfT/HE+riueIZdCo/anlpYVYivl4a/7xT69H26LWvdGisrDAj0kvPU3rcL2Vv3qeY7AQS3wXhWRfWtWwoc4CJP3Vwi/W+iD6B9TSuNueFiSric7CNPrdEnK6QctwAyqVCrZs2YL77rsvtH316tV49dVX68qXy+WQM/3o6CgAYGxs8uRWFMniNT5aRPwLIORHDAOmbjUl1ByvAkexyiTVRVpuLN1DSnkJheNiKtvhxpZxE86lfhYJxwFqljDXSsE1k6NbeMJFpZqWOXre6Pn849qhJA2qJSpqKVKtmxnbgLBqCVBkH6gZttTzq/Fwo+2NxluOi7Uszy3/LSvLvGU5VymvfndRe8kPI1cAJtwSzOp1jL/PDDjChO2VGiYtUetfcosoKTFwJWodS1XrlcwWJqmEkq+g7nNJtzFmarANI7aP1f6V7VH7Na5Pk/pS7cdoIhhZtuKGhUewv6odgsxzStdKP+laOuCaRfPKMyooTbgY06fOmlfxSig65dDvREW2t2QDE3b9a8KNsZ4WKjoKtl7XDrW+EtmmkgOUHQ1apJ1JSXPcSYGxMVR/L17I7SoaK1qIcPxxGekFqAl3wL9mSddLvVbqdYq7RknXxvYQap9MrBJtnxPJnmlXlGg2VSuxLHP9sgIGch4um92OSkFDBeFY6BL/GaZVF5rGl5G4ngO7rKFQjjdiRKNiTJYNjNrx96eK7A+36C+TFdNMg0zITEAx3IDDhw/Ddd26kCZz5syJDYC9bt06/MVf/EXd9sHBW05aHQkhBAAeOtUVmAG+eaorcJrw76e6AsfB+Pg4Ojs7T3U1CAlBMdwE0TiESQGw77//ftx7773B/0dGRrBgwQLs2bOHP/4ZZmxsDIODg9i7dy86OuLDDpETD/v91MB+PzWw35tHCIHx8XEMDAxMXZiQGYZiuAG9vb0wDKPOCnzo0KHYANhJaRw7Ozv5oDxFdHR0sO9PAez3UwP7/dTAfm8OGoXI6QoX0DUglUphxYoVQd5wycaNGxkAmxBCCCHkQwAtw1Nw7733Ys2aNVi5ciVWrVqFf/iHf8CePXtwxx13nOqqEUIIIYSQ44RieApuueUWHDlyBI888gj279+PZcuW4bnnnsOCBQum/G46ncZDDz3UMNc5OTmw708N7PdTA/v91MB+J+TDgSYY54QQQgghhLQo9BkmhBBCCCEtC8UwIYQQQghpWSiGCSGEEEJIy0IxTAghhBBCWhaK4ZPIY489hkWLFiGTyWDFihV45ZVXTnWVThtefvll3HzzzRgYGICmafiXf/mX0H4hBB5++GEMDAwgm83iqquuws9+9rNQmXK5jLVr16K3txf5fB6f+tSn8N5774XKDA8PY82aNejs7ERnZyfWrFmDkZGRUJk9e/bg5ptvRj6fR29vL+666y5UKpVQmR07duDKK69ENpvFGWecgUceeQQftLWn69atw8c+9jG0t7dj9uzZ+K3f+i3s2rUrVIb9fuJZv349li9fHiRmWLVqFf7jP/4j2M8+nxnWrVsHTdNwzz33BNvY94QQAIAgJ4UNGzYIy7LEN7/5TbFz505x9913i3w+L959991TXbXTgueee0782Z/9mXjqqacEAPHMM8+E9j/66KOivb1dPPXUU2LHjh3illtuEXPnzhVjY2NBmTvuuEOcccYZYuPGjWLr1q3i6quvFueff75wHCcoc/3114tly5aJV199Vbz66qti2bJl4qabbgr2O44jli1bJq6++mqxdetWsXHjRjEwMCDuvPPOoMzo6KiYM2eO+PznPy927NghnnrqKdHe3i7++q//+uR10EnguuuuE9/5znfEW2+9JbZv3y5uvPFGMX/+fDExMRGUYb+feJ599lnx7//+72LXrl1i165d4oEHHhCWZYm33npLCME+nwneeOMNsXDhQrF8+XJx9913B9vZ94QQIYSgGD5JXHzxxeKOO+4IbTv77LPFfffdd4pqdPoSFcOe54n+/n7x6KOPBttKpZLo7OwU3/jGN4QQQoyMjAjLssSGDRuCMu+//77QdV08//zzQgghdu7cKQCI1157LSizefNmAUD84he/EEL4olzXdfH+++8HZf7pn/5JpNNpMTo6KoQQ4rHHHhOdnZ2iVCoFZdatWycGBgaE53knsCdmlkOHDgkAYtOmTUII9vtM0t3dLb71rW+xz2eA8fFxsXjxYrFx40Zx5ZVXBmKYfU8IkdBN4iRQqVSwZcsWrF69OrR99erVePXVV09RrT44vPPOOzhw4ECo/9LpNK688sqg/7Zs2QLbtkNlBgYGsGzZsqDM5s2b0dnZiUsuuSQoc+mll6KzszNUZtmyZRgYGAjKXHfddSiXy9iyZUtQ5sorrwwF1r/uuuuwb98+7N69+8R3wAwxOjoKAOjp6QHAfp8JXNfFhg0bUCgUsGrVKvb5DPBHf/RHuPHGG3HttdeGtrPvCSESiuGTwOHDh+G6LubMmRPaPmfOHBw4cOAU1eqDg+yjRv134MABpFIpdHd3Nywze/bsuuPPnj07VCZ6nu7ubqRSqYZl5P8/qNdTCIF7770XH//4x7Fs2TIA7PeTyY4dO9DW1oZ0Oo077rgDzzzzDM455xz2+Ulmw4YN2Lp1K9atW1e3j31PCJEwHfNJRNO00P+FEHXbSDLH0n/RMnHlT0QZUV3U8kG9nnfeeSfefPNN/Nd//VfdPvb7iWfJkiXYvn07RkZG8NRTT+G2227Dpk2bgv3s8xPP3r17cffdd+OFF15AJpNJLMe+J4TQMnwS6O3thWEYdaP5Q4cO1Y38ST39/f0A6q0hav/19/ejUqlgeHi4YZmDBw/WHX9oaChUJnqe4eFh2LbdsMyhQ4cA1FuVPgisXbsWzz77LF566SXMmzcv2M5+P3mkUimcddZZWLlyJdatW4fzzz8fX/3qV9nnJ5EtW7bg0KFDWLFiBUzThGma2LRpE772ta/BNM1Eqyv7npDWg2L4JJBKpbBixQps3LgxtH3jxo247LLLTlGtPjgsWrQI/f39of6rVCrYtGlT0H8rVqyAZVmhMvv378dbb70VlFm1ahVGR0fxxhtvBGVef/11jI6Ohsq89dZb2L9/f1DmhRdeQDqdxooVK4IyL7/8cigM0gsvvICBgQEsXLjwxHfASUIIgTvvvBNPP/00/vM//xOLFi0K7We/zxxCCJTLZfb5SeSaa67Bjh07sH379uBv5cqVuPXWW7F9+3aceeaZ7HtCiM/MrdVrLWRotW9/+9ti586d4p577hH5fF7s3r37VFfttGB8fFxs27ZNbNu2TQAQX/nKV8S2bduC0HOPPvqo6OzsFE8//bTYsWOH+MIXvhAb8mjevHnixRdfFFu3bhWf/OQnY0MeLV++XGzevFls3rxZnHfeebEhj6655hqxdetW8eKLL4p58+aFQh6NjIyIOXPmiC984Qtix44d4umnnxYdHR0fuJBHf/iHfyg6OzvFj3/8Y7F///7gb3JyMijDfj/x3H///eLll18W77zzjnjzzTfFAw88IHRdFy+88IIQgn0+k6jRJIRg3xNCfCiGTyJf//rXxYIFC0QqlRIXXXRREMKKCPHSSy8JAHV/t912mxDCD3v00EMPif7+fpFOp8UnPvEJsWPHjtAxisWiuPPOO0VPT4/IZrPipptuEnv27AmVOXLkiLj11ltFe3u7aG9vF7feeqsYHh4OlXn33XfFjTfeKLLZrOjp6RF33nlnKLyREEK8+eab4oorrhDpdFr09/eLhx9++AMX7iiuvwGI73znO0EZ9vuJ5/d+7/eC50BfX5+45pprAiEsBPt8JomKYfY9IUQIITQhmN6GEEIIIYS0JvQZJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoR86Fi4cCE0TYOmaRgZGTmuY1111VXBsbZv335C6kcIIeT0gWKYEHJa4rouLrvsMnz2s58NbR8dHcXg4CD+/M//vOH3H3nkEezfvx+dnZ3HVY+nn34ab7zxxnEdgxBCyOkLxTAh5LTEMAw88cQTeP755/Hkk08G29euXYuenh48+OCDDb/f3t6O/v5+aJp2XPXo6elBX1/fcR2DEELI6QvFMCHktGXx4sVYt24d1q5di3379uGHP/whNmzYgCeeeAKpVGpax/rud7+Lrq4u/Nu//RuWLFmCXC6Hz33ucygUCnjiiSewcOFCdHd3Y+3atXBd9yS1iBBCyOmGeaorQAghjVi7di2eeeYZ/O7v/i527NiBBx98EBdccMExHWtychJf+9rXsGHDBoyPj+Mzn/kMPvOZz6CrqwvPPfcc3n77bXz2s5/Fxz/+cdxyyy0ntiGEEEJOSyiGCSGnNZqmYf369Vi6dCnOO+883Hfffcd8LNu2sX79enzkIx8BAHzuc5/D9773PRw8eBBtbW0455xzcPXVV+Oll16iGCaEkBaBbhKEkNOef/zHf0Qul8M777yD995775iPk8vlAiEMAHPmzMHChQvR1tYW2nbo0KHjqi8hhJAPDhTDhJDTms2bN+Nv//Zv8cMf/hCrVq3Cl770JQghjulYlmWF/q9pWuw2z/OOub6EEEI+WFAME0JOW4rFIm677Tb8wR/8Aa699lp861vfwk9+8hM8/vjjp7pqhBBCPiRQDBNCTlvuu+8+eJ6Hv/qrvwIAzJ8/H3/zN3+DP/mTP8Hu3btPbeUIIYR8KKAYJoSclmzatAlf//rX8d3vfhf5fD7Yfvvtt+Oyyy47LncJQgghRKIJvk0IIR8yFi5ciHvuuQf33HPPCTne7t27sWjRImzbtu2Yw7oRQgg5PaFlmBDyoeRP//RP0dbWhtHR0eM6zg033IBzzz33BNWKEELI6QYtw4SQDx3vvvsubNsGAJx55pnQ9WMf97///vsoFosAfJ/l6Wa+I4QQcnpDMUwIIYQQQloWukkQQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQloWimFCCCGEENKyUAwTQgghhJCWhWKYEEIIIYS0LBTDhBBCCCGkZaEYJoQQQgghLQvFMCGEEEIIaVkohgkhhBBCSMtCMUwIIYQQQlqW/w9VomkKj4uJeQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwURfr/P3MnBBJAICGCoIvcgkIEs6h4ASIgoKuLB4IiK6LigaurqKCuylcURf0unhzigT/kCx5gxAPxRAFlF0TBZcVjOUQEwiFJZlK/Pybd6aOqurqnJ5mQ5/16zSsz1VXVPUeqP/30p54KMMYYCIIgCIIgCKIeEqztAyAIgiAIgiCI2oLEMEEQBEEQBFFvITFMEARBEARB1FtIDBMEQRAEQRD1FhLDBEEQBEEQRL2FxDBBEARBEARRbyExTBAEQRAEQdRbSAwTBEEQBEEQ9RYSwwRBEARBEES9hcQwQRAEQRAEUW8hMUwQBEEQBEHUW0gMEwRBEARBEPUWEsMEQRAEQRBEvYXEMEEQBEEQBFFvITFMEARBEARB1FtIDBMEQRAEQRD1FhLDBEEQBEEQRL2FxDBBEARBEARRbyExTBAEQRAEQdRbSAwTBEEQBEEQ9RYSwwRBEARBEES9hcQwQRAEQRAEUW8hMUwQBEEQBEHUW0gMEwRBEARBEPUWEsMEQRAEQRBEvYXEMEEQBEEQBFFvITFMEARBEARB1FtIDBMEQRAEQRD1FhLDBEEQBEEQRL2FxDBBEARBEARRbyExTBAEQRAEQdRbSAwTBEEQBEEQ9RYSwwRBEARBEES9hcQwQRAEQRAEUW8hMUwQBEEQBEHUW0gMEwRBEARBEPUWEsMEQRAEQRBEvYXEMEEQBEEQBFFvITFMEARBEARB1FtIDBMEQRAEQRD1FhLDBEEQBEEQRL2FxDBBEARBEARRbyExTBAEQRAEQdRbSAwTBEEQBEEQ9RYSwwRBEARBEES9hcQwQRAEQRAEUW8hMUwQBEEQBEHUW0gMEwRBEARBEPUWEsMEQRAEQRBEvYXEMEEQBEEQBFFvITFMEARBEARB1FtIDBMEQRAEQRD1FhLDBEEQBEEQRL2FxDBBEARBEARRbyExTBAEQRAEQdRbSAwTBEEQBEEQ9RYSwwRBEARBEES9hcQwQRAEQRAEUW8hMUwQBEEQBEHUW0gMEwRBEARBEPUWEsMEQRAEQRBEvYXEMEEQBEEQBFFvITFMEARBEARB1FtIDBMEQRAEQRD1FhLDBEEQBEEQRL2FxDBBEARBEARRbyExTBAEQRAEQdRbSAwTBEEQBEEQ9RYSwwRBEARBEES9hcQwQRAEQRAEUW8hMUwQBEEQBEHUW0gMEwRBEARBEPUWEsMEQRAEQRBEvYXEMFGvGT58OLKzs7Fnzx5hnUsuuQSRSAQ7duyouQNzYPTo0Wjbtm1tH4aQK6+8El27dkXjxo2RnZ2N9u3b469//St+/fVXU719+/bhlltuQf/+/dG8eXMEAgFMmTKF2+fo0aMRCARsj44dO3LrP/744+jYsSNisRiOPvpo3H333aioqFA6/oqKCtx9991o27YtYrEYOnbsiMcff5xblzGG2bNno1evXsjJyUFubi569OiB1157Ta/zwQcfcI9de4wbN06vu3btWgwaNAhHHXUUsrOz0bRpUxQXF+OFF17g7vuZZ55Bz549kZubiyOOOAJ9+/bFkiVLTPU2bdqEm2++GT179kTjxo3RtGlT9OnTB6+++ir3PS1fvhz9+vVDixYt0LBhQ3Tr1g2PPfYYEomEqd6bb76Jyy67DMcddxwikQgCgQC3vzVr1uCaa67Bcccdh0aNGiE/Px9nnXUW3n//fVvdKVOmcD+jrKwsbt8EQRCpEq7tAyCI2mTMmDFYvHgxXnrpJYwfP962fe/evVi0aBEGDx6M/Pz8WjhCPnfeeSeuv/762j4MIQcOHMBf/vIXtGvXDllZWVi9ejXuu+8+LF26FF999RWi0SgAYNeuXXj66afRvXt3DBs2DM8++6y03+zsbJuAys7OttW77777cOedd+Jvf/sb+vfvj1WrVuGOO+7Af//7Xzz99NOOxz9+/HjMmzcP9957L0488US8/fbbuP7667Fv3z7cfvvtprpXX3015syZgxtvvBEPPPAA4vE41q1bh4MHD+p1evTogc8++8y2n5kzZ+L555/H8OHD9bI9e/agdevWuOiii3DkkUfiwIEDePHFFzFy5Ehs2bIFd9xxh1538uTJuPfeezFu3DhMnToVhw4dwuOPP47Bgwdj4cKFOO+88wAAy5Ytw5IlSzBy5EiceOKJiMfjeOWVV3DBBRfg7rvvxl133aX3+e6772LAgAE49dRT8cwzzyAnJwevv/46rr/+emzevBkzZszQ6y5atAgrV67ECSecgFgshjVr1nA/z5dffhlffPEFrrjiCnTv3h0HDhzAk08+iTPPPBNz587FZZddZmtTUlKCvLw8/XUwSLEbgiDSBCOIekw8HmeFhYWsZ8+e3O0zZ85kANgbb7xRw0d2+PGPf/yDAWDvvfeeXlZZWckqKysZY4zt3LmTAWCTJ0/mth81ahTLyclx3M+vv/7KsrKy2F/+8hdT+X333ccCgQD7+uuvpe3Xr1/PAoEAu//++03lY8eOZdnZ2WzXrl162aJFixgA9sorrzgel5XKykp2zDHHsDZt2rBEIuFYv3fv3qx169amsiOPPJKdfPLJprLff/+d5eXlsXPPPVcv27lzp/45Gxk0aBBr0KABO3TokF52ySWXsFgsxvbv32+q279/f5abm2sqMx73Nddcw0SnlB07dtjK4vE469atG/vDH/5gKp88eTIDwHbu3MntiyAIwm/oUpuo14RCIYwaNQpr1qzBunXrbNtnz56Nli1bYuDAgXrZzJkz0b17dzRs2BCNGjVCx44dbdFCJwKBAK699lrMnj0bHTp0QHZ2NoqKirBy5UowxjBt2jQcffTRaNiwIc444wz8+9//NrXn2SS0PufNm4dOnTqhQYMG6N69O958801Xx5YumjdvDgAIh6tvSGm3wP2kpKQEhw4dwuWXX24qv/zyy8EYw+LFi6XtFy9eDMYYt/3vv/+OkpISvWzGjBlo27YtLrzwQtfHuXz5cvznP//B5ZdfrhT1bNasmemzA4BIJGKKngJAVlaW/jC25X3OvXr1wsGDB/Hbb7+Z+oxGo7aIe+PGjW1WBdVobYsWLWxloVAIPXv2xE8//aTUB0EQRLogMUzUe6644goEAgHMmjXLVL5hwwZ88cUXGDVqFEKhEABg/vz5GD9+PPr27YtFixZh8eLFuPHGG3HgwAHX+33zzTfx7LPPYurUqXj55Zexb98+DBo0CBMnTsQnn3yCJ554Ak8//TQ2bNiA888/H4wxxz6XLFmCJ554Avfccw8WLlyIpk2bYvjw4fjPf/7j2DYejys9VI7D2OeBAwfwySef4M4778TJJ5+MPn36KLe38vvvv6OgoAChUAitWrXCtddeaxJyALB+/XoAwHHHHWcqb9myJZo1a6ZvF7F+/Xo0b94cBQUFpvJu3bqZ+o/H4/jss89wwgknYPr06WjTpg1CoRCOOeYYPPTQQ46f03PPPYdgMGgT3RqVlZWIx+PYuXMn/vGPf+Dtt9/Grbfeaqpz/fXXo6SkBM899xx2796Nbdu24aabbsLevXsxYcIE6f6BpCBv3ry5SayOGzcO5eXlmDBhArZu3Yo9e/Zg3rx5WLRoEW655RbHPlWJx+P46KOP0KVLF+724447DqFQCPn5+bjsssvw448/2upoPvItW7b4dlwEQdRDajMsTRCZQt++fVmzZs1YeXm5XjZx4kQGgG3atEkvu/baa1njxo1T3h8AVlBQYLoVvXjxYgaAHX/88aZb2o8++igDwP71r3/pZaNGjWJt2rSx9Zmfn89KS0v1su3bt7NgMMgeeOABpWNSecyePVvpPX722Wemduecc47p2Kw42SSmT5/Opk+fzpYtW8aWLVvGJk2axBo0aMA6duzI9u3bp9cbO3Ysi8Vi3D7at2/P+vfvLz3ufv36sQ4dOnC3RaNR3X6xbds2BoDl5uayVq1asblz57L33nuPjRs3jgFgt99+u3Afu3fvZllZWWzAgAHCOldddZX+2UWjUfaPf/yDW+/JJ59ksVhMr9u0aVP2zjvvSN8jY4w988wzDACbMWOGbdsnn3zCCgsL9T5DoRB78MEHpf3JbBI8Jk2axACwxYsXm8qff/55dt9997GlS5ey999/n02dOpU1bdqU5efns59//tlU94orrmChUIht2bJFeb8EQRBWSAwTBEuegAGwV199lTHGWEVFBcvPz2ennHIKt96IESPY4sWLPfsaAbCLLrrIVLZx40YGgN12222m8rffftvmWxaJ4REjRtj2VVBQwMaNG+d4TKtWrVJ6/Prrr0rvcf/+/WzVqlVsxYoVbMaMGaxly5asd+/e7MCBA9z6TmKYx6uvvsoAsOnTp+tlY8eOZVlZWdz67du3lwpQxpJiuGPHjtxt0WiUXXXVVYwxxv773//qYvGzzz4z1Rs2bBjLysoyiXQjTzzxBAPAFixYIDyOH374ga1atYotWbKEjRs3jgWDQTZt2jRTnVmzZrFYLMYmTpzI3n33XbZ06VI2YsQI1qBBA1ZSUiLse+nSpSwajbI//elPNi/x6tWrWYsWLdiQIUPYG2+8wd5//312xx13sGg0yu655x5hn27EsCbEJ06cqFT/888/Z8FgkE2YMEGpPkEQhBtIDBMEY+zgwYMsLy+PDRo0iDHG2GuvvcYAsDlz5tjqzpo1ixUXF7NQKMQCgQDr1asXW7Zsmav9AWDXXHONqez7779nAGyCZ/ny5TbhJBLD1j4ZY6xNmzZs1KhRjsdUUVGh9OBNxFJh5cqVNuFqxIsYTiQSLCcnh1144YV62d/+9jcGgCu6mzVrZrsIsTJixAjWvHlzW/n+/ftNFysHDx5kgUDANqmMMcaeeuopBoB9/vnn3H2ccMIJrHnz5qY7EU6MGzeOhcNh9ssvvzDGGPvtt99YdnY29zvv27cva9u2LbefkpISlpWVxQYNGsTKysps23v37s2OO+44Fo/HTeV33XUXCwaDbPPmzdx+VcXwrFmzWDAYZH/5y19c/ZY6duzIevXqpVyfIAhCFfIMEwSS6bkuuugilJSUYNu2bZg1axYaNWqECy64wFb38ssvx6effoq9e/diyZIlYIxh8ODB+OGHH2rhyP0jEokoPebOneup/6KiIgSDQWzatMnX42aMmSZyaV5h64TI7du349dff0XXrl2l/R133HHYuXMntm/fbirX+tPaZ2dn49hjjxUeE8CfYPbVV1/hq6++wmWXXYZIJCI9FiO9evVCPB7X/d8bN27E77//jhNPPNFWt6ioCFu2bMH+/ftN5W+//TaGDRuGvn37YuHChXqKOyNr165Fz549dZ+8xoknnojKykp88803ysdsZfbs2bjyyisxatQoPPnkk64mT1q/Z4IgCL+gkYUgqhgzZgwSiQSmTZuGpUuXYsSIEWjQoIGwfk5ODgYOHIhJkyahvLwcX3/9dQ0erf+sWrVK6TFkyBBP/a9YsQKVlZVo166db8f86quv4uDBgzjppJP0srPPPhtZWVmYM2eOqe6cOXMQCAQwbNgwaZ9Dhw5FIBCwif45c+YgOzsbZ599tl52/vnno7S0FJ9++qmp7tKlS9GwYUPu5LDnnnsOQPL35obly5cjGAzimGOOAQAUFhYCAFauXGmqxxjDypUr0aRJE+Tk5Ojly5Ytw7Bhw3DyySdj8eLFiMVi3P0UFhZi9erVtgU2tDzJrVq1cnXcGnPmzMGVV16JSy+9FM8++6wrIbxy5Up89913pu+ZIAjCL2jRDYKooqioCN26dcOjjz4KxhhXrIwdOxbZ2dno06cPWrZsie3bt+OBBx5AXl4eN0JXlygqKvKlnzfffBPPPPMMzj33XLRp0wYVFRVYvXo1Hn30UbRr1w5XXnmlqf5bb72FAwcOYN++fQCSWTy0ldHOOeccNGjQAD/88AMuvvhijBgxAu3atUMgEMCKFSvw6KOPokuXLqY+mzZtijvuuAN33nknmjZtqi+6MWXKFFx55ZXo3LmzXvf555/HFVdcgVmzZukLP3Tp0gVjxozB5MmTEQqFcOKJJ2LZsmV4+umn8fe//x1NmzbV299888148cUXccEFF+Dee+9Fq1at8Oqrr+L111/HQw89ZEtPdujQIbz00kv44x//iE6dOnE/v7/85S/Izc1Fr169kJ+fj19//RULFizAK6+8gr/+9a96irqjjjoK5513Hp5++mnEYjGcc845KCsrw9y5c/HJJ5/g3nvv1QXnxx9/jGHDhqGgoAC333471q5da9pn586dkZubCwC48cYbMWHCBAwZMgRXXXUVGjRogPfeew8PP/wwzjrrLHTv3l1v98MPP2DVqlUAgM2bNwOA/t21bdtW/00tWLAAY8aMwfHHH4+rrroKX3zxhWn/2qIdANC9e3dceuml6NSpE7KysvDFF19g2rRpKCgosGWzGD16NObOnYvvv/8+o1dkJAgiw6lNjwZBZBozZsxgAFjnzp252+fOnctOP/10lp+fz6LRKCssLGQXXnihKdODCshAz7BffPPNN+xPf/oTa9OmDcvKymJZWVmsY8eO7K9//atpwQrj8UGQueL7779njCX9scOHD2dt27Zl2dnZLBqNsmOPPZbdcsstbM+ePdzjmDFjBmvfvj2LRqPsqKOOYpMnT7Z5dGfPns3NkFFeXs4mT57MjjrqKBaNRln79u3ZY489xt3Pjz/+yEaMGMGaNGnCotEo69atG5s1axa37osvvsgACLczlvTUnnLKKaxZs2YsHA6zxo0bs759+7J58+bZ6v7+++9s2rRprFu3bqxRo0asadOm7KSTTmIvvPCCyY+rLWQheixfvtzU78KFC9nJJ5/MmjVrxnJycliXLl3Yvffea1uIQ/v8eA/jb27UqFHS/WvfM2NJz3a7du1YTk4Oi0QirE2bNmzcuHFs69attvd//vnns+zsbLZ7927h50kQBOFEgDEXSUMJgiAIIkMoKCjAyJEjMW3atNo+FIIg6jAkhgmCIIg6x9dff43i4mL85z//QbNmzWr7cAiCqMOQGCYIH4nH49LtwWCQZsQTBEEQRAZBZ2WC8BGntGRXXHFFbR8iQRAEQRAGKJsEQfiINrNeBN3OJQiCIIjMgmwSBEEQBEEQRL2FbBJEvWT48OHIzs7Gnj17hHUuueQSRCIR7Nixo+YO7DDjwIEDGDFiBDp06IBGjRohJycHXbp0wd///nccOHDAVn/58uXo168fWrRogYYNG6Jbt2547LHHbAtAGPn999/Rvn17BAIBPPTQQ7btmzZtwvnnn48mTZqgQYMG6N27N15//XXl9/DFF19gwIABaNSoERo2bIjTTz8dn3zyia3eY489hpNOOgnNmjVDLBbDUUcdhREjRtgWY9m0aRNuvvlm9OzZE40bN0bTpk3Rp08fPT8vj9deew19+/ZFbm6u/hk+/fTTpjpvvvkmLrvsMhx33HGIRCLCRS2mTJmCQCAgfMyfP1+v+/XXX2P8+PEoLi5GTk4OAoEAPvjgA26/paWlmDRpEtq3b48GDRrgyCOPxAUXXGB7/6NHj5bu37iIiKhux44dhZ8VQRCEW8gmQdRLxowZg8WLF+Oll17C+PHjbdv37t2LRYsWYfDgwcjPz6+FIzw8qKioAGMMN910E44++mgEg0F8+OGHuOeee/DBBx/g3Xff1eu+++67GDBgAE499VQ888wzyMnJweuvv47rr78emzdvxowZM7j7uPPOO7nCGgC2bNmC4uJitGzZEk8++SQaNmyImTNnYtiwYViwYAHOP/986fGvWrUKp556Knr16oV58+aBMYYHH3wQZ555JpYvX47i4mK97q5duzBw4EB0794dTZo0wX/+8x9MnToVvXv3xpo1a9ChQwcAyZXglixZgpEjR+LEE09EPB7HK6+8ggsuuAB333037rrrLtMxTJ06FZMmTcK4ceNw2223IRKJ4Ntvv0V5ebmp3qJFi7By5Up9AYs1a9Zw39OVV15pWkVPY+zYsdi8ebNp2+rVq7F48WKccMIJOPPMM/HGG28IP6shQ4Zg9erVmDJlCoqKivDzzz/jnnvuQXFxMdatW4c2bdoASH5f48aN47aPxWK2xWuys7Px/vvv28oIgiB8o7YSHBNEbRKPx1lhYSHr2bMnd/vMmTMZAPbGG2/U8JHVD2655RYGgG3evFkvu+SSS1gsFrMt7NC/f3+Wm5vL7efzzz9n0WiULViwgLtgyVVXXcWysrLYzz//rJfF43HWqVMn1rp1a5ZIJKTHOWDAAJafn88OHDigl5WWlrJmzZqxP/7xj47vc8OGDQwAu/POO/WynTt3mhbE0Bg0aBBr0KABO3TokF62evVqFgwG2f/8z/847sv4Xq655hrmZnj//vvvWSAQYJdeeqmwT+0zti7QwRhj3333HQPA7rjjDlP5p59+ygCw6dOnS/f/wQcfcNuPGjWK5eTkKL8PgiAIL5BNgqiXhEIhjBo1CmvWrMG6dets22fPno2WLVti4MCBetnMmTPRvXt3NGzYEI0aNULHjh1x++23u9pvIBDAtddei9mzZ6NDhw7Izs5GUVERVq5cCcYYpk2bhqOPPhoNGzbEGWecgX//+9+m9u+88w6GDh2KVq1aISsrC+3atcNVV12FX3/9Va9z6NAhnHDCCWjXrh327t2rl2/fvh0FBQU47bTTpLaDmkBbUjgcrr45FYlEEI1GbVG/xo0bIysry9ZHeXk5rrjiClxzzTXCpaQ/+eQTdO/eHUceeaReFgqFMHDgQPz000+2ZYF57U877TQ0aNBAL2vUqBFOPfVUfPrpp9i2bZvr99msWTOuhaFXr144ePAgfvvtN73siSeeQCwWw3XXXSfdD4CUUvbNmjULjDHbUtmqfUYiEQBAXl6eqbxx48YAwP3+jDz33HMIBAKUbYUgiFqBxDBRb7niiisQCAQwa9YsU/mGDRvwxRdfYNSoUQiFQgCA+fPnY/z48ejbty8WLVqExYsX48YbbxTenpfx5ptv4tlnn8XUqVPx8ssvY9++fRg0aBAmTpyITz75BE888QSefvppbNiwAeeffz6YYY7r5s2bUVxcjJkzZ2LZsmW466678Pnnn+Pkk09GRUUFgKTw+H//7//hl19+0cVFZWUlLrnkEjDG8PLLL+vvS0Q8Hld6MMX5t4wxxONxlJaWoqSkBA8//DAuuugiHHXUUXqdcePGoby8HBMmTMDWrVuxZ88ezJs3D4sWLcItt9xi6/Oee+7BgQMHcO+99wr3W15ejlgsZivXyv71r39Jj9upPe9CKpFIoKysDN9++y2uvPJKtGjRApdffrl0P0DSL928eXO0aNFCL/vwww/RqVMnLFy4EB06dEAoFEKrVq3wt7/9zWaT8EplZSXmzJmDdu3aoW/fvp76aNOmDYYOHYpHHnkEy5cvx/79+/Htt99iwoQJundaxN69e/Hqq6/izDPPxNFHH23b/vvvv6OgoEB/79dee63pgkHjtNNOE/qkCYIgpNRmWJogapu+ffuyZs2asfLycr1s4sSJDADbtGmTXnbttdeyxo0bp7w/AKygoMBkBVi8eDEDwI4//njT7fNHH32UAWD/+te/uH1VVlayiooK9sMPPzAA7LXXXjNtf+WVVxgA9uijj7K77rqLBYNBtmzZMsdj/P777xkApQfvljmPl19+2dTu8ssvZxUVFbZ6n3zyCSssLNTrhUIh9uCDD9rqffXVVywSibCSkhLTMVttEsOGDWONGzdm+/btM5WfcsopDAC7//77pcd9/PHHs/bt25vsAhUVFeyYY45hANhLL71kaxOLxfTjb9++PduwYYN0H4wx9swzzzAAbMaMGba+GjVqxJo0acKeeOIJ9v7777NJkyaxUCjELr74YmF/bmwSb731FgPAHnjgAWk9mU2CMcbKy8vZ2LFjTd9zt27d2Pfffy/tV7Mkvfzyy7Zt06dPZ9OnT2fLli1jy5YtY5MmTWINGjRgHTt2tH2nZ5xxBguFQtJ9EQRB8CAxTNRrnn/+eQaAvfrqq4yxpNDJz89np5xyCrfeiBEj2OLFi9nOnTs97Q8Au+iii0xlGzduZADYbbfdZip/++23bb7lHTt2sKuuuoq1atWKBYNBk/CYOnWqbX9XX301i0QiLBgM2vyYIsrKytiqVauUHqWlpUp9/vbbb2zVqlXs/fffZ/fddx/Lzc1l5557rklkrl69mrVo0YINGTKEvfHGG+z9999nd9xxB4tGo+yee+7R61VUVLATTjjB5G8VieF3332XBQIBNnz4cLZ582a2fft2dscdd7BQKCT8zIw899xzDAC7+uqr2c8//8x+/PFHNmbMGL39/PnzbW3WrFnDPvvsM/bCCy+wnj17svz8fLZ+/XrhPpYuXcqi0Sj705/+ZPMSRyIRrlC84YYbGAD23Xffcft0I4b/9Kc/sXA4zLZt2yat5ySGx4wZw5o2bcoeeeQRtmLFCvbKK6+woqIidvTRR7MtW7YI+y0qKmJHHHGEySst49VXX1XyIRMEQahCYpio1xw8eJDl5eWxQYMGMcYYe+211xgANmfOHFvdWbNmseLiYhYKhVggEGC9evVSirQaAcCuueYaU5lIyC1fvpwBYAsWLGCMJSczde/enTVv3pw99thjbPny5eyLL75gK1euZADY5MmTbftbtWoVA8Ci0Sj75ZdflI+zoqJC6cGbCKbC/PnzGQD2f//3f3pZ79692XHHHcfi8biprhbV1ibbTZs2jeXl5bHvvvuO7d69m+3evZv985//ZADYvffey3bv3m3qY86cOeyII47QLxo6d+7M7r//fgaAzZs3z/FYp06dyho2bKi3Ly4uZrfeeisDwD766CNp29LSUtaiRQt27rnncreXlJSwrKwsNmjQIFZWVmbbXlBQwACw3377zVSuXSi98sor3H5VxfDOnTtZNBplQ4cOdawrE8NadFn7rWrs3r2b5eXlsdGjR3P71L6366+/3nH/GolEguXk5LALL7xQuQ1BEIQM8gwT9Zrs7GxcdNFFKCkpwbZt2zBr1iw0atQIF1xwga3u5Zdfjk8//RR79+7FkiVLwBjD4MGD8cMPP9TIsa5fvx7//Oc/MW3aNFx33XU47bTTcOKJJ+KII47g1j9w4ABGjhyJ9u3bIzs72zY5SsSWLVscl5XWHitWrPD0Xnr16gUgmXNXY+3atejZs6fNz3ziiSeisrIS33zzDYDk57B3714ce+yxaNKkCZo0aYLu3bsDSKbtatKkicnLO2rUKGzfvh0bNmzAd999p+e9DQQCOOWUUxyP9dZbb8Wvv/6KdevWYcuWLfj000+xe/du5OTkoGfPntK22kRL4/vUePvttzFs2DD07dsXCxcuRDQatdXp1q0bt19W5dVOZdIcAMybNw/l5eXKvw0Ra9euBQBbWrTGjRujXbt2WL9+Pbfdc889BwCu988YS/m9EwRBaFCeYaLeM2bMGDz55JOYNm0ali5ditGjR5uyB1jJycnBwIEDUV5ejmHDhuHrr7/Wc6imE21ykHVC11NPPcWtP27cOPz444/44osv8O233+JPf/oTHnnkEdx4443S/RQWFjouK62h5c51y/LlywEA7dq1M+139erVSCQSJkH82WefAQBatWoFAPjb3/6G0aNHm/rbvn07LrroIowbNw5//vOfTf0CyWwOnTp1ApCcsPX0009j6NChyt9bLBZD165dAQA//vgjXnnlFYwdO9Yx360movv06WMqX7ZsGYYNG4aTTz4Zixcv5k7SA4Dzzz8fy5Ytw1tvvYWLL75YL1+6dCmCwaBNfLrlueeeQ2FhoSlrihcKCwsBACtXrjR9prt27cKmTZtw5pln2tqUlZXhhRdeQK9evfTPVoVXX30VBw8exEknnZTSMRMEQWiQGCbqPUVFRejWrRseffRRMMYwZswYWx1N+PTp0wctW7bE9u3b8cADDyAvLy9lQaJKx44d8Yc//AF/+9vfwBhD06ZN8cYbb+Cdd96x1X322WfxwgsvYPbs2ejSpQu6dOmCa6+9Frfeeiv69OmjR2Z5RKNRYaoytzz11FP46KOP0L9/f7Ru3RoHDhzARx99hMcffxx//OMfMXToUL3ujTfeiAkTJmDIkCG46qqr0KBBA7z33nt4+OGHcdZZZ+nR344dO9pWINuyZQsA4A9/+ANOO+00vfyXX37Bww8/jD59+qBRo0b49ttv8eCDDyIYDOJ///d/TX3cc889uOeee/Dee+/pWRXWr1+PhQsXoqioCLFYDP/85z8xdepUHHvssaYsFnv37kW/fv1w8cUX49hjj0V2djY2bdqEGTNmoKysDJMnT9brfvzxxxg2bBgKCgpw++2361FVjc6dOyM3NxdA8m7EU089hfHjx+PXX39F586d8e677+J///d/MX78eJPw/OGHH/SLmM2bNwOAvqpd27Ztbd/p559/jq+//hq33367MLvIwYMHsXTpUgDQV4ZbsWIFfv31V/2iEADOO+883HXXXbj66qvx888/o0ePHti2bRumTZuGgwcP4vrrr7f1vXjxYvz222/CqPAPP/yAiy++GCNGjEC7du0QCASwYsUKPProo+jSpYut3WmnnYYVK1YoZzghCILQqU2PBkFkCjNmzND9pDzmzp3LTj/9dJafn8+i0SgrLCxkF154oTDTgwik4BlmLLmIQ79+/fQMAxdccAH78ccfTZ7hf/3rXyw7O5uNGjXK1N+hQ4dYz549Wdu2bdnu3btdHbdXPvnkEzZ48GBWWFjIotEoa9CgAevevTu79957TQtZaCxcuJCdfPLJrFmzZiwnJ4d16dKF3XvvvbaFOKyIPsNdu3ax/v37s+bNm7NIJMKOOuoodt1113EnQE6ePNnmid24cSM79dRTWdOmTVk0GmXt2rVjd9xxh+14Dh06xK688krWqVMn1rBhQxYOh1mrVq3YpZdeyr7++mvufkQPqyd3165d7KqrrmL5+fksEomw9u3bs2nTptkWDJk9e7awT+tvgTHGxo4dywKBgGnhE9Hnynu0adPGVHfbtm3s2muvZe3atWNZWVmssLCQDRo0iH322Wfcvvv168dycnKEkzB/++03Nnz4cNa2bVuWnZ3NotEoO/bYY9ktt9zC9uzZY6vfs2dPVlBQIHwvBEEQIgKM0WU0QRAEUXfZt28fmjZtikcffRTXXHNNbR8OQRB1DJqBQBAEQdRpPvzwQxx55JEYO3ZsbR8KQRB1EIoME4QPxONx6fZgMEiz3wmCIAgiA6GzM0H4gFMKMm1ZZIIgCIIgMgvKJkEQPuCUiqxZs2Y1dCQEQRAEQbiBbBIEQRAEQRBEvYVsEgRBEARBEES9hcQwkZEMHz4c2dnZ2LNnj7DOJZdcgkgkgh07dtTcgdVjfvrpJwwfPhzHHHMMcnJykJeXhxNOOAFPPPGEbQLhlClTEAgEbI+srCxu3/Pnz8fxxx+PrKwsFBYW4oYbbsD+/ftt9fbv348bbrgBhYWFyMrKwvHHH4/58+crv4e3334bffr0QXZ2NvLy8jBkyBB9eWYrBw4cwF133YX27dsjFovhiCOOwOmnn47vvvvOVK+iogJ333032rZti1gsho4dO+Lxxx+39ffyyy/j1FNPRX5+PmKxGAoLCzFkyBB8+umntrqlpaWYNGkS2rdvjwYNGuDII4/EBRdcYDvW999/H1dccQU6duyInJwcHHnkkRg6dCjWrFlj6/Pjjz/GlVdeiZ49eyIWiyEQCOiLlVjZvn07rr32WhxzzDHIzs5GmzZtMGbMGPz444+meu+++y769euHwsJCxGIxtGjRAmeccYa+UIeRsrIyTJs2DV27dkVOTg7y8/MxcOBA2/t38ztr27Yt93dm/a198MEHwnqBQADjxo3jfg4EQdQPyDNMZCRjxozB4sWL8dJLL2H8+PG27Xv37sWiRYswePBg5Ofn18IR1j8OHDiA3Nxc3HnnnTjqqKNQXl6OpUuX4rrrrsPatWvx7LPP2tqUlJQgLy9Pf83LqPHiiy/i0ksvxZVXXolHHnkEmzZtwq233ooNGzZg2bJlprrnnXceVq1ahalTp6J9+/Z46aWXcNFFF6GystK0XDGP1157DcOHD8fQoUOxcOFC7N27F3fffTdOOeUUrFq1Cn/4wx/0uvv378fpp5+OrVu34m9/+xu6deuGvXv34tNPP8XBgwdN/Y4fPx7z5s3DvffeixNPPBFvv/02rr/+euzbtw+33367Xm/Xrl3o06cPrr/+ejRr1gzbtm3D9OnTceqpp5pWvQOAIUOGYPXq1ZgyZQqKiorw888/45577kFxcTHWrVunrzw3c+ZM7Nq1C9dffz06d+6MnTt34uGHH8ZJJ52Et99+G2eccYbe53vvvYd3330XJ5xwAnJzc/HBBx9wP6eysjKceuqp2L17N+6++2507twZGzduxOTJk/H222/jm2++QaNGjfT3pK0GV1BQgN9++w1PPvkkBg0ahHnz5uHSSy/V+x07dixefPFF3HbbbTjjjDPw22+/YerUqejbty8++eQTfVVEN7+zRYsWoayszHT8P/74I/785z9j+PDhelmPHj30Zb2NzJw5E88//7ypLkEQ9ZDaXPGDIETE43FWWFjIevbsyd0+c+ZMBoC98cYbNXxkhJULL7yQhcNhdujQIb1MW2WNt9KbkXg8zlq2bMn69+9vKn/xxRcZALZ06VK9bMmSJQwAe+mll0x1+/XrxwoLC1k8Hpfuq0OHDqxbt26ssrJSL9uyZQuLRqPs4osvNtW9/vrrWU5OjnR1NsYYW79+PQsEAuz+++83lY8dO5ZlZ2ezXbt2Sdvv2bOHRSIRNnLkSL3su+++YwDYHXfcYar76aefMgBs+vTpetmOHTtsfe7bt4/l5+ezM88801RuXLFu2rRpDAD7/vvvbe3feecdBoA9++yzpvKXXnqJAWD/93//J31P5eXl7Mgjj2SnnHKKXnbo0CEWCoXYpZdeaqq7detWBoBNmDBB2idj/N8ZjylTpjAA7N1335XWq6ysZMcccwxr06aNbTU/giDqF2STIDKSUCiEUaNGYc2aNVi3bp1t++zZs9GyZUsMHDhQL5s5cya6d++Ohg0bolGjRujYsaMpMqdCIBDAtddei9mzZ6NDhw7Izs5GUVERVq5cCcYYpk2bhqOPPhoNGzbEGWecgX//+9+2Pt59912ceeaZyM3NRYMGDdCnTx+89957pjr//ve/cfnll+PYY4/Vb4MPGTLE9l6127svv/wyJk2ahMLCQuTm5uKss87Cxo0bXb23dNG8eXMEg0GEQiHXbVeuXIlt27bh8ssvN5VfcMEFaNiwIRYtWqSXLVq0CA0bNsQFF1xgqnv55Zdj69at+Pzzz4X72bVrFzZu3IiBAwciEAjo5W3atEHXrl2xePFiJBIJAMDBgwfx7LPP4oILLsAxxxwjPf7FixeDMWY7/ssvvxy///47SkpKpO0bNWqErKwshMPVN+kikQgAmCLqANC4cWMAMN3+b9Giha3Phg0bonPnzvjpp59M5ap5rt3sX9S+cePGpvek5dm29pmbm4tgMOjYJ6D2O2OMYfbs2TjmmGNMUXEey5cvx3/+8x9cfvnllAOcIOo5NAIQGcsVV1yBQCCAWbNmmco3bNiAL774AqNGjdJPjPPnz8f48ePRt29fLFq0CIsXL8aNN96IAwcOuN7vm2++iWeffRZTp07Fyy+/jH379mHQoEGYOHEiPvnkEzzxxBN4+umnsWHDBpx//vlghoQsL7zwAvr374/c3FzMnTsX/+///T80bdoUAwYMMAnirVu34ogjjsDUqVNRUlKC//3f/0U4HEbv3r25Ivf222/HDz/8gGeffRZPP/00vvvuOwwZMkQXcCIYY4jH40oPVbQ+d+/ejVdeeQVz5szBxIkTTeJH47jjjkMoFEJ+fj4uu+wym+d0/fr1AIBu3bqZyiORCDp27Khv1+p26tTJth+trbGulfLycgBALBazbYvFYjh48CA2b94MAFizZg0OHDiAY489FldffTWaNGmCaDSKoqIiLFmyxHb8zZs3R0FBgfIxJRIJVFRUYMuWLbj66qvBGDMtIdymTRsMHToUjzzyCJYvX479+/fj22+/xYQJE3DUUUdhxIgRwvcJJC1EX375Jbp06SKtJ6JPnz7o2bMnpkyZglWrVmH//v348ssvcfvtt6NHjx4466yzbG0qKysRj8exdetWTJ48GZs2bcLEiRP17ZFIBOPHj8fcuXOxePFilJaWYsuWLRg7dizy8vK4K8e5+Z1pvPvuu/jhhx/0sUPGc889h2AwaLuQAZIXxaeddpq0PUEQhxG1F5QmCGf69u3LmjVrxsrLy/WyiRMnMgBs06ZNetm1117LGjdunPL+ALCCggK2f/9+vWzx4sUMADv++ONNt9gfffRRBoD961//YowxduDAAda0aVM2ZMgQU5+JRIJ1796d9erVS7jfeDzOysvL2bHHHstuvPFGvXz58uUMADvnnHNM9f/f//t/DAD77LPPpO9Ha6/y4N0y5/HAAw/obQKBAJs0aZKtzvPPP8/uu+8+tnTpUvb++++zqVOnsqZNm7L8/Hz2888/6/Xuu+8+BoBt27bN1kf//v1Z+/bt9dfHHnssGzBggK2edqvdalUwkkgkWNOmTW3Wgd27d7NGjRoxAOzTTz9ljDH28ssvMwAsNzeX9enTh73++uvszTffZKeffjoLBAKspKREb9+vXz/WoUMH7j6j0Sj7y1/+Yivv0KGD/vm1bNmSffzxx7Y65eXlbOzYsabvp1u3bkrf0SWXXMLC4TBbvXq1sI7MJsEYY6WlpWzIkCGm/Z922mlC28eAAQP0erm5uVwrRWVlJbvrrrtYMBjU6x511FHsq6++4vap8juz8uc//5mFQiHTb4zH7t27WVZWFvf3xBhjoVCInXHGGY77Iwji8IDEMJHRPP/88wwAe/XVVxljjFVUVLD8/HyTH9FYb8SIEWzx4sWOXlURANhFF11kKtu4cSMDwG677TZT+dtvv23yLWtey1dffZVVVFSYHrfeeisLBAK6yK6oqGD33Xcf69SpE4tEIibRcfbZZ+v70MTsk08+adr3t99+ywCw+fPnS99PaWkpW7VqldKjrKxM6TPatm0bW7VqFXv77bfZrbfeyqLRKLv22msd233++ecsGAya/KGaGN6+fbutfv/+/U1C89hjjzV9NhqaGH7ggQek+7/zzjsZAHbPPfewHTt2sO+++44NGjSIhUIhBoCtXLmSMVbtV27WrBkrLS3V2x84cIAVFhayPn366GX9+vVjHTt25O4vGo2yq666yla+fv169vnnn7MFCxawM888kzVq1IgtX77cVGfMmDGsadOm7JFHHmErVqxgr7zyCisqKmJHH30027Jli/A93nHHHQwAe/zxx6WfhUwMl5eXs4EDB7LWrVuzZ555hn344Yds7ty57Nhjj2U9evRge/bssbXZtGkT++KLL9hrr73GLrjgAhaJRGze7nvvvZc1aNCA3XPPPWz58uXstddeY/369WPNmjVjX375pa1Pt7+zXbt2sVgsxgYNGiR974wx9sQTTzAAbMGCBY51CYI4/CExTGQ0Bw8eZHl5efoJ7rXXXmMA2Jw5c2x1Z82axYqLi1koFGKBQID16tWLLVu2zNX+ALBrrrnGVPb9998zAGzatGmmck2oaifUF154wTH6+uOPPzLGGLvuuutYMBhkt912GyspKWGff/45W7VqFevevTvr27evcB/WY5o9e7b0/VRWVtqEuejhlalTpzIAXEFjpWPHjqYI+ZNPPskAsK+//tpWt6ioiBUXF+uvTzrpJHbiiSfa6q1fv54BYE899ZR03xUVFezGG29k0WhU/z4GDRrErrzySgaA/fTTT4wxxkpKShgAdu6559r6uOiii1h2drb+esSIEax58+a2evv37+deQPGOqWvXrqxbt2562VtvvcX9znfv3s3y8vLY6NGjuX1pE8fuu+8+6T4Zk4thbXLqqlWrTOWbN29mANiUKVMc+z/77LNZkyZN9IlpGzZsYIFAwPY/VF5eztq1a8dOO+00xz6dfmczZsxgANiiRYsc+zrhhBNY8+bNTXecCIKov5BnmMhosrOzcdFFF6GkpATbtm3DrFmz0KhRI9skKiA5aenTTz/F3r17sWTJEjDGMHjwYPzwww81cqzaksuPP/44Vq1axX1oaeBeeOEFXHbZZbj//vsxYMAA9OrVC0VFRfj11199PaYVK1YgEokoPUQ5Z53QUmJt2rTJsS5jzDRZ6bjjjgMA28TBeDyOb7/9Fl27djXV/eabb2z+Zq2tsS6PcDiM6dOnY9euXfjXv/6FrVu34s0338SPP/6Io48+Gq1atQJg9y87Hf/OnTuxfft2z8fUo0cP02e3du1aAMCJJ55oqtu4cWO0a9eO60O+++67MWXKFEyZMsX1pFEra9euRSgUQo8ePUzlxxxzDI444gipN1ujV69e2L17N3bu3AkA+Oc//wnGmO09RSIRdO/eXblPQPw7e+6555Cfn4/BgwdL+/nqq6/w1Vdf4bLLLtMnCxIEUb8hMUxkPGPGjEEikcC0adOwdOlSjBgxAg0aNBDWz8nJwcCBAzFp0iSUl5cLF1Xwmz59+qBx48bYsGEDioqKuI9oNAogOUHHOplryZIl+O9//+vrMfXs2VMozK2PwsJCT/tYvnw5AKBdu3bSeitXrsR3332Hk046SS/r3bs3WrZsiTlz5pjqvvrqq9i/fz/OO+88vWz48OHYv38/Fi5caKo7d+5cFBYWonfv3krH27BhQxx33HFo2bIlvvzyS7z33nu4/vrr9e0tW7ZEcXExPvnkE5SWlurlBw8exIoVK0zHP3ToUAQCAcydO9e0jzlz5iA7Oxtnn3229FgOHTqElStXmj477XtYuXKlqe6uXbuwadMmXbRr3HvvvZgyZQruuOMOTJ48WekzkFFYWIhEIoFVq1aZyjdt2oRdu3bZ9m+FMYYVK1agcePGOOKII/Q+Aft7Kisrw5dffunYJyD/na1evRr/+te/MGrUKOkEOyApmoHkuEIQBAHQohtEHaCoqAjdunXDo48+CsYY9yQ2duxYZGdno0+fPmjZsiW2b9+OBx54AHl5ebZoVLpo2LAhHn/8cYwaNQq//fYb/vSnP6FFixbYuXMn/vnPf2Lnzp2YOXMmAGDw4MGYM2cOOnbsiG7dumHNmjWYNm2akihwQ6NGjVBUVORLX5MnT8aOHTtw6qmn4sgjj8SePXtQUlKCZ555BhdccAF69uyp1+3evTsuvfRSdOrUCVlZWfjiiy8wbdo0FBQU4JZbbtHrhUIhPPjggxg5ciSuuuoqXHTRRfjuu+9wyy23oF+/fiYxOXDgQPTr1w9XX301SktL0a5dO7z88ssoKSnBCy+8YEq5NWbMGMydOxebN2/WF6j44IMPsGrVKnTr1g2MMXzxxRf4n//5H5x99tm49tprTe/1oYcewumnn44BAwbg1ltvRSAQwMMPP4xff/0V9957r16vS5cuGDNmDCZPnoxQKIQTTzwRy5Ytw9NPP42///3vaNq0qV73j3/8I84991x06tQJeXl52LJlC2bOnInNmzebUsidd955uOuuu3D11Vfj559/Ro8ePbBt2zZMmzYNBw8eNAn3hx9+GHfddRfOPvtsDBo0yCY2jcJ9586dWLFiBYDqyPVbb72F5s2bo3nz5vqiH5dffjkeeeQRnH/++bjjjjvQoUMH/Oc//8H999+PnJwc02ptQ4cORffu3XH88cfjiCOOwNatWzFnzhysWLFCz5ACACeffDJOPPFETJkyBQcPHsSpp56KvXv34vHHH8f333+PefPmefqdaagK3EOHDuGll17CH//4R3Tq1ElYLxAIoG/fvsKFSQiCOMyoRYsGQSij+QE7d+7M3T537lx2+umns/z8fBaNRllhYSG78MIL9UwPqiAFz7DGihUr2KBBg1jTpk1ZJBJhRx55JBs0aJCp3u7du9mYMWNYixYtWIMGDdjJJ5/MPvroI9a3b19fPcN+8vrrr7OzzjqL5efns3A4zBo2bMh69erFHnvsMZvneMSIEaxdu3YsJyeHRSIR1qZNGzZu3Di2detWbt8vvfQS69atG4tGo6ygoIBNmDCB7du3z1Zv3759bMKECaygoIBFo1HWrVs39vLLL9vqjRo1yuaJ/eSTT1jv3r1Zbm4ui8VirGvXruyhhx4S+ka176NBgwasQYMG7IwzzmCffPKJrV55eTmbPHkyO+qoo1g0GmXt27dnjz32mK3exIkTWffu3VleXh4Lh8OsoKCADR8+nNvntm3b2LXXXsvatWvHsrKyWGFhIRs0aJAte0jfvn2lHnUjsswixt8cY8mFP0aOHMnatm3LYrEYO+qoo9if//xnm7f7f/7nf9iJJ57ImjRpwkKhEDviiCPYgAED2Jtvvml7T3v27GGTJk1inTp1Yg0aNGAtWrRgp512mmlhFcbc/c4Yq55XcOqpp9q2WdEmR86aNUtYZ9++ffpkXIIg6gcBxgxJUgmCIAiiHrN06VIMHjwY//znP3VPO0EQhzfkGSYIgiCIKpYvX44RI0aQECaIegRFhol6gdMKa9pysQRBEARB1C/o7E/UC5zSil1xxRW1fYgEQRAEQdQClE2CqBdY00RZ0XIEEwRBEARRvyCbBEEQBEEQBFFvIZsEQRAEQRAEUW8hm0QaqaysxNatW9GoUSMEAoHaPhyCIAiCqBUYY9i3bx8KCwtpsjKRcZAYTiNbt25F69ata/swCIIgCCIj+Omnn3xfaZMgUoXEcBpp1KgRAOCHH19Cw0YxAEAlq0QlEqhkCQBAglXozytZAoxVJp8jgURlHImq1xWVAcQrk9HleGUAZSyolyeqyisqA6hIVtfrlieCepm+jQHlVc8PJbT61WUVen/mOtZ+tL8AEK9IHk88Xn3FX1EeqioL2OoBQEWFOTqQSJhfl5eFYMXYFw/j/t0SDlc6bLfb66OxhOl1KFTdRyRi7i9c9drYTyRa3V7bv1YvUvVWrH+zQtbyZH/RqtdhQz29LFDdRmsXrTrWcJCZ+gpV9RcJMsQC1XXChvJQINkgFAwjiBACVa+DgRCCgeQBhgIR/XkQIQQDwerXgRCQqEp3V5lIPq+sep2IgyXKq7aZy1EZB+IV1a8T2g84kXwAQHlc75slDOXGvxUV+nNWYf6Bs3jyfbJDcTD9nyZZR3ut/y2r2k9F1Xda1ReLV3/3lVW/2USi+rebKA+YtgFAZaVhuyUTYKXldx+v4P8fVCbU7kBZ+9MIcn7j3Hohfr1wxFxu7S9kOOMEg4xbLxRNPg+F7NsD2o87kvwdBSLJ9xGIhateB01/EQ6Zy7PCCBj/GQAEIiG9HiKR6nZaWTiEgLbUdygMRMP2OqFQ9ZsLR4BguLp+MKy/DoSi1fWCYcPzZHvjuaDScC6oZAkkWIVhW9XvrOp8AkA/X1QYzhPaeaCMBfXyRGXANsbHKwMoTwT1MuO5AjCfL7SfttvzxYF9v+OlP03Qz4sEkUmQGE4jmjUiN7cBGjbKAlA1kKF6wLOKYf15lRgGYBrgNFHcEEBZZdA08BkHJW0QDCeqRbNxcMpGcjDLRnLwqqgEsqrKsqrqa69jAA7Fk38rql6XVwJRVA90USSFbhTVgjSakxS0VacXxOOB6ucVQf25Joqr6yVfh7OTr42i2PqDtYpfP3/QInFsFcC8ukYhHDY+N5z0tX6Mba1COGp4e1pZ1Xkf0aBdCFsFs7HcKHhjBiFcvZ3pZdrzWLDSJIK18lAgiFDVCT4pdKtFrlUMB2HfZhbDcY4YDunPbWIY2UC8vLq9UQjH40B5CEAMiMeTYlivY6iPKFBeYRC51WdwXegGAkC2JnwjSaGbVfVa/xsBq/rnYBWVyS+nIlH9Gsld2QRxFIiXB5L/OLCI4kRA/2dIaOURS72IXt0sjA3len884evyH0Umkq0CmFc/ZHgd5IhcAAhHDYK4qo5xuy5wI3aBa3qtUs8ohIGkqI0ahDAAhMPVYjoUSr4GDGI4bBLM1WI4ahG61c8DoZhADIc5Yrj6XGANnpjqWcQwoI331eeGSGX1eSAuCJ7kAChLBG3itqIS0K7xAwah6/Z8oUGWQSITITGcAQQDIX1wc0skyPTBy/g8HGSIVwYQC1WirEoQR4LJwUn7a+4nWRYNJgcurS/tdVY4OcDZ6yXbV1QmhVy8IqiLu3g8iGgsoYvZcJjpkV2tLlAtHDVRbGwP2MWnSRxLorkqUWKnaLCGWwEMOItgax8qQjgrbN9mq8MRwtV17MLFuD3M2e6FUICjypwIhquFbypEw8noMJIiRhfE4XBSEIdD1eK56nkgEtIFcSASBKuoRCArDHYorr9GJARUJKq3K9QDkqI4GGaojAd0kZdIBHTxFy8P6KKvMh7QxWJlImASkYl4wCQOK/X/JfN3Zo0aq0Z7VeGJX9F+RCLYWj8siQYDPgth2xuy34HSha8I43Zj+3BU3s4njOeMIEK6IA4FgrogNp4PYsFKlFUJYu3ckKzDOxck2xm36eeBUDJ4Yj0PaEjPF+n6MAjCB0gMZxjGQS4UDOvRYZ7QNZKOAU5VEBv3aRS54XClLoiBpIjVRGE8HtDFn1UUA0lhbBSKRmHLE6Y8S4Wq0LXC61/Wp0wEJ9vIhbCxvlUIG8/dViFsjQrzsFosANiiwsa+jMSCldztmkUCgB71BaBHff0gEIqBJcqqOjaIZOPzULg6OmwUuDx426ORZHTYSNUP2S9BDFSLa00QA0nRp0WJw1GWjBIDpjpGUZx8u1VCOl5d14hIHBsR2Su4H5mkHw0nAQyoiWBAYIswXcnxBa4TNiFsjQoD9qiw4blukQCqo8LWunUEN8GT6jbm8V47X4j61bCeL3jXIQSRKZAYrmOIrvZ5270McF4EMVAdJdYEMQA9SmyN8IpEsdYGEEeL9XqWqK9MwKaCSFBbBTDgXgRb26QihEVRYeM2p6hwdZlBrPgUKa4xtOiv9bl1uyw6bBHETkgFMWASz8YIsEqUGBCLYsBgo4BYHJvevoLAFSGLMFsFMJCaCAbUhbBTVJiHyR5hhRcVdooUm8zQ/OeBUMyxjl/4HTzxcjcRMJ8vynx/lwThHySGMwiVW188eFflXgc4Wf8iQQyYbRNaGc82AcBmnUhuq7ZPAPxoMSAWx0a8TKJTiSK7FcCAOxEM+CuEeVqAFxXWj8lQZowKVx+nQcAYTuB+RoSlmCLB0aRvGBBEfTlWCVl0mGOX0HCKDgMSQQxIbROAPUoMmEUxYLZPAHxhDMjFsZ/wxC8gF8CAWQQD6rYIYxnP8qBsj+D9U/Ciwlq/IQexXEPRYdO5QfDceCeRh9vgCe+84jZ4ApjPFwSRqZAYrgXMQjeizxJ2QvVq3+8BzrhvniAG5D5iAFwvsYYxUpzcHrCJTJE4BuxZKbzaI4zw9qP3zxPFEhFsPSZZNNhYZrwL7FUIq0SFjdv49dRFle/C2CiAneCJXdXosBWXdgmAL4gBSG0TgDlKDNgjxQCkwhgQi2MjCUEGCRmy/gBxVomURTCQNiGsFBU22SUsE+eEbQ1+4VDqp1avc0lEvmENWfCEd16xBk+8CuJUIsOHDh1Cebn/ruNoNIqsrCzf+yXqHiSGawjPAxvnap9nlUj3AGfcr1UQG/uz2iYAuSgGzPYJADZhDNgFqDFFm0y4+gFP/AJ2AQyII8HWfnjRYGN5OoSwalRYVibyC/PwLIydBLDIN6zBEcCeosMuBDEArocYgLk+wI0SAzBFigGzKAbEwhjgi1JrmjUnYeuESPhaj0lDJoCtbZxEMJAmIazqFda3cU6ZTsLXhTD2ep4wBlg0uEERzkQ63rnDGjxJRRAD1XW9cOjQITRpXIBDZXu9dSChoKAA33//PQligsRwJsIbEHlWCdXosEaqAxzAF8SA2DaRbGO2TgByUQzIhbGxHytxS5RYFVF/pjoCMSGLAlv7dhLBAD9jhJMQdoKXSs3Yr/G5k0WCh5PwTbuVQmaVUIkOpyiIAUNk2FAXAD9KDLgSxQAchbGxLSAXr6kismBYBTDgQgQD0miwqUzBT+xaCMt8wVHONl50OA3+XxHc84RD8EReZg6e+CWIgWSZ18hweXk5DpXtxfCzZyCi5dv0gYr471hUcj3Ky8tJDBMkhjMF3sDmdLWv4SY6nMoAB0iu+gW2ieo21eUAXxQD6sK4ur7lYsCnKLFI+FqPrbq+3E9sPeerRoOT2/lCmNefij3C2q8sKsxrH6rBE74OL+2a0Tesl1WJW5XosJ+CGLBlmQAgjhIDNiGt1bdGfq0WiuRbN38vInFsRLTQhggVzzFP/AJ2AWztT0UEAz4IYVUs9gg9KsydTOdgkdDg/Z+kaJ/g2er8DJ7I7ibKkAliAHrfqRAJZyMa8U8ME4QREsO1CFcAu7za9zLAeRXEgPiqnxclBsSiWNtmzSThJIw1ZALZb0SZKpwEMKAmggG5LcJcVlU/xKtv/cu3R/BOSrKosIbRIqHBi/h6yjHMsTuY0qtJ6ullCtFhU95hNzgJYsDRRwzIo8RafX0bIIwWa4jEMVAtkDVSnVAnEr4aTgIYSE0Em54r+old2SOs8BbZsOKDN9gJXlBEFZXgiUz4qp4rAOc7ioc8vQOCqBlIDNchZFkl3AxwPFQEMSC+6udFibV+je20OtZtgFwYA865hjV4OYdlqKZlE03M40WjRXYI6zbVaLCxnR9CWBYVth4DLzrM8wvXWFYJQL5AhyQ6LKzjFB0GpIIYgNRHrD93EsWAqb22XWSHEIljwFm8pgJP+AJ8wS0TwNbtjiLY0N7JT+zaHiHzCmuELX3x4AhkU1o1H5DdSXQbPLHW8RI8AdTuKKZCZSSARKrhZWN/oJXwiGpIDGcAsltfMquEnwOcuY04ybrMNgHwo8RaO8Dctrp99WuRMAbEYtTvnMNO2ShEVgxZFNi63UkE28ur2qVBCFujwrKJc24tEk6T7JSQTajTrBKyOqLosE+CGIDUNgG4EMWAMFpsrKMqjnkkEmIRoNLeiCjazLUpKIpg2zZJNNjYlpc+zbMQVokKa2gWCbf2oTRnnPASPPEqiAHnAApFholMhsRwBiEd2BxySAL+DHCAOEIMyG0Tybb2KDHAF8Vae62ucbuxDk98GifK+ZFKTYTMgyzz7orqiERwsq44Ggw4Lahh7kMTwl6RRYWt+BoRlkV8VZZr1gWuReimURADUE6npj3X6vBEsam9EUvEWK8Hd15hvwSvEaFHVyKAAUURbOlHNrHOkxB2wppuTfsrE7OaMPbRRiE7P8i2iYInvLzD5napC2JjP7KVMgmitiExXMOopM5Rudp3GuC8CmKAb5kA5Ff92nYnUQzYE7DzBkprxNhYF/BvopwqsrtzvEHeiwi2bpNFg43bZULYj6iwFS3aKxPBabVMaFFgTRzzJtJ5QUEQA7BNqkuWuUunptUxttXgCmPAZqUw9mHFuHKen4tvOE5Mswp4QRuRHcL22kWaNVdC2IhTVNgNKuI3xQmostz0VquE04JNgN1CwbtbqCKIAXkAxcNaSARRY5AYriVUJkXIrBKp4EUQA+JBDlATxdo2J2Gs7csIL3JspSJFfaxqR1MRv4D5ffLaOYlgQG6LMD73Uwhbo8JuLBKeJs9xO0oKXu4kOoc2nqPDRgSCGIAty0SyzFs6Na2t6bWhD+N2DW7UuKpvDdfZFLzAOwbJ/mVRYNtrlxPrbP5gQC6E3dojRFFhrxYJB1INmlhJNXhiRCSIk/sRB1BSJR4OIhD273cdZ6TOiWpIDNcybgY069W+1wEOkAtiAI5X/QD/VhggFsXWbYBcGGv7NLazUm4YqP08/zvd0hPty40Atm53EsHGOmYd4F4Ip4oW+bX+ddPWFW5WopOhapcA+IIYsKddA7hRYkBNFOttrK8tPyapOAak4lSnQmGsUenHgEh4W4+fV1c1u4SxP8doMOCPEE6VKsGsT55LU+YJPWhiCZ6oWOsA9/Y6gC+IAXkAhdXg/FqCcAuJ4QxBu/VlHdjc4ocgTm5Tv+oH7FFiQDyTmBctBuzCWNsnDyeR7Ccykc053wsix/6IYPtzb0LYa1TYlwlxqaBZI0RWCafosBEvgthQxrNNABZ/sMfsETybhKo4NtWxhvVcCl0NlUgzT/zy2jpNrpP5ipVtEYA7IczDbVRYK/cxSuz1PGDEKXjCw4sgBsx3FAHz+eL3lN4FQaQXEsMZjuhqXzTA8XAriAFIr/q1506imFdPO57q7QGuJYJ3Xj1k0DI1cRfYiuBcD8C9AE5uN/RtOSc7CWFj37xllnn1rMflJIT9wkv02Bec7BIGuIIYsHuIAbltArBFiQGJKAbglD2CJx55kWN9m+EfJR12CdF+Zfv0M7uEcjTYWAbIhbCTPaKW0cZ/7Xwg8w0b62u4vZsIyAUxAOkdxeRz/h1DryTCQQR9/D0nyCZBGCAxXIdRHeAAd4IYgNIgpz0XiWKtb2s9ra52XBpWK4W1rsM5OLnfFO6kq/QPiAd1noh0zC7hUgRb96MqhEU+YRmiqLDIIqH5hfVyv6PI1miwU3SYh8A/DHAEsbG+sUxgmwDgSRTr211kjxAJZOM+0o1MaKcju4SjCAb4QtiYNcKNEDaiGhWuYWwWCUskWcUq4UUQm9pxAiiAPUpMkWEikyExnIGIBjgVL5gfghiA0iCnPQfEohiQR4s1REnZeZFjazsjfukAlSiGKIKqlF3CJxEM2G0R1royIexkj6gVLGLX1SQ6DZFdAkhNEAP8KHFVuZMoTm7zN3uETCA7IYo8u0HaXiG7hNPEOs8iGHAvhI24SaWmYRHHfi+24QU3dxNVBTHgPoASpjUuiAyGxHAt4vbWlxHRAGdEVRADEF71A86DXLLf6te27BEOwhiQZY/gC05RFDkdONkGlLNLSASwtY0bESyqL/MIG7fL7BGiqHBa8DJJTiXNGk8QazgJYkDsIwbsXuKq+iJRDIizRwB2YazXk2SPUBGzNu9wFU5tXQllgR9ZJbMEt55IBAPuhLChzFEIi3zCpn17yCCRBj+xFVHwhIfMP6wiiJN9OAdQgOrzRW1Y2whCFRLDtYCXSRGyAU52xa8iiI1l1qt+wHmQ07DaJwBO9giJMOa1s+IkktOJTHiLBno3Atj62voe0ymEjaikUhNZJDyhspiGfnAW8cuDZ5eQTagzCmLAPKnO1NbiIwbsUWKtftU2rigGuNFiwC6MAUk02GkynN+p1hQn36WSXcL6D5GSCLaU27JGAHIhbMRqj+Bt8yKOPWANnkgX41DIO+xFEANqARStfz+Ih0MI+Ojhjldmhh+cyAxIDNcgbkSwLKuEyhr0bgQxAOFVv9ZeqyMSxVqb5Gs1W4RVKPLEsbEPwF0k2Gqh4OElsizNLsEZX1Uix36JYHsdNSEss0e4iQqnK3IstUrIBDIv2swTt8ZJdYYsEwD4UWKtnUtRDDgL42Qd/gQ5pwwSpgiwx8wRKjhGlBUzSwBwJ4ABNRFs2MaNBgPOQlhmj5B5hd1YJFwIaFe56V0s3AQ4C2IAKQVQkvWV3ypB1DgkhjMM6epCnAGOd8XvJIgBKF/1J59DrwOIRbG1ndbWyRbBixprWCfiieDdBfZb6FrhHa9ovwoaIC0iGPAmhGWp1FSyQyhNnlOxRcjq8MQvzy5h9Q8Dcg+xsQzgR4m1OoBYFANmT3HVdqkwBrjiOFnXOYNEjSy2YcBLZgneP4NNAAPqIhhwjgZb6/AmyzkJYZk9QiZqU5xcl+oCHLzgiVtBbN0OQHq+4J0r4ikuEU8Q6YTEcC1j9Q2btilEhwH3ghgQX/UD8kFO60erZ7/650eLtfY8WwRPPMoEshFVsewFp30DsswSauUyAQyIRbC1bapC2AjPHiETvjKLhOdIscwGwRPI3AiwR0EMcG0TACdKrLWtqmfbJokWA7ALY0DoHcqEDBIi5JPoBLYJtwKYt92rCJa0lQphI5KoMJc0+IV5wRPZecONIAYgvKMIgBslTj5P7ssqigkikyExnIGoDnAy/zCgLoiNda113IpiwB4ttravLuOfJ0UCWcNof1ARrKmilllCvZwnQGtCBFvrGJ/zfMI8e4QsKpzuPMJcq4RRNPPsEl4EMSCNEgMuRLG2XRYtrqpjFYdCcazhMhOEaBKdCE9RZmm6NQXxC7gTwJbttkU0vAphUx8GIawYFU53FglZ8IRXxgueGOEJYkB8RxGQB1CS/aDqdbKfVFe/rIiFgKh/Y0xFTec9JzIaEsM1gEg4uBnMnMp4V/yAWRAD9gFMZZDT+tG2WaO9xkGOJ4yN7bU+kmXmz8SamcJKTa46x8NJG4gFsbP4BWA7WaiKYOs2P4WwEd7vOKWJczxUo77GMpldAhALYqB6Up3+3OIjBmxRYsCFKAbkwhhQFscajiLZiEEAp2ShcNFWdNwA+GITcBbAgD8i2LrNTUTYKHp5k+bcRoodcLojqO9CEjwRtTXeTQQgjBAD8gAKoC6KCSKTITGcoTgNcE5X/DxBbH3udpCzbku+RtVr6H1qWIUxwI8aa/05ieBMGVSdRTE/ApKqAObXdxbB1npuhLCXCLCqkPaCKTrsRiTzBDGgHiUG1EUxYBbWhvq2OoCaODbUl4pNGMQykJZ/Gqf968hm/lvfs6i+RAADDiIYcB8NdiOEBThGhX1aoMMpUOJ0N1FkmQCgHEAB7OcUrZ5sLglBZBokhjMAp1nCvAFO1F5VEANqg5y1nlbXadIcYBfGgF0QOqXf8TKIurwb7HmQlqUM4glfwC5SRfv3KoKtdZ1EMKAmhJ2iwmmxSPAsEG7rehHEgD1KDKiLYmM/1r70srhd/InEMSAWyJz2ymI1VVTSXPHei1N7BwEMpBAJtvaXihB2IZBT9Qs7TaIzBk8cRbKPARTAfFcREAdRaiMdJkGoQmI4wzAOWo7rz0sGOADc22AAhIMc4CyKrXWN27U6PPsDTwTyIscabnNUGhccSTUC4WbQFh2/hsgnl6oABtRFsPV1KkLYTVS4RtKsiYSvqiAG7LYJwB4lBuSiuGq7UaQJhbGxT0NbWTRYKiqtk/NqGtmxaciOTbb8sQFXUWDedpk32CchbIoKp2mJZpUUa3pdQSDFrwAKAOUgSqpUhoJIhP0LL1cmKFRNVENiuIZxivK6bWcd4AB4HuQAvigG5Ff/Wn1jf8Z6Im+wSCADziITqBbMvP36hcpxAGLRC7jzEvMjx+oi2Frf2tYvIex7VFhFyBrKUxbEgDhKDNi9xIBcFBu3V9WxijeblYLXt2mbQCBb26qI0ZpARYzz3qegrU38itq7EcHW11bB6ndEWBWP/YiCJ6rnC9G5AhAHULTXbkRxch8UGSYyFxLDGYJxYEplgLP25WWQA+zRX9FAp7WxCjI34rh6m1xUWvtWFap+oBrhkGeY4vfhhwC2tlEVwYA7a0TGoiqIAecoMcAXxfprixfYKMYEwhiwizuuONb2Ye3DtJ3jP3aLdVlqDT+iy6LjdtgHV/yK+nMSwLz9qIpgQE0IWxBGhT30pVdxGTxJVRADEAZQALkoBuRBFLJJEJkMieEMxYsgBuDrIAdwJsRZBjpjGw034ti8b9knIo8o1xQqFgzZoC+2TXAyTgTtYt/JOiETwYA8Y4RMCKtEhWtEVIuiw5ZtUr+xU5QY4Iti7muJMAbsVgqtHvjiTyiQ9bYc/7EK8bj5tRvR62V/CvtwJX4B+2fLqysTwBqy/MFWgSoTr2myRygtsiEInsj68npHEYDr84U1iAIA+53euAPxSNDXCaHxSrJJENWQGK5lnPIGa6gIYl5/ABy9xADP92tPhSYTxoA7cWzsxylikIkpelSiHHLrhCDjhIIA5rV3I4IB/4WwKsptnFKnVSFdptkqiAF5lBhwL4pNZfZosJI4NtQXCUSu/9gJY/TXq6C14jJyLBS8en+S41IRv6JjknmC9TqK0WDrNst2afaINCy0wd2NZK6JXwEUwFkUa2XcydMBWoGOyFxIDNcCql5hN1f8AJQGOYB/5Q+oD3SAXRgDdiEnEseifqzIosmZgkqU2o3wlfXpJICB1ESw02vpSnMqyy+ngiTSa/MPA2IhzYsSA+5FMaAujAG5OObVt7RzFJVV6KLZelw+o3o8Ok5inCd8Ze1UBDDgbIcA5NFgh+02ISyLCvvgL5YFT7wIYl6fAD+AkuxXHkThlWnjWW3e0SMIJzIo1kYAcrFiFSNuhEwQIVPfoWBYf1T3HzSJKS0djtWLai3TVhcyPoCk2LM+eP1YH7J+3TxU8GMfsveivR/ZZyE6bl4/vM9J+96svmCrJcJqY7BGg2WvnX57qtukuImiWYSFVJQEw/aoH0/wGOuEo2bhpLUx3WIPVT94ZabysP0BJEWg6CFqJ+oLSZFaEw/p+/L6Xnn9OX6unDLud2X5PnnfubWNw3ZHISz7PfsUMZZdhMr+Zx3//wXni+q+7WOO6vmirjJz5kx069YNubm5yM3NRXFxMd566y19eyAQ4D6mTZum19m8eTOGDx+O5s2bIzc3FxdeeCF27Nhh2s+mTZswdOhQNGvWDLm5uejTpw+WL19eY++zvkKR4QxANgHOul0b4IyWCUASFeZEiTWcrv6T+7FHAAC7lcJYDvCjADxrhRFZJNkJY2o1DS+RiFQGbdl70/BinVCJAAP2KDDgHAnmlVlfO16ESdKppeQXlnl9OdulHmKtPSC2TvDqGAWUNVpsbCvMEpHCBDlRtNSIU2S5plA5Vg2PE+yk21RsEABfhPLaOkSLXQthn1eiU60rixBrrwHn84X1XAGony9U7gKqkAgHEfAxtVrCZWq1Vq1aYerUqWjXrh0AYO7cuRg6dCi++uordOnSBdu2bTPVf+uttzBmzBicf/75AIADBw6gf//+6N69O95//30AwJ133okhQ4Zg5cqVCAaTxzNo0CC0b98e77//PrKzs/Hoo49i8ODB2Lx5MwoKClJ924SAAGOs7l+yZSilpaXIy8vD3r1vIDc3xzQI8QY3a5nVP2zdbs1BrNQnrw7Hp2xdu756n3zBxxOjKts04gp1rJSleQKEirjlkYp1QrZNVQAD/ojg5D7VhbBKn7Z9WBfSsP7ueAttONTheog99COsB1QLY5X96G0cBI3TdlNdyX5qEzei3MnGIdsuEpc8AQz4JoIBRWtECtYLwHncTvVcodKnsEzxfGE9V+wr/R2dCm/E3r17kZuba6svQjuP9rlhAcKxBsrtnIiXHcQnj17g+niMNG3aFNOmTcOYMWNs24YNG4Z9+/bhvffeAwAsW7YMAwcOxO7du/X97d69G02bNsU777yDs846C7/++iuaN2+ODz/8EKeccgoAYN++fcjNzcW7776LM8880+O7JZygyHAt4XbGMK8N76ofgNKVv6lMEi3W4EUBAHHkGOB7yER13EQNRB7ldJKuKLOsDk/8AuoCGFATwbwynj/YrRD2hJPHV6GOJlZsUWJALVIsqmesaxVdvKixtS+RuJNFkYV1M3zodpWtwqGuLKrqRvyK+lIUytyJch4Fdaq4uZsI2O8oanUAcVRYWOZwvhCdKw4nEokEFixYgAMHDqC4uNi2fceOHViyZAnmzp2rl5WVlSEQCCAWq/4dZWVlIRgM4uOPP8ZZZ52FI444Ap06dcLzzz+PHj16IBaL4amnnkJ+fj569uxZI++tvpLhI+rhjWwig17mwyDnqowz0AHq4jh5LGKBrKEilHn1gdqdiOHFRuHUxumk4Ub8AmJRqiqMVfzBKhPmfEuppiqIAX9EsbGeqK6GSBwDcoFs7NeVCE7zRMV0oHrMTqJRJHw13AhgUX1BXV+FsAe/sNfgCQBpAIVXjxsw4ZRp+9TLXQZSMoXS0lLT61gsZhKsRtatW4fi4mIcOnQIDRs2xKJFi9C5c2dbvblz56JRo0Y477zz9LKTTjoJOTk5uPXWW3H//feDMYZbb70VlZWVusUiEAjgnXfewdChQ9GoUSMEg0Hk5+ejpKQEjRs39u9NEzZIDGcYqoIYsA9ygLooNpZbRQsvYgzIxTGgNuipCGUjbkVzTeHleFROBiLhC8gFaKoCGFCLBouOI+0LdKgIYkE916IYEAtjWRtrO5F4cxLJvP34KYKd7BjpEtyqEVIn0QvIBaVsPy4Fs2cRnCJK4lfhXMGrxztXaPUAd+cLkTAG7OJYNrapEI8EfM4znDy3tG7d2lQ+efJkTJkyhdumQ4cOWLt2Lfbs2YOFCxdi1KhRWLFihU0Qz5o1C5dccgmysrL0subNm2PBggW4+uqr8dhjjyEYDOKiiy5Cjx49EKqalMoYw/jx49GiRQt89NFHyM7OxrPPPovBgwdj1apVaNmypW/vnzBDYriW4Q5oHgc5QC6KAeeBzlpu3CYSY6KIgBG30QG3ork2cRvxUDkpOEVe3Yhfp22qIlh0XF6tGMmdK4pcESJBDLgTxdb6MpErs0KIvlsVkayhKpZV4HmYvYhdP2/1q4hdDaf/Fafj8iCahXmD3USYRfVTEIRuzhUAlAMogPfzBe9/WnS+SHv6RY/89NNPJs+wKCoMANFoVJ9AV1RUhFWrVmHGjBl46qmn9DofffQRNm7ciFdeecXWvn///ti8eTN+/fVXhMNhNG7cGAUFBTj66KMBAO+//z7efPNNk6/4H//4B9555x3MnTsXf/vb33x5z4QdEsMZSiqDHJDaQOe0zbZdMsipCGUjmX5LTYbbyIcfVgOvKc5EOYPdiGBR/bR4hwGhyOXaHCT1jWJHKIyt7XjfrZNANvah8tuQWS7cYJzclwa/asrHp5FCKj1P/Un6kC6c4VYEO+wrFUSCGLCfA0QBFF5dp2ixtU0q54tMQ0uV5gXGGMrKzBN2n3vuOfTs2RPdu3cXtmvWrBmApPj95ZdfcO655wIADh48CAB6ZgmNYDCIykpatCSdkBiuQUS3vlyXSwY5wJswtrZzFMASwaMqlPX6DvaLuoaXCIiKgExFGANiASxr69aXXCPwosmAsygG1IWxtR2vvUoU2I0VIpXfvpvIs9/48T/rRjyq7E+hP08C2Gn/Plo0/Dhf8AIoWl0NlWixtY21ncr5IpBigCMR8jm1WtxdX7fffjsGDhyI1q1bY9++fZg/fz4++OADlJSU6HVKS0uxYMECPPzww9w+Zs+ejU6dOqF58+b47LPPcP311+PGG29Ehw4dAADFxcVo0qQJRo0ahbvuugvZ2dl45pln8P3332PQoEHe3yzhSN1XHocJsgEO4F/1a3gVxoBcHFvbKwtgRaHkZL84HHArGlXrq9TzIn717R78ybJtnsSzzC4hihJr7QB+W0VhrKEkkK19OYk1N2JZhl9C2k/8iIj6HTGGg/BV7SsVy0YNeYplARSAnxZN5e4i4CyOrX2opG6sS+zYsQMjR47Etm3bkJeXh27duqGkpAT9+vXT68yfPx+MMVx00UXcPjZu3IjbbrsNv/32G9q2bYtJkybhxhtv1Lc3a9YMJSUlmDRpEs444wxUVFSgS5cueO2116SRZiJ1KM9wGrHmGdaQ3TJyup0kbcsZ6Nz2D/BzUnrty4826d5HTQ3SXvaj2kYmfFX78upTVupbtl2WmxdQ8w/XRB8GuLmMfepbiqqXOhOo6YgxFEWvm379iEKnIKJTOh84tXU4X/h5rgCAPXv34ajmYzznGS762/8hnJXj3ECR+KEDWD31vJTyDBOHDxkSTiA0RFfpKttl2R+s7fU6nH5kwsopkszDS9RYFVk0PRXSKZC99q0ieN3uI92+ZaVjEdke9A4kkV5jH4C4H9mEOGsfPBSiyEaUI8pOiPzRdQ2fPLTKYtfrvlU/Xz88zAr9OGWVkG13PJc4nC9UvL+q5wpRfwSRKdTRkbVuo5o2B3AWxdI6HKGjMuDJ+lURZOkcBEWTR2qCdO3Ljcg14tqC4cKO4oeH2XfciGINVXGs4WTLEOFSLIvwTURnOF4/Hy5ePiO3FxXpENSq3SkIYkDtXCGt5yGYIuvXOq55Hec04rEQWMy/MSfBSJwT1RyeI20dQEUQa/UA+S0r1cEOEAsitwOfbH+pDnoavFtwmRRd8Ot98kjlfbr1YKfL1+yqrlN02NSpgig29mtFJQotwqtYFuGTiD4s8FP4pyJIvR5HGgW2mwAK4M/5ws25gtev2+0EUZuQGK5FVAWxVlfDzaBoxItItvWRgmh27DtNoromSau9IsWJhl6PLZ1eZxNuBDHAFx9eBbKG0/69iiy/RXR9IV22kJqe6OcDmXK+SOVcQRCZCo3EtYxK5FfUxoibKLMMlSU/U8VrZKEuUlOZMvz67Grdb+1WENt27tL+wNu/V1KJOBPeSPfFhN/fW4rHW5fOF3Vl0Q2CAEgMZwxuruSd2vPwElFIlVQjC4c7tSH+07VPX/t1mgznBbeixkvWBoryZj61dVHi828j3ecL1X7dWaZSyxEcDPv79TH6dyUM0M8hA/Fic/Dap1tSjUgQ3siUz7JGj8PlpDVfORwjuW6WuCa8UQsXROla8a02zhkEUVvQqFeH8Do4+TkYZYooI1LjsPge61IkNp3CXZW6KnLr0vecIaTy/+23eNWO5bAYc4jDFhpl6gE0CBFELUOCjqgj1AkrFUH4DI3QhJ1MiGIR3iDR5QjdtiWcIOHmAtXzRYrnlVCkEuFIZUp9mEj42BdR56EzZyZT30RpXVpqVkRt34qu6d9MLYvv2hS2JKozi5qY/FsT+/ZMfTtfEISPkBjOFGpjIDscxGc6PzcvQi/TPtN0i3PR5++zSE6X8KwJQUui2TtuRGaqn3M6fLZpEcl19VxRSf8HROZCYri28XtgS4cYq68Rh0x8325Fptvfg1/iWfvsUhTFqQocP4RousUsLU4gWe2sBrMiuFm1TRWtT19EcV04V2jwjjXF4w+HfbZJxMkmQVRDYri28Dow+DWA1aWBtb4hE6RevzdVUcr7HlMRyIm4J0HsRQTVVBtT+zQJ2cM1mixMG5ni5yjLXe5HvlxeH16i1p5F8eF2viCIDIPEcG3gdmDxMqClMnj5KWxpEBUjEolePn8nwZqKncF6PG7FsUtBrCoE3QpG1/U9CrR0CNkEq/C9z5rAuqR6uiK9Kt+VF8EsE6/WNm4WsnAlig+X8wUFTIgMhsRwJuNm8HAzmHkdlHwQtixRlnIfdZFAKGYv9PJ5ehHQbiPNTsLVuC+fPckqYsmvOnpdF6LXq5jzW8xmauTYKvL8eN9eBLVbwaxq01AVx755hVXHiHSdK9z2LdsHBUaIDIbEcE2jMiCoDD5+D5IeBipfhO3hPEAaRKWXz8qTgOYJWbfWB+M+VISxiiBWiA47iZxUtwPqwldVbHoRe+kQsrUljq2iLx2RX5XPWFUwq9o0VMSxkzBOZbsyfo7vbkWvy7GbJcrd9W8hHGYIh330+YaZf30RdR4Sw5mG04DkNAD5KKRdC7hUhW1dv41mFYVuPw+LWHT6/JXFcioCWUUYa32lECVOReg6tnUQwCoCTlX0ptu6UVt9GjGKOL/25bZPVcGsIpKdoshOwlgosFMVxKmO9TUceKmvd/2IwwMSwzWJbFBJZWDzYVBUGshqworhZV+1iVEgpur1dRn1FX1nNpHsViCLRK1ThgjVKLFLROJIKpAlAthJbDkJ30zxNLvq26P/mScEM0EAq2Z+4H2XTgLZFu12EMYyUexrNglTx5KxIs0iWln0Wvup68EO4rCGxHCm41UES9o5DmZ+31I73CLGbgQsDzcCWmVfDiLZMYJsFbdOnmCZKJYJYg+ZJdwKYZHok4knmfitDQ8zkL4sFW7x+ziMYjJdAtgp+mv9vmXiWCSMRaLYbZTYk13Cy7ifgnj27XyRaeM4QRggMZwJiAYJtwObVwFcE7fjVPtyIp6a7ywlwtHkX6/vQROJbiLAon05iWSJX1kYOXYbLRaJW5cRYjeC1y8R7FUAp2LXANyLy8RhIiBCVb8H1feviU2/BLAs+mv8LYiEsaoo9i0S7NfY70EEp/VckQLRWALhmH8XZ0FaBIQwQGK4tnEzuLkcCIWDWhqizUrtjfghamvCSmEUe16OWRPQgHoUWCUC7JTuTBL5Nf4uTMLYS8TXYx5hJ1IVwm5EsBeBm6pPGXAndBOsbi4QEAoEAai/VyfR7BRZVhXAouivSBh7EcW8yYU1uiKdi/OFZwHs5nxRV6xvRL2ExHAmoiqE3Yhgv2+fOZ3c3AhHPwbJuE9X+WHLySrVRS6cPgcVsSwTydp+ZOJYQRgriWJRlJgniH32D3PFsaIIFkWBXQluj/5kFRHoRuhWVAaU69YmkWBypr7Ke9MEMyD+vGQiWSaQVQSwkzBWFcVpF8Sq5wA/RLCPdyX1dofJXQ7i8CToXCU9PPDAAwgEArjhhhv0MsYYpkyZgsLCQmRnZ+O0007D119/bWpXVlaG6667Ds2aNUNOTg7OPfdc/Pzzz6Y6u3fvxsiRI5GXl4e8vDyMHDkSe/bsMdX58ccfMWTIEOTk5KBZs2aYMGECysvNwmXdunXo27cvsrOzceSRR+Kee+4BYx7TsaQicBXrsUSZfXBLxPkTGXiDk1bX2sZY39ouXs5/iPrkPfS+Et4fPLy0S+UYjP0pv2eHz4/3+bv9zkT1DSj/drS+rbg5KTvg1W5gbZdgFcJIsLGu9traXliOhOmh768ybntUH0ul8KFRURlwfBhRqV/TDy/vReWzkX22ou/D03fLKVO9m+DmDoUvuPnfdPP/7uV8IarvowgOhSqTSzL79AiF6ubdFiI91EpkeNWqVXj66afRrVs3U/mDDz6I6dOnY86cOWjfvj3+/ve/o1+/fti4cSMaNWoEALjhhhvwxhtvYP78+TjiiCMwceJEDB48GGvWrEEolLzivvjii/Hzzz+jpKQEAPCXv/wFI0eOxBtvvAEASCQSGDRoEJo3b46PP/4Yu3btwqhRo8AYw+OPPw4AKC0tRb9+/XD66adj1apV2LRpE0aPHo2cnBxMnDgxPR+MyuCmenWfYnRZOIDJIp2y6ICbyK1fUd6a3JcWUXbqT6vnZIXgfc4iz7JTFFg0IY4TARZGitMc+ZXBE6NOdawCRjUKrCpyAHEUUxYNVYnsuo3+xms5WhwOVgcIVI5dixrL6soiyyLrhSh6zPMf8yLDsjLVKDEvQmzFGh1WiharCEqF8T2lc4XbutYxLF43V1Ek6gc1Lob379+PSy65BM888wz+/ve/6+WMMTz66KOYNGkSzjvvPADA3LlzkZ+fj5deeglXXXUV9u7di+eeew7z5s3DWWedBQB44YUX0Lp1a7z77rsYMGAAvvnmG5SUlGDlypXo3bs3AOCZZ55BcXExNm7ciA4dOmDZsmXYsGEDfvrpJxQWFgIAHn74YYwePRr33XcfcnNz8eKLL+LQoUOYM2cOYrEYunbtik2bNmH69Om46aabEAikeALyMrj5NbClMqDJ+tDbSAShK1FcB26rhTXxqiiCRfVkIlkkkHni2EHscq0OAlHsaJ2wCmIfskU4vuZE/oyoRPFURLAbASwSvzKx5yQavQjcssqavdEXCybft5tjDQeZkgjm1REJZDfi2CqMVUSxinVCJojT4hVWSVvmdL5Ix10f3vlCa0+eYSKDqXGbxDXXXINBgwbpYlbj+++/x/bt29G/f3+9LBaLoW/fvvj0008BAGvWrEFFRYWpTmFhIbp27arX+eyzz5CXl6cLYQA46aSTkJeXZ6rTtWtXXQgDwIABA1BWVoY1a9bodfr27YtYLGaqs3XrVmzZsoX73srKylBaWmp6KOM0uKkMbKLbVW7qAGp2B72uwCrgZCOIx50fGuXxzHuovg/Z52T6PBQtF07fE+/WpOr3rnor1dqPm+0p4FYIi+wQ0jqcW+1OtgcNN5YBjXhlgPvQKKsMKj+MpNsG4fXYnN6vG+sF77vgWStM37fl++XZJVR+N053Hmo9NZ5bISyzQVjryGxy1rbG9ola/kwIQkKNRobnz5+PL7/8EqtWrbJt2759OwAgPz/fVJ6fn48ffvhBrxONRtGkSRNbHa399u3b0aJFC1v/LVq0MNWx7qdJkyaIRqOmOm3btrXtR9t29NFH2/bxwAMP4O677+a/eRl+CGEX7bl1ZFf0pnoSfy633EEMlbsQS5kQKdYiwSrHHQ2Lj1kWURZFkcMh+3fCixpbI8bWCXiySLFKlLiGcJPlwVGcuIw4q0aAeRFMUeRTFEFVieimMnEuVRuFWxuEES2aK3uPsWCl8Bh5kWRR9NgaOeZFjK3RYlkE1+l1glVII8RGPFkj9MouLzj9Pl+onCt47QBfLW+RSCUiER99vn72RdR5akwM//TTT7j++uuxbNkyZGVlCetZ7QeMMUdLgrUOr74fdbTJc6Ljue2223DTTTfpr0tLS9G6dWvpsTviZmDzEqWzDmyqA5pb8eskHl0IXVYLEYZASBOoCsfpJJhFIlkkkHni2Gqr4KWAcyuKJZYHkyC22iF8sEsADuJXlrFBIoRTFcEqAtiN+JWJQhWh6Yc/2Gk/kaB5krCXfYZd+IJ5n4nIgqEqjiNBZvrurMJYJIqtVgnea1VBrOIfThnJmF8jIljlfGG8W0gQGUqNieE1a9bgl19+Qc+ePfWyRCKBDz/8EE888QQ2btwIIBl1bdmypV7nl19+0SOyBQUFKC8vx+7du03R4V9++QV//OMf9To7duyw7X/nzp2mfj7//HPT9t27d6OiosJUR4sSG/cD2KPXGrFYzGSrECK7dSzZ5qsQdhLBqgKYJ+pkwlciJl2L3JoYXKtEp8qxOQpmkUiOaiI4zq/PE8HWMt7EObeiOBVBrIpiO9WosFch7FYEqwhgN+JXJhJVxGc6U6yl2nckyKTvQSaURQKZJ455/ViFsVO0WCaKRZFcJ0FsxCiIffEOy3y3brZZbVSibYC3gImbAApBZAA15hk+88wzsW7dOqxdu1Z/FBUV4ZJLLsHatWtxzDHHoKCgAO+8847epry8HCtWrNCFbs+ePRGJREx1tm3bhvXr1+t1iouLsXfvXnzxxRd6nc8//xx79+411Vm/fj22bdum11m2bBlisZgu1ouLi/Hhhx+a0q0tW7YMhYWFNvtESigOYMpCWOTz0hB5u/TtEi8rwPfEuvHTIikseQ/uPlXSmKn4j908jLg4Fuf3JdiXyucn+j5435kofZsGz1Osss2K7GLMR6weT333ikKY5wvW+xB4gTVEvlUNJ5+vtZ2KZ5hXn9e+ojKzHqL3aj1umW9Y9Dk5+Y9Vvy8nXzHPT2x8zXue7LdCuC1tSP5PTecLr0JY9VzBmyei1xGMqwSRYdRYZLhRo0bo2rWrqSwnJwdHHHGEXn7DDTfg/vvvx7HHHotjjz0W999/Pxo0aICLL74YAJCXl4cxY8Zg4sSJOOKII9C0aVPcfPPNOO644/QJeZ06dcLZZ5+NsWPH4qmnngKQTK02ePBgdOjQAQDQv39/dO7cGSNHjsS0adPw22+/4eabb8bYsWORm5sLIJme7e6778bo0aNx++2347vvvsP999+Pu+66K/VMEiIEg5QrISzqz00kWCUCzIv+cgY8aUTVKVLgZQD1Gn0wLrbhZr9O2STCIe5nIIwih8Pmz5YXNbbu0xotFlko4uX2RT6MUWKR9cGwTdk/bOyvBtKwqYgWWTTYbSTYGvnkTWCzIoqWyrNOCDc59ltTVEdoxXUiVR+PLBqsaokwftaiiLE1WqwSKVaJEssixCJc2yVSzLogFMKyu4eyaLDTXUPba87xWy/0PRCOVCLso8+XkWeYMJBRK9Ddcsst+P333zF+/Hjs3r0bvXv3xrJly/QcwwDwyCOPIBwO48ILL8Tvv/+OM888E3PmzNFzDAPAiy++iAkTJuhZJ84991w88cQT+vZQKIQlS5Zg/Pjx6NOnD7Kzs3HxxRfjoYce0uvk5eXhnXfewTXXXIOioiI0adIEN910k8kTXCuoCGGvA5vToJaKAPY6wa6mbq253U9Y0RIhmCBn/Yy44thJGLsRxTLrRCqC2CfRqyJgRVFht0JYZomQiWC/BLBI/IrEpKrYLUvUcGq1kFpqtaQ45W+LBMUT4VQsETJhbG0jEsUy64QbQWy0S4iEsmthrTLGiwInXoSwLGjiVgRbzxeUWo3IYALM85JqhBOlpaXIy8vD3r1vIDfHEE3TBh+/BrdUBza3g5plu7L4lQlfJzFaniEJ26N8b6AJ65LOerlAKFrqB0Kc9ta20bB4u3X/xtdGsWuMEltFrLGecVtVuSk67FBXVO5WxGrlfgnhdIlga31+xglbEbetab8uxG66PMXWyXUyYpIVvsKCfiKct2jdp7Wtdbsminn1rXWNr43LQocMv1djVNcoWEXPjf5hrdxVH27H+XScL7wGTSTnitIDZWh85qPYu3evfgdWBe08OvSFeYg0aKDczomKgwfx2qUjXR8PcXhSa8sxEy5JdWDT6vH8pvrzuH1g0wY3jvdL6vW1tnHKuQskBa/oIWtbU49UjlH18wDkfmPed6Ntt/bH+45FXmKVdHwGlCNQKSCKCnPr+iSEed5WDaNnVeaD5W1Pltn9tcL8womg7WE9RtV8wH55gd3um/cetPchzjMs9yCrfNYib7H1+9Vea1i9xBqi36HMQ2wlbXmH0y2EeZ5gfZthTBLNd9CPLSG3zNUBZs6ciW7duiE3Nxe5ubkoLi7GW2+9pW8PBALcx7Rp0wAAv/32G6677jp06NABDRo0wFFHHYUJEyZg7969tn0tWbIEvXv3RnZ2Npo1a6YvREakj4yySdQLnMSCzCtsbe9lYOM+l0SCnaLAKn4xXtRXFulVsCywipoZWAMRo5dYss9wiP+etEiytW04BJslwlrPYqcIhAxtrJkpjOnajH3xrBMiLzFvdTrAu3/Ya8YJCU4TlVIVwhpWEcyrY63H224Vk9yME4KIr1N0V8VP7KWdNTrrZj8820P1tqpMEZb3GwvZ8wxbrRU8z7ExawXPEqF9b0b7hJN1wmqbcGOZ0JBllxC1cYWLc4ir84VqNFgxEuy3+A2HGcJh/25kM5d9tWrVClOnTkW7du0AJFfIHTp0KL766it06dLFNCEfAN566y2MGTMG559/PgBg69at2Lp1Kx566CF07twZP/zwA8aNG4etW7fi1Vdf1dstXLgQY8eOxf33348zzjgDjDGsW7cuxXdLOEE2iTTCtUnwBienW168QSwdQlhVBHsRwCLxKxCYymLXqyJwgne/loNJLFvh2SV4NgubrcFqgZDYKGT2CZF1wsk24WR1MJRx7RK89oo2CZ6Y5XmFnSJ0TkLYrQiW1fNLALuxU6hurymc/l1E23m2C6u9wm6LEPchs1AY7RMi6wTPNuFkmeBZHVStEso2CYcyblTYSQinKWgiCpiUHihDk3P+4dkmcf785323SSwccVlKNommTZti2rRpGDNmjG3bsGHDsG/fPrz33nvC9gsWLMCll16KAwcOIBwOIx6Po23btrj77ru5fRLpgyLDGYpjVJhXxhvcalIEqwhgjviVCl8XZ3uWojIIGM+yKn1Fgtxj1wUyLxps/UyiEVs02BYxtkyI074TYaTYONFOFCUWTa7TIsSiSXWishrAmkoNqBkh7IcITlX8Ov0cy2tJFEf1iC1/e0SwXRTpBcyflTVqbIwYW/sQRYqNuYtFUeII57kWJRZFiDVUo8OqbVOCZ29ysjH5FDSR3jWMx5Xu+NUGpaWlptcq6wUkEgksWLAABw4cQHFxsW37jh07sGTJEsydO1fajybEw1Xj9Jdffon//ve/CAaDOOGEE7B9+3Ycf/zxeOihh9ClSxeX74xwA4nh2sJp0HJb5rMQVhbBTgLYjfiVnPG9Cl12SHxLMZBl/vmr7iMgOsMDcoFsFb1A9edltVNYs1W4EcUi64SKINbgCWJOtgiuVcKHVGoyj6WTPULDixBOVQTbJtslxNFla1tZmYaT6D1UQ3ojS/v5So4nGhT+i3DFsUwYWzNXuBHFIuuEtY5bQcwTsqplfpJS4MSNEPYqgn0iEk0gGvPxB151nNZVYidPnowpU6Zwm6xbtw7FxcU4dOgQGjZsiEWLFqFz5862enPnzkWjRo2kXt9du3bh3nvvxVVXXaWX/ec//wEATJkyBdOnT0fbtm3x8MMPo2/fvti0aROaNm3q9l0SipAYzkCkg5vq7S43QthvEawigAVnfCdBKhO3bnHblyaeeccoFMhV5cb3zxXGxs9PFi0WiGJTajZZlNhJEBtzEfNErVbmNmIsEciqq82pbNNEdE0IYZEI9ksAi4SmquD120JhvHEiOwaRUBZFka3imCeMRdFikSg2pmdTjRKLBLGGURBraELXi3fYEzK/sCxw4kUIpxI04Z0rMjQy/NNPP5lsErKocIcOHbB27Vrs2bMHCxcuxKhRo7BixQqbIJ41axYuueQSZGVlcfspLS3FoEGD0LlzZ0yePFkvr6xM/iYnTZqke41nz56NVq1aYcGCBSbhTPgLieHaxu3gJmunKoT9GNgAxyiwigAWiV8noZqqJcINmtAVHVMgKywWyJwzv7Iw5kWLBaJYGiXmCWK9PwdBrCERusoLcaQAzyuswbNHVLcTC2EnW4SfItielcF2qFzxKxOdbv4FvNooooa3pDrxjnfMWSE1cSwTxrxosUgUq0aJVQQxb1KdbCENlUiwUrRY4dygHDjRsKbbBDwJYdfnCgCoyJD0mBa07BAqRKNRfQJdUVERVq1ahRkzZugLfAHARx99hI0bN+KVV17h9rFv3z6cffbZemQ5Eqm+YGrZsiUAmMR1LBbDMcccgx9//NH1eyPUITGcKagIX9ng5rRevEQI+ymCnQQwTzSKRKaS4E1nVokq76/oOEQimRdB5kaODcLY5jNWEcUcPzA3Smy1TVjbGQWxBs8/rCGLDltx4S92s4wtb8Kdvsuq/xfrqnKAXAg7RYPTIYKtAlEkflOxTqSCSt8y37BIIFvFsbUP67+LLFrsJIplUWIvgtiKLDpsq+t2NTpVVM4fqncQvd49VD1fHEYwxlBWZr4gee6559CzZ090797dVr+0tBQDBgxALBbD66+/bosc9+zZE7FYDBs3bsTJJ58MAKioqMCWLVvQpk2b9L0RgsRwpsHNIGGFN7hp8G5JpSKERYOaLArsUQALxa+C4PUrUmyeRCfZbyQkjAbzxLFUGMuixSJR7BAlltomjGUaWp8y/7CbiXOprEbHySKh2sa6uhxgFLPuhLDbaLCovhcB7MY2wdt/TaAJRtFx8TzDPHHME8aiaDHPClGWCJo8xcbloXlRYreCWMPqH1aJDmtWiZR8w25WbpMFTqz9pSKE3Ypga45iD4TDlQiH/bvyq3TZ1+23346BAweidevW2LdvH+bPn48PPvgAJSUlep3S0lIsWLAADz/8sK39vn370L9/fxw8eBAvvPACSktL9cl7zZs3RygUQm5uLsaNG4fJkyejdevWaNOmjZ6n+IILLkjh3RJOkBjOdKyDm4o9QiaE/RrYtD5ciGCrSOQKWIkAdSt4VeqbxK9Cm2ohazlOQRTZKo65wthypjdFi0Wi2CFKbLNN2MQvx0OsIbNLCNCtEmnMLWyNBsvEstUewROKboWwnyLYKoDdiF8n0ZvuzBJRgyDlIRLJInGsKoyt/yomy4MkSmwV0LyJczJBzBPGGtbJdGmdLKcidEVtVO4gpiKE3Z4r6iA7duzAyJEjsW3bNuTl5aFbt24oKSlBv3799Drz588HYwwXXXSRrf2aNWvw+eefA4ButdD4/vvv0bZtWwDAtGnTEA6HMXLkSPz+++/o3bs33n//fTRp0iR9b46gPMPpRJpn2CpurR4wwXbh4Ca7yk/3wGY4w7kWwIIBUiZKa9IvrGEVzY7bOPmHrfWM2SxsfRhem3IZa8LVmK/YlEM4bCvTo8TaNl4uYq2+9leWf9iaO9i6RLNgu/W1SNxaI8NOYtgaFVbxCasIYadocDpEME/IikSniuj1a75pluL1TZT3r8ARkvx6hv1Z/n2M9SPC54acwlWRYnM+YXs9bbtWpgliXh5i7a81/7AWHbbmDrbmHLbmGxbVdxz7Vc8VxjLR+UJBCHPvHnoImpQeLEfT0S97zjN86evPIZrjX57h8gMH8cK5Y2g5ZgIARYZrFr+EsAyREDbgWginKIJVBDDXSlGDmSVEqGSQ4EWDTe/REjW2eo2N0WKThcIQKTZ5inlRYmMqNkvEV7dNGD3EUWuk2OIfrqVcwunALyHsFA1WFcFOApgnfmXC182/gWL6bNf70MQyPxpsfj+RIHP0C2uflzUzhVOk2GqdENkmrD5ia4TY2E6E1S5hjQ5brRI1jqoQNuJVCHu4c0gQmcThcbarb6he5cs8wjIh7DSw+SSCbW0zJLOEMUrL27dIIPPEMU8YW7cLRTHHU8y1TohsEyqCWOYftmL1DnvxErsk1aiwSAgb8SqERdFgFRHsVQDL/hX8+jdw04/uAbYcl6o45gljJ1EctV8vcv3BRkEMmG0TPOuDSBBb7RKyyXQy0p1v2DOSO4jVddwJ4XSI4HCkEuGIj55hH/si6j4khusDIiGc4sBmFHVCEexBAKeUXYKzT0cslgbZfngT5AB+erVAJCgWxpxosaoo5kaJeZPr3Apiqwh26R32wzfsZfKcF6wiWUUIO0WD/RDBtsl1nH8Fp3+DmvIMi44lElQTxzJhLBPFsiix1R/Mm1xnFcS8KLCqIOblHnZCtmiHa7za6bxY6VK4e8gqKsHi5MgkMhcSwzVBIg7AZR5Wnwc3bkRYwyqEXUSDVUSwkwB2lVnC0rcvqPQnmSAHwDZJzljXGjGWRYt5othqnbBFiV0IYhsiQeyHXcKHlei43aYYFU6nEFYRwX4JYBXR61e02GidkGWP4O3TKo6twtg6Ic+rKBbZJtwIYtlkORmpTKRzJYpl+YV9JGUhLLl7SBCZCInhDEEppZqVVISwyBqhOLClKoKVBbCP2SXc4phmjZNeTSV7hN0fnDCJbaPA5kaJrV5imY/YInJt0WFVrHmH3YhkhboqkWA30eJ0CGGeLcIpGqwqgq3/Du6yS/DLRcQr5Lf4ebeiZfvQfsaqi2pYhbFXUWy1TohsE14FsVN0WAXfrBEq80Wsdf0KnCgIYVE0WIMditfIHA+C8AqJ4bqASnocN3gQwo7RYI8i2I/sEgBQGfcvx2owzKT75KZX40SOZcLYJooN9gnHKDHPNmGM/hp9xCqC2Ck6LKMGfMPSFGqSDBJe8CKE3UaD3YhgfnYJwbE7iFxVVPvRRDMvEgyoLaqhvX8VUWz1ClujxCLbBE8Qa6hYJkS4yTuc1kl0blKueRXCRjwIYWuZFyJB/uROrzAf+yLqPiSGaxuV5OgyUr3K92NgEwhhJTuFpb2wThWqojeRUBdFoZD55Cfah0gkp5o9QiaKeVFinm3CJog1/IgQe8g77Afa5DkevKWXNbxGhZ2EsKotwq0IdhLAXsRvPJ6eM71x0QPe/sORSq44dlpUw0kUq0SJeYJZJIidRG8q0WFZNNh1pNjr+UGWetMLTucLN3cPCSIDITGciSisSS8d3NIghN1Eg72KYN6AKRKmbsSuE059aWLZeiw8cezkBwZciGJOlFhkm+BaJqIuIlFOk+mMSLzA+iQ6RXhRX1kkmLv8skJUOJ1CmLctVRHM0w4i8asifMvLvN2qj8bMnzdvXyKBzIscy4SxTBSrRIllPmKZIFa1S/BQWabZb6R+Ydm5I12BE4kQNo3pqQpygkgjJIZrC9lKcjykSy9bBjdue2drhI5ACPOiwa5FsIMA5olfJ7EaL/d/GdpwtDrqY90/Txw7CmOFlGrGiXaiKLEmiM31HASxW7uEEdlEuhrMRcwVwZITvyyVmoafQtgpGuxVBPMEsEj8ehW8MmR9akJZJJBlwthqpXAjinlRYicfsVtBzEO6VLPEKlEjKdWk5440Bk483D30SiTIX6zFK2STIIyQGM50eCd8L4ObA6LBza0Q9ksE8wSwiuhNxTusCVrRvjSBzBPHMmEsSqkmmyhntkMk0iaIucjq8KwSvEgxTyh7yC7BjRxzLBKyZZdFUWEefglhlWiwSASrCmCZUI376KG3Eq76ffP2zxPIPGHsRhQbs0+IosR+CGIjKtFhr5knAEj9xe464p0fZEsvpx44cSWEJXNJCCKTIDGcAXBve/EGMreDW4pX+SoDWypp1lIRwH5OmHPqUxO31mPhiWOjMHYSxU4T5US2CenEOhVBbMBVdNj8YakJYBfIfMCA3CJhRBYVdrJHiHASwm6iwaoi2CqAReLXSfimOrHOml3Cur+w4SLSeIxWYazZKbTjEYlimwXCEiXmeYndCmIeIruE6b1zynhWibREg1OZOM1NqekicJKCECYRTNQFSAxnGrIrfVOZwuDGq58GIey3CLaKTpnwrfTRO2wkaJhUJ/IKG4/TKox50WK3E+W0uibbhNPEOqsg5iGyS/DqGKllq4Rpt5z/E5WosBFVe4RfQtiLCOYJYJH49SubhGq/mkgWiWOrMFYVxU5RYpFtQiSIeTjZJXh1ncp4C3AYRbGvGSV4wtjpLmIqgRMHVIQwiWIikyExnMmoWiRUBjfOtrQJYQUR7FUAO4nfRAoR45AhwsXbT1DiFdaOnyeKtTbGSDHPAgFAaIOQCWIpTnYJU11emaJVQoTHhTeMmSSc8gvzRLBKVFi2za0Q5tki3EaDZSKYJ4Bl4rciTcI4YogSW/fPE8dWYWwUxcntlVJRzIsS82wTMkGsapcwwosOWzNLGOsZ8c0CoYrTXURJxDedgRPe3cNU8Du1mmQ6AVEPITFc0xgHKTe3vWQWCcNz0+CmcpXvcmCT1jXUN5anIoJF4jcV0StC1Kcmko3HIhLG1mgxL1KsEiV2I4gdo8OyDBM8satqlRDgNqOEG4xWCplFAuBHhWX2iHQIYb9FME8AqwjfVFKtGbNF8PalCWTehDmrMDaKYu24jJFi40Q7XpRYZJvwKoiNpBIdlmWV8ISbRTaMGO8iygIncY5Y9jFwwrXRlaVg8yCINENiOFNwI5JNKwGpRo8ladQs8CK81m2qE+tEQtgoGlUEsEz8psM/bJxMZ9y3ijDmRYtlolg2UQ6w+4g9CWIjnOgwN++wk1XCGPVN09LLqhijw7KosBHeUssa6RLCKiI4FQGcjvzCTunUjMeiIoytothon3CKEhuFqtE24UYQG5FNpuMJYFmaNStGi4TouVpHhrtvXpdh5ghdpaiwEY9CmFaeI+oCJIYzHdGVvtPgxltCU6vncJVvr+/eRuGHCOYJYBXhG69wL47DEfnCG5rAVRHGTqLYap2QTZQD7L5gZUFs+lBSiA67iAr7idEeYXxu9As7rTgniwobsUaFeXgRwm6jwUYhbBXBPAEsE79+p1oz5hy27lcTxzJh7FYU86LEXgWxEZFdglcH4E+aE4lmnm9Yhl8i2fTcMZjiEBVWCJx4EcKswlvmDYKoCUgMHw7wBjcjvJzCKV7luxXCqYhgkQD2InpFiPrSRDJPHMuEsUgUK0WJHRbcUPYQi+wSgDw6rPSBpWc1Oid/sAyeRcL6XIMXFXayR4hwI4T9EMFu06zJ2skwRn9F+xClUgOqj1smio2eYqt1whol9iqIAbFdwojMO2x9XmcQ3EWURoUNyLJH6CgJYbVouoysEBDzUbGkO/UzUbcgMZxJqFzpex3cfLzKl/mJNXGnEg02imAVASwTv35ZJYz2COs+jdFjq9DVjt9JFKtEiY0iF4Aw8sutK7BLmHCKDousEqIIsdE64SG7hBcBbPQLiywSsgwSxna887SqPcJJCPOiwV5EsBsB7JdVQtSPUSTLUqlpda3RYqPIlUWJrV5imSCWIbNL8KLDPO8wbyJdsj3fN2ycRFcji24AancRub5gcVQYgHPgxAGZ7Y4gMgUSw7WMZw+YDN7gZiSFq3yvQtirCOYJYFXhqzLJLhSW2yMAQ2SXI4ytE+h4ojjIySghihKLBLGGcWKdFZldQhodNvZhjA6napXwIe2aySrhkIdYhvGnzsspLPP51rQQlolgfqo1uSL0P88w3yKhkmO4oiLIjRTzosRuBLFb/zDAn0znJjrMs0844Ut6Na+TsK1wgiVG0hE4IYhMhcRwJuP2Sl80uHGiwrKrfD+EsNtosJMIFgngVLNKOGWQsO5bRRhbRbEsSmxMxSYTxFYbhBe7hAljdJg3UU6GaBJdDWOMCKtYJJyiwlZ7BG9ffghhP0SwSACnI9cwr0+jQOZZJHhZI7TtPPsEL0os8hF7FcRGZJPpAPdCNxXfsK+4vYvoMipseu42cBJPzSrh93LMlFqNMEJiuDaQpc1RvdJ3M7gZ4USDpdkjfBLCfopgaWYJj4twGBfZ4O1Dj/RKhLFRFPPsE7wosRdB7MkuAYXosIpVQoZPwtiYY9i2TTHlFG/iHCCPCgPypZZrQwg7iWCZ+PVbGIeVcgybI8Gqotg4YU6LEot8xG4EsREv0WG3VgkrvlkkZOcF1TRsTnNLDMgCJ+Z67gMnBJGJ0LVRpqOYPN0Jx8HNY6J0kRCujAdcCeF4RUAXlVpb00S8eEB/mPafCJgeXrH2w5vUZ92/9Rh578H6vo19a9uNFw8JyzZhFEbi2+N/v5zv03ixFBdcXFkx3XHgrIwoIoXbuTJPsVNKNRm8qLAR3gpz1rapCuGKiqAuCuPxoKmN2VIRNAnheEXQvnJdVRlvm5HKuPwhQta/tcx6vLz3o6G/f0Mf2mfFa6N/doLvwPyzD3DrGMuMqNxtkMHLfS0iFduP/IuSZx2S17dHhY2kEjhJRwpMgvALigxnAm6EgkeLBADT4OZGTDkNbjwhrKEJP5kI5pVb21j745GqZcLmH7bsS4vq2nzB1qwRhkix1Tph9RIbI8SAeWKdaoQYADc6rMGNDqvi0TeczoU3ZILDjUUi+by6LS97hMge4YRICLuNBjtFgp1Erxdk7YyBf24uYUsZL1IsihLzbBOqEWIeVruEEV50WBWvdoq0TqSTXZi6vIuYSuCEhDBRVyExnIlYz0aqy2m6GNxM8FaZq0UhzIv+8vB7FTpef7wlmt2IYqt1QiaITcfiIIiN2OwSxjLjhDvTPV+XVgnnDy/lyXJG3GSY4GWN0BBZJFSjwkZU7RFuhLCfIlhF/EbK1D7XihhftBn3wRPGVisFzz4hWoVOVRDzULFL8LJQ8DJLAGpWCdtnZhHdNb4ssxHVu4heosKcsppYWCMSZL6mtkvUtTR5RFohMVwX4a06p+FxcJPaI3wWwqrRYLcr0ZWVpe5Li8XMIsMpl7CxjlEUOwlirT4vQqx5iGVIF9pwEx1WnUhn3ea3+HW4ZWzdbr1t7ZRSjdeO+1OXRIWN22tKCDuJYJEAVhW9IkTtjSKZJ4xtkWFbbuGgMEqsKohV/cOm43YRHVaN/LpZjS4tWO8oyu4wuvALW5FFhY3bVQMnBJGJkGc4U7BFgy23vWQDmA+DG287Txh7EcJG/6wsGszz1Rq3WYVwWVml6SEjXsH0hwxZnzbPsOA4ee/Z6CU21tf6MW7TPlNV/7AR7i1LI8Yy1TsOdRCRRUKEMYOEbNKceR9V/fskhI0+W5sH1/Ka5++NlCX0B49QvNLVg4doH7zjER2/yButlZl81AIPsZN/GKj+znjfp+jOgGyypWwhF+tr60RPT4vJWMSt6zScMr+wy7uIfgVOCCJTochwbZFKfkjAPtD5PLh5nQ3ME8L6IUoEobU9bxsgjv46iVzVuuGIXXBraFFj2QIb2nZZlNiabUIWIRbaJQw4RYdluYmrPxRJ/mGjb5i33ZpFwueosd6tRWA4CRIjKhYJXlTY3L+9jYZsspze3kEI631V8J8DfAHMQyRm3cDrIxGuPh7jvrWIsXZ81khx2BLtBfhRYmOZhmqE2IjVLpEs876CnFtfcSZiu8B1MbckWa4WOBEJ4UQ5CWIicyExnMlYBXPcGilQjBZ7GNyM21XtEakIYaclmXki2KsAtgpeWZ/GutoxqIhikxXCZ0EMwDaZzgjPO2x/LrBKOOFl8Q2PpLI0M2C3QThNnAOco8Ky7BE8jFkjALtoNpZZ+7NGgo3wRLCKAA4rXtTGBcrPuA+eMJaJYreC2GiZ0I8rXr04hxWrXcIIzzsMqFklrFitE9bXxpXoRPg2mc5pfonVUie7G+RT4IRH3AchHA1SnmEifdDPIZNIOVosG+g8DG4GakoIW60IVruCzO5g3GZ9eKlnrGvEekw8+4T1fTp9Hm7gnXy41hbO9mS5RBDJ7jhw67tIr+YD1kwSVguE02sjXqLCpr4V7RFuhTDPEqFhtSjIbA3hikrbQxVeW2t73r6tx2e0T5isEhbbhAbPMqHVN+JklzA+56Vas9YV/RYASFOsqaTzS/WizoTKOcJ6HpD9D/Ny0VfhNClOlneY7BFEXYPEcKbj9kpfYJEAUosKm3bpkxA2em5VRbDpOByErBdEffLKeKJYw60gdusfNuLGO2yrK1mS1X5bNQ25uozVPIoGqyCxCRaBRcKKLIOEcTuvD1UhbITnD5b5gnki2IiK8E3FL2zdB69f47FaRbH+vjnRbzeCWOQfNuKUIcTkLZbMM+Yt0iJDNR+xr7i9ILVd8MonWifLHaLGFcbv2nleCUFkGiSGaxHuhAgV4eAmeqcQDXIbFVZFZdKYsQxwJ4Lt+xNHfFUe/PfgvP+aFsSAPDqsivViyTW8KJXX5LYCeAI5VcEhskgYkUUKAb6Is26r4FgoRBFN63OnaLARkfh1I3K9tFUVxbz35CSI9W0OgthUVxIdNuKUUYRXj1e3VoSvKk6WuhTuIgLeAycEkamQGK4LuF15zhrh82Fwc2uP8CqE9begEJmVlXtBxVphLTMeu3b81swYGqkIYiO27BKS58pWCevtUqc7Eini661juBcuKhYJp6iwyqQ5fj2xgAbUo8Gq1gUZbqwTor5Fx8F7D6qC2LoMtQjV6LDKdSIvmqwfn4Lw5YljXspA2XLjSvAuOL3YJzzcRUwlcFKZ4sVDOJj0dPv1CJP6IQzQBLo6itOVvjTq52Fw45WlUwgbcXptpMKjKI5wJtVp+zFOorOWWV+XlVWaJtgZJ8aZyuL2hTZkWCfTmRBkjhBNnrN3bpkUp7LYRk1OpOMICp7wcPILq1okVKPCpjJFn7DII6yh6RzrBDmrCLbiZG2QoSKIrRPqtP0ZJ9Fp/Wh1Q/FKfbtxgp1xch1vYp02gU40oU66Qh1nZTrjc5WJdNY23M/DxcpztYbbC1jJ70AYOOFs16CoMFGXoGujmsLN7WOeB4xnhZBc6QMQZ5GAu8HNGhXmIRvwvAphUXTYSkUF0x9eMfZh7ccpKmx9zbNNyCLEqUSHjahEh23bVFD1Cqc6AbSGEVkkAHleYUAtgimroyqEedFgIyqT5/xA1StsPUaZbUKDf3HBv4jgWU+sbYyIosMyi4OTb1jlQgywpwL0hKvzhsLdFplfGAp5yq1IvMLGMtEqogSRKZAYrm1qUEB4HdyMiKLCGk7CztpGE4484Wvu1/xaRQDH48zxIUJFFMuO2UkQazgJYtP+Zd5hRewXRQ53GHjp+9zadlwguoXMExY8ASKbPJfcbq0vbqthFFRuosL2ehbfq4IQNiITmdp2PybPqU6i4/UtqsMTxDzLhFOqOlt9y2Q6UR9yb3D1c6tVQsUXrJJRQsM3e5DqeUMhiJLqXURZVNhPskL+P9wwc+ZMdOvWDbm5ucjNzUVxcTHeeustU51vvvkG5557LvLy8tCoUSOcdNJJ+PHHH/Xtp512GgKBgOkxYsQI7v7Kyspw/PHHIxAIYO3atW4/LsIlJIYzFd5gx7vt5eJKH4Cvg5tqhJPXBjALYdO+JIJTJIDdCF1ZOyuqopj3XCaIZctKG1GODgu8wdLv1ck37AZRBCsDosUyv7D1tdhLbO+XF/F1skfwhBrvo1MVlrztxnpeJs+ptnfyCmt1eNtUBLFTdFgWUQbEAlj0faugeu1pTQFYm7hdTVL5LqLLqHAGDAUp0apVK0ydOhWrV6/G6tWrccYZZ2Do0KH4+uuvAQCbN2/GySefjI4dO+KDDz7AP//5T9x5553Iysoy9TN27Fhs27ZNfzz11FPc/d1yyy0oLCxM+/sikpBnuK7h4UpflmUglcFNFZ4A5AlhlWiwFVXRq4qxv3DYMOu8at8Ri3/Y6B3mPTd6iDU0D7HVP2xdkMO4kp2+zyrvsBGVRTasSD3E+s44vmAVP3ENwovK8TMImF+rWiRkq80ln5ujwqpo9XmT5ZxsEUbc+odTQbTgBs8rbKwTrqgU+og1D3HQ8pMS+Yd58BbiMHqRTd5gyYp0Tr5hnk84lVXtjPi2CIfqXRuJpQ6Q33FyuhslC5zUZYYMGWJ6fd9992HmzJlYuXIlunTpgkmTJuGcc87Bgw8+qNc55phjbP00aNAABQUF0n299dZbWLZsGRYuXGiLPhPpgSLDmYAoqpbK7WjJ4Ob21noqUWEvQlglGiyL/paVMdcP7vvm7IMXJXZ6bswyYUX0ORrhRYe5ae4Ub3dycZOo39bW34U3RLeSRdE2VQ+nDJXb4UbBm0pU2IsQdpNJgoeWns3tQ4STV9jpvVgxLswhQ+Yd5n4nDtF90bZUrNY1lnJNeN5QmF/CKVO9iyhqw80gUQe8wqWlpaZHWRkn5amFRCKB+fPn48CBAyguLkZlZSWWLFmC9u3bY8CAAWjRogV69+6NxYsX29q++OKLaNasGbp06YKbb74Z+/btM23fsWMHxo4di3nz5qFBgwZ+vU3CARLDdRDubS+Xt7hVLBJuBzeZPULDaVllp2iwSAQ7CVsnZO2t+7SKcxVBrCHzDxtR8Q4b61kRWSWs25LbVaNJdfs+p6NLRMEi4ZQWTYSsDk90OtkijIhEsIqodcKpj1QFsWxCnUq6NV7eYd53ZMWtPYK3+IbbCy6/0wm6xuuiOVU43UU0olrmBm05Zj8fANC6dWvk5eXpjwceeEB4DOvWrUPDhg0Ri8Uwbtw4LFq0CJ07d8Yvv/yC/fv3Y+rUqTj77LOxbNkyDB8+HOeddx5WrFiht7/kkkvw8ssv44MPPsCdd96JhQsX4rzzztO3M8YwevRojBs3DkVFRSl9XoQ7Mud+J8Enheiw7ErfRgqDGy+aCdijwrysEW6FsBU34tdoX5Ch9RmLWSYHxpnNOhFxsEloz73YJXh1jRjTrKXdHuEBlihDIBRLuR8joqgbT5jwBIzMLyyrK5s4Zy4Tp1Iz9iObMOdWCFtRFb/hqrElrvhdG9Oj8Y6BZ4vQtou2af2K7BI8rKnWjPDSrAFiq4R1G+81zwohskf4ZZsw4cVsq3jh6mSpc2uXMF2ou5wfUVv89NNPyM3N1V/HYuIxq0OHDli7di327NmDhQsXYtSoUVixYgUaN24MABg6dChuvPFGAMDxxx+PTz/9FE8++ST69u0LIOkX1ujatSuOPfZYFBUV4csvv0SPHj3w+OOPo7S0FLfddlsa3ikhgyLDmYLbAU/hthfgPqWarUvFwU2WPcLWp2D1OCOmyCsnGiy1N0hWmHOz+hxvHzLbhFNUWGaX4MGLDruNrjhaYlTvB4uiShk+K8btLWulxRk4mQukKb8UMiXwRK3bbBKyCG44nrA9ZNusdVT242bSn6jMapdwEx32gvX3IfOSZySul2LmvEEHv7CKxY43t8RIJuca1rJDaA+ZGI5Go2jXrh2KiorwwAMPoHv37pgxYwaaNWuGcDiMzp07m+p36tTJlE3CSo8ePRCJRPDdd98BAN5//32sXLkSsVgM4XAY7dq1AwAUFRVh1KhRPrxbQgRFhusCIiHCKXe7xK6KRcJLVFjvxxIVdhKMgF0IG5EJ4FQwtrdGj8vKmClKrB2TFiV2ihDzItLWBTlUFuMwRoeNE+lMbQQLcFi3AYIocXkFEI2YilgigUCoZhbY0JDdUhYJXFXhaxU8qjlneRPnjKisNAfYo8JOC2pYy3kimNvGhxR4xj6sEWRepNgYBRb2yZlQp0WHVdGiw+ay6ol0xu2iBThU4NUX9SFbiMO3CXJuSNEWIURwF/FwnTgngzGGsrIyRKNRnHjiidi4caNp+6ZNm9CmTRth+6+//hoVFRVo2bIlAOCxxx7D3//+d3371q1bMWDAALzyyivo3bt3et4EAYDEcL1AdqVvJZXBzU36MJEodiuE/ViGWdSnUcDyrBNG24RIEBv7FNkl+MdgzixhxFgmskpYSYs9ogZXoVNFJZOElz6k9V14hmVrKIgEr1sh7IcI5iGyVViFrMgW4dYuoWeUsGSWMOLGKmHFbodwJ5QzBrd3ZzjzS5wsdSp3EY3w7gw6BU6cCAf8/X7cHs7tt9+OgQMHonXr1ti3bx/mz5+PDz74ACUlJQCAv/71r/jzn/+MU089FaeffjpKSkrwxhtv4IMPPgCQTL324osv4pxzzkGzZs2wYcMGTJw4ESeccAL69OkDADjqqKNM+2zYsCEA4A9/+ANatWqV2hsmpJAYziRkZ0qRB0zhtpcjCtFk2eDmdAtMlE/YWuZGCDuJYDciWeQj5olaa5TYiFEQy/tICmJRdJiHbBsPJ/FrixqL8Cp4E3EglL7hxe3kJSuyyXPW16IsErzb8yp5hQF+VFgjXUI45GJcSEh+O+F4whdBzKurAi/Nmkz06u0s4tdpG08ci6K/ZZVBxIL8/VcigSBq56JRmGNY4YJJ1S9cly0SbtixYwdGjhyJbdu2IS8vD926dUNJSQn69esHABg+fDiefPJJPPDAA5gwYQI6dOiAhQsX4uSTTwaQtFi89957mDFjBvbv34/WrVtj0KBBmDx5MkI1fOeNsENi+DAllSv9VAY32aQ5Dd7kOT+EsNcoscwiIYoSa4LYOqnO2E7FLsFDdSKd0CphwSqMeUKZVSQQiGRWVNjr7Hv+ynT2elYB7DL4Zd6nQgYDGTx7hGwpZasQ9ksE89rwhDEvSqwqiPU+OGUa1ugwD69WCcA+ic6KTDjXBizhkO7Lh7sBTtFftyk5DzeLxHPPPedY54orrsAVV1zB3da6dWtTZgkV2rZtC8b8v/tJ2Mmgf3fCEZEHTDGtWiqJ1AG1iXMieAJYBRUhLJsE5xZVoW08LmvaNae+ku3Nk+lUUtYp49I3LiRdnkOfcLMMLpDaamMiv7CbiXMyr7CGKE8wb/U2DZEQDlVUehLCbvqx7lslkwUv8i1LtQbYJ9IZUbGpyFD1mvOyk7hpX2sIfh+8+SWOljoFv3A6LBJA8mLG7wdBaNDPoSZR8Xb5uIBBKlf66R7cVKLCqkJYFdFSzrw+VfalIoitbZ2OV8WTDSgswFGF7TfAE8puBVOGi2RALFysWIWMD9rRdZTYKSrsVgj7JYJV+5UJYjcLb7jBKauEzM7i9NH4mVEiIbO+VeFb/uE0ecVT4XCxSBCHPySG6xipeMAA9clzXuqILBIyAehVCDtFgzXha3yItolIVXx7qa+hmq3DittbmUJSObEqCADlriA/Dtep01y+LS9+YR68vMJW3ESKAbEQlhGOVyo9ZKQiiKX9WqLDKqvSub3wcJNn2oib/NYZiegCljvjNHVLHfcuYh1YjY6ov5AYPsxxzjMrPjk7iWNVi4SGV6sETwjzUBG4snYq+7biJjps7dONVcKIsR4v44eGShYR1+K5Dq1CpyqUvQokDdmqdCIhx1tgQ0PkFXayIMiEsIrIdVNfRRBz+3XpjTYis0qY6qUQjUxDQD1z8Cly7HbM8MMiQRDphsRwJuJkp3DhAXO9a4EgS8dkCJWosBsh7OfxyPapapew1le9CJB5s2X4dkvS5dLetU1NRuechJbXiXSpRoXFnl53IthNe6cotFN0OFWrhBGRbzjViY2AWCA7XWwlmM/KWslm5/5iVeUiORVLnV8kfb7Mx0faDpWog9DPoT6QwpKbPHhX+k4WiXTkA9bwQwgb+5J5fkWv03FcKYlbhQsjt7lDawsV36UIP/IOiwSV24lbKpPLVKLCboSwX6gK4lSjwyKrBA+ZLYWHdbfWn7/bOwL1mRq9OCeIGoDE8OGGD/f53Fzpu40Yc324KUSFVQWn09LLKv3Ks0OoH4fxr9slmr1MogNcXPDIxIxK1CnDl2cWYZtn6NY9IpnQZRV0MosEDxURbcVPIezUp0wQ+xUdVl1yWeTx9kqdtE3IrEyCuz5KF8Yp3HkkYUxkOiSGMxWnCEuKM/q9TLTyc0BzGzX1IoRFAlhVGKv0zy2XWCWcSFdaIiu+TbTLENxOpEslCugkzFSFm4YbkagSFVYVwl6yTvglslUvBKzwPlsvVohUf/6OUzHqysQ6CU5jhJvJcwSR6dCiG4chXiZKuRW6svpuLBKqUWErbrNAONVVWQxDq69aF+CvSpdubItsqK42l8Gk4r/0Q/eLoox+eFI13ApEL0KY14ZXJl+BrhJx6ypyFZXSNn7DW3BDWt9hhbqKygAinJXlMg4/MrXUYAo2Py/ko6FKxEL+XcTHfeyLqPtQZLguk8ZBzcuVvurCG26xtvNLCKu0cxMdVrVKqOA0iU41o4QbZBMwhSn9DiOsmtBthNdPYawh8wq7xU0UWCVFm3y7ulVCb6O4AEdNUd88xCp3i1K5o0RWCSKTITFcn/HgAZNNnlPeLUdguokKi0h1kp6qIFbZD88qYW1v9Q3XGH6tUGfFZdTKt8UGqnB7nq7JW9nWVedkUWCvWRbcpkJzwq2NwutCH07vV/VnZZzQmEp6NSfqRG5hnxbGcTPJtlJgmyCIugCJ4UymhlcUcpqEVRuoCtx0ZqvwCy/HSCeVuo2TkPMqfGtCpDqRjkl6MtwudCIi3RHfw8EvrIpfd6UIorap20bCuoiPq3PJ4F3RZ9qkKVn0VITbLA9ucesJtrYpK2OIxbydIBLxAELh1NOxBQ19WP3D9RU/BJAx2ug2rVq68ZoLWIV0+YHDFZWI18Bv062/uCapRAJBpJ71wi1+5KRXxa8L+nCQIeyjr9vPvoi6T2aN6ESdoj7NGvZilRC1zUhkoqmG71CIyNSImyytmipesytkMiLfcKbBu1Byu2z3YUMNimSCyCRIDNd16thqYXWB2rZc+J3bmVAnkyZN+Tl5LlXSZbUgCILIBMgmQaSFmlh5rib6zxTiFQGEI/XjvRL+UBsCtiZSrDmlSSOSpCsDTG3NY0gux+xvfwShQT8HokbwYyJcnbAb1DA0wY4gao6yBJ0yCeJwhP6zCSFuU6YRZrxMECRSo06kvTqMqOmMEkTNk2kTrwkiHZAYJgiCIAiCIOot5BkmhARDzLfocDgSULJKyOpFIoE6ZZUIhylKWdOEg4yiwzWIdVnmwx0/lwOuKwQiwYyIDkeCzNcls+vE8ttEjVG/RjKixtDy7rrN2et1P4c7oslzwRTzEhOHL+meyFZb+6TJc2oEQunJX0xjDnE4QmK4rhON1PYRHHbUtsAOhuQnm1QX5qir1EQkJ5pBI2JFrFrMxMM1vzCDkdoQ1rVJVu1+3ARB1DD1a4SrRwSy0u+ASVWU+WUjqAnxGrHsQ7RP3upz1rYZiUzs1LIQy3SiMXsKK7fRy5pYia2mMQp4o7DPNDLpAqimCEQE34eoPAUokkzUBcgzXI9w8n6FQgyJDMsgYfUQp9s37EVYq7ZxqudHxNd64snkpZiDgRAqWc0sJhENpr6gRjjM9CWZI5FKpSWZg+H0rMCeiARNeYTj4SA3s4O1ntd98UjVL+z2AoB3gcG7ELG1y9ClmAHUylLMfhKOMsTLa+acEfJ5OeYQeYYJA5l7pjxcCbq4/kh3RM5DFIDnXXW6rW/bLUcUGiOq6RSkXvA7sms91lhM/G+YlqhKGqI/ANz9tjOA2pxAownBRA1MQEvF4uCmbW1bKSIGsRyW/N+kOxJME7MoGkzUPUgM12XSKJaNg1mmeVRF4jRVQexXhBdQs4D4JeDD0cz6fmoLv7WYW6uDLAKp2QRUxK+ojpNvWBap9SJUZW28RoV5700rs0aKtc8s066x/IxOpo2wPx+a1W4nu9PkFBQhgUxkMiSGD0Nq69a4Jpq1SKc1owRP/PktGr1GlUXtnKLCxnZ++oV5FyDGk4nbaLwKQh8h0jczXZVQIP2/6Ux0lMi8tm4FbiISVGqjWk9GKn5hlQuGmrA+HLZeYsFFVSZbqggi3dTYr3/mzJno1q0bcnNzkZubi+LiYrz11lv6dsYYpkyZgsLCQmRnZ+O0007D119/beqjrKwM1113HZo1a4acnByce+65+Pnnn011du/ejZEjRyIvLw95eXkYOXIk9uzZY6rz448/YsiQIcjJyUGzZs0wYcIElJeXm+qsW7cOffv2RXZ2No488kjcc889YKzuXtk6DXRur9rTcZUvs0pYX8tEpiZunYSxUx3ePtI9Wc8PkWv9rnmTKevTiY/3Vt0KHaM3NWy6HW8XZV5Tf/kxiU4lYquJXdHDyz7ciueanjBo/U6su68z1oYMCpOHFMYqUUpIL2h5hv18EIRGjY1IrVq1wtSpU7F69WqsXr0aZ5xxBoYOHaoL3gcffBDTp0/HE088gVWrVqGgoAD9+vXDvn379D5uuOEGLFq0CPPnz8fHH3+M/fv3Y/DgwUgkqk9UF198MdauXYuSkhKUlJRg7dq1GDlypL49kUhg0KBBOHDgAD7++GPMnz8fCxcuxMSJE/U6paWl6NevHwoLC7Fq1So8/vjjeOihhzB9+vQa+KSqcLJApHgbTCaGRLfdeQLYq4XCDx+uSh9GYWx9uEUm0E1CnhPtdsq7LPscVU4oKiemw5lMPLGpimKZdQCQp1jjidB0LoShIoRFdg6n96kC7zM1XpAYt6tMrvOKk5av1d9j1P25QemCWXLnKJNtdQShQo1dZg4ZMsT0+r777sPMmTOxcuVKdO7cGY8++igmTZqE8847DwAwd+5c5Ofn46WXXsJVV12FvXv34rnnnsO8efNw1llnAQBeeOEFtG7dGu+++y4GDBiAb775BiUlJVi5ciV69+4NAHjmmWdQXFyMjRs3okOHDli2bBk2bNiAn376CYWFhQCAhx9+GKNHj8Z9992H3NxcvPjiizh06BDmzJmDWCyGrl27YtOmTZg+fTpuuukmBAKZlXHBRCQIWGePR0JAhbcTg+oqdKr1eCvMhcMBxOOaxSKAsjLGrctrm47sEn5NmHOKXgPyyXM8jCcaN9F55Uiw7CJM5QIslDmRK4D/78AjKwwcMmR9UG2nEY0lUF7G/+y0jBIVsRAiZQkkwkGE4pWIR4II+7CyFy9jhCi7RCp4EdmqFgmnSHFNLLTBu1tw2N1AiUaA8ooa320wzIA0ZFUhCL+olX/1RCKB+fPn48CBAyguLsb333+P7du3o3///nqdWCyGvn374tNPPwUArFmzBhUVFaY6hYWF6Nq1q17ns88+Q15eni6EAeCkk05CXl6eqU7Xrl11IQwAAwYMQFlZGdasWaPX6du3L2KxmKnO1q1bsWXLFuH7KisrQ2lpqemRibiZFMFDFql08g0bUY3syl6r9qOK6uQ8L1Fht6RkRVHIGFETuaj9IORwa9jthCa3AscUeTR8JxGHKKUXjKJQNTos7Csc9C1KLOpHNSpsqiP5ArT3rDJ5zm3k17rbOvLzrxX8sNX5baWLBSoRC/r4CGRuyj2i5qlRMbxu3To0bNgQsVgM48aNw6JFi9C5c2ds374dAJCfn2+qn5+fr2/bvn07otEomjRpIq3TokUL235btGhhqmPdT5MmTRCNRqV1tNdaHR4PPPCA7lXOy8tD69at5R+ICKfomnACROqTnIy3251uffk52BlFJG8imqmuQBCnIopl7VUEuQpO7TS/sNfP2rfvQ7aqoYdbsJmONSJYGxOn3NoFVOwS1XW9i2JZWychbBTwflgkNHgXHKK0an5MtBN9tE5WCN8nfarcdZHdvUlh4pyqrS4dE3sJoiao0WG/Q4cOWLt2LVauXImrr74ao0aNwoYNG/TtVvsBY8zRkmCtw6vvRx1t8pzseG677Tbs3btXf/z000/SY68JbJOpXPjAVFH1iPGixF6iw6IyrT83wtiprpMQFkWF3Vgk3PqFjSccWVo1x+9eUHa4wBMrbpfZVbk9L5tEp/3VIpzWFGu8KKlKdBhwJ4iT9dVEsVYvlVRtIiHs9H5l+GGVcLrwOYz/HdRxOCf4eSeRIDKFGv3Xj0ajaNeuHYqKivDAAw+ge/fumDFjBgoKCgDYo66//PKLHpEtKChAeXk5du/eLa2zY8cO23537txpqmPdz+7du1FRUSGt88svvwCwR6+NxGIxPVuG9vAbYYorzlW/29vgxsii6GpfFn20RjatVgknZNFhN4JYwyiMRQ/hsXAm2cmEsHW/1jZuo8leJyv6Jm5T8Q77OOPdaYWuVCcqWdvLPj5RRgnedi+oREqdPLgqGSGMYpf38NK/qnVD70cSKbZaJGQiWDR5zlTHBxEt+p35kXM4GPApbaGX/1mVqLDkPOLqTmIdjxo7ZcQaPXo0AoGA6XHSSSeZ+ti+fTtGjhyJgoIC5OTkoEePHnj11Vf17Vu2bMGYMWNw9NFHIzs7G3/4wx8wefJkW7Yrwn9q9TqYMYaysjIcffTRKCgowDvvvKNvKy8vx4oVK/DHP/4RANCzZ09EIhFTnW3btmH9+vV6neLiYuzduxdffPGFXufzzz/H3r17TXXWr1+Pbdu26XWWLVuGWCyGnj176nU+/PBD0w9w2bJlKCwsRNu2bf3/IIyEo5Jt/maQSEU4aVf7bm/NO0WHvQhiv9OdqQhv27EpeoVFUWG3FgnTiUdykrGdyHhRn8MwHBYLccSqy7ep8rGk4hv2Eh221QuHuEI0HavBiZdlVrNHpBIVtuJ04SHb7pRWze3dAxlOfvdMw/Gc4PJOoq9WuqrlmP18uMEpIxYAnH322di2bZv+WLp0qamPkSNHYuPGjXj99dexbt06nHfeefjzn/+Mr776CgDw7bfforKyEk899RS+/vprPPLII3jyySdx++23p/4BElJq7Cx4++2346OPPsKWLVuwbt06TJo0CR988AEuueQSBAIB3HDDDbj//vuxaNEirF+/HqNHj0aDBg1w8cUXAwDy8vIwZswYTJw4Ee+99x6++uorXHrppTjuuOP07BKdOnXC2WefjbFjx2LlypVYuXIlxo4di8GDB6NDhw4AgP79+6Nz584YOXIkvvrqK7z33nu4+eabMXbsWD2Se/HFFyMWi2H06NFYv349Fi1ahPvvvz/1TBLpmmnP8Xi6FbrG+m6u9q3b3ESHRSLWrSDWyv1YgS5VIexnbmLPS19bTlieL4J8WsUqXcSCgkig4knOKo5lN1JEk+h42/UyB6sED5F4lNklAH5k1k3uYBmyaLAXIewlKqz/deEXNtVxm1eaU593gZXsOwMintKosPc5JtIV5xTuJOrbDwOrxJAhQ3DOOeegffv2aN++Pe677z40bNgQK1eu1OvEYjEUFBToj6ZNm5r6+Oyzz3DdddehV69eOOaYY3DHHXegcePG+PLLLwEkxfTs2bPRv39/HHPMMTj33HNx88034//+7/9q9L3WR2pMDO/YsQMjR45Ehw4dcOaZZ+Lzzz9HSUkJ+vXrBwC45ZZbcMMNN2D8+PEoKirCf//7XyxbtgyNGjXS+3jkkUcwbNgwXHjhhejTpw8aNGiAN954AyGDdeDFF1/Ecccdh/79+6N///7o1q0b5s2bp28PhUJYsmQJsrKy0KdPH1x44YUYNmwYHnroIb1OXl4e3nnnHfz8888oKirC+PHjcdNNN+Gmm25K74eUziiCVSClMJU61at9txkheILYSRS7WVrZqT/psQiEsEpU2Ip+QaHqwY7yL1q84HrypdNtcR8u/Hy7fQx/xJAVP6wSvOiwKBLsRRDrbV0IY5VFOHj7crvSXKoLbzhF4GXbrcNfOidNOll9VAiEYs6V3KBgq0v1TuLhnG/YmhFL44MPPkCLFi3Qvn17jB07VrdXapx88sl45ZVX8Ntvv6GyshLz589HWVkZTjvtNOG+9u7daxPVhP8EWF1eVi3DKS0tRV5eHvb+tgi5DasGs0Q8mXQ0EQdLlJleA0g+j5cnX8cTVY+qbeVxIB4HS1jK44lk7sh4AkzLJ1xRCVZRCXYoDqblIK1IJMuqXvO2JQ8hgERVzuB4eQCV8eTzykQACe151d94hfl1wlDX+LqsrLKqPjP9tT435gzWcg9raPmHrVhzD/sBT8w6WSM0MRwWiGJVi4QmbMMRpj831tW3V4nhUFWZfrKKhPTngawwApGgbZt24gtEgkAkmBTD2gkyGkk+D4f1skCo6nU0bCpHOJQUvuFo8mIuFK7+i6qTuLGs6m8lS/5OK1ki+UDyb4JV6GX6diSQqIwjwSpRURlARWXVb68ygLLKICoqA4gbyisqq7YlglX1oZeXVwKHEubXWrvyymSuYa1+clvyebwiiHg8+RmWl4UQ13//VRFNy3YA+mutjva3surfNlKWPJCQIR+wlneYV2YtN/ZhJRxPz4ITIsFtFcIqUWGt3BoVBviRYU3cahcc2utIpNIQOWam7Vp5JFgteCPBajEcDSYju6ZtIa28uiwSZIiFKvW7DlpZuGolM+0uhfY6EmQIBYIIBcO6GA4GQvojFIgknyOkX/Rp20znBMO5wXa+MJ4rAPP5oupckWxnKNfOFVX1WUVCP1cAhnNC1XmEGc4j2mvjNn3cTwQQL68+F1jH/8p4ALsPxtH97WXYu3evq/k02nn0yx9noGFutnI7J/aX/o4eR12Pn376yXQ8sVjMlFbVyLp161BcXIxDhw6hYcOGeOmll3DOOecAAF555RU0bNgQbdq0wffff48777wT8Xgca9as0fvbu3cv/vznP+Ptt99GOBxGgwYN8Oqrr+pBQSubN29Gjx498PDDD+PKK6/07b0Tdg4/s2B9QvE2tuwKX+Vqn2eV8BqJ5HmGVfzDQFKM8iat+ekbFvWlKoStfVmfO2WQMAph2zbO7UdXfmGPuJm0mYm4DUAa64vaqlolVHBKO2YVk9YIsShK7HZSmwxRf7z9exHCRkQWCR7/v713j7OjKPP/P2fmzExCQoaEkIRIIAhuBCIgoDh4CQEJZLmuFxA0Er/8UFRAFlcF3BV0xYCiiLhEVARU3LgKrAgSCQLxAgEkZA2iIEq4JSGIySSEZGbOmf79cVI91dVPVT3V3ecymef9es0rc7qrq/ucnOn+9Kc/9RSV2eay3VSSCH0Kw4nVuZ4kWp4i1Tsqod9oFPGjbmymTZuWKIm6YMEC6zG4KmKdcsopOPbYYzFz5kwcf/zxuPPOO/Hkk0/ijjvuiLf/93//d6xfvx533303fv/73+P888/He9/7XqxcuTK1r9WrV+OYY47Be9/7XhHCDaC1Q4Ejifby0B2+Sbk85AJ7KHW0D7nDqJ3EIm1qrVJH25AbnNp2aF17exS7wwpqlrlyR4TKQAlt5QiDlRLayxGqlVLcVr3u6mqL3eGhbYdmlNN/12eVU6JTd4n1WerM/hQhbrFLSJPi2yGEQ6teuAbOKah11oiEK+7gyRIDcNcYbiBtpfbYHTbpaItiN9e3nFo2qn3IHXb1Z1IuD8Zub7ysYzB2fBVqNjrVXrVR/5oz0unos9KpmerM5eY6gO4LSDq5oW6xT0y7RLA6ZmodFY/wTbJhc4WTbej6wq6bG1/el/oTsd4gOfoqMvLDhnvd8Ey36LpmqPO+jfh6UI6Axk98x4Jyhm2oilgAcMghh+Dhhx/GVVddhWuvvTbVdtddd8Uee+yBv/zlLwBqLu83v/lNPPbYY9hvv/0AAAcccAB+85vf4L/+67/wrW99K9529erVmD17Nnp6evDtb3+7kPcpuBExPFwpt9ceefmWOUgIZcuUzeXOKH78pVAnuFCUILaJYJsgBpCYsrnWl4pfWEoe5XSKbWXTuEKYdpfpeITCdIV9VSQ4+OtM5xxM12LTL/vobKvFH2yv9WmZ9XW66KWmXu7oGMTAQLi1aE7RDOQTxIA9OlGUU0w50VmEsKtKRogrrLfhZLZdD0yoShKUYG7ooDmnUdJZi0pwYVwjuIaJzTzxCeRWI08ZVFURi+Lll1/Gc889h1133RUA8OqrrwIA2tqS3/v29nYMDg593i+88AJmz56Ngw8+GNdff32qvVAf5FNudXJcwLJOsMEVYTbxxikX5svVAunoAVW+zBadyIo1ilEupQbLcYSwb9AcwBto4otIuKIvwSX0ChJNhQ/6QVi9V9vofxuhg6hcUQnTwbRVltAJiRdQ6xQquhA6oM2HrU+uELZt46sgoeC6wvEyXSQ7/m+LnIGwJSpLAPRMkcQNrTlw1jeIzgcVlShqIF2REQn1E4KrItYrr7yCf/u3f8MDDzyAVatW4b777sPxxx+PiRMn4l/+5V8AAK9//eux99574yMf+Qgeeugh/PWvf8VXv/pVLFmyBCeddBKAmiN8+OGHY9q0abjiiivw0ksvYe3atc6Zb4ViGF62zvaKem7KpNTeXhsUodPZMTQwAkg9+jLv9m13+NyoRKg7TMUluA4xAGdsAkg7uTbH2MQ79TMhwFMiPUAIcwbN6a+zRiRceeH0BY8QTZQTbJuK2VUbOwOuiAQFN+ZgPg12PR3W1+m/u6ISoe4wFZfgOsQAEuuA9OA6IOni2hxjG94JPgih6xLCVE6YI9hdWWzKOeZEJHyC19SA1I1VaJ3ahkUluPEIn0tsPC20PUmknGDbsuGMqoi1Zs0adHd3Y//9948rYm3ZsgUrV67E97//fWzYsAG77rorZs+ejR//+MdxRayOjg784he/wAUXXIDjjz8er7zyCvbee2/ceOON8SC8u+66C0899RSeeuop7Lbbbon9S62D+iJiuJUhoxDEiS40HqGLX8YJTkUlXCc9X3ZYJ1QQA3RsQmEK49o+ctYcZohgdZy+3xW2eIQP1Z470QaJLy88DAbDtZfaUI14bm+5LUJFE8im8HXlhkOiEuVyFFeWiPe9TTD7ssM6oYLYXKfWA7QoVvsoAp8Iptq4csKAv64wVUHCJLSsne4McgxQrvhtmDscYqLUKR4RYp60amaYy3XXXWddN3r0aPzyl7/09vG6170ON998s3X9/PnzMX/+/CyHJ+REYhLbIc5HX4H1ZCnRxX385YpL6G4pV1DaplA2IwxZUf1w3WDOcbuqR+R1hRW2iERd4hItNhEHNfFGPWoK67gm2PBVN3DFJbJMWFHpaCOFqFl1Ii+2Pm37t63nlFHjopdTi5cZsRQg+f8bkhfmfI+KEr71nJKZrAZjDpQtsOKQOkcNdydYGFmIGG42tgFI1HJODqzscQAt63wnP9cJjjXwK4cgDhXF5k/Wdmo/ZjbYdXw+IRwaj3C5wpyIhPNCZq6jSi7ZyqqZ2MoAWL7foRf/PNPamoKFmx/1lVgbciv52eFEmxyCmCNK9bYhApmzjUuE+46ZEsI6RbnCnIiELy9sfneo7wF1Q9Zeoj/nwkRvnoGrqWsEf0Imn7HiNk9CDjJNe6mt8B9BUMi3YTjje7TNvNu3neBiYcZwhznuZqgg5opi1+x1QFr8+rCKbUdW2HzNEcKhZHaFHVniVF6YE5eoY6SivcQv7UY9tjbFi5n1dBXT0LfVPyZdILmmBTbdYd9gOv33UEGs1tlEsWt2N0rscsUyRwSbx2rLCOvvOTQeQbnCZl+A/cYnNCJh27buhNwEFvAkxzXo2neucbnDodEwQWg0IoYbRdBJjRiQxDmpOWrEciZgyOMOJ9oxHvdzBLHttW06Z644dm1nE8EhQt0lhHXq4Qpz8D72TD1tYH53m1xmzZfpNN+2/ljcLprs2wNud5iCEsQKriDmiFG9bZ5pj/U+QsQ4dexcIRwK5b5Tb5kbkeAMnjOhvnt5nmbUDc+TRJ1Q80QRPJ5BEFoAEcPDlNTja8ejL+7dPrU+izucaENNJ8xwiH2usFpmqydMiVyO8HX1bzsO/T34hHDWeITPFY6XWSISzvrCWZzeBg64U9PZ6nDcOZc4Dim1ZS7L4w5TbXUR6BLEWUWx3j70hyJLdjhECBflCiu4EQnbNkD6uxRaSaJQKJHNidWZf7OO3HBW88TpDrdK2TlBIBAx3ETIOqxkiM4Uvh7nLu/dPrE+7try+Msm8nRskQG1XBeTtT78YlRfnmdaZlcfnGVU+TSAJ4S5kK7wNrJEJBKYF8bUhZN5AW4SvmynSzxzohK2foG0O8yNS+htXYLY5hID/gF0RQ2iCx1A1ygh7HKFbQPnbBEJX17YB9WeupELiQJlJjgewZu50meeKNS5irqJz0p7W7nwH0FQiBje3uDe7fuyYA53OFQQJx7ze4QikJ6gwiaKbcLXFLacH1cfrmMxBTxXCOvkcoUZA+fsvwfmhTkX2BwXGGpwEbUslQs2BjCF5IZtUQlqIJ3LHfbFJbiCWM8Qc11iwD6ATm+f58eEK4LzCGEuruiJS+wqXBEJW1+11y3idDLqfPueJCbacs4d2841PndYIZUlhFZHxHCr43PonCc1zx09+O5w6MmsCEHsE8X6sjyuMNWXbZ3t+HSH24yCUEI4NB7hygqHlkFKvjHH94dbScJHCzkwNnGUxR12ZVxdpdZcgtj83ecSuwbQ5ckKm4RkhykRrJdP4wphrius43OFFdxyeukbqbAbscLhPI3J8yQx0Dyh1its5okgtCIihluJwMfOIXf7ie2orKnHHVZw3WF9nS78bFUmKPEIuEUxJzJRtDtMHQ9H3IcIYRNTCPuywjG2iIRLJIVGcAqefc6HWQ7Jl+UsJx6Jh12Mfe5wvA+LO2yLSyTb8gQxRxT7BtFxRDK3vW2f5sQelBuc+j2HEOa6wkPL/BEJX144lIbNPJcF7UmiMyoRtwlzh+sRlxCEeiBiuJUxxbHrMXWOu/28J7gQQZzoxxC+ppCkRLFLGBfpDJt92URwiBAud0RWIazjikfEOFzh4IiELy8cSkFZ4rwigvvI21dVguMO5xXEtrJrNpcYSItigD/hRqhIdvWtjoPjBqfeYwYhbLaLP2OHK2yLwNgiEq4bJ98NGKd+bWEC2fxShDxJDI1KMN3h4KdTTNrQXviPIChEDDeLvILBJYwtd/u+x+mcE1zRgjjVVnOJ1TpTMNqEcW0fxTnD1H7U8XCcbd0Jt90M6H0kPitLPIIUv1ldYeaF0RvNaVAMwhzwkh40Zxcw+uPukKiEyx32XfNDBLG+3CUeTZcYoMUo4M4K2+BuY9uneXw2ca/fAHCEsI4rU+z6vwl1hW3fGbOvulHwAFVn7IljnqhlLvPEMdakXdxhoYURMdwqpO7wjcfPLrFiEzVFucPMOrZcQWyLTXBEsUsYU+KYi9mPzwW2HaP5foE6CGHi/yPEFbai3WClIzj1Fbx5XRpXdtMWlcjiDlMfo80dptp0MMWgvo36nRLFLmFsClWdLBNu+ASwKYJ9bjDAF8K+eAT1/xLiCnNwVyQx3GHjP6YIJzhVfcgUy1mfJOY0TzhjTaT2sNDqtM7IFsFOuR2oaBfYzjLQXwFQEy1RlT/6utTRhmhgMPW7ub40qoxoa4Vc11aOMFgpob09QrVaQrkzQqW/5qyqdW3tEQarpVj0VSuleB1QE4iVgeQ2ABLtgSGhOFgdcm51IanaKfIIYh3bLHFUrtcmgoF0PjjVPqMQpi5EvgoTQ+0cEYnEwTtOD3Uuq9ZWasdgNPS9bkM7BjH0uqMtwsCgpZpIW4TKtnUdbcBA2lxM0NkG9A8i1V7tQ60fVQbUn4RaptqXOwZRGWhDuTyISqUNnV1V9Pe1o1yOUIm/87U2HR2DGBio/V/p7QFs26Z2AJVKWyz2Kqq98RpIitDB5J+sUxADQEdf1duGwvYwwHRybSIYsJRFI5xgrhCmXOGhZfRNELXMdiNlQk3D3LKUy0Bl25dDv57Yftf+EBLXgo52YKDqvHaYbfTrRR5KpbZC89clmY5Z0JBvQyvieuyc824/XuZwh115Mc4ACWoKTlt0gHKJVXvKKTbFqO4YU+4tB18f1L7NtubxU/ngxOeg9ceqHKFhCmH+gEhGRIL7BMLEEMdkDe06wR3g5HrsDdDuMOUG2sQXp9waVWXC55Sq7Sin2BSfukvLSa9whbCrX+pYUq+N9+gSwsk4RTYhzK0gERqRCBmg2dBMqutJIlUjnAk3O2x7mpi1GpEgNBoRw62Ay2VzrdPFb0BUgls5gnuCCxXE+nogHSOgRLFNGNuc2pAfCp/4th0vJwai92kTwjpB8YisrrAtIuG6kIZUkijQSXYNUOqwiBNfVMJXOaLTEFlFCWJbbIIaXKe25QpjIC1is/6YcI/D9r70z0h9Fvpno39mnMoRQFoIu1xhzsA5+3cmm7ArtKqE0zBhlkv0mSfM7LBz7IKGCGKhlRExPJzg3O1ndYfjdvQJLkQQU4PqOAPMXKJY39bl3LpEsoltO5f7bDs+6vj17fV9mm0oIRwSj4hxjea2ucKhNHAaZoVLROjCRH9sXbY8Fg9xh819mILYhksQm4PqALdLbIriEGFsE8ih+PoklxnHaopgPR8cIoR1qJuWeH+GEKaywq5yaiHo30FOJQlFQ5zjhGESaJ5sg/OkkGxf5+oSglAkkhluBm3ldLhP0V4Gqirb1QlU+r3dkblhTxaMzA4bWS8zP8zJhFW3ZXtVjljPA6scce1tRkO54G0XvsFKKRaUep5YMVihc8NAOjus9heKK2ZBORvmlMohIhjIJ4RdsRa6RB7hClsvipaLqIuCqkq0lzpQjQbodW1lVLf97bhywz70bVU8ksoOD2WD0/tKtxnKG9syxADiHLGe/1WCcGDbNkAtMwwgkSeubZ9cr/an0PPE5roisPVHCVabEwwYNwFE+TRXLeYs8QjfPaKCE5Hg5oULc4P160JqJ9r1xNXOR2cH0F/7uyt1tCMaqJLZYc5YE+paAf+lzElbqb1Qd72l6z8LDUfE8HAhIW71wRCWgRGK0BPctpOXl0BBDCAeWAcgNbgOoEUxQAtj1U6RJSvMgSOAqXZZhLC+LlgIOyIUXleYE5HQt9MjD3Uuq2YOpLORHDSnC92h31WbrvZB9FXbtq1PD7Ab1Q5srdLrzMF0oYIYgHVgHYDU4DrAL4r1Nqo/ClMk++CIaJ8AptpQIrjWzi6EE066Rwi78t4uVzg0ImFrY1aSaBr69cA26Fq/flDbbYMcWB1qnniqlQhCM5FvZ5MpaqCRNQsWL3PkTbPEJQBnZMKVIwbSWWJOBIFyYc2frFB9+Y6BamebljkRCdGiJEUKYff/JyWCmQPnssLMCXMdGv2xsu1xNCcqMbTMnh12Dabj5oeBdGQCsMcmqCyx2paKT1DRAypOoR9LyA+FbR+uY1KYkQjdDdZjEUUKYXeFifT788VosqB/v9tLjuotXPS/K/13W4Y/JCrhyQ4PrbOcezzxOkFoVVrkFlYAkHzcZXv0Zbnbj7HFI7ZBucND6wLjEoDVIQaQKL0GwOkS194m7RSr9kDalVWu8dBHWIxDTLm/tn1QGWZbe1csAgjMCGvYL0KEK2wZOEcus148tQuv7eLcIHxxCcodTq6v/SlQTrAtLsFxiIF02TUA1tgEMCT8zOhErV3aCdbFp+pPQQniIiHrKVPZXme5tbQbrPdTpBCm8+DJbQCQ1UlsEQlbXrjps5tRTwk1uO5wfL0ALwrhdYgFoUURMTxcsUUlqPUqKlGPExxACmIAidqSHFEMJOMTgFsYA27RCqTFcuIj8myrsAnsLCIY8OSDAacQzhKP8LrCajtuFYk6YotF2JbbhK4r4wsgjkpQ7WKha8QlQgWxvk89CmGLTQBwimKAL4x1TJEcimvGN/NYFC4BXNvGLYL1bVyubqgQplxhtY3uCpvrzN/rQV0yrFnMEy1aF2OMNbHlh13XC/TleyuSGRbqiYjhVkcfRBdytx9vn+MExxDEANIDJbYto1zi2ltKTtIBIDHIDki7xQAtjHUGiUF0XMGrcDnLVC6ZGqQXIoKB/EKYFY9wucK2gXPxMkteuM7YBLA+iI6iq20QfYPbRCPhBLuyw6agzSOIgfTEHABIlxjwi2IAXmGs+tTxidlQbI4zOWEGUwTr/VJuMOAXwj7M7akYhHKAbQPnqGW2vHA9xFapvQtRdZuq5DxJpPCZJ/EywzyhHp0oiLEm6etFtsGugtAIRAw3E/2kZfudgrrbpwbSBZzgsgpiIB2v0Jf5XGIg7RQDSLnFtY/FXUGi6DqWIbPQpWae60y+5sYi9GVZhDAZj1BQFSRU/+b0ywAtjHX0gUJNGDTUXmpDNVLuIeUEpwfS0VGI5DrXNZ/aziaIAffAOmDIJQbAEsWAWxirPl2YYtkkJF7BEcC1PpN/D5wpqM1YhL6MEsJ54hE+V1hhi0j40IWx7ffkBhahG4Jt0PU2YvPE5Q4zBtPZrhVmW/TRFWIEoRUQMTxcoASy6wSXaEef4PS4BAVHEAOgc2GESwykRTEAMj6h2gJp8WkTxyZUuTUTbhUKjgAG7E6w2d7lBgO20mhhQjjlCicOlHCFFVREwpYXJih69jndITanZTZxOcHUsjxxCcAtiAF3jhhIu8QALYpr63nCWGeAqCCRNUts24d5TEP7sQtg8zh8brC+PIsQ5gyac7nCvkxxy+SFqXKcPvMkbrdtGWOsCauUGpC8XnSJ3BBaF/l2Nhqf6+tzBMjyaY4smOMEF2M5wQF+QQzAGZtI9AGwRDGQFsZqG4AWpkog62Qpt+arTewTwEC4CDaX10UIc1xhauCcr8qELzaR0TF21RoG/PWGVVTC5Q5zBtPlEcR6f2ZsAggTxQC8wlj1k3g/BdcYVtirTaT/PrgiGHC7wUAxQth0han9+1xhc9826pZL9T1JDDVPXGU5Mz5NBJIZYmzN+ZZLHcVU49D6EwSFiOHhgO9uP15WO9kVeYID3IIYgLs9kHIKAFoUA3ZhrG+j0DPCWSbY8OGKXZgCGChOBOvLOXniYCEc6gorfMI3Z57Y5/r6ag4rUepygknhbLjDRQliwO4S17ZJRieApCgGkpligBbGtXa0OKbw1RsOmaSDEr+Av9awTQQDbjdYX68L0axC2HSFE8dIuMJDx0X8/Xtu/OouvkLNE447XLQgFoQWhfzr/cMf/hDc0b777osyd6YqIUFiUIQi9G6fcofNNhlPcAAtiAHjMZgRm1DruaIYgFcYA3ZxTEENqlOEZIwp8Qu4BTCA9AUgixusbees+xzCNiFMusJGG1I0Nygj7BPAKjfMdYcVpjucRxAD6UF1ahnXJQbSTjEApzAG7OJ4aBtqUGm4W2zrX2EbpJdXBAONE8IcV9gXkVDUxRGmzv+kAHaYJxx32Ha9UO1DBDEwdN7P6QwLQj0hr2gHHnggSqUSooiZp2xrw5NPPonXvva1hR6cAPfdfog7nEMQA0Qu2HLXHyqK1ToqK2wKTZs4ViiRnPz4whxjW98K85hs+7A5weY6yg1O/O4YWJfcR6ArTKFcYaqNcn2pvDAljCmXuCAB7XKQXTWHTXe4KEEM0NM2c1xiIOkUq3VULphTTi1da7g+5cC44hdwC2AgTATX2kTEsm3bMDLCLlTfLlfYbKtD5YUpYVx4rphrnigMd5gca2JCXW98ghhIGShZkdJqQj2xXp0efPBB7LLLLt4OoijCzJkzCz2oEQElcl0nL+puP15nuMOcuATAFsQA/Hf9SLrEahvAIYqN7dV6WxyCEqJVLSvsE7KhUPtTeAUwkE8Ea9v7HOSs8YjMrrCiTmXWKDeYWqZyw3pVCUUscB3uMAeOIAbSZddqy9IuMRAmigG/MAb8tYZt9Pe15yq9ZhuMR7nPXBEMuLPB+vKEeHYIYa4rTGG6wlkiEkVCPklUhJonJqHmCeAUxIB2zt8q1SSE1oX8C541axb23ntv7LTTTqxO3vGOd2D06NFFHtfIxlVKRwnmkBOcwjWYLlAQA/aBcmYUwoxb6Ot0Ua2v19u4ssIuwVoUNneZdDocAhgIE8GpNo7yabmFsMsVNnFc+EMrSfhiECHthxzd4tzhWr92QQz4YxNAMivsE8VD2yeP3XSMAbs4TrRxlFLjCGFO9Qlb9MIlgKn1PjdYX160EM7iCrsiEqQjXKQbWW/zJKcgBownivWY8l0QCoK8qt17771BnfziF78o5GBGJK4TmlrHqTOZ9wQHOAUxED5QjopOAEmnWK033WLVv45NHJu4csIU3CiF9TGfaxY49doiglOvHW5wYnmIEM6K2t4VkVDUwSV2VZRQUQnXBBw2d7hIQQxkc4kBWhTr2ytMx1i1AewitBJQdzgUV+aY+hOhJsWwxSHM9pQI1rfXawjXQwhzXGFFXUqq+aoPAdnME8v1IqYAQQwkDZSSp761IDQTGfHWIjgffSnU3X7gCS63IAacd/2Ae6Ac5RSr7QHCDTbFpUUcJ7bRyDv5hjfbRk1vTGxnzgjHEcHmclYsAnAL4VBXOEREcx4P560ywXCPzYF0pvCtlyAGkrEJvZ3pEgN+Uay2r7Wt/esTxgr9zyDLILlQXH8mPgEM5BPBgFsIdxB9hUQjXJiuMCci0ZAyXiHmiQVndtghiAGwDJQ8tKG90BuOptaDFloO719xFEX46U9/invvvRfr1q3D4GDyJHvLLbfU7eBGJAWc0JxkEcQA3yUGvKJY3z5+TQhj1c4mPn0iuRBs+7bsl54S2RKHMPrnZIobJoRtrrC68BfsBHMEr2oTGq3gkkUQA/bYBMATxWqd/tUx3WKzLx2XQDYZYGrkkD8p13TIIQK41j6bCNbbcIQwtc88rrCJKypha+tulOF6ULR5AlgFMQCvgVJiDsgXhGbgvaJ94hOfwLe//W3Mnj0bkydPRqkk84sHk0c4mOI47wkOcAtiwHvXD8DvEgOkKFbrXcJY9af2Y5LqvwG4BLdPAJPbZxTBteXE4LYsQrjeZBhU5Ks1TLU1B9JldYcBtyAGkKoyUVvmdompNnp/QHoQnSmM9b4UlHNs0m+I3zz3ja79uPom/jzYItjslxuL0PukhHDWeITNFVYuY90rFGw777OeJIaQVxADXgMFW4o7XEEoGu/V6oc//CFuueUW/PM//3MjjkcogjyCGAi66wfs5dTUOt8gOWrQHCUwXQI50Y5rf2lw3WXquGzbZ60ukdrW5QYDYUJYJ68rbLyOB88V4Bor99c3E10oeQRxbd1QrALgucSqT9WeEsW1daWUEDQdY8Aujof6GfrdJ2Cz4PtTsfyJOAUwvV7r0+MG67/r/WYRwo2iEOFsmiVZzRMdlyAGWE8UAaSvF+XhbaQtXLgQCxcuxKpVqwAA++23Hz73uc9h7ty5AID58+fjxhtvTGxz6KGHYtmyZfHrb3/72/jRj36E5cuXY9OmTVi/fn2qUMH69etx7rnn4rbbbgMAnHDCCbj66qvZBQ2EbHivWt3d3VI/uF7YHn3lPcHphApiwHnXDxAnOYsoBozqEZ5BcrZZilwCWd+XIm9swrYfzj5CBDC1L68bDKRjEfoywC2Ei8gJNwEzIhH/G+gO64QKYgDO2ARAu8SAWxSrtqYwBui8MPX11P8E6pkaMnH9qdC5Yb4ABsJEsN6/+v8C6IywKYR18rrC5r8qLxwvb3ZW1fc0UYMsz8l4oggg7RLnpK3UVnCd4bBj2m233XDZZZdh7733BgDceOONOPHEE/Hoo49iv/32AwAcc8wxuP766+NtOjuTg45fffVVHHPMMTjmmGNw4YUXkvs57bTT8Pzzz2Px4sUAgA9/+MOYN28efv7znwcdrxCG96p/ySWX4POf/zy+973vSfm0vJjiVlHEo68sd/yJ7SyPwYBcohhgVI8AyKLssQj2DJzjiNesOOMRtnU5q0t4RTBAC2E9/hAihHV8rvAwwheX0NtwBDEAa2yi9rtfFAPJTLHZVrU3RSPlGqu2gFuUmvjGMmX5c7I50JTbyhpcl1EEA9mEcBE54ZbBZ55QOKpLsAQxwDdQhinHH3984vWll16KhQsXYtmyZbEY7urqwpQpU6x9nHfeeQCA++67j1z/pz/9CYsXL8ayZctw6KGHAgC+853voKenB0888QRmzJiR/40IJN7T3nvf+17893//NyZNmoTp06ejoyM5Knb58uV1OziBgHOCc93x+wQxYD/J6W1hufN3VI8ALMIYYIljc5u6DpwzcO6LIX4Bf3WJzCIYCBfCOrZ4BIUlItEMfO6wTqggBpL5YCWOKJdYb1v73S6KAbdbDNiqR6RFmU0g65iZYaBYsWtiE4+hAtjcxvGn4nSDbW05Qji5P7cr3FBM8yRk0LXraSJXEAPuJ4oAKYpLDRzjEcLGjRsTr7u6utDV5a6XXq1W8ZOf/ASbN29GT09PvPy+++7DpEmTsNNOO2HWrFm49NJLMWnSJPaxPPDAA+ju7o6FMAC85S1vQXd3N+6///5CxXC1WsXtt9+O6667Lo5kjGS8p8X58+fjkUcewQc+8AEZQNdIbFEJV1tyMg23IAbgvusHWC4xYHeKa+v8wlhvRw6Oy1A9wpUfziSmc1aXcAng2nqLCAbYsQiAIYRtOWGdAFe4yLywwswNh1STMOMSOhxBrC/TM8GUS6y3rf1ea2sTxYDfLaa20bdV+6TQ3299MsNut9TuEqeXuQQwtU2IG6y319tyhbAtHkFhi0gUSkhFCZs7rBMQrwPAM1AA+/UiJ/WajnnatGmJ5RdffDEuueQScpuVK1eip6cHW7duxdixY3Hrrbdi3333BQDMnTsX733ve7HHHnvg6aefxn/8x3/giCOOwCOPPOIV14q1a9eS4nnSpElYu3ZtwLuz88QTT+B73/sevv/97+Oll17C7NmzC+l3uOO9ct1xxx345S9/ibe97W2NOJ4RjzMqkfUE5xDEtX1a7voBtigGYH8kxhwkR4ljvb23esRAWiAFCd4A58KaGWZUlqjtq0ARbCwnq0a4hLCOa4IN0xV2kSNWEVRRwuIO61Az02URxADfJa5tO7SNLxZhCmN9e307wC42fSK5aDJXl/AIYHPbtCDmi2CzPRV/4AhhnRBX2MwLZ4Iz8YbCJZipp4mueJ0uiAGegaL3CaSfKrYgzz33HMaNGxe/dgnXGTNmYMWKFdiwYQNuvvlmnH766Vi6dCn23XdfnHLKKXG7mTNn4pBDDsEee+yBO+64A+9617vYx0MZjlEU5TIiN2/ejP/5n//Bddddh/vvvx977rknPvaxj2H+/Pmpm4GRiveKNW3atMQXRagTrhNe3hMckBTEAO+uX9/OXG6783e5xUBKGNfa2MUxEFA9osDHcBwR7coqBwtgoDgRbLbxCWFXPMIlajkucIBTnLfWsCsukUUQAyBjE7Xfs4li6rVLGCso51jBKbFWT1x/KtR7AXixiSwi2NzOFYsA+ELYNcFGiCscFKtgOMGpqISOKz7hi9cBxRsoA62Zvx43bhxb43R2dsYD6A455BA8/PDDuOqqq3Dttdem2u66667YY4898Je//IV9LFOmTMGLL76YWv7SSy9h8uTJ7H4Uy5Ytw3XXXYf/+Z//QbVaxbvf/W5ceumlmDVrVnBf2zveK9VXv/pVfPrTn8a3vvUtTJ8+vQGHNMLgTKVJLdO3CxXEAO+uH7Cf5NQ6XRSr/ap1gFsYA6Q4rrVN1x5OrNdGAdU7O+wboGcfSEfEJkIEsLneHPAWIoQtApoUwlQ8wuEKxxGJOuKcmpkQxlkEMYBE2TV9vb597fdkdAKwi2IgKaRrr3mxCDNnrGNzkF3UY9INhU34AjzxSy0zndlQEWy2yyOEdTh1hV2zzuV+3B9qnlBPE6l4XVEGCpAWxdshURShr49+kvvyyy/jueeew6677srur6enB729vXjooYfw5je/GQDw4IMPore3F4cddljw8b31rW/FTjvthC9/+ct4//vfj7Fjxwb3MVLwiuEPfOADePXVV7HXXnthhx12SA2g+8c//lG3gxupkFEJ1wlOxyaIAftjMMB9ktO3BZJOsVqnizjCLQYIYQxYnwU3s4KEDfcgOktsgnKrqceF9RLB5nJKCCf6dsQjsixTOBxmlyMcuo6KWHAFMZCsQwyA7RKrflQ7XbRxhHHt2JLvz5cZdolPxVbjo8t638jZlyIkM0wtp6IJ9RDBrjYKXQi74hFON7jI/HBW80QniyAGwgwUte22dii3545J1CszzOWiiy7C3LlzMW3aNGzatAmLFi3Cfffdh8WLF+OVV17BJZdcgne/+93YddddsWrVKlx00UWYOHEi/uVf/iXuY+3atVi7di2eeuopALUM8o477ojdd98dEyZMwD777INjjjkGZ555Zuw2f/jDH8Zxxx2XafDc0UcfjSVLluDSSy/Fc889hw996EPYa6+9gvsZCXgVxde//vUGHMYIhHvi8i1z3fED9EnOfAwGuE9yalsgub3qw+YWA/QACiNKoXCW32lCBQkSz/6tI6ZDBTDAF8Fm21AhTOWEKfHKdYULKMNGi9rkQDqAjk1Q+eEsglhvq9oAYaIYQMItVn0qTGGs90N91WwCWUevIBEiYrlw4hih940+AQzwRbDZNlQIUwPmXPEI3zIXRYg7r3niepqorw8RxGo5wBfFMMa3DDNefPFFzJs3D2vWrEF3dzf2339/LF68GEcddRS2bNmClStX4vvf/z42bNiAXXfdFbNnz8aPf/xj7LjjjnEf3/rWt/D5z38+fv2Od7wDAHD99ddj/vz5AICbbroJ5557LubMmQOgNunGN7/5zUzH/Itf/ALPP/88brzxRnzve9/DggUL8Pa3vx0f+tCHcPLJJ0u5XI1SFMmE4fVi48aN6O7uRm/vzzFuzDbRoN/VK8FKLQOGTnC6GPZtrw+o07fTH1MlftfaGAXX9XWxKKb6MPuxtQGG4hS+dmq/xKA4L6Ez0GUQ2M4yQTYHxBS/VFuHAAYKEMH6ayoaAdDxCH25tiwhhqkohWOZ7uqq3xPLkF6mRyXIbdQyTUjrA+r0kmt61QX9d31yDiWKXW3MdbXXiZep9sCQOHb1Y+sva5si4fzZ2N1g+rITIoCpfooQwYBdCFPxCOp3PSJBTbZB5Yvj36nzvecakBDDIdsXdb0wzv/U9WLj5j6M/+dr0NvbGzQOKXEdHTeGvZ2/383o7j4++HiGM/feey++973v4eabb0ZHRwdOPvlk/L//9/8S5eFGKqQY3rhxY9CXY9OmTYm7H6EGWwzryykxbGurLw89wZmvmaK4dlwFCWOAFse+bQgyiWYLQfUwXY/+OOIXSAtgoh1bBJvrfG4wECaEteWkENbberanRKz+uy5o1TJKDHO2zyOIAbsoptoWJYxt/aXXO1fXHZ8odlW3MMUv4BfAVJ+uuEPRQhjwiFnQVSRyiWF9uc88YbQtTBADbFG8cXMfxs+5WsRwC9Db24sf/ehH+O53v4tHH30Ug4NNPom0AOTzzPHjx2PNmjXsYtGvec1rsGLFCpm2uQi0iEPi8ZevvI7rERgw9BgMsD8KA9LRCXMdYI9QqL5NcWdGKfRjoAQjtxSPdoKuS0F3bsaNeg++PvIKYIAvgs3XBQjhRuCKSgAg4xK27X2RCfU7kM4JA+nohGoHpGMRtmoStWVpsWdmjBVUrEKH6r+Z+Eq6Ue8RSH8etb78/adFc7gINl+HCGEdSgjbyB2NCKk3TMUlzOXciB1Ajx2honbb1qfOYXmoVvgl5rj9bedceuml6O/vj6MZixcvxsKFCzFt2jR88YtfxEc/+lGsWLGiuQfZIpBXtiiK8N3vfpc98nBgwOHuCUlCTmScPswTHDCUIQbsJzkgPbgOoEUx4D3RWYWx3qe2rVUkmpljikbXrfQdj8J1PAzxCxACmNrWJYLNfs19FCSEva5wwehi11VZwmzrEsQA4ok5ACREMSV0dXGlD7JT2+qCS88VJ/tOHisljuP9WcSjTyS78LnMijy1im3HraDeb22f/uPwCWDALoLN9q6KERwh7BO1Nle4UDjmSRZBDNgNFPXaJYoBq4kiNI7//u//xpe+9CUAteoW7373u3HqqafigQcewMc//nHcdNNNOPDAA5t7kC0CeeXafffd8Z3vfIfdyZQpU1JVJgQGjBNW8AnOXGc7yQH2O3+Af6Lb1sY80SUGUsTtLOJY349LULrc5EbAFd/U+3Nsn0kAU22yiGCgaY6wz9nN04cpiAHEg+oAWF1iQA1qc7u/eik2c1u9vdrGFG0ucWxur+MSyRRm/CKryA3ZJ2A//qHjsC1Pb+eaHlmhC2BqG5sIBtwD5ThCOMQVZhEyyYZBbkEM+A0U87U5oNpmorRvn+XVWplVq1Zhv/32A1CbQO2f/umf4mjE0Ucf3eSjay3IK9yqVasafBiCC/YJDij2JAf4T3RUG6QFHimObftJtWEI5UbiOta4jf1YWeIXCBfA1GtTxGYRwgYsVziHeLY5uzZ32CWIAQS5xEA2UQzQbrG+jYISx0P7oz8Tn0g2+1eEilgOnGNQZM0TZxHA1HbcSARgd4OBcCHsywq7fk/umCFiXeKZK4gBvoEChJsoAADLzKpC3Rg9ejS2bt0KALj77rvjChU777wzXnnllWYeWsvRuACg4MdxgmMJYmodkO8kl1gWKIxVO9AC0CqQE9sTGeRWgSHOrY8Gbe+JI4CpfecRwWZ7x7pME2zUyWHm5oddsQkAQaJYvTadX8AtjNV2AC2O9f1R23BywSGCuQiCZjp3HJM9NuGOQLi2d4lgIJsbbL4u3BHOg+1pokkeA0VvG2qiAPS5LYTBav6Iodnfds7b3/52XHjhhTjuuOPw05/+FL/61a8AAE899ZRMw2zQoipjOyfLXb1rnUsQm+ttJzkgmREDsgtjhZkz1tvDnSEjM8hcQmc7yuk4e7NwLjFvu0AwM8aFimDP+pQQbkBWGLC7w0B2QQwgkyimXvuEMRAmjvW+OLGGZg+k40Yv/NEJnvi19RUigONlTDfYfM2dZKNuWWHAOf7EOfg61EABijFRytv/gLVW48orr8Spp56KT3/60zj77LPjEmpbtmzBRRdd1OSjay1EDLcajhNV6o7fdRKj7vr19eZJjtomizAG3E6ATSAb24YOtkiUe6u3uLXhc7BdzkhIzpha5hPBQP2EsO9YMhAy85xLEANwxiaAcFEM0G4xYHd9OeLY15eJy1FuBlxH2llqLUD82vryiWByAg2mG0y9tsUjUvsoYva0APMkJYiB4q4XoSaK0BT22GMP3H///anlxx57bBOOprURMdwKBAyYcApigBbTgP8kB9hPdADvZMcZIGcThLaYhYuKfuKv04k3NKLBeRQYOMDOupwSnT4nmNrOI5K9QrggV9gpgI0ya1xBzHrNFMUATxirZQBfHAPpwXg2uGK5WXDFuU34AmHi17Y8VAQDxQphlytc2LTCnqeCma4X5nogu4kCFCeOpbSaUEdEDLciWU5wgF3wutro7bIIY8B9svMNkMuSJ8sinPMSmnfzHZuzDFuA+AV4LjC1PaNNsBAuUChTojVEEAMOV9h4rfoH0qIYCBPG5jJ9ubNKhEMcAnyx3Cr43g+QLTrhWu6LQgC0SA0VwbV98YVwLvEbEoMj1rMEMWB3iak2vmuFvn0846U4xULrYr1SHXnkkfj4xz+Od73rXeT6v//973jzm9+Mv/3tb3U7uBFFhhMcgLCTnGoD+NtlOdnpcNyAkMFx+sxGeQdi5CFUgPvcENf6EPEL8ARwQLugaESDCBHE1HqbKE4sM0QxkE0YKyjnWF8HuEWhy03mos+gF0KefSo4DrZP4IeIX4DnAgM80etyg23bNJy8BorqA0iLYr2dz0QB7NcLQWhhrN/We++9F0uXLsVnP/vZePYSnWq1imeeeaauB7ddw5l8wxd5QMaTnN5Ob2teQLKc7FwCOd4+4LEZp/RaMwh95Odr77pw2MQvYHdeixTB3P7qkBX2zSxHtaEEMQCnKKaW6eIpRBjH6zwC2bbObJM1DpEosVaAqM1zLADP0Xa1sQlfgBa/AE8AhyzjCOHQ6EUmqGhdVgMFyH+9sBkpgIhjYVjg/HYuXLgQn/rUp/CHP/wBP/jBD9gz0gkZ4ZzgiHbOkxzgP3lRbc32+jaUOOOc8DhCOe5vmAzCCD0+zgWhKPEb2N5aNi2rEGZEJDiTbWQVxAByiWJ9uSlwqCiFIqtAVnCEsm9boL6Z4jxRDc62LuELhIlfwC5As4pg67YZ4hEsccy4DpBYDBQgQBQD2Y0UYOh8Vs5ZymywUnBpNckMC0M4r1Ynnngi3va2t+Gkk05CT08Pfvazn+G1r31to45t+yKj0HW2A/wnOUtb68nLFoWgttG3cwm4EGcgRDC3GiHOh+vzUrjEpGtfgYI5lwiuA6T4ZQpiALlEMXu5RRwD4QI5bsMQyhS6AG5GnjjrPn2CF7CLXkWWQWohy7OK4KZBuboAeV1hmyh6v2bftutFA84TglAk3m/sPvvsg4ceeginnnoq3vSmN+HHP/4x3vnOdzbi2EYuNkEMBIligHmi0/s39+GKQpjb6bgem1FsT4/SOO9Xwblo+D6TjKI5SAS79tMg0cwRxLZ2LlEM2AWwvo4SQTbnOF7vcJAVHKFMbpdRPNeL0OOPt2N+V7JWZ8iyzjaJRogQ5rrObJimSGhbr4libuNygV3XCxHIQgvD+nZ2d3fjjjvuwIUXXoh//ud/xuWXX47TTjut3sc2MrBlh22PwFztAeuJDnAIY3M7lwNMbUv1wznxhQrmUPTyPzbqsV9F6MmfcyPg69PTh3MGuSJEcEHY4hM2QQyAdIkB2ikG7MLY3CZkXWq9Q8BxhLJJVfubySo+G0HIe1Jw3VWfoMwqjF2zyOUVwb59swm5XvgMFIBnopjbGNuxrxfbg9EhbLdYv52lUin1+rLLLsMb3/hGnHHGGbjnnnvqfnAjhiyCGHCLYsApjAGPODa3d13cuELZ7LdIp4D6LLIK3Xo4GKEXAu4x5BG/vu0bFNMIEb7O5YQoVu0BWN1iICmM9W0UQQLYIXq4Qjm1XQbh3ApkjQ9whWMeYQyEC+B4XUFC2LqPgNrz3m0yXC+c1wpzO2J78hyQ97srdYaFOmL9dkYR/ejtlFNOwYwZM3DSSSfV65hGJoGOb7yNIlAYAxlPeFRfoS5wEQ5BlmPIQj3cjHo4xmAIX05fOZ3nov8fXIIYSAtcwC+Kqe1MUeQTx2YfPtHlilr4tgFaKJOagyzOaMg2eYQvp496xDQy4apEVKfrBXVuyXy9EIQWxHrluvfeezFhwgRy3YEHHohHHnkEd9xxR90ObESS9SSntlX4TnQKxgkPCDjpOfrOLZJcj/oaSdGiO8P7YInekP6LyC1z+7FtGjD9srkOcItiwC2Mqe1twskVrXD1xxVEIQJ7OJP1vYVsl1f8Av6bkHpFNrz4SnO24vVimD3VEEYW1m/nrFmznBvuvPPO+OAHP1j4AW3XcB59cU9yAO9EB/gFtgnzpGfijV2Ewo1pNJOCRXmQ0M16HAVFMIL7y4FL9LLWO4Sxvr0O1ZdLYHGFsms/27MAtpH1PXPEbpb9cFz4vPEMFr7rhSv+oPehaPL1otSer7RaVO1HVC3u7yOqMsaUCCOGFlUY2zFcQazgnugA/snO13cW5xc5hNw2MjnQLUbezyBFns8gi0ith6hm9sutOQz4RbHC5xjH7ZgC2dVviDjLKpzz4vt8Fc0U5aEiV5EphhEQPykqxxzSF2+HDFEMtNz1QhBaieGnNkYa3BMdwHq0Rfbtg/sYLYQ6iOmWpRVyxyZZj6nOApsjiFU7wC/uOOIY8IsiX8zCuW1O4RyKmXfWKUKE1fPYKfIec5a8deg+i8w2JwgZSMc1UfS+TfJeL1yCeRiaG8LIQb6dzSDLSGFf+RrXvnyEONVZqIeYHu7UO1pQ1OfbBNHNFbp6W0WoOGZvxxRUoQ5zXhottG002kkuakBhI7LLubcr4nrBnW3N9/ea51rRqlE3QYCI4ebhG+DAgVvujHssWeAcv5wEw2nkzUKLVuIIEcXmNjpZRLULV3/1rPrQaKFdBM2oglH0Z5LbmS4qPwxkv174/saLEsv12haoHWORcQuZjlnQEJXSbDgDHLKQVeCEniBGusPbKrTSDUfB3wlXSbTQ7V00O09blDs9XGi2kK/n/uvWdxEmCkWjrheC0KK00BVUYM3sVm9aSVQJrUUL3PiEDmorqu+s5HW1hdb+XJp2bHnjDEURcr1oa93/R0Fo/tVN4NECQkQQWpmihEleUa3TykJupDIi/k9a8XrRisckCNuQb6fQ0hQpTIpmRFxURyDy/yoILchgpdhYhkQ8BA0Rw9sZrSwetze2t896RIpAqX8q6Iwg97LR56/t7XwpbF+MnL/8YYyctAQfRQjZYZNvHY4CVlyocJoxfqHI71aDhXUzztsh+5TritDKiBhuMYo+YdTzBCQnt/pSVLmvIvr37a8u4rhRorcVhepwFPw+QsVho/5f6iW6zf/DOojjIs/B9T6fD0aDde1fEPIgYrhFyHMiynsSq8dJkKqJKqRxlcvK+v9SRCmxUHGr95VbGBclBOshplpFpLaigAfcwrKRn12I8OR+lnlFs/7+cwjj7e1awaZacJ3hVvlbFlqCtkbtaMGCBXjTm96EHXfcEZMmTcJJJ52EJ554ItEmiiJccsklmDp1KkaPHo3DDz8cf/zjHxNt+vr6cM4552DixIkYM2YMTjjhBDz//POJNuvXr8e8efPQ3d2N7u5uzJs3Dxs2bEi0efbZZ3H88cdjzJgxmDhxIs4991z09/cn2qxcuRKzZs3C6NGj8ZrXvAZf+MIXEEVRcR8KaieX0EdN5k+WbbjbD6Ka6SfLcWzvP0V+vq6bjTz/37Y+QsiyTUzWC5QaXKP/hO6X85P1WIr+KeK9ZPlphffO+b8t8j253ltWMnzP8/wt5vnbL/JaIQitSsOc4aVLl+LjH/843vSmN6FSqeCzn/0s5syZg8cffxxjxowBAHz5y1/G1772Ndxwww34p3/6J3zxi1/EUUcdhSeeeAI77rgjAOC8887Dz3/+cyxatAg777wzPvnJT+K4447DI488gvb2miN12mmn4fnnn8fixYsBAB/+8Icxb948/PznPwcAVKtVHHvssdhll13w29/+Fi+//DJOP/10RFGEq6++GgCwceNGHHXUUZg9ezYefvhhPPnkk5g/fz7GjBmDT37yk4V8JiEnp6L7jNtnOEEV6Q5Uo4HC+mo1zGlxi3Z6ff93NtfZdhwhNXw57u9gVA1ziUOFSSh5hHZethcXqtHvw+aghvyf+Bxd23viuLfmcYS4x9UK2yGuxzWgEdcKfT9NdZUFwUMpKtrqZPLSSy9h0qRJWLp0Kd7xjncgiiJMnToV5513Hj7zmc8AqLnAkydPxuWXX46PfOQj6O3txS677IIf/OAHOOWUUwAAq1evxrRp0/CLX/wCRx99NP70pz9h3333xbJly3DooYcCAJYtW4aenh78+c9/xowZM3DnnXfiuOOOw3PPPYepU6cCABYtWoT58+dj3bp1GDduHBYuXIgLL7wQL774Irq6ugAAl112Ga6++mo8//zzKJVK3ve4ceNGdHd3o7f35xg3bkxiHdfRLaINEHYiy3LSKkrUDucTZlG5WVNEF71v7kxmnD6LahPkunIIFW2NFNfbiKp9ubbfHim1d2XfOEv0IDT6wN0Ht19Gf4VeBzh91elasXHjq9h15/ejt7cX48aNC9iudh3d8OcvY9yOo9nbefvdtAU7vf7T7ONZuHAhFi5ciFWrVgEA9ttvP3zuc5/D3LlzU20/8pGP4Nvf/jauvPJKnHfeeYnld999N1avXo2xY8fisMMOw+WXX47Xv/71cZsnn3wSn/rUp/C73/0O/f39eMMb3oAvfvGLmD17du73LNhpWEzCpLe3FwAwYcIEAMDTTz+NtWvXYs6cOXGbrq4uzJo1C/fffz8A4JFHHsHAwECizdSpUzFz5sy4zQMPPIDu7u5YCAPAW97yFnR3dyfazJw5MxbCAHD00Uejr68PjzzySNxm1qxZsRBWbVavXh3/MWTF+7jJ80iK89gqT2zBpBoNeH84/YZGCZoda2jk8eb5vEP+L7nfDbNPX5u6ExoP4PTle9wd+Hg9qvYF/QTvb3v8yfEZ5v3/CvouUPtwERLnyAn3epLnfFDUtWI4s9tuu+Gyyy7D73//e/z+97/HEUccgRNPPDEV5fzf//1fPPjggwl9oTj44INx/fXX409/+hN++ctfIooizJkzB9Xq0Gd57LHHolKp4J577sEjjzyCAw88EMcddxzWrl1b9/c4kmnKALooinD++efjbW97G2bOnAkA8X/05MmTE20nT56MZ555Jm7T2dmJ8ePHp9qo7deuXYtJkyal9jlp0qREG3M/48ePR2dnZ6LN9OnTU/tR6/bcc8/UPvr6+tDXN3SS3rhxY6oN58SVZR3gv6P3bc89WQU/XitALLWKY2y6nFmPK7Qfsz31f0U5yma/lEurf2980QprZCOyRyJc6wDwhIWLvNtz+thGkJubR+i06gC5vJiOachnZLiorv8L0mGm9kU5s9zog+rP5e4OVnINvMt1PfCYJVm3BbJdK1rlHJ6V448/PvH60ksvxcKFC7Fs2TLst99+AIAXXngBZ599Nn75y1/i2GOPTfXx4Q9/OP59+vTp+OIXv4gDDjgAq1atwl577YW///3veOqpp/C9730P+++/P4DaE+lrrrkGf/zjHzFlypQ6vsORTVPE8Nlnn40//OEP+O1vf5taZ8YPoijyRhLMNlT7ItqoRInteBYsWIDPf/7zzmN1Yb1zz3hSc23HOZmxHqkFnOCKOhk2YyCGEol534MShZx+dAFpa6+34Qhknzj2CeNcojcLLlGYRwR7tmWL3qLjHXn20aroYjH0c9CFpOtzYArllEg2+/SJY0rY+kRxTkFMdplBJGe9VgD+60XR14pGYppWXV1diSfCFNVqFT/5yU+wefNm9PT0AAAGBwcxb948fOpTn4rFsYvNmzfj+uuvx5577olp06YBAHbeeWfss88++P73v4+DDjoIXV1duPbaazF58mQcfPDBGd+hwKHhYvicc87Bbbfdhl//+tfYbbfd4uXqjmft2rXYdddd4+Xr1q2LHdkpU6agv78f69evT7jD69atw2GHHRa3efHFF1P7femllxL9PPjgg4n169evx8DAQKKN+Vhi3bp1ANLuteLCCy/E+eefH7/euHFj/CX3ESqEXY+zbLhOaHlchpA2cduCBG21Tg5au3HxynO8uqgMcYA5Aphq4xLILnFsE8amKHa5xDZBnEkoZxGzGQWwV/xyKylwaOZAvkai/oZC3y9XPHOEskckO8WxSxiHiuIMgjj4mlCgCM4jfusmeisDQKXAm+1K7T2a1+iLL74Yl1xyCbnJypUr0dPTg61bt2Ls2LG49dZbse+++wIALr/8cpTLZZx77rnO3V5zzTX49Kc/jc2bN+P1r389lixZgs7OTgA1o23JkiU48cQTseOOO6KtrQ2TJ0/G4sWLsdNOO+V7v4KThonhKIpwzjnn4NZbb8V9992XihnsueeemDJlCpYsWYI3vvGNAID+/n4sXboUl19+OYBa3qajowNLlizBySefDABYs2YNHnvsMXz5y18GAPT09KC3txcPPfQQ3vzmNwMAHnzwQfT29saCuaenB5deeinWrFkTC++77roLXV1d8d1XT08PLrroIvT398df1LvuugtTp05NxScUvjvKkJNYUSLYdlLLejJjieIA4Vi0mK1mLOzeXkrG54s4LiWoOZ+Hz3kOEcAu91f/PtiEcYgorttMdK4cbxHt4RHALgFXZBY06/es0u9v0wzKnUO/Z634wHWAbf27+nKI4yBh7BPFIYI4oKqEjZDrRRYBnOWppbk+atFJN5577rnEADrXNXzGjBlYsWIFNmzYgJtvvhmnn346li5dii1btuCqq67C8uXLvU+y3//+9+Ooo47CmjVrcMUVV+Dkk0/G7373O4waNQpRFOFjH/sYJk2ahN/85jcYPXo0vvvd7+K4447Dww8/nDAKhWJpWDWJj33sY/jRj36En/3sZ5gxY0a8vLu7G6NH10aIXn755ViwYAGuv/56vO51r8OXvvQl3HfffYnSah/96Edx++2344YbbsCECRPwb//2b3j55ZcTpdXmzp2L1atX49prrwVQy+nsscceidJqBx54ICZPnoyvfOUr+Mc//oH58+fjpJNOikur9fb2YsaMGTjiiCNw0UUX4S9/+Qvmz5+Pz33uc+zSamY1Ca7ordeJLVMMI0fuDOCLyqwittUwRbWzLcMpclV+sAnR0OW26hVUe+p4yHbMZUHitoC2VgGcVfwW5RjnEbetEKPIKuZ08ezC97fi2r9rW8t21qoWtv1Q+6Da2o6FaJvnelGECC7KmVb0bnwFe03+ePZqEo9dinE7jmJv5+1301bsNPOzwcej8853vhN77bUX9tlnH5x//vloaxs6/1erVbS1tWHatGnWQff9/f0YP348vvvd7+LUU0/Fr371K8yZMwfr169PHNPrXvc6nHHGGbjgggsyHafgp2HO8MKFCwEAhx9+eGL59ddfj/nz5wMAPv3pT2PLli342Mc+hvXr1+PQQw/FXXfdFQthALjyyitRLpdx8sknY8uWLTjyyCNxww03xEIYAG666Sace+65cdWJE044Ad/85jfj9e3t7bjjjjvwsY99DG9961sxevRonHbaabjiiiviNt3d3ViyZAk+/vGP45BDDsH48eNx/vnnJ2IQ9SDPia0IAZzlUZtP8IYI3YFBf8m6VqSjrXZPyXmvSjDbPjddJJufuytyYcsjU8spt5hyiimXmOMQc5eRcMVtvURwVvHrE71cwZtV3FYanMksa/+XWaMQrs/E5zJzHWDXgDiL+6u+L1a3mHKKqcGBnHZMihbCea8XeY2S7YEoitDX14d58+bhne98Z2Ld0UcfjXnz5uFDH/oQqw8AePXVVwEgIarV68HB7cMwalWaVmd4JOBzhjknGM6JjXtSKyKO4RK+PiEYInSHiyhWIriIti5X2eYi25zjPG4t5RSb7TgOMWt/HDGaQwhbS3BR5HWjFT7RyxGOeYVtvYRxmXEzk3d7n8vscpMDnFdre6It6RRznV+zHaMN69rAEMJ5RHDR14tNG7fgn3b9RHZn+P8+X7wzfMDF7OO56KKLMHfuXEybNg2bNm3CokWLcNlll2Hx4sU46qijUu2nT5+O8847L64z/Le//Q0//vGPMWfOHOyyyy544YUXcPnll+M3v/kN/vSnP2HSpEn4+9//jte//vWYNWsWPve5z2H06NH4zne+g6uuugoPP/wwDjjggMLev5CkKdUkBBqfEOac2Ip+tGYTvy7h6xOyIUK30qKiuLxN2HLeS4enrctVtrnItjwylT12OcNUTphyik1Xl+MQFz5oztXGEJhsEVyEALaJX5/o5QjWIkRtJWeMoqxdJrIejxLBru1VG99gOOrzVgLZVvnBlv+lsr+E+0s6xVmd3wIH0yXaeK4XWUVwiAB2XS+GexTuxRdfxLx587BmzRp0d3dj//33twphilGjRuE3v/kNvv71r2P9+vWYPHkyVDTSmwAAiuhJREFU3vGOd+D++++Py8FOnDgRixcvxmc/+1kcccQRGBgYwH777Yef/exnIoTrjDjDdcTlDPtOOEWc2LI4CUCYAHaJQZ9QDBW6fYNNmyMmpquNf0IvM1xjm1tsW065x5RrnDXba742XWKfQ+zrz+sM+1zhLEI4jwim2oWKX5+AZInignPB/Zb+Ogv2R8qM/nxusW29ze2lnOM8mV6jHcslNvsJXB96Lg+9XhTlPAP09YK6VmzauAX7TP3XYesMC9s34gw3iDzlZkJPbFlOatwTGkCLXJfw9YneUJHbjAiFEqfcY+1qG3S+b5uzbHORKfeYco0px9h0i13urfm6Gg0EOcR1rTBBESqEs0YwKAEcKn69opgheG0itiiK6l+Jat97Kpftn4vNTbY5yJRz7HKMKbfY5hQbLjGZJTYd54JrC8ddFyyEQ4U2wL9e6Oex4RJ9E0YmIoZbANfJp94nNvOkxnV/bSc2lwD0CcnQk2UjIhQhcQjAL5qVs0wde7ktYonjrMLYJop9r83YBCcyEa/LI44DhWxCCGdwlFNtuAI4VPy6BCJXjBbtFBeFcoJ978MlllUfNhHMEcccYeyKRphtjPXWAXY2cojlkIFqrutF0deKWv/860Xu83W1WmwWvlpgX8KwR8RwE8g6CtclhIsWwVwBbDvB2cRg0dEJbr8h6BEF7vH4RLNLJFMC2eUchwrjEFHMzfzWY50zL1ykEA4VwVwBTC7LKHyZYjdqkQt6SVXz4TjBgDumYRPIHHHMEcY+UewSrS6XuAHucEgZzKxC2OcE5zVMBKEVETHcZLgnt6xCOK8I5gpgSuTliU7kOZEOBI7T6DAOPWTfSoz6IhFUnzaBTEUsKHHsE8YuUWyLNrgEsisy4XKHM+EafJZVCOcVwXkEcEbhyxa7jS6rptgmPjnHWWpvt79Xm0imHGTKOeYIY64oplxil2DWybouA1zjxHl9CDBNshgm+nmsVQdDCwIgYrilsMUjuELYdWLLK4LNE1mI+LWdBDmiM1TYZiHrPjra3O/BJZRdkQj9s+W4xmaUwiWKXS6xzRV2CWIOuXPEDsfYKoRD3OBQEcwRwDbxaxGDTjEZInQbFZ+wRRnItnbBbHWUXeKYausSxnlEsSs2oUUmrFUm6pgd1rFdL7hCOI8I9l0rgNo5rS/KOQC6UnBMolk3kEJLImJ4mMERwllPbEUJYOpk6K46YV3l7LNZDIlRexubULYJZJs4dgnjEFHMcYmzCGKbO1y3gXSaUM0khF1ucKgI5ghgQpxahW8RA+xC+stCmRmHAPyCudxuF8gccWy6xub+8ohiShA71pGD6jISeo4vUgi7TJMiDBNBaFVEDDeRPCe3ep7YfCc1jgC2iV+XgOQI3r5q806wXe32wW8Kl1CmBDIljm2RCFMYh4hin0vcCIeYjS0iUaQQdrnBeUUwVwBnGWDn2s5FPz3lLotO7f+Zu+8yIxJhyQCbn1VKHNuEsdkmiyi2CWK9HUcQ29zhJrjGQPj1Iqtp4jJMJEMstDIihhtM1hJreYRwESI4qwCmRKGz4gRT7DbyxBrHFzzH1tVOl1OzCWSbOOZEItT/DVcU+1xiPTYR6uoWkh22RSE4k3DY4AhhrggOFMBs8WsTjD7RmUfc2vZhq+cbsi8lnF3l0gIHyOmfpVcYU24xRxTbBDFAC9aihWzGPHE9jBPb9SJEBFNtqyKGhRZGxHCL4coKm+uLOrGFiGCfAA4Rvy5xyRW79cwUq4F1vmNxiWVKIFPimNoXJYyziuJQl9jmCIe4w4VGJUJd4TxCuEgRzBXANvHoE6KtkqFUwtJ2vDaRbItdWHLA6vNNZY2zimKfIAaGhK9NsHLc4QIhqz1kFMJZ3OBQEVwYlWqxmXjJDAsaIoZbgJCTG7WsKCHMFcFZBTAlFvNmifO0p9ArS/j6c4llm0C2iWOXMDajFFlEMcclziKIFXXJCPtc4axCOIsb7BDBXgHMFb82Icm4aEcDzbmwlzqY0yxT762zgyeOCWHsdYspUUxlivXf9TiEmSNWMOIPZH44p5PMmTHOtT5ECOcVwTbDRGISQisjYrhJcE9urmoRgF8IN1IEpxzmAPHrEp5ZRW4/Y7vOVFk1Xt+1iINrHS2Q9c+EyiBTwjhUFOsD7bIKYoVPBFPuMBWVKEosp2aYA4oRwo0Qweb6QPHLEryNKL8CxHdsrmNyCmVKIJvi2CeMOW6xLoqpgXZclzhr7pdyh+vkGAN846QeponrqeHAYOO+moKQBRHDDSBrTtjWh/q9nkKYK4J9ApibI3YtV3DEbSihfXbGrm16XYdlnS0C4RLGZpQiRBTbXGIzNuESxL7KEIW4w9RAuaKWFS2EbSK4CAFMiEWn8GWoiqhOyqNk+5KbdLSR74EUyFTEwieMHW5xQhTr8QmbS5xXECuKriPsMT/i3TridN7JNDxCuAgRLAjDARHDTcZ1cuO6x1mEcKNFMHVStJ0ofQJ1axOeCI9S12vLsXVanGLKQTadY0oY29ximyimHGCfS2wTxAquw1vXyhIaXleYWsYVwqEiONWPI3phCmCu+HUoiRCxG23Nl7MsjdJmXPPs1ymWCYFc6mhPfx6ma0wJY0c5tYQo5rjEHEGsoJxgYlk9ohKJrhzXBu4TxKKFsEsEVwYLmI65vwL0FxjF4k59LowIRAy3CCHTbALux131PLEl+gkUwNT10SYuOYK3Ea6DurbbjscmkikHmdIJLmFMucU2UexyiUMFsS8/rOA4wZnjEa68MNcprpcQLkgEpwSw5QvtEqBZha6tz5I5HSNzH0owU/1aBbIhjq2usfoczUF4NlGsxSfYLrGZIzYFMVV2jesO53SMXdeGrMYJJYR9Tw+zimBFfxPLYgqCDxHDDYQTl6AeeZnbux53cYVwvURwVgFsE5tcwVtkhELPEfsm1qCOe1Q7LY5dwpgaNJdVFJuC14xNhApihRK2LoEbtylqembXtMwuV9isIwzwhXCRIjiDALYJVZcoLSoWEdqPErq2YyuNKqf6JMWxTxi73GJTFHNdYio2ofAJYoVax3WHTQLcYtf0y3EbpnGiqJcQdl0vBKEVETHcorgeeSmou3xFHiHMOam5XGDzesoVv67rcIjYDR21rIQgd1++3LD53kxxTAlj16A5ShTrmWJdSFMusRmb8AliBZUftlHvqAQZkYh3vu0iT4ljta4RQpgrgo0vDiVAbeLSK1YbVVVim1j1Oczm+7CKY58wNsui6W6xSxS7XGKbQ0xFJhRUftikjgPkAJ6pEmqcKLgxulARPDBYyv8kr1oBKgXGJFw32sKIQ8RwE3CdqLjbcO7yuUI4y4mNau8TwaZIzJIZrkd5Hm6fSixSx+eKRejv2yWMKbfYJopdLrGZJfYJYv1zUHWIzfywwnSHC6kSETKxhil8OfGIPEI4hwj2ucCmKKQEsFX8ekRv/QfQOfbf0W6NS+jvkYpWJISxUbHCKor1+ETZELyGS0wKYmAoR2wTxC6B63CHrRQgmM2IRIhx4nqCSAlhnxsceq0QhFZDxHALoE5irvyXDfPkRgm7UCGcRwRnEcCUuPQJ1HpUlrDRqTmvJjaBbItF2ISxyy32iWLTJQ4VxKQrbMQlCos9uMjj1LjiEYoihHCoCA4UwKSItQhPruDNK4z1HLGrL6tQJlxknzB2ucUpUexyiY0scSo2YeaIKUGsMOMSWcRvA6Zg5hgniqxC2GeaiAgWhhsihlsY847fPLlR8QiFeXJzCeGsJzauCObEJmzi11tZok5PurQB9J4KErRA9sUigKHPyBTFgBl/SEchgNr/D+US23LElOg111FtGo7h+sYRCVccwsR0hclJLhhCOMANdjnBuhDMKoCtWeIMasOV8Q3tP45E2AbPEeLYJ4wTohhI3Bk6RbHpEvtiE2Re2BDElDBWmIPpjNes3HCDsBknVJWHUCHMMU0qTT6tCIILEcPbAbaTW1Yh7Dux2USwzwU2RSUlJK3VJRj6J68DoQ+kd+1P6QV7BYlkdQifMLaJ4qQzrP+edInNLLEtR6yLXqrKhCmIbe6wLSqhcsPmILq6zE4HpMWxKx6hUOIoqxAOdIPZIpgpfutRWSJrH5wKEqkIBJB8rw5hzBHFiYF2lEtMxSZsgljPECtMQewaTNcAbE8RucaJ64mbeb1wCeGspkkeomo1Xd4wZ3+CoBAx3GJkPbm5HncpQoRwqBtsc4J9ApgcXOe4Huc5sZrua2jfsaNrHB8ljn3C2MwYZxXFtthEqCBuBHUTxT5McVugEA4VwSnhaIjgVIyiiZUlbLgqSNgEcqmjzS2MjSgFSxRzXGIqNsERxJRj3ERCxpdw8BknRQhh8zrQyGibIITSOn/tIxTzTr9ozJNbViGcRwRnFcBFVZfIu623egQhjl3C2OUW+0SxGZ2wxSZCBXFWd7jhmAPnfK6wTQhrWIUwFYug3OCcIpgjgJteXaJj6P/aVUGCqh5hbkMKY4tb7BTFHJeYik2ECmKfO1zHqESW2UuzGichQph6eugzTZoxWZIgcBExPAwo6uQWIoRDTmxZRbB5fecOrvNtUwR6ZIJbPUJtp78vShjroljvnxLF+qQelEtsi01QgtjEJohDKLSqBEEqL1wUFZVHDhfCPjfYKoIdLnA9K0uw+jBITb7hqR5B9W0TxzZhTLnFbFFMucQBgjiFGZlwteUSUEEiRARzqklkIa8QdkXoBKHVEDHcJFyPvbKc3OothKkTWxYRnFUAc0VvZSB7gfdyx9BObPtT12vujHM2YWwTxeYAOtMlNtdT7q9NEJvusA2fO+yisHrDIeI31BUuWAiz3GCLE1xkdQlr+wxw+gmtHgEgIWj1Nk63mBDF+vYl4w8hdoldOWJDEFsH1KVee9xhDjkrSoRUHSrKOOEIYZ9pUsn71axU6XEAefoThG2IGG4h8pzcQskihH1uMFcE+wbWUW0Sx55D8Lpw9auEMuUEA7ZYRLKN+gxcotjnElOxiTyC2BeXoOBEJbKuC6oUwWlbDyGc0Q22iWCvAM5QWm2wku284KOtPPSdsM8sl796RCxyVX+awKZcYmtsQnd09RwxRxBzyq2ZNLCEGgWnnFozhHCdY+yCkBsRww0m9FFWI05uWU9sNjc4qwimTpgugVqp1EcU65TLg+RxuMSxb1KNLKLY5hIXKYgpQibiqDsu8csppRZCXiFcBxFsE78+4Vut5hPG7e1D3w1qX0ogs8RxQPWIZBQi6RLrTnNCEAOJ2ERKEJvYBLELzkQcigJno3NdO1zrQoyTkDbm9SLk6aEgtBoihlsAavBc3pNbPYSwzw3miOCsAtgnfPv7ihNjnV1Dnz2133J50CuOTceYLKnmEMVmdEIXu7pLbBPEWeBkh11RCUoUFzJZhysy4ZxkI6MrnEEIU25wJhHMEMA28ZtF9Fb6Syh3unPitn6VSLYJ5KKqR6REsSU2YcsRkxlin8sb4g5niUoAhQhl6jrhqkPPGTRXW26091wvuKaJILQqIoZbDOeUmgEnN50ihTDlBhchgk1xaRO/IaK3wnhUXC6nhYBtH0ok68dGOcfljsGU8HVNqrG1kizPRrnErtgEJYiLcIddE3E0Yka6ePAcBeUSM1zhvEKYErVcNzhrdQlKbLqEb6U/TBSHtlfimToGSiCTwjijKLa5xK4csVcQc/PDiQ/NIaYJkZurogQxvoS6TlDtGmGccITwwGApc6Rv6ECrQ3+vRSCZYUFDxHAT4UYmqIgELXrpeEQoeYUwVwRzBLBL/HLErg9fH7pYNo+ls6vqFMaUW2zNBBsusV6OTRfEqr8iBbGOyx2mohKUG5xpEB13wBzVjlrmqCmcblsfIZxnYB2QFsGU+PQJ2aKyw3pWmNonJZBNYWzGKWyi2IxA6MupLLE3RxwiiClctYddk3A0KDdMusOO2UmLNE64QlgQWh0Rwy1C6J2+DjXBRlF3+a4TW9yW4QaHiGBKAPtEa5GD6vSqEtR+lUDWj5MSxllFsS02UaQg1uG4wzpUVKLuuWHSCSYiEllcYaotEY2I11mEcJAbbBHBWQVwiOgd9MQp2trTT0ts/SuBqx+TTRjb3GJf5QggKXBtsQmzHBxbEOtw3GHONM02ckYjfPXoXcYJNe2yyzgpUgj3D9KROEFoFUQMN4gsdSN19Dt9V3F01wmvnkI4VARnFcAhoneA0bajI32GpvZhE8imMDajFGa+WI9QKFGcEriES6wLYiA9sI4jiBOfDcMdTrbPF5UIEss+l9gVkdChXGFmPMLEmhEOFcIZRXCIAPaJXR8hYtk8hrZy5BTGlFvMFcXO2IQvMuGCU3+Y4w7X3ljaDS5wEJ2O75riMk4GiGuHaZzQfdb+DRlPUlhmWEqrCXVExHATCJlaU7/Tz+oKu9aFCmFuLCKrCDYFsEv8csSuD18fSizbBsyZwtjmFusRCt0pplxiM0tsCuLE8VsEMYVrQg7KHeZGJWwU4hb7hLErIqERu8KJdmHxCJ8QdsYotPbmcl1Q6iKYK4Bd4rVaUEyiXYtJUPtrs2SFTWEcJIqJcmrW2IRDEAPgxyU0WO6wjYwCOOvEGfo1xTW2hLvMVXLThe16sbUC9In2FFoYEcNNRn/slWWSDe4yvUakokghHOoG66KRK4BdwrXIMmtKuFL7pMSxKYwpt5hyim0usS02YYtMUPjiEsm2bnfYF5XQRW9d4xI+YZyoEcxwhYlt6yKEc4pgUwDbxC9X+PoiFW3EoFKqb5tANoWxGaWwiWI9U+waKAekYxMuQRwUl+C4wzao3HAOiphRzjW2RP+9nsaJZSZxQWgpilMQQqHY7vSznNw4d/lFC+HKQFss+iqVtlgM9ve1xyKxUiklhLC+DVATovpP3G5bf/qPDbU/6seGq3/yeLYd99D7Tb6v5Hse6i/xXh2fpfq8bf8nA8bFyVxO/X9XiO+C7warpQbC6Hlhz+NOliusk1EIR1srLCE8WCnFQrFaLcXCsNJfSghhvR1QE5y66KxWSokfczvbjw/u9tb9bztOdazmdvr71N+/3s5bqs74nK3/N6n/D9Xe8Z3QoL87xA0Wg0R1FD3qw5g8RhfGtt9dteiB5FPERhkn+rViuGeGFy5ciP333x/jxo3DuHHj0NPTgzvvvDNef8kll+D1r389xowZg/Hjx+Od73wnHnzwwVQ/DzzwAI444giMGTMGO+20Ew4//HBs2bIl0eaOO+7AoYceitGjR2PixIl417veVff3N9IRZ3gYwz256dju8nWyCGHKDc7qBJturE/sZsW3ra3esHKO9eM0HeNyxyDpFOuZYsoltsUmfA6xLz8M8N1h1yQcTccnHBJChRehIKda3kaIEI63ceSJOW6wKYB1KIfWJ3ArA/luYsodRlacyAmbx6ZcY3X8bdoAOp9TrFzikPrCQQ5x4sNhusO+qIQtN9ykmej0G1ffDS3XOMkjhAthYAAILAPo7S+A3XbbDZdddhn23ntvAMCNN96IE088EY8++ij2228//NM//RO++c1v4rWvfS22bNmCK6+8EnPmzMFTTz2FXXbZBUBNCB9zzDG48MILcfXVV6OzsxP/93//h7a2oe/lzTffjDPPPBNf+tKXcMQRRyCKIqxcubK49y2QlKIoatGr3vBn48aN6O7uxvoN/4uxO44CULuTV67vYFRNzDOvfoCaM6wXT9frReq1halyavpACNegubwnt7xC2HSBTUJLrdm24aLHIyh0cWzbxhyQpw+808u0qb707VVb/XqtohBqmYpBDi2P6Hbt6WUd2jZKDJfbosTyoWW137vaBuPccIe2vL3UFsck2tAeRyPaSkO/t5c6aq+RXtdWak9Oq2z8Hrto1cqQANZ/r/QnZ53TIxDUJBv6eiIrzIpHFCSEixDBNgEcInzNfG8IpkC29dNuvNYH3+lt9Yk/2ok2sYjtGPr7V8tUNjh+bbQtdbSl2iBu2z4kaJUYLrcPCd9t60rt2rLOcnK92r69PBSTaCsPiWPt91J7F7lc/R6f/41rgfq9Gg2k2uizlKqniHpd38pgiZxkQ78mUFlhVzwiy7Wif/Or+M7RZ6K3txfjxo0Dl/g6+uPTMW6H4mIoG1/tx/hTbgw+Hp0JEybgK1/5Cs4444x0/9uO++6778aRRx4JAHjLW96Co446Cv/5n/9J9lepVDB9+nR8/vOfJ/sU6ofEJJqE7VFXHmxuwND65L9AcULYjEUA9kiE3tYVgVBQ0QYqypA3N+zrz3UcCipCMdQ2GZ0wt48/E8KN4UYmEsfriEnoj0JdeUHu8kJgPC4OJfGY2+EKJ7axPWL37csihM1YBJCMCujrbVEIRSpyMFBK/OiExCV8bc32tv2a7W0RCvO9mNEJvT/qs9WxRiYcbZJ38ERkxvdUwRaV0OM73NrZGchzzUg6xen1A8R6qoya2b5ujnALUq1WsWjRImzevBk9PT2p9f39/fj2t7+N7u5uHHDAAQCAdevW4cEHH8SkSZNw2GGHYfLkyZg1axZ++9vfxtstX74cL7zwAtra2vDGN74Ru+66K+bOnYs//vGPDXtvIxURwy2OLS9si0i4Hnnp66lsah4hHB+LJoSHlvnd4FABbKLndvP+JPq1iGPz+Mw2uii25YnN96Z/PiGCWMeWHzb7jPfLyATbSi35MoqKkOopLGx5YZZYSQsfcrrlwHiESwgrdCGssLnBuog0BSZX/JqYGV/fjwlXHJvtzfdjvlczT6w+Kz1LDLhddxJLflgn/r+nviPm73koQBj7agwrOBEJqo3vBtk1CVP6GIZ+d92UtwIbN25M/PT12We+XLlyJcaOHYuuri6cddZZuPXWW7HvvvvG62+//XaMHTsWo0aNwpVXXoklS5Zg4sSJAIC//e1vAGrZ4jPPPBOLFy/GQQcdhCOPPBJ/+ctfUm3+/d//HbfffjvGjx+PWbNm4R//+Ee9PgIBIoZbEpd4CDm56biyX8l2xQlhjhtsE5l6n2Ybn4DV4Ype1zaJdQ5hbH4OqfdKuMSmoNbbcS8otgF1yTbp9raLX8Vy0+VyhYt6umGFKyb6tchCiCvscBXrIYRtbjAlguPD9QjgeF9McevD149NHHNFscslNj83nyDmDqhLrqMep9DucOK71G+50aqjE+yDe2PqqiEMFGecKAoVwioOVeQPgGnTpqG7uzv+WbBggfUQZsyYgRUrVmDZsmX46Ec/itNPPx2PP/54vH727NlYsWIF7r//fhxzzDE4+eSTsW7dOgDA4GDtQ/jIRz6CD33oQ3jjG9+IK6+8EjNmzMD3vve9RJvPfvazePe7342DDz4Y119/PUqlEn7yk58U8CEKNmQAXYvgEhN5Hk1TJ7fk+tq/1F1+XiEcr3O4wYp0vWFDhHrEaxZc2yUm2SDKqAFDx6hyv7ZSakDtfXd0JAfMVSql1OA6fWCdPqjOhFNyjao9bOtPwR0856o3XFh5NZe4qFoECQfKFdag4hFZhTCVD3a5wfFyQ1zq2FxfG3kn4TBnpKMGyunHFQ+Q23bcKl+sr1d9tJcjDFZLiXJsqj6xPmGHObCOM1COnJWOGEwXl1rTSQye8wyko3ANnAuoQewyRrjXDKoWfa3N0O9cV5jaRxbjpJV47rnnEpnhrq4ua9vOzs54AN0hhxyChx9+GFdddRWuvfZaAMCYMWOw9957Y++998Zb3vIWvO51r8N1112HCy+8ELvuuisAJJxkANhnn33w7LPPAgDZpqurC6997WvjNkJ9aM1v53ZKiHvmutMPiUiYyylXOEv+NFQI29xgXwaXdGcZDu9ghf9DYdsHuYxwiql1VJbYliNOfHaWi0tIXEJfVvvd/SSB2waoQwzCuiOHOA6JSJi/E65wSEY1rxC2ucEuh1XfLjW4TittllcIU/3ZyrvZjpN6H/r2+j709UU4xFSbBFR2mAu3xFodsvAU1GQbCs5TxFBXWP99uAphAHGpNPXjEsMmURQ5YxX6+unTp2Pq1Kl44oknEm2efPJJ7LHHHgCAgw8+GF1dXYk2AwMDWLVqVdxGqA/iDDcRbgYMcLvDISe35HbpZaGDIGxCONQNNgVwaj8O0ZsXWx+6sUNOsqG5vEDSKaamZy6XB+PPQrnEZgk2n0OcKqVWGaow4ZqQw+YO62XW9OXU7HOKQkuvmR9+yKNmhwCxRiSYrjAAazwiQQYhHOoGm04wJX5t1GMGOnOfytXV3V7A7RSbLrFeiq1Nc4HN8msch1jHbAMw3GGqzBq0GekA9wQcBU++oWMaKtxInUlWV9g0Tqg+bUI47wDnaKBK/s3m6S+Eiy66CHPnzsW0adOwadMmLFq0CPfddx8WL16MzZs349JLL8UJJ5yAXXfdFS+//DKuueYaPP/883jve98LACiVSvjUpz6Fiy++GAcccAAOPPBA3Hjjjfjzn/+Mn/70pwBqwvyss87CxRdfjGnTpmGPPfbAV77yFQCI+xHqg4jhFsI80XHv9E3ynty4d/khQpgjgs1tKQHsE78dGef8HOhKP9bX90UJY5co1qMTpiAGkrEJfQa7EEGsQ03ZTEUi9GW+qZcV+mx0JvpMdEA6IpE7MmH+h+uD50z6s98Zka4wsT60wgRHCBcpgrnit6+PPv6uLlqwmP1Ss8+FiGI9OuETxInjsAliDVdcgqw1nLgLtMUjtN9NfFMzNxDzuuCrRe/CN/jWNcNc0UK4FXjxxRcxb948rFmzBt3d3dh///2xePFiHHXUUdi6dSv+/Oc/48Ybb8Tf//537LzzznjTm96E3/zmN9hvv/3iPs477zxs3boV//qv/4p//OMfOOCAA7BkyRLstddecZuvfOUrKJfLmDdvHrZs2YJDDz0U99xzD8aPH9+Mtz1ikDrDdcSsM2zWjfTVGDZrRpr1hTm1hfWxIrY6ka7sV6OEcFYRnFX8cqAEMpCOApadtYWHfqdqC6u6xGobVy3icsdgfM2m6g9TtYdtdYc5NYf1+sJUvWGVGW5vK5O1httLHUOvt61P1Rk2awhXVW3gPnq9EsPVSmIQjFlf2FlbWJ9kQ3N9fTWFQ+MRRQlhnwi2CWCb4M2KTSibrjGQzBnr6xO1hTvo5aq96kOtUxnidmM5VVcYqNUfpmoPU+tTdYctNYdjZ7hcpusNqyxwuXPoRNFepmsNM+oMmzXpqfWuevR6fWFXbWF9uX5t0CtIUHG6EOOkf/OrWPSuD2WuM/yPG04tvM7whPn/navOsLD9IM5wi2E+9nLd6ZtwIhKUK6xDxSOKFsKuSIT+mhLAPvHbXskmAKrl9Oeq70sXxuq41LWOcopdLrEepzAdYn1QHYUtLgH43eHQqISJ6R67BtHZKGxwnQ2zagQjIsF1hRNkFMJULKJIEcwRwJUBt/9R7vCLa10Ym06wOlbKKdZdYjM2oc9kpw+sMwfVhcQlfO4w6RQD1qhECnNdwOC4rPjGnpjXjCxPEbmuMLXMdr0Y6G8N91wQKEQMN5m8JalSYjnw5EYNmnNVmIj7IwbLxdtbRLO+DHC7waYQtongrOKX048ukClh7BLFyaoR7tiETRCHVJgwq0sAyd9VZQmAH5VwRSco6iZ0zRyx+doQwIm8sAkxcA5wZ4X19ZQwDnGEzW04Qtgngm0C2Cd6bdi200UyJYxT8QgiPqFHJ8zYRCGCWEPFJRIQ2eHackZUAkZuuAgY4jnLNYKbF3atC43T6b/bjJNc6LZ1ERTZlzDsGf5Bnu0Qs5KE704/z8lNJ0/2S68aobcLFcJmhYeOvmpKCLdXBuMfk/LAYKYfCtt+zGMyj5l6b2YFDROzFrE5MYdZYQLg1R421/scH2p7wP1EwkbIAFGdeCrmEFx5YddAuwBXmDPpQ0g0IlQIm1Ub+voGU0K4MhDFPzb0NtQPZzsd8zhcs86ZlTOG+k4vqxqfoVllokoNHHTUFbb9Xyd/Z95IAenvnLm+jlUkQsaXAGlxzJlsxwbXOHFVGRKEVkPEcIPJWobKdTIzKfrkxo1HUNGIuA9CCOslynwi2CZMOaKWg68frig232Pq99RnSERLiLJrJtT/E3Uzk1jv+OrpTxQ4mN+xupdXSw2k8+wvJVzcVSRMKFeYWk9Vj6DgCGHbhBQ+EewSsiFi17WNuR21nCOKbZ+H/plQdZRduKZspv7vvOsVrumZU68Z3/8GT8ph3sAW9RQR4BkngjCckG9tC1DE7F2mOM5zcnM5jiFCmHI1KwNph5MjgnVCHF3OD4VtHzZRTL2XLIKYwuUOK2z/3zZs3wNzHb2+RR0en2DR8UQkAH7dYW5O2CeE42WW0ms2EayTxeXlCmWfMLYdZx5BzHWHKQHtc/1T6G3yTsPsqnpSJ/L+XXKeIuY1TgShVREx3KJQj71C7vRr64d+Dzm56WQtjeMScC4hrHCJYBOOuHXhE8iUMDbb6SJed7ltNwA2QcyNSwB+d5gTlTAJeQLRdIInSUi2Zz02Z7jCQGOEcLwvhiA1lxctkrmimHovRQtiHZ87nCkqYX5vzEy666arIKjIEfU0JjRSZ67P6won+nIMsM5CVKllwwv7qUghLWEIEcMtDOdO33dys7Ut8uRmywmTcQmmENZxObQ+8RuaE/b1T4liHZ9LTF0QuIJYJ8QddkUlQpMllDimZkvM/bSDeqRMuW2+wXMpAew4LosrTK3nxiNsuISwHi+g3GAdboTBxgBzkB3XFTaPUT9+MwaioASxwiaIdTK5w1miEkB+x7gJ+G5wuecAVwUJILtxIgitgHxrWwSueMiTBw5t7zq5hQhhTjRCoYtLbkxBbxsieEMH0pnb2tbbBLGiKLcdoC9kNnfYxNw2/WShhV1hF468MAB7RMKC73F7qCvsE8IKlxsc4g4PDETWH996Sixz9s1xibmDCylcg+nIgZAWdzhF6N0hNXCTupGr02A66kY079Mc30BrgK4goVO0KywI9Ua+oU0gxDWjBEnonX5oRIJzcuPiEsJ6tMAUlBwRXMTAOZOQQXQul5gSxLYqE0B+dzg0J2y251QooSpK+EaxswgZWES15cw8l6GihC1LHB8KVTKNKYRd2wBpIazDEcEuMRuKrS+uKFZkFcS+uIROYlnoQEnzS29+ZzhxiAKcY9v1Ic/TlpBInfnaN7YECDNOBKEVkTrDLUSeEfm+k1tyXbaTW2g8wieEFT4RbOISv0VOuqHvp6LVMG2vDCbalwcG4/X6uo6+aqImcVu59lmYM9apOsJmXWFVf1jHbAOYdYPpSTaoKZzrha3ecHAd4jxumke4pIQPYxIOTlaYiynsOELYJ4oBd+yhEpiRLJfT70n136HVHFbHUTaWqdf67319g4m6xHotYZ24rrBRg1ivVRzva1vtYR3WJBtazWGTaKBam40u3gkx5bJrMo4GwhlfAoTlhU0aYZz4iLZWEJWK65PzVEgYOcit2jCAeuwV+gjbPGllObkl+mMKYZ28QpgzgC4rvkF4vgF0WRxi7qPDLO6wKyrhyw1zv29Ni1FQ7hslfj15YdfFsJ6usCv/yhHCLifYpFKJ4p9Q9G3N7TlOcRaH2Da1tAnlDpPZYcZAOnMdB+fELia2Jx91rEPMhfsUkYO4wsJwRr6hLQaVAePiu9Mv8uTG7kOrI2ziEpPc7LBPAKsoBvXjwiWKue9BPwYTUxD74hI6eWZzcj0OBeh6wy1dUUKDJVBMEeTJA5twXWFOTlihD5aL+2aISsAiSpkCuK8vSvz4CBHFvt+pWfOyZK3jvl2VJeD+v00/JTBPnMzJY5o4uI57sxr6txzyFBFwu8LVwFrmgtBImv+MR2DBeexFLUu7gMWd3LjxCGqwHEdEmuuo9To+getrryIN1P7MWAQAMhrhi0youEQorngFwItKmOSJTujTOOsUPiWzzVXjCg+ukNkGp/QWxxX2YbbPKoR1XOKXI3apNl1d1N/9tliEFqMw4xO2mAQVmaCiDxzMqZoBxNM0u3BFJVLTOpPxiIDIRNY/eAuhuWFK/IbkhU1sTxEb4QpHA4OIysWND2HVnhZGDHKr1iSyTlVrkte1a+TJjRKreYUw1+nlHp+tL05FCd9yhS0uwXGHs0YlzHUULRWFyAoZobDXFwbgHmhFlFPTyeIKu4QzRwibbqzNBQ5xfW24+rA5xb7jp7LOts8mqzvMiUqYsKISDagpnJU8f6uup4jhTxTtxokgtCryDW1BbCP0uSc771O/Ak9uXFfYVUeYWsYVwj7Klar1x4VLFNuO0yeIXcfLiZ9Qjj0XX26Y3sZyHK0ikHMIE1P4+CbaSO1aF16BrrCJcoW5QjhxHA4R7CLLDHQuUawTIohD4hIUrrrDQGA8IrWe+/ShdQUyUMxNbshTxMR+JCssDBPkmzrM4Dz2AsLywo08ubkGzFHLbdMf24RliODltKX2lUUQ6/0BdLk1wH6TkWxTSrUH/AMhXRTxxDBPNRR3x4FigxDJbGETt/dHJFwijesKU2IwqxB2ieCsM9BRUPvJIoiH+tsWRfLcTDjL0zFuRFwZYm9uGAjPBNdpSmZXVCLkRjUkUufalju2JM9YB0GoNyKGW5TwahHZ7/Q5cGZO47jCiiwRA5sI5opfH65+sgpi1zIFxxX2DaRz9ZGuKex+DdgvqlR2vRCyDhy1uXLUd8EjgPJkCDkupgvblMcKjhCmtufOROc6LlsflCDWj8sniEPiEhRZoxKFkvXpREht7QLgfrW5VYds6DfqZsWh3FSqtf/Hon6G4WyCQv0QMdxEshZR5wpf350+Jy9cZP5LCcKsQtikCAFsoyhB7IpLmPrPlh2m2rjIkxt24fre+aqg5HaN6+SyZckLUxEJnVBX2CcUXUKYdGmZAjhULFNtfS6xTRCbyyiHXMc1Mx31f+AiFYMxS+6R9SUDx3jUWey6/p5sN6x0ycSw/YY8RRSE4YSI4RYmby1hCpcYyhKR4LrCPrc0ixC20T4wGPRjgxLbPkFM9pMzg5A1KsGB+j5QsZuWxubOEQLGmxN1PDLxRSSyusIKloA1hHBIH64IREh+mOMS69imdLbhqsOs8H3+ReWGAVgdxKBaw8MI85xQ5FNEQWhVhtlVT1BkfexlwnEKizy5UcLQJRZN8elyg33i1oZPGIcIYm5cwpYddk1rGprX9s04JdRwxSU4Yol6XJ/FFVbYXOGsQjhrVMIljG0uMXWsvmP0ucOuCErooMU8N0ONJM/Uy4D9b50zvsTf99Dv9XqKKAiNRr6pTcZ30gsvkp5eFnKnn+XkltcVti2nhDC5TUYRHNJXVkHsWsbBF5Xg5oYpqIoStouo63toq35SOI5Hz1aXjvjO5BE83IhEcL+eqZVdQjhEsGbFJbR1bIKYiktkPTZfVIKbG+Zkxq0DL13xLE90K6r2OddzyTNBkw9XpI61PfkUMd/NeDQwWPiPIChEDA9jiipxxTknuCISXHwiMVQIFymCqb5NfIKY7CeDO0wR+ln7qolQH5vtoxzujjKnkoSr9jAn/sAp/xXqCsfLHJNpZBXBqlax+ePCJbp1OILY3NZ0hzkD6fLGUrZ3bNcH6u+ZU2ox0XfADblEJIThgIjhYUDoCH7qsVfeO/1E/zlPbpycrY5NCLu3GWT/WI+TENsuQVyUO8x1eG254UZSqFDmDDrK4cjp5HGFuCKM+wjf5wrrcOoH2+CIXk4brojPepwufFEJW27YxDeIrrbM8h1xVZDYjioUhJTnpJCIhDCckG/rMKeowU6cO33Xyc0XkcjjCpu4B725BW6WbXyCONE2sKyai6y54VT9UEZFiXo+McybfywExht0TcRhE1ZFOpY+V5iKR/i2B9Iz1nFxbecTxCHusLk9p+5waBxle30k7oso2W5WQ54M2bBF6op4iigIjUa+oS1APcRC6GOvrITmVH1i0RePsA9yCxfBIX24BLF1AhDH1cVXZk2nmY8Zh52GCKn7WnDtWVeW1RaRCHGFk/viC+G82ERx3jwyNzvMrSphyw2b8LLCNlfY9WSiNQbfFUnKQA+tVlPguUsyw0I9ETE8THDPBsRzSUIee/kGO+S90+dEBkKEcJFk6c/rZjscch1ubphb47Oe5/umZYnr+CjadYG0DZ4rospBiCvMEcJZ3WAXHEGc1x12kXW665bKFjd4sg0XnMHWgjBSEDG8HZPnsVeiH6b7GxKRKIqihbCrX25cImssQifUceduRwlY2wWwqAGaDcdWFzbEAdxGo4VUUU6uD6quMMfprYdDHErTxG3oxBsNwndTWs8b4pBInUQlhFam3OwDEBpL3jKaWWdFA8IiEhxXOEQIm9tXO/zHXK4MolLO74BXGPuyUam0oVwWu2a44BJqnIgEvV2YK+zC116tL3c4nkQNROhwrK8MRPH2fX0Rurq2zR5XiVAul8i25r99fYPo6mpDtVJCe9n/HvV2g5US2mzbDFSBjqFzWDQwiJLx9xltraA0KvDS2F8BOou9nOaetbEgzFNv1hv1vER9FUQo7kYo6msdl15oPnKr1iJwTnwupy7r3X8e1yDrSbEIp9gnhH2zzHFmoLP1mzwOOjvscofV+w/JDesMDNADV0zq+ciz6a5xxnwmq8awI0ucqFZQUFWJ0HJqru1Cq0C42oa2rydZazq7KkoIvMpDeRFHWBgOyLdUSJClkkS9yStY87QvMoaRJz5RxEAU6sJnG2hZVJWSahT2aLmoCQlCHmn7ohIcQeWbCIJD3oiEq/JD9gkusg3Ms2WHudvbyJob5pJp4FwL4BOwTb95FYQWR8Twds5wGRDhikiYhJRB4xKyXb0m+lBkzguLA7Pd4YpINArufpt1fDquG5BUFYkWmXp5OMAdbB06ZbwgtAqSGR5mtMJsYC7RFTJ4juOUNlKktg8MklliX3a4XKmiUq45tx19VQx0JV3cvLlhYXiR173MEpEIqQdcFL7sMAWVG0610TLHHGwZ4Up/CeXOBgj0SgUoMy6lgxWgbXhccn0mCufGu+iSkNFAhKitOCMiaoGbN6F1kCv0dgRXC9ZjQIQv71pEhQXA7grX261tBs0aqOIjdEbEutGfMTfMmYDD0cZXVs1F6OC5PBS5j3oer+0zUQMOKVqqXNowp1E16QWhlWmRq5oAAFXuCCqhbnBFNaddUTcAWchzb9AKTx8KIWR65jo/MrcJu+EUQaDgDtjzTSPtot45YR9RwZOzNIuixgEIwvaI/HUIAoN61TMOxTbxhg9K622HZnrdcM1opijareQKyEbV/uX0GbLfoicFyc12InpbkVZ9yhXCwoULsf/++2PcuHEYN24cenp6cOeddwIABgYG8JnPfAZveMMbMGbMGEydOhUf/OAHsXr16kQff/3rX/Ev//Iv2GWXXTBu3DicfPLJePHFF8n99fX14cADD0SpVMKKFSvq/fZGPMP/GyoMK6gMccjgOYrhHJFopnsstA4hwrBVXWKhuWz3FSMGqsX/BLDbbrvhsssuw+9//3v8/ve/xxFHHIETTzwRf/zjH/Hqq69i+fLl+I//+A8sX74ct9xyC5588kmccMIJ8fabN2/GnDlzUCqVcM899+B3v/sd+vv7cfzxx2NwMH0d+PSnP42pU6fm/tgEHsMjzS/kIs9jbxkdXB9kUJ0gCMLw4fjjj0+8vvTSS7Fw4UIsW7YMZ5xxBpYsWZJYf/XVV+PNb34znn32Wey+++743e9+h1WrVuHRRx/FuHHjAADXX389JkyYgHvuuQfvfOc7423vvPNO3HXXXbj55ptj91moLw29Gv/617/G8ccfj6lTp6JUKuF///d/E+ujKMIll1yCqVOnYvTo0Tj88MPxxz/+MdGmr68P55xzDiZOnIgxY8bghBNOwPPPP59os379esybNw/d3d3o7u7GvHnzsGHDhkSbZ599FscffzzGjBmDiRMn4txzz0V/f3+izcqVKzFr1iyMHj0ar3nNa/CFL3wBUTSyXJmODnEuBUEQhO2TjRs3Jn76+vy1zqvVKhYtWoTNmzejp6eHbNPb24tSqYSddtoJQE27lEoldHV1xW1GjRqFtrY2/Pa3v42XvfjiizjzzDPxgx/8ADvssEO+NyewaagY3rx5Mw444AB885vfJNd/+ctfxte+9jV885vfxMMPP4wpU6bgqKOOwqZNm+I25513Hm699VYsWrQIv/3tb/HKK6/guOOOQ7U69MjjtNNOw4oVK7B48WIsXrwYK1aswLx58+L11WoVxx57LDZv3ozf/va3WLRoEW6++WZ88pOfjNts3LgRRx11FKZOnYqHH34YV199Na644gp87Wtfq8MnU1862lpbwJulyELhTK3caihXuJpzumdBEISRQFQZRDRQ4M+2iNq0adNi46y7uxsLFiywHsPKlSsxduxYdHV14ayzzsKtt96KfffdN9Vu69atuOCCC3DaaafFLvBb3vIWjBkzBp/5zGfw6quvYvPmzfjUpz6FwcFBrFmzpvYeowjz58/HWWedhUMOOaQOn6Jgo6Exiblz52Lu3LnkuiiK8PWvfx2f/exn8a53vQsAcOONN2Ly5Mn40Y9+hI985CPo7e3Fddddhx/84AfxI4Uf/vCHmDZtGu6++24cffTR+NOf/oTFixdj2bJlOPTQQwEA3/nOd9DT04MnnngCM2bMwF133YXHH38czz33XJzJ+epXv4r58+fj0ksvxbhx43DTTTdh69atuOGGG9DV1YWZM2fiySefxNe+9jWcf/75KJW283xWnah0tDlrD1fK7Zlyw4KbURKIamk6Okrs3HC5oyS5YSFFuS3a/nPDdeC5556LBSuAhHNrMmPGDKxYsQIbNmzAzTffjNNPPx1Lly5NCOKBgQG8733vw+DgIK655pp4+S677IKf/OQn+OhHP4pvfOMbaGtrw6mnnoqDDjoI7e01Q+jqq6/Gxo0bceGFF9bhnQouWsaWevrpp7F27VrMmTMnXtbV1YVZs2bh/vvvBwA88sgjGBgYSLSZOnUqZs6cGbd54IEH0N3dHQthoHZH1t3dnWgzc+bMRDj96KOPRl9fHx555JG4zaxZsxJ/GEcffTRWr16NVatWFf8BCAKDcnnoRqIsEZaGwZm8gZr4IQ9dXTxhQ018ETJpBRdOn/XYb8PoKHaSCGGIVj5XqeoQ6sclhjs7O7H33nvjkEMOwYIFC3DAAQfgqquuitcPDAzg5JNPxtNPP40lS5YkRDYAzJkzB3/961+xbt06/P3vf8cPfvADvPDCC9hzzz0BAPfccw+WLVuGrq4ulMtl7L333gCAQw45BKeffnod3r2gaBm/aO3atQCAyZMnJ5ZPnjwZzzzzTNyms7MT48ePT7VR269duxaTJk1K9T9p0qREG3M/48ePR2dnZ6LN9OnTU/tR69SXV6evry+RN9q4caP7TRu0t5Wl1nCTsUUuzBnoONGMZkYgOMkRW5tWj9WwKbezaw2XRpXrWmu4q6uNrDXMdXlb1Q12zUCnC2NK2HNnr2sv+CYjlNJ2IpK72gel1nDBRFEUX/OVEP7LX/6Ce++9FzvvvLN1u4kTJwKoid9169bFVSe+8Y1v4Itf/GLcbvXq1Tj66KPx4x//OGHwCcXTMmJYYcYPoijyRhLMNlT7ItqowXO241mwYAE+//nPO4+1FSl3DOauA9lWds9CVy23FVJGrFJuI2v+VjvahnWJNYpWdVO6CpwStRmUOtpYs9DZaGuP4lno2spRUH1hJWobIW5bVUCb2Nzkri77OaloF34kM6p9eMxCN1gpYbCtuCcPoXXBL7roIsydOxfTpk3Dpk2bsGjRItx3331YvHgxKpUK3vOe92D58uW4/fbbUa1WY2NtwoQJ6OzsBFCrHrHPPvtgl112wQMPPIBPfOIT+Nd//VfMmDEDALD77rsn9jl27FgAwF577YXddtst71sWHLTMbeKUKVMADDnEinXr1sWO7JQpU9Df34/169c721BFrF966aVEG3M/69evx8DAgLPNunXrAKTda8WFF16I3t7e+Oe5557zv/FAXK4ddxxZ3vFm+qN6EzUYTrmirvJhHOc0ZHBc3oF0WbevlIeco7yDAYUAOut3L19q4qDMcrn1ogaNiD+ofRS1L060RaDp9Hz9XdeA7ZUXX3wR8+bNw4wZM3DkkUfiwQcfxOLFi3HUUUfh+eefx2233Ybnn38eBx54IHbdddf4R8UzAeCJJ57ASSedhH322Qdf+MIX8NnPfhZXXHFFE9+VoGgZMbznnntiypQpiVp9/f39WLp0KQ477DAAwMEHH4yOjo5EmzVr1uCxxx6L2/T09KC3txcPPfRQ3ObBBx9Eb29vos1jjz0Wj+AEgLvuugtdXV04+OCD4za//vWvE+XW7rrrLkydOjUVn1B0dXWl8kfC8MAlhLNEJBLbD8NqF0J2GvFY3xSMtshBEcLS1oe5T1amuA5CX3eJ29r5n32pqFGlZWY/bS33IJaNTxyT23QNA7s5gOuuuw6rVq1CX18f1q1bh7vvvhtHHXUUAGD69OmIooj8Ofzww+M+LrvsMqxduxb9/f148sknvYPxVb8HHnhgnd+d0NCr9CuvvIIVK1bEUws+/fTTWLFiBZ599lmUSiWcd955+NKXvoRbb70Vjz32GObPn48ddtgBp512GgCgu7sbZ5xxBj75yU/iV7/6FR599FF84AMfwBve8Ia4usQ+++yDY445BmeeeSaWLVuGZcuW4cwzz8Rxxx0XP4qYM2cO9t13X8ybNw+PPvoofvWrX+Hf/u3fcOaZZ8YC9rTTTkNXVxfmz5+Pxx57DLfeeiu+9KUvDbtKEqEnMdsJrN5OgO6o6k4rhSlOdaodbcFitVGl2bgZYioewbmw+P6PQr4LXe0jz/mx0R4gsPJACVo9a+sTm/UQxFm39eWFs5LnRoPj9lvbeM5JzaaZOf+y9n8idemF4UpDb1V///vfY/bs2fHr888/HwBw+umn44YbbsCnP/1pbNmyBR/72Mewfv16HHroobjrrruw4447xttceeWVKJfLOPnkk7FlyxYceeSRuOGGG+LSJABw00034dxzz42rTpxwwgmJ2sbt7e2444478LGPfQxvfetbMXr0aJx22mmJxxXd3d1YsmQJPv7xj+OQQw7B+PHjcf7558fH3Gp0tAFFR2Z9WeKsWWNfeTUTKg9syw7r2wDuqZo5ItglvGvr6YukS/janGKucaRfcMoOccARv6MyXuPLzItve6kjqN9Sexeiqr/ovZfODqB/IN0/MVAulSHuaA+eqrXcEaEykBR9KlvcXo5QdeQTs2Z7Q7ZT4jRkPy4hnMUVdm3vI8TxFdLYyq51tgH9ddav5fIgKpX8hkO1WkK1WtyNVZF9CcOfhorhww8/3DmDW6lUwiWXXIJLLrnE2mbUqFG4+uqrcfXVV1vbTJgwAT/84Q+dx7L77rvj9ttvd7Z5wxvegF//+tfONkXRhnYMwn0BLqKO5KgyoGuBIkQ0VxRTg+hsA+vMesNZBLHaLiuUEHb1F5oXVoLZtd1IzOaxKJeBSuMrr+gD5nwi10RVlOAMoiuXS6hUom3bldDXV/vdJ4B99Yo5AjqrA+3bnopI+HLCLie43OEXyD5Xv7BseB3y65xrQj3oaIsw4LjOFDHgWhBaDflGb8eEnuc5wsv1uF45myGD6HRaafAZRwj74hxA4/PCvgoU1ONUm4PMdX9bDsv/CyV8fGIotGpB3ioHoY4pJSI5YtX1E3p8rm1CIxKqr9BKErpodv4fMMqkWbPEnWFPORpFvSMSrj8R/XpQTjyxIsoIyo290MKIGN4OqMfJ0JcDy3ti44hEU2xSrmyl3OaNMoSSpT9dyFMRidC8MCVqbRNuuG5Q6qnFm5ZTrGN+0yWO9eoE+mN7nzjjQAlK3Ul1ZYezCOIscIQwJy5Rj2Nz0VJl2NobP4jOXk88vSzLQDlB2B4YvsNbRxi+R1cmVO1IMx/WiLyYiS8qMdDVjo4+u7iz1RPmRCZ8+AbmJdtmc4XVMjMiMYwHmgsObLnhvPWGze2ofpTo5E7z7CLLLHcJAe+ISHChbjBslSRcZdXMG54sTwxIuFUlhhF5Y3WdXVX09xVz81rtL6GCAjPD/ZIZFoaQ+8AWoK3U/HgAZ4IH8tGXw8kE3FGJLO4w4J4lLour69vOJ4SLcoVthJYoMj8e86kv5f6EuEctjU2QUG/EeGRuPh4PFUScDKvr8X98WB20iPRFDlwl0LK6sbZtSSfbUkFCfw+uvsyIhBK/1OA5zmddF1q8qoSJ7elNEX/XiSdVdX6SKAj1Zrhd6kYkrhm/qBJYtNgxXKMMOTBqvYmZG6bwCUZz2xBBXGvflvpxrXfhG4Bne59ZxT+g3WAQFxBbJYlmXWw4UQn2zR7nEXKTxEi7JRbhcys5hEw24Su15qsAwRHFql1IqbZQlzdrybaQSIr+f5Zyg807RCpLbC2z5vieNvj72V4q7hLuOz2FRihEAAvDCRHDw5iiBjhxNFoRd/s+gVikIE7thyl+9b7pjHJ2kW8uMyMSLnc+9LM2L1zma9IotbrDLZS5dGEdOJde7n1UzhhopeMSacrZVK+V88ktXeaaqCKLMNXFLvXjgrO/PK6wifnZ+WipfHCTsV0fuH/PLvFrO1fVcwr5wUqp8B9BUIgYbjI+1yxU8HIGRbgmXrI9+nJhRiVsVSV0ONEBriAuetIMewyDF4/I4wqbUC68bfBcPS9ELUETBh8BSYFlG0QXr8/5+F4Xhdy4hE2gFjmFsq0/lxB29WXDjEi4CJ55zozFsLLDxTu9pfauQvppL3CggVlvPOuTRNd67vVEEJqBiOFhSmHlMRn9+ErmhBDiDgM8QQzkF8Vqe5sbHJoTti333QRwIxIcUmancYGjJtywuUaum7IiH9VmpdRuES3E98WXDQ7NCruiEjZRZ7rDukAMjUu4tskril3b+4RwXlfYRH2mvhuOxA1LvQSYKw7RArli298xN1bn7pteLjPRCcOZ5l/FBCuhj6c5j765j774d/vukx7XHQ4VxD5R7BPH3HbUflx5aK4rnDciYcsLD7sBb/WEqAsbKnT19rbcsGtZvI7xuN9XIs2MS1CC2CeKOcLT15ZaxxXCIa4w5zPj1BfW/w99Nz5kjWFb/MZ2A1YAzRxUnfVJYpb1gtAqyKVzGMIVyb6pdjm6gHu3b4tKUNiEb4ggBnjlzUzRy3WQbYLbPA7u8evLuJOL+CISHHyVJKibI8o9AtzfuyIf2ZKUOx3rcuzbVVGC8YjcFZXwuZKu7DAnLlHrIzwikWfSDWp9FiEc6goPbcf7bF0zz1kn1VDri7ijrHOkpw3276ZtwDX1dCf0rerni5C4VmhFHIrBwRIGqwX+5JzNVdi+EDHcRFx3/+GusL+9q41+UuTe7XNPcJQ7zMnQcgWxyykOxSWCswhh1/s0XeHQiITtAlTEY8+iZ59zXbxrDQoWD9T3wecKOv+v3DVsOe6ly+n0xSV8gjiLKOZiE8rUfkOEcLIvtyvMGaAIOCISrhsbTi7YNvvcdlZbOORJorcviUoIwwgRw8MMSqRwcmCuR18hd/uuqhIcdzgkLkG1p0RpvG1GYezbjhLBoUI4qyvsi0jY0D9GTiUJLq4yf02hsz5ixPZonRuV8DmYZmUJHa4g5rjEqo8QYcxxiknxHSiEOVMvU4RGVCj81USoO8TAG27X04w6Ocf2ChK8Zcn19kF0NvOEOjeFmieC0AxEDLcgeQckFV8vMvwEZ6ssocN1U03xqfpzZnc1gev7seFzg7nvgboBCHGFFb4pml3/777Bc1kuliZe9zcrNtfY5soRy82qALkn2CCqSoS4wzpUXIIjiAG7S8wRxlliEjY3OKsQ1vG5wtTAOerztNUXDh0oya4kUacbMhuheWLqiSC1zBWr8yRLAPDNE0FoRUQMDyOoExjncbZbJNG/u2abozDdYQpfXMJc7nOJVZ9ct5WD6o/qkyuEbduEDJoDhj7TrBEJzgVMh3vRLDpCUSjUzY2xzFdT2JYb5jqSNnc4JC7h+p0SxFQtYpcoDsElsM39cgbLJWeqo+MRNlxVOjgRCVde2Jclru2kdWMReeqBc8YSUOvoG3S7eZKHagWoVkoF/uQ+JGE7QsRwk2gvWTJoFriPp1NT8TrqR9rO/b6qEh2Gi2k+0g+NS7hEJcclBpIiNlQc+7aj9sk5ZtckIjqmK+waOBc665x+4Qq54PmwXXgLHwVve5xcp/JVNifRFpVQsOrcElBxCa4g9rnECl3McsQxpz0lwF1CmMpEu+IRIa5wrvJpntrDnJur2jLL97TeA0s9cGJ1voSIfp4oyjwRhFZDxHCLETIq31dH1oR7t6+gsmBZT3BUXCJEEHNFscIUx64fCtW/71h84l0di8IXjzBvLHyusMJ2kXK1o15T+fOWdoI1yFJX5sCnnDWFuQPpuO6wTqggBuwusWvWOlPscsWyrW9TmJvH6xPC3HgExxXmRCSC60rbBs81AdvNJtcVDp/Eyd+ea560W6rUCEIrIGJ4GECXxPGfpLji1yekinCHgXBBzBGaNtGaBVdfvtiGTSS7hDAXyhU21wH2iETo41PuBTO038JcY64rnIpH8HPDvhJr1EA67tTBrrgEVxD7XGKAJ4x9uPog3WmGiHcJYS4uV5gTkXAKYMYNEnnjZfte2p5u1Nk15lUYSr7m5obrbZ5QyHTMQj0RMdxC5BmAFPLoyxaV4GbBuCc4ShAruFMZ25xZnzA2fzjtKDiutE3EU0JYJ48rHDrRRkIoMwbPmYQI38JEb4hYyJvl1EUT01EEaHdYwakskVUQU69tohhIitqQHwqbCM4qhHXq4QpbcWSJU4PnWmBWOdvfFTXgmorV+Z4kumJURZkngtCqiBhuAiFigTOAyXwdcrdP71Pr25Fj9bnDiWMk8sMuQexzial2LkIcZJvgDskO24RwSPWIZDu3K6xwlVTTSZdbc3+HAPoCW8hUzCFlpqi21Gh+Uxw7BtGFCieXG5nlUX+oIHa9BobEqk0YZ8HWJ7X/UCHMrR5husjcAY3c/2vv9yD1neLPVjfcsJknOqHmiQhioZURMTzMCH00neVuXxFygvPFJfTfXYI4tMSaaudyjH34tg/NDnOFsE5WVzhex4hIcEqpJtcPj6xwClOQeHLDOtaoBLFeOZHKmeQO5HK5nBxBbHttm87Z/PHB2cYmgvMKYQrX50q5wkNvxB+RcApgjrDlllULeMoRYpZQY0w4sTrXk8TQEmsu84RTE10QWoHWrRMzwmgrtWMwSrqvHW0RBjxTRna0AQOD+mv7Nnpbvd2oMrB1W5mZzjag39Ba5fIgKpU2dHZV0d/XjnI5QsWRtxpqV9uu3DGIykDtjKl+V+fwwcqQeOzoq73/arkN7ZXaQSjBWdbepC48VTudLIKYwia8XW1ChLAvHsFxhW2PLG03Pa4LnW0a5sR+mQK58KoSAFDuBCr9xrIyUOHXSCp1tCMaGPo7K40qI1Jf/o52YNu6Ukcbom3fOf13RVs5wmClhPb2CNVq8m+hrT3CYLWE9nKEaqUUty13RKgMlJLbqzbbxJy+HVATkX196vtQW1YZiMjX+jJzuU5Wx5hTKo16HSKEuQMPXa4wK+Zii0ikSikYN1IcgVznqZhDKbdFqGjXBPO1eQ3R0a8H+u/UNvp5PnUMHYMYyPwOalQGSqiguKcd6m9REABxhocV5mPqrHf7IVkwZ21hizucaONwiIEwl5iTE86Dqy9O3eMihfBQu4hspxNaW9j1RMAXwaEIqYDCJqOgSA1scogXjmiiBtK5ssPcuISOTSDqZddMl5iKStic2tAZ6Gzb29bbXpvHXbQQzuIK20j+/7u/Q+nvWP3FL1WKkxpjEvo0x5UbDhlnwnGHpdSa0MqIGG5R6j0LnUneE5wtLqEvCxXEgF0U29xf1yA6348JNztslmgLFcIUrJsQT8zFFZGwtaPapte3yKNPU+j6Mp16e08cAvA/To/Fmicu4csP622AZGUFMzbhEsX6MpeLy/3xbe86DlME64I2RAj7aDcEsu//rNCIhAvXVMwNhDMWgFoXap4ouGMhBKHVEDHcYKi7ec4jZZ9jV04In/C7fWp93LdnUoiiBLFees0nioH8WWGKkOwwJYL18mlcIeyLR7gqSFCuMCciYb49TkTCRd2mYo53kNN949aKJcqoudxhl2ijyoVRos81qE4tt2WJa325ndssrjC1PSenzHGDU8sZrrnNFdaJxS3hCmeKSOiE3GjZqHN8IvWkMOBJYtHmSbxOssPCMKG1wk0CgNpj5+qgPQdp5oJdmS993ah2YOs2DUZlwajssKtvKjvc0TGIgYG2VM641n4oQwwAlYHk70BN86i3bmaJAXdeuChBrGOb7U7H1Gk2wV+EEPZVkBhaRrvCPmeH2h7wX1gpQmdZVJTauxBV+9yNyu1ARbsp6ywD/RV6vdFWzw3bssHqd3K9li1WqOxwuTNCpX8oJ2zmh4GhvLAtQwwglSMGkMoSK8xMMUDnhbMIYm4fpkC3ieDUOkIIh8YjfBUkqGX233VLNENeWKeOdYSpMSYhmLlhHVs2WF13qPX6MpUdpsaa5GGwWsJgqbic72BVMsPCEOIMDwNCHkvb7vazuMNU6ZyQPJhL/Jnb2FxiwD5dcpF5YU6f1DGYkYgihLANMx5RhCus//9nyQvr1GXQHBDsqJETIig4UQmfO6yWGe6wLS7BiQXoy1JtHS4xkHZja/3mywvb+qH2a4tEuI5dd8SLEMK5XeHEm26nfzcxK0lkiVYU5BabsbqQv2XbjbMtKhGvd1SW4EwxLwithIjhJmMKCPNxc4hDxxEvvixYlhOcq55kqCB2iWLALoyBfHlhm6Cm9qeOi8oGm++jXB5kCWGdkEFzPlc4FOeTYqPfQmoMZ8EUEK4BTPo6zekrBUyyQa63xCXqKYi5otgUxoqQvLBNQNv2QYlgXyxCf+9UXMRVOULH9n9CtrGs50YkmjF4Lu9Npis3nNU8oda7zkmC0OrI13YYk+Vun1oWcoILEcRUhlgXePqjf44odgljShxnwdUndQwcNxjwO8LceAT1f+lyhTkXOFdeuOjBcoW7x65BdIFOHdcdplxIF1xBbBOGHFHsEsY+kWzDtz21b5doN91g10BCKm8dEo/wucJm+9rvjohE4kAcAti8UTNel9q77NsyMf+GzGourr/ZosyTeH1Z9ZteZ14rOjrFHRZaF8kMtzDtpTZUI01cOXJeerarq30QfdW21HKqhjC1TGWHXXnhRB9G/WG93qSZIdbbA0gsN/PD5msgKUbNWHVRgljHNY2ybZlPBAN0NIIrhF1Cl7oQhkYkXE8jzHXmhTj1pCOv+NVD5ADIWsMKMzesY8sQE19yV3Y4UZfYaG/WHlb54drbSGeIASTqEAMgc8QAEu2BpFjUM8U6VaIWeKgg1nFOjOHIBQO0G2wup4RwlniEwuXsWwfO2SISrhurFp51rqttEH2D/v9zfRwKdd73ZYcV5lgTPT9s+atlM1gpoVpgneFBR618YeQhznATMQcYuYSDq7wVR9RQWTCfO6zwucM6VIa4wxIZoFxitS3lFJsiVHeMixirYvbnc4HJY22wEKZiLVld4YQmYLpLhROSoXTVENYfZwdEJbh1hUPjEvo6Kj7gck1NwZgSmoYba7Y1f3xwt1P7dcU3bO9L/zzM0mup7ZhCmPw/VBTgCie+U66Z5xpYVs0Vq3NXHBpa7otKUO4wVXeY+zRREFoREcMNJO80mwozN0y2YWTBzGV5TnBJcWsXxPo2ajt9uUsU68sod5YSsyE/Jvq+fOLcJvT195uIjgQIYRtmPIK6+XGVUwvBJY5zlVULuYtxtU3EIyxRCdvvnoypucwWl8griPX1QNpBpUQxFVGgRKqOTez6xLKtb/JYjOO1vRdqsF1iu4xCOJMrTMHNBLvc4QKrSriuIa4Mfx7zxLXMHGviu14IQqsiYngY4HLibHf7dD9Dv1PusCL0BEeJW10Q23LELvFIiWKXMHaJZA6+flwCmPM+OgwxPdSGFsI6nAEqHGefag+4Loj2753rwlu3qhKJAyhGYIS6w3kEMTWojppxzuemcoRx3J4QyFl/dFwC2BTBLpfb/ByyCGGFVQhzXWHOjZPtpsvEJYADvrtZbzRDn97kcYep8wtFXkE8WC0V/hPCwoULsf/++2PcuHEYN24cenp6cOeddwIABgYG8JnPfAZveMMbMGbMGEydOhUf/OAHsXr16nj7f/zjHzjnnHMwY8YM7LDDDth9991x7rnnore3N26zatUqnHHGGdhzzz0xevRo7LXXXrj44ovR3583ZCL4kMxwi8CtG6nnhpM5r6HfqTZUdpiqO2zmwcz8sCsTZmaC9TrEVI4YQGo7AIk8scLMFcfLB9Jn4iJcCOcMcIZgTU1CQkQizD71mpuUEObGI1yD5ihXODQi4coL1532MlC119uO0TPAWm641N6OqKpywmWgoopodwD9A2R22FVXmKo9nMBoZ2aIAaTqEAOIc8S1t5ysRwwgrkms0DPFCjNbrENlh0NwusXEOnPyDNuMfIA7Hwy4Z5hTOGeSc0UoSCdAi0i4qkjEbbTldZ5Uw4R7zdBzw8lrA5UN5mWHOWNNOLXqhxO77bYbLrvsMuy9994AgBtvvBEnnngiHn30Uey2225Yvnw5/uM//gMHHHAA1q9fj/POOw8nnHACfv/73wMAVq9ejdWrV+OKK67Avvvui2eeeQZnnXUWVq9ejZ/+9KcAgD//+c8YHBzEtddei7333huPPfYYzjzzTGzevBlXXHFF0977SKAURVGDr3Ajh40bN6K7uxvrN/wvxu44CgAwGFUxiGp8EqtGA/Hvg9HQ8kFU44k3qtEgBgZL8UmqMliKT276MvX7wCDiE15ftS2xXP2rTmRKDKt1/XGbUuK1GjOUblf7VxelSrgqUVtbpk8IMNR2wBCzaluF3oetjQtKLCu4otmWdXOJYCCbEE5ES5hC2HRoOtqGhLC5bUfbUPuu9sFY+HZofQ0ti2IxXG6L4u062iK0l9riKE8b2mM3uK009Ht7qaP2Gul1baX2IaE7WKn9rgbKVStDk24Yy+PfK/2110rMVqpDYlcNoqtUhsSwvr5SrYlh9TtQm4Rj25dZCV01UC4WvgPVoXW2Ntva6cuUUK1qTpQaWKevB5ITAZgilhrwo4Sxr12R2Eqd5RXBQIAQ5sYjOtodbn5b2hXu7Bj6XYnhcvuQGC6Xh/LC5bLWtn1IDJc7h5zh9m0ZrG3rSu1dQ+205ep327XAvF4k2mHbusFKPODadb2oxNeD0tD5e7AUD7rWrxfm+V6/XoReKzZvehU3zD0Tvb29GDduHLio6+jDb5+LseVsE/lQvFIZwJt+c2fw8ehMmDABX/nKV3DGGWek1j388MN485vfjGeeeQa77747uf1PfvITfOADH8DmzZtRtjxp+MpXvoKFCxfib3/7W6ZjFHiIM9wksswgpN+1+0YJh7rDoXfvNocYGHJ7k1Uj7C4xgIRTDCDlFgO0Y6ywCeQsLrFroAdVPD6PCNa3L0oIm/hc4aF2YbnCwjErR3BIVInQ3F+ybZg77KocYbZJuMUOhxhAXGkCAOkSA0hVnKh9PENOcfyWPI6xCVco+2r7mvt2beuajc4Vi9DXZxXCJiXqj0FBDZzjRCQSbbTBcw12irOgn/dVFSLKHXZXjuA/TWxFNm7cmHjd1dWFri53CbxqtYqf/OQn2Lx5M3p6esg2vb29KJVK2Gmnnaz9KCFuE8KqzYQJE5zHI+Sn9f9aRwC6MNZ/16dl9sUgzN8Vepk1RREnuGTbIUEMIDUVJ4DEdJyq/JpqC9hFca19WhirPhX1GqlsmznJJYCBtAjnxiKA/ELYdIX1dZTI5UQkOOhZ4axTMStYUzLrcKISVFu1PzVFM3FX6ItLcAUxAGdsQq0HaFEMDJVi09HLsulQrjFH5NqwiV9bv1TVC6o95QbrbfIIYVeFCWdWmBORaCKJawbaY3dYL8dpM0+oEp3UMvWnoP9JmOZJkCDO+Z6rBZdWUzeZ06ZNSyy/+OKLcckll5DbrFy5Ej09Pdi6dSvGjh2LW2+9Ffvuu2+q3datW3HBBRfgtNNOs7rOL7/8Mv7zP/8TH/nIR6zH+Ne//hVXX301vvrVrzLflZAVEcPDGF8WzOUOF3GCA+hcmJ4jBpBJFANuYQzYhSoVrfDBmS6UHNyWQQSbfVETanAywonjsAhhyo0JcYWpZfrguVyVJLjojrH+uy9TrDvBSgD73OFtWIVuDkFcO3y/SwzQorj2lpNusepTYXONi8Ymql0C2NzOJ4IByzTLGYUw6Qrr8QgTqkJEp8UR1l3gAqtHFIHPPPG5wwrb00Tu9aJVneHnnnsuIVhdrvCMGTOwYsUKbNiwATfffDNOP/10LF26NCGIBwYG8L73vQ+Dg4O45ppryH42btyIY489Fvvuuy8uvvhiss3q1atxzDHH4L3vfS/+v//v/8v47gQurfVXK5DY7vYpXO5w0Sc4gH4MZotNAOaEG2lRDPCFcW3b9BmWI2x9uJxmcgrlHCIYCBfCnJHc5rU/xBWmljV8AB0XT1TC6Q4rQYy0O5xHEANItVXLEpNpGC4x4BbFQNotBtJRCpOsOWKfk2wbXMcVwQDfDdaX5xXCJSJCQbnCQ+uYVSRM2nSHuYtcnkc8c54kUmR1h6nB18n29utFwHOehqKqQ3Do7OyMB9AdcsghePjhh3HVVVfh2muvBVATwieffDKefvpp3HPPPWS/mzZtwjHHHBM7yx0d6Rux1atXY/bs2ejp6cG3v/3tHO9O4CJiuIWwPfqioO72fe6wwneC4wpivS89cmGLTQBplxhIimIAXmEM2MVxPaDEL+AWwIB7gJ0rFqEv4wjhkHiEzxVW+CISeh3shpRSA5JOsGsmOoCejY5yh411RQliIB2v0JeZsQkATlGs2gJpYVz7aNxVJPLEI3RCZqEz98kRwYA7FgGEZYQpyEFzJtvWeSfasOWFC8AWnwsZb0JFJULdYdd4Evr87zZQtieiKEJfX03mKyH8l7/8Bffeey923nnnVPuNGzfi6KOPRldXF2677TaMGjUq1eaFF17A7NmzcfDBB+P6669HW9t2+MG1ICKGm0Ay49WBajRgbeu726cG0nHc4SIEMZDOhQG0SwzYRTGQjE/U1tuFMWAXqGZ1ihBsfSpsg/HyimCAjjXkEcKuCw/lCpv925a56gsDSWFciEj2RSESApkQu9t+Z7nDRFyCgiOIAaTFM0C6xIBfFAN0HMIUoHo1Cs5sc3mgJvUgS63lEMH6cj336xLCrHiEQglhriscL/N8txtdZs2SG1ZwnWC1jDPWxHatqLVNXy/yOsN9/YPoqBZnfvQF9nXRRRdh7ty5mDZtGjZt2oRFixbhvvvuw+LFi1GpVPCe97wHy5cvx+23345qtYq1a9cCqFWc6OzsxKZNmzBnzhy8+uqr+OEPf4iNGzfGg/d22WUXtLe3Y/Xq1Tj88MOx++6744orrsBLL70U73/KlCmFvXchjYjhFsR350+JXY477IpL6HAFMeCOTejHAKSjE0B6cJzpFtfapIVxvM4Qvz5BG4K71nD6op9HBJvLXbPLcYWwyxU211ED53wRiZC8cJAw9glgquoEJWQ57jBjMB3H9aVqELtiE6oPtZwSxUAyUwy4hTFAC1QAwRMM6Nj6jNczBDBgF8EA3w3Wl2cRwuSgufigy4l15MA5Shj7hG/IJBsBrm+W64TLPKEc4Kzmib6t3nY48+KLL2LevHlYs2YNuru7sf/++2Px4sU46qijsGrVKtx2220AgAMPPDCx3b333ovDDz8cjzzyCB588EEAiKMWiqeffhrTp0/HXXfdhaeeegpPPfUUdtttt0QbqYJbX0QMNwjficu33nW3zznBhcQlqDaUIAbcsQm1nnKJgbRTDNhKqRmj5BODhOofk6COQeGrNWwTwYA7FqGvL1IIu6ZV9rnCCmqq8LpHJUgBTEQlKFHscocVhjucVxADcLcHUtGJ2ttMZoVtbjFAC2OFmRH2CVourriFTwBT2/vcYIAQtihICJuusH5cel1hwB+RUNR58FzIk0QF1zxR2MyTvIK4VTPDXK677jrruunTp3vF6uGHH+5tM3/+fMyfPz/L4Qk5ETHcRLwCmcgND52Ywk5witATXK3ftCAG4IxN1NbbRTFAxycAfyk1mzCtbZvdAXP1q+DUGQbCRTDAHyiXVwi7XOH4+CkR7IlIDLXLUFaNO9scd1vl/Ia4wwUJYgDO2IRaT0Un1DrT+TXdYoAWny6BXDTU/oFAAQx4RXBquSGEncKZK4QNV5jE1YbKC1PCuA7xCeo6UpR5kkcQA0kDZXvMDAvbDyKGWwzyxEbc7SvqfYIDeHf9gN0lBniiGEgLY8AujoF0GTWOoOXgq0jhE8BAuAhOtwkXwqHos80B9MA5VxWJejrCZK1hl2h2ZX5Nd7gAQQwQuWDD7TVdYn0btZxyiuN1SEciTLGpz2xnE6hActY7Lq7+FObxALQYL0wEa9vmEsIKWzyC4wpT4rZgwUuZItR1Iq95whkwV9uOJ4iBpIGyNftHAACoDESoDBZ3k1epSuxAGELEcIviutt3ZX59J7hQQQzw7voBeF1i1WZo26HjtgljIC08ObWGi8RVsSJEAJvrfSJYX57YziGEQ11hClMg6+hTMJvUTRhTAljFJlxRCdMd9s1QZ+IRxADoKhOA1SVW2wAOUWxsH68HnRWmxCiQFMkAT9i6sO1HESqAqfVcN1hfRm5jCmEK3yC4RFuGc+yISCTKqtWZEPPEdS1xjTXhCGKAfqIoCK2IiOEWwJUDc5VYM4Uv5wSnwxHEAP8kR7nEQLqsjt63ausTxoBdHJvYpma2wS3PZssnU64sVwSbbV1uMFCsEOa4wgpXRMIlggudlMM1XbMSzIyKEGx3GHAKYiCZC3YNlDNdYoAWxYntFYYwVm18WWGfeM2DK4bhE8BmG3N2uCxucGI5JYSZ8QiWK6xQDrCrpJrLJS7AQXZF7TjmiSLUPAHcghhIGyiDYadlQWgoIoYbjOvk5TyxbbvbL/IEB/gFMeDPEQN8Uay2rbUb6l9BzWFvE8cKs6JE3trDvkF5tkiCSwADPBGcXr5tW73caR2FsLk8a0Qis0vsErwKTr7Y4w4XIYiB9Ex1+jKXS6x+B5KiWG2vrzeFsd5GQTnHLmyTcIRmjVPCV+ERwEC4CE61IQbW1UUIm64wx1Guw0A6zrUjj3lSpCAG0gZK3phEteCYRFViEoKGiOEWJEtR9awnOMAtiAH3Xb+5Xh1TbTktigHaLQbSwrjWH/3efSK5CFxZXGr2N6q9LQ5Ra+8WwYBvMo10XzYhnBXlCrsiEkNtMwyeIztiCF4zKsF1h4sSxIAzRwzYB8rpojh+rX1RSLcYSItMizjWibdNfHR8IeDqO8YSRwgRwKnXgZlia0YYyDZgjoNyhZX45bi9OYWyr6IEYDdPfIOsixLEQNpAKYszLLQwIoabhG+GOSB9t889wRUpiAH/SY5aX1ueFsXx9g5hXNuGFpt66be8Ii8EzrTHOi4XuLYNXwTb2nCEMLXPIlxhkxAnOKQtOYiOi80d5rTVBTFAD6oDrLEJgC+KgbQb7BLGejvrrGsDQ+cWlpjl4pnljdqXKYCpdjYRbK5zucG15QFCWN9HqCucJeJQcL3h+PoQYJ6YcKJ1WQQxkDZQtmQ6QkFoDCKGm0yeE1kIWQUx4D/JUS6xwoxPqO3VOiAtjAF7VMIlSvU+Q/H1q7DpCuJ67xTA5voQEaz/rvdJCeGs8QgT0xVWgrbhUzErN9h8bXOHuXEJwC6IAbLKBACrSwwgFZ2otadFsVpHucGmmKTEsbkNd2rirLgENiV+qW1CBtex3WCAL4S58QgfptNruMSNGjxXL/MEcAtiAM4nisD2MemGsH0jYrhFUI++zLv9ok5wOiGCuNaed5IzRTFAZ4pr60spsWg6xoBdHOvoT4G5otaHz0yzXO8t0QmeCAayucFANiHsQrXh1hbm0DDh7KMIQQwEu8SARRQDXmEcbwNabJr9czDjE1kdZK74JZdlrC5BusFAOh+sLwsRwjo2V9gcONegGsL1II8grq3zGyh5nWEprSbUExHD2yG+O36AFsQAnHf9td/DRLHZTrU1hTGQFpKUOFZs1Z521zsuYTsGgCd+qXahIjj9ezIWAdAZYdfEGr54hJkVDsV0ketGqDsMhAtiwJkjBmiXuLbcnge2DZIjHWLii+4SyPr+KLji19U3pz9yeb1EMJBdCOsUGY8oAGWGKHFctHmiEyqIAQQZKILQiogYHkZwT3A6IYIY4J/kzN9toli1A1zVI5JCzSaOVXvALVDrhTs3nE8Am+19IhjIJoRD4xE6toiE+lcNnitM/G4TtXFu2BaVcOESxHEbhiDWl5k5YoAtigFPSTXAKYzNtt64BPhiloNPQNeruoRVBANuNxggB8uRQtiWE6awDZwLGUjXJHxPE/U2HEEMgGWgDGSfHFQQ6k7r/sWOILh3+y5cd/xcQQxkO8mp3wF7Roxyi/X2aht1TCYugWwSmhsOdSxswpFdXSKDCNb3S4ng9LZ8IUztI6SCRGGYYjcEmzus4xpQ5xPEgD02obcFvKK4ts5dPUK1Ca0e4RPJReHtv6DqEuYfQZAbDGQXwjq+eISDOC/cQHHsc4cpuIIYSOaDzSeKAKzXC0FoZUQMNwFOTUjrtowTHFcQA3De9av1vpOcLorV61T1CIcwprbRt1XvyYbphud9HMdxSYOrSzgEsLmNTQQDfiGst+UKYVs8gqIuA+fyiF+XO+wqteYRxACSZdf0bczYBJByiQG7KK6tcwtjs41q56seUW8RnMIxUM8am2BUl2A5wYBfBBvL2UKYE4/I4gLXsf4wxzRxPU3kCGJ9mc9AUW1rbfKL4oFKhIECM8NF9iUMf0QMN5AsgyE4JzpqIg6OIAbgvOvX1wNg3fm73GKAHlVsE8fmtiYcoZwXn7C2neCpkdO+2EQeEWy2p+IPHCGsw3GFzYhEvUhFJciDKTOmaCbELSGIa/vU6hADtEusloeKYoAljAH34Ljg6hEDjPNPhkoUodUl6ByxwwUGihHBZhuOEE4cgxGP0AkRxzmcYvNJorOtYZ7oZBHEQLiBovoQh1hoZUQMtxhmVIKCOsEVIYj1bcy7fgBeUVzbfmg7biyCI451uGXWisRbXcKiH3wC2FxmitKsIthc7hLCOq5BcxxXOG5TVKyCI37JSAQRl/AJYiAxqA4AHZvQt1PLAbso3rZOF3cpYQykohS1dmlxDIRVj0hUjchYci3vYDt7ljhAAAN2EQyECWG9aoRPCLviEQ5RyyqpFuAUB9WmJ64f1NPEUEGsr7c9JXSJYkFoVUQMtwisqTYdJzidEEEMgLzrV8tDRbG5ndqWE4uwiWOFOSCvGbhqZdrEOcMEY4tgc9sihLArHuGqCJE7KsEZAMfdjsobhwpiIFllAqBjE0DaJVZ9q3W6aOMIY8DrGg+1pwVyoo1WQaLI6ARnMJ5zf8S6lAAG6ieCAb8Q1nHFI6hlVPuceWH3U0G7eULF8bIIYgAsA6X2e23flCiuaOe0LFQqQKXAp4CVfIcjbGeIGG4yrrv9Ik5w+u+UIDbbmic5wC6KAfsjMQUljGttku/VVXrHJ5IptjKeBiuyFIMPzQzTy+wCGChOBLvaUELYFY+gBLArIpFZMBM5YnI2OipvTC2zCWIgLWwdsQkgUBQDSbdYX7+tjSkGSdcYcArkoW39pdaKwj+IzpIZ5ohfICmAqTYOIZtZCFOOMEDHI8wKEj4C88Icg4S7jrrOcAUxEGag1PrDttfp85ggtCIihhtAqCCgsmC+E1yIIAZA3vUD6ZOc2latM/PA1CMxgCeM9X4c1/5MFSTyzHaUdzY617o8AtjcPt2WL4T1tpQQ1uG6woUMqnO5viHLqPwwJYhTv1tiEwBfFKu2huhNucVq33obpMUi6RybNKiKBIm33Jrle5FXABPrc7nBPiGs43GAGzXrnI7LPAHc8TogKYgBBBkogIhiYXgjYrhJ+E5c1DIqLpFFEAP0Xb9qA/BFce213S1WmFEKqh+9v9r+0uuodkB98sNcXeEWxcRkF8TjwkaJYPN3mxCm4hFcV5jrKBeG7gS78sPmep8gBsJFMRAujIF0lEJraxWTYArlBuA6RgD0ewPSn4OtbVYRDBQnhKkohM/tLTg2QTu8bvPEF68rwkAB/KJYBtAJrYyI4RZFP8Fx7/iBpCAGEA+qA0De9QPpkxzAF8W110PHRQljIC0AKXE8dIzuz4YrlouEsy9bVQuO+KX2YfbHFcFm26xCWMcniusidn1RCcoJtm3vEsSAOzYBpKMT2rqEKDb71NurbUyxR4ljwC6Qtb69ItQg4lSTyNBvjGuiCoB+n9R2rnq/20gIYGobbjY4RAjbaIIrzDVP9N+pawXgF8RA2kAB+KK4CPr7okLd5X4prSZoiBhuAfQTlK/8mvVkl/MkB/BFsWprRiBq7aEtSws4lzjW90dB7aPR+E7ulPAF7I8IOVlilwgGeG6w+ZojhH2i11dOrVCBrAlYqyAm2qYEMTA0qA7gucRAMjoBOJ1iwOIW6/1p25HiGLALZGobG0Z95bqJXBOb6HX1xRDAQA4RbPZnE8GAXQh7XOGEEA5xkD34rgs284Qbr6v1kbxWAG4DBeCLYr1PQWhFRAw3mJBaw5wTXBZBDKRPcgBfFOttVXufMK4tp0UhFavQ4QjlRuI6VkUe8Utt7xLAvvY2EQzwhHCIqM1cUi3LxBuuPkxBDGR3iQHaKQaSolhb7xTG8T6I0y/lHOvbuESmol97ZB4qYjlwjoGz76zil9q20xSz7lgFOx/MEcINnnrZZp746g67rhUAUk8UgbSBAvBFsdm2vUXO34JAIWK4idhOTrYTXF5BDPhPcgAtigH6RKe3V9tQ2eDafmAsR2p7HZuLzIVT2zJr34B/QAh3EJ2rv6JEMOAeKMcRwjZXuPCIhM3Z5bjDrvywKzYB2F1iwC+KAb4w1vuN2xLOsdGPV1y6HOV6wBXa1Hvy9MESwEBxIhhwxyIYQjiXK1ywoOZeKwAEGSjqtc39tZkogtDqiBgexnAFMQD2SU5/bTvRATxhrLbNkg0OHX2sjlEni9DNkknzV5jKLn4BvwA2t3OJYMCdD266EA6ALYgBf2zCbJsSwZ4cMOAWxtvaUSKPdI7jbSwOstFv4hgbje/44nb242OLX8AvgKl9ma+zuMG+dRwYIjnU9MhingDIZKAAyaeK6nVqALVxrdC3z0qlEqFSKk5cVyIR6sIQIoZbiNATnPk65K4foE9y1GtyQJxDGNu21be3nRhDc8E+dzkPodlk18neHpuwDLprSwt5X3QiRAQD7nxwlphEETELumNPtQiFa0CdLzYBuKMTQDI+oV4DPGFsttPaWgWyuX8Tl5vcDBhinBS98fZM8Wtr6xPAgNsNBjILYasr3AS4+eEQAwUIv16Y14qBksxyIbQuLXIWHblwM8Qhghiw3/UD/pMcQN/9A35hDNDiWPXhi0Rw3IMBzQVuxGC6EEfDH53ILn5t2+cRwUCYELa5wtysMFsYM0VvaiIOl+h1xSYAOjoB0Jli/XVimUcYA3ZxrG3jEo0sodxEnIJX4RLwlPi1bUOWYXO4wHEbhwimtuEKYZM6Zou5A6+d1wePgQKEi2K1TOoKC8MJEcNNwHnicpzgTEEM0Cc18zX3JAfwT3SA3fWlxLHZhw73xNnsUckhJ3fXMVLC17UPjgAGihXB1GtuPKLIWec465yC2NyWik0AaZcYcGeK4zaODLBN7NrEHhWtMLcFU2x6iAU1QRH9A+A51iHCF3BUosjgAgNhIphYnxLCBVaQoOCKXnMwXaiBAoSLYiDseiEIrYSI4RYgZGpN10mOEsiJ15aTHJD9RKcvt1aKsIg/bpas1U6mIWI8VPi6+ucIYMAvgoFihXDmChJ5MAQvSxADfFEM2DPF+nbWgXAZBsjZhCHgF8ouKumbiCDBmyeG4XpPnP5DxC/Ac4GBcBFMtHEKYR8BQplrnpht1d8s54ki+TqHiQKkrxd5z9+VAckMC/VDxHCDCCmp5jrBAby7fsAvigHeiQ5ITt6hsIljfZ1NIANuoQi0/ohk3/ErskYnbMs5AhgoXgRThLrNQfhiDYQgBpAcVAf4+9Db6J8jxy1WhIrjxDq/G8wSlTr9uqgv8DQfehwhx+CKfYSIX4AngG3b+4QyGEKY0UdWKNHKvV54rw3a32sWEwWghbEgtDoihpsE5648VBAD8N75p9owTnS1/fFOdlkFsg5XLLcKXMfDd3EIEb9AdgHMXWYK4aZUjggUxIDFJQbcgtcmnM12psgKFceAWyCn2gSconUHOKtoDSGLyObknF1tXKKSK4Bt/WRxg6m+6hCP8FG0gUItc5kogNtIAUQcC62NiOEWIosgBuAUxeSdvuPuH6BPdID9ZFc7BvcJzxyQZ6PogRdUyTVF0bEL7sne1y5E/AL2mEJWEVw7Br8Q9rnCmeBMvuFzd0EIYks7a3zC1k5vC/DFsd4fSwQHfJbNriqRZSAfZ5tQ4asoWAArMgvhAsSyzzwBwq8XHAFsXZbhemE7r3EZGIgwUGBMYkBiEoKGiOEWhzrBAQgWxb5l+nJT5NhOdoBbINeOye8KJKtDZD9BDRDCN1TwFuFecPvwXRxs4hfIL4Bty6lYRFYhXJiTTFWWoESzLzahtwP8Ytfm9pr/Ly5xDLgFstl3JhHcQlUlQo+FEx9wCV8gTPy6tskjggP7LIIsghjgP1VUuEwUtU8d1/VCEFoV+bY2EfJkxjjB2dqFimLXcn2d7WQH2E94PpFcO878j8+KEtIUefvjOiG+i4ZrgFqI0HUtzyqCQ2CLY4bQdbYDSFEMgI5PGO2tLjBXHJvbusQcRyhT+wRaSwSbhIpAn+BVuP5WQsWvZzu2CLb1n0MIs68NTEEM8A0Us61PGKfaizgWhiENqNIquGA/ykY76cbZ3D3qMTfVXl/OXaeOxfxJHENb2fozdJxtwT8mHW1R3X6Sn2n2Y3V9FuZscL7Plfv/xVlee1/274pJEW50+gACLpA2N84mRCwDn6wih9pG9U/tR9+Gsy3VT7mT9+PaZyv+ZH1/3M8t9LN3/b9pqO8HOUAu9PtHUadya6lllrED1LiArNcL23LX9WI4s3DhQuy///4YN24cxo0bh56eHtx5553x+ltuuQVHH300Jk6ciFKphBUrVqT6OPzww1EqlRI/73vf+xJt1q9fj3nz5qG7uxvd3d2YN28eNmzYUOd3J8itWgMJqihhaWtziQFYnWLA7gCY24WsM9v4TnZ5HAKO09wI8robRU1OkWe9rUKE1U0OEMGcY2Nhyw5TDrFqD7CcYsDhFuvbKGyuscLlHof0Q8Fxl4cLoX873BslX7+efpyTZmRxm0OFcMANofW6YHGIAQRfL/Rrhd7e3Ib6O3etL+U8d1cLLq1WDcwM77bbbrjsssuw9957AwBuvPFGnHjiiXj00Uex3377YfPmzXjrW9+K9773vTjzzDOt/Zx55pn4whe+EL8ePXp0Yv1pp52G559/HosXLwYAfPjDH8a8efPw85//POh4hTBEDLcArhMckD5p+U5y1DY2YWxuZ27rE8CuNql2gc4AJ47RTBoSGWC09a33lkcLFMHObYqsOOESxEA2UUxsZ4ohrzg2+3B9N7lCOUvfw5Us8QHu58Do2yl+fX1kFd4FDJrLvDzwemGeL1xGirmtb/1w5vjjj0+8vvTSS7Fw4UIsW7YM++23H+bNmwcAWLVqlbOfHXbYAVOmTCHX/elPf8LixYuxbNkyHHrooQCA73znO+jp6cETTzyBGTNm5H8jAsl2eKYdnrhcY58oBrILY8Avjql+fKLHli3jwHWaW4k8IrBIYQxkF7/x+gwiOM8698FYBDFgd4nVdoBbTCs84hhgCmSqv1AH2Nd3Ubimum4kWcR+wDF6hS+3vzzucwNnorNdKwC7KNa3o7bNcr2grhWF3ig3mWq1ip/85CfYvHkzenp6gra96aab8MMf/hCTJ0/G3LlzcfHFF2PHHXcEADzwwAPo7u6OhTAAvOUtb0F3dzfuv/9+EcN1RMRwg8kiejnrucKY2t4mnrgimeoz9MQXIrRbnUYJY5/oDenTd+OR15124hK1gF8QK1xOsYIjjom+XKIqSCjb9lEvB5jzuXGpt0udUYizBG/ofopyonNGOJxdZ7yWuK4V+rZxmwzXi1zjCCxsQQUocIz0FtT+NjZu3JhY3tXVha4u+ju1cuVK9PT0YOvWrRg7dixuvfVW7Lvvvux9vv/978eee+6JKVOm4LHHHsOFF16I//u//8OSJUsAAGvXrsWkSZNS202aNAlr165l70cIR8RwE/BlhznrAYdodlR/0Lc34Z70FL6Tn4u84nm4kPd9cQVv6P44rjtLRBfUxt+JQxArfMJY9aMTKhaJfrliLLNo5sK5GSiaOjvJwUJXEXpcBcYwgvt0dZH3WuBwfAH/tcLsI9E28HqRlc7OTkyZMgXnr/1d4X2PHTsW06ZNSyy7+OKLcckll5DtZ8yYgRUrVmDDhg24+eabcfrpp2Pp0qVsQaxniWfOnInXve51OOSQQ7B8+XIcdNBBAIBSKV0iNIoicrlQHCKGm0Tek5zextuOccIz+zOh+g89+eURz9sDRVwssnxuIXETtpguuB2vM+10FSKMAb441uG6yBQ5RDOHlLAGGh9xICjyPZLkeY9ZxWm9hDW3O8bA69Drha2t7VwRIpJtfWc9/40aNQpPP/00+vv7M23vghKZNlcYqAlzNYDukEMOwcMPP4yrrroK1157bab9H3TQQejo6MBf/vIXHHTQQZgyZQpefPHFVLuXXnoJkydPzrQPgUfzz54jmJCTHBB2onO151Z98PXv7KPAk+H2TBFiMWu2OnTfdW3vi0qkOg8Qxqp/Cl88w0eRMQQbdRbWdaURAr0o8Zn1WBsgsrmViLjXC7Otr73rHMO9XuQ5140aNQqjRo3KvH29iKIIfX3EjSmTP/7xjxgYGMCuu+4KAOjp6UFvby8eeughvPnNbwYAPPjgg+jt7cVhhx1WyDELNCKGm0xouTWd0JOdSVaxnOqnAPEsDFHkwMG8/w9Zt8+0XaggjnfGjD7Y9skhi7McSiOEdSvRqEoZRX5+TRTeIdcK1V4nz/Uiq1DO0q5VueiiizB37lxMmzYNmzZtwqJFi3DffffFJdD+8Y9/4Nlnn8Xq1asBAE888QQAYMqUKZgyZQr++te/4qabbsI///M/Y+LEiXj88cfxyU9+Em984xvx1re+FQCwzz774JhjjsGZZ54Zu80f/vCHcdxxx8nguTqznZ5li+Waa67BV77yFaxZswb77bcfvv71r+Ptb397Yf1zHnG5tjPJKq5dFHEyrAe2yEdeWvnEXY8bjUIc6iKOy1U2jX0gORxdG0UIKt972h7LqGWlWTcA9fw/KOA9hTi/rm1N8horof0NR1588UXMmzcPa9asQXd3N/bff38sXrwYRx11FADgtttuw4c+9KG4vZpMQ2WQOzs78atf/QpXXXUVXnnlFUybNg3HHnssLr74YrS3D32+N910E84991zMmTMHAHDCCSfgm9/8ZgPf6cikFEWBladHGD/+8Y8xb948XHPNNXjrW9+Ka6+9Ft/97nfx+OOPY/fdd3duu3HjRnR3d6O39+cYN25Mpv034qTSqieuVj0uRau73/U+voa+/zziuJ6EimqhPrTqjUSDRH2jzpV59rNx42bsPP7d6O3txbhx4wo8KkHIj4hhD4ceeigOOuggLFy4MF62zz774KSTTsKCBQuc2xYhhl20uli0MVyPOw+tLpxtDKvjblXBLGxfDNPYSrPPuxs3bsb4nU4SMSy0JMPzr7pB9Pf345FHHsEFF1yQWD5nzhzcf//9qfZ9fX2JMH1vby8AYOPGV+t7oHWk2SdQgWZYiVRB2K7IPmBqe8d1vVDXQfHfhFZExLCDv//976hWq6mSJpMnTyYLYC9YsACf//znU8unTTulbscoCIIgCMOFTZs2obu7u9mHIQgJRAwzMOsQ2gpgX3jhhTj//PPj1xs2bMAee+yBZ599Vv74G8zGjRsxbdo0PPfcc/JIroHI594c5HNvDvK584miCJs2bcLUqVObfSiCkELEsIOJEyeivb095QKvW7eOLIBtm8axu7tbTpRNYty4cfLZNwH53JuDfO7NQT53HmIKCa1KW7MPoJXp7OzEwQcfHM8brliyZIkUwBYEQRAEQdgOEGfYw/nnn4958+bhkEMOQU9PD7797W/j2WefxVlnndXsQxMEQRAEQRByImLYwymnnIKXX34ZX/jCF7BmzRrMnDkTv/jFL7DHHnt4t+3q6sLFF1/snOtcqA/y2TcH+dybg3zuzUE+d0HYPpA6w4IgCIIgCMKIRTLDgiAIgiAIwohFxLAgCIIgCIIwYhExLAiCIAiCIIxYRAwLgiAIgiAIIxYRw3XkmmuuwZ577olRo0bh4IMPxm9+85tmH1LL8Otf/xrHH388pk6dilKphP/93/9NrI+iCJdccgmmTp2K0aNH4/DDD8cf//jHRJu+vj6cc845mDhxIsaMGYMTTjgBzz//fKLN+vXrMW/ePHR3d6O7uxvz5s3Dhg0bEm2effZZHH/88RgzZgwmTpyIc889F/39/Yk2K1euxKxZszB69Gi85jWvwRe+8AUMt7GnCxYswJve9CbsuOOOmDRpEk466SQ88cQTiTbyuRfPwoULsf/++8cTM/T09ODOO++M18tn3hgWLFiAUqmE8847L14mn70gCACASKgLixYtijo6OqLvfOc70eOPPx594hOfiMaMGRM988wzzT60luAXv/hF9NnPfja6+eabIwDRrbfemlh/2WWXRTvuuGN08803RytXroxOOeWUaNddd402btwYtznrrLOi17zmNdGSJUui5cuXR7Nnz44OOOCAqFKpxG2OOeaYaObMmdH9998f3X///dHMmTOj4447Ll5fqVSimTNnRrNnz46WL18eLVmyJJo6dWp09tlnx216e3ujyZMnR+973/uilStXRjfffHO04447RldccUX9PqA6cPTRR0fXX3999Nhjj0UrVqyIjj322Gj33XePXnnllbiNfO7Fc9ttt0V33HFH9MQTT0RPPPFEdNFFF0UdHR3RY489FkWRfOaN4KGHHoqmT58e7b///tEnPvGJeLl89oIgRFEUiRiuE29+85ujs846K7Hs9a9/fXTBBRc06YhaF1MMDw4ORlOmTIkuu+yyeNnWrVuj7u7u6Fvf+lYURVG0YcOGqKOjI1q0aFHc5oUXXoja2tqixYsXR1EURY8//ngEIFq2bFnc5oEHHogARH/+85+jKKqJ8ra2tuiFF16I2/z3f/931NXVFfX29kZRFEXXXHNN1N3dHW3dujVus2DBgmjq1KnR4OBggZ9EY1m3bl0EIFq6dGkURfK5N5Lx48dH3/3ud+UzbwCbNm2KXve610VLliyJZs2aFYth+ewFQVBITKIO9Pf345FHHsGcOXMSy+fMmYP777+/SUc1fHj66aexdu3axOfX1dWFWbNmxZ/fI488goGBgUSbqVOnYubMmXGbBx54AN3d3Tj00EPjNm95y1vQ3d2daDNz5kxMnTo1bnP00Uejr68PjzzySNxm1qxZicL6Rx99NFavXo1Vq1YV/wE0iN7eXgDAhAkTAMjn3giq1SoWLVqEzZs3o6enRz7zBvDxj38cxx57LN75zncmlstnLwiCQsRwHfj73/+OarWKyZMnJ5ZPnjwZa9eubdJRDR/UZ+T6/NauXYvOzk6MHz/e2WbSpEmp/idNmpRoY+5n/Pjx6OzsdLZRr4fr/2cURTj//PPxtre9DTNnzgQgn3s9WblyJcaOHYuuri6cddZZuPXWW7HvvvvKZ15nFi1ahOXLl2PBggWpdfLZC4KgkOmY60ipVEq8jqIotUywk+XzM9tQ7YtoE20b1DJc/z/PPvts/OEPf8Bvf/vb1Dr53ItnxowZWLFiBTZs2ICbb74Zp59+OpYuXRqvl8+8eJ577jl84hOfwF133YVRo0ZZ28lnLwiCOMN1YOLEiWhvb0/dza9bty515y+kmTJlCoC0G6J/flOmTEF/fz/Wr1/vbPPiiy+m+n/ppZcSbcz9rF+/HgMDA84269atA5B2lYYD55xzDm677Tbce++92G233eLl8rnXj87OTuy999445JBDsGDBAhxwwAG46qqr5DOvI4888gjWrVuHgw8+GOVyGeVyGUuXLsU3vvENlMtlq+sqn70gjDxEDNeBzs5OHHzwwViyZEli+ZIlS3DYYYc16aiGD3vuuSemTJmS+Pz6+/uxdOnS+PM7+OCD0dHRkWizZs0aPPbYY3Gbnp4e9Pb24qGHHorbPPjgg+jt7U20eeyxx7BmzZq4zV133YWuri4cfPDBcZtf//rXiTJId911F6ZOnYrp06cX/wHUiSiKcPbZZ+OWW27BPffcgz333DOxXj73xhFFEfr6+uQzryNHHnkkVq5ciRUrVsQ/hxxyCN7//vdjxYoVeO1rXyufvSAINRo3Vm9koUqrXXfdddHjjz8enXfeedGYMWOiVatWNfvQWoJNmzZFjz76aPToo49GAKKvfe1r0aOPPhqXnrvsssui7u7u6JZbbolWrlwZnXrqqWTJo9122y26++67o+XLl0dHHHEEWfJo//33jx544IHogQceiN7whjeQJY+OPPLIaPny5dHdd98d7bbbbomSRxs2bIgmT54cnXrqqdHKlSujW265JRo3btywK3n00Y9+NOru7o7uu+++aM2aNfHPq6++GreRz714LrzwwujXv/519PTTT0d/+MMfoosuuihqa2uL7rrrriiK5DNvJHo1iSiSz14QhBoihuvIf/3Xf0V77LFH1NnZGR100EFxCSshiu69994IQOrn9NNPj6KoVvbo4osvjqZMmRJ1dXVF73jHO6KVK1cm+tiyZUt09tlnRxMmTIhGjx4dHXfccdGzzz6baPPyyy9H73//+6Mdd9wx2nHHHaP3v//90fr16xNtnnnmmejYY4+NRo8eHU2YMCE6++yzE+WNoiiK/vCHP0Rvf/vbo66urmjKlCnRJZdcMuzKHVGfN4Do+uuvj9vI5148/+///b/4PLDLLrtERx55ZCyEo0g+80ZiimH57AVBiKIoKkWRTG8jCIIgCIIgjEwkMywIgiAIgiCMWEQMC4IgCIIgCCMWEcOCIAiCIAjCiEXEsCAIgiAIgjBiETEsCIIgCIIgjFhEDAuCIAiCIAgjFhHDgiAIgiAIwohFxLAgCIIgCIIwYhExLAjCdsf06dNRKpVQKpWwYcOGXH0dfvjhcV8rVqwo5PgEQRCE1kHEsCAILUm1WsVhhx2Gd7/73Ynlvb29mDZtGv793//duf0XvvAFrFmzBt3d3bmO45ZbbsFDDz2Uqw9BEAShdRExLAhCS9Le3o4bb7wRixcvxk033RQvP+ecczBhwgR87nOfc26/4447YsqUKSiVSrmOY8KECdhll11y9SEIgiC0LiKGBUFoWV73utdhwYIFOOecc7B69Wr87Gc/w6JFi3DjjTeis7MzqK8bbrgBO+20E26//XbMmDEDO+ywA97znvdg8+bNuPHGGzF9+nSMHz8e55xzDqrVap3ekSAIgtBqlJt9AIIgCC7OOecc3HrrrfjgBz+IlStX4nOf+xwOPPDATH29+uqr+MY3voFFixZh06ZNeNe73oV3vetd2GmnnfCLX/wCf/vb3/Dud78bb3vb23DKKacU+0YEQRCElkTEsCAILU2pVMLChQuxzz774A1veAMuuOCCzH0NDAxg4cKF2GuvvQAA73nPe/CDH/wAL774IsaOHYt9990Xs2fPxr333itiWBAEYYQgMQlBEFqe733ve9hhhx3w9NNP4/nnn8/czw477BALYQCYPHkypk+fjrFjxyaWrVu3LtfxCoIgCMMHEcOCILQ0DzzwAK688kr87Gc/Q09PD8444wxEUZSpr46OjsTrUqlELhscHMx8vIIgCMLwQsSwIAgty5YtW3D66afjIx/5CN75znfiu9/9Lh5++GFce+21zT40QRAEYTtBxLAgCC3LBRdcgMHBQVx++eUAgN133x1f/epX8alPfQqrVq1q7sEJgiAI2wUihgVBaEmWLl2K//qv/8INN9yAMWPGxMvPPPNMHHbYYbniEoIgCIKgKEVyNREEYTtj+vTpOO+883DeeecV0t+qVauw55574tFHH81c1k0QBEFoTcQZFgRhu+Qzn/kMxo4di97e3lz9zJ07F/vtt19BRyUIgiC0GuIMC4Kw3fHMM89gYGAAAPDa174WbW3Z7/tfeOEFbNmyBUAtsxw6850gCILQ2ogYFgRBEARBEEYsEpMQBEEQBEEQRiwihgVBEARBEIQRi4hhQRAEQRAEYcQiYlgQBEEQBEEYsYgYFgRBEARBEEYsIoYFQRAEQRCEEYuIYUEQBEEQBGHEImJYEARBEARBGLGIGBYEQRAEQRBGLCKGBUEQBEEQhBGLiGFBEARBEARhxCJiWBAEQRAEQRixiBgWBEEQBEEQRiwihgVBEARBEIQRi4hhQRAEQRAEYcQiYlgQBEEQBEEYsYgYFgRBEARBEEYsIoYFQRAEQRCEEYuIYUEQBEEQBGHEImJYEARBEARBGLGIGBYEQRAEQRBGLCKGBUEQBEEQhBGLiGFBEARBEARhxCJiWBAEQRAEQRixiBgWBEEQBEEQRiwihgVBEARBEIQRi4hhQRAEQRAEYcQiYlgQBEEQBEEYsYgYFgRBEARBEEYsIoYFQRAEQRCEEYuIYUEQBEEQBGHEImJYEARBEARBGLGIGBYEQRAEQRBGLCKGBUEQBEEQhBGLiGFBEARBEARhxCJiWBAEQRAEQRixiBgWBEEQBEEQRiwihgVBEARBEIQRi4hhQRAEQRAEYcQiYlgQBEEQBEEYsYgYFgRBEARBEEYsIoYFQRAEQRCEEYuIYUEQBEEQBGHEImJYEARBEARBGLGIGBYEQRAEQRBGLCKGBUEQBEEQhBGLiGFBEARBEARhxCJiWBAEQRAEQRixiBgWBEEQBEEQRiwihgVBEARBEIQRi4hhQRAEQRAEYcQiYlgQBEEQBEEYsYgYFgRBEARBEEYsIoYFQRAEQRCEEYuIYUEQBEEQBGHEImJYEARBEARBGLGIGBYEQRAEQRBGLCKGBUEQBEEQhBGLiGFBEARBEARhxCJiWBAEQRAEQRixiBgWBEEQBEEQRiwihgVBEARBEIQRi4hhQRAEQRAEYcQiYlgQBEEQBEEYsYgYFgRBEARBEEYsIoYFQRAEQRCEEYuIYUEQBEEQBGHEImJYEARBEARBGLGIGBYEQRAEQRBGLCKGBUEQBEEQhBGLiGFBEARBEARhxCJiWBAEQRAEQRixiBgWBEEQBEEQRiwihgVBEARBEIQRi4hhQRAEQRAEYcQiYlgQBEEQBEEYsYgYFgRBEARBEEYsIoYFQRAEQRCEEYuIYUEQBEEQBGHE8v8D4d1fBLHaaTMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, - "execution_count": 19, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -562,12 +580,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the following gradient Vs kernel, we can see how the 5km x 5km smoothing blurs away some of the detail of the raw graident. The blue colors here suggest that the initial model needs to be sped up to best fit waveforms (and vice versa, red colors suggest slowing down the initial model)." + "### Visualizing the Gradient\n", + "\n", + "We can look at the gradients created during the adjoint simulations to get an idea of how our inversion wanted to update the model. Gradients tell us how to perturb our starting model (the homogeneous halfspace) to best fit the data that was generated by our target model (the checkerboard).\n", + "\n", + "We can see that our gradient (Vs kernel) is characterized by large red and blue blobs. The blue colors in the kernel tell us that the initial model is too fast, while red colors tell us that the initial model is too slow (that is, **red==too slow** and **blue==too fast**). This makes sense if we look at the checkerboard target model above, where the perturbation is slow (red color) the corresponding kernel tells us the initial model is too fast (blue color)." ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -579,12 +601,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUxfvHP0c6CQkJgRRK6E2qQaoYkA4BQQQEDFWqXzAg0pv4kyKIiHTpKEXFAGJAQCGAhiogAgIqTSAUgQQCIYX5/RF3vb3b3du927vbu3ver9e+kpt9dmZ2bnfmc88+O2NgjDEQBEEQBEEQhAdSwNkVIAiCIAiCIAhnQWKYIAiCIAiC8FhIDBMEQRAEQRAeC4lhgiAIgiAIwmMhMUwQBEEQBEF4LCSGCYIgCIIgCI+FxDBBEARBEAThsZAYJgiCIAiCIDwWEsMEQRAEQRCEx0JimCAIgiAIgvBYSAwTBEEQBEEQHguJYYIgCIIgCMJjITFMEARBEARBeCwkhgmCIAiCIAiPhcQwQRAEQRAE4bGQGCYIgiAIgiA8FhLDBEEQBEEQhMdCYpggCIIgCILwWEgMEwRBEARBEB4LiWGCIAiCIAjCYyExTBAEQRAEQXgsJIYJgiAIgiAIj4XEMEEQBEEQBOGxkBgmCIIgCIIgPBYSwwRBEARBEITHQmKYIAiCIAiC8FhIDBMEQRAEQRAeC4lhgiAIgiAIwmMhMUwQBEEQBEF4LCSGCYIgCIIgCI+FxDBBEARBEAThsZAYJgiCIAiCIDwWEsMEQRAEQRCEx0JimCAIgiAIgvBYSAwTBEEQBEEQHguJYYIgCIIgCMJjITFMEARBEARBeCwkhgmCIAiCIAiPhcQwQRAEQRAE4bGQGCYIgiAIgiA8FhLDBEEQBEEQhMdCYpggCIIgCILwWEgMEwRBEARBEB4LiWGCIAiCIAjCYyExTBAEQRAEQXgsJIYJgiAIgiAIj4XEMEEQBEEQBOGxkBgmCIIgCIIgPBYSwwRBEARBEITHQmKYIAiCIAiC8FhIDBMEQRAEQRAeC4lhgiAIgiAIwmMhMUwQBEEQBEF4LCSGCYIgCIIgCI+FxDBBEARBEAThsZAYJgiCIAiCIDwWEsMEQRAEQRCEx0JimCAIgiAIgvBYSAwTBEEQBEEQHguJYYIgCIIgCMJjITFMEARBEARBeCwkhgmCIAiCIAiPhcQwQRAEQRAE4bGQGCYIgiAIgiA8FhLDBEEQBEEQhMdCYpggCIIgCILwWEgMEwRBEARBEB4LiWGCIAiCIAjCYyExTBAEQRAEQXgsJIYJgiAIgiAIj4XEMEEQBEEQBOGxkBgmCIIgCIIgPBYSwwRBEARBEITHQmKYENCpUycEBATgwYMHkjY9e/aEj48Pbt26pVm5pUuXRnx8vFn68uXL4eXlhQ4dOiArK0uz8rRk3759MBgM2Ldvn0PLLV26NPr06ePQMrXi008/ReXKleHn54cyZcrgvffeQ05OjqJjc3Jy8N5776F06dLw8/ND5cqV8emnn4ra/vXXX3j11VdRuHBhBAUFoUWLFvjll1/M7NauXYvXX38dlSpVQoECBVC6dGnR/LjvWmw7dOiQwFbKzmAwoHLlypq0ycSJE2EwGFCtWjXR/ZmZmZg8eTIqVqwIPz8/FClSBE2bNsXFixd5m2vXrqFTp04oW7YsAgMDERISgtq1a2PBggXIzc0V5Ld8+XJ07NgRpUuXRkBAAMqXL48hQ4bg5s2bZmU/fPgQw4cPR/HixeHn54eKFSviww8/RF5enmhdDx48iLZt2yI0NBQBAQGoUKEC3n//fYENYwzz58/n2ykqKgpDhgzB/fv3zfKTavuZM2cK7Jo0aSL7XaWlpfG2EyZMQO3atREWFgZ/f3+ULVsWAwcOxJUrV8zKnzhxIuLj41G8eHEYDAbF9+obb7wBg8Eg2h8SBGEfvJ1dAUJf9O/fH1u2bMH69esxdOhQs/3p6elISkpCfHw8IiIi7FqX2bNnY/To0UhISMDKlSvh7U2XqzFJSUkIDg52djVU88EHH2DSpEkYO3YsWrZsiaNHj2LixIm4fv06li1bZvH4oUOHYt26dXj//ffxwgsv4Pvvv8fbb7+Nhw8fYvz48bzdnTt30LhxY4SGhmLlypXw9/fHjBkz0KRJExw9ehSVKlXibdetW4e0tDTUrVsXz549syhCp0+fjqZNmwrSTAVpamqq2XGHDx9GYmIiOnXqZHObnDx5EnPmzJG8Dx89eoSmTZvixo0bGDt2LGrUqIH09HT8/PPPePz4MW+XmZmJ4OBgTJo0CaVKlUJ2djaSk5MxbNgwnDx5EsuXL+dtp0yZgqZNm2L69OkoXrw4zp8/j/fffx9bt27FiRMn+Lrk5uaiRYsWuHDhAt5//31UrFgRO3fuxNixY/H3339j/vz5grquX78eCQkJ6Nq1K9auXYugoCD8+eefuHHjhsBu1KhRmDdvHkaNGoXmzZvj7NmzmDx5Mo4ePYrU1FT4+PgI7F977TW88847grRSpUoJPi9atAgZGRmCtMePH6N169aIjY1FZGQkn/7gwQN0794dVapUQaFChXD27Fn83//9H7Zt24YzZ86gSJEivO3HH3+MGjVqoEOHDli5cqXod2TKd999hy1btrjkfU0QLg0jCCNyc3NZdHQ0i42NFd2/ePFiBoB9++23mpYbExPD2rVrx38eN24cA8CGDRvGnj17pkkZmZmZmuRjyt69exkAtnfvXrvk707cvXuX+fv7s4EDBwrSP/jgA2YwGNiZM2dkj//tt9+YwWBg06dPF6QPGDCABQQEsH/++YdPe/fdd5mPjw+7fPkyn5aens7Cw8NZ165dBcfn5eXx/7dr147FxMSIls9911999ZVsPaXo06cPMxgM7OLFi3yaNW2Sk5PDatWqxYYPH87i4uLYc889Z2bz9ttvs8DAQPbnn39aVdeuXbsyb29vlpWVxafdunXLzO7o0aMMAHv//ff5tA0bNjAAbPPmzQLbgQMHsgIFCrDff/+dT/v7779ZYGAgGzJkiGx9/v77b+bl5cWGDRsmSF+/fj0DwJYtWyZIB8DeeustyycqwurVqxkAtnz5cou2ycnJDABbsWKFIN34mgoMDGS9e/eWzefBgwesePHibO7cuWb9IUEQ9oXCJAgBXl5e6N27N44fP47Tp0+b7V+1ahWioqLQpk0bPm3x4sWoWbMmgoKCUKhQIVSuXFngoVPDs2fPMGTIEMyYMQOTJ0/G/PnzYTAY+P2MMSxatAi1atVCQEAAQkND8dprr+Gvv/4S5NOkSRNUq1YN+/fvR8OGDVGwYEH069cPly9fhsFgwJw5czB37lyUKVMGQUFBaNCggdljbgA4duwYOnTowD8WrV27Nr788kurzs0Y7nH7+vXrMWbMGERFRSEoKAjt27fHrVu38PDhQwwcOBDh4eEIDw9H37598ejRI0EepmESXJ4bNmzAhAkTEB0djeDgYDRv3hznz5+3uc5asHPnTmRlZaFv376C9L59+4Ixhi1btsgev2XLFjDGRI9/8uQJdu7cyaclJSXh5ZdfRkxMDJ8WHByMV199Fd9++60gBKBAAft3hQ8fPsRXX32FuLg4lC9fnk+3pk1mzpyJe/fu4YMPPhAt6/Hjx1i+fDm6dOmCsmXLWlXfokWLokCBAvDy8uLTihUrZmYXGxsLLy8vXLt2jU/76aefYDAYBP0EAMTHx+PZs2dISkri05YvX47MzEyMGTNGtj6HDh1CXl4e2rZta5YnAGzevFn5yVlgxYoVCAoKQrdu3SzaFi1aFADMnlypvabeeecdREVFYfjw4aqOIwjCdkgME2b069cPBoPB7NHe2bNnceTIEfTu3ZsfIDdu3IihQ4ciLi4OSUlJ2LJlC0aMGIHMzEzV5ebk5KBnz55YunQpPvnkE7z33ntmNoMGDUJiYiKaN2+OLVu2YNGiRThz5gwaNmxoFsN88+ZNvPHGG+jRoweSk5MFYR8LFy7E7t27MW/ePHzxxRfIzMxE27ZtkZ6eztvs3bsXjRo1woMHD7BkyRJs3boVtWrVQrdu3bB69WrV5yfG+PHjcfv2baxevRofffQR9u3bh+7du6Nz584ICQnBhg0bMHr0aKxbt07xD4zx48fjypUrWL58OZYtW4aLFy+iffv2krGaHIwx5ObmKtqs5bfffgMAVK9eXZAeFRWF8PBwfr/c8UWLFhU8ugaAGjVqCPJ/8uQJ/vzzTz7d1PbJkydmP6DU8NZbb8Hb2xvBwcFo1aoVDh48aPGYjRs3IjMzE2+++aYgXW2bcI/mFy9ejKCgINGyjh8/jszMTFSoUAFDhgxBaGgofH19UadOHXz33Xeix3Df//3797Fp0yasXr0a77zzjsXwpJSUFOTl5eG5557j07Kzs1GgQAGzsAU/Pz8AwK+//sqn7d+/H2FhYfj9999Rq1YteHt7o1ixYhg8eLAgfCE7O1uQB4ePjw8MBoMgT47169cjICAAfn5+iI2NxapVq2TPBQAuXryIAwcO4PXXX5ds39zcXDx58gQnTpxAYmIiKlasiFdffdVi3lLs2bMHa9eu5d+RkKJPnz4wGAy4fPmy1WURBCGCM93ShH6Ji4tj4eHhLDs7m0975513GAB24cIFPu1///sfK1y4sM3lxcTEMAAMABs/fryoTWpqKgPAPvroI0H6tWvXWEBAABs9erSg/gDYDz/8ILC9dOkSA8CqV6/OcnNz+fQjR44wAGzDhg18WuXKlVnt2rVZTk6OII/4+HgWFRXFPwa1JkyCO6Z9+/aC9MTERAaADR8+XJDesWNHFhYWJkiLiYkRPHrl8mzbtq3A7ssvv2QAWGpqqqI6KdkuXbqk+FyNGTBgAPPz8xPdV7FiRdayZUvZ41u0aMEqVaokus/X15cPNbh+/ToDwGbMmGFmxz1W//nnn0XzkQuT+OWXX9jbb7/NkpKS2P79+9nKlStZlSpVmJeXF9u5c6ds3evVq8cKFy7Mnjx5IkhX0yZ5eXmsXr16rHv37nyaWJgEF6YQHBzMGjVqxLZt28a2b9/OmjZtygwGg2hdZ8yYwX+/BoOBTZgwQfZ8GGMsIyODValShZUsWZI9fPiQT583bx4DwA4cOCCwnzRpEgMgOKdKlSoxf39/VqhQITZ9+nS2d+9e9uGHH7KAgADWqFEjPkzq5MmTZuEYjDH2ww8/MADM19dXkN6jRw/2xRdfsP3797Ovv/6atWnThgFgEydOlD2nMWPGyN4vN2/eFNwL9erVY9evX5fNUy5M4uHDh6x06dJs3LhxfJpUmES/fv2Yl5eXIPSHIAjboTeSCFH69++PXr16Ydu2bejcuTNyc3Px+eefo3HjxqhQoQJvV7duXSxYsADdu3fH66+/jkaNGiE8PNyqMmvVqoV79+5hwYIFaN++PerXry/Yv337dhgMBrzxxhsC72RkZCRq1qxpNptDaGgoXn75ZdGy2rVrJ/DAcB5E7q3wP/74A7///jvmzJkDAILy2rZti+3bt+P8+fOoUqWKVefKYfrGOJdfu3btzNK3bNmCR48eSXqrODp06CD4bHxupm1qTGxsLI4ePaqo3tHR0bL7Tb3HXl5efLiLcdiLKXL7lNiY7rO1LFNq166N2rVr858bN26MTp06oXr16hg9ejRatWoletyZM2dw+PBhvPXWW/D391dVF+N9c+fOxcWLF7Ft2zbZej579gwA4Ovrix07dqBQoUIAgKZNm/KzNJjWtU+fPmjevDnu3buHH3/8EbNnz0Z6errkTB1ZWVl49dVXceXKFfz444+C67Jnz56YNm0aBg4ciFWrVqFSpUrYsWMH/+KccQjBs2fPkJWVhSlTpmDs2LEA8sOcfH19kZiYiB9++AHNmzdHzZo18dJLL2H27NmoVKkSWrRogbNnz2Lw4MHw8vIyC0v44osvBJ87d+6M9u3bY+bMmRg+fDgf3mBMbm4u1qxZg+eee07yXgkPD8fRo0fx9OlTnDt3Dh9++CGaNm2Kffv2ISoqSvQYOcaOHQsfHx9MnjzZou2KFSuwYsUK1WUQBCEPhUkQorz22msICQnhHysmJyfj1q1b6N+/v8COm+nhypUr6Ny5M4oVK4Z69eph9+7dqsssXrw49u3bh9DQULRq1crsbfxbt26BMYaIiAj4+PgItkOHDuHu3bsCe7mByfitb+C/R69PnjzhywLy3143LYsLtzAtzxrCwsIEn319fWXTlUwvZ+ncpAgKCkKtWrUUbVx9pDBtszVr1vB1y8rKEsxmwHHv3j2z8xY7t3/++ccsPTMzE9nZ2fzxoaGhMBgMorb37t0DYN7G1lK4cGHEx8fj119/lWxjTsCYhkgAytvk6tWrmDx5MqZMmQJfX188ePAADx48QG5uLp49e4YHDx7w5XPXQMOGDXkhDAAFCxZEXFyc6PRykZGRqFOnDlq2bImZM2di2rRpWLBgAU6cOGFm+/TpU3Tq1AkHDx7Etm3bUK9ePcH+8PBwPn67fv36CA0NxbBhwzB37lwA+fe68fkDMBPnXLyxcV2/+uorNGrUCF27dkVoaCiaNm2KV199FbVq1RLkKQX3Q/rYsWOi+5OTk5GWlib6PXF4e3ujTp06aNSoEd588038+OOP+Ouvv8ymbFPCkSNHsGjRInz44YfIysriv9Nnz54hNzcXDx48wNOnT1XnSxCEOsgzTIgSEBCA7t2747PPPsPNmzexcuVKFCpUCF26dDGz7du3L/r27YvMzEzs378fU6ZMQXx8PC5cuCB4eUkJZcqUwb59+9C0aVO0atUKO3fuRMOGDQHkD7AGgwEHDhwwixsEzGMJrfH8cXDe7XHjxknGAhpPzeUOpKSkmE0XJsWlS5ck5+IFYOZhLlOmDID/4mJPnz4tEFBpaWm4e/eu5Hy5HNWrV8fGjRuRlpYmiBvmXvbkjufmwBV7CfT06dMICAiw+sUyMRhjAMSvuezsbKxbtw6xsbGoVauW2X6lbfLXX3/hyZMnePvtt/H222+b5RMaGoq3334b8+bNE42VNq6rkpe76tatCwC4cOGCwBv+9OlTdOzYEXv37sXWrVvRrFkz0eNfeOEFnD17FpcvX+bjl48fPw4AeOmll3i7GjVqiL68yrWpcV2LFSuG5ORk3L59G2lpaYiJiUFAQAAWLVqE1157zeI5ieVpzIoVK+Dr64uEhASLeXGUKFEC0dHRuHDhguJjOM6ePQvGmNlUe0D+/M+hoaH4+OOPkZiYqDpvgiCUQ2KYkKR///5YsmQJZs+ejeTkZPTp0wcFCxaUtA8MDESbNm2QnZ2Njh074syZM6rFMJA/SwIniFu3bo0dO3agUaNGiI+Px8yZM3H9+nV07drVllOzSKVKlVChQgWcOnUK06dPt2tZekHLMIk6deqIprdu3Rr+/v5YvXq1QPitXr0aBoMBHTt2lM33lVdewcSJE7FmzRrB7AOrV69GQEAAWrduzad16tQJ8+bNw7Vr11CyZEkA+TM6fPPNN+jQoYNm81bfv38f27dvR61atURDILZt24a7d+9i2rRposcrbZNatWph7969ZscnJiYiPT0dq1atQokSJQDkPxVp0KABfvrpJ2RkZPDz1j5+/BgpKSmy4TIcXFnGM19wHuEff/wR33zzjWRYiDHcjybGGD766CNER0cLflR37twZy5Ytw44dOwSiOzk5GQBE61qsWDF+Zov58+cjMzMT//vf/yzWZd26dfDx8UFsbKzZvrS0NCQnJ+PVV181e7oixx9//IG///7bLDxJCa1btxb9Tl9//XWUKVMGM2bMELQ/QRD2gcQwIUmdOnVQo0YNzJs3D4wxsxAJABgwYAACAgLQqFEjREVFIS0tDTNmzEBISAheeOEFq8uOiYkRCOLk5GQ0btwYAwcORN++fXHs2DG89NJLCAwMxM2bN3Hw4EFUr14dQ4YMseWUBSxduhRt2rRBq1at0KdPHxQvXhz37t3DuXPn8Msvv+Crr77SrCw9UKhQIUkRqxVhYWGYOHEiJk2ahLCwMH6BialTp+LNN99E1apVedu1a9eiX79+WLlyJXr16gUAeO6559C/f39MmTIFXl5eeOGFF7Br1y4sW7YM//d//ycIfRg1ahTWrVuHdu3aYdq0afDz88PMmTORlZWFqVOnCup19uxZnD17FkC+KHr8+DG+/vprAEDVqlX5evXo0QOlSpVCnTp1EB4ejosXL+Kjjz7CrVu3JGcYWbFiBQICAtCjRw+b2qRw4cJo0qSJ2fGFCxdGbm6u2b45c+bwT1jGjBkDg8GAjz76CHfv3hWs7DZlyhTcunULL730EooXL44HDx5g586d+Oyzz9ClSxeBcHzttdewY8cOTJgwAUWKFBF4dIODgwXf34QJE1C9enVERUXh6tWrWLlyJQ4fPozvvvsOAQEBvF3Lli3Rvn17TJs2Dc+ePUP9+vVx7NgxvPfee4iPj8eLL77I23722WcAgHLlyuHBgwfYsWMHVqxYgenTp+P555/n7WbPno2zZ8+iWbNmKFGiBG7fvo0VK1Zg165dmDp1quh7DWvWrEFubq5kiMSvv/6KESNG4LXXXkPZsmVRoEABnD59Gh9//DGKFCmCUaNGCexTUlJw584dAEBeXh6uXLnCX1NxcXH8rCimM6MAgL+/P4oUKWL2nfbp0wdr1qyx+GSGIAiVOO/dPcIV+OSTTxgAVrVqVdH9a9asYU2bNmURERHM19eXRUdHs65du7Jff/1VVTlSb09fvXqVlStXjgUGBrKUlBTGGGMrV65k9erVY4GBgSwgIICVK1eO9erVix07dow/TmohAm42idmzZ5vtA8CmTJkiSDt16hTr2rUrK1asGPPx8WGRkZHs5ZdfZkuWLOFtbJlNwnTxhlWrVjEA7OjRo4L0KVOmMADszp07fJrUbBKmeXLnvGrVKsX1szeffPIJq1ixIvP19WWlSpViU6ZMEcxcwth/bWFa7+zsbDZlyhRWqlQp5uvryypWrMjmz58vWs4ff/zBOnbsyIKDg1nBggVZs2bN2PHjx83suPYV24yviRkzZrBatWqxkJAQ5uXlxYoWLco6derEjhw5Ilr+1atXWYECBVivXr00aRMxpK51xhg7cOAAi4uLYwULFmQFCxZkL7/8Mvvpp58ENtu2bWPNmzdnERERzNvbmwUFBbG6deuy+fPnm82kItVGAFhcXJzAdsiQIfx3FB4ezjp37izZLzx+/JiNGTOGlSxZknl7e7NSpUqxcePGCRb8YIyxpUuXsipVqrCCBQuyoKAg1rhxY7Zlyxaz/LZt28ZefPFFVrRoUebt7c0KFSrEGjduLJgtxpSKFSuy0qVLSy7yk5aWxt544w1Wrlw5VrBgQebr68vKli3LBg8ezK5evWpmz81oI7ZZ6iuk+sPOnTuzgIAAdv/+fdnjCYJQh4Gxf4OoCIIgCILQLZGRkUhISMDs2bOdXRWCcCtIDBMEQRCEzjlz5gwaNGiAv/76y+rpKwmCEIfEMGFXLK1WVqBAAYcshesoGGMWV3oznnOXIAiCIAjn4j4qhNAlpvPNmm79+vVzdhU1JSUlxeI5c3PuEgRBEAThfMgzTNgVqcntOcLDw93qreiHDx/i/PnzsjZlypRRNXUTQRAEQRD2g8QwQRAEQRAE4bFQmISH06lTJwQEBODBgweSNj179oSPjw+/RLEWlC5dGvHx8Wbpy5cvh5eXFzp06KBo6WFnsG/fPhgMBuzbt8/ZVdE9jx49QmJiIqKjo+Hv749atWph48aNio+/ffs2+vTpg/DwcBQsWBANGjTADz/8IGq7Z88eNGjQAAULFkR4eDj69OmD27dvm9lNnDgR8fHxKF68OAwGA/r06SNZ/ubNm9GoUSOEhYWhcOHCqFu3LtatW2dm9+abb6JatWooXLgwAgICULFiRbz77ruSS3YfPHgQbdu2RWhoKAICAlChQgXB3L9Afvz5/PnzUblyZfj5+SEqKgpDhgzB/fv3zfKbN28eXn31VZQpUwYGg0F0PmIA+Oabb9C9e3eUL18eAQEBKF26NHr27ImLFy+a2W7fvh29evVC9erV4ePjIxnnfvz4cbz11luoXr06ChUqhIiICDRv3hw//vijqL0xb7zxBgwGg2hfYMytW7dQpEgRGAwGfq5ejocPH2L06NFo2bIlihYtCoPBYDaPNIfBYJDcKleuzNtxC55IbcZLLytt04yMDHzwwQdo0qQJIiMjERQUhOrVq2PWrFlmfZ0tbUoQhHpIDHs4/fv3R1ZWFtavXy+6Pz09HUlJSYiPj0dERIRd6zJ79mwMGDAAPXv2xDfffCO6mhfhWrz66qtYs2YNpkyZgh07duCFF15A9+7dJa83Y54+fYpmzZrhhx9+wCeffIKtW7ciIiICrVu3RkpKisA2JSUFbdq0QUREBLZu3YpPPvkEe/bsQbNmzfD06VOB7ccff4x//vkHHTp0gK+vr2T5K1euxGuvvYaoqCh88cUX2LhxI8qVK4devXrh448/FthmZmZi4MCBWL9+Pb777ju8+eabWLZsGeLi4pCdnS2wXb9+PeLi4hASEoK1a9ciOTkZY8aMgelDulGjRmHEiBF45ZVXsH37dowdOxbr169HixYtkJOTI7BdsmQJrly5gpdffhlFixaVPKdZs2bh8ePHmDBhAnbu3In/+7//w4kTJ/D888/jzJkzAtukpCQcOnQIVatWRc2aNSXz3LBhA44cOYJ+/fph69atWL58Ofz8/NCsWTOsXbtW8rjvvvsOW7Zs4VfHk+Ott96S7A/++ecfLFu2jF8mWo7U1FSzbd68eQAgWBK5Xbt2orYtWrQws1XaplevXsW8efPw/PPPY9myZdi2bRtee+01TJ06FfHx8YLv39o2JQjCSpwxuTGhH3Jzc1l0dDSLjY0V3b948WIGgH377bealms6qfy4ceMYADZs2DDJSe/VkpmZqUk+plizyIYn8t133zEAbP369YL0Fi1asOjoaJabmyt7/MKFCxkA9vPPP/NpOTk5rGrVqqxu3boC2xdeeIFVrVpVsEjETz/9xACwRYsWCWzz8vL4/wMDAwULlxjTqFEjFhMTI7B/9uwZq1y5MqtRo4Zs3RljbNGiRQwA++GHH/i0v//+mwUGBrIhQ4bIHvv3338zLy8vNmzYMEH6+vXrGQC2bNkyyXN67rnnzBbA4Lh165ZZ2vXr15mPjw/r37+/ZJ5vvfUWkxouxPLMzc1lNWrUYOXKlRM95sGDB6x48eJs7ty5kgtMcHz99dcsKCiIrVmzRnRRmWfPnvF9xp07d0QXz5GjT58+zGAwsIsXL8raPXr0iAUFBbEXX3xRkK60TR89esQePXpkZjt79mwGgB04cEA2T0ttShCE9ZBn2MPx8vJC7969cfz4cZw+fdps/6pVqxAVFYU2bdrwaYsXL0bNmjURFBSEQoUKoXLlyhg/frxV5T979gxDhgzBjBkzMHnyZMyfP1/wOJYxhkWLFqFWrVoICAhAaGgoXnvtNfz111+CfJo0aYJq1aph//79aNiwIQoWLIh+/frh8uXLMBgMmDNnDubOnYsyZcogKCgIDRo0ECwly3Hs2DF06NABYWFh8Pf3R+3atfHll19adW7GcKEV69evx5gxYxAVFYWgoCC0b98et27dwsOHDzFw4ECEh4cjPDwcffv2xaNHjwR5LFy4EC+99BKKFSuGwMBAVK9eHR9++KHAS3jx4kUEBwejS5cugmN//PFHeHl5YdKkSTafi1KSkpIQFBRkVpe+ffvixo0bOHz4sMXjK1WqhAYNGvBp3t7eeOONN3DkyBFcv34dAHD9+nUcPXoUCQkJ8Pb+b4X5hg0bomLFikhKShLkq3QqPx8fHwQFBQnsDQYDgoODFT214Dy0xnVavnw5MjMzMWbMGNljDx06hLy8PLRt21aQzoUTbN68WZCu9JyKFStmlhYdHY0SJUrg2rVrmuXp5eWF2NhYszw53nnnHURFRWH48OGyed+7dw9vvfUWPvjgA5QqVUrUhgtdsIaHDx/iq6++QlxcHMqXLy9ru2nTJjx69MhsuWalbRoYGIjAwEAz27p16wKAwNaaNiUIwnpIDBPo168fDAYDVq5cKUg/e/Ysjhw5gt69e8PLywsAsHHjRgwdOhRxcXFISkrCli1bMGLECGRmZqouNycnBz179sTSpUvxySef4L333jOzGTRoEBITE9G8eXNs2bIFixYtwpkzZ9CwYUOzGOabN2/ijTfeQI8ePZCcnIyhQ4fy+xYuXIjdu3dj3rx5+OKLL5CZmYm2bdsiPT2dt9m7dy8aNWqEBw8eYMmSJdi6dStq1aqFbt26YfXq1arPT4zx48fj9u3bWL16NT766CPs27cP3bt3R+fOnRESEoINGzZg9OjRWLdundkPjD///BM9evTAunXrsH37dvTv3x+zZ8/GoEGDeJsKFSrgs88+w9dff4358+cDANLS0tCjRw80btxYMpaSgzGG3NxcRZslfvvtN1SpUkUgBgGgRo0a/H5Lx3O2Ysdzj6C5fKRsLZUjxbBhw3Du3Dl88MEHuHPnDu7evYs5c+bg+PHjGDVqlOgxubm5yMzMxE8//YRJkybhxRdfRKNGjfj9+/fvR1hYGH7//XfUqlUL3t7eKFasGAYPHoyMjAzejgut8PPzE+TPxe7++uuvVp2TGH/99ReuXLmC5557TrM8c3NzceDAAdE89+zZg7Vr1/LvB8gxfPhwlClTBv/73/80q5sxGzduRGZmppnAFWPFihWiPzTFUNOmXBywJVupNuV+aFu6twmCkMHZrmlCH8TFxbHw8HCWnZ3Np73zzjsMALtw4QKf9r///Y8VLlzY5vJiYmIYAAaAjR8/XtQmNTWVAWAfffSRIP3atWssICCAjR49WlB/mDySZoyxS5cuMQCsevXqgsfyR44cYQDYhg0b+LTKlSuz2rVrCx61M8ZYfHw8i4qK4h8bWxMmwR3Tvn17QXpiYiIDwIYPHy5I79ixIwsLC5PMLy8vj+Xk5LC1a9cyLy8vdu/ePcH+IUOGMF9fX5aamspefvllVqxYMXbjxg2L9Vy1ahX/vVjaLFGhQgXWqlUrs/QbN24wAGz69Omyx/v4+LBBgwaZpf/888+C8IsvvviCAWCpqalmtgMHDmS+vr6SZciFSTDG2JYtW1hISAh/zgEBAezzzz8XteWuV25r27Yty8jIENhUqlSJ+fv7s0KFCrHp06ezvXv3sg8//JAFBASwRo0a8Y/7T548yQCw999/X3D8Dz/8wADInpNcmIQpOTk5rEmTJiw4OJhdvXpV0k4uTEKMCRMmMABsy5YtgvSHDx+y0qVLs3HjxvFpUmES27dvZz4+Puz06dOMsf/uIdMwCWPUhknUq1ePFS5cmD158kTW7ty5cwyA6PVoitI2ZYyxU6dOsYCAANapUyeL+Uq16b59+5iXlxd77733LOZBEIQ4QpcN4bH0798fvXr1wrZt29C5c2fk5ubi888/R+PGjVGhQgXerm7duliwYAG6d++O119/HY0aNbJ6adBatWrh3r17WLBgAdq3b4/69esL9m/fvh0GgwFvvPGGwBMZGRmJmjVrms3mEBoaipdfflm0rHbt2gm8UJwX8cqVKwCAP/74A7///jvmzJkDQLhyXtu2bbF9+3acP38eVapUsepcOUzfmufya9eunVn6li1b8OjRIwQFBQEATpw4gSlTpuCnn37CvXv3BPYXLlxAvXr1+M8ff/wxDh06hKZNmyI7Oxs7d+5EVFSUxfq1b98eR48etercxJB7fK3k0baa46VsrX2EvnPnTrzxxhvo0qULunbtCm9vb2zbtg19+vRBdnY2+vbtK7CvXr06jh49isePH+PkyZOYOXMmWrRogR9//BEFCxYEkB8WlJWVhSlTpmDs2LEA8kN8fH19kZiYiB9++AHNmzdHzZo18dJLL2H27NmoVKkSWrRogbNnz2Lw4MHw8vLSZNVGxhj69++PAwcOYPPmzShZsqTNeQL5oSAffPAB3nnnHbzyyiuCfWPHjoWPjw8mT54sm0d6ejoGDRqEMWPGoFq1aprUy5QzZ87g8OHDsi/ncaxYsQIALHqQ1bTp5cuXER8fj5IlS2L58uWy+cq1aVxcnKInNQRByOBsNU7og8ePH7OQkBDeQ7N161YGgK1evdrMduXKlaxBgwbMy8uLGQwGVrduXbZr1y5V5XHeoL/++ovFxMSw4OBgwYtSjDH25ptvynomy5Yty9vGxcWxqlWrmpXDeYZnz55ttg9GHqSDBw9a9ITu37+fMWabZ9jUq8V5Yo8ePSpInzJlCgPA7ty5wxhj7MqVKywwMJA9//zzbN26dezAgQPs6NGj/EtmYnXhXsx5/vnnFdfz2bNnLCcnR9Fmifr167MXXnjBLP23335jANjSpUtlj4+MjGRdunQxS9++fTsDwL7//nvGGGM7d+5kANh3331nZvvaa6+xqKgoyTKkPMPPnj1jUVFRrG3btmb7evXqxQIDA0VfhjLm0KFDDACbO3cun1a/fn0GgP3yyy8C2/PnzzMAbNasWXzarVu3WJs2bfjrz9fXl40ZM4bFxsbKvkSlxDP87Nkz1q9fP1agQAG2bt06WVvGlHuGV65cyQoUKMAGDhxo9iLs4cOHmcFgYElJSez+/fv8VrJkSdaqVSt2//59lpWVxZdXunRplpaWxtt9++23DABbs2YNu3//vuiLtmo8wyNGjGAA2IkTJ2TtsrOzWbFixVjNmjVl7dS06eXLl1np0qVZmTJl2LVr12Rt5dqUIAhtoJhhAgAQEBCA7t27Y+fOnbh58yZWrlyJQoUKicbH9e3bFz///DPS09Px3XffgTGG+Ph43suqhjJlymDfvn0ICwtDq1at8PPPP/P7wsPDYTAYcPDgQRw9etRs27JliyAvaz2AXFkAMG7cONGyjh49ilq1almdv61s2bIFmZmZ+Oabb/DGG2/gxRdfRJ06dSSnBvvtt98wefJkvPDCC/jll18wd+5cReWsWbPG4nLS3GaJ6tWr49y5c2ZeK+5FTUsev+rVq4u+1Gl6PPdXytYaz+KtW7dw8+ZN/uUmY1544QVkZmbi8uXLsnnUqVMHBQoUwIULF/g0sbhmAPy0WsYe32LFiiE5ORm3bt3CqVOncPv2bUybNg0XLlzASy+9pPqcjMt68803sWrVKixfvhxvvPGG1XkZs2rVKrz55pvo3bs3lixZYnY/nj17FowxdOrUCaGhofx27do1fP/99wgNDcXixYsB5F+/ly9fRmRkJG/Xvn17AEDv3r0RGhoqiPdXS3Z2NtatW4fY2FiL9/X27dtx+/ZtWa+wmja9cuUKmjRpAsYY9u7dixIlSkjaWmpTgiC0gcIkCJ7+/ftjyZIlmD17NpKTk9GnTx/+8a4YgYGBaNOmDbKzs9GxY0ecOXMGMTExqsstXbo09u3bh6ZNm6J169bYsWMHGjVqhPj4eMycORPXr19H165dbTk1i1SqVAkVKlTAqVOnMH36dLuWZQ3cIGj8QhVjDJ999pmZbWZmJrp06YLSpUtj7969GDt2LMaOHYtGjRoJQinE0DJMolOnTvjss8+wefNmdOvWjU9fs2YNoqOjLdalU6dOGDp0KA4fPszbcuE79erVQ3R0NACgePHiqFu3Lj7//HOMGjWKD4c5dOgQzp8/j8TERNV1Dw0Nhb+/v+iMI6mpqShQoIDFsJOUlBQ8e/ZMMEtB586dsWzZMuzYsQO1a9fm05OTkwHALFQIyBfF3OwC8+fPR2ZmptUvlDHGMGDAAKxatQpLly41C/WwltWrV+PNN9/EG2+8geXLl4uKttatW2Pv3r1m6a+//jrKlCmDGTNm8G01b948s4WATp48iREjRmDq1KmIi4vjw4esYdu2bbh79y6mTZtm0XbFihXw9/dHz549RferadOrV6+iSZMmyMvLw759+2T7SyVtShCENpAYJnjq1KmDGjVqYN68eXzsmykDBgxAQEAAGjVqhKioKKSlpWHGjBkICQnBCy+8YHXZMTExAkGcnJyMxo0bY+DAgejbty+OHTuGl156CYGBgbh58yYOHjyI6tWrY8iQIbacsoClS5eiTZs2aNWqFfr06YPixYvj3r17OHfuHH755Rd89dVXmpWllhYtWsDX1xfdu3fH6NGjkZWVhcWLF4uuRjZ48GBcvXoVR44cQWBgID766COkpqbi9ddfx4kTJ1C4cGHJcooUKYIiRYpoUuc2bdqgRYsWGDJkCDIyMlC+fHls2LABO3fuxOeffy6I4e7fvz/WrFmDP//8kxcI/fr1w8KFC9GlSxfMnDkTxYoVw6JFi3D+/Hns2bNHUNasWbPQokULdOnSBUOHDsXt27cxduxYVKtWzUycpKSk4M6dOwCAvLw8XLlyhV/VLC4uDkWLFoWfnx+GDh2KuXPnolevXujWrRu8vLywZcsWrF+/Hv3790dYWBiAfM/hZ599hg4dOiAmJgY5OTk4duwY5s2bh/Llyws8ii1btkT79u0xbdo0PHv2DPXr18exY8fw3nvvIT4+Hi+++CJvy/3QKVeuHB48eIAdO3ZgxYoVmD59Op5//nnBOR07doz3VGdkZIAxxp/TCy+8wLfp8OHDsWLFCvTr1w/Vq1cXiH0/Pz+BQL9y5Qr/w+jPP/8EAD7P0qVLo06dOgCAr776Cv3790etWrUwaNAgHDlyRFC32rVrw8/PD5GRkYiMjIQp/v7+KFKkiGDVPDlv7XPPPWe2wt6OHTuQmZmJhw8fAsj3QnN1bdu2rdmP+hUrViAgIAA9evSQLAcAbty4gZ07d6Jbt24IDQ0VtVHaprdv30bTpk1x8+ZNrFixArdv3xaskFiiRAneS6y0TQHw/eaUKVNoRgmCsBYnhWcQOuWTTz5hAETjbxljbM2aNaxp06YsIiKC+fr6sujoaNa1a1f266+/qipH6g3yq1evsnLlyrHAwECWkpLCGMuPmatXrx4LDAxkAQEBrFy5cqxXr17s2LFj/HFxcXHsueeeM8tPacwwx6lTp1jXrl1ZsWLFmI+PD4uMjGQvv/wyW7JkCW/jjJhhxhj79ttvWc2aNZm/vz8rXrw4e/fdd9mOHTsEdfnss88YALZq1SpBfn/88QcLDg5mHTt2VFxnLXj48CEbPnw4i4yMZL6+vqxGjRqCGTw4evfuzQCwS5cuCdLT0tJYr169WFhYGPP392f169dnu3fvFi1r165drH79+szf35+FhYWxXr16iS5ewM08IrYZf6d5eXnss88+Y3Xq1GGFCxdmwcHBrHbt2mzBggWCWVfOnTvHXnvtNRYTE8P8/f2Zv78/q1y5Mnv33XfZP//8Y1b+48eP2ZgxY1jJkiWZt7c3K1WqFBs3bhwfL8uxdOlSVqVKFVawYEEWFBTEGjdubDaTgGn7iW3G14LxLC6mW0xMjCBPuZlFjOOs5coW+05NsbToBofcbBJy52Va/tWrV1mBAgVYr169LJb5wQcfMADsxx9/lK2/kjbl6i+1GfdFatqUi6U27qMIglCHgTGTNUAJgiAIgnAJRo8ejQ0bNuDixYu0hD1BWAm9QEcQBEEQLsrevXsxadIkEsIEYQPkGSY0xdJ8lwUKFNBkjlS9wBhDXl6erI2Xlxe9/EIQBEEQOsV9VAmhCyxNx9WvXz9nV1FTUlJSLJ7zmjVrnF1NgiAIgiAkIM8woSnHjh2T3R8eHo7SpUs7pjIO4OHDhzh//rysTZkyZTSboYEgCIIgCG0hMUwQBEEQBEF4LBQmQRAEQRAEQXgsJIY9hE6dOiEgIMBsVSdjevbsCR8fH9y6dUuzckuXLo34+Hiz9OXLl8PLywsdOnRAVlaWZuVpyb59+2AwGLBv3z5nV8Vt2LNnD1q0aIHo6Gj4+fmhWLFiePnll/kV2JTAGMOqVatQt25dBAYGIjg4GM8//zy2bt3K29y8eRMTJ05EgwYNEB4ejuDgYMTGxmLZsmVmLzyePHkS7dq1Q6lSpRAQEICwsDA0aNAAn3/+ucAuLy8Pc+fORevWrVGiRAkULFgQVapUwdixY83uq8zMTLz++uuoVKkSChUqhMDAQDz33HP4v//7P2RmZgps//77byQmJiIuLg6FCxeGwWDA6tWrzc778uXLMBgMklvr1q0F9hcuXEDnzp0RGhqKggULol69eti2bZtZvmfOnMHQoUPRoEEDBAYGyl7zb775JqpVq4bChQsjICAAFStWxLvvvou7d+8K7Pr06SNbV9OV/X755Rc0b94cQUFBKFy4MF599VX89ddfonX49NNPUblyZfj5+aFMmTJ47733kJOTI2q7detWxMXFITg4mP8Oli1bJrB5+vQpZs+ejWrVqiEwMBARERFo06aNYGl4LdmzZw8aNGiAggULIjw8HH369BEsvgHIf9cbN260S70IwpMhMewh9O/fH1lZWVi/fr3o/vT0dCQlJSE+Ph4RERF2rcvs2bMxYMAA9OzZE9988w1NCeRB/PPPP3juuefw8ccfY9euXVi6dCl8fHzQrl07M/EpxZAhQzBkyBA0a9YM27Ztw1dffYUePXrg8ePHvM3x48exdu1aNGvWDGvXrsXmzZsRFxeHIUOGYMCAAYL8Hjx4gJIlS2L69OlITk7G2rVrUbp0aSQkJOD//u//eLsnT55g6tSpiImJwbx585CcnIwBAwZg2bJlaNSoEZ48ecLb5uTkgDGGkSNHYvPmzdi6dSs6d+6MadOm4ZVXXhGU/8cff+CLL76Ar68v2rZtK3neUVFRSE1NNdvGjBkDIP8HL8fly5fRoEEDnD9/HkuWLMFXX32FokWLomPHjti8ebMg32PHjmHLli0ICwtDs2bNZNs+MzMTAwcOxPr16/Hdd9/hzTffxLJlyxAXF4fs7GzebtKkSaJ1DQ8PR/HixQWrVf7+++9o0qQJsrOz8eWXX2LlypW4cOECGjduzK8UyPHBBx/g7bffxquvvorvv/8eQ4cOxfTp0/HWW2+Z1XXmzJl49dVXUa1aNXz55ZfYtm0bhg4dKqgnkL+q5tixY9GxY0d8++23WLhwIe7cuYO4uDizld9sJSUlBW3atEFERAS2bt2KTz75BHv27EGzZs3w9OlTM/thw4aZtWGLFi00rRNBEKAV6DyF3NxcFh0dzWJjY0X3L168mAFg3377rablmq4uNW7cOAaADRs2jD179kyTMjIzMzXJxxRrVpoj1JOdnc2KFy/OGjdubNE2KSmJAWCbNm2Stbt3755glTiOt956iwFgV69etVhWvXr1WMmSJfnPubm57O7du2Z2X331FQPA1q1bZzHP0aNHMwDszz//5NPy8vL4/48ePSq6gqAcTZo0YQULFmTp6el82qBBg5i/vz/7+++/BfWvUqUKK1mypKBM4/+5c1FzzS9atIgBYD/88IOs3b59+xgANnHiREF6ly5dWHh4uKD+ly9fZj4+Pmz06NF82t27d5m/vz8bOHCg4PgPPviAGQwGdubMGT7t2LFjrECBAmzWrFmydcrKymJeXl7sjTfeEKTfuHGDAWDDhw+XPV4tL7zwAqtatSrLycnh03766ScGgC1atIhPk1s5kyAI7SHPsIfg5eWF3r174/jx4zh9+rTZ/lWrViEqKgpt2rTh0xYvXoyaNWsiKCgIhQoVQuXKlTF+/Hiryn/27BmGDBmCGTNmYPLkyZg/f75g7l3GGBYtWoRatWohICAAoaGheO2118welTZp0gTVqlXD/v370bBhQxQsWBD9+vXjHyvOmTMHc+fORZkyZRAUFIQGDRqYPZIF8r1hHTp0QFhYGPz9/VG7dm18+eWXVp2bMVxoxfr16zFmzBhERUUhKCgI7du3x61bt/Dw4UMMHDgQ4eHhCA8PR9++ffHo0SNBHkrbYvfu3XjllVdQokQJ+Pv7o3z58hg0aJDZI+upU6fCYDDgzJkz6N69O0JCQhAREYF+/fohPT3d5nO2FR8fHxQuXBje3t4WbT/55BOULl0aXbt2lbULDQ2Fj4+PWXrdunUB5IcmWCI8PFxQJy8vL9FZQbg8r127ZjHPokWLAoAgX1vm3f7zzz+RkpKCrl27Ijg4mE//6aefULNmTRQvXlxQ/zZt2uDatWsCj6et836LnZMYK1asgMFgEEyvmJubi+3bt6Nz586C+sfExKBp06ZISkri03bu3ImsrCz07dtXkG/fvn3BGMOWLVv4tAULFsDPzw/Dhg2TrRM373lISIggPTg4GAUKFDB7apWWloZBgwahRIkS8PX15cM0LM2vDgDXr1/H0aNHkZCQIGirhg0bomLFioJzJQjCsZAY9iD69esHg8GAlStXCtLPnj2LI0eOoHfv3vDy8gIAbNy4EUOHDkVcXBySkpKwZcsWjBgxwizeUQk5OTno2bMnli5dik8++QTvvfeemc2gQYOQmJiI5s2bY8uWLVi0aBHOnDmDhg0bmsUw37x5E2+88QZ69OiB5ORkDB06lN+3cOFC7N69G/PmzcMXX3yBzMxMtG3bViD69u7di0aNGuHBgwdYsmQJtm7dilq1aqFbt26isZrWMH78eNy+fRurV6/GRx99hH379qF79+7o3LkzQkJCsGHDBowePRrr1q0z+4GhtC3+/PNPNGjQAIsXL8auXbswefJkHD58GC+++KJoDGXnzp1RsWJFbN68GWPHjsX69esxYsQIi+fy7Nkz5ObmWtwsLT4ilueNGzcwZcoUXLhwAe+8847sMbm5uUhNTUXt2rUxd+5cxMTEwMvLC2XLlsWcOXPAFEyM8+OPP8Lb2xsVK1aUrNOdO3ewaNEifP/993wIgqU8AeC5554z28cYQ25uLjIyMrBz50589NFH6N69O0qVKmUxXyWsXLkSjDG8+eabgvTs7Gz4+fmZ2XNpv/76q03l5ubmIjMzEz/99BMmTZqEF198EY0aNZK0T09Px9dff41mzZqhTJkyfPqff/6JJ0+eoEaNGmbH1KhRA3/88Qf/TsFvv/0GAKhevbrALioqCuHh4fx+ANi/fz+qVKmCzZs3o1KlSvDy8kKJEiUwduxYQZiEj48Phg4dijVr1mDLli3IyMjA5cuXMWDAAISEhAhCatLS0lC3bl18//33mDx5Mnbs2IH+/ftjxowZZqE3YnD1kzpX4/pzzJw5E76+vihYsCBefPFF0Zhv7gf41KlTLdaBIAgJnOmWJhxPXFwcCw8PFzxCfueddxgAduHCBT7tf//7HytcuLDN5cXExDAADAAbP368qE1qaioDwD766CNB+rVr11hAQIDgUWlcXJzoI1nusWL16tVZbm4un37kyBEGgG3YsIFPq1y5Mqtdu7bgUSVjjMXHx7OoqCj+sbE1YRLcMe3btxekJyYmij527dixIwsLC7OqLYx59uwZy8nJYVeuXGEA2NatW/l9U6ZMYQDYhx9+KDhm6NChzN/f32K4Cne8pS0mJkY2H2NatWrFHxccHMy++eYbi8fcvHmTty9RogRbs2YN++GHH9jgwYNlry+O77//nhUoUICNGDFCdP+gQYP4Ovn6+goeW0vx999/s4iICFanTh1BuAHHhg0bBG3Ut29fs+vOGDVhErm5uax48eKscuXKZvs6duzIChcuzB4+fChIb9y4MQPApk+fLpqnkjAJ7hrltrZt27KMjAzZunJhWMb3IWP/hQiYpjPG2PTp0xkAduPGDcYYYwMGDGB+fn6i+VesWJG1bNmS/+zn58cKFSrEQkND2YIFC9iPP/7IJkyYwLy8vFiPHj0Exz579oxNnjyZFShQgD+nUqVKsRMnTgjsBg0axIKCgtiVK1cE6XPmzGEABGEaYnzxxRcMAEtNTTXbN3DgQObr68t/vnHjBhswYAD78ssv2YEDB9gXX3zB6tevzwCwzz77THDsvn37mJeXF3vvvfdkyycIQhoSwx7G2rVrGQD29ddfM8YYy8nJYREREWbxmpzd66+/zrZs2cLu3LljVXkxMTGsVq1arFSpUiw4OFh0IJgwYQIzGAzs1q1bLCcnR7DVr1+f1a1bl7eNi4tjoaGhZnlwYnjs2LGC9KysLAaAzZw5kzHG2MWLFxkANmfOHLOyuNjHs2fPMsZsE8NLly4VpC9dupQBYN9//70gnYuh5kSLmra4desWGzRoECtRooRgIDc+X8b+E7O///67oOwlS5YwACwtLU32nK5fv86OHj1qcfv1118Vt9OFCxfYkSNH2NatW1mXLl2Yj48PW79+vcV6cOdneh117NiR+fv7m4k/juPHj7OQkBDWsGFDlpWVJWpz5coVdvToUfbdd9+xwYMHswIFCsjGbP7zzz+sRo0arFixYoIYYGPu3bvHjh49yn788Uf2wQcfsODgYNahQwdR4cyYOjG8fft2ybjSPXv2MIPBwDp16sT+/PNPlpaWxiZOnMi8vLzMrg9jlIjhR48esaNHj7KUlBT2ySefsKioKFavXj3Z2P06deqwIkWKmLU9J4Y3btxodgwnhm/evMkYyxfD/v7+ovlXrFiRtWrViv/s4+MjKrK5H6UXL17k095//31WsGBBNm3aNLZ37162detW1qJFCxYeHs5++eUX3q548eKsffv2ZvflmTNnBDG/ubm5gv3cd82J4UOHDpnVf+DAgZJCnyM7O5vVrl2bFSlSRPYHFUEQ6iEx7GE8fvyYhYSE8C+1bd26lQFgq1evNrNduXIla9CgAfPy8mIGg4HVrVuX7dq1S1V53At0f/31F4uJiWHBwcHs559/Fti8+eabsh7HsmXL8rZxcXGsatWqZuXIvXACgE2ZMoUxxtjBgwctejj379/PGLNNDH/11VeC9FWrVjEA7OjRo4J0TqhyPzaUtkVeXh6rWbMmK1q0KJs/fz7bu3cvO3LkCDt06JDgfMXKMK3TpUuXZM8pLy/PTACIbcYeebW0bt2ahYaGSopExvKvXYPBwIKDg832cT82Dh8+bLbvl19+YWFhYaxOnTrswYMHius0ePBg5u3tzW7fvm227969e+z5559nRYoUYadOnVKc58aNGxkASU+4GjHcqVMn5uPjw27duiW6f/Xq1axIkSL8tVO1alVeYEq97GfNC3TcNTd37lzR/adOnWIA2Ntvv2227/fff2cA2MKFC832jRo1ihkMBvbkyRPGGGNjx45lAERFd3h4OOvevTv/OTIykgFg9+7dE9h9//33DPjvBcyzZ88yg8Fg1m9kZ2ez8uXLsyZNmvBp3t7esvfmtGnTGGP/Pb3itt69ezPGGNu5cycDwL777juz+r/22mssKipKrPkEzJw5U/CDnSAIbbD8xgrhVgQEBKB79+747LPPcPPmTaxcuRKFChVCly5dzGz79u2Lvn37IjMzE/v378eUKVMQHx+PCxcuICYmRlW5ZcqUwb59+9C0aVO0atUKO3fuRMOGDQHkv6hkMBhw4MAB2ThHDuMX79QSHh4OABg3bhxeffVVUZtKlSpZnb+tKG2L3377DadOncLq1avRu3dvfv8ff/yheZ2mTZsmGudtSkxMDC5fvmxVGXXr1sXOnTtx584dyan9AgICUKFCBaSlpZntY//GC5u+DHbixAk0b94cMTEx2LVrl9mLUpbqtGTJEvz111/8S2IAcP/+fTRv3hyXLl3CDz/8IBoDKpcnkD8HsC3cvn0b27dvR4cOHVCsWDFRm969e6Nnz564ePEifHx8UL58ecyYMQMGgwGNGze2qXxj6tSpgwIFCkie04oVKwDALK4ZAMqVK4eAgADRl3pPnz6N8uXL8y+xcbHCp0+fRr169Xi7tLQ03L17F9WqVePTatSooeg6OXXqFBhjgqnegPxY4po1ayIlJYVPCw8PR40aNfDBBx+Inmd0dDQAYOnSpXj48KHgOAB8/U6fPm02hd7p06cF9ZdC6jonCMI2SAx7IP3798eSJUswe/ZsJCcno0+fPihYsKCkfWBgINq0aYPs7Gx07NgRZ86cUS2GgfwFODhB3Lp1a+zYsQONGjVCfHw8Zs6cievXr1ucJcBWKlWqhAoVKuDUqVOYPn26XcuyBqVtwf0gMBXMS5cu1bxOAwcOFF04xRQx8a4ExhhSUlJQuHBh0dkajOncuTNmzJiBn3/+mf8xBQDJyckICgoSvMR28uRJNG/eHCVKlMDu3bsRGhqqql579+5FgQIFULZsWT6NE8J//fUXdu/ejdq1a6vOEwDKly+v6jhT1q5di5ycHPTv31/WztvbG1WqVAGQ/xLbsmXL8Morr1h1/0qRkpKCZ8+eiZ7T06dP8fnnn6Nu3bqiYs/b2xvt27fHN998gw8//BCFChUCAFy9ehV79+4VvODZunVr+Pv7Y/Xq1QIxvHr1ahgMBnTs2JFP69y5M3bt2oUdO3agR48efHpycjIKFCjAi19OwB46dAhxcXGCev/yyy8oUaIEnxYfH4/k5GSUK1dO9lqS+jFdvHhx1K1bF59//jlGjRrFv6x86NAhnD9/HomJiZJ5AvkvIm/atAnh4eE2Xz8EQQghMeyB1KlTBzVq1MC8efPAGBMdUAcMGICAgAA0atQIUVFRSEtLw4wZMxASEmLmRVFDTEyMQBAnJyejcePGGDhwIPr27Ytjx47hpZdeQmBgIG7evImDBw+ievXqGDJkiC2nLGDp0qVo06YNWrVqhT59+qB48eK4d+8ezp07h19++QVfffWVZmWppVGjRoraonLlyihXrhzGjh0LxhjCwsLw7bffYvfu3ZrXKTo6mhcNtvLKK6+gZs2aqFWrFooUKYIbN25g9erVSElJwcKFCwVTTjVr1gwpKSmCaatGjRqFL774Al26dMH777+PEiVK4Ouvv8a2bdswZ84cBAQEAADOnz+P5s2bA8hfqOHixYu4ePEin0+5cuV4b+/AgQMRHByMunXrIiIiAnfv3sVXX32FTZs24d133+Xtnjx5glatWuHEiROYN28ecnNzBdP2FS1aFOXKlQOQf40dOHAALVu2RMmSJZGZmYkDBw7g008/RcOGDc0W3vj6668BgJ8+79ixYwgKCgIAvPbaa2btuGLFCpQsWRKtWrUSbefbt2/jo48+QqNGjVCoUCH8/vvv+PDDD1GgQAEsXLhQYPv48WN+BUDufFJSUnD37l3+hzAAbN++HZ999hk6dOiAmJgY5OTk4NixY5g3bx7Kly8v6vndsmUL7t27J7qP47333sMLL7yA+Ph4jB07FllZWZg8eTLCw8MFM4yEhYVh4sSJmDRpEsLCwtCyZUscPXoUU6dOxZtvvomqVavytn379sXSpUsxdOhQ3L17F1WrVsWePXuwcOFCDB06lP8x8OKLL+KFF17A1KlT8fjxY7z00ktIT0/Hp59+ikuXLmHdunV8ntOmTcPu3bvRsGFDDB8+HJUqVUJWVhYuX76M5ORkLFmyRCCexZg1axZatGiBLl26YOjQobh9+zbGjh2LatWqCaaMGzlyJHJyctCoUSNERkbi2rVr+PTTT3Hy5EmsWrWKF9IA+P50ypQpNKMEQViLE0M0CCfyySef8HGEYqxZs4Y1bdqURUREMF9fXxYdHc26du2q6iUpxswX3eC4evUqK1euHAsMDGQpKSmMsfwY5Xr16rHAwEAWEBDAypUrx3r16sWOHTvGHxcXF8eee+45s/yUxgxznDp1inXt2pUVK1aM+fj4sMjISPbyyy+zJUuW8DbOiBnmUNIWZ8+eZS1atODfmu/SpQu7evWq5jHDWjJr1iz2wgsvsNDQUObl5cWKFCnCWrVqxbZv325my8VemnL16lX2+uuvs9DQUObr68tq1KjBVq5cKbDhzk1qM47JXblyJWvcuDELDw9n3t7erHDhwiwuLs4srpa7xqQ2LjaUsfwXw+Lj41l0dDTz9fVlBQsWZDVr1mTvv/++aMyrXL6mcC+dTZ48WbKd//nnH9ayZUtWtGhR5uPjw0qVKsWGDRsm+iKs3HkZzxBy7tw59tprr7GYmBjm7+/P/P39WeXKldm7777L/vnnH9F6tGjRggUGBlqcbeLYsWOsWbNmrGDBgiw4OJh17NiR/fHHH6K2n3zyCatYsSLz9fVlpUqVYlOmTBFdYOWff/5hgwYNYhEREczHx4dVrFiRzZ492ywu/cGDB2zChAmsSpUqrGDBgqxYsWKsSZMmLDk52SzPO3fusOHDh7MyZcowHx8fFhYWxmJjY9mECRPYo0ePZM+RY9euXax+/frM39+fhYWFsV69epnFfa9YsYLVrVuXhYWFMW9vbxYaGspatWpl9gIuY4x9++23DICg7yIIQh0GxhRMzkkQBEEQhO4YPXo0NmzYgIsXL9LS9gRhJRSFTxAEQRAuyt69ezFp0iQSwgRhA+QZJqzC0vKj3DKn7gJjzOIKa15eXjbNdEEQBEEQhONxH7VCOBQfHx/ZrV+/fs6uoqakpKRYPOc1a9Y4u5oEQRAEQaiEPMOEVRw7dkx2f3h4OEqXLu2YyjiAhw8f4vz587I2ZcqUsTg1GEEQBEEQ+oLEMEEQBEEQBOGxUJgEQRAEQRAE4bHQoht25NmzZ7hx4wYKFSpEL1YRBEEQHgtjDA8fPkR0dLRbvVxNuAckhu3IjRs3ULJkSWdXgyAIgiB0wbVr1yyu1EcQjobEsB0pVKgQAODaX38h+N//s+Erae+LbIfUSwq5ummFPc/REfVXg7O/T4JwBnq7Dy3hzPvUUW1lzTlaWzepsjIePkTJsmX5cZEg9ASJYTvChUYEFyqE4OBgZMMXUtOi53cgzps0Xa5uWmHPc3RE/dXg7O+TIJwJCWLl6NUJobUY5qCQQUKPUOCOg9CzR9gReIpH2BfZHvF9EoQ7oac+xB448vzcvS0J94TEsAPQuxB25c5LT3XXw3dJEHrAFe8FZ/Ulem0rvdaLIOwBiWEnoofORq+P6JRAQpgg9Isr3hPuLIj11F8ShN4gMexA9DY4kBC2HQqLIAhpXPHe0EvfYg/Unpu13587tyHhntALdA5GL4MDCWHb0ct3SRB6xhfZurlnlcLV15H3uCu2k6PIyspCdrb234Wvry/8/elFZ4LEsEdCQth2SAgThHK4+0Uv969SsuHrdoJY7TlZWyet2i4rKwsBAYUBPLU5L1MiIyNx6dIlEsQEiWFPw1WFsB4GURLABGEbruj9JEHsXPI9wk8BNIe2kiUXaWl7kJ2dTWKYIDHsSdi7g3Vnb7CrDBwEoXdcVRADjusHXLGNxNBWdHsD8NEoL4IQQi/QOQhniykSwtbj7O+OINwNV33x1JH9kb3bSM25uOJ3ZS8WLVqEMmXKwN/fH7GxsThw4ICsfUpKCmJjY+Hv74+yZctiyZIlZjabN29G1apV4efnh6pVqyIpKUmwf//+/Wjfvj2io6NhMBiwZcsWszwePXqE//3vfyhRogQCAgJQpUoVLF68WGDz9OlTDBs2DOHh4QgMDESHDh3w999/q28EN4TEsANw9upGriiEHVFvpWTzw5L6jSAIaVxRZDn63nbFNjJGu7YqYIdNHZs2bUJiYiImTJiAEydOoHHjxmjTpg2uXr0qan/p0iW0bdsWjRs3xokTJzB+/HgMHz4cmzdv5m1SU1PRrVs3JCQk4NSpU0hISEDXrl1x+PBh3iYzMxM1a9bEggULJOs2YsQI7Ny5E59//jnOnTuHESNGYNiwYdi6dStvk5iYiKSkJGzcuBEHDx7Eo0ePEB8fj7y8PNVt4W4YGGPM2ZVwVzIyMhASEoL0O3cQHBzs8PJdUQQD+vAGOwNXH/QIwlpc9Z539D1rj3ZSeg62lO2L7PzxsGhRpKenqxoPuXEUaAttwyRyACSrqk+9evXw/PPPCzyuVapUQceOHTFjxgwz+zFjxmDbtm04d+4cnzZ48GCcOnUKqampAIBu3bohIyMDO3bs4G1at26N0NBQbNiwwSxPg8GApKQkdOzYUZBerVo1dOvWDZMmTeLTYmNj0bZtW7z//vtIT09H0aJFsW7dOnTr1g0AcOPGDZQsWRLJyclo1aqVojZwV8gz7KaQEHY9yLNMeCquHDbhTqETlsq2Fnfoy7Kzs3H8+HG0bNlSkN6yZUv8/PPPosekpqaa2bdq1QrHjh1DTk6OrI1UnlK8+OKL2LZtG65fvw7GGPbu3YsLFy7wIvf48ePIyckRlBUdHY1q1aqpLssdoRfo3BASwu6DM+Y7JQhCHa4844QrzSxhDzIyMgSf/fz84OfnZ2Z39+5d5OXlISIiQpAeERGBtLQ00bzT0tJE7XNzc3H37l1ERUVJ2kjlKcX8+fMxYMAAlChRAt7e3ihQoACWL1+OF198ka+Lr68vQkNDbS7LHSHPsJthT0FpL68EeUEtQ+1DeAKuLMo8yUvsHHztsAElS5ZESEgIv4mFOxhjMBgEnxljZmmW7E3T1eYpxvz583Ho0CFs27YNx48fx0cffYShQ4diz549ssdZU5Y7Qp5hN8LeQtgekMhThmcNeoQn46oLdHB4uqdVCr1+n9euXRPEDIt5hQEgPDwcXl5eZl7U27dvm3l2OSIjI0Xtvb29UaRIEVkbqTzFePLkCcaPH4+kpCS0a9cOAFCjRg2cPHkSc+bMQfPmzREZGYns7Gzcv39f4B2+ffs2GjZsqLgsd4U8w26CvToae3of9No56gnP8/4QhOvjSC8x9Q+2ERwcLNikxLCvry9iY2Oxe/duQfru3bslxWSDBg3M7Hft2oU6derAx8dH1kaNQM3JyUFOTg4KFBBKOi8vLzx79gxA/st0Pj4+grJu3ryJ3377jcQwyDPsFthTCNsLEsLy0ABHEK6Pu3mJ3WUxEGsZOXIkEhISUKdOHTRo0ADLli3D1atXMXjwYADAuHHjcP36daxduxZA/swRCxYswMiRIzFgwACkpqZixYoVglki3n77bbz00kuYNWsWXnnlFWzduhV79uzBwYMHeZtHjx7hjz/+4D9funQJJ0+eRFhYGEqVKoXg4GDExcXh3XffRUBAAGJiYpCSkoK1a9di7ty5AICQkBD0798f77zzDooUKYKwsDCMGjUK1atXR/PmzR3RfLqGxLCL42pC2JM7UiW408BJEIRjXoL1DJHqC22nVlMfJ9utWzf8888/mDZtGm7evIlq1aohOTkZMTExAPI9rcZzDpcpUwbJyckYMWIEFi5ciOjoaMyfPx+dO3fmbRo2bIiNGzdi4sSJmDRpEsqVK4dNmzahXr16vM2xY8fQtGlT/vPIkSMBAL1798bq1asBABs3bsS4cePQs2dP3Lt3DzExMfjggw94oQ4AH3/8Mby9vdG1a1c8efIEzZo1w+rVq+Hl5aW6LdwNmmfYjth7nmESwu4DiWCCEOKu/YUe+1c1dbK2nIyMDBQtGmLDPMNdof08w1+qrg/hnpBn2EVx5uTranHXQc1WSAAThOdB0yUShP4gMeyCkBB2XWgAJAgCEPaN1C8owRvaeobpoTjxHySGXQxXEcIkgv+DBjqCIOQgbzFBOBcSwy4ECWHXgQY1grANLV8KM74f9dw/kSgmCOdAYthF0LoDp7AI7aEBjCC0RStBzE1x5ir9k1pR7CrnRRB6hcSwB0LeYO0gAUwQ9kVLQWyaryUbZ0Nxxcb8t4QyQWgNiWEXQMsOmoSw7dCgRBCujdQ9rOeloPVYJ4JwF0gM6xi9h0Z4UudMApggnIfWIQ6WVoZzlRhjgiC0gcSwh0BCWD0kgAlCP9hDEHP5WirX2J4gCPeDxLBO0XNohDsPCiSACUK/2OMlOEteYuOyOXt3Qm2f57wXEX1A8wwT9oLEsA4hIexYSAAThOvgTEHMlW98HEEQrk8BZ1eAsB8khKXxRTa/EQThWujlRWDqQwjCPSDPsM6wxyTztuLqIpgGK4IglGDtohfkLSYI14bEsI4gIWw9JHgJwrOwZ+yqmrAJU5QIYyV567nvdU7csD8APw3zowfjxH+QGNYJehPCeuqISegSnoKa+85UkNB9oi1aLI1s67GO6IdtEf4E4S6QGCbMcLYQpo6ZcGe0ur+cfZ/qAUcIRi1EsbW46wwWBKE3SAzrAL15hZ2BK9edIMRwtIBxpofPlnAAW/EED6rzpjPTE1pPrfZMw7wIV4fEsJPRkxB2RmdLIphwVUicWMbdwjhIEP+H3upDELZAYtiJeLIQdoeBkXBPaIBXj5LH+fYUko4UZs4Om7DHeVLcMOHpkBh2Ep4qhKnDJdQgd23aci2R4LUPlmZSME3Tsj9wtKfSWaKYPLIEoT0khl0YVxLCJIIJS6i9FkkQmKOphy8r67///f21ydMEd/BIOuMc9CKIHVsP3383raDlmIn/IDHsBLToPEgIE+6CHgZ1j8ZY9Cq1USCOlQolLT2szhKJzvASa32u7vDDhCCshWaddjCeJIRpqVJCDm5BbMKJKBHCUsdxmwxq+gB3uBY88d0LPdSBIGyFxLAD8TQhTLgG2bxk8XWYQHUH4aNXFLettUJYLB8FolgJeukjbcGVf+S5ar0JwlYoTMIB6KlztHc9nD0QyaGnlxb1gLPe/NfLveDRWBMaYYppqARnLxFCoXQBCXd5XO+o0Am9xA/bHx9oGzNM8wwT/0Fi2IXQ+9vzehrA7Hm+zpxaSSs8Y/AkJPH3lxe7asWysQC2IIodgZ4EoiP6Cy3P15ofI3pqb4KwBgqTcBH0LLycHRvsjMf8noC95jMl7I/D21ksVEIifEJJf+EO4RKm2Ltv0vJ8ramn3tqbINRAYtgFsLWTcZUOWA0kfK3HldvM/GcPvaRpFyx5daU8x1KiWARHLdWsN1ylP3blfoIg1EJhEjpHr0LYmSKYcE1s+e70KGpsQc27a3aLNrAUKiEFd4zcdGumoRJZWaInIvd43V1ih8WwZ+iEM0Mm7Bsu4fPvphV5GuZFuDokht0Up4tGK+YllcLp5yKCqw7SemxLSzjikboj0WoSB02QE8Ri4lYsncvDUqywSkGs1T2m53hWe4liZ8cQE4SrQWJYx1jbATn1MRyJYEJD3K29dSWE1aBEGBvvl/IIywhiwL5PsvTYn3Do/aVcvdePIGyFxLBOcUSnIzEuSaJaCFuJHgctdxgErGlXZ3qFlJSrx2tFCt0KYSWdgJgAtjQbhUpBDLjOjAv2Qsv7zR4/MJTUz94/bAjCHpAY1iGOmELNOOxPyVgoWScNR3i9dp7uIIRdDWpznSEVDyz2v7GdFYLYnriKIAb0GyaitH7at7UvaJ5hwl6QGHYT1IpgNVgthBUOdnodnNxJkOm1jcXwpOV7LWGNXtT6ujVuZ19ky4dGKPUWOxFXEMSA9l5irc9ZqZfYFdqaIGhqNZ1hTwGmVghLTlulYPlVJYOeXqdGo+m69I89f/zZC6U60N//v00tWk+tZdrOZlMacpU0/cth2ldI/e9gXOX+1rJ/tEe/pqQPd5W2JjwbEsNugKXOSEy7WhpwrRbBXOYy6FUEA+7Zceu1ra1B7trhLk/jzThdDxjfd1KbNSgWOmKNpLCBTM3478K08mpOxMmC2BXud63vX3ucsxJBbHu53vhvejUtNusejC9atAhlypSBv78/YmNjceDAAVn7lJQUxMbGwt/fH2XLlsWSJUvMbDZv3oyqVavCz88PVatWRVJSkmD//v370b59e0RHR8NgMGDLli2yZQ4aNAgGgwHz5s0T3c8YQ5s2bRTl5SmQGNYR1nQW9hA6kkJYCTKDoN5FsCsMjGrRa3vLIVZnS9eO0tWD9SKKtULRdatU8MrsN3XoGmcn8BIb3/9SCl9nX4Ir3Pda95329BK7Yp+jlE2bNiExMRETJkzAiRMn0LhxY7Rp0wZXr14Vtb906RLatm2Lxo0b48SJExg/fjyGDx+OzZs38zapqano1q0bEhIScOrUKSQkJKBr1644fPgwb5OZmYmaNWtiwYIFFuu4ZcsWHD58GNHR0ZI28+bNg8FgUHHm7o+BMcacXQl3JSMjAyEhIbhzJx3BwcGytvYQwnJjjmqPsBIsCGE94goDoS3obVlbNfVR+la6tdpKB+GrVqHJrC6WpkA0+sy1v9R7c4I6SS3IYYqpaNYBeu2jTLFnTLiWmNYzIyMDIUWLIj3d8nhodlxICIA5AAI0rOETAKNU1adevXp4/vnnsXjxYj6tSpUq6NixI2bMmGFmP2bMGGzbtg3nzp3j0wYPHoxTp04hNTUVANCtWzdkZGRgx44dvE3r1q0RGhqKDRs2mOVpMBiQlJSEjh07mu27fv066tWrh++//x7t2rVDYmIiEhMTBTanTp1CfHw8jh49iqioKMm8PA3yDOsAlxfCMo9F9eopcFdPsDF6bHc1KLl2bHEy6sxBKYuipaelvL9KQiJkQie4MuWcvIKQCc5YKTr5IlylT7BH2IS9QidcoQ/KyMgQbE+fPhW1y87OxvHjx9GyZUtBesuWLfHzzz+LHpOammpm36pVKxw7dgw5OTmyNlJ5SvHs2TMkJCTg3XffxXPPPSdq8/jxY3Tv3h0LFixAZGSkqvzdHRLDbogmQliDZ8p67QhdYcCzFU9oey00lN5DJxQLYLFpzSylK91EipT7bJUg1hGu0D+4itAEtAyf8LXDBpQsWRIhISH8JubhBYC7d+8iLy8PERERgvSIiAikpaWJHpOWliZqn5ubi7t378raSOUpxaxZs+Dt7Y3hw4dL2owYMQINGzbEK6+8oipvT4CmVnMyWnuFNZk6TU0mIgOeXjtpVxjktEDr2EJPwPSxv7OxOhRCyuur9Hip+virvK64WAqp6dZ0Ms2aFK4yJZjep19zBa5duyYIk/Dz85O1N421ZYzJxt+K2Zumq83TlOPHj+OTTz7BL7/8Innctm3b8OOPP+LEiROK8/UkyDPsRBwthMXGHquFsERohF47U08Rda6AFt+Fvby5zvQUWwyFUOMFVpJm6gF+8ED6/wcP4JuVAV9kq5/1QsxYx0KYw5XCJrTqd13hfLUmODhYsEmJ4fDwcHh5eZl5bG/fvm3m2eWIjIwUtff29kaRIkVkbaTyFOPAgQO4ffs2SpUqBW9vb3h7e+PKlSt45513ULp0aQDAjz/+iD///BOFCxfmbQCgc+fOaNKkieKy3BXyDDsJZwthrV+UIxGsD/T6Pbgalt4v0xK7eoHlPov9b+yx5f43OXlf7qO/hWtN7E07F8RVPKZaeYld5Xwdja+vL2JjY7F792506tSJT9+9e7dk2EGDBg3w7bffCtJ27dqFOnXqwMfHh7fZvXs3RowYIbBp2LCh4rolJCSgefPmgrRWrVohISEBffv2BQCMHTsWb775psCmevXq+Pjjj9G+fXvFZbkrJIadgLOFsFWZyGRm7QIIThUYbobDptjTAc7w3BqXqdV1q5kIViuKpUSw2H7TSZALF+bTxUSTlo/t9YTSmU2cjbu2fz5aL8ecp/qIkSNHIiEhAXXq1EGDBg2wbNkyXL16FYMHDwYAjBs3DtevX8fatWsB5M8csWDBAowcORIDBgxAamoqVqxYIZgl4u2338ZLL72EWbNm4ZVXXsHWrVuxZ88eHDx4kLd59OgR/vjjD/7zpUuXcPLkSYSFhaFUqVIoUqQI72nm8PHxQWRkJCpVqgQg3wMt9tJcqVKlUKZMGdVt4W6QGHYwehDCNoVGmKBkcHC0eHG3wUCvA7B7D7zS2BruapUItiZNShBbEsNyPHggEMecl1jyGrW0RLOL4QpeUy3uS1c4T2fQrVs3/PPPP5g2bRpu3ryJatWqITk5GTExMQCAmzdvCuYcLlOmDJKTkzFixAgsXLgQ0dHRmD9/Pjp37szbNGzYEBs3bsTEiRMxadIklCtXDps2bUK9evV4m2PHjqFp06b855EjRwIAevfujdWrV9v5rD0DmmfYjpjOM2xtByW34pYczhTCmnirVeJOwkwPA5FcexrXz9GLxehJW6m9ji3ODKEk3VoRbPy/1F+OR4+AoKD8/009w2JL5sk1hJIvzAXDKPRwj8pha3+o9fllZGSgaNEQG+YZXgLt5xkerLo+hHtCnmGdo0chbOvcrySEpdH7AAuY19FTPcRqUS2E7RETbPy/6d9Hj8zTTW/WBw/+C5XgsHRDW/IOK1i+3Ri9XGt6957ael/q/fwIQktIDDsAa99KtusUWRoLYRsczDahl4HRFvQ44Ei1q1RdHSWI9eQVVoPsDBHWpFkjiuXSHj3SZlo2qRtcShCrFMJcml7ue70LRvcSxN4AfDTML0fDvAhXh8SwTrHbzBE2zCFMQlg79DPAaIeeRIpLoLXoNf2s1DPMeYTFbE1FrKUZIuQCqo3TbQy81tO15iov1xEEIY3T5hmeMWMGDAaDYN1sxhimTp2K6OhoBAQEoEmTJjhz5ozguKdPn2LYsGEIDw9HYGAgOnTogL///ltgc//+fSQkJPAryiQkJODBgwcCm6tXr6J9+/YIDAxEeHg4hg8fjuxsYed6+vRpxMXFISAgAMWLF8e0adPgiBBru0+hpgSNhLBpaKFW6GUgVIsrrRxlilb1dtXztxbF0xg6Uwirmb7NeJ/xpgYFHYKl60Rv15Fe+yRb20mv50UQWuIUMXz06FEsW7YMNWrUEKR/+OGHmDt3LhYsWICjR48iMjISLVq0wMOHD3mbxMREJCUlYePGjTh48CAePXqE+Ph45OX9N01Kjx49cPLkSezcuRM7d+7EyZMnkZCQwO/Py8tDu3btkJmZiYMHD2Ljxo3YvHkz3nnnHd4mIyMDLVq0QHR0NI4ePYpPP/0Uc+bMwdy5c+3YMvLYLIQ1DI2wZvzTAleZCJ/DeClSvQ3ecojFBVtznDuj5AeeLoWwHJZs5G58tTNTyOCq15Gr9U9KccdzIghjHB4m8ejRI/Ts2ROfffYZ/u///o9PZ4xh3rx5mDBhAl599VUAwJo1axAREYH169dj0KBBSE9Px4oVK7Bu3Tp+gunPP/8cJUuWxJ49e9CqVSucO3cOO3fuxKFDh/ipST777DM0aNAA58+fR6VKlbBr1y6cPXsW165dQ3R0NADgo48+Qp8+ffDBBx8gODgYX3zxBbKysrB69Wr4+fmhWrVquHDhAubOnYuRI0eqWipRDdYOAhYHZo2FsCZ1UoErdcauOpBLoeX5uFvbaIK1QletraV0QDwsQmkeGoVBqLlG9BQuYYzS0AmxutvjHnGP6da0nmc4V8O8CFfH4Z7ht956C+3atTNbLeXSpUtIS0tDy5Yt+TQ/Pz/ExcXh559/BpC//nZOTo7AJjo6GtWqVeNtUlNTERISIpijr379+ggJCRHYVKtWjRfCQP5qLU+fPsXx48d5m7i4OMHSjK1atcKNGzdw+fJl0XN7+vQpMjIyBJsa7PbCnNKXYFTOGiGHpwlhV/T+WsLa87FXG+jp5TnNvMJqP2tlK4e9YpvshJ7vOeFzIfNN7hg9otd6EYStOFQMb9y4Eb/88gtmzJhhto9bm9t0Pe6IiAh+X1paGnx9fREaGiprU6xYMbP8ixUrJrAxLSc0NBS+vr6yNtxn03XEOWbMmMHHKYeEhKBkyZKidmJYihNW8wK3IiFsepAFIawmNNCThLC7CWCtkJoFwFOwixDWShiLIXfTqrmh1YZlmGDtNeKO15bWolirNtJ7n0wQ1uAwMXzt2jW8/fbb+Pzzz+Ev07mahh8wxiyGJJjaiNlrYcO9PCdVn3HjxiE9PZ3frl27JltvJWg+c4SVQlgpWghhS54TPUAi2DLu2j6WrnGrrlsthbGlvKUQOzEujVuAw47Yer246/VGgpjD3w4bQeTjMDF8/Phx3L59G7GxsfD29oa3tzdSUlIwf/58eHt7S3pdb9++ze+LjIxEdnY27t+/L2tz69Yts/Lv3LkjsDEt5/79+8jJyZG1uX37NgBz7zWHn58fgoODBZsS7NJBiQ2eCuL4jOui9iU5a4WwkkeHesAdQyHsjVZtpqcQCTkUzydsi5dXS6Fsitjqcqb7pLChXJqpRB499ot6rBNBWIvDxHCzZs1w+vRpnDx5kt/q1KmDnj174uTJkyhbtiwiIyOxe/du/pjs7GykpKSgYcOGAIDY2Fj4+PgIbG7evInffvuNt2nQoAHS09Nx5MgR3ubw4cNIT08X2Pz222+4efMmb7Nr1y74+fkhNjaWt9m/f79gurVdu3YhOjoapUuX1r6BRFDjFbYohBVkYiqE1WDNsrR6F78cJIAJm7Bn+IOtvxKUeHzVeoVtDJWwFXe9V7XqK+26mBNBuCgOm02iUKFCqFatmiAtMDAQRYoU4dMTExMxffp0VKhQARUqVMD06dNRsGBB9OjRAwAQEhKC/v3745133kGRIkUQFhaGUaNGoXr16vwLeVWqVEHr1q0xYMAALF26FAAwcOBAxMfHo1KlSgCAli1bomrVqkhISMDs2bNx7949jBo1CgMGDOC9uT169MB7772HPn36YPz48bh48SKmT5+OyZMnazqThN1mj+CQezPcCULYlTpPdx1UXQ2X9gormapMjb0llAb1G9sFBZkvvMGlGx8j9r8G6HX2BD2i1YwOWraP82eZIAjb0dUKdKNHj8aTJ08wdOhQ3L9/H/Xq1cOuXbtQqFAh3ubjjz+Gt7c3unbtiidPnqBZs2ZYvXo1vLy8eJsvvvgCw4cP52ed6NChAxYsWMDv9/LywnfffYehQ4eiUaNGCAgIQI8ePTBnzhzeJiQkBLt378Zbb72FOnXqIDQ0FCNHjsTIkSM1O19rFtcQG4esWmHOwUJYaccr1iaOHNSoUyesQfE16kwvsBxy3l/uJreDILbn/UaC2HE4pk4+0HZqNVqOmfgPA3PEkmoeSkZGBkJCQpB+545Z/LC1q8xZ9cKc6YEuJITV5mENehtYCCF68wxb/EHKoXXsr1JxrHQqRbU/nI3/mv4vZmN6vAiOuPfcURAD2rSd1m0jV6eMjAwULRqC9PR0xe/TcMeFhIQASAIQaHsleTIBdFJdH8I9cdpyzIR6VAthsQN1KISVxORqvfADvQxHaPW036rwCEs44heAkgawUuTqCXe9z7UQslq3i7v+8CDcH12FSXgKWoVHKELiQHsLYS28wVrijoOhJ6ClJpSaOcwhnmdbQyBsraTUiXKNomTVOaX7FeLoe5Irz50Em9KV7uTQOpxEj2EcBGEJEsM6Qs14p2j2CAvzCVuDXeZYVYg1nTZ1ygRgeU0JTQWx3uI6lKBk0Q0X8QRbwh1jiW0Vxa4hiH3+3bTMjyDyITHsYKQ6CE2FsNzk+bDeKyw3FlrTkdpLqJIAJjiU6jdrBbGi695e8wTLeXvVpFsqw5b9OsUdvcSA8HzU9oNatwl5iAlXgmKGHYjm06g5cOYIvQhhuePcNTbQk7FFa6k9Vk0IrSR69wqraRSx+GCNvMR6uU/1Ug97YO1c7jQPMeGJkGfYQdhl9ggb6uDoJZal6qHH/AjXRzcOS0dOj6YUSx5ia8OrdNPo6nBXL7ExasMotJ6HmCD0DolhB5ANX6tWQVc8e4SCgc0ei3s4KzSCxK9noebpvlP1mDVC117iWKngVbBEu9kxlrzELiyKSbjZD9vb1hc0zzBhLyhMwslYNXuEFdOoKT1cKXqKESbcHyWhq2qm+5N6fKzpaop68AJbwt4xwS4mjN091EpNv+3O7UAQppBn2EWQ7MSkZo4wQuvwCPKeEM5AC11ly7Vrc/lKbj6t55KzNj8pb68GscOuILLc2Uus5sU2d24HgjCGxLATUeoVtmW5ZS2FsFbxyoRrIPZ9u/L3qPT6NdWQiu4Fa2KD9eo5tibswcU8wErwhFhigiDyITHsBDQbA1XEWDjzhTnCtZAb/N1RIIvVX/N7wFnCV613WE4IK/EGWwjTcsVrxR29o67pHfaBtjHDejgnQi+QGNYZVnmFLawy5+zQCFccAD0NW75fqWP19L1bEvhq6qqJV1gNzlqa2dL7B262GIccjhCElq5BfQhSgnBPSAw7GKsX15DKSMKTQ3NFeg6m349Nwk5DbKmXPeshZaOkfhaFsBhiNo70FMt5h6WErKV0K8Sznn4cWYM9wibUtIkzV4nTj3eYIOwDiWEHkJUF+Croc6yeQUImA2fGCQOuPwDqGanvRq+Dlq1LxtpSpl3y0VrkWnOs0jAI46nUjD/L2Up9VrrPCHfqB4zPxdrry9ZFh5yxSpzzBTEtx0zYDxLDOkGVELYwoGkVHqFXUUW49nfjCFFsTfuoOkapENbbS3K2LMtnpVfYnYSwKWrFqTu3BUG4MiSGdYps5yozGGnV2Wohtqjjtx/u8Ka7cd21uFYc1ha2CmG9CWRj1IRNeECssFLErl+1sehqy3PGve987zBB2AcSwzrA5jGFZo/gsWoRE8LpWPsSnkMHZi3ErdYCWet5ieU+K0nzIK+wJex97loJU3uKdoJwFUgM6xCr5hWGdZ2vO4VHyDWVmlVnCf2gi2vR0oWl9hg9omRKNTl7EUhguSfO8w5rvRwzXZ/Ef9ByzE5Gdio1azKAbeOwLsSHFSh9qd/VNIolSHDYCe5ikRO7aoWwNRefM6ZVszZUgn5tOhxnhcVZVa67db6EW0GeYT1jhVdYL+ERehZp7uYldof4YaeiRZiDvfY5G/IKEwThAZBn2Ilo5RXW20tzNBA6B2p3BRh7fNU+KnBHIewEr7AtXwFhjst4h93EA7Fo0SKUKVMG/v7+iI2NxYEDB2TtU1JSEBsbC39/f5QtWxZLliwxs9m8eTOqVq0KPz8/VK1aFUlJSYL9+/fvR/v27REdHQ2DwYAtW7aY5cEYw9SpUxEdHY2AgAA0adIEZ86cEdikpaUhISEBkZGRCAwMxPPPP4+vv/5afSO4ISSG9YoVI4SzvcKuJMbcdQCmHyNGaKG6bAmX4PZbi70vUkudgMZeYVuakZDHWfe8Y8v1xn9zDWuxqX8wvmnTJiQmJmLChAk4ceIEGjdujDZt2uDq1aui9pcuXULbtm3RuHFjnDhxAuPHj8fw4cOxefNm3iY1NRXdunVDQkICTp06hYSEBHTt2hWHDx/mbTIzM1GzZk0sWLBAsm4ffvgh5s6diwULFuDo0aOIjIxEixYt8PDhQ94mISEB58+fx7Zt23D69Gm8+uqr6NatG06cOKG6LdwNA2OMObsS7kpGRgZCQkJw7Vo6goODBfssvrhmaWQQ8QrbIobdYXENZ/8Y0CseET7h6CWQbd3vqDLkUOPtFZtjWOJ/sb6A7k3H4KwpMZWUm5GRgZCiRZGebj4eWjwuJATALwAKqa6bNA8BPK+qPvXq1cPzzz+PxYsX82lVqlRBx44dMWPGDDP7MWPGYNu2bTh37hyfNnjwYJw6dQqpqakAgG7duiEjIwM7duzgbVq3bo3Q0FBs2LDBLE+DwYCkpCR07NiRT2OMITo6GomJiRgzZgwA4OnTp4iIiMCsWbMwaNAgAEBQUBAWL16MhIQE/tgiRYrgww8/RP/+/RW1gbtCnmGdYI0QthatBxtbhbAar5Bcp6v0vDxtsHULb7GYl9cez9mVeHr1IIRtxRohrMBWi+uMPMTW4xkeYueQnZ2N48ePo2XLloL0li1b4ueffxY9JjU11cy+VatWOHbsGHJycmRtpPIU49KlS0hLSxPk4+fnh7i4OEE+L774IjZt2oR79+7h2bNn2LhxI54+fYomTZooLstdoRfonIBWXllrvMJ6EIJqBzvT9pFbwcz0/EzLUnL+1q6Kq3dcZsJ8R6shLcSrUhs1dnrDyovc2ugUV7in9IitL9RaO++wy/QvJmRkZAg++/n5wc/Pz8zu7t27yMvLQ0REhCA9IiICaWlponmnpaWJ2ufm5uLu3buIioqStJHKU6oc7jjTfK5cucJ/3rRpE7p164YiRYrA29sbBQsWRFJSEsqVK6e4LHeFPMMOxmIHb2evsCm+//oNrcWZHgEl9fb3F272wlViHnXrwXH021RKy9PKRq2dPXGR1eRc4X7SM9l8767+yZAWDhrt8bXDBpQsWRIhISH8JhbuYIzBYBB8ZoyZpVmyN01Xm6e1dZs4cSLu37+PPXv24NixYxg5ciS6dOmC06dPqy7L3SDPsAOxeYELGx9H6nC847G2beS8xLbWxV09Wrrx4DhD7Wg1e4TWednLzhpo7mC3xLiPtOf9r5v+RSHXrl0TxAyLeYUBIDw8HF5eXmYe29u3b5t5ZDkiIyNF7b29vVGkSBFZG6k8pcoB8j3EUVFRovn8+eefWLBgAX777Tc899xzAICaNWviwIEDWLhwoegsF54EeYbdAGd5UNQIUDlHnGIhLJOJrR5uMaz1JruCR8tpHmJnzKeltkwt4oattXU17CyW9dokvmZ+V/NNzyjxFrvqE0O1BAcHCzYpMezr64vY2Fjs3r1bkL579240bNhQ9JgGDRqY2e/atQt16tSBj4+PrI1UnmKUKVMGkZGRgnyys7ORkpLC5/P48WMAQIECQtnn5eWFZ8+eKS7LXSHPsINQJPjsOJ2aM1+ak6ujovhpsQyM04wyMT5eqw7Z31/9V0MeYiP0GANszXH28ARba28tWoRISNjbOouEFHq5l9TeK9bG3joSe/YB2i8G5PzlmEeOHImEhATUqVMHDRo0wLJly3D16lUMHjwYADBu3Dhcv34da9euBZA/c8SCBQswcuRIDBgwAKmpqVixYoVgloi3334bL730EmbNmoVXXnkFW7duxZ49e3Dw4EHe5tGjR/jjjz/4z5cuXcLJkycRFhaGUqVKwWAwIDExEdOnT0eFChVQoUIFTJ8+HQULFkSPHj0AAJUrV0b58uUxaNAgzJkzB0WKFMGWLVuwe/dubN++3aoWdCdIDDsATTpyjd/YBpwfF2Zz/LSpnUmGWoZQ2BI6oWfsKogd0VhaqS0tyrCXCNeqHFtwshp1tiB29MtojsTeP4r1fv5q6NatG/755x9MmzYNN2/eRLVq1ZCcnIyYmBgAwM2bNwVzDpcpUwbJyckYMWIEFi5ciOjoaMyfPx+dO3fmbRo2bIiNGzdi4sSJmDRpEsqVK4dNmzahXr16vM2xY8fQtGlT/vPIkSMBAL1798bq1asBAKNHj8aTJ08wdOhQ3L9/H/Xq1cOuXbtQqFD+dHQ+Pj5ITk7G2LFj0b59ezx69Ajly5fHmjVr0LZtW7u1matA8wzbEW5+xDt3zOcxVO0VlhDDSsZFm2OVTVDSual9D1ByajlrTlCF54rIxy6Dob1Em1b5OlsEW3usLeUp8QxrOL8woO1l4CxB7A7zsFtC6hy1qntGRgaKFg2xYZ7hC9B+nuGKqutDuCfkGXYC1i67DFi/yIZW2CqErRbBcnOkmXqGLXiKAdcYnAgTtJ5P2NayHC2CbUWJktT5y3PO9hBbC3mICULfkBjWA3YcGLX2CtuCpBAWE8FqxIqUCJYQxYKy/0XvA5W90Xwg1Pqa1pMQtrUuriaiFeIKgo9wZbhllLXMjyDyITHsYFz5l7ctA52xHhX1BouJYKWxFpZEsMTLdsbY+xEhYQN6CYtwpgi2FSl3qiu6WZ2AFi+DucKPBbEfxa5Qb4KwFRLDDsSqjlRHscLWwtVDkQhWIobVimCxkAqx/ERQ0l40ULgAzhTCOvbmOgJrZmORw1VDJQDXEJYULkF4IiSGHYSrdy6WOnBLutXM2Fj8KhHCamKE5TzDYpVSE+QsgtLvVs+DoG6vT0d4Y+0lhPUSKqID5egus7FoIRRdURC7Qp0JwhZIDDuA/E5FYkCyUYipOdRegkeJEPZFtrQAtjZEwtrwCDXeYVUqXx7yMjsYZwlheyk+rV2sWmDiprUkmvR4CoQ4+vMQ+wMI0DC/HA3zIlwdEsPOxAVGBbXizKII58SvEjFsyRusZXiE2rng1NorxNGrPulrsDPB2R5ZV5j/1xI68AqbovZWkjrOWWjlHeby0jN6rx9BaAWJYb1i0vPrtVOyNJAJZowQ20wzEfvfVLQq9QRrIU6UPt/VOPTCGnQtbB2Fmu9czlarfJyJpevMjtehmv5KLyJXDVp5TWlWG4LQBySGnYUbTKdmsxA29Q7LiVwpQSxWESVCWAsbJZ5lsS9Dw9ALXeIscegJQljpjzx7XkuW7kcPwR5hBDQXOkE4BxLDboZexiRZIfzggfgsEpZCIZSGPWjlEbYkWpXEHlt6eU/OVulx7ogrhCg4S/Rbus6tvVY0vMY85YUre8bVukooheOgeYYJ+0Fi2BmofOSux85Q0TtockLYVAw/egQEBclnaMkDZY1HT60AkBLJSgWytQLGFbzJeg0XMEULr7AeztWW794B1w0JYm3wlHYkCGdCYtjRODg8AnBMLKnozBFyQthYBAP5QpjLxPSvGFq+JCUVyqBUMNgqkJXaiKEHkexsYejosAZnn68zUPJDVGalR3cXc1osykEQhPMgMaw3dOTps3l2AjkhzIlgU/z9pcWwWGiF2H4lSHlrLcVCKhXJ9hLIYnZiWCuulWBvMeiJYtOROKGP8SRRbA9BTN5hgrAvJIYdiRO8wo5AMjzC+H9TIWwsKjmvsOnGHW9ckJQgNhbXSkSksb1xeIYWLweJCWElC4AojS9WE4csd5wesWcdLeWttGx3nCxX7TVu5Q9FT3hBjASxvfCBwaBdnC9jFDNM/AeJYUfhpDfA7f3YTlF4hJxHOCgIKFxYKIILF/5vv1h8sWmYhZiNWCUtCVTus3HoBrdf67fnrRHHpvvV2ukdawSmK8X46gF7Xxcq7g13nlaMwiYIwrUgMewIsrIAX+s6eiUDhD3GN6sHJmuFsOlfLi9TuHALYxH84IG0PSDeQMbePSVTuom94KcUU0+iGs+xaf2t9R7L2TobVxSqrugdlvr+pe4PB+PO4lgryDtMEPaBxLBeUDn4OFvXmJYvutyyWGgER3i4UAAb/c8/ZuQEh1i8sXG6JTEsVmHjuGQ5ESz1v7XiWEoIWxs+oSZkQg8v2xljq5h0tlfYlQSxo1+o1KA8dxDH+lvS2HXx9wcMBu3yY8x1bl/C/pAYJrTFuHeRCl0wFsDGIRKFCyMj698Bz//fx4z+/9o/eCAUv9xf06napDAenMUEsGmalAgWQ04YWxJMYl5jrkyp+ovZi+0T2y+GI0N43G30kfPo6wF7imC5+8L0/tIAdxDHWkDeYYLQHhLDesDZbl4bEcQKA5a9wtwLc0aCOBu+gkMEocOc8P37byAtzVwY370rXTnjtuUEq6kANhW/HFa+JCRbF7lwCaXhE2o8w1qFS+hN7DnbK2yKpVhvR6P0O1YaImHtNW8HUczhKuKYvMMEoX9IDDsbHQphNYOKWScv9rKbMaYzRvzrDTbVz/yEEv6+8DWODTYWw3fvCj3Dpt5f0/+NB+agIHMhrLUw5soQQ4kwNq6zVJrpuSrxDLtSPLEYehCbcij5QeKIcrW2F0Ppj0M7imIOVxHHWkDeYYLQFhLDzsSVBIgSLAlhwGwatWz4iq7FwR0e7G+yrPODB8AffwjDJLiYYUDo9TX+3zjNuCBuH1cvJcLYGoyFsVoPsRrvsJwQc6V4YinUCEu9iGY1Lzlak481qHmZTkuUXo8a4AnTuHkSFDNM2BMSw87CASLDYY/mTEMkjP8aY+oV9vcXFcECTL3AJt7hp4zh8b+m3gB8nzzJv6ifPIGXwWAuio0FsanY5WJ/LXmMtRLIXJ2cIYzF9othKd7ZUbjjqOWsHxp6+YHjQcLYHqESevIO66kuBGENJIYJ7ZF7DG8ihh+kyUdU4EFWvvjltj/+AC5fxkPGkAsgC0Duv/beJpsvY/B+8gRepiLWVBBzhWsxIEvF/Rp7hY3nMZYSvmKhHcafLaWZppvuE9svZiOHGoGq5EeEloLXHcWzrVj6bm2JC7b13vEgYawlehKheqoLQaiFxLAz0ItnRmtMBYjpZ+MX2P4NkZAyLVz43xCJtLT8F+cuXwZ++w24fBl3GEMW/hPCuTAXwv5G6bwoNn7GJiWE7SmK5VAbRsHVVUkahzPjieWeGOgBvdZLC5R8f3I2ju6vnCCMXVnE6UGEOrt8grAVEsOOxl2FsCkqY1BN33crXBj/eYMvX/7PI/zkCR7gPyGc+e8xfsgXwJwYhtH/uQAKAvlBYsaeYmsxDZlQYmvpf1u8xcZpYnam6XLHiOEq8cQc7ixs1aD0+9GTEDbFmtAeK3B1Uezq9VeCnx9QoIB2+T17pl1ehOtDYtiROHtgUYDVM0lIDVpZWeZTmv2b7ots+P87n7BpFEUwMv7zCv8rivPu38cDAI+QL4Lz8F+IRB5XLJe90f8A8Bj/eokBgLF8QSyGVJiDcTyx1DFyItkaUfxvO4nWS8pbbHyM0nTTfVI2puglntgYEsLq2l6r70nLOHpL5RijcZmuHkKhBy8xQbgiJIYdhQsIYauwFBph4Vh/f19+PmFeCPtnA5eNvML/hklkIF8IZ+A/EfwEgM+//z/99y/nIeZsOIwv9jxjQSznSbUkmpUIYKVCWKkolvtsnKY03XSflI2UnRhKrwMtQzA8FWva0NbQCb1gr7AeaOttdeQ8wySICUI9JIYdgZMGFadM9m7Jg2lMVhaCC/sjy8g7nO8RfvDfy3L/CuKnT57gEcDHCuf8m0WeUXbeyBfEUkI41+QzVwezuoqJVOO/nFCVO39bvMO2iGKxc7KUbmmflJ0Se0s4W8g6u3y1aBXPbo9yHOUdVlIPY2yskyuKS08ImyAILSExTNiOEo8q5/YVgfMM+2Zl/DdtGhcv/G+YBOcVzoRwBgnuJTkY/c2FcIYJwFwcA8gPlzAY5EMfxNJMwybs5R22RhQbp1mTbrpPbL8prhZTbC1Kzkdrca1lG2oRQ2wJvQhiYzR4Ic8WcenM1edcUchL4e9PMcOE/SAxTNgHY5Em9Qj+X8Hn6//vZ+NFNO7ezU/jtn/JA+D17//Gs0hweEFILuQv8jxOEJvW1VTkiqVJCWIxW1uEsBJRzO2XSrMmXWy/nJ2S49Qcb0/UilZbhaSS8uzRJu4cP2wNNgpjpavc6Wn5ZWcKYncS44R7Q2JY5+i1MxF09kpia40xFYic4DUWw9z2rw3n7fXCfzHCHKZpphe1lCAWpIsJWak6WxLExuctlSZXptz/XD6moth0v1yaknQONeJOjbhwllC2xnPrqNAELXGGCDZGz4KYQ+oeUIGeRK8cJIgJQh4Sw4Q2iHklTfeZYuL1NVtt7l+BnMcYgPyL1Q/5oRLG4tcH5h5iY8TSswG+e1bsHVYqiMWONU3j2kXt/1w+3Gfj+GWpEArjNKXpYvulbKRslRxjz3ws5eduqG0fe4tVDcSmQ3CVetqIM+KIufdWuI0g9AqJYUJblD5mf/BAeAznGX706D8hzIVKQLiQRiDywyWML15v5HuI/WC+AIdVKBXCYoLY+JwsiVw13mAxUWzc3kpCKKxJN20XY2wJl9BKJNsbvXs59SaCTdEgZtchkCjWNX5+gJdpHJwN5OVZtiE8BxLDLoCuHzPJhUiY2ijxEJv+9feHl8EAb8YEgjgX/02lxsEJYYchJYjF9hmnme4HlHmDLYllDrkQClNbe4RLyNlbOtbNhYhmWNNOemhbVxCcriLebcRVRTFB2AMSw4RVWJy2zVRwWfIYc4LYWBgHBeUf5++Pgk+e8CLY3+Qvh+nKc3IeYqu6fzGBa7rPWBCb7tP6f0C9KJay1TJcQsxeyTG2HOcpOFoE2+L5V3KM3r9bV6mnDcj14ySUCU9Bw4lKCHviEvFW/wpXfuAw/SsFN+CIzd/r7w8ULgw/gwH+AIKQL4L98V/ohNhfMREsFTbBxwtL1UtusBfbx52Hqdi35X/jukjtE/vM1YfbTOsuZi+VLmVjyVbuGGuPczTOjjs2vq/seYzxcUqPVWtvjLPbVSnOvPaciK3xvlqOW8aXmVabNSxatAhlypSBv78/YmNjceDAAVn7lJQUxMbGwt/fH2XLlsWSJUvMbDZv3oyqVavCz88PVatWRVJSkupyDQaD6DZ79mwAwL179zBs2DBUqlQJBQsWRKlSpTB8+HCkp6db1xBuBolhQhuMexYpQWypBzL2YBYuLDymcGEUxH9CWE4QmwphUxHsa5RuNWKDoqU0LYSvVFlSgtYUMVEsZ69GhForWrUQyO6MI0SwrQrBOB+1uNp36EnXnhFqRbFLOHBUsmnTJiQmJmLChAk4ceIEGjdujDZt2uDq1aui9pcuXULbtm3RuHFjnDhxAuPHj8fw4cOxefNm3iY1NRXdunVDQkICTp06hYSEBHTt2hWHDx9WVe7NmzcF28qVK2EwGNC5c2cAwI0bN3Djxg3MmTMHp0+fxurVq7Fz507079/fTq3lWhgY+/dVfUJzMjIyEBISgvQ7dxAcHCxpp3SlOGsfWanplNSUwedr6kE1FXTGf00x3m88kwS38Ma/i25waXlPnvDLMRsvrmGKmBDm/pqKYd4zLOfRFvvfkp2xuLeUl+n/1tqJfZZLNw2hUJKPWhtbj3NEGc7MU6uy7G2vBmtFoiuHI7hy3a1EbLyQGm8yMjIQUrQo0tPTZcdD0eNCQlCjRjq8vJQfZ4m8vAz8+muIqvrUq1cPzz//PBYvXsynValSBR07dsSMGTPM7MeMGYNt27bh3LlzfNrgwYNx6tQppKamAgC6deuGjIwM7Nixg7dp3bo1QkNDsWHDBqvKBYCOHTvi4cOH+OGHHyTP56uvvsIbb7yBzMxMeHt7dtQseYadCPcAivvfErr9pS02CMh5hi0NGsZ2QUH5XuJ/N6+AAATD3DsstwEqhLA1yHls1djLeXu18AqrCaEwtlcbLqF16IO1njh7ePAc5QlU+2PBESENarA2f63b15EeXA/2Frvy9GkZGRmC7elT01ez88nOzsbx48fRsmVLQXrLli3x888/ix6TmppqZt+qVSscO3YMOTk5sjZcntaUe+vWLXz33XcWvb7cDwFPF8IAvUDnFKSEr1IPsV4wq6/xy2WmfwHhIGFqw6WZfubWauZs/f3hlZWFgowhF/nzBRsvzQyYX9QWhbAxWooEsdklxDBtI9MX28T2idmZ1l8sTS5d6oU742M4lMaB23KMXHspzdOa/JXkY08xaQ+vuSt5LW1pX0s/qsSwR9tI3WOE1fj5AVpqttx/B4ySJUsK0qdMmYKpU6ea2d+9exd5eXmIiIgQpEdERCAtLU20jLS0NFH73Nxc3L17F1FRUZI2XJ7WlLtmzRoUKlQIr776quh+APjnn3/w/vvvY9CgQZI2ngSJYUKA1dO4GYtYqXRTUWwqlgHh4hUmMcPGeGVlwSsrC95Gotgb0qvNyQphR4kia0Sv3D6x8qXSAPWiGJAOo9BC7Fo6RonotVYYGx9rbZyrs8Mw9C6EpfoEJVhzb1mLNdeymrxJEOuaa9euCcIk/Pz8ZO0NJk4UxphZmiV703Qleaopd+XKlejZsyf8Ja69jIwMtGvXDlWrVsWUKVMk6+5JkBh2MXQ95zAg7g0WE8HG+0wFjdgmNj3YgwfwysoC/p2DOBfyU6aJXuzWxPKKIXXOYlOtiR1j7T4tPMJygtI0fEIuxtgaz5tSIWJPYWytKHam0LFnPLeWOEIQ2yMsQaunCMZ56eH7IMwIDg5WFDMcHh4OLy8vM2/s7du3zby2HJGRkaL23t7eKFKkiKwNl6facg8cOIDz589j06ZNonV6+PAhWrdujaCgICQlJcHHx0fUztOgmGEHo2shqxVyolJsn2kco9H8wsbxwoJ0o31eAQH5C3PAcuywl8FgW5ywrQOamse4auOExfJTk25pHyCMMZaKNZbKU2lMpSU7tXHGSrEm3lNLIaalp1dPwksLIWntfq3QIv7cg2KJ3RFfX1/ExsZi9+7dgvTdu3ejYcOGosc0aNDAzH7Xrl2oU6cOL0KlbLg81Za7YsUKxMbGombNmmb7MjIy0LJlS/j6+mLbtm2SnmNPhDzDHoA9Y5EFeZuGRMiFR3CfxTzD3N/ChfNnkTAWwOHh/x1rvKQz8pdj5vLKM5okRVFssFpPsBo7OeRCItTaSh1rjUdYjWdMTBDLeZDV5G/J26vE66bWM2dve1uwVIY7Dm5i14CzhaUtTxOsOY6Av799YobVMHLkSCQkJKBOnTpo0KABli1bhqtXr2Lw4MEAgHHjxuH69etYu3YtgPyZIxYsWICRI0diwIABSE1NxYoVK/hZIgDg7bffxksvvYRZs2bhlVdewdatW7Fnzx4cPHhQcbkcGRkZ+Oqrr/DRRx+Z1f3hw4do2bIlHj9+jM8//5x/YRAAihYtCi8t17p2QUgMOxAlXmFXe4nODClBzH0G5GOGuf2cmDL1BHPiGMj/zIlik7KMhbFZ/ZSkKdmnFNNQCTWiVq0Alhtsrd1nvJ/DUruoFchK8ldSf7m6qQ2jsCZu1Zkixx5POrQSnbaESxjnoTdIFHsU3bp1wz///INp06bh5s2bqFatGpKTkxETEwMgf65f47l/y5Qpg+TkZIwYMQILFy5EdHQ05s+fz8/9CwANGzbExo0bMXHiREyaNAnlypXDpk2bUK9ePcXlcmzcuBGMMXTv3t2s7sePH+fnLi5fvrxg36VLl1C6dGmb28eVoXmG7YjpPMNKQyTsMeewveYaFs1b6tG8VJrx3wcPhI8juXmHuX3c/3fvij9+lwstMEWJMFbqQbZ0nKkQVFOOpbKk0uTSlexXO1BbM7Bb8iBbyteW+qupr71s1RznrPMBtPXEWpOXo0S7LdgibD1AFNs6z3Djxunw9tZunuHc3AwcOKBunmHCfSHPMGGG2pf0RKdYAyw/3jT2DEu9CGYcS2zsHQ4P/08UG2OtB8oaYWwL1oY8cPtM66M2RELJfrXeYKWeeGOUvKDnCG+3knPTY9gEh71De7Tw7FqTl5rzcrYgtuXJgLOfKhCEh0NimNAE0fAOsQFKaaiElK3xX9P/jZEKv5AqQ2m60v2myM0qoQQlg6W9haFacSx2jKXj5KZ1UxLjbM25cza2tK+1eSpFCw++rXXRWhAD1l1TcnnqQRBzdXHksR5AYCCg5cQH/655QRAASAx7DE6LRZYb9KRii02PDQ/P9wBznznvMLcvKytfRJmGSXCoHWTUhCFIoVRcqY0HVhIfrFVsrT08wUrrAChbBERLUazmvPXsJRZDS1GupeDUul2k+htHQ15ignApSAw7CE+YUk1WcMuFSRjvl8I4RAIQ/i9lz4ljMQEpVje5vLRAzDusxUta1ghDNfs57OEJVlKGEm+xWlGspE622qgp056QsHIOal/YFDtWwXFcv2s8xrj0S9gE4QRIDLso9l58w9r8LXqgxTydlgaNrCzh7BIclgSxWD5qByUtvMTGWAqXUBI7LBcfbM/YWWsfaauNzZWzlfIWa90mcseqtVFqq9X1qWa/NeghHMESequjtU8ILFwTXB9t2le7/KxEIvj7axsm4eEziREmkBgmNIfrmBV3xnKP/sUGA2MBbMtgLzVYaiVIpAZAS1OtieWjhTdYa4+nNV52NYJari5iotiZXmJX8BBrid7Ephh6rKO1T1vc4ZohCB3jsBXoFi9ejBo1avBLHzZo0AA7duzg9zPGMHXqVERHRyMgIABNmjTBmTNnBHk8ffoUw4YNQ3h4OAIDA9GhQwf8/fffApv79+8jISEBISEhCAkJQUJCAh6YeA+vXr2K9u3bIzAwEOHh4Rg+fDiys4XC7fTp04iLi0NAQACKFy+OadOmwdVnoXN0qIbF8qS8rsbp3GduE1uFTszG1M54k8rbdL+luilFbECWW7lNLu5ZLF3KXu0xYjZqxYTxcUqOVWIrt1+sHeXOW23+lo5Vk4fSvAjPQem9IrHfF9n8ZoonhOYRhFY4TAyXKFECM2fOxLFjx3Ds2DG8/PLLeOWVV3jB++GHH2Lu3LlYsGABjh49isjISLRo0QIPHz7k80hMTERSUhI2btyIgwcP4tGjR4iPj0deXh5v06NHD5w8eRI7d+7Ezp07cfLkSSQkJPD78/Ly0K5dO2RmZuLgwYPYuHEjNm/ejHfeeYe3ycjIQIsWLRAdHY2jR4/i008/xZw5czB37lwHtJR7kS3orn3NO2hjgWn8V81mKoi5z8aCWCp/JVgrgo1RO9hpJXCtFZlidtaIOC2FsdQ+sWWhrW0PS/WzhK1C15WEsit4K12hjhxKrn+VkCAmCGU4ddGNsLAwzJ49G/369UN0dDQSExMxZswYAPle4IiICMyaNQuDBg1Ceno6ihYtinXr1qFbt24AgBs3bqBkyZJITk5Gq1atcO7cOVStWhWHDh3iV285dOgQGjRogN9//x2VKlXCjh07EB8fj2vXriE6OhpA/qotffr0we3btxEcHIzFixdj3LhxuHXrFvz8/AAAM2fOxKeffoq///4bBrHlfUUwXnTDPzhccbs4dIEMjfNXg+RiHcYDgqmnkVt0w3j2CEsb8J9YMh5QtBIeagZcU1vjx/ym+6yNB7U2ztla4WDNcWp+iKjZJxaPrbY9tGgrW/JQU19nxAwb4wri3RXqKIXCa0Gun9ZL7LCti25065YOX1/tFsfIzs7Apk206AaRj8M8w8bk5eVh48aNyMzMRIMGDXDp0iWkpaWhZcuWvI2fnx/i4uLw888/A8hfSjAnJ0dgEx0djWrVqvE2qampCAkJESxjWL9+fYSEhAhsqlWrxgthAGjVqhWePn2K48eP8zZxcXG8EOZsbty4gcuXL0ue19OnT/n1vo3X/SbEkezAxcIZTPfJhUGIbaahE8Z52SIC7Sk2rH00r9Yjaik/pcepDRVQE66hdJ/SsAlbPeZahE2oaWu9CjpX8Ly6Qh2lELuOVF4L5B0mCMs4VAyfPn0aQUFB8PPzw+DBg5GUlISqVasiLS0NABARESGwj4iI4PelpaXB19cXoaGhsjbFihUzK7dYsWICG9NyQkND4evrK2vDfeZsxJgxYwYfqxwSEoKSJUvKN4gE9uy89NYxCuoj5hmVC51QK4gB4awUluKHxbBVQKtFy0fzjopptYcwVvP4WAtBrMV+pTZaHEPI48qCGLAoiPXi/SUIV8Whs0lUqlQJJ0+exIMHD7B582b07t0bKSkp/H7T8APGmMWQBFMbMXstbLhoErn6jBs3DiNHjuQ/Z2RkWC2IPQnB7BP+/vkdvfFfe/HokTB/0wFH67LlQiTksNQOauqptE25ttAqVlppPpbspfabnpfSOZ0ttYeS+lg6NzkbW69xe98jSuDuVb3jCvU0rp/Ka1Wr6TbF8iCxTbg7DhXDvr6+KF++PACgTp06OHr0KD755BM+TjgtLQ1RUVG8/e3bt3mPbGRkJLKzs3H//n2Bd/j27dto2LAhb3Pr1i2zcu/cuSPI5/Dhw4L99+/fR05OjsDG1AN8+/ZtAObea2P8/PwEoRWOQK/zDduEqSDm0uyJqTAG7BtTbMvSzNaUZy1yg7M1+Wgpih0liC3VR8m5qRWt1tbT1nLdHa4t9CSKlTzxMK632P8aIdXX62HeYn9/wFfDoaiAU4JECb3i1MuBMYanT5+iTJkyiIyMxO7du/l92dnZSElJ4YVubGwsfHx8BDY3b97Eb7/9xts0aNAA6enpOHLkCG9z+PBhpKenC2x+++033Lx5k7fZtWsX/Pz8EBsby9vs379fMN3arl27EB0djdKlS2vfEA5Gb6ESHJIhE1LhE7aETIiFT3CbXDlKETvGUhlyecmVIfVZ6jysxZrYYKk8tLBXEvqgJmTC1rAHa8MqtAhLsWW/Fria4HZ0uJOWSHyftvbrlo7X67hBEFrgMM/w+PHj0aZNG5QsWRIPHz7Exo0bsW/fPuzcuRMGgwGJiYmYPn06KlSogAoVKmD69OkoWLAgevToAQAICQlB//798c4776BIkSIICwvDqFGjUL16dTRv3hwAUKVKFbRu3RoDBgzA0qVLAQADBw5EfHw8KlWqBABo2bIlqlatioSEBMyePRv37t3DqFGjMGDAAP6N0h49euC9995Dnz59MH78eFy8eBHTp0/H5MmTFc8kQViHwAMh5QHRwlsp5VXJyhKKVVMxZU15Smc4EENOCKv5bA9s+R7UHqs0PEIsTc0y2LZ6ee3tibU2f/IQSyMXKmVv1MTV6+D704OHmCDsgcPE8K1bt5CQkICbN28iJCQENWrUwM6dO9GiRQsAwOjRo/HkyRMMHToU9+/fR7169bBr1y4UKlSIz+Pjjz+Gt7c3unbtiidPnqBZs2ZYvXo1vIzWVfziiy8wfPhwftaJDh06YMGCBfx+Ly8vfPfddxg6dCgaNWqEgIAA9OjRA3PmzOFtQkJCsHv3brz11luoU6cOQkNDMXLkSEE8sJ5wSiiDHTHrcOXih219/Cz12JEbpOSEsSVMBZjawcwaIeysAVMLYaxUFNtbECupk6WwCbVi2dawCFtjl7VAjyEIanGmMHYRSBAT7ohT5xl2d6ydZ5jDnvMNOyJ/KZTqJr5+3AHGj7JNH9mbphvPQ2xqb5qnaaWk/jfFVBxLxQFLhS5Ygx6FsBS21MfSsUrb1DTNWi+9tWEsao5Rc51YU6YaG1txJyFpz3NRk7dMSJSl/tlSX2/v8QOwfZ7hQYO0n2d46VKaZ5jIx6Ev0BGE1AxBsuOzqWdYzSNzuXSpCioJzwDkX4KzR9iCKwlhwDZPpLUv0Jkeo9RDLFeWJRt7PbWwJg+l5QD29xK7iyC2p8dbaTvJ3Ovu9FSQIJwFiWE3wRVCJSy9e2Q6NpvFD8uFOFhbIeN8LYVMSIkvDlu9fXINpFQIW5O3PbFVeFkSoWL7pH7EcGmcR19N2IQlG63SlaLVDz9jtBbH1tZDr9hL4KvJl2vTf/+a9vmO+J3DQeEShDtBYthB6FGs6q0zsyiIjZHz3toaO6nUO6z0MbjSkUlOwCnJ21J9nCk6tBDFjvQSy9VVqycT1sY/W5tuCUcqKWMs/cjUE864j0wEsJgQ1nOTEYQrQGKYUISjxLzYeMwLYiVeXKlMxOYRNj7WGu+wrZ5hNZ5gsXS1gtvZghiwTXBZ+2KacXlKvcRK6uqosAZr0CJEhcMZ4tjZ16kc9gibsNTGEkJYqgpqvn5b+nVHOlT8/PI3raCJoQhjSAzrGLUdjR69z9Zi2pmrFsRqC5Dbr0RsmyIX1iCWpjZu0NWxVhQrCZsQ2y8mii15iW2tq2kejvQOc/sA268bsWvT3tei3gUx4Lg6qhTCjkZvTxgJwhpIDLsiGnqf9NyRSZ6mnCDm9otlkJUl/9KbJRFizUtUUvZSNlIjnBJx7YrYIoot/ZjhkAqVUCOIpcrUSrgqwdp87eGtdrb3WC+o/UFrbd4yQthZ0S0E4U6QGHYgmnpunfA41tb62+pIkXyhTk4EywliMUEtlS4XO2xctqU0S3iqx01pLLbUMXLHqbk+LAliqfy1Dpew55MOe2DN92cJvV6rUij9caY2HwVCmPtfbdNrNR45wqni709hEoT9IDHsZlgjWF3JOyz7Qp1cvK8aD7FcJbRww9jTm+QO2BpCYYyUV9ha7CFy1eRpTdy0NeXYgj2Esatjhx/G1HUQhHYUcHYFCCvwsAHGtNPnxb5JLJ3gr9z/3MYJYkv5SOWhBNM8xLw+Wnyf7jgyanFOavNQ6xV2NbKyHHutcOVZU6Y7XtNKMekT7BEnrPX7Je7yvgrhmZBnWOfIem1dMFTCWlTFDyvxECttO7VxmtZ6NS3FDIvZWoOrCQx7vrymJ7R8ac6W69qeUJyxZSREMCAdHqEn9PyUkSDkIDHsYBwhJvUcKmFLGKDx+C0bP2waR2xJEHNhE9z0a2pFtekJ2oIlUayHx+DOwF5vCRnnp8QrrJUX397xu0oFMeC8a8ZSWIun/OiTOE+1fbia5nJFL66fn/t2b4TzITHsqjjx5RK9TOEmKuClhLAlr7CpIDbdpzQWWSusjXWVEuemcZyuJBaMkYtHlWonuTAYwPbQCGeM0FrGB+vpR5RWAl2P17iKc9JD/2ot5B0mXBESwy6AxVXYRNCzd9gWJF+oMx38lIZPSAkBUy+xaeFavFSndLC2h4dM7jG7q2BNXdUKYUeKRK1npbDmR5ReRLEWOEsQ29iGUkssqylSrgqOENquMJYQhDH0Ap0T0KyTcPTLMEbYcg62jreSp2zJA2j6EpycTVBQ/mZqK/e/NXHC1hxnT/RWH1sx/V6N/zcWwsbfhZrvxZltpeTeV9s/OLFPMauHFjji+1F7zYiQDV9+M0bJb1m93q6u7N0mPA/yDLsyenwU6AQUxQ9LeYjlEAudEItJ5tKNPxvnoQRLscJaoXTkdFR9tEJNeARgLoQdUR9rscd0bvYu093RoG1sFYtSVRBL5/pIRwtULT3E7vY7ndAX5Bl2Y6zphNR0ls58DCY53RqgzkOs5C/nJTbdZ+qekRJkevE0WpO3q44+ct+p8Xdpy/mpUSOmaPUjQ2k+1k5t5io/hhyFRt5fS/2stU3v7PAIPZVLEGogz7CTUPsr3Zq4YT3jMKe2Gk+xpSmrpLzExjamn8XqI7ff2EYvQkTvTyAsBUzKhUqIfbZ0rnL3nBYxQPa6p63NW+6lRXuiF++0DXVQKwT1fJvZAgliQu+QZ9jNcWfvsCmi3mHj/8X+SsWJStmaeonlvMOWPMKWvExaPhe0NR89iBIxlApTYy+/pTwsfWfW1MWeqFFQtqotV/QWW/u9WHn/KfX+cnBNamuz6vUWdTcWLVqEMmXKwN/fH7GxsThw4ICsfUpKCmJjY+Hv74+yZctiyZIlZjabN29G1apV4efnh6pVqyIpKUl1uVOnTkXlypURGBiI0NBQNG/eHIcPHzbLJzU1FS+//DICAwNRuHBhNGnSBE+ePFHZCu4HiWFH4GqDh4OwR+etWhDL7RMLiZAKnbAUMuFMUay3UVIrQSUVliL2F1AmhMX2KwlzsXcba9mHaJGXq4lipd+PmpAmE5whgF0JW73D3DzDWm1+furrsGnTJiQmJmLChAk4ceIEGjdujDZt2uDq1aui9pcuXULbtm3RuHFjnDhxAuPHj8fw4cOxefNm3iY1NRXdunVDQkICTp06hYSEBHTt2lUgZJWUW7FiRSxYsACnT5/GwYMHUbp0abRs2RJ37twRlNW6dWu0bNkSR44cwdGjR/G///0PBQo4Twrm5eVh69at6NChg9PqAAAGxhhzag3cmIyMDISEhCD92jUEFysmauMoL6w1HZHS8mzp5GwZDKTGK7N6GxfC/S+XpnYfkB8+IZYu9tnadKX7ObQUaFqLMa3FvaXQCM6rL7XfFmzxPGqRbo86ODoPR+Zvh7APJX2gXt6NdRYZGRkoWjQE6enpCA4OVnVcSEgI5sxJR0CA8uMs8eRJBkaNUlefevXq4fnnn8fixYv5tCpVqqBjx46YMWOGmf2YMWOwbds2nDt3jk8bPHgwTp06hdTUVABAt27dkJGRgR07dvA2rVu3RmhoKDZs2GBVucB/7bZnzx40a9YMAFC/fn20aNEC77//vqLztSfnz5/HypUrsXbtWty5cwdNmzbF7t27nVYf8gy7EHqNu3LmNGtimLWTlBdYjSdYbh8gPk2X1GexeilJN83PWk+zWvTkvlJyXnLeYaV52Bt7Cjy1x+k9dELrvG3w/ppij5fhPM1j7CpkZ2fj+PHjaNmypSC9ZcuW+Pnnn0WPSU1NNbNv1aoVjh07hpycHFkbLk9rys3OzsayZcsQEhKCmjVrAgBu376Nw4cPo1ixYmjYsCEiIiIQFxeHgwcPKmwB28nMzMSqVavw4osvokqVKvj6668xdOhQXLp0yalCGCAx7Dic3LvZO3bYFqwdk+SaVJEgNv7fFpEsFjphuk/ss1SaXLqUnYYDvAB7XLfW1NGS+Lclb1twVHmOCMPQQhTbCx2qQ61EsHHIhOmDJ08Mp3A0GRkZgu3p06eidnfv3kVeXh4iIiIE6REREUhLSxM9Ji0tTdQ+NzcXd+/elbXh8lRT7vbt2xEUFAR/f398/PHH2L17N8LDwwEAf/31F4D82OIBAwZg586deP7559GsWTNcvHhRsn204NChQxgwYACio6MxbNgwlCtXDnv37sWff/6JSZMmoWTJknYtXwk0m4ST0WxWCReHG+u17PTN2srfXzgfsOn/xpUwTpPbZ5zG/c8JYi50wvTkxE5WqgHs0TBK0cMIrCY0QO5Hjq1LLisp3x2Qmi/bUcdbylsHba5VSITa28vS6eukeeyG1r/1uQBRUyE2ZcoUTJ06VfI4g8Fgkg8zS7Nkb5quJE8lNk2bNsXJkydx9+5dfPbZZ3zscbFixfDs2TMAwKBBg9C3b18AQO3atfHDDz9g5cqVkuEWWtCoUSMULlwYH374IXr27Ikge/THNkKeYQ9Cz95hDjUdnhI7ix5isUfpaj3CUp5JZ3iKtcKVhbAa9HCeWqG3l+zsgZPrpYUQtsXTq9evxZW5du0a0tPT+W3cuHGiduHh4fDy8jLzxt6+fdvMa8sRGRkpau/t7Y0iRYrI2nB5qik3MDAQ5cuXR/369bFixQp4e3tjxYoVAICoqCgAQNWqVQXHVKlSRfIFQK1o1aoVMjIy8MEHH2DmzJn4888/7VqeNZAYdiTUkylGSVisUszi+sREqWm6rWmmoliu8mrjie0pivXyTNYWIay2fbRe3cCWY/Xk2tOranPC9al0pgit3n21Ng893LquRnBwsGDzk5hmwtfXF7GxsWaxrbt370bDhg1Fj2nQoIGZ/a5du1CnTh34+PjI2nB5WlMuB2OMD/soXbo0oqOjcf78eYHNhQsXEBMTI5uPrSQnJ+PSpUsYNGgQNmzYgIoVK6JJkyZYs2aNbqZ1IzGsA9R6bG3x1rqCd9gUrcJirYojtkUI2yue2NI+a9HDSKr2nJWESpgidp56+RGgR/QoiB2EGhHsCCGsBDdodlECA//rRrXYAgPV12HkyJFYvnw5Vq5ciXPnzmHEiBG4evUqBg8eDAAYN24cevXqxdsPHjwYV65cwciRI3Hu3DmsXLkSK1aswKhRo3ibt99+G7t27cKsWbPw+++/Y9asWdizZw8SExMVl5uZmYnx/9/em4dJUd1t//cAs7FMswwzzegoqIiQ0RhHxcEoKAoaEeMSiCQTfSWIUdAReFyjgm8EQYPGYHjcElyDb1yiRkTGnwbjxSIZ5QFcyGNEkcg4oEMP6GyO9ftjqKa65pxT51SdWrr7+7muvrr71NnqdFfVXXd969RNN2HdunX49NNP8c477+CXv/wlduzYgZ/85CcAOsMs/uu//gv33XcfnnnmGXz00Ue45ZZb8OGHH2Lq1KkufhE1Dj74YNx8883497//jddeew3l5eX41a9+hXg8jmnTpiVn1wgLihnOQtw8oz5TYpUd44iB1Lhgax7ZOGNWveZnVjyxU+ywKG44zJhinTgJexn3XMfJgUzgpV+usB/t6cJtQKpfgaw+B8iq7B/9iA+Wqc8pfhiIxl8nk5g8eTK+/PJL3H777di5cycqKiqwYsWKpLO6c+fOlJCDIUOGYMWKFbj22mtx//33o6ysDPfddx8uvPDCZJ5Ro0Zh+fLl+PWvf41bbrkFhx9+OJ5++mmMHDlSut3u3bvjww8/xKOPPordu3djwIABOOGEE/CPf/wD3/ve95L11NTUoKWlBddeey2++uorfP/730dtbS0OP/xwv4cuhdNOOw2nnXYalixZgqeeegoPP/wwHnnkkWRccxjQPMM+kjLPsHUeQ8YeSlWcehWmuucdDts9dkPK+ojmBpaZf9jNZ+vcxE59EKWpLHdTzs8jq1vhqRoq4RSqoqNPTsiUUwmZcduGW4I+CQihTt0iWCWfG9z+pcLA6zzDf/pTAj176ptn+JtvmvB//o96fwh17rjjDrS1tWHevHkAgJUrV2Lp0qUoLy/Hb37zG/Tt2xcbN27EscceG1ofKUwiIgQZKuGmPbNNVrvpKIQBxtPqZMImWGmi5aLPbkMnRHiNJbHiNnRAJtRBpo9uhbAMQQdeBqVIMixWV4jm/vghhP0mDFeaIFT585//jMrKSgDAl19+iQsvvBADBw7E2rVrcdVVVwFAqEIYoDCJrMZNuAQQbfGrevVUy/RrouVOn4FOQWx1iVmhE6LvPKwD4faI6MV68sNJjIrN5Qe61o03PV+Y+BHWoKk+P0VwVIRoJky7pvs2iRCvyGcdn3zySTJc4+WXX8aRRx6Jhx9+GO+++y7Gjx8fcu86IWc4y8mEOGCvKN9YZ/3sxRlWdYl5fZTByY1VvTyv04Fm1ctb5jYtTGT7w1NOXhVVVBRZxJC9OQ5wd5EkajfM0d+ACIvCwkK07P8Dvvbaa8mn6Q0YMAD77OGCIUFiOAw4e6WgQyXctpsOmAcv60uEJ0Fs/Swrjln5AXFsq47wAC/lzLJ+iU0d9UZNCKtCgjgQ/A6JCHq4SRATUeaUU07BjTfeiAcffBDPPPMMfvzjHwMAPvroo0g8fQ7ghEls2rRJuaIRI0agRw+KuiDCx0lP8PQSM2TCLCj7WTZswprH3pbTjBM6YNXJa0clVEI1fEOWKDnAKtecoyTOM+FauQZU3GBZoiAyaQYJIqrcc889uPjii3HddddhxowZqKqqAgA0NzfjpptuCrl3nTDV67HHHoucnBzITjTRrVs3/Otf/8Jhhx2mtXOEM7qmPHMbP5yOiDSBOQbcMfUaU2x+tneENw2bXRC7jR/mrYu1bWuaUxm3ywlneH9QHWLWax1pLqgzVQhbkZl2TfYndDq2BHnMyM/X+9fr6NBXF5HKnj17sHTp0uTT/A499FCsWbOmS75zzjkn6K5x4Vq569evx8CBAx0rMAwDFRUVWjuVzWSTKPUDWW3odEBIOclwcnRVxLGoHms+3s11rJVUOUI4Ob8y9pKOG/NUkTmC85bbQ0+ciILYyzSbLwLroVsIR00EqyCzOcmYLNY8dNwiTL766ivMnz+f+2jrKMIUw6NHj8YRRxyBvn37SlVy6qmnorCwUGe/CAXIHU7FF0Fsr9jrZ3sHWCJaFMbg1hF2ErKqcck8B5PQg/1PmubObNTJlKnKwvibZMrxg8hOmGL4jTfeUKpkxYoVWjpDhE+27dC0CmJ7hTLOMC+f9Z3lDtvbd4OuuFfeVF7poBrckI7xwmESgXHQtU/z4y/t9cKOKK/bcAm389ATRLpCd7xFkEwWpOZO1u/1U9GJ2gSxaJlKuIRIEHsJkbCusBNON6yx+sATxSrtukU1RIKXPwLCrQvkBgeC098zbCFsz6/j6hcPXVcb7X3xQkEBxQwT/uEohg3DwDPPPIM33ngDDQ0NXZ4d/dxzz/nWOUIenTsv3WKc1a+oxZp5FsRmJTLL7A06OcMsQWztuB3VUAgeqnHDTo6wV3EcBVEYRvvWNmVFvOxv4IY0m00jCvsXP9ARuh/UJpWpF4mIzMFRDF9zzTV48MEHcdppp6G0tBQ5OTlB9IvIIvxywlWjCDwJYvt3kQi2f5cRwlZBbGIXxixUY3pZ+XnuKm/qN9mBV/2BeKIwKFc4ikI4nRxuIgWdP5HXiCk/iWq/CMKKoxh+4okn8Nxzz+FHP/pREP0h9uNGIEbZHQ6rPd2C2LEBFRFsL28Vvk6dBNRnSbCKVxmc6mdN/WbilyBmlef1TSV/ugnhdBC76dDHDEL1vNeah1XWj1AJIjsoLCzEqaeeGnY3lHAUw7FYjOYPJtIanYKYeYBgNeDVGbbWaxfJbm5Qs7rKTo+/VBHZToJYpp9OP5CKIyzqu1tx5qacFyEoEr4kMAkFgvq78IwMna6w7nmGv/1WX11EKoMGDcLLL78cdjeUcBTDc+fOxbx58/DHP/6Rpk9zi13E+Eg6u8PpAlcQA/Ki2EzjhUjYl7OQEZss8S0SxSwxqRLrKzoxEJV1Kmf/bl/mJOBl459VlunGjQjWETjqB0EFotLJgRbIHSb8pHv37lIPcbPfkxYkjmL4Jz/5Cf785z+jpKQEgwcPRm5ubsryd955x7fOZRQudtpREKNB9sHPtnyPH7Y2ZFbglC4KkVAVxSrXQ2XDLEQCzNqefeo3UX9EAl5WlFo/y7jYQYtdlTqd4oBVXOEgA0ezUIhGOS7XT9wK4mwcK4LN888/n/L9iSeewIsvvojf/e53GDRoUEi9SsVRDF966aWoq6vDz3/+c7qBLk2gs3k2ug9mwnHmOXYyMcOsz06wVk7GeRbVp9IeSxCL2nDTB1URzKpDdpnMcq/oFMLWfEGokCwTwtmAcniYZVkQFBRQmES6MnHixOTnJ554As8//zyOPPJILF26FKtXr0YsFguxd504iuGXX34Zr776Kn74wx8G0R8ignh1bKMkzgMVxNZGTXgxwyrTsonaYa0ca1YKUX63wov36GjrOji1xToiq4hglb77gdv2ZUWw25CTTEWjQy0zbNk0tHZY+7qwr1wS6cVTTz2F//N//g/uuusuXHHFFTjzzDNxzjnnoLa2NvQw3G5OGcrLy1FUVBREXwgGbkWk7p2UVzEbpZ2mbh3UhjzmS6pxVjw5K481n8yLl1emLRVYsbu8uGMZa4fVd3u9Tuut2me3eax5dbXP+m149YvaJefWN3QNbRRFtVOfpPZxBMFg+fLluOSSS3DnnXeipqYGBQUF+Nvf/oZ9+/bhggsuwLchW/WOYvi3v/0trrvuOnzyyScBdIfQiR+C2IsojtLOU+aA5vVgxT1wyAgYVZHLW8aqV9QWD9FyVjpPFPP6yOqHWYddBLtF93VWXfXJ/k72ZW7SdBA1oe2woarss8K+sBAFoijSifTmL3/5C6qrqzF//nzMnj07mR6LxbBq1Sp89NFH+PnPfx5iDyXCJH7+85/jm2++weGHH46ePXt2uYHuq6++8q1zRCdRuJHOipf+mOV4B6gg1zXoS57Cm+6cQhfMZbw00eVipwd78HASWKxYaHu6XRCzZrBgucu8ZaJ1FKFbvbitT2Z9eELYTZu6/+SZrAL3IztkQe8/RP2woqNPUbw/Uve5LMUMB8fPf/5z/OY3v8F//dd/dVlWUlKC2tpanHzyySH07ACOYvjee+8NoBuEX/gVr6sjjtheXxg4HdB0HxRSfg+Zo6msILKLUZ7Atgthq0gW1S/TplM6wHaL9+3rms5ySWX7ki7IOsE62wmKKKopBVQEMRANUWyiSxy72SWw+hGlsSHCYd68ebj++uuxb98+vP/+++jWrRtGjBiBnj17AgAGDx6MV199NdQ+5hgyk78RrmhqakIsFkNi1y7Pcdde3VK/xGaUHGsveJlYgVefqFzy9zAbVjny8jplrcNaL++zU7uiFZCZ21ilDK/NMAWVSliIm/pEYljFlRelhU2Qv5+gLbf7KdUhVc2vM8pGBrd/Ea/9bGnpPB6Wl8eQSCSUjofmcbSuLoHevfXdv7RvXxMqK9X7Q7jjlltuwd13343W1lYAQEFBAa699lrccccdIfesE6Yz3NTUpPTn2Lt3L/r06aOtU0RXojqjg1lnuotir5c8nbSJ48FENmTBKa7XbJjl/MqEVMgisp9kHGPV+nlpURSALGSEsBNuTkDCJkscYmt+wN15XxC43c+53YytZdqiMaEQEQJLlizBAw88gIcffhiHHnoofvSjH6G2thaXXXYZYrEYrrvuurC7yBbD/fr1w86dO1FSUiJVyUEHHYSNGzfSY5sjjp9TnEUtrtkNvAMF73KhykHFrgmSv4UoXtjBJeWGmohCIXQegUV99TJoKu5w0IGbbpWAX3WnA0EJYp/acfMXi/JP6TV8wWv4hFt0P465vV1fXYSYP/zhD7j77rvxs5/9DB9//DEMw8DIkSPxu9/9DtOnT4+uGDYMAw8//DB6S05s307/qkDQIThJELvHq+biHqvtgpi1fD+i8U25OZEniHUgI3RlxbEOghLEqn2XCbPQMR5RdYWthOwQe903RTn+1e3Q6roaFmXhT0SDjz/+mPmsiiOOOAI7d+4MoUddYYrhQw45BA899JB0JfF4vMssE0R0IUGcJjg4wQD7gNTFddYhjL26wE7xrixUwyr8VCqyYRu6kP2doqLOWP1g/R/8Vk4+txH0hQi/0SHy0zwShgiAvn37oqmpqUv6m2++iWHDhoXQo64wxTDNKRxdSGz6i98HO+uBo8vMEhysv7fTvWld6na6Cc7pKKbTBZYNndB1g5oIr1OxBdFHJ/z6o/L66OZuMhLEgRB1Qep1jnoivTnuuOOwZs0aHHvssQA6owmmTZuGJ598Eo8//ni4nduP49RqRGZC7jCbIA5ydkEsk9+pHnveggJ5sa2ELnHs9Y4cr8j2RWdIg0ostIigRbB9Oc8F5gXch/H7MtrVuV/KNEGsI2SC17au40xBAcUMpys33XQTtm3bBgDIz8/Hcccdh+bmZrz66qs45ZRTQu5dJzS1mo/onFrNjq6dup9n6+koiIM+wMlMkOA2qsD+nflbq8xQoDKdl2x61BSFFXMAZUIkVJ1m2bALN+ElblBVGSr/haBDTBza0blfitrf1+uwelkfVtvWfU5TUxNiAwe6nlrto48S6NNH33F0794mHHEETa1GdELOcACYj+ON4mUicogPEMaBzYu+dDJnWaETXSgQPxEwpXKWMHMbIuHkFocJzw12mtVCV5tWonhjoFkmKr+XiCxziKMULhHF4x0RDqtXrxYuHz16dEA94UNiOEB0Cs90E5rZDutKvKqp6pSPp1VF9fGEckq8sX16Nl5j9nRWft53mc6q4DYWmlWe5+q67auucImwsf9evN80bAIQxGYzUSDMcAk/0T21Gs17HBynn346DMNATk5OMs0alPDdd9+F0a0USAwT5A7DvwOAjPOr4g5b0RGaywv/7DJNm5lZxR1mdYYlit0IYj+cWFVHWDVUQlRXWOgYR9UbIHWPgexMFrZ03fumKAnJSAriqAwOETiNjY0p37/++mvU1dXhlltuwcKFC0PqVSpcMTx27FhcddVVuOCCC5jLd+/ejRNPPBEff/yxb53LRKIaLkHox2nf70YUywhd2UkbWNjDK7iiWLUz1nS7KFYRxLqElKojLBPG4HSDmUo/0gkZa9SP9ZSNd+edkMEfQezUtaCIlCCOwoAQoWGPyS4qKsKECRNQWFiIG264AePGjQupZwfgiuE33ngDq1evxs0334x58+Z1Wd7R0YFPP/3U185lKroEsc4deTa7w37sp1WEMO+zUzknAaxq2JllWJqVOTOF2xkk7IqbJ4h59djR6RLLxgjb80QtNEAWnUGmQa63ykbLuqLhoyAGoiOKw4ohJsOHkOGwww7D5s2bw+4GAKCbaOHSpUvxu9/9Dueffz727dsXVJ+ygiiLQz+I6s4x7IOVFa8TM4jymstEL1Yd1mXmjaBJCgoOvOywljl9FtXDq9vtzV/28k6fWS97nW76kU6IxkL0W8jm8xOHyzB+7Z/CWl0rukLbw0bm76f6csMf/vAHDBkyBAUFBaisrMQ//vEPYf7Vq1ejsrISBQUFOOyww/Df//3fXfI8++yzGDFiBPLz8zFixAg8//zzyu0ahoG5c+eirKwMhYWFGDNmDN57772UPK2trZg5cyaKi4vRq1cvTJw4ETt27HAxCnqIxWJ49dVX0dHREVofTIRi+LzzzsPatWvx/vvvo6qqikIiIkhURSbBR9YJtgpRu2AVlefl9dIv6/cuohiQE8asz9Y89uUy9Xs9AsoIYh6iupyIktLQeUaoKpCDxGE985L/bP0PiAjzPADIHEEcNk8//TRqampw8803491338Upp5yCs88+G9u3b2fm37ZtG370ox/hlFNOwbvvvoubbroJV199NZ599tlknrVr12Ly5Mmorq7G//zP/6C6uhqTJk3C+vXrldpdtGgRFi9ejCVLlmDDhg2Ix+M488wzsXfv3mSempoaPP/881i+fDneeust7Nu3DxMmTPBdjJ5++uk47bTTurwuvPBCzJ07F927d/e1fRm48wx369YN9fX1KCkpQSKRwMUXX4z169fj6aefxhlnnIEvvvgCZWVlkVD0UcWcH3HXLv48hjp2ujpdZr/FdZQc8SBvmuMtdxMuIdIXqmVk8vIMXSvc/41IVVuVPi+/U+dU4Qltp892VPqcTrj4E6ls08pzXYtwU0729xWgax8W9N/Gy6bj5t5Q+2/d1NCAWHm563mGRcdRNzQ1NWHgQLV5hkeOHInjjjsOS5cuTaYNHz4cP/7xj7FgwYIu+a+//nq8+OKL+OCDD5JpV1xxBf7nf/4Ha9euBQBMnjwZTU1NeOWVV5J5zjrrLPTr1w9//vOfpdo1DANlZWWoqanB9ddfD6DTBS4tLcXChQsxffp0JBIJDBw4EI8//jgmT54MAPj8889RXl6OFStWYPz48bJDp8ysWbNSvre3t2PTpk3YtGkTfvGLX+B3v/udb23LIjWbRCwWw8svv4wbb7wRP/rRj7Bw4UJMmTLF775lBdl2Q11U4oejpl9U44ZZBzZRfKDKPV2iEEteCK/1N035P7MKiuKFnRpy6rwsbhS/PT+vz+mMTIy2BdVtOeWGTBPrWAaJy4Bas+9e92NBr7af8cPp7CA3NTWlfM/Pz0d+fn6XfG1tbairq8MNN9yQkj5u3DisWbOGWffatWu73Bw2fvx4PPLII2hvb0dubi7Wrl2La6+9tkuee++9V7rdbdu2ob6+PqWt/Px8jB49GmvWrMH06dNRV1eH9vb2lDxlZWWoqKjAmjVrfBXDixcvZqb/3//7fyMTgssVw9b54Mzvd955J37wgx9g6tSpeP31133vHJGZhC2IM0Gz6EBF97AEsomUMLYKRtZnO6ohCjKddqrHlpf1HxWKuLBEnR9IjB1rfFROujzDOyOUyaehUzpEcbqcR2npp8cx1x2+YtZVXl6ekn7bbbdh7ty5XfLv3r0bHR0dKC0tTUkvLS1FfX09s436+npm/m+//Ra7d+/GoEGDuHnMOmXaNd9ZecyJDurr65GXl4d+/fpJ999vpkyZghNPPDES06txxTDvKc2TJ0/GsGHD8OMf/9ivPmUdUXKHg+pLWILY74OOl9g8WaNR5uq9ynGHpXucJoNg5WUt6+IE8lZU9UApIzxlhbaECLYucxTEJrr/bKKB9wPB72IfI6fYdyAg91DW1deILqc4CLy6w7IXbtKJzz77LCVMguUKW7EbhfaHScjkt6fL1Kkrjx2ZPH6xZs0a5OVFY7sRTq3Wv39/5rJjjz0WdXV1ePnll33rGJH5hO0QRx2W3pM9+Kge9FRCL2RmVLMvY85XzGpA5SirOVRC9r/oKIhZ9fshXP2u36zXYZwj7WoGqNa8iOJ0u6ggM6xRMnlEFBUVScUMFxcXo3v37l1c1IaGhi6OrEk8Hmfm79GjBwYMGCDMY9Yp0248HgfQ6f4OGjSIm6etrQ2NjY0p7nBDQwNGjRrluP5eOP/881O+G4aBnTt34p///CduvfVWX9uWhTubxOjRo9GjBz+keMCAAfjFL37hS6eyES+iMB12ODyC7HtUDjYq92vJ3JjPQ3V9RVO4OS1j5WGlO07PxpqNQPXFg5OPOTuGA9zZNJzadotMuIfXNnzG/j/Qhpv/go/4NSOFLoLcD2aS2ZGXl4fKykrU1tampNfW1nLFZFVVVZf8q1atwvHHH4/c3FxhHrNOmXaHDBmCeDyekqetrQ2rV69O5qmsrERubm5Knp07d2LLli2+i+F+/fqlvIqLizF27FisWrUKt912m69ty0KPYyZCJwiHOIgDgI42dDtEOm+akXGpnSIGzDRRXLHb/0KX+GQHeO3Ihp0ynS8nt5b3A3uJnxbl9+GPbx03bdXL/vE9/rZWohYOFqQ77OfNdHa07dtbWgCdl9RdDPasWbNQXV2N448/HlVVVXjwwQexfft2XHHFFQCAG2+8Ef/5z3/w2GOPAeicOWLJkiWYNWsWpk2bhrVr1+KRRx5JzhIBANdccw1OPfVULFy4EOeddx5eeOEFvPbaa3jrrbek283JyUFNTQ3mz5+PoUOHYujQoZg/fz569uyZnOwgFoth6tSpmD17NgYMGID+/ftjzpw5OProo3HGGWe4HkYZ/vjHP/pavw5IDEeIdLms5Ad+CuKoOMI8/L4PS+XAp5rXRCSMnaIgvIorlsBWRXY6PFZMNHeb5QV/q8S/6AwF8TK4jH6oVmetgjlmHuKC3Pz2zJktfCCq4WBBCmIgM1ziyZMn48svv8Ttt9+OnTt3oqKiAitWrMChhx4KoNNptc79O2TIEKxYsQLXXnst7r//fpSVleG+++7DhRdemMwzatQoLF++HL/+9a9xyy234PDDD8fTTz+NkSNHSrcLANdddx2am5tx5ZVXorGxESNHjsSqVavQp0+fZJ577rkHPXr0wKRJk9Dc3IyxY8di2bJlgc3z+9prr+Gdd95Bt27dcNxxx+H0008PpF0ZuPMME95xMz+i2x1zOs01LELnegQ9bZHX/LJpblA56GkOxVWq24vAkm3DbVsy9Qu3HVYciZuGeCJbBZW2bSElbpt2FMMukJ3RQtQXYX/cBu0zkNm3hXHirvp/druPdjOvr1kuFoshYbvRzStNTU2u5j0m1Pn666/xox/9CGvXrkU8Hsfnn3+OPn364Hvf+x5WrFgRifEnZzhiRMEdDsoxYRFVF0U3PBNMJs0NfrnDvPImohvsZMqLsI5NEPeS2evnhU6YMEMoWIPjZLGruMYqg6eQz8m9d1oFnaiEt/CQ+o+rhrM4ENV9m+oqpdPsGUQ0uPnmm7F371589NFH6OjowDHHHIOGhgZMmjQJc+bMwYMPPhh2F0kME3zCEuY6DhpRdoVV0SH03AoUlfZktBmvH7KuOC/kwo0Y83vdHOdbFlXOSJM6SVUZYInyMiEsLMPb6Tdws29REcFaDN0gg3jDa9I1Kvtp0U240rS26h2c1lZ9dRFCnn32WTzyyCM45JBD8PHHHwMAcnNzceutt+Kss84iMUzowatwFJ3pi+r2Uyi7FcTpciBxi44r5H7VrXqDnUwdouXW/vrtDHu5eRDgzLfsAO//7/gwEBYKalA0h7DOsZUVxKL9gGzkCe8KQtATTmSKO2zitD6Zvj8m5Ni1axeGDRvWJb2oqAgtEfmTkBiOIH46sqJ6VXfUwkvChCu83FTvZZ/CCRH1hMysDG7ipFkiOMjL9DLt8Zbbty+nS868sZByoSVxirt187+SFVe8fZ3TfshtfD2vX9x9rv0PFuGp66JERPQNERHi8Tj+85//pNzwBwAPPPAATjjhhJB6lQqJ4YiiUxAHIVTDjDM2CWMH7JdD6/YGJdlpwWSWB+GwummPJYKDihl2Ey4hWu50QxpPg8m40Co4Oay8kBRW+9YyMk6san/9vNGUi0YR7GQ6pFOoBBCg293SAuyfm1dbfUQgnHrqqXjllVeS8xm3tLRg6NChSCQSeO2110LuXSckhtMcp51Q0OI0CjcAZgJeBLGf+Xm4CUlVuZmOJwaDdobdhIKIhKwpEEViWLTczWxkMrG/svHB1jSZcfdisKr0iQgP+j0IOwsWLMAXX3wBAOjbty/mzJmDww8/HBdddBH69u0bbuf2Q2I4wngVlmGJUl0useoNGoQ+VO/M15XXjUPqZsYKN8iGpqj0R+bGIpHY9eKMy7rBLHhj4XTS4pTu1EfV5SrQibx/tLTQ/WrZzEEHHYSDDjoIANC/f38sWLAg5B51hcRwhhKFnTodXLzh9+VSrw6qm5AHr+EMMuLPL2dYNgRFdb1U8svMzsbql6yr6uQOOznxKicton7J4Me2Qfss/ZBRQcybN086b1iPZyYxHHGC3Dn7Efflpf9RvOs6kxDFgcqWdUpzk0e1/ag5w7y8vDIqISa88BBVN9ptf3jur6pjr2sea1Vk+hmF+x/SLW44EFpb9cYMk1UdGC+88IJUPsMwQhPD3YJqaMGCBTjhhBPQp08flJSU4Mc//jG2bt2akscwDMydOxdlZWUoLCzEmDFj8N5776XkaW1txcyZM1FcXIxevXph4sSJ2LFjR0qexsZGVFdXIxaLIRaLobq6Gnv27EnJs337dpx77rno1asXiouLcfXVV6OtLXXnt3nzZowePRqFhYU46KCDcPvtt4Me2KdOporaTDlYBSWERfWpvJzK+4Vsf5zWye068z6r1mcvYy/PqpO1bvY00RjIjI/sOAZFG/K6vIIi6H0LTZJB+Mk777wj9Xr33XdD62NgzvDq1atx1VVX4YQTTsC3336Lm2++GePGjcP777+PXr16AQAWLVqExYsXY9myZTjyyCPxm9/8BmeeeSa2bt2afL52TU0NXnrpJSxfvhwDBgzA7NmzMWHCBNTV1SWfrz1lyhTs2LEDK1euBABcfvnlqK6uxksvvQQA6OjowDnnnIOBAwfirbfewpdffolLLrkEhmHg97//PYDORzWeeeaZOO2007Bhwwb861//wqWXXopevXph9uzZQQ0bkeUE7RCFLYzdtBmUM6yzPZVxszvCIkdfdWYQWVeY50Db88i2rztkQhaRYy07FZwVN+5x1MwBEsIEAeQYIVmdu3btQklJCVavXo1TTz0VhmGgrKwMNTU1uP766wF0usClpaVYuHAhpk+fjkQigYEDB+Lxxx/H5MmTAQCff/45ysvLsWLFCowfPx4ffPABRowYgXXr1mHkyJEAgHXr1qGqqgoffvghhg0bhldeeQUTJkzAZ599hrKyMgDA8uXLcemll6KhoQFFRUVYunQpbrzxRnzxxRfIz88HANx55534/e9/jx07diAnJ8dxHc1nqu/a5f3Z57ydrqsJ+CXr0Y1Kv3RMt+Q3XtuULe+326mjrI4+OtUR1kwZutpTEZ5OD6XzMi+0lxMYe1tup+1zm08HMm156Y/KvpqHU6gKCzd9dioju88WPanQ/L53bxOOOCKGRELteGgeRxN1dSjq3Vu6nGO9+/YhVlmp3B8iMwktZjiRSADovLMQALZt24b6+nqMGzcumSc/Px+jR4/GmjVrMH36dNTV1aG9vT0lT1lZGSoqKrBmzRqMHz8ea9euRSwWSwphADjppJMQi8WwZs0aDBs2DGvXrkVFRUVSCAPA+PHj0drairq6Opx22mlYu3YtRo8enRTCZp4bb7wRn3zyCYYMGeLb2Lgl6jd+6HjiFOEdWZfQTV1hCPcg50kWte325MZJnIoeMuL1yoGbKwEqT3GT/c1UxThrfGSRdbnd1u/n/ktGJOsU+5G6obClBeihUbKE4aAQkSUUMWwYBmbNmoUf/vCHqKioAADU19cDAEpLS1PylpaW4tNPP03mycvLQ79+/brkMcvX19ejpKSkS5slJSUpeezt9OvXD3l5eSl5Bg8e3KUdcxlLDLe2tqLVEpTf1NQkGAU96NhRBSk+nXauJIT147TPj1JohKieMEUvr323bauU44VI2OvxMk2ZyrizBLFM+07tqcxTLOqPah9Uxi0IB9vryarTeLgR9yrHGbr5j0hHQhHDM2bMwKZNm/DWW291WWYPPzAMwzEkwZ6HlV9HHjOihNefBQsWKE0hokKkztB9wKsI5k0xpZonm/Aa5hB0vLDuMIog29chRFnOsDWPjpMaXj63QpWH2zmbndrW9TAPpxOvqMfZyoTaBAWJYyIdCFwMz5w5Ey+++CLefPNNHHzwwcn0eDwOoNN1HTRoUDK9oaEh6cjG43G0tbWhsbExxR1uaGhIPuYvHo8nn3RiZdeuXSn1rF+/PmV5Y2Mj2tvbU/KYLrG1HaCre21y4403YtasWcnvTU1NKC8vFw1H6IThxPrZpuwlwijsnMPshxshrDO8wk07gHvB6QduL/W7cYXN9nSIYDeohkfI1GfHSSDLCnIdgs+p3aBFcdj7q0w3YwgisKnVDMPAjBkz8Nxzz+H111/vEmYwZMgQxONx1NbWJtPa2tqwevXqpNCtrKxEbm5uSp6dO3diy5YtyTxVVVVIJBJ4++23k3nWr1+PRCKRkmfLli3YuXNnMs+qVauQn5+PysrKZJ4333wzZbq1VatWoaysrEv4hEl+fj6KiopSXjqhEAJ9RN3ZCYuWFv6Ll0+1HqeX2/7JlHe7/jrXUaUOVl5WWZ3rKnvSo9K+bB7Z8Q4SJ1c/bKEaFF6ml9Oyv/WyU/FjZ0FkFIE5w1dddRWeeuopvPDCC+jTp0/SdY3FYigsLEROTg5qamowf/58DB06FEOHDsX8+fPRs2dPTJkyJZl36tSpmD17NgYMGID+/ftjzpw5OProo3HGGWcAAIYPH46zzjoL06ZNwwMPPACgc2q1CRMmYNiwYQCAcePGYcSIEaiursZdd92Fr776CnPmzMG0adOSAnbKlCmYN28eLr30Utx000343//9X8yfPx+33nqr1EwS6QCJ6/RAt4NsF1Ruyrkpr8q+ffxlopvK/ehTWMdNlgMZhDvMc0Z5zqsOQey0jva6RKEMuk92nZxg+7rpbt/tg3H8OOmXcYlZ/bXci04QkSMwMbx06VIAwJgxY1LS//SnP+HSSy8FAFx33XVobm7GlVdeicbGRowcORKrVq1KzjEMAPfccw969OiBSZMmobm5GWPHjsWyZcuScwwDwJNPPomrr746OevExIkTsWTJkuTy7t274+WXX8aVV16Jk08+GYWFhZgyZQruvvvuZJ5YLIba2lpcddVVOP7449GvXz/MmjUrJQwinSEhTNiRFbs6hZdI8HotJxLMbttVbUcXInFqxQ/xYxdVTsLQSzuselXT3bTJQlWEe6k33bAL4jy00TGFSGtCm2c4G9A5z7CJrrgt2nF5E3V+ObV+tMe6vO30WeY7oFdUsuCtdyYIChVEgtuPseDVqTrPsBU3AlH2JjC3/ZLZroK8EU3kAIvS/fi9ZLAej1jHFGufO++h8TDP8P/3/+mfZ3jsWJpnmAAQ4jzDRHiQEE4/dIZKuL3kasUPEew1ZINHFG6Y9CpC7ONt1QR+uMOyYRIy4Qwq7TlN48ZL85Og+8D7v4rSo4rWba+1Ve88w5ZpUAmCxHCWQUI4eoQp1uxz1wbZj6Da8ktk89A9bRgLFXGsgszMCbLC1U0/RDHSTqI8aFHoR7iITFx12Cd2VtzGDxNE1CAxTESeMA46fpX1gtuDilM5VSfKqyvstA7pfuCUDe3wup7W+qy/iZcrySKXWUaA6tpWZdxYHQJYdptyumHPrEsXov9KVOdLp7hhIp0hMUxEGlZMa5QvC7pF9qCsSxCrCmCvpIMA9qMPKiEFqvDqE7nGbtoQubR+OrJhuL0inPqj+v9RWTeWAI7SDBMmPEFcUAB4fiBrSwtguVHeM1HY6RCRgcRwFpFOZ+1+7qfS0RW2okuw8kIkWPVb03r3lnOHdd4YKHP5WFdbKjjF6/KW64i1lZ3hQdbJ54lmmTAFXv9kT4Jkp0lzcmhlbiQT/beDRPQf4K0LL1QlCvslE5EgJoioQmI4AOjJPWpEacceJCoHZTcH8KDKeBXBXmJNveBXHbKhBV7a4okiFQHi5CjzBJqMCJURxW7Ekqwod+qTjnAJL6he9WJd6bHW49SW38KUQiaIdIPEcEDQziEaRN0VVhXEgPcbpty4wzy8LA9ifHW2IetWy96A5rZ+UZ1eQjNMcWy/OY8VImH9zHM03QpiN7HCupzroBH12zRVzOMIbxv12o41j0qdduiYR6QTJIYDhHYOzkQ1PCJIVA/SfjvKLGRDJUy8iuAo/HZeHHL7iYab+pzqt6Y5hV6oOsYygpi1PAhk+gPoE8ey6+c2htisn9dv63HEy/bsFHKiA63HvNZWvTHDNLUaYYHEcMCQIPaG24OsTuERBG4EMRCuaOS1rZrutEwHQTjEPOdWRpR6jRmWjUmW3Z7sgtgNTlcbVLZtmdhhN46yiiDWjegKTUHBgWnM7McPr4JYJg/F+xKZDonhECBB7A7aITvjx6Vft+ERYYvgsK8yyDi3KvXIhECw8jq5xW4EMcuNdSuadPxnecI3ikLO6eSJJYStgphXNgpXT1jQ8Y5IB0gMhwTtILri18483VxhE7cHuCgcGHW6xF7y6iZIEezUtowzLBtX7FUQs/qqIkJ13DwnEsRmG7KOu+7/mJv/jV0IR1HY083hRKZAYjhLSHfhnS3hEVGENQbWeGH7cl0uscxyFcI42eLFDbuFJW6t6TKhATpFlUiwuQl/cNu+9bu1TZbLGiRu/t8iISxahyicBPPQIppbWoBu3bzXY62PIPZDYjhEyB12xsvBKxOEsO4DnGxdKoJWlCesUIkgfjuZdeCJVztOjjFvOW9mB1YZ0bbkRSg6CTZdv6dTfLWTKNYZry2DHyeAIkEchf0VQaQrJIbTDJlnwacrOh2lTBDCQWBdT1kBzHOFvTjETstEhPFb6RD99nxOYtUKz/nkLbO34UX8iqZcUxGdunEKT1EJJdHVD5llTic4onCPIG6cjVpoBkH4gcZrDoQbMlXYeqGggISwiY7YUl66ioBzSnOqu6VF3J6s68x6ycIrr1qfrOgX1c9qS6Vf9jT7Z9EyUb9V2LePfWLEaj9ot1803rz+RUEI2/vHevdjbIMgm451jY2NqK6uRiwWQywWQ3V1Nfbs2SMsYxgG5s6di7KyMhQWFmLMmDF47733UvK0trZi5syZKC4uRq9evTBx4kTs2LFDqe0vv/wSZ511FsrKypCfn4/y8nLMmDEDTbbnZRuGgbvvvhtHHnlkMt/8+fM9jUuUIWeYICxE4cDipQ863VWRK6wqhGXbdJNHd1mRwyiqX8UFVikjmi7N7vaKlql8VsF+U53ZB5F76TUkw20ZHesrakdlmdNvz3KG/ep7WvD118B33+mrr7lZX102pkyZgh07dmDlypUAgMsvvxzV1dV46aWXuGUWLVqExYsXY9myZTjyyCPxm9/8BmeeeSa2bt2KPn36AABqamrw0ksvYfny5RgwYABmz56NCRMmoK6uDt33z8Hs1Ha3bt1w3nnn4Te/+Q0GDhyIjz76CFdddRW++uorPPXUU8n+XHPNNVi1ahXuvvtuHH300UgkEti9e7cv4xUFcgzDMMLuRKbS1NSEWCyGxK5dKCoq4uZTjRt2c4adTbHJOgVhkPjpaIuEm9Nn810mPEJG6MmIALcE9Rs6raeuftgFj/W7aBkvr2yaCLvItWMNn1Cp2+vsE/YxVx0Pt7g9qVM5ETI/2/sdhCAWtaFyLGpqakJs4EAkEgnh8ZBZLhZDYskSFBUWSpdzrLe5GbEZM5T748QHH3yAESNGYN26dRg5ciQAYN26daiqqsKHH36IYcOGdSljGAbKyspQU1OD66+/HkCnC1xaWoqFCxdi+vTpSCQSGDhwIB5//HFMnjwZAPD555+jvLwcK1aswPjx4121DQD33Xcf7rrrLnz22WfJdTjmmGOwZcsWbplMg8IkIoCquM0mYatKuglhXZdo3QphXrpdCDvlE322ponadjMOolAC2TJuLr9bv4uWWzHDCmReMu05XTJ3+j15aU6/kf27Pd26DiouuJvfQfQbqo6HG3QKYdb68NZBV/+JTrFtfbV6fDLd2rVrEYvFkmIUAE466STEYjGsWbOGWWbbtm2or6/HuHHjkmn5+fkYPXp0skxdXR3a29tT8pSVlaGioiKZx03bn3/+OZ577jmMHj06mfbSSy/hsMMOw9/+9jcMGTIEgwcPxi9/+Ut89dVXLkYkPSAxTGQ9QR9QdAlga32idkR5ZQ/UrEcvqwph2T6K8CpiZcS46MXrN6tunsDltc0qa80j27aMAGSJKpHQlRV9dlEs6o+ojiC3STdtqYyJrj6EIXwjFYohu5GqvACUl5cn42tjsRgWLFjgqZv19fUoKSnpkl5SUoL6+npuGQAoLS1NSS8tLU0uq6+vR15eHvr16yfMI9v2xRdfjJ49e+Kggw5CUVERHn744eSyjz/+GJ9++in+8pe/4LHHHsOyZctQV1eHiy66yGn10xYSwxEhm24uiBJBH3R1tuck7pzS3AhYliMlqkfWtRPhViD5cdLBcu3sAlAkflUEtlkfb7nT78kTvyIhrGO8vApia74wBKAIv/okIzr9ngouW/nss8+QSCSSrxtvvJGZb+7cucjJyRG+/vnPfwIAcnJyupQ3DIOZbsW+XKaMPY9s2/fccw/eeecd/PWvf8W///1vzJo1K7nsu+++Q2trKx577DGccsopGDNmDB555BG88cYb2Lp1q7A/6QrdQJemZPIUa0ERdffJTT2qopb32UnQyKAi1N3k0VlOpS5WupPz66ZdU/xYb1Azl8vOKczLa6az0tz02dqmvV1ev2VdR/s6hYXf+wvRwzScUBlPr/3JNIqKiqRihmfMmIGf/vSnwjyDBw/Gpk2b8MUXX3RZtmvXri7Or0k8HgfQ6ewOGjQomd7Q0JAsE4/H0dbWhsbGxhR3uKGhAaNGjUrmkW07Ho8jHo/jqKOOwoABA3DKKafglltuwaBBgzBo0CD06NEDRx55ZDL/8OHDAQDbt2/PyDhicoazAIox7kq6CWEnR0rkwIryOTl2bsMj3LjBYTnAgiuowjZELrCoTzLtmfmsbfGWWetkfef95jyX2+1Y8tqRnZdatX6duNm23Nbp14kxOcT+UlxcjKOOOkr4KigoQFVVFRKJBN5+++1k2fXr1yORSCRFq50hQ4YgHo+jtrY2mdbW1obVq1cny1RWViI3Nzclz86dO7Fly5ZkHjdtA53OMYBkvPTJJ5+Mb7/9Fv/+97+Tef71r38BAA499FC5AUszyBmOEKpPpEtHd9i6w9btPETtYKDzcrNqHllh7PRZNs1NeZllIoIoZ8/r1QF2GgfRNsFyiAG1xxGL4D3YwZ5HJ25cX7/2IXa3PJvxwxX2bMq0tgIOIQPK9fnA8OHDcdZZZ2HatGl44IEHAHRObzZhwoQUR/Woo47CggULcP755yMnJwc1NTWYP38+hg4diqFDh2L+/Pno2bMnpkyZAgCIxWKYOnUqZs+ejQEDBqB///6YM2cOjj76aJxxxhnSba9YsQJffPEFTjjhBPTu3Rvvv/8+rrvuOpx88skYPHgwAOCMM87Acccdh8suuwz33nsvvvvuO1x11VU488wzU9ziTILEcJqTToI4mw4yfgs1XSLY/l3kRqr0T7aMG3fQDV7bEcUA62zfLojt33lPfwPkRbH9u4xIttfLW87qs9lv61zErDJO9bJwOoFwMyex36gI7jBCFbIlPMJPnnzySVx99dXJmR8mTpyIJUuWpOTZunUrEolE8vt1112H5uZmXHnllWhsbMTIkSOxatWq5BzDQGecb48ePTBp0iQ0Nzdj7NixWLZsWXKOYZm2CwsL8dBDD+Haa69Fa2srysvLccEFF+CGG25I5unWrRteeuklzJw5E6eeeip69eqFs88+G7/97W/1DlSEoHmGfUR2nmErbs+eeYI4KiESQbpMuvL53Q/VvKL8btxc+3eeEOZdYneqQ7W/InSLcNkyOk4IVPOztguZOX1Vy/PmAFaZy1ilPt78wzK4Ebwq8zD7gdPvrnISouP3kUG1vIoRs7upBQMHxtzPM3zHHSjS+KM1tbQgdvPN2ucZJtITcoYjhmqohIlZxm15Gew7Ptl2yBFWzyOT360AZqWpCGFZdAjhsEQw4Byn6xci55TluALyTrE1neUOiz7z6pGF96Q6GUT5ndzhqOImFEX1ASmq/SGIbIXEcIYRpBPsRXjL7nj9FPe68MuRlhWTOkMmvDxlTveJQJghFKLY4CDgCTw3otie354uEsK8MAtWH+35Wf3nxT2z+snCrfCNqtDzMqVa0P1gIRum17kP93g2qftsNJtcGsIREsOEFGHEJZttRlUQ6xZ2qrG1XtJY6ToFoEo/3OZzm99N2TCOmyLhxxO6LFFsz28t4ySEWc6wrCDmpdkFsUw/RfVlMn6vZ7aMI0E4QWI4gkRN/IUphKOIThHsRiTLOMMqbrHMtF0qn70QBSEctitsRSacgJXHvg48ccybj5jlDMvMZWxvg9dvkSAW9ZNXtxuB7Leo9jozhd8xziSECeIAJIaJwHHaCUdRCOuMXXXrErsRxaJ0mZvDghK5QYpgUXldM2joRiZWVyScrevFiy/mOcMyrrBTiAQrjdcn3roFJd6cfu8w3Nqwb5TzQpSMHYLgQWKYEBJFYcrDqxPDQmccqh8usJt2ZKcJk3WIVdsPOr/u8mHj5BY7CWdefDHPGZZ1hZ1EsKxYt/eNVZfMd1FZa7oqMm69ico+SXZWDK+krSOse15gn+YZJtITEsMRJWqhEjpI252wIiruqqyb6yRE3V7yd9O+bB06ynrNr7t8lNDlFjvN/+sUO6wSYuHUJ17f7P1xg253WVYUewnnkHGJndJV8+gk045hROZCYpjgossVVnFHouRE6wiNcOPcysblysT/OtWv2jfZPLoJQgTzxs4pNla1HacybgSLkzAWLWc9EEMmBELVFWYtF/XZ3jcWQYZP6OiDVyHshbDHiSCiDInhCBN1d1ilbzI74kwXwioiVFYQe308sFNeP51b2bxehLBO4e72srjoZFD2ZElFyMiGUahMY6byWbSc166sWLfXKdt/1bJhIuqf276Hsc5RPnYRhB0Sw0QkiJIQVsVJ0Ki4wzIi2OvDILyIUBWBrwO39YcZDhFU7LqsSy0TR8t7XLIfrrCMi+0kiFXacuNIq6JLZLsVwlEX+FpoaQF0PjCXYoYJCySGicgTtMPg1d2UdXV56awyvIdhyPTHDekaW+u232FMp6Yr9MOLKNYtiFVdYVG6aL10iU+Z3yCM2SNU8qjELBMEwYbEcMQJK1QiSKdWZ1t+uHI8VMIiVGOJnURwGKJXR+iISl1+hmj4TRj/Q5WwBx5+CmJRX1np9rIqcxOr3rDnVJ+X8iL8FrJhCWEKkSDSDRLDhCt07eyCDo9wEihuQwhk3GAV8WyKYFVB7RdBC810FsKy6BbMMmJXJo7WiyBm1SkKVXDqi2id3IRHeBGHOt1qXTM/+Cl2Ixdf3dqqN0yiLX1D8wj9dAu7A9lAG/Iy6kw5k9ZFlZYW70LYWof52eoE79vHzsPKHwRe3N0gDqbpKIT9wq3jbk+TuSLB+izzn1ftC69fTuV4dXvZfnT814ISwl6ccC/rmc3HByJ9IWc4QNqQlxY3igXVx6iNhdcwAFVxYEXkBPsRHhFl/A7dsBNEvHDQYRNhOsS6HVsvDqWTs2xFtg0v/UkHR9gLIiGcDfsuIn0hMRww5s5CRQhGfYo1N0RNCMsg4wiriFkn941VntcXHlE9aOogXYSwCL9Eskycqx+CmFUPSxDb+6YSHiHqr5fwCOvvEEZ8cNB5WLD2cZm8DyEIExLDIZEuLrGdTBPlJiJB4iRGReKVlcYSwX45wqJyXuMn052whXAU0C2I3QpmXh7WMjcP4pA5OXCqw2/CFsJe8d0VbmkBvvtOQ0X7oZhhwgKJ4RBJV0HslXRaZ6c4RJ4QFolgXaEVMjg5gzL5oojXg2uUhLB9+jGdBBkywSqrKohV+65ar4oodtM3tyJa1/aX7Se4BOEWuoEuZKLmtKaTUFWFt7OXTXcrhFVuiuOl2UUxbxlrHXTmY42DG8IU32EJYZkbnsIaF97VDzdhPW7aES1nIfPgGZn/uxNREojpdsJKEOkEieEIEDVBzENHP6MmtlUFsrlMRgibItieznuxlvPSeH1SySeCly9K4sANYTvCYVzmlv3NZLYFp4e/OF3dkOmP2ysjqoJYZrkoT9S2hbBcYafZkqI2TgTBgsIkIkK2hkxEEdHBW+SIWcUjSwSr1OXUDzuiS8JOy2Uuo3shyJkURHgRwqwYVaf6eOstMx5+hk6I4P0nWlrYMbtmunU5q4x9udN3GVixw7x+sNZJdnkQuFn/IIhUn1paKGaY8A0Sw0RghCn2ZV0jGSHs9G6GRLCWOaWJPouw51MRBDrFQFSErw5knnbmFtlxYs3CEARO4lYkRGWFnRsB6EU0RlVw6iCqscKZsi8gMh8Kk4gQ6RIuwUI2Bi8q+CGErbHBZppsWITos7UPMqEQvPKidNb6+w3vAB62YOndW04Iy+QTxQGrxgib+VXKeYlDdtpGWDeE2vO5DXOQLcdy5522C93LZPEasuHH9plO+2yC8BNyhiMGhUt0JYh5lt0KYRk3WDVUQtQvp+WyjrBqulei7hh7cYF793YfMuG0zKlOv1F1eb2GS7hBNlwiKLy610Bws1gQBNEJieEIEkVBnM43SIiErug7TxA7hUW4FcOiNFlEIlflIBr2wdVJILoRkH6GPZh1i0SxkyAGorktiQSsKH6YJ4JF9al+Vum3U3oQeO27zjIy/zUdwl4bra16Y4bb2/XVRaQ9FCYRUax36KZz+IQu8vaPiFd0CmH7lGmyL1ZdvOUydcmsp71Np7yidCdUwh9EB9p0dLq8hE3ILA8L0XYjOgHQ/d/iEfYsIXactk1ZIapaN0EQ7iAxHHGiLoSdxKWJLqdbp2PuVQhb0728rG3JHihlyqiI3zAPvG7FXxRFI+A9llhmeRjICGLWNiRTXuazqC5rH5zyidKDRGZb96v/UVh/gogSJIaJtENFEMseZO0HcZGj68YNlnF/rZiuM+sls65O6VETxDyiJghVkBXFTsujNAYyJ7+sbUmmvKowzBRB5+Yqj468fhKVfhCELBQzTGQUbnbCvIM3yxW2C2HrclE5Vt/cXto1y7GEVkuLP+JJV71u5t714+azIHGKJ5aJF/ZzijV7fTLzTrNift3ED7O+89LCxE1fVNfB/B1k45x59Tu1G/XthUtLC9DRoa8+ihkmLJAzTDgSxVANGXdY5TKskxBWjQ/es6drmorDK3MJlVeHFydY14HSTSyw2/hh3e6pfQoz3ksVJ6dYtl4vfZDBzeV768kiLy/rhNGpXnuam20iTPHn9uRcx9UcXdt32opnglCAxDCR8XgVwtb8qi+r+JUtY++7SJzwhLUfgljnQVG3IJZZ7kQQ8/4CcqLYTR/cIprGS/SbOwliJxEru12KSAeh5raPOk5gVU4kCCKboTAJwjVR3rnKHnxlHGHrd554tX/nPZBAdsx4lz95y4KipUXtgQ+i9dUdMmEuN/sp0z+dsC5jixCFT7iZas1tKIWsCyxzSd78boZMWJebn631sZbz+qDb/fcjLw/rGKuGTsiERziNXZD41t7XXwM9NEqWb7/VVxeR9pAzTGQMqk6KDiHc0tIZEmGGRTi5wKz6eOui4tB6cYdl21CtA3Dv5orcTtVQAl1hDqrItiVyit32VaWcbD7ef1J01cK+XNYBllmmm6BOMp2uBvHy29NY+fwiysYHQeiAxDChlSjc9MI6kMoIYPPdFLVOItj6sopgVryw6MAns8xP/K7fy4wJbsRyFJEVxV7K88rpxkmIWT+rCmJdJ2G6CEMgi/KIvvPSdEGCmMhkKEyCyHicDrg8IWymicQtkCqc7fXLHkDsl8VV7+j3A6dLr24uNYvGQxQ2wSure5YFmXXy0o7TOOiYeYJVxim/TB4rrP+p9T9h/SwKmeDVbQ2hYOWVrcveRy95gkK0D7Cvq9PY+NE3Ud0kmIl0hZxhQoiOmST8eLS0vV+yzq+9jJMjLBLC+/YBu3c7O8EyDrHq93TFyeF0collyjqFJ3gNndARcuFUzutDO1j5/UD0P5V1iGVcYZ3oCh8J4mRUJj3oK0qiq1i+4mYnq7IT1khjYyOqq6sRi8UQi8VQXV2NPXv2CMsYhoG5c+eirKwMhYWFGDNmDN57772UPK2trZg5cyaKi4vRq1cvTJw4ETt27FBqe9myZcjJyWG+GhoaAAB///vfcd5552HQoEHo1asXjj32WDz55JNaxiaqkBgmsgqee2sXxTwhvGdPpwDevZud11qGJ5JZ7dr7xPruJ0GLbT9FMSuv37HCbtsQ5Vd5kl2Y7qcfgphXZ6acFMqiIojDEsU+68q0ZMqUKdi4cSNWrlyJlStXYuPGjaiurhaWWbRoERYvXowlS5Zgw4YNiMfjOPPMM7F3795knpqaGjz//PNYvnw53nrrLezbtw8TJkxAh2X+Zae2J0+ejJ07d6a8xo8fj9GjR6OkpAQAsGbNGhxzzDF49tlnsWnTJlx22WX4xS9+gZdeeknzSEWHHMMwjLA7kak0NTUhFoth164EioqKwu6OFHYXV+QMs3aArAOu386wrCvMerd+trrCdiFrvUGOdRBwc7C2jpXqZ9Z3lnBi/R5u4nN56BJYTuMmM65RPiDr6L/sQ1q8jKWXMRT9P62fzf+pmeb2nZdm3w6cthuVbUR2uW5Uts0gtlc3NDU1obw8hkRC7XhoHkcTJ5yAIo2zSTR9+y1iGzYo98eJDz74ACNGjMC6deswcuRIAMC6detQVVWFDz/8EMOGDetSxjAMlJWVoaamBtdffz2AThe4tLQUCxcuxPTp05FIJDBw4EA8/vjjmDx5MgDg888/R3l5OVasWIHx48e7anvXrl046KCD8MgjjwgF+znnnIPS0lL88Y9/9DxGUYScYSLtkAndkBXE5mfRk+XsQtg6ewTPFZa5MifzOVtQCW2QqcOPl47185JHximWqSdqDrHKtsr6zkvLJGQdYjNNlD+MsfLzqoxXmpqaUl6tra2e6lu7di1isVhSjALASSedhFgshjVr1jDLbNu2DfX19Rg3blwyLT8/H6NHj06WqaurQ3t7e0qesrIyVFRUJPO4afuxxx5Dz549cdFFFwnXK5FIoH///g5rn77QDXREWuMkcp3eWWELLIFrD4vgOcMizINBSwv7M9GJdWxEy0V5/ID1O6m277RuMnmcbrKz1iMaQ96VHS9jav8/O/3XzTSZ7UDHtqLDFQ4L3vqbvxdrbFnporr8QFs7ra165wbeH1pQXl6eknzbbbdh7ty5rqutr69PhhtYKSkpQX19PbcMAJSWlqakl5aW4tNPP03mycvLQ79+/brkMcu7afuPf/wjpkyZgsLCQu46PfPMM9iwYQMeeOABbp50h8QwwUU1RCJs3AhioOvsEXZBbAphlvMLAIYhfsZ9Tk5uSpu8g7/KAcptiERY8PoiIwpFeWXW0c//qkwfReX8FsVexa0bZASxOcMEr6ysSGYt59WtizC3KyeBy1omSlfZflTXO0r7HxGfffZZSphEfn4+M9/cuXMxb948YV0bNmwAAOTk5HRZZhgGM92KfblMGXselbbXrl2L999/H4899hi3/r///e+49NJL8dBDD+F73/uesC/pDIlhwlf8iBc2cRK/Tq4tKzzCLnp5Qri52RTAYiEMANao/JycXOUDfth46Z9q7KVXceymD06oiElV11qXKHYjiP1yhwGxIDaxT7km2h6C2maivB1acSuKVQSx/T+gIorTZRwBoKioSCpmeMaMGfjpT38qzDN48GBs2rQJX3zxRZdlu3bt6uL8msTjcQCdzu6gQYOS6Q0NDcky8XgcbW1taGxsTHGHGxoaMGrUqGQelbYffvhhHHvssaisrGT2a/Xq1Tj33HOxePFi/OIXv+CtdkZAMcOENoLYAfLcapYg5n1m7eRZgtgqhK2vTiHcDqAJQPP+V5Pl1Wx5YX/eTtHs5CLrQuWGm6D74FRGNk7X7zhfN31ildOVV5THKZ44jP+D6CTUhPfYcmuaX8622/9nlLCe9POW2feBPJGro023daYDxcXFOOqoo4SvgoICVFVVIZFI4O23306WXb9+PRKJRFK02hkyZAji8Thqa2uTaW1tbVi9enWyTGVlJXJzc1Py7Ny5E1u2bEnmUWl73759+H//7/9h6tSpzD79/e9/xznnnIM777wTl19+ueJopR/kDBORow15TEfZ6cY5uxvME8VO5a2OsVUEdwrZdnSKXFPUyjrfqfFYOh0uPy8Ju0WnEGXhlyus4ubKlpFxf1XqFtUncolVnGA/witY4RK8PG7CiKJ+hcVPWL+ffbnusRHV6cvv0NICdO+urz7LdGQ6GT58OM466yxMmzYtGWN7+eWXY8KECSmzORx11FFYsGABzj//fOTk5KCmpgbz58/H0KFDMXToUMyfPx89e/bElClTAACxWAxTp07F7NmzMWDAAPTv3x9z5szB0UcfjTPOOEOpbQB4+umn8e233+JnP/tZl3UwhfA111yDCy+8MBlvnJeXl7E30ZEYJtICp4dssJaxvtvLsd6t7vABIfwNDojgNsiJ4Lz9+XP3f7d+VsN6cFENPfCK6gEvCEHih8jl1Ssrdp3yqohimbp5gtWNIPYLUbiE+ZkXLmHNI0rTJfQySUhbf2P7/07nembzCYiIJ598EldffXVy5oeJEydiyZIlKXm2bt2KRCKR/H7dddehubkZV155JRobGzFy5EisWrUKffr0Sea555570KNHD0yaNAnNzc0YO3Ysli1bhu6WkwSZtgHgkUcewQUXXNDlhjyg88Ec33zzDRYsWIAFCxYk00ePHo2///3v7gYl4tA8wz6SzvMMy7iwdlg7RTcxwyxnWCSG7S9rOq/f5rs9FKK+vjOtvr7zdUAIN+GACDYFcde17STX8t2aVphclpOTmxwv6+Vvp3f7Z5Ub59yKaJ1iWPeBOKy6ZK806GpPVJZXlyiOWOYkUlS3KvbfnfV/7t2b/b+XTbPXZa9f1AfWd5n10IEfIpWF7D7FipurGby0pqYmDBzoYZ7hI49EkUZnuKmjA7F//Uv7PMNEekLOMJHEz5vd/EAmJpGXT+SQWZ3hA0J4H4Cv9+ewimH7SYPdDbbj3h2Wwe0B1e+wBp1tuK1PxrWVyWvPz8sr+o/x2pNxj+31+ukQ63KSWesnEyZhLefkGGcjKlc8eI661/HL9t+AyAxIDBNM8tAmdbNaGLBuCGE5w/a8QNeDKe9gfyBGuAlAIzqFsDU8whoz7PQQEOeHhMjih9h1s0zWDXKq300+Fm4dLF5ZlXAJp1AGmf45uZROIRJuBDGrDzoca9nf0S7KZMIlWOVEdenGD+HnV8iPvYxMaIns/yoUWluBbhrv+f/uO311EWkPzSZBANDjCuvaaXrtiyie2IR1OdXqCHeWtQph0xk2X6Ywtn8XzRbRLFimjtNjZ53S3aJSn5PQtr689knm5aUfMvWJ0r3Aqlf2Mj9PFMr2U6bvvBNUVj57Xus7a3YJ3mdVdO2fwhSHTm3zzAFrWdUTM4LIBsgZJiIPy6F2OtDKuH0s18M67/CBcAhTCJuZrWJdxfWVC48Qxfap4lRWV1iDH06xal47bh1fN66wjCMs6xKLcOvc8RxiHc6fTGw0y+mWcXWd3GFW+SAIIzRARgiL0r3sCwgi0yExTKQtTg6I+dnuqvEcta4HA9PpbUenEHZyfgGdIREquDmQ+Rke4UYIB+VgO4lfGREtGw7BEpsyYRV2ZAWwaJlsyASvz7wTUBl4JwUiQWxv1/7ZXoe1rSCEHWudwkLld5Dpq5eTJF79nq8+trRQmAThGySGibS7cU4WkdDo2/dAnn37Or+3tADFxZ2zSBzAGg7BGie3LnHXPqk4NzLxkG6Fpx9C2ItL7FVoqIpfVXHs5P46iVcZ7PXyRKJTeyxBrMMdVsFNLLD9s9MyoGsMsp+E4RRb2xali8bIxGl/4PX/kYc2BPgXIwhlSAwTGYHdIXYSH+a7KYLtDnLnzXOmELZOq2ZiOsS99n/O27/cDIWwh0SYU6vpR6f4DEoIh+kQ6xbHMgJYR4iEvV63DrFqO34gEvXmWFnFrLncXtb8LiP4ZPqkIywnbJcYYF8dk8E6tWbQJ0kEESYkhomMw74Dtx8M+vY9IHxbWlIFMR9eiITMbBJWusYNq4pFJ3SHKAQhhJ3W1+vMAFY3VKc4Fglenkhm1clCNfRCVrgE4Q7LOuE8Z9jMa48fttbhRhTrEs4iwnSJzfajRKZeeSQyCxLDWU467KhE07wB/HhhoOsUS6YINsMkrOESu3cfWJ6Tk4sDj6MxH57BEsOsfuXZPqfmsT5ww449nZXPjTDUFRbBS5dJUxHBsusoE9Jgr48lBEV18MSvdZmTKyxTp9N488I1dIVLqOImhtjp5IEniHn5rfWyxi/IUIl0J/LHgtZWICdHX330vDHCAolhgouTCI0aLCFsxRS65isPbSiI5yXLHnww8MknnQK5b1+gsbE3UoVsLsQ30NnHSjx7hPXgrCt8QUfIhB/iWLZfKtOAqeSz/jfsbaiIY7eusJOglUE2RIJXxo5dEHt1h1XL8pxdUcywPb+JSCir9imqolnHby6C9eRPr0ReYBPEfkgME1qJysFE5HqZQhgtLchDC+LxA4/ijMcPiOLGxiIA/ZB685wpeK3fcwEU2L7bRfSBRzHb+yKTZsJ6zKxqXbpcYp0OscpjpZ2WywhOt+LYSRg7ubMqYRIsnEIkvIZQ6Chnx+n3cHKGzc/W+GFRHdY0N6ESUdmHySK68uBmXUwDxOn+C15fCCIdITFMZBxSl39bWjqfrgEgry8Qjxcl3eH6+k5RXF/fE83NvdB5k5z9yXMmpvC1i2Br+gHMEAmWK8wTjTIHGBnB6Xe6G3EuK4JVDrI8AcTLY18mEsciYaziCoval0VFrPJEuNtwCVZcvui7qDzPGeYJYlY9IkHrJlQiqoJY9QTFvp9xWic3VwJ5dZIrTKQTgT6B7s0338S5556LsrIy5OTk4K9//WvKcsMwMHfuXJSVlaGwsBBjxozBe++9l5KntbUVM2fORHFxMXr16oWJEydix44dKXkaGxtRXV2NWCyGWCyG6upq7NkvfEy2b9+Oc889F7169UJxcTGuvvpqtLWlbrybN2/G6NGjUVhYiIMOOgi33347DIozUiLMMAvzpjjrgzSSN8oxjgzx+IHXwQd3vgPFAErQ6RAXARiATnHcj5HWG6ki2BTIna6wPVZYJIhZQpjnCsuKUFY+nemiPtjz9O7NfoKeTN28PonyipY7lTf76tRf3kkO77toHUR9cjpZ8CLidAhAN+ESdhfS+m79bN+WRXVZ67ELftF9BlHHzcmi6v8jkmNi34nreBHEfgIVw19//TW+//3vY8mSJczlixYtwuLFi7FkyRJs2LAB8XgcZ555Jvbu3ZvMU1NTg+effx7Lly/HW2+9hX379mHChAno6OhI5pkyZQo2btyIlStXYuXKldi4cSOqq6uTyzs6OnDOOefg66+/xltvvYXly5fj2WefxezZs5N5mpqacOaZZ6KsrAwbNmzA73//e9x9991YvHixDyNDOKHrcdG8fWAe2lBQ0BkrbArhwYOBfv164oDwLd3/PgCdItgMo+iNTjFsffGFsFXg2D9b3624FcIqAlNHupNABNyLYDfC1434FS1nCWORCOaNh6ro1JXfD7fTSVjK6hG7AGYJYqc6ef0SpcmsV9SQ+d/a/2ui/QZvXSlEgsgWAg2TOPvss3H22WczlxmGgXvvvRc333wzLrjgAgDAo48+itLSUjz11FOYPn06EokEHnnkETz++OM444wzAABPPPEEysvL8dprr2H8+PH44IMPsHLlSqxbtw4jR44EADz00EOoqqrC1q1bMWzYMKxatQrvv/8+PvvsM5SVlQEAfvvb3+LSSy/FHXfcgaKiIjz55JNoaWnBsmXLkJ+fj4qKCvzrX//C4sWLMWvWLOTovKs1wqTDTXQFBXKXZa07686bRSwLW1qQV1CAvn2L0LdvpxDes6czZKKlZQCamwGgEQce0WyGS/BCI9wJYft6Ae6EsIp75DWvbB0sEeylL7I4HfhVlluXmevDe1qaNb/9u6heFext8kI3eGXM9fA6swQL2XVi9V+0XgD/RktR+AUrb7YIOFlBLLMvZdVLEOlOoM6wiG3btqG+vh7jxo1LpuXn52P06NFYs2YNAKCurg7t7e0pecrKylBRUZHMs3btWsRisaQQBoCTTjoJsVgsJU9FRUVSCAPA+PHj0drairq6umSe0aNHIz8/PyXP559/jk8++UT/AISEzhixsOH1i3V5dc8eHJhw2LLAnEmib99Od/iIIzrfc3IGACjDgZCJvvtfVjfYdIhN1zg3JUZYxhG2p8kIYZEzyVpuTfPDNZZ1g0VlnPon+2LhxRl2Wjc3v4Vovex5VD47tacDnius6hBbl1vLs5bzQp+cnGBT8Ks4xlF3h2V+R5WTZl3rS/HCRLoRmRvo6vc/A7e0tDQlvbS0FJ9++mkyT15eHvr169clj1m+vr4eJSUlXeovKSlJyWNvp1+/fsjLy0vJM3jw4C7tmMuGDBnSpY3W1la0trYmvzc1NYlXmnCFyNEwl7FiBK1CuKAAaGrJQ5HtEXTmAaa4OFUUd5briZaWnjCMInQ+lQ7odIitT5frnDFCxg22rgvLuTFFlorwEX1XSdOVLiOCZepxK954jqAoD285z3UE1Fxie5siAWIva69XxvkV5TWxusOq7qAdmXAFXhl726xxlK3TWiaTXWDZ9eJtC6Lyov+CaF/kCy0tNM8w4RuREcMm9vADwzAcQxLseVj5deQxb57j9WfBggWYN2+esK/ZADskwbtTwAvZsAph0UHSerBP3k/ZNw8FBXnI29/hlpbUJ9SZMcRAZ5k9e4CWllzs2TMAgPnY5k7xa9bNe2cJXnsaTzyquDtuBaeudLczRLgRwTJi16mMbFgEK50limUfEiHbHzOPSASLRKRKHhm8OKvm9sIiJyfXUeibqIgv+0mydWYJ6zJd4RRRFN0y25odtydE5AoT6UhkxHC889Z91NfXY9CgQcn0hoaGpCMbj8fR1taGxsbGFHe4oaEBo0aNSub54osvutS/a9eulHrWr1+fsryxsRHt7e0peUyX2NoO0NW9Nrnxxhsxa9as5PempiaUl5dLrH20iVLcsL0vdiHMc4ZN9u2zCGFLHQUFeck6TOfYdIVT89kPoLkpy+31it6tn2XnD46yMxyECJY5iPPyyDhc9nxOApYl3lgusWy9TstYfVeJGVYVwKr5eaESIhFsz2OKYtmTXCeywR1mofMKi6iebBpTInOJjBgeMmQI4vE4amtr8YMf/AAA0NbWhtWrV2PhwoUAgMrKSuTm5qK2thaTJk0CAOzcuRNbtmzBokWLAABVVVVIJBJ4++23ceKJJwIA1q9fj0QikRTMVVVVuOOOO7Bz586k8F61ahXy8/NRWVmZzHPTTTehra0NeXl5yTxlZWVdwidM8vPzU2KMCX9hCWGrIBGJD6sgNkWu6Rib5Q4+uGsdpvPHEjis/jl9lo0J5tXr5jsvzU26yhPj/HKHZZF1kWUFsD2N5RIDYlEsas9c5hQi4UUQ27cZlRvpRP99vhB2EsW5yfz2E02n30qEV3fYT9y0pzoWOtcpLPHbAaBDY2hDh3MWIosIVAzv27cPH330UfL7tm3bsHHjRvTv3x+HHHIIampqMH/+fAwdOhRDhw7F/Pnz0bNnT0yZMgUAEIvFMHXqVMyePRsDBgxA//79MWfOHBx99NHJ2SWGDx+Os846C9OmTcMDDzwAALj88ssxYcIEDBs2DAAwbtw4jBgxAtXV1bjrrrvw1VdfYc6cOZg2bRqKijqfRjZlyhTMmzcPl156KW666Sb87//+L+bPn49bb701a2aSEOHk1vh9UOEd9HkHet6lXdMFtrq+VoqLD4ROmHXu2ZMqHFQu57pxgHV8V0kTpQPqj0x2K4Kd+qEDkStsX+4UAywKnQC6imJRe6K6VWOGvTqrToi2MWch3Gz5XJiSxzC6hk7w2mbB+k38RqUdL33y0o7Odu3fKUSCSFcCFcP//Oc/cdpppyW/myEFl1xyCZYtW4brrrsOzc3NuPLKK9HY2IiRI0di1apV6NOnT7LMPffcgx49emDSpElobm7G2LFjsWzZMnTv3j2Z58knn8TVV1+dnHVi4sSJKXMbd+/eHS+//DKuvPJKnHzyySgsLMSUKVNw9913J/PEYjHU1tbiqquuwvHHH49+/fph1qxZKWEQmYJMTK/XUAmdz703+8LbMTsJHF4MJ8+5M4WwdZkpkEVCgNU3t991leGlidJ54tdNXV776LRMBtmTFyehbTlaQgAANeZJREFUqvrdOo4sYexUl5eYYdF3mfpUYJezCuFmVgawhLFpBFpdYhG8bdraL6f/TxDucBDi3MtJqNMygsg0cgx6pJpvNDU1IRaLYdeuRNJxjioyQtUuhlUFoE7XwOxLS0vXlxnqsGcP370tKOgUJ1YBzRImLS3A7t1d67aLYFnh4EUMBpEGuBO/omVehbHMMh3IXvbnpal+N2GFJvBib1mfRe3ILjM/W/vC+4/Lvh9whXlCmBcyYRW+B2ZpYU1TaL769j2wPVvTrNu1dRnQdbYWlSszLHTl8YLq9qPTJXbavzc1NSE2cCASCbXjoXkc/QqdE1bqoglAf0C5P0RmEpmYYSL98PvyqwieO2x1dZxcN3t+HlZxaJ2JzVqnm3HwUzyGKX5V++WlHZ24CV+wpsl+t9djD6Mw88rGB6u4vk6OsK4HcLBvmDOFsH2ZKaLybMtz95c54BKzHGL7OpmwfiszXfd/Kiwh7KVdnUI4CL7d/9JZH0GYkBgmfMN+0NEZKgGkhm7YBbA97EEk+Mw8LMwDrdVFsrrQVkHCqot3CZpHEAIzSPHrtNxvESyqw024hBdR7JRmD6Pg/Zd5gthev4wgFqWpwD8pNIWtXQiz9gPO+wa7IHZaT1Y/01EIuynv17bFKkuxwkS6Q2KYABBM3LBfsJwhlivMc71YAoNVP2sOYJYQDuMSq2iZ6g1vXtvzu26v+UXlWIJQJICt6W5FME8Y8x7gwRPEsp/t66ZDBLOREcLqIsoUxKJ15fXNOtaiWSVk0S2E/T4B9NoGCWEiUyExTHjC68HUK7xwib59u84nLOMQm/ms9bEOAKxL2364TqI+8PrkpnzUl3vN76ZekaMv4wyz0lQEtfU/plsQ+7ndskMk7EK4jbFMpY1Uh5gV/+x0VSCIS/1BuMZBtBNGWARBBAmJYSLtsYdLWA+G9rAGp4Omm1AE3mVuHciId3t/vObRJVzTRQDLtOcmhpiVpiKo7S6xnw6xdRmrPfewZo4whTAvdhjojB8Wi2SWGC4o4I+V9XMUHNigQif8bCdIV7gNbq4jiOsjCBMSw0QS3TG9Xtowxa1Kf3Rf6uRdRueFUcjUKSsugjhQ6nST/LoUHJRrBuiPIbamq6S5EcRmHSoimCWoeesu879NzcOaX5jlBvO2b6ftvhCG0Z4SLsF6N/vF+iwLK7+oDr9EcJAnjzJlKTyCyCRIDBOeER0svbow1hhl0c6XFy7hBt7BT7QuIhfRqW6/0S1ogxCzQblmojIiB9W+XJdYFok41tMP3bjFbh1fb06xNTzCLoTVwyRMx9kaLmFdN+sTKEX/BTNuWIWghLCO/3BQZQki3SExTCih4yY6tw60UzkVQSwr0mVCKERlzLaigJ/OUlii18/6nE5wnASwNd1NeATrM+vGOhVBbG2X56bq+7/aQyRYN845OcTOWN1hcx14s3GkltO7TegQwukggMkRJjIREsNECkGESviJXRCzboZz64q5Ra/A0EtQl179dp2CrN8PYSzjDOsQxLL/RX1xw3bXtx2pQtjLzBKdJ+WGkZviDvNCJQD1cAkdeXSHTYRx1cQkzGMDzTNM+AmJYUILQQk+lVhiJxfH3l+ny6o6HJioimIr6XSpVac4dxvPLYoXd3ODnUyIA2umCZZwFtXh1hUW5WPPJMHaVq1C2GlmiXakPpXOWm8ugAOxw8ABQWydNs1EJnSCB6tMUEI4TAFsks4mCUE4QWKY6IJud5jlwvjpQLNml9B9+dFNfV7ip3WIaF1CNQqxhX5cTnYrkEWusYwANtN47qXI3ZWZaUL1RFXkQLvHGissShftE0wBbQb55sLuDlu3MWuohBNO26Z9WRAiOAoC2ISEMJHpdAu7A0T6wdsxBrnzdYpbzkNbsg6zX9Z3+4uVbkVlmWz9MmVU2lCpT4Suepzq9FKHm3JuUO23zO/H6xfruz2dlWZ9OiKrrJt3e99Zn3n5xZji1z5RVhuAJgAtnFeTpey+/e/tlrT2pCNsvkx0X43hrbPMf0R2udftg4RwuDQ2NqK6uhqxWAyxWAzV1dXYY5/43oZhGJg7dy7KyspQWFiIMWPG4L333kvJ09raipkzZ6K4uBi9evXCxIkTsWPHjpQ8d9xxB0aNGoWePXuib9++zLa2b9+Oc889F7169UJxcTGuvvpqtLWl/s6vvvoqTjrpJPTp0wcDBw7EhRdeiG3btimPRbpAYpgIBNYBSceNeE6wBLHosxthKoMbsapDAPspmr2sm5v1c9sv3cj2y+l3FX0XfWaJY6sg1iGE7fXal7O+A0BODiucQYQpaFtwQCB/vf9l/2zmsYpp89XMCdHoxEkQO50EOKU5/c+8imRRGb/+50C0hHAHDsQN63h1+NjXKVOmYOPGjVi5ciVWrlyJjRs3orq6Wlhm0aJFWLx4MZYsWYINGzYgHo/jzDPPxN69e5N5ampq8Pzzz2P58uV46623sG/fPkyYMAEdHQfWpq2tDT/5yU/wq1/9itlOR0cHzjnnHHz99dd46623sHz5cjz77LOYPXt2Ms/HH3+M8847D6effjo2btyIV199Fbt378YFF1zgcWSiS45hGEbYnchUmpqaEIvFsGtXAkVFRWF3Rxk37qzqtGJeHWCZOqz18OKERWkyBzpVvLhVQcYd+3WQ9ZOw+yz6fWT+bzxX0/zslGaGNtiXid5Fy6z12fOy0jpFaTs6Z5OwClfz89e276bIBbreVGclD52hEUX7P/cC0G9/Wm8AA1BYmIu+fYF4vPMplL17d74XFBx4t7969xafaPBOTljf7ejcdwT9v9YthJuamhAbOBCJhNrx0DyO/htAH4392QvgcEC5P0588MEHGDFiBNatW4eRI0cCANatW4eqqip8+OGHGDZsWJcyhmGgrKwMNTU1uP766wF0usClpaVYuHAhpk+fjkQigYEDB+Lxxx/H5MmTAQCff/45ysvLsWLFCowfPz6lzmXLlqGmpqaLI/3KK69gwoQJ+Oyzz1BWVgYAWL58OS699FI0NDSgqKgIzzzzDC6++GK0traiW7dOz/Sll17Ceeedh9bWVuTmqp70Rh9yhgmtiHbYfok4VYfYfsDjOXWyjq0bvDihOl1g3W5smESlz6J+sJaJvss6w9Z89rAJFSdYVB+vv7y0rvDihoHUsAf762ukCuom27J2Sx2d2EMldMDaR/DyybrFMm2G8b+OkiPsN01NTSmv1tZWT/WtXbsWsVgsKYQB4KSTTkIsFsOaNWuYZbZt24b6+nqMGzcumZafn4/Ro0cny9TV1aG9vT0lT1lZGSoqKrj18vpXUVGRFMIAMH78eLS2tqKurg4AcPzxx6N79+7405/+hI6ODiQSCTz++OMYN25cRgphgG6gC4Rs2rGoIjt3sNd6zLrMvMCBA4yXO8ytuC3PO2jL1hfWDBUq6+tnH/0UCva6VW9E45Xj/fd4M0mYy+zpvGnE7DfWid7tdbPaYPWRl8bH/ohluytsPsOcdUOd1Um27g9Mt9gfZNxhp3Q3+cI6qYvyscqvqdXKy8tT0m+77TbMnTvXdb319fUoKSnpkl5SUoL6+npuGQAoLS1NSS8tLcWnn36azJOXl4d+/fp1ycOrl9eWvZ1+/fohLy8vWc/gwYOxatUq/OQnP8H06dPR0dGBqqoqrFixQrqddIPEMMEl3eYclu2vXWBbD/iq6Dho8epwO9VXFPEiKmXr1IFbN082JpUlimVmlbAu4wlYe5pXQWxNA1JnlpBdbz72xzW32d5N7NOumcI3DweEdK9kPl0nXSqCV6e4TYdtOdP47LPPUsIk8vPzmfnmzp2LefPmCevasGEDACAnJ6fLMsMwmOlW7MtlysjkcWrHXk99fT1++ctf4pJLLsHFF1+MvXv34tZbb8VFF12E2tpa5fbSARLDhGt4rq1IXLqZXkzlqXey8xCzBLG9nzyCOmCJ2gnLDdYFa93CGnPdJzQy6yFyV51cYllx7FUQ29szwyVY65e6/rkK8w3b5xq2zz9sF8bW/UAuUsMrmgH0ZLThDZY7zPrOK6fSRpikk/Ghk6KiIqmY4RkzZuCnP/2pMM/gwYOxadMmfPHFF12W7dq1q4sjaxKPxwF0itBBgwYl0xsaGpJl4vE42tra0NjYmOIONzQ0YNSoUY79t7a1fv36lLTGxka0t7cn27r//vtRVFSERYsWJfM88cQTKC8vx/r163HSSSdJt5cukBgOgDbkIQL7OlcE4Q7Lhjh4nX2CVafZvh0dBye3j5yWQaZ/6SaYgxYEfrUnI4xZJ4yyLrHos05BzPrMWkf2euai6+OY7ZiFWDNEmCLYvAnPrK9wf3oeut6cx59Nwo17KyrjNVTCbX6/yFYhrEJxcTGKi4sd81VVVSGRSODtt9/GiSeeCABYv349EokEV7QOGTIE8XgctbW1+MEPfgCgc1aI1atXY+HChQCAyspK5Obmora2FpMmTQIA7Ny5E1u2bEkRrTL9u+OOO7Bz586k8F61ahXy8/NRWVkJAPjmm2/QvXv3lHLm9++++066rXSCxDDhCTfucBCoiHiRKHaDlwMLr6ybvgV9oE0n8R20uy9yU3W7xLJXX1QEsbUvvPXpiilcZbcHa5hEs+27NS44F503zvVCasxxKgUFB16yyIhct6ESbvKysO4jdOyz0kUIp8vjmIcPH46zzjoL06ZNwwMPPAAAuPzyyzFhwoSUmSSOOuooLFiwAOeffz5ycnJQU1OD+fPnY+jQoRg6dCjmz5+Pnj17YsqUKQCAWCyGqVOnYvbs2RgwYAD69++POXPm4Oijj8YZZ5yRrHf79u346quvsH37dnR0dGDjxo0AgCOOOAK9e/fGuHHjMGLECFRXV+Ouu+7CV199hTlz5mDatGlJh/ycc87BPffcg9tvvz0ZJnHTTTfh0EMPTYr1TIPEMOEbugWxqjus8uhmaz4vBxg/n6pnR7dT7hU9saT+EpYTp1MUyzjDrDS7S2zFSRCzvotIDZXIw4EQB7t7y3Jzm3FglghryIRZ3u4id0Ukar0IVydRLFuPKrz9ildhnC5CON148skncfXVVydnfpg4cSKWLFmSkmfr1q1IJBLJ79dddx2am5tx5ZVXorGxESNHjsSqVavQp8+BCeXuuece9OjRA5MmTUJzczPGjh2LZcuWpbi4t956Kx599NHkd1O8vvHGGxgzZgy6d++Ol19+GVdeeSVOPvlkFBYWYsqUKbj77ruTZU4//XQ89dRTWLRoERYtWoSePXuiqqoKK1euRGFhITIRmmfYR9J9nmErop2maCesMlOCynzBqqju9NP1wBI1gQyEL4yjcinaiiim3imN992abk+zv4vmIhZ9tqbt29c13Xzt2WOdb9icCo31II0my/fG/e/2/CZ5+199ARSjc47hEgCDAJQC6IecnDgGD+6cZ7i4WDzHMND5bs4zzFvOihnWedOcCLf7FF3zs+vE6zzD70H/PMPfg/55hon0hJxhwjMix1bFHfYzdlg19lnFJY6CCDZxe9LiJ0E4xlEUvCJ424WX0AmRSywDLz8r3XSZWXkP9Ml0h80QB9PJzUNXV1e0DX2Hzinx7e5yLg4I5M7vLPHqNr5XtZzO/6DXfUqU9kkEkQ6QGCak0H0jnZtZJUy8CGKzvEpb1rLpTBDuuBPpJlr9xM/QCTc311lxu33ayzQ3W2N9rULW/JyHTgfYekNcLlJnjjA/m0+dK9r/3tvyuTO9b99OF7i4ONURdouTsNb9fyYRyyddYoaJ9ITEMKGFIN1hp/Zk2jDrkMUuirPhoJUOccqZgG5RLIr79Zu+fTtDJEw63WHzmzUG2PxcgANOsen0wvIOy/fc/S9T/A5AZ6hEPwDFyUcxm+ER1tAIgB0vbH0UsxN+CuFs2J8QRJQhMUxI48Ud9mN2Ca/TrXkRxdlKJjnlUUOHKFa5wY4FyyVWxVq+Uxybgtgqds3P7Tjw0Awzxth+g47pLttdYVMUF6OwsCfi8c5YYbsQlhGxrHhhXn4v45Pt+w+CiCokhgklRIJYVZzyDsxBP/nO2mc6WMlBotg/RDHWTqLY6bO1XlbohEofeSe3dnf4QPywVeRaZ4UowAFBbDq/5gM1rPMMF6FTBPeD1RW2CmH7TXPW8VHBLoqd4o/t0H6EINILEsOEMm7FKusA6lUQ634Yh2xddLDrxI+HoWQKOsaG5xazBLMbUey2T05Xefr2PTCrxIHPPWEYuZwSZkzw1wD2WdJNwdxr//J+6Jw9ogTAoRg0KBeDB3fmPPhgYPDgA0LWbJfnBMugMl60T/CXDuiN8+3QWBeR/pAYJrTiJADSQRDLkE2xw06QS9wVc0x0jY2KW6xbFJs32Tn1b8+eA0J09+7O9K6iOBfNzeY0VtY4YDNcwpxaDUDyuZ0tOBAe0TmdWmHhABx11AEBbPYhHld3ce3rwQuLsKfTtk8QmQOJYcIVQc0uEWVBDJAotkKimI8fTxYMWhSbddpDNMy5hU3hC3SGK7S0dIroVHcYAExBbH8ohymIe1nSrfHC/ZCTMwCDB3cKYFMIm2LYfjOc0/zM1qnhWGERLGFsQts7QWQWJIYJ1/CEqh+hC1EWxECERLHsXYo+TjHgxxhkqsD2IpJ5ws+e7vRTe5lGTfbvZn+AR0FB7v4b6+yxwdaQCFMMFyInpzMuePBg4IgjkIwRNj/b+2SNWZZxtWXW1ST0bZwgCO2QGCYCh3cQ1RHTGHYMa2REcYZhH89MFccmqtPaOQljkVssi3W7tYZOWN1h1stcbs5UsWePNT13/6tnl/ass0LE46lO8MEHH1gej3cV28CBdkRhHqyQCNHsEbRdhwfNM0z4CYlhwhNu3WFVQawiMsMWxEDERXGQE8/6RJRDMvz6zWVPCEQ315lpXsImeKLYukwkiu15rP201mPOGWy6wFYnOB4HSvq27Ve8QFFBAdC3AE0teaivd+4/K80pTCKS2zJBEFogMUx4JkpPpzOJilgKXBTz5tDKUKzjGvZvHTQy4lh2KjY3sEQxL57YLorN9u2OrRnHa4phU/gefDCSYRIlfduA+nrgE4uatt45h9R1ZrnC1vhi1hRqdkgIE0RmQ2KYiCS65iCOgksMhOgUZ7AQthOFE6AwRZPoxMBpKjb7d97fhnVFhyeKRcLYbMecC9javunImg/QMEMiUoQwo0Ab8pKhEWbMsF2gs9bH2qb9M0BCOCpQmAThJySGCS24cYedbsDJNEEMRDx8IkMIK744Sr+paAxEN9i5CZVgpbFEsUxohPVlFcJm7HAXe9lSwBTC9hev/yqfCYLIbEgME9rw48lxmSiIgeCfspfNBCGOo/5b8lxjr8LYHgdsTQNSRbHVHba2Ya3L+rIK4b59gaKCNqB+T9fOFXTGCpuOsCmKZWaR4DnDJlH/XXnY/+Ppuh4EERQkhgmtWEWezGVrlemZRG3JEIXL6FbIJQ4HXeI49N9NxvZkwFt/Nw4xq2m78LXPJiHqthnLazrDKa4w0PWxcmZ4RD1SnGGrK213e3nzC9s/h/77KiL6H9O+hiDEkBgmIo/owOzGYSWXmLCSNmOvMqmvFUlxLOMYq4pklmMs80Q7K8mQh4I8FBTkoaBv0QGHuQUpjrA9VIK1PuZ3Xowwd/0ifDOq7P4snfc1FDNM+AmJYUI79h2u22nWrGS6ICYIIW4vn/DKMjYmp1AKL6LYLeYjns1+WNtnvczHQLNW2TpThb0++1Rq6SQYaT9GEN4hMUz4gqpA9SqI3RClsIl0dmwIn/EihGXrtG1YLGHsRQjbwydkt3fed7sIZs1gwesH62UlZTv0Y+w14mbfFca+pg15kdjPEgQPEsOEbwQpiL3s4KPiEpMgJlIIUogJxLFdGOuILXZq3prGE8W8m+Sc+sQTxF3ihCMuhNOBKOxXCUIGEsOEr5AgVoMEMREJ7JMP78d+NcWtW8wKueDNMmH9bBW/LCeYN12beWOeeTMeLzyCW5GZOUJEYX/Fw4++Ucww4SckhgnfMQVeEDvvTBHEQHrFLRKaiYorybkLzUkU86Zpc0rnucGmCHaal9zaF7sQtr9SZqmAw/YWMSEcVaKw/yQIN5AYJgJBZSep44Y6wJ2YjFocMUCimIgIDLeYJYqdbrRjOcG8bd7uBFvf7dhnhGBN1cZyglPCI6JyEpJhyMRzE0SYdAu7A0T2oBou4YTTztWLoI2SADVvPrG/3NTB+04Q0jCUjXV7YU1TJprBwYo9v3VOYFb99nTrSySEmXHCLudtTjf82Lfx9ickgol0gZxhIjBUxZfVXeLhFKvoNWzCrCOKuL2T3CRKgp+wIXN5JGJYw4ys3WfNJAHw44bt7+a8xCK32S6eeWER9mWO20CGCWE/4O2HdP992wC0aq6PIEzIGSYij9PxyE+HGCDRSBBMGBuerENsT2M5yNb33r3FQrd3b6C4mO0CW59ix7xZjrMumSiEde/LghLCBOE35AwTaYFXo8zrLA1Rd4lVIYGfBqSDO8ywaWUcYmtRGYfYXCYKm+DNEmEXwea7MDwiDYRw2Df8khAmMgkSw0TaELYgBjJDFJMQTiNkYoUiiKogVoUVJiEjiq39S3bAqfIMQed2H4YQ7tj/0lkfQZiQGCZCw42zwRPEnGlRu6BrHt9MEMV+ozI2JNAdsP6x00QYywpioOt3uztsptkRhVfYP0v9x9JMCMvuQ9NdCBOE35AYJkLDKkxVp14D+KI4KEEMhH+pMkp4GQdeWRLJDOx/8DBViIJ4lLmpjpXfqQmneONMFcImvH2oX7NGsJCZCrNV591vBKEZEsNEqJjCVKdLrNKuDtLJJfZLXPq17jT7hQQiEeeHUFYQjfbt2skhdtsNnhDu8p/J4OnT/N4+yBEmMhkSw0Ra4+UYpvvRx7pc4nQKYwzyBICEsQsi+MdxCn1wKitKY8YFm2SwEPYb3hzCshQUAG0eN1l6HDPhJySGichgPXilg8vKwqsg5h1g3IoHP4nCnewkiqMPa5vghUCzbowTYV8uLYBlKifIDSayBhLDROiwHNqgYnF1u8OA+77LHGC8XFYG9K1vVE5WyC1OD0TbhMw84qI8zN/daWMiIewICWEim6CHbhCRgLXjNWOJw2g7DNLl+ByV8bJDj5iONtaHiatgD32wv5KYz/4lIewZ2o680djYiOrqasRiMcRiMVRXV2PPnj3CMoZhYO7cuSgrK0NhYSHGjBmD9957LyVPa2srZs6cieLiYvTq1QsTJ07Ejh07UvLccccdGDVqFHr27Im+5mMXOXz55Zc4+OCDkZOTw+3fRx99hD59+jjWle6QGCYiTzoKYrd9Fh2nuU/PUsSPWR+iBIni6MMSteY2w1vmeT+gawPKcETbjhtXWPjkPwW+9eHlF1OmTMHGjRuxcuVKrFy5Ehs3bkR1dbWwzKJFi7B48WIsWbIEGzZsQDwex5lnnom9e/cm89TU1OD555/H8uXL8dZbb2Hfvn2YMGECOjoOzJrc1taGn/zkJ/jVr37l2M+pU6fimGOO4S5vb2/HxRdfjFNOOUVirdMbCpMgIoPoEn4QYRN+hEy4IYjjtUrMbboKS4orTj9c/VbkBGvBDxGcjXzwwQdYuXIl1q1bh5EjRwIAHnroIVRVVWHr1q0YNmxYlzKGYeDee+/FzTffjAsuuAAA8Oijj6K0tBRPPfUUpk+fjkQigUceeQSPP/44zjjjDADAE088gfLycrz22msYP348AGDevHkAgGXLlgn7uXTpUuzZswe33norXnnlFWaeX//61zjqqKMwduxYrFmzxtV4pAvkDBNpg1aXiEO2uYp8Dy4vY8Yik9ZFNzK/f+T+G9ZwCKcb5LJVkSmiUwizhj2okLcosHbtWsRisaQQBoCTTjoJsViMKyi3bduG+vp6jBs3LpmWn5+P0aNHJ8vU1dWhvb09JU9ZWRkqKiqUher777+P22+/HY899hi6dWPLwNdffx1/+ctfcP/99yvVna6QM0xEChV31s/5faPiEhN6yRa3OCihGsSDHpLIqjISwNI4/U/cCGEr6bCdNTU1pXzPz89Hfn6+6/rq6+tRUlLSJb2kpAT19fXcMgBQWlqakl5aWopPP/00mScvLw/9+vXrkodXL4vW1lZcfPHFuOuuu3DIIYfg448/7pLnyy+/xKWXXoonnngCRUVF0nWnM+QME2mPX66DFweMXMhoEwmH0wORdGzh85UVa/Cp6EVIoVMI89xg1xUy+BZAu8aXGTNcXl6evNEtFothwYIFzPbnzp2LnJwc4euf//wnACAnJ6dLecMwmOlW7MtlysjksXLjjTdi+PDh+PnPf87NM23aNEyZMgWnnnqqdL3pDjnDAeD2CWvZiltX1m+nmNcekf4E6nAqko77jWxx4NMVXUKYde6hWwT7zWeffZbifvJc4RkzZuCnP/2psK7Bgwdj06ZN+OKLL7os27VrVxfn1yQejwPodH8HDRqUTG9oaEiWicfjaGtrQ2NjY4o73NDQgFGjRgn7ZeX111/H5s2b8cwzzwDoFNMAUFxcjJtvvhnz5s3D66+/jhdffBF33313Ms93332HHj164MEHH8Rll10m3V66QGI4QEgQB0NQj0em3zJz4f22foo7+j8RQaDrf+YohCMugk2KioqkQgGKi4tRXFzsmK+qqgqJRAJvv/02TjzxRADA+vXrkUgkuKJ1yJAhiMfjqK2txQ9+8AMAnbNCrF69GgsXLgQAVFZWIjc3F7W1tZg0aRIAYOfOndiyZQsWLVokta4A8Oyzz6K5uTn5fcOGDbjsssvwj3/8A4cffjiAzrhn6wwVL7zwAhYuXIg1a9bgoIMOkm4rnSAxTEQSHTG7QYliInug/5IaFHuvFy9XqGT/uzIaVjkkoqUFaG2Vaj/dGT58OM466yxMmzYNDzzwAADg8ssvx4QJE1JmkjjqqKOwYMECnH/++cjJyUFNTQ3mz5+PoUOHYujQoZg/fz569uyJKVOmAABisRimTp2K2bNnY8CAAejfvz/mzJmDo48+Ojm7BABs374dX331FbZv346Ojg5s3LgRAHDEEUegd+/eScFrsnv37mS/zbmEhw8fnpLnn//8J7p164aKigqtYxUlSAwHDLnDwUNjThBEusPbhzmdcKjs+3wTwhro2P/Shc667Dz55JO4+uqrkzM/TJw4EUuWLEnJs3XrViQSieT36667Ds3NzbjyyivR2NiIkSNHYtWqVejTp08yzz333IMePXpg0qRJaG5uxtixY7Fs2TJ07949mefWW2/Fo48+mvxuOs1vvPEGxowZ48fqZgQ5hhkwQminqakJsVgMiV27ulyGIXEmh05XicacIIKHnGHvOO277GPsZl/H06zSj8J2EMFNe/cidsQRSCQSSjMUmMfRpwD0lC7lzDcApgDK/SEyE5pNgog0OgUsHZQJgkg3ZPaBZp6gZhNhPgrbSprECxOECYVJEJGH7kwniPSEtlnvyIZ5eRHBdu0q7QazCvskhHU/QtnPxzET6QeJYSJt0CGKKX6YIIKBhLA+dIRB8DC1q9MUzczfkxxgIkMgMRwA5qUrOjjowXogyIQxZa0DCXYiXcmEbTLq6Dypl3lOSVhuMEEEBYnhACGBo59MEMaZsA4EkQ3/Xdl9eCaNhRYhXFAAtGXOmBCZB4nhiOHkEpqOgMzONtvEdyasbyasA5FdZJLwM/G6Hfp9JTCom+RSYIleXrBxS4v2R2NTzDDhJySG0wD7Tkl2J0sPnSDSBbdXWTUfbwlJMk0A+/UIdz/Gye/9uXRssGijpQ2TSDNIDAdASwuQt3//FcY+Qrco9vNmDiJ70BFm6FQHHZP1kGniF8iu/Zbrm+RURTALs1EKkyAiDInhgJHdKfmB15sueAdEcqCJqMI6bpNAloMEcPTQ/TQ5K56EMGujog2NSCNIDIcETxT7HWvmRRDzbvRK9wMMkV2QQGaTieIXCG//pHs8ZdbDbeSCViHMacjr7/AtgHZPNXStjyBMSAwHQGsrX/yy7jOIsiA2yUQBrDLmmbj+2Yz1OJ9NwjhTBTCQOSIY8C6EeXieKUJCCB/oO02/RkQXEsMBwxLFYQhiwhs0N7B3CgqiOT1pmKFMQZHJ+5Ywt8MwhLDszGZ2/BbCtD8k0gkSwyFhP+CyDsB+PoaYnsSmH4qdVieqghjITFFMItg/whhbX4Swm7tSLWl+/Q7NEa+PSG9IDAdASwvQpw9/mZNL7AdhHzgyGRLFakRZEAOZKYozibC3szDmE/ayvaT016sbbEsT9ddtn/Py8hCPx3FNfb27CgTE43Hk5dF+miAxHBiimEQnQUwhE+kJue/y2K+QRJF0F8WZtg+JwrYVdSFs/696EsIODbD6q2N7LigowLZt29Dmw9RseXl5KEjXDZrQConhEODFDVvTSBATRDQJ6uoNwSYKIhiIbliEiXYhLIgRtv8muk9qCwoKSLQSvtIt7A5kM06z19iX6zoIROVgkg3QCYwaBQXpITSj7GBnMlHZd7nars1YAYmYAd0uK1cIu41fCCBGmCCChMSwBH/4wx8wZMgQFBQUoLKyEv/4xz+01c3aF6ncy0AQmQgJYv2ks2hpQ15k+q8shHmCU+EP5Pahb9qwVhhAaARBBA2JYQeefvpp1NTU4Oabb8a7776LU045BWeffTa2b9+utR3Zq1ZROSBkIn6NLbnD7iBBrJ90239ESQS7wsUfRHfIgdAVtuPhTjcvN8kRRNiQGHZg8eLFmDp1Kn75y19i+PDhuPfee1FeXo6lS5dqb4u3I6EdDJGtpIMgTjfSRVxGsZ/SJ7ZRVIYiISzqr4QrHLVVJQhV6AY6AW1tbairq8MNN9yQkj5u3DisWbOmS/7W1la0trYmvycSCQDAvn1N0m3u3Xtgf7N3L5Cf3/m5qSl1n+TFbYziQSYqhHF3OOFMlA+29m0zXYjqFYuoPrEsD21yPVL5s9pmSOhc9wPlWVVZDjEADhwjWNWm9NmszF4Bq5F2y4OPrX1ss04bKe6nnb17O4+DhmE4ZyaIgCExLGD37t3o6OhAaWlpSnppaSnqGXMeLliwAPPmzeuSftJJ5b71kSAIgiDShb179yIWi4XdDYJIgcSwBDk5OSnfDcPokgYAN954I2bNmpX8vmfPHhx66KHYvn07bfwB09TUhPLycnz22WcoKioKuztZA417ONC4hwONuzyGYWDv3r0oKysLuysE0QUSwwKKi4vRvXv3Li5wQ0NDF7cYAPLz85HPuGYVi8VoRxkSRUVFNPYhQOMeDjTu4UDjLgeZQkRUoRvoBOTl5aGyshK1tbUp6bW1tRg1alRIvSIIgiAIgiB0Qc6wA7NmzUJ1dTWOP/54VFVV4cEHH8T27dtxxRVXhN01giAIgiAIwiMkhh2YPHkyvvzyS9x+++3YuXMnKioqsGLFChx66KGOZfPz83HbbbcxQycIf6GxDwca93CgcQ8HGneCyAxyDJrnhCAIgiAIgshSKGaYIAiCIAiCyFpIDBMEQRAEQRBZC4lhgiAIgiAIImshMUwQBEEQBEFkLSSGfeQPf/gDhgwZgoKCAlRWVuIf//hH2F2KDG+++SbOPfdclJWVIScnB3/9619TlhuGgblz56KsrAyFhYUYM2YM3nvvvZQ8ra2tmDlzJoqLi9GrVy9MnDgRO3bsSMnT2NiI6upqxGIxxGIxVFdXY8+ePSl5tm/fjnPPPRe9evVCcXExrr76arS1taXk2bx5M0aPHo3CwkIcdNBBuP3225Fu954uWLAAJ5xwAvr06YOSkhL8+Mc/xtatW1Py0LjrZ+nSpTjmmGOSD2aoqqrCK6+8klxOYx4MCxYsQE5ODmpqapJpNPYEQQAADMIXli9fbuTm5hoPPfSQ8f777xvXXHON0atXL+PTTz8Nu2uRYMWKFcbNN99sPPvsswYA4/nnn09Zfueddxp9+vQxnn32WWPz5s3G5MmTjUGDBhlNTU3JPFdccYVx0EEHGbW1tcY777xjnHbaacb3v/9949tvv03mOeuss4yKigpjzZo1xpo1a4yKigpjwoQJyeXffvutUVFRYZx22mnGO++8Y9TW1hplZWXGjBkzknkSiYRRWlpq/PSnPzU2b95sPPvss0afPn2Mu+++278B8oHx48cbf/rTn4wtW7YYGzduNM455xzjkEMOMfbt25fMQ+OunxdffNF4+eWXja1btxpbt241brrpJiM3N9fYsmWLYRg05kHw9ttvG4MHDzaOOeYY45prrkmm09gTBGEYhkFi2CdOPPFE44orrkhJO+qoo4wbbrghpB5FF7sY/u6774x4PG7ceeedybSWlhYjFosZ//3f/20YhmHs2bPHyM3NNZYvX57M85///Mfo1q2bsXLlSsMwDOP99983ABjr1q1L5lm7dq0BwPjwww8Nw+gU5d26dTP+85//JPP8+c9/NvLz841EImEYhmH84Q9/MGKxmNHS0pLMs2DBAqOsrMz47rvvNI5EsDQ0NBgAjNWrVxuGQeMeJP369TMefvhhGvMA2Lt3rzF06FCjtrbWGD16dFIM09gTBGFCYRI+0NbWhrq6OowbNy4lfdy4cVizZk1IvUoftm3bhvr6+pTxy8/Px+jRo5PjV1dXh/b29pQ8ZWVlqKioSOZZu3YtYrEYRo4cmcxz0kknIRaLpeSpqKhAWVlZMs/48ePR2tqKurq6ZJ7Ro0enTKw/fvx4fP755/jkk0/0D0BAJBIJAED//v0B0LgHQUdHB5YvX46vv/4aVVVVNOYBcNVVV+Gcc87BGWeckZJOY08QhAmJYR/YvXs3Ojo6UFpampJeWlqK+vr6kHqVPphjJBq/+vp65OXloV+/fsI8JSUlXeovKSlJyWNvp1+/fsjLyxPmMb+n6+9pGAZmzZqFH/7wh6ioqABA4+4nmzdvRu/evZGfn48rrrgCzz//PEaMGEFj7jPLly/HO++8gwULFnRZRmNPEIQJPY7ZR3JyclK+G4bRJY3g42b87HlY+XXkMfbf1JKuv+eMGTOwadMmvPXWW12W0bjrZ9iwYdi4cSP27NmDZ599FpdccglWr16dXE5jrp/PPvsM11xzDVatWoWCggJuPhp7giDIGfaB4uJidO/evcvZfENDQ5czf6Ir8XgcQFc3xDp+8XgcbW1taGxsFOb54osvutS/a9eulDz2dhobG9He3i7M09DQAKCrq5QOzJw5Ey+++CLeeOMNHHzwwcl0Gnf/yMvLwxFHHIHjjz8eCxYswPe//3387ne/ozH3kbq6OjQ0NKCyshI9evRAjx49sHr1atx3333o0aMH13WlsSeI7IPEsA/k5eWhsrIStbW1Kem1tbUYNWpUSL1KH4YMGYJ4PJ4yfm1tbVi9enVy/CorK5Gbm5uSZ+fOndiyZUsyT1VVFRKJBN5+++1knvXr1yORSKTk2bJlC3bu3JnMs2rVKuTn56OysjKZ580330yZBmnVqlUoKyvD4MGD9Q+ATxiGgRkzZuC5557D66+/jiFDhqQsp3EPDsMw0NraSmPuI2PHjsXmzZuxcePG5Ov444/Hz372M2zcuBGHHXYYjT1BEJ0Ed69edmFOrfbII48Y77//vlFTU2P06tXL+OSTT8LuWiTYu3ev8e677xrvvvuuAcBYvHix8e677yannrvzzjuNWCxmPPfcc8bmzZuNiy++mDnl0cEHH2y89tprxjvvvGOcfvrpzCmPjjnmGGPt2rXG2rVrjaOPPpo55dHYsWONd955x3jttdeMgw8+OGXKoz179hilpaXGxRdfbGzevNl47rnnjKKiorSb8uhXv/qVEYvFjL///e/Gzp07k69vvvkmmYfGXT833nij8eabbxrbtm0zNm3aZNx0001Gt27djFWrVhmGQWMeJNbZJAyDxp4giE5IDPvI/fffbxx66KFGXl6ecdxxxyWnsCIM44033jAAdHldcsklhmF0Tnt02223GfF43MjPzzdOPfVUY/PmzSl1NDc3GzNmzDD69+9vFBYWGhMmTDC2b9+ekufLL780fvaznxl9+vQx+vTpY/zsZz8zGhsbU/J8+umnxjnnnGMUFhYa/fv3N2bMmJEyvZFhGMamTZuMU045xcjPzzfi8bgxd+7ctJvuiDXeAIw//elPyTw07vq57LLLkvuBgQMHGmPHjk0KYcOgMQ8SuximsScIwjAMI8cw6PE2BEEQBEEQRHZCMcMEQRAEQRBE1kJimCAIgiAIgshaSAwTBEEQBEEQWQuJYYIgCIIgCCJrITFMEARBEARBZC0khgmCIAiCIIishcQwQRAEQRAEkbWQGCYIgiAIgiCyFhLDBEFkHIMHD0ZOTg5ycnKwZ88eT3WNGTMmWdfGjRu19I8gCIKIDiSGCYKIJB0dHRg1ahQuvPDClPREIoHy8nL8+te/Fpa//fbbsXPnTsRiMU/9eO655/D22297qoMgCIKILiSGCYKIJN27d8ejjz6KlStX4sknn0ymz5w5E/3798ett94qLN+nTx/E43Hk5OR46kf//v0xcOBAT3UQBEEQ0YXEMEEQkWXo0KFYsGABZs6cic8//xwvvPACli9fjkcffRR5eXlKdS1btgx9+/bF3/72NwwbNgw9e/bERRddhK+//hqPPvooBg8ejH79+mHmzJno6OjwaY0IgiCIqNEj7A4QBEGImDlzJp5//nn84he/wObNm3Hrrbfi2GOPdVXXN998g/vuuw/Lly/H3r17ccEFF+CCCy5A3759sWLFCnz88ce48MIL8cMf/hCTJ0/WuyIEQRBEJCExTBBEpMnJycHSpUsxfPhwHH300bjhhhtc19Xe3o6lS5fi8MMPBwBcdNFFePzxx/HFF1+gd+/eGDFiBE477TS88cYbJIYJgiCyBAqTIAgi8vzxj39Ez549sW3bNuzYscN1PT179kwKYQAoLS3F4MGD0bt375S0hoYGT/0lCIIg0gcSwwRBRJq1a9finnvuwQsvvICqqipMnToVhmG4qis3Nzfle05ODjPtu+++c91fgiAIIr0gMUwQRGRpbm7GJZdcgunTp+OMM87Aww8/jA0bNuCBBx4Iu2sEQRBEhkBimCCIyHLDDTfgu+++w8KFCwEAhxxyCH7729/iv/7rv/DJJ5+E2zmCIAgiIyAxTBBEJFm9ejXuv/9+LFu2DL169UqmT5s2DaNGjfIULkEQBEEQJjkGHU0IgsgwBg8ejJqaGtTU1Gip75NPPsGQIUPw7rvvup7WjSAIgogm5AwTBJGRXH/99ejduzcSiYSnes4++2x873vf09QrgiAIImqQM0wQRMbx6aefor29HQBw2GGHoVs39+f9//nPf9Dc3AygM2ZZ9cl3BEEQRLQhMUwQBEEQBEFkLRQmQRAEQRAEQWQtJIYJgiAIgiCIrIXEMEEQBEEQBJG1kBgmCIIgCIIgshYSwwRBEARBEETWQmKYIAiCIAiCyFpIDBMEQRAEQRBZC4lhgiAIgiAIImshMUwQBEEQBEFkLSSGCYIgCIIgiKyFxDBBEARBEASRtZAYJgiCIAiCILIWEsMEQRAEQRBE1kJimCAIgiAIgshaSAwTBEEQBEEQWQuJYYIgCIIgCCJrITFMEARBEARBZC0khgmCIAiCIIishcQwQRAEQRAEkbWQGCYIgiAIgiCyFhLDBEEQBEEQRNZCYpggCIIgCILIWkgMEwRBEARBEFkLiWGCIAiCIAgiayExTBAEQRAEQWQtJIYJgiAIgiCIrIXEMEEQBEEQBJG1kBgmCIIgCIIgshYSwwRBEARBEETWQmKYIAiCIAiCyFpIDBMEQRAEQRBZC4lhgiAIgiAIImshMUwQBEEQBEFkLSSGCYIgCIIgiKyFxDBBEARBEASRtZAYJgiCIAiCILIWEsMEQRAEQRBE1kJimCAIgiAIgshaSAwTBEEQBEEQWQuJYYIgCIIgCCJrITFMEARBEARBZC0khgmCIAiCIIishcQwQRAEQRAEkbWQGCYIgiAIgiCyFhLDBEEQBEEQRNZCYpggCIIgCILIWkgMEwRBEARBEFkLiWGCIAiCIAgiayExTBAEQRAEQWQtJIYJgiAIgiCIrIXEMEEQBEEQBJG1kBgmCIIgCIIgshYSwwRBEARBEETWQmKYIAiCIAiCyFpIDBMEQRAEQRBZC4lhgiAIgiAIImshMUwQBEEQBEFkLSSGCYIgCIIgiKyFxDBBEARBEASRtZAYJgiCIAiCILIWEsMEQRAEQRBE1kJimCAIgiAIgshaSAwTBEEQBEEQWQuJYYIgCIIgCCJrITFMEARBEARBZC0khgmCIAiCIIishcQwQRAEQRAEkbWQGCYIgiAIgiCyFhLDBEEQBEEQRNZCYpggCIIgCILIWkgMEwRBEARBEFkLiWGCIAiCIAgiayExTBAEQRAEQWQtJIYJgiAIgiCIrIXEMEEQBEEQBJG1kBgmCIIgCIIgshYSwwRBEARBEETWQmKYIAiCIAiCyFpIDBMEQRAEQRBZy/8Pvt8kdYdZg3QAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1dfHv5se0kMkBelIk2poQar0KoKClNARkCKgohQV9YegIIICokiT6otIUSDSg0ioAgKiiIK0AIIkIZiQhJz3jzjLzu7M7MzubEvO53nm2d07Z+69c3fKd86ce6+BiAgMwzAMwzAMUwTxcnUFGIZhGIZhGMZVsBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmRDzzzDMIDAxEWlqarE2fPn3g6+uLGzdu6FZu2bJl0alTJ4v0L774At7e3ujSpQuys7N1K09P9u7dC4PBgL179zq13LJly2LAgAFOLVMvPvnkE1SpUgX+/v4oV64c3n77beTm5qraNjc3F2+//TbKli0Lf39/VKlSBZ988omk7Z9//olu3bohPDwcwcHBaN26NX766SeRTWpqKqZMmYKEhARERUUhNDQU8fHx+Pzzz/HgwQOLPA8fPoy2bdsiJCQEwcHBaNGiBX788UcLO4PBILtUqVLFpjb55ptv0KtXL1SsWBGBgYEoW7Ys+vTpg99//90iv+bNm0uW3a5dO8m2On36NJ577jk88sgj8Pf3R9myZfHiiy9a2K1fvx5PPvkkIiMjER4ejvr162PFihWSeQrcuHEDxYsXh8FgwNdffy1at3v3bgwaNAhVqlRBUFAQSpYsiaeffhrHjh2TzCs3NxezZ89GjRo1EBgYiPDwcDRq1AgHDhww2ixbtkyx/WfMmGFTm96/fx8zZ85E9erVERQUhOjoaLRv315UNgAcO3YMI0eORI0aNRASEoLo6Gi0atUKu3fvtshz6tSpknUMCAhQbFOGYXSEGMaEb7/9lgDQ/PnzJdenpaVRYGAgde3aVddyy5QpQx07dhSlffDBBwSAEhMTKTc3V9fy9GTPnj0EgPbs2ePUcn/66Sc6f/68U8vUg//9739kMBho4sSJtGfPHvrggw/Iz8+Phg4dqmr7IUOGkL+/P33wwQe0Z88eev3118lgMNC0adNEdjdv3qS4uDh6/PHHaf369bRlyxZq3LgxhYSE0K+//mq0+/bbb6lUqVI0efJk2rJlC23fvp3GjRtHXl5eNHDgQFGehw8fJn9/f2rSpAlt2LCBvvnmG2rYsCH5+/vTgQMHRLYpKSkWy5w5cwgAvf766za1Sf369alLly60ZMkS2rt3L61YsYKqVq1KwcHBdPr0aZFts2bNqHz58hZ1OHv2rEWb7t69mwIDA6lNmzb09ddf0969e+nLL7+kcePGiewWL15MAKh79+60detW2rZtGz3//PMEgGbPni37n3Xv3p3i4uIIAK1bt0607tlnn6UWLVrQggULaO/evbRu3Tpq2LAh+fj40K5du0S2eXl51LFjRwoLC6Np06bRnj176LvvvqO3336btm/fbrS7efOmZPu3bt2aAIj+fy1tmpiYSF5eXjR58mTatWsXrVu3juLj48nHx4cOHTpktHv55Zepbt26NHv2bNq1axdt3ryZOnToQABo+fLlojzfeustAkBJSUmiuprmxzCMY2ExzIjIy8ujuLg4io+Pl1z/6aefEgD69ttvdS3XXAxPnDiRANDo0aMpPz9flzLu3bunSz7muEoMeyK3bt2igIAAeuGFF0Tp06ZNI4PBQGfOnFHc/vTp02QwGOi9994TpQ8dOpQCAwPp9u3bxrRXX32VfH196eLFi8a09PR0ioqKoh49ehjT/vnnH8rJybEoa+TIkQSALl26ZExr27YtRUdHi46ljIwMioqKokaNGlnZe6IBAwaQwWCg33//3ZimpU1u3LhhkefVq1fJ19eXBg8eLEpv1qwZPf7441brdO/ePYqNjaWOHTtaPdeefPJJKlOmDD148MCYlp+fT1WqVKGaNWtKbvP1119TcHAwLV++XFIMS+3T3bt3KTo6mlq2bClK/+ijj8jLy4tSUlKs7pc5mZmZFBwcTI0bN7ZavlSbZmdnk7e3N/Xt21dke+3aNQJAY8aMUcwzLy+PatasSRUqVBClC2L477//1rxPDMPoA4dJMCK8vb3Rv39/HDt2DKdOnbJYv3TpUsTGxqJ9+/bGtE8//RS1atVCcHAwQkJCUKVKFUyaNMmm8vPz8zFixAhMnz4db775Jj7++GMYDAbjeiLCggULULt2bQQGBiIiIgLPPvss/vzzT1E+zZs3R/Xq1bFv3z40atQIxYoVw6BBg3Dx4kUYDAbMmjULs2fPRrly5RAcHIyEhAQcPHjQoj5Hjx5Fly5dEBkZiYCAANSpUwf/93//Z9O+mSKEVqxevRqvvfYaYmNjERwcjM6dO+PGjRu4e/cuXnjhBURFRSEqKgoDBw5EZmamKA/zMAkhzzVr1mDy5MmIi4tDaGgoWrVqhd9++83uOutBUlISsrOzMXDgQFH6wIEDQUTYuHGj4vYbN24EEUlun5WVhaSkJGPahg0b8NRTT6FMmTLGtNDQUHTr1g3ffvst8vLyAAARERHw9fW1KKt+/foAgCtXrhjTfvzxRzRv3hzFihUzpoWEhKBp06Y4cOAAUlNTZet+9+5drFu3Ds2aNUPFihWN6VrapESJEhb5xsXF4dFHH8Xly5dly1Zi3bp1SE1Nxauvvio616Tw9fVFcHAwvLwe3joMBgNCQ0MlX+v/888/GDlyJKZNm4bSpUtL5im1T8HBwahWrZrFPs2dOxdNmzZFw4YN1eyaiK+++gqZmZkYMmSI1fKl2tTLywteXl4ICwsT2YaGhsLLy0u0/1J5ent7Iz4+3ub/iWEYx8FimLFg0KBBMBgMWLJkiSj9l19+weHDh9G/f394e3sDANauXYsXX3wRzZo1w4YNG7Bx40aMGzcO9+7d01xubm4u+vTpg88++wxz587F22+/bWEzbNgwjB07Fq1atcLGjRuxYMECnDlzBo0aNbKIYU5NTUXfvn3Ru3dvbN26VRT/OH/+fOzYsQNz5szBqlWrcO/ePXTo0AHp6elGmz179uDJJ59EWloaFi5ciE2bNqF27dro2bMnli1bpnn/pJg0aRJu3ryJZcuW4cMPP8TevXvRq1cvdO/eHWFhYVizZg0mTJiAFStWqH7AmDRpEv766y988cUX+Pzzz/H777+jc+fOkvGvphAR8vLyVC22cvr0aQBAjRo1ROmxsbGIiooyrlfa/pFHHkFMTIwovWbNmqL8s7Ky8McffxjTzW2zsrIsHqDM2b17N3x8fFCpUiVjWk5ODvz9/S1shTSpB0iBtWvX4t69exZizN42+fPPP/HXX3/h8ccft1j3xx9/IDIyEj4+PqhQoQImT56MrKwskc2+ffsAAA8ePEDjxo3h5+eHiIgI9OrVC9euXRPZjh49GmfPnsW0adPw999/49atW5g1axaOHTuGV155xaL8MWPGoFy5chg1apTiPpiTnp6On376SbRPly9fxsWLF1GjRg1MmjQJ0dHR8PHxweOPP47ly5dbzXPx4sUIDQ3Fc889Z9VWqk19fX3x4osvYvny5di4cSMyMjJw8eJFDB06FGFhYRg6dKhinnl5efjhhx8k/yeg4P/39vZGdHQ0+vXrh0uXLlnYDBgwAAaDARcvXrS6DwzDaMClfmnGbWnWrBlFRUWJXh+//PLLBIDOnTtnTBs1ahSFh4fbXV6ZMmUIAAGgSZMmSdqkpKQQAPrwww9F6ZcvX6bAwECaMGGCqP4ALGIOL1y4QACoRo0alJeXZ0w/fPgwAaA1a9YY06pUqUJ16tSxiFfu1KkTxcbGGl8V2xImIWzTuXNnUfrYsWMtXrkSEXXt2pUiIyNFaWXKlKH+/ftb5NmhQweR3f/93/8RAKuvloXt1SwXLlxQva+mDB06lPz9/SXXVapUidq0aaO4fevWraly5cqS6/z8/IyhBlevXiUANH36dAu71atXEwCLGF9Tvv/+e/Ly8rKIma1duzZVqlRJFCaQm5tL5cuXJwC0evVq2TwbNGhA4eHhlJWVJUq3p01yc3OpefPmFBoaKgrnICKaPHkyLViwgHbv3k1btmyhUaNGkY+PDzVt2lRU/7Zt2xIACg8PpwkTJtDu3btp4cKFVLx4capYsaJFeNHGjRspLCzMeCwEBgbSypUrLer23Xffka+vL506dYqIHh5f5mESUvTp04d8fHzo6NGjxjTh/A8NDaVq1arR//3f/9H3339Pzz77LAGgzz//XDa/s2fPEgAaNmyY1bKV2jQ/P5/efPNN8vLyMu5/6dKl6fjx41bznTx5MgGgjRs3itK//PJLmjZtGm3dupV2795NM2bMoMjISIqOjqYrV66IbAcNGkTe3t6i0B+GYeyHxTAjyZdffkkA6OuvvyaightEdHQ0NWnSRNLu+eefp40bN9oc91amTBmqXbs2lS5dmkJDQyWF2+TJk8lgMNCNGzcoNzdXtDRs2JDq169vtG3WrBlFRERY5CGIYfMOTNnZ2QSAZsyYQUREv//+OwGgWbNmWZS1YMECAkC//PILEdknhj/77DNR+meffUYA6PvvvxelCzHUd+/eFbWZlBheuHChaNtff/2VANDatWsV65SRkUFHjhxRtdy/f18xL/M2E2JRhw4dSgEBAZLbVKpUidq2bauYb+vWralKlSqS6/z8/IxiRxDDwv9piiCG5R4Ojh07RmFhYdSoUSPKzs4WrRM6kI0YMYKuXLlCly5dosGDB5O3t7diG58+fZoA0MiRIy3W2dom+fn51K9fP/L29rYQWHLMmjWLANA333xjTBM6lZkLxY0bNxIAWrRokTFt27ZtFBwcTAMHDqRt27bRjh07aPTo0eTj40NLliwx2qWlpVHJkiVpypQpxjS1YnjKlCkEgD755BNR+o8//kgAyM/PTyQG8/Pz6YknnqBHH31UNs9XXnmFANCRI0cUy7bWpu+++y4VK1aM3nnnHdqzZw9t2rSJWrduTVFRUfTTTz/J5rto0SICQC+//LJi+QKHDh0iLy8vi4dihmEcA4thRpJ///2XwsLCjJ3aNm3aRABo2bJlFrZLliyhhIQE8vb2JoPBQPXr1xf17FaD0IHuzz//pDJlylBoaKiF527IkCGK3sry5csbbZs1a0bVqlWzKEcQwzNnzrRYB4DeeustIiLav3+/Ve/ovn37iMg+MWwuDJYuXSp505bqZCMnhs3zFPZ56dKlinXKz8+3ELFyizXM20oo+/XXXycAkp0Zo6KiqFevXor5Pv/88/TII49YpGdmZhIAmjhxIhEVHL8Gg4FeffVVC9t58+YRAPrtt98s1v30008UGRlJdevWpbS0NMk6zJgxg4KDg437lpCQQK+99hoBoB9++EFym3HjxhEASQ+iLW2Sn59PgwYNIi8vL1qxYoVkmVJcv36dAIjeogijQZgKZCKirKwsMhgMNGLECGOZsbGxFm8eiIj69etHQUFBlJmZSUQFnQ/Lli1L169fpzt37tCdO3eMI9UsX76c7ty5I9lZb+rUqQTAYmQQoocPdVId9YSHRamOazk5OVSiRAmqVauWYttYa9NffvmFDAaDxbUjJyeHKlasSM2bN5fMd8mSJeTl5UUvvPCCps7AVapUET3gMwzjODhmmJEkMDAQvXr1QlJSElJTU7FkyRKEhIRIxtsNHDgQBw4cQHp6OrZs2QIiQqdOnfDXX39pLrdcuXLYu3cvIiMj0bZtW9H4nVFRUTAYDNi/fz+OHDlisZh3vrLWGUiJqKgoAMDEiRMlyzpy5Ahq165tc/7uSHJyMnx9fVUt1mIWzduqc+fOAB7GxZrH1l6/fh23bt1C9erVFfOtUaMG/v77b1y/fl2ULuQnbB8YGIiKFStKxvCeOnUKgYGBKF++vCj9+PHjaNWqFcqUKYPt27dbdJQSeO2113Dr1i2cOnUKFy9exIEDB3Dnzh0EBQUhPj7ewj4nJwcrVqxAfHy85DGjtU2ICEOGDMHSpUvxxRdfoG/fvpL1VMK0A5xUXLWU7Y0bN5CammrsWGhKvXr1cO/ePeNxcfr0aVy8eBExMTGIiIhARESE8Rjo378/IiIiRPH5APD2229j6tSpmDp1qmR8fIUKFUQdF00hIov9Evjuu+9w8+ZNi1ht8+2ttenJkydBRKhXr54o3dfXF7Vq1ZKM7V66dCmGDBmC/v37Y+HChZquSUQkuT8MwzgAVypxxr05cuQIAaBx48aRr6+v6nFghderW7ZsUV2W+dBqFy9epHLlylFISAjt37+fiB56a7/66iur+ckNK6XWM0xE9Nhjj0l6wcwpLJ5hPcMk5Lh9+zYFBATQ8OHDRenTp0/XNLSaefjDsGHDLIZWmzBhAvn5+YniPjMyMuiRRx6hnj17irY/fvw4RUZGUs2aNenWrVua9umvv/6isLAwGjt2rOT6devWEQBasGCB5HotbZKfn0+DBw8mg8GgGCMrx/vvv28Rt3r27FkyGAwW5/c333xDAIxe0uzsbAoICKB27dpZ5Nu7d2/y8vIytv/x48dpz549ouWjjz4iADR16lTas2eP6A3DO++8QwBEYRVS9OrVi3x9fUUx6/n5+VS7dm2LIcsEOnbsSAEBAfTPP/9IrlfbpsnJyZKhN9nZ2VSuXDmqXbu2KH3p0qXk5eVF/fr1E8VoqyElJYW8vLxkjymGYfTFx+nqm/EY6tati5o1a2LOnDkgIgwePNjCZujQoQgMDMSTTz6J2NhYXL9+HdOnT0dYWJiFB0ULZcqUwd69e9GiRQu0a9cOW7duRZMmTfDCCy9g4MCBOHr0KJo2bYqgoCCkpqZi//79qFGjBkaMGGHPLov47LPP0L59e7Rt2xYDBgxAyZIl8c8//+Ds2bP46aefsG7dOt3KcgdCQkJQt25dh5YRGRmJKVOm4I033kBkZCTatGmDI0eOYOrUqRgyZAiqVatmtP3yyy8xaNAgLFmyBP369QMAPP744xg8eDDeeusteHt7o169eti+fTs+//xz/O9//0NkZKRx+1deeQUrVqxAx44d8c4778Df3x8zZsxAdnY2pk6darT77bff0KpVKwDAtGnT8Pvvv4tmH6tQoQIeeeQRAAUez/Xr16Nu3brw9/fHyZMnMWPGDDz22GN49913Jfd58eLFCAwMRO/eve1ukzFjxmDx4sUYNGgQatSoIRoO0N/fH3Xq1AEA/PDDD5g2bRqeeeYZlC9fHtnZ2di2bRs+//xzPPXUU0YvLQBUqVIFI0eOxIIFCxASEoL27dvj3LlzmDJlCurUqYMePXoY83/xxRcxe/Zs9OvXDz179oS3tzc2btyI1atXY/Dgwcb2V3pr8vjjj6N58+bG3x9++CHefPNNtGvXDh07drQY4tB0GLV3330X27ZtQ7t27TB16lSEhobiiy++wMmTJyWHPLx27RqSkpLQs2dPRERESNZHbZs2btwY9erVw9SpU/Hvv/+iadOmSE9PxyeffIILFy6IZuFbt24dBg8ejNq1a2PYsGE4fPiwqMw6deoYRyCpVasW+vbti6pVqyIgIACHDx/GzJkzERMTgwkTJoi2GzBgAJYvX44LFy6gbNmysm3MMIxGXK3GGfdm7ty5BEAy/paIaPny5dSiRQuKjo4mPz8/iouLox49etDPP/+sqRypGeiIiC5dukQVKlSgoKAgSk5OJqKCGLwGDRpQUFAQBQYGUoUKFahfv36inud6eIaJiE6ePEk9evSgEiVKkK+vL8XExNBTTz0l6qRWWDzDzmTu3LlUqVIl8vPzo9KlS9Nbb71lMfGF0Bbm9c7JyaG33nqLSpcuTX5+flSpUiX6+OOPJcs5f/48de3alUJDQ6lYsWLUsmVLOnbsmGQ5cotp+b/99hs1bdqUIiMjyc/PjypWrEhTpkwxxsqac+nSJaN3UI82MR11xXwpU6aM0e7333+nDh06UMmSJcnf358CAgKoRo0aNG3aNItOgUQFE0LMmDGDKlasSL6+vhQbG0sjRoygO3fuiOwePHhAixYtorp161J4eDiFhoZSnTp1aN68eZITl5gid3wKI7/ILeacOnWKOnbsSCEhIRQQEEANGzaUnQRo2rRpBIB2794tWy+1bUpU0DFw8uTJVLVqVSpWrBiVKFGCmjdvTlu3bhXZ9e/fX3GfTD3bzz//PFWsWJGCgoLI19eXypQpQ8OHD6dr165Z1LV79+4UGBho8b8wDGMfBqL/gq0YhmEYhnFbYmJikJiYiJkzZ7q6KgxTqGAxzDAMwzBuzpkzZ5CQkIA///zT2MGXYRh9YDHMOBRrs5UJU5wWFojI6kxv3t7edo10wTAMwzCMfhQeFcK4JdaG6Bo0aJCrq6graoYnUzN1LMMwDMMwzoE9w4xDOXr0qOL6qKioQtUr+u7du/jtt98UbcqVK4fixYs7qUYMwzAMwyjBYphhGIZhGIYpsnCYBGPBM888g8DAQKSlpcna9OnTB76+vrhx44Zu5ZYtWxadOnWySP/iiy/g7e2NLl26IDs7W7fy9GTv3r0wGAzYu3evq6vi9mRmZmLs2LGIi4tDQEAAateujbVr16re/ubNmxgwYACioqJQrFgxJCQkYNeuXZK2O3fuREJCAooVK4aoqCgMGDAAN2/eVMx/586dMBgMMBgMuHXrlsX6P//8E926dUN4eDiCg4PRunVr/PTTT4p53rhxA8WLF4fBYMDXX39tsf7w4cNo27YtQkJCEBwcjBYtWuDHH3+0sBPqJbVUqVLFwv6TTz5BlSpV4O/vj3LlyuHtt99Gbm6uhd3333+PJ598EoGBgQgLC0Pnzp1x5swZ2fZR26anT5/Gc889h0ceeQT+/v4oW7YsXnzxRQs7IsLSpUtRv359BAUFITQ0FE888QQ2bdpktBHOMbll+PDhknUACq4hBoMBwcHBkmUvWrQI8fHxCA0NRfHixdGsWTNs2bJFMq+//voLgwYNQlxcHPz9/VGyZEk888wzIpsrV65g7NixaNasGcLDw2EwGLBs2TLJ/HJycvDmm2+iXLly8PPzQ5kyZTBx4kRkZWXJ7g/DMDrjkgHdGLfm22+/JQA0f/58yfVpaWkUGBhIXbt21bVcqbGGP/jgAwJAiYmJohmr3A1bxhouqrRu3ZrCw8Np4cKFtHv3bhoyZAgBoFWrVlndNjs7m6pXr06PPvoorVy5krZv305PP/00+fj40N69e0W2e/fuJR8fH3r66adp+/bttHLlSipZsiRVr15dcqxdIqK7d+9S2bJlKS4uzmJcZyKimzdvUlxcHD3++OO0fv162rJlCzVu3JhCQkLo119/la139+7djXmaj7N7+PBh8vf3pyZNmtCGDRvom2++oYYNG5K/vz8dOHBAZJuSkmKxzJkzhwDQ66+/LrL93//+RwaDgSZOnEh79uyhDz74gPz8/Cxmmtu4cSMZDAbq2rUrbdmyhVavXk2VK1emiIgIOn/+vM1tunv3bgoMDKQ2bdrQ119/TXv37qUvv/ySxo0bZ9E+w4YNI39/f3r99ddp586dlJSURDNnzqTVq1cbbdLT0yX3v1+/fgSAkpKSJNv+ypUrFBYWRnFxcRQUFGSx/o033iAANHz4cNq+fTtt3ryZWrduTQBo/fr1IttTp05R8eLFqV69erRq1SpKTk6mtWvX0sCBA0V2e/bsoaioKGrVqhX16tVLcZzvbt26UUBAAL333nu0Y8cOeuedd8jPz486d+4sac8wjP6wGGYsyMvLo7i4OIqPj5dc/+mnnxIA2YHubcVcDE+cOJEA0OjRoyk/P1+XMu7du6dLPuawGFbHli1bCIBI5BAVCOS4uDjKy8tT3H7+/PkEQCQSc3NzqVq1alS/fn2Rbb169ahatWqih6gff/xRcWrkkSNHUp06dWjKlCmSYvjVV18lX19funjxojEtPT2doqKiqEePHpJ5fv311xQcHEzLly+XFMNt27al6Oho0bGZkZFBUVFR1KhRI8X2ICIaMGAAGQwG+v33341pt27dooCAAHrhhRdEttOmTbOY4rly5cpUs2ZN0Tl28eJF8vPzo969e4u2V9um9+7do9jYWOrYsaPVc3fDhg2qp1k3Jz8/n8qXL09lypSRnfK4U6dO1LlzZ+rfv7+kGC5ZsiQ1btxYlJaVlUVhYWHUpUsXUVm1a9em2rVryz5MCZjWRZjWXkoMp6SkEAD68MMPRenvvfceAaDt27crlsMwjD6wGGYkEYSo1Exy9evXp9jYWJFwWbBgAdWsWZOCgoIoODiYKleuTBMnTtRUpiCGHzx4QMOHDycA9Oabb1rY5efn0/z586lWrVoUEBBA4eHh1L17d/rjjz9EdsIsdMnJyZSQkECBgYHUs2dP0Sx0H374IZUtW5aCgoKoYcOGlJKSYlHekSNHqHPnzhQREUH+/v5Uu3Ztixu3PbPQrVq1iiZMmEAxMTEUFBREnTp1ouvXr1NGRgYNHTqUihcvTsWLF6cBAwbQ3bt3RXnMmzePmjRpQo888ggVK1aMqlevTu+//75oNrBz585RSEgIPfvss6Jtd+3aRV5eXjRlyhTVdbaXIUOGUHBwsIWXf/Xq1QSAfvzxR8XtW7VqRZUrV7ZIF8TDlStXiKjAGwiApk+fbmFbqVIlat26tUX6vn37yNfXl44dOyY54x8RUcWKFalt27YW277wwgsUGBhosV+3b9+m6Ohomjt3ruwMbMHBwdSzZ0+LPLt160YAJGciE8jIyKCgoCBq3ry5KH3lypUEwOJ4vnbtGgGgadOmEVGBaAZAr732mkXeTzzxBBUrVsx4nmtp02XLlhEAC2+9FM2bN6eyZctatZNi165dBICmTp0quX7FihUUEhJCly9flhXDZcuWlZz9Mjo6WvSAs3fvXgJAy5Yt01RHJTE8a9YsAkBnz54Vpf/8888EgIYNG6apLIZhbINjhhlJBg0aBIPBgCVLlojSf/nlFxw+fBj9+/eHt7c3AGDt2rV48cUX0axZM2zYsAEbN27EuHHjcO/ePc3l5ubmok+fPvjss88wd+5cvP322xY2w4YNw9ixY9GqVSts3LgRCxYswJkzZ9CoUSOLGObU1FT07dsXvXv3xtatW0XxivPnz8eOHTswZ84crFq1Cvfu3UOHDh2Qnp5utNmzZw+efPJJpKWlYeHChdi0aRNq166Nnj17ysYAamXSpEm4efMmli1bhg8//BB79+5Fr1690L17d4SFhWHNmjWYMGECVqxYgUmTJom2/eOPP9C7d2+sWLEC3333HQYPHoyZM2di2LBhRpvHHnsMixYtwtdff42PP/4YAHD9+nX07t0bTZo0wdSpUxXrR0TIy8tTtVjj9OnTqFq1Knx8fETpNWvWNK63tr1gK7W9EOcq5CNna15OVlYWBg8ejLFjx+KJJ56QLDsrKwt//PGHbJ5ZWVn4888/ReljxoxBuXLlMGrUKNl9ysnJgb+/v0W6kHbq1CnZbdeuXYt79+5hyJAhonRh/2rUqCFKj42NRVRUlHF9Tk6OqCzz8v/991/88ccfojzVtOm+ffsAAA8ePEDjxo3h5+eHiIgI9OrVC9euXTPa5eXlISUlBXXq1MHs2bNRpkwZeHt7o3z58pg1axbISv/uxYsXw8vLCwMHDrRYd/PmTYwdOxYzZszAo48+KpvHSy+9hKSkJCxevBh37txBamoqxo8fj/T0dIwZM8Zin0JCQtChQwcEBAQgODgYnTp1wq+//qpYTznk2l/4/fPPP4vSy5YtW6hG32EYt8HVapxxX5o1a0ZRUVEiL+PLL79MAOjcuXPGtFGjRlF4eLjd5ZUpU4YAEACaNGmSpI3ca8XLly9TYGAgTZgwQVR/ALRr1y6RreAZrlGjhsi7ffjwYQJAa9asMaZVqVKF6tSpY+Hx69SpE8XGxhpfh9rjGTaPDRw7diwBoDFjxojSu3btSpGRkbL5PXjwgHJzc+nLL78kb29v+ueff0TrR4wYQX5+fpSSkkJPPfUUlShRQtHrKLB06VLj/2JtscZjjz0m6VkVPJbvvfee4va+vr6S3rIDBw6Iwi9WrVol6RklKvDi+vn5idJefvllKl++PP37779ERJKe4atXr8p6RgXPtmn4xnfffUe+vr506tQpIiJZz3Dt2rWpUqVKolfrubm5VL58ecmQElMaNGhA4eHhlJWVJUofOnQo+fv7S25TqVIlatOmDREVHDORkZHUsmVLkc2dO3coJCREtE9a2rRt27YEgMLDw2nChAm0e/duWrhwIRUvXpwqVqxoDAlJTU0lABQaGkqPPvooLV++nHbt2mV8MyR3HRDqGBAQIHk8ERXEaTdq1MgYpiHnGSYiWrhwIfn7+xuP48jISNqxY4fIZtiwYca6Dh48mHbu3EkrVqygMmXKUFRUlOy5pOQZ3rhxIwGgFStWiNIXL15MAKhSpUqi9AoVKlCFChUky2EYxnbYM8zIMnjwYNy6dQubN28GUODFWblyJZo0aYLHHnvMaFe/fn2kpaWhV69e2LRpk2QPfLXUrl0bpUuXxrx583Dw4EGL9d999x0MBgP69u0r8kjGxMSgVq1aFqM5RERE4KmnnpIsq2PHjkbvNvDQ4/XXX38BAM6fP49ff/0Vffr0Me6/sHTo0AGpqalWxxRWg/kIGlWrVjXWzzz9n3/+QWZmpjHt+PHj6NKlC4oXLw5vb2/4+vqiX79+ePDgAc6dOyfa/qOPPsLjjz+OFi1aYO/evVi5ciViY2Ot1q9z5844cuSIqkUNSrPvqZmZT8v2cram6YcPH8acOXPw2WefITAwUJfy09PTMWzYMLz22muoXr26Yn6jR4/GuXPnMGrUKFy9ehWXL1/G8OHDjceh3AyNZ86cwaFDh9CnTx8EBATYVE8vLy+MHDkSu3btwrvvvoubN2/i/Pnz6Nu3L/7991/J8tW0aX5+PgCgZ8+eeP/999GiRQsMGzYMixcvxvnz57F69WqRXUZGBtatW4d+/frhqaeewqeffoquXbti9uzZouPdlFWrViE7O9vCKw4A69evx7fffotFixZZPaaWLl2Kl156CaNGjcLOnTuxdetWtGnTBk8//TS+//57i31KSEjAF198gZYtW6Jv377YuHEjbt26hfnz5yuWI0X79u1RsWJFvPbaa9ixYwfS0tKQlJSESZMmwdvb26Ltz58/j/Pnz2suh2EYZVgMM7I8++yzCAsLw9KlSwEAW7duxY0bNzB48GCRXWJiIpYsWYK//voL3bt3R4kSJdCgQQPs2LFDc5klS5bE3r17ERERgbZt2yIlJUW0/saNGyAiREdHW8zsdvDgQQshriT2zCe+EF5NCkMaCSEXr7zyikVZQriFPcJfIDIyUvTbz89PMV0YXu7SpUto0qQJrl69irlz5+KHH37AkSNHjDdl86GZ/P390bt3b2RnZ6N27dpo3bq16vrVrl1b1WKN4sWL4/bt2xbp//zzj+Q+27q98N/K2ZqWM2jQIHTr1g1169ZFWloa0tLSjG2ckZGBu3fvAih4sDIYDKrKnzx5Mnx9fTFq1ChjnoKo+/fff5GWlmYMARg0aBBmzJiBFStW4NFHH0Xp0qXxyy+/4JVXXgFQcE5IsXjxYgCQFIPFixdHdna2UdAq7f+bb76JcePG4X//+x+io6OND7pC6IFQvpY2FWzbtm0rsmvbti0MBoNxKDqhTUNDQ9GwYUORbfv27ZGdnY1ffvlFdv8feeQRPP3006L0zMxMjBw5EqNHj0ZcXJyx/YWQhLS0NGMI1507dzBy5EgMGTIEs2bNQsuWLdG+fXusWbMG9erVEw3XJrdPtWvXRmxsrNXh9aTw8/PDtm3bULp0abRp0wYRERF49tlnMWnSJERERMj+9wzD6AuLYUaWwMBA9OrVC0lJSUhNTcWSJUsQEhKC5557zsJ24MCBOHDgANLT07FlyxYQETp16mT0bmmhXLly2Lt3LyIjI9G2bVscOHDAuC4qKgoGgwH79++X9Exu3LhRlJcaT6McUVFRAICJEyfKekLVCEBHsXHjRty7dw/ffPMN+vbti8aNG6Nu3bpG0WzO6dOn8eabb6JevXr46aefMHv2bFXlLF++3OoU08JijRo1auDs2bMW8cVCXKw1L2qNGjUkY2jNtxc+5WxNyzlz5gzWrVuHiIgI4/L+++8DACpUqIAmTZoAKDgfKlasKJtnYGAgypcvD6CgrS9evIiYmBhjnp07dwYA9O/fHxEREaLY9Ndeew23bt3CqVOncPHiRRw4cAB37txBUFAQ4uPjLcrLycnBihUrEB8fL3kMCrHC5nW9fv06bt26Jdp/Hx8fzJ49G7dv38bPP/+Ma9eu4bvvvsOlS5dQrlw5Y7ytljaViis2RfB4BgYGit4ymSI8LEh5xo8fP47jx4+jX79+FsfdrVu3cOPGDXz44Yei/3TNmjW4d+8eIiIijG97fvvtN2RlZaFevXoWZdStWxcXL140PsQo7RMRyXrwrVGxYkWkpKTgypUr+Pnnn3Hz5k0899xzuHXrFpo2bWpTngzDaMSlQRqM2yPEu40bN458fX0txiiVQ4iF27Jli+qyzIdWu3jxIpUrV45CQkJo//79RES0f/9+1cMwCaNJmGM6moQ5AOitt94y/n7ssceoQ4cOVsuyJ2bYPIZUiNE9cuSIKN08jvXjjz8mAJSammq0yc/Pp/r161vUJTMzk6pUqUJVq1alzMxMGjVqFPn6+tLBgwet1vPWrVt05MgRVYs1tm7dSgBo7dq1ovR27dqpGlptwYIFBEBU79zcXHr88cepQYMGItv69etT9erVRXkKMeeffvqpMW3Pnj0WS//+/QkAbdy4UbRfEyZMID8/P7p06ZIxLSMjgx555BHRiBDHjx+3yPOjjz4yjnywZ88exXGz//rrLwoLC6OxY8dKrl+3bp3iEHG3b9+mgIAAGj58uCh9+vTpFkOrSXHs2DHy9vamOXPmiNLVtunZs2fJYDBYXC+++eYbixhZYeQa85FEunTpQsHBwcY4blNGjhxJAOiXX36xWJeVlSX5n7Zt25YCAgJoz549xjjuv/76yzjGsCn5+fn05JNPUkREhDHm+M6dO1SsWDGLkUiOHTtGAOjdd9+1bEhSjhmWY9y4cRQUFGQcHYVhGMfCYpixSs2aNclgMFiIEIEhQ4bQ6NGjae3atZScnExfffUV1a5dm8LCwujmzZuqy5GadOOvv/6i8uXLU3BwMO3bt4+ICjrrFCtWjF599VX69ttvaffu3bRq1SoaMWKESBzoIYZ3795N/v7+1KZNG1q9ejUlJyfThg0b6L333hMNVeYKMXz27Fny8/Oj5s2b09atW+mbb76h1q1b02OPPWZRl759+1KxYsXo9OnTRER0//59io+Pp7Jly9KdO3dU11kPWrduTREREfT555/T7t27aejQoQSAVq5cKbIbNGgQeXt7i8b0zc7Opscff5xKlSpFq1atoh07dtAzzzwjOenGnj17yMfHh5555hnasWMHrVq1ikqVKqU46YaA3NBqN2/epNjYWKpRowZt2LCBtm7dSk2bNqWQkBCL4bHMkfu/T506RVOnTqXvvvuOduzYQbNmzaKoqCiqW7euxVB6Au3ataPAwEBKS0uTLU+YdGPSpEm0d+9emjlzJvn7+1sIVGFCjqSkJNq2bRu9/fbbVKxYMerYsaPFw4mWNh01ahR5eXnR+PHjaceOHTR//nyKiIigOnXq0P379412t2/fptKlS1NcXBwtXryYvv/+e+MxMWvWLIv9ysrKooiICFVjMJsi14GuW7du5OXlRS+99BJ9//33tHnzZurevbukwBWGQuvfvz8lJSXRsmXLqFSpUlS6dGm6ffu2yHbdunW0bt06ev/99wkAjRw50phmyvvvv0/Lly+nPXv20Nq1a431kZqEpkyZMlSmTBlN+80wjHVYDDNWmTt3LgGgatWqSa5fvnw5tWjRgqKjo8nPz4/i4uKoR48ekmMUKyElhomILl26RBUqVKCgoCBKTk4mIqIlS5ZQgwYNKCgoiAIDA6lChQrUr18/Onr0qHE7PcQwEdHJkyepR48eVKJECfL19aWYmBh66qmnaOHChUYbV4hhooLZAoXxlkuWLEmvvvoqbdu2TVSXRYsWSXqmzp8/T6GhobrPJGiNu3fv0pgxYygmJob8/PyoZs2aohE8BATv7IULF0Tp169fp379+lFkZCQFBARQw4YNLXr+C2zfvp0aNmxIAQEBFBkZSf369aMbN25YraOcGCYqaLeuXbtSaGgoFStWjFq2bEnHjh2zmqfc//3bb79R06ZNKTIykvz8/KhixYo0ZcoUyszMlMzn0qVL5OXlRf369bNa5ty5c6lSpUrk5+dHpUuXprfeeks0OgxRwaQZDRo0oNDQUPL396fq1avTrFmzLOwE1LZpXl4ezZgxgypWrEi+vr4UGxtLI0aMkHz4unTpEj3//PMUERFhPCaWLFkiWb4wqoXcejnkxHBWVhbNnDmTatasSSEhIRQZGUkNGzaklStXSk4YsmjRIqpevTr5+flR8eLFqU+fPnT58mULO6gcdeXtt9+mChUqkL+/P4WHh1O7du2MD/7mREVFUcOGDTXtN8Mw1jEQWRnIkWEYhmEYl/LLL7/g8ccfx3fffWcx0gzDMPbBHegYhmEYxs3Zs2cPEhISWAgzjANgzzDjcKzNTObl5WVzT2x3hIjw4MEDRRtvb2+7RrpgGIZhGEYfCo8CYdwWa8NxDRo0yNVV1JXk5GSr+7x8+XJXV5NhGIZhGLBnmHECR48eVVwfFRWFsmXLOqcyTuDu3btWZ6YrV66cxaQfDMMwDMM4HxbDDMMwDMMwTJGFwyQYhmEYhmGYIguL4ULCM888g8DAQKSlpcna9OnTB76+vrhx44Zu5ZYtWxadOnWySP/iiy/g7e2NLl26IDs7W7fy9GTv3r0wGAzYu3evq6tSqLh58yYGDBiAqKgoFCtWDAkJCdi1a5fq7f/8809069YN4eHhCA4ORuvWrfHTTz9J2q5duxa1a9dGQEAA4uLiMHbsWOP0uaZkZmZi7NixiIuLQ0BAAGrXro21a9da2O3fvx9DhgxBfHw8/P39YTAYcPHiRdm6fvLJJ6hSpQr8/f1Rrlw5vP3228jNzbWw27NnD1q3bo0SJUogODgYNWvWxMcffyzqaHnx4kUYDAbZpV27dhb5nj59Gs899xweeeQR+Pv7o2zZsnjxxRdFNmfOnMGLL76IhIQEBAUFKR7zGRkZmDx5MipVqoRixYqhZMmSeO6553DmzBkL2+PHj6Nr166Ii4tDsWLFUKVKFbzzzjv4999/ZduLiNC0aVMYDAaMGjXKYv3169cxatQolC9fHoGBgShTpgwGDx6MS5cuieyuXLmCsWPHolmzZggPD4fBYMCyZcss8tPSppcvX8YzzzyD8uXLIygoCGFhYahTpw7mzZtn0Ql46tSpkvkFBARY1OHu3bsYM2YMSpYsCX9/f1SqVAkffPCBRSfbu3fvYsKECWjTpg0eeeQRGAwGTJ06VbYt1bYpwzDW8XF1BRh9GDx4MDZu3IjVq1db3AwBID09HRs2bECnTp0QHR3t0LrMnDkTEyZMQGJiIpYsWQIfHz7Migr3799Hy5YtkZaWhrlz56JEiRKYP38+2rVrh507d6JZs2aK2//9999o0qQJIiIisGTJEgQEBGD69Olo3rw5jhw5gsqVKxttV61ahb59+2LIkCH46KOPcO7cObz22mv45ZdfsH37dlG+3bp1w5EjRzBjxgxUqlQJq1evRq9evZCfn4/evXsb7Xbt2oWdO3eiTp06CA0NVXxQmjZtGt544w28/vrraNOmDY4cOYIpU6bg6tWr+Pzzz412O3fuRNu2bdG0aVMsWrQIQUFB2Lx5M1566SX88ccfmDt3LgAgNjYWKSkpFuVs3LgR77//Pp555hlR+p49e9CxY0c0adIECxcuRFRUFC5duoTjx4+L7I4ePYqNGzeiTp06aNmyJb799lvZfercuTOOHj2KqVOnom7durhy5QreeecdJCQk4NSpUyhTpgyAgjFvGzVqhMqVK2POnDmIiorCvn378M477+DYsWPYtGmTZP7z58/H+fPnJdfdv38fTZs2xZ07d/D222+jWrVq+O233/DWW2/h+++/x9mzZxESEgIAOH/+PFatWoXatWujQ4cOWLNmjWSeWtr03r17CA0NxRtvvIHSpUsjJycHW7duxejRo3HixAl88cUXFvkkJSUhLCzM+Nt8VJy8vDy0bt0a586dw7vvvotKlSohKSkJr7/+Oq5cuYKPP/7YaHv79m18/vnnqFWrFrp27SpZnhRKbcowjEpcNNkHozN5eXkUFxdH8fHxkus//fRTAkDffvutruWazxo3ceJEAkCjR4+WnL3JFu7du6dLPubYMmsco8z8+fMJAB04cMCYlpubS9WqVaP69etb3f7VV18lX19f0RTM6enpFBUVRT169DCm5eXlUWxsLLVp00a0vTA72datW41pW7ZsIQC0evVqkW3r1q0pLi5ONOXwgwcPjN9nzpwpOQMeEdGtW7coICCAXnjhBVH6tGnTyGAw0JkzZ4xpffr0IX9/f4sZ5dq0aUOhoaFKzUFERM2bN6dixYpRenq6Me3evXsUGxtLHTt2tHqeme7TunXrZI/533//nQDQlClTROkHDhwgADR79mxj2uTJkwkAnT9/XmT7wgsvEAD6559/LPK/cOECBQcH0zfffGOcntiUHTt2EAD64osvROmrV68mAPTNN99I7tORI0ckZ1hUQqpN5ejRowf5+PiIpptWmqHQlDVr1hAAWr9+vSj9hRdeIC8vL/r111+Nafn5+cb/8u+//5acDdMca23KMIw6OEyikODt7Y3+/fvj2LFjOHXqlMX6pUuXIjY2Fu3btzemffrpp6hVqxaCg4MREhKCKlWqYNKkSTaVn5+fjxEjRmD69Ol488038fHHH4vG0SUiLFiwALVr10ZgYCAiIiLw7LPP4s8//xTl07x5c1SvXh379u1Do0aNUKxYMQwaNMj4unPWrFmYPXs2ypUrh+DgYCQkJODgwYMW9Tl69Ci6dOmCyMhIBAQEoE6dOvi///s/m/bNFCG0YvXq1XjttdcQGxuL4OBgdO7cGTdu3MDdu3fxwgsvICoqClFRURg4cKDFa3u1bbFjxw48/fTTePTRRxEQEICKFSti2LBhuHXrlshOeGV75swZ9OrVC2FhYYiOjsagQYOQnp5u9z5rYcOGDahcuTISEhKMaT4+Pujbty8OHz6Mq1evWt3+qaeeMnogASA0NBTdunXDt99+a3xdffDgQaSmpmLgwIGi7Z977jkEBwdjw4YNojyDg4Px3HPPiWwHDhyIa9eu4dChQ8Y0teNdJyUlITs726L8gQMHgoiwceNGY5qvry/8/PwQGBgosg0PD5d8rW7KH3/8geTkZPTo0QOhoaHG9HXr1iE1NRWvvvqq1fGq1e6Tr68vAIg8nUI9AYjqqmTr5eUFPz8/i/xfeOEFtG7d2sLDbUv59oxLLtemcjzyyCPw8vKCt7e35rJ+/PFHGAwG0XUXADp16oT8/HzRcSqEWmjBWpsyDKMOFsOFiEGDBsFgMGDJkiWi9F9++QWHDx9G//79jRf0tWvX4sUXX0SzZs2wYcMGbNy4EePGjcO9e/c0l5ubm4s+ffrgs88+w9y5c/H2229b2AwbNgxjx45Fq1atsHHjRixYsABnzpxBo0aNLGKYU1NT0bdvX/Tu3Rtbt24VhX3Mnz8fO3bswJw5c7Bq1Srcu3cPHTp0EIm+PXv24Mknn0RaWhoWLlyITZs2oXbt2ujZs6dkXKEtTJo0CTdv3sSyZcvw4YcfYu/evejVqxe6d++OsLAwrFmzBhMmTMCKFSssHjDUtsUff/yBhIQEfPrpp9i+fTvefPNNHDp0CI0bN5aMS+3evTsqVaqE9evX4/XXX8fq1asxbtw4q/uSn5+PvLw8q4u1iUSAghjWmjVrWqQLaVKxpwJZWVn4448/ZLfPysoyPjCcPn1alK+Ar68vqlSpYlwv2FatWtUiXEfY1tRWLcI2NWrUEKXHxsYiKipKlOfw4cORk5ODMWPG4Nq1a0hLS8OKFSuwYcMGTJgwQbGcJUuWgIgwZMgQUfq+ffsAAA8ePEDjxo3h5+eHiIgI9OrVC9euXdO8PwBQpkwZPP300/joo4+wZ88eZGZm4tdff8WYMWNQunRpPP/880bb/v37Izw8HCNGjMCff/6Ju3fv4rvvvsNnn32GkSNHIigoSJT3F198gcOHD2PevHmy5T/55JOIj4/H1KlTceTIEWRmZuKnn37CpEmT8MQTT6BVq1Y27Zc5cm0qQETIy8vDnTt38NVXX2HZsmV4+eWXJcO9atSoAW9vb0RHR6Nfv34Wsc05OTnw8vIyCn0Bf39/AMDPP/9s836oaVOgwMHAE/wwjBVc6ZZm9KdZs2YUFRVFOTk5xrSXX36ZANC5c+eMaaNGjaLw8HC7yytTpgwBIAA0adIkSZuUlBQCQB9++KEo/fLlyxQYGEgTJkwQ1R8A7dq1S2R74cIFAkA1atQQvdY+fPgwAaA1a9YY06pUqUJ16tSh3NxcUR6dOnWi2NhY4ytWW8IkhG06d+4sSh87diwBoDFjxojSu3btSpGRkTa1hSn5+fmUm5tLf/31FwGgTZs2GdcJr2w/+OAD0TYvvvgiBQQEWH2NLmxvbSlTpoxiPkREvr6+NGzYMIt04VW7eaiCKVevXiUANH36dIt1wqtyIfxi2rRpBIBSU1MtbNu0aUOVKlUy/n7ssceobdu2FnbXrl0jAPTee+9J1kcpTGLo0KHk7+8vuV2lSpUswjd+/PFHiouLM7alt7e3xf9lTl5eHpUsWZKqVKlisa5t27YEgMLDw2nChAm0e/duWrhwIRUvXpwqVqwoG1qkFCZBRJSTk0NDhw4V/e81a9aUbIOzZ89SlSpVRLZjxoyxON6uXLlCYWFh9NlnnxnTIPNKPyMjgzp37izKs3nz5nT79m3ZdtISJqHUpgLTp083lm0wGGjy5MkWNl9++SVNmzaNtm7dSrt376YZM2ZQZGQkRUdH05UrV4x2c+bMIQD0ww8/iLZ/4403CIDFcSJgLUxCS5s+9dRT5O3tLbu/DMNwmEShY/Dgwbh16xY2b94MoKADx8qVK9GkSRM89thjRrv69esjLS0NvXr1wqZNmyxevWuhdu3aKF26NObNmycZsvDdd9/BYDCgb9++Ik9jTEwMatWqZdFJKSIiAk899ZRkWR07dhS9rhS8e3/99ReAgo41v/76K/r06WPcf2Hp0KEDUlNTrU6IoQbzETSqVq1qrJ95+j///GMMldDSFjdv3sTw4cNRqlQp+Pj4wNfX1xg+cPbsWYs6denSRfS7Zs2ayM7Oxs2bNxX35YUXXsCRI0esLkodr0xR8kKp8VBp2V7OVq2d2jpp3c503bFjx/DMM88gPj4e3377LXbv3o2JEydiypQpePfdd2XzSEpKwtWrVzF48GCLdfn5+QCAnj174v3330eLFi0wbNgwLF68GOfPn8fq1att2qcRI0Zg/fr1+Oijj5CcnIyvvvoKfn5+eOqpp4znGFAwSkPnzp1RvHhxfP3110hOTsYHH3yAZcuWWXhchw8fjlq1amHo0KGKZefm5qJnz544ceIEFi1ahH379mH58uW4evUqWrdurUvIj1KbCgwYMABHjhzB999/jwkTJmDmzJkYPXq0yCYxMRGTJk1C+/bt0aJFC7z22mvYtm0b/v77b3zwwQdGuz59+iAyMhIvvPACDh06hLS0NKxZs8bYcc7WcA+1bQoUdAo1Hw2DYRgx3M2/kPHss89i9OjRWLp0Kbp3746tW7fixo0beP/990V2iYmJyMvLw6JFi9C9e3fk5+ejXr16+N///ofWrVtrKrNkyZL45ptv0KJFC7Rt2xZJSUmimNEbN26AiGRHsShfvrzod2xsrGxZ5rO2Ca8bs7KyjGUBwCuvvIJXXnlFMg97hL9AZGSk6LcQIymXnp2djeDgYNVtkZ+fjzZt2uDatWt44403UKNGDQQFBSE/Px8NGzY07q8p1tpGjpiYGJQoUULRBlAnGosXL47bt29bpP/zzz8ALNvHlIiICBgMBlXbC/t6+/Zti7b8559/ROXYUyc5ihcvjuzsbPz7778oVqyYRb7x8fHG3yNHjkR0dDQ2bNhgfJBr0aIFvLy8MHXqVPTp08fiHACAxYsXw9fXF/369ZMsHwDatm0rSm/bti0MBoPsUHRKJCUlYfHixVi3bh2effZZY3qbNm1QtmxZTJ06FUuXLgUAvP7668jIyMCJEyeMIRFNmzZFVFQUBg0ahH79+qFZs2b4+uuvkZSUhP3791uI2ZycHKSlpSEoKAi+vr5YvHgxtm3bhiNHjqBu3boAgCZNmqBx48aoUKEC5syZg7feekvzfpmi1KYCMTExiImJMe57REQEXn/9dQwaNAh16tSR3a5+/fqoVKmSyCEQFRWFpKQk9O/fHw0bNgRQ8N/Nnj0bgwcPRsmSJTXvg5Y2ZRhGHewZLmQEBgaiV69eSEpKQmpqKpYsWYKQkBCLzkNAQWefAwcOID09HVu2bAERoVOnTiIPkFrKlSuHvXv3IjIyEm3btsWBAweM66KiomAwGLB//35Jj6NpZyPAdk+dUBYATJw4UdbDWbt2bZvztxe1bXH69GmcPHnS6JVq3rw56tWr55ApnN955x34+vpaXSpUqGA1rxo1akh24BTSqlevLrttYGAgKlasKLt9YGCgUTQKsbrmtnl5efj1119F5dSoUQNnz5618I6pqZMccuVfv34dt27dEuV54sQJxMfHW3TAqlevHvLz8yW9/Ddv3sR3332HLl26SD6oSMVVm2KLx/HEiRPGepkSHh6OihUriuKgT5w4gWrVqlnEBgvbCranT59GXl4eGjZsiIiICOMCAIsWLUJERAS2bNlizNPb2xtPPPGEKM/y5cujePHiNsV2m2KtTeWoX78+AODcuXNWbYnIou3r1auHX375BRcuXMDp06dx7do145ukpk2batiDArS0KcMw6mDPcCFk8ODBWLhwIWbOnImtW7diwIABFt4rU4KCgtC+fXvk5OSga9euOHPmjKg3v1rKli2LvXv3okWLFmjXrh22bduGJ598Ep06dcKMGTNw9epV9OjRw55ds0rlypXx2GOP4eTJk3jvvfccWpYtqG0L4YFA8O4KfPbZZ7rX6YUXXpCcOMUc87pI8cwzz+DFF1/EoUOH0KBBAwAPQ3UaNGiAuLg4q9vPmTMHly9fRqlSpQAUTEbwzTffoEuXLsZOTA0aNEBsbCyWLVuGnj17Grf/+uuvkZmZiW7duonyXLRoEdavXy+yXb58OeLi4oz11EK7du0QEBCAZcuWibZftmwZDAYDunbtakyLi4vD0aNH8eDBA5EgFsa/ffTRRy3y//LLL5Gbmyv7Ov+ZZ57B5MmTsW3bNtFIAtu2bQMRGb2QWhD+m4MHD4rO/9u3b+PcuXNo2bKlyPb06dPIzMxEcHCw7D4NGDAAzZs3tyirRYsW6Nq1K1566SXjg0NcXBwePHiAI0eOiNr03LlzuH37tmQ7acFam8qxZ88eAEDFihUV7Q4ePIjff/8dY8aMkVxftmxZAAWC+cMPP0RcXJykk8IaWtqUYRh1sBguhNStWxc1a9bEnDlzQESSF/+hQ4ciMDAQTz75JGJjY3H9+nVMnz4dYWFhFp4hLZQpU0YkiLdu3YomTZrghRdewMCBA3H06FE0bdoUQUFBSE1Nxf79+1GjRg2MGDHCnl0W8dlnn6F9+/Zo27YtBgwYgJIlS+Kff/7B2bNn8dNPP2HdunW6laWVJ598UlVbVKlSBRUqVMDrr78OIkJkZCS+/fZb7NixQ/c6xcXFWRWpahk0aBDmz5+P5557DjNmzECJEiWwYMEC/Pbbb9i5c6fItmXLlkhOThZ5bF955RWsWLECHTt2xDvvvAN/f3/MmDED2dnZotm4vL298cEHHyAxMRHDhg1Dr1698Pvvv2PChAlo3bq1aGax9u3bo3Xr1hgxYgQyMjJQsWJFrFmzBklJSVi5cqVIoP79999ITk4G8NDru23bNjzyyCN45JFHjJOGREZGYsqUKXjjjTcQGRlpnHRj6tSpGDJkCKpVq2bMc9y4cRgzZgw6d+6MYcOGoVixYti1axc+/PBDtGrVCrVq1bJox8WLF6NUqVIWYRACVapUwciRI7FgwQKEhISgffv2OHfuHKZMmYI6deqIHrT+/fdfbN26FQCMr/CTk5Nx69Yt44MwUDAxyZtvvokRI0bgypUreOKJJ5CamoqZM2fi33//xUsvvWTMc+zYsejatStat26NcePGISoqCgcPHsT06dNRrVo1Y55ly5Y1ikBzSpYsKRJ1AwcOxEcffYTu3btjypQpqFy5Mv7880+89957CAoKwvDhw0Xbf/311wBgHGHk6NGjRmFuGuahtk3feust3LhxA02bNkXJkiWRlpaGpKQkLFq0CM8995wo9KVWrVro27cvqlatioCAABw+fBgzZ85ETEyMxQghkydPRo0aNRAbG4tLly5hyZIlOHToELZs2WIx3N62bdtw79493L17F0DBSEDCfnbo0AHFihXT1KZAwWgSycnJICLJbRiGAY8mUViZO3cuAaBq1apJrl++fDm1aNGCoqOjyc/Pj+Li4qhHjx70888/ayrHfNINgUuXLlGFChUoKCiIkpOTiYhoyZIl1KBBAwoKCqLAwECqUKEC9evXj44ePWrcrlmzZvT4449b5CeMJjFz5kyLdZDodX3y5Enq0aMHlShRgnx9fSkmJoaeeuopWrhwodHGntEk1q1bJ0pfunQpAaAjR46I0uUG51fTFr/88gu1bt2aQkJCKCIigp577jm6dOmSxf7KlSHUSWokAEdy/fp16tevH0VGRlJAQAA1bNiQduzYYWEnjBxizvnz56lr164UGhpKxYoVo5YtW9KxY8cky1q9ejXVrFmT/Pz8KCYmhsaMGUN37961sLt79y6NGTOGYmJiyM/Pj2rWrCkagURA+H+llmbNmlnYz507lypVqkR+fn5UunRpeuutt0QjuQisX7+eGjduTFFRURQUFESPP/44vfvuuxYTcRAVjDwBgN58803JfRbIy8ujGTNmUMWKFcnX15diY2NpxIgRdOfOHZGdcO5ILeYjhKSmptKoUaOoYsWKFBAQQHFxcdSxY0dKSUmxKH/37t3Upk0biomJocDAQKpUqRK9/PLLdOvWLcV6E8mPfPD7779TYmIilS1blvz9/al06dLUs2dP0SQmpnnILeaoadPNmzdTq1atKDo6mnx8fCg4OJjq169PH3/8scXINM8//zxVrFiRgoKCyNfXl8qUKUPDhw+na9euWeQ7YsQIKl26NPn5+VFUVBR1795d9jprOjqP+WLtPJZr0/j4eIqJiVHclmGKOgYiflxkGIZhmMLG3bt3ERkZiTlz5mDkyJGurg7DuC3cgY5hGIZhCiH79u1DyZIlVQ3BxjBFGfYMM5JYG5fSy8vLrilR3Q0isjrDmre3N8/kxDAMwzCFjMKjZhhdsTbM1qBBg1xdRV1JTk62us/Lly93dTUZhmEYhtEZ9gwzkhw9elRxfVRUlGyPZk/k7t27VmemK1eunEPG+WUYhmEYxnWwGGYYhmEYhmGKLBwmwTAMwzAMwxRZeNINB5Kfn49r164hJCSEO14xDMMwRRYiwt27dxEXF1eoOl8zhQMWww7k2rVrxillGYZhGKaoc/nyZbun1mYYvWEx7EBCQkIAAJf/+guhoaEAgHw3jkzxQr7ueTpif/Wopzv/DwzjKhxxDQDc43zzlOubgFx91ZRpz77qsU9S5WdkZKBUmTLG+yLDuBMshh2IEBoRGhqK0NBQt7ghKKH3zcIdhLC7tznDuBOOEsOAe5yLniSI7RHDSturwd59UiqbQwYZd8T1V6cigjvcCJTwBCGstlzThWEY98D0zHQV7vCArhZ768rXP4ZRD58tjEtvTvbC4pdh9MNZ55ArRXFREsSuwlPrzRRd+Ih1AkXtwuDI/WXxyzCOxZnnlatEsSOuH84SxM5oL092kDCMLbCaKOLwRY9hGHOc/aDpSlGsJ+4miF3pMGBnBeNJcAe6IowndSZhGMa5COeyM0WqUJYzryN676cX8h1S/3x42VRHW7dz1H7YQnZ2NnJycnTP18/PDwEBAbrny3geLIaLKCyECz+e4D1i3B8WxdpxRv21iFVXCWJbyzUlOzsbgYHhAO7blY8UMTExuHDhAgtihsVwUYSFsHvh6lAVpfK1/K/W9oOPEc/G9P9z1jHrKlHsrl5i87o5QxC7mgKP8H0AraCvZMnD9es7kZOTw2KYYTFclOAez87HE28+puhZf/O8+LjxXJwtjE3LcMZx42leYrW4QhDrV6YPAF8d8mEYS1gMFxFYCDsOTxe8rkIvjzTjWlwljD1RFHvice2p9WYYLbAYLgKwENYPFr7OQU07F8Xjz91xpjB2tih2Vy+xVrHqKu+w/XhB3wGw+PrBPITFcCGHhbB9sPh1X+ydrpZxLM4Sxs4SxUXZS+xp9WUYrbAYLsSwENYGC9/CAYtk98MZwtiZothdvcRq8VzvMMM4BhbDhRQWwtZh8Vu0YJHsHjhaGDtDZLrziBOOwlPqyTC2wGK4EMJCWBoWv4wUHJ/sOhw5hrGjRbErwiaK9jXMD/qOJmHQMS/G0+ErfCGDhbA0TrmJZGc7vgzGJQjTBZsvjD6YtqreOPp/0qvOHLbAMK6DPcOFCBbCD3G6UGEhXCSROs488XxxJxwRRuHoV/x6xxE7Im894FAJprDCYriQUNSFsEP2v4gIXFv+Y3e5ObsjPLmIfugdmyvk6QgcFfLB55oAh0kwjoPFcCGgKE+vrMu+6yV6XTSlp6t6owN8o1YDi2P70PtY8xQvsZby7NmWz2GGYTHs8RRVIWzXfnuQ+HX3/8ITYzxdjbOnFi4seNIIDiwyGcazYDHswRRFIWzzPruxAHb3Nnc2zp7e15WwMNaGJ018UVgFMccNM4URFsMeSlESwjbtq57xvjoJYHdtX3fGvM0Ko7gQYGGsHk+Z+MIZgrjoiFMf6BszTDrmxXg6LIY9EL0vru56IdW8n24kgN21TT0dqXYtjALZlbOTeQqe4iUurB5ihilMsBj2MAq7EHaJF5iFr0dTmL3HLIqto6eX2NNGmtADFusMw2K4yOJuN1dPEcGuaDep3XTRwBUeQWH0HhedV+G24QmCGGDhyTDuCothD6IwXkQ17ZMeYRAuEsB6D1msNj8WzQXI/YeedE6xIFZGL+8rC2J3xe+/hWH0h8Wwh6DXxdNdbqaq98cFAtieNnK3eTqys1kQK+FpIpnDJqyjh9hkQawMP5gxhQ0Wwx6AHhdNd7hwOdULrEEB2to27iZ8pWAhbBvuHGrhDueyu8OCmGEYLbAYdmMK04VS1b44SQBrvcF5guiVgoWwvrizQGYsKUqCuGh4an3BQ6sxjoLFcBHAlRdJp4hgwKry09IGnip+TWEh7BycPUFI4Rc8+lKUBDHDMLbDYriQ46qbp8NFsAq1p3bfC4P4NYWFsGtwlDBmAWwfLIgZhrEGX2XdFE+OE7Za9+xshwnhfHgZF2vF21sNdyEgQLwwrsf0ONR6HtqzLSONHu3IYpUBgAULFqBcuXIICAhAfHw8fvjhB0X75ORkxMfHIyAgAOXLl8fChQstbNavX49q1arB398f1apVw4YNG0TrP/30U9SsWROhoaEIDQ1FQkICtm3bZpHP2bNn0aVLF4SFhSEkJAQNGzbEpUuXjOvv37+P0aNHIyoqCkFBQejSpQuuXLliY0sULvhK64Z4qhAWbt+y2KM+FdSeVgHs6bD49TzMBa7S4k6YPzhKLZ6Cuwtie+tX+MW6Lx4Or6bHoj3++KuvvsLYsWMxefJkHD9+HE2aNEH79u1FgtOUCxcuoEOHDmjSpAmOHz+OSZMmYcyYMVi/fr3RJiUlBT179kRiYiJOnjyJxMRE9OjRA4cOHTLaPProo5gxYwaOHj2Ko0eP4qmnnsLTTz+NM2fOGG3++OMPNG7cGFWqVMHevXtx8uRJvPHGGwgwuUmMHTsWGzZswNq1a7F//35kZmaiU6dOePDggea2KGwYiIijyB1ERkYGwsLCcOdOOkJDQ1VtY+8FzVUiWBEHeoEdUaQ7wWKXcQUuntTRobi7s8Ge+tlaL1vL1FJeRkYGIiLCkJ6u/n4obBcWFgbgRQD+2ispy30ACzTVp0GDBnjiiSfw6aefGtOqVq2Krl27Yvr06Rb2r732GjZv3oyzZ88a04YPH46TJ08iJSUFANCzZ09kZGSIPL3t2rVDREQE1qxZI1uXyMhIzJw5E4MHDwYAPP/88/D19cWKFSsk7dPT0/HII49gxYoV6NmzJwDg2rVrKFWqFLZu3Yq2bduqaoPCinu5IYo4niaEHeYJtsML7GneKgFzby97fRlXYu+x587nYGH3EHtKmZ5GTk4Ojh07hjZt2ojS27RpgwMHDkhuk5KSYmHftm1bHD16FLm5uYo2cnk+ePAAa9euxb1795CQkAAAyM/Px5YtW1CpUiW0bdsWJUqUQIMGDbBx40bjdseOHUNubq6orLi4OFSvXl22rKIEnwGFBFcIYVnsFcFmKAlgT3tly6KX8RTUHqdy6e58PhZWQVz4QyX0JyMjQ7Tcv39f0u7WrVt48OABoqOjRenR0dG4fv265DbXr1+XtM/Ly8OtW7cUbczzPHXqFIKDg+Hv74/hw4djw4YNqFatGgDg5s2byMzMxIwZM9CuXTts374dzzzzDLp164bk5GRjOX5+foiIiFBd/6IEjybhJrji1ZgtWBXBtiBzN1Xy/noCLHKZwobWY9r8XHWnc8LdR5ngESbM0Xs65oII0VKlSolS33rrLUydOlV2K4PBIM6FyCLNmr15upo8K1eujBMnTiAtLQ3r169H//79kZycjGrVqiE/v+A4efrppzFu3DgAQO3atXHgwAEsXLgQzZo1k62ftfoXFVgMuwEeL4R1jgnWSwQr2TvipuyqG70txw+/FmVcgbtND86CuICiLLovX74sihn295eOS46KioK3t7eFF/XmzZsWnl2BmJgYSXsfHx8UL15c0cY8Tz8/P1SsWBEAULduXRw5cgRz587FZ599hqioKPj4+Bg9xQJVq1bF/v37jeXk5OTgzp07Iu/wzZs30ahRI8n6FyX4juhiPEEIK8YG6xgTLBUKoSUEwtxO6qarZ1iCo0Md1I4/oEfe9taLKTzYcqypPRfcSQgLeELIhJY68vmoDWG4MmGRE8N+fn6Ij4/Hjh07ROk7duyQFZMJCQkW9tu3b0fdunXh6+uraGNNoBKRMaTDz88P9erVw2+//SayOXfuHMqUKQMAiI+Ph6+vr6is1NRUnD59msUw2DPsUpzRg9dedBfBEsjFAqtBys7U+6Sn8NUbd7ppuVNdGMej+v82O8G8VI7u4o6iVwl39xADHDah/3TM2tty/PjxSExMRN26dZGQkIDPP/8cly5dwvDhwwEAEydOxNWrV/Hll18CKBg5Yt68eRg/fjyGDh2KlJQULF68WDRKxEsvvYSmTZvi/fffx9NPP41NmzZh586dRo8uAEyaNAnt27dHqVKlcPfuXaxduxZ79+5FUlKS0ebVV19Fz5490bRpU7Ro0QJJSUn49ttvsXfvXgBAWFgYBg8ejJdffhnFixdHZGQkXnnlFdSoUQOtWrWypQELFSyGGUl0D4lQEQ6hlLUtIRL23JD1uJkXpRuXo4UAYz82ndNqTrz/ThYh/6J8HLAgLtz07NkTt2/fxjvvvIPU1FRUr14dW7duNXpfU1NTRWMOlytXDlu3bsW4ceMwf/58xMXF4eOPP0b37t2NNo0aNcLatWsxZcoUvPHGG6hQoQK++uorNGjQwGhz48YNJCYmIjU1FWFhYahZsyaSkpLQunVro80zzzyDhQsXYvr06RgzZgwqV66M9evXo3Hjxkabjz76CD4+PujRoweysrLQsmVLLFu2DN7e3o5sNo+Axxl2IErjDLtznKejvcFqRbCzxzq1VQDzzaloCyBPQPIYNT/B5F6zmCIXeyTx3ROPCb3OZUfvu5p6qq2Ds0L17B9n+FXoP87wTM31YQon7Bl2Ae4snlTdNNUiEROsJltniWBbxK87/3fOxhPFTlFC1UOtmu9y2wonkNRrmIAAUfmecqzo5XllDzHDeBYshp2Mu8YJO9Ib7E4iWIsA5ptNAZ4iZJiHWH2olfquVhhLiWCluKT/hLGnHEeFRRCrKd+zrnHe/y165scwBbAYdhLuPGqEbt5gG0SwHmMGWxO4agWwZ90YHIeniBZGGtVCWO2nXF4BAZbfheEkJL57UkxxYRHESvD1jmEewmLYCXhcfLDOQthVnmBr6/lmUIAniBNGHRbHtFoRrCSE5U5U0yFbCqmXWA+cIYjNy7MGX/sYRgyL4SKKbmERGr3BjvYEK63jG4CYoiRIigK6C2HT7fPyLAu0Nq6h1G/AY7zEesblOvMBQKkcvgYyjDQshosgjvAGO1oEu40ANn0t7IG4s/hgbEezEFaTBliKYNPjX1iXmQn4+KgTwqZ4gJfYUwWxXPmejS/0nY7Z09uD0RMWw26IIy+YughhDSERjvQEy6VrvujbUklrU925Ee4sNgSsvYln5FEthLV4hU1FsJYh10zzkfAIS61zdy9xYRLEDMNIw2LYzfAkIWwtLthR3mCpdFtn1LIJD1Bo7n7DtWWGQQ9odvdCKf5XTgibi1oACA62zFsqbEJIt/bnqoktLsS4ShDzcGwMIw+LYTfCURdIZ3qDnSmAARUiWA/xq1QBN8HdxS9g/1/h4REqDkHWK2xvhzhrglUqP0Eg5+UVhE3I2ZuWZ5K/O3tN9RaS7ryv7ove0zE/0DEvxtNhMewmOOLC6IhOco4MibA2uZWA0wSwXAVciCfeQPX8O4T83OxvcQmK4RGmv20VxMKneWMLf4C1/JTc+lJDsrk57FllmMILi+GihgOEsMtFsN5qS64CTsYTha8pjvhbTPN2g79IES37b/e+qBWmch5a0+9SglguLzkPseAdtia6TYU1d6jzOArDPjAMwGLY5bg8NELp3fN/aY4SwVLFFlURXFhuKI4UwO6MXiEggLpD0Oo5YS1e2BxT4RseLukZFglBQQhnZwNpaeLfcjtjTYib7Js7nw8siBmm8MFiuBBi9fWpebqCIrVFCKuJ7bQmgguzAC6MNz9XiGB7vMMqdZnmPPRA835ZO7/Vdmgz9woHBODfbC9ApG+9/jMphoDwYgXnqeDZTUsrWEzLN/P8ytbRg8IlAM8VxJ4d6uEHHlqNcRQshl2IU+KElW6EVuIThPppDQ3UOjOc6W/dxkC2hhNvuoVR/AKe6wXW+myoZlu9UdKFqr3CUmlqO8/9J4SlHL6m53h4uBeKhYdblmmtocwb22yHi5rH1JP315PrzjACLIZdhMuEsNL7WBvCIqT67KgdEaKwiuDCfGPwVAEsoKb+7ryPNo0eoRYTQWz6ICwV/WBafECAV4G1oJLVCGG589BDRpcAeIQJhilMsBh2AW4nhG0Mi1D7qllzSITeaoQFsN24s0DUghqt5g6oOmTVhkeYKlnzbaQaJDsbXgEBCAjwkj2fFeunFA4hJYQ9KDzCHE8UxI4IlWAhz3g6LIadjN4XDM0d5QCrQlhNbLCaDj+FVQQX5ou+JwjFoorofLHWMc6aEJa7RoSHG+N+vQICEB5ezBgGbBpJYRrlIKqX1qcNUyHsoaLYEwWxZ+IDfccZlpk4himSsBh2Ik65wDlICGsVSTLFAHCwCNb5ZlrYb0osfj0cNaNHSK0XJsgwPwDS0kwDguEFIDy8mOIgEfnwgpecoLXW01bOi+xhopgFsWfWmWEEWAw7CZeHRqgYMcLRQphFsHvBQthzkPUKmyLnDbYmhAMCgMxMcV4m7mCvcCAgoJjI6av52LEWGiEjgD1JYLEgZhjPhcWwE3C7USMUOspJdYhTykpFMQBU3sxtQScRXJRuOiyC3RvVh7Qa8Wv6PS9POZ7YZCQJBAQAV64UTJwRHl7g+Q0PR7H/1hUzrWhatmUvO3NXsspOc8bvHugdBjxHEDtqiDUW8IynwmLYA7HLw2qHEFaRrcV3h3iD7bxJFuWLNQth9+5EJ3VoSz5IqgmLMBWkghCWEqxSglhYL/wWJuIIDrYUzaZ5meKhgtZePEUQOwrH1VfvcYYf6JgX4+mwGPYwrIpL87AICZXqqLAIdxXBnnQjcRTuKv7sobDpLJuFsJzAFTAXwlJLZqalh9ZUDAtCWBDFwmdAQIH32LxXnXmdhe/mXl8VHeg8TQwCLIg9rb4Mw2LYg9AkMM1vLDJC2B4RbJKttpAILbEXatZLwBfihxRGIWwv7uwdFtAUJyx8N/+tJITT0grWm06nLMQKm+dlKoLDwx96iKXEsRB/7GNye7HlycXDPctFXRAzjCfBYthD0KOznD1CWCkeWPiu+eatswjmG4Ul7i74bMWDNZIFqj3Cpt+txedKCWFT0WvqDU5LA65fF29naitUUhC9UVEPRXFAgOVv0/AJwXOsxSssIYI9VQh69vTH9qH/f8ZhEozjYDHsAagOjZDCAR5hzd5gqQJ0EsKeeIN0BoVVBOuJO3iHbRbCcuvlhLBUWERamnj5L+1BVhbyAGQDyBHqlJUF/6wsBN65A+/r14GYmIciGHhYnhpBLNS1MD3RKKCnIPa0hwJPqy9TdGEx7OZoFsIOCI2Q8gKr8gbLZa5lSAoZ+AIrjavFnafhKkEsd5irFsJyccJahLCpxzgzE7h+HfeJkAsgCwViOO+/xee/5T5QIIovXIB3Whrw6KMP6yAIY8GDbL7DQtiEuRBWKZI9WVixh9gz/zem6MBi2I1xJyGsOSzCgXHBfGG1hEWw7ThTECsd5pqEsOk6pZAkJaEseIT/C4t4QGT0BmcDyMRDMQwAAf99D0bBC+bgO3fgLZRTtqx4B9PSpAWxkhA2r7sHD7EmhV6CWC9x6UyBXlQfBBjPwWWqYvr06TAYDBg7dqwxjYgwdepUxMXFITAwEM2bN8eZM2dE292/fx+jR49GVFQUgoKC0KVLF1y5ckVkc+fOHSQmJiIsLAxhYWFITExEmtAx5D8uXbqEzp07IygoCFFRURgzZgxycnJENqdOnUKzZs0QGBiIkiVL4p133gER6doONmOnELaG+VtO82IUb9zmcYbWPMEqbnb58DIuzEOUtBCjHkfqLWungXBkG1EjhNXECSutk4glFoSvqQA2T7OwMY8xFrzMpvnLoSXc6z88XVR5yvXL9Hqr17XX/v9OmI5Zr4V9gcxDXHJmHjlyBJ9//jlq1qwpSv/ggw8we/ZszJs3D0eOHEFMTAxat26Nu3fvGm3Gjh2LDRs2YO3atdi/fz8yMzPRqVMnPHjwMBi+d+/eOHHiBJKSkpCUlIQTJ04gMTHRuP7Bgwfo2LEj7t27h/3792Pt2rVYv349Xn75ZaNNRkYGWrdujbi4OBw5cgSffPIJZs2ahdmzZzuwZR6i6BXWwSOsIsxY9N30Zm6sm9RNV67O1gqSgQWwJWp0BuNa1DwHSopgrUJYS3iEgqf4wX/hEfmwFLxCDYXf2f+lZQN4kJUlFsLm+SvV0RQN1xEWxI7D2vXWnevOMPbg9EejzMxM9OnTB4sWLcL//vc/YzoRYc6cOZg8eTK6desGAFi+fDmio6OxevVqDBs2DOnp6Vi8eDFWrFiBVq1aAQBWrlyJUqVKYefOnWjbti3Onj2LpKQkHDx4EA0aNAAALFq0CAkJCfjtt99QuXJlbN++Hb/88gsuX76MuLg4AMCHH36IAQMGYNq0aQgNDcWqVauQnZ2NZcuWwd/fH9WrV8e5c+cwe/ZsjB8/HgaDwWFtZPPsclaEsJawCNPvqrzB1jJTk24CX3TFsPB1PKZhq/Zsbw1JMSd3PqkJkZCqsFJ4hMSSh4LQhzzLnABYiuRsFHhS8gB4Z2cXeIOFsAbTEAfTcAm5BrIWKsE4BE9/qGAYPXG64hg5ciQ6duxoFLMCFy5cwPXr19GmTRtjmr+/P5o1a4YDBw4AAI4dO4bc3FyRTVxcHKpXr260SUlJQVhYmFEIA0DDhg0RFhYmsqlevbpRCANA27Ztcf/+fRw7dsxo06xZM/j7+4tsrl27hosXL0ru2/3795GRkSFatKIpTtgBoRHm3zULYWsuMb65qYY9wPI4sk1URu6IDnU19haeYAGtQljqwFCaYU5uW9Ppmf/DR2IRBrSSWmf0psgJbfP9tPaKSu6PZe+ww1FbJ3esO8PYi1M9w2vXrsVPP/2EI0eOWKy7fv06ACA6OlqUHh0djb/++sto4+fnh4iICAsbYfvr16+jRIkSFvmXKFFCZGNeTkREBPz8/EQ2ZYVOISblCOvKlStnUcb06dPx9ttvS++8ClzlEZYbQ1gyLEJt/awVYgZfYAtg4es+6PXcJivc1IQKKIVICL/lvL5y61UgCN0APPQWS4pgNftk7uEV6mPewKZppt7lQji6BOBeI0x4RjvqPc6w3HsQpijitDPg8uXLeOmll7By5UoEKNxlzMMPiMhqSIK5jZS9HjZC5zm5+kycOBHp6enG5fLly4r1VkStKtIhNMI0K7uEsI3eYM+4EDsO9gDbhq3tpcaJqQeKnmC580nOmyu1ThC6cvkr5SOBNwpuCILQNRW+AWafgr0kUnXTo5EltncXMWkrrrj2yR6XGijq12ym8OG0I/rYsWO4efMm4uPj4ePjAx8fHyQnJ+Pjjz+Gj4+PyOtqys2bN43rYmJikJOTgzt37ija3Lhxw6L8v//+W2RjXs6dO3eQm5uraHPz5k0Alt5rAX9/f4SGhooWtShenMxvbmaKVQ8hbIqsEFZSDlKCV8X746J4UXW0CCtKqG0/Ne2t13+hKDaUQgfUeIbNtzH9Lec1lsvPxNZUAHtBLH7NhbCkf04pHlhqv6TsrNnI4OmC2JlwWzGMNE5TIi1btsSpU6dw4sQJ41K3bl306dMHJ06cQPny5RETE4MdO3YYt8nJyUFycjIaNWoEAIiPj4evr6/IJjU1FadPnzbaJCQkID09HYcPHzbaHDp0COnp6SKb06dPIzU11Wizfft2+Pv7Iz4+3mizb98+0XBr27dvR1xcnEX4hL3YPHKExCb2eoIVhbBSRmrS/qMoDpPG4tdxSDlCbX3gsPf/URTBasIiTL9bC5GwNnqEXH7m/Heu+v73U04QB+Bh7LD3f/beBoO6eBIpkW7tD1J6SDDDk0Wes66DereR86/feg6rJizaWbBgAcqVK4eAgADEx8fjhx9+ULRPTk5GfHw8AgICUL58eSxcuNDCZv369ahWrRr8/f1RrVo1bNiwQbR++vTpqFevHkJCQlCiRAl07doVv/32m8gmMzMTo0aNwqOPPorAwEBUrVoVn376qcjm+vXrSExMRExMDIKCgvDEE0/g66+/tqkdChtOO5pDQkJQvXp10RIUFITixYujevXqxjGH33vvPWzYsAGnT5/GgAEDUKxYMfTu3RsAEBYWhsGDB+Pll1/Grl27cPz4cfTt2xc1atQwdsirWrUq2rVrh6FDh+LgwYM4ePAghg4dik6dOqFy5coAgDZt2qBatWpITEzE8ePHsWvXLrzyyisYOnSo0Zvbu3dv+Pv7Y8CAATh9+jQ2bNiA9957z+EjSSjesBTihE03VSMA5DrLGb1ach4rpYyk6mlGURLAAAtgZ+OqttYcEmGPEDYVk3KY26j0vJqGPgghE8Ii/BaEsL8ghE1nl7MXO/7AoiKIbbmGenLbuBNfffUVxo4di8mTJ+P48eNo0qQJ2rdvj0uXLknaX7hwAR06dECTJk1w/PhxTJo0CWPGjMH69euNNikpKejZsycSExNx8uRJJCYmokePHjh06JDRJjk5GSNHjsTBgwexY8cO5OXloU2bNrh3757RZty4cUhKSsLKlStx9uxZjBs3DqNHj8amTZuMNomJifjtt9+wefNmnDp1Ct26dUPPnj1x/PhxB7SWZ2EgF84i0bx5c9SuXRtz5swBUBCT+/bbb+Ozzz7DnTt30KBBA8yfPx/Vq1c3bpOdnY1XX30Vq1evRlZWFlq2bIkFCxagVKlSRpt//vkHY8aMwebNmwEAXbp0wbx58xBuMiPSpUuX8OKLL2L37t0IDAxE7969MWvWLNHoEadOncLIkSNx+PBhREREYPjw4XjzzTdVi+GMjAyEhYXhzp102ZAJxVncTNOsdJjT6hmW8ghLxgdrFcIyFEURzHgmWjvOqQ6JME+T8xSrEcRqxhQWbMzH/xV+m06WkV0w1nAegNz/qiOM3C5Mxww8FMI+ALwDAwsaKzy8QAyHhxcsQpppuiCaTb/7+FgOxyH12/RToJCGX1kTrbbul6PyVZO3QEZGBsIiIpCeLn8/lN0uLAzAGgDFbKukJP8C6KWpPg0aNMATTzwh8rhWrVoVXbt2xfTp0y3sX3vtNWzevBlnz541pg0fPhwnT55ESkoKAKBnz57IyMjAtm3bjDbt2rVDREQE1qxZI1mPv//+GyVKlEBycjKaNm0KAKhevTp69uyJN954w2gXHx+PDh064N133wUABAcH49NPPxXNu1C8eHF88MEHGDx4sKo2KKy4dAqWvXv3in4bDAZMnToVU6dOld0mICAAn3zyCT755BNZm8jISKxcuVKx7NKlS+O7775TtKlRowb27dunaGMPVuOEBVSMHKEFFsKOhYVw0UD1+Wvtt1bPsNzEFVJ1sFYPk/PWOzsb+M83kouHXmJTb7FRCAsOASmxqscwHNnZ4tEkhE/z9TII/42nXXuURphwlBAu6pgPgerv7y9yignk5OTg2LFjeP3110Xpbdq0MQ7bak5KSopoKFigYIjWxYsXIzc3F76+vkhJScG4ceMsbAQnoRTp6ekACrSOQOPGjbF582YMGjQIcXFx2Lt3L86dO4e5c+eKbL766it07NgR4eHh+L//+z/cv38fzZs3ly2rqOBZV4rCjBoFpcMQas4WwkUJDokoOtgcG2z+W60QFjAfPULJK6wFk3NYbtLbQJgIYdOLiRAioTV2WE26nXiiEBSu76af7izqnVc3bwcsQKlSpRAWFmZcpDy8AHDr1i08ePBAcvhX8872AlLDuEZHRyMvLw+3bt1StJHLk4gwfvx4NG7cWPTW/OOPP0a1atXw6KOPws/PD+3atcOCBQvQuHFjo81XX32FvLw8FC9eHP7+/hg2bBg2bNiAChUqSJZVlODJuV2EYniElFdY5yHUhE+7hDB7g42wCC4aaPIGS6VZE8Jq8tb7qcvE8+ot5CsRPSfyBlsLZ3DGA7IV77CAJ3qJzQWxrXjiw4CzuXz5sihMQsorbIrW4V/VDNGqJc9Ro0bh559/xv79+0XpH3/8MQ4ePIjNmzejTJky2LdvH1588UXExsYa+1RNmTIFd+7cwc6dOxEVFYWNGzfiueeeww8//IAaNWoo7ndhh8WwC9AshCFtokUI6+4RlqmbJ91w9IKFcOFBSVs5RQirCY8wtVUSxlIeY3MEIWz221vqRiwV1yvE/ZqvN99GD1SKXzk8URR7Cu40gYhW1A6DGhUVBW9vb8XhX82RG6LVx8cHxYsXV7SRynP06NHYvHkz9u3bh0cffdSYnpWVhUmTJmHDhg3o2LEjAKBmzZo4ceIEZs2ahVatWuGPP/7AvHnzcPr0aTz++OMAgFq1auGHH37A/PnzJUe5KErwVcHJ6BEnbGpqqxCWLFMHj7AjsdZfyNp931H1YQo3VicpcKQQFjCfwEKqPNMQCTUHpvkIEOZi1zRdqYOb3AgyUiNMSNlZCyvRGT0mnWAsKewPGX5+foiPjxcN7QoAO3bsMA7bak5CQoKF/fbt21G3bl34+voq2pjmSUQYNWoUvvnmG+zevdtiBtzc3Fzk5ubCy0v8H3h7eyM/v+BY//fffwFA0aYow55hJ6JpumUBhQ5z9ghh4/BpajKzIoQddRG0956o0FfIblgEFz6kjg+rosnRQljJ3taDUNhRCY+w7EkiJZSlxLTSSab1BFTjCbbDW8ye4gL03H8hL8c8bPhC3+mYc62bmDF+/HgkJiaibt26SEhIwOeff45Lly5h+PDhAApmob169Sq+/PJLAAUjR8ybNw/jx4/H0KFDkZKSgsWLF4tGiXjppZfQtGlTvP/++3j66aexadMm7Ny5UxQGMXLkSKxevRqbNm1CSEiI0ZMcFhaGwMBAhIaGolmzZnj11VcRGBiIMmXKIDk5GV9++SVmz54NAKhSpQoqVqyIYcOGYdasWShevDg2btyIHTt2WB1MoCjAYthJWBXCNoRHWENRCCvVRSoTmXo54kbiKKGpook15cEUbpwuhOVQ8grr8XrCfNQG03RzO1MhLBU7rLStrdgZHmENFsX6Y96WhcUT37NnT9y+fRvvvPMOUlNTUb16dWzduhVlypQBUDAJmOmYw+XKlcPWrVsxbtw4zJ8/H3Fxcfj444/RvXt3o02jRo2wdu1aTJkyBW+88QYqVKiAr776Cg0aNDDaCEO5mY/6sHTpUgwYMAAAsHbtWkycOBF9+vTBP//8gzJlymDatGlGoe7r64utW7fi9ddfR+fOnZGZmYmKFSti+fLl6NChgyOay6Nw6TjDhR1hfMT0O3fEMUnWXgtKdJqzN07YQgiryUhBCHuSCFaLmje4TOHE/L/XHBYhla4keJU8v+af5pNnmH83D5GQWye1rZC/XF2krgHmccLCYjqGsGk8sXm6XLyxmg55UiepzkK5MIliNSLUWfubkZGBiIgwO8YZ3gAgSMca3QPwjOb6MIUT9gw7GxuEsLmpLeERgH5C2BG4g+h0hzowzke1ENZygCjZKnmUzdfJeYWVPML2hE9IiWDT36ahEUqeYfPt9MLBXmKgaHmKPWsfbZ9CWT4/hinAk84Ez0etEP4PNXHCUvdEVSNH2OER1vsCyiKUcRW6CWG14ldteITabbQKYjlPr2maXOc50/GErQlSU6+vo3HQBaSwd7TzLCHMMI6FPcPOIDsb8POzTJPD5CaipF2V3mQ6SgjrDQthxhWo1mlqDlB744SVwiPsqaOWk8vHR1yeeQNJTawhFfqgRih7GF7IL1TCsTDtC8PoBYthZ2PNYyMRHqG0qerO2yyEGUbxfLFptBe1nlq126uxU9NxzxpSnebMBbGQZrqN6ae74IT6eHrohKfWm2GcBYthZ6LxhmVNv8qF9Vl0mNMSZCyRMQthxpNRo5U0C2GtQtlWMatnXLD5aBFS6VJjAws25p+O8AI7ISbYHjxJFBc2j3bBsGquHVqNKbywGHYGUmESAhIiVKrTnDUUO8xZy8iDhLDSfZIFNmOO7kLY1nVq7ZVCJKx5oc23USN+rdkK66Q+Tde7sYB1BJ4kihmGsQ6LYTfDtNOcltEjACtxwnbUxR1Qc69Vup8zRQu12sxhQlgPr7Da7dXWyRzzE0bqt9Q2SutMh0wrAgLZnUWxO9aJYdwVFsPugkSnORs21S1O2J1mldPjnmrPaFOM56Dl/1I9UoDWkAlbYo1N06TG/bUXtV5iLUOkqRG8LIqdjiPDI8zPGXfYX4bRAxbDboTaTnOmWI0TtjE8wl2QG/pKbVvZqyesjH7HuBF2C2F7vbbW1jvitYUeHefUhEiYfpfrrGCtXCncPEZYK64WxUL5zooXdm5cst7TMefomBfj6bAYdgb376sbBw3aQyPMs3TXOGFr1ZFCdr/MfsvV19HaoxDdwz0arf+DQ4Wwq0aTkEJL3JDQiHLi1Nlxwx4uktVcnxxRlivKKXwd9ZiiCB/BzkTh4m7LTHOm95/CFCdsfl+15WLvjNhh07huxvnYor90EcJq/3hHjiahB0qiVylNKW5YbjQKNSi1iwefaMLkHY4QrUp5OnPCkMI8OQlTNGDPsKtQ8Apr2dz8uzvGCWtBLiwCgKRbVu0sfbaWrwYppz+jP/a2r25C2JZ1anFkvLDWEAlhvdR3rWkMAP1iboum+OTpmBnHwWLYlSgMpaZ1aGBZ0aj0utHNblr2CmF7RLD5NraKYjdrUo9Hr/Z0uhC2tROdnvZqMQ2RMP0tZSPlFbZVEOfl2eZJ1niiyQlOdxCUWmOM3aHOcnC4BOPJsBh2BRLeWK2hfaa/ReER1l7HyrzidPVFTJUQVmg3vd+mcmywa9Gzze0Wwu7eiU4KNR5ftb1D5YSwnh1wTQWujk+VStc103WuFplqRLEtddRToObDy2odWBAzngqLYWdhrQMKtHuFJcMjpMqU++1k1DigAJmLvhUhbKveUNMkWu7N7B22D73bzu7h09yhE50eZdgbIqHGxtzLq6dAlvptBS2izF2EsatFOcMUVVgMOwN/f8lkNfGupkjpaNWjR0hl5CKUilcjhOW8wVLtaG1XPdEDLFVPD+5fZMRpQlhNSIOt3mC14RJS6ebxwnr8qVoEr5qQKmteYUecRE5+whSuyyxMLXGtd1jv6Zj1zIvxdFgMOxM7hlJTdCxrCTCWuKl4wmstJW+wUhuqcZib2tqyzpGoLVPJzt2FsiPa1SVC2Bru8kfICWRrsb8q3m6pytMcW0IkHBRWYUphEcWuCF3gcAnG02Ax7CzMbiC2dpozxabJNUxwt4uV1E1Hrp2kxLD5dwHz3VfyGruLINazHHf1JDtVBAP2d2rTKpId0YlOCR+fh95lKbSESAg2Ut+lbExDJPSIPTIN6bAjVEIPCosodjYsiBlPgsWwC7El7E/4LAyjR5hjbfIMNWJYaXspUeyOTeKMOikJfleVbS+ahbAW8eoob7EjMI8PtuYJttaRTsk7rLSd1vX2PIlKrNdbjHmyKHZ2RzpHlMswjoTFsDOw0yss66DxgE5z1lC6WCrFBqsJkRCw5w2sM3GHv0pLHbRE5zgSqzdme4Swrd5dpfyV4oUdjZZRJMzXyYVJSA2PZs8f7+YnqieLYlegnyD2gb5jA7P8YR7CR4OzMBPCtnqFAfeectkcazcM83rIaQhzASwngqW8wErhhe7qHfYEXN1uqsSIOwhhLTjKw6w1REKwM/+utoOdHkh5t6VCJ8ztTXCkZ9JdRqBQi6u8w0LZDOPOsBh2BjJCWHevsJpM4HghrMeFz5o32FrbmYtiZwliW/NxtbD0JOwaLk0vIazl/LOlDL1EsZwIVhsiYS1NadIMNQJZmHjD1pPQTZ5mtYpDV+HKsAVPaB+m6MJi2EnY4hGWupdIdpqTcoe6oNOcloudkkdYrQCWE8RqvcLugjvWyR3RdDN1lRDWO7ZYy5OzKbZ4f62tlwuPsGWUCTkcECLhLAHoKZ5ivdrDUx4AGEYNLIZdhC33NpsMTNIddUOw94KoNiZYrS6QejaQstF6z7a3f5Be2xRFHD55hho7W4SumnL1iBcWxK/UiBL2hkiY/nbWAaslRMINn3jdPa7YMzu28TjDjONgMewE7Jk6WFWssAs7zdlysTfvQGiPCDa/70u9tXWT+yNjA3Z7g+XStQpXPTy+Uq8/7EWtuFW7jdowCWteYWeIZzeJHVbCvEx3Esd6tAl7h5nCAothJ2GPJ1gxVlhJ6TnIK2zPxc/a5BlqRLCSI00IQRTslZxIatLV4g5eYWfdlJwhKnQRwXLrtAhhrSJX67b22FtDySOs9uCTuhCZC2Gt+diLlhPbBHfwhrqbOGZBzDAFsBh2AtnZgJ+ffY4hm0aQ+A9X3wDM6yAleq0JYsBytlpzhF03FcSmZWq5f3qSN9nZNyK15Wk97mzaD61C1FVCWG+hawtavMhyb5uUhlFT4w3WclLZEyIhcwK7gyA2xR3ijIVy3aldpPH+b9EzP4YpgMWwk9AihGXvKVIbyrmQ3UjJqfEGy4lgUy+weRuqEbd6ilp3FM/u7JFxaN1sCWlwlhDWsp3Uaw57hbNp3LCUR1jjw7SkENZb+Jqi5mSyw8bdBLGAqz2s9rSLq+vOMPbCYtgJCJ5h4bsWbLqfOLDTnK0XPDnxKyWC5TzASr/NHUJS3mHT7TQ4kxyGJ3mf3QZbYnf18B5rsXEHL7AS5sOqqQizspquJI6dGSJhvp4FsSZYEDNFFfe7GhRitNwjVXWck9vgP9zhYi8VHiG1pKU9FMJqBLM5arSJHiGcnqyBPB5rje+uQtjWPG314ALSXlwpe7WCVypO2B4BrFUg2/PfetiJ6errthfyWdQyRQ72DDsJpWu5qkgHW2P9dETxAinhgTENjzAXveYi19QbrCakRE3IglLssGnby303Ld/c2WSepmadXF212JtT6L0x9ohTvYWwHqLKWoiEo7AnXlhJCCttp2YbU+x5VWJtW4n17uodBtzjvLalfRxbb1/oOx2znnkxng6LYSdw//7DMAlA2z1V1YXFCV5hq0JYpmxBAAPSQljwBJtmo7Z9pISreVNITXCl9btc3nqLYrcLmbD1VYazytbTQ6uHELbVK+wozMcc1hovLBdnZM077AYjR6g9ody585i7CGKhLmpxh3ozjFZYDDsZNfdGVR3nVG3oWpRCIkzDIQRb0+2kULN7pp5f89ElbBHEpuXKCVw1Xmo12Ool1vXmY6t4s+UYtUco6un1dZQQtgVHi2e18cLmQtgW0euM65GWJ1iFk9FdvcSeKiw9td5M0cX9zv5CilxIo6bBIKxl8B9OvagLN5j/6mEaGpGWJvYGC7+V4oJt0SxyIYLWwjDUfFfzWy7NfJ1Wj7cW7P7PtVRQj3LsEd3uJoTVbmtL/dSst8UrqxQvLCeE1ZSpJgZZa4c9AVseStT+B3DfkVncQaTbEkfsDvV2BAsWLEC5cuUQEBCA+Ph4/PDDD4r2ycnJiI+PR0BAAMqXL4+FCxda2Kxfvx7VqlWDv78/qlWrhg0bNojWT58+HfXq1UNISAhKlCiBrl274rfffhPZfPPNN2jbti2ioqJgMBhw4sQJyfqkpKTgqaeeQlBQEMLDw9G8eXNkZWVpa4RCSOE8Wt0MW++nVi8+jno1qbYeMuERct7g7OwCUWoqkCWysUC4b1sLCZQTrML3vLyHi6NFsTVhbA1b9KLNNx9niGB7saVR7f0jHPn04qx4YblQB7X2WuKEbbkeaa2fgPmJaOu2ZrizIHYHcelaQeyLh1My67Fojxn+6quvMHbsWEyePBnHjx9HkyZN0L59e1y6dEnS/sKFC+jQoQOaNGmC48ePY9KkSRgzZgzWr19vtElJSUHPnj2RmJiIkydPIjExET169MChQ4eMNsnJyRg5ciQOHjyIHTt2IC8vD23atMG9e/eMNvfu3cOTTz6JGTNmyNY/JSUF7dq1Q5s2bXD48GEcOXIEo0aNgpeX648tV2MgInJ1JQorGRkZCAsLw4kT6QgJCZW0Mb9/mL6NNF54NLiVHXHBtCqGTcqWEsGC+M3MlBaUcuih763dq+U63au9x1v7bS3d2jotNgKab+juKobtCU+wxxus1kZr+aZpSgNom3+3tl7pu1R5UihNpqHnd/Pf9pyA9p6YCieVOwhPJVwt2m2ZUCcjIwNhERFIT09HaKj0/VAK4T4K/AVA/XYqcgZQRlN9GjRogCeeeAKffvqpMa1q1aro2rUrpk+fbmH/2muvYfPmzTh79qwxbfjw4Th58iRSUlIAAD179kRGRga2bdtmtGnXrh0iIiKwZs0ayXr8/fffKFGiBJKTk9G0aVPRuosXL6JcuXI4fvw4ateuLVrXsGFDtG7dGu+++66q/S1KuPcZX0QRXaPV3JRdFStsFh4h5w0WvLJSHmOp7AICgPBw8W8577BUnlqWzExLb7HcYl6e6W/z+pijh5NSrT5z9xu5ItZc6+Z2cuu0bqPFxlo59traYm+K1PXAx0da8Mql6ylMrdXNGVh7ODHD3YcXc7Wn2BYPsbtelzIyMkTL/fv3Je1ycnJw7NgxtGnTRpTepk0bHDhwQHKblJQUC/u2bdvi6NGjyM3NVbSRyxMA0tPTAQCRkZHKO2fCzZs3cejQIZQoUQKNGjVCdHQ0mjVrhv3796vOozDDHejcBPN7hKYQif9w9cVGTkSahkZYw7yfjnl/HznhKSWsTdNNO9Kbd7Az/S58ZmYqT+kslZ9p2dbqY5pmmr/cOnMba5pCOBbc9oZuq9iz1eOrpzfY3rLUeIUdhZqwBE8Uv6Ynp9RvpTTA4zrWCbjyPHf+SBxCeIOe+QGlSpUSpb711luYOnWqhfWtW7fw4MEDREdHi9Kjo6Nx/fp1yRKuX78uaZ+Xl4dbt24hNjZW1kYuTyLC+PHj0bhxY1SvXl1xD035888/AQBTp07FrFmzULt2bXz55Zdo2bIlTp8+jccee0x1XoURFsNuhOx9Q05ZKW6kD2ousoJXGJD2vKpx9oWHF3wK3l/ze3ZwsHgYNqEsYdg24beA3FtScxFrmmYukqUErDWkhLFc3ewRxlpEsaoHKz2FmCNEnSNFsBY7d0XNE5maPJR+25KHErbGC9uDlCBWSof7C2KgqIlifbl8+bIoTMLf31/R3mAwiH4TkUWaNXvzdC15jho1Cj///LNmj25+fsH/NGzYMAwcOBAAUKdOHezatQtLliyRDPMoSrAYdgL37wO+vjaEsXnYDdpaiIEc4eEPxbCPz8MQCSFP4TMz8+E2prHI5o62gACxremwalLeYWufgr1pfdQgJbxN87CWZr5PUqgRxQ4f5siRx6masAZbt1VrY+82rjqPtQhiLTG3egfUW1snh9KJobTeRkEMuL/gc+WQZp7SRuaEhoaqihmOioqCt7e3hcf25s2bFp5dgZiYGEl7Hx8fFC9eXNFGKs/Ro0dj8+bN2LdvHx599FGrdTYlNjYWAFCtWjVRetWqVWU7ABYlPOuoLaTY7Nw12dBVFyDTWGEB0/AIa+JYEMI+PgXe35iYh4uwzlw0msYiZ2Y+FMZCuunvtLQCG9PFNA+5T6WQD6X4Z2vfpdrJFLmHB2sPFdbWWz0+bD0IHeUFtmeH1TyBqbGR286e9c7G2v8qFYhvixB2B7S0vdKxo4CtQtPWw80WXC1G3TY0y078/PwQHx+PHTt2iNJ37NiBRo0aSW6TkJBgYb99+3bUrVsXvr6+ijameRIRRo0ahW+++Qa7d+9GuXLlNNe/bNmyiIuLsxiS7dy5cyhTpozm/Aob7Bl2E0zvK4oXEze6AZlfdJWEoBSC2A0OfthpztRLLORx8SJw6xZw/bpY4JqLVzlvrul300/TsYeFNPM4Ynu9xUpvr9WEUNgSPiF3iFj1GukdLqEFteXqIUZt3Uc92kbPIdXUhkZYi6WVs5X6bet25r+VQiT0vMZZ21+5bRTqYWvYhDMv3W7fZ8AmXD8d8/jx45GYmIi6desiISEBn3/+OS5duoThw4cDACZOnIirV6/iyy+/BFAwcsS8efMwfvx4DB06FCkpKVi8eLFolIiXXnoJTZs2xfvvv4+nn34amzZtws6dO0VhECNHjsTq1auxadMmhISEGD3JYWFhCAwMBAD8888/uHTpEq5duwYARtEbExODmJgYGAwGvPrqq3jrrbdQq1Yt1K5dG8uXL8evv/6Kr7/+2ob2K1ywGHYxmi6QMl4ZV3oClDyownoB8+qHhwNRUQ+/C5/FAh7ebIT80tIKxLC5J1iqY56U8BU+lb4LAlv4rSSEpcqzppWkwjTk8tASV6w2HVBxk9QqiO0R0Hp48rTkZY+YtTV/a95tZ2OPEHaFV1iPcuROXGtCWWG9VkHsKh+Gq8ImPDVkwho9e/bE7du38c477yA1NRXVq1fH1q1bjZ7V1NRUUchBuXLlsHXrVowbNw7z589HXFwcPv74Y3Tv3t1o06hRI6xduxZTpkzBG2+8gQoVKuCrr75CgwYNjDbCUG7NmzcX1Wfp0qUYMGAAAGDz5s3GWGAAeP755wGIOwSOHTsW2dnZGDduHP755x/UqlULO3bsQIUKFXRrI0+Fxxl2IML4iIcOpSM4OFTy3iIlzryQb/k+XTAy3fg/HHXBsXYRNQ2RMA9RkJpcw5TwcODRRy3DIbyQX7BheDjy4YWLF4FffwWuXHn4KZRx65a4A52AaZsKDiiptlYSxz4+2sS06afU0Kl6hlnK3Vi1piv+v3oKVUfn7ejQBXu81uZpWsYX1rpOKc0a1g40LcJYq1dYz7y1ngTW1llZ7ylizx08xGkZmYiICLNjnOFb0H+c4SjN9WEKJ+wZdhFy13tFj50ErowVFtASGgGIxa/RG4x/gbRsUSbZAZFGL7MQGnH9uthDnJX1r1nuvjAYCl5/mQrezEyxyJUTw6Ye4Lw8cec7Yb/Mv5s7kExFsZTXWso7bM0zbJq/kkdYiwNM0Wtkj8dXCb3CIfS00WN7d4oV1vLfqRGPagWnO6PkBXaih9hVuLJjnYCry2cYJVgMeyIuvhmZhzAI3wWUwiIFwWkqSosF5APX0x5m9N/NJy2tIF744sWHnuHz5wvEMNG/ADIBmN70vQEARAXTdmZl+SErq0Acm4pdoQOclAA2FcjmIRNyolhAThSbt4+wzhGiWKtQtiqIpSpvK84UuM4SwVrycMQUzHLCV81/p4cX1VZPrdY62ZKXFqzECSut1yMkwFqotx64gyC2j4eODj0ouE8wTAEshl2AtVfnbuVl0oCamFnzJTwclrEUMTH4F8Vw/XpBKIQQKnH+PJCa+i+AOwCyANwDkGtSgjB3vfDpDSAIRAWiODtbWRQL+2Auik3rr0YUS+23qZdZKk+p70L+Sr/tTQN0iCNW44l0VriDO4hgPcuxtz72ilG9xam1EAktOEIcu5GX2BEC2fMFMcM4BhbDnoALQiS0XDCVQhoBS60keIWNw6almaz8L4bi4q9ib/BDIfwXCsRwDgqEcBYKRK8wM1EQHgriIAAPAAQA8NMkioV9kRLG1rSf3P3SGeETajzCDgmbsDeswlVC2BEeYGejR0iL0gGrZKNlvVZc9QbMBYJY7V9ozYGtBhbEDGMJi2EnoeaNpKoLlJuESAio8Qabi0rz0INipso4IADXrnvh+vWHQvjXX4ELF3IBXANwBQVC+AHEnmFB/ObgoSCGyfrc/9b5gSgI2dniV2SmNyMpYWyaLthLTdmsBkeKYod6ia29erdVlFl7srBnez23sSd/pRAJLXXRQ/hK5WktzZbwBxdfq+zCTkEMONZZYa8o9kRBHBAAKEz0phki1z/HMu4Di2HGJswjG5Q8wlKiTiAtDQiIKQavgADko0AEX7xYIIJNPcNAKoCbKOgBLHiFc/5bgIfiV27uerH4FbzEgK9I/ArhDFL7K6cZzEMn1GKvKFbyCtvjOQac2LnO2UJY77ufu9xNbflP1Dyh25uXs/PQEzWCGNDNS2zLX2jLdUfAEwUxwzgKFsNOxtSzaJ6mBU/owQxYeoaFNODhhT8tDQgI8DKOFCGIYGEoNaKrKBDCtwDcwENvryCKfSH2AKsnKwsWnTLMb0rWRKQ1h6kUpu0iOA2Vpo229t20fFtEsnkaoMJLrCYmxlq6PWjJz11EqzXsqafaNla64OgRLiGHLa9R7C3TGejoJWZBzDCugcWwE/D312BsLS7TzRHCB8zThN2S87oKQvjWrYci+Px54M6dNDwUwTcBpOFhmIRAFoBAk99KvYQtPccFr8ukBbGWG43SjUzKS26+3ryTnek2gPJ3wV7Nb/PtldIAhRumIwSuaWXsWW+rrRbk8tWz7lpR+6eq2VYuzZHbqcXWMrWitv1UeIkBxzkx7AmbYEHMMCyGXYrphaswXYxMJ6wwvUgrveIXhLAw5bLwWRAXfA9ANh6GRQhC2DReOAcPp+v0gzhm2M/MVr0glgphUMJ8G60CWe94Yj29xKoFsb0i2ZOFsBR6D6mmpX31FsLOeiB3pwd/LUrTinhWEzphz+ljq5fYEwQxxwwzjoTFsBORCpEoLMiFCsilm4chCJNoCKJYmGWuQPgKItg8BMJUvMrFCgNCx7kCcmVsczUJYvMblpI4NbexFklgT+iEUK5WL7FUmuqwCbWCWA9PsqcJYWfmZQtyFyNXCmFHoEfddfQSu6sgBgqXY4Zh1OIZgaeFGHe8v8hdDNW84jP1bJqnm6dlZz8UvYIQFmaZy8wUJtaQEsFqMQ2lyDH7/gCWnfDEdRMWQZiapgk3KvM003XCkG3W7ORshDxM15naW/sut05qvVobQOY4sPVAdtQJ4AnhG/Zgb7uZvqqxJ2+9/j93vBBKodPDmBrBaU+T2HMYekp/FIbRE/YMuxNKVzCTK6OrL1bWLrSCV8NU/AqiztRDaSr4TAWx8Fkww9w9SIlVMd7/fSp5hwF5r/DD/AXvsJTn11rIhBpnqBbvsKO9xObr1doAMq9VldzlWnB0mIUr89Szbra0kzWF5SiBbE/nOVvLVLPOFrSGTcjYOsNDLFO0VTwhbIJh9ITFsJORCpUojBcd84u43L1QEMLmHtiHmApYId5XShwL4Q3WBLEpgufYfNi1XKMgFhAEobAfSuEH5t+thVrIfZrburKDnZSNTYJYj1AJJfTO2978HDEFsylq2tOeuGFb0u0pS42tu3iRtcQjyNjqPWudhqKt4m6C2N8f8NKxqfLdZ9cYN4DFsJNwl+u3I5ETU3JiSwgjkAoPeIjQKS4IBcJYGErNHNNpmIVtvM1s1MxFL87fvO6ms9XJaTxrglitHnSkl9iW31Jpqm6YrhbItmBLfVy1D3qETDgqb1fj6Ppr9RLbIIjNr6O2UFgEMcM4Cg4OciGeep8xrbcQeqjkvFEKT5SKg32IHx7OJueNh6JYbgmG5WgR5qNLqEdtDK55PK/c97w8yzhirZ+moSVS9VDz3Z7f5vkBEmE7ehzYrjo5pJ/IXIej28FWIezIennihVHtcSNj4+gYYoWirZIPL5eH5jGMo2HPsBPQ8y2fu1+UlLyQ5ihdnAMCgKwsQcQK0ywLCF5iQDxShKln2BvWBbC559g0L3E9zffLPFzBdJ01D7G5d1ntp1Q+csO4qfESS9Vdap/V/LbwIGn1BruDd9he15s51kIkrD1lOBJrFyFbL1KeKGT1RI0LVsFDDChf4+09TbQ4ss1xtZc4IIDDJBjH4d7KqpCheAGypgzdEC3eYGveY/P0gnW+AALw0OsbBCAUlh5hX7PvghA29QpLjy8sRrv3WEDKwy3nIQbUe4jNw0ek8tHqJbZlnZrfVj3EWo9jKXtHnQt6C2G9y9ALpdc0pjb2rHcXXPl2wQ4ba4LTlc3v7s4YhrEVPrIZXRAu0NZEsDUBbLoEBgoCNhBAOB4K4kAUiGRBKJuK4EBIC2EBqTAKdZjev0ydftaEsFyaXMy0NQFsLWzCWsiGVL30EsiaQib0fGXCyCMXyyRnZ81GK64cSUJrPnKLVtxcENsTDcSCmCmM8FHtYgpD5wRTIWyaJvdbSRwLdsHBwjpB7ArhEsFmaYEmiyCKpeKEzUWxeYiEepQErpyIVfLsyuVj7VMuL7k6Sn1XY6dlHWDlZmlNAKsRyK6KZZVCTlHoOYqEPSELarbVYucIXP0QpNeDgi242EPMgphhCuAj2slICUJPRGk/rIVHyG0nOJCEbcLDTb3Dpl5gc1FsKo79/ltnOqqEqRCW8grbFh4hJ2Sl0vQSxPaETaj1Ektto2Qn9VuEu3uAbVUEzgx7UNtmWr2Zetq52/+qBj1Cd+RQ635VsFMjiPXwEtuCszvWeXsX3CP0Wrxt94cwhRAWw07CE+8TWjAXx3LhEaZp5uLXfPHxKfg0GIqhQOCaC2JzESx4j829w+ai1/Qq6Gf2qT5sQg45oaq0To0gtjdsQq4uSt9ttdM1XMLdvcPmSHmF9RDOSk+WWlWRIwSzlrJttXX1fyvUwYleYme8PbTn8GQvMVMY4KPY3XHBxV/rxU1KCJuus7be1M50CQ9/uIgFsRASYRo+ISWMBVEMWAph+0UvoN6rq8ZGKS9nh03YIqLNURTEjg6X0IKjYkIdhT3xrLaIZk/EGZ5sR4hiBUGsJIpdGTIBsCBmPB8+gj0Id7vgWHPOKXmGzUWyuTfYPHZY7CEOglgU+0os5sIYsBTCtnuFlW4ctghhJUGsdlu5/OztXGfrd0Bj/LA1tAhiR4o4PYSwVB6OrLMjPcdFHWsPJlqPFwV7dxfE7naPYhi18JHrBPz9XV0Dx6MUHqHkGTbvaG7qFTYVxMJvy/AH0xEkzMUv/lsvLFKeYst4YYNBXhRL3Sykp5G23MZWQaxlW7k0W7zEUt/lUG1vT7iEVlwh5hw9/bJWtIZD2CqCWTgXIBfzpRU7BLGrYogFHCWI5ZrWnoVhBFgMOxFzMVgYRpIwRc1bcGueYVPvsKkgFn4HBvr+5yE2D4XwllkAsQgGpIWwpQC2drGUumloEa1Kecp5c9XmrbcgVrteap3HhEs4CleEVNgigh2Bo4dVK8zYKIgBfQQxe4mZogQfre6AK+MP7URJq8iFSpjbm4dGmAvg8HBxuMTDkAlhVAnzjnPmC2DpNZYWwkpeYSW0OgTVCFmlsYydLYh1jx82xdqd2x5BrEUQ2os7eIVdIYL1FNLu/mDjbFwoiPWARTHjKfBRykgidQGTu/hqceapfX0lJZCFcAnBY1wgXE3DJpQWU6wLYXtuJFqFqzVBbOtYxFJ1EvKUSrfVK2xTeIWWcAm1NvYKYnfA1rq6iyeY0R8Xe4j1gEUx4+7w0cnogpQAtuYVNkXJO2waMmEeQmEwCGETakWxdo+wUt3lRKatyIlJeybnsFZXW73CWvdB18k45NLswREC0RY1oVXUulIEs6h2DoVAENuLrXHBSgvDCLAYdmfc8GzV2ptZShArXZSUPMGCCDYVxJZeYvPwCFOk15sLYT2aXW2ssJYwBGuCWGveagSx2jS1N0yRINYqgG31GKvd1p2Qe7q0VQA7Yv/duU21PrV5AiyIGcZhsBhmdEWtIJayURsuIZde4CX2NRG31sSxdSGs5iaixTtsLZTBdL3Udy2z3snVUYsg1iN+2OZwCTX2eodLuJPAs0fIsutLHZ6m8uwUxHqEfzFMYYS7+joJT7wv5cNL8gLrhXzFV97CvppePE3TpNoiO9tS4Arb5eU99ASnpT38lMurID/tHeHU/kdK5dqCeX6mv6W+5+UVtJXUOrlPpXwFQWwtT7k6q2kPUxu54wrAwwLlfqvZRu12WvLzFJxxoXHlxUzvk89ReWopG9BWvkJ9rV2bhaJsPbxtqa5e+PvrOziJO/R3ZdwH9gw7GU8UxbaixhOhxuPr4yM9zJq5/cOxiG17kyyV7kiUvKe2dGyzFi4h9V0pDMNaGXqFTugSLmFPmlbcJQ/z/PSql9QTqS1eainl4oiTSs2Bb2sejkTpZNSyrRlqhuzkFwcMI8ZpYvjTTz9FzZo1ERoaitDQUCQkJGDbtm3G9USEqVOnIi4uDoGBgWjevDnOnDkjyuP+/fsYPXo0oqKiEBQUhC5duuDKlSsimzt37iAxMRFhYWEICwtDYmIi0tLSRDaXLl1C586dERQUhKioKIwZMwY5OTkim1OnTqFZs2YIDAxEyZIl8c4774CI9G0UD0bLGMlSYRLmF2Ole6+p6DWPH1YKpZDLS8293ZE3CrX3biVhaYtwlQq7MLfTOwxD7rvi2MNS2CqI1eRlq41eZdmbv9YytJwMRUkxOVMQK10E1NbDTkEM2P73atXuDOPuOE0MP/roo5gxYwaOHj2Ko0eP4qmnnsLTTz9tFLwffPABZs+ejXnz5uHIkSOIiYlB69atcffuXWMeY8eOxYYNG7B27Vrs378fmZmZ6NSpEx48eGC06d27N06cOIGkpCQkJSXhxIkTSExMNK5/8OABOnbsiHv37mH//v1Yu3Yt1q9fj5dfftlok5GRgdatWyMuLg5HjhzBJ598glmzZmH27NlOaCn3QumVm72C2PS3knfY3Ctsvgid6qyNSKG2ns68/0sJYCURK7WNXD5K6UrflQSxUv52C2JTbBWsakSzPfnriT35az1QbfHsugKlA1aP/NTYO1rlqclfh3poEcQsitWzYMEClCtXDgEBAYiPj8cPP/ygaJ+cnIz4+HgEBASgfPnyWLhwoYXN+vXrUa1aNfj7+6NatWrYsGGDaP2+ffvQuXNnxMXFwWAwYOPGjYplDhs2DAaDAXPmzJFcT0Ro3769qryKCk4Tw507d0aHDh1QqVIlVKpUCdOmTUNwcDAOHjwIIsKcOXMwefJkdOvWDdWrV8fy5cvx77//YvXq1QCA9PR0LF68GB9++CFatWqFOnXqYOXKlTh16hR27twJADh79iySkpLwxRdfICEhAQkJCVi0aBG+++47/PbbbwCA7du345dffsHKlStRp04dtGrVCh9++CEWLVqEjIwMAMCqVauQnZ2NZcuWoXr16ujWrRsmTZqE2bNns3fYDK//RpBUg5wIlkqTWoSJN6S8w0peYjV5u1InSN1Q5Ly31sIa5ISrGi+xGkFsrU523RitCVm1nks9BbEcUtvaEtDoSEHr6gPbmeityByl8GwR53as1+qwsFcUO1IYq7l+a1208tVXX2Hs2LGYPHkyjh8/jiZNmqB9+/a4dOmSpP2FCxfQoUMHNGnSBMePH8ekSZMwZswYrF+/3miTkpKCnj17IjExESdPnkRiYiJ69OiBQ4cOGW3u3buHWrVqYd68eVbruHHjRhw6dAhxcXGyNnPmzIHBYNCw54Ufl8QMP3jwAGvXrsW9e/eQkJCACxcu4Pr162jTpo3Rxt/fH82aNcOBAwcAAMeOHUNubq7IJi4uDtWrVzfapKSkICwsDA0aNDDaNGzYEGFhYSKb6tWriw6Utm3b4v79+zh27JjRplmzZvD39xfZXLt2DRcvXpTdr/v37yMjI0O0FBW8jMOqK4tj4QJk+il1gdIyioSUjWBnXoYr0Spa5eyUtjf/VApL1Cq2tXim5fI3/655IH69BbEt5emdh5r1tohmpgBbFZreCs+eetixXosgBuw/dEybrbB5jWfPno3BgwdjyJAhqFq1KubMmYNSpUrh008/lbRfuHAhSpcujTlz5qBq1aoYMmQIBg0ahFmzZhlt5syZg9atW2PixImoUqUKJk6ciJYtW4q8uu3bt8f//vc/dOvWTbF+V69exahRo7Bq1Sr4+kp3Ij958iRmz56NJUuWaG+AQoxTxfCpU6cQHBwMf39/DB8+HBs2bEC1atVw/fp1AEB0dLTIPjo62rju+vXr8PPzQ0REhKJNiRIlLMotUaKEyMa8nIiICPj5+SnaCL8FGymmT59ujFUOCwtDqVKllBukEKMkjM0FsdR6JbEs1aFOjaA2z89W9NIZcjcLa15hWzy4WjzDaoW2VDlyaUrfNY09rCVNr+205Gdrd3c93FeeKIJtqa8tCkuPcAt7RbW95duBljd4gL6HUmERxjk5OTh27JjIIQcAbdq0MTrbzElJSbGwb9u2LY4ePYrc3FxFG7k85cjPz0diYiJeffVVPP7445I2//77L3r16oV58+YhJiZGU/6FHaeK4cqVK+PEiRM4ePAgRowYgf79++OXX34xrjd32xORVVe+uY2UvR42QniEUn0mTpyI9PR043L58mXFunsK9k6jqcZbrNULrMZDbOolNi3HWrlKNwFresqaFlISv2rie6XSlASxFlEs9ak0/JBaT7Hmm6BeglgvIe0M77C9eXuaCHYEzlBb5m5PNYueZduyzgRbvMSF/dAyf5t7//59Sbtbt27hwYMHik47c+Qca3l5ebh165aijZLjTYr3338fPj4+GDNmjKzNuHHj0KhRIzz99NOa8i4KOHWcYT8/P1SsWBEAULduXRw5cgRz587Fa6+9BqDgoIiNjTXa37x503iQxMTEICcnB3fu3BF5h2/evIlGjRoZbW7cuGFR7t9//y3KxzQWBygYgSI3N1dkY34g3rx5E4Cl99oUf39/UWgFI8Z0DMyAgILrt/ApYPrb/LvpJ6B+nMjs7AKRKtgLeSjdP+y9AShtL+y33DrT7eVsraWbrldqX6ltzD/NxzU2z1tqG/M6WltvMfaw0oFhmqa0g3LbORrTg80UvevizipFzwFh9ULpxPMUdNgHNWMRm+OK08gcf39A5s2/TfznmLV4g/vWW29h6tSpsttpddqpcazZ4gg05dixY5g7dy5++ukn2e02b96M3bt34/jx46rzLUq4dJxhIsL9+/dRrlw5xMTEYMeOHcZ1OTk5SE5ONgrd+Ph4+Pr6imxSU1Nx+vRpo01CQgLS09Nx+PBho82hQ4eQnp4usjl9+jRSU1ONNtu3b4e/vz/i4+ONNvv27RMNt7Z9+3bExcWhbNmy+jdEEUIubMJaaIQt3mHzvEy9xFLl2oKaba15g615VuXSTLfNy5P2ENsaIiHnIdYSSqFmP2TDJQB1nl45O/NXANbysdU7rPXg0cvL7OmiTkCNwlJ7gqjJz9WKzlFoPB60eoiFIgrLYWfK5cuXRW90J06cKGkXFRUFb29vSUeZnJNMzrHm4+OD4sWLK9ooOd7M+eGHH3Dz5k2ULl0aPj4+8PHxwV9//YWXX37ZqFl2796NP/74A+Hh4UYbAOjevTuaN2+uuqzCitPE8KRJk/DDDz/g4sWLOHXqFCZPnoy9e/eiT58+MBgMGDt2LN577z1s2LABp0+fxoABA1CsWDH07t0bABAWFobBgwfj5Zdfxq5du3D8+HH07dsXNWrUQKtWrQAAVatWRbt27TB06FAcPHgQBw8exNChQ9GpUydUrlwZQEF8T7Vq1ZCYmIjjx49j165deOWVVzB06FCEhoYCKBiezd/fHwMGDMDp06exYcMGvPfeexg/frzdPTAlr8WF8QqjgHAhltMk5hdduc5wWsIlTPM0F8Wm+WrB3N4eZ5hSmIRS+IT5b1PRKiWCbRHCasIxlOqsViQDKkJy5P4oqXStglhPlA4GW8surGqEcQm2CGKg8B2GwtwHwiL3dtfPzw/x8fEihxwA7Nixw+hsMychIcHCfvv27ahbt66xg5ucjVyeUiQmJuLnn3/GiRMnjEtcXBxeffVVfP/99wCA119/3cIGAD766CMsXbpUdVmFFae9y7px4wYSExORmpqKsLAw1KxZE0lJSWjdujUAYMKECcjKysKLL76IO3fuoEGDBti+fTtCQkKMeXz00Ufw8fFBjx49kJWVhZYtW2LZsmXw9vY22qxatQpjxowxBqR36dJFNByJt7c3tmzZghdffBFPPvkkAgMD0bt3b1HvzrCwMOzYsQMjR45E3bp1ERERgfHjx2P8+PGObqYih7VX+gJSbwethRKYYm4jhE4ImIdQmNpJ1dkcc4+ztfLV1tOanVT4gfn0yub1Mg9D0fIpFzJhLSRCav+U7ESVlvsT1KSb/rb3Xa/WusiFSwjbAOrqY6vyUPN05slz0mqNIVK73t3Rsf62hEwIODt0IiBA3zAJE9mgmvHjxyMxMRF169ZFQkICPv/8c1y6dAnDhw8HUNBv6OrVq/jyyy8BAMOHD8e8efMwfvx4DB06FCkpKVi8eDHWrFljzPOll15C06ZN8f777+Ppp5/Gpk2bsHPnTuzfv99ok5mZifPnzxt/X7hwASdOnEBkZCRKly6N4sWLGz3NAr6+voiJiTE6AmNiYiQ7zZUuXRrlypXT3hiFDAPxwLkOIyMjA2FhYbhwIR0lSoQa04XrmOjJXIXqsrcjm73Y6kmQw3R/pLyWpktaWsF92zzN9Lf5emueUPPvtuoCKS+zVuSEvpRzU2mdVF5K9ZPLU+rT1LOupU5q1pl/lzzWtLwal/uTldzTtr6yt7bOmYLTltcTjqifXD3UhKhoCWOxNXzFk8WwA95y2HNvUSuIMzIyEBsbhvT0dONbWLXbhYWFoWvXdPj6qt/OGrm5Gdi4UXt9FixYgA8++ACpqamoXr06PvroIzRt2hQAMGDAAFy8eBF79+412icnJ2PcuHE4c+YM4uLi8NprrxnFs8DXX3+NKVOm4M8//0SFChUwbdo00TBqe/fuRYsWLSzq0r9/fyxbtkyynmXLlsXYsWMxduxY2X0xGAzYsGEDunbtqnr/Cysshh0Ii2FlrIlhQF7wmqerFcRSn+bfAfX6QA8hLLWtFsEqV7ZaUaxFCGsRxGrFry6CWGqdNRHsLDEMOF4Q69FhTc862iOG7U1TStdq444oPfnagb33F2unT2ERw0zhxLXqqgjhzNdJnoK52JETX6aL+TBpUuvl1lkTeab3FSGuWOqerrTOHtTE1JquMxX6Sr9NY35N9Y6ahwQ5WyndpOZhQ20aIHNzNv+jlNZZEw16uPDVrnPU6AqOOBDtxZn10fK2oDDgICEM2O/s8NRnC4bB/7d37uFVVPf6fxMgF26bIJIQRcEbimitscVgFa9gK0WrViqa6lGpVkERPSraVvScgihqWy9UK4r1hqdFjlopglWx/giKXAp4oceKokKM2pAAhgTC/P4Is5m9sq4zay577+/nefazZ69Zs9aaNbNn3vnOO2sQ8dBqRCYdhpPKQ1zPmtc76rV48lAFsFReVV46W6f3XKp7bo/rZMCuG6//vHlc3683Xcf7y36z/mHT8kTr4J0W/kd4G8o7z9sJusJIN68sn2ye2+k2IrBhCE6ZxzkJZLvXNw8w+buZUlwMFBXZK6+QQoGEB9odkkIeH+TZ0SVkwT9A/5XMutFhXp2qNrD5oth8pnZXWeRY54JC55sdYUKWV1a+KB+A9LsMuYg6X5ZmY2P5jRAD/m4teJcJM/KalChzrkZ2g6ARFZb+VzSwEZyJ6nhIEDYhMZxUEng0CexZNjzBmYhd3rKy1zHzymfnq9qQtE3Eil9vOu+3aqg01ebyI4h1rLtuGpsu3f9U9okwUAlinXpZkSv6RElSBLEufoVzDgnuoCLYi627lUk7PhKEDBLDRDSIjK4MsuAdTxCL5rnIBLEoSuzNk2RkdkndZ8N4QlZUj0y8ysrxGynm/Vae9DWiZxnz2DymG12VPxt2pLgxEaVh5U06kv2a938IKoxtCmLa/YlsIMtCALkBWd86wntVszvtIrKHyti+PfOlHew8mb+VVz7bBlG5SYDnJfaun0mfqL4Bf69t1vF38/K4+4rQT8x6htlvGaqdTpRfllcnT5JIgn+YDpRK4h5hSJeSEqCpKXgZ5BkmwoLEcJLQOVHnCpwTHTsAvEgUK4rh5vEKYtUyPFHsbZMKG5tRVwPEqRd0BK3OPJl4ZpdhCfQQqugKiM3DInt4TjafLS/p/3U/gjjbLBbZQEx/cPd/ZUtw03UNkWTo2ihmsuXKPmp07nZ77RI63l5ePm/5rI3CO2377rmtZVTo2CV09Y6OzUFn6DbdsnWtHsIh2NhpmQdHls7Lp7Jg6F41BbmPrNrpg5YPZI+4zVXfcAIUZL6PeETkB1lypMsNcuGun+9InGa41CQ67C1OZIVg87v5VLfweU02tUREFei3tV/5sTLw+lFn6DZdm0RoEWKRbUK2k/HKkOUxsUaEfWCIwqYRRDib7MS5cCDVgbeOMUaJ4w7ckE2CCBPaHZJGPhzkXXhPenngRWq9v0WBL90IsU7eoEFAk2BjkOVliLrYz7NIsqiwd9rkpRyqyLHvCLEsOsymqW4/6ObxMz9K/LQhzuhwUPGe9MivCAv7im3xWph+fHUXRYuJnIPEcExIj9FJOGlGCdMZogOtSvjyosMiocsKYtE3TzTrtk0XXptt4qc8E2uDKJ/OSBV+6pXN1xbEInFsS/iKSIIoDkMQZ4udgkfSBHPc+4cmJIqJXCKLj2BE1uHDNyCyL7iwaTq31UW36E3tEqLnrWQP3akeyPMbZbZtlQiSx89Dc6Z2CVk7OlgmRBtTtBN4l+OtHDtf9uCdykIhyxMmPv6LwjfoZbMQDoMIxWwS7Au2H7QjiDigvTcB5NVBRPNEIYsOe6d50VvRCzl4+d3zOC9YqIoMi4J8OoHBJAQITdG1SHing9olVNFnbXgRYnfaJDosuz0hqle1oePaIfzWF+cLQWQE2UFsXJDE9KdOSoQ27HZ06qT/jhqdT6dOoTWVyELySIUlg6TdkUsyvNc0u98qkSobOUIliHl5vOhEc/2cE02ixLaRjShhIoJlZfuxS6jSA40woXtloyuAg4piWX1hkW1XZC42diZbJPjKNo5AS1LEOUGYQGI4Alpa4m5Bwghw4lAF+LxpfgWx6FtUN2++KC2b8KMhdEWyyUN0QfzDXA+x38hwlKKY1xbVhwhGlkcqRALU5quaTSBRTGQTJIZjJFuPvVYOrJoncDY67F2cV4woUmxDELP1iXQQb1Vl6JaTBPzus0GjwyqRLStXGSV2f8uErSqKLIsq8whjA/sVxhSFzg4C9l/mWBDRnfppBAoiG0iQ4YtQkYSHJaxTUqKtkNys7Lc7D+A/D+UKMTadt5ybn1cXu5zsATvVg3JJJuphXHUephMto0pz4b6+mbdDqNJVv9llePlU+W1gWrbB/zAr0d2pTXf+bPpjM4jOJUkVrSUlQHGxvfIKCuyVRWQ/OaasspecE7kmKE4o3oOzzL4gCuDJxhXmleE+YCGaz2u2TvBQl6iFaNSYDNsmiwiLIsSqKLHUPiGKDOv+dtNYoo4SR1E2kZPEZasg8pO2tjY8//zzGD16dKztoD2eyAlUeoUdg1gliIFMz7E3XSXA2XZFEWiyoXl0XstsWo+u2Nb1DOs+QOeKYh1h3AEdgWv6Wyc9LOGqW26cojxJoj2JEfIY+odEMREm69atw4033oh9990X55xzDpqbm2NtD9kkIkI1Zmq24fu1zBYQ2SVkVgkgUxCLxhj2sn17+zKsbcKbX2Sb8NYrSmPXSbXO2Y73Nc0usv+CaJuKtq+sHBdeHq6Fws1sapMIYptQzQtCrtsgcpmY//xxHuu9FBfH3hVEQLZt24b/+Z//waxZs7BkyRIMHDgQV155JS6++GL0798/1rbRZV/M0PlJD9EDGLr2BVm0VxX9NR2LmNcOXntEd+bDJgn7nCwCrPPgnB+LhCqP9ugT7HzZb1laHFFiFWHUSwrGPwZ9F2YUlyLERBCWLl2KcePGobKyEhMmTMCBBx6I1157Df/617/wy1/+MnYhDFBkOFEk5Qpclzja6z5EyIvK6kYRZRFibz5e9JH3cJ23Dbxp7/J+CKIldJb1c6dCJfpF6EaHdbanKCKsigSr8ij3a9MIsShNlu5tmK2rF93osM0ochxXejq3GoKUEwUJvIDItvMTkRyOO+449OrVC3feeScuuOACdO/ePe4mdYAu94hAxBkx0LFl8qLEvN+yae83b/g13ShxnAG/JGLiD1b5hoN4h3nzuBHiIL9FabJ07/yodxwb9dHObkaAg0RUx2GKEBN+GDlyJJqamvDrX/8ad9xxB/71r3/F3aQO0J4dE34DL0m8Mk+CIJbZJXjCVGR9MBXEsnrZaW8a75zHq1/nvBiV5tDRd37bYiqCeQJXJXxl83npSkGswsQeobOxoxaoQUQ4CWF9AvRzPj3k5j0m2voQ0TB//nysX78el19+OZ555hkccsghOPHEE/H444/H/uCcS378ixKC7CSd7UR5UBZdEIiEsDfNm64riHkfd/g1ti6dKDHbZp5YTzKm7WP3b++oFX5EMFu2TNyqhLGqrdJ9OoxocNIEsZtfR0GQyoiUuERwvohvwi777rsvbrnlFvzrX//CK6+8gv79++PnP/85KioqMG7cONTW1sbaPtqrE0a2H2iiEsW8sYfZ3zoiVUcQy75ZQayatq0TVNokzDpMosK2BbEfq4ROu0RpaVQrbRoN1qnDdH7Y2A6zxb0+QYgpkhH3eSLu+ons5qSTTsITTzyBTZs24Y477sCKFStw3HHHxdom2qOJUIj6YKkSrWyariDWEcY6tokwRHEUQtgmNgUx77ebZmKFEJXjxXhfNhG5pkJZd76KJO4ghBYkRIls49e//jVuvfXW9O8FCxbgzDPPxC233ILzzz8fy5cvx4oVK2JsIYnhrCSJvmEeYUeJVXYJHduE+60zfFoQ24TOb1uEGRE2if7q5LEhiE09wqI02e8MorJH6NgSgpAEQZyENsRNlvrk4gh42P4Q0fDMM8+gqqoKAPD111/jnHPOwd57743a2lpcddVVAICjjjoqxhaSGI6VLD0GGhPVQVOlM1Q2CJUg1vlW2S547fRzYPZ7h103j1+8AlTXtuBHEPt9eI5Nk/32Yjy6hJtmMxocBnEqgiSrkYS2jaLCRDby8ccf4/DDDwcAvPTSSzjkkEPwyCOP4JFHHsGiRYtibl079M9KCN4TMR3w9NGNDutEi3mC2I8w5kWJZdOyNNm6+Vlep16bOkBlW3DZuXOPKA5ikzCpU/Xb+GLVTzQ4SJTZFnGEyRIqNo2xtR75Ehkh8pLS0lJs372Pv/LKKxgxYgQAYK+99sLWrVvjbFoaUl1EJMQZHdaNDLuI7A4qgczO0xHEoiixjUCjaR72ZRg8gohFnkgVRYm96X5tEqL5RpYID1pDrZkIX9EycQnFsEVxFPens1lkkyAmcpTjjz8ekydPxsMPP4w///nPOOusswAAH374YSLePgcI3kC3evVq44IGDx6MzjpnU8IK7pvYsomo32BUUrLn/OJOy9K859Ht2/lvm+Pl9S7D5uvcObMctl2q9gfNE3S+Cu96mJTF62/3t+otdbz+V7XD2/eq+lV1ZcDbmN6Fefl589hydHeSMEiSoExSW4hYKS62uzs4jr2yCDn33nsvzj//fNxwww0YP348qqurAQDNzc24+eabY25dO1z1etRRR6GgoACO5t5SWFiIf/7znzjggAOsNi6foVdf6sNeGOgIT5nI1RHNJt9eQQzwy3fTTQhilzDJxyK7GDCpUyZQXUHsR6Sy5YrarhS6nGW4/0vZTuZtkGoZmQBW7chEbqC7UyYEOk8RPDZv3oyZM2di8uTJAID9998fS5Ys6ZDvjDPOiLppQoSh3Lfeegt77723sgDHcTBkyBCrjcon/Jycs5k4D55BxCwviuhHEPPawbZPZz1M0nVgI7GqsvzuqzyhqhP19RO1FUWLdcqTlW0kiGXzVBvcxi2EbBbKsvXK5QOlZOfLxjuCRP7x73//G1OnTk2L4WyA+68aPnw4DjroIOy///7Kz4ABA3DCCSegtLQ06rYTRBpWnHjPJbxp02/Rg3Xux6QM3jxeW1m8demky/AjqEV+XZ0PryzWC8x6hEWjTMjKMWm732lA4IGXbQjZxpP91p0nW8bPDkKooT6NFNGxN8jHDw8++CAGDhyIkpISVFVV4e9//7s0/+LFi1FVVYWSkhIccMAB+P3vf98hz9y5czF48GAUFxdj8ODBmDdvnnG9BQUF3M9dd90FoF2gTpgwAYMGDULXrl2x33774eqrr0ZjY6O/jsgxuGL4tddeQ69evbQLmT9/Pvr162erTcRuVBGAbL09FcfDdLYFMfutK5B5tnqeHtI5cPs9oLPLmFj9/QYaRcKYJ4q9315BLGuDSnzzlpOJXZ3lhfux6RVNVKIqm0RxnO1MQh9JdkiT477qPxGUbD0H+eXZZ5/FxIkTccstt2DlypU4/vjj8f3vfx8bNmzg5l+/fj1+8IMf4Pjjj8fKlStx88034+qrr8bcuXPTeWprazFmzBjU1NTgH//4B2pqanDeeefhrbfeMqp306ZNGZ9HH30UBQUFOOeccwAAGzduxMaNGzFjxgysWbMGs2fPxoIFC3DppZeG1FvZRYGjawwmjGlqakIqlcIHHzSiR4+eANTBIXa+6mCTrbfMwjiI8vpCJIBkAkz1zQ4BJvvWLUPUXh5+z9Wi5VQRaz9RZD/tMYmom9Sv0p6qdVYtL92XZRvUT7haVaYJSbVQ6GxYvztlkLL95vOLpHzd4z7Plm4Tk+N4U1MTUmVlaGxsRM+ePc2WS6Xw+983orRUfzkVzc1NuOKKlFF7hg4diqOPPhozZ85Mpx122GE466yzMG3atA75b7zxRrzwwgt4//3302lXXHEF/vGPf6C2thYAMGbMGDQ1NeGvf/1rOs/pp5+OsrIyPPPMM77qBYCzzjoLW7Zswd/+9jfh+vzpT3/ChRdeiG3btlkdAOGjjz7Ct771LWzZssVamWGjXHvHcfDnP/8Zr732Gurr67FrV+bO/9xzz4XWuHwkH3zDQDjeYZ6frqREbdd0p3W/2REiZN+AXhnedoWBiRDWxURL8coW7etsf3lHl2D7VafdbD5VvbJp3m93n+Puz2xj2Xki07ho2lumqFxdRH+OOLEpVsMkijaE4B3W/c+YwLYj26LFTU1NGb+Li4tRXFzcIV9rayuWL1+Om266KSN9xIgR3IfDgPaorzumrsvIkSMxa9Ys7NixA126dEFtbS2uvfbaDnl+85vf+K73iy++wEsvvYTHH3+cO9/FvRCgkcA0xPA111yDhx9+GCeddBLKy8tRUFAQRbtyEj8HIJVozOYHKqQiIiRUekMlbF1Ml1MJYm+ZOuugi42LK1tlAPx+VIlUgD/cGlu2F79i168gBhT/VdFGNhHEouV5mO5MYex8IsIOV+YSIQhim/DqD6tNtodWc+N67Di3t956K6ZMmdIh/1dffYW2tjaUl5dnpJeXl6Ouro5bR11dHTf/zp078dVXX6Ffv37CPG6Zfup9/PHH0aNHD5x99tnc+UD7a5H/67/+C5dffrkwTz6hFMNPPvkknnvuOfzgBz+Ioj1EHuI9eIYhjE0DcKaClieSvN+ystlRJsJYdxG69gOb7VIJa1n/e4dbU7VLpLdU251tox9BDEj2Y140VncH9a4IbyXZMnXyqfJHvVMGWTYPRbVKEIuC/3HcgYxbuIv49NNPM2wSvKiwFzYg6DiONEjIy8+m65RpUu+jjz6KCy64ACWCjdzU1IQzzjgDgwcPxq233ipsu19KS0txwgknWC83TJR7ZyqVovGDA6K6ok3anco42YXCjI8tZAKPN81+y+axI02weUTLeZf3vsJZhundLNN9Kw49IWoj67MGOo4wIfrwyvKm86ZV83ltFbVduv/yOlm1g3p3JF66TZGoUyYRHQFPELQZ5fTs2TPjIxLDffr0QadOnTpEY+vr6ztEbV0qKiq4+Tt37oy99tpLmsct07Tev//971i3bh0uu+wybpu2bNmC008/Hd27d8e8efPQpUsXbr4g9OvXDy+99JL1csNEqTamTJmC2267Dc3NzVG0h/BBtnm0TDAVxbK+0I142hbEsuVYzeEVxrwPL48I2TlUV1SrTqQ6QtSkXTrL7NzJH2VC1i5eOTYFsUwUc9EVxDIBzFteJZyzmWxvf0joHP95m5+CMGYUFRWhqqoKixYtykhftGgRhg0bxl2murq6Q/6FCxfimGOOSYtQUR63TNN6Z82ahaqqKnzrW9/qMK+pqQkjRoxAUVERXnjhBWHk2DadOnVCYWGh8hMnylPij3/8YzzzzDPo27cvBgwY0OEqYsWKFaE1Ll/hPaCTy4JXh7D9xaLb6DpWCZHlQWc57zwTvCcyb72ivH4ChzpCWJZusk66NgVvubJ15r3O2V1WVZcfy4QoDZD8f0WWCW+DvWm8leGlq8rPRhVEQliKrn+Yt3tlC7av53b5OJVMmjQJNTU1OOaYY1BdXY2HH34YGzZswBVXXAEAmDx5Mj7//HP88Y9/BNA+csT999+PSZMmYdy4caitrcWsWbPSo0QA7c9lnXDCCZg+fTrOPPNMPP/883jllVfw5ptvatfr0tTUhD/96U+4++67O7R9y5YtGDFiBL755hs8+eSTaGpqSj88uPfee6NTp07mHaIJO27yk08+iRdeeAG//e1vEzMsr1IMX3zxxVi+fDkuvPBCeoAuwSThYYooCOovltkz2d+seOWl8QSxyXLuPF3YZdzfKkGsg592qPL4PXmpvLpeeHWwfcGORqESx0EEMa9Nwos5kTrRWWG/4temIPZ7xWSrfNN8NohDmGv8mUzOAe4uEId3OJsZM2YMvv76a9x+++3YtGkThgwZgvnz52P//fcH0D7Wr3fs34EDB2L+/Pm49tpr8cADD6CyshK/+93v0mP/AsCwYcMwZ84c/OIXv8Avf/lLHHjggXj22WcxdOhQ7Xpd5syZA8dxcP7553do+/Lly9NjFx900EEZ89avX48BAwYE7h8Ro0ePTk8/+eSTmDdvHg455BDMnDkTixcvRiqVCq1uXZTjDHfr1g0vv/wyvve970XVppzBHR9x/Xr5OIY6d0x1hF8+iGEebN/o9IPM+ymaJ7ut7v3mjUMsyi9rk277WQsBm4+3fwV9G55OW02j0brOAV3YvKoHBnVsLbrtlLXV97jEovkqI3PQnY0lyBVOWHUE2TFszw8DgzpNzgN+Lsj90tTUhLIys3F93eVSqRSeeaYRXbvaG2f4m2+acP755u0h/PP000/joosuwl133YUrrrgCp512GhzHwaJFi2J/i7HyX9O/f3/aURJAvgpdHby+YpPIiOg3ezvOVCyxb6oT5ee1QfURtdcvfi0SYSDSbKzwl314y7rpXq+xyi8sm6erLUVeYuk+qroXLNtxvL/Z+bxyTODthKaoyvBbR66HNg3Xz+SOmfcmQ9KtE6rnKfx8iOiYM2cOLrroItxxxx2YOHEiSkpK8Je//AVbt27F2WefjZ1Bb20GRKkc7r77btxwww34+OOPI2hOfmLrIES+YrMLBpVmMBXE3mlZ5NV7vtcRwLz8vPbqrGMS8NMmmejVyceKYjbNNHJvEmw1FsSA+CqInc+m8aZldejkCWMnkl3pmZaTjZj+8Q1xx+PRbYpL0gUxkZ386U9/Qk1NDaZOnYrrrrsunZ5KpbBw4UJ8+OGHuPDCC2NsoYZn+MILL8Q333yDAw88EF27du3wAN2///3v0BqXz5CXKxpKSoJ5iHllud88/7A3EqO7fXk+YV65cdz5tl2ebr/I1pV3cmf7jvcSD1m/8rabiWeYl9fowVhvpWy6rmdFttPy6ko62dJOLxG32eTBOvZCMBu7l0gmF154If77v/8b//mf/9lhXt++fbFo0SIcd9xxMbRsD0ox7L4SkAgPmwedfHmQLkxMBLHqm10G6CiMVFqG1UEy/aPzIJ3q9mDcJ0GRZvOzvEzEel/ioSpflMckXSSIgZjv6sS9wU3Jtva6xNTuJL26mchPbrvtNtx4443YunUr3nvvPRQWFmLw4MHo2rUrAGDAgAF4+eWXY22j8gE6wj+u8X/TpnaDvulJnjePHqQLB5PnkmR+U95DczKfqp/2iW7ve/PoDDsmuquuIwxlqJYP6+QqKle1nmx/qL5FdQVJAzQFsYl/Q7QD20C0EmHdZ7e10wS1j2SxnUN1Xgj6v1YR9AG6F15oRLdu9p5f2ratCaNH0wN0UfHLX/4SM2bMQEtLCwCgpKQE1157LX7961/H3LJ2uP8Od+w5XbZs2WKlMbmOLZucinz3DvvBRLSYih7RCzlM7IJs+ao2sNFfk4dGZN7XJHsKVQ/SudPedMDfkHS6D8yJ0ngk/iJW58AVht8mSiEZRl0JEMJA8PNCkv/7RLK5//778dBDD+GRRx7BG2+8ge7du+O1117D//7v/+LOO++Mu3kABGK4rKwM9fX12oXss88++Oijj6w1iiDiQCUwedMikcp+e4WoSviy5elEKHnzZAJYFeVkH0QzOREm4aSpeshOlq77UJ2oX3QEsEwQJ04URy1I46ozD4hSEBem9+ZdRg/0EbnHgw8+iBkzZuCCCy5AZWUlHMfB0KFD8dvf/hYPPfRQ3M0DIPAMO46DRx55BN27d9cqZMeOHVYbRRBxIXqeiOfX9eMfdoUpLxrJ85iybZDVL1sHUR1x6A2Thwdt1qPr4zUp000D1GXzHubjLWdEmFcecewcSRbAftqWwPUReYhlxw0vUf1/idzho48+4r6r4qCDDsKmTZtiaFFHuGJ4v/32wx/+8AftQioqKjqMMkGEg+4T6PQgnX9UJwWZYJZ9Ax1FMQ/vK529y+i0wc2f9JNVXIJYlC56mE62DXVEsShNJdJjfQV7ropgVR1J/9NkEWHsu7ZvFrS12SuLkNOrVy+u/faNN97AoEGDYmhRR7inZBpTOBlkg6jJF0QC2UQYu/O88Mpko8eq8kRpsnUJG519N46n1XX/UzpRZDYaz6abCGAr//WgUWJbG0I3xGizzrDJkaiwC0WHiSg5+uijsWTJEhx11FEA2t0E48aNw1NPPYUnnngi3sbthkKHERDXQYM8Wv6x4R9m5/EiGzLvsO4QaGwdonKTasOM+8E89kE62Ugdqof02Af0TH97sX5nR7Txw9gxdKKwSdwZ84gg5wfadIQJN998M3r06AEAKC4uxtFHH43m5ma8/PLLOOecc2JuXTs0tFqIuEPCNDSIh1ZTwTvomBzEyCoRDJMHoXgPWuk+OCXLxxNpqnpl9cnsF7YxPWmGcZKV+aR5FzKiodZE5emmiS6mVPMy/u86O6DoN5se1S0ClyQoKFkbZBcLNutJEKLzg86xQbWK7HmqqakJqbIy30OrLV7ciO7d7Q2BtnVrE4YPp6HViHbo7dwRYnL30BbkHbYLuw1lNgl3GpD7SUX5dH3LrKdVVB+vDLYdLLoP4qmWN8kfh46Q2SJE21I3jeflVs0T9oGNg0jQKxST+v1uTNlyYRxEs0S82iaIXYKsEoQuixcvls4fPnx4RC0RQ2I4Ymycy2J9uCbPUIld728d0aOTxtbnvlVOx4usIz5V6yPKx84zORHG4Q8WIdtWJSWZr2oWbRdTEcyWoRLB3unY/u+6kdK4xHkSb234XSaBxBG8IXKTk08+GY7joKCgIJ3mNSXs2hW/nqGQYQzkyLEybwhyC1zlE5YtrxPV5ZWj8gfr3uYPA5HnNk54ToOdOzOHv2PbLfMIq+wsfqa10PFz6JZjsqxqhxPlNa2HV5YpSdrxEoLsQivI5qE7koRLQ0MDNm/ejIaGBjQ0NOCzzz7DCy+8gG9961tYsGBB3M0DIIkMn3LKKbjqqqtw9tlnc+d/9dVX+O53v0sv2/BJlMENskqEg8wyoYrUiiKEov2BjQ6r6vO2SVVvNmEalBSdzGWRbW8feQUxGy1284iiwzamXTKiw6KdgIdpeC/oVVEuXennUVRYdo4IEiF2y7RxZyPotROLnzdPEv5gPdk9e/bEqFGjUFpaiptuugkjRoyIqWV7ECqk1157Deeddx5uvfVW7vy2tjZ88sknoTUsX9CJ/hHxoxtllUVqVflk36I6ZVFnk3p5mEaXw0bUFzbawotWs5FeN1rMixjzfutOe5fltcuIIGH/MDcqb8eMKzpMcFFFiKmrCdsccMABWLNmTdzNAKCwScycORO//e1v8aMf/Qhbt26Nqk05h+pVlH4OMqaRXvIYB8fUdmBqj2DT2G/vUGsm1gjTemXrEtdJUVanytssmi8SnzrprDAOYolQpblk/OdVV0QsOjtIUIKI3SDiOCkqLSntCIDqPMFuHt2LtUS+ZpyInVQqhZdffhltCXgDivQBujPPPBPf+973cNZZZ6G6uhrPP/88DjjggKjalnOEdSvKRv2EHqLtpGNTkN1OV9kkXFy7hG6dvHplD9DJ2qCraYJgItJN/i8iW4TKxsLO46WzD9yprA+8aZVtQ9mv7IYLuiF18btT6Phb/Ng7/PhmgkTTcxCd84R382jtn0Re4z5AJ+K1116LsDV8lKNJHHbYYXj77bdx/vnn4zvf+Q6effZZnHrqqVG0Le9gRQmRTHR1hkik8jSL7jfAf0OdF5162fXQFcQ84thX/Vw46vqEVXWx/VlSsmdbuK90dtNNfME67RV6h3lEcYUtqtc0j8kVpm65OgdTOtBycfexJAVPiovtbq4dO+yVRchx3zznsmPHDqxevRqrV6/GT3/603gaxaA1tFoqlcJLL72EyZMn4wc/+AGmT5+OsWPHht22nER11R32sTmXo8OqCKlNdM7TOlFh97euIPYux4pinXpZYS2b5pXBq8MWugG6IPpOJUJ11pXtI2+ZvCixShzLtrURorC/aMWCwjZS1Gid++o6V5im6xCl0M1RUa17N1N0J4UgAOCee+7hpv/Xf/1XYiy4QlXkHQ/O/X3HHXfgiSeewC9/+UtcdtlloTcuV4nbvxt3/bZR+Ty9H9vo2hx5eUxOGt687HKdO+/5yJbz/haVJxKk7McmsjLZbWZjG5qWIdu/eNOqp9T9RrW58DZwkm77m+z0fv5EftsUxo6co5ieL+K4GUFkJ2PHjsUjjzwSdzMASCLDIn/HmDFjMGjQIJx11llhtSkvsBGhDTIYf65EiP0IGyD8yKZukMskGsyL3LL18KLFoqCbKiqs07dR6AlZO/y20c9+oBNV5kWRdawRJtHgDv97UUQ4aJTYpJNMRa+fCLFO2UEhgczF9E11YRxnbV+/kE0ifpYsWYKioqK4mwFAIoZfe+019O7dmzvvqKOOwvLly/HSSy+F1rCcYvt2gPPu87gFqfeEmgvC2ISwvdk6NgNdQczmEbXfWw/PV6xjjciW250mF0F+/MCystg+5y2jeqhOZInQLZ8riNkVEolfHcHJhr3DuB0QRBDbbAcRGmHsOkT28aMf/Sjjt+M42LRpE9555x386le/iqlVmQjFsOpd0XvttVdijM9EcOIW5n6wdcs87IO1iSbREcSiMnlp7OgTul7huO2ZovqD+oUBdXTXi0hAiwSryj9s0lZZlBkQ3BkyiRKbdLLJCpjksy16SXmFht9zBAlioqysLON3YWEhBg8ejKlTp+KUU06JqVWZaD1AR1hAcERIkghN4hPEuYRIwMqiwCKhpRLFpkG3pEWFee1U+XZlZfGW0VlH0Yk8rhM8TxAD8Bcl1t0ZvMtHheyqLO6dkzCGfMT5zaOPPhp3E5SQGI6SEARxEN+wiCQJ9CjwK2zYftftM57wVAlidjmeKBbpHG90mG0HW4aXICcw3f40ta+aLufN61cU27bUyCwxppFoFyNRbCqIeY3ypqlC2CL8XMnoYHvnI9IEOTcE7W7bQ6u1ttori9DjlVdewYoVK1BYWIijjz4aJ598ctxNSkNiOGqy5J5RvgliXWQXHqJ5Jg+eqHzCMhEsmyeyS6jaEjYiz7MMvydVmdjktcdv2UGtEqK7At72idosFMV+BTEP1UrEcXwLKppJGPsmSos3kZ1s27YNP/jBD1BbW4uKigps3LgRPXr0wOGHH4758+ejJ+eZqqghtZMQkjjcWRLb5BLHwTfIyB28ZUXBNT/TOvlEr3P2lsGWFQS2TFXZonnss1zsPNFHVJZs31EtK/vtB7cMUdmi9VWldbgA421w9reOyFWVw2s0DxudZ3OHDVJGFgQ3bJLk8wKRTG655RZs2bIFH374IRYvXozS0lLU19dj7733xvXXXx938wBQZDgessA/TNiH58nWsUHoTMvK8qLzOmfvvDCwZcdQLSe7y6+yPti2RvDKV1kiWJuMtz2yNPe3cgg2VZhZhJ8rGpto1ME7jpKII4h4mDt3LmbNmoX99tsPH330EQCgS5cu+NWvfoXTTz8dDz/8cMwtJDGcE4ThG3Yhgd6Ozf5lRbGu1cHvNKuBWA9x3HeLdUQ8II8QywgqilV+XRNEYpe3rWT7BS+Nd6HUwTbB62DdHcCWCPa7k/kUwew84X/Zz/3+PIsKi4jCKmHzrhVAnuEo+fLLLzFo0KAO6T179sT2hHhsSAzHRRZFh5PYplzA26+6XmDZdBBB7BLVuT2O459MyMqCo1HY/HW2Ids+3QsogLlgtnVLICFRYMBsBBxrwYM8FsK8cwJ5hwkRFRUV+Pzzz7H//vtnpD/00EP4zne+E1OrMiExnEBIfGY5BiKD3dZBosQ6873leT3EqlcI24Yn8KI4kerYH8IWv36tL6rfqjKFL+rwVsjDdmfobGyDOq0eK2UXCrx8UWJqZyGIhHDCCSfgr3/9K4YNGwYA2L59Ow4++GA0NjbilVdeibl17ZDiihO6jPZF1N2mHUXy+eQW+4AdezuQnXZ/s9OiNFkZLp07qz9svqDEeT7X9Rvzftve/7y7hjut+i1aVtVeoXB0dwreJwxk9RlEg4MMSRl2+6wi2yFjIl892A8++CAGDhyIkpISVFVV4e9//7s0/+LFi1FVVYWSkhIccMAB+P3vf98hz9y5czF48GAUFxdj8ODBmDdvnnG9juNgypQpqKysRGlpKU488US8++67GXlaWlowYcIE9OnTB926dcPo0aPx2Wef+egFM6ZNm5Z+C12vXr1w/fXX48Ybb8Q///lPHHnkkaHXrwOJ4YSStANN0tqTOHRPTqy68cD2sUzA8qZ1xLFKFMtgBbBMNGcDsmsXd74NeFF3Xt0iocsTwry8bJuNBTGHXelLNfUnKqKuL3Z0TPQJIczrBNX1iZ+PKc8++ywmTpyIW265BStXrsTxxx+P73//+9iwYQM3//r16/GDH/wAxx9/PFauXImbb74ZV199NebOnZvOU1tbizFjxqCmpgb/+Mc/UFNTg/POOw9vvfWWUb133nkn7rnnHtx///1YtmwZKioqcNppp2HLli3pPBMnTsS8efMwZ84cvPnmm9i6dStGjRqFtrY2884wYJ999sHRRx8NAOjduzemTZuGyy67DL169Qq1XhMKHMdx4m5ErtLU1IRUKoXGTZvk4+gJ/pUmB/woxGpSTkBhnANkB0Zl3wZpkOa214lUmogjnd82UNkvZG1WfcvK83Oi4y3Dpsmi7qKLFUB9kSBqr6h+VRtU+cIkrGOR7eNP1lzgJ9Gy4UF1rHJpampCv34pNDY2Go0r655HGxrMltMpt6zMrD1Dhw7F0UcfjZkzZ6bTDjvsMJx11lmYNm1ah/w33ngjXnjhBbz//vvptCuuuAL/+Mc/UFtbCwAYM2YMmpqa8Ne//jWd5/TTT0dZWRmeeeYZrXodx0FlZSUmTpyIG2+8EUB7FLi8vBzTp0/H5ZdfjsbGRuy999544oknMGbMGADAxo0b0b9/f8yfPx8jR47U7TpjbrvtNu28t956a2jtkJFFcZz8w8Q7HOaIEn7akzcEVZAC9cYbcYLNLvMEi9JEZbBNiNK/G1V9Knhe4SgennPrcRFtB5NtruNLDgvbx6KwjjlRHDMDo/PHiGon1UTHEp4kmpqaMn4XFxejuLi4Q77W1lYsX74cN910U0b6iBEjsGTJEm7ZtbW1GDFiREbayJEjMWvWLOzYsQNdunRBbW0trr322g55fvOb32jXu379etTV1WXUVVxcjOHDh2PJkiW4/PLLsXz5cuzYsSMjT2VlJYYMGYIlS5aEKoaff/55rXyO48QmhiNTNtOmTcN3vvMd9OjRA3379sVZZ52FdevWZeSx5XlpaGhATU0NUqkUUqkUampqsHnz5ow8GzZswA9/+EN069YNffr0wdVXX41WZqyVNWvWYPjw4SgtLcU+++yD22+/HaEE0rPpyBEzOdtVEuuEyE9s6h/WsU6w9QSxSMqiwmHf+fVbjonbJSy89giV7UEnsi6b9tsWFTYEbBR2iDhsHrlGVBcU+oYd/Q8A9O/fP60VUqkUN8ILAF999RXa2tpQXl6ekV5eXo66ujruMnV1ddz8O3fuxFdffSXN45apU6/7rcpTVFSEsrIy7fbbYsWKFVqflStXhtoOGZEdARYvXoyrrroKS5cuxaJFi7Bz506MGDEC27ZtS+ex5XkZO3YsVq1ahQULFmDBggVYtWoVampq0vPb2tpwxhlnYNu2bXjzzTcxZ84czJ07F9ddd106T1NTE0477TRUVlZi2bJluO+++zBjxgzcc889IfdUJkmLXCStPTZIUFBFqDx4olg2bSqEVaLXpI927jQTwjyRpWOJUGEq4JKKiSCWzRM9eMdbVjTfpE+DPNwWhzhNgh/aF4k6gLWTwCYJ+fTTT9HY2Jj+TJ48WZq/oKAg47fjOB3SVPnZdJ0ybeVh0cmTD0Rmk1iwYEHG78ceewx9+/bF8uXLccIJJ8BxHPzmN7/BLbfcgrPPPhsA8Pjjj6O8vBxPP/102vMya9YsPPHEEzj11FMBAE8++ST69++PV155BSNHjsT777+PBQsWYOnSpRg6dCgA4A9/+AOqq6uxbt06DBo0CAsXLsR7772HTz/9FJWVlQCAu+++GxdffDF+/etfo2fPnnjqqaewfft2zJ49G8XFxRgyZAj++c9/4p577sGkSZMi3XnInpADyBSE6MzBsVB47ROq2+BBp3nNVAkhE48w+9uW44SXbnJyZvPr2gxk83buDPZwoWqb8ewROu0PEkHX6VMTK4LpMU637TaEmaptsQUJEqI6s/kc1bNnTy3PcJ8+fdCpU6cOUdT6+voOEVmXiooKbv7OnTtjr732kuZxy9Spt6KiAkB79Ldfv37CPK2trWhoaMiIDtfX16eHPMtnYtt7GxsbAbQ/WQioPS8AlJ4XoN2jk0ql0kIYAI499likUqmMPEOGDEkLYaDdo9PS0oLly5en8wwfPjzDOzRy5Ehs3LgRH3/8sc2uIDTJ2iifquGq+9CKSDEvwit7eppnqZBN66ATDQ5iQQhLKNtAt71uH+l+ZGXq2CP8RIVNsFGGSfTVr2WDXS6MfSGWKHJChLCIhDfPmKKiIlRVVWHRokUZ6YsWLRKKyerq6g75Fy5ciGOOOQZdunSR5nHL1Kl34MCBqKioyMjT2tqKxYsXp/NUVVWhS5cuGXk2bdqEtWvXkhhGTA/QOY6DSZMm4Xvf+x6GDBkCQO55+eSTT9J5VJ6Xuro69O3bt0Odffv2zcjD1lNWVoaioqKMPAMGDOhQjztv4MCBHepoaWlBS0tL+jdrzA9Ckq68k9SWoKgO2JFHfERPUnnnKSLFblZZNFOWxlYTJBosW1YVFbYtWkwixDp5TaOwpvCiybrblRcplkWFwxQuQY4VYV3EsOXaXH+rD+bxbsckVGWGfl7Yvh0oKrJbniGTJk1CTU0NjjnmGFRXV+Phhx/Ghg0bcMUVVwAAJk+ejM8//xx//OMfAbSPHHH//fdj0qRJGDduHGprazFr1qz0KBEAcM011+CEE07A9OnTceaZZ+L555/HK6+8gjfffFO73oKCAkycOBFTp07FwQcfjIMPPhhTp05F165dMXbsWABAKpXCpZdeiuuuuw577bUXevfujeuvvx5HHHFE+k57PhOLGB4/fjxWr16dsbFdbHheePlt5OF5fbxMmzbNaAgRIl4Sek7Zg0itcNK9J18dC4W3KJ540j1PiISwTjA8DvwK1KiXc3H71yuKg1zccK6n0nl56SqCrp+s3Cjx42Ii1GTbyBIqxowZg6+//hq33347Nm3ahCFDhmD+/Pnp1wxv2rQpY+zfgQMHYv78+bj22mvxwAMPoLKyEr/73e9wzjnnpPMMGzYMc+bMwS9+8Qv88pe/xIEHHohnn3024+62ql4AuOGGG9Dc3Iwrr7wSDQ0NGDp0KBYuXIgePXqk89x7773o3LkzzjvvPDQ3N+OUU07B7Nmz0alTpzC7LSuIXAxPmDABL7zwAt544w3su+++6XRbnpeKigp88cUXHer98ssvM8rxDmgNtI9AsWPHjow8PI8O0DF67TJ58mRMmjQp/bupqQn9+/eXdcceNM4qSYrIRt0W2wfUrDvB+RTGJSUdt5FMAPMEsekJTTcazEsL4mE1yRtk+/vx5Qbd30SeY5l/WNYu26LYFqbbX5TfZvv9BGatRYezJCrskqRzVFhceeWVuPLKK7nzZs+e3SFt+PDhWLFihbTMc889F+eee67veoH2IN2UKVMwZcoUYZ6SkhLcd999uO+++6R15SOR7bWO42D8+PF47rnn8Oqrr3awGdjyvFRXV6OxsRFvv/12Os9bb72FxsbGjDxr167Fpk2b0nkWLlyI4uJiVFVVpfO88cYbGcOtLVy4EJWVlR3sEy7FxcVpM36GKZ81bfKwcJCL+iCUrSNLWD2fxHFyEhkgOWk8b7HMS8z79qJjHcgGdNoZJA+bbtuzqusf5k3r+IdN2mtjnVRl8Hy/JvltEus+ni1/MA8J1+8EASDCN9BdeeWVePrpp/H8889j0KBB6fRUKoXS0lIAwPTp0zFt2jQ89thjac/L66+/jnXr1qVD/T//+c/xl7/8BbNnz057Xr7++mssX748Her//ve/j40bN+Khhx4CAPzsZz/D/vvvjxdffBFA+9BqRx11FMrLy3HXXXfh3//+Ny6++GKcddZZ6SumxsZGDBo0CCeffDJuvvlm/N///R8uvvhi/OpXv8oYgk1G+g10DQ3yp1UNQkdJfKo5ChFu4xzg56Cs1Z82PAEmK2h6UeVJc7cVK5q837J5bFNZm4RpVJhNN53WqVeGap9g5/MeMpQ9eGi6z6nys9FhnQcgTdsnaoNpX+mie0FhA9vCLNRnDqIIe4cA73ywfXvwN9A1rl9v/Q10qYEDjdtD5CaR2STc1wieeOKJGemPPfYYLr74YgD2PC9PPfUUrr766vSoE6NHj8b999+fnt+pUye89NJLuPLKK3HcccehtLQUY8eOxYwZM9J5UqkUFi1ahKuuugrHHHMMysrKMGnSpAwbhDUMDm5JvA0VdpuCnhT9nju0T2RBjHF+lpPdOuXN89z73hMlLsxYRHR7nbVMsEXqrkoQwRNmMEx1HapznaqySABmD+6Z5texRIjsEbz6/FooTO0gUYpgUdlBtpW7jCy/b7tEFkaAXZJ4jiIIFZFFhvMR7ciwIbIDTZzWhbAOgGFF/VQY9WVYStAvGiFNXpRYZ9r77Y0M2+gC1S1/nd9+MAm2B4m6qurSycfzDpu0I+hvWdtU81zi+EsEIWhU3Pi4LOuIhEeGXdjzQX09RYaJ5BLLaBJEMGRX3laH9THEO8yXLUxPjrbOE1b70E/kOKhtQhTK9YR73f2IFxUWLaZqhuzObpCLGpU2sOFZdcvizRM9EOcnKiyLTsrqddEZcs1bru3fojRVu9llg6bzCEsnBo2KWz0uG9rqsvXZjg60tNi9WvIMg0oQdC+DsI6tg6/pSTDWgImtyr1hWNNlvB9RmUw+9wE7r/+VfahONA0Ee6uat5yk4EeQsdFsWfcHKduL6qUcvHpFv3l3AES/ddtnIz3IXyEsgpQdtXXArS8pr5RO2n+dILzE/w8hrJOEA593FIOwYIWbLSKJpJgoC7/ly9QMx4PA3mrniWBvPp4gDnr7PAnobAY/1g3RtYp3nqgu3jzem+pEm110PcSrQ7Xb+LWp6ArhsAVtUIJEsK0JU0llojpotCGCEBO/aiJ8kS0HGr/t1LklHwax9asqPKjzUS3Pm979LXu1s4vuhYdKEPv14EaJzrWKzm+blgCVKBYJY1mazvWSKp+o3TYuKvyiU06Q/SuIIAY0RHG2XDkSRI5AnuEICOuKPF+f2g3jPBGqCPZ7hvdzj9gLz6wqStu+HYUlJR3eXucthvfb9eu60WFXkLHLsJj6fFX+ZRu+YRZed/ktB9AfnUFVr2g5IFMQu9vE2y8621Y0zbbNVv/owNu2fuu26Wjy45n24h6/fY84kU+ieft2oEsXu+URxG7yT0nFRFx+sSRgeqCXHaOyTgjrEJZlQnZPmxchBvv2OnlkmLVLAO0CjLVNiCLKQSLCpiMc2CJoNNjEUqDKq7oxwIsYiywT3vk2pv0g+huo+tMkSiu7K+EHG9saEByvc0Doxn5sJQhNkqOY8oA4BHGSRHFQwvAGx3Kw1lE5snkmFgleeQr14H2gDpCLYpGlQjT8l65FQne+LL8NggT1dUWa6ebWzetFJox507y2+RG+qvbK8pn0fZxBPp1togP3eJ0DgpggsoHcUUpZQi6J0zAI+6RWmD7lJCRioWu+DKKEvPPZekTfUItgXmRYFiXm5eH9FqXp5kmSfjARxKZRY91NLhLGvLaoBLGoPbK8fv7TtpbRieTLyrN1PDK5qAkqiBNzbCOILII8wzFgc+xHHd9wIF9aQggqcEJf97BUfJDQJCA3pLrT7Dcy9ysdXymvSBfWT8yW4UXlB2bnm5QTF97+YdOBzHm6bZaVx8vDq8s7XjGvjao0nWlR22QE2W6iPvXTx7IyeXlMj1Gi/RbgHLOTtEMbYu3ZlpYWu55hGmeY8EBhypiwGSHWFXrZGpUOIoQjiQLr3gu2mVcXXhhKMxQos0uoIsM8SwQbJfZrkdD1fSYtQiyLEvsRaKpoIy+d/c2LEKsirDZsFCZ5/RD0r+Qnwh3G3zXjmC0y33PgHfOyORhCEGGTneooR7AlTk3KyVZBbEqirBAigkR9de+Vi+pS3b9X2CXYdJlwVT1gx+JHxGaDIAb0RLHJR1aGrF6RIGbn2xbBKmwKY7+C2ORvxJtvSxS7cG0TBsIYiF8Ix10/Qaggm0TM2LBMmN6GyqZXdPoRM5GuW5RRYZ2zLOshYOfJxoJivyG2S5haJXTu8ppYJFR5ddJ1sD36gIvsFnmQckR2ABM7g64dQDUtshfYEryyXZ3Nw1p9RMuE0TZTeLYkP1a3bDnGa7N9e/BXXrLlEcRuSAwngDjEaZQ+Yr/R6EQL4TAPpH6FsGgZkYHSQPmoRKlKHLPLde6cOSaxrggW5ZGlhYnNyLMNwS4Seyrh6vUP89olE5s64lhEkN1alabyTCdVC/EEvNdLnHMilyASQH7cM88C4rIvJM02EdQfHDq690F17qf6yesHWdSZvR/OuT/Ojj3MTutYJXjTqpEmdCwUujYLG9aLoMLXjw1C9JGVy6Z7f/Om/a4H77doWlSO7LfOMibtNF0+bkTbK2nHbILIBehfRSTu4GpohwMQwRvkdEWwm18nTWdZlZpQKSU2L69cjgDm5dMRwjrbzY9YNX2ALqgg9lsHD5NdRxcdcez9rZoW1SHLq3ONxWtrGP0hQ9U/SSaXBDFFtIkkQzaJBBHnLbCw6s7Gg3bgsJkqzXakVzZfZgoV3f920z3zWe+wNwuLzDrB4rVLsMvrTovKF6W5qygiCutD0F1A5MOVWSPc+exmd3+7VgnZbsGrw5sm2lYqdPvDrw2Gt06i9YwS0f+HzZMVlomwO7Slxa5nmIZWIzxkoVLJbfyKRxsHxawUrrawEbLye5YWLW8jpGUakTaIDrNpquipiQXCT4SZd0dBVI6bl/dR1aODKkgvW0YnkmoSFZbdBFC1UbQ7mEajVTc4okDnOjVKbFwo5fUxmyAsQv8kIoNsPLgGuhCwdc9U98xmKk5NlxOVZXqvnKOGeN5hkfg0EZCqYE9Qi4Qf242sfBGq6ykTUWtSvihN9ptNc6dlw6yJ2iNKEwlznd1PRpDgYxIEsc72lm2/OAU8QeQq2ad88oC4BWkc4x/Hgi0R7DfEY+MMpxNGVNWnEy7UjA7zMIn4mj6E5/626fHVza/T5arlebivS2Zfm8yrW1aeKiosSnfrVAlZ3bboLkP4I1HHWdqoRJZCnmEiPwl60DYN7ZjUaRrWk5XhxzPMy7sbHe+wylPM5vODjkdY5hkGxHWHYXvU2aQi4eum8yLo7CbibVLeJpdtL9Y/7ObhtV1Vd1gE2XeC1mujDFXb4/YyJ5Lt24FOneyWRxC7SdAlJeEl7qv9oPXH3X4pNi0HuuXbskuYLOunHs36gkSHeYjeShemRULXMxwEnd1FFgHWyWdqm+BFfL3p3gixN0psascI+9a+n22VFJFp+l9JSrsJIldJsGIh4ibRgtYvQe0IQfOo2iRTELbux+uoFJ441hTFqvlBTuxBLBK2BIXImeLHreIHXV+vbPfRFcS8+nj2C51dOCmCOClEcTFGEIQeZJNIMKZD55i+ljksktAGawSJ4IrmxXF7TucetiyPZx5vP+PdatdZTW8+0VvpdO0PvNv3fmwSIpJ0V5X3xjiRRQLg2xlE/cvi2iZc3Hp1LBpRQLaDhAyzFnYnt7TYtUnQ0GqEhxxSLUQYZIOwDaWNulFYVQjQxFKhigrzYJ+20rnfrluXou22H0gzWVY34mxqkxAR1/WLDNORH9jfomgw75uNFPMesvPTDluIoqy5EG3N9vYTRDaQfKWT52SDGPWS6PYGFbcm+WyqAd4yMuErG4IgKD6sEn6xacHQFUWm4snUucLmVW0qW7uLm6667pHZPXiimK1Px65B6ENCmCCiIcHKhfBDvr5FzkobbYngoELYT0jQTx5dNNstE6KyNO+0bMzhMKLBflH5ZoNg4qoxGXpNNI8ndmXRYZUgVpE0cZwrgjMbjtMEkVTo35MF0EFOj0D9pGNn8CuCReXrPF2kG0qMGNlFlysubA1DJfstq0dH8GbLbXQ/gthdTkcUmwphbxoriHmiOWkCOBvIhv0yUniWsKAfgtgNqSxCCx2hmbWi3cTXy5vnZ75uFNpL3AdvCxYJnfwmb6TTKVfXHmG6TBj4cd4A6l2DtTyIytUVwqo2qWweJI4JgkgSWape8o+sFZoMsZ0E/ZyVTe41m84XtSHMDkpYqEk2hrAon255vHmqKHDY3WPj2iaIIPaWwbNimAhhHf+wqu0kiO2TK+cJgoga+ucQ2sgOtDoH4ShOftZOBn5EsCz8plO2LI+pclKFV4PgI0JsKjTZ5utGbsN4SC4qbFjKTe4Ai0QxO08lhIPYJUgQ+4P6Ldk0NDSgpqYGqVQKqVQKNTU12Lx5s3QZx3EwZcoUVFZWorS0FCeeeCLefffdjDwtLS2YMGEC+vTpg27dumH06NH47LPPjOqePXs2CgoKuJ/6+noAwOuvv44zzzwT/fr1Q7du3XDUUUfhqaeestI3SYXEcA4S5niTPLGZtdEI02ix3yixLF8YUWGeEJapSYvKkPULhyk6gwhik3w6ywYdms100+vk17VI6uyS3us8mWD2K4hJ3OU+gc8T7E5o4xMSY8eOxapVq7BgwQIsWLAAq1atQk1NjXSZO++8E/fccw/uv/9+LFu2DBUVFTjttNOwZcuWdJ6JEydi3rx5mDNnDt58801s3boVo0aNQltbm3bdY8aMwaZNmzI+I0eOxPDhw9G3b18AwJIlS3DkkUdi7ty5WL16NS655BL89Kc/xYsvvmi5p5JDgeM4TtyNyFWampqQSqXQ0NCInj17WilTV+iGLVDddpjWs317+FE5bh/p+nZNhLCfCK9onkwtmESFRRFhXTEsUrOcb3fbyyKIvG/daYD/9jOWIL5U3WuToOdN2XrZOCf7+U/p7Cq8ixreLsGmuWXLLo6CXszYJIoLKFP83m2J/eUbHHahEE1NTSgrS6Gx0ex86J5HGx97DD27drXWpqZvvkHqP/7DuD0q3n//fQwePBhLly7F0KFDAQBLly5FdXU1PvjgAwwaNKjDMo7joLKyEhMnTsSNN94IoD0KXF5ejunTp+Pyyy9HY2Mj9t57bzzxxBMYM2YMAGDjxo3o378/5s+fj5EjR/qq+8svv8Q+++yDWbNmSQX7GWecgfLycjz66KOB+yiJZGlIL3/RFZ9hHxB3odBICGd19MdUgelEHsLoDD9COACm+1jUIiepdghdTP4zfoJdooixLDLMponmBRlhIoLAXU5A/ZNMamtrkUql0mIUAI499likUiksWbKEu8z69etRV1eHESNGpNOKi4sxfPjw9DLLly/Hjh07MvJUVlZiyJAh6Tx+6v7jH/+Irl274txzz5WuV2NjI3r37q1Y++yFXsccAUm8Uo8S70E7CnGi9WpSv5HiIGFInTr8nuH8CmELdomSEnmzefNFy7Dp3lc0m5Zliuk6+EUVFVbtcqrNpGonb3m3Td5XLbt52WnRN5vHfWW0aBm2Hp11Cev4EcUdq3wl6Ta6pqamjN/FxcUoLi72XV5dXV3abuClb9++qKurEy4DAOXl5Rnp5eXl+OSTT9J5ioqKUFZW1iGPu7yfuh999FGMHTsWpaWlwnX685//jGXLluGhhx4S5sl2kr2XElySfnDJSvwKYZ0IsCzUpVIuKotE5852hLAF/PqFbQzP5meUiKgC996yZEJYNxoaNHIq2yXZSLEqIsx++4kQ836r2h4XFI2NkZaWjjtvkE9LCwCgf//+6YfNUqkUpk2bxq1+ypQpwgfP3M8777wDACgoKOiwvOM43HQv7HydZdg8JnXX1tbivffew6WXXios//XXX8fFF1+MP/zhDzj88MOlbclmKDIcEYXYZVXEakU/EwIbDcoKVGfrsCPELmxo1E2ToaMWI3qgjtcMncilLDocpOyoCbI72FrOJJLs5uVFilWR4SARYm8dJuudVceUPCQbAjeffvpphmdYFBUeP348fvKTn0jLGjBgAFavXo0vvviiw7wvv/yyQ+TXpaKiAkB7ZLdfv37p9Pr6+vQyFRUVaG1tRUNDQ0Z0uL6+HsOGDUvnMan7kUcewVFHHYWqqipuuxYvXowf/vCHuOeee/DTn/5UtNo5QfL3VEKI6kCTJLFs66QVSWTIjxDWaZgoHKda1o3+yqLALqZh04hQNUul1VVDrQVFV1QGqVcUFQ57f1YFyER53TZ7o7uyMmQRYl6bePPjjvwS9sgGIQwAPXv2zPiIxHCfPn1w6KGHSj8lJSWorq5GY2Mj3n777fSyb731FhobG9OilWXgwIGoqKjAokWL0mmtra1YvHhxepmqqip06dIlI8+mTZuwdu3adB6Turdu3Yr/+Z//EUaFX3/9dZxxxhm444478LOf/UzWhTkBRYazHPeAkyThGwYiPepLnPi9R2uyrO79bhuYegRMR5bw2SQ2WsjOk02b1KFK81O2ab08vHlMhLCs7DCua3h96E13o7uAOMLr5vNGd9l83mV583lt0olq27zQTsB1IyFi+3ZAYRkwLi8EDjvsMJx++ukYN25c2mP7s5/9DKNGjcoYzeHQQw/FtGnT8KMf/QgFBQWYOHEipk6dioMPPhgHH3wwpk6diq5du2Ls2LEAgFQqhUsvvRTXXXcd9tprL/Tu3RvXX389jjjiCJx66qlGdQPAs88+i507d+KCCy7osA6uEL7mmmtwzjnnpP3GRUVFOfsQHYnhCLFtlfCSNFEsOsEGLYc33+oJTCZ2/VonTPKw96dlBBXBqjJk7O54d5+WiV9vVUHELs8uYeuBOpNldPZJL7aEsM58v7B2BW86K4p1BLF32mu9YAUxWycvPR8Fqs46i/Jkk4UuV3nqqadw9dVXp0d+GD16NO6///6MPOvWrUNjY2P69w033IDm5mZceeWVaGhowNChQ7Fw4UL06NEjnefee+9F586dcd5556G5uRmnnHIKZs+ejU6dOhnVDQCzZs3C2Wef3eGBPKD9xRzffPMNpk2bluGhHj58OF5//XV/nZJwaJzhEEmPj9jQgJ49e0Z628jvOMA2sCWEeWWJYOvocDLQFbU60zq/VeksJr5gP0+L2fIRc9JU4w2r0mTTvN88/7COsDT5LdtsJvN0hXDSrAGiXcGb3rkz/6FJ1bRoDGJR3aI0nXmmhPXQZ9RtiFsM88479fVN6NcvwDjDv/kNekpGPDClqbkZqYkTrY8zTGQnFBmOANMxeW3VGQdxCOFA6Cogk2V0o7+m2BLBvHSLD9QFtUiwy+lEiG3jJ7qcNCHsJzrOLstaJrx5d+6UR4jd5dhpUXTZW7dJhDiXrBL5GAUniCRAYpjIffyoDRshTC+m6s1VDCqCimCLhGmRUAliHbuELd8wr5wkCOGgZakuXNw8XgHLE8TesniimK3ThiDOBXJl3XiBGCv7eUuLXc/w7qHVCAKg0SQIS2zfHu+JXZrf9CxjSwiLXvHlB17kVnQ/2XaUWAHvlqzEVSEMOps2I+gIEzrBcZ0yoxDC7v+LLY+XrluOanlvOjvt/XYFMZvPWw47zeujpFhHdOq13bZcEcIEka1QZJgITNL8jr5QrURQU6uqLpOzoa1osKk5UwOdCC2bpmuR0InsqqLBfqLDJsvYEsKy+aYi2m9eXpRXtOt6I8RsWbKoMntBo4ooqyLM2Ui2tpsgcgmKDBP5hUyhyPKKlvf+lkWBVSG8IFcUNqPEJijarNLafiLE7DwdJ4mMgEHxDKIQwrrYuFPD7rKi6DAbIeatryj6y45hLGpH1MQRHbZJksb4TXI/EYQLRYbzFNnTxiYH0jAOdDbK9D28kEwAyxSOTASb1K1SY7rqzdbDdprGTe+wgTYenDOJEKv8w0F/i9KSiq2osuiBOjbCy0Zzecvw2uGmeyPEbNlxotOGJLQzb7D9B8yWPzQRCcm5fCQiQyUSC3ePf5E36ApgEaKxvmwdbE0tFDKxG/GDdbKorml+kwixDf+w3y6JMypsSwi7+dndmBcZ9s4ziQ6zN1Vk7TW5oRM1YW6zMOsNgyRFpAnCBNpz8xDdA1aYgjiRYlsmgEVnY/YsriOCVZYJXUzu8UcgkL3bVCWC/Ypev5YJna4yCcqHFQ0MUm4QIezdJUW7v0jMqpbRFdNey4Ruu8MmqvrDqIeEKUHoQ/8WQkoQ0So6sbtl2hbE1k8oKnsETwiryov67O5X7OqqMmZ9RIKYl+ZX9Iryqeb5EcS5cAtc5sU1EbLestj53t/e0SVEy/LKAviCWLUeuvPDxEbdfspQLZNTgpi9YrPxIYjd5NA/hcgGEhkR1kUkhFUHVtl8vwfkoKFOG0LYAJsPzsnyBX2gTlW+7bL95gmKyW4nEr6iadYuoYoqs21iBbEfYWwT3briEsQqckoQE0RI0L+EyE9UZ2ed+7lsOq8O1dkt6vvtKjOsn/ZoRod1p/0IZy9eQewnOiwjqO/ZTxlJQnSTROdvoBMZZgVxthGHINbJT4KYIOTQP4RQknfeYRk6QjjqW3C6ykklgkMyrIYVFbbl4fUrWIMQpyDWsU3I7ibrRIZFdgmdyLBu/igxjaRHWZ9ufhLEBCGGhlbLU3wPPRaArBG+ojOwSggnxYNm0zLhE+9Qa24VbvfoTPtZxjvtHW5NVq4szWQ+W6fOsjplJgVvH3vT2P7n5dddR7Ys1RvJ3fpVadmK6bro5I/juG8N269PptcxEx7oUpEIhaw8IckErkwIRxUJ9htO9GuZMEVil2CbYftBurAx3by6dgyTESxM6wwDEzuECzvcmol/WFVnlEQdHfZTjm6EmKLEBJEJ/SMILcKKJiT2oCy7l+ydDnLW0zW++i1DNj+ie/A2BDEPnWVNvMNBCOpSScKFo1+hJxKyPGHMS1cJYd41aFLEsYokC2LA/rFXVF4S9m+CUJFQJUJEQVhC1OTgZ1Nk+z7oqkJSUQ2AGvSsoTvChG2DLYtlQRyGTzgKTIP0JuXYyBsEkSAWiV/3TeUif7Foed60qB1JJN8EMUFkK+QZJiIha31qPOI+A9u2S/itw4CgHmKZt1g2X+YdDgORb9iLn3YEabuOZ9oPIo8q6yFmfcBerzHPc8z+VnmHddsVF3G1R7de938Z5jG6pARoagpYyPbtgONYaQ8A8gwTGdBlIREriYlMqO7Tyu7RsmEumx5iGyNF6M73foLCWX+bEWLd+TLCtE74KdOWf9jPegRdd5ldgp1mxyD2zufZ8VX1RInfem1dfPhZJilR4iRdoBAES0KUCBEXtg+AcR3wrNere49W9USRLiKzK2++LI2XrroHH5F/GLDnITaZL/MOR0HQIH2cy6lQ2SVEgtd7jckTvDrCWJWeNOISxCbL+T0fJCaoQRA+oT2YSBxBI3zaqM62stctBz2zRaVqohpJQoRlQWwiguPCxlvwZOgE8P1EmW33nUgQu9+8lziKbryYPkiXLQLZD0EEsc6yiRW2bW17zOc2Pm1tca8RkSASutcT2YLOCTQsL1ooek4n/GRyNgpyVtZVO0GGYogCzlnYjyAOkiaKDtt6ltCW+LR5IRiFDQQQR4fZb56I5b2Yw5tfNzqcLdh8oC7MvtAVxDRMG5Er0F5MBMam1dRbpqo+GYEEuEz4hnEG8mORUJUjWi7O0KlPQSybb8NHHOS6QkTY0WEvfv97NncPP4JY5CEW/cVk0eFsEsk22+pHFJtYJrwfURpB5AK0NxNZcVALQ3BL0bkvG9ZDc0DwUGLShLCLgSDmpcnmq/Il0Tscdvmq66OwdhNTQSwqI4y/VhKwvT5hCWIv2XCeIAi/0NBqRGKJRLD4NR7K7BRsw9k00YoFeXAuyFAEsnlhqBCmP9hh17zNcqv3TvPm66bpDH3Gg1euKo/fuoKg086wYHdz9zfv220rm88Lb7fkDc0mqj/p2G6vt/+yqR+02b4d2GXRctfaaq8sIuuhSz0iVOIYX9i4Th3RqxvO4hHkSSdZPt2ocJCH6CIKx3u3mZ+H6IJElHXympQbN6bRYNt2CR3LBC+vqCxedFjHwp8N0eSw2qjq2yTutwQRJySGCQC5cwvMt/j2nnFFo0jonrmCnuFMxbMfse3nSa2wwliC6njTOmk27RI2H2jLJ1SCmJ12/3Y6tgieg0n02zZhbN8w25ykC4KcevESkXPkhgIiQifJYtn7SIc1ZKEoWZpfZBaJoF5hP3lky9pSBAr/sKh6dtpPpFjlSLEZSTbFRnm6Nwf8omOX1xXEpvWJ5mczYfqiw/Anm3q5SQgTSYc8w0RohH0A1C4/yNlAFXoyNf75CXnqzNPNb0sVhWRO9fqHRZ5hU6+wn2VN5suw6Ru2ae1m18lkHXUEKesH9k6zabJ2seW5eL3DURFFXUn2PZs8JuHF2nmAPMNEiCQ33EckhiRGhUMR2qJ7tSqbhB+lpBumDMvsaoMI/MR+orW6aWFFh21FdtmPKr9OWlBMBLPIFqFTFi/yLIpGZntUmMU06qpbpoxCZtA02+UTRNJJnsohYiOJopdHaEJYlG56ZjJRSTwDqw1lky0hM06/+rVLqJok636/IjibiKPdIqsEzzMssuz7Kd82cW1z1UWAzsWCNz8P3v+NTdPpUxLERDZDNglCil+BHJZFIjLvmSg67MV7hjS5vxlEvYUYFWa3tVFfi+57W0DHLiGzRKjSePWo6jZpm9cqEZK7JPSyAXnZXgHLRtxFfw023dS2UVKyp66w7AVJu/AxtbKo2p9VXt6WFrs2iR077JVFZD3ZEQokiDBhw0u692F5Jkkvqvv1srBkkFCkYX7R26R8vW3K1DohyCs7SauuB1Rp7DxVcD5bIsVxROZ27uwYyXXTdN4YZ8MSoLJbmKJrTckGRH2r0y82hHJWiW0iryExTOQGumdVkzOc7H6uSfkqe4TusiFEhU0i/75EsVdVsArDYFuwWYN4iVX+YVPvsc58EWEKrrC9tTp2Bt1XKIvsEirvsGgURF1MvdnZiraFRJAhV/uFIFxIDBNCssVDrDTTqXCP9KIBTP2Gl7zf3mlbyktWrwZ+t6+RKHZh26/RTj9RJV2RrNossvJMhLgLr+x8wRslFkWGbWD6l41C4EUZrVd5h5WCOEzTdZ7R0NCAmpoapFIppFIp1NTUYPPmzdJlHMfBlClTUFlZidLSUpx44ol49913M/K0tLRgwoQJ6NOnD7p164bRo0fjs88+y8jz61//GsOGDUPXrl3Rq1cvaZ1ff/019t13XxQUFAjb9+GHH6JHjx7KsrKdLFE7BCEQR2EcuGVP+siwGYLUxWdU2MaFjrGFIiC60eEg1gnVA3V+rRiytKRE3Uza4We4OJEgdqeDRIf9RITDRHRTKey6TObp4B5zE6GPVTuCn09IjB07FqtWrcKCBQuwYMECrFq1CjU1NdJl7rzzTtxzzz24//77sWzZMlRUVOC0007Dli1b0nkmTpyIefPmYc6cOXjzzTexdetWjBo1Cm1tbek8ra2t+PGPf4yf//znynZeeumlOPLII4Xzd+zYgfPPPx/HH3+8xlpnNySGifyEdwufVUKq2/q8fLxvVgjz8ged5v2OkDCEMa8sW4JYNs+PINaZJyPpt+hNHtySaQ2eINaxSwRpayKEXAiY6DlR0Ff1f82au4MJ4v3338eCBQvwyCOPoLq6GtXV1fjDH/6Av/zlL1i3bh13Gcdx8Jvf/Aa33HILzj77bAwZMgSPP/44vvnmGzz99NMAgMbGRsyaNQt33303Tj31VHz729/Gk08+iTVr1uCVV15Jl3Xbbbfh2muvxRFHHCFt58yZM7F582Zcf/31wjy/+MUvcOihh+K8887z0RPZBe3pRCBiPdH4rZwVqrzfNlSXVwSrHpbTEeCm9ogQo8IyfD14Z4DNTSNK071uMZnH3hQQbTLVh4dKAIb9PxUJM166SBDL2qgK6nkjyN5l4kJ3O/nFTzm8iw7CPrW1tUilUhg6dGg67dhjj0UqlcKSJUu4y6xfvx51dXUYMWJEOq24uBjDhw9PL7N8+XLs2LEjI09lZSWGDBkiLFfEe++9h9tvvx1//OMfUVjIP0a/+uqr+NOf/oQHHnjAqOxshcQwkcbEo8neBkw8POHLzgPsP0klKk+nnCBR4JiEsKhOU4GsymNLEOsE8nnLispTtZf1DvuJBictgqzz/2fFFyuIvXl0rRAR3O0ORFjbyfSiQXVhlP6vJW3HioimpqaMT0tLS6Dy6urq0Ldv3w7pffv2RV1dnXAZACgvL89ILy8vT8+rq6tDUVERysrKhHl0aGlpwfnnn4+77roL++23HzfP119/jYsvvhizZ89Gz549tcvOZkgME7mFzDznIovIup9evTK/ZcpJNN+GLcLPbwuEbbvjCeSg0WSTgLru9Y3utYzq24sNQSwjbHEY5PXSIkEsE8Xs8rqR5CSQlG0rClxwy0uqKG5psesX3i16+/fvn37QLZVKYdq0adzqp0yZgoKCAunnnXfeAQAUFBR0pXBMMwAARYBJREFUWN5xHG66F3a+zjI6ebxMnjwZhx12GC688EJhnnHjxmHs2LE44YQTtMvNdvL4GWfCS9DxILdvT8Ax1HvE14mcuvl69QI2b27/9p4d3HQ2v/ub/eaJYG99JtM6v03SoBcVDnr7VaMZ1nA3iSiNN+1nvrs5d+6UL6P7DWS+iMMty8V0G6jyxyEMeXW66+jtv5072/uCd63KlsX+Bdl62G3DlsEuF9XxKqp6TLYz20+7UNh+DvA0Nl/8wp9++mlG9LO4uJibb/z48fjJT34iLWvAgAFYvXo1vvjiiw7zvvzyyw6RX5eKigoA7dHffv36pdPr6+vTy1RUVKC1tRUNDQ0Z0eH6+noMGzZM2i4vr776KtasWYM///nPANrFNAD06dMHt9xyC2677Ta8+uqreOGFFzBjxox0nl27dqFz5854+OGHcckll2jXly2QGCZCIX1w9cI5AxVil52DLi/kIRCabn2F3vmuEPaW4329Fa9Mt1zbIpiXllAhbFqebWHAE8Si+ayYEolfdr477QpY3vIm397ygI6RVpEY1CFq4asVafTM4wlSVxCrlgeA7t3lwllVp+5yuYioL9x07jEb+vsUW3a2vHCjZ8+eWlaAPn36oE+fPsp81dXVaGxsxNtvv43vfve7AIC33noLjY2NQtE6cOBAVFRUYNGiRfj2t78NoH1UiMWLF2P69OkAgKqqKnTp0gWLFi1KP9C2adMmrF27FnfeeafWugLA3Llz0dzcnP69bNkyXHLJJfj73/+OAw88EEC779k7QsXzzz+P6dOnY8mSJdhnn32068omSAwT0RH1GYhz9PeKwgxR7KoVrzLavHlPOs+0KBLButHeIALX8hk+KhFlImR0YQUxLwKpiga7+VVCmRcl9hMZ5olit1zV+mUzvEiuK4jZPvLi9pc3H688ti7RPpaIO1mW0d1PRPu5K4gTC/tnCUoQv4+Eww47DKeffjrGjRuHhx56CADws5/9DKNGjcKgQYPS+Q499FBMmzYNP/rRj1BQUICJEydi6tSpOPjgg3HwwQdj6tSp6Nq1K8aOHQsASKVSuPTSS3Hddddhr732Qu/evXH99dfjiCOOwKmnnpoud8OGDfj3v/+NDRs2oK2tDatWrQIAHHTQQejevXta8Lp89dVX6Xa7YwkfdthhGXneeecdFBYWYsiQIVb7KkmQGCaMr+BFB9ywTzCiyIUUSaP2CBPPLUL2LOv1mOm+lUE2rfNblCZLl6A6wcUltGwKYz8RYp1pnSix38gwr90iYZwNglgVFQb4kWGeIJaV7Y0Oi8rzzuP1f7YSZD/ws+5J3+eSylNPPYWrr746PfLD6NGjcf/992fkWbduHRobG9O/b7jhBjQ3N+PKK69EQ0MDhg4dioULF6JHjx7pPPfeey86d+6M8847D83NzTjllFMwe/ZsdOrUKZ3nV7/6FR5//PH0bzfS/Nprr+HEE08MY3VzggLHNYxEwBtvvIG77roLy5cvx6ZNmzBv3jycddZZ6fmO4+C2227Dww8/nN4ZHnjgARx++OHpPC0tLbj++uvxzDPPpHeGBx98EPvuu286T0NDA66++mq88MILANp3xPvuuy/jDSobNmzAVVddhVdffRWlpaUYO3YsZsyYgaKionSeNWvWYPz48Xj77bfRu3dvXH755fjlL3+pbVZvampCKpVCQ0Njop/IlAlMnpBSiQ6dclV1iMgo09sQnUbt/nbrE/kLC7FrjwDevDkzYqx7718VAdZZTneeZBmbQjjIiVH3RBxErPDaJ7uNL9t9VPm8abK3q8m+VfV6y9Ztu04fyObplCt7xbJuvUDHGyneGy3udSn7cZ9n7dw589lW7zS7PK8Otg3ZiKp/ZReb3v4QHapM/u+8fmSP/01NTUiVlaGx0ex86J5HG6ur0dNiZLhp506kamuN20PkJpHeE9m2bRu+9a1vdbhCcrH1BhbV21/a2tpwxhlnYNu2bXjzzTcxZ84czJ07F9ddd106T1NTE0477TRUVlZi2bJluO+++zBjxgzcc889IfRMbhLGLbeMMmX3QHkCVnB0Z3XvN9sLsauka/sZtqIi89v9uGdgdrQJ3sfbXlU6i2yerA9gTwh7u9Iv7CYJmo+HzrUFr9vZadk8XprIJSP71qnXW3YSMRHZojzsBxC/dc67jGiaFfCKv35WoxLyokMH+5vXZ7nYXwQhI9LIcEbFBQUZkWHHcVBZWYmJEyfixhtvBNAeBS4vL8f06dNx+eWXo7GxEXvvvTeeeOIJjBkzBgCwceNG9O/fH/Pnz8fIkSPx/vvvY/DgwVi6dGl60OulS5eiuroaH3zwAQYNGoS//vWvGDVqFD799FNUVlYCAObMmYOLL74Y9fX16NmzJ2bOnInJkyfjiy++SD9descdd+C+++7DZ599phUdzvfIsKpsVT0iuNFhWXiMUR+7UMg9cQqyZ0aKdc+ufiK8uvM18tgQwlGcEG10BYuo3bpRUNk8WZRYFSFWpcmmVa8yFq2HabqqXNNItSyNF5FkLzJ4kV/3t5/ocC5Fhr3o/ldVF4d+EC1nPTJ89NHo6bEDBKWprQ2pFSsoMkwASNA4w7bewKLz9pfa2loMGTIkLYQBYOTIkWhpacHy5cvTeYYPH54xzMrIkSOxceNGfPzxx/Y7IItI5AlE1SgDZSeMjKgiwDrRYFX0VzfcI8FGRD6qyJDJrV5ddIPosoisLDIsivS6LxqU7RI6ZbJ5TdYxDlQXFTIhzrtwEIlpNj/71jndOw+5iM7hI4wLAV0hTBBJJzE34WRvYPnkk0/SeVRvYNF5+0tdXV2HesrKylBUVJSRZ8CAAR3qcecNHDiwQx0tLS0Zb69pamqSr3QOsn175gHS10NvCjLKLCnhR4LZM7QnrbCkBCUlHX3DoihZSUlh5jBsfvFThuEycQyh5i3T24+6TVflNy2PbQebzitT5zc7LUqTPVzHrhdveW/7RWX6We+ohSCvPsfZkZ4uKOjSIR+vD7zI+kiUxqYHxeJ1dyj4vbFkq38IIhtJjBh2sfEGFp23v/jJ4zpKRO2ZNm0abrvtNmlbsw1r4wBHgexMqimIebQvyhmb2CYBy9XdRjbtEarb4apb47xlVfNVZbB1idaFJ5Z4dYhEvkwcs+KVt46q5VXtV62LriDWqUPX9iDa9l4B7IUVxjptZqfZkSVMBZ1pfj9C00Qcm15A2sakPygqTOQSiVE53jeweBG9gUWWR/X2l4qKig71NDQ0YMeOHdI89fX1ADpGr10mT56MxsbG9OfTTz9VrzgBwPwAqnyQTna23n0/tRC7lLcW2du46dcF+7E2yD4+MH19sS0hrHM72u+ytm91q24b824de9NM7AzsJnVtE7I87Dxem93fsuGsTdbbJipRLBLCQGa6m4+1PHjtEN50d5qdx+bhtcnvvuu3T3X+/qaHAb9l6OTRvQCLHO9OYetDELtJjBj2voHFxX0Di/vWFu8bWFzcN7C4ebxvf3Fh3/5SXV2NtWvXYtOmTek8CxcuRHFxMaqqqtJ53njjDbS2tmbkqays7GCfcCkuLk6/zUb3rTa5SKzHGJVSkAhik5NSBwFqWejy6mM/JtiMCNsgqOA1FcSyTRFUFMvSgI5eYl4e3W/ZOvpNs4HKEtHODs+H/b0DjtP+4WkW3ggT3nrZb6CjpzgIsYg/n4R8KCKInCRSMbx161asWrUq/UaU9evXY9WqVdiwYUPGG1jmzZuHtWvX4uKLLxa+geVvf/sbVq5ciQsvvDDjDSzet78sXboUS5cuxbhx4zLe/jJixAgMHjwYNTU1WLlyJf72t7/h+uuvx7hx49ICduzYsSguLsbFF1+MtWvXYt68eZg6dSomTZqkPc5wrhD0tldYNgutYda8CEJIrCB2iwvrBMITtqpPEGyK3CjL0plv2h4bopidVolcVWTXJFJs8rJDUZpfdF7Yxd8eXgHs0ur5ePNlimhRME8klMVtyJxnI1Kcy8j6RLZPkUWCyFYi9Qy/8847OOmkk9K/J02aBAC46KKLMHv2bGtvYFG9/aVTp0546aWXcOWVV+K4447LeOmGSyqVwqJFi3DVVVfhmGOOQVlZGSZNmpRuc75TUpKMkwj3YTr2G8j85swvdJcH4PqDZagO+knxWetuo7i2pcqjqONh9HpGdfHmZdfdnedN96bJpnnt9c5jxSybh1eWd/3cMngP6MnaLvttis6yYntEq1aa4wDbt3fJWEee6HXnu95htj+6d89ss5+LA4qo6kFCmMhmYhtnOB/IlnGGAX/iTnVS9J5EwhhvmFs2L+TDSxOF+Jh5bHtyTQSb5g9LNPuxAfjJI0O0brr+U9mux5snG5dYNK2zvI12m9THW2aPGHa/WcHLE8VFzHQXFBR06XCrv3v39m/2/Te89JIS/nB3gDqqrjMvSnQvCsOsL0hUOPA4wwccYH+c4Y8+onGGCQAJ8gwTySapVokOZauO4KowpPudjhhnGhaSiOhWci6hs05B11tkoeBZJWQWCe+0LJ+O5UFmnxA9nMeWERXBhLCb3uqZFnuIRR+3HbL/gYlVwvRug017lWl5Nus3XT6px0aC0CVxQ6sR2UNSrBKAwi7hTXOnRfDyq5bxtEGHpPRZktC1Q9jIo4JnNXDTRXYD1iLBs03w7A88y0OQ5UXt0p0Ol47+4I50ASuWXcuEi9tery0C2GOjYC0wrlXC/W37IkFUHi/d5G5aUJJ0fCaIpEORYSJn4EaIRaE7L7xQEu8ec8AzSy5EbeO+ZazTh7b6mBdhk0VfTSO7OhFeHTcPz4esMx0G4qhwqyfdndfG+XhHmHAjxR0jxLLRJdg0m6NKsJj2Jxu9tR1NDhNR+yKLCre1tW9MW5+2tmjaTWQFJIYJAHpRTdODHnvyicJPK7RMiO4ls7CCWGXE1CTpItj0dnAYJLWPRKKYN99UyOoKYpPlZfWL1iEo/G3HE8IubUw+98MK41YAWwFs07JMsO2xYZUQkXTxShCEPiSGiUAk/oQgC5H5Dc0YnjWTKvKCEHcky1Z02MQP7idKrBKy3vk6glhWXmeP6U12MyR8EazCFcLs0GreNFcYe6PEmRFiXnRY9BIOXnoQEn/cC0BY+0xSHi4mCB60dxKREnl0GBCH2Xjk8llOgR+BG6cotn2RoSOKTaPEbB6V0NWxTIiEsXd5UZ2y9VLlUdHRIgF0jAq3IVME75B8vJHiHWiPEO9Ac7PeQ3U8eOm5eLEKJGu9SAgTSYceoCMCU1KSrAMvsOfgmyFu3DM97ykbIo2f7cmKKD9d6keIhfFAlLvPyE7gbB95dy3vfHaXUz0Q5y2Xze/CK4tNd4dBE5XPq88E9TK8h+XaOGlsXhHusGutu+vvktF+kaNJtn/I+lZGLl8vm66bzh0Va0J4+3ag0KKo3kUjYBB7IDFMpMkYkUFAIXYZHdx4JxdZPablq+DWJVIyuuTy2XA3QS9wktBFQYWyd7/h7ZOsAHbTZCM26Ahh99sdH1ckflXl6LwxLly8ItdrjWAfrhONLOHmcYVwUXoZx+mSFsTeaLjoogMIf1SJJGHz+j6X+4kgXOjeBZHzcF9pbOoT9i4nqCPX8NtFuYjsItHENqHrH/b6gGVeYdk82eufdb51yRRerLAVRYBZIdzK+WT6hdu/t6d/i7zDoraxLw0Rr0Nw2G2TDf+hMNqYi8dFIjehyDCRgU50mEcSrRIsXOsEEPgskA8H/CS7SkxvhXsx2d9l9gmeTYL9rWt/4K2DO5YwL78q4sx7dbPO/zWolWIPrD2CFx0Wvaa5yJPfHWu4E4DWjOgw++ncWd4/LqZWiSAWiiT/h/ysL71og8glSAwTseBXdNuq2yXJb9ZLKiLBlq2Y7osqUSyzTQDmdglTIa0riNny7AhfQCxs2agx+yCdDt58RR3EMND+7VoidCwmtjApi2exyTWsHxtbWoCCAnvlOY69soisJ//O5ERgRMLB9MSSBCHpfdmyn2WJdpJ8W1hHcPjZlqLRJ9j15/1mp0XWB7Y/RbYJlRVD9mIOnj2Cl8YbqUIMT/x601kh7P5u9nxaAWzzfLbu/t4Bd1QKd6g19sUa3qHUXLy/edNxeOTD+K+YroffKDhB5BIUGSY6EGfUFrD/EJ0uJG7tkuTbwjz87vei/dU0Suwiig5753ttE6oIJy9CLKqH124V8vzuUGosrBB2h0/z4rVGuPm37v52X9u8JzrsWiNkbee9sjkJxGUz89sPZJEgcg0Sw4QvTASr7OQTt/AmoiFMYaxzQtcVQEEEsbs8r22mXmIT24QXkT9WRxCzbVC10wz2QThvWhsnnRXBRcgckWLb7rSitHeYHS2CtUrwMBHGYUdQoxbEuv5mP4QSWNi+nWwSRGiQGCasIjqgJzEaExVxRX1U2NgeftYrLr9k2IIY8CeKdSO8LG40lCdg/QhiNg+v3Z072xqyjSeE2ZEl2PxdPL+L0C6IO+2e3jPPa3vQ9Qz7PT7ZPqZFdazI12MxQYig+8IRkI2Rz7gtA9nYZzKScvKx7ekN4hNOmrfYS9D9X+arV/mHvdOyb5GPmLdN2Gmvh5iXh9ce3rbyt/1cocsK4Vbs8QWzH2968+7frphuzfANixB5hkV54iLIf0Kn/aryVfNVx+a4zx0E4QeKDBPWCX5LNTfJNl9g0Lp019WvhcLPeplEAINaeGRWIpV/WBbRZPO6v018xKJlZO1xccU3m64HO5SaVwhvAz8iDLRHfr2eYjci3A2uGNZl507+izpMSeqFnIxsbDNBRAGJYcI3qpM9oP8kP090xPUgXZjITkZxPM0eJn4EE+9WNi89CFELYm9ZXnT9w942q/yv3nLZeSKRy45hLPIMs/WYs0Pwzb5owxs5hidP5rBq3hdztI8q4bVR8OFdRNiwrNgmjAtnnfVJdFSYPMNEiJAYjoBsFXS2X88c9wkm6eRq3wTxCIfVJyYi29ZDnjp+Yp0osWy0CZGPmMVEELu/vXijw3vydPHoCzbCy0aEXaHrjQrvQLsFQvTWum7M9A6w9ZjsY0HEb7b9V7OtvQQRNSSGiUSTi9HhfCWJlpkoHqpjkYlikVXBz8N1pvm99arKUG/HIqhfpOGNBsMz7Q6f5k13I8FAu2ViG4Ce2DPmcPsDdjZEX65dtOuuSy6tM0GYQmKYkBJUBOgKIFk9JIhzhyBR4rAwEcSAvYc7eaJYZJ3QjRJ7MbWYeKPKOmXw6mxu9v7qgj0RYJU43vMiDf7oEjvQHg12R5DoBmA7vJFhd/QIF9FDf0Cmb1hn+4seLAwT04tHXl6bbaUH54hchsQwERiVWE1iRJCIl6SJ4ih9xCwqURzUx6q7nPs/VQ1Dxkt3t2NBAWuV6MQswRPFrF+Ynd6FjnaJjsLaFb+8UTF07CLZTq4fZ9sAtFn0+bapsxB5BIlhQomNk3/QW9EUHY4H2Xa3sT2SJIrjFMSAWBSrrBNhRYlVgpiNwu5J7wLH2YE9wtf9dt8aJ2MHOr6u2aUVmb5hl05wLRLuxzvcHNt2d5o3qgS7LizZJJxz2QNNELYhMUxYwZZYpTfSxU8c/W9ntILgxC2IgY7/JZV1wgR3OZ0oIpuXtSH06gVs3iyyS7BvkHN/e4Wu++IMVyxv353POypEK9qHwy/CnqHUXJtETwBlALqhtLT9DXS9eu35yCLConXNFXJpXQgiCijURmiRhKgsiWS7FGIX9xM3vFvdUcKKPhlur9mGty28fcLzsLL9xkt3o6bsizq84tH76d5d/lIPV3iyeQoKXFHbffe3+5Y4d7qISQcyRbBLkee7m+fb/fREQUEvVFTsaYtXFLN94m5X91v1oo5sI67/TRTnh50hfMKioaEBNTU1SKVSSKVSqKmpwebNm6XLOI6DKVOmoLKyEqWlpTjxxBPx7rvvZuRpaWnBhAkT0KdPH3Tr1g2jR4/GZ599lp7/8ccf49JLL8XAgQNRWlqKAw88ELfeeitaWzPvslxzzTWoqqpCcXExjjrqKGF7ZsyYgUMOOQTFxcXo378/pk6d6qs/sgGKDBNZBdkl9hCncI1qG8QZMU5KlNgt30UWGTZpsyxK7I0G65TrRondPO2/Xf8wa5fwRoe9QrgZe6LF3shykSdPF2SK4TJUVAB9+iBDENsUhbwLkKjIdR9wrjJ27Fh89tlnWLBgAQDgZz/7GWpqavDiiy8Kl7nzzjtxzz33YPbs2TjkkEPw3//93zjttNOwbt069OjRAwAwceJEvPjii5gzZw722msvXHfddRg1ahSWL1+OTp064YMPPsCuXbvw0EMP4aCDDsLatWsxbtw4bNu2DTNmzEjX5TgOLrnkErz11ltYvXo1tz3XXHMNFi5ciBkzZuCII45AY2MjvvrqK4u9lCwKHIdGng6LpqYmpFIpNDQ0omfPnnE3xwpRPVFMTy7zSULkFoi3/6MWB6YiKMxtxPa7ty9407xv3rQbIWXnsR9vPt5n8+Y9eVwLheN8gz1jCTcj8zXLTQAadk83oN0qsRWZYwi7I0mUAdgLwL4A+gE4AAUF+2HIEGDAgPaPK4pFYpj1BbP+YtHHu0yURLWv66xb0OcHmpqaUFaWQmOj2fnQPY/Wo90YY4smAH0B4/aoeP/99zF48GAsXboUQ4cOBQAsXboU1dXV+OCDDzBo0KAOyziOg8rKSkycOBE33ngjgPYocHl5OaZPn47LL78cjY2N2HvvvfHEE09gzJgxAICNGzeif//+mD9/PkaOHMltz1133YWZM2fio48+6jBvypQp+N///V+sWrWqwzoceeSRWLt2Lbe9uUh+KgrCN6qDni0hEFU9hDlxX4hELUpMBUmY/cPaJ1ixJrNMyD6uIBTZJbwWBJE3183XvXvmMgUFXbEnklsK1ubQLnL7ol3k7gWgD9rF7v67PwMBHARgPwCDABwM4GCUlu6HY44BjjqqXQB3744OdomkeNH9kg3e37iPB0FpamrK+LS0tAQqr7a2FqlUKi2EAeDYY49FKpXCkiVLuMusX78edXV1GDFiRDqtuLgYw4cPTy+zfPly7NixIyNPZWUlhgwZIiwXaBf7vXv3NlqHF198EQcccAD+8pe/YODAgRgwYAAuu+wy/Pvf/zYqJ5sgmwSRWFS3nskyET1J6e+obx+bjsYQ9oOgsofseNO83+5ybETZK6B5D86x+Xr16hgdBjLHLN6+vQuam3kjQbi4dogi7HnpRpFnfje0i+S+APZHv3690hHhgw7aI8YrKvaMEFFSAmzdmrmOqpeY8CLCRDtxP9zsGmxslgcA/fv3z0i/9dZbMWXKFN/l1tXVoW/fvh3S+/bti7q6OuEyAFBeXp6RXl5ejk8++SSdp6ioCGVlZR3yiMr917/+hfvuuw9333230Tp89NFH+OSTT/CnP/0Jf/zjH9HW1oZrr70W5557Ll599VWjsrIFEsOEMVGKVBLEe6BoeCZx+ClNfcSAj+2m+fYEb7luXSIhbFp99+7tdgdeM7zC1/vqZ1cEe8Xx5s17/MSAK4i9D895BXARgBLsGT6tC9pHjnAfmtsXQB8MHNg1Qwh7xbB3/VmLiHf9vPm6dxf3BQniTNjjcS4cez/99NMMm0RxcTE335QpU3DbbbdJy1q2bBkAoKCgoMM8x3G46V7Y+TrLiPJs3LgRp59+On784x/jsssuk5bBsmvXLrS0tOCPf/wjDjnkEADArFmzUFVVhXXr1uWkdYLEMOGLuKMEXvJFECepz5NCXILYrVsHK9tNNKjvbtgH7UxFsbcfvYLX+4CdaJQNNx8bIeb7lrvsHofYfaVy+xjBe94ux75cwxXOPVFQ0BdDhgCHHtougF0xPGDAnna7ba2r6xjxDrKfkCjeQ64da3v27KnlGR4/fjx+8pOfSPMMGDAAq1evxhdffNFh3pdfftkh8utSUVEBoD36269fv3R6fX19epmKigq0traioaEhIzpcX1+PYcOGZZS3ceNGnHTSSaiursbDDz+sXDeWfv36oXPnzmkhDACHHXYYAGDDhg0khgnCS1QvydARE/kiiImOxPXEfWijTahWSCKMg4piUXXeZVlxzIsS80aicEebaJ/XBZs394LjeEUwK0i6oaCgV9r+cNBBe4TwQQe1p1VUAJUV7f99t566OvG6yvqBBC8ho0+fPujTp48yX3V1NRobG/H222/ju9/9LgDgrbfeQmNjYwfR6jJw4EBUVFRg0aJF+Pa3vw0AaG1txeLFizF9+nQAQFVVFbp06YJFixbhvPPOAwBs2rQJa9euxZ133pku6/PPP8dJJ52EqqoqPPbYYygsND8vHnfccdi5cyf+9a9/4cADDwQA/POf/wQA7L///sblZQMkhnOQXBSGOrecc3G9k0ZS+zjnBLFJA1w8DbEhitk+9YpdNo9IFLsi2OvV9UadgXZRzFuVXr3aR4fo1as9+rvvvplR4cqKXe3K9+PtKCwpQdeSEuwq6Z0ui/fhraNOPxDx0wa7r1AO63XMhx12GE4//XSMGzcODz30EID2odVGjRqVEVE99NBDMW3aNPzoRz9CQUEBJk6ciKlTp+Lggw/GwQcfjKlTp6Jr164YO3YsACCVSuHSSy/Fddddh7322gu9e/fG9ddfjyOOOAKnnnoqgPaI8Iknnoj99tsPM2bMwJdffpmuz40+A8CHH36IrVu3oq6uDs3NzenRJAYPHoyioiKceuqpOProo3HJJZfgN7/5DXbt2oWrrroKp512Wka0OJcgMZyj8MYnDYOkvUI5qvWOC7JKiMkpQexnZTj+DZUo1mk7+wCaO0qDV2DKRLEokux+WM+ud2QKdwxhd+g0Vwh33f5v4OPNe4zKu8dT85bLDgPn7Sbeg4TeukUP0CX1YjDJuPtgPh23nnrqKVx99dXpkR9Gjx6N+++/PyPPunXr0NjYmP59ww03oLm5GVdeeSUaGhowdOhQLFy4MD3GMADce++96Ny5M8477zw0NzfjlFNOwezZs9GpUycAwMKFC/Hhhx/iww8/xL777ptRn3cU3csuuwyLFy9O/3aj0evXr8eAAQNQWFiIF198ERMmTMAJJ5yAbt264fvf/77xg3jZBI0zHCJJGGc4ioN30PEnbdYXdt1JIAknlaT2bZzDZ5lEELW3od8VEjTGu91Ygeid5vt9O4pL3rjDbD6RMGVFKmvF8L5Mo6KiPTI8YADQG57hnTxieFdJV9TVIf3ZunVPVNor2tmPdyg43nyXKC+0o9yPbUa+Zft1U1MTUmVlvscZ3gD74wzvB/vjDBPZCUWGicBEHa3UrS9Xo8RJiA4ntW/jig6bEmqEGNCyT+gMx6ZqlughO140uHv3TGHMa6Zbd+fOe0Qw+4plbPY0pFev9vXxCOHNm9uFsMwe4dbnHYaN6apQyIZ90w9RHI/aYPcVymHZJIjshMRwHhBFdFh0cvdTt84J2UQQ0q3N8Ehi32aDXQKIQBB7G+aWsxuVKNZtjlf0quwTbh1eYey1SLARWa9n2P0Ubv8ms6ElJdhV0hWbNyP94UWEeevATrNWCS9xX3yGhQ3xn6t9Q+QXJIZznCQIFRPBxD6BLsNUELvL5AJJiA675FrfRklkghgITRSzgjfzZRt8W4ToYTbWvuD6ht35u0q6orBX+w93f9u8OTMi7BXCqnXhCWF2ni2SFhWO7MFA2UYniIRAYpiwhg2BZnrON62ThFt4JGUw/mw75xoJYsCOKJYMyWZjODbv8rxIsmx4M/bjLusOmVZS0hVgLBibNwNffdVRCHvL9ZYPZD7g500XPTwH5M5xI/SIcLb9CYm8h8QwYRWbEUvdk7GfOpN4e9+UJEWHWeiiwwzjcYgB69YJIPN/YTryhOhClhXFJs1nPchsxNn7gJ5rkxBFhXlCW/bAnJck/9dMiCQaLNqwAQXyrt0fW2T/1iRsQmKYiAQT8ek9qQaNTqnaBGS3YPP9yt+IiPKiIwnBqCD7q7HgisA6wcxKL6IjitnmuR5h9zXPoua7D7axy7JtYB+SEz0wxxPFbFSYrd8lqf8rU2wfQ7n9EpIIJogoIDFMWMfGw3Rh2yX8tiupJDlyFXb/5tK51pcgBmIRxbrwxLH77RXHXnbu3COI2fk84SsbOYK1P/DsETxhzG6HbD1GxCaEc+mPSeQ8JIaJULDpHw7TLuGSK4IYSGY0K4z+TeK51obw8LUdbYliDjxRrOsB9iKyO3TuzBe8vN8y8csuo2uJ0Bk9IpuPDbburgn3RxLCRA5AYpgIDZ44NRVFpgfxIIIwFwQxkFxRbKt/k3qetR2B83Vx522En44SeIkBuZ/YOy365lXlzvcKYt7gAzwxzGu2Cyt63Rdq8F6w4V2GRy4cE4IKYm0hHOKfcyfsjjNssywi+8n+fzlBcPB7AivErsSJSL/s2r02SSJX+jYqAm1DnSfDDGG3H09Mmn6rEPmCdSPBMiHMdk8u/f9Z/OpUoS0iQiFMEGFDkWEiVGxEh23WrUuuRIkBS35imRnTkFzqW5ewn9K3Eu23KIi9209km9D59i7Ds0vw6hD9ZkW2V/TqCmEWW/tpNurEJESDCSIqSAwToRPnw11BBbFbRrbjux9kJzrJLXUVuSiIoyDJD0qymAhhXUHtIho2jf0tEsE65OL+qWOXCM0bHPYVI0EEgMQwkfMEFRC5IopDE1I+RTEJYn94+ywpwpgnZnnzVULYjQ7reo9lFgx31AheNNjNI4oK29wvsylwGspIEW4nt7b6a9RuyDNMhAmJYSISWCEWtcC0IQRzQbyFGlm09dg6oU0cwtj0AViRw0ZllxAJ4e3b2wUuW54rgL2/XTHMprm/ARLCLlpCmCLBRI5CYpiIjDj9w6L6TcmVKHFoGEaJ/Wx/kcCKkwCOEWtEIYz9jBOu4x/24gpid1le2ew0TwSLosHe7zCEcNL2TR2sCmFR+D5gZJggwoTEMBEpuSCIgeijxDbFVtJ8p7kiiIHkBMdl/Wm67f2+KCeIIHZxl+/eXVyn6FsmhnmY7oNJ3P9U8Na/w/5gKxrsmbYxsg3ZJIgwITFMRE4uCWK3PJvoPLPmErrw8qs6DVVhLlhQXJIiiEWE1c+q3cTEB8y7+GOFNjstigDrPDSn0ydJEb8WB3YJRwgzIpggsgESw0RiyEZBDNgVxaYnXL8RY6P1T6ggTmp0GEiGbSIJyDzDLKrdRRB0lEaH2bx+h09Lyn4maoeVCzDeW05E81UbA3v6VfSiFIJIEiSGiVgQibEoPbm27QJBxXyQk0Xo0UgSxL4Q6Yd8xfsQHPub1VQ6IlpHFIvIJhEMyNuis29JLwosCmFvv6qKJYikQGKYiA2ZGM2GF3PwyKbb/cbrToI4EJFbXBICK4C9aW666kE5WbmyadH+rdq/smF/MkHalzqKVfNJRjYaLCvSlDbY9fm2WSyLyH5IDBOxkouCOC78RIeTLIgBs4e33GqyhVwSxzr9bmKZ0EEkgF2y3RLBYqOfAKZfZKpV5vVhwu+8aDBbXEuLbosJInpIDBOJJpsirS7Z1mZfgtglZOWQq1FiHjoPoCUN075WrYOJrUQ0P9dEsF+UFwiq8K1hNNhbTK71JZH7kBgmYkclxqIQl0mIDgcVckHEku/1N2m0T2OzH0HsVpdL5Nr68DD1vsow2WdyrW+l0WAg2FWM5CE5XtG51rdEbkJimEgEOoLYmzesNrB1+cWvgI9TyPlef5NIcQBBDNh5+xmRXfi5yNPdT3Jt/7A+jrDgiUXdaLDN/qVxhokwITFMZB1hjziRlCgx4P+lT0EItP46DQ8w9AVFibMb0egRNslHIexLBIvSeIUKxg6OSggTRNiQGCYSg6kIC1MU24wSByEuMRd4/UP0Fft9Y10ITSE08DNSRNjkwn4g60MjW4RovDtmWjRkmqzYXOhnIj8gMUwkCj9RyXwSxVFjZf1DEMZ+tzmJ4vwm27e76jjA/Z/6iP6yFfG8waqi2WJaW+V5VZBNgggTEsMR0P5W9uwaYSAbiUIUs3XlC9YuCiyr+iDe7GwXRoQZ2bi9df8uxiJYs0J6gQaRL5AYjhASxHoE9exG8RY7Wdm5vJ2TEin3QlHi5BK3HcIlW7axSX8J/4MJFMElJcEjwwQRJiSGiZwlylc7e8lVIewlqaKYosQES5K3rZ+LBel/LuDAz2GIYILIBkgMR0wuRw1tYnNEB+rzPZi81ECHpInibIoSh1lXUkRImKNGZCvWBTBgtjNJBDCvKBsvVrERGSbPMBEmJIZjgMSZHiSI7aJzkvMrXJIwHJ2XJEeJoxDcNrdtthN35D9Iv2v9p3yOvygTwbYiwfm6zxHZB4lhItGQII6WIJG8JEaJkyaI4xRlvJGz8oWoBLGNvg37IdWoRbC7Pkk5LhAED1IGROLZtXs8DiIagoqGJG0rvyfgXBaMUQryJPVjSUn4nyC4ow4FXjEOu9Kl7xkizf14f/utmve7w/ok2bxtmYaGBtTU1CCVSiGVSqGmpgabN2+WLuM4DqZMmYLKykqUlpbixBNPxLvvvpuRp6WlBRMmTECfPn3QrVs3jB49Gp999ll6/scff4xLL70UAwcORGlpKQ488EDceuutaGU8KsuWLcMpp5yCXr16oaysDCNGjMCqVasy8rz88ss49thj0aNHD+y9994455xzsH79+kD9kmSSc9YiCAU2RHE+RydMTtbsydKUXLiAsS3k8kgLAEiWEE4yvkWwBK/4ZR+KYyPBNqLBShFsYeffGcInLMaOHYtVq1ZhwYIFWLBgAVatWoWamhrpMnfeeSfuuece3H///Vi2bBkqKipw2mmnYcuWLek8EydOxLx58zBnzhy8+eab2Lp1K0aNGoW2tjYAwAcffIBdu3bhoYcewrvvvot7770Xv//973HzzTeny9iyZQtGjhyJ/fbbD2+99RbefPNN9OzZEyNHjsSOHTsAAB999BHOPPNMnHzyyVi1ahVefvllfPXVVzj77LND6K1kUOA4jhN3I3KVpqYmpFIpNDQ0omfPnhkHiGwXCkkgyAkkX/s/yDkpdO9jiATZ3rZEbJLEcBRClcSwmLD+D7z93ORVybpWGnc+zw4hqqSpvh6pgQPR2Nh+PtTFPY++CqC79lJqtgI4GTBuj4r3338fgwcPxtKlSzF06FAAwNKlS1FdXY0PPvgAgwYN6rCM4ziorKzExIkTceONNwJojwKXl5dj+vTpuPzyy9HY2Ii9994bTzzxBMaMGQMA2LhxI/r374/58+dj5MiR3PbcddddmDlzJj766CMAwDvvvIPvfOc72LBhA/r37w8AWLNmDY488kh8+OGHOPDAA/HnP/8Z559/PlpaWlBY2L5PvfjiizjzzDPR0tKCLl26WOuvpJCfiiAmeFfqhH+oP6MliJjL5m2Ui6IubGGei30WFG+s1gZs9JcXAeZFgUXiWMc77I0AC4Uwz3+RpCtBhqampoxPS0tLoPJqa2uRSqXSQhgAjj32WKRSKSxZsoS7zPr161FXV4cRI0ak04qLizF8+PD0MsuXL8eOHTsy8lRWVmLIkCHCcoF2sd+7d+/070GDBqFPnz6YNWsWWltb0dzcjFmzZuHwww/H/vvvDwA45phj0KlTJzz22GNoa2tDY2MjnnjiCYwYMSInhTBAYjhxdDy87eowX5RPtlyuIzsxEHuw4W30C22X5BDmPkBCuCNB72Kpjm9ezakrgL15XETWY1YEcy0RuoraJw6AXRY/7i3x/v37p729qVQK06ZNC9TOuro69O3bt0N63759UVdXJ1wGAMrLyzPSy8vL0/Pq6upQVFSEsrIyYR6Wf/3rX7jvvvtwxRVXpNN69OiB119/HU8++SRKS0vRvXt3vPzyy5g/fz46d24fU2HAgAFYuHAhbr75ZhQXF6NXr1747LPPMGfOHM1eyD7ozJQFsAJX98Caj6LYCwlkMX4Fi43zW75uh6SIRBLCyUb3mCUSurrpbB7R+MDGIthNyxI+/fRTNDY2pj+TJ0/m5psyZQoKCgqkn3feeQcAUFBQ0GF5x3G46V7Y+TrLiPJs3LgRp59+On784x/jsssuS6c3NzfjkksuwXHHHYelS5fi//2//4fDDz8cP/jBD9Dc3AygXXhfdtlluOiii7Bs2TIsXrwYRUVFOPfcc5GrzloaWi0PsPUmNpmwzhaBky3tjAK/w03ZeJFC0oZhI4JDQtgc0+ORyuurk5c3TySEedMZIli3wgTTs2dPLc/w+PHj8ZOf/ESaZ8CAAVi9ejW++OKLDvO+/PLLDpFfl4qKCgDtIrRfv37p9Pr6+vQyFRUVaG1tRUNDQ0Z0uL6+HsOGDcsob+PGjTjppJNQXV2Nhx9+OGPe008/jY8//hi1tbVpP/DTTz+NsrIyPP/88/jJT36CBx54AD179sSdd96ZXu7JJ59E//798dZbb+HYY4+V9kM2QmI4ArZvB4qK2qfjPGGEOc5uXK8+Dkq+jz0c9wsJonhZRz5vXxYSrPHgdx80Eb+ydBmyMYKlvuAglWYhffr0QZ8+fZT5qqur0djYiLfffhvf/e53AQBvvfUWGhsbO4hWl4EDB6KiogKLFi3Ct7/9bQBAa2srFi9ejOnTpwMAqqqq0KVLFyxatAjnnXceAGDTpk1Yu3Zthmj9/PPPcdJJJ6GqqgqPPfZYWvC6fPPNNygsLMyIJru/d+3alc7TqVOnjOXc326eXIPOEhGj8m+FfeK24V2Tzc82vBHKfPVex+kjBrJzvyGIsDCxP4i8wrqIhkfTskRE/GDcjhA+YXDYYYfh9NNPx7hx47B06VIsXboU48aNw6hRozJGkjj00EMxb948AO32iIkTJ2Lq1KmYN28e1q5di4svvhhdu3bF2LFjAQCpVAqXXnoprrvuOvztb3/DypUrceGFF+KII47AqaeeCqA9InziiSeif//+mDFjBr788kvU1dVleIpPO+00NDQ04KqrrsL777+Pd999F//xH/+Bzp0746STTgIAnHHGGVi2bBluv/12/N///R9WrFiB//iP/8D++++fFuu5BkWGY0I2hE3Y0bKg0dBcEy+qvlbNz5X+8O6LUQd7kvY6Z4KIEhNLgyy/yWu4RRFgrwjmFixqEN12SPPUU0/h6quvTo/8MHr0aNx///0ZedatW4fGxsb07xtuuAHNzc248sor0dDQgKFDh2LhwoXo0aNHOs+9996Lzp0747zzzkNzczNOOeUUzJ49Ox21XbhwIT788EN8+OGH2HfffTPqc72+hx56KF588UXcdtttqK6uRmFhIb797W9jwYIFaYvGySefjKeffhp33nkn7rzzTnTt2hXV1dVYsGABSktL7XdYAqBxhkPEHR9x0yb5OIaiY0iY4iBXBJwNwhjwPpdQPWRjiyjHXjUlV8YaDluvkB7SQ7Uf6Apg3f1JxwphLIJ1jMee9KamJqT69fM9zvACAN20l1KzDcDpsD/OMJGdUGQ4AlSeYdFFdZgPGeW7V9aL7ahktvqnRZDAyR3CDuBRgDATk4sfWw/HsYiEsDQabCKCeZWo0n2wzVpJ4ZRHZDckhiNGZI/QffOPLXJFqCWZXBPFRDDijgq7hH2sifpYFhZRbS/bUWAZrBCWRoN1R4tQDUUhS9OgqKgIFRUVOEcwlm4QKioqUORGqoi8hsRwTIgiKLx08lNmNxSFjxfqfz5RRImBZIviuC5QwooCs8jsEMJocNCRIkSh6NZW87IAlJSUYP369Wj1ubyMoqIilCR5ByUig8RwjJAgJggiTqKwNcQtipMSkQfMHpQzFcYmvmClEPb7kJysEQEoKSkh0UqEConhmJHZJsISxBQlix6KTsZL3P2fJEHGEpXPV/d5KxtlJ4moH5YDLAphnkJXDUPBTu+Gjn9EkqG9U4MHH3wQAwcORElJCaqqqvD3v//deh1hecSI5ECRfSKpRDxkbEadNj5JwE/bRGMJq9J00RLCvAbbqHQ3qvHpCSIJ0B6q4Nlnn8XEiRNxyy23YOXKlTj++OPx/e9/Hxs2bLBel44gpoMKQfiDLkbUJElcJgnbglwkenn5/CJyLAhfoCFqmJ/KdkPnKyJboHGGFQwdOhRHH300Zs6cmU477LDDcNZZZ2HatGnSZd3xEdevNxvHUGW7CnpSpwMUn6jEEvV/R6IUqrZfjRv2snGRrxbNMLdVFMOniaLBJSUaQphtgGxUCNkYbej4P2tqakJZWYrG9SUSCXmGJbS2tmL58uW46aabMtJHjBiBJUuWdMjf0tKClpaW9G/37TJbtjQZ1dvUlHl8YX8DwV+rTHSExHB85LIYzkYhDPCPO7lKFNvIc2pQ1i3KK2LHjo7Tra3t28/93tnKEcJuRd5GeCvfuhUoLuZX5o7u4H67laHjf2z79j3nQYq/EUmExLCEr776Cm1tbSgvL89ILy8vz3jXt8u0adNw2223dUg/8sj+obWRIAiCILKFLVu2IJVKxd0MgsiAxLAGBQUFGb8dx+mQBgCTJ0/GpEmT0r83b96M/fffHxs2bKA/f8Q0NTWhf//++PTTT+mWXIRQv8cD9Xs8UL/r4zgOtmzZgsrKyribQhAdIDEsoU+fPujUqVOHKHB9fX2HaDEAFBcXo5i9pQQglUrRgTImevbsSX0fA9Tv8UD9Hg/U73pQUIhIKmRelFBUVISqqiosWrQoI33RokUYNmxYTK0iCIIgCIIgbEGRYQWTJk1CTU0NjjnmGFRXV+Phhx/Ghg0bcMUVV8TdNIIgCIIgCCIgJIYVjBkzBl9//TVuv/12bNq0CUOGDMH8+fOx//77K5ctLi7GrbfeyrVOEOFCfR8P1O/xQP0eD9TvBJEb0DjDBEEQBEEQRN5CnmGCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgOkQcffBADBw5ESUkJqqqq8Pe//z3uJiWGN954Az/84Q9RWVmJgoIC/O///m/GfMdxMGXKFFRWVqK0tBQnnngi3n333Yw8LS0tmDBhAvr06YNu3bph9OjR+OyzzzLyNDQ0oKamBqlUCqlUCjU1Ndi8eXNGng0bNuCHP/whunXrhj59+uDqq69Ga2trRp41a9Zg+PDhKC0txT777IPbb78d2fbs6bRp0/Cd73wHPXr0QN++fXHWWWdh3bp1GXmo3+0zc+ZMHHnkkekXM1RXV+Ovf/1rej71eTRMmzYNBQUFmDhxYjqN+p4gCACAQ4TCnDlznC5dujh/+MMfnPfee8+55pprnG7dujmffPJJ3E1LBPPnz3duueUWZ+7cuQ4AZ968eRnz77jjDqdHjx7O3LlznTVr1jhjxoxx+vXr5zQ1NaXzXHHFFc4+++zjLFq0yFmxYoVz0kknOd/61recnTt3pvOcfvrpzpAhQ5wlS5Y4S5YscYYMGeKMGjUqPX/nzp3OkCFDnJNOOslZsWKFs2jRIqeystIZP358Ok9jY6NTXl7u/OQnP3HWrFnjzJ071+nRo4czY8aM8DooBEaOHOk89thjztq1a51Vq1Y5Z5xxhrPffvs5W7duTeehfrfPCy+84Lz00kvOunXrnHXr1jk333yz06VLF2ft2rWO41CfR8Hbb7/tDBgwwDnyyCOda665Jp1OfU8QhOM4DonhkPjud7/rXHHFFRlphx56qHPTTTfF1KLkworhXbt2ORUVFc4dd9yRTtu+fbuTSqWc3//+947jOM7mzZudLl26OHPmzEnn+fzzz53CwkJnwYIFjuM4znvvvecAcJYuXZrOU1tb6wBwPvjgA8dx2kV5YWGh8/nnn6fzPPPMM05xcbHT2NjoOI7jPPjgg04qlXK2b9+ezjNt2jSnsrLS2bVrl8WeiJb6+noHgLN48WLHcajfo6SsrMx55JFHqM8jYMuWLc7BBx/sLFq0yBk+fHhaDFPfEwThQjaJEGhtbcXy5csxYsSIjPQRI0ZgyZIlMbUqe1i/fj3q6uoy+q+4uBjDhw9P99/y5cuxY8eOjDyVlZUYMmRIOk9tbS1SqRSGDh2aznPssccilUpl5BkyZAgqKyvTeUaOHImWlhYsX748nWf48OEZA+uPHDkSGzduxMcff2y/AyKisbERANC7d28A1O9R0NbWhjlz5mDbtm2orq6mPo+Aq666CmeccQZOPfXUjHTqe4IgXEgMh8BXX32FtrY2lJeXZ6SXl5ejrq4uplZlD24fyfqvrq4ORUVFKCsrk+bp27dvh/L79u2bkYetp6ysDEVFRdI87u9s3Z6O42DSpEn43ve+hyFDhgCgfg+TNWvWoHv37iguLsYVV1yBefPmYfDgwdTnITNnzhysWLEC06ZN6zCP+p4gCBd6HXOIFBQUZPx2HKdDGiHGT/+xeXj5beRxdj/Ukq3bc/z48Vi9ejXefPPNDvOo3+0zaNAgrFq1Cps3b8bcuXNx0UUXYfHixen51Of2+fTTT3HNNddg4cKFKCkpEeajvicIgiLDIdCnTx906tSpw9V8fX19hyt/oiMVFRUAOkZDvP1XUVGB1tZWNDQ0SPN88cUXHcr/8ssvM/Kw9TQ0NGDHjh3SPPX19QA6RpWygQkTJuCFF17Aa6+9hn333TedTv0eHkVFRTjooINwzDHHYNq0afjWt76F3/72t9TnIbJ8+XLU19ejqqoKnTt3RufOnbF48WL87ne/Q+fOnYVRV+p7gsg/SAyHQFFREaqqqrBo0aKM9EWLFmHYsGExtSp7GDhwICoqKjL6r7W1FYsXL073X1VVFbp06ZKRZ9OmTVi7dm06T3V1NRobG/H222+n87z11ltobGzMyLN27Vps2rQpnWfhwoUoLi5GVVVVOs8bb7yRMQzSwoULUVlZiQEDBtjvgJBwHAfjx4/Hc889h1dffRUDBw7MmE/9Hh2O46ClpYX6PEROOeUUrFmzBqtWrUp/jjnmGFxwwQVYtWoVDjjgAOp7giDaie5ZvfzCHVpt1qxZznvvvedMnDjR6datm/Pxxx/H3bREsGXLFmflypXOypUrHQDOPffc46xcuTI99Nwdd9zhpFIp57nnnnPWrFnjnH/++dwhj/bdd1/nlVdecVasWOGcfPLJ3CGPjjzySKe2ttapra11jjjiCO6QR6eccoqzYsUK55VXXnH23XffjCGPNm/e7JSXlzvnn3++s2bNGue5555zevbsmXVDHv385z93UqmU8/rrrzubNm1Kf7755pt0Hup3+0yePNl54403nPXr1zurV692br75ZqewsNBZuHCh4zjU51HiHU3CcajvCYJoh8RwiDzwwAPO/vvv7xQVFTlHH310eggrwnFee+01B0CHz0UXXeQ4TvuwR7feeqtTUVHhFBcXOyeccIKzZs2ajDKam5ud8ePHO71793ZKS0udUaNGORs2bMjI8/XXXzsXXHCB06NHD6dHjx7OBRdc4DQ0NGTk+eSTT5wzzjjDKS0tdXr37u2MHz8+Y3gjx3Gc1atXO8cff7xTXFzsVFRUOFOmTMm64Y54/Q3Aeeyxx9J5qN/tc8kll6SPA3vvvbdzyimnpIWw41CfRwkrhqnvCYJwHMcpcBx6vQ1BEARBEASRn5BnmCAIgiAIgshbSAwTBEEQBEEQeQuJYYIgCIIgCCJvITFMEARBEARB5C0khgmCIAiCIIi8hcQwQRAEQRAEkbeQGCYIgiAIgiDyFhLDBEEQBEEQRN5CYpggiJxjwIABKCgoQEFBATZv3hyorBNPPDFd1qpVq6y0jyAIgkgOJIYJgkgkbW1tGDZsGM4555yM9MbGRvTv3x+/+MUvpMvffvvt2LRpE1KpVKB2PPfcc3j77bcDlUEQBEEkFxLDBEEkkk6dOuHxxx/HggUL8NRTT6XTJ0yYgN69e+NXv/qVdPkePXqgoqICBQUFgdrRu3dv7L333oHKIAiCIJILiWGCIBLLwQcfjGnTpmHChAnYuHEjnn/+ecyZMwePP/44ioqKjMqaPXs2evXqhb/85S8YNGgQunbtinPPPRfbtm3D448/jgEDBqCsrAwTJkxAW1tbSGtEEARBJI3OcTeAIAhCxoQJEzBv3jz89Kc/xZo1a/CrX/0KRx11lK+yvvnmG/zud7/DnDlzsGXLFpx99tk4++yz0atXL8yfPx8fffQRzjnnHHzve9/DmDFj7K4IQRAEkUhIDBMEkWgKCgowc+ZMHHbYYTjiiCNw0003+S5rx44dmDlzJg488EAAwLnnnosnnngCX3zxBbp3747BgwfjpJNOwmuvvUZimCAIIk8gmwRBEInn0UcfRdeuXbF+/Xp89tlnvsvp2rVrWggDQHl5OQYMGIDu3btnpNXX1wdqL0EQBJE9kBgmCCLR1NbW4t5778Xzzz+P6upqXHrppXAcx1dZXbp0yfhdUFDATdu1a5fv9hIEQRDZBYlhgiASS3NzMy666CJcfvnlOPXUU/HII49g2bJleOihh+JuGkEQBJEjkBgmCCKx3HTTTdi1axemT58OANhvv/1w99134z//8z/x8ccfx9s4giAIIicgMUwQRCJZvHgxHnjgAcyePRvdunVLp48bNw7Dhg0LZJcgCIIgCJcCh84mBEHkGAMGDMDEiRMxceJEK+V9/PHHGDhwIFauXOl7WDeCIAgimVBkmCCInOTGG29E9+7d0djYGKic73//+zj88MMttYogCIJIGhQZJggi5/jkk0+wY8cOAMABBxyAwkL/1/2ff/45mpubAbR7lk3ffEcQBEEkGxLDBEEQBEEQRN5CNgmCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgmCIIgCIIg8hYSwwRBEARBEETeQmKYIAiCIAiCyFtIDBMEQRAEQRB5C4lhgiAIgiAIIm8hMUwQBEEQBEHkLSSGCYIgCIIgiLyFxDBBEARBEASRt5AYJgiCIAiCIPIWEsMEQRAEQRBE3kJimCAIgiAIgshbSAwTBEEQBEEQeQuJYYIgCIIgCCJvITFMEARBEARB5C0khgmCIAiCIIi8hcQwQRAEQRAEkbeQGCYIgiAIgiDyFhLDBEEQBEEQRN5CYpggCIIgCILIW0gMEwRBEARBEHkLiWGCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgmCIIgCIIg8hYSwwRBEARBEETeQmKYIAiCIAiCyFtIDBMEQRAEQRB5C4lhgiAIgiAIIm8hMUwQBEEQBEHkLSSGCYIgCIIgiLyFxDBBEARBEASRt5AYJgiCIAiCIPIWEsMEQRAEQRBE3kJimCAIgiAIgshbSAwTBEEQBEEQeQuJYYIgCIIgCCJvITFMEARBEARB5C0khgmCIAiCIIi8hcQwQRAEQRAEkbeQGCYIgiAIgiDyFhLDBEEQBEEQRN5CYpggCIIgCILIW0gMEwRBEARBEHkLiWGCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgmCIIgCIIg8hYSwwRBEARBEETeQmKYIAiCIAiCyFtIDBMEQRAEQRB5C4lhgiAIgiAIIm8hMUwQBEEQBEHkLSSGCYIgCIIgiLyFxDBBEARBEASRt5AYJgiCIAiCIPIWEsMEQRAEQRBE3kJimCAIgiAIgshbSAwTBEEQBEEQeQuJYYIgCIIgCCJvITFMEARBEARB5C0khgmCIAiCIIi8hcQwQRAEQRAEkbeQGCYIgiAIgiDyFhLDBEEQBEEQRN5CYpggCIIgCILIW0gMEwRBEARBEHkLiWGCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgmCIIgCIIg8hYSwwRBEARBEETeQmKYIAiCIAiCyFv+Pw4MX/Uw3x3aAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, - "execution_count": 20, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -594,9 +616,22 @@ "Image(filename='g_01_vs.png') " ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing the updated model\n", + "\n", + "After two iterations, the updated model starts to take form. We can clearly see tha the lack of data coverage on the outer edges of the model mean we do not see any appreciable update here, whereas the center of the domain shows the strongest model updates which are starting to resemble the checkerboard pattern shown in the target model.\n", + "\n", + "With only 4 events and 2 iterations, we do not have quite enough constraint to recover the sharp contrats between checkers shown in the Target model. We can see that smearing and regularization leads to more prominent slow (red) regions. \n", + "\n", + "If we were to increase the number of events and iterations, will it help our recovery of the target model? This task is left up to the reader!" + ] + }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -608,12 +643,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZjURPrHv33MxTAz3Awjl4pyySWIjqiIyqUIIuqKilyirnihux6oC+JyKKvi8VsUOT3xYMEDHPEAdBXkEFw81hMVV04FBoZjprvr98dMQpKuJJV0kk53v5/n6Wemk0qlkk5Xvv3mW28FGGMMBEEQBEEQBJGBBJPdAIIgCIIgCIJIFiSGCYIgCIIgiIyFxDBBEARBEASRsZAYJgiCIAiCIDIWEsMEQRAEQRBExkJimCAIgiAIgshYSAwTBEEQBEEQGQuJYYIgCIIgCCJjITFMEARBEARBZCwkhgmCIAiCIIiMhcQwQRAEQRAEkbGQGCYIgiAIgiAyFhLDBEEQBEEQRMZCYpggCIIgCILIWEgMEwRBEARBEBkLiWGCIAiCIAgiYyExTBAEQRAEQWQsJIYJgiAIgiCIjIXEMEEQBEEQBJGxkBgmCIIgCIIgMhYSwwRBEARBEETGQmKYIAiCIAiCyFhIDBMEQRAEQRAZC4lhgiAIgiAIImMhMUwQBEEQBEFkLCSGCYIgCIIgiIyFxDBBEARBEASRsZAYJgiCIAiCIDIWEsMEQRAEQRBExkJimCAIgiAIgshYSAwTBEEQBEEQGQuJYYIgCIIgCCJjITFMEARBEARBZCwkhgmCIAiCIIiMhcQwQRAEQRAEkbGQGCYIgiAIgiAyFhLDBEEQBEEQRMZCYpggCIIgCILIWEgMEwRBEARBEBkLiWGCIAiCIAgiYyExTBAEQRAEQWQsJIYJgiAIgiCIjIXEMEEQBEEQBJGxkBgmCIIgCIIgMhYSwwRBEARBEETGQmKYIAiCIAiCyFhIDBMEQRAEQRAZC4lhgiAIgiAIImMhMUwQBEEQBEFkLCSGCYIgCIIgiIyFxDBBEARBEASRsZAYJgiCIAiCIDIWEsMEQRAEQRBExkJimCAIgiAIgshYSAwTBEEQBEEQGQuJYYIgCIIgCCJjITFMEARBEARBZCwkhgmCIAiCIIiMhcQwQRAEQRAEkbGQGCYIgiAIgiAyFhLDBEEQBEEQRMZCYpggCIIgCILIWEgMEwRBEARBEBkLiWGCIAiCIAgiYyExTBAEQRAEQWQsJIYJgiAIgiCIjIXEMEEQBEEQBJGxkBgmCIIgCIIgMhYSwwRBEARBEETGQmKYIAiCIAiCyFhIDBMEQRAEQRAZC4lhgiAIgiAIImMhMUwQBEEQBEFkLCSGiYxm8ODByMvLw969e3XLXHnllcjKysKOHTu8a5gJI0aMQMuWLZPdDF2uueYanHTSSahTpw7y8vJw4okn4q9//St2796tKrd//37ccccd6NOnDxo2bIhAIICJEydy62SM4fHHH0ebNm2Qk5ODJk2a4M9//jP27NmjKldRUYHLL78crVu3RkFBAfLz89G+fXv8/e9/R0VFhVD7q6qqcP/996Nly5bIyclBmzZt8MQTT8SV+/LLL3HDDTegtLQU+fn5CAQCWLlyZVy5bdu24d5770VpaSkaNGiAwsJCdO3aFbNmzUI0GuW24d///jfOP/981K1bF3l5eTjhhBPwwAMP2DonABAIBLivadOmqcq999576N27N0pKSpCTk4NGjRrhnHPOwbJly+LqfOutt3D11VejQ4cOyMrKQiAQ4B7Lhg0bMHbsWHTo0AEFBQVo3LgxzjvvPHzwwQdxZSdOnMhtZ25uLrdugiCIRCExTGQ0o0ePxuHDh/Hiiy9y1+/btw+LFy/GgAED0LhxY49bp899992HxYsXJ7sZulRUVODaa6/Fiy++iKVLl+Kaa67BrFmz0LNnT1RWVsrlfv/9d8yaNQtHjhzBRRddZFjnX/7yF4wbNw6DBg3CW2+9hbvuugsvvvgievfujaqqKrlcVVUVGGO47bbbsGjRIrz++usYMmQIJk2ahEGDBgm1/4YbbsDUqVMxduxYvPPOOxg8eDBuueUWTJkyRVVu/fr1WLJkCerVq4dzzz1Xt74NGzbg2Wefxbnnnotnn30WixYtQs+ePfHnP/8ZY8aMiSv/4osvomfPnigqKsKzzz6LZcuW4c477wRjzNY5kbjkkkuwevVq1evqq69Wlfn999/Rvn17PProo1i+fDmefvppZGVl4YILLsDzzz+vKrt48WKsWbMG7dq1Q6dOnXSP/6WXXsLatWsxatQovP7665g9ezZycnLk88GjrKxM1c4PP/xQt36CIIiEYASRwUQiEVZSUsK6du3KXT9z5kwGgL355psetyz9+Oc//8kAsPfff19eFovFWCwWY4wxtmvXLgaATZgwIW7bX3/9lYVCIXbTTTeplr/44osMAJs1a5bp/u+44w4GgP3www+G5b744gsWCATYlClTVMvHjBnD8vLy2O+//y4vi0aj8v+vvvoqA8BWrFgRV+cff/zBKisr45aPHTuWAWC//PKLvOzXX39l+fn57M9//rNhO62eEwBs7NixhnXqUVlZyY455hh25plnqpYrj186Fh47duyIWxaJRFjHjh3Z8ccfr1o+YcIEBoDt2rXLVlsJgiCsQpFhIqMJhUIYPnw4NmzYgM2bN8etnzdvHpo0aYL+/fvLy2bOnIlOnTqhdu3aKCgoQJs2bTB+/HhL+w0EArjxxhsxb948tG7dGnl5eejWrRvWrFkDxhimT5+OY489FrVr18Y555yD77//XrU9zyYh1fncc8+hbdu2qFWrFjp16oS33nrLUtvcomHDhgCAcDgsL5MegZuxZs0aRKNRnH/++arlAwYMAAAsWrTI1v55LFmyBIwxjBw5UrV85MiROHToEMrKyuRlwaBYF1q3bl1kZWXFLe/evTsA4Ndff5WXzZ49GxUVFbjzzjsN63TinIiSlZWFOnXqxJ070eNv1KhR3LJQKISuXbti69atjrSRIAjCLiSGiYxn1KhRCAQCmDt3rmr5V199hbVr12L48OEIhUIAgIULF+KGG25Az549sXjxYixZsgTjxo0T9qIqeeuttzB79mxMmzYNL730Evbv348LLrgAt99+Oz7++GM8+eSTmDVrFr766isMGTIk7hE5j6VLl+LJJ5/EpEmTsGjRItSrVw+DBw/Gjz/+aLptJBIReom0Q1lnRUUFPv74Y9x3330444wz0KNHD+HtJSRrRU5Ojmq55FP9z3/+E7cNYwyRSATl5eUoKyvDww8/jKFDh6J58+aG+/riiy/QsGFDFBcXq5Z37NhRXu8UH3zwAcLhME488UR52Ycffoh69erhv//9Lzp37oxwOIxGjRrh+uuvR3l5uVzOzjl58cUXkZeXh5ycHHTt2hXz5s3TbVssFkMkEsFvv/2GCRMm4Ntvv8Xtt9+e6CHLRCIRfPTRR2jfvj13fYcOHRAKhdC4cWNcffXV+OWXX+LKjBgxAoFAAD/99JNj7SIIIgNJalyaIHxCz549WYMGDVSPsm+//XYGgH377bfyshtvvJHVqVMn4f0BYMXFxezAgQPysiVLljAArHPnzrJ1gDHGZsyYwQCw//znP/Ky4cOHsxYtWsTV2bhxY1ZeXi4v2759OwsGg2zq1KlCbRJ5zZs3T+gYV69erdru/PPPV7VNi5FNYtOmTQwAe+CBB1TL33//fQaAZWdnx23z0ksvqfY/cuRIVlVVZdru3r17s9atW3PXZWdns2uvvZa7zsgmweOdd95hwWCQjRs3TrW8devWLDc3lxUUFLApU6awFStWsIceeojl5eWxHj16yNeG1XNyxRVXsBdeeIF9+OGH7LXXXmP9+/dnANi9997LbV/fvn3lc1dYWMj+9a9/GR6PkU2Cxz333MMAsCVLlqiWP/vss2zy5Mls2bJl7IMPPmDTpk1j9erVY40bN2a//vqrquyoUaNYKBRiP/30k/B+CYIgtJAYJghWfQMGwF577TXGGGNVVVWscePGcR5Jqdzll1/OlixZYtvXCIANHTpUteybb75hANjdd9+tWv7OO+/E+Zb1xPDll18et6/i4mJ2/fXXm7Zp3bp1Qq/du3cLHeOBAwfYunXr2KpVq9hjjz3GmjRpwk499VRWUVHBLW8khhlj7KyzzmKFhYXslVdeYXv27GEff/wxO+GEE1goFGK5ublx5f/44w+2bt069sEHH7DJkyezwsJCNnDgQJXPlUfv3r1ZmzZtuOuys7PZddddx11nRQxv2LCBFRUVsdNPP50dPnxYte6EE05gAOJ+wEg/it599115mdVzomXAgAEsHA6znTt3xq379ttv2dq1a9nrr7/OLr30UpaVlcVefPFF3bqsiOFnnnmGAWC33367UPlPP/2UBYNBdvPNNwuVJwiCsAKJYYJgjB08eJAVFRWxCy64gDHG2Ouvv84AsPnz58eVnTt3ListLWWhUIgFAgHWvXt3tnz5ckv7A2cw05YtWxgANn36dNXyFStWMADs1VdflZfpiWHeAKkWLVqw4cOHm7apqqpK6KWMWlthzZo1DAB75JFHuOvNxPCOHTvkaKYU+bzzzjtZ165d4wZh8Vi4cCEDYBrhvPzyy1nDhg3jlh84cID7Y0VCVAx/9tlnrF69eqxbt25s7969cetPO+00BoB99tlnquXSj6UHH3xQXubUOVm2bJlp2X79+rG6devq/pgQFcNz585lwWCQXXvttZaupTZt2rDu3bsLlycIghCFPMMEASAvLw9Dhw5FWVkZtm3bhrlz56KgoACXXnppXNmRI0fik08+wb59+7B06VIwxjBgwAD8/PPPSWi5c2RlZQm9FixYYKv+bt26IRgM4ttvv7W1faNGjbBs2TLs2LEDn3/+OXbu3IlJkybh22+/xVlnnWW6vTRYzWz/HTp0wK5du7B9+3bVcmmA5UknnWSr/QCwceNGnHfeeWjRogWWL1+OoqKiuDKSN1kLq/FqKwetJXpOeHXq0b17d+zZswe7du0yLavHvHnzcM0112D48OF46qmnhAZPKtsqOmCPIAjCCsbDqgkigxg9ejSeeuopTJ8+HcuWLcOIESNQq1Yt3fL5+fno378/KisrcdFFF+HLL79EixYtPGyxs6xbt06o3LHHHmur/lWrViEWi6FVq1a2tpdo1KiRnJ3g8ccfR0VFBW688UbT7VasWAEApvsfNGgQ7r33XixYsECV0WH+/PnIy8tDv379bLV706ZNOO+889C0aVO8++67qFu3LrfckCFDMGvWLLz99tvo0qWLvFya9OK0006L28buOXnuueeQlZWFrl27GpZjjGHVqlWoU6cO6tevb1ovj/nz5+Oaa67BVVddhdmzZ1sSwmvWrMF3332Hm2++2da+CYIgjCAxTBA1dOvWDR07dsSMGTPAGMPo0aPjyowZMwZ5eXno0aMHmjRpgu3bt2Pq1KkoKirCKaeckoRWO0e3bt0cqeett97CM888g4EDB6JFixaoqqrC+vXrMWPGDLRq1QrXXHONqvzbb7+NiooK7N+/H0B1Fo/XXnsNAHD++efLP0ieeeYZAMDxxx+PvXv34u2338acOXMwZcoUnHzyyXJ9Tz/9ND766CP06dMHzZo1Q0VFBT766CM88cQTOP3001UTbzz77LMYNWoU5s6dK08+0b59e4wePRoTJkxAKBTCKaecguXLl2PWrFn4+9//jnr16snbHzx4UBapa9asAVAt+nfv3i3/WAKAb775Bueddx4AYPLkyfjuu+/w3XffyfUcf/zxcuq3Pn364MILL8SkSZMQi8Vw2mmnYf369bj//vsxYMAAnHHGGfJ2oudk+vTp+Oqrr3DuueeiadOm2LlzJ+bMmYPly5dj4sSJaNCggVx20KBB6NSpEzp37oz69evjt99+w/z587Fq1Sr83//9nyq92s8//yz/iPrhhx8AQP7sWrZsKV9Tr776KkaPHo3OnTvjuuuuw9q1a1XXQJcuXeSsGJ06dcJVV12Ftm3bIjc3F2vXrsX06dNRXFyMO+64Q7XdiBEjsGDBAmzZssXXMzISBOFzkunRIAi/8dhjjzEArF27dtz1CxYsYL169WKNGzdm2dnZrKSkhF122WWqTA8iwIeeYaf4+uuv2SWXXMJatGjBcnNzWW5uLmvTpg3761//qpqwQtk+6GSu2LJli1zu6aefZm3btmW1atVitWvXZmeeeWZcJgLGGPv444/ZgAEDWElJCcvOzma1atVinTp1Yg888EDc4L158+ZxM2RUVlayCRMmsObNm7Ps7Gx24oknsscffzxuX9JnxnspPx9pP3ov7f4PHjzI7rzzTtasWTMWDodZ8+bN2d133x032E70nLzxxhvsjDPOYA0bNmThcJgVFBSwM888k7300ktxZR988EF2yimnsLp167JQKMTq16/P+vbty9566624skbHpbzmhg8fbnj8ys/58ssvZ61atWL5+fksKyuLtWjRgl1//fXst99+i9v/kCFDWF5eHtuzZ0/cOoIgCFECjFlIGkoQBEEQPqG4uBjDhg3D9OnTk90UgiBSGBLDBEEQRMrx5ZdforS0FD/++KPK5kEQBGEVEsME4SCRSMRwfTAYpBHxBEEQBOEj6K5MEA5ilpZs1KhRyW4iQRAEQRAKKJsEQTiIWXoyepxLEARBEP6CbBIEQRAEQRBExkI2CSIjGTx4MPLy8rB3717dMldeeSWysrKwY8cO7xqWZlRUVODyyy9H69atUVBQgPz8fLRv3x5///vfUVFREVd+xYoV6N27Nxo1aoTatWujY8eOePzxxxGNRuUy5eXlmDx5Ms4++2wUFxejdu3a6NChAx588EEcPnw4rs57770XAwYMwDHHHINAIIARI0YIt3/Tpk244IIL0Lx5c+Tl5aFevXooLS3F888/H1c2EAjovtq0aRNX/oknnkCbNm2Qk5ODY489Fvfffz+qqqpUZX799Vfceuut6NmzJ+rUqYNAIID58+dz2/rWW2/h6quvRocOHZCVlaU7qcXEiRMN27pw4UK57JdffokbbrgBpaWlyM/PRyAQwMqVK7n1lpeX45577sGJJ56IWrVq4ZhjjsGll16KL7/8UlVuxIgRhvuX8jUbleWdT4IgCLuQTYLISEaPHo0lS5bgxRdfxA033BC3ft++fVi8eDEGDBiAxo0bJ6GF6UFVVRUYY7jttttw7LHHIhgM4sMPP8SkSZOwcuVKvPfee3LZ9957D3379sVZZ52FZ555Bvn5+XjjjTdwyy234IcffsBjjz0GAPjll18wY8YMDBs2DLfddhtq166Njz76CBMnTsS7776Ld999VyUEH330UXTs2BEDBw7E3LlzLbV/7969aNasGYYOHYpjjjkGFRUVeOGFFzBs2DD89NNPuPfee+Wyq1evjtv+008/xa233orBgwerlk+ePBn33Xcf7rrrLvTp0wfr1q3Dvffei//973+YNWuWXO7777/HCy+8gM6dO+P888/HSy+9pNvWxYsXY82aNfIEFhs2bOCWu+aaa7iz6I0ZMwY//PCDat369euxZMkSdOnSBeeeey7efPNN3f1feOGFWL9+PSZOnIhu3brh119/xaRJk1BaWorNmzfLszPed999uP7667nb5+TkxE1ek5eXhw8++CBuGUEQhGMkLcMxQSSRSCTCSkpKWNeuXbnrZ86cyQCwN9980+OWZQZ33HEHA8B++OEHedmVV17JcnJy2IEDB1Rl+/TpwwoLC+X3Bw4ciCvDGGPTp09nANhHH32kWh6NRuX/8/PzHZmA5NRTT2XNmjUzLTdixAgWCATYd999Jy/bvXs3y83NZddee62q7OTJk1kgEGBffvklt+3r1q3jTtDBKzt27FhmpXvfsmULCwQC7KqrrtKt89VXX2UA2IoVK+K2/+677xgAdu+996qWf/LJJwwAe+SRRwz3v3LlSu72w4cPZ/n5+cLHQRAEYQeySRAZSSgUwvDhw7FhwwZs3rw5bv28efPQpEkTeTpdAJg5cyY6deqE2rVro6CgAG3atMH48eMt7TcQCODGG2/EvHnz0Lp1a+Tl5aFbt25Ys2YNGGOYPn06jj32WNSuXRvnnHMOvv/+e9X27777LgYNGoSmTZsiNzcXrVq1wnXXXYfdu3fLZQ4fPowuXbqgVatW2Ldvn7x8+/btKC4uxtlnn62yHSQDaeph5dS+WVlZyM7Ojov61alTB7m5ufL7/Px85Ofnx9XZvXt3AMDWrVtVy91IZdegQQNV23ns378fr776Knr27IlWrVrJy8vKynD48GGMHDlSVX7kyJFgjGHJkiXyMittT+Q4586dC8ZY3FTZonVmZWUBAIqKilTL69SpAwCqz4/HnDlzEAgEKNsKQRBJgcQwkbGMGjUKgUAg7tH5V199hbVr12L48OEIhUIAgIULF+KGG25Az549sXjxYixZsgTjxo3j+l7NeOuttzB79mxMmzYNL730Evbv348LLrgAt99+Oz7++GM8+eSTmDVrFr766isMGTIETDHG9YcffkBpaSlmzpyJ5cuX429/+xs+/fRTnHHGGbLfNDc3F6+88gp27twpi4tYLIYrr7wSjDG89NJL8nHpEYlEhF5McPwtYwyRSATl5eUoKyvDww8/jKFDh6J58+Zymeuvvx6VlZW4+eab8dtvv2Hv3r147rnnsHjxYtxxxx2m+5Aepbdv316oTVaIxWKIRCLYtWsX/vnPf+Kdd97BnXfeabjNwoULUVFREScwv/jiCwBAhw4dVMubNGmCBg0ayOu9IhaLYf78+WjVqhV69uxpq44WLVpg0KBBePTRR7FixQocOHAA//3vf3HzzTejefPmuPzyy3W33bdvH1577TWce+65OPbYY+PWHzp0CMXFxQiFQmjatCluvPFG/PHHH3Hlzj77bF2fNEEQhCFJjEoTRNLp2bMna9CgAausrJSX3X777QwA+/bbb+VlN954I6tTp07C+wPAiouLVY/5lyxZwgCwzp07s1gsJi+fMWMGA8D+85//cOuKxWKsqqqK/fzzzwwAe/3111XrX375ZQaAzZgxg/3tb39jwWCQLV++3LSNW7ZsYQCEXrxH5jxeeukl1XYjR45kVVVVceU+/vhjVlJSIpcLhULsoYceMq3/888/Z3l5eWzw4MGG5ezaJK677jq5TdnZ2eyf//yn6Tannnoqq1OnDjt06JBq+ZgxY1hOTg53mxNPPJH16dOHu87MJqHEik3i7bffZgDY1KlTDcsZ2SQYY6yyspKNGTNG9Tl37NiRbdmyxbBeyZL00ksvxa175JFH2COPPMKWL1/Oli9fzu655x5Wq1Yt1qZNG7Z//35V2XPOOYeFQiHDfREEQfCgAXRERjN69GhcffXVeOONNzBkyBBEIhE8//zzOPPMM3HCCSfI5bp3744nn3wSQ4cOxeWXX44ePXrYzhncq1cv1WP+tm3bAgD69++vimxJy3/++Wc5irhz50787W9/w9KlS/Hbb78hFovJ5b/++msMHDhQfn/ZZZdh5cqV+Otf/4poNIrx48ejd+/epu0rKSkxzZcs0bp1a6Fyffv2xbp167B//36sXr0aDz74IH7//XcsXrxYfhS/YcMGDB48GKeeeiqefvpp5Ofn44MPPsC9996Lw4cP47777uPW/dNPP2HAgAFo1qwZZs+eLdQeq4wfPx7XXHMNdu7ciTfffBM33ngjKioq8Je//IVb/ssvv8Snn36KsWPHci0CRhFMr6Obc+bMQTgctpRlg8ef//xnLF68GI8++ihOPvlkbN++HdOnT8c555yDFStWyAPoePuvX79+3CBDABg3bpzqfe/evdGlSxdccskleOaZZ1Tr33///YTaTxBEBpNsNU4QyeTgwYOsqKiIXXDBBYwxxl5//XUGgM2fPz+u7Ny5c1lpaSkLhUIsEAiw7t27C0ValQBgY8eOVS2TIrHTp09XLV+xYgUDwF599VXGWPVgpk6dOrGGDRuyxx9/nK1YsYKtXbuWrVmzhgFgEyZMiNufFE3Mzs5mO3fuFG5nVVWV0EsZybbCwoULGQD2r3/9S1526qmnsg4dOrBIJKIqK0W1lYPtJH766SfWsmVLduyxx7KtW7ea7tepAXTXX389C4fDuud03LhxDADbuHFj3Lq77rqLAWAVFRVx6xo0aMCGDh3KrdONyPCuXbtYdnY2GzRokGlZo8iwFF2WrlWJPXv2sKKiIjZixAhunZ9//jkDwG655RbT/UtEo1GWn5/PLrvsMuFtCIIgjCDPMJHR5OXlYejQoSgrK8O2bdswd+5cFBQU4NJLL40rO3LkSHzyySfYt28fli5dCsYYBgwYgJ9//tmTtn7xxRf4/PPPMX36dNx00004++yzccopp6B+/frc8hUVFRg2bBhOPPFE5OXlxXlX9fjpp59Mp5WWXqtWrbJ1LNJgt2+//VZetmnTJnTt2jXOz3zKKacgFovh66+/Vi3/+eefcfbZZ4MxhhUrVqBp06a22mKH7t27IxKJ4Mcff4xbV1lZieeeew5du3ZF586d49ZLUX7twM3t27dj9+7dOOmkk1xpM4/nnnsOlZWVwteGHps2bQKAuLRoderUQatWrXR90HPmzAEAy/tnjLkyMJIgiMyEbBJExjN69Gg89dRTmD59OpYtW4YRI0agVq1auuXz8/PRv39/VFZW4qKLLsKXX36p+wjYSaTH5zk5OarlTz/9NLf89ddfj19++QVr167Ff//7X1xyySV49NFH4x49a3HDJqFlxYoVAKDKslBSUoL169cjGo2qBLGUv1cpdn/55Rc5K8bKlSs9Of9KVqxYgWAwiOOOOy5u3RtvvIHdu3dj0qRJ3G379euH3NxczJ8/H6eeeqq8fP78+QgEArjooovcanYcc+bMQUlJiSprih1KSkoAAGvWrFF9Fr///ju+/fZbnHvuuXHbHDlyBM8//zy6d+9u6QfAa6+9hoMHD+K0005LqM0EQRASJIaJjKdbt27o2LEjZsyYAcYYRo8eHVdmzJgxyMvLQ48ePdCkSRNs374dU6dORVFRUVw0zC3atGmD448/HnfddRcYY6hXrx7efPNNvPvuu3FlZ8+ejeeffx7z5s1D+/bt0b59e9x4442488470aNHDzkyyyM7OxvdunVzpM1PP/00PvroI/Tp0wfNmjVDRUUFPvroIzzxxBM4/fTTMWjQILnsuHHjcPPNN+PCCy/Eddddh1q1auH999/Hww8/jPPOOw+dOnUCUO2b7tWrF7Zt24Y5c+Zg586d2Llzp1xP06ZNVcJ51apV2LVrFwAgGo3i559/xmuvvQYA6Nmzp5zmbdKkSZg0aRLef/99OavCtddei8LCQnTv3h2NGzfG7t278eqrr+Lll1/GX//6V3lbJXPmzEFeXh6uuOIK7jmpV68e7r33Xtx3332oV6+ePOnGxIkTcc0116Bdu3aq8lJbpSj0+vXrUbt2bQDAJZdcIpf7+eef5R8xP/zwg2rbli1bxn2mn376Kb788kuMHz9eN7vIwYMHsWzZMgCQZ4ZbtWoVdu/eLf8oBICLL74Yf/vb3/DnP/8Zv/76K04++WRs27YN06dPx8GDB3HLLbfE1b1kyRL88ccfulHhn3/+GVdccQUuv/xytGrVCoFAAKtWrcKMGTPQvn37uO3OPvtsrFq1SjjDCUEQhEwyPRoE4Rcee+wxBoC1a9eOu37BggWsV69erHHjxiw7O5uVlJSwyy67TDfTgx5IwDPMGGNfffUV6927NysoKGB169Zll156Kfvll19UnuH//Oc/LC8vL84be/jwYda1a1fWsmVLtmfPHkvttsvHH3/MBgwYwEpKSlh2djarVasW69SpE3vggQe4ntlFixaxM844gzVo0IDl5+ez9u3bswceeECVfUM6L3ovrXe6Z8+eQtkwJkyYELds7ty57Mwzz2QNGjRg4XCY1alTh/Xs2ZM999xz3OP95ZdfWDAYZFdffbXpuXnsscfYiSeeyLKzs1nz5s3ZhAkTVFlNJIyOVcm8efN0y/F80mPGjGGBQIDrxZYwyizSokULVdlt27axG2+8kbVq1Yrl5uaykpISdsEFF7DVq1dz6+7duzfLz89n5eXl3PV//PEHGzx4MGvZsiXLy8tj2dnZ7IQTTmB33HEH27t3b1z5rl27suLiYt1jIQiC0CPAGP2MJgiCIFKX/fv3o169epgxYwbGjh2b7OYQBJFi0AgEgiAIIqX58MMPccwxx2DMmDHJbgpBECkIRYYJwgEikYjh+mAwSKPfCYIgCMKH0N2ZIBzALAWZNC0yQRAEQRD+grJJEIQDmKUisztbHUEQBEEQ7kI2CYIgCIIgCCJjIZsEQRAEQRAEkbGQGCZ8yeDBg5GXl4e9e/fqlrnyyiuRlZWFHTt2eNewDGbr1q0YPHgwjjvuOOTn56OoqAhdunTBk08+aTqA8KqrrkIgEMCAAQPi1u3fvx8333wzjjnmGOTk5ODEE0/EQw89hGg0qiq3cuVKBAIB7kuaEMIIaYY33mv79u262x06dAgnnngiAoEA/vGPf8Str6qqwv3334+WLVsiJycHbdq0wRNPPGHaHr1zYnScgUAA119/veVzEo1G8cgjj6Bfv35o2rQpatWqhbZt2+Kuu+7S/Y79/PPPGDVqFEpKSpCTk4NjjjkGgwcPVpX517/+haFDh6JVq1bIy8tDy5YtceWVV+K7774zPHajc/rTTz/pHtPChQtVZb/88kvccMMNKC0tRX5+PgKBAFauXMnd5zXXXIOTTjoJderUQV5eHk488UT89a9/xe7duw3bShBE+kOeYcKXjB49GkuWLMGLL76IG264IW79vn37sHjxYgwYMACNGzdOQgszj4qKChQWFuK+++5D8+bNUVlZiWXLluGmm27Cpk2bMHv2bO52S5cuxZIlS1BYWBi3LhKJoHfv3vj222/xwAMP4MQTT0RZWRnuuusu/Prrr3j88cfjtpkyZQp69eqlWmZlOt958+ahTZs2qmX169fXLX/fffehoqJCd/0NN9yA5557Dg888ABOOeUUvPPOO7jllluwf/9+jB8/nruN0Tk5+eST5SmolcycORPPPvtsnCAFzM/JoUOHMHHiRAwdOhTXXHMNGjRogM8++wx///vf8eabb2L9+vXIy8uTy3/xxRc4++yzcdxxx+Ef//gHmjZtim3btuGdd95R7ePBBx9EcXEx7rnnHhx33HHYunUrpkyZgpNPPhlr1qxB+/btucdvdk4B4Kabboqbxe+EE05QvV+/fj2WLFmCLl264Nxzz8Wbb76pW19FRQWuvfZatGrVCrm5uVi/fj0mT56MZcuWYePGjcjOzjZsD0EQaUwyZ/wgCD0ikQgrKSlhXbt25a6fOXMmA8DefPNNj1tGaLnssstYOBxmhw8fjlu3d+9edswxx7BHHnmEtWjRgl1wwQWq9S+99BIDwBYtWqRafu2117JgMMj++9//yst4M/JZQZqhbd26dcLbfPrppyw7O5u9+uqr3FkCv/jiCxYIBNiUKVNUy8eMGcPy8vLY77//Hlen2TnhEYvF2HHHHcdatGjBotGovFz0nEQiEbZ79+645dJxKWfUi8VirHPnzqxz587cz1TJjh074pb973//Y1lZWWz06NHcbczOqd6MjDyU50KqTzmDoBn//Oc/GQD2/vvvC29DEET6QTYJwpeEQiEMHz4cGzZswObNm+PWz5s3D02aNEH//v3lZTNnzkSnTp1Qu3ZtFBQUoE2bNrqROT0CgQBuvPFGzJs3D61bt0ZeXh66deuGNWvWgDGG6dOn49hjj0Xt2rVxzjnn4Pvvv4+r47333sO5556LwsJC1KpVCz169MD777+vKvP9999j5MiROOGEE1CrVi0cc8wxuPDCC+OOVXoM/tJLL+Gee+5BSUkJCgsLcd555+Gbb76xdGxu0bBhQwSDQYRCobh1t99+O5o0aYKbb76Zu+3HH3+MQCCg+hwBYMCAAYjFYli8eLErbRahsrISo0aNwtixY9GtWzdumSVLloAxhpEjR6qWjxw5EocOHUJZWVncNmbnhMeKFSvw448/YuTIkbbyVYdCIW70u3v37gCqLTASH374ITZt2oRbb70VOTk5hvU2atQobllJSQmaNm2qqlNC5JxaIdHc3Q0bNgQAhMP0kJQgMhkSw4RvGTVqFAKBAObOnata/tVXX2Ht2rUYPny4LMAWLlyIG264AT179sTixYuxZMkSjBs3zvRRLI+33noLs2fPxrRp0/DSSy9h//79uOCCC3D77bfj448/xpNPPolZs2bhq6++wpAhQ8AUCVmef/559OnTB4WFhViwYAFeeeUV1KtXD3379lUJ4t9++w3169fHtGnTUFZWhv/7v/9DOBzGqaeeyhW548ePx88//4zZs2dj1qxZ+O6773DhhRfG+Wq1MMYQiUSEXqJIde7Zswcvv/wy5s+fj9tvvz1OULz33nt49tlnMXv2bK5QBqrFUTAYRFZWlmq5JML+85//xG0zduxYhMNhFBYWom/fvvj3v/8t3HagWmiHQiHUq1cPF198Mb744gtuuUmTJqGiogIPPPCAbl1ffPEFGjZsiOLiYtXyjh07yuuViJwTHnPmzEEwGIwT3RJ2z8kHH3wAACo7w4cffggAKCgowPnnn4/c3FzUrl0bAwYMwH//+1/TOn/88Uf8/PPPXIuEyDmVmDZtGrKzs1GrVi2cccYZeOONN4SOyYxIJIKKigp8/PHHuO+++3DGGWegR48eqjKBQABnn322I/sjCCIFSGpcmiBM6NmzJ2vQoAGrrKyUl91+++0MAPv222/lZTfeeCOrU6dOwvsDwIqLi9mBAwfkZUuWLGEAWOfOnVksFpOXz5gxgwFg//nPfxhjjFVUVLB69eqxCy+8UFVnNBplnTp1Yt27d9fdbyQSYZWVleyEE05g48aNk5dLj8HPP/98VflXXnmFAWCrV682PB5pe5HXli1bTM8PY4xNnTpV3iYQCLB77rknrsz+/ftZy5Yt2d133y0v41kCpHP40UcfqZbfd999DADr06ePvOyzzz5jt9xyC1u8eDH78MMP2dy5c1nbtm1ZKBRiZWVlpu1+++232T333MPefPNNtmrVKvbkk0+ypk2bsvz8fLZp0yZV2Y0bN7KsrCy5Xr1H971792atW7fm7i87O5tde+21ls+Jlj179rDc3FzWt2/fuHWJnJNff/2VNW7cmHXr1k1lN7juuusYAFZYWMhGjx7N3nvvPfbcc8+xFi1asAYNGrDffvtNt86qqip29tlns8LCQvbLL7+o1ome099++42NGTOGvfLKK+yjjz5iL7zwAjvttNMYAPbMM8/o7lvEJrF69WrVNX/++eez8vLyuHKhUIidc845uvUQBJFekBgmfM2zzz7LALDXXnuNMVZ9s23cuDE788wzueUuv/xytmTJErZr1y5b+wPAhg4dqlr2zTffMAAqEcMYY++8847Kt/zuu+/Kba2qqlK97rzzThYIBGSRXVVVxSZPnszatm3LsrKyVDfofv36yfuQxOxTTz2l2vd///tfBoAtXLjQ8HjKy8vZunXrhF5HjhwROkfbtm1j69atY++88w678847WXZ2NrvxxhtVZcaOHctOOOEEdujQIXkZT/jt2rWL1atXj7Vt25atWbOG7dmzh7344ousqKgo7lzw2LNnD2vatCnr2LGjUNu1bNmyhdWuXZsNHDhQXlZVVcW6dOnCrrrqKlU5PTHcpk0bbt3Z2dnsuuuuk9+LnhMtTz75pCWvtMg5+f3331nHjh1Zo0aN2A8//KBaN2bMGAYgTnxv3LiRAeD++GGs2mt89dVXs1AoxJYsWaJaZ+Wc8qisrGRdunRh9evXZ1VVVdwyImL4wIEDbN26dWzVqlXsscceY02aNGGnnnoqq6ioMG0DQRDpC4lhwtccPHiQFRUVyYLh9ddfZwDY/Pnz48rOnTuXlZaWslAoxAKBAOvevTtbvny5pf0BYGPHjlUt07tpawcvPf/886bRVyladtNNN7FgMMjuvvtuVlZWxj799FO2bt061qlTJ9azZ0/dfWjbNG/ePMPjicViccJc72WXadOmMQDss88+Y4xVD5AKBAJs8eLFbM+ePfKrWbNmrG/fvmzPnj2qgVlr165lbdu2lc9R/fr12Zw5cxgA3UFYSq6//noGgB08eNBW+/v168caNWokv58+fTorKipi3333ndz2zz//nAFgDzzwANuzZw+LRCKMMcYuv/xy1rBhw7g6Dxw4oPoBZfWcKOnSpQtr2LCh6umIGUbn5I8//mAnn3wyq1+/Pvv888/j1t91110MAHvkkUfi1jVp0oT1798/bnksFmOjRo1iwWBQNRhPwso51UO6zr766ivuejsD6NasWaN7rARBZA7kGSZ8TV5eHoYOHYqysjJs27YNc+fORUFBAS699NK4siNHjsQnn3yCffv2YenSpWCMYcCAAfj55589aas05fITTzyBdevWcV9SGrjnn38eV199NaZMmYK+ffuie/fu6Natm+M5T1etWoWsrCyh108//WRrH9IgrG+//RZAtaebMYbBgwejbt268mvr1q145513ULduXcycOVPe/pRTTsFXX32FLVu24IsvvsBvv/2Gtm3bAgDOOuss0/2zGs92IBCw1X7GmGog1hdffIF9+/bhhBNOkNveqVMnANUpwerWrSsPdOzQoQN27doVl6dYWi+lN7N6TiQ2btyIjRs34uqrr47zVZsdExB/Tvbs2YPzzjsPW7Zswbvvvit7m5Xwlinr1Q5aY4zhmmuuwbx58zB79mxcddVVcdtZOadmx5TooDkl3bp1QzAYlK9dgiAyExpCS/ie0aNH46mnnsL06dOxbNkyjBgxArVq1dItn5+fj/79+6OyshIXXXQRvvzyS7Ro0cL1dvbo0QN16tTBV199hRtvvNGwbCAQiBupv3TpUvzvf/9Dq1atHGtT165dsW7dOqGyJSUltvaxYsUKAJDb3a9fP3mZkssvvxzHHnsspk6dyj3Gli1bAqgWPQ8//DBKSkq4P3qU7NmzB2+99RY6d+6M3Nxcy23fsmULPv74Y5x33nnysrvuugsjRoxQldu+fTuGDh2K66+/Hn/605/k9g8aNAj33nsvFixYgDvvvFMuP3/+fOTl5aFfv34A7J+TOXPmAKj+Doiid04kIfzjjz/i3XffRZcuXbjb9+/fH7Vq1cLbb7+NcePGycs/++wzbN++Haeddpq8jDGGMWPGYN68eXj66ad1B/hZOac8qqqq8PLLL6NBgwaOfj9WrVqFWCzmaJ0EQaQeJIYJ39OtWzd07NgRM2bMAGOMKwzGjBmDvLw89OjRA02aNMH27dsxdepUFBUV4ZRTTvGknbVr18YTTzyB4cOH448//sAll1yCRo0aYdeuXfj888+xa9cuOfo3YMAAzJ8/H23atEHHjh2xYcMGTJ8+HU2bNnW0TQUFBY6ksAKACRMmYMeOHTjrrLNwzDHHYO/evSgrK8MzzzyDSy+9FF27dgUAFBcXx2VXAIDc3FzUr18/bpT+Pffcgw4dOqBJkyb45ZdfMHfuXHz66adYunSpaiKIK664As2bN0e3bt3QoEEDfPfdd3j44YexY8cOzJ8/X1Xn6NGjsWDBAvzwww/yD6HzzjsPZ511Fjp27IjCwkJs3rwZDz30EAKBgCq7QZs2beIm5ZCi5scff7yq/e3bt8fo0aMxYcIEhEIhnHLKKVi+fDlmzZqFv//976hXr56tcwIAhw8fxosvvojTTz9djpRrET0nhw4dQt++fbFx40bMmDEDkUhENUNdw4YNcfzxxwMA6tSpg0mTJuEvf/kLRowYgaFDh2L79u3yZCvKSXBuvvlmzJkzB6NGjUKHDh1Udebk5MiC28o5ve2221BVVYUePXqguLgYW7duxRNPPIFNmzZh3rx5qiwcBw8exLJlywBA3veqVauwe/du+UcxUJ0h5plnnsHAgQPRokULVFVVYf369ZgxYwZatWqFa665RtW2QCCAnj176s5mRxBEmpEcdwZBWOOxxx5jAFi7du246xcsWMB69erFGjduzLKzs1lJSQm77LLL5EwPoiABz7DEqlWr2AUXXMDq1avHsrKy2DHHHMMuuOACVbk9e/aw0aNHs0aNGrFatWqxM844g3300UesZ8+ejnqGneSNN95g5513HmvcuDELh8Osdu3arHv37uzxxx8X8hzrDRb785//zJo3b86ys7NZgwYN2JAhQ7if29SpU1nnzp1ZUVERC4VCrGHDhmzw4MFs7dq1cWWHDx8elyHj1ltvZe3atWMFBQUsHA6zkpISdtVVV7FvvvnGtO1Gg70qKyvZhAkT5GM48cQT2eOPP25aJ2PGA+heeOEFBoDNnTtXd3vRcyK1X+81fPjwuLqfeeYZdtJJJ7Hs7GxWv359duWVV7KtW7fGtV+vzhYtWhgeu945nTNnDuvevTurV68eC4fDrG7duqxv377snXfe0a3DbP9ff/01u+SSS1iLFi1Ybm4uy83NZW3atGF//etf4yZG2b9/vzwYlyCIzCDAmCJJKkEQBEFkMMuWLcOAAQPw+eefo0OHDsluDkEQHkAD6AiCIAiihhUrVuDyyy8nIUwQGQRFhomMwGyGtWAw6OgodYIgCIIgUgO6+xMZgVlasVGjRiW7iQRBEARBJAHKJkFkBGbpxaQcwQRBEARBZBZkkyAIgiAIgiAyFrJJEARBEARBEBkL2SRcJBaL4bfffkNBQYHtqWIJgiAIItVhjGH//v0oKSmhwcqE7yAx7CK//fYbmjVrluxmEARBEIQv2Lp1q+MzbRJEopAYdpGCggIAwNYtz6KwoJZx4WDIeL1ELJpgqzxG9LicIpnnx+ljDdHX0zJR4xR6RJJJ1vfT635ID7PjV16/2u+/8hhE+wY73wdtG5V1xAzqCyraxGl7eflBNGt5pXxfJAg/QXdbF5GsEYUFtVBYaCaGTT4Ko07Ir5gdk9Mk8xy5cazpJIa1N2W3jo3EcGrg9XfV675ID5Hjlq7hOEFpIDbN6rKKsp12xDCgbqNiHVkGCT9Cxh2/EIsYv1INv9x83CYYdu9Y00XY8Y4jGnHn+NLpB0Q6kyn9gxYrx+2X77+OqI1De58SFdEE4QNIDBPOk4wbXTIiTV4cp19uiHYxa78kilP9OAnrePUdAlJLjCnFp56gdPv7YvS5WBHEqnUpZvEjMooM/XlOuEYmRHy8PkYjH6GfsXrDjkacOb5QOPni2onjSPYxeEUwnFpiNROx+51y6jtNEC5DVynhDMkUwV7eSJMt9kVuSG7ffJSeRp6/MRERl4o3T7faa6XeVBfOyu9Vugtj6ViNjlP7fQoptvGqD9L+SFF+341+wGjbmIrfaSLjoCuUSJxMEMLJFsFW8EoYRV16bKs3gCjZ+K09SnhtS1WBrP2upbs4FoEnKEVEZqJPSYxEr1VBnEA7Dh8+jMrKStvb65GdnY3c3FzH6yVSDx/37oTvSbZA9OImmexjzGT8IoqTvX+7SO1OVVEsofcdTHWRLBIh5n12BtHhGKv25QYDOqnklPsS7duUoteKuI4posgJcPjwYdStU4zDR/YlVA+P4uJibNmyhQQxQWI4reF1Qk7cQDJFIGbKcfodO49ZnfINp6oQVpIuoliLlQiyn7/LIqIYcN5uYEWs6gliEb93gvecyspKHD6yD4P7PYascF5CdSmpihzC4rJbUFlZSWKYIDGcdph1bKIdr936vSLVo0KENaxGiZ0Sfunkd0xXUSzhl77JLiLCUroepeiwE1YJUR+y3Qixcj8JkBXOQ3aWc2KYIJSkeO9BALB3E7A6gttPNxqyR2QufrFOpDLpLopTmQQya0gWCel/XatEIvAEsbbNvOuKvq+Ez6ErNJVJVLCJdLyZKgrTbTa7dENPFLsh8NJVgPshBR1hHcGnFZYEsZUsFXYEuwO5xGNZAUSznJsaIQaaCY84Spr17hmCk2KJl9KIxFhySVXvYzLwUsyloygmQew/RMWm02nWePXp/diU2qgXHSaIFINmoEsl3J6xycsZoRIhVdrpBqk6PXc6kW6z5qWTuE9XpO+99N0XvPZk64Re6j2r1zBvama6fog0gK7iVCFTxZ8RFI0gkk26+CMpQpw8rHq4DSa14KVW49oltDnCrUzqoXetmOUdTrCvjoSDCISdi99FGMUCiaPQ1eB3MjkKKkKmnhv6EeBfUjVynIoiPpUJhdXnnBd1tYlyMJ0KvXrtRoh50WHtdUR9FZECkBj2I5IAzlShJ0qmWQaU1wVdG6lBqgljEsTeoHeerU7BbdD/xVhULYqNBKtUHyDep2oFMUGkMHQV+w3qWPhkkuhVQtdD+qAVxCQ8CbtYGDxnOiudEWaZK5SWCaXVwgWi4SCCDmaTiJJNglBAvbFfINETDwng1MKLNGfphF/FMfmH3cUvnzMQn0FIO6mHsqhRqjatX5iuISLF8NG3MoNJVfHjJpkmhFP1GjCLGknQjdEcPw3GIzHjTyyk99ONCPMGuglGmrVe5GAg5Gl0mCDcIkXvwGlCqgogN/FDJ6onApwUJl589lb9h07Xqd2OxJV1zM6Zn6KMhDl2Pi+LfaJWsCrfB42+h1ameFbULQtibVspBzGRQlBPmgySLYKVHVOy2wIkv6P0QnC4dZ6dEkNeiCqaBth5SCynH3qCVbssJi5abWEhWqyKPrsUHY6EQwiEnZtiOhJzYbpqImWhntJLkik8ky049Uhmu4yEhN8EcDqJGhLF3mHnKQd9Lp5ia4CbFL2NiglWaT+m+0hkVjuz6DBB+Bi6Qr0gGEpeZ2AmNp2e0lMUP4hzNwRmoucynUSvGW56ivXOIwm9aug8ZAQxRBFESBbCMRattkqoCulEoZU/WjXbaAW8YXSYLFJECpBBd94Mww9iU4sf25QoiYjfTBK+ZjgZLRYZ1Ec3Z8JrONel7uQYVtCxS8QQlf8GYSHqbDFtm6FFQukXTjBQEM2i1GqEe9DdON3wm+D0W3ucwE6nTsJXjESjxaLnmUQxkap4+TRPJ8Wa9r0cddYKYwvZLwgimdAVmi7YFZ1udqrpJIStnifq/BPHqjC2c87pES6RAcQQBdjR90IxUZ2sEpLw1UVrkdD+TxA+hJ4TpDqJTElMQlgfu1Mfh8LU6buBm+eUPi8iCThikZCw+oNOec0HOT86Of230eA76VhUxxTU2QdB+BC6QlMVv4pNv7bLjERHUBPuYxbFtZAf1XLdBOEVImnVTJD9wmazxrl1zWstEg5klIiFg4iGnYvfxWIUCySOQldDKuKE4HT6l3oiEepkYDfyCxyN/pIQ9h6KEBOpiE+urbhotGi7BESzYXTYJ8dPEHqQGE4lnBKcTgrhVBHBiYhfgARwqkDRXUKJ1D+lSj9lhaj+MSmzR8giFRyxqlevErvnTeorSRATKQBdnamCUx2500LYb9BEF0QidgkitRHJq64kjbyspgPbFMRY1NYgOrN9xGWWcHDSjUg4CDiYWi1CNglCQfr0BOmKk4IzHYUwid/MQjTyayelE0WVUxs7fZJDOXAN0bkGlRNWJIRGbAqL4pAmB7D2/DmVwk0WxDT9MeFf6O7vV5wWm0519nbaZWdKWD2cvmmRAE4d7IhVUVFMQjiz8UIUK3enmMGNO8DNZv9vJTpcvYF7+baFpn8mCJ9ASsCPpEM02KxztSJCKfqbmTh5gyaxS4jgsSh2G0fFqMIyYSS6lSJYZZcgCB9DV6jf8KMQToYIduNmRB2yPk7+eEl0XwSRbDwQxY4KVacmtfBxtpZoOIiAg6nVolHyDBNHIXXgJ1J1kJyouDHrDJ1qN4leYxKxG0g4mJKJIByB53tNFKP6EuivdIVwIt+XaAQIBkyL6doXjM6fwj9s1YpBdgkiFaCfRn7AybQ/XgrhaER8mlwj8WR3lje9VyYhfQZWXl7ul7CGNhVYOqcGS3VEPg+n+iML9Ug+ZGV6NQnd9Go22ikyI106MXPmTHTs2BGFhYUoLCxEaWkp3n77bXl9IBDgvqZPnw4A+Omnn3TLvPrqq3I9LVu2jFt/1113eX68mUaGKQcf4kdbBCAmhBNFtL2ZInBJPKYXbohXZZ1p4msldNDrDww+d8vp1aS+1eha9Umqwkg4CDhok4hYtEk0bdoU06ZNQ6tWrQAACxYswKBBg7Bx40a0b98e27ZtU5V/++23MXr0aAwZMgQA0KxZs7gys2bNwkMPPYT+/furlk+aNAljxoyR39euXdtSWwnrJP8Kz2T8KISdFMF6HahZW33Q8ZpCwjWz8UOUNs0GezmCG1YJI5xKP+YRvGixJQSFsTZqnA6R4gsvvFD1fvLkyZg5cybWrFmD9u3bo7i4WLX+9ddfR69evXDccccBAEKhUFyZxYsX409/+lOc2C0oKIgrS7gL2SSSgdO2CC+EsFVLhLbDNJr9zUubgx1bAT3+JwD/2hXstsnMbpTpFqQ0IGHxa1Y/xyqRav7g8vJy1evIkSOm20SjUSxcuBAVFRUoLS2NW79jxw4sXboUo0eP1q1jw4YN2LRpE7fMgw8+iPr166Nz586YPHkyKisrrR0UYRnq3bzGj9FgwFwIJ4KeAHYbEq2EE/hN/DqB3e+fcju/fr+8jg47hUhGF2UZN/pQwXNnOZ+xA0SzAgg4OANdNFY92LBZs2aq5RMmTMDEiRO522zevBmlpaU4fPgwateujcWLF6Ndu3Zx5RYsWICCggJcfPHFuvufM2cO2rZti9NPP121/JZbbsHJJ5+MunXrYu3atbj77ruxZcsWzJ492+IRElYgMewVfp1EA9Bvm9WbHS8abFbGLfx6oybcJRVFkFOIPrJ3Y1AXfd98gzIyWz3tckgeOGeIVmxr0bm+lMI4FQfVbd26FYWFhfL7nJwc3bKtW7fGpk2bsHfvXixatAjDhw/HqlWr4gTx3LlzceWVVyI3N5dbz6FDh/Diiy/ivvvui1s3btw4+f+OHTuibt26uOSSS+RoMeEOJIa9IOZgJ+C0P80JIewXEUw35PTAajqrTBbALqEnXHTFjvT99st3MFWjw4D9dkvbcfpaQ7uEyCA6E1LNGqFEyg4hQnZ2tjyArlu3bli3bh0ee+wxPP3003KZjz76CN988w1efvll3Xpee+01HDx4EFdffbXpPk877TQAwPfff09i2EVIDKcSqSiEDUSw9oZru0N16gYscjNIocEyKYOVm3CqChyvSHBAl1n0zvQ76zdR7AVeDqKTorcOBRe4OYDNfkjY3H8qC2Y9GGNxHuM5c+aga9eu6NSpk+52c+bMwcCBA9GwYUPTfWzcuBEA0KRJk8QaSxhCd/ZUwQshnIgtQkAEi9xoLXWYVtvrhJDi1ZHqAtmliQUS3neq46QgtCI+bIozO4+xlduovrtWRbEbgjKVosNG50l7HBZzDrtlT/DaNxwNOZtaLRqxVtf48ePRv39/NGvWDPv378fChQuxcuVKlJWVyWXKy8vx6quv4uGHH9at5/vvv8eHH36IZcuWxa1bvXo11qxZg169eqGoqAjr1q3DuHHjMHDgQDRv3txSewlrpPhdPEPwmxA2igbbEMGWsXKD9YIUS68kI3J+3Do2u5+Nti1+EjtuRkOtDpxy6XMz+sHK9Y2KiGLpM0zV75FPScYgt3Rmx44dGDZsGLZt24aioiJ07NgRZWVl6N27t1xm4cKFYIxh6NChuvXMnTsXxxxzDPr06RO3LicnBy+//DLuv/9+HDlyBC1atMCYMWNwxx13uHJMxFECjDGW7EakK+Xl5SgqKsK+3a+hsLCW9Qr8ZouwKIIBa0LYNCps1s5kCaNUvIHbOVde5bK2sn+/iOFk2AJERLHeZ2bj+2q0TijFlujgLKdFsdvXSKJ507XnRWqvcrnZ0xtpH4r/Yywqf2Y8e4v0+QQDoep9KffLy2EdUqTGVOxDhGAghPLyChQVXYh9+/YJe3SBo/fRruMXI5SbL7ydGdHDFdgwZbDl9hDpSQrexTMELwSW3WiwiSXCTjTCUAj7VQRnGk6IFKdFuB8ehSfLHyvi3dT7zKQ2a7aXvodWv8M8u0RcpNgoSsyL+Kfij0weRp+TG2krBT29cVF+5XfJwRRrTnmFo1lBwMnUahZnoCPSG7oaMgVtx2a3E9ZGCjRRCEeFsNEEF36ZACEVb9iJnLNEznmyPys3SPZAMZFJYNzMIc7bnaYfsNQnuHGN+PU7yjv3Dh+/KvqrQ4xF+eLZ6ElMsq97gnAYn/YSGY7b9ggnIsKK5a740oxEcCLbK0lkRLZfb7BeYWUq4ERu8Jl+nkUxiwYaRVo52zrhN1VGHlVRSKN8tm5F+pP9BMEN8ejWd8Ms37C2GQbXSjpmkCDSE7rT+A23vXKJCmEHRTC3o0xEBHsRrUh1cea0IFDW57SnN9XPtd8w+gHDGaCna3eA+HfftiBOFbxqqwNinidaLWfwIYg0JYV6nQwghYUw7+Zo1MkKD65x6xGv1ahwKt2g9XA7MpaONohUQjT/q1lUX+Mn5olgK95iW4LYDZIdHXYSvc9O8QRAL2JrKH5tniMvBHUw7Gw3zNKgSyecgy4Hv+CmEDYTmnoD4gRsEY54hPVGU+uR6A3UihBOBxGcioied7tPDLyaFtzPiIpiQCWMRTJOaL/jvhHEfsbsWrbZFwlbXsw+C+nHliS4HZz8gyCSDV3J6YaIEDbqdLVC2IYI1osSCEWDnZgMRI9MFsHpEhGzgtmNXUsq39gTabvIRDKKaLFW1OpOvKHdjR8EsZPRYTf7CJfOh1GOaLJLEJlMCvf+aYRb+VvNIq5mEWG3osGikWCvRXC6CWCJdBXCTl83OunGfI0Tg0B551FPIGtEMU8Q+x4nBLHf+4pEo7Y+jNiHsmIIZ8WcqzDqYF1EyuPzb3QGkAwhzNunjhC2KoJNk++bJZJ3ugNOZGKCdCBdhbAeTlw/qSCKnXzKITrwkbMsmECOcbJLKHDpeyryQ8Uw37AZZJUg0gS6ipNJsiLCSgwGynkaDSYR7DypLITNJl3w4oeUn0Sx0083lPUZTYLByysb0oglC1Fi3zyOTyQ6nIL9hi3fcKb/QCEyitT7VhNqErFGGAyUsyp+tTc44WgwiWB3SGUhLKEVxB5PHhFXt9EMam7gxLUsUkeiYr8mOphytgmrgtitfsMn31VLP1TSaYZAggCJ4eThREfipBDWEcFWrRFJE8GA+U09Ezpvn9xYHcNPx+O2CHYi+qtTh11xqrJB6FknFJkFlILY8r79HIn0su+weg60n7lgtge9zB/VC3V+KPDq9MgqEQ477BmOkGeYOEoGqAMfkgwhrMQhfzBgQwgbdfR2ow0UDa7GT8LRS/wqoERIggA2Wq7r+Zf2obVNGFgmlNvr1Z1024RZdDgN+g3LvmGyShAZSOp/01MNNzpXESGszRChI4StRJC4QtiqCNa21aogpmhwNSSEUweXBDDvu2u2LAb+k6Ag1CnQgoHQ0ShxLHJUJPFEsSb9GuDzaXm1/uhU6zMcjMySVYLIVOhK9hI3BszxhLDefhwSwrr+YDvRYCkyY/XcUDS4mkwVwalIotesCwJYN0qMoyI2xqIIshpBHAwhqL1taL/fCnFmFpX0lUhORn/h4fdX+VlonwJyo/dS3ywSHfbAKhEOM4TDDlobwsy5uoiUJwPUgk/wSghLfwVzCCcyUI5rizATwWa5js3I9JzBEiSCU4dERLBNARz3XkcAm/0QlqLCMUQRRnbNwpC+iOX4VVNmQF0qoydG7YpUskcQGUaaKwafEHQo+iEihHk4aI2QsBwN1mufqKjLdBFM4jcev9+sE7lmBUSwkwJYa5dQlpWiwhFUIogQgiyEcDC72jYRjQgNtjKanplwAU1AxMoPEu5nQ+KYSHPSVDmkIUZiyAMhbOgPtivSle3SIxOnUCbha0463JiTLIKlckZ9gRQVVopgBIBIrLL6/2DgaH/AezKlE5kkIexPLP9IEfisnSLs9Ax0lE2CUJAm6iHNMcoc4eBgOb3BLkJCmESwfUj8ph92BnaazOZm9F5vIJze/0ohbCSGVeJIKYIDHOFkJR0Xj3T4gZNMtOdZMMUaYCCCnZi6miBSgBRXERmAFSFsIY+wqBBWVe+FELYaWUhVIUw3mPTFqhBOkgjm/eXtT0Ugvi4AassEED9uwUyQmaVcBFL3u26E02LT5DxbmilQzxphtA+anplIUeiqTSXMIsISNqwRuvlFtf8bCWESwWKQEE6MVI4gJiCErdoh4v43EcLa+qMshlAgqLvfWCAKKAbk64onuUJFGjbech4xTf+Syt/7ZGDhnDmSVYIgUhTqWfyMaHoywHQ0esJZIxIRwQLts9a4FL1sSQSnP0bXswUh7GQ0WLmNXr08IayH5CGOsSgQOJqTWD4m5aA63ndVVFAZzXhHWMaxrB56M965TCgcczS1GnMyTRuR8gSTteOpU6ciEAjg1ltvlZcxxjBx4kSUlJQgLy8PZ599Nr788kvVdkeOHMFNN92EBg0aID8/HwMHDsSvv/6qKrNnzx4MGzYMRUVFKCoqwrBhw7B3715VmV9++QUXXngh8vPz0aBBA9x8882orKxUldm8eTN69uyJvLw8HHPMMZg0aRIY8yg3oZUBc3r2CE5E2Mr0ylJapYSjwXr+SKu+YL26UgESws6QqpEpm0JY+53VRoOtCGG9/RkhiWKzfXH7lkS+q3YHDKcabhyLnrVBgLjPUNtHkwWCSFOSIobXrVuHWbNmoWPHjqrlDz30EB555BE8+eSTWLduHYqLi9G7d2/s379fLnPrrbdi8eLFWLhwIf7973/jwIEDGDBgAKLRo1/iK664Aps2bUJZWRnKysqwadMmDBs2TF4fjUZxwQUXoKKiAv/+97+xcOFCLFq0CLfffrtcpry8HL1790ZJSQnWrVuHJ554Av/4xz/wyCOPuHhmajCbalmJBSEctxsDu4Rrtgi7IjiVSaebN6GP3nWdgBCW/0fU0Bah94OXt41ZJhnDqLCBUHcMke8LfaeMMbhniGaLoNzQRCbhuco4cOAArrzySjzzzDP4+9//Li9njGHGjBm45557cPHFFwMAFixYgMaNG+PFF1/Eddddh3379mHOnDl47rnncN555wEAnn/+eTRr1gzvvfce+vbti6+//hplZWVYs2YNTj31VADAM888g9LSUnzzzTdo3bo1li9fjq+++gpbt25FSUkJAODhhx/GiBEjMHnyZBQWFuKFF17A4cOHMX/+fOTk5OCkk07Ct99+i0ceeQS33XYbAoGANydMdHCa1icMscExSn+YsBC2a4vIpAwRAN2wncbPUWFRIaxBRAjb3UZkpjntOiMhrCyvFFSSbUImEW+ple8MWSaOXndmvmuL50k4UwgPlwbRZYVjyHIytVoV2SSIo3geGR47diwuuOACWcxKbNmyBdu3b0efPn3kZTk5OejZsyc++eQTAMCGDRtQVVWlKlNSUoKTTjpJLrN69WoUFRXJQhgATjvtNBQVFanKnHTSSbIQBoC+ffviyJEj2LBhg1ymZ8+eyMnJUZX57bff8NNPP3GP7ciRIygvL1e9LGPHJ8wZMCeaR9iyEDaDF8kVjQanuhVCCQlhZ0lFIWxSVngSBIGBcqLbmDYvEEQoYP22YDVvOb8SG59xpn7PtH2q3uxzGmzldyZrBJEBeCqGFy5ciM8++wxTp06NW7d9+3YAQOPGjVXLGzduLK/bvn07srOzUbduXcMyjRo1iqu/UaNGqjLa/dStWxfZ2dmGZaT3UhktU6dOlX3KRUVFaNasGbecLqIdu1IweimEYxHjNlqNBivFb7oIYLNzRGQOJvYIJSJ+X9HorhGimWQkUSwJY3n8gGjdVgRUot+ZTPrOWbWZKbHrGyaIDMAzMbx161bccssteP7555Gbm6tbTms/YIyZWhK0ZXjlnSgjDZ7Ta8/dd9+Nffv2ya+tW7catluFWT5how5fK4xhPsBFd2INpfCNRsStEVaiwekifiUy6WacDLyOCiu/b2afq8s+Yd5yo2202zmNiCg2xcr5tVpvOmNHBBv03yKfIwljIlPwTAxv2LABO3fuRNeuXREOhxEOh7Fq1So8/vjjCIfDulHXnTt3yuuKi4tRWVmJPXv2GJbZsWNH3P537dqlKqPdz549e1BVVWVYZufOnQDio9cSOTk5KCwsVL1sYXXAnOJ/s4T9gE7+YOV+YxHxaLC2Tdp2aculgwh262ZOJB8nPk8LPmE7uCFQhCbbEUS3fV58X9L1OykihC2IZVs/aIyuaw/OebgmtZqTL4KQ8EwMn3vuudi8eTM2bdokv7p164Yrr7wSmzZtwnHHHYfi4mK8++678jaVlZVYtWoVTj/9dABA165dkZWVpSqzbds2fPHFF3KZ0tJS7Nu3D2vXrpXLfPrpp9i3b5+qzBdffIFt27bJZZYvX46cnBx07dpVLvPhhx+q0q0tX74cJSUlaNmypbMnx8gnrFxnMXOEWbYIlT1CTwibISKE000EE97hB6+wlc/colUoUXtEIvCeDvFevLJCaI/byz6Avqe6UDYJgojHs96poKAAJ510kmpZfn4+6tevLy+/9dZbMWXKFJxwwgk44YQTMGXKFNSqVQtXXHEFAKCoqAijR4/G7bffjvr166NevXr4y1/+gg4dOsgD8tq2bYt+/fphzJgxePrppwEA1157LQYMGIDWrVsDAPr06YN27dph2LBhmD59Ov744w/85S9/wZgxY+Ro7hVXXIH7778fI0aMwPjx4/Hdd99hypQp+Nvf/uZsJgkrPmEJgcwRoh2ZY0LY5mj6lIBurJmBWW5bCx5gvTLC0x67hHbiBSsTMYg+Vk/YRuEU6TKNs5MD2Gi6ZILg4qtvxR133IFDhw7hhhtuwJ49e3Dqqadi+fLlKCgokMs8+uijCIfDuOyyy3Do0CGce+65mD9/PkKhox3wCy+8gJtvvlnOOjFw4EA8+eST8vpQKISlS5fihhtuQI8ePZCXl4crrrgC//jHP+QyRUVFePfddzF27Fh069YNdevWxW233YbbbrvNvRNgJQrm1IA5O0JYNBqc6pAITi5eR4WtpI/S216JyVTLeuvc9PzaQddWJYI2zVqi59gOqZyCzapw5aW1MxDAwj+GzNLleXB+w1kM4SznJr1iDtZFpD4B5tmUaplHeXk5ioqKsO+PxSgszI8vYNUeoezQNPYIM6+wqRCW2kBCuBoSwsnHDTFsdlO3cv2b2QBcmG5Z6L3J9mbLeIJXZa+C2molLeNZsACI50p3Ez/2SXrnIdHoLe/61tjqtBO18NBaZQzvDwL3hfLyChQVXYh9+/ZZGk8j3UcHv/gcsmrVEt7OjKqDB7H4imGW20OkJ0mbjjnjsWqPMBDC3M04fj+u/89pIZzqkC84PVFmN5H+52U8sSuaHIoKu4GRuNUuE438Wkqz5gcy6Tudjv0yQbgMieFkIDrdMu/GLDDDnHAKNSeFsFP5gpORpYEyQ/gPp6LCInlZnRYPJkLYilC0IypVs8FJyxLw8SY0iI5wh2TlZ/djhN0jZs6ciY4dO8qZokpLS/H222/L6wOBAPc1ffp0ucysWbNw9tlno7CwEIFAAHv37o3bz549ezBs2DB5voJhw4ZxyxHOQmI42fAeIWo9boITaxjdOOMeW1qZWU5ECCcKT4y6KU5JAKc/NmeG8xIvcwRrMYsEc58uIQH/sLxhkgRVunzXtefP5fPplyh/slOrNW3aFNOmTcP69euxfv16nHPOORg0aBC+/PJLANWZrZSvuXPnIhAIYMiQIXIdBw8eRL9+/TB+/Hjd/VxxxRXYtGkTysrKUFZWhk2bNmHYsGH2ThohTOb+zEsWIhFYozI2pnPl+oQBsQFzXglho3VOdfbpcjMkzElE3Fod5GVwfSYSFRbePWcQVBChOGGtN1jKqqhN6QixXwbTGfmFncDMG4+j14OVjCLC++bgF1FtlwsvvFD1fvLkyZg5cybWrFmD9u3bo7i4WLX+9ddfR69evXDcccfJy2699VYAwMqVK7n7+Prrr1FWVoY1a9bg1FNPBQA888wzKC0txTfffCNnxCKcxwe9QgZhZo+QOmrBNGpalJ2bcpn81yhzhNmgDbcGynmRhJ9IPQRu5rrb6aF3vUrXiHKfPEEskkrQ535NO8LHKCqcksLYL4LYDinabj8L4fLyctX7nJwc5OTkGG4TjUbx6quvoqKiAqWlpXHrd+zYgaVLl2LBggWW2rJ69WoUFRXJQhgATjvtNBQVFeGTTz4hMewiqfnNSjViUTEhrEXQHqGH7oA5uynURNeJIipUrd68SABnHmYi1Oxa5gniBLGaBcJpeNFhQFwQCw+843iUCY+x+DTD8WiwAU7tJxSOIZzl3KxxsRqbRLNmzVTLJ0yYgIkTJ3K32bx5M0pLS3H48GHUrl0bixcvRrt27eLKLViwAAUFBbj44osttWn79u1o1KhR3PJGjRrFzYhLOAuJ4WQgcrPV3twFHz0JDZgDjNO6AdZSSNnBDcFKIji9kK47o++LSCRW5Ho1iwSL1J1gVDgRv7BVcSP1C6K2CdFBeSkTKU5mdJj6KV+xdetWVWo1o6hw69atsWnTJuzduxeLFi3C8OHDsWrVqjhBPHfuXFx55ZXIzc213B7epF6MMWcn+yLiIDHsNbwbu9FMSTZnmRMeMBdVRMQ4+9RdnghO3gzoxpL+JOr/tVI2FjGPDgu0J9lRYQm96LC8XkC8KvMK622j+yOch1++s4k8GXMDp/NqO/iUI52RskOIkJ2djVatWgEAunXrhnXr1uGxxx6TZ7sFgI8++gjffPMNXn75ZcttKS4uxo4dO+KW79q1C40bN7ZcHyEOZZPwEiMhzIOTY1hYAEvvzQbMaVNP+VUI87bzy02VSD3M8gyLeIIdjAq7iV0bQxChOCEsr+P4iNMON7LNZFif5WevsBMwxnDkyBHVsjlz5qBr167o1KmT5fpKS0uxb98+rF27Vl726aefYt++fTj99NMTbi+hj3978HQiGtH/hS5Fo/RurDqTaxjZI+JSJun5hLWD5ty+uVNEmPASvR9wote2ncF4sBcV5kVvnRQSZhFiXnn5f5PpmA0H06VDZNILS0U6nCeXsZMOzYiYxbrGjx+P/v37o1mzZti/fz8WLlyIlStXoqysTC5TXl6OV199FQ8//DC3ju3bt2P79u34/vvvAVR7kAsKCtC8eXPUq1cPbdu2Rb9+/TBmzBg52nzttddiwIABNHjOZSgynCyUeW5NskfIm1gd9GLkE1buS4sbHmEnoNzAhAhGkxHwrnmr17tBusFk2SFEEIniKqPBAF8Im0WFU8IiQRAW2bFjB4YNG4bWrVvj3HPPxaeffoqysjL07t1bLrNw4UIwxjB06FBuHU899RS6dOmCMWPGAADOOussdOnSBW+88YZc5oUXXkCHDh3Qp08f9OnTBx07dsRzzz3n7sERCDDGWLIbka5Ic6rv27EQhYWKOdWNPMKaOeQBvkdY+l84jZqoP84tIZzsm6A28uLjx9pEAphdr0afu9XoHKcup6LCemXtLDfbn4io1RPCvKiwatCuascpLoSdmF1TD9H+yagNvPq1Y0I0mYmMxp8oP1v5nqJ3DJyAjrbO8vIK1K1zEfbt2yfs0a3ervo+etUbc5CdX8t8A0EqKw7i+YGjLbeHSE9IEfgJwZzCPCEsoWuPMEKvg011IWx07Mp1JIxTG9HrVGRaZlFB7DMhbAWhCLGJNUJkOxWpLoTdJB0sEgJWkkSv3XCWw6nVHKyLSH1IBXiBnUf7mputsiMxFcFmadSsDg5KNazeXEgYpx5uXZ9m6dwERLDeslRBTwibRYXj+iAJN4WwyHXgByHuhzY4jdlETQSRQtCV7BcMosKWpl3WZo8QzSfslhD2+iaQaJSFhHE8ybgenNynnc9RcBtRIeyXqLAZVoUwFy8inXZS5nm1Py3pKIQtkso/DonMgO72fsIsrZPeZkbZIyTM8gmnA07fhHnnLJNw4/rw+ppz4bNzwstrVQh7gZ7ANRK+ptMyG/lYlbj9HXNCELtBqlskDKLDTs9ylxWsfjkFo/QBhIIMvcv7AME0ZmadiaXsEXqkg0B286aSadHiVL0GJDwUwEbrdcWxDSFsZ/9WEJk0Q2TyDUN7hIiH383vl11BTFHheFJdxBOEhhS/66UBnFG+gLU0anE3Jb2osGpjzkef6iLIC9JdGKfiNeDg52BVVFqOErsghBPBbPyBiD2Cmz3CihDWljP7PBO5Rv0UIXZSUIpG4N1A+sySOcU1QSQIXbnJwI1Rt3pRYZ5482rmLL/cdNwi3YRxqtzIkih+zbaxKoLt1me1DA9RIWy0LbeMXSEsSqKiS1QQu5lKzWtsDHaLsailTCKJ7Isgkg1dsclEJyosITL1su6Uy3r70lvmZyGkbJufbjBKUl0Y+/XzT4Llwc42hoLWpj/YTSHMQ3fwnFV7hMhyI7wQU0aC2K/fBSDxHwIG20vXqRtTbNsS1RqygkA2eYYJl/Dxtz5NcTAqbDrlsqg9wmm8SKXkV1EMpN7AOz/d/H0ifkW2M13vYjTYSjkeouLESBiZRoX1hLCyjN61ZyaInXgk76frPhGSaZFQ7i9V+juC4EBXr5cYTbss2JGY+oN5HaPIFLROYVWk2o2o+sn7p0cqiOJkCQKXzkmikVJHorU2RbBo/VbKiWJmj7CcSo23jPd9NZqN0wtB7BaJ9E1m3w3lcbvQB8YQtR8d1nwmTmeUIAi38GlPQvDQvWHpdYjaGbXcnGnOTqfMG+hnZTpopSC2MnuY16SCKHYSj47TiZusk+LTSASb1WHlWJzOHGFnWyGvsOi6RPCzIDYjkT7LD4EAiz9kErVKOJ1aLUY2CUJBivYiKYhAVNjyTU45aM6uV9gJnBDCdtEKYifrdhq/PUp0SkSkkPi1UpcTAliknmRFgyV08wuLRAdFvmsi/YOeqBX5zvDqT1WB7AQW+j+K3BJENRncY3iIxewNvM7J8DGmSOfnZlTYKqKdtWjbtJYJP0eJ/YITn7vLIthr8StaVkQAC9WTZBHMw8giIRzZSyTaaVcQ8+pS4ldxrO2r3PxOWTiPlqwS0uemTbFW854EN5EK+LSHyABsRoVVOT21Hb5IBCbZGSSMbpRGHTVvndYCohXEIvvMRHwuhJ26cfpRAIuWsVLOayxZJKw+NXJSEKcK9OOdIJJOmvYuPsXmoDlDEokKO4GVm52oEBaNpGsFr96gEjvn2cmbU7rexB0mEfHnRsYIJwWwlbJ+EMFupNdKmEQEsZG/1Q841Uf41CLhRGq17IDDqdUCztVFpD4+7RnSEAemXHY0KuwEHgphM+uIyi/sRF5is0i01W3TiSRPepHIdiLbJjIQLpFtvBAmTogSGbeimUaD4lJlMGoqZLvREERI+AdgHCZWCYLwO3SVegFP7Ol0ENoboqE/WJtXmEeyvcJmN0y9jlLAPqJcJ58nvQwaTtyY0qFTT/Rzd+gcuCUoE9k+kZRoiWzjh0gwYCOlGg8vpwAG7HmJ/Rod9pIkiFRHf4gRhMNQr+AlnE5YeSM0EsIJdyTJ8Apb8QcbeKhFIudSmWAgxM8qkQqz2GUA6S6CvUyR5gSuCpREvmeiotWOKM4kQZxMe4jD0eFwCMhy8sEGaXNCQYb0CD7AYkYJQ5Q3GTtRYScwu9ElYIuQRIKZIJZu5EohzBXF2vbonZd0F8lJEgB+tEIAiYvgZBxXSpGoVcCKaLWakcELQey1VUI0Km9w7KZWCZFjImsEkYLQFesFQY63FcY3RW5UmGeR0K1AR3x7McGGVSEcClefCxY1FcBSRx2EevCHVgirRLF2v3rtEzk3qSiYk5hP2EvBKGxL8GCGOLe29z1+yIzgJzGWgt5h24h4vQnCp/ikx8gQDISw8E3S7x2riBDmWCK00WDTQUyK9UphbCqKle0QbbcSu8LS688tyY+BvcoMYdnGoHNdOTU7nBvby/WYfCc8zwAhIny9jA4rEZ2sw4vviR8EsYllQZtZwrFrSXmOSRATPobEsA8xjQpL6HWwbkaFjTCbBc+CCLaSd5kXLdYTxdpt49ooitWOPdU9ij6bZc4pEWxUVzJSvanqsDiy39JECalEIoIYML52M0kQC+LINeRCdN7p6ZijNB0zoSDF79AphA17hC7J/IWt16FbEMJKARxj0TgBbEkIKwWviShWbie6H93Pw0pHn2EREbetEX4Two7OlGc3tZVLxFg07jvAWxY3LbrRhDh+w0tBLO3PznZ2tvUDmTRgkUhZ6Ar1AhMh7KhFIllRYR46QlgVEYbmvQWBqhW88nIDX7HZPng3ftH26GIknFNBKFsQ/n4Swm6JYDd8v34TwY6TSIrDRPsuP1kmAPEfB7z2uPDDgqZLJggSw75CK6oMLRJ+gtc+EyGsFMGqQXMGokB6fKf1AUtCOG5AnY6vWLd+CzcF5WclOmkKF78LZQ/sEakihFNBBHtuldDzDestT1Rwuukh9hK9HwcUQdUlO8iQHWSO1RdzsC4i9aFvnocYRYWF830aTbThdlSYt0+jlEYcIRxhlbo2CWmZFl7EV1lWRMTGwHm0qy3D1PXrIbI/UbFsWygrcVo02xQNbkaXnMgUYVSPmwPodOt1IRrsphDm2iNUO9dELd3ILJFIX2YmiJPxON/O/hyMDnsWFU5FeweRUZAY9gBt9FOJ3s0lLips1pm43YknMK2xVghro8Nxu9KJ/MrrNdEvnic4kR8esujWK2cQUDCzYojaMCxNhmBVNLsQIXPTHkFC2BtMxa6dsn5ItabEj4KYIIikQ9/6dMSrx4Fm+XprhHAkVikLX+X/QPwPBV5ElZcizVBMmDz9shyN125vFGXW2beRSObV5YhI1uLSdeG2T1iorhQRwn4UwTws2S2UgpcXteTNCJlM0kEQJ2tQYkJp8hK79imbBOEmPv/GE0IYddzJ6tRNhDBPDPN8v1riosS8CDBHcIgITu3N35ZoDsQv0vMrW40iWy3rNomIRSd9wm4IzEwWwlqsRIwB6As1rQBNpjhOB0GsxW9ReIJIIVLs254emIksXYtEsjo6M6+wkmBYPViOI4QjscqjVSsHzyluutq/quZothE6BAERqRpwx4tQa6wZwgLBhkDWa7PePr0UyYkKRS8jwkb7SySjhBW8EsFeDJxTZW1RfgfspFNLZPIbL4hpjocgiLSFvuHpRjLSqWkzR0AxOE4hhCOxo55hEcyEnx1RrK2f5zfW1hc3gE+b2s2iCNFmulDW4aRA1iufTCxlhHCg7V4JXu4+UjQS7Bh20qmJTJvuFFYyTBgdQ7KEsstWCcd/SAfTcEIYIm0gMewhIjdg4Q7Ir5EKTlRYK4SjLHa0eOCocSsYCKkiwkaDzZSiWqqvKsYJwRqQFaxSNz0Q5ItgkQF9ynUOiGNAXyCLDMJLhm3CiGTYDuzs06l2ei2ERa45t54S6EaH5R3bzDHsJ1uFETGFXzqTcfn4s4JANnmGCZfI8G+vN1iJhsqIZpFQkow8msqosMYnrBTAeucgymIqQQwA4WB2dZVQC04AKptFlMVwMBIEEESkRghXMb4gzgrEj2yr0uSZzIp7Xy2WpfbpPiLWEDfAzmI6S71BgqLRY70yvHJuk6zBdcnIEJEsfDUFs5FvVSuWEhHHfhTGfvQZJ2ugHTfN5hHv20EQgtBvI8IYCx1pXESYqdOpRVlMFRVWEg5my68gQggHstWR4pobfiRWiSiL4XCUobwyhP1V1a9y6VUZwqFIMO5VrihzKBrEoWgQ+xX/R2IBVfmqWAAHa/4ejjIcjjJEWQxVsSq1/YPzv/YVYTV+aajPjXYQIe+9KhqurEMjlM1+dOiVs/IS+uwtbGNUl2kZn1sQggjFvdzah1BZgR9BVtKqGSL6ozwYVr+sEAobv/TK6713ikSFp9lxaNGeN71t/CbSU5CZM2eiY8eOKCwsRGFhIUpLS/H222+rynz99dcYOHAgioqKUFBQgNNOOw2//PJLXF2MMfTv3x+BQABLlixRrWvZsiUCgYDqddddd7l5aAQoMuwr/PZo2xCtNzkUBrRiSCH8lFYGZQQ2FAiqRHAwEJL/56VgOxxlqIpVC1hJuEr1ShziNFe5z0MAwjXvpeURxfpwkKEqWl1fJMaOLqtpexWObquMbItGjlUD6kyixoa+Zp3IsbR/Xl2J4InP1kWfsFP12yUuW4lNQe+UsLZyPRg+CeGts5NOTSnYnBCVVpb7AT0RD/gzEu4xTqdWi1isq2nTppg2bRpatWoFAFiwYAEGDRqEjRs3on379vjhhx9wxhlnYPTo0bj//vtRVFSEr7/+Grm5uXF1zZgxA4GAvq1v0qRJGDNmjPy+du3a1hpLWMbHPUMGw+v4zDpDvdnfPEQSwPL/mgihJFiVglgSv1IkWBkRjrEoKlm1tI2wSkRilaiKBbC/KoSDighuJBYw9AtnBZkskPVEME8gZwUZIgjI4jgrwGQ7hlYcS9vwbB+GKJqtzTChJ4TtiGPAP9YJHpYG1tkUkSLRbS/h2YBEylrejwefr65YtivmErVUJBM7dgkzkZ5I2rRkR4WTvX+HuPDCC1XvJ0+ejJkzZ2LNmjVo37497rnnHpx//vl46KGH5DLHHXdcXD2ff/45HnnkEaxbtw5NmjTh7qugoADFxcXOHgBhCNkkkoT2xsG9kfj1BqBNoaQcNGcQFdaSFcyShbDqLwsiGGOyOI6wShyKVGDPkQD+OBLG74fD+ONwGL8fDmHbwSB+OxjArsNQvfZWHn3tqwzIr/LKGttEjZ3ioOJ1KHLULqG0ScjLo0FUsQCqWLUA55WtigVkO4jSUiH00tgguFYJwWWAsa1CVc4Bm4Qd3Kg7Vf3APFuFExYL0/SNNrF8nq08+ueRiKUiGXjZd4taJZyCotSIRqNYuHAhKioqUFpailgshqVLl+LEE09E37590ahRI5x66qlxFoiDBw9i6NChePLJJw3F7oMPPoj69eujc+fOmDx5MiorK3XLEs6QAr0KYYrXj/5M9scTOcrIbVaQIRQIIjuUpxLCwUAIwRiTIytSloVIrBLllSH8fiSM8soQyiuDqIig5hVAlUZrV486Zqr3QPVIZPX/AQABeVkkyORBdcrIsSoKXPNXihgDUEWNlWUBAEH+DwEz4jJMMM56C1FjQD/6KCq2RAWQlclCrOJWVDgdSUTw2hHghtYgJU5kieAJYi8EqLKtyeh3ExWimjZn4vdCS3l5uep9Tk4OcnJyuGU3b96M0tJSHD58GLVr18bixYvRrl07bN++HQcOHMC0adPw97//HQ8++CDKyspw8cUXY8WKFejZsycAYNy4cTj99NMxaNAg3fbccsstOPnkk1G3bl2sXbsWd999N7Zs2YLZs2c7d9BEHCSGk4BhVNhPv7rNbi41N6S4aDD0hbC8aaA64pUdzKv2CMcYEK2qPv6qw0BubVXdVSxQLYgPB7GnsloE7z1SLYiVSKl3soKBasEbkt5XZ4+QhG9VnDCW7Bs1YlcjbHnL1KJXOmf8U6W0UlhFK4x5dgrpXBktUy5XYiQw7Yoip0lkcg1ReD8mUhUjUcpb55SVQlgQK3EqhZpexNgpkaxtVzrOYuc0Dh5/tkup1Zo1a6ZaPmHCBEycOJG7TevWrbFp0ybs3bsXixYtwvDhw7Fq1SrUqVMHADBo0CCMGzcOANC5c2d88skneOqpp9CzZ0+88cYb+OCDD7Bx40bDdknbA0DHjh1Rt25dXHLJJXK0mHCHDP+mpiledsCKgXM8qi0S8VFhyRccDIQQjFRVC+BoBIhFwKJVCGTlIhbOQqSqElWxKhyKZONQJIidh4G9RwLYUwkcOhLEgf3Zct3hcAzhrJj8V5mXsvr/ALJCamGcHQSqYtD8H1CI42oRXFUjiJXLuMJYEtuaaLEKTrRYKcT0/pff2xTG2uW89VoSjSY7QaKZI9JF4IpgJkSd9A/rCV9bgliJ0/mFnRDJem3wWhAb5XL2i63Oz4MUOWzduhWFhYXye72oMABkZ2fLA+i6deuGdevW4bHHHsMTTzyBcDiMdu3aqcq3bdsW//73vwEAH3zwAX744QdZOEsMGTIEZ555JlauXMnd52mnnQYA+P7770kMu0hqXbVpgPBNQrRj81HHI+ozlTNGSKnTopVA1WGwaJXquCOxSlTGDtVEhMP430HgfxUB/L4/jMOHwjh8KIRDh44efzgcQ1aNGM7Ni8YJ46ogkBWrEb2hgEoUV8aORosrY0pLRUDRHo6w1WAlWlxdRtxGoRXJ1VWrZ8GzEx22M7DOaJIQJ7AqgDNJ8OphVwi7PhlHorg1+YZXg/SSESG2ku85w5FSpdmBMYYjR44gOzsbp5xyCr755hvV+m+//RYtWrQAANx111245pprVOs7dOiARx99NG5wnhIpkqw32I5wBvpWJBnfWiQsYEWIyFFhKZdwjFUL4aqjCdECWXlAVi4irAJHooex41Auth0M4n8VAfxvZy72l2fViOEwKg8F5b49nFUtfHPzIjh0KIa8vAjCWQy5eRFEwjFUGYhiyWMsCWEJKWpsVRSrsCmKE4kWA/oiWDQ67FQU2W2cTKWWalYJUcHppRCW0Hs6kTB6AQCnIsg8UZyoX9dJQeyEdzgFCQecTa1WZW3CUowfPx79+/dHs2bNsH//fixcuBArV65EWVkZAOCvf/0r/vSnP+Gss85Cr169UFZWhjfffFOO+BYXF3MHzTVv3hzHHnssAGD16tVYs2YNevXqhaKiIqxbtw7jxo3DwIED0bx584SOlzCGxHAq46eoMMyzAlRHTAMqi4RkjZBvFsFwtRAOxHA4cgC/12SP2Hk4gO37wti1Iw8HyrMROBRDOBJD4aFKRMJBRLOCiISDiOSFEakKIjev+maRFakWmeFwDLmIVKtgLoEaIXxU5B4Vwu6IYslmoT1Hetk3uFWaCOPq3ZpHiN0SyG7jhnD1uyC2er4tl+dE+N3IPuH4dWPUH1rNd+yGIHYSXlv8ZJXg4aP7lR127NiBYcOGYdu2bSgqKkLHjh1RVlaG3r17AwAGDx6Mp556ClOnTsXNN9+M1q1bY9GiRTjjjDOE95GTk4OXX34Z999/P44cOYIWLVpgzJgxuOOOO9w6LKKG1L46UxxLNwOvO2KRwXM1KdVUm2lEcSgQBIIxVMUCcV5hVV3hXARCWdXvc2qjMlaBQ5EK/HE4tzpd2iFg7x85KP8jGzmHIghVxZBzOIKcQxFEw0FEsoI4khtGNBLEkbwwjl7a1ceRmwccPhRGOBID8oyOLQCx+ZOPeoctY1EUhwJB0wix4SA6TtRYW1ZZXm89r4xIPW7hZt5gs2MwqtsPeZslLA+k89IL7uUPK6vRZBFBbFXceW2X0N4zdNrr5x9+fmLOnDmmZUaNGoVRo0YJ18mY+l5z8sknY82aNZbbRiQOiWEPMezolZ2WyK/7FPiVrRRrUlRYSYxFgaw8oOowArGs6htFbm05Kix5hXcervYJ7y+vFsI5hyIIRWKyKA5VxVB9KUdwBGGEwrHqKHFWEJGaaYbC4RiAIMJZMUQkn4SGrBBq0rRVC2LJP1zdfvX/R8tp6hAYZCcLaBdEsfRePr/aZTrCWFteuY1eGaMZyfSwK3as3rDdvsH7SfDysCqC/YLnP6yMJgUxEsROYzYQj0ciAZIUuH8QhJfQNyKVSJEOTCvOQoGgLOgkv7BEjEURzKqZrrImg0Rl9AAqo4fw+5Gs6okzjgAHanzC+fsPI1wVQyhSLYJzDlUhmhWsmYM5jGg4hmgkhiORICJV1dYJADWiOCa/r96fNUHMQ5t1QhSVWGY12yUoivXeA+bCGLAuju0IFy+iUJkc6Uokm4ReVNhvNhhX2qMnip22HlC6Nds4PR2zk3URqQ99Kz0iZXILO4QkyqS/kkWCXzgM5FRHhCOxQzgcPVA925wyKrw/G9Fy1ESGq2qiwUA4EquxPgA4BESygtXRYkV0GACqZFGssUAICGKJbDkirP6/mqPiVS8azBO5qm10RHGWYjsjUQxA973Zsurdei+OnSYThXCig+gAb+0RieJEPmldUtGLq0TbVj/5nAnCx5AY9hup0unqEET8AC7Ver1H68FAdSq16CFEYpXVUx/HqmeXi1RVR3nDNdFgpRAOVcUQrRHAkXAI4aoYjtQEmmOR6m2rLRJiyFaIkPQ+EJdpQiuIs1R/zaPDRtYJSRRLOYqViIhiwGJ02MKMdUbiWHSwnRYnJ3vINJwQwYCxEPazpcIuplafZAliN60SnHo9/c6EwgCOeLc/grAIiWEPMIwKpxF6j+yl41U+no+xqBxMjQUDqIwdqhbCrHqSjYORHFTFgCpNfx3NCuIIshCOHF0hZZOIZh2NBAM14/I0kd9IVQBhzlWv9ANL8LJJKFOvKcWxVhCbeYb1rBBa64R2mmepnJ4oBhKMDhsIhUT9xjzsTPGcicIXcD6LhFk02MsJPJKF9rsioyeIVRunSOBCQGC78p1y2A5SbZOwN4unXn0EIUFiONmk2SMspSdYaZPgEUMUkVglgOoJNiKsOjJ8MBJEJBaQp1qWBsFFwkFEw+oeLFrTox3Jy5LXScJYtK9Til55WTQ+Omwkju0IYsB6lNiOKAYSF8Zx6wyEMW9b7fZWyTQBnMi5SlQEJ7r/VIQ7SYhZ1JUn9hIVyHaiw1YgvzJBcKFvBuEIPHuEXmRYIhKrlJdFWCUisUocjjLsrwqjvDKEqhhkQQzURIXzwsg5FJHfS5YJKb2aUixro8LyfiNBeV2kKhhXThn9PSp6+XYJu4IYQEJR4uq2HZ3tjieKAf1osdky7XKjdWZ2Ct72PLwUYK5NCGGCm/sSqdspIZyOYllXEAPiQQujiTtESVQQJ8PjTCKbSHHoCvYYw4FzqfLYTQdZ/CIEBIwjw9p1yjKSsJOsC9XTK0dwOC9cnQ0iL4xQJIYwRwhHwkF1xgioRXE4iwl7iJXR4aNt4wtgK4IY4Kdgk47dbpRYee6k93ajxUbLTdfZnKrZrdy9ovmInRZ4XglGL0WwlXLJxK5fXXcaaa9FsdsR4hpS6YlLOMisTXIkUB9BSJAYJhLCKLWXNjIsLZNQbhdjUVTFqlAVOypks2tS6eTmRZCXF8LhvAjKC49OunEkt3oQHQDVLHTRrCCy86qnZpaEb5bifyV60WMn0BPE1evEbBOAcZRYuY1UVqpf+d4oWgy4J4zlMjqDKkWzGHiVki1Roee3KLPTlgi/C2Er14nejyDD64AnUEWsFH5KqZYiKToJwkvoW+EhhjeSVIwK10QvuGm9pB/d0iA5pV1CO/hKMWudUuBlBQPIzwL2ZsWQmxeVo8NV4TCORFCdSUIhhoFq64Q0cC4cVgtiPcwGUmg9xaLRYXUd5oJYOv6wZhl325oosXIbqWz1MfHfA/HRYsCaZUJUGOuVUZVPUCQ7jV1BnO4i2E55L0nkxxLvM7f0tEApLo1mtLOKR9FhR0m19hJEDXTlJos0GzgHQLZHSEiWiRj0BYZWDEmiLivIkB0E8sMM+eEAInkRFBRWzygXqTr6t6pKfQlnZ8XihHCW/J4JC2QeSt+wGVq7hBK3BLHy/OmJYuUy0Wix6HLtOr0yRmXlbWxaLZzAiQixG5AIjsepJwZ6n7nlLClO5/VNBUFsJvT93n6CAIlhwkVUHmILZMmCuPpVJwcAYohEIigoCCASCeLQobBqUg0JSeTqCWFVWYVFIpsTHZb8wlZS8CgH32nhCV6z9XqCGECcbULaTlonbVN9DEy1H+0y0WixcrnZOt56o7Km5T2MIvtFEAv7eEkEO1Kn2TELXd9uCGKpXr11Ijhl0xA5PhcsIdVPC8kzTLgDiWGPSDuLhMYDJx8fgyo6LBc3SbOmROr0soJAfhioijFURQOozK8+T4cPhREOx2RRrNpWIXh5EWGpjPS/UuhK/+uJWdGosBZedBgwFrxW1gPqKLG0DnBWFAPW/cJWo8J2UrK5JZKtCGI3xLNTQjidPMGAu/5xq5+jYZ5iwL0ocYL1OnIOU2lmPoIwgcRwMkgni0Q0gmAoHO8X1mST4KVX09ooQoFoTeSTIS8cQ144hoORIPLDRzNLVMUiCIdjOHwojEiEyaJYiVIQ84SwhJn4tQLfJ6zvHY7f3hlBDEBIFAPWLRSAc37hRMoKC9QkWi3sYkm4ZpgI9go7afccy0Jhht/uHcoIMNkhiBSGrt50JEkjl3mZJXiIRCWyaqLDtWoOozJWrbDrxICKYAzhrMpqQRwOIhLhR2yVlgnte60QjnvvsDZQT9ihI2YTEMQALIliqQ5APFoM6AtjQDwynKhAtiuOgaMC2UoWCz+lSJPLOjCFcioKYK9TgVlJ92c46E5PKPpA3Lp6Th0UyNI9wcn6CEKCxLAHpJ1FgoM2pZqUTUKK+upN0yxFh4OB6ldWsApVQQZEgbxwrEacBWsiw0dTiFXFgKz8CA4dqZmdLqIf3tWKYjMhrMSLKTt5/mE99AQxrx6nRTGgL4wB+2JWrxyvrFPi2GwGPW39QnUmIJy9FMKpKIL9iNGgO+FzrBWLPhDHCeOXFHIEYQG6ar0mHTo7CSkCrfCy8YSuXjYJrY1CaZXIC9WkTIsFEIkFkB+WRHB1hLgqClRr2+pyVVkxRKriJ9vQzjAnIoR5UWGlX9gJgWzXLmFURltOrtOiKAaMLRQSSmEMxItjwHmBbOXJg1U7hZHI9EIQi5CIECYR7DyOCGIlTtgqBAMsfoqyE0SyITGcTESjwrxf2j6MKMcJYeWguhpk4aHITawVxFJ0OMyYKjoMBGrsBgwVkQBQBSBcHSUGgKwcTro0hSVCQiuEVcUV9y8rolekrN5AOsCaXYJXproNfNuEvH8DUawtbxQt1i6XEBHHgHgk18rgPLvCWVUexplPki2I7QphN/Mmeylw/CqmRLKu8NYb4nRGCrfh2SHIQ0ykEHS1+p1kPXKyOlJYMQGHNnOE6v+aG7oyWmw0kC4SrBbEAFAVCyE/LEWEqyPEWTHIUeIqjhbWGxynFKVODKBzExFBzHtvRRTrldcTwMrl2nUSWnEM2I8eiwpfu8JaLudTQeyFEKbIsT4iTxvMPnPLmVLsRIkdDpJYviZ07ldO/JCh6ZgJNyExnKqYiVWvBtEp98MRxED8TULPPiHd8IOBEHJDUQCx6pRhQaUoDgIR1Fy5DFUxoDJ4VBRXcgSxHloRrBcV1rNIJCqijSwOejYKszp4EV3d6C9TCF0TC4Wybm392nV6ZQB70WO7eY7t2ijMbBPJjhArcUIIJ9JG0XSJqQjvuER+dDmSms0OLj0tpB9JRCZAYthLUumxV4LEDagD4iLFSkEsT84ROFo+K1gle4c1tUOyAVdEADlKHIS8vMrC/VnrEdYTwsnEaMIOnnDWGwDnhIVCWb+Env/ZrIxI9DhRYWxXuBhFib0UxHpt0KvX60F0XgliL4W32X6MPlc7n7lpJgo/3zvIIkGkAXTFJgsfen5tw4kOA3wRLL3XHWDHgHAwG5FYZZxdAsoZ5GryDwM1XtwYq7FJSCLwqG2CJ4x5g+TivcVMd71qwJ2FCLHWN2wlOmwmiKvb4rwoVpbnbaPcj4RdcQyIZ6wQFb9GQkMkSmwkiI22VZbzU3TNFT9zGkWIRY/DTBAbYVlImwli0fuJXZGagBh36rqg1GqEm5AYTmX8YpXQ7ks5UxL0RbGMdtY6BnkwnWSXqKkJVUGGWpIorhHEVTEAkWqBelQUAzxhrEVPyBoJYSO01gmjQXNHy+hbIozWiaZJM1puZqHQimLtNtrttPuTcCJyrCeMnRLFdgSx2baiZZwSzMnMKJEOgjgZkWerTzTiK/NJYIVSqhEpDF29fiaVOxcpkmAgilXLmSb3ayAkR4iV2SVq1cxKpxTEAFSz1B3lqLjKDgKVHF+rEj1LhF42CruYCWQjG4SRJ9iKKOat49aj4yvmbSdhJo6NhL9RGd5U0YCx+LUifA3FsgeC2ApuZojIVJIl5IWvXw/tEtxrxUb0OdV/HBGZQwqrLcJ38CLROqJYO8BOWi5TEy1WZpcAYjiEYJwgzooFcDCiFFJ6kWBrj8V4gjVu0J3NlGpW7BL8OuMjxlayQSjXWbVQyPXZFMeJRo3NZsTTDtbULpOWW31U7cTAOjctE06nV7PbBjcFUDpEn/XQu359/SOGvMFEmkBXcrrj9dTMevtTRjRqMk4Ams7e1C7BF8TVf2sEoiLFmlIUV8aJT37zjcRtIhFhO4JYXdaBQXIO+Yrl7Vh8pN3MVpGopUJv4g+tKBYRv27YJhIRxK7lJ/ZYTKWzYLWKHe+w3hgLAMmPDieRsMOeYUqtRighMZzqWM0H7EXd0jZ6IlxnxjoAcYI4iKN2CTNBXI25T1grjEVwYqpmEUGsxOogOe06p0Uxry4tZrYKkbr02mG0LspiQlFiq7YJNwfWEf7BSfFupS4z77BjgjjooHVBcN/0g4hIJTybbmDmzJno2LEjCgsLUVhYiNLSUrz99tvyesYYJk6ciJKSEuTl5eHss8/Gl19+qarjyJEjuOmmm9CgQQPk5+dj4MCB+PXXX1Vl9uzZg2HDhqGoqAhFRUUYNmwY9u7dqyrzyy+/4MILL0R+fj4aNGiAm2++GZWVlaoymzdvRs+ePZGXl4djjjkGkyZNAmP0S9ISsYi+mFZ0qFInL0WBgwjF/R8OZiMYCMkjivNCMYRrBtNJf/NqXrXCrDrNWrBaxGYHqz3FyqmXrb602J2SuYozOYjyvTZKqrUcSGWkl946bR1G9YguV9alfOlRxQLyy6wu7vYWjzPKYnGp2rQ3ZL0btNXlgNrjbnlbG/tLJdweqOdHYiya0Ocnba+sQ/leVbeRPSEaOfpKEOFzLfD0MV2ubSI98UwMN23aFNOmTcP69euxfv16nHPOORg0aJAseB966CE88sgjePLJJ7Fu3ToUFxejd+/e2L9/v1zHrbfeisWLF2PhwoX497//jQMHDmDAgAGIRo9+ya644gps2rQJZWVlKCsrw6ZNmzBs2DB5fTQaxQUXXICKigr8+9//xsKFC7Fo0SLcfvvtcpny8nL07t0bJSUlWLduHZ544gn84x//wCOPPOLBmXKBZI82lkSxth2KDlvZ6UoiWPm/JI6zglmyIM4KMJUglpYf/R+oVSOCJWGcpXlZxWw70Uk/9KLW1evMBbGyrBOi2ErdWkTEsZEo1tZh1BZte/REsRInBLHuOhcEcbrgV9GaCvBEsfKvk/vREve5KUV1EvMdh2v6e8deOmMeiMwkwJIY7qxXrx6mT5+OUaNGoaSkBLfeeivuvPNOANVR4MaNG+PBBx/Eddddh3379qFhw4Z47rnn8Kc//QkA8Ntvv6FZs2ZYtmwZ+vbti6+//hrt2rXDmjVrcOqppwIA1qxZg9LSUvz3v/9F69at8fbbb2PAgAHYunUrSkpKAAALFy7EiBEjsHPnThQWFmLmzJm4++67sWPHDuTk5AAApk2bhieeeAK//vorAgFzgQBUi+qioiLs2/cmCgvz1R2JiEAV9fo6WZeduu2gbU9NpEMZHYkhqnofYZXy/1WxKlTFAjgUCaKKVYso+b1CIEUU/2ujslZmqxPFqq9YKay1IptnEzCzKfC2sVKPmSfPimfPtK0CNyOjOrRt0b7XZp3Q3uTtTFqhu41Bpgmr++Iug3nbE5mEw228EHFe18cbqGm4D5MfTnK9Bp+18ikagKP3lJiOYJUiyFJ/GwrrR5s5+wgGQup9aMUwp34Jbd1795Wjft0h2LdvHwoLC+P2q4d0H/14yxOoXZgnvJ0ZB8oPocexN1luD5GeeBYZVhKNRrFw4UJUVFSgtLQUW7Zswfbt29GnTx+5TE5ODnr27IlPPvkEALBhwwZUVVWpypSUlOCkk06Sy6xevRpFRUWyEAaA0047DUVFRaoyJ510kiyEAaBv3744cuQINmzYIJfp2bOnLISlMr/99ht++ukn3eM6cuQIysvLVS9PSMUUbNpIsSJCzLVLaF6hQLDaLhGOyRFi6X21VSKmiRKzuKiwmRXCCk7UEW+fiP/RZWpNEIz8mkVgjeo3si/w2mo3WqysQ68tRu+djhAbbmMzQsxbno4RYz8IcrdwUghLZaWXVL9WvOru063IbYJBkXS8pon0wlMxvHnzZtSuXRs5OTm4/vrrsXjxYrRr1w7bt28HADRu3FhVvnHjxvK67du3Izs7G3Xr1jUs06hRo7j9NmrUSFVGu5+6desiOzvbsIz0XirDY+rUqbJXuaioCM2aNTM+IV6SbKuEHkpRrPER6/mHJQ+xUhBLHuJ4q0T1+rCOIFbaHkS8wkqcEtJ2cEoQiwpNo32JiGMRUWzHRqHdr/Z9IoLYsp0iActEJiBHGh2qK5no5UznYUUI87ZViuK4fWq9ww6lOkv0/LpxrWcFmOMvgpDw9DbeunVrbNq0CWvWrMGf//xnDB8+HF999ZW8Xms/YIyZWhK0ZXjlnSgjuUmM2nP33Xdj37598mvr1q2GbVfh17nnvY46RyO6A+rCwWxdQawcVMcTxNL7vJqIMaAWwno+YiuD6lIVu1FiO9skOuhOqoO3Xz20gliL3YFu3KiuQryIYkc42M1Y4AecEsVOCWKr58fKfkV+IBm9tPUoBbGq3SL9tEYoC6V984lfmCDcxtNbenZ2Nlq1aoVu3bph6tSp6NSpEx577DEUFxcDiI+67ty5U47IFhcXo7KyEnv27DEss2PHjrj97tq1S1VGu589e/agqqrKsMzOnTsBxEevleTk5MjZMqSX44TC/F//frNKKEc0815aNJYJI/+jmSDOCx21SuRpBtfxRLJWCCcywM4K8R7h+DJWxWh1Pc5GPNwSxaZ1GAhjvSgx739ALYitWhOcjBKLCq+4CLaAwE61wXpORoq9wikhLJp5QmWRACcybBE/XgcE4QeSGt9ijOHIkSM49thjUVxcjHfffVdeV1lZiVWrVuH0008HAHTt2hVZWVmqMtu2bcMXX3whlyktLcW+ffuwdu1aucynn36Kffv2qcp88cUX2LZtm1xm+fLlyMnJQdeuXeUyH374oSrd2vLly1FSUoKWLVs6fyK8wiurhEgEgSeKNe0z9A8bCOKwItOEngCWRLJyORAvgvVsFSKC2cp2evXoCVurA+DMBLKQOBX0CvO20dunWaRYrsdAFGv3x/sfSEwQG613QhA7FR1ONUEMJBbh1RtT4IbQ9kq484Sy6WfHsZrZgXuMfrXYeYxZetgRI0YgEAioXqeddpqqju3bt2PYsGEoLi5Gfn4+Tj75ZLz22muqMiLpYQnn8SycOH78ePTv3x/NmjXD/v37sXDhQqxcuRJlZWUIBAK49dZbMWXKFJxwwgk44YQTMGXKFNSqVQtXXHEFAKCoqAijR4/G7bffjvr166NevXr4y1/+gg4dOuC8884DALRt2xb9+vXDmDFj8PTTTwMArr32WgwYMACtW7cGAPTp0wft2rXDsGHDMH36dPzxxx/4y1/+gjFjxsiR3CuuuAL3338/RowYgfHjx+O7777DlClT8Le//U04k4QrpOPUl9rpmqUZ7DQTcwDgzlAnvZfLBBWPxGOQf+5lBZmwkKue7U27TL+81QiyaHkrQtiuCFZiNgW0EpFZ47TljcqYzXYn18MCcV4/3uQk0r60+1VOzsGbVMNswgy99boTdxhMzmEVJ+vKFERmwxMt4xSiP6q0E3LEWLR6ivoErwG9/fs9Si8FL5yszwpSethWrVoBABYsWIBBgwZh48aNaN++PQCgX79+mDdvnrxNdna2qo5hw4Zh3759eOONN9CgQQO8+OKL+NOf/oT169ejS5cuAKr1x6+//oqysjIA1Rpm2LBhePPNN20fK2GOZ+pqx44dGDZsGLZt24aioiJ07NgRZWVl6N27NwDgjjvuwKFDh3DDDTdgz549OPXUU7F8+XIUFBTIdTz66KMIh8O47LLLcOjQIZx77rmYP38+QqGjX+IXXngBN998s5x1YuDAgXjyySfl9aFQCEuXLsUNN9yAHj16IC8vD1dccQX+8Y9/yGWKiorw7rvvYuzYsejWrRvq1q2L2267Dbfddpu7J0khAE2xOy2n19Mzi6I8doUgDtakAgJqOmsdQRwOZleXi1XGCeKsEDPNWqDH0RnPtMuNt0vUYiEqYkVTqbmN0axxVsoIzVBX81kqRbGTglhaDhiL4kQEsV5Zq2Wsbmd2XMnCzSmcE63b1mfgsG/c7rVgB+5+yC+MCy+8UPV+8uTJmDlzJtasWSOL4ZycHNn2yWP16tWYOXMmunfvDgC499578eijj+Kzzz5Dly5d8PXXX6OsrEyVHvaZZ55BaWkpvvnmGzmoRzhPUvMMpzuW8gxrI6SAbi5e7nZ69fKwI4ZFH5Ul2mnyjp+TG1ObgzjuPYsiymJyNDgSC6jyEQNHxVkkFp+RQFquxI5/F3BWnCoFnxtC2KnIi5P5igEDWwhnRLjROVK+N8tDLLLObp5g0W3j3gvWY7RcdH0ycEsQ27HAiJwfO5lF7Npk9CxjiEb4OYABdR5gkxzD3PzCZvYLnTzDvCh3eXlFQnmGP/vlMcfzDJ/c/BZs3bpV1Z6cnBxVWlUe0WgUr776KoYPH46NGzeiXbt2GDFiBJYsWYLs7GzUqVMHPXv2xOTJk1UZrvr164dwOIxnn30WderUwSuvvIJrrrkGn3/+OY4//njMnTsXt912W5wtok6dOnj00UcxcuRIx46fUOPDECGR0tiNWPNQRLF5qYxUNyttxFguFG+bCAeZYQYFnlCLmDzmF0Up1ES8srztAPMJJ5KNWRRYJEqsRM/CYWab0O5H+fkqI8SAvYiqaITYbnQ4rh0W6jGrX/e7lIaYRYeV61PuXMQ0QRYbwQ7hY3a7fgOk8R1OIfUR2hSoEyZMwMSJE7nbbN68GaWlpTh8+DBq164tp4cFgP79++PSSy9FixYtsGXLFtx3330455xzsGHDBllcv/zyy/jTn/6E+vXrIxwOo1atWli8eDGOP/54AGLpYQl3IDHsJU4KxUTwq1UC4FtFapZpxW8MUXuCGDAdOqp9zK4VYmZCViTCqlfGzLubZRIdttpWNzHzCiuj7aKD/LTHl4htgieIgcTtEaKC2Kz+RIW1qOBOWSHoIH4+dmVUWLlMvp8oo7ja/l0RFZawFYHXq1+nvX4dsKmFFxnWQ0oPu3fvXixatAjDhw/HqlWr0K5dO3lmXAA46aST0K1bN7Ro0QJLly7FxRdfDKDaFrFnzx689957aNCgAZYsWYJLL70UH330ETp06ABALPUr4Tw+VUQEADHR6heB7SQ6/mHHBDGgGlxnhSodQcZDNIqhtV/YFcJ62xlFwr3ATBArywGJiWKtIFaWU9ZvJIgBY3HIW+eGv9epuqzsg0SxOHbFHk8oWhGPqkwZevYInXuH0eA93c/cofuLX68pK2lQpfSwANCtWzesW7cOjz32mDxgX0mTJk3QokULfPfddwCAH374AU8++SS++OIL2WPcqVMnfPTRR/i///s/PPXUU0LpYQl3IDGcbgTD7qTCcatePVwSxJIQqq5XWq7fjIhORFEUq1kWjHzJekLYahQ6GcLYyrkTjRbzIuh6UWJALYpFBDFgbp0wEsR2o8MibbBaj1WRq+cndZNUiSSKEETI8iA6PZGsC28MipVB2Dpt8Kto9SNSelgev//+O7Zu3YomTZoAAA4ePAgACAbV/UwoFEIsVn0zUqaHlQbZadPDEu5AYjhZ6InLBDszYfxslZAwsEwA6pRrwoIYsBUl1nqGRUWrhJ4YzeJELc2wKoT12qIVxU6mLeJh1Scsso2ZdQI4KoyVZa0KYsBmVgEbWSOErQ02fMiJRLCVkGBKDN4YCOVyXvm4gXOxw/xBbjbuIXH71Q7K80GuYWU+eKfqs4JRetgDBw5g4sSJGDJkCJo0aYKffvoJ48ePR4MGDTB48GAAQJs2bdCqVStcd911+Mc//oH69etjyZIlePfdd/HWW28BEEsPS7iDz9VQeuB6xMNvVgkn2yN17Erxrki55qggBoSsE6KD6YxsC8q6gHhRrIeVLA1mdbktfvWwE2EXFcUSKr+wJlosRZR5gtgIEW+wkPh1KDqsV5fdXMlW26PF6fr8jumgPIHosJ4o1q7nZpBQ4qf+P00xSg976NAhbN68Gc8++yz27t2LJk2aoFevXnj55Zfl9LBZWVlYtmwZ7rrrLlx44YU4cOAAWrVqhQULFuD888+X92OWHpZwBxLDXuOFcE0Xq4QETxDj6M1IK4ilddIyYUEMqESxUxkkAH2Rqo3SGolZv2WMSAQ7UWIr2/HyFfMyT2jRiw57jZU8xlbq0K4HnIvy2hHIqSiCraD8oWIkjA3T+kEn5Zle9DaZT/w0T+7S6fOdM2eO7rq8vDy88847pnWccMIJWLRokWGZevXq4fnnn7fcPiIxSAynEk5bKNy0Sjgt+rWCWOEf1gpiBMBdpotGFEdiNaIpqHhv4BvmRWCNxBovCswb5GYm+LipxhTRzlTASjYJ3nYi26hSrQkI4mSQyEA6o0izqE0DcMf6kE5iKFF4n5GeQI7LGmGGBSGcqjPQhQJBR3+o+uFHL+EfSAx7BPemJOIbFhWsfrNKJILZMesIYqCmQzcQxLzH2qFA0DRKzMNudFNCK4r1vLxWSRUhrCURT7EWbR2iU027cYN0Ks2a3jKz+kTFLmWSsE6i0U+ja0D5OZhGhQH1xBfK/lMz2YZlEngamG7RYSJ9ITHsF5wWs6KWBqvRYbetEka5LAVyEMtiwUaEOMpifCFWI4qrWEAlWBOxLWgjojzrhLQfLcny+npFoj8yROuQ1onux22RaCUnsFVBbLV+Cb8LYzPPrVdtcHL/WhGsXcbfiNOHa0Wx6L6NZrSzAQliIhUgMZwM0imKa4TV49SKbCNBrHwsaFEQxw2008KLEgNHI8VAXLTYajRXL4uElZzD6Y5TothoFjyj6Zn9gGWfsIAgBuylWPOTMLbaFrfFGC+Cz1tup065Dm1U2Asc2g+lbCP8DonhdEIrPlM1OqzEYoQYUEciggjxI8SAsY8Y0BXFsqe4BmXE2AieYNZGhUWzSmQSdn3FvPLKz02ZqoknhEVu3sm6wRvmPxa0YADW2u+H9GqpIqjstpMXFQbgaPBEG6lNpXPqZFtT5bgJbyAx7CG2B8mkQk5gPaxEh/VEttHx62SYUP7PE8R6y+Vqa7zEutaJGnjCWA/RXMPSMhLE8TiRjzmsyVeqFMKJ3iB52yeaAcJOvyGavi3RHMp2t/UjXOuJCxFlyz+yrOT6tTnAOl0+Q4KwS4oqrDRCKQCTaZ9INcEtOkMd9IWvcrmqLOfGwBPFVZpBWVphDOiLY95gOb0osbSvVEVvYoxEsBMtzgowVRuygkwWwnbEgHYbrwWFaeo0C/mME4kUehVldKtuw7RmDvldbT1l0JthTg+pPwyGTUUx77gcO79eTRxFEA5CV2yysCt8zToau1YJq1ip1wmRb2aXMEm5xhO+MqK2CegPsuMJYwCm4libUk3PJuFUpFiv7W6gtYV4PeOd3n60M1lpH02LiB8nhIOdyTfs7AMwzloQt40PhbETEXu74s+OIE7YYmMkhHn9rlPi0+HBc05CNgnCTUgMe4CyI00kn2hG4IR4NxHEygF00npDsczbhUIUKwdiadOkAZrob+BovlsJkSixtEzCioB1ctY6J3EjYiwhHZNUtxQV1tojREbuiwg8q8sB6wJV7zG+UIYIm8LbD8LYqf7SiTYkOvOesACWSMQaYfKkz/b5SKUniAQhCF3VfkUbAbZiY7AbifXLQDor9ZrkZBYRxCoUUWKVUNbUI+9eRxRL7wEdsasjikWixGbrtGWskIwBfKI5gO2ijc5L9gjRtFV215tt50VkWLs/wJoIV23vU3+xl2m7nLDTqNDrp7X9n145v9oRpPb6tX0EoYGu1GQiiVarvmGrnqxkTaOsxKpAt9tmjV1CVaXypmQmeg2ixCKiGBCbVEMrikWjxMp1buC1KLYriHnHr40KS/9r7RGAOwPmROtNZNa4RPCDKLa7fapgSwAD/D6PZ5kQReA+odtWJ+4ZyrYnaL0IOGyTCKTx9UdYh8SwR6SMPcJPA+lE26EXRdfJPyxsjTDxEivrkQZiJSKKzaLEyRhE5+esFiJCWDtoDoi3R9glESHsBxKNTCca7U2ZPtECusdjVQCLbOcgtj4HivoSaYT/ssxnAJ481tN2VG4JXL8IZ+1NgzP6WvtYXP4LneUC65UvoFpoScJYG4nUvg8HNdkNNI/zzQZ++R0rkV6rUWEjISy/18kp7ARuCuFE07NZIYao6mWrjkSm+jXB1Grio5nNuG2N6gxGi0WOvnjwtnP76Z6I8PZLf08QDkNXtl8QsQUoo7Zupq9xKzrsduo4kwgxgPjIsHQDM8soobOeV5dIpFg7/bI2+4SZbULCi6itn6LDeoLWKKewEidmmfNTRNjpfSoFsdWosd2JPFI5OmwpEmzWv9uJHjt9H0i2nY4gkgSJ4WTDE4jSskQHIXiVZi0VUJxL7qA6hW1CGlynZ6vQrlciKorNrBNmtgkJv89Yp9dubRkRrAhhbVTYCczy0Vqqy8OBc3axK4y9mozDrfy/CafWsxLRFQkOGAnhBNGNZpuhvCd5FC0OOmRvUtZHEBIkhj2EJ8B8i5+8w1bgRYeBuIi6mY/YSPBqo8R60WFlflJpNjtAHWnliWIrUWIJPcGXqEh2QmQbCWI3hLDVukVwUgg7hZf7teMv9nMf58rnKRoNFhWxPvASE0SmQD+N/IpeNFjZQVr9BQ+4I3Ct1OnFoAuzm5KJjzgYCCGImpfCDyziJdarDzD3E0vEeYU5XmIrIlLvZYaT0WapzdqXGXpt5fmv5XUBfnkeiUYXbaXaMhCVXvqFrWLHUyxyfo3K6K2z+7kpv4+Ooefv5aVHM+uzzbzEUj1G7wURTS14dIMUDI4QhCB0dfsJr2wMovtJVe8wwPfSaT3XNW1J1DYBQChKLP0vEiXm2SYA88k6nMIPtguRaDDAF8KyXUJAcHsZwXTKHpEsgZzKEWJX2iASDRYRwHb3JYDQRCFW6k6CRQKAHKBwsj6CkKDIsB/Qi5aGNMKNR6o+LvMqQmwWsalZLxoB5r20ZfTqU/7vVJRYKuNUjl4g+UJYNBoMmEeE9bASWXRqwJydm68fI8V2s044tn8bUyMnNRrMQyQCLFKPkyjbom0XRYWJNIfEcCriROJ10c7NzUh1KJxytgm9MkC8aObVo1wGqLMb6KVh46Vgc1IU+wUj+wZvuZ4QthIVlnA7RZeIEE62yHWTRM6vlLrNago3z0QwIG6JsCKAlXU5UcYuevcKqwI55p80eAShhX7ueYwrg+jsptdJtl1CQtl2tzp1XmYO5eA6B2wTAOTBdbwBeImmYYubiEOTcUIiEfuE3aiw3XRvZoLVTAQDfCFsZR9uY/dxrB+jwqmC0Hlyoq+xMkDOaRHsQL9s2S5BE20QaQpd2X5DT6Dq5dAVxQufrhNoO1un26wnih3INmFUBoBhecA444SRIAbguCi2QtxkFw6JTyeEsFuIilJRIUwi1xlMz6NT/YmVdGduPF2T6rRwH9DNjmMHy1FhZ9LAOZtajb5zxFHIJuEXzHzDZtjJLAFYs0vodWipaKUwygUqOGudSLYJvTLa8npeYgmjmesAY7+sm/YJN6KuenYJK0LYTruSNZtZqt2UnfI+O01ShbCofUIUu9M3O70v5f2BosJEGkNimKju8OyKYq8m8fCZIDYaOCdSxkgcA+AOrjMaPAaYDyATsRCIikg3poY2qtPKsXox7bLQti6MVk/29MNuHJMTQtmwDpGUZiJYSZdmxxvsAXr9jbVKOH2xUdDCh+eBILTQTz0/YtcqIeIddsoukYwOzg2rh9Y2oTPltdYqoVqm4yPWKwNYT8EmYTY1spFtAtCf3rlK895NrNYvknfZqX15jZEg8UtKMgknvc9O4Xo02M7EF070jXp9nVv9rlm9ok8uXbTjkU2CcBPuFf6f//zHckXt2rVDOEza2ip+u+H5Hrc6W+UPCQFBDOh7hJXwchKb+Y2V+5IEsaiHWEJEFBsJYhG8EJpm9g4r9oiQyfSrjt5oXcxh6nWfkcixJLVvs9tPmAlDN0WwR8ifi6hFgiDSHO7V3rlzZwQCATAmdrMLBoP49ttvcdxxxznauIxDT+gplyc6kM5oP15N+pEoXgliQDfTBBAfLZYEMXedUvSaRIlFBLESo+mOzQbYaQUxYJwNwqtIq54ItmKPcKutTgk8kXqS+WM5pSclcGqiC5F6/dRnJiJglcem5xU28xALWs8Iwm/ofnM+/fRTNGzY0LQCxhhOOukkRxtFcBCZgENan4i/NlUEsVsYnT9FpgkjQQwIpFYzKCeVNUIrjM0yRyhFpNksdmYiUilUI5zZ8rwilXMqWyGVIsGqegTanJAnW29btwaf+V0ICxIXFdYeg0iAhQbTEWkG94ru2bMnWrVqhTp16ghVctZZZyEvL8/JdhFWRGkyvcPJws3260WIFetMU6aJplbTiRIr/xexS0hoBaKohcKusFRu54Q4tSuo3YgC+8m+xPux5Eb7nBDCwmnn3Di/bgjhVLBFhPQjtso+yBSjY3Iq6mwT8gwTbsK9ulesWGGpkmXLljnSmEwgoS+gnlXCLqlul3ATIzuKQS5iwHzQnHYbXpRYVY9FQaxEG8VVwrMcVLGApWmNlds5gVPR3lQeOJcsvLJFeH7sXkeDldsk0k8n8oNfR7jqRoXdCCxk+j2ESCkotZqH6N0EVL/a7XaevJQ/IujtLxUGTyRyoxHpqG2kXtPLNay7XicFG6+cEt7UzWbpzqR8w4bZFzS5e81eyu30ponONLwQlU4LSq+sEa4KYadtDFYFIi/NmttP35T9tEGfbTuqKvWxieQb1rNjEISPML2qGWN47bXXsGLFCuzcuROxmDrV07/+9S/XGpcu2O6ItBFao4F0hDWkc2sm+gUixAB0I7qA2g6hu95CCjYAhgPq9AQxz2NshlldXM+xSSYLpxEZOKfNJKH9PvoxUusVXghhx8W725+XVWuEXyxnBnaJOFIsKqwMLDhVH0FImKqpW265BbNmzUKvXr3QuHFjBALeDpIhEkBUMKeyXSLRR4kuC2Ll/1o7BGA+3bNeGVncBdU/TrUY5Q+2IqSVy6tigbjME7yMFtoosZPiOFMGz0koxV+ckNfc1KUfXaZ1OiksPBTCXLwY3GZXCDsZuFD2yVIfpK1bpD/j/e9GX09RYSJFMLVJPP/88/jXv/6Ft99+G/Pnz8e8efNUL8JjjDrVRDqcVLZLJAMDy4SebULPOsH9q7FM6NUlTd+sfUkYWSi060StF3qz4olYMBKxUohsJxIVFiERAWcmRq3WrSeE9SJl8jTgJi8vSMmIu1+ivEZo+2Wr/TQvg0SipLnwnTlzJjp27IjCwkIUFhaitLQUb7/9trx+xIgRCAQCqtdpp52mqmPWrFk4++yzUVhYiEAggL1798btp2XLlnH13HXXXW4fXsZj+g0qKiqi/MF+RSTi4ERUwu8RYhcGmsTBO4/aCLHUFiAuqsv9XxIkegFTpp96TdqH6ChxaSY7bYRXi4iYVNYlRYm1FgyzrBBZAWY7UhzWiHajtqc6PCHst8e7eoI3JYWwG7hpZ7NiiwD4UWG3+naHB+kFA0GHs0lY+5HctGlTTJs2Da1atQIALFiwAIMGDcLGjRvRvn17AEC/fv1UQcLs7GxVHQcPHkS/fv3Qr18/3H333br7mjRpEsaMGSO/r127tqW2EtYx/fZMnDgR999/P+bOnUvp07xCKe6sClE7k3Dw9kvEYyaIOWVERTFvOudgIARI+i5wtD6lALaUNglQTe9sJh6tRFTtCmLA3D6hHdSn3CfvfyW8Y0gFv7CoCLaSm9pL3DynwnXb/RFvtR90cxIgHkb9Oz3Jc40LL7xQ9X7y5MmYOXMm1qxZI4vhnJwcFBcX69Zx6623AgBWrlxpuK+CggLDegjnMb3bXXrppdizZw8aNWqEDh064OSTT1a9iCQj0gk70VH7vZP1ajChiDdRGlXOyTgh/S9qi5Bfisfb4UC2al04mK2/nWY/WhsFD7MyWhsG739ALHsFoG9/0FoqwgprhpkQFjlOO7gtnI2sNcplvEG5tgfqJtheX5PsfsuLqHAwHL8fUTudU1FhvSwafn6imADRaBQLFy5ERUUFSktL5eUrV65Eo0aNcOKJJ2LMmDHYuXOnrfoffPBB1K9fH507d8bkyZNRWVnpVNNlotEoXn/9dQwcONDxulMR02/qiBEjsGHDBlx11VU0gM4vmEUieNHhRAfTAf63SySKaFRdL0IM8M87EJeXGFBnlRCZlU5JEJwIMcerqjcldKJCUcp5DKijwkZTRgNiM+TxCHM8ylaiwRLJFm+iA814ItioDu21oF3mJSK2CU/b5kW/xes3ExHCdgIYegPqnKpfBL9n2+BQXl6uep+Tk4OcnBxu2c2bN6O0tBSHDx9G7dq1sXjxYrRr1w4A0L9/f1x66aVo0aIFtmzZgvvuuw/nnHMONmzYoFsfj1tuuQUnn3wy6tati7Vr1+Luu+/Gli1bMHv2bPsHqeCbb77B3Llz8eyzz2LXrl3o1auXI/WmOgHGmOFdKD8/H++88w7OOOMMr9qUNpSXl6OoqAj79r2J2gW53DK6N0ejHLfaMrzOjyfqrHTObk1p6iaJdrhWLSZm51Nbl6a8JAiUwkD1P/jLeXXE1Ql13Wb70j0EzfWp3UYSxFoBbDQRiITIbHM8W4QdESwhapFI1Aer5+s1q1c7QC5umcH+eZ+nm6Iz0XNnt23c+kW/+6J9V7JnnRM5nlBYLYB5EWJenbEIP3Kr/JGvFdZGeYZ5GSk4fuHy8oMoajoC+/btQ2Fhofnx1SDdR/fsXYLCwnzh7czrrUDdOhfFLZ8wYQImTpzI3aayshK//PIL9u7di0WLFmH27NlYtWqVLIiVbNu2DS1atMDChQtx8cUXq9atXLkSvXr1wp49e0xn+l20aBEuueQS7N69G/Xr1xc9PBUVFRV45ZVXMGfOHHzyySc49thjMWLECIwYMQLNmjWzVWe6YXrnb9asmaULl+DDi4q4GqVKJDpshl8jxIl696w+UjU7nzw/MRCXik03JRsnFVtck/U8wxqvMRA/U54ZvH3qba9NtWY2UA/Qnzpau1wvGmw1up3sqLAeIkJYK4h5nwFvuVtRYid+RFj1uxvVL16BYN+VzHSTokKY978Gw2m7E5meWtqnoBD2M1u3blVpHKMobnZ2tjyArlu3bli3bh0ee+wxPP3003FlmzRpghYtWuC7775LqH1SRorvv//eshhes2YN5syZg1deeQXRaBRDhgzB5MmT0bNnz4TalI6Y3v0ffvhh3HHHHXjqqafQsmVLD5qU/gh16G4OykjULgH4VxB7jVF0HlCfI4PcxFpBLG+uzDqhg55FAoAqI4VcH8c2oa3PdH812yjtEgDfJiEijAH3RLDUZicwFBfKcjD/3AAdkWiSdk/7v9UIf6LC2NkR/dYFMRcr/aWf+65EsuLoPHlSLzR4wmgFnwtcK0ip0uzAGMORI0e4637//Xds3boVTZo0SaR52LhxIwDYqqdHjx6oU6cOHnroIVx55ZWUlcIAU1V01VVX4eDBgzj++ONRq1YtZGVlqdb/8ccfrjWOUMDrwEVmGOJFO0kQOw/vPJmlYtOsN4rsmWIQCZYEsXIfeuJbFDNBDJinbhNJ7WYkgkWjnnYsD6KiNxFEPMI8IczLWMJ7siCyX8CaOLZ7Tgz974KC2HTfTgcQvI4OW227E4MDnTpfRufDoc/F6QGiVusaP348+vfvj2bNmmH//v1YuHAhVq5cibKyMhw4cAATJ07EkCFD0KRJE/z0008YP348GjRogMGDB8t1bN++Hdu3b8f3338PoNqDXFBQgObNm6NevXpYvXo11qxZg169eqGoqAjr1q3DuHHjMHDgQDRv3tzyMfbt2xfvvvsuJk+ejK1bt2LkyJE4/vjjLdeTCZh+m2bMmOFBMwjXIEGcPHhRY44gFhEzdkWxKkVbQCwyLIpWEEskktOYt87KVMqeWJAEsJILWO94uEJYsD4vBK5VvPiBIUyi/Zb0Hfai7zMayyASDdbiZlQ3jbNI7NixA8OGDcO2bdtQVFSEjh07oqysDL1798ahQ4ewefNmPPvss9i7dy+aNGmCXr164eWXX0ZBQYFcx1NPPYX7779ffn/WWWcBAObNm4cRI0YgJycHL7/8Mu6//34cOXIELVq0wJgxY3DHHXfYavOyZcvw66+/YsGCBZg7dy6mTp2KM888EyNHjsRll11G6XIVmA6gI+wjD6D7YzEK6xZZr0BkEJ0Igh2ppbZo8Uvn5+fHd8rzzRn5bdfLqx0UpxxEJ73XLrOyPx56A/eUKKPFWvTsEnoi2A0RJVKnntfVdDuBAXRxolckKqyDyOfhJSJWGx4J/RBUItIPJDqYzmo9dvehFcPalGqKvsTw/EUj8YPn9DJg8DJT6N1HeLNxctJNJjqAbt++Nx0fQFdUdKHl9qQyK1aswNy5c7Fo0SJkZWXhsssuw6hRo1Tp4TIVrvlOm2rEjP379zvSmLQmmbl+nUh3YzVzAuE4eo8JlctV/4OTbxj6uYgTaQuvLt700BK8qaC9FMLJQDQrhFWSLXx5KH+AWVmvvY5tnycn8/uK9H1u9X+iQltkJlI30JmWPg6v8sAThvTq1QvPPfcctm3bhmnTpuGzzz5Djx49kt0sX8AVw3Xr1rWULPqYY47Bjz/+6Fij0hY/Ri3TSRD78fwqMRp5DWNva5xnVPtCvJAAdMQvOOU4AtnopW2bFWFsNqGHmRB2QkjarSORqLBdzESln9E+meCt1+LYD4WQSaoxJ9MoWq0vUUQHzOnBE9kiY1C0LyskKoh5/V6irzRn8uTJmDBhgvy+rKwMgwYNwj333IOhQ4diw4YN+Oyzz5LYQv/AvToZY5g9e7bwyMOqqipHG5XWmGUfcAsj35mVlGvkIXYVQyFgdN41/mOlHziIkGpgHQD1pB0W5tHRy3ghsky53O6kH8kUwqb1OiyClWj9tlbEpV/Q8wzbHjTqNSIDwZz0EovUYSLAVefSbJCbYJ1ceD/0iaTz0ksvYcqUKQCqs1sMGTIEQ4cOxerVqzF27Fi88MIL6Ny5c3Ib6RO4V33z5s3xzDPPCFdSXFwcl2WCMMGpnL9WIEGcfJTnWfo8jH4giUz/rDMgT3UjrBlAx0POZ2wUgYQ1wasn3EQyGbgphhKpmxul9oEAFl1vBaPzZFWIa4/Bc7HrZJYJXn5dHlb6wESfziUy9sPLe1CynxxmID/99BPat28PAFi6dClOPPFEzJ49Gxs3bkTfvn2T3Dp/wb06f/rpJ4+bkebEdG5SdgSxX4SmW3mQ7eKntvA+H+3kG1pBLC23Wq9yuUJYB2sG06iEMSf9mgi8XMe8iUB08yQbCDqrwigRwee0CEskY4TZcqsk+7yYWTlEBbFrQtmrtGtKEumrjbYTFJWe/ejQngflcavaWpnYfmJRZ+99evflNCIvLw+HDx8GALz33nvo06cPAKB+/fo4cOBAMpvmO+inmlckmuLM7XY43Ra/iHa/wJuNTimIgfjPRTRBPq+eaARBvc+yRhQHA+rJOngpufTErFIIikaNrUY6ncTuIEHu/y5GgwH1eTKLpCZbBIsiPFmJhXJmxNXDE7CJ9FNOCWK9dpltI4qVHwFG0y5bqZuiwL7gzDPPxN13340BAwbgtddew/vvvw+gejY7moZZjT3jHmEPo6wO2k7FzUinUefs5IC6TMTo3HLSDcV57bSDU0QGfPDqkZbDeHBcOJBdPchOemmzT5i8B6DaXl5mMLDOqIyTJJotQ/u/9hjt1GWHuPR4JoPS3G5Tsj29osfNPUe8PisR4eblwDrtvjT1GmYrseo/TkQI8zAbzEi4wqOPPordu3fjjjvuwI033iinUDt06BDGjx+f5Nb5C7o6vcYsMusHnPIPexUd9st5E0FvemaR8kZovcdaPzKgHylWosw6zpvNTue9vMzETqE32QcvKm0FJwWanhA22p9Xk1z4cYCcnTbZ8Q7bPfa4faWaZcJs30Yo22U0IYZVwU5Bk5SgRYsW+OSTT+KWX3DBBUlojb+hqzQZGAniTGpDumH1ZidSXjR3J8c3rELpJ9ZsqxSiKlFqQRhL28YtkwbnIb5+rSjmiWQj3IhQGglho/2ZDSK0iq9ma3MIJy0QdvYNKD4nrYBNVKy6LYi1k2FYwekUaMkSwk6nQ0ulIArhOqSGMhkvskuQd9gYO4PmeBFlowF5IfPPwChqrIz4KiO9VtKsmW1vNUrsViRYu4wnhEVEezoIWbOBj2ZTiBvV5+T5sXKtqAQ5TxCrKrYhIr0QWAbfVdV5tRMVtiteefcSbbq2YOp/J4j0RdczfO655+Jf//qX7oa7d+/Gcccd50qj0g6R9FhWcDKi65R/OFn4pY1W0ijxPMC8hPaxCFi0CiyqyePNS3qvrE9vndH+dCbvkP7yfLNGvmA9r7DWV8z7n/eeV5coRp5p3n6DgXgPNW/fTvudlYMZAX9ZIsyO0yxqniwhLJXRTlkuhDSznPJlhpsTEwXD/P+NsHKfSUQIE0SKoyuGV6xYgcsuu0w1e4mSaDSKn3/+2bWGZQSp0Ik4ITbdsmP4RQgngka4SuJXK4L1lnOFr3adnjC2MOhOWiZhd8CcdltRESUiPEXErtl2UvtU7TWpx4q480vEWFREGqH7Q8Lkx4YTiEz3LLLMVmpLr+1ldkSqW15hOzi1D52AQUIvgqjBMJvEzJkz8dhjj2Hw4MGUky5R9ISbH76QZm3wo+j0U5vsJtfniGB5uUnnzRXFyv3w9sW7AWgjypplRlFiAEKZJIwENW8fWsyixFYjtHrb8TJqaI9Bd1uHo8QSyY4Om2WuEPmhYPYEwclzp826YVROxo7YNBJ4bkaHQxYsDcm8t9CgOSLFMBTDgwYNwurVq/HVV1+htLQUP/74o1ftSk/8JOC0uC2InYxA+Ok8OnDD0RW1AvszjRLrWXR4olhbP0cQ88ShhJ4w1v7PEz5mglhZTk88mdkhuJFKTlo53WMWSKuWaARZa5UAzKOgdnGyXtGosBPCN9k/EGTMBLETgpA3cM6sLxWNCvP2o9yHlSi4ExYSgkgipnmG27Zti7Vr16JZs2Y45ZRT8N5773nRrszCD9FhEfTy3YqK00QFsdOjib3EICpsCK+ckSDmbWMkinltNBDE2v+l93oiU7s+7i9HOIsIWbuRRZX41Wkfr41yWQOxb+X8SHAf53MEsV5Z5Tq74tbqNiIRcbciv1bbJoxdoebk5BhObuvlmBSzgXNOobV4OfEiiBqEJt0oKirC0qVLMWbMGJx//vl49NFH3W5X+uLnL6CVDtTrDsWP583pHzHK+pTRW14k16ogBvTtE2Zt0RHERgJVXqYjdlV/ORYLLabWBsEXr069/40m2RARxKIiMFFBzJs10CpKMS0iqs1+nMg4LEJEs1bYEt9SNFf5EsGOILYjEkUsEkZRYe15p9SaBCGj+20IBAJx76dNm4YuXbpg9OjR+OCDD1xvXEbhl7y/brfDTqq1TBDCovtUfjaa9yxahUAoS70eiP88tWnztOnY9NK0hcKyyNCmQjNapk2rJqW3Uv3l5CPmYXcqZBH7gp6Il9a5+Xjej3mFeWnyTBH9rnJSN7p9jm0LZAmjY3MzT7GoRULk3Ot9v43qp/SYRAag+81ijHGX/+lPf0Lr1q1x0UUXudWm9MdKDt9k4EdB7CfcEvPK86IVvdplOsQJYml7M0EsgmIbpbAwmjRDKXCCCMXNSBd/APqrnBKLZtYGI8+z6thqjoe3zg5xk5kgfkY/Hm6LaCGhLjJA2IE+hXeNiZTXew+An6+bR0jxw5C7M4XI5G2byGQVVr6r2idMgP5EPHbwKp8yQXiI7rdhxYoVqFevHndd586dsWHDBixdutS1hmUkVkRoqgvKVG+/lxhdE5xrhiuIzRCJDkvrgLgZ7AB9UayNEhtFf+MEp4tCj+dzNlovUp/TgthLbEWCAft++ASw0kZTAWwVMzGo17fZEZG87z5PGJtZItIBp9Oh0f2HUKB7l+3Zs6fhhvXr18fVV1/teIMyBr3IXKbYJYDUFMROtVdx7IFQ1lHPr1vnxGp0WCuIpbYp1wOWRbHSEgHAcEY7u6LQKA0Yd7kFEWwmeJ0WxKLR4UT3x3uvjf6bikqRTCjaa8ilJ2RxbXVaHIpEic3Oh5Fo1itvBTeFsZ6wN/o801GgE2mDD1QX4Vv8Iswz7bGcA4JY2C5htJ7nLZbapywDCIviuHVKoacYpmBVACoHnImIaF79dsS3MtKtrcc3KcDcwooQ5uGgEBaO/nrZp1n9HvPSm/GWm5FJfSVBOIQPlA5hGy8iqxb8qrZIpeiwnXYK3phU0WHA2H+oxO0bOy96l4AoNnoUbzcCqo02WyVROwRPECvrTUQUJ2rdcArDaL1e5hIXx0XongcRgW7kY7babqsR4kR/2Ls91kTvxwKvnxY5Fgd/fLBoJD5rToL1EYQEieFk4nerhBI32+SVINbuw2fnOE4QA8bnxqv2c4QuAFui2Fb0lTNYT/leW6fVaYRF1mnr5AligJ8Szap1QtfO4ZIQ1ovkG2I0mYO0zmFBbFkAG4kdo4wKfkAbFRZpo+jAOSdRCmI/DwonCBPo6vUrop20l5FVt6PETiM6m5vVG40oTt2I3Drfeo9l9TD68abd3kAUA3zBaip2FKndpDqMslqIIFqWJ2i5y3REsWiUmJfVQigjggWseKq12TQA6AthB653s6cHuvvTE8G8721QI+CcEMRmqdGMftDqrRMVl7zcwl7i52mhCUKQFFE1hK9wQxQ7KerdnAxDFD8+gnPi8zKKAvEeP+ukrRKK8hmtMxHGbiCaYxlA3CBBZXkRMcoTwk6nlhMVxQmJYNFBmgb7526nhBcFNfrOmonfZKa+1LMopAOxNPfQEylNmnzLUhgnOt5k+W69fMQo6rWzcx6MjsPj88q1StisxxCrUWEtZrlZjaLFIhidd21kD/b8uaLikhcR1i43inrbmVBEz6Nr1RJihLAdgyeC7f7YS6TPMErhZhYlFoleJtKXuZWtQuRpDSBukRC51/jVOsIizvbHzIcBCyJp+PCKJ2T82ikp8ZN1IpGO0slONtWiwol+dkbCWHTSBSPvqbZebU5kxXo3osN6QtfycgsTaIhGhF2Lhtvx4YrOeCi6Tm9/RpFpPSGoFcXSNaS3fzsD6US/99qyIt8/kbY42e+kwr2HIByErvZ0IdlZGZwQxYkcg198aQ7ckBKNDluOCjuJqDAW2d6oXu31JjqLmNE+tBg8wteLFmvXmfmktWW4EWGRgWCJYifqqodVIaXdt5GwtBIN1tuXVS+u15YJbVTYDwPT/NK/EoRL+OBbRhh20Kn2Cz3V2ptmWJ55zs3PSuQxrUhqJiDebiEyIUii8ERaDUZ2Bb11ZgPUVO9FBoHx2mgXkWir3nqA/8PHymdmVLeV9iVyPvT6Li+f9FgRvkYWCbO63Ro0zEOZXSQRaAY6wkVItaQCfswsYYSfrBNe4pQn1ia6QthPn4Oo+NVbrmOPcOW65z3uV2IyIFAkK0J8BDjCF3dmUfZExY3IoDQjeO3kfWZmk7iItNdpIWxFqHtFIh5+v9i0/NIOghDAR3dJwhH8IogB724sfjneJCIcEfbikavoRCFODHZ081G2UURWuW8lIhkzlJj5Xc3Okd0fA07aIsw+DwOPt/A+tO3Sbue08ErGEy7eoDkjrzVQ3U6jnM9W9uskJISJFIPEsF8w87Klsv1AtO2pLGqT2Plbtka4gZXPzo53WE88OW0X4GEm3BKxaGgFsKjAc+K4BQSwnndddc2J5Jm2+yPGqmXCLrz+1070nYfI9c47D3by9+qdCz2LhB/8yAThA4Je7Wjq1Kk45ZRTUFBQgEaNGuGiiy7CN998oyrDGMPEiRNRUlKCvLw8nH322fjyyy9VZY4cOYKbbroJDRo0QH5+PgYOHIhff/1VVWbPnj0YNmwYioqKUFRUhGHDhv1/e+ceZUdV5/vvefXpV/qQEEgTE0g0TCQJQZIINHovICGAEHQYRAzTA3dcUUYIBHAU4lwD3BUCiiDKEBG4wpI4YWmIMih9CSNEGZIQCBkDKBe54Z2HSNId8ug+j7p/nFPVVfvsvWvvql3n1Onz+6x1Vvep2rX3rn3q8a1f/fbvhz179njKvPXWW5g/fz46OjowduxYXHnllRgaGvKU2bp1K0455RS0tbXhIx/5CG666SZYlmVuUHRRFRxxFM2NLHRNU8ux8HvVbwLRTTnMR1Yf2zb7kfXT78PDr4+q9bHr8geH67KXuet318G2q7rPfuPEqxNlEewIYU47nvVsG7yxE9SjdRyI6g+KrK+i8jpjzmvDbseNri8vzyUiyL2h0YRw2GuKynWGaFpqJobXrVuHyy+/HBs2bMDatWtRKBQwb9487Nu3zynzne98B7fffjvuuusubNq0Cd3d3TjjjDOwd+9ep8zixYuxZs0arFq1Cs888ww+/PBDnHvuuSgWhyewLFiwAFu2bEFfXx/6+vqwZcsW9Pb2OuuLxSLOOecc7Nu3D8888wxWrVqF1atX49prr3XKDAwM4IwzzsD48eOxadMm/PCHP8Rtt92G22+/PeKRMkRcBbGfT2gj0shWYd2bO297N7W4yfjdzHSEruq2MqGnIuB4ota9jrdMpQ7dfrN9dZWxBa5VzPsL+gqBRDFvn0T4jX1Y/B7kVPsW9JjTnTDHE7/u4yJsGwTRpNRMDPf19eHSSy/F9OnTcdxxx+EnP/kJ3nrrLbzwwgsAylbh73//+/jWt76F888/HzNmzMCDDz6I/fv342c/+xkAoL+/H/fffz++973vYe7cuTj++OPx0EMPYevWrXjyyScBAH/84x/R19eH++67Dz09Pejp6cG9996Lxx57zLFEP/HEE3jllVfw0EMP4fjjj8fcuXPxve99D/feey8GBgYAACtXrsTBgwfxwAMPYMaMGTj//POxZMkS3H777dFZh1Uu7o0sGm2CChUiWnRu6CpWOhWxoPthicJaFNYKLKtHJGxdy9yi1CNQeeMeZD9K/Pa49ctEsQupKBb1V2dMRdsGQcXizGvT9EOeLPGNn8uc3TeeEBbtSyNbhWPAihUrMHPmTHR1daGrqws9PT14/PHHuWW/+tWvIpFI4Pvf/75n+amnnopEIuH5XHTRRZ4yKm+2CfPUTAyz9Pf3AwDGjBkDANi2bRt27NiBefPmOWWy2SxOOeUUPPvsswCAF154Afl83lNm/PjxmDFjhlNm/fr1yOVyOPHEE50yJ510EnK5nKfMjBkzMH78eKfMmWeeicHBQUecr1+/Hqeccgqy2aynzHvvvYc33nhDb2dTabMXn2YUj3F9pRXXfsnQfXWoKlLY8lEQhcBWEf9hhTJPALtEsNAq6+qP0HWB12efPviKbAUBzCtTVS+vPypjqnJcyvbZD5XjXLRdEGGss51qgg1WCKvuey2EcCQTWouGz3W97I0TJkzALbfcgueffx7PP/88PvOZz+Bzn/tclSvnL3/5S2zcuNGjL9wsXLgQ27dvdz733HOPZ73fm20iGuryeGhZFq655hp8+tOfxowZMwAAO3bsAACMGzfOU3bcuHF48803nTItLS0YPXp0VRl7+x07duDwww+vavPwww/3lGHbGT16NFpaWjxlJk2aVNWOvW7y5MlVbQwODmJwcND5bluZHewLhKnXe36uEGFm7TcScYqgYQiVxBuRTZxTed3Ks65xMJFaWkRk+69zLLlTQwes3yNI/con054xdcbAp8/C34EVwH7YZdzXHt4yTpvSvuq4dan2UzWVMSBPKQ74xx/2i/rgh6h+9p7BexDlLVfZf0KL+fPne74vW7YMK1aswIYNGzB9+nQAwLvvvosrrrgC/+f//B+cc8453Hra29vR3d3NXWe/2d6wYYNj0Lv33nvR09ODV199FVOnTjW4R4SbupwtV1xxBf7whz/gmWeeqVqXSCQ83y3LqlrGwpbhlTdRxnaPEPVn+fLluPHGG6V9BSAXFUTjMFJ+O5m48IuUIBJ2NaCWbbGoilARnr6rCFL2wbbyXXsMRFZkHjKxxxNbbD2q4ljWhzDoCEL22NZNK27qWuBuV5SJz7YKi4Qwj7DZ7Oy2okpRXUdYo1U2m/W8EeZRLBbx85//HPv27UNPTw8AoFQqobe3F//8z//siGMeK1euxEMPPYRx48bh7LPPxtKlSzFq1CgA/m+2SQxHR83F8KJFi/Doo4/id7/7HSZMmOAst5+UduzYgSOOOMJZvmvXLsci293djaGhIezevdtjHd61axdOPvlkp8zOnTur2v3LX/7iqWfjxo2e9bt370Y+n/eUsa3E7naAauu1zfXXX49rrrnG+T4wMICJEyfKhiOctVj1Yt/oltMGuKBGgcw6bGTinKFyUkHWyMcdj6AilIeOVZa1voYZV962fucYTwwJLMLSdlzlVccw1LEe1ELq9yAAmLO8qtZjC2DOccN9WwDIxSvPus/CHhdua3WtMe23XamLvUcvXboUN9xwA3eTrVu3oqenBwcPHkRnZyfWrFmDadOmAQBuvfVWpNNpXHnllcImL774YkyePBnd3d146aWXcP311+O//uu/sHbtWgBqb7aJaKjZUW1ZFhYtWoQ1a9bg6aefrnIzsA+QtWvX4vjjjwcADA0NYd26dbj11lsBALNnz0Ymk8HatWtx4YUXAgC2b9+Ol156Cd/5zncAAD09Pejv78dzzz2HE044AQCwceNG9Pf3O4K5p6cHy5Ytw/bt2x3h/cQTTyCbzWL27NlOmSVLlmBoaAgtLS1OmfHjx1e5T9ioPFEKoQkNjUWNBDpPECuLAw2RIhMmvPa45U0LXx2LV5TtqogGUXm/7USvvVlEyTXCxO8OcgzzxJBun/ys3wy6x6ZyeyJE4Qh1rcXuMiq/k25kCY4QNoro+NARxA1gHX777bfR1dXlfJfdw6dOnYotW7Zgz549WL16NS655BKsW7cOBw4cwJ133onNmzdL32QvXLjQ+X/GjBk4+uijMWfOHGzevBmzZs0CoPbWmjBPzRTY5Zdfjp/97Gf41a9+hVGjRjlPOblcDm1tbUgkEli8eDFuvvlmHH300Tj66KNx8803o729HQsWLHDKfvnLX8a1116LQw89FGPGjMHXv/51HHvssZg7dy4A4JhjjsFZZ52FhQsXOo7pX/nKV3Duuec6rxjmzZuHadOmobe3F9/97nfxwQcf4Otf/zoWLlzonBQLFizAjTfeiEsvvRRLlizBa6+9hptvvhnf/va343VQjnTrsI7PXa32r8YX90CWMYMiMTLLr4nfqxa/ua4PsaqV10bleBJZKnX6JmvHrx6dhBlBxaequ44LoUU0DCKRK9tvld+83j689TK4xFwQ29EhVGhpacGUKVMAAHPmzMGmTZtw55134phjjsGuXbtw5JFHOmWLxSKuvfZafP/73xdOup81axYymQxee+01zJo1S+nNNhENNTs7VqxYAaAcWsTNT37yE1x66aUAgG984xs4cOAAvva1r2H37t048cQT8cQTTzj+NABwxx13IJ1O48ILL8SBAwdw+umn44EHHkAqNZz6dOXKlbjyyiudqBPnnXce7rrrLmd9KpXCr3/9a3zta1/Dpz71KbS1tWHBggW47bbbnDK5XA5r167F5Zdfjjlz5mD06NG45pprPG4QRMToXkCbZcJgvZCNq+kxj/HNk0uQtMiiffSznJqagBukvMiHPIzQUplQp2KFjQLZfuvus0wQB8k2hzpYhd3rdf2HRyCWZWFwcBC9vb2OQc7mzDPPRG9vL/7H//gfwu1ffvll5PN55w21ypttIhoSVl1Tqo1sBgYGkMvl0P/+L9DV1R5dQzo+Z41CPW74KpgSaVH+FgFenWu5PZjse8hIDEaEUdj9qWcfTJz7fr8BT8hEJUhFoonXHmdZEOuwsl++bJ9lk6JF8YRTaf+Jbe5Jcu6Jc24XCUZkO/1OukJ6uv/n7U+QtxWaAndgYD9yYy9Af3+/siW2vF35Prrnv25E16hWrTal9e49iEOOW6rcnyVLluDss8/GxIkTsXfvXqxatQq33HIL+vr6cMYZZ1SVnzRpEhYvXozFixcDAF5//XWsXLkSn/3sZzF27Fi88soruPbaa9HW1oZNmzY5Br2zzz4b7733nufN9lFHHYV///d/N7bvRDUj83EtbiRT/mVqQaO4SpgSnKb3t9GslRqohHIDoDf5ir1Zqo6fzm9WrweeoK4KYfoR5PW8Sr065VkLuGlR7OcOwgq4CK3EVjHPj3ihG01C05Jcssrxb5OJlJqLgWqITWGDAYRwE7Jz50709vZi+/btyOVymDlzplAI82hpacF//Md/4M4778SHH36IiRMn4pxzzsHSpUu13mwT0UBiuFZEJUTr7YdmGtMXYlPjHtd+8eoN2L6vINa9aZoSvzpj7yc4TP2OqvXoTooKul7WTtjfibV66kSUYNGZgCgS4TqCWGESqey4rxLEKm1GjYpLTpiJlQSX+++/X6s86yc8ceJErFu3zne7MWPG4KGHHtJqiwjPCFNSMadRLLP1giwS4dC9QXN8rD3CQHa8RunGEqbuoBESTGMqwY5pq7tuWXd5dp9YURw0ioSoHOunKxLEIvxEsmJ/hIJY1E4U/s0ClwZWyIeeRMhLphNkH6K41xWLQEEva5xvfQRRgcRwram3IK53+zziLoKj6p+p3yLsDZfph7IgDkIQAVzr4yPMDTdded3J67OqlVg3uoRfGyr1yfaZ3Se3KA4zMcpvjFhRLBLEBgSb31sRriBm+ylbZ2cqNDmRrNJ/Y1E0RFklVa3/7Hqa0Ew0ECSGiZFLHN0jWMKITZOvalX64S6jEy4pyOStWglgk5YmUX0ygQz4W5FFfUxz5iLojJvqvtvl3Psh8l8Oe0z6CUYfC7FUtALVx21YC3EQfIR8MiGZY8K6rNj959XHe3ugmjbab0xkk/FY4miAIQgGEsP1gC4Ow0QlehpBCNvovF4OIzb8RJfIUhbkeA3iB6w63m4RxxOEftuEKaOD3Te//vL2O0h//cYi7P4VitWCWMfaqXoc8fySVc4R1WgPAkGsMolUVRBzJ9/xknn4Wdn9/MSLTL1+48RrpxbXuWQ6PhPJCYIDieF6UU9BPNLFeCMJYRVMCGB2mcL+ccVBkKQSbnREcNQCVmfbgsbxkE5X168qjHl9UrUMRzUW7nbcgjhKZILYhLtBiEQQqrF97XIeUSzK4JfU7I99HooecINOqAxy7azVZMKCYZ9h0w+/RENDYpioH6YF50gW+EGoR6B7HZ/goBbRIPjVqyN2fdty1cUKY1ZYSuvRXK8jUrUeBJi+24I4iHVYB5V6DUd2UA4xGBadqBgq1zUT4x82OgVBNDB0hNeTkW6hrRUUS7iaRhPCYYWhLkHFr04/0qlqYSwTsFyrsE8/067fuZksXRILq+OiwFqTgbqcF1LXCt1Mb0H8nU1G+gBGbDY5ormho7pZqbcQj2Mmt0YXwrrpUaPe37DW4FoL4Kgm0zkW1Ur7fgJWR6jzrNBR4XaREFmHVeL+BpmECVTXzWuTJ4jtdu1tfPoVyDrMuw7xQq4lmbHyq9PPfUIW1s2POESy0aFQNPwGp4keHglfSAw3OvUOAF9PTAnhRhfBQP2tNX4JOVRFsKkblMpN08SEMj/SqWo/YdUbumr9Tnmm3qjFcZyQCWJ2vel2VfrELhPFaga863Qnz/qJ4zj7BBNEHaGjvN7QRLr60uhCOKgIVthvrnVMNRqA7HsYERzWMhREAJuamMYK46Bti1wrqibUccYqrEAOax0Oe70RWYfddbvCjXkmsZnsl2Z5oauELKSZqL9BxGmzX+cJwgcSw0TtiYMAjUMfwhCFJVh0w+QtLxb464uC/wF9EWzqlai0jfCWaMsnk1UixYkkEQaRAFYJOcdz1QjSvoogtok6+QJrZWXb4blNBMXEPkjqqHoAFYnoEGnXQ1HvN1AEERF0ZI8EwrwCbGTrcJC+N7oIBsLfkExahYMKYaGfsIHfp0aT8fxEsG45VRxxDQQXxoVC9ILYJkjWQXcZ3kQ5gB+314bjk2u5/pfFChb6C4e8Toqsw057gvqtyvU9AVQ/WJhIcuJGN5lGLaHQakSEkBiOA40sSOuNztiREBaPgWsMPWJAZhVWEcJRi2DdLGoG4IpbkxN7RFTEq7t9rjAWxR82HR9YJIhZgqaI9kN03itMOnMf426BGkgIa/j1ut02qkQwz2fYvS1QFsScddqMhGshQRiExPBIoZkn0qlg8uJvKiNcEILGdA0SaJ/1X3TXY0oIRz3RTbKtEYttGBEcdIKcy6Jr74OytZitz4QPsd2O+3+3oAt77uke8+z5yfoyM1bVUHGFAxoxpEJY5kYBRhAHue4H/T3IRYIYwdDRTdTWMl0Pi0SYNnWyrdVKGOuIA799Z18ly9wj/EKliYSwrgiOOMpDZCLY9OQ8XiQKd9scUQz4WIt54d5UBbEsWoWfKHYT9GEuyHaicGZJDSHp5x4UFpEQNuEKEaafcTOukJsEESExO9qbGBOCtFl9h6MgyFjU0jrvJw40RTAgcI+QCQGeEPazBkclgmshgIFgIlgl+x1PkKoIWRsVa7HIShzUQswTxyJR7Cbs2w1REgoW94Q6tyB243fOhhHCOokubCHM8+Hl+D4Htg6bsgrHTSgTREjoiCZGNrpB/RsJ9809pMXdVwiz7hF+QlhVBAcVwIrbKYlgk/7KQdM+i5azAtPdhq4LRRhBrOTOwikjEsVhLMaqxzobr5fnMgHwLbA6kVWC4D7HWIsw62KiMi6imMZu/MaN3CCIJoaO/pFGnK3DcZ600WhC2EZ3TINYhHl+wuw6XSFsIt6uBF8RbNrXN0iIONE2Ir9enpjllQfEolgmrLUy3/n03e43b5KdCDYaRK3RcYni4b7uqlibdcWqHybfTMXQ8muVikYjs1glcpMghonfEU+EJ4yvWSO6S4Tts2n/vxjeSHxFsKCMdMKcSlY5VmBFGP0hMitwkHTRYdxBZBPduAJYIoqBqigUHlFsb6cScULlN+FZm1lB7NcOUBthrHOumrYI26hkapQhshzr9peswkSTQ2dAnDAtRIMKsyiC5Otc5NkLc5QW5SiEf5wEsSh2qUwIq0yY402WCyuEoxLAvL74lg+QqMOvDZ3984v8oCqK3f3iiWJ2uzAWe5G1mRXEdhnVUG9hhLEJkad7jdA993m+wkEJE9PZhu0/CWWiCaCjfKQT1m3CrqMWiC66JsIz8Yhyv+opiHUyXLFleUJYJo5VhGEEGeCMi+AgQj1M3UouEoIJc6qimK2TsRZXRaBQyWAn67tMjIsEsV9bLEF9jU2mMOZZY4MIYBl2/bUQoiR2CYLEcFMQNkSPysSSsPhdkKMSxFGiMlZhBbPi7+GbUU4UNziIn7CKEI7SCsz2wbesplg3JbBF2/iJQ5koBsRJN9zrdYRxUHj7IlrGQ8dyzLt+hBF5OhZWia+wJ7mGSl08kunyvkTxcN1IUSIKBaBgMHFMLRLlEA1DjI98wjgm4lYGsRabmsVsUhDHxS9adVJOgP4qZ9NSEcKqfsIRJNGIjSuEqX3T9hlWc3+Q1i9L1SwQxp7QbDpwBa9kIqCsHjc6FuSUWKB6UInCAKhdd1z1uLPaSQUx25a737zrYpBrd5hrJlmNiSaBjvRmxJQoNiEo6WIrR2OMpZm0VOKl+glhNypiMUjosQqRWYFV+qEqhE0n2WDLqVhV2b6JwqOptOsWxoy12A+hcBb2OYCLRJBtWIJMNvNJ7cziFsJcVM5pu58q9QeJ22xKaBPECIGO/rhRy2gOYf1aw/aVhHAofNPI6sRKVRHCWj7DwYRw5CJYsR++7dQre5WfIFQZE5XMcSoC24VVLPpbknmxjP3GUSSkwwhiVUQiWFNIcs9TlWQhdp1hrpOqPtaNIIQLRbPnXb3OYSKWNMAZQERKvSZ6kRDWwlf4AvIHE1UfSBUhHIFFVDt+aFRCOIoYyUGRiT7VyW7cbZl98sscpyiMPYJYZsXWyXYn2s+ggljViqrjFiFwj6iCdw6yBgWREDZ1jda57tI1mmgi6Ggn4p2og6URJ9IpoiR43QRNEsAbP5nLhEgIq06ak4jH2IjguGIq/i+LSmIPke+vpx6F6wYvTJy0bxJXD9E4BE3xLKorADwhrPz2RjYBkCO6q1DZf9H6oJE2GsGaTBCK0NFM1J4oLA4NlCxEW/TahMmQJbrBB50sFJJYiuCoBXOY+sNYglXqc0/GE8UdVrD0Cq3DOv6+Mku0n1gPQy0esnUjzDBC2BHcPCEapP+1FLSU8Y2IMSSGiTL0pB8pgQRwFOJXtp0syQZg3CqsRBwtwazAqzU6MYpFiFwOdNM/s9vw+hrGvUEURi6MIC66rLEq54n7uiiw1mpNmlOZkMcxGPi2ISKIRTiOLhKFkmGf4ZK5uoiGJ4ZHPDHicN904niRjRCjrg9Bs0sFnS0f1k9YQGRpk4HaClRZlARR+Sj7p2sFVxXEgFr6Z1eGO89kOpGolqEjuG1kqYl1LalsDO6oDQUKgjuy9liiuEY3yFs7onlpLmVCyIn6ol8PIVxHH+PA0R5k68MKX5U6/NarxhXmiB5fIdwIIlhG1ILXJKqCmFeWu72GIFbpG6Dm28yDFcYq1zbRuSPazqc+5/y36xVNoHNjWgjrRo5oMmMFQdjQkU/Uhia7yCoH2VctozLpjYfqg4ConEGfW6kQjqsITqf1+1ZHNworL28zkfETtD6CGJC7PfgJYhGyqBkiQSwqo4uu1VJBoAZyi1KNLRyVwUL3Gq1qPDFlFS4UgELSTF12fQRRobkUCjEyEFl7YzKJzjf1MQ8VAWxqspvqNiGSZrDljAvhRrC+8qzEISzHfkJXpw6PKPYTxIBcFPsIYkAhm50s25wscQe73G0R5lmHwxDkgV5mFebVy5k8Z9RXWCRem8xYQRAsdAbUgkaaRdssE+kiEs7KQlh18pss5JnftkHQycwmmzin1NYIFcGGMSGCeXUqC2LA3yLrU979MKSU5jnsxDsbnZBr7nPHbxtJbGEtqzBPCMviFodNklRrYmCcIAgVDL5zIKSUCt4PMaKwivnqmyDvtxb9/sXC8Ictx65zf2c/KtiZnHgf2Tae7+q+wlyrsK4QNp19SgedJBFV23IEXC2ypwXBLxJIoVD9u4kijNjlOVjFYtVHqT+yet1l2fOAd374nTuic4kjKN3nveca4GcV1hXCUZBKk1VYkRUrVmDmzJno6upCV1cXenp68Pjjjzvrb7jhBnz84x9HR0cHRo8ejblz52Ljxo2eOnbs2IHe3l50d3ejo6MDs2bNwi9+8QtPmUmTJiGRSHg+1113XU32sZmhs6BeuC+QSYOv8ohqIp5Ep2QNDuIHLEuFXMssaCbKRNl+3Nsx7C7hS74EZPztHFXWYR6ixBuqoc54bha8vogsx75JQATrRRZh1esAu62PYOQ+CKvWHYXFVqWNqEWw6XtZ0fADsWas8wkTJuCWW27BlClTAAAPPvggPve5z+HFF1/E9OnT8Td/8ze466678NGPfhQHDhzAHXfcgXnz5uHPf/4zDjvsMABAb28v+vv78eijj2Ls2LH42c9+hi9+8Yt4/vnncfzxxztt3XTTTVi4cKHzvbOz08AOEzJIDMeBRhbAYfvOXqRN1FfD8dQWwqayv8mWyfCzSiqJX/XxDWUVjpNLRJCJdJ7tBYIYMLef+VL1/wqi2INOKDVAnLlOVN69jYCqiXfcfnLcNlhMhHMMmp2N979f/WF9hHUwJYRFbnWNfE8TMH/+fM/3ZcuWYcWKFdiwYQOmT5+OBQsWeNbffvvtuP/++/GHP/wBp59+OgBg/fr1WLFiBU444QQAwL/8y7/gjjvuwObNmz1ieNSoUeju7o54jwg35CZBVFOrCxnvIppMq92A6vhqz3aJ8BXCPFcHdh0rlFlXCJlLQyA/3ZD1yV6T874HoZYuESbaSqf5n6pyAoHn84Dia70FvEJYZbkfqg9eQRKu2O4Wph6KZK4agNytKIibkYwohLB9TQxqQa61r3CDCeGBgQHPZ3Bw0HebYrGIVatWYd++fejp6alaPzQ0hB//+MfI5XI47rjjnOWf/vSn8fDDD+ODDz5AqVTCqlWrMDg4iFNPPdWz/a233opDDz0Un/jEJ7Bs2TIMDQ2F3k9CDlmGieCEueg16CQ95ZBpImuw34Q4niVYNa6vH2F8XwO0G8gqHLUIDlO/7vjxrMki94gwbhNBBS98XCVEbgmAevxfXnlPfXyLsdA6LAr95meZNoFOnGKTQtg0pg0JbutwlELY9ENypa6JEyd6Fi9duhQ33HADd5OtW7eip6cHBw8eRGdnJ9asWYNp06Y56x977DFcdNFF2L9/P4444gisXbsWY8eOddY//PDD+OIXv4hDDz0U6XQa7e3tWLNmDT72sY85Za666irMmjULo0ePxnPPPYfrr78e27Ztw3333Wdu34kqGlOREI2NygU+jLtDLSNFAGIhrCqCRf7AIhHsd0NQER4m0LUK11IIx8XFolaCWERY32GRsJRFj1AV0aYRCXEZQftjC0CVSDGyiBZRi91aGR0azBrs5u2330ZXV5fzPZvNCstOnToVW7ZswZ49e7B69WpccsklWLdunSOITzvtNGzZsgXvv/8+7r33Xlx44YXYuHEjDj/8cABlt4jdu3fjySefxNixY/HLX/4SX/jCF/D73/8exx57LADg6quvdtqbOXMmRo8ejQsuuMCxFhPRkLAsy6p3J0YqAwMDyOVy6H//F+jqaq93d/QImq0pbL26bYhebaqEJFOoXyuLnJ81WHVCHE8EmxBJJoWIghCusgxrZqsL1Z+44RcBwWe5NLyayDKs6S+s5I7BHkNV39PidbLteNuDmUyXFv3PXFN0j3N3eXd0BTZFcpAEEzy/ZR0/4SBiViaG6+heNjCwH7mxF6C/v98jPv23K99Hd6/8e3S1t5jrz/4hjL74Ie3+uJk7dy4+9rGP4Z577uGuP/roo/GP//iPuP766/H6669jypQpeOmllzB9+nRPHVOmTMGPfvQjbh3vvvsuJkyYgA0bNuDEE08M1E/CH7IME/o0sBVAB6kQ1rEGq06I8xPBOoJPlKRApZwMxT74pl02QdwFsJuQFuJEJiUWxJmkVxDrTpqrwE3IwaIT/9dvHeAfqUIFUaY8Xv1B8BOQQZPhyIRuI7hH1BgrXzQac9tIEhvLkvoYu9fv378fAJBMes/PVCqFUkns6vTiiy8CAI444oiw3SUkNPbZQURHFMk3GshP2LgQFolgFVcI1/8ykSlNfesnSniovrYPG4FCR9Q2kgBm0RHEugQUwDx8RbFMEKukcJbVxfbF7TvsF8KNJ6JFY8vrf5gMczZ+Itgv1bKgjLDNWgvqJmbJkiU4++yzMXHiROzduxerVq3C008/jb6+Puzbtw/Lli3DeeedhyOOOAJ//etfcffdd+Odd97BF77wBQDAxz/+cUyZMgVf/epXcdttt+HQQw/FL3/5S6xduxaPPfYYgHK0iQ0bNuC0005DLpfDpk2bcPXVV+O8887DkUceWc/dH/HQ2ULoETercAQxhEMJYRURrOoLXPmuamVlywUSx5z2dctEZhVuZCFsoyqIo4xDrIhUFOsIYl55aV2K1mHedjY61mVev2whyUvnLPIV1rkOhQ3Z5l7GunPElQhjvdeCnTt3ore3F9u3b0cul8PMmTPR19eHM844AwcPHsSf/vQnPPjgg3j//fdx6KGH4pOf/CR+//vfOy4RmUwGv/nNb3Dddddh/vz5+PDDDzFlyhQ8+OCD+OxnPwug7K/88MMP48Ybb8Tg4CCOOuooLFy4EN/4xjfquetNAfkMR0hD+wwD5mcI694AVNvVjd0rqVtZCPP8g0VCWEcEi6zAKpPfJALAN25rkNfJArGmFUXClOW50VDxIdb1HY4QoZVY5kMcJryca9uqY9fPb1mEyLfY/ptyCWCeGBahIvJYP2STmeZEYjhG/sIAMLB7ALlxFwX2Gf7ggS8Z9xkec+m/hfIZJkYOMX6MJOqOSStwA7yyCxw2TRQrmBXBQdwgRKKJ6xMstowJM3zx+gPIBUYtxamptoL4ouqg64YSNolHjRFaiX3cHJSRWId9k3CoRqqQHQMpgfiVRYKw17txW4/ZuutJvftgwiqcL4UKI8itjyAqxOAsJQgONXbHCBw2TWYNZkVwUAGsmgBB8ZWxrzAW1a9ATSbO+SG0QrPuCYYuf6aidLCuEboT6eJAGHeJIG2wy92otCNzkZCh+KZJu956w+5XvUU0QdQIOtKJxkfXb5i5cSkJYVW3CLc1mBXBqi4QKiG3/MSALHWuC7sfvm4UYQhqAdUV5LrtmLAW+wkume9vQOuwbZ1Viv5QwZSA5sYk1hW4AQRxlXVYxRosa4cNp+b+KyOICI4DfhZuu0xUbRNEzCExTBAsqm4RftZgRgQLBbCq5Ve2XjVTmFM+gLXYB22rsEkXiDDbRuk+AVRnRvOsYwSxxsQ5pbjATNmaW5V1xjfIRDo/Ya0qiG1E1tuAccpVcD+M2/7DsrkLoX2MeYgEq4qIrhFWwYJl0LXBKtB0KWKYeBzlBFEnqm46QYSwyBrMimCFyBFcVF7vC+O2ipabtRYbd49QFcr19LsNktxB9wHAcFQJE24W0ox1qpiwDrvrsgnqghHELzgCfJP8VMoYEcS1sNiSVZhoEEgME2YwaUEwfbMRpEVWFsJ+bhECa3CVCJYl0NARdTJxHIEoBuTCuG5+wo0khN3bVVn1fdwlYiiIq5DFAFbZRrSMsQ6Hmkxn18NzkVBFFqWGV5eo/pBx3AMJYvc1mkQqQXggMUyEZyRcWHX8g1m3CMYaLBTBvKgSPPwSYVSV5whamSgW1SF5JR2LiXFuGlEI69QvcoPxmzgpKsMQVhAbsQ4DgS3EgKY7DyuE3Uk2eOmXWcLGFZbVybYrMgaI+qcjrIP0OaihYyTcF4imgcQwEQ421XBM/MscVKzCPCHMbifyD7atwW6XCI6rhK+PsCoyy5fq7P0AVmKiggkhHMbSqxshQdJOzSJT+Pn+yhJ4SLb3tRKL0P0NDWSZ06rfr1zSDjlnyF1ChRhc2618EVbafKZFggBIDBNxowazs32FsKg/PP9gnjXYL6wa77sMWeQInqBVDWcV0EpsjBhkWQudqSxwu2wYteAT6XzbAeo/zhEdU75WYk8SkAARJHSFcC0I6WJRE+IwTgShQczPKCLWxPWC5ydqectErhF+/sG2EGajR8jCqvlYJLihq2x0okZE6DYROXEQym6ido0A+IIYMCeKOfUYtQ77+Q3LjqmA1mEl3Nvp+AvrCGEVf2E/EetnCAhicTYpmmNgHSaIqKAjm4gPUU6cq+BYhYMKYZFbhMB/GBCIXztEUKb6tZ+7vFAYq4paFpVJS87yGLtNhM3gFsd9EqEqxP1Es2FB7Os3LBLEgDgiiglBzKZZZv/nCTo/v13VB38/8ekWqLrXO5m4tddFLVjrGa84XwLSlIGOiIYGuiMQI5oo3SMqdXPDFqn4CHOEcJUIBqqFsi0wZBdd3jqXQA6VBjdMjNeg9egiTUrhYx0OKoh19yUqq3CQyBJ+9dlojqkxC7GfoHWWB3zQ0vUfZq3Cfu4RQSbKhY1I4dcWr/6K+PX1G47CpYIsxMQIhI5oYmQhCofGKyMTwpKJclxrMCuCXSJXJVB8wm0h5liNlWbvq76a1vUhjpqwgtjGT0QGEfR1GY9KP0NZvn2iTxgSxEoZ6XQmfaqIac4x7QhhkVXY73c0ES3CLTp1xaKsLbf4VBG3rFgVRa1gcY+Bbhvu5QTRgJAYJoJh8qIX1iqs0Jcq9wi/mMKAthB2i2DL+asa5qpU+Z8RxTJBXEvxGtZn01eo+ghiQMENwODlrFbj6peumYeOSBbVX2tBbC+z2/YsDyeIxZPn0no+wm5Ur29hLaSq7ahYY91CmVde5zqrKroJYoRAYpgYOQiswkIhrJJMgxXCBweFIrhKAMsswgKRWyWKGUHsS5TW4XoKYnu93ccoqIcV2G5XK7oI+1sGHNd6CGLRct3wazzcVmHRpDkVggjhIK4IshTPfhPtkmm+q4SfINYhZlErrEIRVt5gaLU4TdAl6k58jnRi5BJmBrUfPjcuXyHM1iMSwoODVcutA0PlbSpCuNo9gn+xTWRSXqGcSVaJCStf8lqJXXXWzTocFlVBDNROFMdl7AIkzhjeVsGtop6C2G6HXS4b+6DHtcg9wi0KdVIvB0FFgPqleFZ1baggFcSqfeKh2Q+CaFToCCdGJrxoEaEmy7mWHxzyWIO97hG23zDfKpyoCN/y/5UbdcX6K/QL1rUOq1Jr6zCgPkFMRxSzuAVYIz0suPHbN+42PqJYNKaGBbG9rQeeKPaLFiFzl2CPQY8ITovHT0cIs99FglpHKMqswTxUXB94SThYq64JUUyCmBjB0NFNmKOeM4w5QpebXEOQkc7rKyxwjaj8tfJFWPsLVSLYEcBDHCHckqyUG3aD8IhfjiAWWYfrjglBbNfjW1YhQoJsmzj4/ppux8bP11gmijUEMaCfrUv4YKcbPs3nYcbjL6zqHsGKSp5AlQlhGTpiO8xbMTZEm0gQA+ZEcRhBnEqHvj9Y+RKslLlwaCoTm4nmgcQwUT+icpFgrcIyIcyLHFH5nxXC1oGhKmuwI4KH+O4RjiCw17tEcZUgjhO1sKjqRIIAwrkSmIY3NiYFcYgwacPrJVZ4kSAWtGfMbcKu32SCDfa3YL/zhK/o2qHiJiGyCkclhDX9gG0jgK8orpUgpjBsRANARykxcmCtwqJkGpzyVf7AAiFc2p+vEsF+rhE2iUzKI4qrBLGfu8RIRlcYA/F0fwjjzyzaH9lDgF97MiuxpttEEJTjZAcQxEpWYRMRJEy4R7hRCeOm0m9RAg+XlRiQiOKgVmIdQUxCmGgQ6EglGh/GElzlHiETwhw/YWtwaNhVQiSE9xU8rhE6r9wcUdyi4QIRld9wHDERUqze6AhKXVHPE7FRWImZZWEScyjHI1bxYWdFr8gtJopQajasGAwzKS/MpD2e1ZdZxhXFYa3EKoLYtBAeKgFJg64NPHc2omkhMUw0Jn6TXWz3CD8hbMPGDj44NGwZrghha3/esQaX7P8BQCQQmPjBPB9gZb9gUZk4WkejIqifclxFtOy346YrZvaDFayqCUpEVuKIBTEXVUHMUBVbOGgoNZ3sckHEnZ97RBAh7BdDWGAt9ohiExPiZHWQRZhoMOiIJaIl6hnIPKuwKEwRwL/5uG74w5EjKlbi/flhIeyyBltuMQygVEgAAJJpy1mWsP+piGJb9PKsZMZcI3TFcaNGW9AhiIg2IaBVEolULZf0lSdmdQWxqB7RtgYFsbbLhJ+rhMwq7EcYa6zKNU0lakSYPshcHNh27JjE9v8moSgTxAiBjmJiZGJbhf2EsBv3Tb8SNcIthN3W4VIhgWJRbNFNpq1hAZwvAs3mA1xBmB2sBljFEBZMFQGtOulPNFEtSJt2uSAxhVXqUdw2cpcJHirj5i7Ds6DqCNAgVmGVSb26/QjSHuBN4Qw4otiCy2WCh1s8s22RxZcYodCRTdQP0UVXl4rodazCqjeeVLq8zrZCARUXiUoItf0FRwgX+wfLVuKKCC4VEigWEki5LMHVu2dVuUF4vuv6DUdBRFbheopg3T4EFs2qk/5UxpgRwry+e/rpFrKakSGq2g3ofhFWENt1OCgJ4rT8d2Xr0HkAVolNXAsrqCnB6d73VLraimt/t9tLcvazxNThE+s4Sqx8EVbKYAY6k+4+RMNDYphoXGRC2rYKy2Zp2xf2QrEiRoacVWV3iKJHCOcHh0VwqVh2grD/JlPDojgpEMhV/sH1FsJBkVgwA4vgqFw1VKycCn32FcyqyUR42yn2x17u9MVPENvLgeCT69z1RBDKrkoUq7rthDleVPZDV5DKRLeOVTisEJZdE1PDxgdf67ANz2BBFmJiBEJHNDEi8KRdVn0F6bYMHxz0rqv4BduuEfnBJPIHk44gtnEL32TKQtG1jl0vI3ah1AKIDWUhXEsfZb+2FAUeu29ccayTTMRdXtKOqC9cQSxtyyduMVuPKfHLpB0XESjNuCxLn6mY1GGtwjpvvkQC069dP6OASwRL2xC5lNiC2H1dlQliEspEA0JHLdF4sBdlNt2y/b/IKszeXIoFr2W4UJkkt6/gCOHBfSnkDyZRKia8bx+LCY9VuNwMRwDX0284TLY4xbp8RVwQAWxKNAdJ6eyzXZWV1lOngihWEcISQecRxO7ySr7CovjCPoJYdzIdG26QF36QJ5BNTOoMI+RNiTmVeMJ+bcqEsGr9rCBWTRRiGwtE1NhCbBVKRrPGWQUKrUYMQ2KYGFmwk+Zs3EI4la72iSsUgdYWoOi9EZcny6UqVuGEYxUe9hcuW4MzTjPV1uFUBvGcQKea5MFZHkAIq4qaKK3FAQWvinVRSRQr4CuE7WV+Vl3d+MZRZfFTFS12OVmyGVULsExE+/kG85aFEXomhLAurJHAr52k4Jpow+6DnziWkUwDyRheAwmiAolhorHgxQ22v7ORI+yyLa3DF3r7ou++ERQLQDYLFIpli1s67WSGK1dV9hHOHyxbsdz+wsmChUxrqfw/xyJcXlYun8gkq2IKK8UYjoJ6C2Ed8WvCsi1LOMEtL/G/5ayXimIflIQwu84+VrkiPITI1fR95lqFDVrvHHgPJs5YuEKwhRX3JoRpLVwjWPyEcFDCCGAbCr1GNAB0lBL1JUxECZEVmJeQw2X9SGTaPBdoyxbSrS3lG2v/cEa5UiFR8RdOVFwkGJ/glIVSxUpc8okuYePnH1w3/2FTQjiMCDbp0qFSr4pIFgljiaUYUBPGxqJuBPX59U3UYcZ6LHq9bexhsCoiBi9KhkswR/UmQnQtU023HFY4su3Y+8q4NFRNnnP7DLO+wgTRBJAYJobhhdNpAKrSLwNia4ZtFXa9FkxUYm8CANJDnuLFYsKJIDF4AMi7buqZTAKpdKLiGuF9C5hMW0il1CbPDVcYgdWYJwINWGW1hbButjWd7VURuRhUleOEGuPV4SOYAwldVfeIyjKhddhdl294NYOuFYzo9fPxHI7FHTDduDCFM+f8Zy3I9nb2X1lc4bCT2NxEJYRZJL+TVcwj4b4WujFhDbYxuE9W3oJlMB2zlde8PhMjGhLDRBk2xmSDCWIA/hfwZLpsEcm0VvnIJVCxEHcUgM52JNr3ItGRQSZ7oCxsXe4OPLz3UYWLrCusWiwiSXBFmIYQNuR24btdGFRdImTxg4WTz3wsyUFxC7YgMYOD9C1omDgGnhB2u1XYx71fdsaqOorlh4DhTHUKYt/GL6udLn7XSTbWr4goXAncY8O0nUhlwk2eI4gRRoMGOiUIBrdF2L6Iu28EnAl0pWQCpWSiLI6znUhkRwGZViQ62pAY1YZkewaJ9gwy2RKSaQvZNqCtPYlMJoFMJoF0phxJwvYVTqatqnjDiUwSyKQcf2H3jV7Z8ptRFM5B47MqCuFEKqUuhNlUue56RWLE3kYmrMN+VOpV6W+QfvpR1bbad89vovKQEZWLgEv8skLYjtvNLlOGEbyONbxQ5H8k2/qikuKYl9zHjfs6JKoT8M5f0IUXFYJth/2to47+UOsEJTVkxYoVmDlzJrq6utDV1YWenh48/vjjzvobbrgBH//4x9HR0YHRo0dj7ty52Lhxo7P+gw8+wKJFizB16lS0t7fjyCOPxJVXXon+/n5PO7t370Zvby9yuRxyuRx6e3uxZ8+eWu1m0zKyjlbCHI1qHZbBCOFCqewSkU62IJlpLZcp5oHOD4HOdiRz+5DKZZHZvR/ZjlIlkkSyYjQpu0fYVuBkyvW/n4sEzypcEbxaVmJd/1s/ccXbpkJoa7BMAIuolXVYJXubKFyaQsQJadu6hLEQy+pRdZVwlfGIWYEQNpLli2cBTqe57iHOcWqXdf+WsgdBFZGoej0M6xYhKq8bP9393f0mTEWkxtEqnC8CSfHbuUD1aTBhwgTccsstmDJlCgDgwQcfxOc+9zm8+OKLmD59Ov7mb/4Gd911Fz760Y/iwIEDuOOOOzBv3jz8+c9/xmGHHYb33nsP7733Hm677TZMmzYNb775Ji677DK89957+MUvfuG0s2DBArzzzjvo6+sDAHzlK19Bb28v/v3f/93cvhNVJCzLIseZiBgYGEAul0P/+79AV1d7vbsjh3eB1PGDs9H1tfNrR9S2HUfYTsNcOFj+nq/8dd842zvK1t90KxKto4BspyOGSyginWhBOtlS3jZ/EFb/dmDHdljv7kTx7X7k/7wbB/cksL8/7QmvBgCZVgvpbPnmn8mWkEpbjiVZaBVuGY4qkcikuJZfj9VYZBlOC/4HjAlhLd9gEyJYJhijCEHFwhOEIpGo6koQxG3CTzgXit6/4EzY8+ufzILq3tazXC6GpUKY4xfsOd7d54Tbgm0fQ6yPrxvZsctu565PxV9YFZVwZoC+CPZrg42iI6rbNgakW4fdxdzzJ9jsnO63baJkRmzsdlEsdwADA/uQG/O36O/vR1dXl8+Ourcr30e3X34aurLm7HcDgwUc8a9PaffHzZgxY/Dd734XX/7yl6vrr/T7ySefxOmnn87d/uc//zn+/u//Hvv27UM6ncYf//hHTJs2DRs2bMCJJ54IANiwYQN6enrwpz/9CVOnTg3UT8KfmrpJ/O53v8P8+fMxfvx4JBIJ/PKXv/SstywLN9xwA8aPH4+2tjaceuqpePnllz1lBgcHsWjRIowdOxYdHR0477zz8M4773jKqLxmeOuttzB//nx0dHRg7NixuPLKKzE05J08tXXrVpxyyiloa2vDRz7yEdx0002gZ4cIMPE6TVZHseC9uMvqSKbLN4nO9op1OIvU2HZkO4qVTwnZjhIyrVbl/6IjgDOtpfoIYRZdIcxxBZC6RPDqC+NeIHMlsK1afkJBtRxblvdaWbV/9j66PzzCuksolq0O0Sbpk187On61Pr7ByJeGy7j/l+F2d7CFucwlolAY/th9KFY/MERGGCGsetyKyrLuEryPKJYwuw+se4dK6ugR5g6hQrFYxKpVq7Bv3z709PRUrR8aGsKPf/xj5HI5HHfcccJ6bCGerpxv69evRy6Xc4QwAJx00knI5XJ49tlnze8I4VBTMbxv3z4cd9xxuOuuu7jrv/Od7+D222/HXXfdhU2bNqG7uxtnnHEG9u7d65RZvHgx1qxZg1WrVuGZZ57Bhx9+iHPPPRdFl1VkwYIF2LJlC/r6+tDX14ctW7agt7fXWV8sFnHOOedg3759eOaZZ7Bq1SqsXr0a1157rVNmYGAAZ5xxBsaPH49Nmzbhhz/8IW677TbcfvvtEYxMDGgklwjVizvvJigQxSWr6PgPJzJtQHsHEh3tSHS1InlYG1Jj29CeK6DVEcXlTzI1LIRTFf9hZSHsIpQQ1nE18LEgRyKChWIygAAW3exVyqjU6dc3X//jAOJYVyzbdajiJ4oD1Mlzf7Ac6zDffcIX3vaO6HWJXZEoZoWxDBMuKzzxKEMkhIOgs12Qt3NsNk/TfYoRAwMDns/g4KCw7NatW9HZ2YlsNovLLrsMa9aswbRp05z1jz32GDo7O9Ha2oo77rgDa9euxdixY7l1/fWvf8X/+l//C1/96ledZTt27MDhhx9eVfbwww/Hjh07Quwl4UdNj96zzz4bZ599NnedZVn4/ve/j29961s4//zzAZR9csaNG4ef/exn+OpXv4r+/n7cf//9+OlPf4q5c+cCAB566CFMnDgRTz75JM4880z88Y9/RF9fn+c1w7333ouenh68+uqrmDp1Kp544gm88sorePvttzF+/HgAwPe+9z1ceumlWLZsGbq6urBy5UocPHgQDzzwALLZLGbMmIH/+3//L26//XZcc801SCQM+i6NZEqFyC0HiVSmHAkC4M+CLhaAVMEz6SWZGL4ZlqwiSlaxvCyZQtK2EHe2A4OjkDwwBGt/Hla+hNZMHsUDJSfkmts/WFsIM9+VhDCLTNwGEMK+9YuWcerT3l4kVHVQCQ/I1smb6GQvc/dVFkFCWIZpy0CUhipc/rTyUGtpvs9zGMsp4x4RWAjzcPv96sRMdv0uTuQJHfzSDKuIXz93MRPC0X2tc9fPu+a6kg0lUhnxNVnF5cKuT0RE13urUDIbWq2SjnnixIme5UuXLsUNN9zA3Wbq1KnYsmUL9uzZg9WrV+OSSy7BunXrHEF82mmnYcuWLXj//fdx77334sILL8TGjRurBO7AwADOOeccTJs2DUuXLvWs42kLy7JIc0RMbKJJbNu2DTt27MC8efOcZdlsFqeccorzeuCFF15APp/3lBk/fjxmzJjhlFF5zbB+/XrMmDHDEcIAcOaZZ2JwcBAvvPCCU+aUU05BNpv1lHnvvffwxhtvmB+AkUI9J164Z1TbVjaRdbhCEpwbZaa1/GltAdJpJNpakMy1InlIFslcFulDW9DSCWQ7imU/4bYEUm0JJCrRJ5Lt6WEh3JJEomP4u+Ma4fruyUzn8p0EOBZhkZ8wa/1jy0nKcq3BupZgtm3V7f2suzySafFHp4ysLZkLhcyK67vex2rMKyfaRnAsCK37dr21QFEI2+LZcrtRgIk+IbMEe6zGHAtxUFhXAR0rcFghLDtW/doStefnHgEEswCzvsINyNtvv43+/n7nc/311wvLtrS0YMqUKZgzZw6WL1+O4447DnfeeaezvqOjA1OmTMFJJ52E+++/H+l0Gvfff7+njr179+Kss85CZ2cn1qxZg0xmOAFKd3c3du7cWdXuX/7yF4wbN87A3hIiYnME268A2B983LhxePPNN50yLS0tGD16dFUZe3uV1ww7duyoamf06NFoaWnxlJk0aVJVO/a6yZMnV7UxODjoecUyMDAg32nCH5mlz73Ojn5hp1d2UyiWLcPJ8mS7RKk80S6dbkHJGhbLyURq2GJcccNIZFtgdbYjWajcnNszKO3Pw8okPZOFqqy+LUlneWhLsI6FV1bWpCVYJ5mHyBVCZRlg3tLEWtHY9kUhsXhCyM86LLUsB9gvWaY55uFPmCI6aLa6gi1cK2VlVmE/ZEk22MgUbDlZLGJZljlZ5jmeNTjIg31QISw6xkXHqqxOdl9cUSQcq3CKuXa6t3HvN+/8GGHYodKCYFmW1K2CXT8wMIAzzzwT2WwWjz76KFpbWz3le3p60N/fj+eeew4nnHACAGDjxo3o7+/HySefHKiPhBqxO7rZVwEqrwfYMiqvGYKUsSfPifqzfPly3HjjjdK+xhr29Votw6uFaSuZLodEYy/qnhn3lQtSKg3ky0/iyWQayVQLAAy7SVRuBIlUBlamFWjNAoNDQGcRKQDW/nz55lwRxQCAoRITLs2QO4Smm4PQaswpy7UEy76L2hSVNeEKIRPBpmb88x62eKJA1iZbTiSAZcJYB1noNI6w5bpOyBJ0hJ1wpmIVdh33dqINYba6yvKEZ5thkZwAqvvt5xMcZUpmGxUhrPOgpyKM2XZE4dRMiH+eVThCl7hSoRIX3mB9OixZsgRnn302Jk6ciL1792LVqlV4+umn0dfXh3379mHZsmU477zzcMQRR+Cvf/0r7r77brzzzjv4whe+AKBsEZ43bx7279+Phx56yPFRBoDDDjsMqVQKxxxzDM466ywsXLgQ99xzD4ByaLVzzz2XIklETGzEcHd3N4Cy1fWII45wlu/atcuxyHZ3d2NoaAi7d+/2WId37drlPDWpvGbo7u72BMMGyhEo8vm8pwzrsL5r1y4A1dZrm+uvvx7XXHON831gYKDKH2nEwPPNFRHUb5gV5nZdnPYdv+EUR1TbN73Ka04rf6B8A02mgVK53mQyDWDYr9hJ8dzagkShzUnXnEgPIplJwtpfQNK+ObM3cYHA9bhCcNZ7+ir6DtReBOuER1O1AouWRyGARXW4j1+ZKHajEjXAXUZFGKvAsyrbYpYnBFUEsQECWYW59fhvz2anSwBAJlleDsjHVJi2uei9PoQ5xmTbBgk5KUMmjNm67bTzqQy4iK7PMsHdhBEkdu7cid7eXmzfvh25XA4zZ85EX18fzjjjDBw8eBB/+tOf8OCDD+L999/HoYceik9+8pP4/e9/j+nTpwMou3nausOOVWyzbds25030ypUrceWVVzruoOedd54w6ABhjtgc0ZMnT0Z3dzfWrl2L448/HkA5PMm6detw6623AgBmz56NTCaDtWvX4sILLwQAbN++HS+99BK+853vAFB7zdDT04Nly5Zh+/btjvB+4oknkM1mMXv2bKfMkiVLMDQ0hJaWFqfM+PHjq9wnbLLZrMfHuGkJe1ORwYoWmasE7+aXPwgAcJIr86JS5A96RXc6XRYTreXjIJFOIZEpT6qzYa1aIutveZ1EvPKWqVhjayWCa20FVvGvVIF3Y+dZgP2sbyrWYZHgDmMZtrdlE4GEEcQB0i6zLhJVqE6a47o/+G9rW4RtS7ItiB3YZBvQnEQnm0zpRue4NC2EZW0JljtCOMz5wmuvRlbhOMD6/rppbW3FI488It3+1FNPVQrNOmbMGDz00EPa/SPCUdOj98MPP8Sf//xn5/u2bduwZcsWjBkzBkceeSQWL16Mm2++GUcffTSOPvpo3HzzzWhvb8eCBQsAALlcDl/+8pdx7bXX4tBDD8WYMWPw9a9/Hccee6wTXULlNcO8efMwbdo09Pb24rvf/S4++OADfP3rX8fChQsd36EFCxbgxhtvxKWXXoolS5bgtddew80334xvf/vbNKszLjCzqRPAcFSJEuMq4fl/WBAjmUai5J1dbRXz3ptBOlW2ENvbFCruDm7BwbFs+Vp9ecvCWGGD+AQHEd6y5SaswFHMVJeJXJHokbUlqoOtR1S3qmXYLzuenyBm6hBaiE24RwBlYaojiBlULMTOech891iHedkDbQoF7zKR1VjHbUAkCnXEoq51VrEerhBmzzG3dTimFuFiMYFi0dy912RdRONT0yP7+eefx2mnneZ8t10KLrnkEjzwwAP4xje+gQMHDuBrX/sadu/ejRNPPBFPPPEERo0a5Wxzxx13IJ1O48ILL8SBAwdw+umn44EHHkDKdeP3e82QSqXw61//Gl/72tfwqU99Cm1tbViwYAFuu+02p0wul8PatWtx+eWXY86cORg9ejSuueYajxvEiCSqUGhR1Suyuth/0wVuti6kypPokEqXBXRlcolHCNtuF+nKzTNdRAJZWBgs+xK7Zq0nWiEWE2H9bzXqCCSAeX3R7UeUIjgqS5pM0AJyMSQTLjxhHNQ/U+ZmIRLEsrJgBLGqdVhHKOsIYngFcJXf8JDru9svv9KOvW35ewDXE/d4BfUhDiOEgwhkG59rqsctQiaE3fXp9KWJrMLEyIfSMUdIQ6VjdqM6UQPQi0Xpd8GURYyQlWfTM+cPlL/bqZmLjCBOp4Bs1useYf/vTjtq/29vf7AyCe/gUFlMuDNjuf/KNaSsOQAAPzpJREFUkN1wpev446CcLtm0G4SOf6SNbtIBlRusShkV61rQyZt+6XFl5YLUDQjTI1eJWkm6ZY91WHQcs5nfII4k4VknghG6XBE8JPdBdsIV2lFanBCFw+EK7ZCIwyHuym5OznHs/E17v9v4iWJeGD4b1UllEYrHKt9gFSHMlmPd0FgCuH6ETcf85qWnoavF3LgNDBVw1APh0jETIwd6nCMaF1u8+lmHeaiKE3dkCvvm2QokCkXAtrA54ZwCCiqFEFtSn0cdK24UAjiIoA1qBQ4zETPM61+VsFaiBAhsOXdZGTLfY144Nb+Qaa7vyhPqfB7wEq4Qg2U/XjULclV84aFS9TJRmxh2k3BcJFi/YeY4t4qSSXasVZjjdyxEV/RGJIKFk+P8hHAQi3XUPtAEUQfoKCZqRxSuEu6QbPas6VKmfLPMtDoT5gDwJ9WJ4muysBEbKsH+E25rms8kHVt8aGfE8rspB7Aoj3gBrFqPqkVY5Q2FzoQ8lQmmfpnxRIIYEPsRRwAriAGOZZdjQbbyJY8l2GKtzXYdrpCETjtwCeLKco+rRFWmPdd42+LX7TusGpc4JRCXKtZXhePYLWqdiDbMOquYF4tfUVumBGwdhXC9Q6sRIxsSw0Q1btFaq1jDojZUBTRvMh1QLYiB4XJuIVwSCBi7brYNwCs0/F5RozLhTged8r4ZzUJOggvqzhBku1pamoK0JQplJfMZFrWlGi/W7XvsJ4gB8cS6iMSxW6iWvwtEcQVbCLuFsZUvOQLYYx3Ol8r1s222uEIbutoTnWce67BIENvrdVDxExYcZzJRK1qnZAXm9cenL1JM1UMQMYWOZiIcOvGGgWitw8wF24kukWmttFsQ+3O6t9UJqeW+sQLVFrpaEtSCrGv99fv9ggpnjePCzzLGWtWMwvaTF+bPxi+DnWrECvd55rYSs0IXUIs0gWCxhx1XCE6MbdtVQebm4FiAK0KYJ4LLFjuv1S6J0vASu+2hUsVFIlWJQVxZXmUl53wXCWIW97nNswoHFMK+ll0dai2Cg9ZFEDGGjmgiOkzFG1YR0KwgtjPJZdr0hZHuhZ4VJ24ifkVdha6fo8ryMOLXb3vNV8eq8LYRvXbWpep4YkWwrmuE6GFSZHFmrcRVIljiR8yuF5Vhy7r9jd2+wQJRzFp2AbkQdotgUcirJEpClwypqwQv5rCqIJa9OamXENZ9E6N6PYsqNrwhSoUEiuQmQUREvI9+on64k1hEVbdp3P11XdjZuKRa1mwVgagTUotdbxqdG5pJv1+VbRXXG7WaRVCv0K+TZxlWiczid4zwRLGu24RomQ6MIAYgFcVuWHcJnhC2RbBMpDgWYnfmuUooN3siXVVGOkb4C5NwyCzEblcpIJAQ1vbz1UFXBIcRvmQVJkYgdFQT4dF1lQD0RbaqgGZvRpV2HEHMCnzd7FIyf1qZf6hfTFs3poSy6g0vzE1T9cZYJwGshM7Nnfkd3ZOauPXJfNEl9QKoPq7Yhz0/QWwTINOcd3uxyOaK4nyp2joMVFmFWSFcKiRQVLDWJVFyRLedia78f8U6LHKXAPiT5njRJIL40gcRwqYFsKzOsJZfEsHECIaObmLkkXSJCNcF3L7NWmxZ3fjGfu2qpv71q8fGhHVedRJi2DoUyzWM+JVt6/pdfK3FnG2kfRL5C+sIYl3rMLudbBKem0JRa8JcaX/BI4Tzg0lHBJcq1uFiIYFUmh8CP5m2yttX2nNbh5FJDVuJnX6zk14L5fUpjhBmxwMQR1AII4RN+u/61UkimCB8oaOcEGNChJnyGwb03StsgeC+eRUL5ZuknW0OMCuI3dvJ6tQZWx0hrVOfDIPC1yb2AljXWq8rjGX9UIlQoSOIbXjC1r3cD3eoNpE/PKeushtEsSxMnclx1RZhWwi7RbCN/X8qbTnrk2kLpUKi4j+cqliC3X9tNw6XdVhg9fW4S/hZg1n3iKiFsM41MyoRLKu7DpRKw8eJqfoIwiY+RzrR2ARxlQiCjrsELyGHC/elUJSGMYyAa4jUjhGIXiDAuIVwVQhcb1D/apkwFrhR2Agnc8pcK3gT6PwEsaLYTbgTxxQK1W4DIlcDgO+Ty8EbT7hU2cWya4QthB3LsMBNwrYSu9enGOuwlSkOT6BzW4fdOH2W+AeLYguzQpg9tvyEsEkf3ij8gWMkfAmi1tDRT0SPSeswoO8/bIviong7XxtBgBuFtE63ZVqFqCYdskQtegO0Idxe1eWAJeyxKBPGPhPmVKJcCKNTsOKXd3y718vcHmT4uEQIhTFHFIuswsViskr4lgrqlr9UynKiR1h5e/Jekm8dZpG5RtikU3zrL08Ih7EGm7AAq9ZFYpcghNDZQYx83FZit1WNtbRF0S4Pe1KfgpD0uHLUgUjDQIUlaAg83bpUEmOoxBAW1CP1N5ZZiVm3CdW3M4xItl0FnDcZPJcIQG4x5lmHPamWhz+lwvBkOdsqXPK4SrAVVQvkZLriNlGZTJfIJMvt6FiH2WXptFrGOR0hHGVUFtW6RogILhaAYsKca0MtXmQSjcPIOEuI5kPXUsoTxHY9vJuJX2i0ILChsmQEEcwBMOLHG/ebbdjEAUHCo6km2PCLTsGzEvMEsbsfxYK6ddgdLs3tMsHiFsg8UezCyrOZ5SplKn/dcYTdQtjeFdtinKy4RhQLlQl1xQRKBQuZ1hLyB5NAa1lsp/JFlPYDyXYALisxILEOy+BZhVkhHJU1WHdOhIy4n5cEESPobCHMIbNMmXaVAMIJYlmdgLkblkrSBTcRCeZARHkzrYWPeRTZs1SEMdu2bD8lk/CEVmKeIBZNAhUhyFzHjb8Ljv+7nz+yLYI5vsIAPJPm3LhdJ6r9h8t2Xta/OOlyl0gMleSRJXRIpflWYHeEmlqKYBOhEgmC4EJnDdHYBBHE9nYAP5arSTRErac/PGT+qXFA92EnqoQktUohG0QY24gsx5yoFNyoJzJBrGod5mWu4+F2pXBbjmWuES5sIVz+m6gSvLZV2C2UnfV2FImULcctAEkAJQBJZFBCKZWArUnLESyS1SmaVUinhq3CrHuEihCOQgSb9CkmCEIInT1E7fCzDutat2yCTC5j2zIZvkzX6qkabqsW2exinpJVShgRHPb3VxXGfu1xJgcmRGEAeeeLSBDbuAUxIPYPtmEmmyXgEsRV4dSKzF93Sma+iwQLazFmhXGyYFXcI8qCOJlKIJlOIJl3+Q4D6kLYFsA81xC3e4T9HTETwU0kgEuFBEoGfYYpHTPhpnnOJKI2hH397RcpwCS8tmSCM2goLj9E46XgY6rdViOgewwFFcF+GcWAYMey6u/mbo8ninUEsd+YCdwihOHFeFSE8bAgdtUZJs1zBTbMGgAU8lblb6XrFYFbStsW4koc4lSiHGrN7SoBDGekYwV/Oi10CeG6R/CEMO93DuvHSyKYIOoCnVFEPNG1EocJPaYiwKMUnKZcI8I+QNTiBmvyISeI5S2MK4eJhzwbkdWfTemtIojddfi5SwD+bhEyFEUvayV2upiyuBa5EkcAA0A+bznf0xm7TMUqXLCQTJXFczKdgHRv3BZujjD2uEg4nfWKYkcIs7+licgQJqNLEAShDZ1dhHmCTqRjBW0tBbHdnl1PXNCxVDbCzVJ1jGXHUC1EsF8dYV1TROPA7reKIJadJ25BbPc7UhFc7TMMwJnM5u1atTAuW4UtRwQXCuX/ASBTSKCQT1REcbK8fRrID5b/d2e8S1RubY6rBE8I2wLYj2SaL4RNTLIlEaxMqZhAKWnQTcJgNjui8aGzjIg3tRbEdpt2XWG2D4qOhTrKiAyqAjKoK4GKINapL2wdOpgaG5mFV1CmKtKEu4xq6EDVvrMZ6QC1zHZMquTysiRQsJyQaaViAklXqmX7LyuEC/YnUxbCbUiikLfKFuGChXTW3tWydTiRSVX1BYDHJaTKRcI9cS7p+iuKKcwbU5Nh0YLU6VcvBdYlCCEkholoMBk6qx6C2G7Xrk+1rAl0JmPFwV+4FhP7RNRaBOuiYk0OIIi5y9nQgawoZvtjb+NGdLy5BXA6BRT5gjiRSXoywFkAEpWYvxaAZD5faSaBZKoiaFNWWXcWLMdf2BbCB/eXkC+UxXC6kEAmP2zNS2dSjnW5WEggk3X3I1UWwTzLsNtPmpdog90ndsIcLzOdKlGIYNU6TU4SJogRRkzuGERTEUXMYRaT6YtFE6Jq8fpSN0pBnIjy5ht3EczDL1udhiBWijDBE8Xu5TJUM9qlU8MRKRwRnCrHJXZ9B4YnsyVRQrJoW4f5PsS2RdgWwvYH7Umk8xYKGcuxDjvh19JW2frcwkSRUHGREFiFq9wj2OQbMoIeiyZdLETbNaAgLmegM1sfQdjE+M5BNDz1tA4D0QrWevjxReXTHGZfwvQlyG/aiCKYRXRemBTEwPD3TKt/n1SSzbisw4lUCpadyS5t++emvOmP2wHszzvLku1AaX/5/wxKyCNZngSXtsrZ5dIW8oOVLmcSrkgSVSk/0NqWRLYNyLSWkM6WkGmtCO32DJLtGSTaM0i0p8tC3J1qmY0ioeI3rCKETR1/UQthgiC40BlFRIuuIDYtYGtlwa0lOqG7ot531Ugcpiac8epuRHQEsYQqQWxjH/dBfn+RVbgqGoWr7op1uDz9TU0QpwoWSmmrYh0uu0pksiUU8sMT5TL5BAqVKBLpTAJtbUm0tZc/mWwR2Y4SWjuKyGRLSObakOhIDwvhthavEEbFV5gXW1hmFbbXs2PsXh6WKNwi/Oog0yhBODTonYRoeIK4SgS1jI5EQcxS7/2rtdW6UUVwEBQm1AGoTt8Mjr+rgCrbq+x3tEWx22/YPTkN1YI4kS/ByhSBfcOCOIUiypnkKk0WUyilLaQzybIQLpSFcFslnnA6k0BbexKtbUlksiVkO0rIZEsVIZxFokNmERYk1mDDqbHYAtn+3ybs8Rf0fG2m454gagidWUT0mLYOx81lYqQRZkJckN+GV4eIkSQGDLlL2HCFr+IxbwtXrpUZ4PYzkUpVi2hXfW5B7PzfAY8gTubzSBatSlSIEoqFpGMdRkUEH9hfFsy2EO7sSqC1s4hMa9kqnOpKl90jctmyi0QmBbS2VAnhKquw2z2CZxXWiSTBK2eakXTsB6BUNJyBjkKrES6a++wi6otOzGGWoILY3pYInoDC5OtVUz6SqlERoqBWbfMEsV95FVyJOhKpTFngKqYCt0Wvh3QaKBSQSBeBTBHIF5HIJ8sh1iqRJZBPVlJnABnkK01YSKUt5LMWMq2VMGsHkygVy6I1U/ENznYU0d5VQPrQFiTbOxzXiGQui8SotnL7thiGyzVCNEaycWLXhQ2pFifIVYIgHBr0LCYaDtGFN0xkiaBWyGYWxY3kbxgmIUEtonD4tR1Fu6Kx9wuZJoKNQ6zSZ0ZYOoK4IoKduMSFYpUoxn44bhMlAKlM2VmiJVOElS/7/h5MpRwxjFwRxUICqbRVcY0oli3Ah4wq/81lh10iWrNAZ3u5T6wA9vzvshjb8KzCrHtE0DE2QZNbhQkiaugMI+KLimtDGOHRDKI4yqQTUQliXStwral3+6Lx0fVp5cUh9qsXqE7CASBhi99UCla6LIIdbEsxhipCuGwlTgKwMkWkUE7bXNpfQCpfRHu64IRbsxN0JNozSLa3IHlIFslcK5K5bNn629nudYFozXr6VZ7Ylx7uD+sewaRcFu57mNjChL8FXoFSIYEiDLpJcEL6Ec0LndVE7QhiHVb19Q3jqzrSRHE9rUhBf4MoBbAJP+Yg/QjTrsq2ssgGOv1kzknHVYK33m7DLYhtsVkRxIl0yiuK7egTrfBaiQEgn0Qik0Jpfx6pTApWvggrX0IqkxzOHNeSdHyCE12tZQHcmkWio82xBFftPwAMDroy6DHr2IlzPKswCWEzkFWbaADoKCXigYlEHGFFj3vbRrvpxf2GE6R/cfoNgoYoi7p9kVALmpZXNHmP1y6brtkWnXaYNdZSXPC6TiQyKVj7KxP2MkkgPxxZoioqRGc7Eh3tFSHcArS0lvua7Rzuk93vUmF4H3n76hbCbncIP0z4twd5mxLluV3PNzwEESOS/kUIwiBBbhQ6oiJobNUwbdYTA68fA8H7rUyMmf37xUUIR9kXPxEiGgv7N3f5uTqirvIpWcWqj2d7u362Xl4f7HVsOy2t5b/ZbMVFoaXyyVYmsZVdGRLZFiSyWed7+W9lXVerM/ktObYNybFtSB3RieS4UUiMHgWMPQSJj4xD4iPjgPHdwGHjkRgzEYnRE5EYOxmJUYchkTui/LfzMCTaRwPpSr8ylb+ixBrMg4TUKqwyWVHlXNQ9XxtVUDZqvyWsWLECM2fORFdXF7q6utDT04PHH38cAJDP5/HNb34Txx57LDo6OjB+/Hj8wz/8A9577z1PHaeeeioSiYTnc9FFF3nKTJo0qarMddddV7P9bFZG3hFLxJ8g1gjd0GgmXo3HPRxbvW44pi1JcRzjsH2KavKcDccK7BG8vC5ZRSQTPtnWKniiSvBEs30M2OeZO9JIKg2kC97kHIWC2FIMIGH79gKO72+io60smts7gGwnEtlRQGsnkGllBH4JyXQGyWQayB9EItMGy7YOu/tqC2L3g4TMZ1hF2AaFIjloU+/QahMmTMAtt9yCKVOmAAAefPBBfO5zn8OLL76ICRMmYPPmzfif//N/4rjjjsPu3buxePFinHfeeXj++ec99SxcuBA33XST872tra2qrZtuugkLFy50vnd2dlaVIcwSw7sQ0dSY8B+2GcmCOG5C2FRa5Xpiqk8qY6EjhDREsEgQq4pgpw13mDWg+jxwn1tuIewWx6mCVxRXqIo+AQBoqZ4I19Fetu5mO5FoHQVkO1FIlFAqHih3CcP1ptGCZKoFKKXLH1voirLpMfvLtQrb+8li6tyThSqs5fltWpiPQKswAMyfP9/zfdmyZVixYgU2bNiAL3/5y1i7dq1n/Q9/+EOccMIJeOutt3DkkUc6y9vb29Hd3S1ta9SoUb5lCLOQmwRRH0z71YmI0yt3U9TLLSKsEFZxgXC/bhZ9gsBr270sjkLYvb/uPjKuEACqXSFcaAlhxi0gkcoMC0X2k271fs+43BPc7hRZjntEtgWJVKrsPpFOI5HNIpF1uVm0tpTrybR6hKp7H5MQ7Bc7vuwEQJFVOMX8H6UQZus0cYwTgRgYGPB8BgcHfbcpFotYtWoV9u3bh56eHm6Z/v5+JBIJHHLIIZ7lK1euxNixYzF9+nR8/etfx969e6u2vfXWW3HooYfiE5/4BJYtW4ahoaFA+0aoQ2cdEU9EFuKgltqwIdjiIqhrfaM05cctQ3efwlqy6vlbyvot89l1rfezBNvLbBEsdI9gJ4yyll4XwhfKbCpotp5kQXysuKNPsKmTWypCONPmiOJCqSwISig6Qtj5m0gNP7CVCt5JdNx+D4t+T7a5oC4TjU4DuG0UDYdWK1ZCq02cONGzfOnSpbjhhhu422zduhU9PT04ePAgOjs7sWbNGkybNq2q3MGDB3HddddhwYIF6OrqcpZffPHFmDx5Mrq7u/HSSy/h+uuvx3/91395rMpXXXUVZs2ahdGjR+O5557D9ddfj23btuG+++4zsNeEiBF+hhOxJugFOIw4NRlmayQj+11MCOGRKC78xkX3WGcmcfFEsJ+fsKc6HQuxq92q/4HqcGyu88oCqs+zZMVtwnGd4IQ8S6fKVmS3dbkihMsuD0OOa4QtiJOJ1PAYVESwVczzBTE7Gc79l500pxqZYyRhShAXmYcqWWSPGPD22297BGs2mxWWnTp1KrZs2YI9e/Zg9erVuOSSS7Bu3TqPIM7n87joootQKpVw9913e7Z3+wHPmDEDRx99NObMmYPNmzdj1qxZAICrr77aKTNz5kyMHj0aF1xwgWMtJqKhSc5yIrbILsAm/YfdiLaTiRneuqDCOmi/o74pmxLAQHOJYCCcEGbHRGINVvEP9oXti30O+r09ca+X/I62MK5K0+wHm8ijYnUGxG4gttW7bBk+MGwZ5olg9//uuMJumlUI25i0EMdU/LLY0SFUaGlpcSbQzZkzB5s2bcKdd96Je+65B0BZCF944YXYtm0bfvvb3/rWO2vWLGQyGbz22muOGGY56aSTAAB//vOfSQxHSJOd6UTDEZUg5uFXFysSRkqSD5MiGGg+IRwGkRAOaQ12W4GVLMJshAhp5T7rK8LamSjnR8Fnf/IHkQTQkmlzRLG9T457RP5gWYDnDwwfs7bbBOt7nRr2h/ZYhRtdCKuIT5V98nkLQAxjWZbjY2wL4ddeew1PPfWUknB9+eWXkc/nccQRRwjLvPjiiwAgLUOEp8HOdmJE4meNqKUgriU6fY/ixmxaBAPNKYSDWIUjtAbzhLCzzO4Lr88R/EaOIA5wnlrFfNlDNJkGcBAoFpBMpcsh1Ip5776wvsI8n2G34E2mq4Wwm0Y7XlUFa5DkRrzydRDIhbyFgqX9vkFcX0GvriVLluDss8/GxIkTsXfvXqxatQpPP/00+vr6UCgUcMEFF2Dz5s147LHHUCwWsWPHDgDAmDFj0NLSgtdffx0rV67EZz/7WYwdOxavvPIKrr32Whx//PH41Kc+BQBYv349NmzYgNNOOw25XA6bNm3C1VdfjfPOO88TkYIwT4Od8QTBoZEFca2JQgDb1Gr2vWlEfVS54esK4Rq6RAiFsNLGmr+bxHVCKohl4qxwsBwvOJkG8ihPpst723Qm7rmFcP6guJ+se4RbCLOJNhoFXWFqIttnEEoB3Xpiws6dO9Hb24vt27cjl8th5syZ6OvrwxlnnIE33ngDjz76KADgE5/4hGe7p556CqeeeipaWlrwH//xH7jzzjvx4YcfYuLEiTjnnHOwdOlSpFLlczSbzeLhhx/GjTfeiMHBQRx11FFYuHAhvvGNb9R6d5uOBjvriRGLinXYLseDBLE/QSJD1DsGKo+wVinV/of1nxT5rdooCGFdEcwKYN8oEry+uFEZK9bf2D1utksCXIKYV697rIoFAAe9dSbTsAaZEFRudwhbCBcLw+mh7XYYNwiPewS7//U+tnUJenzWUhCPkAnL999/v3DdpEmTYPlYrSdOnIh169ZJy8yaNQsbNmwI1D8iHA125hMjGhXxMVJdJqLElAgGxGNfK6tw0Jt/FH3xu8mrjJUha7CSa4RfX5g+KcP6G7utxC7/eI8PMVuGd+7b1t6k4LrgFsOifrmFcLpV7ifcaEK4Xqieg4ZFcL5gIW/QTSJfNFcX0fjQ2U80HvV6zddoYdl0RbDfTU5HCEdBECEcJ4EjmJxVUyEsm7zJGSu/fjjtiB5k7XYq66qy2rGC2C5bZSlmcC9zT8Cz4xT7WYSbXQhHub9Bry8EUUea7ApAxJ6wr6ab2TrsN25hblK6QtjUzTZOlmA3QWMtGxTBAN8dwtcirCCEVfvhSejhDtHGjo9L9HoEcVWFHCux7BiwhbA7LBtZhOsDiWCigaGrABE/wrpLREm9rMMyn+l6iGAgmocOEzfOegtxoHpsOCKY/V+repk1GFAXwgGswcqw5zFPEPs9vLLnObtfthXYXT8TNaJKCPvgSfmsm6ik1piMC+yH7uRbw/0q5i0USuZcG4rkJkG4IDFMxJMwF3lV67D7tawOpgRxEDGp09cgPsFuwrhFiB5Wor5x10oIi46BgCJYmDLZXTWzXssazCOgNVjWJ34h11ipWoh5iI4pnpVXJIQ58YYB/r6HFsK1emCPWhDrPmyTJZhoQEgME/GlllYPXcIK4qhcOcIKYMCcNTiuv50fqv2WjYWGCBat8zQlSKKhZA326Z9f28qIIo+wrhOuthOVv4FtdLwUyiJrsKJl2AjuFMS1EsTudv3KqWLKGmxPhiSImEJimIg3tRDEQdtw31hVL/RR3IzDpAJmqfckuTCYEB0Gw7apimA/tFwiNK3Vun0JhFsQA9yYxEJRzIponrsQK4LtZTxrMLOtaN8DWYXj8PAnE8X1EMIkgIkGoQHucETTE5VlxeTNq5ZiUeUGY0IA20S9b377o9p+WCucocl6ftbeIEJYySWixkJYSzCy4dcAvih2QrNlhhNquAVxsloEewSw3Zb9nbUGKxwfxoRwPSfmBW07SKKZGongQsFwBjryGSZckBgmiDijc1NpBAEc5CYpCwdmghqI4KBRItz/a1mDI6ZKMOr6oPtYioGKMHbWZwQd4Qhg9rvgWGd/EyOT5RoxMkWYuMFkDSZGCA145hKEAo0aYk31RhLFK9k4CWBRPX591LEORyyCw05ICy2CI7AKcwWj6fjPrD++6oMbz3WiFi4hbBi4RhLEtRTCjXg9JpoGOjqJkUsjCWLTrg8y2Ju13xjJQlvJiMJCpCqIAbEoMSTegojgEopIgm+BVE6eoTKuCiHUdAlkDXb3R9TvMH3jCWBBnZH5Rot8meOMaRHMK1t1ng6ptSkgn7eQNxhajTLQEW4a5MwliDqhc3MLIrLCTn7TscTw9kU3aYbqZMOg+6Uy3qoPORHFLFYVwSVwwnVxhLBxlwiDsYSFrgMyQZQURG1QfTAVuE341hVwP5vOPSJqa3CjGCAIwgUdtcTIJox1WPcGp2tB1U2GETTrGaBmDTZxQw8r7lUtbLWw+gd0h+CJYBFK1uAwv7ukXdVQbh50IwwEQfV3lRwjocV+MxPUGuz3YN1IDwxE00FHJxEMk5O1eAQROqKbcRDhFPbC7WdBDfP60Q9dIWzqJmUixjFbXta3KAWxQog0VRGsbQ32swSL/FI1H3C0hKCpY9PGsDCKLGHISCPIm6agQrjqutOE4000DCSGCTXCvHLWnVQSVODwtmsUv2FTs7KDWIR10BVFYV0V/I4d069oJTFoTVuDpeHSZL+9ASGsjGkRDBgVwiSCNaiVEBZecwbl7ftQKJhNx2yyLqLxaQCVQNSViPwuuUQhWuslhHVEhEq8WBWido2otRB216PazyAxizX8grnfK0JYNDHOadrkBDlPxYaP8SgEsA0JYQe7/zXpk0khDAxPiBRdc3iTGclNgogxdHQSfGqdTSlO1tuwF21VMaFjDfYThDIhbMJqWO/sWjWarR9EBMtghY7vBDlddCdAijDlC6yYoloFU9Ef4iSAbSLP+ufGtBC2EUXv4CwvWcXa7jNBaBIjBULEhnoLn0YmqBAO428blQ+wSvtRW4X96jXh211BJ1SarhD2zSAnOz50UmQHGY8oLcEBGMkiGKihEDYR9UUFSXznsHG33RTzQCFpzrWhWDJWFTECIDFcCxpp4oBJEVNP94h6EIUQBtTFkGn/YCBeQli1rQDjFSZxRs0myDkVGjpfYiaCTRJXIcxivJ8mzr2gk6MFQpgswkQjMEJUSAMgCzofF0gI66MjFqOaJAfUbqIcYDZqRK0QCOGgKZQDJc4A1KzBQYSwiax7Ya9Phs5le7zqHh7N9FuICkb7G+Z8C/t7S/yDWSFcdpMgUywRXxpciTQYcRbEjSKE7brdwiEKAWbyJhNVyDRAL5EG2yd227CvVRtBCCtYg3nfhVULfIKr1qlYg5n+eSs24Bsc5jg0kWZYs46aW3dVYmDXexJYHM4xTf9gRxBrRFwhiFpDYrjWxFEQR5XmV0YYISz7n0fQGLc6RBU3WEcE6Y6p7n5GLYRVAvj7IbOQ10gIa2ePC+oWEdYabNLNpVHf8MRBXPoRRR/9QvepZIhkzi2eNdhpzoAQzhcs5A36DJtM7Uw0Pg16BWtw4iiIg1CrZBpB2/LbNuxNJqoMcrriJ2ohEjarXJB6deMHKyYWCSp8nWp1LcGqbwm4jdXYJUJWvt4WUVOYiHsN1GY86inUddJhcx4yeUKYfIeJODNCrnBEYFQvuGEv/o1qOWKptQAG6iOCVV+dR1U3bxtVcRjAGixC9Ko+VHQIN1G5RZi0BusIo7gQtZCM0mWiFiI4jEHGxzWChDDRiMTwKtYkxMU6HNUFPY43yCAEdQ0YqVZgoLYi2EZlnAJEi+A2pSOAAXV/YBYdV5d6JUcxLYRNi8h6Wk8bfV9070EKD5luTPsIFwoWCgmDGegscpMghhkhioWoO40mfoMEovfbbiRbgYHaz1zXGSdRAgCEs0rJ3CICWYJtokqpHCbzoW67tTzn4+rbG1YQ13u/3L8h7xjxOSZFfsJuIUxWYaIRaDAFQ8SCeghfU756puPmjnQBDETnW83DkG8wEPwmLBXAQHBLMBAfa7CIuIRErLdI1EElQYpsm7ig8pv6+Adzq02kSBATsYfEcL2Ig4uECnGz+OqK4jDhwppZBJu6Wau0pyuAedtoWIPtm7MsdJdUAAPBJsaZiACi06bONSYOIjiOAlEX2fWpkfdP4fyKWvAW8uQmQURHzJTOCKVUlE8AihOm+hhV/F8b06G8VOo2ERcYMC+KVKi1CPZD0wol3C6gSwRPCEcigG1Uk6KY8kFVjQBSKxFsOvxh3Bkp+8P53bgxhAP64RNEXGgAdTaCiJM1OMzNTfUGGrUgDkpUMYFtGk0ER/kb6e5f0NTTCGaZ0hLAQcYpqt887FuLWlqCZW3F8frQ7Eh+ryARWWxIEBNxhsRw3Iib9bjR44uGiZEb1St+1W2DUm8BrEqQSAWCbUKFSvOzAPPK+BGlC0yUKZVtTD0sy/oah2OQKKNwnVdxPXK+I0UZ54iGosGVzgijnkI4KtEblXU4zE3fRH+CiuB6CmCgcQL562xnb+4SulKfYN4Y6LhA+Lk8BbEGq5wnjSSCZcsAEsL1RvN6H+itC1LS77rk8xbyBn2G8+QzTLggMVwL4nDhbzQLr6mbe5gJdDziNCEurgLYxCt4zeNVKwIEEMz6G9T9QHU/g066MnGu1CMzZBzRzXwYNVG4mGj8ZsIYwhQdghhhJOvdgaahWBj+hCWV1v80AqXC8EcH99iyH792/NpKpr0fFtkYi7YJi1+/VcbABKrHGjuGvHGJ6nhlx8A9drxxYo8N3nEiOw7c+P3+YSeVBTlXWIIco2F/pzgYB1hMjGUYgly3g/wGBoSwCL/oLMlEY8uNFStWYObMmejq6kJXVxd6enrw+OOPO+sfeeQRnHnmmRg7diwSiQS2bNlSVcfrr7+Ov/3bv8Vhhx2Grq4uXHjhhdi5c6enzO7du9Hb24tcLodcLofe3l7s2bMn4r0jGvvobFR0J2tFJBTsFJp+n8D4iTEdUaoreHn169zwZCJBVfiZQqX/9RC/LEFEb1TiVyRweeOkc2yo+jEH/f11jusw6B6jpn6ruArhWhHF8a8zoVmBMNf9suit/pigmLfK4dUMfYp5PTeJCRMm4JZbbsHzzz+P559/Hp/5zGfwuc99Di+//DIAYN++ffjUpz6FW265hbv9vn37MG/ePCQSCfz2t7/Ff/7nf2JoaAjz589HqVRyyi1YsABbtmxBX18f+vr6sGXLFvT29gYfOEKJBjEZNjj2zct98zGVRAIxe2UV9lWzzs3S9E0sqBUvKuuvDNVxUrF8ywiy3yEn4zjV69xEdaNAmIoSEkYI6wrDWvsFm36j1EhCOOpQcrVGQwiroJNIwz6PGz2axPz58z3fly1bhhUrVmDDhg2YPn26I1jfeOMN7vb/+Z//iTfeeAMvvvgiurq6AAA/+clPMGbMGPz2t7/F3Llz8cc//hF9fX3YsGEDTjzxRADAvffei56eHrz66quYOnVqdDvY5MTsjB3h2BdeVhTLLlSGQkgFRekCFmZiT618ImUEEXVxFMBBxkk0GUxV5IWM7iDDrkN5IpxMAOvElA4Q35hbxhT1mBzXDEKYRy1CTprG0NgGcYvgbdPooleFYrGIn//859i3bx96enqUthkcHEQikUA2m3WWtba2IplM4plnnsHcuXOxfv165HI5RwgDwEknnYRcLodnn32WxHCEkBiuBzwrsX0h9ZmpXish7HtBM53WWLadCmzdKjcmXRFcD7ETZQSBICJY8+HMLxyTH76h0GRRIIJMkouTEDb5EFgvazAQbyFcRwtwzRJVRCjSVftowl3iAAqAwQAQB1A+LgcGBjzLs9msR7C62bp1K3p6enDw4EF0dnZizZo1mDZtmlJ7J510Ejo6OvDNb34TN998MyzLwje/+U2USiVs374dALBjxw4cfvjhVdsefvjh2LFjh87uEZqQGK4Ftg+g+6IkE8TstjWwOISyAEedyc30zTQOIjiIAI5SHPEmfwnWm0rF6mf5lUaE0LECqx4/cRHC9RDBQPMJ4TDUIDSZ75sRINbja0rMt7S0oLu7G9fs+E8j9bnp7OzExIkTPcuWLl2KG264gVt+6tSp2LJlC/bs2YPVq1fjkksuwbp165QE8WGHHYaf//zn+Kd/+if84Ac/QDKZxJe+9CXMmjULqdTwWCUSiaptLcviLifMQWK4lrB+wjy3CXu5xk0sEusboCfKglowa30xj3oClB8mHxzCiDwZAkuwLPtUmOxvvJu+55hUEcFhUiUDwYRwnEUwUF9r8EglwmgM2hi+dur4AavU5SHE5N7W1lZs27YNQ0NDBnrmhScyRVZhoCzMp0yZAgCYM2cONm3ahDvvvBP33HOPUnvz5s3D66+/jvfffx/pdBqHHHIIuru7MXnyZABAd3d3VXQJAPjLX/6CcePGqe4WEQC6CtYDkZU4gBXY7+IlTT6AgP6YojKicrLyInj1hLm511sEA3oPESayoKlij4OPCFYVwLzMU4ED7vMEr6qFmFdG9fetpRDW8RVPKV4n4iCEY2y11MbwBLS4wrsf6OyTb3zvgLS2tqK1tdVIXSaxLAuDg4Pa240dOxYA8Nvf/ha7du3CeeedBwDo6elBf38/nnvuOZxwwgkAgI0bN6K/vx8nn3yyuY4TVZAYrgUiYSNzi1C0DrPWNd462XZVbbOoWNyiSmAg2kbHzSGuIhgIN8krDDzRay/zEcFVglgx5WoJRakg5lqF3aHRbGTLnMZCWoVrJYSDTJhUORZICJvFUHSUIGi/tWMx8BvL7jFsGQ9V52VjPygsWbIEZ599NiZOnIi9e/di1apVePrpp9HX1wcA+OCDD/DWW2/hvffeAwC8+uqrAMrW3u7ubgDl6BHHHHMMDjvsMKxfvx5XXXUVrr76amdi3DHHHIOzzjoLCxcudKzNX/nKV3DuuefS5LmIoTjDCtx9992YPHkyWltbMXv2bPz+97/Xr4QXG9Rvsg/HEibzr1SJ7Vi1TiXuql9iAraMqK6gSTVUUH3NrZsYwb2dbkxQ0b7KEkGwZUQPH0HHVUEIu+OMuv86/6PofJwuKcSpFglnJSFsjwXvmGPHJgz1FsIqcYZrHeWkWVE431Vj8hqN5V6nBw3e/UV4rzF9XsaAnTt3ore3F1OnTsXpp5+OjRs3oq+vD2eccQYA4NFHH8Xxxx+Pc845BwBw0UUX4fjjj8ePfvQjp45XX30Vn//853HMMcfgpptuwre+9S3cdtttnnZWrlyJY489FvPmzcO8efMwc+ZM/PSnP63djjYpCcuiBN0yHn74YfT29uLuu+/Gpz71Kdxzzz2477778Morr+DII4+UbjswMIBcLof+t+5DV1e7d6Xopsta6DjiJYx/poPupKOgFmIXVjEvXe8mkcqIVwYRLLqixkR2MJVtVH1ddW4msvERHV/MscW1CkNsIfbtklvwwht3tCoOKU8I8747nTE8Nrx1ojJBCPsGwMRET7IKy1EQwSqEcjHgLTPhCx81gvNzYGA/cmMvQH9/vxNnlyDiAolhH0488UTMmjULK1ascJYdc8wx+PznP4/ly5dLt5WKYUBfEPvM6OehFZoqrECuoCN6/agSxSGiIAjL+JXnoTthMIgPdhhrioorhKIQlolgnVenjuiViWFVIWwiaYbs2KmlEDYlcOLgHgE0vhg2IISNGCx4y+IuhiXXsIHdA8iNu4jEMBFL6J2ahKGhIbzwwgu47rrrPMvnzZuHZ599tqr84OCgx5m+v78fADCw94C4EdENuEq4pKrLQHzR9RfBRcFyfQFsyS7Qls/FOyE/BBMpRlhXjdcQs25Ist4eE86EB2dcFSdDCC24nN/DsJXdPd4JP2HkHgP3smQKwGBl/SBHCJfTg9pCWOY3LIPnAjEshpN8q7A9hopCmD3+fMfEpup8Y48d97aV8QqDyrHhB3tM2+j0j6zCYirngwiVCctBET08OgQZ23qKYeYeM7B3P4DypDOCiBskhiW8//77KBaLVSFNxo0bxw2AvXz5ctx4441VyydOXxRZHwmCIAiiUdi7dy9yuVy9u0EQHkgMK8DGIRQFwL7++utxzTXXON/37NmDo446Cm+99Rad/DVmYGAAEydOxNtvv02v5GoIjXt9oHGvDzTu6liWhb1792L8+PH17gpBVEFiWMLYsWORSqWqrMC7du3iBsAWpXHM5XJ0oawTXV1dNPZ1gMa9PtC41wcadzXIKETEFQqtJqGlpQWzZ8/G2rVrPcvXrl1LAbAJgiAIgiBGAGQZ9uGaa65Bb28v5syZg56eHvz4xz/GW2+9hcsuu6zeXSMIgiAIgiBCQmLYhy9+8Yv461//iptuugnbt2/HjBkz8Jvf/AZHHXWU77bZbBZLly6V5jonooHGvj7QuNcHGvf6QONOECMDijNMEARBEARBNC3kM0wQBEEQBEE0LSSGCYIgCIIgiKaFxDBBEARBEATRtJAYJgiCIAiCIJoWEsMRcvfdd2Py5MlobW3F7Nmz8fvf/77eXYoNv/vd7zB//nyMHz8eiUQCv/zlLz3rLcvCDTfcgPHjx6OtrQ2nnnoqXn75ZU+ZwcFBLFq0CGPHjkVHRwfOO+88vPPOO54yu3fvRm9vL3K5HHK5HHp7e7Fnzx5Pmbfeegvz589HR0cHxo4diyuvvBJDQ0OeMlu3bsUpp5yCtrY2fOQjH8FNN92ERpt7unz5cnzyk5/EqFGjcPjhh+Pzn/88Xn31VU8ZGnfzrFixAjNnznQSM/T09ODxxx931tOY14bly5cjkUhg8eLFzjIae4IgAAAWEQmrVq2yMpmMde+991qvvPKKddVVV1kdHR3Wm2++We+uxYLf/OY31re+9S1r9erVFgBrzZo1nvW33HKLNWrUKGv16tXW1q1brS9+8YvWEUccYQ0MDDhlLrvsMusjH/mItXbtWmvz5s3WaaedZh133HFWoVBwypx11lnWjBkzrGeffdZ69tlnrRkzZljnnnuus75QKFgzZsywTjvtNGvz5s3W2rVrrfHjx1tXXHGFU6a/v98aN26cddFFF1lbt261Vq9ebY0aNcq67bbbohugCDjzzDOtn/zkJ9ZLL71kbdmyxTrnnHOsI4880vrwww+dMjTu5nn00UetX//619arr75qvfrqq9aSJUusTCZjvfTSS5Zl0ZjXgueee86aNGmSNXPmTOuqq65yltPYEwRhWZZFYjgiTjjhBOuyyy7zLPv4xz9uXXfddXXqUXxhxXCpVLK6u7utW265xVl28OBBK5fLWT/60Y8sy7KsPXv2WJlMxlq1apVT5t1337WSyaTV19dnWZZlvfLKKxYAa8OGDU6Z9evXWwCsP/3pT5ZllUV5Mpm03n33XafMv/3bv1nZbNbq7++3LMuy7r77biuXy1kHDx50yixfvtwaP368VSqVDI5Ebdm1a5cFwFq3bp1lWTTutWT06NHWfffdR2NeA/bu3WsdffTR1tq1a61TTjnFEcM09gRB2JCbRAQMDQ3hhRdewLx58zzL582bh2effbZOvWoctm3bhh07dnjGL5vN4pRTTnHG74UXXkA+n/eUGT9+PGbMmOGUWb9+PXK5HE488USnzEknnYRcLucpM2PGDIwfP94pc+aZZ2JwcBAvvPCCU+aUU07xBNY/88wz8d577+GNN94wPwA1or+/HwAwZswYADTutaBYLGLVqlXYt28fenp6aMxrwOWXX45zzjkHc+fO9SynsScIwobEcAS8//77KBaLGDdunGf5uHHjsGPHjjr1qnGwx0g2fjt27EBLSwtGjx4tLXP44YdX1X/44Yd7yrDtjB49Gi0tLdIy9vdG/T0ty8I111yDT3/605gxYwYAGvco2bp1Kzo7O5HNZnHZZZdhzZo1mDZtGo15xKxatQqbN2/G8uXLq9bR2BMEYUPpmCMkkUh4vluWVbWMEBNk/NgyvPImyliVSS2N+nteccUV+MMf/oBnnnmmah2Nu3mmTp2KLVu2YM+ePVi9ejUuueQSrFu3zllPY26et99+G1dddRWeeOIJtLa2CsvR2BMEQZbhCBg7dixSqVTV0/yuXbuqnvyJarq7uwFUW0Pc49fd3Y2hoSHs3r1bWmbnzp1V9f/lL3/xlGHb2b17N/L5vLTMrl27AFRblRqBRYsW4dFHH8VTTz2FCRMmOMtp3KOjpaUFU6ZMwZw5c7B8+XIcd9xxuPPOO2nMI+SFF17Arl27MHv2bKTTaaTTaaxbtw4/+MEPkE6nhVZXGnuCaD5IDEdAS0sLZs+ejbVr13qWr127FieffHKdetU4TJ48Gd3d3Z7xGxoawrp165zxmz17NjKZjKfM9u3b8dJLLzllenp60N/fj+eee84ps3HjRvT393vKvPTSS9i+fbtT5oknnkA2m8Xs2bOdMr/73e88YZCeeOIJjB8/HpMmTTI/ABFhWRauuOIKPPLII/jtb3+LyZMne9bTuNcOy7IwODhIYx4hp59+OrZu3YotW7Y4nzlz5uDiiy/Gli1b8NGPfpTGniCIMrWbq9dc2KHV7r//fuuVV16xFi9ebHV0dFhvvPFGvbsWC/bu3Wu9+OKL1osvvmgBsG6//XbrxRdfdELP3XLLLVYul7MeeeQRa+vWrdaXvvQlbsijCRMmWE8++aS1efNm6zOf+Qw35NHMmTOt9evXW+vXr7eOPfZYbsij008/3dq8ebP15JNPWhMmTPCEPNqzZ481btw460tf+pK1detW65FHHrG6uroaLuTRP/3TP1m5XM56+umnre3btzuf/fv3O2Vo3M1z/fXXW7/73e+sbdu2WX/4wx+sJUuWWMlk0nriiScsy6IxryXuaBKWRWNPEEQZEsMR8q//+q/WUUcdZbW0tFizZs1yQlgRlvXUU09ZAKo+l1xyiWVZ5bBHS5cutbq7u61sNmv99//+362tW7d66jhw4IB1xRVXWGPGjLHa2tqsc88913rrrbc8Zf76179aF198sTVq1Chr1KhR1sUXX2zt3r3bU+bNN9+0zjnnHKutrc0aM2aMdcUVV3jCG1mWZf3hD3+w/tt/+29WNpu1uru7rRtuuKHhwh3xxhuA9ZOf/MQpQ+Nunn/8x390rgOHHXaYdfrppztC2LJozGsJK4Zp7AmCsCzLSlgWpbchCIIgCIIgmhPyGSYIgiAIgiCaFhLDBEEQBEEQRNNCYpggCIIgCIJoWkgMEwRBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCGLEMWnSJCQSCSQSCezZsydUXaeeeqpT15YtW4z0jyAIgogPJIYJgoglxWIRJ598Mv7u7/7Os7y/vx8TJ07Ev/zLv0i3v+mmm7B9+3bkcrlQ/XjkkUfw3HPPhaqDIAiCiC8khgmCiCWpVAoPPvgg+vr6sHLlSmf5okWLMGbMGHz729+Wbj9q1Ch0d3cjkUiE6seYMWNw2GGHhaqDIAiCiC8khgmCiC1HH300li9fjkWLFuG9997Dr371K6xatQoPPvggWlpatOp64IEHcMghh+Cxxx7D1KlT0d7ejgsuuAD79u3Dgw8+iEmTJmH06NFYtGgRisViRHtEEARBxI10vTtAEAQhY9GiRVizZg3+4R/+AVu3bsW3v/1tfOITnwhU1/79+/GDH/wAq1atwt69e3H++efj/PPPxyGHHILf/OY3+H//7//h7/7u7/DpT38aX/ziF83uCEEQBBFLSAwTBBFrEokEVqxYgWOOOQbHHnssrrvuusB15fN5rFixAh/72McAABdccAF++tOfYufOnejs7MS0adNw2mmn4amnniIxTBAE0SSQmwRBELHnf//v/4329nZs27YN77zzTuB62tvbHSEMAOPGjcOkSZPQ2dnpWbZr165Q/SUIgiAaBxLDBEHEmvXr1+OOO+7Ar371K/T09ODLX/4yLMsKVFcmk/F8TyQS3GWlUilwfwmCIIjGgsQwQRCx5cCBA7jkkkvw1a9+FXPnzsV9992HTZs24Z577ql31wiCIIgRAolhgiBiy3XXXYdSqYRbb70VAHDkkUfie9/7Hv75n/8Zb7zxRn07RxAEQYwISAwTBBFL1q1bh3/913/FAw88gI6ODmf5woULcfLJJ4dylyAIgiAIm4RFdxOCIEYYkyZNwuLFi7F48WIj9b3xxhuYPHkyXnzxxcBh3QiCIIh4QpZhgiBGJN/85jfR2dmJ/v7+UPWcffbZmD59uqFeEQRBEHGDLMMEQYw43nzzTeTzeQDARz/6USSTwZ/73333XRw4cABA2WdZN/MdQRAEEW9IDBMEQRAEQRBNC7lJEARBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCIIgCIIgmhYSwwRBEARBEETTQmKYIAiCIAiCaFpIDBMEQRAEQRBNC4lhgiAIgiAIomkhMUwQBEEQBEE0LSSGCYIgCIIgiKaFxDBBEARBEATRtJAYJgiCIAiCIJoWEsMEQRAEQRBE00JimCAIgiAIgmhaSAwTBEEQBEEQTQuJYYIgCIIgCKJpITFMEARBEARBNC0khgmCIAiCIIimhcQwQRAEQRAE0bSQGCYIgiAIgiCaFhLDBEEQBEEQRNNCYpggCIIgCIJoWkgMEwRBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCIIgCIIgmhYSwwRBEARBEETTQmKYIAiCIAiCaFpIDBMEQRAEQRBNC4lhgiAIgiAIomkhMUwQBEEQBEE0LSSGCYIgCIIgiKaFxDBBEARBEATRtJAYJgiCIAiCIJoWEsMEQRAEQRBE00JimCAIgiAIgmhaSAwTBEEQBEEQTQuJYYIgCIIgCKJpITFMEARBEARBNC0khgmCIAiCIIimhcQwQRAEQRAE0bSQGCYIgiAIgiCaFhLDBEEQBEEQRNNCYpggCIIgCIJoWkgMEwRBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCIIgCIIgmhYSwwRBEARBEETTQmKYIAiCIAiCaFpIDBMEQRAEQRBNC4lhgiAIgiAIomkhMUwQBEEQBEE0LSSGCYIgCIIgiKaFxDBBEARBEATRtJAYJgiCIAiCIJoWEsMEQRAEQRBE00JimCAIgiAIgmhaSAwTBEEQBEEQTQuJYYIgCIIgCKJpITFMEARBEARBNC0khgmCIAiCIIimhcQwQRAEQRAE0bSQGCYIgiAIgiCaFhLDBEEQBEEQRNNCYpggCIIgCIJoWkgMEwRBEARBEE0LiWGCIAiCIAiiaSExTBAEQRAEQTQtJIYJgiAIgiCIpoXEMEEQBEEQBNG0kBgmCIIgCIIgmhYSwwRBEARBEETT8v8BIdIM/Z5DpDcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwTZf7HP7nb0oNChVJOEZBLbhUWV0BFRA5FhEURuWRVwIPFnwoeIC6CcgjqiqucCoon6Hog4CKsK5WCsHLsCigIKiAqtFBo06TP7490pjOTuTNJJsn3/XrlBZ08M/PMJJl555vv830cjDEGgiAIgiAIgkhBnPHuAEEQBEEQBEHEC5JhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhIikZNGgQ0tPTcfr0acU2w4cPh8fjwYkTJ2LXMQ1GjRqFJk2axLsbshw7dgyPPvoounXrhry8PGRnZ6Nz5854+eWXEQwGw9rv3LkTN954IwoKCpCRkYGWLVtixowZOHfunKjdF198gTvuuAOdO3eGz+eDw+HA4cOHNfuzb98+vv327dt1HUNFRQWeeOIJNGnSBD6fDy1btsTzzz8f1q5JkyZwOByyj7S0NFHbkpISPPLII2jRogUyMjJQv359DBkyBHv37hW127VrF/r164dGjRohPT0dtWrVQrdu3bBy5UrFvs6fPx+XXHIJ0tPTUbNmTfzhD3/Al19+KWp37NgxjBo1CnXq1EFaWhratWuHJUuWhG3vxx9/xP33348ePXqgZs2acDgcWL58ueY5O3/+PFq0aAGHw4G5c+fK9lPPOQUAxhiWLVuGyy67DDVq1EB2djY6deqE999/X3Q8et9nn3/+ueLrVFhYqHlsBEEQAOCOdwcIIhqMHTsWa9euxeuvv47x48eHPV9cXIw1a9agf//+qFu3bhx6KM9jjz2G++67L97dkGXHjh149dVXcfvtt+Oxxx6Dx+PBJ598grvvvhuFhYVYunQp33bfvn34wx/+gIsvvhgLFixAXl4etmzZghkzZmDHjh0i+fnss8+wceNGdOzYEdnZ2fj88881+xIMBjFmzBjk5eXh559/1n0M48ePx2uvvYYnn3wSl156KT799FPcd999OHPmDKZOncq3W7NmDcrLy0XrHjlyBH/6058waNAg0fIBAwZg+/btmD59Orp06YIff/wRM2bMQLdu3bB79240btwYAHD69Gk0bNgQt9xyC+rXr4/S0lKsWrUKI0aMwOHDh/Hoo4+Kjm/QoEH44osv8OCDD+IPf/gDSktLsWPHDpSWlvLtiouLccUVV8Dv9+OZZ55BvXr18MYbb+COO+5AcXEx/vKXv/BtDx48iFWrVqFDhw64/vrr8cYbb+g6Z4899phon2bPKQDcfffdWL58OSZNmoRZs2YhEAhg9+7doi9IRt5nHE899RR69eolWta2bVtdx0cQBAFGEElIIBBgBQUFrHPnzrLPL1q0iAFg//jHP2Lcs8Tl999/Z36/P2z5hAkTGAB25MgRftkjjzzCALCDBw+K2v75z39mANjvv//OLwsGg/z/58yZwwCwQ4cOqfZlzpw5rH79+mzhwoUMACsqKtLs/549e5jD4WBPPfWUaPm4ceNYeno6++2331TXnz59OgPANm7cyC87cOAAA8AeffRRUdsvv/ySAWDz58/X7Nfll1/OGjZsKFr27LPPMqfTybZu3aq67qxZsxgAtn37dtHya6+9ltWoUYOdOnWKXyY8z0VFRQwAW7Zsmer2v/rqK+b1etnbb7/NALA5c+aInjdyTtesWcMAsDfffFN1n0beZ5s2bWIA2Ntvv626TYIgCDUoTYJISlwuF0aOHIkdO3Zg9+7dYc8vW7YM9erVQ9++ffllixYtQvv27ZGZmYmsrCy0bNkyLLKlhcPhwMSJE7Fs2TJcfPHFSE9PR5cuXVBYWAjGGObMmYMLL7wQmZmZuOqqq3Dw4EHR+nJpEtw2X3vtNbRq1QoZGRlo3749PvzwQ0N9i5Tc3Fx4PJ6w5ZdddhmA0M/wHFy7nJwcUduaNWvC6XTC6/Xyy5xOY5ehAwcO4PHHH8eLL76I7Oxs3eutXbsWjDGMHj1atHz06NE4f/481q1bp7guq/p5v2nTprjqqqv45WrHCSAspUKOvLw8uN3iH+kWLlyIK6+8El27dlVd99///jfq1q2Lzp07i5b3798fpaWlomMyep79fj/GjBmDCRMmoEuXLrJtjJzThQsXokmTJhg6dKjqfo28zwiCIKyAZJhIWsaMGQOHwxH2s+q+ffuwbds2jBw5Ei6XCwCwevVqjB8/Hj169MCaNWuwdu1aTJo0SfXnYSU+/PBDLF68GLNnz8Ybb7yBM2fOoF+/fpg8eTL+/e9/44UXXsDLL7+Mffv2YfDgwWCMaW7zo48+wgsvvIAZM2bg3XffRa1atTBo0CB8//33musGAgFdDz39kOOf//wn3G43WrRowS8bOXIkatasibvvvhvff/89zpw5gw8//BB///vfMWHCBNSoUcPUvhhjuOOOO9C/f38MHDjQ0Lp79uzBBRdcgPz8fNHydu3a8c8rsXHjRvzwww/8e4qjcePGuOGGG/Dss89i06ZNOHv2LP73v//h3nvvRaNGjTBs2LCwbVVWViIQCODkyZN48cUX8emnn+Khhx7inz969CgOHz6MSy65BFOnTkXdunXhdrvRpk0brFixQrQtv98Pn88Xtg9u2TfffKPjzMgzY8YMlJaW4sknn1Rso/ecBgIBbN26FR07dsT8+fPRuHFjuFwuNG3aFHPnztX13pN7n3FMmDABbrcb2dnZ6NOnD7744ouwNsuXL9edJ00QRIoRv6A0QUSfHj16sLy8PNHPrpMnT2YA2P79+/llEydOZDVr1ox4fwBYfn4+O3v2LL9s7dq1DADr0KEDq6ys5JcvWLCAAWDffPMNv2zkyJGscePGYdusW7cuKykp4ZcdP36cOZ1ONmvWLF190vPQ+slcjk8//ZQ5nU42adKksOf++9//spYtW4r2ce+994rOgRStNInnn3+e5ebmsuPHjzPGGFu2bJnuNInevXuziy++WPY5r9fL/vznPyuu+6c//Ym5XC72448/hj3n9/vZuHHjRMfZrl07xWO48847+XZer5e9+OKLoue3bt3KALDs7GzWunVr9tZbb7FPP/2U3XzzzQwAe/nll/m2999/P3M6neyHH34QbWPEiBEMgOIxaaVJ7Ny5k3k8HrZu3TrGGGOHDh2STZPQe06PHTvGH1ODBg3YihUr2GeffcbuuusuBoBNnTpVdhscSu+zr7/+mt13331szZo1bMuWLWzp0qWsVatWzOVy8X3nWLFiBXO5XGzFihWq+yIIIvUgGSaSmldffZUBYO+88w5jjLGKigpWt25d9sc//lG23bBhw9jatWvZyZMnTe0PALvllltEy7799lsGgE2ZMkW0/NNPPw3LW1aS4WHDhoXtKz8/n911112afSoqKtL1+PXXXw0cKWM7duxgOTk57A9/+AMrKysTPXfo0CHWrFkz1r17d/bOO++wzZs3s2eeeYZlZ2ezMWPGKG5TTYYPHz7MMjMz2eLFi/llRmW4ZcuWss95vV525513yj7322+/MZ/Px/r16yf7/NixY1mtWrXYs88+yzZv3szefPNN1qVLF3bhhReyw4cPh7X/4YcfWFFREfvoo4/YXXfdxZxOp0gy//3vf/OiLFy/srKSderUiTVo0IBftm/fPubz+dgVV1zB9uzZw3799Vf2wgsvMK/XywAovj/UZLiiooJ17NiR3XbbbfwyNRnWc05/+ukn/guANA/6xhtvZGlpaezMmTOy21F7n8lx6tQp1qBBA9auXTvNtgRBEIwxRtUkiKTm5ptvxj333INly5Zh8ODB+Pjjj3HixAk8/fTTonYjRoxAIBDAK6+8gsGDB6OyshKXXnop/vrXv6J3796G9lmrVi3R31x+rNLysrIyzW3Wrl07bJnP58P58+c11+3QoYNmGwB8yogedu7cid69e6N58+b4+OOPw36qf/jhh1FSUoJdu3bxKRFXXnkl8vLyMGbMGNx+++3o0aOH7v0BoZ/C27Zti8GDB/Ml87gqBGfPnkVxcXFY7q6Q2rVrY9euXWHLS0tL4ff7w14fjpUrV6K8vBx33HFH2HPr1q3DkiVL8Pbbb+Pmm2/ml1977bVo0qQJpk+fjmXLlonWadSoERo1agQAuP766wEAU6ZMwciRI3HBBRfwr3XLli35ShRAKHe8T58+mDVrFn755RfUqVMHrVq1wpo1a3DnnXfy1RMaNmyIefPm4Z577kH9+vUVz4cSCxYswPfff4+33nqLP88lJSUAQu/V06dPIysrCy6XS/c5zc3NhcPhQFZWVlgedN++fbF27Vrs27ePzwvm0HqfyVGzZk30798fL730Es6fP4/09HTD54AgiNSCcoaJpCY9PR233HIL1q1bh2PHjmHp0qXIysrCkCFDwtqOHj0aX375JYqLi/HRRx+BMYb+/fvjhx9+iEPPrcPj8eh6SPNRldi5cyeuueYaNG7cGOvXr5cV0F27dqF169ZhucGXXnopAPX8XCX27NmDwsJC5Obm8o8JEyYAAHr16iUSRzkuueQSnDx5EsePHxct5wZYKpXiWrJkCerWrYv+/fuHPceJIHdcHDVr1kSzZs10Hedll12GQCDA539fdNFFyMjIkG3LqnJrhYPh+vbtix9++AH79+/Hvn37cOjQIV6or7zySs39S9mzZw+Ki4vRvHlz/jy3b98eQKjMWm5uLn/O9J7T9PR0NG/eXPcxAfreZ0pw2xTmdxMEQShBMkwkPWPHjkUwGMScOXPw8ccfY9iwYYqyAQA1atRA37598cgjj8Dv94dNnpBoFBUV6XoMGDBAc1u7du3CNddcgwYNGmDDhg3Izc2VbVdQUIC9e/fi7NmzouVbt24FADRo0MDwcaxevRqbNm0SPbiBZy+99JJmdY0bbrgBDocjTPqXL1+O9PR0XHfddWHrbN++Hd988w1GjhwZVvEBCB0ngLAJHn777Tfs379f13Fu2rQJTqcTTZs2BQC43W7ccMMN+O9//yuafIQxhnXr1uGiiy5CXl6eaBsOhwPNmzdHq1atEAwGsXDhQnTo0MGUDD/88MNh55mrSXzXXXdh06ZNaNasGQBj53Tw4MEoKSkJmzTk448/RmZmJtq0acMv0/s+k+PUqVP48MMP0aFDB13VPAiCIChNgkh6unTpgnbt2mHBggVgjGHs2LFhbcaNG4f09HR0794d9erVw/HjxzFr1izk5OSERf0SDaWyWEb59ttvcc011wAAZs6ciQMHDuDAgQP88xdddBEuuOACAMD999+PG2+8Eb1798akSZOQl5eHwsJCzJo1C61btxaVtDt58iQ2b94MoDqi+Mknn+CCCy7ABRdcwKdTyJUZ42Sxc+fOouN89dVXMWbMGCxduhS33347AKBNmzYYO3Yspk2bBpfLhUsvvRTr16/Hyy+/jL/+9a+yaRLcTG5y7xkAuOmmm/D444/j7rvvxo8//ohOnTrh2LFjmDNnDs6dOyeaQOXPf/4zsrOzcdlll6Fu3br49ddf8fbbb+PNN9/E//3f//HnDgCefPJJfPLJJ7juuuswffp0ZGdnY/HixfjPf/6Dt956S9SHe+65Bz179kTt2rXx/fff47nnnsOPP/7In1Mh77zzDgDwUejt27cjMzMTAPg0j5YtW6Jly5ay5/miiy5Cz549+eVGzukDDzyAVatWYciQIXjyySfRoEEDvPPOO/jggw8wd+5cPp3ByPvs1ltvRaNGjdClSxfk5eXhwIEDmDdvHk6cOBFWNWL58uUYPXo0li1bhlGjRsm8mgRBpCzxTFgmiFjBTc7QunVr2edXrFjBevXqxerWrcu8Xi8rKChgQ4cOFVV60AMANmHCBNEypcFHchMGKA2gk26TMcYaN27MRo4caah/kcANVlN6SAdj/fOf/2TXXnsty8/PZ+np6axFixZs8uTJYQP1uPMg9+jRo4euPkkH0HHLpX3y+/1s2rRprFGjRszr9bIWLVqw5557Tnbb586dYzk5OezKK69U7cOxY8fYxIkTWbNmzVhaWhorKChg/fr1CxsotnTpUvbHP/6R5eXlMbfbzWrWrMl69OjBXnvtNdnt7t69m/Xr149lZWWxtLQ01rVrV9lJYm644QZWr1495vF4WH5+Phs1apTswD3G1CuLqKH0HmbM2Dk9cuQIGzZsGMvNzWVer5e1a9eOLV26VNTGyPts1qxZrEOHDiwnJ4e5XC52wQUXsEGDBrFt27aF7fv5559nAMKqTBAEQTgYM1lclCAIgiAShKFDh+LQoUMoKiqKd1cIgrAZlCZBEARBJDWMMXz++edYuXJlvLtCEIQNocgwQeggEAioPu90Og1Pd0sQBEEQRPyhuzdB6ECrLNmYMWPi3UWCIAiCIExAaRIEoQOtPENpqSuCIAiCIBIDSpMgCIIgCIIgUhZKkyAIDQYNGoT09HR+alo5hg8fDo/HgxMnTsSuY0nOvn374PP54HA4sH37dtFz7733Hm655RY0a9YM6enpaNKkCYYPHy6qR8vxyCOPoGPHjqhVqxbS0tLQtGlT/PnPf9acWXDjxo1wOBxwOBz49ddfNft75swZPPjgg7j22mtxwQUXwOFwYPr06bJtn3vuOXTt2hV5eXnw+Xxo1KgRhg0bpjjByw8//IAxY8agoKAAPp8P9evXx6BBg0RtevbsyfdX7iGcJe7DDz/E7bffjksuuQQej0d1praDBw9ixIgRaNSoEdLT03HRRRfhL3/5C3777TdRuyZNmijuWzr5hVLbu+66S+0UEwRBRAVKkyAIDcaOHYu1a9fi9ddfx/jx48OeLy4uxpo1a9C/f3/UrVs3Dj1MPoLBIMaMGYO8vDz8/PPPYc8//fTTyM/PxyOPPIKmTZvi6NGjeOqpp9CpUycUFhaKZjM7ffo0brnlFrRq1QpZWVnYt28f/vrXv+KDDz7A3r17+amLhZw9exbjxo1DQUGB7P7l+O233/Dyyy+jffv2uPHGG7F48WLVtn379kX79u2Rm5uL77//HrNnz8bll1+OHTt24OKLL+bb7tmzBz179kTTpk0xd+5cNGjQAMeOHcOnn34q2uaLL76IkpIS0bJz587huuuuQ+fOnZGfn88vX7NmDQoLC9GxY0f4fD7s2LFDtp8nT55E165dkZ2djSeffBKNGjXCzp07MW3aNGzatAk7duzgB46uWbMG5eXlovWPHDmCP/3pT2HiDgDdu3fH3LlzRcvo80MQRFyIY41jgkgIAoEAKygoYJ07d5Z9ftGiRQyA7IQIhDnmzJnD6tevz0+WIp1U48SJE2Hr/PTTT8zj8bCxY8dqbv/jjz9mANiSJUtkn58wYQLr2LEje/TRRxkAdvLkSc1tVlZWssrKSsYYYydPnmQA2LRp0zTX49i3bx8DwB577DHRNjt06MA6dOjAysrKdG+LY/ny5QwAW7x4sWh5MBjk/z9hwgTFSTdeeeUVBoBt3LhRtPypp55iANjXX3+tuv/p06fLrt+4cWPWr18/I4dCEAQRNShNgiA0cLlcGDlyJHbs2MFPFyxk2bJlqFevnmiK4UWLFqF9+/bIzMxEVlYWWrZsialTpxrar8PhwMSJE7Fs2TJcfPHFSE9PR5cuXVBYWAjGGObMmYMLL7wQmZmZuOqqq3Dw4EHR+hs2bMANN9yABg0aIC0tDc2aNcOdd94p+sm/rKwMHTt2RLNmzVBcXMwvP378OPLz89GzZ08Eg0FD/Y6UAwcO4PHHH8eLL76I7Oxs2TZ16tQJW1ZQUIAGDRrg6NGjmvvgpvN1u8N/HPvXv/6Fl19+GYsXL4bL5dLdb+6nfrPI9WnLli3YtWsX7r//fvh8PsPbXLJkCTIzM/GnP/1JtFxvGUCPxwMAyMnJES2vWbMmAISlPwhhjGHZsmVo2rQprrrqKgO9JgiCiC0kwwShgzFjxsDhcGDp0qWi5fv27cO2bdswcuRIXpxWr16N8ePHo0ePHlizZg3Wrl2LSZMmobS01PB+P/zwQyxevBizZ8/GG2+8gTNnzqBfv36YPHky/v3vf+OFF17Ayy+/jH379mHw4MFggvGw3333Hbp164ZFixZh/fr1ePzxx/HVV1/hiiuuQEVFBYCQzLz11lv45Zdf+PJwlZWVGD58OBhjeOONNzSFMBAI6HowHWN1GWO444470L9/fwwcONDQufr+++/xww8/iFIkpP08f/48du7cifvvvx8tWrTATTfdJGpz/vx5jB07Fvfffz86depkaP9mCAaDKC8vx//+9z/ccccdqFOnDkaPHs0/v2XLFgBAVlYWrr/+eqSlpSEzMxP9+/fH//73P9VtHzhwAP/6178wbNgwZGZmmurfjTfeiEaNGmHy5MnYu3cvzp49iy1btmD27NkYMGAAWrVqpbjuxo0b+VxnuS8JW7ZsQVZWFjweD1q3bo158+bJfvFyOBzo2bOnqf4TBEHoIp5haYJIJHr06MHy8vKY3+/nl02ePJkBYPv37+eXTZw4kdWsWTPi/QFg+fn57OzZs/yytWvXMgCsQ4cO/E/yjDG2YMECBoB98803stuqrKxkFRUV7IcffmAA2Pvvvy96/s0332QA2IIFC9jjjz/OnE4nW79+vWYfDx06xADoemzatElze88//zzLzc1lx48fZ4wxtmzZMtk0CSkVFRWsZ8+eLDs7mx05ciTs+WPHjon6cvnll7OffvoprN3kyZNZ06ZN2blz5xhjjE2bNk13moQQvWkSPp+P71OLFi3Yvn37RM/feeedDADLzs5mY8eOZRs3bmSvvfYaa9y4McvLy2M///yz4rYfeughBoBt3bpVtQ9qaRKMMfbzzz+zbt26ic7fkCFDNNM2/vSnPzGXy8V+/PHHsOfGjx/Pli5dyjZv3szWrl3Lhg8fzgCw2267Layty+ViV111leq+CIIgIoFkmCB08uqrrzIA7J133mGMhQSsbt267I9//KNsu2HDhrG1a9caFikOAOyWW24RLfv2228ZADZlyhTR8k8//TQsb/nEiRPszjvvZA0aNGBOp1MkM7Nnzw7b39133808Hg9zOp3s0Ucf1dXH8vJyVlRUpOtRUlKiuq3Dhw+zzMxMUX6rHhmurKxkt99+O3O5XGzt2rWybSoqKlhRURH74osv2CuvvMKaN2/OWrRoIZLJr776irlcLrZhwwZ+WbRleMeOHWzr1q1s5cqVrHPnzqxu3bpsz549/PPjxo1jAFifPn1E6+3cuZMBYI888oji8ebn57M2bdpo9lVNhn///Xd26aWXsjZt2rBVq1axLVu2sBdffJHVq1ePXXvttayiokJ2vd9++435fD5DecETJ07UlYdMEARhNSTDBKGTc+fOsZycHP4G//777zMAbPny5WFtly5dyrp168ZcLhdzOBzssssu0xVpFQKATZgwQbSMi8TOmTNHtHzTpk0MAHv77bcZY6EBUu3bt2cXXHABe+6559imTZvYtm3bWGFhoaKkFRUVMQDM6/WyX375RXc/KyoqdD2EkWw5+vXrx7p27cpOnTrFP/72t7/xUeXTp0+HrVNZWcnGjBnDnE4ne+2113T3+ejRo8ztdrN7772XX9amTRs2ZMgQ0f656Op3332nKfNCzAygKykpYXXq1GEDBw7klz388MMMAJs/f35Y+3r16rG+ffvKbot7bz777LOa+1WT4Yceeoh5PJ6wCPQ///lPxfc+Y4wf+LhmzRrN/XNw780XX3xR9zoEQRBWQKXVCEIn6enpuOWWW/DKK6/g2LFjWLp0KbKysjBkyJCwtqNHj8bo0aNRWlqKLVu2YNq0aejfvz/279+Pxo0bR72ve/bswX/+8x8sX74cI0eO5JdLB9lxlJaWYsSIEWjRogVOnDiBO+64A++//77mfg4fPowLL7xQV582bdqkmvu5Z88e/PDDD8jNzQ17rlevXsjJyRHVemZV+cXLli3DkiVLcNttt+nqBwA0aNAABQUF2L9/P79s79692Lt3L95+++2w9hdddBHat2+PXbt26d6HUbiBlsI+tWvXTrE9Y0xxINySJUvg9XoxYsSIiPq0a9cu1K9fH/Xq1RMtv/TSSwGEXjOl/detWxf9+/fXvS9WlVOud3AfQRCEVZAME4QBxo4di5deeglz5szBxx9/jFGjRiEjI0OxfY0aNdC3b1/4/X7ceOON2Lt3b0xkmBuwJK1A8Pe//122/V133YUjR45g27Zt+N///oebb74Zzz77LCZNmqS6n4KCAs2pqjmEtXPlWL16NcrKykTL1q1bh6effhovvfSSaGAcYwzjxo3DsmXL8Pe//1006EwPBw8exI8//igapLdp06awdsuXL8eKFSuwdu1a1K9f39A+jPLrr79i9+7d6N69O7+sb9++yMjIwCeffCJ6Lb7++mscP34cXbt2DdvO8ePH8fHHH+Omm26SraFshIKCAnz22Wf46aefRMe/detWAKEvFVK2b9+Ob775Bg8++KBstQ4lXn31VQCQPSaCIIhoQjJMEAbo0qUL2rVrhwULFoAxhrFjx4a1GTduHNLT09G9e3fUq1cPx48fx6xZs5CTk8NH1KJNy5YtcdFFF+Hhhx8GYwy1atXCP/7xD2zYsCGs7eLFi7Fy5UosW7YMbdq0QZs2bTBx4kQ89NBD6N69Oy677DLF/Xi9XnTp0sWSPstJ0OHDhwEAnTt3Fu3n3nvvxZIlSzBmzBhccsklKCws5J/z+Xzo2LEjAOCbb77BpEmTcPPNN6Np06ZwOp3YvXs3nn32WdSuXRsPPPAAv55c1Przzz8HEJogIi8vj18+Y8YMzJgxA5999hl69OjBL//kk09QWlqKM2fOAAhVG3nnnXcAANdffz0yMjJQXFyM3r1749Zbb0Xz5s2Rnp6O/fv3Y+HChSgvL8e0adP47dWsWRMzZszAAw88gFGjRuGWW27B8ePH8dhjj6FRo0ayk8CsWLECgUAAd9xxh+K5/uGHH/gvMd999x0A8P1s0qQJf64nTJiAVatWoXfv3nj44YfRsGFD7NmzB3/9619Rt25dDB8+PGzbS5YsAQDZzwYAvP7663jvvffQr18/NG7cGKdPn8bbb7+N1atXY9SoUWjfvr2ovcPhQI8ePfjXgiAIwnLimaNBEIkIlw/ZunVr2edXrFjBevXqxerWrcu8Xi8rKChgQ4cOVaz0oAQiyBlmLDSJQ+/evVlWVhbLzc1lQ4YMYUeOHBHlsn7zzTcsPT2djRw5UrS9srIy1rlzZ9akSRN26tQpQ/22EqUBdI0bN1asWtG4cWO+3fHjx9ltt93GLrroIpaRkcG8Xi9r2rQpu+uuu2SrTkhRGkDHLZdWyFDr16FDhxhjoXN7xx13sFatWrHMzEzmdrtZgwYN2G233cb27t0r249XXnmFtW3blnm9Xla7dm02fPhwdvToUdm2LVq0YE2aNFHN0ebOq9xD+l74+uuv2aBBg1iDBg2Yz+djTZs2ZXfccYfs+ePy6q+88krFfW/dupVdffXVLD8/n3k8HpaRkcEuvfRS9uKLL4omA2GMsTNnzvCDUQmCIKKFgzEdxT8JgiAIIsZ8/PHH6N+/P/7zn//gkksuiXd3CIJIUmikAkEQBGFLNm3ahGHDhpEIEwQRVSgyTBAxJhAIqD7vdDppRD1BEARBxAi64xJEjPF4PKoPblpkgiAIgiCiD1WTIIgYo1WKTFi1gCAIgiCI6EJpEgRBEARBEETKQmkSBEEQBEEQRMpCMkwkDIMGDUJ6erpoSl4pw4cPh8fjwYkTJ2LXsRTm6NGjGDRoEJo2bYoaNWogJycHHTt2xAsvvKA5UPC2226Dw+GQnbL3zJkzuPfee1G/fn34fD60aNECzzzzDILBoKjdP//5T4wZMwYtW7ZEjRo1UL9+fdxwww3YsWOH7mPYtGkTevfujTp16iAzMxPt2rXDc889J9rX4cOH4XA4FB/XXXed4vY3btzIt/v111/Dnv/+++9x0003oWbNmsjMzETv3r3x9ddfh7Vr0qSJ7L7vuusuUbvPP/9csZ/CyUkA4LnnnkPXrl2Rl5cHn8+HRo0aYdiwYdi7d6/qOdu3bx98Ph8cDge2b98e9vwvv/yCUaNGIS8vDxkZGejWrRs+++yzsHY9e/bUdT6nT5+uev5Xr14tas8Yw7Jly3DZZZehRo0ayM7ORqdOnXRNMU4QROpBOcNEwjB27FisXbsWr7/+uuzMW8XFxVizZg369++PunXrxqGHqUdpaSmys7P5GdH8fj8+/vhj3HPPPdi1axcWL14su95HH32EtWvXIjs7O+y5QCCA3r17Y//+/XjyySfRokULrFu3Dg8//DB+/PFHPPfcc3zbRYsW4bfffsN9992H1q1b4+TJk5g3bx66du2KTz/9FFdddZVq/zdu3Ig+ffrgyiuvxCuvvIIaNWrggw8+wH333YfvvvsOCxcuBADUq1ePn4JYyNq1a/H0009j0KBBsts/e/Ysxo0bh4KCAvz8889hz588eRJ//OMfkZubi6VLlyItLQ2zZs1Cz549UVRUFDaFdffu3TF37lzRMqX3+lNPPYVevXqJlrVt21b092+//Ya+ffuiffv2yM3Nxffff4/Zs2fj8ssvx44dO2Sn0A4GgxgzZgzy8vJkj6m8vBxXX301Tp8+jYULF6JOnTr429/+huuuuw4bN24UzdgHAE2bNsWqVatEy2rWrCn6+4477pD9wjFu3Dh89913Yc/dfffdWL58OSZNmoRZs2YhEAhg9+7dOHfuXPiJIgiCiOOEHwRhiEAgwAoKCljnzp1ln1+0aBEDwP7xj3/EuGeElKFDhzK3283KysrCnjt9+jSrX78+mz9/PmvcuDHr16+f6Pk33niDAWDvvvuuaPmf//xn5nQ62f/+9z9+2YkTJ8K2f+bMGVa3bl129dVXa/Zz+PDhzOfzsbNnz4qWX3vttSw7O1tz/Z49e7KMjAxWXFws+/yECRNYx44d2aOPPio7k93//d//MY/Hww4fPswvKy4uZnl5eWzo0KGitnLnSg652QiNsG/fPgaAPfbYY7LPz5kzh9WvX5+fiVE6O+Df/vY3BoB9+eWX/LKKigrWunVrdtlll4na9ujRg7Vp08ZUPw8dOsQcDge77bbbRMvXrFnDALA333zT1HYJgkg9KE2CSBhcLhdGjhyJHTt2YPfu3WHPL1u2DPXq1UPfvn35ZYsWLUL79u2RmZmJrKwstGzZElOnTjW0X4fDgYkTJ2LZsmW4+OKLkZ6eji5duqCwsBCMMcyZMwcXXnghMjMzcdVVV+HgwYNh29i4cSOuvvpqZGdnIyMjA927dw/72fjgwYMYPXo0mjdvjoyMDNSvXx8DBgwIO1buZ/A33ngDjzzyCAoKCpCdnY1rrrkG3377raFjixYXXHABnE4nXC5X2HOTJ09GvXr1cO+998qu++9//xsOh0P0OgJA//79UVlZiTVr1vDL6tSpE7Z+ZmYmWrdujaNHj2r20+PxwOv1Ij09XbS8Zs2aSEtLU133u+++w+bNmzF06FDZCPe//vUvvPzyy1i8eLHseQCANWvW4KqrrkLjxo35ZdnZ2bjpppvwj3/8QzPVJBpccMEFAAC3O/yHwwMHDuDxxx/Hiy++KHvMQOiYLr74YnTr1o1f5na7cdttt2Hbtm346aefLOnn0qVLwRjDHXfcIVq+cOFCNGnSBEOHDrVkPwRBJD8kw0RCMWbMGDgcDixdulS0fN++fdi2bRtGjhzJi8fq1asxfvx49OjRA2vWrMHatWsxadIklJaWGt7vhx9+iMWLF2P27Nl44403cObMGfTr1w+TJ0/Gv//9b7zwwgt4+eWXsW/fPgwePBhMUKRl5cqVuPbaa5GdnY0VK1bgrbfeQq1atdCnTx+REP/888+oXbs2Zs+ejXXr1uFvf/sb3G43Lr/8clnJnTp1Kn744QcsXrwYL7/8Mg4cOIABAwaE5dVKYYwhEAjoeuiF2+apU6fw5ptvYvny5Zg8eXKYUG3cuBGvvvqqqiD6/X44nU54PB7Rcp/PBwD45ptvVPtSXFyMr7/+Gm3atNHs91133QW/3497770XP//8M06fPo3XXnsNa9aswYMPPqi6rpKMAcD58+cxduxY3H///ejUqZPs+ufPn8d3332Hdu3ahT3Xrl07nD9/Ht9//71o+ZYtW5CVlQWPx4PWrVtj3rx5iq/3hAkT4Ha7kZ2djT59+uCLL75QPJZgMIjy8nL873//wx133IE6depg9OjRojbcsfbv3x8DBw5U3NaePXsUjwlAWD7yd999h1q1asHtduOiiy7CI488gvPnzytuHwAqKyuxfPlyNGvWTJR2EQgEsHXrVnTs2BHz589H48aN4XK50LRpU8ydO1f0uQSAUaNGweFw4PDhw6r7IwgiyYlfUJogzNGjRw+Wl5fH/H4/v2zy5MkMANu/fz+/bOLEiaxmzZoR7w8Ay8/PF/2UvnbtWgaAdejQgVVWVvLLFyxYwACwb775hjHGWGlpKatVqxYbMGCAaJvBYJC1b98+7GdjIYFAgPn9fta8eXM2adIkfjn3M/j1118vav/WW28xAGzr1q2qx8Otr+dx6NAhzfPDGGOzZs3i13E4HOyRRx4Ja3PmzBnWpEkTNmXKFH6Z3E//3Dn817/+JVr+2GOPMQDs2muvVe3L8OHDmdvtZtu3b9fV93//+9+soKCA77/L5WLPPPOM6jqBQIDVr1+ftWzZUvb5yZMns6ZNm7Jz584xxhibNm1aWJrETz/9xACwWbNmha3/+uuvh6UajB8/ni1dupRt3ryZrV27lg0fPpwBCEsT+Prrr9l9993H1qxZw7Zs2cKWLl3KWrVqxVwuF1u3bp1sf30+H3/8LVq0YPv27Qtr8/zzz7Pc3Fx2/Phxxhhjy5Ytk02T8Hg87M477wxb/8svv2QA2Ouvv84ve+SRR9iLL77I/vnPf7KPPvqITZw4kbndbnbllVeyYDAo21fGGPvkk09kz92xY8cYAJadnc0aNGjAVqxYwT777DN21113MQBs6tSpovZjxoxhLpdLlKZCEETqQTJMJByvvvoqA8DeeecdxlgoH7Fu3brsj3/8o2y7YcOGsbVr14bla+oFALvllltEy7799lsGQCR2jDH26aefivKWN2zYwPe1oqJC9HjooYeYw+HgJbuiooLNnDmTtWrVink8HpGUXnfddfw+OJl96aWXRPv+3//+xwCw1atXqx5PSUkJKyoq0vUoLy/XdY6OHTvGioqK2Keffsoeeugh5vV62cSJE0VtJkyYwJo3b87Onz/PL5OT4ZMnT7JatWqxVq1ascLCQnbq1Cn2+uuvs5ycnLBzIYXLzX3++ed19Xv79u2sTp06bMCAAewf//gH++c//8keffRR5vV62YwZMxTX+/DDDxkANmfOnLDnvvrqK+ZyudiGDRv4ZWoyPHv27LBtcDKs9cVm4sSJDAD7+uuvVdudOnWKNWjQgLVr1072+R07drCtW7eylStXss6dO7O6deuyPXv28M8fPnyYZWZmssWLF/PL1GT4rrvuCtsHJ8NvvPGGal/nzp3LALD33ntPsc3NN9/M3G43O3bsmGg5d07lzt2NN97I0tLS2JkzZ1T3TxBE6kEyTCQc586dYzk5ObxEvf/++wwAW758eVjbpUuXsm7dujGXy8UcDge77LLL2Pr16w3tDwCbMGGCaNmhQ4dkZUg6eGnlypWa0dcjR44wxhi75557mNPpZFOmTGHr1q1jX331FSsqKmLt27dnPXr0UNyHtE/Lli1TPZ7KysowMVd6mGX27NkiSfvqq6+Yw+Fga9asYadOneIfDRs2ZH369GGnTp0SDbbbtm0ba9WqFX+OateuzZYsWcIAsLFjx8ruc/r06QwAmzlzpu5+Xn755eySSy5hgUBAtPzxxx9nTqeTfffdd7LrDRo0iHk8HtkBfG3atGFDhgwRHedDDz3EALDvvvuOlZSUMMZC72OHw8H+7//+L2wbL7zwAgPAvv32W9X+FxYWMgDsxRdf1DxWLjrKRauVKCkpYXXq1GEDBw7kl/Xr14917dpVdEzcQLlNmzax06dP823z8/PZkCFDwrbLfYH49NNPVfd//PhxBoA9+OCDss+fPHmSeb1edsMNN4Q9x51TucGPf//73xkA9tVXX6nunyCI1INKqxEJR3p6Om655Ra88sorOHbsGJYuXYqsrCwMGTIkrO3o0aMxevRolJaWYsuWLZg2bRr69++P/fv3iwYtRQtuauXnn38eXbt2lW3DlcZauXIlbr/9djz11FOi53/99dewUlORsHnz5rCSW0ocOnQITZo0MbyPyy67DACwf/9+dOzYEfv27QNjTLYE2dGjR5Gbm4tnn30W999/PwDg0ksvxb59+3D48GGUlpaiefPmfO3gK6+8MmwbTzzxBKZPn47p06cbGiC5a9cu3HLLLWH5y5deeikqKyvx3//+F02bNhU998svv+DDDz/EwIEDZQfw7d27F3v37sXbb78d9txFF12E9u3bY9euXUhPT0ezZs1kB4Pu3r0b6enpYfuWwqpyYJ1O7eEfXFuHw6Hajhtoun//fn7Znj178MMPPyA3Nzesfa9evZCTk8PX/77kkksUjwkIL++mhNIxvfbaa/D7/bK52unp6WjevDmOHz8e9pyRc0UQRGpBMkwkJGPHjsVLL72EOXPm4OOPP8aoUaOQkZGh2L5GjRro27cv/H4/brzxRuzduzcmMty9e3fUrFkT+/btw8SJE1XbOhwOfpAYx0cffYSffvoJzZo1s6xPnTt3RlFRka62BQUFpvaxadMmAOD7fd111/HLhAwbNgwXXnghZs2aJXuMnIgzxjBv3jwUFBSEfel58sknMX36dDz66KOYNm2aoX4WFBRg+/btCAaDIiHmago3aNAgbJ1XX30VFRUVGDt2rOw25Y5z+fLlWLFiBdauXYv69evzywcNGoQFCxbg6NGjaNiwIYDQhCPvvfceBg4cKFvRQdoXAIpftDhOnTqFDz/8EB06dNCskvHrr79i9+7d6N69O79s9erVKCsrE7Vbt24dnn76abz00kuiwYqDBg3C+PHj8dVXX+Hyyy8HEBrYtnLlSlx++eWa76kVK1aoHtOSJUtQUFAQVm2EY/DgwZg1axa+/PJL/OEPf+CXf/zxx8jMzNQ1sJIgiNSCZJhISLp06YJ27dphwYIFYIzJism4ceOQnp6O7t27o169ejh+/DhmzZqFnJwcXHrppTHpZ2ZmJp5//nmMHDkSv//+O26++WbUqVMHJ0+exH/+8x+cPHkSixYtAhAqHbZ8+XK0bNkS7dq1w44dOzBnzhxZIYuErKwsdOnSxZJtTZs2DSdOnMCVV16J+vXr4/Tp01i3bh1eeeUVDBkyBJ07dwYA5OfnIz8/P2z9tLQ01K5dGz179hQtf+SRR3DJJZegXr16OHLkCJYuXYqvvvoKH330kagM2rx58/D444/juuuuQ79+/cJmWBMK1dixY7FixQp89913/BehSZMm4d5778WAAQNw5513IiMjA5999hnmzZuHa665Bu3btw/r85IlS9CwYUP06dNH9pxIjwUIlcMDQl+OuF8LAOCBBx7Aa6+9hn79+mHGjBnw+XyYPXs2ysrKMH36dL7d66+/jvfeew/9+vVD48aNcfr0abz99ttYvXo1Ro0aJernrbfeikaNGqFLly7Iy8vDgQMHMG/ePJw4cQLLly/n2xUXF6N379649dZb0bx5c6Snp2P//v1YuHAhysvLRV8s5MSUq8DQuXNn0ftpzJgx+Nvf/oYhQ4Zg9uzZqFOnDl588UV8++232LhxI9/uX//6F2bOnMnPYFhWVoZPPvkEL7/8Mq666ioMGDAgbJ9fffUV9u7di6lTpypWI3nggQewatUqDBkyBE8++SQaNGiAd955Bx988AHmzp0rev+MGjUKK1asMP0LCEEQSUI8czQIIhK4ov+tW7eWfX7FihWsV69erG7duszr9bKCggI2dOhQvtKDXhBBzjDH5s2bWb9+/VitWrWYx+Nh9evXZ/369RO1O3XqFBs7diyrU6cOy8jIYFdccQX717/+xXr06GFpzrCVfPDBB+yaa65hdevWZW63m2VmZrLLLruMPffcc7pyjpUmkrj77rtZo0aNmNfrZXl5eWzw4MGyr1uPHj1U87GFjBw5UrZCxrvvvsuuuOIKlpeXx2rUqMHatGnDnnzyybCJOBgLVZ4AwB5//HHNYxMiN4CO4+DBg+zGG29k2dnZLCMjg1199dVsx44dojZbt25lV199NcvPz2cej4dlZGSwSy+9lL344othVRdmzZrFOnTowHJycpjL5WIXXHABGzRoENu2bZuoXVlZGbvjjjtYq1atWGZmJnO73axBgwbstttuY3v37tU8JqUBdIyF8n5vv/12VqtWLZaWlsa6du0qGlDIGGMHDhxg119/Patfvz7z+XwsLS2NXXLJJWzmzJmyk7Uwxti4ceOYw+FQzOXmOHLkCBs2bBjLzc1lXq+XtWvXji1dujSs3eDBg1l6ejo7deqU5vESBJG8OBiTFF4kCIIgiBQgPz8fI0aMwJw5c+LdFYIg4gjJMEEQBJFy7N27F926dcP3338vSl0hCCL1IBkmUhatGdacTieNPCcIgiCIJIfu9ETK4vF4VB9jxoyJdxcJgiAIgogyVE2CSFm0yovRT6cEQRAEkfxQmgRBEARBEASRslCaBEEQBEEQBJGyUJpEFKmsrMTPP/+MrKwszSlQCYIgCCJZYYzhzJkzKCgooIHJhO0gGY4iP//8Mz/FKkEQBEGkOkePHrV8Vk2CiBSS4SiSlZUFADh66DVkZ2fEuTeEKoEK/W3dnvjuP1rIHZcd+mVHovEeIAg9aH0mbfreLCk5h4YXjuDviwRhJ0iGowiXGpGdnYHs7Bpx7g0hS8Bf9R+dNxC3N2pd4eH7ZIJY9M8MkRyTXbHruSaSH7XPk83fl5QySNgRkmGC0EMsbzA2v5mZQu2YklGUCYIgiISBZJhITUjA7IOcKCfC6xPwJ+cXF8L+uL3KnxF6XxKEYUiGidTDiGjRTSU+KJ33RJBkgiAIIqEgGSZSC70yRRJsT+KRbkHvBcKOUHSYICyDZJgghNANJHGh145INdSEOIkoKyuD32/9cXq9XqSlpVm+XSLxIBkmUgelmwZJFEEQiYqSECdJdLisrAy5NfNRVl5s+bbz8/Nx6NAhEmKCZJhIAUiCCYJIRZJAiP1+P8rKizHouoXwuNMt225F4DzWrLsPfr+fZJggGSaSHKkIJ/iNgSAIIowUSJfwuNPh9VgnwwQhhGSYSG5IfgmCSGWSIDpMENGGZJggjOI0+LGpDESnHwRBEBxUXYIgTEMyTBB6MCrA0nVJiAmCIExT6XEg6HFatz3QtNBENda9swgi2XC6qx+RQCJMEEQsoGnPCcIUFBkmCI5IpVcKSTBBEARB2B6SYSK1sVqACYIg7ArlDhOELGQCRGoSbQmmqDBBEPEgScusVXhcgNdl3fZg3baIxIdkmEgdoinA8ZRfO9z4KNpEEIkBRYcJIgySYSK5iZYAx0J+7SC5etHTV7oBE0RsSNLoMEFEC5JhIvlItBSIVLlp0bTYBGEPKDpMECJIhonkIFEEOFXE1wg0ZTZBEAQRR0iGicQlEXKASX6NIzxnJMYEYQ6tVIkEiw77fW4wr3XX/AoH6Q9RDb0biMTC7gJM8mstJMYEQRBElCEZJhIDuw6EI/mNHSTGBEEQRBQgGSbsSzQEmOQ3OeBeB5JiglAmyVIlCCJakAwT9sFK+aWc39SApJggUoKgxwmnx2nd9ph12yISH5JhIr5YHf2lvN/UhKSYIOShmsMEoQnJMBF77Jb+QDeK5IGkmCAIgjAIyTARO+yUBkECnNxQLiRBVEPRYYJQhWSYiD52kGC6EaQeJMQEQRCEDiiDnIgOTnf1I1IqA9UPIwT81Q9CHbc38gdBEPZF6TOaINfHgMeFCq91j4DHZbovs2bNgsPhwP33388ve++999CnTx/k5eXB4XBg165dYev17NkTDodD9Bg2bJioTZMmTcLaPPzww6b7SuiDIsOE9cQzEpwgF/aoEG8h1dp/PF4big4bx8zrROeYSBGKiorw8ssvo127dqLlpaWl6N69O4YMGYJx48Yprj9u3DjMmDGD/zs9PT2szYwZM0TbyMzMtKDnhBokw4R1xEuCU0GAk0E2pMeQCq+b3bHqNVDaTjK8b5MJyh2OiLNnz2L48OF45ZVX8Ne//lX03IgRIwAAhw8fVt1GRkYG8vPzVdtkZWVptiGshdIkiMixKh0C0J8OkYwpEKmWgpAqx2k3YvnZSbbPaDIg/ayl+OeupKRE9CgvL1dsO2HCBPTr1w/XXHON6f2tWrUKeXl5aNOmDR544AGcOXMmrM3TTz+N2rVro0OHDpg5cyb8fvoMRRuKDBPmiXUkOBluqil+49FE7vwkw+seb+J9DmkqbfuRYK9Dhc8F5jOf5yslgNC2GjZsKFo+bdo0TJ8+Paz96tWr8fXXX6OoqMj0PocPH44LL7wQ+fn52LNnD6ZMmYL//Oc/2LBhA9/mvvvuQ6dOnZCbm4tt27ZhypQpOHToEBYvXmx6v4Q2JMOEOayMBKsR75u4WRLsRmNrSJDNY8fzRLWgCRtx9OhRZGdn83/7fD7ZNvfddx/Wr1+PtLQ00/sS5gG3bdsWzZs3R5cuXfD111+jU6dOAIBJkybxbdq1a4fc3FzcfPPNfLSYiA4kw4QxSIKroZt5/BCee633SqoNokuEzw5AUkzYguzsbJEMy7Fjxw788ssv6Ny5M78sGAxiy5YteOGFF1BeXg6Xy3jUulOnTvB4PDhw4AAvw1K6du0KADh48CDJcBQhGSb0Y1WZNCXsehOnm7W94V4ftfdPKgixXT8/WqTCa0MkNFdffTV2794tWjZ69Gi0bNkSDz30kCkRBoC9e/eioqIC9erVU2yzc+dOAFBtQ0QOyTChTbSjwUZv4tEeuU435sREa6R8sklXJPJr5XmwQsKT7bUhkoqsrCy0bdtWtKxGjRqoXbs2v/z333/HkSNH8PPPPwMAvv32WwBAfn4+8vPz8d1332HVqlW4/vrrkZeXh3379mHy5Mno2LEjunfvDgDYunUrCgsL0atXL+Tk5KCoqAiTJk3CwIED0ahRoxgecepBMpxKmBnEEs1osN6bqFw7K2+cdBNODvS8nxJdumJRA9jIZ74yYF1ON6VNECoE3E7AbV0BrEDQ2mJaH3zwAUaPHs3/zU2mwQ3I83q9+Oyzz7Bw4UKcPXsWDRs2RL9+/TBt2jQ+suzz+fDmm2/iiSeeQHl5ORo3boxx48bhwQcftLSvRDgOxhiLdyeSlZKSEuTk5KD4t3eRnV0j3t0xdrOJZjQ4EgkGIr9Z0s02OUm2ySKsiLhqHZ/C55w5HJqbdsjdOqSfd7PHYOfXhTBFSUkpcmoPRnFxsWaOrni90H2021/egduXYVl/AuXnsHX+zYb7QyQnFBlOBYxGhCMV4UjygqOV90g31+THzIQCej4biZqLq/ael3zG5eQ3yCoUV3c5PKJ1eDHmtstdA/Tkc8uR6BF8giASCpLhZMfoT49W1g6W64fe5XIYuTnSjZQwSqJKrxSl976GAAvlt5IFVXfBPe90VA8ccjk8/P8dwn0JUymS5RwTBJFUkAwnM0ZuPNFKi4ilBJMA25No53yr7SfV0CHCQgnmBFgov9KIcJCJP9Muh1vUlpPgShbk5Zhb5mAstG8zkWKKDhMCKrxOayfdYDQBL1ENyXAyEuu0CEB/bjBJcPJi5LW1Oh+cRFj+3OmUYO5vofgqRYeFy50OF4IsIBJkIbwUy0WKSYgJgrAJJMPJhlEpiIYIRyrBgPYNMJIbpNHR8kQ40ZJPklrrkBFhLQmWLhc+J4STXy4yzEWFlcTY5fCI84qNpE6QEBMEEWVIhpOJWOcH64kGWynBZm+I0cqDThVIUO2NzoiwnAgblWCh9ArbuRxuUcqEnBRbkjpBEAQRBcgSkoVYR4StjgZbKcHRnikv2SEpSWwiFGGtVAmtwXVCKZaDjxILhRhQl2KKDhMEEUVIhpOBWOYIW50bbJUER3uWvGSG5DcpkRNhrbQI6XIhSqXWuDQJOYSD6gAux7hCWYgB5XxiEuKUJuBzWTqALsis2xaR+JAMJzqxrBgRq2hwLCcFEZIqIkzym7xUfS6UIsKhZeEirBQNVqs1rKeNnChzcswcDmUhJgiCiCEkw4mMVGoMFNk3jJYIJ7IEA8l9Myb5TV50fGbk8oHVcDpc/DrCdAe961e3D6hug5u4QzFlgqLDBEHECJLhRCWZRNjklLERQwJMJBMKUWEhcoPiAMgMduOqRQT4v52Sn5WFKRDS6K/wObEAu0XtRUIsRSmHmISYIAiLIRlORGIlwvGMBkezAkQySjDJrz2J9HWJMKfeaFRYOvBN+Lc0wisVZjmElSbktisabGckXYKEmCAICyEZTjRiGRFW22+0osEkwfpJRgHWOqZEECArXxe95RJ1RIWFCCO5UgGunkVO/rMYZAFRKoXSdqWD58TbqBDty1T+MAlxSuF0W3t7YGQ/hAB6OyQS8UqNsFKESYLNk4zyCxifuU5PtDQe58qmr4+cGAtlViqsLoebF2Tp9MpBVgEPqitTSOsNK8kvR3V6RPiUzorpEmqQEBMEYQEkw4mCHVIjIp1AQ2NyAMtJBgm2qWBZRrQmZdE73a9VxPp1Eh6rjgoSoeXiz4NQXIVy6nGmiWeMqwwAgdLQbrn9On1gzjRUVJYhyCrgZC64ZEq3yUmv8G9pP/jjMfLZJSEmCCJCSIYTgUQT4XhKcDIIMJD8EgxEf3bCWEWJk+S1Eoqqg7EqCfaHHtznyn+O/+w60jLhFUixv/K87u1LZ6hTnahDzxcbEmKCICKAZNjuxKqOcKKLcDJIcJJIVcyJpwTF4zUzEBWWm1VODafDFZJSxngRZv5SIOgHggHAVfXZdXnhqAwA3gw4vBnwONP4/YlTJ7QH7glzi02lSnCQECc1Hm8Qbp/67IdGCFRaty0i8SEZtjNGZpazSoTN5gfrGSRHEhxOKguwkVSGSGpTxzplwmpM5tnrnV5ZWAItyCpQ6QjC40yDw5sBAHAAQKUPLFAuv6PKABxONz+7nBBhrrEhzE7EQUJMEIQJSIbtSjwiwlaJcCyiwSTByYHwvSJ3TqwSm2gIcbyjwlUYmW1O2E5IWOWHypAku70ZoX2WnUVYcQmZz7Q01UFu8g4hwvQI1VQJI5AQEwRhEJJhO2KRCHM3ScWfHZVE2Mq0CJJgMSTByhgVmFRIj9AZFVZKj5AiPxFHBf+vVEYDDsDtdANpmdX5w4Ds51AuCqxUgk0N2TJrRr/M6C1JRxAEAZJh+2EkOhaNiHA0yqZZAUkwESmJli6h4/PFfeEFxCIsjQgLUyakUeLyoAM+V/UXZpfDI4oSe53pcDpc8HrS4fRm8tLLfclmDkcovUJHDqZS6TW1msQRQVFigiB0QDJsdyIQ4ahFhGOZFkESTMiR7FFhtc+YzKA5LREWLuPEuDzowNkKN/yV1ULtdTL4XEGUB6uvHT5XMTxOBp+LweNMg9eZHuqGw8XXJBbuQ2myDm7/UZFeNShKnBR4fZWWDqBzVlZati0i8SEZthN6S6gpiKYwSpTwIkwSTEQDu0eHtQaiqsw0J/x/paTmL/d3edCBikonAKA86ERpwInyoLNquQMeJ0NFlRyXB6uvJ5meSvhcDD5XJWq4zyDTE4TPxeByeOBx+kTdrdSZ9ystr8YdgyhVI5JUCSkUJSYIQgGSYbtgpJawWfSKMNdOS2qjkR9MEkxokaxCY1KE5cSXI1yEHSgPOuGvDP2/xO+q+teJikrgfBAoCwIVlUCZQIbTXA54nECuF8j0MGR6KpHtDcLjZMjynIPHyZDhditGfY0OjIuoxJoaFCUmCEIGkmE7EIvKEUZFWA7pDF+R9kkKibA9STaBsGN02GIR5tIW5ESYiwafrXCixO9ESQVwpiIkv2UBwF8JnPYD50qrBdbrDW03M60S2R4HavocqJPmQqYnlD5ROy2AWr4AMj0VqAD4usNCOCGWpkoYqiJh1WtHUWKCIASQDMebCEVYmBqhiBkRlu6LRFgZu4mVWfTM8gUkh0TYRYj11E/WMd2yHhE+U+EKiwZzIvzLeQcvwP5yF0rPunkZ9pe74K3K1cyoUYHc2uXIqFGB0+VATR9QJ80BwI3yoBOZniCyPEF4nOXIcIf6LaxjrCa9Mc8nTqb3cwrg9lTC7bEwzzdAOcNENSTD8UTpZqwzD1dOhFV/WrSjCCeqBNtBpCLF7DEkS1TNrBBbIdJ6JxGxKCKsR4RP/56GQIUDp35Pw9kSL1ylQXjKg3AiiACACp8LZ2t4ca7Ug9xaZTiXGUCt7AoADEAo75jLM/Y6GYCApEqFmxdiNfHl2siWWIsGJMUEkfKQDMeLWIiwnoiw9CZDIqxOokuwVf1PFiE2SyQirec5wefLqohwedAZJsKny6tFmIsGl/zuRUaJH+mlFfD4g3BVVCLoCQ26O5flRUkgDf5yF2rWKqvqBSfEDgBO+FwuZHqC/EA8n6t6YJ9QiLn+q1WfUDxP0fgcpvp7miBSGJLheBAFEda9PzkRVhLbaIlwoklwIgtwNPue6vLAHbvaOdY7XbQQHSIsLGUm/FsuR5j792wFVzUiNEiuLOhASQUQqHAiUOGA3++Cv9wFT3kQ7kAlL8Le8gD8VbcKT3kQGSV+lLlDEWKfL1iVMhGqROFxOqrqFof2CYR+is5wc/2Ul1/Ds89FU4i57RMEkTI447XjWbNmweFw4P777+eXMcYwffp0FBQUID09HT179sTevXtF65WXl+Oee+5BXl4eatSogYEDB+LHH38UtTl16hRGjBiBnJwc5OTkYMSIETh9+rSozZEjRzBgwADUqFEDeXl5uPfee+H3iy+uu3fvRo8ePZCeno769etjxowZYJGMcBbO4CRF58VXSYQVo8JWTKiRqiKs9nrZGa7fseh7op4jK3F7lR961uNwug2LMCe/alUjuNJp3OM8Vy0iEJJiv9+F8nIXAhVOXoY95dUiDADe8gC85QF4/CFRrgyEconLy12haHJFaJslFaiS7uqBelyfpTPRyc1Mpzhbndx1J5rCmurvaYJIMeIiw0VFRXj55ZfRrl070fJnnnkG8+fPxwsvvICioiLk5+ejd+/eOHPmDN/m/vvvx5o1a7B69Wp88cUXOHv2LPr3749gsPoieuutt2LXrl1Yt24d1q1bh127dmHEiBH888FgEP369UNpaSm++OILrF69Gu+++y4mT57MtykpKUHv3r1RUFCAoqIiPP/885g7dy7mz59v7qDNXFx1imfURFjuZh0JiSbCiUQsBTje+7dyH/GKAGpEg60S4dD/q/8VpkdwUeFzZ918VNhVWh0V5uRX+HBVVFZHh0td/IC7smBom2VBbjIPZ1gfOCEOsoCkPnL4dYF73vCvYFaSaNeAJMfjCcLrte7h8Vg3gQeR+MQ8TeLs2bMYPnw4XnnlFfz1r3/llzPGsGDBAjzyyCO46aabAAArVqxA3bp18frrr+POO+9EcXExlixZgtdeew3XXHMNAGDlypVo2LAhNm7ciD59+uC///0v1q1bh8LCQlx++eUAgFdeeQXdunXDt99+i4svvhjr16/Hvn37cPToURQUFAAA5s2bh1GjRmHmzJnIzs7GqlWrUFZWhuXLl8Pn86Ft27bYv38/5s+fj7/85S9wGLlIByoAqPwEaGV6hJxwmskRTuX84ES5Cdq1n/RTszIan3XhZ1yvCEsRS6hTIMShSLAQvz80iI2LCrsQLgiuilCqQ9DjhLc8gKDHiQpf9eC3QIUjtL63EhWVoQhxedABj1OcLiEcTMcRcQWJaFcFSfVUIIJIEWIeGZ4wYQL69evHyyzHoUOHcPz4cVx77bX8Mp/Phx49euDLL78EAOzYsQMVFRWiNgUFBWjbti3fZuvWrcjJyeFFGAC6du2KnJwcUZu2bdvyIgwAffr0QXl5OXbs2MG36dGjB3w+n6jNzz//jMOHD8seW3l5OUpKSkQPVZR+SjUgn6KosNyAOTURluuP8F+DfVGERNg64h0BNoKwr1b3227b0ULus66QFgHoE2EOaVQYAC/C0vQIIJQr7BeIcXl5tYwKJdfvc6PC60LQ4wwJsNfFLwu45W8dZYL98NsRzGinFB0WHrMiesY2RINE+KwRBBERMZXh1atX4+uvv8asWbPCnjt+/DgAoG7duqLldevW5Z87fvw4vF4vcnNzVdvUqVMnbPt16tQRtZHuJzc3F16vV7UN9zfXRsqsWbP4POWcnBw0bNhQtp1RhD+bcjgYi1yEuZuL8EZNImw/EkmA9WCVHEe6bizOp84vvMK0CDkR5lCfZrk6PYKjWo7B/1sm+Ej6BSLM1RI+X8PDSzAnv6VZPvh9br6qBHcIodqv4RFfYX9Cf+u/1SjmDauhJ0ebIAhCgZjJ8NGjR3Hfffdh5cqVSEsLn52IQ5p+wBjTTEmQtpFrb0UbbvCcUn+mTJmC4uJi/nH06FHVfsuicJPUjVERFkIibB+STYDViOQ4ja4Xi3OqNoBOJhoszQ8GwkVYbZplIcL0CGFUGKiuIMH9P1BRffnnJjPguiYU4vOZXlF0+HwNjyiCzFEWFP8LQCZaLX890503bHSKeKtIhc+hzfH5gpY/zBLNAgBNmjSBw+EQPR5++GHTfSX0ETMZ3rFjB3755Rd07twZbrcbbrcbmzdvxnPPPQe3260Ydf3ll1/45/Lz8+H3+3Hq1CnVNidOnAjb/8mTJ0VtpPs5deoUKioqVNv88ssvAMKj1xw+nw/Z2dmihyIGokWaSAfMGRHhCNM0NPuUCNjlRpdKAixHJEKsdt5idV7VopMSCQbk0yIAdRGWyxOWRmGFy4BQNFiauiBEKgWc6Fb4XDiX5UWF14UKb+j/nAgHa1TPSicHlzcsh1TgTUWC1aAoMRFFol0AAABmzJiBY8eO8Y9HH300JseWysRMhq+++mrs3r0bu3bt4h9dunTB8OHDsWvXLjRt2hT5+fnYsGEDv47f78fmzZvxhz/8AQDQuXNneDweUZtjx45hz549fJtu3bqhuLgY27Zt49t89dVXKC4uFrXZs2cPjh07xrdZv349fD4fOnfuzLfZsmWLqNza+vXrUVBQgCZNmlh/ggyIsGx6RCQ5wsL/K4gwF8EyPYjPjthBPFNdgKVYkToRjRxlLdTkS2MwrJYIK7VTrh4hlmIOLlXCL5iFlhNarzcIry/0cLpDIhxwOxFwO3G+hgfna3gQcDtFIuz1hUblc6SpjIMTpm5U999E3rARSIrtQ5Jc34QFAITpmtICAG3btsWKFStw7tw5vP766wDAFwCYN28errnmGnTs2BErV67E7t27sXHjRtF+srKykJ+fzz8yMzNjepypSMxkOCsrC23bthU9atSogdq1a6Nt27b8Tw5PPfUU1qxZgz179mDUqFHIyMjArbfeCgDIycnB2LFjMXnyZHz22WfYuXMnbrvtNlxyySX8gLxWrVrhuuuuw7hx41BYWIjCwkKMGzcO/fv3x8UXXwwAuPbaa9G6dWuMGDECO3fuxGeffYYHHngA48aN46O5t956K3w+H0aNGoU9e/ZgzZo1eOqpp4xXkrAYVREWoiSkwjxhDg0RVty/HIkkwvHef7z7YGcS5dyYiAYbFWGlPGE1pCkJ0ioSsofiqeQlN1jDhXPZXpzL9qLC5wpFibO9IhF2eyrhE/xfCTN5w6oY/eVKb91nwnqE17mAhV904kS0CwBwPP3006hduzY6dOiAmTNnhs2BQFiPrWage/DBB3H+/HmMHz8ep06dwuWXX47169cjKyuLb/Pss8/C7XZj6NChOH/+PK6++mosX74cLld1WGLVqlW49957+TfdwIED8cILL/DPu1wufPTRRxg/fjy6d++O9PR03HrrrZg7dy7fJicnBxs2bMCECRPQpUsX5Obm4i9/+Qv+8pe/RH6gKjVGAQMTa0jhLjpaIizXl0hzldX2ayfiLVnx3n8iYfeyVhFEgwH9IlzdXjk9QporLESYIlEm8xF1exjKy8XLvL4g/AhdU4Pu0L/OquWc/Hq9Qbg9DF5vUDUqrBfh7HRcyTVuZjrmcGhf//SgZ9ZAtfUI/STItU5a9cnn84mqSHFwBQCKiorCnlMrAPDDDz/wbbQKAADAfffdh06dOiE3Nxfbtm3DlClTcOjQISxevNjcARK6iKsMf/7556K/HQ4Hpk+fjunTpyuuk5aWhueffx7PP/+8YptatWph5cqVqvtu1KgRPvzwQ9U2l1xyCbZs2aLaxjAmRTgMpfQIPSIsrRxhhYzbWYTjfVGO9/4TmWgIcaTTJ6u1MyjBgLYIy5VVU8rHFcLVFlY8BE8lX2dYmDfs9lSKBtcJEYowFxXmn3MCaTK1hIVUVDpk6w3HHOHrZ8X7gYg6bg+TrVxiFla1LWnVp2nTpoU5CFcAYP369VEvADBp0iT+/+3atUNubi5uvvlmPlpMRAdbRYZTDqvzhPUIqYYIa+5bjniKsJ1F0859S1WseE0sEmFx1Ff+J2Sl9gDCosKAMFqs70t1dc6vC6iacMPvd8mmPXDLOBHmxMTtqRRFhrWixOVBBzIkp8rw5BtOt3XXHRLelObo0aOiwe5yUWFhAQCOYDCILVu24IUXXsC3334LIBT9rVevHt9GqQCAMDr8yy+/8OOZ5OjatSsA4ODBgyTDUSQu0zGnLFZcdM2IsDRPWCUiHNfpT9WI5gQOVmPnviUidplgw2DeqRkR1kqPUIsKW5GT6/NVT1cbqiFc/eCWcyIcNoDOZGjF0kFzBGEQaQUoORmOVQEAOXbu3AkAIskmrIciw7EigvQIPjIrFV6LRdgw0Y4IJ6JQJmKfUwE9r4ua6GpJsMbnyYwI64kKG6FMRqLFEWAXAhUOxfqr3HKhCHNRYW9VVzySf5UQHhuXJyx8zuVQmb6eIGIMVwBAiLAAAAC+AEDz5s3RvHlzPPXUU4oFAGrXro1atWrhgQceEBUA2Lp1KwoLC9GrVy/k5OSgqKgIkyZNwsCBA9GoUaPYHnSKQTIcC9ySC7vZ9AgOvcKlQ4RtGQlORKFMxD4nEtEeTKe0bT37NCnC4jbyIqxUWo1DaeCctJIElzuc5gYg+A4rrDIRyv8NpSrISTGXFiEVYS4tQitfOFLCBtFZmSpBWEsUroceb1C1trVhAtbWt7aiAIDP58Obb76JJ554AuXl5WjcuDHGjRuHBx980NK+EuE4GLNiiC4hR0lJCXJyclD827vIzq4RWmgwIhsWFTY7YM6kCCvmC0fjJpSIQpmIfU5EIhVhpdfJQgkGjImwnPBqTbghnExDrooEly/MDZ47HxTLcFnQgbJAqNZwWVA8Ex03mA4QT9MsRCjCAHgZzvaGZNjjBHK9ochwtrcSHieDz8WQ6QnC62TwuaqXuRweOB0uuBxu/v8A+L8BVD1fHUwIux6RDNsTmc9bSck55NQdhuLiYvUJqcLWC91Hh76zHN4aGZZ10V96Dm/dPMpwf4jkhCLDNsa0CAtRuKnbRoQTVSYTtd+pitsrfs0slmDAnAgLMRIVNpoi4XFCsbIEVz3C6w3yQqwUgZMTYa+gK1aUWJNCaRMEQUQbkuFYYkWeroV5wqZI5UgMCXB8sCo9Qms7BusGC9Eqn6b0nNyAOaXl0oFzwioSZuDEtSwoFmJ++4JIMbdcKsJAKPWCiwpz2KJ8GkEQhE5IhmOBZCYqQ1FZuVnmBELKAqFq+Q63ZARshHnCslHhVIkI27lvhPXISbCBL4566whLn5NOoiG3rnSZnPyaqSLhdVZPy5zmqhZioDptQijGgFiEhduRIh0853OpFDsWYLi8GkEQhEWQDMeYiERYImmyIiw3uUbVMr2RaNuIsN4KACSvyUu0a8BqVHnRwgoR1jP7nHhwXLiBqtUV5mRX7TlhG7WplasHy1VNsuGuHjiX5gLSLXJZpdQIy2aiIxIOrrSfZVRYO4COSGxIhmNIRJUbzKRHCJfpxPYiLCdHJMTJSayrR+j4rBj5DOuZVEOpuoQW/kjSI9ziaZmFQgzIi7N0Ug1pRFiplJredAkl+dWMFlNFCYIgLIBkOEYYjsrKpUcItxcol48IS9MjzOxbSKxFWK6NHini2pAUJwfREmEDEmz0y6ueEmqhdsrpEWq1hrXyg/XkD6e5GF9vWC5Vgvu/8vrVIiyMCsvhcVoXwaVBdARBRBOagS4GmI4IK1SP4NIjwrB6wFw8IsLCYzA445dofSJxicZrqPReUiiPZuQzG2QVhgfMAeajwhx65FcpbYGbLU5aCUJJhKXPCWeb8zirUyQ8zlA02MgAOumXA7kvCwRBENGEIsM2QnamOT0SGY084XgOliOhTV2sfu0NVoiIJBrMYTQ9Qq6UmhCtfGG9KJVXE0aIAfXIsFie45O7S3nDqQk3LbhVVFq4LSLxociwXZEKpERO+RQJlTzhhBRhLcxEi4nEwMrXVet9YlKEuSiwUjTYaHqEHHIpElbCD3gTnAK5qhBCvE5xegQHFxU2i/R86fkiQUQRSjMjUhSKDMcAuRunNP9NNSosKaWmWkbNoAiHYdfBKFKxMTNozuyxWVGfmVDHahFWw4AIGxEytYk1lNIj9G5fKSVCb6RYqaKEcDCdlhBz7UPbE3+B5lIkogE3iE4xb5gG0VmDMC2PAg5EikF3eTthdtAcYPriFdWfG62IMqgdl5wQy+0z0hul3PokyNYQSwkGdIuw0aiknhnm1FCafEOuZJreShJyaRHcMuFAOml1CTmE0WBOhOWiwly+sJWD5+QIS5UgIY6MaPyCR1FmIoGgNAkbICukMoPmFKtH2DFP2AqsEKVoHVNloPpBmCMJRLiSBTVF2ExUWO45s/nCioPoBNHdNHf1Q3WZQIS1th8S40rdYqw1IQkRQ0hkiRSDwlt2QSMqHJYaAWjmCQtvLppliewmdVoj/7n+qkUgYnVMwv1QxFgfsZpimcNiEVbKDVYTYaV2sRI/LlVCGDEWRoj5dgpvYakIC6PCXBUJI+gpl8a1kUuVoIF0qYXPFXpYBU12SAihO3eciSgqDJiqJ6y4X7tgdlYwhSmrhciVpZP9omEWbr8kxcokqAhrlUKLdH3pwDkuRUIuX1hPWTW9cJIrlWLp80C4CEujwkpC7DWQNmF6WmajqRJGJvYhCCKpoTt2HAiLhgijwjKD5vSmRwgxlLNop6iwURGWm6paMuBQC2kbS+S4MkBCLCXWEgzofg0inSFObn096RHRigr7XEx1ima5fGKtUmlKIiwdOBftfOGoT8AhleRUleNIB9JR3jCRQFDOcBwxHJ3VUUbNUOUKwF4irAetPF2DIiwHC5SbXlepLymNleXwLBBhaVQ42iKsh0gn4FCCE1VOXKWpDUa3o7RcGhGWixD7XMp1XeVn5QtU/Rs6v3LnKCzCH40voFyQgsSOIJIWCl3FGKNRYUWsqB4RbVkzGhnQOiZpf43O0GcQbjsRRYrjHSHW+z6JxmjyeG4vAhGORIJDy8XvUyNRYaVtcoPn9FaSUENYZk0oucJIsZL8yqVHcOIrrSKhJr9RJZqVJbjPSapGi+NIGuUME1GEZDhOiKTUyCxzBibXiOpPiXrh+qt1jEo3F6WbmlCElSQ4qLJPl/6bmWxtZzsS6U+aeojHT8g2E2H1KhDKImwEtXxhK5CrO6wWKRZGlOXSI4SRYJ8oxzg6KROWDKSL5Gd8kmJ9UKoEkSCQDMcQxaiw1jIOA5NryIlwXNMjrLwoykTReRFWE2AhXDsDUmxLYn0zjuX+zOxLpwjLEekAOa3UCD2TcESTdBdwXrArpYk4pKiJsNKAOWFU2MjgufDqEQG4HNWvqdLgurjVHSYpJoikgHKG44BsVFhNFHVWj1C7WdsiT5jLHZWbTU4P0tw9NREOBkIPLfTKs91I5mmpzR6bARGWflbUp1GWn3pZ3Cb8vWZUcq2eftinoyZwmqv6IbdMKyIs3o+29ArbGPnlSj4vW+N86UlPsuozlKw5xdGeOIkgbAJFhmMEd+HXO+1yGDLpEUKsvpFGHSMXSOEFWU6EOaGVk1/hMpfC2z3o14wQ2ypVIplvLmaPLQoirPczpUeEjUSFI02R0KokoYR0NjkhWqkRnOQqpUjEIn84LukSUhJ1KmNKZyBSHJLhGKA6aE4Ljagw97Oiy+FRvHnbIiqshda50IoG64oCB5SFOFFIxButHiI5rjiJsJVl0dT2J515jpNkbjknvh4nUxRoYSk1abqEGmqzywn/FT8XXfEVpkpollnTmy5BQhxd3F4A5yLahNcBeC38LZtFJx2fSFAS3AwSCz0TbMiSbFFhoxgRYWHag1y0V0mIdUSHCYuxQhgsFmErJFhrema1/athRSUJDk5y5aRYToDlIsLS9Ai5qLBcvrDRmeo49NQXlo0OkxDrg6LDRApDMhwjwtIjLIoKyyG8YSR0VFhmIg2RCCtJsHRZskhuot1c5bDyGGIswnoiwVoirLUNM+kNaghTJuQm2lCK/ApRE+Hw5cpRYbOVJaSD6ACD0WEgdgPqhNDgOjFuG1Q3IggFSIZjgKIIq0WFVUqpmcKuIqyE3miwngFw0qiviXQJ0/nCqTwLXbQkQOWcmplmWU8bMyKsF7l9R6ukmpwQq7UVIhfRVRNcr1NbkNUwOy2zYu6wHiGORnQ0EaPEBJFipPCdOk6oVI9QHKRlRVTYrkjPg1Y0GAgXYZo+NfbE6xxbIMJ60xhCz+n7Eqkn0mymnJo0X9gM0gF1eoRYTYSV0iM46Y3mdMxKUWDpchJik1CqBJGikAzHCqULsGB5mAgbvHgmfHqEmWiw3IXbLj9PJnpUON7nT4jGubSbCJvBbIqEXPUIrYoSRqZiNiPCkUSFdaU9wHzkOK5CzG3bzgiP3UZ99bmBNCsvqQl+eSashd4OsaAyAMCnLz1CCncx0pABxZtHvERY64ajUi4NMBEN1oIGyOnDRjc/ALq+UFgtwlZIsN5cYb2DXyMdPGe23JqaCBtBbpCd1eiODgPxE2LAlqJJEKkOyXCs0BBhUYpEBLNoARrpEXZIKdCqGwzol+CAREjcgkiR2k+TyVBmzUrsdmPWGVVPBBE2si4QvXxhIygNkJNbphQVVsPoVPFyg+j0YIkQA9GTYrt97jjs2i+CiBI0A10sCFTdHFUiwqopEonwc7vTLe6n0k1GQYRZoLx6Ag2uUkQwUP23sH0gWP0I234EP1lbPRud1VH5aOXy2eXGx72HdEaD7SjCZrdrdRUJOfRGZdVE2EiENxYTbUScoqL32hqtz0iyzlxHEAlGAlhWkqA3NUKhnJoaunOFo3XRFfZZLdoiFWG1WeTkIsFC0fULhMarEmUSRl8iqCphqxnorCSeImzyS57SLyTRFmE94mUkKqzVVm7wnJGosZFcYiW5VZpRrvp57aiwmkCbyflVyymWe05zZrp41CGWYucosU1IczGkWZlmE8WUHSLxIBmOBQE/AOULrqpoVQmDUACEN1HducKxEGE1FNJEwkRYLgosxC8jENwyTooDQXG6hBGszi2uDFgb2bfyphmrm69Fx6+WJmRXEbZyljo9qM1Cx2EmQiyeWll7cFwsosJGSBgh5vZBEERMIRmOFTI5whyRVpHgt2OmlFokciUnOXI3FBkRlp08I+iXl2A5AZbDXyEvxEajwwpCbDo6bLUQ25UoHqORaDBgnQhbVSlCL1bnC1sxcE5OhIXoiQoL0coXNppPLEUpcpwQQgyQFBNEHKCc4VigN3fUYIpE3NMj9KAkwqLcYL+8CPsrwkWYWyZ8SJ/n9y0QGeE5kOYGB2VeH4X8YT632SiVAetyiO2SYyjM8Y2SCCvlBgPK0eB4iLCeqLDS9rRk1YpKEla0F1eWUK4pLBcVjmYVCUu/sMQ7h1iIXT7nBJECkAzHAVWZkhk4J5UBl8OjP3qi54Jq5qKrJyosFOEqGawWYcEAOW4QCTcoTii5auLLoRY5joIQAxqvoRpWSXGkN8pIbuZRlF8ONQkG9KVFKLULLY+uCEdjnUjQN+CNhbXTK7t6o8LxRldFHrsJMUkxQUQdkuEYwUUUpRJlxaAsW06wIRVhQCLCfqD8bLUEnyvTjvqqIWwrXU9NiIXCywm6EGkbAaajxIA9hNgoNpHgaIqwXGQ5HkQy85yShKpFfLWmWtY7FbPZXGEzZdPUUPuykXBCDJAQIzRRjNUPIyxatAjt2rVDdnY2srOz0a1bN3zyySf882fPnsXEiRPRoEEDpKeno1WrVli0aJFoGz179oTD4RA9hg0bJmrTpEmTsDYPP/yw6fNG6CMFEhnjDwv4AaSrNzJRRUITIxdQI7nDRnKFlURYmBIhjAJHgnAgndqgOumxyuURA+JcYpWBdZwQG/5iw52zSAQzVqPQ45APLEVvfrBS22jkB+sVbjsINqA/XUFJhOXSI7SiwsL1hb9omZo9ziI084eB6vd8PGsRC6GKE3GlQYMGmD17Npo1awYAWLFiBW644Qbs3LkTbdq0waRJk7Bp0yasXLkSTZo0wfr16zF+/HgUFBTghhtu4Lczbtw4zJgxg/87PT3cDWbMmIFx48bxf2dmZkbxyAiAZNj2aImCpVFhqy62kp/2ZEVYmBfM/atWIk0t2guIq0cItyWUYm4dtyt8kAoX/VUbXCeMECsMsAPiIMUJeJPUK8CAMQlWah9LETaLHSbbALRFWIjXqf58PNGa1lmXEAP2GVgHJORnPVkYMGCA6O+ZM2di0aJFKCwsRJs2bbB161aMHDkSPXv2BAD8+c9/xt///nds375dJMMZGRnIz89X3VdWVpZmG8JaKE0ijiTsRBvCG4M0B1Z4MwjLERaIsDQNQk6Ehcu8Ho16wpKJOKSpFsL/C9vx+cpceTeF1AkT6ROGUygiySc2ehOO08+uWmkQQpRSIgDrRNhsWkQkIixcN1qTbZidMlkrNUJp20IR1rMNqzEbedf9pcxOaROUMmEpJSUlokd5ufZ1OxgMYvXq1SgtLUW3bt0AAFdccQU++OAD/PTTT2CMYdOmTdi/fz/69OkjWnfVqlXIy8tDmzZt8MADD+DMmTNh23/66adRu3ZtdOjQATNnzoTfT695tLGxcaUQJlMkFKPC8bpYSvKEVUUYCE9l4P5VqhHMRXxl0ilYRWiZw+MRR43dLuX0CWk7YbRYLgqslD4hbCPtl5losdlIsY2jRkYiwYC6bFqZH2wGLRGOdW1hQL6Emp6aw8K26tvXN2hOjUhLpgnRivpGBbtFiLl9pQg+F5BmYWYNq9pWw4YNRcunTZuG6dOny66ze/dudOvWDWVlZcjMzMSaNWvQunVrAMBzzz2HcePGoUGDBnC73XA6nVi8eDGuuOIKfv3hw4fjwgsvRH5+Pvbs2YMpU6bgP//5DzZs2MC3ue+++9CpUyfk5uZi27ZtmDJlCg4dOoTFixdbd/BEGCTDsaDSDwRd1k7mEG/UZpkzKsJeT7UAu73i8+SWjKaWiDAnwdxz0tuzLhUwmkIRgRQDBsTYTH1iGwqxFSkRgLFocGh57EXYyn1ZgR4hlo/0yqc/WBUVjme+sBTd6RKAvYQYsOXnPdE4evQosrOz+b99PuXr88UXX4xdu3bh9OnTePfddzFy5Ehs3rwZrVu3xnPPPYfCwkJ88MEHaNy4MbZs2YLx48ejXr16uOaaawBAlAfctm1bNG/eHF26dMHXX3+NTp06AQAmTZrEt2nXrh1yc3Nx880389FiIjqQDMcStdnNDKZI2K6ChNyEGqLng+ERXaEIcxLscgukU3oz8Ye2ITchRyBQ/a+7+vwxYf5wRUUocqwbwf6F0WI9UixsJ8HQ5B1mosR6b5AxuJGmmgjHIyqsBSeoUinWU3VCSXTjGRU2gt4IsmEhBvQNrCMhtj1cdQg9eL1efgBdly5dUFRUhIULF2LBggWYOnUq1qxZg379+gEIieyuXbswd+5cXoaldOrUCR6PBwcOHOBlWErXrl0BAAcPHiQZjiIkw7FEIEe8DEWjikS8CCtbJqkcIcTrATLSwiRYJIluX1WE2Q34z4VtglVUVEuwtLSaQn4xd7uTVTSlNAqlFAqpFAO6o8WGI8VGo8Q2uEFGWiWCw8r8YLPEui6wHnyuSlEJNq3Z5vTkEevJ8VUaNGe2rrDVZdXMYkiIAX1RYhLipIYxhvLyclRUVKCiogJOp3gYlsvlQmWl8sDSvXv3oqKiAvXq1VNss3PnTgBQbUNEjj2uQoQhbDfbnNw+1dIjpCLszQBQJYVOt+gG4nADjJNKwXZYRQVw7rxyPWJpRQmJHAtveWH6YFaKueOWm95Z2k7YF72R4iSc1tnu0WC1/cV7W1YjFeFIRDdWA+esJmpCDFCliQRn6tSp6Nu3Lxo2bIgzZ85g9erV+Pzzz7Fu3TpkZ2ejR48e+L//+z+kp6ejcePG2Lx5M1599VXMnz8fAPDdd99h1apVuP7665GXl4d9+/Zh8uTJ6NixI7p37w4A2Lp1KwoLC9GrVy/k5OSgqKgIkyZNwsCBA9GoUaN4Hn7Sk1x31kTF7KA5KfEUYWmusBJ8akSVBHPRYE6CuXPh9gJlZ6vlL+AHzp4DAkGw0nOhiLC/AjhXBlYmFh0HN8pCWFtYOPjO6xGlU6hGi4X9NhopNiDFuiPFRtIm9Nwc9d5ADYq4nqiw3UXYqLjK9UFt39GoJKEVHVZaJ3yZdnqEWVlWyxeOVzqFkKgIMUCl1yIk3RV6WIbBbZ04cQIjRozAsWPHkJOTg3bt2mHdunXo3bs3AGD16tWYMmUKhg8fjt9//x2NGzfGzJkzcddddwEIpVh89tlnWLhwIc6ePYuGDRuiX79+mDZtGlyuUGd8Ph/efPNNPPHEEygvL0fjxo0xbtw4PPjggxYeOCEHyXA8kZMLI5E/O+QKKyEXFeZwVw0mdHnh8NaolmDB9NMOxmRvHqz0XHVEOBBE5elysArxz1COstBPVY40N4Bg1f+1r3xhUiysRMERZSkGdEaK9cppHIXYLPEW4XhEb62sMWxEiLVE2Oz+hcRbcM1UnjAlxIA90iaSWIjjyZIlS1Sfz8/Px7JlyxSfb9iwITZv3qy6jU6dOqGwsNBU/4jIIBmOFXL5wkJ0XLwMXZxjiWCmOT5XWAkuKuxyh84DFyFG6AYUZBUAC91AHdIbRyAYiuhWRYNZWQCVZ/2iyLAjzQVWDjh8brAKPxyiOTeDkUlxpDnFJiLFmlFiq4Q4xlhRPzi03DoRtksKg5GpmKV5w9XL1YVYeWpmsQhbHRVOJAwLMWCfPOJYfub1RsYJwsaQDMcbnRessIuyDXOFNSeZEJZQA/jUCNWf1CurJrw4VxbKE/ZX8NHgyuLQv6ys+lw4KkJvaUdZUEWMq6RYmEYhg2L6hJwUy031bESKzUaJrYrWxjA6bDz9ILoibIUEx6qKhJHawUbzds2IsNY+4x0VjhQSYg24a4HeyDhB2BSSYcIcWhdy4fPSiTJcXkX5k26DBcqB8rPAuTLg3Hmw30sR/PU8L8GVZ/2oLAecVb7oKA/C4XOBlYXE2OFxgpVxEeHwaLEjTaMPXg8YV5JNOgW0KAdZo06xdJAdYKjyRMR5xDaMDksxJrCRi3C0I8HSftgl8iyHmgirYTQqLM0XtrKSRCULRqV+MQmxPXA7AI+Fc+ZW2GP2c8ImkAzHAqdGSTW+XfiymKZGmLloylaSUCilxtcTFqRISOAiSY5gRaicmv9cKCpcXAKcPoPgr+eqZDiIynIgUOFAMOCAqyJ0ntyeIJwVQTg8oZsiK+Nyh0UHCkAQTZYTYm6QXRV8lNgjiAQrpU4Io8SA8coT0Uqb0LoxxjF3ONbl0+wspkZRSpUwsr4QqeCajQonEyTEBJHckAzbAaMXKjukSAgR9kctX1iKzEXawVhoe2VnwcrPAKXFYCd/D4nwyfMInjyP8lOVCAacCFY4EfCHvt67vQwuTyUvxlIpDn+rc39LpFhu0ByHmSix9DhjESW2gRA7GDM8BbMUo8IaLxG2w0QbZoVYa7Cc2uQaWlHhSFMk7DRLHRCBEAPqUpxM0zdT/jCRoJAMx5AwiUmib+uKJdXcLrE4VgkeC5TD4XUDAT8cwhtG1UWb+UuBc6eB02eA0yUhEf71PAK/+eE/70bA70BlwIFAhQNuD4M/4IDT7YDbywCEbvBuMDghFCTx2z2US1wJIABHmrsqnULQQFqKjTtWbn2jUWKlXGLAcJQ4qnnENo4kRSqedokIR6esmn4hVpJgNcGNtMpEMmBKiAFtSYzl5BzCfUZKEtY+J1ITehfHg0S/eGhdtDmB46MRMhGeoB/MLzM4LeAPifD508DpM2DFJaisSo0I/noO5eed8J9zIlCV8BXwO1Etv1ycV7hMLMSONLeoFJtQiKvbuOQjv1xt4irxFUWJhUIMRD2XOCIhtqrcmo1uhHqiwtEQYSU5j2SSDy3UBtEJhVUqxloyq5YeodVWT4qE3SK9ZomqEAOx+6VPbT9mRZmiwkSCYo87GaEfu19sXG7lVAmZCyzzl1YLcWUglBrhPweUlIAVn6nKEz6PyuJynD/tRHmpC2WlLlQKImv+8y44XaGIsBsAvOIbVWU5VIW4qnNVg+0CVW1cYskF9Asx11Yox1GIEmvmESewEBsR13iJsBHisX8jkVwtETYaFTaTIpFIlSeiJsRA7KLEahj5dShGX4p9Lmvz0oPJ8d2MsAgLx2YSaiimSHD/mr2YxPuiKUT6k77cxVRYhzhYnRLB/KVg506FUiN4EQ6lR1Se8aP8VCXKS13wn3fCf96J0jOMfwT8DlQGHVVRYiDgdyBY4USwKo2Cg1UEwcqDvPCGKlKERIqVB3hBZmWB6trFXGSXm/bZX1GdMiGcGpprK2wv/Fe4rVAnw8+L6G+ZG6bCzH6qJe3Ubrx63jsRvL+sHvxpNkUiWiJqVa6wlRNumMGoCJuJCsthZSWJeGA6J17Ptd6maUqKVAbsH6ghCBVIhmONTX5WjjouiewrXdyD/tDDf05QQq2qjNpZP1h5qHxaMFCVI+w3/pYNVDhQKfFFYW1i4aQdmkLM/askxErtpc8BVTP0CWRTToilUmxHIbbxTTDeEeFoYcVEFx4nM5QaQYST1EJsp0ALQUQZkuFEIprSEeGFVxT5lv7ELxshllSgCPp5EWal54Cz50J1hM+EZCZY4RRFeX0+J/9wexmcLga3N/yn3GAg/GbFysPlN7Q8EL5MSYgB40Lsl4kgA+FCrBUllmsD+0aIo0k0c3PVsHoKaDNEIsRy68qJsJmosFy6Q7LkC8uR1EJMECkCyXAMcESaCpGoKE2swYlcMFAdES47D/grQkJ57jwQCFZNtRwI1RP2W/NTMqsQiLBMdJgTYuHziikTgDEhlv4/CmkTcRNihW3LpUokUm6oHEbTI6TRaaOVJCIpbyZtKxcNVtqH2Yk4CAPYXYht9CXY52KWPwiCg2Q4HmilDujFLhcq4QWdE2AuOqw021zQH5LggD8khf4KsPOh9Ah+yuWyUI5voCJUMs2bXgm3txJuLxM9uKiw2yMjXm75C55cdFgpXUL0nFBgSYhtTSyrR3DEI1KtJalKAsyhR4TlIJmoJqKa2k63thS7vRQlJogoQjJsB/REB+ySl6kiQ2GDBF0ykhy2vaA40lq1TFrtweWpKpXmCcmv8CFMj3C6WVWtYfPIpUuEIc0HtlKItfKIpcRaiM1s1yB2jB7bYXINJYRRX+lDDb0irDcqrPd10xo8F81pm22LXaPECfQFmCDMQjIcK5IlRULPxVgovkpCzEWE+b/FUuyomoTe4XPB7WFwVUmu082QViPIP7iIsNvDRCLs8lTyUWG5iLHDx03XrC04qukSwn+tEmLA3kJs8Oaop6pEMueU2pVIRNhIVFjPa2vHLz9xwa5CTBBJDslwrEn0C5mGCPHRYT1CDIRHhWVw+kJC600P8kLMPbzplfz/hSLMwYmws6pb1dMzV/2dFuqbNAosjQ5bIsTCY5b7v5YQC4XXrkKsMzqcaPKjJyoslyJhVaqGlVUevE5mOjXCLiTa+8cQdhRiig4TSU6ShCuTHLukSADKBeEFxeQdbl9IwlxewaQSksk43F4AfkURdqS54UhzwVHhhqM8CCeCcIMBCAKQjzQJJViYK+xUmaiN319VJDo0JbNFUUqliTkEz4X9XzhjHRBe/F44+YYVk3NEOjFHDHE53GFS6nS4op6na2V6hHTwXCxrDKsJtZHpmZWiwkktqBpYXVM7YSbniCFuHWk/RrdHEBwUGY4FcrJhI8mICOFxyB2nUoSYw+upFkF+myERdPhCs8I5fC44PC5RhNjlqQx/uBn/AKryiwX+x0WFuRQJs+iODgvXEU7MwaEUIZa2UxtYZ0UtYrMRYgPRYTOyEKlcWSFnekU4FgPnzEaHlSLBHEZE2Aqilf8br1Qby0WYw24R4hQSbyL1IBlOVGx+YRLXHZZcsJUG0wnE2JHmColwmgvOLG+YEPvSxfIrFGDuIeqPJ/xGyaVIiJcp31D15BcrpUsAOoXYqkoTsRLiCJDKarLlDUejmoVeIeYEWKu9URE2WkEi2V5TIQ7GoifCHHqFOFmCKwQRJ0iGY4ncBSsZBtYpRIdlhVguOgxUpwW43QIhdoeiw2muqv9XC7HTB3gzmUh+hfnB3AMQi7BWVFhYXo1fplZVQm5gHP+cCSGW/m13IY7xlzK5qGK0hMtOUWEhQtFVemjhc1VaGhGOJAqv9aXIjpUkoi7BQvTeI2IhxDYPwhCEWex3lUkFjFy07JQvrBe5/GFAkkPMnYOqv/2hvFrG5c/6KwAEq3J53XCUBSH3dnVCXkRkI8ECERZGhbl8YSPI5hYL+y5N/RAs08whlv4tbKeWQwyE5xHL5BADISE2nENsBJntOBgzXI/V5fAkzZTKRifbiBZqA+XURJjqCscRPTnEQFLnEVs9UUaA3s+EAIoMJyJ2vNhJBV8pQgwo5w5z/1ZFh/mIMJ8u4YEzywtnji8UJa6KFMs9pCiJcFg7jcFzsqkS0ioQgHz+sGz0OIEixDGIDlsd5Y3XoK5IBD5aVR3UosGAeRFO5YFzMcVIhDiaUWI73n8IIkJIhmNFrHK64pk/pkeIlfKFAcDtCkVMgSopdvFC7Mz0VqdMeJxV1SbcvBRL4WVZ8rxUhM1EhTnkUipkB8XJCLFsDWLp+tK/jQixFCtTJizEjEjFIlXCrikSZtAjwbGKCFuR8pDS8m3kVxvKIyYI3ZAMJyt2FmIgFB12VYm72yVOERBEhzkhBlBVWaJaiIFquVWSX37fVfIsWiYR4YhKqqkJLaBeYUJrfTNCrLMOMaBRi1iKkaiQRUJth6oSiYiWBAPa+cGRiHAyD56LK3YQYr3XAW5GzYAfCCRHuhORnJAMJxPSC1+0LoRa21URYgDq1SSk0WHBYDoOUYRYGCVWeUgxGhEWDqITpkqIosNq6RKA+oA66fpmhVhIpEIcheiwVbPRxXIgnRJKUWErcpzNpkpwAqxHgq0Q4VT9omI0991y7CzEQgEmiASBBtDFmlgPntMzoCIaF0vpfqsGgIgm5BAhaBsIhg0mc6TxT4JVVMLhC3/rqlZ9ECAnwpFEhUWD6bjBbkqTanDIDagTri+3np5BdVoD6uTacMchN6hObkCd3GQcNpugQ0q8B+KZGTznc1WiPKjvS5teedZbKSJeg+WiVxmkwnLx5oQ4ppUlhOgdVAdEb2BdDIVXz5c8IwQSaMZFIvqQDKcC0bgQ6pVsM/t1u+AAwIBQNJWPDnMNuBuAG6w8AEeaKySkMpLLKio1o8ByIiwn26LtlgVUB+IBkJfgQCCUAqJGHIU4HugRVbk28ZqRLpZYdfOPhgTHIqprx7JqUpjDkdpCTBBJAKVJxAIrI2Z2+nZv9LiqIozh1SUUcoeB6txhyYA6QJBDzNcilpFaEyJsBkPpEjLLROkS0m1IJ+NQmMJaFZ0pE7FKl4gHifqTfKToEWGjZatS9VwqwRwO/mFrbPzrDUHEE5LheBLLCTfsMqBOiMurXGaNyx0WDqZTEGKgOpLLSbGW5Oppo4WhGemEKJRbUxVixW0p5A9rVZdQaadrQF2UI0yR/FxuxU/tsYpIRmvKY27bevKCo5ESYcfBc7FKk4m5GBu9j5AQE0QY9v8NirA33IVVTY6EP89Jc4cBiRCLt8OnS0ioTpkAhGkTAMDKqyb8MCm7SikScikXwnQJ2dxhIXJpE2H7EOQPK21Hui2lNnrSJeTayaFnMo4o5w3rTZUwug0rifcEIbHICaaosH6EQhzVVAoj6RJAQqZMuHV8uTO6PYLgoMhwKqEkKlYIjJEKE0KpMpO3Ki25JhMl5h5GMbOOEM3awxwqk3Fopkyobler3rDCDVMSITZUbk2NOKVY2DEyGU30RIGByCPBkU27HN3Yi55c8Xh+WYl6xNjptkeVCYJIQEiGCeswOOGHZt1hpXQJfn/yQiyM3grFWE109cqzXMUKxXQJvaXWpMsREmLdZdekz2ulS5gVYqnYmowsRRIhk5Mxo5KlV+gSIVUiVhIMUETYSoRinBC5xgSR5MRMhhctWoR27dohOzsb2dnZ6NatGz755BP+ecYYpk+fjoKCAqSnp6Nnz57Yu3evaBvl5eW45557kJeXhxo1amDgwIH48ccfRW1OnTqFESNGICcnBzk5ORgxYgROnz4tanPkyBEMGDAANWrUQF5eHu699174/eIb++7du9GjRw+kp6ejfv36mDFjBli8RgxbiZywRqPShNZyreiwlhBzUux2CfKE3YpSzCGVY7MRZMMoDXqTCrFalFhOiPUMplMSYiUpThISKTpsVIhjLcHxm9Y6/D0aaXQ33qksSlgmxUYixBQdJggAMZThBg0aYPbs2di+fTu2b9+Oq666CjfccAMvvM888wzmz5+PF154AUVFRcjPz0fv3r1x5swZfhv3338/1qxZg9WrV+OLL77A2bNn0b9/fwSD1ZJw6623YteuXVi3bh3WrVuHXbt2YcSIEfzzwWAQ/fr1Q2lpKb744gusXr0a7777LiZPnsy3KSkpQe/evVFQUICioiI8//zzmDt3LubPnx+DM6VCtHK8olVnWMdyxeiwEgpCDCAsSgxUS3Ek0y4bRTZVQohUYKWz0+kVYml7rdnp9ESJjUaHpZh8j8rJlhGZjVZ02CiRbFdNcLnnYpkOEU8JjjZ2FWIgDlJMQkwQsZPhAQMG4Prrr0eLFi3QokULzJw5E5mZmSgsLARjDAsWLMAjjzyCm266CW3btsWKFStw7tw5vP766wCA4uJiLFmyBPPmzcM111yDjh07YuXKldi9ezc2btwIAPjvf/+LdevWYfHixejWrRu6deuGV155BR9++CG+/fZbAMD69euxb98+rFy5Eh07dsQ111yDefPm4ZVXXkFJSQkAYNWqVSgrK8Py5cvRtm1b3HTTTZg6dSrmz5+fHNFhIDYXQCP7kEaHldIl+Oe1hVhu+mUrpDjiVAnAGiE2ki7BYUKIVYnDIBwjgmaX6LARMZWKr9GosVkJtkqA43nOjdSYDrKK1JFiLRJAiL0OBq/TwofD2OdE69dth8Mh+5gzZw7fRs+v202aNAnbxsMPPxzZySM0iUvOcDAYxOrVq1FaWopu3brh0KFDOH78OK699lq+jc/nQ48ePfDll18CAHbs2IGKigpRm4KCArRt25Zvs3XrVuTk5ODyyy/n23Tt2hU5OTmiNm3btkVBQQHfpk+fPigvL8eOHTv4Nj169IDP5xO1+fnnn3H48GHF4yovL0dJSYnoIcJuFxyDOb6m96G0TK7uMBcdliJNlwDEQlz1PCAum6YmxbGMFgPQTmmQE2K10mt6tq0kxFLhVRFiw9FhKTEaRBeN6HAiTPrAYaZWcLJHgPWQCFIcMZEKMXevkHukCFq/bh87dkz0WLp0KRwOBwYPHsxvQ8+v2wAwY8YM0bYeffTRmB5rKhLTK/3u3bvRrVs3lJWVITMzE2vWrEHr1q15Ua1bt66ofd26dfHDDz8AAI4fPw6v14vc3NywNsePH+fb1KlTJ2y/derUEbWR7ic3Nxder1fUpkmTJmH74Z678MILZY9v1qxZeOKJJzTPA6GAy1stYbwQV/3NyZ5wdjp/RfVsbtKyZYEgPzMdAEH5M7GYhZVK0zGls2USzR2TqN9V/RPOUic7k53MtM/S5/i/q86h9MalVXpN8LzsVM3C7Qu3HYOpmZVKpMVyVjq7zHaXipNlqE2vXMmCpqLTwveT3c6TJVM/6ym/Ji25lkKyq8WAAQNEf8+cOROLFi1CYWEh2rRpg/z8fNHz77//Pnr16oWmTZsCqP51+7XXXsM111wDAFi5ciUaNmyIjRs3ok+fPvy6WVlZYdsjoktMQ2MXX3wxdu3ahcLCQtx9990YOXIk9u3bxz/vkHwDZoyFLZMibSPX3oo2XHqEWn+mTJmC4uJi/nH06FHVvqcMchEEreiwqK1LnBIBiCPEQPX/ZdImhPWG5SLFQoRRY9kBeJGKsMZMdDzSKHEVstFhucF0gWB4ikbAr51LrHdQXYTRXr03dbukOViB1ZNbGIkEp3r01yhctFjPI+kwGvVNQWGW/rot5cSJE/joo48wduxYfpmeX7c5nn76adSuXRsdOnTAzJkzwwb4E9YT08iw1+tFs2bNAABdunRBUVERFi5ciIceeghAKOpar149vv0vv/zCR2Tz8/Ph9/tx6tQpUXT4l19+wR/+8Ae+zYkTJ8L2e/LkSdF2vvrqK9Hzp06dQkVFhagNFyUW7gcIj14L8fl8otSKmBODiFzUkYsOCwVOONGE6O9A6P9cpNRfERLiABcZDkmVVqRYil75VRPsMOSiuUpRYqXIN6BvYg/uPGlFioVRYmGE2KrosJ5JOwxih+iwkX4BIYEtD0b2s3cyR4LNRnWjtR09WC3Eaq8ZcziUv0hKv6DKfd6MTs6hlwScxINDms6odh9X+nVbyooVK5CVlYWbbrqJX6bn120AuO+++9CpUyfk5uZi27ZtmDJlCg4dOoTFixdHcpiEBnGtM8wYQ3l5OS688ELk5+djw4YN/HN+vx+bN2/mRbdz587weDyiNseOHcOePXv4Nt26dUNxcTG2bdvGt/nqq69QXFwsarNnzx4cO3aMb7N+/Xr4fD507tyZb7NlyxbRt7H169ejoKAgLH3CEAl6sbAMJVHXig4LB9MB4QPquAoT3P+F/7pdIhGUzkrHRYoNyayEsJxk6cx3ShUg9ESJZSLEqtFhuW1wfdCKFCtFiJXyhy2+qZoRN6V17JzrazZCnKqRYKUZBpMyKguYizrLfRbjNOFNtPC5Ki1/AEDDhg35Uqw5OTmYNWuWYh+0ft3mWLp0KYYPH460tDSZrYiR/io9adIk9OjRA+3atcMdd9yBl156CUuWLMFvv/1m4qwReonZHWPq1Kno27cvGjZsiDNnzmD16tX4/PPPsW7dOjgcDtx///146qmn0Lx5czRv3hxPPfUUMjIycOuttwIAcnJyMHbsWEyePBm1a9dGrVq18MADD+CSSy7h829atWqF6667DuPGjcPf//53AMCf//xn9O/fHxdffDEA4Nprr0Xr1q0xYsQIzJkzB7///jseeOABjBs3DtnZ2QBC5dmeeOIJjBo1ClOnTsWBAwfw1FNP4fHHH9dM2yAMoBRN4KLDwugkUC210vzhigrlCDHXXiVKzKE3Wiy3jmnkIsJK0zZrRYelxyzdLtceCI8Uc19U9EzNLEQY8TUYHXYwpmtwkFZUV+8Uy3Lb0bOu2pTPSn3T2i4ntVpRYqPibGcBDrJATL+kxDI6HC2495DwdQ2LDqtJbxR+kVEkQaPDR48e5e/9AFR/3VX6dZvzDQD417/+hW+//RZvvvmmaF09v27L0bVrVwDAwYMHUbt2bWMHR+gmZlemEydOYMSIETh27BhycnLQrl07rFu3Dr179wYAPPjggzh//jzGjx+PU6dO4fLLL8f69euRlZXFb+PZZ5+F2+3G0KFDcf78eVx99dVYvnw5XK7qC96qVatw77338nk5AwcOxAsvvMA/73K58NFHH2H8+PHo3r070tPTceutt2Lu3Ll8m5ycHGzYsAETJkxAly5dkJubi7/85S/4y1/+Eu3TlPwoXTCrfr5zuH2h6KNauoREchWFmGsjTJsAoiLFESMVXb/keNzijyqrqKiOjCsJMfc3oG+QXdgAOwvSJWKEnHyqSaxdsCqP2E4SbERC1QbCEdVEdJ6kQhytVIkEhSuVZgbu120hS5YsQefOndG+fXvRcuGv20OHDgVQ/ev2M888o7iPnTt3AoAohZSwHgdLmsK59qOkpAQ5OTkoPrEa2dkZoYVKs7DJYXb6W7vnDUuPg/u76nj5n+I5GQ4Gqv8f8IdETjhorEpu+fQBfhKKgPhv6QAzCWqTZQjFWHUAnjRFQg5pnq8QuUGBgFiGq5aL6y7LbFMuuiy3XLgu994RRoeFKStVy8Nk2ClJaxFt36vYVi4yrBRR1ZPzK7euVIil29ETVVaTarV+RfunfLuKpJIMy0WGpcdgZF259fX2JdEQHqfuyDCH9F4TTRlWuE+VlJxDTt1hKC4uNiSf3H306yMLkZmdblUvcbbkPDo1uk93f+R+3Z49e7YoqFdSUoJ69eph3rx5uOuuu8K2cffdd+PDDz/E8uXL+V+3f/vtN+zYsQMulwtbt25FYWEhevXqhZycHBQVFWHSpEno0qUL3n//fcuOnQjHvol1RPIiV74n4NeODsulSwgG1Dk8nuoIMVd2TS1tomo9DmEpNikRp0MIkRv4ZgLF6DCHUlRYKQ1DiEa6hFWl1vSmSgD6BsHpTZmwErV+RbM/dhXhSEmG9IaYoVdquXaxSpmIAm4TE9Bobc8IWr9uA8Dq1avBGMMtt9wiuw2tX7d9Ph/efPNNPPHEEygvL0fjxo0xbtw4PPjgg+YPlNAFRYajiGZkGFC/OCVrZJhDeDxmosOAuQix9P9AWKRYc0plGXRFhaVIBVYqqcIJRmTaiKLDctvTs23pejqjw4AkQix9LwvfhxZFhwFzEWJhZNfqyLCeflkpxIkgwZFEhpXWV8s3ToXosGxk2K7pDjL3qkgjw9/8uABZFkaGz5ScR7sG9xvuD5GcxLWaBEHwKNUd5sRLODMdV10CkBU6UZUJILzShPT/gnU5pPWJ1TDSVhOtWeokhFWWkKsaobRtjbQRPfWHdVeXUPkiZ3QiAafDpSk3UjkSipQZMYp04JcV1R3MboM7X9JHomH3/G+rqGRB2S9WCVU9I1ECMgRRBclwMpKAI3pFyJVa4xBGK4VCLJ1sQ02IheXXpDKtIMVqj4hQEtewdgIRkEitbKk1JSnWI8RK5dbUlnEIhVgpN1zaTgY90qcldXrF0apIqx7BNCO0ZtbRI712EWI5yTNaE1pLFO0wU2BMkJtYhyAITUiGifihN3ogjA5L1xXKq14hFi6T/p9b34Kc3lgiK8SAvBTriT7L3VD11B7Wsx0ZIplmNlaRTj3RYb394ARXz8MIRs9FrIU40uhuKkSHlV5DzfeC3SSYosNEAkEyTNgHmUobYekSwv8L2ytNx2xEiDVSJ6KCWs6w1iA3CYpCDKgLsZF0CaV9m0mXsCA6LERLINRSJfRHkd2aUhyPNIRI9mmXCHG0SerosN1EmMNCIeYmnbHyQRAcJMOxJlYXLbteHKUYvVhy0WG1/GE9QiyXNiFsw/fPZY9IsaTOsFJ017QQ60UhOhyGWrqEAnLRYSuEOBpYGSWOBKvE2+q+WiGeVqdKJAu6Bs8lyvWfIGwCyXAsoAuTfvREh10yImJUiAFjUWJuW3oeeomSYKsKsRKyUzjreN+aSZcwEB22AiPRYSPyHc8ocaIOglPCiMhGkiqRtNFhO6ck2LlvBFEFyTARf7QmaYDOdAkrhVjub73okWMjk2SYQDWHWAuTlSUAA+kSCsQ6OqyUWmFEjI1IcaQCG00JtnK78RL1ZI0O63ov2lk67dw3ggDJcPyxa51Iu6BUh1kuXQKwRojlosSRiGok0WM1NNIcTEWIpRiMDoehlC5hMDpsRVmy6v+L31NaFSn0irEeKeb2Z0SOE7kcWqQoRXIpOgz1GvV2lE+3NaUFrXwQBAfJcDKTSOkZZqLDVgixXB6xcB0hkUqxHVGbiESKmeiwCSKpLMGhXYdYvxBXr6PvJqpXioX7VnvEklQUbrtjSNrcXnuKMEHYHJLhRCJVL3JyERCVqYJVkQoxoD9KLF1upRhblaIhwZLosB5iEB2OFLWJOABjEdtoSDFhDXpSJRIlOix9j1nxRZEgiHBIhmOFkgQQyqgNpuMwGh0WPKdLiKXPSbFCimMdbTabNywlitFhOawutRb6W1lW9cgxSTEhxMqf5elnfIKIHSTDyU4iibfOyHfE6RKC5wwJcbSl2AxmyqMZRWtGOj3PGYz8RjMCJifEkVaGSCYpjnaqhFK+r1JENxp5w2rbNYu+vHJ1QaZ8VoKIDyTDdoAG0VWjljusli4RLSGOthQrpWEkAYrR4RimSqjJq/xyt6Ycp4oUE/qJRF7jKsAJFCzRyq038yAIDpJhwv7oSZcAoiPEQLgQc230SLFSm2QZjKeSKmF39EiImhiTFMtjdPBiPLEiOhzXKK5aRQk1Av5qERb+nyBSFJLheBHLi0+iXejMpkuobcuMEGtFieXaySEUYz0SbZRYpErEAStqDgPGK0VoRY2NbN/Kkmx6sGo7FDXTRyxF2JLUITXxTbT7BEFYCMlwLFG72FCqhDpm0yVE29AnxJpRYrNSrEW8IsVGyqtJkZsNUAkTUzRbhdGfRdXEOBpRYm67ZmRWGr2OZ8SZJNrGkOwShCIkw4Q9MRodBrTzh4WoCDGgkTYByAsx19aM1Kqto7SvZEElb9iq6DCHmbxB+YFOyvnEatvRgx6Z1TPoL1IhJrG1DxFHhfWKsI2F2elwheX0R/Kg9zchhGQ40TBba9jGFzlTCKLDpvKHAeNCrDdKrNReiUSKKJut72wxVv48rVeOYynE3PaVHka2ESsSVS7M5g3HKkWCagsTRPQhGbYTwqgYpU2EI/0ioHcyDquEmGtnRorl1kv0QXTSFAmrRFlHdBiInoxopTyI/46uEMcbPdFzGpkfPTRFmO4TBGEJJMOxRmvyjWhe3BItOiwXBVeIjKumS8itb1CIZaU4bNsqUixcz4gE2yFFIhYzH2q8N9WEOJpSrLRP8d/2FmIrosNWlaeyUyUJu2NZRDjRrvsEEQdIhmOBUcGlb/v6MZouARgTYqNRYkCfFOvBDiKshBVRYQsHlEZLivXKXrRqEhOph4MxSo0giBhj47stQSjg9opFyunm5cnh9oUme3B5q2dEc7lD9XCFy7htuF3VUw97PaFqCpzgcpUVBG04IWYVgqoL0vZ8P6s+XoEofrkxm2YRCIq/DOjBoPDKfjkxQmVA/GWnShCYw6G4ih655GY6czk8irOeCXE6XGF5pXLruhxuxVnR5Lahti0idtglxcOwAOv5wmg0KhyLX4FMYvWXR/oiSgihyHCqkWg/mUVycRbKm56Sa4BYLhXSJgADqRNAdaRYb6TXqshytIgkKqx2A9f53ow0aia8qeqpLwzIC5Pesmtq25DrUzSwQ3qCHfpgFVa/VlERYYIgdEMyHA+08oa1sPG395ihMphONn9YiFzJNb1CLCPFIrTygYVirPSwkLD+2Q3p+1/6t8JNP1o/JVshOWaF2Kr9K2/b3jKaqpG6qKVEJFFUmCCiDclwKpIs0WGjQiyMaBoVYo1cYsNSbAV2qEQRi1JrlQFNKbZSjpWkTG90OLTcnkIcL+wq4vFOkTD1no1GegRBpDj2vEIlI5L8RyJOcPnDQHUOsTAHWZpDDFTnAnM5xRzCtjCYTxwpOkTY0qiwldIr/SwE/OIvJdK/ldaTQUku1PKM5bAij5cTQLk8Yk7C1PKIQ+ta+75Ry2uOFnYVYbPE9ctKtNIjEiAqbHUJv3h/ESLsBUWGU5VkiRyYSZdQihALq0yYjBIDChJqtKRaBMhGqqUoDZ4Lq6Fs/ibJAuXKT0pv6nLpEkqlB00IQTQiyBxacqQVJY51CbZYyWm8poXWe87sIENGv6TpIl7Xdu4zq/TZJQgbQzJsByhvWBsjx2tWiKX7URJiub/1DLATrhuJFKusa1k02GilCQUiEmKlZdy6EUTJzEqx3trD4c+ri2GyCbHR7Zs5RjuLdtyIpwjrWUYQNoVkOF7Y4UJhhz5YgYYoWyrEJqLEqlJsFCtEWCq6kYh5UPs9xALlylIciRBz6wsfBlGTYqPio6d9sgtxvKLBRAREGlhR+3wmyz2GSHpIhlOdZL1YqeWWmhHiCKLEgIqoGokSR0OErUCHEAMqUiwnxFpVJpSQyrFOSTYSJY5UWtWE0chU0FZghbhyx2N2W1rHFY10BjPbpKgwQSQvslevb775xvCGWrduDbeda6MSyY10Ig5AfjIOOeQG1cltU2twnfBvTjq1BthxSAfnGUCXCOvNETYLP8GJdpSJBcrDJ+TghNXMwDo9yG1fB2YG0ukd/KY1wE5pcJ3VqPVDax0icpjDQTPO6cDqXx3oPUwIkX03dOjQAQ6HA0znB9TpdGL//v1o2rSppZ1LKSK50Sfyvq1ETogFiIRYKL2AuhAD8tUmgHCJ1ag4AYTkVVGIgXApjiQibCQSzO0nkuix6Jwqv6e410FWirWEGIiKFDsY0z2gSY+sCiOJamJspMJDNGerk8qBsE/REgfbR1urSJR+EgRhDsUr3FdffYULLrhAcwOMMbRt29bSTiUtVpdX05A/AqLoMGBSiIHw8mtAxFFiWSEWrq+BqgjrEVqlyUW0CAbCZ6GTbSd5b8rIsawUawkxtwyITIoj/Cwaid5qRYvlhFhp+7GavjmakbNEqvhgKyTXM9uTDEEWIiWQvdr16NEDzZo1Q82aNXVt5Morr0R6erqV/UoN7BSRtVNfIkHHFwRDQgxELUqsKsRq/Y9Ugrm+aSF8PwT9YpkNCm7IesSY2wa/jvi9FpY6oUeIueVy6HkvywixXHRYTT6NpjOoSbFRIVbajt2J9ix/BEEQRpG9omzatMnQRj7++GNLOpPyxFtI471/LcxGwrWiKWpCLPe80SixhUIcFRGWVsQwilkxtkqI5ZC+T5TW0xkhtlKI1bZndFKMWEWJrYBSDeSxLF84Xr8UKu3X4nuJy+Gx9D1E70dCCFWTSHSsltdkSLuQOyfSCKA0V1X6E75U6qTPS/ehVq5MR01iLVRLtMmUdFPEahGWEgyEPxTb+sNSKcIGOVr1k7CBiQCsrD+shlWpApwk2PHmHknf7FLxIZrn1ZQIWz2TaTSu+XYOqphk0aJFaNeuHbKzs5GdnY1u3brhk08+4Z8fNWoUHA6H6NG1a1fRNnr27BnWZtiwYaI2TZo0CWvz8MMPx+QYUxnNTxVjDO+88w42bdqEX375BZWVlaLn33vvvah1jiBERHrRVssfBuQjxIA1aRM6p3IGQtUmIqoQYQVW3sy0IseSKLFstQmOSHOF5aLLFqRLAGJ5M5JLLN2mUrqEnu1KxS1eUWM7ink8SJkqEUkov1IaNGiA2bNno1mzZgCAFStW4IYbbsDOnTvRpk0bAMB1112HZcuW8et4veHnZdy4cZgxYwb/t1yK6YwZMzBu3Dj+78zMTMuOg5BHU4bvu+8+vPzyy+jVqxfq1q0LRzSmjyTshd3TJfSg9NOdHiEGrE2b0CnEfJ+sSIWQI9pRYT3wXywklx41IZZLZYhEinUKsRx60xL0yqvSNpXSJYwKdyxzi60U4GQYOBdVEVZK/aJB1VFjwIABor9nzpyJRYsWobCwkJdhn8+H/Px81e1kZGRotsnKytJsQ1iL5tV/5cqVeO+993D99dfHoj+EGRGNxgXQbkIcxQu8bA1iM1FitZrEakIMyEpxWJtYIfe666gfbAi5ihRGhRjQfl8ovYd1vL+NlFpTwkhEV06IAeX6v0bEOJpSHOsocCIMnkuZiHASUFJSIvrb5/PB51P4ZaqKYDCIt99+G6WlpejWrRu//PPPP0edOnVQs2ZN9OjRAzNnzkSdOnVE665atQorV65E3bp10bdvX0ybNg1ZWVmiNk8//TSefPJJNGzYEEOGDMH//d//yUaZCevQvKrk5ORQ/WCrULqZ20k6hcS79nGk6IwOAzqFGFCPEpsVYq5tLFGKChsVYbnZ5/SKsw4hFmFm4oyAJIIvfU64zKJ0CTmMRIqlqNX/Nbp9KwfcRUuCEz0qHDMRtjI6bOf7UBVOh9PS94bTERoy1bBhQ9HyadOmYfr06bLr7N69G926dUNZWRkyMzOxZs0atG7dGgDQt29fDBkyBI0bN8ahQ4fw2GOP4aqrrsKOHTt4uR4+fDguvPBC5OfnY8+ePZgyZQr+85//YMOGDfw+7rvvPnTq1Am5ubnYtm0bpkyZgkOHDmHx4sWWHTsRjoNpzKyxYsUKrFu3DkuXLqXyaQYpKSlBTk4Oio8uRXZ2hvJNPGwwVgT5kNEgVhfJaPVfabsKg7NkZ6qTSp90YJjw+bCphAWCIpVgrVnnjNT/NbItvTKsJbZqUzHrkWK5HGKZ9RRziAFjciz3XpYuk2xPKTpsVir1CLGRbStFjtX2E4kQRzMSrEd21CLDRvqmV6yMHm9Mo8JqA0yNXk+jfJ0vKSlFTu3BKC4uRnZ2toH1QvfR3069i+zsGpb2p3buYBw9elTUH7XIsN/vx5EjR3D69Gm8++67WLx4MTZv3swLsZBjx46hcePGWL16NW666SbZ7e3YsQNdunTBjh070KlTJ9k27777Lm6++Wb8+uuvqF27tokjJfSgWU1iyJAhOHXqFOrUqYNLLrkEnTp1Ej2IKGC3nK9o98fASH9LUZAoWfGSqzYhFDnh82o3Fbm8XbWHESKdWtlKEY4Eme2yQLnydNqVAeWHFLn3mXSZ9FcDBbkxK4X6hM8T9lBua3yaWjN9j3bFikhF2A7EPD1C7YugUbm1230nRnDVIbiHWoqE1+tFs2bN0KVLF8yaNQvt27fHwoULZdvWq1cPjRs3xoEDBxS316lTJ3g8HtU2XEWKgwcP6jwifQSDQbz//vsYOHCgpdtNVDSvLKNGjcKOHTtw22230QC6VCbSUfxa240maj8bKvzUqJg2Aeifxlnv5BxqqAmu3DaMbJvrW7RQS3ng2yjMZqewruI0zkrIpVaY+ElYKX/YbNqB2drEQrQG3WntQ28ecbRzghM9LcLW0IC6qMIYQ3m5/Jf03377DUePHkW9evUU19+7dy8qKipU2+zcuRMAVNsY4dtvv8XSpUvx6quv4uTJk+jVq5cl2010NGX4o48+wqeffoorrrgiFv1JXqyuDSlHol34YtlXLSEGZPOIAZm0Cb3TOGsJMYe/wlxUV7oN4XIjQiyHrhQHmZxqK1GRaaUosaIky03gAYjL42nkDysRSyGW7hcQy6xRIZbbTiwHxBkRYaujwpUsmBoibuS+YOPc4XhPujF16lT07dsXDRs2xJkzZ7B69Wp8/vnnWLduHc6ePYvp06dj8ODBqFevHg4fPoypU6ciLy8PgwYNAgB89913WLVqFa6//nrk5eVh3759mDx5Mjp27Iju3bsDALZu3YrCwkL06tULOTk5KCoqwqRJkzBw4EA0atTI9LGWlpbirbfewpIlS/Dll1/iwgsvxPjx4zFq1KiwnOlURfPq0rBhQ0P5PYQMZkTYrhclu/ZLD1o3BaNRYjNCDIRXjlASYbWordw21AQ40hQKM5jNGRbCnUedg/Kkr1PYjHaAcpRYQ4jVqktEIsRCpOIqJ2vSNlYNiouGBMvJeLIKqK0rSAjf11piHK1fAROcEydOYMSIETh27BhycnLQrl07rFu3Dr1798b58+exe/duvPrqqzh9+jTq1auHXr164c033+QrRXi9Xnz22WdYuHAhzp49i4YNG6Jfv36YNm0aXK7QZ8Ln8+HNN9/EE088gfLycjRu3Bjjxo3Dgw8+aKrPhYWFWLJkCd566y0Eg0EMHjwYM2fORI8ePSw7L8mC5gC6jz76CM8//zxeeuklNGnSJEbdSg74AXQ/vRoaQKeE0kXHbgPphER6oYxnBFtr3yqDUsKkWG1gnd5BdRxmUhb0Ds5TqjHM7dNovjBHNAbQGUXHfsIixkIhVhvAqnMwnZBY1PSVi/YK9ysdVBdJBFov0ZRcvVFho0KvN39bD3GVYTMzNRq5BlsgxpEOoDt9+gPLB9DVrDnQcH8SCZfLhZo1a+Kpp57C8OHDafIOFTSvMLfddhvOnTuHiy66CBkZGfBIJgT4/fffo9a5lCERo62J2GcOPRFiQF+UWG+qgFzZNT3rSJH2W6l8W6yIJFXCChEGdJV3C5vVThj1VXsvG4gO87u2sHyZEpGUarOaaEd67T5oLmGRKzWoBEWLE5I+ffpgw4YNmDlzJo4ePYrRo0fjoosuine3bInmVWbBggUx6AYhi1nhTLTc4XggnUpZDr1pE0IhVEqX4PZpdpIII/3m4ORYbea5SFESYasn6TCKTHqFbiG24IteLGd+ixexSHcwIsI0BXQMSOQgSAry8ccf48cff8SKFSuwdOlSzJo1C3/84x8xevRoDB06lMrlCtBMkyDMoztNAkjMVAnA/v3Tg56+yEixasqEUrqE3D6tOIdq6RJS9NQYjjRNIhYpEkpTO2v0RSTESukSJmsPKxENKZZGhWOVJhHLnN9oy7BVaRJxzxc2kyYhh55roZnrldMdSpPIvcF0mkTxqfctT5Mw059EZtOmTVi6dCneffddeDweDB06FGPGjBHNopeqyNYZlk5PqMWZM2cs6QxhIXaeKMNOIgzoO1cygyDD8lCF0qVUg1i4T+4hh8sr/1Dqt1Bq1SK/eqPCelIfollJQnGfgeqH2jLROuJ+ir7ECCVC9OVC/diMyk+yRC2TSYQJkxi9fseikhKhi169euG1117DsWPHMHv2bHz99dd8JYtUR1aGc3Nz8csvv+jeSP369fH9999b1qmUI1riamchthtWCbEQqRBrRUuVpFfaRg9y0itdppW3HPSLH9JldkRJitWE2CRmhNgqaVOLCkeLVBThlJNsSoFIKmbOnIlp06bxf69btw433HADHnnkEdxyyy3YsWMHvv766zj20D7IXnEYY1i8eLHukYcVFcmbFxd3KEcrdpjMIxblEKuVXOOetxK9tYytwIgARzLhhhrS82kEpT7pyR1WqDssFWI96ROJlk+crKXQrCJpUiQ49IxtMHJfMlCzm7CWN954A0899RSA0CQggwcPxi233IKtW7diwoQJWLVqFTp06BDfTtoE2Xdoo0aN8Morr+jeSH5+fliVCUIn0RbdWA2mSyZpN1GPWFOIAfMSJ0VtYJ5UiJWI5sxzHPEUYjPb1UKuTrEEoRjpqToBGJdirfxfab5wJMRDhO0SFU4IrBZhIqk4fPgw2rRpAyBUJrdFixZYvHgxdu7ciT59+sS5d/ZC9qpz+PDhGHcjyZHmhiaTOApJpuOyQogBeSkGwmVOc/IJaXsNITZDvF6/WEeIqxBVl1CKXsmdE52RLk6MoyXFHNGKMCe7CGsdX0IMnNOD3HtVS6Ktjg5bQWXAWvlPgS8S6enpKCsrAwBs3LgR1157LQCgdu3aOHv2bDy7Zjvot4t4EGvhiGWpNa0LZCLlF2ulTWgJMaBchzca8mfF62x1PVE90WHAvBBz68otN9sf6XtYSYg5NMRYb7RYT33iRJ88Qw2qJ2wQPTKn9N5UKBsZNVJAPO3IH//4R0yZMgX9+/fHO++8g88++wwAcPDgQZqGWYLsADrCZiSSQAKh/sr1OdGOg0NNDPVWmVCrCqEXqeSZqVIhbKMG9xoqvZZG0Dvgzmyk1+UWP8yiVFmC+1vpXHARK+FDAQdjqtHEeP/sTyKsn4SICquh9euG1UEbEuKY8+yzz+LXX3/Fgw8+iIkTJ/Il1M6fP4+pU6fGuXf2IvGuQIQ54jERR6LKrxxq509mxjpOiBWrFmjm0uo8d2ozwFk5gUfYzHcmbpR6o8QxRHMiDkB9pi61mesAReFQm8kuGjPYOR0u1agySbAYrS8lCS/CHFoRYq37RjKlxiUhjRs3xpdffhm2vF+/fnHojb2x55WIiA40M11kmMwjlqKrrJdczjEgny4hFUyjZc/MvC/M3gRlZoYTPx+FgW9GkeYEq8mvlhirSLFaTnEspnTmsHtusPz6kUfQK1mQKmUAsU+ZMEugwtr7VyAxqrkQsYFkmCCMoCePmEPhBqNUm1hWkuUiv1r5w2aizrEUYq4PNokSh0WHAWWJVYuQq4mxhhQbndHODPEWv2hFgZW+NEQr5SRposJ6oSAKkQIo5gxfffXVeO+99xRX/PXXX9G0adOodIqIIvSTljXoybt1usMfKjjcPnlRlpPGSKKnSnnLsX5vKEWwrSpBZwAWKJf/MqKVD6yWH6+WXyxBTrDMypzdUg9cDrflfQqyCv6h1cYo8c7bjguR5A+TKBNJgKIMb9q0CUOHDhXNXiIkGAzihx9+iFrHkgq3J3LRsPKCQ0JsHXqkWIgOQZaVYiUh1vNQwiaR2ZijkkbCSbGiHAPGpVhpGxKSKeLICbCcBHMz8Sk9hO3kt23NTH7xjpTHBCPpDyTERAqjWk1i0aJFWLhwIQYNGkQ16azAqDhFE7v0I1kQVnEwem5VpFhEJFUolMRYuk0jfY/WeygWOcM686pV5VguWiwnxWpR4igRr+iwnAArya7yNqrbKcmykYivlbnXyfSFRZZIZoojISYSGFUZvuGGG7B161bs27cP3bp1w/fffx+rfiU3dhFRu/QjGZHKsdxDipEybWbRI5pWlGbT1Zc4v//0lnwToJpOIURvlNigEMtFM5UjqLERYqUosFURXPl96pNro31IyRQJI+gpyRgtpOUerXgQRBWadYZbtWqFbdu2oWHDhrj00kuxcePGWPQr+bFLlNgOfUhV5N4DMlFixTxis2Ksp16xsH+RRL0V+2Cj9x0nxXIPBRQjxUJM1Nq2OvIYjXxd6fbll4ul0ulwKT4i74N2yoUUI18qbEskUdxIthtPISaIKKFr0o2cnBx89NFHGDduHK6//no8++yz0e5X6mAHGbWLmKcqSlIsQKkCBQD5ST20ZFmvEJtBqz9q+4o0RSIYED8iRUOOTQmxAfQKmnaE1HopVssH5tAjvLHO3U0KEebQI8Rm0nEiFW0SYiLBUHzHOySlfhwOB2bPno2OHTti7Nix+Oc//xn1zqUMdildY5d+2A0rvyionV/p+ZfU/9ScyEMJtYk5zLSTrmMVZkVYTXq556zKQ5apk6w6cQegPb2ztL1J9NQmdjncCLLYVOswIrlak4JYRSQibNt8YZlJf6IWNebQc6+gCTmIBELxE8MUPvh/+tOfcPHFF+PGG2+MVp+IeGJkVrJkJxoXcqW6tMLnVYQYMCnFeusVK032IXzOasyIqtGor9VSHEfUxFGvEAOISIqVosKREC0hVpLyhI0GK2G1AEc6Ox2gPIujGTSmOje1PYKoQvHTs2nTJtSqVUv2uQ4dOmDHjh346KOPotaxpELPRcpuUVm79SfWxCKiofTFQ06IAc3Z7QxHjAHlCTwiFd9oSWekqQ9JJMVK6K24EM0ocTzLlqnt26wA2zYqnCik8r2ESAgU7wg9evRQXbF27dq4/fbbLe9Q0qIgNCLsJqB260+yInee5ZZpRGo0I8ZKaRBaM9opEUuh1Oqf0Ui2cHumItP+yFIlIkRPFNVMGTI9RCMqzGE0OqxXuuMaBbYoDcaWGLlH0PTHhI1J0k+ojYnkp6d45GClohDHI89NSYgB+SgxoDrds/G8YhtfCpREWCu/Wfi8XjHm29v4fFTBiaAeKVaesjh2OcRWYCTirCTAeqK8lk2Pbcef4qV9SlZRJwgD0KcgHliRi0XYG6UbjNbrDuiLEgv3ITebmZIQmxkkpwcr8on19stM/2UGvqm310iniGFpOK08YD1SrCeXWF9ftKPCkaZIRLJ+JAIsbc8cjtRIj4hUjul+RSQBJMPxwowQx2tkbqJd7IR9NXrOzJ5jvTcQHZFdzddeLn1CZnumIsRqRFsA5QbvSaO2ciKsNBBRDqNSrBPV0ncWoCflQSiRcmKstA09A+r01hOOB1YJsNXr85/HRIu82jGaDYAF/GAB63LRWSLd04iok2Cf0hTDThJqp76oITcVbjS+RFhxg1PLI1er6qH0nELliTAhVqsYIW0TAVqCGLGoq70ftb4Q6ZXiYMBcykQE7w9OwuR+qtebB6wWLVaKEhupQ5yQEhyP9IBEE2GzJMr9gSAUSJFPqk3Rig7bDbtf8GKVax2NEkaAOSk2K8RAxMIbaTRUuL4uMTab3qH2+uuRYrNCbKRPMoOs9Egx30UFOVYakGY2bUJLgmNVRcKQCCtdY5N5YJsaiXbfIYgYkIJXApuhN12CipdHhlXnMJo3TzNSrDTIzuKUiWinAYj6pyev2eiXMq16p1FKn1BFTogBRSnm0JJjqeQqRYmVhNpM1DfeEgwYFGHh8/Ga1jjZsHuwhCBUSLFPa4JiJxG26wUvFn2K1c3NrBRrCLFRoi3AUSEQBNwqYqZHiuMpxIDmz/lC6VMSY7mor1bZMrtEfZWIOC2CiD7RvD9U+oGghe/BShvex4i4QTJsB+hnK3sQhS8dcrKie2CO2mA7OSm2aDpnwxJs9EtCpO/1sLzwoPLfSmKslTohFeJopEro6QugKsdKqRRKucV6y7HFW3yFGI4GA3Q9JQjCECTDhHHsGh2OJgaET6tGqSlBVooWS6VY+rfMehFHfBPp51+1SLFalFgrQmx1BFnr8ySXTgHwr4WaFCtFiY2gFTW2emIPPfu1rOxZquUOR/uLQireH4iExxnvDhBVJNrF2E6pGza58DKHw3Sxfm5dzfWdbvn3ivT1kP5tVfULK6toWIE0KmymjdL7R5q3HOlU0JEQ8Fc/hEhzw2UE0eXwmMoD5tbTs67ZfZjdnqoIU1Q4ulh1HSAIG0HvaILQQseF37IZqyTbUrzpy0WK5aLEcrPXGZUFO9z4Ip0ohBNiM2kTRjFyvpQi+lLk6kxzyyQD74ymTgifU0KtsoXefehFb19kiacIp0KEWXh8aul9FB0mEgyKDNuJRLuQ2ik6rEUU+2qlCMttWzViLBelER6r21v9kK6jJ8KTaO9JLdSixHI3bytn65OrgS38v1bdZGkbE1FiQBzxVYvAOhjjH3LL1KTUSFRZuo4aURPhyoDx9bl1hOua2U6iIHctiOX1IRiw/mGARYsWoV27dsjOzkZ2dja6deuGTz75RLbtnXfeCYfDgQULFoiWl5eX45577kFeXh5q1KiBgQMH4scffxS1adKkCRwOh+jx8MMPG+orYZyYyfCsWbNw6aWXIisrC3Xq1MGNN96Ib7/9VtSGMYbp06ejoKAA6enp6NmzJ/bu3Stqo+fNdOrUKYwYMQI5OTnIycnBiBEjcPr0aVGbI0eOYMCAAahRowby8vJw7733wu8X31x2796NHj16ID09HfXr18eMGTPAUmF6TiMkkhBHgWiKsNy+FMVYKrZSAVZaJlxX7hENZGRBNKgvGtNFCzEqxEZRkyGldAe5bSiJlQVCrIaW6BrdvpJ46xFy3X2ySkClgqv2UCLZvkBqoXS8SXZvaNCgAWbPno3t27dj+/btuOqqq3DDDTeEOcratWvx1VdfoaCgIGwb999/P9asWYPVq1fjiy++wNmzZ9G/f38Eg+Jr0owZM3Ds2DH+8eijj0b12IgYyvDmzZsxYcIEFBYWYsOGDQgEArj22mtRWlrKt3nmmWcwf/58vPDCCygqKkJ+fj569+6NM2fO8G30vJluvfVW7Nq1C+vWrcO6deuwa9cujBgxgn8+GAyiX79+KC0txRdffIHVq1fj3XffxeTJk/k2JSUl6N27NwoKClBUVITnn38ec+fOxfz586N8phIQu1/09PQvhscQZBWyDyMoirGSFGtFi2OBgkQoVreQi9yIRFBHvrASZoVY2KdoSLvcOZJbZlCI9UirEQmWrmcEoxFjze3bLRJrt/7EghT4AjBgwABcf/31aNGiBVq0aIGZM2ciMzMThYWFfJuffvoJEydOxKpVq+DxiN/jxcXFWLJkCebNm4drrrkGHTt2xMqVK7F7925s3LhR1Pb/23v7MCnKO93/rum3eW8HEMYJCOyJx6gjcQFXUTfoqhBXJV6JmxhdIntcEo+CCr6s6G5U9ii6mxhNNno80aNuootnL2QluwkHNIjrT4jKywph1+geFI0geYHhRejp7nl+f/RUTVX1U1VPVVd1V3ffn+vqC6b66arq6uquu+++n++3q6sLvb29xq2zs7Mqz7GZqdoZvHr1asvfTz75JMaOHYtNmzbhc5/7HIQQeOihh3DnnXfii1/8IgDg6aefxrhx4/Dss8/iG9/4hnEy/fCHP8QFF1wAAPjRj36ECRMm4MUXX8Ts2bPx7//+71i9ejU2btyIM844AwDwgx/8ADNmzMDbb7+NE088EWvWrMGOHTvwwQcfGN/evv3tb2PevHm499570d3djWeeeQZHjx7FU089hUwmg/7+fvzyl7/Egw8+iMWLF0OLyhGs1zJrfjJiXvnIBkRF7LqNcRMP0oyxrCybW+40stqg7udymRCWCcyonGKvmsTm7XtUjhCFXOVVOvw2iDDnnH10tNMRmhZaRQZNiNB/JVHat3r8rKwl1T5edZAdPnDggOXvTCaDTMb9vVwsFvGP//iPOHz4MGbMmAEAGBoawty5c3HrrbfilFNOKXvMpk2bkM/nMWvWLGNZX18f+vv78dprr2H27NnG8gceeAB//dd/jQkTJuBP/uRPcOuttyKdjrnpVOfULDM8MDAAABg1ahQAYOfOndizZ4/lRMlkMpg5cyZee+01AN4nEwBs2LAB2WzWEMIAcOaZZyKbzVrG9Pf3W37GmD17NnK5HDZt2mSMmTlzpuVNMXv2bHz00Ud47733wjwUjYOT42heLnMoo96nBkDVSZY6xrLYQ1RusepPyfAQwtWq3FCJu1wLKnCI7SgLYcXXM7RSZyrrauRsbr0StTtczJc+I0K7lT5DJ0yYYEQqs9ksli1b5rgL27ZtQ2dnJzKZDK699lqsXLkSJ598MoCSgE0mk7jhhhukj92zZw/S6TR6enosy8eNG4c9e/YYf994441Yvnw51q1bhwULFuChhx7CddddV+nRIx7U5LcNIQQWL16Mc845B/39/QBgnAzjxo2zjB03bhzef/99Y4zXybRnzx6MHTu2bJtjx461jLFvp6enB+l02jJm0qRJZdvR75s8eXLZNnK5HHK5kQu8/RtnU+FHVFXqHsgeHyMRHFUNVq+qAHanThOi3DFWad4howIhIo1FOLm/RQex5yZiB/NAusIyX3an1ewOqzTg8FtZICxhp9jiWRmf+1WJQ0wnmNSCDz74AN3d3cbfbq7wiSeeiK1bt2L//v1YsWIFrr76aqxfvx5HjhzBww8/jM2bN/v+1VgIYXnMokWLjP9PmTIFPT09uPzyy/HAAw9g9OjRvtZN1KmJGF6wYAHeeustvPrqq2X32U8k+4kiwz5GNj6MMfrkOaf9WbZsGe655x7XfVWiXqMStaQS8ev22Bpn4fROYapNEtwEclmcwlxqzassm7FDIYtgINx6voN567+AtzBWjUvIMInksqhEVKW23OIS+t+AZ6MOpe14bVuCahk2+3jf++JEGD/Lx+jLdGjU6poS86iEXh1ChXQ6jU9/+tMAgOnTp+ONN97Aww8/jJNOOgl79+7F8ccfb4wtFou4+eab8dBDD+G9995Db28vBgcHsW/fPouht3fvXpx11lmO2zzzzDMBAO+++y7FcIRUPSaxcOFCrFq1CuvWrcP48eON5b29vQBg+bkAKJ0ouiNrPpncxnz88cdl2/31r39tGWPfzr59+5DP513H7N27F0C5e62zZMkSDAwMGLcPPvjA5UiQZkDVFR4SRenN637ZWNk+2KMVliiFPT4h+39ARCFn3OQ75yKEnVxhJwYdjrXTci+irizhZ4wXsn112v9KqyUo7q+9DJvTzRXVOIRqlQ5VzOsLst64mRmV7o/qF6gmmEhnRgiBXC6HuXPn4q233sLWrVuNW19fH2699Vb83//7fwEA06ZNQyqVwtq1a43H7969G9u3b3cVw1u2bAEAHHfccdE+mSanamJYCIEFCxbg+eefx89+9rOymMHkyZPR29trOVEGBwexfv1640RROZlmzJiBgYEBvP7668aYn//85xgYGLCM2b59O3bv3m2MWbNmDTKZDKZNm2aMeeWVVyzl1tasWYO+vr6y+IROJpMxvmX6+bZJmhcvIRtkXW5CWSaKAVgzxW65bo+LnVn8OgpgY2cCChdZRMJL8Hrdr5Iddso0m5ZLn7OTEKkk9+pVcs28LApXrhpiz48IrgbV3FaYxE2Y1yl33HEH/vVf/xXvvfcetm3bhjvvvBMvv/wyrrrqKowePRr9/f2WWyqVQm9vL0488UQAQDabxTXXXIObb74ZL730ErZs2YI//dM/xamnnmoUBNiwYQO+853vYOvWrdi5cyf+z//5P/jGN76BOXPmWFxnEj5V+xp3/fXX49lnn8ULL7yArq4uw3XNZrNoa2uDpmm46aabcN999+GEE07ACSecgPvuuw/t7e248sorjbH6yTR69GiMGjUKt9xyi+VkOumkk/D5z38e8+fPx2OPPQYA+PrXv45LLrnEOClnzZqFk08+GXPnzsXf/u3f4ne/+x1uueUWzJ8/3xCwV155Je655x7MmzcPd9xxB9555x3cd999+OY3vxldJQlSfWr4c6hfEezkMquUqTJvq0VLGOtKaClDEBvRCT024ePC7yl87UirRgS8aKs6v2FkiRWQVpaIQpDIIgtOnfTsmfCwtg+E7wZ6HataC9IwuxVGTSMJ4cIgUAjRv/N5Hn388ceYO3cudu/ejWw2iylTpmD16tW48MILldfxne98B8lkEl/+8pdx5MgRnH/++XjqqaeQSJRiWplMBs899xzuuece5HI5TJw4EfPnz8dtt93ma1+JfzRRpS4STgLyySefxLx58wCU3ON77rkHjz32GPbt24czzjgD3//+941JdgBw9OhR3HrrrXj22WeNk+mRRx7BhAkTjDG/+93vcMMNN2DVqlUAgDlz5uDv/u7vcMwxxxhjdu3aheuuuw4/+9nP0NbWhiuvvBLf+ta3LOH5bdu24frrr8frr7+Onp4eXHvttb7E8IEDB5DNZjHw2xXo7u7wf9FopA8yL2p1gfO6qHk5oR7ngpOA9Yo1hI1MMJtzyPr9xs/W+rknq1ZgOy99CWE3N1g1ImF3cf3GINwEsSw7bD9HzGXWzBPpbOXXKi61pkqYTQ+CirwwBHHcRbCMCj8/IiWs60dI160Dv9uP7LgrMDAw4OtXU/06un/bX6O7q9Xfvrit9+BRHHPqX/neH9KYVE0MNyNlYhiozQzzeqAWFzqVC3+VxXBUlSfM2IWxLoo9BbH5NTKdm8piWFUI28e6VZEIkgeOSgzb7xumKqJY5XOlGuI4iPirRxGsUwUxbPnlRpUwrx0hvaYUwyTONFfaPQ5ENcO8nonzxS4CZELYSwQXRWUXt4Q2cs6ZIxL6/ujRCT02IY1MOEQntGQmunxwFLjFJWSVJdx+FreXWZM06NCPTaSiWCWyIHufeYk5v/EKP59vcRPBQY+P25gKP+/NX7alzXWctkkI8QVVWS2gIK49IbjCYeEmhCsVwbL16MJYF79AAEHst/xfIh0vQVwJdsGrIIiBALnqYXyJaPtr4nUO+6nPLSvZ5rYPTttWnRinShg1xp22p/qc3Qj4ee/2q1OY3QNdCfMzMFlp7e9iuE1y6q3hDomUmnWga3r47b12hDj5xe8FSWXSXFEUjFsUmNdrri6h75v+d1npNftxM10olQSbR0vjquIWr5BdJO1iyUvYhyj8latzyPBTMg1QKyemWlXBvj0/269kH6NwlN3W6edYKH7uB25tHWZOmIYNaSJ4ttcSOsTV/SnUjwgO4XVRyf/ax3gJ4CBl2GQNO4qiYIlOmNcvdYjNmOMSJodYF8Suos3o4mZ73RPJYNUk0qngdYTDRNaVTn+OIX4JsB/bQNELmWByOt/dnFHVqgqqAq1SwRk1bs/XT4WJOH/ux3W/CIkYOsO1hg5xdYhhKaQgDTmC4PRYu0Psun92d9il9nAoLrH5fkvd44Cd4mT4dYe9cBLzxcHIIiL2us6BXWQv5zJqFzbuQlgnrH2ppMZ0VIQphCmqSZ1BMRwH4vah2EjYm0ao4OOD3M/PmV5i1u4Kh9mQw2l9MkFsH+MYl/AQxJ6i2C6I7c5qNfDjKvuNStipcmbaTSi7imUvUayyzA+VxjH8rDMMvPLFfnA41lXJA+swEkEIYxJVoaBwwbX/dNYMAjmqC1YMXWA7XvGIMEWwHT0KYd62fVJdoAoTkkl1StGJSokqKiGrLOGF7g47CfsIohNBMb8m0i8uThPhZJGAsBtRxMkN9kM9NeSoN/J5YDDEX4byMYhXkdhAMVwtVD4km0EAR0VYF6AaOCSqQjhIDWKn7nRugtg+xjE/7CSIAXVRbK8yYc4Om+8zbyOZKI8x6KXSgojiKDrTyTLElvsrEMVeDnOAdbqWf/PT6c4vUUcvohKmXvlhwN+2JcdYEyL4RDpV6AgTAoBimNQ7YV7sfF4Y3C5UduGq6vQGqUHshvmxdmFsF8Tmx7i2eDY7wE41iB1Kr0lrEgcpuyYTxEB8JtQB3oIYiCY6obJOB8EsbSUNqAliv+KzGpUgVIRpVC6037rFEide//IZSSm1qIWw3/KLhNQQZoarSb3+9BcFYRyLGgrhSjALVK/qEWF2pJOtyyy+3fLDjuXWzNjz2Q5ZxMDNJ1Rf73QqfKc3KEEqZFQDl0l9jpGWMOsDBxHCsjJxqhPR7OXYvMrHqRDksSrbDpohpvAkJDB0hqsNM2XhUONYRDVc4ShaM8tcX7ND7FRyzYxjflhHwSUuc4jN7rBTVMKOkzus48cljiIqoeOVI/Z6nF/8bMelQYjSl5Yg+WG/QlhF5JnH1NNP/04d/lQ6ClZCPR0jncFCuL/6DPLLAxmhDt8RpOmJsRD2wskVVhXCfhpxOIlazxiEbZw9OywlDEGsQtl2FAQx4H0RlQlh++S5Ss+7arnEsu145ZdVBbFMpDkJYjMOrbw9CeJ2Ri0kzYRpbsgiHaoi389xqkchTEjE8F1RC+gOByfmQjioK+y2jtIy/6JAf4xMFNuFbcXuMBBIECvhlSnWRWtQURzUEY66IoTbc/a7bbNAlgljB0HsiD1D7JXNDVKOrNKf/f22pg5KVJU07OtkDIKQyKAYJtWnltnpCi6IfoWw2/1urnD54yq7CDqJYhWHWMkddhPEdtwEsVNUwo7TNrxcYqBcFKsK4ai+vAadQFeJUFaZ2DeMa1zCySXWCTppLSrR57TeMERyFHMgVI+lH6rtCnMSHakTKIZrBd1h/1R6vKociwjDFVZtzyyrClG+7nJRbBa3gd1hNzzEsXJUwu4OuwliQF0UOxFmpzs7bkLWS1SpvAfKWl1LHhOWIAbc6xH7pULhJDuXPLPPftpTR4mb+A1Srs0O4xGEOMJ3B2kOAlwIVEWwykQ3FVdYRQg7CWyn5fLSaQUlQSzbRijusCpu7rDXdlRc4krxEy2oRAB7jfUSSE41je2C2OX5eDboACqPJUQghM3LA1cxqQVOZklQE6URhHChGO57OurPB1JXNMA7hLgShqMQB6roiPhxgp2EcKUd5PwIYTecnGMV51cf4xanCMMdVkaWHfYSxID/i54fV7iSOsHSqgou++q0X7LJajJUxLvCGLvoVBbHZhyaswRF5deFuhPFYQtiQogjrDNcS6LOzprXzxrHSkQhhP26wrKOdJWKa3kzj/K6wk5jyx9bQYkjty8nQSal2esbl90fYeQhKJb3ZlHN9VIe51LD1i7eZc67Sw1iGaKQk95cUa0PrLj9KMfXFKfX0s/neSO4woREDN8ljYrTB2itHYUgorwKrrDfXHAQIRwEN2Hqtm6ZkytziVUcYvs6HPPJUUQl7LjWHQ7BJXZzX6NoPyzbH3vFC1m+2fw4L8fYvt9299cpP1xJy2j4cJBrgHId5XqHQpgQJfhOqTXVFqhxEMQxIww3GPBXFULFFa6kNbM+zkkUq7ZhVolKRIosNxxUEAOVucSqcQSVxwJqQti8zGnSn74eP6LYLnTdGoP4iYK4COc4CdC47AchJB5QDDcjzSKIFVyRKIVw1K2U/TzOTcjK3GFXB9iGUm44bLwEMVDdGJLvx9rOF5XOWtUUxTq+u+a5u8lR5HYDNW+pJ5rhs1oBUchD5MNLdopC+B0+Sf3CzHCzUosMcbUjEh74qRbhFotQEcKVuMJhiGrVZiB+thVFu2gpToLM6+d7ryxxveIlnL2yxbIcqlNOuFgov6ngkTuupXhtGlc4LhGJuOwHIS7wLI0DUTi1KpnNuDvENRbCXmJPVVCqNM3wK4RzRef9zyTkLm3QrnP2qIQf1zhyvLrTAeE6xUGqPXitQ8UVtqPaNMQtWyyra2s+lk5fNvy4xx7l2sISpqrucN0J4Th/PhPSQFAMNztxF8QRUKkQ9uOqyipDqGzDCTcRbB8jE8V+sr81E70ygetWczghEXIyzOe5X2GsUp5NaVJbyLVN/XTSq0QYA97i2G+kAtUTxL63YW83XQsa5XOZHehIHUAxTKqDX/FRo25zYbnBpWX+LwJOYllFBNvJFTVHl9iNmk2WqxQVl1jHrfWtnSACVvUxTq6webmK0PU73r5/ZnHs1AnNyzV2q0oRsCKFX+rO+ZWh+tnnZWTEQdCHyWAeSIWY7AzyiwxpWBronVLn1CoqEdW2K6FG8Yiw3ODScvemGW51he33BxHC5se6CeLQ3V9zeTVF1Fsye3SkA/wJYjN+S8GplD8LCz/ur3m8DK/Jd4BcGMvKswHeXe0UiG0zDKc201ERp89gQpoMTqAjJZq8KUeQShFObnDQ7nH6mKpNTKtHVIRWIh28eYcKbuXPwsDNLa50O/o67Dczsgl4Ts0fnCbdqYyzodSsoxZU42d+CmFCagqdYRI9foR2DVxhvy2V/UYiVDrSOW1L5grnh8qXpVqqXNosaoI6vJWuo5JmIYN5fw5xUFHt1yn2uy/m9drLtTmVZ1NxiBXjEn4FcVUcZZkgDssxruQzL26/6hFSp9AZbnQqbQxQTdz2VXemqrSPft1gp3X47UjnFo/ID2lSIazf1zT4+Rk+qEscNWG4y07ObqU4ucWWvyWl2ewEdIj94qsNdJhU6hg3auk/QuoQOsNxohG/5YdSzsrewja84yQTp6oNNNxEsMq2vFxhMypiNz+kNZ5D7IRKftgyPgSnWSedkgvQSpzaMOIPlSDbd7sDLXOJI3SI64Igk9Qa7TPejTAjJoUiUAh5fYQMQ2e4GYj7h6+XI+xnuQ/CFsJODThk64hy0pwfYlMvWIaXYPJbyitMAWYXj5XGI2qNm8vs5hLbf62RNdtwcogjcImB2jb0qAm1/kWPkAaAzjCJjkqzwlX+kPfbSc7tcbLHytYhe6wsHlFN6qqsWq0dYr+oxiPCaO4RFFkmWeYS26tOuLnETrWIPdo3ByW2FSrccPq8i7uZQUgDQGe4WfBTuzIMVNdT6eQRReyT51QqNngJYbdWzCqVJlQacPgRwioRiboSuo2Gquvq9fOtudqDyvigyJxi899eFSdUc8T62IjyxLHC6fPOtc51nTq/bLZB6giK4WqQjIkAqSeHQfUCENKFwmuim1snOX28n3JrYTbXcMOtxrA5IiFrxRyLCIWKYxig85kjUQkPv/EDv8gEcpCbyr77mVynGpuwjw9RGEcqiCutKKE6KbheBXGYOJUFrOTmg0cffRRTpkxBd3c3uru7MWPGDPz0pz8FAOTzefzFX/wFTj31VHR0dKCvrw9f+9rX8NFHH1nWce6550LTNMvtiiuusIyZNGlS2Zjbb7+9smNHPGFMolrUSwOMMLZdqStc43iEmxBWrQ6hOrkuLCEcpSssE8pho9x4wwm/cYlqErUQDhP7JDkde0yi0sl1Ki2cQ4xQhNn2mSjQgK7w+PHjcf/99+PTn/40AODpp5/GF77wBWzZsgXjx4/H5s2b8Vd/9Vf47Gc/i3379uGmm27CnDlz8Oabb1rWM3/+fCxdutT4u62trWxbS5cuxfz5842/Ozs7I3pWRIdiuJpUUsM0zH0AotuPWj8/BdwiEpUIYT/VJeyPjWLCnKorbCayGEUl536YOV83ojh3Awphkfd2rbRUhL84OXWkUxHFTjWJVatN2AlJFNdUENdiTkQjtWKOAZdeeqnl73vvvRePPvooNm7ciGuuuQZr16613P+9730Pf/AHf4Bdu3bh+OOPN5a3t7ejt7fXdVtdXV2eY0i4MCZRbeISVZDtR6X7FpPmGmGhKoSdYhBOdYZVhLBbTWEzqRYhdYXtQthN5Ko6v76FsttrLLlQuwqVascldII6tkEqM6AkglWEsHlsmDcpsgiFV5bY8niFHLGKqx/CF6LYZYjDIG6fpQ3oCtspFotYvnw5Dh8+jBkzZkjHDAwMQNM0HHPMMZblzzzzDMaMGYNTTjkFt9xyCw4ePFj22AceeACjR4/GaaedhnvvvReDg/E3meodfnWsBXFwiPX9CIuwhHCQ41JBtMQpu6s60c0rSyx7jI5qdzkZbrEILyGskgWORV64XnFrp6wjEcFxwLwfZc6zPQohc4lVYhNOTm+VXOKaRyaCfMbFTfA2EAcOHLD8nclkkMnIz49t27ZhxowZOHr0KDo7O7Fy5UqcfPLJZeOOHj2K22+/HVdeeSW6u7uN5VdddRUmT56M3t5ebN++HUuWLMG//du/WVzlG2+8EVOnTkVPTw9ef/11LFmyBDt37sTjjz8e0jMmMjQhRJNU6a8+Bw4cQDabxcBvV6C7u6N8QCOV0gmjekQlXxDs67U5j+ZqEmZx6iWGVcSyfZxsvI5THCIKEQx4C2GzK2weK5tcp99vva+0TDN/jJidIfNran99HRwkV/fOyx0M6jA61rNWdIbdJuMouMFxRxrJMMcnzGXY7CXnzOPs71MnUeslikMuxRZIHFczhuD2uenzF5jIcXhfHzhwGNnRX8LAwIBFIHqhX0f3/cNcdLeH97of+GQQPV/9Ydnyu+66C3fffbf0MYODg9i1axf279+PFStW4PHHH8f69estgjifz+NP/uRPsGvXLrz88suuz3XTpk2YPn06Nm3ahKlTp0rHrFixApdffjl+85vfYPTo0f6eJFGGzjCpnDi43C4EFcJmVFxj+zidSgUw4D1BrlIh7DRONUIhNM0qiGXYfxFpSfr/SdUrP+w1kc7PT+2VCGHF2sGOQrjWjTlsglbfT4soNueDzS6x2SG2o9K1DlBziUMk1nWJ69EcqSM++OADi2B1coUBIJ1OGxPopk+fjjfeeAMPP/wwHnvsMQAlIfzlL38ZO3fuxM9+9jNP0T916lSkUim88847jmL4zDPPBAC8++67FMMRQjFcS+ISl6iEJsoJu92vKoKjaKARRAh7ja8Is8gNcI5XXFmiGvhxggF1N7jWIljHvB8mYVsmimXRCbsgtjfosBNEEEfU0jnWolhGHXymxh29VFoQhBDI5UrnjC6E33nnHaxbt05JuP7iF79APp/Hcccd5zhmy5YtAOA6hlQOxXCtkYmFWpdXU6XehfwwXm2Z9ftVhbBfEZwrtiCTGFLf4WGcqkWoCFuneETkKLrDroK4Enc4ysoUlbjB1RLBBQ8nPim5JEiEsVQUqwpi2edbTBxinZrninXq4Tpgxu2XnkJMvugF5I477sBFF12ECRMm4ODBg1i+fDlefvllrF69GoVCAZdffjk2b96Mf/7nf0axWMSePXsAAKNGjUI6ncZ//ud/4plnnsEf//EfY8yYMdixYwduvvlm/P7v/z7OPvtsAMCGDRuwceNGnHfeechms3jjjTewaNEizJkzx1KRgoQPxTCpDlF/qPv8AuHm+gYVwqptlHPF8iIu+jJVUaziBgNyR9gt+uAUkahIMHu5w1EI4jBIJoJHJeISifASv17j7eLYFoEQ+bxcEMvGhy2II3KHSUwJu9uiz3V9/PHHmDt3Lnbv3o1sNospU6Zg9erVuPDCC/Hee+9h1apVAIDTTjvN8rh169bh3HPPRTqdxksvvYSHH34Yhw4dwoQJE3DxxRfjrrvuQiJRel9kMhk899xzuOeee5DL5TBx4kTMnz8ft912WyhPmThDMRwHGiEuUaeo1ByWCWG/IlgmgGX4FcU6QYVwZK6wWx5Ydr4HEcS1wmdHtqqKYL/i18/6dGFsqyJhEcQ6brlhY90+BHENqLk7HIaBMFSIR73hBri+PfHEE473TZo0CV61CCZMmID169e7jpk6dSo2btwYaP9IZcTgXULqkjrMCrsLX6sr7BadcBLClYhg2eOcBLFKDeEgQjhIObWiyBvrcZ1EZxfAYXwBdHOH/XakC7o/QcqlBRHBYYtcr32QCVl9H8yi2C6I/bjDgLogrlFcghDSHPDTJS7QHY4lbiLZTQg7ieBBl+xwWqGlsp0wohGR4bdaRBzdYT9RCRMV54LDFr9+t28faxbHhYKaIHZyh4MK4rgRF9fVi3rZT0JqCDvQxYmYOKixpDA4cqsQu7B1ErxBhHCu2FImhAeHNOPmhtf9KqgK4aBl1wB53lrHXMauDPv5LTvfHS7ajj9Xx0UweQlmVSFaKETjAlcaybCvw7yPKuv2GiN7X9tdfz9OP7FSja5wTtugyUPqAH5dJNEShcCvQrUNFSFsF8F2whC3dpwqSADBhXCk2N1elbhErRzikH6dCdxEI85usHmMEXkod4hd3WG3DnVA/VTRMVNPrms97asEcbQI0RLeBDpxNMTJeKTuoTMcN+rtYlANInQWVLLCfoWwigvsxKCHwDYTRNSqxCr8Rirsx6zMHbZfgCtwiKUE7WJWLWpVO9hru7rb6+QcO91nXuZXwHtV3bC/1z07DkbrOsZu8malVMMhJqQOoRgmDY3rz/YOyEqsAeVC2CkS4UV+SDNuUaIiaoNMmguFgII4FrVf6wEVIex3fU5VNHRBPPy34YzrQtdn9Y26+1m9lgKz3o4VITGFYjiONIo7HMPnIXOAVZbJhLAZNzfYLH7tAjgsQazi7vptxuEH3+6wjEoEcVyywzK8SozVE04iOgxBbBbFZpFndn+rnBtW/vI1VKgf17Wa+0mxTuqEmPyOSEi0uJVVs44rmP7vLYRlAjhqxzcIqlUnVB87JIqejy8rteaVH3Za5rcqRbMTtivs9PiyLnPDGWK3/LD+OPt6KiHCyhO+aw3r52k1s7lBstZh54er8P4UuSJES3jbETlmhskIdIZJ0yITvoA1HuEkhO1OcLWiDyqoNNaIovya7AuH7/yw0zIbkcQl/LpYtcoCR43u0tpvdvTnr3IczI93c4md3OF6o9pOcZBjxS+YhBhQDJNoCDMioZIvDQG7OHYTwmYqFcCVPt5v7jfKOsRKDryKIPZ6jIwo3EG7CGxUAazjViJORRA7xSXsj7dnkF2alwDwjkpE3Zo7KNUUxfX85YGQGkMxTJoOJxdY/9t8v5MQdnOC9Yl1sgl2YeGU/w3SZc5NCIdRhk06iTFIhQkbobrDUQsJlShAsg5SawEFsSVD7OQSy75oNIrAq6Yg9nPM6A4TAoBimNQLyfTILWSKIm9xhQFrUw2ZELaOdRe/QUWxUztmVSoVsl6Pd2q+oRSXAPwL4mrXSA3oCmupOp0wp9ppzyk2ATgKYsDDJS57fIA8ZwTucKhfuOIam6AgJoRimMSIKlafsItfoFzc5Yc0VyHsV+Q6jU8FaMMswyvqUM02zcqC2IsYViQBEE1cIqymG9WqXuEpaAMKYidUqkrENS5RC6oliKskpkV+KPQbIToUwyR8aiFgzNt0cBDd2gjr6Flhs+i1C2GZqM0VNeMWNm5i2SkvHId4RGgT6lzGlzl3QXLDMtHgxxUO4mLGkWSFNae9BLFTbML+GLs77DcqURwMRRQ3RE3rkFrYE9LoUAyTpkXPB8tcYqAkemVCeOR+uQCuRBinXYSv3opZJlTNwtZLCCe0pKMQTmgpX0JY5QuGJyHkh+NE4HbMYVILdxhwF8S2+6WC2A9eNYfpEo+gIogZlyBNDMUwqX9CEEu6MLa7wkC5EPYjdOViOZy3nUoVCT+tlsNwg+0Ezg+74atVs22sikDyEmf1XlEibKEcpiB2Ktemi7kqCdzIXGE/gjNsRzcKQew1vs6+yJLmpQ6mL5O6IkYffrroUm24YUZ3hWVC2I5dPIeRAfYzec7JFVYVwlGIYDNFkS/bRllDDjuy5hsOaMkMRCFXyS66Uw3xG1Ze2IzeFMMPyUQwp1ZvrKFjbsah/19/jqbGHL7XC1ibbBQL5V94KqQh4hFOqDToUG3IoSqcje19ojbeATFYgGgJL4YmBumEkxHoDJP6JoKKA+V54HIh7FZaTV5uLdiHuC6s3SISKkQphEOJSgDur12MvmSRAFjqCCu2bnZyh+2E2KI5dkK4Vnlfs9C1/z9o7eRknVZZIU0BxTCpXwIIJJlLLItI6K6wXQirdpkL0o3OLS9sR3d9VVzhqB1hlbhGoOoSbq9v0C89YTfmiPvkOSf3NYpMsdekQ5lL7bd7nU7cy6iFSdiT4FTXZRa91e6oR0iVoRgm9YlMKAUQSE6T58zoInkkMqG53iolSH1ht3iEbGzU0QhVPKtLmFH98hNFJzqdOJdUC4tKqkrIBLFXhhgu7nDZ+s3l1RRKrSmgJTPxFcJmdFHMChGEhA7FMAmPav2UrbAdN9exKAplneaAkbrCZlfY7Baril17nCIoThEJmSvshFdHuqC0aAnjpkqQ7LbqOVU1MWN3VCstR1YNqlVZQkfWlEPaXc6ldbP9cSoOfABBXBci2Img4piRI0LK4AQ6Ei/cJk5F8bP5MLKKD3YhLBtnRhet+jjz307LwphspxqP8BLCfoRtLGhJ8qfbSggywc4PsslvgPfkOf1x+jhjAt7wcvMkMPNkOp/UtRCWoX9uNqjYFUeLECH6d+JozCNOpKrQGa5HmvGnsgiFsNmxHJRkfZ0iEPYGRpVEJNKGC1xaaRBXOKgQ9uvwhk0kUQkzIVcb8KJu2zFHgc8udcq1hyv87AtDCItCLtoqJkFppusCISFBMVzvNMMHn08h7Kftr14JwTpZbsQVNovg/JD1Zl6mE0UHOjdUYg9OY2otgpUJJIDrxB2LW17YB+JosewmRVUQy3DqSmfGaTKdwzkQlhCW/T82RH1dsEc0muE6RBoaiuF6xC4OGvmDKEIhbMfsCpuFsC54jxTLbzpube795obDdoVl1IUIVsF0DiiLHLtIqvRn5VrlhpNJ662KOAlfR1HsJIjNqJZaC9qmGdFEI2Ibt/BzfFqS1pvbOp3W28jXIdLwMDNM6hNFIRys4YZVCB9x+cX2SBFoG9ZC+SEg1TKSDbZnhPX/26MQ9oiEKl5tmZ3G1L0Q9tGQwyCRVJ9gZW88Yc/WRp219aLKwteMas5SH6e1ms41c4a4LA9csDTjEPl8KW7ilDuuMbEVwHZUmmzIxK8sj19jsSvyQxABKu24rY8QHTrDjUIjfit3+hAP2REuCd8WIyqhu8K6ED7qcgPcxTLgb5Jcpa6wmbgJ4aqXc3OLSoQdo7AJtshywzUUwkEoE8+ymINDflg6xikuoUclXL7wxEbAVnvSp9u1IYQmRYQ0AhTD9YpMKDaiIFagEiHshi6E7Vlhe07YCXvlCDPVcIXtNKwQDhKVsGN/P9ndSHv1g7DKlfkRtzUWwkFn3zsKYg93Xan2cL1+5tVDFRQKZdJEUAw3GtW4OMToAqQqhPWJcqWGE84f8uZ4hC6EAeBoUbPcABhjVLBHJKz3+asgodJgwy4+VRtx+Ll5oTpWEwrOedBcr9kBtleV8MoO+xXEXu5wJQI6CiHs2Ngi/JJTnoLYT3UJP7WH40xYXd3MLZKd1mf+zI7R5zchcYFf/eqZINnJesfkVvjJCOtiUBfFLVrCNU+sRx904XvUdI1pTZaWtzo4v2ZHWBaRsLvC5mVhTJrzI4QrcWxr2sXO5dzXkhnnGf5+ssMqhJEfTiadKyqEIYIjzjeLo/J911qTtnFFeYZYNT8MeNcorkfCdont69M/M1Xyw4Q0KRTDjUgTfugF6m4mQc8Ll/5fWuZwrbeMAUYm0tmRucJu8Qi7EJbdZ10W7G0ch5bMSq6wCm4NOBJp9/Jb5vvsIttrMp0d23gtlZJ3VvPCrwiOuESbc/UI5+3q95lFcZkg1vEQxADkE/CApvy888VQQSnyoJsLob0n7VQYuxC5AgTCi8SJXB1EVUjVYEyi3nG6CMTNMQ45f2Z2hf0KYV0EJrRUmeD02xEu5fAOyiSEZV3mKIRXg43y/Q03HqEac4iayC668MgOVzku4TrWeExEZdJqWfViGLtgtpRfM7dudopMwKFVM/GPy3VBEyLS9yQhcYZimFSPGk7IkMUOWrQEEloS7ckkMokhpFoEMgmB7vQQ2hIloduaEGiV7LY5ItGagDE+kxBl5dTsore0PJycsN94RC1FsH6xDe2iaxetbueXXfBWURCHmh2WEcQVDkEku7nCsrEyUWzgJIjt/y8Uy//Wsbv/tr9j2RyjWjiVSauHiXyEVAGK4UYmbu4w4E8QB9j/IVE0csF2zEJTn0inu8O6Y+tV1UEmjGXowtr8d9q2jTgKYbtgDfOmTEgX6DJ32KucWtiCuNbEwBW2YxfFroIYCOYOh5kJryP09tD2m4H+vorjdYGQGkMx3Ai45eXq7YPP5/6aIxJmEWwXxPo4PSKgC2LdHbY7uCVXeOTxMhGsj7G7wmYhrDvOOlEIYTtBhHBsfiKtVAjbvmz5iksAaoLYLIrTKasINv/fyx0OQzw7ucIxFMJmHAWxGSd3WP/bIprr7HMuZNxcb6kgBurOHRa5IYhcMcQbm26QESiGG4U4TyCpQjxC5gY7ucSaEBYhnNBSSLW0ojM1hI7kkCUq0ZUCulICrQmBYzKlf1sTwpcQljnC+nizOA8qhL2Ertv9sRLBQS7Kfs97WVxCJTLhxyVWFcT62KCiOKgQjrq6RH7I8WYZZ3KJLRli+z7an6efkmqMSgCQPG9dCLsJYr/vR6/3Yp2IbiceffRRTJkyBd3d3eju7saMGTPw05/+1Lj/+eefx+zZszFmzBhomoatW7eWrSOXy2HhwoUYM2YMOjo6MGfOHHz44YeWMZMmTYKmaZbb7bffHvXTa3oohpuBarkmYWwnYlGvCz9NCCSRRKqlFamWDNItbUi1tGJ0awGjMgV0poYwunUI3SmgJ10SxakWXRy7C+FMYsgihIERYWwWyzI3uFIhbHeFnYRwRSLYXtfUq8apymPDxMsdTqT9Z4iB0ASxqygOyzGOGKe8sFeLWydRXPpXIoht7rA0KiHLDbtEJZpeEDu936J8TzYA48ePx/33348333wTb775Jv7oj/4IX/jCF/CLX/wCAHD48GGcffbZuP/++x3XcdNNN2HlypVYvnw5Xn31VRw6dAiXXHIJikXrF7ylS5di9+7dxu0v//IvI31uhKXVSC1wK4Nlx2fZpKLIlwnAIVG0ikTTtpMtSSQSXZbKEp2p0kUjk2hBqiWBQ/kWpFo0dJtWO+L+OrvB+t8AXEVwaZk8/xtFRlhJBAe9GEZ1EfX7Rct2jklrD9vLqtlrEOuC2F56zbw/utDVBZm59Jr5/5KSa4BLDlYXxH5d3BrGI7yEsGysNlyORRwtQGtNjpRes5dRA8qrbJiPM+D8WVEcLPtyIwq5+LRnrhX68VL5jG3yGAoAXHrppZa/7733Xjz66KPYuHEjTjnlFMydOxcA8N5770kfPzAwgCeeeAI//OEPccEFFwAAfvSjH2HChAl48cUXMXv2bGNsV1cXent7o3kiRAqd4UaikbLDFVAUeePmSGGwdBv8BJoQSLW0ojXRidZEJ7LpDsMhHt1awOjWIka3FtGdHjL+35kaMm66G9yZKlom4gVxg833y8aY16ETqhCuR1dI8cuSVPyoxib8TK5zc4glXeqkTrHs8V7EOCfsVNPV7BSXOcSA9DmJfL48KuFWVaIJqFjYu10fVK4dcY7peXDgwAHLLZfz/uWgWCxi+fLlOHz4MGbMmKG0nU2bNiGfz2PWrFnGsr6+PvT39+O1116zjH3ggQcwevRonHbaabj33nsxONh853S1qaoYfuWVV3DppZeir68Pmqbhn/7pnyz3CyFw9913o6+vD21tbTj33HONnyB0VDI3+/btw9y5c5HNZpHNZjF37lzs37/fMmbXrl249NJL0dHRgTFjxuCGG24oO+G2bduGmTNnoq2tDZ/61KewdOlSiDjkK+uNMMWVz3WZBXFR5OXtm4cKRmxCF8QlUZzAqIxZFBfQnS5abp2p0q0jOYR0i0BXqmiIYF0otyeTZdlgFRFcus9fLEI2BlCIRcRVBOtfWryQXYwlWXUtmVGrMqEiiu1ZYqeJdfbog19RLBPEETfZ8IvMFRa5gnGz/21ebn68JX5hb8FcKHhPpDNjdvklArnR4hJegthyv6yyRFDDpEpCWOSLod8AYMKECYZWyGazWLZsmeM+bNu2DZ2dnchkMrj22muxcuVKnHzyyUr7v2fPHqTTafT09FiWjxs3Dnv27DH+vvHGG7F8+XKsW7cOCxYswEMPPYTrrrsuwBEjfqhqTOLw4cP47Gc/iz/7sz/Dl770pbL7/+Zv/gYPPvggnnrqKfzX//pf8T/+x//AhRdeiLfffhtdXV0ASpmbH//4x1i+fDlGjx6Nm2++GZdccgk2bdqERKJ0gbnyyivx4YcfYvXq1QCAr3/965g7dy5+/OMfAyh9q7v44otx7LHH4tVXX8Vvf/tbXH311RBC4Hvf+x6A0rfFCy+8EOeddx7eeOMN/PKXv8S8efPQ0dGBm2++uRqHKxjVaNEcxjb8RCUkaELIha0EXRAbwrElCcA0gSSZLu1LYRDJdDsSidK5VhKvR5BJHEWuqA13p7N+f7RXiygtc45DlJZ7N9FQmSTnRwg74uc1CPu8skcOokAXxLbnWRabkEUigBFBbI9POHWtU41NyMZCIT4RBmG0kPZAtbuXyBWgZextm/XOdQnrcTSPyedLvcjMXyoKRQDD72c9GlEsyKuG6OsJEpfwmhBcwy+V5udiPr+Vn2MT/YKo88EHH6C7u9v4O5NxPlYnnngitm7div3792PFihW4+uqrsX79emVBLEMIAc10LVu0aJHx/ylTpqCnpweXX3654RaTaKiqGL7oootw0UUXSe8TQuChhx7CnXfeiS9+8YsAgKeffhrjxo3Ds88+i2984xtKmZt///d/x+rVq7Fx40acccYZAIAf/OAHmDFjBt5++22ceOKJWLNmDXbs2IEPPvgAfX19AIBvf/vbmDdvHu699150d3fjmWeewdGjR/HUU08hk8mgv78fv/zlL/Hggw9i8eLFlpO3bqjXtqUu+53QUo5xiKIoDI9JmpblkUTSKmCOHir9O3wR05JptJpyxAktiVRLAUOiaGxLb9lsriXs5Nq6CdsoRTDgIoRVLthRXxijENdO65R8+dIFQiBRbB8nyxI7CWJASRRbBHEVBGxQyibEOUUiTPEHc0tmXRCL/JCRIdbHW1o3D9qOh325V6REkh32jUplnAq/6IeFqwA2P49Krgv1eD2xoVeHUCGdTuPTn/40AGD69Ol444038PDDD+Oxxx7zfGxvby8GBwexb98+izu8d+9enHXWWY6PO/PMMwEA7777LsVwhMQmM7xz507s2bPHkqfJZDKYOXOmkadRydxs2LAB2WzWEMJA6WTKZrOWMf39/YYQBoDZs2cjl8th06ZNxpiZM2daviXOnj0bH330kWNAPjbU8gMqhs5CURRQFHmjzJrQNOvFYDgiIAo5YPAT4OghaMU80lrGEpvQb6UybBl0pjLD1ShKNz3iUGrikTGiEHoMwh6VsGeC7bEJmbiWVYvwHYvwulCrRhPqDQch4xidcIpP2MeZUYlNyP62j4dDKTZjbIU+RgUVK9w6z8mEsKX9ssMyI0rhFJeQxCMcs8P6uatQWcIXfkpEtiRr2nGzKjSAEK4UIYRSxhgApk2bhlQqhbVr1xrLdu/eje3bt7uK4S1btgAAjjvuuMp2lrgSm3ernpkZN26cZfm4cePw/vvvG2O8Mjd79uzB2LFjy9Y/duxYyxj7dnp6epBOpy1jJk2aVLYd/b7JkyeXbSOXy1neGAcOHHB/0lHi5JLVgzvsFcMYKgAtSUtUokVLOHaeA0ZcYp2EloJmuHmldVoEUWEQSJeE7JA2st4WLYGEySG24+TQqjTMUHWB3bZTUSQiiAD2eky1zzWv6IVDbAJwqTgBlFedANxdYrfYBODsFNvGWxxiL3e4Bu6xZyk1p4Yatvu11kSZQ2yJSwA2N92jsoQTQd3hoMLWj0scdBt+XWjZdvxeF+J+DYmAO+64AxdddBEmTJiAgwcPYvny5Xj55ZeNOObvfvc77Nq1Cx999BEA4O233wZQcoR7e3uRzWZxzTXX4Oabb8bo0aMxatQo3HLLLTj11FONX7o3bNiAjRs34rzzzkM2m8Ubb7yBRYsWYc6cOTj++ONr88SbhNiIYR17/MCep5FhHyMbH8YYffKc0/4sW7YM99xzj+u+Ngx+c8PDAjYK3KISZsoEcSIF45UcFsTA8L8FAMk0tJZSLWIMWbeji1SzAHcSrqV9rFwAO43XCSyE/byOfgWz0/ioL6YBRbFT5lJZFLvFJgB3UWyPTsgEsZlksrKJdE7i2VYGThW7KywTwmbxLItEyCITpftQXmoNgABCyQ67Uunnlv1XqDDX7bQO2fs9rM/fGgnhoUEgzJ5xQz4/yj7++GPMnTsXu3fvRjabxZQpU7B69WpceOGFAIBVq1bhz/7sz4zxV1xxBQDgrrvuwt133w0A+M53voNkMokvf/nLOHLkCM4//3w89dRTxnynTCaD5557Dvfccw9yuRwmTpyI+fPn47bbbqv8CRNXYiOG9Zp6e/bssfwcsHfvXsORVcnc9Pb24uOPPy5b/69//WvLen7+859b7t+3bx/y+bxljHmGp74doNy91lmyZAkWL15s/H3gwAFMmDBB4dlHRDUm01ULRefCSxjbBXGyJWl6F9iOV2EQSMIQxEWRL3OG3doiy/bNiUgEMBCOGxzFOWRfZ1QXWK/3gIdTDCiK4iBZYsA9TywTpTF0h2WUxSJk1SbKag2XC2LAXH94+IHS6hq2Ywoo1x2uas3hakUnotpOEzrCOk888YTr/fPmzcO8efNcx7S2tuJ73/ueMVHfztSpU7Fx48agu0gqIDaZ4cmTJ6O3t9eSpxkcHMT69esNoauSuZkxYwYGBgbw+uuvG2N+/vOfY2BgwDJm+/bt2L17tzFmzZo1yGQymDZtmjHmlVdesZRbW7NmDfr6+sriEzqZTMYI4/sJ5TccUQlw83r1yW4mMegmKM2YM8QFFCASKSDdXvqgb+0s3cwf+sOl18yZ31RLa1kW2Otm3k/7zYzT48xUXCpNJRdczexwlNuStVO245LxVMoU20uxeWWJvfLE9n1wyg/LssN+utiF1O3OUiZNQQg73a8/1pwhluaHTaXWlLvSEUKIA1UVw4cOHcLWrVuNnt07d+7E1q1bsWvXLmiahptuugn33XcfVq5cie3bt2PevHlob2/HlVdeCQCWzM1LL72ELVu24E//9E8tmZuTTjoJn//85zF//nxs3LgRGzduxPz583HJJZfgxBNPBADMmjULJ598MubOnYstW7bgpZdewi233IL58+cbAvbKK69EJpPBvHnzsH37dqxcuRL33Xdf/VWSkImAenCLncSLw76bRaObk6rHGsyCuCjyI6JYF0W6OAYMkaSLT3tNYL83+377Eb+h1AuOkwiu5rZ1UewmjD1EcRlubZ391CUG5MLUPkY2zmkyXcStnVU6zkkd4aMF42YeNzJ5Ti6I3fLHxmQ61brDqjT6JDg/NLErTBqfqr7T33zzTZx33nnG33qk4Oqrr8ZTTz2F2267DUeOHMF1112Hffv24YwzzsCaNWuMGsOAd+YGAJ555hnccMMNRtWJOXPm4O/+7u+M+xOJBP7lX/4F1113Hc4++2y0tbXhyiuvxLe+9S1jTDabxdq1a3H99ddj+vTp6OnpweLFiy0xiLpB9lNxGBPpap0b9phIl9CSlliEvtzcntkeqTCLUc22r+a6xvo4layyfb1eKLVLNuOntXUYY4Js2+/rbsQKIoxPmLdjxyNT7BqdcMsS69v2qkssaeXsOpnOLT9cYXTCUvXBpZJE2Vh7yTXJY0cmySWNx5Qmz1kjE9axkg07if56mDBMlCjkNRRCNKIK+ToytUjkaIIt1SLjwIEDyGazGPjtCnR3d9R6d6LJafqdIGUXRUFdTPP6h9cpNM0Qp7rjKxPDQHl1B1mDDD8CNii+hS/gf/a4qsD1+8UmCEG+DFVLzHhVMJFQVn3C/pO83Y0031/2BXX4/DQLV/3/BbPIlNxvWY/Da+MmiO33mbfnIIYNJ9chImGNP6idL7oo1nPEeiUJLZM0LUuWlicTI+53Mgmkh7v4WZYnRs6fRNoxyuKYGW4mZ9jrfVbh+/DAgcPIjv4SBgYGfEUI9evoe187D93p8F6PA4MFTPr7db73hzQmsckMkypQTYfESVhEXIzeHpcw1+91iioAsIjokShF3liu6gC7YY86KAlhPfZgvqniJ3JQDSGsPzYqMV8pbhEKh/iEZ2tnt7rETrEJWX7YFJew5Iel0QqX2ESVUIpQ5IoQOXv94eEIxXBsQq9HLHIFpXVKMZ8/YdUcrhXmqI9KFj7M7RLSwFAMNxvmD7UwREatPiRdJtPpk9z0/5f+9XYUzOLXLorN/6riS/jKRG9Q0ek3d1stIVzJeqqZYfYSxTZCnVynU4eC2CnTK41HmESwLooty47am3CMCGIjP+w1mW5Q0pSjHvESvtUUxYQ0KBTDzUhcPjhVBJHbvipWl/ASxKXJdAXT33JRbL/PCeVJbpWKXh1d/AaZfFbLyZQxaFnrig+X2LHihOVvBUFsrzJRtk8ugtjPxLoKCerSytxgp/vNLnHpbwdBbEfWsa6ahCVO/a6n2m4xIQ1EEwWiiIVafmCGKYLME2RME+rMcYkhUTTqD9sn1ZkpioKjYDZPunOiou5vdqohUqOaLOd3naq5zFpMhnKbaCfpLlbWxc4+ec6tJrGxTVN9YZcJdYCkIYdsYh1QWXMOnzhlhcsiEXlv11bLJIbXMZIZFrkCtJTpPBi0PX8ngnafU0F2XlbyKxwFbRlDBQ3FlvAmvQ0VOIGOjEAxTOKPV9UKiSDWCWsSXGAhHEUL5Frhp7VsXAnaiMbpcZKqE1JBDFirTZizq7pgtleZCEsQA+XVJuxjAlacsHedU36chxCW3z88ua41YTTkKP09fPfwczC60unLzB3pAGk3usCNN1RFqx9hXAshTPFNmhyKYVIf+BQxujgVmma4wnrZNZWyaKGI6LBaIEdB0O1HIYijdoft44PW3vbhEjuWYFMRxPo2nAQxUPq/qSybHplwLL1WYyx5YJPQHcrJRpdoyZTGaqmE6fHm8ySJUoc6U5tmezTEfMzsROkUu+EmjKOs8BMUCmXSBFAMk8qJQ9tnc11ak7jSaxDbxa1ZFPvF/jipK+wkGGt9nMKgERxiO0GcO/s4v7EJt3rE+ntKJojt/3dyib1qEfsUzKrl0VTHm4WwveZrMiWM+1tgd4mH39tG/eHhVs3p1Mjzc+rYFzcoNAmJBRTDpH5QEd26c6iLkuEMMVDuEuuYJ8jJUG3zPLJCiQgIc2JbHC6gZie3UmEcZS3XIMdK9cudbJxqbMItR1xNQVxldFdYF7pOjQ/My5MQhkuso6XSwxENkztscoFFPg9N1r0vTDc4Du/DJqJYaEFRC2/Of7HA+gFkBJ4NJDqicEFVLkCSKhPASJUHe+tj1fbJsnbJZa5wJUJYtSJEJdUjdMKcda5XVwgiaoM8phruuurxcRrnVW1CVn7NfJ95/cBw8wiXOsT6GH17bqXXzFECp3WFiFEdwkUIFwua9KaP0x+jr8OoQay3bNbLupmFv73SRCPVGw4TinpC6AyTJsDkEgPleWInStUnnO9XEsIqVCruzI8PmqcNS2A2WseuarrEXg4xMOIAm7PDQRxiz+eTKBOTWmvSd1RChaJpVn8xb/dnRipTGA6xKT+sT6bTWjFyXAoF6/ExVuDuFPuaRBdXAcm8MCGBoDNM6g9Vd9h+YbDV9PVqiCETwo6PCZoRjkuGuFFrlIbVWEbVJZah4hIb/zc16DC7x7JOdcCI6DPXGVZxiJ3cYZ/ouV0vnFxhXQgX8y2GEC4MaigMWpcXC5rhEIu8uRbxSE1iACPiN0aTB2NNo73fCQkIxTCpT1Q/xGViSNLsQtYqWbl9ciWT5cK8GIW1rkYVxpVSaWxCIooNVGIT5nU7NecIKohl9+uPby13VPWav0GQCWFdAOsiGIBlmV0QAxhp22yPSgxjKTdnxl7XmRDS9DTYb5okdkTZKEH1J2xzpQk7tgiFL8KqqFBpNY4oRat93XFxsv0Q5jmoGitxq0scVmzCVFpNOrHOVnrNNTIhrU1ceVTCXFLNXD3CLoQB9yYIpS22QI9NtAw7zaX9KUJkhkbqDctKrMnQ6w37nVQX1y+JYTf2iNnzLAwCBRFeo4wCfzwgJiiGSX3jR0i6iaKwS4UFvTD5eVwcivPXizgO+0uZyuvlVoINGGkhbq9JbG7SYS6/Zl4eIEcsFcSy6hIh1yh2arAhE8JO1SVKNSMAXRAP5QQSqZI7rFeWEKmWkottdrfL2jW7nweBm2/UGzETuoTUGophEj1Rt9H1IyQrmWymSlxd3iioJ3EcxXmoKoqjcIlVGnS4CWJj/5Ijk84c3GGtNVEWQ9BSLaXJa5mkcie6Ql6zTJgDrEK4MOgUvxiyCOJCUhjusGgdKo9ymCfRyahVw42oCPtLdL19DhFSIcwMk3gQtDSXGb8f4JWWJ3NaXzNjzhvH8YIa1euj8pNz0BJsxv9tk+vs25aVX5OUXjMyxDKxKHucvm/DglNrlb9PZdliJ3RXWCaEh4pa2a0w2FLKCxeGM8SFkcl0ZQRxtVVzxJV2P4yCuP+aREgdQGeYVAcvV07vGicpR+WLoKXCZOP9XDiaXQQ7EYVzXOkF3S1DXgkqkR3Z+elVgs0cjwBGXGKV2ISshbPZIZbFJezOcgjZYbe2y7oQLone8phELjeETEa/X6C1o1gS00mBdEaUJtKlWiAypdrDWqepPbOsE535s0jPDUeB8SUlJr+eqJ7vMRXMQwUNQ1p4mWG3jDppPiiGSWPip72uExS44VPp6xLmhTrK2IS+frdxQbLEfmMTThPrvASxjv0xtriEHpVQwZ4HNlxhWzQilxtCIW+v3DIEoKV02PIaWgY1JFIahnICLZ1Km68cP+eK29gw29fzM4qQUGBMglQPrw9usxscZvOGmDodTY89UlGL2e1Rigmv5+QjOmFgLsGmEpsAXEuvlUUm9CoMbo+RxCXM9Ybdyq4VC5pl4pwukHVXWBfCgznr7ZNDQ6X7BoddZH09eQ0iV1QW5BaHu5Yl1sI4l6OIR/CzkjQpFMMkHKL4EA1bEMc1x0pGkAnkqF+3qN21IHliW4beM0usL7M36TALYnse2I8gdqGSmsOAXAjnjg4Zt8OHisgdHTIE8VBRc6w64chg3jlLbGvNbJnEGCX8LCIkNlAMk+riV3hE0d6XFyFipxqCOGxR7OUSq0ysUxXECu6webkq9oiELoQLBYFCQeDw4SHkcqX/64JYd4d1d9mpdJsFu7CXvd7DTrFxfM2fPUEm5xJC6gZmhkl4+GmC4efiYitBFQpBJ9pFjdtxqcW+Ou1P3I5bGERdAhAIXopNkid2zRKr5IhVMsQ6svGm/HDJHVYvsWbHnBMuFARyudL/B4/q8YeSaM4Mj023jTxWS5m67el1hpNJNWe71iXWwswPu22jASjkNRQQZtMNTqAjI1AMk3ihV5WoFtW4GLltO8rxYXekchrbSMK4GoIY8D7v3Bp2yCbY2Rt1OFWbcKo0MYwuD4zpa7JubrYKE/bKEiPu8MjjWlBEcnitRZfKZ7lh8auL4EJheE+ODiGTKa03k2lBMl1AMi2QTAlomQRaulJo6UqX9ms4EmJpQ21+roXiiFMeJarnUi0/gwghABiTIGGjKiTi9OFfbeekWtllt/xtmJncBnGeDKp1boYYnTDwE5sImiM2jTXHJbRUi2UinROJ1BCSaTG8SyXRm8kMO7+tpX/TrSOXpmRSQ7q1pfRvRkMyLZBuG0K6rYhEZwItXWlomWRpXzrbgfa20v6b4yEyHF7nUDPDUU/QJISEAp1hEj9k7nAUUQkz1YpNNOoFLK6xk6BUyyEGyrfjVvPaXp/YySV2qkls3oYfl9hces1Wt1hrRVlcwrTjI7s77A7rHehakgLIa2hJCAAakikNgzlrSbVksjQ2kyn9m0yVxifTAulOgZZspnTrSgPtrUAyOSKE/WCqN1zWjrnSMmlR1bUmhIQGxTAJnzCyw06CWL8vKviTZWU0UnyiViLG7RjaRbFTltgemwDKs8S6IDbjlCXW75MJYoxEI1QacSSSAsAQCoMJJFOi/CkmNeRywuIOA0BXNoGOLg2tHQWk24po6Uwb8QitM11yhDvayycLho39fAjj8y7o504TfV4V8y0oiPB+zC4W+MM4GYFimERDVIJYX9YILjGpD6rpEttxOhft7y+TKK7YJbZjFsTGsoJ17PCEuuE/4OUOl56CKI0cjkok0xoymSQOHyqiK1ta12BOIJ3R0NGZQLptCO3ZPLrH5JH6VDsSY9qQOK5zJCPc0V5yhwHrvplLquliP2huuNLzIIrPlCYSxIREBcUwqT0qglgXv80yua4RaKQvFbUUxID8WCpEJzxdYgvD63GITmjASLUJB7RW/X8qgrgIIAFgqOQQ5zW0JFqGl8HIFbckBFo78mjLFtB2zBCSx3UiMaYNLX1Z4JjukXxze+uIGDZ2o+gsjN3QP2fMr3m1usoFodbbJ6TOoRgm0eHnA9pLENuJ2h3WCfsiU2tRVQsaRRTH4bVTEcVuLjHgHp0AYIhiM3o+ePhPS2zCPkYiiLXWBMw94syCOJHSkDucQBJAMlU0nGIASKYEWpIC7dkCMj0tSI7PIjGmHVrvMdCy3cAxXcMT5Yb3Pd1eek5Gd7nBka5zqkI4KLUWpG7nBiHEFYphEi1hCWKgNhlioPYXuUahEURxHAQxID8nZdEJlTJsZpzKsJmRxSZsmAWxlkpD5IfQAkCkWiBahyCOFqClisChklDNdBRRzJcynC2DpYoRidQQEslS+bTk6DSS47tKsYhjuqFlu0pCuP0Yi8NtuOHF4UiI6rmWSJY75aqucNyop30lJCYwQU7ihdvFy0n0ViM6EeYFpp7FIInP6ycru2ZfppdhaxmplODawU5fZpTcs5VhS4+ULNNSw7V8zU0uTGO01gRajslYyq5prYnS/1uT0DIJJDoTyPS0oO2YIbR3F0q3bAGdxxbQMT6JtkltyHwmi/RJo5GY2APtU73QPjUOGHcc0DUWWtc4aN3joLX3QEt3AC3J0r9ujTRcHOKyShLNRlzObQlDRS30mx+WLVuG008/HV1dXRg7diwuu+wyvP3225YxH3/8MebNm4e+vj60t7fj85//PN555x3LmHPPPReaplluV1xxhWXMpEmTysbcfvvtwQ4cUYLOMIkev86q30l1QHViE2E6xHFxGEkwwnz9vL7MeZ3XfvLEw+tTbthhMOjtEus5Y53hv3WXWGsddoYzQxC5AkSqBegCRL7kFLd0Du86UKoQ0ZooVYwY0z7iBo8ZDbQdUxK87cdAaBqKIo9EpgNaur10rI4esh6HwhH342enmvMSSN2wfv16XH/99Tj99NNRKBRw5513YtasWdixYwc6OjoghMBll12GVCqFF154Ad3d3XjwwQdxwQUXGGN05s+fj6VLlxp/t7W1lW1v6dKlmD9/vvF3Z2dntE+wyeG7nlSHMIWkWRxU+8JFQeyO23OKsesUiDBeP5XzVzUO5BSdAPyJYp2yPLHk9dMF7/CfRnRCL8E2PEZL5k0d60ZEMYBSC+cu00S9TMlJbhnTPtJE49hRQEcWWntPSQQnUiiKPIaGSuscEkWkWlrLm/Xqz7uSvLDfzoz1fp434udSCKxevdry95NPPomxY8di06ZN+NznPod33nkHGzduxPbt23HKKacAAB555BGMHTsW//AP/4A///M/Nx7b3t6O3t5e1+11dXV5jiHhwZgEqR5+PmCDXFDq0dGp9wunHbP4st8akbg9L6eudrJOg17xiaDRiY72kehEe9vImPZWaJ1pIz7R0pUu3TpLt8SY9tLtWFOliOywI2wSZ6FOhQAAI6pJREFUwmhJloSwKKIo8igKD6FrL60mI5G2RiSMbn0UhY3OgQMHLLdcTq0D4cDAAABg1KhRAGA8rrV1pKJJIpFAOp3Gq6++annsM888gzFjxuCUU07BLbfcgoMHD5at/4EHHsDo0aNx2mmn4d5778XgYMw+axqMOlQPpK4Jc0Id0Bgl1xrRiWkEhyxu+IkC+W3c4dbJzj7JzsC0XnMpNt0pTqVKpdgAWJp16I06kqaGHfZGGXoDDb1cWsKafU5oI05yUeTRoiWgCVF6TkPD1SSKkkoSFvFuEv069fiFOgpi+JlUGNRQGPKX83Vd33AnxAkTJliW33XXXbj77rtdHyuEwOLFi3HOOeegv78fAPCZz3wGEydOxJIlS/DYY4+ho6MDDz74IPbs2YPdu3cbj73qqqswefJk9Pb2Yvv27ViyZAn+7d/+DWvXrjXG3HjjjZg6dSp6enrw+uuvY8mSJdi5cycef/zxkJ49scN3Pqk+YQtioDpl1sxQELvTTEI47q+dkzA2i2KzCDTHJ/RlqqJYRyaKjc52ki52+v+HJ+Jpba2Gm4xM54gzPYwmhCGIW7RE6f/FPFAYHK4mYaokETQiEefXtBqEfV7H9IvGBx98gO7ubuPvTMZ7EuWCBQvw1ltvWRzfVCqFFStW4JprrsGoUaOQSCRwwQUX4KKLLrI81pwD7u/vxwknnIDp06dj8+bNmDp1KgBg0aJFxpgpU6agp6cHl19+ueEWk/CJ59lJiJm4io0oBLG+XkJk2ESrb4LWKdbHBhXFepm24QYZhmOsi+N0aqR5RjJRygonEyUhnG4vTZgb3k+hadCEsAhirZgHjh6CGDwMDH4y4goP5t27zQ3HQLRkRt5oo9mp9LPXIoDV4gfVpru72yKGvVi4cCFWrVqFV155BePHj7fcN23aNGzduhUDAwMYHBzEscceizPOOAPTp093XN/UqVORSqXwzjvvGGLYzplnngkAePfddymGI4JimNSGMCtM1JIo4gBxfa5+YEwievR4Q5BKKgFEsWeNYmM9KK9TbIpQABiZ6JZK2R6bsMUY5NswC2Jjn83xiKNHgEOfjKxT9vxl5deYFS7H7+dRTB3gShFCYOHChVi5ciVefvllTJ482XFsNpsFALzzzjt488038dd//deOY3/xi18gn8/juOOOcxyzZcsWAHAdQyqjMc9aUh9QEDsT1+dKwqWSyijmMoNOjw1alk3SvMO18oQjDu8Lexk283Ids/AeypRKpiXT0Oz7PCyERe5gyRUuDI6sW3eF9fXqQhsod4UphCujQUWwzvXXX49nn30WL7zwArq6urBnzx4AJeGrl0b7x3/8Rxx77LE4/vjjsW3bNtx444247LLLMGvWLADAf/7nf+KZZ57BH//xH2PMmDHYsWMHbr75Zvz+7/8+zj77bADAhg0bsHHjRpx33nnIZrN44403sGjRIsyZMwfHH398bZ58E9DYZy+JP40kiAHmiM00izsc1mvkJlxl8Yiwy7IB8qiOOVNsEsWAD2Fsd4sBd0GcTJtaKqMkdBNpaEOFkuA1b18fp+eEPzk6Eo8oW2/C2RUmwXE5F4WmWf4NSm5wCKnikPdA1fX5XNejjz4KoNQ0w8yTTz6JefPmAQB2796NxYsX4+OPP8Zxxx2Hr33ta/irv/orY2w6ncZLL72Ehx9+GIcOHcKECRNw8cUX46677kIiUfqSlslk8Nxzz+Gee+5BLpfDxIkTMX/+fNx2223BnyzxRBNCuHXVJBVw4MABZLNZDPx2Bbq7O7wf0MwEEU1xFYpRCMC4PlcvKIajoVIXzkscy143+zLbOkTBlAk1CVkUC+XLDFfXJlh1dNGqY6/6oK+3aHKH9YzwsBAW+Xwph2wuA6evN90enSvcaOe81zFxOBft4vfAgcM45pg5GBgY8JXR1a+j66d9Hp2JlPcDFDlUzGPmptW+94c0JnSGSTwI4iLG1TmlSzxCo7vD9fiaAN45Y7dMsb7c5jq7drUzUzSfy2aBbBPGZpdazwLb79MFMGARwQCchfDwvlkmzdmfX1Aa7VwPIIQrdYAJqQUUwyQ+NJIgBsIXxVFWm7Bf1Kpdqo74w6ktuR9UIhRO57BCWTbAowqFWRTrEQrAWRTb7zOLYNt9hhAG5HWFzTGJuH5+1Bq346LoBhNSL1AMk3jRaIIYiEYUR13/s9ISXmYa1R2u9TkXhiBWRUUUA1K3WOoUm1s96+sxvuwlygWxPVtsE8BmN9jVEY5y0lyjnOMRucGenQI9KOQFCkPhpToLRSZEyQhsx0ziR5ALUz1ciMIUT9V8vnrnr0qEV62FY6MShoPv53X1avdsXqdTq2dgxCXWWz3r67CjZ4Blf9ucYEudYgrhYHi5wTUSwoREDcUwiSdBBXHcL0pOYiIItXiuFMTxoxaRFqfX0r7cdL44CmLZ4+3tmaXbSoz8q9/aW72FcNjE/TNHFafX1EUEq8YiElrK0kKbkLjBmASJL0HjBXGPTQDhRSdq8VyDNHnQiWJyYa2I03lWab3iIPiJTshiE16RCXPTDsDatll3h+01hPVl+j4khitHAPIuc5W8fo1wDuvIjgNzwaSJoBgm8acRc8Q69SoOVevXOtEoOeI4nmf218RNHIfhKju9lubllQpiwFqX2OwYm0Ww/liZG2yORujjglKrc9dtu0Gej5sbbIMimDQyFMOkPggqiPXHxp1KxGEtBVklorhevwjYCWP/o3z9qhGjcHOJVQWxGb3ShL3KhFkEm9ssm51goHGEsN+GRDoqz0/RDY6LCM7nBAYT4U16y3MCHTFBMUzqh6CCMY7unYxauaVhlelidCI49fTFrRLcBDFgdYntGF3sbPfJJuXBIRZRKdU6R6PejoIQDlsEa+zvRWIMxTCpLxo5RwwEe35xeV6VlmOjKG5M7F/ynAQxIHeJzchEskwE69vRt2/+NyiNIoTtVFAhwmtSHAUwqRcohkl90sg5YkBdGIb1fMKuWUunOBj1dI5WgkwQA1ZRDCgLY0uViHoVwWFuy+08spfAMyETwW5l0ZwEcZkIHiqwkQ+JNRTDpH5p9BwxUD/7KYNOMdGRvVdtgljH4hS7IBXA+rZk/w9CvbrBIQjhoLWBLUKYApjUCRTDpL5p9NhENYmyoxkn2qlTr+emyq8YMkEMWM4L5VrA9nO1HkVwFNuqohC2u8KOQrgwCBQqa7yRyw0h2TJU0Tos6xsKb12k/qEYJo1Bo8cmqkXULX4rFcXNIojrDdXXxek1DHrO2d+/9dRNLortOHUHNBOBEHYVwYTUARTDpHEI4iBSEJejX8ziKIprKYirld/Wt1Uv56Xf16MSp1+1811Qoj63olp/gI6AkbrB9udZD91BSVNDMUwaj2b7WT0qonaJgWAT7aISxGF0AzQTxk/1cRbElR6vMJ5bPYjgagtg2X0RvY89hTA/g0mdQDFMGhfzBYEfysGolktcK0Ec9/PCqbNbLdYVt2PVbEK4Ro00PKtFyGIR9ucdQjWJQgEotIRXqq3AyDAxQTFMmgO3DlnVQuXCGFcnsBpZ4moK4moIu6ic3TD3PW4C14mo3hdxFsJ+nnOVRDAQUAgTEnMohklzETfxG8Zj3Ajz+UbtEldSmziuxD3qEEeqdbyiEsJ1LoKBgG6w/f/2cYTEGIphQhqZMH9m16lGdEKVSmpNk3gR9y+qqkT9PJzWX+H70a2bnG8hTBFM6owYXM0IaVDimlk270slF+6wRTEvoM1LowjhqHA7Pi7vP7+OsBlpFzkdVTe4klKKhFQRimFCqkFcK1yEIYxlF79qEvf6w4xKOFPt4xLn88SO17GptQiW/e0keluSFX82DOYEkiFOoBscCm9dpP6hGCakmsTVLQbCFcZ+L3yN7hxRENeeuL3fnKiBCC4TwED5e9KrZFo1SjESEhE8cwmpFXF1i4GRfQrDLQbcL5LVFsK1cpIrPaakMVE9HzyEZhAhHIoI1h/jJYR53pMYQzFMSK1pZFGs0+jOrx+q8TpTeMQXv69NBG5r6CLYaR8tz5WfASS+UAwTEhfinH2Nu6vp99jF+QtIGNSynnZcqcX7q5Lj7lMEa0JI3WGp8DXjJoJlf5sfpySC9WXO1SpUGMwNIamF1yljULDrBhmBYpiQOBFnQQzEXxT7xf484nzsKyGsCiKknCiOZ0A32FP46sh+qVEVwTqyfbQfC8vfeaVdI6QWUAwTEjfqwbWM44SwML5IeD2nOL8mqsTpC021zyO/X35qdYyimIzmFFXyK4JluIrgYTi5jsQYnp2ExJV6cInjIKjMRH3MGslJjotbXMvzKG7nr5lKBLFXRl923kYugnP+109IlaAYJiTOUBD7p5rHLM6l8vxQa7e41tuPK16C2M/EVKfzMwoRTBeY1Bk8YwmJOxTE/qmHqEkcqbUorfX240jQSixu537Q90UFcYhKGoEAQKEgUNDCa5RRUM1Xk6aAYpiQeqBRHMhqI7tY8/h5U+svOHGJcNQTKue133Pf6dj7zARXKoQJiRqKYULqDbqeldFIud9mwO31aSahHPQ8DcsFdloWkRNMSDWhGCakXqGoCwe67nJq7Q6roPJ6xf056FR67oV17qqIYLrApMFoqfUOEEJCIpm23oh/eNwaj8Kg9RaX/Qi6X5U+Xobsc0O2zKXbnNC0SIXw4FGBXIi3waP+MsPLli3D6aefjq6uLowdOxaXXXYZ3n77bcuYQ4cOYcGCBRg/fjza2tpw0kkn4dFHH7WMyeVyWLhwIcaMGYOOjg7MmTMHH374oWXMpEmToGma5Xb77bcHO3BECTrDhDQqzMsGI+4TFkll1MtrW8l+qpZlowuszPr163H99dfj9NNPR6FQwJ133olZs2Zhx44d6OjoAAAsWrQI69atw49+9CNMmjQJa9aswXXXXYe+vj584QtfAADcdNNN+PGPf4zly5dj9OjRuPnmm3HJJZdg06ZNSCQSxvaWLl2K+fPnG393dnZW9wk3GRTDhDQTjASoQUFMl7xaBD3PvKpM+G6XHJ0I1oRQ744XU1avXm35+8knn8TYsWOxadMmfO5znwMAbNiwAVdffTXOPfdcAMDXv/51PPbYY3jzzTfxhS98AQMDA3jiiSfwwx/+EBdccAEA4Ec/+hEmTJiAF198EbNnzzbW39XVhd7e3uo8OcKYBCFNS5iRimYXjoR4ETTeMFSQ37xwapcsK4/mEYXQIxB+ohC6AK53EezEwMAAAGDUqFHGsnPOOQerVq3Cr371KwghsG7dOvzyl780RO6mTZuQz+cxa9Ys4zF9fX3o7+/Ha6+9Zln/Aw88gNGjR+O0007Dvffei8FBfsZGCZ1hQkg4Tmg9TLgiJGqicnr94CSEZf93eEwlEYgoBPARFIAQV3sEpeN94MABy/JMJoNMJuP6WCEEFi9ejHPOOQf9/f3G8u9+97uYP38+xo8fj2QyiZaWFjz++OM455xzAAB79uxBOp1GT0+PZX3jxo3Dnj17jL9vvPFGTJ06FT09PXj99dexZMkS7Ny5E48//nhFz5k4QzFMCAmPajdNsF/0wxQUhLhR6ZfHKM5VLxEs+ztEEQyEL4TT6TR6e3uxeM//F+p6gVIOd8KECZZld911F+6++27Xxy1YsABvvfUWXn31Vcvy7373u9i4cSNWrVqFiRMn4pVXXsF1112H4447zohFyBBCQDMd90WLFhn/nzJlCnp6enD55ZcbbjEJH4phQkiJMHOyUYlir0lBFMckbMJ4T1TjPPTrBpvGhzERzlMEBzwGra2t2LlzZyQxAbsIBeDpCi9cuBCrVq3CK6+8gvHjxxvLjxw5gjvuuAMrV67ExRdfDKAkZLdu3YpvfetbuOCCC9Db24vBwUHs27fP4g7v3bsXZ511luM2zzzzTADAu+++SzEcERTDhJDoCDM6oTI7XvYYCmLihxo6vqKQc7xPS7qLNAtubrCCE1wUeelqE1pKfR90Qnj/tba2orW1teL1VIIQAgsXLsTKlSvx8ssvY/LkyZb78/k88vk8WlqsU7ESiQSGhoYAANOmTUMqlcLatWvx5S9/GQCwe/dubN++HX/zN3/juO0tW7YAAI477rgwnxIxQTFMCCkR1SS4MARxECFMiAo1dH7dxK9srKMgNr8/FIWwHxHshdQVbrAvoddffz2effZZvPDCC+jq6jIyvtlsFm1tbeju7sbMmTNx6623oq2tDRMnTsT69evx93//93jwwQeNsddccw1uvvlmjB49GqNGjcItt9yCU0891YhRbNiwARs3bsR5552HbDaLN954A4sWLcKcOXNw/PHH1+z5NzqaEA061TNEHnnkEfzt3/4tdu/ejVNOOQUPPfQQ/vAP/9DzcQcOHEA2m8XAb1egu7ujCntKSECirgZRiRgOQwgHuTD7PSaNVlGjkSdD1kgA+xG/dnwLYR9usKoIljnDqkL4wIHDyI7+EgYGBtDd3a20vThhj1PoPPnkk5g3bx6A0gS5JUuWYM2aNfjd736HiRMn4utf/zoWLVpkPP7o0aO49dZb8eyzz+LIkSM4//zz8cgjjxjZ5c2bN+O6667Df/zHfyCXy2HixIm44oorcNttt6G9vb0qz7UZoRj24LnnnsPcuXPxyCOP4Oyzz8Zjjz2Gxx9/HDt27PD8lkYxTOqGagi5IOIqLEeYYtg/jSiGayCCKxHAZqRi2KcQDiqCdexi2I8jXO9imDQ2rDPswYMPPohrrrkGf/7nf46TTjoJDz30ECZMmFDWYpGQuqVaIq6WYrEaMYtGFI+NQqUti/3U90VJAOu3MIiDEFbC6fgUBoFCBNsjJCQYxHNhcHAQmzZtKusJPmvWrLIC2UCp53guN/LhpxflPnDgk2h3lJCgVPsClfSxvZYkgHDEBAD/7nCQY9NI7nCyQTKflYpgH4iIXn8tWbQuaEkCMG3L/Frp7zHT+8cshJ1E8JAoTfJq0Zw9MrMzXOYKOwrh0vYOHCxdB/ljNIkjFMMu/OY3v0GxWMS4ceMsy+0FsnWWLVuGe+65p2z5hMlzI9tHQgghpF44ePAgstlsrXeDEAsUwwrYg/Oy2oQAsGTJEixevNj4e//+/Zg4cSJ27drFN3+VOXDgACZMmIAPPviA+bQqwuNeG3jcawOPuzpCCBw8eBB9fX213hVCyqAYdmHMmDFIJBJlLvDevXvL3GLAuY1jNpvlB2WN6O7u5rGvATzutYHHvTbwuKtBU4jEFU6gcyGdTmPatGlYu3atZfnatWtdu8UQQgghhJD6gM6wB4sXL8bcuXMxffp0zJgxA//rf/0v7Nq1C9dee22td40QQgghhFQIxbAHX/nKV/Db3/4WS5cuxe7du9Hf34+f/OQnmDhxoudjM5kM7rrrLs9e5yR8eOxrA497beBxrw087oQ0Bmy6QQghhBBCmhZmhgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWI4Qh555BFMnjwZra2tmDZtGv71X/+11rsUG1555RVceuml6Ovrg6Zp+Kd/+ifL/UII3H333ejr60NbWxvOPfdc/OIXv7CMyeVyWLhwIcaMGYOOjg7MmTMHH374oWXMvn37MHfuXGSzWWSzWcydOxf79++3jNm1axcuvfRSdHR0YMyYMbjhhhswODhoGbNt2zbMnDkTbW1t+NSnPoWlS5ei3uaeLlu2DKeffjq6urowduxYXHbZZXj77bctY3jcw+fRRx/FlClTjMYMM2bMwE9/+lPjfh7z6rBs2TJomoabbrrJWMZjTwgBAAgSCcuXLxepVEr84Ac/EDt27BA33nij6OjoEO+//36tdy0W/OQnPxF33nmnWLFihQAgVq5cabn//vvvF11dXWLFihVi27Zt4itf+Yo47rjjxIEDB4wx1157rfjUpz4l1q5dKzZv3izOO+888dnPflYUCgVjzOc//3nR398vXnvtNfHaa6+J/v5+cckllxj3FwoF0d/fL8477zyxefNmsXbtWtHX1ycWLFhgjBkYGBDjxo0TV1xxhdi2bZtYsWKF6OrqEt/61reiO0ARMHv2bPHkk0+K7du3i61bt4qLL75YHH/88eLQoUPGGB738Fm1apX4l3/5F/H222+Lt99+W9xxxx0ilUqJ7du3CyF4zKvB66+/LiZNmiSmTJkibrzxRmM5jz0hRAghKIYj4g/+4A/Etddea1n2mc98Rtx+++012qP4YhfDQ0NDore3V9x///3GsqNHj4psNiv+5//8n0IIIfbv3y9SqZRYvny5MeZXv/qVaGlpEatXrxZCCLFjxw4BQGzcuNEYs2HDBgFA/Md//IcQoiTKW1paxK9+9StjzD/8wz+ITCYjBgYGhBBCPPLIIyKbzYqjR48aY5YtWyb6+vrE0NBQiEeiuuzdu1cAEOvXrxdC8LhXk56eHvH444/zmFeBgwcPihNOOEGsXbtWzJw50xDDPPaEEB3GJCJgcHAQmzZtwqxZsyzLZ82ahddee61Ge1U/7Ny5E3v27LEcv0wmg5kzZxrHb9OmTcjn85YxfX196O/vN8Zs2LAB2WwWZ5xxhjHmzDPPRDabtYzp7+9HX1+fMWb27NnI5XLYtGmTMWbmzJmWwvqzZ8/GRx99hPfeey/8A1AlBgYGAACjRo0CwONeDYrFIpYvX47Dhw9jxowZPOZV4Prrr8fFF1+MCy64wLKcx54QokMxHAG/+c1vUCwWMW7cOMvycePGYc+ePTXaq/pBP0Zux2/Pnj1Ip9Po6elxHTN27Niy9Y8dO9Yyxr6dnp4epNNp1zH63/X6egohsHjxYpxzzjno7+8HwOMeJdu2bUNnZycymQyuvfZarFy5EieffDKPecQsX74cmzdvxrJly8ru47EnhOiwHXOEaJpm+VsIUbaMOBPk+NnHyMaHMUYMT2qp19dzwYIFeOutt/Dqq6+W3cfjHj4nnngitm7div3792PFihW4+uqrsX79euN+HvPw+eCDD3DjjTdizZo1aG1tdRzHY08IoTMcAWPGjEEikSj7Nr93796yb/6knN7eXgDlboj5+PX29mJwcBD79u1zHfPxxx+Xrf/Xv/61ZYx9O/v27UM+n3cds3fvXgDlrlI9sHDhQqxatQrr1q3D+PHjjeU87tGRTqfx6U9/GtOnT8eyZcvw2c9+Fg8//DCPeYRs2rQJe/fuxbRp05BMJpFMJrF+/Xp897vfRTKZdHRdeewJaT4ohiMgnU5j2rRpWLt2rWX52rVrcdZZZ9Vor+qHyZMno7e313L8BgcHsX79euP4TZs2DalUyjJm9+7d2L59uzFmxowZGBgYwOuvv26M+fnPf46BgQHLmO3bt2P37t3GmDVr1iCTyWDatGnGmFdeecVSBmnNmjXo6+vDpEmTwj8AESGEwIIFC/D888/jZz/7GSZPnmy5n8e9egghkMvleMwj5Pzzz8e2bduwdetW4zZ9+nRcddVV2Lp1K37v936Px54QUqJ6c/WaC7202hNPPCF27NghbrrpJtHR0SHee++9Wu9aLDh48KDYsmWL2LJliwAgHnzwQbFlyxaj9Nz9998vstmseP7558W2bdvEV7/6VWnJo/Hjx4sXX3xRbN68WfzRH/2RtOTRlClTxIYNG8SGDRvEqaeeKi15dP7554vNmzeLF198UYwfP95S8mj//v1i3Lhx4qtf/arYtm2beP7550V3d3fdlTz67//9v4tsNitefvllsXv3buP2ySefGGN43MNnyZIl4pVXXhE7d+4Ub731lrjjjjtES0uLWLNmjRCCx7yamKtJCMFjTwgpQTEcId///vfFxIkTRTqdFlOnTjVKWBEh1q1bJwCU3a6++mohRKns0V133SV6e3tFJpMRn/vc58S2bdss6zhy5IhYsGCBGDVqlGhraxOXXHKJ2LVrl2XMb3/7W3HVVVeJrq4u0dXVJa666iqxb98+y5j3339fXHzxxaKtrU2MGjVKLFiwwFLeSAgh3nrrLfGHf/iHIpPJiN7eXnH33XfXXbkj2fEGIJ588kljDI97+Py3//bfjM+BY489Vpx//vmGEBaCx7ya2MUwjz0hRAghNCHY3oYQQgghhDQnzAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQhqOSZMmQdM0aJqG/fv3V7Suc88911jX1q1bQ9k/Qggh8YFimBASS4rFIs466yx86UtfsiwfGBjAhAkT8Jd/+Zeuj1+6dCl2796NbDZb0X48//zzeP311ytaByGEkPhCMUwIiSWJRAJPP/00Vq9ejWeeecZYvnDhQowaNQrf/OY3XR/f1dWF3t5eaJpW0X6MGjUKxx57bEXrIIQQEl8ohgkhseWEE07AsmXLsHDhQnz00Ud44YUXsHz5cjz99NNIp9O+1vXUU0/hmGOOwT//8z/jxBNPRHt7Oy6//HIcPnwYTz/9NCZNmoSenh4sXLgQxWIxomdECCEkbiRrvQOEEOLGwoULsXLlSnzta1/Dtm3b8M1vfhOnnXZaoHV98skn+O53v4vly5fj4MGD+OIXv4gvfvGLOOaYY/CTn/wE/+///T986UtfwjnnnIOvfOUr4T4RQgghsYRimBASazRNw6OPPoqTTjoJp556Km6//fbA68rn83j00UfxX/7LfwEAXH755fjhD3+Ijz/+GJ2dnTj55JNx3nnnYd26dRTDhBDSJDAmQQiJPf/7f/9vtLe3Y+fOnfjwww8Dr6e9vd0QwgAwbtw4TJo0CZ2dnZZle/furWh/CSGE1A8Uw4SQWLNhwwZ85zvfwQsvvIAZM2bgmmuugRAi0LpSqZTlb03TpMuGhoYC7y8hhJD6gmKYEBJbjhw5gquvvhrf+MY3cMEFF+Dxxx/HG2+8gccee6zWu0YIIaRBoBgmhMSW22+/HUNDQ3jggQcAAMcffzy+/e1v49Zbb8V7771X250jhBDSEFAME0Jiyfr16/H9738fTz31FDo6Oozl8+fPx1lnnVVRXIIQQgjR0QSvJoSQBmPSpEm46aabcNNNN4Wyvvfeew+TJ0/Gli1bApd1I4QQEk/oDBNCGpK/+Iu/QGdnJwYGBipaz0UXXYRTTjklpL0ihBASN+gME0Iajvfffx/5fB4A8Hu/93toaQn+vf9Xv/oVjhw5AqCUWfbb+Y4QQki8oRgmhBBCCCFNC2MShBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCm5f8HS36TVUQmqxUAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, - "execution_count": 21, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -622,6 +657,411 @@ "! seisflows plot2d MODEL_02 vs --savefig m_02_vs.png\n", "Image(filename='m_02_vs.png') " ] + }, + { + "attachments": { + "tape_etal_2007_fig9.jpeg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSj/2wBDAQcHBwoIChMKChMoGhYaKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCj/wAARCAcIBjYDASIAAhEBAxEB/8QAHQAAAQQDAQEAAAAAAAAAAAAAAAEFBgcCAwQICf/EAGMQAAEDAgQCBQQJDwgHBwMBCQEAAgMEEQUGEiExQQcTIlFxFDJh0QgVF0JSgZGhsRgjMzRTVFVyc3STlLKzwRYkNjc4YpLSNUOlwtPh8CVEY4KDoqQnZKPxJkWVKGV1hMPi/8QAHAEBAAIDAQEBAAAAAAAAAAAAAAEFAgMEBgcI/8QAQREAAgEDAwICBwUHBAIDAAIDAAECAwQREiExBUETUQYUIjJhcZEVgaHR8CMzUlOxweEWJDRCQ/FicpIlgqIHNf/aAAwDAQACEQMRAD8A9UoQhACEIQAhCEAIQhACEIQAsJHNaNTnABvHdZqOdINY7DMo4nXRDtxRh3G1+0AgOKixmXHsWdDSEijgedT23F3tdYi42+JSaesp6ckTTxNI4NLwCoR0Lx6MqTyHzpquWW/41itNXhkcea62fHMQc+CWXVTQyR7NbpAIBHp70BNq4yVdC91FKwyAGxDtr29Cacq495dNVYfUuaKylk6pwG1yBuRvcqHdBWNVuLYbVMrJXHq5ZdN7HYOAHJaZJ2Yd034fTUpGmqgqpp7bXeCOPyoC3Rs3dc2JNc6hmLHFrgxxBBtyK6A64HpWqvH8yn/Ju+goCjMhVeO5nzRmHD5Kx7IsM6nSWzPaXa2k8b78FMZ8FxvDMSpaiCsfM1z2Mex87n2bfc2/iq+6LRi56Qc4HDA/qwabXpI37Jtx+NWRl05k/ltKMUbKKA0h0hzmka9Xo34ICcPrIGSFjpozKDYRteNR+JZSSxtlaOtYHusNJcAfkVRdI4rcsZ8wbH2VD3YX9fdVR2AaCQGtuePE8lI8WldU4zJVwzlrKSlZWEAecAAbfOgJxPVU8H2WdjHDazngJXVMPViR08QiPB4eLendVbglfU5oixiZ1EKkxz6YXl9tILb2HBMdVFmPCuiDGZMZkmhqoaad8WrSSDvbh6EBdXl9JsJKynBPm2lbuPlXNj2M0eCUL6ytmDY2i/nDfgOZ9KpbFsKqoujXCcYZWvdiDxTO1aACGubchdHSRU+3nQ1BXVEtpXQyOva9/rgCAuvDqyKupI56Z4cyQBwueRF/4qDdN+L1+X8lV+KYc8B0DATcnm9o5H0qRZGpIqXLGFGN19VLDfbmY2qKeyFfEOi/GeteAxrGahb/AMRqAmWAVjjg1PLWyxtc9oNy6x3A705meOOASl4Me297qqci4vDneGnp4ajqvJA2RzGjVdosOdk45lxuopc2YZgOGxddDJDI6Rodp3YRbigLEjqqeZ31qeN5bvpa8E/IEr62na6z6iFoA3DngEFVdDg+YqTpAhqMOiljweR8YkDS3SGgdrjvxUfwqGvxrpOxLDanEZfJr1Dg3QCG2JsEBdwraRzG2q4dMmzT1rd/DdLTVtLUvLYKiN72ixaHgnxsFSOc8Kq8vZlyRh0eISGCpqJmPGgC4AB/is8d8sylnrDfIax5iqoomvaGgA6379/cgLsnqI6Ya6iVrQPNGoAlYGVs9PKKWaOQlh0lr72PxKuXY1UY1nfFsPkpRPTYZN1Vi/Y6m3/gl6P8NzHheZsRbiMUjMMdTl0V3NsHF4O1t+CA19GuM4lV5xzPRVMutlNXuiAc5x0gMBsLlWo0m13W+JU90WAN6RM6HrLudijzw/8ADCt/ezbb77oDhx7FIcIw6WrqHBsYFh+NY2Vc4M7Fcx5X/lGyeeOolZrhhY9zWkh2kgs+JOHTwJBkcmE/96iuP8V079Fjgch4W9gswNdpH/nKAXo5zQcyYRO6TSKmmnfTOFrbssDzvxUaOZ8V91qmwd/VilMr2mwduBHfvsmXoJMvt/mFu/UHEax3/m6xbqxwHTxhoDtzLLcf+kgLnbctF+K1Tytga4udYWJuTsFsudQaAoZ0r4i/DcqVBp5CKl8kegDu1AFAcfRTW1eMQ1GLVEkpim1Rta5xsC15GwPDgnvNs2ITgUGGWbLI3VrNwALkHcLpyZhTMHy/BRMbZrS5/wDiN/4p3e1pk1lulzRs70ICkH1OYuj3NmFNxCqNZQ4pKWSa5XzFjWC/ZuQG+cp7n7MjKDCKVsNTDT1NUWaXTSBgAcDbe64MyUP8rM24bGwdbRYfKXSd1nNHHgeSec3ZFwTM1JDFi9JFIYmtZG5wJ0kA2tYjhdARvJeDZhlxWKoxDFqSqoWHfySrdJtY8eXFWjFfQASDbbZUPgdDi3Rt0h0OF+XS1GC4m+TqonNaxrGxsJsLXJ3cr3h0mJpYLAi6AzQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgEINxZYauB9Nlmb6hbgtb9mvHIAlARjH8bklxWLCMNe01MrXOJJ2Gk7i4OyiPSBjeKYHm7KlPTTN8lqsQEUpe47t0X77LHo3l9s+kPNM1QbyUOIOgivyaWXK4emqE1WZ8kRRvMURxUh7gL7dUgLbpq2lleIo6mN8zhrLWyAkd+10x5hxKXA6wV8hcaOQ3kvc6AAB4DdVn0g0OIZFfR4/hVdI+KSaKB7QxrR9dfY778grF6RdNd0d4u+wAdTmx427Q9SAk9NViro4poTdsgB+IhbyerAAuR8qhHRBikmK5WfLIdqeodTgXvs1rN/nU6uCBbcFAVb054pX4LhmF1NBLIzrq1sR0ucNureeXgtmA4LjGK5eoMQFfKJKiBstjUOAFx3Lk9kaZBlnBuqvqOJNAt+SkWvCP5WtyFhhwzri7yeLRpcwbc+PoQEtyUa6hopIsWqYnUzdRZK+Ul19Rvdx5BSqKaJ0ZfHKx8fwg4EfKoO/B8Rr+jWrpKgvbiZinEZ2JDiTp9CYOjrHJG5YxWixAdZV0lb5JZx3No2i+23ElAWtFPHJB1olY5rh5zXAj5UkVZTzydXDUQveBu0PBPyKrMUrqrLcOWMDgldU1E0ssczTZpdYAi/yrTiWF5hZmihxDLtJJT0payOpbG9pBu4F5N/BAW1JUwMlDX1ELSOLS8ArCGsgnB8lqIZNJJcA8OIHPgqaxby+q6aKfD3VcjKGonkBZpBFhCSPTxC34C2bAOl6swNlW6WkkoIpNJaALyPIP0ICy6fNGH1OMvw6CZpnjJa8am7Eb96eJRIYSIi3XbmVSWQsMp5OlrNDrgmOve0bf3FeIaG3LRugKkyRj+JVXSXilBXS/WYZqprWhzrWa7bibK0/KoXl2iZjns3Ia4FeeY8zU+X+lfFm1ulpmqKprSSdtTyBwCtqKnhy1l2rxmWXyoxx9Y4uGm9nWQErkrII3ATTxsJHN4CydPEGtkfMwRkXD9Y0n41VGHy4jmXAsQmFKZal0kopzqF2jRdluHAnmo/mr+VODdDE3ttPPS4hTU4s86HG+rfht3IC9GV9OZjC+ohErRrIDx5vfxSTYhRRt6x9XCGjb7K3n8armXK9QzBKvG/baSSf2uAt1QHBgdxUVyThdVmDKWKT1ta/rI3x6CWA2HFAXwJo3ta5jg9rtg5puFpdXU0cnVyVELX8gXgfxVRZRzZWU3RDNVSSOlrwatkUhIB1Ne4N5WWeN0WNY1lSirMIoXHEpBE98jXjUbm7uOyAdOmPGsTweLCZKSVjQ98urS5wvZre4+KsHAp3z4PQyyXL5KaN7j6SwFU10sMxBuVMvsxQvbX6qjVqsTwbbhtwVxZauMuYWDufJIr/wCAIByYbtBVcZrzFVV+bo8tYa/SQyKaZ7bhwjeS02IPFWN5rNlSWSTNL084w6pBBGEx8e7rCgJBUYxU5OzZhuG1VQ6WgrI5JXSTPL3N0WA7RIA4rszVSY5mOomoqKY0tPGwPbJHI6JxJFiLhRD2SF+qoHU4+viF+gju1turklqYKHDnVLrNjjZqJ8AgKo6NcfxqgzhLlLHHiWwlfDNdznFkdmi7ieJ8FcTXaiL3BHFV7lHA31ubKrMdU4uu+VtMSP8AVSbi3o8QrBeQHXva3FAV/wBJGLVDcTw/B8PkkbO6WGqcWEg6OsIIuDw24KekljHSblxPD41W+XpGZi6R6jEg0OhpYH0d7++a8n/eVnFouCgKmzLheacwwS11BVClEJdpjEr4i7TfiBxBXf0QZpxDFaLFcLxhrRX4NK2lkfpIDnBtybk3PiprmCrZQYZO6M6Zntc2P8Yg2+hRvo9y++gpcRxKpHW1eLSNqZgQB2iLHcICJ41imKZix6WPBMYw2JrQ0RsdWaCX8LEA77qxcoUVdQ4aI8VnbNUvs8uZIXt4AGxPpVd506JaGloKrFcr2w3EqVjqiN0LNRe8C4HaJA3Un6I8WrsXy/LHihc6roZG0z5HEEuIYCTttzQE7FzIb8BwWaxFnBpbwWSAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEHhugOLFMRgwygmrat4bTxDUSCOFwOfimXK89Vibpa6oLmMLnNY3cAtFiDb4+Ki3TrWOhynLSMNoqqMtJ7rOaVKZ60YRkYVTOy6Og1t8RFcH5kA+T1lPEdMtREwnjeQCya8ySTxUBraN+sU95dLSTqsOFhx8FFcBwp2bclRV805bV10bJWS6QTHvvbhe9lJsrYXWUGXDSYnVPqpy5+qV7QDpPDYIDsy1jEeNYVDOxw67Q3rmDYseRcgjiPAp2AsLEqp+iWuc3Nec6EM0sjxeZoN/O033Vr2uDfmgGjNbJfaOrkp5HMkjjfICHEcGk8vBVH0TvxrOuXGV9TXTRvMbHENme3jq5b9yuLMhAwHEL72ppf2HKi/Y+uxz+SbXUUb+qkii02c3axd3oCx8AoMawzM72S1TZqLye5Mkrn2OpvftwupwyrhlfohmjfIOIa4G3ioRkqlx/yiuZj7pdEjJGsc/SbXcLcPRdRbL9RW5d6VqvDq+d5o6+eV9O5wHZYyInYD096AuJssZcY2ysLgLkBwJC1vraWN+l9TCHDaxkA/iq5q6+bDaDHMwMnLon0kkULNgBIwE3vxTRi9Li+PZHpq/CcPLcSmbFJ1rHjU65uTvsgLekqY6fT5TLHG55sNTgAflWsYhSulEZqoOsIuAJBv86prpLlx6LAMsNq6iWKufVTCUnSSRpFvQuXPVLU5fwvL2MQ1bxJK+jhkGkC5k3dv8SAuHFswUOF1lJT1swbNMSGtDhuQL8ynaGRk0IkYSWEXuqY6VKKKr6Ssj9ZLZlRUTAi3G0R9SuGgibBQxMYLtDQPisgKx6UcexXCM2YFDRyNEFRFUOLbu306bXsfSrObVQsLGyTMErmi7NQuLjjZU109YhDhWZ8rV0hHUxQVN2ngbmMKY5ObTZpDcwsqdTHAQ9UG7dgjmgJs+ZkLw50sbYiLkucB8iSnq4Z2uljmjfF3tcDZVocYrcYzjWYWKO+G0j5oHHXsXNvp24riwbDMy4fX5jY8SwYGaZnkpuwtDti+w48b8UBa8uIUkQ7dTCBe32QcflR5XSNuPKoiWcR1gv8e6pjo3wOtzXhONPxHFpQ6mxZ8TLxNNmtawgcu8rTh9JWzdK+LYSa6R1IyWIHsDYFpKAvCGrhqWaqWaKUA2JY8Ot38FjVVNPC09dOxgHe8BU5kGsqcJz5jGEsq3zUUNBPWaC0AahI0JywjEZ80DH3PoBMyOVggJfwBsduCAm2dKmoZlDFqmimj1w0k0mpr+FmE7Ec0zdEGKVeKZfkkqpOsexzRckk+bfmo/glJmKi6NszQ5lZLG/yOsLC8tPZLTpHZ9CcugptssT6XX7bP2AgLLNxdRLpDzGMsYKKth1SyTRwBp38+44X9Clt72VJ+yJMzabC2xX6s4hSF36QoB1xE4phGUHZm8oqH1MEZldC57nNJ1aANHgbqUQY3UY7lmCfDC0yTOEEhF+yS0arW4Ealsz2xrcj4qBvD1Q0j/zBRX2PpmOSMRDies9sqjR4aWWQDHikuYci5rournmr6WuEkj2Pe+ct0AAADl5yu6J5expIIJaCqK6QsSx/KmbKbMGK9ZU4HTiVzmPc1rWghoAuN+KvOmk62nifbz2h3yhANebMWbg2Bz1juDS1g8XG38U29GPlJyjTGuklfMZJSXSOJNusdbc78EydLFYaryXAId5Kotmt6I3gn6FPqKnZS0kUMTAGAcO5ARDN0eNY1McPwx4p4QNRl1OjdqBO2ocrWULydjWYMsZ4gyzjkjaiCqkEUEup8jjZpc67ifSFcT5RE2SR40Mbf41AcOwp+O50GO1O9LRvElK47gam2db5BxQG3pIx90bo8LoK2npK95a/VUTCJuggjjfjcha+j7CceirYqnFcSpaunZfT5NVOkDgWkb8juu/PPR7gebn9bWU8YxBrBonIJcAAbbXA4lQro2OKZRz3JlasnknoZ5HMpXuAbZjIy42A9PeUBdqEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhABRdBSIBboSBKgBCEIATZmPDm4rg1VRP82ZoaflB/gnNI4kWtw5oCvei5z6HDa3DJyGTtqZjHq2Gm4DVH8Ijx3BukHHnVVLJVxV9SJIZI4XOZEGxgEEnhc9ysubBIDiAq4QI32Fw1o33unUWa3UdieJQFP8AQzQ4ng9diEWJ0ksMbg54eYixu778SnDBsPlxjpSkxZ7frGHGemY4AgEO3BvwPBWRiFO+qp3RtldHcHdvPbgtWD0VPRQOZAxrX7da4NsXO7ygHC3Bc1fqNJO1gu4xuA8bFdN1i4XKAobo/gxfK+ccw1tVhddLFXmG3VQO940jn4qX4zmHHMQqKSLC8MqKcmZgldUUx+x33tbgVZDnOBsGg92/FLYncizvQeSAiXSBl5+PZLqcMj+yuDQHG99ng+PJcuRMuz0uUJ6LEnA1EwkhLtwdJ2HHfgpuLgttuDxKUsuBvwN0BReDDMWRsfxXDoMPnrKGtqTNFJDTueGNAsA53fspDnKlxjGsiYsyencamoppI+rZE4crDZWmb37x33WIPWAFpOnmgKkxPDK+XoooaCGknNVEadpb1ZJ2ZY7cVz4xl7EaroYp6COB3l0ULx1fVuvcyA8OPBXIbtFmhIxoF3NNw7kgIzkGprX4DSQV1NJFLDE2LtRlo7LWjmmXproq3FskV+HUVO+WaZjR2Yy4bPaeXgrBZq0nULG/ejc2A377oCksSyxieBzYXjWBQSeWvkjhqo+rc5vUtF9mgbG/Mrfn3C8dqMSwbNWBQltdS0zopIZYXOLjIRezR6ArmdcOHMHaySw6wAEjbh3oCA5cxjG8fmj1UMtDSsILhUwFjjyNio/lTC8RpOlCsrZ6WYU319od1ZGq52N1bgDurBd9bI5A3WwWsHc7WBQFU9ImHYjX58ynXU9NI+moqiR7vrZNgWtHhyXH0h4XieIZuweqpKSZ0EbYA+0RNrOJPBXAb6TqHm8FkbkCyApbHsPxvKefazHcJpn1VFiEzpamJkLpH7DS3TyHFTbLuIYti4fV1VM+ngYzU2J8RZIXD6Qpe431hvbd8E8EeYBqJGo2AG6Aqjo8w3EaPP8AmOtqqSZkFXXPmaTGRsWAc1bRubWsBzv3I4ggE3HNAI4n32yAa8zYRHjWESUsvA9ob8wDb6VAsAlxXL2UW4N5HPJPCwtgeyElty65vzPFWg8XcAHEbckr+IJaCBz7kBC+jPLLstYPVOnGqpq6mSqda+2uxI3HeotVYbiJ6X6TEhSy+TMlkId1RtYx248FbgHLUSeKNjuR2moBIwAwcQD38VAs5YRWYvnTB4HWOGiCXrLNN7ggt34KwBa9ibkbpNLXSB5aNTdge5ADAGNDRwAUL6ScUxmhpWR4LSyT6w3VohMnEkHh6FNXW4EcdkjyWtAaEBT2EZlzHSU8NFBhFSw7gvkpHb8+KlNbmbEqLFKaOfDauaGSBuoxQHZxPepubHcC7hwSlgcO0A48d+SAhb8HnxzM+G4nVMMcGHmTqGPaWus9tjfv4KaxkFgsCANkFpcBvZZC1tkAIQhACEIQAhCEAJCUXQgFG4QgIQAhCEAIQhACEIQAhCEAIQhACDshI7ggC6VYgLJACEIQAhCEAjr8rLW5p3FxpPDxWw8Qb7LBoLGEE3JJtdAVlglAcv8ASLWmUFkOJzSVLnnYXA0jcrDpYwSuq8byviVJE+oZR15me2JhcQOrtyU/xXCYMSY0zgMmYLNkAuQOa7aeF0ERAkdIeWrZAQDM2F1Gd6Kiw+SnlpqWN0U7+tYWnXGbix7vQnTpKk6vJeI0FNY1UsBZE2197g8OKl97AA9knc2TXW4OytxCGonAc1jr6SLg7WQHB0fYP7UZeijtZ8p65wPeWtv9CkzuF7LVHYW0bNaNNvBbTuLgoCqunDD6/F8Gw2nw6lnldBWic6Yy73jxy8V25cx7EMMythlFNhFc6ohpmMcWwGwIHpVjkkC4F/jWIva9uO53QEKyLVYxiNZVVWLQ9SxzQA0xFnA24H0KPVGRalnSbFWUriMLmgkmnF3bzF5tva1rW2Vr2bo0jYHZDSbWAG2yArLpky9iWJOwXF8DDTWYXJNM1pY52oua0DYceBWzLeYMw4v1FLJhs1HJE1plkqKYta8NsHafSb7Kyg3SeJt3LBziBd/Z3sLG6AqR2DYmemWjxNtPJ7Xtnkc5xjdsDCQN+HFbHYbiT+mWTFmU0gozRU8JJiPFryTvwVskkOtbiixBGkX790BT+E0OJ4J0m4rXOpJZKSuqXzt0REkDTYXPBW6XuaHPIu22zQN1sLQXB1ruHApH8b33HAICjqHKdRieesa9saGpbTTy1U0cvVloBuS0arelO2RqfGG4XVZTx6mndRaerhnbE4DtOL3XeePGytpwc9o7RbzuEOBIcCSAODuaAo7J9TmbJs2IYTJQyVME1XJNDJHTOcGtdZrQSe7SnLpSw3GsZ6PKyB0DpKqeIgsiidsbjkrf0tdZ1tThtcoLm69BJN+SAjD21M2R6qkMEgqTRFjRoO56sC1lC+jrDsTwrKGKQVlJN18jo9DRE4crHYq23GxG53NlkAdVyT4ICkso5SrqjohxDAqiJ8FbasdTmRrm2fI9xbfmRuujKWP5qw6hjwaowuYvpbQNl8kdoc1oAuDz8VcgB3JaNuG6ALnURY8BugKk6VsIxXE8Bw6Ckhc+oYZtREbncQ23DwVkZcEkWX8OjlY5ssdPFG8EW3DAD86dC0E3O5HD0I3OxAQCEBrmhVrmfA6vD88wZioIXymRsNPM2Nhd9ba4k7Dn6VZVtQs7isXNcbC5sDv6UBWWOYJV5wzZQVFVA+HDqeOWMtewtcdViN9xyWnPeM4+cbihosMqZMOgLX2bTOcXdncXGxVqOaSRpJA52WTu0bAkW7kBW2V8wZhxDE4aWfD30lEIz9lpix2w23U1zJLUUuA1b6JjpKhsZLAG6rm45Jzs3zjuRtdKSDYX4oCGdGWEyYThFa6pjc2aqrH1BuCCNTW9/gpm46G3AJ8EE2IFrhBva7N/QgKXxDH8yy47JNNhNXLTx/YxHSu4h21+/ZSfA8w5hrYJ5ajD5IWsI0MdTFptZT8XaANIAJ70trPvqNjyQEGocdxDHcFrKSXD6qmqXRyM6yaEtY69wAPSnnJ2BjBMNma65fUSCZ9j77SB/BP2i1xoGlu7T6VlqOm7xYIDIAA7JViBZ5PeskAIQhACChBQBdASJQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIARdCQoBboCRKEAIQhACEIQEK6WMDfjeT8QhgbqqerAhsCbHW2/D0ArbSdXmHJE+Hjsy+SvpLE27XV6b/KVLCOLSAQeATZQYPHQ1T3wdiNxLiGgAaid0BVGVMRzNlmH+Tk1BNNBSgRU00VM4tLWg3u48dzxVoGrqKPB5qqvLet0GzWi3D0FPT2i+vSC4cE34nhnl+gSTPMYddzLXBFkBDeirBZIK7MOL1LHNdiNe+qiuCOw8X/jyViloN/StdJCympooIgAyNoY0DuC2oBozU57cBrGwxSSvkhfG1rBc3LCAqg6FvbjKGWYqKuwmue8Rsb2Kd3LV3+KvVwuONlib6S5u55BAVrHjOPYxmKGmjoZqbDo9MxMtOWuLg6xGrwPBJ0x5Tq8ep6atww6K2mFmGx988XuB6LqynC5AbcO4myzIva/yICGZiyua/IVXhUTrVBpZAw3NtbmEb8+KhGUMdzRguHDBKnCqiR1IWwxTMpHaCxote54+Kudgu5x4EiyUhwcLbi2+6AqLpVwfFcQwrAY44XzVEdRKXdVG42BaLLT0mYNieJZVy5R0VNK+anfRSS/W3OADB2htwKuAC4u3tuHC+yyF7X+UICpek7D8RqMZypjdBTSStw6SaRzGxlzu00t4DxVm4RUzVOHQyvidE7SA5j22PAcl1xta5nZN4zyWR3dbUR6EBU/SnhVfi+bMAmgpXvpKaKdshMRIu4tt6OS58NwrFcnZ3MeDU88mCzRRscHRukLSSC832AVw6b3DxdqHahYNbqHpKApPH8MxnKudjmDA6WappK4yz1EIidK8PkNha2wtfgpY2sxnH8KrZ5aV9NA2ImKF8JZITwI9PDZT+4b2TxO9u5JxNmk3G9kBWXQ1QV2EUeNMrqaZnXYhJM0GMi4LGAcfBcmC4XiDOl3GMTfSzCkmliIcYzwDXDjw5q2hYGwFid0MA4jjzQFPZdwbEB0m4tVVNLMyiqcMmpmvMZHadK08eHAFNmF/yiyHmjE6enw+euwupmvGYKZ0ha1rbC7uHEq87Bz9WokcNPJZO4gcEBAsR9t6/KGNvq4bzVVDNCyJkRDgSwgXHxrT0NUNZheAzw10Ekb3PaRdhbto9KsC4uQTcAXJ71kLGxYTYckAOG/ioh0lZc/lRgApotpIamOYE34sJPLxUwcDuQLnkkaQNuDjubICsMWfiuKZGkwIUk7K+WIxuldEQy+vUPTwCcmOlyRgVHT0NBVVQfIx8whj1m7gA7w81Tt1tTgRpPIhLvcNAuO8lAQbMVFNnfDYqTyWSlo52Hrm1Mel/EEWO9uCm9MzqqZjGuB0tDQfAWW21uB+JY6QBZoA57ICvYcKr63pOjxKtDTBSieGHSwgaHA2vyJVhutpPd6FjoAGoNGtZGwbY8UBWnSRi+OxVsFJhdBPNSlge4sgLzqDiOI9FkmXcxZimxGkofayWnge7S6SSlLQ0ekqyzcWNvnS2Pa+ZAQaPMuIU2NuoajCq6WLQXCWKA6dWq3HuW3CsDkq82OxuqHVuhe4wtIIIDmFpuPjUzseNt+F7pA2wPvie9AbEIQgBCEIAQhCAEIQUAl0qxIWSAEIQgBCEIAvbihcuIVUdBQz1U5+txMLzz2AuqEx/wBkKyixqelw+iFRHE9zC7yeV3A+goD0IDcXCW/oXm13sj5Wmwwnb80m9aT6pCb8E/8AxJvWgPSRKh2V8+UOYcw1eEU1PLHNTsc9z3OaQdLtPAKnm+yPmc9rThOxO/8ANJvWoLk3pTlwDNNfivtY49fG9v2tLzcHckB7MHglv6F5rZ7JGYtucJ48P5rN60v1SE34J/8AiTetAek7+hF/QvNn1SE34J/+JN60fVITfgn/AOJN60B6Tv6EhuvNv1SE34J/+JN60fVITfgn/wCJN60B6Ra0AGwKTSA5q83/AFSE34J/+JN60fVITX/0T/8AEm9aA9G9WXNHWHU4G4I2USo880s+ehlnqJPKSJT1mpunscduKp8+yQmuB7U8Tb7Um9agtL0qy03SMMy+1ryWiYaTTS27fo4oD2ZugLzb9UhN+Cf/AIk3rR9UhN+Cf/iTetAekXNu4EjccEmntavfcF5v+qQm/BP/AMSb1o+qQm/BP/xJvWgPSIvvfhyQQbWC83fVITfgn/4k3rR9UhN+Cf8A4k3rQHpJotySEXBHIrzd9UhN+Cf/AIk3rR9UhN+Cf/iTetAektgN+6yiObs60uWMXwXDqiGSR2IyPja5rgA3S3VvdU072R8zhb2p/wDiTetQnPXS1NmbGsv14wshtDLJJtTSjzm25oD2JA8Swxys2D2h3xEXWzSNV7FeaoPZFyw00UTcKJDGhv2pNyFu9bPqkJvwT/8AEm9aA9IPaXWtyKUt3uOI4Lzd9UhN+Cf/AIk3rR9UhN+Cf/iTetAekLOt6UoC83fVITfgn/4k3rR9UhN+Cf8A4k3rQHpK3G/AoPDZebfqkJvwT/8AEm9aUeyQm/BP/wASb1oD0e4kAlvEKPZzzFTZVwvy+oifICS0hrgDwJ5+Co/6o+UBxGE//Em9ajPSB00y5pwTyT2rIu48KWUe9I5+KA9TZaxSPG8DoMTgaWR1UIla0kEgHwTk3huvLWVOniXA8u4XhYwsnyenbGSaWXl4J2k9kdKJA1mFHTz/AJpN60B6OeeQIB9KTZpG9r8jzXnE+yNl1drCd+R8km4fKtf1SLdfVsw9r5h711NLcfOgPSfaI223+ZD23BtsSvOA9khLb/RP/wASb1pfqkJvwSf1Sb1oD0hysgXAAXm/6pCb8En9Um9aPqkJvwSf1Sb1oD0fpJJJTLm3Ho8uYO+vnY58bXtZpBAJv4qivqj5j/8Auk/qk3rUfzr04zZkwCWh9qiD1jXbUso4eKA9L5SxyLMmAUmK08bo459VmuIJFnEcvBO+gDcXuvKWSOnWbLuV6HDPaokxax9qyni4nl4p/wDqkJvwSf1Sb1oD0gL234pRsvN31SE34JP6pN60fVITfgk/qk3rQHpFC83fVITfgk/qk3rR9UhN+CT+qTetAekULzd9UhN+CT+qTetIfZITW/0T/wDEm9aA9I32JtwWuafqoDIWk25BecG+yPm0m+E//Em9awm9kZM+mLfanu/7pN3+KAurIOdaPOdHPUUMEkIimkhLZHAm7CATt4qWBeOOjXpZlyfh9QwYY4maeWTemlPnEHl4KbfVITWF8J/+JN60B6SSX34Lzb9UhOL/APZP/wASb1pXeyPm2thP/wASb1oD0hq43B2Sg3F7Kh8q9PtNjGMsoq2l8n1ODW/WJG3ve/nFXnTyioghlZ5kjA8fGLoDbfcDvSpLjUBzSoAQhCAEhcbnsnZKk3vysgC+1zsgG6HWNrqrOlDpbo8k1rKTqhLUHUA3qnP3Fvgn0oC0w6/EEeKAbk7ELzY32SEzgdeE27rUs3rSj2SE9j/2T/8AEm9aA9JE72sVEM+Z3osnQRy1sEkwe5rQGOA85wbz8VTr/ZIS7acJJ/8A8Sb1qC9JXSvLnGlji9rHNLHMdtTSjzXh3PwQHsmJ4kjY8A2cAVnf0LzTD7I2aOJjPanzWgfak3d4rP6pCb8E/wDxJvWgPSd/Qi/oXmz6pCb8E/8AxJvWj6pCb8E//Em9aA9IuGoi6ADbfjyXm8eyQm/BP/xJvWl+qQm/BJ/VJvWgPR5bq87cpbd683/VITfgk/qk3rR9UhN+CT+qTetAejtJAOk2N1G8+Zsp8oYJJiVZG+WKNheWMIBcBbYX8VSv1SE34JP6pN61EOkrpjlzfl6eg9q3NvG5u1LKOJHf4ID1jg9czEcNpqyJpZFPG2QNO5GoA/xXaNuAXmHAvZAS4fhNJRe1RvBC1v2rNyaB/Bdo9khPbfCd/wA0m9aA9IEHUbcCEoabAHkvN31SE34J/wDiTetKPZITfgn/AOJN60B6QIPZ07AHdFiOC84fVITfgk/qk3rSH2SE34J/+JN60B6Qt2bEGywEYZ5m3ffdecfqkJvwT/8AEm9aPqkJj/8Aun/4k3rQHpK4034pvzDiceDYJX4jM0uipKeSoc0EAkMaXEC/gvPzfZHStdpOFHTy/mk3rTZmPp7mxrAcUwx2FECppJYQfJZr9thbz8UB6CyTmWlzXgseIUcT4Y5Wtfpe4E7i/JSDg7ccdl5J6O+miTK2XoaE4W49U1jN6WU8ARyUnHsj5XFv/ZJtf70m9aA9INaGk6eZuUu+3zrzefZHy3NsKP6pN60fVITfgk/qk3rQHpAXSOB0nTs7vXnD6pCb8En9Um9aPqkJvwSf1Sb1oD0dosBp2PNYmMOJ13PdZec/qkJvwSf1Sb1rH6pCb8E//Em9aA9IsDg2x3KxkeWRuceABK84fVITfgn/AOJN60knsjJpWujOFee0/wDdJu7xQFx5LzxR5qxTE6Kkp5Y5KFkT3vc5pDteq1rfiqYG9ttivGvR90sy5VxjGqo4WT5VHCwXppT5mru/GU4+qQmH/wC6f/iTetAeku6/FYuDr3HDuXm/6pCb8E//ABJvWkPskSCOvw7qxfY+TSi57tygPSNg5tyDc8kM02sDdecT7I6QXPtWC07gtppj/FYN9kbL+CbOG5tSTb/OgPSe90cRuvN/1SE34JP6pN60fVITfgk/qk3rQHo5o0g25lA4nUvODvZHTFu2Enj96TetA9kdK42OFEb/AHpN60Bb2AZ5o8ZzjWZfigkZNT03lJc5wII1hnLfmpkOyQBwXjTK/SrJhWesQzAcMdeajNPbyaX7o13jyU5Z7JCbTqdhO/L+aTetAek+Z70lrizt15vb7I2Udo4UdR/+0m9aX6pCb8En9Um9aA9IC990q83fVITfgk/qk3rR9UhN+CT+qTetAekULzd9UhN+CT+qTetH1SE34JP6pN60B6RWLjbkvOH1SE34JP6pN60n1R0rrk4Sdt/tSb1oC48yZ6osBzRQYJVU8rp6yB07XhzQGgG1iDupc03APevGubulWXMWc8Lxf2sc3yWmfFtTSjib81OGeyPmDQDhPD/7Sb1oD0mi9uK83fVITfgk/qk3rSH2SEvPCdvzSb1oD0kDcIvuvNsfsj3moYJsM6uIkXd5LMP4q7cj5qpM24JT11GSOsY15Gktte/f4ICSoQhACEIQAhCEAjjYXAJ8EFwBsSlUfzfmKlyxgkuIVvBjXFvZ1XIF0BILoXm6b2R8nlEgpcMbJC1xAd5NMbjlwKPqkJvwSf1Sb1oD0iuPFK5mHUUtVM0mOOxO9udl56+qQm/BJ/VJvWuDG/ZAy4nhs1EcKIEoAv5LN3goC+8i5tpc44TNX0UEkMcVRJTkPcCbsNidlJAV5B6NemSXKGAz0PtW5wkq5ZrmllPnG/JS76o6Zu3tSdv/ALSb1oD0ihebvqkJvwSf1Sb1o+qQm/BJ/VJvWgPSKCvN31SE34JP6pN60fVITfgk/qk3rQHo/T5voRoFrW53XnD6pCb8En9Um9aPqkJvwSf1Sb1oD0eGAHVzWmsnbS0k1Q8HTG0uI8F52PskJha+Enf/AO0m9a5q/wBkPNVUU9OcJI6xhbfySbn8aAu/JGc6XNc+LxUkEkftdVOpXlzgdRA4iylRNiBY7rx30fdL0uU6jGnDC3O9sKx1VvSyniPQpm72R82of9km35pN60B6RPcEljb+93rzf9UfNf8A0Sf1Sb1pfqkJvwSf1Sb1oD0fbe/NFjclecPqkJvwSf1Sb1o+qQm/BJ/VJvWgPSBHFYkO0kX8F5x+qQm/BJ/VJvWj6pCb8En9Um9aA9HuFy09yJL2u3Yrzh9UhN+CT+qTetI72R82m/tT6PtSb1oC3os90kue58stgkFRDIIzIXN0kmPXsOPBTIbg3BHJeNabpUlb0lVGYjhbrSTNk+1peUWjxU6Hsj5vwT6PtSb1oD0hpFrW2QW3AvyK84fVITfgk/qk3rR9UhN+CT+qTetAekEq83fVITfgk/qk3rR9UhN+CT+qTetAej97JTfey83/AFSE34JP6pN60fVITfgk/qk3rQHpDw4pGjmBa683j2R0uon2pPD70m9aT6o+YkD2p/8AiTetAXBmzPFJlzG8Kw6ohke7EKqKlY5rmgBzzYE3UwY8Oja9o2I4LxxnjpVkzBmHA604Y4eQVsNVtSyjzCDzU0h9kbLHpYcKOlot9qTetAelSRdYi4BvuSV5w+qOkJeThRAtt/NJvWsR7I2U7SYWWNtfUKWb1oD0gDYtBIF/nWQbYGy82ReyQ67UYsOa8xb/AGvKTv8AGs/qkJvwT/8AEm9aA9I8rIAsdl5u+qQm/BP/AMSb1o+qQm/BP/xJvWgPSA1auOyCDe4XnD6pCb8En9Um9aQ+yQm/BO/5pN60BcfSBnKlyhQQz1sMk3WzRxAMcAe06wO6lNLOKiASM4G4HxGy8gdJXS5Lm/DYGHCyHRTxP2ppR5rtXNS2h9kPLSUwh9qidBP/AHSbmUB6XIuN0WsLBeb/AKpCb8En9Um9aPqkJvwSf1Sb1oD0ihebvqkJvwSf1Sb1o+qQm/BJ/VJvWgPSKF5u+qQm/BJ/VJvWj6pCb8En9Um9aA9Iov6F5tPskJvwT/8AEm9aT6pCb8E//Em9aAvfOuYoMq5arMYq4nyw0wBcxhAJubcTtzW7LWMRY7hbK6BjmMcSNLiCdvBeYc/9N8uacp12DnCy3ykAXFLKOBB5+C35U6dpsAwZlGMLc6zid6WX+HggPVgduBzKCbciV5t+qOms0+1HL70m9aX6o+b8En9Um9aA9JXSarGx2Xm1nskJt74TsP8A7Sb1qZ9F/TJRZyxKSiqYuoqOwGMETm3cSR74+hAXAhYtcCBZCAjvSK0HI2Pci2imIPp0FUF7GLBcPxV+OuxCm62QVdgdRHvD3K/ukX+guPfmM37BVJ+xP87HPzv/AHCgLrbkrAWiwoRb8o71rL+RmBfeI/SO9akQQgI6Mm4GCP5j/wDkd60pybgZFjRbfju9akKEBHBkzAuHkAs3h9cd60v8jMC+8R+kd61IkICO/wAjMC+8R+kd60fyMwL7xH6R3rUiQgI7/IzAvvEfpHetH8jMC+8R+kd61IkICO/yMwL7xH6R3rR/I7Aw02of/wAjvWpEhAR1+TcCNiaG/wD6jvWk/kZgXHyEX/KO9akaEBHf5GYF94j9I71o/kZgX3iP0jvWpEhAR3+RmBfeI/SO9aP5GYF94j9I71qRIQEd/kZgX3iP0jvWj+RmBfeI/SO9akSEBHf5GYF94j9I71o/kZgX3iP0jvWpEhARz+RuBD/uH/5HetK3J+CaDGKGzBw+uO9akSEBHG5LwJrbeRDv+yO9aX+RmBfeI/SO9akSEBHf5GYF94j9I71o/kZgX3iP0jvWpEhAR3+RmBfeI/SO9aP5GYF94j9I71qRIQEd/kZgX3iP0jvWk/kbgX3h/wDkd61I0ICNjJeBN2FBt+Ud60v8jcDaezQ//kd61I0ICO/yMwLiaIX/ACjvWkZkvAmXtQ8f/Ed61I0ICOOyhgg3bQ6jbTYSO9ap7pP6MjgmJNzFlmkfKGuL5aeO5Ng0NG5PpPJegibOstU0bJGPilbqjdtYi4QFX9G1blLOOHhsdNGzEoLxzU/Xuc4OaAHE2tbcqanJ2BC/8yG3/iO9arfPmQq7CMSGYcnubC+Mh08JeWtc0EvfZrBuTYeKlvR9nujzNSshn102IxgCWGUBhLjc7Am/AIB8/kbgX3iP0jvWk/kdgX3kP0jvWpADfxSt9KAj/wDI7AvvIfpHetIMm4G121CN/wDxHetSJCAjn8jMCLzeh4cD1jvWsv5G4F94j/G71qQoQEe/kbgX3iP8bvWj+RuBfeI/xu9akKEBHv5G4F94j/G71o/kbgX3iP8AG71qQoQEe/kbgX3iP8bvWj+RuBfeI/SO9akKEBHf5GYF94j9I71o/kbgXDyEW/KO9akSEBHDkzA7b0V7f33etAybgbvOoLW/8R3rUjQgI5/I3AyD/MP/AMjvWlGTsCsP5iL2+6O9akRSHzviQHk/p9w2iw3pAy4yipupIqH37RN+w3vXqHL/APoHDdv+7R/shea/ZIf1kZd/OH/u2L0rl/8A0Dh35tH+yEB3ADbvSpAlQAhCEAJHX5JUcygMTw2F15O6VoG1PT1RQzbxOnku3v8ArTV6ybz8V5T6Tv7QOHfl5P3QQHoalybgT6SAuohfQ0/ZHd3itoybgdz/ADG1v/Ed60+Uf2nT/iN+hbggI6MmYE07UI/SO9aG5NwMO1CisfyjvWpEhAR3+RuBfeI/SO9aP5GYF94j9I71qRIQEd/kZgX3iP0jvWj+RmBfeI/SO9akSEBHRk3AvvEfpHetL/I3AvvEf43etSFCAj38jcC+8R/jd60fyNwL7xH+N3rUhQgI9/I3AvvEf43etIMmYEOFEP0jvWpEhARwZNwMnUaDtDh9cd60v8jsDdu6g3P/AIjvWpEhAR3+RmBfeI/SO9aBk3AvvEfpHetSJCAj38jcC+8R/jd60hybgX3iP0jvWpEhAR3+RmBfeI/SO9aP5GYF94j9I71qRIQEcGTMCsGmh2HD6471pTkzAvvIX/KO9akSEBHDkrAnCxov/wAjvWlGTcCbsKEW/KO9akSEBHRkzAhe1CN9/sjvWl/kbgX3iP8AG71qQoQEe/kbgX3iP8bvWj+RuBfeI/xu9akKEBHv5G4F94j/ABu9aT+RmBfeI/SO9akSEBHf5GYF94j9I71pHZMwLYihufyjvWpGhAR1+TsDcRehvfj9cd60HJmBfeI/SO9akSEBHf5GYF94j9I71qP536NsFxnApqeGmEU4a90TtTj29JDdr99lYSR4BbYjigPN+TavDMn4g7LmdaMRaz/N6iaUxhzGDcho9JV2tydgb2NLqMO5g63D+Kb+kLJGH5tw3yWdpjqbWbPGA1zRcE9qxIuq6yFm7FMl4j/JzOWp1O6wp6pup13udchz3kCwagLXGTsCJt5EP0jvWl/kbgX3iP8AG71p3p6mCppYqiCQPhe0Oa5jgbg7jgtz7lwF7A9yAYHZOwNrezQX34dY71pHZMwNzb+Q7/lHetSQIQEd/kZgf3kLd3WO9aQ5LwE2/mA2/wDEd61I0ICOjJuBElxodzt9kd60v8jcC+8R/jd61IUICPfyNwL7xH+N3rR/I3AvvEf43etSFCAj38jcC+8R/jd60fyNwL7xH+N3rUhQgI9/I3AvvEf43etI7JuBm38x5/dHetSJCAjjcnYHckUNrbD6471pW5OwMtBNDY93WO9akSEBHv5G4F94j/G71pP5G4Ef+4j9I71qRIQFSdM2WMIpMiVs0FKI5WtfpOtx/wBW70pp9imHOyRqc69mRWH/AJSpd07f1fVng/8AdvUT9ij/AEGP4kX7JQF3oQhACEIQAhCEAFU17KG/8hYSDYdZJfw6tyuVU17KD+gUf5ST925AaugPLWE13R9QTVFJre+CFxOt25MY9Ksn+RuBfeI/xu9ah3sc/wCrbC/zaD90FaSAj38jcC+8R/jd60hyZgZ/7iB3HrHetSJCAjgybgl9JobtG9+sdx+VL/I/AzsaHYcPrjvWpEhAR7+RuBfeI/xu9aP5G4F94j/G71qQoQEe/kbgX3iP8bvWj+RuBfeI/wAbvWpChAR7+RuBfeI/xu9aP5G4F94j/G71qQoQEdOTcCda9CNv/Ed60HJ2Bv40P/5HetSJCAj38jcD2vRA2/vu9aT+RuBfeI/SO9akSEBHv5G4F94j9I71o/kbgX3iP8bvWpChAR7+RuBfeI/xu9aP5G4F94j/ABu9akKEBHv5G4F94j/G71o/kbgX3iP8bvWpChAR7+RuBfeI/wAbvWkdkzAi23kN+f2R3rUiQgI4cn4Lo2od+7rHetKMm4EP+4j9I71qRIQEe/kbgX3iP8bvWj+RuBfeI/xu9akKEBHv5G4F94j/ABu9aP5G4F94j/G71qQoQEe/kbgX3iP8bvWj+RuBfeI/xu9akKEBHTk3AuPkI/SO9aBk3AjxoQP/AFHetSJCAjrsmYGdxRC/47vWsXZLwJ1mmh27+sd61JEICNvyVgL9jQ7D/wAR3rWFTkrA56d0T6MFttIGt221u9ScmwusBZwNrhAeacx5WHRnmo4yygfV4EXh8zWuLGtYGAbuJPvnK38sYblHM2Ex4hhUUVRC7svMcriGPsCWk94uFKsSw6mxOjko6+FksTxpOpodzvz8FSuL4DjHRpj4xbCXOnwKUhstOHOe5pLiXuDAAANIG6Atb+R2A7fzEb8PrjvWsm5OwLlQj9I71oynmbD8y0Daqhl88AljiA5l72BAJtwUgJsNxv6EAwfyNwL7xH+N3rSHJuBbO8huRuPrjvWn8glt77rJnm7oCPDJ2CHfyG3o6x3rSMybgZF3UFnHj9cd61I0ICPfyNwL7xH+N3rR/I3AvvEf43etSFCAj38jcC+8R/jd60fyNwL7xH+N3rUhQgI9/I3AvvEf43etH8jcC+8R/jd61IUICOnJuBfeI/SO9aP5GYF94j9I71qRIQEd/kZgX3iP0jvWj+ReA/eI/SO9akSEBHxk7A7W8iH+N3rWP8jsD1n+Y/H1jvWpEg8kBGZcnYE2GQih5H/WO7vFeasJpKel9kjFFSRdTGysp7C5N+yvW0v2GTwP0LyfRf2l2fnlP+ygPWTHEgdgjZCzb5o8EICOdIv9Bce/MZv2CqT9if52Ofnf+4VdnSL/AEFx78xm/YKpL2KPHHfzsfsFO2SUsnpAIWsDibrXLKImFxWMpKKzIx74OhCbY8SjA7R+cLL2zg7/AJwq/wC2LNbOojZ4cvIcEJv9s4O/5wtUmLwDgHfMo+2LL+YifCn5DqhMpxpnJr/kCx9uv/Dk/wAKfbFl/MRKozfYfEJjONf+HJ/hWh+LTlx0WDeQcN1qn12yj/3RPgT8iRoUZ9tKnvZ8iUYpU97PkWj/AFJZJ+8v19xPq8/IkqFGvbWp72fIkOJ1J5s+RQ/SSzxtJP8AXyI8CfkSZCi/tjVd7fkR7Y1Xe35FpfpRarn+v+DL1eZKEKMe2NV3t+RHtjU97fkWS9JrV/8Av/A9XmSdCjPtlUW3+hapa6aQWJt4bLGXpPbL/wB/4JjbSZK0KHNfIL3kfv8A3il6x/w3/wCIrU/Suj2j+P8Agy9UfmTBCh/WP+G//EUdY/4b/wDEU/1XR/g/H/A9VfmTBCh/WP8Ahv8A8RR1j/hv/wARReldDvH8f8Eq0b7kwQof1j/hv/xFHWP+G/8AxFQ/Syiv+n4/4I9UfmTBCh/WP+G//EUdY/4b/wDEVl/qqjjOj8f8D1V+ZMEKH9Y/4b/8RR1j/hv/AMRUf6qpfwfj/geqvzJghQ/rH/Df/iKOsf8ADf8A4in+q6X8H4/4Hqr8yYIUP6x/w3/4ijrH/Df/AIin+q6P8H4/4Hqr8yXkX4pGX5qI9Y/4b/8AEUdY/wCG/wDxFP8AVdH+D8f8D1V+ZLDazr8DcW71T3Sf0fVEda/NWUT5JjkRL3dU0apHGzb6nGws26mb5Xix6x1783FZOnka9vWFzmHjzR+lVFb6Px/wT6o8ZyNPRf0iU+aIH0lS0RYtAD1sJcXHSCBqvYDc32ViDtNBHNUJ0gZCf1jsZy3K6GvhHWaGyOAfpBIGlo335Lp6PukJ2JUrcIx+Q0WN04EZ660LXkDtEAm5HxKwj1qFSl4tOOfhn/BrdBruXmL80qiBfI4azI5jzwDnEX+JI98xaLyO+IlV/wDqujnDhj7/APBlG1b7kwQofrdp1NkfcctRR1knw3/4isf9WUc40fj/AIJ9UfmTBCh/WP8Ahv8A8RWTZZWnUHu+UrOPpVQfvRx9/wDgh2r8yXIUX9spmiwPzI9sqk8CPjC2f6otv0/8GPq8iUIUX9sarvb8iPbGq72/In+p7b9P/A9XmShCi/tjVd7fkS+2NV3t+RZf6ntf0/8AA9XmSdCjIxSo34bDuQMWqAL2/wDatq9IrRvGV9f8GLoTXKJMUh874lrpXmSFrjxK2HzviV5TmqkVOPDNLWDy57JD+sjLv5w/92xelcv/AOgcO/No/wBkLzT7I/8ArJy9+cP/AHbF6Wy//oHDvzaP9kLMHcEqQJUAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP8AiN+hbgtNH9p0/wCI36Fsf5pRvG7BkhcElfDG/SXb+IQcTgtx+cKvfVLVScXNbGfhyxnB3oTccUhHP5wkdikNuPzhY/a9n/MRPhT8hyQmWTGWtcQ1jyO8C6x9uv8Aw5P8Kx+2bLOPERPgT8h8QmP27bzY8fEFqkxh7vsY+ULCfXLOP/dE+BPyJChRj20qyfeW/FS+2dT3s+Rc79I7Nf8AZfr7ifV5+RJkKM+2dT3s+RL7Z1Pez5FH+pLP+JfX/A9Xn5ElQoycTqe9vyJPbKqPNvyLH/Ulr2f4/wCB6vMk6FF/bGq72/Ik9sar4TfkWH+p7Zc/1/wT6tMlKFFvbGq72/IlGI1HvyLegKH6T26WUvx/wR6vIlCFEJJ3yOvrePjKOteB57/8RWr/AFXR/g/H/Bs9VfmS9Ch/WP8Ahv8A8RR1j/hv/wART/VdH+D8f8D1V+ZMEKH9Y/4b/wDEUdY/4b/8RUf6ro/wfj/geqPzJghQ/rH/AA3/AOIo6x/w3/4in+q6P8H4/wCB6o/MmCFD+sf8N/8AiKOsf8N/+Iqf9VUf4fx/wT6o/MmCFD+sf8N/+Io6x/w3/wCIp/qqjnGn8f8ABHqj8yYIUP6x/wAN/wDiKOsf8N/+IqF6V0Ws6Px/wPVX5kwQof1j/hv/AMRR1j/hv/xFT/quj/B+P+B6q/MmCDwUP6x/w3/4ijrH/Df/AIio/wBV0f4Px/wPVH5kqG5e0dvfflZRjpAyZh+c8HdR17GOe3UYJXN1dW8ttqAuOSw6x/w3f4ijWbdt79POziofpZRX/T8f8EO1a7lUZXzNifRtj7cvZpc84OwuipZ3uFixtmR2a0Ei9viV+008VTGyeKTXHJ5m1lXWbMs0eaaI0mKebs6F7HaXADdt3cePFVZgOP410Z5jbg2OCebBi9rW1Olzg1pGtxMjyObrXVlZ9cpXa9hb+Wf8Gt0Wj1EhQfD8TixKmZU0dSJo3tDhok1WuL72PpW8yyW1F7tPdqK4qnpPSptxlDfyz/g2RtdXcmKFD+sf8N/+Io6x/wAN/wDiKw/1Zb8ad/n/AIMvVH5kwQof1sg9+/8AxFDpHu4Pf/iKx/1bQ7x/H/BDtH2ZMEKKxVskTdLXHVyvus/bGq72/It0fSi2l2/H/Bi7WaJOhRj2xqu9vyI9sar4TfkWb9J7Vf8Av/BHq0yToUY9sanvb8iQ4nVA8W/Ii9JrV/8Av/BHq8yUIUX9tKrvZ8iDitSObT4BbF6R2r7/AI/4Hq8/IlCE04VXPqHEPHzJyFtTuN1cWtzC5hrgapRcXhkA6dv6vqzwf+7eon7FH+gx/Ei/ZKlfTv8A1fVng/8AdvUS9ij/AEGP4kX7JXQ84zgxLxQhCAEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Cj/KSfu3IBz9jn/Vthf5tB+6CtJVb7HP+rXDPzaD90FZ7b6d+KhvAM0LkqalsNtRt8a1DEYQd3fOFyVL+hSn4dSWDNU5NZSHBC4fbKDv+cLF2KQDvPgQtL6vZr/yIlUpvsOCE0PxiIHZr/mWs423kx/yBY/bVl/MRPgz8h7QmT27/APDk/wAKQ41cG0cl/wAVPtqy/mIeDPyHxCjPtpU97PkR7aVPez5Fyf6is/4l+vuMvV5+RJkKM+2lT3s+RHtpU97PkT/UVn/Ev19w9Xn5EmQow7E6k8Cz5FiMRqvhN+Rapek1qnhb/f8A4Hq8yUoUXOI1R9835EDEKr4TfkUP0mt0+Px/wT6tMlCFF/bGq72/Il9sqgDf6EXpNbP/AN/4Hq8yToUTlqppR5xHhstYkkA3e+/4xWEvSm3j2/H/AAZK1fmTBCh/WP8Ahv8A8RR1j/hv/wARWr/VtDONP4/4J9VfmTBCh/WP+G//ABFHWP8Ahv8A8RU/6ro/wfj/AIHqj8yYIUP6x/w3/wCIo6x/w3/4in+q6P8AB+P+B6o/MmCFD+sf8N/+Io6x/wAN/wDiKy/1VQ/h/H/BKtG+5MEKH9Y/4b/8RR1j/hv/AMRUL0rotZ0fj/gO0a7kwQof1j/hv/xFHWP+G/8AxFQvSui/+n4/4MfVX5kwQof1j/hv/wARR1j/AIb/APEVP+q6P8H4/wCCfVX5kwPA80nK9lEOsf8ADf8A4ijrH/Df/iKj/VdH+D8f8D1R+ZLgdTLrTUwRT00tPVASRytLHtPNpFiPkUX6x/w3/wCIpeskEl+sPC3Ep/quj/B+P+B6o/MrDNGWcT6NMffmHKLHSYPMXSVOHxaYmEgBrAXEknznclbOSc20GasKZWYfMJWElhIB2cLAjcDmuJ7I6mOSGru6NxGxO23iqazTlbFskVzMdyq976YvAqILvk7Au4kNGwNwN11WnpHQuJ6GseW/Pw4MZ27j3PSxvcW4JR3Kp8lZ2pc0YdA6OZ0Ve1jRNBI8B4fa57IO1lK3OlDyetu7nZxstdX0kjRm4VKeGvj/AIJjbZ7ktQoeJZWG7nuN/SUgfK0nS92k8e0VqfpVS/g/H/Bl6m/MmKFD+sf8N/8AiKOsf8N/+IqH6WUF/wBfx/wR6q/MmCFEYqiaI31k+JJW4YlPy+hbIelNvLt+P+DF20lwShCjHtjU97fjCPbGp72/Is/9T2v6f+DH1eZJ0KMe2NT3t+RHtjU97fkT/U9r+n/gerzJOhRgYlUg3u35ErsTqeN2fIs16S2jWW19f8EOhJEmQeSjcOKVJcAS35FIWnUAVaWXUKN4s0nk1yi48mMv2GTwP0LyfRf2l2fnlP8Asr1hNtDJ4H6F5Oov7S7Pzyn/AGV3EYPWzfNHghYt80eCEII70if0Fx/8xm/YKpP2KPHHfzsfsFXZ0iG+Rcfvt/MZuP4hVJ+xPIBx0E3PlY/YKiXbBEXuejRfdcOK3FK4jvXe3iuTFQDSkLkv46qEseRnBZmiMM3YNSWzUMNhbkluvjmp92y5UcLAAA8OKxLbe9Cyuksmp+bJwA/ECXfvQNkllKl8WOAse9G3M7oslGyxbXfJORNu9G3elui6xxHkjfsHZ70dnvKLousk1HsYrOdxLjvKW47yuXFawUGHT1Tml4jaXWCqzK/S/BiebJ8LnhdoY97B2mjgbBd9Dp1S8i5QXAnOK5Lc1D4SNQ70utrvMQDvuuHS0TyAJPDglLDyQTyWFlDZklgXccSi6AEtkSROwl0XS2RZMLzGwiVCCBpuHAhQ/gQ8AhJY2vcH0BAOwuLEqcruGkKhDSDsNyg2PDlsVj32yYLGRLouiyLLLJs2C6LosiyZGwXRdLZFkwvMbCXRdLZFkwvMbGJ6s21HfwSvfwAFwEp3bbkgbNsOCjUuDHGWIXNB1E6fQOfoVddI+QIsZcMWwpxpMVbcsdCAC8ON3Ek8FYtu4XSk6LG1j6V2Wd3Vs6inF5j5GMoJlXdG/SGa2pdgmafrOLRDsntSFxLuzvw4Kz3amBr2uLo3cL+lQXpFyBBjTTiOHgsxSLtwPBJAeG2F2jj4JoyBno007svZmY6mrYHGNsspEbZNIAuAd7E3Vpd2dG9p+sW+z7rb+m+xri9Lwy0ntOoadrpESXDWGxfqvZzeA8UgvbzTdUDgn7PDRvUkzNADjwOyR19ILfjRcO3AIUPHJi+RSwjmsQTftbJbJbpqGRLjvKLjvKW6LpqRORAR3lFx3lLdF1i2skOW4C+/gi50I98WgG9rqAZu6TcOytX+S1+H1TrEjWJWtGxtzC7rO2dzVUImFSWxdVD9rNutx4qi6zp2ojhFWcJw+o66GIva/rGPF/BQKX2RuMspHgU7zVGQBn1tnDwX161h4dGEPJIqZ+8zs9kf/WTl784f+7YvS+X/APQOHfm0f7IXiLMOacbzZnXCarMETodMxMWqIR3OkA8OPAL23l8/9hYdcj7Wj/ZC3mI4BKsWk37wskAIQhACOZQsXO0uAI480ArefivKfSd/aBw78vJ+6C9WD0Lyn0nf2gcO/LyfumoD1PR/adP+I36FseLtK10f2nT/AIjfoW08FjPeLBE64A1JWggE2XViA01BsuYHtX5r5B1GtOFzOC82XUMOC2AtCxIbZZIsuFTk45yzN4QNG2x2RY96LBFljGTznLGQI7wD4pLgcgEqVZuafmQJqB2ujs96W6LrD2fiTuJ2e9Jt8IrK6yuU2+I3MLjvS3HelVU9JPStFlXGYcPjgfrHWB7tTbEjTa1/FdVpYzvZOnS5W5jKWneRatx3lJcd5XHhFeMUw+GqhaWtcBe+/IH+K7ea55wdKWiRkmmFx3lHZPO6LoPaFisWtyHHfIEADZA34oskAspwvMnYLoulsiyYXmTsCEnEG2xCVg1N84A+lNK8yMIEJAfTe2yVRpXmMAhISBxBN9tkrrs89jt+aaE/MxewIQQW2LjcHghRGS5JSBIlRZZLdbk4SEui6WyLJheZOwl0JbITSntkbAgAE2IuEIRpJYIeBI3M1Oa4aiDtf3qaM0Zeos04VLQ4lEx5e0tEzm6nNvbcfInh3atfklcS5wceI4Lbb1qlCWqkzU4plAwV2OdFuZGUNa+SowqYh7HSPFmtc/SAA3uDVeWF4jSYvAyoopdcLt7Wtbu4+C05gwekxzD5KCvZrhkBILTaziCBv8apSJuK9D+PdW5r6jAJTsGs3a1g+G7vL1fvwurU24rFRfcn/VmnDpsvppJHxpQuDA8Xo8boGVtBPHNC7skMcHaTYXuR4rvIPFp1egclQVYOlJwmtzqUlJCjgUjb3S2IG5BPoQtSafKC2WAe0ce5Y6h3lLbdKmUTkx1DvKNQ7ysroUpKXJDZjqHeVkC23FCEaSIyIdPekbax0m6yTJmvH48u4XJXT0s08MbS55jIAYBzJPiphCVWShDlkOWFlktwHaR1/T/BPg8496orB+nHBtD5IcOqXta4sNpmHtbKNY57IPEKHMDuro5fax7vrbdLCQABftc9yvq/RqUqFsoz5KutJOWS2unb+r6s8H/u3qJexR/oMfxIv2Sqfzb0wZlzVglRSOp3GjcXXIgbsLEcR6Crg9ir9byO4OFuxFv/AOUq2XBqLxQi6xeSG3aLlSQZIQDccLIQAhCEAKmvZQf0Cj/KSfu3K5HcNlTXsonBmQ49QJHWScPybkA6exz/AKtsL/NoP3QVoAqrvY6Ee5thhG/82g2HL62FaN+Ch8gYcwA622NuH0lNdgOJ3TvmADUzwH0lNR4r5f6TTnC/aTeMIs7b3RNu9AFxsLpUiom/izpWPIQix80JRw2aB6UWS8lGfixgN+8o37yksiyZ+LJDbvRt3pbouscr4jcTbvRt3pboumV8RuJt3o27ylcS2Mu5A2Uez7mZmVsuz4g+Nz3Mjc4WIHDxW2hSdaapx5Zi5YJBcDmUmod6gvRh0gR5zp5rQPY9kjm3Jbawa08vFT1bLu2qW1Twp8hSMNQ5EpRqPFZJDuuZ5zhEp5E0u5Eo8eKTSEqE7AlSJUwidmCELF5tbcC5tumleZGkyQlIsPOCxILbe+v3JpXmRhCoQ0gmx4hJcF1wOyOKj3tkRhIVCPBCybSWCdmIi6WyLIkiVgS6LpbIsmF5k7CJUWQmF5kYTBYgteeNiPQl1BKX6iCeKjSvMYAkW0kAlI9kckEkdQA+F7S0xkXBS7F1+aL6XEjiRZZRbpvVF7mMorBTOesnV2W6+TM+UXviZrLpqeMtjaS91j6TYFTTo6zzQZvoWCJ4jqgSHNDXfCLefgpg9jZY3NcL34hVHnnI1RhFU7MuV2vZWQ2lqGWMnWtY0aWtHAFego16PUaao1Xia4fn/wDZ/wBDRocHkt9zdL9Dje4uFiLguHIKGdH+eKLMUDKOokbT4rCND4pHjUdIFzpHpNlNXj67IAQC22pvMqmr287eTjI2xkpCIRcA3LTZFw5wLAdPctGUzZlCaXcyUWI4JC0JQLcE+Q2E1fCO6NQ7ysrouscIjIgIPMpbjvKLouowiMiXHeUEt08ShzrAk8ElQXQQyPc0v0t1BreKyS2Jyu5lDp1jtHipczzWqhcQ6YMKwfGJqCuoKhssb3N1GVjR2fRZc+cOnp8eGCTL9BPHIwOc5z9EgItt86+kei9pKhRbl3K25azsegJvsMn4p+heTqL+0uz88p/2UVHsisdqhHFh9LI6Qx6ZAImO7fPw5KPdGOI4hi3TXh9ZjETo619XD1oLNFrbDbkvTrK2ZzJntZvmjwQkY4ECxHBCkgj/AEhtD8i4/vwoZv2CqS9ii5oOOttv5WOX9wrbmmq6TxgmO+XGqFH5NLxgiA02PMehafYmyTupsXNWT13lLdV9t9Buox5E4PR7b81y4n9rFdQ33C5sRF6Zy57tZozMqbxNEWaskjR2Qe9Kvi6yti65BCEKdx94IQhRlgEJEqbgEIWJcARdSkyG8bmSVvHdFhbisSLi6yabXJGF5mBijmp5aeqAdHI3Sbi6rpvR7heHZgkxGlhYHvc51xG0cTfkFYwb8LdYvjueGy7bPqFW1TjCWzNNW31vk04cXae0uo+csWsDeCzXJKrk2Rj8QQkslWKy92Z6c9wQhChpNjGAQhCjSTsFwNzwCGsdJ24w0M7uCxkdoY53wQSqQzJ0sYlh2epMLhglNO2RzdnMsbNB7rrusun1rvPhLg1TkotF4gt1bfIhzd7laoZBNBFKRpLmhxJ8Fm5wcw9oO3XHV/Zyw1nBszsQ3pSzwMj0UUzaeOVz3Fu7SeDb8l19Hmav5XYGcQMLYiHBpDQR70Hn4pwzXlnDMy0whxSAS6LkXc4cRbkVsy7gVHgGHikwyDqobg6Q4m5sBzPoVlUq2srNaF7efjwaoqWrfgdUJHENG537kAg89+5VKkmbthUIQpbwNgQhCnSNgQhCaRsCEIsiaXYhvAb76d1iHa3aHDdZgOuCw2tufBBaS/XbbvWSj7OexCl5g1rwbBx9G6g3SRkWLMNIZ6JrabFoyHMliAaXAEuN3cdypxYG5LgAsWENBGoEk3HoW6zu5209dPgiUdXBUvR5n2ooq1mXM13ZWRkNEgLn6i67t3H0WVuai+Nskel0bhcG/JQbpKyDSZspRO/SzFWBxiqjqIY42F9INjsFFMh54qsv4gcv5qa6CUXEL5S1uttw1pAA52Kubm0o9Qp+sWvPdeX1waU2nuXHqs3UOCB4WSHq3wAxSBwPCyPNaLnfuXn8KKw+ToUljYyQgbtuN/QkHpFljlE5FQhCnkZESoQojHL3ZD8xGF2u3vhv8ShvSZlWgx/BpZ5KeLymMgatDbm5udz4KZm5fqv2gFhPEydhje27XecL8V29OuJULqLTNc90UTk2TAm9CmKPmpaX21EVSNb4mh5tIdO/HgmLoK6OGZuxKoxLED/NYZnMDBpcPNDhsR6VKen7o0wbC8Lo6/C6MRGolcyZwe46WhhNzc96tfoOy3Bl3IdJ5JK2bypkc5LQRa7Gi2/gvsFGWqnF/AqZbyZTHT5QUmG59y3S0kEcLG1D7dWwNv2G8bL07l4AYFh17fa0f7IXmb2TnlDc6YO6jJ8oMz+rAFzfQxTjJNT0kunoG1oqhh/UMteGMC21txvwWwxLxFiRa6yWuAu6pnW+fzWxACEIQAkdzLgLBKk5m/BAY37Y7rLyn0muB9kFh4F7ieS+3/hNVv8ASLU53ixWMZX68waW6tETHczfzvRZef8AFpsem6acLOZDJ14mk062Nb/q9+HxID2VR/adP+I36Ft71qo/tOn/ABG/Qtp2BUPgEXxL7YK5QurFBaq0+gLlA7RHcvkPVN76pnzZc0XmCC6VCFWrKiZzYIQhSs4CBCEiYJFQhoubIYCQS4Fvim62RGQSpNuRul5kKHJrkZBQvN2QcJzJXR1FRDG6ZurUTG03JtzPgpm0gki6Qgb22J5rotruvay10XhmE46lhnPRQMoqSOkp2gMbbgLcrLptYDv5obs0jn3rFoIvc3utNScpPVLkyisGSEIUKTktzJsEIQmkbAhCE0jYW22ocuKwN5AHNAAHxIcXNa7kDzVedMedqnKdDTvo2Pm1yOaQwgWGi/MLotrSd1Pw6SyzBy0li7WFgB3oUS6MsyS5py3HWzRuY8BgIJB4sB5KWE2NjssK9CVvUdOosMyTzwcWM17cMw2eqc3UI2Oda1+DSf4KuOjzpYbmnHX4fLAG9poadDubSeZ9Cs6rghqoZKeoj1xvYWne3EEKN5dyHguA4g6toqZrJnEEkPceAI5n0qxsqtpG3mqvvduTVNSctiVkFshD9xpuELHUS+7zcWt4Jbi/EW71UTksNJYM45XIqElxYm+yBuFljMVlmfIqEIUaRsCEITBGwIQkWXiNLGkLDFQsA7U6zRdZOLWu0lw1/BUJZ3QliPIo0k6ATvvfuKb8YwijxqhfQYlDHO3g18jA8jcE8fAJwcG6NLW2vxSR3jaGtOyzhWnCanTeGjFx1IoLqMX6KcwNb1slRgczxs6Qu0lztRs1u2warswHGabHsNhr8KdqEjQ9zXDTa/oWzGMNpMVw6ShrYesgeCbXI0kgjVt4lU5Ph+L9GGNyV+Gh9Tl973FzY2gCMHsMBc654leh1U+q08Paovx/ojS04MvEix2OyE05ax+gzHh/lmGzMeyxu1pJsQbHe3enYXLdVl5+tSqUpuFVYaN8Z5QIQeAQtWrbJlkEJEqlSbWUMghCFDyMgtFZRUuIQupa6NskEo0uY5oc1w7iDyW9F7c9uamE5UZKpF7oxl7SwefKWgw7LXS0+gnoaZ+GzU7piySMaA4yFt7cL2CjGfcIgzN0u1OC4G2KKjMzmNDbMDRoB7I4civRuYci4JmWiqqmvpBJWxxPEbtbgRZpLdgbcSqf6B8jQVWfMQqcQe2Oqwp8WmNwN3l7H3tY7cF9g6bUda2jOT3KqtGKlhE1zlkfCsndF0wigjkne1wMjom6gTETxHpC6PYqtcMjyOedTHNhO5vbslSzpttD0f1bIzsGuGn/ANN6onoWqM8xZb//AGY6/wAiLY7hkUbgBbbdy7s7Ywaj1y51rEAELJvC/eot0fvxd2BNOOh/lGp99TQD523BSjbSCVJBkhCEAIQhAI7huqc9lA4NyGzWLgvk5X/1blZWcH4ozAKh2BBxrwW9XpaCeO+x24LzL0v1PSA/LDBmEz+T9Y/zoY2+8Pd6EBcPscgPc3w63A08B/8AxBWgRwVY+x4d/wDTnDdR38mgv+jCs4ecR3J3GcDLj/nN8B9JTUeKdcxbaD4D5ymo8V8x9KZf73LXZFlayzEEIQvPKWVwdK4BCEJlj7wQhCZH3ghCEUsrKJ3BCQm1r80XF7AqU8jcW9+yeB3Tfj+EUeP0D6Gvja6FzS0gtDtj4pw2sRbe/FG2mxF1NKrOlU1x2a4IYx5ZyrhmW43sw2FjC9xcS2NreIA5eCfUgsOAS3WdxXqXMvFqS9oLYEiLoWlt85JQIQhRhvuTsCEIUqL7sfIEhLffC99htzRdcOOV7sNwetqmNLnxQSPAHe1hI+hZ0qfizUIbtkSeFud4Y9m7wNPoN0NIINt7qmOi/pQr8yZqOG1sEjY3OsC4tsOyTyCuXYWcDoB2sui6sqlpPRWWGYxmmZxMHWW4mxO6qnOnSx/J7NTcIbRxPBcxpcWu98wO5eKtUdp4sb2BuVE8byJgON4ozEaujDqgOBuXu5Cw4H0Lo6ZUtvEl43GPiRLU+CRYXVeW4bS1Vg3r4myWHK4uupaqWBlNTRQQi0cTQxo7gFsuFX1KkNcmlsIpioQ2zm3a4FIduS1LD3M1hioQAeeyTnZSknwTgVFkvBa5nlrC4NJsbWU7GKknwbNIRpamWrxLqAC5p39K5hj0DXdtwA7yV0wtKlRZijnle0YvDl/UkVkBwvYjdNlJi0E3MAcjfinBrxIA5rbg7LVUpSpPElubIV6dRZT2MpO9qU/XIzG5rXtdsWu4H0FKWkAXFkh1W7lp4lsbXiSKl6Q8hTxVwx3KbzTVsY+usjcImu7Rc43AudrBPXRr0gUuaYXU1XeDFYg0vGkgPLi625O+wU/4NIbsHed6e9VP0j9HbjU+3+VvrGIU13iFrS90pIDQBc2Ft/lXore6p3sPV7h4n/1f0wtkaHFxeUWzr09mQCx4EbpQNBs3e6rfo26QafG2nC8V/m+IwXaWyOF3FpDeAHeSrG7TXB1rHk3vVTd2k7aeiezNsZKW6FQkuL8UXXLhx95mewqEIR/MZBCEKFvwxkRwuN1m9pAMhOppFiCsCL7IG3HcHaylSen2WQ1kpvp6yrh0OCnHY4GCodLEXaYxvrlAPp5pl6Vp8FHRpQOwmlpIqyQzNkMbGtNgNuG6vPFcIoMbpvIcTp+ugfY21EcDccF576S+jXCsP6SMJwuigFFh9VUxRCVxc5o1MBcdzfivpvozdTq2vt9isuVh4Jd0DdFlE7CvbrEmNmMgLgx7WuG7GnmFHMPEcfslImwRtjjdWwdhos0dnuXpbK2EQ4Llqlo4JGyRMp2jU0EB1m2vv4Lynjz8Tb08ze0Yf5aKmHTpaHEHSLbFeiTbWWcyPZLB/dbb0IVR5Kqekd+MzNx5tT5CIXdWXQxtGvU22434akKSSd9Ibg3IuP6hv5DNaw/uFUp7FE3djtwT/Oxx/EKuzpEb/wDsPjxJ4UM23/kKpT2KbyXY6NO3lY/YKkLg9GjgForhemet4PBaaz7Xf4Fc9ws0pIL3kRRvmgJVi1ZL4zNYk0XSBCELEAhCEAIQhACxkdpjdsCeWyySabnd1lDGMmtjzbtkC6zJsQBc3F1TPS7n7EstYrTxQQnqy5tzrA4g+gqW5Jz3FjWDwOna1kxY0k6r8rnkrafRK3gqtDdP5nPVu6MJaZPH3k6F1i4uuLLihxBsm7TcLeKuP3zgqzwZR2kjONennZnShYtcHM1NN296UkBY1E4Sxg3IVCACRcJAQTYKNTTJSFQhCybyyGCEIUEALEjVuOaYa/KOCVeJyV81I3ry69+rZ3W7k/IO5sTf0rKFadF6oshw1MQlocGhtow0Dglc0PbaIW8RZLew7wqr6ZukCtye6lFBDcPYSbSBvvgOYK3WdpK8raI8siT0lpt1b6xuViHaTvfuFlH+j/HJ8xZdhrKlmiQ6ie1fg6ykLXEvvyGy1XFOdGTpvszJPKGfNuY8Pyxh7qyvMlg0uAAB4W9a05RzVh+aKN09Br7Li03aBwA9PpWjPmUafOOGupqubquyQOxq429I7lpyBk2myjh76enkD9Ty7zdPED0nuVrGnb+qas+19xHcliEIVHD4kghCFsAIQhAKEJAlWEk2ngYIt0j4vXYLlqepwyLrJ9LxbQXcGkjh6VDuhDN2O482pbjNM6MNcAC6J7fek++VrTwxzxOjlaHNIsQVqoaKnomltNEI78wSrqheW0LOVKcfa7PYhp5OggGyDHfglAB85yxbdr9uCpNLaeknOBSbt0uF1C+kPI9HmulMrQYMRhbeOSMhnmgkC9r8Spo43de2yQjU7tdkD512211K3kp0u3KMZQyUdkPOldlmuOXc2CQNZaNlSWuN7AknW4+kK8I5Y5Y2ywlssTmAhzTq5d4US6RslUebMJd1sQbVRj626xJ3IvzHcq+yVnLE8m4uzLmag6OAuHVyyOG4c4aRpaPgq6uaFLqlPxqO0lyv8I1ZcWXew6gS3khr9TRtZYxyxPpWVVM7VTzDW11uIKyabjTpsRuvNyg6UtMkb4PIqEbjikuiTfvGTQqEITzD4F98fBIOISnzj4JAdwttus14/NGEvdO/NeDQ4/l2soaiMOD4nBhsLtJHEEjYqoOifOhy1mKvynjQqRoqJBSlzCfrTAGjcnvHIWV9scGQC50jvXn/AACkgzp0vYlW1bhH7VTz0TNtWoNOoHlbivstusUo/JFNLkYvZHke6Jlsgn7Yfa35Ni9JZeucDw4kC3k0f7IXm72RrgOkTLzQyxFQ/e/H62xeksvE+0OHXH/do/2QtxB3tcCQLH4wslg0OuN9u5ZoAQhCAFi47kG9vQslidWoWO3NAYg3kA0i1uJC8qdJgt7ILD97/X5Nr8PrQXq8bryj0mi3sgsPsLfX5P3QQHqij+06f8Rv0Lb3rVR/adP+I36FuUPgEZxdv8++ILiHnu8U4YztW79wTfbtE+lfI+sRxfVPmy3ofu0KhCFWdjY+QQhCkkEIQhAjr27PFbO05xBtYBazw3Nkuo6nb3BHFRhp5AgBN9I2BtulJsXAC9u4KOdIWPTZby3JVU8ep+plu1bjf1KGdC/SJV5qnmbiEWm+kXMl+ZHIDuVhS6ZKpQlc9ka3WingtYgFoI43QdikFyHOAs3VslVbCLmss25ysghCLLLGNiAQgbgnuSAg3tyU6QKhCEAIQhAJYSNIudim/GcGwzHKdsVdTtk0kkXjaeItzBThs25aLk8Uo7LbtNnJCTpz10w45OXCqGjwukbTYfC2KJoAIDA3cC3JdJPWOFhsENPa3Nyd0yZ1xeTA8s1tZTs1SxxFw7Vt7j1rfGE7mqsvdjGlD44G4sBa3FY3N1U3Q/0i1+a8Wq6CtiLWxmRwd1gd5unlYd6tuwU3dpKzrOlPyMYPUsmuomjpqWWeb7HGwvdbuChmCdJWDYtmGTCKfrOsa57QSwDzW3439Cl2IU/llDUUzjZszDGT3Aiyr3LnRPQYNmZ2LsqA6Que63V285pHG/pXdYQoSpS8V79iWWaRYEDTptfdY/J8SJLPOkt7NrXSABosOAVU+SUKhCFABCEbc1KJXIl7JC8NFzvZa5Xgc1zOc48BdR4WXuzJU8sSsxSOmgkcwdsA8vQvPv8ALPMlZ0lR0sLJPJjMwebJa3V+NuKvGrgL3EubxXBhmB0dPiLaxkDeua4OB34gW71fdNure2z4izt8BXsta5JTQl7qKndJ55jaXeNlvWLN2ja2yyVDJ5k2iFssCOOlt7XvsfBc9fQwYnROoayJjqN4Gq7QXCxuOO3EBdI2JPG4tZYtLmkgi7D71KFeVKWUa5rJRONYVivRrmCLEMJdLNgJewvjJc8gDtP7LbDireylmKjzRhsdXRytbIxoa+IkNN7XPZv6U44jSQYhRy0dZGH0kzSxzSdmg8SqTzDgWK9G2NOxbA9cuGSkuexuljWlxsNzc8AvRaqXVqXhzeJr7smlJwZeTX6+0RpvytZZXTJlHMdDmrDTW0EzXlo1Pa2/ZFyBuR6E9ekcF5+rQnQnoqLg6otSRkhIPNvySqCGCEIUEAgEhw823O6EjhqFi24PE9yxlwB0wJhe2V8gFruZYcxYKoOlFr+jnOFBmjD2vFFO6WWsaAS2zGtDbgWHvjxKuPLx1MfYWaHEfMFWHsmK2N2B0WDyW0YjHOCb8NPVnh8a+u9HX+0gVFX32OHSbjFPj3RVPWQag17HXuLb9S4/xTP7FRjm5FfYtIcyE7n+6U4Z+wqDBehw00NnMdFqJtbjAfUm72KJByRI22wbDY9/ZKtEYF4tbYWs0D0IO+wCVwPJI4G3Z2QgyQhoIG5uUIAQhCADwVOeyeNsix2uPrkn7tyuJ17bcVTnsoSf5Bx2P+sk/duQDj7HcgdG+Gkgk+TwX/RhWidnEqrvY5gjo2w08SaaD92FaLxsUIY05gZqha70hMp3KkOMi9JbncKOtN2ghfNPSuOLvPwLKz90VCELzS4OsEIQpIBCEISCEIUSeXlEvYR+4AtdZaSW2aBdZxu0NLtOo3Gyof3V8VOfWYW2A9S4xg/XRzNu5ddnYTu1KUexrc8F57jY8QlWunkM1LDK7Z0jA5w7iVsXLjGxknlZBCEIAQhA3tbnwUgEJAbi48EqxcGwCRKhNOO5KECSWOOaGSGdgfHI0sIIvsRYrJJYng7SpjJxSlHlEy3GTCMrYJgtW+rpKVrZ73uI291uQT20guOsbAXGyW4u0OF78SkLrMLiLkb2WUpVK8lKb+Bio4DtX1R2t6UEFrNvOVGZm6VsUw3P02EQwHqWzSMH10DZrrdyvKCUz0kdTbzhc/Euu8sKlooSePa3MY1E9kK0kG3G4ubKH5v6RMGytWR0lZ1vWPLh2WA8AD3+lTBn1sFzRcuVddIXRjh+aa1ldU1IjkaXHT1RdxAHeO5bOnU6E62itxgipLCyTnDK2mxCkjqaQydVI0O7Wx3AP8V26R3n5VH8Oko8BwyKlY8SMja0arEcGgfwTbiWc4Ig7qtJt6T6lnKwq1arVCLaz5P+xw1+o21FLXJZ+a/MmAI3u75Shj2C93t+VVZVZ2nluImW9Id/yXG7NWI6SQ13+IepWNL0SvZx1xjt8pfkVlX0ns86d/w/Mt9v1x92OFh6U3YtjNNhkbjUuFgeVionk7MklVMI6l+kG17m9t/BRbpZxWJjz1U92agCbW5lcVPpE/WVSa+fP5HoOlXFK/8AbeyQ/V/SHgbpdEjZzbujHrUCp84wVOYpGzMnZQOZpY8xlo16u+9uFlBayqgbRufG5r5HDsjhc3VuZmyO2l6KqOcU/wDOevFW53MR9WHd/oK9tbdHjTjhHd1KytI1IqL5+KH/AAWOGqhvT1jdW2gOmA71HOl/M+YMu+RtwuEyAytDjGx7hbQT73wVZ4djr6V0c1PV6XMH1toA7QPxK6MmZqwvHII6bGNEsl+wXF25uABsFWVrT1Wr41WOY/I03HSKVulUozTz2zkkvRri1ZjWU6OrxFhZUOhjLgQW7ltzx3Uo3I1HmtNLTwQQhlO0RQ27NrnbktrdmgXuvG3dSFWu3FYRqisLDFRz2DT48EIABNibBc7zF5RL2Kq6T+j9tQ1uNZaL6XEYHhzmMd1YeAHOOzRc3NvFbujLpC9sjT4JmFppsYhHV3e0xtc4AudcuNzsrPL7jdna4XvyVZdJ/R+cWkGL4GwsxoXfrYLu1EgHibebfkr6yvKd5T9Uutn2lx+LOdxcXlFlyWaA9o1DvG6HnVGHN2NlV/Rl0iPrKhuB48BDiYd1bYnO1F13BreAturUex2rq2s7Xcqu9sqljLRNZX67m+M00YC9t+KVBe1+7TsUtja641hokRCEKIvSAHFJyHilHFINwPFTlNbGSNkP23H4FMvTXlpuMZPq66FpbiOHwyVELotnF4bYbgX+RPUJHlcfgU4ZzxBuGZSxWucB9ZpnyWvbgF9G9Fo/7RlZc++QDoWz1Dj2Evwap68YhRtMR6xhFwxjb7k34lVPREfVLsNzqdWU9wOHmqwugfBYaqXHMyWAndVyxtba/ZdG117/AB9ygFHpHsl2gDYVlPb/AAr1S4OXuer2av7trIWTBsO+yEBHukX+g2PfmM37BVJ+xQ447+dj9gq7OkX+g2PfmM37BVJ+xQ87HfzsfsFGFwejQN1qqRenf4H6FuWub7C/wP0LVUWYSJXvIiPNKkPnFKvjVZYqMukCEIWoAhCEAIQhAC1y3A1dy2JHbgg81jJZWDKPJA+kjAaXFnxSSMu4Ed3IH0JiwXDva9gbAw2AtwViYvBHK8AgcuS4oqaGNrgGjVfuXpbbqVSFJQ7Hm72wlVrasjPE+oiAcWm3gU40leyTsv2K7Sxjm2e0aVyyUELnXisHcdmrTKrSrbPk3eE6eMMcBNI1ga21guny0CMA2uotU11RTTFjr/4luwyaaplN+HitE7GcV7Rvhe5JTSSicO2dcLcCAwi1j6VXmfOkKkyU2nZKwGSQOv53Igch6VIMsZsoswULJ4jYu9B/itNTpdaNPxmtjup3CZJGtLQCSDfdKsI3te3suuB3rJV6N+c7ioQhACRKhSo6njBkngQJuxbCMPxksGIQ6hGNINh48wnBFwdnNC2Uq1ShLxKTwxOOUaqWlgpKcQUTdEYv/wBbLc0WFkAW+x7BKtVWU5S1TfJilhAhCFjGM1HOdgCEIU6dS2AIQhSAQhCAEIQoZkCEIUYj3AIQhPajvEhoEl7pViFKSi9UOSM9hS7V2VGM8ZMos0YW+Gb63UsBfFIHae3pIAJtcjfgpMBZ10rntNus83g3nY963UbmrQmqlN4ZEoZRReV814pkHGfaHMsT34eHFsM7WEN0tFhdziOavCnnZVQNmhkZLE7zXxm4PxphzxlKjzdhZo6iGN04A6udzQXNAN9rqscp5hxXo+xmPAsySSTUEjmtp5Hv1Xc43PZbe21l6GtSodWo+Jbr21zt+ZqctGxeERa4lpO6Tg4hYUs9NWQxVNORpe0O2HfutgcC53evMzTUvDnyjbGWUKhCFjLuZvgHHtHwQ3iFjftHwWcfJddms14/NGE/dJbCD1bb2sqT6PJG+65jrGAMHlVTcEW1HvV2RmzGi9iVR2bwzKXTHh1VTuLIaylkklsLAyPeRc24r7FS9xFM+SHeyM1e6Nl0vt9sP4fk2L0vl/8A0Dh35tH+yF5o9kdv0j5dcDcGof8Au2L0vl//AEDh35tH+yFsIO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0LctNH9p0/4jfoW7vQEcxz7cHgFw8iu7HPtweAXDyK+T9dWL+p82W9D92hEIQqePBsfIIQhSSCEIQgR3BLxaRzRa+yxLw5gc3io1YeGTzsN2O0sNdQmmq26mEj5kw5fy9RYFNMaRtuHMer0qWTxsmaNY3t3LgdTFgJvclWVC7qQpul/wBWcNak1LJ20UhdTOv8I/QtzTdoK00cfVxnVwvdb7g7jgq6piLwuDrpv2QS6XEHSR8aRYuJG4cQFLaS2Mga52rRa9+4JSdLtOk773TVmjHIcv4FU4hKNXVRvfz96L8lFOjzpJps4V01JEwCRjnWPa4AA8x6V1U+n150pV/+qGSwUIQuQAhCEAiVIlUNyTwkTJ4AENdcrRVww1lNJS1LNUcg0nZbnW0+m6R29rBZpzg008Mle0hswfAcOwh73UcJZK8kk7cD8XoTqkuCbW3slWypVndT1TeWYqOnYEIQtOib3i+ACEIUJ5WQCEIUgFhI7S1ZrCRmsWUrklcnLI65SXGkrc6FaXssCpym9zZkQNa4bojjAOyxsSNlvpmHmplFrgy1Z7nS3zR4JUg2SrVwamCEJCmxC3FJIBcNw0XI5kehaZ4oqiBzZI+sjfxa4XIK2C5cNJPHh8L0LIg69uwfgjgVKc09VJ4aIksvBSuactYl0f4mzG8uOdNRsOqaHtSnS0C2wsOJKsfJubKLM9DG+ne1laGgyxOc24IA1dkG43Kf54WTRviqY2vgeLPYdwQqUzllXEMi4x/KHLDnNo3vtNGwiMDW4vdw3OzV6SjVpdVp+FPaqvx+80b02Xdpb13Wb3ad2pSozkLNtFm7C46ykIEobqlbYjckgcePBSY8VQ1qE7ebhU95cm6MtW4IQhaiQQBffuQi5sbc0JHvAADTSW+GfoCrL2RTIjhuHSyA/WY5+13X0KzcB+t0j/TIfoCh3T1h0VZ0dYrOQOthiOg233c31L6/0lYtYfIp6vvs5elxzT0Tgg3BgH7hyj3sUiRkOQgbhsP7JWOYMVbjnQpM8Ou6EPZ/hhIWz2KF/wCQz9ttEP7JXeYMvFCEKSAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8AKSfu3IBz9jn/AFbYX+bQfugrRVXexz/q2wv82g/dBWio7oM4sVF4D4KMxizApRiQvTlRgcAvnfpav9yn8Cxs/dFQhC8rHg6wQhCEAhCEJBCEKHiTyuCeRWnQ8O4jmEznLeFDEhWiD68Lb2HL4k7hzG3HMosQ3cBbqNetQTVN4TMHBMCRsALNGwQjewuhat+5OMbAhCEAJLva9pDdh6Ej39WxzzwaLqr8V6XaTD82y4O9oJZI5hPa5C/cuq3sat0nKms4DZaJ7TQBsb3S8FrjkE7I54/NcAfmWw7rmqRlSeJAEIQsViXBKBCEWunGYkrkxIuUoBbv3JHvDQuOevDGm52sphGbjj4murU0mipwDC56s1s9O0zuJcXWbxPHku+SZsMd2vZpHK6YK7GQ1lg42+NRfFsfcyN2iZ3DhurilZ3V24xqSb0/ErLjqNG2jkmFfjkULSdQv4hQ7GM1OeC2I3/68VFa7FJqk21O39K5DeJmt269n0f0WjVeuS/oeJ6l6SVaj00n/U6a3E5ZyXTPLR42TPWVbIRqa4v8DdaamV9dJojFrelbqPC3yObC5gc/huvoFr0uz6bT11Irb4FFrq1pKVWTbZzRTTVJu0aW95FrqRYPhFfVtGlto+bnNNuHepBg2U2U8HX4oBHTs7Tdg65G9rLizLnOOgh9r8Hjay2xe0lp2Ph3LzvUvSiFWXgdPj/Vf1R67o3onW6hJTqxxH7n/c7MUmwrLmGy07petmnaWXikBtzv6FVuDVtNRZkknxRlTPQyPfYNNyNTtuO3BYVE0tTLqq3mbvL97LU57Xtc0tD423ABVPa0pUZeJNZbPrdv0G2t6HgUefkehMo5VyNmAsr8PM5mb2updOwkcRYtA9F1Z9Zh9NVYZ5DNGTTlnVWFrgFun6FQHsbcNlOJYhXFxjpozG4NFrW7Q+lXBSZ+wGtxp+F01W41DRY/W3DtatPHxV6sNajxl3GcKrjN8ECzdgORMnM1T+USTnfq2zsJFiAdiPSqUwYw1ebYqulbPBT6mgMkNjs70KWdOeGS0+fYZq2Vz6aodK5jXWIsNIUPw+WSKrjkdGBYjn6VX301KDgvI9J0axlXp+NKWVwencFkjdhtOQ4n623nfku+9wovkapFTgtOSBfq2/QpPzsvk1ys1mcVxDw6jiKhCFqmmkYNZBIhKoi8bS28mQ8YwVz0k9HrMaiOL4K/yfEaYdaGlxGosaSBZoud02dHefHvkdl/NV6Sppz1bJX/AFoODW7m7jc7q2SR1oLCWvFiWjmFXvSd0dU+Z2CvoGtpsRiGnVGwXdd1ybkr0VlexuY+r3vPZ8nNJOG5YgcXONwPiGywIJdYKoejnpCr21rcCzJf20YQXl0hebOO29rcFcDnXYyRvBwB+VVHUOn1LSbUjdGWpJiWtshB3370LkWGtzIVnnBa27W8VmDYpANvjRGSOmgj11zPA/QurPDNeT8aa4BzTSPFrehc+Fu/nzPA/Qnytpo62imppTeOZhYbi+xX0v0XX+0Ky598rLoDla7LePsBALcRe0N5/YmKpKMEeyXYDa/llPw/FU76Lp3YL0hY3gnWEQTS1FQ1vAbANG3xKB0YI9kuwONz5ZT7/wDlXpjl7nrRvAeCEN4DwQoBHekT+guPfmM37BVJexQ87HPzsfsFXb0if0Fx78xm/YKpP2KHnY5+dj9gqO5D4PRvcsJvsT/ArPuWE32KTwP0LCrvCRPdESPnlCD5xQvjVwsVJIuo8IEIQtJIIQhACEIQAgcULFxtugfBor2Xam1oLTsu2pmuLLiLrG4XXTUktmcVzp1IUvd3JDcrNrHP4BKYZByWyS7yZrmqj4Gmsw/yiUvXRRU4pIXO7rrtLHMJaeK1zgmne3x+hblWnUSjnY53Rw/ESK46RMEpMzOiM5HY1e+I4kd3gufK1E3C3thpnXaPSTzT9iNMXDSCQ4cVy4fR+Tyay4k+kr1FGrFWypt7Hn7mpVqVudh/ZiUzXdWb6eeykVFPFHTvqqqVrIYxqJcbcFDwbSAu4O3Tni7xUZeqqOMgOkjc0HhxVJXtVKpFR4Zb2tzo94dsHzdgeKVUtNQ1kElQxxBY2UE7cdk9taGjsm915zyJlavwLNVTXulc6NxkFusB4kch4K9cLrjNG0vPBaeqdJp28k6e5aUL6E3jI7nYW4c1kwNcwgva6/ctbZWv35IFzcxtAA+JUc3h5l2O/KluhSWvIbw0m6zIZe9x8qZc2ZlwzK1MyfEXuAedOzC7lfktmWccoczYaarDnEx9ki7dJsRfgVvnZ1dHipeyRqHQ3D7Hgsm3JIBAbzJQTra0jvUW6SK+tw3K08uFgmoDxwJB534LChR8aoqa7kyexKgHOO7mub6EE8m8FUXQXmLHMZ65mMh+kaLF7nE7l1+PgFbY2JA4XWy9spWtTwWzFMVCELlxv4ZmCQpUKU3wwhEqEKW2tkSwQhCL4mAIQhCRDcg24oadIs4XKXflxQAb8i5YyelZGQ346HWSEnuSvdoH157WN/GAWIkbL5hv6UnCUIqeOTHUZ6dkg2FyRbuSXI2WE8rIaaaR4uI2F9rX4LOnHVj4mecozu8m5BDO9MWccsUOaMKdS1YHWWd1Dw4t0vItc23Kg9J0w08+bpMD6hvYe5l+qffsi/fZWr2di0dniTbh6Qu2vb3HTpxqy97lbGtvKwUdl3H8T6OMbkwnHg5uFSOcYpnMDW2B0t7Tt+Su2CaKrp2TwSNmgffqpGHb0780zZyyphua8O6jFGgFtjHK1oc4Wvbj6SqswjF8b6OMepcGxt7qjCZn9XHLJIZCywLnHbYblWlWnS6rR103iqlx/g1JaGXg0kFAcHOs4Fc+G1tPiVG2ppX6mkX+a63NkAFyPmXnZRdJ+HLaRujLUzPl8ayj+zMWF9h4rKL7MxdNssXMNPmiai9hktaOw0EE3Xm72U9ZUtxPCaRoLYXGE6tO/wBmPPivSTd2N3I8F5K9kbU1Fd0kYXQTSvZThrTfV3TG3HZfY6fuIpWYdMFOIMwZQDX62Golsbk+9bzK9WZf/wBA4d+bR/sheWOmuiFFmfKTGVD5o/KJbanA27De5ep8v/6Bw782j/ZCzIO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0LaeBWqj+06f8Rv0LaeBUMEfx37YHxJtd5p8U5Y99st+JNp80+K+TekC/30i3tvcQqEIVTHhm1cAhCFKAIQhCBCbBAQRdFrKHnsSmZhYOJPJJrssmyNcp0SxnIyI1KUp9CRQviM9gQG6tiRp5oSFpdsHEfGol7XJLWw34/hUGM4VPh1U0mGRjmE3I84b7hMGS8h4VlWommoGOEsji65kc7iAOfgpfdxOiw8Uti3aw8V107yrCk7ePuy5NThvkEfMhFr7DnsuZSXum1cDFi2bcDwmrNJXVsDKhp06TKAb8eHxp7jkZJE18MjXROGoEb8VTXSD0XYjj2bpcQhqJGwukLgBK0DzQOB8FbuHU76OggpnAO0sa0km/IBWl9bWtKjCpTknJ9smuO7OnY7g3CAi1tkqp9RtyI64bqHegkloJkYFjUzx0tK+ec2jbxUWwDPmC47ibqGme4yggfYyOK6qdvUnHVTWxg2Sw6j5xGkb3SFwduzc+hIXuYLgBzD3rU6pEWuzG3uOAWuFPVJLz2C4N5GkXjNyeI47LEbrzth2d8zO6QoaM9caOSVrHDU+waZLH0cF6KZxPiu3qHT52cY7+8QluKhDtghcHurQZsEIQtbTj7piCEIWcZSS3JQJCLhKhMk5MNPoS6VndF1AMQBwSrEAg3KXWAN1klHGUYSWHiJkCLWcNkgc1o0tBISMIkLruDWAXJvZaRLDKXtp5Q57TYi4WyFKUlqSJclF4ZuFg22lwI3Rva7uCbPbFwc5j2gEdy3x1rXts47LDfCcTPwnydrHBouGOctThHIySOVmuF4Ic3uuq36TukuPK2ingjaZZC5rSWu4gA8R4p96Oc2/yqw7UIQyQC7joc0GwF9z4qyqdMrUaSuGck60VU04K9zxlTE8nY+7M2VGvfGHmUwMaZD5oYBY7cyVZGQs6UGa8NEkUjY6thLHwucNWptgdh6SpM+KKohdHKxr2jYscLtKpTO2UK7JNd/KLKz5PJmvEktO1wa06SXv7LdzewHpXfSuKXVqKoVHiceH27CUXCWpdy7ndY1gdbS7uI3WTjc3UM6OM7QZvw5s9QRDWMDQ6IAjcgk7O35KYC9t1SV7edpN05rH9zfBqaMljJfQ4DmEoSPNmkd65N+//AKMuNh/wIBtMeZv/AACZOlWpmpch4pLAzXKGNLW6Qb9ock95fB8mcT8I/QFAPZFYtUYV0f10lODfqydr8nN7vFfZen/8aHyKer77KE6P2ibo8zA+Qv60mrOkuP0K3fYpn/8AYSQM2cGw3v8AilVVkHDIR0V4zXCslMzxUXYXC27b+KtT2J5vkaWw3DYf2Su3szBl5oQhSQCEIQAhCEAKmvZQf0Cj/KSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv8ANoP3QVpFVb7HP+rbC/zaD90FaRQh8HJiP2s5RdvmhSjEvtYqLs80eC+eely/bRLKz91ioQheRidYIQhZEAhCEJBCELD2k92SCEIWbep5JyIlQhGk9zFyBCEKMDIhAIIcLjmFDMR6NsAxHMDsaljcKtz3P3mcN3Cx24KaLEgh2otHguq2u6ltnw3zsYThr5Fa1jYmMAIazh8SVpuSW7eKCSBqIFu5Y6gXDSLX3sudydR6s7mUcRRx4ti1DgtE6oxGpiiaQfPdp4LDBcYw3GacTYXVRTxDZxY/UA617KJ9L2XKjM2DCmoZNDhrvpeG8QBz8FwdFWVavKGCSU1ZO57pJOs3kDvegcvBW0LKi7Txc/tM8f4Od10p7ljzTNidpvdcste1t2sNja6baquYHkl10xV2Jh0jtBtt4LXQ6fKT4OSp1CNNNNjxW4oGE3cFGsQxljja539ITbX4gd7uJCg2LZohgqWROO7nBvAr0vT+kvlnlrzqk68nGl2JTX4sbujYb7ppc10rHB54hcsUgnhbM3e4B+VdsbhYEr2PTOm09XtbHj7y7q1JZkwjZ1NtPBLO6K1nAlx7iornfFK2m6puHtcb6b2v3nuVhdFuXpsVwplXjDCHWB335uHPwCtOp9co9KpYpvP0LDp/Qa16vETNWCZfqcQe20ZEBPHSfRz+NTMU2FZVpese9hnA4F99+HA+K6cexihwGgMVKGhwHJtuR7vBUzmHH6jGaqQvkcGX7z6O/wAF89q3V11qq5Vfdfw/I+o+jXojGjirU5+87c1ZsqMTlcwE9SOFgB6OSimp0khc6/xpb2JadwN7pCQdgrijRp28dET6BClo9iPCFeRqBB3WqrPV05LmudffZbQxp4lJoe9jmuALQbC5W1vS9jKdLXBxOzDM2YmcqxYNT3hjews1FgHvy7iN02MpNhPG97ayN+sHWdyNxt4rcyNrRHH5hF7FqC8xu3G57IKydQ4rbp9OEJQfc6c05uxPFMGo6PFBrbBG5oIja07kHjx5Lna4FrS0EC3NY2jeJI6hgeb7XF1kBpFjb4lLq+zgmysvVXJLhltdFGKtZG2Eu3AtYnuaraDjIC5vIXXm7JdcaLEmbkA3+hX7gtb5TDseS8D12xdOr4iKzqlB6/EQ6RnVfU0myxBJPZa6yzBcBZoHisXOZB9kkbqPAahuqNRc90imb3yA3NisnNAGyxB17tRcnYqGmt5My1AAdN3G7uVkru00atj6U05px2LAMBqMQkZqMTHu3aT5rSeXgon0a9JEGcqueERBpjfpFo3D3t+a7KVjWrUnXS9lEajd0n5ChzRRGppezisN3xvaXCzrAC4bxUZ6OM8VGE1Ry1mt3USwXjjllAja4R2YLczchXCxzrnRsffngbKEdIeQqHM9MaimvT4lGQ5ssbWtcbEk3cRzKsrLqMasVa3Xu9nxj5s0OnpepE216mNe0Xp+TuVvFGrmSDGqb6P884lhGKHLGbGi8ThG2Ylzy64Lz2r25gK5Y+rfGx8R1wuaHAqvvrGVpPP/AFffsZwnnYBwu3zSh/FvigdskjZreCH8W+K4Gm3k29zpwv8A0nH4O+hSa2oAkEEG4UZwv/Skfg76FIa4uFM98bnBzRcWX0z0YWmz3Kq4988p5rqZqzp2jjqnGNjKaVjSOxf6663DisqSIweyYEZNy2ug+hMdE1+P9NtcaypkiMDp422dbYPvz8U/QxmL2TmgvMhFdB2ib32XpcLGUaT1e3zR4IQ3zR4IUEEe6RP6C49+YzfsFUl7FDzsc/Ox+wVdvSL/AEFx78xm/YKpP2KHnY7+dj9goQ+D0cFjKLxu8CsgsZPsbvArF7xZPdERlGmokaOAskWU/wBtS/F9CxXxy9WK818S5h7qBCELlMgQhCAEIQgBc9WX6Q2PzjzXQsXtJ80C6yjjO4cdWxyCkY+fq3zNDrCwskqKaKlFpSCeR4Lz70n5gzFhOcoxSlwh+t3s5/p7k/0GbK+qpIHVJOrQL7u/iV6WHo9Wq01Ui9n8Sl6l1GjaNKXJclNVQjYEfKt7J2vdudlWWH4xJsXEqQU2KEgEErkr9KqQWM/iarbq8a/yJeWMc/U4XK466MAdkWatFLiDXs3O65cSxFoiIad1wUqMvE09iyq3FKVNtEexiRsU0oBA32Ufp56h9VpLrs8E9nDZMaltr6treLr6f+uC7ocFw6lNm1rXyDl1rSvSUq0KcNKWTzDtKtWbnnb5nAO3GGjhz8Vk8BzdJW2oYyOQhjgQfStekd/zpTlr9rHyNiUVmOTVDF1LiW7Ap2wWV5k0X7J5JscD8S7cHdpqgFruFKcG5GVqvb5JJTyujltfsjeyc2vEoJ94eKZ37PuOYWyCqfCdJFwvN1qWtOJ6KnU0rAxdJeSo86UDads7WOaSW9kusdJHIjvXR0Z5OZk3CW0usF9mh7rEaiG2vYk2Umimjfw1By3FhfxcbeKzqdSqQt1apbHRFZ3Ei7LTtcLF8TXscx7ey43ssg46uraFkb37VlxRcoYlF7mxnPS0sNJq6hmnVx3utwFuHilQtladSq9c3lhAhCTitMtnnuZCHUI3E7G4slN3PAjBNuNkruw0DiPlXLiVdSYXT9bWTdUH3A7QHDxWajJy0R5MG8HVqF7EWISjd1lyUVfTYlTCWjeHgEAkEH6F2O7JYRzKSjKD0yCeTFCDxQmMbGQIQhCAGxCWMbud766S9tyiwduDb41hNZROCpunmTMIp6YYBHLZ3WCTTGHX2bbj8alPRYcWGXWvx/U+pvZpLAyw0tsLD41LnxMl1NniikDeGpt0rWgNDI2sY0G9gLK0q9Qpzt1R0LK743NencCb6NbgCUhjEkckZeHNe0tPgUsgaZWg8B3Is0s7Nwbqv14aaNnBC4OjTAYswPxZtIRVuc5xf1juJFjteym7jbbVcWsgtPVDtfOsQAGjc3Wyvc1qzSrPL7b5MUt8iaQmjNWXqPM2F1FDXx9Y2ZuniRzHd4J4SEatr6b8wbWShUnbzU6bw0JR1IorDcYxTowxwYfixdPgsjtMb9IjbHqdpaLm5NgPjV2YXX0+J4ayro3iSCUXY9puCL2/guTMeB0GYsKmoq2FheQQx+gag6xANyDzKpvCMTxboqxt2H4sH1ODSO7DxqlcxrR6bAbuXoJ0aPVqLqQWKi5xsal7D3L3edLAWjUL8uS2wMLpGPadQt5oXJh9fS4pSMqqCQOhcNwSLjbfYeK66b61O2RhJDt7FU1nGSvIQltho2SlqgyWMIDB3WXlb2W1CYMaw6thicGiFhL77A9a4r1Pdoa0H32yjWesp0GasHmp8QYLtb2HAC+1yNyDzX2GHuopmeJ4swVWOYzgDKyUSmCZxa4ADiPR4L3lgH+gcO/No/2QvBU+DvwDpEpsMdu2CVtjxO7b/wAV71wD/QOHfm0f7IWQO/mEqOYQgBCEIARzKEcygEbz8V5T6Tv7QOHfl5P3QXqxvPxXlPpO/tA4d+Xk/dBAep6P7Tp/xG/Qt3etNH9p0/4jfoW4IBix5o61p57fQmnnbvTvj/nt8R9CaOYXyv0hj/vpFta/uxUIQqPszcuAQhCLgAhCFJAWJ83ikcQ4GyCSB2eKA3SSDxUt+zgyRplilc27LtF7XtdEUBhDi68gHcLKD9M2MYlhOW+swlup+uMbauZN+Caug7MOK4thpGMMs4jiQ74bu/4lavps1a+Nnb5nL468TSWi0lzQW9ndZnisC08RwuslUreODqaBGlpcHE2ISpHeYTzWLJ7ATvbjdKG6eI270OGoNA2ddc1ViFHSPbFUzsa8i4God9u9ZxVR+6jByR0A6fO3WQbcXPBJI0FzXNN2koNy6w4WWMVpT1LfJK4Fa4taAOAWIFhYcEqFDjlKTZEeQQEO2AQfNKYzsZYG7HaZmI0UlA4W6xt9V+Fr+tVlkLowblbMbsQdUtcA5rgNBHAHvPpVpTHU7biOYWBexg4Pc70i6s7a/dtSlSjwyVA2PqDIAANhtdYA2cXDisG3JvYALJcaelZXJmonPDQ08Uxljjs88Tf0p1gNwuJdNO7ZTcTrVktcuPiYuODcdyhA4oIWiT2Xmak9wsUDbiLo1AcVi6ZjGOfIQGNBJKyxl6VySZC/ZJabDikvc+hNFFmDC8QrH0lPU3lcbABze6/f6E6OvEADw71lOjOltPuEZ7pfFa+sFlpknABWCibFE6HPAWPWtTbLVdxXOag962qmbFTyO0lUBwITdW1ulp0uF1yvmJB3TdUvLza63wpROilbpSTYx50x2vp8LqRRE9YY3AEAHkVEOg6bMVVmV82KF5pXucSDGB/qzbcemym9XSCU2cGuaeRTtlunbSMLYI42EbXAtyV7GtRpW7hpWX8DK7s4P20O2Ix2qHEDS0gW+RcZBPvt06vha9oD3Eu8Vplom8Wk/KvOwkjTTljnggeZsj0OZK2GXFYDUBjiRZzm8QByPoVg5cwmkwbC46eji6tjWgAaieDQOfgkpqbSQSb2Tk3cALpuOoVqlPwm9vmznrqlKeUt/kKLEX5hI0NMckTmdmQFrvSDsVnpAYbJAC917AC1lXrNLDg8M1TSZSPSFkbEcAxk5hyg50Eji50oEfWXc4gDzjYbXU86Pc/0OcaNtg2CubfXCZA51r6QdgOKmbGMLHsnaJI3EGzhqVI9IeSq7LmItzJlclgYQZYA4tbpYL+a0cyvR29xT6lT9XuP3i4fd/Ns0LMGXf74gjS4baTzWDydBdYtPceShXRvnqmzZh0ME94MTgY1krXjQC4NBdxJJ3U1mJ7eq17cuCo7q3nQm4SXBvhLUSHBB/NT43+YKNdMuGe2fR/ikUcZfPoAjt3lzVJsD+1fj/gF3TRsmjLJWtew2uHC4K+tdP8A+ND5FTV99nzuw3GqzCoK/DI39S13W6mkA3ubFepvYqH/APYiQHiGw3/wlVZ7I7IEWXZYsVowGxzztjIFhxa9x4AdytT2KhDslTH0RfsldvZmDLuQhCkgEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Cj/ACkn7tyAc/Y5/wBW2F/m0H7oK0Squ9jn/Vthf5tB+6CtFR3IZz1wvA6/coqNgFKqz7A7wKiy8H6Wr9rEsbPhghCF4xcs7AQhCkgEIQhIIQhRmMsksNLnAhgJceFktjo806jsNlrmOiIviLi8EbcuK86ZZzRmupztFS1ETxTCRtzaTgXW57KzsOnO4hKSfBqcsHo0Bw2dsRxWV29y0UurqwZL6nb7rfYcVXSg6cnDyM1jAhsRsN0WKRz2tHFaJakDgpUGzFzSOnTcela5HtjbZw7Sb5Kt24C5aiQQxdfVTBreO77ejmtkKD1ZNU63kOBq3A2aN1olqJgS5ztN+8LibV000Blgma+1+DgeCaKvEZJXFnADa4XdRtVUfGGcVS70jnPURxAua4F3imqpxF8oJ1WYNrJvqKkRMJLyfjumeeudI422are1sFFblFc9Q53O6rr27hhsfFM1dXEMOoh3oXJXVoYCG7lNTnySG97r0FCyUVweYu+pym2kzodUPmJA4KL4rlbyqtjnJ81wdwPL41Jo+yOAus9OoatXxXV3Qpqmtypo3lSjNyj3OajgbS0bIgdgAF1UkUlZO2KJpdc22WdFQyVkwawEhWdlXLcVFC2omDdQ33tyPgq7qvV1aLFN7ln0vpU+oVMy4OHLeUIWRtlr2EtPaANxyHpTjmXHKfCqI09I5rWAGwvfu7/FZZmxptJCWMIAA5fH6VS2YMYlqprF5I8T6F5e3hX6jU1Vm3H5/mfZ+g9BhbwTfH3GrMGLTYjVuc592cLWHpTP723JKePzpF6a3pqivDitketTUfZgBNmgckW2ulAv8SL32W1YzuZLJiQ13EJb62aOQOwWt9THEbOIuVmCA0PHAqVDuzFSi9osyA+t3d544FJyA7jf40hcXH0JVCSDfkKXEuLr7lJpJG3BCUHksXJRZOGvaZto5DHUsN9wrqyXiTnRsGsXPrVH8Hgqwcm1/VyMBJ3P8VVdWt/Ghlmm5oqpSaLwa/XThzRqNuSoLPcucx0iBmFiaOjZIerPUtcG9gczx3V14NKZaUFrt78CfQE4SxRSSCV8EJeeLi0XXjbO+hZ1JRqQT+ayeNq09MtJpwoyswylE7T5QWML3Ha50i+3iurYucDIAQUMuXajawFrBIA273G+5XFVbnJzwsGGDkxvDIMawuWirGdZDI1zS25FwRY8PFMmTsi4PlaeWbC6QwSPdqJL3OubW5lSe56waeGyWXUCN1thd1VRdOMmovybGkxeBI5rnblpuEoNuCU8dki5oZS34/Elb7EN6RMj0ua8NaG2ir4ATTTm5Ebja50gi+11CMgZ5rsu4mctZsaWds9TNJpjDgSGMAAF+R5q6NQGzr2PGyiPSBkilzVQOcNNPXQjXFLHZhJaCWgusTxKvbPqMK0PVrpZj2fL/E1Tjp3RLgGv0OEg0HzTZDQ4izgTvs5Ux0fZ0rMuYi7LWbGvJjIZFUAOdqDQS4lziL7kK44JNUTXNc10TzsQblcfUenztXtx2+QpS1I7sIF8SaDubO7XxKSP0v7J49yjeE7YmxnIh2/xKSFt7HYOHcvf+je9ijguPfPDPTBHPgHSbUVlOw05eXu1O3veV2+/gnHopxWbG+mXDq+qfrmlq4i51gL8RyXoTpq6PaPNGEvqmsayqhZxaALganHkTzXmfoFDm9J2Ctdx8phJ+VegSwaT3Y3zR4IQzzR4IUkEe6Rf6C49+YzfsFUn7FDzsd/Ox+wVdnSL/QXHvzGb9gqk/Yoedjn52P2CobHKPRwWMnmkehZBYycPiUSWzwFyROpGmslHh9CwWys+3pvi+ha18f6isXM/mW9J5gsghCFxGwFiHCxvsRyWS56y4gc5vnkEWUYbaSIlLCElqgywaNRva110DzQTse5RnMGNU2XMNFVXGxJFtxzv3+C0ZZz/AIRjVG17Z2CQi9tbBzPp9CsI9PrVI6qcW0apydJa6ktiXEG2wukYXatjpTbTYtBK8hkjSPELpqa2GCAvL27+kLjqW9T3WsERuaU4687EE6RcPiqqrrnNu6wHyAqFRUQAH1zsjlZSLNmPslJZH2j6ADy8UxULzNGXOBHDjsvollVr0LdQk8nzjq9ShcXO0c/edDQSA2Mbp7w1kjYxqaVhh9KwNDyR8qcNdxZgC5K1RZw9jvtbdRSfKMopXxnisHuc+S5dt3LpipHSNutr8MkbHqt9KrXUivYkW2mbjhrY1VtaKbA6htO368/TYg8N1RGXqbHYcemqKqeQwlxsCG/Curcx3rI4NLPO5j41D3a7u80eAXoeiwp04vUuSk6n1apQj4EeH+vIdaPFpdTmPJcQeN+CcRXyMsdJcPFRVj+rdqHHmnOjrBKNK2XNrGUtaWxTW13U92LJNSV4lADm6fjThBJ1NQ2QdoXUVu5pDmlPWG1QmZpPFVdzQco7F9aXWXjuTSOdssbXDuGy2NceIN1HqKpMUga89klP8Usbx9bIPxrzVehKMj0lvUU/mbad7my6iU7Ndqa1wPEcEy2dfdOFFLfsnkuGptyywpVnF6Wjta4B1wLFISSbuN0jz2tkq5Wk9jtaQIQhZNZ3ZiCQ8DfglQjJyJsI7N2VfdNOT8SzVg8UeGE64y91gAdV2gW3IVgEtd2TdZHWwWic0+Jut9nWdtVVWPJjJZIF0O5axDLWDPp8SmdK5xBsWhujsgW2Jup43cAk+alBktazRfc2CUERjSdysry4ndT11NwlgTVq3Qg78rIXMZAg+b2dz3IAv8SVtm6njvQgTY2HPmFgWA3DhpF7gpuzFjlJl/DJq6tv1bGlxta9h4lNuTs5YVnGJ/kHW3YSNy3kAeRPet0LarODqxWUhnBJ3W1E2tdJ4bJdPZHIDvSLSm3vnBKEA3ulsO5CFCSe+SXug+hFhyFkICNJvLICyQtDhYjUO7vWSxkc1jC57g1o4uJsAsnmo0mRnAjeBufrg2ae4dyb8dwShzDQGixmBtTE4WdrvY735eC10+P4PU1TqWnrYX1IuC0TNPA24X707DssOo3K24rWlRTxiXKZikpooSircU6MMejp6xz58CnlDWzEhjWlzrkaRc7NCvTBcQpsUjp6ygeH0srNbSL2IPDiuXHsIpMew2WjroWmJ7XNDg0AtJFr3ttx4qpsOdifRPmBzHCWry/M5xa4B0xYB2WjU6wHFemt40epTpVc4qRaz8cfgaJS0RZ6YOkhmrjy8UkrQ9rmONyQU34BjFFjWHx1eHzxzwOvYseHEEbHge9OL3xxML5HtY3mXGy+hLgrTxn0wYbLQdNrXuJMUszAwd1om3XsDL++BYcP/to/2QvLvT5idNWdKmEU9MWvME5LntsQbxt5jivUWXv9BYd+bR/shSBwQhCAEIQgBHMoRzKARvPxXlPpO/tA4d+Xk/dBerG8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C3d600f2nT/iN+hbu9AMmPttodfi4D5img7fEnnMHmRfj/AMCmY8/FfMvSaKjdtruWlo3pwCEIXne7R0LnAIQhYPKWUANg0m6W1x2dyhuni82HeozT50wSTFRh0dZF5S5waG9a3iTYbXvxXRQt6leLlBcEElJc1tyLHuWLn6GPc4aiRZZA6QdRBvuCO5aas/WlrjGTel9uxjUliORoxCJtdC+CftsL9VjystFDSQ4cwtpWhoPcugHtlDrBWLquUdGcIrsLOvG44UtTqj0vPPiuttiBY3CZGkcl2081gATwXHVhjaPB1Uq2eTuvYoDnAgtO3d3pW2cOIWue0cZfqG3K606HJe0dTksGySVrJA53HawXnzpZwPM2IZtgqcMdK2AN4N0fdCeZ7lddXM6oc0tNiCsSXamlzI3WFt23Vz0279V9prKXY4pyy9jflt04wWIVl+uGq9/EpzJu0ECy000ZYzU+1u4LaPrnoAVbVqa5ufmdkHmO4qEIXNhtakHtwId9kSbNSjih+4WS43ZMW+5wnsvJ4juQ0m5INlukYtLdiphPGyN64E7V9zdCU8Ui2yx2CYFbqY8AtKVhs5Yy9rkhneRYXBui9xdYMN2rM+aVgatKRySSHuUfzM6qq8NqaemDgXxuGxHcQn07k3TfWNAfcEXtwut1BxhUU+50whB9imOifImKYdnaPEK9znRRSXILW9q8bhyPpV+1N3gaXdke97kx07+rNhpBPcLLsdUNZHZpu7nvdd/UruV3NORg6OHsbZJmsFid1xSzOcDZu3etFRIHG7jv4rR5Vp2HBc0KDxudMKOxuNzzSjZc3lAR5QFKpyJVNnQ5vZNzYpqqj1br3uu1tZGCZJHARsG+/dumeHP+AVeN+1gN5i6w3Z3X711ULarL2orZGTqeFyjrhcycNINwDxT5hsQAIHvt00OpfJ5bNBDXdoX9KesL4C61XDUlhck1JKccodXQMtqAAK0OFl0vd2FzO3uq9+1ycKzg6KZoeL8LLcW24FaaTaN3gtzbkKHwa++RACOayN9WkPsLcEjjZBLXuFiA7hxWKwuSJLuAvqIO3pWJ0yteyU3DhZ7PhN7lwYzmHCsFLWYhVwxyOBIDpGt4ceJXTR1VPUwNnpHtlDja7SHD5ludCrSh4zjsapTi9mVD0kZFq8IxA5kyiTBNqJkgiaLu1uu46nHuUu6Oc902asPEFRaDFYweuhLi4i7iG72A3ABU4fZzC17GvjcNwRdU/wBIWQ6jDJn5jymXirp/rz4dTna9LQ0AMaN/BXlvc0+o0FQuH7XZ/TbCwYqOl5XB6AwUgUptuL8fiC7y9psPhcPSqy6JukCjzJhzaSreKXFad3VPim0xl2lrbkNve1yRf0KzDYE6d3H5l9EtaTo0owznBVzeZMqD2T2GvrsgRlvCCp64+m0Um3zrk9ioR/IQ6eJZET6Nin7p8xGmZkWphM8JlOoaNQv9jfyUf9iiT/IV9xazYf2Sulbohl4oQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0VV3sc/wCrbC/zaD90FaIQhmmqbqhePQVFCLKW1H2F3gVE3cV4T0wynTa8zvs284EQhC8Unu8nc+QSE2CVIUSzvkgG6ncG7JTtx2SEve1oZtdMuZM14VlzQ3Ep2Mc6w3e0bnxPoW+lRnWemmssZwPQcDqF9wlt2bnbeyjtHjNLi9KKqgma5rhfZwPO3I+hPtLJ1lOL8QVlWozpezURphXVTg3Akeb2e896520lJHOZo6cNkI87UVtvcBLyutFOTp5jF4yb9K7iucSC9zr2K45qzi23zrOepDGlo+ZNrnl7r6T8i3QppI5qs8bRNjpNbt32+JYEm/G4SbHZ23O/BcVXXMhFmm5XbSpZ4OKdXC3OuR8bAS4jZV50sRYliuCGHA3O60gWDbfDaefoun+eeWVxN+yuSSeOO7tY1dxP8FcWFPw6im+xX1r1R4Id0ZYbi+FYe9uOve03fs4N7/R6FJ6vEGsuGM1Dkbpvq6ySaaxI09zRZaHgnirmpDxZ62Udx1BzeImUkjpe0dh3Liq6psTdFtzzXROdERsmWR4e86+N100o6paXwUl5WklkwJEjrndK06T3BIS0cErGl7rWPyKxi0kU+HMyc4EXvcrrwnD562oYA0htxttvuujDMHlqH7NNvjVo5cwWKihD5WgEb7+KqepdZdCLhTlv+vgei6T0ad1jUtjnytl9lEOumaPC3o8VnmXG46SJ7WP0i3D4vBbMw43FSRObG9osbcR3qoczY6al7xqJ8PDxXmLW2q309VXf9fA+v9F6NCilhbff+ZozNjktVI8Bxte3H0lRoXkGp3FD3GRxJQHadl7ClTVCnojweuXsrSuDG9+VkIJuhbI7cGKeOAvYFEdt0bc0OAAuFlqZOp4wMOJ4dPPVRlsxY2++3oT1TNLKZkTjqLQBq8AtjHBwsR8yW2lS5uXJy0rWlSblBYbFsNNlikLilWJ1amgSiwASItc2UY3yQsN7iyWIBCf8u1IhmYHi9yAPlUfLSAsW4vFQSRumNt9uC11acqkXkipVjRXtnoTK9azq2bC1v4BTBoba/I8lVmR69lfQNmjdsLDj6AVY2GzCaMb7r591OlKFR4PM31NOWuJ22I4HZKNhZCFV4K5ZE35GyO1zddKhS9yQQhCmT7sgACXADYn33ck0i4ubgH51rqqmno6eSerlZFFGLuc5wbt8a48KxfDcT1DDqqKYtJuGStdw48CtroVKkfE07GLWRl6QMmUebqF7XBsdZH2YKgtLjEHEarC442UCyFnWry9jBy9m4OiLrCGSRwN3OcA0WaDyB5q5+LX3uAeKi2eMnUmaKHTUMEWIRHrIZYzoGrSQ25AueKt+nXsKsXbXLyu3bH0NbTi9iZYKS+rY9o1QvBdG/vbZSUFpfwGpeeMgZsr8mY8cvZru2hjLo4qotIbZjbN+uPI4m3ivQdPNHUU4lY9r2kXDmG4K970ah4NuknlFdXy5GvE4+sw2rYDu6J4+VpC8WdElDNhvTNhlHUXMkVTAHE+C9pV9XBTU8jppY426Ce24C+x715KyvXw4j7ImGqp2gRyVdOQAAOXoVt3NZ7BZ5o8EJWcB4IUkEd6Rj/8AsLj35jN+wVSXsUCNWO/nY/YKlOd+ljA6rLGNUVNIwyPppY79cw7lpCi/sUXh7cXkY5rmSVIdt+IUJR6NQ/cfEkBu3gR6Cldw+JRzkhckVrWkV01/R9C0roxL7fm8R9C5wvkXVVi7qL4lvR9xCXSpbIsq42CLEt1vJdyGwWVkrNy4+hStlkh4exDekrLjMyYE+Jzi1zCLAAHgD3+KojLOX5MBlLJZ3tcLWFh6e7xXqKoj6ynkaed1WWJ4JEKrU7Y37/QvZejfV40oShVjn7v8nnPSFVpQUKX9zhy5LUNB1SO5238F24xiMwgMZkcT/wA1101M2AAM32Ww0Ek81zG5w9AW2dWi6rqaV9EVFG1ruh4Wrd/FkcwnC4vJZMSxg6KJlyX21W07nYb8FzVmNZenbpwSrMv/AKTmfSFIs9sjGV5sPjBa57XixPwm2VA0ODzYZNI65vq24q96H0/7Vlqk2kvL9MyrUbalRcX7/wB3/stVmKVMZFvsf4ycabGg0C7t/jUFwutlBa2Th4KRdUyeEO1C/HivRX3owpQzT7ef/o8p67XtXu8r7ybUGMamgMNyn2LFGOpy157Xx9yqmGqkp3f8k+UeLAtGoheFv+jSU9Uf1+B6Gw66pR0TW/6+I45gexoc55tq3ChbjpkOpxsU74viDpXWEjNPIc1wUgipnuqqjtMYNRANuG6sLOm6MMS5Ke/mru5VNdzl0NeSI7nv2snChpOr3IsuT3QMMr6l9FSwPY6M6CXPabkbrecQkjdoDSQedl1VKdapHZbE17RdPqaZPI5EnhyXTh7hFKN0yeXSsdZo3O/Bb6WtbK7tuAd4rjnbTUdyaV5FVFpJi4B0Yct9FO+IdkkqPUuISt2aQWj0LcK+SWS1uz6AqidrvueipXmHmPJLocTDnaZDYpypZmk6mnZRqCmqpYrinlMfeGp4wqB8bCHAgcgQqu6t6SRb21epJ6pIkUErZLb3K3FNNA4slOpOjL2JPxKhnHEti9hU1rJkhCFiZgkSoQBtp80EpW6Wi9hdIhRnAFD3arnggW6wudukQmcgC4uJJFu5CEKQA4+jmlbZoeL7E7JEIBhzllyHM2By0E8hjEjXNJDQbXHpTN0Z5Bpslsn6moe8ve4i7AOLQOXgpuhddK/qUqLt48PchoASY7O480IQuLCXJkgQhCxjLfCRLBAQhbDEW64cbgdVYVUwseWOe2wcOI3C7UhAcLHgVlGWmSfkRJZTRQeTej/HMNzzLiFXPMaRz3kEuYeLwRsN+Cv14ALXA3C0+TMDrhbibiy7+o9Qd+47JOK8sGujCUdmKe0L6y0fBHP0LmrMIosbpzR4hCySJ3+rcLjZb/eN8V0Yf9vM+Na+lpq7ptPGWl+IrJKDZU7YMS6IMywNfVzSZVqJGsjLrANJ7b7Mbc96nXSRV1mPdHbqzK9VI18vVytewhh08T53oU5xnD4cVw2eiqWa4p2GM+gH08l5h6UMHzL0eR1EeDv14JVzhz7wufp1O021HhsvsK2RUlO4fW1NZm3CziNXLU1rZj1jpOPDbfwX0Ay/tgWHX+9o/wBkLxfmuHD8Hp8pTUL2mJk0xkdr1ahtzXo/KnSnglXFh2HROb13URt+zNPIDgpBaIIJIHJCQOBsRuDzCVACEIQAjmhYPBAcWecgFBANl5U6Tx//ADAYb+Xk/dNV8Zw6QMLyrXRU+IbyPY11xI1vEkc/Beb80Y9R5h6cMLrKF7Sx00hIDw631sDl4ID1/R/adP8AiN+hbu9aaP7Tp/xG/Qt3egGfH2kxxnkHXPyFMp3G3PcJ+x37XHj/AAKYG+azwXzT0n/5RZWnui2QlQV5vuzpXIiEIUN4WCWBYJGljzZp4lU1QdEMkOdYsZdWzBjJmSW0st2X6lcwQu6y6lUsoyjBLcxayYMjsA25IbsCeYXDXTe9ad04E2CZ6r7ICuelLxJucuTCq0om2jp3PBc4bcUyTZqy7FjYwmWtIry4MEfVO4luob2twT0ya0Lo721NLflFlT+IdFVRNnRuLR1LS1sjX++5MDVbdOt6dbV4zwcbmsFxVFOyNjHNOzwC30grn3abLCla6Okip3Ou5jQL+AsstJbseIXJOKUtK4MFLyNraiQf/qsZpXyW1E6Vgg+asdCMnUeBNgOyuqlpjLuXmy0RN1EBOkEZZDsbFa6jcFhGdKLkzNtgGtc4kHgle0AA3sL2VcZ16VqPLWZPayallkOrTdrmj3oPPxVgUVVHWUdNVRgtZPEx9nG/nNB/isa9lWo041pcM64y3wdLgW8UnEJGtDX6WgkJHWbILuC55vOMGbMhve3JDO1e3JDnafNGxSEdg24lFh7ktZNUsjDcA7g2XPbnyWQiLHuL2OcCSbjgtZuzUS0hveVs2xnBug9sGRNxcJFhG9rrgOB9CzU6dOxOMAljF3JFup2X3WLMWdDRZqQvAadRSyODW2XDPOG3use5CWphLI1tzdM9VMzrS6+9lnV1zLEX+dNM84JJXbSt22mdtKkzcKg6yXDwWw1QLfNAKahOC5dQILQuuduo4Z0umkjOV5eeKwCELNbILZBbdI7sjdZBYTOFrKYYbJhuxlxWSXyaWKMmzyefeLKE5TyLBHmxmKTzOJDr2LR8EhT6eLXe6zw+ERyXCso3UqFNxiuUdNanTqLclEx64Nc5oBa0NHgAuqh0tC4qe7mgJypo9I3XnKsmpNsqajUPZRvLjvdINhulcEsTdR3XKuDnfBuptmm66G2ssAzSFmOCM1GiYndcrnEO13IsuyRt1yO42KRUe5sikynOlnJGM5sxaGXDZJCxrXggOYOJBHHwVq5JwiTAcFjpJ3GWQEkl1uZvyTlFC0HUOK6gSeKsLnqs61uraUVhfD/JolRWchuNThvc3ssb/W3XaBcbjvWaQnTZ1r23VdSeEsPGCeFgrzPXR1JTubmbJznU9fFYzRwhrA9oJe8lx79gpf0XZ+pc24cyGSXqsWjDeviAcbFxcQLkWOwU1w+Immu4gscLEW7wqp6Tuj2rjrosz5Td1eLUhc9kel0msu0tFmDY7Ar7JauUaMO/BTS95lHdN0mYaHNFTS45Vzsp3R642a2vBuXW4ei6ur2KwJyM8HzdMOk94sVSOHzVOPx45PmZjjXwUk1rN6vzXADb5VOugHP2D5Yyk5te9rZNMVmmVrTwI5+K622yHweo0jXBxIB3CZcr47S5jwtlfRmzXOc0AuDj2Tbkng2JDSOIvdQQZoSMaGtAHBKgBCEIAKpr2UH9A4x/4kn7tytXHcVp8GwyWtq3BsMdrkuA4m3Erzp069I+EZkyi2lpSGv1v3MrT7wjkgLJ9jqdPRrhl/vaD90FaKq32ObdHRzhwBuDTwWP/phWkeSEMwn3hd4H6FEn7OUtl+xP8ConL55XiPTCO1P5nbZ8mKEJCvDpbtFhLkysUnBIA5ZEbJTUd0yBLljWBnEHdVr0q9Hbs4TQviqJG6SwkAN5Enn4qykLosr2dnV1wWQ1nYh2S8nty9gcNL173yNbYgtA98Ty8VLKaIRMte5W1Ci7u6lxU1SRhToxp8Gl0jQ/STYpszVmLDMt0zX4tUGAOOkWYXb2vy9C7a+MjTKOQKg3Shk453pIhFM1hjfqNyfglvLxXTY0KVSqlVeEa60njYcsPzJQ4pT+U0M3WwOsQ4tI47jiu0YpCGXFvkKiOVspOyzgraMPEhAbci/EC3Ndl3AlpVxO1pa2ocFJVrSjNodKrEjICI9vSmuRzi7VKbBBe2IEuTTW1pc6zV1ULRIrLm9eMHRWYk2MFsRv8oTU+XrTrO7u5YPBduUlwGDvVjCkkU9StNvAvWNv5gDvQkkcSAeabMextuDUjpXNJsCeXddY5YxmPMNJK+MWcHAcR3X5LolQklnJEbeTWpDtK2zQ2TYnYLikw8PkuE5RxyloBab+CXySdzrEEAm9yFjCuoGupayn7yGttAGvAcnvDsIbK5g08xyTrhWCPm0hz2/IVNcJw1lK2zxwF7qqv+rOmmo/r8S36f0RSabX6+hy4JhEVPC1zmDlyWGP4symp3tY6wAPf3LpxrFG00eltrDw71Tea8fMshaw3v4dyqLS1q31TXPg+j9J6VCCWFj9fI1ZnxozSuDZXEE/xUTle579ThcLGolfM65SNJIsV7OjQjRjiJ66KjBYSFJ22RseKRC6MYWWY7yYeCEIWKeSRC0O4pbbWQhSQDRYocSeCEIBGjvSoQgBA2N0IUN4JQMJ1HVwXLWYPHib2NLi3Sbiw4rqW6lcWzNtzKzcsRMZ0fWXhk8yW1uGYe2nicS642tbkB/BWhgMzdLAXb8x8qqHAZT1gVkYHPY3J/63Xi+r0syyVvUqGiOlE2BB4JQLrmo5NbQukmy85OODz0lgEIQta3MFuCEIUzWYBka6QcGqsdyxW0NC9zJ5Y9LdJA31A8/BRHofyPimVKiokxKSRweXkBzmnjptw8FaaFYUupVIWnq+lYfw3IxvkVz+yXaAT8HkVg4ODQ3WZCffHi1KUe+Va/Z93klRyM+Y8l4dm+hNJWgOnABbMWXcC06vDchRPIuZ8SyVjsmXM41MrmdlsEsjtZJedVuyLCwIVqYH9tn4/oXLn/KFHnDBX0VX2ZdLhHIHFtnEWubblfVPR6Uvs+Dlv/7Ku598rD2R/t9Lg9JieAVs0OHmKMPdG9rbkuceB382ypXoPlZVdKeEzskdIHVURDnCxO5Tzn6lx/BsZpcAzDK32lYWmF3VGO4bIWs7R48PjQKqgyz06uqA5ooqarieBqAuAN91fGk9lt4DwQoLlzpMwTHa11LSSMMrYjIR1zTsCBy8QhDE4895Iy3T5Qx2eHBqCOZtJM8PbTNBvpJ42Vb+xRAb7dNa1rWtqgAB3aCrt6Rf6C49+YzfsFUn7FDzsd/Ox+wUW4PRh4IdwWR81IeCxe2WERjEd8Qm8R9C5HGy6sU2r5fEfQufiF8l6zlX1Xb9YLWg26aZp63fc2SiZjvNe0+BUfz62t/kxWnDA51X2dAaAT5wvx9CoDJWP5loMWmjxFkzYzcdpjB75dPTejO+pupqxj4Z/uYX11G0hre56h6wHmPlWV7NVb4RjkkzL73JueClWHYiZd1zXPTZ2+dT/X1OS26pC4w0v19B8kcGxknmoXjwb19xxupFUTdYFE8ak6ieV3etnTIaqiS3NfVK8Y03N9jU9/V6SCOXNdtDiT2HZjHD0lQCvxB8lYGNubkDl3qZ5dZQ0FGajFp44C6xZruLjgeC9BfWsYQ2W/kef6beTuq2iKOHNIlq4TOWgAA7X7goRJSRVDLuaA4+hWRnPEqA0oNDOyRrhbsk93pVZ1NW2BkkjHDW5y9T6GTr6npWEij69TlTuMRluN0tG4ThsRtvyT3RMdBCBKb/AB3XHQhkMDquaZrQBfcdxSxYrRzFx65jtyOK9tddS1TdKG8iqrUa1WPGcHVOQ4XAXO17gbAlbIqiKVnnhK5gIOhwXm7qwryWvH9DjhqgzSTeW7t1sdC+djo3OIY4WIBWtzHNAPErqpwS3fZctGzlVqxi0ZzqShJTT3I5FlmClxF0sI7chLidICk/V7BpALu9aZquOneGOI7W/Fb4pGvF417eNpQjT0Y4JurmtXSnUeTRK0sIDvlXbAzDqUB9RJZx5aQVyzAnzioXmjLdXieItmhvpDifNvyXjq9rK6runDZeZ29KVFybqPBYnl1OXAwE6L79m2yd8vOhlr3PdYwh2wI9HcobhdHJT0Eccp7TQBw9C3RPmhfqaTbwVdd9JlRnplLP3f5N0OoxpV20spP9djPGOlbEMOzTHQU1LGaS7AbueOJsdhsrIoMxitp4pQ0NL2hxAvsqtmooJpRO4DWPSeSdMGqRDIRwAVbedJpOGe/6+Jdw9IlUajGOPv8A8FuUVQJrOHFPNNKJGeGyrvCa4F4N1LaCqBaHA7rxV5Z+E3vsetsbvxYp4H1C1sfqZq5rIXI1Eb3VS8Zwi2XGTJISBxNkA6pG3Nr8VSPSpnDMmGZ0paPC+sdTF0V9LGEG434rt6fYzvZuC2wYTmoF3oTbluqnq8AoqmuBFS6JpcDYG548E5OA60v9+bLirwlCegzTBCUkgj08UjgT5nDmVCjh4QBCGvicSGPDnDcgJbvkALNkq5ptalyMoRCjeas6YNlmSKPEZ42vc4AAvtufi9Cd8IxKlxnDoq+gcHMe0OFjfiuqpa1adNVZLYZR2oQQdR18ULmymgCEIUYWMEghCE1KMcMcghCFl5kAhCFjF6llGSQgvwWWmyRCbrdEJ5YnvR4rfh/28z41od566sMH/aEXgfoVh0yCne0l/wDJf1NdbCpsk4B5Hkq/6aqaCqyZPFVGwEjHCwvwN1P2kC4UY6RcB/lHlmoo2Dt3Dhx5XK+vrgpzx5ibY6iDKIeOsgknmBa4XB4cl66yzkvLsWHYdVw4PQMqPJ4zrFO0O80HjbvXjytp8VwnNGCYLicb2Q0czjFqaB5wufT8q9zZf/0Jh35tH+yFIO5oA2bsByCyQhACEIQAkdflzSo5lAMmLZYwbF6ls2KYZR1bw0NBmha/6V5hz5hlHhfT1hsOH0dPSwiaSwhYG3+tDiB4r1w3n4ryn0nf2gcO/LyfuggPU9H9p0/4jfoW7vWmj+06f8Rv0LaUA2Y79rjx/gUwN81ngn/Gx/NR4/wKYB5rPBfNfSqOm7S80WVp7pksXPYDYuaD3ErJoJY7vA2XnbP1VnI57ibQw1BoxtdsbCPsh5+Cq+m2Dv5NKWGbpz0PJ6IQtNIZXQA1F+sub3Fua3Kvq01GbinwZp53FCEiFAB24TXVjtJ1Y0ONncEy1kgYJnOcGRhtyTwW+3WZbLLNdXGnDMdPBZdpvmvd8q5KSvo6siKmqo5ZGjdrb324rqvHqabecutqdN+0ivwuBLaTcece9G/vuPNAd55lNo2NLrn0Jmp80YHU4kKGKtg8ovZzNRuDa/ckKFSplxWy3MljhjylA2S6XBxs8OaBfYLFxBbssYtsxljsbKY/XwPSE7arNAtfZNtAO0nL0LmuNUpYwd1vwQnNPRvhOYsXbiNU5wlJJ2jaeQHPwUxpKeKhooaeMl7ImNjGodwAH0LchRcXtWvSjRlL3eEbPDxLIhkLBwF1y4nXUuGUxqa19mi54X4C66dgSHbXUG6XMr1WbcvilpJgC1xPmX96R/FZW0ITrQhWlpT78kyb5RLsIxSmxWIS0zmujNiLdy2OkOuwOyrrocyfV5MwypZO7tyPY4nSRezSOansg0Rgg3JWd5Ro0J6KctSzzjBspb8lfdL2e63KlNEKOFsgeWEklwIu4jknjo5zHPmjLEVTURhjntdfj8Nw5+C3YvhdHirHx18WuzwQS4jgfQu3C4YcMp4qSjjtELjY35k8/FWM61t6qqaj7XnubfB0vVk74ImxzmznE2XSiwAGnmLpdPeqhvfYybywHFdMRDWLn1NaN1zy1LG8CsUm2YaW9jqlkubJtqjq1C65K3EHNB0lV/0lZor8Lw5rsIDzKdJdpDTvc34qxtOnyrzUUzojQlCLmSmuDmOvc2XG5xcOKjfRrmatxzDpY8YDtbWixcAOJPd4BPc0/VyuYDdtzZWkreVCfhvsd9rJzjlrB0Rx3cu9jS1qbqeVpIN12tq2Ws5wFuHitVXd4NlTV2RuO3FB4JDC6shuRw4JrrJ5KTSJzosdiVgqbfYwglU9lcjqdmJvqJiHFc/t9SU7NVXUxtZa++38ElFi+E5jppjh1VE+SNt7NJPE2/gt0LWrFatOxjGUac9E9jayTWbBOFBF2900UcRhkIPepNh0RebrC4quEcPczuWorYdKWIaQV2+aNkU8J6sLobGqGpU1PcqJTyaW7rpiYG7rJrdKyWlSSWDW5bC3uEiELKTwss15Cy0Oh1OW9ChYayTqMY49IWVrIQpbbWGRlgkde4tw5pUjvMd4KNOdkHwSTDPtYbk+g+AXTbgHADcWWjCxalb/ANcguoi/HvX2i3WKMF8EUsveZ49zXTMgzLmFlG91vIZnuHAefup17GrK+B4xk/yjEsMo6uRjIr9dA1+5ae9RTpuy1jGV8XrMToGvdRVcJgeWsFu1qcdz4Kx/YrtAyNqZxcyIu8dJXRlybIfBb+EYZR4TTCmw+nihiBLtLGBoFzfku6136rnbayyQoIEadQuEqEIAQhCA58Qo6avpX09bBFUQOtqjlaHNNvQVQvsjMq4HhGS45qDCqKGTrJN44Gt/1ZPIL0Eqa9lB/QKP8pJ+7cgHP2O31zo2wy3Z/m0HD8mFaJ5KrvY5/wBW2F/m0H7oK0ffFAYS/Yn+BUTl88qWTi8bvAqJzi0zgvF+mC/Zwl8Tss/eMUdkNLnEADvKQKtOnGfHYsDazAWSPLgNehrTv1je/wBC8bZW3rleNLOnUdtWWlakWMapt7NII9BWxr9Yuqm6Hocfnwe+NxysIc89tjR770ehWvTt0Q6RwC23llG0m4Zy0ao1XLsbEIQq9Nrg3p5BC56qcxMOhY0dSZQWvWySmoqTIlPDwLXEsjGrdpTczYHqXuaOfJJjuNYZQAxS1MbZz70k32TFLiUjora9jw2CsaNnOcFLHJXXdfwx6mLOqcC67r73UZlt5QbIdJ1hBJuU14vjmHYS4NqpWMe7bdxHK6uLa0nHCzkp6lx4mfZMsXcRHZveE0lvMrN9a2uIkgkDoSL3CwIbzN1cUopPS3uecuJSc8YEDr/EkNnm44LINaSGhu52XdSYcbhz1lUapv23gRpyqbcDFjGFRYxAYZG8dt2+iy7Mn5bgwSKXSPOcDaw7rKTRxtA0jiu2loZJBcg6eWy5ql81HS3hFrQt501jOTmYyMyNaxgvfuWUtO4GzgAON/QnrD8Nax9xa6carDTV0U0DdnOY4A/FZUv2hCM8NltSsNccsa8vYthAeKXrianhbSOO5+hOmL4k2mgcL2Gm4PPgVTuXeirEcIzrDizqgCNsuu3Vn4Bb3+lSfOWJ9VHo1anNaAT8RU3NlTqVYuFTOfgep6TZupLQ0NmaswaaaRzXEkEd/eFTGHY7JiFfIyRnLnfvUnrqo1Erw7vTbFTMa8u2uvW2VGnb01FHpZWc1JKEsY+BuJA5JD3oQt2N8nc8MEIQkk2E0gQhwOm/JYvFoS5vnKY+RD4bMkKP0tbV+2BDw7q9rbDvT/Jd7GuPGyzccHLQuHVlpawKhKSHAd44LEtA3dxWC3OrvgVCDfT6Edl3auDZTgjUuM7ghBGsajwC4pMTpRU9RqGuw5qVHJhUrRorMztW2m+yt8VoB1N1M4LdRuJmZfvWNRbG6L4ceCUYM/TIFPcGnJNv+uarijP19vgpzgz/APr5V57qEFJM19QgnDnJYeGSdkbp0HaCjWEvFx/13KRROu0LyFxDSeRrx0mxCELmSwcyeAQhCjLzuTyCEIU5faROAKTmlbxCQc1KSzwSthwwP7cPx/Qn8tA3ve24TBgP2wfj+hP7CCwFvBfU/RxNdPhnfn+pUXPvlCeydp6V0dBPUE9YOpa3sg/61yrLAqGLEOm+mpcQhjqYnVkTZBKA7UD334q8On7JU+aMEZPQguqKcsIABJs1znd6oDoqrK2s6Y8KmxRrm1j6uIyBwAN/i2V6aFyeucLyfl7DZjPQ4RQwSuZoL46drSQSDa4HoCFIGjYIQEe6Rf6C49+YzfsFUn7FDzsd/Ox+wVdnSL/QXHvzGb9gqk/Yoedjv52P2CiB6NPApfepDwKUcFDWUCL4vtXyeP8ABcwOy6cYB8vk8R9C5W8F8m6+kr+ovl/RFrbpukheyDeRoc3mCLhVpmzCIDW3hhYzUR5rQP4KyncEyYxQdc/UG7j1LX066dvPTnZnJ1O18elghlBSMpI2i25Uow6nEUN1wQ4e7yq0gJaLp6bYENHm9y7765UmknnJW2FmqMGu5lG3U0lRTNEEjg9zRt/+inlPDH1WzU04zRdYwhvm9y47G4jQrJo6b6zdag4sqSlpia9rnjg4H51q6YqSpxXB8ObhtRJC6CJzXCOQsuS8HlxUvqcPZDK7s7qL4y54qAHG7RewXtbWcLi4hKT2PJRnLpMZSit/18iE5ZlxGKnENc6SUgk3cXO+ldtSHTzEaXAA9yfo3NBuzYrK7DcW7RO6+n2txZ0IqFLl/I89WvvHqOpJbkTzAHPwt0DJHscQRs6yjWGUz6WNwfLI4k33ddSvNcAY8OaLC/8ABR1rtVg1bfVqKq+JDlnqejzjO31TRujqJ43WEh/xFOeH1s8koa55I8SmttNI57XOaY2nlxThJimH4Ro62Nj3m3FxH/XBb61WNBZluY31OjVjinHcmMGnqGGTjZcWI4jHEwtYbH0KPvzDJOA6E6YnbtAN7D5FwTVDp5hqftdY01TeKiXJSUeiVc66nH3/AJDh18lTKbEnfa91JMJa9rPrlwojUYzSYOyNhja+WQag4uItyW6DMcs0WprrDx/5LNV4ylOn3Nlx0yrUS8Nbff8AkTGRhMt73HitrAerJuFF6TMF22f53ff/AJLuixqMiziCDyuuG36e03JFZU6bcQey/Bjk8uINz86wbcHSTcJaeoiqIiWNHyojMZJa4hpVLe05UaqVTucjUt8rgQ9l21yEjjocHN2us2jSDZ2r4lpLutJaeIVZdaGsILZ5Q+4VVEFu6mOE1tgLnZVxRzdRIBJw7yn+gxJrNmkSDjfhZeavbJyTwj1PTOqeGlGTLToqkOtv2U5amuAtwUDwrGAW6b39F1LMNqw+G7xz4Lxd9azhLg95Z3sKkVudtyNZAF77XWiqwygq5GTVNHTSTtIOoxtJsOHELeSJbFmwWwtbq1AdsixPoXFCpKhumWMsTWTEMY0MDGhsYFgALBZPFnE8zwSOAda+9kp3cCeI4LU229wF9rHiuPFXSx4JVeTb1AZ2fG47l2cXX5ob2SSNiVlSkoT1SBQHR1W5tfnyqZXiXyIukA1GS1usHftwXoFzzHK0MFwONlqbGxjy5os48Vm0lpJabE8V3dTuqV5jQsYIUGVx0n9G7M4VUEzJpGFjmmwkDeAPoPepXk3Av5N4DBQB5eWMa3d2rgLJ8adPDbmgkl2ontd6xqdQq1bdW8vdQ0b5Ec4ufc7JUHc3PFC4U0+CcYBCEKQCEIHFQ0nyBEJHcdllpIYXe9bu49wURbk/ZM20luCFrhkhqHlkM2p/G2lbG3fchukBbJU5Q2ksGtSyCEIWL4MlyIfPXdhQ/wC0IvA/QuE967cHN6+O/cfoVl0f/nU/mjXW/dskjiGtJtwCBuAbbEcEpFxY8EcCAOFl9dRTnlr2RUUMXSLl4wxtY51Q/UWtAv8AW2r0tl7/AEFh35tH+yF5r9kh/WPl384f+7YvSuX/APQOHfm0f7IQHehIEqAEIQgBHMoRzKARvPxXlPpO/tA4d+Xk/dBerG8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C2nmtVH9p0/4jfoW13AoQxtxz7UHj/AqPjzWeCkGNb0fxn6Co8y/VtJ7l869LP+VF/AsLN7C3cRtstboaWR130sTpB74xgn5VtubWSgkcF5WjVlSzpO2UciHihCEzncgEIQgAbFRPNsE+IYFW01I4xzOicAQdJufSpYmmobokJG1+K6rSfh1FM0V02inuizKWPYNmSoqsUqZH07ut0h0zncbW2Kt5xaYo9rObfkle8vYGk3AWB3NyrC8vPWZZaOCKwzXUQmooZ4w7S5zHNG9uLSFUOAdGuKUedZcUknvA5+oAzf3SOFlcSJ6hsUV5TqB4Aqba9q0NUKa95Y4MpNLky7TBbsnshuxWBADQB8aa48SJl0iKzfFJmHHKXAsFlxCsLWsYWjtEjiQP4rS7Sq5JRW7+ZEZRk9iRYe1dx85Q3o8zlQZsjlOH6LtBPZcT763MBTPzfOFzwsq+5oSpVHGsmmWNJ+zhCFILhNGb8bblvAKjEJoxII2F27tPC3rUZ6NOkenzrVzU0NK2KSNr3XEhds0tHcPhLbStK1Sk68VsjZ4iWxPmvbpkLwez6FwkkPeAXAEcF1ytcGuBPncfSuS7i/crnpPHtd2bYLuxHX0BrnWHitcr2cnXHiiojMt9lxmnlAu2M+K2xXiS3Nvsx3ZqeDI9/mhuo8dlnTuLZACGloPFa3c2yBK3sts3YLJpNM3pqSHPrm3BB5LXJUgcE3agy5LrLQakG99h3rJQy9iI0m3sdss5cDuuGea3MrmfXB1w11lw1FUGi9120rfLOmnRlngWuqLBRLHXMn7MjA4ekX5p0r6xwYXN7XoUarqsvJJNj9CvrOi4tNF3b2+dpI7cNqIaCPRDGGX2uG2XbLVNDdRdcndRqGV0jrF1wu3awbbiumpBOepnRUto01hDlFiG9rokxEi5B4b7rhjpHnduyWSjc1pJF1qapasshKCwiD5tx7HvbdjcPmqWxAO2Y54HHbgVac8j6jA43TXMt3X1ceHpTFRxMZLuz50+SSGVga7gs7lwlGKguCtVl4NfxovYhmO00lbB1IcW8BsbJ36Kst+0XXyyPc7rALBzr8CU5SUcb3XLbp7weItDQRsFheXbVtoiZXtOnPFTuObaUPkuBxN1I8JgDWi4XJSQtOm7U+U0bWjYLydzW1LBS3NXKwdLGhossrgJEKve5Xtik34JEAX4LFx08VjysLkmO6MkLQ6cN48EhqQAAG3JPG6y3xhkuJ0IWiesgpjG2d2lzr8itzSHxa2G4W105winJYTMEKhJqu3YWKU8dlgASHgUqR3ArKPIZKcPFqVngPoXR33XPh/wBqs8B9C6O9fZ7f91H5Ippe8yuunmGOTIFWXsY4t1EEi9vrb1FPYpdrIkgJIGmHf/ylS3p126P60jjpeP8A8b1E/YpjVkRzTuNEP7JW6PcxfBeKEIQAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaPNVd7HP+rbC/zaD90FaPNAYv8w+CilWLVLwpWd2O+NRasH85evH+l8c0IfP+x12XvGgLCpiiljLJomSNPwmgrYg7iy8DGo6TUo8lk8dzXG2ONgjhiZHH/dbZbHdktDeFt0XNrckDYW5LGc5VHlmO3YEDihCyigaaqHWDp3XHAOqms7bdOLSWjZaayIGMuA7fetiq4Sxua5wfJQ3SXkPMeLZxmrqCqkFG90jmtE7gADa2wGynhw+SjpYhM4uI4735KaQ1T2Q6NW+11wPp21LHB7b7K+p9VlUpxpTWEvhgqrujq3IwCzrABcAjmFAukPKFRjtYx9PK9oB97Jb3oHcrCrqU00rg7hfs7cAtTHFrbtNiu+3reHLXD8eCp2g9JGcv5ekw/CmQSyFzxbi+/ID+CcG4YQ7c3+NPEcb5CXEaisS7Q254Diumd3Ob7fcc8rdSeTnhpomN3aNQ9AXbTwvlYA0KI0Oe8JnzC3DXCMyE6R2jx1ae5WlTQMiAbGyx71wXdSVDCnzI7rey1bjVRYaQ8GRP1HBdukNFhtwW19M6OLXJv6FWVb0wUlFmaTBm0bA6Fzo3O647lp7rKtSr36ejsXFK3UeS06elDHXW6V4ijLhtyWYfqYHhtgSRxUdx/FOpjeBtY24+Kq9EqkvDa3La3oa2oxRwZmxcQxkMkeHD0+CqHMeKOlkc0uJJ/wCadM040+Vz9L/+tlCZpDO/U4and/oXt+k2SpwUpnrrO1VCOpmLiS4uWI3N7rKxd6AgNsfQrrK7G7eT1AhDhc9nZLp/vITpEQlZc3BCNQBsW7+KDSAcQLckhGodlHaAs7xQ3s+bsoWzIa2waxFHe+gB3gtjb334IO5ugm4ss3LJhGmoPKFkDbgt5LF7Ts53BAAHBZOJcAHG4WMTNbSyN+NyTNpT5ODe3K65svPnc13lN+J439Henj3tuSxDGjgFkckqMnV19hTfdo4JmfggfXeU6zwA87uT2CQLDgkGwsFKeDbc26ucRfYxivHGG8bCy30tjMy3etS2UotOy3esJHRH2cQH6kb9dapjhLrf9eKh1IT1zfBS/CnADdUd6uTK8ppQ2JdhUvaClFK+7Qobhz+2NKlFHJZg3Xk7uB5O7gOyFjEbjdZHiuBor2gQsXuZGC6WTQwc7XRDJFOwvp5OsaDY7WWajN03LGxjkyQgC7Q4G4PJC1JLYzTFbxWI5pRxQPPcOVkjyDvwD7ZPx/Qn8uDSABt4JjwADr3nuJ+hPxHLkvq3o9//AM+H3/1Ki5980zhphkDgHNLTcEX5Lyhh0UUXsk4mwMayMVlPZrRYDs9y9ZS/YZPxT9C8n0X9paP88p/2Vdmo9ZtvYISt4BCEEd6Rf6C49+YzfsFUn7E/zsc/Ox+wVdvSICciY/6KGb9gqkvYnkXx3ffysbf+QoD0b3o5obck3FkA7m6IEcxttqxx7z/ALibwThjjXGpabDtHvTa1zeF+1e1l8r9IYpdRqZXl/RFrbfuluZFaKt1oSbLe+wJF91ql0vHV8jzVJhaja4uUWhoady6yzAHWBdM1OI4zo3HeuGoe2FrXPdY9y71FSWxXOGHnyHync0RjdcmIEFvZtdcMWIN6s2OwC5KStfWVjWFumMnje/Ja4WtSD8RmU7mFRqmnuN9Xh0s05dY6fjUVzFRsiJuRcelSbMXSDgWC1Jop5vrxFvsbuJuO5QPGcYOKTl9O28T92m/Jeo6VQuHipJYj8zznpJSp0KPtcsaWuIJSBxuSO9ZiJ1i21ylihcLgC69lCnVbTifP3py2ceNQGppC6xuAVFoYOp1ucPNuVO57MpHNdzCh2IPDXPaOZK97aQborPJb9Ku548PtkYBjU1ZX9WY9LAeOm3JLV0bKqUPe47DvXSyKKM6urbq70p03uB8S1UraVWGKh7CNOEHsjXELRNY0bAWCyaL81kNnEjYHl3JGixvxW9NRWnHBMst/A01FKycgv3LdhutkUPVss3gsncbjZAJAu5xAWEYRUnV8zJNraIWIbb0rYZLNA3XIK2N0/VNdqdYmxC2g6jdbKc/EfsvYxdNP3iU4LiUdJSSyP3MbHPt32F1xYdnNmJV5D4HsBPwAOXimhrjbTfY7ELUynjgm1xxtB9Cr7uy8atGT4RWR6XT01NS54LFjkjnGqMj4ysXtJcNrW52USo8RfF74/KpHhtealrWuF9uN1z3XSqTWYf0PLXtjUtt8bHS5rnEBguVtFPNHplN7iw0i648XnqKOilmpW2ka0kWdZR7KuZsSqMTezEHPc0F2kOfew5LzFe2quemCOmysVVo+M2WrhGG1U0bZm9nnZwIU0wxnUsHWOOu1rXVBZgzvj9Lj3k+H1M8dMw+a2WwPZHLxVi4TmmeWCE1Qu8tBLi4k8AvL9Q6TdqLlKP4o9Xb1qFrFa5fgWrQSgNtddQNySophGKsqGt5KTwydYwW4LxV1RlT99HqLO6hWhmG5tQkBSrklFbPJ1ghJcDiUjXA371kmnsycGVkiN+YslWLjlk5wCEISWeENQiVCFK22IbBCELLvp7kAi+yEnEonjJOBDsLpizfJUTZer4aL7O6FwbYHjbbgnyU2ZYJqeZGvcWk7jcXW+zxRkpvc568+yKY6JcJzJR52mnxJ7zSkS7EP52tx2V/nTsGhwPpTXSBxeSLtN+IKdHcRuujql563UUlHGCLeLxuCEIVf2OlbCFduDfb8fgfoXGu3Bh/P2egEfMrPoycr6njzRrr7U2SVIfO+JKkPnfEvrhTnlz2SH9ZGXfzh/wC7YvSuX/8AQOHfm0f7IXmr2SH9ZGXfzh/7ti9K5f8A9A4d+bR/shAdwSpAlQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nX+qBw3u6+T901Aep6P7Tp/xG/Qtp4FaaQ2o6f8AEb9C2OeGgk8EIZxYuP5mfj+hRy1o2+CkmLEeRuJPI2+RRyzvJ2ucANhbdfP/AEuhprwl8Cws2sAhYl7L2v8AMsgCeA2Xj0lnJ2vL4BCxBJtYePoS3bfjt3qW0hgVCxLhc6dxy9KVp1MuPO7lOAKOK5qmHWNlxZkx+gy9h5q8SlMbBa9ml3E25LiyZmygzPSmaidcAX80jnbmF0wt6qp+Pj2c4+81zlFLDOqRhjO6xXRXuvNptYcbrQLczZbYKPMjhkkhEy4m90tW2Jt9rj6E9Dc7LTNSsfK2RoAeL3IHFbqNRQqZxwc9WGvYo7P+asYwzMFLSUlM4xuey7upJ2N+d1ZTcGbmvI1LT4kXRvqIonkA6SCDf09yfq7BcNr5mTVdFC6RliHFtzsnOgpmAMjaxoijGlo7h3KzuuqRdJOjHEl5GdC30vLGTo6yJSZNpZhRyOe5zT5z9XvtXcFMA8Bp6wG5PJLdgALOzq2NuSHAEd9trrztxWqXMvEm8v4lrBLscOMYXTYth09JVh5je2xsf+u5NGVMlYZleoknw8Sa5GuBu4HziCeQ7lI2tO9yTfvSB2hxubi1rLKFxVhTdCEmk+wcYuWO5qlkLlzvfo3KYM155wXLlQyCtnImdcaercbWtzA9KdfKI6+giqqR2qJ/O1rbf81n6rUo041JrC7M20ZxlLQbW1QfJp4W2VS5k6V6jDM0RYbHSuLHOaCeqvxF+N1ZbxYtLTawttzUVxTK+D1eItraiigfM0ggllzsO9d/THQUpOv5G+dCU3iBK4Khlbh9FV20maBkhHCxIBWmadrRa64BUiKnjiiaGxxtDGgcgOCbamtOo+ta1bym5KCOyjb6NpjrJOHbLmqdbm3D4wO7mmCrxxlOx9+IabHfiqqxXOmM/wAoBHDPL5OCdhIbcAre16XOrwuDpqU3bJOS2Zb88jnbAhlubtky4jVzROIdYs7wFEs85orm0FOaDUyQubcteRfsn+KXLGLVWJYU1uI316W3cXajwViunypx1SRvo16fiKD5Y5VVa51y1wsuCRxfvfikc0BxZxB5ojYS6w4BdMYKCyemjTUUsm+jjJcn2lptTQ53FcuH04BTzGwiwaNlzVakfMr7mr7XwCPsC1kriCNws3WaN0DtHgLc1xN54OJZllvg0tjZe9lsPas1o4pdIL9vN7110sJJvoFhve6Sm8bBzcdovJrgp3Ai6f8AC4rW2XLBFqICkOG0waAbXVZeV/ZwnuV13V0rI40sOzfBOLG2CwiiAaDfkt3JUU5amUs5qfAgSpBslUxjsYdjFztIXNLISV0uFwuSZpvsFjHS1lCBhp1JJhqZZt7gclmwO7lm2MkWB073uFksJ6ja5LBQXSlgGZcWzOPa0zNh1utYSfBHd4K98t08tLg1OyoN3tjAdx46R3rviZpDTqOoe+WRJIsTdd95f+s0qdLTjTn78nPjDMmyN0cFjayDbTYCyCbquJBI7gUqxd3d6ygsySQfBKsP+1GeA+hdHetFF2aWPwH0LdzK+z0NqUfkiml7zK+6df6vq3wf+7eon7FH+gx/Eh/ZKlnTt/V9WeD/AN29RP2KP9BnfiQ/slbo7ZMXui8EIQgBCEIAQhCAFTXsoP6BR/lJP3blcqpj2T7rZCj6zs/XJPT/AKtyAdfY5/1bYX+bQfugrQ5lVd7HNw9zfDPzaD90FZ5dZw9KBCjdrvjUXrxaqkClA2uPRdRjEAfLpB6d15P0uX+2jL4/2OuzftHOhICC+3LvSuFg4jex29K+bymnwWOU3gEJDs6xWt87GEh5t3LZh4J0o2oSRfXGkjgEE2YXdxsphlsjKQvOy56uYMGkra6aNjXSE/WxxNlWtf0j4NPjPkEExdMHBpGhw99buXZa2VS4m/DXBouaqpw1MmjnMjLpCRZ2/FNdRioaSGBcFTXuew3Nm8t+KbY6mKQ7Htd1ld0bFf8Absefr38cYzudtTOZzqdxWjgN1sDNQaR3brCQ+9C6ZRUVpXBx4cnljbnDFqrBctyVdBH1k+sMto1bEHkmXocxavzFBOMWhMe0duwWfCvx8Ap7RUUFVEYqyJs0R964bcOKccMwqiwxujD6WJrTa5aLcOH0lYTvqdKm4Rj7RZ0aKmlggtF0U4dFmX2z62brGnWB1u19erhpVsUcTWRAvHaWuGCNhDnOuTtay6nbDTb415+7vqlxJOb93YtqNHw+RT9cbZ3BQqt6NcCrcZfijhOKhxJdZ4AJO/cpoAQOK5aurENg3a4ufFa7a7q2+VTk8s6XT1PCMK6qbBDdlwBc9pVpm/GBZ4JFyeXxp9zhj0NDhMs8zywBpOwJvwVMV+Y4cWe50LrgG3NXvR7CVV+NUWxedOpwhNRlyaK2qMr3HdMuK15oqfrGtLiXaeF052Ft1plpo52OZLG1zbG1+RXsIKKaXYt7pT0aYHJg9Y6tpy5wtw5WTgBZo9JWijpmQRGOMBo23C2tNuze9t1snhP2eCaKcYYlyKeNggs0i7nAfGkIs4Em101ZimnhZaG5+O3JYxi5cCrUdKLnPhDuA4i7SCErbScHNuPSmnBqmofQvMt2kXt2r8lwYVV1Tq5zZCWs299fvWTg1ycyv6bxvzsSMknzuKEcuN/Sha2jvSfDBCEKCE33BCEOBDbgXUqSWzI5WQQgAltwN+5CzySprGAQhCjngJZ2BbqUfXR4rSt9J9mHisGyYtNofKIXcCpJhclw4eCjVA7tltk/YUezKTxAH8VU3e5tuGmsEywq2xUnoQHAKIYY82ClGGPIAXl7yJ5m8iP0PBZnitMD78ltJ3VVLYqZLBCelvDMUxLLTo8HdpmIfw1dwtwTJ0F4Pj2E0lQ3HH6gXOIuH/BFvOVpBzgfOOnuSuc48HEDuXfDqGLOVvoWc8mlxecmLbW2SosBwFkKs3eMmaDmgee7wRzSji4+hTFYZI45f+zSfjH6E/lMWXmkvkce/wDgn1fV+gRcbCmn+typuXmexrl+wy+B+heT6L+0uz88p/2V6wl+wyeB+heT6L+0uz88p/2Vcmo9aN4DwQhvAeCEII70gMacjY8wnY0U29/7hXlrofxzMeExY1DluklqHOqh2mU4kHmkc/QvUvSJtkXHx/8AYzb/APkKpL2KLQ446HNDv52O0eI7BQG13uu1c0czJ6ena4+bJh+48dk9OwPpTlphNJjeFhwbfR5EQeF/gq7mtLRuS7xSlt+Zt3IDyjNjPSjDjskckXlIpnCxioRY3HgnTL/SrjVFVPjzjhdXFGLgOMDIhxHP5VfGOU8NPUwyQxMY+QnWWixNrWTBiWCYXiMRZXYbST6vfSRhxH/V14nrV9bxup0a8G+N+Ox30E9CwMmX+kHLuKde6Cugg3G0szT3rdjmccFwvB6irhxOjmma1xDGSAkkC/AqEZj6GqWaolnwKrqKR7jcQw6I2fR4rixvoTdJhzRQ4vXzVPvo5HsDeHfbvVfC16dOSnGolntncz1TWUYYF00w4nWzUlTG5jA4gOcGAEAegp4fmbCqgNaK+DUf/ECg2HdC1fS1gdXvMMe93RSscTsuvG+jBsdE52H19X5SAdIu1ovy3srRUunyeilJfHcpq9Oc6ntE6MmqFsscrZIyB5hTjgFUykrWSOB6tx4E781ScdfmnK0eivjEtM0gAulLjbgNh4Kwcr5jpMfw+GpgcGyEXLCNIG5G1/BYVrBqGKW6+pzb0pOS7EZ6Ust0WM5hFXE4teNJ+yHkSeS5H4u3KeASWjdM6wsWgG2/p8U7V731OIuaAeOkW8UmJ5fdJR6a5sRheL9pwJG/cr+2dJ20bN8vH4Hn59Rua1zrnFuKz2Ibhuap8QYZjG5oJIsWhPMeLOawFwIDhfgE011BTUZEVN2W3vsAN1yOkcW6dRJbsvpHT7aFKko4OS4o0rqXiQiPU+JdaCN0y1rmlxJ5rogje5mq2y4ayxfYk3XTUa7GfTqUI10onPcF2655auKGSzj863tHbueC4Kqg66YOv2VzVXU0aYnqsHc14kAe3zXbhKsI4xFGxgOwGy2WN7LZBewn3GBNrb8Vg5pkaW8llYFxve4Sl2kKZtTjhhbM4IsObDVdeDvYjiea7mCyOWok2WPXxh+jV2lojShRWzMpbmZ9CLu5oJ7Q+VDnXduNlvi28NGLlhYFGn3xsnPC6hkMgdrBFuRTBiXWdX9Z4+Nlrwps7Y3GZxubEb3WqndVFPS0ctxZxuY6ZE+ONQuBicLgi3JN0XVvqHPhjOq54JjDjqBaSSON1302JR0VJJLKBcO7r8ltlKnTTqNblLU6TK2i/D3JDTYYJJOuqGdo9+y7pIraS02A2UawXNsNZJGyQuDAdyGlSWKaOoH1lxI477Kkvou8pvQiku6NxSeZ8fIe8FrXQlo1Kx8DxHWGAu4myp9kpifsVJ8HxfqywFxBv6V806r01pOLRfdE6q6SUZMt5pa4XBCBxUfwTEevYLuJ/wD0T/GdW68FWoSoVFHB9EoVo145QpDXeftZLsRbq3W70uzmlzuDdlUud+loZfzOcJdA3sP0uIY8+9B5bc10WlpVunJQj2M5z0YLYaAB2Uq5cMq212HU1SxoaJYmPsBbi0H+K6lzShKm9MuUZ5zuCEIWIBCEgN3WHFQ+NjJIVCS/D0pVi4vOonAJClSJhRIQhF1j1DTdZouVtjPCIcEzWyEMdcLYfOCN0oHyrCUsslJRBCQlKE8yHwHrXbg32+Pj+hcXrXdgovXAj0/QrfoX/Op/NGq5/dskiQ+d8SVIfO+JfWSoPLnskP6yMu/nD/3bF6Vy/wD6Bw782j/ZC81eyQ/rIy7+cP8A3bF6Vy//AKBw782j/ZCA7glSBKgBCEIARzKEcygEbz8V5H6aKippOmmnqaKJ0s8czy1rW6ifrbeS9cN5+K8p9J5I6f8ADrbjr5OyeB+tN4oCUe3PStirI/IYRSQhot1+Hg3+MBduH4V0rVrXmoxfDYTcbPoSP91XdRx/zKnsdHYabN8Fvc3skXI9Kh8A835191PA4ItNZSVrHv0nqKG/InmPQmKDOefcENJU1+F1c8Rju4R0bRx25r1FicMUtI/rI2SaQSNQvY2UUmp4KmEMngjcALBpFxZeZ6/e0aMqcakNSx2Ou3TxhEEwfpby/Xuihq70j3HSTNKxtj8qlTcyYC5rZYcZoHMLb2EwKjmaOi7AMZpXGnpYqCpsbGmia3e1huQong3Qw+nkmFVi9eIjq0APYdrbcl5tUOnXNNz1KL8mzok5pnTmDpoo6HNJw2ljdJSB1vKW6DG4ab7G6sSmzVgNTRwS+3FCwva1xa6UXBIuqLqegjFH4jGWVUr6YHd7po9XDuVgUnQ5hwoGxy4tiDJQweaGHe3h3roubTpkIRjRqr4+1kwzULGocQpq5zva6tpp42cerOpb2NaQ4gFr9+KoWsydnbJ1dUVWAVctXQB19M1UGki1h2W25kqT9HnSYcTrfanH4m0tcTpBa19jdwaO0dlWXHRmourbTUl8NzbGeOSV9IOUos34I/DppAx7y0hxc5o2N+SaMlZSHR7lmsfG8SPETrAEu4Ov75T5zW27D2vHw2kEj5FjUMjmgdFVFhicLEPI4fGuehe16cFbzXsZy1jv8zKUFNaikMo9JeJYxnapw2Sml6pj5mg9U0DsmytueLq37rRheUcFw7EX19BSUzp36iXBjffcdwnmoiZK1xdxC3dQu6NWUYUVheRp8LYZqokRfWtymuOukhktIDfwT1KzqwSLab23XHNTQzODttR42CUp5i4tbFbPKlg6mu65gcFxY5jEOAYa+vqnBsMZaHXIHE2HHxXdG0AtZHdc2cMsR5ky+/DpnuYZNBOm3vXA8/BY0pUPGip7LvudlOlJrImTM34bm2mcaCRpLLkjWD763JSNnZDm+lQfo3yFT5JinEU8j9TTu/SPfauSm52be4JdvcG65+pxpRrydHePZnbTWI4ZmXBcVQ7tXBSuluditZ3NzwXHttpOiKcdyrekbo5izXiba18mk6i62tw42HLwU0wamGFYLFQMcCG33vfiAOfgnKvLGu85zR3NTPiOIUWHForJ9BcQBz48FcO4ubilCglnT8DaqVJZqT2N08wjbpJGyaaqqbpJ1BYVdS2dhkp36mHcG/FRPEMUtqYHHV8a7bS0fEluXNraeI01wPE9e0S6S4BtiSUx1tbBM57IaiMv7g66ZKvEJDHJcnmAd1CMHbiTcc62SVxgLhxk5W7lfW9iksndVU7aaVJZRNJHPMjg5w5rldHEX3LQXd62yOJAN7my09eyEG7Q5/pC3qLgsR7lnUlTmsy7bmT2NkFpW3Cyia1jbRbBMVLmuOWuFK+BgLjpvpdtvZSB4ax127tSdOSWJGqxuKNxVbS4EaC425rvp4rBt1ywOY2UF1+PcnFpGptuYuFoqS0vB11avtNjvRxANunGCZrGFtr7rkpWu6s2tstHlbWucBxBPELgeZMqqmuc8I7p5ATwKQO1sLQ0m4I2TW+ucXWACbcfzUMDouu6tr3OJbYgnlfkso0W5JI11828HOXYkTW9Wws0uuU70cbnCMNO190y5GxmPM2EyTiFgkaWg9kjiCefgpVhtPpc0O2dfgFw3c/Bk0zg9dVWOTvoaO7hspFSU4a0bLRQQWANk5tI4DivPVqjnPYqbipqYcEIQ7YXPBcvbc5FsCEHa1+aQmxA71Ci1uiXuKDZYkAlZW3sUuyySwghA1oCXZIUKSQ0oRcpLoQxUIQhiCQ8WpUnvmrbR/eIiXBK6YWpo/ALd3rVT/a0X4oW5fZKP7uPyRTPlledO/8AV9WeD/3b1E/Yo/0Gd+JD+yVLOnf+r6s8H/u3qJ+xR/oM78SH9krcEXghCEIBCEIAQhCAFTXsnw3+Qsb3cWySEDvPVuVym9tlTPsoADkOInYiSQ7fk3ICvOjnM2eGZLw+my7h07oG08TWvFGHi2gAG/gpJRUvS5NUMjfX0MTb8X0BsP8A2qZ+x136N8LIY0HyaDcfkgrPtsOZUS4wSmUdieEdKFJRPqfbfDZntYTojojfYE/BVeYbmXpOYJat9FNLI8NJLaEWPzL1mW3BDhqaRYgqMYjTxQzvihiZHENrMFlS9cuKdtbpzjlZN1qm5bFN5e6XDDGYc10FTBPcjU5rIh9Pip3hmdMvYrRB8eKUkNgOy+YX+ZbsZyngeLwPjqcMpC5wP13qgXA2PrVZ1nQnG3Ew/DcUrYqV5Je1rmNDNtgBZeQh9nXje+h/FnY9UHklHSD0m4blvCj5BVQ1U9nWETmu97ccUzZI6Q6TH4DU19VDSOBteYtaNxfkmHNvQjUzyNdhddUVYsLiokY3e2/LvXbkvoWFHTTHGqyoieXjTFG5j2kaePDvXZCl0ylQaU05f/Y0TVSTyi0aDHcGqXCOHFaOV7trMlBTrPGRDeI3a7e432VO5q6Jq2hayqynila+dpJ0SSMibwFuQ53TbQ5/zPlCeCkzZSRPgJbF1gkfMd7NB2PoKrZdKp11m0qpy8uWbacpQXtFxseCHUz/ADJNr/Oqypeh+kpczDE+vadUofbrH/D1KycNqaLGqZlXh0wfFa4JsHcbcPiK3eTzWIdI7U3tDfay56V1VsfZprEpe9nv5Y8jDw9S0SKT6X83zZfxaLDaSlme1gkbqa0EGxHf4p9y/C+pYyokikbfv2UxxbLuEY3UNkxCmpZZo7guLWucb8foTrT4fEGMbDTRNivYWFlb1erUo0VCMGny8+ZWVeneNLbsRqGjfI55jvpDuadKHDhcF4uU+sw9jNmNAvubLoZTRxAEqnqdSc4txN9Cw08jdBSkuDGsIHenKClZGx1yLC191uN47FrW7/QsgxrtYc4gOI4ehVs6jlJRkWcaKgtiF0/STgMuM+1RnYKi+kDrG7nVp7+9S/WAd1VkHQ/RR5tbjBqp9TX9YG2Za+vV3XVm1L2te8BzdQO4BCsuo0qMVCNtvtv33M6PtPEjKoqGtbxUZxasDXHtDddNdVt0FwdtwUOx2t06jqN+XyqLK2cpZwXNpZuc1sRvPEkWMYZJRmQA6Xe+txA7lW1Bg0eHamxv1C9z2id/jUjxWcvlOh7tR4psuGAl7iRxJPevcWMJU6enBdy6dQjNSzhr4g7tCzUoLw21vmWtk8cl+ode3xLc1xLb2HGy6m33NtOaqQ2eUjBt77rCSeGI2e4AnbcrbcB3aUfx+nqpZWGn824v2rclKgmarytOlTTpRbHx4D4mPY4HYcESlrgNbCVzYZFJHQxiYkmw53XW5w6u4aCB3qJRcXsbaTnVp6ZrkxBFrNYQPBII4wdTW7pvxrFBRdWC22oA7A966cLqxVU+to5cxZb9D05ZqVelUl4WN1udVw7h4ISA3bfgL2Su2tdc7eDqxnDBCUC5I5pDsd1ktzBallBa+3el1WGlG9rrXM7q4y/uUKOWRLMI6pGel7fNR4pmosZ6ytEW/G3A9yeb3F+9ZzWEa6V0qrwCEIttfktaZ0qSWyBb6T7IFoBvwW+j3mt6UktjHXuooeaA6ZLnuT3QutKQPfKPtdZwDeKfMOP1xl+Sq66zk6q8dsktwx1rKUUDrNCimGntBSajPZFl5i9R5m7Q/wAL7WXU03F03tPCy7oDdoVNNFPVRsSo4cULE0ghB2BPckuLXQCjihv2Q+CCDYelB7wpJ7D9gbAIHEcyPoTmU24JfyU352+hORX1ron/AAafy/uU1b32a5fsMn4p+heT6L+0uz88p/2V6wl+wyfin6F5Pov7S7Pzyn/ZVqzHuetG8B4IQ3gPBCggjvSL/QXHvzGb9gqk/Yn+djn53/uFXZ0i/wBBce/MZv2CqT9ieO1jp5eVj9goD0ceCUcEh4JRwQDBmP7JTeLv4JtdyTlmP7JTeLv4JsdxHevmPpNJO/mlzt/RFpae4LxIWOohyyvYg9yR1nbrzixGW50JrJrqIxK3dNc1OGG7m3KeA30rU+IOdZwuVvhWnGe2xpqUoS3ZGMaweHFqYxTxEN77lUxnbIFbl4zYpgkupje0I2xknkOJPpK9A1UEoO2nT6CuKphjlayN8bZGe+DxcFXdj1atQ2lvH7ytr2yitu5SuQc20NTW09PjOmCq1NYOskAubgDYelMfS1Ljb85VDaZznUMcjhFaMW02HPxUv6ZMuUdDR0eM0EIifFVR6hEwN827jwHoXI3EIMawqiq9DXPcwl5Ld735/IvX2NSlVrU7he73Ke+02FF1FFMhLpJnxtEwId6QtuGUuuoIcCQblSHE6BkunqwBvyXGyilpmukba423K+s58SGKJ5ON/GVPEElkj2IZsaZvIY4y1w2vqB4/EtBfNINROx34LZUYdFUVTptLWPFiTYBan21dW14NuYK4raM46vGfc9DaxoJR0L2seX9zEgngixHFYyydUL8u9YRVDZTYEFdGt08plpgaK2tlZiBjAOkEhPTAZGNf8q0VNJG6VrrDUb3W2qf5PFa4FxZctOnVpZqSe3zGBXVMJd1YcNXPdZNFjumajpXyVjpddwST5yenbPAK2UKqqPfgxYX1OLbbWKZ2YdKa7rtXZBvw9CccSqBDBdgJd6AuTCaiWdp1AjbndYVZwlUUUZLgci8EBo4gWStG2/FYNFuW6CTruu6OU0kaWsvJhJKyE3l4JYamKe4iI+IrXXUxqo9INvmWvDqM0nF1/juuNOp4vBvbjpyjsZ2bgrVLGJInMfzN1stqddLqbYlwNxst0lqeJGmXGpmilpmwNtHxUmwVskfbe/Y7cEwntRks2PpTX7Y1zaoRNvpG/E961zqwtVpxycd9Zu8hiKLWLmmEC4JWVBCHVMQc6wc8A/KoXQ4nMwM1ku8LlTCjqBPC17dnDdVHVulKvS8WK5PIV7apY1Fl7ZJ9huZMuYRPHR1dXA2o4WMtjt6FYsc8Uscb6ZwdG48QbrytjOV5a3FRXmpmBuTbrO8+Ct/KWOSx0zIXOLg08SSefivlfWOgOliepnv7DrVvJKMf6FmhpDiGi4O5URzF0f4NjuKDEKprevc657bu63I+hSCjxDrY2lliSBe679Gm5NiW9y8nTrVbKbUJP6no1KNVJmmkpoqSmiggFo42Bg3vwFv4Lcjc8QPiQtMpuo9UuWbAQhCgBtzFx3ILXagWMcBZIXaRcWJHevPedukPH6DPfkNPD/NxIW3Afa3WW5G3Bd1jYTvJ+z2Nc6ml4PQrrxlrS06kLnw2oNVh8UsmnrDf6V0LicJQnKEuxlGWQQkRdQ0nwbcCoQhY4MeASG3PglSAajbvU4GBNbQLAbeKVrWON7hNc2YcNgqvJZJ4RLe2kube97d6c7MMfWMJIO+ylxaWWGxeXxpxwL7c+X6E3e9HinHAvtz5foVt0P8A51P5o1XP7tkiKQ+d8SUpD53xL6yVB5c9kh/WRl384f8Au2L0rl//AEDh35tH+yF5q9kh/WRl384f+7YvSuX/APQOHfm0f7IQHcEqQJUAIQhACOZQjmgEbz8V5T6Tv7QOHfl5P3QXqxvPxXlPpO/tA4b+Xk/dBAep6P7Tp/xG/Qtp4FaqT7Tp/wARv0LaUBy132tJ+KVFh5ylNef5tJ+KVF28V4X0uUlKnjjDO+0M7ousULw8Ipr2XuduwajdGooRZMJbMZQB4DgbXf71QHpE6OKTM8jqune2DEmMBYTqdu0HTsCBxU/GkA3494SC2rsk37+a67e7r2UtVOTa+LNcoajz5lrN2NdHeMyYXmNr3UGo2qHNbE0BosOIJ3JT90tYpX5jwGkrMlh1UHyPD+oAksA230q0sYy9huNQPp66lhkLzfrHRtLhbfiQql6DKxmFYriOAYiWu6uFjow/fdzz3+pekpXFC4p+uQgtUeVjb5/iaWnF6SYdDUGNQZV042ySKclhs+MNNtAv86nMjbxFrPOKUFsd2sbpbe9gLBZNdqeXgbDey83cVY167q4x8FwblB4Kd6W88TZWngiEZOrQeIHEuHMehSLIeIS43hFLifmtmaH22PeP4KQZoyjhWZHxzYhGD1Zb7xp80k8x6SuD24wLB3w4LQPYwxAsDbNFrb8j6Vcxu6Fe1UaUfbT327FfWt2pZH6lZN1vWSHseCcXbsLmvAB3suSkcGXEpOjTquEzPzxgnt4cGMjhUNLmjZthp3NzdU6ozrOWEdlLZYIj0/5jxHAcvQnDJRG95e0nSD7y/NbOgjMVfjmWKh+IVLXzNnDR2QNuraeXpKk+cMBo8eoTBX7tYC5tgDxHpTXl7DaXLVDJTU3Zje7rSbAHYAcrdyt4VbX1P1eUfb37f3OmFvKTySLF8YwjDJ2x4jWQxSPJADnW4D/mkqKljads0Dw+F9rOHDcXHzKiukiN2ecyU8WD1zo3te4n69o85otwv3FWnglPNhOBU9HWyiVzWM7WvVwaBx+JY3PTY29vCrHl9jZbap1HF9jdVV7oC57e0PQqh6U8IqscqWVDHlrW6dtN+AKnWYal0cNQ+GRhAtYF3pCpj+VeIy42IJowYtYHB3wrd6vOjWk96uOC2qxt8KM/6E1y/WzUOEU1LI65iYG8LLkqasOeSTuuKet1OcQLXPABcTnucb3KsKdulJs9DT8OlGKhxg65au2pp807rhp6qjlqurZI3rLgW1LJ4L2FvfzTJTYLLBiQqRIbAg21ehWNOC0nDdSrRnmnwSWSWSGQNFyCL8FqnkLpu1wK1udI+QHbZtkg1SG54rSlsdKWYtvujCiwulbVdaSNXEbnjdPgv2bFMzNn7E3Casx11XA1pprk+i/f6FPhSqyNfj0un0tSW7+BMZHOZI0kbXC7KacOHa2sbBMeASzT0DZKjd2+29+PpXeSR3gLinS1Is6LVxTUh+kxuhwuEOqpGN1X4utw/wD1WySSlxKnFXQPa6PYEtN97XUHzHhL8XijZHKW2v763G3qUqynhEmG4IaZ0uol2u5dfktVWhGnHPcpqirwu8Lj5mQ257omwWmxWNsda27L7bkb/EuyChJmsTsn+ioxcANB09rdcjr6Fr8jou5JxcahuyfglFg1K6GnbYPIPnHkLc1M6WkaHAgLjwikEgjcQBspBTxEMabc15i9unWqNnmq9SMdoG6miDWLLg5KHWQd1XSnoeTgeeWKHWB1DmladTfMK56qUxsbax3CrbpszTiuAYVA/CotbnNkvpDjwLbcD6Sumzs3d1dCIlsWbUNe1gLgQb9yya4GNpPEBQPogx7EMfy11+LRlk/WObuHcBa3HxU7aztOHK6wubeVvWdN9jGLyLe+6VINtkq54vKNgIQhSAQSHCx2QkaA49yEMQtY3mErSCLt4LlxDEKTDmaquRsbe95AHzpcPxCmxGATUkjHsJI7JB4eCnS8ZwYnUgecEIHnNWyj+8REuCV032tH4BbRzWqm+1o/ALb3r7JR/dx+4p3yyvenf+r6s8H/ALt6ifsUf6DO/Eh/ZKlnTv8A1fVng/8AdvUT9ij/AEGd+JD+yVuIReCEIQgEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Dj/KSfu3IBz9jn/Vthf5tB+6CtFVd7HP+rbC/wA2g/dBWhdQ2lyBTzUZxa/lcnipMo1i323J4rzPpTlWicVnc67N4mcTb2QCRdK3giy+bxerthlk5LuGorIG53WNli7hsiaxmCyRldjOMkHvCa8w4LQ41SSQ1MO7hpvqO2x7vFOj7teALWJSXLHgkBZ0a06D8WEmn8DFxT5PO+N5dx/oyxKmr8De6rwkOLnRRxe9AtbU4nm4qyMG6Q8OzTglbTYc9kGLCkkAjMge4u0WG1vhFT6WCKV7n1kEM8PKNzQ4fIVRGfaOnyZ0kYfiVLGIqed1OxzY2gM3lJNwLfGvT2tej1RLxY4nHulu/mczi4vLOLo0w3N38uZn4rHMKdsh1F0IaD2CvQkXYZYja23itVBU09ZHDVUsUI8rHWamNH0hbgCIgHWu032VN1O7lc1cKCiltttwbKUcDZmbFm4Jgstc5hd1ZA424qC9FnSdFnKtlo5IC1zbAXkaeLiOQHcrExGgp8Uw99LVX6t5BIAHLxUXwnActZFvOxwilfzeGN4G/o71stJWjtaia9vbGwaakTJ7Ax3YaeC0yF0DC4SD5EUlXDWwCopZBIw7XBBG/h4pkzRmTDct04OIyP1OBsBY8LX4kd4VbQhKo9GN8m+LS5O3F6yamwSvqIj9cZA9zTbgQ0kLzfkvPGOVnSEY6ibrWySSEtDGj/Vn0L0Lh+I0uO4U51OS6CW7HbDgRv8ASmGkyhgWCYucQp4nulLi4ao27XGnkPSruwr29rCrTuFmT42yHFyqxcDTjszKOjkqqlwYQwu324C6rPE8fhr5HiGRrrG2xupF0uYvSDCZKF8r2TztdG3SQLamkDmqnwHCZqWJ0j5S9pNxd97iy9D0m2g6HjYL6xuKkamnCHV0hdKbrmr6czU72NNiTfgtrXteDuAfSmTMFdNSyRtiDnAgbgEq6p5bTRZXtWEaeub+gmC4VUUk5dI4lpPwbJ7ILXWXLhdRJLSMfILEj+JXYTff4lE853MbSmqdHMXyYuBedlpqq+nptLZiLk23NlvD9Lk1YthTq6Vj2vtZwPG3JZwUSbmVVU1oSe45wyNnYHR+YswQduS1UMBpqYRE3IACzaCNuawlFp5Om31pamaKujgnIMljb0rZCwRM0RCzVsDWkb3WmuLmU5MQ3WxNzWDRKNOkpV8bm7SD2b78Vk0doA8lHsDnqZKt7Zg4Dfc37wpHs1xvuoqQ0pGNpc+NDJrkeztukIDWtvclctPX0skpZG9rnA8nLpmayaGRhuC5paCFqwLLbYJ3VD5CQTexcOY8FrTwjXWlV8VKJvfHI4jYgJWtBBY9PTurlPZbYDfhZNlbHpcSFphU3LGtQmsaxrjw2OKp6wDnf5l2cNkBxIQuiTyjRGlCPugsXXO3JZIvbksYrJs2juxG9lZRvc2QFvI7rEdp1l0y0zhSyPZxDSVgnl4JliGZ+R2slL2t0+cpBhIfqZqVc5UnrKnHJIZGPEYLtyDbaysiNroazTdukHkVx3cdJrtb5XMJJrglmHAbKQ0btgovhr723UkoTcBeVvUVN2iQxi4C6InW2XJTOu1dEW71TTKeojsBulQRYoWo5zF9rbrIua5uki3xrF5ZGwyyGzWbm6bKLMOHV1W6mhnhdILiwc2/G3epUW+EQOoay4LSCQj3qAwMeRvdHvUJ7EhwX7Vb4D6E4FN+C/ao8B9CcCvrXRP+DT+X9ynre+zXL9hk/FP0LyfRf2l2fnlP+yvWEv2GT8U/QvJ9F/aXj/PKf9lWrMO560bwHghDeAQoII70h/0HzAXbt8gm2/8AIVSnsUnEtx5kb9ANWDp/8hVsdIGYMHkyfjUMWLYc+V1JK3QKlhPmnldeLMDzPiuVsXqpsNnaY3yl1mEm/LkQgPoO25b2hueSUkDibKsOi3pQw7MWXoZMVqYaOtGoyde5sQA1EDYnuT5mbpHy5gULZJMRpqnUWi1PPG87n8ZAPGYma2wljNR33+RNBFjrPnAWUBzX034CGRspoavUA65LWW5f3lLXVD8Sy4+agezrJYS5ocd9235eK+dek1rUV4qnaWN/kkWNtUxDB29bFZjOsHWSC9rdy3vjcGgNj0D4V15AxV+apc91FBDUTitZI5sUYdJY2FztzU/w/GOkqkgGqjbIyMX3pZXErRV9HVTSmqybks8Y5+8eLiRfpGkb9s96ATpa6N2tp2KqDKfS7McRdh+baY0TmahqfAIQdLb8XEc9lGczdNWIy18gwiGM00IDj9YB2t6CtFL0eu5zcZLZd8G3xkuT0M8MaQGmxO5Cb69nVTsDB2iTdRbo7zwMw5ffWYhEYuqcGOfoDB5oPG6WfPeX55mCKvhc93m/XmG/zrlj0+4o1JRinj5Guc9S2O/HsPpsWwaro54gZHMfpJPMtIH0rznilHjWSJJohHIKGQ3Fi0AAbek8SvTbQ50DJ2gFjwLG3eLpox7BY8Vi6uoZC5hG+wvx8FbdJv3aNwl7pWXNBzg1JZRSuGZiwiooetkrWRyi926XHh8SzfjVNVwFlPIJBcdoXH8F0556P6OGLTSCVl+YfYcPQFAo8v4phILqYGWLuGp5+hfSOiXcNSqxZ5K66dYx9mOFL7/zHnGWNfQVEbG2c9hCjOG0T6QnrHbG5tZONVi1W2N7ailkaANyYSFxOxSGzSQSbcLBennO2lPxp7v5ll0ylUpxcG8o31LPKIDE11m2sueioPJCS197+iy1T4oHxFjGOD/xVy01bUROJfG8j8Ulap1qMqyfJYx1YwPM0kccZe8C/MrimfDiUBY0i4//AEWqavZPC5sjS08wRZYYUYI79vc3996VNS7VWr4cuDaqbUcxO3DqI0sLgO9cuMPqQ5pjB+ZdddVimiGk3DhfvWyjlFTEHEA/Es3GmoOhDYwjnGZcjTRzVjqhoeHadPeF3VVXHQEX2JWNbiDaaYNawX4eaFsqYYaljZKjs/HZYQ1QhinLghyyddO8zQiRh4rIBx85YQRsETRC4EAjndbJHHVaysKeXTUm8tmDjuIXW2TdJiccdV1R47804SuZE3U8rglho5HdfqGrn2hzWi4racIy07HeXtuLc0rbOJDliHxSQh8Zv8aARGNb9hZbYSUo5kYadzU6sp45erda/wAa3399FwI5Jrmpo6upEkbufwk5MHVMDRuVoo1ZVqmGZtxxhmMWKU1A+0rRqPpKecOxu5D4dm87FMVTSRVLgXA3W6NggZoYCAtsJVFUafBX17CjW/TJ7RV7ayOxO6csLqPJpQ08Lqv8LqHwTA3OlTGGUTxhzOKp+udMVxS8SLzI8ld20+nVsx4LPwHEG2bvyUyoqgOaqXwzEjC5rS7gLKwMDxTXpBPFfH+s9MlSepI9x0Pqsa0VF8kvJIuW7E7LnrK2kw0RurqlrNQJ3B/gt0TxI1vdsqe6fctY1i7qV2DzPDQ1+zXv72/BVP0+3p3NXw5PB6irU0LKLip5I54OtgkD4iSBYc0rBuVE+jSnqsOyvFT17y6cSOJuSdrDvUtHC4XPXoeFVaT2QpzVVZOasm09kcTwUGxyhoJK0zyxNdODzJ71M6mF7nh7eW6a8QpsLpXtlxGriie/ezpg3ie4+ld1hJReFvkrrqhUqS1J8GjBq/UxrD9baPjUkp5hIy17qOigiEzJ6WRskBPFjtX0Jxp3mN4HJY3cVOWfIm2lODwx2aNJKUCwSA3YClVY9y15QqAL3CFqqJOrZdZKOxrc8GzW1h0rYOwLg29Ka2a55dQ4JwJu2xUNYeSV7SKAx/osxbEM+sxaN56jrw+/VtO3W6u/uV+U1P5NSthEn1xosTZZngALbbpS1vndq59K7L6/qXdGFGXYw8PCDmfBOeA/Zj/1yTZzPgnPAvsx/wCuS7PR7NS+jq7GNxtTH9IfO+JKkPnfEvqxVHlz2R+3SPl42v8Azh/7ti9KZfJ9oMONv+7R/shea/ZIkN6RMAc57GRiofqc82A+ts5r0BlvHsHdhOH08WK0D5vJo+wKlhPmgcLoCRMJIufkWSxYSRclp8FkgBCEIAWD9WoEbjuWaQ87cUAbX9K8p9J39oLDTaxE8na7vrTV6crMYw2hnDK3EKSnkLeEszWfSV499kPXNd0hy1mG1cEz2SOMboJA612tG9kB7LpNqOnLjfsN+hbZC0tvfhzXmXoM6XppJRh2YHOYODXyNDQLloG7neKv2qzXl+mp3SuxegIJHZFSy/0qGQx3rBekkAPFpUVPYBbfhsozivTblikhma3yioc0HeHQ8ftLkyDn3D841FX5K2WJokNuuDW+9vyJXkPSy2qOlGrFcHZaSwTB7hDDLJK/zW3IssWOFRG2WlfYDY2Cob2Q7caoKvyvD55W0MoDbte8DaMX4bcVHsp1GfsOo4ajC2OqYZmh95IpZeIH8FRUehKrbQrKoln4HQ6uJHp5mkk+/YOCGAvDnHcDkqKb0l5ty3UB+YsLeKZ3F8dE4N247usOYTnnHpjpKfD6Z+CAuqper1Mc1rramknYO77LnfQbmUsUns/gZeOi4mvaWBx2BQDxLVR+QulnFMSzHHhWJ0zHGZxDeqp7abMLjff0Kzq7OuX6GqMNbXQwytYHlrpmNO/oJWqv0i5pT0YyzJVUyRh5a03d2uSo7pNybimH5nbmXK0bpHsLXOEdgbMbtu49/oVvYDjeG4/HLPh07ZWQuDCWva4bi/IlOABa0RtYxzT5we2+yws7yfTq7U12w0JJS3RUWSOl6lqHPoM1SeRVcNw50ji8ktG/mt77qbYBn3A8exI02G1rHvcQAAHd3pHoWrMPR3l/GZZJqinljqHhx1QEMFzc8h3lVLWdDOPYHVS4ngVdAZIrPazr3uJ2twA9JVsqHTbtOpL9nN+bbNOZxZ6FlicaaSK+nrAbO8RZUPiHRJisvSHLiwlL4HyOc09W3hpt8JbcMz3m/BKfqcYwesqBG6wfDQvdcCw4nwKkeD9MmHSzxR4xS1lE4bfXomxfS7wWuha3/T3J22ZKSxlJf3JlJTWCy9MTaRtNKR1hYGb+FlT9d0PSSZ9qccbUANlmkl0dVx1enUu3E+mrCo+tZSUNfPdpDXsha8A+OpVcOkLML83yYnDTV7qEPkIZ1Lzs4bbXsunplj1GClJPS38EJzg8LB6RxGSOOIh9mtiYCT8SrTFM/YNU4pJhWpnWBrml13cRccLJtd0smpJhxfD6ymhmAj1vphH47kqsJKnCZ84Pli68RyFz+sc4WHa4XW7pfSKsZzqV4Ny7MsPHjHTF7IkeX8puwDMsVb1wMLXNNtFuAPp9Kk2b80z+1b24c8seDpu0+g948E1ZgxCnbFPUUs/WBgvYP1fNdQ2hx44nUPpnRuba7t224G38VcK3qVpKUy9VG0oQ0Un7Ut+41ux/MD2NZPUyvbbe+lPJmbFQ+VVDNUgudz3C6xxSqioaYvMQNhyaDzWjD6qPGKKQPY9rLOHCystOcNdjjoU/V6k6UZZbwbsMxSPEXuDRY34Xuu9xIdbmuDDaWkpHHyd13X4FwKcWdm5fxWucUty3s5TqU9LfDMHElpJ5Gy48WxSPD4RfnfmuxpOp2rzb3XBXihxAGN7xqb/eA4rKDi0RfznTpvTPD+R1YfVsq6cSMG9/4Lps8dtpsuLDpKSGIwwOBcPSD6F1N1cHGwWMl2RttJOdPVOWWappmU31yZ9r7LbTujqmNljdcHdNWLRQ15ELJhrJ2Af8S7sIoX4fStikdcgAcVlKmoRycdK6qVbrRTfsjvUV0GGURmcBdoJ+Rb8Cxmjx1rmtaNbTbiTyv3LnlpIq+kMUnMEce9bcv4XBhD39UCS8k8b8rLkljS2uTtqxuVcpQfs7djuiZGyp0gAcFIMPb2bpr6tvW6nCxKfcKhIAaeZuq26l7J23WXHLZ2wxF5CkOGw2LWuF91z0VMBZSSgpQLO03Xnru7zHCZ5+6uMwSOujibG0aRYlOcj2QQl80mhoFySOC5RERYkWCYM9UdXieXcRp6GQtmkhc1hDiLEj0KnowVeacpdyjqyzwSGlrqOtcW0lS2R7eNmkcPFZSSEat9wqe6EcpY9gOLTTYxM98Tustqe88Wi3nK25m3nlF9nW+hdV/awt62ilPMZcmEG3yI49q7+660VFHT4jTlkzA8Ad5/65LcHHi5pIAtsFsa+KKkdPK9sLLDd50rni3r0w5NspYRspaWClibDTsEbRvpBJ3XRfS8a92rkosRw/EHFtHUxTOA4xyBw7uRXWOJY/iFqqRqwn+2NGrIP0l5LBxSJAeVuCVY4wSCEIQgEcSezyQsYwRcucPlU9mSivumjKNdm3A2QUbiC1tvNB98DzI7lv6Ico1OU8C8jrt5wXEktA2LrjgSp4blhFxZKXG9ja5XbLqVWVqrbtn4GqUNzG9muI70rDeSI+lYg9otKyYRriA5FaLHKrxz5mbWIsl0H2CP8AFCy71jB9gj/FCyPA3X2On7kSlfLK86dr+57W222f+7eop7FQFuQnOA1HRDt8RUq6dLO6P6xtncH7/wDpvUG9i/jGGYfkp0dbiNHA4si2lna23ZPeVtZCL+3SOGttgbFclFW0+I04nopmSsuRdjw4beC6wdhfihJkLgbm6EIQAhCEAEXCpb2UOpuQYrnUesk/duVyVM8VNC6WeWOGMcXyODWj4yqR9kjjGG12SIo8PxKhqHmSQWjna/8A1bu4oCQexzkDujbDADcimgH/AOIKz/N3O68H9H3SJjWU56aGF4kpwA0sDS7awHC/cvY2W894FjWEw1bsRpaYSX7M87GHYkcL+hYvZ5JRKXOHEH0JgxmN/lWvVZoJ/gmTHelTLOEVgpn1LalxZrvTyRvHEj4XoULm6YsGxLMkNFSRVY65xAL2ttsL/CVL6Q0KlSyajHO5ut5YmWCA03c19hbc2Wtk0T3FjXCRzdgOCjvSNFV1eU5n4RIBIIzIdJN7aHd3pIXmbKs2c58SqX4ZLNLLSv0Stf1rwCW9y8P0/pCuqc6jmo6fgd06uGmevy1zN3/WgeXFYuLGN38w81Q7M1dI1BB5TW4c2WKIanBlFITYb81IsE6YaN+EzT4sww10LhH1LmNYTtudJPelToNfV/t3q+SIVwmWy9hMY1t+NYAtfZnWXI3tbuXnGbpoxkVkNSIA6jJ5U9+A352V20WbKJ2XKTF8SeylZKyMXkLYxd7A7mfFa73o1xbpPTuzNVUyQh7WPux1381D+lDKYzTgLqengBqmEyM57hptzHMpxwzOGA4nVx01FX00lTMbNY2ZhJNieAN+AUg7TrOJAcPi2XPTVz0+oqk1pfxMpRU0eecv52x3o7fTYTmKnlFFA0saXyNAs0dzQeZCtB3SflbrITHXxESkN02fx/wqQY/l/C8f0R4lTteLG7mNbfjfjb0Kpc39CLKuoEmCVD2htnDXO617egK5Vfp3U2ncezLzyzRplT4Lqo6inrKeCqppA+GdglbYHgdwq26ach12dIKfyB5boLjYMDvegcyO5QrCpM+ZDqY6Q0pr6JjS1php5JiABpAuVJKfpkdCSMZwfFKcDi40nVtHylYw6fXtKyrWT1LzX+ROomlq5Jp0aYDNljLLcPrJNUokD/NttoaOV+5MnS50cuztBBUsqRD1QkP2PV52n0j4K04l0zYBHTRS00dTNMWtvGxrHO+TUq46Rek3EszNgpsCocTivrG0Dm3vpt5p9BWVpZ9Qd74+lxfnsJzjgubImXP5L4E2hc4SO1atWnTxA5X9CaukTNuH5Ygb5XK0Syi5BuNw4DuKgGWOlLGcNoYmYhguKSMY4Ne/yJxsABc3J9CaemDNmXc1YdTVUcda2pjb2mHSLEvHIHuW+j0mvU6hrrptNv4G5XKpx9nk5c34ZBnF0eLUlW1sbSLgMv5gsd9lyG1LRxQN7RY0N1cLpwwbEqD2pgpqN4YS43bI4X3UWxzG3U+JuhDLgEgEN2O69JClJYpJbI9Rb+rW1Px2/aksDPidRWtntE13xEJxwWSpljPlQdYb7kJ1e5r2dY6Mf4U102LNfiDqZrBbtcGjvsu6DTjpS2RxKjCjWVWUs6t8fM2e29PHWimFgb24nuunUhxAcDdpCbJsNoW1wlkks8m9tYHJOjQ0W0m7QNt7rTNZLO1c5VHqewN0jzljPJHHE6Q2swXWbWh5XLWz07WGGRwAeNPELGMVU57HbWqeDTbbOXDsYiqqt0beAJ5p0eeJYmemioaF4e14u7+8OakNDSunc1zBdrisqummtZydOquovblmRzaiYy5x2HFclPXwyvMbHgn404YxGyhhdHUODC/cXNuOyj2F4QyKQTtl1cPf3UQiqi1kVq81VUKbHpnEtcLi2pNkuMwsrTTBouCRx9F070moz9pvY06b2SuwOmfW+U23JJ4+hYeIjK6VaSSpCQxOlLSBYbFPNPTvbGFqvoIDW2A9C6BUENt/BckpOTLelSlDOOTU4OBseC5K9mpmy7t3gmy1yMBAuojiMsmUqer3hobG5rFiXFrgG8061AYyG6aiLh1+JvZdUaniPc4nH2E5rgwllZG62uzvBbXF3B5uVHqrCauau6xryI9/fFSAt0Ab3243ut0ljg46FxWrtxccYCM6Xp2geSAOR4rgpousKcY2Fth3rirtReFyWEE2jpiqhBcRk38Vuw+WSeYh17GyaBVwR1XVFw1nlcKT4VSOi7ThsVy1loWZGUKlLS1F7kgwpmkBSahdayjdE6xAT5Sv7IsvPXi2KS6WxJMPdZhHfddkHZeU2UTrOATiTYhUMluUk1ud4OyFjGbtCyWuO8nqNDWDlxWl8uwmrpGus+Zoa3a/MH+CpTIfRRi2DZ3nxKaQiFzi4fW2j34d3+hXqPOBsdu5KdQNwQb9y7bLqNW1pypQ4Zoa3B1jI7tXIPcseSVukX2dqPek5fGuGOXLL7s29iRYN9qjwH0JwXBg32qPAfQu9fX+mf8AFiU1X32a5fsMn4p+heTqNpPsl2HVe1ZT9n/yr1jL9hk/FP0LyXFNFB7JES1E0cMUdXA5zpHBotp7yrAx7nrWMmwu22yE30eOYRVyFlLitDNIG6iyOoY4gd9gfSEICnM5dD9DQYDjmJMxGV2mllk09S0WsCe9QL2OuSMDzM3FXYnBHV+T1AjaZGHYaCe8L0h0h2GRMftuPIZv2CqV9ig4/wDbrQLDysfsFCCW9IPRPhFZluo/k5SxYdUtY4h8DN5OFgdRVQ9E+UMIx3HqjCcwT9bV0kz29XJFq1CO3Mbcbr1ySDwFw3fxVN9JHRNNiuL+3mWqqOkxG2/W6ng3cXHsjxQGfSh0YZXGWquamw+moJmxnS+JhJ4jvKo/o9ztjtHm2HDHYjUVVGHtjGsgAN1htrAdyn9d0V5wx2OMZjxijdG2/Zjhkitfv39AU8ylkvDMsYeIWROlmLrl4dfcgd/gvM9bvqFvmFZZbW22cHVQi3wVz0s4NjGCZvbm7BqcubG+RxcHhvnWaPTzW3A+ljM2I0QFPgcT3tvqPlJFwNldRa10Ijk0PjeN2kXK00tPT0cTmU0bATfiAeK80utpUNM4pyXG3b6nQqL1HmzMuWsy9IWOMfJg7KMWdqdHO11zfVzKfcD6DqmGR7qnEJ42uADowxhDh3HdX61zQ0BzAHd4Fkri7WLtLge4KX6TV3BQppfj+Zl4KfIwYXlKgoMunCooWRxvAL3BvnO02uRdQ3D+hbAqSpjnu1wZu1piG21u9WdJZx8NrJC1gebtdfxVTHqV1FyTfPz/ADNippGFLBFT0UdKDrjYAGgjhYWCwfSt0usBYroJA4NKA69wuNSmm22RKKexDszYZ19M7s3sD9CrWqp5qWRw1Oa0Hgr1qImyMLSOShOP4KJHuOk2J/ivTdE6s6Psyf6+p5LrnR/EfiU85+H/AKKympKavp3slja8kW3ChldlhkNUXNjAZe9vjVj4hhrqN5LQbfGuAFspIkG6+pdK6lQrRSqf2PIQubqyniT2+OSv56CnjdfqGB3etZjZbdoUuxbDgW6mAqMVFO9jiCD8i9T4NJ5cUvoXvTupKqsSf6+oy4rRsDOta0DVuU1UkBmBEWzhfgpQ6HrGaH/EmakHkOIlhGxt85VPdWajNVctHoqck45TNs8YbQNEzA97QButeH1DzSSNiGh1jaxXTNiMYqnQvaSHE8wufEZTT2FOxxB9F1nKUU3KOSNWTVh8D56lxrBqAJs47rvxSB0sNoiSByRSV0Ypw2o7JNjvYLsbpAu0ixXRbwpuk992a3HAx0NRNTytjdfd1uPpT86+q9yVg+Bh7ThvySjS0Wc4X8VttrfwYPVLn4kOW5oroHVMeljiFwPwiURNAe7hvwTsAWm7TcI7ZJJ4eCzq2qqYeTLVsc1BTmCPS4kjuWdax0sJa0kLfukJsFslbpQ0JkRmovLI9C6WiqWi5tfgpAx3WBrgLbJJIGSva5wWioxBsErY7dy5aFNW7zNiTU+DradRsNisJ5BACZDfxQH6gHN5rXWQdfEQ9wFxZdTlmLqI1pYZtpqhszQ5h2UkwPEQCGOO3/NRGgphTNDWuDh4pwiux2oGxUW0nVp6ppHD1KxVeDfcnpG7ZW8CppglfhuD4YcQxSqPVgarFhI2NuXiq5wKu6yExPIvyv4Lbj2H1GK4O6lMrRHpI4EcwvFde6M61VOPuv8AXked6XXdhdLxOC8MtZswjHqQyYbMHsa8s2Y4bi3eE5VkzJwA11g3bZef8gYHJgzgxtSxsZcSdRPE2V2YHQzujEzZWSxncloJC+cdU6Yun1XOnnb9eSPe23Undzaitux1tkFgYxbey2dfKLDW4LoFMx/mTRn0A73XHVsfA5wd9CqElrxU7ncoSprKNk1WYWlxlcSN9PeqP6YKbGcYxWB1HLIyINB0tc22zyeasOWV0skwcbEN2SENLWl+kkCyv+m06VrPU1kp6t3Ucnhmjo8rKyjy/S01deSTcEuO57R7lM2duRrrdyidtLGuYQNKk1E+9O1x9C4uoQWtzitjdaVJSe4+sH1sdyyOxstdO69M0+hbH2tded75PQQzgRtxcngm6dzpZdNzpHJOYI07rX1Tb6hzWxMwlDLMaRgY3YWWx3nhKLAJDubrGUjOCwJbdZcrJEqat0zY2JzPgnTAvsx/65Js5nwTngX2Y/8AXJXXo4nK/i0c11+7Y/pD53xJUh874l9UKo8reydgZV56wSledImme3Va9vrbFZOTuiCiofIMSGIyvcadh0GFoG9jxVeeyPBPSPl61h/OH/u2L0ll1oGBYcQd/Jo/2QgO6JmhjGjcDmtiwaTcXcPBZoAQhCAEh2uUqwPnbEXKAgGeejinzXiEdTLWSQaWtFmxh3Ak8/Feb825TosK6YqPCHSmpjlle14ey3CMHkvZ4YdeokcLLyn0mdv2QmGsDSLzyb/+kEBc8HRTlNmGANwmkFTJFZs2g6mkjYjfkV55z9kqoytnNkGJVsxwqpEsjC5rSGBvAAD0lew6Nl6GAO4hjSPkUX6SMj0eecENFXXa7YBwcW2GoE8PBARzLvRPk6LA7nDKSodKw/XXRkEXAPevP3STBUdHma525YrpqeGSV56mIBrR2tNufAKxXdGmfqYOoIMaoBhx2saeQusdvOv3Ltyp0Q0mD4oa3F5HVlU4uLiyR1rkWOxVR1SvRopSrbx8jotluYtpa3PHQ4OtBqazTU6XPIuDqIHGyhOW+kLMeUT7QyYa2pcw9gvntZoAbbbbkvQtJA2kgEdG0RRM3DXC91g+kgkk8ofA3rRtctC8XQ6zTipRa9jfH6ydMqTbyikM45gzZmzD34dUZcgLACA81QJ3tfa/oUZwfoVxiraKmsllpXargN6t2nmBxXp4ta4guEZdzIC5qppPC2n0JH0ir0mo04xx9/5m2Fsmyvej/o+pcvVXltY41lc46hPKwBzDYg2seYKXMPRbgWYsTdV1ekSloaT1V7gX24+lTsuIjOiwt37ofZzQZO/wXDW6lcqs62rnyb/M6PV4pDZk3KlBlSilpcOja1kjmucQ21yBZSO5ve60xG7WhrgW2W1VtSpKvPVPn8TXpUQue9K3sX07X4pEq1532ZljPJhMxkzNEwD28bFQrOHRvgOZCxz4Io5wHanBlzc27z6FNytFTptbS7xXXSvLilNSU3j5sx8OLIZh+Rcv4PRdQMMppjc9pzSP4pH4PhVLE5sNBAxpIOkX9akVVIYYjpF7qM4rUO0ucDa/FddKvXqz9+S+9ljbW0JNZREc+UGHV2ETNkpo3PYxxYSDsbKgJ4DDXSwxn3x0t7grizLWEuczUCHC3zKtsw4fo/nMR7eofSvddIk6cNMm2357m/qvTYxiqnZGeC01TD1oqXOdG4AFptY7lN9DViLFpBFGGntNuDy1J1nxyOCmjNr3ve1kssrTSmop4nF5HjuRdWcZpNpoxdKMlGpSfCG3EvK58RMMgJg1EaSRbgn6GlEOHuZStERINw30hNeD4hM1nXV7C08TdulPNDWx1jXOYQGi/Na5ZjF4N3TlRnJ1Zt63+vmRCr8sw6pMge4h1zxCltBUmtpg5zAHd91nPBHMdyHeCyaBG3S3sj0rGpNNLY7LO1lSqym5bP4iva5zC0Eg2UehweYzSvDnAm3cpEy2oEOB25LIOLL25rCMtK4N1e2hXkm28Mj+EYVNT1r5JHOIsRvZPxN2dW7d3eluS303ujWJDw3ChS1yyZ29p4MHBPkiOI0k+HVbagOJIcCOHipbgVU7EqPXK28hANyVhPE2oGmQJWVsWDU5uOyLc/iU1G6i0o5KVo7Wrrzsxyog9jXatyL2uu6nlaDqeeCbcIxGPEadz4eNjzB5pzhjfIDHdu47lwYcJaZF9B5g5xeUdmGY3hlVWw073NdITaxaVNqCmGxA48PBV9k/o/idmGGqNdBqa5p0ajfmFcEFM4lrbfYxouBxtsqjqtaNJ6UeZV3OcpKTOjD6e7RcXT017KaF0r3aGRgvdtyG5WmkhLWjZbKun8opJ4CQ0SxujJPpBH8V5Sc1KWJcFZXquawhnw/P+CYjjDsNiqQZmEtLdDuQv3J+kbokeAbCyqfBeiXyHOcmMeVsEZc87udzFlajK6mrZ3tpaqCR0bQdLHAk8l331tQhpdvnhZ/SOeD0+8bWyPLQATYLGR4Dg697LYGAAdZLHGTvpdsVuZH1TgCC6/MKtk1FrXnc2649jCFjid26WEckxdIWGVuI5TlpsLe8TltgWkA+cO/41JQLDiD6EDVqBDmhvpUUKqpVVU8jTP2ipOhbJ+N4FXVMmL1E3VljyI3FhFy9pvt6AVbriNUj/TsUjw8jdzSTzAWO4jDFuvL131TVJJfJYMIQwKQdV77HkhK4WckXIZsEIQhAJNI7kqFjLK3JQltkc780qETedl2JEsL35oj2qIvS5KliF6iH8ZdNjLNaDfmYzfsslkH2FngFmRssYRaJngFkQHCxX2On7kSkfLK86dXWyBWAmwLXi/8A6b1SvQR0Z0eaMpuqJq+WO7YjYRA8QTz8FdXTk1rOj2u2J7L/AN29RT2KLf8A9hHX+BD+yVtfARZ+Tcuty3hAo2Suk0lxuWgcTfkn8khg70WDUh33cbBAZoQLEbboQAhCEA15kwmPG8ImoZpTEyQi7gL2sb8F5t6aOjOhynlFlUzEJZHGR/GID3hPLwXqZ24VM+yg0/yCi1g/ZJP3bkAzdCHR5ljF8mYfiOIYdTVVQ+niLnyMNyXRgnmuXpr6KoqbAZsTyufIaeiY6Z1PA0BtrDvN9zcqb+x2JPRthenYeTQcfyQVi1lJDWU8sMoLopm6XgHkibTJR566EchZbzDSPxDERHXVMLnUz4ZYtrhrSTe45uKy6bsh4LgVJTYlghZg9VEJC11NHc+8HMnvPyrsx7ogxnCsbnxLJeJU9O2dzi9kzXy9pzjc7bDbSmyToaxfFqyKqzbi1NM8kkti1xA3Fjt8QVff1YUqfjVW8Lt/g2Q94aOgzOOLY7iWIYXis8lRF5JI1r5HXudbGja3cSm/HJse6Ns34rV0lOXUNZUGQN6wNDhYNHC55q98DwOgwaJsNNA5ulgbrJvfhz+JOFTSsrYeoqGNkjNrEN4W34rw8+s0I3EnTj+zfKxv/U75UtaKh90rNGIYc91PgEMkErCwtNVYHbdV6zo1zDm3F6ivqcOGHxPe43jlY/jvzK9RNjZA1sNPGzQ0380FbBK5jTpYNtrALBekMrf9xFffn8yI0Eik8t9C0tJ1QxGumqKVhv1EjGafTwPNWPmTJeGY7gFPhMjGtp4RHZmi4BY2wPH0qRP1A6rG6XSC27gVX3XWLq5mqs3jHln8zYqUUV/lfoowTLuKw19OWmohdqZJ1ViDYjv7irBfYlobvYAXWALdHZjff0rJpGg6tvFcN1Wq3M/Eqy/EzjHyAANuALJYyYxZh0+CxbbSLFZLU991sZ48zISnVpduDuQmXG8uYPjtFPT11HC9z2Ft3Anj8aePekjikZfzi0rZSuqieITksfF4MXCLK/wHoky5hlc+tmpIagm7WsfHYAH0gqVUuWMCpJGyU+F00b28C0Hb507Wa5+qxB4blZaQt0+o3VV4c2vva/uY6Is4JsKw6WnkgdSxiKQEOFjz4ry905ZWo8tY+yWiaG0tS579AbYCxAC9XSN7Drbmyg3SNlulx/BHRzMcKjSNO9rdoE7fErbo3VZ29wlOTa75efpuY1rfxI+zyebcsZcr6llPVs1CMSXJuNwDwXRnuKKhfSltKwymPtOvvfUnzKGKvw2gxTDaqzTSRSzi4te5NuPguSgxqDHKx0csZuy7QbjxXuY1Zqq3tjBbWlODt1CbbkMWKVVZJh7PJ29WSXX0uWWXqJgaaioYBNuL8b35rGpqK5+OdQ2B/UNLbnq+8d6coq6B9WKf/WBpBFxy2W1Sai0u5utY06lbXWytO2P/AGNGP0NU5zqqFztI3AuPQFty5Wz1BdFKy5aDxPgpDAWxyFkhFjy5pwpaNoJfBGdR2PPZaJVVBYZYUrGU6zqKW3zG2NhI7iuPE8uvrpoTHK5g1i9gOFlIpIImP0ue0P7rrdDTSWNgbW22XN4/h7osattG7hobxgZZOjuepdTGKqksGi4DW7qf0ODw4ayKItDnN4kj41y4O+SNzGE7htvmT75PI9kknFwFxsq67vJShoK6NirKpqjJvPxyRrP+Tjj9EyqopXRmGMBzWgbkXdz8VV+U31VVXNoJI9OmwJve9wSrzb1sHmea4doWvx4rODCqHU2pijIkBud1steoaKbhI4Z2lWFwq8ZbfMgxoerY0AW3sQtopHWdp5ck2OzVFPjz6JkbtQcRxHwrKZUdC+MunkB0u3tb4lNeo6SUn3PQU7yloejdkEx+ujoS1r5nMJtYAc7LqwuUVdK17XF1wN1nnrBKOvmZI6VrC0g2L7cAurBIqakw6OKE6iANw6/JdUsKlrOa2uqkrmSY50lK1xLHC99ltlwtr2OazzgeK6KGN2suANx6E/U7Q2MOe072uqmVw4y3OmtXcJ7lVZkqWYY8RTu33G/xHktMTeuiD2uJFrhS7pAyfDjb2TRv0k3PnHuA5eCZ6iGjwmBlO6RuvSB53ot/BWtCtGpDMeTgoXFSpVkp8IaWGU3AcdPckJ1NDWi2/JZyamdsbMO91lRx65LtIcO8LpcnFZO9VP8ArHB3YfGWtBKkeGU0Mzw17BqdsEyRRv1AAFOsOpgBabFu64Lh76kdTp4p4j3IvU5PxJ2PuqWSSdUJNhdtrarqxqyojgf1QaG2J2CZGSyu1AyMFzfcLfS075JHOedV7bhaK9bxUk+xV0bN0pOTl+I7U8ty0t2UgpHXiFuNkxUUYaQE90exAVTcrKNN0th/oSWkajdO7CHgJliNwCF300vIqhqxwykmtxxicdVr7dy6DyXND566TyXNNbZOWpsLc29BQNuCOSFEm44SRrSyKNyLpGpW8UNSLy18wSLCRambbuC7lxYV9rN8Au1fXum/8WJTVffZrl+wyfin6F47xbCY8d9kDNQSzOibJUwMJDb8WhexJfsMn4p+heT6PUfZLRgcBW0/7KsDHuXNlPoko8v4pLXRYlNK+WIxlhhaALuaeP8A5UKy2NA3APBCEDB0ibZFx633jN+wVSfsUPPx3f8A73/uFXZ0i/0Fx78xm/YKpP2J/nY5+d/7hQHo0sBG23ggMANwsghAM+YdTIG6Sdwb/MmM9kAcb96f8wNvS37gf4Jh4gL5t6WLF2pIsbTgHAXtb40WFthY96D5xSrzOMPKOtPcQDbffxSguFrOOyEKcvYMTke8m90p347nvQhQ9+SBAO83S3G1gAhIVC0w3wNOQ53WiqpmTt3HzLoRe26hNrdBx2wQ3GsIY9ruyD8QUFxTCuqkcWC1u5XQ+JkwII4pkxTBmSaiG8vSvRdN6u6CSk/19DzXU+hxuctL9fUpl2s3a9osm2uwyOQa2uN+6wU+xnBHMaS1qikrHwSEPBX1DovpMnJQk9n+vI+f3VnVsZ5WyIJiELo5tIJuLqO1surEmXaA67Vaz6GCpk1uAud+JVZ5pwqaHFethadAtwC9HfVY1FGVPdHo+jdRjV/ZT5MpKSnY9s0u7nb8AbJKyvp26Q2Jjj6WpnqJ5nu0SAi2wXVHhAna1+oA39K5fHlUzCisPuehdNQe72Ns1CKtzJQ8tG3ZbwSYmaiEMZD5u/OySamqKLS5jtQG1gF20dbE6P8AnGxHebLbTUcYezIk9PxN1HqdTNLyS70puxY1DJR1QuDfnZOUFQyZxEXALaQHbOCsKlPxKaUXuasLlo00mvqRq3JXPW4gYHhgaD3ruuD5p4LnqqOOVweSNR3KiUJqCUJbkrBuhIki1XN0pbslYxrIwAhblFySb5Nbw5YFBtbYLhqsPjqJA9znNI7gu1CivSjVSU1kzTxwYxMDGBvGy58QEkkbmxktNtrFdSTrmMPaKipFRp6FwOXucGDxzAkTOJtzJvyTg52okXt4JQ4HtN4FFmt3PNRRpunHBjUks7G+nmfA9rmPI271K8LxB08Qje47+lQwOvwW+mqHQvuCt79qOCn6l02NaOYrckObo8RlpmMwqeSJ1xux+nvUmyDmXF8Fy1UUtfUSzTAMAc+VzjxN9/jUXw7GHEtiDhcn0KQDXfsnUXdwXk+s9Gounrmtn+vMqafU7jp8I0YLdd8/4Y09G2acxSZwlNZUTS0rrDRJO4hvb4gd9lflRXw1NgDdwG9wqZpGyxStLWFrg658FIaSeaRx6lpc88bLwHVLClUqRlDsegtOu1LmLcv1+A+1AHXF+wvyCwG5sQLJI4JGQNE8Trkm54WWyKB7zaF4aB6Lrjfs7G9LUs45MS5gfpF9/QnzCZhIzq3bW32TVLTPaOsEgeRvsElLI6OYHvWmvF1KWhm6lJ0antLCJtRPBYYidm7AreXDSBve6baJ+zXDmnQEgj4K8xVholpPSW0/Egaa2dsMY43suWmrQXFu/wAYXY+nbVzEAWtzXK6Jl2xsmY599mgLdTprTxkVHJPZncO0wOCyDTpuVz0jZW6mSA2B7ludpcGHmFyS2kblxuKhCFkm8ol8gBcnwTrgDbvkd8E2+ZNbeJ8E7Ze/1/4w+hei9F0ldrBz3b9ge0h874kpSHzviX00qzy57I8//UfLw76h/wC7YvSeXm2wHDt/+7R/shebPZIf1kZd/OH/ALti9K5f/wBA4d+bR/shAdrWgG9t+9ZJAlQAhCEAJC0FwPMJUcygEHNeUelEH6oDD7OIJnk3HL601erm8/FeUulD+0Dhv5eT901AepqP7Tp+/q27/Et/EndaaT7Tp/xG/Qtw4lAapRZjxcna6ikwca2Ul7tnHZS6Udl/gopOLVk34xXj/S5fsUdVr7xpcCWhuoix496VwJI7RsBayVC+fcRWOxZPkAB3cVhI3s2WfJId1kl3Mk8HE5ltu9YnYaT2vFdb2bLn09rdSZ5zyb6cAR7ABblrjGwWxQ2a5RXIiLpUlkhJLlExeRbrRUu7O/Jb1xYi7RGSkItsRinLYYMUqHtB7Rt4qF5jxAsgIDiCe7xT7jlWGROJP/ViqyzHXGZzgDwNvnXq+l2uppyR6Tp1u1DVIZ8RmdLJcknfmmHMFQ2Ok3AO4CdNV7XTPmKjlqIAIQS64Ow9K9dRj4Ulp2OjqeutbyjHnBow7DoarDT1wGw42B5rtNRTUlHoZZxbyI9Cj7562hb1UjXBp24Ba8Oon19Q6/Agn5/+a65w1PLZ5yhdeHTVOlDM/PP6Q7MmixWAw7RPIt2B8f8ABbGUMmH4fK2F7i8h1t+8LnOBSU31ynd2/QCtmHVj4agR1xsbgb7c1k47YRvow2/3C0y8+f6C4A+rLnmpJIBt51+SccadKKTXT+dvztyW1mIUz5XwxkXv3roJ20ELlqS0vBc0KSlRcYPL8xly+at7X9fwLr31XsnLEqjyOFz7B1hfdbyWNbpa4A9y1VMTJ4jE+x1bLFpvfsHRkqKhGeZL4HLhOItri4AaXC+wCcNIB22XLR0MVGT1YAcd+JXVYkqJ4TzE3W+vw/2j3Ec0kGxN1hLh4r6bqp9r23G5713U8Di5ptzTvS0rpHizStEqqp+1nc6fAVSGmpuhuy1gDaGMxwyvcDfcgDiVLqHCDu031FpIPxJxwjDrNF2qUUdG2INmnkbEwCwLgqO56jJSzyzjq3ELak6dLZFQZPy9mlmdoJDPJ5JrbcGo2tY8l6LjoxHHECAHaBqt323WOEtZK3rKadkjW7ktCcQxovY3ud/Fee6t1CV3NezhpHk3N6m0zTFEAFm+IOZYLZaw2SgtuNfBVKk5SyYptDRjdLVSYRLHROImJbY6tJ4qnOiPL2bMPzS6XFJXPpuxqDqjVtr32V9As67VGQhzi5zurGk2VrZ9TVvRnTcMuXx/wapRlJ5bKC6W6jNrM5MGETTNo9btmzuaLdZtsPQrqy+6omwOk8pc41B1aiTc+cbbpyddrASzU9Du3HeSVrT3ELG6vFc0qdKMMOOc7kKDi8tigWFhu7husHMOjQXO1FKGP6vUwG4NvFLqLpGNds/0qsUU5PHkbUzItdYDghwLbWAJWsSaZAx8rSTtayy3iqCHbXJsVk6ck05IxU9zAOu8jdZo7RF3PDhyACFDazlcGeUCT31jwsgmwuUk0jWBoMzWEkGxCjEuVuG0ZWOlp7+KEri7zi8PjdwICRS08YfcjOQQhClNrgkFspd6uEd7lrWyk+3IPxl19OipXVNPzNdV4i2SuLzGj0JUkfAeCyPNfYYrCSKd8ledO2/R9WeD/wB29RP2KRJyKR/ci/ZKlnTt/V9WeD/3b1E/Yof0GP4kX7JWQLwIukLbixSoQAAANkIQgBCEIAVNeyg/oHHff65J+7crlVNeyg/oFH+Uk/duQDp7HQ36NsL2/wC7QfugrOMYu2xIseA5qsPY5/1bYX+bQfugrSKjHcGAYGk2Frphx8WnjJ3G+x+JSHmmLMDbvi/838FRekEc2UjdR99DUe0dztbgkZdti1xA7kvM+CPehfLEkW74wDdnE8yi/H0oQpwjHAXKL9+6EKXvyMILpHAO4hKhNSROGgDQALICQcUp2G6xTbZDbD03SDUCe0bLTLNpcAFsY8OCzTw+DJLKNgAtxN1hc3Shu90oG6xqLXyRgRx0i5JsNymDHp2RUs9ZIT1LOdrkXIHBPk7rNKY8X012F1lERu8t0/EQf4LqtdOtKSyjOLa3XJ5owurp8XzbXOaxohlYInXFrjVY8U8+1+CYRX6+sdG5wJsyIW7lHavJeZsJlrq1tPN5JE10hd1YtYEk7qMukq8XrY4oQesaC12wNivpyhGpBOM9vkbKHUYUEmoe355Je/MtKzGHQMpYXCTS3WWm4Uhy50fQVWKOxLyuRwlifIGdmwLrOstVJ0Ozy04ndWxdab2+tu5fGtE2HY/0fVUUsspqMNeQ1zmRhoaXHYXO/AFclS5pzfhW88S+Rk686rc68eXzkaMSwXGP5Z9QyMeT9ZYWftbRf6VbWH5d8npTrA60w3HA72WTs24bDhVPWuqYjFMCTv5tjbjZPeF1LaunbLRStmhJ1As4X2NvoVVfXlVpOS04785Oy3qzhTft5fyKLxHDcaOb5Y3MtTNc4AiQ8LdyuGkwaJsBcQC1jNTjYXThjEklPH10rSwHe5CbsLxMyOuXh7Hdkgd11rnezuKUZwjhLvnk6KLqqDanl/Ir3+VkJztNhUMI0xySs1aSD2VcFBhbjGHHcuHA8E14Xk7A344/FzE0VD3Pfu93F3HnZT8MEoBi2twXF1S9glHwFv3OGN1cRyqjIlU4Y1pt8oSU8EcRDTG23gpJVQ7bjfmmqojDhsq2ndTlzybVXVRaWQaPo0winxx2LNqJXPIJ0GNum5dqTxUGMSPYGjQDYC2ycZQ7Zl+aZ8YppCXBtx6bKzjcVaqiq0s+R0WVGFNtR2yVx0k4HiNXVxnDH2aC0uHWadrJ5yxgMtNhURrDeUtbfcHklZiTTUtiZOwyOcGkW9KktEyacNa/cAdyuLivKnQUJHYrWVGbqqefuEgo3tkdYANA4gruYwiLSe1vfdb46dxJN9rdy64o2hm6pKlXK8zGrW1rcbCwOaGuaLBVTnTKeNz5igfThjqYmMkmWx84328Fb87O1smupdLGTY6vALusLxUnwYVIOvhQeCD5wy9VUeWoZKWzp9HaBcBvqHNNeQcOqpaFzq/bSXG+q5O4U1mmqpJurN3MPKwXcaRz2WjYWNI4Lu9ckoaJvfOfuNtK1qUayqa8rGOCP6GskkAAIabXWMcgkLdJIJO4XfWUZpbk8CU2MhvMC3hfio1KWZLguqSytjtjYHStBa3hxT0xvV6QxrdPMqOyStpnapXhviu7C6h05Ja7UzbgtVSnJRU+2TmqxUns90PNI0l5NynyjZdmo8U20MdjvzTvG3S2wVZXnv8AArLiTfLHCikBJae7ZbxIYyXbeCaozpNw03Buujyi/aedLBtuqmS1SwkVk4dyS08oc1rx5xPBdt+yLpgwqoiqb9RI15bubJ/cPrTCeOwXFWhKDxI4J8i3HAIQSCdkLCUnjYw4AGyGna6EjfNU00nNEElwvakjPe0Fdq48L+0ofxB9C7F9g6ekraOPIpavvGuX7DJ+KfoXlChNvZLMHfWU/wCyvV8v2GT8U/QvJ9F/aXZ+eU/7K7e5Hc9aM80eCEN4DwQhBHekX+guPfmM37BVJ+xP87HPzv8A3Crs6Rf6C49+YzfsFUn7E/zsc/O/9woD0eEICEA342L0L/BRxosN1I8b+0n+CjjOAXzz0uj+2iyxtOA5uSpObkq8otzqXIIQhR2JfIIQhCARba6EhtxKP4koL+KybY7ngkHWWuGmyNMhGqxDeaKE2tSWxJiRY7IcNQ3SpVGz3RDyhrxHD2yRE6QQVBMewXi5rAPi8VZzgQ3tHZN+I0kc7SOem6tLLqM7fEMZKm/6ZTuae5SNTSSQPdYFNOJ0cdVA4BoMoB4j0KzMZws7WNxzFuCjWJYFJG3rYCSOYAX0To/W1Twp8fH/ANnz676XWs6uukv6/kVFV4exszmyMs5ptsFn1bGtAY47KYYzhYmtpFpLb+KiU9M6ml0PX0i0rUa0fEocv5f2Lyy6hG4iqc9pI1vDXDtXcLc90y4nRyBpdHsPQn3To3HFY6tZtINlFxaxrxzwyxjNp6RmwKZkBIlJ1G43TvMXGIuaWm/CxXHWYdHJcxmx8FxdbNh5DZLlnp2XJHNGGmRukuMm3DX1XlB622nxPenbYk3uuZ9RG2k6+EAuF9vBasOxF1U4hzbfGtlOsoYxuHFJHaN+CLpdOkkoDgWknvXe3umasb5AC4vcAelGx4EHwK58T1uprw8bHgubChMdXWXWipWalwBwa0jimiuiqJKlnVEadQvc2TvuEuhp3U1aTqpNAwhDmwta+2oBZvAdbihC2wXYwcsg4AAabpW2I3IHxoJA4pmrhOyqbovpv/BYVqjhsiae73JDRPbHKx3MPHyXXdmTM0+HGF9Cxr9jfU0/wKZ42nq2G+9gVviZHVyNZNY22Wi4oK7o4kcVzawVZVnwie5fxg19C2SojYyQkjZtu7vT/U4tHg+CvqIGsfP2bAi/0KNUkEUdI1jbAXWErSbscdTO5eB6j09W9ZJ8HmqPU/Cr61HZPyOzo46Qq7FKmaDGaaJrHCzS2N23a9J7k/5uxF0WGzOw98rZT5ui47+5ROmgjp3h1Oyx52K635go6OJzaqVoeDwJKr69lGVT2O5bLrDuZ/s1j7v8nH0T1+O1VXJHiz5XMJaBrc88zfirKc4teAeOqyozGs9YkzFY4cCqzEHG12Bp5ekeKuXAqmStw6nkmJdKWtLz3mwuubqFr4b1pbFyqjqJOoTTDpC2BjXcbck6MqmBoJLrjkmul0ijY4cQFtcbM1FvHZeKrRzUbZdUamiKceDfVVzxBO6EWJ4W2KoPL9Zmz3RIGvkndSiWLWHvkta+9uSvQN7OpqIIo4pmytgvJfjddlhcQtoSVRZyZuo5yQ9xl/VxE21FgJ8UNN7iwuOKxic9w6yQW7gsmON3G2xVLNp1HLzLBcIVCEKFyiXyDTufBO2Xj9n/ABh9CaeDj4J2y8Npvxh9C9F6Mf8ALRzXfuj2TayD5w8Eh3uFiXWc1h4kXX00rDy/7JD+sfLv5w/92xelMvm+A4d+bR/sheZ/ZFTRy9JuBRMN5I6hxcO68bV6Yy8LYFh35tH+yEB3hKhCAEIQgBHMoRzKARvPxXlLpQ/tA4b+Xk/dNXq1vPxXlLpQ/tA4b+Xk/dNQHqek+06f8Rv0LcOJWmk+06f8Rv0LcOaASTzHeCidUbVk/oeVLJPMPgolV/blT+OV5L0sWaCOq094wQhC+drdFk+Rb7LEcUqFOcDIOsbWWmSMk9lbkJkyTMIwWt34rNCUALJYewYiDtyKDtwSt6592aHBTFN+6smpywwLTa+yasWkAjN06AaA4OHaUWzJVmJj9R3/AP0W22i51EdlrBzmkQLNWIsa1zQXf9AqtqyV0sriDtdPWZK4yzkA8/WmBrXk3HDmvoNjR8OCZ6+KdOKSB1nAaeI70Pu4C1rhJI3RI2/AlZO0h7Q3iRdWNTPYSeV7O5praaKptqaOfJLT08VM36w0ajsbhbUIpywa1b037cVhhcixBued03YzhrawB8PZlHpsE4oWKckyK9FV46an4EKia+hr/r5fdtw48QSpg2oilbrjcD8YusKmip6waZwG25m6Y6rDarDniSkLnRjjYALqUo1OSkhSrWGVDdP5sTETW+2AMd+rN7ce9SOCMmBhcfrg9Ka8NxdlQwioaBIzs7nuWiTGHnGWwMHZLgOPoUThtsdFvXhQlrTy2Pl7m55bLppoi/cJKandIA5w7JCe8Lw0vPBV1WoqUctl7TSktb2NuGUvWPaLDipfhmGRcA+HUPe6hf5FopcJdFTPMYPWaTp8VBsGoM0u6Q3lzZvIusl5MtbSbelVVVqvFtSSx8Sq6h1FUvZiXFhtHv5lgPQm/pRwbFa7LbW4JI5kwLL6XlvM34KesoyyOI6e667YdMMZaW3DjdeVV86Vwnykzz9xcyqxKr6CcLxzDcOn9vpppNTGadUjn++dfj8StTcE8LLJpe2Pq23DVjay0Xd561Wc0sHLSXmKN0OLGtJkcxrQLkuICLE8FX3TUzHDlRoy6JDU9Y7VoDSdOg9/pWNpSVxVjTzj5iT2ZPhIzq+tgdG9nPSQfoTNnjE6jCcs11bRxh80cT3MaGk3IHo3US6B4scZgc/8oRJr1R21ho96b8PSrElijnp9FSzXC64IJ4hdEqULS6UZyTS8jDVlFT9DGecZzLis8OK0/VtBkt9beBs2/virPqnPZUSN4jayXD8Lw/DJHS0NO2NzyTs4nj4rpdCH6nOdYlbL2vb1a0p0YtIxlTlKOMlB4x0l5ips7R0MVN/NBI1h+tyb/XLd9uCvFsz5xHO+7HOJIA25rTLl/CZqttVLSsMrAN9TtyDfv710YlPDBEKyqmFPTx77i43XRc3NG70Qt4NSj8OfoY6JR5PP2ISZyPSLC0TTCl1sJDZZNGnX8nBeiaNz/IaYTlrpQyznXvv4qm+krpHw+hwZzcu4nG3Ei8tc5m50aXciLcbJ16AMbxjHsDnkx+R9TEdBbK8NAtpJ5Ac11dUtZ17SNxJaXHCxw9zCnPEty0gA0ltzfj6FksWBwbaRhD78TzHJZLzLeNjqbzuKy2oauCpbpwdmSLFaV2CGXqSGAiNzxuS74PxK50ly54Lo9VuG66+m3MbWprqrKIaZHejkVxyfh/tsXmrER6zWSd9bu/fhZSRLIZHuDngiMcki116qq1HNcMmIIQhaSQWyk+3acf31rW2j+3qf8dd3TP8AlQ+Zrre4yVR8B4JUkfBLyC+vrhFRLkrzp3Nuj2svzDx/+N6insUhbI2/NkX7JUn6eJWM6Paoy9m5e0X7+reot7FAF2RZQeGmG3+ErIll5IQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0iqt9jn/AFbYX+bQfugrSKAEyZgNjF8f8E9JkzDxi/8AN/BU3Xl/spm2h76GjiT4Jb3aEg5+CG8AvlHcuXwKhCFJgCEIQAhCES7sJsLgFYSus1ZBu9+JK5ql3VfZGkBZRk5bRRsWDU8ajdZxOsVo61moAbX3Wwgggjgtj1Y0tGzbB2sffvWbSOK1xkujAAsVlMPrYs7daG9LNMmaqkam7c1Hq4SMlc1nfsVJ3hr4QGntJsrImhpbId+8rfTe+WsG2hWUHwMDpNcLqOaJkkEt2Sam37LuK1YZlPAaeSSSmoIOse7US6Fnd4JwbBd+lrrjwXdTxGOy7JXNSKxGWx0VYRzlIx8jZG5ui9u7kkr8KpMUopqSughkic0lpe0Eh9iBx8V2kg8eKNIeyw2N1zKpOEtSe5pqaprSzyl0kZHxrL80pdJM/DvesikL7CwvsBYblXH0RY9ghy7DSCfRUiQ3FRpaeDRzPerCrKNldTup66DrYnCxJNvTyVXZr6HqWYPrMAlFPWMPWAMjLibXNt3W42XpqXVKPUKMaFx7L89kv6nDKMqEvYeR06b8PxGqy9E/AnaiGG5jcfhNt5vxpm6JMvYmzBjJjFw9pce24/CHem7JPSDiWU8VfgecGuNODpY+VzW7NBvs0d5ClHTJnuTLdFSS0cd6eaQNaddgSWE8wtzpVYQVpCOU+GvzM6FeVKblkmFDStEvO3cFIYIwwBwOw5c1DOijFpcw4DDXys0l7GOte/Ft1Nrta7U3c9y8neU5UazhJ8G6pU1dzXJGHxvdbmovic7KYapHNYDw1Gylw7TgRwPHxVK+yEpMekkpjgbJNH12+gN7mW4/Gunp9GFxWSlJL7xSuPC5WSWRv60B7Tfe+3Cy7JYY6qB4bbXZM+R8NxGLL0JxXW2Y2uHAcNI7k7Twuh7cOx9C6qslCu4x4iWUKmuOpdylcEyRmD+WolncwUscjJXXlO7ddzbvNuSummoYodGnkLG9uKwfUzOjHWX4pI5nE7rpu72VdJPhE04Sp7tnXJTMEfYvq5rgqbxtJNrJ0hu/xWmvoeuoajq95rOtt6Cq6hVXi6XwIVlBtyGKnq4ZZdAeC/uBBKdaOhbUQykxtJDXEXHoVQ5LwfNHuhN8pjmFH1zbkhtiOrP8V6BghETWkDtBtj/FdnU0rZw0PPfY0u78TOnY86Y/jeKUWezSQ0shpw54uInkbAW4bK9jhkbaeJ7mhpcBtYDkumpo8PdP176Zpn331Fa6uqkmF3gtI2Aupveo066gqezS3NVF1m/aZVPTHJV4XQB9HE51y3zGknz7clj0dU02J4HFU1sbmG7vOaQdnEc1YtUyKpj0VkQe0cLm30LFmhlMIKeHTE25JBva666d5GNoqa99nUp14VU1LYqfpTwqtZDEcNDuDSbE/CPcuno+ZJHg7TWuHXOaLC+/E96kWN5hwyHropcQjErGuGgg7EX9CqzJ+K4piub4Y4pHvpQ5t7AW3B9HoVvRp1Ktq0+25nK6p06izLd/EumhcJXjTtb4Wyd4hrmDR8vJNmlsfVteLP2TkHlmlvLvXnK7Ulg6Ky1RyhzDGXfdjLFthYc0y5zoKs5blOHB3lBLSNJPfvwTxEQ5oF7FONHPLCNIu9p5cFwwreDUUmV1XVp2Kn6Ao8witqzjLXdQY2BusvvfWb8Vd9/ODuAcuSN7muPVRFhcLcbroYNLe0LuO6jqdeNxUc4rGThSaW5mLHtNvYpUDZoGm1kKueyAIAsEh4Je5ZUvfRBJcMH8zhH9wfQusuAIXLhv2rD+IPoXSdgGk7nZfYbD/jx+RS1PeMJT9akH90/QvKNGLeyYYO6sp/2V6tn2p5LmwDTv8S8mYXUR1HslGSQuDmOrKexH4q6+5Hc9cs4DwQkZ5o8EKSCPdIv9Bce/MZv2CqT9if52Ofnf+4VdnSL/AEFx78xm/YKpP2J/nY5+d/7hQHo8IQEIDkxRuqjkHoUZdsbDvUqrvtZ/goqPPd4leA9MNpw+JYWfDAcHJEDgULyETsS7ghCQi3aB27lipLGWOQulSlge3U0WKxBNtxYpHLfwGBVi8AtPelug2ItzKykk+CcNEN6Xa3FcMyy+XCI+tls/ZjHOPmE8lDug/EMy4m98+Ns6qAbaXse127duKuGTRJGYphdpWFPDBTgsgaBfdWNK/jTt3Q8NNvuadDznJuSJUKsSwmjbnIkfas0X8XKnul/P+L5WxuKOjpmSQOibd/UlwuS7ncdyuBzi21uCZsy5Ww3MUAZWxRu/GZfv9a7umV6NGrF11lGqsm1sUpkXpVp6jGZ340whsrgbtaA0bHhc+CtfyvB8ToXzUNXTv1NPZ61pPyBefumLo8/kpiNPLRW8jn1mOMNDRYFo7/SuTA8tZtwfDDitOJIaNoJIZK0Cw3PO69vcdNoV4qtb1HH4JFbVhFxcZRyWhjlCYqgyMBINztuoVjeH9cDKNiOSsXo+xXD80YMyOWcuroWiOQOaTZ1rndY45loxRuLWA2BPJW3R+uSsKzpVNkePvOl1beo7ijw/kUtJE9r7O7J9OyQO5EfGpji+EslFjG1so2vZROto5aaQhxJaF9Et7iNzHXT3Oyy6jTrrRLaRoe0cisJ42zQ9U9tzwuAs9nCzWi6UamcVulGMlhrJZNvO7GMF9C8te1z2HuF040MkL+0wWcd7bbLpfEyXzk0VcUlHU9ZB5u97bKsjTdvU1yWUbUlJYk8D23ib/IsPOJbwC009VFVWLfPW9wLeCs4yVVao8GiWqLwK2zTpIuElw1+wsPBDdwm7FKmWKNvVXvqA42WNacY9iU8jid0A2XPQSPljBkv8q6Tp1WHNZwnqj5BsRCQmzyOQWsVcHW9Xz8FgpKLy2QsI2kXsUO0v4t3HoRty4IWTanvgfIVm7+NrCyGgxuLxxQAPO5osXFS8JcGMo6k0+5L8Cq21MPVvNiN12TNLH7XIURwyp8nqAe+30qYxyddSNkA5BUnXLVVIKrFcHiupW/qtd44Ziy7bdxUIqo2VOZXRVJe1hLiN7X3U2DyR/FRXNWF1D6iLEKR7gIgGkCwvvdeThiO7J6XNKq4PvwbMayxG6KSWi1CVgu0E73+IKQdHOa3PmNDVjqnxgtGsab2sOZTbgePR4gGuc8smHvRc3+NZZvwUkw4jg8QjnYGl5ZYE2uTufiWFzBVIeG/qXdlXmqng1+PMvjCHGSnI4gWXeS59rFob3Hiq56M860VTgoixWodFWsa3UdJcb733sp5Q4lhuJ3OHVJlezexYW8PFeCv7WdGo8LZHq6GNO3B1OBcNI5LOmY5zm6CCL8eKwaXG5tZ/MLvw+IRAtaLN7gquc0o+Z2Uo6mdQBsA63DksgdQ22ASFC4/d3ZY4FQhCy4wzF8iu85PGXvNl8QmZ3BPeA/YZPEL0notHN4/gjmu/dHa4AuU143ilLQYbUVU00bAxpFy4DexsE3dI1VX0eS8anwt7o6xlK90L2O0kP5EFUDkHBcydJOGVjcTzNX9XBVCOaFwa9upoDjxI719LKwrDH8Vqsb6TaXEakOEU0w6skEA2YAbfIvcmAf6Dw782j/ZC8pdMuA0uW82ZVwyiY0RQ1ElnBum92NPD416ty/8A6Bw782j/AGQgO9CQJUAIQhACOZQjmUAjefivKXSh/aBw38vJ+6avVrefivKXSh/aBw38vJ+6agPU9J9p0/4jfoW4c1ppPtOn/Eb9C3DmgEf5p8FE6z7dqPxypYVFcQ+3Z/xyvLelS/2mr5HVa+8aEqQJV84WyLJ8ghIXEEAc0rh2hcqXgYBCx1gSFrhfuWZ2Fw0FY5UniO5JrmOlhKInEjdZPGthu0BYtI4BbNOlE4yY1ZcKaYx7vDHEeNjZecaDHM7T5/ip307mUpmaC4wyAW0d97cV6SPZ35LUYabrTO1o1Df+C7+n30LWElKmpZ8zTKGXkSnL4sPhNQQZSwE28FXWfK3qxINQ4/xCsTEJmmke4C1gfoVEZ+xIyVT2XvYn+C39JoePcOfC8i86RSzJyfYh9TKZZnErhxSSSOikfHxBG3xrquXO3Q5rZCY3cCvfx9lJYL6onUjhPBEW43JrYJAb6u7/AJqQUtfBM1l3tDtPMhceJ4JB1cksYGpovwTBRYfUVE7xCSHNJ5jku904OK3PLRvLmxr6feT82TgEEXBBCVR/Dq+Snk6qrF/E3T81zZGgxgAcVxzptS24PSWt3Cvu9mZIQha5S7HS03uxNIfcOuLdyVpJYWWBaRzSEHismNLzYIk8ZRgvaWlrJHcYojBOKiEG3AtHO5W/AamlnxGMTxmOTULagByUsw7C3VUoY+MOuL7rvxno6fWYXLX4Y0NrIWl7dIAN72G5KK9hjw29ykvbWNnJVlv8DuwzCXzlrg06Da2ymuF4JoaOyf8Ar4lBejbOcNPMcGzF2Ktsha2R13nT2WgbC3EFX1RUdOGRmGTrGO4P02XlusXFS3bUuDGr1lTjhbDVSYRs08N+aeqSlihJ+sx9Z8INC3nQCWA+aL3TXmDEHUOBVNRTEmoZptvY7nfdebjVrVpKMXyU1S4U928js0O0OBIvZI0ix6wHbbZUH0Y9IuYcWzJJBi3W+Ttc3zptW2q3C3crqOJa26tOx9K6L3pVa0m4y3b+RzRuqbymOQDHDU3WD6UrSL2JF+5McuMtZsXEfKmDMGdsOwdrX1E5bM4ho7LuBv3D0LXRsKtbCisGp3sI7InD5g02uLrRJUhzSC2Nw5hwuoXR5hbiFKyqgkLg8auY52/gtvtq9pIdttfiuldMq0ZZX9jln1GMdiUiqswxxsYwf3W2WRrHEBunzTfgoo3EZXi7Xn5V00mKucfrjiWjjcqZ2OHqkss1wvoOXJITXEkCwt6AuhlVG8guDgPQo4cUgY48gfQVtgr4ZHaQ+zT6Fp9UailFHQr1RljJJg67rt02sqr9kRLPFlFjohOYurkLzDfbdlr2U+bK+OxbISDt8S4s0Yb/ACgy1WYYDbrA1vz3/gps36vcwlJb5W/wOt1VOGSI5Z6PMt4xlVkkZq3ue3dzpGmztIvvbvKgzMSxPopzXJTyRdZl+WR+hzWFzg0DSy7jYcSF3dH2cqrJNV/J/MAcInzOc15eXWDnADZoPIFWxmPAcIztgD4zonimDXwvczgAQ7YHwXoK9xOhXcLr2qUn37fJGmnFNau484XX02KUcdVSSB7Hjk4Hh4Lq525qgOj7MVd0f47/ACfzPI9tK94EL3O1aTI7VcBt+SuikzRgdU8MgrDJK4XuY3BUl/0qdtPMPaj58HTTqJrceAbbpSWx7kE37liAGxsL3aXOJAtvqSqn2csTNuU+DGx16gTpPIrJCFLaTwg1gEIQoyQC20f29TfjrUttFcV9OQLgP3Vj0larymvia63uMlMZFuKxdLG06TIwO7iUlg5pLTy4eleZukDHc2DpfdgsGM1mH0NTM5sL4ng6A1gJs3xX16O6RUs2eyhze6phiwPDvrrQ9sr3RjVYFj2m5B9Kl3sVv6Dyxc4xE0nv2KY82dHEWAZLxHFcRr31+IywyNEksQDrFhcNwTzCevYqtcMiPeeLmwm/fsVPccl4IQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0iqt9jn/Vthf5tB+6CtFACZcwcIv/ADfwTyU0Zg+xM+P+CqOtLVZVPgmbaL9tDKOfggcAl7kL5Nu90XDYIQgXv2eKnKMdwRY9yTrGvNmMAIRrJ2bsUyn7u5HteQqEIUZ2wZCD7NGLgbHiqV6d8WzDR1lNFhED5WukAJZE9wHYPcrolYXAFvELXJDT1NvKGi4NxcLssbiNrPW4KXzMHH4lf9FlLis2Xop8Y7M72scG2cCAW8wVYMUdhYra0MaxrYxZrRYJVjcV/HrSqJYz2NsXiOAGm1iDb0JWRu1PLHN2ItqWO/JK1wY+7hcLlpyUaiclk1yWTzxm3pZxzBccrKN1MxsJY5ocYDv2iNjq7gnzIHStRVOExwYqdE+loLnaW77nm5TvNfR7g2ZGyOnij64tOlxjuQd7Hj6V5gzflCXCs2VWC0f85nbK5jNQDfNAJ524L3dlb2N/RVPCUvkc0pShNNHp/CsSo6lpkp5myg32Y8OT9C4OY11iLjmvONJhmaej6lw7FcRdLDhzpx1rBK0jQLOdsLngr+yji9BmXCKaqo5y4uY0lugi1xfmqTqnS5WsNdPePmd3rPiNt7DkGlzxsutkQAAPPdZNiAj7j3rJosPOLlQub2IlJvGAadJ0gX8QgtLjZ2m3oSpDfksIyfcxIX0jZHo844RJAxvU1rLNbKLMG5BJuATyVO5YzEMDLsGznh9VURxkujmbDdoJNt3P5abr0w3VELkXCYMw5XwbMFHPBV0kJfKwtDyzURcWuvTdM6vKlFUqzyuz8vkaJ0+6NmUavDK3AIJMELBDoZsC3bb+76E8amtDTYn0rznR4piHRHm6opaxz5sAfLJ1TXOs0N8xnZbcq/Mu4zQZhwxtZhsmuIgkM0kAWNjx9IXH1fp06UncJ6oS7kUpp8ocQ6zSBz3XBXN1RgTRsfbhqbdd+nazmAm97LF8bpiQ5o24C6qqdSNLHY6k0RSurSZRezLDSANgsWOdOyx4KnukTM2N0eeaegpGvZTuLLhsthu4jhZXFgVPO7CqKWVzi+SO7r+JV5c2joUY1n/23Oqjc04+yJ5KxvAm/pKzbSi6eTRxgW0i434JsxV7cPgdUzPLYx6L8VXRqKfsJm1VcihulpAO6NZYNtyo1ljM1DmGpeyjqnOc0A6dJF7m3NTGKl23CzrUnQeiSxIiTiudznjkcwdZHHEJONw3dOEDjJCXEWPNYsp2s4LcXNb2Vz1KjqRU3uaJNcRWAY1skXmm/gtM1KJABa2/FdMUuh1gNl0XZKy7eC5tcVsjW5SisDJU0Y2YBf0prxelIw2sA1XZES3TxJUrdALXTfVxgAF3mDdw7wuuhWcakJPg3Ko3HGTz9kXBqDFsaxf2yNV1jamVobrANrDexHeStGc8sjLbqfFsDEz3RanOZcuOwAFwAO8rrzZBiWTs2OxinaX0U1y5usNHaee654BTnBcYwvM8HWUbWaH/AGWMNIFrm3HwK9rUr1abjVhvBrcinRpPOtb9hqyRmmHH4GwTNIqmNuW2AItYcL34lTUNsNJINtlTuZcDrcn5gZjWEkspnkRyNYQ0WLi53p96rAwjN2EYjh9LVGo6p72apQGOO+9uW64b61jNKtQWU/uOijXeHTq7YJpAG9Xc3+JddJGC+/asmfCaiOtbqppTJEN9xbxT3QSWkIcbgFeeuIOnLRU2NcnhezuOkAD7uB2W5vZJNrrRSt0WaTey6XKvktzklyISXbm1j3ISJVjLcwyIeCXu8UIbxj/GWdJ+2iG8RySbDdqWG/wR9C3u0tF3Gwbvcla6L7Vi/FCrD2Q2LY9hGTvKcuzSwua2UzSxyBhDQ3j6d19jtI6aEV8CnnvLJI+k7NVPl7Lk0omj66QaGjUN9QI7+9eT+hbymTpWweSua9tQaqHWHgggjxVs5T6PsRzzhNFimZ8w1dZTiJjuonja9odYPG9+RKi2HRR0/sko4omBjBWwENHK4XSYnrNh7I8EIbwCFJBHukX+guPfmM37BVJ+xP8AOxz87/3Crs6Rf6C49+YzfsFUn7E/zsc/O/8AcKA9HhCAhAaK77Wf4KKjzneJUsq94H+Cicm0jrbbrwvpjHem/n/Y77LuIOBQkCVeKT3+47kCYswZpwfLkZOJVMccwBOl0gaeF+BT6FUfTxkmqx+FlXh93SDUS3U0Xs0AcV29Mo0a1aMK7wmaajaWxMsDzxl3HHlrMRp2Scmmdv8AA+lShha5oLHNe3k4G4K8TtwbHcKqA2OKSCdrrAxnj8a9TdEcmISZOoXYu976nQdet2o31FW3W+lUbSCqUJJr55MKMpZ3JmkcNr8ws47OY6/HdJazRvdeZi2zc29QjXam9obpQ7bTpPihCzJBCEISIx2l5BQHXubFHO/NKFFWKlhoNZID0rZOlzVhcc1FIxtZACI2vLje7hfYcdgoYyTpGpcEdROp4Z4QHNMceH3cRa3crwAAII4jgsg5wJIJBOyuLXrUqEI02tl8jTKjk8x5HwDMkWfmVctBVU8TzI6ZroS0ai3u4BelamKOdoa5nLe4WXVxiQyaBrPvrbrYd+Kw6p1L1xpwWAqWFiXBEMeypFVXMVg478Sq1zJlWWDXqbt4H0K93bC4G64azD6fEIzHLG3UedlY9G9I6/T5KLe33FH1DoFO4/aUtn955WxGilppCGMNhx2XAC73yuzN2UHQPkdDE0tI9HpVVYzhE1NL2QQ0elfZ+k9etupU0lJavmikpXE7aXg3Cx8eBncL8EOYHMs4bLJ9gdI4pQeyQQFdT3XhyLFTXNPdfAaK6jNMBNTbjnbdddDViaEB3nDYrpLOsiLDwI4JmmacPqg4eY7l6SVXuErWer/qdCakh6PZ8EOYxzbuCxY8PhEgN78llxZpsL3uu1qFRKWTTJYAtDW9ngsW2se9ZjYboMY4jZTpWAgbbSdXFNkdARV9a47XHMpyRytyWM6Sm8kBw4cEJBvslsQtsdlhAQXL7crLnq65tM7SV1C1r8DwXBX0HlB1c1zV4zxsZU/aZ2RS64xIO9S7LlaJafqTyt9Ch9NF1ULWk33Tlg0/k9aCCWt32CKLq0XFlX1W3VxbtrlE6o42PedQ7I3K31Tqajp3zVLCIR3m11hQPaWOIA7QsjGqLy/DjC5zgDZfM7mMoVnGW255+zSjFPG6K9xmOkxasGIZdDjPGdXVNdqJNrDYbcipbkrH/bWc0lY20jGFjmEAHawXFlPL8eB1JmZdwuDY25X7lwVpOBZ1gkjiZHHO1riW8y5/o8F0VpKSxF7nolUp3UnGPKLSpOj/AAPEJZXzMnjkJ4CdzfmCieb8u1PR/WU2L4E6V1J1rWvY5zpSAO0477W2VsYI4Txul7NnbgtN+9aOkatwzD8mVhxRkcrpI5GRte3VpcWGxHpXlle1oXLoSjlfIv6FNRprzN+U8abj2AUmJxfZnRtL27XufQFLY94w4izjyVTdAfXTYDWyRWkp+sZoa42DRp4AK2dmuLdRLxxHcqHq8FTuPCSwWlCPcyQhCqnTwsM6cghCFk+EQ+QdwT3gH2GTxCZD77wT3gH2u702XpvRX/mS+RzXnujN0tTVEHR/jklELzikkLRp1b222UH9joMLhwCoEdVFJidRL11RGyW5a8sbqGnlbuVv19LDWUssFTEyWKRulzHi4I7ivPWCUwyd06eS0zGxUdZFUT9SzZu5IGw8F9JKwZ/ZGj/6j5eI83yh9v0bF6Xy/wD6Bw782j/ZC80+yPP/ANR8utHAVD9v/TYvS2X/APQOHfm0f7IQHcEqQJUAIQhACOZQjmUAjefivKXSh/aBw38vJ+6avVrefivKXSh/aBw38vJ+6agPU9J9p0/4jfoW4c1ppPtOn/Eb9C3DmgEcotiP27P+OVKncCorie1e/wBJN15n0q/4T+a/qdNr7xzhKhC+bY2LN8iWJue5aqyop6KldVVUgaxvG7rcr/wW+KznubqPgmvMWHHFsArKZhtJZ5bw+CRz8VnSanVUJbI11JSI47pTy15Z5M6rhDibG8zO6/epZQYhSYhAJcOnjlB+C7UvH+MZJxnDsYmfNShzNXZfqBJ2Hcp70EVGY4sf6mrdMaS47Lnmw7Yvt4L1V70W1hbeLbzTfzyaoynnc9Eza2xkyOAd3LQxxBuV11ADi7YOuefJcb2Ed68lTbbaZ108vk62PDglB2PZNvBcjH6F09aOqKSTeyEvgNeYpOqw+Rw2Gk/QV51zFUCoxOU34n+AV6Z3rNGGSAOt2Tw8CvPtSevqyRyO5XrvR+hpTk/I9D0taKeWY7a1iCA91+N1rjlbK0aD2muufBZuAcdVuO69U+C1bWNSMZGXp5G83NIUfipa2kqHyQsJuT726kSCXEbEqYSfc57m1jWamiKYlFWPma4ROvc+8Uiw7rBStD2kGw5ehdJtbtNDj6UB5G1hZbJzzHCOa1sPDrOYIWTbOdYC6c8MweeslGlptfv9K5ZThSWZstHzmXBw0tLJUOs0bKVYHlaaWUFzT8h71K8s5Ss1pkjbe3O3crCosMgoG3exgt4Lzt71vQ9NHf6Mq7zqUKCxkjOA5V6hrXEDV6b8LKX0tHBRt1DS63nNvdN+JY5T0gIjIBG1wCofW5qdreGyuF+66qY2dzey8RbfceL6h6QUt1KS+qOnPeTsAzBSzTRjqKxjS5rutLbuAcQNvSVXPR3nqsy1Wy5fxku6q7Wslc0AbAk7nfmFIKvH3OvZ7rE78VA8+UIr4RW0o0zsDrvbsd7D+C9TZWM/CdCusnmvt2lVqaU/6Fz1ONh0Ya2Vob54N+N+S5G42Ghwf22HiNiqtynmV1fSeS1Futiu65vcgWCeXYg7WQNgViukxT1LlFZd9YqW9XCWxJDU00crpKWDRfiQAtxxgNaPO+VQ81cxfo1ODT3FYullN+24/Gut2KqPM+SvrdYk5Nok02Kucbhw+NQ7N+DfyiqY5n1DGlgDdOojhfu8V1a5PhH5VjqcDe5uttG2VN7HNHq1RPI4YBA3DcKiputDixttnHvJ/inLrQ5ocCRfbcqOhzhwcVuiqZI/OcXNG9iVNS2b3MX1KUnuPnXyxmzTsVhV4yzCoXzzO2YNRFx/FcD69xhBDG371xV9C/GqZ0Ljpa8EEg7gcOa0woQz7Z0U7vFWLZJMsZto8xOdFC12oX5t5C/JP4swOs1wICg2RsuwZelkeJHEnVuQOYtyUmo6x0k77u1A24rhr0oqXsHop14bbj1HUyseAHXGm66YsTkaxuk9vnsm+Mi2q+6Q20OtsTaxC4J0IN+Gb415JEcz3m3LeY4/aV8ZFc7zJWvY0aiC0DbfiUx5LzNi3R7iEWD4vDL7WTX6md0YDdLQQO07vKcsO6MKWqzLFissz2iNwfoAZa4de/en/pkwaPFMrl1G1r56LQxhNgQOsaT8y7J1beOizm8xa+j7FtSqOUFImePZdwbNVK018TnutqY+N+mxtbiFEce6I8Kfhrvah9THWNs4F1TIRtudguzoszA/HcqRSvLWTxPkDmh3ENdYcfBTKKvZBeWR/YaCHX77KklcXdhVVFLKz5HZ4kJLLK56Fs1VtU6swPG3gT0jI3R6mhpcXucT6TsArZXn7CcTpK3puDsHtHS9bDrDG6Q4aTYH516B47haOuUUq0ZYxlZOmk01sCEjvQlVJLClhGxghCFBALbRAnEKYggAP39K1LdQgmvpyOT1Z9G/5tP5/wBjXW9xkllNo3WI8028V5vlZS1HTzPNmeeOlZBP/Netf1WoGPt+NrN8Lr0lpuQTwtwVHeyWwOmiwA4/TwRsrKaOV/XNADrnQL34r67D3UVLJh03OYOjmqEQMjTG7Tp326p1iop7FFrRkZ2k76ItQvwOkpxz9Wuruh0y3IeKfc99oCm32J9nZGktx0w3Pf2SpfJBeSEIQAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/wCrbC/zaD90FaKq72Of9W2F/m0H7oK0U7gE0Zg+ws+P+Cd005g+wN8D/BVnVl/sqvyf9DZR99DJ3IWI81ZcgvkWHjCLkEha5+zCAeO6VZRvEbiT3WTiSRhKTXBEMxdIGBYNJ1MtXCJeY61vdfmVuwPNmD4yGupayFzzyEgPd3eKpbpn6O8SfjorMNZ18WrdjntAsGjkq/w2lzFhmJU7aXroCJGhzY3EDzhf6F7Kn0ezrW6lCa1Y8zT400z2ghNmWpKqXAKbywfXy06nk3JOo/wTm82eABfZeQksPBvTF1BoFuPNJIQbEA3Sc72slWtgNWoDYiyEIRaluTkAhpOi5FwhICeHLuRrUOTGVt47gFU50k5MxOfMFPj2XTGaphe6RrmGTd3Z4WtwJVySuIaRfZce7dWk21cbc13WF3KynqQ8PUUnmWfPtdgxpcSpWzwaSA2Ohsd227lu6BcMxzC8TrjiNJUxRSTFzQ+MtAGgDmrqazrBaQ6h3Fb4GRxm7Ghp7wFaVuuKdvK3cd38jV4DTyZyAaiHOHgka0NFghwBfc7lKeS88nq3fY28IEAXQhMEC2PvnAIuQOyQR4JDvx3ScBspUsbAbsbwTD8bpnQ4pDrjPvm7W7t/FUdmGhxHoozNDXYdHPNghkaXaQZAGhup27tuJK9BMBcCHDs9yZ82YHDmTAajD6hodqjc1twNr+KtumX/AIE/Bq705frk01aed0bcs41BmDBYK6jkaXPa0vbcEtJaCQbeK7Kh8semXU0cTayoDImNYj0fZynwXE7voZ3vfFrcXAAkMaABsPNXoSrjBiOnS8G4bv3LX1Wx9UrKUN4y4wZUZ52Y1VkNE97JqiGMy3FiWhJJVnWANIYOAAC3Txse0MeGn08bLQKRreLi4HvXNrbxGotkd8ILkyp5zLtY3OywzHhjcXwV9FrayR2k7kjh4LpihbFw35rI7u1c+9TGp4U80zXVhGXcrXor6M5MoVlRUVdTGXOYwNbqfckOJ5+Ks15ueysX6pCDISbcCeSGguB08ua23l7Vu6niVd5GFOjoWMg5rgN1tbC0Fz3e9ZqWoF2mz/pXUNDgWXuHN0k+K5ppQk2nsZTylsVziXSRh9BmY4ZI9uoOcD2m8hfvVkRhpia6M3aQD8oVY4x0O0WJ5uOLmsnbdzyWAMtuAO66s6FrY4msjJLWgN39CsOowt1Tpuk8trfc5oznKWHwZbkJvroS4AjlvbvTitcwGhxtwCqd22b4PS8lX9ImP0eBQNGJxh8cjQAOzcXJHNVFBFiOB1JzDlyOSag897WtMlg3YejiSr06RMlUebqONtRK+It07tDeRJ5+KwwXLNDgWXxhDSalkg0EStFjZ1+W3NeysuoUqVpCM3y8NfAVYSqe1DsMmXsYo82YEDNGZO1pkaLXBtvw4cSuCs6O8DnnDY2VDI33NvKHC3yKOdHtS7Bc6V+CyNayKVs0zN7AF0oA9HBWk9skckkdgTCdIN76lF5WqWU1Kl7r4OyhCNWKVXkqGOXEej7N1JRB5kwyoliYX2LgA913dp3cFeuGSsmEE8BDo5ma9jdVD0y4lRMpIKaUN8ta4Oa5rbkEtOndWL0biWbKeFSG5Pk7Lkncmy19Yh4lpCtNYkzmhUUZyprgmdOC0gHiuvkuKOQN9PpW5s4XlcGLRvdwCRYskDlksWjBoEN4x/jISj3n4ymn78fmjCfuslFF9qxfihVF7Jd8zsr0dOGPNJM+RlS8DZsZZuSeXirdo/tWL8UJszdg1PjuXq2jq6eKXrInMaHgEAkW5r7LbfuYfIqJcjL0Y+1UWRqGLCaqKZjadgk0y69L+rGx+K2y8/0JcfZLR6/O8sp/2VOugGofQ4hmXBZAHNjxCcxgm+lrY2gAcrbKEUtj7JlhH35T/sreQesW+aPBCVvAIUmJHekX+guPfmM37BVJ+xP87HPzv/cKurpDljdkjHh1jPtGbbUPgFUr7FAt/wC37X1CsAHd5hQHo8IQhAaqr7A7wUTm+yu8VLagXjI5FRKX7O8d114n0waUaf3/ANjvsnyjEJUW2CF4WLzLbyO1MFiWsuXlwEjd7FZIFu1cAlwtcqVwt8EdjXLDHUFrpo7EcHFbLhpcBvfmEhF7blKNitjrVWtMptr4sJJAwbEI06Uh3PclWrfOxOcghCFJAIQhCREqNJ1gbWPBMGOZuwjA6lsGISSte6xGloPG/efQs6MZVpaIoyckh/QuahrqfEaCGsonF0MrdTdXG3xLe0lw7NvjWuUcVHDG6IW6yKUXRe/xcUAJs1hkbPkxJdvZYF7Gm52PitrtwuWZvoU8mSjq24MpS2Zpa4XaRYqGZqye2sY59KNvQCeYUsEhYClZWxmMar78rbKxsr+vZy8SjJ7fFnDe9Lo3cdMlv54WTzjmPLk1IXBkTtXgVFnskhOmRpBGx2XqfGMBpcVpnENa19juAByVQ5uyVJSukewEjVt8vgvrfo96XUr2Kp137f3/ANWeWqW1fpj08x/ErXldaqqFs8ZY7ja4XTUwyQuLZGuFvQtIF+0Dw23Xtpw8aG/B0UqsGtUXsNOGTOhqHQy8Ba3JK7EZfLur0nTb+KTFmGGaOZtr3JNk5dVDIyN4aNdhyC4YqepxjwjpmlFZZtLi5gJFkr2kAG6HnU0CwFu5IdwArJxwlg5pPG4ISG97XB+NKSOAvdYp5M8CgdyxfK2PzjZZxkDjdctfAZmEMJCxquUI6oDBuY9k4JYQbJWXabFceGUzqeN2pzidRO5Xa7c3U0ajlFOZLwl7PIhBD/Qi5EgtySnl6EgJ1X2WyOYt+Rg4rh8E0y5V9eY234H+Kn8dFFJSAkbkDmqiwKqdTVLGMsQ82JPJXbltvlODh5AJFh8y+c+llF29VVo7JlNbWqhcSg1s8tEZmpmQyWHBRbPsuG+1obWysZVNIcwufbaxtt4qbYxE9kocAPBQvMWWGY9JH5Q+RoaR5hHK/ePSqm1nHOubNNGUbW53+84+i7pDp8DoalmKPbI1gYGHWGd9+XpTdmKXHukueWrw6GXyRgIa1sYfu244i3erMy70eYI/AXU9RG64a0a+rbqO/fZTvBcHocJpvJ8PgYyMi2zA078eCrrrqNrbzdakszzjdHsaHtpOPBEOgPB8bwbCKqlxSKSGMyNLdcWm4DfWrXIGom255rVSANgYwNDdItcc/FZ79Z4ryN/cu6uHWmsPsW9LCRmhI+7G6nW422XFjOK0WC0YqMQkLGb8LcvErjpU51fZ75Mm8bnchcOFYrR4xSifDZC9mqx1W+PgfSu52zttwsqkHCXhy5Cep5QH33gnvL/2ufiTFfd3gn7AB/NifBen9FYNXcn8DnvNojjO4RsfI7zWi6oDBYv5X9Ns9a1pEGHCopC7iLglw3Hir9nYZYpG3FnCw3Xmyoxqu6Lc+Ym+eidPh+IVMtU6VkbpHtLnaQBawtsvoxWHJ7I/T7pGXrDteUPub/8AhsXpbL/+gcO/No/2QvJvTBmjD8051y7V4eJ2jr3kiVmg+Y0d57l6twCaP2iw0a2E+TxiwP8AdCAcwlSN4kdyVACEIQAjmULFztO7uCAVvPxXlLpQ/tA4b+Xk/dNXqkysYe09jQd9zYryr0muD/ZAYcWkEdfJuD/4QQHqik+06f8AEb9C3DmtNIP5nT/iN+hbu9AD+BUWxP7fd4lSi+ppUXxMf9plvI6l5z0oi5WTa7Nf1Om2eJnMlSJV8z1LBaNbmJDy5vVg7cTZKy+o32cl3F7EhF9rfOsZZfGxHzBx1M0vaCwcduKxhjbFd0LQG81k3YjnbkeaD51xsO4cFvjXqwjpU218yMIw7BcS0i/PdKQCsjYnYAeCxtusNs7GaZzTRkk2XBWVoponaiBZPJFwq+6Sa44RhstQQ9zWtJOkX7l0WdJ1qnhrk6LaKlLDGXOuKtnpXsa4HY8/QVUtS809LNJ76wPyJ6pcSq8wRyyUEL3sYXBwe0323Nhv3rRheXcSxzF6eiNLNFTTBwe5zHNI22tcWX0Pp9lKglGS3Lmte29vbuCftY8hufgtVgMw8tY5rZ2gN1Ntu7dLaxLeQ2V5dPeU3zZdwiqw2ImphnjD2tGxa2J3cL8bKk2Yfir5AHUUjTYlxMbgL+NlaVqLylE5em9ThKm/FZpSE24Lj8vZ5caQtd1otfs7brttfY3utE4OLUWXNtcQqr2QvpF1kwPlIDGErfR00lY8RsjcT4Kx8pZJkk0SVLQ1vH6O8KvvLuNqstmU68KOZTeCN5Zy5LVvYXRuF/Qe4q2cAy3HSRNdI23jf0LvbT0GDQ6jouO4D/rmovj+crao6UbWtsCO/uK85Krc9Qlijx96PIdX9JadBNatiW12JUeHMDWubqbt5yguPZrklBbG4fN3KM1mKVNY8mRxAPcSuF7b8SSr7p/o9GHtV1l/cz5f1T0lq3EsUnt95vqMQnqHkuPH0LmczUbkrIeA2SuF+a9BCxhT91YR5irc1KksykzUY2tN3cEoAG1rxlZ30g7A8t0da1sHVlvx23WTpx4yYxm4tSi9yDY7SyYPicNRT/YnvaHbctyfoXXjmPPhoYJadpOpoNxY8065gphWYfKCN2NLmn02KacrCCuovJKxjS6HSwdkG9hfmsYwTTa7HooVaVan4tVZ08j9g1Y+uoGPkaQ4k/SuvgbLY2NkUYjiY1rW77CyweA0XPEqK6Upao7FDXnCdRuHAt9liUDs+eWgeKGgOO3zrSodzVpxyIErtOh5e4AAE7pdBB0utq5WKSeAyQyRG+tzSBb0hTrM4Q1TSMsFr6CondTumj1A2870J7ZA2ncWscDqFlA8HyjWQYyaozO6txJt1no8FYbyA4BoG3euG5lF+6ehnb0cLTyjCwtpPFBY1ouxwBQBZxdxulGy44xyYyb1p52NkNW+Jha473Trh0zaiKzyA70pkc0OcHFZse5j9TSR6AVrdJafZ5zv8jfC6mmtXBJ+sfFFcSta0crJsxfG6Sipw6pe0xOb2+1bfgE3yVUj7NcTa/euSuw9mKwPppTZriNxxFjdaqVnRU9VV7HZLqMotRjwVhguaYMv5wpp8OmYKF07OsGoHbVd25UkzN0iT4q+ShwNpldMdR0Fr9727u5TjJPRfgOHRyVNWZqlzwQ1srGPAIN+5OmF5HwqjxiSrp4GW1GwMbbC/wAS2172x1t4zJLuj0kcNIrDopydmTB870b5qCpFMyVnXymKwDRfj3L0/GNLbFKxjGSve2KNpfx0iyR53Xkeq9RleV05rCSxsWtvTdOO4hG6yQAXCxWuSVjGueTaNjSST6OKrIxlhJ8s3Skk9zYhM1DmjB6yvfSRVDjM02I7PdfvTzYjzuKyq0pUveIUkwXRh7HOrYS3gHbrnOwXXhO9W0cNwrHosW76kvj/AGNdf922SJt2jdUz7JatL8vU+CRC8uIRzNaBx7Og8PjV0aQG7kqm/ZD4fVNpcNxymg684Y2Zwja0u169A3A48F9bjtFFUzp6RqI4f0QdVzMAB2/8A+pNvsUg1uRHHvZDf/CVF819LOH5gyNUYZV0tXT1TYXADyctbfqy3iT3lST2Kj2x5HkErmAaYdO+/mlTzuQXohYNeHC4Ic3kWm6yaTzt6EAqEIQAhCEAKmvZQf0Cj/KSfu3K5HODW3cbBUx7J2VhyJHd7SOsk8w3P2MoB29jn/Vthf5tB+6CtFVb7HMg9G+G6b2FPBx/JBWko7gVNOYPtdvgf4J1KacwfaoPcD/BcPU1qtKiXk/6GdH30MQ81ZcgsXdktaOBsVke7uXx7OHhFz2BFr8roSg2KbgVjmhuqNzbHjzWkQxMlMsbA6Q3vb08VmwBkegcEAWOy2wrVKfuzf1IwhQZHloI0tHoStdu63GyS57ygbAhatwIL2F+KVIEqkAhCE3XyGASNQbngl2DiNyBxWD2WSeOTnqHWK0n0KM4nnrBYMRFE6SYTl2kDSLXvbvTxR17ajZvHv5LsdvOmlKa2ZspPWm49jt1uC6IHXHpWlmo7EC/JdMcegX5rQ/42tw5Z2NjkJCbpVi1JrKMGCEIUL4mII35cUIRxySBDtJdfcLFpBcCNiShgs5x1E3N7FZHgNhsstLWy4RHfBX/AEu5RhzDgxq6ZhbW0xBB3Nw27uA9KjHRtn+d+QsSNY8e2VDFG4MNgSXudyt3BXI5rZC+Jw2ewgjluLKgoIqfKvTFNR1UTfaytlY0sLQW2Ywnhw98vT9MuoXdGVKtu4LO+/zNNSOh5Q49EueMSzJmKroq2J/VNbI8Os0DaRo5D0q5RCxrpGEbNNrrjwXAMLwmR0+H0kDDM0u1CJoNnEHkPBOrrCNzbA35niqnqdajUqOVusI20Z1O5xPa1p7KwRUOEbSX7DkVhDLGWanPDh/cN1yxjrjqSOhrudMbQ4gHgs3Uw0nQbXckp7ubqHD0ros1ljdxJ5clqm2ntyYTk1siOZizBg2AvjixGphjeb7Ok0+n+KeKCWGoo2T0jhJG/cFpvtYFVj0x9HGIZsxGOooKkxm5Ib1ukeaB3HuVgZLw1+CYNDRSPdKWtAc55uQdIBt8isq9tRdpCaftPOTV4k2PJY27XsBJQL8xb0FLsw9kk+KQC21yfFVT505MoipHM1jwSpCL23ISTeEkTuN9VA15IeNk0uppHahDE4ja1t1JngabEA+K4h2JBbYLapLKWdjfTq6DzN0uV9D7cxuo3NhxGEtLrvuSAXX28bJ7wLpVpaLKEYqi04lFG1p+uNBcS7fa3cVL8x9FeFYxmJmK1FRUtc0i7GFuk9q+4ITnXZGy9OYXNpYwIgRZsLO1fv2XspdTsJ0adOtyl5HPONxKo5LZfMovE8sZozDLFjjKWeRpkFg2G+zd+I8V6UyLQ1NHkzD/AC4GOcQsuxzbEbbpxooIoqVkEUETIm8A1oAXVocXs3OlosGX2+RU3Uuqyu4KjhJRIjTlCSlLkx0gcEvBbOrDQbk+hYaS42be/HdUy3WTe3ncyY/SV1Rm4UWx3MlBg1S2Grl0vJtbbuv3+lSOjlbUUsVRTODon23J9F1NSlKEVNrZmttHSsh7z8ZY3aXEb+hLEdTmA/CWFL2pxx5ownvFkpo/tWL8UJtzZiLcGy1iVc8dmmgfLxtw3TnSi1NH+KEz51ws41lHF8Ma4h1VTPhDr7jUF9moRcaUU/IppclWdBOFGpqcw489pAnrZi0HmHRtP8VXdAQ72SsZaLDyyn2/8qfck9Ic2Qqiuy/jdBKKfr3mOWGBzyQAGAk3A96VGcCr6fEfZEw1lKSKd1ZAQXjTsBZbsEJ5PXzeA8ELXHKxwGl7DtyKEIPPucMjZ3gwPGKmqzXLVUop5XGPyRjbNsTa9+5cvsTCWxYzC7tvbUgOf3nQeSu7pD2yPj9/N8hm4fiFUp7FA6W5gazi6sBufxCgPRrRYcbpUDghAYyC4URlFqiTxKl7uCiU/wBsSfH9K8T6Yr2Kb+f9jts+WauQSpLcEq8JBYl9x3AhCFK4J7AhCFJAIQhACEIQAjihCEmOgts7V9j3VF+ySyvNUQ02LQDZpY07dwee9Xs3Ygb2PFM2cqFmJ5arIJWa7MeWgC5vpNlYdKu5W13GcuGaqybWxTPQFn2JrWYNiUmiNoa2HUeQDidgPBX2Y3sbYu7D92nxXjHC8FrGZkNG13kVVE4thfMTE13Z335q8+j7pNidPFguZWzQ1l9EcpbojNyA3tOO+y9J1zpKrf7igsvBoo1mnhlut4afg7X71ksIniRuphDmHzXDcOHeDzWa8TpcfZZ2c7oQrFzbhZIWSM0zgqWGzrdyaTdr+0LBSJ7Lg8E3VcBcDcD4ltpvDydFOpjYbGYk6KUNa6wXf5XTVrerqQD4kplqqbS+4vdN0sr438VYQoeLvF4ZulZ07iOJHHnTJEc8L5qKIHa+w9HpKpzHcFnoJyyVhYeIBtwuvQFFjMjLMmLHM7iLrPEsHwrMEWt7Q2cDSLaWj/rdey6J6UVunSVG53h9y/seT6h0GpQbrUV+vqeW8VY11KRe7mgowuQPpvSDZWJn7Jb8HZUyluqFgvqbcjl6FWmCHV1oaDpD3cV9FsuoUbqUatq+ee5wUqjlBxrLDHNYSgmJ4b5xGyyFybaXeNkp2vbfwVw905534Ig9K9kYYqqWnrNErja5T2Hl7g6MXXBWUBmfraQHekrTSVz6eoEBaS4kC9tlXUKs6D0SRteB31AnfjzWQNliACNR4ncpbqzjLuzU0xXHUbpEIWUnHlBbCt4pSO5YrNvK5AuL7rFbh7iRyGORrhxBurj6PsXLsN6tzt//APkKmiOyHDnsFLMmYgYSWEkWJ+gKh9IbL1uzaS3RX3KdGSr+RZGPPJ0kelMk2L0mCw+U1zgGX53Hp5eC6KjEY6tjWtuCObloly5BmKk6ioLg0u9663L/AJr51ThGjHFbbByUZwu6ql3JfkTMmHZsophhhaS0NuASeN+8DuUxpoCCNQtbZRbo2yTSZOppG0rpHOkDban6uF/QO9TbVtctN/QF47qtSg7h+rvJ7yjSWE/gFtI2Sgi7fFAPZ7W3isG6iHdl1rbbKrllSOlLBmW6muF79pQHpkydVZxwaOKjk0ubq20B3G3pHcp4NrBoIda51Jb2IcA7fh3LptbmVvVU4coiSyiC9EeUqnKmAOp6x93mR3vQOIA7z3KdluhoHG/FDiHgXNueyCbskHM+alzcyuarnMiKwkYni7wT/gH2qfiTCRsedxZP+BAilPxL0Poj/wAqbXl/c5717IcLA21DZu4K4sSwukxNvV18QnjI4EkfQu5oBN97oPnAjgBbZfRyuPI3sgcv0GF5xwiDA6dtLLPM5utpJ0WY2x348SrPyhknOdNJh1XPm2SejMMZ6jyRosNjxv3bKDeyPbfpIy9pNj5Q/n/4bF6VwAf9g4b3+TR/shAdzLAgON3d6zSAG5JtbklQAhCEALXI0kPv2xyatiQgHbdAVl0iZSzNjmKxSYHmF+GQtibdgp2ybgm+5PgvPmK4TieEdNGFQ4xiRxCbrZO2Ywy31vuHiF7Oa0ar/EvKfSaCPZBYffgZ5LfomoD1TR/adP8AiN+hbe9aaQ/zOn/Eb9C3cboBG8FGsYbpxAO/GUlA2Uex3aqb4FUPpGv9hP7v6nRb++cCEgSr5ZjZFswQhCyMWCEIQgEISHZO5KWWKotnih8rwaoYTquw3FvSFKAbrCogEsDmPDe2Lbrdb1vBqqRtozdOeWeZsv4/i+UMamkw6eTyYPcXxtsL777m/IL0p0aZ4ps54U+aP63UQhutuouILtVuQ+CqQ6R8n1GHyS1lIxxZJe/EjfUTyUv6M8ZwnIeQ4sRxGWPrq2NjzFG5peNJIPZJHwl9W6ZXVelqT3wY9VoUnGM6W8m8F5VErYqd8kuzWguvdee+lLpYrX1tZg+XHyNkp5HQyPY8Hdp7iO5O+TumqDFMUkoccgfBDIC2N5hEbblwAuS7uum2LBsLk6RcTfIYpmYhPNUQmEtcNOkrou67oU9bRW0qKpyxWWEeb4sSq4sZMtfM6Sdzm6ibA+hXPkrKLswUrK2WW1KLBxLbjVYHv9KgXSrQRQZhmbQQFkNmX1s3HZF+C4sv5mxDLzGxddI+jkGstjc5xDrWHPbgtFW3r39FSpPGfhkypdblaRqRt98L9dj0WykwXLcQc3q3vHdqHD/9U1YnnuR4MdIXMbw2df8AgqrZmSSvYXda5/oJufpXKa2V7iBffuXbYehVGqlOvNSfya/ozx/U+tX93s/Z+5fkTeuxWasB6+ouD3hc1P1QPZs4/IovTl77NPW3+NP2GQyRkOJ29K9bb9ItrWGhQ/F/meRutWM1Hk73NF72stL1tlddxXO51uKr7+tRgsRK1LIvBYOKxc6/Ba9dzZUFSvlG1QbNmrdY62XsRutzKaR4BaCuyLDQG3kIB8VXKtpnqfB0U7eUssbHgPBYBs4WKidEzyTNssVrMe+Qj4gVYsdLEPNBVe5okjjznSim1F7esDgNzf4llRq+JKRfdNtHOGh9yWhkhle2x3aECFznWcLEbJ7dDpEbtBBNr3HoRJEx21rO43XNO6bbSK92DhJ5K1zx7a4fKyWPX1F3d1uAT/leqhxejjYXgzhoJ+IC/wA5T3mPC2YzhjYB2Xu1AFxtxt6lXtTHLkmdjWa5XPcD2bv2J+LuXVCcalPRncvKdvC4oKGN0WMzDWNmAktqb6F0sihZKXNAL7WXNl6vkxTC4qssLXObqIc2x4kfwXdYkuOmxItuFwSlh4zwcMrTw2klwZNc5va17dywcA5wcDZBY0MsS6/ijUzSBZ1woaUjJ6kjJCx1bX3W6midObMFvFamlEiCk3wa0LrfQSsFyWnwWs0svwHHwBSE442M3RqNbI5xu8A8Epe2kc+ZzLtBXRFRyvPm28QQs/agzh7Z3HQ48nWKxdSm9psy8Go5LY25M6SsHrMSiwd8bWyyvEbTrPFzrDkrBdGIXmw7DzqHgq8yh0YYVQY1Di5fMZI5GyAdbfdrr8LKx5XBz9vMb2R32Xneqer062KT5R7a3xKjHPI5UsuoOa88OC2GyaGyuY5ridieS66apD5dABJte/JUc6Wh6luWNOuksM7Gu0rgxWidiOHVVKw6HSRPaDa/FpH8V3gi9nAj0kWCXjub3/urVRqunV1R5NjxPdFH5S6I8RwvOk+JS1F4XPcR9aA4tt3q8nkFwtvssdRA2JukaCGrrvr+peNKr2MowwKeC68H+3G+IXGT6V2YQbVQsRckWXV0Jxjf0oxXn/RmFz+6ZJL2NikO4DSDbvulbuBexPoSuPCxHxr6wvdKcqLpyyxgseT6yvbQMNVZ416nXHYee/vVTdCWU81YvlXyjAMyPw2PTGQxtM2SwIO1ye66vTp026Pq3hbS/wDdvUS9ii0HIr9z5kP7JWa4BZWQ8OxPCMBZBjFc6tqQ951GMMvd1xwUj1DU3ULEhZ6d+VuSQNJdd1r8lAFaCG2Jue9KkbfSNVr+hKgBCEIBozZQ12I4HPTYXWGiq3luiYMD9NjvsV5k6Y8p5rwbK7JsazHJWwGR/YNO1nvCeR7l6yVM+yiv/IOO1vsknH8m5AOnseC33N8NLTq/m8F/0YVoqrfY5g+5rhvC5poP3QVpISBTdjjdVE/0D1JxK4sXH8xl8FyXy/29T5P+hNN+2iNO3cPAJb3SDigL4217TLrsKhCEIBCEIAQhCAEIQgBCELGeGsEhwuUtO7S6MuF9Z3+JJa6Rri0Sk2LRbR6Fk3pitJL3R5P6aMEnwLOwrmstG4Nc02HnFznfwVt9DOY6XMGC09E+QDEGMa117k3sSeVuATh064M3FMqNligL6uOUPJay92iN+3C97kLz7koYnQVT63Cn9TUwG00EpcHFxBGzRvwK99QVLqnT9P8A2jscbqSpSwj2KY+rLRxLdys73371AujzpEwzMcbaOQywV7TZzZw1mrewsCb7qe7cuHJeJuLKrZvTUidUaimtgQhC5vuMuwIQhSYghCEJECClQok3tgnvkGWDtR84cFTHsicPZFS4VjLWgTRid7j8TArmfs4E8LKuenmWiZkGpbWO+uPieIbEbG7b3v8AErXo9VxvIqPD2NNdZRNst1bazAaCVhv/ADeIHx0NTh4qvug2tlrclB0zXjRMWNLgfNDRZWCbAjcG65+oU4xu50+yZnSfskR6UvbRmVKn2kDzUmOQEstcdg24+lVX0K5yko6+uoM1VX85E3ZbILGwZv5o71f9VEJoZ4HgEPjIvy3CoPOfRVJhuI1ePsmNnyFwbHKb9o91ld9FrUK1CdnW5fBz1HPVlHoARmNxBFmu2b4pCWDsyDdVJ0QdItXmipqaeqhkboY0sJitYlxG5urdvctLgLgWOyobyynZVXSn2N8J61kLji19rJHEHglB7RuBY+hIbclz+L2MhQza5WKW5Qse+SUCEIUmQhFwueaEvaQ3iV0pQQgzjcrDPucaXKtZFTVcgBk07Ekedf0HuUmyxJTYrgNNX0jhIyaMPFr95H8E3576O8MzfWRz1r5mmMNtpk07tv6PSn7LuF02XcDpsOo3OcIWBnbdq4En+KuK7s3Zxaft/MyVaecHdEwCwXUxgtdckbXPGobb8Ctxl6tvavf0KoWeXwS3KRva0Ocf7u6QWEuoiwsW3XP1/nhnn23ut4JkgANgdlFRNL2Ga5J8Mprpe6MMQzRjUNZRSkMDiTaMH3gHeO5Wbk7C58Hy5BQzv1PYQeFvetH8E8Xdps34tSUXtud1Y3HUq1ehGjLhfI1qkk8oGu7QBHDmlp/PZ+MkaTqF9NuayhGmZjeepcENqsPmv6kyzjcldL9rx/ihGkEODew8hY050wRix4BbiNjbiV9opP2EUz5Yy45l3C8YgcMWpW1GlvvnEcLnkV5HxLA5fdtfhmXajyC9RCyNzW6rEtHIr2fL9heP7p+heTqID6peOx2FZT23/urcREt7JmS844Xick+K5qkrKZ0BY2E0rW6XFzSDcHkAR8aFa7eAQoJI70i/0Fx78xm/YKpP2J/nY5+d/wC4VdnSL/QXHvzGb9gqk/Yn+djn53/uFCD0eEICEAjuCiVR9sSfH9KlruCiVRtUyX9P0rxvpgv2VP5v+x22fLNfIIRyCF4KPvfcdwIQhRHgnsCEIUkAhCEAIQhACEIQkNdnehLZrWuDxqa4WIPpWLdy9p4cigGwsd91O2Eu5EucFX9KPR2McazEcFkdDW019LY2jfURfcnuBVK12D5hzFiUdF5EYcRpnB7ZWytLjbsjibL11qNyGCxPAkbI0tBLhHH1xFtYaLL0Vl6Q1LeHhVFnC25f9zROim8oiHRhR47QZcjpcyOkdPEGsjL3NJ0gb+b6VMEg4WPHmeRSqgr1vHqSqYxk3xWFgEIQtaJyIsDFrG4WxAcQpWzyZRb7DTW0d+ATBX0O5Kmj2h3FcVVQte0m/FdNOvKDzk6KNy6b9oruqY9m4J2XLHjElFODqPDvUqrsOIa7YqKYlh5s67HX1bK9t61K4Xtl1Rq0620jozNizcaybiVO5oNQYrA3N7kqsOjXLEeL4dil2/XYHTP4cmgKVyNfSmZ/I2u1VpgGcpst1eI9Uw2mdKxw0g7OO/0L0/SfGo05eA+Pj+RRdd6XRhNKG2fl+Q3T4kyDGJqN0pOl1rW9F12tYb6hsCpz0eUGWM0F8lU4wV8liA+cNubG+3xLozT0b1MEcs1C8TtYC5rYw5xNgV6zpvpDRivBuMqXO/8AlnlLi3lbY0LKf3lfFhLuK0OpYTMHkDUPQuTqsSpMRkjq6WaJrXEEvjIt8qc9QaL2JPoXobetTulrNbWNhPDghHnb2KOK6mkkY5BCEl7qGsocgeLTyB3Q4dYHFp57Ide4FvONljN9ZB3AHAXWM5aI5Ed2a4qljpXQDjGNXyrsoap9NNqGwKkuLZIkw7ImGY7oeJpppWytIN2tbexI5BRNj+taLA271z2daNbUpcCvSVSOh8Mm2HVwqIrB3aKs/JdP18DTzDvUqHwyZ9PVtAPZJXo3o1g/7K60jtk8D3WG68B6bUqVlR1RXJUdMsHTvv8A4jpjmZsGwB0MOI1YikNwBoceHgPSnWmq4qyBs9G/rICLh1rbqsOlnovq844jT1lPVxxaS8lpLr727vBWFlfCJcHwOGge9sjmcXNvbgO9fOry1oRt4VaTzKXy2Pdxk9eOw5W697A7YWVTdKvSlU5Wx2KgpKdr2OLQT1hba7b9ytstJAFjduyZcby1hOLzMmroXmUHbtW5eC19LdKjU/3MW18skzfkbsqYocbwGkrXsDHyRMcbG/FoKcw6xILiQOS0QChwymjgjlZExjQBreOWy0PxbD4ozJNiVFG0buLpALLmq0pqq5Qi8PjYlS8zs1NLvNAWbtGnjb4kyz5ry/CzU/GsO/WG+tNr+kHLTHHVitCR3ipZ61qVtXlzF/RmcmsEsPZAF+KfsFjcILl5ttsqr903LV9RqonAd1Qz1pwp+l/CIowKeiqp2W2dG9jgV7D0Ss506s5SWNv7nFdvKRa42Hf6VgLAOLBc33VP45020tHQyPp8GxHWGmzyGlrfSUyYLjnSVjtPJimFy0cFHK/XHFNQuc9zCLggg2Oy92cJGfZF6D0k5fc11yah1xbh9bavS2X/APQWHfm0f7IXkHpQxfGcRzzgDMfpJIKiKdx1Oh6sOuxvAeFl6+y//oLDvzaP9kIDvQhCAEIQgBHMoRzKARvPxXlLpQ/tA4b+Xk/dNXq1vPxXlLpQ/tA4b+Xk/dNQHqek+06f8Rv0Ld3rTSfadP8AiN+hbe9AK3go9j320zwP0qQt4KO499tM8D9KpPSJf7Cf3f1N9v75wIQhfK+yLdghCEMWCEIQgEnFKhAIB3IFy4h4uAlSFp7DQRudyVCWVklPzIj0kQ1+JYXHSYcHMLpGgua4c7jn4qBYn0ZVTsNo2VFTJW1DGkPgka0CM3G1wd7/AMFdOlsjDHI0mxuCOC4ZaN3Wa2ncq5surVaNPw4vH1/M1xlKjNVI747M8+zZHxh7i2ancS3dl3N7J5EbqRZSytjuGYzh9fJUTTMhiewscWAR6mkWFvFXLAwzP1VDLaRtta67GNa0HSAGnexG66q3pFXmvCwn9fzOy6uY3cMOKT+CKZ6RsqeU9bOI/rkjNPLk3xVI4vhNdhkj2dR1jSdgXAc7L2XNTMqQ7rm322TFW5Xp6jXZrQ4m4JVl070olQj4c/1+J5Kt0utQnqovOfNnlvLGA17H9ZKXsabbXHpU1psJhp7PkOpx7wrTqskht+B/FuuQZMsCd7em69Zb+mMKUML9fiecvunX9abykvlkgXVwRbtaFs68EWaLKZnKpY3zXH5Vq/k0S7zHD4iorelquFiTx8v/AGVkug3be+/1/IiBc6yRsT3lTQZe07aHbeK2swQs/wBW75CqyfV4z3z+vqZw6FNc/r8CGNonlwJGy646SBtrgavBS9mFuB3ifbwWbsOaLfWJbrjn1NPZP9fU7qfR9PK/X0I1FC8tAib8i6Rhs0o7RI+RSBlC8i0cTgfSF0xYVK/ziB8RXLVvsbZO2n0zC45/XkMdHh0bPPAce481VGNU8VF0qB9VG2OGSSctHEWsVfTMHcHDtAn41TPTbI7BMwUFV2S5rX8uN3ALq6ZdePW0Isrez8JZXYdekDN9Nl+uZD1TJAWstckcWg8k/ZWfBiuHMq5mgCQBzRxsCLqvDmrDs4Y/TRYvE6FjTGC5xawWsB9Cu7BMIpKeipvJjqpzGCwh17jlul9U9UpRbW7YnYxc0xrbh0T6drnNADd024nl7C8Rew1UEZc21iQTw+NRfpkrswUeNwxYRRzvp3PcAWwFwPZbzCnGXWVs+D0r6uF7JjEy4cwg30i/zrUpSjRVwpc/Eh2yoSzEKegoaSmjp6aNjWgW2B8Vsko4SdJAG1+C65aOVnaLHX8FrbTyl13Mdfhay5FcPGW+TQ6O7bXJyGgg9HyLA4bAdha/gnHyWTnG/wCRK6kkH+rePELNXGO5Kt4tcDUcNYDb+C6YaZkAuAunyOe99Dj8RRJFK0dtjgPSEdfPcxVuk+DUTqcA0LoMMzWAtj+dYU72Nla55AaNiTwUniLKiAOpnNlA4lm65K1eVPeJ1W1upckchppnk3ZY270T0czGF1iPkUiFgSdu5YTsM0JAI5Lkd1qeZHT6oluR726hwqlbJXzmKIE3NifSeCesCxnDMepnnDKrrXNdY2YRva/NRvN+TZMxYHJRxTsje9r2gm/MW5JeiLo8qcksqHVFQyXrHlwA1c2Ac/BddSNtK28Zv2vuOm2g8bkuaewxpFyOKi+f8zz5XwR1bTQBzxIGedbYhx/gpjHSu1F72OsVuxLCKPEKUQVcMhiNnXvYXt/zVZaVIU6uqrHK+WTeqLkyBdDmfajO1HWNrIGsLAyx1l3G/o9Csq4G3cmjBMEwvBYpGULSwSWuS+/BdpxHD2g3racW43kGy09QVOtXlO3g0vkdlJaVhnXcI3tsLhNMuZMCidplxjD2HudUNH8Vw1Od8t00pY7F6BzgL7VLPWuSNtVkt4v6M2OaJC4d7V2YOD5W3S0WuLqDSdI+WmGzcQpXn+7UM9axh6WMCpJm9U19U8nZsMrCVedCtqkbyEnHz7fA03Ek6bLfLbN7Li0ehFgdJA1DvVVydMuHCF0rcHxJ9ttLdN1D5uk/MmdceioMn0clEYnFsxq6frBFqF26tJ281y+mr3SqLD6dgHdH9b2rAB5P6N6insUng5Dfo3cGQg/4Son0jYtnyly5V02NQMmpnMcDLFROa0XaeZPddSz2Kdm5GNhcuZCdvxSslwC8EIQgBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/ykn7tyAc/Y5/1bYZ+bQfugrQKq/2Of8AVthn5tB+6CtAhCRSuPF/tCTwXYuPF96CS3cua9/49T5P+gp++iMjilSDilXxuXLLvsCEIWJAIQhACEIQAhCEAISJVDlHgl8COJaLhDdmkO5pb234rBwLmB3A9yleyTER7IqiIw1MYew8j8ipDpM6O8RwvEavMWWHP+uyGR9OzS1vaIba5N+BKvMPvbbfvSFrBIC9pc527u66sbHqVWwlmG6fbf8AM01IKR5PwTLmaMXx6DE8FoTSyxvYZDFK33h34nvXqLAWVUeC0LK8k1bYmiW5BOrnwXZazAyFjI43GzhpF7His7Buw4BbuqdYd60lFfT/ACRCHh7ghCFUS1ZWeDfnKBCEIYghCEAISJVCWJsz7GL3bWtfdVP7JHDJazJzJadtxEyUutbmWW+hWzexsAot0p62ZBxO+lx6rYW/vBd/Sp+Fc02udS/qaau8SKZOzTQ4B0YtroWs+tu6t0XaALhHcm//AJU4dF/SLBndssXUMpnsIF2Oc7kTzHoVFYB0gMw/L8uXq2B01PJVPlcYw0WvdvE+glXp0NUOXxgrKnAngVT2tL2OmDy07ixA9F16Pq9nTt6VatOOXJ7M56dR8FjDzXMDiSBfUtNVSxVlG6CqjEsRt5yjHSjWYlQ5Tqp8Gb1tZ1cgIazXwYbbD0qIdBGLZlxBlX7f08kLOtGkvpzHcaPT6V5+16bUlbetKeGvjubtafsk9y5lLB8tue7D6SJr5AG6mgi1jfvT+sG3a433Hes7G1+S4q1arWlqqvLNqgobIEIIIF+SCCOOy1aQCEiUi3FESgQixJtbdajUQiYRGVglOwZff5FmouXCJNqEHYgHYndF9J9KxfkwYzM7BdyAuVFv5V4MzGTQOnb5QHFpbodxAv3KUSAvjlhB+yMLb911TE/RBVO6RH4u2sYYZJXvtd+12W8FadLtretGaqvGOODVKbRdBYQyN7RsSFhKG6XPcB2dlsbDIyGME36sAWt3BZPbrbctd6Qq+MmnutjONRlB4f0p1UufYcMfA3q3PjBOs8/RZXvE5k7YXg6A+MO29ITC3JeCMxU4gYnipbY/ZO7htZPT6yiiAaaiKItGkB7wFZdQnRreGqEGtt9jXqbk9TOlpYG2vr8eSRpaTuAE2zY3hdNp8oxShj1cNUoF1x1Wccv0w7eMYf4eUN9arfBqTljS/ozZt2Y+SBp2a7fwW6w66MNdvcKGzdImWmxm+J0bnfBbUMufnWiPpOy1FK13lDJHAiwbOy5+ddlG0m6kMRfK7GEpbPJcFOC2Bmp19gszxuTYDdVcOmPCw5rGYZXPbbZzSwgqP5r6a5PJBT4PhFfDV1N4oHzMa5rn22AHNfXoLEUiofLLwmAMMh72n6F5OoAB7JWMDh5ZT/sqfU1f0oCijxEyUb4JI9Qgbh7+sAIv3qr8nYhWYp0+0dZicD6erlrIC+N7NBbtttyUkRPY7eA8EIbwHghAR3pF/oLj35jN+wVSfsT/ADsc/O/9wq7OkX+guPfmM37BVJ+xP87HPzv/AHCgPR4QgIQAeSiVZ9tP+P6VLTyUSrPtp/x/SvIel6zQh83/AGOu09808wlSHi1KV89iiyfIIQhZLghghCEIBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCGSBJx2SpL2KEnPUUokG6ZMSwxpeBbkpHuUjmXtq4LZTm4S1IyhUVN6mVpiuBdY+UN2vbuVQYp0fStkqahziRdx5ekr09W0kL+BFz6So9iWAtlhey2oOvsL81fdO65K3e/f9eR3+NTuYxVffH67HkvC6qowPHHOhcWuhcQCDbl6PFXdgebqttO0TSPeCObyVXudsDpcJzgYayMsZK9+5cRwAWdbi9I28VAwuaGAEtde2y9bd0aV6oSb7Ix6bKhTVSE1lZeDbmDGm1WajDKxpjlc4niU95lyNWUsgqaMB0JAIGoDgO5VfUtqpsQdLFE+4ddptdWFTdJOYacRwQwyyMi7RtGzgfEKzpXVzYU1C3eV9yPP3PTI1KrnB6fhz/cjs8MtO9zXghwNiPStTQ4ch8qf8SzFimONOqhnjeTcuc1vH4vFcuH5Kx7EGGWBxPOwiuvSUuv0VSTrLEv18DifTa9NOUo4XnsNel9uAt4rFxDW7WussVyxj1HOWVYc0gc47bJtGHztNppQD6QrGnfSrQ104bS4eTjctOyf3j3lXC349ixonzuiLmgMIcOJNuas2n6CcYqXRiSpLqfjr61hPo2VLswy8jZOuaHRkOad9iF6H9jnmTGK6afDamUy0cLgwODGgWDDbfiq29ldUo5qPCfyN8HTxtyWXmjJ0WKZIqsBgeRL1LmsfYAhzlR8vQfjNFEXS1JbAxty7rmXNh3L1G6UatPC/wA68tdPmZcZmzGcInkdBR2LmamNsQ15tuN1yWSrTqKNOWM7mcopLVLgqzGZnYRjjoQTK2MizeIO3oVuYF0qT0OHxRU+FQlwYG3IeL7D0KN9FuW48RxnyiRloqdzXOc4mxBuFe8NXqLIWBulgDR2Ry2XlPTLqEY1FRuI6388f0N9jaeLLxI8Fcx9IubazU6iwWjIPC9Q9v8ABLT4n0jYk0zxUNNA0kt0sriBt8SuCE9VGCQPkC2B123aQBfuXio9Rs4cW6X/APZlpOm2yoG0HSTUOvdrL91eUr8n9IFe8eWYvV0bWm4dBW6i49xVvE2bfisb3AIFt0fWIJfsoYfz/wAGHglRHo3zJUyAVmaMXt+WDv4rok6IpHuYyqzLiskbjZzXaSCPTurWdYjY7oIBbZ2655dYvH7sv6fkZeEitmdD2DMY3rqyaYDk+FhTlT9F+VYYLSUFNKe99MwqbWbbzT8qLgCwaVK6tfRWdb/D8iHQWSLDo9yqyLR7SYf3/azVLMEyflymw2MNwag0ho/1De5IG3aXFwT/AEO2HNLiNOj+C9N6MXtxd1pqrLKS+Hmc11FKODztn/E6LNObqLKWWcMpoC2ZnlMsbOrJY9tvA7ngvQWWsLODZcw+hAGungZEfiACqToGY2px/GauNnnxaWy8QSJFeAJc22oEjYn0r2zOBcHmD2SDgekbLreYqH/u2L0pl/8A0Dh35tH+yF5p9kcWnpHy7b74f+7YvS2X/wDQOHfm0f7IQk7glSBKgBCEIARzKEcygEbz8V5S6UP7QOG/l5P3TV6tbz8V5S6UP7QOG/l5P3TUB6npPtOn/Eb9C3DiVppPtOn/ABG/Qtw4lACjuYPtuLwKkSjuYPtqLwP0qm6/vYzNtv75wIQhfKVtktwQhCAEIQhAIQhACEIQAhCEAIQhACBshCEgRdazFvutg2S6lOoOJpMcR96PkWBp4j70fIt+45FFyORTUYOBzeRxnew+RHkUfcPkXTsjZZeNIjwoHKaJh4AfIjyFvoXV4JbFPGkPCpnGaH4OxWJoXj3x+Vd1j3pDtxKOs1uyHRi+BuFHKD5x+VQPpG6Ojm6eGSR5HVAj3p4uB5qzdQB4hZM0AP1OHaN11Wt9UoVVVpPBj4CSPIfSrkd+UKuCWOaSzy0bWHvb8lbvQfjzsbyxJTykvlppGwsLiT2RG08/FOXTxgkVflOordBcaeOSS4J5MUU6Pc2ZPyjl+F1FD12IyBr52sqDcPLQDsdhwXrPHqdT6WpY1STePr9xzqlpkSbpl67CMtPrBK4VEbZHRjVz7PNdXRdjr8w5ZZLOwddGRHe5N7NHMquOl3NRzth+HQUOF1ImjdKZG62k9oNA4eBWzo3xrMmU8FdQQ5cxKV8khla5oZaxAHMrVHptSdhoccTz+u5hKn7WS8fJ3kEyC4CxDY7XEbSTtuOCrubNXSFUD61geIwtdw1QRlan1fSVWMbExs1ICd3yUjCN+SrY9NqQX7WWF3M5088FlMboHaa13dcoYBch5Y6+wuRsqzky70iyt7WLR2duf5mPUsmdGeZ3xuFRmClIkGlw8mI2UO3tV/5/wZj4EixnSwh5jMjGkdzhyXDV4rhsbuplkaXcOF1CIehcvANVikEjzxsHjx5pypuhXLYbeqZ10392eUfx7lMaVl/2r/8A+LHgyGvPuM0EWA1HtfUyMnu62ltvenmoZ0K5/fhrpm5hrKt8X1uwOqTk6/0hWxF0SZUjYP5hJcH74k9ad6XIWWqeANZQubt92d6131epWMLfwU9X1X9hCzxuQ2q6Wstx1Zji697LX3pncVx1fS3Svdpw6hEg/vRvarPpMt4PSR6YKMht7+eSnCnoqals6CC3zqqlf2cY4jSz97/I6Fb7FP8Aum4xUdWzDMDpHytdd2t72bfIt0uac+4iG+T4RRRi3KscP4K4nWdYuDR3bBG43FreC1+v2cX/AMdf/pmcaeFgqB8fSXVNEbaaCPVtduIG4+ZYy4D0lTMDJauWJu3mV91cDjr4OGrksg46bOcLrL7Xpx/d0cff/gaGVB/ILOktPeXMGIxuI4Nqgea3M6KMQABkzNirtW7gXNPjzVr9t219kpIbwC1S6xctYj7P0/Inwk+SsY+h/DnjVV4pVyv73xtK76Hopy7ET5RGyod8KSnaSVP7A73AKQGTkbjwWEOr33Cm/wAPyDoRIjB0b5Tjff2ro3H00zU8YBkTLUGI9YzBqAkEEfzdqdywjci5XZg4JqwTtpIIB5q26H1O7uL+nCcsrfPHkzTWpxjTeCHdK1blzJmCa24NQmpnIZGBBzfcA3HpC4PY85brKKlxHHcQgjjkxUQvAa4GxZrB9PPmuPp7bDWZgwOkJDp+tpZCwHfSJjursiYyMNZFZrWk9lfRyuIF07f1fVvg/wDdvUT9ij/QY/iRfslSzp2/q+rPB/7t6ifsUf6DH8SL9koC70IQgBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/wApJ+7cgHP2Of8AVthf5tB+6CtIqrfY5/1bYX+bQfugrSKiXAE5LkxT7Sk8F18lyYp9pSeC03X7mfyf9CYe8iMjzfjQeKB5vxoPFfGJe/IulwCEIUAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCELFym1jsZJ5A31CwHBN+Y8Njx3AamjJ0ue22w9I7/BODQGybOBu3ghui7QOLllCo6VRVKezRhJZPPeZuhdmF5aq65shNQ2R7zszzbOPH4lE+g3NMmW8zxUs7nGCdxNrk8I3cgvUONUba/CK2F41OdE9th3WIXnHJ1LljAc54mzMUNjSz6I9Uzme83+cr2vTb+fULOtTuN+MfpLzOOccTyekMWiE2C1QFgeodJfhxaqf6Os51Tc+VeC1W8DZJA3tl2zW93Bd2O9KeH1+BV9HTYbUPkkgkhiLZW8S0hvjyVR5Go8bwjNb8bbgtbMHl7gGgX7Q9JWnpfSKkber6xHdp4/SZlObTyeuhG4usDcDiFnqcTpDQqgdnbO2JTvmpMu4nDHYWLo43LF2NdJE32Kgq4r83U0ZVR9hVovE5Y/XzNqq6ty3zdx0EgfGlsGnS57XHlqKp8UHSTWnrJMRbT33s+jbt8gWMWQ86Voc+qx+mabnjS2+gJ9l0I+/WX0ZlqZcEsjIrda6Mf+YLkrMToqIAT1ALuPIqqI+iSurHk4rjNPIR3Rvb9C66XoXwd1QXYg7rtvObLI0fSs6djYZ3r/8A+LGpk+kzNhDInvdVva6xtZq8347nTEqfpJp5hiVZ5B10Vw17jsGi+yuSPodytHKHGmc5n5xJ6050PRplSkle+LDngkABxnef4qwtK1hYRklNSz8GvzNb1sbH9LmXKegphJLUS1AjaHE0zjvz3TfN01YRod5PBJJUe8a6B4BPipvS5QwKlfqjpDfl9ccf4pzjw6jjcHRwhpHC+6rp3NhqcvBz97/Izjr4Kpf0vV7/ALUwenc4/CL2/wAEgz5nOrHWUmCUIaeF6pzf4K4QARYNabf3QsuxbS7SPiWEeoWSeVbr/wDTJdN+ZTbKnpJqTtTQM1d1edvmW32q6TJxcSaPxcQVwBxHG1vBI8tdxWf2vQXuUMfe/wAiPCl5lQR5Lz3UOdNV47X08jhYsirNQFllB0XY5WSl1dmfFmnfhK138VbbRbh5qy0N42+da5dar59h4X3fkT4Me5VTOh9kk48vzFidQGnsiRrXW+ddzeiPA2SN6+eSe1vskDCrGAZclgsee6ASStT6xev3Z/0/InwYkKi6NMqxPaRhtJI8cNVM1OMGQMrNqIv+w8O1ahv5M1SN7nHYmwXRAD18Wg3OoLotut3jqRhOWd/h+RhOmlEKvAMs4ThgmlwehayJnKnCojL0h6QekugqsKoYafAqCpima1g0Dbsv7JHeCrx6TJY6fJdVJO4NAdGLnbi4BMvQNSxxdGtEY49D5JqgEn8s5fU4Z0xkVbW5YQjEFIImeYyLSPiC8p0F/qlY78fLKf8AZXrBwtA8A3s0g/IvKNJceyYZfj5ZT/srMI9Zt4DwQhvAeCEII70i/wBBce/MZv2CqT9if52Ofnf+4VdnSL/QXHvzGb9gqk/Yn+djn53/ALhQHo8IQEIAKiuI2FUbf9bqVFRbEftoryfpas28PmzrtPfOXmUqTvSr55gsnyCEIUR4IYIQhSQCEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEMkCEIQkEhLnHTsG8b33SrFwadtN3KV8SGso0VlVBRRxyTviaw33kcB9Kyhmp54/rMsMrTvdjw4g/EmLOuVBmrCjSPm8mNi0OLNXG3pHcq06HaPFcBzpW4RWSOmpmwyStcWho89oG3HgFZUbKlUtJ1tW8e2TTKTi0jn6WoaOmz3g01bHrhaZ9epgcDsOKnUmS8INNGafD6UF8bXahC0XuL9ybOnvAhiWVZa6nj/nMAG43Pae30qT9HGOQZgy1TyMs6WH626xv5gDVaVq05WFOtTfGxNGv4NXfvuQfFckRRkmKmib+K0D+Ci9dlh8JcWRhpIsSBx+ZegpoWScWptq8Iil96tNp1upTWnP1/8AZf2/VMLDivoedZKGpgJALxY22JS0eK4lQPHV1FQ1vcHusrsrsqRvJIj4m/P1pomyZG/jH9PrVvHq1KazUf0x+ZZU+oUHHEkvwIRRZqcZGvrKaKpFw0maMvPzp+GHYRmpzGspWUsjvuMQZ/D0Jw/kMy4s3e97WPrUny3l6GimY6SGxbzufT6Vor9XhSxUoSefLO30yVV7Qsq0JSS3+4pbPOS35cjdK1+pkg0tu8GxsTyCeMi56w/IuTagUcYmxuoMT7Oj1NGxDtwQean3Sdlmqxuh6ukDntItZrfN7JF+KqEdGuNU0kIioZn2aQZQB9F17npHW6HUrfF3UjFrzaX9WfPmqlGq4xg2vlkTDukTMtDjDMVlrppmag6Snkme5gaO5t+KdekzMeH539q6+KMxVbY4oZAI9DdRfc8fFdWB9G8xma7G3OjH99nHfhse5PFRknCnUz6eJjWObKHtf2jfT6L+hZX/AFiztceFLU0uU01/UsbOzr3TanHC+TQ74BhMWCUJp6d7jUkWNiCHbki5Hipng9M4FrngEkXPzJoy7hkjYYHzAusTqfw5qZQwtY0W7l8o6pdq5rSqye56JQhaw8KBsfYiyGiwsk5rJVKU/fbRye1nAIQhTqJwwQhCbDcEIQoW8XF8snlEJ6UM4/yVwmNlIGSVsr9LWPBPFptwN+IUOps69IeIZaEUOG0TGTtY5kgEocB432XJ0iUoxbpgw+CQXhjbTSW/85BXpXCII4cLpoYhaNjAAPQvpno9bU7anp/7NFbdZZ56yflfPeRcMNXRx0c8ZLnObJO5zj2tRFhbmphgfS/5M4wZow+pp5b2Jp6OQtvw4n0q4ATfz7eiyb8ZwOgxmLq8RpxM23NxH0FekRxrg8udN2N0GOZ9y7Phz3Ob5Q+4cACOw0cPiXqjL/8AoLDvzaP9kLyd00ZYw3LvSVg3tZAIRLOQ6xJvaNveT3r1jl//AEFh35tH+yEJO9CEIAQhCAEcyhHMoBG8/FeUulD+0Dhv5eT901erW8/FeUulD+0Dhv5eT901Aep6T7Tp/wARv0LcOa00n2nT/iN+hbhzUPgCHkmTMIGuM2F7fxT27iEy5h85nh/FVHXN7GZtt/3g0oQhfKJbZLcEIQoXABCEKSAQhCAEIQgBCEIAQhCAEIQgBCELHBKkF0FCEwZiWRZKhTuY5QIuhCbjKC6EIUZxyQnliWA3NgO8rlGIUUsksEdTT+UMdp09Y34+a3VMQnp5YibB7S0nuuqE6SclYplrFRjmDVbpGyv1ua2IC2pwbxJPIqz6ZawuqjjOWPIxqNotfpVY7+QGYHOaCBQTENbuL6Coj0N4NgOKZWfLJhtFLUska1xfAwuvoBPEXVhGD22yt5NVSXNTE6J4I5EW5KpuiqqblbOuMYNWPDY56qWaIHa7QA0d/crC0hGpYVKMG8wy1hnPJ4aLgjwXCI3NkjwqhDjzEDR/BdPktMHAimhaRsLMAst80el/YOwQb7XVDCrUSacnn5s3OKEA2tyQd+KEhWCrycU23kzxwxdTrW1H5Ul0ITVJk5BJYXvz70qE0t9xkN+ZSEC1rJUKXqa5RLYckcrckIWG7ITyB3QhCZctyeBLDuQlQmkBcoKEKGtJDBGo9kM5G7vBIUgvdxj863a8Fkm4rjkl4wacQrWUtHNV6gI4rtOvbdUxhfSbm7EcwVLsAw+jno4CxwdI2TcW34G3G6mnTVO6HIU/USdUXzwh21+Lt04+xywimw3JFNLC5rpphIHkX5Svsvcei9pCnirL3nwcNxL2Witm5Sz1nLMjcaqepikhbpax07mNGl2sWDt+LlNnZ+zXlaokhzFhsM0MZ7UlLFLO4/GDvxCuywB7ZuUj42PjLJB2XcQvcHAUZ0k9IWDZkyDVRwOqYp9LzoliMf8Aq3DgfSVu9igf/wBhpPQ2H9krp6bsi4AzKFXW0uHtbVds6w9x9488L965vYqH/wDYWVhOrS2Eae7slAXihCEAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWkVVvsc/6tsL/ADaD90FaRUS4AnJc2IfakngunkufEPtSTwWm6/cz+T/oTH3kRXmfFKfOKTmfxkp84r4xL35F0uAQhCgAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhRysmUVgxBLSS8Nvyt3LmqsQpqMt8qmp4yb21PaD85XULE3bHqI24qu+lLIDsy0jq6mrOpmiDiGdXqvq0jjf0LssqVOtVVKq8J9zGUsFhdiSB0sMjX3b7xwIIt6FRWDw4XVdNGPUWMU0Lm1Na8xiSMEWbFfa/gph0I1VeMu1EGJ6jLFUyQgmwu1tgOHgop00YWzBM4YTmOEaQOtfKfS7sD6e5XPTKcKVzUsm9nnGPhuc9RZ3Lehy7gkQBZhGH6RwPk7PUu2OhoYxaOjp2gcmxgLDCqqKuwynqaZ4dE5oG3eALrrAFl5+Vausptprjk3KKcciMbHG3TFG1g7miyUEjmUhG6VR4tWSzKW/wAzJRWBdRta5sgOI4EpELB5fLJwhLDuS8rckIWtocCfQiyVCz0xMluJYdyVCFk5JbIhsBtwSEAm54o3RuscjAqSwRujdRn4DHxF5IQhNvIbCDbglQhTsNhLX4AE+lVZ0i9IlZhGN0uFZdjiqKtz2X1hx84Hm099la9OLzsHpCojokw+nxPpRrKupaHyRRgtJvsRMLL0Po9bQqVvEn2OavPSsHRmat6Q864QMFqqGjpmOcw9ZE6RjjocHbk7ck/YYzPnR5hkMLaSgqaJhLi3W+Qi51Gwbz3V97hxvuOSQlzmtJOnfcL6fHZ47FXqyyrMH6YMMngdBjFNXUtZY6tFI9rOG+59N1TuCVkGIeyOjqaV+uF9ZBpd37L0vmHKeD43BJ5fSNkfY9oucO88j6V5gyrhVNgnsg6fD6EAU8NXAGAX5i/NMmR7BZ5o8EIZ5o8EIYke6Rf6C49+YzfsFUn7E/zsc/O/9wq7OkX+guPfmM37BVJ+xP8AOxz87/3CgPR4QgIQCO4bKL4iP50f+ualJUZxMWqT4Ly/pUs2yOq1eJHFzKFkODikXzfOOSzTyCEIRP4GOcPcEIQpy/InUgQhCZfkMghCFABCEKQCEIUZMgQhCZAIQksmSMIVCSyLJkjCFQkslQAhCE3AIQhQ+NyTF7dTWtJcNPCxWvyeETCYRMbJbTqa0AkeK3JNjYHgVlTqKMHBS2ZODTiWHxV+HT003ajntt4G6o7ojqP5LZ0xHBq2oZHSOY58fWPsdT5AedhayvglsUrd7tZcKvM5dFtHmTEDidLU+SzkBocyEOIIHHchXfSLuj4creq/ZfwfJyzj7WruWAyeCW7oZopmj7m4O+hKXNazUQXehvFUVh0mOdHGbKejr66atoJw9zTIQ0EAaRsL81fFrXcyMMuBpIPNcfULGNoo1FPMWbYzyYtNwDbjyISm3wW/Ijf33HmhV0ZLOcmTyJpbe+kfIlbZt7AfIhCnLyFkwkk0RgWBF+YXDPJIWuDGM3/urvcAR2ljobfZbYz0myCit8EWlw6WV51F1jx3Oy7aHB42gatZ8U+CMBwWw2HALOVxNbJm51pLaLwaoIGQNIYNjyK23ScUq523J5Zoe7yxLJbIQmRkEIQgyCRx0tJN9kqBa+4uE52DYh4A8imbOGYaXLODPrarV2RqFrd4HMjvTyHCxD+F9lWHsiKOWqyRK6JmprYjff8AvtXf0u3p3F1ClNmmc2o7DJ0T4JXYzmCpzJjd+ssWxBtw2zXhzdj4969HYdITRskd74A2Crfo8qYpsnUz6cAN1lht3hourGwraiiLj2dIsvbdFuHcX1V4wlHZfejhrPMcnfpDgEEb29CGX0i/FKfO+JerOU8ueyPNukfLv5w/92xelcv/AOgcO/No/wBkLzV7JD+sjLv5w/8AdsXpXL/+gcO/No/2QgO8FCQJUAIQhACOZQjmUAjefivKXSh/aBw38vJ+6avVrefivKXSh/aBw38vJ+6agPU9J9p0/wCI36Ft71qpPtOn/Eb9C3DmgEO6ZswjsNdzHrT0mbMX2IfF9Kq+sw1Wc0jZQ98Z0hSoXySKwvaLhSECVCFGV5jKBCEKMrzGpAhCEz5DUgQhCDKBCEKUSmmCEIQkEIQoI2BCSyLKckYQqElkWTJP3ioSIsoyyMIVCEiyWRhCoSJVDW+RhCLXLBFNG+OZjZGvINngG1u5bULOM5QeYvDDSfIkYEd9IFiLWtsFRnTlQSYNmfDMfpNg2ERPtwu6U3vbnb0q9EyZuy5Q5nwl1BXRsBLmua4t1cF39KuY21fNR4i9maqkE1sdWF4xh+K0zZKWtg7ZPZdK3Vx8U4NdcWAcLG2/Md6obMnRrjOVKN+JYFis8kdMC8xtY2Mcrb37yVaPRrmCbM2W2VFSzRUUzhTuGrVctaLm/iujqVhDS7qhLbPkYwk84ZKL2JDkMdqjufOugi/aPEIDgdgqXEZbo6AsiyVCYH3iWRZKhMD7wQksiyj7iMLzFQksiyLbsMJdwSpLIspW3YnbzFQksiyZIwhUiLJUzvljCBYyPayNz33DWC5t3LJc2JROlw2qij+ySxljfFbIb1owlwyP+pSmfsRqc+Zqjy/hAd5FTud5QbG+uJ99iLjh3heg8kUEOGYTHRUzbRRA2vx3cSfnKoToZe3COkDMVBURA10tbVPaSd7C4PDZehcvAt61ruIAXubefh39ChDZLP37FfU3i2PAACWyEL2ZyFd9O7f/AKf1liRs/h+Teol7FAAZGf6WQk/4Spd07f1fVng/929RP2KP9Bj+JF+yUBd6EIQAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaKq72Of8AVthf5tB+6CtFQwBXPX70rh3hbytVUL07lpr70ZfJiL9pETA3dfkSi9yUp2e7xKQcAvjddaa0l2yXUJZQqEIWvMfMy2BCEKMrzGwIQhTt5jUgQhCjbzGpAhCFGH5koEIQpUX5kghCSyl7ENIVCSyLKMkYQqElkqZYwgQhCbjCBCEJuMIEIQmCfvA7uB4WFtliWguJO9+XJZIU5ecmOEzVDDBAXdTE1hNydLQAoz0n4BFmLJ9bTyE9YAzSWmxH1xp7j3KVagCNQ271g8RFxieA6OXiuihXnRrKs3h+ZjKKawiq+grHWyZekw7EauCOop5pnWfIBdusAcT6Facc8ToyWO177OYbi3iqoxXoabJPPWYNiT6OoeDYRwN7R3IFy7vWHRhjuLYZmSoyvjLn1Jje4MfI8cGN7htx9KvOoW9ve6ri3n7qzjH5mpScfZLeeQ1+ncnvCVI67ZC3TpPMBKvNb90dCBCEIMIEIQgwgSWQhCfvFQhIsSBUJLIsshhCoSWRZTqYwgQlQok+5GUJcA73Shrjci1gkcdrAblJC57HEHgeSnaWCJNFf9LWb3YJgxpcMBGKTNLo9Yu27SL8DfgVs6EsrS4FSOra4XrKouY7jYNLg4WuLqF9OUTqXNOD4jJGPJYmVBeb9+gD0q9MNnL301/sTo2ad+dgvVQl6lQpeEveay/vxg5pJSzklUbbRtG/DmtgaGgWWABDGgedZbF9ETykyt4bNM4tDIR3H6F5RotvZLs9NZT/ALK9XzfYpPA/QvKFF/aXj/PKf9lQvIzTyj1ozgPBCG8B4IWRiR3pF3yNj+x2oZv2CqT9igRfHT/92P2Cro6Q3B+SMeLZBbyKa4v/AHCqX9ig5r/b/Q0dmsAP+AoD0eOCEjeHCyVAIVHMW2nUjcLhR3FY5DNcBed9I6UqlulBZZ022FI4b6ezY7pLJXtk21Agd6xIPe75F859SuE94v6HdGrFMUISb/3vkWWh/cUVncyb/Zt/czLxYiIS6H9xRof3FZeoXP8ALl9GT4kBEW9KXQ/uKybFIb2ZfxUxsLpvalL6MjxYmNh3hFh3hbOpl+5hHUy/cwtn2defypfRjxYmuw7wkt6QtvUy/cwk6iX7mPlT7OvP5UvoyPFiar+gov6Ct3k9R9zb8qPJ6j7m35Vn9kX38qX0Y8eJpui63eTVP3Fh+NHk1T9xZ/iT7Ivv5Uvox48TTdF1v8mqfuLPlR5NU/cWfKn2RffypfRmLrQNF0XW/wAmqfuLPlR5NU/cWfKn2RffypfRjxoGi6BvyK3+S1P3Fg+NAoqgutbbxWUejXr/APFL6MeNA0A3NkqcG4VKW3P0hZe1Mvf84U/Yt7/Ll9GPGgNqE5e1Mvf84R7Uy9/zhZR6Le5/dv6MKvBdxsslsLbpy9qZe8/KEe1Evp+UKI9Dvc+4/oyXcQ8xsbdoNrXPG6TQHANdfjtY2Tp7Uyd/zhJ7VS8ib+IU/Yd9HdQf0ZDrwfcpX2QeBS1eBwYnTnS+jDI9Nzc3kHCym3R9iMmLZRoaioa5rjI9pDhY7Gy5umrA66XJdS+CV92uju3WAD2wmzoBjxWsylGa2Nhia5+n64Dvr32VzU6TdVOmwpuD1L4PzNMasSfkWBtuAgAlt7FOLsNe0Xva55EJThc2sAONvEKll0S+eEoP6M3+sR8xtIQnE4VJfYk/GEe1Uvf84R9Fvf5b+jJ9Yh5jdYHikBF9gU5HCpO/5wtcuGTMF2/SFg+iX38uX0ZHrEfM4i4jaxRcLb5HUD3t7ciUeTVP3Fn+JYro18v/ABS+jCrxNJ9CLrd5NU/cWf4keTVP3Fn+JT9kX38qX0ZPjxNN0XW7yap+4s/xI8mqfuLP8SfZF9/Kl9GPHiabout3k1T9xZ/iR5PUjjE0eBT7Ivv5Uvox48TTf0FKOPctvk9R9zb8qQwTgXdG23iofSb5LPhS+jHjRNJLXSdo7Wt8abcy0ftjl+ro5XRkODQCRw7QKeRSvDvsY3F0y50qXYNlmurXsAawNd/7gOSzo9PvnJTjBpr4MxqTjggXQLUyuy3V0sh1iOqnIt4tCvPCwTQRB+wLRpHMKk+gLDakZZmqg3SJauYceRLSrxo26IImniG2XuumUKkLyo2sLBw1WnA6xwSHjcbpGE2NwLIdcEFvBeiOZcHlz2SDrdI2XSQR/OH/ALti9LZfIOA4bb72j/ZC81eyP1e6Pl4FrXA1D7XPD62xekcAewYFht3NB8njFgf7oQkc28eBSrEE6vQskAIQhACQ7XKVYyEBpuSAgAEA2PNeUuk+59kDh2xFp5Nzz+tNXqkyNMgYSANN7k7ryt0mf2gcO7ZcOvk+L60EB6opB/M6f8Rv0LadgSVro/tOn/Eb9C2uFwboATNmH7Dfw+lPCacfDnQ2A7vpVd1RSlbTUTbReJjLZCSx73fIix73fIvk8rK4z7r+haeLFCF1jZLcJRbm0k+CQtB4NPyLYrK5/gf0J8WHmLx4IQ1jvegpdD+4qfUrn+B/QjxIiIuO9ZCOQnzb+KXqpfubU9QunxTk/uZPiQMNu9Cz6qX7m1ZdVJ9zap+zrz+VL6MeJA1It6QtvVSfc2pOpl+5hPs28f8A4pfRkOrFGu3pCDstnUy/cwlFPUHzYmnxKyXSrz+VL6Mjx4mm6Lrf5NU/cWfKjyap+4s+VZ/ZF5/Kl9GPHiaLout/k1T9xZ8qPJqn7iz5U+yL7+VL6Mx8aBoui63+TVP3Fnyo8mqfuLPlT7Ivv5Uvox40DRdF1v8AJqn7iz5UeTVX3FnyrJdFvf5Uvox40DShdtPh08zSXNDCDawK2+1Mvf8AOFkui3v8uX0Y8aA2oTkcJlPP5wk9qJe/5wj6Lefy5fRjxqfmNyE4+1Evf84R7US9/wA4UfYt7/Ll9GPGp+Y3IGlhuCC7xTj7US9/zhYjCHWO+9/QpXRLx7Om/ox40PMYsaonYhg9fRAHVOwMDt7DdVH0FTT4bmPF8GlDi0TVMuu3Z2kDbbq+jhc/VEtkcCfSF53ybS4th3TJXUws+KWOokOqQDjM1XnTemXcbWpRqRfPkzT4i1F7uP1yWxDgCNggWHvSPFOJwqV5f2RGT8EhEeFTObu4ne25Co/sS+cn7Dwvgzd48cYyN6E5e1Mvf84R7Uy9/wA4UfYt7/Ll9GPGh5jahOXtTL3/ADhHtRL3/OE+xb3+XL6MeNDzG2470XHet7qKoDiOqabHvSeR1P3FnyrD7Ivf5Uvox40DRdF1v8lqR/qWfKjyap+4s+VPsi+/lS+jHjQNF0XW/wAmqfuLPlR5NU/cWfKn2RffypfRjxoGi6Lrf5NU/cWfKjyap+4s+VPsi+/lS+jHjQNF0tvSFu8mqfuLPlWPUy/cwol0u8inmlL6MeNDGxr27wgggNc3ctNwtnUy/cws4qeYyDsgNvwutf2feJKXhSyn5MlVYtFIZtjkwPpiwysp7B9XSzyPAHN7t9l6DwQ2dJq87SLnkV57zCZ8c6bqWkYL+TQ1MfH4LvSvRGEwvhDuuG9h6V7Szt6/rFvUnBrZ52455OSpNOLSHO/ci+3ArEEA2HcgOu5wHJevOMr7p2P/ANPq3bk/929RL2KN/wCQx2PmRfslSzp2sMgVlyeD/wB29RH2Kcv/AOw5adIAZFxP90oC8Q4EkBFxe3Na2u7INgCTbbdKLNeAdyRxQGxpuL2shI0WFibpUAIQhACpr2UNhkOO7gPrknH8m5XI7hvsqZ9lE5hyHGey765J+7cgHT2OZ/8ApthlwR/NoNzz+tBWiFVvscr+5rhuo3Hk0Fv0QVpBCO4q1VJ+tOW1aalpMTrLVWf7OSXkZx95EVeLyOt3lJYgAWWbopA9xA5lYuDwBqBHgvkd3a13Xk4xfPkW6lHHIlkJN+93yJQ1xO1yfBaVaXL/AOj+g1R8wQl0P7kaH9y2epXP8D+g1R8xEJdD+5Gh/cVgrC6/lS+jJ8SAm3ejbvCzEMpAIYCl6iX7mFsXTrr+VL6MjxI+Zr27wlsO8LPqZfuYR1Mv3MJ9l3je1KX0ZHjRRrt6QhbOom5Ri/ik6io+5j5VK6XefypfRjx4mCS62iCo+5j5Vl5NU/cWfKsvsm9fFKX0ZDrQ7mi6Lrf5NU/cWfKjyap+4s+VT9kX38qX0ZHjQNF0XW/yap+4s+VHk1T9xZ8qfZF7/Kl9GPGgaLov6Ct/k1T9xZ8qPJak8Y2t9IKn7Jvf5Uvox40DTySNN10xUE73bj510+1Mv/RCfZN7/Kl9GPGgNyE5e1Mvf84R7Uy9/wA4WX2Le/y5fRjxoeY2oTl7Uy9/zhHtTL3/ADhPsW9/ly+jHjQ8xsNzsbaUly3SBbbvTp7Uy+n5Qk9qpf8AohSuiX2l+w/oyVXh5jazsFrt9QN1QfS9h8+A52o8epdbnSRyFzGXJJc+17cF6Ndhcukgc9uI2VIeySwqvpKKhxCnke5kMYjcC8AXMituj9LvKFZxlB6WsPZmirUi3lFvlzZAHlwDr9/FB2tbfwXNlGkrazBIpKyJnWuLgXB4JG6e24VIBbUb+IVbX6NeeLJKm2s+TNqrQ7sbN7gEEJU4jCJie051vEJfaiXvPyhavsW9/ly+jJ8aHmNqLJy9qZe/5wj2pl/6IT7GvVv4Uvox40PMbPiKU7Lulw2do2+kLm8lqQTZgd4lYvpN7/Kl9GPGgabout/k1T9xZ/iR5NU/cWf4lj9k3v8AKl9GPGgaLout/k1T9xZ8qPJqn7iz5VP2RffypfRjxoGi6Lrf5NU/cWfKjyap+4s+VPsi+/lS+jHjQNF/Qi/oK3GnqecTR8aPJ6j7mPlWuXR7xLPhS+jCqw8zQ5xb2uQWTDa5JHC6zdBNazoxv6Ughm6y3Vi1u9YPpt40sUpfRmbqRfcrbp7oDXZAq5rsa6KO2+xN3Dh8ilnRrUyV2XaGSY6nNl07egAKJ+yBqZKfI1XA1ob1kd7j0Oapt0e4XPhuCUkUjbAkPvccwCvTWNpcq0jGpFpqXdfI5qk452J/sACSsr3F1gB2QPOv3pbjYL3m+E2V/JjL9hk296foXlCi/tLs/PKf9lerpiRG8Ae9P0LyjQgt9ko3UdxWU97n+6suRBbHrRvAIWMb2los4HbvQpB57zfk3PkGB4xUVmZKKWkEErjG2g0nTYnjfuXN7E5hFPjbHuDpBVi7hz7B3srs6RHAZGx7b/uM37BVKexPIJx387H7BQHo4WA2S3SeFkb9wQCkrS+Nrjci6279wRv3BYTpxntJZJTwaWxM5tSmJnwVt37gjfuC1u1ov/ovoNTNPVM+Cs+rb6Fnv3BG/cFKtqUeIr6Btsx6tvoR1bfQst+4I37gp8Gn/CiMsx6tvoRpAWW/cEb9wUqlBbpIZZjYdyLDuWW/cEb9wWWiPkTkxsO5Fh3LLfuCN+4Joj5DImkd6NI70u/cEb9wWRAmlqNLUu/cEb9wQAAAjZG/cEb9wQBsjZG/cEb9wQBskACXfuCN+4IBLekIt6Ql37gjfuCgCW9IQR6Uu/cEb9wUgx3Rust+4I37ghjj4mNkW7just+4I39CEoZsy4UMZwiehcdAkIOo8Lg3Xn+Cj6ROjuealwmmqMRw4C94KPbfc7m69MHgduawniZNGWuAIdtuE+BO5X3RHnWozdh9WK+klgqqWbqZA+1w4NBIIA23VgA3HYBI5FecMSoM4dHGYcVxPCKelqcPq6uSdzHyvJGpx960dwVp5F6ScLzRQUxDzT1zr3hcNAvc22JvwCMbk9YDZZWSsOpoIsbi+yXfuChLCwQY2QB3rLfuCN+4KSTHSEulqXfuCN+4IBNLUaWpd+4I37ggE0tRpal37gjfuCATS1GkJd+4I37ggE0jvSFgIKy37gjfuCYyDVo+uDbayivSrhlTi2QsWoqGF81TKxoZGwXLu0DsFL9+4I37gsFTinlInLIn0f4ZLguVWwTwPZI1znlhFjwHqVTZ76dX4DjOIYbFQzCWnmdG0l7OR7iFL+k7pOmyPWwQS0Rnhe5upzYnPsDe/A+hVR0mZjyXnLLktfQ08tPjBcwvvStjuS67t735LJJJtpEPdYLM6G+linzZB5Ni9RFBiO9oXuaHG77N2A7lbzXgt7BuF44wifL+PYZB7Uz1eG5igcX3hY2GN3JgL73tzVo9H3SZW4XidLl7M7IpHGM9XNTl0znADSC4k8SRupC2Ib7J6OWfPODQwSCOZ8zgx5Fw09WzlzU7ydkzPFM7D6qozBSS0ZijPVNobG2x437lC/ZGxOb0hZbluCx9Q+2++0bOIXpbL/8AoHDvzaP9kIDtZe1nG571kkCVACEIQAkJIPC6VHMoCsukXLebsXxSOXAMYp6OAMaC19J1m4JvvfwXnrFMOxbC+mjCosdroqqo62TdkXV2+t93yL2i3n4ryl0oH/8AmBw3YfZ5OP5JqA9UUf2nT/iN+hbHbghaqS/kdPa3mN+hbRe52CAQAhYuYJB2wtvyI+RQ4qSwx3yaREz4KOqb8FbvkR8i0K0or/ovoS2/M1iJluCDEzuWz5EfIsvV6X8K+gyzX1Te6yOqatnyI+RPV6X8K+gyzWI2hLoHcs/kR8iyVKC4RGWYaR3JdI7ll8iPkU6I+QyY6R3JC0dyz+RHyI6cfInJhb0JbDuWXyI+RFBIjImkI0hL8iPkWWEAsEWCPkR8ikBYIsEfIj5EAiEvyI+RRgCWSW9Ky+RHyKQY29KW3pS/Ij5EAlvSi3pS/Ij5FAEt6VjoAv6Vn8iPkTAyagLACxsqQ6Vcl5gpsyw5lynqkmawQugZAZHEFxcT3W2Hyq9PkWDrF1j3cOSnjKQTaKDy50n5ppM00OG5swesgFS5wa6SNsYdZhJtt4K96d5kjY8jSHNDgD6VVnTZlTF8YkwzEMvxUvllEHkCR5YCXWHIX4XTLkTpZq6OvODZ1pGUs8bAWyQsc5puQG9pxHcVDW4LzAvwIQNxcEWXDhOK0mJ0vlNE/XGbHlzXbcNAFuJQC29IRb0hLv3BG/cEAWHeiw70b9wRv3BSAsEbI37gjfuCANkbI37gjfuCANkbI37gjfuCANlgR6Fnv3BG/cFjKKlyDCw7khY0+JWzfuCQkBwvxKjw4+RKbRU2Xcr1tN0sVuLz0czKZz6rTK5pDSHnbf0p56Xc+HImGUlSKd83Xl47LgNOkA8x6VJs34w7AsFmrmRda5hA06S7j6AqTZ0t5WzjQeR5roaiM7taRR3Dbnc3cdtgFlggbssdP1XX44zy+ilpsOc4RdfKWBmouG17dxXo3Dq6kxKDr6Gojnhd75huD/1ZeN8FxTLUGJ1+H4vFI3CpZ5JKeWnga+QEkBl77Dhf0KYYHmDEchCsxKhrRXZZj0uPlM5dOGi4FowbXJJv4KQXD05vDchVg4EteAfT1b1Q/QtlfN2LZVc/A8bpqSItjI10nWWFvFW/0k4zDmPomnroQWtcHcW2/wBU4/xTX7FE2yK8k37EP7JQFkZCwzFsIwBlPjVWysqQ95Lo4ur4uuNvBSVgdxcfiWaEAjb23SoQgBCEIBozXR11fgk9PhdQynq3FumR7NYFjvsvMPTBlbOGD5ZZNjeO0tVTGR/YZR9WfMJ437l61VNeyfIGQ4r/AHST925AOnsd9J6OsMcOdNB+7CtBVh7HYj3NsLsP+7QfugrP37ggEPoSHe4PBZb9wRv3BQkgaepZ3IMTABZq3b9wRv3Bc/qlHOdK+hk5M09Uz4KURt7lt37gjfuCyVrRX/VfQxy/M19W1HVhbN+4I37gsvApfwr6DfzMNARoHoWe/cEb9wRUYLsTkxDW9yNLe5Zb9wRv3BZeHHyIyzGw7kWHcst+4I37gp0LyGRAB3I0hLv3BG/cFOlATSPQl2Rv3BG/cEwgGyNkb9wRv3BSA2RsjfuCN+4KMANkEBG/cEb9wTACw5JN+8Jd+4I37gmAJb0hFvSEu/cEb9wQCW9IRb0hLv3BG/cEAhHpWNis9+4I37gpBhpO1j4qFdKOTf5YZdmoY5GwSl7XB7wXDY34AqcEHwSC5vcCyhp9mMnmenzX0kZLw8jEcIrp8PpwZHytpGsaBxO5CvfJGPfyly5SYh1To3yRxuc0kEglgceHitmdcJ9vsrYphkYaJKmB0bSdrE+lUNg+Yc4dGE/kOJUNFNg4k0Nla6SR4F9LdthwamAelQRsDsTyS29IUYyznPCMwCIUEznSP4BwAI4+n0KUb+hAJb0hLb0o37gjfuCkBt3osEb9wRv3BRgBshG/cEb9wTSgGyNkb9wRv3BSA2RsjfuCN+4IDE3vtwRbvWW/cEb9wUYRGDHSEBotwWW/cEb9wUaI+RlllY9OGXq7H8CFNh1JLUuMbwRG0uN7tt9CmlfUuwjLctWY3SGmptZY3Y3a3h8yeXarbWVH5n6Z4MHx32txagkNE8hkmmnc64N78TbgFEoJrAyyIY97IqqFU+lwygmZNE7Q4FzHcDvtbuVz9G2esOzdg0E0dXC6rcXB0YeCRZxA4eC859J+I5QqsRgxnLcBb1l3SxPp2M3c7fYei67MPNFWVtLi3R5W1EFbC5r30lU4U1OdOwFm7m7rkrJrJCPWk32GQ/3T9C8cZho8Qr+nqSDCqllPVmphDXvj1i5aLbK8+i3pJfmWapwbEIWtxSnD2vMTSYzoaL2cTvuSqkoiD7JdhHDyyn/ZUrZYJyW3kzKOeMPxWWfGMxUdTSuhLWRModBa4uaQSb9wI+NCtpvmjwQhBHOkMn+QuP3H/cZv2CqQ9ipNCx2O6iAfKx+wV6BxugZimF1dC8uAmicw724iy814j0H5moMZq5sAxBtPBNI59m1UjOJ22aO5AenG1tPb7IB8qXyyn+6j515fHQ70gAf6c/2hN6kvuPdIH4c/2hN6kB6f8sp/uo+dHllP91HzrzCOhvP7zpdjpAO22ITepRLLmVM45gx+qwuLG5Q+nY4kiulHmu08QgPZfllP91Hzo8sp/uo+deX2dD2fu0G447bhfEJvUl9x7pA/Dn+0JvUgPT/llP8AdR86PLKf7qPnXmD3HukD8Of7Qm9SPce6QPw5/tCb1ID0/wCWU/3UfOjyyn+6j515g9x7pA/Dn+0JvUj3HukD8Of7Qm9SA9P+WU/3UfOjyyn+6j515g9x7pA/Dn+0JvUkPQ9n8EE44dv/AOoTepAeoPLKf7oPkKPLKf7qPnXl/wBxrP2kE48TY3sMQm9Si1PlTOM+cm5cjxmYVThIQXVstuxx3QHsnyyn+6j50eWU/wB1HzrzB7j3SB+HP9oTepHuPdIH4c/2hN6kB6f8sp/uo+dHllP91HzrzB7j3SB+HP8AaE3qR7j3SB+HP9oTepAen/LKf7qPnR5ZT/dR868we490gfhz/aE3qR7j3SB+HP8AaE3qQHp/yyn+6j50eWU/3UfOvMHuPdIH4c/2hN6ke490gfhz/aE3qQHp/wAsp/uo+dHllP8AdR868we430gP2OOkc/8ASE3qUXzRk/OeAYxh1DVY1LqrnuYy1dL71t+aA9j+WU/3UfOjyyn+6D5CvLkXRFnySGOWPHH6XtBGqvm5i6z9x7pB/Dh//iE3qQHqDyyn+6D5Cjyyn+6j515f9x7pB/Dh/wD4hN6kvuPdIH4c/wBoTepAen/LKf7qPnR5ZT/dR868we490gfhz/aE3qR7j3SB+HP9oTepAen/ACyn+6j50eWU/wB1HzrzB7j3SB+HP9oTepA6HekA8cc/2hN6kB6f8sp/uo+dHllP91Hzry87og6QSSPbzYf/AH83qTRm7o9zxlnDvK6jHrt4fb8p5E8/BAetnVcAHamFvAqD9K+barLGBMq8Kpn1D+3sxwbwbfmFRWBdF+esXwWjxKHHHllTEJWg183Arqm6F89VMGifF45Q250y1srh8hCA9D5Sxg4zlmjq68GN9RAx0kbjcguaCRceKofpMytljBekPAqzBxBTVk1Q/UwB5JtHtx2XFF0M5+jja2PGmsYBs1tfMAPistM/QbnWolZLPiVNLKw3a99XI5zT6CRsgPT2EVdO3CqMGQA9Sy+x+CF1+WU/3QfIV5eHQ50gNADcbsBwAr5vUl9x7pB/Dh//AIhN6kB6g8sp/ug+Qo8sp/ug+Qry/wC490g/hw//AMQm9SPce6Qfw4f/AOITepAeoPLKf7oPkKPLKf7qPnXl/wBx7pA544f/AOITepNOZ+jnO2X8OOIVWNydW0hm1fMdygPW3llP90HyFHllP90HyFeS8sdGud8fwWnxOmxyQRzXtevmHAkfwTp7j3SD+HD/APxCb1ID1B5ZT/dB8hR5ZT/dB8hXl/3HukH8OH/+ITepHuPdIP4cP/8AEJvUgPUHllP90HyFHllP90HyFeX/AHHukH8OH/8AiE3qR7j3SD+HD/8AxCb1ID1B5ZT/AHQfIUeWU/3QfIV5f9x7pB/Dh/8A4hN6ke490gDjjn/z5vUgPUHllP8AdR86PLKf7qPnXl8dD3SAAT7ef7Qm9Swd0RdIEURccc/+fMgPSGM4fhOMwiLE42zxg3Fy4crcl5T6Z+jqrpcwT1uB4e+DDdbzrbYjdw08TdaMl5Qzhmynnlo8anBhkfGdVdKBdpA5X71IpehfPVVARUYw17duy+ulPzEICmcs4pRUlYXYlRCqZJ2OsL9PV2PH0q48u4Pl+gxHD8yNzRSsjMbW+TdQ+7NZ83V6LptZ7HXMun7PQD/1nf5Vv+p9zYGBnl1JoHBvlL7D4tKA6+n2to8Rz7luroJWzRSVD+22+9o2jmvUGX/9A4d+bR/sheccp9BGMwY9R1WPVjJ46eQOjDal77d+xb4L0rQwCkpIadpJEbGt3N+AsgN4SpANzdKgBCEIARzKEhBv6EAN5+K8o9KRjHsgMNMjg208n7pq9WnjblZUp0vdEdXmrGIsSwmojhqGlxLnzFhuQ0bEC/AIC36Wtp2UlODKPMb39y2isp9yJB8hXl2Pod6QQdLcb7I2F6+b1LL3HOkEE6sd29GITX+hAeofLaf7oPnSeW0/3UfOvL7+hvP+oWx0/HiE3qUZzrlHOGUoGPrcanOotbdtbKeLg3nbvQHsfy2n+6D50nltP91Hzry3H0PdID2NeMdNnAO/0hNz+JbPcc6Qfw6f/wCITepAeoPLab7qPnR5bTfdR868we450gfh3/aE3qR7jnSB+Hf9oTepAen/AC2m+6j50eW033UfOvMHuOdIH4d/2hN6ke450gfh3/aE3qQHp/y2m+6j50eW033UfOvMHuOdIH4d/wBoTepHuOdIH4d/2hN6kB6f8tpvuo+dHltP91HzrzB7jnSB+Hf9oTepMGc8hZ1ypgrsSq8ceQxrnkCvlPAgcDbvQHr7y2n+6j50eW033UfOvKuFdFmecRw2CrhxuUCZoeNVfNzAP8V1e450gfh3/aE3qQHqDy2m+6j50eW033UfOvMHuOdIH4d/2hN6ke450gfh3/aE3qQHp/y2m+6j50eW033UfOvMHuOdIH4d/wBoTepHuOdIH4d/2hN6kB6f8tpvuo+dHltN91HzrzB7jnSB+Hf9oTepHuOdIP4d/wBoTepAen/Laf7qPnR5bT/dR868v+430hG59vQCe/EJvUuLGejDPOD4PXYjU428sp4JJSGV8x2Y0u4fEgPVvltP91Hzo8tp/uo+deRMn9H2eMzYTDiFNjrhHI1rgDXyg7i/JPh6G+kAkf8AbvH/APqE3qQHp/y2n+6j50eW033UfOvMB6Hc/nYY7w2/0hN6ke450gfh3/aE3qQHp/y2m+6j50eW033UfOvMHuOdIH4d/wBoTepHuOdIH4d/2hN6kB6f8tpvuo+dHltN91HzrzB7jnSB+Hf9oTepHuOdIH4d/wBoTepAen/Lab7qPnR5bT/dR868we450gfh3/aE3qWM3Q9n5sLnSY64hov2MQmvt8SA9Q+W0/3UfOueuroRSzOjeC9kbngDmQF4/wAo5QzfmnEa6ko8anD6Nsb3aq6UDt3twv3KUnoc6QDe+OAjh/pCb1IC0+jnPtXmDMmO0GIQvpxRSsYx7nB17sudgFt6ZMvZbx3LdXVYx1XlNNC+WN79XFrHFuwVQQ9CGd4JHyQYpBHI83e5lZK0u8SBus5uhXPk7CyfGGSsIsWvrpXAjwIQFiexwmp4cs4h1T2uhjkiDSBtbQVbra2EG75QL7AWXluk6Ec8UcZjpMVhgjNiWxVkrAfiAW/3HOkC++O/7Qm9SA9QeWU/3UfOjyyn+6j515g9x7pA/Dn+0JvUj3HukD8Of7Qm9SA9P+WU/wB1Hzo8sp/uo+deYH9Duf4yLY7e/wD/AFCb1LI9DWf3bHHrctsQm9SA9O+WU/3UfOjyyn+6D5CvGuC5TzlimaqrAW448zQU/lBLa6XhrDePxqUs6Hs/h3+nDYbdrEJvUgPUPllP91Hzo8sp/uo+deX29DfSEwWOOgj0YhN6kvuPdIH4c/2hN6kB6f8ALKf7qPnR5ZT/AHUfOvMHuPdIH4c/2hN6ke490gfhz/aE3qQHp/yyn+6j50eWU/3UfOvMHuPdIH4c/wBoTepHuPdIH4c/2hN6kB6f8sp/uo+dYvrYWhpEgsTuV5i9x7pA/Dn+0JvUsXdD2fwO1jjiD3YhN6kB6cmqaZ8bmOeHtdy3Gypvpm6OqLEsvTjLdCG1r43B2glxPC3E2VQZjyhnHBcdosHkxubrqqIzAmul4A24qUHodz+RduOktd34hMf4ICkaqlq8CxA0Ncx0bmdt0Rt2wDY8O+xCsHKOHZaznQzwipgy9IA0Ojka6Yzar93DTb/3J7qOgHNlVKZJ6uhkkO2p87yflLVhF7HrNcLtUNbRRn+5Uvb9DUBOsXxXBvcqr8LpMXhrHRCXzWObwjLeYTj7E8f/ALDShvwYd/8AylVvD0A5rje2Oevh6lzu0I6qTcHjfsr0N0XZRZkzLUNACDII2NeQ69yLjuCAmiEIQAhCEAIQhACpn2UNv5BRE/dJP3blcxFxZRHpJyozN+XpKAmzrO03dbctt3FARX2PVVFF0b4WHG382gH/AOMK0PLKf7qPnXluLoUzth4kp8KxZsVOHdhprZQA0bDgLcFt9x7pA/Dn+0JvUgPT/llP91Hzo8sp/uo+deYPce6QPw5/tCb1LlxHopz3h9FPVT447Syx2r5u+yA9U+WU/wB1Hzo8sp/uo+deP8lZFznmnDpq6mxqbTHM+D7elAu025XUgb0O9IFtQxw9rexxCbb5kB6g8sp/uo+dHllP91HzrzB7j3SB+HP9oTepHuPdIH4c/wBoTepAen/LKf7qPnR5ZT/dR868we490gfhz/aE3qR7j3SB+HP9oTepAen/ACyn+6D5Cjyyn+6D5CvL/uPdIP4cP/8AEJvUj3HukH8OH/8AiE3qQHqDyyn+6D5Cjyyn+6j515gZ0N9IMhIOO28cQmH8Fpq+iPPtNSyzy46S2NpcdOITckB6l8sp/uo+dHllP91HzrxzlLJudszz4kyjxt7fa+oNM/VXSi5HgpMeh7pADr+3m3/9wm9SA9QeWU/3UfOjyyn+6j515fPQ90gav9Of7Qm9SX3HukD8Of7Qm9SA9P8AllP91Hzo8sp/uo+deYPce6QPw5/tCb1I9x7pA/Dn+0JvUgPT/llP91Hzo8sp/uo+deYPce6QPw5/tCb1I9x7pA/Dn+0JvUgPT/llP91Hzo8sp/uo+deYPce6QPw5/tCb1I9x7pAsb45t6MQmv9CA9P8AllP91Hzo8sp/uo+deNIspZvkze/Lft1UeUxSCMny6XiWa+PHh6FLPcd6QBsMd29OITX+hAen/LKf7qPnR5ZT/dR868we490gfhz/AGhN6ke490gfhz/aE3qQHp/yyn+6j50eWU/3UfOvMHuPdIH4c/2hN6ke490gfhz/AGhN6kB6f8sp/uo+dHllP91HzrzB7j3SB+HP9oTepHuPdIH4c/2hN6kB6f8ALKf7qPnR5ZT/AHUfOvL56HukG5Ht5y+/5vUhvQ50gaA047v/AP3Cb1ID0+ayntfrBt4oNdTADVKBf0FeN8zZSzpl/F8MoanGnuNdUx0zNNdKTd5Umb0QZ+fHqjxw2fuNdfNcfMgLS6RM/Yll3NeDUVLSSS0tVU9U8te0C2gHmFOa6PDsdwBkWLsa6GaNshjcT2SW947rlecKroTzzUSRPnxWCZ7XXa59ZK4tPeCRst3uN9IGkN9vOyBa3l81rfIgO7JGD4Jl7pudS4E6JlMKhg0sDth1BPP0kr0mKynt9lHzryqzoMzoyoNQzEaZs5N+tbVSB97W86111+490gfhz/aE3qQHp/yyn+6j50eWU/3UfOvMHuPdIH4c/wBoTepHuPdIH4c/2hN6kB6f8sp/uo+dHllP91HzrzB7j3SB+HP9oTepHuO5/PHHT/8AxCb1ID0/5ZT/AHUfOjyyn+6j5145ztkzOWUKaGoqcbmIlkZF9vSkXc63OykNP0SZ9mp4ZYccdZ5IOqvm2sgPUvllP91Hzo8sp/uo+deYPce6QPw5/tCb1I9x7pA/Dn+0JvUgPT/llP8AdR86PLKf7qPnXmD3HukD8Of7Qm9SPce6QPw5/tCb1ID0/wCWU/3UfOjyyn+6j515g9x7pA/Dn+0JvUj3HukD8Of7Qm9SA9P+WU/3UfOjyyn+6j515g9x7pA/Dn+0JvUj3HukD8Of7Qm9SA9OvrINJ0SjV4KM5sy3l/G4J3VtIyoq3RkMu5wN7bcCvOGbujvPGWsv1eLVmNvMFOAXaK+Ync2W3AOjXPGNYayrpsakDSTu+umH/XFAQTpEyRiWWccxStdTvpKE1LuqBAI0l1hvcla8lYjhAlgpMUpmRzyv0ire49m52OkdwVk13QdnPEI2itxOGoaRuJKyR4+cFN/1O+ZAQRUUQI3B6523/tQEy6NI8CydjxqH5ip6oVcb5GxiF7NOoAAXtvwUYoix3sl2GJwczy2CxH4q1e4Bmy7T5fBdosD5VJsP8KnfRV0NVmAZjGM49UmephcyRjmzueS4E8dQueSAv9vmjwQsWarDushAI9wa4XHE2ulAIJN9u5K1oaLBAaAboABuOKW6BshAI69xYXVbZFyLLl/NmIYm6d9qhsg0lo988O7/AEKyiLggoACARvAFLdFkIAui6EIAui6EjiRvy5oBbrF9j2b2JRqOq1ja10jXAnfYjvQC7gizdu9V7R5Ilg6UWZlM7zG1s46vSLdv03urDIAHPbdI033tbxQGSLoui6ALousdRDu1wPBKL80At0XWAcQd/iWTb6d7XQC3RdA4elICeB4oAJNthdV90h5KlzPmHLVcyd8TaCaWRwa0HzmW5lWA+5GyLB2wI9KA1UsPU0sMJOvq2tbc7cBZb1he502Isl1b2HFAZISXtxRci5NvQgFui6S9m3KDci4sgFujisXP032uEvEIBHeabKI9JmWnZowDyNji06ibgA27JHPxUuaCG7EXSENZueeyAZcm4WcEyvhWGulJdTU7YrkWvZPQHbLr7HZBOkattKW1rW4IDJF1iX2eByIuh+rT2LauRQGSFg1xdtcXt86XURYEXPOyAyQsRqsLkcUA7m6AyPBRjP2ASZly3LhzXuiJla8OAB2B9KkRedW/mO2AHFZHa1r3QEe6PsEfl7KVBhb3mQw6wXEAcXE8vFSRYO7uDeaNVxsQD6e5AZoSA+kWPBKDdACEIQAg7oQgE2stNSzXTlo9H0rfZCAr/ooyTLk6hq45J3ymaeWUBzQLanA8j6FPXAuj+CVkQClAsgEuEXCVCATjwScDclZJCASgC+6VCEAIQhACxIJPGyySOaHEE8kAgPIoDQdzuskW4ehAJufQsHjlrIJ52WZAKVAYPuLFrdRUA6WMkS5xoIYo6h8JY6M9lod5sgdzPoVg23ulQGmBpjhjZfzWgfIFtBSoQBdF0IQBdF0G9tuKTcjZALdF0ckX2QBdQvpTyo/N2WaigbI6Nz43NGkA8SO/wUyLtIudwkJ0W2uOaAbsvYe/DMHo6R0jpOpgYzcAcGgfwTm0kgXFj3JALDY8UXLWXdYn0IDK6LpAdtyFj2rHtNvyQGd0XWDXlziNJFuZSl1vSUBldBIARfikBuOFvFAI2z7OBuEz5uwx2M5axXDmSGJ1TSzQgtF/OYW/xTxxuD8yTcE/COwQER6MMsPytluCgke6RzGMGpwAJsLclMAb2WJbcC5GpZE7IBGt039JusrrE3DduKUkh25FkAt0XSF3d3JG6rbkXQGV0XWIJ7xdBdYEnccrIDK61TNL2vYNg5pF1mSQAi3Lv3QFd9GmSJsqY9jtXJK+VlZFAxupoHmau4/3lYrbAcLX3SbgA93FAIBtY8LoDK6LrEO1cNkodd2n0XugFui6S+9rjwQXWvzsgFui6xudibAHvSuvyQARfikFy51+ASi6QkG+424oCt8qZFlwjpHxDHjK8MqKI09tIt9ka7v9CsaSzmadW55pQ2/neOyxcdLrkF1uFkBsDgdgUt1gSQRtsUoJva48EBldF0hO4CVAF0XQhAF1iS4lwtZttnLJBFxZAVznPI0uPZ5wrGBUPDKWlfEQGgjd1+9WHG0taGnkOKyDQAlQCEJNNtydlkiyAxYSQbhHK+ndLpF7pSLoAQhCAEIQgBCEIAPBYEaraTZZoIBFkBi69raiD3rJJYWASoAum3HqA4nhs1JqLBJYXG/MFOSEBCOinKkuUsBqKKSd7+srJZxdoHnG/JTYE3NxbuRpF7pUAXRdCEAXQhCAEIvtdYdYdVtJHpQASC+2r4loxCl8pw+op2nR1jC245XW+5DgHC9+YWLZDpaXNNybICD9G+Tn5Wq8dc+d83thWuqhqaBa44bFT0rEG5NhaxtvzWSAEXWN9+7xSFxAIJF+9AZ3RdYFxa0baiTbZGo8OfegM7oukB1NuCEC/eEAt1i+9rt4pS7a6xBu4XB3F0BXVPkWdnSnV5lMz+qkmZIGaRbaEM43urGbYm5G/BILE2HJZEgboBboukBvyKTUdZ4abIDK6LrEOueBSm4JPJALdF0JBfmgDV2iPRdY3u4Hks1iRqFrhAV30gZLkzBmbL9dHM+JtDXwVJ0tBuGEbblWFEwNY1l9WkWJSh13W0nbmQgt42I3N0AjXNaQ3V8S2XSHYjZYgnUQSL8R4IDO6LrF7iBYce/kku4NJcR4oDO6LrT1uzQCDcecOAWzV2i0cbXQGV0jr3bYX3+RY6rOa3vCUkFtzsAgID0s5LlzdhlNDHUPZ1dRDJYNB2a+/Mqb0UHklO2EEua0ntHbibrcSdQsCW2Q13YuGkegoDO6LrAP7yPBKLk32t3IDK6LoQgC6LoQgC6LoQgIx0lZefmvJmI4PHI6J9S1oDmgEizgefgunJ+DvwPA46NzzKWuJuQB3J+QBbggMLEgAHSe5ZpNI1X5pUALAk3Njcjks0EXIKARoPEn4kJUIAQhCAEIQgBCEIAQhCAEIQgBYvvcd3NZKMdJWKnBck4rXMNnwxBw4fCaOfigO2nxttRiDqaFodpuCdxuDZOkzzHF1hYNQUR6P4/JMseX1L2yPlvO542DWuaHb+C04fj2IZkr6+PBZ2w01JIGGRzA9stxcFqAyyjnuPMElbHHE0OpmOeePI25qSYNikeJiXQbOidpI9KqHoD6yTFcWFQLPLHhzSLE/XE/4zWMyz0nYWNY8nq6eeV8V9ybgDc+KAtJYyu0Rud3AlGrzbAkO5pTex25ICsG9JxmzNXYJBRxSVVKWN7RcLlzb8bLvq864nSuphV4fBEySZsd2SOdsfiVc0uIig6fsxyvhdO4y0/ZZYEfWlYb84MxDGYMMmw6ePdswkcW242sgLAglE8TZGjY+asxc+cAFWedc14llvN2GQTBww2p609doaGRBoFtRO+5KkGL4rXNxeiipLvikMZeWtB0tI3cfQgJaR8SQSNJtzUFmzZJX4jW0GH18FNPRvdE8yNDtZAvcC2yYMB6Qqypy3jzpYJBV4ZSuqOsIbaS5NgB37c0BbNwDa977rWZWND3WA08Sqfos4ZnxfKsuKUofEYZ2tLHQsJc3TqJThmDNdbjfQ3NmDCj1Mj4C8hzWuP2QNHoQFpsc1/ab3Jjzjj8eXsGmrntDurAPPvA5eKY+iaTEp8vxVGKTtkc7fZmm12tK29L1j0fYu5zS4BrLW59tqAeso463MWDtrmMDQXuZbflbv8AFPTibgWBuqkyHis/8kqalwN4mqPKXmQxgO0NNtyD6VK8ZzOcApaaHEp2GsmYHNFg0m2xNkBMjuN1juDYAWVWVuc8QwXM2F0VTO2vixGdsGuBjWiG4vqdccOSTFM7Yyc9R5foIJby0clSyTQ0ghpIHp5IC03EAtba90Am17c7WVO4vnLM2W8Lw/2zildNU6wD1LG20n/mt2K5zx/Aa7C6rFA6WgrnRQNa2JrbPkOxv4IC3b8dI3WEjnNjc57RYC6imP5qihxeHCKWrihrJC9pe6xDC3fceCYct55qX51ny/WvFYGwtlbVxBrYyXOA0243F0A7YPniHEc4T4EYwHRvey9j71t/BTYG43GwVL5d/rwqwNnGaf8AYKuk7WBF7oDB5Yxjnv4AE/EoWzOfl1VWNwuMSxU4adTrtvdOufK9+HZbqZowXbaLC3MFRP2PMMZ6M8Iqh2p5o3dbJfZ9nutsgJhlXMFLj1HJPTbOildC9tiLObx4rjz5m2lyphklTUG7tOoCxPMDl4qtsgYiMJ6RsbpGG1MY6mp034ydZwBPNbulejOK5GxLFKtpcZWNdHANnM7QBBtseCAualm8ppoZRsHtDh8YutzyGNLiuHBdD8LpCxwLREzhy7ISYvWw4fQT1FQ4CMG1723PBANOD5jjxHM2IYdGwGKliZIHb8Tb1pxx/FG4RQuqCNbrgBpvzUS6HMPczAPbKoOqpqHSMceGwkNlM6vDqapma+oYXvG4AcRzugK1p+lY0+NQUWMUjIIZ3aQ9up3K55KxMSxWChwkV7t2PZeMW43FwoL000EWN0dLhUERfWyiRkZb7wkDcgcV25uyzi+KZQw2jwGvho6ymZEXPliMgOlhBFu+9kBx4L0iVeIYjHTPw6GOPhqa53dfuVmQvL4muIsSLqkcrZyzDlnMdHgWdIzLHUFzY6wQshjGlpJPC+5ICu+J4kja9puHAEH0FAZIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQATuAsQCAbLJY3ItsTcoBuxrFosJp+smNzyFr8104fO6ogEhaACq0qMRONdLFLQuN6WlZPFLHzc7iDccFLM15lgwSaipNbWS1UvUtcSLNNr3KAkzz2OAJ7k0NxhkeKmhqNnEhrTub3F1BKnO1Xg2a6WiqZRXUtTG6TrYWta2MlwAab73Tn0wsdRZaqMchdaTDo3TFg4ycBYcuaAn7b2PPmEMB0nXvfkmvLFd5fgVBODfXCwk9x0g28d06ucQL2O3zoCA56z8crVlJE+mjeKmVsLbk8SCeXgsv5X4o6mE7MNpzG4Ag9YeHyKF+yLlbFPlObzy3GYSWjiR1b9lKa7PkWG5binGGVD2tEbNIc3m4Dn4oCV5Vxz2/w5s+nqn3cC1t7bG3NPbSC7YXtsSoJm3FsRwPI0mKYPG61NHLUSsawOJaBe2/BbaPM9TXZIpcTpJmuqX9WJAGgljnAEtI4X3QE3BF9uKUkAbqD1Gan0RoqCeVrK6pc5l3AfWiN7kfGmWhzvWUmd/aWqkGIRy0rp21MLWtYxxeAGHncXQFoi1/SVg+RrXBruJ2BVVtzljtbnjGMAoWPY6jnEQlMbXNd2A64HFb8lZxxTEpsXwjEQW4jT00s7JCxoHc3YICzY5GSPcGuuWHSfFY1M7YI3vIuWi/BVJ0QVOMYjmDNnl9Wx7YMQay3VgWvGTyVvm4cb7i3BAQ7KWeIcwY1iOHxxhr6SeWE7HfQbc1Mm3cBrABVFZExGDD8/wCbHyvayU4lWBjSdzdxt86sakxjEcMwarxXH3dVTwM6xzHsDCADbj8iAmHPYCyQuFyGjtKrsczfXjCxieG1kYYJR/N9DXPczziQe4jZc2Y+kusocr4XjNNRzvFZE+UwtDC6PSQLG+3NAWy1p3LjuUgDr6SBpHO6rOfG814dR19dWh81NHQmoY9sDWjVYO037wLplZnXMtTkWlzIzUymdHE8xGFmp2twA34bXQFzgdrzjshxda4aCeW/JQiLPVO/KVLi0jSw1D5Imtc4XLmkjw5KPZqz1X5eZRYkZm1tPO1gFLC1oeNbrXue7mgJRmvOkWBZhwjDZWA+XTOiB35NB/ipbBM2aJj2Dzmg/KFUHTI5k+acgzRjUPLqjtDh5jQrdoPtGn/JN+gIDaQLaRsTzCjOO5pjoMSZh9Ixs1YQ1xa64FnbDfxUmubOvsRzVK5An9tOl/GJpGkGPDw1urkWyGxQFhYTmqKqxpmGVcbYa1+ota0Egho33WjOWbxl5zIKaJtTVX7bX3AAtcbhQLpmqThOcsuYhG4CZlLUDUOd3N5Jwz9gGdIcfmx7LuIwOjMbA6mFKJHuDRwBItuUBLcmZsqcwyuZU0ccAF/NcTwHpCmA1azfzeSr3otztNmGKehxSnfTYrSPMMrZA1pc5o7RsOG91YIcbC537kBGMx5nbheO0uGtbeSVjJOfAvLf4KRyujhbJJJ5p47Ktsvh+YukeoxV3apKSF9Fptwe15dxH4wVj1MRqYZYjsDaxQFb4/0mz4dMH01BFLRh+h8ji4EWvfa3oUyylmSkzJhEddSONtAc9ukixIvzWrMUFFhmVsQhIaxksMjWgnd7y07C/MqH9E+XqqkynXviBpjiBjmj6wE6RZAdWM9I8lPXugoaOOeLYB7i4G/Pl3qbZfxA4nh8dTJGI3kC4HK4uqOlfnXo40z1kzcWwlsrpJBT0rW6W31Ou5w+JXblnGIscwGkr4WEddG17o7i7SRexsgHYbOuefBZJOJHeEqAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBB4FCCgNW46scuaZ/b1k2I+SQNDrWudxzssM9YkcIyliFaHAGFgdf/zNH8UxdFcMj8uT1U72mqlqJSx9uAIaRsgHbG8yimxGHDaRrZK2UOs0kgAi19/jTblzO/ti1oxCnbTue8sZo1Ou6/pVd0seKnprkZHVxiXrZbOMdx5vcrPz/SF+UaucWEtLG+ZrgLWIad0BK2EPia4HYgG6yaLBRLoxxYYtlHD3O7UsNPEyR3e7QLlS0eFkBFc+5sZlPCBXzxh8ZlbEAbnc3twTPhmdsSxPDKaugw2ndDICbmQjnbhZc3sg7fyCaSQLVkR3+NcGRs6R4d0f4e8YbUSdXGS4Nc34RQEwyhml+OPlZNTthczULNJPAgc/FSi5FhYXKhWGYzNX5TrsUwxhbJH1hEYAc64F7dy4+jnN9Vj+AVsla7qK2j6tkzZGtBY48iBzQFgghvZHNLYN3vsoBFm2TD8DhqMUeGzVdRJTQtcA0h1+yfSmPMOf6/L1dRPfM3EKaeMvMUDWgtJdYAkoC2g5rmam8EhL9Nw0Xv38lWmbc64rh2eqLA6KGTRVzNha8MaQ27b3N91rwbNmL0efjgOYLukmppaiGXq2sa1ocA0W4nigLP62Nsui41lI49XG5xF7XKpagrMYqem3EqN1YzyalqIxp6sdoGAHb4yrpaHBrRqGra6Ah2F56hrs3z4GyMdZHIWXseQupobAXI8VRlNV0eH9NddLPURw3qHk6z/cVj4FVYu909diRMNM1hOh8YBsDxuPQgJYCHAEbBK0W98Sq9qs1zYoK84diEFLFSSmN3WNDtdt9tviTJT9JVXUdHWIY7HRztkpIJpXMIYSdDy3w5IC23FwHAXv38kriQ5tuHNVZh+PZqr6elxSCKQUj6PrSwwtJBsXcfCyb8uZ0zJmjDsT8k1QSUzIzd8LHeeT3eCAuME8whxs4AAbqvsmZ8bieUqrE8S/m76aokpbyFo1vYOAt32Kacy55raLL0WYKSrjmhLWvbQsY0ykOcG2uRba9/iQEtz1m1mVqaGWaNrhK/qxxPK/JPeBV7MVwijrGiwniEg271WHSriXttkbD6wxuYXTO7JtcEM9CsDIZJybgp5eSs+hAP4PZuVGM15ngwAxRW6yqmc0NYQfNcbXuFJhqBA4+lUpJWOxf2QFPSVALoYcNqbM4dpsgsUBO25r8lxylwnEmBktU8sYRd1yG6uKkWKYhT4dQGoqn2itfhe4tdVd0/vdR4Zh2JcZqMSPDxtubD+Kj2csWrMfzVgOC0UUlTBHQUlc9sQHHUdQvx5IC2cv5g9u3TGigaKGMga92mxBtsfBSa42IG52VfYfnWLB8bosCxPD56Bkwf1Mszmhtm7n0niFYII0arixFwUBHc8Y/Hl7CfKOMxkja0b8HPAPDxT8yZrqZshHYIu7wVa5qYzMXSJhdA14fTwwzNnA5PbuOHDgrJlha6mfG7Zjm6T6EBAMz9IU+GyvjoaKOZkbrOc4ubaxN+XcnzIOb6bNtA6aDszRBpkZYgDUTbj+Knd8FLQ4fUANDWOa4m5846VXfQxg5hxTMGJtjdHR1zacwtN9tOu+/PiEA8Ztz57SV4paSjjqH7E6tQ5nuHoT5kzHJ8epH1FRC2Bwt2Wkkb371V2YMGz5lbE6jGKCvhrqLU8upoqMF4YXF3nOHIAD41YvRrmuPN2BRVRidDVsY3r4nEamON9iBtwCAmCEIQAhCEAIQhACEIQAhCEAIQhACEIQAhF90IAQgEHghACEXCLoAQi4234oQAhCEAKGdMGHyYl0d41TQgmR8IDQPx2+pTNa5WNkY5j26mniEBCcr/zzo7mp6ckSCkdTEcLOEQb9KiPQzjEWCy4zhGKa2VFPLHGHOae32SSbnjxVg4Lhc+CV80NNE59JKXTEjYBzjuFvrspYJiNb5ZWUIdVEk6i9w3+IoCqugaobJmDFQ5s7ZNDiNTCBbrNt09dIdJ7b9JmAQQWLmUk4c4ciHA2urBpcHo8Kinkwyk6qd7C0WcTfu4riwHLzIcRkxOsZeueSWk3BaHDccbICSMGljBxslc7sOJ4AFKduCSQamEd+xQHn7BZqZnT3mSapjvDJLTaHPZttFvxVm49jWA4W+Oc00Tqp1msLYQ487bj0p0nybgU9S6omoGvmf5z+scL/ADpJcm4G98cnkIEkbg5p1u5cOaAjPSNhzszdG76tkf8APyxjo9rFl3i9r7jYI6K5q3HMLkxLEGaXljqVrTcWLCGg2O/LirCbG1sWlsWx4i6wpaSGkiMNPHoZcvG99zxQFJZYxely5nzMtFmGlBbWV75oJjCXEMDALajsLkKUZlrMJqMn5kbhFBHAH0LgJGU+gu2O1xxUyx/KuD4+GHFqMVBaNiXubbe/I966W4Fh7MMfh0dOG0jmlpZqPA8ed0BVmTagjoyrg6Msc14Z5pBP1vimzLbHS+xmdQwteKllIQbgg3MyuRmBYdFReSsph1Jtduo91u9JS4Jh1Hh4w+CnApZBpLdR4Xv3oCM9EWIxT5XhgaXmWM6Hah3NaCujpclEGQMWle0uaxrLNaLk9tvJSDBcCw/BhJ7X04j1Oc42cTuePErfiOH0+J05irYusiPFhJF/kQHnfK0ddkekoMaiknloqur6iWNxLtLbhxIaP4qSdLmKh82A5ipKbymgFMQ5roy4jW4Wu0K2pcv4a+iFI6kDqYk/W9R2vxN7pWZfw2PDzh7KUeRutdmo8uG97oCJ02OZarJqU0tEypqS4aDJTA6HW435eKizpi3p7wuYNIj9qZmkAHS0lztlZuD5TwTA5jNhdAIZXcSJHHnfmVubl3DBiJxDyUeVm9363c+O17ICuOn0guwFrA4gOmvpF+TU3dMsv/YuUQ1r3N8tor6WkkbHdW7imA4dibonVtOJeruW9oi1/ArXV5ew2s6vyimD2xW0N1EWI4c0BUeZa6HLvSpQ1eJ07psOq5J3mXqjIWgNsPQNyFO8KxDAanEo34Xh0HWOLSZzTAOAv8IdykGKYDhmKUDKXEaUTQNFgwuItvfkfQkwXL+H4JAYaCnDIiTsHE8TfmUBVuW3Nb021r3B/wBmnsbbeYrqbcXubhM8GXMNgxU18dOBVOJcXajzFjzTxtew4jkgGrM1CzEcHqITvdpIb6bFV/0LVIwfKNPhNeHQSULNwBa+pxPPjxVqlrdYdbtAWTVU4Bh1ZVSVNVTh8slr9oj0d6ApzK2U58x4ximKCappXipniaY3aNTQ+44jndaulXKGKUORq97MTrnhrBZnX3HnDkFe1NSQ0cQjpY9DL8L3WGI4dTYjSyU9VGHxPFiLkfQgGTImGVGG4PA2pqJpi5g+yP1WuAmPpgrXjB24ZTh3XVJa8FoPBrhfcKwGsDWMa3YNsAuGtwqmrqyKoqYtT4gWtNzwKAXBaGLDcNhpoRpYwarAczuVxZnxulwCgfV1JkI2aA1uo3PDgnsbC4G/cm3EsIosThdHXwCdhde2oi3yICvsHzdgk0rcSxF1Q6cHUwdVfSRtz3CmDs0YaDFHK+WEy2cwhmm4PDitH8gctl2l+GtIHm/XH+td2LZVwfFG04rKMSdQGiPtuFg3hwKAhfSLh7MwYzhcFLGHyRdYOttuL2998SsyjYY6SFh4tY1vyBc1HhtLQ70sOm3AAk/Su5osEAqEIQAhCEAIRe6EAISNc1wuDcJbi1+SAEIuEXHegBCLhBIAuUAIRcbelCAEIQgBCEIAQhCAEIugEFACEIJtxQAhCEAIQhABWNiJLk7EIkuW9k7o57i9hdAVHhVE/DemWSSbZtY6eZrjwAAstPTCZMNzRl3FZojNQR1uqZukvs0R77BWDmnADiroqmnf1VZC0sY/TqsCbna67n0MWMYb1GLUh0uuHMc7l8SAiFPjuXMRZDNQ4dDUTPLXASUoJbff4rLZ01PD+jjGaX/vFRTOZG0czqaVIcFyng+BTunwujEMhvwe48ePErjxbBX43i0Ulawx01O7U0HfVdtjwQHTkWhfQ5VoI5HHU6Jj9z/cbt8ykJubD5VqbEGwxxMHZYBb4lsF9yfk7kBSHsgXMFflYaOsa3F4XO7N9tD1PW1mX5sCiZVU8RZpaXN6kHcG42T1iuWcKxZ8Tq+lEpjeHtu5wsR4H0rRJlDBCx38xDrnhrd60A3YJidHm/DK6kjic3D5onQ2MRbcX0nY7KusjwYlFmjFcrvjc3D31clTHJvcNZYAA8ANuCujC8MpsKpBSYdF1EDSXAXLtybnj6VsjpYmTmfqvr241X4goCnekGd2AdJOFYlXQGXDZqhxdZhfpDWC+3xqYUeMZfrZ45cKw2B9S6xMj6UAtadzv8ilOK4NRYxT+T4lTiaJoNruI48eB9C04JlrC8Fa8UFMI9QINnOOx5bn0ICssoOI6a80PcHaHVjdLiNj9YXJktz5OlHMLS1zS7C7MOkgX1G26t2LAMNirJKuOmDaiQ6nP1Hc2t39yKbBMOpq19ZBThs726HP1HgD4oCruhysjoMz51pKrrBPLiTS27TY2j3sVcTpA1he8WDRfZNEWW8LjxN9fFTBtRIS579Tu0Tz4p3c1srXMJu0ixCA8ynAarGM35mrsMmqI6uDE6h7Iy7RG6MPLiT3lT2ozI7PPRLjVKyN7MU8lc2RjmOYLmSzbX3OwCsuky/h1HUyz09OGTSlxe7UTfVx5rGjy7hlHVSTwUwa+S1zqPL40BWnR9mzL9Tl11NiVDaqppDTFr6Q9rS1ovvxF77pq6ZKinOB4I2gpTDSuhn7DIS2wuy23yq03ZNwSXEfLnUIbUDbVrdvvfv7134jl/DsSaxtdAJo2AhjdRFgePA+hAMWdSPc7rtZc1nte7Tp4uPV8LKB4K6P6n7D3SCSwpKS7NO4OoclbtThVPU0nk1VGJoOAZci21voXOzLmFsw3yIUg8ls0dXrdy4b3ugKPcydvRHguIRQvkjw+tqqmWNzCS5rXO208T4KdYRj+Wq/AsP6+giqKl0LCY5KUO0HutxFip9TYPRUtC+ighDaN4LTHc8+O/FNVDkrAMNr31dFhwZPIS5zhI43J48SgK56VnudmDo+e5uhkVbUGVrBsBoYrjw9wfQ09uBjaR4WC4MVy9heKztfW0olkjJLXanDSSPQfQnWCNsMUcUYsxjQ0egAWQGR4aTzVO4NQy5a6Xa6eVtqOpoY4w7j2nPJPoVwuJIcALW4FcOJYVRYkQK2n60NsQdRG/xICq8/0jc1Z9wSlp2OfTQwTslcW7A3BG/DkrIw/MmHVr5oYZCTDGHODhbbguzD8JosNDnUVP1bnG5AcTv8ababJuBU1W+ogoAyVwAc7rHG9vjQESyTgjo874tiTWlkM1TUPBG19RuFMs7YkcIyviNczVqghLwWgk7Edyd4oI6WHRBH2duyCteIUFPX0UtHVxiWmmboey5Fx4hARXotww0OB1Er7l9bUuqtR42e1vqUueWxNa4uOlmx+NEMDKaGOGBuljGhrW9wCWeFk0TonNu13EICrqvO2EY1iL2VjqltHTOLtIiPae02IseIsSpPhub8Hkwx89I2eOjptLA3qS3Y8Nlv/kPlt5d/2c3USXH64/j8q7YstYRFQPo20YFLJbUzW7lw3vdANGbq6ixvJdfFTNbKKuCWCPs3IcWkX9Hiujo5wqTB8uxQzEkuDSATew0gLvwnK+FYTEI6KmEbQ4u85x4m/Mp6Y0ABoFmjYBADW2cT3rJIPOKVACEIQAhCLi/FACEXCAQRcIAQhF0AIQCDwQSBxQAhCEAIQhACEIQAhCL7oAQi4vbmhACEJCQCATueCAVCTULXv6EtwgBCEIAQhCAiXSnhsuKZAxiigv1ssTWtsbe/af4Lm6K5Wy5VDD2XQzOYRw3aG3UylYH9ki7XcVF8OwmowbEZIaKJzqSVxkc4cAXHfj6AgK9wyUHpzmBD7OmlIdpNh2O9WVn6RkOTMWDj51NIAOZNl0nLuHtrnVTaceUvJJl1HY+F1yZgwubGaqCCSMtpI3Bzidw4WsR6EAzdDVDJRZRp5XghtVHHM0HkCwcuSn2zhstFFTxUVHDSwDTFCwRtHcALBb2iwQFYeyClaMisbpc8+WQmwbfa5XR0d1WC/wAh8NFVTw3cw6muiHwjyKmuK4NR4pH1VdEJYr6tNyN/iTeMmYFZv8xGkcB1jvWgGvLmN0NTik+EYPSxtpurdK/61pB7QB9HNQGvo8Qy90n1GH0cZ8jzDPJUHTfSzq2XAFthuOat/Ccv4bhDnOw2mEDnAgnUTcE3PE+gLskpIX1UNQ+PVPCCGPvwuLFAVV0ywOw6jy5Wtp9dLRV7KmZjGF12tF3bDjwTlSY7ljFMKppY8OinqZGNcGvpAdPeO8KwayjiraR9NWM66KQFrhw2O3JNOE5NwPCas1GH0QhkNy4h7jcna+5QFa5pnbJ0w4K9rZTpq2cWGw7C25re09OmFOeHFpwl+7RcA9Y3a6tGfA6GrxCHEJqcCrjdqDi48QLDnZYTZewuSuFc6mAqhsH6ncL34XsgKphqW4f064q+oY5sc9RHpcGmxtTjmrrje2RjXt4EXBTTX5bwzEK+OtqaYOnadV9R7rd/cnVjWtjaxrewOyBfggPO+aMAOZelHEaSkkngqBO5vWM7HFoPnW9CmeSc0z45lzEsGrg9mJMhksdLhcE6W7lWGMAw+PEJK2KnDaqV2p0uonfwvZYU2XMMgxF1fHSBlU5oaXa3cAbjnZAVH0b47h2GV2O4NmCm/nDKxzWvdBq1hgsSXHjunPpFq6F/RnmJuFUMdNAaGXq2QwaNR5iw9N1YGK5OwLFqvyrEMPE1QCbOMjhxNzwK7J8Bw6eh8hkpR5MAQG6jz480Aw5JmD+jilIBDhRAEEWIPVKDdB72jD8ec8PF2U17i3N6t+jwukpaU00MOmEi1tR4Wt9C5sPy7heGxyto6QMEgAcA5xvbhxPpQFE5UhlrOjXGmwtcXwYzVVBY4EXa0v5c+KleRszZbq8lYZHiOHsfVxwNEkL6S41XPI7qysPy/huGdcKGlEbZw4SNDib6jc8SuKLJGAxYmK6Kha2cEknW7ckW70BB+l2eN+TKIxUwiY6d4ayOMi3Z7lOshnrMlYO1pcCKZgN9jwTnimD0WJxCOthErG+aLkWNrclvoaaGkgZTwR6I2DSBe+wQG9xIce5VDmijOAdLlBjkURMElDJTvdpv2pHju8Fb+oEFvFw4hclfRU9fGKeqg1w7P84ixHDggKv6W4xj+IYPg1LqljnfJHLcXAGnUPRyXNVUhyz0nYfiHUA0UmFU9BfTez9brnbhtbdWjRYFQUdQJoYA2UG4dqO3zroxLDqbEohHWR9YwG4bcjfv2QFV9KtD7f5kwKDDAXVDY6hvWDbSTp99y4FWnUTCiwx80ly2KK52vwC0UeDUdA8Gip+qe7cv1E2+Vd9RCyoppIZW3ZI0tI9BQFd9GVOMQxzMWLyNdd1c8wFw4McPSrFk2aC7zRxWjDcPp8NgENJHobYX3J4eK6XN1NAduDxQFaZhzxh1ZirsJDqiNkdy97YiN2k3F+Fk+4BmXCZYhDhMT2QQ260dTosDe1vnXRPk3L808tQ7D2uke8l56x27jz4ruw7LOFYdFOylpQ0VAAl7Tu1a9ufpKA5/b+hxXCq00ztelsjHMeONhY7KP9FWES0D8TrWRtjpsQeyVjBtpAbawHJSKhynhGHVL56KjDDICHAPceJuTuU9wQtgYyKIaImCwbx2QG5CEIAQhCAEIQgBCEIAQgm3FFx3oAQi470hIAJJ2CAVCAbi4QgMXGw23Sjv5rAuDS4k2YBdRbEukPLGG1j6atxMRTsJBb1TzYjjwCAll0XUJb0o5QIv7bj9DJ6kvuo5Q/C7f0Mn+VATW654K6mqJnRQzRvkaLlrXAkKJe6flA//AL2ad/uMn+VVF0Y51wuhz9itRiOLuNG+KXQHROtcyAjgO5AekRsSdvQluoSOlDKOlpOKtAI2+sv9SX3Ucofhdv6GT/KgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJrdJYEg9yhfuo5Q/C7f0Mn+VL7p+US0kYsLD/wAGT1ICZuHDx5rQ2tpnVPk4niM+9mB41bcdlEX9KGUD2TioJPD6y/1KpcNzvhEfTZFXyYqW4a1lSD9ada5tp5XQHpC6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNHEW3v8AEuaergppmRzzwxukNow94BJHHiop7qOUPwu39DJ/lVU9LOd8GxHNeUajDcTvDDUTOltE4XBjsOI70B6IYNTeN97ghZ3UCoukzKjaOnjOLBsjY2lw6l/cL8l0e6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6QuUL91HKH4Xb+hk/yoPSjlD8Lt/Qyf5UBNbWuTay0VVVDSMD6mRkbCbAuIA+dQ93SflB0bv8AtcWHE9TJ6lBOmPP+AYllQR4XjJEut1tML9+w4cwgLuglZNG2SN7HscLtc03BCzO4seJ7lVPR/wBIuWaHJeA0+IYoPKm0jA8mJ5Nxx4BSI9J2UGPH/azQXbD6y/1ICag2AHci6hR6UMoA2OLt/Qyf5Ue6hlD8Lt/Qyf5UBNbouoV7qGUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuoZQ/C7f0Mn+VHuo5Q/C7f0Mn+VATUu2WqaaKnZ1k0jI4+Ze4DdQ/3UMofhdv6GT/Kod0qdIGXsVyjNBheKapxKw3EThsDvxCAuGCaOoiE0L2yRHzXMNwVtuqd6KOkTLlDkLCoMRxXTUjrNV4nn37u4KW+6hlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6L3UK91HKH4Xb+hk/ypD0o5Qt/pdv6GT1ICakHlZLfSLuULPShlENF8Xb+hk/yrnruk3KXUg+3AH/ov7/BATOjraetjL6SaKRocQdDgeHHgujYledugnO2DYRhlezF8VJ11U7ml0TuBcLcB3K1W9J+TxYNxZo/9GT1ICaMtp4H41lsoSelLJ4//AHu39DJ/lR7qWT/wu39DJ/lQE12QQCFGMIz3l/GaoU+GVwnfcAjq3NtfhxCkze8HY7oA1doABZJN78EqAEIQgBCEIAQeIQmfMWYsLwBkbsVq/JxICWnQ517WvwHpQDsbh/oSk2UKb0n5S03OLjj9xk9SR/SflC1/bZp9HUyf5UBNTa/P4loqaunpBeqqIYmnh1jw36VEndJuUmkE4uAO7qX+pVL07Z3wfFqGnbhGJ3c18dyI3DhK0niO5Aejw64uOCLqDU3SflFtPEHYu24Y0H6zJ3firZ7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1uuapqIaWESzysiibckyODdvjUT91DKH4Xb+hk/yquenXPuC4nkqsgwfFiZzC8dmJw3u23EIC92PbNE18b2uadwWm9wtgdcKs8pdJGVafL2GwzYk1szaWPX9afx0i/JO/uoZQ/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuoZQOwxdt/yMn+VATUbABa5pWQRvklcxsTGlziTawHFQ/3T8o30HFgXd3UyepMGeOkXLFblHHqWixQeVOw+o0WifsTE4A7jvQFl01VDWQiSlkY9h4FpBHzLeTa1uao3oWz9gNBk+mjxPGSZo442vDoXcdJ7gp6OlDJ5sfbdu52+syf5UBNrkcUXUK91DKAJvi4/QyepHuo5Q/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1usH3LTpNiDzUN91HKH4Xb+hk/yrCfpOyk6J7WYs0vLDb6y/u8EBMIa2lqHyR088Uj2AFwY8Ei/DgugGwXm/oZzphOHZlzJLi2JkRGGm0XicbEF9+A8FbY6UcoH/8Ae7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qGUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuoZQ/C7f0Mn+VATN7i1t+d1luQCLXUKPSflAN1Oxdum9vsMn+VHun5Rfs3GG3JH+pk/yoCVxV1NNUup4pojO1upzA4XAva9l1bX5WXm3I2dcIg6XsXr6rFjJh7sLLG3idYP65h7r8AVbjOk/J7mAjFW6T/wCC/wBSAmotfVvuluoUOk/KJGv23Gg7D6zJ6ke6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6R1za1uO6hfuo5Q/C7f0Mn+VI/pOykSwtxVpBO/1mT1ICWT1lPFMIZZ4mSu3a0vAJHguq/day839JOd8KrOk3A6nDcXIoo6ORsobE6xdq9IvwVtM6T8oNaGnFmggcOpk9SAm10XvsoV7qOUPwu39DJ/lQelDKFtsYaP/AEZP8qAmu1rXRbbbdQuLpMyhJK2OPFWukcQAOpfvf4lLKKqgrKZlRSOEkTwHNNrXCA6UIQgBCEIAQhCADe23FIRvdKVy1NRHSU75qqTRG0Ek2vYIDoO7gQluoW/pMypDUSQS4sGyMcWkdS/l8ST3Ucofhdv6GT/KgJrdYuc1oLpHNa0cybKGe6jlD8Lt/Qyf5U0Zr6Ssr1GA1cdHio68gaSIX947wgLEo6uCrY51NJHIwEtu1wO48F0A28eaoXoKz7geGZPq4sYxYuqTiE7wXROJ0l23AKxR0n5RABOKtaTx+syepATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATXj3pHOAbqu0AcSSoX7qOUAQPbZu//AIMn+VceL9JWU34XVxwYq3rHRODQIX8beCAnVLWU1U6UU80chidofpcDY9xstxvysvPPQ3nnBcMqs1e2mMFonxR0kIMTj2LegK0ndJ+UQN8YH6GT1ICa3Nt0XUKb0n5Rtf24BH5GT1I91HKH4Xb+hk/yoCa3RdQr3Ucofhdv6GT/ACo91HKH4Xb+hk/yoCa3RdQr3Ucofhdv6GT/ACo91HKH4Xb+hk/yoCa3SEgmxUL91HKH4Xb+hk/ypHdKWUA3/S7d9vsMn+VAS0VtOZ3UzaiHyhpt1esar2vw48F0CzT6V5tps5YX7uFZX+2ZGHCpY77G61uoA7r8Vbw6UMokavbcW4fYZPUgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJr6UcW7cVCx0nZRNyMXFrfcZPUsW9KGTxYe27d+H1mT/ACoCXVFdTU8scU80cb3uDWhzgLk8AFuO4JBG/Cy86dK2dsJrc4ZYdh+MExRYlTSTNETgNAIvxCtKj6TcpCJkbsUGtgs76y/Y/IgJyC3W4i97brK6hLelHJx3bizf0Mn+VL7qGUPwu39DJ/lQE1ui6hXuoZQ/C7f0Mn+VHuoZQ/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbpDY2JvtvsoX7qOUPwu39DJ/lQelDKGkn23bYbn6zJ/lQErqqyno2h9RNDFG4gXe4N3PDiuhtnWeHX8DsvPHTvnfBcUwaiZhGJ7iqp3uLYnDYSXPEdysnDekvKsNHGyTFg1zS7UOpf3n0ICwLouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQEwqaiKmhdLUSMiibxe9waB8ZSxSxzRa45Gvb3sNwqY6ZekLLuJ9HOL0uF4qHVkjWhgETwfOHeLLu6OekXLdDleKOvxQNlDncYnnu7ggLcbbY7/GstlCD0nZSOg+2oNxe/Uv9SX3Usn/hdv6GT/KgJtsk58rKFe6lk/8AC7f0Mn+VPOAZpwjMBl9p6oTuY0EkMc3jsOI9CAfAQhA4b8UICO5/nlpsk43NGbPZRzOBHoYV5X6Juj2HpFnxeoxOpnDmVNh/OHs4tJ5XXqjpCAdkbH9+FDN+wVSfsU7vOOW2AqwNvxCgHH6nDBuVVVW/PZPUj6nDB/vqq/XZPUr9AAS7ICgfqcMH++qr9dk9SxHsbcFaSRUVAJ5isk9S9AbI2QFA/U4YP99VX67J6kfU4YP99VX67J6lf2yNkBQP1OGD/fVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsnqR9Thg/31VfrsnqV/bI2QFA/U4YP99VX67J6kfU4YP99VX67Ir+2RsgKB+pwwf76qv12T1LH6m3BdWryio1d/lkl/oXoDZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1LF3sbsFcQXVFSSOF6yTb5l6A2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SR3sbsFcLOqakjuNZJ6lf+yNkBQA9jfgwAAqakAbD+eSbfMl+pwwf76qv12T1K/tkbIDz+PY5YMHnraqqtY2IrJOPLkqyzT0V/yUzFHHi3lk2DvfYSQTSDSA25JcbcyvZT9yAWgs7/SmvMGB0eP0ElJiEEcsZFml7bkcL/QgKKwnoEy3i+HxVlDiE0sTwCS2ve7TcAkG3MXXa32OeBBzSamrMZ5itksuZ1TjfRFjwZO6Sry5VTW+uPuI3SP5MZ3NCvLA8UpcZoKerw5wlpJm6gSNNhcjgfBAUt9TjhGq3lNVbj9uSepL9Thg/wB9VX67J6lfouDY8O9LsgKB+pwwf76qv12T1JD7HDBSLGpqSPz2T1K/9kWCAoBvscMFa0BtTUgDgBWyepL9Thg/31VfrsnqV/WCNkBQP1OGD/fVV+uyepH1OGD/AH1VfrsnqV/bI2QFA/U4YP8AfVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsnqR9Thg/wB9VX67J6lf2yNkBQP1OGD/AH1VfrsnqQfY4YORvVVX67J6lf2yNkB5/b7G/BGizamoA9FZIP4LL6nHBvvqq/XZFf1giwQFA/U4YNufKqr9dk9ST6nHByPtmpuD9+SK/thskJsbWQHjPP2Uo+j3PmDRYZUVB8onLXjr3v4MBHHxXr7AHufgmHude5p4yb/ihebPZGkDpHy/sD/OH/u2L0ll518Dw782j/ZCAcb72QjmEIAQhCAElhe6VI4X4IA4bheTem9j8a6XKXCJJZhFJLI0Bsjmgdhp5eC9Yt2abryn0mkj2QWGFo/18v7oICWU/sdcHkgje+qqdTmh327JzCz+pwwe+9VU2/PZPUr3om3poHHj1bfoW1m7nX4XQFCfU44N99VX67IsXexuwR3nVFQfGskP8F6AsEWCAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1JHexvwVws6pqXDuNZIf4K/9kWCAoEexxwYcKqpH/wDmyepH1OGD/fVV+uyepX9YI2QFA/U4YP8AfVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsnqR9Thg/wB9VX67J6lf2yNkBQP1OGD/AH1VfrsnqR9Thg/31VfrsnqV/bI2QFA/U4YPe/lVV+uyJD7G/Bje9VU7ix/nkm4+RX/sjZAUA32N2CsFm1NS0dwrJB/BL9Thg/31VfrsnqV/bI2QFA/U4YP99VX67J6kfU4YP99VX67J6lf2yNkBQP1OGD/fVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsnqR9Thg/31VfrsnqV/bI2QFA/U4YP99VX67J6kfU44N99VX67Ir+2RYICgG+xvwRpJbU1AJ42rJN/mR9Thg/Kqqf12T1K/7BFggKA+pvwf76qf1yT1KNZ+6AWYTgb6zBZamWaHVI9nlEkhcxrSbAW4my9SWWEzGvjc17Q5jgQ4HmOaA8l9G3RhlzN1E6Oqq6mmxOAtZJTy1rmPDiCSNI32U3b7HLBi8ubVVOgiw/nsl/oTv0kZCqsPrv5RZLc6krBqMsUBbGJXOIGpxO9wLqT9GHSBT5vpXsniZTV8Ldb4Wh1gNVgQTxugIF9Thg9/tqp/XZPUlPscMGI+2qr9dk9Sv1pDhcIsgKC+pwwe1vKqr9dk9SPqcMH++qr9dk9Sv7ZGyA8/t9jbgrXFzaioBIsSKyT1LL6nDB/vqq/XZPUr+2RsgKB+pwwe1vKqr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqccG++qr9dkV/bIsEB5/PsbsEc4ONRUFw5msk9Sy+pwwY/wDeqr9dk9Sv6wRYBAUD9Thg/wB9VX67J6kh9jhg/Kqqr/nsnqV/7JD6OKA8u5/6E8LyzlmoxKmqqnrow4i9XIeDXHh8Sm/sWq2esyKRUyOc2NkLQXEk+aeZUn6dSwZArBYXs/8AdvUS9ilpdkSUctMP7JQF5IQhACEIQAhCEAG9tlUPslqyaiyKOoe9vWOkaS0kG3VlW8TYXKpr2UAtkOO5v9ck4/k3ICuOjDoYw7NmVqPFqypqetnhjkNquRu7mAnh4qXfU4YP99VX67J6lK/Y7bdGuGXHGmg/dtVp7ICgfqcMH++qr9dk9SQ+xwwa1jVVP67J6lf+yLBAUA32N+CsFm1NS0cbCskH8Ev1OODn/vVV+uyepX9YIsAgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pxwb76qv12T1I+pxwb76qv12T1K/rBFggPP7fY3YK2+moqBfc2rJN/mWX1OGD/fVV+uyepX9YBGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDBvvqq/XZPUr+2RYFAUB9Tfgmsu8pqNR5+WSX+hL9Tjg331VfrsnqV/WCLBAUD9Thg/wB9VX67J6kfU4YP99VX67J6lf2yNkBQP1OGD/fVV+uyepH1OGD/AH1VfrsnqV/bI2QFA/U4YP8AfVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsiPqcMH++qr9dk9Sv7ZGyA8/u9jdgrnBzqipJHAmsk2+ZZfU4YP99VX67Ir+2RsgKBHscMFBu6qqrc/57ItNV7HPC/JZTS1NSJhct1VkhHDwXoM2I3CxIJb8HfayA8Y4V0c0tFm32lzVJVU0JkDBUuqHxReZqJ1G23AeKtCD2POBSxtlirKh8bh2XCtkIIKtDpAyRRZtw2aCVogqnts2oY0F7Dcbi/oFlWeTc5YpkzMLcr5wLnMc4Gmnc4yktc4MjHZ2HmnwQGP1OuCA6fKKux4nyySyB7HDBuVTVD//ADJPUr4ieKhhLdJjPmuBvdbWm43CAoP6nDB/vqq/XZPUj6nDBvvqq/XZPUr+2RYFAef3exvwR4s6pqHDuNZIf4LL6nHBvvqq/XZPUr+sEWCAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKAd7G/BXCzqmpI7jWSepA9jhgoFhU1IHd5bJ6lf+yLBAUD9Tjg331VfrsiT6nDBtY/nVTb89k9Sv+wSEXIKAoE+xywaMPd5VU2sf++SepV3kChflPpyhwOknmdSsqoGC8rnXB358eK9fzbwyX7j9C8nUgLvZMstwFZT/soD1kzVYE24ISM1c+CEBH+kT+g2P/mM37BVKexP446ORqx+wVdfSJ/QXH/zGb9gqlPYn+djn52P2CoS0kno7mkvvZKsHENFyj8wjIHcpVpZMx17OHxrPW34TflWKlFrKYaZnsgkLWXst54+VYGWNvF/zpqXmRhm3V6Csr+hc3lcI4uSeWRfCUOrFcslJs6r+hKuTyyL4SwdiULTYk7ehYO5prljSzusiyb/AG0h9PyI9tIe8/ItfrtLzGlnfZLZN3trD6fkWubGI2sJaCT4LCXUaEeWSoNjqkKZPbwfA+YoONj4HzFavte18/wM/BkPV0XTJ7dj4HzFHt2PgfMVH2xbef4EeFIe7oumT27HwPmKPbsfA+Yp9sW3n+A8KQ9pd+9Mfty4+YxtvTdHtxL8BnzrB9ctE8N/gZKhNj5v3o370x+3EvwGfOj24l+Az51H27aef4DwJj3v3o+NMntxL8BnzpPbeT4DPnT7dtPP8B6vMfPjR8aY/beT4DPnR7byfAZ86fbtn5/gPV5j58aPjTH7byfAZ86BjEg94z50+3bTz/AerzH3fvRv3pj9uJfgM+dHtxL8Bnzp9u2nn+A8CY+b96N+9MftxL8Bnzo9uJfgM+dPt208/wAB4Ex8370b96Y/biX4DPnR7cS/AZ86fbtp5/gPAmPm/ekLbkFMntxL8Bnzo9uJfgM+dPt208/wHgTOzGsOp8VoZqOrZrjkYWkcDuCP4qhcQixroexh9dQRS1mWpHa308cd3MaBpAMjr++ddXU/FnyP0aQ1wGq4vwC5cTmpcWo5KeupopoH21NkZqHG/A+Cfbtou/4D1eXI45czDRZgw2Ksw6VksbtjoeHaTtcG3ddO+ob238F5krG4/wBFuNCuw9xqcDmcGuikkcdFzqcQxu3AK5sqZ3pszYMysw0M67S3rI5BpsSL9911Sv6GnWnsR4bJqXWS6kxyYtKGMcI2XJs7jsEDGXj3jFyfb9m093t8B6vIfNRSakye3L/ubEe3L/ubEh16zl3/AAHq8x7uUo3CY/bp9vsbPnSjG7DtMF/QCsl1y0lLSn+BHgSW4+ITJ7eD4HzFHt4PgfMVn9sW/n+BPhyHtCZPbwfA+Yo9vB8D5in2xb+f4DwpD2kTL7eD4HzFJ7dj4HzI+r2+OTF05ZHu5SgpsGKxG3H5FkMUhJtv8i3LqNCXDGhjhYOAvul4G3KywhkEkYc3gVmfO+JdqaayjA8u+yPcR0j5dH/3D/3bF6Uy/wD6Cw782j/ZC81eyQ/rIy7+cP8A3bF6Vy//AKBw782j/ZCkHcEqQJUAIQhACOaEcygEG915T6T9/ZAYbf7vJ+6avVjefivKfSd/aBw78vJ+6CA9T0f2nT/iN+hbQLXstVH9p0/4jfoWx3AoAuUElazI0CxdY+KTrIxuX/OsHNZ5DTwbggrAPaPfN+VGth9835UU445GHgyv6Et/QtD6mNji0uFwsfK4vhLHxYeZOGdF0oIXKayEcTdYHEYR3/IsZXFNcsYZ3ITccUhHM/Ik9tYfT8i0u/ox2bJ0McUmsfCCb/bWH0/IsfbWAe9P+FR9o2/mNDHPV6UJmlxuNvmsv/5VgMcB30fMVrfVbaPMjJUpMezdG6ZfbwfA+ZHt2PgfMVh9sWq7/gQ6Ex7SE2TL7eD4HzFI7G7jZm/gU+2bXGc/gZKjIetXoRq9CY/bk/B+lHtyfgj51h9u2fm/oT6vMfboumL25f8AAZ86Pbl/wGfOn27Z/wAT+g9XkPt0XTGMZf8Ac2fOl9un/c2fOn27afxP6DwJj3dF0ye3T/ubPnR7dP8AubPnT7dtP4n9B4Ex7ui6ZPbp/wBzZ86Pbp/3Nnzp9u2n8T+g8CY93RdMnt0/7mz50e3T/ubPnT7dtP4n9B4Ex7ulumP26f8Ac2fOj26f9zZ86fbtp/E/oPAmPl0XTH7dP+5s+dHt0/7mz50+3bT+J/QeBMfLpCb8Uye3T/ubPnR7cvPFjPnT7dtP4vwHgTHp1iLkjZVV0k5FndUjMOWT1eK056wDSZNelvZAbw4qdvxd7QLxsIKxGME3BjaRbhZQuv2ie7/AjwJER6NOkF2MPbhGNROpcagaWS9aWtMjmNGtwYOAvfbkrJdJxaCNXM9ypbpLyfNisoxfLUrqLE4yHOMT+pDxq1PuQLm/zro6N+k32ye3CsZZ1GKwkBw0nS8uJIGpx37Nl10+pUKyzTZDpMuDW4DgSsmuLhwt4pkfjEjWhwYwsPdcpTjJ0B4YLH0Fcj65ax2z+Bl4EmPdzdLdMXt07kxvx3R7dP8AgM+dR9vWj4l+A9Xmh8J9CLnuKY/bp3Njfiuj26PwR8izXXLR8P8AAh0ZD4D6ClTEMbI4tHyFZe3g+B8xWa6xavv+BHgyHtCZPbwfA+Yo9vB8D5lP2tbPhjwpIfLJCbFMvt4PgfMVj7et1WLPmKyXVLfzHhSHvUO8JC8ct/BNjMXhc25af8KyGKQngPmWX2nb42ZHhscb+hZArmp6pk+zfoXRwK7Kc41I6omDWCvunM6ej6tt3P8A3b1EfYoi2RnW5shv/hKl3Tt/V9WeD/3b1EvYo/0GP4kP7JWSYZeCEIUgEIQgBCEIAVNeyh/oHEe6ST925XKqa9lB/QKP8pJ+7cgHT2OhJ6NsMv8Ae0H7oKzrnmqw9jn/AFbYX+bQfugrPduolnGxDeAueSUE33WBkDeKQStdvqFvFRlJ7syW6Nt0LXrZ8JvypDKzm4fEU1JdyEmbCfQkDjfgVpNRG3i9J5ZDw1KPEXmTg6L+hF/QtHlcXwkhq4gCdSeJHzGGdVkWTf7aw+n5Ee2sPp+Rc3r9HzJ0McEJv9tYfT8iPbWH0/Inr9HzGhjgkKaZ8ZYxwDG3v6Fq9vB8D5itE+r20Hhv8DJU5D0lTJ7eD4HzFHt4PgfMVH2vavdS/AeHIe0X9KZPbwfA+YpPbofA+ZR9s2n8X4EqjJj5f0pLpk9uh8D5knty7kxtvjUPrdmv+z+hPq8x8ulumL24f8BnzoGMvH+rZ86x+3rP+J/QerzH26Lpj9un/c2fOj26f9zZ86fbtp/E/oPAmPd0XTJ7dP8AubPnR7dP+5s+dPt20/if0HgTHu6Lpk9un/c2fOj26f8Ac2fOn27afxP6DwJj3dF0ye3T/ubPnR7dP+5s+dPt20/if0HgTHu6Lpk9un/c2fOj26f9zZ86fbtp/E/oPAmPd0XTJ7dP+5s+dHt0/wC5s+dPt20/if0HgTHu6LpjOMv+5s+dJ7cv+Az50+3bP+J/QerzHwAAWHBRnPGVKPNeFS0tWz66Gl0MgJGl+khpNuNib2XV7cv+Az50jcXc5hc5oBvawun27Z/xfgPV5FNZUzJjHRpjBwDNzteEE2pqsxiGNrGA3uTublwV9U1WypiZLA8SRuAIc3cKE5xwXDs34Y6jxKNreTJgwF7RcE2J4cFVOXc14/0Z4qzCcxXqqCRwDJjI+Zw1Ov6ALNC3Uuq29fKg+PgRKi0j0pdJqPJR6gzHHiOH01ZQ6HwzMa8X2Ivw2W92LuY8t0N2Wh9btovEnv8AIKhKXA9hxRq39CZPbh/wGfOk9uHfAYkeu2v/AGf4GXq81yPt0XTF7cP+5s+dL7cv+AxSuu2b/wC34EeryH2/pRf0pj9uh8D5ke3Q+D8yz+2rT+J/QerzHxCZPbwfA+Yo9vB8D5ip+2Lbz/AjwpIe0Jk9vB8D5ij28HwPmKfbFv5/gPDkPaAe8pmixpr3gObYeC6DicPp+RbafU7eaymYum8jjf0pLkcE3txKEm2/yJwvey6aVeFdZgzGUcGE28MngfoXk6hFvZLM9NZT/sr1jL9hk8D9C8n0X9peP88p/wBlbU8kJHrRnmgehCG8B4IUgjvSL/QXHvzGb9gqk/Yoedjn52P2Crs6Rf6C49+YzfsFUn7FDzsd/Ox+wVC5Mlwejlw4q4tpyQV2k2XHiovSlcfUM+rycRS3kRouc8Aud8ySx70rfMCVfJHcyb9p7lvGCSMbHvRbvN1khapVpPuTpiY6Gc2os3uWSFgqj7slKKE0t7kaW/BSoT3idhNLPgo0s+ClQsfD7pjYTSz4KBpBuBb0pUhWTjtyMpCBxKGu1GwO6HOjbG+V7mtjYLuJNtkyUOacErsSfRU1bTmoYXAtFQwm447A3W6hb1KmXFZIdSI/b96N+9F0XWn7zMTfvRc96EJ94E48UWCEXUbEYYWCLBF0XT2fIjDCwRYISp7PkN+4lgiwSoT2fICWCLBKhPZ8h8hLBFgi6Lp7PkMMLBFgi6Lp7PkMMLBFgi6Lp7PkMMLBFgi6Lp7PkMMN9gT2eNvSlcSXA9yEI5QxjBHzNVdDDW0ktLWM6yCVpYW3txFjwVGZly/i/R5j7sVyyx8uHSOc59NE0C1zYdpxPAEq+LAm55brCeCKpjcyqiZJC7kWg/SrPp3UnaPw6qzF8mudNdhmyfmmgzVhoqKGVrZmgmaEEksANrk27092APaZYcj3qlcy5VxPIuLHG8rmaSiYQ+eAa5dTALkaWgDirJydmqjzPhUbo5oo68AdbC97Q5psC4aL3Fr/ABLdfWEI/wC4tVmL/qYweOSQltjYsOo8BfiizebUvaY0AG7R5xO5HxoVLiT9po3ReRLN7koNhYbBCFlly3awZ7BqPejUe9CE28yNg1HvRqPehCj7xsGo96XUe9IhT8yNsmFmh27bJQ1olGpmkd6Dcm1u0N7rmmxPD4pRHXYjRQPbtaSoYz6St1vGdSqoxMakkkTPDrCkYALbnZdFwXcd1F67OGCYTgs1ZPidDI2JjnubHUx3sPjUSm6ccqxUnXibVuBYTRE7/wDmX2K0i40IRfkinm8yZWXsjRq6SMvcrVD/AN2xelMv/wCgsO/No/2QvIfShnfDM559wObC2St6qdxcXlpBuxoFrH0L15l7/QWHfm0f7IXQYjgAhCEAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP8AiN+hbH7tN1ro/tOn/Eb9C2ngsZrMWgiLYk76/ZosuZ1yLXW/EftlaSvkN9XqRuJw8my4pxjKBjZFvSskLj8Sq4rclRjgxsOYuUWb3JUqhVXwzNKIlh3JLNPELJCS9oYiYhrPgpdLfg/OlQsEmuB7ImlvwUqEqh58yNhNkEu5iw5JUy4vmvBsIqGU+IVkEchv2XTsaRa19ifStlGhUrPENw5JDzd/cSEt+4rXBK2VrZYHtfC4bEG/zrL3zu66STi9LJW5lqPekJvxSXQtbyicBYdyLDuSoT2fIgSze5Fm9yVCez5ASze5Fm9yEXT2fIYYWb3Is3uRdF09nyGGLpb3I0t7kApbp7PkMMTS3uSWb3LK6xuns+Qwws3uRZvci6Lp7PkMMLN7kWb3Iui6ez5DDCze5Dg3Seyi6DumE+xKT7iAkMDb8FkDe+3HZJZHBTJwxholpC7vFiOy3a3eq+6Scix42x2NYS0QY3CDJDOAXFrwA0GxNuAVgNJbx3BQ1r23DC0tPI7rqsLqpaS1U/19TVKCZVfRz0huZUOwHMgNPXscWNMjheQCzQ4Bo2ubq1Sx4Iid4A96gXSF0f0+ZmeW0DTSYtA0Fj4z1YcG3cNmi5uT8aYOjjPddQV5y5m+8NVGWsbUTMMTXGznOOp5ueStrq1pX9L1q17crk1xk0y2zpIv8SXS210kb2O3Y5sjCLhzDcfKlBsCW8uRXntKg8pbm/LaCzLdkgnuSWHclDg5gNrG/chS4qOyC22YlhyS3PehCnLROQue9Go96EKHl8jKDUe9GrvQhFH4jYS6R2m1ibE8FktVRU0tM3VWVNPTsPB00jWD5Ss1GT2hyQ2sDvgZbrIa4ON/Un0kF2xuRxCiODY5g7JHkYrhxaATcVMfrTHifTFlqgxd9BJLreHaTIyWPSdu+6+qdDhOFstZU3GNWx1dO1/c+rLC+z/3b1EfYon/APYZ47mQ/slMfSv0wZexzKlTh+Hve+Z2rhIx3vHDke8p89iiwtyK8ji5sJ3/ABSrhSNKLxQhCkAhCEAIQhACpr2UH9Ao/wApJ+7crlVNeyg/oFH+Uk/duQDn7HP+rbC/zaD90FZ99SrD2Of9W2F/m0H7oK0bKJLKwShkxuZ0RAB4gfSUz7k7m57055g+yN8B9JTcvmvpFUqQu3GO2yLO3inAx0+lG/IrJC88q02sNm6MYmNgeO6NLPgrJCjxH5mWiJjZvcize5ZITxH5jRExsz4KLM+CskLH7hsY2Z8FFmfBWSE+4bCCwHZFkpc7uKS9nDbZcWK4nTYLTvqsRlZHA0FxLnhuw47krKFOVWWiKIk0kd9yBdJqKa8Fx7DccY6bDqqGUNJaWsla/ewPI+lOoAPBKlOpby0SRMWmgBPejUe9IdkLFrzMU0xdR70lmniN0IWOmLMhLN7kWb3JUKNMVuPkJZvcize5F0XU+z5DDCze5Glvci6E9nyGGGlvcizfgpbouE9nyGGJZvcize5F0XT2fIYYWb3Is3uRdF09nyGGFm9yLN7kXRdPZ8hhhZvcize5CVPZ8h8xLN7kg1abudeW9tVve9yyQns+RGEI8NeAHNv8L0pszPgdHmbCJKDEWtc4Auie6/ZcQQDYcdinRJpB52K2UarpTU6fKIcVJYKCo6/Gui7MElNXRSVeBl7mxyDTG1jfNYOZKvHBsRpMaoI6zDntnjffdt9rGx4+laccwahzBh0uH4nC1zXEFr2gAixuO0QeaphsWO9FOPMe101Tl+d7Wv7L5eraO086jZrdzxXoXGh1enttVX4/dwc2XBl86d7BtzzCGhrr6W3tx9CbsvYzRY5QR11DURSNLQHsbI1zg4gHgDtxCcmkkF7hpDvNFrH4156pTnSk6dRbo6VNSQlm9yLN7kqFq0RMhbnvRqPekQp0ryAaj3o1HvQhTsTsGo96NR70ITbzGwF22+/oSOMbSNQt8aXh6ViXNY0mW1hzPJSnjhhpGcYYXt27PepXG4FvcQNwoMzGMJZPofiuHseDux1SwEfFdb81dImX8s08E1RW09QJCWkQTxuIsL77r6F6LUpwpNy7lZctZJjO5ogkJItY/QvKVHt7Jho7qyn/AGVauIdOWU44LGRx1s1ANmiv+0qVyZjUOYenykxSma5sU9XAQHWuLC3Jesi9jn7Hshm7R4ISR+a3wQpMSO9IhvkbHx3UM37BVJ+xRIBx08vKx+wU/Zw6XcKq8t45Qsw2sa51LLHqMjLbgjvTD7E18ckWMSRggSVIdYm/vCoWxKex6NIuubEQTTFdXNc9f9rOXNeLNCa+BMHiSIsOACVIlXxlLPJdJghCFOEMghCFDSYyCEITABCEKc4JQIv6LoQFHPIaTOTE6Q1WE1VMx5a6RhaLBU/lDonrsMzpUYrVVkwge+RwGlh4m45q7EKxs+pVLWMoQSaksbo1ukmGyNkiFWmwEIQg3BCEKSBDYJRvwQPSkPoU7E4A7I5E8gjWxoJebAcVDcU6R8Bw/Gn4XLK3rg4t+ytHAXW+jb1Kz9hZMJSSeCZ87JGkOJA5JXPbJC2WHdjm+PJaBKzqyTsRsd1pjGUnhIhTSW5x49jdBgMIlxOUxMOwIaXcr8lswfFaTGKQVNBIZIe8tI5X5+KrvpXyXPnWGJtJPHHpcT2g4+9tyUh6LsqS5Qy6aCeVkr3vEl2hwHmgc/BWte0toWarRlmflsa6VSVSTXYmSEIVVpec7YN+GCEIUZ32AIQhCAQhCAEIQj3Mguk4C7j2e5BtaxHFI1wZ2XgqM7bojYxla2WF0crQ+Fws5h4OHcqbz9lOvypiX8osrSOZE92qeJpbG0Fzjq34nZXMbsB0i/cibQIbFhkDxZzRyvxVhYX87Z6HvB85/wDZhUimRbIWcqHNuFtkpJSZ2j67EAbbkgbnwUquPBUx0g5IxHA8YOZsrEPc09YYGsdI46WgAd3epvkLOlNmWlDHOFPXQjq5IpXN1EtAvYD0ldd909VI+s2zzHy7/RGEZNPcmNja6Fi3ZzizsTcw7f5krQ0Dsi3rVHlz3XHxN0ZZFQhCywnwZAhCFGyIyCRKhJbjhZDtht7Xvsd+SqjphyHWYvTnEcHrJmyN3exrWgAlw5kq1iyzLlpG/NcmLUIxHDn0zZGML7edf+CsOm3Mre4i4pP5muosxyUFgOTW4t0V4rmKrxiqlibTzAwOhaWDQ7Sd733sq86P8g1edcbFJQxBtExxu4Fu+mx4H0Kf9IWWMx9HuXW0FNWU78LxB74NLYXEt1AvcSXK2vY15arsDyZNNXFnWVczaiJ2gjsGNvevrtN5gminlyUx0mZJoMl5xy9BQbufO8Pd1YbezGkcD6V68y+f+w8O/No/2QvMvsl+rgz9gdZIC5jJ3EgGxd9bZwVnZQ6WsNrY6DDo8NrGObFHHrc9ltgB3rMgtwG4QkAHJKgBCEIASXsfFKsb7utse9AKNuK8p9J39oDDfy8n7pqvDPPSNQ5SxKOmqqKpqHPY12qJ7ABckcz6F50zFj9JmLpuwuto4ZYQ+aQubI4E/YwOXggPYVH9p0/4jfoW5aaP7Tp/xG/Qt3eofAIriLT5UVz/AMF14l9tnwC5Bwf4r491X/m1fmy4o7U0CEIXDl6UZoEIQmA0CEIWWQCEIWDk1siUgS3SIWeU18TLCFVMdLHRfX5oxuKuw+qlF+sLmhrbNvptxPoKuZC7LC+nY1PEppN4xua6lNTWGNmWqKXDsKhpZ3lxYBcm3cAnM+cbcOSELkqydWWtkRjp7iISoWJmCEIQAhCEAWRpSXsDfgmLNebMNypAyWveAJCWjthvAX5rZRozrz0QMZPSPoIN7cktk15cxyizBh4rcPcHROsTZwduRfknQlY1oujU8OS3Mo7mEsjYYnySGzGNLifQBcpowfM+E4xVmmoKh0kwIBBjI4i/PwXZjVB7aYZU0geGGSN7QTfm0jl4qq+jXorq8q5ldiE1VDIzU0gNa8HZpHPxVna2ttUtp1akmpLtsa5OalguK4uRzSJXO1O7W21kiqFlps2pCoQhZJrGO5DyCEIQgEIQgBHHYoRe26YMkINRGm1wOaRnAtLyClfYAOPNZnS0BzgVCfkQ2kYgOd2zI6N7drjmByUJ6R8jUmbqXymF5o8RiBtNEwOc4uLbm5PIN+dTYFrXX5FILxu1NF2nuXVa3VS1qKVN/d2+hrlBFK9G2fKvAsSOXc1G9Vc9W5zy8lpcGt4Cw2V0tcHEPZtHJ2m+Ch3SJkigzVhbnN+t1jDqYS48Q0gbDxUByJm6rydiH8lc3RSeQxkxQVVhFHpY02Nzubusruta0uow8W22muVwvjjlmCk4l4Bu2xuEHYX5LCJ7ZWMkY9srX+/ZwstgawHj868xUTjLS+TdGeTFjg4dk3S7pNQc7s8uKyUxUlyZZE3SoQsspjIIQhCMgmTN2Xo8x4RNSPkdHIWERua0Egm3entKy/WMPIG5WynVdKSnHlES3WDy/geVa9vSK/Lldi9XSh0LqhmhjXam6y0bcN7FRnpRwAYXneuwjD5nVNRSvLXve0MPmgj0d6vbOXR1i9djc2Y8GxKjilggczS+J7zYFz+W3MKuOinBsYzd0rDFq3TJJRSh1RIIiGjWx1r24eavr/TaviW0ZY5RUVfewdMnQ1BgWQKjGMUcW1bmOcxvVtN7s1jcH0KzfYozF+SJGuAGlsIb/hKlPTe3R0dVMcnas1wuNv8AVPVO9A3SRRZUykaaow+qqHaYxqicwDYHvPpXYjWeq0JgyfmCDM+EMxKCnlga5zm6JHAnsm3LZPYuH3uNJ5IDYhAFhZCAEIQgBU17KAf/ALBx/lJP3blaWY8ViwXCZq6eN8kcdrtaQCbm3Neb+nDpJwzM+VGUkVBVxOEj7Oe9lt2EcigLR9jkb9G2Gfm0H7oK0VV3sd47dHGGgkFvk8FrfkwrQUPzAw5gadbfAfSU2c075h85ngPpKaDxXzL0oWL75pFravMcCoQhecXLRvxgEIQssE5BCEJgZBCEJvjJOECEIUb8ogxcTwA2UV6TstS5qy1PRQSvZI6N7RYA8bd6lnJA4WW61rSt6qrQ5XmQ4qSwyp+ibJFbk7r21lRJJre5wa4N5taOR9CtSBxKR0AJutjGaQtt7dzvavi1Ek/gIpRWEZEJEpKRc2RjAIQhQ9wCEIWOnyAIshc9fVQUVHNUVTgI4mOfxtwBP8FsjF1J6IciWyN+17JSLcVDMr9IuEZgxKShp3We1wbvI032J5eCmXmO232vstte2qW7XioiLbFIuLhRnFc4YPhmJigrKlzKokAMEZO5Fxv4FSZjiHXcLB11SPSV0Y1ONZwGJwVEbWFzDYh54MA5bcl19MtqFzUlGs8LtwRLUnsXVTSNnp45ozdj2hwPoKzG6YcutfR4XS0sjgTDE2O/gAE9MqQDZcNWKhUcVwbHCSWTYCDwSouHbhC05ZgsghCFOSQQhCkAhCEAI03+PZCAxr7jmN1KIbMHAxkNI1A8zyXNjOF0mL4dPQYiBNTSsLDrbcNB4my6G9h5DlkdnB597uB3rKFSVF6ovD+AcNS3KDxKDFeifMXlNO91RgNQ7V1b3iNrS52kWDbnYNCu3AcapcxUDK/D3mSB+4BaQGC5G1++y6K6ngqaWSOpjL2yAjblcWVG1eC4t0VY+MQwwGswqY/XmwsLixrBtdzthcvPyL0f7LqlD2sKovuz5HPhwexfQN725IadQuE1ZezBSZhw6OehlY+SwL4g4Fw2F729JsnO92gt+xjzmc15mrSnRn4cufwOiMkzNCQFKizyjLHmIlQhORkEIQowRkRzi0EgcEkrWSxuicAWvGknuusg7QdVr2WTjeTgpWzyOTzv0yZLrcCrJswU1fOKF0wDgGtAb1jw0c781w9J2T6bAsiUGITYlPiD6p0rY+vha3tAcNj8Su7pCyw7NuAy4ex7WudJG4XufNeHcvBUH0kYTmenxelyhV1MFUHPaynMUDgC6RgNt9zxX1H0bunXtVqSyiruI+1g09EfRJNnJz67EYxBh8ZLQ9oa/fSHAWJHenbKuDwYF7IOnw6j3ghrINPZ08RfgvSPRrhMmC5HpKSpbplEDde1t9AB+heacUxWHBOn1+IzAyxwVMMmhhAJs0d+yvm9zQvI9jsPZHghV1lbpUw/MGIPpIMPqonsiMpc97CLAgcj/eQhB0Z+ynl2LJ+PTRYHhkczaKZ+tlIwG+k73squ9iiWNbjgY0Na2rDQALWGgq7ekX+guPfmM37BVJ+xQ87HfzsfsFQwuD0aFor/ALWct55LTWfa7/ArTcrNKSJj7yIolWLOCyXxhrDwXSBCEKACEIQAhCEAIQjgb9yhvSskggKI5xz7hGVa2OmrZYmPdpNnSW4/F6FIMGxSnxnDoK6jc10UzA+7Tcbi4XXO0q0KfizWzMFLLwd6FjzSrk1f9sbG1ghCFJAJClJ7ljueKjSTlChKlAIFwtUlQGcSssPGDFySeTO1ytM0oYLXXPNVl/ZbxXDUTRQguc4avFb6Nu5M5q9yoo21k5dDKLkXaRx9CqaTouixjNL8Ynndu8uI1NPFtue/JTmtrjOSGHb0LRS1T6ZwcLq/tFUtqclTeGyone5qJk2cPJ6aOGI9hrRztyTcXOc9zbm10zTYvJp1X4eCYsU6RMMwSVjMRljaXi/afp9HcuKh0+tXk3FZZvlf05vSTaI9W+0bnDv5J0p5OsZu4kjbcplw7EKPGcKixCgLXRyEi7XXGxst4cAWmPzgN1wTo4bhpOqNTwkO0kjIheR7GDvc4D6URyMkF43seO9rgfoVX9L1BjON4I+DCWSvk0OFmMBO9vUuzoWwPGsGwKRmNNlYTK4hsjA08G2+grsfSoxt/G17+WDohW1FjoQhU8Z7YZsBCEKTIEIQgESovZI7cKXnS8Ey4GjNOPU+XcJlrqoXa1riLNLtwL8kxdHefqHOolbA0hzCBvEW8r8085ly9S5hw19FXAGNwIALnDci3IhNmQshYXksSGiYGvkIPnvPK3vie9XNBWnqUnN+325NCzkl52HeRukaLAlouTxBQRbc8SgKkT7HTjuYtuQ5gaJL+8f5qqXpAyTVYZWDHcpvdSuYQZooHiEONy5xs3c3sPFW6sSNjqN5HC3/AJV32l5Us3mO8e6NM46iD9HOe6TNFO2mq7wYrGAHgsLbuNz5zuOwU6B1bgAeCqTpLyJMyr9vspxvOJsLnS9UC8kmwGzjYbX5J86NM+0+YIjh9e9keKRAtdE5w1GxDRsBbiu68sYXNNXNpx3X/swjLDwT9CNjqZwcDYN5lF9W7uy7mw8QqBby090blIEIQs44eyMgQhCh9w+DFwceL3W7rrIaC1paO0PQg+cfBA4hb7X9/H5owl7pxdKuWTmfJ80TQHVMDHyQg22dpsNzwTX0N5xhrsJGA1ZEVZhVqIixGrq2C5uePiFZWwhZcdk+d4LzacGNf03TVOANN4zO2ZzLuGrWSb3PcvslH93H5FNLk4vZIjV0iZeikY18PlD7tduHfW2cQr+y5lTAI8Jw6eLBcNjnMEbzIymYHX0g8bKg/ZFk+6HlwOHbFQ+57/rbF6Xy/wD6Bw782j/ZC2kHcLckqQJUAIQhACxO5I4X5hZI5lAM+KZcwbFKhsuJ4ZRVcgbpBnp2vI+ULy/n3DqPDenrDYaClgpohNINMMYYPsQ5Bet28/FeU+k7+0Dh35eT90EB6no/tOn/ABG/Qt3etNH9p0/4jfoW4IwRjE/ts+AXIOD/ABThjf28fxQm/uXyHrMdN7V+bLej+7QIQhVi3ijZ3BCELIlghCEIBCQ299wQQ0A34gXCjKXzMkKhN2O4vS4FhT6/EXtbG0hoLnaePD6Ez5Jzxg+a2O8lmic9ttg+/Ekd3oXXSs68qbq6djXOooslBQEAlzSfe3sgCwC5FvuZqSkhUJRvxSEAcFJAIQhACEIQAhCEAjhcWKhXSfkWPO9HBDG8sMby4m7W8W25qbIW2hcTt6iq0eUJR1EbyDlZuUsDZh7XlxAbckg7hoHLwUkIukuL7rjxfFKfCMNmra1zWwxN1EuNha9v4qZ1p3NXW17TJS0I6zZvMjwQCW69TnHuuVFMp59wbNNbLS4bNE+ePVcNk1Gwtfl6VLApr2tS2m6dTZ4yIyU1qFkADruIAtdam1ELn6WzROd8EPBPyLRjEUs+E1kVPfrnwuaywv2iNlRmSMn5ro+kWWsroqltMZJSXOiABuwgfOuqxsad1TlJyxpNbqNF/oSvIB7W4sLrHY8OCrdSb2M9WRUIQpAIQhCQQNyhA3KPOCRJC2NjpJPMYD6VWR6W8OfnSPBSx1jI1n2F3Nl/BWNVNL43xPB0OuFXdB0WYRFmxmLvjGsSNffXJybb4VlcdKVq9XrD7bfM56mexZcTopqZsjb2eA4bd4SsJbHvuFjGxsUbY2ea0aR4BZKom025wNsfiINIlJABu21iNh6VGc85Noc04XLDJTQCr2MU+huttnAntEbXspPeyVztQsttvXqUJKtTeGJRyUXkrN+LZLxxuX81ulmjLmiKZ73T+e64GrgLD5Fd9JU09ZDHUwEOY9oOw71Hs75RpM14LPS1LR5Q1jjTPu4aJCLA2BF/AqrcqZnxXo4xWTA80tkbhj3l0M8rWxs0izG8iTuFeyo0urU3WoLE+6/WDRvFl7WDXO08CgLXTTsqoWS00gmpiT1b28D3rY2+qxcvOTjKE/CqbM6YyWBUJHnQ6xSpjD0hghCEIBAJ5AH0FCBbU2/G+yiXBI5YTH5RR1LHNa1rw6MgekW/iqaw6Z/Rd0lVEE7GtwrHJBqlbuWCFh5N2G8nNXTl0DRKffajt8QVXeycgo6jJ4hIHto+KXyZuo6ibs1WHA7WX17pH/EiU9X32STppnjqOjaqmgIka5jiD4xOKgfsYMAwfE8lSSYhhdDVyBsXanga8+aeZCdMzUdZhvQk+Gp1B5jJs5oBsYCl9ikSMikd7Iv2SrEwLkw+gpsNgFPh9LBT04JOiJgYBfjsF0hp16rm3cs0KSAF7b8UIQgBCEIDRW0tPW07oKyCOeF3nMkYHNPxFUZ7JDLmC4ZkiOXD8Hw6nk6yTtxU7GH7GTxAV9KmvZQf0Cj/ACkn7tyAcfY6XPRvhpBJPk8Gx5fWwrSsqv8AY5/1bYX+bQfugrQPAoBlzAO0zbkPpKaSpDjP2qPEKPHivm/pXHF4n8EWdn7oIQheXXLOpghCFJiCEIQkEIQoeG9SexLYIQdx54twsoQOk3Avb5uEy1UHXOLQB1nMm3ct1C1q3CcqaykYNk3B3Sv24LFjmvjZJG4OjeNTSO5KtWGtmZrgVrroJSDZFroSJzSosiyEMEI4IQxBCEJq07koFxYxQRYlhtRSTEhssb4xYX3c0j+K7UjjYFIzdGopxIe+xUmVui1uV8dkr2SuIe7UBqbt2SOXirSa5zbEm9xbcrW/Z6zLA4ancBuV23N5UvGnU3ZsjHSgfOQ4B3Cya5p5Hva4udov3phr+kbL9FjcmETywtnY5zCDKbgtNuFk+z1MMzW9QQWu4WN1LtqtvipUhhM2UXGfBsha4v2vY7rtf1MJHWzRsPc54H0rTSPBsSbWFlS3TZgOYMXxmnmwhsz4mGQksjBG7W2+grZ0+1jeVnCcsN8CtKWNi/GlpaCwgi3ELJRPJs9ZS4JTQYgT1zWNB1NAOzQFKYnh7brkr0FSqOGc4NSi8bmaEgO9kq52jDIIQhESwQhANlJAKB9JWfqbJ7Kdsgd1skgabRuOxaTxHgp27bdQHpGyRSZwdA+cBz43h3F3JpHIjvXf031bx/8Ade7j9cGM4yksRJLk7HYMyZfpq+MEGSNj92kcRfmni2qxPBu5THk/BoMvYJT4fBYCONjLXPIW5p+96AtF6oOs/B90yipLkTc72BZ6fUueop6OuppIKmBlTSvAD2zRh23geK6Uh4bLRCp4U8rkNZ2KNx7BsY6NsdGLYPLLJhUz9L4etIa0OcXnsN7g2ytTJ+ZKPM+HxV1G60jmh0kJbp3N+R35J6q4IKulkgqQDTPaWuBPO1jvx71SWasuYlkHGn5kylFKaHUZHCNvWCxAYN3k/CK9BRnR6tDwZ7VF38/6I0PNNl4FKOCYMk5roc2Yc2egkYZG3D2tdqIcLA8u9P7NRlOvtW27rKjuKM7WXh1FhnQpqSFQk/8AMHelKtWckAhCEAjuBSu1B9zwt3oSWuAfSoZKM4SRWQmMkBwJPJQzpty7JDLRZvomjrcHk8umNwCWxsAHpPgFM4HWq4x6CnbNgpDlrE/bPT5D5O7rdRLRptvuN19H9E/+MytuffGfIeZqbMuXI5Y5LzCMB7TxB0Akb+K87mmpcQ9keIamkglgfVwB8UjAWkaeFiph0E4FLBmvG8Rwy4wfr523HabqLWkbk34WUVoyHeyXYRwNZT/sr1Hc5u56bw/LGA0MnW0OC4bTylukvipmNJGxtcD0D5EJ4bwHghSQRzpF/oLj/wCYzfsFUp7FDzsd/Ox+wVdnSL/QbH/zGb9gqk/Yn+djv52P2Co5HCPRx5LRWfaz/AretdSAYHg/BP0LVW3pyJXKIgzgsli3iVkvjVVYm0XS4BCELWAQhCAEIQgBHIjvQhGs7B8FZdJvRvHm/F4qkzys06BZkjW8Ae9p71NsqYM3AMBpMPY9zxFE1l3EE7C3IBOoY0cAsrXO3Ervr9RqVqCoT4RrjTaeox5rJGm3FIfQq7U2tKN+dQJUWWLnAc1OhoxlJYyZcNytM1U1osLXXDi+YMNwmNgr5wzWNrg8vAelap3Qy0oq6YiSI87W5Ls8CcUm4vc55PKymdTq0hpAXL1heSXLjZVwOIBeGE8rXXHiNe4HRA6wPMLpp27bK+vc6Fnk7amrZFfSbuTFVTvmk3JAWDiXOu5+p59CxY4G+pt1aUqOkrKtfWsgRptp3ug3PZIQ3ckh1rcrIJJ3vuuz3VlHNu3kSftR6BxUBzRkY5lr4+skkYGXHZcG878wVPLkOuU84VTa263b33U07yVtmUUTTo66qcTtypgzcBytT0MZc8xl5JcdR3N+QC6WENfw4p1pTanIPEhaTTapNQGy8s67lOWe7yeolS1RRqpI3Ml1lrXg8nC677uJ4Na34LdkjAWDbYotd1z53euadRt5zsb6VLSjJCELXN53RsbBCEKSAQhCALXF0gS3NkKNyciOta/ckYA7tPJWSQ7ix4JhDYQAvNzwCyRfa3JCLkbtiXQ0XB+Fw+JFko24KdWHiJljyMdPVxua0Ndr84O3VUdIeQJaepGP5Vc+GtjIdJEHaWua0EnstFzc25q2ed+ayY8h5LTpdbcjmO5dtpfStZ+zx3NU47Ff9G+eY8WjZheMAU+KwDqzdvVhxAuTdxuVPnElxLxZ/O3CyrTpNyD7YynHcD/m2KR7lzWay4udubk7bI6NOkQYxKcHxz6zikViHF+syajZosGgDh3ruubKnd0vWLb713+iNcZYeGWWk5pXNIe1pOkkXAtxCQOLnOBboLfTe6o45ht3OhNCoQhRLYYysAfOPggcQgLJo+utB4LrtY/t4790YT90k4DX04jcXAPFrhUn0YQtg6VMwMaXuPllTu7dXgLCNultyOSo6mklyn02GmqAXx4pHPWi/Z06nEAc78OOy+xUViEV8CmfJEPZHEe6Nl1u9xUPuT+TYvS2X/8AQOHfm0f7IXmn2R1/dHy7c/8AeH7d31ti9LZf/wBA4d+bR/shbCDuCVIEqAEIQgBHMoRzKARvPxXlPpO/tA4d+Xk/dBerG8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C3d600f2nT/iN+hbkBHMb+3j+KFwDknHHBarB52CbQdz4r5N12OL6p82W9DemkKhCFTrZJG1AhCFkAQhCECEAixQQCHHnZB3RpFxtwTZPJkhkzlgLcz5dkw+V7o+01wLXBp7N+8HvVd9HWQXZSrXujnlewkedIDwv3Ad6t9wuN+6y430biOyfmVna9UqwpOg8YfwOKvTcnlGhtU9rAzle/Nd8U4e0JsmjfGd90RPLbEGy5ZwTjtyRTqeH7w8EbXCQE81rp6lrhY8VtIdfYXB5rnktPJ1wkpcAhaquphoqZ9RVP0RsBcSRyC48LxvDsWc7yCpEjmHSWhpHp5rNUakouai8L4EtpPA4oSEFKFqTyTgEJNQDi0dr0pGnsm/FMrOBgyQkbewvxSqI5g9uA2IBd2/BNuZMHjx7A6nD5XuY2VhZdpAO5B5g9yc0hF+K206k4TU49hLdYK96O+jGnyXilRXQ1E0jpdYs+Rrh2rdzR3Kw0gAve26yWy8u6lzU8arzxsRBaVgTw4rJpsSC2MOPvgN0llgWjuWiMtGWs4YaTMmfWgWu7V/jRty4IQsIbLSAQhCzAIQhCQRwQhRlmSMWnWSHBDQBc7rIEjggGwsFGEQ1kEIQsmtLzFDAhWLRYrJKoxqeWQlgUu2A4A7E8wmDN+U8OzNhroMQZZwtoljDde243IPNPpFwQeB2QAALDgttvWqW9TxKTwyGtRROUcdxro6xdmEZgJnw6ctjjmdreWEXc4lxIaPOG6vCkqKbEqSKqo5dTXBp2cOYvy8U15wy1R5swuWixBoc6RpayRwLtBNrm1xfgqewXF8V6MsyDDMdc6XCZCWwOeRGAC4NZYC581pXoZ06PV6euDxU8uPot2aGnB7l+OaHPaCULRSVUNdSxVNJ24Zhdsm4sL25+C3tP1yxXmpRlTk4T5RvTygQkJtIQeCX47qMkgkJIc0gcClRcgEhRLjYDvgDLNfJf3xFviCrH2RlO19Pg1UCQ6JlQQORv1fFWngLgad5Dd9R3+IKvvZDUEs2S58RiJIoonm1vhFo4/Evr/SlptIfIp6vvs39Lwv0Uch/Nwf/wADlH/Ypj/9hr/3Iv2Su7pDxE4p0PGZkPZbDoPavwgN+Sb/AGKLj/IZ/ZsAyHe/90qyMC8kIQhAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWgeaq/wBjn/Vthf5tB+6CtFAN+Mfa3xhR4+cpLibQ6nNxdRlu4BPFfOvSx4uYy+BZWb9kVCELyi7nWCEIUmIIQhACEIWMoxz7PAFj0B3a1bm6qt/Q9RyZtZjJqqkFpYdPWst2Tfhp/irTJJFuSDuLHguyyvqtmpKHfYxccmMUbYYIoWElsTQwE+hZJOCVcuW92bFwIVkOCRYvJtshJjJLYpY5NS5ZGuLxd1hzK4ZMw4PR1xoZatvlIJbbSeIFytlOlOp7ibMWx8ckWhtTG9upjrtKyMwEZNuPArFxalpfJOlm1C1tmYLAm5WYcCsXHOzGMCpHC7Si1+aVx0jvSby8oxjzk43tu9bgQxhvwWTWtLr2WFRYNNkc2mmjc32KTzp0dw1+a58Yjmma98r36RI0DtOvw03+dTOgc6KCNjiSWd6ea6IPkJtuuKaCwvbdegne+tUYQqdjttaUIozNY7TpabLVJUP2ZpY/0uF1qLmtaRaxWmGYNdYrTCjhuok0b9C1bjzSEAC5BPoTzSybBRyjs02O990700tnWXBVi222c9anzgeWuBWS5oHWcTyIXQ3ffkuSRXuDTFQsnW5LFQiGCLXQjgpIEfuLLmdAQSQdzta66khF3ajxWUSU2uDngiLHXedz6V0b3PchwDiC7chLda9TawyXJsEDihClylBJLBGRCRI0gizR3LXPBBV0pp6iNr6W1i1wBNuPA+lbUmkXvbdZQeiXiR2aIayikcz5axPIuPsxnLLpH4W1zJJYHku2adb+ywDjZWdkvNlHmvDmzxPbDWMAbJE6zO0Rc9km6kLi2aGSOZv1uVpjdHfiDsVSOfMoV+U8YdmDK5MTZC58kbGgXc4284k8vQr+nVp9Uhpq7VFw+F95ow4su1trbAjxSqKZCzzRZ2oBPTNbDVi5kga8yaRewOqw4qVt7WoDzmmxCpbmjO3m4VFubovKBCRpu0Ei10q1NY3Jewh4JTsweKRB96PSsXxkySN1FHrrI/A/QurpBhFRkbHInEgPo5Gkg7jZacMJ9smN5Wd9Cd8coPbPB62h16TPEYy61+PoX0n0Vi42uSruX7ZW/QLGGZXxqNhOhtc8E8yeqYqkojf2S0ZG388p/wBlWT0K15w7FMx5dkPWSGunla7h2Wsa21vi71W9GCPZLsBFj5ZT7f8AlXp2tzn7nrNvAeCEN4DwQhBHekX+g2P/AJjN+wVSfsT/ADsd/Ox+wVdnSL/QXHvzGb9gqk/Yn+djv52P2CoRL4PRywn+wv8AxT9CzKwl3if4H6FrmsxkguSHjiVkhw0yOb3IXxu4WKskXMeAQhC0kghCEAIQhACQlKkIJIsNuZQlCovbdBBuNIuOZSPBBAAuOax1BrLFBJSFzRxKwlnbEO0mjEsSZGCWnj4rohbyqcGmrWjSW52VdU1l7OHypkrsU0A9r50x4jijgfPPypgr8Sc5p7RV/Z9Ly05I83fdZUIYTIt0qYPX5jqoXUlRoDdXF7hxI7r9ysbKUz8Iys2jnkEj7O3vq4j0qFDEXh1uIHDdbvbWXTYk27rr0VxQU4Rp44KSPXnh7/1JPJWwtks5zu1ve/BZw1sEkgja8XPMkKF1VY+Ztm3a7vBXJWSVEeHSPppHsqGtJDmmxvyU0+kprY5V1puqovhlh4hHNFT9Yx0bm3HDdNVLiWmTTL9Cr7JmPZlqMYkp8TqqiaiDX2ZJMCLi1jZSaomDKwMJvc/wWCsvDk4s7uo3CouMoEuhmhl3DrHxW7SLXBB+NRiKQsd2SeF12Q18rAA9t/jXHVtpJtoyo3sZR3Hi5ebNFyn7CpTHEGuFtgmjBJoHyAzlrfHxUgrKZzKU1EDWui2sQRzVXd68aWXFmkvbQ8wys6kG66OsGgad9lGsPqnVUTmt20i/zrhzPm+HLGGmonaJC0gaXB38B6FTqyqTlppcsuoXSfJMm35hHNQbo46RKXOragRQthdEG2DQ/e5PePQp1pI4rRXt6ltU0VVudcamtZQJOaVItD9p4iZRFQhCkgEIQgBCEIAQhCAEIQQ7UNIuLXKiTxuSgQkbcxl1kXaRsd/BRKcUskahUrQHuAOxbusXENAB2ceSUWDS53ZsLk9wUqOtZxkS3QuzZusO5Fxp5H4lWnShkI4wxuMYIW0+JU15Q0EsDi0dkWYN91Mo8zYM/EnUPlf86aSPsbr7cd7WTxqIc3T5xOzvhehd9vcXFhJTS9nyyapJMq7oxz8J3uwLMbXwYjASxr3NDGkMAB3Jud/QrQe1123c0lvEt4FVn0ndHRxV4xXAv5pisZu58Ia1zty513E89lh0a9IElXPFgWZ70+KtIawkukMrjc2LgLCw9Ksb2yp3lJXNn964/qYwk4vDLQQkYbk6thyI5rKxtsqDjLfJvjIQcPjWTPszFjewSxu+vsW+yi3cxc/NGMvcZLW7MBHduvO3sma/2qzFgtXSn+faImt/EMxv6V6JaTobYX715W9k5iHl+dcKo6SBjquNjAN7GzZjfc7L7LT9xFOzm6bametzhlaqqG6XSVEnK3BjQvU+X/8AQOHfm0f7IXlHpedVe3uTm1zdE7aiXUzUHAdlvML1bl43wHDvzaP9kLMg7wlQhACEIQAjmUI5lAI3n4ryn0nf2gcO/LyfugvVjefivKfSd/aBw78vJ+6CA9T0f2nT/iN+hbgtNH9p0/4jfoW4ICPY79tjwCbR5zvFOePC1Q13gE1nY37918o6/wD86fzLa19xGSEIVN5G5cAhCFIBCEIQCEhvbZDw5jgHDY87oTkVDbtG6Bu6w7koDiLkfOoWxDjkwkDX8Qm6ohLXuIFgnPfm0AeKwma2SMAfKtsJOTwaalNYGunBEoTs1wcGNcHXtxC5IqYNdfUStlRKYGjTxU1GqmyIjGVPdjJn3DH41leuoKWTRNJDIxpLiNyLDhuq76IMlYplXFKqoxGpZJG6R+lrZHni0AecB3K0DK5xLgSD6Fj2pXWLirW2vZ0beVu1tI56k3KawPMbg5l1iDusYG6IuN0rSNzexVIt8r4ndFPGTIyNFgZI2PPvXGxSuvwNrnmOCoLpOxTOMGeXtwmepFC2VwAbO1oI0DkfSrwwp8zsJphVPcagsBLibngFaXvTVbUKdVP3jCnPMsHba2xQkbewuST3pVUYZtBCAHHcDbmbrCKWOZzmRPDnjktihUS9kgzCVI02JD9j3IY4HW5+zGkC/ioS1JR7sCpFVUHTBRTZqjwZsLLySCMPs+9y7T3K1W7rqubOtaxWtcgEIf2Ug4LlT30gVCEKQCEIQAhCS+6jAFQjZGyYAISD0pC6xTEprMWTvkyQk3PmC5WL3GMXeLKaclw+Q3h4Mkq0MnabkcFsc7sgs3Pck1q47dyWmmZ6dWxvv3JqzNgVJmLC5KCtjaXEamStABaQCBd1r80Y9mLCsCa019UY3knbq3Hh4D0rqwjEaXEqTraGUyNd2vNLeIvz8V0QjXoNXFNYS7mipJPYpXBK/GOizHHYbibX1WAF2nr4w6TS0NvfW+wHacAruw+tpcUpmVFHKx4c0OsHAnhfl4rizDgdFmHBn4diUMb4nN0nU3V74Hh8QVQ4bXYx0XYq2HGDJPgcsoDah8gcWBztwGMubBoV04Uur0vGprFRfjxvkw3iXldp8690WAO3BcOG4vh+L4fFiNDL1lFI0OEmgg2PDskXXaQ5oALQHd1156cZ05uE1iR0QeRUDnfgkcDp7Au7uSXBYWuNnHj6FhjTsvvMh/wNw6hzQOLifmCZulFkLsh4qyq+wFjQ7w1BPOCAClJaLnVa/wAQUO6dMWiwvo+xHro2zMkj3a69tnN7vFfYem/8SHyKer77KLyvj9biPRTjNLKWmCKaqI2N7AEDfwKsr2KjXDI5ItoLIvHzSqg6PY65nRzj08lGwUEjakB3WA2cd+F78Fb/ALFQOGRSbkt0RW/wlWHka2XghCEIBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/ykn7tyAc/Y5/1bYX+bQfugrRVXexz/q2wv8ANoP3QVolCHwcuI/a7lF2+aPBSjEvtZyi7fNC+eelkf20Sys/dYqEIXkkdYIQhSQCEIQAhCFGACEjuza/ApS1wPDbvumACEEEcQhSZIEhShIRdCTF8etjm8yLKisz9GWM1nSFU4tBWRClfO9+kyyXsW2Gwbb51fA2XNO12suD3AfB5KxseoSslLSs5WDFw1MbMJZJDTMheWlzRuuqSQs87fwWRa3VdrQCtM0Lj2tRI7lyy/aydTO50pYRupy5zesfpY3vdsu1mnQCZI3X3GkqvemStxfD8ts9oZJWyu6wExvDLbC3FR/ohxfMFZhUrcemnlmEh0ullDiGgDbbku/7Mc7V3Tl3waY5qT0lw89iPlWfZtuR8qa6Od0ri0uIstkj9LdTpDa9lWums6SXDfB3ve1o4rjnfqabdy4pKvU4tjJcR8S7C1kNmyvAc7ldZU6Uk2o7kt+HjI1zEh265at1mLsryI5he2g++XK9jZtQDtgONluglF5kdlOSa1DNUslkd9babeCwbSuuC7YrmzxnSiyayBr4I6gyNaSXhwtckch6EmCZjpcwUQqqazCRfQA4Du5j0K4VOs6evHsmyF0qstCQ8REscPkThE47OTax2w3ThTuBYAdlXVYZ3RnUjhYHmnk1MbbiCnBjwWgJlon6XkHgRsnCJxDvQq6pHDK2ojsHBCDe4sLhBCwRpBCEKSAQhCPHcAhCBuVCy3gAhIXANJJ4GyDwvy5LBVIpuPcCoQ0hw2O/ckuBxNu9ZpZjyTExBNyx9usI2tw9CVgaGPhkYJdRuQ4Bw+daaipgooJaiulLWsaXGWxJsBfl3LhwPMOF41LKzDaovkY7ST1bmkm1+YW+MK2nxaa2RhKS7lVdIOS6/LeIjMuVHDTe80F3HssbtZrRbip10f50o804XDA4ugxGFjWzNl0su5rRrsASePepZJGx8Lo5x9akGl8drhw7iqaz3kjEMs4kcw5Qe+MOfqlp4nNia7W4ucSSb8Ar2hXpdUgqNfar2fLf3mveO/Yum5G21ggKGdHmeaLNNG2GR4hxaMfX6cNcQwkm1nEWNwAdu9TQDtaRxtf4lSXFtO3m6VVf5OhSUkIUHi3xStLXag03LeOyQ8W+K5pcbCJ04Z/pRng76FJntvpsdgd91G8LH/abPB30KQzyCOIufsxu/ivpnox/xCquffPMON49Jg/TkIsIbcyU03WXF+0ZHA8D3WTfRB49kw0S21itgBt4JqrqupxTpwqJcHpI3SQiaJwD9F/rhJO9uRTzTh59k3eW+vy6C+9+S9KzQesG8B4IQzzR4IUEEd6Rf6C49+YzfsFUn7E/zsd/Ox+wVdnSL/QXHvzGb9gqk/Yoedjv52P2CoJfB6NPELGX7E/wKyPesZN43eBWD2TyERKT7M/4kiymBE8gPFYr47eLFeXzLiDzFAhCFzGQIQgIAQsXOA4o1CwPJO2ScMySXI394OKUbpNi4MJNinJDEs1+7Gut33XNV1LaeM9oA9xVd536WKXLeYIcKMDC5xZc6H8HX7j6E44tj8NdhlNWwPcBJGHabEDdWtDpVZ4lOLwyvvLyNCDbZvxXGASe2PmUWxPGASRrHyhMtbiMskhsdvErgc50jiXkr2fT+k+yng+f3/WpTk1F/wBDrq698h2K43Oe8bpQy3nJTw2V7Ss4p5PP1a8pvDMQ2wWNis3hzWgngkAda54KZ6dWlrBqUW90DGkSAkbLN723I5JHOIAA5pIYXSSDuWVSqqMfZM6cHJrHJ14cAxxc1lr87Lrkp2PnEp43vxXRRUpdZrWi1k4UmGuJ+vbD0WKoa90m85PQUbebSckN0cJldaMHhbvW+Shnaxhc1zhbkCnllLHACWbnwXVTRyVDAAxtvSq+pfaNyxhYOUW0VhnvDMYqY2NwiCoc+/vI3O5HuVjdE1JjNFlQsxxrwbR2a+IsI7J70/4fhlnhzgCR32T++F4pOra1oBsbXVb1LqkKkFCP9j03Trd0qW41RUzKaTXGbNdxBN1xYxlulzDCaarY4scdVw4t+hPTKV0lw827rJxgjELGgNBNuPNU6vJUpKUHudkLfVzsRzJ2SsKyl1ww5rtT7cZS/hfv8VJyDe7jv3Idt2mAF3pQbHtEnVwtyXJcXNS6k6lTk7IQUFhAhCRaMYWUbEKhCGdo2G3jsslvwQ9uQQh40uDTa5323SPIYbOR7PDCeeBUIQgBCEIAQLtvuNyhIRuDfgsKjxEnsV70u57qMlUlOIIXv167kMaeAB5+Kfej/MTs14AKx0To3h1jqAHvQeXiuzNGW8PzNBEzE4muLNXvA7jbv8F24RhdJg1EKXD2BkXE2aG72ty8FbVq1s7SMUva+ZpxLJ2OcNUbiL8d1rqIzNTTxA2MkZaD6StrvsTWtANuZSOGrSLkAG9xxVZGbWJQeMG1vYo+j6J8UZ0hTYsag+TukkdwfbdtvBXiBojDBuR77kEAaXbSPIWAMgGgAFrtnOJ3A9C7bu/rXzWt4S+BCilubB1jfMc3fiSLhVv0odHsWPQS4jg2qLFYQXxEOcQXbDzRx2urGcDpDGuOn4XNHAgX0tHMcSsbS8nZ1NVPgiUFIqno1z4Q7+T2bHCjqYLtY+fTCH6bNFr7m5urVbfqS+JwfGPMcNwfj5qvuk3o/p8epXYlhjnUuIwdsGENbr03duSL7m10x9FXSBJ14y3mAlmIRERsPacHGxcbuO3crS+s6d/S9Ztue65aNUW4vDLe4gLZCPrzFg0dkOuLcVspyDO2yq7KLd3TUvNf1NuVoZKwCWWabGy8meyipDg+d8LxWJwEggBJO43ldyOy9aAdlu6qvp16PTnLCeup/tuFjdI7IGlpLjuQvsUeEUx51zRnEZuxzLBfbr4J5C8gNHEADYeC9oZeFsCw782j/ZC+fmD0slBnSgoqgWmilGrnxF+K+gmAf6Dw782j/ZCyB3oQhACEIQAjmUI5lAI3n4ryn0nf2gcO/LyfugvVjefivKfSd/aBw78vJ+6CA9T0f2nT/iN+hbgtNH9p0/4jfoW7hdAMWPjttPpH0Jp5hPGPEXb4/wAE0ebYlfKfSBNX02/MtrV/swQhCpTcuAQhCnOBgEIQhGUI4FwsDZF3OF3nYJbX52Q7hpBO3FQmRlA0ufswHb0Is3zXBw8Sop0j5thyfgja2QHTqY3ZpO7ie7wTb0edI1NmqiL+ra2QDezXfCI5n0KwhYV50vFjBuPma51oQ954J5bQbDcJduS4m17S0lwFibBZsqW3sTvzXG6U+EjJVIy7nTbdcmIi7RZdbTrHZWissyM6+J4LGnnPBNWWVga2eabrJh0i/pSXGgkcFsiidJGSLWvzXanJI4N4vY74KhmiziPlWzroR74X8U0OJY/S64KU2HFzrrX4Slwbo12tpDpJHBPCS6EOlPOwW06y8HTYAAcFzYdctDi4lddzxJOy55VJ5UG9kdMEn7QhvffihF77oWDk8acGRwY/HPLgtRHRhxnPm2F+R5KlOirAc10mcXVGKx1DKbrGFxfA5oIseZV9XsLtPa7uSTS21wAxx4lqtLS+VtQlTazkYAlp0nS6/AnksiASY/eOO/xJBttxbxue9BJA7IBPpVTFtPUMZILB0X4DT483FGteahrg9p691rh1+CnTdkm44AE+lC67m8q3aWt8BLAO3QOCEq5kl73ckEJLpVK3eCASFKRZpdcWHGxWt0rQ25O17LJxceUTHdmd0heAN7LS6QHgVrc4nbkmDbpN/Ws7x8qOtZ3j5VyWHeUWb3n5EwRpOiSaw2XJPU2b6VtFiN1w1re7gs1TjPjY30oJyGrMOZJMEwuesaNWhrtgAeAJ5+Ci3Rj0pT5txeaimppA0OIvoaLWYXcvBSeuoIMQgfBVC8TgQRYH0LpyXlHCMvudU0MDOtcb3MbRyty9Ct6dS0hQcZR9r5mm7hplmI/Pa1jy35rrWWva699luqGXtIdnE8AtQDpDYmwVJlyST4RKepFS9LfR/iOa8Rp30krtAe4nSHni0Dl4KwOjnK8mWsEjhqJLvDQNyfggc/BSSOIM4EnxWwgu857lZVeq1alFW8vdRySprVkNg25Kb8w4RQ49hklDijdcb2uDC12ghxaQNx4pwA5E7JQ0e+FyOHoVdTqzoTjKm/kjY0msFCslxbonx97J4Zp8vzOc9loidLWjS0F7vSVd+D4jh+KUbanCquGpY77lIH8PBa8bweixuhfT4lE2YXGnW0OsL32uqUbJiHRTmCOKaaWfApXNbG97i52rznXa3YC3Nehqqn1enmO1RdvP7kaG3Fl9XOqxOl3cUPIsQeK4sKxSlxvDKbEad50yxteAB8IX3HHmuuQ9lxPIcl52rCUZaJLDXn3N0ZZRIcDaW0pvwLr/ADBQb2QWGMxDo1xVxvdkYtYnm5vqU7wYnyPe1r/wCxzBhMGNYTPh1USIZwA6wB4EHmvr3Tk1awz5FTV3mzxJlXPDsKyliWAyljoJWzWsG31O248Vf3sVmmPJMm+xbFoHo0leeelbI9TknG5I5RemlN2G4Ju4uI4egL0L7FcF+TXvJsGtiDRytpKseVkwZeKEIUEAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaDlV/sc/6tsL/ADaD90FaB5IQznxH7WKizdgFKa7tQOA7lFhuF4H0sWKsWyxs/dYqEIXje52AhCFK34IBCEJ8ACEIUvZ6XyAOi3107cheyA2481w8Vj2d3HtFpAseG6qvAumSkxbNLMLEIaHuawEMfxLrd66aNpWrxcqcW0uTFySZaovuHHhwSpLblwJs7cXSrmZsT2BCEKAC1Ti42W1ayCXWKmLSkkyVg5QLHdLsLgMcSd1snjLdwtO4IOorPTDOTOLZpqg+WMxzNBbyu1N0cbGSEhrW2uNhZOlQ4lpN02Wu4773W+MpOPO3kdFPC3OvD2/XHO71nVh+m0Y3v3XWFK+xDRxXUT2gOa1SjmeSHs8nLTQt1tMjXX58lR/SvSZhkzdBJhrKjydhjcSInOA2N7q+JhZjrEh3JRnFYTNK5zwC4i26s+l3St6j1LOSPDVaSyR/BKqs9paVtc683Vsv2dPLdPNPVljS1xAFua4nwBmgEnsi1lhIdQcCbbbWXbOMKj4LhU4S2RH87YHSZhDTVEnRYCzyOBJ5eK1Zaw6LCKUQ099NhxcT39/inGZ9w4POwNlrjcHMHV8F3xqS8Lwux0QtoQ9pIfqeSwG4KcIJdxumWAiwDXE99040jrm3NV1WjpRz1optj4x4LWkHcG6c6edrmgXGyjbZix1ieK7YJiWHRe42VVWpNcoralPuSSOcEWvxW1pum/D4JXMJfpBA+Eu6IEO0niuSUGt8HBPGdjM7ISv8xzuQ4rEcFryjEVCRLwCYyOARbcHu3QBfgsXyBnnc0b1S2BkbB2gi9xrVM566Vp8FzmMJhhe5kbyDZjT70HmrcM5uSAC7gL9yimJZHwTE8a9s62O9STc/WmkcLcSLqx6ZVoUpS8aOdiGiW0dT5RQUlVpLetjYTf0tBW+7WPfq3uVriAFNHCxrWxxgBtu4CwWwtBA71wVHFzbigkMOeMKkx3LdZRQu0yyQyNFr33YQOHioJ0NdH9dlWtq562Rxa6XU24eNtFuatjTck3INrWCXfqyL7rvo9SqU7eVvHhmMqaYt+sf2gbJHEnVE9uqFwIIsl1EAAAelB47fGq7eK3MtOVgpbpFyLU4JiBzLlNkpniPWyxtDpdVmhgAbwHFS/o6z7R5koRTV0sdPisLjGYpHNY4hoaPNHeSQpxI0SMcwsa8O20O813iqb6SsjzYNVtzDlhzo54y180LSI2ENJe7hueC9BRuodRo+BcPE1w+EaGnB7FzuDuzdpb8K44rF3FvioL0Y9IVNmyibTS/W8RiDWytLXAajc8Xcdgp07YNdyuqa6s52kvDmsf3+JuhNPlnZhf8ApKPwd9Cf5WGYSNeLsI2TBhW9fG4cLH6FJSL6bcl9F9GE/U0ytuXmZ4dzZXy5N6X62spHBr3ulJa4atjIQdj4J9yXjbcx9PdNisdtNRWQkWty25bKY+yH6MZKmt9v8Nu54j0yNJa0XL3OPK/AqqOgNwd0kYIW3t5VEd/Er0bafBoPdbPNHghDPNHghCCPdIv9Bsf/ADGb9gqk/Yoedjn52P2Crs6Rf6C4/wDmM37BVJexQ87HfzsfsFYko9Hcli/7GfBZHgsZPsbvBRU3iyFyRSp+2pPiWCzqftqT4lgvkHUFi5mviW9H3ECEIXEbAQLoQ096h5SyuBnsJpB4rFxYw2uFjUytiYXOcGt7ybBNE2IRzOcyF4ee9puPlCmKkllLYzhBvljjNUxQuBZZzj3Fb4pHiPr5Lhg43CiWM5josvUr5K0l8pBIGkO4gkcT6FTOa+krEsRrQ2gdURUgvqLdbAOFr2Nl6Pp3o7c32GliL+44a99GnmMd2SzpNwnBMTxg1hDTM1rffnkCmSOqJpoaaI/WWNDfkUIkxKrleTPNI4u73uP8Vsoa+SGfW6RxaNrElfW7P0YhSoR8STePk/7Hhup07q5zLVt8yZv7DgDxKUtc/g0lFG9lVURbixKn+D4ZSvYzUIydPcO5ef6tduxehLC+BRWXTFcS0yeGQE003wSsOplB3aVbDMEp3e8Z8g9SV+XIHDaNvyD1Kgj6QKO6b/Euf9Lyknpe/wA0VBVzPp6d7g7tC2yZMh5hrMTxuSjnY4MtYEkfCAV2VGU4ZD9iYQeN2j1LtwTJOG4bIZ2U0AkPMRsvxv3LOp1+jKGZ8nZ03oVSkpQqwTK3qsJkbWyhrtTS48BwTvhuEOFiR8ysCXL0ckxk0sAJvyH8F2QYPHGODfmVTV69rjiL2+86aHo6oVMtf0IhDQvYBoabrMUMzjuCPiU0FDGPNa2/xINGByb8SrJdRcty2XTVEjNNhLbtc8jY34J2ZGxpswfOnAUYuCtzYGA30/MuaV458nXSs1E1U0HOy6iLi3cl1ACwFviSelcFSWpljTpqKEEYG6yKNV0LFGTQIQhSQCL23QjihJg4tLS8kN35quunDGsZwrCYn4IXOe4vHZaD70d6sZ2nToAPyJKuGnrI2sqaWnma03tJGHfSFvsq0KNXXUWUYTWSCdCuLYvi2XZn49G9kjZAGlwAuNA7vSp7GSyFjAL37lrhhhgiMVNDFCwm9o2Bo+ZZgnULcAou69OvW1UlhCCwZcUJAlWqXJmwQhCggELCWRkLC+Z7Y2fCebD51jT1EFQCaeaKUDj1bw76FOmTWcZRDeDahA34IUNJrYyW4ISXQsYktYFQhCyMQQhG43CDgxvYlwFxwIUC6S+j6lzfR66R7KeqsRqeHSbkjlccgp6wtsQ1zSeYukaWMaQdQPoC67S6q2dSM4vbujFwU9ynejjPk1JVfyezQ0wzh2mJ8jmtBuQ1tmgeg81dNIxhMbHuDoiOy/gLKA9IuQ6fMVMajD2MpsThHWNkZaK9gbDUBfio70V53qMIxY5azT1vXwkxtmeC9p0N3Ot5HO3JehhaU7yrTu7XbDWVxwc8m1Bo9GM3YPBa5xqY9newj5ksTg+MFjgQRsQVk6ze07kLL6FHhFceIukil8g6bBAGlrRKy1+f1sL2jl83wPDvzaP9kLy77IWmgi6VcHnhDRLLOQ8AC+0bbXXqDLv+gcO/No/2QpA4oQhACEIQAjmUI5oBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8AEb9C2ngVqo/tOn/Eb9C2u4FCHwMuOjZh9P8AApocLtCesdt1Tfxv4FMrdwF8v9Jl/uWWlr7gIQhefOlAhCEaT3IywQhaRUQOfobPEX/BDxf5FlGMpr2UTt3Nrjtxss3uN3NBvstTtJG5NvQs3MDXgtJKjR2exj7LewwZty5Q5kwl9JWab6g7cnlfu8VB8sZLjy814pXNI9DT3k8z6VaVSWRtLnX39CZusiLi1m57irW1vq1Og6OdvvK+8pqpJGNKwtpAJOOr+C3A23CTfTuNvQk207cFgmveMI5jsbhUOHBYPlke4XGywbxWZNhsNlqcU94m5VG9jKBoFQ08rjZVD0l9JeLYBmWGko6eUwlu5Bb8MjmPQracSBrBtbdQzMGGUOI1wlqaeGR7RbUY2u534kK26ZTpN/tllHHXruC2JFg2O+22HRzVDSyQ32JHf6PBOOsgXAuCopTtEDmiOzWDkNvmUgw2tFT9b4aRz24LC7ttMn4XBpo3Piywx4oX2aGruPmpopnWl7gnW9wLbhUdaGJfEvKTTWEKOASpBwSrWbQQhCEAhCFDJzgEIQowMggIWDnW5rKKXclCyENCacw4lNR4PUyUzSZWscQRb4JXZPKmuqdeTtAPYRpLTuPkW+3ShUUpIzVPJUfRZnLMuJZ5jpsQL20kkhBuxo26tx4j0hXhOA6pLh8Ebplo6akpKhklNRUcb2e/bC1p4d4C75qlrTYHtWubcF39RuKVaS8OKX3GUaelnQdkb8Vw+Uknmuhk40m6r8GUkzdq9CXUuZ1S0DYfMtTqwN4/QslDIjFna5pAJTZUudqstja/UbX2SPnpZHaG1EBl+AJBq+RZxjN7pbGyP7PkxpWh0lj4p4gcGWbyTLH2HX58E5w7sDr7rXP2jGeZnTUuBAAWmHzliT3lZQDtLUzWlhYOwJUgSrBmh7glSI1DmQob2aXLJwKuHG8KpsXwyejqW3E7DGXXNhccTZdjntb5zmjxNkrj2diLc++y2UqlSjiVJvPmYvEtmUEIcU6I8wyzRtNTgdRI9xMbBGG6jpaC51+SurBcXpMdwhmIYVI2SnkBu1p1WsSDv4grZi2F0eNUL6OthZLAd7vYHOBHC1wVTU1JivRfjrKmN8s+X53gNja90nVhou67BZrbuJ8V6GTpdVp7bVV+PHc0+7LB6SwQNFJdgv2t/kCcb9wTBk3GqTHMFirKJwsQA5tgCDpBOwJ70/MIPaBNj38l9CtIOFCMZeRWy95lH+ytoRJkmlq2RkzCsa078hFItnsVXF+Rwe5kV/8ACVJenyGOo6PqnrQ3sOc5twOIjeox7FJjm5He42s5sJG/90rpy8YRD4LyQhCkgEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Cj/KSfu3IBz9jn/Vthf5tB+6CtDuVX+xz/AKtsL/NoP3QVodyPgdjTVD60/wACoryCllT9id4FRR3FeF9MF7h32nDEQhIF4uKO7sKhCFioZeUzEEIWEsscX2WRjL/CcAi1N4isgzQka4OYHNILTwINwUqhvG8uWORLte0snHYuLXKg+C9GeC4Xjvl8Ib1rLPFi7iDfvU586wsFjqLgHWaCdl1UbqtbRcYPaXxMXAyc8vcQRZrTZvghIDxB5JVz79zJLAIQhAHxX9ChnStmbEMs5adWYdC/rA1psCOb2jn4qZEXFlz1dJTVlOaevhjqIuFpWB42N+a6LSpTp14yqrMe5EkVv0SZ0xTNVDJJiMUhIL+JbydbkFYXPhb0dyxo8Go8PaRh9PDTsN9oo2s/ZCzcwtPM+lbuoVKM6uqgsI3U3hGqpH1s2TY02c6/enhzdTN1wVUGjtALRFprKOiD7Ghri2QFOETw4X5puDrt34rppOPFZSWUZTWx1yC7UyVrOJT6d2psqmAm3eppbMwpvDGN8eoXK4J2aSnioboda2y4K5nYJCt6E9y2oyyyPVe8UlvhFNdJMWbHgnWraWxP24m6Y+DO4q2pR1It6a1If4pe01w4WATk2Q6A5qjFHU7iM+O6eaae1mncLVWo77nLcUe4/U8uqO4FyOKdKN7Imh5cG3F90xUz9BJ5OFl2GotAQLEggKquKUtS8jgnTysFd9KGd8doc0wwYaXOgDxcBrTcafSFbeVMdmxDAaN9UxzZTFGXXI46RfgonVw01TO+Sekp3vIFnGJpI+MhPFCeqZG1ga1mkWDdrbLpu1RnSioRxjkrfVMZZNYTdpLTcLYmjDpnFrmX+MlOzeAXnJQUZHNNaWCCdkqxtdy1t4Zit+TFz9IXLLMBxW+cW25riqDAwfzieKLu6x4bf5VvpJynpijJOKMmTNJW0kFcscQPbjc1zD75puFvAUyWJOLM/ZaO2DzQsxxWEPmrMcVoNQIQhACEIRJ4bkQhHOsxyCA2Itc0vY/YgG3Hig20m/DvWMbXEEtc1zfxrqY6vfguBJJlQ9J/R5UsrRj+WnAVceoiMRl7iXaRxJtwupD0YdIlPmaHySr+sYrDfUx7wXEAho2A71Pmgl3AO/uu3aqm6QsiPimbjuU/5rUwOEk0bHdSHMaCSAGC5JdbZehtrql1Kl6vce/2f+Wc0oYlsXLhTAzFmkcXBxf42Umtv6FTfQ9nqHHZ4qCt1Q4hTNMU3XN0lzwy5IJNz4q4xYnbgF7XodpO0tY05bnBW94bcep2VWDVkczbt6t5Avb3pXi7oWYYelrCI3AtIqYLgr2/VBrqaVruBY4G/gvIuWqWGl9kXFDTaeqZV0+nTa3D0K3WFsjWewGeaPBCGcB4IUkEa6RCf5D46GD/ALlN+wVS/sU2OacdNv8AvY/YKtzP2M4W/JWPxR4jRukNFMNIqGE30nldVF7FNmn28cHawasEFpuPMKhEo9GpJPNPghvAcfjQ/h8SjzIXJE6sWrp/EfQsFvxAWrZfi+haF8i6qsXc18S3o+4gQhCrzYCS5cO020nNKsHPDYS5pBk7uKYclpT5JXJA+l2XEm5bczCHvEutpIZp7nX4qqOj/M2MZfwiqqscZJLHIxpiLy0aLE380elX5iFO2qvHI24LS4iy87ZrbQ4VnedszaqWhEg6yOJ2qw0jgOA3XvfRSHrqdBwyl3OO/k6ccpjPmTM0+O1EtXW1ZkiF2M1AbWvYbAd6sbI+SfbjonxiokprSVYhfBNxuA7cgX9HNSvJmTej7NNCyakmq2yjzoXVceq4Av2QL8SriwrBaTDcEpsMpGObRxM0APtqte++y9/Vu9EfAhslyVVKH/ZnhimmbIJGPns+NzgTbkDZbI5I5Gu02c0Gzn+lemMzdG2RMHgnrMRqZ4XMDpOrNZGwu2vYAgXXnfN1RhFfizosvwVsVNGXN1zEEO32NwLHZWVHqMqmIRiY+FFJ5YtHilRTWELzpHdZP1DnOrowPrjvlHqUSib1bNNwT4o0i93m3xrsu7OhcJeLHP3sq3ZU86uC2cI6RZHNvUSEeJ9QUpwjP0NS8NMo+f1Lz8XHkSAt9LVvp3XY838V5289ELG5WaSx9X/cP1qi9VOeX8keqcPxmjqyGsmaJOex9SduDRbt/MvMuD5rlpnNEhc0jmdv4qe4L0h6HM65zOr5kgfTdfPusehNzbvXRTkvl/ksLTrdSL0Xa/X3It/ZzO0N+SwcC19ybNTJl7NeEY24RQ1cBltuBMzja/AFPbDG4uYXg2HJy8bXtp0ZOFRYa7HoaNeE4pw4EBY24Dr3N7WWbdJXLLGQTpDvjWAe5nFa0tjpUcnaTbghritDH6iLrc5wCwxghxFcSUDgtfXBbA64BTBGGKhJdCyI09xUIQhAIQhCQQhCxw8ZXBOMghCEUXyuBjAIQhZc8EBY3GnklaNQeX96Bz3shhNiHbAoQQ7pRw7FcWypVwYWZHSmN4Y1obxt6VFOgvAsw4NDUNxfrmgvcbODPgAcirbY0BoGppA5E3SMHV6tAYNRvsFY0L/wraVvjeTyYuOQbtH2D2kvjxSBugC5SqrjF4wzNbCJUIWUXhaSW8ggIQFJiKuTFZZoMOnkpr9c1t22te9x3rrSOtY3Fx3LOnLTJS8g1nYoDJmZc4z5+np64VIojI8AOMVrdZbkL8FfsgIkA5HitEFHRsmMraZrZD77QB/BdJJc6yseo3tK7knRhjbginFw2ZiA/sgC9jeyiWe8j0ebWh8ETY8TjuGvFy7cgniQOSlztRs8ENfe1jt8y6MOLjXMLxZ1jwFgtfRqsqV1TVOWPaX9dzXV9xsrnoyz1ieCYrHlLPLnsxMOAiqJi3VMXuu1ulgIFm/QrB6TMyvyxlWXE4IfKHBzWtYHafO2vf0Ll6SsiU+a8N6yH6xikN308zHaO3psNRAuQqaxTpExXKOB1GXc10LpZ2SiCCU0rtD2DsB13ntb33C+vLgqSqcVzFX5pzpheJ4oX+USTHZ1iRZoHIAcl7jy7q9osP1fe0f7IXiXGMAGDYrlmtmlbarnkDgH+ZpA4jlxXsvLuK4YcJw+KPEKV0vk0fZFQwnzRyupBIGm6VYtIsN737lkgBCEIASObcj0JVrlcWglm57kBmLA2HivKXSbq+qCw+4sOvkse/601en6rEaGllaKusp4JC3hJM1nzEry50izwVHT5hslPPHMwzybseHf6odyA9WUf2nT/iN+hbe9aqP7Tp/xG/QtrtgUIfAy5iF4Yvx/4FM/cnvHxeGP8f8AgUyjzgvmnpQv9yy0tP3YIQheZZ0xEuhKhZKOxkmjCo6w0kohv1u2m3ivNWrOtDn0yBtSKUuZc3itbXv6eC9MBzmEOaL29C4qylgma6R0LA+3HSArbpN/C0Uo1I5ycdxGT4GbA8QqpKQPqtXWbXvb+CkMbyIy8ppiYyJrmkAXOyc2va6LSFounGo9Zqt1LDycdTK+dxay9zsFxQYWaSWR9TLafbYjf5vQnmOACOQ++0m3jZeas4z5pps/Sm83k3WM/wBXJa3Vj4uK7uk2sbuTp54NV3J0YOoy956+OAaXyCxKzZVwSABpFu/dVnhOJ1b6dvlFtQ72nuHeneDE3k6X2HxWXfPpKjHCKKn1iMmTtkjeDXXWbmvLezexUXpaojtNfc+N13sxiTTYgC23mrgnZSW0Szp3iksjlXuMdI4E8iozuXuPpXVVVsk4ty8FznaPYXcSF12lDRF6zjrVPEYjwANUbLlLTyyRSBxuEstThdNO2CoroI5HG1n1DGn5CVlPGyMh0UjZWOFwWO1cfBb8N7I1KDp+0iQ0k4mhG/JO9FKHR6LqKYJKQ4MP/XFP9M4xzt7tlR3dFxnkuLKv3Y7WtshF7796FWvkts53BCEKAF7JbXWKyHBYvkYELVibN4LXJLbgtJeSFnFGyMTeZVyyyBpJ5rVNPo4rikmJub7FbVBSN0aeWbZp9WxXK+VrdrrmmnvwXJI9xeuynSa3kdkKeEOcZDllpAcVz0gNlvF9RutdTeWyMGkmZIQha2hsYvdpF1wzzdYbLdVP5LhDSHXXVShk3QijjrKiWKlmZGTrIdb5FWGWMBzRN0hNq3icU2u9/rdvNPpurYMAc6/HdO2FUhimErQwc+CsqV/GhSlCUd2jTd09eGjvnpiJGHjZjQfG263RDSN1ta13Dit0cXwlQKW7bOZS0xwaBGHnZdcLNIWbWMHmrK60o0Z2EWQWKyCxZiYOXETd2l2wvsu13ErlkjcG399fa6mLxsbY4SKT6Z8zZnwzE4KfBnz9Tpf5hjts4W4hWrkaprqzLsE2Kl7qoucHF1r2vtw2Tu6hpqhjXVkET3gbFzB/FddrbBjWehosFbXHUqNS1jbwhpa755OWcWpZFaubFaGlxOgno69jZKWZuiRjr2c3u23XQjiLHgeJPAKqo1XCSkluu5mt1kqYUWYOivFvLKWSafLVRJqLAGNZG57rc7uNmtCvXLuM0WYMLjrsPkbLDKL3bexFyOYHctYoIKzCn09TGJoZAWkEBxBLbXF+HFU5jFDjPRVjcVdhrZazL0jiXxhj53xtaABcizW3Lz429C+yWk5SoQlLyKeXvMhvS3nnGscdX4TplhpoWvfp1MIIGpvdfgVYHsVwP5C21X0siBH/AJSqWzLV/wAvq7EsYoLU0cFK/Wx3YJLDvsPFW97F/EqGlyS4VNbSwSFsW0srW37J5Erpw8Noh8F8gO+EhjrkjmFz01RBVs66mmZI3hdjw4beC6QRa52UkA2+kX4pUBCAEIQgAqmfZPdrIUeptj1kn7tyuOeWKGIvnkZHGOLnuAA+MqkPZMYjQVuRYmU9dTSO6yTZk7Sfsbu4oB+9jrcdHGGXdt5NB+6CtJVf7HUaejfDBx/m0G4/JBWiUYNNTvG/wKilrbKWT/Y3eBUVlFnkLxXpctoHfadzFIlQvDZwd3YEoAJseCRIb22WCUYcsxFY0FsYJtYqnOnRmaXz04wHr3MBZ5nV97vhfErkcwOYBqsR6Vg+NklhJGx9ha5bdWHS7lWdXxJrKIayRDovGNHKFG3HjL1ojNw/R8N3wfiUudqdIL3DQFk0fW2saGtY3kBZDiXG3AW4rVdVo16zm44TEOBWEBxudkhc2N2qfstOwv3rJoaGEOIty3VU9O0OOzUFKMBZO4iUl3VxvdtoPwfSps7SNzVUHLGSKk9KLVNz2veO3ae8IUG6IfbQZUhbjTJWVDWRgCRjmnzBfzt+KnKwuqKoVZUovOCYPKyCEIWgkEnZcLFtylWLiQwFo39IUSbS+BK5Mxe2nRssXtNwOVly1lZTUEDpsQqYYWAE9qQM4b8ykw3EKDFqd0lBVRS6SB2JWu5X5FbfV56dcVsNWGZyRao3NJsbLS1jizS92q2w8F2jeMagbrllGmQWva3NY7JrBsU8Ma6uPq3FLTOF7roq4TINlyGMxhdK4OpPUh0Y5pauGqa3VdaBK7gFn1L5N1gtiFHByVUfWN2TXUsIjLU9lha4tK46tgDt110Z4Z1UZEXq2HSbqN1cZD+CmNbGLuUdr4rbr0FrU2Lm2q9hquQQU6UUwLAL7psG9281lTSdVLvwXRVp69ztqLUiUwVHYDXHYLeJGngUzR1THbX+dbWyG92lcc4S4OCcMDqC6+3BdlPKT2UzxVRBDTz9C7oJA06loqUHp2NE4rBI6Ca1mKRUrwWhQ+hlFw9SWhkvZUFxTcWU9xTHF3FF9ILhxQkLiA4jfZcuMnB3OSqqGamkgB4CpTprosw4rUUwwvrnMjfqdp0bDQO9W5iLjI69iD4JsqIC+fcNIdYbj0K36ZX9Tn4klk6oUFJGro1hr4crwxYm9/WN07OA+A3u+NSeDeR4HoTXRs0kMD2hoHAFPlM1m+nf41yXc/Fquou5jOCgZMFlkUrhZIFyGkVCEIBEqTmlRrCyHwRfpGrMTosq182Dh5qGxXGgtvfU3v8AjUJ6EcezLilVUx42ZzEHSW1ln934I8Vbjw17THIwPjfs4EX2WqCmp6R58kgawHiQ0Djx4K3odQo07V0pR3fc0OLbOkgB0oZtukeWka2Muwizt+XNI/STsePHdYnXbTGW6ed1Tx80ZqOEVrnno/qqqvOPZKJp8VaS97ogC46j2/PNvNvyUt6KOkWPMsZw/Ej5PisO0kLjqcbuIbuBbcb8VLMD+2DGGkcb3Gx2UD6Uuj2eWofmXKpMGLUw64xAnRIWNs0CNgueHC+6+rej9WVSxhqeSquNph06dIGIZNo2U+H075JZ2td1jXtGkOc5trEHuuqB6I55qnpiwueqkMkz6uEOcQBe3gpB0i9JlXi+Bw5ZxShbHijCzVM+m0Dskgi5N+N1G+iiBuF9LWFx1E8TY4auK7nvA+cq4hssGB7hbew2QuGlxbDqh2iCvpJXhty1k7XEDwBQsjEpPOHRA+iy/jleczVsjRSyvMZpmAbAm17pp9iWYo4cXgjkLzHUhpJFr2YVd/SEdWRcfLSLChm/YKpP2KNnOx11iLVY/YKdyVwejUO4I4oPBYT4eCFyRjE/t+XxH0LlXTiptXy+I+hczV8l6zFu9qY7fkW9H3EBBO17elZFt+dh3pvzBiTcGwievexz2xW2ba+5tzVedHPSmM1YxNQupZ4w2+7tFvP08itFKxq3FN1lxHk2ZLTeQxtwA7xWrQ1ti1oDid1tJAu0cFieS4lDfJMVvk5qgCKnnkt2tLgD8S8r5pdLPmGqLidMhF33380L1Pi2+HSgcx/Ary/m+inp6+skAuDawA34BfTf/wDXVSLqVHLbCKDq906VRRfDHzoIo6mtz9bDJXNpooi+QNsLkPbq2K9PYpnDBsPxOPDaupc2rlvpZ1bje253XkPKOdKnLlBVU2GU8gqJ2yMc8ta4AOFj6Uw1AnrpnzVMt615vrBIa087he5lZSua85vaOTCEopLS+S7PZR0lRDJhuIOld5HUTMh6s2tswk+lUvEA2MNYA2N27bcgn+bPFe/KsmCYtE6oZFrkjkYwAXcLcTuo1SvMlLEW8C0EjuXb06k6OYNJmubN5DRw4rHQHedul6sNF3ELAEO80hWqxHZmrkySAAG4CVCiKSkJfAJBqAvuiZ0hp3MY8gEHZIDvusr9ympCNRNMw0Rk/aWQyfNU4Vi5njqHx3JPZ8LK2cIzvUNqdclTI9u1wSfUqlaA93a2ssonPikIadiqK59GrW8j7SWfu/I0XNGs/aozx8M/2PTGDZyp6qK0rR43J5eCkkMkNdAXQ3BI5NXlOlxaWmOkk6eOy0VWZsdZisIoD9Z1G/1u+1l4XrHoH4KdSk/x/KJ3dO6jcr2K2ML5/meuOo6mQB24081nYOdYtFhxKhOC5ujjwijFY68xYwOsQPehSvDcVp69hbG4WPpC+fXHTri3nicfZ+8u6d/RrezGW6+KIRj3SNg9FmCLDWyASuLARpdzNu5TXDqxtTEyRhuxwuPBVfjXQ7SVeZo8V69pLXMdbW/kb91lZOH0PkVJDCzzY2hoXVe0rRUk6Ler7jshJ4wx0c4ArK4d5q4tRvutjJQ2wVU08IylDCybzfklbcmxQ1wISOaTax53WKaaw+SNQpu1xuNli03bx3BusnXN9XBQDOXShQ5azBFh0kErnSaG9lzPfD0lbbW3qXjdOmuDW56SwdIDQ7Ud97WQBpYXuPDkuLDa6LF8Lpq6IFrZGBwDiOfguyQXfd3mhaqsXSloZkmAN9xwKEbcuCFD8iQa3U7dxG3BDQSXBYkNB1Hih5LrCPiVjNRxoewyABJ0nj3rLSQHBxJWuV0UDR11RFG7+8bLNrh1QlD2vYd7tWcozitWNmRkNF2Cw8fSiwHJBa0kOa4JVjEAd+KEIUgEIQpQBCELW4vIC6LoQs+xKC5RzvzQhYvZZQ7iP30k7m/FdVCb1rL77FcrvNb4rpw/7cZ4Fd3SV/vqfzRqq/u2Sgjs8bKsOnbK1FjmWvK56dklTAWBkhFyAHE96s/lYnZQ/pQpKifKVU2kGp9wbAXPNfYlwVB5DzJK/EqfKtLU1L+tfNM3rbXI4L0VlHonfRHD8SOY6yQGGM9UadgG9ja915pOJ9dW5cw10MkdVRzSGXVb32424he6MvADA8N7/Joz/wC0KQd8QaBpBuWrNYsJJN1kgBCEIAWNiHOI3vyWSQk3tZAV1nzo4kzXiUdS3Hqqg0taNEULXg2JPEn0rzzjuXRlzpuwyl9sJq13XSBz5Iwwj62O4+leyTYO1AEnhsvKvScLeyBw43G88n7pqA9T0f2nT/iN+hbe+61Uf2nT/iN+hbu9ANeOgeTj0H+BTA29mnmQn/HftYeP8CmBvms8F839K3pu458iztXiGDLTqZqBsRyWtj3G4LB43WbTaN8p96L2VO5r6Y3YPmT2t8knLNxqAZbZxHM+hUdjY1LzKp8mydTQssuFoPEnZKbclHMKxwYpAZ42lrXcAbd5HJOUNSdO/etc7aVJuL7GMa6kOBJA2PFa6o2hPgs2nVCx3eFrqmF0Jt3LTDaW5tnvEavOu6wcfSsmS2Ozy30BaKqR1PA8s84EJkpJaisqgGAjhuQranR1R8R8FRVqOEtCJaytBZpvY24qK5lpW1TnyyNDpDxcePABSAskhiaCWuNhcAKP4/Xsa1wafn8Fs6fqp1vYyjXe1F4GJshs8QhcRyWu+sbC3pW2WTrXkngtch0DZ7bdy9bBdnyeJkt24rZHfhUrg/SST/8AqnhwIGp/xKMMkYzcuAPitj64gAF4I5WXJK2blk6Le+jBZyPL61kZss4q1jjtsbKNOe15uXD5VlrbpsHi/ititTOPUstt4IjnfL9ZiWYfKYKmRrWuuAAPggKw8vymKjhp5HFz2xtBJ9AATbG5uodpp1LKmd1M+u9wTb510V9PhaUuDbC/8WaJPBMYJOsbwUnhL5oY5hcC+9vQolHI2Wk7JF7fxTF0iYvidHl9zcOY5z7OtZmr3pVDOylXmoou7OsssuKnEnUF1i4G1iVmLhzQd7lVZ0C4rjNdhlQMYjczS9gbqj07aD/FWlGbsDj5y871C2la1HHnc9JQnqiMGc84YdlKlEmIkBznNDQQTsTbkF3ZZxulzJg8eIULrRuBNgDbZxbz8FHukvIUWdqSITTMjcwstqc4bA35J0yTlmDK2AQ4ex4foDhdrjzcXc/Fdjp2krVSTev7iE5ORIGkkXLbDhdapZdPNYTzMjNmggW4kpuqapveq2EJPk6oU3Lc6ZJxYk7rkkq9uzt8a4ZKob7rmkq2kbLphQbOynQZ2ySdYe0brjq6jS9rWnYCxXDLU7mxTFmTM8OXqTr52ufqIPZI5m3PwXdb2U5ywjpdNU1qZIi0vku15t3LIX6wBzQFGMq5rgzHRmWnY5jgAe0QeJI5eCfoah47MvnX28F0yt5024yJpftVlD1ALC91k46jYbelNrJLC9wlNYHDT3Ku8F6nk1unKbyOD3hoWAqGns8L81wGQuHFc0lQWPA33WaoZe5MKKk+RyqtGkWeS7wXIQQQHG3pWdHVQvJ606bbXJ2XeyFk8JnglZK0C9mG/oWeJw2a2JlUjSelmFJThxGyfqSnAG4XBRMII2T1Hs1cFSWThqzbFDQOSWwQ3cIK5m8nKuRGgDglQEqaXySwQhCxe4Eshw1WvvZKhZYSIbEcA61xeyUknihCYRiCxf5pbyOxHesli/kgRJsK2oxbv/gFsr6Onr6R9NWQsmgksHsdwduteF/aY8f4BdbvNGxO44L7LaL9jD5Ipqnvs8cYlhjcv43mOghjEEDqGeQNbw7T08dB3Rw/NOV3VTcdqqINEdmRwNcLEX5lM/SdUy4HmnFoMUp5QamjeyOS2lt3OJA39AVt+xUdbI72ni1sQ8eyV0p8kLgszJuAHLWEspJa2WrcHOPWSMDSbm/AFSAlpAB57ovp7IaSEpcALnZSQZAWFkJGggb8UqAEIQgGrNGEnG8GnoRVPpTJb66xocRY34Feaem3o1/k1lSOqqMwVdY3rH2ZJA1o8wnkfQvVTr224qmvZROa3IkZIJPWSWt+TcgHT2Ozh7m+GkHsingH/wCMK0DyVXex136NsM1Cw8mgt+jCtE8Qg7mE3mu8ConOfrrlLJvNd+KVE5/srl4n0wX7KD+P9jtsveZiFlouLg2tyWLVCulHOoybhQqOpllc4AjRp+GBz8V4u1oSuJxpQ5Z2zlp3Jr47JW3CgnR1npubcKFQ+CWJwc8WfpHA25KcscXsDrbBTdWcqEnGpyjBVdQpF+KUG3AoQtEW+xmtwCOVkIRNNZkZYA6LAE/EgkW7bi5vcUOvHbU5o1bi6xkcIjaX1LZ7ccOOxi9L5FLwG6r9kbAdwQTcDSL3TfVVTHv0x8Bsd1jCydp1OljjbyDgspUpVFjlml1lCWlDi4WcG6jqIvZZaCG8VxPrnBuh7SXfCA2stkFQZNisXCSWPI2xqqR1NtY6li57QzY3KCbJWuvxabFa5SUtieGQnpYyxWZkwYw0Ej43uDgdIHNpHMrg6Gsm12WKKobiFRJLqkBAeG7DRbkVYbXEvOkjbdZvc6Sw2tZWcepypWqt9K3fluYuHtGLTawK1ywuedIJ1Hf4lmCHfEtOICRlFNJDvKI3aRa/IqvhSc/YT3b7m1vDMn0zwzSAS4cU1VrXCwA3BuQqPy5jOb5OkcxT08go+uALjBYW6vv8VdtRDJIWueCSYxcDvVneWTtYpuSefJ5M7ao29zVrjgjdUz7RNtcWvxTBgXSJg+NVs1JSSBsrW7ANdxvbmFIpsPjrcMkpX3Zq07k9xuqty30YQZbxeStbURucRsA5/HVfmFvsqNpUpylVck18jNuTqYLJlqCDdxJK45pDKeKwDHybkJHROZyWmlBR5LKOEcdW3tW9CjmIA9W+/JSSoa4v4e9UexJh6p+3JW1q8lhatNjBIQw3vYrnNUOssQL96TEHljmgjckLna5kUhe/cBXEaeUXtOKcHJ9hzjkBaHNO52W5tTLHzJHioxDmyjfMKdjXB4PHU3vTqa0lrXtGxCxlQZxUKlO4bSJFTziRt3GzuScKeY2AJuFF2VLXOa69iCnKmrGm260SotLLMato3uiW0MlwBfZSOgq9DADuVBqOoJtp3T7RVDiRcWsqO7oxbyU9zReCaNqD1QOkE+KXrjIHBo0G3IpjoqiSV1gQGj0JxbPEXNb5REHuNtJO6qHbTlLMEU06eh5ZqrWaWglxJ5rkcCZb2sNrLurILEayDfdcAsH6QQbLKDbjh8m+m8rY20rR13BO9KNLjp2TTSfZ070/nFaZZxuaqrZ0E34oQhaznBCEIAQhCjSABIBHegG3BCFMksEGNh3JQADtsgpeaxj5GSO/AyfLD8f0KQcxyKj+B/bny/QpBwtfivqfo8sdPh9/9Spuf3h5w9k1lWhp2w4rRUscFQSwPlYN3EyOJ+VVFk3C/wCUXSNS0/lclO+aoja2VjA4gnnYq/8A2TtFXVGXI5KWJ0kbHR6tLb8HOP0KjOhaobWdKuEzt7LTVREMPHiVfGlcnpLKHRVJgGJyVrsxVdV1kJj6t8DGgXc03uD/AHfnQrOj4A2I2QhBH+kMBuRcfttehm4fiFUn7FA/6dHfVj9gq7OkX+guPfmM37BVJ+xQ87HPzsfsFQSuD0aeCOSDwKOScohckYxgfz+TxH0LlaF14x9vSeP8AuVvBfJuuZXUKqXw/oi2oe4jTXUsNdSvpqqJksL7amvaHA29BTBlzJOC5fqpKigoqZkr79psLWkb34gKS80q4qd3cUabpRfsvk24CwsduKx4iyySWXOnh6vIleZpq4w6nLOIKrjH8oR1U7nW1A8iBvwVm2B2K16Wtf2hsu/p3UKti3Ok8HBd2ML2L1cnmLNmBjCJXaIWx3980AHn3KD4rPNE1nk5JLh2nXsSvTHSxgbKzCXSwsu4C+1+TXLzvJCGl8Ug7TNt19w9HuovqljmL32/XY89SpSt5unM56J8lRTAT72JJub39BW9oDb6AGNv5rdglZZjCAlaLtK9DCEovBtkzjxGWVsZ6sfOteEukeT1u3Hmu42ds5K1gZu1Q7efiaskxFPnW5IIN7BZay5ti0grV1rGus9wB9K2SxFbkLczcOSBt6UXB3abjvQpxtlEtYAkeHgi47ysJJ4ohaQgE8LlZMLJGam2+VFOLenuYOKj7aW7FFi7ftbc1nTTOgdcb+J4LADS0u9NkcVslHKxIlxUo7okVHjcznsEh1DZouSbKdZbx+SitZ5cPSSqj3B2K7aLE5aawJu34lSdQ6JbX8HBrH6+ZUVumujNVrZ4f68z0jhWaqWps2ZxB/FKkdPURVEYMZBbyXm2gxmGS31xrXekqYYJmWekDNMocwDawHqXzLq3oTWtm5W6yvu/M7bX0jqU5aLxYXz/ACRcDxqOkCy1GnkBufi3TRguaqarDWSOaHnbdwUjY4SNDmuDgd9l4evSqW89FRbnsLe9pXEE6TyjXAHjiB8q2u7gSCstwFhp3utClFyyzeknuBuRYkqEZq6NsIzJjUeJVjiyZmizWxNIOnhxU4shb7e6qWk3Oj3InBSObDqKLD8MgoqcBscTAwEAC9l1HfjuO5CFyyc6k9UiAa0jzgAOVlzYlVNocOnqpQbRtuABe+9l0AOee2bAcFhPGyohkp6huqFwsd7LbRcfEWoFTZT6Wn4/m2bCDRRtYwuAeGPvs/TzVvAshla517H0KL4RkjAcIxSTEKSnDZn6rnrXncm/M24qTSvu0XaTfgu3qsrWpKLo9vmYpNlOdN9DmuaopDgNTNFCJGucY6oxkixuCO5Tro3ZiLcpUzcZkfJP1cdy+TXvbfdSuU8pG62kWtbgsJbhrGNaWsA4Ka1/Ctawt1HDj3CizLsnYAC3cEJHgdZcJVWpYMkCEIUgEIQofwAIAJO1rc0JCAXNB5lYxbm8AVxA825KOSUAB+nq3W71iOLtPDmspQlAlCoQhY9iO4h3Fu7ddeFN11zAdtj9C5O9duDf6Qj8D9CtOjxzfU/mjCr+7ZJS29vQtc0DJmlsgDmEEFpFwVt5I5L68U55D6ccu0GBdJuES4dFHD5VOWvbGwNHZjbbh4r1Zl8f9h4aefksY/8AaF5r9kf/AFi5c/OH/u2L0rl//QOHfm0f7IQHda5BSpAlQAhCEAJLXdxSo5lAI3n4ryn0nf2gcO/LyfugvVjefivKfSd/aBw78vJ+6CA9T0f2nT/iN+hbSbArVR/adP8AiN+hbHcChDG3HN6UH0/wKYGcGeCkGNfaY8f4FR5nvPBfOvSyK9Yhq8ixtN4g7Z55tPFvJRDMPR5gWLVYrZ6WAT94gYTxvxspeRdAF9ivN213XtZZovB11KanHBGcOw6LDg6OEWZ8GwAC7WDU4NGwvdOFVSg3LRxWunpSHXIXTO48RZlycMaLiztiaG07GA3sOJWwAGMgrC1hZG4XA3iR3JZiM+J0fWNcGucCTyTHiDZsKy/XVdM29RFE57bHiR6QplJEJGLQadkUM0co6xj2aSOC76F04YjL3TiqWycvEPOuV+kXH6zMVRBX9aIgZQAZHkbHbipfU1bqp13E2KkOK4LSMrTLT0pYTe51E8T4rkFBCxpAtfxK9VSubaUVOlHH1PK9SVWrLShgeb08pYO00Ej4gq1jxPGZcyTxve9tOX9lolNgLcgrgkoGwwSP5G/0KH1MbYqoOazc81d9PnTqzbl5FRWrO0pSWMtrBmTI9jQSQe+6wc2UDdx24dpZSuJeCVrnfExhfI9rWjjdW9ShSa2PNRc5PHmFpXDsyOv4pA2YHz3avxklJLFVfa0jX/i7rqMLmjtGx8FNHprrbQRlVlKlPSznZJNHpLnu7P8AeXdRVWsaXnne656wRU0PWTvaG+nZcNNVU9W4ilkaXN32N+C1XvTpUcRktzdSnVx4i4JdTVLohoB7J53Tu0w1UTWyRtmsb6ZBcKH0dSQLSnf0p5w+pDHBzXXXnbq3dJ5jsy/suoZSXcnuBdTDT6KeGOnO1xE2ykQ7UYI2t3KE4RO5zwfhbqa05+tWK8b1Km4zznOT3PT67nHBt1aQCTyXFU1GkO3SVtU2NhGobKOVWIC57QXLQoKo8NYL23oub4O2pqzoI1E733Kap6okkX+dNtTWkvOly4H1Dy7irWlZpLYt6NriO47Sz8dyuV9QBwKbpHyO/wD0Wuzu9dkKCidUaKR0y1DidimjHsKgxqmENXu3Y7gO4H0rvSsaXOXTByptOBlOEZRxI1ZWwGlwOldHSC1wBfSAeJ7vFPLSbnUST6UkLdLEvNaK0p1KjbNFKMae0TZ1rgOK0SzFovw34hZngueaPrAByBuVqjGMpYZmoY2IbmPpHfgeJtpWU7JW2dcua6+3gp02ZtZQx1EVw5xIta1kwVOTsLxasE9TGC8X9+4cfAqXOpIoqdkVKLNab7Eldd16voShyjgjF06rzwRLMUeIvwmdtC9zJ9Qs5smk8+aToLpMzRTSNxuommp9tpKkv21Ovsp1h9BwLhe6lVFE2Cn6uNum4t864Lrq1J27t1Hfz/SOTqMVKWqLMI4QJHbc12NFm8EjWALIrz0pHI5ZQiRAWMvDZYIgUva0cUB7TwK4rm51JAXatlnolJ7GWDvN+Vktjt3rVCXXF9h3rcR1e4NyVjL2NjB7GN+2G7pdtVrpQJeIY6/gkMfPmp0tbtGOcg/skJSLHZJ52yFABYu4XWSxdwUx3ZJKMObppG+mx+ZdY4eC5qD7TZ4D6F0DmvtFsv2Mfkikqe+yo/ZE5awzEcoS189LB5ZCS5s/VNL7NjfYauNk3exTscjE2F9EO/PzSpX07f1f1ng/929RP2KP9BT+JD+yVmu4XBd9tjuUOaHCx3SoWZAIQhACEIQAqa9k9YZEjJAd9ck4/k3K5VTXsoP6BR/lJP3bkA6ex036N8Mvw8mg27vrQVn8T4Kr/Y5/1bYX+bQfugrQHEoDGQXY7wsonVDTUPHcpc/7G7wKidZ9tPXjvS+P7CHz/sdtl7zNQTTmXLuHZiojTYnTQzN2sZI2vtYg7X8E7BKV4SjVqUJqdJ4kjulHVsxhwLK2GYJTCDDoIoWAk/W42t4m/JPrRpY1o4AWSoWVe4q1m5VXlsxVJIEIQtUfgbEsAhCFilFJORD3PP8A0i59zFh2d56GibKaWJ8jW2keBYW7tlcVFUTV9HDLK5/WE7g37vSnGqwihrJmyTUpfI293aiL3XWRGbNDNLR6Vb3PULerRjTpxw18zS6Oe5wxUQLhq2vubKoum3F8zUWIwQ4DJNHCHblk7o79gHl6bq6mtDblnetOIRxVEB8pj1EA78Fr6feRtqqnVWUjXOkksESyRUVlXlmCTFC41PZBLnFx80cz6bqUUehkT3vJBaBYLha1rWkNbZgNgFlGzW4hx0sPeleqq0nKmtmcylpex3z1YAGjfxWVPUdY0AphZi+GTVXk0dZCZeGnUb3vZPtLAImglc86SpxWpYZ00qmtm+BmhzueoW3Wxuz7NI+VaqmYRRF3oUSOccJbi5pXV0AnFw5pfuCPiUULapcqTiuDZUqpMl9iI23ABdsbLO/C+4AsQUSRjU3Q4OaDyWIvvdcial73Y2N5WTR5DRtlMsdHTslO+trAD8qxkhtuCSV1JD6Vsc5t7sypy0nFIwluwAPeE11FNqdd29u9SEgELlmjDuSzhX9rBvhU3yMQAYbaQiRoI80LtqKe24C5eBsV0KpI61U1HFUQW7VuSYMSprxuHepWSH7FNuIU4tsF3Wtxpe5129XSytcXpzw0i4N7/Kmgt1F2sXB5FTrE6PXc6SoliFO6J5sDa69Nb3Kkkehtq6lTcX3IbLgsFPVCZg7WoHzR4p7p5mmJrHOIsLbLKqYHx8NwmtzXNeQFar21k5qdOFBeytx8a8baSV0U0jydjwPemETujHeQu2CsvFudLlz1aeVg7adXUsMkGIZh9osKdVdW2R7W30uBI425eK7sjZ2ZmCGQzQsgeHOaAxp3tbv8VE6iKGuoXRVTgQRbjbn6FsweKmwl48jbtxNnE93f4Lnna0ZQw1uVFWxq1K2U9i3aSsLYn6XuDri1lVNc7NsmfYZoKupZRXj+ttqiG8d9lL8JxLryLndS7D3Me+4ZewvdU0akbGcpNZTWCu6hZtPBIKEvkw2kNT2puqbqub781y1DNFS4hoA24eC30cxe+ztgOC01T9UzvQAvOp5k5nDSjoeDKi7UxPinem4uTdRMsNSc6cbErXU3MK8jchCFpOUEIQgDaxJKRvaB0/OlYLvNmlx9CGgteS9pa30qHCXIDlvxQk7JcXM4FKsVnuAR74juCAgfZHeCyXJKHHAW3qHu7iR8yfg2wAJJ9JTFl/7LJ+N/BP8A3L6r6Pr/APj4ff8A1Kq598bsWw6mxHD56etjZPE4E6ZGhwGx5FeTMp4TTYH7IKloKJrWwRVcAaA0N5X4BewJfsMvgfoXk+i/tLR/nlP+yrs0nrNo9KEreA8EIQR3pF/oLj35jN+wVSnsUGm+On/7sfsFXV0huY7I2PgOA/mM37BVKexPBD8d7Vx5WP2CowD0adx4osg7kG6UkXU8AjONAtrXEg2cdvkC472Nje6cMcdefsvt3/Mm4SNNtLtRXyr0jhp6jUw+cf0RbW29NGTTcm3JL8YWOoB2rT2j6UNYAdTiqVRS2ybsC3HelYRbchapHxMN32AXDPUH3qzjTk3gwnOMVkcbG+xCyIvYHn3JspZ3X7ScdRPVmMXJuoq0m3iLIhJVNzlxOlZWUE0cm4LXAfIV5lz1hRw7HZwGEMLjy9A9C9QSywRShtRLpc7lpJ4qtul7ABUURrKc2sCRtxu4elez9B+puwu/V6qajLv2+G7Kbq9D/wA0OUUJbU0kHh3pWOGk8Ujozp7T+0HHayVwvoPcN19wjKLipLuVyaqLVDgQgXQTYE926VIRqaR3iyht8GxPY5qevZNUaRa11y4lSzSVDTG6zdua3U+GNgmDg4ce7/mu5wcHCy5IUalVftfwMnFR4NVMwxwMa7iButqVxJcSeKRdVOG2F2MM5G/E6SWpkjMZAAFjc25rso4jFBpce14rYCLJGtvuSsXRjF+J3Zs1PGkyaeyWnvSc9khcwbA9pDeN1sjNVDEHuDGku4c7LTBUwyv0R3PitszOsY5veLLho8PdBNcn5lqqTnGaUDJKLW44loY7sucD6Cu+ixOWBwa8ktG3MrgcLvCVrgXEOW/H8RyV7WNwsSRM8Nx0dax0T3Ag+H8VYWAZtcxjY53knv3O3yqh5pH0n11h2G6fMpY5FiEkkMzg1zdVrm/AeC8j1volvfJqCxJ/ryKmdK56b+2ob4+bPTmFYpFXM7DgSnDWCNrrzThXSG/A8ejo29qMuAJ16eV+Gk96vmDMVNNFTuFu3G1x3PEjwXyXq3Q61nUcYrb7/wAj2Vl1CLop12k39w+38Ub3WFNMyojDmLYJHDYjj6VQZ8N6WizhU1rVDgEIQsNfOxk0+wN56/iskLjewAI9KVCyTWE2Ssdwb3EDTx+NFzc7Cw4JEqOK7ALmxPF3ceCxu5w7QF/QskLKT1bgU2t6UiEKACEIQgEIQmUuQCb8wVz8MwOvrImB74YXSAEE7gdwTgsJmRyxPinaHRyDS4X5LO00xqaqnAZTXRv0kYxj2bKiiq6SNkIMmk9VINha3F1ldTyQ92i2l3FNFDgWFYdVGekga2R17kE8/jTqA0Dzd139Sr0Ksl6usIhfEEIQqvGzRkw7/BdeDf6Qj8D9C4+/wXbgv+kI/A/QrTojbvqfzRquNqbwSbki/JCQ+d8S+ulQeXPZH/1jZcH/ANw/92xelcv/AOgcO/No/wBkLzV7JD+sjLv5w/8AdsXpXL/+gcO/No/2QgO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Bh35eT90F6sbz8V5T6T2h3sgMNJ4ieT901AepqQ/wA0p/xG/QtxFwVppNqSn3t9bb9C2ahq4oBvxca6TbvP0FR9oLQ2/IKSYoL0jrHgCfmUc7WllncRdfPvS5Lx4P4Fhae7gUoPDZCF4/Go68NcGO9t0uw4BLpPHXb0WWJJ+FdRvEySzyICQbu4IlkYxtyfkWqreWQOHf602vD+rve+/cumEIyWWjnqVJQ2Q6CZhAF+KSUsbHfU4n0puhjadL5XWAHddcUuKNjaWkkttz2/gt1KzqTlmK2NE7nRHVIMYY0wl79t9tCjgAcHG5HiV3VteZmWi4XHAppxB5Yw22V/Z0pKGllFeXKXtswxCqY2Dq9yfQojijWmWMtLt7/wTo+QmQ33TTiT7VAPIXV/a0VCWlHkeo13UW/cj2LZhpcPq44J9epxAFm3G624zBJiuC6qN4a54aW9q2177rDEMsU2L1jJpXgFtj5l+HxrrnpvayFkFOdTbW2FuC9v0uwhXXtnK/ApRg6XvrnPBHMoxVuF6m1T9Tt7WcTzunyoxGQk3NvC64ZJZGEk3XDUTSE3N7L0tK3jbrETqdN3dXVPH3HRjVXLWUjoQ8gkG29k2ZTZLhtU99VI5zXagLOvxISSvcVg1xvuuerb06lRTmXNOxaounFbE+ilZUtvGbHxXTQVBjmDHE8f4qC0WIOp5gA7sqWUk4njDgd1S9W6VSqwdSnyedrWlWynq7FpZVYaqSNrOQsSfBOGOZ6wTCcRGHTyvFSbAabW3G3NaujYA0WqUbDTufBVj0jdHTK3NQxSOqAa0sNuovew79S+Rer0ru9lQr5WE+Nj6d0WnOrQhOCy2WBiOKtmAljf9beNQ35HhzUbqsSBcbOUfnq/JoIaaN9+qYGEgW3Gybn1LnO4rvoWEaSelH0e1sVCKbaTZIpcQv5pu5aRWvBu4G3gUyMlLbuvewumSqzk2nrxTSM23F+s9Hgu2NnnZG640W+nX3ZPW14dZdUczZOBHxqE49j9Ph9LHKAO0R763K/cunLeMx4pTtkFgSAeN+XgsJWkkm2aPFozqaIkzcQ3jv4LppgDuuGme10JtuV2U0gbxVbUTwYTTSwjvuLWF0mkrAStdwWRJuLLTvHc51DHIp4IjjLnEd62wxl6cqSku7daHUUM4NFSpo4NFFS2O109Q0bTa19+K2UdKAneKEAKsnc+1ycFau5HPS0jW247Lv0cEjW6UtyuNyblmSOKTcuRd0IQsWawKS1+KVCJYJyYOjaUCNoWaETerYamYkXFuXoWMri03G9m33WwJDpkduL8kUtM8yIe5RXSj0k43guYnUuH07XMa8j7HIfeg8nelXJlqrlrMKgnmBBfGHEWI3IBPFaq3LmEVtV19VTMc+9zdx7rd6doxHAxsMQs0Cw3VrfXNvWo040lhrOeDFLADclw4JUjm8Fk4WNgqokRI7glSHgs4e8g3glND9qM8B9C6BzWih+1WeA+hb+9fZbZvwYfJFLLeTK96dv6vqzwf+7eon7FH+gx/Eh/ZKlnTt/V7WeD/wB29RP2KH9Bj+JF+yVuwT2LwQhCkxBCEIAQhCACbBU17J8XyFHb7pJ+7crlJAFzwVM+yfI/kHEWu26yT925AOnsc/6tsL/NoP3QVo81V/sdnA9G2F73/m0H7oKzj6GoAfsxyita0+VSDuKlTzZvC6jGIBxrZb7MvwXkvS7a2i/j/Y67N+0c3AJbg6bc0NJJs1moeKQEBzg1mnffdfPo4ayWOzYp42QdjZY2aHauKNUbnbW1KHlrMRgyQi6Fi8uWEmPaE1ceOyV/ZNjxtfZA1ue5jQdJ5rQ6opo5j9evJa1tJC2U6csbJsxlsb2mzXWJuUMGlhvYlaG1LJnHQ8am7OHcVlIWMYZGvB+JYQhmWQ2kuTTWzlrQ1lgeabyDKe1JJ4ArOVxkeXHnuFg1tua7NGmOxxTnmTQ2Zlxyly5hprKu5gBDdhc3P/6Juybm+gzhRVDsO6xvUhhdqbpPaJ4b/wB0rqzflynzPhJw+qkDI9Yfcs1bi/K47029H+SKPJsFX1FQ13WBnCMt83V6T8JW0Y2vga/+6+WDW4orXCsl5ohz2Kx9T/MxLrt1zuHWX4W7l6AdUkiwXMHOLy5rzYiyLDvWi8uJXWmU8ez5Ewk48G6ql62nLB526pCt6L8cqs7zYlT1bRBK979JqLWue6yumw71nBpbUNc217G6xt72VpGXg43WNyYp1Je0O5Y2Flg5xIue0VoNSzUGm9z3LRiMpZA6SRxa2x5XWrC44qkdbFLrA49kjdcPhOSc5LY6PEakoIcy03I7kz5nzBQZbpW1GJyFsZcANNiefefQnaO5LpG81Cek/Ijc74dHT9cI3MeH/YtfAH0jvU2lKjWuVGu/Yflsb5yaWxJMsY9Q5jozU4a8ujGnzrA73t9CcJG3YS3fkol0Z5MZkjCXwPmEjnaDfq9HmgjvPepgxnVMBA1Am1uCi7p0qdeUaPuoRlLGTic0uFja64xAXuNhwTrNEHwud9jOoelQ7pCzpDkvDmTOpRUX1f63RwF+496WyncVfCp75Nyq6FlDzNAW2ta656iEhnbB39CY8n54osz4RPiHUNYYi4aet1WswO42Heo3hHSxT45jBw1tMGgFoaev1XuCeGkdysI9NuW5be7ybI3Ocae5KK2kG424XUTxijbd226mEh1nUBYEXTJicQcXLqtajg0i9s60oNFe1EWh7we7ZM9SxzHk7WUkxSAxzE8jsmasYLXK9PbVcrcvKjTjkbuJuOXei1ze5HglGyF2PHY5/wDqzJr3DYk2W6Cd0ZsbG650t7lGsBSUVsSjBKkiUEkAejwVkYLPqa3RYj0qm8Pnc2cBWhlqYuY2/wD1uqDqtFYyjVd09VLUyXh7g4FtgleTdxPMLGI3sVs2e6wXlXFZwzzsoJPJ30otCCnGEWYLrjpmfWwF3MHZHoXJVe+DjqSy8GSEIWBoBCEICHdKWZavK+XBV0MLZZXaxYsc7gAfekJp6G861+bKWb2yp2xFpdb629vBoPvie9T6voKTE6cwVsYewA8SefgtOFYVQYVG5tFE1tzyJ/ireNe1Vppcfb8zHDO4Ejs2Fm9yVI1wcwANsRxSqm1allcmQBDT9ccPQkJsEcHE+hN44ZPYdMAH12T8b+CfuYUfy9frXk9/8FICvrPQlpsaaXl/cqa7zM1S/YZPA/QvKFF/aWj/ADyn/ZXq+X7FJ4H6F5Qov7S0f55T/sq47mo9aN4DwQhvAeCEII70hN1ZHx7gB5DN+wV5x9j7nDDMsMx01sdS4+VjaMNN+wRzcF6N6QwRkTHrnUfIpiL/AIhVAexty5hOPDGvbfC6WpLaoAGVur3hPegJ1N09YY2bRHgmPPF9i2ljN/8A8i6GdNdM5uoZbzJote/kTLftqex5Ky3EWCLB6Nuk3FmcPnTk3B6BsfUto4hFptYcO5AUhV9OGE1eKMj9rcVi6t3bEkEYO4/HUgy70i4FjcromS+TPsbdeWM7u5x7064v0e5WhxU1E2DUMpqD29UZ5AelQ3MnRFgmIP67Lwjw2obuPJ4QNxfm499vkXh+swsal3ONV4nt2z2R3UJNRWCyKSaKXV1csUo72OukqahlLTSVFQ4MjjBcS42AsqFnwzpIyk+oFFUVdVTtcAHGqiZtw4X9KTNcvSX7RTe2MdQaOWMtcDWROBBbvsDfgqxej6nNThLZm6dR42LUos2Yfi9e+kpZmSuaSPrZaeAvyKdC13wSfiXl3o3wfNzcdfJgNNIyYlxcWTxs3095PcrMxyq6SsFw8VlTFUaY9TnM8tiIsPArtuei+G1CEs5OaOZP2i1m6gfNI+JOdA+8YNxf6FVOU+mDCaiFtPj9qavFmEGOSS5sAdw23G6smGojfSirorPpZRe422G3DjxVBfWVe3Xtwwl3N1FaWUl0tYJmifOVNPhr3upbxkljpbecb8BbgrBxPE6fBOjun9vnfX+qG1xfz9/OI9CnbJGy07XxjUwcRw3UL6SsltzphrYeuMOlukANBvdwPPwXdQ6oqk6UJQUVHlmdSjri8nn7EIoKxvltGHmIuI29HguB5u5lthbcFXIzoyZl/LLoDO6QgvdYsaOI9B9CqXE6Q01bK3TZrXEL7P0Dq1HqVHRTeWvn/c8moytKjoS4/M5BvwQEl3NO3BKDp3HNX0ovudCXcXisXWB3e0HuJWRHANTTiMU752lt9rcwtNxVlSgpRM85HX4wULVC14hZr862623LVuptumpeYwIUjmkxmxWVvnQjjtpAzwRzNxK7g4sse/vTw0HTwSb8lmb6dibrXSh4b3Ag53WOlztylYd/rnFK55DrclntqyYSbykAGn0pCdfoK5sTmdBHqivf0bLThNRJUfZb795WuVwtWDa4tLKO6RvWMLDuCtdHA2ic4svqdc3B71mSWOs3gle9scZLjbdS4086mYN+ItM1sd2F0FPPUdbO4B45kqc01dIGR6JLhlhseQVb08/WD604p3w7EpaZw1EkHbiq276PRvk3/Youp21f36T2Rc+Wsy9UGskdy5/H6VPKLFYKhg7bbnwVDUk7Jog+N1n+hPFBjdRRuaJHOIHpXzfrPoq6MnKmv6fmZdN9JJUMUq/b5l3tcHC4II9CUWPBQzLuZ46iNrJHfT3eClsE0b2XjI3XgbqzqUZNSR7m1voXSzTN6CLcUhdqb2RuOKZsVzXhFBWOpqqq0zE2Dercd7X5Bc1GjKrlRWTqlLHI9IWEUjJoo5I3amPaHA+ghZphx2ZKBCEIAQhCAEIQgBCEJlLkAjextb40ITGoGO4iJsL6u5ZPDr3Jbb0IQmEuACEIUeZL4E7124KL18fgfoXF70eKcMC+3Pl+hW/Q1/vqfzRquf3bJGUh874kqQ+d8S+slQeXPZIf1kZd/OH/ALti9K5f/wBA4d+bR/sheavZIf1kZd/OH/u2L0rl/wD0Dh35tH+yEB3BKkCVACEIQAjmUI5lAI3n4ryX0u1ENH07UNTUatEc0hOn8k1etG8/FeTulmmhrOneipqqFksMk0gcHbj7E1AWrWdNWCUUcMLcMxmctY3tQwRuHD8daoem+hnJ6jL2Y5B3to2H/fU1w/I2WIqSHRgtEC5gJtH6PFOlFlzCaAO8joIIgeTGkfxQMqjGunHDoYHR1GC47TlwsOtpWNubfjrmwvpbwKaKndUxVsALACZGsaAT/wCdWVmfJWA47Ax+IYZSzGJ2u72E8AR3+lQzE+jbKlfSvgZg9ELbAiI7fOvJ+kMbN1YK52ePLJ12zaWxJaTFKCsDTS1tPLq4aJA6/wAi7Dtx8VROIdGmacvNjqMp4tWSsicXiNr4ohtvbc96yoK7pSlc+OWGoJjaW6jXRb2HivPvo1OvT8S2llfLH9TqdZp4LVrM2YNR4k+hqayNlQ0gaTI0cr8zdPNPUQ1EbXw6iHC4O268bY7hmZq7Nhlr6NxxIuFy6ZjjfT8K9uCuDCaHpPhw2J0AqRGyNpaBWwjYNFua6rr0djClFOWZYNcbiTbRdkrNbHNI3TVKxzJWtIJFwqfwrpRx7L2MS0ucaV3V67GR83WkWb3MB5kK2ctZowbNMPW4TUCZwBuwxvZw4+cBzKqK/TrixjmosrzJb1sjfSvh+JVeUKhmDl3lJcy2guv52/m7qtOjDD8VppZpsekk6qNocbvf8L+96F6Jma5lO/q2dW642aVGqrA4qrD6qF3ZdNGWXtddXTeqwo0nRmuWcd3Qc8JEJmzjgc1a6ipnSGVhI2LPem3Jy111Wai9rgFRyToyiwfGpcRbObuc87Mb74+KeGNLyADZoXpY06WnXSeTyvVZaZKmK1ujclcVdBqJkAvfewXbJpLgL8PQgbatPBZ05v3mVFeMZ7eW4wsJa7mFtqo2PpzI97WgWuXGy11BIn3TbmOOonwuSKlvqJbwIHP0r1fTOoOnsU8KbnWUXtka683c7q5GOA+CbprklcTpNrLHDKCvpIpTWBzgQRYuB5+hK8XlBtYW4L2VGo6sNTPYWNvShLQnloxvdY33WTh3JBa/AE93espLTu+C0SlqwhoxVk7pbwB1u/dSHBK6ShpA+Yl3Hhv9K5ZJDCWul7LT/q+IXRQ0b6zMeF4fH2m1NRDH1e1jreB891wSpwhGVRy2Mbi2jcrRJF29C+PNxOironscCyVjWiwBI0E96bs+13US6Y3k39PoThWYdB0c41hRextFTzQPfP1YuC4HSL6b34qv82YrFiFc7qpS3YaCAdzZfJq1hJdUlWitmj2/otauFLC4Qzz1BdMSCdySd1gZn8rla3vY2M3aBIBuebj3qPUGLVLsTMB1dWSB53oV14OY7I9Nd3kKc4wfJKG1Lg35lxT4fTVVSJn7HfuW+4bazQ4lIADJZzQ0LGMJROmVP1jEprKW52YnRU2IQRxkO7JB5d1l3YJBT4fCI2A3AA5dyaKHEqR1QYXS9oDYaTxv4J5jaHG60VoTSw+DO1pUK1RyjFbD5RT6XDuTqx2oXBTBS8gn6k0mMDSL2VPVikxVgorVjB1UzTr43TpE3Xa2656GBvgnekptJuFXV6iSKmrNJmykhsRcFPdHAL7jkuSNumy3V2MUGEUgnxOfqYr7O0Odc2vbYFU85TnLTDkqq8+46xQ24BdTO5NeC43h2L0hnw2pMgFt9Dm8fELpZI4WeDx2K5ZU3GWJrDOFy1cHY5KwXXI6YlZRzELW4Ti9iHGR0HihAFxfvQoMAQhCAEIQm33gAbG6xuWPu0cVkhMZ5Ari4Ov2CD6ElgZbnuQhNuwAjXIRwCLEcTdCEAJDwSoHnBbaKzUSIfBKaLakZfuH0Lf3rVT/AGtH4BbQvslFYpR+4pn7zK96dv6vazwf+7eon7FD+gx/Ei/ZKlnTt/V9WeD/AN29RP2KH9Bj+JF+yVuJ7F4IQhDEEIQgBCEIAVNeygaP5BRl/ASSHs/k3K5H+ad7elUz7KB1siQkdtplkBB/JOQEe6I+kjBstdHeHQz09fNK2ngBbCxjjcMA5uCfY+nnDpHhrMAzE4k2AFIz/iLV0E5Qy7iWQsMq67B6OWZ1PCS57CTcxg96s+PKWAQSsfFhVKx4NwQ0+tTnHbJKK+m6bKRkJe/LmZGMAuXOo2AftqP0fTbg1XWVMzqLEmwuLS0uijHf/fV2VeBYdV0klPNSROjc0t0kXG4sq9d0b5ToafySXBKB2kAajEd/nVH1+VF0Iq4WFk3W2dWxuy/nDBcchc6nrYYX7nRLI1ruXIE96fY3tljb1Tg9pHnNNx8qqXGuh2APkq8s1Jo5g02ZDG1vp4uPfZR6nb0n4BJHQMkq6hjx9bLqyIbD414/7Jt7pN209/lg7HJx3LuxjFqPBIddfPHE083uA5X5lZ4RilFi9M6eglZM1pALmODgCRfkV5r6VIM9VNHAzMFLI+HVft1Ucnve4HuXZ0VUmfKXCqlmAQTMp3yhxYyqjjF9A7z3Lf8A6e0W2VPcKsz0ra4vy70no5qisczD0gZTfBNjEc7qQOOprqtjhYC52bc81MsqdLOW8cdBBVVho6wsDSGwSuu7YWvptxKranQ7qC10919xn45P6lkk1JLFCQx5AAc7bmvOmF5dzbHn8SVDpTSmZu+qXTbrfSLcF6RII03PYdwPFFpGPtJd212knh3LRZdR9T1JQ1avMyks8EMzBnjBsoSMpa1zjVSBxfYsIu0+lwPNOkVRHUUrZ4S4sf3lQrpH6JWZtxRte6ocHkPJGhpsSR3n0KdYfhAw6hhpQ4ygG24tyXRdOzjTU6L9t8rH9znlCbYQROlAI4BbX0rwOBXfDEIWhrGBvfZbbkCx3v3qtnX0vBshb7b8jSaV5aC3vC6aihc2xuCOdl2i7dtNgd+Kxl6x8MrWuIkNrfKsYz1yWXsJ0cDJT1FNUVBhjq6brG8WdYL8bcE4+Q2F7i3iqBw3LOc6bpBFT1lQKIy9o9fH5vW34XvwXojsiOznk27wrDqdtC0cIqWdSyYUqSfJyeQ7+cPlXQyGOIDYly2jTI28YBcEb8+KrZzysI3RgkyCdLeG4lXZaeMKcet0vsGl1+AtwUV6BMGzBh8lScbc8Rl0hAeZL8Bbzh4q5AVkLu7IO/G913R6nGNq7Vx57kOj7eswJLyNALR6dkoA1cwVmyN9jqdqt6Qtelxde5Ivayq3lJZ5RuWGDmtGz7m/pSkWFjfSlsTM0OYCPFU70wZ/xjLOJUsOHMeI3ytaQ2S1wWk9y77SxqXlTTB74MZSwW/cMYQCN991Gc75fw/NGGPgrWyDS13AgcRZacpY9LjOWaKtqY9E8kMbnXNzci53XZVVY0lpebHYqadKtaTelaZR8mdFOjqRG8Gy/h+XsPfSU7ZSyS5O4PFun+Cj9HkzDcMxE10BOs2PnDkLd3pUnzBjlBhDGCulA1gEXa48bjkPQo7LjUFTHrpH3Ye4EfSry2d3OPiqTednud9rRo1JaUtx7FU0DS07AW3XDVzNJJ1D5VHp8U0EtB9K4p8V2O6307N6ssvIWmlpmeMSNe6wI23Ucrn22C31tbe5aeKapJC99yrqhRcUdtTaJg1Kg7uAvZLa19TjYLrS7HOmk9T4Eujg7buuudlXTyT9Vq3vbgVvbsLDzibE/wB1bJR3QpVKdaLcexsjfpe0gXup3lKuLtIJ3v8AxVbR1oNfJSs86M6WH4lKMr1JjrGtce76Vx9QoaoGEJqrBxT4Lno362NPoXdSt+vd/BMuFTa42b8lI6KPiQvBXK0TZQ3HsyZ30ze16LLpb75aoRYLYeKr28srG8sVCEKDAEIQgEN7bW3S7tbtp3QhQ5LKTAgB4m3xJUIWWmKlgCHcFIb9Z6LLIcUe9WLRPYe8Ejswu7/UnYpvwX7Wb4D6E4FfW+iL/Y0/l/cqK3vmqX7FJ4H6F5Qov7S0f55T/sr1fL9ik/FP0LyhRf2lo/zyn/ZVqzX3PWjeA8EIbwHghCCOdIjQ7I2PuNwRQzfsFUt7FEXGOk3v5WLf4Crq6Rf6C49+YzfsFUp7FAnVjgvt5WP2CgPRjCS0Fwt4pTbig8EAbICP5hEYqKRwPaJdz8E2Fzi0F3DVyFk55jYDPSHhYu/gm15sbEXC+Yeku1/N/L+iLW1SdNCvAI4BzDxBFysLtkjAe1vHYOAWQOxRsVQa5vfsbkkzBrI2tcNETDfYtaG/Qsn9thjdoLXbdsXCCB4pdg6xAKh4bUmw4Iieb8hYNj1A5hiLavzg9khaOfIekqoYsUzT0XPNNPDLV4TDt1rKYubbjfW70uXorbS42so5jWGUuMUUtDXsbJHONI1NBtuDz8FfWHU3odO5WqH67nHW24N2VcyYZmLCoqqhqIhMWgvj6xpN7AnYekqs84dLtbgmcpMIip3dXE9zCTC08Gg8T4pizhlyr6P8YoKvDcSq2UT54tcbXNa2znXIs30BWtSZVwHMtNSY5LRwSS1DTIXmIEm5tz35Lqdva2b8ea1Qfk+PmZwk5x0j/SVbMTpGmYXMjeHDiFTnSdlowVcs8cbmtc4nn3q5IaVtM5vVDsttbay04/hkOMUDopI2l599YX+daeh9X+ybvxIe6+3/ALObq/T/AFiClTeGjyQaxhqDCSNQW0HtWKcsxZMmwjFZJHSyOFxxI7vQmwgg6SBtzX3Tpt8r+mqsXn4FND2o6e65FYCJCsmuuSSOHoSC5brvZIwgg6SrFOOXEmKfKWxw1mItjm0EgEeC7mOEsIcE2VWG9bVGW5sTe2ycGRujhIHId64KUqinJT4WTa/gbOQQmWCoqXV7mk9gEi108sDje4AXTb1fFjxjHn3MWsbGQ527kyiapFZax03+D6E6SztgjLn99lqo6iKdxLWNJ8FpuE5SUU8MYOskGNpdsdkAgj0rEElxBaLIYO0uyMcYizFoRzGuNpOCGRxsv1X0rnxQPdH9bcWn0LThDZQ13Wvc7xK5NSdTS4sy3HCPe9+K5qyHr4XNBsb7brovt6VkQNTdhwXRUpwnHDMW2hvwyidSDU87em6cGktdrG44bIc6wu43HcU3DFWtquqDG2t6e9aW4W/sE4yth7pqt8LwQ63oT9S42xzQ2TwJ2UXYBoDnc0mss4c1uajOOJblXd9Kp3Dy+Sf4firGyjqXj5bqbYTmgxWa94+ZeexJX+2TOpmeyPfZrlZsLXCKOzjqv3rwvV+jQu6n7OD/ABKupOr0ia0Syi88HxhlVGNBB1N3tbuVZ5+6K6rHc0+2NLUER69TgHP+CBy8EuXMadTyBjnFoG211ZeF4s2oaNLrkr55cULjpFWWhefb8z2PSup0r6n7b3OvCKM0GGUtMTcxxMYTfmGgfwXYkbIHbnuSsIN7b+K83UnKcnKfLL9LC2BCxsLbOJN+CADda8oywZIQNzuq4zD0r4ZhGYBhEjAZdem+h3J2nkt9C3q13inFswbxyWOha4JhUU7Z2ABruC2LS8p4a3JyCEIUNJ7MAhCFPwAIQi9twLqEsAEJS1zSD2bnldFyHhr2gX7lOmUVloNmPvR4pwwL7c+X6E3jzfjXbgd/Lvl+hXHQs+vQ27mq5f7NkmSHzviS8gkPnfEvq5Unlz2SH9ZGXfzh/wC7YvSuX/8AQOHfm0f7IXmr2SH9ZGXfzh/7ti9K5f8A9A4d+bR/shAdwSpAlQAhCEAI5lCOZQCN5+K8p9J9/d/w/YlvXyXI/JNXqxvPxXlTpNJ+qCw0X2M8lx/6QQHqSkv5JT24aG/Qt1gLla6L7Tg/Jt+hbXDZAzlqzopJbC/ZKjDT2TYG53UorftSS3wSosDYheF9LUlUg0+zO2zWTJwHXF9xYW7PNYsLGuc8NDCTbtDikYC4Fx4oc27bndeLy3tk7XFZwa3xRvlDpYotY4HQLrbq7Q3aHAW0+jwSN7QDnDdKQNV7C/eo8SUVhMnTFHFiOE4diEcgq6drtX2QCwJ8O7kqXzP0eYxlLHPbjJrnvYwNkNPofO42JcduG5ACvdrWkku2J4+lJK5moh++oab25Kwsup1LTbPsvlGqcM8FW9HvSZ7d1c2HZoLcOxGF+jTUBsBNm3JDePFOXS3nWbKGE0k1LH1rJZHs1MY1w2bfiVpzn0WUeMSy4hh9TNS1zjfXE1jSbnfcqN9EIZm/BZsLzQfLZaVhlaZ/rhu51ufoV2qFrUxd0o+z3jnfPmaXlLT3MsnZjkzZhUtVUNLQX82hvEX5eK31OHyu0iEGx9BKn9Dlahw+Ax4bSwxRM7LmNaGgkbXXNWYbZrHxgN47BTDqdGMs01p+D5KO76e6ktTK8xeqw7Bo2NrZ2MkdY9qUN4+PguaHEYJog+B7XRu80hwN/jW/pL6P6vHXwzQzPYAGCzXN5Enn4rmwjLkmC4dDDUO61zRbtkH6PFXdtVpVqalqTfkUvUrKVOjqjzkb5h1ji4ELXG47tI7J47Lvkoi6TYlvoHBa6imdGzbT8qs6NWKfsnl5UKjzJrIyZmxWDDKJr3aSDfu7lFYqtuKNM0Q7INv48lJMy4E7GKTRu21+Fu63NZZYwKHD6N8czQ7tcSB3AL0lj1WLap1JJL44Lm2lStbfWt5kcLdI3XNMx7mu08bbLbnNk9LiAjpANLyQN7cgsYA6OjY2YuEhIJPHayvKV4rh6Ibov7e5WiLk8NolHRvhGWcXf5JmqqbSzSWDXy1fUDYEn6Arzyh0N4DheLU2K08j5zE9ksTm1T3C7XBw9B4Bea6ajE1QZJSWQxnsSt3eQRxsvUHQNNiH8iDLitVLM2OomIkkfd2kabDwAVN1Gj4MnFSTT8jsoXEak3FdiR9IOSMNzlSMgxFst2tsHMldHYXvyVN5p6PcqZbgjgFUZcQLiI4hXEu1WuOydyvQlNiEFf1nkkge6NwaWnYXXi6rr6+HNP8A2xWVFRVQFr/rrtXhv4KthbSq5S2eDrndyt4ZXA5MyVicUs07qedsMjy9mqN3mngtceXXsc4iJ/WD+6VbeCZqgrcDbHUU8JlbBZpIJ4MVTZKZjdX0i0zKqVzqHr2a2GS4I0Hl4rza9ZpznCe2nzXPyL6x9J7PQlU5+aNseA1Tm3fFIRfk0rqGASP948H0gq8hl6jLWgGxIBsAFjLlqAPDW8fAKkq9baeWsfQvodYoVM6Vseco8hVrMUjqBfQHAnsu4XupnT4M9psQfnVsnLrGnSeB9AUC6ScwUmSpKfVC2UuadntPwrcvFTT6rK8moU92aqfUKFs3Jd/iaKfCSwXIPzpzpKRwIBabeCcMoVEeYcBhxHQI2Fz9mj4JtzTy7D4mNu17997WC4rm9jCo4S5M3eqTeHlDYyKKNw1G3xp1gawMGggjxuq36ZW4tHhdL7SyPhkvJqdG/STs238U8dFJxKTLN8Xke+o6ywLn6iRpHNa7i3zR8dTWPI4JXWqenBNrqLdIuVpc34GyhgmET43mUEki/ZItspPb0lbqUhshJJ4Kto15UKiqQ5RjWWU0RvonyrPlHC5oa2Zri5zCL35NI5+Kmbd2An4kpAkYLkkelYjstseCi6uJ3FTXPk5oQ07GQsshYLWXN7O5B8FsfsQW7j0rQo5a+JnJ4OhsmwC2A3XBct7VzYm1lH89Z0psm0kdTVt1teHGxaTwIHL8ZTSt5VZaIbs52sEwPFCj+TM2UuasIFfSNAjLyzzSNxbv8VIiNrrCtSnRk4TWGiEzFCQFKtThHVkkEIQpe/BAIQg6TwJ2UcLLJBCUsc9txZoHpSEkkuAbtyBUtS06sbGOQRzCLhzL8LdyGkHQQeJW62adSLD4ySqn+1o/ALctUH2tH4BbSvslJ5pxKZ+8yvenb+r6s8H/ALt6iXsUf6DH8SL9kqWdO39X1Z4P/dvUU9ij/QY/iRfslbOBnKLwQhCkgEIQgBCEIAVM+yfBbkOIXH2ST925XMqa9lD/AEDi/KSfu3IBz9jpq9zfDA772g5f+EFZ9hcXIuqy9jr/AFbYX+bQfugrPIBN7KGtwYloJv6FGsYP8/aGOaCSeO/cpM7YKNYm0OrH7bg7eheY9LI5s1J9mdVptI42jSCXkOJNuzskfc2aGt0cyW3PyrK1tkl+K+cw0JZzgsnFPkwMcZIa6JsgG+7Q76VsiIieWRxNja7fZoAQ0dxskJ7ViobeMNmLgjVUU8U0PV1UPlDe5ouq86QOjGgxmnFRhLTTVkZEgaXu3IubWHpsrKBI4GyQne/NddreV7WopxeyMHTTKGwDP2YMn4lRYVm6mljpNRYZn0whbaxdfU70kBXEccpZ8BqsWw6eKdkdPI+0bw/drC7lt3LnzXlLDM1QxNxJvaN7PDGuI4d/gqgp6efIfSBFgs2IVVThVayOPqpiNI62TSdm7cBZXyha9SxUisTjys8/JGpaobNj50ddK9dmHOXtXPFoic4ht4mjYNJ4hXE3U09/O9kxYdk3A8JxGSuo6KCOYuuyRkQBG1tiE+6yWbcFT9TnTq1EqEdOFvnubYp8nNXVMFDTyVNXNHHDfcucGgX9Ka8v5nwbHZHx4ZXU00reTJ2vPG3AFbs14T7d4BNRNkfG95aQW25H0qB9FHRpU5Qr6ipqKmWQOtpD3NNrOJ5eKztba2nbzk5aZLhN7sOcky0W6tLi5wLgeA7krNL3anOAd4rKS7SBpbYi+ocUjmNY6N8mkNN+aq6a1pp8mblsc9bVNoKKqq3taRDE6TzRvYXVZ5T6X6bHczuw10D23e4b6BwYXcvBWXilKKzDKqAOuJo3RjhzFlUWTeiCXBM4e3Ek0jmB7naCWW3YW8t+au+m07SVvU9aeJLjLwa5J6k0XKIxq1NcGggcSlIt6fSop0pVtfhmUKqXDtLahsMha4P0kEMJHBQPoPzLj2J+VtxomQNls0ukc6w0en0rRT6bKrbu51JR+Jl4ntY5LmsmXOtRWU2W6iXDWOfUg7AM17aTy+ROJndsCAAOaiGfekfDcpPhpq+Nsjpg0hrmOcCCSOS5LOjOdZQgsvnCM6uqKzggXQvmPNmIY5NHjVNMyAObu6lLNrHn8iueWpB4Pa033uVGcBxGjr8KjxPDKeKBszdX1tpbwcW/wW2eptzJcTchWXUJK6um1DSvJnTbW0u4+OrNLhaRhK4sYpMJryx+IBjpGm7e2BvZM5qx1gNz4KpelOtx6SvpvauoliYJG3DJS240lTY9OnKu3GSjt3Ntaj4aTxkuCWaKnDYqYBsDRZvgOC4ZK0ASGxcQOSimV6mv/k/T+2Ly6Xq2XcX3N7broqqwRtuHE967PUNEsJ7lvbW+YptfcMXSXl+TMTqeSneexG0ENJ2s4nl4pow2kkwqgbTucS4C29/4+KkEuJva11jYE95TFiNQWU7qgnVYXsVd28amlUex3W1jC2brS2WDTPMWgl/FN0k5kJsU00WYPbKoewxtaGkt2vyNuacCA2TZWLo+EjbC5jW3hwKHbnUsQ4XWqte5sEvVgatBse7ZMOFOrDWPMr3Obc2Bd6FujDUspnNc3bhNU1BvPkSN4uQsJotcJaHbn0rMkuI2ACxka6RhEdgRzCxgm2dEo+xusjJR4K+Gt657jpvfcnuTzUao4rD7I4aB8fBbcqUFLiuJilxbEauljLgC6FocRsTz8ArfouguKpmo6tuNV8kLXxyaT1Vi0EHfbuXX4WrfJ52p1KlawlT0PLIPmDJZwzo1wzMbWu8oNPrlO/EuA4cAmTC5SyrjcdibL1bjeUKPEcnnL7ifJ9Ia12ltwA6/DgqeqOhCDCoqiqqsw4mIY2F9z1RO2/Cyzr0HVhpRxdL6tG2ctcW8+Q6ZVvPTRHfzR9CnVDFpYqNybT4nX5iqKHBcQqpcOpZXxOmkeGPOkXG3DcK8qmoiw/Cpqt7nGCBhfqI3dbjcL5r1u39XuPDUlJvyNt1cqcntg6wLI5qvcr9KuFY7mCbDIW/XIy5v2Nw4W7/FWGWgSP3PoCqa1tUtpaaixlHDCalloEIQtJIIQhACEIUbTeOACEWcXANA3WQYSbDTfxUaJT3is4BiEe9Sgcb7ELHkpTXCJ7EhwX7Wb4D6E4lN+Dfao8B9C719d6MtNlTXwKet77Ncv2KT8U/QvKFF/aWj/PKf9lesJfsUngfoXk+i/tLR/nlP+yrPOTDuetG8B4IQ3gPBCEEd6Rf6C49+YzfsFUn7E/zsc/O/9wq7OkMg5Hx5pvc0M1rfiFeSuijpLjyHiOIQyxF8c0+txEReQbW7wgPa54JRwTJlbMdDmXBYcRw2QuilvYPAa4WJG4ubbhOk1RHFGC+WJvfqcAEA05ijLjA4e9v/AATO6Q3Ase5duZcXw+CON0tZAG77CRt+XK6baqrbDh09S1moMidIyzb3IFwvm3pNTzeyWOcf0RZ2ssUze7S1zbnc8khBPBeeMU6bcVjxqSBtBETA4tLRC4k7d11KsL6bcOdTtdVUde13vtNGbD/3Ljl6PXkIqXZ/E2qqky3ht52yGSsc47qMZdzrg+ZoNWHzuZKBu2cCPlc7XKiWYelPBcErBSudVyS37Zjh1tAtfjqXLR6XWrVpUYx4NVSusotMvDmODVwU9G2Q3ntY8LrmypitLjuGtrqCXVGbahIQ0gkA8LlO7Jaci7ZodLuALwudUq0HKCXBnpjNEVz7lqLG8p1lM0gyxh8jNieDHWVWdFOfG5Tjfl7MUZYIyGQvc9rAQASdrX4lX+7Tc2DSHCxHIhQrPWQMJzPS3bBHTVsYsyWGNjCbkE3da/JWVhfU6lKVrd+6+O+DGVJpZhyTGCrpqunbNRVEZiPdukE1jdrg5vMhedMyZDzzluhPkOK1ElPc7NxGUu4X4ALDKPSNi+WIPJsegrJojbVJJHJK4EC2xcV2VPR1Th4lvPL8m0ZxqJPTIs7pdwN9TlqoqqBpfOGOIDQSeFl53wnDsUkE3lkT4y1585vcvUOC50y7icGlk5dE4bsqWtHPuJTHnjBqKooX1WGuw+OJ250PY073PL0K89HOu3FhU8GssLONslH1S2dGm6lA881+ttKWsFzZceFdaHO6wW+JPuPCGhaXMkjkA/vByZaHEI59Re1rAL8BZfVnOnUqRqRkzkpVnOnmPB3vO/GwC4cTMxivTO1eAvyWytd1lK4xPG/PUuTAw4B2t5fx851+azr1lOehbZNqX/ZG/CWTdW50wIdfuS1+IupnC7T8oXTPKyAEvNu4BapYoK9rS25I9AWElil4NOT1InOp5OAVrMQkELmkXGrcrtpmQ0NrkC/pWoiipJ2ghwktbZoSYpTSVWl0btLd+BstEU4w/abzMmthyu5/bYeyUrdlppAYKdrHkk8ON1t48fmVlTlJxTlyamKQDxWs1EUcmi+/itjmm2xHypokoZXVhk19kk++XPcSlCSaMh3cATshr97WQGltrEEeKGEdod9+K686opmOMsQdWX2c4BaPIYhUdZtwTdVMnbWbOOi/Jx7k7x/Ymgk324rj1xrv2lwTwa5ZGMIa8gBbQ4OZZu6bcYpJZ3tLHFo34Osu2kjdFTgO3PeTdZUqkpycUtkYtnXDM6IAWNwnOkr5hIHOdsPQmZpWYcW++Pyrpi4QeGivu7BXO7JzSVMVU1tnDUBunzBsXfQ1DW3u2/oVaUlW+F12uPyqQ4diImIElge9UPWeg0rqOpLf7jzs7a46dLXB7fMvTB8fZLA08bm3EehSGKYStaWPDb/GqJo8RdSPYWSSFlxtc2TTnrPmM4W+J2FiR4Idtd/o7ivlN96NTjUcY7P7j13SOvq4ShPn7z0kWhvj3pFGuj/F6rGMsw1VewMmL3Aix5Ad/ipICOa8lXoK3lpZ6xbrKFb541ebzVc490VYPi+YfbaUs63Xq3LuOrV3qxQRcX4LMaWsd1gABNxZb7S6q208wfIliRhHE2CFsMP2NiVYxkdsDVpPAlZLik3qc292FsCEIWRlnIIQhCAQASbN4oSHhxI8FKeHkHnrM+O5th6RIoKaGU0nWtFxE3h1tuPgvQNL1r6GmkqPspabgi3NYvoqN8gkfR0rpR78xNLvlstpF3h1zYcG32XffXkK1KNOEUmvgY4MnbNHinDAx/O7+P0Jvdvt3bpywIfXyf8Argur0eeu8h8Ga7n92x/HAIPnfEl5JD53xL6qVR5c9kh/WRl384f+7YvSuX/9A4d+bR/sheafZIkDpHy7e9/KH2sP/DYvSmAO/wCwsN7vJo/2QgHAJUjTw70qAEIQgBHMoSX3+lADefivKfSb/aDwz8vL+6C9V6rOt8a8fdOmLe0/TJFXRsc6SCZ5Ac27TeNo/igPXtF9pwfk2/Qtp4KruijpVw7N9OKZzuqrI27tLA1thYDi7vKsyaQtZdpYPS42CAwrR/NZPxSoqR2lIKzEqLyWUuq6cWab3lb61GaWspq10go5mSFhsbOB+heJ9LqMmoVYLg7rOWNjcDq3OzUEA+ZuPQqp6WekqvyfWvpKekifCQAHvjcTuwOO4PpUeyz04ujB9t6GfQ/tAwUrn8hbiV52j0O7q0414Jb/ABOmVZJl7g3F+CVV3l3pYy/itUKWTy2nmdYN66nEYvvxJd6FI8yZuwnLtA2qxCfW19tAgtIdwSNrjuXNPpt1CrocVlmfiRZICwOab8eSzDi2MgtJ8FCMn9I+B5mqHQUr6iOYGwbLEGX2J27RvwUwfJGyQNfOwbA2MgWqvaTtqmmtEaos2xaRdz22HpXnXMPl3Rv0hNxMwvlw6UxtdpAbs0ajubr0Q2z7ujkZI0bGzrhcWK4TQYzQyUuJUsE+oEB8sTXuF+YLgV19M6h6rN+MvYexhOOfaQ25VzZh2aaJtVRTsie4BxjLtZuQCeHinOu0SBwc4F45Kmcd6J8Xwysnq8rYlUxMcXOEXljomAEnYNaOQtZQfCcWzllnGnVeJmuq4Y3Bxa+SaYEAdx8Va0+kULjVcUJt57PCOWVRt4wek29ZNSydVE4ube1vQF55zLWZnqukKelZSzCmZI4AmNp96CrZyj0p4FiNO1taKilqr6C0wCNvAd7u8lTCnqMBrqhktOMOfKfOkcI9Z+PitFvXqdMqS8SOcr5kToU60XGa5IXBgUjojrH13qgRseNgqmxDBsy/y4nYIpPI+tk0nqha3Le69HVOJYRTSSyS1dM0xs1Aa2b25Wuqqq+mDDxnCbDpKKk8kZJIwzinGs24G9+asOn391WcpKC/ErpdOoUo6cc/BDpBgsrXta8EWAvsm6voaV7Z4Y5mdeL2bvfgrApsTwbEGyRQ1cImlYGs1PYNzw5qhxhGKzdJs8TcQZ1WuQhoqzpLdfct9ldVa8pTntpWTml0WlHH+BmwLB8xT5gLaqmm6tpbv1YHEG6leZ6c4XQddUU0mzQ0m9rbH1K+6ygw+jp56h8ULWxdpz2Mbfj3qN0tdlfN/X4XCOse0Oc/rImX7PZNtz8JbKHpPXi3KG0VzjJlcdE8SUdLwkjzPDmmjbGexpB4uMgs75lZeZM24nWZQjosPY6hwt4IkMobIHgss/fiLhSzGejjJuB4c6rr2PbDEAQOpiOxIHAgcyo/nGjoMfy71eV3nqY9Vw60fBtjs2/oV5Q9IKd/WhKmsrO+UxWtPUk5RK9yfmWvyrWGqweZsrGmzhGwcbWG59C6c95np80ZllxKOF0cj2sb2nh3AW5BMFJhFXhckgqSzSTwa+91l1LXvjc1rWhjtWwtfxXuaVumlWijJSUo6Zb5HnD8XfCxouOzYE7KQ02YoYWuPXMa9/AkqFOGu4aACTfuXHi9JLUU7Gxv0Fl92usStl9a21Wi5OCy/gion0uFSTcZOPyLgwzMVQy0rHiVv90BS3Cs5uuDI0g+I9SpHKlXLRU3Vyv6y7vfu1cgFLW/X42uheQ62+9l5DqPoxQnSdWMVj5L8irl1K66bWdPU5L4tl00ePsdZ87wwO2FzzXHmbLuB5vji9sGCZzBa4eRzvy8FR+cavFJaSOLD6lzHBwJtM5p809yknRXieI01F1WKTySEADU6Rzz5p7yvG1Oiysk6tB4f0PV2vWIVrdSq9y4sPpsPy1hDIoZG01HGXOJc4kAcTukw7FcLxqWQUNTFK9hLTpde/NQ3Ojp8cyrVUdHMWSPikaHay07i3FMvQrlTE8uy1M+JVIla+RxaDUF+xYBuCFV/ZmulO4qS9ouad5GOFFlsdU57Y2G+3cuaqp3TOub9kad06McHsDxoFviWtzePp3VH401B02zuhUzLIyGkN/+SXyIuHHh6E7GC+4utUrHNbtw8VEKhulVbkccMLoza/zLqaRcC+54LFpB2GrV/e2Cjuf62rwrL1bU0bdUrInObpuSCB6FthbyqVFGL5JlJYJKWPBJIJsjrC9uwIVR9C2b8bzDiUtPi0LmwN12cQ++zRbircePrsjGcBa3et95aztqro5NUJamKxgewt53uo/nbJdFm+jjp60tAYHDe/MjuP8AdUogj0tu7ZbGHV2gAG965qdxO3qxqQ5IkMGTcrUeVsLFBQ26kPL9r8Ta/HwT/Ib7BK4X4cfQkIaAOJWu5rTuKkqk3ua1yLazQkQTy5oWCMgQhCEAgMYTtxQgnjyuLbKG9miStOnDEcaw3BY3YIx73aN9LA7fUO/0Ld0J12MV+X2y4yx7JnOcCHNA996FYE1PDPCY6mGKdvdKwP8ApWUMMMEeinhihb3RsDR8ysfX6fqvgaFq88GHcz2a94PAkrFgaHNDe9Kd+KUbyMFgN1yWrzVgsdyZe6yVw/a0XgFtcsIQPJ4x6AszvdfZqSxTiilfLK86dv6vqzwf+7eop7FD+gx/Ei/ZKlfTr/V/WeD/AN29RP2KRH8hyBe+iL9krPuQi8ULHWL23v6EocL25qSRUIBuEIAQhCAFTXsof6BxflJP3blcj3BjS4gkDuVN+yf/AKCQ3BI6yS9vybkA6ex0/q2wv82g/dBWgCvKHQr0y0eX8MosHxSJ7aZkbImvjh1O2aGi/aHxr1RTVMVTA2aCRj43C4cHAj5UBuPBRzFwW1ZI5n1J7mrKeE2lniYSL9p4CjOL4rQeXsgdVQumeSGNY9p5DjuvOelFNzstuzOi1eJGsAmYX4WWb3N1uaOIKY874zNgGBSV8ETZJGAnTpJFtJPLwVHUHTniUlYJJ6BhgNy/q4HFw22sLrwdp0mrewdSC93Y75VEmeiwC3fkjYm/NVTR9N2CzOjZU02JRhxALvIiAPjLlYGE5hwrE8P8tpatghsLiRzWuFxfhdYXHTLq2aUo8kqrFjujx4Ktfdgy8cUgom+Wh73AF7qcBm4v52pWHT1dNUU8VQyVvUyMDg4uHMXCwubGtbxUquVklVIs2PaxwLi3UwcBdVh08ZenxTDabFaFh66lex2kDUbRhzvBWcyRj5GhksJt73WPoSyQMeSJmtljI3jeNTT8R2U2FzO0uNaW3xMZwUuCqui7pMw+toKTCsVb1FbAwMeXyjc2JOwGytZ1QGuH19nVnhsq1z70U0WOVArcHd7XVZuSKUtgBuR8EX4BVXmfA8/YFNDJ5dUzRRODrNrZn3AHcvQOwtepTc6E2n5cI16pQ5PUNmlzTfc7tPoVSdPuKZjoqWmOCMe8EuuWxh3vR3+lN2Sul9sDKXDszUtVDLHEGdY2ncSSBa5c4jmrMgzFl3FGRMfLTTAnsCoDDv6bkrhja1enVtVaCkvqZPElnI39F1ZiWIZTifizXMqA9os5oHvG93pJUP6fYcyllIcBa97Prtw2IO+Bbj8atN9Xh9HG3q6ijhaQCA17Wtt61X3ST0n4dluOJtIyGvfZ9+tjEoFtNuB9PzLGx8WpeeLCkmvLBE8Y5H7otZiLcsR+3AInDuBbp5D/AJqT1dVTU7m+XStia/catlD8r9ImC4thkT5ZW00rnDsNa1jeA9PpUE6f2YhW0lLV4NirI4NJIDK0sdYvbyBWUOnVLy+cJx0pt8DVpjnJr6aqbM1RmKKTL7JJ6BwibeOIO972tyrQyVHUU2VcPNYSyobAzrGuFiHW3TX0ZRztypTDEZI6qUyPs6STrDe4tuUuY854PhdY2jqJXslIN2saLbG3ett1XdWKsaMdovftk20Kfd9yB5v6aGYZi89DHRyv0BvaEzOYv3JigqsO6T5WyYhTuikh2BfJfZu/vbd6mmI5MwPFamaukhb2wAXdUy+23cmDBqjLmB11RRYa6QzEvadcbBY3sbEFXFCNr4aVusVI4WcY+e5006E4TxV4H7D67CcCgjwelqYtUXYDQ7vOrn4rvkry5t+RGxVS4rljFP5XnEGz/wA3dIHWMx4aAOFu9S3rpWRND5OAA2fdTW6dTWKmW2y8sacqra0oepqwNcTcXSMrw6NzpbhjRcm/AKOS1N79o38VjLI+fDqqEv0Okjc1pDrblKdvJNPBZ1beNOg5Yy15nVVY1SVUzoI52ENJHHuXHJUMDXBhBsOShmC4JWUeKSSTSh0ZLrapSeSk4IaHAgXsu6dtCMs5JsKsqtJTlFJmRe+RpubBaTDHJGWda035ImDnU8jY3AOsTubclCqBuJxYkOvkcYyRwkceS306GfaizZfXyptUXFNS2JA3B4qZ7nR2vuea1SVMLZerLhr7rrqiqDYgkkkW7SjVfhtR7b9fG92kuJtqNuC3xbk9MivrydDCoxwP/W7WA4pALXIG6QcGNFtW17rLS/XYWt4qZLTwdcWp4kluIwSboc+xsDZyBrLiAdxw3WyOGWV4DWNLu+yYaWcmcvZ3yc8sUVSNMkRLjzurf9jlW4k/EKim1dbQta+zmsAAddot42VX1GGVcVFJO5gbpFxYnvt3Kb9GWPT0OVKnC8vwEV81RK589Swx6Q5rWnS8b7HcLOhcQg8SeTzPX/CppYSyz0v5ZAajyZsrTMDbTzXlvpznxKszt7XYntRMZHJExzAO2QRx8LqGYjmPNuAZ5nihxCpqK1j3AiWrlfESG8jffip1mvMdJjuM4NPjELmYg6ojZIGRdjQGm25N111azVNyiebs5U6VZTqPYl3RNhbqPCGPc0saGt0k92lWHiNLHiNHPS1AvHOzqy7lZM+HVdHBT08VKPrRYNg0cuHBO8Be6LUD53AXXye9q1KlaVWfKLStXhczegguW+irCcCzBNidNp6yQudsXc/E+hWCA8vkc4G3JI62gBziD/dKRocAAHOPwtRWm6rVbialUb2RrilFYRkhCFzkghCEAIQhYN+1jAOLHHzxYLWyUgJmawFoAvvcKiej3H82VWep4a2GVtKHkXMbQLdYB9C9BEA7OF282ngfFaIaGjhmMsNHTRyHi5kTQflAVnY39O3oyhKKbfwIwdUjS15J4lYDgsgTc3JN+9Y3VenqlnzJ7Eiwb7VHgPoXfzXDg+1K3wC7ua+v9LWLSn8inq++zCX7DJ+KfoXk+i/tLx/nlP8Asr1hL9hk8D9C8n0ZA9kvHe9zWU9v8KsEY9z1o3gPBCRvAeCEIPO2aqvpRGB40a+mrmUAp5dRPk9tFjfhvwVV9F/RpNn0VkvlRjLJQJPreqxIv3hevOkQD+QuP6h/3Gb9gqkvYpjX7egkj+di1tveFAbsaydmjouyxNUZUxGapgaxxliihjboaDe9334k8lD8uVnSH0gzNh9tKuOBr7PHVQuDSLE8hwuvWNZSx1cT4pmh8Ug0va4X2XnDH8HxzowztUY1gNPLV4bUOe+SHqXzuBe830hoAAAA8EBq6ReiLGaTB5MRZjEmIT07C5zBA1hF7Ab3W3IPSx5fVRYDidGWFrBDd0nHcM5DxWrN/SbmTNVE2jwPBK2m1ghxrMOlaOVtwfQUZI6JJo5ocWxyXTW9YJAKeQsba4cLgtvxvzXmuuO0llXDSa4Oug5acIjme6Wgyl0rsr62kacKllmc8OcQ07ADcEniVPIcf6LqrCS/VQtY4EPGufbvU5zPl2hzDhktJXQtde2l4ADxuDxIPcovgPRTl/C4Hs/nkhde4fM1w3N/gqi+0rWvRTl7Mo4XPK+htVKTe5RGZ5cJgzG6fo/ljkD9d2wauJ2/1noXBhmU8yYiZmPwmd3lDdHWambfFqXqjCcoYJhMoko6QOfz61rXejuT22GFkvYp4GxjhaMAro/1TGkmoQ/H/BErbU8lc5IyZW5fyVLSQzOixGYiQAMFxdlu8jioXg+S+kgYnTDEKus8mYd9UUFjse7dX4C8vJcGaRsLBLa9i4uuOFiqSHW6iU9Sy5fL8jcqWFsaKaMw0NPT1J+vNa25PM2tyXQ7UGhoYS0e+ui5f9lsbcLcVjd+q1xo5d6qJzcnlm2KwZnrHluhxe0HcBNWOYFheNMMGJ4eydh3LXPcLn4iE6DY8bD0JHMaTuXfKlKo6EtdPZhRSbZV2L9D2XpjMcOpoqaQt7OnrHb/ABuUGi6Ls3eXSUkdVUDCy8/6qPTpvbvvwXokag0t20nnzQxoYCBdXNP0guoLMnl/d+RgqSaeSg8Y6E6ahp+ubVtlYASR1ZH+8oDjuVKakFo4gWt48fT6V64miZUxOhnH1s7dniqrzrlsU5c+MXjO9uJ5+hel9GvSGEqsad/7Xx4/ojzPWberQfi0FsuUecK6jfTMd1Li2E+aAOAXNTyTU4BY4m59CnuY8FJppHxtdp5DnxHoUNw9jWz9VM15N9tvSvodSjHxlWo7Q+pNndwvqeY8rsbqphqaJsspsQAN1tw2oigonOjILgDwXTOIHjqC61trBwCby2HDrsk1Oa7YWN10TcYy1557nR7yz3OYMdiVUXEWIP8AFOeIvmpqdoiB2v3LbQCFv1wENDuFyAd11ObrYRINQPcF00KGYN6svzNTel+0NVFibZQ1kx7d7C/enYNs7tJtbhjWz9ZuLG439KcAXHzvmW+0VRJxq/cTNcNHLibpgz6xe/osm1k9cIiHB1/iT9e/FvyhYvYCRYNtzWNW2nN5yRk5MLkmfEeuvf0271trS5kJdH53oXSWt95YBI2xdZw2stipy8PQ9mRHkZKHET1ump4+n/knkfXAHR8FwVGHtfU628L8iuwvbCxrQ4DccStFrGUG/E2E9+DMPI2cjUeewSvIdYhcuI9a6F3U2vbn4LulNuOYGEU87nWNNrtWDdzYriwsTNaBN9BTg8aTcELClUnUpanHcmpFReExLdqy2MmNPKCTYLULucCCFzYs2V7PrRF0q1pQjlLcwmlVWiXBPcEqRU0um9xfj6U7UQgZUAVsAliHMuIHzKtcu1E8FORM6x1nhdS/DMT1t0P4d5VRf9M+0aWVtJnkLm1nZV5VKa2yXLgmOQdWyCnAZCDsASd/jUsp5mysBvxCpDCKswzNN3abj6VYmEYmJGsaHgG3M/8ANfHus9EnbTeVk9f0brHjLw5vcmT2C7QdwdlT/TZnLHcv4nRQ4Q6VkRjbfTo+GRzB5K3aeZs0e19t1prMLo8QLXVdOyQttYuYD6eYVHYV6dnX1VY6vwPT4UllMasiYrVYtlSiqcQ1OncHatVr+cRyUgCwa1kbRDFGxkA4BjbLNc1dwlOVSK5M47AhCFoSaNmcghCFkYghCEbwAQhCZcVqzuww5nwTngX2Y/8AXJNY33+JOmA7zPPwTb5leejUU7uLwabn92P/ACCQ+d8SXkkPnfEvqZVHlf2TRlGe8E8lBNV17uqtxv1bO/ZTXJs/Sb1lB5fHW+1+hli4U9tO3dvwUO9kgP8A6kZdPMVD7fo2L0rl8D2hw3Yfa0f7IQHeDfiN0qQX2SoAQhCAFi6/avwWSS3a+lAVd0lzZ6Zi8IyjHVOpurbq6oQ2vc38/wBFl5xzvRY/jvSHBh+YpZaeslkcPrjWEkhgPvduQXt61zew7uC8p9JzW/VBYZqvp6+TYfkmoB/yx0EVOARvxXC8WMNYI9bQ2C5cRZwG5I4qIYznnpHbmSXLsuIVjJS5/VXjgu4M3J83+K9aU0YdRU4N9mNO3gql6eciVOMUDMXy9G1uLUwMbAAe1rcNRIaLnb0oCNYb0RZkxHAnvxbMEsVQ/UdD6ZhJvw4bKDYFjmKdFOYcRoMQo5MQpxO5rZS5sYIA0g2FyplSdMGP4fQHDpsv4nJWNbpa9uGyll7WF9+CijMo5k6SMbfV5hibSUkjnPtHE+nfv2hfUDzVR1V0cKNy0o/E3UMuWxKOlCODO3RmzMFFRh87RO4lrjtoBaONu7uTN0e5jyDHhENFmJtJFXxtDSJHzX2aL+btxurdyrlulwDLzMHj1y0o1hwlcHmznEnkO/uUXxDoowSszC3EHidkeggtjka3cuJ4aV5O36jaqMraT9lZw88/gdjotvJXvSjUdHtdSPkweSjjxSMOOphmLiTptx25FVj5LmDFpIA6kmraVrmtZuxosOHMHgvVTOj7Lscwf1EzhffWWm//ALU/xYfSwBkUFHStgaABeJuq424rbD0jpW0VGENWF5/4I8B5KO6K+jasdmOLG8VpX4dFTOLoGPs7rA5jmmxDja1+adc+ZQz5VY6ZsBraryV0bGWZFEQLXv52/crn8xpbG1gA8wW+lDbje5vzVfPr9SVbxMbeW35GcaG3JDejHBMdwLC54sfqZZp5ntf22MaRZtj5vpUyc+MmzgLocXe9O/pWQItuBdUl3Vd1U1zN0VpWDEO0DsSW+JYTNZPDJHUxdfG8WNza/wAi2XPMBY76bCy0pPlPGCUk+SE430X5TxRxknoII5HG5JdIe/8AvelV/mrojxTDJGz5GmeC65LIY2nTa1t3n0uV72G3M+lB7LnPjJ1O3IPD4lc23XbqlhSeUu2F+RqlSWdii8N6FKvFKcVGP4kWVV7FskIvt+Kbd6eqLoMwCKJwrmRVBJB6wh7bfI5W03sjY7+lAaS6wPHc34I/SC+15jPC+S/Inwo9yls19DsNLhbqzLjgyupw6RojaSbgdnznW4qjIqzEcNzBNLJO+PEKdzoi4tbfjuOFuK9tvYZmSteQNTbG2wXmLpQybU5UzKcdOialqJtRaLv8+Q8rW5K+6D1iVdSp3D3eyW2/w4OatTaeexLujLMWPZ1w7E8Oxd0sULmRjW/QQdTnX4AdwUd6MhgmWs/V7J66J8952gFrwSetbt8yuyDGMAocDgq5XUlFDUF+2qOJ9mn0kd6rjEciYBhE02bpKqomgL3PaI6prrlxMg2ta23es7evGaqwUPDWePMZ22ZHumrOjsxYzPleNhY0vMR7V+Gl/C3o71Msn5BlynkOula4vlkgne0abG5Zccz3LkyLWZSz5jU2KOgqYKoP1l0hYxoJaRvseQ71cTHw1FMYoZYZKXTo2cHX2sRtsua/6g7OlG3jTa7vcl0lVXtHjPEsZqW4nPFiV2Na8garfwXQZGStBp92+hW10pdH1PXVTqiljfHe5dc2Fy4cOyoNUYLHTUfV0wdrFyS43/gvpPov1iF7RVKL3S4PMXde3sKuEt/mR/cC7eOlMkU9eaiRp16du5SCRrojY2uNitRs0amtbfwXpbm2dZxjqxjJ0wqqolUQ2YVUVLaxwmDtFid7KaYRiT2ksuQLhR9mkXdp34cFtp5HtHIFTSpzhT8ObycV/awuPbS3XY5KrGqyjxdr5S4Q3F727/BT/A8aZV07JIXCxAO3/wCiitVQQ4i1jDsS4ajcDZP+FYXTYTRC0tmgADXIPBeZ6r0uazKK2KS8lT8JQW012JrS1pZp0Ptvun7DsScTYOv3qu6er1DVDLG4DuddOcGIhsTmguDyCfmXi7npyntHgysuozhNRqbFo0uLRyvEYmFx723/ACT5BVsmYC3a3ZXlTBxjsebhIXymn1Nvs8jgfiV44di5ZFG0uF9IvfvsPSqS+6JCm0477fruewo9UhlZZYbXXGxQW6iNXC6j1BirXAant+X/AJpxrat0mF1gpyHSmB4bbffSbcPSvNzs5xxFrBbU7yM08M6nNgmm6vygahy0lYy0YmZJBK3rIS2zhwuCvP8AlfD83npElkmMnkhe/iyW3m7ehei5GjrbEkEAXsV0X1r6jOEqU85SNkajZwYbhVDhhc6ip2xOdfcEnj4ldEcOhzpHnitnVgkk6rcrJRotY6rdy4qkpzWqUt2b+OAaXXOp2ttthwUU6RsVrsHytNNhgfFMG7Fuk8x3371LASRvb0LXNDHURGKoY2SM8iAfpWy3qxpVo1prIfBU/QbnDHsx1dXDjHWytYx5EjiwcHtFrNA5Eq27aDLbtFrrLloMPpcNafa+COJzr6joA2PgAuuPsajxLjc3W++rUrms504ac/EwSaEJD3F44nayVIBY3Srh2XczBCEKSAQhCYa3RKBCEKMNe2nuYsEM+zR+KEM+zxDvcuix1zuIZ8xJ4i8kth+wR/ihZ2vda4T9ZZ4BbOF19lh7qKV8le9OQH8ga34Wl9v0b1QvQxLn9uVXDLDKsw6Y7dWIbWt/f9F1fPTr/V/WH0P/AHb1E/Yp75GNuOiHj+KVl3CLK6Pzjpy9H/KYSjENcmrrAwG2rs+btwUj7PWC3nWWWgXvuPQOCUNF781IFCEAWCEAIQhAM+bXYmzAp3YGx76+7dAZpvx387bgvMXSzUdILssRjNDKuOmMj7GQQW80/A34XXrR7Q9pBv8AEqa9lE0HIUfI9ZJb9G5AVP0cdCf8rsGosRnrRHG+JjwTFfctDhwIUi6QJc+dGWFUtJhFfVVODwl5dMyOFrdJ7R2IJ4uIVlex27fRphYP3tBw/JBTfNeCRY/gFfhs7WEVERjBNri/cbGyIg885LwPO+fJRiGO43Uw4cYzGx0kERAdYOb5oB98m3PeSMa6PsUw3GhXSYsWGR0jhE2O9g0D9r5k5YHjGY+ijFK3D6vDavEMNlmfNGaekkmc29mtF9hwZ86484Zjzb0iTxUmG4XJSUbtQvWUMsZ3tbfhxauO/wDDVL9o8R7m+GU8ImOT890uf6GuwyoohFMyked5C7cWZyA+Eqty9NgWUs44zQZqhiNJ5SWxulc8BjQ3+7c8SFafRp0YUuU6x+ISTVLqySEtc3rrsuS1x7OkcwnnPeRsNzdTEVURjnNi58RDCTqBO+k9y8XC9s7avK3hLNOWN88HV4cpRwyL45inRVU4PURzS0AD4nCMl1R5xCoioFS6qraXKV5qJ8xczqrWsOHn78F6XoOi/LlPRRwPbWP0kkl0rXcf/KpHhOXsKwiIx0VHER3yRtceFuNgtlLrlCyyqa1ff/giNu+WeXMv5CzBj0FLRuwyeABx1T6mGwPo1ehXjj+U8YgyLR4Rl2qkGIRGBzjHG2/YYWuFnbcbKw4oY6fSKeKNjefZAKzZ2XOPfc35quvfSGrcVFOKwl22f9jaqHxKZyBlHPdNmBlTmGpqhTB93CSOIC2kj3vpsrm17BkYvpABPpWV7izifiWOp7do9Ok8bjdVfUb2d/PXI2QjoQRtJc5zW2I5pRqF3T3kB2sdkoNht8axAue0Tp9C4VstjN7vcj2Y8nYFj7hJieExzbbSOkeLb35OCgeOdC+DuppJcB6unrGAmMMa9x1cvOdZW64AggE7HbdZOOtwLgBb4Oysrfq11bx0U5Yiu2F+RqnSi3nB57wzopzJidU6mzFXzQ0DL6HyQsI280dk3T/H0F4UJh5XXR1DO4xOH0OVyWBHavx2QVvq+kF5Lek9P3J/2DoRZVj+hLLRgeyKnh67SereOs7LuRtqVF9JuX8Ty1i3tdUyvmpGOc1kha1osLcuPFextxcqqem7JU2ZcObW0bmiWAdoXNyS9vIBWnRuv1fWY+tSyt99lj8DVWtsx9gp3JOd8wUdfhdFHPLPSmqYOrAYBu4X5XTl0t4LSw4vRYtiNY2KSpiMpjcw9m7+Fwpf0JyYZPgcjKyCOOsonyzF8rWtFg7bjvyXfnLAsDz7VMYytHW07TGWx1LBvfVsBfZXPrSjeOGjSu7+BuhHMEk90NeZc5swXKMM1IBLHOZG3abcLHmPSoLkzLvtzXvxrzBI9z7Wvu4h3f6U81WI4FHUUeV6xlTIWyEdY1zS0axfiVM6LDaHDqZkOHS2YQHaXSAnh6FlGat4SajjVvnzRZW9NVqqdSXBAukPMeKYZXthi6wUzCbkabWsD3X4lasExqHFYwGTB0o84W8PQrDr8CpsWp5YauJ2siwcBbu5kehMGX8hU+EVE1Q2RztWoaesB+ayxp3dvOGKm0vmWtKdxbXHsvMPkcXVnWLbqNZonxWCeIUjJLFw4ae70qxqnDgwamMeLd4/5LmlpHSaS6Njt/gqLe4gpNSRc3idxBeHLT+JVlbiGPNbBdstiBfzO9TOlcTSwul+yEm90/SYc2TaSJlhw7K5JsPeJBZp0jkAts7qlOPBz2FCdCbdSplfLBD82zYjBJG6iLwzQCbae8965MCxfyjq4p3Xm9PH6FNn4W6oY4SscRuBt/yTRhuS2U1aJndYCCPfbfQuiFxRjDHc4rihV9ZUoS2yuxzyU0jQCQdRNx4JJOtGkFpTyRE6bqWzQukHIPBPctoo5BIQ+N1htfSbLCVTTjO2S6hpqy97gj0kYYS5ztJssoYnvBc0khc+acHxWSeHyOF5a57RtG4/QFOsk5Xqn0LRWRvDzbi0jl6Qle4pUaeuUkVULzNSUaiwkMmFYPJVSt2O5/65qf5bya9zg98Zt3/J6VK8CyzFTRgyDQRzcbDj6QunGMdpMIpjFG5jpRt2SD6O9eYr9RrXlTwqG6+4q+q9ehb03GEsDbj2DYTRYW6GvmjYXNtZwd3g8lAMXzBDh9KYsJhEEQJ+uNdcE232N+4KH9J9ZjeMYiJYHuFNcmzA+9tIHI94XA2Spkpo4qqxcAPNB4W5+le79GugOKVW43X0/ufNOs9WlfqLjUyjqmxUVNbFUTt1PIJMhPG6eqktxdsVTVRWq43XDid7AWHDZRZsRBd1YueV91LsOiMdIGkEh22/Fez6ja0YW79nY83fSVJwlTe5PcnveKSEvOrsi3yKyaVzuqaQDtuPQq6yWwmOINIs1tjfwViUhLoWkcRfwXwXrenxZd15HuOiSlKGWUNi3SDmmlz9Jh8bpxS9aQB9btbrLd1+C9Ahznlzn7kk7rkGFYe6p8okpIXT284xtO/Hu712Nc9wJm06uWgWC5L29oXEYRpQ04XmXVKGhsEIQq3JtBCEKQCEIUPU3yAQhCiMW08sCt4rBZXtuktsCs4ZclqJ7Ejwj7Vb4D6F3c1w4RvSN8B9C7l9g6bta0/kU9b3zCX7DJ4H6F43zE7E29O1QcCie7EPKIeqLNN9WkW87b5V7Il+wyeB+heT6Lf2S0d+VZT2/wAK7+xh3LYyTN0juxWUZghrG0fUHQZOotr1Nt5u/DUhW43gPBCggjvSL/QXHvzGb9gqk/Yn+djn53/uFXZ0i/0Fx78xm/YKpP2J/nY5+d/7hQHo6y0zwR1LdE8Qe3uJW4G5IsfFF97WKAj+L0VPSRDqKZjb34Epvma46C5xA22T1mFuqm807A7/ACJiDWgAkE/GvnXpd+/RYWnBseWnhxWKNiSQCELyZ1rkEIQpXBL5BCEKSAQhCAEIQgBCEIDF50tBXBjdAysoXFw38PQU4OGoWKxkHY08lNKo6OJLkwq01Whol3KOzFhToZnxkkRuPd4KosepPJMaDYHE308rL1PmbAW4hTuDGnUOe/eF5ax2kq8FzW51RBLILtsGN9N+a+u+j3XoXFKNKq+P15niodNq2dzPw/deTidhkxq+vLjY3JGy6q2lhlcwyO4H4Kzx3MEU7GNiY6N7RZzXWuDdMzcPxDEC1zYZA2/HSV6qd3RhlQ3OylV0xXjPBvrKaXUwQOOgW9C6KvEXUkbWEXO/Na3SVGHOZDPC9ot5xbt3c12mOKriElwbb7Fb6VKc1rpvHzZ0RnDGV7S+psppDPC1552XJX1xppdIAPxruj2YGgWA5rVPTMkddxF13141PA9lrJhjumZ00/lEV7WPikfNHC6zzv4LKKzBZoNk3YjQPnkD2m999ro5VadJLuQxzFngObwQ43sBxWEDOpgDSblZDZ4J7lti5SinIhCxbO7SZ8RhmkqG6CbXB+dO7zd1+AS3udhcd6xrU9fBJhTt0wNDuNlprKgwQvcRwBPFdMjdNiN0kjBKAHNKaPDhjJKOPC63ypgJaB8d12kWO5SRxNiFmNIWWm/FRRhOEMMwqbyyGkDcHikuPfBJpseIQSOBK25XchnFitUaaMPiG1wONl24dXSPw7rhsbDn6VjJE2QaHDbisow2NnVN81c86U/E1RexruIwnDEkOWXMzy1dX5Nbdnavq9Nu5WBQ4hPFIx5JAt3qv8JEFDKZmC7iLbFSOkxFtSbOc1o9Ko7/AKHKupSlvn9eR5a/U6FXXbrb9eRdGXMYEsW++38VJYKsSDZUrgeJupZNJ807X5cVMMMx5jZAHPHyhfJep9DnSm4x5/XwPVdM69B04xqc/r4lgkkblC5aGrbUw6m7jvC6brzM6cqctD5PWKanBSQqRHE25pQO5YPKZsjwCEHbiixsTbgsXJx7ZMGCEDfghSs4yzJcAhCFl3QlwA2A8U6YAO1Mf738E2O5W707YBwm/GH0L0Ho1/y0c91+7HocAg+d8SBwQfO+JfUCrR5c9kh/WRl384f+7YvSuX/9A4d+bR/sheavZIf1kZd/OH/u2L0rl/8A0Dh35tH+yEB3BKkCVACEIQAjmUI5lAI3n4ryl0of2gcN/Lyfumr1a3n4ryl0of2gcN/LyfumoD1PSfadP+I36Fu71ppPtOn/ABG/Qt2+6AbZcLo+3MYGmS3HdMdQHte7S4xtB5bqUSuJheNJvYqLSgiokEm9nHYcl5L0t/cI67X3jEJUgSr532LJiFCChZEMEIQhAIQhACEIQAhCEAJHbRkjjdKkd5qxYFde7gONlAOm2GmnyW4TD662WMg2vwJKn7b6g6ypj2SzKh+BweTRvfGHRFxYL2Os7K16Qs3lJZ7owq+68kNoMp4t0hZFw58FTJKYmyOtZp8425kfBVw4Pk9lDkEYdmImaFtidbAdFo7XsDy3VYZS6WWYbll2EVFLLTuY20cj2sa0kuJPO6gtVmrNebpKqig/nUPWPLY4ITq0gkA7eh3zr1tzYXl25U5OMaals02n9eDjjOJY2LZWo6HKNdJ0fVb5ahzWFxbF1O+sW4nuuuvImK49lHINXX5kjM0jHVDo2ySjdwaHDdoNuCr3JlLm/Jb3YhDhtWaZhBfE+nLnO2LRa+3Eq68rZ1wjpBww4fiUT6apu5ghkcxjr7NBsDwJK13sZ0W01GdPbfmRnGWBr6Pc+HpCiqI56SON0b2tsJS/i0u5gdyjWeY3YBTvmMTSwgjc24C6uTL2WsLwAyRUQ+uvIcQH33Aso/nPA4sQonU8rHHY8+8LnteqRtrz/brTH6f3KbqnToVpKozzzhlSzGRLI1jWkPOwN/SieMUxPW7AKcQ4HBg0z2xsdpub7334JrzHg4xakkLCGkja5Po7vBfWOm9Wp16O/vfr4nl11LwLnwv+pFGStkuWeal1WKMOwObD2Sdbw1G3H+K2yREHYK2oKc46p8l9TuqVWroRtgleCNJsV24mJq3DWxRPcH2G48bptYS0gELupZOqkD9Qv3LfKCrQcJFNf0o0q2uKyduVcNqKSFwqHude/G3en14ayNz/AHzdgtlA8VMOq4B7lk8abtLSfBeSv+nxoYwebr3PiV3J7fIheHZvrGY31AiBYS0X6093grApa4WY55s5wDvlTLJQxMlEjWjV863kA2J2IFl5+4oxmsnbdX0JKPhZWCWUleBbtFP+HYpI0/WSSRx3tsq5hqC0gWNk70dUbt6twvfcehUtxYRnwWVr1eSwl+vxLFqMe8hw19YyMdcC33xHH0quui/pXrsx5ldQ1lMwtk0tDuvLiLutw0p7p6qKRvVzghp43Nl04TT0uGVQlpWt5XtYnjdVyt6SoTVaOZdj1Nv1NSxqGzpH6XJMs5ljwuKmjc3UWEmZzeD9PDSVauF1XthhVNXRxtBk1GwPcSOPxKDV2A4Rjda2rq43daDfz7b3upnRdTDBHDHdjG30hxVVfU6Ko0lBYks5LmhcKctmOG/MWKEjbEbboO3HZUmmO7mdqaYqEJLi1+S1Z2ys5IewqEcroWTWnkAhCAL8FGpw35IBCOZHNCmLb3YBCELIAtlK3VVwD+8ta2UZ/n1P+Ou3p/8AyYfM11fcZKox2GjuCyPBYsPDwS83L6/DhFQ+SvenX+r6s8H/ALt6ifsUf6DO/Eh/ZKlnTr/V9WeD/wB29RP2KP8AQZ34kP7JWTJZeKEIUkAhCEAIQhACpr2UH9Ao/wApJ+7crlVNeyg/oFH+Uk/duQDn7HP+rbC/zaD90FaAF9zsVV/sc/6tsL/NoP3QVoFoO5QdznqaOnqj/OIWvt3lNGIwtpHRtpqdrWi9rOPoT/ZMWPuLXwnSfffwVL17/hTN9D30NYD3SFzyeHBLcniksCb7g2S3u1vgvlPctWCEIUkAhCEAIQhACEIQAhCEAIQhAIdwuaeENZI6c/WT5wt8i6gm3M0T35frRHuX6SLcu0FspbzUXwxKWEeesv0clZnLHsKwyZzIaik0AtHAvJB2PipV0cdGmKYFjlXWVRfPGXutqDRcFtr7FVj0f5rflHHp5p6Crm+uHW9jW2a3Xe5ueCfM7dKuJV2JU8uBvY1ro3XjcxrnXLvQe5fQLqhd1ZThS06ZLl5yckKmJZJliOU8sSY4+R0ojxB2kMaKcne2291DcHwrMzc6TtnMnkEXW9VeRtiwO7Jty2UTblzNtTibMRkoarrwQQepcALbcFaOS+kWoo6qLC810kkErWdUyR0bIm6RZo4m9+KVaVS0pR0SU/Z3Wcv7kb41nq22G2r6QHw50GDCBhAk0E9YfgauFlYLKf6x1zmgNEfWfNddk+UMBqMRbjUJ1B7tYeJbg2Gn+CcxSsYLBp0EafiVPd3tFQh4ccPvldy0tq09L1Mper6QWuzW7CxBHoa5zSesPIX4WVieQDZ7R2bArt/kbhhxM1/Uv1kkk6u8WTrU0Tp43xt7Ae3SC5Y3HUqDnCNPOcLPkbKFxVi5ansQ11Xh5q3Uxf8AXwSCNB5cV3x0DdOpwB7lDYeirEf5a1GJeUxGB0srgB1nvuHKyt2moOrYGlurT3LK/q06CWiWTKh1GcveIoMOIGtrRa6HYe6Zj7NsTaymPkWlhHebofRWkZawAvxVb9ozzlfr8TfO8z3PPWG5JxuPNjpzqdTlxPFvw79/crbjwbrHCKRgaRsTx9Kmopw4NBbZw9C2tpbPNh2idvStlz1urWayuPL/ANnJTuZ05Sern4lE9JGa5crVMMMFOyW5aN5SziL9xVrdHVeMXypT188LWPLGHZ2riL8U/wCJ4NQ4jGDWU7jo7WrYcAo7jddHRUgpaMaYmADlyK3VrqF7QhSinqzuVF7fTppzbEzZmbqopGRtDQByJ7vBVjWVUldUa3O7N7/Ot2LVjqyYEusBub+C5Gm/ZaQvWdG6ZTtlF1Fvj4fkfK+r9UqXVTCe33/mdTtD4w0b2VcZixGShxQRNaNLre+txJCn7NLDubnuCSejpas9thJtxuve2tWLpKnDYr7C6hbyxVy4kGq64UGHCpDQbi53tzsnzKWPe20LDYAaiPOvzsniXC6Z9G6F7SQbbXWGA4XDQz9TFw4jfvK5uuXE6VJLPY7/AFmhdU9OPaz+BaGSqYaQ7vHd6FOYGaGABRPLFOY6SM3AcQNviUvj8wA8V8L6tUcqzTPovRoKNBGSEDfglseYVdlYUUi1SWREI5JBuLjgjazgCoRa4uEc7c0UtDAIQdhvsjlfksXJ5y0AQkG4uEqyxlbAQ7hL70D0oHFHd4qaedSyT2JHhAtSN8Au5ceGfajPxQuxfYun/wDFh8imq++zXL9hk/FP0LyfRf2l2fnlP+yvWEv2GT8U/QvJ9F/aXZ+eU/7K7THuetG8B4IQ3gPBCEEd6Rf6C49+YzfsFUn7E/zsc/O/9wq7OkX+guPfmM37BVJ+xP8AOxz87/3CgPR4QgIQDfjf2jJ4KON81SPG/tGTwUcb5q+del379FjZ8AOLkqQcXJV5M6lyCEIUrgl8ghCFJAIQsXGzgO9AKblAuNuSxmkEQukinbILDigNiEIQAseJQXWQ42CjnciK0y37gTZjtIBtxBTHi2WcvYm4yVeGUZqCLB5p2k38U+RuadTb6SeZWqeLrRp1g+C3W9zVoS1U3gicVL2WURmDofo58aqKiKV0UT5C4MY1gFvBZ1GCNwuJsVNGH6eZACut2Htsb9rvIumuqwVmonQXX7rr1Fh6Q1c+1LGP15Hneo9LleQ08Lt+slF4vgkOJNLZmNY8NvcAKtq6CqwnrIru0cAb+pekscwanBIMLmO46i4qCY3hFLOx0VQzTyBLiF7az647qKjx+vkeco1KnSpaKu8f18ytcGM0lO50jtQ3IBdddT5mwxOfIwE+F10VuVq+mL5KEl0Qu6zWE/SmimxBzJnU2INLXXtZ1mr1ttcSVNRez/qXNtcUrhOdIMPxBtVI5oFviKcQXDwXK2GnoyZRYA+krbT1kdQ6zCCOW67qEnDas+TczaRdDRqG6HdlyWQWAIXSkl7MmQhC2+yS+nsha6yXqKfrPQuWgqxUOdutEq8FLSSd+q4TVV1s0VQxrSbEgcSnRpsVhLBHI8OI4G/FLik5pOICle6Rt3XWwu3sEvZY2zVg3Z1ytycuGQ+MijcoLQ43PJZcPj3TTVV3VVbY7jc2+Za7irCm1kS90dL6rejZc9bXRUY7Y38LrrdE4NYW++aCsJMKjrQDLxHpIWFZynBSpmmVaNOKU+50wvD6ITt4OJatbal0LS65AHpW8w9TSthYNmm6xjo2zRkPNgVvxV0YZw0atDRmf9x6y1jbMQjdHrdrA7Ox43TtW1s1BTOnuXOb6SmbLuEUGGnXraJOXbPG6klRDFLGA9pexzb2BXk7npc9cq9VcfrzPMXcqdK5zS4JF0JZ5nx501JNEDp0jfUeJd3+CuAHt3Oy805fzjh2Q8UkbBQSazb/AFvcCffeK9CU2ICtw+mqmi3XRtkt3XF18m6/ZOjXdSK2Z9S6ddQnbxwOm2okLG5Aabm5dZaqckwhxW8AFwuRpG687vF4kWYSl0UMjy1rtPeVTOG9LtRVZ2p8Ikpg2KWWOMkB584/IrlsDK7sFzHX4FRylyTgVNircQjpCyqYQ7UZnnhw2vZWXT6lvCMvWF8jCRIm/XHsdGNLHM1WGyGOuTcceCAXl3ZBDRsPBKXbMa3lxVfUac21wZoVCELHuhLgG8T4J2wDhN+MPoTS3ifBO2AcJvxh9C9B6M/8tHNdfux7alHNI1KOa+oFYjy37JD+sfLv5w/92xelcv8A+gcO/No/2QvNXskP6x8u/nD/AN2xelcv/wCgcO/No/2QgO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0Ld3rTR/adP+I36Fu70Bi/zT4KJ1P25U/lCpY/zT4KJ1P25U/lCvJeln7hHXae8aglSBKvna4LN8ghCFkYsEIQhAIQhACEIQAhCEAI5IQNjdYsACW7LixDCKPEoTHX0sFTCSCY5mBzb99iu95DhssBe1r2W+lUdOSmuUGk1hlX5/6I8Nx+On9qKeGjIL79TGyPiBbj4FOfR50b0GS6jr3uMkzoiwksaTc6eY/FU+iDWtLQdwladLSb6iTZds+s3UqTpTn7L7bfkaXRgnsaZ4qd8FqiNr4XDtNLbj5FS/SRk9+XKoZkypCyFsVnvbFaK+i7zsNzwCuthtI4EXBO4SSRwSxPgc0PicCHNv37FY2PUKlnJZeqL7GUqSPLWS8/ZjxXPMfXYhVtZJ1jjE+ocGt24C69N41TsfEHPOkjc6N77KsM/wDRJFitezEMvvbR1LQ4G+uS5J7r24KMxZ4zbkjEKenzZBOaGR4Z1r4I4m953tfgvRVqdv1Ocatm1mKWVv8A3wcso+w4yGvPWc46HMb8OjpmkdY5pcWOuSHkJ1dE8QxS7tjdfYKYQ4VlTOrRi1L1U8h+uPdHO46XHtEGxtfdMGKZjwL22GERzQtla4NDetudxdXFneOC0U1iS5/WDyPVukQrQ1U+f18RlqIYqlhHEjbcJhxDDjG67Bt6FKayjkpj2TeJ/bFh3+lc50SN0u4r3XSusKqlCo9/18DyWupa1MSZC+rsbuFyErQHO1aBfwT5iGGua18rGk6RqUNixqQ406lLT5zhy5BehqVoU2mi9tZzuabcdybYHI7UB/H0ozhXz4bRNmpwS42vYkcz3LnopHR1UYIIuQpDURRz0miZmoGx42Wq/oQq0HMoJYo3KlUjtkjGUcWmxWnMlSztAA73PM96fZNyloqZlJBoijLRZZOK8ZUpxUGzG6q051W6SwjW1ZQSGOQFpI35LVId005hxQ4VQicAkkkcu70quVNVPZjyxbUqlSoo0+WTSNxkaHa3cFnXYkMNpnVEkr9EYLncTsFHcjYu7F6Nziw7Fvd3HuTzilBDiVFLTSizZWlpJJ5+CrqlKm5+322L+nqoTUa51ZPzlSY/NJDSk9Y0nfQ5vAX4lTqjxEtcxs5JcDzuVW2TMr4ZlyV80EjOtcT79x4i3Mqaxua5zC49px2VV1C2pSm9BfxuIww6TNEvSzhdJjseGuB6wuDPsT+JdpVnNLZo2zN3jceB8bcFRjujrC6zMkeJTOaHNcHbyPG4fq71ctDUsjfHHAQ6BpPDdU/Vre2pKEqG/mX9pXcluVPivTDLS5zhwmGjY+F72sLi14O7rFXFSyunpIKnqmCN7NWnuv6FXvSNheW8qU8WYpsLlqKwyhgLah7eTnjYm3vU49G2eKfO2HSeTQOpnQ6W6HPDiLi/LwS+tlXoRr28MJLfc69WWTRtiL3IPweQSpXHU7WOB2+RIqPUm2zaAIBueCrLpS6RpsnYhTwQU7ZRIGE31cye7wVmHccbelMmYsrYNmGeKXFKYzGNoaCJXM3HDgR3rp6fOjCrm590h5Fybjn8oMvUeJSQtidUM1nSD8IjnvyT2uXDaGnwymp6WjhdDSwgtF3F1hueJ34ldR4rXcyhKo3T93sSCEIWgAtlJ9uQfjLWtlJ9uQfjLt6f/wAmHzNdX3GSqPzR4LI81jH5o8Fkea+vw4RUPkrzp1/q+rPB/wC7eon7FH+gzvxIf2SpZ06/1fVng/8AdvUT9ij/AEGd+JD+yVkyWXihCFJAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWkFVvsc/6tsL/ADaD90FaQQdxEyZg86H/AM38E9pkx/zof/N/BUvXv+FM3UPfQ0c0o81vgk5pR5rfBfKVyW7BCEKTEEIQgBCEIAQhCAALpbLVI/S4BbGm4QAShHNCAOCwc0Ov1vahduYzu0/EsiL7d6TQ0OaHPGobKG8E7Y3Ipi2QsAxLDK+CnwuipqieF7Osjp2tdcgjj8arzB+hGDDa11TNK6Vods1wYQArydrLrl4cz0BIx+lxaNwdwFa0+s3qi1qePu/I06YjeWRRyMbFEwsvwIsof0g5Fw/NGHyGGnhpsQjIlbNExofZtzp1HkSQpzJE2TQeBuud7RG46+0Pg8CVz0butSmqtPlG7wotHkrHc2ZowaNmAvrKymbTXY10dQ4B9+1vbbmvR/RzVT4plSCorxG+fXo1F+skBrd7/GVqzxkvCs20D4qymMU5FmSukcADccmnuCq1+C566P2vkwps9bhrSXEw0jSGt4m5dfgGr1FWdt1SgqdPEan3nPBToPM+CyulHNv8kMHbLFTtkLmk20uts4Dl4pejXNJzhhRqX07IgzUeBHAgc/FM2Uc34F0gYeMLx6NprmgNLDNodfdx2bbuCkWLV2WOjyljhkMdM2R2kB87uY1c79yr52qhSVtKH7XP4GyFWWc52JRF5x0E6VsiiNzyuuXLmK4djmGR1WFyxyNc1ruw/VxF06XB2OxVBVjKlVcJnQqmeDS6AEbrNsMZYC8fMtjjpaCBffkqy6YukWbJYp2shdeTrNuzvpDe8f3lnbW1W8qeHSNVSqo8llNDXO1HawsNljUTCCmllA1PZwTJknGzmjAIsQe0xnYEG3wQeXin0Bg0G4c0jey11qM7Wtonvp5GYyjnJQWCdK2M1mbXYZPE/wAme9sZu55Fi+x24cFJ8w1d5QQdiCSPjUgxjDsNw+d89PSkTHfUHk+nmoVi7i90jz5xNwF7OzhbV56qUcYXxPH9fvHTi4pjG5zZO2AAD6Fgwlp2CRuoxhrgQRvukkl6iB7rXtf6F6aGYpYeT57iUnjuzcSb3DQStjXEXcBsBcqF4TmmWoxvyRrSTqA20/BupfrdIwhvMbrvhcSo4Z0XdnUtJKFVDRW5rpocQFKW3k394eSk+FtbLVskA3NlEKnLFNPiPlDt5Ln3zvWp9l+l0Ss1DbYD5VxdWvXVp5bLOnQt5Tg6PONyRYnmqjyrhUdTXE2s0eYXcTbkpZlHMVLmbBWV9Ebg6rgtLeDi3n4KJZjyRS5rw+OmqiNNmnznDgb8ipNkzKtHlPBDQ0hBIDrAOceLi7mfSvA9QVpUtsqX7TPx4PovT4OFFIjnSrn+oydTwvgpY3l2nftc3EcvBP8A0bZnfmzAmVskYY4tBtv3kc/Ba8y4HQ43Qye2lK+VsW47bm+bc8lAsh9I+EUuPQZbw7D5Iw9wZ1nXBwbsXc91lC3hcWT8GPtR3b+BvhV9rBdMPFzT6UNAF2hF9UbZG87JACHhxXm1jOGdYWBL2tc7YXTNm7GTgGBSVwjEjmlo3BPE25J61aS8Oe27hYBctdRQ11E+krIy+NxB4kcPBbrWUIVl4vAK46Jekx+cKyqp6qnDDGxrvNeRu4jmrROwcR5urgmTL2VcFy2+V+GwdVJK0NsZXO4G/Mp53DSHczddfUalBzborYhGW1gALWQg3ubjZCrYZxlEgkb5qVI3zVlTeZInsSbDPtKH8UfQuxceGfaUP4o+hdi+xWH/ABofIpanvGuX7DJ+KfoXk+i/tLs/PKf9lesJfsUngfoXk+i/tLs/PKf9ldpHc9aN4DwQhvAeCEII70i/0Fx78xm/YKpP2J/nY5+d/wC4VdnSL/QXHvzGb9gqk/Yn+djn53/uFAejwhAQgOHGGF9I/wAFG2CzTfvUqr/tV/gos/gfFfPfTFftIMsLPuHK6RAPZQvJPsdqBIlQsVsY5wYkFABWSFLco/IyUsgsXAceYWSTj2eZ4KPal7vBGXkjHSLjseXMDfVyhziA6wDS7g0nko30T58izV1sbYntcDxMbh72/EkqcZgwClzDQPo8SYHMIPnA8xbkU35RylhmV4pIcPha1ziDqFxwFuBJVzQrWqs3Cfv/AHHM4vWSMoCCjkqiMVyzsS2ABznBrQC1+1zxCiGas+4PlnEG0uIGe5YHXay/Ekd/oUvafrcjmnSGi45qselvo2Ga4o6mklHlA0t2i1cA7+8O9d/TqdvOuoVnhGipJx3HzJ2fcKzHXVsMUjY443gROfZhcCCd7n0KYu7LQ5pa4E7Fpv8AQvFWYMuYtkqtLKq8OgkNkcwdq217XNuKmuRelzH8MijdXB9TRA6fsrWDj+KeS9FfejdNLxrWWc/E0xuPM9QN3a4k8+CJO1ERYXTblnFqXH8GpcRgAYamMSubcmxPpsLpzIsdPevI1KVShPTUW6OnKmiN4xRiWJ3wrqE4ph4l1XaLhWfW0n1svBuT6FFMXpSx3ZV7069aaR5zqVlrTeCtZaSSNzwXO0i5tdR3H8Dp6+DrqeMNqPQAN7+F1YmKQaSLDiRdR6vY+nna6FpDjde6suoTSwzwtWFS0q64lXYTG2Z8tDiRLCQQHDbibcSuwYRDhgJgldKL++cHfQpHimAUuJlzpHNbPbYlpPhzUQ6qowWufDUO1QhxDTbTsNl6myuo1MamXttfQuVlPc6diy/F3pQb2AK6nU7HjrYTfwC5nA6rHkvQxWY5RYwrKo9D5MZ2B8OlwBHcVqgiZG3ssaD6At4O9ly11SKZrT3myVJKPKN+6l8Dot3pbCxN+CwgmE0YIWQbvuVOrUjB4UsoU7x3SMdqba26W41W5JSWE6WcUk1nkzWp7yE9HcgQwlwc+JjnDmQgAg78UE3USba3RqnFT2Nj5LvaBwAtZdtKbkBNrBZ+67aeQNcCFMPgcF9QlKliPYe2YaZWg8VrmpvJzpITnhVc0DtHl3rlxiYTSXYt6qS4PJRqVJT0M5GN+uM1GwumnEKzEK3EhQ08gjYL2cHlpsD4pze4OaBa6YcTl8hxmnneLRaLH4yq3qlKTouUOS1sI+221nB0YjlmtopfbSdzamOG73Ne7Xfa24XoPI2ZaHH8BgNO5rKmENhMQs0Wa0b2vfmq4oK2mqKeRjSJaeUWsLgWUcrKSbIOOQ4zhkeummLWvY0Bli52o7m/Idy+Y9UsvW4uM9mei6T1FzpqFVYa+49Q0o+sxtds4jcdy3PcBsAo1lTM0OP4PFiMEf12Zoe5ode1yedgpBFK1x0uFncbFfPrm1q0pOLR6ynVUuTcd2bbIJ7AvxScDbkldbkuKCynk3NdxLlJZKhQlhZMkCEIUvhEPkSPgU84CPrcv4w+hM42Ce8BH1mTxH0L03or/wAyXyOa790dr2vwWmaRsEMkznbNaXG524XTVnLGxl3Llfihh67yaF0ujXpvb02NlSfuhZrzvhFQMv4DUCB0gifI2oa8C/Hi0civpZWFYdKeZXZh6YabSWmmimaY7X5xi/MjkvY+Xv8AQWHfm0f7IXjPOOTm5RzJluGWQOrZJ3iYaNJHZBHM8ivZmXv9BYd+bR/shAOCEIQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nf2gcO/LyfuggPU9H9p0/4jfoW3vWqj+06f8Rv0Ld3oDF/mnwUUqhasqfyhUsPAqK4gLVVR+OV5T0sX+zz8V/U6rX3jQhCF85fBZPkRKhClNvZBtiG/JIAeayQobkuCVLYEIQsk4y+Zjv3MJpBFDJIeDGl3yC6qWn6aaebMzcJjpL6nhmowPvu2/HUrbkaJGOY7zXAtPgVDaLo3wGjx0YmyGPWHB42dyFu9WnTZ2kYS9Yzntx/cwaeSX0UzKimZN2hraDa1uIW1I0bNbEyzGgNG6U3vvxVbKa1vStjYmCa8x43DgGFS11ULwMLQ6wudyANvjTomvMmBwZiwibDalg0S2Osi9tJvwuO5ZUFFVkqvukS4IT7rmCT1eH0lCXETziNz5mWIB9N1YlJPHVU8ckE0L43tDjpeC4Hu2K8oZ06JsUy5FNVwMdU00QMlxEGAWFzxcU1ZOzxjeA1gjw6UyFoIdTtLWnkCbkHgvY1ug21xS8S0lnHxOZ1sPB7KZZ0jrAgd5FliACCwF3G91X/Rp0gPzdPVYfVsNPUxBmxk6y+ou7mjuVgSAWETB2mm5PgvJ3lrVtJaZI3Qnky535pAAOASoXLlp4Zte4Hzm722TXj2XcOx6lkgroI5XWOkva0lpItcXCc3NOpp9CR4brDtrrbSqSoy1weDBwyeccaosQ6MM1F9K+STCKnWXNc4uDS92kABtgAAnSgyJhWNZjix6ixCR00j2u6p00YF2t08LX5d6uXM2A4dmLDHUWJta6Jzmuu69rjhsCO9UNm/I9bkDFGY1gLw+kgd1pYyIM2DQPOJPMnkvbdO6rC8g47KeMdl/crrmjsWDV0IZCYpWgvaNI8FFK2gdE8l12j0KUZSzLQZvwYTi0VfEeqcNReTpaCeQHFyzxKhkmi0TAg8iQpoXFa2noqnl+p9P8VNpEHa90l4yG6ed+a4qnAaOSR07ImiW97gC+/xJ6xGiMQGg2LTc7clwSVXksT5pD2Qve9K6vFYhLdfr4njp069tPEP7jbQ0kj6gCQEAEb80+FmlgbckAW3TJhOaIMSldAxtncL6787dyeXSdm116Wd/TlFwT/oa7yFSM9MjW4nvWt172A5LO91hK8xxagSN7LyVylKTaNEIOT0o1WdZwNrrRUUcVdB1VQ1rmtJduB/FdMYLmh7nbH0I6tmq+oKtUW3hG1SlTl5NGnD42YbHopmhg280W+hP1POZmt2aN0yvNn6QFupppGSDfsjcrRWpvGMHTRuGpe33HsAtkvyTtFXNZGLgEjgUzwSiRt1kRqNlWVKedmXMKypfu919SQU9ax7iL2JHJM2e80VuWsB1UnVOdI0kOeXXGkjuI71oZrY4lnaIB2TVnSl9ucrvjnjtJGywvvxI9S1RtYakp8FtZXzlL2ngwq8i5rzLl3yioxEzAkyCN1US0DTyBB33su3oZzBTZSxKXLeMwxwVQcWda1nnFjDclxICdOhfOUddhpw2onENXG5wt5xLAWtHAJy6VujqkzNQPxDD2j22pyO3oLi4l4LjYkAbXWirX1ylZXS0029mtuON+D09OSl7UWWgHAxMc0ggm/ZNxZA7Lr7qrOhfPEuLRyYJicZixGnvcl4cSC+zdgNtvSrWex7HBr3HtC47K8nc2FS3reHNbLyO+Mk1liab3KQAIN2O0lKuKUVuo+ZsT8gNyLIQhTLGRkEIQsSAWyk3rqcG9i+xI5LWt1EXCtgAF2F3a8FZdH/AObT+f8AY11vcZKGcAL9m3HmgOGogXu3jfmsH26kuG+kX+RU1mnperqXOBwDCcFkqqoPLGtZVAF5sDwLNufNfXYe6iofJq9k9mmLC8pMw+Ih9RNMGltr9l0cncUvsVW9Xka/w2RG3d2Sq8zplrMOY6SvzFmailoGxQPDGSaX7tBI3FuV+SsH2Kur+RVQ7rNZeISBa1uyVn3JZeSEIUEAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaRVW+xz/q2wv82g/dBWkUAnNMuYvscZHp/gnpNGYBeJnx/wAFU9ZX+xqfJmyj76GRvJK70Je5IeK+S8JFyCEIRN9jF7gkSpEqNv3TKKBKkSqJZfuksS5c4Maq96TOkimydJFC+Jz3vcG/Yy7i0nkR3Kw9RveMdpvFRjN+SMJzQ+KbEIWOkjdqF7ngLciF3WM7eE07lNr4f5NUs9jmyXmYZpwmKuZGWAtbsWFvEX5lS2HcbrhwbBqPCMOp6WhjDI442tsL72FuacALcFru50qlV+DtHtk2x90yLW++JA9Cx3klLD2Wg2uOO6HXNuzq3WbX6ZryO0tJvYrUsNpS4Nciv8Q6U8Boq2popnTtmgjc8Wj4kG1uKf8AKeZKLM+Bw1cE0THvY12kuDXb+gm/JVP0odD09fXyYng8up7hctbDe/nE7l3fZUrPJi+UMZMfWmhrIXFpJa0m9rH5ivYW3Q7O7oYpT9r5o0TqOLR7bfUE6xGBcNv2ha60CeXU06WXt6VRmTuljFZKiipcwU75I55WxeVOmaAASBfSG8h6Vd9O/wAopYp6V+tj2hwIHG68/edPq2i9pbfU6Kc4yR0R1BfINbWtt3BbSA83sCtZhMjQ47Fb2NDWgBV7049nOTOWy2MCwHiAklhjmidFO0PjcCC0i4PJbljcgi3esYzbeqLw0MZRTXSp0evoYH4/lUmnrGgkxREMaS4gcGi/C/NMDHU3SphEEOM1Jo6+lkMhEb2x6gBoA7dyeK9CNiaHvNrlxBIG26qTO/RFhteyfEMvujhxFjS5obEXkkA24u716zpXV4TxTqbSXD2/Hc46tNk4yFl+HLWW4aaGV8rWtjaHFwdcAW4gKSPaNRfc35DkqU6Ks8VVBiX8k8yAsmptUXWPcOMbbeaB3jvV1tcHxgwO6xvI2sqXq1rcULh1GsxfdGdGWNgBNtW3gmTMmVsPzLAx2JwRyFgdbU1p42vxB7gnghxdfhZZPDZT9ctZqr6daVN5om2UcnNh9DS4bTspqJgjiDRs0ADgBy8FvnOmAAaRYKAZk6U8GwXHIMKkYzrnuaPspHE24aVL56uGtoIqmFwDJW6hz5rfUs6ycak+Jb9zXKacXHyI3mWQSslsQCG328FAcQe4wuva4PFSjF3tDXEOBJJBUZrgZIzvZvevZ9MpaIpI+f8AWJ+JJxQyNc5wbcC3M80jg2S7DfSUsbdbg2J+oDjsnenpYXRWcAHK+nVdJe0eZjQnq3RHYcJoqWp6+ONokve9hfgu7zRYc101NAIiXggjwWump3vkBPC6h1U/aJrwqTl7W5voINTru3v3qX4DSlj2hwvz38U14fT6nDSprg9GSQ4hUXVLyOGen6NZ7p9x6w6O2nwXRjkxpsKqp2W1Rxly208WgLlxJoqmGmkj1xSdl+/AFeLi1UqZfB7qC0U8FDYac1Z5xjEY6WsbTU0EskNoqhzCbb7gk8nJnpMGqejbNlLjGMRRT00j9WofXCAxvot8IJ5y/irchdI9bS1oDKGsdLM27tIu52gd596rexfL2HZtw4UFZaWllu2N5abN3F9ri/AL2dW6lQkk1+zkktl/fg4otuWR8wPF6HF8PiqaGUva9oJbcbXAPAeK7SQ0lgLiw8SeIXnTLlXX9FWcHUFS0yYZUOcxh2jA1yC3wiey1eiaCVtZSRVlK8uppxrFhsBwH0Ly/VOnerT8WjvB/eWMKmeTN1jINu5ZvbexBWOoSAlvJDXHgVVuK1OPDRuisboCLkE8Up34pBwSpzyAQhCEAkHvPxkqQcWfjKYfvI/NES90lNCLUkVvghbnF4LLAbnf0BaqL7Vi/FChfS3n1uQ8EFZ5D5W+UPDQJursQ2/wSvs1r+5h8inlySfM2JxYTg1TVTODWtY4C556TZeOuivF5Mf6aMNxOXZ09VASN+QtzVk4/iOcukjCaaCDCKilw6YMmL+sZKLXv3A8CoXlDBYMudPtNhdKQ6GCshDSBbY78LldBB7Eb5o8EIj8xvghCCPdIv8AQXHvzGb9gqk/Yn+djn53/uFXZ0i/0Fx78xm/YKpP2J/nY5+d/wC4UB6PCEBCA0VovTvB7lFXee5vK5Urq/sD/BRR/wBld4leE9MI7wZ32fcxtYpUHiheKlyjuXALXLNFAwmoljj9LnWC2Kj/AGRFdjuHuhlw+rqIqAk6tDm2sGi+3Fd3T7FX1VUs4NcpaUXVBV0tT9qzxy22docHb/EtziALkG3JeNcp9IGO4DqqIMTqp4nSdqMkNG9vR6F6myDmT+VeA0mIujEfXtLtAJNtyOfgrDqvRJdOSlnMTXTrZeCSNBO/JBBa4H5EpcdehqQ3vZ3JUOJP3ODfq3EAs7Vc38Up43QhE4Reh8jG4iLJUKUkomWRANrckrTY3HdZCFg1Jy1SIaUuSoPZB4LU1tHh1VT0wnjhY/W2Nhc83c23AKOUuastfyOmwqbL+MRPcx7TK6hibYkWvq1XV/SBrx1csYfG7iCm6py9g87XR1OF00kLhvquePHmvS2fXVTpxoz7fM5Z0PI87dE+aqrCMzuwinE8mGVD3PZ1gLnsa1uw42HDgF6fu0uBAdp9PFRbD+j/AC5h2I+W0mH00T7kjSw8xbvUpLiTs2zfFc3W723uZa6JlSUlszEDU4n3vDdNeI0nWAkBOzeyCPjSOIIsQqWnWlFrQTOnrTRXOL0JGsEHgVGamA9WI3C4G1+atTEqJsocQ0cFDcUw8tJIavY2HUFpUZHkeqdPbeUiAyMMUpHIjiU2Y5hMGKxMZIHAtFrt2+dSXFKQtBcGpsiffsAWcF6u1rvZpniqsalpU1RZAuoqcv1AbN26Zxtc3ce/nZOL6aKpiFRSklrhdwJ4E78lJcUoI8TpJIaloMgadJO+5UGpambA62TD579W95cy55cBw8F7Dp968pS4Lu3ru5hrjtJG2WEtddvHndcVdSR1LWtcXXBB2KequO1nt80rgkADtuKvKqVSOUW1ncSnH2zngjEEYa2/xrYGl3C67I6bW29lvipQ1wuEhDCFbqFKlscENPJJdoaSVy01BiEFc10jPrdxyPqU5wvDxpEgATjiNO+WnIhFnWO4K561LVLOcFNU6+9ekgEwu5wHG+6waQOPFOlbhc8Li8g3JudwuAw23cF0xi9OC6tLqnWjlvc0uOpGoRWJdbxKzDC53ZGy48Uw6snIMOoD0ELTVbprMTe61JZjkktMdNOJCdibXC1vqDqIG/itUchjwiKJ5+uCQk/ItcQLjwW2jUclujzroRjUcmbHyGxTdOY6hj4pWvIvfURw+NOEkbndm1r81x1NLPJC+OAHXfiCAsamVB5O+x8Km3JjdRVFVhNQHQPMkLTe1y4qz8GxejxigNNKA7W2x6wNNja21724qAZew2enD/bQl7dtnEHn6FjgkvkOOujY6zHXIt6XBeNvenupmqhc5k5Tp7aScYblzMGCVMrcuVUHkkhG1TLIbAcLWFhxK78NzpmDKmNwU2ZhTy0kjmjrKdrnbuN+LrcrqQ4RiOmkLHSEbCxTBn40eJ4NK2YNe+AGVj3A31BpsvKSpU7iThOKz5lja9UdSmm3uti8sOr4MUoKespHXhlYHC9r7+C6rEbO870KsegTE312VpqeZxc2mcyNl+7TdWcDqGo+dzXgr6h4NeVJHroT1U0xUIQuKPuYfmZZ4BCEI+DJ8gTsnvAfsMniExngnvAfsMniF6b0U/5kvkc157o19KNRFTZCx6SZpc0UchtYHl6VXfsacNqKfAsSq3uhNLU1ZmY25LgDG2wtawVsZpwaPMGB1uGz2EdRE6Mm1+PoVGdF1bX5X6T5cqVVfM7DNM74ojbTZg0tsAD3d6+llYMvsjDbpFy7w1eUPv8Ao2r0rl//AEFh35tH+yF5p9kcHe6Rl52nsmofY9/1ti9L5f8A9A4d+bR/shAd4KEgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0Ld3rTR/adP+I36Fu70Bi42Ci+I/bsreRcVKH8AotiX+kJPxivM+lSzZP5r+p02vvnOEqQJV81W5Zvkxc4AgWNzwWVr8HNbbclxsEaXXaTwPmlMmdHVDMs1fkE72VYDiC3Y20u5n02WdGm61VUo7ZMJTwOhraMSiM1lNq4FvWC58FvLHHttLSz514ndmTMseOMbU4nVtqonEC7mk30772srs6Hek6rxnEW4Xi8sk8twGukcSd3Bo4Cy9NfejcrOh40ZZNSqvOC6wb32I8UqykaWvOviT2fBYry0X3SOjOQQd225JLoUpL/sicCk3AHC3chCFG6WHwYsRADibg2CVI7V1ZDCb3URi5rEjPsN+ZKV1XlrFKVjI3yPp3taHC+5C88ZIxGjynmDExjWB19RKaiTQYqNr26bAe+tzBXpdh7d2+cOI71xSYXh9TK+Wqw2B77kanEkn51ddL6p6hTlTbymc1SinueYc75loYs0PxzAIMQo6x7tTo5GCOPstAHZa7xXpHJeLOxTLVHPOAZnRxlxYO9gJ+cpvxHo9yvicjzUYLRF9trtcf4qQYZQUeE0jKbD4WQxtAbpYCBsLfwXZ1W+oXNvDT7wpxZ1oQhecbTSZ0ANikJvxQkWDTe6MkK0kvDSAW8eC4MXpIqxs0NQxropBpIc0EW2713dq3ZJBSFokbpm49/FbaEnGalTeGaqsclAZm6M63BqqXEstVLmkPM743zP08S49lotyCe8m5rbmGA0lWWxYpBZrgQGsJdc99+A7laVRGYzJHqJje0tI9B2KojpRyvU5VrW5gy8DHGdb5jHZu/Za29zc8SvYdPu1erwa3vdmVN1TWl4J/U0rJ2F1hqG1lF8XwttSyWCUaWE+92T1lPFqbHcKZWUkmq3YeLEbgC/Ed6MaYRZ7Bx9a7KdSVvU0Hlr2121orTC8uw4RVPkZ1hPHc353T4XC1zdO80bZS0PaNyuaegB80bK5pXsox5PO3dKtWqamcYeC3scVFc10+KS1MTqQfWuyD53HfuUzgoNDrkJxZDqaIhGHC+risneezlm3p1v4dRykskYwemnjwmE1G0mne5Pee9doJsANBtvsn2poXSNDNNmpqqKI07yWbmywoXkXLJov6TVRzSOc2vew1LAs2LnOa0W4k2WLS/rSCFrxagrKignZTag9zCBYjj8a7fEhLdnNRoSqVFF9xxwqZsrzHHLG+172dfgnM2DuwdxxUDyFh9fh9dOcQe+wLxuQeXoUuopjJJKW78LKsuIrVqRdyhC1mqWcna3UTyWuWoibdr7nvB4La0nX6LbrmmpmTueB51xbZaUkp+1waqmte6QzMODwSTmswWpMFbGNWkS6AQLm1m8d7Kw+ijpAjlpYsLx0vjroWiMuIAa4hpJN3OufkVYRYFjgzNTywxvdSCRvWHrGAFmrcWvdPXSZhdNTRxYphcLKeWIjrXRjclzwN7+g8lld29K7gqNTvwz1VjcqlTSm9yz869HjsVr24zgM8dLiMOmVwbIYo3ho7Iswb+lMOI0XSNhNKyufPhU0EQDdDHTPfbwLf4qe5BxyPGcAhrYpS6M3YdjvpNjxCk76iFzdLn9ZCWkOjINgV5RdRdGfgXcdTW256H/rlMjPR9nWlzfQO6lr2VcID5mva1tg4kNsASeSliorLFOzKvS5PRYW/RSYg6GF0bBpADQT9JV7Lh6tbQpVk6PDWToovKCyRKkVXJYeDPVlghCFiSC2UgJrqbfbXuta20dzWQNA4ut4Kz6P/wA2n8/7Gut7jJO4gRHuAubLzPidLJmL2QA9r+rgFJO7WZOwTqjFuF7+aV6Y0gM34EWIXnvprwWqybjRzfgNTJFJL1kszI7N3aGtbcm598eS+uQ91FQ+SwOm1vUdHFTG3SCGODrc/rTrqM+xVeDkI7WDWQg28CnnpXqxiHRQKq+pz4QXn0mBxP0pl9ilZ2RpBbs6Yf2SsiWXihCEIBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/wApJ+7cgHP2Of8AVthf5tB+6CtFVd7HP+rbC/zaD90FaKgAmnMG0TPj/gncpnzD9ij+P+Crurr/AGVX5M2UffQyk8EcyjuQvkMnpSLh8AkPDl8aVBMYB642bbuvvyUtPUlHuRnBplqqeEP6+eKIge/cAiKoilAdHKyRhHFjgd15f6asYzRhmaJYKrEKuGjcQG2c1w80E7C6bsndJ2OYHNBDU1U9ZTSPa0CR9gL2A2A7l6mPow3Q8aEt8cGt1sHrZpBu3fWgHiD5y4sErBiWDQV7BZz2l3/uI/gu4FoO/nELy8oSjszbnIN83xSAWFt0qEXyyRgO5AQhYyalslhk5A7iyQAD0+KVCN4W45Acd9x3HgvO/S7hElFn720rMPmqcNllkeRTQ63WIAHEAcbc16IWmelhrGOZWwtkgHmh24t/+qs+mdQlZ1Na3RqnTUjz/wBIOaMu45l2OlgwjFaKWnaZInmljh7eiwuWuva6ePY/5rrMQ63D6pjzDTv6uNxabloZzJKtSuyrl3EqZ0VVhFI8kEAuaTyt3rVl3KWDZdme/DqOCFzjchjSOVu9XFz1a3uLKUJbSfzNShJMfj2HEEO+JIwk3uFlqc9xuLJN97m68lKSispnX2FSFKhZ6FFakSngxt2r73WQaDYCw38EJCLiyQznMeSHhledIfRfTZmmdWUkxpq/c645TGDc3Ny0XUNyRmjE8kYzHlzNj9ULntYydhLvPOs3e8jgCr1LSWBsUhZJ3hQPpaybSZqwComhgYcYhjc5ktu1qsA3ckDgvQ9P6h4/+zu90+73OacMPKJvBJDUQRzwvL4XtDmlpvx4LcNW4bYuPDuVNdCudJGTTZaxuRwnp3uYwvJcdLWtaOAtxvzVyljoJCwkkjgVW39nKwq6YrZmyFTOxXOaOivBsdzBT4rO6qE0bmmzJLC4N+FlNJ6eOjw2GlZ9jibpbfja6cnamtIH4yZcXlf1biSdvWsXc160oU9TwjVWcacWyBY7IQSwAab34KN46yWTCX+Tn65cf9bJ/wAafdwHebJstbs8Wle3tpKCUsZPn1zWSrNtEAyFR4pFWSOri0sAb8LvPeFYTu0OFvDZJ1bIiBE0NB2Nkq31arqtNrBqrThOWqKwJpBbY7j0rFuzSI2G/pCzXXh0TpZHAcC0geKxbw9+DCEFUmlg2YLUwMmEb5omyn3rnDuVmYbSiNov3XXn+tyVmmrzcamhdMKS77ESRgC422JuvRtNGYoY2vJLgwA38F5zr+mKjofJ7npllGnHWbWAEkck0VQPXvbe2wtunVhs4rir4rva8NDrFedo4k/gWdWPskKzvlrCcbgacVljgkbHZj2uax21yN7X4lVhknMdXknMnkOKyy1GFPLQ2VrjIWgAlx1OIA3cFMumPBMdxqgi9omvEjCwEMkY3g4k+cfSFjlvI3tpkTyHMdKx+KPZpbLIQ9wJdvuDbhZextpxVqvWJZjJ6UvI4IrS8k2zRgeG58wJroHxGOwex7CA8ODTa5APwlAsNyXnzB6Z9HhlfhzqFlmxionmc/SN/g991s6AsTMVTiGB1EznPglnc1pHANe1g9CuiTWJr9c4AHzVV17mXTZSo1lqp9snVFeIsop7JHSFX0mYW4Dm+ARVjy1sboY9LDrcA3dxB+ZW654vZoJL92EcLKo+nrBYYmUWZGtbDicMzSC3dxEbSW7qxOj+umxLKmEVlRd0r6ZpLibk3C1dVo0qtOneUVhPkzjNrYebWQsWX077rJUjeTeCEIUAEDiz8ZCBxZ+Mph+8j80RP3SU0X2rF+KFUfsmahjcnR0vVh8tUJYo3FoIa4s435fErcovtWL8UKG9LuWI8x5Tqd9FVSRSSwEAEh+mwIvwX2a2/cw+RUS5Mui3D5qHINA2cwukfTscCzew6sbcOKoKh0n2SseguLfLKe1zv5qs7oCzDV4jhWK4didbLPNQVL6VjZN7MbG3uFuJKrKiAHslow0ADyyn2H4q6CD1ozZoHoQhvAeCEMSOdIrv/wBh8fAaTahmP/sKpT2KNwcbNjvVA/8AsKurpD/oNj9nHehmH/sKpf2KIt7eDj/Oxx/EKA9GhCBwQgNVULwuCib9pHH0lS2o+xOUSk89/iV4b0xz+z+/+x32XLRjxAPelSDzW+CVeJS1PfyO7gFzV1BS4hTOgrYhJGQRba+66UKKcmmpIhrKK+xLokytW1QmdTVbTxIbUkC978AFMcDwijwSgio8PY9kMYs0OdqPG/H404IXfX6hXr01TqPKRrjTjF5QN2N+aCSSSUIXBpWMGwEIQss75GQQhCx0ogQG4249yGkEG5APcUjXG7nNaLjksyG6u3YOIvZHBySwssS+BjsR2/N9GyU207XLe4cUe8OsDbuSP1MLdPAlZwbhJ+YXAFvY2uL8L8lkXOLQNvkSdq51fEha4+ZIpINvCyxA3uUqFktuAngxkaHiyacTomvYQBunhYvjDxcrZTqShLKNVSkpxaZXWLYWQwi1/AKIV+HOZqdG0h9+Jurdr6VjuI+ZRjGMPaNw0WXqLDqUo4TZ43qXSFLLiiuGkh2mQEO7+ATTmzBGYjRiWEgVEYG99rDciwUxxXDQGlzNj6LJkla6AWebtOxuvedP6jGa0zex450q1lV1xK5w2ufUQOpngsljG4cLE3WVJWwOxFtO4EPNhckW42XVjVLHh2aoZmjTBK/cAcg0J1/kxDDVMrHONiA8bDxXoKF/UnTSpHpfWaUKblHiXB0VdN5CWtc5r733atIOvzRfw5JMSrRUVAjZwBKxiDoQbnay9FTc3FZ8ijlBvfuSLDfrdILkHhwWwkNYXHUR3BacPljNEOZsOSc8PgEsRLxsvIekN66U9mV8aE61RxS4OEvjlAa5p3G11G8WjZFU6O8/wUyqsPdGOsa0WUNzhRVU0PXUYIeLnY27ln0rrdJUv2k1n5o77Kzq+MoYwmOmD0cPUa5Gm11niTGNH1lu3yrDIgqX5dkdiLB1zZ3NG9+yALJ2LYnA3a0/Euuz60q9WSk9vuMOo0ZWldqUskVhw6aaW7mnSfQU+UWFtiaDILrt6xgbZsbQQb3Cx8pJNlYPqtKLwjiq3U6my4MZaGCWJ7WtIcRYbqP4jCaE2aDf0qRteWuDuQWqupmVrSTx8Fso9SozliTIt7hwnifBB5pnPadR+TZNWJtdDIyoi2c2x339Kk9ZhD2uOj+CaMVy/XTaWxOdpNr9oLC8lFUm+fke1tr21cfbksP4ktyXmSnr8OPlEjIXsAvrcG3vdRTN2NPqnT09Fd7GtJOntX49y7cPyNVR0AMdTKxzwLgFqmeSsmUdLSuGJsE0xLiXPaHG1188q1KVBupNdyYUbSVVVabyvJMfPY21jW5frY5oJopOsZ2pBYHsK2aarL5tLnNcDsNKgGHy0eE08tNh0LIy4g9lungpNlxznGN0hudX8V4rqlJTrSuI8M9Db38JNUokoAN7WKG9pxA5LGaXSCW+CbG1b4ZWa3eebC5VDTpTqJ6VllpOrGnhMdRYgm4FjayBaw7Q39Kxa46Q/S0gjvSkNcC4CwC1d9Mk0zYB3v6E+YAPrDz3kJjHvvBPuA/ax+Jem9FFi7k/gc149sDo9wa27jYcyeS88VLDi/sg6b2vkjlihpahkr4+0GuDnGxI4H0L0BVgvp5mNJLi3gvPXRpjGGYF0k5jjxgltZLiFQYX6C4hhsLX5b3X0pFcM/sjNZ6ScvA26vyh+nb/AMNi9LYAf+wsOH/20f7IXmj2RBLukHLbmu1RuqH6Tf8A8Ni9KZeIOA4cbn7XjH/tCAcgeCVIB8aVACEIQAkcbAmxPoCVYuJ1NAQA072sd915T6TTf2QOHCx2nk/dNXqtzjbuN15V6Tv7QOHb/wCvk/dNQHqej+06f8Rv0Ld3rTR/adP+I36Fu70YMXC4UXxMWxB/pcVKTwUYxT7fd4lec9Jlmxln4f1Oi2eJnIEqRKvmEWy2aEsD519uCNLSCHNuCLEFKhZNZeTFoimOdH+XcZe+WrpZxMTcOjm0d3cPQteUuj7A8s1LqighnEp3BfMX878x6FL0Kwj1K4jS8FP2TX4cc5ENy4klKhCr2kzYJZFkqESwTqYJEqEwmQgR5p1XAI70IIu2xA08ypgsPSuSPmDXXJJt4hYPF/NI43Wbmljw1tnNPpWLWnUSOANlEouDw9hqT2Rm4gyahsFiNiUqE043Jw0CEIULDJ+YJClQsmskZwY6Rqub3WR3O6EJgN5MJomSRkaXard6YMQw2PEaWSgqmE08tgb7GwN+KkQdp+PZctc36yXMADmrfb1XQepHNWppp4PNMQn6PM2GkfHK/DqkhjbAnS57r3LjysFMM25mocKo6aedwMc7A9vbA2vbmnnpmwWGuwAV0DAJ6d3WFwAvZrHc1EcEyvR5+yJh5nqZm1FNBEx2lrTvfUdyvd21ald041avbZ/Mpbi2Uo6ZcEiwR1PjGFR1lOQQ8uGkOuRY25Lnna6OVzbHY24J0wXB4MvYa+lhlkeGtJGpoG535Jse57p5HP4aisKb1TengobyEKMVGKNd3XA0n5E64fAQzW4Enutum2F5dUDYWupdhULZXMcGjSABb07LC7raImHTKSlUzjY5updp1GGS34qZ8UgaxnWOIAJtY8VYTomOboDG/Io7mPBnyUNQYxdwjc5o246Sq20v4a9Mi5vLCVSD0oh1NTRVEn1ohzu4G66aiGSnsDYE8iFBMoOx6LPclPKwGm1v2Mh2s3bZW7jtPFLM9oaA4NFrD0K4uLpQqxhB7YRVvpbpQ1Pkh09N1m4IBPFZ08DYI7MB1d/FOowt5bsT8y1tw+ZrvR4rarnOVkrfUJa9b5OanhklJsLeISSwmJ9+Dk+UkIjABAuito2yi42K5lcYm15nXOzxDJGK6YxNGgXcdiQNrJnxFjaiilgne3qZLF1zzBuN1IquhDXOD3O4bJkxXCpqnD5WUriZDa1yBzVnQlSksSZVVaFbxYtbIaejDOkuWcahwRzmvopZWtY/SCGl77klx5Kys75+w7CsIl8nmY+tkILQ2RrtjsezdVVlDosxfFKt0lXUy07ojrY+N7CSb+lTDAuiOerxZ0mK1lRPFA4sAk0OB5rgvaVi63j1JLK+PkfQaTehJPYgnRTidRP0k0NRikU76mWWMAAadBAPEL1kx2todYj0FMNBlLL9FiTsQgoKdk5IMbhEAWkd3yqQPI0jTwXleuX1K/qRlSW0VgtLdNIS+10AX4EIGzEsbt7BovxVRN54RuexiLkuBaRpNrkcUo34LLRI5zrEbnhdYNIPAWUaWveTXzGUKdltoXXxCnAB3fx7lqdwXVg4BrGX4giytOipevU18f7Gqu8U3gkbRpNuVlUnslaiOPIFRTAtNTNC/qmbFzrFl7DiVbh1afj+ZUd7JQBlXlmrmc4UMDaozgC9wRHbbmvrS2SKnGTuztTSU3QuWTBwf1OrcEbdQVzexS/oIdJHmRbf+Up06R8VosV6LJfa+TWG052I08ISP4hNHsUu1kaQeaQ2EbfilSyS87pNQ57LE22vxulLbm5QxMgbhCRjg5oI4JUAIQhACpr2UP8AQOP8pJ+7crkcQG3PBU57J4NORI9TjbrJP3bkA5exzP8A9NsM9FNB+6CtFVZ7HUn3OMN0AEeTwfuwrTUAVNOPtLoWnuv/AATqm3HPtcfH/BcPVFmzq/8A1f8AQ2UffRHxuL9yVIzzSlXx9vDLhggW98LhCEayRgbcbwPDscie3E4OsJGxb2T8qhrOiLK7a5tSYKu4OoDyk2ve/CysRC7bfqFe2i403szU6MHuzVS08VHDFBSgtgZcWcbnv/itxsXk+iwSIXE93k2iDhulQhHuTkRKhCx2QYJCQBxSgkXssQHHi0FZJd0SgJGnfgi1wwWOkBZG0rNLbBw3SdoBrXcws3GSXtLZkZTCS1+8ctKASLaeQ5pQNLXcyBdI3cArCeZb9ic+YjQ7XdxFvQla0C9uZulQoxq3McvIIQhSlgkEIQjIEF972vyslDi21rem44oSFY49n49iedmUr0y5Ulw6rhzJgTHtewsbKwAvJOtznEAbWtZTnJmeaHG8ltxqaRrZImdZLEXtDxdxA2vtwUnxGmp6+mmpKpodG+J3EXsbEBUDkjC2YbnTGMo1FTK2CoMMUYsDawc47cOYXrbSpT6ha+HU5j/Q5prRL2S1sp9ImE5pxOoosPcGzRRvcQ6RpvpcG8Ae8hOeKahTza+yWkDcWvuFHch9FtHlDFqivZUzSSyteLPYwCznB3LwUxxaNkkMj37X3t8arLn1e2uFC23Xzya60XOGWVpjAtuQb3TYCQLuTpmOUNlLmgaR6lFpq6R0hAADR6V6+hTdSCwfPOpXCpVsPgeBqsL7g87cEhNnADe/ctFHM+UWABHpKecKgbLcvY24NlFX9nHBhSxWa0ja9zY3aZHBh/vGyf8ABKETNa6O57XEG/cq36Wm4rTVkXtY2zSTwfbkFc3RxRPjy9BLVi8hAJ576Wrj6pcQp0FKL3Z6Cx6VOUk3wSLCYnQwBnZHfcLrGki7L29JusmhpALdkBoaLBeGqy8SepnsKVJU46UFly19w1lgTvyXWkeAWkEX7lnTaTyTUWUM4e6MkgDwIulilk6wPuwOabt2tZFU3RJc8Fvoo43yMe/zAbnZdEMKOntnJwThLOxQ2fZZMk53jxvDJouolY2OWPz3anP1uPcPNVsZe6QsIrsrsxirniidoa9zHysabl1uF1UfSN0fZjxrNzWiV/kDyCPrrdruNtvApyf0NYrFRsoRiFU2lcLEBzOANxsvV1KVld29Pxqi1JeZnBTWxBOlTOVVmnHopomyOw7UyMNa3mLg7jZej+jKcS5Hwvq2PhbFTsYRJz24hcOEdHGXaPC4KGemjmmY/rC98LSd7KYUlBTU1LFSUn1uGJoZpa2w24Kp6v1O3r0Y2tGL9l7G6FPS8m5trkXAskvvYb+CRhD2PJAa63AJY9m2HEled0yydG/cU7cUXFuIQ4FpIdbbvKR31t4JaLELZpa3lF4GwMOq9ksfacwD4SGOaZHBotulg89n4yxp71I/Nf1MZe68kpoxamiH90LVik0MFBVS1L2RQsjLnySEBoHMknZbqX7Xj/FCjXShHJJ0eZiigceudQyhnjbZfaKKxTSRTvllWdCNNNNmzNNZGWuozX1Aa9o7LrsbYg8FCqMtPsl26PNFZT8T/dVi9A2P4U3A8Qw7aLEG1DtdmEaiI2gklVxShw9kwxrmht6ynHZP91biE8nrVm7R4IWuORos0E3AQhBQWb+k/H6vAcao35NxiGA08rHTvkjLQLEX4cFw+xMPWQY1K3sufVAlp4g6Crm6Q6SmZkjHnMpoQfIptxGPgFU57FL/APfmlrWjyscBb3hQHo0XtuhAvbdCAwnBMZAURl2keOdypg/gofP9syfGvF+mEfYpv5/2O6y5ZiPNb4JUg4NSrwkefuO8EJClWMeA+AQhCyMQQhCAEIQgBCEISFzd7h2e+6oj2QtbjOCYjSVlHO1sBbG3V1QIvdxtc+CvVoLrj4SifSjgMGPZVqOvY18kAdI24B81jrcR6Va9IrUqVxGNZZz95qq5Qy9CudW5jy8yjq5WurIWMa7cC53PAeCsgktYO4G5Xi7J2L12XscgnoDKAy/XRtLhc6SBsOPFeqMk5xw7NWHsnhkcyoF2OikAZe23Am+5Vj6Q9JdCauKK2a3MKVTLwyU3JAde4O4KEgbpJ9PLkPBKvMp53OgEIQhAJLm/oSoUMnJpqYQ5vZ3KaaqLrGuaWm4Nk+LlrINtTeJ3W6jUcZHPWpqUSCV1NYuEg0911GcRpd3RuabHtAqw8Uo+sjLiBdRmspC++riOyF63p929kmeQ6jZqSexUGeqB09A14G0Qcb8t7Luwl5xHAWgODiw6NvQ1STMWHNOH1MT7ebb6FCsjzua6pp2+a2R5+gL3nSeoRovdFDVo6bZx7w3+p0jDJWC7YnalzV9PUsie9sbiGN1Gw5BS8v0jUACfSkux7S2SNlnjSbN5L08+rJRxHkqaV81JOS2IPk3GzPjfkkrC1t3DcjkFc1KIHVDYoe2Nr2PeqLzXh8+HYr5VhjCwXO7ezxNuSn3Rhj9PPilPT1k8nlEr2ssTfiduJXiOu0q1Sm68z11OFGpKNSgve+BcdPhjGxNuw2IvxXHVyMoNQiPxXUolayOmZp4aRZMVXQipJIAXzu2vZObbeEj0FxaU4U1GC9orzMdZVV1R5rhtbcD0pqiopWx3LgD3WVjy4C1xu4C/xepN1dg/VNNgF6S06qkloPK3nRalSTqVHkgL3vjJDgSFiH33snrEqCzSQN0yaSxxaeS9Ba3qmvaPN3du6LFMlzYFJ1hG17LEWuQOK72UZkpg626yq1nB6snPGnq2ijTC625BITfW45FSnS3cXsTcLrayVpIcLBMuZMEdiVLooTolvcm+jv5r0dh1Km7Zqtu/qdVlRjUq+HUeESXLlPJjDuvhN4mecbXte9lM6SPq4XR6xcAqFdFdPUZcwWujxSXW5wjtaTXwv61MMHLqpz3C5ab8fFfPupVZVaksrCPV0bSjQlppNtmdPTNFR1moHjeykWAOtFqPnd3xpmkj6kuHpT3gGgtDdr3/AIqhvJaqKiWdpTjCspMepYHS099QBJHJVh020mN02HU8uCRPnewvLiyPVp2Fr3VuRMNgHWWMscc4LKiJj4+YLQ6/xFVFpexta2Wso9HVoRrYl5Fd9CVTjlRgjxjkb4pA51g+MNuLNtw+NWQXFxYwggcysIo4YhopomRt/usDfoWRbp3JJK13FzG5uHJLCNyDhq8E/YD9qu+L6EwH33gpBl/7VPxK/wDRDa7mn5f3Oa94Q473NhY96rjpI6LMOzlK2dxbDVttZ7y4jzi7gD6VZI4BB874l9HK48UdKeWa3JOasGbNWRV3VTOMccMRYb6Wk8Se9XXlDpJx6udQUMuUcWigEbB17nx6SBYX4X9Kg/skd+kbLwsC01D7g/k2L0Zlykpm4Lhzm08Qf5NHvoHwQgHdh1AOG11ksW6hxAA9CyQAhCEALA9pxFrW5rNI7V70D40BW/SFnnGcu4lHBhuXMRxKEsaTJTuYACSRzHoXnnF8drMe6acKqMQwypw6brZCY5y0n7H6PBeyJqWGYfXoY3HjctBXlbpJYxnT9hrWRtYBPL5rbf6oID1VR/adP+I36Fu71po/tOn/ABG/Qt3egE5KM4q0ivJIsCSpNyUdxv7bb8a8/wCkq/2Mvu/qb7f3zgQkSr5dBFuwQhCyMWCEIQgEIQgBCEIAQhChgRRvpDpa6pytVe1sgbMCwhujUT2gT8ykqCxj2ubJu0gi3Hkt1FqlWjUlwKm8djzL0RdIddRZnZQ4vUsML5Ws1aWtG7916ZjkbNHHMwjTK0Pb6Qea8g9K+Xf5K52kFKXNv1bo9JsA4sDuVrcVavQ70ihlOzCMyvmbM4aoJSHOAjDQANTjtvfZet610mFxSjc26x8tjjjLTJZLpddpsdijdJGA1gex4mYeDtWrglLCztXJv6V4vEoy0yO6MtQqEgSqFHEhIEIQszEEIQgAc0XvHYjc8QgGyxBu5I+1LHluMZGTFqET0tVTO82aJzPjKpLItLNgvSViWDCRrY31E2kaeIYwr0BVR6txxVD5mkOA9MNJWOLXeUGofsb8WkfxXpuiVPEVSg++/wBDguIlhVUT6acg7jaxsmjEaN0szdBuXN1EW9Km1TDFPFGX21PA7u5NjsJnEpkb1ZAuB2t7LbQvXDdFHdWSrLYpfNuapsBxeKAQvLC4gm4HIHn4q6cqVUdbglPUjYuYwkX72gquulDAIa/BnyxQMNY1riCGC99udrqI5BzNXZeqWw45NOyADQ1mtzhyA2JHIFW1xbq/ttVPkytIQorGD03RFrog+3EbFdQFu1bgm7LVfT4pg9PV0tzC5moXbba5HD4k5EkgkABvBeCrRlTno8j0kMTisDbWTNMpMcbg/vJumKXCS6YyPmYS7a1ipUKZr3XK56mlGoaQu2N1KMk284OatbubwRGroZoN2i7e8BcZJtx3UsmiLiWPHZTJiFEWPJYNlaW1wqjeplTc2/h9huLidtJRG173WaCUOOh1nLuwmFz5S4+bsuitW0rJzRxJqCOOUCxY82Hp70xYi7yVzpGG9ipriOHgi7GgjiozimDz1scjIuyeW9lus7inN+0znvrWeyijDKePx4hXClbK10ziGhgIvcmwU8kbI3Qz7G4DcOHFUPkzJuOYfnymq5Jy2nimie61QdwHXO1lfs0zJ5Iww6nhtnH0+K5es0oxq5g8rBcWMHGkoN7mcYlns8HsDe1k4MAEY3F0U8YjhjtyJuEOc0us3TdeYlKLeywXdKOFuKN277Bc+KyzNwyt6i5mFO8sAF7nSbfOulsljo0t+RK4uDySxhaRbvUQqaKik+Bh53PPeTKzN8nSHMysppmUYkfZzoQB5u269Cu84eC0U9NSxTumEEYkcb3EYW0EnzrX9C7uoXkLrCjFR+QSB3BdWEfbbTzBFguU8F1YR9us8Qs+hexf0o/F/wBDVX/dskliXC52twTTmnL2H5kwmTD8UjMlM8WIDi3a4PLwTwjkF9c7IrDy90i9DgyzgFbiGH4hTR0+l/1sxOJtpc7iT6E19COfcWwDKwpcPyrimKRBsYMtNIwNNgbHcK8+nY26P6zbk/8AdvUN9ixT08uRj1kLHHRDxYD70qWSWhkjGa3HsBjq8Twypw+q1v8ArE5BcADYHbbcKSNvsT3bhYwxMhbZgAHoCzANyUMRUIQgBCEIBqzPicuEYNNWU9FNWyRltoYSA51zba+y8x9MmfMZzFlhlPiWV8Tw2DrH2lqHsLT2COQ7t16vkYx7C2Roc3uIuqW9k1BDBkOIsgiaesk4MA/1bkA9ex6bbo4wwROFvJoN/wD0wrQVX+x236N8LNgL00HD8mFaB2QAm3GwTTXA2F7/ADJyXDi/2lL4Li6kv9pV/wDq/wChnS99EbZwISpBxSlfHpLcuWCEIUEAhCEAIQhACEIQAhCFCaWckmLlsiJeS0uDQSLE81gbc1iblzdPAcFlHhCXB5g6RMxY9l/PsTJJ2xQte2QtdEN26zz8AvQmR8xQ5ky3TVkT2uf1bS8Ag6SSeNlW/sjMtwz4PBjMcYM4mZC4hovpDHnuvyVX9F2c63K1Sx95pcMdu5naeANJA7INuJXtZ2FHqFip0VvE4dbhPB63B7RdxBFkibsFxmhx2jbWYbKHRW7TDYEEceyCnAG+45rxajKi3CojtTUkKhCFjnsiF5AhCEJBCEISCEIUSeGvgRwIx2pxYT6bqjumyhkwfNOFZkiNrPmkkdbzbNYBe+3NXhqHWizeA32Vd9PWHtrsjSzEgGOKTibcS0fwVr0Wp4NxpfEtvqaq6zHJOcKkFThtHUFwkL4I3XHpYCuStfeaTX5gKZ+ibFxi2T4n8oiIbkb9lrQt+YZDFJJpc4gnv8FEqCp3U6T7M5rirooZZBc/VftfhE9Wxpc3S8Cx5hpKr3K2NuxlkzAw3a8DiDba6sjEpqaqw6ppapnWAseQHMDhcj0qkqmjxHC8YqZaBhhpDISdBLPDYbL3nSv3fhS5PI3FrRu4t9y1qGmdDHa9zzACf8LorNDw4MJ3AIUOyvjMONzdXSSPc9ti64tsTYc1Z2D0LnNYHjgAuDq1RUcw7mjptnJTw1wO+D9cY2GW5LeFtr8U/M+xBmki5uVqpaZsbW8Nl0LxN3czq+znY93bU3BJGGmzmgcFk0WFkqFxtbHQ28ggHdCEizNbnPVxdcLWWuCAwDgXDuC7EXA3PBbVPG5g4IaqvG4qCpEdfUxwhw7Idtx4LvpZmz0/WtcJYZLFrm8CFUnTVlHH8dxCmlwWodG1vV3tUuj2Gq/AekKe9HeG1uE5Nw+lxSUy1TIQ1xMhfvqPM+Kt7izpuzjcxm032NUX7RIw61iwhribEHuSOa2R+kjfm7kla9pabt7XDghoDbuceKpN008G3O4mt2kuLS487LIdotdwGnn3rENJLiCbEWAui7wy2lp3Ry1v2exMijumuuzRFmGBuC0kz6dzzZzYg4O7DeHx3VsZLlrX5ap3YgCKjbU0tsR2W/8ANO8kNPNpNRTxSOb5uqMOt8qzaDp0xsYxvcBZWFz1CNWhGlGKTXcwS3FYbuvZLB57PxkgBabWRT+ez8ZcdN5qQ+a/qZT4JXS/a8f4oWy12lr91hS/a8f4oW1fZ6XuIpXyyms59ClBjGJz4nRzRQVTy5xc8PfxJJ2BVDQyYhlDpdaxkbsXrqeoicG0rQwyG1wAHeK9tS/YZPA/QvJtG1r/AGSrWvY1zfLKfiL+9W4iJceTukXGsZxJ9LW5TxahayEydbM+MtcQWi2w47k/EhWXDS08dnRwRNcRxDAChQSM3SFcZFx/tW/mM37BVK+xQcS3Hd7/AM7H7BV09Iv9Bce/MZv2CqT9if52O/nY/YKEHo1ly3fiskBCAxf5qiE/2zJ8f0qYFROq+zyfGvH+l/7mm/i/7HZZP2mjSOASrFvALJfP0/aLEQpUIRbB8AhCFJiCEIQAhCEAIQhAYO1awW8GblYyxR1EEjJbaJGlhB9K2pFKSypPlDGeTz90jZMr8pY4zHcAoJKiiJe6cRkAC9mtuXG/M8FXNXj0GHY3S4vlmZsMzJGGaCPtHs7uuXA817DmgjqYpIapgkifyIv9KjlNkHLtJVGeOm1Ocd2uDCON+GlevtPSKnGj4denqaXnjP4HO6LzszV0a5nfmnL7Kyb7M0ND7kHci/IBS1aKShpaGMso4mRMduWsAA+Zb15W4nGpUcoLCfY3xWFgEIQtJIIQhCQSBw3DuCVCh/AbGielErCQNrKM4nQOMhdGNhxUtWmojY+LSWm5I3AXXb3MqMsnLXto1E0Uvn2GWDBKupbcWYTfb0Kt8hRnRUzyGw1vufkXpLMeBw1NHNGWEttax4cvQqByBPhNNVYzR4hOImuknY0ula2xJAHFe76FfRnF6lnT/c81d9Kbg6SfPcdKCspa/EPJaWVrpr2sL91+a7JIJaOoLKslu1xqHqXFkzJMVPmI4vT4nDJR07vN8qa5zg5pA4cU5ZinfJU1MsY1RRxauFybK8jdqvdRUXjY811HpcbWkoR3bZnRUjcUqG073AscDvZOWFdDMeH5pp8XNSGxRPZIRoPvfjUd6M810U+ao6SWOXWNY3aLbNXoOqa5zQy56s93FUPpT1a7o3Doqfs48l+R6j0Z6e7ak5TW5xyODo2QsdqawBoI52XRS0uhtyFlTU4j9I9K6nHVsNl4GdZP2c4PSQp5y5cnHUwXGscBsmuohEoIIT7LFeMi/wA6apoyx542WyhOUHiLNFWi5ppkSxKhADtuKieI4fpJcBzVmYlA19I47XaCfmUMxZpLGEACwsvU9OunPZnleq2cHFpkWpaQl+ojYbqU4dRB9ODbb/kmOnnifOyN4de/vVZeCYU0YeyUA2cAe16R4Lq6pcujBa+5w9IsvFUvDILidLGxp0gXTDM7TUaYx1Z08eKsfGcH607Nfv3f/oo8/KdRNLdjXgHa5B9S2WHUqDUXOSwR1TpVdySpwfzIoGPkaWvm1udysrSwLDzS4W2SVhY63A91lR/SLlzMGEYzA/C45pWkv95I8cu4elXrlltY/KUDMRAZVcwAW7adtjus/SW7ozo06lvLbPzLPpHR6tsvGqbtrAxYtVgSv34FRajz3S4TjEcdbO1jHuaG6jz+IKy6HL8c8nWT6reP/JRDPPRBFjdfFVUczoyxwcQZQ0bC21mqvt72yl+yq7Z75LCHTqrq+I5beWCysJr6bFaCKppZmuBaDcX5i67QLt7L7kppynghy9gcVK9xkc1rRfVq4Nt3J2GwvYi/oXkrqMFVcae56JRWBb2FjxSsLgfMJCR7SQCdh3lI9zGR9mWO/peFq0ybXxIUuwO4u8E/YB9qn4voUcFXSNc5hraQO0++mb607UWM4TBTMjqMVw9jgBwqmD+K9d6JUsV5z+BzXbUkiQt4BB874kxVebMEpaeSWXFsOc1jdWltVHc/+5V4OmygNdUsZhWLT08MpjE0FIXsI5HUDY+K+gHAV37JH+sjLt3W/nD/AN2xelMv7YDh1t/5tH+yF5S6YsyUWZs8ZcqqHUB5Q8lj7am9ho3AO3Ber8v/AOgsO/No/wBkIDubcgElKhCAEIQgBJe5sClRzKARt97leU+k5xPsgMOB4CeS36IL1Y3mvKfSd/aBw78vJ+6CA9T0f2nT/iN+hbu9aaP7Tp/xG/Qt3egEHBR7G/ttvxqQHio9j/23F4FUXpHHVYzflj+put37Y3pUIXyyEi3yCEIUkAhCEIBCEIAQhCAEIQj4AIaGda0uO9jYISt432+NF7umRJXfSpkVmZ8MnqaSHrMYYxxiDb6i4Ns224CoXF6mGOmOF5mjFHiVIdET5Xb6WcrN286/Fevh2X6ncFH8cyZguOS9ZWQNve5czSHXvfiQV6XpXXVawVKrHK+n9jmqUtTzkqLoGz7itXUHCcQe+SM6AwnQNyXE8Ar+sG2be7yNVvQmjDsv4ThYAoKZjXjg7Q2/ygJ2JuB3qq6ld07us6lOOlGynBx5EQhCrsb5NreQQhCkgEIQgEPBY+as0I3hZMl5mBAkaQ7gQvOObIW1/TWyll2ihkqWNvyAaSvSIAJsdhzsvP3TO2HDukXCK3V1UYZNqeCGl1za5PNeg9GmpXGlctP+hzXUcom+P5iw/BqwUtbXxxP0t0hwPEtvyCk+Gyx1NHBURyB8T4wQ4cDfmqez9g9Bn/MVM/BsShZLKIogHVTAAQwN4C/NW/guFvwXAKDDJXiR8UDWue12oEgW2K6uo0o0KcFDlvdHBTpOOZZyc89HTSzEh7bHluornnoqjzW6GpZVNhdHps3QXXAub8fSmHPGdmZYzCyKVkpaXW82/BoPeO9XJlyuixHB6WqgDw2SJjyHd5aD/Faqk7vp0Yzi8Re/CMbaEZ1N0cWSMG/k5lekw7rw8xR6D2be+J/iny5PLsrLbuS8dl56pUlWm6ku5cRgo8GG4S371lb0pCO7itD2ewi3k0VFP1zOwN02TsABjd5yemlw2On4lw1zOJ+hdVF+Zz3ME92R2qwwvdqaOacKWEQU7RbeyyqJ2UrAZL7rrw9rJ4hMQ7Ta67KlSbp78FdSpQc8RWGa5I5WNuWksIXPUubDSda0WO30p5qGh0dm/Im6oo3zN0EWC006lKOHJnTcUJpeZDcTxORhLr6RzOylOWIm1FEJ4zqcbXI9IUQ6UsvVZyrO/Cw91Q1khs27j5u2wF009ABx+JtVFjUUrIxKdOuORu2gW85XlenCtY+NSlhrk4be3rQr6nx5Fv1Moiba9nKN41jlLgMDqyuqGNZe3auONzyHoUjdE2WU6tWn51H88ZVgzRgb6OMyMcHg31aeAcO496pLOdvKaVd7FncQqSxh4NmUc34Zmql63D543usD2STxv3gdykTy8ODWuv8AEq+6LsgHJ0Eokme8dmw6zVwv6B3qwNEt7t0kJ1Cnbwqy9XlmKOmnnStQrjc2c6xS8+N0liPOG/ggmwu5zWnuJsuB5ksmTlFdxTwXVhH26zxC4X1MEQu+ppwf70jR/FbsNxGghqBJNiFCwXHnVDB/FXXQKDd9Tz8f6M015J02S5HIJodmPBWNIGL4dcngauP/ADKFZw6VsKwCsipqFs2JzyagW0bRUWtbk0+n5l9WKvJ09O2r3P6zSL7P/dvUV9imXfyFILTbRD+yU2dIfShhWYMk1lM+jxGmnLH2E0PVjzHDn4px9ipqGRXavNLIbW4+aUGS8NO91i8kbBZoQgBw3QhCAEIQgBUz7KMashR2P+sk/duVzKmvZQf0Dj/KSfu3IBz9jpf3NcL/ADaD90FaLlV3sc/6tsL/ADaD90FaKAU8FwYv9pS+C7iuPFftKTwXLfR12tSP/wAX/QypvEkRlvFKViPN/wDMsl8cn72C6zlAhCFiQCEIQAhCEAIQhAIlQhMLuT2EJA4+CT7Ht8HiskHfipJTwN+PYTS41QSUNa0Ohe0mxvxII5eJXm/NWC1mQcUron4fJJlueS7JdQawMFg3mXecQvUFr+K4sXwqhxijNLiEIkbsPNHI35g9yuOk9VdjJqSzF9jRVpa90eU8sZqnynmWA5eqeuwyR8ZmZGBYAuu+5cCfkXqvBK72zwejrrW8oibJbxTVhWR8Bw5jjDTNe43+yBjvT8FSCGNkMTI42hrGCwaBYALZ1rqNC+lmnDD888kU6bj3MrpUIVFjB0NghCEMQQhCEghIEqiW8ciS7CPJdYtGw2KqT2SVbNSZOEcLi1krJQeHIs9atppDQbXO6hXTDSQ1nR9irpY9RbF2bi9ruHBd3Sp6bymms7o119oNHH0XNo8A6O2VM8jWQOd1jib21GMOPf3FYR5jw7MJkGFSMlcD7wnx5gdyrrLuK4diHRlLgtRiHUVXlb3NDqhrDbQWgbm9t1LehTIxy9RPxGWrZVCUNewNmEm1i3hb0r1F3QpWs61zWe+djgqUpXEVB8GGJUboZWveCxxIBvzSthpsQoZaKV7Q5zhub8lJ+lA0+F5eqMQkaQ9sbyALcmE8FWPR3ijsxmZ0DZBofpvpPwbrfZ1HcWjrp6Mee55mvZVba49mOUSPo56NqbK+ITzmdri9rQBpcL2JPf6VZ9AxvWuDRwum3DqGWK2t2ou243T7SRdXxC811O8nXnmUss9RawylNxwdLQdJ9CVDnXCLelUyWHksNTYh2QN0ulFtJ1X47KG3nJk9wQkc6w1P4ehaBPG6VrQSN9rrKKb4MXPTydCLXSOJ1b2tZJHoDjfWobSJ53NjHX5+hYGxfxuQsJ96WoMYOsMdpv32Xnd9RnEdKEvVxzmi699rxSltur+TirPp/TvXoycppJGDeHwejG7ykEcljZt3vlNmNNt0Q3EcZee2WNv42WQbG5kkb9Vnm+xXCsSk4SeyJfngiEfSJl+bGxhYq4RU3b2buvvw96pdu5rZIX3jcLggciqjg6H/ACfN8WLsqJSwPYbOmueyPxVbkcbWRRRDX9bYG/IF39Qp2lGEPVprjf5kRl5mF3G2l/jstl7iwk38EoGmIOAJv3C6NA0FxOnx2VbD+JGTkgaXcDv6UlP57PxlgyaPSXGaFlub3gBJS1uHirbetpuIJvOy30rfRpyqVYuK7r+phOSUWTCl+14/xQtqZzj+DxWYcWw9rhydVRj+KaszZ5wTBsKqq12I0k5gjdI2OCoje95A4Buq5PoX2SmmopMqG9yUy/YZPA/QvJ9CR9Uu3tC/llPt/wCVWpRdNmG1LXeUYTjMUTgbSupCxh2+EdlUOXq6mxP2RNPV0TtUElZBpdcG9hbiFsyRE9esvpG/JCVvAeCEBHekX+guPfmM37BVJ+xP87HPzv8A3Crs6Rf6C49+YzfsFUn7E/zsc/O/9woD0eEICEAFRKq+zyfGpY7gonV7Vbhy/wCa8h6X/uIfN/2Ouz99mhvALJIdnWHBKvn2NyyBCEKSOwIQhCAQhCAEIQgBCEIAQhCZAdYWiwbqv6UO+tjU6Mb+lKDZYjjdMgAWndnA7pUpN0iAEIQgBCEIAQhCAEjm6m3Dy2x4WSovc6eZ5o3jckwlD5I3AN1l9uJ9K8k490b43Li2Jzx014eslm85vwie9ety0DSAbubwWL7GCWBnVNc9puXN7xZWvSep1LGUmsYf68zTVoqSyeOci4zPg+LQUdYbU5uJY77bNNuA9KvhuH0YgdNJCw08sekNI2JIuqlzjk6ebpNq6UVNPB18z9Dn6gNm+gK6pMPoYMKjpp8aw4zBgG0p+DZexvbiD8KtTynJLj4lBeWfj9uCs8KrcvYHnok4bTsmc99jd1+Fl6Jp3PeDLINMRaLC9wvG+cZBTZ3fqqIpmQyua18R2tdelmdIeAQUlP11Sx8gO4ZKz1qp9IrGU5QqU25PfnfyLLp0pKniZNi6424HgkAdxUAq+lrA2utBRV01tj1bozf/ANybazpeY42w7LeOyekRxu/3lRQ6VcVJbqKWPkd6rJFotLyfQsZoOsHBVO7pTxiUhtNlbHG7XJdTMP8AvLVL0g5tn+t0OBV8Uh5y0gI+YrZHpFeHMo/Ux8dPZIsyppHuicNNxY7KL4rgVVVx6YGFtu6xUWlxXpJxUMhbFT0xadWqaicAR3bJZcu9Ite0NmxPCWMPH+byN/grK0sa1Canrj9ThurOFdbkLz1itTkzGImzUwlAcDZz9N+zfkCrs6Pcysx/LUEzoOpGluzSX+9B7lXmJdDGL4xURS4xiuHPFxqDOtaSLW27K6IehhlOBD5eOqHJk0g/grPqlxZ3tKMa7xJfw4NdjaKyTUFyWo/FsOMgjkkII/uFchzdgjdTfLCzQSD9bdyUMi6FsDEP16oqnO9FW9djOiTLWkNLa42/+6cvNaOnRSipz/AsXqlu0hwr+knKMMhbV1zHObsC5jx/BMFb0xZYbUDRUwy2IG5cNvkUmw/o8y/QxaIopyOHbl1H5080OX8No4Oqgp26Lk9oAm/yLfCr05YjOU3j5Bxn8CupemagfI1lBRU8rR/47m/7q1ydK+L1z+rwrAYJC3d1q0jb/CrbpaaCmBEUEO/fG0/wWYZG0DTFELG+zAsZ39jB6oQbfxX5BQkynnZ4zzUG0GWo7ejEB/lWM+OdI1eGQwYMad7zYPbWtJb/AO1XHsL2Yzf+6EWGnTpAHgtf2tH3oUY/R/mZeFLzKcdQ9J07BHNUVcIPMSsctseSc7yM1z5lxCI9wijP8Vb/ACskO4tyRdZlnLpQ+n+R4bKph6KMQLC6fOVdJI7iHUTP86kOFdDFJLBG/EcTfVSW4yUrR9DlNSbh1t9trd6kGGt/7MYCe0WC/wAi9H6N9Sld1ZZgl8lg5LmGlHmbpcyngeBNo8Ow2dk+KVEvVGMwdXxaSN72V4dHmVcOw3I+Gw1VNHqmp43ygj35YAeBVadE+WKTGekTEMXxEyS1FO1kkVnnSHNdYXHgvQUbGt1BvfwXtXycZ5O6ccv4bgXSDl9uGUcVOH1Dg4sFtVmN9a9T5f8A9BYd+bR/shea/ZHf1jZdI51D/wB2xek8vn/sLDvzaP8AZCgDghA4IQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nf2gcO/LyfuggPU9H9p0/wCI36Fu71po/tOn/Eb9C3d6AxPFR7MH21F4H6VIT5yj2Pg+WwjlpKpevrNhU+7+put/fOBCEL5TFYRbAhCFIBCEIQCEIQAhCEAIQhACHMc5hLSQQhJbe6AIzeMtfxRpaxpNg70IO6UGyASNpAJawA+KSJry4l/pSkXKCLoBUIQgBCEIAQhCAEIQoyuHwZIQ2t2thzVJdPOUsTzDiGHyYXT9fE2NwPaA4uBHEq7hxQXhzXNe0Gx2Nl3WF3KyrKtBcZNdValg8TYlhuMZDxKCZ8ZppWPa9pa4cbahwuvUnRfjH8pMqwVc0hlnjaxj79+gE7/Gol7IvL89ZhTcSa+HTCHPcADezWeCx6CsIjy9gj6utxjD2xVbxMGGQgtuxosbi3JepvqkOo9MjcYamm+P1k5Y4jlB0zUGEOdBX1lBDJpL3Euv8FoU/wCjzFqLF8tU8mHU7IIYWsh0sJIJawb7hVf7IbFYJcCgp8JrqSWOTrWvDXajazLW+dbOgzN+E4RkuWDEZ2xTCoJs6RrSRpAvufQuataSq9LUptt5RFPEJZLxRYqDTdKWXoWmwlndyEUjDf5021HS/QNjPk2A4zK8mwLBGR+0qGj0yvPZbfPY6nXSLLsUjrgEngqmHSxXuJ0ZYxwg8PrDP8y1u6ScxvB6rLmLNJ4aqVvrW19Er95R/wD0FWXkW4wF+4K1zUz5RYOPyKoHZt6Q6v7Xw10EZ4dbRcPkQ2k6Tav68K3C4WHfTJSyA/QttLotV/8AeP1Nc6ql2JX0lmswjAn1TGue5m4ubcAT/BRnoQ6QqjMbJKOtg0aOrAPWF/EOPd6Fyy9GebcYpnnFMYwtweSSGtlbxH4vpK04L0E+RAyPxCAPNvMlkb3+hXSpWlG2dCq8y81hnLCk1PUi5KjEKOml0zyOabX8wrjmzTg0RLZKstI/8NygFN0MYaRqrKueSW/GOqkAt8i7Yeh3LzDd76w//wCU5UcqPTfdcpfgdsnNj9X5+y1QhvlOKaWvOmxidumev6Xcq0dm09dG4Hc3Dh/BdVF0WZappC9jKtzv71QT9Ke6TJuC0rgYoHEj4Tgf4LZGt06OylPHltgw9tTIRUdN2B2AoRBNOfNZ1jm6j3X0rQ7pknI002B0zpXC/wBuEf7qtQYbRNsW08VxuOw31LptGLWhg2FvsbfUsvWOmx9yDfzSMpRnIp1vSJm6UCSLK8MzHbi+IW/3Uv8AKzpCf2WZbbEHcCMQBtf/AMquE6ez9bj7PCzAgkH3rfkWv7Wg21CjH71/klUpd2U7/wDU2t+uRxVFPfk2oY7+CIsudIdfK6StxyvpiRbQAx9vjurj1EDa3yLEONwB8aj7VlHilD6DwclQRdG+ZayciszXXsG//d2O/wB5O2FdEEk1e0V2ZqqqY0jsSUbAP2lZIuNR1NG9t124M0eXE3GxHxqz6L1SrXvqdPw4pPO6W/DNVelpptlcZj6K8vYJh8tdX1TdLYyBelvd1iRwPoUd9jvl6jxDGMbxV1LFLHE6ndSv4cRJq8OAT17IqmOIVGE0EjniOSopi7Q4jsmUg8PQrey1g9Hl/CafDMOYRTQAtbc3Nrk7nnxX0QrSuOnHKuDMyZV1bKCFtQGu7Vjf7G896bfYo6/5DOLiQ0MhsP8AylSzp026P62/c/8AdvUR9igb5FlAvs2H9koC8kIQgBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/wApJ+7cgHP2Of8AVthf5tB+6CtFVd7HP+rbC/zaD90FaKAUrjxX7Sf4LsK5MTF6N9+5c91/x5/J/wBCYe8iLDzf/MskhFht8JKV8an7zLpcAhCFiAQhCAEIQgBCEIAQhCAEIQgBKXWaLMDifSkQdyCeSZAj9MZDnsAS3DtxwKUuJIJ5JCbm6ZAIQhMgEIQgBCEISCEIWOG3gjuYktaOyASUx59oJ8UydXU1O3tvZbY+kJ9YQL8vFIAN7c+N1up1lRrRn5YJmsrB43xTo7x3D6GoxSel1Rtlc0PLm7WuRz9Csf2O+dZTIzBsSGrYNju4mwDHO4AK782Uj6/LtZBH1QPVvNi3+6R/FeZuj7Jk9TnqqlGI0dK2kmLXNmc8HeM9wXvKF5T6rZ1fGS242/PJxODpyzk9D54oIq/LtfBXxNqB1EhDX8gWlVj0S43gWF4hW4TT0UEc/Wndpd71ljyVn5hzBhlJlfEhBiFI+eKjk0fXA67gw2+deaMg4jC7pHmrsTlYxj3SuLgdLTcKs6NSdSynrysZ2NVaKnNM9VYaO0RI7ccAnF3oUOm6Rct0sr7TiW4/1crD/FNc3S1g0chDMOxGdu9uqMZ/3lRKwuareF9TspzSW5YgF1lYqqZ+lqR0t6LLWOSRctMUZP7S5/dQx2Ul0GWMZawfCpmetbV0a5a3cV95k6y8i3rFKGPeANN7cCqZkz3nevfbC8GqoAOPX0YPhwKH1XSVikmprqOnZybJSPBB+ILNdFr95w//AEYut5Iud8Uhif1rDpaDbmqGrekuso+kSLCTSh0JliaCZSLamgnbSnI5W6QMVdorcWwpkfohlafoTZ7hVVPiLamvxOjfJcG8b5QRb/yq1sbK3tIP1pp/Jpmmopyexd3lET8PpquQvYHxtJGgnjvxXJPmHC2xmR8xYG7nsOVbN6F6clgnxBzmgAWbUyj+CcR0L5eiLXOlrHd4FW/dVlal03W5OUt/JI2KUksErmzrl+Fhe+v0gcfrbkzy9KWT4ZC81zBIOJ0v9S54OibLUZ8yuPjUuKeabIOAQQCJsMxb6ZLn6EpVOnUPclPD+QcZsjHu1ZacZHxPgkLQbDU4XI+JcbemiCSRzqbC6aVgOx8qI/3VZjMFoGRCNtPHpG3mj1LuihhigELIIdAt/q23+hZyuemU/djJ/NIYqFRSdJ+Y8QlY/Dcvwugvtaut/upHZzz3JMOoyzHpI5YgP8quFmll9McQv/cCQWF+yzf+6Frl1Kj/ANaUWviv8kqk+5Tb8T6TMSla2jwuSjaw9ox1jXX+UJJsL6TKtwbNXVlO02vaRjlcu1gLAW7ggFYfbHaNKH/5/wAmXhFPjIWc6lnV1WZsQax/nDqYz/vJwpeimtfMwSZnq9RtceSM3/8AcrPLWu87h4rdDrfPE1+7w4G44WXRQ6w3OMfDinlcL/JrqU8RIbH0MYaIxJXV5qJALue+lFz38HKpcayvhFZ0mYLg+ESsnpfLImznqtHYc0X2J33XpDP0j4cp1L4zaRuht/E2Kr/2O+UqDD8rtxwapa6pkmY9xeXCzJnWsDwX05zbgpFY+SwnZSwiXAYaCoo4pYYog2zgbbDuuvM+X8PpMK9kTT0eHQMp6WKsgDI2cG3F163kbeF/JpaT8dl5Sov7S8d+PllP+ysycnrRvAeCEN4DwQhBHekX+guPfmM37BVJ+xP87HPzv/cKuzpF/oLj35jN+wVSfsT/ADsc/O/9woD0eEICEAjuCi1eLVbv+ualRUXxE/zo/wDXNeS9LlmhB/F/2Ouz99nMeJKRLfYpF8+W7yWQIQhGQCEIUEAhCEAIQhACEIQAhCFjgAhCEwAQhCnIBCEJlAEIQpJBCEIMAkv2rfOlRcAb96hy07gTfXZgBPeTZZaAX9qNhd8qiHSU/HmYYX5Z1GYNds2ESm+1uPxqMdEOecTxvEKnCccieysha+SzmNYSGlo4Ad5KsKXS3VtpV6e+OTBSfDGHpWw4VXSZgjI6mSkfIajU+KwN9I5qQR9EcTmMfWZgxJ0r7EXDXceG6a/ZA4WYoqPHqY/XacPJAuSC4tHgrTyxWjEMAo54ZmSgta1xbvwaLhXF5c1YWlKrQnhJKL2744OeCSk8kKouiDLrOtFZprKguvrnp2uPyp6o+jPLUPbnwmgqCOAkp2FS4nSToIZ6TvdYbkGwN/hclVvrF7hN1Hjtx+RuVFPkZKfJ+WabzcvYUPCnanGlwnCqfaDDKOL8SIBdrAQO0blKLc1y1b64q7VJZNjjFLBqFNHE361TxEk8eGy2RsjaNTYmNl7wgCyAADccVzam1ghJY2QrXSF31xzvlSvdIT2SSPFIe1526ASOBWMMv3ycfAJXkgami6waAdyLrIlx5/MgF4FtQ+RZbR93YlpCWv70JQbBKCeaFjF92G8oS1wlaLBIlCLnUjFJ43YqQoukO6yb3MsfEVCxslAUZl57E/eKhYkkGwBJ9CysbeafBYYb2TIcsbjRmXH6DLmEursReYY7uADGF1yBfgN+SiJ6eMutwJzqN1TJUgNDQaOYA3472UT6ZH1OO57wvAGEtgbJBNILecHEtIuN1dWXchYFSYTSQmiOpkYBvK7e3xr6T6NWMLam9T9vnHwOC5k2timuh/O8eW3zS4/DLGZ7gythfIba7jgO5X7gGbcHxxgdh1RcOF/rjDGeF+Dl21GC0NVRmknp2mnII0jY7+kbqvsw9DWCVchqMJElHVcdbqiVw434arL1WcnEVd7IotPSLl3RJqHlD9r7D621elsv/wCgcO/No/2QvHXSVgWLZfz5gdJi2IRVrGzu6ssi0aewCfHiF7Fy+P8AsHDvzaP9kIDvbwSpAlQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nf2gcO/LyfuggPU9H9p0/4jfoW4LTR/adP+I36FuQGJ4pizAPrsbvQfpT7xTLmEWa3w/iqjrqzYzRtoe+NKEgSr5PqTWxbghCEAIQhCAQhCAEIQgBCEIAQhCAEIQgBCEKMoAhCEygCEIU5AIQhACRKk5qXHONjJNAUukhoIsTzuVqqzKKWU0/2bQdG1+1y2VF4vnfN+VM11MmNQTSYY+Z2j+bMjFj2R2rd5C77Lp1S8ctMsNdjDO+5ZnS3T9bkHGiQHaKOZ1j+Iq06PejuTMWXhNJj2IRxgtAjaWlreyDYX8VbWZKVmYMl4jFGdT6qkfG0A3sS23JVz0C4pJT1OM4DWStbLDWPaxrgAdLWNHjxVvaVK9OwlGnLEoZb+RztLXvwOzOhzCtcQrK6eqYw3tNE1yc4eizK8dg2ippGg7h1M1ThzTEyxu1x7+SzDiCOeyrvta+2XiPHyX5G+VGMuCMRZCypTaBHl/C3Ee+NK0FOceXsDgcOpwihbp3s2EBOTQQ4lxvdK0uaTpPHY7LlrdSurhKcpbfcHSikaBSURFoaKnYBts2y2lkFgOra0jmAstLeJG6yabC3Iri8VsnCxwEZcNtbizlusTLI19nEmPxS6jwB2Q4lzbX2WLk/MRS7oUyDgHOsd7JC5hOm5+RDQAb+hK0gOJtxRpN6icIxsw8HEDusi7QOZ+JAHelusvZW6J+8xuPehLusib8UijOGsEp7biBKhCylLPcZBCEKISelIjcRAG90qQuGprS4NN+fNGnw3gnOxjdji7VsxoJO3coF7smXcLzHJR1Zla1jmgOjpZHk3F+Q9KdulHGZsDydVVUEbg7rY4gbA31Ei+6jHse8i0lbgZxfGmeUz1INiC5ltMjhwBtwAXsfRWyUZKvN/I4ribcWiHZxz3Nm/OtLWYfFM/CqRrNQcx7blkhffSR8EhXhlrpRy7jLCGTzQSjzmmmkYN78yPQpfh+AUGGwujoYGxtcSXX7V7ix4+CjuZejHLOYHOkrqKQzH3zKmSMb2vs1w7l78rxr6bKmOs6Oqp9JIyQWcfOA26p6jHsUt8izNaNLg2G9vxSo10l9GuJ5byvVz0OLwihAf9Ycxz3W0uPnOvyFlKPYpG+Rnd5ZFc/8AlKAu9CEIAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0VV3sc/6tsL/NoP3QVoqAKVy4l9pv8F1Fc2IC9I8ehaLr9xP5P+hMPeRFXcP/ADJSk8647ilXxqosTaZdLgEIQsQCEIQAhCEAIQhACEIQAhCEAIQhQwCEIUAEIQpQBCEKQCEIUkghIlU8SRLwY9k7u2sgapD2GtDfSbLNwHWNLjZun51VvSxiGbsOqGVWAa/I2lxcG0zZNrNtuR3krosrRXdXS+5i5YLQqBeGQaG6S0h3hzXn2iy6MZ6V8fpMPxOqoWOrHAiGzBtHfn4K0ujDNBzZgBqKppZURyOgkBsL6QAdhw3VaZ1pXZU6XqbFYCWUdbLNK8ncD63pG59JV50enKhUq27eJdl8tznqx1NbEt9x6kdDJ12O4hI1wILXNaQe9dlF0R5bhijBijkkAsXup23Kn8RjdBC+M3Y5rSLG+5C2F7x5/m8tlWvq16k9NTb7vyM1Ri90iIUnR1lalYWPwXDp3EW1vpmkhOkOVMswMDYsBw0EcxTNCeWmxIJAa7a3esiSBZmw9O60z6tdzWJT/p+RnoUeEcVPheG07dNPRU7PQ2MBdcUUUbSG08Wnms7gN7Is7vWJa2/ZBHfuuKVaU/eZlt5A0tjJ6iNsffp2StlAvd7rpD/d2S7AdkWWCim+Q0jXrOu5e6yyuwuJBN/BZXPf8yQjhbbvWUt+xLeOEY9kpR3kDZBBJ4pSASCFLy1jgN5QXuiyVIsVt3CbwZIKS6LrHLfJim8gUIPFJZZqCSyZ7MVCSx5BB9G6QJwgPDgD6FF83Z7wfJ08TsUq5xI5wbpZC+TkT73wUqhc4PDg03BGyoLL2HSZ36V5nYiddLTRskDLablsgbxHoKu+h2qqV1Uq8I568sLBIukXplwzGcnvo8vGpkrZnRO7VNLHsHgu3I7k69FnSFhOAZapcJxlktHKHyECOmkcLveXcQLcCrRp8oYJTPjkhorOaNml7jb51vx3KuE47B1OKU3WttbsPdHyt70hfVJNKOCpe7OjD8boMVoTNRVDXxlp87snhfgd15hoiD7JaMg3HllP+yrTxvodp4C+fLFV7XvsSetkkmHPkSeVlSuSKWsounmhp8TqGVNWysg6yVjNAdcd3JQshYPZbeA8EIbwHghSCO9Iv9Bce/MZv2CqT9if52Ofnf8AuFXZ0i/0Fx78xm/YKpP2J/nY5+d/7hQHo8IQEIAKi2I/bR/65qUqLYkCKo3/AOt15X0rX+2R12fvnKOaVJzKVfOo7IsnyCEITOSGCEIQgEIQgBCEIAQhCAEIQscgEIRZMgEIQpAIQhNgCEITPkSgQhFkyycgkLmtHaHE9yWxSOG1i2+6c7MBIXRSizGPYeTt0xUGVaKgx6TF6VgZPJGY3NAaBYm54C6fnAkucHW7hZK8tf57L7d63K4qQi6cHszBxGbOWCRY7lytpJGNJk06dhtZwPPwVY9AeN1baiuwCuI1wGWVpcTexkAHE93oVzMuGjQNBZw53VKZxynmTCM4z47ltstU10LGuZGwC9u0Rck8x3K56U6dWhO1qvndfPg1uG+S6nO0v0OaCO8C6DdhvsWKpsj9J1ccYGFZpo30M7ydIlmBuA3uDe9W00adYvqba/cq69s52eNfH1M4zyF77jghA4bIXBiTersZtZBCLIsUTYWwIQhTlk5BCEJnzIYIQhNiAQhCZAIRZCjIBF7boSE23TkkVu13cysXzx0cZnq3hsY34jw5pXDUBvY34KrvZC1M1Pk2Z0EwYWxm+wPvmrqsLb1u5hRWxhUfssjOWqifOvSfLi0cemCnjYwGxAOiT03716eobup4Hbebuqv6OcPpMNypA6ib9clJ1kE8wCeKtDCwW4fBzOgL3/R7lV7qajwkcNb3Eddjbfiksb7pdwBzRfe1l6g5Dy37I8D3ScvW4+UPv+jYvS2X/wDQOHfm0f7IXmj2R4/+pOXj31D/AN2xel8v/wCgcO/No/2QgO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0Ld3rTR/adP+I36Fu70AgTLmLzW/8AXNPSZcxeY0/9cVV9ZWbSZtoe+NCEIXyCKwW6BCELYGCEIQgEIQgBCEIAQhCAEIQgBCLIQAhCFGwBCEJsAQhCnSAQhFlGkAhCEjFtk4yIbkdnjyTHmjLNFmagMFc0NkYW9pgbc2cDxIPcn03twWFmvADorHvut9GvOhU1QZDiY0NPFSR+TMJcxjR53NUNnrXknpOpK6naWwVkL5X6RtqdIW8rchzV/Ms6x0aCPTdQzpUypJmfBQKMkV0bm6AG6iWgk94Xd0q5VOvKNX3ZrDNNWLaWCZiSN463U57ZCQ3nayCLKgsOzlnTJ7oo8fpKiXD4zd0jnsjDRxJsAe8K7Mv4xSY7hkVbQPa+N7Wl+k3s4tBI+dL/AKfK2bqU3mH1M6U3wOKEDfggb8FU6NPuvKNjbyCEWRZDLAIRZFkGAQhCnYwBCEJsAQhCbAEIQmwBCEKVJRal5E9gSHTdrXAbmwPclXHjEj4sJrHsPa6o29HpSkvbSl3f9SP+pVvTjmVlS2DK9M0SSSvY8uaCSND7HcG3zK3uizCDgOV6bDXm8kIcXG4PnPc7+KoroeoKXF8947PicjZ6qKsqGxi1iG8eXpXo/AjqlmeRuQN172xatrqjaR7Zz9GcFT3WPCDwQg8F7I4yu+nb+r6s8H/u3qJ+xQ/oMfxIv2SpZ07f1fVng/8AdvUT9ij/AEGP4kX7JQF4IQhACEIQAhCEAKmvZQf0Cj/KSfu3K5VTXsoP6BR/lJP3bkA5+xz/AKtsL/NoP3QVoqrvY5/1bYX+bQfugrSKACuav+1nLoWitBdTuAFytNdZoy+TJj7yImzzneJ+lZLFuznX7yPnSr43cLFaXzLpcCoQhagCEIQAhCEAIQhACEIQAhIhAKhFkKGAQhCbAEIQi3AIQhTpJBCLoumkAhCLIlp5MsGWxYQ/jyWioiZUUxpqmKN8btiSLlbgbixCQOduDuFlCUqctUGYOGRny5l6jy7HNHR36uZ732IHnON+QCiHTlgEmKZOlqqRo8rpGsDXcDvK2+9r8LqxbWZpA4HUFjVU5q6OSF8mgTC7ha9rf/ouq3vKtK7jXyvia5p4IX0O5glzBlBhkEZnhkla65N7NIHMqa7WLpC6/dyXnqHBc59H9VVTYLR1FVSPLnHQGs2JLjubqyejTpBZmbXh+JUxpsSiOlzHyhxuG3PBoVn1HpsdTubWScVu1nP4Iwpya2J7fWGlwDSDtZZIJcbNd2i3e/ciy8+222zpSBCLIsoJwCEWQhDQIQhSkYghCFnp2AIQhYbAEIQmwBCEihtpGSQtyOFkjtmC3EmyUXJsOaSxaNJG97qXHOEiJPA05tx+DKuDOxKocHdVZ2jjfcDgDfmq69jvhlVNXVWM1bdPXa4wDcf60Ecd0z9NpMubsHoqqZvkUzKjW0t420W9KvLCaaOlbQ09KNETdD+N73AXq7XFjQpwe7k0/wAcHJUeSYOvYFtrrK17rFw7bXE2AWQ57L6KVq5MJfsTwfgn6F5PpAB7Jlgbw8tp/wBler5d4pPxT9C8n0Y//mYZ+e0/7KZyTE9aN80eCEN4DwQgI90i/wBBce/MZv2CqT9if52Ofnf+4VdnSL/QXHvzGb9gqk/Yn+djn53/ALhQHo8IQEIAKjOLfbXxfxUmKjOLfbXxLy/pV/xUdVp75xnihB4oXzfsWb5BCEKIkMEIQsiAQEJCbIDKyLLDUjUgM7IWGpGpAZIQj4llpAXRdZBtxwKXR6CmkGF0XWehGhR4bYMLous9CNCeGwYXS7LLQk6srKNKT4DE2RpS9WUdU/ldZeDUIyJpRp9KXqn+lJ1UnpTwJvYZDT6UafSjqn+lL1T/AEqfVKkVpJ1CafSjT32I9KOrf6UGN9jsT6O9Y+rV4LXF7hvYpbp+oZaCqw/GaGGICJmmRzWb3dJbkP4q1cr4rHjuAU1cy4Dy5p2A4bd6jHTMx7sjVMbqRpBdGb6u54XP0G4rR4lkyKlpCBLC6RzgGngXekL0Nxb1bnp0NfvI0Q2ZYenuKNPpR1Txtujqn+lUPgVfdN+Q0+lGlL1T/Sjqn+lYuhUWxGRLW4o2S9W7ndHVlR4NQZEJFkl1l1ZS6FjKlJckowui6z0I0KPDYMLous9CNCeG0DC6Fno9BSObbkVOkGKB6UJHAlpATTgkG7XJ+JRrpFwePHsnV9OWgyFrQLj+8PQVJdYBAPcuHGauKhwuqqH20DSTx7wt1rUlRrxqU+TCfushHQhibsQylJHKTriqZWC/o0hXXhl/a6Ac9AVA9AQDsDq5meYayf8AaC9AYc4eRQu5FoXvul0407+ejyOGt+7R1pD53xJUh874l6k5Dy57JD+sjLv5w/8AdsXpXL/+gcO/No/2QvNXskP6yMu/nD/3bF6Vy/8A6Bw782j/AGQgO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8AEb9C3d600f2nT/iN+hbu9AImbMX2L5PpTymbMX2IfF9KrurLNpM20PfGdIlSFfIWsIt1yASpAlRBghCEIAJbLEmwSakBnZFlhqRqQGdkWWGpGpAZ2SHZY6lmwagUAl0XWehGhMZ2BhdF1noRoU+GwYXRdZ6EaE8Ngwui6z0I0KFCQMALpdKUscfNuk6t/pW6NCTAafSjT6UdW/0peqf6VPq88tIZE0+lGn0o6qT0o6p/pWLtpxWWNQafSg7ODiRsLbFHVP8ASlMTtrRB/fupnb1G8RIchmzhQsxTLdfTmngc4x2F4wTuR6FXHQDjOpuK4NM1zZYqudzQRYaWuDe/+CuB7C2N7w2+q3Y+Nef8iYxT4P0sV8VVC2B0wqLNF3X1TDfa69BYUalaynby3fJolLQy/SNWsM4t4pGg6rcrLYGESSSRebKbjksWxykHVfivPRtJ6Fo+83xnqWRdPpRp9KXqn+lHVP8ASnq1QahNPpRp9KXqn+lHVP8ASnq1QajFF1no70aFr8JkmF0XWehGhPDYMLous9CNCeGwYXRdZ6EaE8NgwulsstC1Fyjw8NN8E9jOyRwY9vVyC7X9k7cljqSgtNg7idgocsNLvnKI/wCpSjozlXpm0xDTBXNqZ9vS6w7l6HwI9qQDuC8/58kZiHSxhFND9khpZWm3912/FegMB21tPnBouvcWMnUurarLlp5+jOCp7rHdCEL3BxledO39X1Z4P/dvUT9ij/QY/iRfslSzp2/q+rPB/wC7eon7FH+gx/Ei/ZKAu9CEIAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0VV3sc/6tsL/ADaD90FaKAFrn+xlbFrn+xlaqv7uXyZMfeIgfOd+OfpS8ykPnO/HP0peZXxy62ry+ZdLgVCELQAQhCAEIQgFRZYF26NSAzsiyw1I1IDO11jayQOS3ugE1LK6A25WehNOoGF0XWehGhT4bBhdF1noRoRUmDC6B6VnoSFinwpATZGyXqyjqzyTwpATT6UafSjqn+lHVSelbY2s5RyyFITT6UafSl6t/pR1b/SnqlTGxmmJpPel0+lHVP8ASjqn+lYq3qLbHzMNabwAZG4FsrWvadrEA/SqDzBO/JfS7T15iayiqI55DpZzLtI7gr8EUhIs3VvwuqR9kbMyEUL6unaAyOwcTfbrPQrvolGcakqUlmMlg1Tengu0dpoeHNu42Iul0+lcGA10GL0XltEB1D7htgRwO/HdOHVP9KqK1nOFWUEuG0ZxnlCafSjT6UvVP9KOqf6Vr9WqGWoTT6UWA4peqf6UdW7ne6erT7hSyJsg+hL1ZQGFYujJEmN0XWehGhYOMgYXRdZ6EaFPhsGF0XWehGhPDYMEiyIsUihweNyVINri6QtIk1XuAEjtFrv5cEpkAcANwQsXlpOIkslV+yDoRJlZ2LQsHXUsbrOtuNTm+pWLkqs9sMLoai9yHNafiAUO6dKyODo6xGFwF3MHfycFIei6F8GXKPXftSkD5l6e2qeLZU3U5U0l+By1Fgs4u7bRbYi6yO1ljs1rb8gsjvZfSvIrVya5fsUn4p+heUKL+0tH+eU/7K9Xy/YpPxT9C8oUX9paP88p/wBlQuCInrRvAeCEN4DwQpJPPWcOkXNFTgmN0cuWsXhgNNKwySYc5rbEEXuuT2JhJgxaR40OfUAua7Yg6Crr6RIYTkjH3FoDhQzG9t/MKpf2KLdQx27i+1WLX/EKA9GttbY3CVI3YbgBKgMJDay4p6COc3df5V3PttdICOS0VqNOqsTRkpY4Gz2nhHN3+JHtRD3u/wASddkmy410m25aJ8RjX7UQ/wB7/Es/amn7nf4k5bJN+5bYdPoQ91DxGN/tTT9zv8SPamn7nf4k4b9yN+5Z+pUvIeI/Mb/amn7nf4krcKpxyd/iXfv3I37lKtKcXlIhzbOH2rp+53+JHtXT9zv8S77HuRY9yz8CHkRlnB7V0/c7/Ej2rp+53+Jd9j3JLHuTwIeQyzjiw+mYbtufF111NijaOy1vyJewOQ+RZC3JbdEfIZZhob8FvyI0N+C35FssiyaI+QyzXob8FvyI0N+C35FssiyaI+Qya9Dfgt+RGhvwW/ItlkWTRHyGTWGNv5rfkWehvwW/IlshNEfIZE0N+C35EaG/BHyJUJoj5DImhvwR8iNDfgj5EqE0R8hkTQ34LfkRob8FvyJUJoj5DLE0N+C35EhY34LfkWSHbgpoj5DLI5nzCji2WKqkhYHPfpIs2/A35KjOijpBoskYa7BMy0clJIxziJJWNhB1OJ4usTsvSBcD2LkEbKL5hyFl3HAJcQweiln+E6IOJ5KdKIyd+WsxYTmKi8owuqppWXF9ErH2Nr22KeNILyNALXcCBwXmro5zdhWQcy4/hGIN0QPxCUw2YToaDpDQBtbZejsJrqfEKGKpo3l8D72JFuduCjRHyGTsDGgea35EuhvwR8iSNwcDY33WSaI+RORNDfgj5EaG/Bb8iVCaI+QyYljbea35Fjob8FvyLYiyaI+Qya9Dfgt+RGhvwW/ItlkWTRHyGTXob8FvyI0N+C35FssiyaI+Qya9Dfgt+RGhvwG/ItlkWTRHyGWaZIInjtNC5XYbSuPvr+h67zbmsCG27IGrko0R8hlnGcNp3CzmuAH95QrphoI4ejjGnUkcsk3VtLQwlx89qsLfYEDhutFdSU9bSyUtTEx8Mmxa4XB5rDwY+QyV70MYFFh2T42zsdHL5Q+QhxtsdPEFO2N9IeW8FqJ6epxOiZPG4tdGamMEEcdiU54jjOEYIyOnlIiEjtADWHmvPHTn0dQTPqczUFdO9k8hkMZYxrRrcPjWSpIg9DZQzXhmaaE1GF1UE8e/Yjla9wsbXOklSAOsQACQB8i8j5Ko8x5KwpmZMBd12EPu2WB8wjaGsN3EAbm5C9AdHfSBhmbqKJkEhZXBv16MMcAHBoLhc8VsSwCkPZO1ElPnnBJomGR0czy1rW3JPVs5c1PMpdIOZKp+HUUmXsVjp+qjHWuoHBtthx8FCvZHaPdEwAPNrVD7ADj9bZxXo3LsDPaPDndUwHyaPcfihAOrDzNwTyKyWLR2yTvbgskAIQhAC1vcTra0aSODiNlsWLrAm5vfkgK26Q8545l/EYYMKwPEsQa5jSXUtG6YAkkHceC894xjNfjXTVhc+J0FTRS9dJ2J4DEfsY5HwXsl0UbpQ9wBdptwXljpOBHT/hvd18lv0QQHqej+06f8Rv0LaeBWqj+06f8AEb9C2ngbIDEA3XNWUbaltnH511oWE6amsMlSwNZwiH+9/iSe1EPe7/EnXZJZcM+mUJ8ozVR+Y1jB4P71/wAZZDCIB8L/ABJy37gi57lMenUY9iPEY3e1MH97/Ej2pp/7/wDiTjv3JLnuC2qzorsNbOAYVT34P/xLL2qp+53+Jdwvfgl3Wfq1PsiHJs4Paqn7nf4ke1dP3O/xLv3RY9yerQ8iMnB7V0/c7/ElGF01uDv8S7rHuRv3LKNCEeEMnF7V03c7/Et0FLFACI28d991vue5HisvDj5DLMNDfgt+RGhvwW/ItmyE8OPkMs16G/Bb8iNDfgt+RbLIsstEfIZNehvwW/IjQ34LfkWyyLJoj5DJr6pvwR8iOqb8EfItiE0R8hlmDY2j3o+RZaG/Bb8iVCaI+QyxNDfgt+RGhvwR8iVCaI+QyxNDfgj5EaG/BHyJUJoj5DImhvwW/IsC1rgeyBY9y2JHDbZNEfIjJiY2G4LW28F5qzkyXIvS2zHJaGWagmp3ROcItQBfLq4kWGzSvS45d6a8XwTDsbZ1eKUNPUxjh1rdViOH0lSopcIEUy10n5Yx2rFLBV00NRezYpKiMOJsTsL34BTxoY4XDQQRe4GxXnHphy/guQsyYFjWG0MEDLyvlbHHpB7OkcN/fK3sgZ6wnNdIxuHzOMrGdphYWgWsOfio0R8hkmDWNF+x8yUNB4NFvBZXdfYC3ig3FrJoj5DIaG/BHyI0N+CPkSoTRHyJya9Dfgt+RGhvwW/ItlkWTRHyGTXob8FvyI0N+C35FssiyaI+Qya9Dfgt+RGhvwW/ItlkWTRHyGTXob8FvyI0N+C35FssiyaI+Qya9Dfgt+Rc8lBA+9wd+4rsssfiWMqUX2GTgGFUwN7P/wASU4bASAQ6w3G670fEsfBj5DJQGX8H8q6d6qWenn6iM1jA8ghvnbbq5MaxjDMvU3XV9ZTUjXgiMzzNZqI42uRdbqilw3Dp5MSdBGyW51SNZuS7iq86SsEouk7BGUmG1ksVRTaizQwC5dYcXeCyVNJ5IHrC+lPLOJYy3D6fEKV85b5zaqMgm9rbHipw5xa4lt/SDxPgvFuVslyOqqvDsPldHjtJVue2VulrnMZbYu4bkK4si9KVXh2NSYDnONsdUxwbHK17pXPNnF1zwHvVsBM+nIBvR9W25tfcH8m9UV0I51xzAsrOgwrAcUrotMY109E6UcDzCu7prqGVHRvVSwnW14fYnbjE8qM+xVjYci9poJLIv2SgLLyNjFXjmBx1WI0dTS1Ae+7JYjGdnWGykgGpwduNuC1xxta3TEAxgN7NWbXXfYEmyAybw5/GlQL232KEAIQhANGa8QqcLwOeroqaaqnYW6YoYzI43NtgF5j6Zc64/jmVmU+JYJiNLD1j+1LRujHmEcSvWTgHCx4KmPZNwxx5Gj6pjWHrJNwP/DKAdvY6i3RxhgG383g2P5MK0VVvsduz0b4aXG58ng/dhWkgBYSsEg0m62JCQPFYySawwNcuERPN9/8AEsRhEPef8SdQbpbAKvn0yjOWWjJSaGr2oh73f4kvtRAPhf4k6bdyD6Apj0uguxPiMbPamD+9/iR7U0/97/EnLfuCN+4LcrGguw8Rjf7U0/8Ae/xI9qaf+/8A4k479yTfuRWlNdiNTOH2rpxyd/iR7WU/c7/Eu6x7kW9C2qhTXYamcXtZTdzv8SPaym7nf4l2jwCX4gngx7IjJwOwumtuHf4lnHQU7PNB+M3XW61u0BZALeQTwI+QyYNiY0bNHyJdDfgt+RZpbLKNKK7DJr0N+C35EaG/Bb8i2WRZZaI+Qya9Dfgt+RGhvwW/ItlkWTRHyGTXob8FvyJQxt/Nb8izshNEfIZMdDPgt+RGhnwW/IskJoj5DLE0N+CPkRob8EfIlQmiPkRkTQ34LfkRob8FvyJUJoj5E5YmhvwR8iNDfgt+RKhNEfIjJg5g20ho332VUeyFy5U47lF5w+ndNURujAayMvNtdzsArYeSGkgA2Wp8YlALwCwjdp4FSopcIZKayZ0xYC3C6anxNjaOpLnXEro4gLnbYlW3hddSYpQx1dBLBLE9ocHMcHDcX4jxVddJXRxl12UcXq6PCaOOrZTuMb2xAEHa26jHQ30kYNRUDcBr5XRVUThEA2Nxvoa1nHhxCjTHyGS+LDs9lru+wWzQ34I+RaWkvZZhsx3Bw4reNgE0R8iciaG/BHyJNDfgt+RZITRHyGTHQz4LfkSOY34LfkWaE0R8hlmvQ34LfkRob8FvyLZZFk0R8hlmvQ34LfkRob8FvyLZZFk0R8hk16G/Bb8iNDfgt+RbLIsmiPkMmvq2/Bb8i1S00MnnWHgbLp2WBDeYCwdGL7DJwe1dKT74/wDmWUmG0+loDXbG/FdoA96BdBLtOzRdR4MfIZKX9kbhrpcsCOmgmkJifswFxPab3KzsLpKPCsGik1Njp2Qhz3PeAG9kXNzwXbidHR1cIdiMEcsbRYtc3UN0x4vi2EVdNU4G+d8b6iExjTHw1CwtyWcYRSxgjI04v0rZXwy7fbSil6twYQyqiJBvb4SmOD4jTYph7a2knjlife0jHhzdjbiNl496TOjZmVsdMzquaqo6p7ngStZsS6zdh6Spnl/GMx9FjaKmxRxrMCe+5klmuWtPbcQxviswemZbCnkLe1cE7b8l45zDiNRhPTvPVUFLPUVMdRC6OGOMyPJDRtp5r1VlrMVDmTCW1WHSu0mPduktsdN+fivNlEOs9kozrAOzWU5J437KEot7Jefcx4viclPiGXMXpImwF4kmoHRtLg5osCee5NvQhWnG1gaNIA2QhBH+kLsZIzD8HyCb9gqk/YoeZj/ZJPlg/YKvXOVFLXZTxakg7Uk1NKwXPMtIXk3KWZsx9F2JYpTMwpszZaguBEcj+A08gEB7OGyF5a93nNvLA2W9MEyPd5zb+Ao/0EyA9RuvcLEOcfeleXx08ZtN2+0Udz/4Ey54fZA5iqpnRU+FRmVgu5vVSjh8aEnqocTfklXls9PObANsCjN//AmR7vGbfwHH+gmUNsjB6jSry37vObfwFH+gmR7vObfwFH+gmUtYGD1IheW/d5zb+Ao/0EyPd5zb+Ao/0EyjIwepEhJHAXXlz3ec2/gKP9BMh3TvmwxuJwRoI7oZk52GD1HvfuS734Ly4OnnNgkDfaKPxMEy0/VB5k8pdTjCITPc2Z1UvLip0g9U/Ej4l5b93nN34Cj/AEEyPd5zd+Ao/wBBMmkHqVC8te7zm38BR/oJke7zm38BR/oJkB6lQvLXu85t/AUf6CZHu85t/AUf6CZAepULy17vObfwFH+gmR7vObfwFH+gmQHqVY3IsCCT3heXPd6zaOOBR/oJlpk9kFmOGSJtRhMcb5yQxvVSjcfGgPVLSbdrvWS8uHp3zYGC2CRu7j1Myx93nNv4Cj/QTID1KheWvd5zb+Ao/wBBMj3ec2/gKP8AQTID1KheWvd5zb+Ao/0EyPd5zb+Ao/0EyA9SpDflsvLfu85t/AUf6CZB6eM2m18Dj4/cJkB6k4cSg8LHmvL3u8ZqcXO9o2C3/gTLRUeyCzJTQNkqsGYxhda/US7ID1PazbHcKO52zZQ5Sw9tZiLgIzq9+G8BfmvP8PT1meSJslPg8ckbxqaTDKdlH849KGOZxwkUWJYBGANX/dZD5wtzQHpCvwHAc/ZfiqJ4zLFURNlYWyna4uOHiqNp8GzD0YZtw2gosVpfauolLGwinOogNLj2nekrgwXpjzJgeFU2G0mBs6uKNrGnyeUbNFuSjObM5ZmzFmGgxKagkb5LI6QMDJLbt08CgPaOGTPnw+nlkBD3RtJvzJAXUvK9P065rgp4oY8DYWxMEdzBNvYWWfu85t/AUf6CZAepULy17vObfwFH+gmR7vObfwFH+gmQHqUnZYlxABAJ8F5dHTzm2++BR/oJlg7p9zPFC+aowaOONrtP2GUID1Nubcu9KvK8HT7micRywYNG+J52PUylbD085tuf+wo/0EyA9SIXlr3ec2/gKP8AQTI93nNv4Cj/AEEyA9SoXlr3ec2/gKP9BMj3ec2/gKP9BMgPUqF5a93nNv4Cj/QTJfd5zbzwOP8AQTID1EAbm52RYjgdl5dPTxmv8CM/QTIPTzmtgu7A2foJlALc6S+i7DM8aJ6pvVVLCO09zrWANth4ryv0iYNU5IxqTCqZwlo3udqLGn3psNz4qyKb2QeY60ukpsHhka3YjqZbXHHZRzNvSJW5pge2tynRNqCfsraBxdxue0QmWCCZKr6ykx6J2H1kNJUam3llZqDt9gArbwHLuYcXzxQ4ni9JNNTtiNqpsWiM73Hyqjm4RizHFzqSqicw62Ohjfe/yKY0+cc80+FwUtN7YCGINaCZJw6wUgsX2SBc7pAy45jSR5Q/tDgfrbF6Uy+2+A4Yefk0X7IXjTDjmfPeZ8IbV08mmimLi+ZzwTqFuLgb8F7QweN1PhFFFJ5zIWNNt+DQgOvSNV7LJJfcW4JUAIQhACTe5SoQGDAbku4ryr0nN/8A5gcOGtrS6eS1/wAk1eqybkt52Xlrp4wfFcJ6QKXMNHS+UBr5HjYut2Wt5BAen6Q2pYBa56tv0LcSQDsvLcXTpmaOBgZguotAbvBNyCV/Tvmott7SgE7/AGCZAeowb8rIuvLY6d81s2GBtdfvgmWqp9kDmWkAfVYRDGD3xSj0c0J0nqpC8t+7zm0i4wKP9BMj3eM2/gKP9BMsXJEHqNC8ue7xm38BR/oJknu8Zt/Acf6CZZLAPUosjZeWvd4zb+Ao/wBBMl93nNv4Cj/QTJgnB6kRsvLfu85t/AUf6CZHu8Zt/AUf6CZMEHqTZI42aSBdeXPd4zb+Ao/0Ey11Hsgsy0jHS1WDRRxt3uYZR9KYB6nvw2RZeWx075qdpfFg0b2ObqH1qU8Uvu85tP8A+4o/0EyYB6jsgbLy57vObfwFH+gmR7vObfwFH+gmQHqRAXlv3ec2/gKP9BMj3ec2/gKP9BMgPUqF5a93nNv4Cj/QTI93jNx29o4/0EyA9SXNzfggXsb7ry57vGbWDScCjcT/AOBMVi7p5zSInyy4NHHHGC9x6mUbDcoD1KN+PFJuG7ndeWaf2QGZayMS0uDRvYOB6mXe62+7tmt4v7SM/QTID1EOASry17vGbRsMDj/QTI93nNv4Cj/QTID1KheWvd5zb+Ao/wBBMj3ec2/gKP8AQTID1KheWvd5zb+Ao/0EyPd5zb+Ao/0EyA9SpN77cF5b93nNv4Cj/QTJXdO+bXuDfaONotcnqZggPUTd3E6SCtVTMIYJZXnaNpefAC68uM9kHmKoNQ2lwmJ7ogCR1UvPhwK2VHTrmiWmMb8BjPWt0H+bynYhAXjl3NOC5xqq6ghsZKNzWPb1oJ3F+SrjpK6MJcHlqMx5MqYqKojj1SiVjprtYHPPOw3VU5Xz9jmWMYxevocDZ1tU9j9Pk8gGzbcgnvMvS9mjG8IqKN2FyQCaJ7D1UUrb6mkfxQF1dBuPYnjOXJzi07KieAxs1MYGDdpJ2Vl3ANrheNcg9JGZMm4VPBHhLpXTOY674ZTwBHLxUob08ZtF74DDe33CVAepELy17vObfwFH+gmR7vObfwFH+gmQHqTgdzsje/HZeW/d3zW5n+hGX1fcJkp6d81mVrfaNnp+sTID1GDvudliNR1eOy8rw+yDzBVTugiwlnXxjWW9TKNr27/StzenvNrXXOAxkfkJkB6kaeRIJSry2enjNd9TcCjuf/AmSe7zm38BR/oJkB6lQvLXu85t/AUf6CZHu85t/AUf6CZAepUhF+S8t+7zm38BR/oJke7zm38BR/oJlDB6j0juQ4cLbLy57vObfwFH+gmSs6e82Nc4uwGMgC/2vMUB6Rx7CKfG8NkoaxpdC/jYkbjhwXmDpR6JafIuDTYphFnua1z42t1EtItxud+JXU/2QGZfKGQPwiCOWRpe1pilGy0Yr004/iNNJSYplmlqIiLWfSSSA38UywUhNiEkhZNUi9QHhg5ad+Y8VaFPS5pzRkiXDKWUYjCY9McVPB2m3JO553t8ygWPUtdieIOq48JNNG7/AFUVO5gBuTfTb0rsyximaMvTvdhpxSJji06bysAtfgB4lSD0Vi9FPT9B9TDUMNPNH1gc2Qb7QkLP2KTtOQ5Da9mw/slUIzNedKrDZcKq462eOpe4fXnTOHa257c16U9jtl6uwDJsTK+ONnXxxusHXtYEdyAtnikLQRYpUIAQhCAEIQgEdYjfgqb9lC3VkOMc+sk/duVyuFxZVf0/YFV49kx0dC0OkiL32LrX7BHcgMfY5t09G2GAi382g/dBWivH+Tuk/M2SMKiwZuDiXqGNjv1MrvMbp4jwT57vGbfwFH+gmUOLfAPUl0nC5K8ue7zm38BR/oJkh6es1AfXMEjawcT1EqnR5g9RtJcNxbfmsivK1H0/ZlrGmWmwmJ7A4sNopeI8Fud08ZtDiBgUex+4TKPkD1GheW/d5zb+Ao/0EyPd5zb+Ao/0EynEhg9SIXlv3ec2/gKP9BMj3eM2/gKP9BMp0sYPUlyi5Xlv3ec2/gKP9BMj3ec2/gKP9BMsconB6jub8Cl2K8tv6ds1gA+0jbnl1EyyPTxmwtP/AGHE0DckwyhNhg9Q2vw2Sgd68rweyCzJMXtgwiKQxnS+0Mpse5bvd3zZ+BGfoZkIPUVt/Ql+JeWz08ZsttgbP0EyT3ec2/gKP9BMgPUvxIXlr3ec2/gKP9BMj3ec2/gKP9BMiB6lQvLXu85t/AUf6CZHu85t/AUf6CZSD1Ki68te7zm38BR/oJkknTzm3QLYFHfUN+omQHqQON7aSlF+a8sD2QGYnVUtIMKj8oaQNPVS8bX7+5bB085s6v8A0FHcG1+omQHqRC8te7zm38BR/oJke7zm38BR/oJkB6lQvLXu85t/AUf6CZHu85t/AUf6CZAepULy17vObfwFH+gmR7vObfwFH+gmQHqVA4bleWndO+bCBfA2cfuEyyd075rc5rBgbL/kJkB6hN77EWSaQJAbHfmvLFT7ILMEFRHBPhLI3vIaz6zKLk8BxW9vTxmsF1sDjcOR6mYoC8syZ9wnA8eosKrXtE1XL1TCZALG1+Cbc69HWC5tw0yuZ/OHkTxya3WB3cDYekrzZmfPmK5lxbDsVnwJoqKSbrW/zV+5025i6l9P055ligjpfaMNa2IMDhTy8hZAPnRjVZky90gRZbxTE6eqpBKIwyODQQDGXnc78SvRQ4DZeIqHO2Y6PO0mYpMNklkbI2RrXRSu4M0eKnPu85t5YFHb8hMgPUqF5a93nNv4Cj/QTI93nNv4Cj/QTID1KkcSCLfGvLfu85t/AUf6CZK3p5zadjgUe/8A4EyA9RPcQBpBKUXub8OS8qzeyCzJRNL6vCYmAu0i8UvPhxK3t6ec19oNwON1ufUzFAepELy17vObfwFH+gmR7vObfwFH+gmQHqVC8te7zm38BR/oJke7zm38BR/oJkB6lR8S8te7zm38BR/oJke7zm38BR/oJlAPUhF7bcEW34Ly37vObfwFH+gmR7vObfwFH+gmQHqN2wva9lSvSL0JYVjVZUYtA5sM7Y7nW55vYHuPeoJL0/5op2GSowWFkTeLnQygD5UM6eczzRa34JDJC7s2bBK4H4kQKbzO2sw3Fq7B6p4bSU0zomPLbAhp29KfujXE8Wgr+pweriiMpawQOj1vd2uA8St2esxVub4py3LVPTTPeHmRlE5jj2rneyh9FTYzQ10FTS09dBVRvDgYmPaLjhuApB6M6EsuYvhWbcQxHHaaWE1HXOa98ekODmjcfHdRWAFvsmWhzSHNraf4+yoY/POeoXwl/l72sYGj67OdrqXdEmF49mbpTizDiFP1QjnimeXFwJAJHvhc8EJR64YbtBtyQkYLc+XehCBdFvM2K5pcOpp3654g93fchdaEBx+1tJzhafjKX2tpPuLflK60IDjOH0jSLQtvfvKprozy1X0+fsUnxPDpW0jmShjnEAbyAjgb8Fd7xexHnDgsGRhh1CNgJ4lrbFAcsWG0bdYbC23iVn7W0n3FvyldTbXNlkj35Bx+1tJ9xb8pS+1tJ9xb8pXWhAcntbSfcW/KUe1tJ9xb8pXWhAcntbSfcW/KVhJhlIW/YB8p9a7khvbZAccmH0rg4dS0nTwuVUGF5YrIum6CsfhsrcN6uqvKSNNzbTzurq2Pa4LEMb1mvQzV8K2/yoDn9raT7i35Sl9raT7i35SutCA5Pa2k+4t+Uo9raT7i35SutCA5Pa2k+4t+Uo9raT7i35SutCA5Pa2k+4t+Uo9raT7i35SutCA4nYbS22hb8pVRdLuXayqzjlKXDcPkkp46iYzFhFiOr2vc96uo8FzujaR242vfH5pc29kBxUGGUsdFTtNOGv6tuoXOxsL811e1tJ9xb8pXRuA0234bLNAcntbSfcW/KUe1tJ9xb8pXWhAcntbSfcW/KUe1tJ9xb8pXWhAcntbSfcW/KUhw2j5wt+UrsQTYboDgOF0Ya60LbH0lQLpkwOarywYsKpHPl1HZm5PYPeVZVw64N7JHRte3TI1rh3EXQEO6O8Fjpcj4LHWUhiq2UrGyBx3DufAqTuw2jcSXQDh3ldTWWGkBrWDgBslduCO9AcbMLpAD9ab6Nyj2podWrydt/E+tdzRYAdyEBx+1tJzhb8pS+1tJ9xb8pXWhAcntbSfcW/KUe1tJ9xb8pXWhAcZw2k5Qt+UqEdL2BmpydJHhlG6WpM8Zsw72vvxKsM8CsHta8We1rm8wRfdAQnorwMUeSMOjr6Ux1bdesOO/nm3A24KXe1tJ9xb8pXQ0BjbNa1reQAss0Bye1tJ9xb8pR7W0n3FvyldaEBye1tJ9xb8pR7W0n3FvyldaEBye1tJ9xb8pSe1lJ9xb8pXYhAcJwyiuLwN+U+taa3DaXqtqcH4z3+Kc3NuggEWKApvoJy7VUlDX+3WGyQuNTOWOkI3BcLcCrWdhtIG/YAR4ldTYgzsxMYxvOwstluzZAcYwujBBEDR8ZQcLoyd4G/KfWu0IQHLBh9LA8OihDXDncrpANjqN0qEAIQhACEIQAktuUqEAW+Vap4I52aJmhzTxC2oQHEzC6JnmwAfGUsmG0jhvAD8ZXYhAcftfSgj600ei5VR9O+WKzEaOA4Rhsk7xJGXGMj7q0nie5XPz3ssZGNf57GOHpF0BxU2GUopog6ABwY0Hc9y2e1tJ9xHyldiEyRg4/a2k+4j5Sj2tpPuI+UrsQhJx+1tJ9xb8pS+1tJ9xb8pXWhAcntbSfcW/KUe1tJ9xb8pXWhAcftbSfcW/KVWvTpgU9bkypjwqjfLP1LxdltjdtuJVrLTMGvIjkY17HbWLbhRgEdydg0EOXcObU0fVztp4w7U43vpF+afPa6kO/Ut+UrfpIItYNGwAW1SDk9raT7i35Sj2tpPuLflK60IDk9raT7i35Sj2tpPuLflK60IDk9raT7i35Sk9raT7i35SuxB4IDibhlK17S2EAN9JUcz/AIPHU5LxuOjozNUPoqhsYad9RjcBxPfZS5t7AHisSy5IIBYRYgoCtuhTA5aLKFLDidI6OcRxgtfxadJvwKn4w2i07Qtt4ldbWMjbaNjWjuAsla0BlroDlGG0dvsLflKX2tpPuLflK62iwQgOT2tpPuLflKPa2k+4t+UrrQgOT2tpPuLflKPa2k+4t+UrrQgOT2tpPuLflK0VmG0rqeS1OHP0EAAnu8U5LBx4kcRsgKW6GMt1dHmLHzi1BJHG+KnEZeQNwX34HwVv+1lMRbqm/KVvbAxjpDGxrS4AEtFiVtbw8EBxswyjY/WIRq77lHtXSXJMILjzuV2oQHGcNpXBodE02FuJSHCqIu1GBt/E+tdqEBye1tJ9xb8pR7W0n3FvyldaEBwOwujLtIgaOfE+tBw2k1EinBII5n1rtAu6/dsh224+NAUnkbL9ZF0u4pU1lBJ5A7DixjiQBr65h5G/C6uB2HUoYQ2Ace8robGwO6yKNjXnYu02NluHBAcntdSHjC35Sj2tpPuLflK6QO0Xd6yQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylJ7X0jT9hG/pK7EjheyApLpKy5XVfSdgk+HYdK+jjo5GyFpFidfpN+Ct+nw6ka1umAMeBwuTZdDmNcdXVsL2nSHObc2W1vE9/NAcbsJojL1hgb1luNz61lJhtLL9lia499yF2IQHF7V0hsHQtIBuNzsupsTWtaxosxosAs0IAQhCAEIQgBCEIAWLo2lhbbYixWSEBxjDKQP1iEB/M3KPa2k+4t+UrsQgOT2tpPuLflKZs34VHLl+qZS02uew0tadzuPSpIsHkEOBFwOVkBVXQXl+WkytVx4xQPjqDXTvaXm3ZLttgVZTMOpC0AwtuOO5XQ1gY20TGMHGwFt1sj8254nigOX2tpPuI+Uo9raT7iPlK7EJgHH7W0n3EfKUe1tJ9xb8pXYhRgHH7WUn3EfKUe1lL9xb8pXYhTgnLOL2tpGm4hbfxK4sYwuCXC6sMpuskMTg1oJuTbxT19CxIv5tvBBllP9DeXqmhq82e22HSU4mxR74BIRuy3EWKtUYZR2+wD5SulsTGklrGtJNzYWuVsQg4hhlHygHyn1rL2tpPuLflK60IDk9raT7i35Sj2tpPuLflK60IDk9raT7i35Sj2tpPuLflK60IDk9raT7i35SsXYZSEG8II7rldqxJOu3KyApKly3WDpurao4fJ7WOqGEPuNIHUAd9+KuKPDqTTpEAA7rlbxE0PL+rZ1p99p3PxrYzggOb2tpPuLflKPa2k+4t+UrrQgOT2tpPuLflKPa2k+4t+UrrQgOT2tpPuLflKPa2k+4t+UrrQgOM4ZRnjA35Ssfa2j6wEQt1D0ldySwJuDugKW6Vcv1dVmvK76CgkmhZilO6bSRswEXJuVatJhtLFHC0wBh0btJPrTi+ON7g50bHOabgubexQ1h1EvO/JAcjcLouVOABw7R9az9rKQizoQfjK6tzpt8ayQHG3DKNvmwAfGUvtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylIcNpPuLbeJXYkeLtIQFOdPGXKmrwmjODYfJK4VUBc5hBsOsN+J7lZmEYXBHQsbJTaHknUCT3n0pykax5bHJG2Rlr9pt91mwEPcTwdwQHP7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQFd9NWAvr+jXGabCqN01Y9jdDGHc9od5su7o7wTyXLkMVdRGGZriTrPh3FTSVoewtc1rgeThcJGgabWDR3DZAcr8PpZY9L4muaPSUe1dHpI6gWPpPrXWDyCyQHD7U0QFhA0fGfWtsNHDTuLqdgjLvO53XShAYhjQb23QskIAQhCAEIQgEIuQe5JY2O91khAYsFgNrE8VkhCAEIQgBI9wY0ucbAJU343iEGEYZU4hU36qFoc7cd4HPbmgOt1RG14YXdoi4FlsIJIINgOShGR2y4zHNilSXNb172xtNx2QbtPdwT5iGY6Glmkg1GWRhs8RuB0n07oB3e9rGEyGze9ZRvDmtLN2kXBTBh2YcKzDBJHRVUbnEFthICQeHIphwrFHYLnIYLV6/wCdiSaJ583Szbnvz5ICwEmsWJvsOKxNw4W4FJOzXE4ciLFAcrsVo2tJdKQBz0lYtxmhcWhs1y46R2TxVEYVhlLVdOmYaapnmbTRy0/VsMxHGLdWLiuV8Dmlpm01Y9tSyVr9JqTcgHuCAsFz2t842QHAutffio7JmPDMOxOmweadrKqTUGa3jfTueJuu2sxmko6mnp5HXkne1jCCOJ4c0A7EgC5SNcHC4NwmjE8bp6KTQGPnkA3EVjp777rRSZnwyqw6proKhmiBhfK0vbdrRzO+yAfnWOyQnTudu9RGXPWDCnFSJesjDgwuY9pAJ791vzBm2mw3Kc2OxXnpWsL2mMtNwHAd9uaAk9yB33WM88cERklNmDibXUbyJmZmZcLNU2CaO7iO2ANrA8ie9NnTDAx+QMVk1vjcGs3Dy23bb3ICcQysmbqjNx4WWdxcDmVW3RriUOG5IhdXSku6+TQS/ibCw3Km8GJ0r6JlRNIIWPAdeRwHFAORIAuUA3Fwo9DmrDnYgyimkEM7yGsEjmjWTyG+6KzNGEUdeaSaqjFToL+r6xtyBxNr+hASG+6DwKigz1gvUwSyzthbJfT1kjRw+NZDOmEnFI6F0wa6Rgex5e3SbmwHHigJMHamC+zjySkkcTx5rhr8Shomhsjg6U+axpFz37LhwzMFBis8tEyUMqA3U6Nzhq03twBQDnFWQvqTA2QukbcEaTyXQXXa48ABsVSeVmyN6bK2HrXGBs04DS4n3myuze/Z4IBWuGwvuRdclRilJTymKaXS8crFacwV7MNwmoqJTYBpA4cbFVt0UULsyZa9tK17iaxg0EOItZxB+hAWz1rOq6y/Y06r25LhbjVCTYSk/wDkPqVTZFnmxCqxfKtRMSOvqJg4OIOi+m1+K6M09GeXcHyzPVzy4j1sTQS4VjgPOA5+KAtyCqhnYHxuu0mwuCN1tc4NFybBQrooww4VlQQHrSTM97TI4uNja3FS+aVsVOXykNFtyeCARlZA+slpWPvPG0Oc23AHgthcGONzbbUVWvReyoxLEq/Gp3ExTs6toF+LHW8OSluZ6CpxWFtFC8Mp3WLzuDsdxcehAOFHitHW1UkVNKXyRW1N0EWvwTg94Yxz3bNaLlUL0n5GpMqx0eM5cqaiOtptcmieoe8PIAsNPPieKmOe8wTYXkbDJn0NbVdeIWzCmaCQHMOo7kWQE7bjFE4RkSm0gu06Tuu5pDgCOBVJ9G+HZIxPFRU4a/E6fEibinq60E3sdgwE8ldcQDYw0XsBbdAZIQhACEIQCC+rhsgi5ulQgEdfayNwNhulQgBCEIAQhCAEIQgBCEIAQhCAEIQgBI4EjY2PelQgEIuLFKBYWQhACEIQCBwLi0HccVjJI2Nhe42aOJQbl+w4cfSoJmLFn4nnCHLlG4a2witeeWkO0kbb++8EBL58XooIY5ZJrMkF2nSTddjZWO4O97q+JUx080raXD8MJmMcUTHB1nlt+0LfSpdRZ9w2nOHUUkNRGZRFG2SQtDSXADjdATZtVC6bqmvu/ustxIA3UMz/ABPOEjE8P1GoiAazSSQQ52+w4p4yvjEeOYVDWQm7S4jlyNuSAe7i1+S4sRxKkoIzJVy9W1u97E/QutpBvvzUB6acLdi2Sq6mik0VL4XNjIcRvqb3boCdU8rKiFskbi5jtwSLbIqKmKmgfLM6zGcTYmypv2PeNyQUNVl3E3O9sGTSTt1HjFpY0cTfiCtvshKiauypV4fQPc17WFsr2k2adTSLkbjmgLWpcXoqqCSaGbVHGCXGxFgOK2UGI0tfE6Slk1sbYE2I4qu+iNtNTdG0hqJHPgDpRI8PvtYX3KfMi1WBeTYnLgssjo2TATF8ofZ1trb7ICZahqLb7hYySsYwucdhx2UbObaQua1tPUSQPdp6+PSWDvub8lBOnTM8tBgtDDRskvPJBIHAA9nrCO9AWK7NmDNkdGawam8RpPqT1HIyWJkjDdjwC094KrHNVBlZhOL4q2sgmBc5revDL22O17cLJyztnGHKeWcNraenqJoqh0EEegNds9hI4kcmoCekgWHviuaurYKFjXVMmhrjYbE7pvylihxbBKSqdFIxz2arPAHMj+CivTfA2TKbn6ntc0vIIcR7woCwIqiKWBsrHXjcLg2WYHa4qBZOxunwjo/wB1UJJZDRsIa0gudy5lSarxOnp4YX1DZGvLj1bLgFzrcAL7oB4B432QXAWvzUZoM30VTihw+W9LVEOc2Octa5zW8SBfgubEc94XRV1bRlzpKqmDS5jHNJNwCLC/cUBMAb8EhcACSeChcnSFhFPFFJVdZE6R7WNa5zATfhzXTRZ1oKjHvauQPimldph1lo12Fzbe5QErc4NAueKC4BtzwTRiOKw0LjqPW1AFzFGQXBvfYriwbMuHYzNVUsBeypYS2SJ7m6g4C5FgUA8UeKUlZO+Gnl1yMF3DSRZdTttzsFTXRK3qOkvMdPeRwZSQuF3EgXddXFNMI4ZJHAgMBO/oF0AlRUxQSRtlfpLzZotxXHi+O4fhEbX4hUCFrrWJaTx4cPBQ7JVa/NWJ1OKav5mWxui+cHhtyXdU5Ko8UmnmxV07nkua0RyloDb7bICV4diFNiNDHWUknWU8g1NfYi4vbn4LViWMUOGlorJur1WA7JPHwVQ9HNBJl7pTx/CsPMz8NNQ1p6xxfoAhuNzw3Kbc55ioajN0keZcFx0UIjY1s8OmNgNyLkl3ADdAXjh+L0WIFwpJhIWmx2IXcHAvLb9ob2US6OabAosHM2XJ3yQz6XvEkwkc022B7tlJpZo4opHOIDGDU51+SA3ue1ou42HBKSALngorieb6PDg2adknkVwwy9nTqJsNyUmIZzwrDPIA9zpIa17mQyMc0tuOO5KAlWoF1vRdA7rbJjxTHocNpKaaZr3sqXsawstwebDiVurcZhpJeojjlllvbSyxN/lQDmezuTpvsAsvNHpUbwTNuGYrS1U1O8tlp2vdJC9zdYDTYmwPC6bT0iYX5LPNTw1E5icGyCMsdpJ7+1sgJt5rtzseAWVxe3NRGtznRjJVdmGibJJFBDK8NaWuN4wb87cR3rnyFmwZiwmWskhljaXg3eAAOyDyKAm1xcjmFojq4ZJzCx95ACSLdyjxzXS9bG5tPUy0zz9bmj0lh797pszy2Wno6bFsPPCSMvG5OndxQE61C5F+CVNeXMUZjeC0mIQH63O0uHDvI5eCdEAI9KEIBLG9+Xcho5kWJ4pUIAQhCAEIQgBCEIAQhCAEIQgBCEIAQSBb0oWGrgbG5QGRe0NJvsOK5Zq6njhZO6S0RBN7EqF5mxiWvzZT4BRHcwCpefB5BG2/JdOcqLL7aCkhx6qfAyESCLTUdWXA21eNtkBLnVEYey7rOdawtxBW/YXKjuNUnlWXxJSkhsEYkjuTcgM24cVp6P8bbi2E9S8EVNIGxzA284i/f9KAlDnBtrm11z1ldT0bA6ofpB52JW+4tsLhRPNeUIsx10DquV7aZjCHNZI5jidVxwQD+cXowLmU279JWdJidLVTdVBLqfYm2k8FQGeMHgp+l3LlM19SKOetDHN61240AlWbLlrDMAxSPGH1L4qcR9UGyTm5c43HHbkgJ657WsLieyOaTrG2BvsTZR6jzXQVFVFFK4wGY2i60tGqw3tvvwWWKZqwjDal1PUVURn6sSdW2Rt9JvY2J9CAfi4N1Eu2HzJeAs3cqO0uZ8LqKU1nXCOGGwPWPaL3+Nc7M6Ya2oZT1b+qmcQGhzmt1E8AN0BK7nTcjdYxPD2BzTcFNtTi1JCyOW5e97dTY2OGog+i65aDM+H1080ETrVMIDjCXN178NroB+BuduWyW6r7J+f25ixuvoo6eeNtLPJCS9rRu23cfSp9I5obd5DW8yTZAZ3F0hcAL8lFH55wgsl6idshic5rw17TbTsea2UuMYdmPCaiSgnD5Gga2NkBc0nexsdkBIqaqiqYusiddly29iNwt1xdUV0J5joMEyfUvrJJpJG1dWXnrAbNEhPMq3cNzBhtdhnl8FTEYDbUS8dkkbA+lAPCQqMDN2Gxup26yIJXaWylzdPp3unOvxmloqeOR8jZOss5jY3C5aeB8EA5gO7N/jQ0abjlxumnDccpcSNQxmqJ0NtYkIFr+BXJVZqw+iAfMJGxa+r6wubpv43QEjuNvSkuL25rkoqyGsgZPTSNlhmGpjmG4I8VqxTEqfDg19Q8do6WMBGpzrXsLoBwJAISk2t6UzUOP0lXI6MaopACS2QgEWFzzTU7PODMimdFMKjqG639U9psPlQEt1DVpvva6AQSRzCY8GxzDcZpHy4fUse0O7fbBLTYEg2O2xXPiOaMNo4muqHltIQSagvaGW79V0BI7/AFy3KyGANJAPxLkfiNLDRRVL5o+qktoOodq4uAPSQmylzTQS4oaKZ4p5i4hjZXNaX2FzbfdAPrjyvYrmbWwmrFN1hM5BIbpPLjuuPEsao6ORsUrtc0hDTGxw1NB4Ei/BVHl6ZlT00hjJX6HNqCGl5QF524WSk24rCR7WNLnbBu6jbc6YQ6oqIIphJNC57Xta9pILePNASZpDhcIBB4KLU+csLnwuaqhna+WNup0TXtLhvbhdOGA47QY1SyVdFMw6C6Nw1g6SACb2PpQD0SALnghR2pzPRRvlEbZKp9OdL+oLXWJ+Nd9Bi9FiNIaqjqoXwtvrIeCABx4IBxke2MXcVhHLHURXjd2TcbiygmdceoKvA6+nBlLNY+useA3Y7bgrh6B5W0/RTRvnmL2Ry1TnSF19uvfzKAswCzeN1pqKuGmLBM4guvbYlMVXmzD6FzPKHOiheQ0SPc0NJJsN7qvOnNp8syxLTTnrHPqbFrzpJ0s7uKAudrg5oc03B3QXC4HeuDBTfC6N7jd3URg+OkKNdIGYHUUlJhNLc1tcHGO1j5hBPO/AHggJlFMyW+g3ssJaqKJj3vdZrDZ1gTYpto46bCMJvNLpbpLyXv4ki54qs+m7FqaryTMYXyx6XxgSa7A9rvBQFxNka5moHZAe0i4OyhuA19LhmWqOXEKht9b+qbrs6R1+AvxTnQZnoKuuZTnVDUPjMjGSFoJb32ugJCSAQO9YdczTfVtfT8ar+r6Qooc9fydME+qOVrJHWbbeMPFt781JcSzBh9DMxuozVTmB3URuBeGm/aIvw9KAe5ZWxRl7j2Qk1te0ObzTXRYpRY1A+KCZrntsJYw4aozxANuHBRXCMWkwfOM2DVjrsdC18buRc5w2ufQgJ9fUDZ1iNiti1A6pL8A3Y+lbUAIQhACEIQAhCEAIQhACEFIgFQkCVACEIQAoH04mZvRdmDyb7J1A3Bt79qnibMx4VBjWDVWHVQ+s1LdLu0RzB4jwQDVkW5yjQCJjW/zePVpPF3VtuoHgerCekHMceYYm1FPiVU2SjD/roYxsYBAAvp35FSnJ9Q7BMNrMPxLsOgMsjHO7I6obN+YcVEKWPG8axbFKrLmYsMp4XSgiOSmbM49nkbegoB46HsqNwmGoqpqaIa5H6DYXHauOC4OlV0zekXL0tO5zZGUkzbNNuLgpBlOvzBSV00GNzMqKZkYcJI6dsbb334DuSU2Fz45n2HGZ2kU9EyWCK7bAtfuDtseHNAT1hIZHq4lZuB0u8CkYNDQ3uQ8OLHBps4ggE8kB57oMOOKdPmZNNXLSup5acuEXO8X/ACViuyU6kx6PFH4vVyRNjDdD9Nrg3TSzo3xqmztiOZaTGKRtVWOjc68JPmN0jbgnTGMs5pxWOGCtxqkfAyRshDabTw9IQDD00YRH5JS5rw+JjZ6JriJGABztbmtuTx4J8wWakzNWx10LWyU9LAyWNzm2IlaADseG991KvaOKbLLMJlcHsDA3Vc2NjfxXHkXLMGVcF8iga4h00jyS5x851+aAg+R5qzGsz5qMkznimr3whr3+aCwbAHlutVRkz+S+Ts1yvrJZBLQOGg6SBa55eK78c6OMUhzTPjmWMSgopp3vklbLG6XU52xNjsNk9PydXz5exKlr6+KWtrIHQmRrC1vo7KAg+T8Hwyo6Oa189HTuHWB/WGME6urutOGPNT7GHrJB1h8jce1+WU7wXJNVhmVJ8JFXEXzPD9ek2HZ02WrBcgzUnRvLlKprIZY+p6oOa0gDt6vFAdnRNA2PKlNojZECATo59lq29LcYfkHFmvALHNZe/wCO1LkDLmKZfpHUlbXwVFK1ztDGRaSOAG/E7BOGesDnzDlmrwqnnZC6cAa3NJGzgeXggKW6LscZUTw4TmOBnUNl1wagZAXlwAHcNlLulOofFjmDYTTSGlopoHv+tGzey4W9C763o1kqMtUuGsrIGVlPO6ds2l1txYbJce6P58bynBhmI1cb6ymbHHHO0OYCGm52HG6AyxXJHtpjuGYtJMaUUcrZh1Zaddm2sVF6nDaObp4w6KojjqIXYTMXNkYCCdTt1LMuZUzGx1MzMmMUtXSU79bGRU/Un07jjsldkWrfn2DMMVXExsFO+mYxzCTpJJ8DxQEU6bsDw2iiy/T0dDTU3WOmB6uMDk1aeligpMMw3KVRQUkEFS+so43TRtDXOBvcE9ynfSHkytzWcPArYYxTl57TD74Du8Fy5zyHW5ipsHhFdBGMPlhlu5h7XV32FkAyVmJVVZ0qNohI4shmlaGOdZpGm/NPOG5HfRZyON+XTQiSNkZhYW6XWINu/eyXO2QJscrKLFMOqo6XFKfWeteHOBLrX7PDgnDLWW8YjcKjMGIw1lQwWjMUXVBpB7JIHHZAQvLX9d9dZo09fP8AsK6TcAhoCrzCsj1dDnmox51XE7rpJJLBp9823grCIAJNrkiyAjmfaGXEcs1MDNnDtcRyBUY9j09vuYYLA6wkhjdq795HKxpmCZroi0ljmkFQjDsn1eBS1LcEqWQwzgNLXNMlgPFAQrozp5Zel3Fq5pIpmxVENgdtQl7lLOleWTEJcPy9C4j2ya8Gx+CQfDlzT/kvLEWXaaoDSJJ55nzPeCeLtzx9K5hlh786MxiR92seXAG/NtvBASmhgbT0kMbQAGsAsO+yivSpjDcGynPNrLZC+NoAvfd1uSl9+1p0mw3uopnXLIx6qpJDciJpFt7cQeSA7MkYOMGy5T0rRZzXOftbfUSeXinxzhE1znEBvnErNrQ1jW8gAFHc6YNiWN4W6lw6uhpiXB2p8ergUA011HFmrGoHv0y4dTuu5j7aXAixBB8FLZaOiqaVtLNDFLAxoaI3AFuwtwVX0uQM509FHTx5mw5obf8A7n3qQYvgGYGCj9qsRgY9gYJSYNYcR5xF+F0BDOkLK9Jl3NWEYvlyNtBPeV0jKZgj1GwAuRxtcq6qFzn0UDn7uMbSfGwUfjwCaqrqSqxeRtRLDq3a0sG47gpLGLNAtYDYIDJCEIAQhCAEIQgBCFiUBkhI3glQAhCEAIQhACEIQAhCEAIQhACEIPBACFiCskAIQhAYP1a26eF91UOUo5G9ONa6oJMpwybTc37PXMsrfc4BwB4ngoFmnB5KLNcGYqFjnSmNtG8NBPYLtRNuHvRugI17IaNk2G0cUgDmvabgi/v2la+lnDqKly/lWopaeKCUVsF3xsAJs0KVZ5yo7OtFRywzsi0NOzrm93Du8Fszhk6bMeHYZSPqogKOZknAjzRbkgHWiex2TqKScB4MTLl3NRH2PHlB6PKXypzi4yS7k39+njMtPLDlaLBKB4lqmMa0Bg1HsnfbipBlTBI8BwaKhiHZa5xNieZvzQDuCyxA4jbgopn1xZhYk2c+EOcQefBSyzeIPDZRnOeAVmOUZhiqGMFiN2E8bdyAqTPgfkrOmFZppY+qpKiigo3iPm9z3Emw34WUhzd/OujrMePBgfHXiKWHVtYB1jbmPjU7xjK0WM4DRYfibmyCnfG+4u3zR6PjWnMmUxieWDg1HK2Kl06Wtdd1he/HigIt0ZQtHRNWsexroS6cuvvy32XF0KUtPLQZthhYyGF1a3SWC1xp22UvytlKfBcq1GDCqjLZes30n33jutOTcky5dhxOFtQxwrZhKSAdiBbmgK7pMTxbIWIRYXmWjiqcBqperjqHy9c4Fx1P7Db2tf412dOclLUZdweogY1sL3UxjeG2IaZNhbkFOP5G1MuHjDqypilptTj5hB7R37XFc+c8gHMlBQUUdVFHS0jY26TqJLmOuNxugGPp+pYP5IdZLGxsjWzEEC/wVzdKojHRblN7wHA1NA2xH/hOUuz3k6fNGEeRy1UZLA/3pF9Vu7wW3MWTG43lGhwaaZgfSmF7HEkAOjYWjhvzQDzlFgGXaARAMZ1Z2b+MVGem5r3ZOlEW7rP52/1bk/5OwWtwXB4aSuqo6gsaG3YzTzJ/iteectPzLhbqRk7IdQIu4Hm0jl4oCp+iTGgThuF5sgjJdD/Mes+ugxNHa34N3tsU/Z3r6j3RcKoJqqWGBtRGYQ13ZLi3cdwTnjXRizFMsYdhktSwVdFAIIZgXtAbe52B3XVm7IsuZsIomYhWQjFaWV0sdQAWNDi2w7I42CAxq8lQOzPBmCrrZDPFE+BrLNddrzfjxUTwbDaCfpyzPDVU8MzL0oDXsBH2FqmeV8mYjh74ZMWxKGrkii6qMxsLAG2A4c/FJhuRXUueK7HmTsvM6N1u0fNYG+HJAQjplwyhgzLgcFNR07GGalcWhgAt1xBTj0l0dLSdJWSXUEMdPM41dzG0N1G0fE/KpVnPI0mZMZoa81UbDSmI2IO+h5dy8UZxyXUZix7CsRbUxwmg62wc0769Pd+KgIpl6epxPpQr4aqrla9uGNIiLuzbrGi9zz3UmwXJdNhGbKvFWYhMaisfJM6HS3SCWkHcdy5M49HZxjF6fF8LqmQV0bY4y+7nAhg+CDbjZPeV8sz4bKavFatk9YQe00FguQQduHNAQrotJPSfmN7O0DRwguPG11amOl/tdOY+HVu5/wB0qJZTyNNgWZKzFTVxOFSxrCwA3s035qcTxNljdE5pLXtNz8SArT2OzHR9HWGtkN5Aw6iTv5xU4zFikdFAY2PAqpOwzvF72N/FRfJ9B/JXFZ6SVrm08wYxjjcN2uTx8Vw5g6P8TxbHnYnS4rTxEsLWh0bnbF1x6O5ASTKGBjDDNW1bmyYpWkPnc5zXHUBbzhx2snPHcCwvHMPnp6+kpp2PY5hL2B2m4IJF/FRTLeScUw/EPKcSxSGode40MLeRC7MGy7j9K6qjmxWmloZtYETYLOBcdzq48EBHuhnD/afGs2YdRuc+gp65kcQI0hjRGbBo7lJulOpkosm4nJSyPhe2B5L49iBZPuB4RDhEDxE3VI8gvIJ3IFua6Maw+DFcLqaGrbeCojMbxcjY+kcEBWmC5agzX0e4VT1eJzmKop6eqleQCdYYHcD4rTnjKFOOjInDZHT1mFRSy0sjmhrtbnd/LiVuwfozxTCaydlBi1OzCHyOcynMbnOa33o1HfYKyKHCYKXCm0FtUViCC4m9zfj8aArzKmJwZyo6KDSJIaCFjJS5p2njAJ2PHiNwuHLNZUYn0k5sp3107H0k8IgjLtu01xNr8OAU4yXlCiysyv8AJWkvqqqSoPbcbagO8/3VG829Hb8SzE3HcBrYqTEWOc95fqeCSAB2eHAFALQ5Ko8uyY5XxVb5JaigljdEWiwuQ4m49ITB0MYZR1NDmoVFNBMPKWnttB94pxg+Vp6WiqvLqyOoqqmF1O6RoLW6Tba3xLnyfkd+XIMWhp6hlq+USHzjawtzQFcZHkEvQhmlvnMbTYhpaeAOpym3RLTxPyFouI9Qbct7+rC6MtdH3tNljE8FfUxuhrY5o9tWxkJJ3O/NbcqZIqMEw+rom1cZgkl6wCzuTQBufBAQHCcYxLIU1FguaqOOqwpx0R1MknXOG2px0tvbiFaWaKimlyVNPTAdRLT3jGm3nRkt25bWTa7JtTXYfT0VdVwy0cerU3QQ5wPGzuPJZZypX1OF0WB4Yxz9Dog7T2rRtBafTwtugNXQZ1zejLAGTElwpzck3/1j1YKasv4TDg2C0uGxfY4Wlg3PeTz35p1GwQAhCCgBCRKEAIQhACEIQAhCEAIQhACEIQAhCEALSSWy9v31g0LcsLuEd3bkICncovmk6ZKs1NyW0swbc37OsrP2RFPTPwCkqHsa6SKOYs1N430KQZhwqXDs602P0kbi3yYUzyBcbvcT6OBWzpFyrLnjC4o6SshiY1rx2mk+dbu/FQEnw9pdlqnPI0jOzy8wKveiF05znnpj9oWYi0NaHXAGjkpriMr8Ky0KOU9fUGEQNDBY30WG3xLj6NsAOD4dPVTNcypry2aZrr3DgLbg8EBL2lukkcEltRDgTYC1lkkde2yAojpFd/8AWnKLOMbcQ3aeH2MKx+kT2sOX4PbuQw0/lMXVhsfWXfvpFuV+9MOZuj6vxbOuGY75fABSziXR1Zv5tvBO/SHk+TNmXqej69sc8E8M7XnVbVHe2w9JQFe5966PMGSZI4I6aJ0k+0buPZdxCyxzDqWfpnpI5aeKaN+E0uuORo0kGRwJ9KfcbyFmHGIMIqMQxSmfVUOsjTT6N3XHAehd4yFismb6bHKnE6Z3VU0MGkREGzHX8OaAa+mLL01JgbH5cpIaejjjImZEWxgnUNO3Pmkx3CKLM2MYBPhdLEySkq45qg9Xo1MDbWN+O54BO/SZVyVdXQ4RR4nS0dXUMkIkmaHN7JF+ymyOnzlhUjJpMxYZWwR2c+OChYHFo9NtkBywV1XU9KpoBZkMDamKKHXZpaL2Posn7B8ke1+c58cqK2Vj6gxAU40lvYAHLfe11w5pyLUZhfheY8HnbR4t1AJfIHPHbN3dngpHlvL2Jw1DavMVdFW1TiO1DGYgLcNhtwsgIT0LQxfyjzOZY2NkOKVJaAL3bZm6uSSMSR6JGgtuOPiq8y/kPEsDzRWVtHiNO2iqZHzOhMRc7U4/CPoAViea0GU7g+dwHFAUb0K4PhuI1OOispYJ/wCc1bPrkYNh1oC7MgU3tV0h5toMPhaylNYQ1jey1gEV7AJq6HG4g7E8djoZ2Br6irP2MO4zKz8GyucOpsSmjnY3E8Re2WSUgkFw2PZPDbuQFZ9DuDYbW9H2NTVNLBOXSVzPrkYPB5XX0XCiZgGa4MRkLKGHE2sY0M1Bg6sWAHcpdknItZl3LVdhprYXvqTP2ww2HWOJ5+Kb8M6MqilwXGqCavhcMQrG1RLWuFiGgfwQEQz41rcjYNNg0bBTiWYmUfW3WsOR9KkuacJxmpyll/FMBPX1kNHSiSB8zY2ujDA55uTvy253Wqp6NsYxLKNNhlbiEGql6x0doS3d3hxUnp8uY7R02GiDEqfXS00dNYwX7IaAdj4ICEyZ6oa3JWYqimpI8Px6CFhnbBG8HUXgDt237NvlTthGAyZoyWY55dpHvIdqBLXFg3357qSUuSYJK/FK7FS2SasLC4tuwdkAcBtwAUZwPo8zJgMk9JhmNUrcKmnfUGJ1OXuu8jUNR34AD0ICdZGwn2iy7SYYJ31MlJGI3Ofa99+7ZR/pTwfE6ykoKvAyZqqhqPKXQulEbXgMIsSeV7KY4LhowyhEYJdKQNbrk3I8U2ZmwfEK6SmnwqsipnQyiR4kj16gAdvlQEMyLmvDcfnqqHEMPgo8wQtkjnZHE5w1hh1/XCLHe+/NMPQhguH1dTjDKylhqo3sAPWxg3Gs7KeUmVDT4u/Gq6RjqkxS3c0Fgu9pvccFXfQ23E5MRxryGtga0xt0t6oOPnFAN1BVSZYxXHIMOLo6KSrm2j7IaSNNrD0AKW4flefNnRpFh9VJoikhLGzh7XO3dubHwUxwzJ1HTYdX0lS3rJa2R9Q9+pwAe5unv24cAoll7o+zPgsRw2kx2j9qNIZ1Zpi51hf3534lAN+bnVWG1+CYEa6d9PE+ne15d5zgNOk8rKRYvkl+K5locXqal1F5J1mhsJa4SamkbrszrkCHG8EpYKOQRV1PMyYSuc5wLmtcOF+83WjLeVcwtNOMexSnngpmlrWsg6s2IPMcdyEAyZBrmY70mYsMR+umKiia2KQXDS11g4X5lcuEUsFP08QdVGxgMVSeyLKQ47kKtbm9mYMuVkNHVSMigmdIwyh0bOVjsPFY4V0eYhDnGLH6/EqeeVrJAQyMtvq9HBAWY9rHtLXtDg7YgjiqI6O8Pop8/ZnbNTxPIqq4AOYCANavOQOfE4xOAeRs7iAoBlbItXg+P4riL6yJ3lks77Bh/wBY66Ai/RXhVHNnvOVDVUsMkNK6nDY3NBaLsB/im7o+mdRwZvbSOMTIWV0jIWbNuBsfHYfIp5lHJFbgOY8axJlbE415jPmH3rQOa15QyFPgWI4o+sqop4K0TXDWlv2Q7i6A5uhLybFcqR1tTTwurKhkT6gltyXdq1zzVeMra3Lk2YMOpJHtoPInvbodYNc525AHNWbgmTq/LNdXy4DVRspqx7XuYWGS2kEDc8OJ4LvpMkUUWA1tFJZ01Ux7DKXut2t+9AMGF4dSVnRBh1R1MU1RUUcE0j3gXLi0EknvUMwPE5cP6C8L8he6ITTVrHaDa9pn8VLcP6P8wUGHzYRFjFKMKkIswwEkBos0auKcsH6NI6Do6nytJPHJG5kzY3gusx0jy4m9780A3V+Tps3ZSwyKpqHUzQIZ+tjc1xOnfmmrpfhZR02VmRTPqO1UlkjxYjZid8EyPmbCoxh8mMU0+Fhwe2NlOQ5trADVx4BOmeciSZgGFsp6uKFlE6UhjwSXaw3h8iAmeDD/ALLotrDyeM/HpCrDNBkk6csoMfcxjyuwJ2+wuVp4bTyUtBBBK9r3RxtaCBbgAFEekDBZ6iagxmjjc+toGu0BrSSdZDTtw4EoBq6acQmoaXAYIXuihq8QZTvLDa7XCxB9CbOl3DKNvQ5tDCXXg+uaRc9pS7MmDU2d8sGlMrBM1rtJ1Hsv06b7ekqKVvRzmDF8qtwCtxemFDDoYxpgIJDdx2huUB21/tX7QYAcQDHTCpk8mY6PUHPtwvy25qNZidUR9JmCODRSudh/ZZE7YtLhv/yUrzL0e1NdhODspKyNlThdRJUxktc67nC3Dn8a48V6Psar8WwrGH4lTmqpqdlOQISNrgnYbckAzvghk6fKrXDHIXVEWsuH/wBuPlUrxQYT/LlxoY2T4uaARGB8WlrY9Tu1r4XvfZY41karlzrS5hoK2GKUSiSpDmF2sCPQ23ILmqch4zT5ubjeGYnTxCSnbTyMfCXkguJcd9hxQDR0StqIekPPMEzjvWQAs1XEVo37NW3pOc6LpCy66lJEzq2BspbsSyx2PounjLGSK7LucsTxqSvgdBXzNlnZoN3ENLRYnhx5LOlwebHc7HFKljmxQsYWEggEtd6PQgLFLb3AHE7lZpB9CVACEIQAhCEAIWNzfbdLffn8iAVCxaSRvsUvx/MgFKRB5KqOjjNuM4znvE8OxCR7qSGKRzGlo2IkAHAdyAtcJUg/62R8fzIBUJPj+ZHx/MgFWDyGhzncAsvj+ZFt780Bxy0UNQyTrIIi6RpYXFu+kqIHo6pGYg6ppcRr6Nt79XTuY1p2tuNKnVt7/EktuBbZAN9BhMNJA6AvkmuDd8ti7f4l2U0MUDQyIBttjYWutxVU4dmvF5umVmBySvOG6ak6NIt2PN5XQFrDjulPBJa6LIBHbN9SxcC1osSbm26ztvf+CLbWQGIIbZo4JHnS8X4HZZgWFhwRZAIRY3JPgsbnYgAtHM8Vnbe/NIGgEnmUBi2wda5JO+6Bs+4tY8brMm2+5+JVf0q5nxXA8z5WpMOe9tNWTysqGgDtAMuOI70BZg7BLGkkk33Sm4bvw7xxWuieZaKB773fG0n4wFuAsLBAYPD9XZDdJ4nmlbY7WuBtcrP4/mSOGoWPBAJztx8UahqtzssiL29CQtBFjw4oDG7rO17D0JSXC1gNNuaytYk8yj4/mQGOtttQvYLLwtZYvBc1w3HxKEdLeO4hl/LXlWFucyfURqAHAMJ5+CAnI342si6j+QcQqMWyZg9dXEmoqKZkkhI4uPgn9uw/ggMSHDzLG++6UnfbiEE/XB2Tw87uWIc4EcX352tZAbG7cgAkcQQ4AkEIb3k7+CWw39KABe/K1kguCbpUqAxaDp34oLQd9RHglUS6TsVq8FyrLV4eXNnErACByJ9KAlbW6bkOJv3oLe1fh4KLdGOJ1eNZJwyvxJxfVSa9ZI42eQOHoClYFkAAWHEnxShIjggFQhCAEIQgBCxBNjxv4LTUukFKTGSJNuXpQG66UKsehHNOLZlwytfjL3ySxVU0bXEAdlrgANh6VZ3cgFQhJvf/AJIBULE3F9734bIuQNzugMkJCTcBKgBCEIAQhIQ657XhsgFQsSS0b7lKCeaAVBFwsRcDc3+JKL73PzIAtZJqAQb347eCq7pszXi2WaKCTCHvY5z4wSAOcgaeI7igLTQtVM5z6eNzjuWgnb0LZ8fzIDXKSA5wAJbuLrF8bJWaJWhzSL7i9itpFyCeSA0C9uaA1QwMp2MDCQxgtZbrC2wG6TSNNuSC0G1+XBAaXQQCUSOiYZPhad1seCLWN78brNJpFyeZ4oDEEBzW24i6yubDVYJbW4KvumrMWJZbyjU1mEOcyqETnNc0A2ILe8ekoCfhpDrg3HpS7gcAmrK9TNWZew+pqbmaaCN7yRxJaCSna3egC3MgXQTYXPxo+P5kBAYNFzraTvyKC0NuQSO8BZoAAvbmgEaBckc0G2u9t7Jfj+ZBQCN4aieKW4tcpD2mcCCmPPNbUYdk/Gq2j1eUU1FPNGQODmxuIPygIB71tdcjlzWLhcm4Bb381Ceh/HMQx/KVJWYq5z6h8bHEkAcQb8ApzYgi3x7IDFlrgejbwWQsLALJCA1lum4BO+/xpCSGh0mxHENW1JYXvzQGBswCws09wS21W2Bbzus1iRcWKARwtqJ3Ftgsd7WaTqO/gsy0G3o4LCdxZDI5vENJ4c7IDB8EEhYZo2PeDsSL2W1rQG6eHdbkFVnRDmfFsfzDmGnxORzoKaKndC0gdku16uA9AVq/H8yAxa3TGBfURzKTSAdiR6FkBYk34+hKTYcfmQAbgbfOsZHENta7jsByS2OmxN/iSMcTsWkBAa2ntAkuDgLFo4XWwF1hrsCe5ZIIBIJ5cEBi0AE7kn0pG21nQAPhFZE7c1i4dkgi7dhZADHMfwHA8LJQ7tkH4lVWSs14xiHSvieEVj3uoYcOMzGkCwd1rW91+BKtck6ha9vBAINOwO9t90XDQSeF0bEkWNu9GkWtyQGLdLn6W3GniLbFaXQQxz9eGDX5l7d66ed0WF0BgbtaeduBWwcAsQ0AADgOCyQAgoWLr8ufo4IBUoVVdIebcYwXpGwTDKKR/kNTRvklaALF4dYHcXVqNN2jwQCoQkJsO9AKhIDtvf5EXtx4IBUIQgBCEIAQhCAEJHXI2Nj3pNRvsLjvQGSxde49PFLdAAHBAc9VFHJH1crdQJvuL2RBA2mbFFDbQL3PNdKaMyzvw/BKuppwesaAdvEIDsmpoqpwfI0O0G4uOYXRE0BvZvpPAdyr/oUx/EsyZWqqzF3ufOyunhaXAeY11gNgrCHC/C6AVI/UG9i1/SlSHfigMHAaj2j4JW+dccAEoaASRzSgAXtzQGAuTcWLD3oIPWHu08OSyLQRbklsgItmzKNFmV0T5ZZ6WpgaWtlpw0OFyCdyD3JMHynTYe8l1fX1QA3bOWkEX9AUq2uDzXJisz6fDKqaO/WMjc5thzAQG2JoaxojAbG0aWtbsAPBbWjYXsq06HsxYpmCrzSMUe9zKTEnwQggbMA24BWUW7ju57IBANIJcTudljPH1kT2OJDTbccVtt8iLICJZVyRQ5bqp6ijqapzp3Pc5r9Nu07UeAHcpUezqdI1ukebZZosgMd7EcvnSaQRpLnb7rLSNRdzIslAtwQGLuANztyCRoAbe5Nzz5LO29+ax0hoOkWJ3QAA0HSSTfkUBp07m26qqmzVjD+mWrwSSR5wxk7GMZYWAMAceV+KtYA2sTf4kAj/AITiRbkEXta4sCsgABYIO4QHPWU7aqB8b3vY0i12qNZTyPQZYq5pqKpqXmWwIk02435AKWFoc3SRslIBt6EBgWFtyLOJPvuSU7A24rJwDhYosN/SgMWntEWA2vslFyBsLFF+IseHFAFgL8R6EBiSdBta52Sg6WC6qzpNzVi+C5ry1R4c97aWtxKnp5mgDdjiNQ3CtCEl1Oy9wSByQGbS0dkfQgdu99gDZKSQeB+RITtvcelAAHaAB2HFJY223F/fIuQ5tgXB3E24LM7oDEatQsBpCRul7QbbA9yzGwshAYki4BGxQSdfoOyyRwCAQuaNuCGtAO+5HMqs+mzMmK5cwqkkwd72SSVMDXOaAdnPsRuO5WHhkzqiiZJKDqcTx8SgOhwNrnkb7LFwZI0F1y08iFstvdHNAc0FNHTtApo2NBdc2FludZzh2nAjuWxYloIsUBgS4uJ4Bu+3NI1zb3u7wsttt780qA1lu54WHzoseLrA8AOSyc0OFihzQ4AHgEBqqIxNEY5NtXMIhhjhaBCxoB2JAUT6XMYrcv8AR/iuJYU8srIGtMbgBtdwHNdnR3iVTimWYqmscTM5zgSR4ICS76gBw5rJYAbgEceJWRvyPzIBUJOX/JYkkOPEju7kBmhAQgGnNGI+1OX6+ua0kwQPk4X4NJXk+HMmec747XzYBMGU8EzmWMszOO42bccF6j6RLfyFx+4v/MZv2CqT9icSPb5t9jWA/wDsKDJGDhnSu86mVEIHpqaj1JParpY++IP1mp9S9bJEB5LZhPSx1rCamCwO48pqfUm3Dsl9JGGV09bTSUzZpWuaSJ5xxN+TV7G3vxSoDyQzCulkMF6mA6v/ALmp9SX2q6WPviD9ZqfUvWovc7pfjQHkn2q6WPviD9ZqfUj2q6WPviD9ZqfUvWyW3pQHkj2q6WPviD9ZqfUj2q6WPviD9ZqfUvW9vSi3pQHkj2q6WPviD9ZqfUlGE9LJ38pg2/8Auqn1L1tb0pCLhAeSn4T0sh7f5zARflU1PqTW3JvSRHjXtnG+nFX2rP66e/a476br2SdxsbI5IRk8k+1XSx98QfrNT6ke1XSx98QfrNT6l62QgyeSfarpY++IP1mp9SParpY++IP1mp9S9bIQk8k+1XSx98QfrNT6ke1XSx98QfrNT6l62QgPJPtV0sffEH6zU+pHtV0sffEH6zU+petrelIgPJXtT0sHjUQfrNT6k3YpkvpKxWWgrKyWmdJSuc9t55ybkW5tXsbc80WN3XNweXcgPJLcJ6V+raGVEAa3sgeU1HAfEl9qulj74g/Wan1L1twQgPJPtV0sffEH6zU+pHtV0sffEH6zU+pet7elJ8aDJ5J9qulj74g/Wan1I9qulj74g/Wan1L1shBk8k+1XSx98QfrNT6kowrpY3/nEHD75qfUvWqD4oDyQML6WHMd/OIAT/8Ac1PqXJi2Vuk7F6Pyetmp3NvfeonPK3Nq9gm9xYkIIueKA8jUOAdKNBS0tLTTQNggj0ACoqBsPBq3OwzpXml1CogAbvbymoH8F60GwQgPJjcK6Vi4htTT8CTepqPUo2Me6Q48aOFVVSyCbUGhz552NJtfifUvaj2k+aS30qAdJ2QoMyUrqyhIp8Viu5kzG3cSbDmbcEBRjcL6V3NDm1VMWncEVVRuPkWXtV0sffEH6zU+pWX0adIVZQYgctZza6nrIyRBLI7WZGAhjNmAgXseKuRsocARvfh6UIyjyh7VdLH3xB+s1PqR7VdLH3xB+s1PqXrO9kX7lGd8EnkwYV0sX+2IP1mp9S5MQyz0oYpRyU1XNTujLtVjUVB4eLV69Dt0tt73UjJ4/wAMy30o4XQU9FSzwNijvsKioHE35NXb7VdLH3xB+s1PqXrMDtE34pUB5L9qulj74g/Wan1I9qulj74g/Wan1L1okQHkz2q6WPviD9ZqfUj2q6WPviD9ZqfUvWaEB5M9qulj74g/Wan1JDhXSxb7Yg/Wan1L1ohAeSW4T0sAH+cwfrNT6kj8H6V3Q6fKIP1mp9S9boQjJ44wbJ/STgtK6KgkpmF73PdaecbnjwanI4T0sgN/nMB2++an1L1pwG2yRtxe5ugyjyWcJ6WBe1TBw++an1LJ2E9LBDf5zBw++an1L1mAbcSjhtflxQk8i0Gcs6ZOzZRUuZJGSMq5AxgY+V9rC584jvC9Y4ZL5Vh1JUO4yQsefjAK8zeyPc/3RMusLyQKh9vR9bYvSmXx/wBg4b+bR/shAd1zqHcskg5JUAIQhACQje9ylSEXQAV5v6c8+Y5TZviwHAXiOVznsu5zm7hrXcWnx5L0hxGxtZeUuk1rfqgcPJFyZ5P3TUByRYV0riMOFTAQ8XH85qTx+JZDCOlixvUwX/Oqn1L1jR/acH4jfoW0Dc7oDyUcL6WZLDyiAW/+5qfUmzGMmdJONtEVfJTPDSCLzzngb8294XshFkB5JbhHSw1oaKiCwFvtmp9SParpY++IP1mp9S9bfGj40B5J9qulj74g/Wan1I9qulj74g/Wan1L1t8aFGQeS24V0sffEH6zU+pL7VdLH3xB+s1PqXrNF0ygeTParpY++IP1mp9SParpY++IP1mp9S9Z3QieeAeTParpY++IP1mp9Sbsayn0m43Qy01dLTujc3SAZ5zx8Wr2IhSRk8jUmB9KlLFHTxTwCNkYa21RUbWFvgrZ7UdLLdvKYDb/AO6qfUvWgBAIuSgAgC5JPegyeSvarpY++IP1mp9SybhXSx98QfrNT6l60QgyeTParpY++IP1mp9SQ4V0sW+2IP1mp9S9aIQZPJPtV0sffEH6zU+pHtV0sDjUQfrNT6l62QhJ5L9rOlcOD21EFjvbymo9S01WAdKVXT1NNUzwOhnidG4GoqCLOBB4t9K9dDZCA8e4PlnpNwag8mo5adsbbBoE842Hg1d0eFdLBsTUQbf/AHNT6l60Rz4oDyX7WdLDif5xBsfvmp9SX2q6WPviD9ZqfUvWaEB5M9qulj74g/Wan1I9qulj74g/Wan1L1mhAeSzhXSx98QfrNT6lj7VdLH3xB+s1PqXrZCA8k+1XSx98QfrNT6kvtT0rl4DqiAtLSD/ADmo9S9aoO42NkB43wrJfSVg1VWz0UtO19Q1jXWnnHm3twb6U5nC+lkWtUQfrNT6l60IuRvayVAeSfazpZ++IP1mp9SbMfrukzLlIypxGVjoJXdUTHNO4t247gW25r2SmvMmDUeO4VNRYhE2SKRjmjVc6SWkX+dAeUcEPSXitCa3C66nmgNiQ+qnLhfhsAbLuGF9LDWhz6incHGwtU1Gx9OykmJHHuhvFnVNP1tTliUue8amMZHbssFhdx4q+ctY7QY/hceIYXOJqSQlrXBrhuOOxAKZJweY/arpY++IP1mp9SParpY++IP1mp9S9Yhzr8NvFBfp3dsFGTHJ5NOE9K7mfbEHH75qPUkGGdK7HdqogI/Oaj1L1m67mjS63pSkXbYn41JJ44w/JnSRQ4pUYjFJTCqliMRcJ572uDx034hOLcL6WWMt5RASeflNT6l63FuKFGcA8ljCulcdnyiC43v5TUepL7VdLH3xB+s1PqXrIbJbqQeTParpY++IP1mp9SParpY++IP1mp9S9Z3RdAeTParpY++IP1mp9SParpY++IP1mp9S9ZoQHkz2q6WPviD9ZqfUj2q6VwDeog3Fh/Oaj1L1ndId7ehRlA8c1mTOkjEcVp66skpnTQxGNpM85sDvzanJmE9LAFvKYP1mp9S9Zi+9yTf5kNuGgE3PeiaZGTyd7VdLH3xB+s1PqSHC+lgDaog/Wan1L1pdKpGcnj3FT0nYBD7Y4hUwmCPdwbUVB4C/AgDgCr56D83VObMqU09ZpMrYmaiBxJBPMlb+nM6ej2uvvdrx/wDjeoh7FFo/kMSBvoi3/wDKUJLxQhCAEIQgBCEIAKgHTJmiXKWUZKmnH12TWxptexDCe8dyn6pr2UIvkSEnlJIf/wAbkBT+Cz9JOZqY4nh1SxtPKQ9oNRO3ZwuNhccCnH2q6WPviD9ZqfUrj9jqSejfDSSd6aD92FaF0B5M9qulj74g/Wan1LTU4H0qVEfVTzwOid5w8oqD/ur1yk778EIzg8e4LlPpNwWidBQS0zI3SukIE843PHg1OLsJ6Vwbipgsf/uan1L1iGkOvc2tayNwTc3umSTyb7VdLH3xB+s1PqR7VdLH3xB+s1PqXrPkhAeTParpY++IP1mp9SParpY++IP1mp9S9ZpUyDyX7VdLH3xB+s1PqR7VdLH3xB+s1PqXrRCjIPJT8K6WBa1RBv8A/c1PqWM2C9Kz2OjkqICx4sR5TUH/AHV63WI9JupB46wrJ/SXhMlQ+hlpmeUyGWS084u4+DU4uwrpYLr+UQfrNT6l61CFGQeS/arpYv8AbEH6zU+pL7VdLH3xB+s1PqXrNCZQPJntV0sffEH6zU+pHtV0sffEH6zU+pes0qZQPJftV0sffEH6zU+pHtV0sffEH6zU+pes0hdZStxg8m+1XSx98QfrNT6kj8K6WAy/lMF7/fNR6l6z1IvcJnfAex46iyX0kMx6TF+tpvKXuD9XXz3uG6eOm/BOQwrpY3/nMHH75qfUvWViW2ub96y4IFueTParpY++IP1mp9SParpY++IP1mp9S9Z3SXQnB5N9qulj74g/Wan1I9qulj74g/Wan1L1mChDHJ5M9qulj74g/Wan1I9qulj74g/Wan1L1mhBk8mDCulcEnyiC9vvmo9SxGFdLFxeogt+c1PqXrbiEgFuJuhJ45xbJvSRiWIUtTUyUzn00jJoyZ5zZzeHFq7/AGq6V4nahUQEch5TUepetyAeKQjcbm3cgPJbsN6V2a3OngJcLACoqPUsZcN6VaaLrn1ED26dRaKmoJG1+Fl62tve6xc1pa4OGx2PpQHi/Asb6QsZxGbD4quKKtaQ1rZaiZouRfhx4J+OF9LINvKIPiqan1K0Ok7IlbSVTszZNLoMTh+u6IdIMhsGAXebcLqQdGnSLT5jg9r8TtSY5Bdr6clzy5rdI16gNO7r7X5ICjvavpZ++IP1mp9SyGFdLFvtiD9ZqfUvWIfd1hy4+hZXI4oDyb7VdLH3xB+s1PqWLsK6WLgCog3Nvtmp9S9ZdYL7rJx7O3NCNSPHeN5O6S8apGw18tM8ska8XnnPmm44tThFg/SrECyOogDBw/nNR6l6z4N3JJQwEMAuTbmhJ5O9qulj74g/Wan1I9qulj74g/Wan1L1ndCA8me1XSx98QfrNT6ke1XSx98QfrNT6l6zQhGTyZ7VdLH3xB+s1PqR7VdLH3xB+s1PqXrO6LoSeS3YV0sffEH6zU+pY+1XSx98QfrNT6l62QgPH2K5Z6UMVoJaOtmp308tg5pqKg3+Itss6LLvSjQ0rYKSaBjAb2FRUD6Gr19wRfmozvgHks4P0saW2qae4H3zU+pHtT0sXI8pg/Wan1L1mHJCSDe/xKXsHtyeTG4V0sNDyamDa/8A3mp9Sdeh7P8AmGhz5/JzMjutnmfFDcF7wCSTxcbjYjkvTcxJgksbbH6F5RpHF/sl2GQl388p7X5dlAesmarC9uCEjGu5uJ2QgI/0i/0Fx78xm/YKpP2KHnY7+dj9gq6+kS/8hsf/ADGb9gqk/Yoccd/Ox+wVCWGZaT0eEISX7kayY5MiElliHd5S6gpTXYbi2Qk1IuobG4qVY3RcKMpgySJNSxMrQbErFyguWFkzQtfXM70GZnesPGpL/svqTh+RsQtQmZ3oNRGBcn5kdzR/iX1J0vyNyLrn8qi+EfkR5VF8I/IsHd0v419RofkdCFz+VR/CPyI8qj+EfkU+uW/8a+o0S8joQufymP4R+RYuroW8Xn5E9ct/419Rol5HSUFcgxCn+GfkS+2FP8M/IsX1C2Tw6i+qDpyfY6hshcnthT/DP+FHtjTEX1m3gn2ha/zF9UPDn5HVzSrjGI03wz8iHYlTC13n5Fi7+071F9UFSmux2IsuQ4jTi13n5EntlTfDPyKPX7T+bH6onw5+R2IuuP2xpvhn5EoxCmPvz8ifaFp/Mj9UHSn5HXdF1ye2FN8M/Ij2wpvhn5E+0bT+ZH6ojw5+R13RdcnthTfDPyI9sKb4Z+RPtG0/mR+qHhz8jrui65PbCm+GfkR7YU3wz8ifaNp/Mj9UPDn5HVfdYDdxItYrR7YU3wz8iQV9MODj8ifaNp/MX1Q8OfkRLP2Q6DNNOZiHxYhDZ8L45Or7Tblt7C5FzuOah+TM8V2W8UGWs5gQvYerhrXx9TCQAXOOt53G4F1bT8QpwQdZudr2UR6QcrYXm3DZIZwGVdrRTiMOe25BNr+Cl9RtOHUjh/FE+FNb4JxE9ksbXxva9rhcFpuFnZUJkLpBq8s4l/J7N8jrav5vUFxke8ucA1pA2AsFdzMUpXQwv1m0rdTezxCznXt4x3mtPnkjTLyO4C1kt1xe2FO2TQXnUPQsnV9O3i8/ItceoWnHiL6ol05vsdd0XXGMRpi6web+CXy+m+GfkWX2jafzI/VEeFPyOu6XiuP2wpvhn5EoroDwefkUq/tZbKovqh4c+6OtC5hVxHg4/Il8qj+EfkWXrlv/ABr6jRLyOhC5/Ko/hH5EeVR/CPyJ65b/AMa+o0S8jelWjymLvPyI8qi+F8yn1qj2mvqNL8jeseaw65h5/MkMzLXv8yesUm/eX1I0s3JD53xIG4QfO+JdGckHlz2SH9ZGXfzh/wC7YvSuX/8AQOHfm0f7IXmn2R5/+pGXvzh/7ti9LZf/ANA4d+bR/shAdwSpAlQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nf2gcO/LyfuggPU9H9p0/4jfoW7vWmj+06f8Rv0LaTYFAFkALEH5EuoKE98E7ioskvskDh3qURuZISagi4WOfiDKyRJqSOeGi5Rziu43MkLX1zLXuk65neVh49NcyRkos3XRdaeuZ3pPKI+/wCZYu5o/wAa+o0vyN90XWnyiPv+ZIamLvPyLH1uiuZr6jS/I33RdaPKYu8/IjymLvPyJ65b/wAa+o0vyN90hK0+Uxd5+RI6rhaLucbeCO9t1u5r6oaJeRvui65vLqf4R+RJ5dT/AAj8iw+0bT+ZH6oeHPyOq6Lrl9sKb4R+RHthTfCPyJ9o2n8yP1Q8OfkdV0XXJ7YU3wj8iPbCm+GfkWP2jafzI/VDw5+R13RdcnthTfDPyI9sKb4Z+RPtG0/mR+qHhz8jrui65PbCm+GfkR7YU3wz8ifaNp/Mj9UPDn5HXdF1ye2FN8M/Ij2wpvhn5E+0bT+ZH6oeHPyOu6Lrk9sKb4Z+RHthTfDPyJ9o2n8yP1Q8Ofkdd0XXJ7YU3wz8iPbCm+GfkT7RtP5kfqh4c/I67rFxFhdc3thTfDPyLF9fTkCxvv3J9oWj28SP1Q8OfkYYth1NiVI6CsibNAbXbYE8VReJYTi3RHjLcTwls9XgM5Ec0QY+d0TW9tzr7BtztdXs2vhubuIA4bcVyYi/D8QoZYMRjbLBI0tfG9twQo+0bRbKovqifDl5HJlXNOHZlwqnrMNqYnSyRtc6EStc9lwCQWg7EX3UgNi8W3PMdy85Zpoq7osx449l76/g9Q8udTvcImR9Y6wADdzYcFcmTM54dmnCo66gd5wJk7JFrOLefguiFzRksxmvqR4bJahcja+nPvzt6Ee2FOdtZ+RaH1G071F9UT4c/I60LkGIU/wz8iPbCn+GfkRdStOPEj9UPCn5HVdC5PL6c8Hn5Evl0Hwj8ihX9t/GvqiHTn5HUhcza2Am2o/Is/KYu/5lkr22f/dfVEeHLyNyVaPKYu/5kvlUXwvmWXrluuJr6kqEu6NyFp8pi+EfkQKmM8/mWSvKD/7r6jS/I3JOK1eUR9/zI69h4H5ll61R/jX1Gh+RuS8lrY8P80rO/wAy3KSayjFrBXvTt/V9W+D/AN29RL2KP9BT+JD+yVLOnb+r6s8H/u3qJ+xR/oKfxIv2SoWWHsXghCFkAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2Gfm0H7oKz7qsPY5/1bYZ+bQfugrOJA4qG8diGm+DNF1iL2WSjYlAksglI434FRFJjZvBkAlWINhujUFmRsjK6RYl4RqFrqNxlGd0XWk1EQNr7+CUzx9/zKdMjHxIvubULT18ff8yOvYeBU6WZJpm0oXJUYhT05AleQSLja60+3VDf7If8JWSpTe6RDaXccUt02+3NHb7If8JSe3NH90P+EqfBqeRi6sFyxzJWF1we29Jf7If8JS+21GD55/wlQqNRdjB3NFe9JfU77oTTU4/h9OLySuA/EK4/5W4TcDyh+/8A4ZUSTj7xrd7br/uvqiREobumOPNGFOdpE7ifxCtseYcOfJoZK7Va/mFc86lKO8pJfebY3NKfuyT+8eEhK4WYvSPdpbIb/ilbPbCm+GfkWn1+1js6i+qNyi5bxOq6VcnthTfDP+FYnEqYbl5t4KH1G0/mL6oyVOfkdlkWXCcXow25kNvxStZxyhAv1rrfilZK9t3/AORfVGaoVXxF/QckJofmHDm8Znf4CtT8y4azzp3f4CtiuqL4mvqZK0rviL+g+jgluo+c2YSzzqh36MrH+V+D/fD/ANGVPjU33M1ZXH8D+jJFdF1HP5Y4N98v/RlKM4YMeFQ/9GVl4sPMn1G5/lv6MkJvbbisRfg5R1+dMFbsal4P5MpP5a4JaxqX/oyp8SHmR6lcfy39GSHRtpNizuO6q/pD6Pm1FQcfy250OL04DiNRLHtZd+kMaN3E7engpd/LXBNNvKX/AKMo/ljgrdhM4N4/YyniQ8yPUrj+W/oyMdGvSK3GNWFY83yHHIdLHQ1DRA6V1iToYTqIFhfuurKFnNBYQR43VI9J2G4JjD245gVZLQY1CHWmghAc8vIBJcedgunoz6XKPE6YUeMkU2IscQ6Nmp403ABv3lHUg+GYVLWvBZlB/QuXYt3Q3go8/N2DtdY1D793VlZR5uwh79LZ3X/JlHUhFZbM/UrhbqDx8mSFCZBmjCy7SJ3X/EKzZmPDXkhszrj+4Vr9apeaI9UrLfQ/oPFkqaY8eoJHaWyuJ/FK2txijc7SJDf8UrB3tBf9l9TF0Kq/6scULjjxCnk815PxLZ5VFfzj8ix9dtn/AN19Ua3Tmux0IWnymLhqPyIdVRMF3ONvBZK7oPiS+pGmS5NyFzOroA3UXG3gtT8SpmtuXm3gtsatOXDNUqsIe8zuui64I8TpnkaXnf0LoNTEBfUfkWxLU/ZMFc0msqSN6QrTHUxucAHbn0LcpaceTbGcaizFmEv2GTwP0LyfRf2l4/zyn/ZXq+X7FJ+KfoXlCiP/APMvH+eU/wCymcmUT1o3gPBCG8B4IQEd6RbfyFx78xm/YKpL2KHnY7+dj9gq7OkT+guP/mM37BVKexQ87HfzsfsFRHncyi9j0bzXNXSGKAkLoPFcmKfapXNeTlCjKcexFNZkMjcRnb9jIHiLrL2zqvht/wAK42WLRslsO4L5e+tXkt1N/VlrGjDG6Ov2yqjt1jf8KPL6r7o3/CuQjusks70fKsH1m9/mP6sy8CHkdfl9V90b/hWvyuo+6t/wrRZ3o+VG3csH1e+f/kf1Y8GHkb/K6j7qz/CtLy6R5c9wLjxKTZG/ICyxfUruXNSX1ZPhQ8hNI70aB3pd+4I37gsHfXH8x/Vjw4eQmgd6AwDn86XfuCUXvuAod7cP/u/qToh5GNm/9FFm/wDRWfxBIHNcbAsJ7gVj6zcP/u/qNEPISzf+iizf+ilv6Ai/oCj1ir/G/qPDiYkNRojPFZf+UJCPQE9Yq/xv6jw0AYB9j4c0Wd3oAI7h4IIPeo8aq3ySlFdhCDz4JdFwTyCxllbCzVIeymGuzLBTuexrrk9wutkYV5cP8TTUr04PBIALsvfa9kWbqAJCiGeM0swTAKWoZq1Szxg2ab2cPQiizPHUYRTVXa7TL30nvstjtbnTqbePmbqLjWT0ktI+uG52AuswTy4JjoMehqJCze9vgp6jka5oLeFlolGrHl/iZyp6exlcos4pdQSb8lr8Wfma8b8BpcjS5HaRc96jxJ+ZOn4BpcjS5G6LnvTxJ+Y0/ANLkaXI3RuniT8xp+AaXI0uRujdPEn5jT8DFxIs0gnndZjUHtew7jkkJc0atLSOG6QhxsWmwPK6eLN7NhrOwy5zy5RZrwuWmqh1cpY4Me5xADi0gcPFVVl7Hq7o2xB2AY0xz8KJLWVDWhjLMFhu7fclXh6CN/oTLm3K+GZkoPJMRgjMhALZRG1zhY34kK4sepaF4FzvB/eaZU8bjnRzUk9FFJh72z0zybPY64Hfv4rcWNIs0i4VDZbx7GOjjMgwXGy+fDJXNZG9z3S6S46ie4bK8aOrgxGiiq6J4LHgHbbjutXULWrazynmMt18iab8zpdcs0u2KQNdbispLF7L8yk3Vd4k/M2/cGlyxdGCbu4rK570uq2xAUqtUW6k0RjPY16WhKA3/opSb+9CB+KFl6xV/jf1HhoLN/6KLN/6KW/oCL+gKHcVf439R4cQsz/opLN/6KX4gi/oCiN1cZ99/UaIeRhp478kmnscVmL77Dgku7T5oXVTvLjxEtb+rMXCHkSvDRakZ8a6Dx+Jc1E5sdGHPcGtFySTYBZGtpQNRqIdPf1g9a+s2jboQb5wipn7zPMXsj/6ycvfnD/3bF6Wy/8A6Bw782j/AGQvMvsiZopukjL5hkjktUOvocDb623uXprL/wDoHDvzaP8AZC6DE7glSBKgBCEIARzKEc0AjefivKfSd/aBw78vJ+6C9WN5ryn0nf2gcO/LyfuggPU9H9p0/wCI36Fsf5pstdH9p0/4jfoW1wuFjL3XgIjtdX1DJtLeHgtJxKpA/wCS1VptVEEuWi4Lt3ED0r5jfdXu6V06cZv6stadODjlo7hidW0ecP8ACg4lVO98B/5U0VOIUlMO3UfOPWtUOK0kzrMmddc66n1Dd65fVmvTTyPXllQeMrb/AIqPK6j7qz/CuVmlzbgkjvKWwXN9r3je9WX1ZvVKn5HQaqouLyNPxLXO98g7Th8i1Obfg4jwKAO9xPiol1G8f/ll9WPBh5CCJoaTqF0mgd6z2tsN0m/cFrV/c96jf3sy8OHkY6B3rLq294Rv3BLZ3cPlUO9uH/3f1GiHkJ1be8Is0f8A6pbO7h8qxe9kduscxt+8gKPWa8uZv6jRDyMrN/6KLN/6KQEHgAUvxBR6xV/jf1GiHkFm/wDRRpaeB+dHxBG3cAjr1X/3f1J0R8g0D4QRo/vBJt3lLt3lYeJPzGkNLkaXIue/50XPeniVPMafgGlyNLkXPekDtXBwPgVHiT8xpQulyNLkXPei571Hiz8xp+AaXI0uRujdPEn5jSGlyNLkbo3TxJ+Y0/ANLkaXI3RuniT8xp+AaXI0uRujdPEn5jT8A0uRpcjdG6eJPzGleQlnd4SjWw6m8RuEbo4bkmy2OtJRxncOKNZghcyTsFwmuZQD748fBUnm3KtfkLHXZly04TYe1wlkgYwvdpa0C2o7ecSrvJ0NvazXb7c1qnp4JYDT1UbZoXjSY3tDmkdxB2Xd07qla2l7e8fvNUqSZHck5soc24c2WmkbHVxjTJE54c7UACdh6SpNGC9pDuzKORVL53yliGU8TbjuU3vioNQM8McnVXdqLn9hnEaQBfnwVh5IzfS5vwptRTnqqpoBexzerN3E22JudgurqdnJLx6L9lmMZdiUEOKTS5KdSTdUirSfc3r5CaCeJsjQPhBL4lG3eVKrVXxJ/UlxXcTQBxIRZv8A0UuyW/8AdCyVesv+z+pGmPkY2b/0UWb/ANFZX/uhJ8QR3NZ/939SNEfISzf+ijQ073S/EEWPIBSrquv+7+o0Q8hOrHeEhjG3aAWVndw+VI5tx2tvBS7y4Xuzf1DhHyHbAwNR7QPHh8Se+9MWANAkduefH4k8OqYBKWGaIP8Agl4v8i+pdFlOVsnUKqssSwQLp2/q+rPB/wC7eol7FL+gx/Ei/ZKkvTnV0z8g1jWVELnWfsJAT9jf6VGvYpf0GP4kP7JVuuNjVLgvFCEKACEIQAhCEAKmvZQf0Cj/ACkn7tyuVU17KD+gcf5ST925AOfsc/6tsL/NoP3QVnlosqw9jn/Vthn5tB+6Cs88FHcIbMWqnQtAb6E0yYnWtAMcjQ3kC1duPbOZ4D6SmiobdzbEgFfPes9Wube6dOEnj5ssKNKMo5Y31mZ8ThkNng2HwAmGrz5jETpQ17W2NheNqccch6qxHOw+lRDF4O202865K6rDqleTxKT+rPP9T8SCeh4NVX0j4+XkCdn6Jq5/dDzADfr2fomplxKlDLuaBf0JrOom1l6m3usrLPE3V5dwnjxH9WTdnSBj72fbEf6IJsr89ZjeyRhnYWOBabQjgVHWSujP/NdMcrXizmjf0L0/T6tvVXtJfQ511K7X/kf1ZG6moqnvNnW+JckstY1wtIPkUkqKASvPV2HzLhqcOfEbnceN1e+DbP8A6r6HZT6pU8xkfUVXOQX8Fr8pqr/ZB8idn0WoXIPyLQaIA8D8iy9Ut3/1X0O6n1afmNsxmnsZJQCNuC0iF9/PB8E6uoxffV8i2x0Trdlo+NT6rTjwtjOXVJtcjY2OVvmhxPoW6OnLz2w4fGneKgmf5rWAd4K76fDLbyetY+HTXZHBW6jUXLGaCgJc0NDtzxuU90eHGEhxkB+VdbYoohsOHoWMs402bdcl1VpUo5witnfVKndmNQWuGm9/jWljWDex29KxBu65WyOJ8hOkbeK8jdXsajZrVSpJ8s3YXAZKjUWutspjglK0zar6bAjdNFDAYWtAaLlSqipjBAxxAu+x+VeUv6+U0mer6ZRls8j7gcI1PcTe1k+U/aBsLbpvw+IxUwcGtu4fxTlGC2PfSLnvXirurJz2Z7uzgow3Mi13eFrkaSxwJFrLaQ5YEG265/Fmu52xUc8DNUsaSWplq4Dr0gqR1jCDqDQmqrhdoLwGrupXE88nfSazwRuojEgc0uAINk0zQlt2lwUmqqcPAcwAHnyTbUQNe3zRq8FcUbiWC1ouOOERSromi4f2nHe42TTLh7QSd/lKmE0GoHU0auCb5aQi+wsrOFd4W5Y0nTe2CKugaLiztvStYibq5/Kn+anabgM38FyOoiXbABdUKz8zs8Om1wNT6OM7k7eK1+SQ9x/xJ0ko5Gi+xt6Vq6iT4DVs8X4mKo032ODySHuP+JKyliY+4Bt4ru6iT4DVsgppDGdTW3ueaeL8SfV6fkcsY6s7AlhTPj2C09ZCHUrSyeM6wSSb7cLKTCikDLuIt4rpZRMjaHEX+K6esaN8muraUakXGRB8GxQGRmHYm10ckY0Nc46QdIU3pcPZC0SR9pztjYlcePZYixWhM1JG2KtbYhzQGX3ud7XTfk7MDqSqGF4vr68EDW4FwOo3HaPoWytJ1IZiyljX9Vn4NVZRNaKis3WePcnaihcGOfYgiyKaAODXxuvG4X4pxpIXOfYeb3EqhqXEoZWTOt4bXsm6liLQHHmnakiBAcVzQtJcG6AnaKIiMAAXVLXupdpM4KujyOujYGrtAbdYRNAA2C3i1uAVe7iq+JP6lXUUW84NchbeybMUhD49nBOj+Z0hc0uhzHBzR8i20LyupYcn9TmrUk47EExWEujPa1ae5RLEmPe06SbBT+uja6SWNrbarDhZRSspi18jLDcFeusLmTS1M8R1aFVZ0sikb5A64PmropauTrHargWWFRBJTzuaRsStRcS42AXqrG5UXlnkZ17im9Op/UkmWXunx2BpvpOo/MvSkP2NngF5jybI447Tj0O5+hemDLHDCwyyMYLcXOAVpcVYVEtKPW+jtSpUpSc2LPtFJ+KfoXlCi/tLx/nlP+yvU9RWUwifqqIRdpIvIN9vFeVsOe2T2Ssbo3Ne01lPYtNwez3rRtg9FHg9bN80eCEN80IUAjvSMbZFx6+/8xm/YKpT2J9x7e2B0+Vj9gq38+4xhk2S8eiZiNE6Q0Uw0+UMvfSfSqh9ioHsdjnajcw1YILTf3hUEvg9GDmuXEvtVy6gLXXLiX2q5c92s0Z/IQ95EXasli1ZL4wlguwQhCkgEIQgBCEIAQhCxmtSwTyCLd6EXtupclJ4Zlg5MUfUNwWrlpr+UNjJYAATe/p2VFZGxrPEvSDVRVjKkUOuUAmKIC19uAvwV/XN9wCw8QtbKalilMsNPG2Q8XBgHFW1j1GlaU5wlDLfHwNM4Ns3oQksqjh4M478hdGpI7YLAG5Wbi2ZYRk4t0m7gHckryNIublISRbZtu8rRWVMVOR1zwGnncKIwepJI11JaFlywNWLwy1b+pZLxF9Ib86gOKOwjL9fasniqqhp7TNTmHh/zTnn3BZcQh8rwfFTFM0glpqw0adydhzTFlHK+Vc2wtixbE8Uixa3bBqo2Ak3tbU0ngF7npHS516LTlt8ip1WNSvmutT+bRvy3Ux9JOYaihdSuZQQUrnMu641sNhuLHmmeozJTZXxiuy/iFNqhpHiJrC/TtbV48+9XrkPI+F5TjcMNfNIXXJfI9riQbcw0dyZc6dFOXsxYq/E8QqKune8l0jo5o4xc2HNp7u9eqt7C2UFSqxyl8WbaleSqZovCXBEcmYlhGPtfLSTR00+7Qwuc8mx2U/oInQRaS7WW7ONrbqiM34Zl/Cq+OgytiGI9bqF5HVDCwXv75gHNTjJWK0+C0EbK2vdUT2brLpw8XtY23Xjuu9HVOWqz2Xlz/Us7b12rDNX2vuLIa5rhcPAHcsiHncNLRy9KqTpqzBiXtNA/Lou4udfq2uJ83+6e9PPRFiGL1WVRJizJBOHNH1xjwbaB8LfvVBPpU4W3jt4347mqpKVOWGsFgXfwKUNtuuVlWdVnD5l1B2puyrnFrlmyE9QqEIWHBlLYEIQpIBCEIAQhCyisgLho7SxfuA5vJDjYt24myyIDXgN3HcsJcgZc05ew7NWFz0Vc1uqZhZclwtfbkQqgwvF8Z6LMcdhuNRyyYA55EDnBrGht9DN93HhzV8Oc1xLbEekC1k0ZkwCizFhctDiEbSTuyUAahbh2iDzVvYX/hxdvXWacvu+/JqnTy9R24fX0uJUkVVh8rZI330ubcgWNua6tLubr/EvP1DW410U44ygrddVg73ACZwfLpAGonVs0buV6YNiNLjNBHVUcwddoJAeDbYHl4rVf9Nds1Kk8wfD8yYVM7M7S0OFuYQC4+fxSXPVauBWXJVjNuAQhClMgEIQoccsAhCFPGSewG+u1+yRsfSqh6VcwZ1y5VmbCZJ/IrusWwxEW1ADdwJVuBumQsJ2tcH0przTQx4jgdRBNGHuBGjs3Nrq16bcRp3MXJZRrq+6U6zN3SJmXKVbUtNV7VdS8PmEEOmwNnb2vsqnjzHmatqnYLHVSTB0lwBHGNwbdyn1NnGfKnRpieWMUoKyOeaOdjZRTPA7bi4WcbclMPYxZSoqzCqrF66B0konOgyNB2LGnmP4r6xTeYplRLkqLGMuYvl7NeCzY/1hnqpiAHsDSNLR3eghe4MvH/sHDrN/7tH+yF5q9kUQ3pAy6+7GR+UPuHG2n62z5F6Gy5i+GuwjD4mYhSOk8mj7InYT5o5XWZA+t493oWaxab2OxHeFkgBCEIAWD9QcCNx3LNIeduKANr+leU+k7+0Dh23+vk/dNXp+qxKipJg2qrKaF1uEkzW/MSvLnSPNHP0+YZJDPBNG6aQtMTw7/VDjYoD1XR/adP8AiN+hbXAkGxsVqo/tOn/Eb9C2OBIIGyh8Ai+KOYyd7nEANbcqrM/Z8joIpqagcBMHaSQQeDt+IUi6WsdNDE+OmIEpHy9k9xXmyvqcRxHEJfKonMY55IeWOA7+JXm+l9AoVr6pd3SxFPbOV/c4bq+dw/VqXK2OzGc0VtTPA2Muu1+ojs93grTyLhOJV3ks8sMohdEHF5AtewKqyNr+tqGllMXvjDWG3NTHD+kfEstYUyIsw95bYABpc61rfC9Cs+sTqXmqnZx2+pm+gQt4QqVHvn4/mXzCDDH2nXatT6lrT9bbufSqryn0sVOKVF6qCmjidawMRaRx73Kx6LHqGst24ASL7Ob6186u+g39p7dWLf3FxQ6jb50Se/zN004YQTsXLFtY3vC3S00c3aY8OB4WcCuKaiey5bdVrWrZrDLWnOMlzk7mVVxsVsbOTxKZAZWOst0dSR5yxlS0vJn4WOR8Y9h4lZOfdNsUmsXBXRE+61yiuWa5UzoCobpqxDOLMwwQ4LHUOpI+tDdEcZFrNtxF+9X03gtNVSU1QWOkgje5t9ywHirHpN/TtKznOOVjGDmqptYG/LPlBwSnkrrio2BDgAeA7tk78Rq5ndI6NpaNNgByGyAb/EuKvNVZ6kZwQqS10qxe7S26wabZk3gyDUEJI36kp4qMPOxHG5iNHmyDfxSkNaLDcdyyNuIt4lRPPlbjOHUD58JjglIaSAWOfwaTwaVtoxVefhyIbXMh/lr4oS4utpabHfgq66Ks0VOJ4niNPXPLg2FpYCANy+3IKIV+bsarMLeypdQwVG2tnaY6/gXXWzF8Zp8OxandgoZBIHgyGazWlttuBHNent+jyhRlt8jSpxr7UHwXxCWWJtqde1+70JQ3e7yqawnO+P12NxU1PHQvgIOp7GPIuD3h1lcVO6VlMw1BiLzxDD6V5+9svVfalyzZHWvfXJ0AbF2safBYQu1k9RKHd4ATVmZ0zMEqnUZcZxG8gb/APd6VRvRZj+Zm5rljxBj+oLm31Mkt5ru82W+16Y7i3daMsY7GOJa8HogkA298kC1Qzxym9+0Wrcq7Roymje/ZBCEKNOFkx5BCEKCAQhCEghCE7DGQQkulUKWN0NODEgSNdcdZEWljh48fmVR54yfW5cxUZkyW17XEufKyJuvewa3zyRzcrb7WrVFYNGxDuayvHI17JWXjda7S3b5F3WV7K0lhe4+TXUjndEO6P890Ob6HTG9lPiMZLZIi7U4hpDSeFhclTFrCCWk6HDY35qns/ZIqMGr/AOUeV3SRujt1lOHHSWi7idDADuQOalPRtnaHNmHtpsQc2nxOBoY9n2Ml1iTs4kqwvenwqw8eze31NcKmNmTm7T5qEjd27ixSrzyaisrk6sghCFLntp7kZBCELJRcVhkMEIQpIBR/O7sZjwOeXL0j21rGEtYyNri87WA1bd6kCTU5pBswx37YIubehbaE1TqRm+zD4KDy7n7pErq6eggdVSYlG5w6psEGoMFgTbTa17qDZ9zNm/Bs0S1dbiEkWIh5dMx0EYMZAFrjTbgVYGaIK3LPSc3HKOkqX0BpLSdXC93aMjifNFuAChrqqk6Rumd0j4KkUdTMSGtj07FnO4I96vsFjUjUt4uPcqavvDM3L2bMay9UYtWSTmkbrc5xiZY2FzuPQV6B9iu5v8iJREdYa2EED8Up96V8Ogw3ovmgw2KOJrWHUC0NJHVO7rdwUY9i/iFBR5IcJ6ymhlLIrtlma3fSeRK6uDUuS+xdI8am2BsVzUtVDXQiallZIy5F2vDht4LpHAX4oDIXtublCEIAQhCAR1tO6pv2UIf/ACDjMXKSS/6NyuGomjp4jJPIyOMcXPcGgfGVSnslMRoqvI7G0VfRyv6yTstna7/VnuKAe/Y5uLujbDbCxFPAD+jCtKyrD2OoI6OMOva/k8HD8mFZ6xkBjzB57PAfSU0VDXOaSZOqYPfEXBTvmDz2eA+kqsOkPNGPZec19DRU9RSu1WJgfIQBbjY2HFfO+v0PH6ioQ2eF/csrf3B7zfMymwGpncQOqY57Hd7g02VfZBxh+YsMmfWv0ydktvbfa54Bds2J4/nCmpIi3DW0xlaZWxBweG2s641Hv5rRi2XcRy7WulwXyUUVzr64nbkLWsOaytoQpRdGT3ZxXNPWmhcQoxTSFroSWn310w1tAQ/rY2kt9Czpc1Y3iuJsoZKKjdTlzWuljgfsCbHtXIUhq8OfB1Zbd+pt3DjYqyp11QwkeT6h05z4IS9uk9ptli7VtpKkk9A157Yt8ybqnDbHsO+dW9C91L2jzk7CcOxwskeOK3CpA47rCSglZzK1GCVvvSfiKtqPVpRjpycbtX5HV5RGRuB8qTVTni0fKVxkPBsWn5EaTzuu6PW5pJav6GvwHE7CabkBbxKacxz1EOGyDDQS4tPmgH6V1tbtaxQ1jhdr23ae8JX6xOccZ/odFv7E1JrOBkyhXYkI5RiDXiMuJ7QaN7DuUgdVPPmgrWyB1y1kYDTvs1bPJ5eGg/IVwvqslHDZsuk69TxIw2NT3F/nFJZwHZBK74MMMou5xHx2XdT4f1Q2Gr51WVb7fMmZ0bGdXfA0U9LLKfNITzSUvUgaBdx4pwpaB8hFmafisnmjw5kNus3cfSqu6votclxZ9LknnBz4VQHz3ixT7RQGeUMd2g3fT4c1hDSymQaG9jwKepYpqaiLqFsRqbbdYOzw34LzNxcubxFnrbS2ccHdD1bnQtbsRe7OarnPuZ6mizlh1DQOIhc+nMgAB2MhDuIvwC4X5vzZBjUtBV0uFwse4NbK6GRo82/nF1k94Tk6pqqOrrsSlp5KyRknVPjk1NabXbub2sT3rOla0rd6qrTyXEXpRYUckT4g8EMjfvc80r2At4hrRvdVDiGYcyZXwyHD4HYVXVJZs1uqZw08bhrr81PcoVOMV9F1+NR00RN7Nja5m9+5x7lw3FhKkvFlLZ9jdTnkeJoxLGWlwcOSbTFcFsjT6Anq51AWbax4Befuk7GMz0+eGQ4dBMaXXHYtilI+xi/DbiljaSvZaYPGDpjW0Fr1FMYySBsU3zU7XbjinTBBLNg9E+sBEroWl1wRvb0paikGq7FHi+FNxW7O+lcEekgue23dcc1Nc9kWUjfByLd/Bc8lLfgLLuhc4Sydka6Iy+lI89pcO7gtElI0+8t8akrqMjcb+KwdTW4t+ZdMLpHTG4RFXUAvcGyTyH+98ykr6dhBGh1/BavIx3P+RbfWdW6NvrKI95D/AHx8iyFC3mQVIPIx3O+RAp28mO+RJXCbTIdyhjbRM+Bf410R0btNo2lo7uKeW0x5NHxhZtpn67EAeCxld5lua5XQ2w0jgLScEzZqyhBjFATTx/z2IF0BBJOu1htex+NTNtGdje/xrpZE4FgY3cHiQtUOoeA/Eicl1LxYlT5PzRLg9a7BMz3iIceqdLZvZFmjZo7wVbMMAGgRHWw3DXjgmDN2SKXM1M59nQVkQ7L4yGXtc8bE8SohkLNtflzEBguZmaWHS1kz2OB5l3acbcwuq4hG+p+NRe65XJVQrSoPDLhhiLQCTcrvpI3OcHt2K00kbZ446infrifY7OB478k56QwtDbXK8vVTziXJNStqMgsgsQsguXVmWk5gudRC55G9o3XVcAArVM27dQWUdmRLdDFi1KQWytGzdyo9iNO2oYXN85o+hTSYdZHoI4pirKAxOJbcgq7sq6gUd7buZBKiEyNcyUbelMVXh74Y3mE22J4Kw6qijeDfZyYqigexxDmkjjwXpLa/imjyl906TerBUjswY5gmOiSF72RBzgDoYeOw4hTDP+M9IVXlcVmNT1NNShrzEZKeEAkCx3aFz5+wh9bhobh1NI6pa5hOmMk7PBPAX4Ju6Ts+txrKGG4A+jr6aqifICH07oydQ248fkXqbauq0cou+lrTTxgi+BV+bs5VbKWlqZpnwMMV2xR+aN+4d6kfRjg9XgXTXQYfXyF1TBVwhwLdJ33V+dB+WKDDMmQVnkv85ljDi50YvvG2/K6qKGVkXskWSzSxxsbWQFznuDRbT3ldBY5PWkZNhdpBshcVLiuG1EhZBiFLK8C5aydjiB4AoUEFJZv6GKXD8vY9XjFNZ8llfp8kA5E8daavYlRNp6bGIY3awypDb2twYVd3SIS3I2PBtt6Gbj+IVSvsUWOBx0kjerHD8QqGS+D0by7lz14vSuuugcForBemetVdZpSQh7yIq3zQlSN4BKvjE1iTRdghCFiQCEIQAhCEAIIu0gceSEb8RxUN43JEuQLFu/elNiLLXUVFPT2FVURRuOwDnWWbAx0YfE9r2u3BBuFMqThFTwRqF5WRc8kJFLSkkzNbioQhYyftGvGHgRlnEhxQ1oDihwBBubfGmLHMchoaeRocC6x4Ed3ittC3q3NTTA1XNxC2jqkdmNYnT0FO4SntHcce9U/mzOLpdTBKXNtwv6PBcWa8wGoe/W8jfbe21/FVzNMZXkkkr616M+iUacPHuUnns8P+qPH3F7U6lWdOLaiuGth7nzNMWua12m52N/8Akmijkrp8boZYHmHEZHmzxYknSe/0LSx3c2/xLvyrjkOX8001fURmcRv1AMAdbskcD4r29a2o0aWmjTin8kjroUVS25+Z7CocTgwXLeGyYtN1RfFE0uLSdTiwd3fuo30vvq8Q6PKyrwKqewFjS1zW8e2O/wCNUhg2I4hnzNE7sSlMdE2J3VsaSwizuzwuOBXRDmWtyfjVZh0hdUYWZAAANZsB3uIHErytap4VVQlyXFtbyu4ScOxBKKFjYRJTkF3WEPAFr966u0HXYA0nuHBcdBUMnkmfC1zGvc7Z3iuknQe09oA4bqurQzUy/wDB9DtJUo0k4r6kowPNNRQzRRVTzJGDsC630BXJlXM0OJQMicbbbdona3gvOxd1liLGyc8Jxaahka5rjsbfEqfqPTHXpvS8Py7Gq46dCunJcvdHpcUzJnERtue9ETJoZSyRp02uCVTOPdItRheWjLSgun0OPmh1t/FS/ogzdV5owSSSuiLHtlcASwN4BvpPevJ3HSKtGk6j4+Z5a4t5UZ4J9dHxpXW5LDe6qEvZ3IXG5mhCFJAIQhAASoCFGl4bTBjK5kcb5JCWtYNRNrrTQVMFc10lLIX22PZIUd6SsIrcay1PS4dK2KYtfuS4cWke93UO6EMm4zloVDsWqWSBzgQA6Q+9I98ArmjYUp2kq7luu2xDe+C2rkXBFy7Za32DdLowWk3tdbSdhbc8kms8HD5lTJt+yzIbsw4HR5gwo0OIRNlpSC0xOvax48/QqQmkxnolx4B7nVGCVDtg4iJsep3Cw1E2a1X8bONuC4sYwynxijlgrWtc1zS0CwuNiL8PSrWxv/C/YVvag/PfHy32NM6feJhg2NU2N4PDiFBaSjmbq6wXAaL7cRunJjXabluyoKWlxfoox7yin1VWXpXEljA6R7GtFm3LrNG7ldmB4vSY7Rx1WHzxuY4C7S4Eg2F+F1lfWKpYnDeL4f5/EmFTPsschZwItYpLFrQDx70pF7j3wSWOkOPNVUlpNgIQhYpgEIQj3yT2AgarehF7lvoR74+CBxC20MqvH5oxqe6Q72Q2XXYplSmrIWXFG9804v57AwixudlJ+h6TCXZIw+PB42QuEMfXtZf7IGC+5UvqqWOtw6SnlaCyVpYb9xXnDA67F8idKdbhNK6Koo66eWpa2NpfoaXaQDe1rActl9lt/wB1H5IpnyN/sm6ZtZnfBKd/Y8ome3Va/vGclYuTOh2noHUGJjFNZMDDo8kA42PHUoF7I5rvdHy8RwNQ7j+TYvSWXW2wLDjffyaP9kLcQd0LOrjYxu4HNbFg0m4uW+CzQAhCEAJD2blKsTfVsRv3oCu8+9GsWbcRjqX1vk+lrRbycP4En4Q7153xvLcOWem/DaSGo689dIHHq9FvrYPee9eyw09ZqJ5WXlPpMN/ZBYfsR9fk/dBAeqaP7Tp/xG/Qtp2Wqj+06f8AEb9C2k2BKA89dKgldmMh24DWkDuNitFNR4e/J9VPikDZJGmMMc65sD4elWFnbCmVWOl9uDGlVr0s0crMs+TUZ0ud1Z58njuXmrm6nWru0pvGWUtOzlbXM7uT2b/qUtHiYiY021PD3WN7c9lxNe2sxHVJYmx+ldMNI2ANEm9itL6M+VCWM7WX0WNirZQhTingtp3Eqy9tnfqkids43HNPWD4xPTyNPWkEf8kxgki5SG44Kynb0K0dNaKf3L+5W1LSNRey8MuLLedaiK4kmc9g5E27/QrMwXMNNisIaCGvO2xJ9HcvLuHVj6eTe+k8VN8JxkAsMLyHAjn/AM14Pr3obSqJ1rfb6L+iOGn1K66ZU0z9qP3v+5fzqZt76NQPvuC4KjD3NNyb/EongGby1raee9iPOsOQ8VNqKvgrC4h4NhwuF8su7K4tG/EX9T2dl1aldRTT/X1NUFPpjFtiuuOJzS06dklVPFSUzpZnBrAbXJsuXCsVixEltNKx9vgkH6Fx+HKUdeNixbysocmvBcW6QNu9Eepg478yk1Hu3CyvcXWhNPfBrcRLAG4QsXPssOtCxeXwZJG5I4Bws4XCxa+6ztss4xa7mL5EaAOAsgpUh2BWMXJSwSxHutBv5vco/mHH2UNE9sLtDrHgSOR9Cyx/FG08Dmg7/F3hVzikrq1zgTsVe9L6c5z1yPNdY6l4UdMOStc21FLV5ldUylsc0he4k7mT03SdJ0rqiCFwomUN3EGRsmvUNPC3zqyMkZDpH4xNX17utD3lzGsedgW8wQrLzfgtFi+EugqYAAA7SWtAsSLdy9Tc9co0KsaSWy52/wAnR0ejNQVVP3jzz0aYnU4XRNkY4siFhsbB/ZHaVu4bmp9QGyHj+N/yUIjyjJhLqiFrmuikkMjLEmzeQOyzw+iqRNa4ZE07k3C5ryNC6eWv6H0S3tqMrZOpyvkWhFjxewm3EaT2uXyLlbNEH64Yg1x4kOKjdK9kIv18bxws11906UkoI4hVDoSoaoJvGDkVrBe1HckFFK5zwWMsfFP1O2d41WJA5KOR1XkWG1dQLF8UTntHG5G6rPKnStilTniWgqadwpjJIL9SBwaSN7rhp9OrXEJSj2Ku6e+Ei92h0jNTW2tySeK0snjmbrF7OHIraLWFuCq9LgtLObfuKkSoCxIEQSBxWThsuSpqGwMLn3twUpZ2RlFZZ1XHEbrHz9wbehRTEs30mGMkfLewPe3+JXNhme6DEYWvjfbc8S3+BXSrKvKm5JG9UJPgmh2uTwHFRyfOeGsxYUILes1Ac+Yv3LZLjsc9FK2Nwu5psdu7xVAYdlXFZ+khlY+T+bmaM8X8Ay3dZWvSulU69Nuu8Y/Xc4rujWSzFHp5h6yNkg4OAIWV9XFc9CdFFTxk7tja35At4G91RTwpOK4N0VhbhIwPa/fct0uHwm9yqjPWQjQyTZoyz/NK5rtb442A9YXkNJLidrAnkrXdZ7w0cRulLAXiXZxbcaDuDf0LrsrupbT9l+z5f4NM6ed0V/0Z5+jzRC6lrgKfEYr6mB5kJGrSN7AbqwTGWgEOLid7Wsqo6S8g1E04zJl9zYq6mtK+G7hrEbdgGNFrkjnxTh0a55ixuJ2F43qpMRpz1Y63TGHBrRcje53VhfWNO5h6za/TyMYya2ZYoIcewdVvO9CVICXktcLOZvfgHeCVULaWzW5ui8ghIlWTzyzJghCFBiCxdcWIbdw4ehZIu1o1Oa4232WMuAdcNOKzC6ylkBcZI5AN+9tv4qmOhrBsPy70jYvh2IwMNaZIW0Tze7bMfrsBfvHFXjlxgbDKd9Tnk791gqo9kZhctBR0WacMkZHVYcyaRzd7yF2gCwA3tY8SvrnRs+qwKmr77Jd052GQaxxbazX7/wDpvVIdBnRrBm3LJrH4h1D2tjJb5MH3JB56grKzfilVi3Q1JU1cZbJocCC21/rJXP7FYN/kKSGu3ZDf/CVbNZRqXJaGSsuDLWDijbN1ukvN9AbxN+FypCSQwd6AA3fdB33dsFAMkIHDZCAEIQgGjNWCtzBgk+HPm6lsunt6NdrG/C4Xmvpo6K6bLGVWVTMQEp6x+3kwZ7wn4RXqs8FTnsn7/wAhI7kfZJP3bkA4+x3P/wBOMNDRcCmgF/8A0wrPB7RBVX+x2Jd0bYbpttTwfuwrQ77qG2lsBlzENmOHoHzlNUsbZ2GCQdZG/Z0d7Ap9x1mqmB9IUfkdI1psW3JBZ/G6+c+kScOoxnnGyLG23gVVhdbQZazdiE8dSKakNK9vkoYQ0v1gk6vTZYZszfS5gy5NHQ1gpSwxtexnb1HWDvsE55R6N46KvnxPFptc75n6WCR1rF+obOCfc6ZMo8x0TmRaYJ47CMA6Ae0Cbho34LGV3bxrJN5a7kOGTdgWDUUWCxvw2FsLZAQXNvueex9K1nDZo3uDLvBNyeCzyThVZhGCx0da5rg2R5uNXAn0qQiNzHWZbS7e5VZcXc41Xh5MHbRmt0Q2ooW3+vQNJ9JXFNg8TxdlmeAv/FTp0bS7ti/gFrkp43cGFdC6m0tjiqdMhLt+voV1LhMn3Q/J/wA1izB333efk/5qwThsZ/8A1QMNjH/6rp+2I8r9ficsuhwfb+n5FdvwI9YXObqv6P8AmtBwQh9zCNKsd+Ese7sg3PpXIaWiMvUGoi634OvdbKXVpVE2v1+Jol0CD7f0/IgjcG3P1oAXW5uCahYtsPD/AJqdtwcDYgkcitrcJi98HfKoXWXjd/r6kx6BFR2X9PyILHgoj31WHh/zW4YW08X/ADf81Om4ZTt3aHk+KzFDEPeFaZ9VlLh/r6m+n0WMY4wv19xBmYTGCNwfRbj86cYMNDWjRCG+BUqFHECCGlbdFhs0fIuefUpS7nTS6ZGK4I1TYfOXbXAXdHhY1apTc+kJ4Yx4dcAfIs+rBO/FclS8lI7adpGPY547Rs0sb86zjaZHXI4clvDA3hZLqN724ehcbqPOTqVNRIb0sRUhypO+uAiqRGeqlILi06m3PyKL1ue3YdlmSjwqBk0hpnfXRLoLSYyL2I5WBUtzzlJ2apqFs8wZTgu1APc02I9A7wnzCsIoMKoBQw05kY5uhzy0O2Isdz4K4p3dGjQpqru9/iYThk88dB8uIYh0htqcQe6okc8kg2FuweYXplwL9ph2huAd1BnZCjoM2Q4phMsbAS9zmlx5iw2Aspu0O2JIL/QtfWrqF1OE6WywtjOlDCM42kvG1rA7LT1IlIfJcyA+ddYSVlK2XqpaqFswNi0vsfkXRJsNA581WwdW3aqJtavI2LDNEsbZBuOG3itXkgLbt7I9AXUGhzxbaw5qnOl/pCxbLeNQUuH07nxkyAkQh17Nae/0rosLad5VcIc4zuZ+JoRZ5gLibeC1vo7jcLdluukxPB6aqnbpkfGwkWtxaD/FORAK1VHKlNwk90bVWfIw+Q7nZYuoj3J/0AckhYDyUKszNV2R3yJ10jqE/C+ZSLqmnayxNKz/AKKz9alFYRmrnHJHhRO+GfkWbaIW1F9x4KQNpGf9FNVNiWHzYtJh0cgMrY9ZGod9llRqVJpsO6OZlINza9+C1Vfk1Gxrqt+gOOkDSTv8SkRiZGGgDgFVXTXkzF8yy0jsJnbE1srSQXPHvCPeg966rCKuq3hVJYXmaql08bE7pqVksTZYO2xwuDa3Fb+oew2LPnTb0b4HV4LlmjpMQla+ZkUbSQXHcNseIupY+OzjpIK5b1qlVcIPKMVcy7jfHTF4F9rKPZ2yJQ5qonsrQDVAHqp3M1GMm1yBccgFMNJ5rExNJ7RNuditdC6rWs1Om9vmzXOeso3J+cMRyTmD+T2aCTTPuIJHvA4uDWWa0HkDzV3xFkzWTRuLonC7XkW28ExZ4yrT5nwl1PUNa2dvajkb2bENIFyBfmqnytj2LdG+YRgOPtfPg5cWCojaSA1rSR23kcXEK9r29LqdDxqO00uODn1OPJfG+q2lZO7PELTTVEOIUjaiimje0i+zr/Qtr7ujAdxXmknHNOosM2xeoDv6UvvbckgbpFkqLbYywaZQGgWC12a4EPbddQIvuEk0YI2WyNRxNUqakMtThbZZLsFviXDU0L2kXJcOCkbYnEWQ2MCPtC+66ad1JHNWs4zjjBHsu0jY8ZaQ3TfUTY8dlCum7L8NFn/A8dxOES4QaqIzMebNLGRgO3vf5la1HC3y9j2i3Fd3SJg0eP5OxagdobJJSvZHI/g0kWvexPyL6F6OVnVots4FQ8HYcMvTUc2WqWTDGBlK6BpYxt7AadhuvJ+M4OzHfZAS4dNN1OupgYTo18WjlcKyOgTMGLNxXFMuVmmWlpZJWtlYw27DGgDUfUoXQFx9kpFcW/nlPfbfzV6FPYlLuXDlDogp8vYtNXx4n1xlhdFo8lDLXc13HUfgoVosaBvvwQhAwdIoAyNjxtv5DN+wVSXsUbl+O3cftsfsFXb0jf0Fx78xm/YKpP2KPnY5+dj9gqJdjLsejB3LVVfa7x4rctU4vC/wP0LXU3jJGK2kiJhKk5lKvjNX32Xa4BCELWAQhCAEIQgBKwtEg1GyRYuO4FuKZ07jGSmOmjC811WMUjsEnnbAHsJDahrBwN9iVZOQoK+nyxSsxVznVIjZcueHG9t9wpC7tNs9oJHDZYgu4GwA5WVrc38K1tGio7o1xjvuKkKVCp2vM2J4YngkkeGDcoe9kQu5wHxqM4/jLIWkNe35R6V00reVaa0nNWuoUYuczbj2MtpIZLOsRwtfvVTY9jEk7ZJJZHAC9he66ccxB9bNJeQBt1BMdq+svC1w+JfVvRf0eUWq01+vqeBvr+r1O48OD9j9fI4MTrHVkxvsG7D0riDbCyUAAADiOKVfSlFQwlwXFGiqEFThsgZqbwcR4LWyCLWdUbXE8yFmUvB7VFTTUlujbDZlh9DzWvxmYuALRC9unlxC5+kGEMx+cWvG5x7B4DYLZ0Qv0404d7HD5wuvpRh6vGnu/vH+C+add9nqUIvvk9T6IT1TqxfwILDDGwu6tjWC3ABNGYWVh6vyZ7gCOTrc0+AWBKQX4vbcctkjPDPaVrRTpaEc2GtljpG9cSXb8TddLfO3PJLq18rBYnc37tlhKXtZNlKDowjDukbopGEGGpibURO20ybhWz0e4pSYbT+T01PFE13aIYCONlUI3KccMxGWkqAQduHBct9b+NScUaq9pSrZytz01RVLKiIPDtyunVvwCq/KeYg+NrXyN4ej0qxKCrjmjBDgb+lfO7q0qUJNdjzNzayovc677pXCw2Ra+4QHW2XKcjaQgSoQskmyXxsCLoQoxghLYDuEg22vt3JUKc7Y7E4Bp08Agedc7oQo7YIYGxN7AJHtGsOHG1kqQbp8AcuM4ZRYrhclHX00U8LwBpkbcDe/D4lSFZT4t0XY1FNQyzVOBSygPDnhoj1HU6zG77AW9KvgG7rLVitDT4hQvpauLrIHghwGxAIsd+S77S/9XXh1VmD7fHz8zTOn3jycmXcapMewyCtoZA9srA59wWlpPKx3TiLs7Mjj9KonHcFxXo1zA/G8AbLPg0jnPkiawylmrsNBc7YcVbmUcyYbmTC4qihqYZHkkOjbIHObY23sunqPTnFKvbvVB/ruTGfZj05wHDdBO4sgSaZtL2kJX217cFTRjvnsbM45BCEJvuT2C/aPggbuCQecfBDfOC6bVariK+KManukt7Xk4DBc+Kono+pH1/StjsuMRNnnhq6mOn6wh+mPlY8t77K+I7aAfQqQyZKaHpkxWKv+tPnlqZIdXZ1M5Ed/ivsdFYpxXwKZ8kN9kcXDpGy80uJHlD7ej62xelMvNtgOHb/92j/ZC80+yMa1vSPl0NO4qH33/wDDYvTGX/8AQOHfm0f7IWwg7WtAN7b96ySBKgBCEIAWJaC4HmFkjmUAg5ryl0nD/wDmBw7f/Xyfumr1a3n4ryn0nf2gcO/LyfuggPU9H9p0/wCI36FttdaqP7Tp/wARv0LcEBFcaia/EXOPEsAsqw6TISKckXs3a3/mVrYyzTWX9AUB6QqbrqF5aCdx+0vnjn4PWnL/AOTI6lS12Lb52PNlXG6KYxvF9+JWpl7FvAJ4zRAWVmtoNtvoTM87C3cvu1CeulGou/JSWNTx6Sl3XIjRZoCLJbWQtj+B2NLkQ8hyXdQVPk7wWgcVw8ws+J2Rb7Gq4oqrTaZOsOrfKIw0HS/vHFSTL2PTUdUOvkdoNhxJ5qsqCeSFwI5ehSynqIKlga54DvxlQde6HTvqHsx3/XxPI5qWFRum8Im/SZmR9VlVsOGuIlcYzqaS0878VB+hbF8XwzExHiMskzXOAJkkv8I8luZETJpLg6MXsEMLqeqbI0WF78PQvHS6Ara1lCcf19Szp+lFZ4i3+voX7S1Mc7NTXXLt7WW8Dax2Ve5axbSxt3i/xehTikrGTMB1C5Xza8s5W821we66dfRuKay9zdLDcbOK0Np3E8Susm26Lsda/HxXE88osXJo1siLG3JWxjtTTfaxSb6rk2YOJKV24vG9rm87d6JuTzgnPYQG5XNXVHUxvsAdiuobC5THjE12vA7j/Fb6K1VFg0V6uiDwQrMNW6R25O//ACTGAXPDRzPFd+MNK5qQXmYPSF7m2UadJPB8+um61d6mT3JlOGwtuNR23PgpBiDXOiLC4kJsys3TE0+gfQnuoAcCvF3s9VZyXme76ZFQpRilsiEYlTXkPaJtdRTMjZYcAq/Jnujm6s2LTY3uFP8AEow0vd6bKEZg1GJ4Au0jf5lbWNZVZLPY9Xbr1iLpvuVDleuxlmIT+W1dRJFrdYOkuOIsrJwfFJHW1OPyqOTQtje52mwJW2kks7slemuHCstkXdpYKhR8Lkn0mJOkiMbjdjhZwJ4hN1Dg+GMrTVQ0cDJySdYZvuO9NEUz9Tbna+6fqCRriLEfKqzwnQi/D2ycdeygnnBNsGkk0ButxHDipGy+hvPZRDC5i0CxUmpp9TGgnkvJ3McSZ5y5g1J7HUL8wguDSL8VkNxxWuaaOFl3kce9c/K2ORZbwbXanDsgW8VHsYr6LrDTSz6X2vw70mK41BTNLnAlvocqY6QRQYnK2oiMjZInB5tMd7XPIq26b06Vea1HfSs6slqgtxz6UYKWLDi6Cpe9z+1bTw7QUGytSSMp5Ww1UgETS/kOaSmxiGqp300tLO5sZDb6vjXRRPweifI1scgnnb1bLznzr34c17u2tXQt3GUjDXeUKyeMry2JVgOPxOlFI+d7pW7G4PLirBwuNri2QMAPHUOKrrLmUo4Zhicru1J2ranDzt/BWXgwIYGnzCvLdV8KGFF/Mt6tZ1KeXHDJTRi7G7ngu07BclHs0LrcvMNY4PP1s6jEADcDtd6LEG4JDu9KhYJvgxbwJZxJNy6/nA++HcVV3SN0fOr5Ti2WD5LibPP6nTGXXcXOJcfQrRNrHcCT3nj/ABWJLuD3BsnpHEeC7bS7nZNSg9nyYuCbK96M8/NxhvtZjt4cWYBpvqfrLidi61uACsQkB1uar7pLyJFjEJxHBWugxan1Pjs5ztTiAB2RseBTd0dZ+66p9oMzkUdZAC1rp9MWssswWHHc3VncWVO7j61a/ejVCThtItHWzrOruesPKyXmkLgXDbcea7k7wWSo8bZlydCeUCEIWttcDYErSAbHny70iA0E3PJE8LDIHbLzSGSFziQXm1/AKsPZIvqRTYNTxi9HMyoFQzVYOA6u1xz5q1sBsaZ5Pwz9AVZ+yL61mBQVPVuMEEcxe62wvo5r6/0uKVrAp6vvs7elOCOl6JtNMxsbOouWtFgfrDkw+xRJdkmQg7aYdu7slPfSrVMm6I2yQkOaYQCQb/6hyZPYpNP8hJNBAJbD+yVYmsvIi6RzQRYpUIAAAFhsEIQgBCEIAIuLKmvZQ75Dj/KSfu3K5VTXsoP6BR/lJP3bkA5exzH/ANNcMtt/NoP3QVouGyq/2Of9W2F/m0H7oK0SoYZwYuL01vjUaYLsJJ3Pmn4PgpPig/m5UZZs0L5x6XRzcxz5Fjae6AF7daTJbhq5LKw1BwADhwPNCF5ZrZHUooO0QQ97ng8jyRuG2HBJdHHgpUmSl5CtaOJYCkf6GAIuQguTJOkQN9CUtB5LAzN7wkM7e8LZFYixoZtaHvaWxbOBG4Nl57ODZ3PSDFL5TU+RB0dx5Uy1r77XV/GaJvaDgHHjusfKImdoBpd37Kw6bfRt1PVHOUYuk3wbKbrWUVM2ckyiMB5JvvzWfHjuuV1Uy93Hc78Vl5VD/wBOVbOPiNyNnhNYN+w4AIJI5LQ2pjJ7J38VkZ224hRGGENLybA6+6XUCQLkXWlswOwIuVne3GRocOSyjHOyQawbGPuBZxuTZI49o7bpQXMbtxG/BJrvx481rlCUZGDjvsFysozZ1yNQtaxWPFKFLl3SJxthg0WcCd2jg3kEoJFw02B5BCES7sYQNs1lmgA944rEMdazCdXIrJG/vePJRTaUs9hjY8/ZswfOc/SPUTUk9Q2g6+WwFS0C2rba6v2mDvJI2zE9cBueKyLnNG7AXHnpCQuF9ZPaPJWt9fwuY04xjjSsGuMHEyLSbaSR4JsxjLeD4u9kmI4XRzytvZ8keo729S73TE+bxWHWvHnnbwXFRqVaNRzpPDwQ3F7SNsEUFNE2KmiZDG0ABrBYbCyzFuRXO6dtrh7bLnlrGMvdw+VQqUpbvkOrGOw4OO2yxF+5NLsTjHP51icVjHP5wslbTfY1etwXI8gkkCy01NZS0rdVRKWWNj2SU1HFou+/xhNWOx02PUL6TEIpY4ibtfrLL2vbceK30bJzmlLYxndw7D7PmTCaemmmdUktjAO0bjff0BVBhE89Dmn+UEr3up55xSaDwDS++rvvY8FzR4LTZXxcUlVS1dThsztN2SuFwBc9o+kqya0YScAdC+lkNHHGagNEliHBvwvAK79WVq9EFlM1esJkkkxvCi2RwqOyT2SWELrgqWVEYfCdTOAPBUXhGWaPNda6skZUQ4bFsGumeNnD4QPoVu0ElHh9K2npbtibw1P1H5SuC+6fGMVOD3fY2QuI53Hognc7/GgXHo8Cm9tZC/37R/5ltEkPvZW/4lUxoThsjd4yZ19s+keKU8DfitDHOPmkEehbOsPAgqJU2tkZKaxsZtLr31m3co9nPK2H5qw19LWxRhzgLS6A5w7QPPwT+HALIWIShVqWs1UpvDRksNblC5dx/F+jvMkWCY/LNJh8sjA2d7y8gPd3NvwAV50tZS11PHUU85fTyN1B+k334bJtzbl3Dsz4TLRYpGdTmuEUoeWAPLSBuNza6pvDcXxXopx19DjUUs2AyOc6GTqw0Bo7Le27c7r0NalR6xDxKe1Rduc/0RpUnFl+2cD2hY+KXsgblaKCrpsTpm1GH1UNRE69nxO1A29K3Pb71x3XnHBxbjNYaOjUmgFkqQkAADkkuoeEs/gSkxd+R3QBpjAIvvzSB2+yxJLgPFRwycM3UwPlUbWtHAruz3JNBkvGZKUnr2UkjmkGxvbbdcuF3NewHuP0JxzfC+bLGKRwtLpH0z2gAXubdy+keiqxbNlVdZ17lcdANDB7R47WyRtNa6vk1SkdoXiZcXVWUTr+yWaQbg1lPv8A+VWr0DVUbcMzHRSua2oGJSHQTY2ETAdlVVIGj2TDAzdvllPb/CvUYwaD1mzzR4IQ3gPBCGJHekb+guPfmM37BVJ+xQ87HPzsfsFXZ0jf0Fx78xm/YKpP2KHnY5+dj9gqHwjLsejeSwm+wv8AA/Qs+S1zfYX+B+hRNeyzH/siJnzihB84oXxeusVGXUeAQhC1EghCEAIQhACxeXAdgAn0rJCklCcW7k6kW9JugosSkUo7meAWMkgY03PJYyHQ0kqN4xiXVFwuui1oyrzxg4rq6hRWWzHG8Tcxhs751XOM4m+aQt1G/wAazx7FnzTaWcP/ANEy1LxEzW87r6J0LoTlJJr9fQ+dda6s68/Cp8fr4kRzpiVXRW6k999z3hNFJJJURCWQ7+Kd8aqY6yeRrhsD3psvbssGy+m29m7NYRadKpRhRTa3FsAfFJfeyzI+t37tljLKIqcvtuAea6nUxuWOBCCUrvOaU30uI+UTGK1uJ4pwbuG3SlXU87EtYJx0UPAx5vp2/wDc1SDpcjtiLnDvP8FE+jWXqswwDvcB/wC4KddMUVnGQc7/AEhfM/SbMeqUPimX3obPNxVRV7h2Qh5OlrSBwWJaXBvilc0i3oUYPosnjhiPe1oAHFHdbnulOlySR7WR3dsAscZZi5bamZeaFiHXcsaaaKQdhwPgsz5ymLaeGYqeqGtDphOIyU0ou4hviVa+WMdY+NgL3fOqUJINwn3BsVfTyRi/NVfULJV02kRWoRr09+T0VQ1bZWA3XYQLX5Ku8s4yJI2gnfx9Cm1FUiYWuvEXdrKkeVubWVNnaCDwS2S2Ftki44yaRyrgEIKFOc7kgduKALpA65stgtZAYWRZB3NjwKQ6m7MOyGLAboI0pdJG5kHyIkBIQgS1t0EuLdTN3dx4FI022KysALtbdx7lKx3GcGmroqeuo3Q10Mb43jtRkXbfwKo/MGBV/Rli0GK4PNNNhUzwJYpHbMa3tOLWstvvzV7dU4DXffustNVDBWUstPVRl0MrSyQardkqy6dfztm4TWab8/1g1yjtlDTk/MVJmjC46qmI1Na1rwRY3tc7HdPew33seCozNGBYh0bYycdwA+UYfM4l8MbNJbrdzc4ngB3K1soZloc04Y2rw6RpfILyxB2osFyBc2Hctl909x/b0HmD/XYxg87MfgLo5rFvZdYrIB4ddu4VLGT1NM39hANyfiSsB6xo70Dh8ayZ9mZ4LptotXMMeaManukraSI27C3NUZ02VLMt58wbMDQ2OBtO2B+jzi58pF7Dc8VejdmN3sF5h9lRNAcxYQPKGEgREstv9nPNfZqXuIpnycPT1XQYnnjLNZS6uqkqJLam2OzGjgvUOX/9A4d+bR/sheUumCannzDlB8BFzUS6he9uy1ercv8A+gcO/No/2QsyDuCVIEqAEIQgBHMoRzKARvPxXlPpO/tA4d+Xk/dBerG8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C2m4BstVH9p0/4jfoW080YGDHbmoHxKOY9SipoXssC7b6VIcdNqkfEmuVuuNw718r6vUlT6jKS7Ms4U1Wo6H3R54zFQBwexw+ui/8AyUFnYWzOj98Crmzrhxgkc8Dj6lV+N0hid1g5+tfafRjqMbuyjHO+D59azlZXU6E+Bm47osl4IXomsF+t1sA4FLG1xdsk5LbT8Uia5zcYs3s1NG1rroin6t19bgfQucmxS2BW1ywsFBVSqtpjzS4m4EXcSnpswqYLx8fSoZ1mhO+EV7YyGuIC0VrWFzBplTd2Oha4ok+GVz4JmtcTYH1Kf4NioJaS42KrcASt1sO66qGvmpnhpBs1fMutdFlCTxHOf15HT0zqrtppT4/XxLsgrY5A0Enf0LuI2aW2NxfdVIc2Pp4wd9vSPUtR6THRubEQS4jbtj1Lx1X0Yvmsxj+D/I9xR6/Tl2/X1Jt0jYpU4dlGuqKK3XNhkI3PEDbgq66D824zjOL1MGLX6kPfa7nng0W4ldj81zVkTmyNcYyDcahw+RduDYrHq+tMLBzu++6sY9LdpZyp1oe01zj80YLr1OdVRX9vzLQqZ2tbYEphrw57XHa1jzXC3F5Q3sgkeIXLX4q0xOMnG3C/FUVr0+aqbHTc3cJxbyMmLsJDdr37lyYWBJK1wBsHW3FuajuIdI1Ph+MeQupHnS4tv1wHK/wVaFLhUFXDDVR2Y1wa6xueV16K4qerU0plFTsHVnrQ+5eFohb0fQnZ24K4cLg6lgtuOS7Jn6Iyb72Xi68k5to9laQcIpDFipAeWu4FQ3GG21Ndax4KU4hK6WRzGi97lRmugAJdJCdud1adP9ndI9LaLS02yH1UAc9zHgAW1bJpddshER4d+ykeLRBsmsbC1rfKmunoHVs9hs3vtdekpT1RPTUKsYxyzRHPIC1rrbm3FPuGzGMi7lyS02DwXZJUxdcBsN+K52TxQnsuBWU4SksGuNSNfKiTugrCALFPNPiem1yq8pcSZaxIHxrujxNvJwVPW6fqeSrq2Lk8ssB2MkN2d9KasQxl5aRcW48SohU4pZuxTVU4m51wClHpae7/AF+Ap9Linn9f0O/MWNzPDmNDdPifQq/xOpe573A3bp3B7k518z5CSeCaJG67hegsqEaMeDv8JQg4x5GGjbUTVNR1R0RufcEG3JbKhlTSSxSShr9Dr3JuQnmMsYwtaO14ocwSN6t43dsrGVVSeMdivpWKim85kTvJ2JyV+HxMkcQA1trX5AKxcKcera02t3qrcqAUzGMHIW+ZWThUnYavH9ThHMtjRd0sRSknkmVHs1vgutxTbR1I0NHoXX5QD/8AqvLygyhqQeTcdgCi+4HeueSYNs/msJKl5aHGSw7lr0sxcdzq2LgDx7+5K5ljd247zxXPT1N9TuNxZbutbpvfdS4vvwiHFpitsTqaSbd6r/pL6P4MXg9tcIJpsThIfaLSwOA1ONza+5srDNmx65JAxveRey1U7zI9z2HhcB3eF2W1xVtMV6a9k01HGT09yrOi3P7qqrjy9mMdVi0R6tpAcWudZzzdzj3WVrFwDgL8eFlXnSd0fszLE+vw4iHFh2muc0yHUS0cLgeaCmrox6Q3vk9oMzNMOJMeYo3SPAuCQxlmgePNWl1aU72krq257ry+5djFScXpZbRBCRI8NjtE92pxGxtb5lk43N15/Sk9M+TankRIdhfkNylWLxdpRbLBmP2CdqlIbx13+YJg6Y8O9tOj3F6djY3SujDWF5AAu4c1IcDINKQ3v/gFG+mIxt6P8UZLK2LWxvacLjzgvr/S/wDiw+RS1ffZTsOcaXHuiLEqAl5qKYzg9k2s1hZxKlHsUmj+Qry1zr6Ib3/FKp3o8q6ZvR7j9ObF386Idq/grh9ind+RZGOadOmHf/ylWHcwZeaEBCEAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaJVXexz/q2wv82g/dBWiVHchnJiVhTm6jDSC0EcFJ8TF6YqMMFmBfPvS2P+4XyLKz90WyxdsVkSsHvDRcryTWWkdiWReS0S1LY++/gueoqC++lcUlUIgb8fFbI0sm+FPJ2Oqy7zfnWt1W9vEj5U1SVHWHY2XLPOW87hb42zZ1Rtx3dWN71qdWjvKYzUjkLfGtTqpw4OsuqNrmJvVux/NYCRfgtb67tdmxHpTC6rNtzdaDVm/Fb42aiuDNWr8iRmuJO7W+hZeXf3WqMurAPOF/jQKxnwfnUxs+yRMrVpEnZWb7hoHoWRrgGk3OyjLatjtrW270OxKKlg66ZwDIRd26wjZNywRO2UY6iSyVpbEXNJvbZUtmHOeYafP0lHDq8n654HafwDb99lZlPiB6lr2dprjcEHvWxskRmMzmOLyb31LrtI07aUlUjnPBz1bVzSlEk1FVySUcT3uOtzRtf0Lp8o0kBxNyLqPskc9wkZILjlbuXVDVEkiTcqoq0szbMPAwh/jeNN77LcXgMDt7KA59zOzKGDCrbCZSdWzXhvAA8we9dHRlnqPOeGmobC6Hq3dWQZA+5AB5Ad6lWFaFB137uThn72knDe0ARzQdnEc7XWBuZCBwWQjFyXN132sNlXtuTMXsLzaPhbhIQSSBxASDQ1wNtOlK4/W9QaSRusoSjnCRGo1NlJl0jfSCDdaxwBvuDc3Suu4hx2NrlMuJV5fI6OHkN/kXTTpa3hI461bRsdlVXRwuIBJd4JvnxGRw5AeJTJiOLUeEt1V0rWufuLm3H/8ARNE+Lx1cXW07gWHmDdXdv0ySWpr9fQpLq9dPfJIpsQaPOleD3BN8+LgE6XOd43UbqK1jTdzheyb5sTJ2YPnVvT6Wmk8fr6FFW6y99/19SVnGH82st8a1SY1b3rPnUOmqJJQNRsPStNz3j5F2Q6X8P19CrqdYnnb9fiTE42HHTYC+1xdahi8j5C18hLW3tueSiXHYlKbN8wglb10tPdr9fQ0/bFRPb9fias24/Uz43SNpProiedTZCQ3dqWR+M08UlSaqSUPiLTA+UmMAju4+hKyFvW9aRvxWZ1iWzvNIXW7JQxiOToXW54/X5nT0eZhqInT08kbGl7m/WxfQLA+lTMYtIDpbpcO8kqBRNbDUF8Xet0dVIHXuuOt0yNSee4l1uf6/9k8ixYh31yw8Lp0irBK0FshBHpsq2bXua4XTgzEI5Q0TEDSbi55qtq9Kw+P19CwodaeN3+vqWNT4hPHsC1w9JKcKfE9bmteACe66r2kxGRoAi830J7oqxryNTh1nIKquOnYLu16oqmN/19SbMdr3aQtzX6eKjVHVPieC7gU+xv6yMScjuqarQdLaRfUK6nwdkjhqGoAjl6CmjMuA4dj9CYcThbKTbQXMDi0XvYX9Kc4TqbZjTbvW43DbWLvmXLTlVtaiqx5OxpNFC4dXYl0WY7DhmKzTT4O5zWxTFxkeSe064bYAbq8aCshxShp62leHRSxteN9+0ARcfGuXMOD0eP4TPQVYDY5WltyTY39AVMUNbiPRVmF1JXROmwKd7jG4Wia3U7Szc3J2Hxq/nSp9XpeItqq5XC+m7NMcxe5e79nLW59jYlaaKvpq+hZWUU7ZoJBdhbw2Nj84K5ZZ3SEhwICoIUpwm4zW6O2mtR1yVLI9ySud1S8GwsuCWYRgniuWpqesf3bLdGhqkdUaGSS4FUPdisbTa5Djx9CmcmlzQxwDmv2IPBVxlOQuxyEX96/9lWO5wa273ABfRPRynotih6hHTUPPuG4vS5M6XayjrXvbFXMnqWtiGodpxaLgfiqI0AH1SrNJJArYBv8AirjzHWU8XTxrdK2RvUytNtrXldsnCnEY9k0BCQY/LoLEeC9EzhTyesW8B4ISN80eCFAI90i/0Fx/8xm/YKpL2KHHHfzsfsFXb0i/0Fx/8xm/YKpL2KHHHfzsfsFQllIZ7Ho7ktc32F/gVtbwWMn2N3goqPEWP+xEHbPKFlP9tS/F9CxXxq6WmtJfEuYPMUwQhC5zIEISWUZSJQqElkqnMfMbAhCxffTZo3WOtLkjK4F2usZZOrYXJtxHHsKw6fqaurYyZwAALXHjw4BcFfi0ZbG6KTVG9uoG3/JddK2nPDawjTXuY00JjGKGNrgCVX2OYs58jgCf+vjXVjeMAlzQ7/r5FFi41Exd6V7bonTFLGEfPut9VcnpiKztO1v+dMuPVmoaGkW9HxpzxWcQwlg22UOqpdTiDzX1zplkrenxuUXTbb1mprkcsjwXEcT3pCQ0bBIG6Dsl3C7HlvdnuVFRikkHvbd+6wkAewsI2Kytb40LBpPYzW73OaGjZFJrba66tg5tkgSN81qQUaSeEM6ngkWSHaMw0pvb6439oK1eliDrcNDwLnSf2gqiymdOOUx7ntP/ALgrxzvC6oy9HMwkjRf/ANwXzX0xfh31vV+D/sWnolPw7ya8zzxjVa6jY2wdx5BbMJq3VUbXPaRcX3Fl311NBUPeJ2g277rVFC2JjWRizGiw8ETys+Z9BdGarZ1bGwss7ZcuJwumo3MYbOJHOy7NVgsb3WKe+Trqx8SOngZ8CoJqW75n34baiU8Ehx4IQplJS7GFCl4UNGchf0JWyFrgR3pELFbG0lGXMUfFIG6j8voVn4Dimpzbu+dUbTVBhkupplvFbvFz3fSqPqVgqkdSNN1a+Om0XfTT9Y0EG67NrXUQwfEh1LRyNipRTzMlLQvE16cqcnHB5OtRnTk1JG0G5Su81ILb270q1JGlHM5xaea2MkvzSzN1NXG7sOWWkywOA7RCNi7Tv4rRBJchbgQJCDtfdYvYxksDVj+YMNy9GH4hK5oN7XI3t3XI712YZiEGJQNmpJGSxOF7sINudjZQPpfyBUZ2paJtPM68Rk4NBtcNHMjuT90e5ZdlLABRh9nF9zsBc6QO89ysJ0LZWsayqe087YNUZNkoLATxWupc9lHVmLSXiJxb42SuIYWDTcrJpYBu0AFV8NWVJrYzaPPFBmXNz+kuakkhn8hEsgBtLpsG7eheiDq06iG3AvbvWsU1M2TrdIv8a2Eg+aNlYX17C6SjCmoJeXchLBzyw01TC6OohbM1/FsrA5o8AVTmbcu1+RMXGO5cdK/DYna6mnD3ElgAADY2gA7ngrrWueGOohdFOAYnizge5ZWHUJWr0z9qD7f3MZQzwR/JGaKXM+FtkY9rai3ajNmuFgL3FyeakLOsa0+hUrm7KuKZExg5gyox7KN5vOIi1oIc4uffUSeA5BWNkHNtLnDCW1FLKBUADroQDuSTbcgcgt/UOnJw9Ztt4v7iFU7Mk44BZR/Z2LB4cWgN7DhyC2UgbNM1rdpW7EqvsP2txBrzRlN5gSxvmC9l5F9kcw0nSXhlVWhxpNANuI+zG2x2XrgbNBdwOxC87+ypytX4r5JiVIx0lPBC1jgC0AHW48zdfZILEUU7If0wYph2K5kylNhenR5RLcBrRbstHIr1dgH+gcO/No/2Qvnvl2qkqMcwcPBDGynS3u2X0HwD/QOHfm0f7IWRB3hKjmEIAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0LaeBWqj+06f8AEb9C2ngUIYw4628oPh9Car+cE7475zfEfQmgcQvlnpAtN7N+bLa1X7NMiuc8PE9BI8NuQ08vQqgxaiEjXsI3BtYr0HX04mpJB6CqgzRQGmrnSae/6SvSeh/VnbVVTe6PHelNlpfrMHhoqWqidFM5rmkW7wtJUox6lM7euYN3Xv8AMo3NEWt3G919kjLVHUaOmdQVaCUtma+S2QHdamm7bHkkBsVMc4yWFTE4Jrudx34LW6S210jJtrA2WjZzS/3y2Np8HDStM5yD5N91sikIcHAruw3CvKYutnfpZx3F+V1y4hHCx5bSvBb6B61pVWPieGmbM0qj8JoecPxR0bQCdl1VOOxsj4DV32/5qKMkczsuNwVqq2skbpbJY91kq0o1I7rLRwrocHV34HSbFJaq4a63iSE1+Q109QaiORhbGdJBkN90YT1MOIBmJTXiIFtQPG/o9CksFTg8TqsMmY1hf2QGu3HyKkvbyssRhD8S9s+n2+JJ7Y+B34JBM1gfPNFp5jrPSnmkqmwzENddpN7t3VaVlfNLO6PD6h3V/wB0esKQ4DiDYaYxzu1Sk338AtV3ZT6jDEo4weSvOnzoSdeD+4sqHFgG2G/xLRXT+UM4kX7lH4pXSNvEfkXTBVujcGzH5V5G46TVtJasf0Nf2n4iUW8GumyfQV+JsqZS5z3Ek3sTw8FbWDvZ5FHHHq0tOnf0WCgeE1ETJzI0i4O3yKYYDiFHrNOyRvWDtkWPAleb6pN1Yb9j1PSq3s4b28yX0u0TBbktdU3ULLZFI0ws6s3NlhO46CSvH5cW0eypPZaSP49K3DKCWr06nN4AC/G6pGk6TZ8SrZKV1NpFwLmG3H41dWMSMnjkhntoN9iqexHAsOpK+aaCJmvY3APcPSvW9CjT0NVFuW9hbVKtROUtjpqsSE0jS7gWjgtPl5ZqbEQ0kjc7JuDQQ4AcCuOrkFtKuKdJKW3B6urSjFaEiLPo6+bGDK+ofoadX2V3epLT1JYfrhcfnXMDZCs0k1wcNvQ9Wbaecjr5cwjs6h8S2NndYEP2/GTMshIQFzzpKR0Ko3yPPXudxf8AOsHy6R5wJ8U1dYsdZvccVjCgo9zPxm+EdE9Tc2sVzF3aae8i6CHE6nJWjcn0LfCOk0ttmUmnWNI+ZZQ2MzbjmsAdittEy70ktK1GyONSklhknwEfXBfZTnD59FhyUGwkWcFKqWXS0Lz97ictznu055bJXTVwA5rp9sQCo3FKbbFZSzOtuqOdvvhFRK3TZJW43S04e+rcBG1pPL+JXLhea8Ix6ufRUcrnSAkWGnkL8ie5V7munqK+jlp4Ce20ja3MEc1y9DeTJcAxj2xqQQe0bkDmwjkfSutdMpeBKq5brtgrry2qUmnBZRacz5aOodGXXYQLbk8Vk6vMbRck7LGtcKmUPAWsws02dZVEcSWGjdCmsZkVN0y5nx2nngp8LbUPje54d1Osm2lvwT4qxOiFuMPwWObGidL2AtGpxdu1pF9Xx3TnT4TC+djwBcFSmBvU07Wj0fQu66v6bt1bwppfHJUV7TFXxFL7jMFwa5ptY8DzUB6Rsiw4/RPr8Ha2lxWnBe17bRB2gEjdouTdT65Me6GgtbYna9yq2zvZ2ctUOO6Mpw1blPdGWfJMPqX4BmnrGV0RDGzygljtLSXEPeQTvbkritsCLEHgQoB0m9H1FmulFVTRMNdENIIBv2nAniQOSjXRx0g4hSYg3L+dJXtrmkFskxDidTth2Bbgrm6tKXUKPrNsvaXK/wAs0qel4ZcixcCQRwWZcNLHatUcg1Mf6DwWEjS1jg46nW3K85J76XszoUsof8BGmldf4X8Aq79klT1M3R5XGmc4WjNyHEW7TLcFY2Ci9L8f8Am/pAwd+PZQxDDIhqfUNa0Db4QPNfYOmpq2gn5FNUeZs8r5GxzBG9F2LULojHXEVHadEwX7NuN78VbPsUWEZGlBJ82Hn/dK8r41QVuX8SqaKuY5jS52m5HNxtwv3L1X7FYEZKnHcIrf4Su9bmLLvQhCEAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/wCrbC/zaD90FaKq72Of9W2F/m0H7oK0AofmDnxAXpyov70KVVn2B3gfoUUv2QvBela/axkWNnw0YvK4qx9y1oPFdUzrNKaal+kly8lGOqSZY04dzVUSdQDvc/KmyeoBdrfw7lnUS3u5NdRJ1jjcq0oUE9yzo0stJmU0xJu02C5Jqpw2vdc1RUndt9k3VFWY/N5qyp0UyxhR3wd0lWRxLQuV9WD74/EU11FS0/ZCuKerDR9aPyLsp2y0ndTt1JZHp9cQbAlaTXm/FR91ZKXAkkDmuUYnE+fQyW7+6x9S6lbqS4Njpwg9OSUmuJOxHxobWuPNijPWyFzrk8UNe+5DHlpSNus5NtS3TWIkpZiLQ+0j2Da9gd1Hc7YmamhFJSPOuqDmnSbWtbjY7KOYtS4jHJ5RDPI4cCLNFhfcrqwBtO6d0xlFW+MgkFpbbit0LRRlrKipGrVl4OnC88kwyfimrC2sqJW62u0WLt9gBzUjiq4tWlsjXegOuVVuJRU9NJ/M5xHPIbNa1p2J8fSnfK1BXU8gnr6l738TqA7iOS0XFnDDm3uaVTqxl4UVleZZEUzb9l7ge6674qkEtaeJHFRmnqGuvp3dZOVPKXNFzuFSzpKS8jKpbuGw4YvhNHjNEabENb22NuDuPiuvKuX6LLdN1eHAiN51G4A3IHcFppH9YO07ddsFaynFqt9oy7S2/eeHBcVWtVVN0c+z5FXWoKMs9yTRyarEc1uaCSd+XeuCifZ7mniPNXeG9uwO1r/GqvTyjhqYWwsXVl41B5J9GypvpE6UK/L+bIsPp6XXTvLGkiEniDe2/FXIS6I9kXCjmMZUwPFKyKpraKF1RG4PY52q4I4HYrr6TUoUqklWWc5OWeewlPi5rct0NaGuY+aGN5aRpI1ehM9XUCk1vfu5w8U4V/Uw6aeEACIadr8lF8UqHVEztbuy230K4s6EaktSWDzvUrhweSAdJ2F1+MvikppyxoDdutc33xPLxRggnw7BmQTOL32tfUXc/wDmnnFKnW7SDcN2Ta55cLL2FtBOmo44PGX/AFOdT9ngWS7iC5xJt3oa25sAfkWUMBcb810vLIG9vir6y6XKt7T2RSSqN7I1CmcRdxFvFZNiY3i4fKuWXEtIItdvJN01YXOJBsvQUOl0487kwozn8B/HUNHaI+ZaxLTNJN/lsoy+t7Q1brDyxpcbgLu+z6DWHE6I2c/MlTZoXMJDm37tlkwxvB7TflURFQxr7gBboaq17KHYUMe6TKwkt8kn6pgOzmk+K0up3NO26ZY6t+rZxTjFiDmgXJPpXJW6VSnvFYZzzozh8TcWaeIKxJ1d407rrgmjqGdq2pYTwODXb9khUV70vw+DBVN9L2M6Srkj2uNIXS3MlFBUsY+XTLfa5AH0psOzdPosolieVZq/FWVBJ6sEk7Du8V56raRllSLvpleLbjUljHBeeF1wrImkm3MHhdSXCqkueIHH0bqucNldT0tK1p2Zob8gA/gppSVDSYZiLkgleS6napLGT1/TrnOx05+rK7D8o1kuGtDqhsUpaG3vfQSOG/FQHoLzDmHFcRq48ahlYxstgZGvG2i/vvSrbiMUws8DcLdSw09O5xY0bm/NVCvI0qEqMoJt/wDbuj0lNN7mUgBLGm+q/YLeF/T6Fw47hNJjVE+ixKCGQkXa/q2utYG25G3FODBseS1yu0xuHpVdRr1aFRTpvDOhR1soWR2KdG+PinfLNU4NUPDYXa3y9WA27tV7BvaJVo0mOU+K4fHLSva4kC+m2xt6D6Vsx6gosVwyeixFjXxTN0kOvbiDy8FSbji3RzjJAa/2lmfcC7Q0Fzu7c+a0L1NOlS6nHUvZmvvybYqVGXGxcMsxibd+/wA64pqgvebbbeC4qHEocWpWVlJKHwOF9IBAF+HEX5LRLU9bGS06S3dc0LaUG00X1Cn4i1RJXkeZxzFECb9l/wCyValWwy0UjRYOLSB6FUnRhJHNj4vYyjX+yVb+rcNcNuRXtekQ0UNJ5XrCUbjQeLqCtpcI6Z8TONsc4GWfQ5zA4AF9h53pupFQTwVXslWy0jg6F1bBpItbh6ExeyJyviOF5vdij4XuglBc1127apHW53TT0GzuqelLCJXm7nVUVz8ZVqVcVg9zN80eCEN80eCFII90i/0Fx78xm/YKpL2KHnY7+dj9gq7ekX+guPfmM37BVJexR87HfzsfsFFwR3PR44LGT7G7wWQWL/NPgsZ7xZl3IlP9tS/F9CxWyrFq2YDht9C1r49frFxNfEt6fuoEIQuMzBIlQGl+4Nh6FDeCVjuCEobbgSfFc1XU9S5oLQO9ZKk5bpGDlFHQljk6uZlx2DxNuCxjeHtDm7haaubq2OFtisop5WFuG44KV6Uuj7FMZzVFX0NQ8QM6suAe+1he/AWToWOw3CqWCSTU+KMMPavuFMsWxZ0NPIA4i4IO/oVaYtXuqJ3NDjuSva9LqVriMadSOy+B47rl7GmmkzgqXmac7rOMiNp8CsYWEuuVz4pOGstH2TzsvpvROnqmstbHz6cnXmMuKVJkeSSmGoOp9wnCsdcFNpO69LKbjsj13SaOiORHOs0uPJclNXNnlLARcLpe3W1zb2uuGjw4085k1H5B3rgqObnsegUk0ODuKRHMoXStluYp5YBI3zWpQkb5rVPJEeWO2WtsVi8R9IXoWeNs+Tom6gT1Y5/3l54y+bYg093rC9D5aLarKrWkAkMFr+JXzn09p6VSq+WV/Qy6FX8LqKT7sobF4xDXva4Fcptbbgn7OVOIq9xsAdv4qP8AJcFpU10Ys+w6k5ZMeJWQFkIXS+DJx7ghCFiQCEI4oAsCLpJcYGGRl1wLd6TtNO42Witw6KuZZ23xXWUdM1hmq4c/C9gtHIOYYsUw/VqF2kA2I7h6VZWD1jZA11x8qofKbI8LaI4AGNPnWFrmwF1aOBV7SGhuwXlOsWaWXErK9pN09UixY3BzbhZpqoKkuYO0bJza4ELyUotMoJ03FmXIrmnjubrpb6Ugb1mtvAg8UizBPBwNJY4W4rujeLAvBva2y4t7Wtu3e66wdMIJ3JsspLT7bRm8GxtmkjtAcrpLAntXSauyL7uPMrLjxWta57dkY4wF7ygi1gkc4kWI58glQmU2YmRLdFuawB2tayLJQpAIBsbkXSpCNuNvSofBJjO1kkEkEzBJTSgtcLXIuLHwVKZ0yjieTMVdj+ThLNGSZHQBr5+QaBpaAOZV1l1m6fe96UaOq0kBzO4qwseoSs5RzvB8mt0+5F8kZzo81UIcZI2VzLtdHqa03Fh5t78SpZCCZWbaZPkVJZ1yfiGU8RbmXLN4qdjg6elYRGzS273OvxJNuCsXo0zjS5zo4qint5XG0CZgBs1xF7XPHgrWXT4zuKV1bPMcrPc1OemLRaYIaG7E322XNitFDXUE0NUxrmOadiB3LpBsGkC45pCOsJ3u2xBC+lR4RWHhPN2FRYN0v+RUwtBHKzSL34xgn6V7hwD/AEDh35tH+yF5Q6csINB0w0VUIwyOpnAFuemNq9X5e/0Fh35tH+yFIHDmEIQgBCEIARzKEcygEbz8V5T6Tv7QOHfl5P3QXqxvPxXlPpO/tA4d+Xk/dBAep6P7Tp/xG/QtvetVH9p0/wCI36Ft70Ax4957fH+CabbhPWPgWjNuLrfMUzO5r5d6Sr/eMtbV+wgvsWnmoZnHDBLGXAH/AKJUzJGm9t1yYjTtnpjcAqqs60qFVSRrv7VXNLSyh5YWxSGKQbDvUcxqg6s9YAdJPrVhZnwvqXukDQP/ANAopiI6ylc1+9u/wK+4+jHVfHgoSeT5RWo1LG5cXxkhczQ2xHNarXWyoJ65zRvpOwKHRvLdTgIwO43XrKlSKljJ6+lNRpRNRbtxSsBaAOSLXGxuB3peW52UtrTlHQk2sozxWR8+HthpZA13ZvY93gm/D6R0DLSy3d6XLsDQDqaAEhAJuRuueNvBvxc7mKhBbgQB5yA8BjtvDZB34o4hbG2sGT1Lc4sVl1dWHCz9QtYW5LFrp3Mbpbaw5tO67ZI2SuDpGhxHAlZjYi3Jc8reU5Nmc/ZSfmN9BK50zmOADvCy6DWxU02l5IceZOy2iFnW6mtAd3rkqqATTgvF/wD9VEFVhFYMpwi8p8Ejw7GXxC43b4XUjoMRgq29sgOt3gKCsHUsDQBZD3TtF6eR0Z/ulbalNVqTU1uUd70WlUWqHJYPlZpi517BvFR7BsQxGnzCawl3UzaYG9k2vqTDHXVEsL4ausmZJsCRvfmrN6mjxPLFK6liZTCmlMz5ox2uyBc2Pyrwl/bytstx2J6T0erOXgyljPzLOyVXvliYJjuAL/IpJiErdBLeCo/B6XG8Yq42YLilVFAwFpewgF3MEgq3ainnwyjZDJM+rlcSC6WwPfyXzXqlCmqniU2t+x7mxpunim+2wxYvK1xdvw24qA41Zpe5rSb/ABqZ4wdNydidyPSoJjE5JcAdlbdMprGWe36dF4yMU7wxhdwJNk1TOLnXXXWyam253XEr+ktSyWE5vO4hCVCF1I1Ngl2SIWDMeBdlhJIIu2fNAWSxla2WPq3AG5RCSehuPJxRYzFVVHUsIve21u66cPNJb6Lptp8Iip63rWNDSDfYehOINyb7nhdZPg5LVVHlzBpThh7OJXAALJxw0jSb938Vqm3pO+nySDC27hPguAo9RylltK7zWyAcL/GqarByZnVp6kPMcz2ceHglkqnOFh9CZRVyvs0E3v3px8kqnwhzBY+K5/B0t5OKcI0o4kzrpWl/aeRf0p6oWlsTu0AARwKjtDK5zwHbEG1rqT0DA5guBYriupPw2l3OS5emA6tvbRY2Aveyyjj6x1kE9kW4ropG73VLN4ZUuWEdVPC2NwAO/inBvDdcYt1jTzXXHdw3K55y1HHN5NmoEWCx09klzt+66Wwah4udwPFa0u5rFYNDbja/eoJ0l5Cpcx0bqijJixKG8kbmP0hxDbAWAufBTl2prfhD0pIzfkARuD3FddpcztZeJTMJQyU50dZ2rcDrv5N5vAgEN4opJGdVqawaQdTzvcjjzVxktdGXxOD4yOy4G4PxqGdI2Q6XNdC6aMdXiURBbO1gLgAdR3J5qGdG+earCMTblfMrzLI1wZFO95e95cS/cAWFgQFb3VtS6lS9Zoe+uV3+eEaFJxlpPRGCfanx/wAAnEmwva6bsII8kY4cHjW0d4IFl3MLnWuLHmO5fQrCMoUIRl5FdL3mecPZW5YpYMFpMUgZpldVMYbd3VyHu9CkvsVCTkd7jwLYj/7Snr2ReGsr+j+QvFzFIZBtwIik3+dMvsVCXZEsRYBkX0FdaWMsh8F3oQhSQCEIQAhCEAKmvZQf0Cj/ACkn7tyuVU17KD+gUf5ST925AOfsc/6tsL/NoP3QVoBVf7HP+rbDPzaD90FaAQGmsH1h3gfoUTbvspdVbwO8Coo6zS2w4rwnpcsSgd9mzjq3WCZq2Swseadq5wvZR+vdeTY8F5S3jll5Qjnc4Z5gAWppq5CAQOJ3XRWu3JB3TNVzlgLiSeSvransXFOGcYOaqqANr7ppqqoMJ1FbKiUNBc7cpmdIZZXFwDgL2urajRLujRUI6pGU0rnntGyw4DbdYyEuGo7DuC4pquxLW7eldtOHY2SrtbHW94cxzXHTuLX2UOw/DZ4MV610hLRY8T3p9dI9x7TifFIHC/cV2xSSwVdxSVWerJ2uqmkbkAt2S+Wt0+afiXCWDnvfdLwFuS1Ol7WTqhNxSwd0lYyOmkfcX0kdrwUdweepdFIcNjLTKG3MjC4G17W+dOM0XXR6OXFZUThRhrYwGhvADktuMHNKnUlPORvq6uWOqpnVUb9fWNBIbYKUVONRUFOKiQnqzvxHfZcUjIatv16NriNxfexWvEcNZXYYKa52AHD03WqTi2kzCNGpRjNrdskuA49DiOl9PuL+g8D6FJ4ZGEhxcBffiq9yphrcIhLS88+XpUtoXiRxbK4tDt2kbqtuqUNWIkxp1FTcprclNPIy4c14sOPaUS6SsQqKqooqPDHEuY6Od+katmk34KPVkOLYXWtMuKVRpr9q5HC2+ymeV8JpzEa+SqkqxM0xGSVgBZrA7I9AXH4EbWXjvf8Ayefr1ZVMqSwywcqYrDiOHUNXqG4JdYjvI/gpCx1yW334jwVIY/Sy5fvh2B41WPn81sBYI2tOzrA/GSrCyDhOL0VN5RjeKVVVNI02il0kNaQCLEfGqG/sIpOspIrnLfcmDAbXDm/GuaVx0uc/T2Rfguhu3BcGIOLYZLH3qq6OJ4NNXhkbxaZrTLIOJd9JUIxSYNicC4BzrjipLjslodjbcfSoVjTw6WL8b+C9x0yjk8D1m5wsHBe5NzfdbadgcVqbYusF12EEJPNe76VZeJI8XOTkzVUVDKdht5yZaurdKTquPmRWz6pC4m44JqnlOom5svaU0qa0+RY2lm54fc2PqSdTeNhdchfqcbuA+NaZZC25btfZc4JJJJRyytj0VtY495GurxZlPM1hINz6F1R1fXRhzR8ybp6GOWZj3tDrG+4XVGBG3SwaR3BctGc99RaO1hHg3tqDbcH5FmJ/iXNdC6FIxlbRZ1scHH7IB8a6YpizbVdvfdNa2Ry27J4LNT07nDXsE17KH+kqbOBa4/Kn+jq2T2Y82t8ShcTzcaCR4J1pJiCDc3HFJqNSOZHnryy7pbkjqYwWktWhg+s31C/it1FIJobX/wCrLS6PRIAeC8l1izUcSiVOWnh8odcHkHVlj3AkEu4qYYNMX0wFidAA4KvKR7mytLSR2rfFdTbBJiycNBIY7iPiK8J1OllZPV9FuN0mT7DZOshD3Ai3o7k4BzXNBaE0YRJelI9JTtBbqtl4a5WJH0K2nlGZN3Dldcle7Tsut3I8034g5c8G21g76Mfayhnrj22tIOknc9yj2OQRYlTSUdVH1kbmmzgNwSCOKeq6S+u7iDyTHWPc1hAcQTzV7aZpNSRc06KqLDKmmixDJWKu8mc6XDCSXkhzwwAWHa4DiVLo8UhxGkbLSvbf31nA/QunGoopqKSmqImSxyW1audiq1qW1OVK+8Ur5qSSzSx50ht9zw8F6qmlXgpPk3UKc7apsvZL06IZGHMTSDqdZ97G/vCrwad9Nj4rz30CVUddj3XxHZ+t1rbC7CvQxIaLk2A3ury0hopnmOuyjO71R8iN59wGkx3AKmKqi1FkbnB219mk8bLx10EsEXShgrAbgVMO97r3FWs66inYNw+Nw8bgrxz0f4Q7BenmjoS0M6mqpxpFttl1lQtz2ezzR4IQzzR4IQgj3SL/AEFx78xm/YKpL2KHHHfzsfsFXb0h9rIuPW+8ZuP4hVJ+xRa4Ox29vtsc/wC4UIS3yejgsX8D4LLksXjsrGTwnkyXJFKz7em8R9C1rfXt0181vR9C518h6msXc4lvS3gsCoQjxVfk2Ak4628rJCTyS20Bw43FrlZOL05JwMGeMwDLOBOq443yO1AWbbmD3+CgPRx0g1GcaifraaZjbNILg3nfu8FaOLYbR4tQGlr4o5IyQe0wO4ePiuDLWVcIy7HIMMpKcawBcQtaRbwHpV3a3FrC1aqL2u2xx1KUnLCN1pYmAt4X7loq6h0bXdZz4J4kjD4SDtY32UWxufqiQ89lcVrFVp4RzXMnQg3Mi+Y6rWxwb3fwUQjbqkJITrmTEmwUE9QwaixrjYjuChmU8ze3NTLDJC2MtdYaWkcr819M9H7SLaVRnz7q1GtcxdeHur4kjleIInX7lHKqYySPN9t09Ytd0DiNrDko29xawm2919OoRhCOmJTWVNPdnDVO2XDfddVSuW1li5ZR7iyglSCQE2ASyMOkbhFrhAY74RPiVjlJZZ1rZbh70eCEEEbbX8UbDztiiepZRK9lZYBI3zWpbjlxQeyQApgssR5bHLAft4eH8Qr86PJw+gMB9A+lUFgN/LGnnw+cK7OjV7fK3se5ws4cN+RXh/T2nrs1p5T/ALlPa1nHqtPHGSJdI9KWVRc0f9bqCDgL8VbvSVQaWmQAkW/gVUklg53ivK9Nmp20Uux91t5KdNTMUJATdZEKy3yjemxEIQpD25BIb2NuKVCDIrdQb21r0ancbLMX5knxQR8Sxaaexi1mWOx00kpa8Du2U3y9WtaW3P8A1uoAxxYbp5weqLZRdxXNd0fFjubMKS0FxYVWgtFipNST6mhVvglaHMbvz9SmeG1V2tuvE3tv4UnlHnby30yexJmkab9yHO+tuI43WineHjw3W9w1egehVXG5TSW5DukjGqnL2Xqisoo3PljY5wsAeA9KY+hfPGJZqhqPbGNzA17gNTGt4NB5eKsXEKKlxCldT1tPDNE4EFsjA4G/oK5sFwXDsGjkZh1DTQB7i4mOJrOVuQVjC4oK0lTazNvb5Guak2dDHF0mo7gdy6VqiiEY2JPitqrcvfDM28oEIQi2WMEAgIQoyBVorqplFSS1MoJZGNRANluutVVCypp3wytDmPFiCLgrOm461q4zuHxsV3gHS1Q41mOXCI4JQ5rnNuXs5O08t1ZFg3sDmoJgvRjguEY/Ji1NczvLnFpiYALu1chdTx/adq4eC7upytZNeqbpc5WDGnqSxISwDXNkLTqFi34Q7gqnztk+swbGv5TZUaW1V3Okpy0yOcXmxsOAsLq2bgtBLQTewJ5LdRBsk4ika14N7lwutvRb2rQuKdNPKbW3zNVWC0tnB0aZ9os14cwyfzbEBdr6eV7dYs7SDYd6kuYsdocCw2SsxGVkULHBpLnBu58VWGf8lVeA4q3NOTIoonxFr6qkY4QRdWxvINHaJPELlx/NWCZ66PaqmxKR9NVwua2dnVW+utbcgauIvzX1lblWU/0qZsps19J+GVGHzMlomz3jLSHf6toO49IXr/L3+gsO/No/2QvAmE4ZU0mMYFMYY46KSZ3UuvZzrcbjkvfWAbYFh1vveP8AZCkDihIL3N+HJKgBCEIARzKEgcNRHcgBvPxXlPpO/tA4d+Xk/dBeqwSHW+NeVOk4j6oHDrcevk/dNQHqej+06f8AEb9C2ngVqo/tOn/Eb9C2ngUDGfH/ADIvx/4FMzuDvFPmPMBgY6+4df5imO92g/CF18y9J6cvW3gsrXeAaeygeaWlALmsvxKxJIsbBeblNp7djr7EVzXQdbE8AcL/AMFU+LQFhkZ6T/FXvi8YfA7a5PoVRZloxFUOfvx4W9JXvPRDqXg1U5PY8J6T2UsKrBEHwvC9GI+VSjsxm9t7m4suXMWfI6qp9rYaOYbBuolpG+ylLNLyNIAtxFtiq/xqigZibpWxsa+w3DR6V9Qkqt3UVWk/ZKvol3485U6hp0nWTw1b2WFRII4C7xWp9X1TyHi47yurCsPlxh9PDL9bjlfpc4G1h8a7bq9pUYb88HqYU3J7cGqCTrKYO9IWxY4nSPwSrkpZSHUzXENe12pxsbC4CbPbNxqBG1gsTa+6ULql4abbyyJQeeB1QsWm4B71keOysGlNZXJg2wQEJCoy4pYMX7XIpJAuENJkHpSk3bpsEMOgFNbTMtXmDXciEly47bALJrbch8aLFhuQN0eJLOdyFjuNlfKPKIew54N7lqf8uY/U4TFU0743yUssbmkNAv2uO59CahTg1LnO4E7N5DZOOFiMVLWSNa9lxs4XHFVdewV1FxmYV5uhHxabaZfPQpmOmxDCKmkpvrUkb2MDXkE+aTyU2rICymvYueL3sqTyE2LCcWfPSuMQlcXlrBpF7W5K9esE8Je3mLL4h6R2ErK7xF7ZLXovUVdLMXlrkrvHGBolIaWkuJN++6rrE3ESOurTzJBbrTz1Hb4yqvxeMtmeHbf/AKBd/TZZwkfSumSfh5I3ObzFYLKQgvcN7g9yxXpY4S2N7bbywQhCkjAIQlILdzZQ1kyESEhu5S224j5Vy4lKIqQuvvewt4FEmaXWUIto6LdazW1wWwCzSOdrpswaR8lIC9xDiOF/SnLUA8knYiyywKVXxI6o8CNPFdNE+zrLl4bt3CyicWOBC1zw1g3xeN2PkchHBZumm5fQuKCXWN9vBb7n4TvlXFKGHlnXqi1k3RVUlNC+Z25BPL0XWrKfSFVTZlbQyQv6tzrXs3uJWqQF0RYSSCbrdgGF00OJNqmQRda03voHcUqKmoy1ctFT1G1qVWnFljVVOG1bXt4OaHfLunnDR2Wpop5XStaXgX4J3oOyAvMXLaWCvrqSp6ZDmBuAnCmZZq4Yhqc3xTmzssFlTy4wVsmsYQHitjJC0brW033WxrNZ3FvBaUscmjC7iulJ4LQ99joLXHmuowho2JPitLYzq338VCxnJitK5IBnfpPpMoVbKaammeXBxu17BwIHPxUxyzjsWY8OjqqaN0bCTs4g8NuSYc19HWE5oqmT4gLPaHDaNruJB5j0KT4Fg9NgtE2lo2hkbSTs0N4+Ct7mpZO2XhfvO+xzy1t7cDkGMvdpAeNjcqI9IeTKXN2DzRAiGsYw9VI4mwcbC9hx2ClxAtsLHv5rEg6Q1p3O11X2VzUtpqcXgnQsZfJWPRjnqsyrWHLGbIZGNDyaepcGxxlnZYwb7k3aVfjZYpWBweCw7BwOxUEzjkrD824HZ8EMOIw2fFURsaJLtBLRqIuBqKhnR9nfEMuYpSZTzo28xIjp6jU6bWQC55e87Di3xX1+2m6lKMpdyml7zNPTz0gYPLl+owenmY+p7ROmRp949vDjxXV7FMaMiPJN7th4filUX0z0mGw5tqJMEmlrGvi1P65oAbckm1u42V7exWsMlODidTmxHTyHZPBb8vgdi70LEvAICNRF9QFuVkIMkJGuDm3HBKgBCEIAVNeyg/oFH+Uk/duVylU17KH+gcfcHyfu3IBz9jn/AFbYZ+bQfugrQCq32Obr9GuG6N7U0A3/ACQVpcLIPga6n7C7wKiUvnNUumF4nD0FROUdo+heG9MNlCR2WXOBpxA2cmCtdu4p+rzquVHa07v8V5izjlnprZLG4yVb73TFWuDiWp4xA9W4gb7KN18xbqcBuDZektY7F5a08jXVfXJQL7BR7MONHDdLWNJ3A5J6kcRJe5TVjNFDUgGVrSbg7gFXVFJcnXfeI6aVLk56XEn19Pq0ltxzt3oBDQS5aJ5IsOpBpbbbg1vp9C434rHNCRC1xedt2kLshRy8orfW1Sjpqt6jdT1wfWyxDg11vmXfIwXG6Y4oJae1SWguk7RB5LLE8YMDGOa0E33G/cs5U3nY007+FHPjdx8AsAhcWFVgraVsliDYXuLcl2rVLMZYLGlJVYKcOGIb8kocBsQhBt3KG8mU3jbJib6tQ4DdOVFIx7NV7HxTdZZU72tm3JA7gtU13RlFqLTzkdWOBk34J4o5Q9gEnAbN8E0RgvIIa3T3ldtA4xyu1WLb7b3XPVpKUcnXqVRDvmOvbTYBOKiNz2yMc0WsFwZWxnFaaka3L1NKIyA6QlgkHAXHoXXPh4xaOGKWR5ijJOknY37wVLMDp4KCNkNLFHE0MAOhobq2AubKuq1YKGl7nmLy3lKrnGERbLuNxt6Q6CWohkp6upmPXGUixIjNrDlsArxieTGLbNI1WPP0qBz5ewzEaqKrfCyGrYS5skcTdQNrcePBTylbaJjb30sABPE2C871WpSrtKnJ7coppx0yNgTfif2CT8UrvDh2hvqHoTfiRLaVxkFibgW3XBQTTSiclz7rZAsfd2AP+uKg9Y/XMf7u6mmOuDjbuUGfvPJ4BfQemRxBeZ8t63J+L8DdTsLjcLRi1QQNI9K66PsMcePHj4JlxKUueb2X07o9Hw6WqRR0oqdQbK2S+wTdM+7NPNdEzrXd8Sb3PJeSrRS1ZyewsbfThi67NAPelcbt2WB88WAN9jdZEizr7Ady1N6dy5+QjSNJFxdCbI6nVUMB1C5+JOr2ENaQWkm3NaqNWNRN+Rm4mKEPBZa6FtyuxqbwCCNroS8llFeZkm12NkMmkWXLiWKy0DWFjSesNtgFtaLFbRDFU7TRsdp3FxdaaqnjETiqUo5cpLYfsrVz54Q54Iv3+AUmrGdlrh6VFcN0xxgRtDQDbYWUoDi+ha47mxWm9oa7d55PE9Qio1sx4ZysOl4v33UqwhxdJA4cwfoKihF3AnZSbAJL9Tt5gt9K+bdRh7DOvplRxqJFhYHckN/64qQw7bFMOBgdZf0Ap/5Fw4r5ze7TwfVrBJ00xXbtJTPXnZ3ineQljSBv4pmrj2XX71zQX8Ja0PeIhmrGIsHwmoq5ml2lmoWIHMDn4qH5ezhFmNkrI2OaWucNy08Ld3ipfmTD4MVw2ekqWgxvbpvpBI3B5+CiGFZbosvNkNFcl5JN2gcfDwXr7KNu6OJ+98izhGvKa0LY31c8kVxxI7go5WRMmb1bt2ONj8accUkfpdZ7ru534JsN7i5NlYUda27HqIQi6emaMsj1OLZJxybFMPpZqqg6xwLYmXIDhpG7tud16qyrmGhzDhrarD545GkG7WuDiLGxvb0qo+hKmgr319LWxR1EDpD2JWh4FmG2xWnF6LE+ibG34lhuufLkpbqjLydAA1PIjb6SfFemtv3Z8z63DTetQ4RaGec54PlWAvxSpiikfH2A6QNJvcDj6QvL3R9irsa6d6OvcQ4zVcFyLchbkpx08Yhl3NuVaDEevmFe5sLWwthFt3E733G5Vc9DtLU0HS3hdPiEMcNS2riDmRm4BuVv7Fake3mcB4ISNOwQhB55zlmbpCqcAxiOsy9iUNH1EoLnRw202O9xvwXN7E8udHij3xmOQ1A1g8b6Crs6Q2NGR8eOhn2jNy/uFUr7FHd2O7/97H7BRckrg9GNuG7m570rvNQeCDwWNRZiyFyRfEv9ITeI+hc66MT2r5vEfQuYL5J1pNXlT4fkXNv+7Qt7bo2PFYTSxwRmSZwbGOJJAHzqO4bm3DMWqnwUMwfIziNTTztyK5aFvXqQ1wWxE5YZJTtwSHcpIO1HqdwWueQRDe/xLSoqWTJTwLV7RbHdctJUaW6XHgtb6gyGwB+RanNc2/G66PDWnBodR6jtnqgI3WKgebKrcEns73+ZSl7j1br34FQLN0rbFpJ39YVx0WivGWSj65c6aEmyI1J8obJG4XicCCuTDsMpKN5fSxhrzxOon6Su0Nfos0Atvz4rpijAaLDe26+qdO6c3JTifNKl3NxcIvY48Se0QlpO6jlQ4AkJ0x2XTIGi43/go/PL27X5L2kfYWEd/TbeVRJ4OaodcrTySyPDzskBsFhLGT2NKGiCAnYALCodIyElt7rMWQ8lwsQLLXNNo6FjTkaKWpqH1dng2BPIJ2e3VIL8FiyKNtzbtLIkkrCnTaI97YJGtDwAsi4arJABx3um+trmU9SGPDySeQvyWdSfhYJp98kowCPVUi3f/EK2+jl5bjBiG93cf/KVVOV+1aTexHqVm9H0lsbIGx1cT+KV5L0y01rRRPMUameqQa7MlWe/J3xuiFQwyafNsb8CqLxeAw1coPwinbOOCZplzk2VsjjSHRwc+3E39C1Y9SvhaGy7yDZx9N14bplvChBYkmfcujVvFp6GMTtgl5JHNLmi1kvIDuCu5YeGi15yvIEIQoJk87AhC1vmjY4Bzmgn0hCJ1o0UlI2IR7zUCCPQkBu3UpYU8sy4hbaVxY8brTewB70gLgbjgsJbkrZ5JjgdYWPaC7n6lP8AD60FjbOVQ4ZUkSAX3CmeF1pDGku2VJe2uctmu4oa46kWlh1WNu0nyJ4cwFV7hlcOua0k72U2w+TVEBflzXkbmjKk90eYvKOh5Oy1zdKhp4oXEkcLfmCEIUkAhCRGShUIshRgnAIQhMDAIQhF7rI7ie8b4rfQfbzfArQeAHO910YcCa9g7wV29Mjm8pf/AGX9TXV/dsk0jGysLHW0kWcO8Lzp7Ifo2po6X2+wu0Ugmj6yMFzi4mS5O5sNl6OFiFAumeYU+Tpy+IyM1N206rG5X2JcFOeXs74kaykynJRwOM8U0xjjaQTfZXjk/Mmf5pcOp6vAMRZh4hjtI6OINtsOI34KgZ5RPDkyRrozI6on1MBFx4jkvbWX42+0eHXY0HyaPgP7oUgcWkkAkaSeRWSQcTf4kqAEIQgBYyAOa4HgVkkIuUBWvSLjWcsOxOGLK2FVtXT9W3UYWRuF7m/neiy894vW4zXdNGFSZgoKijqutkuJg0Fx6v8Au7dy9maGl2qwJG24XlTpNaG+yBw4gneeTbkPrTeCA9UUf2nT/iN+hblpo/tOn/Eb9C3d6Aa8d+1h4/wKj7fNZ4KQY7vTC3f/AAKYG7Nb4L5p6VJK7T+BZ2m0MhZ3BYkE7LnbUOM7xcdkA35KNTZ8winxCWklmAlYSCC5vL41TULOvcTaorJtjPTBzfBLZHtbEesVd5pfA4v2HE8/FGJZ0hne5tMSW8iRt9KiuK4r5RexuSfX6V6LpvSa9o1Ka3+R4/q/WaNSDgv6jWXDyh4jG11DMaafLTq7gphFq16tlFsfYW1Jc4bWC+u9Ay6e55HpMsXGpDFPSxz3aea7sKxtseHPjqCGaAS0nvuuSV4Y0uGq/guGlonWaJz2b7hpXddW0atTbk97RniJtrqgzyNfHKJA7jYd5WbaCFkweLbekrnraAnSYnFrARbexXdCLt7RN1NKnKfszXBi5mb7bBqOCLdrZITudj8i69X/AFNSYqEl0qzxgkEIQFClnYh8DTiFRUMmaIgbX5AJ0he58DC/jt9CCxjjdwBPgsrcuS0UoOM3ng2Y9kUOBeso+xKHeC12s5aq2obTxkuB+ILZUqeGtRg4+JHBP8Gm/mscrTuALlXllap8pw5pDrnf6V55yZXw1uGSxM1iUFttQsOCt/o5xBzmCFx3G+/4y+Y+nNnGrGNZFP0Gu7S+lRl3ZIMzUrG0jqiWZsYDg3cd5VS5ksaoOieHtJ5D0BSXp4ocbraGI4M8tYNGoAuG+o9yrXBKWvgw2L2yMjpRe99R5nvXm+kW0I0VU1bn1/oleU67h2OSsNqgt022v861LfXauvuQNNvjWhejg01sX8uQQhCzIBGjWe07ZCxcWsaTI/T3XNlKjkxnJQTk3gbMUiqmuBgJLPQ0LZg9PHVVkPl0rRHcBzTtzHd8a7o3skgcS5rhbkQUzU9V1dTJ1QcXdoC42vdbJJyWCquKcNSknsyR5yw3DMNrmVGGVMRFydLS49w5qP0Ta2aTrp3ExE2A0gfOsayukdABUtvPbuOninaB4lhY5gAGwtw3WKi4oW1KHitLsbGnTGO9JGbpXDTYO+ZZFoZbuWuS7lxFyfvcCslLXehOUUmtnFNUluIB+Jd1A19gSDbwWmrDbIg5OWHwOEbdRCkGEUtje3/W6YqXeUD0qYYZHpjBKrbqWEbbx6YjvRs2Ce6VnZCbKNhDATwunqmH1sFecup5POVp6jrpG3cfQnD3tlx0A7b/AAXbpJVWVk9mJGN7LtjaA1csI+ut8V12N9uC1yNMmKBc7pCAEpNgkssDBPIXsgG6WwR4ISCxfe2xseSyWLgNib7bqVyQSPDGx+Ttcy2vnv6FHOkHI2H5xwt0M8YZWWtHOXO7FyL7Ai/BSbDPtYbC3/ILqA0na5uRe6+yWf7iHyRR1PfZ4GrMPly/iOK0M0t3NhkDSW8e1YfQrD6F8wZww/LjY8v4LXVrNLO3C2MjgfhehRrpYeybOGIEN6kCBw7Q0knUe9Xd7FUNfkmTWxt2NiANt/NK6u4XBZeQq3Fa/AY5MepZoKwvfqEgaDbVts3bgpHe0jW32twQ1gabNAa0bgDZZW33A9CEChCRt7dq1/QlQAhCEA0ZsqsQo8DnmwemlqqxpboijALjvvx24LzD0w49netyyyPH8Gr4KfrH7yxxNHmH4O/BetXC4VMeyhYBkSMsa0fXJOAt/q3IB19juAzo5w0kaAaeDY/kwrQPEKr/AGOe/Rthmrf+bQfugrQPJB3MZfsT/AqJSntuUtl+xu8ColMPrrx4LxPpiv2UPn/Y7LP3xmrT5yjWIHtkBSSuHFRHMOIU2GROqKyRrWD+8AdyBz8V5mwhKbUY8npaEowWZcDPiLiQ4+hRzED9bd6TdPT6uCvojPTPa5h1AWIPDwTFiPZAB5heloQlD3j0dlKM17I1v3TfVv1Gy7idimuYnrT8atqajJHTVlKJrkjbKAx7dQ8U1zs8krGdWwgXH0p116W3HFNFTSz1dW1wcA0W525rshPBV3ial7KO2esjlY9sRHWg2cB3rgpMPp6y5q7Fw3FyR9C65sOaYi2JzxKeJJWrB45qZzo5wHEjiN+aycu5pfiVmlVWw4U0LKdgjiFmjYLasQA3UbnjzWR25HdapbvJ3qCjFKHAIQdihRgzU9KA7BYgB1nFKeCxPmCyY2JWz1MMbqqmDD3eS31WNrAHl6VlkzEKyoJbWtdttcgDl6F10rBLFplALd1200bIXARMaPiWmcoqODTG1qSq+KuCVYc4iTSw2CkFCDGdV7kqM4bsQSpHBIIqd0puQ0aj8QuqC5i3tFZZru2k8knoS8lpDCpJTgujab2N1TGWukimrM1sw6ON4vIG3dGQPMJ71c9O4PjY7exAOy891C1nQ9qSxk8xXqJ5wb3G5cSdDRzKZsSroKmmcyCpZIW3JDV1ZiinqcGnjojpnu225HP0KgOjnCM1UmO1D8WkcaYC9i559+O/0Lo6bY0rmOuU0mirupvQyY448iST0Ej51EP9Y496l2PWMk5Hwz9KiVxqHivb9Njsj5b1mWah0s7NM53p/go5WvuCVJJAfInDmTf5lFK02jIPGy+p2Mf2CK6zjmY21DuK5BuVvqe9aYxcXuB4rbOSxhnurWHso1Tte6N3Vv0kC/C64g6dgIfLe/8AdC7w8GTS1zb87lceITtjma3Tc2PAXXDVjBv2GdmDe6laYg7UNQ3XC5lQ6S0byQO5q6HVMhD9TQIyOQN1lhmhz3Fpdz85Y4i5pGUmdETJDGOs4+C2JQXG42SDjZWDi47I0tAlCR/YO+/ggnSbFQ9t2ShVtp3WlaO8rVdZwNJnjt8JS13NNVZgx3o3WuPSpRQu10YHoUSpnWmLealGFEmmcOYAWNzL9k/keK6nD2hJtnbJ8wF2kN/670xvBL09YT5gIXzTqS2Zj0796izcBd2viUiB+tlRjAHdoekAKTMH1vxXzO/X7U+t9P8A3SM5/MTDiJsCnuoN2E8gmHEXdkn0rnoL2i3t1uRqtedL1H8Rf2Cn6v2Dwo9iXm258V6O0Rf2i3I7XnU8BN8hsy/cu2teBLvfs8U3zn6w4eKvqfBdvZFrex9frrK0/wDin9gq66+ipsQpH0lZF1sEoLHMuRseO43VIex0v19cT91P7BV9ixZe1iV6G39w+adaf+8n+ux5E6YskwZJzhTYjQMMlPPpeY2l3ZLpSOLieACa8SxCtHTXNX4FSyVFU6qjMLIrElwG1r7K0/ZQ1Xk1LQfWQ67oRqLL2+uO5qucoNjd08UgikbIxtbFYtcHNPxhdHYq0XZkvMme6zE5IcawDEaalbAXNklZEAXamgDbfgT8iFasbAACGtG3IIUEDB0i/wBBce/MZv2CqT9ih52OfnY/YKuzpF/oLj35jN+wVSfsUPOx387H7BQlcHo13ApDwSu4FJyHgj4IXJGMV+35fEfQuYLqxf7el+L6FyhfJeurTf1F54/oi5t3+zQ15pw5+LYFU0UTtL5NNjpvwIPBVh0X9FVXljHJsQqagyMdfYwhvvw7jqKuS9gkBc3Y2I9C1W3VKltRlbRSxIThlihwIOngFhJGH8Ut99gQPSslX8PYz0pI1MgY0rVWgaSGrptda6khkW6mLlJ4MJKKWRlklY1jmu4m6q3pSxajwKnY+qLdUzS5l7jgQCplmaoMRLmutv61XebaSnzJTxsqnG8QLW9q3E3XtOiW/hzjVkspHkeoXdJz0VeDjwHE2YjQiWLhc8CnS7tTS022TXg9CzDoOoi829737104o50dKdBF9t19e6VcRqx0xWPuPnl1CPjuNPhjJnObyaidMXXIBPdyURw6pNdEXh24Nu9TB4grqUw1WrcHmuMUFHRROEIcb77EFdmmq6uOx6Dp15TtaXhyWXnyGNzLLBddQAFynit1RYZ6O3qeJTFQhCzi9je+MAhHJHK/JQnuTjSAC0uo2VMwe7iN1vbzK20bDbfmsHDxHuaa8/Di2SXLsGmE6RwBt8ym2SjbERvZ9/4FRjB4+ro78L+pSrJbWurw1wN78Rw4FeN9MJKNBRR5Hp83O+1fEtXENTqA6mm+k739CpfOlKetldxJcTf41dcwBoywhzgRy8FWecKUEPDWk2P8V8s6Vcz8TEnsfdOiPQ0ipXXabIK6q+EsediuUjZe31J4weiTw2xEoF7pEobfnZSJLDyIzsk3TBiuHz1FXHJG4hocDwCfxubJXN0cLFSmc91buuk12NNEwspg2Q77LaLsadtkltW/BZdbcadJ+RT2NsIYRjbSNXelbbQXO2AStF2m5WqRhmhdGDpuOeyxhuxVnpjlG7C6iCesdGxw1Bp5KRUcz2P6vuUJwPBpaXEHVDpmW3FtRvx8FNaI3la+y5bvCe5n0/XNNy4ODMecarAaqE6LguaPslv4FXbkTHY8cyrTVbwGyGNhPa1cRfuChTsLw/EjGamO+mx5KRYcYYIWUtI1zI2ANF7AbeCpeq+DVo4ivaPO3lvUq1m+xPaabrSQOAC6E1YXKHAcvFOlwV4+aw8FXUi08CoQhYGsEjthdKtUxsEMo8mPW72W5rgQm919Wy2NltspwZ4O6wSFYRO1DbdZHiEZiKhCFjH3WY9wPnrqwwXxCLwP0Lk98u/CrHEIvA/QrPpSzeUv/sv6mur+7ZIm3Fwm7H8LixnC5qKpALXjmL8tk4vvpNu7ZDR2QTxsvrpTniHO+TZcm9IeFwOeXU8k1oxoDbWYCeZ717Qy/wD6Dw782j/ZC82+yPJ90TLgNvth/wC7YvSWXv8AQOHfm0f7IQDghCEAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP8AiN+hbTwK1Uf2nT/iN+hbXcCgG3G/tUeP8Co971vgpBjf2oPH+BUdJOllu5fOvSyK8aPyLGz9pOJyMpi6KRpNi8Ft7Lz/AJ36JsRlx+fE4qhwje9xt1LebieOpejw0BjQeN1oq4+upZI3NB37lWdK6pOyrtxS+8zrwzQlBHnmjoJKemZT3u5vO1uK7m0Bay7jv4Kd4hgjYnl2m3j/APom5+GggnU2/ddex+1FXSeD5xU6NNapTff9diGaXQygu4Jtx+k8pYZGch9AUtr6MuJYWkW5pnkj6txjcOydr+K9L0PqyjJQZSzhO0qJor97Q15Y4cFoe7Q0u5AXT9j9AY5usYCWm+48UxuZ1jHM7wvc1MNa484Pa2lyriipo5aWtbUzGPuvz7l2Eb2C4qegFPO54cN78+9dw23Wij4ib1nVJcGL+wLrijxMGpfFbzTbiux5LzYjZc7aJjJnScyoqxksYIawzpLi6xAS2sAlLhbgViCSulbR3GBUIQoi01sAQhA34bpzsZJ7YEa03uVhURCZtitj3dyAocFOm4shPSdeXH+Q1BYNg43+ZWtkmpMFe0A7EgfOqhjdpmY64FgVYWX6rRLC8H3y856T2ELmxenlHn79eBewqrbj+pe8oM2HhjrljgHcfQq0zXS2ZJoGzR6lYuEStqsKg1XuY28PBRTNEDGdayx3H8AvilhWnSquk3sfWOiVlGSn5lOYlGNJdzDrJsOyfMbj6uZzRwJv85THLsV7ui04Jnrp8ghI30pbLaYgm/HKSSsha2E2IAHC/NOCCSdgpTaNValGtTcH3GbAqCanicyVxNwOXpKcKWjjpi57tyXE9y37t7viQAT5y2SqprY007OMUoN5NdTSxVu4AHzpYYTD2OXFbNHwTZZAkWB3KwU/ZaZuhTjCo5JbHPPWQwODZSLreCHgOHBMeNYTJV1DXseAN+ZTxTxmKFsZN9+KT4Ry0K1R1mp+6Y1tQaSmdKBexHOy6spY6MUidE9gaR/evzPoWvQ14MbxcLTTRxUMv1mwLuFkqRzTNjhVVfOfZJRS7VIHp/ipvh7frYUAw+QOkYb9yn2GPDom6SD4KivYtI7Lx5iPlOLRAelO1N9iHgmqD7GPFOtN9hHgvM19zzlU7KR+hxvzXcw6gmoLoiqNOy4GsHE1q3HBhAeF1tcCm1r2u3DhfxXRDIDzCwkjVKJ1kXQsWOu243HeslrNWMAhCEJBI7zHeCVIeBUrkgk+Gi1Iz4voC6gueg+1GeA+hdIX2S0/cQ+SKOfvs85eyN6N2VNO/HaR2gxgamiO9w1ryd9X8E++xUIfklzr20siuP8AylSrp4Dz0f1ektA7d/0b1FfYn/0Gf+JD+yV1BcF4oQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0VV3sc/6tsL/NoP3QVoc0Akm8bvjUSqNqiT4lLT5jvjUUq/tqXxC8d6Xr9jD5/wBmdll74x13NVf0p5ZkzHhpZFLoeywHYDvfg947laFcON1Ha9t3Xvw5d68z0ut4NWM12PRU6aqx0MrfKmBPwDBTBUSa33ed2aeJv3lasSF3alKsQHW3J2tyUYxFhIc4cGm1l6SNV1pZZ6Tp9JUkkhoPAprn+ylOh2BTXOCJDcc1Y0klydNw5Nmtw5IEYZuEpNzsluSLWXTjc0+eVuNVZjcMNV1JtqbcHf8A5Jya7VZ8Y+dNlXg0ctV197l1yd07N+tgNatrWxwUVWlV/acAWue0l2xumzFMZ8ie1lufwrcvBORLnXJ5Fc1dh0dYWudYHxWETddwlpXhvY20lT5XA2W3z3W5a4IhBGImja17rYBfhuhlTjNQWoQ8CsT5gWR4FY+8COOToUXjdnfRfY12s85vguOjB6vguxm72gcbcFw1IvOxvp1GljsSKg5KTUbOtgdG/eNzSD8ijWHtNwLG/cpJRFwDQPQqi5zB5iV93HLbOXL2Q8IpcZbiIZH1rXB3mHuI71aVJdsLGs8wEKN0Dnlz2kAcOSktM06W2I23Xmb2tUrPFRnma8UjoJIlLozv6E04w49QTYtve+977J1Ia8OIDmkd6acb0vpW3Drhx35cFqtZSjJKBWXLXhsrfG/On/HP0qI+/wDjUuxoEvmFty47fGoiQQ+1twvpPTXsj5R1hftTref5qR/1wUVxAbFSfjTu8f4KN4gNjsvqNhL9gjgsn7Yy1AN1zuiLoyGnfwXZMNuC5RcHis6iUtme8tpeyhoipJmVuouNjYcF3+Sh0wL9zZb7dsHbisx9kutEKMabOiUjF0bHHq7bFaoaXQ92n08luBBc7w2SC7b7rareOrUxnJi97YIy5xSxSsqWExncLnq4HT07hfcjvWvCqV1K11ze5J4krmnOo6mFwSztjPZOrchNjsTc2uMFtrD3ydA7c3C0GCIv6wizlurxlhGEN2bfOjDu8LZSuPWtvyK1AgAWIst8JueBFt1uisJGFbaDO+nF5wVKsLFoXemyjdI0GxClVC0Np1FxNeFL5Hh+pz9rBoJ7R8U+YMLwj4kwv84+KkOBC8QHPuXzLqUvZZHTl+1RYeBN3Z8Sk7fNCjuBt83ZSMeaF80v5ftD650/90jXN9id4JixLzPjT7LvE7wTDiJuzbvWq397JcW/JG8S4vUcxPj8SkeJec8c1HcTBv8AEvSWi4PQWiItW/ZX+K4ZzeJ3gnCrbed2rYE7LhnbaB3gVeQLefBbPsdITpxB/wD4v+4r0ZcsGoWKpf2Oe2H19xv1rf2Fc7wSQRawXoLb3D5n1l/7uf67EQ6Scn02cMClpp7NkZYtdp1ebcja45leW+i7CZ8B6Z8NwyrcXzQVUIcS0NvffgLr2jN9heRx0n6F5PoTq9kw1x2JrKf9ldHYrInrRnmjwQhnmjwQoBHukX+guPfmM37BVJ+xP87HPzv/AHCrs6Rf6C49+YzfsFUn7E/zsd/Ox+wVAPRp4FB4BHNKVjUWUCMYwLV8h7z/AAXK3gu7GxaqJ9P8FwtOy+V9ejnqU/hj+iLW2T8NYFAubJSABssCd0tja6p22pZxk6N+4cVjK7QNytU04jJTe+WWQb8PBbY0+JM01KiS2OiSssditE1UXsIfwXM+ZkJ+uG3xrTVzslptcR2I77rrhTTmmlg4ZXD0t8kUzPM1weD/ANcVBwNUr+66fsyTOklLWnn60zRxbelfS+h2dRqKXDPmPWrjXWaZnHEubE9qVw9IXY02XPXwumgc1gJJK+j29H1dLJS05e2skdLS6UNHMrrlw54h18Nr8ktHSS+UC4Ox7k81BLqSSMDtaCB42W+rW0+0juncaJJRK+lc3rixzrlMtfWSR1Aay9vFOGHZfxLy4yVDHhoI4xkLfPTQdaWu84DvVbGpUuoa+D3VCtRT0wNFM8vgY53EhbUgAaLN4BKuympKO7ydMknwNuKzTxvjbCTpIubG3NddC6R1P9cJ+VbXNDuIushcCwC1qk9cp8ZM37qMo2jTb0p0oYBIWiyamg3UiwSImUXXVBbZyUfWZ+FTH5rRDRtb/wBcFKchRdbUAh29/wCBUPxUSOpZWxAl/VnSAL72Nlo6HYcwNzCRVQyti184CPelfOfSioqsajfCK/0dtVWqur5Ho2x8lcASHWKg2ZIi5r7C7r7n41PRodDYuAdp4XUVxphBeA0nfjZfKLao41Mrg+wdPqeHNFN4zSvBcTsVHgHiQhxOlT3MVN1bXSS9lo3325KETS09XM5kD2nTcGzr7hfQLScp00+x6udSG0cml7Wh3ZOyUtsL3JC0Sz08EvUvkbr4ectrQOINwd12tbGtTU3hMVCELGOxtcnwCEIQxBCEIDJjrEeKeqB5DAmNrgHAJ4pHgRhc1xHKOii8Etw2W7QpDQP4KH4bOGqR0NSLDdUdzT9k4runncm+GSeaE/QEFuyhlBVW07qUYbNraF5a5puMzzVxBxZ3jYpUOQuXUcKe4LTUNJGy3I2tYouTKO0sjfYtTZi1c2hpZamUkRxtLnc9gpA6MFN2MYLDiuGVNLM7SJYywdojiPQumy0upipwbJzWCPZP6QsHxzEnUNO8dewOB+tvHC19yLKZhpa4iTcjgq0yZ0VU2XcwSYjHISXaz9keeNu/wVnF3WbldPVYW8JpW7yjRBt8iIQhV0+DPuHeuzBvt+PwP0Li7124L9vx+B+hWPRV/vqfzRpr/u2SbkEh874kqQ+d8S+vFQeXPZIf1kZd/OH/ALti9K5f/wBA4d+bR/sheavZIf1kZd/OH/u2L0rl/wD0Dh35tH+yEB3BKkCVACEIQAjmUI5lAI3n4ryn0nf2gcO/LyfugvVjefivKfSd/aBw78vJ+6CA9T0f2nT/AIjfoW7vWmj+06f8Rv0Lb3oBuxoXoz8f0FR1gtG3wUlxbejPx/Qo3a0bfBfPPS7MbiGPI77TgVCELybi3ujvwN2J07JvOA+RRHEYOonu0bKb1TQY780w4s2IU5LuN+/xVpYVpxaimU/UqSeGyM1cTZYyRz4qKYxCGmw5KWzvEcQI4OChuI1PWzuHcF7Hp6lOa0Hiur+HGOBtxCLrqItA7lC54+qlIU8iIddpULxVtqnZfU+l1ozoqLe5xdCnOE3HGzOEi7kJeBSLuTxLc9c008giQXa23FCVvFTnD1ZIUkI8ssATuuavkfDAHMvfa264sQgqjM0xh1rj3qcKeNzqdoqAdhbcWXJ4rnqi1g3I5cMq3VIIlvf0n0pwa6xsU0nTFVDq/NuE6x9oB3oS0qYjpe5g0a61zmQkxXv6Fw4XLUySu1l1t/fJzjaXXDuCxA0OOgcVlOi5VFIGSEIXQ1lNJkA9t4+zxUpy3WA9XG91natvlUVabOTc51e3F4DTh2kPHBl1wdTUnbunDucV5aK5hmfY9c5Ne44ZE2RxN2N078tIXLm2mvrNuX8AolkPHpRHRQTmzxC0WIA4NCsPGoxUUznd4XwPqFvOwvNU1yz03o7dqcVGP/UorMFKeucW7EC/0qMXa6QtJ3VhZpoiHvI+P51XldLSwVGjrG6zy1r19jJ16aR9JdaCpxk3zsBab8TZAcOC1zvZA0Pe4WPpRDMydt2EfKu+Wrgx8SGrw0+TJxcN2pRcjfisWE6rfwWR4qN3uyYvbSCEIUGQIQhPkQwRcDci4QsJg4xP0EB1tiVlo2yyJS0rYzaT1oIA0EHmmXEJ5WV8TmC8THXO/KywlNbTzjr5G9W4Eg6LeCmXR1lukxmqqYq11xZouHlvEnuSpJUYaiqu7mWMIbqSWRuh8e7SATvZT7LFWJ26WAA7XA+NV7nnDosJxMU+DVUUoAAc1rusIOogj5gnvIb5oKgdc7tm1xa3euO8hrp5Oi0uncU2scFsU7g6IaRbdO1MbRBNVIesY02snaNtom+C8TX9ltFZNYk1kyJOkWShjnLqo4g4G67A1jVX57M5XLRsNel7dxsUhkew2EjgeJsnV7WlhsLnuC0up2ynsDS61jdHPDw+DFTXciGL9J2DZeqTQ18xEt9JvFIfTyFuam2D4lFi1E2op/NcLg2I2sO/xVa5x6IYczYsat9TG17nF1tbxyA5eCsjAsLZg2Hx00Rvobp4k8gOfgrC+jaKhTdu/a3zycDbc2ODnBjLu4pUjmh7O1xSqoZkgSO80pUjuBU01mSJlwSig+1GeA+hdPeueg+1GeA+hdHevtFusU4/JFI/eZXnTt/V9W+D/wB29RT2KP8AQc/iRfslSvp2/q+rfB/7t6insUf6Dn8SL9krcuGT2LwQhCGIIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWjzKq72Of9W2Gfm0H7oKzxxKZAO3Y741Fa37ZkClQ3a5RbEPtyXxXkvS2K9Xi35/2Z12XvjNiAuwqNVrfrgPcpPWjsFR+vb2HFeNtcrDxsekt0iL17d3+CjWIDRG/xUrrm7FR7EYtTtPfuvS20t0y/taijhpEadu5cFcxOs7ND7LkqWagraLbaZaVY646xqYLLIrJ4ssQuvLZxpNJY3AcEqEJuRsp5YIQhY5aZhJqSxjGRHEAXJsFg2Szj1TrjZceNxSy0JbBfXqHK658uUtTTROFSDcgcWkd63Rp6tzmrXE4zVJR28zgixmcYp1MgOgm3H0qSjtkaOCasXjiYA5jfrl+/wAU7ZevJTN18bBY1ZJLBz2bqKtOE3qTf0HSJumn247qKPrsXjxtzWOk6kFwaOsFrKYRN0ntcF2UtNG6TW9ngVyQrKKaaLO5tZ1aUZQfDJDh22l7vOJUhoGhrxq4ndMdHE5zwRwCf6VnaYXbWACoLmerPkcNWWGoyll4JBRtvI6ykVOyzR2gNuZso/RG7nhvHZRjphhxyXLEYwGKaSoEt3COIvOnSeQVHC2dzcqnKWzPP3UnuWY0Oc13BzPEJtxMWpiH8Bcj5FC+hCPGIsvS/wAoIZ45frekSRmM8HX4/EppiYcymPWbDfj4LCpQVrcuk3lIrau8G2V9jMINQXDa91C52ltVLdx4BTjMLblpYeI/ioHi0lPSzPM8jRtzdbkvc9InLRmR8y6vTjKq1BcnVTNe5jhbv5+hMWJsLHFrmC59KdqGqikj1xys0gd9+SbcTraSpl0MmjMg5awvpXSLiEoYlyU1tSqRqN44GCdrm3DuPim+QWcU81cZDtzfZNkzNyrmSzuj1djcKWDSDslSWsUq08Fy3lAhCFk5ZMV8QWLjbzVkkHZBvxKRWCE0ZCxG53XJiLpGQNEe7nG3H0LVVR1AcXMB0/ipaSN9QNUjgC3exFlzVZ6vZRvSxujbQkuhDJANQA5p1p4yIw5/CTshM1REYna+tYL8F1YRS1XXAym8YILTpsotakn7Bw31TTBskNJHpc0NHHdShlmQtvxTThNPrcL8k6VOxLRyUdSrKnRlF90eEu6muZztNz4uUmwGP65F/wBcio2xvbZ+MFLsEFqqAeP0FfM+pP2GdvSk3WTJ9gXmBPrOCY8D834z9KfGcF85vFmbPq9oswQ1Zkxyjy7hb63EH2iIPvS7hueCi+EZnw3M9DLLhTgSJN7Mc3lfmB3p4z3leDNeCmilk0locbayOItyUWyRkmDJ9JMyF+oukPv3Hlbn4KytaVs7Nyb9vPB327kpnXVtdru7zjxUexFt2OUorbum371H6luoS/Gu2wk3BM9JazxyRLEm36s9wKbZhdhCea1t2H0JqeLgq8oy2L6m1OOUXH7HptqKu/Kj9hXKOKp/oAFqKu/Kj9hXCvR2/wC7Pl/Wo4vZ/P8AsapfsUngfoXk+i/tMM/Paf8AZXrGX7FJ4H6F5Oov7TDPz2n/AGVv7FeetG+aPBCG+aPBCGJHekNwOQ8wG5+0Zv2CqT9ik7q48de9zGsNWN3OAPmFXd0gENyPjxI7Iopr/wCAryx0OZLqs3DGm0ldFTQirF9cJk96T3hYsHrR2OYfFJ1bqlmr8YetEmPYcy2qobuORHrVNRex3wWUtkq5qaeS/acIXNv/AO5P0fQTlCOjMZoIzNp2eHO7u66yxlAlmK4ph9RVR9XUjU4nbUPWkiPWg6XRkAX7LgSqOq+gbyfGpjT1kFJC8jQXU7nX2398uSmylnfIdXJUYJO7EIS03bBShm17ndxPwQvDdb6bQuLicnUSlts2l2LCjOUYIvhpMgfo96bG+yV22pwcbAXIPBUnhfTVU4bPLBmbDZ46m9tL52NN+fBvgtuZ+mqjGDTMoqJ8ckjHNDvKGu4ju0qkj0GtTqJR3T+Of7GydVuOxYWI4zTsqHsc7tA2sBdLDiMTmuEZc4298F5ryTnWpZmWWrrwZIpHPcG3a3i3vsrMb0nYVQtYJ8NkjDjbUakf5VaV+jeFhcv9fAqIyquTXYmFVLM6Z3Weab23XTgjmPqI4Huc4XtY8OaTC63CsfoY6milYHOAOi5cdxf+Kzno56apbLAw6wb8FyVWpYpzWn8DCNOdKpl7oqbpdzI7Cc0w0lPTMDHNjuWtdzJHJbaSpe/DmTuYAHi9yCOaszFIsLqwyoxSAmZhAuZCOHgoP0tVD6jLrI8AjcHMZYgHX78d69j0PrPqyhbxWfN4z+OSo6r062uZapvD+aQ0UNZ5S4hoBtzXeAdJOwUTybBW0+GOdW3bIXO4tt3KRslHVjtAu7l7ddbjUwn+vxPD31sqFXTTeUbbBhuAB6Vi6Ud260l5JSW3usLrqTltFHLpy9zN4+tP5O9CgtbEG1MjnbcfpU8iIfNd/m3VfZ2xB0Fc1scTi02F9Q7yt1lfxp09Ei+6JUbr6ZM1C3LglWunf1kDH2tccFsVwp6oZgj2MX7QoNhayxcdDC690uqwI70RM1OseCxacljO5NSWlahupK+SbERDpAbY7796sjBqXqomvdxUaoaKLrmuA7Xipo0EQtsNguWUZQpSbfmeQ67eKriKMWkOqW3H/V1YuS4R1rHRxsaebgN+BVe0bOtqGgcb/wAVa+To3RRxjv8A+a+S+kN04xab2ZYejNOTbSJRojIc65HZ5BR7Eg4Od2Wua7cE8V0Zox6kyvhXlVdbSS4bu08r9xUewDNFBmymfNhz2ktIBAdqtcX7gvF0bOrp8WK9k+m0HFTSbI9mrDHVuCVMUb3CcscGm4G6rPL2Uq3DqqaeteS0l1hrBBuOKu6qpiO07Ynmo1jTJHNcHPuwc7L1HT756fDXBfwpqpUT1bfMpzHMCmkxZ9RG9wZcEC4twC7oYnMhGo7jZSGoieXOETtTR3BM9TBIxxkd5vDhzV/Tq6kWdKzjS9pP8TQhCFsRk8pghCFAFjGsHkkYLOIJJQ46baUh0HZzgCgAtsb3v4rtopORXIW6Ba977oidpesZxyjOLwyR0cml177J/oKoEAKKQyXDfFO1PIAwaTuqy4pnTVp5jkmtFUaS3xUrweruQq7w6pFgHndSfCKlocLFUF5bZWTz97b9ywGPD2rJcNDLqYF3Lzko4keflDSwQhChPcwkCDugoTklrKC570nJKk5qMY7mMUKhCFk+DJByHiu3Bvt4fH9C4uQ8V24P9vD4/oVt0Vf76n80aa/7tkl5BIfO+JKOASHzviX1kqDy57JD+sjLv5w/92xelcv/AOgcO/No/wBkLzV7JD+sjLv5w/8AdsXpXL/+gcO/No/2QgO4JUgSoAQhCAEcyhHMoBG8/FeU+k0X9kDhu9vr8nE/+EF6sbz8V5H6aKN+I9NNPSQTNimlmeGEt1f6tp4ID1THX00FJT9ZPEDob78d3itL8coQSBUMJ7tQ9apeDoFp62OObGcQpZ3OaLDyZzbf+5PWF9AmVaRjvKaWGbcWI1N/iofGwLCxHHaB1GXdeze4tqHd4pnpqqlqmgQVAc872LgAq06QOgLCqiGmOXoo6W0oL+w6TbSb++77KNVXQ/jWFwUz8IxaBs0bBdooyTf43Ly/X7Glczp+JNJ488HZbNpF8PaQ8G40+hYl7WusLm/eFRjukDN+WTFHmDC6t0LT2nEsjFuPceSeIOm/CqmnLI8Of14bv/Om8bb+9XkpdEqpaqTTXzz/AEOp1sMtarfHBAZJXtsOVxuq+xrG2l7urDXWNg03tzVDZr6RsSxTG3SRP6qkvdsZ0utsOdvQnOjzbE1kcs0JcQBf64B/Bel6d0CNvT8Sq/afx/web61c1ZSSgtixayslliDnWZqGwadgmA3c9wdxPPmtWCZlw/GZXx7Qm/vn6uV+Q9C6qqnMch6t4kYRxAsrWyxatto8f1KjWk1Nrb7xMWrRgeWamvbBFO9j2AawTx25KssNxCTFnyPcNJtwF++3NWYZHOpn00oJgcQSOHDgoUaRsRl6hha4t23uvU9BoVZxlWb7lnYXtCNNRS3+44ix8YOux370ibIWVwxGQTkmO7rdm3NOa9PQrubcZIu9OrEsgsXOsskEAhSkuRLZ4MZg58WxIKbAJmSkSSvLTwF07B2kWTfi8zWQ2Au82I39K57uPhp1Oxtgza2kb1Ju4l2+643mVz+qjkeLdxWFPWvdGSWn5V04dKx0jwRZ5JI35Lmc04R8PuzJo7KeN7I+08nxKzZe/FDnkiyGKyjHCSbNY2YniD6WcMa0EXPG6cIHdcxj+HoCHMje49YLnxWRAZEXN2AXNCEoTbbBkbXd4rKJ2h7X8weK5qaUSh4B5rNzgyPtLoUoyWpkOLlFxfcneXa5z+q0PLXtt2gbGwtcK38FzRTYhK/DdjM2wvY8915spcTZSkSAjYWtdOeVM1UNBmeKu66PU+RpI1dwt3LwXpf0qldQVWHKNPQaNW0unCXDLezPEHmUcDuPpVHY9glR7bunbK/Rcm2oW4BXLWY7hNZTiWeuha542aT38PpUWxSiilZqge17XcwvK9PqStlhn1WjGndU4x1bp55IJjNFNUUUYY9zSHcj6CjBKaSniAkcXbcz6E6zxlj9AYez2lr1XKvFNtZOpWqjWU0+BBfXssjxQ7YbJFG/DOsEIQoAI35IR8dkGUt2KGX4lB08Lk+Kx0+m6XsgbedySTlIxzGXA341M2OJutocRa1xwWzAsxVeDVcVRTsbp1AkXdY277LOpoxUvaJPFdLSI29UxpIb3FbKijOGlnBO3c5YOBuJMrMZfJK0F0gLrWOxJUuyyxzaqR533Fr8tio9FhUfljZgNyN/lUxwZul3Y/64riuaiVNo32Nq6EJZLBw9zjGy+3BPkW8bVHqF5DWA8dk/U7/rbfBeKu1u2VNyvabHeEARNtzK3sj1LTDvC3xXbALBVUnmOSpnPO4jYNJB7lsDGg3DRdKXG9kq1uq0sYMG3gBsbjihCFKSxlGGO4IQhQyUCQ8kqQ+cFnQWakUTLglVHtSx+A+hb1qptqaPwC2ngvtFPaEfuKR+8yvenX+r6t8H/u3qJ+xR/oOfxIv2SpZ06/1fVvg/929RP2KP9Bz+JF+yVsj3J7F4IQhDEEIQgBCEIAVMeygJZkSFrRqLpZB2vyblczr224qmvZPvLchRgjtOkkAPd9bcgHL2Pr2UvRthjp5I23poDbWPuQU89vcPc5pbUs3Pwh615v6MOiqrzVkzD6mXFKeKF8ELtD6YuNiwHiHBTWj9jxlyKoY+dkErAQSAxwv/AO5Q3glFuOx3Dg7T5Q3cd49aYJ8QoqutnZT1LXPYRe7gBuorifQZlZ+HSsoaOOKfSbOu529jyuqypegesp6MsZidPTTWA0upHH/eVL161pXFCMastO5vtpaZl21xtGHHQRe3ZN0xVjLuudmP3CqukGfMj08kbIZ66jbe7ooWxi3x35NS0nTDTkdTi9BIKhuzg6oaCD/hXjvsWcZaqM1JLyeS8trhRftE0rYh1bg0gjfd21kwV0bW2NyTbiN1Bs+9I3lkPVYVE6DULXMjX8W+C5Mq566nD3wYg0yyFwNw8N4DusrilY1YUlJljb9VhGWj9f1JJXsBjJtv32TfpD4rajcFaH5ypZagRPhLGuNrmQH+C7JDDO1slM8EOsbDfiu2EZxhlnpKF9QrR0N4+9DfVR2pnTNA2F7fGojBjskmJdQYmgagLi/fZTlx09hw7K4jh1N1weB2r34lddKpF8nNd2taWJ0nhfHJxvJ1N4BI9x6wDayZ8z0teK29MCYzqtZt+5O8EMzIGGQHV4LfJpLJhQrScvDlHf5GQO58UXWwxOdYgJOoctTkmjqUXFYZi0g3Du5M2IRVMU4LJ5A0XuAU+MpXvNu7fgujRFHSSyT8wLb2SFXsct1Sm6LqrGwz4XQivk1vkcQ0cDblZZ10PkUzmwTzNe83awbNFu5MNBjMsFa+KGNx1OIFiO9PE9ePbKi8oiIlaHBxLudlsfsyWSspVKc6XibprkccvUtbPVOlmmkLQBZhdcbFTShYHuDHCxG2y0UVO2KNpJGp3BPdHEdTRrFyO5VF5WSk0i7jDwYaVL8TgzNicuD4O6eBjXOaHHe/LwSdF2bZ8zSSx1EEcfV6hdurfTbv8VIfIoZ4HRVTC9pFuNk5YPgtFh0TRQx6HvcHHtE8ePFV9e6pK2lFr2jz9z4irKTxjBIqIENYQB6T3p6YzU3S5rXgjcOURkzDBSZqpMGJF3yFh7X9zVwspkNEUZe8gMDdZJ7uK8xcU6kVGe6bK2rNNGTBHCwNjaA3mANkw5txKLDMOiMjy90shYNf4pK6HZuy+yR0L8VpYZQbFrnElU9035uwqslpaWmqYnGKUSFwdfYsI7l09PsqtxXXiJ8Z7lfcSWh4JfixZPhMNS0kFzWGwG25VaZ/wWoxBkclC6ziTtqDQdrKV5WzRhEuU6amkrIY5BHHdxd3DuXDUVWH18boqapinkHAtPevX2cZ0p6XweL6jB0/2sY8fAiuC4dUUmGPjleXSE83Xt2QNk14VlmsZinXySvewkbF47lK5mMjZpcLEFdVM5zS3UCWr2HTa8YVFl7HmftGpBSbjz8CP1cBa7S4C4TVUN0EgtBUyq6VkrDIzY3tZMNXAS4ghe2hNSWUY2l408jC+Kw1DnyWlwIKdJISzwK5pIiTwUyielo36a3OJ2zSRuVkLmMGwW/ybuKw6mUusOHgteMHcrmD5NJJcywAB70rSSw3A8VtFKXOs1wv4LJsL23DvoUxedjLx4Lc0dYBEQ5NtLK9t3RjVfaxT55K1zbOWVHQiIgRjmud0m5bGmr1CEUM882p0YmjaPAKV0bWvjYYxs7YLVLh7KoBsjdwn/CcObBBG73oJ+lZUkqM8yKDqHUVOOEdNBD1MdzsT6ljKSX7k7rfWSDSAzkFyXJaTzCoOs3cZtxR5xZk8nTQx66kX3AHD41MsCg1T6zy4fIVG8IiLW6nDiVMsLYWQNtxIXz/AKlV9k9T0a34ZLMIi6uC57ynUO7AsuLD2kU41Lv0jqgvC1pZmz6NarEDAiznkbGyZ6sX1333TyfpTXWN+uELVTWKiw9iyoPcjdcLW7+9MdXF51trqTVkYLnDuTFWMNyAr+1q+XBc0JIi1VG0SWIFkwSsML36t7iw9Cl9ZT6mm3FMddT6w48wLq5oTzgu6NVKOEWz0CUb4cJq53uJa97XAeLVbSrvoVbbLIBHKP8AZViL1tt+7R846zLVezfx/sa5fsMn4p+heTqP+0wz88p/2V6xl+wyfin6F5Oov7TDPzyn/ZW9Fd3PWjfNHghDfNHghCCPdIotkbHvzGb9gqk/Ynjt47uQPK+HLzCrs6Rf6C49+YzfsFUn7E/zsc/O/wDcKYB6NsABYW8Eo70HglHBAMGZN5Kbxd/BNp247g8juE5Zj+yU3i7+CbXcl8u9JtuoTfy/oi0t8Okkxgx3KWDYzq8qoKXW431tp49XykLnxfI2BYnhwo5aCmiaPfxU8bX8LcdKk54hCrodSuopKNV7G5Rj5EGyx0YZfy/WGphhNU7fsVMbHt3FuBCfMcypgmMYa6knw2jiuHDXDTRtcL9xsn1c1XP1LdduyeayfUrycs+I8mOiK3KVzR0XVuXoDW5YxKvdY36qSqeGjifNaPQF05C6RmGnjw3NLZIa+EWL2s7Libndzjc7WVr+XStYSSXxO97wUAz7kXCcy0lRJTUccWIkXjkBcSTt3m3AK4tL2F0vAvN5dpcs5JKOcolVVh0eJ4eJIC1zHm4cLcCP+apzM2JU+D4/UUNRK5zw8gNB1N2A47rdgeccx5DxCmwbMcMz6GSRscbpHsAAcQ1uzQTwCdM29GBzJmJuP0slqaoLpAAy4sQBzIPJXPTNHS6+bl6oPjP+MlVe9Pp3KeORqkY17A9rgGnkDb5lqZvdunhzAT5ieCQYdJHC5wJFuRCccFw6mncYi1oBBN9+5W76jTlLxKcdjwUemVJ1fDb3ItG1h21DX3XWb49Au8j0WKiMtHmWDNAa6nmFFqb2tTLWtvzupkyhkfpMpPm7g96tKt/TVFTS8iLzpU7ZrLOdp0u34ehc2K4fS1cGt8LS5vMsHqXRp6mYx2ut4bL1bgWHQfSu/pdSnUTloycEZzt6mYvDK4qnxQ1ckZs0A2AFgk4nskLlzNhdZJj8z4Y3dTrNrEetOLqPyeAOkbYgfwV9a3jm3FrZHu4Vqfgwknu0jTpdqF7HwXRTsa69r3TTDXtNeYW7gkqQ09PZwtzXVQqRqSaRh1Gt4dNYY44RSulJLtgBfZK/NlLFiIw8tkJvpuGA8r8bp5w6FsFJ1kr9LSLXt3hMceBYZUYj5VEGPlBvezu63euDq9z4ENMe55a38CvOcq3lt8yX4BG107ZAJNL+Fx32VtYBCWU0LhfYc/jUAy5AXMjaG2tYD5laGFRSMomh4JsF8U9IrjOU19x7L0coRitS7jVn7Kkeb8G8jllMYbqcC1+nctt3FR7IGRqbJlBURRSyyOe5pJe7VwBG2wTv0j5ndlPApKqKn1Os7g63BpPpUf6LM9fyzopHVEeh7S0EF17dm/cFx0oXkbLXFvQ+2x62EY+JlkiliJaGHffmoZ0kQVMGASS0DLzBzRbf034Kf1Ubg4PbsAVyTRiVhbK3XGRcg961Wlz4LUmuOV5lspNrSngoTo8biVZHUjEYtIAbYnV3nvXZX0w7cdzcOLuKsqvpmsjkjpoRDqFtjf6VXNbV0bq80xmaZr8LHvsvU0Lzx/bprCLvpr0U8XE8sYXsdGSXjsjuSdlzdUd7DjdPtTROYXMLbgnZNFRTujaNAs3Vv4KzpVVNnbKOmOpPY02uLt4elId23bxTJU40YcRNKPNBI49yewQGgjmt0o4OOld0605Qj2FaL+NlG8WlrI69rYQNF+89ykjez2u9azEyV2pzRdItLlE3UJTinSljcxpy4xx6+JaL/ItjtnbLIWB25bLF+5UNm6nylJjnRkOabrthk6t3ePSmqhedRHoTg0XC4qqyywoS1Jp7jtDUAuBBIdyspLgtQCRdxv4qC9prgQbW5rvwHFGsrBE+ftF1rW/5LjuLfXBtHHfQgoZLuweUGAON08NdcBMWDRTNi03NviT5Cb7HkvDVlpm0zx1b3mbEIdsULThcnNjzBCEDmowjIEGwBJvt3IbuVqnfovYXRJBGwOBF90oLTwv8a0UsjnuOoWC2yG7rN2KyacMOXBGlqRlfsjxXdggvWX8foXB70eKcMD+2/l+hW3Q5L7Qp/NGm49xkj5JD53xJeCQ+d8S+sFQeXPZIf1kZd/OH/u2L0rl//QOHfm0f7IXmr2SH9ZGXfzh/7ti9K5f/ANA4d+bR/shAdwSpAlQAhCEAI5lCOZQCN5+K8pdJ4v7IDDuR6+TccR9aavVrefivKfSd/aBw78vJ+6CA9S0bR5HT337DeO/Jb7cVqo/tOn/Eb9C3d6A5a3aklH90qLNJDXN43N7nipTXj+bSfilRUcV4P0xxGpTfwZ3WiTZoxDDqPEaZ0NZS08wII1SRNed/EJloMk4FRSSvjw6kcZLk66aM2uLbdlSMFKTsvKUepV6UHGE2kdbpRb4K3r+iLLtTX+VFsrHXv1bGsDOFuFl1VeVMLp6fqY8OoyANN3U7L8LfBU9bud+C5K6IEXsuul1u6k0pVGzkuraNWOy4KLxzo3o6meSWkmqKWokN2theI2cu4dyiNPV4llPEjSYy109KbfXG6pXAE95tyC9E1dIyaMlu0jfNPcojjWFUeJdZT4jA2Rzm2D3E7XBA4Feotupp4jUeSkrW6lFwnuQKlxKlrnPmpHExg7tfYHf0XWnMDIKGibNVjqy4kAsAHAJhx3LmJ5bxOafC43y0ZcTobpaO4cTdPdc+HPmV2x6RFUwl77buO/ZHcF6uh1OrbKKpS9lnn10iEaniqWI/IhwlY7XM0lwLuzz2KL325ro9o34NEyOaYkAAbt+JaDYz7d69zb1fEoqpguqdSFWOmk84Cx5kD40ui25Pzpoxd1U2UdTqttwt3ld1EZXUkRlvrI34JSrqdRwijfLCinI3Edy1vpWTStdJxaCAOS2ucI2aiuby+NxNwLg2SbUHipuhGLfAj309KdDmtt+KFlDFC+ZtRFfZumwtZNWLMNS27W7/APJdGFVDaWm0yCxv/BV0aqjUw47dvgbdG247EA+YPlSG9uzxXBPibIXANI3XbDJrjD/hfxVlCvCpNaTTNNGEk8cQu8HUfQuOvr42RlrdVnDu713S08ctw+1wml9PC6o0vILdu9abzxFLRxkyhjubMMl6t2oBxa/ftBdc88Ez+rvIPAIkMLYWshaOyLbXSU1MwfXXNuVppal7GSXJN8ml0XkrtYHWRnbS7c7+hSnIWBYPLVPq6/XaGz2sDWkniNwVF6+WR07OoadYbYWPJaKHFKulr5AHOMrrDTt3LhvqcKydFbMmU6kPbjuy6csYDRZwr3yVL2UtJTPMTGxFsbnFhBFx8asDEstw09CIqSJj2t2Di0Enf0BUTkPGpYKh7JXmOYvMmnjcbb8PQr1y/nCB8DYqgjhxJPp9C+bda6bd2cvWKbbgu2y/ubundddOu6FXaWOef7HnWvpMaOZdEkLxEXBvZD7ed4J4rKOSmcWvYbg9y9IzYRh9bF11NEx7z74X2+UqtOkWko8Is+qc1hdvuD8IDksbPrHrU400sPB7vpl7u/FllFYPcGusbpbW3PBdD6d0sbKin7UZcRcejxXPJGS7tGxV1CUp5T5L2Li1qT2EPoWuSVscRe+9gbcE34nigouyB865/bOOuoTGSA8uv83/ADW6FKclho4Z31OMnDO4700oqIOsZ3c1wZgfMykaae+sG+1+70LXhU8dG3qppLDhuE4NrKOVzmxyNc624sVk1jG3BHjesUXDOmTOPL8k81MX1Wzha257vSnKZ4ZC6Q22F9lodWUcTdDpWt9FiuTEqyne1kEEgPWHTcA9yjGt+zsjGNaNvHEnn4/HyHCjmbUgOZquAs2ee4b3Ka8LqI6QujdLYi4vZdcdbBI8xNnHWHbgfUsalNwerlG22u4yinJ4ff4Eip2tDG3twTthQIk4i3imKn0yRt33G11tkrfI3tBl0g35KtqQdbOCycoKnllmYe46W3N0/wBI8kAKKYJIJaNkjXaxfipJQvvYLzF7ScJOJQXOEm0SSlddgHdunKnddvBNFASS7wTtTeaVRTjjYpJo2cboQ3mhasvg1PyESX7diDZZLGVz4xqdchT2yGsmTSC8jeyQcFqjqA4+b863cOVlD2WpjSwSe+CVHMLdbNSqRaIkmkSum3p4/ALaeYWqm+14/ALaeJX2Shl045KV8sr3p2/q+rPB/wC7eon7FH+gx/Ei/ZKlnTt/V7WeD/3b1EvYo/0GP4kX7JW4IvFCEIQCEIQAhCEAEXFlTXsn9shR8/rknH8m5XKqa9lB/QKP8pJ+7cgHP2OhJ6NsMuT9rQfugrOAv37KsfY5/wBW2Gfm0H7oKz280ZKFsFGcXOmuJHIqTqMYvvXP8V5f0rS9UTfOf7M3WqzM4ZmskY5ksbJGuFiHtBHzqF4nk3BKisdUPoKUSNJ2FPHY379lNHntWTfWNIlvyN14S3vK1v7kmsl1TpRbWUVzmXI2DYvHpfA2neBt5PGxnK3ILhwzJ+G4VTOghpoZnkgh08THGwFuNlP6uDS/rBwTZWQuk7bNnDZXVHqleUcObLClQoJ507kAzLlnDcUIYYRTyAmxgjaziO8BQLHMv4hgLmyUM00sQINnyudt4D0BXXVQNd70au9N1ZTB8ZbKzrG8CDtsrOj1GS2lujqnaQ96CwytMMxqkxFjWv1x1bveuaGtv8vcnGoY6C7pm2aG6rtGyXMmSWTgVuCMENQ27g1gub7Di49100Ydi9ZPUy4LjUbhK+IsY57gfO7I8341bqMant09kdNLq1Sk/BrLL88m+lxKjq5jG06nN23At9K7HNBeNQC4cHyVJQYhI999IdtsO7xUikw0OOx4eha6taCeEyysKviNyqobdLO7fltssdHPskDu3W7GKeSDDpHU4JlBAFtlHcknFaupkbXMfo24lvf6FlBOcdXY11b6FGqqeM5H5gDierHAb3C0y0pr6fq2dlgG5cbFPcVIGhzSNO5N021mKYfRSCGXQx3D3y0xnn3TqrVaNJaZ8Mb24XSYbE+eSFpLWk3LAfT3ehb6E4Xj1HGyzW1DgDdrWh1+J9PJY5lq5MVw8QUEZsbbtPHskc/FQ/KdFV4XmeN8kDmdUXB5uOOgj+K7KcZVab1S9rseZuL6kqypQprR3+JceG0PVxnWblguA43Jsnanp3PcyQAAW4cFGJ87YE2OepM8XlEUV7Wfe7RtyTpkTNVNmgysp2AlrrbE/BvzAVFXo3MYubjleeUdEr+FWeESKpqIaaEySB5Y3c6W3K4GZ+wOnhllayue6EOjIEAPaA/G4bKRCkhmhdTzUwc0ixuT61BM8ZYoMBp219FI2Js8jYX0rWntGQm77kn5FwWaoV56Kr3Ky+ryXBFsLzLDmDMVVjsLak1FM5skTAzYkt07i5V0s6QsEgw9jq2KuZqjDHNfABc23tdyZejrJ2A4HHDN1MTpp+Is8E2J9K5MLwJmdsWmmxVoZSU8xjjp3doXY7Z1wQdwVvu6ltd1fZ2jAqMykJimWsPzGwY5gInY9u5ZUgRtJdw2F+4plkyRQ9IdJBiTuropmSlkjRphaWsGnbY3KsbOU0OV8pyxYVEGPjDQ1rCd7O9N+9efcz5px/AWwUEvXUcYl6wDUx2rUCbcCp6Y69ypOlLGHz8PIwqJJYJljuX4aCooct4TDAXmLtzytAvo4kPA3uPlXdBlmmy+x0UGuRzhu99nHv2NvSo2zFca/wCwsYr4ZJKM0rWtkc5oFn2A4b8+5WpVwCphDWHU+3Z8SF21atWglGTy/MpL6DcXHBSnSE2upJYjRNcWuDXHjx1HuXTlyWono4H1BcHHjue9Tyvpg8ujrYr6dhqPqTBX03kbC+MaYmdyt7O61RW255HqUVoVOnDDya4ZO2Wg9n0rZLTNnNuyB6E2UtdSVUrmxyt1gHkV2M6xrjpcbBeosurSp4jPgoJ05Upe1szlnw0teQ2xHpK4KnD36wwAaiL7J1q8Ujo6WWWot2Wki/eAo7g2daaqxCUSRt7Di0do8LeCvYdVptblhZ0bistUFsjntEat0Ac7W2xO/et81M5sDiw37t91zRxxiqgxKUBsUrrOJ7mqR+WYIyIOdVR3dbs6X8/iWVK7hNPLO2rKpFx07+ZX1A+ufi2h7XCPUN9+5SsUgsLl2rjxT2I8KZB5T1rGtte9neC0y4hgrKdz/Ko5JNwOy8cvBKdZU03J5Jq3c7hpUo4S5GegEc9dJTDVrabbj0J4bhzustsPBMELmUtf7YNmtHJd1reiylUuP4aGAwyMJItsHepao9ThnJzXkZtZpbnRR0kcF+Dnf3t0T1GlvVxjcehcsNT5QOtidse5ZAtB1uNrcSqm+6ypvTAqHCWfaFDiAS8LbSR9bIG2O/oWqleysqOrjkuR6FIqKlMbizT2uS8xe3DXtM7Le0dRrOx0UtNd0bGg2FibKX4ZT6nRRt4AW3+NNmGQCFhdIN1J8Eh7HXAeleRv7hyXJ7rpdqoPGB3iFowywstw82y1M4raF5eo1qPWxiorYQ8lxVsYA1Diu3mtNQ3ULKKWG3pN9OXkR+tZ2dXM8Uz1sJa3VsQpLPDrBYOJ4JqqKZwJY/gu+2qqL05LCjUSeGRqohOz2AFvO6aqul7Lj3iyk1RA5jtDR2Oab6qHsHZXdKuttJa0amCyuiRnV4A1gG2ln7KnXNQ3oybowRvg39lTIL3Vo80UzwvUnquZMwl+wyeB+heTqL+0wz88p/2V6xl+wyeB+heTqL+0wz89p/2V0nIetG+aPBCG+aPBCEEe6RO1kXH7bkUM23PzCqT9iff/ALdJBFqsCx4+YVdfSELZKx4tcQTQzAf4CvP/ALGrMFBhNdjEFfO5sstVqA0E8GEckB6j96gcFhE4Pja5riQeZCzN+QugGLMYJfAbGzb7/Imsntht+V78k85gYXxRanFg3uBv3JimIip5JXHsMaST6AF8z9JYtX8sLnH9EWlrJeHg2XFzvwSuOk77ekqDT9JmXIcRgoJakiazg7627iB4KVU2IUdbC2SGeSVp4AxkKonY3dJpzg8P4M2xms4O/jw3HeE110l5eqbZ8Xe3f513ziSOm1sbpZZRSsxgQSiAMEb7+9usqFpVqTlGK3+Ry3Vwqe3mOrAGbN3Hcd0Elo4s1crclw0NeJH6SwXI87mu1o0Gz2NeebjxWytCpT9mS3OalJTRAemPBJMRwEVlJH1lTTvEhIaXbNa48gmfoyzB7a5cEMtUyKppmtY+N8mk3JJ2be6tQxa4KmmmaDDNG9u54ahZU3m/oyxLCBJjGV6qWx7csTQ2NpJs0b3vwV5028hVoO3qSSl8TXUoyw8EkxuORj9cvZ7i8Wv8qaKKtlZVHSRe5sAOKiWLdJtTNhHk+LYbTxVUWqzxO55O1hyTp0a4nBmFpMjiyobYMDQXbWud1extn6s1N554PL3vTrinXU6S/Bk2x7GDBleoq5YIgI43OJ6oB2xUDyRjbsyVssdPHJs9w83ut3eKt05cZV4XUUWJstTvYWlxbq4nuS5TyVg2VC+ow1rZXSE3vEGW1C3IlU9LqlO2pShpeS5l013NNSqkHznhcuEYTUVwGrqm6jYE9yhOUsxVGJula+FzWNLhcxkcLK882eSR4JV+2sLDSFm9wXbXF9lV2GPwWZ0kWCxRhpJ1FrC3x4/ErvoPWakIZ0/gVnUum0Y0morc4cRL2tMgYxzOR0X+dRHMVa+KEueGFp27I9Clea5ZcKw+UaQ6N1tNzbYEKIZXczGS6Cuja6Mk2J352X0Cz6pSuqTgtpfcUdlbyoQdepwmceWaIV8j6hsUhseIG24UjxB8eHStbUPY2/eQPpUho6GjweHRCAyM/Bba/JRvOmX6jGJGS0sjy2/cO70rolVdpbr+IyV5C+uk6j0w83shcRq24lhDqSjqYxKXBwtIL2A9BWzo+wWppw41r3B1hYOJF+PemrAMp1dFXxyzSyABvCw9CcM7YtX4dUQnDtiHO2D9N9gvKdRu53HvHcqblNW9BppvOeS6Ms0RIbcOFnX+hWBStIhIuoV0bOmrcApqmr7Mh0gi+r3rTxU5cLPszzV8o6tLXXabPZ9OtlQhhHBjeC0OOUfk+INe6Pe+lwHEW5grgwbL2GZegdDhUMjC4jd5BvYW5AJ9mcGt7IBK8+ZjzzmKn6SJ8Oie4UrJZWsb19hpB22sljRq3MZUoyWlLJYTai0y9HxtkZ1cvZPp2TdUsZFdseq9+JNwnQMMlOx0o+uEeK5amAvbw0uaPNHNcmtwliJ2wlqGaeKJxcZr2HJpsVTc/RvXnM5xBtQwQa9elz3Xtqv3dyds6dIlRhWbW4WKSLSXaSetcPeg8LelWdDTSVVFTVA4Sxt7N9txdeghKr0qinL/ALG5VKdzNJvggePMihLeqHC977qMTwPAu8DS48gtnTHUYlgtdC2lYNDi+56zTwLfWn3DaJ9XluOpqIwJDfnfkrWlUXq8aud2egs+qUpPwCAV2E0hnMpY/X33/wCSH6Qy3BP1dS2JuFwOoWv52+JWEKuTtVtGk3UiuRuBvbuSvt71bZoeqJHctPFdEZmuTlHbAHfcJAfFF/erkxHFIKBgEgBd8ankitUjBZmO+HtBlduDt3pxAI4JtwV8U8HXxnc7cE5XXJV5O22qxUfZ4M42dbI1jj2XGxtsmJ+U8TfmKKaknaIdevtF3DVf6E9tcQQW8RwXVTYlO2VoDi0jbYrBTlFYRov7ZXC1RfBcFFWNaI4mkh44knZSKjfcC/cq9yy504D5pHOPp+NWBQkaR4Lw99DFVnlLmj4SwdhFylSmyQqrWdWCuUsgjvQhZmQN2K0VDXHtsttyK3pC4M7RFwOSmOMrPAKdrulWnw7NwwqaGXWX6bhgt5+nvVt01Q2ppYp2baxcXUOxDouwXEscbi0gaJtQdbqQd9WrjdTWKKGnjjp2MGhgsCrG/nayoxVJPPzNUZtyeTPkB8accDafKS7l/wAk38z4JzwL7Mf+uS39CzK9hpfcwuH7DH4cEHzviQOCD53xL6sVJ5c9kh/WPl48hUP/AHbF6Uy84HAcOsb/AM2j4fihea/ZIH/6jZfB4Gof+7YvR+W9IwPDg13/AHaP9kIBzabjgR4rJJvf0JUAIQhACRxsRtxSpNifBADTt8a8p9J39f8Ah55CeS/6Jq9VF4D9J7rryZ0t1kGH9O1HU1MhELZpC7a/+qaEB6vpD/M6f8Rv0La5wBA7+aZ8s4xR41hcUtBIXMDQPNI3AHf4p3O7bHe3EIwaa83pZbb9kqKN7zt4qWVX2vIANtJUUkGvrAB5rrLw/pZFylCaWyR22jwxRz3Bt3INr2cQ3n2tlF8z51wXLnXw11QWTtZcDq3HiLjgs8uZwwfMlPemmL5Gm1urdyAPPxXlY2Vy6fiRi8P4M7HUwySjduyxlDTEd9R7husoJRIx7o2kutu22wWuZ2iM3YIyebd1zqjUhLTpefkQ5qSY1SBwLxazTxuEwYu5nW2aWkbcOKdaqujDZ2skdI9pAN22twUcdI0lz5QL8ld2ltKm1KSPP3dSCyhmr4wJyLsLHXJ17qoMJqjg+YJKaYuhZIGtBf2W8b87K2MTlaZzzab7KL5qyxBjo62I9VM3cFrQd7W5levsp6UlI885QnJ0Zv2WbKiOHEIwGuY/bzmkEKK4nQGmk08HelcVHXYplipkgqYWzwtLg0vltsNhsPBcwzL7bYo1lQ0REuHmku5L3HTOrU54pN7fcarXp9e1k5QeYmXVu1HrGXsL3suCXEWNqOpDTfwU4o8JFQ0PEjnNI5tTFjuXmUlV17Wgg3NiAO5WtfTOa8FrJ2W/UoKThURxuAdEQ7fa+yYJqhsddoiGwJDr77qQXsdmjTaxTPicEIm104Be43dtbdc3UIvC3LenVVT3Bwa9ugbxX7jZcjoxUSlpLA0XNhsVubQudF1p84C9k2QVBZWuY5oG5HFTUqPEILzNr2W5lGYaqoEYZKCOZ4bp6s2CIAnYC61RUscZEjQAfBbK2F00P1sm9rLbSpOnGTysmrdmjyyE6nk8eQITbBTSzVRkv9b/AOaG4TOLOc51viTlMx9NQkxi7gD6OS5Vrq71lx9xtjFGFRTyNiHVEX9O66MPcTAWyW1fIuPCqmaUkTDbxunLqwDdi7remox1mqpJvZoxLdRLbC3fbdaY6KGKpEjQ7Ve93G66Gu3ueIXBitVNELxj51lVxFa0tzFReNmOYlfFMHxaQQONk9Yfj0kZAnLdP9wWP0qL0Er5KfXL3243XQSy9r7lSqca8dMlscdxaxr/ALzZ+fBbGW81zxTR9XKDFcXDtza49K3dJuBzZ6gpDh9XDA5re11smnfUDy8FUDsZkwqxB2Ppt/1wUry3m901MHOedwOZ7vBeI6p0CKulUsl7X3s56Va76Zx7Ufgslo5fyHHhmWYIKl/XSsc9xfG/U3c342UOzJgIhnd1DHkX5b8/Bd+I59rqbKdQylGqbq5NJ6wjflyXD0Q47U5hq6qPHG3PWODbu17aR/FeVfTr+31V664+DR7zo3pPRUUp/wBvzIPjGDOmG7HNI+ECP4LRlrCzU13kbNDHi7tcmzbAgcVe2Z8oxUtJPO5gIt2bgcrKm8IwHGKmuqpKcuijbJI0Oa8cNS66XVY3VLEnhr5F+61rWqeNB7v4mvOmEnB3N6ySCcuv9gOruTbRUApw153c7j4Fd2Z8IxWlp+snkfUaR79wHMIoI5Z6Vkrtn30Ft+AHpXZTqQdP3kdFCEqtXNTbH3HLiGHNqNPVXDrd6yyxStra/wAmeGNLbHU/YbnvXXK2SBj3cSD3qP4fNVQmSdjjGSPOadxYrZH24aU9zG+hOlmUVnb9Mn+fcKwvDMChMIe6qPVhzmvBbcmx5KH4fhzKd0T5CXyuO2k3C4JMXrcUa+CWd8wY+3bPcpFhDDLAyR7QC3fv5rBJ28cSZo6QncJKa/yOUDToaBpCb8xYFV4sxgodTXgHc3tvbu8E5sLXHs7WTvhtYYSACbrhdRxlmJ6G6tHOg1Edcg0FTheWmQYg685mcefA8OKluHm0ob/1wTDRVL6lzQ4nbfipDQx6ZGuKoL56pNsoKtB04YZJKD33gnal3aU0UThcj0J2piAF5uq9yprvMja3mhZWsCsVznN3BYvZqZpJuVkkLgHG3csv+rDZCekTNseTMPZUzsdI1zb2jaCeIHf6V2dHuboc3YUKqKN7HXN9QAGxt3rrzllKgzZhwhrDYAW+xh3O/M+hbMpZWosrUZpKI3jFyDoDeJvwBVrrtXaaX73zMdTHsbkjuNkN3ka2x4pQCA4t70rNWuIu5lcFol40FHzEm8ErphanjHoC2HiVhB9gj/FCzO919lprEIopnyyvOnY36Pa2wPB/7t6insUhbIhJ4aIf2SpZ063HR7W2O9n/ALt6iHsUzfIrmlx8yHb/AMpWxchF5ah3hKsBoDtPNKy4JBQgyG/BCRos0AJUAIQhAB2VNeyhv/IKOwLvrknAX/1blcqpj2TRcMhRCN53kk3/APTcgHX2Om3Rthd+Pk0H7oKz72VMex2zDh78lYfh5md5WyCJpGg+9jF91c5sBcKGm1sALgNvQo3iv264nmVITqPvR8qYcYAdUOAPbC896TQU7LPkzotHiQ3OHbutcsXWXHA8rrVi+IQYRROq8Qd1cbedr8ieXgophPSXl3E6x0MVW7WDZtond1+5fO7ayrVk6kFsvgWvipMfZWWcWPBPgm+amdrNiA3uPFPhMFXpNNI9zncOxZc1TSTtkDerD3kXFzbZbIqtTliUX9Dro14vuR50XW6hpLbDiRZcb6ZzAXMs/e1gLqQTCEztaHOuTu3TssJqORkoEMQAI1cbLsdVpHXGunwyLT07gTqFn+gWCrbpMop8PxKkxaKMdWx0QdZh96S4q6ZqcvN5Ymgu4b3TRjWBRYzhrqSrADS42NtXEW/irGyv4wn7bJuazrUtMeURjAK2DGMLgqY5Y3PlaHFjXDUPiC7RRNAJc19/g81X+OZWxzJlWarBqiWakF9MbnNjAHAcL9601XSw4SwiSigZLqAcRK47fIrStZesyVShJMwodUcIKnUXBY0dAHkgxu0niCFGs3YtR5W0OfCe2SOyBfYXUvyvjFJj9BTTU0rmzOjaXta021EXO5WWZMk0mOwN9sWjs3NywO5W71z+K6FTRWTwb6954kP2TWRly5VR41hoq4I3huq3aHOwP8VFOlOqiw6CFr4LVD9ekhgtcafWrQwTAYMFohS0jyWE6gNIG9gP4Jq6Q8PwluEQzY3BG6oaHFmphdzbff5FNreUnc6IxeDTd16krfEpLURHouxb2yw976+OGFkZdZ0jAy9rcynnNNSHtghw9lKW1ALjMGBwbY83DhdNfR/kysxWgfJNPLTUPXO0hjQ4EXFhYnuKa+lKCsynPDSUMrpqeW5ZqIZYNI5BdclB3OmLxk4ldtUkp8o5s5S0GWp24a6mkklla0yPDQ5pa8X2Ksfoxy3RUmHRV1FHUMdVtExMh7Iu23dssMq4Nhed8EpMTxalh8rbIWObp13aywG5srHw/Dm0VEykpm6Imt0xtaNg0BVvUb2HhO1jnPc00cJ68kdfmXBqCokp6rEKRkrQL6qhg4+JVX9KMNRnTGqWPLEzqhjI2h/VOMjQQ438y++4Wea+hrH8Ux+aeEvLXBvNnd4qbdD/AEf4lk4Vc1a+QS2kLWHTY3A3uD6Ftto21jSVejNOeMYznnnY1V68qktPY15X6MHU+WIH1FZXDG2MNg6pcIw7WfeEX81JkODGsCzfU0+LwvNO+A6JI4XtZqLrDc7X2UVrM+5lj6UzRF7hRmcN09ftbqr8Ld6v2MtqqankqAHXY12++9lXdRq1aNNuu1ia2waYPfYSajp6mJonbr1DcGxTLmHKGD5gljlxOnkM0ZBb1JDRsLDkVIDYOHJoTZmqslocv4jU0h+vxQPeze3aA23VHbVZQrRjSfJsnFNZYlNhFBTYfHQQ0+qCJrWgStDiNPDkm2tw9sAEsDu0N3NJvt6Aqt6KM6ZhxzN01LiD3GIOluDNq4Nv3K7nwMc6Y6Q4taDYqyu6MrWvpqSRxySqR2IXWUcdRtIDqIvtsopj+DTTUM8EYdeQWad9uCsjFaVtPRTVMI1ua1xLTtawJVO5R6RpMYzIMMqKOJo1NAd1rjxBPd6FcdOrSqQdZcRKarYyk28Eeyxk2sw+rllq5LgudYAn4QPMKSy0MsTnObu0nYbkqf1VFHJDIWMaHhpeLKl8Sx7GI86uw5rfrAke0fXeIDb8FcWl46+ZZKe56S7iWqa3HmrpBUQvimjfZwI2FuKi0+DR4TiMU7Yy6JzSXNAub8O5W8MKkIaXRgnQHOBPoUEzhHVS41TUtFTst1brkPtuHLpp3sc4cjis+n3FLVFcfeLIadlJNG9oIibqa0WuSe5MNBQ+2Mz5ndmJjy3QdncVIazKVe2J9V5RIZgLtj7NnEcrrkyXTVHlVVBXRtDusefOvwXTG+p6W9X4iPTp0qcpReWdkkMc0TYHtIgG22xtx4qOy0PtXiberbrhfbZw1EXKsOPCSHanMGhQ7MzKibMUcFC0GNsTC46rW7Ruta6h4jxqNFlZV8OL7ndUeTvhja9rDts1trjfuUfwrCziknlc0crWg6dDQW8D3WWuuqWUeIuifVSGoDj2NO3p3Uo6P2VUj5KWujDJA0vsHati4WWy5rRpQzqR2x6XUt6bxy2dFPhpjhaKdrw2w8/ddFXgxmw+oj1fXiwhmk81MG4O8RmzjbwC7KfCWRASvOo9xCpqvU6dKWcmq36PPxNb/uU1kzKmNQ4/NLK49Rqda4f6FcdLhzYHdY+7ncgCnGCnBFoWhh9CdKPDCdLnkuDeNwqy+6qqsdj01Owk8aonHRUZlILhZqf4GCGIMjFtuaWKFkewAW0MXna9dyLuhQUDJrCOK2IQq57naxALElYuG6zSFZLKXsEQ2GrF3eRUc9Y8jRE3UQOPED+Kq/AukjD8dzBLhsMM7Zmkt1OA0+dbv9Kt6up4qymfSzgGOUaTcX9P8FCMM6L8HwfF5MSpbGVxLvsIHO/G6ubCtbQpyVb3vmZqb1DhPTujc5shabnkuCpptgBbc2UllYyTV1jADyPFcstKx2nSOa00q614XmWUK+CWZDgMOEMB5tb9ClCZcrt0YdGLe9H0J5uvqPT3mhE8tdPVVkzCX7DJ4H6F5Ood/ZMN9FZT/sr1jL9hk8D9C8n0bf8A+ZeMgca2n/ZXYaEes2btHghIwWA3PBCEFL5y6WcGrsu41h8dPOJTTSsuZGcSCO9eVMNwbFMYxConwOiqZj1hJMbS4C+/Je1M/wCTMtw5RxyqpsAwmOpbRyuEjaSNrrhpPG3equ9ivTRTHGutgiGiqAaAAQBoKA3ZE6QcayJldlPnDBsQEEIcWydW2MOu4k7uPcVvxzp5kxKKJmVsIr3zOc3lHJz32B8Fcec8s0OZcDnoK2nimEjC1nWRtdpJ5i/Bec8iSUGQM/VeFZjw6nFMZJXwTCDrC1urSzgLDh8SA2Z66QOkGGmbLX4ZU09MwOJc+ka0cuasrAs04LmXBGUXl9O+qkh0uDZRs4tAIsPSVp6U+kDKbsuzUlRqq5JWEMBpTIBuCfBUb0aZYxyqzMzFsNiEGGibdol6vYPBPZ8LLzXWrGnct1Jey4b58/mdFGUlwc+LZGhb0pT4LWVMcENTNJaaRzg0aW348VP6boLc2Iy02L0pFrtdqlIupR0n9HUmZScXwid8OKMLnN0vbH5xF+1x4BRbAcodIxoXwz41WsYNQGnFD3+K41d+NQjOM3thM2aWnkjBzBjHRXmB8NbMyvpDrDRTsty0jd6r/FcaqcexSqqA/RIGtLAeZtbkrww7oercSr+vzZitXUt32knbP9PpU1w3o2yzROJGF0MjuTnUsd/oWxdUsLdOTS1fISt/FeZEG6MmYvhmUp6+sp5Xlruw0R2JGgG4v4LmwnperamthgGBYk5zzZ1mx7bc91d0VPSU9M2lbBH1AaB1egaeFuC4qfAMEp5+sgwihZL8JtO0H5bKh+1req5ynFN9uTKNqoPKO+jmM9LBUBjm9ZG0lp4i4BN1m5zrvEZaAe8XWVi1oaxrWMHJuyAYwLc+ey83KTVVyjsdWlPZoYccw7Dcdh6jE6Z5t75pDeVuSr3MHQvhFeWyYTO2llHOWV7hx9Ctiema+5auVtLKZNLSWjvBVvR6pcUkvbb+GWadOXhopmryVnrA4530OKUNRAxtxHHTSOcfQCUwe6JmuFpwx2H1HlTX6L9Q21xte3HivSolcCGgam87rg9pMGNYal+GUbqg3OswNJud73t3rvpdXo1M+LRj9CJUWo6Uzz5iVD0g45Qvw+sa1sLxpLjSEDffiPBaaLopzThjNdJiNEC8XIMEh4/EvSE8LyPrZPy2XG5s0Z7ZPyrKn6QujHSqUUclS3T96OTy7mTGsby9FPhONR9ZoOhsrYg1rrEXIvvzCbcqZjjwrU2sjcQ8k3Fha5vzV2dM2W4cVy7NVRU0clWwCxLBfdzb78VTfRxleDMtVPBiEjmSxNcdNgeDgBxXsemdRjKh4yWH8CvuLOm6TpNbMcs41ddWYZBU4bTyincxp1luoG7tt12ZYrJY8GMlXIwAAkki1t1Lc0YbHTZQOD4XYzw6I7mzSNJ71A8GwSrp8Hq6XF6hzJHxkNHWh25K7KXVJXSy5NooqvTKM6KoRXHcasar6yvxeKPCgZxz6tur3ytebEKPLGXqeuxWml64hx0EhpNj6fFMvRrk1+GVTq+YtljJIaHOa4b2sbKzswZOos6YM2CocY3sB0gNbbcjv8FRX9/BVFGTwslrY2iXs01ho7ci5rwrMuGMdSyNZKD9iL2l2wHd4qXEkN0kafFeZspZDzXgWcYxhsz2UEc412q9F2CQX2HHYcF6ZsX31G/ivJdbs4W1VVISzGR6W3UlHS1wR3PmaWZRwp1U6J8psfMtybfn4KuG9NOEvwZ+Jy4fUGoaWjzor9rirVzRgNHmag8krWN07+8B4i3NRV/RTl1uDuom0dO43bcmnjubfEt/Sbmxo0v2rabfl2MqkZS4HnIebKfO+CsrxDJEe1s8tvs7TyS51xePLeESYi+N7msIZYEXN7967crZeo8tYUyioYmRi58xgbxN+S6scwilxygfQ10bJInDVZzQ4XHDiq2UqKvHNe5n8Mm2LlGJTWScYy1n3FZauuglgqQWlvWTNFybjgPQFcLI2wwNjgsGNb2Qd9gNl54xro2xrBM5iTLzjDRB4OmOYRi2nuHpJXoXDmTsw6mjqWtM4jbqcXXPAc1c9fhD2JU5txfbyIoT9p7DbV9VVNIqmanDhwCZMRhdIwsBaxjd9JG6lzoYpC5vVtEg56f4qGdJuJ/yfwR1XHCHvFx5pPBpPLwVbaV5Vpxowk/kWNGcactSW5G8Sw8SAkcFHq2gfCdxYnvBUh6Lcbfm+jqHVFNG3Q8Ddp+DfmnrGcJDi4uYAQLi1lfOu7eq6dQvrXqSqLkq2vYQ2w4jim5hHBSfFqB0L3bbEqI43U+QNLhGD8SvLaXjJaTuuaip0/FbN7W9u656rCIMQeHSvDbd5IXPg2Imua52mxBI4EJyj852rgumUdDw+Tljpu6OpbjhQxw09OIIdwDe97rpAJ4BctA0EmwT1T04LRdV1aWGWNOMKax5Dc4OA22KYcVxaPDauJtQ113EHiBzspm6mZbkuDE8v4filRC6qsCxg94DwN+amhNSeJcHNfOq6eq35+hYeUJoJMKp6qAEtdc3vfgSpnQVLTbtBVrg08VBRQUFG5xY24ta3E3U0wolxbfuXlOqUUpOaKOvSlp/a7Ml0b7i91s1t+EFxRmzAg8bqiktynjDlHcCDwS2XLFJvZdV9QWDaRDWAQgpFOU+CBGnUdxZZHVfiEIUS32MeNw5nwTngX2Y/wDXJNnM+CcsD+yn/rkrv0bSd3FnPc+4x/HAIPnfEgcAg+d8S+qlWeWPZMztpc/YFUP82Kd7iOZ+tsVqZS6VcIq4sPw9sEwkEDG3MjLXsB3qr/ZIxtl6RsvskjZJEah2prxcEdWzkrzy5lPLkeF4fU0+A4Wyo6mMmQUjA6+kHjbvQEvjeHMaRtfkslgGkOFgA0cLLNACEIQAtcg6y7RsQtiQgb8ieYQEIzf0iYZlWtjpa2N73ua03a9o4kjmfQvKHTVjUWa88SOwuGQvkebNuHE9lvd4L2bimWcCxapbJimDYdWygCz6imZIRb0kLzBn/DqHD+nrDaaiw+kpqXr5A5kMQaD9aHEBAc3RFJnLJ2IGafB6+XDS3U9zYNgNQJ3PoCtLE/ZA4PDLLTQ4dW+Uxu0kdZFtY77XVwU9LTPwuOHqI+pkjDXN0ixuN9l5q6cMl0mUseizJSYbTvoC2UzRNhaQXPIDeyBvx48lD4B3jpOz9iuH1UuE4FXsgDHEOfSNcPlBWrox6Rqh9VXQ5zqYaSp637HKBE64bvt4qy8Dz/lIZcD4NNPEGHXFHTab7C/Z5rzl0hy0edc6SNylSESGSQl5gMN978SO5VPVrWF3TVGe3xXJvoSaJr7ITAYMZwiPMdBK2WI6i4scTsxluW3JNGUOiOnzHgdLW0eKUzH6Gh7S+QkGwJBt4q0MsZSnq+jcYHjx0TObM3suEnnuNt/BVzDkDOeDY7JTZcxeujoHFztAr+qbe9hsNuACorOvGNH1WM94Z+83yTe5ozXkfG8gxRYlQYlTVEHaPVsY9ztrfC298ornHpOxDMlLT0Ia6ndHoDnyNbY6QWnh4qzK7o2zpi0nV4tjdaaT4HthrAB47E+gJ/wjoey9h7GOrWNq5tr9dAx++3O3etkb2yptOsk5Y5xkaZSWxSvRvSYxV5mY2lDpKVjiJ5gwlvmOtvy3UwzVnqrwTEDRyYbVvZ1bbPa1tiTfv8FduG5ewzCYrYZQUlK0+d1MTWa+69huo9mbBsOqn9ZVYdSSEW3dE1x2XJHrNGvcOCgtPng47i00Q1SRXOWMUlxqCapko54SHAN6wDcEX5J0ZTyPA+tv1eCfYKemghMdNBHEwW2Y0NXZQ0ZkfYBdUr1JZitjzdSx8afsjdhdJoP84aJGlpBDRYi4Uax/IOGV7pXU8b2SHgS88du5WrQ4OBYuA38F2vwaAO2a35Aqn7alRnmLx9S6pWFWNPTnY85u6OMdpmufQVlOG3NmmN7imLEpMwYA50ddC6W3vmQ2Bt4+K9XNw2JjfNHyBcmI5ZwvFIw2so6eQja74muJv4+Csrb0xnTmk3/Uyl0ZOOrSm/uPJTY8arQZI4XBp23iXNLlzEgHVLyAQdxoPNen6nKFLHC5lHTxMG/msa1QjHMAmptbS06SeR9K9N070kpXtVQrSa+pUXdW5sH7MFj5lHzNq6Z/WlzS1u5GnuXHT1pfVOlkadri2ytCrwGmlpZWlvb0n3oVaYnSeR4k6HTpjN97emy9LctNxlQllHRZdTp3aw+Rypq8VcEjWA6mgXHiuTDHzPq3tkIaBqtceldtHQNpWTPba7wO7km6KGobWOe5xDDf33pXTN1MxmvI7k45wdmMTlsJYyRhf8HnxWOFmVtM504sN+IstZojNWOffVvzPoTk1uuExEW2K306dWtJyInOK2yctNXxPlfHsLG17hdrDoN73CYq3DJGSaqc2POxsnegY/qbTuJd6TdZWdap4jpzRjUw+5ue7smQ7WTbJijXSFjmG3fsnE2LHMduCVyjD4S65aPkC23aq5SjwyIKKXIlLiDHy9VpNrX5LsIGnrC0i3euaGhijl1gDh3BdYOoaDwWVCNWNLFTkiSTe+6GmbEI6qURSsc0XtckD0Jwp4o2R6YjcDhYpuxChs7VGBddOFxytjBkJ4d65LepNVk3FfMynFSjpfA6U1ZM1uk7AciE9YZjZpnCw0O7zZR4nmEr3bAuF7Bdta3pVoOM4pr4nDOzjJYp+z8i8MtZ4JhEVWx07T9z0i2571M4MTwithDRLHG1w3a54vf4l5Vw/Ms1NWdUwuA24XCktDmCdsoOtwB34leBvvRGjdybs5uL8lhIxo3t/YNbakvNnoKXAaKqp3Ckc1wI+ESoxiGUWRNOiNwcTud7KNYHnOop3MDZpNPdqd6VP4c4UM+GVDqjeVkT3DsE3IbsvIXXSuo9NqaHuvmeksfSyLklXeJP5kCrcs6H8Qb7niueTKMVXTzU0g0xvbpJNxxXHgvSCMUzjNh0sIEWtwB0O4AXVzT4IwAGDtDucAFrubutZyjrbWcHr31enXhiLzlclOYPkahwTrOq3JvbtE8rc1rdhpYxrA3c3FlatVg976mtB9FkyVGFBsuotAt6Ej1SVSp7TN1lXhFaYdiCupRGA10bgmzFnsoIDOWO0jndT+romtNwxr9uYTZimE0+JUBgmjYy4ts0d67be5Wr9p3LN3snTfhbv4jJ0d41Hij5OqN3NB7NxewcBdWRSS8jxHFQbK+XaPLXWvprFzwRq0gHcg8vBSTD5pHlxue0b8Vy30IVHJwZWJ1alNzrLBMaSQagbixTvA/hZRmhk7DWniDdP1I8aQvL16ellVVpp7jq43tZCwiN2rNcjwcTWGCGm7TcEckIWW2NgzCzW8Wk+CyLxdrWscBdKhFjyIFPGwSRXEkQJB3QhgvUQ/jLps968MeZjN4iyWwfYGeAWZ2uVhB9hZ4BZuNm3K+w0nqgimfJXvToy+QK1x3Aa82H5N6p7oA6Q8Ny3lB0FVFKSGxA2e0ciOfirg6dAfc/rXBxHZftf/w3qvfYy5awXFclulxPBsOq3aIjqnp2PPmnvCzT3BdeVsfgzHhoq6Zrg0lwFyDwNuSerlrRsSuLC8No8LpRBhdJBTwgk6IowwC532C7Tq22HpUkGQNxdCBw2QgBCEIBvx/FYcFwuWuqQTFHa4BA4m3NedenLpHwvMeUIoKSGUHrH3Jew+8I5H0r0nXUdNXUzqesp4aiB1rxysDmnxBVE+yNyzgmD5HjlwrBsNppOsku6GnYw/YyeIHegPOuVMsZkklpsQwPD6ySMtDw5kZcCCAfoXpGi6aXZcwmlhzdg+IQ1zi5pa7q4zxJGxPwbKQex4ihd0c4ZIYmB/k0G4b/AOGF2dMWRaDNOV6+UUNM7FYoXOhkMbdWuwA7RFxsFD8wQCq6acbxnFmw5UwXEHsMWq3VRy73Pce6yjeI9I2bKTNVAczUsmH0b3P1vqKdsYAAHP5FIOhHNmX8ENVhWL0MFJisEr2CZtLuWBrR5/iDsufp5znljFqdtBT04ra0B4BfSFwB7B2d4BcV/CNWh4U47M2UvZexMscqMIzvlmrp6OpjmlZTOl7El+DLcvS5eecj5BpsbxzE6CorYaSoopuqY2Z7gXdm5tZT7oIyvmDCcUqavEdsOqKd0bWdfqA1PY4dnlsF39IXRlibMVqccypVSQy1EhleGTthsSQOW/C683bqlYynaQnvLGGde8tzkruhOrpKOWakxalE0bC9oJlN7C42UUg6SsYyfDVYHV/XntksJGRtAAaNPvt1OIMm9IFZQtM+PYgxzrtOnEzw+VdWXuhiDymSqzJUPralziSJyyYG433PpWUbu2htcvOPhkxSmnsUbRz4jWGnqqOsilq3EgwtBLhbhsvQGJY5X5YyNQVlRST1FQ5kAcyJoBF47nj3WUnwrIGWsIlbLDhtG2YbhwpWA/KAn+spKKsgbDXUsM0DQAGvjDhYbDYqqv8Aq1pVqxhCKcV8DfSVRZeSo8ndJFTmTGaWlOD18cBcQZXtZpA0k8R4K1H0T3kFrmhpbfcLOhwbBqAf9nYZRwEcOrp2s+gLtFwe1s3uCp+o3NKdb9jFJHTTqSS5GxtJITY6bDvbxUdxrImG4tqdPEbkWsHEfQpvYHccEaQtNK/r037E2vkzOU4y3aKNxHoXkjqjUYBWw0pdcls3WPNz4ehNmIYTnzKVLJOypp66KNpcRBSuJ23994r0K0AO4lJI2KWB8M8TJI3ixDm3BVpT67LCjVgpfF8miUW3mLwecIc7Zzx2aOhw2jkbUMZdznUwcBbiLBcWK5KzvmypYzF9MbWk2caZ7Bva/DwC9H0OG4XQSudRYfSwVDiSZI4Q11jxFwF3aj6Vul12FGeqjSj8yFGbXtSbPPFJ0f55wbD7U2KUDooT1ojFNIXGw4cFD85Z1x2tjbhGJx9RWUv1vrJIQ1pIIcduK9bk3FjuOYK89+yMy9M2eHE8NoKfSQ500jQA4kuaBwG6s+jdYpXt2o1qUU98PBz1KUop7jt0d9LeGiOhwuup5RVVEwgEmpjWjU4AG3FRvpVr8yxZphkpOxQPDiyQxXaW69t11dEPR3hGPUdBjj6iR0sNSSWFjbDq3jv3Uj6dct43iEOHjL7rQ08IjIbPouddxceCzzaRv/CgsyfOVwIzejDLDxHGqfCMuPfilbTwSPDgwvOm5B5fEqNyPi2Y6/pAqJ4IpJsL6yZokZFdpBkFt/BSHHcp4hmbJ+FYXX4m92NsllL2uqmkdq2ntE9wVh9GuUzlDL7aSrDZaglri64f70A7j0hV9SVt02lOTWqTfDXBMcyeGcWc+kTAsr4/DSVVO91Q55DnB7Bp7IO9/QVLsIxajxilZU0FRFIxwvpa4Eg2B5eKrrpe6M4syNqMXpCDV21gHSN+y3id+ATF0GZezLg+K1IxSaTyAMe1jPKdQ1XFjp8AtFa0oXdgq6m3KC4fBlBuMsF4vBkIaSAq76RukymynVU1LJTTSCSQNdpLOBaTz8FYlzEGvO5A5qJ5tyJhGaKuKprY2ExuDrGJrr2Fufiqjpc6FK4zcbLBtq5a2IHW9NWE4bUUL6XDqnrKhgcSHRczZW7QzRYlRsrY2uHXCxBPC2yhNd0UZeqZKQx0kAMLAPtdg4G/cp1BBFSQNpqYlrGcgLcV3dYuLSvTh4LzLu2jVTi4vggvSdn2kySIqeppZ5xURh1o3NBs4ub77wXP0cUWVsUgixjDIZWV7gHGJ04c4EXA2G3envP+SaLOFGZahjHVEMehhc1pO2ojc+kqo+iPKeaMGzi1j5pGUIczsip2tZ3LxKs7SFKp0+SpycZJPOO/wMWsS1HoB8TJB2xvwv3DuTbLgNJLUdeGXkve909HU4ABjBbZ3pPNK1hcQGbW48l5qjd16eYqTX3mfgRklIaHYYJHi+4PZNuQWmPBoqeZ72Fplv2RxuFDOlXpLkyhUxU1NStkc8tDiWO4EX4hTPJOOxZgy/S18sQjmdG07MPMX5rsnC8p0Y3Ens/ialQpLKSFfg4ZJrc9jpG7i19lrOX4hIZrt1uBJIvxKf2gdpzgDqFiTxRI3zdHm7cVy/aFWWyZHqME9kMUeDnqWnU0jmACkhwMRPe4Bt3tLSLb2KhXS50kT5MxGGnpaVj2vJB2dyaDy8VPsp4wcewGGtMeiRw32I96Dz8V3VneW1KFeW2r4mKs6bllbEAxLoewvEcdfib3fXXFxcOsfzFuCm8eB0jHl7WnrNAZcHbZP7LhgsBqPErB7GNa23G/Jc9bqFxUxqk8Y8zc7WDXAzjC2xtFze+9t12R0kUR16HHRuRfiu17Nmu4pdTXi1rX2JAXJ6y5yWWRG1jHdIrmq6U8Hpsye1T4pA8XYT1jOOrT4qwhEetc9vYZfzXcVXVb0SYZVZidikjyJHPMnmM+Fq8VZRLPeOc4Ek7hWHUJW8YR8F5fcmnGWcM1lnaW2wA4pEKoTcmdWMAhCFi2k8ARKkslUxfkZCOvocAsC3qwC3crZeyOKnUs7ohbGt416bjxWrqAeS6tPNIBstqlpkmjLW0th+wNmikaPQPoTieS4sG+1m+A+hd5X1vpj/20WUtV+2zXL9hk8D9C8fYhi1NgnshJK2qY9zI6qBx0uA4NHevYEv2GT8U/QvJBpKWv9kd5NXU8NRDJVwNcyVgcCNPcV34NZfeWulHCsdxCSjpaeZr44jIS57CCAQOR9KFJMNytl3D5jJQYHhtNMW6HSRUjGOIuLi4HeB8iEINXSIP/ANh8fI4ihm/YKpL2KALvb5zzwqx+wVdvSL/QXHvzGb9gqk/Yn+djv52P2CgPRjhd3H8XxUWzjkXBM3w6MYojK8WAd1r2cLn3pHepYEICoIehrJ+CNa8UBLu81Uxv8r/SpNR00dDSCnw9nVQA30+d6OJUhzILwMPdf+CZHe9t6F889Kqk/WNGdmWFsk4oS7Rp7JG27r7LJ7nFg0uAZffZI7d1kvK3JeSU3B6FwdrSEJDnNFtQtyQ0Oa1oadJJ4HdHDglT2cIYMWOeA4vab3tdZ6pCNnj5EnJCjSo8DSIXvGzjq+JL2TxbpPpQlHmlH5DGA4cFi95DeyCSsZJBG03WEc4cCs1BkZRtc5zABECCePNKzXzkAceVkjTfdBWLTXBGMijU3gsZGGTzgskIpOTTZGM8nBUU4jc06OsiPnNHzLz3mXDTlnpUiMEbo21XUxhveXG/NekwAA5ze074J3C8q5rx5+IdLFPPiBEcdPJC4Ddo7JtzPcvT+jTm6lTywzkuoJo24hVZhbn2WKOnnZTOkfxjaQfSpX0ndHmM5gmpZsNbLqa67g2LV70DvUgzPnbAsDw6lrvJqaokfGHFwja9wJNuRVW566VsQxh1M7Ci+AMcSRG17CdgOAcr+j61XnTjTXhxWctrOSvjSjjbkcsSzPX5JNBhVXG90ulgLSGtOx08x6FdNNmzBsNw6gqcVq4KSSbVZsr7HY+gKEZFxXLmcKGldjscTcRgY2O8rWNLrAEnt3JNynDpK6Mn5vmpZsLrJIaaNznBrZms4gDYaTzCr7yFvVn4V2tH/wAm9mddKn4e8OS0KSpgxGFk9I9j4nAEPbuDcX/imnHs2YJl+WOLFMSpYJXX2kcWnb4luyhhRwTBIKCSSR7owLuc652aBxt6FAOlnozqs3YlT1VLUvja0PuBMG8beg9y8/aW9pO80VJLQs752Z3JtItKmqIa6BtRRVDJYjzZuFtEZtcNKacq4S/BcHp6OSTW8P3Jffjb1KounDMGZqDHqaDCGPEADheNsm9ni19JstVt0yN7cSpxey4I1uG5eTb69T0jydRtzNwmzK81TNl2nlrGjrjqvcHv9KdTYhpHcuKtGFObgbYyzuzJhGk6mXeqO6U8+Y/g+aaWjo45REQwmzIztqI5j0K7031+D4dXyMfWUcEj2kWe6MF23pIXb026pW8nKuso1y52NeV6h9fgFHXztIllZqN/E92yas+1GF02XZHY41phu64c8s20nmPQpPHHHCxsEDQyJuwaBYBR7POW4s2ZddQukkjcXO3Y4NPmkcwe9YW86c7tTTwsmbeERjorqsBq6OrOX4WhgkHmyuf730+hSnEKQPYC4W8Uy9F2QWZIpKgdfLLreHWfI13vbcgFMapjXHtA2O2wW/qTo+tyqUpZRnQraVp4K6xzC2PBIF7eKrzMOHRyXaWX+Mq6sSo22dxsoZiuFMfqNh8yubC9UorUentK8alPw6nBT1RJTYUw3Aa4ngStlHMKuldM3hspPmfKUWI099bmODh5rgOF/QuSmweLDcGNM1xc6wFyQTx8F6aFeE4ppmVLxac3CivZRxYDiEVTK6BhBeztGx5XUnvphuFC8AwJ2H176t8ryHdm2q/O/cpLNL1kgsSGhc9zok1g7unqrOK8VdwkqHEkArWxssj76HPttsiJh64HiE5XDGggAeC1zSikkWU8weiK5OzBg1koLmFpB5lT3CZgLb8lX+GvElU3fa4Uzww2I3VJfw20soepQlNZlyS2GpBsLrrB1NTNGdhZb2TFgBuTuvOVFhlB4bHINsV0wOuSE2Nqtru+ZdNLURyOboLtzutUoJLJz1ISQ4IQbN3G/igADe/FaY4XBp3BCEKRLgOZ8E5YH9lP/XJNreJ8E7ZfG83ocPoV/wCjUf8AdI57r92PY4BB874kDgEHzviX1Eq0eXPZIf1kZd7Vv5w/4/rbF6Ty9f2iw4f/AG0e/wD5QvNfskP6yMu/nD/3bF6Wy/8A6Bw782j/AGQgO2wDh3rJIEqAEIQgBYnzuPxLJHNAYkE+abLyn0n3+qBw22zevk1n/wBJq9Wt5+K8p9J39oDDvy8n7pqA9SUQaKGFtxYsb9C14jh9LiNGaari66K4u25HA3HBbqQDyOn29436Fu2AKAqSp6DcmurnVjcOdqPH+dT99/hp2wXLWF5fn0YTTdVpuPPc/lb3xPJWBLux9u5RaXasl/GK8l6WVqkKcZQOu2eTW4Bzy+TsF2zb96yD5GtLQLk7g2HBId7X3shfPY5g3g72sIRuosALTfvSEX8526yJPekCh4mZQWFsJpNiCCe5MGPNAicHEcOHxKQOHZ1EnbkmjMzR5K54AAa0u324BdVnJxqJJHLfb0tyIxAnUxsbrE+cpfhNEI4w4hVdk/HTW55lw6W3V63gXvbYek2V0BojDQwE/FsrXq6dFxjjlZK/p9CLzIQABoDUpG6Qa9d7N4LU+Sw4qgUcrJcxznCN7gA3itTXAu3kaB3LilqeO65X1rQSL7raoZW6N8aM2x6a+PgxwPguSvo4KltpI9V+JuU3x1YvxXbDWC9tjfvTDhLVE11LbUmpLKIljeU4hFJLTQk7X2JPLxVM9IuEFtDIHQOY4SA6j4lem2SskAjfps42VM+yNlioMHiEEbQXlly1ve9w5L1/o712uqsaMu+3Y8xedDjGsq1DbG/dlHzPrH4dFJAHFu5JDQVvaJKrDbm4kBtw9ClGAQUEGW2gyMkeGnZ7mk8VEMQxWJjpRTtOzy2wbtxO+y+o29zCabqnLb1qk6jhJYXmaoTVYbCXyh2w+CAu3D69tRTvkkIFtXH0Juoq1s7AyfUfxh605yQQzUpjgs0kHzbDiF1W8858NndOLk8R4N1LNHNfQ4E+KVxjYbyOA8Vx4ZRPpi4OJNjzK6K+AzQ6QSDvwKsU6jhl8mjQu5sjmiluWEEA22K2AB3BcWH0XkzDrc43N9zdbK+ZzaZ/VDe3GymNRqGanKNehZOg9w4pSNtuKbMImmeXNlG1yb7pzU06sq0cm2SSewjR8LitGITOgpttuH0roSPaHizwHD0qascxwiNRwYVUGYdo3/8A1TkHNBOvgtbI2M8xrW+AWbw0ttveyxjTfhtSMWov3hujfR+WG2nVt74ruJvs3guGnwweVmXU623Nd92ebvssKEp01usI2yktOELFJLA7UxxNvQnzDMYcHFs4JYRY8BsmF5aGukubDktVFN18TnXINyNltm6bWiW+SurWUK0Wsblh5cGCUmKDEpDHqF7/AFxw4hWrlvpMwLMFS6np6mCOUAaW9ZqJN7dy84h56gsEjxw4Fc2XmHCq9lRFI9rmkHY8bG68d1n0Up9RkpR7fM32E6ljTk3ueosazfl2gqWU9ZiNK2oO2kyEG97Hl3p18jgrqeOanc10L72cCSO5eXsSw6TG8QbXSVMocXarCSw3N+avPImZI6XDoaSofq03FzvxcT3rw/WvRatYxUqSb+4tLf0gptpTePmOldhroibbC6j9bSfXw1xuLqyGGDEItbCy1u8f9c0w4thdnXA+Recp3miWmt2PW2l+ppNMgLmNaBYWGq1rroge6OUafNXXV0YGze/muINkZJbskBXEakJRzHuXUnGcNh8oJ9R1XT9STGw3UWpn8CNvBPNHLsN1W3NLlnDXhnclVK/UAutNVI/U21yu+nkdqt2bWt2lSzioMpqqwzchJY6w0kbcbJVri03lGrOQQhCyIBZQC9TF+MsVspPtyD8ZdnT1m5gviYVPdZKovsTPALM8AsWea3wS96+w01iKKfuV507Ae57W3F9n/u3qJ+xUdfIZDBY6IfoKlnTr/V9W+D/3b1E/Yo/0GP4kX7JUrlk9y7jc7hwA8EOcWt4XWaFJAAACw4IQhACEIQAeGypr2UNhkKOxt9ck/duVyqmvZQ/0Dj/KSfu3IB09jqLdGuFnvpYP3QVmOPbb2gGk8O9Vl7HP+rbC/wA2g/dBWg4A224KGCAZu6K8r5nqTU4hQHyk7a/KJW3FyeDXAcSUz0HRhlbLboPJMNc6Rt9/KJTa34zj3q17bJhxzaaI+P8ABUnpBVlC1cl2N9vvLA2stF2WOGjTbQBuPjWLWx6gGt2du4XQ4b/Esow0suTYr5ZmU2553LTThCay+SxdoA4XWLgHuOpw25rFz99gtMjn27Gm/p4KNHd7mLlp5Ol+ki0jgPSUgeGDdwLeS5auVsDQXPa4+g3XLNiUMcYLgSduS3QtXLeKNbuEh1bIXbtkHyJTIeBBcqv6Qs5VODClFIIe3q1XBuLW7iE/UmNSS0NPN1kZc8NvZ3eB6V3y6TUVNPBzevRjLDJdr34W9CXrFFJ8WcLantHgf+a5pswAWAcfi/8A1UR6bNxxg11Or0oPDJn1p8wNJJ3uljk3sXBpHeoM7MDRbtyXtyusP5QNvfVJ8hWxdKn5Gl9Ypt7Mnr5dt3g+AWPWhQZmOh7rB7wfStrcWJ/1nz/81Mulz8iV1Wn5kzMosufEIG4nQSUUsJdC8doeG4348lFhi1yGmQ7+n/mkxHG56DCqienc1xZbzyTxNuR9K1w6dUhNYRmuowmsJlUZJr8QynXZlwahp5esZRyTQAAHtvJI869+SkXQvmXNFfmKtpcdZK7D3SPMj3QxtbG4M2aSBe6hXRZjsEmd6iuxqQdvSxwuLECT+8e5WJmjpTwbLNYW4dQ05Et3ktguSb2udLgvXXrrSnOnTpuTaW/kboNOOUyNYn0a5lZn2LGA6Z1LE9j3SiHs2AseadMvdLlVNnE4IYX9XTB8L3XZuWODb8LqvZOlfFps0MrI3SGgLm64XCTTYD4OpXNk1uT8YlbiVG2NlfNCesDxG2z3AF1hx4larqhKlRhG7jqWlbrbHzEZtcEqdnPAI8xNwwVdP5bI/R1XWHVfTq4W7lIGm7dQe1jR2zt73vVL1PRRiNRn1uNiscIBLrNpxe3V6dhbvVxiL+Z+TanaTD1Wo+dqtbj3Ly3UaFpRUJW8ve53OuLbWRlfnTABjBw44rSeUAkFms32F+5SEBukHUHtPC3NUpL0R4g7PM2LMrHdS57nBpnHNtuGlXNU6oaSYR2dJHFdo4i9lj1C0toOmqUstpZ+BMZPubbOB7MTlhG0M1BzDqdtxXnmmzPms9KVTSyRyCiE04aAyXTYXtzsvQrnnTGT5x4rX1DpkrNxWpPO4hPULZpku46SBwKHvABkibplaRb41i5zW7k3K5n1duAHyLlp6Y1MtZNrpuRSOFdJuYqnPTsOfFKKcyuj+xx/ddPdfgr4c5wuxu0x4jmo8+hw6Kp8qZQUjZvhiIA3ve9/FdT67UwvcbO7xxVj1CrRu9EacdKS8zKnbTjlkV6UcRyfC+BmZoYnzhzS3VUPjINtuClGU6jDZsApX4FpbTdW2wa8v5bbn0KvekrI0Gba2KTyidvV6HbSNHAW5gqUZUoosAwaCghlke5jGi73A8BblZdNejRlY0qcZbpsiFtLVwTMPY7tPFyOd1iXxuBbcHe/FR1tbK7sOLQRwseKjlRnFlLm6LC3EHXTveTa9iCBa91WUrCVebp4N0qHhrLZKceyrgWYJGPxOk617Cf9a9vEegjuTVieecvZVrafButhhuGaWulPvjpHG/cu91dIzSGuFx3niq3zd0fRZhzJDiktTUMMTY+y2RoHZcXcC096tOn0VVfgXksRXHY1ztJR3j3LarMewuhwZuJT1cLKdzdQcXG3G3FY4Bj+E43AZcNqoZ4rkB0byRcGxCgOcMunGspU+F09RLG6OPTtIG37QPd6Fh0XZVkyrh5ZU1Mj5CXHSZA4buB7h3LVKwoK3nOMvaUuPgY+DVUtOC1g4kkN3Cza4kBoOnvTMKnYuDrei63trnkEODR3EKocEvdM50pIcXPa47727KQNt2WOFm8QuOOcaTrt37Lpika5h0uHpud1rjFZyYyg0jYhYXsbhZX1DuU5xsjHAqEnaGkG3HksnDtixHDmnsr3gIhI8OAA7PiEPcGtAdz5hRw8kAUmqy1P03OlzrjvKwJB891vjWag5cGuc1E6Nd9kgd2VwTVsUIILiR3jcrndicdjov8AGFup205yTwaHdxisZJ3gxvTN8B9CcCm3AXiTC6V/N0TT8ycivrNhHRbxTOCctTyjXL9hk8D9C8m0Fm+yZbdhu6sp7Ov/AHV6ym+wyeB+heTqL+0xH+e0/wCyu4g9ZMDubgdu5CybwCEII90i/wBBce/MZv2CqT9if52Ofnf+4VdnSL/QXHvzGb9gqk/Yn+djn53/ALhQHo8IQEIBsx9t6QnuBUfG4CkmNAGiffuUbbsNl879LUlXTZYWm6wB84pUDi5C8ljDR28iJUiVTh5yg2CELG5UKWXuFlmSAbFIEhvcWUT2eSHng4MQeS6wWiAljgtlU5vlDwA7Ztx4rRrJt2SD4KwjH2StlUkp4HmLdl0A3JWNMbxLIA6lyP3tLLGm8oVKgg2FiLpHAtAvZa23GWlGT3FYRFM1+jSDe778VUOdehqmzJjsldDXAEtadPk+rh6dYVvNbe5ab370NaS7YhvjsrCyvatnNyo/fk1TgpLc8g410dZgjxybCKWmfPTtkIaQGtuGnuv/ABV2ZV6JcEhw2GfEqOPy9pJMZBvsdtw5Wg6KPXqMcRcPfBov8qyd2nBx4juXfd+kNe5pxjH2ceWU/wCprjbxW6Kmzr0PYRW0flWDtjoMRYQ4FsRkLgLkjdwG5so9l3pSqssYXPheZaQjE6dgEeucAucTc7BpA2KvqwJu4XVZ9KnRlSZmpZ62j1MrnC+7iBfYcgeQW7pvUYXOLe/WV2fL/ETpuKzAcujDpAiztBNeAQTRuf8A63WS1tv7o71NZamGCnknlmEcMdr7X4rzlkTMWIdFz5KHF8LqJ6cyOPWU1NqO5A3c4t2s0q46THsJz3l2aGgqWRSzhv1p8jWyDe9iGk9yjqPSY067nT/d52x2EKjW0uTuwLN2B45WSU1DUMfMwX2v327k/wA1LHO5vlMZfoFgdRCqXo06LKrKOOVOIV9bC9jm7aJnkDtat9TQrajnilLjBNHKL+8dqXB1Cl6nWzaylj9eRmt+TIkgaQLMHAJBzsk4nw5JWuubWIsq5vU1I2YeNhUfFdcuLYhS4RQPrK5+mFg1EggbfGuDLuZsMzCx5wuXXoJaQXNPC1+BPeslbzqRdVLZEZXA7ODzYgWuodmnpFwXLmL0+HTdWJpXMbu8i2r/AMpU1jtHJclVfn7osgzHmGDFBMQWuZrAlcOy3uAB3XZ0yNBzfj7LHYxq6n7pY1HUxYnRwVMLwY5Ghw5re5/AFt+7dcmBYeMNwanomE9VAwMaXG7rDvK6QBcHe4XBOMXUel7MzprKzLkbsSh1A22UYrqY2IUxqInPvpHpN1A8dzRhOHYuaCqlImLtI7TeNr8yrKy18QWcFhQrqHI012HyPDtPHwUOxeMUkpFQ+3xK5Y6Bj4Ypmua6ORocLG+xF1VPS3kzEsVqo3YO9jQQ6+ou9HwQVf8ATbmNap4ecFlHqzowzFZNFNhcktOJiS6Imw25rlq4OpB1bAKc5XwebD8uR01aWuna9zja55DvC4cy4DJiGGSCls2e4te4HH0Bbo3VPxtEmdsOrSlFtLBD8OcKtx8ndfRudluxOR9LAXyCwC0dH2VcTwapqZcSfGWaeALvhX5gJ+zHRx4nRSQAhndc2XbWnGNZLOxnR6jOtHxEt1sNmTKyPFJtMR7Vx6e9WRRxlhaDyVP5Eo4crYo41VZBcltgZb8LnnbvVyUzutZHJGQQ+xv6Cq3rCxVjhbM4XWqVYvxGsjtE27AlDtw2291lCN2NFiDxThFTMDbuBXmK3szaZXznh7jbI4sjkc4dlpTHlnOmF1uJsoGlrZg4cyb3PgpkyibPDLHcN1n3xVTYb0PVdHnOHE3VjOoZJG9oZM+9wd79m1lY9Phb1KcvG5RxVa3Yuq1gLcDuFkW3YwnksIvrTYoQdWhliePBK46nWPveCo5RSqPHBpWpioQhYLbkPyBvE+Cdsv8A+u/GH0JoaTc+Cd8vf6/8YfQvSejG92kc137mB7HAIPnfEjgd7W5JDfivppWHl32SH9ZGXfzh/wC7YvSuX/8AQOHfm0f7IXmn2R9z0jZdcOBqH/u2L0rl43wHDvzaP9kIDvCVCEAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP+I36FtdwK1Uf2nT/iN+hbe9CGa3j627wUWqNqyb8cqWPHYPgonV/blR6HleT9LW1ar5o67PnBqulSWulXzqX8RZyxwIgIshFlLKMeFhDDnDEa/CcOdW0FC6rEQu8CQMtcgcbHvVe1Gb8ZzPg1S2LDn08zGyDSJg/gLDfSFb5AJGpusdxFwfEKs8+0tFS5lw+popBS1D5oWTMkcGMMd+TRzKvumzptKOn2vM57ik5x0siOX8s40GuxWmp5DiEZA0AC51Dfe9vmUkxXpIxmgqIKFuEPMjn2LjUgcR3aU3YxUQ1uLupKaWogcS768ZNEO3pB+TZdPRVhjJaAV0rm1NXvqJOtoAdtxVveTjOHi1op42Fra+FDTksjB8SnqcJhqamIxyyMa4tLr8Rc72WM1TsufRIJDI4bbgNaNhf0LCWNw4grysknLK4LWnRSRoqKg3K4nPLnErfPTvO7SLLSWOawbLtpxgnsdcFhYBshC3R1Tmjbiua4I3WDpRGOIv6Vs8JN5wZunjZDq6tIDHN4g3UT6QsBZm2ljgkn6iwHb0a+BJ4XHenGSrHBrJC7vtstDp7G5J1LdQpOhUVWHKMPVI1MxfcpnOHRvWZfo6V2DP8ukkLwQ2MR8LW4uPeVry/wBHWIMYanF6d0LXNJs4A3JseR8VfmDV7GuAlbG8DhraHfSpSzyWupzE9rNJHIAcv+atX6Q17bHiJY+/8yg6h0nSnGnseUcay5FC9xiYB8Xh6VG2sloagO96CF6VznlIBj5aRrTEN97k8R6FUOYMADmPsLOF+/0+hfRuk9Ut+p0oxobS+h4uncVbKo6Ny3jz5IhFipknLe896ctzumOegmoajUAHDfYXJXfTYiyd+hwLXemwV1Qr6PYnnOS3cVJZi9jdLWRxu0P87xW86Hxi3NNtRQukqQ9pu3xPenBjToDdTLj0ropOTlLxMYfBjhLky0BgsB6UIN79rj6ELqxpj7KMJS7AhHAXK0eVxdd1e9/iWGvEdTI0M3rCaaOGMufZbCLeC0VsAqYwx17ehYzlOUWo4MsJ8mNJXNlYS0beKwqauOncLtBvvxsihpzTM0NA0+nddErI3gte0nbiAsG6ip4fJLUXwcdRVNniaI2izhvusIWuo5yeMZbfu3WUX1uTqhp6vhuN1uxCqZHEGs0knY3sdlzak465coadsIBVxyOs0C/iunVGW3OxXHh0MTg6QHe/eucyyziVjtIOns223WSryhT35Zm4cYHqkq5GeY82HJPGGY2L2kIBHpv/AAUPwqmmikLnuBBvxJTm6xOkc+5bNEa8EqqyV1zYUq2c7fIunJ+Y2wFkcs/nG4FuW3oVjUmM0lRViGRwIvbn6l46Laxte2WKWQNaR793I3VjYNjl2hzpZBPx87a/yr571D0O9aqOpTWF935GTva3TYRw8r72WNmXMmB02LMoRKzrnkd/O/oXZFRxvY2VjgWvFxsqepMqxTZmhxOvr2R0wc0/XJyDcOvzFuF1fmEx0VdQRNw2phqGxtDbxyB30LyvV7RdOUYLOx7fpHWVd01J7EbaNI0gcCuymfYhdeM0XUEBgt4+CbqY6ZLSfMuGM41abZfRcalNuLJZQFxj7PHkuHMma8Ly++KOvkYx7tJ3J5/Ee5d2FkhoItYKG9KfRxU5vrKWoo6mKJzQwO1yOaLAkng0964bKlSlX0V+5R3NRLcsLB8SpcWw+KuoXBzJhqFvEj+C7UyZNwY5ay5R4W+WOWWBmi7XF3vieYB5p7XDcQhGtLw+DStwQhC0k4BbKT7cg/GWtbKP7epx3vXd0ze6h8zXV2gyVs80eCXvSR+aPBF+9fXoyTimU72ZXvTt/V9WeD/3b1E/Yo/0GP4kX7JUs6dtuj6s8H/u3qJexScBkV55BkP7JWXG5JeSEIUkAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/NoP3QVoqrvY5/1bYX+bQfugrQCNZQAJjx8WfEfH+CfUyY+BeH/zfwVN15Zsai+ButniaGg8CfQud1zpA4Le42BA7loLgxmp3BfLKNPKSZZ1JaVkwmlZAwk8bJmqcSJcQBt4rTXVTppHC/YATJW1wjY5sdtV+aubazb3aKS9vHTOquqnQ075i3W8C4HBVzVZ8xGPEHQOoXFuotaeuHfYe9T3XVTWHrJnuPoDtlGMxyxVlO4vDYwBs4ANN97br0dlZR/7RPP1esKDw3+vqZVlFXYzWVbsYgcxrSOr1WPIX4WXA3GsQwemdHJTuexrjp7Qbty5ehceG4uynwmkgqHySkNILo3XvuTxJWgujrMXjc956sBtm33Jv3K7hZpv2lsclW8q63kf8HzPVYg767RFrTwPWg/wTpNiEjT2Irf+b/kuIxEkhrGtbysLFLDE8Eg77c1vh0vVLKj+voUN1fTqTeGdAxCY8Lj40eXzd5WpsBu7xQYXLoj0acuIr9fcc3rlTzNnthJ78ah3XW5mKNA+xD/F/wAlydSRxCxML+4LCfS3HmJmr2ou52nFBqBEY4/C/wCS7pK1tZRthdJoEg7Q4pgDZGu3aPkQ1jhI5zja54ArhnYLOMY/qdFPqNWG+SO1nR/GyOtrKaoBcI3OaOp5i546lHsJypiuJ4gPKInPhiuwbDhx71ZFPUSQu0tNweTt07UlVHcFwa1390AKJVq0aWGl8+5d2vXG8QfP6+J3UnR5l6BjHugjeHkhzdLhsPjUdzZ0djBmDHMplsM0cjQ6njiHaaSXOdqJ9A5KX4VWvgJZfUx23a3Ugpp22L+y5jmmNwdvxXnK1zXovU3qXk22sfI9DaXfiPDK7k6dI6LBqSOopB5dG13Wt8o3Jube87iFb2U8wwZiwSPEImBmo6OrD9ViADe9h3ql+kforFdG/Esv6XSkaix5LhyaNmtPpXXkjpOkyzSRYRj+F1UQa/T1rKZrWb2bxc4dxPBY9Q6bb3dBTtFus7PC/AvadV43LlxvHMOwSiFRilW2NhFwHNPfbl4rLL2M0GOUnlGEyNkbc3Lb8j6VCc9YJTdJeWoxg2IU+sMtbrrWu4HfSD8Eru6NMqnJOB+TV9XFqe5wuZSQbm/vgO5Uc7GnStNbb8TOPu/qblJyexMzT0/XukdF9eJJLtRWFRL1Vy43KOsaYi+Nwe3k4G6a6h9iHXJ3XDOVSbSqNvHmdlGkm9jbJLe5J4rkkqWtK0Sza7gGx9KjmYMxYfgYaK6Qh7r2s5ttrd5Heui1t5SljGcnbpjHZkgnqdRtw2XFJVNY1xk3YO9NUOJxV9MJ4HgxnhYju9C0zzsdA6NpIce8qxhaqPsyW51xovTlDbQ9IGGVWKCgaWNlLg0dsm5Jt3J3xPGI8OYaiVoLOV3W/gq4oclwYdjYxF0rnWc1zQJCe0DffbgpgayPQQ4B3ocAQrK4taDkvDWwt6NV51JHJT9INDUvkNNo1sAdYSf8lG5oJaoTY80XqW1eho/uOJcd/wDkjMVJFhlZDWYeIxM91i1wBabDbYJ5p8cgbSMdM6n6/qt2NDQ29t9vFdyoxpr9lHn4bmKs5Tm1Uf4nXPn2ipiDXhjXnkX/APJPmEZhjxKESRygAmwA3229HpVXYfV0+L4xKcQMTixw0MisCbjfZd2bcdfTVNHDRxkNBi1aGgdm9jwWNTp0Jxj/ABGuEsQdTlItCOviFUYpn2eDYbFdDawvs5/fZUNi1DitbjorqaWTqLuIAe/mPRsrbo6t7o2atLQ0DZ3HguO76dGlFSg+TZa67hNtJElFZDG3XPJoaPRddFNWCdjZIpNUZNm7WVVdI9BiGLUFsOlDHXbeznD31+SdejSlrcMwCOOulDpAX8XOPvyea01umU4W7qJ7miWVU0NE8xfMVBgkTX4k9oDrW1X57ch6F3YPitBitOKvDpGlgF7AHw5+BVc9IOWZ81UcbYJ2Rlmm+p7mjYkngD3pw6NjRYFh7cKNfTyVJAaWibUeJPPfmuOtY0laqcM5z5HPVg4z0yLSp5w8WK6AbbhNEDgWh0ZunGCYdWC8E/iqjcNMsmqccbnTHI119G5C58SraXD6U1Ne4MYLcfSulhLt22DbfGmjNmE/ygweSiieI33G7nEcDfldLaEJV0qvBzSNWW804RmQSjDJmPDGh3ZvzNuYCdJnamaW7kEBVp0SdGtXkyoqJquqZK97Gtdole5uzidgWjvVjSSNHWl2w1Fd97RpU6zp03lI53NpbiVMggaXHiUw1Vc6Z5ANgtdTUOfI90juxysUxV1edZbERZdlpZ6luinvb1Q7ndVVbIAS8h3o4JvqcUdpZ1TbXdbY/wDJMtdWMZdznEv7rppqax8rmNBsAbiyvbfp6ysI8zX6tGM0ss9KZPe9+XsNe/i6nYfmT2VHOj5l8oYQ8k6zSx33/uqRONhfkF66MMRUUelt8ypp+ZhJ9hk8D9C8n0X9phn57T/sr1hKR1Eh/un6F5PoBf2TAvyrKf8AZWz4G9HrRvmjwQhvAeCEII90i/0Fx78xm/YKpP2J/nY5+d/7hV2dIv8AQXHvzGb9gqk/Yn+djn53/uFAejwhAQgODG2k0T7dyjY2G6lWIt1Ukg7wou7tONtrFfP/AEvj+1gyws+5iOLkqUcHJF4/mSO1cAhCAL+g93NZLGdzEEIvY2d2fFChxUnmJPHAIBs4ISE2CSz2ISecsacwTw4XTOq536W2O9u4X5Jly5j1Njkzm08uvSbWsRyvzW3pQy7VZhy06loJQybt7kE8WkclF+hjIdZlVk0uJS9bKXCxAcB5tjsVe26tvU3Kcvb323OOdPMi0YRpbZbBYbpD6EKgjunk7ILCEcdTNTOKQyMZNomc0EsuLlK47tDt2nuVGdPmGY+3EYavBmTvi6tjS2ONzzftE8PiVh0+3V7VVHVpInLBddNWQ1Ms1PSuDpoSGvA238VvLuzaRul3yryDlDPuPZSxCd9THIJC4aoZIRr4EcHeKvPKHTDg+PFlNXPZSVJ4maRjBxA4Kyv/AEdr0Pbi8r5f5Ncaq7lmNLSBp+NKtcM0U1KyaCRksRALXsNw4d4K2EjTcEHwXnZZhLD2ZvTTDfkhz3XDY9vBYm+1vlSuJLgW2CSj7SZLWTjxbBcOxWCSLEMPgnL2lup4va4tfj6VR2cuj3Fsl13t5kqaWMNu+SGFzIgCbNAuTc8Sr+HnXKQsZJeOUB8b+IVtYdVqWklDGYPn9YNMqaaZUtLnapznkesZgtTIMXijlD2AlhIDbDtOAHFc/QXT5upKuodmYzOgc67A+dkgA0n4J70y5p6P8dy3jcuL5PDg0tBdGYXTXsS47cONlKui3pHlxGrkwrM/VUFew6SJ42QayG7kN48V6OvKm7Obs46s/h9TTFuL9otINHWGQeal96TbiUAOaSxwIFtiRxRqcBYtJHCwC8KlyorPn8zqTyR3P2Xn5lyxUUEUjmvkjc3a3Mjv8FGuiHo8myUKl9VM5/WF9gQ3np7ie5WO4BvDifSuerq6Ogj14jVwU4JsDLIGA/KrSldXCoO2g9n22NbW+ToaGvJ1gEIYWtuGuPhZaaarhqIGzUU8U8The8bg4fKuh3H4rqu0yXsNboz5MNTibJey3ikLgzc735JDbUC8ED07Inj9pJ7mSM2uFyDtcWVNZ56JqjHc4e2cUzmxh+o20fBA5m6uR9nWtwSSAuLrGwK67G9r2bco8P5GMoqXIyNpPa+gpaUSF4iiYwkjmG2/gm+rfK1wdFcjxsn6albpIud9+K5PJTYhvD0pCv7Tm+TtoTjCKQwu61zy999xa11r6zqzdqdZYS02LT8i0SU7CL6SuiFxH3sbnZGpFjFWh89w29jxF+KrvMWZ6fDsU8hFHHJLpJ3vyJHcrUfDHexBAPO6qHGHHBOkuGSodEYZYnluoD3ziBxXoOm6ajxNZ7mU686cf2exAcxGoxDG4pnxeTwB3a0m+2kL0bl+aJ+E0jYX6i2Fg4W96EyZmwlmN0UtO+INfI3S2VrdLd7dyr7KmK1uVMwuoMdd1cD79XK9uhti4AC548CrK5f2nb6Ftp7c/kcHhu2l4k92+5fVA821O30p4ppuui2HNMGHzRzQdbDKySN27XNNw7wKd6STqyGjzu5eHlTcJODNlXD3R3CWMdk9l3fZZtMzyWtmfZYcbFxF+5dUbdgXCx7ua5dbTaRyyS7mMTDHu4lzj3rYQAQSdyi4Dr2S6QSXO48lgt3lmlt52BCEKH3JfIcHHwTxl4dmb8YfQmd3G6esv7RynvI+hek9Fv8Am/cc137o7Gx48t0jiQ658y261V1VBQ0slTVzRwU8TS98kjg1rQOZJ4Kv809KmW6LCql1Hi1BWS7xNjgqY3OubgbX8F9MKwpHp5xeDEelfC6Ondq8lnudiPOjb3r1Nl/bAsO/No/2QvDWJUmINzfg2L4pHJG+vmIDHsLXN0NtuCvc2Af6Cw4//bR/shAd6EXQgBCEIARzKEcygEbz8V5T6Tv7QOHfl5P3QXqxvPxXlPpO/tA4d+Xk/dBAep6P7Tp/xG/Qt3etNH9p0/4jfoW7vQCP8w+CiVX9uVP5QqWPN2kKKVrdNZUel5XlPS1ZtF80dVr7xpCVIEq+dPhlk+QQjxNkGwKQylhBoxeRoI1lhPAgKvcx5Jrsx5yFTWTPbQwxRPG7XAlpN9r34Kw3WI0u3YfOA4pTd5A1N0jkOK6rW4la5zyYv2iO1GUMFmw5tG6nhicAAagR3dcehMfR9lLEsr1dXA+R76J0bQ27m2vqudgVPJAHuDXg6BwA2KyudPb3PoW1X83CUHwyGmmanQsHDhbU5MMmPYI/EPI21d5SQ0Dqnd1+5P8AKzraeaMA3exzR8YsqFw7okxaDPLK6SrvTtla4t+uXtost3Tra3rU5yrSw+3JLrSTLkkpWjtMcSwi42XFPELWsniCiEUMUYDuwwAkk8ly1sIu4tIsVxwmo+ymdtGrn3iPVEegEptmeHNc51uybXTpXGzTdQvOkE1XglRHREipLmlpFzsHAnYehX1lFV8RZZQmnDXgd6mujhYGCWz3bCyba6rMTQTIS9wuPBULU1eNUEzHVTJ2ujdqu6MgfOpXhufI3NhZXea1gafNbur+PSNKyt/18zTa9SpueKqwWTRV7i/zipfgmIu2DnH/AKsqywrEaaqJdTTRyW961wJUwwycN0gbki5A48lV39rtjBbXFKFaGqmWVTSMq6cxSHUx3eq9zrlZ0JfPAPrdrm1hyJUpwWqBsNw3/wDVPtXAyug6s+aRb5lTWV7X6bcak9vu/wAnhet9KjdRx3/XxPL2OYd5O8yluvVvY8lFqnDmyPMsQDHDkFeuc8vGjqJHtY50ZJIsCbC6qzF6F8U3WAdnuAX3PpfUqHVqKcOcfryPFWt1Ozq+q1iK0dbNTvkgnJ1XOkk32WOisdWh7XO6u/wh3LvxClE9pGECQCyb4amopH2mF2/i2WTjUo1NMuD0CjGSwPQvoGrzrIWMMrZ4tbSL8LJWm57lbU9Uo+zwc+G3lg4XaR3ptZh7vLesPC57k6AbG+3ikc4mO9wPFRVoRqxzngyyKTdwbyQTpJWtsrHDS1wLvQVmOG/FTFxayjFhrBQ94bGeyC5GyN+42SSk1hEobooZZJyTcC/escToCYrxklydB4EJCANwCe9aHZRnBqT5Mk8DPQdbDGWOJvtzXW6ncxokHI3WFQ9oqdiOeyzlq3PjewMcNuJGy54U4RWnyM9Rr8om12F7eK7ortZrctOHaZI9LvOHNb/Ou3gF127zHJqmZFwbGSBxK1yTCjhEwNnEXWduzpvZcGMxOliaGGwAPH4lnWlKnTejYNQm9EkLiWN1mIUHk72kxg316r8iOHxq2PY84vT4ZTSwTTkvJaLFp5MPcFV2GytfTANA0A2NwtFU+fDqnyujJIvctbud9l5bq3SJ9Rt5Nvf9fEinOVtLEOD2LW08NfTGWOxfueChtbTOjqTfYAqP9G2foauGniqXtaS7SWktBHatcpy6SMyUdBX0MUUjJDURCS7HA6e2RYr5Sum17So6Ulsen6R1WEn4c3uSfDJnjS0E/Kn6GVwZtI4FMmCRai3tscGndw4HwT0CQTpBAHMhU9w4am1yngsLnE37JlTaXTay8ukvzC7FxQFpl19y7GnUueSaZzSjpYqEhO6VYMxBbaP7fpvx1qW2jF62A9zuHeu/pKzeU18TVW9xkqj8z4kWva6xjf2O0CLd6j2LZ3y3hNZ5NX43hsEzTZ7ZKpjSzhxBO3FfXIrEEU0uSJeyHxKGgyBK2V3alkcwCx5xP7vBMXsU2AZEcTwcyE/+0qtem7HqjP1U9uDO1YZSNEzpmgPY7QHNIDm+hysz2KxvkuZo8xoiDfDSVm+CWXchCFJAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wz82g/dBWiqu9jn/Vthf5tB+6CtFAKmTHxvF/5v4J7TPj2zY3d1/4Ko60s2dT5M20PfQxO4nwTZi02inDQdyP4pyk3BPoUexeYdaxljsCCV80tYamkdN5UUYbjHWVPUQPBPaIKi9VMQHvc43JTjjE2ufbzW2Ki2IzmWpAYdLACDfxXsun0Vjc8N1a8VPKRzzyvqWfXCbelNuNUz6ykbDT7XLQbbePFd9g7sggrppohHu7h6V6yysnPhHlVWdOWt7jThWXqakpOpna2VzRYOc30rnxHAPI6yCqgkOgOYS0ADgbp5q8Qjia5ke9+dwUzVNU1zSZHF3MAFest+l0ofr/ACdVKvc1Jtyf9B4kxFgAOkX58U31eOsgcN7XPpTS+sJAtsByKYMZo5a6RrmStaAb7+C66kXSXsI67TpkKsm5k2bi8kzWuicbEd6X2yn7z/iUSw1hpacRueCbDe/oXX14+EPlW2i8wUpLc3PpHttR4/XxJG3E5g4aiSPFdUeJh0oBG3xqJiY37Lxf0rdDOQ8ucdXgtjUGm8HNU6Yk9LJi3EKNxIc4XAvwKRjPK266c3HyKo8WNbFVPewu0O22adt114DmqfCWtZIDIwbXaB/FedruHiYaOiXo9J03Ok8v5f5LJkBa6zxYrG7r3BO2y58Nx+gxWNgD2tlcbWLxfu4Lse0xO728iFUXdgktUeClqRqUZ+2sMdcOq+s2J3CkuDVTXOMMrQ5pud1Bus6qVrmHa6fqGVjurls7Vs3Yryt5QjLnhF10u7epKT3LHwOYwzmNjj1ZNtI4LHMmUMGzHSy09dRU+otLhIWaiDYjv9K4cLewOidfj6fFSyJzCQHcC3vXjLmrWtq3jRe67H0Sxlrp7nnfEMOx7oixN2IUFRPJgDyXlge1rbDst7Iu7i4p+6S8Yx3NuB4dXZOqJpGGfS5rJRFpswgnt2PFXDjOEUuMUElHXM62NxFg02sAbqgJcAzj0c1U8+Exmow3STIzyR0pDb6ju4bcOK9D0+9oX2mrWX7Rdn3/AAwb3Fp7cFo9HRxemyrTxY9rNV1ceovkDzfTvuPSnepm007mDd9jZR/IedKfNeFsjkliir42ta+AlrXght3DSOFk6VEgAc5u5G9lR3VH/dS8aOGXFlCLj7PJy1chs0sNjYXVc9JmV5MymF0UhDm6+7mG9/gpxPLu5znADuPFNNRNa8gB09ysrCMreWpclrG28ZaJjdglAcFwqOlkkLnCx3t3Du8ETT676XELjrcSpmvtLVQh/JheAU21FUXn60eyefJWEqMpy1y7lta21OOIKXundPWSC4fK5wHIrjkqtXAm65H9njdxO1wtbiGlu4Gy6tCijvapxecbDbjzcQra2mjge8dviHAW29KH4L1kTmiZ3lgFibC/p34cV3zzMBcXPa4EcjutMlVGzSWNedgON11KtUSxFFc7ajKUpSjkhlNQ1eF48HmR4k1i5uPgqV0dJU1T531JL3dQ7QXOBsbbLXj9TTuwuQzDtFu1jYjcLmosXip6CNoa+R/WcWm407bLolKUktSK23oUrSco8I6I8XxLCqKGEl7pA3hr7vBP2AYnXVLOsry5rztYu1bXUYp5YKnF3vl4PcSxuqxAtzUkLjcahv6BZcdxGPkd1lTVaTqRntnGMEnhqixttRLSu6OotTmXiyG73D0KJU9RosHAkJy6zraSeNh7T2WAvuVX1KD1xa4Z03NvoTkuxw1XSC4zVFLh9K1zwHMJDnDfh3KD5HEsee6efFnuidI9um/a4NN+HxKQdHdaKPMVdTTmISOkkcGvaL22HNSvO+XH49Ra8OZ1WIwAlgDT2i6w2aOPBd+qlbt0GtpLH1PHVaFWtLxs8f2LPoTpgZ1L9TCBvw5J4o3APDBvdUX0VZwlpcQfg2OPEE7Q4DrQI72c1osDv3q28cxNuEYPPX3AEekgm1nXcBtfxXjrywq29V0+U+DLxVOOWShm47PZHoQ4NYdRNr8wmLJWNfygwQVzRdpkfHYWuNJ47J9k3Z2HtNuXEqpqwlTbpy5RyZTeBHm4AbK4sKZcal0M6uM7ninWdrSeBBbud1GsSm1yvLdgy435rqtoupJZOK8moRGXEpuqhDA46jxUYqqjqg4lxvuu/EagSSSSm4HEBRetlMsuxsAvb2VusI+edVvHlpGE8jpnFxJssom6pYgObgEjBq2AK76KNjKimc8i3WDa69Ta9Pc1rSPOKblNZ8z0XkNhZlPCmnlTRj5k+yOsWjkTZNeVSDlzDizgYGW+RZY7jWHYJRmoxeupqOGxs+eURg2G9iVsaw8H1C22pxXwOyvkZDRzPebNaxx+QFeQcoYozGfZCU9dCbxzVdOQd+70q2eljpPw2XARRZbqocTqpy0aaOVkxAJLSbA322KpTonwiowPphwygrTeohq4WuNiPmKwOhHthg7I8EJGXsPBCEEf6Rf6C49+YzfsFUn7E/zsc/O/9wq7OkX+guPfmM37BVJ+xP8AOxz87/3CgPR4QgIQGiu+1n+CirfPd4lSqtF6Z/gor5r3X23K8L6YJZgzvs+4g5oQOaF4mPvHcgQ5pHa1G4Qq06WOkOTKMZo4qWR5eCA9r2geaDwI9K6bW0d3VVOPc1VJ6I5LDNXEZNEp39Aut9xbsm47155yj0ws8qLMUp3xxvJPWPlaAOHoV74FiNJiuHRVGHTsngcLtcw3B3suvqHS6lhhNcmmhWc5YY4IvyKLbIvdtu/mqtp9jrb3wAc5vIOb6UaiTYNa1vOyQAgWuka0g31A/EiqLGHkaVyZJEqETxuBCNcfZ4hJLDBVx6auGOS3DULpC0tALOKzLbtvqF+5TLOrXF4aMJR1Hnr2QeXqGkrsPqcPjEUs4kdJpYGgG7ea20HRJRRZTnxGLEJvbLqXPYLxgXtdu/FXJm/LVFmjCH0Fc2+oAB5Js2xB4DwVey9CVDHA5tHV08UwuWvMTneG117Cx61TqUY05y3XP6yc0qTRo6Is+yMLstYyyPymlPUse0ueXBrbkk3te6uURhryw8DwVJ5a6G58KzJHidRiME7maraYHN4i3wldbx1ltR4Kp69C2lV10nlvyxg2020gtocW3JSpA1o3A3SqicZdjfkQ8FkNIYCTukWMgBadrrN6vuBnpLo3NcA5pFu0qk6Wej2orp4MVy99YrmNOrqy1molwJJPHgrZls5rAGkb7rJjXgHqzpI4G3Fdllf1LSWqnvHun+RpnHUU10cdKNTUVowfM0TY6ttmte3W8kk7bnbgrlZYxsmEhLXtu3wPBV90tZMZmLBX1NF9axGAOkDnAvubWG11H+hrOj3iXLePPHl9M8xxAkNuxjQLhoHfdWd7b076j6zaLD7x7/RZ2MYycXpZb4+ttaJNz3qrenLLeN43RUxwWpkaGyMu0Shg4Ov9IVpy3GrXuW8u5KwNa762L3FzZVNpdu1qxq4y/ibJbohXRJhGJYRlOOHFnl8wjYLl+rmbqZEgjdztSyfqkOxsRySO1Aizt+6ywuq8bmq6s9vlsTBZCRzY6Z8pGot5FU1T9MMk+c4cIfRQaHyRsvaS/a+OyuN21yQXh3EDZRg5EwSPGm4q2mLqhpa6wkd73hzXd06taQU/Hi35cGEoy8yTQSCaGOQAAPaHWHK62LFgAYA1ulo2A7vQlBubDiqzO7a4Mo7ciOYD2j4LmnieHgstY+ldVtTg0mwvxVS9Nueq/Kk8MdJBI5jg7tAtA2I7x6V02FrUup+FHkyVTQ8lmSQajZwHeuOpiDQbBc+QcWlxvL0dXUscyRziLOI7h3eKeZ4S7ldYzhKhU0PBvp1NTyRadva34c1AukHK4xwsqKZxZVQtDWEWGwJPEq1Kmk7LrNJNtgodnJlTh+CT1dLG50rXcAOCtrC6nSqJ7ZO5yhUj7T2Kzyxm6uwuuGC48GmYkNbJqc873PHhwIUzzflalx/CRIbCqYwSse0NvsCQLn0lVxlyCXpEdPDVtMVQA0Nmf2gC64vYW7k+5GxbEsPxeXA8QfrdHqMbg0NGkENG3xL1V1R0TdSm91yuxy0a2tulJeyaco57mypQyUWYIi7qQ1rHAPkJ434eIVgZS6RcNxqtZTx6mvksGudG5puSBz8V3Max07hOxz3sNrB1lDuk7Lrp6JmJ0G9XTOErnWLrNa0m30Ktcba8lhpqf3JCpTnQ43j+JdDBrcGB13ciu2B5ddz/ADuCrrolxt2MZbiEjw6qga1jhtxtc7KeMdbcG/gvK3dHwKrga8atzuIHJItUT781tK4k22aWsMEJLi6U7KHyx3EPBPeA/YJPEJkPBPeA/YH+IXpfRb/m4+BzXnujZ0nQNqMj45G6aSMGkeLtttsqW9j/AJXwjGqLFGYnRQ1Loa0hkksYcSGtaRx9KuvpOwqfGsjYzQ0jS+ealexjA25cSOCrPoGx9lN1uUZ6GWlrqd7tRfIDcxtAPZttw719MKwhfshKeKlz9lqKniZFE2ofZjBYD621emsv/wCgcO/No/2QvM/sjG//AFHy9JaxdUP2/wDTYvTGX/8AQOHfm0f7IQHcEqQJUAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP+I36Fu71po/tOn/Eb9C3d6AwPFRfEPt2f8cqUuUWxHaum9LzZeY9Klmz+9HTa++c4SpAlXzddyzlyYu4tSlw1gAI06r249ybsfxQ4Tg01WyNzzHfgQOAJ5+CzpRcpqC7ky4HFzHB5NhpQbO8zYrzw/p3rTiYjbRzmFpIv1jLHb8VWjk/pBoM0N6qGVjagDtMLw4jgOQ9KsrzodxbQVWSyvhl/wBjTSllk3BDdnblazKL2XP1rtJYBq/vDgFg5p5KqjFvfsdKW+52iUDgtjXFznPLG6u9NzA5dEDJBuTv4KZe0vZeDGcEdEZu14dx3TVWN0ttdOMrg1tyRfuTDiVQ67u5TQhl4MqEXKWEMeJOsDuo3WVHV6iAHHuK7cXrAAblRaprW6z2hdettKDjFOJ6e0pOUVlDPmempqnCqmWWFgeI3EWbfkq+y3g1JiNfM2dzmsaXAANHd6VY1ZIJHua8amOFjZRqpy7FNUOlY5rQ4nskEr0dtWlGGJMjqHSFXlGpTWMfryG2OSbK+MamkSU7iPOd3DuHirfweoiqaeCrjJbrY0WA2uQCqukyLPUuOmui093VH1qzctYe+gw+OB8rXhoHBtuAAXJ1GcNCxycdp4tOo4NbfEltBMYyLKUYbUawLlRCjGoA8k/0BLQDbZeQvYqRpvaa1ZHTGKCKvprOaCfD0ql8y4MIHuDxtbuHcr0o5QWeCjmbsGZV07nt3cAe/uXb6N9Yn0+vjOz/AF5nhev9LVxDxqfvL9eR5uxOk8ne4jgTf501zQsqoTcAG3IKwMcwveZhHba4gN57FQiaF0UpY4Fp7ivu9tXhf0FNclH026dT9lN4aGBsktFNvvHe3FPUMjJow5vFJLG2VhjkFudymoF1BPc+Yea5/wBpbSW+zLpyU90PBJk24WWFQCYSG8Vsa5sjGvYdilbYu23KssKaxHuaHsNOHQyx1GqQktuOadTxKye4O7PArAdy10oKmlFkirixCudTWa0A3t3rtsVqlgZKe3xWNdTz7JKCjnM1NqI3I/itlyxpPG+yRjRE3SOCzFy07ekLKGUtyXwcQoy+YyOJsuh0LXAtaPO2WZJdHpOxWqpeaemc9guWgnZYzpwhFyIizClgMMzhfmV0gbEprwyskmlJe0i9zunS9mlLeSlTa4JYjgXWskmYJI9PNKCRwCxdcdoC5WVSGfZl+Bi3h6hqfFUUDtV7wk9/xpwhmZV0vZALrDYrhrayZ9UIXtOkgbLUYpKKRs8Y7J3Px7Ks1eHNwgng3bNajdheIy4VX3hJLyRsSQBv6FIX5tp65ofijbzQ2jYdJdtx4n0pmqImvgFXC4CT5b2T5gdBR1tGWVdRGyd5uA6++3rVTf2tJxbktzK2hBXKnwWpk3pLwyhwNs1eHOcQf9W53AlTvC8x0+O04mpNTIyLjslvK/PxVH9F+DmHOMmEY260RMbWNcC3UTqJA+ZX5XMioomUtGwxxNAFybjbZfLOr21CjPTHl7no6OqdXZ5R00btQ0NN/SU4QO5Jnon30xX9GpOdKbHdedlLUkzdW2ludLuKVI5AWtmkVbaEXxCl3Is/+C1LbRAGup7i418e5WPRv+dTXx/saq/7tknNtJ1cxZeVekDCYD09UsMrn1MNVPJ1sEjQWbRtsLeteqZB2LNFyW2XnHME1TkHper8cxDDZ6mhq5esjmY4RtaGMsbk3v5wX1x+6inZNuknL2FYB0a1ntbQU8DpIn3cyMNO8bieHgm72KRByG/QSXaIb3/FKkvTRUeU9Gk8sbhG2WIv332MLjb51G/YpOJyI4WtpZCAe/slZdiWXehCEIBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/ykn7tyAc/Y5/1bYX+bQfugrRVXexz/AKtsL/NoP3QVoqJcAVM+P/Ym/H/BO6acfB6lp5b/AMFW9XWbKp8mbaPvoj0psw+Ci2LvH11/NpUlqriM+ChuNSERzdxI+kL510yOqaI6jLFN5Ilis1myO52KjuoOLnO706YpICC26bmtadhv3r3/AE+itkfMOoVdVRo3QQtHbAXJiNYGjS3Y8FG8dzdJhs3k/VO1Ha2od1+5cEGZm1G84LCe9w9S9502pSpLEjdR6NWnFVeV9/5DrUSEec43XFI7mSbLXLI2VurWFxveX3A4K4lhcFzaWWOUbny9o24LWZCVgBYWS2CwUpMt40o0+AuXc0WPekLdr32QG3FwdlOHk2JJ7h2m7glbWSuYLladhzWwOu3YXSE8bESpwfKOhskUw0yMab94UdxKmb7ZdUGNZEXHgndru1sLoq6KKtEbn2vbe/JcV1aqqso15lSfs8Guqw72rZHUUUz3OBDrEgDbfkpjlvGI8UpmRP2lYA11geNr81DzgjZOxFI1o79JKfcm4GzD6mR75mFznE+aRfZcMracPZayim6k6VShKUveJI+PTJYm9k5YTKetLCdrEhcNQxzZuGyIJNEzXN77LynULdRlKLR5u2q+HUUu5YOCyPdE0k7t/wCanFIdcTD4Ku8FmPlDWgdknj8qsDCHXpbn4R/gvnnVabU9Xc+ndGra6aHKQAAFjiCtNXG2pgfHVRskicCHB29wtrSNN9BI8VqnDHwvdbgDsqNVJxkpRe56GKT2PPmecr4nlbHqzHstdmnkme4xB4Y0B7rcBvwT1krPMGYKUQTt6msN2uAa74RA3Ksusfoj7J2PGMcT8apXpRy7JDUnMGDHqpIPrroyC89loHE7L19lcRvo+FcJa/Pt9WdFOlKjLXDgnGIPHXNaDtp/imXEJyXujZwTZlPMDMXwoNlePKY+w4X3uGi/DxWFdOWRHez7cFvp27pS0zPU2Eo3EcogeYMNr5sdbKyZ4jAAsHelSWmDmUUbHm7w3j8a2lxDQB2je5suauqA1o0G7uYVrKWYKPc6aVoqFSVTPItRUCNoaN3JrxGuMMJeVk8FxMnPhZJIGzRaZWkD0lbKdNLdkVpSqQcIjVhGKiveWHjtyKd3bbcVyUtFHSX0RnfYG66yCACVvrOLSwjRaKpBNVGclfRmtjMZcQDtss4KSmp4WsO5vzauizSNnDV3IjDdDiWEkX5qNb2wIUIJyq1NzikotFcyaNxAF9k9wVXWAF3HgodWYxNHiPVCN2kX5hSNjy5rXcFlXXs7muyq05OWhNbjw12rgummqDG+9+0PN8U10kotYkXXW0XPd3FV04OnsXNKpCa0y7nDmDAqh07cSwh5ZVBt3AENB3JO/FPvR/nJ+JVhoK363XXaA4Enc3PEpgzFj9VhNM3yWN5cbAkW4HY8VxxYPLjuFe29IDFXRDVZw1Ekmw9HJbnCFWl7fPCPI30XRruME8Dl0lw0NJiUVbC6SGqY5p1RM87idz6SF1TdJAr8pw4fiEbnN6sNMgY9zjZ179yeuj+qGa8JmpMXNpqYvsXG27LNGw8SnrJ1U3C8TxWLEqge11NK1jQeyLFvf4lcc6lKMdNVNuG2SpuI+ItUdjh6Nc+4ZRS1FDA+VtNHEZSDGRuTvsp5hHSNhGLVzqKlEnWNJBPUuG4F+KqfpIwenixmjxnAamN+HvljbM5oLg1rd33J7ldOQ6GhhwCjraNhfLNE1+trzY3HGyquq0LaFD1hp5lxwcUHLOkfpntvI5hJbbiVDcWm6sy25uP8VLMUe7qpHFwe625AUDxx5INuN7qq6bFSksFV1Wo4RaZFcVnLA1oPFM+7nLqxB4fOQT5vqWqABz9t19E6dRUpJHzO9rOU2zbTNDSHOXMasmspWtO3Whbq9wjjIvumGmmviFICd+uC+g29vGlSwa7Km6k0/ieu8mn/APZXCiedNH9CrP2TdNHPkQzOmkZ1DJpA1tu2dHAqy8mb5Twj81j+hV97IXAq3FcvUlVQwvqBhz5Kh8TG3Lhp4A8l5KbzOR9PprEYo5Oh3KOBT5TpMTkw+CWp6po1SQi9ywG9/FVpTXHsmGAta0+W0+zeHmq7eiLNUeY8nlkdM+F+HWopI3PDjqbG0ngNuPBUdQta32S8YYLNFZT2/wAKxSwjb3PWjeAQhvAeCEII90i/0Fx78xm/YKpP2J/nY5+d/wC4VdnSL/QXHvzGb9gqk/Yn+djn53/uFAejwhAQgNVV9gd4KJTfZXeKltV9gd4KJzfZXeK8J6Yrem/n/Y7rLlmISpAlXilz9x3iFQ/pGyLBnLDmxuLGVI1WdcN3IAG9j3KYFIC364HR30i+q622txO2nGpDlGM4KUTzZN0HY/TSGGN1C+Iuu1zqkkgcveq7ujjLlTlfLNLhlY9j5oG6XOY/WD2ieNhfipPrkIbpeXMtwSFxPm8Fa9Q67UvqapzX4mmlR0vJlGew4HvKS4IAHJIOzxS7clTv4HQwQhCgxBCEISCEiVY5TRPAIQkWTiuYDkVCQJU27EYwCEIQgEIQoayASEFu+o78rpUM067OPFFsAIHaDxdjtjtdUb0x5TqMLxinzJgDeqczSJOrOgm7yXbNG+3pV5RnVqB3AC018FPWUU1NUtBie0tsb8SLDgrSw6i7KprxlcYMKkdSGHIOZ4M1ZeiqYHNNS0EyNdsfOIHMnkn81VN1whNTCJLXs2QXVAZUin6PelaTCy0tw6smiYxuwFmtue88XLXNlvOjukJlRHHUso3uEgNoraDJfvvwVpX6JGVaeHiKWUa4z7Hogji0ed3pOFr8bpGtdeNpP1xtw5F9ZuOS8xOKp5XO50LZGSEIUNPfTwIp9zW3TqIGvjvcbLZe0oIGwShx0nUdI5KMdIGa4cn4GayRokNieNuBHoPetkKE7icaVPlshyS5JM14Ly0NPM3ITdi2E4ZijG+2lFBUaQbGSBkn7QKjXRnn6DO9FI+OIRSNe5ttRdcC2/Ad6mxB0mN3Fuy6peN06s459pEbNGqnp4KWJsVLDHDCNwGMDfmC3DcINiLh9/Qi9lw1JyqvUyUc80fZJHFcFc2I0rop4WSMfxBYHfSnVxBaQTa6454y0dp12ngs4VnHnk202uGRGmw7D8Ja92GUUMT3cS2BrOHDgFUnSNR1WB5qpcXit1L2MY/Q43F3EnYeCvmakvdsXnHhZU/05VU2E0cUUlOZY5C0XLgNzqXquj3c7i4lGq+TfUlClDMSVZaxCmxql8ro5HOe4Bzg6wte/pKjXStmmHCsLfRU7w6eUaXcxZzTzBVe5Iqcz4FhtTXYZh85o5QxzS18YFtxz35qUZd6McTzbTTYhmEPhndqsJGtcQL7eae4q2dlTta3jVX7H9zjleurDRFbks9j+2OowOqnL9Lw9lww296rWa4AWFtPI81COjzJseSqCqidIJBO9rx2bcBbvKkgfJqDGuOxvbuXlurVIV71ulx/g3W6lJe0OkZIdddbJQXAcyuKF2lg1LJsrdQI4qow1lGUobs7y3e6HLGJ+pqU7lY4jznc1JB8LwT5gI/m5+JMfwvBPmAfazviXpvRWP8AvZSx2OS8fsjrcOu3decp3e0/shYhRaz5RT1Ej9I5l5B4L0RWPcylkcx1nNF1Q/RfA7HulfHMUqj1hoqqppGk8hx5W719JKwi/sjR/wDUjL3G3lD/AN2xemMv/wCgcO/No/2QvNPsjS73Rcuguvaof+7YvS2X/wDQOHfm0f7IQHcEqQJUAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP+I36Fu71po/tOn/Eb9C3d6AQ8Corin+kHeJUqPAqK4p/pB3iV5v0pX+yfzX9TotffOcJUgSr5my1kLGdL7utbvXNXUkVZQz0k4uyVrhwB3II/iugta4aZH21bBI1tmlp3A3BRSlCSlHsY4zsUFj/QZiAxKSrwiSlMJdctmn022AFgGpx6L+irGcv487Ea2anEQtdkdSTezgeGkK7GXOm3a9CSweAT2d7WXoJekdadDwJL8f8ABqVLDyYhkcjyWagW7EWsCs+qCGgXcALWKyXnptrZdze20Y9UEoNgjdYuNgpXukLdmipN1EswVXVOcO7/AJKVTHcqB52d1LJX+n+IVh0+HiVFHBYWcY6/aINjGImQu0lNIeXhrjzF0wYbjPlk9Qxzr6Q4/PbuTxTyh8LLcgvdwo+C45XY9db1qTxGBvdcmy6qWAuI2WinbrkHipLh1IHNBstNWpGMcZOy4qeFHdC0FNYcE+UkOwFktNRgDgnCCntZU1e4TKGtcJmynj0NsE6U92s2Wimhu5d9M0GUNVRXnkq688ndSOIY0d4unB0DZmODyLW5rkjitqI96bKPdI2Yzl/CIJ2u063ub8jb9xXFTpSqVEoLcqK6jjD4IpnbC/JaqaUAWc82t3FxVY4/QlrevaNzurcxutGL5dw6pvczU8UpPiL/AMVBZYxUxGO17L696IX1SkvBqHy3rDjZXzqUuGV5ICXbrmrabr49Nt07YrT9VVOaBw3+crka7fVyXvalNVY4R6S3rRqQVSHA04XUmOV0MvDl8qdHODDqva6bMTgAe2aPbSblY1ZmqKKOSIncA7W71w0606HsI3teJwOxaLh17oPFc9JHKyJhmvx52XRzK74TUoJNbmtx07ACUjy1gLnXvbktM9QIguc1Zmi7LNQLrcVhUrRitMuSUjdS1LJnOB1behdIN27X4803Br6Utd1RGr0rY/ENJLXN02F+K10qygnqJa2O4N5pHta9pa/geKbocREkmm6cb3C2KrGoYacGtkUUfmN+YLYLFINAQbHzVsUENWBUIQs5xw9iWYCKN0pc5oLwONgtNdG6SBzWgWFvpXS11iQBvZapnyxwPdY227lqnTSi2iYjQyZ8ogpblv1zltxUmwyohoaSQzWMrXdkkA7WUOZJLLUB8TSXMN9iF1P8rrJWsLXCwseCooqNVOFRGThndMmXR5jstX0i0E1U4l75mcyeR7yvRVSJKiUPudPpK879GmEU8WZ6auq3gdS9rxcH09y9My07H4fHPTnskN4ekX5r5j6V23gXMXFbYL3pN1T/AHae5z0vZma1o3TpTbndN2HtfcOAN08Mj0tuvHPGNyyrLMsNm2+1kg4LRr7dlvWlpco06UhVuoReupxy1rSuvCww1keriHCysuhxzfU2+c/2NFx+7ZJGjYW5BU77JuFhyFPV2HXQwyFu2+5YriaA0KkvZGTS1E+CYNuYa9tS1w230iM/xX1pcIqTszjNJU9DTjUDcU+1/wAge9cXsUP6Cvv8CH9kp+6WadtN0TmOIWDYN/0DgmL2KG+RXfiQ/slZsF4IQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0iqt9jn/Vthf5tB+6CtFQwKE15g+1fiP8ABOia8f8AtX4j/BcHUl/s6v8A9X/Q2UvfRGKz7E/8X+ChGN/a8niPpCm9X9if+L/BQXH3aYJPi+kL530jKmzX1f3CBYgf5wfiWmmaNZJ4XWVW7VUn4lnSBt3a+F19M6RT11Y5PlFzNubwRPOmAR1VZ1jLXB7wOQ9Chz8CnEl9fZa74fcrExlw64kHb/kmCdzix2k++XtJdOpOSZ6TpnUa0aKpo4GmzLLFu10ONpLLJ+1l1HogQhCAOLbIGzbICGdpyltRw2RuZNYLelI3s7LkqKnq5gy//V11H7GHLCE4tvBksg0WJSh+k2SA3CNNzdbXlRIksnfTusLp5oJNL2HvCj8BvsnejN2g/B2WWXJYPNdVo9yUVfmhw5rkYbPb4rpiPXUlzyuuXmD3OsvGdcpNVHg81DZk1wNw1s/671YOEEmnaBzdb6FWeBy/XWD/AK5qxqCYU+D1NQf9VHJJ8jb/AMF8v6qnUnhLk+ldBf7ND4eyC1pvp2K11IDYTZQno5zaMxV2KRF+rqpWN+VpPcO5TabZjmu5hUFWhO3qKM0etgyPV5BILeNlG8QjhnpKmmqAC17C3cA8fFSDEQRKS3gLhRvEQ1+px7lZWkmmsdi8oRzBrzKVxihqcq5hMsJIpZiZLNcebiOAsOAUmmrIcQYJ4D9b3J5J0zjRx4nSGB4Blay7fAXVZYBLVQ0lThsZcZg1jRw9JXtaOLqCb7G60k+nzlT7NZ+8lzZGEO0vF7HgU26tUz9XemTB6bE46h/lIeBc8dPf6E9WuXD3yzUdMsFlRuJVt5dwIsL729CxcQ/s2d8iwkfJHEXBpcG3J8FwMxgSSuYyPtDbitqRlUuFRWKiNuI1rYamCG7u061/iXWXDS0nURsmZ0U1WyWUxEvjbqbuOK6PbJ9LSsE8ZvYDc+hbJQycFO7UMupwOb9BeCwOv4IcHHZnDmmSfH2wgPDPnTxR1InhD28xdY6cHVG9pVZ6IIwfRU7n63tBf+KFvFuA4JG6HOOrisjYG4UNk0oKGcLArDoenSM6o224po4uThSPJvbi3daavunTTl7Z1NihqndXURNcB3sB+lSXAYqemb1TGBsW1wGgbb8lHIHvZKHOabFSShIM8Qts82IXFWbUdibm3UvaZBqSsmydmeubJr8nqYZCzTc2c94I7gNgpnkHLUmMv9sK+qeKKs+uvBm9BA2O3EBVr0hYxU1mKNw8QOdUBwLO0L2uQPpTlR4rnHCsuswsU1S3WxrYu1FwDrlb61pKvQUk8SeDwlaovHlDGxv6V8VoqHEjhWD1E7qQtbs42GpwIdwNlffRbI05Awu+q7KeMD5FUmEdCs+L4dBU4lOYqoyl5DowTbYjg63NXllbCDgOB02HD64IWNZe1uAXn+uXNCVtC3Usyi/JnLSUnJ5N+Jt0wSi/FqgWNuDSfBTrGCGwkA7G6rzMElnnwK4+jRbkil6y4uLcuyIfUkGWU99ktK3S0uWqS5F10tGmmcfQfoX1Ho9BOSZ8snPUkhpxGoLpLX2TJSOc7F6IDnO0fOu2tfdzzzC48FeDjeGg86lo+de5q4VNpeRfdKoe2j2Tk1pblXCAeIpY/oXXi0MVThtXFLsx8Za7wWnLVhgOHAcOoZ9CbekSskw/JOP1sTy0w0UkjSORAXhp8s93GOEioOgapdT5qzZQRB/k3tjUu4G1wxo8FEKMafZLsAv9uU/H8VWl0A4cxuBYxikm89TWPk1c+1ExVbRBw9ktGHm7vLKe/wDhUMyR60bwHghDeA8EKCCtM+Z8y7PlPHqaHE6OSZ1HKwNZVRON9JHAOVe+xPcXx424aTG+qDgR3aDzUtzt0T5Vo8r45X02F0kMzKSWTU2Le4aT396h/sTGkNxlse0MdSGgDh5hsgPSIII2QhosLWshAa5hdqiMo/nD/j+lTF4uFEZx/OJPj+leK9L4+zTfz/sd1lyzDkEJO5KvBp+0d4hQgpVlF4iQ3hAEIQpTT2YSYIQhQ5YelGOHkEIQhIIQhCQaG9Y1wJ7J71WHSb0kVGTMVhpGwsdHI1r9TotW5J2vcdysxukkWVXdPeVW4zlxtfG0GphkHIea1rjxurPo6oyufDq8M1VpaSb5KzFFmnAaWtDmddJGHPYyw0k35XNuCfbgRl3ELyl0N56myxisdNWnVSzcAXHsgNPAAelep6eognp45oDrikA2Ita4utnW+mzsKmqPuyMaVTLNrd2hw4HcJVi1pbf4J83wWSp1wb2CEIUkAhCFDeACRKhSA4LE8dxssli437PxrDuSinfZCYfLSw4bjtK0k0PWyvc0E8mgXt61ZWS8UZjeXKOtLGamxsjJDRe4aD/Fc3SNhrcVyNjFE9oc58Glt/SQop0EYoKnL1VQ84KqRv8AhDQvROc6/S4p+9HOflnY5WsTLOO7rpHubFG6R7msa0ai5xsAPSUtloxKn8tw2qpdRb18To7gXtcWXn4Zc1ng6W8oaaPNuDVuKPw6Otpn1LSW2ZOw8Bfkbp+LSy7XFp7rLyHmeNvR30ieUMk8oe98hs8aOPZ5XXqfLGJtx7Boq1gtKb9kXI224q96t0tW1GFWg8pmmFRvkci0crlNWa8v4fmTCTSVwk0kEdlwbxI7we5OrnGNt7drgfFAGq2tg3VLCpOlJVIco3OKZHsp5Qw7KtIaXCdZjc4yOc94c7UbXFwBttwUkOw9KxYAxpAAG6Vva4rKpcTrzdSfLCWFgQFKlNhwSLU009gA4pJG6glWQOyzbTXxDWThlGk3smjFKehrmA10UchadtYaeHin6VgcoD0s10mB5dFXSMa6TrAN3afeuP8ABdNnBzrRSeG2bVJRj7Q/Uwhip2wRUkBgAtYRAhO0TQ1gbE0NaRwAsqz6Dc0VmZ6Oo9sI2hrAyx6zXxDvR6FbDer96At9/SqUarp1JcfERqRksxRyOpi4b7rHycA3tuu/wSNLL2cOKrk3GeYmMZyOF7CGg8r2UK6UMyMybSRVJbI5shdew1cAPDvVhNjBa+/DVcJlzblrDM2UMdNiMbHBt+LNXG3pHcuyzq04VU6/Biqj3Q19GubqfN+G9exrmFlxwDeAHpPepgbDdMOUcq4blaifBh7GtBcTszTxA9J7k+gWfGT5ovdY3vhVK7lR4MYZ7iu4u8E+4B9rH4voTE/i7wT7gJtSn4lfeiWXdyfw/uc92/ZHCUNewxuDiH7EjkqGzrkvMeX85HHcmvjIkD3SRSNfKHOc43Oltt7WV9tPHe5twSgAC+kAlfRitPFvSbjuMYjm3BJ8yUwppYZnF5FO6Fvmge+PdZencs54wCow/DqOHE6N1R1EY0CqjJ4AcA66o/2S0TJ894DTzm8Us72vaRcOHVs4q3cr9F2VaWnw7EafCaSOqMEbjI2LcmwPf3oCyGntG24PMLNYNBaQ1reys0AIQhAC1yO0Alu5HEDdbFg8ABxB0k++CAj+O5uwbAqlkWJVtPBK5ocGyTsZx9DiO5eZc64tR4x07YZUUE8U0ZmkN45Gvt9aHcT3L0ZmjIGX80V7KnGMPp6qRsYaHSR3OxJHP0rzZmrAcNy905YZSYVTRU8YmkBbG2w+xA/xQHr6j+06f8Rv0LctNH9p0/4jfoW7vQGPJRjFxbEAfxlJzyUdx5tqpp8fpXnvSZZsX81/U6bb3zgCVIEq+YrktJAhCFKfkM4QnDggJUilNdyU8oVIEqFrb1cEJ7AkaQSW2NkqTtaS0jS7vTjkgh+a81HAZLzUdTLFa5MUJd38/iVe5xzS/MOAyOw2grBFI2/agOobi1yPBWtjlK2oYWVbBLGR7741UeYYaqgxfybBK2YUr3ESQNAa1lraQO/iV6vo1OjWcUtmnkTrSoJTSyVa2KSgnc/qnjrBp80+K6HY66lp3RwQySTtIGzNQFuN1LsKZT5hwqtjjja2sp2vl1N3Oxt9JUxyd0eUdTlynqXNEtdVQtllLmAFriNxe+/ivUX15RtknUZ3Q6tGVPNLkrzIuOQY3iTYJgY5nkNsbN522CuPDsMBaAGuAaLC/P0rzXicNVk/ODJdAY6mkZK4B1rjjyuvTfRvmagzRg0UzQGTxBsbgATc6QSbkelVfXovQq1JeyYUur1KicarO2jw97YyNJO3cuuKjc0bt3v3KRGJkVtIFkFjX32sbLxbuG2Yu5bYwNppOsJFgFviE0bTZoJ/FThJE5rbhYB7muAISU8oyc9SIBjXSHiODYjJS1GHStjaSI5HUjg1zRzuTv4qMV+MS47mE0+Mhpp4g17Orbpbc7G97jgrex/DaLFMOIr42yuZZrNQvpF7kLz/AIbCKOWGoxnEpryP06HsBG3p8F6rpCoVMT4xycMcKM4z5wzVW41W0M2IU0ckT6ZtQ4RNaNRawEgDj3LVgeK1VY+8kemMcT1ZHzrbiWDxHHY56OofJSTtdIRosLk7c0+SYYaODTCwBpHJerp3FChNVKb/ABPmnUqFTRKU0MeOYb1rRLCCbjfn3qLTwdU8h1wVPhLaMtIFr2O6asTwlk7TIzzvBe4s+pUrnG+7+RwdO6lKh+zqcEOqIushe3vC4cId1cskDt9JsAfQE8zUssT7O4eKY/sGMOceDnOPzLZdfs5qR7Ohcwqx/ZjuDeOx5XWJa7bhZK82LgOYSNDyRcmy64yys4Iby9zRUzws7Elrn0hczBFDUARuu1zdXG60Y5Slzw9p4XWmhHWyAk+aNKqbiq3VxI6IrYdqqoa6Eg2Wukp2GEuJuXXbubrKakD4CWne3cjD4ntYQ47Amy7NDk4qRrnsIzDmRydYD866zpI8Eg1E2J2WTmADZdCpQhwYZyYWSoQsvkRpBCEKc4e5LEOxukJc4WI28Flba6xleWRktChZSbZMQiiYCbtaPAWWRDQeyPjCaIq+R1SWOG23NObqhrIgXALnhUgqeUiXlPKR10dQ6nnY+NzgQe9Xf0Q5wGMxyYW9zTIxrnb2v2dI7/SvPfl12OdEwOcBcC9rqYdGlc7L2KDFHxhrZAY3C/wi0/wXmfSy2heWeuC3SMrWl4dwpxR6egidCwkBurusismFNhtRVG/1pj328ASq0xfpbw2lroY9TA+5uLu7vBT9ldFiOG2c1ohniseezm7/AEr4rOyq27pzrLCbPQRr+NNxXKK1wfpXjxPNMuFCEgsc5t+rA4C/G6t+1rX7lX+DdHmBUWOSYpExnXPcXfYrcRbjdT9pJtdb+pug9PgG5JrkHcF14P8AbjfELkdwXXg4/nbfELHoj/31L5/2ZquP3bJLy2Ve9L2SKjOGDAYZKyLEYmvEL5HENaXFt+AvwarA3DtuFkpDhuOXJfWlwipPK2ccZz3QZYqsKxmkhlomROb1sdFL8Et88m3AFPvsa81YLg2TXw11fTU8rmxXE9RGyxAPwiFZvTlrHR/WmO99L778ureqi9j10fZfzPlE1GL4dT1MmmIkyR6rkgnvWbJPR2C4rSYxSCqw+eOWNxLbteHDY2PArvGzrb3O6Z8t5fosu4Y2iw2FkMYc49hum1zdOvaa9ovq25oYm0WI2NwhDQGiwFghACEIQHLiddT4bRvqauWOGFlrvkeGgX9J2VCeyEzfg2L5MZDhuIUk0vWSdltQx/8AqyOAcVe2OYVSY1hstDiELJqaS2pjxcGxuF546eujrL2XMnsqcKw6mil6x+7I9PvCe/vQFiex1v7nOHauPk8HD8mFaKq72O7i/o2w2w02p4OH5MK0ggBNeOj+bE9wP8E6JvxkXonnuC4eor/aVf8A6v8AobKXvoidf9id+L/BV/j57TR33U/rvtZ59B+hQLHG3MTvQV886P8AvGaes/uyAVYLaly2Ujuy7xWOIH+cORR+a7xX1Po2PFifK6m0nkYcUJsbplqD9b+NPWKjYpkqB9b+Ne6kllF90pezk5UIQtJ6cEIQgMXktbcBcgr3NmLdI3t71dhdY6bcVyVcbIwH2F1qrbRbZtjjBpET5dTyDx7ltFa6KNrC258FtiqmsaG22IutMAZPUEELklLC9kzWDS/Fi2YAtAB281OUTxKy7T8iZcapAwNe0cCP4rbhFZpYGvK1UbuVOo4VO4ccj1TG8lk7UlxcX5pog3eHBO9HuD4q8jNbM891bCRKKH7UPgsCAXb8LrOg+1D4LEi13X52svKekDalqieOfvG2vxmrwSmp56SESxi5P1ovPzeKkeG5kxnH8KFNh8MQ61ximBgdcMIAcdjtseK5cGZC6Kkiq42yQSXBDuFt104UXYLnaTyGd8NAyjE0jWCwI1EuuPAL59eNTg9C3R9F6C/2aHOLLtblitweowRgeerf5SXNLxq2Db2A5E8VoHSRiNVibaWGgklc8hj3R0rnNaOF7g7eKc8ezrS4zl/E4stVJiq2uYA6IEG978/QE7ZLwyggwZ1XRgTzv1Nke5ukgXv9Kos/s3VuV8PI9XB5aMHySTQNdMNLtPdZR+reDDpcDbfdSXEbucLbCyjNa9giDSBfda7FJPc9JbLOPgRzELXcfQQqrxiM4fmNtULhjnXPdsP+atKvF3OaO4lV/nSn6zD+tHnMa43+Rep6fLHsruWt9QVSgpd4vL+SHGrcHRxvbYXaDt4LjHm3S084noInD3rWt+QJB5i75RwzbRmqtOMu3YwlmbDFqkI087pqrhTTwOmp3NDgQDZw/gu3E6R1XRuaxxFgTt4KHNfLBJLTtPvu/uW+nHKKfqd1OElFrYmMFdGWND9Idfa1gD4riiHlOIEOLCLnb411U+HRyR9px1jnpXFDRyUteXteS259HNS3jYl6nBPS2juxHDYKh2hzSPxdv4LriYI42saLBostgdrcHEC6Q8VplLJZ06UaclOKESoQtZvT31MFvoz2ytC30nnlYVfdHfKHFt9k/wCFE9nvTA3kn/COLVwXHubHVcPFPI90+F001W2V8MLnhvFzQTx8FLMOggLoWmCJ5APnMB71TeeM112A1sDaVoIcWj7Jp439HoVmZExWTEMuUtdMwCZ0YcRqvxJHFU3UqFanRjW1J/I8lcShOo0luT2he4saGttHqtwTDnbNjcuT00RtaVhfdwB4Ot3hM+H9J+COnlpesYJI7mwDtze3cmbEKb3Qa6SQANZTExs0nVcHtc7WVTSsP2zlcJpY+RTVKicmoli4+4sj+slpBuN9+SrjHyHvc031cT8q2QdIFI3BY24toiqwXXAcXeG9kyS49R4w5/krwDvuL3+dXfTbSVOba4PKdbi3TcmQrMOYW4ZVth0OO9r6b8rp/hqm1WEtlFxf4uSasZwWmrJNU5D3s3uW+hO0kEdPhLY4mgWP8F9Q6As8nha7oeFDTzuRzEHadh75cuGbZjwv85Z9K31++j0ArRhn9I8L/OWfSvU1mtDwX/SVho9qZb/0Bh35Bv0LbjVDFiWFVdBOPrc8RjdfYEFYZb/0Bh35Bn0LssS4tf2m+leHm+T1jZ5yOA54yBi9dLgAhq8OqJXy9W6GWcjVt72wGzQoFgWNu93CDFcc00j21UL3teOptYdzjtsvZb+zE8AbaT9C8h4nhlFjvshn0ddEySCWqgaWOFxYtCgI9N4RnPAsUqDDRYlSSzBmssZUxuIFwOAdfmEJvy90ZZXwOrdV4dhVJDUPjMbnsjsSCQTz7wEISOnSJ2cj4+4cTQzD/wBhVJ+xS7ft608PKx+wVdnSL/QXHvzGb9gqk/Yn+djn53/uFCD0eOCEBCAHcFEaj7Yk8SpceCiNR9syeJXjfTD91T+b/sdtl7zNfIIRyCF4JLcsAQhCGPKBCEITkEIQmACEIQgEIQgFa06juN1x4vTOr8Lq4G21viezcbWIIXVd19Q5LIOsNTOPBIzdOamuxi4qS3PI+M5VblnM4gzAC7Dqpzi0xksLQ0cyfSQpFlnO+IZExKnpZpWT4HM8NuxoJaHG5u53oV55wyphebaR9NiVPEJ27Ml6oOc3cE2J4cFU8HQjiVTiL4MWrpn4W0amF07HkG/JvLZe8p9Us7+303O+F5N/A5XBxexdeCYpR4zh0Nbh8rZIZmh4AcHFt+Rsu9R7JWWafKuF+QUtRLPELWMgAtYW2spCvE3EacaslSeY9jrjnG4IQhaSQQhCYyAQhCAFi4bbDdZIDgNuajSnyShlzrihwjK+JVgYS+OPUzYWuCO9VV7HATS+21U8aY5aqc7jmS0q2814WMZy/XUBt22aRe3MjvVSdBM0lDR5go9TC+KWpcwOfwI0gEfIvTdMSqWNWEd5M5qjwy7nm3ZJBf6EXAFgNTv7vJee8pZnzfP0jPhqZZ5qHrHDQ+pc5gGg8uHFegXP0NMsoEdowSGcOHNVV/0+Vi4pvLkk/qbITyiPZgyVg+OyOnrIJX1IBsWvsO/gqRwigzVR9IVLHDTTChEsVz1Jta++6vqhzNh1ViZo4Zv5wCQQBbgN9079VE1uoQRifk8Df0brqo9Uq2dJ0rhak+E98fIx054MKZrvJoxKLP0gu8Vsf2rX5IFyLu480qpZSlltrk3RWOQ4hA2GyEWWOUu5lsJbe6VCFnNyxsNgSIQVDcVHd7kYQLVUxMqIDDKzVHfVuOa22QQ0OA1v7+CyjKSacHuG49zgghio43xQRaWvtewHJboYSO047dyrfpU6S2ZPxKGlEIeXF4uWOPC3d4qe5cxZmM4JDX6dAeLaQCOQ7133Vnc+Ermvun3yFUhxEcJpepaLgkHhZcMlbFBMGzyxtJ5E2KcntZI2MkXGnmFRPTBTZo/lPC/CJZmU5c24ZUFg83fZOm2Prk8J4J1NIvZrx1TZPOYQLEIJu8FpA77pjya6t/k1RtxEl0wjj1an6t9Ivun19usPYaG94XHcUmqrh5Ed8gT6QkvZhbbYo7PIoIdyA+Vak3FbE7CkBzbjbkn3BQBTEXBOyYncQGjipBhEeiAEjcgL1XolTbuJt+X9zju0sHexp0Wdx9CDctsBaxSlwAu42t6Vw+2tE6R8flUTXtdYjWBv8q+ilcea/ZHaXdJGXxY3FQ792xelMAAOA4aP/to/2QvNXsiXiTpEy65vVlpqH2cxwN/rbeK9LZf/ANBYd+bR/shAdwABJ70qEIAQhCAEc0I5lAI3iSvKXSaAPZA4ce+eT901erW8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C3d600f2nT/iN+hbggMVHsf3qWA8LH6VIQo9j320zwKovSJZsJ/d/U3W/vjelQhfKU3sW7BCELZwQwQhCDgEIQiWOCAWIA0uYOCySMH1wnkjWeQc88DZaOUOB1Wdb5FSs+RsUxLMuJVFRIyOhfICzU14JFuRt3q8m7lw5FYuZFp6uUWYOFhddlnfOzba7rHyM4yS97dFT4tkuDEMO04cx9NUN4vlcS1wAtaw9O6k/RjQV+GYPPRYmNfUuYyNzGloLQOO/FS7yWOMiwAZ6AtgvG4FrRo5elbbnqErmn4M935mucKa/drBRfT9k6rraiTHqSPVBAwSSsa0lxayMA8NuSr/CZDh0VPjGV3GKsgjEU9PKese5x3c4N4AWsF6yq6eKqpJ6WqjZNTTsMb2PGoEHjsqdzn0QVU1aKjKlQ+kL/AD44ZGQNN3G/jtsvQ9M6tSrUVbV3ntvl5+Zy1KTzqRJOifpDpM20bop3COuYGnS9zRcuLrbA9wVgDtE3aQ7v7wq1yN0WUmUq6OsjqJDJcFws3cC9uHirNcSXhw8wNsvOdWjb+sP1fZfLBtpKXc1SANbY8lyvs51zyW2d+omy1dnmuRZzg7orYas2U9VXYFPT4a9rJy5u7wXcD6E0ZI6OqPAqO9Qdc8t2v7biLXuLA8FLGg6rsPiumDW9vWPe423sTddMLydGi4ReNzROkm8laZw6N2y4g3E8Dd1UzJA1wkLn3u67rABSKtwjrIad8rbyAnURsFLQTcO1EMI3byJWEkLXwvaQNhsVsj1Oq6cY5eUcNexp1IOMkmVRiOClge57SXFxta/BR2ooJad+poNvAq3JqaOYPL2gkEtGyZa/Bw650Nt8S9LYdbnTxh7/AHnkL7ocJLVBY+hVlbTNqWOD2nVbbkq0x6GRmM9TG03YXDgrwxTB3h/1poFu6wVTZnppKPNcZl4SF543Xv7TrSuqSUnl/ecHSo1rau4y4NQYQBqIDud0Btye0Flm+iqqWqjNJYh2nYOt730LVE17II+tuHloJ8V6W0ulWbjHsXsZxcU292D4xINLiLJprad9O7+Z7Am5vunUzRRGz3Hf0LMdW7cC4O+4WdxTp18afeN0G4mjD+s8k+u21kd1ua3tJ0WPfdISAbN4IC3eHKCim8sxm15i32SAWSoWXzQSwuAQhCyTiiE23h7BYkGyIxfzkFwZseaW99wob+Bk9jHksgdrcklrIUOXZhZ5NbY42Sai06jsFtmDXgNlG3o2XPWTtp4XSOFy0EjZGE1Ar2Oc8WsbDb0XXO6lKEo00g6mEm2aHxmmqI2RlojcbG+6ldA9ow50VNNE1w+unVvuAok8ST1FzfS3fit1WJ44f5k5weW22OniFWXlvKvGShxng7bav6vV1tZWO5L8k0c2NY8yepLJZGuuSxthu0r0ZW/WqWGBoszq23+RU37HKjc11R7Yxh03ZsXdrk7mrqxW3G3AAcF8j9KbuErmNulhQ/udXSqE/EnXlLOr+xx0Ba3sWOlPUTi4AkKPxyhjwbJ9ppC6IWC8tXxHGC8qrHBvcPSuvCtqloBBuRcBcRLreaF2YRE41bXHs2IOx4qx6DHPUKWV5/0Zw3K/ZskbSAPgj0pSe0NifSEEA8QCbc1yVdfTUbohUzNiJvYahYr6vHgqCE9OpDej+tPMteP/AMb1EvYpMvkN4PNsP7JUl6aqynrMgVwglieQ15tqH3N6jXsUS52RJGns2bCAQf7pUoF4WF7oDQL25pUKQI1oa2w4JUIQAhCEAKmfZRAOyHHf7pJ+7crmVNeyg/oFH+Uk/duQDl7HMD3NcM/NoP3QVpKrvY5/1bYZ+bQfugrRCAFwYuT5DN6Au9cWLD+ZTeC4+of8Wp/9X/Qzp++iI1gvSPHPf6FA8bu2MdzRb51PpxqY9voKhGYWWimHcQPnC+bdNlpqGvq69griut5U63cFlRbtf33RXxltRc87JKU6XEd6+odIqpVInyq52nIZ8SYNbgeCYKi9nAcipPjEdnj0qO1DLSkHmCV9A2eC46VUaSQ2pVm9tlgOK1YPWwaaBCChCG9wHH0rixCOWQadtPguy9kuoHiFjKGrZ8GxM5qemY6P66DcCw3WiGGSGpLm+afQnA25IDgdrLBUEuw1YOevjdPCWt48fmTFHEY5OreQJRtfkpKSGrkrKBk7i+I2kPxLjvLVyxKK3Rsp1Enuc+G4iYalsNS5pBI4bcSpdQ6XsLm8CdlFKbBdT9Uh7fI7FS7CoDHGyM8hZbum+Is+JuUPW6sGsJEkpezRE87Fa2ODZgRxLSFsc3RTAeK0tALm/CVF1+p+0Z41bskmAHqmQtbs93M7966Mv5BkxTH/AG0xiQPiaQ1rYy5h7Lrj0c0uBwB0kBPvT61Y+BtLaWwedOo7X8F806lcOjGThs2fSOgU/wBmhvzVkjDsfw9sMbXRyU40RnWQLEgm9uPBcuRMIrsCwR9BXPZJEwvezQ0ggk8yfQpkAQ0Bji0niRstU4LIng9q45rzTvZ1Kbp1HnfO56ynT3RGcQFzdRuuGnhyUnr2qOYg3dd1m9z0FttLYjOIXbMSOJaf4qvc7VBp8ODBxkDg74rKyMSF+13CyrvPlGZqEyD3gcflsvUdO/eItqyc7Wbz2f8AQ4cBje3Ce0OL73+Jdd2hnefQm+nqpHZZvT2D2yaeNuDVyZelqpXnyu5HpdfkriplykcFreKnSpUlvlD0WlwHdfgm7EsOhc1z4439YdzunCRwjc4lxa2yxp5BLctdq8SsIyklk7bm3hUjonu/MYcumrbNI2oY7SQBfTbmpINhZIGaDcNaAe5KlSprw0Y29DwoaNTYhCVCFik2dGGCRxsBbilSW3F1OklZ4aAmzfSuuiAJJXI0anuHIFONCGmjY5vG5v8AKsJpY3MlDQ8M6WC7wOSkNAGsczY25pipmanqR4dEHFurgqyvUik0zddNKniQ8MpIpy11S0OG1rD5FKMKhbHTsDI3dWBYAJhp22jc93msaT8iitL0oMpM2nCnxExtkczzHng26qKlCvcxxDeK7Hl7qVKD1Lkm+bcuUrKSfHqN0cWIwRl8ZeSWl0bSW9nnunnKmZ4faKkfjtZSU9U6Npu60YdtuQPFNfSO6pnwSnw3B2E1tWdPEsaBI2wOrhxK5sA6OXPwymjzBUST1jYwBG9zZWt23APiuTOu1i7ibznnllBNxcsxGfM5fmTNk+E1U9N5DThj2Na3S67hY7jwXPidHFQU4pqWwijAbvuTbbj8Sr+lw7NeH58iM0k0sZdH1kjqgkuHp71ZmOsbJFFYWkMYL9vfc16JUvBdOMZPhfeeY61JOlKLZDnP1m48w8F0TOLqUg/9bLnLbHRawbwXRxgP/XJe96FUjGppZ82m0pLBE69hu42sRwXPhYJzJhY/+4Z9KccRaS4gAXWvLcXlWaMLYGi/lMf0r1NVLQz1XSavGUex8tXGA4eD9wb9CcSA0WC5MIZ1GFUsZ95G1q3TyMha+SVzWsaL3JXiJrdnsE02LK49TJseB+heUKAj6pdthYeWU/H8VepHYrRPjc1tTCXFp21ju8V5dpAW+yZAOm4rKfzTceaoJSPWTPNHghEfmt8EIQR7pF/oLj35jN+wVSfsT/Oxz87/ANwq7OkX+guPfmM37BVJ+xP87HPzv/cKA9HhCAhABURqhapf8f0qXHkolWfbT/8ArmvG+mH7mn83/Y7bL3majwAQkPvUq8EiwYIQhDFcAhCEAIQhACEIQAhCEJAbPcfenkk4ebtulQsFKUVhEcAS59xIdTO4bJHXeCx5vF8Hh86ClUxxj2kZaUI0aQGjzRs0dwSoQstuxAIQhCAQhCAEIQgBAAO3NCGN+uX9BTLXBPBhPoELi86CLXJPHdeLa7E8UwrH8UdhEhjJqJS46Gu21G/HwC9pl2poD2gg8dlF6vJWXm01ZLJSXmla8giJh3I/F71f9B6nCw1wqrnBorQbWSqugzP/AJTisWGYxpdNLsJiGsAs1xOwHgr0xODyjDa2COQR9dC5gJ34jivHWLUNRgueqlmGNqGzQSlrWhpHvfQF7EwKV1Tg1LJUN0vDG6wRY20jvXR6QUIwq07uG+UvzNVJ4TRQmTcjPo+lCaeTF4XDrJSI9LrnsL0K5xIY0DS4civMXSNmGTC+lN0lBJIwMlkaW7gbm3Ir03HVMmhjc90LTIAAQ4A8PFaevQq1aNKtUe7+BnSkZna10rth2e14LTLPTx2D6qn+OVvrXPPiuG0+zq2C/wCWZ61SwoVc4jFvKN8prGx2gkjgb9yL7enuTDX5twahI11bXuIv2JGu2+VNVb0lZdpodbnVT39zIw76CtselXf8D+hgqqRMi5o5i/clJAaDfjyVa1HS/l+GHrIqbFJJCdNvJHOHzLh92anBvHhda4ctVDJ61mujXc5LMHj5DxkTvMea8Hy+6NuI19PC57tID36bbXTnhtbT4lQx1dBKyoheAQ6M3G4uvMvSZiOJZ4rqd1JQ1MJ1gt/m8jBfTbe91K8r5izpg2Bw4XS4ZQu0Na3XLHNfYAcQQrir0anGgsT0y7pkeO1wi+3McGgtBdfuShr9FiDe/Gypptb0lyMDoqXBwD8J8o/3lkzKvSFUxmSaupma+0RHVv2v3Kt+y4LDdeI8WT7E6zXkvAsxPjkxWHXMy/aMr28bX2BHcnehZhOHUzKWGaOKBgFml5PLvKq2l6OMy1l/LscrY/yVZ6wuiHojnteozHjpdflWNI/ZXa6NKrTVGdzFpdiNUm9kWNUY9g1O/TJitIwD4TlwVmecq0hYavHcN7RsNUlv4KL0nRHQA3qsaxp/jOw/7icaXoty9BIXPqK+ovynMbgPDsrWraypvOtS+TIzUNld0qZVgIDMaw+ZvIMmA/gm+q6XsusjLoTHUye9jjqBd3oCeYej3L0MgPkrXj+/Gw/7qcxlXAo5I3RYVREtN94G+pc9SfTNe9Jv/wDsSlMgzumCmIvBl+refRO0rD3V61wvDlbEXD0PYVY7cGwscMLoR4QtWwYdQNFhQ0o8IgsvW+mr3aL/AP0zJU2VdHnrPMjDJFlTFmgk2+sxnb5E7UmPdJ1ZTtlp6GtpmkA6X0cRI+ZWGY42t0sjZp8FIsNAjoGlrWgho5eheo9Hbm2q1ZqjTa2889zmuYtIoHPOYekXDcHMmJ15pYptTA2WhiGs2vYHTxXfk7ogpscwKHGMZkdLX1gbUB4kkYBqAPmtcBx9CamUuM9JvST1NXI2PBMPdHPpjeQT711w645r0XhtNDh+H09JBfqqdjYm3twAsOC9ecJ4+6U8tVeWc+4FT1NY2phM7hGGsI09hpO548V6+y//AKCw782j/ZC80+yPeT0kZdaeAqH/ALti9LZf/wBA4d+bR/shAd4KEgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0LcFpo/tOn/Eb9C3IDFR7H/tqPwP0qQqP5g+2ovA/SqT0iX/8AHz+7+ptt/fG9CEL5SlwW4IQhZMAhCEIBCEIAS37FuaRCAS23pQBt6UqFDJQgDWjsCx71ndpbYjtd91ihO2l8jkN2gBht380cDqbs/vQlbxSUYprBC3EDtIszZvMcVz1DzwBsF0ELlqAdQRKGrJsilk55pOqabm5XA+Zz3G2y2V5IlI5LlfIGGx4rqhnOx1045OylldctJTvAA0d47kw0jtT9k+xebusa7WTTVhpMzpsXO4Dkm+rqrjTEdPp4rZiFU2Fhb37qK1da90h0Gy6La0c98FTdXUaaxkfQWHnY/SUDfztwox5TUNIcXbX7ynWkxDXZrrXXV6tOmm0V8LqE8RN9VQxzNOmwJHBefunGimo8Sp3QxP12d2u7tBejXNDWhzdzyTbjGX6HHDC6vgDnBvJgPO/MFdPS+perVf2nBv8AV1qyu55RoMw1lPiDRXP60N0kN0tbf0cFOnUsGKUkVTG3SXNBcLk2J3XV06ZPp8HnjqcNiLWbE9kDgy/IJeinDK7FMJmbJC8ASgNLmuAI0DgSF9Bs+t06NLx48PZlF1TplZpOhyQ7NeXzDLE6OoaWkngD3BaoYDHAxrD1nC7h4KYdLGGz4HRwCcC7i8XG/AN9aOjTLUuL4JJVMdG5glI+uPF72BV3b9YtILxpP8TTQjeU6ftJ7fAijmhjQCbkrHTbndWXiGVWxMf1vk4t3OaoriGD08UbnNqGB24t1jVa2/VrS7eYSWfma6XUKknonB5I8GuPmtJSbg2LSESltO9wMoI9DgVzNrYASS55I4LvVxTXLyWdP2llvB1N3vvwSAgtJvwXGcSjLXaWm/gm/wAvlOrS3bwK0zvILhGSpOT3Z34rOIns7rDf410UEzahtou36QmZz5anzoy4WtcNJsilNRQhwjBu62xvyVX6+vH0qJ0K2cqWrSSDzjsEoYSmWOauOzGMt/evddLI8QkG/VjwJVpG7lnamznqJwh72Bz8mZKCJRdvduFjaCmbphbo77klcRoqx47Uun8V60vwyYntzy/41Hi1Z4koNHHCKnNKc0ODZIWg9toJ9K20tVBFK1zqiNoBubprGFt99PNb8YepZighZb65K7xIP8EjUqYcccnXUoRqU2ky1sr51wrCZ2zCtp4+ZBeO4ju9Km1T0r5ang7NXTOcBynG5t4KkMEoKKSwmBPiArkyJh+XqqIU9Rh9OZCTY9S3nYDivm/pR0OjRk7ytByz5NrBo6NeRtqrt1sNcvSlQOkLafDZZmDbWyYWK7KbpZmkJ8jy3XSMts5sjSCppWZewujGmDDaPT3mJvqXVhVDh4A6ugpA30RBeId30+Uf3T2/+R7ecZTgpIgEvSPmarktRZXxMDl2Y3fwW+izZ0iVlQyGiwLEqR17GR9NE4fQrPhpKaN120sDfBgTnhAjFZtG1pJFrBd/SLuznd04UqTTed857MrriM9DyVhNifSkKSR5NRCW3Je6giIAtx4KG5LwfGulDNdbFmjEBU02FvYJC2LqRKJGuOxjtbzArF9kBmLEMLw6kw/C9DZKuSKMuOoGz3OYdwVIuiLJLMoYIOuklkxCoDRUOe4OuWFwFiADwdzX0OPBXFV9KPRWMv5aqqygrmspwxwMR1uJ7DidyT3KSexTuci9k2GiK/8AhKlvTt/V9WeD/wB29RP2KP8AQY/iRfslEC70IQpAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWkFVvsc/6tsL/ADaD90FaIQhirkxPejkHoXWVy4j9qSeC5b1Ztqnyf9DODxJERf5zjysQobmFms1AG1nfxCmU4sD4qKY7GQJ/S7+IXzGweKxs6nDVSK3xqweLDnxTex2kj0p4xWEuY88wCUyNFwRzC+hdMqaWpHyu/o6KrRnicWtoeDwuoxWRkzam72FrKWx/Xoi0pjroepmdcbG6+l2daNWGTGxq6J4I/MzZc1tJTnNFsuKRlitziewtbqMjSj4kHY2S6lrZYJpmPEpXWI2CCb8EKMjuY29KyIBG3FIRcJASDZTqM24pbmTQB526I47vuwafSd1mxhcQupjB5o4qd2tjjr3EYIzhZcja570+4ZCXFvoHFcFJF2dNt1JMMgEcQJ4rOTVKGTyXUbjW9jZWODWhoXM2wkYbEnglmeXyehbqGPrKgA8LL5/1Wu6k22V9vDMkiW5dvq7QuD83FT3B2AU4AB8+9/kUKwNlmk24KdYOP5nfnqP8F856vJOWD6X0SLjBDo2xvcLRMHNiIut0axlF2leaUcSPU02R/EBZt7cVHa5hL7DmpTiDdiO5MFY0ar9ytrOWJFvaz0yRFq+FxDm2PG91DM4wk4PMGbkt4DxCn9dG5rze1nC6j1fTMeHRSi7TtwXprOsoSTLmMfFpTp+aZRsNZV04cxhLIA4kgtB38VJsv1wq2BjW6nd4TxjOEUkNBK0Ru1FxdcNHcfQoVgLpqfFTHA1xbqI3B+CV6SFVTg2jzkaFbpleCzqUvwJNjFOZqORmrS4NJ38E3ZcphAX9bUMJvw4clIK6HRSyTO3Og3HxKI4VV9diskfmtBI7uS1U5NxaLK+p0qF3Fy2bwSx5BtpOyS471k7SXENc3bvIWBIHnPi+JwWrTLsXM6sdszQaglLhyN1rM8I4vb8TgtDsRp2E3IPhZZqEjnlc0lzNHVq9CAO1e/xd6b34xTd0nxNTZiGKPdLGKVkvnC92lZKlnlmirf0ILKer4JkjJcyCeVzCAHW353XJl3FoWSGmqJGtLjZpJtckpnOLTvPk72P349l3JN88MrZnTxse0w2eNTSAVsdtFrkrLnqMlVU4QeC3MPjLxqaCWncEcFIcPie+IgNIuONuCqLCa7MdVG0UsUAYLC7tY/ipTSxZtkHk7G0bQ7bUHvBHx3VPc2sHs5I7a/V51Yr9my16OGSSzSx2jTY7cVop8mYA/GTidTBplDi4gyvFyRbvsoFT5ZzfPsa1jAduxUuCdqHo2x2pb/OsbrmF3Hq6z1hVbjTo5iq0Vkq7mvOS3iXHBW0UMRDKuFlM1vmO3Itx34rmOZcCg1g4xRxSX98/goFD0STaLOzBjJaeI8rb/lXfTdEWEhn86xfGnP5/Xoz/ALiqlZWkY4lWTwU8pvshxxnPWVoi5jMbw5srRc3k3+hV5mHPmCukIgraeUk8WyDv8FNJOjPAqSlcOsq5yAe3Loc4/wDtUcxLKGEUzdTKfVY++jaf4K1svVNS0rOPiU3VI5hmaK/rM1UpncIW9b+K8bbLCPNo0ljaCZ1+YeE/VuG0LaoaKWNov9zA5LFlNSslbani5e8C9vYVtMk4PB89rTtIVGnTb+8iNXjE0soaygmBdwNwUuB12N0uO4e6goKgz9ezS0RtcTvtxUzxKkhMepkMY9LW7rmy1CXZrwqQbaamPb417KUJ1KWqUs7Fl068oOolCOPvLSjxTpPfEJI4aqNh3EZooiQPGyhed8XzxWYjQ4FieJgSYlKKV9OaSNr4w4bE2F9/QV6EzDiRwrK769jWl7GtABBtubKk+iLLeJZvx+LOmPSnS2YOijY+7QYnlnBwJ4N715Jwaye1WG8ofKLoRoPaeGcTGPEnRBzpTJKRe2/Z1W4qqMl4dPhXT5SUdVUtqZo6yDVK1ukOuL8F7BkaBCdOzQwi3xLylRAD2S0YHDyyn/ZWXYRWD1mzZo8EJW8B4IUEEd6Rf6C49+YzfsFUn7E/zsc/O/8AcKuzpF/oLj35jN+wVSfsT/Oxz87/ANwoD0eEICEAHkonWgiqdf8A63UsUWxH7aP/AFzXkPS6ObeL8mzss37Rynl6EqTmUq+fJliwQhCnuRjAIQhCAQhCAEIQgBCEIBAlQhCXuCEIRbDO2AQhClkAhCFABCEIAQhCAErANW7rJFibX56uXcoYCzxKWA3shv1zta9Nja/8FH84Zop8qUQqa2KeU2cT1LQ7hbvI71jlTOeF5ocParrWygdpkukHa1zYOPeupW1V0fGSyu5Ep9iqekh1dgvShR1mGUz6uoq5JniJj9BNmgcTfvTr7adJOJESxYfV0rAAA3Wx97emwXN05yVOD5swvGWMDoaczE9knztI8Oferlw6Xyiip52hoY+Fh2Fty0Feku7p0rWlNQUo4S333NUYJnnyo6JcyZgxSbE8TrJaapkeX9qAPNz4OClsWQM5T2MubJImx7taaFpv/wC9W9uluVwT6/WnFKpSg8fB/mSrdLuVFB0T4jUve/EcyBxJJOqhG/8A71103QvhEjicQqYai3fTEX/9ytJC5anWK8l7CUfllf3MvCRXdH0QZThlvLh1O+219Lh/FOcHRrlamm1xYXDbuBcP4qYoXNO/uKn/AJH9WZKKQy0uWMGpZNdLQNhcOYe7f505tpoDYdU5gbsO2St6Fj67c4x4kvqyNEfIXrH9kNe9rR/eJWRqJD2Tqt36lgha5V6svem397J0ryMusdaxcSsGsDSd73SoWtttYZOBbgCwCLANtx3SIUbeQB5GnZt0hAIHZsQlQpTw8okUEEWIsgGxsOHekQsZLLyMg0drd23ggtGvd+3ghIVKeFhLd8CLyZXYyFziL8eCc4cSo6XAzUyyaY2NAc4g7EhUf05ZjqWPosAw5zmVNRKxpc0kWDwW8Qb8fQsME6FMYq8CpjUY1KDOxr3sNfNx8NK996L2fhRdd8tYK+6k29I6ex4xOmq6/EKl04tUNdGyOxO4kPNXvI1pbp09niqjHQlh1NhobhlZWQVouQ4VTmMvy80XTO+g6QslS3pZqGvpOQJmnfbhzHcF7H5nGRT2Rh1dIuXHWsTUP2/9Ni9LZf8A9A4d+bR/sheP+k/M1ZmDP2BsxCimppoJ3El8PVtddjeG+/BewMv/AOgsO/No/wBkIDuCVCEAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP8AiN+hbu9aaP7Tp/xG/Qt3egMSmDMDT5RGbbWP0p/dxCZcw+czw/iqfr0dVjNG23/eDShCF8lUuC3BCELMAhCEIBCEIAQhCAEIQjQBIlQj3C2BJuEqEeO5PANO+6wmbfcLNCjl7EJtMZawF0pdbZMtUSZtuGylFTTiYua7bw2TFX0z4onjSSyx3HFd9vUTelosaE13NmGEF3FSKQaI1VObMYdhmXZ20xJqXOaWAbm19+d0/ZVzI2pyex1W8tq2l5IcbHjtxN1vuLCo4KcVy/wOHqVdUllndj9eISb722O/A3UOnxJxkuwbeKzxTEvKnnS4Hnb402PLnAAi3xL0NlaqEVHB8/vr7xpYix2pK95kDZeB9Kcpz1Za8bXumGgYXTAngApBTxOnIuNgs7uEY4TMrNzaJDRP62FpLrEcE9020TXPNzZNEIbBTGVwJZGNTgONgmCi6U8DdjE+E1MVVC5khY172MaNhfjqXmqttK5nKNHsettU8Zkb+mXD/Lsi4nO4aXw00r+/gxV5ljMmeJct0tLgeD1QhgYyMTtnaQ4AcbEbXCtXpApzV9H+OxwXcZaGYM3vclqinQLikdXgdbQObaelqOpIIHvY239KtLS4qUumvEU3FvOTc0nLciGaco56zh1MeLeUMY0uuXMa61wByI7guzAei7NeE0fk9BmKSkhc7U6MUbXb24+erxvqaAdnLJh0i17rkXpFXilTUItfJ/mSraOCoH9FmO1dvLs0OkB4g0I/zpX9B1E8NNRikc5vuPJSP99W/qSEB/E2WL69c7OCUfllf3MVZUedK+iKSxToWo6doNI1s3hER/vKJ4n0eNo2k+ShpHO3D516aBa0WO4XLPR004PWRg3/ALoVjY+l13bP9piS+OX/AHKu76L4r1U5tP54X9DyY7LTo5HdXFqsTw//AFXBW05oYHukgIaBe+pejsx5ajtLJAwAEk8PT6AqlzDgL6mGSJzSLi3Md3oX0bpHpFQ6isSST+X+Tz07i5s56Kq289yH4bidNR0NoYxPI+TUQH6bAgXXNilfDJiVOYgA27tQve3Cy7XYe+lJYIwbbcP+SIsBnrJQ9oaPG4/grmFjBVfFcvxRbLqMKdLTKRiHdsAbbcF1N2bchOJwGWCHU8tLh3En+CbKiJzXFp2t3q6ppR3KWV/GvLQmYPmF+wdJ5rWXk8XrWRYoWamsYRZU6CSTFcARxWI7O3FKhYrCeTa4SfuszjlczzdlOco44Kevgf1lyC0H5R6FA10YfUmnqA7kLfSuS+tIXtCVKSzlHFe27l+1p7SXl3+Z6rpJ24phrJ2HVsL/ABrOghEYs06Wjci3BQrorxoV9G6nBuQWj5j6VP2RBocTsQLj0lfnjqlm7G6nbtbI9f028de1WeVs/mdBBJaGuuXDUNuIXVhU0QrBE4ky3AHZPZUezDjEeE4FPX1d29UOrbpsL3BtxIVG9HeT8a6R6qrxr2wqqSJ1jCPKpYt2ksOzbj3qtPRiw8W48ftH+5FzNxTgyc9M2YKCvzxhGFRzt1RGnmc7fYtndcWt6FfVPMyoAfGC5lzpdY7qmMC6DKKKd8mOVlTPUEHTJFUucQOW7m343KSp6Msz4DWyVWWMWjfEDdrK6rmf6OAaRzK+jJYK4lvTt/V9WeD/AN29RL2KBH8hnb8GQ3/wlRjpCzbmgZSqqDMGHkizx1sFO4M8xw4m3pUn9im0DIjzxBbDsOPmlSC8EIQgBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/ykn7tyAc/Y5/1bYX+bQfugrRVXexz/q2wv8ANoP3QVolCMAVx4nc0rwO5di5677Xcue7/cTXmmZRW6ZE5rO4cjuo/jjB1g7nXKkBG7/EpqxaLXDq5t9a+UUZaKzR33UNVMrnFotLntPMWCilS10MxaRYnceCnuLU+qNz7bi6iWJQF0ZlA3abL2/T6+Yo+bdYtmpuSOCncWEWWdbTtqIwffLTv4Fb4ZerPa3C9x0y+dNYPOpuEtQw1VOWjcWKbZYHAm42UzqII6oEssPFNVThpaTzXqadTxCxtb102Rd8IutToHHgLp9mowNiDdc7qTbmsnTZdU+qIZjG5vEIDSeATn5M5t7AHxWPUSX2aPkWOhnUuork4WRPJ2aStrYm+/2K7W00jzYgAehbGU5abaSfiWWjzNNbqW2xytjO2gXXZTU9xqI7fcu2CikfazLDwTtR0jYN5LFJThTjlsprm9cu5zYdRnUHPbbdd9TIIwGtPJEszTtHstDiD53Fec6j1F6XGDKqUpSeZGLrCxJ3KeMHhuNRG/AJrpoHTSjbshSjDaV0pjhjadrOJ8F4i7uMJ6i16dauc1IkWD0xEbGEdt/Ad/FTCjYI4WtHeo/RXbMXnSyOE3u7biopkDMU9Rnmtp6sStg6pwa5ws0nXYWuV5G5o1LpOoux9I6ZDTDcthgI4pCLkHkVm1ulziAS0/GtTWBou3Ud+ZuvPvZ78l1FpDdWxh0jwO8pgrIwA5nv+5SWsZYlwTLWQk3eF2W83Hdndbyw18CNVtO57b++B4W5JnrY2yFukBzxe4Unq4SZWgcC25UHzVmilwKvEUkMzgSQS1jSNgO8jvV5ZudWXslvTuY03qbOXEabroJWuOi7SBzuVWUBrqLGauKnY9745NJANrbK3aaalxmlM9E46dPMjjb0X71W82vDc8vjqG9ipke69u5npXpLGpJSdN8mF9ONZRm9l59zmeMdqYZNTJGh4LORXFS5YrWudL5QWSON7dXf+KsWaj0SHTwLQVyOic1x2WUL7b2UjrqdGo1ZeLOcm1xlp/2IeMBxDSQ+sPa2I6oetAy1MfPnv/6f/NS5zHdyTQ7uWauX5G2PTY8uTZFm5VjPnvaf/J/zW2PLNM09qNvyf81JNLu5ZdW4rXKvJm1dPpLlZ+g0wYJSRD7ECu2kpIInvc2LzW34ldTGOJtZb3UT5IiwEAHbuKwjUaeZMzVpRim1BfRESkrIPbx+loL2l406l011cJMMdHiNP5K4B2guk1aj3KR4Xl2CnqDO4F7zc778fiT9U4RT1tLKyZjdTmkM2HH5EldJbZZUXFHMHJJGrK/VPwSF1N2gNIJB9AUppIydRaC4O4FM2XcKdh8Lo3W0F1wLnuAUlpITYOGwbvZUN5X3eJMxUpRo8I7KNpsANjdPlMwGSO7rjnsuCiiF7lPFHGC4LztebbyytrPPJ2garbafnWRvwA+NA4JVyJnBhHFWMd1EjQdRsodi1zC5oPaDuCm8w1EhRjFIWtfIDxJJVr0+apSSZTdSpuaZXmLxOdG19tXFMlhxIsQpViFOLvie4AnZoJtdRuaF0MrmPHHe695ZVm4o+a9Rt3CbkbaY9YLE2W7CaXqs0YXNrOgVMd+zyuuJgLXWB4qNhlVmzNtLhVFM6HtsJdrLLXOni2/evY23UnGjonyaulUZVLhNcI9NdK+OUeF9H008hBEhh0tNxcF4F72XP0EVUEnR9RUok1TNlnc9ljsDK4hQyPoJqqlrYcWxaWanFuyK6V3Dhs5tuKe8W6G46djTlvEqqmlb5omrHtbe3c0d6q201k+lQ22ZbkhtE8WsA0gfIvKdH/aYZblWU/7KngxDP+TmPgq46OvpADZ0Eckr7WsN3Adyq7JOKPxrp7pMQlglgfNVwExys0ObYW3HJM9hDJ7IbwHghIzzR4IQkj3SL/QXHvzGb9gqk/Yn+djn53/uFXZ0i/0Fx78xm/YKpP2J/nY5+d/7hQHo8IQEIAUVxH7aP/XNSoqMYkP50fBeV9LFm2XzOu0984xzSrH3xWS+dYwWT5BCEKO7IYIQhSQCEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACxILjYDfjdZIUrHck4sUwfDcZgdDi9LDVtcLAStJ8eCr3JORKrKueKmqp4BT4fLTvDQxzbai8EbXJ4BWekcbC/Gy6qXUKsKMrftIwcCFdL+BDHcm1rGDXURBoB2vu9vf4Ju6Fs0nH8CNNVSOM1M57bG52a4NHJWOBHPGLtJMu5BXnegxBvRz0j1slVSVIo6mIMc+1mDU/UTc7DgrXp8Vd2k7Rv2k9SNTymeibhFwo9lnN+C5lZpw6tp+sH+r69rncL8AU/E2cGtY9tuLnDaypK9KpbtRqo3KRkhHx39IQtKTy0ZrcEIQiWFghghCFJAIQhACEIQAhCEAIQhACEJDwQCoQ6zmgs48CoN0w5mnyxlWSop7dZo1eaDwcBz8V0WNu7i4jBc9hnSskGxySmzB0zU7KYNm8nip5DcEWIkI52XpjDgBTRtLQHMFrdyo7ocyjHhWHy4rPqNTUaiC9xJ3IcOKu3CyXUERPnloJX0Po9aEq8qUPditiur77naNQ97t4pfOadQWSQ+d8S9Icp5a9kSxjekfL2hgb/ADh245/W2r0vl/8A0Fh35tH+yF5q9kh/WRl384f+7YvSuX/9A4d+bR/shAd6EgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0Ld3rTR/adP+I36Fu71DBi7iEy5h85nh/FPaZsw/Yh8X0qs6ys2czbb/vBnQkSr5E1gtwQhCyAIQhCAQhCAEIQgBCEIAQhCAEIQhIJLpUKY7oyQjtPGQ6SeG11VPSBUZtwqtEsUtQMLOnURMy1ty7s8eCtVgJl85pYuHGwGYTVSTBromxvJLh3NK7OnVlSqe1HJqnNrgoGR1VWY7QVFbUSPonxPdZ1iPRtxTZmvFpaHFpI8OqpGQODQGtFhw34hS3L9VhtLVYxUwwTV9W+oDooKd+twGnezUzY5huE1mO4ZNUl1DK6oAfBUzaH2ttsvoFhWpU55qLbH4nB1Zu5pqERoy/Li9ZUiQPlfEL3JeAp/TU81QA0tN/FTbD8qUbKCmfRtPVvja6+om9xxBXZT4E2J17fSqq767SctMF+P+DzdHoMpS1P9fiRzC8Nu2xHaupJRUAADQ3dOkNA1jRYbrsiYGDkvNXF9OpLPYvrPpyorDNEdEyOIslaHMeNJaeBBVY9KnRpS4lSjEMu0EMNexzesdGA1xJeL7uPddWs5xJCXiLHgtNh1CdnUc13LVwwsI46KnL8Gjo6tg1Blng73BCpLB6s5F6T6qjtogxB0tW0DhudA4X7lfKqHp9y/JLDRY1TQyPdTtZEdAJO8hceC7uk11UnOlU4msGFWOEmi4CY5Hlw2APctbbb6eF1XuVulXAcXZHTVkzKCe5P85mYy9yeV1YMMkc0bHxyMfG4BzXNNwQeG64LuwqWk9+DZTkZ2WLrbX2SXeJiB5pPcsmiwseN7rjw29uDY2LZtkgaSkI3St2CiTT2GMLYwnjDo9LwCCo/ieV6aqjcWMbc/wB3/mpGSlW+3uJ2zzSeDlubWlXj+1RXU/R7BIHOLRf8UetM9ZlQ0LT1Ox9AA/irbId8XgtNVTNnZZwCuqHpJeZzKX9PyKat6N2lSLSX9fzKGqI5oZDHPc+JTHi2FOnBfDtffayvDFssR1EbntHa9BKg+J5cqadziyN5aD8Ele/6L6XQeIVX+voeQuuiV7CfiU+Pl/kqKpgMD9Dr3C0qe1mGOlLmzxOFhsdNlHK/BpGvJjBt4Er3tv1GhcxUqb5Oi36rn2K3P6+AyoWU0E0Rs5rrd9lgA2wu4A+krt0yayty8g4zWYzFWEztMb3dwK1V8tQIbQaT/wCW65WTTVAihDm3fIGOZbtWOy5ateVPhYNkNOduS0+gDEHSY3LE47axz/uFX5X1kEEGqchundpsTuvLuENny7U09XRVMFM5rTrE++/DmnnG87ZixOqaOtgfFFZ7nR04ta1uIXynrnRKnU79zp+Wf1ud9Sm+mW2ZbOTz9Sf9NWOUz8kdUHB0sk9PpbY7gu8FYPQZQHDsiUNO+lZA8dZuDe95Xn+KoTo/wqpz7msTYhIDBR9ZHYXaCR2hw2XqjLjQyJzAAA0cALc1qs5xs7qlaU++c/Q2QlKtQVSY7DVqILbem6Gtc0WcS4d5WaF6s0FddOjQ7INXrJa0B/p/1b1E/YpWOR5Q3YaYbEc+yVLunb+r6s8H/u3qJexR/oMfxIf2SgLwQhCAEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Cj/ACkn7tyAc/Y5/wBW2F/m0H7oK0uaq32Of9W2F/m0H7oK0kAhWit+1nLeVpq/td60XKzRl8jKPKImR5/iVyTx9aws711s89/x/StMg7S+QVZaa0vmWslmKREK2m1SPiI5fSoxXU7YZXRvHZJurDxKk6xpLRvZRyro+uBhcLXN7n0L0HT7tJLJ5nqNn4mSvq+hcw62cPQuIOBBB4hTGtoOqJGlzh6Ey1VDG8m7XA+Nl6e3vElyeKu7CUXshoikdH5pK3sqBf65uiaifGOyCfiK5y1zT22n5FdW3U5w4ZWzoOPKOp4pZBezbn0FYGiheOyB8i0gNtezlkJGt5O+VWlLrsk/a/X4GvVJe6zF2FtJ2NviWIwxoO7vmWb5NRGkkeKx1O710fb2/wCvyJ8Sfdm1mHxtG5v8S3Mgp2cWtJ8Fyh7hzRdx9PgsKnXG1+vyIbm+51mZrBZjQFzySl2xKxEbj7x5K2MpJXHdjh8RVZX6tKonl/r6EwoSk9jRoINwtsUBlcPSnGDDdQ7W3xlOtNSPsGsYdha9lQ1r1Phlpb9PnJ+2jnpqVsOlttzsurFKXGKXDzU4PJKx+1wx7W7EXPH4k+UVAGDU/c9yd6OkfUvaGi+k+Zbcgc1QXN/CEsy3PWdPsdDW2xXeVqvHcwsloajEKmCdoDXjU03vv4clL63Jk7KGGTDqqSCoikEss7A0Oc0bkG59Cac9VWHUedsKLXthnppXFzOsDSbx8x8fNdtVnPyrC62jxDDa+CkdTyNZVOb1cbnFpAAd381oqRnUmp03hcnpKUNKwNE2PZtmxsUGDVlVUMYXNcetazlccfjVs4bFUxULRXPd154gkH5wor0UvoJMtRx4e9j5YGMa67w91yDx5qZvs/cntKn6pVi5KnFYx38zrpLO5onZriTVK0G7U8nYLiqIdfAKtjN9zvpT08jBVQlj9xe/BRnM2WsLxWmf5TTRPqfelzbnl6fQpvNHquLcFwS0xBuBdWtleSovMTrShUW5WuR8v1GDUVRTTjS8yvkaLjzSduBUf6UcNMEdPi+ixgBJI/vODf4q35qV733Ng3wsmfMWFeXYRWU7G6idNha/BwP8FdUOpaa6qM3VIqdPwkRXAZY8UwuOqbYk3Z8i6H0DS4mwULyPj1Nl1s+HYxDNHGHPc1z3Bgu53eVZOFz4fi9GX0FRFICQS1socRtfku65peA3OPDOiz6hrhiXYY5aFoHBaPIx3KWyUuqR7SNIaLtvzK1+SH4K5Vd5Wxaq81LKIuaMdyybRjhZSbyQ/B+ZZCl9HzLF3LMJXTGGHDm8dIXQyiaH6nuszhaye20hPIrbHRvvw28FhK623NMrtjUymfsYIwW997LuhpG6Q95u5u9rcF3tpDzB+JdUdOG20tN1yTukc1S4zsc1PTveNTvMC74o9RAj83mt0VI8juHgu6np2tFvfKur1kzinXfBlBFpaAnSnj0sBWqnh711+YNlXzlk4Kk8mY4IQhacnPk0y9lwPemXGKUukEltrXTpiraqWhmGHuYypY0lhezUCeW3NVPLmjN0eLS4fihp6Zh1sZLLRBjSL2G571bWFsq3tN8HJWSeckfzlic/8rqOGmc4RxS/XLGwsWAp4qqdtbCx7ANYYLnwC6jk2pOGYmK2aKaqq2NbFLECG3BHD4hyUWxarxqhfHSU8tPX1DdLWspIdTmDgNQHdbdevtbinPEIPg8t1GxVbODORwpy8zbBpG5TZ0KNEuemTlgtdo1f+oE35rrcVc2mw3EdDZqprjI1sWhzS0jjzCn/AEY4BHgmMUei+t723uSeLgeauqNSMVib3Km3tXZr4tnpguuwEC5KTSHaTpDyDxKG7tbfjZbBsrJRwsI9Zyka6oNNM8SDbSdviXlDDWsZ7JVrY2hrBWU9gOXZXrGb7DJ4H6F5Pov7S0f55T/sqNsmS8j1mzzR4ISt4DwQpII70i/0Fx78xm/YKpP2J/nY5+d/7hV19IpH8h8fBcB/MZrD/wAhVKexQBHt72TfysfsFAejwhA4cLIQAVG8VFqg+CkTzYbKOYs49eNivM+lCzao6rR4mcQ5lCCCLW2BRb0hfNdSfBZN75BCQ35EIsU75DFQksUWKZAqElii3eQEyBUIt/eCLf3gmQCEW/vBFv7wTJAIWOodyNXoU7+RJkhID6EX9Cb+RGwqElx3IuO5N/ICoSXHci47k38gKhJcdyX4lKi32GUgQj4km/cp0S8iNSFQk37kb9ynw33QyhVi42tzF7Jd+5G/cihNdjJSQFxueqAGnhyTVjGAYPjMY9tKGCWV50lzow424J0c0OtccFk0lpuAtlOpWoy101v95i9LKCz7hdJkDNeH1OEzSU9PMxznMjaGi5dpHBXxTVEctLHIx7pI5hpu4bqvOnXDaKuys6aomjbUMMYjJJ2HWC+yduiWqdUZJoWmZs0glk1OaLC2rZXd7SldWMKsl7S5NS2JkLDYcEJHEm9mkG/FKPN3I1Lz8YVOcG5SSBCS9+AKN+5FCXkHJCoR8SPiTRLyI1IEIv6Elx3KGmuxKaYqElx3IuO5Rv5AVCS47kX9Cb+QFQkv6EE9wTfyJ2FRq09oi9ljq9CVrgTwUPL7DYGuseyBvuoD054M7F8j1LmbuZHa23N7VPes7ex5WPguTFWQS4dUslt1TtOrf0hdVhcO2uIVUt4mM1lEZ6KsTGLZJimB7UU74iPxQ0K1MLI8hhfz0BUH0AvDMJrmMaTGKqfTvz1BX7hrQaSIgjU5oJ8V73o1JUryolxj+5wVvdwd44BB874kA9ngkvc9xXqTkPLvskP6yMu/nD/3bF6Vy/8A6Bw782j/AGQvNHskNXui5e0gucKh97fk2L0rl8/9g4bfY+TR/shAOASpBxKVACEIQAjmUJHGwJQA3n4ryn0nf2gcO/LyfugvVdyLG1wvKfSb/aBw6zw76/JsOX1oID1RR/adP+I36Fu71po/tOn/ABG/Qtp2BRgEzZh+xfJ9KdnE3TTmH7Xvz2+lVvV/+JJG6isTTGdCS3pCPjC+RSeZacFsmmKhFjbhdF7cQUAIRe/AEIse5ACEWPcgNd3IAQl0u+CUlv7wUgEIt/eCLf3gsW8AEIt/eCNhx3RPIBCLjuRcdyyw8EAhJqHcjUO5Yxz3QyDSS4NLGtB5hcGO0EuIYVU0TJXs6yN7bgj3zSP4rvcQ4AEbBAsODVtp1Z0paoohpMjGUsnYflymE3VNqKlwBe+VguDa3ELHNuRMNxqAPDBFUsJcJ2MbrG1hue5SoOABAHFA0gOAGzhYrd6/ca9f5mOlHJgtO6hwejo3vc/yeFkQe7i7S0C59Oy6rXKDYgC2wFgiw7lpqa6k3PHJksIy80XScUHwRv3LGUKj2wTlJGW1likt6Eb9yeHLGMEJ+bFWqqghqYTTVsLKiJ51aJBcLZv3LHUBe4IN+KlKrD2oLdDZlb9I/R5gb8v1ldT00eH1cEZc000TeOw4ldPQnizsSyzPT1Mz5Zqed0TXONzpYAAp7VxRVdJPBJOwRygNeDzF1SfQ5HFh3SBjFFDURupy6qk0ge+60DivRW7qXtjJVfeT2NHEi8GPIa4EC4SNue0Vk4uZ1ziO6xSucCQGkHa9l5rw57xwdCkhEI37km/cpVOS7EbeYEJUm/cjfuUqm+6ZLlnYVrib3Q7fYI17WskuL3sVjuuwWEYGN19zssZKaGZhbIxp+JbSQTchG3csoylB5jkxkte0ksDDW5Yo6gEtaAfxQoviuSzcmLh8SsZult7BZB1uSsLfq93bv2W8ff8AmVtx0i1rbtY+WPyKGxHKj23D4wR8SjNdld4cdDbfIvTjw1wNwflXO7D4JTd7CfjK9ZaenV1QWJLP3P8AMqZejzpvNGf1f+Dy1/J+q16Q2/xhGD4NBT5jkjrOzK2BsjGtAIvfZenzRUsLriMg/jFVhNlSiwmuqK+YCavcXFj2ktsLktFvQVYv0xqdRpyp4w/lj+5sVtVtF4ldppeXJWeJxx3rhiDnNJkHVAC+3NdOVqd2JWYGhhqT1Vm8BupPilBLj8mjEYnvLdmHhYcTwUr6LciHBoGiqe0hhLmdktsdV+9di6zS6ZR8SbzOSx2fP3o5Li8rdbcacYtKL7prb8SJ9FHW5a6R6nCJnkMnNRKDf4IsOGy9K5fJc6UnhYLz/wBIcUcHSvgzqcgyCklDue+vdegMCc4xvIFxpFgvP201Wv6Fd8yz/RnotDpUdHkPKEgvbgje538F7Q4yvenb+r6s8H/u3qJ+xR/oMfxIv2SpX07H/wCn1YL72f8Au3qKexRaRkUkkWLIf2SgLvQsQ46jcWCA67rDcd6AyQkZu3jf0pUAIQhACpr2UH9Ao/ykn7tyuU7BU17KI2yHHZhcOsk4cvrbkA5+xz/q2wv82g/dBWkqs9jn/VthhDg7+bQbDl9aCtK5UZAFap94XBbVqnNo37LXX2pS+TMovcidrSv8T9KR7bi6Uk9a/bmfpSg7bmy+N3DxWl8y3jhpM5XC9wVw1WHCW5YbO7xZOj2g81rLCRbilOq4vY1TpKXYilVTdUbPYHeKb5sPhn4tDT6Ap2GuAsLrnnoIpt5GE/GrKlfOK3ZX1unRn2IBU4P1YNjfxsmyXCg42LR8ish2FU4HYe0fKtL8L+DK35CuuHVdPD/X1Kyp0anPt+voVw7BxbZvzBaTg+/m/QrOGEEsH1xt/ArW7CHcpB8hXVT6w+7/AF9Tm+wILhfr6FZ+1LW8R8wR7WM7vmVle1Uo4PB/8pSe1Uvwx/hW59ZXb9fiYy9H4t5x+voVu3CWPNtx8QXRFggFrfwVgjCpSd3gf+UrczCvhvB+IrRPrUv1/wCzKHQILlfr6EBbgzgNmj5l00+EyXGsC3ip23C4AN9z4lZMw+JvBh+Vc8+sSlt+v6nVT6HBNOP4/wDoiUWGxNHbHzJxgoG6W9W0cONlI20UfwD8q3MjLNmiwC5anUG/dyWMOmxT3GylwnSNUjj4bJwjj6thMDGtPm6xsVt6snchbGsaPOG64ZVXJ5kd8KMY8EL/AJBUdfmaXFsSqZp3l4eGPa1w83T4qS4hg+H1tCaCWnibT6SGkMBOq1uCcbNuDbcelKSDyUzva8n8vmb9MSLZNymcsVda6GV7oJntc1psAAARy8VKS0OdqQ7tEEjhwSOAJuRutNarUrvM0THEQIusLAcVnv3JC2/ELVol5MzU4mh9Ox1yOJ9C5JacjknAMANw1ZHfkslrXCMlVS7jI+JoN3DbustElL7+MDS7chSAsFraVg6BjmgFpt4rdTlPumbo3STIFiOSMFxWQtqaaNrj74RAnfxVb4B1eWukaXB4yTTPdK5ocLbNFhsNl6FNPGbFwsGdrdUV09YdRQYvh1dSzxxVhhdZziXbGTfZeg6Rc1LjVRrZ3WxodVRknDjuWdLQOLyJY2gt3BG61+QqQ08DHUkcsI1xucRdvALN1ISAWm3iFTTqVKU3HHc7I3m2zI15B6ENoN1JBSG4OoEd1ll5Nv5pWHrFXyZl638SPtorcln5EeIKkAphzYUGlZzYflUePP8A7JketLzGaKk23F1ubA1pA0i6dmQtZwaflWYYPgrS5tvhmqVxk4G0ryLjYLohp2t3duV072tZHKxGywnl9jU6me5iBbgtjRfikBA4BGr0LVh+RrckxUJNQ7kah3KMPyMRXaw24AF9gRxUD6XfIoMGglrPrM3XQgSMbdx3KnsZAeC0hpPnX7lEs55PizTPHHXSNko2PbJoAIOprrjceKsOn1VSqp1M6cGqa1EWgz1HSU0VIaWOenpr9bUPa7rGgm9wBseNk15LjpKjMdQYCZpZWuka6RtiLu2HgrfpsNpKKgFHC0imaLFuo8L34+KiVP0f0+HZrOMYO9sBfEGSag59xqJdzVnTvaEYyVPKeDllbNsrTprwd1FPR4o+7JYGS6g21nklo3KsfKVIyoqcNq2G93sFvCy0dOUUUvR9iJlIcY2gNsbbFwTr0TUcZy/RS8JROfk2VraXrrUIzlynj+5xXFllotwAABJdJvxLSSOCUDvC9vF7IcMxl+wSeB+heUKL+0vH+eU/7K9Xyj6xJ+KfoXlCh39kswg3/nlP+yp2zkyR60bwHghDeA8EKSCuc+ZxwSoyjjcDaprpnUkrAAW8dJHeq19ig8uZj7nnsmsGkt7tBUrzr0PZPocs41X0uDwsqWU0susSSkkhpPN9uKi/sTmNZFjkTW2YKsBovwGgoD0a3hz+NKj4kXPcgEdwTHiVJLLJdoHyp7dujiFw3tlSu4aKiM4TcXsRn2vqCRYNPiVl7XVPwY/l/wCSkdktyqpejVolx+H+TbK5kRv2vqfgx/L/AMkntVWf+H/i/wCSktyjdZR9HLOPvRX0/wAkesTfBGvaqs/8P/F/yR7VVn/h/wCL/kpLujdZf6esf4UR49QjXtVWf+H/AIv+S302EykO68gHlpddP26FlH0fsU86EPHqDP7Tt7z8qPadveflTyhbfsKw/loesVBm9p295+VHtO3vPyp5Qn2FYfy0PWKgzjB4vhPSjCIvhPTuksVs+xLH+UiPHl5jV7URfCej2oi+E9OyE+xLH+Uh40vMafaiL4T0e1EXwnp2Qp+xrH+Uh40vMafaiL4T0e1EXwnp2Qp+xrH+Uh40vMafaiL4T1l7URfCenRJupXSLJcUkQ60vMbPaiL4T0vtTF8J6ct0b96fZNn/ACkPGl5jb7UxfCegYRDzc9OW/ejfvU/ZNn/LRHiy8xu9qIfhPR7UQ/CenHfvRv3p9lWn8tDxZ+Y3e1EPwnoOEQ285/zJx370b96fZNp/LQ8WfmVx0t5bpq7JlUDqD2lgBaBfzgVEfY90uHxZVbHPiThMHPuyWYC3bNrXKuyvpI62nfBUs6yF3Fh2v8ipDMfQWBWS1eXcUbhosD1bITJw9Lieaz9Rt/D8LTsT40i4mYbTSx3hmLx3tcCs/aeAuDtb/mVWdAeLV2vGMIxSvNTNR1j4G6mBpIYAL7BXG11gLix7lp+yrRbaUR4svMbxhMJ4Oel9qYvhPTlvy2Rv3rJdJs8fu0T40vMbDhMXwno9qIvhPTnujdPsmz/lIeNLzGs4RF8J6T2oi+E9Ou6VQ+j2T5pIKtLzGn2oi+E9HtRF8J6dkJ9jWP8AKRPjS8xp9qIvhPR7URfCenZCh9GsX/4kPGl5jT7URfCej2oi+E9OyDdR9iWP8pDxpeY0HCIvhPWJwiIbhz7p43QRcJ9iWP8AKQVeXmM7cJjDjubkKLdJ8PtTkPFauIuD42NNx+OByU+DbP1eiyaM44GMyZbrcKdL1IqWhusi9rEHh8S0fYdjnMYIy8eRXHQPl4U+TDLMLSyVcrviOk9ytiN8FNA1rpI26Ra5cAm/AsHbgmECkjk1uBJDgLbkD1LzP0z4p0h4Rj+IgS1cWDSTuMUuiHTp1WbbYlWlK1pQrSnHyNUpOR6sp5opWF8ErJW97XB30LYW6gDexXmDol6QcSye+HDs2xvZTTO0tqZnNAu52o7NBOwXpTC8QpsVoY6qhlbLDI0Pa5oNiCLjiFvMTzN7JV7YekLAJXuLWCd5eQeA6tivLLOccFnw7DqaKqDphBG2xLe4DvVF+yYhjqc/YHTzAPilne17DzHVsVs5V6I8oUlNh2I02EQx1ZhjeZBJKTewPAvtxQFnjck8kqxY0NADdh3LJACEIQAsX3sdIBPpWSQjfY2KAYsYzJh2D1bY8QqGxuLAdOoW38SvMeecRpcT6eMNnontfG6aQ3FvuQ7l6Fzb0b5dzVWtqsXw+Kola0NBc+QcCSPNcO9ebcz5cw7LPThhdHhFK2GMTSAhrnG/1sEecT3oD2DR/adP+I36FtO11qo/tOn/ABG/QtvG4soYMDuU34zTPqIrM9HP0pztZFlqr0VXp6JGSljcjXtdU/Bj+X/kk9r6n4Mfy/8AJSYgrGyol6N2zeX/AE/yblcSRHPa6rPAR2/G/wCSPauqPER/4v8AkpJZFu5Z/wCm7Pul9P8AJHrEyNHCqvlo/wAX/JJ7V1n9z/EfUpMLpU/05Z/wr9fePWJkYGF1t9ur+Nx9S3R4VU37ZaPBykKTdbI+jtilvBP9fMj1ioNDcIFu1I+/oKT2ob3lPKFl/p6x/lr9fePHqDN7UN7yj2ob3n5U8oRej9gv/Gv1949YqDN7UN7z8qybhEfvnO+JO6Fmug2C/wDGh49TzGn2oi+E9HtRF8J6dkLNdEsF/wCJDx5+Y0+1EXwno9qIvhPTtZFll9jWP8pEeNLzGn2oi+E9HtRF8J6drIsn2NY/ykPGl5jT7URfCelGERfCenVF1h9j2P8AKQ8afmNQwiL4T0e1MXwnp2SbrNdJsf5SHjS8xrbhMN93PWXtRD8J6ciCkse9ZLpNn2poxdWfmN3tRD8J6PaiH4T042Peix70+yrP+Wh4s/MbvaiH4T1icJgde5ft6AnOx70DYFPsq0/loeLNdxrGDU4B4m9uIC854fgsGCdNk4qqqWmhmgmeAx4aCXTC3cvT4BsFXfSR0X0OcKhlXG9tJiLA0Cp0uedIudNr24kHhyWdOxoUk4xgtx4siVQ0VBNdkVYJSeQka5b2YXATpOq43vYLz3UYLmLo5zlgbJsfkqqaqdJYdQxgAaw+gniV6SpJHSUsLyblzGk7eha10m0W7poeNLzOT2oh+E9HtRD8J67w8F2kOF+6yUajx2U/ZVn/AC0PFn5jf7UQ/Cej2oh+E9OO/ejfvT7KtP5aHiz8xqOERX856PaiL4T07IWP2PY/ykZeNLzGn2oi+E9HtRF8J6dkJ9jWP8pDxpeY0+1EXwnpfaiH4T06/Elue5Psax/lIeNLzGn2oh+E9HtVEPfPTrc9yLnuT7Gsf5SHjS8xmfgkL+Lnpor8mU1U/U6SQn0kepTC57kniso9Ks4e7TRqq5qrEiJUeS6CEXeCXD0NP8E6RYRE0jQSAPAJ4LbrHT2u8rCp0azrbTgjGk3R2gjzqyhdjPTy6B93RU7axg1f3XbL0DSRMpBYua1v942UZwrJUeH5wqceFQHvlfK7RoItrN+N1Gun2TM8WXqSbKnXl8fWOnMTYz2bC19fp7lujY28JwlTgk48G11ZNYZaLayndJ1bZ4i+17B4W4HYg8l4syvj2dqWpONVNXUVUUE/Uy0/VxNsAQ5xJtyF16h6Ps/4VnGkklo5oxMzSXxNJJbq1WubD4K7TA4OnQE5ArNIHB/H8m9Vt7GvMuGYPk1zK+qDHBkQtqFvNPpVkdOjrZBrNTrMIeLd/wBbeqg9j90b5azTlKSfFsNinNoiS58gvcE8nDuQHpLB8SpsWoW1FDIZIS5wuTvsbFd2+oabWsmfLGWsPy1hbaHCIG08LXOcA0uPnG584lPLGBvjzKAyba2yENFhZCAEIQgOfEKyGhpX1FS7TE21yqF9kRmrC8ZyUyGgqQ6TXJsSPuZHIq88dwmkxvDZaHEIhNTSW1MJIBsbjgQV506d+jLLGWcox1eE4XFBOZH9pskh94T75x5hAWP7HNujo4w1vPyeC/6MK01V/sdyT0b4Wbf92g/dhWhf0KAItcwLo3AcVsKxANyVEoqcXFkJ4ZG5MPnLnFoHE81gMPqbCwafEqUG5CGggcV56Xo5bTk5S/p/k6Y3EorYjIw6p5sZ8v8AyS+1tSRYNjB8VJd0bovRqzXb8P8AId1MjXtXV/3P8X/JJ7VVf/h/4v8AkpNuk3Wxejln/D+vqY+tTI0MHqfgw/L/AMlmMJqB7yH5f+SkYQsl6PWX8tfr7x40xljwcFg1mzuYB2S+00fwnJ5+JHxLYugWS/8AGiPGmM/tOwcCUe1DU8g25Iup+wbL+Wh40/MZjgzTxJSjBY+bj8qeL+hIQO5ZLodiuaaHjT8xq9poO8/MgYPD8J/zJ00juSrL7Fse1NDxp+Y2e1MPwnpfaiH4TvmTkhPsWx/lojxqg2e1MPwnpDhEJ989Olko2U/Y1iv/ABoeNPzGn2oi+E9KMIi+E9O1/Qi/oT7Isf5SJ8aXmNXtRF8J6BhEV/OenTdBvZT9kWX8pDxpeY2+1EPwno9qIfhPTjv3o371l9lWn8tGPiz8xu9qIfhPR7UQ/CenHdG6fZVp/LQ8WfmN3tRD8J/zI9qIPhP+ZOO6LFR9lWif7tDxJ+Y2PwiE6e0619xtuqS9kzlqnfgkGIs6xhpw2LsADzpFf5sbXTVmTAKDMWGSUOK07amneQdDi4DbccCCttHp9tRnqjBDxJEbyTBhftFAG4mZQXO2fM0nj3XUoGF0+kEPcWngRYqgM29EeI5TwSvxfBswGGOjiMrYm0wPD0uurZ6IMYnxjJtJJVVBqJ4442PeWgbiNt+AHNYS6Vaybk6a3Hiz8yTDB6dhvqefkWftTB8J3zLu1E6bbjvWVz3KPsq0/lonxJ+Y3HCIfhPSe1MPNz05XPckNyofSbN800PFmu42nCIfhPSe1EXwnpz3SrH7Isf5aHjT8xs9qIvhPSHCIrec9Oe6N0+yLH+Uh48/MavaiL4T0e1EXwnp2Qp+xrH+UifGl5jT7URfCej2oi+E9OyE+xrH+Uh40vMaRhMQ5u32WLsHYPMe/f0p3cAeISEbbCywfRbB/wDiQ8efmNIwhnBxJHO5WPtRfZsjg38ZPAvax3S222Cx+w7B/wDjRPj1CjfZIUjoMmOp6dzryxPJN7cHNVl5TwSLDMGpI2AbBrydubQtPSDk9mbsPbTSVAgAa5ty0u4ken0J0xqGrjy1VQ4aXNrG05bFpAJLg2wtfZb4dNt6UNFOOFnJDqOXI4zVdPCAZZ4mjhu8BbQ9rmtdGQ5pPEG68UZxxbpDZj8mG4pU1cJ1uMYfHCbhpvyHero6KOlDq20WXs0t8kxZ0mgMlddx1uJb5ot5pB4qxwjW0XdMLxv320n6F5JdV0+HeyLM1S/TE2rgN9uTQvWZkbJTOfGdTS0kH0WXkLEcIosd9kEaHEImzU8lVA2xJAsWi/AgrCHGQj1NhebMIxCYwUtUx8jWaiA5vAWHf6QhMOXOifKOAVz63DMIhhqpIzG+RskpJBIJ2LyOLQhZED50iX/kLj9vvGb9gqk/YoE3x0Ef97H7BV19IO+SccaHXc+jma30nQV5r6A894NlCrxunxyqFPK6quG6S64DSOQ70B62tfvRbxVWN6csm2/0k39G/wBSX3csmfhJv6N/qQFpEJLeKqyTp0yW0XdiTQPyb/Ulf05ZNjAL8SaAeH1t/qWOnfILTsksqtb055McLjEm2/Jv9SPdyyb+Em/o3+pTuMFpW8UllVvu5ZN/CTf0b/Ul93LJn4Rb+jf6lO444LRsiyq73csmfhFv6N/qR7uWTPwi39G/1JuNy0bJQFVvu5ZM/CLf0b/Uj3c8mXA9sm3P/hv9SDctOwRYKqvd1yXt/wBpt3Nvsb/Us/dwyba/ti235N/qUEblpWCLBVb7uWTfwk39G/1JPdyyb+Em/o3+pBuWnYelFh6VVvu5ZM/CTf0b/Uj3csmfhJv6N/qUYJLSsPSiw9Kq33csmfhJv6N/qR7uWTPwk39G/wBSYBaVvFFlVvu5ZM/CTf0b/Uj3csmfhJv6N/qWSBaVkWVWO6dMltFziTbfk3+pL7uWTe1/2k3s8frb/UgLSsiw9KqwdOmSydsTb+jf6kvu5ZM/CTf0b/Um4LSsPSiw9Kq33csmfhJv6N/qR7uWTPwk39G/1KNwWlYelFlVvu5ZM/CTf0b/AFIPTlk38JN/Rv8AUmPMFo2RZVb7uWTfwk39G/1IPTlkwccSb+jf6k0oZLSsiyq09OOTQBfEm/o3+pKzpxya82biLT/6b/UmlDJaHI3IWueohiYHTvZGw83uDR86rB3TlkvUWtxFpdzHVv8AUoT0s9KeCY/l+OHL+PSQVJ1j63Eb7tAHEd6mO73A9Zp6H5Jq2sxfLGI1EFXUSuqHB1UQx2olxsGt8Oa4sidKlbgtZR5bzfh9aKxzurbOyle1hO7j2nnfaycModMmV8Oy7QU2JYyZ6uKCNkjnxOB1BoB4DvUD6TekfAsazRgtRhxZPTwTPdNMdQLQWWBsR3qFlvcHqWmlbPTxytvpe0OHgRdbbD0qpcP6bsmw0FNE7EWhzImtI6t+xAA7l0e7lkz8JN/Rv9SbgtKw9KLD0qrfdyyZ+Em/o3+pHu5ZM/CTf0b/AFJuC0reKLKrfdyyZ+Em/o3+pJ7umS+sDPbJuoi9urf6lKyC07IsqsHTpksu0+2Tb93Vv9SX3csm/hJv6N/qQFpWRYelVb7uWTPwk39G/wBSPdyyZ+Em/o3+pGC0rD0osPSqt93LJn4Sb+jf6ke7lkz8JN/Rv9SxwC0rD0pCB6VV3u5ZM/CTf0b/AFI93LJv4Sb+jf6lOAWiGot4qrR055N/CTf0b/UgdOWTXcMSb+jf6lIbGvpjizrT4jBW5YMEsALAYzHJIbgEnZp8FUGeOk7GcQwabL2aqKmhq9TQ17KV0Tuwbnd7ieNuSvH3cMmMFjiTWnjbq37/ADKlel6tyTmmqfi9LjZdXXcWweSm3aIJ7RPLwRvuTFjJlvO81fhgwHGKCOqpN7SUdMXVDdR3Jfc224bKXdH2YqzBc7UuHYDPLJRyROe6KucZHtPC1gRawHCyo3BsXqcHqzU0FQ+N487SbdaAdmnuVuYZ0n5aw6jo6+HLlAcfaGNln654e69tZJ0270DHz2RR1dIWW3EEPNQ+/wCjYvTGX/8AQOHfm0f7IXkHpIzlQZ5ztlyow17TKKh+uME2b2GgbkC/BevcvkHAsPA4injB8dIQg7wlSDj4JUAIQhACOZQjgd0AjefivKPSibeyBw3j9nk4fkmr1cCADfxXkrpkrYsK6a6HEqvSKRk0jnPJ4Dq2jh4oD1fSNvR0/HzG/QtoG54qqabpwycKaJrcRadLAD9bf3eC2e7pkwA3xJoP5N/qQFp2Qqr93XJf4Tb+jf6lk3pyya7hiLT/AOm/1IC0kiqz3c8mfhJv6N/qR7uWTfwk39G/1IMFppVVnu5ZN/CTf0b/AFI93PJn4Sb+jf6kG5aaFVnu55M/CTf0b/Uj3c8mfhJv6N/qQblpoVWe7nkz8JN/Rv8AUj3c8mfhJv6N/qQblpoVWe7nkz8JN/Rv9SG9OeTHODW4k0u7urf6lI3LTQqrHTpkw3tiTdtj9bf6kvu55M/CTf0b/Ug3LTQqs93LJn4Sb+jf6ke7lkz8JN/Rv9SjI3LTQqs93LJn4Sb+jf6ke7lkz8JN/Rv9SZG5adkWVWe7nk38JN/Rv9SPdzyb+Em/o3+pAWnZFlVh6c8mDjiTf0b/AFJfdyybr0+2TdXG3Vv9SAtH5UfKqtd055MDrHEmg/k3+pIenPJg44k39G/1ISWohVZ7uWTPwk39G/1I93LJn4Sb+jf6kBaaFVnu5ZN/CTf0b/Uk93LJv4Sb+jf6lGMkZLUQqr93LJv4Sb+jf6ke7lk38JN/Rv8AUmlDJaiS26qz3csm/hJv6N/qSO6dMmMF3Yk0D8m/1JpRDZaqwksW9p2lo3veyq53TnkxttWJNF+H1t/qWmu6bcnTUc8TcTDXujcGuET9jbbkpwZD30j5Iw7PlPDHJWSsnpAQx1PUhhbqIJvsTyVTy1+bOiXGtVYybE8HexrA5kctQ5tzckuuAAA1cvR30n4fg+PY7NjWOS1VJPIw07ZIyBYNseA71LM9dMmU8Qy3WU1HNHWzywyMZE4PZpcWEA3t3lQ0mY9yyOj/ADfS5ywryymiljczSHh7dNiQTwue5S07rzL0LdJuXsuYPiDMXqm0s8skbmRBrnbBpB3A71Yw6csmAD/tNpceP1t/qTCJyWnZFlVvu5ZN/CTf0b/Uj3csm/hJv6N/qTShktOyLKrR055MJsMSb+jf6kjunTJbfOxJo/8ATf6lILTsiyq53Tjk1rdRxFtu/q3+pYt6dMmOtpxJpv8A+G/1IC0reKPlVWjpzyY4XGJNt+Tf6ke7lk38JN/Rv9SkFpfKj5VVvu5ZN/CTf0b/AFI93LJv4Sb+jf6kBaXyoIt3qrfdyyb+Em/o3+pIenLJtv8ASTf0b/UobBadliSQRa1vSquHTjk38JN/Rv8AUkf045MIB9s23BuR1b/Usc4ZG7JtnOmr6vAp48IexlVcEF97bXvw3XnKHOuf8mU0r8dpaGWhju6Uz0cri5t79kucBfcK1z035MdGXtxNrW3FyIn8fkUW6Q8/5DzpgsmH1GOGJmlzbinc+97cjbuRLdslfEpTCc/1mHY7UYnhcVE9lTI7raeqh1tJee1pZqHLYJ+xfMlLHDV4/hdLieH4y0a2xFhhpnnh5gsSAPTsSq0xyCgpMXd7VVJqKZo1Ml0aCHAm23xAqaZCz1hzIZKXOtFDirDpEb6mR12cdVgBz7PyLIF6ZnxOqxvoWmqsQMZeA+/VgjhCe8nvWPsUH6sjSACwDYRv+KVXGIdL+D4hkmtwWOgp6FrzIIxHI517tLRxb3FWX7FaJ0eRiHgWcyEje9+yUBdqEIQAhCEAIQhACpn2UF/5BRW+6Sfu3K5iQBcqnPZOMe/IberAJa+Qne3+rcgHP2Ot/c2wu/3rB+6Cs+w9K85dC/SnlvA8j0VFX4gI6iCGGN7dDjYtYARsFOvdyyb+Em/o3+pQwWlbxRZVd7uWTfwk39G/1JPd0yZe3tk2/wCTf6lGAWlZFlVp6c8mCTQcSbqte3Vv4fIj3c8mXIGJN24/W3+pSkkC07JLKrfdyyb+Em/o3+pL7uWTfwk39G/1LIMtGwRZVd7uWTPwk39G/wBST3csm/hJv6N/qUEYLS0o0qrvdyyb+Em/o3+pHu5ZN/CTf0b/AFJgyLR0o0qrT06ZMHHEm/o3+pB6dMmDjiTf0b/UowMlpW8UW8VVzunHJw03xFu4uPrb/Uk93LJl7e2Tb/k3+pMGJaVvFFvFVaenLJt7e2Tf0b/Uj3ccm/hJv6N/qQFpW8UbelVb7uWTfwk39G/1I93LJn4Rb+jf6kQLS29KNvSqt93LJn4Rb+jf6ke7lkz8It/Rv9SkblpbelFh6VVvu5ZM/CLf0b/Uj3csmW/0k39G/wBSElpWRZVZ7umS+rD/AGybpPA9W/1JR05ZMIuMSbb8m/1IC0rIsqt93LJv4Sb+jf6ke7lk38JN/Rv9SAtKyLKrfdyyb+Em/o3+pHu5ZN/CTf0b/Uo0oZLSsiyq33csm/hJv6N/qR7uWTfwk39G/wBSaUMlpWRZVd7uOTbX9sm2/Jv9Sx93PJmnV7ZNt+Tf6k0oZLTNggC1zuqu93DJzgbYi3h9zf6liOnLJpb2cSabbH62/wBSnkZJ9j8FHiWG1OGV08bGVbDEW9YGuN+6/qVFZm6MsXyi1+LZUrqyWMTanU7p3yixJJsxgHIAJn6R+kfDcQzZgtdgmPS+SQVWudjYiBp0Ac/SrGo+m3J0WHRNkxMOlEQD2mN+7tO/LvUcjkTo16Vm5ixCmwiuoqqmxAO0PElOYhchzhsTfgArdAuL7ryhh/SJgPuue3MkcVJhwna/r2lziR1Okm1r8dlb3u5ZNH/7yb+jf6kwgWjbxRZVd7uWTfwk39G/1I93LJn4Sb+jf6kwC0bIsqu93LJn4Sb+jf6kh6c8mDjiTf0b/UpGS0rIsqtj6c8mSO0sxJpPH7G/1Ib055MdwxJv6N/qQZLTsiyq33csmfhJv6N/qR7uWTPwk39G/wBSAtKyLKrfdyyZ+Em/o3+pHu5ZM/CTf0b/AFIC0bIsqu93LJv4Sb+jf6knu5ZN/CTf0b/UowhuWlZFlVvu5ZN/CTf0b/Uj3csm/hJv6N/qU5wNy0XtDm2JsF516QJukDAcz+VYUyKopYw15HUTSttud7GynDunDJrhb2yb+jf6lprOmvJlTSSQ+2gaJWlhcI39kHnwUPcHnrPnSTXZmqOrxGmpKbE6R3VuLKcxDUHXde7iU5UmbW5rpWszFQSMfF5lThFP1TgeFy/tcB86YOk6DKs9dW4hgmLGvqqqYzFrqcx2u7fe/cmDKmZZcArKbtmooTIOupnO0tLb3I2B4qcYM9sHoroCzNiVZiVdhT5myYbGZer667pgGsbpuSfl2UNo7fVMMtw8sp/2UuB9LGWcBxSGownBKKmMsJ8okZK8HW7Y+932sm/KuLUeP+yEgxHC5GyUklZAWu4XAFuBTjYxPYTeA8EIZ5oPoQhBqniE8ckMovE9ukjxVZY30L5ZxbEZKqWOYPe4udpnLdyb8grPJLrFnC+/JZDTqNhv4ICox0C5T5R1X6y71JfcFyn9zqv1l3qVuNvbglQFSM6B8pNcCYqo7/fLvUqp6N+jjBMXzzidDUR1Ahhjk03mI4SAL1e/YaiSAEwYLlXDsKxOeupaaFs0wcHPEYBNzfiEBAh0D5VJdqjqSDwtUO9SX3Bcp/c6r9Zd6lbg2ACVAVF7guU/udV+su9SPcFyn9zqv1l3qVuoQFRe4LlP7nVfrLvUj3Bcp/c6r9Zd6lbqEBUXuC5T+51X6y71JHdA+VGi/V1Px1LvUreWLtyAQCDxugKl9wjKensxVVxuCah3qVW0PRrgs/TDHgEjZzRubUEgTEHscN16rO5BDiB3JkiyvhsWYxjTKaEVwDx1vVjV2uO/FAQD3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKi9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKjb0DZTB3iqv1l3qVY9J3RpgWX805apqdlR1ddPKx314mway69Uu4cSEw47lnDsar8Nq8QpoZpKF7nsMkYcQXCx4oCuqToNyvPRwSujqS57Gk2qHcx4Lf7guU/udV+su9StljGRRsYwBrGgAACwC2ICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKi9wXKf3Oq/WXepA6Bspg7x1X6y71K3UeKAp93QLlS5JjqrfnLvUod0t9E+Wsv5dFVSQVhfcjacn3hP8F6PPbabJqzDg1Jj1D5JWxMkjBJ0vYHDgRz8UBTeRuhrLGL5NweunjqRLUUzJHXqCNz8SfB0DZTLXMMdVcDb+cu9StDCcPhwzDaWipomMhgjEbWtAAAHIBdo46gNzsgKjHQJlMAfW6r9Zd6ke4JlL7lVfrLvUreQgKi9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqE9AuU7bxVf6y71KK9JfRFl7AMrSV1DHUCRsrGdqcu2J8F6IvZNmNYTS4zQPoq6NssL3B+l7Q4XHDYoCjujXofy5j2SqDEK2OpMswffTOW8Hkd3oUn9wXKf3Oq/WXepWZgWF0+C4VBQ0TGx08V7Na0NG5J4DxTigKi9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6knuC5T+51X6y71K3kICofcFymAfrdV+su9S01HQRlSOnJEdVy/7y7v8FcnIrXKzrIi080B5b6F+jbBM04fXOrmTfW6iaNoEpabNcAOHirKb0D5TZEdcdVfbfyl3qVhZby1huXIJYsNpoYOse57jHGG3Ljc8E9aQ5mk9rxQFRt6BMo23hqv1h3qS+4JlH7jVfrLvUrc37kb9yArjLvRDlzAK9lVRRTawQe3KXcPEelWJG0MDWM81osFn4hIdjsEAoFiUqS26VACEIQAkNr3KVYu0hwB4nhsgA8bhRPOOQ8EzW+N+KQyukZfSWSaeNr/AEKWWIO3BKLC3eUBUHuB5T1kujqrH/7l3qS+4NlBnabHVA95qXepW6bA77pHNvsGgg96AqV/QNlNzgeqqv1l3qVZdNPRtguVqGGSgbNZ74xYylxsZA36CvU7hqsA4tt3JmzNljDcxU7YsTpoZw0tI6yMP4OB5+kICuKfoGyo+CN5jqruaD9su7vBbR0C5T+51X6y71K3GNDGNaBYAWCyQFQ+4LlT7nVfrLvUj3BMqfc6r9Zd6lbyEBUPuCZU+51X6y71I9wTKn3Oq/WXepW8hAVD7gmVPudV+su9SPcEyp9zqv1l3qVvIQFQ+4JlT7nVfrLvUoJ0ydFeXss5OmqqGKp65kT3fZy7gR616ZTPmPAaLMGGS0eIQxzxPaW2kYHcbd/ggKlyv0LZaxDL9BPM2cvlhY8gTuHFoPd6U6e4JlT7nVfrLvUrUoKOGjpYoKaNsccbBGA1trWFl0tFgBe/pKAqL3BMqfc6r9Zd6ke4JlT7nVfrLvUreQgKh9wTKn3Oq/WXepHuCZU+51X6y71K3kICofcEyp9zqv1l3qR7gmVPudV+su9St5B4bICoHdAuUC0NMVWT6Kl3qTNnXoZy1hGUcYraZlQ2WCjnlbqqHHdsbiOXoV7NvxcAD6Fx4rQw4lQVdDVRslhnhfG5r2gghwIIsfQUB556I+ibLeYsq01bVw1XWujYXHryASQSpuegXKVx9aquP3y71KxsuYJR5fw6OjoomRRNaAGsYGgW9ATsL23QFQ+4PlNxNoqrY2+2XepL7gmVPudV+su9St0W3slQFQ+4JlT7nVfrLvUj3BMqfc6r9Zd6lbyEBUPuCZU+51X6y71I9wTKn3Oq/WXepW8hAVD7gmVPudV+su9Swm6CcqRwSOjjqg4NJ3qHHl4K4Vg9ode/m20kIDyt0SdHGCZkx/HqWujn0UkVO5tpS3z9d/2VZw6BcpG/1qrG/Opd6lPsv5Ww7Aq+uqsOgihfVtY15jjDbht7cPEp/B2QFRe4JlL7lVfrLvUl9wTKX3Kq/WXepW6hAVF7gmUvuVV+su9SPcFyn9zq/wBZd6lbqEBUXuC5T+51X6y71I9wXKf3Oq/WXepW6hAVDL0D5TOnTFVcr/zl3qWY6CMogkdVVncf95d6lbaxtpLnFAeUMl9HGA4j0p4ngz4qptNDh5mGqY8eta3j4FWl7hGU23e6OptflUu9SnmG5Ww7DcwT4vDTxCqmh6kvEYBI1B1r8eIT+7ezC0boCpfcDyiDdkVWPGpd6kvuC5T+51X6y71K3BqvuBZKgKi9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6kjugbKoALWVII76h3qVvLEt3c4kkEebyQHlTpC6OMDwrP+C4VAyd0NRSPldaYncOtxVnDoHynI0P6uquR98u9Sn2KZXwzFMapcTqqaF9RTxmJrnRAkAm/FP7QG7Dh3ICovcEylziqv1l3qSjoFyff7DVX/OXepW8k25DdAVHD0D5UpqhksEVQNJBs6ocf4KycCwimwTD4qOgjLY2NDRc32CcvNFiTcoIszcnxQGSEIQAhCEAIQhAB2Cb8awumxehfSVzdUbwRsbcRZOB4LEi4u8cEBUtX0FZVqZpJJY6gB7i7s1Dhz8EnuC5T+51X6y71K23WLRsCPSskBUXuC5T+51X6y71JszJ0J5Xw3BaqohjqesAFr1DjzHo9KvBc9ZSxVcLoqhofG7i1wuEB5s6Gui3Acx5aqqqrbOJG1s0IHXEGzXWCno6BcqWF46q/P8AnLvUrDyzgFDl6jkpaCniiY+V0xDGBu7jc8E9AWJNyb/MgKj9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKij6BsotcdcVWfQKl3qXJifQdlWmwyqniiqmvZG5w1VDjw+JXLvquWi3eioiZPC+KVocx4LSCLghAeXOifotwHMdXmRtcyoPkWIup47TFvZAVkHoFype/V1X6y71Kw8By7QYHNWPw+mhg8rmM8vVsDdTjzNuKe0BUPuC5Uvfq6r9Zd6kvuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKi9wXKf3Oq/WXepHuDZTG4jqr9/lLrfQrdWLxqFuHNAeUafo6wZ/TDVYAWTeSRTsZ9lPAwh/HxVpHoGymXfYqu9uPlLrfQp7HlbDI8yy44KeLy6V4eZOrGq4Zp48eCf27bHigKk9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKh9wTKl/sdVa33y71IHQNlIWb1dV+su9St3e/ossXdkBx5IDyn0kdGWA4FmzLdJSR1LWVmI09O8umJGlxF1ZsfQRlWWJjnx1JLhc6ah3qVg49legxnE6Csq6aGaSknZPGXsDtLm8CL8Cn1lmggDS1uwAQFRnoFyk/SRHVix51LvUs/cEyn9zq/1l3qVtDUHCzRbvWaAqH3BMpfcqr9Zd6kvuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6kDoGyoP9VVfrLvUrdWLuINyLHlzQHlvps6M8By1hVJLQsn1PqIIyOuJNnPIKn+H9BuVquhgkfHU6gXXtUOHPwVl5oy1h2YqWOKvpoZgyRkg1xh27TccU8RRsY0CIBjBuGtFggKm9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKi9wXKf3Oq/WXepHuC5T+51X6y71K3UIDzn0sdEOXMt5CxTFKKOp8op2tLbzlw3cBwXZkToby7jGXo6mrZOXFx82dw7vQrvx/CKTHcJnw7EYY5qWYAPZI0OBsb8CssKw2nw2ibTUbGxRNJIDGho+ZAVj7hGUtLbxVQIHOpd6ke4JlH7jVfrLvUra2u1pGo95WW/cgKj9wTKP3Gq/WXepSfJvR1guUp5ZcLjeJHAAGR+u1iTzHpU137liRckEWvwIQA1o+PmhZAAePehAKhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACxv6VksCEIfAt0Bxv6EjvNWsOaC4m4I434Jgdss26r8ClBPNRXNOeMEy5TPkrqphc0X0RvYXcDyLh3Ku6D2Q+WZJqllRT4kBG4BhEMYBFvyinSZRjq3RdyPjVPfVAZR5RYn+ji/4iPqgMpfccTt+Si/4ijZBxl5Fw37knaVP/VA5R+44p+ii/4iX6oLKX3HFP0UX/EUZRKjLyLfDr80t1T31QOT/uOK/oov+Ij6oHKPKDFf0UX/ABE1IjTLyLiuhU79UBk+28OK3/Jxf8RH1QGUOUOK/oov+Ipyhpl5FxFJdU99UDlEf6nFf0UX/ER9UDlI8IcU/RRf8RMojRIuG/pRdU8PZAZSvvDigH5KL/iLL6oDKP3LE/0UX/EUbDDLfuUKnz0/5S+5Yn+ii/4iT6oHKH3HFf0UX/ERYGGy4kKnfqgcofccV/RRf8RL9UBlD7jiv6KL/iI2icMuFBVPfVAZQ+44r+ii/wCIj6oDKH3HFf0UX/EWLkMMuC6Qkj0qoPqgMoD/AFOK/oov+Ij6oHKA4w4r+ii/4iyyiMPBcF9kC9lT31QOUTwhxT9FF/xEo6f8ojcx4n+ji/4iiLyOEXBuk3VQfVBZQP8AqMV/RRf8RJ7v2UD/AKrFf0cX/EU6kMlwXKXdU/8AVAZQH+oxX9FF/wARJ9UHlD7hi36KL/iJqQ1IuG/pS3VPfVBZQ+4Yt+ii/wCIj6oLKH3DFf0UX/EUmOS4CfSi6p8+yBygf9Riv6KL/iJPqgMpcoMU/RRf8RMMnUi4LnuRuqfHsgMp3+w4nb8lF/xFl9UBlH7lif6OL/iKdLIbRb90mo381VB7v+UfuWJ/o4v+Ik93/KBf2osVb4xxD/8A2KdLMtmXAXbG25WDHvJOppb8apOf2QuXXYiyCCDEBGSQXPhjtw7+sVnZdzXhGYaRk1DVx7+8dI3VfwBKxMWyQ6t9t0qwBFgNvELIWGwWLZkhbpUiULIAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhAJvdKkvuglByG6TUDsDui9yEbX4JgcCEkDc3SPeQRp39C5a/EaOhjMlZVQQsHEySBv0qqcd6eMt4TiQpnR1s4uBqhjjeOF+OsLJIJai3zIdtXZWZd3FU6PZBZRDQX0+K78uqi/4iUeyAyj9xxT9FF/xFg2kTKMs4SLiSdpU8PZBZSv9hxT9FF/xFkPZBZQt9hxS/5KL/iI5JGWiS7Fv9rvRcj0qoPqgsofccV/RRf8RH1QWUOcOKfoov8AiJqIcX5Fwaj3JLnuVQfVBZQ5Q4p+ii/4iT6oLKP3HFP0UX/ETJjhlwX9KNQ71T31QOUeUOKfoov+Ij6oHKX3DFP0UX/EUjfyLiv/AHljqHwlT/1QeT/uGK/oov8AiI+qCyj9wxT9FF/xFAwy4xwQqeHsgcpcocT/AEUX/ER9UBlP7jin6KL/AIiZMtLLhRdU8PZAZS99Din6KL/iI+qAyh9xxX9FF/xEyjFplwoVPfVAZQ+44r+ii/4iPqgco/ccV/RRf8RGyVFlwpN1T/1QOUfuOK/oov8AiJPqgspfcMV/RRf8RMoaWXCSe5YhxN1UH1QeUecOKfoov+Ig+yCykP8AUYpb8lF/xEbSBcG9+KVU+PZAZRI2hxP9FF/xED2QGUhxhxP9FF/xE1GOS3y49yW6p73f8o33hxT9HF/xEp9kDlAf6nFf0UX/ABEyRqRcF0t9lT31QWUPuGK/oov+Ij6oLKH3DFf0UX/EQai4L+lF/Sqf+qByh9wxX9FF/wARH1QOUfuGK/oov+IstLJ1IuAlF1Tvu/ZT+5Yp+ii/4iUeyAykP9Vin6KL/iKMMhyWS4L24pdXpVOn2QWUfuOKH/0ov+Ik+qByj9xxT9FF/wARMPyJci4dVgTdK03F73VMVfshsqR08hjpsVc8NNh1MR3/AEif8ldLOXs0RuaKh1JJqsG1BZGeAPwz3qHlGWCxw432OoH5llutcUsb2gxPa9p4FpuFtuj52IwIb8kqQFKp7jAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQg8CgMb+lBd6VpdK1rdUr2sYOJcbKBZ46UsByvC8OmM84F9MJY/kf7w7lK5Dz2LDuSNiku5Urh3sgssS0kUlRDiTZXNu4CKMAH9Iuv6oDKP3HE/0cX/EUJEvK5RcDXHmgkqnz7IHKP3HFP0UX/ER9UDlL7jin6KL/iIIRk+xcF+9F/Sqe+qCyiOMGKW/JRf8RZfVA5PPCHFf0UX/ABFDZk4SXYt+5WV1Tp9kFlG/2DFf0UX/ABEv1QOTz/qcV/RRf8RE0yHGXkXDdJqHeqePT9lA/wCqxX9HF/xEfVAZRG3U4p+ii/4inCMcPyLhv6UXVPfVA5S5Q4p+ii/4iUeyAyj76HEx/wClF/xEx8RhvsXBdCp/6oDKP3HE/wBFF/xEfVA5RHGHFP0UX/EQnDLg370X9Kp/6oLKB/1OK/oov+Ik+qAyj9xxX9FF/wARYtkblw7oVP8A1QGUPuOK/oov+Ij6oDKP3HFf0UX/ABE1E4Lg3Rv3qn/qgco/ccV/RRf8RH1QOUfuOK/oov8AiLLKI3LguUXVPfVBZR+44p+ii/4iX6oDKR/1WJ/oov8AiKNsjJcCFT3u+5R49Viht3Rxf8RH1QOUOHU4r+ii/wCIpyhlFwg7IuqfPT/k8b9Tiv6OL/iJB7ILKH3DFf0UX/EUNpojKLhJSXKqD6oPKH3DFf0UX/ER9UHk/wC4Yr+ii/4iZ2Jyi4L96NSp/wCqBygf9Riv6KL/AIiT6oHKXKnxX9FF/wARTvjJGpFw3Ruqe+qAykf9Tin6KL/iIHT/AJSHGLFP0UX/ABFLTwTt5lwboJI9KqD6oHKP3LE/0cX/ABEh9kFlIC4hxQn0RRf8RRFN9hp+JcBcBYE2KCTcbqnh7IDKBBcIMV1W5xRf8Rc+EdP2Xq7FfJ3w1zI9RALooxyvx6xThrkjBdAcSLnsrIEnkm/C8XocUhbLRVMUodyDwSPkK7XC/E28CsW0icGwcEJGHU26VSAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAWJ4rJRnPUOMVGBzxYFNBDVFjgHTRl4vbbYJ3GMm7NWbMIyxSmbFqpsItt2HOvx+CD3Lznnvp9rsSmkpcqh0bDs2oikLSdgb2c3xVbZ9wTOlBik0uPQ1b4HPd9dFPIyM3ceBO3fZcWX5cOMYEL2MdyEjwTzWNRuK2O+ytI3FRRm9jVi5xfGBJWY7XT1Ljc6ZdJ7yOHiVzYHhdPVxyGaFhAtpvyUgxR5dhkty1w3sWj0FNmVGt8nkub8Oa55VJaGXlOwo0byFJbp5/odkGX6BzwDTRfIfWu4ZXw0WvTxf4f+a6KYN60cflTmQ0248O9V9S4ki/j063b9z8WM38l8M+94v8J9azGVsM+94v8ACfWnYNb6flWYa2/P5VrVzNndT6Tate5+L/M4ocn4S5gcaaL/AAn1rojyfg5cAaSHf+6fWnmnI6gdly3wlvWN7LuS5J3ddHLPptsu39fzOBuQ8C03dSQE/iH1rppcg5flNjRU/wDgPrUhaex3eK6cPPaO4XJPqNyu/wDQ452NuuF/Uj/ueZdAP8wpjb+4fWumDo2y49tzQU3+A+tSVxNjYhdtIXdXyXNLqV1/Hj7kcc7Shnj+pE29GuWff4dSkfkz612N6Lcp7Xw6k/Ru9akrb3F7cU6tOw2XHU6xeR4qfgvyOOpb0V2IVB0WZTfIG+1tJ+jd613nojyj+CaL9G7/ADKWUm83BOBG65Jddv8AtV/Bfkcs6FJ8EHZ0P5Qd/wDuqjH/AKbv8y2joeyhb/RNF+jd/mU7hC3W3WD671D+b+C/I0uhBFfe49lD8E0X6N3+ZKOh7KH4Jov0bv8AMrASjisft3qH838F+Rh4MCvfcfygTb2pov0bv8y5q3oiygxo/wCy6Nu/ERu/zKygO3xXJiI2Fu9bKHXL+XNX8F+RrrUoqGxW3uU5RsQMNpP0TvWmKr6NssMqNLcOpR4Ru9atgecdlG68/wA5OytLTqt3Ul7VT8F+RU3Hsx2IJP0c5cYwubR0+3/hn1pmdkrAjqIoacW/un1qx6jaJ24UdDtnbjgrmleVZPdlBdXNWEtiIVWT8HhAIpITflpPrXIcrYTx8jh/wn1qVYm4Wb2XcFwmRunzHKzpVJPkoK3VLqM8J/0/IZmZTwgtv5JD/hPrSjKWEH/ukP8AhPrTy1wLdmuSsIv5rlb26UmsnNLqt5n3/wAF+Q2R5Owfe9LDw+CfWuavyjhUceplPEP/ACn1qTsAc3g4LjxRrRBz+Verp2VJwTZrh1a8c0nU/BfkQp2W6C4PUxgd2n/muefA8OYbdRH/AISn7b03v3rkqz2vNPyLqdjQwm/7lxRv6+rEpZ+gz+0uHn/u8XyFcj8HpXv7ULHW2FxwT5y80rju4OPiuadnRxsXllcTqZyR3FqKKnc1rI273TngeI45l6WOpweuqIWtIdojLQCePMehcmN6jM2/DdOrCPJWamlze5vgqpWtKdVxZbR3jkuPo99kE1hZQ5uHVu4eUPc+Qmw42a0816EwPH8Mxyn67CakTx2vfS5v7QC8CYpJRNYAwgy/ADhq49ymXRbgeeZ8TbLgtNW00F2631NLK5hGrlyVdcU405YibInt7VYXKUb8EzZYgxCnwinZiskUk4jbq0MLd7b7H0p5aSQudrJLFQhCEAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEBi4m/ZFysS5pcGk2dxssyLOuPjWqVrzG/qrNk0nSXC4uoQ4NdbUwUNO6oqpRHEzzja/O3LxVO9IfTxgeBxyQYPKytq9NgNMrLEg23LbcVCunbBukCor5XxB1Xh5cbeR0kh0js8SPSqJwoQ0lcWYpBUw1Adv5QdPPucsakmjptKUa08SJVmjOuaM6zOM9XUw0LyT5P1jXNO9xxF9lE4aFrMUbFUASG43I9SmNPJBM5pp3MNhsWkEfMou0OOYhrO12rn8WWC9q9NoUYxw+WvMefaTD3FrnRMPo0ld0WWcNc2/k8Q/8p9az21ANBITrTMb1XP5VxVK0kelj0+2xHK/qNYyvhpH2CL/CfWlblXDbX8miPxH1p4a1tjx+VAFm7XWj1ib4Oun0u1ks6c/X8xvpcp4XKbGkh+Q+tdJydg486jg/wn1pwoPOOxXfYb3DuK0Tuq0eGaqvTLZf+P8AFjdS5FwOVmo0kH+A+tdTMh4ADvQ05/8AIfWnygsIvNcuph7WwIN+a5JdQuOz/ocE7C3/AIPxYzt6Osu2H8wpv8B9a2wdHOXHv0nD6aw/uH1qVN1bbhbaTV1p3HArmn1K6X/f+hyzsrdLj+pG/c1ysBf2vpf0bvWumDoxyq9tzh1IP/Td61KCTo4LsoydHD5lxz6xeL/v+C/I4521BcIiA6Lcp3F8OpDf/wAN3rXczomyjYE4dSH/ANJ3rUqvuNk5sJ0jZccutX/8z8F+RyytodiEs6JcouP+iqN3p6t3+Zbvceyh+CaL9G7/ADKbRbkLrtstb651Bf8Al/Bfkc8qECvvceyh+CaL9G7/ADI9x7KH4Jov0bv8ysEIUfbvUP5v4L8jX4Mc7FfHofygBf2pov0bv8ywk6IcoCPV7V0f6N3+ZWIQLbrCZjfJ+PzpHrt+3+9/BfkROhFIq93RPlEk/wDZdGP/AE3etcOJ9F+WIIrtw6lsNvsZ9asZzW3O/wA6bcZLuosLcQrG26veyklKefuX5FdcR0xbiVt7nGXNrUFML/3D601VmQ8CjmsyjpwPQw+tWMNRA4JhxPapOoE7cld0b2vKWGzztzcVYRyiHvyTgnVF3kkAt/dPrTccqYPc2o4P8J9amj7dQ7suTI8jfsu4qzo1pyTyUFz1K5hsnj6DMMqYR96Q/wCE+tZDKWEfekP+E+tOzSPguWwEfBcrOjulk4X1S8/mfgvyGoZQwgtv5JD/AIT60pyfhFr+SQ/4T60/MLdA7LlkS3q/NcvV2lpTnTyzW+rXn8z8F+RAZsvYe2V4FNFYEjgfWtEuAUGn7Xi+Q+tPtQ5onfsfOPNc85YW8D8q7/U6Hl/UtodQuMrL/oR12CUWqwhjHxLXJhFEz/UsPxJ4BA4AlaZ3f3T8iwdrQXb+pc29zUm1kZ58MpGU0r2xMa5rSQQE14dSufM+SleY5mnZ7QLj5VIKtz/JJdDTYNN9uSb8As6aTTsdRvfwVbXt6U6mjsXCm+5YGRumvMeWJWQYxJPiVOLX66UDTuSfNHpC9G5H6V8t5pijjhrWsrXAEwiKTbYX3LQOJsvH1bNTN1NnfFY8dwCm3CqDFMTxFrMvU9XLIHXBgY542I+D4hVd5bxoyWlm1SbPolqJOwBHis1UvQlhucKHDIm5llibAGj62+ndHJxdxLvTZW0Fx4wzMEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQSALlCxkuG7ED0lADn2F+XeoVnTpLy9lWnea+ua2cbCPqpDc77Xa08wmzpiw3NlfhRbleop2edqY6B0jnCwsBbne68dZgw3GMPxaUZqo8Qhf1jvrs0b4o3HUeGrvN7IFuWPnTpsx7M00tNgDpqKmdteGXlYHg5veCqzxilq3nynEZn1MzjuZLX7+Xxp9wqooTTaaZ8bZLcHOBPFc+ay8U8YcNiRuAuVVZNno/sqjStXV1ZeP13NeG4PSVFFDJJBHqc252TjTZdoJHWNPH8h9aMFDRhtON/MHNO9CG6jx+VctSpJNnorKwt50ouS7LzORuV8N500X+E+tZDK2Gfe8X+E+tPGlp7/AJUoa30/KuP1irnY7aXTLZv3Pxf5jN/JfDBxp4j/AOU+tOFPk3CHM1Glh/wn1rqcGgA7nfvTxSEdV5rljO5rJGdXpdsv/H+L/MZI8mYMXgGjgtf4J9acmZDwAi/kVP8A4D604REdY3su4p5jPZ4hccr24XD/AKHBV6fbriOPqRyHIOX3usaKn/wH1rqb0c5dPGgpj/5D61IKQ9viE4N1WPBctTqV1Hh/0OKpZUF2/qRil6OMtyGxw6l/wH1rpPRjlfi7D6W/5N3rUnoNWo8F33Nt991xVer3iW0sfT8jllaUXskRODorym5gJw6k/Ru9a6G9FWUj/wDuujd/6bvWplS/Yxsuhp3FxzXJLrN+v/L+C/I5p2lNdiIxdEGUnAH2oov0bv8AMto6Ico3t7UUX6N3+ZTun8xbBxWmXXOofzfwX5HJK3p54IF7j2UPwTRfo3f5ke49lD8E0X6N3+ZWChYrrvUP5v4L8jDwIFfe43lA/wD7qov0bv8AMsHdDuUG/wD7qov0bv8AMrFWqRZfbvUP5v4L8jB28Cu3dEWTwP8ARlG0/knetNFd0YZThmMbcNpONr9W71q1rdn41H8VNqx23Mrttus30+ZZ+n5HFc04w4K9PRplnq3OZQUrTY8Iz60yTZCy+JntFFT7G3mH1qzi/wCsvvtsVGpnXqZdx5xV3aXtxUftP+hQXtaVNeyQ2oyRgTadz2UVPqA27B9aazlLCvvOH/CfWpzWfaMm480qPG/pVrRqzknk81fdRuYTWiWNvgMpynhX3nD8h9aQZSwkH7Uh/wAJ9aeTf0pbjbsuVhRlnk4vtW8/mfgvyG2LKGEEb0kP+E+tbTk7CNBIpoR/5T608QWt5rlvs0xm4I+NeqsralKCcjV9rXmr38/cvyIRWZbw2OQtbTRbHuPrXI/L2H6XEwRiw7j61I67SJ3ceJ5rllI6t+kHgrRWlDHH9Swh1C52zL+hGfaTDi4jyeL/AAlYSYLQNYTHBGHDgQCnUX1u7J4rVMT1TrA3ssPVaHZFzSuaz05Yy+1VMT9gZcDjZNU9K1mIaYQGG53HgpM2+k+Cj8mr23N/hH6FXXlvBNRLuM2SLLeb81ZTqGSYdXVMsDSHOiEjWAi9yOHoV/8ARv08YTi+mkzG9tFVtFjtJIXWFybhtuK89VLmiMde5rhbct2ACYa8wSzNZhwfNPbhC7UfkC4b2whQjqizfGTZ9EaGtpqymbPSyB8LrgEAj6V0B3MjbvXlHoTy/wBIEVfFPE80lDqb9u0shvZxvYnZepqMTtgibVua+cMGt7BZpdbe3xqsMzpBv4ISNvbeyVACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEALWGbWduPStiEIwNeM4Fh+NUxgxKkhqIzwEjdVv+rqiM+ex8p5DLV5ZqJYp3biBrI2MbwGx4969FrB17nS4AqJLUsMzU5ReU8Hz8zNh+M5VdJRYuy4uQDr1cbgcPBcWDYtDRQDU3eTfgeS9/Y7gdFjVK6CvjdIxwts4jkRy8VA6LoWyjBNUyvonyOlcHdmd4tt4rHQsYOqlf1adRVVu15nlGlzNSmS4bw380rrOcqDVpsdQ/uOV4dNPR/l3BcDopcPopA985a4dc47ab81KsmdFuU67KWDVNRQSddLSxvd9fdxI3WiVnTlyWC9ILpeX4/meZ/5YUXcf8LkozlRDkf8AC5esfciyf+D5P07/AFo9yLJ/4Pk/Tv8AWsVY015m1ek14uMfj+Z5Ziz9QNiDS3f8Ry3R9IOHB4Jbt+I5envchyd+D5P1h/rR7kOTvwfJ+sP9axfT6T8zB+kV0+y+j/M84HpNwoAjT/8Ajct1J0o4RGe23/8AG5eifchyd+D5P07/AFo9yHJ34Pk/Tv8AWtT6TQfn+vuNT65cPsvo/wAzz87pXwgea2//AKb100/S9gzGWcN/yb1fHuQ5O/B8n6d/rR7kOTvwfJ+nf61rfRbd+f4fkYPrFd9l+vvKK92HBhwbff7m9do6a8E27P8A+N6uj3Icnfg+T9O/1o9yHJ34Pk/WH+tapej9rLnP4fkaZdSqy5SKbp+m7A43kub/APieur3d8C+5t/RSK2/chyd+D5P1h/rR7kOTvwfJ+sP9a1P0Zs35/h+Rqd7UfkVVH094A3iwfopFk7p8wADUYxb8lIrT9yHJ34Pk/WH+tYnofyf1gd7Xy2t98P8AWo/0xZ+b+q/Ixd1NlXR9PeAyOa1sbbuNheKRKenzAWPc0xtuDY/WpE8dMHRvlnCcl1tTh9DKZ44nuaBO4729KdujzoxyrieTsJqqugkM8lNE5/19w3LATwUf6XsvN/VfkY+sTIh7vmAar6B+ikXPVdO+BS2DWAf+lIrb9yHJ34Pk/WH+tHuQ5O/B8n6w/wBamPoxZx4b+q/IiVeUlhlOt6cMCvu3/wDE9M9V0v4PLOXNYNJ/8N6vr3Icnfg+T9Yf60e5Dk78HyfrD/Wt9LoFtSeYt/h+RoqLxFhnn6bpXwZ8bgBuf/DemkdJGF2ddnH/AMNy9L+5Dk78HyfrD/Wj3Icnfg+T9Yf612x6fSjxk46lhTqPMsnmGs6QcNla0NbwHwHLkOesPt5v/scvVHuQ5O/B8n6w/wBaPchyd+D5P1h/rW6NtCPBxy6HbTep5/X3HlpufMPDd2/+xyybnzDgeH/scvUfuQ5O/B8n6w/1o9yHJ34Pk/WH+tb4ew00YP0ftX5/h+R5jbn/AAwi24/9Ny567O+HTQ6WFxP4jl6lHRFk4cMPk/Tv9aX3I8n/AIPk/Tv9asftOtjGxivRy0Tzv9V+R5EGaqMcj/hK558zUr3dkn/CV7CPRFk+x/mEn6d/rWPuQZPIscPkP/rvWa6tXSxt+vvOuPSaEXlZ/X3HjxmYYHSmMX1eBXLNjlODfU7jbzSvUHSp0Z5Ywbo7xysoaKRlTFTOcy8zjc3Hejos6N8tYrldlRWUEuvUAfrzh71p5eKj7VreS/X3nTStKdL3Tyhi+IMlDHMub35FSPKuV8ezZUxwYUCI3WBPWBttwDx8V6un6GsqvrYaiCke0NvxmeeKn2EYVS4VTCGijLGDaxcSuSdxObydCiksFJZD6AMPoGx1WYJX1NXxdHLHG9oNt9wruwzDaXDoupoaeOCMcmCy7m398boa6/Ky52svLMlsJp7zdKL39CVCl7gEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIDFwJOxsk0u7ys0ItgtjTNC2ZvVytDmO4tPAqts9dD2AZlimfFAyjqiw6XwwtvextufSVZxAuCeSDxuEe/ITaeUeI84dGGZclzyy05dPQB2z3ytB42GwVdw4i0Yr1kxcLWJ2K+jc1ratDnOG1gVA8f6KMuYxXCpq6dxIIJ+uuHKyw0LGDpV3USSb4eTx9/KOlZ5hcbd7Su1mb6OKFpePO4WaV6vn6I8oRUMjmUEl2xkg9e7kPFVV0Q5IwDF83ZkgrqOTqacQ9V9dIvcb8FqlawlyWa9ILpNPC2+D/MqpucaLcWPC/mOWIzpRW2G34rl6vb0QZPsScPlNz93esh0Q5O/B8n6w/1rX6jT+JnH0ju47rH4/meVKTPFDGe0P/Y5dR6QMPF7C/ixy9Q+5Dk78HyfrD/Wj3Icnfg+T9Yf61g+n0pc5Il6RXcucfj+Z5spuknDI2WcN/xHLYek3DG7ht9/gOXo/wByHJ34Pk/WH+tHuQ5O/B8n6w/1rW+k0H3f6+40vrly/L8fzPPo6WMJ+D/+N62U/S3hDHkuby+5vV/e5Dk78Hyfp3+tHuQ5O/B8n6d/rWt9Ft3zn8PyMH1iu+y/X3lEnpiwjTbQP0b100/TRgsbbOYB/wCm9Xb7kOTvwfJ+nf60e5Dk78HyfrD/AFrU/R+1fd/h+RqfU6z7IpY9NWCXHZ//ABvXc3pywANsR/8Aierc9yHJ34Pk/WH+tHuQ5O/B8n6w/wBawfo3aPu/w/Iwd/VfkVK3p3wFhFmAj0xSLf7vuAW8wfopFafuQ5O/B8n6w/1o9yHJ34Pk/WH+tYP0Zs33f1X5Gt3U2VWen3AAPsY/RSLJ/TxgbI2vMbdJFx9berLrOibJ8VJM5tDICGOt9fd3H0qrOirIWAYlnbOFLXUEvk9LPTtiJmIBBY8nh4BR/piz839V+RCuZo2u6e8BDtJYL2v9ikRJ085fMOkMF/yUitMdEGTxv7Xym/8A9w/1rL3Icnfg+T9Yf61K9GLNd39V+Qd1NlOe7hgW942/onrjxHplwSoitGN+7qnq7/chyd+D5P1h/rR7kOTvwfJ+sP8AWt8OgWsGmm/w/I0Tk5rDKCb0t4OLXb/+N6bavpOwuaYvDdvxHL0f7kOTvwfJ+sP9aT3Icnfg+T9Yf611R6ZRi8rP6+4452VOaw8nml3SPhpic3Tuf7jk2/y6oCTdvP4Dl6o9yHJ34Pk/WH+tHuQ5O/B8n6w/1rohaQhnHc5KnRrep72f19x5ZGe8PHvf/Y5ZjPmHd3/scvUfuQ5O/B8n6d/rR7kOTvwfJ+nf61vUUlhGp+j9o/P6r8jzC3pAw0NAt/7HLI9IGGabWN/xHL057kOTvwfJ+nf60e5Dk78Hyfp3+tWFLqFWlHTHBh/pyz+P1X5HkmXNVG+RzgNiSfNK1SZmpHNsB/7SvXnuQ5P/AAfJ+nf60e5Bk/8AB8n6d/rW77Xr+S/X3nSujW68/wBfceO2Zgp3OIsQRv5pWqbHqd3C/wDhK9kSdEWUBG4jD5AQL/Z3qpMnZMwGq6Xcew2ahl8kgrZo23mPARkj0rF9VrPsv1950QsKcOMlGT4ux9NK1lxqaRwK48LknkkMVDGHzPO1yR6OK9p1fQ5lCalli8gkbqaRqM77bp5ybkXCMq0724bC67nX2e48gOfguard1KjyzqVNI895A6AsUxZ0dXmaeSnhJ82N0cgNiQePxL0RlbIWBZap42Ydh9MJmtDTN1Ya87AE7d9rqVC4O5Hgslzyk5PLZmlg1tY4AAnUOZK2IQoAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAkcARYi6VCAxIJ359yjebMl4NmemdHilDTyuPB7ow4tO+4v4qTIQHlPPnQHXYcJ6zLdRLLHHvZ5jj7hy8SqWxybEKOUUeKRDW1wF9Rd6P4FfRN5IaS0XPcoH0n5CizlhzYBKyGQm2p4cRwI4A+lRpRuVxUVPws7HjSlx6noqWOORo7LbcCV3UmaaRjyHC21/NK9TZf6FMr4fg1FSV1I6oqY4w2SZkr2tce8C+y2410N5XqcLnpaGldDM5hALpXutcd11pnbxnyWVPrlzTioxxssd/zPLxzfRBwAHHfzSkOdKBrdRBt+I5elcrdCeXqDDxDicBqpezZ0cj2WAHC108nojyfGXnyGRoNuM7lqVlTXmb4+kd3F5WPx/M8pyZyomhtm3JsR2XcE4QZ+w+NjWvbu7h2HKwuinI+A4pnLHaStopDDDVzsYOtI2Gm3DxVte4/k4SMPtbLcc/KH7fOkrGnLnJMvSW8lzj8fzPNMef8PE2nSNQGrzHcF1M6TsKDtBb2vyblc2N9BWD1mNU9RSOZDTsc0vjcXuLmg7i99lJR0QZOc4tOGyix2PlD9/nWl9Lovu/19xq+3rl8pfj+Z56pek/CdQOna/3Ny6vdWwpuoaRx+A9W5m3oRwHFRSHC2in6uUOcXve/YDxT3h/Q5lSGjgjqKJ8kzGBr3tmeA499rrW+jW75b/X3GqXWbiXKX6+8o2h6XMHEmkjf8m9dLumXBg4sDbkH7m9T7pY6NcsYNkHFquioZPKIqd7mWmcbkW71t6MejPK+L5PoKqsw+XrnwRF319w3MbSeHpK1PoFs+W/w/I1/albyX6+8g8HTVgjAxjm9p2w+tvW13TbgjHBugE8bdW9W3N0P5RdTSRwUT2OeLAmd55+KjuUOg3A8PbVe2UJnY6WRzWte9hANrc1g/Ry0fd/h+Rrl1GrLnBEIenrAGtILBcf+FIto6d8BJNo23Av9jerPj6IsnMF/a6Vtu+of61F5+grB5MztrIw1tEAzVGXPJcAdxe61v0Ys33f1X5Gp3U2Rc9PeAt4xj9FIhvT1gLmOeI26Wi5+tSK0HdD+TyHfzCQXN/s71VvS7kTL2EZlylT0NBL1VTX9XLaYmzdF+aj/S9n5v6r8h61MzPT7l8WBYNxf7FIsW9POAzEhkbdu+KRWThvRHk+TDqeR2Hy6nxtcfr7+JHimrOXQhgGJYGabDoTDM1rgC6R77k25X9Cn/TFn5v6r8iPWZkGPTxgJdp02PcIpE21fTPgs1YC1g7RJH1t6t/CuhzK0FDDHVUb5JWxta5wmeBsAOF1tn6Hsovp5I4KJ7Hv4EzvP8Vtp+j1rT4b+q/I1VJupyUnJ0v4Locx7QHb8I3lMj+k7CXTSPDeyXfc3K6cn9BmBYdDK3E4uvDnvLWte9lruuOfcpGeiLJ7Xt/mEgsPu711U+k0afut/r7jkrW0K3vHnCXpFw2Wk0taLvuB2HJqdnjDxe99tvMcrJwnI2AS9M2M4TJQSmiZFTFv1476r334q239EOUCAG0EgsR/r3+tdVO0hTTS7nDV6NbVmnLO3y/I8t/y1oDF1m+nj5jkozxQF+m24GrzHcFfuOdB2C1eacPrqWPRTRyFz2FzybaLcb96kjeiDKAYGGgk1W3PXvW1UkjV/p+0+P1X5Hmemz3hzmOIGzbX7DkHP+GOa6xOw+5uV6556DsCxTD44sMhMLmMc06nvfcki3P0KRM6IMpmOMzUMjntABIneOAVhSvalKOmJh/py053+q/I8o1OcaGWXUL2duOw5Yy5po29Yy5DgN7NK9PZs6Lsp02BVD4aGTrGgW+vuUO6Cuj3LePZHpqnEqCXyjrZwQZnCwEzgOHoAXSur10sYX6+83LoluvP9fcUGcx04Nzex/ulEuOwluk++2GxXsP3IspRuc+OhkbdhbvO/n8aiuXegzBaTHsRqK2LrKWXq9DA57TsDfe/pCw+1a3kv1951xsKUcYzseWxjkG5u7Tw808U1z1oNcJW3LHEkbHuXuFvRFlAEkYdKAP/AB3KNUPQth1D0hU+N0Za2ja+R/VXeTYxlo7V7cStNa9qVveOlUkigsk9HOY87VDCxvk9ASA58crb2uA7Z3oK9F5B6EsAy3GyWqibXVJALjPCy4NrHcK1IYhBG2OJpDR8a2gEcSuepVlU95maWDnpKWOmZohaGR8o2jshbw03vfbuWQQtZIIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACQgcfnSoQGDSL++PilNvDwWSxdbUPhckBw4vhVHisTIq2nhmY12oCSNrrHhzC6KOnhpqeKngYGRwtDGta0AADuAW0iwBeb2N7od2gC11jyKAz27kmywDnF3Cze9DgAbud2e5AbNu5G3chCAS47kXHclQgEuO5Fx3JUIBLjuRcdyVCAS47kWCVILA3HNAJYJQLcyiwBvzSG5cCDZvd3oDkxTDaTFKOSmq4I5YpGlpD2Bw+dbKCkgoqSKmpY2RxRNDA1jQ0WAtwC3jgNHDuSPBDbtG54hALYFKLBa23aB7xreIWY87YbWvdALcdyLjuSoQCXHci47kqEAm3cl27kIQBt3I27kIQBt3I+JCEAh4HZIdgCb/Esjw3WO+oW82yA5MSoIMSo6ilrIo5oJW6SyRocCPSDsjD6Knw2nFPRxRxs46WtDR3cl1gjwJWLw1x0uFwO1dAZjZvAD0BI4i4479yxDmuF29ohbBwQGB7LgSXFZAbnuSoQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAhIuARxQBZKhAI424BY2AFiS6+2+6zPDZILA2AQCOY1zCw8CLEJsw7AsPw6rqamio6eGSe2sxxNbe3DgE5kAHbisQ4h1nO3PJAZW5cNuSGtDWgbm3MpGkkEuaWkGw9KUE7X2vyQC7dyXbuWJDieybBKLjiboBdu5Jt3JUIBLjuRcdyVCAS47kXHclQgEuO5Fx3JUIBDYpLBDxq2PBI2x7BdqcOKAHMa9pD2hzSOBF024fg2H0FZV1FLTRRzVha6RzImtJLQbXIHpPFOTdrhx35eCGCz3dki/E96AUkDe+3BLcLFrQGEAW52Q1otc8OQ7kBlcdyLjuWu5OkgXBNj6FtQCXHcjY8kqEAbdySw7kqEAlh3IsO5KhAJYdyLDuSoQAj41iQOBO97oNh2nIAcN99wdrHgmujwPDqTE6itio6dtVUPMjpRC0OJIse1a6c99fG4twSkkWFrDv7kAO4gCxHO6HXb5gbZIzjYi4G4KBZxILr+hAZbEg9yVYNFrAdkdyzQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhAYFx06m7370Emw1Dj3LNCA16dJLbuJd3rI2BJtvbjZZIQGsNBcH6iNuHJZOaDYEAj0odY9k+KDcvHcEA24ZgmH4ZUzz0lJTxTTPc9z2RNa4k8dwL8k5k80E32CxAI+yOv3IBSNXDntdJHYdm5JbtcpRfV6FkgMLafNAFzbZL/dBN1ksQSXG7SLcCgOPFcPp8UoJ6OrhjkhlaWkPYHCx9BS4fRU+H0cVPSRMiijYIw1jQ0bCw2Hgus7n0INhxGyAxY3S1odx70gBcN3OFj3rPib8uSQfZNnbW81ADhraQBx70nvg25BG62IPBAY3BN+QTbiuC0OJ1NFUVlNDLJSydbGXxtcQbW5hdzm9oDTZp3d4rPg8a3ceCAxa0NaGNaGtA2AFgAshZxuLhZOOkXsg3NrbIDEixPG5CRosGtPHvC2BCAwYCB2iSR6UtuJO/ildySNuHEOdcncbIBrhwSggxqoxJtLAKqdrWmQRN1dnhva6dCQN9+5Yt1B1nb25rO41W5oDG4tfexS7X9Peh1ybFtwskBiez3m6S3G5O/es1rlAcW3ZqsbjdAYTwQzRGKaNj2kWIc0FcuCYTR4LQtpaGCKGNpcbRxhvEknYDvK7dw7U51h3JQRxc2xKAXYDe5ugi/Mi3clB7kt0BrA0CxuWnv3S6dgBs30LNCATiOaQEA23KyQgACwQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCFi5xuQ0XI5IDJaK2R8VO58TdTxwFrphzJnDDcvyMjr5mRvcQACTz+L0JzwfFqbGaEVFDIHNIBuOSAjHRfmqqzRh801VGxuiWRgswt81wHMlTWQlgLtrNBVX9A7teC1RAsBUz7f+cKz6l7Y4XOk8y26AruPM1diOGVOK0ktL1VO0yGPe5sbcAVLssYm/FsNiqpWhpsARpI3sD/FUZi+HYnRvqceyo57ssgapaNlmRyNbs5pJ3sXb8Fc2QcUpcUy3S1FJE2EBjGyRNJIa/SCRcje10BKEIQgBCEIAQhCAEIQgA8FjbdtuCyPArEHs9yA1VMzKaGWeUgMYwk3PcoNh2OYnmCsxKahMDaeimMTAWuBcDvfY2PBSTOtxlPFtG8nksuk9x0myhfQiHMy9VCTeV+gvPp0FASfJmZhj1G97urEzASWNFuDrcLkrTnXMrsKdT0VGGur59Dw1wv2C6x2BuoT0MsdHmnG+1qgELNO3A6t1tzq1/u0YMXkmI4Y4jx1usgJJNj1ZguN4dS4l1fVVshYHWO1hc7k+lTmNxeGubbQ5oIVUdOPXGqyyY22kEk1t/Q1WdhJf7W0Yc3/UMub89IQHYhCEAIQhACEIQAhCEAIQhABtY34KB9KGaqrLGGQVEMYcx9TDFfqy7z3hvIhTt4u0i178lV/T+5oyhSMJsPbCkIb/AOqEBZlO8ywteRYnkRZR/OuO+0GH08rNAdPUMgvINu1f0juT9AXdT29rDzlD+lFmHVeAxUuI6RK6dvk92k2lsQxw9N0Bi/GcQwvG8MpJXU0sddr+xguI0jxU3j3YD37qhMpyY3ljNdBS5111uovFHUzPF4wGnXYNvxuFfUDg+Jrmm4cAQgM0IQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhaKqoZS08s0zrMY0uN+4C6A3k2F1C+kbM1RlyPD3wRh3XTOYbsLuDb8iFnQdIGC1uLHDY6mM1NzZm+9uPJMnTO5r6TBiJS0eUv4Dj2EBP8ABqo1uE0NS8WfPAyQi1vOaD/FcmOVFdHCI8KZGag3DXTMJbf4lty5/oDCjxHkkW//AJAu2W9vrZ7TN7d6ArbC80Y9Q5ybg+NQ07xJCJ2up4X2Ac/SLkn0FOOfc2V2F1MVJgVRhbax2rU2tdcAi3IOB4EqJ4tNjOW+kKDEcUe+upqkMpWCVwYI9cpta172upbnbo5w/MlQaxkjaWvubTtiD3C9geJHIIB3yg7H5aYyZidQF5BI8jDgOVuJPK6krPNH8VWnRDieJGmnoMYq5KuSFzy2WSwNg4NAsPQrLYb3NtuSAVCEIAQhCAEIQgBCEICN56zI3LeECp2dI6WOINIv55twuEwVuYK7AG0NbXMvDUud5R2HfW2t4Hc9nlxTF07GYVGGktvS9bDq3991mydunGYt6PcUMfadLSuDDwsbtQE/p6qKShZUg/W3RiW9+AtdQygx2tzPjOLU2HOibT0D2Ma8gjUHgm9wbHzU64YyQdHkW9nuw3bx6pQzoB1tpMVZIdUzeoEh9NnoB3oukNhwSV9R1TcRbK+FkdrXIuB2S654LXX5ixfCsCpceq2wdTK1jnsDHdkvIaBYnbj3qkc0NqB0jYe+lJ8l8rjDxsPfG6uzpXOrokqOqFm6qbT4dcxAWFRzsqoGyxva5r2jzTddI4KK9HHWOytTGVvaLngm/EalKkAIQhACChCARCVCkjAiEqEGDTM97IXuaAXgEgWvyUJyZmmrxbNWYMNq42tFFJEwWjLfOa48z6FOCbFzb72uqvyE0u6Us/hzzfyim07cOw9QSWbI4cH3Bb2hbn6FC8yV+ZnSVM+DsomU9M/SRUxvu652tYi6m0uktZcXAco3nyixXE8DmgwaokppXaSJY7E2DgTse8AhAceT81y4xkx+L1sXUSxGYOvGY2DQ4i5ueG3emCDMWbcWxR3tTPl6Sia4gganSd++l/csuiyf24yjV4FiUDRqEzJCXatQc8jcfH3qNZxytV9HbRjmX8Tkp6V0zI5KaOJrGuc91rl1ydhYcEBecDnmMdaBrub6Rsti1ROMgDuG5HjutqAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgC290l+HpWMr9AJI7IFyVEYs/YM7GW4Y6pj8o1Nbzvc7jkgMs15s9rqmOhw/q5K59naXDVZuogmwN+Se8GFW6HrKp0Zc7k2+3FVJljCajMOecTxJ1Y9pi66nikDAdLb3A4j4SfcjY3iNBnXFsv4pXy4gI3RMifLZpZ2XE2Avx258kBaFyDd3hssljY/CWSAFieO9/iWSa8dxilwikdPWyiFgIsSgOqvfNHTk0waX2NtQuFW2acw5qwCWGsMdA6hfOyEgxPc+73Hh2rcApdlfN+F5lL/a+dkmgA7X5m3d6FC+mKlxl3klZBPIcNini1U1wGucHE6r8eAQFn0c3ldNFMQ5hcCbEW524LpHH0WTNlrEvbfB6OubGImvBdpDtQ84jj8SeefFAKgoQeCA0ykMjeSeHaPxKB0OYcRx+rrZcG8nMELQYy9pN3cDwO+91MsUdI3D6pzW2Oh21+Ox3Vb+x7YW5Mh1ttP1k2s+jrn2QEwyVmMY1HVxTafKaad0L9IsLtAvzPepM7zmqneicyPzlmLqjogFfUBzRzd2d1cRFye8cEBkEIAsEIBHdxvv3LlxCWSGmc6nDXSCwGoXXU4kWsL77+hYdWCXXNweIQFYYxmHNmA4rhzqlmGvoqqbq5A2J5fYC5t2uKsmgqBV0sMxa5pexrtxbiAVVvSrSYzBiFFi/lEj8MoJTO+E2DS0NAO/FWRl2rZiGB4fVMAayWnjeGg3tdgP8UIY473PC3JZJDxHcVkgwIsX7Djudgs1i9odtzG4PcgSI9mvMkGAUjesIdUv06W7G+9jte6yy5UYhiEHlNd1LQ/zWMBaRY23BKrrN1HLj3S5hGHSVLo6cU1RqAaHXLdweS7qirxXK2fcLpqnFJ6qixSoipY4XtDGsOm5Ite9/iQktdgs2xSrBhu25N77hKy+kX+NAZIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACwLbk6uHKyzRZAaXwxO+yRsd+M0FYVLHsgPkoY134vqXQWg8RdDhdtgSPSEBAujXLeIZeoZo55YLPlkfYNd751+YTlRUWNvzFUSVNRTHDSZAGBjg/cbb2spXpBG+6NO4IO3cgK1wfKeI4DgcmB0ssD6WUOa0uDnW1O1G5I9KlGS8AZl+glgbI18ksnWvsSRqIANr8OCkDo9QPaI7vQkZC1pBHG2570BsQhCAEIQgBCEIAQhCADwWJGtiySW7igNdQxssT4pBdj2lp+NQnD8v1+BV+JNwmWFsVdMZiJA51uVuG3Hkp0QDa/JI5oJvz70BA6HKdZgWWpabA56dmIPa/W+YOe03NxyutmO5TqMXw7Dp55YvbSnjia941Bp0m7rC1+KnOkXJ5nmk0ek3QEFmy9V4vmDDq6vcwRUUheGkOF7i3dbkp1G3S1rW20gWCUtBFuSALIBUIQgBCEIAQhCAEIQgBCEIAcLggqDdJuXsSzFg8VJRy07I2VMMtpGuJ7DweQKnKS297oBixilxJ2XaiDDp4GVhjIa6RpLQeXDdR/GsrVuYMEpIsQnh8upahk7XN1NaQwbbWvxKnoaLb7pNA1audrXQFfYpliuzPV002KyRNdR6tOkOZfVx5ehT+mZ1cEcY960N+QWWYaAO9KBYcboAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgC+4WFhu0tJB71md0IDS2mga/UIow7vDRdQ/pGy7V5hZhzKV8TWwzOedQdzbbkFNrC97bpAAOGwQDB5BiMWXaajgmgE0MLIwSDa7W2TTFFmikyzRx9fRvrmh/XEROIPaNrC1+FlNQ219+KQtJbbUfFARQ4PU4vJT1GJOiJiDDZoIOppv3IZ/KKLMFTaaldhsr7xM6t2toA4OPDipXoAbZu29zbml0i4KAjuWcAjwNkjh25pXOuWkkC5vzUhZe3aIPghrLA7796Vo0j+KAVCEIAQhCAEIQgBCEICO51y6zMOHtguGytkZI1zibdk35KP1eXMRxw0lJjEkT6OJx1dW1zSQeO9lYVt7pNPC2wHJARKbDcXbmKnZSVFK3BoqFsJjc1xfrBIO9rW02XDTYDiGB4tiVXhskJirXsfp0l1tANuVuanYYBewsDxCNI06QLD0ICvqLo+gZgssMz2OrXSPlD9RsNW45X5rCqyxieIYNT4JVzQmmhaxhcA4X0EOG9u8KxNIvfn3pQAEByUlLHR0jIIR9bYF1N80WSFl7WNh3d6yQAhCEAIQhACEIQAhCEBpmD3RPEZaHWIF1AssZZxDD84Y1iskkWmskjfYB3vWuHd6VYWnfbZKQgItidPjrsyMmo6ikbhvVtD2PY4uvffe1ljDJjjsaq2udB7X9Y4RjqzfTbbfxUq0i57iLWWPVgObpNmj3o4ICJswWvw3BJjhT4GVh6wuL2kgi5IAFuKwGFYljeHRw41JT9U0tLgGlpLhuDwUxttYrF0Yc4Em7bebyQGuBgijjYO1udwt6QNA4CyVACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQCOvbay5jTwdcJDA0PvfVoC6Xt1NsCR6Qi122O6AglTlirw3MrsZwySICSN0bozqJu5xN7Wt3LtwHLktPj1ZjFc+J09Q5ruzcWsCOBHpUuDdrcUhYDfVuDyKACQXW371kiw7kIAWqRrJGuEjWvF+FrrasSwEEDs33uEA3YhTzRUMgwkU8UwabambejYBR9lHjOK0LoMXdTkCUEaIy3YfEpkGgEkDigNsTck+KA5MNo2UNDDSR+YwEfOT/FdYAvceCNI1X5pQLIAQhCA0SMbKTc7AFp371BqTLNdg1TWtw2WJsVQwNYCHGx4nl3qfaBY7cdylcAUBGslZeGCQVbpNJqKid0znC9rkAHiPQpKNgLpC25B1G3cskAIQNkIDGQ203BO/JcWKtqzSv8AIXxtluPPBIXeRe26LDuQEOp8NxXFsL8lxiSAseCHhrC0kH4lJsPgZR0kFLGCGQxtYPBoA/guq3C2yNIvfmgMRu1ZpLcEqAEh2N+/ZKktvdARLNGXJq3GaXFKGSJk9PG5navvqO/ALmpMAqcWxijxbE3xk00okia0FpDm7d1lNXMvwJHfZDGBgs3YdwQCM3JPdsla65O1koba6UCxJQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEE2CARa6AEIQgBCEIAQgmyQuAFygFQi+6EAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIugBCRrg4AjmlQAhIXAIDgeCAVCEIAQka4EkDlsluEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIRfdBNhdACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACFrlqIYSBLLGwnYanAXSumibH1jpGBnwi4W+VAZoWEcscrQ6J7XtPNpus7i9r7oAQsQ9pNg5pPddK5zWNLnENA4kmyAVC1RVEMxIimjeRxDXAragBCEmpt7XF/FAKhCx1sLtOpuruvugMkIQgBCRz2stqc1t9hc2ulG/BACFg+WNjmte9rXO2aCbE+CyLgAbkC2+5QCoNrG/Bao6mCR2mOaJzu5rgSirnZTU0s0h7EbC93gAgMtrWPmJL7aWsu3xUVOaWtvUOY4Ud9nlu2/De9k34lm2upqhrmUkggPDVCbnvtugJ8NgOSFow+c1NDTzuBaZI2vIIta4W9ACEXF7X3QSAN0AjuBskHAA8UrjZpPcoRmzM8+DMlnbTzvYx4aLRk7E270BNgC4NJ2IKyXJh1U2uo4qhlw13fsutACFiXsDtJc3V3X3WV0AIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCLjvQAhapaiGG3WzRsubDU4BK+eJket8rGs+EXABAbELGOWOVuqN7Xt72m4WSAELFr2O81zT4FZIAQka5rvNcD4FKgBCLhanVUDZAx08Qedg0vFygNqELEyMDtJc3V3X3QGSEIQAhYue1ttTmi/eVkgBCwfLGwgPe1pOwBNrrJzmtbdxAHeSgFWGkNJcVjHUwSOLY5o3OHJrgSspHhlyeABN0Ao2JFthwSk3GyisWa45HUjgx/UTEjrdI0/LddtTmOmjr46aJ3Wl7A/wCt2dbfxQD4wbJQTqII271rif1jGu82/I7LaPSgBB4IQgEAHHvWJDWgpS4X77KH5nzh7TSvJpKp8DN3SNh1NAsOd/SgJkOAQuegqmVdDT1LTZsrGvF/SLroQAhF78FiJGF2kObq7r7oDJCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEXF7XQAhYdbHr0626u6+6yLgCASLngEAqEXF+KLjvQAhCEAIRcd6LhACEXB4FCAELVLUwRODZZomE8nPAW24te4sgBCLjvQgBCEIAQhaJqylgcGz1EMbjye8AoDehICCAQQQeCC5rRdxAHpKAVC0R1tLI7THUwud3NeCVnJUQxECSWNhO9nOAQGxCxY9r2hzHNc08CDcJJJY4heSRjB/eNkBmhI17XAFrgQeBB4pUAIQi6AEjraTq4JbjvC0V8roaSSSNup4Gwte6A2nYC3BcMeJ0pxHyJkjeuBILb73AumuHFcQfUsY+ABhIudB700U23SGd9utftf/wAMoCdoQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAkfs3jZKkf5vC6Aqnpwlq6aDBDRVD4HuqXCaVtrtbo2O/Fb5KupzJguG4RglQ9+mKJ9TWNsHa221NLXWvccwuDp/iFRhuC0s8rWCeoeyRwdp20cjyUZw6Kv6MZMNroA+owKqijMri0yObJJYA6zsAAAbIC8cEw32rw5lOH63MHG1uZK4s3Y0zBqKKQW6+eQQN43u4GycsJxOjxWkjqsOqYaiB/B8UgeONuINuSgHTM2QRYG5rXlntnAHEA24lATbAYJG0cMlaT5XI25vYkHnw2US6T8xzYfUYRhtHM5slZWMgkttdrgfQp+0t6q8NndxG/NVD02YWKrGcsyTNlbTjE4TJI0loA0m/a5IDfmavkydiWFTQVDooZYSZ2NG0jy7SCeO6tiJ/WMDxuHBUL0nZdoRU4ZFhM8889QwSsY6oMpc0P3IHdbuV4QVlI6Z1LBVQOqomNLohIC5txtdvEXQHTPLHBG6SU6QBxVYVmeeqzNE8TEYW193He2nT3WvxUl6TXVn8lz5ACZhKzUQ0u7O9+Cr2gdhtXlylEksfV6T1r+sAsL7b8kBc+HVcNbSsmppNTH2cCARxF+ajucq1+BxnEI7hoBc8jxAC4uiPykZaqBUm4FZIIjYi8e2nx25rd0uut0f4uSRfSzT3+e1ASmjqm1VNFNEdQda5XSTpPzqOZCimgy5C2oB1l5O4I2sO9SGcExOtx0lARCixcY5maemiOqnpQyQd2+x4qYgBrQ0bbKruh1hhq6+Oc/zkMu6/G2vbY7q0nC4QFY9IlRiNFnDK7IKyURzTyDSLW2aF2dJuYZ8KwzCoaKZ0dZVVEMLy3iWPBB5W4pv6VZGR50yUSHX8pm5/3Wri6YqGdzcv18bHujZWUwdYE2AJJKA688ioyXgDcboyXuom2qCLN1Fzg0X49/JPmM1eL12C1MVPTOcyai1GTrGi2pm+x8U09NVTDiGQ6ijpj1kteGuia0gl4bI0mwHH4lNssUr6TA6SGWzn9W29+7SNkBX+JxOl6NosMhcTWDqNYA3u14J9HBSbGpjU4rhdI15LY5Wl/gQFJo6CCKSSXq7l7r25fItgpoxVOmLAXEDl3IDdC0Nia0cGgALTUVEVMx0k8uljdztddB4bLixdokw6oY/YFvHhzQEemz7gDInVDaxro2S9Q93VybEHf3qznztgTI4ZjXh9JMC4OMT7AD0abqB5Apqd3R5m1z9Lyysry0kg2IabJtlDB7GzysFj6kUjDqbYkHrrIC3MZqcTElMcMpjNTvc0ucJGt7J47FM2Zsaw6eJuG4hUCCU8W6HO3afQLJ9ypb2ip7O19gG978glqsv0FVUipmY8y7nzu9AdeEMhioI46Z2uIX3tZcGIZlw2klMU1UI9LtLjocbOvw2Cd4mNiia2MWaO9U/mamxbLuPVOMYFLTV2GyTO8qpxGaiVsjnb2+CAOXJAT3M1c1mCvxehf24mueywt1hG1t+CdcExBmK4ZFOw3IsHeg2F/pTFJidNinR7NiEMboaWSJxDJbBzbOsb/IuPohZNHgFYZiSHVjy29+Fm2QE7cdO45pWiw2QBcC6VACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAeC122JY24HmrYVrcLMFtiOCAqvp2mqKPD8Jlo6p9K5+IU7JHMAPYL+1x9C7MUnlzDRQYNgdY98bWuZUVjG2MRvdvZcBe9jw7k1+yQjhly3g8UrnNdNilNESHabBzrfxUdp46zojxOStBdVYBiBMk7gDK5gj2b23WDbl58UBeGFUDMOpmwsfcNbci1rna5TZnXG/aXBHzxvImc5gY30FwB5elO+G4jS4jRx1FBPDNC8DtseHtvbhcc1XPTJHN5Rh0o+12tAfYbXLxb0ICwMChMdEx820kl7/KscwYzS4RSudUSBji06RYnvtwC7qcAxRX2AaCPkVZZ9qHU3SJh0lY4DDPa54cXbDrC92nc7fEgOvo4zc2raymxKpd5VKGtYHAkk734CysXYuAa7tnf4lReMsEkOAuoXNZiD5JQGDiTYW7I3VwYVW08kVJSvqoPL2wMc+LrBrsAATpve10BhnDFW4HlutxFxuKcNJ9N3AfxVdYW+fEMk1+YKyqf7YUnlE8RcASRG3UwX5KZ9K1HJX5DxaCnjklle1gayMEl31xh2A48FWOD4Bg1R0VYtVTz1QmjZVtaxtWW6ntYezbmb7WQFqdHmOOx7K1DVSuLql0TTKTx1EeCXN07sLZ7ZNPZZ2neACY+hGhNDkije5skccsUb2CW9wLHjdPfSExrMjYw0m7xTPLd+dkA84NWNr8Mo6uPzZ4WSnxc0H+K7Ra1zsSon0ZNnGTsN64EE08JbcEbdWFKn3JJbxFkBDMMxOTH8wTRMeRSUxcwkcNbXdx35hTXY23371WnQo58dJmCOpH184xUubcWOizLcfjVlu32aRdAVb0j1OI0eZsCbDiEzIJa6Fj2ACzgQ644Jx6VMfqMMp4MNw+Z0VZVWdGW7ENa8auItwumnpVdEMz5bEju17Ywe+tyctXTVh73YjhmJ9oQ0zSxz99ILngDfhzQHfnN02VafB8RoJHRgTh9c5thriAuQ7jt4bp4fjGN4lQQS0mGE088HWNkEzdwRxsd0y9MRFZl7DqKI3lqnGGMDcucWbAd58FNsqU76bLWFU8rSDHSsY4EbggICvRBKOjvDaKFxjqWtkGlvpIt6E25Qw6tp8Dqq+pqJBiTKl0cdwL9XxG424gK248GpY3xGNpIYeBNwsqjCKWSVshY4EbWabD5EBy5SnqqvLtDUV+p1U6O7nOIJvqPd6LJ2qZ46aB80z9LGNLnG17AC5SxxiNrGxaRG3kuXGyDhNawgkGB4JHLslAMU+esCa2V0Na15jOl/wBbkFj/AIVlUZ7wGOGnmbXNdDM8s19XJtYb+9UB6PYIZKXNrXNDwyuiAvvbsrky4Y5OgWvqHBj5msqS19gdJB4oC0MTxPEdNJPgWHCto6hjZTMJRHs70OseG64sy12GVkM2CVFQI+vb1ckehxFiAe7+K39GpLsg4A5zxI59BTkkG/GNq66/LGH1lTJPOJtZtu2S3KyA7MMjpoqKCGnIdFGxoAAIBIHFcWI5mw7D5pGVU4ikj89ulxt8gTvDDHT07YmA9W1unjvw71UOcIsWwDG8UxfLslNXQvcH1VP1ZqXsIFmC3vb3d429CAt2kqYqqnZLSu1xuPGxH0qM5tr3YDK2uFxET2z6SQ0fSnHJ+JxYrgrKinifCCS1zZBY67C/zph6aSW9HVeRbrBJTgH/ANZiAnFNK2aFkjDcOAK2JoypHLFglO2cHXa+4sndACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEBi8E7W243UZz9j4y/liuxGMXmZC97OW7fiUmlALLONh4psx3CoMawyekqAdMrCy17WugILhTMUGFxYrW4zUeU1IE0bC1p0xOAOkEDhx9KfMonE8RxGqxGtq5XUBLHUrHadNtw61txy4pixyijo3tocPkdLLDB1pIfra1rb3BHI7Jpy1X4hiuEyYr18MNDCwPpQW6dYNw7e9nWsPBAXEdLLutY23PoUcqs7ZepayejmxFraiJ2mVvVSHS4b8m2Txh8kj6CN84u5zQNhba3FVZlSipqjpTzWKga71psCeH1pAWDgOasJzBRSVOG1gkih1F5DHDZpsfOAWFTm3CqSrjhqqkMbI0uadDjte3IKoMRinwvFsxuwgOGENw8ue+xcG7EvOobD+CklFl7CcyZXwySbE6f7Cwktqg0tPGxI5oCeYzmvBsHklgr64MmjF3tMbz9AKj1V0lYXFi9LR08rZevjEjTpeLAkD4PpUbzBTU1T0u0rZNdnTRh7XO2I09y6c1xQ03SnhjHthZCKAhuwHvxZAW1EWPY10fmFc2K1YocPqal/ZEUb33/FaT/BL7YUXlDaUVMPWk2DBIL8L8FjjTQMHrdVizqJCb/ilAVfliujz1U4uZKxzJY5WNpnaNRYHAkgXA7hxUxiz3lpz4IosSa9z39U0dTIO1/hUX6GY43z5j6os0mohLbcuy5MXRVSRVdLij2tEkrGSuj99ZwegLVqsyYbC7szh727ea4W7+SV2asJbhRxHypvkjQ4uk0P2ANjta6hfRjKypqMzQV74zVR1j2BhsCBpN9juojUQT02UM+UwffDm4Y4wybkBx3d2vEnwQFoz5/y9EYzJXtDJLaXdVJzO3vV0nN+FtxOGhNSDJK4tYdDt7C55Ktc2wxs6IcFeOrbJ5RSDWQBcbc10dIAFO7J5jfG0ufVapOR8zmgLiedUZdGe0W7FVt0g4K04ZU11fXuiqAWmElmotu5oNrKxKA/9n05c5tuqab/APlCjmc8v4dmvCZ6OepIIsAY6jTazg7e3ggF6P5MRfluH22lfPUGV4Ery2+m/Z4ehcfSlmD2gwFzxM6Fzi09a0Ekb27iuLoqe+gylJDiczY4I5p/rsh0jSHfCPoUzllwuqpoo5Z6WWORupmp7Xah3jvQFY9F9PhWI1jquizHJXvgDXyRGmczSLkDcgcV2ZXrJc249jUtQ8uo6CqqKFjTuA5riGnkVoxDLMWH9IdLUYQXM8qljjqow4kNYBcHSPN35rPolDcOxfNFFUXZJJilVUNDtiWB5334j0oDvyPjVS3OGO5dq53vZhjomt1W31sD+Q/vd66el6WppcFopqSd8bnVcbHFtvNN+9MeU6V1d0u5nxGC5putgcHt3Dh1IHEbHdPXTUS3KsfVkCQzAMB+FpNtvFAOuAYxR0WE4VHiFXepniJj1MJJAO/AW5hdOI5zwLD6x1JU4gGVQaHdX1TzseG4bZV50TYw+GOno8z9XFVtaBRtkaIi9tjrsHbu5cOC6cYjik6ZZQ8NcDSwdkfjDeyAmdJnnBKhswZWtdJG6xb1b9v/AGpzy9jdFjlH19FMHi54NcLWJHMDuVXZZjiPSbj0Tg3T5RVWb/5TyXd0LOLMQxWAPBa1gIbfhd5QFm4jV09DCZKshkF93kE9rlsFwYVmDDq2q8njqutm2DRocLn5Fx9IWFw4rgYglrYqR4kY9j5ZdDS4XsPTc8lD8kY9itJmNmDZnpGmoc4Np54KbqmF1iXXJ48vBAWwbX357JobglOzGfbHS3rNRde3eLJ32tYosLWJQCoQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEBG815TpMy9Qa17gIXF7BpDrG1ua2YnlmkxDL0WE1ZMlNGGBoc0G2kWGyEIDXlLLMOWaIU1DO99PwawtDQ3cnYDxXbmTCIsaw9kMguY5BKzYGzgDY7+KEIDPABNDRtpajeWEBrnE3Lj6VljuE0uL0ZhrI2vDbuYS2+h1rXHpQhAM2F5Qo6atp6ueR1XNCwshMrB9aaRu0W5JabLphzXUYnFM8OkbGHtAFnBvIoQgJJPDHUROimY1zXA3B3CqibJ1JFm+OjhnkjoHv0upWsb1ZGm9reO6EIC08Po4KCmZT0sbY42gbNFuVkxZpwx+PEYbNdlJICHubY3tYjY+CEICQwRMgiZEwWDQABZZucACXcOCEICMR4McIzBLX0LQW1YbG+M2aGgcx3qUMcXNF9iRuhCAjmPZUp8axGlq6ieQSUri6Lsg6CQAbfInarwunraBtLVsEzGgadYvYgWB8UIQDPS5RpY6indVzvrI4ARDHMwaYwRuApKxoaBpAAAsAO5CEBkd0IQgEOy1VkAqKd8RcWhwsSEIQEdw7J9JQYZW0FPK5sFW+SSQBgAJeLOWlmRqFmWXYEJXeQuaGaNDbWBvw8UIQEhwigbhtE2mjeXtadiRZdqEIAIBFlGpssRumn6usmiZPIZXxtaNLieN0IQCYxhQlwd+CUMLIKSVpjuzbSDvsOHFPGE4fDh9DHTwMa1rQL2FrmwF/mQhAdpNko4IQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAWLvoQhARzN2U6XM/k4rpHCOGRkrWaA4BzTcHfmtmNZWo8YwMYXX/XoNOk62A33vwQhAZZVy5Fl2kNJT1EkkFy4Mc0AAk8RZb8z4JDjmFvpZBpOppDgASNLgefghCA24MZ20ojqhuy/avckXXPmbAqPGqNzaqJhLW3bIWgkWuQEIQEJ6NctQvhhr6yZ9bPCA+LrmjsO3uQfTt8ikrcutZm8YlHK9knkxjLQBaxcDx+JCEBKXxte0h27TyUSdkWha/RFK+OiMhkdStY3q3OJ7RPjzQhASampYaSjipIGNjgjaGsa0bABM+ZaCTGDHRlxjpnG0hbY62kcCDyQhAO+G0rKKgp6SEWjgjbE08Nmiw+hdIAbtfdCEBF6bCBg2Nvq6bswzX1RCwaXuO7vHgpQ0AgOtuhCAjOO5Spcar6aqqZn9ZTyNlZ2AbObe30p2xHCaXEsMFFXxtqIjpJ6xt7kG4PyhCEA2RZVg8sp6isqJKzyV4lgZM0WjcObfSpIwANAAsEIQCgAcEIQgAAAWA2WqrhFRTSxONhIwsJHcRZCEBHsKylS4ZDXNp5XDyuRsshDALkCy0UmSKKky7LgsUrxRSh7XMDBY6uOyEIB7wPDIsFwynoqdxdDCxsbLgCzWgAD5k4/xQhABaCCORUbqcsRSVNXLDVSwCoIMzI2iz7cL99kIQD1QUMGH0whpY2sjvewFrnmUxZlwp+PyihqSW0l7uaLEO0kOBIPpCEICTRMEcbWDg0ALJCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQGLwCN9x3LEtvc3sXfMhCAZ6HLtPTyVcj5HTS1BeC97RdrXCxaPQmzCMlUuFsipm1MslAwaWUrmNEbR3AIQgJXZsUNgLNaLW7gqay/TCr6U8ztirJqZ3lrgTGB9y9KEICzaXLmHswmqonwsliqY3xTF7B22u4gju3THg/R7R4XVPfFVSupCSW0hjaI27bAeCEIBwrcpUk+YGYw6Rwna4OADBxAtxS5jylS45V01VJK+GphDQJGMBcWg3tc8ihCA3NyzC3GosRE8muN2rRpFj2bJ5q6YVVHLA5xDZGuYbDkRb+KEIBiy3lSmwE1Xkc7wZ3Nc6zQNwCB9KxyvlGky9JM+jkdpkBBboAG7rnghCAxnyjTe2stdQ1ElDNO50kvUMH1xzuJJPNdFXlShqMBqcKsGQVEbo5SGDttdxBCEIDmr8m0dbgcGEzSudTQuY9gLAbaeGyTE8m0eIRUMdTM94pNfV3YDbVa/0IQgJG2EMo2wA9kNEYPotZMNLld0GJTVHtnVOjkdq6ktbpG1rIQgO3Ecv0tVg8uHx/WIXh4Oho4uFibfGmquyYyooKKngxKppjSxCJskbW6iL3QhAPlFhcMNQ6peeuqHWvI8DVtwXBiOWKaprTU0sjqKoeCHyQtF3Am7rk96EIDswXBqXBotFMxvWP2kl02c+17XWrM2AwY/TxQVMjmNikbKLNB3HihCAa8RyPQ1suHzGR0dRRseyOVrG6u1a/wBC3yZSpn44MVdPIarQ2Mu0C5DeAuhCAKTKFHTY5UYpHI7r5nSOd2BxeLHf41sy3lelwWqqKmle7XOA13ZA4H0IQgHDGsLgxWk6moGweHA2vYjguahy9DDWsqqqZ9ZURHVHJM0XYeZFu/8AghCAfCAUWQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQH/2Q==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Re-creating kernels from Tape et al. 2007\n", + "\n", + "The 2D checkerboard model and source-receiver configuration that runs in this example comes from the published work of [Tape et al. (2007)](https://academic.oup.com/gji/article/168/3/1105/929373). Here, Tape et al. generate event and misfit kernels for a number of individual events in [Figure 9](https://academic.oup.com/view-large/figure/31726687/168-3-1105-fig009.jpeg) (shown below). This exercise is meant to illustrate how kernel features change for a simple target model (the checkerboard) depending on the chosen source-receiver geometry. \n", + "\n", + "![tape_etal_2007_fig9.jpeg](attachment:tape_etal_2007_fig9.jpeg)\n", + "\n", + "*Caption: Construction of a misfit kernel. (a)–(g) Individual event kernels, each constructed via the method shown in Fig. 8 (which shows Event 5). The colour scale for each event kernel is shown beneath (g). (h) The misfit kernel is simply the sum of the 25 event kernels. (i) The source–receiver geometry and target phase‐speed model. There are a total of N= 25 × 132 = 3300 measurements that are used in constructing the misfit kernel (see Section 5).*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Choosing an event\n", + "\n", + "The Event ID that generated each kernel is specified in the title of each sub plot (e.g., Panel. (a) corresponds to Event \\#1). We can attempt to re-create these kernels by choosing specific event IDs to run Example 2 with. \n", + "\n", + ">__NOTE:__ Our choice of preprocessing module, misfit function, gradient smoothing length, nonlinear optimization algorithm, etc. will affect how each event kernel is produced, and consequently how much they differ from the published kernels shown above. We do not expect to perfectly match the event kernels above, but rather to see that first order structure is the same.\n", + "\n", + "To specify the specific event ID, we can use the `--event_id` flag when running Example 2. For this docs page we'll choose Event \\#7, which is represented by Panel (g) in the figure above. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "usage: seisflows examples [-h] [-r [SPECFEM2D_REPO]] [--nsta [NSTA]]\r\n", + " [--ntask [NTASK]] [--niter [NITER]]\r\n", + " [--event_id [EVENT_ID]]\r\n", + " [method] [choice]\r\n", + "\r\n", + "Lists out available example problems and allows the user to run example\r\n", + "problems directly from the command line. Some example problems may have pre-\r\n", + "run prompts mainly involving the numerical solver\r\n", + "\r\n", + "positional arguments:\r\n", + " method Method for running the example problem. If\r\n", + " notprovided, simply prints out the list of available\r\n", + " example problems. If given as an integer value, will\r\n", + " print out the help message for the given example. If\r\n", + " 'run', will run the example. If 'setup' will simply\r\n", + " setup the example working directory but will not\r\n", + " execute `seisflows submit`\r\n", + " choice If `method` in ['setup', 'run'], integervalue\r\n", + " corresponding to the given example problem which can\r\n", + " listed using `seisflows examples`\r\n", + "\r\n", + "optional arguments:\r\n", + " -h, --help show this help message and exit\r\n", + " -r [SPECFEM2D_REPO], --specfem2d_repo [SPECFEM2D_REPO]\r\n", + " path to the SPECFEM2D directory which should contain\r\n", + " binary executables. If not given, assumes directory is\r\n", + " called 'specfem2d/' in the current working directory.\r\n", + " If that dir is not found, SPECFEM2D will be\r\n", + " downloaded, configured and compiled automatically in\r\n", + " the current working directory.\r\n", + " --nsta [NSTA] User-defined number of stations to use for the example\r\n", + " problem (1 <= NSTA <= 131). If not given, each example\r\n", + " has its own default.\r\n", + " --ntask [NTASK] User-defined number of events to use for the example\r\n", + " problem (1 <= NTASK <= 25). If not given, each example\r\n", + " has its own default.\r\n", + " --niter [NITER] User-defined number of iterations to run for the\r\n", + " example problem (1 <= NITER <= inf). If not given,\r\n", + " each example has its own default.\r\n", + " --event_id [EVENT_ID]\r\n", + " Allow User to choose a specific event ID from the Tape\r\n", + " 2007 example (1 <= EVENT_ID <= 25). If not used,\r\n", + " example will default to choosing sequential from 1 to\r\n", + " NTASK\r\n" + ] + } + ], + "source": [ + "# Run the help message to view the description of the optional arguemnt --event_id\n", + "! seisflows examples -h" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run command with open variable to set SPECFEM2D path. Choose event_id==7 and only run 1 iteration\n", + "! seisflows examples run 2 -r ${PATH_TO_SPECFEM2D} --event_id 7 --niter 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Comparing kernels\n", + "\n", + "This workflow should run faster than Example \\#2 proper, because we are only using 1 event and 1 iteration. In the same vein as above, we can visualize the output gradient to see how well it matches with those published in Tape et al." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/bchow/Work/work/seisflows_example/example_2a\n", + "logs\tparameters.yaml sflog.txt specfem2d\r\n", + "output\tscratch\t\t sfstate.txt specfem2d_workdir\r\n" + ] + } + ], + "source": [ + "%cd ~/sfexamples/example_2a\n", + "! ls" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Figure(707.107x707.107)\r\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUxfvHP5d66YVACiU0aYZmaAEhqPRuoRtpUhVF8UtVQf0hKMJXkSIgCNJVvoAFIkWKKEgoQZqoCNISAhoSAoS0+f0R9tjd23q3V5I879frXnc3OzszO7c389lnn3nWxBhjIAiCIAiCIIgyiIerG0AQBEEQBEEQroLEMEEQBEEQBFFmITFMEARBEARBlFlIDBMEQRAEQRBlFhLDBEEQBEEQRJmFxDBBEARBEARRZiExTBAEQRAEQZRZSAwTBEEQBEEQZRYSwwRBEARBEESZhcQwQRAEQRAEUWYhMUwQBEEQBEGUWUgMEwRBEARBEGUWEsMEQRAEQRBEmYXEMEEQBEEQBFFmITFMEARBEARBlFlIDBMEQRAEQRBlFhLDBEEQBEEQRJmFxDBBEARBEARRZiExTBAEQRAEQZRZSAwTBEEQBEEQZRYSwwRBEARBEESZhcQwQRAEQRAEUWYhMUwQBEEQBEGUWUgMEwRBEARBEGUWEsMEQRAEQRBEmYXEMEEQBEEQBFFmITFMEARBEARBlFlIDBMEQRAEQRBlFhLDBEEQBEEQRJmFxDBBEARBEARRZiExTBAEQRAEQZRZSAwTBEEQBEEQZRYSwwRBEARBEESZhcQwQRAEQRAEUWYhMUwQBEEQBEGUWUgMEwRBEARBEGUWEsMEQRAEQRBEmYXEMEEQBEEQBFFmITFMEARBEARBlFlIDBMEQRAEQRBlFhLDBEEQBEEQRJmFxDBBEARBEARRZiExTBAEQRAEQZRZSAwTBEEQBEEQZRYSwwRBEARBEESZhcQwQRAEQRAEUWYhMUwQBEEQBEGUWUgMEwRBEARBEGUWEsMEQRAEQRBEmYXEMEEQBEEQBFFmITFMEARBEARBlFlIDBMEQRAEQRBlFhLDBEEQBEEQRJmFxDBBEARBEARRZiExTBAEQRAEQZRZSAwTBEEQBEEQZRYSwwRBEARBEESZhcQwQRAEQRAEUWYhMUwQBEEQBEGUWUgMEwRBEARBEGUWEsMEQRAEQRBEmYXEMEEQBEEQBFFmITFMEARBEARBlFlIDBMEQRAEQRBlFhLDBEEQBEEQRJmFxDBBEARBEARRZiExTBAEQRAEQZRZSAwTBEEQBEEQZRYSwwRBEARBEESZhcQwQRAEQRAEUWYhMUwQBEEQBEGUWUgMEwRBEARBEGUWEsMEQRAEQRBEmYXEcBnmySefhJ+fH27evCmbZ+DAgfD29sa1a9cMq7dq1aro1q2bVfqnn34KT09P9OjRA7m5uYbVZyR79uyByWTCnj17nFpv1apVMXjwYKfWaRQff/wx6tSpA19fX1SrVg1vvfUW8vPzNe2bn5+Pt956C1WrVoWvry/q1KmDjz/+WDLvX3/9haeeegqhoaEIDAxE+/btcfToUat8n3/+Ofr164fatWvDw8MDVatWlSwvNTUVXbt2RZUqVeDn54fw8HAkJCRg9erVVnkZY1i6dCni4+MRHByMcuXKITExEd99951k2X///TeGDh2KmJgY+Pr6omLFinjyyScl827ZsgWJiYkIDg5GQEAAHn74YSxZskSQ5969e5g9ezbi4uIQEBCAyMhIdO7cGT///LNVeX/++SeSkpIsx1WjRg28+uqr+OeffwT51q1bhzZt2iAyMhK+vr6IiYlB9+7drcpMS0vD66+/joSEBERERCA4OBjx8fFYsmQJCgsLbe5ToPj3nzt3LurXrw8/Pz+EhoaiZcuWkm0YPHgwKlSoALPZjAYNGmDZsmVW5V2+fBnjxo1DYmIiQkNDYTKZsGLFCsm6+dy9exe1atWCyWTCBx98YHOfVq1aFSaTSfJlNpsFeZ9//nnExcUhNDQUfn5+qFWrFv7zn//gxo0bqu0lCEIfXq5uAOE6hg0bhs2bN2Pt2rUYM2aM1fasrCxs2rQJ3bp1Q2RkpEPbMnv2bEyYMAFJSUlYvnw5vLzo1OSzadMmBAcHu7oZupkxYwbeeOMNTJo0CR06dEBKSgpef/11XLlyxUrQSTFmzBisWrUK77zzDpo2bYrvv/8eL7/8Mm7duoUpU6ZY8l2/fh2tW7dGWFgYli9fDrPZjJkzZ6Jt27ZISUlB7dq1LXlXrVqF9PR0NGvWDEVFRbLC/ObNm6hcuTL69++PihUr4vbt21izZg2SkpJw4cIFvP7665a806ZNwzvvvINRo0Zh1qxZyM3Nxccff4xu3bph48aNeOqppyx5T548ibZt26J69er44IMPUKlSJaSlpeH777+3asOsWbMwdepUjBo1CpMnT4a3tzd+++035OXlCfINHz4ca9asweTJk/H444/j33//xaxZs5CYmIiffvoJzZo1s/RTixYtEBwcjHfeeQdVqlTBsWPHMG3aNOzevRtHjhyBh0exjeSff/5Bq1at8PLLLyMiIgJpaWmYO3cu2rRpg127diExMREAcOTIEXz++ed47rnn8MYbb8Db2xvbtm3D6NGjcfDgQSxfvtymPi0sLMSTTz6J/fv3Y8KECWjZsiVu376NI0eO4Pbt25Z8WVlZePTRR5GXl4f3338f0dHRWLduHZ5//nlkZWXh1VdfteT9888/sWbNGjRq1AhdunTBunXrJH97MW+88YagTj56+nTTpk24d++eYP+LFy+ib9++VhdDt2/fxogRI1CzZk2YzWYcPnwYM2bMwNatW3Hs2DH4+PhoajtBEBpgRJmloKCAxcTEsPj4eMntixYtYgDYN998Y2i9sbGxrGvXrpbvkydPZgDY2LFjWVFRkSF13L5925ByxOzevZsBYLt373ZI+aWJGzduMLPZzEaMGCFInzFjBjOZTOzUqVOK+588eZKZTCb27rvvCtKHDx/O/Pz82D///GNJ+89//sO8vb3ZhQsXLGlZWVksIiKC9enTR7B/YWGh5XPXrl1ZbGysruNq3rw5q1y5siCtYsWK7NFHHxWk3b17l4WEhLAePXpY0oqKilijRo1Yo0aNWG5urmI9hw8fZh4eHuy9995TzJebm8s8PT3Zs88+K0i/evUqA8BeeuklS9rSpUsZALZz505B3nfffZcBYEePHlWs6+bNm8zb25slJSVZ0v7991+Wl5dnlfeFF15gANjFixcVy2RMuk//+9//Mg8PD3bgwAHFfWfOnMkAsMOHDwvSO3TowAICAlhmZqYljf/bp6SkMADss88+Uyz/l19+YT4+PuzLL79kANjs2bMF2+3t0+nTp0vuL8XChQsZALZr1y7VvARBaIfcJMownp6eGDRoEI4cOYITJ05Ybf/ss88QHR2Nzp07W9IWLVqEhg0bIjAwEEFBQahTp47AQqeHoqIijB49GjNnzsSbb76JefPmwWQyWbYzxrBw4UI0atQIfn5+CAsLwzPPPIO//vpLUE7btm0RFxeHffv2oWXLlvD398fQoUNx4cIFy23NuXPnolq1aggMDERCQgIOHjxo1Z7Dhw+jR48eCA8Ph9lsRuPGjfHFF1/YdGx8ONeKtWvXYuLEiYiOjkZgYCC6d++Oa9eu4datWxgxYgQiIiIQERGBIUOGICcnR1CG2E2CK3PdunWYOnUqYmJiEBwcjHbt2uHs2bN2t9kIkpOTkZubiyFDhgjShwwZAsYYNm/erLj/5s2bwRiT3P/u3btITk62pG3atAmPP/44YmNjLWnBwcF46qmn8M0336CgoMCSzlnpbCUiIsLqzoW3tzdCQkIEaWaz2fLi2LdvH1JTUzFu3Dj4+voq1jN//nz4+vpi7Nixivk8PDzg4eFhVX9wcDA8PDwE9Xt7ewOAVd7Q0FBLm5UICgqC2WwWHH9YWJilXD6cNfry5cuKZQLSffrRRx+hTZs2aNGiheK+P/30EyIjIxEfHy9I79atG27fvi04T/T+9nl5eRg6dCheeOEFNGnSRDKPPX3KGMNnn32G6tWr4/HHH1dtT/ny5QGA7pwRhMGQGC7jDB06FCaTSXArEwBOnz6NQ4cOYdCgQfD09AQArF+/HmPGjEFiYiI2bdqEzZs345VXXpG9fahEfn4+Bg4ciMWLF+Ojjz7CW2+9ZZVn5MiRGDduHNq1a4fNmzdj4cKFOHXqFFq2bGnlw5yWloZnn30WAwYMwNatWwVuHwsWLMCOHTvw4YcfYs2aNbh9+za6dOmCrKwsS57du3ejVatWuHnzJj755BNs2bIFjRo1Qt++fTX5FGphypQpyMjIwIoVKzBnzhzs2bMH/fv3x9NPP42QkBCsW7cOEyZMwKpVqzRfYEyZMgV///03Pv30UyxZsgR//PEHunfvbuWrKYYxhoKCAk0vWzl58iQAoH79+oL06OhoREREWLYr7V++fHlERUUJ0hs0aCAo/+7duzh37pwlXZz37t27VhdQeigqKkJBQQGuX7+OhQsX4vvvv8fEiRMFeV5++WUkJydj2bJlyMzMRFpaGl599VVkZWXhpZdesuTbt28fgGJR2aVLF5jNZgQGBqJbt2747bffBGXu27cPdevWxcaNG1G7dm14enqiUqVKmDRpksBNwtvbG2PGjMHKlSuxefNmZGdn48KFCxg+fDhCQkIwfPhwS95evXqhSpUqGD9+PE6dOoWcnBzs27cPs2bNQvfu3VG3bl2r4y8sLER+fj4uXLiA0aNHgzGGF154QbXffvjhB3h5eaFWrVq6+/TSpUu4cOEC6tevjylTpiAyMhJeXl54+OGHsXLlSkFZeXl5khcWXNqvv/6q2lY53n77bdy+fRvvvPOObB5b+pRj586dFv9xviGAT0FBAW7fvo2ffvoJb7zxBh599FG0atVKkMdkMqFt27Y2HSNBECA3CYKxxMREFhERIbjVOX78eAaA/f7775a0F198kYWGhtpdX2xsLAPAALApU6ZI5jlw4AADwObMmSNIv3TpEvPz82MTJkwQtB8Stw7Pnz/PALD69euzgoICS/qhQ4cYALZu3TpLWp06dVjjxo1Zfn6+oIxu3bqx6Ohoy+1VW9wkuH26d+8uSB83bpzVbWzGGOvVqxcLDw8XpMXGxrJBgwZZldmlSxdBvi+++IIBUL21zO2v5XX+/HnNx8pn+PDhzNfXV3JbrVq1WIcOHRT3b9++Patdu7bkNh8fH4v7xZUrVxgANnPmTKt8a9euZQDYzz//LFmOFjeJkSNHWvrCx8eHLVy4UDLfJ598wnx9fS15w8PD2Y4dOyTLCg4OZsOGDWM7d+5kq1atYrGxsSwiIoJdvXrVktfX15cFBQWxsLAwNn/+fPbDDz+wqVOnMk9PTzZgwABBuUVFRezNN99kHh4elvqrVKnCjh07ZtXOq1evsoSEBMFv3Lt3b1m3jdq1a1vyRUdHs/379yv2F2OMff/998zDw4O98sorktvV+pT7/wcHB7N69eqxL774gn3//ffsmWeeYQDYkiVLLHnHjRvHPDw82N9//y0oIykpiQGwctPhUHOTOHbsGPP29mbJycmMsQfjidhNgjH9fcrRt29f5unpyS5fviy5nesH7tWlSxeWnZ1tlc/T05M9/vjjinURBCEPWYYJDBs2DDdu3MDXX38NoNgSsXr1arRu3RoPPfSQJV+zZs1w8+ZN9O/fH1u2bLFrVXOjRo1QpUoVzJ8/X9Jl4dtvv4XJZMKzzz4rsFJGRUWhYcOGVtEcwsLCZG8zdu3a1WLdBh5YFv/++28AxYtqfvvtNwwcONBy/NyrS5cuSEtLM8T1QBxBg7MYde3a1Sr933//tXKVkKJHjx6C7+JjkyM+Ph4pKSmaXjExMYpliS3JjDHLNjlrl9o2W/a3ty45pkyZgpSUFHz33XcYOnQoXnzxRauIAp999hlefvllvPjii9i5cye2bt2KDh06oGfPnoKFcUVFRQCAhIQEfPrpp3jiiSfw7LPPYvPmzbhx4wYWLFggyHvr1i0sXLgQL7zwAh577DH83//9H8aOHYu1a9fizz//tOSdMWMGPvjgA0yfPh27d+/Gli1bULt2bbRv3x7Hjh2z5MvMzETPnj2RnZ2NNWvWYN++fVi4cCH279+PHj16SN4J2LhxI3755Rd8+eWXqFevHjp37qwYTeXo0aPo06cPWrRogZkzZ9rUp1w/5ebmYuvWrejduzc6dOiAL774Ao888gjefvttS94RI0bA29sbAwcOxKlTp/DPP/9gwYIF2LBhAwDb3GIKCgowdOhQ9O3bFx07dlTMa0ufAsC///6LzZs3o1OnTqhYsaJknvr16yMlJQV79+7FRx99hGPHjqF9+/a4c+eOVXt37dql+zgJgriPq9U44Xru3LnDQkJCLIvatmzZwgCwFStWWOVdvnw5S0hIYJ6ensxkMrFmzZqx7du366qPW0D3119/sdjYWBYcHGxluXv++ecVrZXVq1e35E1MTGT16tWzqkfJkgOATZs2jTHG2P79+1Wto/v27WOM2WcZ/vLLLwXpn332GQPAUlJSBOnTpk1jANj169cFfSZlGRaXyR2z2qKgoqIilp+fr+mlhrivuLonTZrEAEguZoyIiGD9+/dXLLdfv36sfPnyVuk5OTkMAJs8eTJjrPj8NZlM7D//+Y9V3vnz5zMA7OzZs5J12LKAbtSoUczLy4tlZGQwxooXkPn5+bEXXnjBKm9iYiKrWrWq5TvXJ3PnzrXKGx0dzTp37mz5HhUVxQCwf//9V5Dv+++/ZwDYhg0bGGOMnT59mplMJqvzPC8vj9WsWZO1bdvWkjZx4kTm7e0tsEAzxtgPP/wg+5/nk5+fz+Li4liDBg0ktx89epSFh4ezJk2asJs3byqWxUfcp7/99hsDIFkPt+D22rVrlrStW7eyypUrW87BypUrs48//pgBYO+8845knUqW4dmzZ7OQkBD2xx9/sMzMTJaZmcmOHz9uKS8zM9Nyt8nWPv3oo48YALZp0yYtXcQYY+zgwYOy5w9BELZDlmECfn5+6N+/P5KTk5GWlobly5cjKCgIvXv3tso7ZMgQ/Pzzz8jKysJ3330Hxhi6deumaomUolq1atizZw/Cw8PRsWNHQezQiIgImEwm7N+/X9JaKV58ZY/lLyIiAgAwefJkWetoo0aNbC7fHdm7dy+8vb01vS5cuKBYlrivunfvDuCBr7B4cWZ6ejpu3LiBuLg4xXLr16+P69evIz09XZDOlcft7+fnh5o1a0ouAj1x4gT8/PxQvXp1xbr00KxZMxQUFFj8kM+ePYu7d++iadOmVnmbNGmCCxcuWKz8Un7NHIwxgRVTLi+7b3nn8h4/fhyMMav6vb290bBhQ4FvdmpqKipWrIjo6GhBXm5fNT9uLy8vPPLII/j999+tth07dgzt2rVDbGwstm/fbrWgTAlxn9aoUQP+/v6SecXHDwCdO3fG33//jd9//x2nT5/G+fPnUa5cOQBAmzZtNLeD4+TJk8jKysJDDz2EsLAwhIWFoWHDhgCKw6yFhYVZzjdb+3TZsmWIjIyUjLkuR5MmTeDh4SHZ/wRB2A6JYQJAsatEYWEhZs+eja1bt6Jfv36ykxEABAQEoHPnzpg6dSry8vJw6tQpm+qtWrUq9uzZg4iICHTq1Ak//fQTgGKXAsYYrly5giZNmli9xIuy7KF27dp46KGHcPz4ccm6mjRpgqCgIMPqcweMdJMQ9xUnQjp16gSz2Wy1AHHFihUwmUzo1auXYrk9e/aEyWSyWjC1YsUK+Pn5oVOnTpa0J598Ej/88AMuXbpkSbt16xb+97//oUePHoauvt+9ezc8PDwsApvrH7G7D2MMBw8eRFhYGAICAgAUizZ/f39s27ZNkPfo0aNIT08XRE54+umnAcAq79atW+Hh4WERW3L137t3D0ePHkWlSpUsaTExMbh8+TKuXLkiyHvgwAEAEOSVIjc3FwcPHkTNmjUF6ampqWjXrh0qVaqEHTt2ICwsTLEcMeI+9fLyQs+ePXHmzBnBxRhjDMnJyahRo4blIpbDZDLhoYceQt26dVFYWIiPPvoIjRo1skkMT5o0Cbt37xa8uJjEo0aNwu7duy19YEufHj58GL/++isGDRqk69zcu3cvioqKrPqfIAj7oPgsBIBiQdOgQQN8+OGHYIxh2LBhVnmGDx8OPz8/tGrVCtHR0UhPT8fMmTMREhIiaRXTSmxsLPbs2YPHHnsMnTp1wtatW9G6dWuMGDECQ4YMweHDh9GmTRsEBAQgLS0N+/fvR/369TF69Gh7DlnA4sWL0blzZ3Ts2BGDBw9GxYoV8e+//+LMmTM4evQovvzyS8PqcgeCgoJkQ0UZRXh4OF5//XW88cYbCA8Ptzx0Y/r06Xj++edRr149S97PP/8cQ4cOxfLly/Hcc88BAB5++GEMGzYM06ZNg6enJ5o2bYrt27djyZIl+L//+z+Eh4db9n/ttdewatUqdO3aFW+//TZ8fX0tD7+YPn26oF2nT5/G6dOnARRbqe/cuYOvvvoKAFCvXj1Lu0aMGIHg4GA0a9YMkZGRuHHjBr788kts2LAB//nPfyxhrqpUqYKnnnoKS5Ysga+vL7p06YJ79+5h5cqV+Omnn/DOO+9Y7lyEhobi7bffxmuvvYbBgwejf//+SE9PxxtvvIEqVaoIoqAMGTIEixcvxpgxY3Djxg3Uq1cPO3fuxIIFCzBmzBhLGLlHH30UTZs2xfTp03Hnzh20adMGWVlZ+Pjjj3H+/HmsWrXKUuYLL7yANWvWoH379pg0aRIqV66MkydP4v/+7/8QGRlp8ZsHgJYtW6JHjx6oW7cuQkJCcOHCBSxatAjnzp3Dpk2bLPnOnj2Ldu3aASj2Xf7jjz/wxx9/WLbXqFHD0lda+xQA3nnnHWzbtg2dOnXC9OnTERwcjE8//RTHjx+3Cnk4duxYtG3bFuXKlcNff/2FefPm4fLly9i7d6/Vecn91pwV+vDhwwgMDAQAPPPMMwCAOnXqoE6dOoL9OFFeo0YNQeQGPX3KwT0dT2qcBYrXTCxduhQ9evRAbGws8vPzcfjwYXz44YeoWbMmnn/+eUF+k8mExMREpz8ZkyBKDS5z0CDcDs6HTcr/ljHGVq5cyR577DEWGRnJfHx8WExMDOvTpw/79ddfddUjfugGx8WLF1mNGjVYQEAA27t3L2Os2Ee5efPmLCAggPn5+bEaNWqw5557ThBgPzExkT388MNW5Wn1GeY4fvw469OnD6tQoQLz9vZmUVFR7PHHH2effPKJJU9p8Rl2Jh999BGrVasW8/HxYVWqVGHTpk2zekgD1xfidufl5bFp06axKlWqMB8fH1arVi02b948yXr+/PNP1qtXLxYcHMz8/f3ZE088wY4cOWKVj+tfqRf/nFi+fDlr3bo1i4iIYF5eXiw0NJQlJiayVatWWZV59+5dNnv2bNagQQMWFBTEwsPDWYsWLdjq1aslHySzdOlSFhcXx3x8fFi5cuXYwIED2aVLl6zy/fPPP2zkyJEsMjKSeXt7s1q1arHZs2cLHh7BWPHDMKZOncrq1q3L/P39WYUKFVjbtm3Z1q1brco8evQoe/LJJ1mlSpWYr68vq169Onv++eetHo4xfvx41rBhQxYSEsK8vLxYVFQUe/LJJ9lPP/0kyMf9dnIv/m+qp08ZY+zEiROsa9euLCgoiJnNZtaiRQvJhwD17NmTRUdHW/63gwcPFjyAhY9SW5VQGk+09iljD9ZotGnTRrauM2fOsGeeeYbFxsYys9nMzGYzq1OnDvvPf/4jeNgMY4zdunWLAWD9+vVTbD9BEPKYGOMt/SYIgiAIosSwdetWdOvWDcePHzfUfYwgyhLkM0wQBEEQJZTdu3ejX79+JIQJwg7IMkwYhtrTyrjHxpYWGGOqT3rz9PS0K9IFQRAEQRCOpfQoE8LlqIXoGjp0qKubaChawpOJIyEQBEEQBOFekGWYMIzDhw8rbo+IiEDVqlWd0xgncOvWLdUn01WrVs0SaowgCIIgCPeDxDBBEARBEARRZiE3iTLCk08+CT8/P9y8eVM2z8CBA+Ht7Y1r164ZVm/VqlUln7D06aefwtPTEz169EBubq5h9RnJnj17YDKZKHanBnJycjBu3DjExMTAbDajUaNGWL9+veb9MzIyMHjwYERERMDf3x8JCQnYtWuXZN6dO3ciISEB/v7+iIiIwODBg5GRkWGVLz8/H2+99RaqVq0KX19f1KlTBx9//LFVvnXr1qFNmzaIjIyEr68vYmJi0L17d8ETETk+//xz9OvXD7Vr14aHh4fmOx2ffvopTCaTJZ4tH8YY5s2bhzp16sDX1xfR0dEYPXo0MjMzBfm4h5XIvWbNmiXI//3336NVq1bw8/NDSEgIunfvbvVwnOzsbMyYMQNt27ZFVFQUAgMDUb9+fbz33nuS/0utffrpp5+iV69eqFq1quUJgaNHj0ZaWppV3uzsbEydOhW1atWCv78/KlasiN69e1u19datW5gwYQI6dOiA8uXLw2QyWcWQBoDCwkLMnTsXnTp1QqVKleDv74+6deti0qRJkuOf1v7cuXMn2rdvj5iYGPj6+qJChQp4/PHHsXXrVkG+CxcuKP5O/IfFKOUV/3+mT58umc9sNlsdE0EQOnFVTDfCuXzzzTcMAFuwYIHk9ps3bzI/Pz/Wq1cvQ+uViin8/vvvMwAsKSmJ5efnG1qfkdgSU7is0r59exYaGso++eQT9sMPP7Dnn3+eAWBr1qxR3Tc3N5fFxcWxSpUqsdWrV7Pt27eznj17Mi8vL7Znzx5B3j179jAvLy/Ws2dPtn37drZ69WpWsWJFFhcXx3JzcwV5n3/+eebr68vef/99tnv3bjZp0iRmMpnYjBkzBPk+/vhjNmnSJPbVV1+xPXv2sHXr1rGmTZsyT09Pq/rbtWvH4uLi2LPPPstq1qzJYmNjVY/v8uXLLCQkhMXExLCAgACr7a+++irz8PBgEyZMYNu3b2cffvghCw4OZvHx8YJ4zBkZGezAgQNWr/bt2zMA7LfffrPk3bx5MzOZTKxXr17su+++Y2vXrmW1a9dmYWFh7M8//7TkO3HiBIuIiGCvvPIK27JlC9u1axebPn06M5vN7IknnrCKkay1T2NiYtjAgQPZmjVr2J49e9jixYtZpUqVWHR0NEtPTxfkbdOmDfP392fvv/8+++GHH9jnn3/OatasyYKCggSxgs+fP2+Jz8udX+JY4YwVx90NCgpiI0aMYF9++SXbvXs3mzNnDgsLC2P16tVjd+7cEeQHwJ555hmrfr1y5Yog3/r169nLL7/M1q9fz/bs2cP+97//sQ4dOjAAgjjJubm5kr/TxIkTGQBB3HIudvHYsWOt8t+4cUNQPxcfOzk5WZDvl19+seoDgiD0QWK4jFBQUMBiYmJYfHy85PZFixYxAJIB7e1BLIYnT55sGfylHkZgC7dv3zakHDEkhrXx3XffMQBs7dq1gvT27duzmJgYVlBQoLj/ggULGAD2888/W9Ly8/NZvXr1WLNmzQR5mzZtyurVqye4iPrpp58YALZw4UJL2smTJ5nJZGLvvvuuYP/hw4czPz8/qwcXiLl58ybz9vZmSUlJgnT+wy66du2qSQx369aNde/enQ0aNMhKDF++fJl5enqysWPHCtLXrl3LALAlS5Yolp2Tk8MCAwPZo48+KkivXbs2a9CggeA/duHCBebj48MGDBgg2D8nJ8eq3NmzZzMA7Mcff7Sk6enTa9euWZWZkpLCALB33nnHkvbHH38wAOz1118X5P35558ZADZ37lxLWlFRkeV4rl+/LiuGCwoKrIQkY4x9+eWXVsKVsWIx/MILL1jl10JeXh6rWLEia926tWretm3bMn9/f5aVlWVJU3qQhxiph/EQBGEM5CZRRvD09MSgQYNw5MgRnDhxwmr7Z599hujoaHTu3NmStmjRIjRs2BCBgYEICgpCnTp1MGXKFJvqLyoqwujRozFz5ky8+eabmDdvniDkGGMMCxcuRKNGjeDn54ewsDA888wzlkemcrRt2xZxcXHYt28fWrZsCX9/fwwdOtRyu/GDDz7A3LlzUa1aNQQGBiIhIQEHDx60as/hw4fRo0cPhIeHw2w2o3HjxlaPeLUFzrVi7dq1mDhxIqKjoxEYGIju3bvj2rVruHXrFkaMGIGIiAhERERgyJAhyMnJEZSxYMECtGnTBhUqVEBAQADq16+P999/H/n5+ZY8f/zxB4KDg9G7d2/Bvj/88AM8PT3xxhtv2H0sWtm0aRMCAwOt2jJkyBBcvXoVv/zyi+r+tWvXRkJCgiXNy8sLzz77LA4dOoQrV64AAK5cuYKUlBQkJSXBy+vBk+RbtmyJWrVqCR4RvHnzZjDGMGTIEKs23b17F8nJyYptCgoKgtlsFtQDQHdowNWrV2Pv3r1YuHCh5PaDBw+isLAQXbp0EaRzrkUbN25ULH/Dhg3IyckRPJ73n3/+wdmzZ9G5c2fBfyw2NhZxcXHYvHmzJSRgQEAAAgICrMpt1qwZAODSpUuWND19WqFCBasy4+Pj4enpKSjT29sbABASEiLIGxoaCgACFwDOLUANT09PyUWrUsdkL97e3ggNDbU6T8ScO3cOe/fuRZ8+fRAcHGxY/QRBGAOJ4TLE0KFDYTKZsHz5ckH66dOncejQIQwaNAienp4AgPXr12PMmDFITEzEpk2bsHnzZrzyyiu4ffu27nrz8/MxcOBALF68GB999BHeeustqzwjR47EuHHj0K5dO2zevBkLFy7EqVOn0LJlSysf5rS0NDz77LMYMGAAtm7dijFjxli2LViwADt27MCHH36INWvW4Pbt2+jSpQuysrIseXbv3o1WrVrh5s2b+OSTT7BlyxY0atQIffv2xYoVK3QfnxRTpkxBRkYGVqxYgTlz5mDPnj3o378/nn76aYSEhGDdunWYMGECVq1aZXWBce7cOQwYMACrVq3Ct99+i2HDhmH27NkYOXKkJc9DDz2EpUuX4quvvsK8efMAAOnp6RgwYABat24t6UvJhzGGgoICTS81Tp48ibp161oJggYNGli2q+3P5ZXan/Md5cqRy8uv5+TJkyhfvjyioqI0t6mwsBD5+fm4cOECRo8eDcYYXnjhBcW2K5GRkYFx48Zh1qxZqFSpkmSevLw8AICvr68g3dvbGyaTCb/++qtiHcuWLbO6KJIrk0u7c+cOzp07p1juDz/8AAB4+OGHLWm29CmfvXv3orCwUFBmbGwsevbsif/+97/YvXs3cnJy8Ntvv+Gll15ClSpV0K9fP8Uy9SB1TBxr166Fn58ffH19ER8fj88++0y2nKKiIhQUFODq1auYNm0afv/9d4wfP16x7uXLl4MxJrho4TNr1iz4+PjA398fjz76KL7++mvZsurXrw9PT09ERkbiueeew8WLF63yDB48GCaTCRcuXFBsF0EQ93GlWZpwPomJiSwiIkLgizh+/HgGgP3++++WtBdffJGFhobaXV9sbCwDwACwKVOmSOY5cOAAA8DmzJkjSL906RLz8/NjEyZMELQfANu1a5cgL3e7sX79+oLb8ocOHWIA2Lp16yxpderUYY0bN7byV+7WrRuLjo623Aq3xU2C26d79+6C9HHjxjEA7KWXXhKk9+rVi4WHh8uWV1hYyPLz89nnn3/OPD092b///ivYPnr0aObj48MOHDjAHn/8cVahQgV29epV1XZ+9tlnlt9F7aXGQw89xDp27GiVfvXqVQbA6ra6GG9vbzZy5EirdO5WOed+sWbNGgaAHThwwCrviBEjmI+Pj+V7+/btWe3atSXr8/HxYSNGjLBKr127tuWYo6Oj2f79+xXbreYm8fTTT7OWLVtabu1LuUmkpqZauQ4wxtiuXbsYAMExiTlz5gwDYNV3hYWFLDw8nD3xxBOC9MzMTBYUFGTlkiLm+PHjzM/Pjz355JOCdFv6lCM7O5vVrVuXVa5cmd26dUuwLS8vjw0fPlxwzjVo0ICdP39etjwlNwkpLl++zCIjI1mTJk0Eri6MMTZgwAC2Zs0atm/fPvbVV1+xzp07S7pucHTs2NHSzuDgYPa///1Pse6CggJWsWJFVqdOHattV69eZcOHD2dffPEF+/HHH9maNWtYixYtGAC2dOlSQd7PP/+czZgxg23dupX98MMPbNasWSw8PJxFRkayy5cvC/IOHTqUeXp6CnyuCYKQh8RwGePzzz9nANhXX33FGCv2zYyMjLTyeePy9evXj23evNlmP7XY2FjWqFEjVqVKFRYcHCwpZKZOncpMJhO7du0ay8/PF7xatGgh8BtNTExkYWFhVmVwYnjSpEmC9NzcXAaAzZo1izH2wEfxgw8+sKpr4cKFDAA7ffo0Y8w+Mbx48WJB+uLFixkA9v333wvSOR9qvkA4evQo6969OwsPD7cSpgcPHrQ6vsaNGzOz2cw8PDzY9u3bNbXzxo0bLCUlRdNLjYceeoh16tTJKp0TwzNnzlTc39vbm40aNcoqnRPD3IUMJ4bFfcBYsRj29fW1fG/fvr2k+GCsWLhJie+TJ0+yX375hX355ZfsiSeeYEFBQYq/vZIY/uqrr5iPjw87deqUJU1KDDNWvIAsODiYffHFFywzM5P99NNP7KGHHmKenp7MbDbL1v/aa68xAJK/0RtvvMEAsLfffptdu3aN/fHHH6xr167M09NTtg8ZK/4fVa5cmdWqVcvKr9qWPmWMsbt377J27doxf39/yXqHDRvGwsPD2X//+1+2d+9etmHDBtakSRNWrVo1WTGnRwz/888/rEGDBqxChQrs3LlzqvkZK74w9vLyYhkZGVbbfv/9d3bo0CG2ZcsW1rt3b+bt7W3lL8/n22+/1ewXzFjxxUHjxo1ZuXLlVBcY//LLL8zDw8PqIpsgCH2QGC5j3Llzh4WEhFgWtW3ZsoUBYCtWrLDKu3z5cpaQkMA8PT2ZyWRizZo10yy2OLgFdH/99ReLjY1lwcHBVlYpbmW43Kt69eqWvImJiaxevXpW9SgtROFPmvv371e1hO7bt48xZp8Y/vLLLwXpnCVWLFzEi2L+/vtvFhAQwB555BG2atUq9uOPP7KUlBTLIjOptnCLnR555BHN7SwqKrK6GJB7qdGiRQvWtGlTq/STJ09KXhiIiYqKYr1797ZK50QEdwGRnJzMALDvvvvOKu8zzzzDoqOjLd/79evHypcvb5UvJyeHAWCTJ09WbFN+fj6Li4tjDRo0kM0jJ4Zv3brFIiMj2fjx41lmZqbl1b9/fxYQEMAyMzMFi9auXbtmsUZy1uCJEyey+Ph4VqNGDcm68/LyWIUKFVjDhg1l2//KK68wHx8fS7ldu3a1/NcuXbpktc+FCxdY1apVWbVq1SS329Knubm5rFOnTsxsNrOdO3dabd+2bZvk/yUzM5OFhISwwYMHSx6fVjH877//skceeYSVK1eOHT9+XDEvn/Xr1zMAbOvWrap5O3XqxMLCwqwszhxPPvkk8/b2llxUKMesWbMEF+ZK1KlTx2qhKUEQ+iCf4TKGn58f+vfvj+TkZKSlpWH58uUICgqyWvwEFC+M+fnnn5GVlYXvvvsOjDF069YNf//9t+56q1Wrhj179iA8PBwdO3YUxHCNiIiAyWTC/v37kZKSYvXavHmzoCwti2jkiIiIAABMnjxZsq6UlBQ0atTI5vLtZfPmzbh9+zb+97//4dlnn8Wjjz6KJk2awMfHRzL/yZMn8eabb6Jp06Y4evQo5s6dq6melStXqj5KmnupUb9+fZw5c8bKv5hbqBkXF6e6v9SiTvH+3LtcXn499evXx/Xr15Genm5Tm7y8vPDII4/g999/V8wnxY0bN3Dt2jXMmTMHYWFhlte6detw+/ZthIWFYeDAgZb8FSpUwNatW3Ht2jUcP34cGRkZePvtt/H777+jTZs2knV8++23yMjIkPVB9fLywty5c/HPP//g119/xdWrV/Htt9/i4sWLqFatmpUP899//422bduCMYbdu3dL+jjr7dN79+6hV69e2L17NzZv3ownnnjCqszU1FQAQNOmTQXpoaGhqFmzpqofshKZmZlo164dzp8/jx07dkj6msvB7j+LSsuCyWbNmiEzMxPXr1+32paRkYFvv/0WPXr0kFxUaET9jDHdCzsJghDhUilOuAQuxNErr7zCvL292fDhwzXtt3nzZlnLnBzi0GoXLlxg1apVY0FBQRafTM5au2HDBtXyEhMT2cMPP2yVrtUyzFjxbf0uXbqo1uUKy/C8efMYAJaWlmbJU1RUxJo1a2bVlpycHFanTh1Wt25dlpOTw1588UXm7e0tewucj5FuElu3bmUA2Pr16wXpnTp10hRajXNP4bc7Pz+fPfzww6x58+aCvM2aNWNxcXGCMjmf80WLFlnSuDBgnHsMx8iRIzWFVrt79y6rVasWi4uLk80jZxm+e/cu2717t9WrY8eOzGw2s927d7MTJ04o1v/RRx8xDw8PduTIEdm6zWazlQ+5EkeOHGGenp7sww8/FKT//fffrGrVqqxy5cqKbgR6+jQ3N5d17tyZ+fj4sG+//Va2zJUrV0qeOzdu3GBBQUGycc/VLMOcRTg0NFTTOSymS5cuzNvbW9U9rKioiCUmJrLQ0FDJuyjcXRstFmaOvLw81qhRIxYREaH63zlw4ADz8PBg48aN01w+QRDWKMeDIUolTZo0QYMGDfDhhx+CMYZhw4ZZ5Rk+fDj8/PzQqlUrREdHIz09HTNnzkRISIiVFUcPsbGx2LNnDx577DF06tQJW7duRevWrTFixAgMGTIEhw8fRps2bRAQEIC0tDTs378f9evXx+jRo+05ZAGLFy9G586d0bFjRwwePBgVK1bEv//+izNnzuDo0aP48ssvDatLL+3bt4ePjw/69++PCRMmIDc3F4sWLbJ6GhkAjBo1ChcvXsShQ4cQEBCAOXPm4MCBA+jXrx+OHTtmCU8lRbly5STDT9lC586d0b59e4wePRrZ2dmoWbMm1q1bh+TkZKxevdoSoQQAhg0bhpUrV+LcuXOIjY0FUBzlZMGCBejduzdmzZqFChUqYOHChTh79ix27twpqOu9995D+/bt0bt3b4wZMwYZGRmYNGkS4uLiBCG/Hn74YQwbNgzTpk2Dp6cnmjZtiu3bt2PJkiX4v//7P4SHh1vytmzZEj169EDdunUREhKCCxcuYNGiRTh37pwgXBtQHHnl9OnTAIqjd9y5cwdfffUVAKBevXqoV68ezGYz2rZta9VPK1asgKenp9W2pUuXAgBq1KiBmzdvYtu2bVi2bBneffddPPLII1blXL16FcnJyejbty/CwsIkf5M9e/YgJSUFDRo0AGMMhw4dwnvvvYdOnTrhxRdftOTLyMjAY489hrS0NCxbtgwZGRmCp/lVqlTJYiXW06fPPPMMtm3bhqlTp6JcuXKC8IbBwcGoV68eAOCpp57Cm2++idGjR+Py5ct45JFHkJaWhtmzZ+POnTt4+eWXBce1bds23L59G7du3bL8Hlz/d+nSBf7+/rh79y46duyIY8eO4cMPP0RBQYGg/vLly6NGjRoAgNmzZ+P06dN44oknUKlSJWRkZGDZsmXYvn07pk+fbrmTBAA9e/ZEw4YN0ahRI5QrVw5Xr17FihUrsHfvXixYsEAyvNqyZctQuXJldOzYUfJ3evXVV5Gfn49WrVohKioKly5dwscff4zU1FR89tlngv9Ow4YN8eyzz6Ju3bowm804dOgQZs+ejaioKEyYMEFQ7uDBg7Fy5UqcP39e81MSCaJM42o1TriGjz76iAGQ9L9lrNhi89hjj7HIyEjm4+PDYmJiWJ8+fdivv/6qqx6pJ9AxxtjFixdZjRo1WEBAANu7dy9jrNhHuXnz5iwgIID5+fmxGjVqsOeee44dPnzYsp8RlmHGilfM9+nTh1WoUIF5e3uzqKgo9vjjjwueDuUKyzBjxU8LbNiwITObzaxixYrsP//5j8W3kmvL0qVLGQD22WefCcr7888/WXBwsOFPElTj1q1b7KWXXmJRUVHMx8eHNWjQQBDBg2PQoEEMgFWkgPT0dPbcc8+x8PBwZjabWYsWLdiOHTsk69q+fTtr0aIFM5vNLDw8nD333HOS/ph5eXls2rRprEqVKszHx4fVqlWLzZs3zyrf+PHjWcOGDVlISAjz8vJiUVFR7Mknn2Q//fSTVV7u95J6qfmvyi2gW7x4Matbty7z9/dngYGBrHXr1mzz5s2y5cyYMYMBYD/88INsnp9++ok1b96cBQcHM19fXxYXF8c++OADQRQZxh6cr1qPSWufKpWZmJgoyJuWlsZefPFFVrNmTWY2m1lMTAzr2rWr5GJbfnQa8Ys7p7ixQO41aNAgS3lff/01e/TRR1n58uWZl5cXCwoKYq1bt5Y8d9977z3WtGlTFhYWxjw9PVm5cuVYx44dZS3f3MNg3nzzTcntjDG2bNky1qxZMxYeHs68vLxYWFgY69ixo9VCW8aKfbZr1qzJAgICmLe3N4uNjWWjRo2SjB7z9NNPMz8/P5aZmSlbN0EQDzAxdt85iSAIgiCIEk9UVBSSkpIwe/ZsVzeFIEoEJIYJgiAIopRw6tQpJCQk4K+//hK4eRAEIQ+JYcIm1J5M5uHhUapWODPGLI+wlcPT09OuSBcEQRAEQTif0qNWCKeiFo5r6NChrm6ioezdu1f1mFeuXOnqZhIEQRAEoROyDBM2cfjwYcXtERERpWoV861bt3D27FnFPNWqVTMsQgNBEARBEM6BxDBBEARBEARRZiE3CYIgCIIgCKLMQmK4lPDkk0/Cz88PN2/elM0zcOBAeHt749q1a4bVW7VqVXTr1s0q/dNPP4Wnpyd69OiB3Nxcw+ozkj179sBkMmHPnj2ubkqpJzU1FV27dkWVKlXg5+eH8PBwJCQkYPXq1ZrL2L17N9q3b48KFSogMDAQDRo0wLx58yQXNu7cuRMJCQnw9/dHREQEBg8eLHiYhBQ7d+6EyWSCyWTCjRs3BNuqVq1q2SZ+mc1mSz7unJJ7jRo1ypL3hx9+wNChQ1GnTh0EBASgYsWK6NmzJ44cOWLVNsYY5s2bhzp16sDX1xfR0dEYPXq01cNYVqxYoVj/rFmzLHkvX76McePGITExEaGhoTCZTFixYoVk37Rt21ayvE6dOgnyXbp0CU8++SSqV6+OgIAAhISEoHHjxpg/f77kotuNGzeiVatWCA8PR2hoKJo1a4ZVq1ZZ5fv888/Rr18/1K5dGx4eHrIuWHr7dOnSpYiPj0dwcDDKlSuHxMREfPfdd5Jlc5w+fRq+vr4wmUyq7mK28vHHH1t+62rVquGtt95Cfn6+II/Sby1+ZDZBEMrQE+hKCcOGDcPmzZuxdu1ajBkzxmp7VlYWNm3ahG7duiEyMtKhbZk9ezYmTJiApKQkLF++XPLJTETZ4ubNm6hcuTL69++PihUr4vbt21izZg2SkpJw4cIFvP7664r779y5Ex07dkSbNm2wdOlSBAQE4Ouvv8bLL7+Mc+fO4aOPPrLk3bt3Lzp37oyuXbtiy5YtyMjIwMSJE/HEE0/g8OHD8PX1tSo/JycHw4cPR0xMDK5evWq1fdOmTbh3754g7eLFi+jbty+efPJJS9ojjzyCAwcOWO2/aNEifP7554K8ixYtwj///IOXX34Z9erVw/Xr1zFnzhy0aNEC33//PR5//HFL3tdeew0ffvghXnvtNbRr1w6nT5/Gm2++iZSUFBw4cADe3t4AgK5du0rW/+abb2LHjh2C+v/880+sWbMGjRo1QpcuXbBu3TrJvueoXr061qxZI0gTP+Xw9u3bCA4OxhtvvIEqVaogLy8PW7duxdixY5GamopPP/3Uknf58uUYNmwYnn76abz++uswmUxYuXIlnnvuOdy4cQOvvPKKJe+qVauQnp6OZs2aoaioyEoY2tKn06ZNwzvvvINRo0Zh1qxZyM3Nxccff4xu3bph48aNeOqpp6zKLywsxNChQxERESF5nhjBjBkz8MYbb2DSpEno0KEDUlJS8Prrr+PKlStYsmSJVf7PPvsMderUEaTR2gWC0IlLHvVBGE5BQQGLiYlh8fHxktsXLVrEALBvvvnG0HrFT5ibPHkyA8DGjh3LioqKDKnj9u3bhpQjxpYnzBHG0rx5c1a5cmXVfAMHDmS+vr4sJydHkN6hQwcWHBwsSGvatCmrV68ey8/Pt6RxTwNbuHChZPkvvPACa9y4MXv99detnggox/Tp0xkAtnPnTsV8RUVFrHr16iw2NpYVFhZa0qWemnfr1i0WGRnJnnjiCUva5cuXmaenJxs7dqwg79q1axkAtmTJEsX6c3JyWGBgIHv00UcF6fy2pKSkSD7RkEPuyY9a6dOnD/Py8mK5ubmWtFatWln1SVFREatTpw5r0KCBbFu7du3KYmNjJevR2qeMMVaxYkWrPrl79y4LCQlhPXr0kCx/9uzZrGLFipYneIqfKGkvN27cYGazmY0YMUKQPmPGDGYymdipU6csaXJPtSQIQj/kJlFK8PT0xKBBg3DkyBGcOHHCavtnn32G6OhodO7c2ZK2aNEiNGzYEIGBgQgKCkKdOnUwZcoUm+ovKirC6NGjMXPmTLz55puYN2+eIOYuYwwLFy5Eo0aN4Ofnh7CwMDzzzDP466+/BOW0bdsWcXFx2LdvH1q2bAl/f38MHToUFy5cgMlkwgcffIC5c+eiWrVqCAwMREJCAg4ePGjVnsOHD6NHjx4IDw+H2WxG48aN8cUXX9h0bHy42+Br167FxIkTER0djcDAQHTv3h3Xrl3DrVu3MGLECERERCAiIgJDhgxBTk6OoAytfbFjxw707NkTlSpVgtlsRs2aNTFy5EirW/jTp0+HyWTCqVOn0L9/f4SEhCAyMhJDhw5FVlaW3cfsSCIiIjTdOfD29oaPjw/8/PwE6aGhoQI3hStXriAlJQVJSUmCclu2bIlatWph06ZNVmX/+OOPWLJkicW1RwuMMXz22WeoXr26wNooxe7du/HXX39hyJAhgtjbFSpUsMobGBiIevXq4dKlS5a0gwcPorCwEF26dBHk5dyTNm7cqFj/hg0bkJOTg+eff16Q7sw44OXLl4eHh4egf729vREYGChoh8lkQnBwsOA31dNWrX3K1R8SEiJIM5vNlpeYP/74A2+++SYWLlyI4OBg2TbYM/YkJycjNzcXQ4YMEaQPGTIEjDFs3rxZUzkEQeiDxHApYujQoTCZTFi+fLkg/fTp0zh06BAGDRpkmYzWr1+PMWPGIDExEZs2bcLmzZvxyiuv4Pbt27rrzc/Px8CBA7F48WJ89NFHeOutt6zyjBw5EuPGjUO7du2wefNmLFy4EKdOnULLli2tfJjT0tLw7LPPYsCAAdi6davA7WPBggXYsWMHPvzwQ6xZswa3b99Gly5dBKJv9+7daNWqFW7evIlPPvkEW7ZsQaNGjdC3b19Zn0i9TJkyBRkZGVixYgXmzJmDPXv2oH///nj66acREhKCdevWYcKECVi1apXVBYbWvjh37hwSEhKwaNEibN++HW+++SZ++eUXPProo5K3iZ9++mnUqlULGzduxKRJk7B27VrBrWY5ioqKUFBQoPpSe+iIFri6rl+/joULF+L777/HxIkTVfcbNWoU8vLy8NJLL+Hq1au4efMmVq1ahU2bNmHChAmWfCdPngQANGjQwKqMBg0aWLZz3L17F8OGDcO4cePwyCOPaD6OnTt34u+//7b855RYtmwZPDw8rASOFFlZWTh69CgefvhhS1peXh4AWLl3eHt7w2Qy4ddff1WtPzg4GL1791atX4lz584hPDwcXl5eqFGjBqZOnYq7d+9K5mWMoaCgAJmZmdiwYQNWrFiB8ePHCy5Qxo4dizNnzmDGjBm4fv06bty4gQ8++ABHjhzBa6+9Zldb+Uj1KQC8/PLLSE5OxrJly5CZmYm0tDS8+uqryMrKwksvvWR1PM8//zy6deuGHj16yNZl79jDnZ/169cXpEdHRyMiIsLq/AWKL4o8PT0RHh6Op556SjIPd8FM6yMIQgZXmqUJ40lMTGQREREsLy/PkjZ+/HgGgP3++++WtBdffJGFhobaXV9sbCwDwACwKVOmSOY5cOAAA8DmzJkjSL906RLz8/NjEyZMELQfANu1a5cg7/nz5xkAVr9+fVZQUGBJP3ToEAPA1q1bZ0mrU6cOa9y4seA2OWOMdevWjUVHR1tuudriJsHt0717d0H6uHHjGAD20ksvCdJ79erFwsPDbeoLPkVFRSw/P5/9/fffDADbsmWLZdu0adMYAPb+++8L9hkzZgwzm82q7irc/movuVvTehg5cqSlPB8fH1m3BSl++uknFhMTY9nf09PT6pjXrFnDALADBw5Y7T9ixAjm4+MjSBs/fjyrXr06u3PnDmPsQV+ouUn07duXeXp6ssuXLyvmy8zMZGazmXXs2FHLIbKBAwcyLy8vdvjwYUtaamoqA8DeeecdQd5du3ZZ+lGOM2fOMABs5MiRivWquUlMnTqVLVy4kP3www/su+++Yy+++CLz8vJibdq0EbgwcMycOdPyO5lMJjZ16lTJcjdv3sxCQkIsef38/Njq1asV26rkJiGFVJ9yfPLJJ8zX19dSf3h4ONuxY4dVvo8//piFhYWx9PR0xpi8i4LWsUeO4cOHM19fX8lttWrVYh06dLB837ZtG5s6dSr75ptv2N69e9n8+fNZpUqVWEBAAEtNTRXs+9ZbbzFPT0+2Z88exfoJoqxCYriU8fnnnzMA7KuvvmKMMZafn88iIyNZ69atJfP169ePbd68WZOPpBSxsbGsUaNGrEqVKiw4OFhShEydOpWZTCZ27do1lp+fL3i1aNGCNWvWzJI3MTGRhYWFWZXBieFJkyYJ0nNzcxkANmvWLMYYY3/88QcDwD744AOruhYuXMgAsNOnTzPG7BPDixcvFqQvXryYAWDff/+9IJ3zob5165buvrh27RobOXIkq1SpEvPw8BAIU+54GXsg4H777TdB3Z988gkDYJnA5bhy5QpLSUlRff3666+K5XCCnf8S8/fff7OUlBT23XffsVGjRjEPDw82e/ZsxXIZY+zw4cOsQoUKrHv37uybb75hP/zwA3v99deZj48Pe/vtty35ODF88OBBqzJGjBghEBq//PIL8/T0FIgfLWL4n3/+Yb6+vgJfeTnmz5/PALAvv/xSNS/nr/zxxx9bbWvTpg0LDg5mX3zxBcvMzGQ//fQTe+ihh5inpyczm82yZb722mua/ErVxLAUH3zwAQPA/ve//1ltS0tLYykpKez7779nEydOZD4+PuzFF18U5Nm2bRsLDAxkQ4YMYdu2bWM7duxgY8eOZV5eXmz58uWy9eoRw0p9unz5cubr68vGjx/Pdu7cybZu3cr69evH/P39WXJysiXfhQsXWGBgIPv0008taVJiWM/YI97OXbAOHz5c9vesVauW6kXV+fPnWWBgoKzPM0EQ0pAYLmXcuXOHhYSEWCbqLVu2MABsxYoVVnmXL1/OEhISmKenJzOZTKxZs2Zs+/btuurjFtD99ddfLDY2lgUHB7Off/5ZkOf5559XtDhWr17dkjcxMZHVq1fPqh5ODEsJJwBs2rRpjDHG9u/fr2rh3LdvH2PMPjEsFjdyliKxuNLaF4WFhaxhw4asfPnybN68eWz37t3s0KFD7ODBg4LjlapD3Kbz588rHlNhYaHV5Cz14lvklfqG/1Kre9SoUczLy4tlZGQo5mvevLnVXQHGGHvzzTeZh4cHO3fuHGOMseTkZAaAfffdd1ZlPPPMMyw6Otry/eGHH2a9e/dmmZmZltfEiRMZAHbu3DmWnZ0t2RZu8dSmTZsU28wYY40bN2bly5cX3KmRgluMN2PGDMnt165dY507dxZY1SdOnMji4+NZjRo1JPfJy8tjFSpUYA0bNlRtpy1iOD09nQGQvZvBZ9asWQwAO3r0KGOs+MIpOjqadenSxSrvc889xwICAqwWS3JoFcNKffrvv/8yPz8/9sILL1htS0xMZFWrVhXU16JFC8F5smDBAsvYcfPmTcaYvrFHnM71+6RJkxgAyUXDERERrH///qrH3alTJ1ahQgXVfARBPIBiXpUy/Pz80L9/fyxduhRpaWlYvnw5goKCJP0FhwwZgiFDhuD27dvYt28fpk2bhm7duuH3339HbGysrnqrVauGPXv24LHHHkPHjh2RnJyMli1bAiheJGUymfDjjz9KhrUSp6n5YCoREREBAJg8ebJkaCQAqF27ts3l24vWvjh58iSOHz+OFStWYNCgQZbtf/75p+FtevvttyX9vMXExsbiwoULstvj4+ORkpIiSIuJiVEss1mzZvjkk0/w119/oXz58rL5UlNT0b9/f6sFbk2bNkVRURHOnDmD6tWrIy4uDgBw4sQJqwVnJ06csGwHgFOnTuHUqVP48ssvreqrUaMGGjZsiNTUVKtty5YtQ2RkpGR8bT7Hjh3DsWPHMH78eEvoMyneeustTJ8+HdOnT5ddwFqhQgVs3boVGRkZSE9PR2xsLPz8/LBw4UI888wzkvt8++23yMjIwBtvvKHYTnvRsritWbNmAIDff/8djRs3xrVr15CWloaRI0da5W3atCk+//xzXLhwwcrPVytqfXr27FncvXsXTZs2tdrWpEkT7N27Fzk5OQgMDMTJkyfx999/IywszCrvY489hpCQENy8eVPX2CP+n1SrVg3AA1/hEydOoHnz5pbt6enpuHHjhuD8lYMx5tTFkQRRGiAxXAoZNmwYPvnkE8yePRtbt27F4MGD4e/vL5s/ICAAnTt3Rl5eHnr16oVTp07pFsNA8YMJOEHcqVMnbNu2Da1atUK3bt0wa9YsXLlyBX369LHn0FSpXbs2HnroIRw/fhzvvvuuQ+uyBa19wV0QiAXz4sWLDW/TiBEjVIWdVFvEBAUFoUmTJrrq3r17Nzw8PFC9enXFfDExMTh8+DAKCwsFgpiLqVupUiUAQMWKFdGsWTOsXr0ar732miXvwYMHcfbsWYwbN05Qt5gVK1Zg5cqV2Lx5MypWrGi1/fDhw/j1118xYcIE1SgYy5YtA1D8f5TjnXfewfTp0/H6669j2rRpiuUBxaKYi5gwb9483L59Gy+++KJs/WazGQMHDlQt1xZWrlwJAGjRooVqXq6va9asCQAICwuD2WyWjARz4MABeHh4IDo62qZ2aelT7iLt4MGDgotNxhgOHjyIsLAwBAQEAChebCx+cFBycjLee+89fPLJJxbBrmfskfufdOrUCWazGStWrBCIYe4BG7169VIs9/z58/jpp5/Qrl07xXwEQQghMVwKadKkCRo0aIAPP/wQjDHJyXj48OHw8/NDq1atEB0djfT0dMycORMhISGS1hKtxMbGCgTx1q1b0bp1a4wYMQJDhgzB4cOH0aZNGwQEBCAtLQ379+9H/fr1MXr0aHsOWcDixYvRuXNndOzYEYMHD0bFihXx77//4syZMzh69KikJdBZtGrVSlNf1KlTBzVq1MCkSZPAGEN4eDi++eYb7Nixw/A2xcTEqFpw7WXEiBEIDg5Gs2bNEBkZiRs3buDLL7/Ehg0b8J///EdgFR42bBhWrlyJc+fOWS7KXnnlFbz00kvo3r07Ro4cCX9/f+zatQtz5sxBu3bt0LBhQ8v+7733Htq3b4/evXtjzJgxyMjIwKRJkxAXFyeI6NC2bVurdnKr7Vu1amWx9PHRInABIDc3F2vXrkXLli1Rt25dyTxz5szBm2++iU6dOqFr165WwpAvMpcuXQqg2GJ98+ZNbNu2DcuWLcO7774rGQXj6tWrSE5ORt++fSUtmhxfffUVAFjC+h0+fBiBgYEAYLE4//jjj5gxY4blyXK5ubnYtm0blixZgscffxzdu3e3lDdt2jRcu3YNbdq0QcWKFXHz5k0kJydj6dKl6N27N+Lj4wEUX1iNGTMGc+fOxXPPPYe+ffvC09PT8uCgYcOGITw83FLu6dOncfr0aQDFVtI7d+5Y2l6vXj3Uq1dPV59WqVIFTz31FJYsWQJfX1906dIF9+7dw8qVK/HTTz/hnXfesVyQSol97g5JfHy8QNjaO/aEh4fj9ddfxxtvvIHw8HDLQzemT5+O559/3nKcANCuXTu0adMGDRo0QHBwME6cOIH3338fJpMJ77zzjqDc6dOn46233sLu3bslz3uCKPO41kuDcBScX6OU/y1jjK1cuZI99thjLDIykvn4+LCYmBjWp08f1UVSYsQP3eC4ePEiq1GjBgsICGB79+5ljBX7KDdv3pwFBAQwPz8/VqNGDfbcc88JVnnLBffX6jPMcfz4cdanTx9WoUIF5u3tzaKiotjjjz/OPvnkE0seV/gMc2jpi9OnT7P27duzoKAgFhYWxnr37s0uXrxouM+wM1i+fDlr3bo1i4iIYF5eXiw0NJQlJiayVatWWeUdNGiQZLs3btzIHn30URYREcECAgLYww8/zN555x1J39Lt27ezFi1aMLPZzMLDw9lzzz0n+UAGMUoL6Dh//DZt2qiWwy3kU1oIxkVOkXvxWbx4Matbty7z9/dngYGBrHXr1mzz5s2yZc+YMYMBYD/88INiO7XU/8cff7AuXbqwihUrMl9fX2Y2m1n9+vXZjBkzBA/RYIyxr7/+mrVr145FRkYyLy8vFhgYyJo1a8bmzZtntaCysLCQLV26lDVp0oSFhoay4OBg1rhxYzZ//nwrH2uliCf8/4KePr179y6bPXs2a9CgAQsKCmLh4eGsRYsWbPXq1aoRWJQeeKFl7FHjo48+YrVq1WI+Pj6sSpUqbNq0aVZ9Mm7cOFavXj0WFBTEvLy8WExMDHv22WfZ2bNnrcobP348M5lM7MyZM5rbQBBlCRNjjDlKaBMEQRAE4VqaNWuG2NhYl94VIwh3hsQwQRAEQZRSsrOzUb58eaSmpsq67BBEWYfEMCFJQUGB4nYPD49StWKZMab6hDVPT0+7Il0QBEEQBOF+lB41QxiKt7e34mvo0KGubqKh7N27V/WYudXzBEEQBEGUHsgyTEhy+PBhxe0RERGoWrWqcxrjBG7duoWzZ88q5qlWrRrKlSvnpBYRBEEQBOEMSAwTBEEQBEEQZRZykyAIgiAIgiDKLPTQDQdSVFSEq1evIigoiBZeEQRBEGUWxhhu3bqFmJiYUrX4migdkBh2IFevXkXlypVd3QyCIAiCcAsuXbpkeXw6QbgLJIYdSFBQEADg778vITg4GB4oEmbgP+9eHMpMKbSZl5fw3WxGETwsxRUUFL/u3RMWxb17iX51Ly/A17f43csLMJtR3NbcXOHO9+4VZ1RoBwAUqXjfWPWDBtTKJITwTy3A8tMoYsvvAlj/NuK6AeXTWQ7xeSqFluPisPX4jKasnctS/e7oPtD9W0udtFqROAn5x2fvMC/+zlUnOEZx+/UUzC+Uh9G/UXZ2NmJjK1vmRYJwJ0gMOxDONSI4OBihwYHWGXx8HnzmD15aBzJOuaJ44PLxEWpXvpblFysuAiguxkoMiwuUawuvHVxblNA7UTli4nSkMHIHsRMc/GB+dJQQlhPBcqe1raiJYj2CGHC9KHaH88ORlMj/N/+ktQXRScg/JnHRWgWxmhgGeMfJ/8OrFSxVuLhgOO48JZdBwh0hMewEJAdmJXOBHFIqFtaDltbBlUNSCIuVtFxhWsx3PFwtRJzRBg8UuYXg0SoSjRAveuZhvRQUKJ9mekQ/IGy/s89HdzgvjMSI/uPKKE19wx8DzGb7DM9icnP1XwDagruMYwThDOhMdwVGjYy8EVGsXbVUoVnHipWNTgHMURaEsLPrsRd7hXBurvV1nZwQ5rbxX1rRkteWv1URPGjC14CHpaeEL0fU4RLsVZc6Tj4pi6+NQ6rw3BUfg95CjVTsBFHCoFnA1dhyz8wGq7BccbJWYS0FSt23k8HV4tAVE62rj1kNI4Qwh5y4VRO+ekSxowQxACuZZzTuLLrlhK6jRK/W9pQmjLDk6jV2ALBdZd+ntP0OBCGHe47OpRknWoXVdLXiAC2nUmQWzSlhz4Bqr4Bw5cTqruIHsE8I863Bei28Yuyxiskhtlbbgro8VP5tHS2u7cGVQlcPTm+bwb4H4vbzi5c657X8F6TGeUXrsJaCCIIgn2GnouZYqaZeRSOlrVZhcdGyVuESjKsneXcTQHz09I3cqnhA+XyT8vM1WvSqodeXWC/u/BuXFvjnqtb+dtl/X8KZV8nv1stL2d6ghyJ4PDhusZOyXEVS6DwGZ5Gbm4u8vDzDy/Xx8YHZGQ7YhNtDYtgZ5ObavqRYCjt8hRXdI/ht0WkVlhssXWEVdrUQdldsFcGAbeGh+On2CGF7RbSjRXFJoiT/N8Rtd4hAs3e1m8rqNnt0Kgf/QpNfnW5BLLcy1Vkr9DSSm5uLChWq4datdMPLjoqKwvnz50kQEySGXYI9wSbvw48rrFaEuChOCFuhFEHCyULYFtxhone1BUUOI6zBtt5Z1SJmnWE1JlEsEkwlHIcdh8HhH8SWVSOKlxPEitiivO/jSutwXl4ebt1KxxtvXILZHGxYubm52XjnncrIy8sjMUyQGHY6egYjmYDA/EHJpkUVvCJlH7Ah1w4R7iD+3GFyd4d+kMNeIWzAtZvqNmfC/5+UxTmwNAlit0SDqwFfENuhUa1QtA7rqcxOdwlHXHiazcGGimGC4OMm01MZQMu9ZDkkrLF6b1vrjh4hZW7Q8aQ52clW4yjp9v6B93FnEQxo7x8t1mAjniJnz+ToCHf2siqMud/b1f8ft8UB7hJGC2Kb3CW4yrgC1IJ42wC/OrnPBOFukBh2BnIxp2xAbBXma1e5YuWEsFV7xIXJFQIbRaDB5gKKEqGMPUJYjwjW9aQscUUcCucE/+EFSkXYiy2PsC7pkChWoLQIYj2F6Gy/M/H1NfY/yZhxZRElHxLDrkCPNZjDjlBqcgjcI8RCmKvPBquB6hP3DMBZk3dJEb5i9AphW32D5R7tLWiDlhM0J0e6ULNZNqKA0U/2ElOWxDGJYhlKmCCWxJ5jcDNBTBCOgsSwM7HzPrOeRXNSWlr1kctqA6Y9VmFRGfbgyAm7LAzycpEibLEG888zf/P9cyqXV4DS3QY+cueFyI9B/Ohe/m5a5nuuObbcGS4L4phEsQNwog+xbncJLW4SOqNLOPoilSAcAYlhZ6D3yQQqD7bQ6h7BIRs9gl+glvbYi5uqh9ImgJWEjJoQ1iuCBVbgnBzhiamn0JwcK4uwVR7eXQuxKFZCq5eSPU+vddNT22b4/VrmhbER6s6gGMRy2Ow/LC6Eq1wFsg4TpQ0SwyUEsVUYMCh6hBY/YcAYq7ABGDkxu/pYHIHW/pG6wyB3k0BKlwpEMHcucWJYShDLwVfV4hldrnLebM+flKXmer2CQqppWijNVmOKPgGnCGJ7YxA7NNyaG7hLGP20SneJbkO4B3Q6uAq50UrC9Ca3aI77roSie0RBgfQAr/bcUAVkJ02d6kA80JIItg+lRXK2hOezOo84IcylSVUi5WAMFJ8bnGVYapUcXyhz7054MIA9Dw1R+1uVNMhSjBIhiKWq0mUdBgx5GAe5ShAlDRLDzkbPCGHHk+ZEuwvRu4DPRVZhoyfdkiiC7bkVL3W8eoUwv06z+b5fMPBA/PJFMLcITulCS1yoWNhKTbhiQSzCGRYqI56mV1oEMgljO3GgIJbTsY56Op3Sf48EMVGSIDHsDO7d0zcqiBbN8dFiFRYb4CRjCjvAKuzOlBQhrHSaaDHMcJOeHiGsRbOazfe/5+Zav/jCmCtYqVDuQMQLeOQ+i1GwDmudgG19cIh4X6MeFc2nJAnkMrfgziiF5yRBbHO4NXFBCpAgJkoDpUftlETEA6LMwCNlFdbqHsEh6ScMSA94NlqF3W1CLCkCGDB2wpBbJAcIhbBSnVJC2CP3zgPxy7341mG+GOYqlrMC8wWxOC//s1j42mkd1iIo9IhdI4UxR0kUyGVKFDtQEBtVjar/sFa1LfV/c4KLkhTkM0w4Ejod3BWRrzCgLmCkkHzABmC92l9JEJcASpLw5aP399Q7D2mxBosFHT/EtJcXP2SaSAhz3/lWYvE5JW4wJ4DFV2v87/zP4rAVOs5LqTu/erFFGDvir1NSFuiVKVFsBDrcDuzxH+bQ7T8MaBLEFF2CKOmULMVTmpEK3AppK7DeW7yqi+ZkQri5u1W4JA++zrh1aIsQ5n+2CGOxEL55U94yLLcolC+Axas6uTxiwetmF2RahbEjrMVi3F0cl3pRbOT9fwVh6VDrsBglta3BZUJOEJOrBFEScK/ZpqwhNzrZaRWW0hqqhYjNgTogIawdZ4pgQLsQ5iPwMxe7RnBCmHuXusASi9/AQNtFsEE+7FLHas8iVK1WYEdai/m4qzimxXYa0SiIjQi3ZlioPB3h1sxmIC/PvuqMfhxzEZ2OBA8Sw+6Eo63CUgXJzdIGz6Zq4lXP4FzWhbCSlcdeIcw33gqEMN8azH3mLMYcnOjli1/us5QLBPcdcKgQtge1aB56rcXOOgx3FMelzlpstMnTCYKYwyKI9RyDG/kPE4TRkBh2FXITvcTAYphVmI/UiCphFbZXxGoVrlqtFSVNCDvKEsyVy19zxkctYoT45xd7MXigSBgyjW8dFi/C5FbYhYYWi1/uO79AqUbrwYbYp/xjFB+vLb+LWvO1CF5nuFBIYU+IPqMpdaLYSBTOZ3sEsWLxegom/2GilEJi2NVIWMS4p80pWYXFE6/UQjkrqzD3WW5xEocGX2FHCFc1QVySBlhn+chJ1SMVQ1gJ/ung5cV7tDIngjlRzHeJ4AoPDHwggCMiHghirrDAQGHD+OcgVx5/clVydFQJvcZNwo72UTRCFOvJZzTuYjUuFS4UDj7ZjBKWitZhMSSIiTIIiWF3QqNVWM1VQjaCBL8AqegRbrZgqSTi6oUiSr6xSueNwIgrZQ3mPvOtwl5eD8Qv//3+Z/EjxM2B910v+KJaauLVu/JHo3VYK1qtt1pEsZa/lKtEMYc7WI3LhLVYz4nlAHcJmeJhVbAW7FhQZytGT1E03RF86HRwBQp+kmIBwaHX2gdA3prHFSQX4grOtwqL9xPX4c5WBlcLYA6pOwdKQljKjdfiHsGdM2L3iNzcB9ZenvDlC+HsHA/kpD+oMzT0QVv8+ZOu1glYKu6w+DMetN8e67Be13queYCyT7EeUaw1vyNwtTAukaLYlpNN7cRwgCDWZR22pUCZBXVcPQThzpAYdhdEg4hcFDSl3QVRANQGOCnLsEEYMfDxJ0V3HEjdRQBzKAlhMYprJsWxgvmfuZOLe0VEAFFRFkGcneOBm5eFupkfUELAzZvCizSxouQ3MjDwwQM95PzrefuLBTEnGPjCQU6/yIkLLUJVyYit1/qr1arsSFwpjEukKDYajYvTbLEQ2+07rKvgMv47EiUCEsPOxg6rMB/+RCk7acpZhVVW9ttrFTYSdxPCRotgvdFB1MpQE3Ji+BdRgkVzYkHMTY5chIjQ0GIxHBGB7AJ/iwjme1QAxdmsxPDNm0B6urwPMr8D+ErWbBaqSimT7P00j/tpZrOHbkGshpKwNcp1Qq0eZ+MqYVxiRLGWk0nOJYjbpoIRj2uW8kAy1DrML1ii/QThrrjBMEvYaxXmEFiF1XaWiWbhTkLYXXCEFVjvxKWlHL3REqxC/YrdavhWIn5mnhC+A3/cuFGsbflimO9N4eVVnB4aigeh2fhxijnlDAh3EscpFgsHbrucKL5vJTabPSxJRgliQF0UG2kl1pPf0bhCGJeIxXb2nkwaTiQjHsihOK7YYh3WIYjtgXyGCUdCp4MzEQ8OOq3CchZisYFXsINUTC2pz66Ot+RmOMoNwpbFXHKDttaylOY0K19hviDmMgQGCtXjfSFcFBiMG5eBGzeE2lYqWoHZDPgXZAOXLz948X2SuYw3bwrjFHPWYP6Jzn3mi2BOFMsIYk5AGGkh5lDSMVz5evbTW48rsSdanq2UCGEsh9Kf0U5BbI+7hN0P4pATxFwjCcLNcbOhtRQjY4mVswrbiuRDNsQF2mAV1opSGe4S0kkKZ/gA2/q7iucZNVcIOV9YPvy+l/wdpHzKeQvligKDkZ5erF05MSxVHrfGLtx8B/jzAvDbb8VC+MKFB+cpJ4a58rlQbdw7J4C5bWJhLHaj4Fuyc3IALy94mM0CC7G43+wVFUpCtTRbiTlc7UYBuIkwduSVlbNClxm5Qg9wiJWYIIzGzYbUMoBGX2Eti3vERl7V8Ua8A/92s4NxhwVnrmyDPRc43P5GCyDBbUexAyInLMWr4O6LYc7T4eZN6105OCFcpVIRcPLPYiF84ULx+2+/Pbjyy8kRCmB+qDZ+Oj8v10YuXU0U5+ZK+hHz+9dVglhtXyPyOxN3EMaAC8WxmiBWO7l0ikp7PRsMsw6LC+bjDhMAQSjgpsNpKcPXVzpdxSosXsgPSFv4BLe6lcKpSdSpZdGcpWyDccZdNFePwfaKYEeUJetWI8bLq9glgst8X6Rm53hYgkFwcBMq33gbGgrUqQPg5Eng4EGhGP7zTxTm54Mrwtfbu7gAzh+Zc8cIDRUu2uNmfs6FQizWlUTx/c+clVhqYZ1YWAD6+l1NEAPGuk0A7iuKAfeISAG4idXYCHiC2F53CanzTfIxzXqvDB0kiLm/vFEUlZJTgjAGNx5GSyF2WIXVsNkqLMIRAlXteBwlikuTEHYEgosoDp4lVeCfe3/bnVwPQZQzvmsv950vhD1O/gocPlwsiE+eBH77DffS0vAvAH73+OTnIyA/H363bsHzxo3iAm7efCCOQ0MfWIX5L04E84UvXxRzC/L4VrX7VmJ/s/Bpj1KCmDtOI39LNbcJveLWna3EfMqUMHaUdViEUe4ShnsylJSTkiDuQ2ersxALYZUIEnyrsFxxfAECwHrxkxgVq7CrxaNRA7KrjwNwfyFshXjy5rsf3D/ZiuCBghzhecqFTuPOQU67Vq3KE8KpqcWW4ZMnkXP3Lv4BcAOwSBIfAGYAuQD8AQTevQufu3fhefNmcWHcIrvQ0Aef+YKYU7DiBXeBgUKTtYqVWNwdgLWVGFD/bbXogLIqiDncQRg7XBRrEcSA3QvqpKoz3DqspwD+Nq4xBOHmuFcQ1zKGnrjCSgOb2awysCtYheWsCrYISqMsFPyoXrbs72qcLYT11CclPAS/G9+8e/9qq8jsb7EIcxEj+PVyz97gXtWrFsHjt9MP3CMOHgRLScG1u3eRBuAqgDQA11Asim8AuA7gJu+VDeDu3bvFMdv4ESjS04tX7HHx3LjvfCdmLrSF+JHSUo+Vzs29H35N6D6i5E6vZW7XshBW6Vy15RwqcRdg97H3P28rRfBwfBxze5W+3I/K6yz+2C+3TlsLiv0vVZiaxUacr5SwcOFCVKtWDWazGfHx8fjxxx8V8+/duxfx8fEwm82oXr06PvnkE6s8GzduRL169eDr64t69eph06ZNuuv93//+h44dOyIiIgImkwmpqalWZaSnpyMpKQlRUVEICAjAI488gq+++kpfB5RSSAw7A4kZlj8I640gIWkV5hemZWYRtcEdRKQYPROkKyZTKdx53BfPy/y2FsFDaF29/yoy+wtuOMjNf5xFuErEnQcuEdwrNRWXAcsrHcXil7MQ30CxAP73/vs/eCCIc/LzUXj9urUg5kJZcOEsuBcnhKViGfP96CUEMSeKjRLEWiBBLMQVwri0CWJ7iueKtPSJ1rarTWJ6JzkJPD2F1+r2vjw99bdhw4YNGDduHKZOnYpjx46hdevW6Ny5My5evCiZ//z58+jSpQtat26NY8eOYcqUKXjppZewceNGS54DBw6gb9++SEpKwvHjx5GUlIQ+ffrgl19+0VXv7du30apVK8yaNUu2/UlJSTh79iy+/vprnDhxAk899RT69u2LY8eO6e+MUoaJMcZc3YjSSnZ2NkJCQpB16RKCw8OLE3muCXyXCLn1blLRI8Ri2N8ssXCO25k/o/PVM08My008/HFQbbDVE1LNCOyNYOQIXCVExPUq9YuU5Ugs+sShx7jy+afY/YhlgtMqJqqoeHHcfd9gpKYC+/cj8/p1XMYD0Zt9/90HxVfjPih2jwi4/wpEsdtE4P108/2Xr7f3gxAVXLQJ7p2/ek8chYLvV8w3AUuFabv/v5BzV9J6J4ePmnBW0xu2Cu/SdHfaWa4UDnWdsPfKR+oH5XWMnHFD67gkHgcsfaFUmFThMidednY2QipXRlZWFoKDg7U1Cg/m0f/9LwsBAdr3U+P27Ww89VSIrvY0b94cjzzyCBYtWmRJq1u3Lnr16oWZM2da5Z84cSK+/vprnDlzxpI2atQoHD9+HAcOHAAA9O3bF9nZ2di2bZslT6dOnRAWFoZ169bprvfChQuoVq0ajh07hkaNGgm2BQYGYtGiRUhKSrKklStXDu+//z6GDRumqQ9KK2QZdgH2WIX58Nc2WcEvVMZXGNAuKEv7Y5HtwQCjh12I5x49xhzunRO4IoOp4Ily4gszvqaMioLQpeHCBeDyZbDr15EDIAfFPsFFAPJQvHguj/c9D0D+/fTc+6/bvM+5AO7l5z+w+HKWYb6FmP/iu07wXSU0uk34m+WtxOL+VbNAqaHFLdMWSrqVmA/fYuzI/75DxzlHKHoN7hK2FqnbOsxRmk48Hnl5eThy5Ag6dOggSO/QoQN+/vlnyX0OHDhglb9jx444fPgw8vPzFfNwZdpSrxyPPvooNmzYgH///RdFRUVYv3497t27h7Zt2+oqpzRSimwHbozE/VaxuOB/VxpL+CLEame+VVg8C4u+y/kr24K7CWVn4qxxX22tjVbEa2/U7sDKnZN8I2toKOCRfrVYgPLdGS5fRjaALBSL2TsoFsUF91/c1M1Zh3Px4OrcBOkr9aL8fJivX4cpKKi4UaGhwnfuP8AtmONenJUYeKDgORHMfeZHngAEi+v40Sa44+f3k70YHYe4tCO34NEIDIm3qxctK97kFqTJhFvTU7Sh7QRK1AmbnZ0t+O7r6wtfiXCoN27cQGFhISIjIwXpkZGRSE9Plyw7PT1dMn9BQQFu3LiB6Oho2TxcmbbUK8eGDRvQt29flCtXDl5eXvD398emTZtQo0YNXeWURkrG2VoakInnq+WuEyB/h0zXoK1oSrYNEsKOR7z+0QhBrISWc1JWCPMEcWFaGm4CuIti14g7KBa8efyyUTwI5aFY/HoA8IS1EC7ivQDA59YtePLFrlj4KsF1KBdtgvss9v24H4JNKtoEXxS7syAuQZrELowOz+iwiBNKJ4w9QlPi5NF7bvKL5YrTFVlCqkAOA05Co+MMFxYWv1euXFmQPm3aNEyfPl12P5PJJPjOGLNKU8svTtdSpt56pXj99deRmZmJnTt3IiIiAps3b0bv3r3x448/on79+rrKKm2UgWHSfeD76MpZhZXga1nB2KJ0n15i9LBVwIotJlrLcUf/XntxhRA2GrWoJeLwV9wEyXcd8MjJFron8NwWODeIAhQLXC8UW4C5NC8Ui17unaMQD8Qxt18erAWyz927sFoDk5tbvJKPeyqIlNMzZwHmDoxDISax1kc52wsJYvswOmSbQ6zERpwwCj+qPdZhh50rrvYlU+DSpUsCn2EpqzAAREREwNPT08oam5GRYWW15YiKipLM7+XlhXLlyinm4cq0pV4pzp07h/nz5+PkyZN4+OGHAQANGzbEjz/+iAULFkhGuShLlF2znjOR8dHlezVw37XADVaWJ85JFS7eQWQVtnUs5sIRlVWLsDPHdLlJydbJSmxAFafx/YP5brTi8xR4sEbN4nvLj+Rw/1XItReALx4shDNDuDCOE8k+eHB1zr0X4oF/MffifIjvAii8e1foJ5ybK9kWq+9KfsT81awS0Sa430C0HtVpi7zKYpQJWzDKv9gh453cyaLnz62wcpYT8PaEWuOwOnbxraoSTnBwsOAlJ4Z9fHwQHx+PHTt2CNJ37NiBli1bSu6TkJBglX/79u1o0qQJvL29FfNwZdpSrxR37twBAHh4CH9PT09PFNHj+Mgy7CzEi+b42DJRaZp4DbQKE84VFEbOMUrnm9g3WJwOyC8Y88i9Y62meQUV4oE/sBcAb14ZVlZeCN0k+HDuEfck9vdE8dPrPLmn1d24IbT8avXD5PsN5+Q8OGiRc7DSo5wlstuEmnWYa3Yp0CFOwSgXCsNdJ+QsxHp8ocQngoHuElZFufgWn9YFqXrK08urr76KpKQkNGnSBAkJCViyZAkuXryIUaNGAQAmT56MK1eu4PPPPwdQHDli/vz5ePXVVzF8+HAcOHAAy5Yts0SJAICXX34Zbdq0wXvvvYeePXtiy5Yt2LlzJ/bv36+5XgD4999/cfHiRVy9ehUAcPbsWQDFlueoqCjUqVMHNWvWxMiRI/HBBx+gXLly2Lx5M3bs2IFvv/1Wf2eUMmg4dQJSIcz0WIXloqNZduTvLB4cJUYQOQGkwQ2tzOJuQlhpvpQ7r/jeAkpp/G1S6zAtVtCcAqFFlW9pxQNrryeKhbAfHghdDxQLXE7Ucq4S3rD2GS7AA6HMCWO+3zEgEsRSaHHGF4eO4HeChB8x8MCALF7gaPQCOyNwhoCW6mb+RYMrMWo8UzIo6BbKDhSYRiymk+0zQ1fllRz69u2Lf/75B2+//TbS0tIQFxeHrVu3IjY2FgCQlpYmiP1brVo1bN26Fa+88goWLFiAmJgYzJs3D08//bQlT8uWLbF+/Xq8/vrreOONN1CjRg1s2LABzZs311wvAHz99dcYMmSI5Xu/fv0APPCB9vb2xtatWzFp0iR0794dOTk5qFmzJlauXIkuXbo4rM9KChRn2IFw8REzM7Pg41PskyTlwsilc2mAtW+w7tjC4vu5EnGF5SYuPkaJYVvGe3eYQLl2OBOtxywldAHp31fqnJPLK4YLx8t9DgwEwkOLil0P+NEjLlwA/vzT8rp365bliXI5KHZruIcH7g6AUBB7otidAigWx14ojirhiQfC2nQ/D9+tgnucsw8Ak5/fg5jCERHW8Yf530NDHyh7Lo0ff5jLz3czErkcScUklupPvee/1v+d3v+Hs33QteLs/7mzL/IVRbLcyaGnQ2UGbntiD6vGHVY64SXIzs5GSLVqNscZ3r7d+DjDHTroizNMlF7cQGqUfnJzAR8f+cVJStY5KRQHchV/Lr2Tsiusw0pjrLMnTXcVwnqQEsJqodP47eEilQnaKA78Ki7IbIbXrVsW0cqJXE7Y8hfXWcrFAwswJ4S5dD5i67AXimMUA8WL6izrq3NypA+KfyDiAxe7S/AX3IkW1gHWbhNcF4iLdpSlWO8Fo7tcYIrRcmFuJM4e1xQX4hnhLiGDlHWYIAhr3HBYLN3ovJi2QtJFQmmGdUA4NVfC9ZkzJvSSKISlRK44TemOhBjOGMppQoHXjXiFHT/GtZeXRdia8UD0eqFYxJoAcLekxN3M7wa+/zBnRc7HA8FcAAmXCb4gVsJsVlZh4tBrgFBFybhNiN0CpEQxl9cI3FXg2oujL4SNDsemhqLPsb3uEk7wHbYKs+ZkVwnuccxGlkcQHKVwCHVPxO4R/HRxmhSSD9pQyixCLb6xElKThpb2OhJHC4CS7A4nZe2VEsVSaXwU+1fsq87f6f6OJm9v+OTnIxfF1mCg2E2C+8ztLSVcuZBqcnBWZc6PWFIQe3kpW4f5FmA+/DTxcnzxwjrAIoiL4CGpE+Q0g9z/qaT/dxwFvw+NbL8rRLFmQWzPYrr7OPxBHA4pkCCcSwkcEkseen00xfDHN80P2jDARcKe/fkTjKMWETlqUnfFmK50HGp9qHaRJRa9av7DXJ1yAq548ZyoInEmzjqcn2+JLczBCWIfPBDE4jNa641dfsxiThx73k/3lOo07sC4cGrAAwsw/0eQEsn8H0Lsm39fEBdnk3ab4D5LYa8Qcwd3CWfqIUfcIXKm64QuQWwr7mYdvndPPQ9BuAgSw05Cyj1Cr6+wYhQJuR14C+dcgaNX0xs9qbujEObetfSlnLjltsmJZP6+/MlPrBEFmcUKW+wP4OVlCakm9g3OwwN3B8BaDOtBbCXmYhN75OcXW4e5tqpZisUoCWK+E7Doc3E8Ymu3CUBdFNuDO1h8nW0gNFoUO9NKrPmBHgaEWnOpddidQqoQhAwkhp2AXtHLIbsWjl+QuFCZUVzrSmJ3mFD1UhLbzCHXbi1xZvkohVPjBx3h8qq5SGhGxV3H49Yty6I5jjw8iCvMSQFuAZzW0Db5eCCyubL5ophDs/+wGE442yKIAUm3CcA5olgrjvrfuOKOeUkVxZKC2F53CRVsNT5bWYedjNEPtiGvDoIPLTN1EnKr99UGJfH6N8VBSBxOTYKSMADYMqEZcVzu0jd6Bny5BZlSll9xOt+gK34pYXnyodIKp/vnoMnb2xJr2AsPQqFx7/xoE94QhlCTewHCB3gUiT7nodg6zEWdkDxgfhQMvtsE985FkuC/c/vIPKVOXD7/qXXiUIlSXWYE7nIOu+ri1Ojj568LdRSSd+7sUX0yV8pSc4eW30m2T6VO6pJqlSDKPHTmOoF794Sh1Wy1FOseH13sIlGScBf3CCN8R+XcI8RCmNsmh1RINcm5TuxszI/JazbDIz9fIF4FbUOxYPUSpXGh2JTsT/wzm+87LHaXQH6+1VPtZOEOku9PLLYQ8y3DUhZivmsG7xa1O1qJHXlXxVVrqhzlTww4zlKsydpaUq3DLn5yHUFogZSSGyI14Fr5C2vZ6T6G3A53Ms60DruLENaL3EI4bpuU4VJukR3/pcU6rAhfEJvNMHl7wwsPnkTHWYi58Gg+vO/8xzfz07iXFrgpmrMOFwBg+fnyVmH+k/P4VmG+ZVjKqixlZhdfaYiscuLgFHyMEm96fztHnv+uNBQ64rj4P73RWBkuVCcCBVxpHSaIEgidwU7CFqsw38Bmga9spQpRcJHQ01Ya2xyHrX7CHHITk9wpIZVPa15NSCk8/vv9qBJiMcv59/Itw+JD40eiEPsDS8H5EHNW4sL76UUAPOUW0gUGPugQzvomtgzzP/PjD3PHL+dDzH2H0I+YSxYb+9zBl9hoXBl1y5FjmSOsxVYWVwf7D9uCatQNB7XPgKnNqjyC4CDLsBNQE8JS44bUH1XXogU7XST4bdbjT2okzhisnD2n2CqE5YSrXquw+DfU+tuq/hZ853YJQcxZh7nQZ3wLsIfonbMWi63CXjIvpbOcE8NW1mE5/2Ely7DYj1jNQiyxcpHzIwaUXfyNnvjVcPT/wNUWYkcen9HWYsMsxDIHLXWXQgvi4iztJOswUQogMewk9AhhKRQHLg2DkS2TgZIF0lniWO/4qqc97mJ9s8WyJCeApdLEd+8BaREtV44VShm4H4xbNca7vcEXvdyiOr7I5W8Xp+t1leDDtw4LDlDKXUJKzPIXzekRxFwd4u/Q5jbBpZUWjeHq43DG/13scqT0cjoKler9bVTbLy6wFD0FlSidkBh2AloGYbuscuLMvIHHGYOuMwSx3gcKGJHHaIz0Ewakf1sp4Su1XZxmSH+IXCMEfj5eXjD5+QkEryce+BEriV+5dDlxzEWRKMCDhXRWvsNiX2ApIcz5EUuJY/G7XJQJQDLSBCAUxGqBYBzxHzBiH724gyB2l4tgpbHZUP9hBZQ0qtzFMh+yDhOlBTpznYh48ZLauGHlL8ztqMGvwtlRJJzhZ6w39jy3j1S6s7HHT1hp0lTy/9XiHiEuS/dvyLf+ct/5VmG+KM7NhcnbGx75+ZYnxkkh5T/M+RUXQPpBHWpneyEe+Cd78n2AuI6Tegod339YKt4wvw/E0SWk/IYVIk3wi+FXLaY0+BS7wzHw63alflPyOzbEf1j8p5Y475RQGhNUfYfF+Pqq51HZ3UgDc36+eh6i7ECWYSchtYpfagzjawg+ltiu4swK91mdHUXCWZYl/ktLm5zl0iGHvQvmOJTOGy5dLRqEQ+8USP0wfGF8P4/J29vKJcKT9+JbhAFpK7E4XQucrGDcLMg3oUs5WUtZkOUsw0rv4v0AgUVZyo+Y351au9oInPkfcRcjojtYizW7TjjIQqxUjNRFMx9Z67C7/MAEoQESw06A/0h2WwZdVdEkFh8uxNmTirv7VBolhMUouUJwiPUY/+JIy76yaJmQRS4SVi4TPEEMWAtiLk3KRQIQimJBtbzPfFcJy3GB5zssJX7lVh7KCVyxa4T4u7jTxfsDim4TXFcqnePiC0R7/xPOFsTu8v919UUzYC2INd/hs6ET1RbS8Yu0uU/c5cclCBVIDDsRpQFFyQKkCV5GetBG6UFtwaWcIVLOysTf3+4FPWILkJR7BCeCxQ/jEAliTvAC2q3E4O0rJ445CvFgIR0gYR0WC15xp/KfQCdeeCcndJUEMf871w4II8aIRUpp1hXudmyuFMaqgliLejUIOUEsOm3Jd5go8ZBqchK2DKo2+W/ex9kuEnxcUac7jr1GWoXFItYe1FwMteYVIHWwUuZNvn8xTxAD1m4TgLWVmPsMyLtIeIje+XDWYgDWfidicSv1EotjqasQ8WI8EsSacCcrMR9XiGKHCmKdUSW0uk/oKtQG5O6A2PMiCA4Sw05A70DK1wuAjL8wP7MbUtYFsRFCWMvCOX5eOZdWsbuqHlT7VLzgjG8JBoT+wiLfYe6dE8S2uE0AQmuxXv9hRXcINR9gfj5xZ8v9IFydUt95aXJ+xPxudiSudBVwV6HiahcKmwWxQqO1xByWsgjzIeswURogMewC5G5LS0WP0CSeyEXCrXDUoia5iUjPBC2+vWkz/BNTTq1J+QuL3+/nN3l7A7AWvIC1IAasrcRitPwLLGHWAHkrsVwYNbltcm4TWgQx9877ceT8iO93W6nGnUWxM7DrP8rvPIM70abjd8cfkiB4kHJyInIiWLO/sHgUUlk450orhjvU7wqUxnwj1jZqFb9a/If1IFmnWBCLr+ak/IW5dBVBDOgTxFqswpzfsMBVgn9wcmJXyV1CyU/YXkGs0W3CUTrDXf6/7qijnGUlttldgkOu83S6Ssihy3fYzh+S3CQIR0Ji2AnYskDJlj8qNxAZIX4I/Rg5uNqzcE5qkpZwTdWE6oQvnlWUxC/3mb/IziBBDF66blcJwDrsGf+d6zAlAcxP4/a1VxDz6hYLYrISuwclQhCrYOvjmTnc5aKJIOzBZWJ45syZMJlMGDdunCWNMYbp06cjJiYGfn5+aNu2LU6dOiXY7969exg7diwiIiIQEBCAHj164PLly4I8mZmZSEpKQkhICEJCQpCUlISbN28K8ly8eBHdu3dHQEAAIiIi8NJLLyEvL0+Q58SJE0hMTISfnx8qVqyIt99+G4wxQ/tBCl2DkjvOEC7EVd2hVq8RE427XOQUwcP6gKUEL/cZkHaP4OdVEMT8z3KCWK771U4HgasEIC+ApYSuWECriV8DBLGzrcTuJnTcURSXBkGsFynLOPkOEyUZl4jhlJQULFmyBA0aNBCkv//++5g7dy7mz5+PlJQUREVFoX379rh165Ylz7hx47Bp0yasX78e+/fvR05ODrp164bCwgeBkwYMGIDU1FQkJycjOTkZqampSEpKsmwvLCxE165dcfv2bezfvx/r16/Hxo0bMX78eEue7OxstG/fHjExMUhJScHHH3+MDz74AHPnznVYv8gO9Gq+FU5+/LIe3G0ydQRGC2G1hXNa9nfUbVxBmeLFcmJBzLf+ireLRbGKDzH3GZAWxIBQFCsJZNkD4wtgLo0vSMWmdyW3CAcJ4uJjlhfEgHsKRqNxt2N0hSB2J1TvOrnTj0UQEjhdDOfk5GDgwIFYunQpwsLCLOmMMXz44YeYOnUqnnrqKcTFxWHlypW4c+cO1q5dCwDIysrCsmXLMGfOHLRr1w6NGzfG6tWrceLECezcuRMAcObMGSQnJ+PTTz9FQkICEhISsHTpUnz77bc4e/YsAGD79u04ffo0Vq9ejcaNG6Ndu3aYM2cOli5diuzsbADAmjVrkJubixUrViAuLg5PPfUUpkyZgrlz5zrEOiwnmDyEN3OL0TCwlAURWtoR6yF+ulYXCXGaw9x1pHwDpVwiAMmYw4L0+/sqCWJAKIjFothmpBayabEAq313siAGyob+cKdjdPaYa7d12AC/YbljtrIO6ylUBu5xzEa97Hw6NFHKcLoYfuGFF9C1a1e0a9dOkH7+/Hmkp6ejQ4cOljRfX18kJibi559/BgAcOXIE+fn5gjwxMTGIi4uz5Dlw4ABCQkLQvHlzS54WLVogJCREkCcuLg4xMTGWPB07dsS9e/dw5MgRS57ExET48v4xHTt2xNWrV3HhwgXJY7t37x6ys7MFL1vhawfFTPehKBKuwVlWYXutQkZM1KpliEOqSQlhJf9hDt5nThADsAq7Bt47ly4F36IsOB4U+w1bHsBh2SAhUAFrUSxOl/qutOLRYEHsKCuxu19YlyVB7Gh3CVue9ix3ikoKYoJwU5yqoNavX4+jR49i5syZVtvS09MBAJGRkYL0yMhIy7b09HT4+PgILMpSeSpUqGBVfoUKFQR5xPWEhYXBx8dHMQ/3ncsjZubMmRY/5ZCQEFSuXBkAUFgof9taaqCRHHzkRlkaaFyGo/yE+YjdWR092WoRFrm5sF6WzRe7UjECpazDUpVLiGbxgzk4+IJYbCVWevCGJFKdKzapK1mNlRbZ8fdRc7Xg1y1emMdXGxr9iDlc7VagZqWzl5IuiPk/sdr/3BHuEpJ3II2E5inCzXGaGL506RJefvllrF69GmaFP4bJZBJ8Z4xZpYkR55HKb0Qezj1Crj2TJ09GVlaW5XXp0iXFdkthz5ghNiaVVZwxMTqiDrEWUsqn5S68UxFbfPlpYgEsjiQhfhiHBkEsZe0VW35tGtyk/EqURLGcVVdKIMsJYn4eqagWUlZqfjq0uU0A7iUa+RghjN3p2Iy6EyNXDn+scPViOkCDdZgg3BynnalHjhxBRkYG4uPj4eXlBS8vL+zduxfz5s2Dl5eXrNU1IyPDsi0qKgp5eXnIzMxUzHPt2jWr+q9fvy7II64nMzMT+fn5inkyMjIAWFuvOXx9fREcHCx4acGmRbclyEWiLIpzI63CtlqCjLAgSfkgC5CKDsG9i10lxOKYv4/UgjpxmZCPMAGJz9CQLoucpVbKoiv+riSQ1a5c1AQxv0xRuha3CcD1VmI17BHF7nxccqiNj1rGT1cIYq3ji1HuEuJhxIgXQXA4TUU98cQTOHHiBFJTUy2vJk2aYODAgUhNTUX16tURFRWFHTt2WPbJy8vD3r170bJlSwBAfHw8vL29BXnS0tJw8uRJS56EhARkZWXh0KFDljy//PILsrKyBHlOnjyJtLQ0S57t27fD19cX8fHxljz79u0ThFvbvn07YmJiULVqVcP7R/zHNJudcOuKsAlHuEeoWYVttfbaeyEie6xixcK38oq3SS2eUxLGMhEn5PyHAWtBzHed0CKWZVGy4mp1ddAqiPkCWk4Qi+vl0i39IRwz1KzE7iwIbBXF7nJMRhoBpMpSFaM2ik8txhlx4BVA+fqNINwdp4nhoKAgxMXFCV4BAQEoV64c4uLiLDGH3333XWzatAknT57E4MGD4e/vjwEDBgAAQkJCMGzYMIwfPx67du3CsWPH8Oyzz6J+/fqWBXl169ZFp06dMHz4cBw8eBAHDx7E8OHD0a1bN9SuXRsA0KFDB9SrVw9JSUk4duwYdu3ahddeew3Dhw+3WHMHDBgAX19fDB48GCdPnsSmTZvw7rvv4tVXX1V127AXwSCkFFZNYrBzRyusu0xOJRHxzy93l91RqLnSyrpBcO/iz2KhK3aX4JfL/6zgPyy3QE4uTRaxKJXaLveDSDl3axW8egUx/7udghgonaLYXY7HCKuvUl5Fdwmd2Gp80SKI3f3uJUG41Rk6YcIEjBs3DmPGjEGTJk1w5coVbN++HUFBQZY8//3vf9GrVy/06dMHrVq1gr+/P7755ht4ej6Y9tasWYP69eujQ4cO6NChAxo0aIBVq1ZZtnt6euK7776D2WxGq1at0KdPH/Tq1QsffPCBJU9ISAh27NiBy5cvo0mTJhgzZgxeffVVvPrqqw7tA1sHcXe9CneXSckoHL1oTjyZiD9L5ZcyStqL+Dh5a7akM0mJXr6lGFBePMftq9NdQosgtgklU7yci4OSuBXvL0ZuHwMFsVZRLBbH7vIfLq2C2MiynOEuoXWcIUFMlCRMzBmPVCujZGdnIyQkBNu3ZyEgoNjiLHUHmPscGCjUEB4okjYB8nYUP4LZnSzDrpyMHNUPSsdk67wjZ1lRiu6ltiZLi+upVNu58487F83m4s/ce2ho8XtgIOCRkw3cvAnk5Dx45z7n5j74zr340RFycpQPhH/gEh3B8vMtco//U/MlYCGEyD2og/tu8va2tlZLLfTjd45cfvGfWS2/1MJBqUGC2y7+0fjv/G2wFiGuuHA2WpPpPQZ3GRf5P5E9bZJyq+OQtPCq/fHvIzefiK/51IqSOiXz8rIRFhaCrKwszetpgAfzaFqavv20lBsdrb89ROmELtVcjFSYVUUUXCRcCS1OsB+piYePs1wjlLCqX06ISc3WUr7DSnm4ciVmWblwa+KHcoj9hw1Bi6+KFv9guYsAwLp8PRZi/jbod5soCZRkK7HSTQcjkLTAGvijyxWl5C4h3k4Q7gaJ4ZKEu4zo9yHhaz9qE4TSHXU9+yghNjCqzZuW8sU78KNHcNvFFk/+O7eP1Ekk5S4hsb+aIFbCsNNWy+I4pX3lzPuAQwWxM0WxI4SQ3mMoTeOU+JQS968jBbHSb6kmiAnCXSEx7GYIXCQ04uwrbhLA1hjlK8yhFl2CS9f72xslgCz1SsUKBoT+wuKFdPztYrEsZTGWcWDlP64ZsBbEUoOb3IDHj1RhhRbfFLUZX4s/sVyZDhLEQNmzEpemcUtNEEsivnBVySZ1/aqGVjf5ksrChQtRrVo1mM1mxMfH48cff1TMv3fvXsTHx8NsNqN69er45JNPrPJs3LgR9erVg6+vL+rVq4dNmzbprpcxhunTpyMmJgZ+fn5o27YtTp06Jchz7949jB07FhEREQgICECPHj1w+fJlG3qh9EFi2AUorR/Sg/jq39EDTkkRwa7wF7YFPZOG0kRniyXYEBEk5yQo5+ogJ5z5+4vL17CYTlCM6Dv/SXRiX2FAwwCop3O1ukbIuUvIlcX/Lv5MghhA2RXESsguWHPiD84/De0dl/lRG4166WXDhg0YN24cpk6dimPHjqF169bo3LkzLl68KJn//Pnz6NKlC1q3bo1jx45hypQpeOmll7Bx40ZLngMHDqBv375ISkrC8ePHkZSUhD59+uCXX37RVe/777+PuXPnYv78+UhJSUFUVBTat2+PW7duWfKMGzcOmzZtwvr167F//37k5OSgW7duKCwUr7Aoe9ACOgcit4BOyhAmu3gOKB5FJESBsxfPlZRJpKQsnlMLSSS3GE7LmjOpMtRQWgvGTR7c59BQwN9cJFw0xy2SEy+o4y+e4xbOce9ahSO/I0QHyvLzAQgXzykdrpRLhcUyLOXaobYITsvCOK2L5ZTyANLb+O8aF9UV95e1WHL0XSZn6DA9x1AaLJa6F9MpwD8nNAQtUUR87ZqdnY3KlW1fQJeZafwCOr0L+po3b45HHnkEixYtsqTVrVsXvXr1wsyZM63yT5w4EV9//TXOnDljSRs1ahSOHz+OAwcOAAD69u2L7OxsbNu2zZKnU6dOCAsLw7p16zTVyxhDTEwMxo0bh4kTJwIotgJHRkbivffew8iRI5GVlYXy5ctj1apV6Nu3LwDg6tWrqFy5MrZu3YqOHTtq7bpSCVmGnYjUXeSSYm0tCW0ESs7kpiU2Jz9Naj89GP37FRSIxJRY5fCFnTgqAveupVEarMNidwnAQH9gOfQujFNaLMcvU+0Kh18395n/LpUuo2LISlxyxjUllMY8R4cz404vuZsb/HzuSnZ2tuB17949yXx5eXk4cuQIOnToIEjv0KEDfv75Z8l9Dhw4YJW/Y8eOOHz4MPLvX8TL5eHK1FLv+fPnkZ6eLsjj6+uLxMRES54jR44gPz9fkCcmJgZxcXGy7S9LkBgu4TjDX7ikTBjuPODag/g3dsRxqv3GsnVKRYgQX+FJWT/F+8tZR+UaKbJ8ygli8WEpLrTTcqLrDemhx11Cbj8OsQjWKoiltt2HBHHJGd+0Ys+cYO9TTx0piD1QZPgLACpXroyQkBDLS8rCCwA3btxAYWEhIiMjBemRkZFIT0+X3Cc9PV0yf0FBAW7cuKGYhytTS73cu1oeHx8fhIWFaW5/WaKUDQPuj9ogrXXxHAUwf4AzRLCRE6aWyUrtmLQes5eXky4SpESw2SysnG8dLigofs/JUS/bbBaKUO67DB4Qukyo/XSKi+f4iN2V+Om5uQ/+3PzPWk4cvlAV78cvm/sxue/iz9x2Ly/rdH77+fWgeLwRjycqXWwzoqodip5jcNr/xEHInZpA8Vxhr8jlo9avXD9y7XH3kGqXLl0SuEn4+voq5hc/gZYxpvhUWqn84nQtZRqVR4yWPGUBUlRuhOy8qeD352jc3WpSkicwQLs/ntRxGjXJ6F0pLjBmSllwxVEk+KtVpHxaxQvuuHQbrcOA+sCme+CTc2vQEhtPj7uEnLVYKuSa+LNeC7GGhXUl3Uqs5xhKisuaFtxBgIrHLBnvA5cTHBwseMmJ4YiICHh6elpZUTMyMqwsshxRUVGS+b28vFCuXDnFPFyZWuqNiooCANU8eXl5yMzM1Nz+sgSJYRcgd5eY0IezhLDab6NHMNizuMfeCU7tONS2K9Yv9g8WL/jip/HfpaJOSDVEzndYRRCrhVfTbBUWI3fyicWuEmrh2aTKkVshaYsg5m8HBLeO+RgtiF0h1MqC24TRvsNKazGNaFNJw8fHB/Hx8dixY4cgfceOHWjZsqXkPgkJCVb5t2/fjiZNmsD7/tgjl4crU0u91apVQ1RUlCBPXl4e9u7da8kTHx8Pb29vQZ60tDScPHlStv1liRL6ty95SBnPFAcXN7i0d+dJwV2EsB6c4furhi3Hk5tbHEVCnObldf8WrFyh4nvPfLcJvouEUqPELhJS5YoweXtbIkwAGq/49ZrHxepK7Coht4+SC4XYXYJ/n5m/L/8+ND+vLS4TEscj5zbBZS2p6DmGku42ATjXJUUJw/oxNxfw8TGoMNh0Mr/66qtISkpCkyZNkJCQgCVLluDixYsYNWoUAGDy5Mm4cuUKPv/8cwDFkSPmz5+PV199FcOHD8eBAwewbNkyS5QIAHj55ZfRpk0bvPfee+jZsye2bNmCnTt3Yv/+/ZrrNZlMGDduHN5991089NBDeOihh/Duu+/C398fAwYMAACEhIRg2LBhGD9+PMqVK4fw8HC89tprqF+/Ptq1a2dzN5YW3FjuEIQ0JVEIa0HKiGeEgDZ6Ypf0T+SLLc7Cy1kxue85OdafxWXwhR9XmdzBcPn4wu/+NrEglkLSKiznEyx3MsiJYHG6mq+xuAw1/2Fxu+SEr4GCGDDOl9iVQk3rMfC7qTRgtO+wXkpDP/bt2xf//PMP3n77baSlpSEuLg5bt25FbGwsgGJLKz/2b7Vq1bB161a88sorWLBgAWJiYjBv3jw8/fTTljwtW7bE+vXr8frrr+ONN95AjRo1sGHDBjRv3lxzvQAwYcIE3L17F2PGjEFmZiaaN2+O7du3IygoyJLnv//9L7y8vNCnTx/cvXsXTzzxBFasWAFPT0MfWF8ioTjDDoQfZzgkJFgwtymFJhXEGObDmz3EMYYB4wcbd7UMu9OCOa0TupzLKf9d6k63OHiA0jbus5T/sZY+k/Js4Ad64F78uMOhoYBH7p3iCvhxhrlYw5xvKj/mMJeX/87lU4q0oNYJEgcrJ4ithLD4XrDUPWKpP7DUd7k/N3+bOI+4HHG6XB1SbZNrv1S6+LPohFa6vW6vKHYHq6XWYyhJQk7qGpND7+JsPd43Ut/5bbl1KxtxcbbHGc5KSzM8znBIdLTu9hClE/IZdgL8iy6lO8paJwdnRJJwVyGsBqef7Jm8jBbCUqi1T87FUwti3cNP07OPEoJJUW4nuYV1/IrkHOilRKFUuSpRG6Ssv7JCWC9qSoCfLrVNaqGcXLr4QkDtokDuloIOH2JAWTzZu8DOCAuzvZZOPYvrSgpG+w7bU6+9YzFBOAsSwy5AzsAE6BvcS7L/ntHIrT+yVUiqYZRVS6ue0rq/I5GzOBfBw1rAyi2o07KQTg6pBXfi7RLpJm9vwcshaI02oRZFQi5d7ruUkFW7krJBEKuJYlfAtUkqdqweSqMg5uMO84Qhophv6TDqRRD3ITHsIoweWOl/LY/RfaN38tfi9ys1YUlFz5LbXwtKdyVsQfMkq3SLXyxu5RqjxTost12tbbag9oNovTKTSpeKLiH1Xck3RsparEc4S/y4jrQSG4ktwlhr+0uKILbHOizVbyXluAnCVkgMOwlHTxRlebDSIg6NEsTuMuFrRUpDKmlOLo8csov8xG4NYoswVzC/QWKfWH66lL+t1EFp9YXVglF/Iin3BvF2LVZgqf3F36VEuZYYxFLbpLbrcJsA7L9QNBpbRLEaav+f0kxZPW6i9ENi2IloHkhUFs85mrI64Kkdt7N+AmdZ+W2d1DX5M0sJY6mK+QLZEaY5W1W/FFqUm1rnaLUCq7lHKPkPS23nb9PrWmGDINbzX3HGbXw9org0uk2I+1ir77BcX5Q0owBBqEFi2AmIjWElaRAlHIfaymy5NL04auLit83Kb1iMnKuEVNQDqXKUFtIpWYf5Zcp9F6Onw1RcCwTblMQtV5bcYjqp73L+w1JpThbEgOMFky2LwfQI4pLuNuGMi2q1u0j8l91PoCOfYcKBkBh2EWoL5gl5XDEBOWrBnKP2taWP1I5RTvcJ2qXHVUJqIZ1Uo+TSlZAT5EY7Tsuh5FMsZx0W51Fyj1DyH5ZLc4AgNtptwhkYbSV2Z0HsKtxh0R5B6IHEsJMoKQNmSWknHyPabJSh0CiMnkzsPQa59nDpsiHWpFwlpCJK8F0l1H4MKb9guQV5WlATyFJl24qaMJbyCZazKMv5DyuJXIMFMWCM24QrxJNWUVxaBLGtrhIEURagf4MTURtU9QZELyvYEyygrOEIA6cWI6SgAXIL3+QW0OmJOczHCJViS5lSyAlIJXO6VtHL5VcqV2rxnJwAdoEgBtwr4gSf0iyIjfQEcMfjIwijKHvKysXQgKIPrWurHNWvzp68pSYvLVYzLe1UymPEcVpdqCnFGVZyldCrPNQsuK760ym5NfDR4kbB36ZWrtyCOqXvWgSxin+00QvUtGCUccAolw93H99tscC7y98J9+5ZOyLb87LbiZkoTZAYdgJSBjJ3xF3bJYfcOin+i5+utRwOLZZ8ewP+24qWSU2rq60t4kSsoST9hvnfxWZBJVcJqTL0Nlguphz/s5JV2Fl/Br3WYaltUuZ6/mejBLFcHh62LlBzF4txSRTEatZfpe1yFxPusECSIJwJiWEXIesaSSsPZJG6zar3LrhRGC18HRVJQgquH+29bS3wF+bexb6/UlEc+HmUXCX45ai5SkgtwnOFf43U/1fLykMl0anFGiwuW07oSsU2lsontU2tzvs44mEXzsQIH2hnCeKSFBChJLWVKHuQGHYScoMnRZLQj5G37WwxPipNllqFgJw20bqfuyBrGeZQizPMz2+Pq4S9KP1BbUHt6kZJxGrZJieQleILa22fkwWxvThiHYURbhPOEMRcHXrGBaPtLVqO093GLYIQQ2LYibizG4K7tk3rwG1L+23Zx5mTvB7k+sno31UqPCdfQwmEiZQV115XCbF1mb+PVuuwGC1XV0ZesdpqHZb6LOUfzP+sZ0EdP62ECWJHURIEMYfUf5O/TQ6jLiYcfqzcARr5Ioj7kBh2MnIDhuKgS6ZjTegZjG0JpeasyV3tTrsUzjhFpO7CSyIVRk3Kh5jLK+UqIRa0ctZitbBo/HLl2qoHvTO+LWY4Neswh5ql2ZYFdfy0EiSIHRllpyQJYsA4jcc/bqXrTYIoDZAYdgK+vsLvpG31oUdPqC2W4/I4kpJsEdPTN1I6yPJbSVlvlVY12mrVFedV8nsRC3A1cW3kiaLmqiB3kmu1DnNpSi4SegSx1nZLtcWGh3O4O0YI4rIqIMkAS5QESAw7CWdElCjNg614jtU6+chFmJDD1VZhR+DI80LKoGjlKiEWxba4Soitw1r8ivW6OzjjD6THl1jL4jgt7hDifaTyaBHRclZpqe8SlOT/EKAu6t3dyKHl2ksvTj1mcpMgHAiJYRfiLuLVXdqhBX6YSKNxtRCWGpvdJbiI0rwh6/aqtmhOj6sEH7krSyNnZjULtb11Sf2wetwh1LYr7eMMQSxz4jryv+SsBxLZI4jddawtiw9zIgg+9A9wIo5el0PYTmn6HWydcO2ZqK3EsjjEGv+zXlcJvQ7etrg6uEqlKIlX8We1p8NJbdfiCiHVHqMEcRlcWFdSBbEaSp5IJfWYCIKDxLAT0OwG6S5mQMJCaZi4AePdXwsK5EPWCvyGuXdbXCWkLMn8dyXRq0cQO1owK8Xylcsr/qzk+iC33Rb/YaV2q9Uj992JgtiZFk57BbEjBaQzPACURLErnl9DEPZAYtgF0ODgXhhtFZabkOUmqJLsuiangyx9YI+rhHh/LeiNF6xm5nKkmU9rHGCt29XS5OpVEs1KbXBTQexMSpoPsV6/Ybf6jehxzIQDITHsJJTmTFcOOGVdmDt6wlJaoK80GTlCIOtxw9WDOBKY5bOcqJVzlRB/VnqaHb8srQJYXI+7nfxaBadajDs97hJ6IkxICezSJohtWJBQFl0m+Lij6CcIvZAYdhGlYRAs6agN4rZM1PbepjXKU0bp/NISYUNuf60CXjLEmlR4M3GFUu4RfMSuElKNtidihJY/piuvoOTSlCzBWhfKlRJBbPN/UHyRoePP6I6CWO8FtZ5+I79horRBYtiJOOMKmgYkwpXw9YPs0+iUXCU4xA/uUMPoxymLy7SlHHvN+7aGTZNK07qATm7/EiaIdSPXLzpEsasEsdK+Wj1elJB6+IYWyGJMlCRIDDsBEqjuhzOswmr6QSm9JGN1LFpcIuRcGLS6Sog/2zITO0qRSKFmnVXaR6kcpbJtrV9JSLupINZtHVY7XzSKYne0ECth750op1qIuZW7Rr4I4j4khp2MnrU5joZEuuvQMwnZOma7IsQah5XfsNjqK/VZSgBLNUjOVcIR1mGj0fpj6hGyUtuMdJdQa5fBgtjlVmIlNIhid2u/O2g+d/oLEoQUJIaJMocjLkKULFF6JyM5LaJWjrMvrgoKHiyeEy+iA1RCrMl9FgtgufBsYtSsw3p9hbV0pjNneFvFsa0P2lCyLjtYEAPGCEqHhlmzURC7o3VYC/Y+jpog3B0Sw05CdV42MMawuw6oZQmta6DU9rEXZ58L4mOUDbEm/ix2leC/yz2emdtmb5xgPULZkbO+Hv9ePdZhJSGtpT0lWBDrQu9vW8YEMYeeh2+QSCZKCiSGiTKFlsFZ7ySs1wKlx03U2RgxmSlqBKmoEVpdJeSiR/ARz9TiA3Cm0tBal9pVkL3iWC2vFtFsS0xkNxDEDn8Ih4rbhLsIYqXul130qhGtfsN2H5ORMYZtCKFHlG5IDLsYV/mXubv1oSSjpAGMLl8LrvitBetTxMLWVlcJbputFl5+Pj2RKtwNLRZkNeuwXncJqbLlTnQ3E8S6sNWU6QBBTBCE8yAx7ERK4rxLKKPVkuJq66+Wc8+h56ecC4Q4TclVQiokm5aFdHoX1tmjUlypcOx1i+DQsqCuBAlipz2i2WBB7G7zBfkNE6UZEsNOwNfXOs3RA4e7DaTugDMeu6xmFbbVQGcESpHJHHW+CPSBkhDW4ioh3lcKOd9kR2JrPVrCqNliudValp6TrYQLYl3YM1C4sSA2ciwhv2GitEFimCBKAI4QxWoiWO8zJ+R0gKxlTsltQspVQinmsK3WYXfDKGuuVuFrj/+wXFppEMT24AKXCVtEs9xPYxSGX4sWFlrHCbbnVVhocAOJkgyJYSfjDhZbd2iDu+KIydbVLhLOgK+tuFBrApT8hsXvWlwq+OUqndD2nuz2+ieXRLRYoZUiTIjTS6Igtled2iCI5XD2qWbUIjqCKEmQGCbKBO7kIlFWECyiA+RFrlZXCS0xh5XM3VpOAqU8rrYuG7UYTs9DNsR1u5Eg1iMqneY3zEenIHb16aUFW/2GS8KxEWUbEsNOwhVXznS17p5o1TBSOEtQO2xSkxPAWlwlxA3gxxyWEshq+7sTrv7RtZyMWiJMyO2jNY/UdwOtrLow4lwxSBC741ju9OfSGOkiYXWlbiyZmZlISkpCSEgIQkJCkJSUhJs3byruwxjD9OnTERMTAz8/P7Rt2xanTp0S5Ll37x7Gjh2LiIgIBAQEoEePHrh8+bLuul9++WXEx8fD19cXjRo1kmzP999/jxYtWiAoKAjly5fH008/jfPnz+vtihIDieEyhjsOqiUNPVYme8bb0uJeoeoyodVVQinmsJjScKIbcQIYvWhOaVtpFMRGoPNixpGCWK2bbcEhMYVLOAMGDEBqaiqSk5ORnJyM1NRUJCUlKe7z/vvvY+7cuZg/fz5SUlIQFRWF9u3b49atW5Y848aNw6ZNm7B+/Xrs378fOTk56NatGwp5/s9a6maMYejQoejbt69kW/766y/07NkTjz/+OFJTU/H999/jxo0beOqpp+zoFfemjJ+ypR8vrwcDXlkfoByJI2MLy5XnKLHsiOdUFMEDHmYzkJPzoNCCAmlLcU5O8XtBwYP33Fxhfi4vl8595qfx8/D/CNwBlga/Fa5PuHeuD8R9ZUsZfKTKlcrP3y6XriWP1Hepdt2HE8SGu0Nw54+9yLTdA0WSbbalWv4p7grU6peKqlQaOXPmDJKTk3Hw4EE0b94cALB06VIkJCTg7NmzqF27ttU+jDF8+OGHmDp1qkVwrly5EpGRkVi7di1GjhyJrKwsLFu2DKtWrUK7du0AAKtXr0blypWxc+dOdOzYUXPd8+bNAwBcv34dv/76q1V7jh49isLCQvzf//0fPDyKz8/XXnsNPXv2RH5+Pry9vQ3uNddDlmEXwI2J9lo0tN7Fc2TorNKEIy1MpUF3GYJSWDUlS7E4v5YQamonfUmNOAHYdkJp8RHWYjlWc4h3kYUYcNB/2KjzwoAFgY4cx7WeUm5viddJdna24HXv3j27yjtw4ABCQkIsYhQAWrRogZCQEPz888+S+5w/fx7p6eno0KGDJc3X1xeJiYmWfY4cOYL8/HxBnpiYGMTFxVny2FK3FE2aNIGnpyc+++wzFBYWIisrC6tWrUKHDh1KpRAGSAw7BRKiBIeeNUslHb6BVoDSfVW1xXVin2Et95SVgqKazQ9eJQE9pj89Tuh63SWUFtRpTdcqiOXaLAO3uM4tRZsOQVxSTkkxSg+QtAstj1fW+wJQuXJli39tSEgIZs6caVcz09PTUaFCBav0ChUqID09XXYfAIiMjBSkR0ZGWralp6fDx8cHYWFhinn01i1F1apVsX37dkyZMgW+vr4IDQ3F5cuXsX79es1llDRIDDsREsWlE7m52WjdYms7XIFY86j6DQPywlcp5jD3XW4hnfhPVxL+hLbe67Y1KoSecpSsyeLtRgliO0KzGCaMjVSmdgpiR0YS5NDqbqJ0nVlSuHTpErKysiyvyZMnS+abPn06TCaT4uvw4cMAAJPJZLU/Y0wynY94u5Z9xHlsrZtPeno6nn/+eQwaNAgpKSnYu3cvfHx88Mwzz4AxprmckkQJPoUJwvmoTRJG+ezZMf/bhRFzvpy7ahE8hL3H91Pl+wrn5Ai3SfkWiz9LIfYTdqerBb0o+Mtq8g9W2l/Jz1hqm5L/sLguo3yIldrmLIw8h3T6ELsbJaWdWggODkZwcLBqvhdffBH9+vVTzFO1alX8+uuvuHbtmtW269evW1l+OaKiogAUi9Do6GhLekZGhmWfqKgo5OXlITMzU2AdzsjIQMuWLS159NYtxYIFCxAcHIz333/fksb5J//yyy9o0aKF5rJKCqXjbC7plORJmlDFET+vsxbKGG7xUfL31eMqIXaDKG3WYaNQ8vm1dZtcmhtbiN0SjW13tHXYyLHEVvf9kkBERATq1Kmj+DKbzUhISEBWVhYOHTpk2feXX35BVlaWRbSKqVatGqKiorBjxw5LWl5eHvbu3WvZJz4+Ht7e3oI8aWlpOHnypCWPLXVLcefOHXh6egrSuO9FRW7ofmQAJIYJwknYMuk4c3W4mpHNUCOcUuxgfpqUq4TcQjpb6tG6rztiZGxiveHT7BG1JVkQG22Jlmi7W/o668Qh7hMl5HHMdevWRadOnTB8+HAcPHgQBw8exPDhw9GtWzdBJIk6depg06ZNAIpdG8aNG4d3330XmzZtwsmTJzF48GD4+/tjwIABAICQkBAMGzYM48ePx65du3Ds2DE8++yzqF+/viW6hNa6//zzT6SmpiI9PR13795FamoqUlNTkZeXBwDo2rUrUlJS8Pbbb+OPP/7A0aNHMWTIEMTGxqJx48YO6TdXQ2KYIOygJBumjMLmPpATp2pRJaT21Wod1iuISxpKV09q/r5KaWr+w1qu2kgQS6NBEBtpHdZ7iqhRUhf6OZI1a9agfv366NChAzp06IAGDRpg1apVgjxnz55FVlaW5fuECRMwbtw4jBkzBk2aNMGVK1ewfft2BAUFWfL897//Ra9evdCnTx+0atUK/v7++OabbwRWXC11P//882jcuDEWL16M33//HY0bN0bjxo1x9epVAMDjjz+OtWvXYvPmzWjcuDE6deoEX19fJCcnw8/PzxFd5nJMrLR6Q7sB2dnZCAkJwaVLWQgODraajy0DntoIxBttxH5aJMa0oWXA1mKRUet/pUX2SpEk5CJaaV1wb8R5oDbhSulI8bMwuHxiXcpt9zcXPQgzwa2s414FBcX+wlw691n8rrQPv1z+yj0uXdxZSspArCjkhLQW67Ot+6pFxZBKUxL+ttShdiGhtI94P6VtevtULjqIM3DEwCtqu9oj3wFt6yClUPIc0hP6k2uj0t+M+37rVjbi4kKQlZWlyUeXg5tHs778EsH+/pr3Uy33zh2E9O6tuz1E6YQsw0SZwIi5y1GL55zpCiGHHsuTHoOqOLxaETyk/Ybl3CDE73IL6cTKW4912J0txFott1oxyjpsq/+w0ja9x+VKC7EjRLeo7VrEqDueuuK/mTu2kSDEkBgmiPs4YnW0nrlZqwuoK8SzQwxuWsxTfPGrtpBOrlypNCVrpVwZfNzhCoaPLcJQ6z5KwlacplUQq+2vVTCXNkEsQou7hBylToQ6KM4wQQAkhgnC7XA3nSWHIXpRKjKEuAI5kSznlyEuW4vrAr9MVy7HdxRqbdRj6ZVKs8cHWEub3FUQG40N7XaU6C0todMIQgt0thOEjeh52IYj9ZK9877exTkOQcrtAVB3kZBrvJJ12JEHVxJEmFob1USrI0StvWLaVYLYBe4S9lqHjTz9ubbRIjqipENi2B2gkcTtMcpfWI8oLgkGR5uROuflrMRyi7nEq/jEIlgqsoRYEDvyUcy2RkYwsl49eW2xHvPRKlZLmyB2BDr9h93FJULOG8ld2kcQcpAYJggHYWQYWFdiVDQyLriD5cJCyrVBrkJ+PqmwauL99UYacIcLUj0WW637GNEWPdZhrVZjRwlitbocgd5zhx9ywQlVukKIOqROe2IKy70I4j4khp0EXRkTUrh6PHaWi4TqcWpZTMdPl/IFVhLBUtZld/5TGnViGL3y0p6ID0rxAI0SxHLtczdBDKiLMp3uEmpxh909cApBuBISwyWM0vB0InfG3kUjtvoL2xpJwl0tzDbpLjmBy32WEsJSM7ya2wT3mf8OKLtMuIPl2EjsjQChVIZSKDUjBbHWOuTa5U7YKIidjh19SEKccGdIDBOECkatqna1FViMPfpOb6xh3YXrfXiFlG+wUpQJ/v5KYdds8Sm214XAHdErmJV+dHsFsS11aNnHXuy9YLKhzUZdo+m5BpIT6GXlOpIonZAYdhIlbe4jlLFnnlbC1eeJki400rIjePiGlN+vuEI1ESy3n1yZaveY9Ypge344e8OeGdEGI1CqX22xmx5BbM+COm4fR4liRwliHkrWYadZXxX6z2FeSOQzTDgQEsME4WTc+W6tM5A9fjmXB6ntSj7DUs+DlnKRUPrsKlx1chi1WE2ru4TUd61uF3raqHURnzuh8+qaLK8EYT8khglChJHB5vUYy7RuMwItC+e0TLK2LKTXVKiS9Vfrwjm5ssWfHS2IbRWXjrQ2i9tiT/l6wqboEatq1u+SKoi1nGMqv5/R1mF3uA4kCFdCYpggDMJWcat1Pnbl4jmXTJZqIdeUFs7JWYf5efllGi2I9f44WoWvLT+6s32V7Yk4ocUH2d0FsSMceQFd7SyV4vbePWMfxXzvnquPiHAjSAy7EHrcpfvC/Ta2/Ea2xhc20vdYCXvnaqdOtFIiVmnhnJbyxALYWRZirai5BWjJby/2hDoTo2YdVspvlMuG2j6O9CO2BwVBzLcOu8RVQqItcq745MpBuDukxkoC5C9mN67oJ1e6QejFFhcJLahGvFKz4IrzyX0HrMuRKpu/vxpKgVn1imVHRJUw+iRy5knpDP9hLfWKMUoQl5KB2VaDTam0TBOlGhLDBCGDM0Kq6TUCugItE5stk59i/2p9ipxen2Et7hJyIltuO4e9fizuGCHCVrT0hb2C2NZFf84SxEZho3WYBClBaIfEMEHYgR6tYuQca2tZRi2csxfN7VezAEvlVbIO88uQc5eQw151YVQMXVvi6zoDWx4nLcYZC+rU6uH2t/cPq3Q+2XNnoYTi62tnARRajXAgJIbdhVJyW41QpyQbAPV6GhhasZyS1yMs5NwltFiInYGjV2Hq2U+v37DS/nry2LOgztZ65HBXX2J3sQ67Y98QhA2QGHYBNH6UbPQYuLh3qX1sfdqtrWixCuvdrhXDznk5UazkJywXTULOIuyoJ42I0WodNiI+nzsPOkYsqNOy3Z6rUHfoPxsHAVe7S7i6foLQAolhgjAQW9bvaDW0OQNnWHslj1HuIRlKC9j0+gtz+8mJXaVYxrbO6HojKWjNY1SMYFvqtgcj4gja6i6hZV8l3E0QG9Qeo8SqOKIEiWCiJEFimCBcgDvMq3px2OSmpsC1CF61KBJaH+Sh5AfClWlUhAlAvzg0Sky7G/a4MUjlt0UQu4vbhA0+rWph1kqFMCWfYcKBkBgmSj2udscW3+22xf3BEZOZ2sI5t5tAlcStnjKkFuQB2gSxeB+5MvlotQ7rXUgn3s8RfsPuhB53CaV9xftrSZcqz4gFg2r1S4k2O9wlpF4EQZAYdipSYxg9eKP0ojZnGTTHlWjsPv+1+AnLPZiDL6htFcRGqAm98fX0iF97Tyo9ERq0tkkujxbrsB4/JFuPXc9+zlpgp7O/nWoAKCkXUwShACkxd8LVJkyixKD3VFGz+tpbXolB6dHMaoLYnoM2wjqsR6SpWZmNvPIy0gdZj7uE3mgXevy39bZb6nG/RqMi9PmuEu4GWaAJd8dpYnjRokVo0KABgoODERwcjISEBGzbts2ynTGG6dOnIyYmBn5+fmjbti1OnTolKOPevXsYO3YsIiIiEBAQgB49euDy5cuCPJmZmUhKSkJISAhCQkKQlJSEmzdvCvJcvHgR3bt3R0BAACIiIvDSSy8hLy9PkOfEiRNITEyEn58fKlasiLfffhuMMWM7hSiR2KKJ7L2T7WzkPAnsRbPG0GrpVVp4p7YYTyrWsFQ7+NgriuWw9ekrSj44tuLutyjsEfV6BbEz+8JN/MGNPL0NFcH37klfdNj6unfPwMYRJR2nieFKlSph1qxZOHz4MA4fPozHH38cPXv2tAje999/H3PnzsX8+fORkpKCqKgotG/fHrdu3bKUMW7cOGzatAnr16/H/v37kZOTg27duqGwsNCSZ8CAAUhNTUVycjKSk5ORmpqKpKQky/bCwkJ07doVt2/fxv79+7F+/Xps3LgR48ePt+TJzs5G+/btERMTg5SUFHz88cf44IMPMHfuXMP6w545y50tAO6Gu1owtbhIGGXNddc+kMWRDZZbTMdtkwq3JjWjG9FGe6zD9lqJ5cp3V4xaTCfOp6XsknRx4CaUuDGHKPM47eZF9+7dBd9nzJiBRYsW4eDBg6hXrx4+/PBDTJ06FU899RQAYOXKlYiMjMTatWsxcuRIZGVlYdmyZVi1ahXatWsHAFi9ejUqV66MnTt3omPHjjhz5gySk5Nx8OBBNG/eHACwdOlSJCQk4OzZs6hduza2b9+O06dP49KlS4iJiQEAzJkzB4MHD8aMGTMQHByMNWvWIDc3FytWrICvry/i4uLw+++/Y+7cuXj11VdhMpmc1W2Em+PlJZwrzWZj5yZxeUbU5y4L53JzJSZN8QHaAyd8uQ6S6kyguD7+Nq4NUml8uMZr/QEkD1hle0GB/h+EK0dqX34dtpStF0ddSMgdh1ofy6HWF87oKyn45664La5qkwIeKKJ1MESJxCVnbWFhIdavX4/bt28jISEB58+fR3p6Ojp06GDJ4+vri8TERPz8888AgCNHjiA/P1+QJyYmBnFxcZY8Bw4cQEhIiEUIA0CLFi0QEhIiyBMXF2cRwgDQsWNH3Lt3D0eOHLHkSUxMhC/v+ZEdO3bE1atXceHCBdnjunfvHrKzswUvwP0NC4Rj0Bv+Vg4tFmK5+d/tI0Tw0do4ra4SUkgtplPzH1Z7Kp094s4I67C9D+dQy++A2Laa6zaqHC0L8bRYiB3RNinEfsc29DtZZwlCO04VwydOnEBgYCB8fX0xatQobNq0CfXq1UN6ejoAIDIyUpA/MjLSsi09PR0+Pj4ICwtTzFOhQgWreitUqCDII64nLCwMPj4+inm471weKWbOnGnxVQ4JCUHlypWt8lBECefhqMlAy7xki8+tPYKYyyN+admnRGBrODWxSOYjjiYh9h+WiyghV5atnakmNu0RYHoW0rnh7XYBRop9e8pxhHXDAa4sTv05nXWRRHGGCQfhVBVWu3ZtpKam4uDBgxg9ejQGDRqE06dPW7aL3Q8YY6ouCeI8UvmNyMMtnlNqz+TJk5GVlWV5Xbp0SbHtkpQYdUJwSGknPvyfVMt6LaVybH0wmlYh7HaWYyUrr1xerdZh/n78bfw0pRBrSlckcugRDfZYh0uSBVeM1pNQ7hht9R2Wy2drHltR+u1siSziJrjd2EIQPJwqhn18fFCzZk00adIEM2fORMOGDfHRRx8hKioKgLXVNSMjw2KRjYqKQl5eHjIzMxXzXLt2zare69evC/KI68nMzER+fr5inoyMDADW1ms+vr6+lmgZ3MsZkH52L+TuquuxFisFxpcTxVL1GXFn3ymTmC3KXM8DOORCqiktnrNVEHP5bP1jOso6rCUUmVYhWVpwV0FsQz38O4y2XgvRXEKUVVx6f54xhnv37qFatWqIiorCjh07LNvy8vKwd+9etGzZEgAQHx8Pb29vQZ60tDScPHnSkichIQFZWVk4dOiQJc8vv/yCrKwsQZ6TJ08iLS3Nkmf79u3w9fVFfHy8Jc++ffsE4da2b9+OmJgYVK1a1bDjd/e7kiUZZw/qcqFquTS+vtLihipVvpwoltJnelwuxMcgxiU6SOkH1NJpWkOqietSEsRSfsT8PHLHoeVkdITvsKMGGKPFujMxOgqHq45b4QLN3YSwYRfTRoZVc9bDUogSg9PE8JQpU/Djjz/iwoULOHHiBKZOnYo9e/Zg4MCBMJlMGDduHN59911s2rQJJ0+exODBg+Hv748BAwYAAEJCQjBs2DCMHz8eu3btwrFjx/Dss8+ifv36lugSdevWRadOnTB8+HAcPHgQBw8exPDhw9GtWzfUrl0bANChQwfUq1cPSUlJOHbsGHbt2oXXXnsNw4cPt1hyBwwYAF9fXwwePBgnT57Epk3/397Zx1lV1fv/MzzNDE9HEJhhbBQsHyAwEwsRE1IBS0Qyw6QmvRlqCDahP5S6KdkVkLhY6dXrzYpCbnRLyVAi0Ah/vgBFlB/gA90KHxCG0RzOgMLwtH9/wD6ss8563Hvth3PO9/16nRfM3muvtfY6++z92d/9Wd+9BLNmzQqVSaJYrhWEHNvzp86SahLd5dFFi0XaS7WuqDCxPtjYI/w6+f/LBDH/fxvPil/W9AuISnCGiQ67QLf/YZRTFPuQtCBW1c2MlR8VTpO+K+pzDVF2xObi2bVrFxoaGrBz505kMhmcddZZWL58OUaNGgUAmD59Ovbt24fJkyejpaUFQ4cOxYoVK9CtW7dcHffddx86dOiACRMmYN++fbj44ouxYMECtG/fPldm0aJFuOWWW3JZJ8aNG4cHHnggt759+/Z46qmnMHnyZAwfPhzV1dWYOHEi5s2blyuTyWSwcuVK3HzzzTj33HPRo0cPTJs2DdOmTXMyFtqMOK7zcxGhMZ00x363bHYuf7n/t19Wlp1LdHzw10W2jCzrV1QEzWAVGNlvgh1gEeygs2X4L4P/YtgviF3ub+v/X5f7ju9rEFQp0vg0W/xyVZo1F/1wmd4rSD0uDkRdHSb7mFSaM8t9j+M3S+nViGKkwqPXqkVGa2srMpkMtm3Lonv37sIAE3tyynuZBn/h585i/MmGtHM+Lk/6tmOre3p96JB8HkzQtkyXyzBxHfDInAIyy63Mnps77lnB6g+S6G928PjlovL8OnY5365N+jJVJoag0UJRyJ9frvM2yx5BmEa4VcttvmjV/ogw9Qvx2PQ/SL9M+2ZTjj8+TLJ6SH5ANlHhIOdF5XVJUjnfp0OHjl4P6+szyGazVvNp/OtodsYMdHd4Ym/dvx+Z2bOt+0OUJnT7RpQcaXk8p9IisqwStn2XPZ039SK7Jpaxl022U02kE2WQYL8gW4HJ/990Yl1QXHiHXUyIs00BZtpOEgerDab7EXR/VccSu4wrdwTt8uxbJZ0x7PBht2nVmDfXuqalpQUNDQ25NKsNDQ3YvXu3chvP8zBz5kzU1dWhuroaI0eOzL2h16etrQ1Tp05Fr1690KVLF4wbNw7bt2+3avuf//wnLr30UtTV1aGyshL19fWYMmVK7r0IbH/mzZuH008/PVdu1qxZocYlzZAYThiK6JYHujla/LXQ1t8r0xKuRLGrC6x1X3QRPcDMRywrHzTiqoqUqvqqw+RRgWsPrCvvsKtoeLmgE8T8iYCbgOALYR/dvU7kN6p0McsxceJEbNy4EcuXL8fy5cuxceNGNDQ0KLeZO3cu5s+fjwceeADr169HbW0tRo0ahT179uTKNDY2YsmSJVi8eDGee+457N27F2PHjsVhRtjr2m7Xrh2uuOIK/OEPf8Bf//pXLFiwAE8//TRuuummvP5861vfwiOPPIJ58+bh9ddfx9KlS/HpT3/a0QilD7JJRAhvkwDU19C8x1FA/slFcCZzkUqnFHF90g9rXTB9Ai/a1kX7pmVsrRIqgc8uEwVgjW0S/v95S4PKKiFartveX+cvE/2t+sJcWiZMBtrWlyL6W1aPaf0mbavaEK3XkZRNQtZ2mHKA+NhQ/TgZIQyo7fJ8V4KeF41tEkwjkdgkpk9Hd+atsGFpbWtDZu5c5zaJ1157DQMHDsS6detyb8Ndt24dhg0bhtdffz03mZ/F8zzU1dWhsbERt99+O4CjUeCamhrce++9uPHGG5HNZtG7d28sXLgQV199NQBgx44dqK+vx7JlyzBmzJhAbQPAT37yE/zwhz/MvRvhtddew1lnnYUtW7ZItyk1KDKcECX7KKvMED19kyGzRrjGZK6PbHmqjkvV1VtllRAt5wWgLlQv+ttE8Yv6ZvuFxxkdtqlHJPzjpBgiyLZ9FD258JexH385c2zphDBhRmtra96nra0tVH1r165FJpPJiVEAOO+885DJZLBmzRrhNtu2bUNTU1Nu4j9w9L0FI0aMyG2zYcMGHDx4MK9MXV0dBg0alCsTpO0dO3bg8ccfx4gRI3LLli5dilNPPRVPPvkk+vfvj379+uEb3/gG3n///QAjUhyQGE4RBTNw02J+LSLiHLKwFyKRtooa10/YZQT2Qqv8HrIyKhHML2f/loWqVX+rvjQXYTgdLrzDMkzsEqYk9agqbL9lxHEHq5sAwERdeSFsekOeFE6Gz6VfmBmo+vr6nL82k8lg9uzZobrZ1NSEPn36FCzv06dPwcu82G2Awpd61dTU5NY1NTWhU6dO6NGjh7KMadvXXHMNOnfujJNOOgndu3fHI488klv3j3/8A2+++SZ++9vf4le/+hUWLFiADRs24KqrrtLtftFCYrhYIB9EqjC1IoiuzTYXqyAWCVXk17QOV0QezJMJY1m0jd/OhSBWCXXd8jBEER3WeXZ0gjuNSkxHXJkkRD5gWT28OD5mjeCFsKn4pbiKnLfffhvZbDb3mTFjhrDczJkzUVFRofy8+OKLACB8H4Hnedr3FPDrTbbhy5i2fd999+Gll17C73//e/z973/PSx175MgRtLW14Ve/+hU+85nPYOTIkfjZz36GVatWYevWrcr+FCtF8NyptDh0qPCcGXvOViJSTH2/pgG7oG3arBeVT81T6Q4dju8Am9eXz/HL/+1vyy5n//brFW3n/yB95cFvw2/L9lFWL1tGB/8FsCcJky/HLyPLO8zXw/5fVKZcT1IuhLBqgqchNunTUvO7hfinlTa6d+9u5BmeMmUKvvzlLyvL9OvXD5s2bcKuXbsK1r377rsFkV+f2tpaAEcju3379s0tb25uzm1TW1uLAwcOoKWlJS863NzcnHvDbm1trXHbtbW1qK2txZlnnokTTzwRn/nMZ/C9730Pffv2Rd++fdGhQwecfvrpufIDBgwAALz11lsl6SOmyHAMyCxIVgJFc+Isx+sUTxrGQCeEXUWFTR+LpvWxKRDy++KjsSJPMG9bEHkvTaK/3GNqowgx2y7vMXapVmQRWhWyA0tnMTCZUKgqryqbRqIUwob40WDAPgifpCgumAxeAvTq1Qtnnnmm8lNVVYVhw4Yhm83ihRdeyG37/PPPI5vN5kQrT//+/VFbW4uVK1fmlh04cACrV6/ObTNkyBB07Ngxr8zOnTuxZcuWXJkgbQNHI8cAcn7p4cOH49ChQ/j73/+eK/PXv/4VAHDKKaeYDViRkaJ7SAI4evIrxRNJMWMa3TCNCMvKmpCE1SERRFFUk8iqKBoLFEZtVRFiWfSXrV8XIdb11SZK7GMbHea3E21jE2XWwe53msKTQYhYCNu+oc30Xkd2P1YS7N8PuEx+FXKinIwBAwbg0ksvxaRJk/Dwww8DAG644QaMHTs2L6J65plnYvbs2fjCF76AiooKNDY2YtasWTjttNNw2mmnYdasWejcuTMmTpwI4Oibca+//nrceuutOPHEE9GzZ0/cdtttGDx4MC655BLjtpctW4Zdu3bhU5/6FLp27YpXX30V06dPx/Dhw9GvXz8AwCWXXIJzzjkHX//61/GjH/0IR44cwc0334xRo0blRYtLCYoMp52SOZNFS9LDZCKEw0aNg/iUwxCVoLbSSaoXEPD/12WMkORrNY7+mkSCWXQT6lwLRpvQoUmCWlGZUvAIxyHUJSckNtKrwn+RBv9CDRUm1nUiHhYtWoTBgwdj9OjRGD16NM466ywsXLgwr8zWrVuRzWZzf0+fPh2NjY2YPHkyzj33XLzzzjtYsWIFunXrlitz3333Yfz48ZgwYQKGDx+Ozp07Y+nSpWjfvr1x29XV1fjpT3+KCy64AAMGDEBjYyPGjh2LJ598MlemXbt2WLp0KXr16oULL7wQl112GQYMGIDFixdHMVypgPIMR4ifH/H117Po3Tvfk8RfawGDfMPcCZZeyXyUOISwTtjyf6vKm8xXCpJNKwpdIpqH5iPShCZOAn5ZXp5hQD1JS7RMlY+Y/79umaqMbr2oDv7/to8KVKE+2YRA9m9R9guZSJepqaATCnUTEkVtqZCVU9Vnk1s5qv5AHQkO8tRJ9NBE9LfNuVFmCw+SZxgo9Dm//37IPMOTJ7vPM/zgg/Q6ZgIARYZjIwqhSnaK+CLCYVPHhm1PRzEE6JyMme45sCySq/ICy6LC7P9N1rN9sRFfsv3SYfqoALBXXKo0KGGjw2FfShIE121YfF8yIcxGfUWo5gSoosA2hxIffS7XgApBkBhOGNGJztZPVq4kbY1goceScvdAJN+TqTC1Eb/8Ml3oO2jKNZeC2MdmIp0qUi0TxLJ2WHRtRyV641ZwISfMqUSwyaRYththhXBRcfhw4czhMB/mFcYEQaqrGEiT6ksJxTQkUQe+0hoVjvUGQSZM2f/rPMPsMtH/Rc+eg+aoVQniqAYuyEs1dJFlVXTYRDiL+qPri6tyImx84AaYWNlsBLCKkhbCBBExJIYTwvrEV0zqL0J0+eqjbpuFosEpQzXZzsTXKhLEfL2yaK+JR9cmZK4SxaazLm1sDCZ1mrzRLmqVFdaSEaQOUzQnpii7onMP6frhDFLZRJFCYjhGbN6GShSS9vsBk3lJptvbrE9ClCf6XeiyOoiEKZ8xQuUj9pH5jvm2TSat8X3j63GJ6kSiEr0mGSZEqKLCQe0btgQ9edpsFzIqzBP3Ex2dR5ktRxDlBonhFODqpJh2sRiUJKPBPK6jw6r9Sss++yQeCbfpgCwayy+T2SpUEWCVXcLWP8zXE4YgQtNWEKuiwzaT9WzK8QS1VKTVTxQS3QMEUxGcevh8cy4+BHEMEsMphSbRHSVtgtAGk6frPGmKDicufm0wsSfwB5Nqgpy/3MYukZQgdp3NwSb5tapckIl0YdpzIW5KTDBHrvdKbLyI8oUUV4K4OI+Ucnq1YhTCQQRkMUWHix5VzltV9gdZNFmXQ1fWLv//qND5f2XlRILYJjosqtvUY+xaELsy65LwIwjnHD58GE888QTGjRuXaD9IDMcM+Yb1pMkWYUIQT3AYHZQm73Di0WPVpDkWm5C7SiCbvGmE/b9pOVm/ZQQ5kdh6f00EsWx7mzRrrgWxap2JgA4qerl64gpUuMhEURS4TKtWNoOWXrZu3Yrbb78dH/nIR/DFL34R+/btS7Q/JIZTguh3WW5WiWITwTKC6hvR9gTCHRSqafa20WHR/238w7J+hT1gguIiYuoiOqyr27ZcGB+zqz4JiDobTWL6jkQlYcgHH3yAX/ziF7lXQf/ud7/D5MmTsW3bNqxcuTLRvpWX2iJShy+AS0EE22KqgYphbFLRx7A5Yk2jw/562eQ7dnuTlGs8rgdTlRnCNMLLLreNDpv0S/cWCh0m+8WXtemrqi1Fu0nY2CgYSqSNdevWYdKkSairq8PUqVPx0Y9+FKtWrcLf//53fO9730N9fX3SXQTFoIhESIV4iomqquPXyA4dorsgpeFCVxJRbfZL8v/vWyT27zdfz//NL5e1aYLsB+S3Y8P+/YX1sfWI1uvaZJex+96hg7w+VTvs2Mj2T7bvunZt6jJdL0H01ceNyVCyQ3UE7Up6bgoRPcOHD8cJJ5yAuXPn4itf+Qq6du2adJcKoMhwAuieKIY5WRaDyCyGPhJyTL4/J6I4TNoNXSd1L+MwWWayTdAME0F/JCYDb3rSUXmARdHhIC/hCDqRLagXmS+nKm/isTYYS5WQTPrmMQ030MaQZ7hoGTNmDFpbW3HPPfdgzpw5+Pvf/550lwogMRwDYX5zJr7hYrprJyEcHtN5QWHgL9JBL9qp+L6DdF5la5D5g1VCN0j/4h48VxPZTA5QmVC1tSuY/hiCeoeDWDQ07QT9WqPScoHrITFJGLJs2TJs27YNN954I37961/j9NNPx8iRI/HLX/4y8YlzPiSGU0Spn1tSIYxCksQjziiCa6kmynCZajKb6aua+WVBJ9QFyXrhCtlBY/L2OtPocNC7NpeC1YV32IEgDhMd1gXCKdBJFAMf+chH8N3vfhd///vf8fTTT6O+vh7f/OY3UVtbi0mTJmHt2rWJ9o/EMEEUEfwFL8kLoHPdFpv/QtGeKhOEbsJcmAl1NtHhIGkJbIQp/3Yu2+gr/3+bNGv8NqaofhiqvMgiZILYxDahqIsVxFFllkirME5bf4hk+exnP4uFCxdi586dmDNnDl566SUMHz480T6RGE6IcvcNlxJpPdHH9QbSsMdb6BSCtiJa5wtWtaF64YZuvelA8X2J8gdtGlWVCUndycvUsuBKEOvsGrK+2NhBVGU19agEsWvSIIqdnm/a2ty+irmtzWHnCBX33HMP7rrrrtzfy5cvxxVXXIHvfve7uOaaa7Bhwwa89NJLCfaQxHBRUAr5hkmgh8c0KhxW9Kr8wqrvMdIn/EGEpO1BFySKazuhzrReHpMchKp912VGsLFNiCK9Ub1NKMjBLBLEJtFhm/0x8S6Y1nWMqH4/QV0eBOGKX//61xgyZAgA4J///Ce++MUvonfv3li7di1uvvlmAMDZZ5+dYA9JDMdGkHkoNhTTJDrCHFX6VVHZsJGYsHO+bDDqa5iMEqryupzCJoLYdkKdql6+fddfhAtFZGJzMJ1IZxod9lFF+MISxD/NbmsyLoZ2iaggsUskyRtvvIGPf/zjAICnnnoKp59+Oh555BE88sgjib9sw4fEMEE4xnTivEtctKGaWwa4e/Nx4M6okKkKVYQ0rCDml9muD5tKTbYvYRCJO9M3utlMpHOJLsobNDrslwkrilX95Ijy6UosgvjYcVwKTzMJd1RXV2P/seP/6aefxujRowEAJ554Ivbu3Ztk13LQEZtikk7OTqQTPuAUhRBmA5uA/sVpzi7iLibR2Xhugwpi3TLTCXWyZaL9kK2LwmNsekcn8tzqJtLxuBDOoh+CTV26iLbpj8zQy5REdBhINkIcum1RbrmwHyIWPvOZz2DGjBn4r//6L/zud7/D+PHjAQB/+9vfUvH2OQDiN9Bt2rTJuqKBAweiQ9IZxIuYQ4fU1z7btwCl4U1HhDtcnbdNIrkqbWUTzLS5yBsd364O6g4d8geU/VvUhujNc6K3y9m+oU7UF9kyfr0Ml6F62UnJXy56oxu7jP0/W5f/f91JLwiyt8zxfVbtg6puQF+e3y/2b6a9djhiFEHVHQ626L5W15DmJO677z5cc801mD59OqZMmYJhw4YBAPbt24fvfOc7CffuKMJD/+yzz0ZFRQU8zzOqpF27dvjrX/+KU0891WnnSh3deZsgVERxsxNECNs+rXd6fMuELK8geJFrIohlKsRfrhPJqvV8WUBcp2l0WCbQwg60RMgJy4gEL4+J+Ax7gMhEuA6T/vv1+8j2RSWIBagO3aSh+SiELbt378ZDDz2EGTNmAABOOeUUrFmzpqDcZZddFnfXpEh/nc8//zx69+6trcDzPAwaNMhpp4hgmEYaiPRge+FzfZE0fdoe1t4qQ6mNWIEVZMdtBbGqDpFIZZeLyrJtigSvbHvTfWP3S1cmDCIhZxod1m1vs40NIkHsIjosagewi2oYRIejFsRxBFzoyWT58v7772PWrFk5MVwMCH8OI0aMwMc+9jGccMIJRpVceOGFqK6udtkv4hjsedrWKkEQLKZzydiypgJZ9HdgTOwQrtSCzLJgYpeQ2SFkgpcVxCZti6LXPDoztylsP2TrVcLRJBJsIopN17F9lvU7iMg1jQ6L2gIK25PVJ+hbWBeQScA6KZwI+0OHgIoKBxUx9RHEMYRhxFWrVhkLYeDoe6f79u3rqk9lC/02y5s0XMDYVLZ88NGV7pIR+KmGKkpqO7lMVJduZ1VZJ9j/s22I8hPz2/p/+x++TVEatyDwk8d0JyJVVga+LtH/TSbSibZj+ydbLsNfx/dZtA+q9nWYZrZgMAlwqL5e0dxB0wQYUUBPJ4lihI7alBL0RJXULGXCDNvvVZeW1rYeH53P10ZfyrSaisAX4igOapNBFYlU0+Wi//MiWJR9ghW8/v91IpgVz6YGbtlykeA0rcskzRovUFX1moh0UV1BQq22+81j2qagnMsbzthsCoqOUoCHKBa0PzfP8/C73/0Oq1atQnNzM44cyb+LffzxxyPrHHGUMJY2IlmCXpBMXACmj1VNhbDoGLPJ9hWUwL5hU4uDzjssa1NWVucfNrFM+Otl/mEff7nfL76fOnhrhi06+4PIPhHUasDWGwZZm6KJfmHrlKHyQAvqMpnvEcQZ5PTaEVJd09uPiTSjjQx/61vfQkNDA7Zt24auXbsik8nkfYh4oUdQpYXJxU0VHdZd6IJcCGXXfF0EWYfJvuaOb1XHk7ozVA1A2AixH8kV2SNkH78uUdTYpO+q5Sw6u4OpHcJ0nQtsbBk6u4dqmQqTfYw4OixpQtmlwEiOPWdttLUd94S4+JA6Jxi0P7VHH30Ujz/+OD7/+c/H0Z+yw/Ukap6wkzKIeNElFxAFSm20YZiosKquIFgf62Giw0HqViGqP2yEGDDLzmDSN3bboPvIYhLtVU2Ws4kcuwpnRpEyQXT8qbCYcFhK2YDomlPeVFdX48ILL0y6G1Zof3mZTIbyByeEC98w4Y4kTvCy+Vf+v6bX+rBzrGyxHSthedUENhOxpAqxBRVbuvC4aYSYjwiz67t2zV/O/20SMZbtp6z/QWwDgFl02EXkWIVoBpmoDNuG7ORqe+CyfmaTOgNEh11A4pSIk759++Kpp55KuhtWaMXwzJkz8f3vfx/79u2Loz+EBDqZlR5BJtOJ5k7Z6iN/G7ZeEbpjLtbZ6CKPCL9Otj4ssgHSPc82mWznf6n8FyayP+g+bF9UX3DQMTL5wlXCzzZjg+oAZB9388tM6ubbcGGLsN3GMLNE1Ic3i8vfdNB7G2WFrj9ELLRv3x7t2rXTfpJE+9P60pe+hF//+tfo06cP+vXrh44dO+atf+mllyLrHCGG8g2XF/wcKPaJOntxVJ3b44wKB0X4RNnEjsAuU2FjE1CVldkxWFsEUGiZ4PcLKMxPy9bl18H+zS5jYSfaicZEN6kwCPzkOZX9Qfe3jCAqSmZNEPUzCkTfmc4mEkHe4VjgxrFUbB6EW5YsWZL396OPPoo//OEP+PGPf5yatLzaM8J1112HDRs24Ktf/SpqampQ4TLpdRmRpBgpipNqEWOqK2wDa6J22Hp4a2gxCF5TTSS84RMNtEosy9a7RibKVaJd5C/26xLBC1kWmQDn+6MTxCYHsolfmBd+qokRvEB1JVRV/mWbfQnTH1PfNEdU3uEkshLJHDJEeTFu3Ljc/x999FEsWbIEp59+Oh566CGsXr06FckYtL/yp556Cn/6059wwQUXxNGfkiTMuT3ouThtkzHKKT2ciRYzfYIsq5+vhw8KmmD7fYiOxaiDbAD0gle1LKo+mEaOWdELyCfWsetYRHc+PrYC3GQ/bAWx6u4myslxJpi2lfTJSREd9lF9LakIdjD95vuSeN+I1PDf//3f+Jd/+Rf88Ic/xE033YRRo0bhsssuw8qVKxN/i7FWLdXX16N79+5x9IU4hqu5HYQ7ohz7MHWL7KE6S6kqA5fLvgWBbS/vZk40mU4VTZV5Zk3M0kA4Q7esn2ybvOGbrUNkDheZwPlyoj6p+iBaJ6uLRxTy4/27LPxEOr4Ofrmt91a2jSx9mo1HOMwNluquV1Gv/1REd2inlUjuSV2mVTOZdBmClpYWNDQ05FLQNjQ0YPfu3cptPM/DzJkzUVdXh+rqaowcORKvvPJKXpm2tjZMnToVvXr1QpcuXTBu3Dhs377duu2KioqCz3/+538K+/W3v/0N3bp1s3orsYjFixfj2muvxZw5c9DY2Iiqqio8+eST2Lt3L6688kocSvjRgVYM//u//zumT5+ON954I4buEKbYRn3LJSqbZqK8iKkmy/nYiGAZYc9XtmOgnEzHohKFUWEjQHkRyy8TCV7VnY2sPr7doILYBNkzcP7/OuEpE6iqg00mgIMI6agxeQwkuqHgSJ0ItuhQuVkkJk6ciI0bN2L58uVYvnw5Nm7ciIaGBuU2c+fOxfz58/HAAw9g/fr1qK2txahRo7Bnz55cmcbGRixZsgSLFy/Gc889h71792Ls2LE4fPiwddu/+MUvsHPnztzn2muvLShz8OBBXHPNNfjMZz4TYjSA3/72t2hoaMCsWbNw66235pZnMhmsWLECf/vb3/DVr341VBthqfA8z1MV6NGjBz788EMcOnQInTt3LphA9/7770fawWKmtbUVmUwGr7+eRbdu8ui6yd2/KAhmMomOFRNJR5aLVZCbjptMD4iCQbL17DrZtUb1xFzWHxtkc71k6236KSqr05R5x7kqlZdJmi/ZMtV2orIsurImB4asHtl6Uf2m+y9bbiNGWXgR7ot19v++uPfL6QS9C1QRebaPfN/4bUT1ueoPu5wbC9G5W3T+YNfrkJ2DVQ9ccr8/VSNVVbn++g8B2MPy0CFgz55WDBqUQTabtXra7F9Hs5/6FLo7PD5aDx1CZv166/7oeO211zBw4ECsW7cOQ4cOBQCsW7cOw4YNw+uvv44zzjijYBvP81BXV4fGxkbcfvvtAI5GgWtqanDvvffixhtvRDabRe/evbFw4UJcffXVAIAdO3agvr4ey5Ytw5gxY4zbrqiowJIlSzB+/Hjlvtx+++3YsWMHLr74YjQ2Nmqj2zIqKytx99135/aN54033sDw4cPxzjvvBKrfBdoj60c/+lEM3SBMSdreFoZi7HvQGwjTOVwqPSQTxaJxlNlqRfXGgcvv2XoynchDq9s2DKq+8Ov5AwMozCABiPtnelCp2lP5iHXjwme+YPvKT34TeYlFB67KcxwWm7riyjTBt8fCeYdV8z74r8rUNxz3OdjQFZIora2teX9XVlaisrIycH1r165FJpPJiVEAOO+885DJZLBmzRqhGN62bRuampowevTovH6MGDECa9aswY033ogNGzbg4MGDeWXq6uowaNAgrFmzBmPGjLFqe8qUKfjGN76B/v374/rrr8cNN9yQl97sz3/+M377299i48aNePzxxwOPBwB8//vfx+233469e/fi1VdfRbt27TBw4EB07twZANCvXz/86U9/CtVGWLS/elHonChOUjHRgpCisiyaCmJ/HQ+rUVTYRoVjJ8xkOtG2rn4UOiGpE+guUAlwQD6Rj93WpG8yUcyu5zNLiA4c9sCOSqXxk9N0E/x0dQFmY6TbX5PlkmpTJyoVk+ecwlgBXNZXX1+ft/iuu+7CzJkzA1fb1NSEPn36FCzv06cPmpqapNsAQE1NTd7ympoavPnmm7kynTp1Qo8ePQrK+Nubtv2DH/wAF198Maqrq/HMM8/g1ltvxXvvvYd//dd/BQD885//xHXXXYdHH33USdT8jjvuwPe+9z3MmzcPbcdeg11VVYVvf/vbuOeeewAAgwYNCt1OGIS/wNbWVqsB2LNnD7p16+asU4TZ+dEk33DaskoUE1Gc2NkAmq9NTNqxmZhvIoqTwHnbpoLXVCyHVRo24TpdlNemL6roLyAXxTpBbNMHPjqsEsEmdbH9VZWRoWs3jPg2GROTE7hFdNjkPJGWYEdQt01SvP3223l6RxYV9l9ApmL9+vUAIExB63meNjUtv95kG76MSdu+6AWAs88+GwBw991355ZPmjQJEydOdPZK5QceeAAPP/wwHnnkEZxyyin4/Oc/j5UrV+LrX/86MpkMpk+f7qSdMAhVUo8ePdDc3GxcyUknnYR//OMfzjpFREex2RSKGZX9UFfeBWEnzJlEhXV+39jQdU5kuvcxNTeLUnOYbGeyLgiqyXGijBR8WZVPVzcZD5B7fEzUj0i1iepj65RNmhOh8pSryrpEVK/q8Y8liT+lUVBMgrh79+55H5kYnjJlCl577TXlZ9CgQaitrcWuXbsKtn/33XcLIr8+tbW1AFAQOW5ubs5tU1tbiwMHDqClpUVZxrZt4KiVorW1Nbftn//8Z8ybNw8dOnRAhw4dcP311yObzaJDhw74+c9/Lq1HxoMPPoh58+bhK1/5Curq6uB5HoYOHYof//jHePjhh63riwLhz8nzPDzyyCPo2rWrUSUHDx502imikDBPFNMUHS5G33AYVAFIUXTYJhhnOo6mE+6CarwwRCKmdQOqsgSY2hlU4XdZX6JAFAkGxL5kkT2AHwtdf/n9juMHHVRJhbUluNg3UVu6k7kmOpxGq4To+pKGKLVLevXqhV69emnLDRs2DNlsFi+88AI+/elPAwCef/55ZLNZnH/++cJt+vfvj9raWqxcuRKf/OQnAQAHDhzA6tWrce+99wIAhgwZgo4dO2LlypWYMGECAGDnzp3YsmUL5s6dG7htAHj55ZdRVVWVS5+2du3avAwVTzzxBO69916sWbMGJ510knYMeP7xj38I31XxsY99DDt37rSuLwqEZ4STTz4ZP/3pT40rqa2tLcgyQZgR9lxLr2YuHkQaTSaIgfwLXpRBRR2ytm36FKb/xse3brKYSvzKRKBOeYhEcdxqxWT2pEoUywSxqV2CFXRxTUBj2xbB94e3b/joxKoLdPWFmLwncub4VaYBtm/HrKLhKlMnv7LDtQf5GAMGDMCll16KSZMm5aKeN9xwA8aOHZs3ge3MM8/E7Nmz8YUvfAEVFRVobGzErFmzcNppp+G0007DrFmz0LlzZ0ycOBHA0TRk119/PW699VaceOKJ6NmzJ2677TYMHjwYl1xyiXHbS5cuRVNTE4YNG4bq6mqsWrUK3/3ud3HDDTfkouIDBgzI26cXX3wR7dq1C+zrPeGEEwomKgLAs88+K5xQmATCXx7lFC5tkvaWlXN02FQQ++uTQte2i745iQrbCk+V+JWF3kQRVx7Rl6fyBOu21/VftD2P6O7KdAKdan9s+ivDZPKdbL0JJicZvkyUJybbrBkR3lREtZt+CjWetEWx42DRokW45ZZbcpkfxo0bhwceeCCvzNatW5HNZnN/T58+Hfv27cPkyZPR0tKCoUOHYsWKFXnzse677z506NABEyZMwL59+3DxxRdjwYIFaN++vXHbHTt2xIMPPohp06bhyJEjOPXUU3H33Xfj5ptvjmQsAOCcc87BmjVrcv7kgwcPYtKkSVi0aBEWLlwYWbs2aPMME8ExyTNs+2haZOEzjZxRzmE7bMbI1sbI1i+yWppoJxVRC2lV/aYWXFMxXHB86/LzygaaXSfykcq8pTY+T10uX3657ku3VRKy8qr9ZH247DL+ADXpD+s19ifQ+f+KlrHbRAHvi+bbZvsmKs8uC4vpCZ0fl2PL2Ty+gNqibXv+UFnKlXmGmb75Ypg9lNi/33uvFUOHhsgzfNZZ6M6IvrC0Hj6MzKZNzvMME4U899xz2LZtGxoaGvDOO+/gS1/6Ek499VTceOONoV/o4YoUW/BLH1fn2CBWiaSjw6WEzaR/tjwbjOMJemzEEU2Oqg0jISxCFMmVRTFNDNv8s2ZZZFjkZwnzwwqbVYLtE4ssIswfgPx4iCLlon3m2/YFp18HK4T9Zar+2iAbG96TaxuZjYKI2lTZ4pOCb5uuNeXNBRdckPMMn3TSSVizZk3CPSqExHBCFENkNErKzSrBonpq7S+XaRq+Dhf9kLVhuk0qCCuIAbEw9NEZumXi0MUz4qCDLhKwKjsEL3pF5W36pIqERiWC+fW8T9iPeNucfFyerFSinBfukol0PnFb02XIJmc779v+/YDDyHBUnmGikNWrVyvXjxgxIqaeyEnrpa2kqKxMh/BLU1aJUiHMCV/2JFb2lD6MfjDdNi6xa9JO6ImhslC8v44VIipR7G/rI1qv8wibTtBzGdKTiS52P1nBazKhjq1P1l6U9ggTESzb7ySiwSJCRqlNHyAkHR0G7Bw2ROly0UUXFeQ6Zh26R44knwQgBWcGwgZRIAEozqwS5RgdlkVjVcKY38b2opKG678OJ8eB7BE+L1QBeSheFhFm65VNQjMN1enKqVICBBkoVT9l/xcJYrZPKm9PFEJYNV4yzzjbRtiTjeuTlUwAy6LDaYQZD94fzJK0ICeSh8+N/MEHH2DDhg343ve+l0sdlzTSX9nFF1+Mm2++GVdeeaVw/XvvvYdPf/rT9LKNtMOdxNnocBoiB8WMq0iHKpClelIv61PS104XuiHUjZ3MysAuU9kD+HKAPFqsS/xqIpBlZUwGUfZli6LNqv6r/MOyA1LUB17wqoSwSvTL9sV2nUtByXqpXaPrY0JWiSC/Q1lWidAcOlQUqdWIQvgJit27d8fYsWNRXV2NO+64I5f5Ikmkz8xXrVqFCRMm4K677hKuP3z4cO6d2URKKQKlm+YuJhG19oNp/P/9/iSVRcKP+siiPybbx47KswrkD6g/2Pzgs8JNlGlAhuiLUk0cs/Gx8H3TlRP1R7Rc1D/ZGPmfrl2Pl+naNX85+2G34Q9k1YFtK4T37z/+0W2vQrUd30ZQZG0Y9N00Y0uST97IIkHoOPXUU7F58+akuwFAIYYB4KGHHsKPf/xjfOELX8DevXvj6hNhgfJ8bBB5KTebQtKYXhTCimKXiPqc6MXNZgB0glhUHz/gIg8LLyaDPP4XCWJZf03WycqZ9FX0f9FBx354kcuKYN4qwYpg2RiZKjwZtuJUdQyZthtWGJsoRn95CiMHNAeFCEMmk8Gf/vSnvLfdJYXyF3/FFVfgggsuwPjx4zFs2DA88cQTOPXUU+PqGyFB9kTN1Dectol0xeodDvqIMuiEOL69qGwupvukerIby3dq+phd9EWJlvEDKvPT2iLy4urKh1nPlpFlh2BRpVPTRZ/9bfi/easE32+RlcUW1Q+Cj2az/+f7J4ue2xL0oLe0cahez2xyWJtQsBuiY4ZZpQtyE+WNP4FOxqpVq2LsjRjtL3DAgAF44YUXcM011+BTn/oUfvOb3+Re/UdER1SPu0WQdzgZXFgZXX53QYV9kH1w6m02EcUyQex3RlZXGHVhKnxNJ93J2uCRCXpdu7xg5lWWrF1TESwab5P9txHOMjFqK1KDHqAyQWwqlP12ZfmRI8aoKcl+HDoUsTBuawPaOQzipCCDQbngv3nO5+DBg9i0aRM2bdqEr33ta8l0isPoV5bJZPDUU09hxowZ+PznP4977703975sInmMzrOKiXRpIK3R4ahvFGyvda4iP2z7aSRQdhSdKJaJKt2gslFSEyGni0SrItCyPvN9UyET9KLosKxtfvIcX7fKeqGzjsii1my7ImzFtKhd0YQ+dj9Ywgpi1Zsn+PZ0bfEimUN3TyEKmkcJ+YUJlvnz5wuX/+AHP0iNBVeqhth8cP7fc+bMwcKFC/G9730P3/jGNyLvXKkQZ5Q3TQKXOI5q4plocprtRLWgT2fTgkj/BD6WgwxGmB+pamJdUG+zyPsr80rL/MQ6D65IDIqWsT5h3lbAe4bDeKhV/eb3QWR/kH3YSX4im4SKoDNGw9xBG3iE/RtFG5u1axGs+33S00ZCx8SJE/HII48k3Q0AisiwzN9x9dVX44wzzsD48eOj6lNJwp6gTJ8KOkcRfk2DVSKt0WEVJk95RVESXRAoCDbfYZqEsIpizJ8tRRcBNVUxsnKik4zI8mCDLBLMLlNFiU0IklbOJM8gK9ZlQtj0hOPariA62cnacJgizub8avK7iyyNGlEWrFmzBp06dUq6GwAUYnjVqlXo2bOncN3ZZ5+NDRs24KmnnoqsY6WMShjbXD+M/V0ShZQ2q0RaieJGIegkOh1puKlxTWDLhOpxe9RXcJNH/yZflkh8umhfZJXgrRH8SUYmdoOI4LDjr/JK85PngkSERehOuqYTOtn+Brn7N7BK2BziLs5BMr+w00QYhw6RZ7hI+cIXvpD3t+d52LlzJ1588UXceeedCfUqH+nPQPeu6BNPPDE1xudixpUYMn4bHUWHnRNGW9neDLnQcHFEchxe4wEcfyRrJYpdHdA2A6ZTJPwyVR9VQlg2UCovssj7bOK55fthIpBtkI2TCaLJj3zkl48Ai/YrLEHrkh30Go8wUJhVIixGw2Kwn74wJgifHj165P3drl07DBw4ELNmzcLFF1+cUK/yidHNSqQRig6nC9l8LBvScFMTFYFEcZSYTkpTree/sCAimF+vivqKIsZsOdl+sv8GjVgD9ge5bf28p5mPFKcNVvDGYJUI1D8OumYQNvz85z9PugtaUnhmIJxjoY7SIKTSGB3WjYsuwBYmGhvU6hmHS8D0umxazvS7N7ZORHVAm1oPdOKT3ZZHFIGVrQfMI858+6K+8m2YiGBX9gidd5qPfsvKyawRJgdYmNQLcZxEudczi+51onYDkV+YsOXpp5/GSy+9hHbt2uGcc87BRRddlHSXcpAYLiGCWiUoOhw9cdhUeZKyzcZ1IxNqcp2tqVJVVid4VeuBQisDi00Elq+PV0iq6LAs6mgaCdZFLYOIYNmBZJJtgi/H1q2649KJ2Kgis6LoMG+ViKBtWXW535WBqI/FL+xXSJ7houSDDz7A5z//eaxduxa1tbXYsWMHunXrho9//ONYtmwZunfvnnQXSQHFQRqfzKWdpKPTQTDVKkHrFn10RClMw+6PC4xu4lwOgixaq1vOfmF+mi+2jMiLK3q8b3IgqDy9ojrZtGP8R9cPfh99RPkCZYj6wrdp8xHtt2hcWfbvF590TDJ+xP0Yi1OZfJo1tou2T25Mn8qoulaM524iWr773e9iz549+Nvf/obVq1ejuroazc3N6N27N2677bakuweAxHBsJG5X489yijNW2iwKxYSJILY5DnTlTerT2UCjJrU3g7rH/DKxG1QQi8rIPrZ3P/x6G0HMC1//07Wrvh+iPplGgWU3CLL9NT0xqcr5opf/qFCtd3myFLXjPLx6nNT+LomS47HHHsOcOXNw8skn59L2duzYEXfeeSeeeOKJhHt3FPo5xAz7hDIKjK0SXOE0WiXS6B02weQ7dn0h4oNyPDLLRNDjUdb/1H5fpgOgGhB2Hft/mRdYZokw+fJthKAsgwTbpsoyYdK+qA+uBJrJDYVqmQm6cXcxc9UlISfSyQ5Vdr0MqUWCGXvfFiGLBJOXmGB59913ccYZZxQs7969O/an5FECieEEiFoQB4UVxGmYSFfMJPkdy9pO4jsVXXRVF+IgWsf5ZDqZoOXXmQhfUXYHfx3fJt9XU3RtyAQw2wYvjGUT9kST/tjxsfEGm4rgoNFnF9uI+qNbHgbVyzhE6yQT6XhE90jsOiDc7pi4YULT1gZwb8YNheTFYoR7amtr8c477+CUU07JW/7www/jU5/6VEK9yofEcEKEFUuBghaWaogEcTiSFsSAOsMXW9Y2la6I1EaFWYIMgOlMRJVwlglWvh2+bh2qDBIi4c72QyTadW2HOah1NhKb/Zcd4LYEzW+swmQSnklbjtOsudi1tD09JIqDCy+8EH/84x9x/vnnAwD279+P0047DdlsFk8//XTCvTsKieEEcf2I2ieoVSKNpKV7QW8Kkn4KIGo/jCCO8slxmO/ZKrOEyQCIoqCytGimgthfr8J2gHXRWpVtwi+na1NVp00/+frY5TZZM/h6VX1x+eNzcfCz/ZGJWduTnsEb6WTww2+SRYICJIQts2fPxq5duwAAJ5xwAm677TZ89KMfxVVXXYUTTjgh2c4dg8RwDKjOa66icqFQeIcpOhyepAWxCJke9LENmMmeqpssc0WqBDEgjgKr0qix2+oQ5dpV9ZVdr4oIqwh6MhAJYd0y2fZx/ZCCHPCAenxEfddFiS3SrNm+kc7qt8jtL+sXZneLrhWEiJNOOgknnXQSAKBnz56YPXt2wj0qhMRwTJg+aZURRkTkiQSDM2XaJtOlJTocBldPdYO2HSaQp8PFd+Pq+7V6Q50LQQzIZyqJPLVh7BEqS4RJ+zJRbIosV7EMmQ9aFw3W2SNMDmZbVabzBYe9i7P9AZqe9Cwm0ukI81bHWM5rhw6RZ7hI+f73v29c9q677oqwJ3JIDMdIEEEcZSTNFIoOu4P/Pl3YZGzsDTo95Yq4o8I8oSbV2QhiHlNfikzo2N6FmPhdTCfxuUDmZXUhhE3RRWejOhDD/JhU/TKJDnPiWffblrlWcnWFwOTwJ8oL0/RpnuclJoZjC//Nnj0bn/rUp9CtWzf06dMH48ePx9atW/PKeJ6HmTNnoq6uDtXV1Rg5ciReeeWVvDJtbW2YOnUqevXqhS5dumDcuHHYvn17XpmWlhY0NDQgk8kgk8mgoaEBu3fvzivz1ltv4fLLL0eXLl3Qq1cv3HLLLThw4EBemc2bN2PEiBGorq7GSSedhLvvvjuXIy8oOssE/wmK8uQj6gSdrRJB9Z2L1oUVmSKNEiYqm6aoMM8RtAv+Ug5+oEwmc6nK+gMtG3CTH7yprUJWlygCbXqiCePlUkVXgwhhVTlZni823YFp6gMby4qtPcKknGnOMmaZ6AZQdF7xsfEKH0E74ZvmVN1l2yn2p3tEcF566SWjz8svv5xYH2MTw6tXr8bNN9+MdevWYeXKlTh06BBGjx6NDz74IFdm7ty5mD9/Ph544AGsX78etbW1GDVqFPbs2ZMr09jYiCVLlmDx4sV47rnnsHfvXowdOxaHDx/OlZk4cSI2btyI5cuXY/ny5di4cSMaGhpy6w8fPozLLrsMH3zwAZ577jksXrwYjz32GG699dZcmdbWVowaNQp1dXVYv3497r//fsybNw/z588PPRZJnBSMRAFzNuNPqnQii48gN0I22+i0mgmqsklHhXmcCWJd+bQhOijCqhL/HGEqJk09wlEcICrRq+qPzY2QSR/ClJeNd4DgBX84GB8GgoKsXzg26xd7U+PqQxDHqPDChjoD8u6776JPnz5YvXo1LrzwQnieh7q6OjQ2NuL2228HcDQKXFNTg3vvvRc33ngjstksevfujYULF+Lqq68GAOzYsQP19fVYtmwZxowZg9deew0DBw7EunXrMHToUADAunXrMGzYMLz++us444wz8Mc//hFjx47F22+/jbq6OgDA4sWLcd1116G5uRndu3fHQw89hBkzZmDXrl2orKwEAMyZMwf3338/tm/fjgoD71JraysymQxaWrLCd29HHYzlz2EFUQNRB7iNWCGRZPA4ae1RLIHzsNfesJjMgeKJ67s1sk3wXzQ/QKrZQqqyOsJGZ03Team2kdUv2mfdrCmZDcKVEOazMoj6ohovnRjWZbcQ+cFVfbRFplpFfWRV7rFl/nnb5OV5wqgwa8Fg6uRftsFqSt190t69rRg+PINsVnw9lOFfR7MdOqC7Q89wq+chc+iQdX+I0iSxWVLZbBbA0ZmFALBt2zY0NTVh9OjRuTKVlZUYMWIE1qxZAwDYsGEDDh48mFemrq4OgwYNypVZu3YtMplMTggDwHnnnYdMJpNXZtCgQTkhDABjxoxBW1sbNmzYkCszYsSInBD2y+zYsQNvvPGG1b6GmZgQO4qzZ9KClBATJtDhwpLD1pVmAk0KTYOKN0EX2g/65QRJFWAjhJPAJiosw5U1wmR7k3G3bE956Arq0v12iiVYQBAyEhHDnudh2rRpuOCCCzBo0CAAQFNTEwCgpqYmr2xNTU1uXVNTEzp16oQePXooy/Tp06egzT59+uSV4dvp0aMHOnXqpCzj/+2X4Wlra0Nra2vex0ckiKO+lvInqCBigOwS6cX1k76gfnVdeV1dcV5Itb8B13mATVF9mbZftMqXHLQ/JoZQvl2TZ/JB/NWmyEz4fJ94IRw057GPqx9lkIg8Bz+E/N8FUWFF30VRYRFBng4RRNIkcnhOmTIFmzZtwnPPPVewjrcfeJ6ntSTwZUTlXZTxHSWy/syePdsqhQgQ/UxbZYYeWeMJ5zIjwS0nTptbOUSLjRBlaAhTToXLL9jVycXUTsGie8zP/19Ull2mS43g90mWYcOkHVG9UWHiXwDkWSbY5YKsEqJ88Twmk+Z0mB6uLobSO3QILj2dlFiNYIk9Mjx16lT84Q9/wKpVq/CRj3wkt7y2thZAYdS1ubk5F5Gtra3FgQMH0NLSoizjv+mE5d13380rw7fT0tKCgwcPKss0NzcDKIxe+8yYMQPZbDb3efvtt/PWp8EukdbosItAUCkT1XwPlzaJYsFpdFiXHiZpTKO1Jh5cfp0Ml0JYti7M2Mo8uLo+mKAbH529QlTG1JRrgdQn7JhyO7cQxUtsYtjzPEyZMgWPP/44/vznP6N///556/v374/a2lqsXLkyt+zAgQNYvXp17n3WQ4YMQceOHfPK7Ny5E1u2bMmVGTZsGLLZLF544YVcmeeffx7ZbDavzJYtW7Bz585cmRUrVqCyshJDhgzJlXn22Wfz0q2tWLECdXV16Nevn3AfKysr0b1797wPTxJ2iUDE+Ow6lfufEqIWwaJlri5eNvWk3nPoIu2Xa3hfS9LKQ5WuQNcvk5OAShCb3qCYCuEo7BG2B7mJUFWUkQVfrIRwiJMziWCimIhNDN9888149NFH8d///d/o1q0bmpqa0NTUhH379gE4aj1obGzErFmzsGTJEmzZsgXXXXcdOnfujIkTJwIAMpkMrr/+etx666145pln8PLLL+OrX/0qBg8ejEsuuQQAMGDAAFx66aWYNGkS1q1bh3Xr1mHSpEkYO3YszjjjDADA6NGjMXDgQDQ0NODll1/GM888g9tuuw2TJk3KCdiJEyeisrIS1113HbZs2YIlS5Zg1qxZmDZtmlEmCRVJR4jzImOqkx2lWouENGT+0dUdRlclrcmckNbosInolaVUc9EnmQBXtSeqw7Qsj03uP/5vlRBW9c8EV0JYl0LNUiC3y2XbPv5R1iOZPKfyC4t2TTSEzFz0ksfkXQc8cb1nYcGCBaioqBB+/Kfff/nLX3DFFVegb9++6NKlC84++2wsWrTIydikldjE8EMPPYRsNouRI0eib9++uc9vfvObXJnp06ejsbERkydPxrnnnot33nkHK1asQLdu3XJl7rvvPowfPx4TJkzA8OHD0blzZyxduhTt27fPlVm0aBEGDx6M0aNHY/To0TjrrLOwcOHC3Pr27dvjqaeeQlVVFYYPH44JEyZg/PjxmDdvXq5MJpPBypUrsX37dpx77rmYPHkypk2bhmnTpkUyPlGKS+152LDxpEV8KVBsqS1V2sd1YLJkosNpaT+p/ppGcEVlbdHVLfJeBfUQy3AhhNm7X9nkRZVotclDbCGEVdjO6QzLkQg+UaF714GIuN6zcPXVV2Pnzp15nzFjxmDEiBG55ANr1qzBWWedhcceewybNm3C17/+dXzta1/D0qVLHY9Uekgsz3A5kMuPuHMnugsyXIi8i1EJgkA5hwUb83120d9iiDK72M+0CuGkNR5LqnIOA8HzDofJOcxjm6rDpI+2YsvkB2CSwcI0oq5D9b2Y5hd2YY8IK4RtPNhVVYX/79BBnG/YL6Pqj2zM2Kh5VZVxfmEZfjf27GnF2WcHzzP8PgCX2YBbAfQEnOcZNnnXAU+c71ngeffdd3HSSSfhZz/7mVKwX3bZZaipqcHPf/7z0GOURhLLM0zEi4s0awDZJYKSViEMpOtlTCUTHVaJwDDtmYTh+XWqdGKm7fLpzkQfk77rMH3c4DKibNM/l4h+dKIfY9DoLftjkk3KC/njNxXCQLpuuqPE5F0HPHG+Z4HnV7/6FTp37oyrrrpKuV/ZbDb3XohShMRwXAjOGqmaTGfoHbbdtFQoh31MkyhODWG8w2EEsUjQhrFJqLaVCeQo1YtorFz5oFU3CbJ+RCG4bV7Kwf/4RD9GWX2qJxKi7BWsENagiwqrKBYhzL8boK2tLVR9Ju86EG0DxPOeBZ6f//znmDhxIqqrq6X79Lvf/Q7r16/Hv/zLv0jLFDskhouYsOnIrKLDisl0RGlR6qI49PFr8+jfRmCKIqEyEWgaobUVgLL2w/qVbcbIpt4g8PYI1RiFOcHKtrPx+1oIVy28L1kFa78IgOlcRRsORfABgPr6+txks0wmg9mzZwvbnzlzpnTimf958cUXAZi9x0BEXO9Z8Fm7di1effVVXH/99dL6//KXv+C6667DT3/6U3z84x9X9qWYSfH9WgkieJkFnxwdOF7ENC+76TYu36UhSuqe+kfcCVGswlKW7z9qonrnS2ARLHuRA++zlL34QVRWh4uMC34f/Pb5frDrdH2W9Vt0cAe1ksj6L9pONNbscv7/Jn3QpWSTpU1Q/cB1J0aZ59z/f1WV/ofI91u03yKrhahfDn54UQjhKHn77bfzPMOVkrQXU6ZMwZe//GVlXf369cOmTZu07zrgYd+z0Ldv39xy2XsW2Ohwc3NzLm2syXsWWB555BGcffbZuZSyPKtXr8bll1+O+fPn42tf+5pst0sCigzHjQPFqDtn25zPjNOsAUZ2iXKwExDRkiohrMJ19FMUhRWlBFN9WFQ+XtE6mXXBNJotK2viWRZFtk0j3jYHjGwymkkdsjJpVXp8jkabWW+CqlRZ3kTwQjitqdX4dwPIxHCvXr1w5plnKj9VVVVG7zrgifM9Cz579+7F//zP/0ijwn/5y19w2WWXYc6cObjhhhtUQ1gSkBhOAbILtcn1SkYcopTsEqVPsUa1WZwcp0GEkI0vViYOTbY16Y9NdFQmPoNYJnRC2OYO2vakJrJ88PUEGWNZWzJM+m2iLH0Bz2aSMGkfUGc9UfzI+ZzCuvMBBUPM3nUAAGeeeSaWLFkCIN73LPj85je/waFDh/CVr3ylYB98IXzLLbfgi1/8Yu69EO+//35Uw5Y4JIaTIGB02PZEI7rOiJoOEx1O1SRAguBwesNmIoh1kV22jE0kWLWtTYSaXa+b4aQSqrbCUSaEbeuW9Vnl/2WXs+XY/6vGWNa+rA1dv1XYGvb9emXb8NFgNo2eph3ZnBKbbHCqBxG2FFOeYd27DgBg69atyGazub/jes+Cz89+9jNceeWVBRPygKMv5vjwww8xe/bsvPdCXHnllS6GJ5VQnuEIycszzOcx5M4OQVOdmcDqV9lJKU80WOYUDZsvuVjEc1CHS7FHV+N+CuzS1+4c2wwBptuqbACmX4Csfd2ELJO3mrHI9kPmi+aFapA0AyaTzEzGV2ST4PshS3kma1+GqB4+p7OJf9cX5V275keFdVYcm+/Y37Zr11zdbCaJvXuPbyrrMj/E/Nf94YetqK8Pnme4Ce7zDNfCfZ5hojhJqdmp/BBNpHOF9eQ2yw1kkwBpQl3xE6cQLpabIin8ZCp/8NjJXkD+5ChRHaL/B2nfR/dj5Ceh+ciEMdtvftKdrJwoMmsDv2+iiXOq8ZW1L/M4yyYasu2zbcn6DIj77den6jvbR1UU22+DnWine6mKqJ+C49EmAYWqyrTaqgnChw7RpIhqyrwEXVNH0M4uksb1nwRxaRH24lX0wjYoIjEiE1Ki7fj/y8qzyLJAyMSxrE+ijBkiZPtiIkL5elUHmiybhejmgl0nipjqwpYsfH1sPXyfTHxoorrY+th6Rf1kvcJsu7pxNEnRxvZBsbkOlehV3XfYcPjYxxUu6yKKHxLDKSLK6LA1JkrWQNCTIC4+gl600iSAI5vcaXpA66LE/HL+/zaDafMjUwlkm31j4YUcX8YkGqtqx0QUiyLbbPsqEayrTyeI+bZYRDcqovplvm/RpDleCPPI7DIy+4egLp1fWGW9C+OGIYikoEOUyGEdHQbyBLFMzJezIC4mv3ApiOBYMHlEDsiji6qybP1QzyXI+62qBBy/nm1TF+lUoROg/Dqd2FflFQbUolg3uVEUHVa1oxPEov6I4I8VkS2CrU/kaZYJYZGlhVerKm+ybMyY5X5KNdl8O5P7H1UQniDSAonhJInZKmFCniAOoGJTFd0mlJAVwhDZ5CZTQWcSFfbrPIaz35AukmlaB4soEizbxsbyIfMii/phc4OhE+aiOv3tTDzBMmQeY5GI95fz2S5EdgmTttn2ZTPeRNcfpt4gh43q3ufAAfv6CCIuSAynjKIUk4Z2Cb+oaHmp4kKLuMLVo8pS/85yyIRQUEGn+gICCOGCJzlBLByiA1R3oNis12U8ANQhR120WIXOnsF/VyIPL9ue7Q9ZJN51olgUDWb/Fu0Hj22mDUF/dcVVX6ssWhzWukSeYSJKSAwTBQSKDhvYJWyqKxVKSQiXjQgG3Lyq1uRg5+rkfze6p9pSa5OpVcIvK8KFb8akDpXtwGSCmq5tV8/pZXYJEUEm/7HLZf4C0zZFOdDYGyC+b4KbsTDan+wRRLFBYjhpUmiVKMCxXSLtu+uSNEWGw1BO35mQoAOginBaCGH/b203TL3BqgPTxtqg295GMJpg0hdR+64OYNvJfz68EFVZTXTealG9rPANklaNay9gQLmgu/7f9LZSIu2QGE4habBKhJ1MB6RjP4hwlL0IBtwMAi+KHQ5s4OiwoW0jrz5TTCPCNpkabNqzEZRxPKriRbBuciUXrRVOshO9CIQVx7wQ5u+m+PqP1csPh8lXIosKA4wQLqdHgkTRQWKYMCOAXQIgQVzMlLUQNtx52bEtvZGU1KuLCrPLA30vrNBU/ZaDWhxU9fCEEUVh/Mo4Ps7C78f27RKmX4ToxSQqywKPLMrM/s37hEVCmF0vGUf2ODR5MaFJVLigsoC4foUyxaoJFhLDaSClVgmj6LDixFpqFKvfOcjXk8LDMVXobvACPVlxhSwtGC+IRZiIM5P2gyKLDocR5sdQCmEbXHjHdVFw0zZEPmGVEBZda/y/uZRqfPUyjKLCppURREKUh4opQtISUQ07mQ5Iz76UK7b3KySE5dgcx2EEse2NlzKzBC+IdYjKuLoT1NVhOkGNx6BswXehe0Oby9Q3MkHMtsnuA3sOFf2ARZPjeGHMrpchGDdbAQyI9TXZI4higsRwHCR4R+yfkJyJUf6kLrsIkSAmSogkjl3R3DuVHtMKYh+LfMfK5bYZN3RmVFd+YVl7MnRC2HbSnu0b/kzOoaI6RZPjWN+wjRCW+IUNN8v9v2BXdBP4CCIlkBhOC4LHVy4FZBhRrI1wyaJOKbV/EHLo6yokDiEcWfYVkaI2EL+ivhScA2w6ZjsrK2rrlUqI27zaWrfc9kUePPw5VDaOvG9YFPX2J+VJJuexKdX4pBQqlFFhUV8DchiAS0lNeYYJFhLDcVFK3lpRdNjgREfRYaLYiPN4dfH7kPpiDYRraB+06OZXJPxE54qg9gh22yBp3IKIYF1brlGNoSyXMF9OBucXttGrFBUmSokSUWclQgyR1KAX3MD+R7JLWGeMSjpoRhxFdZym/U2Kpr9X2T4aZ4ATJUNW4VoI6+o2KWfraU3qBygTuqoJcyq4l5Lo3jwtiudoo8K2GToIIiHoshonAaLDUYhHJ4JYFx2WTQYJ0X4aiDqjhMk1I6qHDGkTdOWIy9+GLEosqt95Kjcf1QFt+xpo130w+SHH9aOwFYsm+6S6yeCEsMkxp/MKu06lRhBxQmI4blJil3By0VUpQ34/S0gQR4Vt9DgFh1HZ41orRfGb0NUZWLcEeTuDTbkwhBHAUfbB1DZiWq+tPYJVrZKUaqbz7kTHvjIq3NamrlgD5RkmooQup2nDsVVC9bg0iCBVPn41mVFdpuisEkGGy1QQk2h2TxQBwzTeHLL7mfe7txXC/sEaNIewKS5FcJgvOarzX5h6RS9UYcbepmq/KqVX2LZSgkgQukwmgWVYL8ooamhBbOMbKJHocLG+fIOww3laQgGmdUfpURYlnODbkAphU1+PT5R3ZmmIBifZD9MJawIhbHpvI7NKSL3CsgYIImWQGCZIEBMlh8s3wIU5Rvl+2Naj8vIC0YhinkBCWDZRLogY5l9OYdpeGAEWdGBthbCLyKnNjFuBNcL0mBTZI5ReYYoKE0UEieGkUF0YYrRKREoZTKizwTarhKs2TaDJc2rCCmIbwqShdY2VEHaVBkWVvzetAiuoz8kWdgxsDhQ/v7BouaA7qvnQor/jiAqTZ5iIEhLDRULUgtF5dJg/m5bYhDrXVok0X+eLFWnO3YCYZGUIQhqfICtfXSwjjAXCRign/UOxbT/pSXs8Cr+w7gV5FBUmShUSw0mSspQAkdslNIK4HFBdy22v87pDJ0WHVqJE9WQkjKc4Ln0Uer9dZD+QkdYD1OU5KUjyXhG6MQ+YW/gI2kk3leUU5ifNkVeYKAVSejYiXL+e2VQQOI3QWqq7YosOByWO4JaNziiH+xHXUWIWU09w3Log1L5G5XF1IYBNf0C2j29c/xBcRtPZfbY5gYhewSzwDetghTC/DEAsUeFDcPs6ZopdEywkhpMmZdHhIJSrXSKMVSKsIC7yQyYxohTFure5qVAdC0G+a6v9C/LWOFuiPmBlPyhZqoyoSWtEVGCRCFoFcOw4k2WxSOsYEIQAuqSmmYQm0iVtlygmQRwG0fXbJFUz2SPCE6UoZtH9DExgA4ImaPfJRqTEccemOsepnuGLfjyy/sb5+COsCDQ5f7L/l4lRg7fO7d+v/4q1UWFR2wRRZNBlMw1YRIfjEopOX8ghukiViCAOO5FO5yEOUp8N5WCRUMEeY2GEsc2x6lI3WH1/cYhg1/4c2x9Y0hPsXKVzcxXRNrRI6O4hRAHlvKiwriKCSDkkhssMm8lEoQSpyUWsRARxWEzSqNrUQwTDlTD2iXLumTVRC+EoTeqyc4nqjXZxD3TcOY35kK5JWjtLi4RMCEtfsCF6TbRDKLUaESWlrzSKhbS8PSkkeeJV9PpPHs1JPJH8yAnhX69sdEWQbQg9R9Au9zEpGwex6Lu0CWHddqqcxHGwf3+8QljkyxWJYlk0WJNFoqrq+Efb3SK7NhGEChLDRUhYgWhz8Q4tRm0FseAEm3ZBHIXVgBW5qg8RPawwZn87pmKZxfV3ZqxHTA/SNB9Ytj+0qPbDF8AuLAy6dnxMoq6yKDn/r+RFGyJEmyknzan6RxApJqVnvRLDv8AUqZ/K1q4QOq+r47RyBAGYXaNN9FZZHIdRCMmoDOouk3f7RC3ogoyFbOIcv86vXySEJagm80pzCsv6RhBFCInhONGdmGUT6VLwcgqZGPXPx3z3pNklZGNg8EKONAtim3k+flmbwBBhT5Dx47cJ87Nz/ZZCU6Q3o0l1yCW2/mHduiQIY40Q2SL49yaL0j4w/4qySOiEsNAeIfIKy6iqAg4c0JdTQJ5hIkrSqSxKGUePISOzSlg+/lP5y0L7h4v9wq3AdCK9zsMXllIdYlf75eJpOE+iLoRyTx9iQjH8KHg1K7uuGPqq2FUyIax80xwLe8KK8uRFEA4hMZwUtsbPSGbnCr5+xYlLJcBl3ZMKYhkaQZxm/3DU53y6ruiJQryGqdd23pcrlE9Qwh5EfjRS9RERtchUDWpafdA62OirL4BNkgNLJtCpjgvR5ahACNukUqOTFVFEkBguYULN85BsGFoQ+6guTkUsiE2Iet6NLUkFwtjj0+ajqiuOPtsiu4mx1Wey8la/O12nXBGlLUHV77SLXtMxZwUv7w/2Ed14sCJYEhXWHcO8KC4Qwjb2CL7iMqGlpQUNDQ3IZDLIZDJoaGjA7t27ldt4noeZM2eirq4O1dXVGDlyJF555ZW8Mm1tbZg6dSp69eqFLl26YNy4cdi+fbt128888wzOP/98dOvWDX379sXtt9+OQ9z3uXnzZowYMQLV1dU46aSTcPfdd8PzvMBjknZIDKeBgCcJG1FodcFkT9iOsjvk2jGxSwBFK4htrnVxtJMmTERtkHqK5U27LgSxLVqPPtvsjgAAWQtJREFUfbEK4iAUixiTTYyzjQpzmSPYdGqmNt80CeHDAA45/BwO3SM5EydOxMaNG7F8+XIsX74cGzduRENDg3KbuXPnYv78+XjggQewfv161NbWYtSoUdizZ0+uTGNjI5YsWYLFixfjueeew969ezF27FgcPnx8b3Rtb9q0CZ///Odx6aWX4uWXX8bixYvxhz/8AXfccUeuTGtrK0aNGoW6ujqsX78e999/P+bNm4f58+c7HKV0UeGVstRPmNbWVmQyGWR37kT37t3NNtK9jY67eKkudqaTgYTCkt1YsKFJu/xmee2oZkKzyJ7bGfQjSWwm00XdRtT90FEMFkxbROPF/45kx2aQl3HotITu+3P2iuawIkjS0UCvx1b1WTdROUzdYTD5obHCk7dHsMtZ/HCuL4K7ds3/l5k451fBw8+7kwphWQUimEpbW1uRqa9HNps1vx7i+HX0JQBdjbfSsxfAOYB1f3S89tprGDhwINatW4ehQ4cCANatW4dhw4bh9ddfxxlnnFGwjed5qKurQ2NjI26//XYAR6PANTU1uPfee3HjjTcim82id+/eWLhwIa6++moAwI4dO1BfX49ly5ZhzJgxRm1/5zvfwcqVK7F+/fpc+7///e9xzTXXoLm5Gd26dcNDDz2EGTNmYNeuXaisrAQAzJkzB/fffz+2b9+OiooKZ+OVFtKpJEoNG6URYfQi0ONUf0PDyCxbjG/P2j8MFG2E2JSg19xiEZjF0s+wiI5DPzMxjyxCHOanH3qc43jUoBHC/v+d3OAWSxSYRySEWUyEsOAVzLKXbLBV+GgzR/DZLWQV899BsX4nlqxduxaZTCYnRgHgvPPOQyaTwZo1a4TbbNu2DU1NTRg9enRuWWVlJUaMGJHbZsOGDTh48GBembq6OgwaNChXxqTttrY2VHG/xerqauzfvx8bNmzI1TNixIicEAaAMWPGYMeOHXjjjTeCDEvqITEcFxF59GzFoPFFU9RXB0LU2j8MFKUgtvm6bR/1uxaYxWi5SBLb8TIVxEB0L1cxEpgxHwgq4Rtpf00GNEj6M9XkQR/Vj1cWtpV5hnlYIez/LdlX2RAoX6xhk+2HT0+RYiHc2tqa92lrawtVX1NTE/r06VOwvE+fPmhqapJuAwA1NTV5y2tqanLrmpqa0KlTJ/To0UNZRtf2mDFjsGbNGvz617/G4cOH8c477+Df/u3fAAA7d+7M1SPqC9vXUoPEcNyEveA4UEKiKoyjMRohyu+esi1T/zBgJIjDiuIoRLXN1637aqPwx5IQDo/JcZOGGzYnAtNG1EjDjQ7tTUEn05kItKBPr2xhf9iy7BH+MlVUmF3GRId5e4QoNTEQQgjz4yTK0+aAIxF8AKC+vj432SyTyWD27NnC9mfOnImKigrl58UXXwQAoY3A8zytvYBfb7INX0bX9ujRo/HDH/4QN910EyorK3H66afjsssuAwC0b99e2RdZ/aVAem/XShnHye+DvIxi/37NizIAJ/1kq2Dby7Vl04bOT43gL+bw9zuKF3vY7GJctgISwcmT2ndg6Dqme4mFQgQDEfj8Vf31+xLVCzlkb6uQoZqcrMoeoYs6i2wSkq6KuhhZRJhtIORLN6Li7bffzvMMs9YAlilTpuDLX/6ysq5+/fph06ZN2LVrV8G6d999tyDa6lNbWwvgaNS1b9++ueXNzc25bWpra3HgwAG0tLTkRYebm5tx/vnn58qYtD1t2jR8+9vfxs6dO9GjRw+88cYbmDFjBvr375+rh48ANzc3AyiMXpcKFBlOihTMnApcDReilEWH+WuUtD02FZAO3q8mwJV9w2U0Ly3iM+5cxWnZb1eE2Z+iiQ6boHrBg09IIWzV1zARbYsJy6HRpUCxyR7BR4V5b42BVxgwFMKyfsue7mmOgzTRvXv3vI9MDPfq1Qtnnnmm8lNVVYVhw4Yhm83ihRdeyG37/PPPI5vN5kQrT//+/VFbW4uVK1fmlh04cACrV6/ObTNkyBB07Ngxr8zOnTuxZcuWXBmbtisqKnJp3H7961+jvr4e55xzTq6eZ599FgeYG5gVK1agrq4O/fr1MxnWooPEcJKk4CShnOQGGPdRJIhFJ2F2mXBCXYKCmN2WjRS7IsmXZiTddqkS9vhI7diYdExlbOZSejmbGKdCd5CrrBFJelp57wJvj/DLsLDehhCp1ApeqsEWZvtjg0QIpzXzj2sGDBiASy+9FJMmTcK6deuwbt06TJo0CWPHjs3LJHHmmWdiyZIlAI4K08bGRsyaNQtLlizBli1bcN1116Fz586YOHEiACCTyeD666/HrbfeimeeeQYvv/wyvvrVr2Lw4MG45JJLrNr+4Q9/iM2bN+OVV17BD37wA8yZMwc/+clPcjaJiRMnorKyEtdddx22bNmCJUuWYNasWZg2bRrZJIjg+BcC4YXT0bNSl4/3je0SnNfCtA/sZsJxMXl0yVomRJ4Pi/7o8Pvnanz9rsbxiDwtYiu1lgALwo5llGIgku85yJfm2BssPW+a9EFlnZDlFhMtN7FhuIKPBKvsETJBzHuINeSlUAsqhFXeC7g59g8e+7jCZV08ixYtwi233JLL/DBu3Dg88MADeWW2bt2KbDab+3v69OnYt28fJk+ejJaWFgwdOhQrVqxAt27dcmXuu+8+dOjQARMmTMC+fftw8cUXY8GCBXleX5O2//jHP+Kee+5BW1sbPvGJT+CJJ57A5z73udz6TCaDlStX4uabb8a5556LHj16YNq0aZg2bZq7QUoZlGc4Qvz8iC0tx/MYSk/sQZSCwYUnaL5bbe5hycZ8H1Tts20KX/dpm3xVcwEwOSHrLrxRCRoXQjEtwldHlKI4yhsNk9zCKmzyDtti891bi0vT5+wMrn8noSLwtvmIRcuiOKBElgj2/6KZbn4QQJRTmI2MMxYJVVBZKoRlfmaZ/YHNYMGt84+F1tZW9OiRCZxneC3c5xkeBvd5honihCLDMRN1hDgofHDVKiLDbGwTjRVGiNlx0EWI+RO0JELsEtdRYp9iEbIucC1YRWOnmqfkqg3A/HdSdFFhWQOi2bAMJoI/SH/5eq3EseqAE51jRMuiPD/b+oT9/ihyC5sI4RyiiLCob/7fsvzBCiHsN0MQaaU8TDwpw9mF0XG+Xa1/2HBjth+6C5/QQ2x7tTRMAu9StBx3QSY/KapYceFjNtnebydoW7rtVMeMzisbViC4EJbWDRoKYdmcKxei6EjeL9DQjywbLNlkwDgw8QnzA8YLYn/Zsf/LJs3xu5SbMMdHhEVRaVklClwLYS+CD0H4kBhOCOHJOwXhQaUgjqh/whOlakKd6aNNAVFE8UgUhyOIWA0qbm3bMi0nEme64ygJIQy4z2oh2tckooBG4y778k1fxGFz4KjKqyYB80KUtyOw3mBBTmGTruVljvDb1M22U8FFhSkiTBQbZJNIkECTQ3g0k9iCPN1Tug1UFUrsEiZ98Df1t8mzTIgeW4oe1xlMquP75pKoLBTlRJz3g3xbqqxRaSJN/QoyTyGO/rP9Mral8ecZ1YQ6wNz7wbcl8ubapFFT5BTWzfPL8wn77YqEsOitHPw+ydYxkBAmigW6aqeNNF3pjmGVbi2gXYLbtLAt0es9dRFixZk4yolyFCkuTthgXpQ/Q1WaWR0pPD2kHulv2SRCrMtB7OJg0aVRY9vz/xVkj5Dtp9InLHrDnc43rGnA74dsDh5BpBESwzGguvBFYZdwIcSi8A/bbCpsT3ShMhHEAT3EYSO85CsmfHTvWjAhbUJY9vuQ9TPqmwwVUvuEqSB25SEO8pY5tn0+r7Pm5RrSVy3LhLANFmPiQghH9TpmggBIDMeGtSB2VTmCX4BC+YcFfbLtR96EOsPHcjksPMRxiFUSxuVJWAGcZlTHMh9lT4uQDyyI/WWyl4zYYJo9QuILVr1yWYVQCIte+MEftCYpLDVRYYJIO+QZTgnGL7qImcD+YWbjIP5hv2zeuIg8xKoLgqGHGJD7iJ34ugVtsfUTxUtcP9G0iEmeqPz3JhikPRci/E2beIh5ZOcekxtxUed12RsU9ghdPnepEGbbFaX94CfvqfongewRRDFAV+IYsb5w2lwBNWnWwlxMhenPLLH1D7PtGlkmZI/5DC0TfB9ZorzYi3IQEOmDDZi5sDyUErbHbJhj3mTsTcpYRYhtI8Gy8iIvrioqzPbL0h7BbpobX5kQZgfLVLkKXr5BUWGimCExHDNJ2iVcEdQuEUToFQhiXa7QEGnXgGQEsagPqg9BhCGqTCr8MWpz/Joc10FOb07na/A2CVPbhCiFmckkNZU9wlAIF/RBlU5N9uINWaUxR4UPRfAhCB8SwwlgdVIPEdK1jQ6r5lAk6R+WCmKbiS6WEWLRxTktlgYSyETasT0mo8zJHEgQBznv6ixboo6JXhGn8wkbiFDphDm/L7JXPpvsmyIqTBDFCh3BKSN0dgmNXUIGP6fDoGo7jm1sYpcQZfgxFsQq+B0LsENpPemTOCZsSOtxHBWBnsiJZgHqZgXy5yOTqDC/LWeFKIhAG0SFAYlP2P+b/Zftq+k5Ma439BFETJTXGTFFRGqXUGCqq2UBA6l/2CKRsEqsqZ4eBhLEuseRAT3EaRcTJI7dQR7IZHE1/rpzbqDfdNAoskoUs/VK3jIXeMIcL4j9vogq5PdLsp+qt82RZiaKhXRf0YnjRBwdtpkYHUoQc30y2SSQIFZ54BxEiPP6UASQOC5uohDkaTl+09IPINhrtQGoT2QmVgRVNNgijVpeN3ghvHevPK2aLlot+jvmFCeUZ5iIkvSchcqQpCbT2Z7DnApiwYQ6kzkZ1oJY562zyEOsohiixCJIHBcfpSyIZbje56D1WYtklUdY1AkTnzAXFeabEPqEedG7f3++KDaZOOf3g/1bgGxsXaRmJoioSfeZsMwpONk6nExni04Q5xHRhDo+NzxgOKmO35itUNEnH5OxS7uo0EGZK4qDUhPESbSdmrR4fPSXFcACm4RICPOntDwh7Bfwo8Ki3MJ8f1RRaM3EubTmwiYIE4r7Cl6OOLJLBDlxqYKp2ouaxJog6pMugmAtiFX9MMwyUQ6CWAQJ5PRd5EtFECf9e5GNoyyntOj0oNwH3rMrgz1vaYSwUfIHlU9Y9LY5WZ9Yoe6jOLem4gaDIAJCDy5Knf37ja/muhcuAch7qRtfvfBtcXzlgo1Fb7Ey6Qvbfq5t3Vvq/IsBv0y2U5b4+1HKojHNaefKBf+n5VKoC9/MFhFpOV6C5i6WjrvJScs/R/EimLdKCISwqspcVNjvpMwmwW8oqoz3NRimc4tSEB+G29zAhx3WRRQ/6TgjlTiyE6fJhSx0qjWOsNFhQD3/LI4JdXwf4kq7ZhMdTcvFPi7KPXqcFK7FR9THra3HPm1ReZ7csS57mQUPH21VCOEjVZ2NhHAevBdYF5Xm+8SfM9ll/r+UW5goQehojglVakodcU6mM9WPgQSxqHLmUR0viE3sEvwTP6EgNo1wOMoy4VOsk+tcQOI4Plx7YKM6bsvut6DL0iATwl274khVZ6G7QVSlMCrM/suLYlGfJBP2ZELYBJO0zASRFsrs7JQOgpwYQk+mE2RxkOFCECs3UoQ5bAUx3w+hIOYr8i0Uon4Yh2DMKTsRIICEcfREESV2ceyGrSduEaUTn8oNRchy+PLCs6rqqBDmJsqpTlMF50d+gpwscwXfvt8nQyEs+z6jFL6HI/gQhA9dpYsZR4I4zIlLdv7XRof5s3zIK3kgQSzqh6gyAa5fN1tOFKMwDvIbEUXGoo6SRZEpIYiYtcrRa0AcglgmPK1SgrE+XR+/8/zkOCYS7C8XCWHVBL4cvEfYr4D9l+0Pn8mia1e5EOYOWDqXEaUITaArIqKc4CKb72YCO//MaEIdW7lgY39CnWguHNumX5W8H8cms8naVu0kX5m/Dwz+vpleHMphcp0ttmOYdmxEG1/WpYgNMQdUStLfUVTjFfphkImpl/fjaibKqQK7fLXa84l/nuOtYyprhMQWkfQxQBBRQUd2sROhXcIGWTDV6OQp2Fhnl+ADu3xaTbYfR9AuP7ohixCr+sVWGBK6oBRSDJFi1U/NRbTXdcS41FNduYi0BxHCflt5Pl2/MtvJasf+/+H+dnmpgNkosLFVgz0Jmkzgi1EIF8Pvmyhv6KpcZDjJLmFol7B6PAgDQayaTBdAEKvat8pFzE+yk1XKVsgQ5CRfzpPrVKT9gskLrygsDy6tFKUuiFlsx8zmyRdP3nGqq4i1JAAFE+U+3N8uzxLBvyBOVWVBH3QbyISwb9UQ2CKA4ELYpQj2IvgQhA9djYsQqxOTwRnfpSBmiVoQi/oWWBCzG6k8xGyFDiBBXEjaBTEQ3+x4mo1vj8k42USE2dNEXt2yqDBbuciby02UY4Uw/4SLf+olxDQazQpeph85vzDjWzZ+7bQEigQTxQZdiUsF2RVA5ouNKGRkpBtVVyuBzyG2CLH/t05lsxUeI8yJn6LEhdCFVAyJYj1RRcPz7BE+Og+DJFODTAhbZa/g+6LKWsGKYFb8cuc6F1YI+u0SxQhdgYsU65OWRhBHZZdgmxH2WVc5J4j5zUzcDYEixLpK2QqPEfYiQII4H7qoyiFRHBxTsSmyz+a9ZEPkC+Ojwv7GEiG8d2++LcKvis8cIUsNbLQDEp8yvy5MBJh+q0SxQ1ffIsY497BqklgE6dZETUmFKNs/vgJBhFgkAlSCmH/saPxyDtmOxCCISRQfp1QvsoUPogs/JpAojgaRNUIohPnzgSZl2REcnyjHe4Nt0uIV+IVF6dNUf3Pr2HOOST+SEMCHIvgQhE+sV91nn30Wl19+Oerq6lBRUYHf//73ees9z8PMmTNRV1eH6upqjBw5Eq+88kpemba2NkydOhW9evVCly5dMG7cOGzfvj2vTEtLCxoaGpDJZJDJZNDQ0IDdu3fnlXnrrbdw+eWXo0uXLujVqxduueUWHDhwIK/M5s2bMWLECFRXV+Okk07C3XffDc9Lue1eJ4hFGAjiIN5hbQ5imwYEEWKdf5jthygXfU54yjJNyCo2EMQkit1RSoLY5tgIexyVo1AOa5Hg74mthLC/AX8+OebP9TNG8LYItt/sMv70KHQ2qHZY1BdRhFiymYxS+j0ShE+sV9sPPvgAn/jEJ/DAAw8I18+dOxfz58/HAw88gPXr16O2thajRo3Cnj17cmUaGxuxZMkSLF68GM899xz27t2LsWPH4vDh4++TmThxIjZu3Ijly5dj+fLl2LhxIxoaGnLrDx8+jMsuuwwffPABnnvuOSxevBiPPfYYbr311lyZ1tZWjBo1CnV1dVi/fj3uv/9+zJs3D/Pnz49gZILjJLuEIWEFsfWEOr8CSYTY38TW5eDENmGYZYKsE4RP0GPBZDt+ol25iWDATAgbZ2eARAjrKmIrY6LBfMYImRAW7Y/odFRVJTguTPoUEhLCRKlS4SUU6qyoqMCSJUswfvx4AEejwnV1dWhsbMTtt98O4GgUuKamBvfeey9uvPFGZLNZ9O7dGwsXLsTVV18NANixYwfq6+uxbNkyjBkzBq+99hoGDhyIdevWYejQoQCAdevWYdiwYXj99ddxxhln4I9//CPGjh2Lt99+G3V1dQCAxYsX47rrrkNzczO6d++Ohx56CDNmzMCuXbtQWVkJAJgzZw7uv/9+bN++HRUVFdp9bG1tRSaTQUtLFt27d3c9hHkUnKREVwbRmypYmCso/9iMr8IW2YzsgguN6WSUY30UbWaS6UhQnV1f+Mp8BCrElaAt9wtRMd8YuPjuinn/48BWDBucBtURYb5B/ma6QwccqeosnSinOs3wdmOg8CVx7XAEBaFmUYXsCU+SS9jk2Ap7DLe2tiLToweyWbvroX8dXQqgS6ge5PMBgMsB6/4QpUlqzq7btm1DU1MTRo8enVtWWVmJESNGYM2aNQCADRs24ODBg3ll6urqMGjQoFyZtWvXIpPJ5IQwAJx33nnIZDJ5ZQYNGpQTwgAwZswYtLW1YcOGDbkyI0aMyAlhv8yOHTvwxhtvWO1bIiJGFBpivcMin1lEdgm/SUEzxzGJymoixEH7pIwQm6Su0Oycq++/3K0T5X4zUO77r8LGa6v6WbM3xrmXaqiEMJ+tgYsKBxHCsn6zfSx44YduwxBR4bRMkDsSwYcgfFJzZW1qagIA1NTU5C2vqanJrWtqakKnTp3Qo0cPZZk+ffoU1N+nT5+8Mnw7PXr0QKdOnZRl/L/9MjxtbW1obW3N+/hEfTIxFkmG3lwgHkGc129HglinYa0m1un6w/fL71sEPmKfchbFabgoE+nCRSo11loifUIkiwizMPl6eWsEj8qy4fdJZPMtqCDMAEiy9fjQ740oF1J3ReXtB57naS0JfBlReRdlfEeJrD+zZ8/OTdrLZDKor6/PWx/7iSWocdDglc2RCWKTBgw9xDZBXeuJdap++UQYJQbKVxTTBZrwcSWEAe6G1UYICzzCRyD2CPOOBhvy7BE2tjIRgu2CZjQhiFIgNVfS2tpaAIVR1+bm5lxEtra2FgcOHEBLS4uyzK5duwrqf/fdd/PK8O20tLTg4MGDyjLNzc0ACqPXPjNmzEA2m8193n777YIyUZ5gjCfTsSdJi7Oyq0k5SkFs2ohCEAftT5wT61xSjqK4mC7UxdTXYsEmDZkMaTTYVAgrTji+4LUVwqqocK6fQf0Wsv6W0zu7Y8IkoxWPq2xa99xzD84//3x07twZJ5xwgrAtk2xaf/rTn3DeeeehW7du6N27N774xS9i27Zt1mNRLKTmCtq/f3/U1tZi5cqVuWUHDhzA6tWrcf755wMAhgwZgo4dO+aV2blzJ7Zs2ZIrM2zYMGSzWbzwwgu5Ms8//zyy2WxemS1btmDnzp25MitWrEBlZSWGDBmSK/Pss8/mHSArVqxAXV0d+vXrJ9yHyspKdO/ePe8jIpWCOEb/sN8k35RWfPL9NLRM2PSn2HzELOUmioslelVO30kcuIwGAxJbBD+vwmCyHP9CDVHWCFPNapgF7Xh/2X6z/eL/L6MIBHExeYZ1Ga1EuMqmdeDAAXzpS1/CN7/5TWE7Jtm0/vGPf+CKK67ARRddhI0bN+JPf/oT3nvvPVx55ZUhRya9xJpNYu/evfjb3/4GAPjkJz+J+fPn47Of/Sx69uyJk08+Gffeey9mz56NX/ziFzjttNMwa9Ys/OUvf8HWrVvRrVs3AMA3v/lNPPnkk1iwYAF69uyJ2267Df/85z+xYcMGtG/fHgDwuc99Djt27MDDDz8MALjhhhtwyimnYOnSpQCOHgxnn302ampq8MMf/hDvv/8+rrvuOowfPx73338/gKMzTM844wxcdNFF+M53voP//d//xXXXXYc777wz76BR4c+Czba0FAjjqC+QVtklWBTZEVxnmOCbC5zVwSDLhE0fRblGha89dZBtIsrjoBiEokvSLDpd+sXLmTCajReTyt+0zo8ryMqgesWyqauBv+dm35wsjArrMkiw/xcFGQyy4bgibDaJJXCfTeILcJ9NwiSjFY+rbFosCxYsQGNjY0FE2iSb1u9+9ztcc801aGtrQ7t2R885S5cuxRVXXIG2tjZ07NjR2XilhVjPrC+++CI++clP4pOf/CQAYNq0afjkJz+JO++8EwAwffp0NDY2YvLkyTj33HPxzjvvYMWKFTkhDAD33Xcfxo8fjwkTJmD48OHo3Lkzli5dmhPCALBo0SIMHjwYo0ePxujRo3HWWWdh4cKFufXt27fHU089haqqKgwfPhwTJkzA+PHjMW/evFyZTCaDlStXYvv27Tj33HMxefJkTJs2DdOmTXMyFqnwD1u+UMK1f1iGcYRYcuGyiRDLrnV8RCcv6urQNhFldLNcI8VpvAlw8T2U03fJE9YWIRXCNrYIvyL+zRcRCWH/b6kQ9gnqG45RCJcTJhmteFxl0zLtny6b1rnnnov27dvjF7/4BQ4fPoxsNouFCxdi9OjRJSmEAcCxjFEzcuRI5RvcKioqMHPmTMycOVNapqqqCvfff38ugiuiZ8+eePTRR5V9Ofnkk/Hkk08qywwePBjPPvusskwY2uFIZBe4I2hXKAqqqsyTcbInyv37cydKv8+mVfnV+Yh0rb+caeZ4//2GOnQQn/T9vrIXsKqqY4K4Xd6mfBUqIez3yd/O75uwX/xOqipkG2YuPlEfC2w75YBqP8tZVBYbLnzBLEbRYFnDBtaIoEKY/T9vj8gTwqJ+qyqU9Z3IwWZ9Ao6KUDalqi0mGa1E2wDibFpvvvlmrowum5Zp/3TZtPr164cVK1bgS1/6Em688UYcPnwYw4YNw7Jly4zbKTboqpAwsfuHeWQeWAMLgKl/mL12iOzJbHNGOYhlitr/v2GEWPemLlGgSJltwsRLzBJjlNin3KLFIpKaMR9m3MvxO0uFEJa90thACOvg331h5BPm+8tHGlJoj3DFYQCHHH58l219fX1eFqjZs2cL2585cyYqKiqUnxdffBGAWbYqES6yaZmg619TUxO+8Y1v4Nprr8X69euxevVqdOrUCVdddZUyoFnM0G1iuSEL6coirz6C6DBfnaoKXfWAIgrLNiQL80qi2X6E2F/EFtMlfqiqElvxpFFikx0V9dNv7BhRRol9/PrLJVKsgh0DGvfkCSqCZXpOKIIB84iwj6E1wqYqkTWC/b+xT5gXt6ZCWDJoqt9BqR27b7/9dp5nWBYVnjJlCr785S8r6+rXrx82bdqkzWjFw2bT6tu3b265LJsWGx1ubm7OJQcwoba2Fs8//3zeMj6b1n/8x3+ge/fumDt3bq7Mo48+ivr6ejz//PM477zzjNsrFsov3JBCUpFdQkSEGSZkelGazUGELELMhXL9vvJWPx2q66YyJZxttgm+McSXKYEixfnEFTG2GfNy+X7C+IK1Qpj3BgcVwpqIsF9lJEKYxcR3YSmE2eclKkrteOQzQMnEcK9evXDmmWcqP1VVVUYZrXhcZdMywSSb1ocffpg3DwtA7u8jR0rrZsintI7qIqZcBbEuGA1oJtSpBDGjXEWC2DbjkLVtQgc/AAI1EFcUxvRCWE7EZVlRjXm5fB+uM3sJX6ABSM8PwsdCBh5hHpEQFgVwA0WEZY3aWiME/rBiOM4OR/CJggEDBuDSSy/FpEmTsG7dOqxbtw6TJk3C2LFj8zJJnHnmmViyZAmAo7aFxsZGzJo1C0uWLMGWLVtw3XXXoXPnzpg4cSKAo5P6r7/+etx666145pln8PLLL+OrX/0qBg8ejEsuuSRX71tvvYWNGzfirbfewuHDh7Fx40Zs3LgRe/fuBQCMHj0aAwcORENDA15++WU888wzuO222zBp0qRchPyyyy7D+vXrcffdd+N///d/8dJLL+Ff/uVfcMopp+QSIJQaZJMoE4QT6nh0k9R8AlomZPYEvnrRpDrlxDWVZYLxXrQ7diETOUUOHZI7SFgnA99c6Ml1ogFgZxLiuCiL64JFj/KPE4dlBSgOMRIFLjNE+GjTIKqiwXylnLGXF8ImPmFZMFYrhHn4u3FTa4SkA+V6zMXBokWLcMstt+QyP4wbNw4PPPBAXpmtW7cim83m/p4+fTr27duHyZMno6WlBUOHDhVm0+rQoQMmTJiAffv24eKLL8aCBQvyorh33nknfvnLX+b+9sXrqlWrMHLkyFw2rcmTJ2P48OGorq7GxIkT87JpXXTRRfjv//5vzJ07F3PnzkXnzp0xbNgwLF++HNXV1W4HKyXEmme43FDlGZYRe95Z0/zDgHLShd9vVVTEtnp2mTYHsUx5SypS5SJWXaBlEXDjfqpQzQLniPtCVu7CmISDW1xPjgMMvMH8/0UdkQlJgTXC35z/W9dvLtAsjwj7/TXxCccshIOcD8LmGf4NgM7Wrcr5EMDVcJ9nmChO6AxfRgR6Ox2LgWVCFFgJWj27TGuZENkleG+gINOEyDahcpDorIfKfpp6iTXWCb//cVLuYrBYbwb4zBlJZdLwCesL5p/wF+yL6gequyENKIRt+q8SwrlKfVTmYxshzAyayJbjD5noQxDlQnlf4VJIIhN3bNLqBBDEYQksiNkKBLNb2LG2EcR+X0SRZfb6FdhLzFbKNsiRhCAuZ19x2gVxELEblyiOQlwp37KpskWwH1HqNP/fY8t1QjjIEyVWCBfsD38iUT31MhHCUItgFWkSxMXiGSaKk/K8qsWMrXhIhSBWiTYDoaabUKfTrbLJ04EFMVsJMyFFFyE2EcVsv7nq1X3VYTjBLokoXzmL4jSR5rfu+biwRPC/wwJLRJBosOycx4Rqwwph9tzCe4TZMtI3zNkKYc7j7O8DC0V9CaIQuprFRFEKhwCC2CbDhIlrQIQzQXyssqCZJvj+8NXzUeJcI6KwkIqUWieA8osWp0V0pl0AA+4tEYAgS4RIBPt/izojqpgVkUzGCFMhrNoHv3r/X5FVwlgIs8iEMNc4+7skEUwQcsrjCpYSbERDKqLDQKoEsWiiirEglvkajq3zL7J8FMev2tY2IYoS533/Oi+xzEBtGClOgnISxUni+vt1/Z25EME8Bce1yhIhOi/JKpb4g/3NgghhletCK4RF+yTrs+ZkxQthV6T9JowggkBXrgRIi2CIRBAfI2wOYlUTgQQxv1+sH0Mwsc7fXFWFCI3mzhfFKi+xbsyLQBSn5TgvNVyOa1q+IysRbBoNZitn4SPBAn+wKkuEqhnRuS5vghw0QlinWnkhzC87hish7Hr+RxiORPAhCJ90nAnLEJOLUFxvICvAVhCzCCbU8VXa6D6fSAQxW5HAR+xvLrDhaZFNrtP22eZuQfYomCHpx+kkjKMh7HhG8Z3YRoR1VggrEWya1oE9Lwi8taImTFwLIteF/3+RZ7gghZpJQwZCmP1eZd+HzXDxUFSYKFXoCpUgRSeIZYgilcdQCWLRXBCbZkJNqpMZfY+t4yfWiZ5E2k6u4wPRxlFiFaIZh5qJdhQxDkcxC4I0iWAe4bGpEsH+MhN4hcp0hPUH883InvKommGb01oj/EpVE+b4k48iIuwj+z5s7iGUkxYJosQo7qtSCZAWYRA6wwRgLYh5bOaT8f9nxWVeQzpBLFKsx9axPmK/ClubB5vFie1v4Cix6gpmONEuDRSzME5Ln03HL8qxNjm82JtH2e9fGAXWRYJNhLDsrpvz1bJuBRdC2G9CKoTZfTEJPYsq5PaD3ReeMNFggigHAjg4ibhph3heCSukqir/7Nqhg/qseujQ8RO1P3EF5q9t1lUvaqawScFrkf1CfuX+VZm/cvBisqrqmCBul6uKLcoPjwmSeYeoqjr2GmS2b+xOAnaeEnZQjjaQK+KLjzQIO1kfKBJlRpLfoer41z05EX6/OnOuqQCW/S2ZXCa7STVBprWVQljnd+b3QSOE2X3hCSKC0xgVdu3zTX6PiDRBYjgFHEE77ckmDkHs11/QF1tBzBJQEAP6JowFsb+QF8R+R2QVsxPrqqpyYpWvSqar2X3o0KFQk/Ld0Ypi26uahSgG0iGMWZLoj+x3mLaxSQrBIWQ9yUr5sgwfWzuE7CZRMblM97RG1SR7fy1qSiiE2X0xVd2yp3OG1gid/dikyTQIYYKIGjrDp4S0+IcBwwu/TYaJAJPqTJF54ISpzFSWCX8jTfo1tiqTbBMiYc8+BWb77GSCnSyaJusAQ9Ke4jSQ76wuXiuHa8I6brST4oBCn4KpHUL0m5DMelUJYdHP37RZJiGFfLKc6YQ5w/3RWSNUkGWCIPKhyHCKSEuEWIjoeagqWsmHTSK2TPjl2ab9JnPj6jcmihCz+yYKfx1b7kdrg9gmRE4HRVO5dgCNdUL1f76Dhh1I1JpDpIawlnOtFQJwZ4fgl1lEg226o7AgF2hWqTXCRAiLJtSGjAjroKgwUa6QGE4ZJoI4sX6kWBDzzVkLYtG++RsHsE2oXCUyTeo3xXfhaPc01gmZt0TUmKEoTrOFgoiHoHlmExXBgNJPq/IH29gKQgthFZoJwEEjwnzfRU36pO3lLoeOfVxBwXGCha5wRUiidgmVF0CE6BH9MWzyEIfNNAFwtgNTnwPvZ+BsE6ZvrTNJDOEk64RssESPnEXLJM/Dy90+QZghtULIsrbIlvGIfq/sch/mhyfKtxtECMu64zfHd8M4Iszf9YsqFTSmE5VB7dUsaRPCBBE1dISmkNT7h20FMRBaENtgLIj9hiT+wjxEF3M/SixIvyaqTqdT2aZ4/c16GqW5iUXPb0WQr5g4RlgbBGDpB2Yx9QPLBDB/56nw0qq8+ewyHXyzoq5EEhGOMHME22wUkBAmigGySaSUtNglAEeWCZ6ELBNH29CkXpOlhxB5GQLYJkyxtk6wK3mLisw+4SOyWfjL2M6TjaLocSWAjSrWHXciZDdyEiuED38Mimy5NrpU1rxIr/rLjISwyKYkq5hZ7uIVy3HbI1yeFyi1GhElJIaLmDgnOVkJYkAefXTgIZZVr2qO/f/RZgUeXH4DlY+Y74Rgch2LaP4b208ZrJVXK4p5gc82oBLGojJsOZG3mN0pFF5ASRynF6c+YMDcC6x73GPiBQaMRTDfFZkQtrEVaIWwSaWqfZIIYRbdBN0gzfqkVQgTRNSQGE4xacsuYSyIVQQUxP6mPqZRYl7f+ttKJ9axG6kEsd9Jg8l1bF9EQWeRBuWXyZrMXyeJFJuG2GURK9HdCL8TgmwUPnRRNMdF1NYn7KNvY/Hro5sQJ1ofUAADahEsa9pmfGXTCYwiwv6/ugZlFXPrwv6GwtjOgkC/eaLYIDGccopWEKvUagBBLKrSRhD75dnmpYKYr1gm+AUZGPzlQVOw8b5Glnyrh6o7ikixaDBknWAbFq0jYRwYl6LXNaEiwKrlPCIvMIuBANZ1SzJVoWCdqmuiDGdOhLCoQY0QDhoVFhFVVJh+40QxQmK4CEiTfxiIRxD77fCR1Ch8xFJBzG4o8xGzfQ8QJTa9XppGinlvtN+Hgg35AfH/FiETwCSMAxG1EA4SEbaKApvcQIlwGAX2CSqE/aZV931sV2RaVSqETTCwRhSbTzjK3/RhwGk6tMMO6yKKHxLDMZAmIeuKqAUxEM/EOrbZ3OuoRRPr/A1sJtcdU6ZslJjfVCT2RX1m/xUNmWj/pZFivoBJtJjvTBArxdHO5P4r+l0kIZCDigxT0elK/Lqc8e/EAqFaDphPhAOkOxdEBPN/q8Zf1kUT94JSCKtuOtlK+MoZTH4LQYafIIhC6OcSE2y0Mwi66HDY+oOQNkHsV6dDpP3YSOsRtMufWMf2M8hsNyZKfHS1eoIdD9+sQG8X1CPu1vFjI7CFgu+ESr2zneQ7I+lsMUWOo4zwxiJ8fUyjvzbrRQS0QfiY6vQgXWNxKoTZjXWVM+ujskbwXQCKIypMEFFDYjhmwvh70+YfBiIUxH49MBfEtljbJnQT69j+y9I/VFXhaF5i8wl2un0Aju+HWfYJLgrurwwjinls7RR+xxjKMUOFKxGsPE8EnQBniqUXOIgABsy6a3vDIvMH++ty42oqhGWEFMJBISFMEGJIDCdAmChu0QtiQH4VExljI0y9xjfLX8/yPLcyQcxuwPfd76zES+y3YTLBTif8VfcTKoFg5Su2EUYmPmN+nUXUGHB3AVZF013WGSXOxK9quQpHAtj2JlC1zOY7FAVs/f8XpE4LKoRV1giBEFah+4pMLBLFJoQpzzARJSSGEySoaC1qQQzIlV0IQexvrmtChCgQWhAllglfkyix32HBctkEO3YT1X6K9oMtG8hCIYsWm0y203WM7ZxqnWg8NZFjHxfHfdxi1hQjAROH+PVRiWADARzkpsNVANvH2BYBuJ8sx6zTpYrzcWWPcAFFhIlSgcRwwkQpWlMviAGx4c9CEPur/SqDCmK+6UC2CbYzPArrRLtjO2Mriv1+yvbFR2ShEHXveHuOslDICCKO+T4c72zBIpVgLIaLt1XEztZHoFpuSggBHDbibiqETYO0LIGFcAQR4TBCOM7sEQRRKpAYTgFBRKtpurVUC2IZBoLYb4uv3rUg9ps+2o7ANsFvbBolZoW0QdYJfzPRcpt9EnVD3k1BtJjvQFhhLNpGV59OIAPSMJipCHD5m3EiPHRfehBftw0WNgjXAtjHxW4AhYeGzB8MhBTCASbLqaqkCXMEER0khlNC2QrigBFiwNw2EUYQs39LbRMOo8QArERxGB0qEsXsWImixWz/CgqJvjPX4lhVp4lI9tE8M449cmZ7sxhmvQ6Z4TQGC4QM2yA3f7qRfd2hhLAKmQlZ06GwY6bzChdzRJg8w0SUkBguctL2Qg4f6wix6SQtQ0HsV2mTGIHFxEcMQO8lFq3j98OBKGb7ylep2nd/n/g6Rd09XsZQGKs6ZYMuOqyrX1TW9TR914TxZAdFNE4xWiBs0e226n5HJILZbYyEsMlTCUVEGHCbQs1Cc4eGosJEqUFiOEWU0oQ6QCGIAbUoZi88KiETk4+Y345PUab0EvsFdRkn2Ma49aaimF3HD6Nu//xtggrjvBd6yELWQbJSyFDVETY6bTIV35Yw+xxkW+6mUUlAD7DokA7qaVXhSuuL2uejwUBxCmFdV4DijgoTRNSQGE4ZZSGIAX2UmL8AyURxDD5ivxuiKPHRthxEiX1C2Cd4y3LQaLi/rc5bzPaBjRajqnP+d24SMnSpeMKE0lz3RUWYdkR3LawANg2LipZZCmAgnA0pCEGGzjgaDBSdEFZYuAFo3jhoGT6mqDBRipAYTiGllGECcCCIVYTwEbN/myCKEhtnnPArsJkFx0eYA0aKg2g+tts6rQ4Ae/fy132JlULUYZU6ilKYRhExjktIiwSMamaYarml/SHMjWUSUWGTwLdSCJsQUAjLcDmmRm8gNBTESQrhQ8c+LusjCB8Swyklygl1SRBYEAOhfcR+Eb9KUz+tjEBRYlNRLFO2AUQxu7ls7qKJhUI1L83ESgG0y38MbSKO2U6KlidB0u2b4GDym+rr4NENSdKOE1k0GFD4g/lGVFFh2Q2IoRAOajXhm5N1x+h6EJWxmCCKCBLDKSYqQRzmDXhhCCSIAbMrqkAQ+23yTYgEsAsvsdEEO1M/Mb9fos4FEMXcpkb7rZqXJvMY88Fe6QQ81mvsF9TNBFR1qhgweSpgI1B0tgdBfarH9DbHQxRi17QfKkxt0EohLLErCStiG0nIGsHjWgiTPYIoZejoLkFMT1pJRJGlfTM5KR86dPwjYv/+gqsMu49VVeqMR0Eu7HwA6dCh/G7k9peN8LIfUcd4/ApZQc1+jq1rt/9DtMMRdK46kqtS1BzbnaD7zXfDpJv+Z+/e4+U+3N8OR8B8qjofH4+qKqBr18Kd0H3SDrt/sg+PbF9FX3LXrnl1HanqnDfGH+5vp/yufGTfnylJfBWiQyByIcw2GpM1QoSRrmW/+LRnVCliWlpa0NDQgEwmg0wmg4aGBuzevVu5jed5mDlzJurq6lBdXY2RI0filVdeySvT1taGqVOnolevXujSpQvGjRuH7du355W55557cP7556Nz58444YQTCtr5f//v/+Gaa65BfX09qqurMWDAAPz4xz8W9mfevHk4/fTTUVlZifr6esyaNct6LIqFIrhylDdRTqgLU38YIo0QA0rbBN+MK9sEv63WOsHvi6mfWDerzXKynag7QS7KtkE0FpXfGBDYKkQNsB3RHSdpjCqbHNuiMoKxCWJ7cGmf1u2KKPtJkP7wT2V0fYksIqxpzLU1gm9K1CXh+dXmR8mRhqhwMeUZnjhxIrZv347ly5cDAG644QY0NDRg6dKl0m3mzp2L+fPnY8GCBTj99NPxb//2bxg1ahS2bt2Kbt26AQAaGxuxdOlSLF68GCeeeCJuvfVWjB07Fhs2bED79u0BAAcOHMCXvvQlDBs2DD/72c8K2tmwYQN69+6NRx99FPX19VizZg1uuOEGtG/fHlOmTMmV+9a3voUVK1Zg3rx5GDx4MLLZLN577z2Xw5QqKjzP85LuRKnS2tqKTCaDbEsLunfvHqquoCejJN64ZYqybzYTzFSEeDwcdsY6+7dR6iZRo7aP1PkI1bF1ov3WTZR3pRlNNJwuSi+6bitnyKsoNjEsES1BRVYUk9JkywD9Qw+eKPqnnCjHNqpqXDTRLGaPMN8U1xwAQyEs2lCBi+tDa2srevTIIJvNWl0P/evofQCqQ/fiOPsAfBuw7o+O1157DQMHDsS6deswdOhQAMC6deswbNgwvP766zjjjDMKtvE8D3V1dWhsbMTtt98O4GgUuKamBvfeey9uvPFGZLNZ9O7dGwsXLsTVV18NANixYwfq6+uxbNkyjBkzJq/OBQsWoLGxURuRBoCbb74Zr732Gv785z/n9uGss87Cli1bhP0tRSgyHAMuTiRlFSEG9FFiILCXOKqcxIBJlNjAT8xWZDIOqmjxsbBrO389zCfcubLo8tvyXmO2XXYbtn0+enyUduLrOZ/ajSdNj4c1gkT2m4xT+LKYWItMNVYcQlh4E8o2rroR5SEhHBjfpJNGWltb8/6urKxEZWVl4PrWrl2LTCaTE8IAcN555yGTyWDNmjVCcblt2zY0NTVh9OjRef0YMWIE1qxZgxtvvBEbNmzAwYMH88rU1dVh0KBBWLNmTYEYtiGbzaJnz565v5cuXYpTTz0VTz75JC699FJ4nodLLrkEc+fOzStXSpAYjomcAApxQiBBHJAQk+uC2Cb88qK6eFFc8LIK0cYmz5XZdZYWClG1pnPagmCapUIUqefFgFgkA1KhDABVnZlSKfLNMwQJbkcZ8A4SuVcRhRBW9Sm0EJY1FEII21LMQtgFUdkk6uvr85bfddddmDlzZuB6m5qa0KdPn4Llffr0QVNTk3QbAKipqclbXlNTgzfffDNXplOnTujRo0dBGVm9Jqxduxb/8z//g6eeeiq37B//+AfefPNN/Pa3v8WvfvUrHD58GN/+9rdx1VVX5aLHpQaJ4ZgJK4pJEAdE8IgzzhRs7LZCP7FIFIsq1KUlY5f5ZfkMFr4oZsrwwpgt3rWrOrsUu282iCLGqjaY7hbUIxLEe/eK684n/1iPIsuUzeFrMo5RuzxM/Lc+QcYrFULYRUNpjwiLKFIhHCVvv/12nk1CFhWeOXMmvv/97yvrWr9+PQCgoqKiYJ3necLlLPx6k21Mysh45ZVXcMUVV+DOO+/EqFGjcsuPHDmCtrY2/OpXv8Lpp58OAPjZz36GIUOGYOvWrSVpnSAxnBBhcgJHLYiTQCuIgfAXMl4kQj+5DggnilXbGoli3m9h07guUsyUMbVRMMXyqhDNB7RFt43IXqHql6hunbOGFdCqfojqDorN9mF+AjodZOIDNtFS7O846iwKxiJRNUHAtAMJCGGTG5AozunlIoQBoHv37kae4SlTpuDLX/6ysky/fv2wadMm7Nq1q2Ddu+++WxD59amtrQVwNPrbt2/f3PLm5ubcNrW1tThw4ABaWlryosPNzc04//zztf3nefXVV3HRRRdh0qRJ+Nd//de8dX379kWHDh1yQhgABgwYAAB46623SAwTbkmrIE4iOgwYRM1dRon9+iC2TbDFZKLYhZ/Y/zuwKLbJQOHDXk3Z+jhh3Lnq+JiYBKvZMkHtJSpUdemEso+LyK/ryGxcFmbR/C8fmc4DLCcvMojOIS73NVA0OOgs2YQiwjyBrRGijSOkWISwDb169UKvXr205YYNG4ZsNosXXngBn/70pwEAzz//PLLZrFS09u/fH7W1tVi5ciU++clPAjiaFWL16tW49957AQBDhgxBx44dsXLlSkyYMAEAsHPnTmzZsgVz58612pdXXnkFF110Ea699lrcc889BeuHDx+OQ4cO4e9//zs++tGPAgD++te/AgBOOeUUq7aKBRLDCZNmQeyXjZtYbBOAkZfYLwa4mWAHyCfZsV3KuzGwEcVsh2Ww63X+4mNlTISxqAuuo6gyVJYLljTNnYsLEwHM/x1UAPuYCuGgx0NsQthwkFLtERZtrCANadREHDr2cVlfFAwYMACXXnopJk2ahIcffhjA0dRqY8eOzYuonnnmmZg9eza+8IUvoKKiAo2NjZg1axZOO+00nHbaaZg1axY6d+6MiRMnAgAymQyuv/563HrrrTjxxBPRs2dP3HbbbRg8eDAuueSSXL1vvfUW3n//fbz11ls4fPgwNm7cCAD42Mc+hq5du+KVV17BZz/7WYwePRrTpk3L+Y3bt2+P3r17AwAuueQSnHPOOfj617+OH/3oRzhy5AhuvvlmjBo1Ki9aXEqQGE4BaRXESZKUIAbsrBNhIqBsHaIo8dG2mbe1mdonbGwlNlaKY/WywpitQuUz5suyRCGQo6jTJHmJ6/Zt2vQR6Z4gFoig54coI6RWfXadJzDtHuGUCOE0X1fiYtGiRbjllltymR/GjRuHBx54IK/M1q1bkc1mc39Pnz4d+/btw+TJk9HS0oKhQ4dixYoVuRzDAHDfffehQ4cOmDBhAvbt24eLL74YCxYsyOUYBoA777wTv/zlL3N/+5HmVatWYeTIkfjtb3+Ld999F4sWLcKiRYty5U455RS88cYbAIB27dph6dKlmDp1Ki688EJ06dIFn/vc5/Dv//7v7gYpZVCe4Qjx8yO2tJjlMQxzEokyD3GSkQJt/1yJ4oC5XF3kJvYxjdQZXfBNZrzZ5LY1TCNlMz4q60UYG4oLgojQqAmQitjK/mCdjk7QaFRC2No7W8TWCKdCWFSBhKiFcGtrKzI9egTOM3wv3OcZvh3u8wwTxUkKT/nlSxLR2jR7iAGD/rn2Eft1HiMu6wRgmn0ihIXC1NSrSgTM1s3kNRPZKfgmTZ0drO4OMlHRBcUkrGX3LaK2pTdVPiF+S0HefGdC7ELYkTXChegvJiFMEMUMieGUEVQQhxGsxSCI/T4IcWmbAKTWCbYvUVsnZPWGslCoTL26zkpuFkRl2MwUJpYKQGyrEGWp8DH1CKu2cYlLwWsbAQ4V/Q36u4lp4phOCCv3h4SwUbuuzutRB3I8uM0zTI/ECRYSwymEBLGYWNKv+QjSsAH63MSAG1GsqodL/pAfLTaZSCeKFotC0iJCRI2BQnHMd8FEIPPdNem2bBvTbYPU6aIOVdRX9LexUPSxHTSuQ6rXm5tUb9qsoGl5NJhvOKwtgms8in1OSgi7gnzCRLFDYjilpFUQJ01stgkfSW5ivy/sqiisE4BaXMssFIChMLaNFotC17KoMS+Oj23TjiurE8hss127yrvGd0WGzBniGpM6TTM9iJYFivqGSXIbcWRU1izXNIBk/MFA6QlhskcQxFFIDKeYNAriJFOu+RgJYiBRUew6Siyqi1/Gd9HKW8ztW66srBP8/1XbqAQyGz1myqoEMiAfT1kWC10Xo8LFiy5E9TgXvhaNRxUNNmk+rbYI0+Z0zRejEDadhE3Cm0gzJIZTThoFcdj6XWD0WmvXUWIJQVKxsctsESWC4HMVs30RimK+oGj2nkgcixoW/c2WU+U15ttlyrL2CuCoQAb0OWx1Y+xHl3lci7ggZY3z+8bsSTDNoxubLYLvhK0Q1t2FkBB2gst2DqE48gwTxQmJ4SKABLGc2KPECi+x3x9RszKLQ1g/saxuf7lswh1gaKNgK7bJSsHnRxMp9eMdK2yLt1cwy/L2gokk++iOSdmuRpX1QadRpMevyXcSFgtPsKxLUdxEBPYHm3QooBBOLE2cCQkJYVk/k74uEIQtJIaLhLQK4jRg1M+ovMR+3cewFcWuIsU+svoKhbHGX6xK42Aqik0nMZm+LEA0aIwX2afgaOfq6SzRDWEv4Fa/lTBC15UCS8gTrOpSqGhwkI4lPFGOaxJA8UeESQgTxQiJ4SIijCD2t3fdZhqiw4CFIAbcWycCTrID3E60Y+uTuRl0VgrAQhir0j3IOmazjvEUFyATykDhNoLosojIj2KTLzfqBMcJR4Jl3RB0xW00WNRozBPlRBSzEOb7mobrAEEEhcRwkZHGVzcXlSAGohXFIe0TOkuuKSJfMV+ftTDmC4uQlQ8aApcNjMpuoRPeUfkhTEgi2XFKBLCoK4LuRBMNTtlEOa5ZAAFyQJeZED4Ct3mG0//Mk4gTEsNFCAliOUYT63yimGBnkJ+YXa3LZubKV8zWJ1svTiGs8BkDdpPwZEmCw0ZMVX5kGTHnYdUiy93Mrlf12SYBMeIVwLIuASGjwbJlqkYTiAZbZ8iQdUBWgYZSEMIEETUkhosUEsRqrKPEQGyp2AB7+wS/LCiyQKuo/tDimMd11DjMNobWicTgw/Ui8VMEAhhIIFOErOGYo8GiLnBNF50Qjrt+goiLFF4FCFPSKIjThHVfo8xPzNaP4J5iH1feYlHdqjKRi2OTjrgm6voBc8Ht8i0cSE4A+4TKGwwUtTfYeeo0USUKohCqohv6uCCbBBElJIaLnLQJ4jRFh4GA45PyiXbsctG6IJi8lc25OOY9ILI3ZsSRYswVNlFmG9uDaFkKxa9PIhPkRA2nMBoMFLcQTtP5nSBcQWK4BLDyyXIEPcGVvCAGErFQ6EQxEL0w1tWlsm0UDlO7/Gt4VWd1NFBkkla9Vi7o9xJUXNkS5BV0suUa2wMQ7mUYuu/bhMREMN94AiJYRikI4TjqJogkITFcQiQRJY6rvrCEtndEIYwtsk+wzZoKY1mZsKiymDmJHgOFG8lmEpq8f1mE7XcYdMKdTkmapo6DW/Frm9AjyG7E4gsWNZ6QEC7ViDBBlAMkhkuMOAVxMU2oA8JF0PNwKYwN32jHFrF59TBfRlfWFp0YDxQ9BsQRZFkFQULjsncyu8IknCoRObLfjItXIAex3NqWTSRVGr9MIYL5Lpg2adMV4zfKOcohDJT+ZLlDxz4u6yMIHxLDJQgJYjVOJwG6EsYBRDHfpE3GMp3gcZnOjW9TVEb8fg2BSAaAqs7H1mq+Q9eebxMMBIzq9xDWHp3kXMBE7BD835YT5Gyb1nVF0IVg0WBL0naOJYhig8RwiRJWEPt1mLbFblcMRJIVw4Uw1ohiwEwYA+Fe4OHibXg8YTKgiQVYoZUkj2Oi+WjJaI9N09+K7rCI4k3MNqhukpy8OCKMCBZ1wiAanJq36Kk6pKtIAQlhgggPieESJqzgcxXVTWN0GIg4TVxYYSxJyQYEE8aAvZsgCkGsIujEQLPh1QjnENh+vWmJ8PLYCOFiEMGibgRp2qQ7ouOKhDBBFA8khkucsFFbmyhxMeUg9omlzy6EseQCKft+dOl+TX3EUfqNJUFwq3ZsBTv7rg1/e1uiSmWXBGEEMBCDCOY7klDOYFHzkm4E8weLKtJQbkKY8gwTUUJiuExwESVm61K1w5f3/07ryTtWm4fNSylE5TSi2MdWHAPBBHJQgcG2Hyaxg+uXjySBC/uobcTbJI2xrG5rASxbpkMmgrlOxSGCRV3gugGAhDBBFCskhssIV1FQE2EraivNghhIKLJtGzXWhVOPYSuOZc2bpE6TrZPhKgEHcRzFw4M8TEVwpDYIhQVI2KkAvmDXNzlpsUUAJIQJIgpIDJcZJIjVJGr1sIkai9YpLqo6cWzavIuXf1RVkaB1TZB3e8T2ggzZly3qdMpFMNcVACGzRZAQJohUQGK4DHFlCzDxE4vaIkFsSNCosWh7DtH+2UaPVVFjXUQ5qFuEJw02B1fY+pddCODILBC2toCQIljWjaCYiGCAhHCckGeYiBISw2WMyyixX5+qrWIiNYLYJ8gkvJDRY8DOe+xKHNsI47gzXkRBkEl8Ju4C2bJILBBB7QAOXqFcdNFgUYUKiu3cSRDFCInhMsel6LPNT5x2UieIfcJkp3AskFXRY9WEPJU4NvUz+4TJp5wkNiJYpZ1SLYBlHXCQL9gmJ7PpWJMQJojyhMQw4Vz0pd0GYUNqBbGP6B3Ntth4OhGNQNZlsrCxVaRdHJsKs9QJ4CDHWAK+YJmTQzfu1uMn66AKEsKBaUt5fURxQ2KYABCNIGbrLmZSL4gBN6KYxyKKHLdAlmkK05RxfH2ucWl9kNUXOgtE2AlwOkL6gkVNq74vE5Es+14CCeEwOQE1FPs50yWdOnVCbW0t7mtqcl53bW0tOnXq5LxeovggMUzkKMbXKsdFUQhiIBpRzGIRRZaNl3+cuRLI/jpZnWy9PEFEqwtiyf4AuI3+qtKHqDoWYSTY9hXjJstJCKeLqqoqbNu2DQcOHHBed6dOnVAVxWspiaKDxDBBpATTi6CRKA+Sv8xG7PBYZA9QiWSVmA3qQeaaz6szLoKIX9nyWASwzTujVWoyIiEc9m3OsuXWY2sCCeHQVFVVkWglIoXEMFFA0URBYybKcbG5CLJllf0xFcRhFIepYDaIKKusFjLPsEwEm7xNT3dtjcgKCsDuNcii+p0LYFd+EZ0QNrREuBLBKmIRwgRBFAUkhg148MEH8cMf/hA7d+7Exz/+cfzoRz/CZz7zmaS7FSmus0xQxCMatNaWqN9woVInJkJZI5JlAlkW6bWJHovKCLoQCpMhCJzTNkoBbJqKQRTtTUk0WEVsQjhlUWE6FxOEGBLDGn7zm9+gsbERDz74IIYPH46HH34Yn/vc5/Dqq6/i5JNPTrp7kUIR4kLSOiZKUZzUK9/CGDoVk/dcCGS+e3F5h01ttj6xCOCgM88kQle1PgkRbPvdlrIQJghCTIXneV7SnUgzQ4cOxTnnnIOHHnoot2zAgAEYP348Zs+erdy2tbUVmUwGLS1ZdO/ePequRoKrE2gpRSOiuKi4HJ9AKaDSln+MxVZBQj2eYZwjJpiIL5lOMpqsFVYAB905g4hvbrnGFhFnNFiV0hjI775Ta4ShGI763JiWzD6tra3o0SODbLZ4r4dE6UKRYQUHDhzAhg0bcMcdd+QtHz16NNasWVNQvq2tDW1tx7MXZrNZAEdPAsUMCeJ80i6Gfaxmwccphk18Czr8bUW/rYgEchj4LrET450I4LY29XrZMr6Oykr5epEYrqw8vjMiIXxsXVqEML+M6aJ7IWyY/aCcxDAAUPyNSCMkhhW89957OHz4MGpqavKW19TUoEmQ83D27Nn4/ve/X7D8lFPqI+sjQRAEQRQLe/bsQSaTSbobBJEHiWEDKioq8v72PK9gGQDMmDED06ZNy/29e/dunHLKKXjrrbfoxx8zra2tqK+vx9tvv02P5GKExj0ZaNyTgcbdHM/zsGfPHtTV1SXdFYIogMSwgl69eqF9+/YFUeDm5uaCaDEAVFZWolLwmDGTydCJMiG6d+9OY58ANO7JQOOeDDTuZlBQiEgrpWHijIhOnTphyJAhWLlyZd7ylStX4vzzz0+oVwRBEARBEIQrKDKsYdq0aWhoaMC5556LYcOG4b/+67/w1ltv4aabbkq6awRBEARBEERISAxruPrqq/HPf/4Td999N3bu3IlBgwZh2bJlOOWUU7TbVlZW4q677hJaJ4hoobFPBhr3ZKBxTwYad4IoDSjPMEEQBEEQBFG2kGeYIAiCIAiCKFtIDBMEQRAEQRBlC4lhgiAIgiAIomwhMUwQBEEQBEGULSSGI+TBBx9E//79UVVVhSFDhuD//t//m3SXUsOzzz6Lyy+/HHV1daioqMDvf//7vPWe52HmzJmoq6tDdXU1Ro4ciVdeeSWvTFtbG6ZOnYpevXqhS5cuGDduHLZv355XpqWlBQ0NDchkMshkMmhoaMDu3bvzyrz11lu4/PLL0aVLF/Tq1Qu33HILDhw4kFdm8+bNGDFiBKqrq3HSSSfh7rvvRrHNPZ09ezY+9alPoVu3bujTpw/Gjx+PrVu35pWhcXfPQw89hLPOOiv3YoZhw4bhj3/8Y249jXk8zJ49GxUVFWhsbMwto7EnCAIA4BGRsHjxYq9jx47eT3/6U+/VV1/1vvWtb3ldunTx3nzzzaS7lgqWLVvmffe73/Uee+wxD4C3ZMmSvPVz5szxunXr5j322GPe5s2bvauvvtrr27ev19ramitz0003eSeddJK3cuVK76WXXvI++9nPep/4xCe8Q4cO5cpceuml3qBBg7w1a9Z4a9as8QYNGuSNHTs2t/7QoUPeoEGDvM9+9rPeSy+95K1cudKrq6vzpkyZkiuTzWa9mpoa78tf/rK3efNm77HHHvO6devmzZs3L7oBioAxY8Z4v/jFL7wtW7Z4Gzdu9C677DLv5JNP9vbu3ZsrQ+Punj/84Q/eU0895W3dutXbunWr953vfMfr2LGjt2XLFs/zaMzj4IUXXvD69evnnXXWWd63vvWt3HIae4IgPM/zSAxHxKc//Wnvpptuylt25plnenfccUdCPUovvBg+cuSIV1tb682ZMye3bP/+/V4mk/H+8z//0/M8z9u9e7fXsWNHb/Hixbky77zzjteuXTtv+fLlnud53quvvuoB8NatW5crs3btWg+A9/rrr3ued1SUt2vXznvnnXdyZX796197lZWVXjab9TzP8x588EEvk8l4+/fvz5WZPXu2V1dX5x05csThSMRLc3OzB8BbvXq153k07nHSo0cP75FHHqExj4E9e/Z4p512mrdy5UpvxIgROTFMY08QhA/ZJCLgwIED2LBhA0aPHp23fPTo0VizZk1CvSoetm3bhqamprzxq6ysxIgRI3Ljt2HDBhw8eDCvTF1dHQYNGpQrs3btWmQyGQwdOjRX5rzzzkMmk8krM2jQINTV1eXKjBkzBm1tbdiwYUOuzIgRI/IS648ZMwY7duzAG2+84X4AYiKbzQIAevbsCYDGPQ4OHz6MxYsX44MPPsCwYcNozGPg5ptvxmWXXYZLLrkkbzmNPUEQPiSGI+C9997D4cOHUVNTk7e8pqYGTU1NCfWqePDHSDV+TU1N6NSpE3r06KEs06dPn4L6+/Tpk1eGb6dHjx7o1KmTsoz/d7F+n57nYdq0abjgggswaNAgADTuUbJ582Z07doVlZWVuOmmm7BkyRIMHDiQxjxiFi9ejJdeegmzZ88uWEdjTxCED72OOUIqKiry/vY8r2AZISfI+PFlROVdlPGOTWop1u9zypQp2LRpE5577rmCdTTu7jnjjDOwceNG7N69G4899hiuvfZarF69Oreextw9b7/9Nr71rW9hxYoVqKqqkpajsScIgiLDEdCrVy+0b9++4G6+ubm54M6fKKS2thZAYTSEHb/a2locOHAALS0tyjK7du0qqP/dd9/NK8O309LSgoMHDyrLNDc3AyiMKhUDU6dOxR/+8AesWrUKH/nIR3LLadyjo1OnTvjYxz6Gc889F7Nnz8YnPvEJ/PjHP6Yxj5ANGzagubkZQ4YMQYcOHdChQwesXr0aP/nJT9ChQwdp1JXGniDKDxLDEdCpUycMGTIEK1euzFu+cuVKnH/++Qn1qnjo378/amtr88bvwIEDWL16dW78hgwZgo4dO+aV2blzJ7Zs2ZIrM2zYMGSzWbzwwgu5Ms8//zyy2WxemS1btmDnzp25MitWrEBlZSWGDBmSK/Pss8/mpUFasWIF6urq0K9fP/cDEBGe52HKlCl4/PHH8ec//xn9+/fPW0/jHh+e56GtrY3GPEIuvvhibN68GRs3bsx9zj33XHzlK1/Bxo0bceqpp9LYEwRxlPjm6pUXfmq1n/3sZ96rr77qNTY2el26dPHeeOONpLuWCvbs2eO9/PLL3ssvv+wB8ObPn++9/PLLudRzc+bM8TKZjPf44497mzdv9q655hphyqOPfOQj3tNPP+299NJL3kUXXSRMeXTWWWd5a9eu9dauXesNHjxYmPLo4osv9l566SXv6aef9j7ykY/kpTzavXu3V1NT411zzTXe5s2bvccff9zr3r170aU8+uY3v+llMhnvL3/5i7dz587c58MPP8yVoXF3z4wZM7xnn33W27Ztm7dp0ybvO9/5jteuXTtvxYoVnufRmMcJm03C82jsCYI4ConhCPmP//gP75RTTvE6derknXPOObkUVoTnrVq1ygNQ8Ln22ms9zzua9uiuu+7yamtrvcrKSu/CCy/0Nm/enFfHvn37vClTpng9e/b0qqurvbFjx3pvvfVWXpl//vOf3le+8hWvW7duXrdu3byvfOUrXktLS16ZN99807vsssu86upqr2fPnt6UKVPy0ht5nudt2rTJ+8xnPuNVVlZ6tbW13syZM4su3ZFovAF4v/jFL3JlaNzd8/Wvfz13Hujdu7d38cUX54Sw59GYxwkvhmnsCYLwPM+r8Dx6vQ1BEARBEARRnpBnmCAIgiAIgihbSAwTBEEQBEEQZQuJYYIgCIIgCKJsITFMEARBEARBlC0khgmCIAiCIIiyhcQwQRAEQRAEUbaQGCYIgiAIgiDKFhLDBEEQBEEQRNlCYpggiJKjX79+qKioQEVFBXbv3h2qrpEjR+bq2rhxo5P+EQRBEOmBxDBBEKnk8OHDOP/88/HFL34xb3k2m0V9fT3+9V//Vbn93XffjZ07dyKTyYTqx+OPP44XXnghVB0EQRBEeiExTBBEKmnfvj1++ctfYvny5Vi0aFFu+dSpU9GzZ0/ceeedyu27deuG2tpaVFRUhOpHz5490bt371B1EARBEOmFxDBBEKnltNNOw+zZszF16lTs2LEDTzzxBBYvXoxf/vKX6NSpk1VdCxYswAknnIAnn3wSZ5xxBjp37oyrrroKH3zwAX75y1+iX79+6NGjB6ZOnYrDhw9HtEcEQRBE2uiQdAcIgiBUTJ06FUuWLMHXvvY1bN68GXfeeSfOPvvsQHV9+OGH+MlPfoLFixdjz549uPLKK3HllVfihBNOwLJly/CPf/wDX/ziF3HBBRfg6quvdrsjBEEQRCohMUwQRKqpqKjAQw89hAEDBmDw4MG44447Atd18OBBPPTQQ/joRz8KALjqqquwcOFC7Nq1C127dsXAgQPx2c9+FqtWrSIxTBAEUSaQTYIgiNTz85//HJ07d8a2bduwffv2wPV07tw5J4QBoKamBv369UPXrl3zljU3N4fqL0EQBFE8kBgmCCLVrF27Fvfddx+eeOIJDBs2DNdffz08zwtUV8eOHfP+rqioEC47cuRI4P4SBEEQxQWJYYIgUsu+fftw7bXX4sYbb8Qll1yCRx55BOvXr8fDDz+cdNcIgiCIEoHEMEEQqeWOO+7AkSNHcO+99wIATj75ZPz7v/87/s//+T944403ku0cQRAEURKQGCYIIpWsXr0a//Ef/4EFCxagS5cuueWTJk3C+eefH8ouQRAEQRA+FR5dTQiCKDH69euHxsZGNDY2OqnvjTfeQP/+/fHyyy8HTutGEARBpBOKDBMEUZLcfvvt6Nq1K7LZbKh6Pve5z+HjH/+4o14RBEEQaYMiwwRBlBxvvvkmDh48CAA49dRT0a5d8Pv+d955B/v27QNw1LNs++Y7giAIIt2QGCYIgiAIgiDKFrJJEARBEARBEGULiWGCIAiCIAiibCExTBAEQRAEQZQtJIYJgiAIgiCIsoXEMEEQBEEQBFG2kBgmCIIgCIIgyhYSwwRBEARBEETZQmKYIAiCIAiCKFtIDBMEQRAEQRBlC4lhgiAIgiAIomwhMUwQBEEQBEGULSSGCYIgCIIgiLKFxDBBEARBEARRtpAYJgiCIAiCIMoWEsMEQRAEQRBE2UJimCAIgiAIgihbSAwTBEEQBEEQZQuJYYIgCIIgCKJsITFMEARBEARBlC0khgmCIAiCIIiyhcQwQRAEQRAEUbaQGCYIgiAIgiDKFhLDBEEQBEEQRNlCYpggCIIgCIIoW0gMEwRBEARBEGULiWGCIAiCIAiibCExTBAEQRAEQZQtJIYJgiAIgiCIsoXEMEEQBEEQBFG2kBgmCIIgCIIgyhYSwwRBEARBEETZQmKYIAiCIAiCKFtIDBMEQRAEQRBlC4lhgiAIgiAIomwhMUwQBEEQBEGULSSGCYIgCIIgiLKFxDBBEARBEARRtpAYJgiCIAiCIMoWEsMEQRAEQRBE2UJimCAIgiAIgihbSAwTBEEQBEEQZQuJYYIgCIIgCKJsITFMEARBEARBlC0khgmCIAiCIIiyhcQwQRAEQRAEUbaQGCYIgiAIgiDKFhLDBEEQBEEQRNlCYpggCIIgCIIoW0gMEwRBEARBEGULiWGCIAiCIAiibCExTBAEQRAEQZQtJIYJgiAIgiCIsoXEMEEQBEEQBFG2kBgmCIIgCIIgyhYSwwRBEARBEETZQmKYIAiCIAiCKFtIDBMEQRAEQRBlC4lhgiAIgiAIomwhMUwQBEEQBEGULSSGCYIgCIIgiLKFxDBBEARBEARRtpAYJgiCIAiCIMoWEsMEQRAEQRBE2UJimCAIgiAIgihbSAwTBEEQBEEQZQuJYYIgCIIgCKJsITFMEARBEARBlC0khgmCIAiCIIiyhcQwQRAEQRAEUbaQGCYIgiAIgiDKFhLDBEEQBEEQRNlCYpggCIIgCIIoW0gMEwRBEARBEGULiWGCIAiCIAiibCExTBAEQRAEQZQtJIYJgiAIgiCIsoXEMEEQBEEQBFG2kBgmCIIgCIIgyhYSwwRBEARBEETZ8v8BnxiMnLxT35sAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "! seisflows plot2d GRADIENT_01 vs_kernel --save g_01_vs.png\n", + "Image(\"g_01_vs.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the above figure we can see that the first order structure of our Vs event kernel is very similar to Panel (g) from Figure 9 of Tape et al. (2007). Our kernel shows some additional low-amplitude sensitivity, most prominently at the ring of alternative blue and red on the edges of the domain. From experience this is likely due to the `Pyaflowa` preprocessing module attempting to window and fit very late arriving waves that are caused by boundary reflections from the edge of the domain. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example \\#3: En-masse Forward Simulations\n", + "\n", + "SeisFlows is not just an inversion tool, it can also be used to simplify workflows to run forward simulations using external numerical solvers. In Example \\#3 we use SeisFlows to run en-masse forward simulations. \n", + "\n", + "To motivate this use case, imagine a User who has a velocity model of a specific region (at any scale). This User would like to run a number of forward simulations for N events and S stations to generate N x S synthetic seismograms. These synthetics may be used directly, or compared to observed seismograms to understand how well the regional velocity model characterizes actual Earth structure. \n", + "\n", + "Although this could be done manually, if N is large, this effort may require a large number of manual tasks, including the creation of working directories, editing submit calls, and providing book keeping for the external solver. SeisFlows is here to automate all of these tasks." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No existing SPECFEM2D repo given, default to: /home/bchow/Work/work/seisflows_example/example_2a/specfem2d\r\n", + "\r\n", + " @@@@@@@@@@ \r\n", + " .@@@@. .%&( %@. \r\n", + " @@@@ @@@@ &@@@@@@ ,%@ \r\n", + " @@@@ @@@, /@@ @ \r\n", + " @@@ @@@@ @@@ @ \r\n", + " @@@@ @@@@ @@@ @ @ \r\n", + " @@@ @@@@ ,@@@ @ @ \r\n", + " @@@@ @@@@ @@@@ @@ @ @\r\n", + " @@@@ @@@@@ @@@@@ @@@ @@ @\r\n", + " @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @\r\n", + " @@@@ @@@@@@ @@@& @@@ @ \r\n", + " @@@@@ @@@@@@@@ %@@@@# @@ \r\n", + " @@@@# @@@@@@@@@@@@@@@@@ @@ \r\n", + " &@@@@@ @@@@( @@& \r\n", + " @@@@@@@ /@@@@ \r\n", + " @@@@@@@@@@@@@@@@@\r\n", + " @@@@@@@@@@ \r\n", + "\r\n", + "\r\n", + "================================================================================\r\n", + " SEISFLOWS EXAMPLE 3 \r\n", + " /////////////////// \r\n", + "This is a [SPECFEM2D] [WORKSTATION] example, which will run forward simulations\r\n", + "to generate synthetic seismograms through a homogeneous halfspace starting\r\n", + "model. This example uses no preprocessing or optimization modules. [10 events,\r\n", + "25 stations] The tasks involved include:\r\n", + "\r\n", + "1. (optional) Download, configure, compile SPECFEM2D\r\n", + "2. [Setup] a SPECFEM2D working directory\r\n", + "3. [Setup] starting model from 'Tape2007' example\r\n", + "4. [Setup] a SeisFlows working directory\r\n", + "5. [Run] the forward simulation workflow\r\n", + "================================================================================\r\n" + ] + } + ], + "source": [ + "# Run the help dialogue to see what \n", + "! seisflows examples 3" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run command with open variable to set SPECFEM2D path\n", + "! seisflows examples run 3 -r ${PATH_TO_SPECFEM2D}" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "You will be met with the following log message after succesful completion of the example problem\n", + "\n", + ".. code:: bash\n", + "\n", + " ================================================================================\n", + " EXAMPLE COMPLETED SUCCESFULLY\n", + " ================================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Understanding example outputs\n", + "\n", + "This example does not produce gradients or updated models, only synthetic seismograms. We can view these seismograms using the `seisflows plotst` command, which is used to quickly plot synthetic seismograms (using ObsPy under the hood). " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/bchow/Work/work/seisflows_example/example_3\n", + "logs\tparameters.yaml sflog.txt specfem2d\r\n", + "output\tscratch\t\t sfstate.txt specfem2d_workdir\r\n" + ] + } + ], + "source": [ + "%cd ~/sfexamples/example_3\n", + "! ls" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we have set the `export_traces` parameter to **True**, which tells SeisFlows to store synthetic waveforms generated during the workflow in the `output/` directory. Under the hood, SeisFlows is copying all synthetic seismograms from the Solver's `scratch/` directory, to a more permanent location." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "export_traces: True\r\n" + ] + } + ], + "source": [ + "# The `export_traces` parameter tells SeisFlows to save synthetics after each round of forward simulations\n", + "! seisflows par export_traces " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MODEL_INIT solver\r\n" + ] + } + ], + "source": [ + "# Exported traces will be stored in the `output` directory\n", + "! ls output" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "001 002 003 004 005 006 007 008\t009 010\n", + "\n", + "AA.S000000.BXY.semd AA.S000009.BXY.semd AA.S000018.BXY.semd\n", + "AA.S000001.BXY.semd AA.S000010.BXY.semd AA.S000019.BXY.semd\n", + "AA.S000002.BXY.semd AA.S000011.BXY.semd AA.S000020.BXY.semd\n", + "AA.S000003.BXY.semd AA.S000012.BXY.semd AA.S000021.BXY.semd\n", + "AA.S000004.BXY.semd AA.S000013.BXY.semd AA.S000022.BXY.semd\n", + "AA.S000005.BXY.semd AA.S000014.BXY.semd AA.S000023.BXY.semd\n", + "AA.S000006.BXY.semd AA.S000015.BXY.semd AA.S000024.BXY.semd\n", + "AA.S000007.BXY.semd AA.S000016.BXY.semd\n", + "AA.S000008.BXY.semd AA.S000017.BXY.semd\n" + ] + } + ], + "source": [ + "# Synthetics will be stored on a per-event basis, and in the format that the external solver created them\n", + "! ls output/solver/\n", + "! echo\n", + "! ls output/solver/001/syn" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAD6CAYAAABZPSO8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLSUlEQVR4nO3deVyU1eI/8A/rsAwzA4gsIgiIKIqokZpKWrnvejVLSTKtrOza9WZpG6aGdCuzbrmbpqJmN7fUTDOV0twyAcEVUQnEMGCGYWc4vz/88XwZGYZFGEb8vF+veck85zxnzvNwhPlwzvOMhRBCgIiIiIiIyAQsm7oDRERERET04GAAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAISIiIiIik2EAIXpARUVFITg4GJaWltiyZYteWUFBAV588UW0bNkS7u7u+Pjjj/XKNRoNpk6dChcXF6hUKkycOFEqu3btGgYNGgSlUomgoCAcOHCg2j6UlZXhH//4B1q1agULCwtkZmbqlc+aNQv+/v5wcnJCWFgY4uLiqm1Lq9WiT58+cHV1hbOzM5544glcuHBBKl+6dCm6dOkCa2trxMTESNujo6Mhl8shl8shk8lgY2MjPZ8+fTp+++03PPbYY3B2doanpydmzJiBkpISaf8XXngBnp6eUCgUCAkJwe7du6vt47p162BtbS21L5fLcePGDan8m2++QWBgIORyOUaOHIns7Oxq26rueABg9+7deOSRR6BUKuHt7Y3333+/2nbuxa1btzB8+HC4ubnBzs6uSvnZs2fRq1cvODk5oWvXrvjjjz+ksunTp+udBxsbG4wYMUIqP3XqFEJDQ+Hg4IC+ffvi+vXrRvsSExMDNzc3uLi44I033oAQAkDNY6yh2urYsaN0LJaWlrC3t5ee//LLLygvL8drr70GlUoFd3d3fPrpp3qv+cMPP6Bt27ZwdHTEqFGjkJOTU23/srKyMGzYMDg4OCAoKAgHDx6sUqesrAwhISFo3759te3UdG6MjbG73b59G08++SRcXFzg4+OD2NhYg/WmT59e6+8DETVjgogeSBs2bBD79+8XPXr0EJs3b9Yre+utt8SAAQOEWq0WN27cEG3bthX79u2TyseOHSv++c9/itzcXFFSUiLOnDkjlfXq1Uu8/fbborS0VBw5ckS4uLiIrKwsg30oLS0VS5YsEb/99psAIG7evKlXPm/ePHH58mWh0+nE1q1bhbOzs9BoNAbbKikpEcnJyUKn0wmdTie++OIL0b17d6l8+/bt4vvvvxdjxowRixYtMtjGokWLRGRkpN62H374QWzfvl1otVpx+/ZtER4eLubPny+Vnz9/XhQVFQkhhDh58qRQKpUiOzvbYPtr164VgwYNMliWnJwslEqlOHXqlCgpKREzZswQTz31lMG6NR3Ppk2bxE8//SSKiorE9evXRfv27cX69eurbau+/vrrL7Fs2TKxa9cuIZPJ9MpKSkpEmzZtxIoVK0RZWZnYsmWL8PX1FcXFxQbb6tq1q1i9erUQQoiioiLh7e0t1qxZIwoLC8Ubb7whwsPDq+3Hnj17hI+Pj0hJSREZGRmiQ4cOYs2aNUKImsdYY7QVFBQkDh06pLftyy+/FF27dhW3bt0SFy5cEB4eHuLgwYNCCCFu3bolVCqV2Lt3r9BqtWLSpEnimWeeqbaP48ePF9OmTRP5+fli+/btwtnZucqY+/TTT0Xv3r1FUFBQte3UdDy1+T9TYeLEiWLy5MmiqKhInDt3TrRs2VIkJSXp1fn9999FeHh4rb4PRNS8MYAQPeD69u1bJYB069ZN7N27V3oeHR0tJk6cKIQQ4ty5c8LX11eUlZVVaUuj0QgLCwuRn58vbRs4cKBYuXJljf2ozZsSLy8vcfr06RrbKisrE0uXLhVubm5VyiIjI+sUQO62cuVKMXz4cINlp06dEjKZrMobrwrGAsjnn38unnzySel5RkaGsLGxEVqt1mh/jB1PhbfeekvMmDHDaJ17kZqaWiWAJCQkiJYtW+pta9eundi/f3+V/ZOTk4VMJhO5ublCCCH27dsn2rdvL5VrtVphb28vrl27ZvD1n3rqKRETEyM9X7NmjXjssceq1KvNGGuItgwFkJ49e4otW7ZIz999910xZcoUIYQQy5cvF4MHD5bKrly5Iuzs7KRgW1leXp6wtbUVGRkZ0rbw8HDx9ddfS88zMzNFhw4dxO7du40GkNoeT23GmIuLi0hOTpaev/DCC+Ktt96SnpeXl4vevXuL06dPM4AQkeASLCIySPz/ZScVXyclJQEATp8+jXbt2iEiIgKurq7o3r07fvnll1rtey+uXbuG7OxstG3b1mi9zp07w87ODjNmzMCbb755z697t2PHjqFjx456215++WXY29vj4YcfxuDBgxEcHAwA+PXXX6FSqfTqHj16FK6urggODsby5cv1yu4+b6Wlpbh8+TKAO8uChg8f3mB9bgrVjYXY2FgMHz4cSqUSAJCcnIyQkBCp3NHREQEBAUhOTjbY7t31Q0ND6z3mGrKt2rZ7d1lAQACsra1x9epVAHfG18svvwwAuHz5MpRKJTw9Pavt45tvvom33noLjo6OVfrRuXNnbNq06Z6PxxBj/++//vprtG/fHg899FCjvDYR3V8YQIioioEDB2LJkiXIzc3FtWvXsG7dOhQUFAAA0tPTceDAAfTv3x+ZmZmYM2cORo8ejezsbDg5OaFHjx6Ijo5GSUkJDh8+jCNHjkj71ldpaSkiIyMxe/Zs6U1qdRISEqDRaLB8+XJ06NDhnl73bj/88AN++OEH/Otf/9LbvnTpUmi1Whw4cAB9+/aVtvfp0we5ubnS8759+yIxMRFZWVlYu3Yt5s+fj+3btwMAnnjiCfz44484efIkiouLsWjRIlhYWEjnbs6cOUavL6nOihUrcPPmTURGRtbjiOsvKCgIdnZ2WL58OUpLS7F582ZcuXLF4FjYtGkTJk2aJD3XarVQKBR6dRQKBbRarcHXuru+sbo1aci2attuTce7dOlSLF26tFZ1f/vtN1y6dEnvfFaWkJCgd81WQxk4cCA+/PBDFBYWIjExEdu2bZO+12q1GtHR0YiOjm7w1yWi+xMDCBFV8c4776BNmzbo0KEDhgwZgvHjx6NVq1YAAHt7e/j5+WHq1KmwsbHB2LFjERAQgN9++w3Anb9mnz59Gl5eXli4cCHGjRsn7Vv5Qt3KF18bI4TAs88+i5YtW2LevHnSdmNt2dvbY9q0aXjuueeMXsxbF6dOncKUKVOwY8cOuLu7Vym3srJC//79cfDgQfz4448G2/Dz80ObNm1gaWmJHj164J///KcUQIKDg7Fs2TJERkaidevW8PDwgJOTk3Tu6mP37t2YP38+du/eDXt7+xrr//LLL9I5HTJkSL1fFwBsbW2xfft2bNiwAR4eHtixYwf69+9f5XiOHTuGnJwcDB06VNoml8uh0Wj06mk0GumC7rv7eHf9iro1aci2amKsXWPHW1M7leuWl5fjn//8Jz777DNYWFjcc5/r4vPPP0dBQQF8fX3x3HPP4emnn5a+1/PmzZNuakFEBADWTd0BIjI/jo6OWLlypfT8nXfeQVhYGACgU6dOVepXXnrh7++v9wa8T58+0l9c67OU5dVXX0VGRgb27dsHS8v/+5tJTW0JIaDVanHz5k04OzvX+XUrO3/+PEaOHImvvvoKPXv2NFq3vLwcKSkptWq38vEAwMSJE6VzdeXKFfz3v/+Ft7d3vfocFxeHqVOnYu/evTUuW6sQHh7eIH/tr9CtWzccPXoUAKDT6RAQEFBlCU5sbCzGjRsHmUwmbQsODtYbf/n5+UhJSUFwcDB8fX2r9DE4OBiJiYlSiImPj6/VkjNDx1vftmpS0W7F8rzK7QYHB2PHjh1S3atXr6KsrAz+/v5V2gkMDIRarUZmZiY8PDyktqZNmwaNRoMzZ85IdxMrKSmBRqOBh4cHrl69CgcHh3s+juq4ubnh22+/lZ5HRETgkUceAQAcOnQI6enp+Oijj6TyiqVg/fv3b7Q+EZH54gwI0QOqtLQURUVFKC8v1/saAP78809kZmZCp9PhwIEDWLt2rbTsqF+/fhBC4Ouvv4ZOp8OuXbuQmpoqvdk4f/488vPzUVhYiM8++wz5+fl6f92+W3FxMYqKiqp8Ddy5VfDRo0exc+dOvTeohsTHxyMuLg4lJSXIz8/HW2+9BZVKhcDAQAB3bjlaVFQEnU6n93VN0tLSMGjQIMTExFQ5Dq1Wi9jYWGi1WpSVleG7777DoUOHEB4ebrCtffv2ISsrCwBw5swZfP7553rXdZw5cwbl5eVIT0/Hiy++iDlz5sDKyspgW8aO5+zZsxg3bhxiY2Mbfc19UVERiouLq3wNAImJiSguLkZeXh7mzJmDLl266AXYsrIybN26tcpyoX79+kGr1WLdunUoLi7GwoULERYWBl9fX4N9iIiIwLJly5CamorMzEwsXrwYERERUrmxMdaYbd3d7kcffYSsrCxcunQJq1evlo57zJgxOH78OH788UcUFBQgKioK48ePNzjmK27RHBUVhcLCQuzatQvnzp3DiBEjoFQqkZ6ejrNnz+Ls2bNYvXo1/Pz8cPbs2WpnwIwdT13+z6SkpCAnJwelpaXYsmULfvnlF0yZMgUAcPDgQSQmJkr9qthW3f8TInoANMml70TU5CIjIwUAvUfFnXt+/vln4e3tLezt7UXXrl1FXFyc3r7x8fEiLCxMODo6ii5duogjR45IZR999JFwcXERcrlcDB8+XNy4ccNoP3x9fav0owIAIZPJhKOjo/TYuHGjwXZOnTolunTpIuRyuXBxcRGDBg0S8fHxUnlUVFSV11m7dq1eG4bugjVv3jxhYWGh14fg4GAhxJ27Mz322GNCqVQKhUIhunXrJrZt2ybtGxcXJxwdHaXns2bNEm5ubsLR0VG0a9dOfP7553qv1b17d+Ho6Cg8PDzEvHnzRHl5uVT2wQcf6N0pydjxPPvss8LS0lKvz5X3bUh398HX11cqe+2116RzExERIXJycvT23b17t/D29hY6na5KuydPnhQhISHCzs5OhIeHV3sHrArR0dHC1dVVqFQqMXv2bL1zZ2yMNUZbhu6CpdPpxMyZM4VSqRRubm7ik08+0Svfs2eP8Pf3F/b29mLEiBF6t9V98cUXxYsvvig9/+uvv8SQIUOEvb29CAwMFAcOHDB4HIcOHapyF6zg4GC9/0PGjsfYGLt7bMfGxoqWLVsKBwcH8eijj4rExESDfRKidncjI6LmzUKISmsniIiIiIiIGhGXYBERERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkckwgBARERERkclYN3UH7mfl5eXIyMiAk5MTLCwsmro7RERERPSAE0IgLy8PXl5esLQ0z7kGBpB7kJGRgdatWzd1N4iIiIiI9KSlpcHb27upu2EQA8g9cHJyAnDnG6xQKJq4N0RERET0oNNoNGjdurX0PtUcMYDcg4plVwqFggGEiIiIiMyGOV8ewABiQomJifj5559x69YtlJeXN3V36C5WVlbw9fXFwIED0aZNm6buDhEREVGzxABiImvWrMGyZcvg6uoKf39/WFlZNXWX6C6lpaX49ddfsXr1asTExODxxx9v6i4RERERNTsMICZw7do1LFu2DFOnTsWLL75otnckIKCkpATvvvsu5s2bh969e0MmkzV1l4iIiIiaFb4TNoG4uDjY29tj6tSpDB9mztbWFtOnT0dBQQF+//33pu4ONWPr1q1Dz549kZyc3NRdISIiMim+GzaBrKwseHh4wNbWtqm7QrXg6+sLALh9+3YT94SaK61Wi5kzZ+LEiRN47733mro7REREJsUAYgJCCM583Ecqvle8UQA1lp9++gkajQbTp0/Hnj17UFxc3NRdIiIiMhm+KzYDAQEB6NGjh8Gy5557DnZ2dsjNza12fyEEFixYAF9fX8jlcvj6+uK1116TyrOysjBs2DA4ODggKCgIBw8e1Ns/JiYGbm5ucHFxwRtvvAEhhFR26tQphIaGwsHBAX379sX169elssLCQkRERMDJyQk+Pj7YvHmzXrvr1q2Dt7c3FAoFpkyZgpKSEqksJSUFvXv3hoODA7p164b4+PjanCpcu3YNFhYWkMvlkMvlaNWqFd5//32p/MSJE3Bzc0NWVpa0bdmyZXjooYeQnp4OV1dXnDlzRirT6XTo2rUrvvrqq1q9PlFDOHToEPz8/PD888+jqKgIp06dauouERERmQwDSBM7duwYsrKycObMGVy5ckWvrKioCN999x0cHBzwv//9r9o2vv76a2zbtg1xcXHQarX45Zdf8NBDD0nlr7zyCry8vHD79m18+OGHGD9+PHJycgAAe/fuxbJly3DixAkkJSVh9+7dWLt2LQCguLgYY8eOxcyZM5GdnY2ePXvimWeekdqNiopCdnY20tPTsWXLFrz00ku4dOkSgDu3HJ41axZ27NiBtLQ0XLt2DQsXLpT2ffrppzFw4EBkZ2fjueeew5gxY1BWVlarcyaTyaDVaqHVavHrr79i1apV2L9/PwCgR48eePLJJ/Gvf/0LAHDz5k288847WLlyJVq1aoUFCxbghRdegE6nAwB89tlnUCqVmDJlSq1em6ghHDt2DOHh4QgJCYGNjU2tAzgREVFzwADSxGJjYzF27Fg8/vjjiI2N1Sv7/vvv4eLigtdff71KWWWnTp3CsGHDpGsXfHx8pKCg1Wqxc+dOzJ8/Hw4ODhg9ejQ6deqE77//HgCwYcMGvPzyy/D394enpydef/11bNy4EQBw+PBhyOVyaRbmvffew+nTp6VZkA0bNiAqKgoKhQK9evXCyJEjsWXLFgDApk2bMGHCBISFhUGpVOLdd9+V2r148SIuXryIuXPnws7ODjNmzIBOp8OxY8fqfP78/PzQq1cvnD9/Xtq2aNEiHDp0CD/99BNeffVVPPPMM1Ige+mllyCTyfDFF18gLS0N0dHRWLlypVl/WA81LzqdDklJSQgNDYWNjQ3at2+Pc+fONXW3iIiITMasA0hNS4cqGFsKtHv3bjzyyCNQKpXw9vbWW65T2ZYtW2BhYSG9gTaF0tJSbN26FRMmTMCECROqhIyNGzfiySefxFNPPYW4uDj8+eefBtvp0aMHVq5cicWLF+PMmTN61y5cvnwZSqUSnp6e0rbQ0FAkJSUBAJKTkxESElKrMkdHRwQEBCA5ORk5OTnIzMys9b6hoaFITU1FYWEhkpOTERQUpHdRfufOnaV96yIlJQXHjh1D9+7dpW0KhQJLlizBU089hRMnTmDBggVSmYWFBVauXIn58+cjMjISM2fORLt27er8ukT1dfXqVRQWFkr/Pzp16sQAQkREDxSzDiDGlg5VZmwpUF5eHhYuXIi//voLx44dw5YtW7Bhwwa9/fPz87Fw4UJ07NjRJMdV4ccff0R5eTn69++PMWPG4Nq1a9Ja8OzsbOzbtw8TJkyAv78/unXrVuUaiwqTJ0/GRx99hF27dqF3797w9PSUrmnQarVQKBR69RUKBbRarcFyY2WVy7VaLaysrODg4FDrdiu219SnmhQXF0OlUkGhUKBt27bo06ePXgABgO7du0OtVmPYsGFwcnLSK+vYsSOmTp2KtLQ0vPnmm7V6TaKGkpiYCABSAGnbti2uXr3alF0iIiIyKbMNIDUtHarM2FKgp59+Gk888QRkMhl8fHwwduxYnDx5Um//BQsWYOrUqWjRooVJjq3Cxo0bMXbsWNjY2MDZ2RkDBw6UZkG2bt0KHx8fdOvWDQAMzpBUFhkZicOHDyM3NxdRUVF4/vnnkZSUBLlcDo1Go1dXo9FALpcDQJVyY2WVy+VyOXQ6HQoKCmrdbsX2mvpUE5lMhtzcXGg0GmRlZeH27dt444039Oq88sormDx5Mr755huDn7MQHByMgIAA3hqZTO7ixYtQqVRwd3cHALRp0wYZGRm8ExYRET0wzDaA1LR0qEJNS4HuduzYMb2ZjkuXLuGHH37AjBkzauxTcXExNBqN3qO+8vLysGvXLnzzzTfw8PCAh4cHDh8+jC1btkCn0yE2NhZpaWlSWXR0NOLj42tcpiSTyfDyyy/D2dkZ58+fR2BgINRqNTIzM6U68fHx0jkIDg6W/iJbU1l+fj5SUlIQHBwMZ2dneHh41Hrf+Ph4+Pn5wd7eHsHBwbh48SJKS0ul8oSEhHrNQLVo0QJjxozBjz/+KG3bunUrLl68iC+//BJvvfUWpk+frndnL6KmlJqaCn9/f+m6ozZt2gAA0tLSmrBXREREpmO2AaS2y3RqWgpU2YoVK3Dz5k1ERkZK22bOnIkPP/wQNjY2NfZp0aJFUCqV0qN169Z1PSzJtm3b0KJFC1y8eBFnz57F2bNnkZycjKKiIqxZswbHjh3DkSNH9MqeeOIJg7MgX3/9Nfbt24f8/HzodDps3LgRGo0GXbt2hVwux8iRIxEVFYXCwkLs2rUL586dw4gRIwAAERERWLZsGVJTU5GZmYnFixcjIiICANCvXz9otVqsW7cOxcXFWLhwIcLCwqSL3SMiIrBgwQLk5eXh+PHj2LVrFyZMmAAAmDhxIrZu3YozZ85ArVbjgw8+kNoNCgpCUFAQYmJiUFxcjKVLl8LKygq9evWq83nMzc3Fzp070aFDBwCAWq3Ga6+9hmXLlsHOzg7/+te/oFarpTt7ETW1q1evwt/fX3peEUCuXbvWNB0iIiIyMbMNILVdplPTUqAKu3fvxvz587F7927Y29sDAHbu3Alra2sMHjy4Vn2aO3cu1Gq19LiXv1jGxsZi6tSp8PT0lGY5Ku5eNWPGDDz66KPo0aOHVObh4YGXXnoJmzZtghACHTt2lMKIk5MT3n//fbRq1QouLi749NNPsXXrVgQEBAAAli5dirS0NLi6uuL111/H1q1b4ezsDAAYNmwYXnzxRTz88MPo0KEDhg4dKt2SViaTYdu2bVi8eDFUKhWOHj2qd/3M/PnzpVmq8ePHY+nSpQgKCgJwZ337J598ghEjRsDb2xutW7fG22+/Le27adMm7Nu3DyqVCqtWrcK2bdtgbW0NAIiOjsaQIUOkukOGDEF0dLT0vLi4WFrKFRAQACcnJ3z++ecAgDfffBNPPPEE+vfvDwCwtrbG8uXLMWfOHH6yOZmF1NRU+Pn5Sc+9vb1haWnJAEJERA8MC2Gma1O0Wi1cXV1x/fp1eHh4AAAeffRRTJs2DZMnT9ar6+npiR07dkgf5jd58mS0bdsW7733HgAgLi4O48ePx969e/U+H+O1117D2rVrpUCSnZ0NBwcHzJo1S9rXGI1GA6VSCbVaXWW2prKPP/4Yp06dwjfffFO3k0BNJiwsDO+88w5Gjx7d1F2hZqSsrAx2dnb44osvMH36dGm7t7c3pk6dWu1d+oiIiGqrtu9Pm5JZz4AYWzpUmbGlQGfPnsW4ceMQGxurFz6AOxefV14CFRYWhg8//FD6EDsioob0559/QqfT6c2AAICHhwdu3brVRL0iIiIyLbMNIED1S4diY2P1Llg2thTos88+w99//43Ro0dLy3Yqlvc4OTnpLXGytbWFUqmsctvWe2VhYaH32Rxk3iq+V5aWZv3fg+5DFbfbrXwNCHAngFS+UQQREVFzZt3UHTDGzc0Ne/furbJ90qRJmDRpkvTc3t6+2lvUrl27ttYXIB8+fLhe/ayJm5sbMjMzUVJSwtu+3gcqPund1LdlpuavYmz5+Pjobffw8OCHERIR0QODf+I1gUcffRSFhYVYs2YNZ0LMXElJCZYvXw4HB4cqS/aI7lV6ejrc3Nwgk8n0tru7u3MGhIiIHhhmPQPSXLRp0wYvvfQSli1bhh07dsDf3x9WVlZN3S26S2lpKc6fP4+ioiLExMRUeZNIdK/S09PRqlWrKtsrlmAJIaTPByEiImquGEBMZOrUqejevTsOHTqEzMxMzoSYISsrKzzzzDMYMGCA9NkMRA3JWAApLi6GWq2GSqUyfceIiIhMiAHEhEJCQvQ+sZ2IHiwZGRno1q1ble0VtxrPzMxkACEiomaP14AQEZmIsRkQALh586apu0RERGRyDCBERCZQVlaGW7duwcvLq0qZm5sbAOD27dum7hYREZHJMYAQEZlAxUXmhmZAlEolrKys8PfffzdBz4iIiEyLAYSIyAQyMjIAwOAMiIWFBVxdXTkDQkREDwQGECIiE0hPTwcAgzMgAODq6soZECIieiAwgBARmUB6ejpsbGzQokULg+UMIERE9KBgACEiMoGMjAx4eXlV+0GDDCBERPSgYAAhIjKB6m7BW6FFixYMIERE9EBgACEiMoGKGZDq8CJ0IiJ6UDCAEBGZQE0zIFyCRUREDwoGECIiE0hPT69xBiQ3NxdlZWUm7BUREZHpMYAQETUyrVYLjUZT4zUgAJCTk2OqbhERETUJBhAiokZW8SGENS3BAsDrQIiIqNkz6wCSlZWFYcOGwcHBAUFBQTh48KDBeoWFhYiIiICTkxN8fHywefNmqSw5ORkDBgyAUqlE+/btq+xbWlqK119/He7u7lAoFAgPD2+04yGiB5OxT0GvUBFAeB0IERE1d9ZN3QFjXnnlFXh5eeH27dvYv38/xo8fj5SUFDg7O+vVi4qKQnZ2NtLT03Hu3DkMHToUDz30ENq1awcbGxtMnDgREyZMwMcff1zlNebMmYO0tDScO3cOLi4uOHv2rImOjogeFBWfgm4sgFT8XMvNzTVFl4iIiJqM2c6AaLVa7Ny5E/Pnz4eDgwNGjx6NTp064fvvv69Sd8OGDYiKioJCoUCvXr0wcuRIbNmyBQAQGBiIKVOmoG3btlX2+/vvv/H1119j5cqVcHNzg5WVFR566KFGPzYierBkZGTAyckJcrm82joqlQoAAwgRETV/ZhtALl++DKVSCU9PT2lbaGgokpKS9Orl5OQgMzMTISEhRusZcu7cOXh6eiIqKgotWrRASEgItm/fXm394uJiaDQavQcRUU0yMjKMXv8BAHZ2drCzs+NF6ERE1OyZbQDRarVQKBR62xQKBbRabZV6VlZWcHBwMFrPkIolW87OzkhPT8fy5csxZcoUXLp0yWD9RYsWQalUSo/WrVvX48iI6EFT04cQVlCpVJwBISKiZs9sA4hcLq8yw6DRaKosYZDL5dDpdCgoKDBazxB7e3vY2NjgnXfegUwmQ+/evTFw4EAcOHDAYP25c+dCrVZLj7S0tHocGRE9aBhAiIiI/o/ZBpDAwECo1WpkZmZK2+Lj49GxY0e9es7OzvDw8EBiYqLReoZ06tSpyjYhRLX1ZTIZFAqF3oOIqCa1DSDOzs5cgkVERM2e2QYQuVyOkSNHIioqCoWFhdi1axfOnTuHESNGVKkbERGBBQsWIC8vD8ePH8euXbswYcIEAHcCRVFREUpKSvS+Bu6EnIcffhiLFi1CWVkZTpw4gQMHDqB///4mPVYiar6EELW6BgTgDAgRET0YzDaAAMDSpUuRlpYGV1dXvP7669i6dSucnZ0RGxurN8Mxf/586YL18ePHY+nSpQgKCgIAXL9+Hfb29hg0aBAuXboEe3t7DBw4UNp38+bNOHz4MFQqFSIjI/HVV19J+xIR3avc3FwUFRVxCRYREdH/ZyGMrTkiozQaDZRKJdRqNZdjEZFBSUlJ6NSpE44ePYpevXoZrfvKK6/g2LFj+OOPP0zUOyIiam7uh/enZj0DQkR0v6vNp6BX4AwIERE9CBhAiIgaUUUAqfyZRtVRqVS8CJ2IiJo9BhAiokaUkZEBV1dXyGSyGus6OztDo9GgvLzcBD0jIiJqGgwgRESNqLa34AXuzIAIIap8BhIREVFzwgBCRNSI6hpAAHAZFhERNWsMIEREjaguAcTZ2RkAeCE6ERE1awwgRESNqD4zIAwgRETUnDGAEBE1kvLycty8eZNLsIiIiCphACEiaiR///03SktLax1AlEolAM6AEBFR88YAQkTUSNLT0wHU7kMIAcDa2hpOTk4MIERE1KwxgBARNZIbN24AAHx8fGq9Dz+MkIiImjsGECKiRnLjxg3Y2tqiZcuWtd5HpVJxBoSIiJo1BhAiokaSlpaG1q1bw9Ky9j9qnZ2dGUCIiKhZYwAhImokN27cqNPyK4BLsIiIqPljACEiaiT1DSCcASEiouaMAYSIqJEwgBAREVXFAEJE1AhKS0uRkZGB1q1b12k/XgNCRETNHQMIEVEjyMjIQHl5OWdAiIiI7mLWASQrKwvDhg2Dg4MDgoKCcPDgQYP1CgsLERERAScnJ/j4+GDz5s165evWrYO3tzcUCgWmTJmCkpISqeynn35CaGgonJycEBwcjD179jTqMRHRg6E+nwEC3Akg+fn5KC0tbYxuERERNTmzDiCvvPIKvLy8cPv2bXz44YcYP368wbvDREVFITs7G+np6diyZQteeuklXLp0CQCQmJiIWbNmYceOHUhLS8O1a9ewcOFCAEBZWRnGjRuH2bNnQ6PR4JNPPsFTTz0FjUZj0uMkouanIoDUdQmWSqUCAKjV6obuEhERkVkw2wCi1Wqxc+dOzJ8/Hw4ODhg9ejQ6deqE77//vkrdDRs2ICoqCgqFAr169cLIkSOxZcsWAMCmTZswYcIEhIWFQalU4t1338XGjRsB3PkFr9Fo8PTTT8PCwgJDhgyBvb09rl+/btJjJaLmJzU1FW5ubpDL5XXaryKAcBkWERE1V2YbQC5fvgylUglPT09pW2hoKJKSkvTq5eTkIDMzEyEhIQbrJScnVylLTU1FYWEhXF1dMWHCBGzYsAE6nQ7ff/89HB0d0a5dO4N9Ki4uhkaj0XsQERly5coVtG3bts77MYAQEVFzZ7YBRKvVQqFQ6G1TKBTQarVV6llZWcHBwcFgvbvbqfi6onzcuHH497//DZlMhgkTJmDZsmWQyWQG+7Ro0SIolUrpUdelFUT04Lhy5QoCAgLqvB8DCBERNXdmG0DkcnmVGQaNRlNlOYNcLodOp0NBQYHBene3U/G1XC7H+fPnMWXKFOzcuRMlJSX48ccf8cwzz0hrt+82d+5cqNVq6ZGWltYgx0pEzc+9zoDw09CJiKi5MtsAEhgYCLVajczMTGlbfHw8OnbsqFfP2dkZHh4eSExMNFgvODi4Spmfnx/s7e1x7tw5hIaGok+fPrC0tER4eDiCgoJw4sQJg32SyWRQKBR6DyKiu+Xl5eHWrVv1CiAKhQIWFhacASEiombLbAOIXC7HyJEjERUVhcLCQuzatQvnzp3DiBEjqtSNiIjAggULkJeXh+PHj2PXrl2YMGECAGDixInYunUrzpw5A7VajQ8++AAREREAgC5duiAxMVEKHL/99pvBkENEVBcpKSkAUK8AYmlpCYVCwQBCRETNltkGEABYunQp0tLS4Orqitdffx1bt26Fs7MzYmNj9ULC/PnzpQvWx48fj6VLlyIoKAgAEBISgk8++QQjRoyAt7c3WrdujbfffhvAnVmWL774ApMnT4aTkxMmT56MJUuWIDg4uEmOl4iah3sJIAA/jJCIiJo3CyGEaOpO3K80Gg2USiXUajWXYxGRJCYmBjExMcjJyYGFhUWd9+/SpQt69+6NL7/8shF6R0REzdn98P7UrGdAiIjuR0lJSQgODq5X+AA4A0JERM0bAwgRUQM7d+4cOnXqVO/9nZ2dGUCIiKjZYgAhImpAZWVlOH/+/D0FEM6AEBFRc8YAQkTUgFJSUlBcXMwAQkREVA0GECKiBnTu3DkAd+7AV18MIERE1JwxgBARNaAzZ87A3d0dbm5u9W6DAYSIiJozBhAiogZ04sQJ9OzZ857aUKlUKCgoQElJSQP1ioiIyHwwgBARNRCdToeTJ0+iR48e99SOSqUCAM6CEBFRs8QAQkTUQC5cuIC8vLwGmQEBGECIiKh5YgAhImogx44dg6WlJcLCwu6pHQYQIiJqzhhAiIgayP79+9G9e3c4OTndUzsMIERE1JwxgBARNYCysjL89NNPGDRo0D23xQBCRETNGQMIEVEDOHbsGHJzcxskgDg5OcHCwoIBhIiImiUGECKiBrBp0ya0bt36nu+ABQCWlpZQKpUMIERE1CwxgBAR3aPCwkJ8++23mDhxIiwtG+bHqrOzMwMIERE1SwwgRET3aN26dcjNzcW0adMarE1+GjoRETVXDCBERPdAq9Vi0aJFGDduHNq2bdtg7TKAmLeysjIIIZq6G0RE9yWzDiBZWVkYNmwYHBwcEBQUhIMHDxqsV1hYiIiICDg5OcHHxwebN2/WK1+3bh28vb2hUCgwZcoUlJSUSGUpKSno3bs3HBwc0K1bN8THxzfqMRFR8zJ79mzcvn0bMTExDdouA4h5KSoqwqpVq9C/f38olUrY2NjAzs4OAQEBGDduHGJiYvDzzz9Do9E0dVeJiMyedVN3wJhXXnkFXl5euH37Nvbv34/x48cjJSUFzs7OevWioqKQnZ2N9PR0nDt3DkOHDsVDDz2Edu3aITExEbNmzcL+/fsRGBiI0aNHY+HChZg/fz4A4Omnn8awYcNw8OBBrF69GmPGjMGlS5dgbW3Wp4aImlh5eTneffddLF++HCtWrICfn1+Dtq9SqXDhwoUGbZPq5+eff8bUqVNx/fp1DBo0CHPnzkXLli1RUFCA1NRU/P7774iOjkZeXh4sLCzQoUMH9OjRA927d0f79u3h5+eHVq1aNfjvlZKSEvz555+4ceOG9Pjzzz8hk8nQokULdOjQAZ07d0bbtm0b7Nokav7KysqQkZGBGzduIC0tDTdu3EBRURFsbGzg6uoKPz8/dOzYEa1atWrqrlIlQggkJyfjwIED2Lt3b1N3p0YWwkznkLVaLVxdXXHt2jV4enoCAB599FFMmzYNkydP1qvr6emJHTt2SHefmTx5Mtq2bYv33nsPc+fORW5uLpYtWwbgzi+SadOm4erVq7h48SK6d++OrKws2NraAgB8fX2xYcMGPProozX2UaPRQKlUQq1WQ6FQNOThE5EZ0mg0uHbtGo4cOYKVK1ciKSkJH374IWbPnt3grzVr1iz88MMPOH/+fIO33Zzl5+fjypUrKCkpgZ+fH1q0aHFP7X366aeYNWsW+vXrh+XLlyMoKMhgPZ1Oh4sXL+LkyZM4ceIETp48iYSEBJSVlQEArK2t4e7uDldXV7i6uqJFixZwdXWFk5MTHBwc4OjoqPevhYUFSktLUVpaiuLiYmRlZSEzMxOZmZnSm8LMzEy9ZWBubm5o1aoVSktLcevWLdy+fRsAoFQq0b17d/Ts2RM9e/ZEjx494Orqek/nhRpOaWkpzp8/j4SEBGRkZOCvv/7C33//jeLiYpSUlEiPwsJCvUdBQQGKiopQWloKnU4HnU4HIQTkcjmUSiVUKhVUKhWcnZ2rPIA7AbaoqAi3bt1Ceno60tPTkZaWhvT0dJSXl0v9UyqVcHR0RGlpKbKzs6HT6QAAPj4+eOSRR9C7d2/07t0bnTt35h9vTSQvLw83b97EjRs3cPbsWfzxxx84fPgwMjIyIJPJ0LNnTxw5csSs35+a7Ui5fPkylEqlFD4AIDQ0FElJSXr1cnJykJmZiZCQEL16J0+eBAAkJyfr3Zc/NDQUqampKCwsRHJyMoKCgqTwAQCdO3dGUlKSwQBSXFyM4uJi6XnFVHunTp2M/nWpNhmvoerw9fh6fL3Ge72KN5M2NjYYMGAAVq1ahZ49e9aqH3XFJVh1c/r0acybNw8//vij9H0CgIcffhgzZszAxIkT6/TmqLy8HLNnz8bixYsxZ84cfPDBB0Z/zltZWSE4OBjBwcF49tlnAdxZtnX9+nWkpqYiNTUVmZmZuH37Nv7++2/8/fffuHLlCrRaLQoKCpCfn4+CggK9JcIVLCws0KJFC7i7u8PDwwPBwcEYPHgwfHx8pEfr1q1hb2+vt99ff/2Fs2fP4tSpUzh+/DiWL1+OBQsWAADatm2LHj16oEuXLnBzc4OLiwtkMpm0b8V4r8tDp9NVuTbGwsLC4L+13VbfsoZoSyaTwd7evtqHnZ2d3sPa2lqvHUOys7ORkJCAhIQExMfH448//kBSUpL0fVepVFJQtbOzg62tLWxtbSGXy+Hm5mawDzY2NrCysoKVlRUsLCyQl5cHtVoNtVqN3Nxc5OTkICMjAzk5OcjJyZF+rtja2kImk6Fly5Zo1aoVAgIC8Nhjj0njqeLfym9gy8rKkJaWhrNnz+LYsWM4evQotm3bhtLSUsjlcvTs2RNdu3aFr68vPD09IZPJYGNjg+LiYqjVamg0Gulx93ONRoPCwsIq46ni68rfn8rft7p+ffe26r7/df26unIhBIQQKC8vb5B/y8rK9N6LOjg4IDQ0FE899RQGDhyI8PBwlJWVQalUVjsOzYHZBhCtVlsltSkUiiq/kLVaLaysrODg4KBXT6vVGmyn4mutVlvta1Tse7dFixbh/fffr7J9woQJej+4Danph1JD1uHr8fX4eo3Tlkqlgq+vLzp37gwnJ6davXZ9MYDUTmJiIt577z3s2LED7du3x6effoqwsDDIZDIkJSVh8+bNiIyMxEcffYTVq1fX6nNaiouLMWXKFGzZsgX//e9/MWPGjHr1zc7ODkFBQdXOmhhSVlaG/Px8AHeCro2NTa3e2BrSsmVLDBw4EAMHDgRw541Qamoqjh8/jhMnTuD48ePYuXNntb/zjLGysoK1tTWsra2rfF0R1CqCyN3/1nZbfcsaqi1DYdAYS0vLKqHEzs4OMpkMWq0Wt27dkv5wKZPJ0LFjR3Tr1g3PPfccunTpgs6dO5vtX6srWFtbw8/PD35+fhgzZgyAO9fhnj59GkePHsXRo0fx3XffIS0tDaWlpQb3VygUUCqVev96eXmhQ4cOUpC7e1xZWlrCwsJCejMPoF5f372t8nZDz2vzdU31LCwspP5X/GtoW23rWFpaws3NDZ6enmjVqhX8/f1hZWWl15/74Vo0sw0gcrm8ygnUaDSQy+VV6ul0OhQUFEghpHK9u9up+Foul9f6NSrMnTsXs2bN0qvbunVrvPvuu2b/Q4OI7i8qlQpFRUUoKiqCnZ1dU3fH7Jw/fx7z58/HN998Az8/P6xfvx4TJ07U+0XctWtXRERE4PTp05g+fToeeeQRzJw5EwsWLKj253xubi7GjBmDY8eOYevWrRg3bpypDgnAnTdojfWXSwsLC/j7+8Pf3x8TJ06UtpeUlCAnJ6fKG+6K8HP3o+Iv7c1deXk5iouLUVBQUGX5U2FhofT/s6ioCMXFxXrP7344OjrCw8MD3t7e6Ny5M9q1a9dslivZ29sjPDwc4eHh0jadTieNqdLSUtjb20OhUEAmkz0QY4dqZrajPzAwEGq1GpmZmfDw8AAAxMfHV7nPvrOzMzw8PJCYmCj9ZSs+Ph4dO3YEAAQHByMxMVGqHx8fDz8/P9jb2yM4OBgXL15EaWkpbGxsAAAJCQnVrueWyWQ1znQQETUElUoFAFCr1fddACkpKcHVq1dx+fJlXLt2DTdv3pQet27dQn5+vrSkVSaTSevVfX19ERAQAH9/f+lfDw8P6Q2LWq3Gzz//jPXr12Pnzp1o1aoVVqxYgWeffVb6GW5IWFgYjh8/jk8//RRRUVHYtm0bvvzySwwbNkzvzdDJkycRERGB27dv46efftJ7Q9Wc2drawt3dvam7YXYsLS2lpU5UN1ZWVvd8/RU1b2Z7EToAjB8/Hi4uLliyZAkOHDiAZ5991uBdsGbPno3z589j8+bNSEpKwuDBg3HixAkEBQUhMTER/fr1w4EDBxAQEICxY8eid+/e0l2wunfvjhEjRuCNN97AmjVr8PHHH9f6Lli8CJ2IGktcXBz69u2LCxcu1GkJjyn9/fffSEhIQGJiIi5duoTLly/j8uXLuH79unQRq42NDTw9PaWHh4cHnJycIJPJYGtri+LiYmg0GmRnZyM1NRUpKSm4deuW9Bp2dnZwcXFBSUmJdFF1SEgIZs6ciYiIiDr/Uejq1at46aWXsH//fnTp0gVDhw6FXC7Hr7/+ir179yIsLAyxsbFo165dw50oIiITuh/en5rtDAgALF26FJGRkXB1dYW3tze2bt0KZ2dnxMbGIjo6Wrogff78+Zg2bRo8PT3h7OyMpUuXSr+wQ0JC8Mknn2DEiBHQaDT4xz/+gbffflt6jU2bNiEyMhLR0dFo3749tm3b1mymRYno/lUxA2Iu14EUFBTgxIkT+PXXX/Hbb78hPj4eGRkZAO7MDrdt2xaBgYHSBzIGBgYiMDAQXl5edb4FbH5+vnThdkpKCnJzc2FjY4M2bdqge/fuCAwMrPdx+Pv7Y9++fThw4ABWrFiBtWvXorCwEJ06dcLatWsxadIko7MpRER078x6BsTc3Q8Jk4juTzdu3ICvry/27dundyc/UxFC4MKFC9i1axd2796NEydOoLS0FCqVCo888gi6deuGkJAQdO7cGYGBgfzDDRGRmbgf3p/yNwYRkRlycXEBcGeZkyldvXoV69evR2xsLK5cuQIHBwcMGDAAS5YsQXh4ODp27MgPtSMionvCAEJEZIYcHR0hk8lMEkDKy8uxZ88eLF68GIcPH4aTkxPGjx+PJUuW4PHHH+dFuERE1KAYQIiIzFDFh89VXHjdGIQQ2Lp1K+bNm4cLFy6gV69e2LhxI8aMGaP32UpEREQNiQGEiMhMNWYASUhIwMsvv4yjR49i6NChWL16NXr37t0or0VERFQZF/ISEZmpxggg5eXlWLx4MR5++GHk5OTgwIED2LNnD8MHERGZDGdAiIjMVIsWLZCVldVg7RUXF+O5557Dpk2bMGvWLERHR/PDVYmIyOQYQIiIzFSLFi1w/vz5BmmrsLAQw4cPx9GjR/Htt99i3LhxDdIuERFRXTGAEBGZqYZaglVWVoannnoKx48fx/79+/Hoo482QO+IiIjqhwGEiMhMVQQQIQQsLCzq3c6bb76JvXv3YteuXQwfRETU5HgROhGRmWrRogVKSkqQn59f7zZ2796NxYsX46OPPsKQIUMasHdERET1wwBCRGSmWrRoAQD1XoaVm5uLadOmYcSIEZg5c2ZDdo2IiKjeGECIiMzUvQaQqKgo5OfnY9myZfe0hIuIiKgh8RoQIiIzdS8B5Pz58/jiiy/wn//8B61atWrorhEREdUbZ0CIiMyUq6srgPoFkA8++ACtWrXCq6++2tDdIiIiuiecASEiMlP29vZwdHSscwC5fPkyNm/ejM8//xy2traN1DsiIqL64QwIEZEZq8+noS9evBgtW7bE1KlTG6lXRERE9ccAQkRkxtzd3ZGZmVnr+lqtFhs3bsTzzz8POzu7RuwZERFR/ZhtADl16hRCQ0Ph4OCAvn374vr169XWTUlJQe/eveHg4IBu3bohPj5eKisvL8drr70GlUoFd3d3fPrpp3r7LlmyBD4+PlAqlejXrx8uXrzYaMdERFRXXl5euHnzZq3rb968GQUFBZg2bVoj9oqIiKj+zDKAFBcXY+zYsZg5cyays7PRs2dPPPPMM9XWf/rppzFw4EBkZ2fjueeew5gxY1BWVgYAWL58OeLi4nDp0iXExcXhP//5D37++WcAwOnTpxEVFYUffvgB2dnZ6N27N39pE5FZ8fT0REZGRq3rr1q1CkOGDIGPj08j9oqIiKj+zDKAHD58GHK5HM899xzs7Ozw3nvv4fTp0wZnQS5evIiLFy9i7ty5sLOzw4wZM6DT6XDs2DEAwIYNG/Dmm2+iZcuWCAoKwvPPP4+NGzcCAK5fv44uXbqgY8eOsLKywqRJk5CcnGzSYyUiMsbLy6vWAeT69es4deoUIiIiGrlXRERE9WeWASQ5ORkhISHSc0dHRwQEBBgMB8nJyQgKCtK700vnzp2RlJRksK3Q0FCpbMCAASgoKEB8fDxKS0uxfv16DBgwoNp+FRcXQ6PR6D2IiBqTl5cXsrKyUFJSUmPdnTt3wsbGBkOHDjVBz4iIiOrHLG/Dq9VqoVAo9LYpFApotdo61727vHKZXC7H0KFD8dBDDwEAvL29ERcXV22/Fi1ahPfff79+B0VEVA+enp4AgFu3bqF169ZG6+7cuRNPPPFElZ+JRERE5qRJZkAGDhwIOzs7g4+FCxdCLpdXmV3QaDSQy+VV2qqp7t3llctWrVqF7du3IyUlBUVFRfjXv/6F4cOHQwhhsN9z586FWq2WHmlpafd0HoiIauLl5QUANS7Dys7OxpEjRzB69GgT9IqIiKj+miSA7N+/H0VFRQYf77zzDoKDg5GYmCjVz8/PR0pKCoKDg6u0FRwcjIsXL6K0tFTalpCQgI4dO0rllduKj4+XyhISEjBq1Cj4+vrC2toaL7/8Ms6dO1fth37JZDIoFAq9BxFRY6ptANmzZw90Oh1Gjhxpim4RERHVm1leA9KvXz9otVqsW7cOxcXFWLhwIcLCwuDr61ulblBQEIKCghATE4Pi4mIsXboUVlZW6NWrFwAgIiICH330EbKysnDp0iWsXr0akyZNAgCEhYVh165dSE9PR3l5OVasWAF3d3e0aNHCpMdLRFQdV1dXWFtb1xhAduzYgR49ekhLtoiIiMyVWQYQmUyGbdu2YfHixVCpVDh69Cg2bNgglU+fPh3Tp0+Xnm/atAn79u2DSqXCqlWrsG3bNlhb37m85aWXXkKfPn0QGBiIPn364PXXX8cTTzwBAIiMjMSgQYPQvXt3ODs7Y8OGDfjuu+9gYWFh2gMmIqqGpaUlvLy8jC75LCwsxI8//sjlV0REdF+wENVd8EA10mg0UCqVUKvVXI5FRI3mscceQ8uWLfHNN98YLN+9ezdGjBiB8+fPo3379ibuHRERmZP74f2pWc6AEBHR/wkICMDVq1erLd+xYweCgoIYPoiI6L7AAEJEZOb8/f2rDSA6nQ67du3i8isiIrpvMIAQEZk5f39/ZGdnIzc3t0rZ8ePHkZWVhVGjRpm+Y0RERPXAAEJEZOYCAgIAAKmpqVXKduzYAXd3d/To0cPU3SIiIqoXBhAiIjNXEUAuXryot10Ige3bt2PUqFGwtOSPcyIiuj/wNxYRkZlzcXGBt7c3EhIS9LYnJSUhJSWF138QEdF9hQGEiOg+0KVLF5w9e1Zv2//+9z8olUrps42IiIjuBwwgRET3gdDQUPzxxx9627799luMGjUKtra2TdQrIiKiumMAISK6D/To0QOZmZm4cuUKACAxMRHJycn4xz/+0cQ9IyIiqhsGECKi+8Bjjz0GGxsb7Nu3DwCwfPlyeHh4YPDgwU3cMyIiorphACEiug/I5XI8+uij2Lp1K27duoX169fj+eef5/IrIiK67zCAEBHdJ2bMmIFffvkFvXv3hq2tLWbOnNnUXSIiIqozBhAiovvEqFGjMHv2bKhUKnz33XdwdXVt6i4RERHVmYUQQjR1J+5XGo0GSqUSarUaCoWiqbtDRERERA+4++H9KWdAiIiIiIjIZBhAiIiIiIjIZBhAiIiIiIjIZBhAiIiIiIjIZKybugP3s4rr9zUaTRP3hIiIiIjo/96XmvN9phhA7kFeXh4AoHXr1k3cEyIiIiKi/5OXlwelUtnU3TCIt+G9B+Xl5cjIyICTkxMsLCyaujtUCxqNBq1bt0ZaWprZ3pqOmg7HBxnD8UHGcHyQMaYcH0II5OXlwcvLC5aW5nm1BWdA7oGlpSW8vb2buhtUDwqFgr8gqFocH2QMxwcZw/FBxphqfJjrzEcF84xFRERERETULDGAEBERERGRyTCA0ANFJpMhKioKMpmsqbtCZojjg4zh+CBjOD7IGI4PfbwInYiIiIiITIYzIEREREREZDIMIEREREREZDIMIEREREREZDIMIEREREREZDIMIA+wqKgoBAcHw9LSElu2bJG2FxQU4MUXX0TLli3h7u6Ojz/+WCr75ZdfIJfLpYeDgwMsLS2RlZUFACgsLERERAScnJzg4+ODzZs3G+3DqVOnEBoaCgcHB/Tt2xfXr1+XypYuXYouXbrA2toaMTExNR5PfdqKjo6WjkUmk8HGxkZ6Pn36dADADz/8gLZt28LR0RGjRo1CTk6OtH9WVhaGDRsGBwcHBAUF4eDBg0b7GBMTAzc3N7i4uOCNN95A5XtAGOv/3Wo6z+vWrYO3tzcUCgWmTJmCkpKSGs/f/cDY+TZ2bu/WkOPO2LlOSUlB79694eDggG7duiE+Pr6eR061ZYoxMmvWLPj7+8PJyQlhYWGIi4sz2ieOEfNhivERFRWF1q1bQ6FQIDAwEGvXrjXaJ44P82GK8VHh2rVrsLe3l95rVKfZjg9BD6wNGzaI/fv3ix49eojNmzdL29966y0xYMAAoVarxY0bN0Tbtm3Fvn37DLbx2WefiT59+kjPZ8+eLYYMGSLUarU4evSoUCqV4uLFiwb3LSoqEt7e3mLNmjWisLBQvPHGGyI8PFwq3759u/j+++/FmDFjxKJFi4weS0O0tWjRIhEZGam37datW0KlUom9e/cKrVYrJk2aJJ555hmpfPz48WLatGkiPz9fbN++XTg7O4vs7GyD7e/Zs0f4+PiIlJQUkZGRITp06CDWrFlTq/7fzdh5TkhIEM7OzuLUqVMiNzdX9OvXT7z77rtGz9/9orrzbezc3q0hx11N5/rhhx8W8+bNE4WFheK///2v8PPzE6WlpQ1zMsggU4yRefPmicuXLwudTie2bt0qnJ2dhUajMdgWx4h5McX4uHTpktBqtdLXnp6e4ty5cwbb4vgwL6YYHxVGjx4tevXqJV588cVq+9OcxwcDCIm+ffvqBZBu3bqJvXv3Ss+jo6PFxIkTDe7bvXt3sXz5cum5h4eHOH78uPT8mWeeEe+//77Bffft2yfat28vPddqtcLe3l5cu3ZNr15kZGSNbwQboi1DAWT58uVi8ODB0vMrV64IOzs7UVRUJPLy8oStra3IyMiQysPDw8XXX39tsP2nnnpKxMTESM/XrFkjHnvssTr1v4Kx8zxnzhwxffp0qezgwYPCz8/PYDv3E2Pn29i5vVtDjjtj5/rChQtCoVCI4uJiqdzHx0ccOXKkFkdL9WHqMVLBy8tLnD592mAZx4j5aIrxcenSJeHu7i727NljsC2OD/NhyvGxb98+MWrUKBEVFWU0gDTn8cElWGSQqDS1KIRAUlJSlTpXrlzB2bNnMX78eABATk4OMjMzERISItUJDQ01uC8AJCcn69V1dHREQEAAkpOT69zfhmzLWLsBAQGwtrbG1atXcfnyZSiVSnh6ekrllY/3119/hUqlqratynVr6n9MTAyGDx8OoObzbOh1UlNTUVhYeE/noqkZO9/Gzi0AdO7cGZs2bQJwb2Plxo0bUKlUuHHjhsG2Kp/r5ORkBAUFwdbWVq8f1f1/oHvXFGPk2rVryM7ORtu2bQFwjJgzU46PmJgYODo6ol27dvD19cXjjz8OgOPDnJlqfJSUlGD27Nl6y9srPEjjw7qpO0DmZ+DAgViyZAl69eqF3NxcrFu3zmC92NhYDB48GC4uLgAArVYLKysrODg4SHUUCgW0Wq3B/bVaLRQKhd42Y/WNaci27m7Xzc3NYLtFRUUGXzM3NxcA0KdPH+lrQ32s3L+a+j9nzhy9doydZ0OvU7Hd3t6+TsdvTqo7R7m5uUbPLQAkJCTU2E5txoqPj0+N39OK7Y01Jql6ph4jpaWliIyMxOzZs6FUKgFwjJgzU46POXPm4M0338TJkyfx008/wdr6ztstjg/zZarxsXjxYgwdOlT6o0VlD9L44AwIVfHOO++gTZs26NChA4YMGYLx48ejVatWVept2rQJkyZNkp7L5XLodDoUFBRI2zQaDeRyOQCgY8eO0gXeN27cgFwuh0aj0Wuzcn1jGrItY4y1W9fXvLt+5bp1aaum82zodSq238/q8r2oy/ehpvp16VPlc91YY5KqZ8oxIoTAs88+i5YtW2LevHm17hPHSNMx9c8QCwsL9OjRAzdv3sSaNWtq1RbHR9MxxfhIT0/HV199hbfffrtefWpO44MBhKpwdHTEypUrcfPmTZw/fx4WFhYICwvTq3Pq1CncvHkTI0aMkLY5OzvDw8MDiYmJ0rb4+Hh07NgRAJCUlCSldh8fHwQHB+vVzc/PR0pKCoKDg2vsY0O2Zczd7V69ehVlZWXw9/dHYGAg1Go1MjMzDR5vTW1VrluX/td0ng29jp+f3309+wHA6Pk2dm7v1pBjxdi5Dg4OxsWLF1FaWiqVJyQkVNsvunemHCOvvvoqMjIysHHjRlhaVv+rlGPEfDTVz5Dy8nKkpKTUqi2Oj6ZjivFx6tQppKWlITAwEB4eHvj444+xfv16DB48uFZtNavx0cTXoFATKikpEYWFhSI8PFysX79eFBYWCp1OJ9LS0sTNmzdFWVmZ2L9/v/Dy8hLp6el6+86cObPKBdtCCPH666+LYcOGCY1GI3777TehVCrFhQsXDL5+xZ0i1q5dK4qKisScOXP07hRRWloqCgsLRUREhFiwYIEoLCwUZWVljdaWsbtg7du3T+Tn54uIiAi9u2CNGzdOvPDCC6KgoEDs3LnT6F2wdu/eLXx9fcXVq1fFzZs3RceOHavcBau6/tflPCckJAgXFxfx+++/i9zcXPH44483m7tgVXe+jZ3buzXkuKvpXD/88MNi/vz5oqioSHz55Zf31R1K7lemGCPvvfee6NKli1Cr1TX2h2PEvJhifKxatUrk5OQInU4nDh8+LBQKRbUXoXN8mJfGHh9FRUXi5s2b0uPf//63mDx5srh9+7bBtprz+GAAeYBFRkYKAHqPQ4cOiZ9//ll4e3sLe3t70bVrVxEXF6e3X1lZmfDw8BD79++v0mZBQYGYOHGicHR0FN7e3iI2NtZoH06ePClCQkKEnZ2dCA8P17tLRFRUVJX+rV27ttHaMhRAhLhz+1x/f39hb28vRowYoRcw/vrrLzFkyBBhb28vAgMDxYEDB6SyuLg44ejoqNdWdHS0cHV1FSqVSsyePVuUl5fXqv8ffPCB3t24ajrPa9euFV5eXkIul4vIyEhRVFRU7Xm7nxg738bObXBwsNi4caP0vL5j5fr168LR0VFcv35dqm/sXF++fFn06tVL2NnZiS5duog//vijEc4KVWaKMQJAyGQy4ejoKD0q9uUYMW+mGB9jxowRLi4uQi6Xi+DgYLFixQqpjOPDvJlifFR2912wHqTxYSGEkU9SISIiIiIiakC8BoSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEyGAYSIiIiIiEzm/wGHluF69TJ1hwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# The `plotst` function allows us to quickly visualize output seismograms\n", + "! seisflows plotst output/solver/001/syn/AA.S000000.BXY.semd --save AA.S000000.BXY.semd.png\n", + "Image(filename=\"AA.S000000.BXY.semd.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAALuCAYAAABW5XIYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4x0lEQVR4nOzdeVxUZf8//tewMwwzDIiCIoiIKIiYeKtpZpZLZppaahnqrVlatpp1Z3dFqbnclnf1KSzb7KvkkpmimUummZqKmchiLgiKCAoMzDAsAwzX7w9/nNtpAIfFGUZez8fjPGTOdc113mdEOS+us8iEEAJERERERERW4GDrAoiIiIiIqPVgACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACEiIiIiIqthACFqpWJjYxEeHg4HBwesX7/epK20tBSzZs1C27Zt0a5dO7z33nsm7TqdDk888QS8vb3h5eWFyZMnS22ZmZkYMWIEVCoVwsLCsGfPnjprqKqqwsMPP4wOHTpAJpMhNzfXpH3u3Lno3LkzPD090adPHxw4cKDOsfR6Pe666y74+PhArVbjvvvuw19//SW1x8XFoVevXnBycsLSpUul9YsXL4ZCoYBCoYCrqyucnZ2l17Nnz8bvv/+OIUOGQK1Ww9/fH88++ywqKiqk9z/11FPw9/eHUqlEZGQktm/fXmeNq1evhpOTkzS+QqHApUuXpPYNGzYgNDQUCoUCY8aMgUajqXOsuvYHALZv344777wTKpUKAQEBeOedd+ocpymuXr2KBx98EL6+vnBzczNrP3nyJAYMGABPT0/ccccd+PPPP6W22bNnm3wOzs7OGD16tNSemJiIqKgoyOVyDB48GBcvXqy3lqVLl8LX1xfe3t549dVXIYQAcPPvseYaKyIiQtoXBwcHuLu7S69/++03VFdX48UXX4SXlxfatWuH//73vybb/Omnn9ClSxd4eHjgoYceQmFhYZ315eXlYdSoUZDL5QgLC8PevXvN+lRVVSEyMhLdunWrc5ybfTb1fY/9XX5+PiZOnAhvb28EBgYiPj6+1n6zZ8+2+O+BiG5jgohapTVr1ojdu3eLfv36iXXr1pm0vf7662LYsGFCq9WKS5cuiS5duoidO3dK7ePHjxfPP/+8KCoqEhUVFeLEiRNS24ABA8S///1vUVlZKX799Vfh7e0t8vLyaq2hsrJSfPDBB+L3338XAEROTo5J+9tvvy3OnTsnjEaj2Lhxo1Cr1UKn09U6VkVFhUhLSxNGo1EYjUbx8ccfi759+0rtP/zwg9i2bZsYN26cWLJkSa1jLFmyREybNs1k3U8//SR++OEHodfrRX5+vhg0aJBYsGCB1H769GlRXl4uhBDi2LFjQqVSCY1GU+v4X3/9tRgxYkStbWlpaUKlUonExERRUVEhnn32WfHoo4/W2vdm+/Ptt9+Kn3/+WZSXl4uLFy+Kbt26if/3//5fnWM11rVr18TKlStFQkKCcHV1NWmrqKgQnTp1Ep999pmoqqoS69evF0FBQcJgMNQ61h133CG++OILIYQQ5eXlIiAgQHz55ZeirKxMvPrqq2LQoEF11vHjjz+KwMBAkZ6eLq5cuSK6d+8uvvzySyHEzb/HbsVYYWFhYt++fSbrPvnkE3HHHXeIq1evir/++kv4+fmJvXv3CiGEuHr1qvDy8hI7duwQer1ePP7442LKlCl11jhhwgQxc+ZMUVJSIn744QehVqvNvuf++9//ioEDB4qwsLA6x7nZ/ljyb6bG5MmTxdSpU0V5eblISUkRbdu2FampqSZ9/vjjDzFo0CCL/h6I6PbGAELUyg0ePNgsgPTu3Vvs2LFDer148WIxefJkIYQQKSkpIigoSFRVVZmNpdPphEwmEyUlJdK64cOHi1WrVt20DksOStq3by+OHz9+07GqqqpEXFyc8PX1NWubNm1agwLI361atUo8+OCDtbYlJiYKV1dXswOvGvUFkI8++khMnDhRen3lyhXh7Ows9Hp9vfXUtz81Xn/9dfHss8/W26cpMjIyzALIqVOnRNu2bU3Wde3aVezevdvs/WlpacLV1VUUFRUJIYTYuXOn6Natm9Su1+uFu7u7yMzMrHX7jz76qFi6dKn0+ssvvxRDhgwx62fJ91hzjFVbAOnfv79Yv3699PrNN98U06dPF0II8emnn4r7779fajt//rxwc3OTgu2NiouLhYuLi7hy5Yq0btCgQeKbb76RXufm5oru3buL7du31xtALN0fS77HvL29RVpamvT6qaeeEq+//rr0urq6WgwcOFAcP36cAYSIBE/BIqJaif//tJOar1NTUwEAx48fR9euXRETEwMfHx/07dsXv/32m0XvbYrMzExoNBp06dKl3n49e/aEm5sbnn32WfzrX/9q8nb/7vDhw4iIiDBZ98wzz8Dd3R3/+Mc/cP/99yM8PBwAcPDgQXh5eZn0PXToEHx8fBAeHo5PP/3UpO3vn1tlZSXOnTsH4PppQQ8++GCz1WwLdX0vxMfH48EHH4RKpQIApKWlITIyUmr38PBASEgI0tLSah337/2joqIa/T3XnGNZOu7f20JCQuDk5IQLFy4AuP799cwzzwAAzp07B5VKBX9//zpr/Ne//oXXX38dHh4eZnX07NkT3377bZP3pzb1/bv/5ptv0K1bN0RHR9+SbRORfWEAISIzw4cPxwcffICioiJkZmZi9erVKC0tBQBkZ2djz549GDp0KHJzc/Haa69h7Nix0Gg08PT0RL9+/bB48WJUVFRg//79+PXXX6X3NlZlZSWmTZuGV155RTpIrcupU6eg0+nw6aefonv37k3a7t/99NNP+Omnn/DSSy+ZrI+Li4Ner8eePXswePBgaf1dd92FoqIi6fXgwYORnJyMvLw8fP3111iwYAF++OEHAMB9992HXbt24dixYzAYDFiyZAlkMpn02b322mv1Xl9Sl88++ww5OTmYNm1aI/a48cLCwuDm5oZPP/0UlZWVWLduHc6fP1/r98K3336Lxx9/XHqt1+uhVCpN+iiVSuj1+lq39ff+9fW9meYcy9Jxb7a/cXFxiIuLs6jv77//jrNnz5p8njc6deqUyTVbzWX48OFYtmwZysrKkJycjM2bN0t/11qtFosXL8bixYubfbtEZJ8YQIjIzBtvvIFOnTqhe/fuGDlyJCZMmIAOHToAANzd3REcHIwnnngCzs7OGD9+PEJCQvD7778DuP7b7OPHj6N9+/ZYtGgRHnnkEem9N16oe+PF1/URQuCf//wn2rZti7fffltaX99Y7u7umDlzJmbMmFHvxbwNkZiYiOnTp2PLli1o166dWbujoyOGDh2KvXv3YteuXbWOERwcjE6dOsHBwQH9+vXD888/LwWQ8PBwrFy5EtOmTUPHjh3h5+cHT09P6bNrjO3bt2PBggXYvn073N3db9r/t99+kz7TkSNHNnq7AODi4oIffvgBa9asgZ+fH7Zs2YKhQ4ea7c/hw4dRWFiIBx54QFqnUCig0+lM+ul0OumC7r/X+Pf+NX1vpjnHupn6xq1vf282zo19q6ur8fzzz+PDDz+ETCZrcs0N8dFHH6G0tBRBQUGYMWMGHnvsMenv+u2335ZuakFEBABOti6AiFoeDw8PrFq1Snr9xhtvoE+fPgCAHj16mPW/8dSLzp07mxyA33XXXdJvXBtzKstzzz2HK1euYOfOnXBw+N/vTG42lhACer0eOTk5UKvVDd7ujU6fPo0xY8bgq6++Qv/+/evtW11djfT0dIvGvXF/AGDy5MnSZ3X+/Hn83//9HwICAhpV84EDB/DEE09gx44dNz1trcagQYOa5bf9NXr37o1Dhw4BAIxGI0JCQsxOwYmPj8cjjzwCV1dXaV14eLjJ919JSQnS09MRHh6OoKAgsxrDw8ORnJwshZikpCSLTjmrbX8bO9bN1Ixbc3rejeOGh4djy5YtUt8LFy6gqqoKnTt3NhsnNDQUWq0Wubm58PPzk8aaOXMmdDodTpw4Id1NrKKiAjqdDn5+frhw4QLkcnmT96Muvr6++O6776TXMTExuPPOOwEA+/btQ3Z2NpYvXy6115wKNnTo0FtWExG1XJwBIWqlKisrUV5ejurqapOvAeDy5cvIzc2F0WjEnj178PXXX0unHd1zzz0QQuCbb76B0WhEQkICMjIypION06dPo6SkBGVlZfjwww9RUlJi8tvtvzMYDCgvLzf7Grh+q+BDhw5h69atJgeotUlKSsKBAwdQUVGBkpISvP766/Dy8kJoaCiA67ccLS8vh9FoNPn6ZrKysjBixAgsXbrUbD/0ej3i4+Oh1+tRVVWF77//Hvv27cOgQYNqHWvnzp3Iy8sDAJw4cQIfffSRyXUdJ06cQHV1NbKzszFr1iy89tprcHR0rHWs+vbn5MmTeOSRRxAfH3/Lz7kvLy+HwWAw+xoAkpOTYTAYUFxcjNdeew29evUyCbBVVVXYuHGj2elC99xzD/R6PVavXg2DwYBFixahT58+CAoKqrWGmJgYrFy5EhkZGcjNzcWKFSsQExMjtdf3PXYrx/r7uMuXL0deXh7Onj2LL774QtrvcePG4ciRI9i1axdKS0sRGxuLCRMm1Po9X3OL5tjYWJSVlSEhIQEpKSkYPXo0VCoVsrOzcfLkSZw8eRJffPEFgoODcfLkyTpnwOrbn4b8m0lPT0dhYSEqKyuxfv16/Pbbb5g+fToAYO/evUhOTpbqqllX178TImoFbHLpOxHZ3LRp0wQAk6Xmzj2//PKLCAgIEO7u7uKOO+4QBw4cMHlvUlKS6NOnj/Dw8BC9evUSv/76q9S2fPly4e3tLRQKhXjwwQfFpUuX6q0jKCjIrI4aAISrq6vw8PCQlrVr19Y6TmJioujVq5dQKBTC29tbjBgxQiQlJUntsbGxZtv5+uuvTcao7S5Yb7/9tpDJZCY1hIeHCyGu351pyJAhQqVSCaVSKXr37i02b94svffAgQPCw8NDej137lzh6+srPDw8RNeuXcVHH31ksq2+ffsKDw8P4efnJ95++21RXV0ttb377rsmd0qqb3/++c9/CgcHB5Oab3xvc/p7DUFBQVLbiy++KH02MTExorCw0OS927dvFwEBAcJoNJqNe+zYMREZGSnc3NzEoEGD6rwDVo3FixcLHx8f4eXlJV555RWTz66+77FbMVZtd8EyGo3ihRdeECqVSvj6+or333/fpP3HH38UnTt3Fu7u7mL06NEmt9WdNWuWmDVrlvT62rVrYuTIkcLd3V2EhoaKPXv21Lof+/btM7sLVnh4uMm/ofr2p77vsb9/b8fHx4u2bdsKuVwu7r77bpGcnFxrTUJYdjcyIrq9yYS44dwJIiIiIiKiW4inYBERERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdUwgBARERERkdU42boAe1ZdXY0rV67A09MTMpnM1uUQERERUSsnhEBxcTHat28PB4eWOdfAANIEV65cQceOHW1dBhERERGRiaysLAQEBNi6jFoxgDSBp6cngOt/wUql0sbVEBEREVFrp9Pp0LFjR+k4tSWy2wCSl5eHf/7zn9i3bx86duyIuLg43HfffWb9ysrK8OSTT2Lr1q1Qq9VYtmwZHnvsMbN+999/P/bv34/y8nKLa6g57UqpVDKAEBEREVGL0ZIvD7DbADJnzhy0b98e+fn52L17NyZMmID09HSo1WqTfrGxsdBoNMjOzkZKSgoeeOABREdHo2vXrlKfLVu2QK/XW3sXiIiIiIhaHZkQQti6iIbS6/Xw8fFBZmYm/P39AQB33303Zs6cialTp5r09ff3x5YtW9CvXz8AwNSpU9GlSxe89dZbAIDy8nL06dMHn376KYYOHdqgGRCdTgeVSgWtVssZECIiIiKyOXs4PrXLGZBz585BpVJJ4QMAoqKikJqaatKvsLAQubm5iIyMNOl37Ngx6fXSpUvx6KOPWnSRjsFggMFgkF7rdLqm7AYRERERUatjlwFEr9ebJTqlUomioiKzfo6OjpDL5Sb9ak63yszMxMaNG3HixAnk5ubedLtLlizBO++80+i6q6ur8ddffyE3NxfV1dWNHoduDUdHR3Tq1AnBwcG2LoWIiIjotmWXAUShUJjNPuh0OigUCrN+RqMRpaWlUgi5sd9LL72EhQsXws3NzaLtzp8/H3PnzjXZpqW34U1NTcWrr76Kq1evWtSfbCcsLAwrVqxAu3btbF0KERER0W3HLgNIaGgotFotcnNz4efnBwBISkrCzJkzTfqp1Wr4+fkhOTlZugYkKSkJERERAID9+/fj999/x5w5c2A0GmEwGODn54dff/0VYWFhZtt1dXWFq6trg+vV6XSYM2cOOnfujIULFyIkJASOjo4NHodurcrKSiQnJ+O9997Dc889hw0bNrToO0gQERER2SO7DCAKhQJjxoxBbGwsPvjgA+zZswcpKSkYPXq0Wd+YmBgsXLgQ69atQ2pqKhISEnD06FEAwJkzZ6RTobKysjBo0CCcPHkSbdq0adZ6f/31V5SUlGDZsmXw9fVt1rGped19991wdXXFnDlz8Ndff6F79+62LqnFOHjwIP71r38hLi4OUVFRti6HiIiI7FTLfD67BeLi4pCVlQUfHx/MmzcPGzduhFqtRnx8vDTDAQALFiyQLlifMGEC4uLipNmNtm3bws/PD35+flIw8PPzg5NT8+ay9PR0BAQEMHzYiTvuuAMAcOHCBRtX0rK8/vrrOHz4MN59911bl0JERER2zC5nQADA19cXO3bsMFv/+OOP4/HHH5deu7u7Iz4+/qbjderUqUG34G2IqqoquLi43JKxqfnV/F1VVlbauJKWQ6vV4vDhw2jXrh327dsHIQRPTyMiIqJGsdsZkNtJSEiIdI3K382YMQNubm5md/i6kRACCxcuRFBQEBQKBYKCgvDiiy9K7Xl5eRg1ahTkcjnCwsKwd+9ek/cvXboUvr6+8Pb2xquvvoobHw2TmJiIqKgoyOVyDB48GBcvXpTaysrKEBMTA09PTwQGBmLdunUm465evRoBAQFQKpWYPn06KioqpLZZs2YhJCQEMpkMR44cseRjAnD9zmUymQwKhQIKhQIdOnQwuTPZ0aNH4evri7y8PGndypUrER0djezsbPj4+ODEiRNSm9FoxB133IGvvvrK4hpao6SkJBiNRrz88svIz8/n7BARERE1GgOIjR0+fBh5eXk4ceIEzp8/b9JWXl6O77//HnK5HJs2bapzjG+++QabN2/GgQMHoNfr8dtvvyE6Olpqv/Gp8cuWLcOECRNQWFgIANixYwdWrlyJo0ePIjU1Fdu3b8fXX38N4PpzT8aPH48XXngBGo0G/fv3x5QpU6Rxb3zK/Pr16/H000/j7NmzAIDk5GTMnTsXW7ZsQVZWFjIzM7Fo0SLpvTUH/ZY8f+XvXF1dodfrodfrcfDgQXz++efYvXs3AKBfv36YOHEiXnrpJQBATk4O3njjDaxatQodOnTAwoUL8dRTT8FoNAIAPvzwQ6hUKkyfPr3BdbQmKSkpcHZ2xrhx4wBcv36KiIiIqDEYQGwsPj4e48ePx7333mt2qti2bdvg7e2NefPm1XsaWWJiIkaNGoWgoCAAQGBgoBQU9Ho9tm7digULFkAul2Ps2LHo0aMHtm3bBgBYs2YNnnnmGXTu3Bn+/v6YN28e1q5dC+D6XcIUCoU0C/PWW2/h+PHj0izImjVrEBsbC6VSiQEDBmDMmDFYv349AODbb7/FpEmT0KdPH6hUKrz55pvSuAAwe/ZsDB48uMl3AwsODsaAAQNw+vRpad2SJUuwb98+/Pzzz3juuecwZcoUKZA9/fTTcHV1xccff4ysrCwsXrwYq1at4ulEN5GcnIxu3bohODgYLi4uSE9Pt3VJREREZKcYQGyosrISGzduxKRJkzBp0iSzkLF27VpMnDgRjz76KA4cOIDLly/XOk6/fv2watUqrFixAidOnDB5yOHNnhqflpZm9qT4uto8PDwQEhKCtLS0Op8yX9+4GRkZKCsra/DnVJ/09HQcPnwYffv2ldYplUp88MEHePTRR3H06FEsXLhQapPJZFi1ahUWLFiAadOm4YUXXkDXrl2btabb0fnz59G1a1c4OjoiODiYp2ARERFRozGA2NCuXbtQXV2NoUOHYty4ccjMzERiYiIAQKPRYOfOnZg0aRI6d+6M3r17m11jUWPq1KlYvnw5EhISMHDgQPj7+0vXNNT11Piap8H/vb2+thvbb/aU+drGrVnfVAaDAV5eXlAqlejSpQvuuusukwACAH379oVWq8WoUaPg6elp0hYREYEnnngCWVlZ+Ne//tXkelqDixcvSjNsISEhnAEhIiKiRmMAsaG1a9di/PjxcHZ2hlqtxvDhw6VZkI0bNyIwMBC9e/cGgFpnSG40bdo07N+/H0VFRYiNjcWTTz6J1NTUmz41/u/t9bXd2H7jU+YtHbdmfVO5urqiqKgIOp0OeXl5yM/Px6uvvmrSZ86cOZg6dSo2bNiAtLQ0szHCw8MREhLCu5NZoLq6GpcuXZICSEBAAK5cuWLjqoiIiMheMYDYSHFxMRISErBhwwbpWST79+/H+vXrYTQaER8fj6ysLKlt8eLFSEpKkk5xqourqyueeeYZqNVqnD592uSp8TVufBp8eHg4kpOTLWorKSlBeno6wsPDTZ4yb+m4wcHBcHd3b8KnZq5NmzYYN24cdu3aJa3buHEjzpw5g08++QSvv/46Zs+ebXJnL2qYvLw8GAwGKYD4+fmZfD8RERERNQQDiI1s3rwZbdq0wZkzZ3Dy5EmcPHkSaWlpKC8vx5dffonDhw/j119/NWm77777ap0F+eabb7Bz506UlJTAaDRi7dq10Ol0uOOOO0yeGl9WVoaEhASTp8bHxMRg5cqVyMjIQG5uLlasWIGYmBgAwD333AO9Xo/Vq1fDYDBg0aJF6NOnj3QgWvOU+eLiYhw5cgQJCQmYNGkSAGDy5MnYuHEjTpw4Aa1Wi3fffVcaFwAqKipQXl4OIYTJ1w1VVFSErVu3Sk8s12q1ePHFF7Fy5Uq4ubnhpZdeglarle7sRQ1Xc9OBGwPI1atXTa41IiIiIrKYoEbTarUCgNBqtfX2W758uZg4caLJumHDhom3337brO+zzz4rnJ2dxT333GPWtmnTJhEUFCSqq6tFeHi4WLt2rRBCiO+//170799fqFQqoVQqRe/evcUPP/wgve/atWti5MiRwt3dXYSGhoo9e/aYjLt48WLh4+MjvLy8xCuvvCKqq6ultmPHjonIyEjh5uYmBg0aJDIzM6W20tJSMXnyZOHh4SECAgJEfHy8ybhff/21aN++vVAoFGLatGmivLxcahs8eLAAYLJkZGQIIYR49913xf333y/1vf/++8W7774rhBAiIyNDABAeHh7Cw8NDeHt7i/Hjx4srV64IIYSYNWuWiImJManj8OHDwtfXV+Tl5ZnUNmLECLPPuEZ0dLTJZ9iafffddwKAKCgoEEIIsXnzZgHA5PMkIiKilsHS41NbkgnBc1MaS6fTQaVSQavVml2sfaP33nsPiYmJ2LBhgxWro6bo06cP3njjDYwdO9bWpdjcxx9/jJdffhnl5eWQyWT4/fffMWDAACQnJ6NHjx62Lo+IiIhuYOnxqS3xFCwiqldubi7atWsnPSvFz89PWk9ERETUUAwgVsKJJvvBvytTV69eRbt27aTXNV/n5OTYqiQiIiKyYwwgViCXy6HVanlgayeKiooAwOQZJ63Z3wOIXC6Hh4cHCgoKbFgVERER2SsGECvo06cPCgoKpIcMUsv2008/QSaTSc9gae2uXr0qnXZVQ61WQ6PR2KgiIiIismdOti6gNYiOjkZUVBTmzZuHUaNGoUuXLnB0dLR1WfQ3lZWVOHXqFHbt2oWHHnoIbdq0sXVJLUJubi6GDh1qss7b2xuFhYU2qoiIiIjsGQOIFTg6OuL//u//8Nlnn2Hfvn3YtGkTT8dqgRwdHdGpUyc888wzmDp1qq3LaRGEEGanYAGcASEiIqLGYwCxErlcjpdeegkvvfSSrUshsphOp4PBYDALIJwBISIiosbiNSBEVKerV68CAGdAiIiIqNkwgBBRneoKIJwBISIiosZiACGiOuXl5QEAfH19TdZzBoSIiIgaiwGEiOpUUFAAmUwGtVptsr5mBoQ3UyAiIqKGYgAhojppNBp4eXmZ3TZarVbDaDSiuLjYRpURERGRvWIAIaI6aTQaeHt7m62vWcfTsIiIiKihGECIqE51BZCaU7IYQIiIiKih7DaA5OXlYdSoUZDL5QgLC8PevXtr7VdWVoaYmBh4enoiMDAQ69atk9qOHDmCnj17wsvLC23btsW0adOg1+uttQtELV5BQUGtAcTLywvA9eeEEBERETWE3QaQOXPmoH379sjPz8eyZcswYcKEWm8LGhsbC41Gg+zsbKxfvx5PP/00zp49CwDo0qULfvrpJxQVFSEzMxPV1dVYuHChtXeFqMXSaDTw8fExW69UKgEwgBAREVHD2WUA0ev12Lp1KxYsWAC5XI6xY8eiR48e2LZtm1nfNWvWIDY2FkqlEgMGDMCYMWOwfv16AECbNm3QoUMHAIAQAjKZDBkZGVbdF6KWrK5TsDw9PQEwgBAREVHDOdm6gMY4d+4cVCoV/P39pXVRUVFITU016VdYWIjc3FxERkaa9Dt27Jj0+tKlS+jZsye0Wi0UCgV+/PHHOrdrMBhgMBik1zz4ottdXQHEzc0NTk5O/DdAREREDWa3MyA1p4DUUCqVZtdv6PV6ODo6Qi6X19kvMDAQRUVFuHr1Kl599VWTUPN3S5YsgUqlkpaOHTs20x4RtUwFBQW1noIlk8mgVCp5G14iIiJqMLsMIAqFwuw3rzqdDgqFwqyf0WhEaWlpvf0AoG3bthg5ciSmTp1a53bnz58PrVYrLVlZWU3cE6KWq6ysDOXl5bXOgADXwzxnQIiIiKih7DKAhIaGQqvVIjc3V1qXlJSEiIgIk35qtRp+fn5ITk6ut1+N6upqpKen17ldV1dXKJVKk4XodlVzi10GECIiImpOdhlAFAoFxowZg9jYWJSVlSEhIQEpKSkYPXq0Wd+YmBgsXLgQxcXFOHLkCBISEjBp0iQAwI4dO3DmzBkIIZCTk4M333wTQ4YMsfbuELVINQGktlOwAAYQIiIiahy7DCAAEBcXh6ysLPj4+GDevHnYuHEj1Go14uPjTWY4FixYIF2wPmHCBMTFxSEsLAwAcPXqVYwcORIKhQLR0dEICAjAypUrbbVLRC1KQUEBgLpnQDw9PRlAiIiIqMFkQghh6yLslU6ng0qlglar5elYdNvZvHkzHn74YeTn59c6C/Loo48iPz8fP//8sw2qIyIiotrYw/Gp3c6AENGtpdFoIJPJpKee/x1PwSIiIqLGYAAholppNBp4eXnB0dGx1nYGECIiImoMBhAiqlVBQUGd138ADCBERETUOAwgRFSrup6CXoMXoRMREVFjMIAQUa00Gk2dt+AFrs+AlJSUwGg0WrEqIiIisncMIERUq5vNgNTcWUOv11urJCIiIroNMIAQUa0suQYEAE/DIiIiogZhACGiWllyDQjAAEJEREQNwwBCRLW62TUgCoUCAE/BIiIiooZhACEiM2VlZSgrK6t3BqQmgJSUlFirLCIiIroNMIAQkRmNRgMA9QYQDw8PAJwBISIiooZhACEiMzUBxJJTsDgDQkRERA3BAEJEZiyZAXF3dwfAGRAiIiJqGAYQIjJTUFAAoP4A4uDgAA8PD86AEBERUYMwgBCRGY1GA5lMBi8vr3r7KRQKzoAQERFRgzCAEJEZjUYDLy8vODo61tuPMyBERETUUAwgRGTmZg8hrMEZECIiImooBhAiMlNQUGBRAOEMCBERETUUAwgRmbnZU9BrcAaEiIiIGooBhIjMaDQaqNXqm/bjDAgRERE1FAMIEZkpKCjgDAgRERHdEgwgRGTG0lOwOANCREREDcUAQkRmLL0InTMgRERE1FB2G0Dy8vIwatQoyOVyhIWFYe/evbX2KysrQ0xMDDw9PREYGIh169ZJbdu3b8edd94JlUqFgIAAvPPOO9Yqn6jFKisrQ3l5ucUzIAwgRERE1BBOti6gsebMmYP27dsjPz8fu3fvxoQJE5Cenm524WxsbCw0Gg2ys7ORkpKCBx54ANHR0ejatSuKi4uxaNEi3HXXXbh69SpGjBiBzp07Y8qUKTbaKyLbKygoAACLZ0B4ChYRERE1hF3OgOj1emzduhULFiyAXC7H2LFj0aNHD2zbts2s75o1axAbGwulUokBAwZgzJgxWL9+PQDgsccew3333QdXV1cEBgZi/PjxOHbsmLV3h6hF0Wg0AMAZECIiIrol7DKAnDt3DiqVCv7+/tK6qKgopKammvQrLCxEbm4uIiMj6+1X4/Dhw4iIiKhzuwaDATqdzmQhut3UzIBYehesqqoqVFRU3OqyiIiI6DZhlwFEr9dDqVSarFMqlWa/idXr9XB0dIRcLq+3HwB89tlnyMnJwbRp0+rc7pIlS6BSqaSlY8eOTdwTopanZgbE0iehA+AsCBEREVnMLgOIQqEwm33Q6XRQKBRm/YxGI0pLS+vtt337dixYsADbt2+Hu7t7ndudP38+tFqttGRlZTXD3hC1LAUFBXBwcIBKpbpp35p/S7wOhIiIiCxllwEkNDQUWq0Wubm50rqkpCSz06fUajX8/PyQnJxcZ78DBw7giSeeQEJCArp06VLvdl1dXaFUKk0WottNQUEB1Go1HBxu/t9DTQDhDAgRERFZyi4DiEKhwJgxYxAbG4uysjIkJCQgJSUFo0ePNusbExODhQsXori4GEeOHEFCQgImTZoEADh58iQeeeQRxMfHIzo62tq7QdQiWfoQQuB/p2BxBoSIiIgsZZcBBADi4uKQlZUFHx8fzJs3Dxs3boRarUZ8fLzJDMeCBQukC9YnTJiAuLg4hIWFAQA+/PBDFBQUYOzYsVAoFFAoFBg5cqStdomoRbD0IYQAZ0CIiIio4WRCCGHrIuyVTqeDSqWCVqvl6Vh02xg7diyqqqqwffv2m/bNyclB+/btsX37dowaNcoK1REREVF97OH41G5nQIjo1uAMCBEREd1KDCBEZKIh14DU3OKa14AQERGRpRhAiMhEQ2ZAHB0d4e7uzhkQIiIishgDCBFJhBANmgEBrt8JizMgREREZCkGECKS6PV6VFZWWjwDAly/DoQzIERERGQpBhAikmg0GgDgDAgRERHdMgwgRCQpKCgAgAbNgHh4eHAGhIiIiCzGAEJEEs6AEBER0a3GAEJEksbOgDCAEBERkaUYQIhIkp+fD2dnZ3h6elr8HoVCwQBCREREFmMAISLJtWvX0LZtW8hkMovfwxkQIiIiaggGECKS5OXloW3btg16Dy9CJyIiooZgACEiybVr1+Dr69ug93AGhIiIiBqCAYSIJDWnYDUEAwgRERE1BAMIEUny8vIaPAPCi9CJiIioIRhAiEjS2BmQ0tJSVFdX36KqiIiI6HbCAEJEAICqqipoNJpGBRAAKC0tvRVlERER0W2GAYSIAFx/BgiARl2EDoCnYREREZFFGECICMD1068ANHoGhAGEiIiILMEAQkQArl+ADjR8BkShUABgACEiIiLLMIAQEQDOgBAREZF1MIAQEYDrAcTd3V0KFJaq6c+noRMREZElGECICMD/ngEik8ka9D7OgBAREVFDMIAQEQDg6tWrDT79CmAAISIiooax2wCSl5eHUaNGQS6XIywsDHv37q21X1lZGWJiYuDp6YnAwECsW7dOaktLS8OwYcOgUqnQrVs3a5VO1CJduXIF7du3b/D73N3dIZPJGECIiIjIInYbQObMmYP27dsjPz8fy5Ytw4QJE1BYWGjWLzY2FhqNBtnZ2Vi/fj2efvppnD17FgDg7OyMyZMn4/3337d2+UQtTmMDiIODA+RyOQMIERERWcQuA4her8fWrVuxYMECyOVyjB07Fj169MC2bdvM+q5ZswaxsbFQKpUYMGAAxowZg/Xr1wMAQkNDMX36dHTp0sXau0DU4mRnZ6NDhw6Neq+HhwcvQiciIiKLONm6gMY4d+4cVCoV/P39pXVRUVFITU016VdYWIjc3FxERkaa9Dt27FijtmswGGAwGKTXOp2uUeMQtTQVFRXIy8tr1AwIcD2AcAaEiIiILGG3MyBKpdJknVKpNPsNrF6vh6OjI+Ryeb39LLVkyRKoVCpp6dixY6PGIWppcnNzAYABhIiIiG45uwwgCoXCbPZBp9NJT2S+sZ/RaERpaWm9/Sw1f/58aLVaacnKymrUOEQtTXZ2NgA0+hQshULBAEJEREQWscsAEhoaCq1WK/3WFgCSkpIQERFh0k+tVsPPzw/Jycn19rOUq6srlEqlyUJ0O7hy5QoAzoAQERHRrWeXAUShUGDMmDGIjY1FWVkZEhISkJKSgtGjR5v1jYmJwcKFC1FcXIwjR44gISEBkyZNAgAIIVBeXo6KigqTr4lam+zsbLi6usLb27tR7+dF6ERERGQpuwwgABAXF4esrCz4+Phg3rx52LhxI9RqNeLj401mOBYsWCBdsD5hwgTExcUhLCwMAHDx4kW4u7tjxIgROHv2LNzd3TF8+HBb7RKRzdTcgrehT0GvwRkQIiIispRd3gULAHx9fbFjxw6z9Y8//jgef/xx6bW7uzvi4+NrHaNTp04QQtyyGonsRXZ2dqNPvwIYQIiIiMhydjsDQkTN59KlS026qxsvQiciIiJLMYAQETIzMxEcHNzo93MGhIiIiCzFAELUylVWVuLy5cvo1KlTo8fgRehERERkKQYQolbu0qVLqK6u5gwIERERWQUDCFErl5GRAQBNDiDl5eUwGo3NVRYRERHdphhAiFq5jIwMyGQyBAYGNnoMhUIBACgtLW2usoiIiOg2xQBC1MplZmYiICAALi4ujR7Dw8MDAHgaFhEREd0UAwhRK5eent6k06+A/wUQXohOREREN8MAQtTK/fXXX+jWrVuTxuAMCBEREVmKAYSoFTMajThz5gy6d+/epHEYQIiIiMhSDCBErVhmZibKy8ubHEBqLkJnACEiIqKbYQAhasVOnz4NAJwBISIiIqthACFqxdLS0qBQKNCxY8cmjcOL0ImIiMhSDCBErdgff/yBXr16QSaTNWkcNzc3yGQyzoAQERHRTTGAELVif/zxB/r06dPkcWQyGTw8PBhAiIiI6KYYQIhaqcLCQqSnpyM6OrpZxlMoFAwgREREdFMMIEStVGJiIgA0ywwIAM6AEBERkUUYQIhaqX379qFdu3YICwtrlvE8PDx4EToRERHdFAMIUSu1d+9e3HvvvU2+AL0GZ0CIiIjIEgwgRK2QRqPBH3/8gXvvvbfZxmQAISIiIkswgBC1Qps3bwYAPPjgg802Ji9CJyIiIkswgBC1QuvWrcOQIUPg5+fXbGNyBoSIiIgswQBC1Mqkpqbil19+wdSpU5t1XF6ETkRERJZgACFqZRYvXoyAgAA8+uijzTouZ0CIiIjIEnYbQPLy8jBq1CjI5XKEhYVh7969tfYrKytDTEwMPD09ERgYiHXr1pm0r169GgEBAVAqlZg+fToqKiqsUT6RTezcuRPffvst3nnnHbi4uDTr2AwgLduVK1fw5ZdfYt68eZg1axaef/55vPfee9i6dSvOnz8Po9F4y2swGo04c+YM9u/fjx07duDw4cPIzs6+5dslIqKWxcnWBTTWnDlz0L59e+Tn52P37t2YMGEC0tPToVarTfrFxsZCo9EgOzsbKSkpeOCBBxAdHY2uXbsiOTkZc+fOxe7duxEaGoqxY8di0aJFWLBggY32iujWOXToECZNmoT7778f06dPb/bxeRF6y5Samoo333wTP/zwAxwcHNC5c2d4eXmhrKwMmZmZ0t+Zu7s7wsPD0aNHD0RGRqJHjx7o0aMH2rdv3+hbNV++fBmHDx/GoUOH8PvvvyMlJQVlZWVm/Tp27IgRI0Zg4sSJGDJkCJyc7PZHExERWUAmhBC2LqKh9Ho9fHx8kJmZCX9/fwDA3XffjZkzZ5qd1+7v748tW7agX79+AICpU6eiS5cueOuttzB//nwUFRVh5cqVAIBffvkFM2fOxIULFyyqQ6fTQaVSQavVQqlUNuMeEjWd0WhEdnY2kpOTsXHjRsTHx2PAgAH48ccf4enp2ezb+/jjjzFv3jyUl5c3+9jUcEajEUuXLsXbb7+Njh07Yv78+Xj44Yfh7e0t9RFC4MqVK0hNTUVKSoq0pKamorS0FADg5eUlBRG1Wi0tLi4ucHR0hKOjI2QyGXQ6HYqKipCXl4ezZ8/i7NmzuHr1KgAgJCQEd955J3r37o2ePXsiMDAQcrkchYWFOHv2LA4dOoQtW7bgwoULaNu2LSZMmIBHH30UAwYMgIOD3U7UE912hBAoKSlBcXExdDodiouLzb42GAzS/w2Ojo5wcnKCi4uLtLi6upq8dnFxQVlZGTQaDQoLC1FYWAiNRiMthYWFKCkpgVwul85m6dKlC7p06YJu3bqhQ4cOzfY8q9uFPRyf2uWvmc6dOweVSiWFDwCIiopCamqqSb/CwkLk5uYiMjLSpN+xY8cAAGlpaRgxYoRJW0ZGBsrKyuDu7m62XYPBAIPBIL3W6XQAgMjISLMfknXluuZab41tcNv2ve2qqipUV1cDAIKDg/Hee+9hzpw5cHZ2rnMbTeHh4QGDwYCqqir+BruBSkpKkJKSgqKiIlRVVcHX1xchISHw8fFp1HiXL1/GY489hsOHD+O1115DbGxsrafcyWQydOjQAR06dMDw4cOl9dXV1cjMzDQJJFevXsX58+eh0WhQVFSEiooKGI1GGI1GCCGgVCrh5eUFHx8fhIaG4t5770XPnj0xYMCAOu+21qFDB/To0QPjx4/He++9hz/++APr16/H+vXr8cknnyAwMBAjRoxA3759ERYWhvbt20OhUEg1lpSUmBz41Czl5eUoLy+HwWCQvi4vL0dlZSWEEKiurq71z7rW1fa51fW6vramvr7Z15au43tuzXta2muZTGay1LauZn11dTV0Oh20Wq20FBUVmbwuLi6GXq+Xfq7UxsnJCa6urtL/DUajsd7+tXFzc4OPjw+8vb1NlpqQ8ueffyIjI0M6bVShUCAsLAzdunVDWFgY2rRpAw8PD7i4uKC8vBxlZWUoKytDSUlJnYter4fBYEB1dbXJUvN/wY2vG8LSYNSQAGVJ34Z+5rZgl0cJer3eLNEplUoUFRWZ9XN0dIRcLjfpV3Onnr+PU/O1Xq+vNYAsWbIE77zzjtn6CRMmwNXV1Wx9Xd8kzbXeGtvgtu13205OTggMDERoaChCQkJu+W+IPDw8AFw/mFapVLd0W/assrISKSkpOHbsGBITE3Hs2DGkpqbW+gMjLCwMDz30ECZPnoyoqCiLxt+9ezcef/xxuLm5Yf/+/Rg0aFCDa6w5Vatz584YM2ZMg9/fGDKZDH369EGfPn3wn//8B4cOHcKGDRtw4MABfPnllw36germ5lbr4uTkBAcHBzg4OEAmk0l/3vh1bW03+vsBSG0HJDfr09T31Hxd27qbtdtqXUuo4VbW1dJe14TnG0P039fduF4mk0m/RFCpVFCpVPDy8oKfnx9UKhWUSqW0eHp61vmnq6trrf9mKisrUVFRAYPBgIqKCpPFYDDAzc1Nml11c3PDzVRWViIzMxNnzpzBX3/9Jf25e/duFBYWoqqqSurr5OQEd3d3yOVyeHh4mC3+/v7w8PCAm5sbHB0dpf8jalsa8nPU0rDSkFBjad/y8nK8//77Fo9rC3YZQBQKhTT7UEOn00m/Gbuxn9FoRGlpqRRCbuz393Fqvv77ODXmz5+PuXPnmvTv2LEj3nrrrRY7xUVkLQwg5qqqqnDmzBn88ccf+OOPP5CYmIg///wT5eXlcHR0RI8ePdC/f38899xziI6Ohq+vLxwcHJCXl4fU1FTs378fX3zxBf7zn/+gV69eeOKJJzB58mST06hq6PV6vPXWW/jggw8wYsQIrFmzBm3atLHBXjedg4MDBg0aJIWnkpISXLp0CTk5OSgtLZV+CCsUCnh6epocAMnlcp62RdSCyGQy6VSruo6vGsrZ2RmhoaEIDQ2t9YG6NcHG3d29Vc7I63Q6BpBbITQ0FFqtFrm5udLUflJSEmbOnGnST61Ww8/PD8nJydI1IElJSYiIiAAAhIeHIzk5WeqflJSE4ODgWmc/AMDV1bXWmQ4i+l9wb20XogshkJ+fj8zMTGRkZEh/JiUl4eTJk9JF16GhofjHP/6BiRMnom/fvujVq5fJ7OyNOnTogF69euHxxx/HJ598gl27duGrr77CSy+9hJdffhnjxo3DQw89hE6dOqG4uFgKKnq9HsuWLcPLL798Wx2Ee3h4oHv37ujevbutSyEiO1ATeKjlssuL0IHrpz15e3vjgw8+wJ49e/DPf/6z1rtgvfLKKzh9+jTWrVuH1NRU3H///Th69CjCwsKQnJyMe+65B3v27EFISAjGjx+PgQMHWnwXLHu4yIfIWo4fP45//OMf+PPPP9GrVy9bl9OsSktLceHCBZw7dw4XLlyQgkbNcmPo8vT0RKdOndCjRw9ER0cjOjoad9xxR7PMCl29ehVr167FV199hbS0NGm9Wq3G5MmTMW/ePHTq1KnJ2yEiIvtlD8endjkDAgBxcXGYNm0afHx8EBAQgI0bN0KtViM+Ph6LFy+WLkhfsGABZs6cCX9/f6jVasTFxSEsLAzA9YvH33//fYwePRo6nQ4PP/ww/v3vf9tyt4jsVs0pWPb8NPSaU6b+/PNPnDx5EidPnsRff/1l8qwKuVyO4OBgdOrUCUOGDEGnTp2k1506dYJarb5l19u0a9cOL7/8Ml5++WUUFhbi8uXL8PDwQKdOnW6rGQ8iIrq92e0MSEtgDwmTyFouXbqEoKAg7Ny50+Tuci1VaWkpkpKSTMJGcnKydBvh4OBg9OrVC+Hh4QgNDZVu+9i2bVve8pGIiFosezg+tdsZECJqWW68CL0lKi4uxp49e3DgwAEcOnQIJ0+elG4ZHBERIV1z0atXL0RFRcHLy8vWJRMREd2WGECIqFm0xIvQ8/PzsWnTJmzduhW//PILKioqEBwcjIEDB+KJJ55A3759ERERwZtLEBERWREDCBE1i5onY9s6gFRVVWHnzp34+uuvsW3bNlRXV2Pw4MH4z3/+gzFjxiA4ONim9REREbV2DCBE1CxkMhk8PDxsdhG6VqvF559/jg8//BCXL19GVFQUli9fjsmTJ8PX19cmNREREZE5BhAiajYeHh5WnwEpLCzEf/7zH3zyyScoLy/H5MmT8fzzz6N3795WrYOIiIgswwBCRM3GmgGkoqICH374IRYvXoyKigo899xzeP7559G+fXurbJ+IiIgahwGEiJqNQqGwSgBJTEzEE088gbS0NMyaNQtvvvkm/Pz8bvl2iYiIqOn45Coiaja3egZECIH33nsP/fv3h7OzM44fP45PPvmE4YOIiMiOMIAQUbNRKBQoLi6+JWMbDAY89thjeOWVV/DKK6/g6NGj6NWr1y3ZFhEREd06PAWLiJqNUqlEUVFRs49bVlaGhx9+GL/88gu+++47PPLII82+DSIiIrIOzoAQUbNRKpXQarXNOqbRaMSkSZOwf/9+bN++neGDiIjIznEGhIiajUqlgk6na9YxX375ZezYsQPbt2/H0KFDm3VsIiIisj4GECJqNkqlslkDyKZNm/Dhhx/i448/xv33399s4xIREZHt8BQsImo2zXkKVnZ2Np566ik88sgjeOaZZ5plTCIiIrI9BhAiajYqlQolJSUwGo1NHuu5556Dm5sbPv30U8hksmaojoiIiFoCnoJFRM1GqVQCAIqLi+Hl5dXocfbu3YsffvgB3377LXx8fJqpOiIiImoJOANCRM2mJoA05TSs6upqzJ07FwMHDsSjjz7aXKURERFRC8EZECJqNjUBpCkXom/fvh2nTp3CwYMHeeoVERHRbYgzIETUbFQqFYDGBxAhBJYsWYJBgwZh4MCBzVkaERERtRCcASGiZtPUGZBDhw7hyJEj+PHHH5uzLCIiImpBOANCRM2mqdeAfP755wgJCcHIkSObsywiIiJqQRhAiKjZKBQKyGSyRs2AaLVafPfdd5gxYwav/SAiIrqNMYAQUbORyWSNfhr6hg0bYDAYMG3atFtQGREREbUUDCBE1Kwa+zT07777Dvfeey86dOhwC6oiIiKilsIuA0hiYiKioqIgl8sxePBgXLx4sc6+6enpGDhwIORyOXr37o2kpCSpbdOmTejXrx9cXV0xe/Zsa5ROdNtrzAyIRqPBvn37MH78+FtUFREREbUUdhdADAYDxo8fjxdeeAEajQb9+/fHlClT6uz/2GOPYfjw4dBoNJgxYwbGjRuHqqoqAIC3tzdeffVVzJw501rlE932VCpVgwPI9u3bUV1djbFjx96aooiIiKjFsLsAsn//figUCsyYMQNubm546623cPz48VpnQc6cOYMzZ85g/vz5cHNzw7PPPguj0YjDhw8DAO699148/PDD8PX1tfZuEN22GnMK1ubNm9G/f3/4+/vfoqqIiIiopbC7AJKWlobIyEjptYeHB0JCQpCWllZr37CwMLi4uEjrevbsidTU1EZt22AwQKfTmSxEZKqhAaSiogI///wzxowZcwurIiIiopbC7gKIXq+XnjVQQ6lUQq/XN6mvJZYsWQKVSiUtHTt2bNQ4RLcztVqNoqIii/sfPXoUJSUlGDZs2K0rioiIiFqMFhdAhg8fDjc3t1qXRYsWQaFQmM086HQ6KBQKs7Ea0tcS8+fPh1arlZasrKxGjUN0O/P29oZGo7G4/88//wxvb2/06tXr1hVFRERELYaTrQv4u927d9fbvmvXLqxatUp6XVJSgvT0dISHh5v1DQ8Px5kzZ1BZWQlnZ2cAwKlTp/DKK680qjZXV1e4uro26r1ErYWPjw8KCgos7r93714MGTIEjo6Ot7AqIiIiaila3AzIzdxzzz3Q6/VYvXo1DAYDFi1ahD59+iAoKMisb1hYGMLCwrB06VIYDAbExcXB0dERAwYMAAAYjUaUl5ejqqrK5Gsiajxvb28UFxejsrLypn11Oh2OHDmCoUOHWqEyIiIiagnsLoC4urpi8+bNWLFiBby8vHDo0CGsWbNGap89e7bJMz2+/fZb7Ny5E15eXvj888+xefNmODldn/hZs2YN3N3d8e677+KLL76Au7s7Fi1aZPV9IrqdeHt7AwAKCwtv2vf333+H0WjEkCFDbnVZRERE1ELIhBDC1kXYK51OB5VKBa1Wa3axO1FrdfDgQQwaNAinT59Gt27d6u27YMECfPDBBygoKIBMJrNShURERLcvezg+tbsZECJq2WpmQCy5DuTo0aPo27cvwwcREVErwgBCRM2qJoDc7E5YQggcPXoU/fr1s0ZZRERE1EIwgBBRs7I0gGRkZKCgoIABhIiIqJVhACGiZuXi4gKFQnHTAHL06FEAwD/+8Q9rlEVEREQtBAMIETU7b2/vm14DcvToUXTu3Bm+vr5WqoqIiIhaAgYQImp2ljwNndd/EBERtU4MIETU7Hx8fOoNIBUVFfjzzz8ZQIiIiFohBhAianZt2rTBtWvX6mw/deoUDAYDAwgREVErxABCRM3O398fubm5dbYfPXoUzs7O6NWrl/WKIiIiohaBAYSImp2fnx9ycnLqbD969CiioqLg5uZmxaqIiIioJWAAIaJm5+/vj6KiIpSVldXazgvQiYiIWi8GECJqdv7+/gBQ62lYhYWFOHv2LAMIERFRK8UAQkTNzs/PDwBqPQ0rMTERANC3b1+r1kREREQtAwMIETW7+mZAjh49Ci8vL4SGhlq7LCIiImoBGECIqNl5e3vD2dm51hmQo0ePom/fvnBw4H8/RERErRGPAIio2Tk4OMDPzw/Z2dkm64UQOHLkCPr372+jyoiIiMjWGECI6JYIDg5GRkaGybpz586hoKAAd955p42qIiIiIltjACGiWyIkJATp6ekm637//XcA4B2wiIiIWjEGECK6JUJCQnDhwgWTdb///ju6d+8OtVpto6qIiIjI1hhAiOiWCAkJQUFBAbRarbTu999/5+lXRERErRwDCBHdEl26dAEAnD17FgCg0WiQkpKCgQMH2rIsIiIisjEGECK6JSIiIuDo6Ig///wTAPDzzz+juroaw4cPt3FlREREZEsMIER0S7i7uyM8PBzHjx8HAOzatQvh4eEICAiwcWVERERkS3YZQBITExEVFQW5XI7Bgwfj4sWLdfZNT0/HwIEDIZfL0bt3byQlJUlty5YtQ7du3eDp6Ynw8HBs3rzZGuUTtRr9+/fH/v37UVFRgYSEBIwaNcrWJREREZGN2V0AMRgMGD9+PF544QVoNBr0798fU6ZMqbP/Y489huHDh0Oj0WDGjBkYN24cqqqqAACOjo747rvvoNVq8emnn2L69Olmtw0losZ76KGHcO7cObz11lvIz8+v998qERERtQ4yIYSwdRENsWvXLrz44os4ffo0AKCkpAS+vr44ffo0goKCTPqeOXMGffv2RV5eHlxcXAAAQUFBWLNmDe6++26zsQcOHIi5c+fi4YcftqgWnU4HlUoFrVYLpVLZxD0juv0YDAZ0794dGRkZGDNmDLZu3WrrkoiIiG5r9nB8anczIGlpaYiMjJRee3h4ICQkBGlpabX2DQsLk8IHAPTs2ROpqalmfYuLi5Gamorw8PA6t20wGKDT6UwWIqqbq6srdu7ciRUrVmDNmjW2LoeIiIhaACdbF9BQer3eLM0plUro9fom9Z01axbGjBmD7t2717ntJUuW4J133mlk5UStU9euXdG1a1dbl0FEREQtRIubARk+fDjc3NxqXRYtWgSFQmE286DT6aBQKMzGsrTva6+9hkuXLuGzzz6rt7b58+dDq9VKS1ZWViP3koiIiIiodWpxMyC7d++ut33Xrl1YtWqV9LqkpATp6em1njoVHh6OM2fOoLKyEs7OzgCAU6dO4ZVXXpH6LF++HNu2bcPBgwfh7u5e77ZdXV3h6urakN0hIiIiIqIbtLgZkJu55557oNfrsXr1ahgMBixatAh9+vQxuwAdAMLCwhAWFoalS5fCYDAgLi4Ojo6OGDBgAADgq6++wscff4xdu3ZBrVZbe1eIiIiIiFoduwsgrq6u2Lx5M1asWAEvLy8cOnTI5OLW2bNnY/bs2dLrb7/9Fjt37oSXlxc+//xzbN68GU5O1yd+Fi5ciJycHHTr1g0KhQIKhQKLFy+2+j4REREREbUWdncb3pbEHm5zRkRERESthz0cn9rdDAgREREREdkvBhAiIiIiIrKaFncXLHtiNBoBAJcvX26xU1xERERE1HrUPIKi5ji1JWIAaYLz588DACIiImxcCRERERHR/5w/fx7/+Mc/bF1GrXgRehMUFhbC29sbWVlZnAEhIiIiIpvT6XTo2LEjNBpNi33MBGdAmsDR0REAoFQqGUCIiIiIqMWoOU5tiXgROhERERERWQ0DCBERERERWQ0DCBERERERWQ2vAbGi5ORk/PLLL7h69Sqqq6ttXQ79jaOjI4KCgjB8+HB06tTJ1uUQERER3ZYYQKzkyy+/xMqVK+Hj44POnTu36AuDWqvKykocPHgQX3zxBZYuXYp7773X1iURERER3XYYQKwgMzMTK1euxBNPPIFZs2bBwYFnvrVUFRUVePPNN/H2229j4MCBcHV1tXVJRERERLcVHglbwYEDB+Du7o4nnniC4aOFc3FxwezZs1FaWoo//vjD1uUQERER3XZ4NGwFeXl58PPzg4uLi61LIQsEBQUBAPLz821cCREREdHthwHECoQQnPmwIzV/V7xRABEREVHz41FxCxASEoJ+/frV2jZjxgy4ubmhqKiozvcLIbBw4UIEBQVBoVAgKCgIL774otSel5eHUaNGQS6XIywsDHv37jV5/9KlS+Hr6wtvb2+8+uqrEEJIbYmJiYiKioJcLsfgwYNx8eJFqa2srAwxMTHw9PREYGAg1q1bZzLu6tWrERAQAKVSienTp6OiogIAcO3aNUycOBHt2rWDt7c3Ro8ejUuXLln0WWVmZkImk0GhUEChUKBDhw545513pPajR4/C19cXeXl50rqVK1ciOjoa2dnZ8PHxwYkTJ6Q2o9GIO+64A1999ZVF2yciIiKipmEAsbHDhw8jLy8PJ06cwPnz503aysvL8f3330Mul2PTpk11jvHNN99g8+bNOHDgAPR6PX777TdER0dL7XPmzEH79u2Rn5+PZcuWYcKECSgsLAQA7NixAytXrsTRo0eRmpqK7du34+uvvwYAGAwGjB8/Hi+88AI0Gg369++PKVOmSOPGxsZCo9EgOzsb69evx9NPP42zZ88CuH7L4blz52LLli3IyspCZmYmFi1aBAAoKSnBXXfdhdTUVOTm5qJLly6YPn26xZ+Zq6sr9Ho99Ho9Dh48iM8//xy7d+8GAPTr1w8TJ07ESy+9BADIycnBG2+8gVWrVqFDhw5YuHAhnnrqKRiNRgDAhx9+CJVK1aDtExEREVETCGo0rVYrAAitVltvv+XLl4uJEyfW2vbMM8+IadOmieHDh4u3337bpG3jxo2iU6dO4t133xX33HNPneM/88wz4t///netbcXFxcLFxUVcuXJFWjdo0CDxzTffCCGEePTRR8XSpUulti+//FIMGTJECCHEzp07Rbdu3aQ2vV4v3N3dRWZmphBCCD8/P3HkyBGpfcqUKeKdd94RQgjx2muvidmzZ0tte/fuFcHBwbXWePbsWaFQKOrcvxtlZGQIV1dXk3UTJkwQH3zwgfRaq9WK9u3biz179oiHH35YvPDCC1JbdXW1GDBggPjggw/EpUuXhI+Pjzhz5ozZdqKjo8UPP/xgUU1ERERELYWlx6e2xBkQG6qsrMTGjRsxadIkTJo0CfHx8Sbta9euxcSJE/Hoo4/iwIEDuHz5cq3j9OvXD6tWrcKKFStw4sQJk2sXzp07B5VKBX9/f2ldVFQUUlNTAQBpaWmIjIy0qM3DwwMhISFIS0tDYWEhcnNzLX5vVFQUMjIyUFZWZlb/4cOHERERcfMPrBbp6ek4fPgw+vbtK61TKpX44IMP8Oijj+Lo0aNYuHCh1CaTybBq1SosWLAA06ZNwwsvvICuXbs2attERERE1HAMIDa0a9cuVFdXY+jQoRg3bhwyMzORmJgIANBoNNi5cycmTZqEzp07o3fv3mbXWNSYOnUqli9fjoSEBAwcOBD+/v7SNQ16vR5KpdKkv1KphF6vr7W9vrYb2/V6PRwdHSGXyy0et2b9jbKysvDaa69Jp2dZwmAwwMvLC0qlEl26dMFdd91lEkAAoG/fvtBqtRg1ahQ8PT1N2iIiIvDEE08gKysL//rXvyzeLhERERE1HQOIDa1duxbjx4+Hs7Mz1Go1hg8fLs2CbNy4EYGBgejduzcA1DpDcqNp06Zh//79KCoqQmxsLJ588kmkpqZCoVBAp9OZ9NXpdFAoFABg1l5f243tCoUCRqMRpaWlFo9bs76GRqPB/fffj9dffx1Dhw618FO7fg1IUVERdDod8vLykJ+fj1dffdWkz5w5czB16lRs2LABaWlpZmOEh4cjJCSEt0YmIiIisjIGEBspLi5GQkICNmzYAD8/P/j5+WH//v1Yv349jEYj4uPjkZWVJbUtXrwYSUlJ0ilOdXF1dcUzzzwDtVqN06dPIzQ0FFqtFrm5uVKfpKQk6ZSn8PBwJCcnW9RWUlKC9PR0hIeHQ61Ww8/Pz+L3JiUlITg4GO7u7gCuz4Q88MADeOihh/Dcc8819mNEmzZtMG7cOOzatUtat3HjRpw5cwaffPIJXn/9dcyePdvkzl5EREREZDsMIDayefNmtGnTBmfOnMHJkydx8uRJpKWloby8HF9++SUOHz6MX3/91aTtvvvuq3UW5JtvvsHOnTtRUlICo9GItWvXQqfT4Y477oBCocCYMWMQGxuLsrIyJCQkICUlBaNHjwYAxMTEYOXKlcjIyEBubi5WrFiBmJgYAMA999wDvV6P1atXw2AwYNGiRejTp4/0oL6YmBgsXLgQxcXFOHLkCBISEjBp0iQAwOTJk7Fx40acOHECWq0W7777rjRuRUUFxo8fj4iICCxevLhJn2NRURG2bt2K7t27AwC0Wi1efPFFrFy5Em5ubnjppZeg1WqlO3sRERERkY3Z+ip4e9aUu2ANGzbM7K5XQgjx7LPPCmdn51rverVp0yYRFBQkqqurRXh4uFi7dq0QQojvv/9e9O/fX6hUKqFUKkXv3r1N7uB07do1MXLkSOHu7i5CQ0PFnj17TMZdvHix8PHxEV5eXuKVV14R1dXVUtuxY8dEZGSkcHNzE4MGDZLugCWEEKWlpWLy5MnCw8NDBAQEiPj4eJNxv/76a9G+fXuhUCjEtGnTRHl5uRBCiP379wsAQi6XCw8PD2m5ePGiEEKId999V9x///3SOPfff7949913hRDX74IFQHqPt7e3GD9+vHSXr1mzZomYmBiTOg4fPix8fX1FXl6eSW0jRoww+4xr8C5YREREZI/s4S5YMiF4bkpj6XQ6qFQqaLVas4u1b/Tee+8hMTERGzZssGJ11BR9+vTBG2+8gbFjx9q6FCIiIiKLWXp8aks8BYuIiIiIiKyGAcQKZDKZybM5qGWr+btycOA/DyIiIqLmxiMsK/D19UVubi4qKipsXQpZ4OLFiwCu32GLiIiIiJqX3QaQvLw8jBo1CnK5HGFhYdi7d2+t/crKyhATEwNPT08EBgaaPMzvyJEj6NmzJ7y8vNC2bVtMmzbN7EF5zeHuu+9GWVkZvvzyS86EtHAVFRX49NNPIZfLER0dbetyiIiIiG47TrYuoLHmzJmD9u3bIz8/H7t378aECROQnp4OtVpt0i82NhYajQbZ2dlISUnBAw88gOjoaHTt2hVdunTBTz/9hA4dOqC0tBSzZs3CwoULsWzZsmattVOnTnj66aexcuVKbNmyBZ07d4ajo2OzboOarrKyEqdPn0Z5eTmWLl0KV1dXW5dEREREdNuxy7tg6fV6+Pj4IDMzE/7+/gCuzzLMnDkTU6dONenr7++PLVu2oF+/fgCAqVOnokuXLnjrrbdM+pWUlODpp59GeXk5Nm7caFEdDb3LQHJyMvbt24fc3FzOhLRAjo6O6NSpE4YNG4ZOnTrZuhwiIiKiBrOHu2DZ5QzIuXPnoFKppPABAFFRUWZPCS8sLERubi4iIyNN+h07dkx6fenSJfTs2RNarRYKhQI//vhjnds1GAwwGAzSa51O16C6IyMjTWohIiIiImpt7PIaEL1eb5bolEql2fUber0ejo6OkMvldfYLDAxEUVERrl69ildffdUk1PzdkiVLoFKppKVjx47NtEdERERERK2DXQYQhUJhNvug0+mgUCjM+hmNRpSWltbbDwDatm2LkSNHmp3CdaP58+dDq9VKS1ZWVhP3hIiIiIiodbHLABIaGgqtVovc3FxpXVJSEiIiIkz6qdVq+Pn5ITk5ud5+Naqrq5Genl7ndl1dXaFUKk0WIiIiIiKynF0GEIVCgTFjxiA2NhZlZWVISEhASkoKRo8ebdY3JiYGCxcuRHFxMY4cOYKEhARMmjQJALBjxw6cOXMGQgjk5OTgzTffxJAhQ6y9O0RERERErYZdBhAAiIuLQ1ZWFnx8fDBv3jxs3LgRarUa8fHxJjMcCxYskC5YnzBhAuLi4hAWFgYAuHr1KkaOHAmFQoHo6GgEBARg5cqVttolIiIiIqLbnl3ehrelsIfbnBERERFR62EPx6d2OwNCRES3Xn5+vq1LICKi2wwDCBER1SouLg6+vr5YtGiRrUshIqLbCE/BagJ7mOIiImqM6upqBAYGIjs7G2q1Grm5uXBxcbF1WUREdBP2cHzKGRAiIjKTmpqK7OxsLFmyBIWFhTh+/LitSyIiotsEAwgREZnZv38/XFxcMGfOHHh4eODQoUO2LomIiG4TDCBERGTmxIkTiIqKgqenJyIiIpCammrrkoiI6DbBAEJERGZSUlIQGRkJAIiIiEBaWpqNKyIiotsFAwgREZmorq5GamoqevToAQAIDw9HWloaeM8SIiJqDgwgRERkIiMjA2VlZYiIiAAAdOnSBSUlJcjLy7NxZUREdDtgACEiIhPnz58HAISFhQEAAgMDAQCXLl2yWU1ERHT7YAAhIiITGRkZcHJyQocOHQAwgBARUfNiACEiIhMZGRno2LEjnJycAAA+Pj5wd3dnACEiombBAEJERCYyMzMRHBwsvZbJZAgMDGQAISKiZsEAQkREJjIyMtCpUyeTdR07dmQAISKiZsEAQkREJjIyMkxmQADA398fubm5NqqIiIhuJwwgREQk0ev1yM/PNwsgbdu2xbVr12xUFRER3U4YQIiISFJzmlVQUJDJ+nbt2uHq1au2KImIiG4zDCBERCS5cuUKAEi34K3Rrl076HQ6lJeX26IsIiK6jTCAEBGRpCaA+Pv7m6xv27YtAPA0LCIiajIGECIikuTk5ECtVsPNzc1kfbt27QCAp2EREVGTMYAQEZHkypUraN++vdl6BhAiImouDCBERCSpK4D4+voC4ClYRETUdAwgREQkuXLlitn1HwDg7OwMb29vzoAQEVGTMYAQEZEkJyen1hkQAGjTpg3y8/OtXBEREd1u7DaA5OXlYdSoUZDL5QgLC8PevXtr7VdWVoaYmBh4enoiMDAQ69atk9q2b9+OO++8EyqVCgEBAXjnnXesVT4RUYsjhKjzFCwA8PHxgUajsXJVRER0u3GydQGNNWfOHLRv3x75+fnYvXs3JkyYgPT0dKjVapN+sbGx0Gg0yM7ORkpKCh544AFER0eja9euKC4uxqJFi3DXXXfh6tWrGDFiBDp37owpU6bYaK+IiGynsLAQBoOhzgDi7e3NAEJERE1mlzMger0eW7duxYIFCyCXyzF27Fj06NED27ZtM+u7Zs0axMbGQqlUYsCAARgzZgzWr18PAHjsscdw3333wdXVFYGBgRg/fjyOHTtm7d0hImoRcnJyAJg/A6QGAwgRETUHuwwg586dg0qlMvkhGRUVhdTUVJN+hYWFyM3NRWRkZL39ahw+fBgRERF1btdgMECn05ksRES3i5qHENZ3ClZBQYE1SyIiotuQXQYQvV4PpVJpsk6pVEKv15v1c3R0hFwur7cfAHz22WfIycnBtGnT6tzukiVLoFKppKVjx45N3BMiopajrqeg1+AMCBERNQe7DCAKhcJs9kGn00GhUJj1MxqNKC0trbff9u3bsWDBAmzfvh3u7u51bnf+/PnQarXSkpWV1Qx7Q0TUMly5cgU+Pj5wdXWttb0mgAghrFwZERHdTuwygISGhkKr1SI3N1dal5SUZHb6lFqthp+fH5KTk+vsd+DAATzxxBNISEhAly5d6t2uq6srlEqlyUJEdLvIycmpc/YDuB5AKisra51FJiIispRdBhCFQoExY8YgNjYWZWVlSEhIQEpKCkaPHm3WNyYmBgsXLkRxcTGOHDmChIQETJo0CQBw8uRJPPLII4iPj0d0dLS1d4OIqEWp7xa8wPVrQADwNCwiImoSuwwgABAXF4esrCz4+Phg3rx52LhxI9RqNeLj401mOBYsWCBdsD5hwgTExcUhLCwMAPDhhx+ioKAAY8eOhUKhgEKhwMiRI221S0RENnWzAOLt7Q2AAYSIiJpGJngyb6PpdDqoVCpotVqejkVEdi84OBiPPfYYFi9eXGv7hQsXEBISgp9//hn33XeflasjIiJL2MPxqd3OgBARUfO52VPQgf+dgsVb8RIRUVMwgBARETQaDSoqKuoNIEqlEo6OjjwFi4iImoQBhIiIbvoMEACQyWRQq9UMIERE1CQMIEREhJycHAB1PwW9Rs15xURERI3FAEJERFIA8fPzq7efl5cXioqKrFARERHdrhhAiIgIOTk58Pb2rvMp6DU4A0JERE3FAEJERLhy5Uq913/U4AwIERE1FQMIEREhJyfHogDCGRAiImoqBhAiIrI4gHAGhIiImooBhIiIkJOTc9M7YAGcASEioqZjACEiauVqnoLOGRAiIrIGBhAiolZOq9WivLzc4gBSVlaGiooKK1RGRES3IwYQIqJWruYZIJZehA6Ap2EREVGjMYAQEbVyDQkgXl5eABhAiIio8RhAiIhaucbMgPA6ECIiaiwGECKiVu7KlSvw9PSEh4fHTfvWzIAwgBARUWMxgBARtXKW3oIX4DUgRETUdAwgREStnKUPIQQApVIJgDMgRETUeAwgREStXEMCiJOTExQKBWdAiIio0RhAiIhauYYEEIAPIyQioqZhACEiasUa8hT0GiqVijMgRETUaAwgREStmFarhV6vR0BAgMXv4QwIERE1BQMIEVErdvnyZQBAx44dLX6Pl5cXZ0CIiKjRGECIiFqxrKwsAA0LICqVijMgRETUaHYbQPLy8jBq1CjI5XKEhYVh7969tfYrKytDTEwMPD09ERgYiHXr1kltaWlpGDZsGFQqFbp162at0omIWoysrCw4ODhY/BwQgDMgRETUNHYbQObMmYP27dsjPz8fy5Ytw4QJE1BYWGjWLzY2FhqNBtnZ2Vi/fj2efvppnD17FgDg7OyMyZMn4/3337d2+URELUJWVhb8/f3h5ORk8Xs4A0JERE1hlwFEr9dj69atWLBgAeRyOcaOHYsePXpg27ZtZn3XrFmD2NhYKJVKDBgwAGPGjMH69esBAKGhoZg+fTq6dOli7V0gImoRsrKyGnT6FcCL0ImIqGks/5VXC3Lu3DmoVCqT20ZGRUUhNTXVpF9hYSFyc3MRGRlp0u/YsWON2q7BYIDBYJBe63S6Ro1DRNRSNCaAqFQq6HQ6CCEgk8luUWVERHS7stsZEKVSabJOqVRCr9eb9XN0dIRcLq+3n6WWLFkClUolLQ39oU1E1NI0NoBUV1c3+v9SIiJq3ewygCgUCrPZB51OB4VCYdbPaDSitLS03n6Wmj9/PrRarbTU3D2GiMgeCSEafQoWAJ6GRUREjWKXASQ0NBRarRa5ubnSuqSkJERERJj0U6vV8PPzQ3Jycr39LOXq6gqlUmmyEBHZq4KCApSXlzdqBgQA74RFRESNYpcBRKFQYMyYMYiNjUVZWRkSEhKQkpKC0aNHm/WNiYnBwoULUVxcjCNHjiAhIQGTJk0CcP23f+Xl5aioqDD5moioNbh06RKAhj0DBOAMCBERNY1dBhAAiIuLQ1ZWFnx8fDBv3jxs3LgRarUa8fHxJjMcCxYskC5YnzBhAuLi4hAWFgYAuHjxItzd3TFixAicPXsW7u7uGD58uK12iYjIqi5cuAAA6Ny5c4PexxkQIiJqCru8CxYA+Pr6YseOHWbrH3/8cTz++OPSa3d3d8THx9c6RqdOnSCEuGU1EhG1ZOnp6VAqlfDx8WnQ+xhAiIioKex2BoSIiJrmwoULCAkJafCtdOVyOZycnHgKFhERNQoDCBFRK5Went7g068AQCaTQaVScQaEiIgahQGEiKiVSk9PR0hISKPe6+XlxQBCRESNwgBCRNQKVVRU4NKlS40OICqViqdgERFRozCAEBG1QpcuXUJ1dXWjTsECwFOwiIio0RhAiIhaofPnzwNAk07B4gwIERE1BgMIEVErlJqaCrlcjqCgoEa9nzMgRETUWAwgREStUGpqKrp37w4Hh8b9GGAAISKixmIAISJqhdLS0hAREdHo9/MULCIiaiwGECKiVkYIgbS0NISHhzd6DM6AEBFRYzGAEBG1MllZWSguLm7yDEhJSQkqKyubsTIiImoNGECIiFqZpKQkAEBkZGSjx1CpVAAAnU7XLDUREVHrwQBCRNTKHDt2DG3btkVgYGCjx6gJIDwNi4iIGooBhIiolTl27Bj69u0LmUzW6DG8vLwAgBeiExFRgzGAEBG1IkIIKYA0BWdAiIiosRhAiIhakXPnzqGoqIgBhIiIbIYBhIioFdm7dy+cnJwwYMCAJo1TE0B4ChYRETUUAwgRUSuyZ88e9O/fH56enk0ax8XFBe7u7pwBISKiBmMAISJqJSoqKvDLL79g2LBhzTIen4ZORESNwQBCRNRK7NmzB1qtFmPHjm2W8fg0dCIiagwGECKiVmLdunUIDw9v0gMIb8QAQkREjcEAQkTUCly9ehWbNm3C1KlTm/T8jxvxFCwiImoMJ1sXQEREt95///tfODk54amnnmq2MVUqFQoKCpptvNvF/v378e233+L8+fNwc3NDr169MHz4cNx9991wcODv/YiI7PZ/wry8PIwaNQpyuRxhYWHYu3dvrf3KysoQExMDT09PBAYGYt26dSbtq1evRkBAAJRKJaZPn46KigprlE9EZDVnzpzBf//7X7z00ktQq9XNNi5nQEyVlJRg4sSJGDJkCPbv34+2bdvC0dERX331FYYMGYKgoCC8+uqrSEpKghDC1uUCuP4z8tSpUzh8+DBSUlJQWFho65KIqBWw2xmQOXPmoH379sjPz8fu3bsxYcIEpKenm/1wjY2NhUajQXZ2NlJSUvDAAw8gOjoaXbt2RXJyMubOnYvdu3cjNDQUY8eOxaJFi7BgwQIb7RURUfPKz8/HuHHj0KlTJ7z++uvNOjavAfkfvV6PYcOGISUlBevWrcOkSZOkU92EEDhy5AjWrFmDr776CsuXL0d4eDgmT56MkSNHIioqCo6OjlarVQiBHTt24KOPPsIvv/yCqqoqk/aOHTuiV69eiIqKQlRUFHr27ImQkBCr1FhdXY0rV64gKysLHh4e6NixY7OG5rpUVlZCJpPB0dGx2U5RpNubwWBAYmIiDh48iHPnzkGj0UAulyMgIAB9+/bF8OHDm3y789uZTLSUX8M0gF6vh4+PDzIzM+Hv7w8AuPvuuzFz5kxMnTrVpK+/vz+2bNmCfv36AQCmTp2KLl264K233sL8+fNRVFSElStXAgB++eUXzJw5ExcuXLCoDp1OJ/0AViqVzbiHRERNU1VVhYSEBMydOxdlZWX47bff0LVr12bdxrvvvosPP/wQ165da9Zx7U11dTUeeeQR7NmzB/v27UOfPn3q7FtZWYndu3fj22+/xZYtW1BaWgq1Wo0BAwZIB/s9e/ZEaGgonJya/3eEV65cwYwZM7Br1y70798fMTEx6N27N5RKJbRaLS5evIhTp07hzz//RFJSEnJzcwEAcrkcERERCA4ORlBQEAIDAxEQEAAfHx+o1WppcXd3r/cAvrq6Gvn5+bh8+TKysrJw4cIFkyUjIwMGg8HkPd26dcPYsWMxffr0ZvseTklJwdq1a/Hrr7/ir7/+kmbyHBwcoFAo4OXlBZVKZbLcuE6pVMLDwwMeHh5QKBRo164dgoODpQd0NlRpaSkuX76MoqIiCCGkGTJnZ2eLl5YYnIxGI/R6PYqLi1FcXAy9Xg8hBJydneHi4gIXFxe4ubnB3d1dWlrqaYoFBQX4/fffcejQIRw8eBCJiYkwGAxQKBQIDw+Ht7c3ysvLcf78eVy+fBlubm4YO3YsXnjhBfTv39+qtdrD8aldzoCcO3cOKpVKCh8AEBUVhdTUVJN+hYWFyM3NNbnjS1RUFI4dOwYASEtLw4gRI0zaMjIyUFZWBnd3d7PtGgwGk/8YdTodAOCjjz6Cm5tbvTU3JOfdrn1tvX1762vr7dtbX1tvv6X01el0uHjxIhITE6HVajFs2DB88cUXCAwMtHgMS9WcgiWEaJEHP9by0UcfYcuWLdi6dWu94QO4fkA5atQojBo1CgaDAUePHsW+fftw5MgRfPPNN8jOzgYAuLu7o2fPnrjjjjsQHR2NYcOGISgoqEl1/vbbb5g4cSIcHR2RkJCABx980OzvbcCAAXjsscek19euXcOpU6dw6tQpJCcn4+LFi/jjjz+QlZVV6ynLMpkMrq6u0sGli4sLgOs/P8vLy1FWVobq6mqpv7u7Ozp37ozOnTtjxIgRCAkJQefOnREYGIjS0lKcO3cO+/fvx6effoply5ZhwoQJiI2NRXh4eKM+g5MnT+Lll1/GL7/8gjZt2mDo0KF46KGH4OfnB5lMhvLychQXF0Or1UKr1aKoqAharRbZ2dlIS0uTXut0OhiNRrPx1Wo1OnfujJCQEGlf/Pz84OTkBIPBgGvXruHq1atSALt8+TIuX74MjUbTqP25kaOjY4MCi6WLk5MTqqurYTQaTZaqqirp64qKCulz0el00telpaUN3o+ah5y6u7vDzc0NTk5OcHJygqOjo/Rnzb56e3ujbdu2aNu2LXx9fc3+9PX1haura53bEkKgoqICpaWlKCoqgkajQWFhITQaDfLz85Geno7z58/j9OnTOHfuHACgXbt2GDRoEJYtW4ZBgwahZ8+eZr8syMzMxMaNG/HFF1/gzjvvxMCBAzFv3jyMHj26STOJ1dXVKC4uRlFRkbQYDAZUVlaioqICFRUVqKystIuZabucAfntt98wffp0nD9/Xlr373//G0VFRfjkk0+kdVlZWQgODjaZXv7888+xZcsW/Pjjj7jvvvswffp0xMTEALj+mykXFxdcu3YNvr6+Ztt9++238c4775itVyqVFv3wtfQHdEN+kHNMjmnv2+aYzTumXC5HUFAQIiMj8eCDDyI6OtriWhpq7dq1mDJlCkpLS2v9pU1rkJ6ejsjISDz55JP48MMPmzyeRqORZiBqltOnT8NoNCIyMhJTpkzB9OnT0aZNmwaN+9lnn+HZZ5/FwIEDsWHDBrRr165JdVZXVyMvL086YKs5aCstLZUOhGoWIYT0W243Nze0a9cOAQEBCAgIQLt27Sz63i4vL8eaNWuwcOFCZGdnY9q0aXjnnXfQsWNHi+q9du0a3nzzTXz++efo1q0b3n77bYwdO1YKSA1Vc+BaUlKCkpISXLlyBRkZGcjIyMCFCxeQnp6O9PR0ZGVlmfwCQSaToU2bNtL+d+zY0eRrtVoNmUwmfSaVlZU2X6qqquDg4GBy8F+z1KxzcXGRZoZuXDw9PaU/PT09oVAo4ODgIB0oGwwGlJWV1bvUFnhqQo9Go8G1a9ekpaSkxOzvSqFQwNXVVQoyAKSxy8vL6/wFj5OTEzp16oTQ0FCEhoaib9++GDBgADp16mTx/8fV1dXYvn073nvvPfz222/o2LEjpk2bhokTJyIiIqLW2Z7KykpkZmbi/PnzOH/+vBSCzp8/jwsXLqCystKibQNo0TMgdhlA/vzzT4wYMcJk2v+5556DXC7HsmXLpHWFhYXw9vZGSUkJ5HI5AOD999/HsWPHsGHDBjz00EMYMWIEnnnmGQDXp9fatGlT5w/T2mZAOnbs2KL/gomIbpVt27ZhzJgxyMnJgZ+fn63Lsbrq6mrcd999uHjxIpKTk+Hh4XFLtqPVarF792788MMP+P777wEAkydPxty5c2/6TBej0YiXX34ZH374IebMmYP//ve/cHZ2viV1WoPBYMCqVauwcOFC6HQ6PPfcc5g/fz68vb1r7V9RUYH/+7//w4IFC+Dg4IB33nkHTz/9tNU+A4PBAI1GA6PRCGdnZ7Rp08aq1/u0NqWlpcjLy0NeXh6uXbuGvLw85OfnS0GqqqoKQgiTU77c3Nwgl8vh5eUFb29vqNVqeHt7w9PTs1lPB0tMTMQXX3yBdevWobi4GGq1Gl27doWvry+MRiOKi4tx8eJFZGdnS7OELi4u6Ny5M7p06YIuXbogJCQEbdu2hZeXl3RKoJubm8mMo4uLC8rKyqBWq1v08aldBpCaa0AuXrwo/dDjNSBERNb122+/4e6778bp06fRrVs3W5djdZ9++imefvpp/Pzzz7jvvvusss38/Hx8+eWX+Pjjj3H58mUMGzYML7/8MoYPH272W9nMzEz885//xMGDB6UAcrsoLi7G+++/j/fffx+Ojo6YO3cuJk2ahK5du0ImkyErKwvff/89PvroI1y8eBGzZs3CggULGjxzRNTcysrKcOTIERw8eBAZGRnIy8uDs7MzPDw8EBgYiKCgIISEhKBLly4ICAhoVGC1i+NTYaceeeQR8dRTT4nS0lKxdetWoVarhUajMes3b948MWrUKKHT6cTvv/8uVCqV+Ouvv4QQQpw6dUp4e3uLP/74QxQVFYl7771XvPnmmxbXoNVqBQCh1Wqbbb+IiOxFUlKSACCOHDli61Ks7uLFi0KhUIiZM2faZPsVFRUiPj5e9O7dWwAQERER4uOPPxb79u0TW7duFbNnzxZubm4iMDBQ7Nu3zyY1WsPVq1fFc889J9zc3AQA4ebmJjw8PAQA4eTkJB577DGRnJxs6zKJrMoejk/tcgYEuP4ckGnTpmH//v0ICAhAXFwchg4divj4eCxevFi6IL2srAwzZ87E1q1boVarsWzZMkyePFkaZ/Xq1fj3v/8NnU6Hhx9+GJ999lm9FyzdyC4SJhHRLXLp0iUEBQVh586dJjf0aAnKyspw4sQJHD16FElJSdJdlrRaLSorK6FWqxEcHIzBgwdj4sSJ6N27t8VjCyEwatQoJCUlIS0trdF3PmoOQgj8+uuvWLFiBbZv3y6dzx4QEIAnn3wSL774Yqv4+VRaWopff/0VZ8+ehRACQUFBuPvuu+Hj42Pr0oiszh6OT+02gLQE9vAXTER0q2i1Wnh5eWHDhg2YOHGiTWupqKjA4cOHsWvXLvz88884efIkqqqq4ObmJt3WtnPnzvD29oazszMKCgpw+vRp/PLLL7h27RruuusuLF++3KLbZX7zzTf45z//iYSEBIwePdoKe2eZ0tJS6fkZHTp0aNV3JiNqzezh+NQub8NLRES25+npCZlMZrNbPpaXl+Onn37CunXrsGPHDpSUlMDX1xfDhg3DjBkz0K9fP0RGRtZ7wXFVVRW2bduGhQsX4s4778SUKVOwfPnyOu8SlZKSgmeeeQbTpk1rUeEDuH4HtLCwMFuXQUR0Uy3zaS9ERNTiOTg4QKlUSg9xs5azZ8/i+eefh5+fH8aPH49z587h9ddfx4kTJ5Cbm4v4+Hg8/fTT6N27903vduTk5IRx48YhMTERq1atwo4dOxAWFoa4uDiz5zykp6fjgQceQJcuXRAXF3crd5GI6LbGAEJERI2mUqmsFkBOnDiB0aNHIywsDOvXr8ecOXNw+vRp/Pnnn3j99ddxxx13NPq2mY6OjnjyySdx5swZTJgwAXPmzEG/fv3w9ddf4+DBg1ixYgX69OkDNzc37NixQ7q1OxERNRwDCBERNZq3tzcKCwtv6TYuXryIiRMnIjo6GufOncNXX32FS5cu4d1332322//6+Pjg888/x+HDh+Hp6YkZM2Zg0KBB+Ne//oWxY8fiyJEj6NChQ7Nuk4ioteE1IERE1Gg+Pj4oKCi4JWNXV1fj448/xuuvvw4vLy98+eWXmDp1qvQ041vpzjvvxL59+1BQUICcnBwEBga22Is5iYjsDQMIERE12q0KIBqNBo8//jh27tyJOXPmYPHixTYJAD4+PryVKxFRM2MAISKiRvPx8cGZM2eadczz589jxIgRKCoqapHPGCEioqZhACEiokZr7hmQv/76C/feey88PT1x/PhxBAcHN9vYRETUMjCAEBFRozVnAMnJycGwYcPg4+ODn3/+uc5ncRARkX3jXbCIiKjRfHx8UFZWhrKysiaNU15ejrFjx6K6uhq7du1i+CAiuo0xgBARUaPVXKDd1FmQN954A0lJSUhISED79u2bozQiImqhGECIiKjRmiOA1Dzob9GiRYiOjm6u0oiIqIViACEiokZragAxGo3SU8dfeuml5iyNiIhaKF6ETkREjdbUAPL//t//w6lTp3DkyBE4Ojo2Z2lERNRCcQaEiIgaTaVSwcHBoVEBpKKiAm+++SYmTpyIfv363YLqiIioJWIAISKiRnNwcIC3t3ejAsi6deuQnZ2N2NjYW1AZERG1VAwgRETUJD4+PsjPz2/Qe4QQeP/99/HAAw8gPDz8FlVGREQtEa8BISKiJmnTpk2DZ0D27duH5ORkfPDBB7emKCIiarE4A0JERE3SmKehf/311+jatSuGDBlyi6oiIqKWigGEiIiapE2bNsjLy7O4f3FxMTZv3oxp06ZBJpPdwsqIiKglYgAhIqIm8ff3R25ursX9N23ahLKyMkyZMuUWVkVERC0VAwgRETWJn58fcnNzIYSwqP+GDRtwzz33oGPHjre4MiIiaokYQIiIqEn8/f1RWVkJjUZz074lJSXYv38/xowZY4XKiIioJWIAISKiJvH39wcA5OTk3LTvvn37YDAY8MADD9zqsoiIqIWyywCSmJiIqKgoyOVyDB48GBcvXqyzb3p6OgYOHAi5XI7evXsjKSlJatu0aRP69esHV1dXzJ492xqlExHddvz8/ADAoutAduzYgZCQEISGht7qsoiIqIWyuwBiMBgwfvx4vPDCC9BoNOjfv3+9FzI+9thjGD58ODQaDWbMmIFx48ahqqoKAODt7Y1XX30VM2fOtFb5RES3HUtnQIQQ2LFjBx544AHe/YqIqBWzuwCyf/9+KBQKzJgxA25ubnjrrbdw/PjxWmdBzpw5gzNnzmD+/Plwc3PDs88+C6PRiMOHDwMA7r33Xjz88MPw9fW19m4QEd023N3doVKpbhpATp8+jYsXL/L0KyKiVs7uAkhaWhoiIyOl1x4eHggJCUFaWlqtfcPCwuDi4iKt69mzJ1JTUxu1bYPBAJ1OZ7IQEdH/7oRVnx07dsDd3R2DBw+2UlVERNQS2V0A0ev1UCqVJuuUSiX0en2T+lpiyZIlUKlU0sJbSBIRXefv73/TGZAdO3bg3nvvhbu7u5WqIiKilqjFBZDhw4fDzc2t1mXRokVQKBRmMw86nQ4KhcJsrIb0tcT8+fOh1WqlJSsrq1HjEBHdbjp06IDLly/X2a7T6fDbb79h5MiRVqyKiIhaIidbF/B3u3fvrrd9165dWLVqlfS6pKQE6enpCA8PN+sbHh6OM2fOoLKyEs7OzgCAU6dO4ZVXXmlUba6urnB1dW3Ue4mIbmfBwcHYv39/ne0///wzqqqqGECIiKjlzYDczD333AO9Xo/Vq1fDYDBg0aJF6NOnD4KCgsz6hoWFISwsDEuXLoXBYEBcXBwcHR0xYMAAAIDRaER5eTmqqqpMviYiooYJDg7GlStXYDAYam3/6aef0K1bN3Tu3NnKlRERUUtjdwHE1dUVmzdvxooVK+Dl5YVDhw5hzZo1Uvvs2bNNnunx7bffYufOnfDy8sLnn3+OzZs3w8np+sTPmjVr4O7ujnfffRdffPEF3N3dsWjRIqvvExGRvevUqROEELXekfDG2+8SERHJhBDC1kXYK51OB5VKBa1Wa3axOxFRa5KRkYHOnTtj586dGDFihElbUlISevXqhZ9//hn33XefjSokImod7OH41O5mQIiIqOXp2LEjHB0dkZGRYda2Y8cOKBQK3HXXXTaojIiIWhoGECIiajInJycEBgbi/PnzZm07duzA0KFDeRMPIiICwABCRETNpEePHkhJSTFZV1BQgMOHD/P6DyIikjCAEBFRs+jZsydOnTplsm7Hjh2orq7G6NGjbVQVERG1NAwgRETULHr27ImcnBzk5eVJ6xISEtC3b1/4+fnZsDIiImpJGECIiKhZ9O7dGwBw7NgxAEBpaSl27tyJMWPG2LIsIiJqYRhAiIioWYSEhCAwMBB79uwBAHz//ffQ6/WYPHmyjSsjIqKWhAGEiIiahUwmw7Bhw6TrPj799FMMGTIEwcHBti6NiIhaEAYQIiJqNlOnTsW5c+cwadIkHD58GPPmzbN1SURE1MIwgBARUbMZNGgQJk6ciE2bNmH69OkYOXKkrUsiIqIWRiaEELYuwl7Zw6PuiYisTQiB3Nxc+Pn5QSaT2bocIqJWxR6OT51sXQAREd1eZDIZ/P39bV0GERG1UDwFi4iIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrIYBhIiIiIiIrMYuA0hiYiKioqIgl8sxePBgXLx4sc6+6enpGDhwIORyOXr37o2kpCSpbdmyZejWrRs8PT0RHh6OzZs3W6N8IiIiIqJWy+4CiMFgwPjx4/HCCy9Ao9Ggf//+mDJlSp39H3vsMQwfPhwajQYzZszAuHHjUFVVBQBwdHTEd999B61Wi08//RTTp09Henq6tXaFiIiIiKjVkQkhhK2LaIhdu3bhxRdfxOnTpwEAJSUl8PX1xenTpxEUFGTS98yZM+jbty/y8vLg4uICAAgKCsKaNWtw9913m409cOBAzJ07Fw8//LBFteh0OqhUKmi1WiiVyibuGRERERFR09jD8andzYCkpaUhMjJSeu3h4YGQkBCkpaXV2jcsLEwKHwDQs2dPpKammvUtLi5GamoqwsPD69y2wWCATqczWYiIiIiIyHJ2F0D0er1ZmlMqldDr9U3qO2vWLIwZMwbdu3evc9tLliyBSqWSlo4dOzZyL4iIiIiIWqcWF0CGDx8ONze3WpdFixZBoVCYzTzodDooFAqzsSzt+9prr+HSpUv47LPP6q1t/vz50Gq10pKVldXIvSQiIiIiap2cbF3A3+3evbve9l27dmHVqlXS65KSEqSnp9d66lR4eDjOnDmDyspKODs7AwBOnTqFV155ReqzfPlybNu2DQcPHoS7u3u923Z1dYWrq2tDdoeIiIiIiG7Q4mZAbuaee+6BXq/H6tWrYTAYsGjRIvTp08fsAnQACAsLQ1hYGJYuXQqDwYC4uDg4OjpiwIABAICvvvoKH3/8MXbt2gW1Wm3tXSEiIiIianXsLoC4urpi8+bNWLFiBby8vHDo0CGsWbNGap89ezZmz54tvf7222+xc+dOeHl54fPPP8fmzZvh5HR94mfhwoXIyclBt27doFAooFAosHjxYqvvExERERFRa2F3t+FtSezhNmdERERE1HrYw/Gp3c2AEBERERGR/WIAISIiIiIiq2EAISIiIiIiq2EAISIiIiIiq2EAISIiIiIiq2EAISIiIiIiq2EAISIiIiIiq2EAISIiIiIiq2EAISIiIiIiq2EAISIiIiIiq2EAISIiIiIiq3GydQH2zGg0AgAuX74MpVJp42qIiIiIqLXT6XQA/nec2hIxgDTB+fPnAQARERE2roSIiIiI6H/Onz+Pf/zjH7Yuo1YyIYSwdRH2qrCwEN7e3sjKyuIMCBERERHZnE6nQ8eOHaHRaKBWq21dTq04A9IEjo6OAAClUskAQkREREQtRs1xakvEi9CJiIiIiMhqGECIiIiIiMhqGECIiIiIiMhqGECIiIiIiMhqeBG6lZSWluKzzz7DL7/8gtzcXPDmYy2Pg4MDOnXqhAceeABTp06FgwPzOREREVFzYwCxAqPRiOeeew7nzp3Dgw8+iJCQkBZ9Z4LWqrKyEsnJyYiLi8Ply5fxxhtv2LokIiIiotsOA4gV/PHHH0hKSkJcXBz69u1r63KoHhMmTEC3bt3w3//+F7Nnz0abNm1sXRIRERHRbYXnmFjB8ePH4ePj02KfRkmmRo4cCSEETpw4YetSiIiIiG47DCBWUFpaCpVKBZlMZutSyAJeXl4Arv+9EREREVHzYgCxkvrCR0hICPr161dr24wZM+Dm5oaioqI63y+EwMKFCxEUFASFQoGgoCC8+OKLUnteXh5GjRoFuVyOsLAw7N271+T9S5cuha+vL7y9vfHqq6+aXCCfmJiIqKgoyOVyDB48GBcvXpTaysrKEBMTA09PTwQGBmLdunUm465evRoBAQFQKpWYPn06KioqpLZRo0ahbdu2UKlU6NevH37//fc69+9GmZmZkMlkUCgUUCgU6NChA9555x2p/ejRo/D19UVeXp60buXKlYiOjkZ2djZ8fHxMZjaMRiPuuOMOfPXVV9I6BkUiIiKiW4cBxMYOHz6MvLw8nDhxAufPnzdpKy8vx/fffw+5XI5NmzbVOcY333yDzZs348CBA9Dr9fjtt98QHR0ttc+ZMwft27dHfn4+li1bhgkTJqCwsBAAsGPHDqxcuRJHjx5Famoqtm/fjq+//hoAYDAYMH78eLzwwgvQaDTo378/pkyZIo0bGxsLjUaD7OxsrF+/Hk8//TTOnj0LAEhOTsbcuXOxZcsWZGVlITMzE4sWLZLe+5///AdXrlyBVqvFG2+8gXHjxll8ZzBXV1fo9Xro9XocPHgQn3/+OXbv3g0A6NevHyZOnIiXXnoJAJCTk4M33ngDq1atQocOHbBw4UI89dRTMBqNAIAPP/wQKpUK06dPt2jbRERERNQ0DCA2Fh8fj/Hjx+Pee+9FfHy8Sdu2bdvg7e2NefPmmbXdKDExEaNGjUJQUBAAIDAwUAoKer0eW7duxYIFCyCXyzF27Fj06NED27ZtAwCsWbMGzzzzDDp37gx/f3/MmzcPa9euBQDs378fCoVCmoV56623cPz4cWkWZM2aNYiNjYVSqcSAAQMwZswYrF+/HgDw7bffYtKkSejTpw9UKhXefPNNaVwAiIiIgJOTE4QQcHBwwNWrVxt1ylNwcDAGDBiA06dPS+uWLFmCffv24eeff8Zzzz2HKVOmSIHs6aefhqurKz7++GNkZWVh8eLFWLVqFWc9iIiIiKyEAcSGKisrsXHjRkyaNAmTJk0yCxlr167FxIkT8eijj+LAgQO4fPlyreP069cPq1atwooVK3DixAlUV1dLbefOnYNKpYK/v7+0LioqCqmpqQCAtLQ0REZGWtTm4eGBkJAQpKWlobCwELm5uRa/NyoqChkZGSgrK5PWPfjgg3Bzc8ODDz6I559/Hh4eHpZ/eP+/9PR0HD582OTuYkqlEh988AEeffRRHD16FAsXLpTaZDIZVq1ahQULFmDatGl44YUX0LVr1wZvl4iIiIgahwHEhnbt2oXq6moMHToU48aNQ2ZmJhITEwEAGo0GO3fuxKRJk9C5c2f07t3b7BqLGlOnTsXy5cuRkJCAgQMHwt/fX7qmQa/XQ6lUmvRXKpXQ6/W1ttfXdmO7Xq+Ho6Mj5HK5xePWrK+xfft2FBcXY9OmTejdu7fFn5vBYICXlxeUSiW6dOmCu+66y+z2xn379oVWq8WoUaPg6elp0hYREYEnnngCWVlZ+Ne//mXxdomIiIio6RhAbGjt2rUYP348nJ2doVarMXz4cGkWZOPGjQgMDJQOzGubIbnRtGnTsH//fhQVFSE2NhZPPvkkUlNToVAooNPpTPrqdDooFAoAMGuvr+3GdoVCAaPRaHLa1M3GrVl/IxcXFzz88MN4//33TU6jqo+rqyuKioqg0+mQl5eH/Px8vPrqqyZ95syZg6lTp2LDhg1IS0szGyM8PBwhISFwcXGxaJtERERE1DwYQGykuLgYCQkJ2LBhA/z8/ODn54f9+/dj/fr1MBqNiI+PR1ZWltS2ePFiJCUlSac41cXV1RXPPPMM1Go1Tp8+jdDQUGi1WuTm5kp9kpKSEBERAeD6gXhycrJFbSUlJUhPT0d4eDjUajX8/Pwsfm9SUhKCg4Ph7u5ea91VVVXIyMiw9OOTtGnTBuPGjcOuXbukdRs3bsSZM2fwySef4PXXX8fs2bMtvsCdiIiIiG4tBhAb2bx5M9q0aYMzZ87g/2vvzuOjqu7/j7+zQMhkmMnCEkIIImAkYXFD/AIKamUVBAuuAaqlghXXipWqDSLrV7FaLS5IQRFBVFTcQMDiUqSgVZaACEFIIAkEkswwkIQs5/eHv8yXIXtIZjLwej4e8zAz99xzP/dyhHnn3OXHH3/Ujz/+qB07dqigoEALFizQhg0b9OWXX3osu/baayucBXn99de1atUqHT9+XCUlJXrzzTfldDp18cUXy2q1avjw4UpOTlZ+fr5Wrlyp7du3a9iwYZKkpKQkvfTSS/rll1+UlZWlZ599VklJSZKk/v37y+VyadGiRSosLNT06dN12WWXuS92T0pK0lNPPaVjx45p48aNWrlypW6++WZJ0m233ably5frv//9rxwOh2bMmOHud//+/fr4449VUFCgwsJCvfjiizpw4IDHnbtqKi8vTx9++KG6dOkiSXI4HHrggQf00ksvqVmzZnrwwQflcDjcd/YCAACAjxnUmcPhMJKMw+Gost3TTz9tbrrpJo/PrrvuOjN16tRybSdNmmSaNGli+vfvX27Zu+++a9q3b29KS0tNQkKCefPNN40xxrz33nvmiiuuMHa73dhsNnPJJZeY999/373e4cOHzeDBg01oaKjp3LmzWbNmjUe/M2fONFFRUSY8PNxMnjzZlJaWupdt2rTJdOvWzTRr1sxceeWVZt++fe5lJ06cMLfddpsJCwszsbGxZsmSJR79Lly40MTExBir1WrGjRtnCgoKjDHG7Nu3z1xxxRWmefPmJjw83PTt29esX7/evd6MGTPMoEGD3O8HDRpkZsyYYYwx5pdffjGSTFhYmAkLCzORkZHmxhtvNBkZGcYYYyZMmGCSkpI86tiwYYNp2bKlyc7O9qht4MCB5Y5xmUsvvdTjGAIAAPiDmn4/9aUAYzg3pa6cTqfsdrscDke5i7VP9cwzz2jz5s16++23vVgdzsRll12mxx9/XCNGjPB1KQAAADVW0++nvsQpWAAAAAC8xm8DSHZ2toYOHSqLxaL4+HitW7euwnb5+flKSkpS8+bNFRcX53Er240bN6p79+4KDw9Xq1atNG7cOI/bxAIAAACoX34bQO655x7FxMToyJEjmjNnjkaPHq3c3Nxy7ZKTk5WTk6ODBw9q2bJluvvuu/Xzzz9Lkjp16qTPPvtMeXl52rdvn0pLSz0eWldfgoODdfLkyXrvFw2j7M+qSZMmPq4EAADg7OOXAcTlcunDDz/UtGnTZLFYNGLECHXt2lUfffRRubaLFy9WcnKybDabevfureHDh2vZsmWSfr2Fa9u2bSVJxhgFBATU6Vaw1enYsaMOHDig7Ozseu8b9e+HH36QJJ1//vk+rgQAAODsE+zrAupi9+7dstvtatOmjfuzHj16lHtGRm5urrKystStWzePdps2bXK/T0tLU/fu3eVwOGS1WvXJJ59Uut3CwkIVFha635/+kL7K9OvXT2FhYfrzn/+se+65R506dVJQUFCN1oX3FBUVaevWrZo7d67OP/98XXjhhb4uCQAA4KzjlwHE5XKVu6rfZrMpLy+vXLugoCBZLBaPdqde5xEXF6e8vDwdPnxYr7zyikeoOd2sWbP05JNP1rpem82mf/zjH3rkkUc0YcKEWq8P74qPj9ezzz6rgIAAX5cCAABw1vHLAGK1WsvNPjidTlmt1nLtSkpKdOLECXcIqaidJLVq1UqDBw/W2LFj9e2331a43SlTpuihhx7y2Ga7du1qVHNiYqI++ugj/fTTT8rKylJpaWmN1oP3BAcHq3379urQoYOvSwEAADhr+WUA6dy5sxwOh7KyshQdHS1J2rJli8aPH+/RLiIiQtHR0dq2bZt69erlbpeYmFhhv6WlpUpNTa10uyEhIQoJCalz3YGBgUpISFBCQkKd+wAAAAD8mV9ehG61WjV8+HAlJycrPz9fK1eu1Pbt2zVs2LBybZOSkvTUU0/p2LFj2rhxo1auXKmbb75ZkvTpp59q165dMsYoMzNTTzzxhK6++mpv7w4AAABwzvDLACJJ8+bNU3p6uqKiovTwww9r+fLlioiI0JIlSzxmOKZNm+a+YH306NGaN2+e4uPjJUmHDh3S4MGDZbVademllyo2NlYvvfSSr3YJAAAAOOsFGGOMr4vwV/7wqHsAAACcO/zh+6nfzoAAAAAA8D8EEAAAAABeQwABAAAA4DUEEAAA6qi0tFSZmZm+LgMA/AoBBACAOrr33nsVExOjN954w9elAIDfIIAAAFAHR48e1auvvipJmjt3ro+rAQD/QQABAKAO1q1bp+LiYv3tb3/T1q1bORULAGqIAAIAQB188cUX6tKli2666SZJ0oYNG3xcEQD4BwIIAAB18OOPP6pnz56KiYlRq1attG3bNl+XBAB+gQACAEAtlZaWatu2berevbskqUuXLtq5c6ePqwIA/0AAAQCgllJTU3XixAn16NFDEgEEAGqDAAIAQC3t2LFDkpSYmChJuuCCC7Rnzx4ZY3xZFgD4BQIIAAC1tHfvXlksFkVHR0uS4uLilJ+fr5ycHB9XBgCNHwEEAIBa2rt3rzp06KCAgABJvwYQSUpLS/NlWQDgFwggAADU0t69e3X++ee737dr104SAQQAaoIAAgBALZ0eQFq1aqWmTZsqPT3dh1UBgH8ggAAAUAulpaX65ZdfPAJIYGCgYmNjtX//fh9WBgD+gQACAEAtZGZmqrCwUB06dPD4vG3btsrMzPRRVQDgPwggAADUwi+//CJJ5QJI69atdfjwYV+UBAB+hQACAEAtHDx4UJIUGxvr8XmrVq106NAhX5QEAH6FAAIAQC0cPHhQFotFdrvd4/PWrVsTQACgBgggAADUQkZGhmJiYtzPACnTunVrZWdnq7S01EeVAYB/IIAAAFALGRkZatu2bbnPW7VqpdLSUh09etQHVQGA/yCAAABQCwcPHqwwgLRu3VqSuBAdAKrhtwEkOztbQ4cOlcViUXx8vNatW1dhu/z8fCUlJal58+aKi4vT0qVL3cs+/vhj/c///I/sdrtiY2P15JNPeqt8AICfKjsF63StWrWSJK4DAYBqBPu6gLq65557FBMToyNHjujzzz/X6NGjlZqaqoiICI92ycnJysnJ0cGDB7V9+3YNGTJEl156qS644AIdO3ZM06dPV9++fXXo0CENHDhQ559/vsaMGeOjvQIANGbGGGZAAOAM+eUMiMvl0ocffqhp06bJYrFoxIgR6tq1qz766KNybRcvXqzk5GTZbDb17t1bw4cP17JlyyRJt956q6699lqFhIQoLi5ON954ozZt2uTt3QEA+AmHw6H8/PwKZ0CsVquaNWtGAAGAavhlANm9e7fsdrvatGnj/qxHjx5KSUnxaJebm6usrCx169atynZlNmzYoMTExEq3W1hYKKfT6fECAJw7yp4BUtEMSEBAgCIjI5Wbm+vtsgDAr/hlAHG5XLLZbB6f2Ww2uVyucu2CgoJksViqbCdJr7zyijIzMzVu3LhKtztr1izZ7Xb3q127dme4JwAAf5KRkSFJFc6ASFJkZKRycnK8WRIA+B2/DCBWq7Xc7IPT6ZTVai3XrqSkRCdOnKiy3ccff6xp06bp448/VmhoaKXbnTJlihwOh/uVnp5eD3sDAPAXZTMgBBAAqDu/DCCdO3eWw+FQVlaW+7MtW7aUO30qIiJC0dHR2rZtW6XtvvrqK/3+97/XypUr1alTpyq3GxISIpvN5vECAJw7MjIy1KJFC4WEhFS4nAACANXzywBitVo1fPhwJScnKz8/XytXrtT27ds1bNiwcm2TkpL01FNP6dixY9q4caNWrlypm2++WZL0448/atSoUVqyZIkuvfRSb+8GAMDPHDx4sNLZD+nXAMKDCAGgan4ZQCRp3rx5Sk9PV1RUlB5++GEtX75cERERWrJkiccMx7Rp09wXrI8ePVrz5s1TfHy8JOn555/X0aNHNWLECFmtVlmtVg0ePNhXuwQAaOQqewp6GWZAAKB6AcYY4+si/JXT6ZTdbpfD4eB0LAA4B1x++eXq3r27XnvttQqXz5o1S3PnztWRI0e8XBkA/Mofvp/67QwIAADeVpMZkNzcXJWWlnqxKgDwLwQQAABqoKSkRFlZWdVeA1JaWspzogCgCgQQAABq4PDhwyopKal2BkQS14EAQBUIIAAA1EB1zwCRCCAAUBMEEAAAaqC6p6BLBBAAqAkCCAAANZCRkaGgoCC1atWq0jYEEACoHgEEAIAayMjIUJs2bRQYWPk/nVarVcHBwQQQAKgCAQQAgBooCyBVCQgI4GnoAFANAggAADWQmZlZ5fUfZcLDw+VwOLxQEQD4JwIIAAA1kJGRUaMAUvYEYgBAxQggAADUQE0DSHh4uPLy8hq+IADwUwQQAACqUVRUpMOHDzMDAgD1gAACAEA1srKyJFX9DJAyzIAAQNUIIAAAVKPsIYTV3QVLYgYEAKpDAAEAoBo1eQp6GQIIAFSNAAIAQDUyMjLUpEkTRUVFVduWU7AAoGoEEAAAqlGTp6CXsdvtKiwsVGFhoRcqAwD/QwABAKAaNX0IofRrAJHEaVgAUAkCCAAA1SibAamJ8PBwSeI0LACoBAEEAIBq1PQhhBIzIABQHQIIAADVIIAAQP0hgAAAUIXCwkIdPXqUU7AAoJ4QQAAAqMKBAwckSe3atatRe5vNJokZEACoDAEEAIAqpKWlSZLi4uJq1D4oKEhWq5UAAgCV8NsAkp2draFDh8pisSg+Pl7r1q2rsF1+fr6SkpLUvHlzxcXFaenSpe5lO3bs0HXXXSe73a4LL7zQW6UDAPxIenq6pJrPgEg8jBAAquK3AeSee+5RTEyMjhw5ojlz5mj06NHKzc0t1y45OVk5OTk6ePCgli1bprvvvls///yzJKlJkya67bbbNHfuXG+XDwDwE2lpaWrRooVCQ0NrvI7dbmcGBAAq4ZcBxOVy6cMPP9S0adNksVg0YsQIde3aVR999FG5tosXL1ZycrJsNpt69+6t4cOHa9myZZKkzp0764477lCnTp28vQsAAD+RlpZW49OvyhBAAKBywb4uoC52794tu93ucUeSHj16KCUlxaNdbm6usrKy1K1bN492mzZtqtN2CwsLVVhY6H7vdDrr1A8AwH+kp6fXOoBwChYAVM5vZ0DK7jJSxmazyeVylWsXFBQki8VSZbuamjVrlux2u/tVm/OBAQD+KS0trdZ/3zMDAgCV88sAYrVay80+OJ1OWa3Wcu1KSkp04sSJKtvV1JQpU+RwONyvsgsTAQBnJ2MMp2ABQD3zywDSuXNnORwOZWVluT/bsmWLEhMTPdpFREQoOjpa27Ztq7JdTYWEhMhms3m8AABnL4fDIZfLxSlYAFCP/DKAWK1WDR8+XMnJycrPz9fKlSu1fft2DRs2rFzbpKQkPfXUUzp27Jg2btyolStX6uabb5b062+2CgoKdPLkSY+fAQCQ/u8ZIJyCBQD1xy8DiCTNmzdP6enpioqK0sMPP6zly5crIiJCS5Ys8ZjhmDZtmvuC9dGjR2vevHmKj4+XJO3fv1+hoaEaOHCgfv75Z4WGhmrAgAG+2iUAQCOzb98+SVL79u1rtV54eLgcDoeMMQ1QFQD4N7+8C5YktWzZUp9++mm5z2+//Xbdfvvt7vehoaFasmRJhX2cd955/OMAAKhUamqqQkNDPe66WBN2u10lJSU6fvx4na87BICzld/OgAAA0NBSU1PVsWNHBQQE1Go9u90uSVwHAgAVIIAAAFCJPXv2qGPHjrVeLzw8XJK4DgQAKkAAAQCgEnv27FGnTp1qvV7ZDAgBBADKI4AAAFCBoqIi7d+/nxkQAKhnBBAAACqQlpam4uLiM5oB4RoQACiPAAIAQAX27NkjSXWaAQkLC1NQUBAzIABQAQIIAAAV2LVrl5o2bVrrp6BLUkBAgOx2OzMgAFABAggAABXYvn27unTpouDguj0yi6ehA0DFCCAAAFQgJSVFXbt2rfP64eHhzIAAQAUIIAAAnMYYo+3bt59RAGEGBAAqRgABAOA0Bw4ckNPpPOMZEAIIAJRHAAEA4DTbtm2TJCUmJta5Dy5CB4CKEUAAADjN5s2bFRUVpfPOO6/OfXAKFgBUjAACAMBpNm7cqMsvv1wBAQF17oOL0AGgYgQQAABOYYzRpk2bdMUVV5xRP8yAAEDFCCAAAJxiz549ysnJUa9evc6on/DwcLlcLhUXF9dTZQBwdiCAAABwin/9618KCgo64wBit9slSU6nsz7KAoCzBgEEAIBTfP755+rVq5fCw8PPqJ+y9TkNCwA8EUAAAPj/iouLtXbtWg0cOPCM+yqbAeFCdADwFOzrAgAAaCzWrVsnh8Oh66+//oz7KgsgzID4j++//14rVqzQ9u3bdfz4cVmtVsXGxuqCCy5Qjx491L17d0VERPi6TMDvEUAAAPj/3nzzTcXHx+viiy8+477KTsFiBuT/HD58WAEBAWrZsqWvS/Gwa9cu/fGPf9QXX3yhli1b6tJLL1VUVJSOHTumL7/8UvPnz9fJkyclSe3atdMll1yifv36qX///rrooovO6HbNwLmIAAIAgKTs7Gy99957euyxx+rlCyUzIP9n69atmjBhgjZu3ChJuvzyy/X3v//9jC/0rw9ffvmlhg0bplatWmnFihUaNmyYgoM9vx4VFRXp559/1tatW7VlyxZt2rRJf/nLX1RQUKAOHTpozJgxuvvuuxUdHe2jvQD8C9eAAAAg6fnnn1dgYKAmTpxYL/01bdpUoaGh5/wMyH/+8x/17dtXLpdLS5cu1dKlS1VaWqo+ffpoyZIlPq1t5cqVGjhwoHr16qUff/xRI0eOLBc+JKlJkyZKTEzUrbfeqtmzZ+uLL75QXl6e1q1bp2uuuUZ/+9vfdN5552nSpEk6cOCAD/YE8C9+G0Cys7M1dOhQWSwWxcfHa926dRW2y8/PV1JSkpo3b664uDgtXbrUY/miRYsUGxsrm82mO+64wz3FCgA4d+zZs0dz587VpEmTFBUVVW/9nusPIzx06JBGjhypbt26acOGDbrlllt0yy23aMOGDRo7dqzGjBmjFStW+KS2xYsX68Ybb9TQoUP18ccfy2q11mr9kJAQXXPNNXrttdeUlpamJ554QkuXLlWnTp30wAMPKCsrq4Eq9z5jjK9LwFnGbwPIPffco5iYGB05ckRz5szR6NGjlZubW65dcnKycnJydPDgQS1btkx33323fv75Z0nStm3b9NBDD+mDDz5Qenq69u3bp+nTp3t7VwAAPpSXl6dRo0apTZs2euKJJ+q17/Dw8HN6BmTq1KkqLCzUe++9p+bNm7s/b9KkiV577TWNGjVKY8eO1bZt27xa1wsvvKCxY8dq3LhxevvttxUSEnJG/YWHh+uxxx7TL7/8oscee0yLFi1Sx44d9ec//1lHjx4943pLSkp0/PhxuVyuBg8DJSUl2rRpk5566in17dtX4eHhCgoKkt1u1+WXX65HHnlEW7ZsadAacPYLMH4Ya10ul6KiorRv3z61adNGknTVVVdp/PjxGjt2rEfbNm3a6IMPPnCfZzp27Fh16tRJf/3rXzVlyhTl5eXppZdekiR98cUXGj9+vPbu3VujOpxOp/u3WzabrR73EADQ0IwxWrNmjSZNmqTs7Gx98803SkxMrNdtXHHFFUpMTNSCBQvqtV9/sHv3bnXp0kWzZ8/Www8/XGGb48ePq3fv3iosLNR///tfWSyWBq2ptLRUU6ZM0f/+7//qT3/6k55++ukGuYA8NzdXc+fO1XPPPafAwEBNmjRJt9xyi7p161bp9kpLS3XgwAH99NNP5V6ZmZnudiEhIWrTpo0SExPVvXt39ejRQxdffLE6deqkwMC6/V45LS1NX3zxhVavXq01a9bo6NGjstlsuvbaa93PxHE4HNqyZYvWrl2rw4cPq2fPnrrvvvt00003qWnTpnXaLhqGP3w/9csA8sMPP2jgwIE6fPiw+7N7771XFotFc+bMcX+Wm5uryMhIHT9+3P2X2ty5c7Vp0ya9/fbbuuGGGzRw4ED98Y9/lCQdPXpULVq00IkTJxQaGlpuu4WFhSosLHS/dzqdateunZ577rkK21elroed9VjPG+v5Ypusx3reWE/6dcZj//792rhxozIzM3XFFVdo8eLF6tSpU537rMzAgQPVvHlzvfvuu/Xed2N366236uuvv9bu3bur/Ddy586duuSSS/SHP/xBf//732u9HWOMVqxYoYULFyo1NVURERHq27evfvOb3+jKK690b3vXrl269957tXbtWs2dO1cPPPBAg9+9Kjs7W3PmzNH8+fPldDrVsmVLde3aVW3atJHFYtGJEyeUm5urtLQ0paamqqCgQNKvISM+Pl7x8fG68MIL1b59e1ksFhljdPToUR04cEDbt2/X1q1b3decWK1WXXTRRbr44ot10UUXKTY2Vi1btpTdbldgYKACAgLkcrl09OhRZWdna9euXdqxY4c2btyo1NRUBQQE6NJLL9XAgQM1aNAg9erVS02aNCm3T0VFRfrkk080b948rVmzRtHR0br77rs1YcIEtW7dut6OXXFxsbKyspSTkyOXy+WeATpx4oSMMQoICHD/+QUEBCgwMNC9nxX9t+wVFBTk8QoODnb/fGqAO3VsGGNUUlKi0tJSlZSUuF+nvj99WVFRkU6ePKmTJ0+qsLDQ/XNxcbGKiopUXFzs8XPZ32mn79fpP1e1rOznkydP6umnn27UAcQv74LlcrnKHVCbzVZumtvlcikoKMjjNyo2m00ul6vCfsp+drlcFf5lOWvWLD355JPlPn/wwQfr9JdYXf/iYz3W88Z6vtgm67GeN9azWq2Ki4vT7bffruuvv15XXXVVg30RDQ8Pr5dTcPzNjz/+qGXLlmn+/PnV/oKuS5cumjNnju6//34NGzZM1113XY23k5+fr1tvvVUffvih+vbtq4EDB+rQoUNavHixnn76aTVr1kxdu3ZVfn6+UlJS1K5dO3322Wf18qDJmmjZsqWeeeYZzZw5U+vXr9eGDRuUkpKijIwM9y87w8PD1b9/f/3hD39Q586d1aVLF8XFxSkoKKhG2zhy5Ih++OEH92v16tV68cUXqw3p4eHhSkxM1KBBg3T11VerX79+atGiRbXba9KkiUaMGKERI0Zox44d+vvf/67Zs2drxowZuvXWW3XXXXepZ8+eFYaXMkVFRcrIyNCBAwc8Xunp6e6fMzMzVVpaWqNj0NgFBQWpadOmatq0qZo0aaLg4OBy/w0MDJQxxv3nVtHPVS079eeSkhIf7GXtMANSDzMgjTlhAgB856677tIPP/ygzZs3+7oUrxoyZIhSU1OVkpJS4V2lTldaWqqBAwdq586d2rp1qyIjI6tdp7i4WKNGjdKaNWu0dOlSDR8+3L3MGKOUlBStXr1aP/30k5o2bao+ffroxhtvVLNmzc5o3/xBfn6+Dh8+rOzsbDmdThljVFpaqrCwMEVFRalFixaKjIyst+Cdk5OjBQsW6MUXX1RaWppCQ0MVHx+vmJgYhYaGqrS0VC6XS1lZWTp06JCys7M9ApLValW7du0UGxvr/m9sbKzatm2rFi1ayGq1KiwsTFarVRaLRQEBARV+OS8tLVVpaanHz2XvK5qlKHsVFxerpKTEo8/TnTpLUtHPp78/NXDUNEzWF384BcsvZ0A6d+4sh8OhrKws9z23t2zZovHjx3u0i4iIUHR0tLZt2+a+BmTLli3uc3wTEhI8LnzbsmWLOnToUOlva0JCQs74QjUAwLnjXLwI/csvv9Rnn32md955p0bhQ5ICAwO1cOFCde/eXRMnTtTbb79d5ZdjY4zuueceffzxx1q5cqWGDBnisTwgIEBdu3ZV165dz2hf/FVoaKjat2+v9u3be2V7kZGRmjx5sh588EF999132rBhg/bs2aODBw/K5XIpMDBQdrtd8fHxat26tdq0aeMRNBrrl2Q0HL+cAZGk0aNHKzIyUs8995zWrFmj3/3ud+5zP081efJk7dy5U0uXLlVKSooGDRqk//znP4qPj9e2bdvUv39/rVmzRh07dtSNN96oPn36aNq0aTWqwR8SJgDAd2bMmKHnn3/eY8b+bGaMUZ8+fXTy5Elt3ry51r9hf+edd3TTTTfp9ddfL3dTmVNNnTpVTz75pBYuXKjf/e53Z1g1cHbxh++nfnsb3nnz5ik9PV1RUVF6+OGHtXz5ckVERGjJkiUedzGZNm2a7Ha72rRpo9GjR2vevHmKj4+XJHXr1k1z587VsGHD3NN+jz32mK92CQBwlimbAWlMv+s7fvy4PvvsMz3++OO64YYbdMEFFygyMlJhYWGKi4vTkCFD9Pzzz1d4a/vqfPTRR/r22281e/bsOp3eM3r0aI0dO1aTJk3Sjh07Kmzz0ksv6cknn9TMmTMJH4Cf8tsZkMbAHxImAMB33nzzTY0ZM6bSawu9JTMzU8uXL9cHH3ygDRs26OTJk2rdurV69OihxMREtWrVSiEhITpy5Ii+//57/etf/1KTJk30xBNP6MEHH6zRbVaLi4t10UUXKTo6WmvXrq1zrU6nU3369JHD4dDXX3/tcRrRokWLdMcdd+i+++7Tc8891+B3sQL8kT98P/XLa0AAAPAHdrtdkuRwOLweQE6ePKn33ntP8+fP1/r16xUcHKwBAwbomWee0XXXXaf4+PhKv8AfOnRIc+bM0WOPPaYPPvhA7777rtq2bVvl9hYsWKCUlBQtWrTojOq22Wz67LPPdOWVV6pnz56aOXOmunTpojfeeEOvvvqq/vCHP+hvf/sb4QPwY8yAnAF/SJgAAN/5+uuvddVVV2nnzp268MILvbJNh8OhF154QfPmzVNmZqb69++vMWPGaOTIkeWuk6zOpk2b9Nvf/lZFRUV677331KdPnwrb5ebmKj4+XoMHD9brr79eH7uh7OxsTZw4UStWrJD064XOU6dO1aRJkwgfQBX84fspMyAAADSQU2dAGlpBQYFeeOEFzZ49WydOnNC4ceN07733ntHT3S+//HJ9//33GjVqlK6++mq9/PLLuvPOOz3aGGM0ceJEFRUVadasWWe6G24tW7bUe++9p0OHDunw4cPq3LnzOXELXeBcQAABAKCBhIeHS1KD34r3yy+/1F133aW9e/dq/PjxeuKJJxQTE1Mvfbdq1Upr167Vfffdp9///vfasmWL5syZo2bNmqm0tFSPP/64li9frrfffrvetnmq1q1b1+sTtgH4HgEEAIAGUhZA6nJHqZooKirSo48+qmeffVa9e/fW+++/r4SEhHrfTtOmTfXyyy+rR48euu+++7RixQoNGDBA27dv16ZNm/T000/rpptuqvftAjg7EUAAAGggzZs3V3BwsI4ePVrvfR8+fFijRo3St99+q7lz5+qBBx5QYGDD3l3/7rvv1jXXXKNnn31W33//vWJiYrR27Vpde+21DbpdAGcXAggAAA0kICBAUVFRysnJqdd+09PT9Zvf/EZOp1Pr16+v9OLwhhAfH69XXnnFa9sDcPYhgAAA0ICioqLqdQYkIyNDV111lSTpm2++UceOHeutbwDwBgIIAAANqD4DiMvl0vXXX6/i4mJt2LBB7dq1q5d+AcCbCCAAADSgyMjIegkgxhiNHz9ee/bs0TfffEP4AOC3GvZqNQAAznH1NQPy+uuv6+2339Zrr72m7t2710NlAOAbBBAAABpQfVyEfujQId1///0aN24ct7sF4PcIIAAANKD6mAGZMmWKgoODNXfu3HqqCgB8h2tAAABoQFFRUcrLy1NJSYmCgoJqvf5///tfLVy4UC+99JKioqIaoEIA8C5mQAAAaEBRUVEyxtT5aegzZsxQp06dNH78+HquDAB8gwACAEADKpu1qMtpWDt27NCKFSv06KOPKjiYkxYAnB0IIAAANKDIyEhJdQsgc+fOVWxsrMaMGVPfZQGAzxBAAABoQGUzILW9E5bT6dSyZcs0YcIENW3atCFKAwCfIIAAANCA6noK1tKlS1VQUKA77rijIcoCAJ8hgAAA0ICaNm0qq9Va6wDy2muvaejQoWrbtm0DVQYAvsEVbQAANLDaPgtkz549+u677/Tuu+82YFUA4BvMgAAA0MBat26tw4cP17j9e++9J4vFosGDBzdgVQDgGwQQAAAaWHR0tLKysmrc/t1339WQIUNksVgasCoA8A0CCAAADaw2AWTfvn367rvvNGrUqAauCgB8wy8DyObNm9WjRw9ZLBb169dP+/fvr7Rtamqq+vTpI4vFoksuuURbtmxxL3v33XfVq1cvhYSEaOLEid4oHQBwDqpNAPnggw8UEhKiIUOGNHBVAOAbfhdACgsLdeONN+r+++9XTk6Orrjiiiof0HTrrbdqwIABysnJ0Z133qmRI0equLhY0q8Ph3rkkUc0fvx4b5UPADgHRUdH69ChQyotLa227apVq9SvXz81b97cC5UBgPf5XQBZv369rFar7rzzTjVr1kx//etf9d1331U4C7Jr1y7t2rVLU6ZMUbNmzTRp0iSVlJRow4YNkqRrrrlGv/3tb9WyZUtv7wYA4BwSHR2toqIi5ebmVtkuPz9fX375pQYMGOClygDA+/wugOzYsUPdunVzvw8LC1PHjh21Y8eOCtvGx8d7PEG2e/fuSklJqdO2CwsL5XQ6PV4AAFQnOjpakqo9Deubb75RQUGBBg4c6I2yAMAn/C6AuFwu2Ww2j89sNptcLtcZta2JWbNmyW63u1/t2rWrUz8AgHNLTQPI6tWr1bZtWyUmJnqjLADwiUYXQAYMGKBmzZpV+Jo+fbqsVmu5mQen0ymr1Vqur9q0rYkpU6bI4XC4X+np6XXqBwBwbmndurWkmgWQAQMGKCAgwBtlAYBPNLonoX/++edVLl+9erVeffVV9/vjx48rNTVVCQkJ5domJCRo165dKioqUpMmTSRJW7du1eTJk+tUW0hIiEJCQuq0LgDg3GWxWGSz2ZSZmVlpm4MHD2r79u167LHHvFgZAHhfo5sBqU7//v3lcrm0aNEiFRYWavr06brsssvUvn37cm3j4+MVHx+v2bNnq7CwUPPmzVNQUJB69+4tSSopKVFBQYGKi4s9fgYAoL7FxsZWOXO+Zs0aBQQE6De/+Y0XqwIA7/O7ABISEqIVK1bo2WefVXh4uP79739r8eLF7uUTJ070eKbHW2+9pVWrVik8PFzz58/XihUrFBz868TP4sWLFRoaqhkzZui1115TaGiopk+f7vV9AgCc/c477zzt27ev0uXr1q3TxRdfrBYtWnivKADwgQBjjPF1Ef7K6XTKbrfL4XCUu9gdAIBT3XPPPfrmm288HohbxhijmJgYjR07VnPmzPFBdQDOFv7w/dTvZkAAAPBHZTMgFf3eb+fOncrKytK1117rg8oAwLsIIAAAeMF5550np9OpvLy8csvWrVunpk2bqm/fvt4vDAC8jAACAIAXnHfeeZJU4XUga9euVe/evWWxWLxbFAD4AAEEAAAv6NChgyQpNTXV4/Pi4mKtX7+e068AnDMIIAAAeEGLFi3UqlUrpaSkeHz+3Xffyel0EkAAnDMIIAAAeEnXrl21bds2j89WrVolu92unj17+qgqAPAuAggAAF7StWtXbd++3eOzlStXasiQIe5nVAHA2Y4AAgCAl/To0UO7d++Ww+GQJKWnp+uHH37QsGHDfFwZAHgPAQQAAC/p37+/SktL9dVXX0mS3nnnHTVp0kSDBg3ycWUA4D0EEAAAvKRDhw5q37691q1bJ2OM/vnPf2rEiBGKiIjwdWkA4DWccAoAgJcEBATohhtu0JIlS9SzZ0+lpKTohRde8HVZAOBVzIAAAOBF9913n1wul5KSkjR06FBdffXVvi4JALyKGRAAALyoY8eOWr9+vTZu3Kg777zT1+UAgNcRQAAA8LJevXqpV69evi4DAHyCU7AAAAAAeA0BBAAAAIDXEEAAAAAAeA0BBAAAAIDXEEAAAAAAeA0BBAAAAIDXEEAAAAAAeA0BBAAAAIDXEEAAAAAAeA0BBAAAAIDX+GUA2bx5s3r06CGLxaJ+/fpp//79lbZNTU1Vnz59ZLFYdMkll2jLli3uZXPmzNGFF16o5s2bKyEhQStWrPBG+QAAAMA5y+8CSGFhoW688Ubdf//9ysnJ0RVXXKExY8ZU2v7WW2/VgAEDlJOTozvvvFMjR45UcXGxJCkoKEjvvPOOHA6HXn75Zd1xxx1KTU311q4AAAAA55wAY4zxdRG1sXr1aj3wwAPauXOnJOn48eNq2bKldu7cqfbt23u03bVrly6//HJlZ2eradOmkqT27dtr8eLFuuqqq8r13adPHz300EP67W9/W6NanE6n7Ha7HA6HbDbbGe4ZAAAAcGb84fup382A7NixQ926dXO/DwsLU8eOHbVjx44K28bHx7vDhyR1795dKSkp5doeO3ZMKSkpSkhIqHTbhYWFcjqdHi8AAAAANed3AcTlcpVLczabTS6X64zaTpgwQcOHD1eXLl0q3fasWbNkt9vdr3bt2tVxLwAAAIBzU6MLIAMGDFCzZs0qfE2fPl1Wq7XczIPT6ZTVai3XV03bPvroo0pLS9Mrr7xSZW1TpkyRw+Fwv9LT0+u4lwAAAMC5KdjXBZzu888/r3L56tWr9eqrr7rfHz9+XKmpqRWeOpWQkKBdu3apqKhITZo0kSRt3bpVkydPdrd5+umn9dFHH+mbb75RaGholdsOCQlRSEhIbXYHAAAAwCka3QxIdfr37y+Xy6VFixapsLBQ06dP12WXXVbuAnRJio+PV3x8vGbPnq3CwkLNmzdPQUFB6t27tyTpn//8p1588UWtXr1aERER3t4VAAAA4JzjdwEkJCREK1as0LPPPqvw8HD9+9//1uLFi93LJ06cqIkTJ7rfv/XWW1q1apXCw8M1f/58rVixQsHBv078PPXUU8rMzNSFF14oq9Uqq9WqmTNnen2fAAAAgHOF392GtzHxh9ucAQAA4NzhD99P/W4GBAAAAID/IoAAAAAA8BoCCAAAAACvIYAAAAAA8BoCCAAAAACvIYAAAAAA8BoCCAAAAACvIYAAAAAA8BoCCAAAAACvIYAAAAAA8BoCCAAAAACvIYAAAAAA8BoCCAAAAACvIYAAAAAA8JpgXxfgz4wxkiSn0+njSgAAAID/+15a9j21MSKAnIFjx45Jktq1a+fjSgAAAID/c+zYMdntdl+XUaEA05jjUSNXWlqqjIwMNW/eXAEBAb4uBzXgdDrVrl07paeny2az+bocNDKMD1SF8YGqMD5QFW+OD2OMjh07ppiYGAUGNs6rLZgBOQOBgYGKjY31dRmoA5vNxj8QqBTjA1VhfKAqjA9UxVvjo7HOfJRpnLEIAAAAwFmJAAIAAADAawggOKeEhIQoOTlZISEhvi4FjRDjA1VhfKAqjA9UhfHhiYvQAQAAAHgNMyAAAAAAvIYAAgAAAMBrCCAAAAAAvIYAAgAAAMBrCCDnsOTkZCUkJCgwMFDLli1zf37ixAlNmDBBrVq1UuvWrfXMM8+4l3399deyWq3ul8ViUWBgoLKzsyVJ+fn5SkpKUvPmzRUXF6elS5dWWcPmzZvVo0cPWSwW9evXT/v373cvmzdvni666CIFBwdr9uzZ1e5PXfqaOXOme19CQkLUpEkT9/uJEydKkj777DN16tRJYWFhuuGGG5Sbm+tePzs7W0OHDpXFYlF8fLzWrVtXZY2zZ89Wy5YtFRkZqUceeUSn3gOiqvpPV91xXrRokWJjY2Wz2XTHHXfo5MmT1R4/f1DV8a7q2J6uPsddVcc6NTVVffr0kcVi0SWXXKItW7bUcc9RU94YIw899JDOP/98NW/eXJdddpm++uqrKmtijDQe3hgfycnJateunWw2mzp37qyFCxdWWRPjo/Hwxvgos2/fPoWGhrq/a1TmrB0fBuesxYsXm88//9z06tXLLF261P35X/7yF3PdddcZh8Nh0tLSTKdOncyqVasq7OP55583ffv2db+fPHmyGTx4sHE4HObf//63sdvtZteuXRWuW1BQYGJjY82CBQtMfn6+eeSRR8yVV17pXv7++++bjz76yIwcOdLMmjWryn2pj75mzZplxo0b5/HZoUOHTHh4uPn000+Ny+Uyt99+uxkzZox7+ejRo8348ePN8ePHzfvvv28iIiJMTk5Ohf1/8sknJi4uzqSmppqMjAzTpUsXs2DBghrVf7qqjvPWrVtNRESE2bx5s8nLyzP9+/c3TzzxRJXHz19UdryrOranq89xV92x7tmzp5k6darJz883L7zwgunQoYMpKiqqn4OBCnljjEydOtXs3r3blJSUmOXLl5uIiAjjdDor7Isx0rh4Y3z8/PPPxuVyuX9u06aN2b59e4V9MT4aF2+MjzIjRowwvXv3NhMmTKi0nrN5fBBAYPr16+cRQC655BLz6aefut/PnDnT3HbbbRWue/nll5uXX37Z/T46Otps3LjR/X7MmDHmySefrHDdVatWmQsvvND93uVymdDQULNv3z6PduPGjav2i2B99FVRAHn55ZfNoEGD3O/37NljmjVrZgoKCsyxY8dM06ZNTUZGhnv5lVdeaV5//fUK+7/lllvM7Nmz3e8XLFhgrr766lrVX6aq4/zoo4+aiRMnupetW7fOdOjQocJ+/ElVx7uqY3u6+hx3VR3rn376ydhsNlNYWOheHhcXZ7788ssa7C3qwttjpExMTIz57rvvKlzGGGk8fDE+fv75Z9O6dWvzySefVNgX46Px8Ob4WLVqlbnhhhtMcnJylQHkbB4fnIKFCplTphaNMUpJSSnXZs+ePfrxxx81evRoSVJubq6ysrLUrVs3d5sePXpUuK4k7dixw6NtWFiYOnbsqB07dtS63vrsq6p+O3bsqODgYO3du1e7d++W3W5XmzZt3MtP3d9vvvlG4eHhlfZ1atvq6p89e7auv/56SdUf54q288svvyg/P/+MjoWvVXW8qzq2ktS9e3e99dZbks5srKSlpSk8PFxpaWkV9nXqsd6xY4fi4+PVtGlTjzoq+/8BZ84XY2Tfvn3KyclRp06dJDFGGjNvjo/Zs2crLCxMF1xwgdq3b69rrrlGEuOjMfPW+Dh58qQmT57scXp7mXNpfAT7ugA0PgMGDNBzzz2n3r17Ky8vT4sWLaqw3ZIlSzRo0CBFRkZKklwul4KCgmSxWNxtbDabXC5Xheu7XC7ZbDaPz6pqX5X67Ov0flu2bFlhvwUFBRVuMy8vT5LUt29f988V1XhqfdXV/+ijj3r0U9Vxrmg7ZZ+HhobWav8bk8qOUV5eXpXHVpK2bt1abT81GStxcXHV/pmWfd5QYxKV8/YYKSoq0rhx4zR58mTZ7XZJjJHGzJvj49FHH9Wf//xnbdq0SWvXrlVw8K9ftxgfjZe3xsezzz6rIUOGuH9pcapzaXwwA4JyHn/8cZ133nnq0qWLBg8erNGjR6tt27bl2r311lu6/fbb3e+tVqtKSkp04sQJ92dOp1NWq1WSlJiY6L7AOy0tTVarVU6n06PPU9tXpT77qkpV/dZ2m6e3P7Vtbfqq7jhXtJ2yz/1Zbf4savPnUF372tR06rFuqDGJynlzjBhj9Lvf/U6tWrXS1KlTa1wTY8R3vP13SEBAgHr16qXMzEwtWLCgRn0xPnzHG+Pj4MGD+uc//6nHHnusTjWdTeODAIJywsLC9OqrryozM1M7d+5UQECALrvsMo82mzdvVmZmpoYNG+b+LCIiQtHR0dq2bZv7sy1btigxMVGSlJKS4k7tcXFxSkhI8Gh7/PhxpaamKiEhodoa67Ovqpze7969e1VcXKzzzz9fnTt3lsPhUFZWVoX7W11fp7atTf3VHeeKttOhQwe/nv2QVOXxrurYnq4+x0pVxzohIUG7du1SUVGRe/nWrVsrrQtnzptj5N5771VGRobefPNNBQZW/k8pY6Tx8NXfIaWlpUpNTa1RX4wP3/HG+Ni8ebPS09PVuXNnRUdH65lnntEbb7yhQYMG1aivs2p8+PgaFPjQyZMnTX5+vrnyyivNG2+8YfLz801JSYlJT083mZmZpri42Hz++ecmJibGHDx40GPd+++/v9wF28YY8/DDD5uhQ4cap9Npvv32W2O3281PP/1U4fbL7hSxcOFCU1BQYB599FGPO0UUFRWZ/Px8k5SUZJ566imTn59viouLG6yvqu6CtWrVKnP8+HGTlJTkcResUaNGmbvuusucOHHCfPjhh1XeBevjjz827du3N3v37jWZmZkmMTGx3F2wKqu/Nsd569atJjIy0nz//fcmLy/PXHPNNWfNXbAqO95VHdvT1ee4q+5Y9+zZ00ybNs0UFBSYf/zjH351hxJ/5Y0x8te//tVcdNFFxuFwVFsPY6Rx8cb4mD9/vsnNzTUlJSVm/fr1xmazVXoROuOjcWno8VFQUGAyMzPdrz/96U9m7Nix5siRIxX2dTaPDwLIOWzcuHFGksfrX//6l/niiy9MbGysCQ0NNRdffLH56quvPNYrLi420dHR5vPPPy/X54kTJ8xtt91mwsLCTGxsrFmyZEmVNWzatMl069bNNGvWzFx55ZUed4lITk4uV9/ChQsbrK+KAogxv94+9/zzzzehoaFm2LBhHgHj8OHDZvDgwSY0NNR07tzZrFmzxr3sq6++MmFhYR59zZw500RFRZnw8HAzefJkU1paWqP6Z8yY4XE3ruqO88KFC01MTIyxWq1m3LhxpqCgoNLj5k+qOt5VHduEhATz5ptvut/Xdazs37/fhIWFmf3797vbV3Wsd+/ebXr37m2aNWtmLrroIvPDDz80wFHBqbwxRiSZkJAQExYW5n6VrcsYady8MT5GjhxpIiMjjdVqNQkJCeaVV15xL2N8NG7eGB+nOv0uWOfS+AgwpoonqQAAAABAPeIaEAAAAABeQwABAAAA4DUEEAAAAABeQwABAAAA4DUEEAAAAABeQwABAAAA4DUEEAAAAABeQwABAAAA4DUEEAAAAABeQwABAAAA4DUEEAAAAABeQwABAAAA4DUEEAAAAABeQwABAAAA4DUEEAAAAABeQwABAAAA4DUEEAAAAABeQwABAAAA4DUEEAAAAABe8/8ArMzSlt9nhJcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# `plotst` also takes wildcards to plot multiple synthetics in a single figure\n", + "! seisflows plotst output/solver/001/syn/AA.S00000[123].BXY.semd --save AA.S000001-3.BXY.semd.png\n", + "Image(filename=\"AA.S000001-3.BXY.semd.png\")" + ] } ], "metadata": { diff --git a/seisflows/preprocess/pyaflowa.py b/seisflows/preprocess/pyaflowa.py index cdaa20fd..8866dd0d 100644 --- a/seisflows/preprocess/pyaflowa.py +++ b/seisflows/preprocess/pyaflowa.py @@ -425,6 +425,7 @@ def _run_quantify_misfit(self, config, save_adjsrcs, parallel=False): del future # Free up memory once future is completed if _misfit is not None: misfit += _misfit + if _nwin is not None: nwin += _nwin # Run processing in serial else: @@ -434,6 +435,7 @@ def _run_quantify_misfit(self, config, save_adjsrcs, parallel=False): ) if _misfit is not None: misfit += _misfit + if _nwin is not None: nwin += _nwin return misfit, nwin @@ -760,7 +762,7 @@ def _make_evaluation_composite_pdf(self): return # Strip off event name to get evaluation tag for fid, i.e.: i01_s00.pdf fid_out = "_".join(os.path.basename(event_pdfs[0]).split("_")[1:]) - path_out = os.path.join(self.path._figures, f"{fid_out}.pdf") + path_out = os.path.join(self.path._figures, f"{fid_out}") # Merge PDFs into a single PDF, delete originals merge_pdfs(fids=event_pdfs, fid_out=path_out) if os.path.exists(path_out): diff --git a/seisflows/seisflows.py b/seisflows/seisflows.py index 969e4967..323bbcce 100755 --- a/seisflows/seisflows.py +++ b/seisflows/seisflows.py @@ -1029,7 +1029,6 @@ def print(self, choice=None, **kwargs): acceptable_args[choice](*self._args.args, **kwargs) - @staticmethod def plotst(self, fids, data_format="ASCII", savefig=None, **kwargs): """ Simple stream/waveform plotter to visualize synthetic waveforms created diff --git a/seisflows/workflow/inversion.py b/seisflows/workflow/inversion.py index 91d71419..3adf1c4f 100644 --- a/seisflows/workflow/inversion.py +++ b/seisflows/workflow/inversion.py @@ -186,8 +186,8 @@ def run(self): logger.info(msg.mnr(f"COMPLETE ITERATION {self.iteration:0>2}")) self.iteration += 1 logger.info(f"setting current iteration to: {self.iteration}") - # Clear the state file for new iteration - self._states = {} + # Set the state file to pending for new iteration + self._states = {key: "pending" for key in self._states} self.checkpoint() else: break @@ -455,7 +455,6 @@ def finalize_iteration(self): self.preprocess.finalize() - def _update_thrifty_status(self): """ Determine if line search forward simulation can be carried over to the From 99702a414d3c5a5d3bf461c650473922fdf4010c Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 9 Sep 2022 11:22:03 -0800 Subject: [PATCH 164/195] updated specfem2d example notebook and docs page up to Example 3 with clear explanations of how to understand example results, with figures --- ...le_13_1.png => specfem2d_example_14_1.png} | Bin ...le_15_1.png => specfem2d_example_16_1.png} | Bin ...le_17_1.png => specfem2d_example_18_1.png} | Bin .../specfem2d_example_28_1.png | Bin 217588 -> 0 bytes .../specfem2d_example_30_1.png | Bin 79493 -> 0 bytes .../specfem2d_example_31_1.png | Bin 81881 -> 0 bytes .../specfem2d_example_32_1.png | Bin 0 -> 101255 bytes .../specfem2d_example_34_1.png | Bin 0 -> 83487 bytes .../specfem2d_example_36_1.png | Bin 0 -> 74825 bytes .../specfem2d_example_43_1.png | Bin 0 -> 88490 bytes .../specfem2d_example_55_0.png | Bin 0 -> 19420 bytes .../specfem2d_example_56_0.png | Bin 0 -> 47450 bytes docs/specfem2d_example.rst | 593 ++++++++++++++---- 13 files changed, 487 insertions(+), 106 deletions(-) rename docs/images/specfem2d_example_files/{specfem2d_example_13_1.png => specfem2d_example_14_1.png} (100%) rename docs/images/specfem2d_example_files/{specfem2d_example_15_1.png => specfem2d_example_16_1.png} (100%) rename docs/images/specfem2d_example_files/{specfem2d_example_17_1.png => specfem2d_example_18_1.png} (100%) delete mode 100644 docs/images/specfem2d_example_files/specfem2d_example_28_1.png delete mode 100644 docs/images/specfem2d_example_files/specfem2d_example_30_1.png delete mode 100644 docs/images/specfem2d_example_files/specfem2d_example_31_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_32_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_34_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_36_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_43_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_55_0.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_56_0.png diff --git a/docs/images/specfem2d_example_files/specfem2d_example_13_1.png b/docs/images/specfem2d_example_files/specfem2d_example_14_1.png similarity index 100% rename from docs/images/specfem2d_example_files/specfem2d_example_13_1.png rename to docs/images/specfem2d_example_files/specfem2d_example_14_1.png diff --git a/docs/images/specfem2d_example_files/specfem2d_example_15_1.png b/docs/images/specfem2d_example_files/specfem2d_example_16_1.png similarity index 100% rename from docs/images/specfem2d_example_files/specfem2d_example_15_1.png rename to docs/images/specfem2d_example_files/specfem2d_example_16_1.png diff --git a/docs/images/specfem2d_example_files/specfem2d_example_17_1.png b/docs/images/specfem2d_example_files/specfem2d_example_18_1.png similarity index 100% rename from docs/images/specfem2d_example_files/specfem2d_example_17_1.png rename to docs/images/specfem2d_example_files/specfem2d_example_18_1.png diff --git a/docs/images/specfem2d_example_files/specfem2d_example_28_1.png b/docs/images/specfem2d_example_files/specfem2d_example_28_1.png deleted file mode 100644 index 1f473b8eadae90bceb46a2eb566fc49fcb482610..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 217588 zcmeFYWmJ}X*YyJK_a1wXv7h~pXN>pb^I_fh(gj!iW6tCF&EpJGR(yB`j|vZkLS2!Qm3e|fp*JA^ z;9$YuY=&Nug8vh;zpr8c)Y`<}$>6myO2NS1#=_d(;-w*-qw#CIm)2H19DE#i+33vd z?QQIYIXNx=?;qf>er?Lh%1?VAUIf=hR?`lJA~Zn$LCX+Ne~Cgvq2y#FpE)P4esYQ> zQ?0nDCBLU|@Pdix{#`s)Nn-M%6$XZiiZZNc_D%V&XD)f`@mxCU>xF6km1S5y75=K6 zWvn6DKG`7*b!@DXsU1K6_K4odTs}Kf(e00_NXI4`{B|3Byqki2=U$&6+=Dqy4Z7NUJsCvR0k=tp;2+st-h3tlUgGVhsk);61r*XJmGleq+P8xOM9m zrGOQ6lIOWgcTKYE^6gM6KD-E7%x~Ym#c~;-Pq?nIYgb>n&Oar7u_Mm?>JJMUIr-1Rt9n!90qj*8VJRyr)?<7$;k!x{yZ(P7{04MUb#^-YDar?=Fwep4Ij%$ zpV)I1jf+y8>36zPOX~fQ&HBrnQzPbi4(!%1U)I&Xy=*(6Y5F-eb><=EX91@P7iO!f zt!COcl$t>gz8ubRdIq6kVEx=UFj^ZaF1t8CDRAC0blYxYes6pY)zj1C#hmO$a`RzW zqtHU4Z+fzauxX{Y#LrtP=-ysg6K4mL;rBMGNNdmc@@$Wn(v3Rf`O0R)?rp+!uffV-SzS76nf6|uKTM& zX1u}T7f0P?eS>dafg`UdH8<5JY9kq%!xMW zNwD*NQuL>Ld7e%01SSGI69i^^AJX!zaOji~WvS)VM?9p#P3{hGSQ&6x@21dqBhFIK zYbICM@s7Cpkb&ymOb~O@&)eyVK9??Eoq`>A$SHc!MnZP=YW&5HNYOYKWhgC)6gOE<8@R!aW&LyX%!3@y79K5os@FWS*(3KSY_$ zcf=*FC?)W}llrWje)eZ@@WbRry8iigOv(1iMs2cS*q6MTW7dUZeUGDCw$u-6&(^Fh z=hSr_$S12(&oNB+~3a$HY@1II1Yi-T$ zB+(_<;i4!9dwXRA1Nu+y`@<%hy1JjrlXD&?3P$+U(KXH57Okd+a4;lyKU`Z|E2%(E z&3y)9?Kp?AL0zXC#+BbzC#pwP(^&A{QF8kbi0&$DA9cj>;G+8b`&~+!pf#Ud-_Ph= z9KiAMdigueV7$WNa3+LPr+on~Ze}KHqRV`o$uO)7*XzHsWMpJ?)C5Lwy*bPcOl_zG z;4ahb%y%|S)%g-bL2=zR%hoE!lkpoaGM#-dO&}>LiKZxa^ul7~M_WlvOoCtUyj{0w zz-Q?I21I|)-7YDk z@xx4|Ymb6m3zK16r}oPi4EPc5b{h9xmEDy=LJA!l$(WXMx1-l?2jfm<@EbdYuF+9Z z!}~W-vXL)}lF+>-Hw4579IE$sh6;>`Lz;SqhRn>LMjOX8RcB7lQBPqFQWY?>Xh>xIs15sCMN`Q%Jy)BtoG$t9MCq ztM|1Y$8w=vrr>CVs$lb5L4cm>on!f=z@!_glK2^~NoV|9n1Jlo@^$3`K?5H+>g zKv){3uB!SuJG(wB4Sl*)oP;d$YXPb)TNcZ8H`Ng`zx74Ju!)nuck)=vH0r>&({;}w(5 zaDpr7#nUw7>jX8B?hq9frE)ipw;fqwbcyTy7F_MQwdby^tgIso=O|@k<8N!KyRbz# zs2jG8#3kw@;Ue2OXer&|7h`M*{FYREYomkxCim}ODlRFBH!dzNZrl+Og;MGA?sjr_ zmCMfdNHd}MX-~<7lIQW$(V;~9d8Vx%X~JG#A7s{0Gt?^QcIOi|i)r?j+2#JrULYIh;^>f`@zJK{D zTMF!T475f`)MCk~Rr|<8SWRd_!n2_~g#+cs%UPZ7% zL%$}WBgIU<=I0i1SbnCi54*){)EuhV@&hhNmDt|io{Oc?n>Y7zG>iPzvNa^b#g182 zRaJYT?kn_~{VDP=H5>|2*LROX!J3P{h}L!JSN(f%BDz9I#mkb8y4BaT`JP@{B&MzK zG5i!CF|qr_*+H7dDV%G|y)K~z>g|&={s^nNtrl8l)b6i4c`t6Xlvs|MK`Y%I(6;V{ z#uT{V5-<9uB&Tbv+^%h5r?*pJ^6^I14gs<_X^NlZVPm7&G$V`GnnEZ(u(j_NC7*T7 zJ*skC(^~HRf~^qG8#LiOdqu0n;@UX$M#lEL<8L;qHAh#2Df#^l;l&cw&){1HIwz%H zw<@F0I|fJ4OCC#U!WGDJHADrfyaH7Az(76EGY52uorP|ve%J$!ch?2NFeT~2X3d~9 z{jgu^4f8TMmL7wgE zO^|*cegy`e@1~0rqmCE9go~UAZnxh2UR5==&y>o89MV*lz9i8%fq@wX1reZB7Pyn) z9`3CSb{BnuYVaOfV-P9x6NU&Ic5!%tCD;q*`zjW5(D5m@M3fQ)toJPh^tnZx)^%pU zSsu0PJ1*%^-F<=c?#4a-4P<>HI6F*Z>%3@^R^U7}M&5d){Pd}Bx!nQ-HNouZ4y;f$ zRQ#-!35Gidm`YzlExaJvoc`XJ3H=>KG5fuovEh8tVIO_V^wH0i1G<<47u9aBS2Chl6+cvJ) z(O*&>*QIao8E-FWWQX3kcQrUQ_IwhKHanDGE|U&Q_3_>>4~;-pnpsxdYNPn(8T+V!SG5z)(tO#hvx&_Jpr()+FL zL)R?gpieG48XIu+Jx&(8k(p_@zdEc@<;)HH75tnlw%CJ(tRAXv(5Q9ojkXsg`tE!E zXw+-xrf{xZ+?f>Of2gnJX%wKxry2b8LOZeSK;(&G0cDubJY~@;v-lD2sfYM{cd~WX zJQKADES}T5LIb#o;e8(a}!-GK+J!cir0%`B73b<4Y)(->(aw0S^yP zggHQTr-KKzyOVPV&LOo(_ZQELbClQe@+;KOOw}xly+9mLY*Mzi+)|(4Yu4B=JxPSO z5L_>t&4&sEZlc>GGb^hAE|I#=m79vM^Yp4Kc&&Vob{1ygk~TI`=!b%^sdyyi+@GmB zRA&2SO^}BYzxmwf*7$R-zEB!bDn#So3>QIX*e1J!C@pkv6tu)}P%wW624=jmX(S8` zKBvE3*AIfN*@$tRaNAK30hKR!vRc$zYOVkE$?a_2%Bx5>z{02Wf-UG%yRh~=xt`j~ z0@et%s3H>DVJ3dIq(qF5RbV;Fe>y`^`}5EDr`*qfqF}|y@2E|IAg$Y+Zm_h3QalxQ zZ~f;dr->jaq&!Q_;HBOn+uGoNg=a+!-m`2b_zo8wd7iBX_!VyVWBZOoAyOZ@=N+-! z8Wr}p5mj({;CUe+FE8J*2S(?D)bo5N+4lTsVHTveG_24j6yF)Rz;`?@P9`hsKY$jj z0zV=M(wp0UQMvoEmDJKG^K_tKX!=pMfvi1ji%rsgfu;xEbET(Gtt+1KFAwsG%ws9#m{gu70h@ywDze znCI{b1ZM(oBEM?1x7=TH{_g7y6rweCz?e`9+q1yQRLj$Q2a57bVPPM6=S*QcM+0d3 zeB<_LU*VfKed`2UkGS1=DMNkVJ*0L2i0XmcEfT}2k?*A_yu=7ij7~H9dqqV&N7)p* z_SXQnpOT9_Rker5D|t(%;wRUj;m5#xKzl`M4lK)A47Mp$cA2jyEsAk> z-yZL+JoJ|EdZC%-je*?uud}d3w?1{ zj>oj?tC;)od$x97Fx$rswC7X9-TP~!FPHy(f2O1JxRC94An{GJ^|A6Khl|q%aZ<1B z_8|M@k=bzZq+h>&$&%d%;gX6=%G3k9w2(R4+bdaQ+MPyx^MSG;bs8Kk;rUpjMetCi zN3&ExY=!R8ocdPg2gQSWU%(lL!Ar1^;q}4+TY@uVcWZ`gKY6glwM!v^pWXDL*_Nr# zy#yPdQsT36AfsGrjr&O-6eF|2T;1F?ap-w0L^x1spAMY0LH+quN9;gv#_|v4!^VZi zjaWdgH~Xu!Z&*Ml>r*oMgEa8n;%tG=`_^{0c^a&khVObwxvBXQiAaG%23w|>A&)r4G6=gsGS4F+H& zK}%9!oK0T5Gvi&(tOc)-=s5Cn5qdThFfPMJoYQGSPn%m_`F*{;-jcpp-m`+I=LfY; z?34Kh7)a40qo6D4;viwu>aLk4dXp*&qA7{)k%7)QKOU@|X})gV2%T*U7SDCx7MzYNo;hl$!r@Ny zyX%O{6xnJdWnp3Y2|m*XWZG1ex?Y{j!lxL!Q}coBI$Y*NFJMSBcMJ$_zbH7?w3S+V`=j-}=yuW&XG==Ihkhe9$lgM8eEBCsC8>R(BTgE%2u4fr z=gk$GvDfYFm|pzW6Bg0BK>hy0YXsd;6hE^MmSIR*bA#Fhb*UOYY!dFH+?wN8pniYY zEhrW}Rw1K;(z>@kp72byQ>Y7&i!T%!7OHpg#yL4T&(zc&w9veX&OJ`xR`5;O6&Mt!CKJ6QiN3Y~ohE=?FnJhHE4AcYcuI&K- zJNMPcJ(4m%Y-b<93ys+Zv9H>fi+F2*YcUW0{ zCO4dlBOWt>S5lvk(C7+`0w7mGZ}_%Kmedi|7=-Z=mafaiT-51 z>(gb1*WZ41l`60nZIU3-IAJv5Uxv5mB*u@w4zhD7(kmT z*#=>bG}>73x|otERMl?ZqcRYs+#pWb0IY>vWv^Ed82`Ap=f?4mMglk+%V&O7&u#1e zkK$s3nZ}^9qxpn_*K_g+q;Lj!SpbJ55zYu*JM|zyI-{{N+gKh`f@lui;L7!i%fPdU zK@16k!a`MS9)c$E5q+~CJ0ta*7eUo@3{?P}<{gctRX$dUeOx%zX7EX6F|)L60-?V- zHi7R<-)*4w6ZzWqkNpkMK!mCdiv9sH}BRVS)e;Pi?nzb`KM#oIHw&i2-*&V=^p$ zzD0mU0SZ%&}ZN6V)C{&Ebgn(- zOLg^)Nw=LV06egMI|*NBXJ>Z?ZDafEcKQ?$FW% zgcd7w#NFA4-yGiQhf4}vCN#3`tEM9mGE&q?zJaf%))`);o7Bb5XEa z3@H0X;)g?e$>QM3FulYsPVKr&fG9p=y$`DECTbTh#Aq}E(J;MeT>cWn$*cs6t5sqD zGTmqlZYo;q%Iw~+u@Jbfy(JTX+!Vh*`=x3PNB5bouH^tJrZ+Hy$?|1)*l9*N5_ZkP zMt+m@1Vj-^gQ^5|ZE{B(P696KY`?U&Q)vBWn4k~V6{;6@6wopL)OvcNOK?_g`k3EH z?lukc1g-P~rUZ%ZM8u*Xzu`jx!&BFuwuuc630VSPo({UM7a=HsD>yy2LbBH!niOUb zC61PYP2)^wTCHP6A|uoGA`+>-qqa2MhM1Pag||#A{U7x~saVw7|F3z>jBpwt_Pe+~ z?~6F0)@=R*_vV3h-})D2L~z(c9b7z|4L`^h079V!H67T=nyTl2$uhRr$19gWiKppR zyApTr@K19C0ay1N)UmrF7bye0?3BAGLY5Ih3@+|k+S)s>iohp>8kPoi`31qn3=ud8 z+2xNY|Nn;wCe^U14{2P!cGmJGP2L)s~Q5E;f+BvgbMsGL7&#TG5J7^|_xVH5Sn&2Eo<9+LYJfc9PwtUSh7N*4PB24xWlT^cx` zo_5aK$8d|%qzQ!lO034?ixDII^ySO%o$A6AU^-vvd9?mx=pW(?ZLS5Sb8&w%2!n}4kC3G#s+1x;{mxQKbfHtosxDlt9My6x$2 zF?tNBUC)aHPm^H;E+Hc8cCcZVxkmB3Hb+Eb*Vjvpl-b_ou@Clwq_#2 znfmV{6Gw^WW2gc%00kRXhl{qd^w02^lbjivL$CSv^*!l6?lmKe(RqyvSKLp6ZYrKS z>Rpa@sbjp_$YHidfni>WF%T-$Zfqsie;CKywkZwFqIeY=pyFMTm?VUfNGWJT2lpM3 zYcQ-q?`d!(r=S>hb4iDm51kgl;nxMMcxNYGQwKoztNC33Q@o^%} zZ3d)(hsw=2gEEHH^P1D`N8Ni!`$R3izL5FRJ=z6D8H=rp>&qw)7<5FW#)`h-zsji> z3RBgNtD-;U{=;2f+zop&jCtQSS8vpl*WNJ}@u1kAa~lxVOrM`U!?}3;Nt_ zW>)Sp??euLYD+k+^&Nen3yHDZBL6eS2UJ|F1J>6*1?161G3MQ&R&O;aut zx5O%cfqd}=qNDxiWA*2X3My3otA5r|F-tSEpKu9mpuv?5$T5;QL%Zd6T-C6foNoY& z60E`I4_?S5xfy|2SjfE>g$mIOws*7jX1G@%7p$!M4e7&BT5%dcy@1`CFbGAw>g(&> zuQDFpg<&(b>*D7_m;zp5kdl+bMd<43*@mZ6zdH;;w}Af{O;ov1in$5;6Viqu11T6r z+yVAutz}aE-dM;yqcC?Hb^>>!_CgHN#>g}i&M@*vnm4Q5)NfV`VntjEH4oAftm+YM z0jhl(3i<;s%0{rTA=tETMCnPcnJ>?7+I5=>qjG`06D5HiGATrW*n( z2kyZ|DllvcuDY2Be%`+=eCbQwb80pbpu=h6-zks*2$<<0=)|(o#+kXfX_q<5=*+(c zSUjh7^AFl(BuM|{7=O)R3idvIZM1aM&0id34<05uujL4@_M0u|M5qb(VNCZWEiH}X z-5YC7fLWg$1~fs@C={|i<)ZuwRj1GWVBGZ43j<_C-3zGxA=q_rA!di0)Ap0@2jwKT zf^8*)*Qux$0eGdufHIOX2xygb?Qwse2(v_2qR{U-QW$Ma_JKc@fY1W8nJbiBUH~-- z2AyZN1a)2JqIdzsv9hqxsgQk#OKcCb_TRA9bHhp{;lG(nKY#W{Y#G9+zF^RhMOK%A zx4iJZX&By%@R-BFZ#g+v;JY}(6wqeeVeo9I0ouuhVg9v$5?+Tf^RyR-*hmlnhFZ%l zGii*Fw*{Qdxvzc0{^OY5~n+`PvfIuXh3QNhuI!m&LSI` zCZHiSD%^kmIyCp^7~{WzF)qsStMg3%M9JV+{)q?)viz5rXW-p%ff07v<2WCfpx-3J z`<$Oo1PY0f#`Dy65VIbx?{(^yaxstE$)dFwJy+a^)V7!a`@l|bA;Jdmyi>oqwRMZ< zX^UqH)HIJ;TI5IcfbLh7PQ%_dA8yUUWLsH7BM{0$+)~^pnJ+415Eh~2H6wxoEC1+` zZJ!*o0f2}S*YD5pKm!m0D#Ql6hS<`A78<+a1DL1J_>n3~0E2~Jfj8%V*~f?&zT66M z+hs5w;08K~=_|RrI!wBd>{(-;4cf2)i88>8(81R-?M{Lkbr&kn!Yiowr_8xk+ww>( z1}X@3OI(|LB0{-ALOr}VKZDQP14J8{6oB$8?SBJG(PrdjI#RUZ=S5w2e?nZuf@wKF zQkD@2o&~kzkO9tHsf>(_pD;vN8adBRG=iTFbrv8ol7m4=GjvHPEwk#i$K+yXyH7>HTIM>yFwFt~WNXiH1a!s(L1<;nX#}QbKAfar{A|$?q@a{7B=kv>WcHIJsyxMbNJqRy>H1rUobv z0o+E-Q^+YmCfg+?{0ROwsrL8BLYfs6y_*17ky#Wp100B~_^_|sKs}D<#Wf$yZ9<4Y zG6h=b`h-mKxj_yhQ5%!_a){TYeEy7v{5~{J|B4D>k;5rpK_I!C0Pbf0eo*2cMRE*V zKpm%`N6Ijg)WI$+lqZt}VIr)6myd56Vm@^Mx;Np|8A2Sz84A(X-k|w_3MaZLEt0MOWq;|$2k%0 zG8;&1`B|RA`Dy9)Jhy{-3QcS>Ym$6dvt`-;y>UgyZ;%q z0Tth?j|b{d@^g(7h{|xU-)&f$i zs$j$?P2|UsR|y*M&!0aCMk$R-2GER9T!_JS7QVeqkqX&6q@3lf!{&qmvY7_0@oPj$ zS{kF~Y+oCR7EK9uv2Bc&aw0;NP3s3vW+plc29rr1$1f3Vy*OFx*|o(9|3T(2)dlh@ zVPOPpnuUxD#}L$mYMmPEBF8L8f*N95MkzmghKVW}ynq5{Q>+P~4+M}wOW2K)ZMRt+ zr*9V)D-`79!zFEjMQav3Btc#aM~b7E+xNNyaUjAZ4TaNE&6X1eC}9Xe1`{R}g4Xri z-foE8%eLn=P(80%!H!S&2GweScOhyXMzlQEq5mi2KdmJ1=U|xAvXq`225XK4*El_o zE`!6iX})GUgt-OhN?A)QShL8)0377ud4c-6HuInV9vn0qh|k*$hj?t$U~hseiFXec0S#T^Sf^jAX+VC_&|fN3G`WH|NH zyKFw*Tv^F?M52uFfgpsPvP$}bm_O{luhLBP%z z-=sh=igS{aXe;VidJE!&v3Bk-%Cc?@H~nbBC2U&nhl`-{wikVDmB2)yS`6jau~nWQ zuYAwQFiSqckbp7SpNR>pXvo6^qI!rQQX9N!I){=@ggOTC8Wae`{Rwy)NR6}&q-AFE z!rYVUo}i;!80GxK|B)=I5-KAtt+~G$ z&YB|RlI~v6f+zoE+k7q8wK>Z%Jq@m4O(^NU?d*K-(OXq|Bd@5%~{H3Wa-~5aTp)I6>xY9j-7P`yB<` z_&*S{$O^FVA{gE+3!dbijy9xIkzm$2hPm{@M+VWi1g6Rzr#J`FsFjKjpfhQ0I zGmzzhY799l8JUmr-=ON(&xf1k{0I1{q}OB)qaB?WghaVx~o<+dopP@&*g{cJ4v@tbP z&~3=c0e8Wbqfy|a=W%3ACF;t11Jd6=;MQl4Izu;wZVz$q*XtoVhJtaA`#?m>Rlhk% z1J@jU4k5K3sAOhP8|?q6JXEo>D>DBCx~^xrKWhmTOZrZ?crv5h>m$cWNWGCkt_=A) zK+=DMmsbR*M+KLtw}sYo^;J>Uf+qBiBR8>lL0iKvOJ)Yw)2$ZRNtkeb8h|13#rZ$` z8`Na@OhdzLV(PyaqC#~hiH@pS;i%5~Be&D(mHT*&`#oY}7`xOmBrPl20dZA$~!gpBx z(b?5i^l!)ldi*`h6)0t2!5NQUXNDA;yMb6ksBgRkofk+rA|%5LP8B9qAvS`m@iLbd zKSYZiPGKNgJEwF4op?ICsH+|_S_G{c?>@GNi|$jxs?8p8*Z)MobQz%PEf8~8O%rXg zn!|2{fR_GJQ{zz^_7boJM6dFcN@9yX8Td8AY(zTUA*hvK6N#2#qXru#@2hM=(rzlh zfuN}W3|x`!d1rIQK!qOkN<^w(xpL(YHn_likfRFf_7LncfzV%~-R1tvUZbAnMO%aY z{hv!p9P?U`6Fa;={tqaGKz(SAm5K^6%wf63HpEi5<|2t*2q$FqvlrGX0sF!TKqr**8>a z;b{qM6h0*vj8>p(AXXOfA{~VwE2x0T#R8MhSw~PFgaQ*Gt8X$44+iv1OoTyHpi|8W z!a^Cjxy?Y)KMgux#=}Dd#h1)XJX+6F?g{q;UE~3T`E3~Thh7&T0E;1GZl0w{6VjA# z*n~HF$gGrvA2yp09a)3uz`Q3x(dp%(3$z2@3sPmLmytAkC?z*K5(x`z-C=SB zQ$bIJgCsUGGBY9B%Z@Z%5DpdDD&l09E?q(%dEo*A#mmn>gCvVwcNe|E+_}Mx&B)4X zfNTQ_h2#<;XcrE?{&`~{u|}!Y4U_JqPcbZucpzwD!zMT_J0S=LPwzA%u?GlNrox;P zE>j&S@V8JaX}>&pcXuU>T8IR!2Dd-K4ZPaP@ct}yBbac*&=3hw8^Y8Mt@dPm!v;*x z6qKE2FfD-)A)SfVwyJ{%V@yatK$x3J5kkm1cAb34uobTOCU6Qvkd+9*wWKdiQ%Vj4 z1^OHWo{3K|lJP){H-vi69}$;H=fzQq#C? zO2WetNM4O+46Kw?{F;EFUuA5{V30z%Oc zFdKx%irD?ez>|j{^JHYQ22-sdAPj~+l)y%45MqZJhO7iS5g@K$x9e9=eoii7eaG#?#H|In$bv-ZZ|;uv`%#c zG-Vn<+9wc*h7XM7!~te@^P9hVwFm`09Uh}Xg2jLwKnkSZaczZ>`Rn5h?KX1FM%OOl zr66(SIU@vqf?8OH1lAeoPNyTsi|&h4!gtqr{9*beM}!G8yl+VO1xY##@&g(D4Ln5= zw&~k*E?MxADM$o2TH|eo`NB076Fnq}G^I5U;~gQV^|5RR2!?jFl_5p?C$Xl_*SiS9 z?0u&Rq1Z0r6*lDJrzzb7LVDnTg#Ql|jWB`XWh|^WX+1nC>jT_$+^6eq_O&I$f8ub@ z?Ky|WlY7}0*|LX#{%si%M*KrUo5N8dOm&M_1si09VBG!BOVusvaS7o5i&gO-l)n9c zXX9qDWq$J_M;59Ib<4jL7b0{Iy#sp&2K-^!_%-8fd+HiD30q;Kd!XFFLuv>CeojpW z^E;zj(~%ck`{Ydio)RDhQO{eVO^I=_@8#s-P>YQeVbiV-5Qa3atdG4urq}w5<|#b8 zx=uiF`^sSr-;N)AWf2X!eZGtKa)u?tB|1yLBZsBm7~c zYW3qkbn;a3RHuu9!%DYST)`oce$Eup(teR~yIPvQy2I?zMS`t?I$4(*)5$X&pJ+QB zlY5aSql!VL)+>XRZbSPo(J)ngSr^|1D@~TWxjqfu3QEPgU$F7`3$2k`a6P?hcO8Yg z%|%<*0JrEP}RuOe|fTC<7iElfS$nC~Bj zIBv5SZA9%lH9d)@n<&c7v?X$uiug+RT&SzdRqYqX98M(XxI`G2$2n2tD{8#*aQC!u z!6#bOa(qFbRFbnMKf247ShDVCu|$#;bqqZ)a_2i6%n~*F^!3;1ubi{nOUb5vPp+z? z-N&f0oX$5gm(fom>X^*i8dZ5Jk{z(wb@`Qzydg!;A3U5T+D~lghQ}h@=Xg>k<(a6= z_}kcb+hyAB_B@;S)a&>&eSZhL3%5}7)1TcfF093DBVAh56IB}%YKDU#_TyY+o3zZ8(V2Od(*LhGD=Z+HgEaWlQ1WTdw1O_!bSfD7Xec&HIViD&9J<`@pK>KW6pgrY{jP`~Kc#&4(b5&VX>G+NBz z7kWaNyp$D*or;GogvmQ_V!5W(6r=k5(i1V3*0I1uDGf4Qv@@C@8{GU#Ce*Da(`ap( z^j?p<^e8;*J4FMw!D1`h7AJMg%NGKTXtx)A7YQYmd2L>PmLuS{xRH!A)NHYCXC#i2 zO?wgekt^mliS>#1_tbOGU(6C;F~5F2SuhRMv+If8LrLs~Or7c+(@V6Q*9tb}55h5! zlJt{iobfQT3x2}Mov1(=QiY#HN@o-4@?p2aJB^nnIC^)L^QO<9T?bJWx~aQFgpSk@ zp|vDF3iq8r_t3}Yx&;l6Z9jBPN##ElmV%?aIG1ku^&VkxGK$ZzO5WtIX1|>$kE&Px z!Pq+KT~UU4?V8FfSyrPeF%)i8fKre06wpi4#{93tP5CoK4Yw7nmE<;j{o=(Q@)107 zbukfNn*2aT@onH#PN{)dl`s+@8MH9pN2hj9}VO|K}6|2eV;kfC# zD!@J1)MXS$@8`l@Sy#6*a!1h5oFl8IVC+zEv~}R2*k9ZA)%Ihm@46(7p9a*U+-Z4W z=2h1#m-q_N920?((FkINGBhirlcr3f|Z17gCxgG7xTIi zFJ=|Rn>&6v>1j`KD#!SqoN(R#^^&|KQo%lMoj5EYN5@C-aw0YQvr8|CUHHv&FUddf zel{jr!gh7MD!cwfDk+s$U(!PK;k~Tn6-z?jtvpQ9263jY5RI^vAOmtoJT+ensUf=W zLfIYBxjFSxGkX=O0a3l}tZZ8nV=5-PE#*me?$x=acl=`VatDu(o?BQ;e<3VTBR)67 zdqRpZr>pe(aha z2g$IGK;q~}%j-{t+}`FG?NX(ymbIjkkTqFa?vvC@J1wOMdwY2eC!5k86MNz)~g=zsH*!c-C6}If9q+3-ltg|L$EE zSbmYU!e%aSW2PWHPPgi=-Lm$T=OECnjmhs*E^%`LX}b1PeiGKa%ind>3^00)w&RM% z+Rh8Bv_@y|ODO2O0lHH$Nx)qA8<3CZgx-xSo;Yb^%5h7P*F@BWx{8b2jmRMIN=(LH znLi)%T6C<1l*asLTH|(y_Q^ICfiLPW3KE6SK2$SE3bLnr(Wo$7jnbLZbFjN_-TKkN zYS=-m^<9nd4tW>fg9T?sIce6Wn-lcQq;LCDdxlGP&KK+>T208;@wH!EzFlc^AT{qz ze;?0>;q#FC^zFVxhM^VJT2-9u1G?T6b<+9c??1&_ejDt*dZoS{j}^y;{eYyhOSs&R z3)M(Q;1$TAIT>cbFhs{j&)m$<`cXzcr1Dp_*`p>Eiou-Vqrm4k zCa%8?sD==eeAL=4PnWrhsTIv}C0`Xsn>pvZd`x!Z{IQFckR=DXke`hjtYynbU!B_T z?%!9wX4N!{lWjRux4j4}MSl~-*1maic2cd|Tubv9pBA-UjE^zwuKP)C+P|#2s>s1u zv(~%m2H}n(1#b7AoyJ>ZnnkZtBFBLPl6tjm_q`3{Yn?6nf)vBq^%DDQ1zO+VZN#IS z3CZO5a@1Locg@il>_;en4y@PH_J=WdVD@LH)}{27wZViuBK|3%I!B&P6XH4g*fnQd zeT*iGwXv4eL7tBk#2z*ueD7LEk2 zQ^mu-^)GQt*gx>{tZEfDh*@#cuQJlouNvR(8Z2hKK5#}7(Z1&)95;sbcY|s=JE8lo z_iTiZwwLgI-GKU=QDS+YJ}gy@-ORS1H%tkUxgzhHs+TKg-z4VqfK|${;9exw@R@H8 zVH4FVAxiC8-}^opCHhsqb@$-E`LtZeoRQuiGd}Z0%1G`Vc`^zBQoaKVAs+Ts&Q*?jfSkcn@ z{29POO-X$V+zEEc_SM0W{ZZLseofj}3;PPIjKYJ0p@!<}t0PbL_y+^>pE)WAjh|U6 zC^CHrWY*%EV-A-h*%8Uxru%09d^++v#L(m5iBfL26r!L(Q@TeUjKAss{QVdo7lltp z&4G~*Pgv2V&cp^k4pl?RW~fx@OE2D-;j(=1L3%!J%5chHbClvpcEW(VtA_Iau<8DT zU~en*{(vy4{@=FK^;te%=KI;!zy5SGl_Y-H<5*0tFVZ(wyruHTMvIob-F#JGt8bfN zRH2X6uOWhrL!=604($?y(qWohbGvzc5;66z!x#t2{kt}=iwzY$?%uT0konMf@}7Dk z)H%Rwqcp(sL)U#d>HDf=Jk7-n4CX{G^~<7n&-Y(a3Va&!TYmnFzu?#H`sEoCVKSPm z{lGw0>S)hr!Op_hf>>Tsx;kTol#8 zVnbQ9{z;r=!ZZ2d#%G_Op(T+Lsm8zmBTRQ04bv~swDQ|I<8eR&k@~&-S5DrRn#znn zzK(y@@u(!27D;(OMS+)MCTHh}Nm1AbK!5*@K?+GL$~=a=_aKOfp_x zuYo*lr#~8u=yB?eO>(qE92m+*C91JRDI6}Bm)9xZ_gTLP2wM&ECS{@z`nbkm`o{fJ z5>6_Ph!>Tc4(BjimSR?Zl)3-?-bAuaVdniOwy(P#ck!>(->xp1Y0$!bRJ)*}75Veh z*;C4ALtgEA-(MGBL5WE=wDvJz#xED>{y8IzA`5>O>~w28e{ItKx(Bgf_E!vYZ;!Y& z9;WiIoE_EJ0@FfbVVukM+^gjB3V(4Q9xPt6I$+9vFyDOdZ)Hx3KNDTt)xhAI@Y~gS zCm)yV=MTR$r}D8(eO%V6D%PzJSdmwlYv>;U7WQzi5j1NPTxYWd3klq zfoDM|DBn|~hxS)ry0k1C)?_bM<_Q*=WxIvB<}GENd8?mjd{!8*oTRSv5A3e31sAtI z!g=_DT(wTRuHVf!_&KqdF9%nM8-tV~x9}ge!DD*v>SPoPdU(knex*C+-}UcLqSFSu zyAu%!%EKME_nwJ9A?1I*&5nCHC**IFF2FU)?Y% zZ*7;*7G)WEf9-vm1ZrxB{CUjWYZbchIDyB4Zs_4@e$VZU^K0%eQ((!vSJ&~aV^Z9f zAf>V#r9Seg^myFRBpY=gDQZ|U*JMc8v#;dkOmfROiY4z=i$Lf3?!GC_-CIdhvwWi% z3mLBojL+$oXSq+mFuh@j^v6uuqCQMbO6hWQyH)E^)2_)@H?YTdNhgD>_Zd$-sq00u z01l;wM)mFBfvin?^`{n=YDx@C$2e^LvSMA`_g5aply@ie z%z*r|W!dXM4px5~kLROS9pbb@Jq)94f9B4~j&bLD#164#Rct1>nGG~-G2%ZkloZR& zU!m-|U*z!k!4ds58S6JOugs;h4!ujQi$=J#5TKc&S%i`UhZuPI0L2|mN}`sGFc z_3q3q77}MgbUq8|vQuSuPd@8Q{e#P+nP0oTzoJ`A27CQ|$n~}I+0ab6e5%Kn$zyJ_ zc0~yldUCfQ5BD&?W;-*vb;S*%Qq?DaUpy5I)*-nRnW9~p7)12(BS+UQ@h}!~vMXCR zri9Q6iM-e_r%0tXadU`VG%0q22<+Sp@iGYZr8F{2HB%iT=$B{Zn|hTpr7{X>L@-z7 zPVDbZVh!<3F8y)D+1!$Acacll8-22evj0rONSk3*bWUe@<(i2_ULMMW-V0r>xcE+* zc#{};li1LNA8h`juJU*5ga;MKP8-%8rmc&J~bvzGyD-zeS5~h>3C8HD$ZU1fR{Kfx>qe8L?r1Cuy-Ur4F$e<)dK8N5-+hCqa{4b8qGAgRB4Z}mjPy-AhAtCV6 zB{6h&NOyOKbcb|z2uMhGcc(N+cPWk1AP9bkZ!LbotOX3`Z1%bL{alwSTyvAy`W&iU zj0%TUOPL5?d)QK;k@}x}R2I6`lcJU*A(zhs{XEL8nsTF9h&+$bBEmK!6J9ITCvd*= zXYV9e!E?PHwIdwdmo`mU)w2B-I4$uLM4yJ9 zAj#3Y(o%jjCijv&5ZOjnL8D3sX$XKXH`p>l|)>j zb-^a*9MwLymg{i--(w|ZRw0tk1r!i)NU};~van!${F#~Zt=89E(My7SgVr21gLktl z$#3#R`J~e7$?4Mxa*z4RiaDPPh8k+=)8Ws{kf_#gIwS?p$$U328YwQf2uORCK||~B z@q%I<8hT7K{_aqU?9JDD%xh{@f;_;=Wh&2){~cfBHI$LRKSdzDi9ppe04YPA zHGYb?_g1YR6Qktk@kAlc+O8UGPHwvq9l4nb`)P}+G$q@Z4V3;l8>}#( zMiTQiP={ZN{V>0P0C5QOnN8q|Ia_F11B$!L*kbEEF?t`g-~a*BSh!TMhNmWicpo#Z zUO%;816x|nlu$S2$?{K1Qh+sE!iPtnVoMwsL!BQ2H9Fz{YTX05X*@&=s68ZIOW`uS z#9YO;QP}r+6Fiq!wR{lGFU}R&^sZn=^8VfI9rlEvozsKq`(~pZh0~8ph&YLVAH~JA z20O_>!IQvD#96N=R&2NUU606{ftbePXgvFgt`pzIU1ZFUF^%N#wdfUES(KSwEt{DV zYKHJNZTBxE+4z!+)n@1HBI)+eAEk6{%>Mb3M%X{;KKl^X*)c+zpR8VtwaqGjp})Y- zcVK{Y-Uq>bLBoahf9;`zUwqCd&~g_XDW^Lc9rm$j8jVP~f>?S}!@luj*%OztC3}g< zs4KRHO`jl$h{T%fOMWc6a*$s%)AN|O2Un;+57ry4x+QoKqRa9xq1#DmL<>4~A~{)f%vW?-xA$fK?QED`d?gkZdBMcF8@iT)3P-zoP)pXh*5*GTB`Hho^piGg*P<1*3QNwfH{N^ zAdi+6B8+6x$;^SD)U`zAVoe&64RO4k_%HMCiyYaBJKhABnn3qdc-da`yAB9e#<9@! zTQ~2j`18^hYfFVES%?}F(puM7`Ta}WXx``F0YTZZv~nFJ5zLJl;yZj{DPJe)BipZV zm1S8uX*{!7aDBsaT*T|Xh<^!z&%{}P_hX2`MW+|j`)N$i={eb ziNV7^B>c#bNaPx~4CE6b;U6EA##C4@y_4AWq$N9XMshm3ny`G2FdRVeE&AKY&fKH)dpUFw zhQOA4xc%DshqXY6G4@GFci>WY*eK@c#r#xMDNP_NVtwJt21Q4#Mw7Qrlswo~*!ZVd zUHs}GU(Uix|EzRD=voUH< ze`!x(NM0$%U5lybPgM%zo&-VtVwT2=Tn(aB`_e7$h>)mwl#!$i19D=$zONzwyqQ)L zi>3C2i4C{#q}YV<4%ugkF~0hif6%u0;~qpK zhaw0UE#Dox%z>wj`9tO2OV^PnRb(*JlP<1+fwq0oea48ZG7J+<<9>dchA4Le)_*^^ z^`k3Z%PM5WWV5t|uFQla+JCX-q0`%JO6Gtvx_v86gf1u0mv?%8dV}U;)T}jw1^Tk3 z0>gxzz-p)+L%gXG7ZzG6TRxlcJ!&wa;;u#K5-hB+6xAd3&FK4FrOt(3r!fP8V+DvO zZL}+@nN<@uD-X&k`;_HR_s-#?z-teku@DWSY;xXEgZkXa%0JBx=r|AWIv9we%&(q- zxf#Z@`peM)zATJy3c6zD=eDwVpBbTG@}9Is3P|+kIcjY9omB4kne-5&k@(ANnCr zn|;((IH+^Rr~;1?F6 zgl)D1e0~hZYx{!|t0Gb?x09fStDhs|Z#G+|;(` zAJH2APnxUHu%I#Z03smH)Rw`z*4$|Yc+ZyKRIam! z|2yT#Uop`;R|QBvCV7%OMourpAwXo#G>8DZmsgc~2c-x>L_Z?Jx&`=*Ftr_saD!w`l%}3V6XxYxgfVx&3tidsiF?y z5Lx*1E$deB1XY{3^q%k9*MHM(IQeI4r-=2q_Re;&r(8VCPV9`GPf@#U5NZfrGFYA(+ zTw~SFjtd|9Rop>ZE(XCwxM)DMgTl_KVXCXeALT{@S5F9m$F0jyz?h`Y9k0o$bsdpi z0`70Uu%uqa+c|aSP;*P+N&-qk$RKLeFhm0r*kt3O$~GgoG|zFnjMwo!dSNaWz@Hsk zBYJ9pj{~=L5D5(2tjpYEs|x3=%!w6jj_x6OyLtx1v=LIcUm7o}os0c1-RCXk zeayR`Q%B$&WI6x4#jvErp}RfS848E~=WISrlENIDDfC`eNJb> z@xku=}^$VRowkB)z1Q?Jbh(Vp3?#kG1OU&_X@tjQ08R|}GHAPNs|fPG@#_YtFTMr2$wOkcG#^V){3og=h8xW%>z(yFTdiQmP!+j( zR)((=JZ2Y(W)#uzZ2{6dQ_OK7L{cM-2qBB-smG;Kr#ST>^>4%|Yh7SY3>-rzwj^Q3itBA}I%@QLGs|L}9oSr6)XYl-0 zBdb;UBuT)Y{WkAI=zvXR$;n(nlaAk&t_qzr4py3l#5;BC)LG`3&s()0!2N_^s&bEf zW{m`A6>OP^=pD>U$JLUOp&Bz~2surn+D0u8e=$N- z{T!JubAdhu`7Tr*B#0*7HY&0(!oB-xQ?#p*-4#LWJJq<1112b`ka~cUCO5S&f~p;j zi~Wre5Bfu)lGF8yEk1B7*9II8YGs3&&MnqtY0nP3&(v_@sa59QVMP&w9)Rn5o=Wxu zEJ?%Tt zMXHD{_&Zv5W4c+yMr$UVOGQ zt|p%l{;n38k?Owl_l5sr+|z`!Y1N6aaDO+yek&pTF{rxA>bFPgV-Qt4mJ#RCK!7Ko zq$@00qKGZZtTH&M_%{AIeJGp&ll(jhh=?Obe1!Q-eg3716W3RB1*bKO{=McG-XjC@ zTT*ECo5ARPxvj`IG=P;Wjpr##0mZ%NmLgQl(z^C+F&kKI3+?#18;u|MTaV$ zbb_&Pd{_)BwO9sP7%eJ}pknCsX>eIG0EZG(j903PBY)NWtY@cJ<<8xw1Ns zPl-wrPP0M(V})RWRDs5Q>$7rM9jydRiSawccxnAb z=K79duBUOdxY2Ner>PF1x8nYODK^#3x=HK!a6l(ONP+&dK@Ra@<|IM`O>+zW*DsS+ zi1jACTN@{%mPdP&0!G=o1=ax{Dr<2d7HT9BiVhsep)|{OKg$aB(1WQ7oG`^zyuJx7 z(x^+yeoEfk#Ws((Q$T%)&dj- z3knp6_#OIweWuXOJ|~zq7ZcH|jNQXcfHey}{rR`(i1y*4TE@1zrWNEAnCabyLxWjg z7Wz+L^I%QbaQzs&3^n{_TahXEkAtToB(Mf;?-Lw+&-QKrDgg~<9;b7n_o9msYNFR5 zrZ_7aB7UgEPPr4Pujd)}!-I7~Xu_TO+A&$hVA0i59>vTQoX;MzqZV7hdgM3^0&=3vVtZXQkoG{$O()AO=5mDP z<&*QY#hjZ{40n`%(wNIJ|2n{Xk%mV+zc@pm7P8j0PlTa2bL)}M-poo_?qr`s-9DxX z#syIvr3a`Wn^3 zi;}FlUJ+{Qi4`KT>TP}Dhh|0R=Ny_QIVeRHB5FQ+nI>=8X{+Dx zfTJRmaS*{Fz|kJXDNL4Y)D~4GO_f{4{t122O>Nd6Eot$Pl?06|8p}2e86P;hQRW)< ziK(A&)bC!n%&(lYtg*VS{Zh4wrYHnk_YBlW` zKxz;Y%@2~h3NdxA_Lu~%YT}VEt~@9-!(W>v!&6!0i=Ws+b1BUwRm5S*9FhjoA)~E2 z2l34<->mJX{+8rY%`wDF$^z7yqosWr6ZrLa^lHY$f&c0^UpR4NqJahkr5v%Yo}abD zxlj0$|eGPs(#;S_E}9#!v8 zS^UIts~)iOXGH-0g?Q0a&Z<8w#$U)sGQZ-}D=<)5GouatYd{to_IW@##;y-%yVXcT z==KFt6OO*;aJv~x*Dpb`;(`@+Q01w&%F-P*G-3S1_|5@1NM;eBg1_HU82Q&JiiCK2 zW1iOvy1OC6K{oyx%&ua|u0|4bZK6JT!1y0lSvf+ny0U_(tr{L(v1k?QNsU5-1?jXm zX%r%46Yc6Z96Zh@Lr%1neqGg*w{!Q3OIEBY|n`C4&f7b!k z1JVYTMzASs)nP8BTlWw{B2Id^`?BsbLngm?E6nNJ6*TDa6Yj=zOnYh5mSSr`OH*pg-cYkE*EmMy-oH)`&VeXLcHuT2|U zs}KU5E$2(`t9VKmoY}wsdZ8@$iL(sTRGwt#gRr%iKt2hPD`F~kPq6NG@WUMzwb`RF zSK6n~0cxei|I!^EAw4Q-`Ke$Q3cWR)vy|Lb;FnL zKK$Fz4E;$OIoIgDo64D>vTewZrU^+c1IgGHj8o^DHwT)rK82^j5&GMWQ5xOxtrXK$ zc23)U3~rc7cE$>OAEOPeHYcxQ+Z1izsMwLU4xRpdqmuI`qZ%9M;@vwBRoxMM_-}3R zy`mUPkK7-fX`9{1DxDkJSYVR%)HWp`%m<9qUVp(xvLyXgy#Xqv1ATW<ontB2RbodmT*!85XW7r_DF=xV_Nrd*4r-!8ZKuI^ z(65)d0Nd8Y^Z{gwk6>6x6h!Zc(SWvJlbAs9Yx1Oh`}k~x;?M2sl<%APQAnHNda>30 z)$cS^!GA=`_kYliclpWY7BweGS!M34Q~u97E8C1dEN*1_h>&}!At(xn%g zsmMQJ>SV?Ilf4B!XoQ6UB-?bGN;g-iJ$#nC?yj;mcNH1IfC;T6^9pyku!wT2VEGaS znmtp22h>QD5sR2K?fV?yrlnX;9qnRr7OnV5I-0XS>bmgbc5t-}Ce^^!VVJwWHc$+c zsQGZac*mGCKrO(^7YU^`7=5otuGxTQl7%v^g6!~f`y&tN=o-(I{vwRoM^hX$O?06o z&vHmOwXzp3f&>z!E|ZgLYFU)OaBzrlG9KcvmiF^r39AgA3#WjnFTP|iL$P!}z5Jj{ zEkb98-=>YGd0WoRyz`eTbntPNXN!^ZE7wVaTA$DGz)We)b-yXA>>ostt-wOQTUK*A z)4vx$(+LFm?gFbWM0SobrRZ!XszW!kN-rjloBkW-N{xFNvM0AiI9(H|(^@GZTFOGb z+T$5MPq-50n$`HlwH>E%sbg~D=g2V!&=8wivuB#9%Ajw3+~=zv3a`7x9YQvQU+<`? zf7U!T`p&L7x65tfuzuobvI8BF3OsmedU#86j*zu{H!alAY?e6jbD-~7m`Tnt*krH1rS9(M&wyQ;AOivq+3O}mtH;@d45J?u(Yl&AIrVIK z`Si+54z4<3xne5vz47_lV0|<`8aoAza!1v34mIbdA%HWFb-4Xp{M^kpFiXh zm@yjG;QV<6uOk}$n)vzh->5`vjl%f*LgCD%o$jUw5B$=~(BR9>6N23vGLH@^P~GC< zME9^A5R&$t@RNXewr$*z zHwIS9tnkaH(Y%9Nv29yiPTe`P`6JXGbi#`0Y*7(!`z63Bs6X4T#swhQ^vbGT^0AhK zM|yYVyv!A3Z}-nI1UV$YaCxmkJa?Y3B8sfp;VXxF6z@CTJeuMKAQv%c7oa4&fHpP$omwpTmMkC3nDrK@(*V1hd=U^X!Xb@ ze>4%8f9=t{CuBKoU4G^>ph2`^*yy%t#Ph@*6eeYhw{R52=yMG*;O<8^pU$!mS@G51 z`h^QpFgf_S{Ob_VwX>w*pDDQ#C1OI)4F+$5XF2m(xKOz^1|g8Nt+4Mge5cg3CziI zq`C3EN$bqgoRaGE+DeSuL?Vsvq#{a_H-DQpso$Rh;mEYsM(*nR@a{Vc?%rK}9IC32 z74%Z)>D2Xgu5?ds`gy_nY39h>bN+43AK)}(uTcu_@yU-d*+|CN>z1+WJ>(k!6Vo4~ zJntQho7qT+aF!bsyY5ksCUtSJn>PP0H!?m*@yI zB~;!^dbHdxSpvns51u$48-YY)3h^irH*%pE;$Fz)_jS@p?CBdoek zH99aP#zQ5KH^QbXP--Ot8QZ4L*t{* zC(@isLSCb<2kww zu#(|ngDr4%k`)k1Oi2#NShC_0e&s3>9q7PB?UGy{Kr_dE?*&=5w=1f*-fj;fYpC$L53W(WrKh0HgBy&4dlKJ;pQ>l zh><1CLyH^SN_wbUnisR9^dCc0h}6DMRFQwB<8I=l`iu)n;sSD6Ddn*o^k}BjH}|Gf z4_%azWXA>$+P2ae^h7$JMMN;(mAi}lFxT>6sr9c;`aI2&F8j>{f0z=7$f%%zW^DH> zp8@HZfK~LiDmhybEci>oWWf8Xdn2wfFT2hk$AM>W{seh~ZCjgl4sJ7BzRGdQlP%U8 z9{ARensc3gl2wfG=diE{n*9&43E$mVjWJ@=x1n;=UTiUH5<$ZPEoV+%RD{~z4)0PW zcgw@7Jm=Z;j)#2u+4T09%rI%-GL0T6PPN?T{iTgPC=y~OLAu%ySW?fYs+R(GUDMioPTBTcaCSi{~{*&8h`@O6CzYzRIa>)@e|G;QB>y+ z2&tEXk<52%VVX(PWR{o$vo8Cwdg@e5duP85QX> z%5T+c#0OEtpP~IqG~8i87DEs1w?RC6Q0*;|3vf;X1Le=M?}*HE)}7ODmI=6$WYrP- zF7tE#Y_;b9XAa{3x;_ic9<=sF?BVPOf36KyMpKm(tYd7!15SJ)4(qKLZWtrjfQ1Sr z$TSZ-c@(o%gh8Z0AFg5@qqi4=YL#p)kw#0G8k(TBo8o?I7&Q}-s2&$dIy&tkh+p!p zQ&HQo-vp9K4Bf<)Zsdu{R9x9h z|Io#Ou1`f!i<3rnAxrKn|N1~lkuDnB60+tYUh_7-K?H9c;jx}bM-}eTEiAyk!iQqz zQ04}Mi?XBas;x$f zY$;8^gj43w{BPgk(`{OH38)8N;W%U9d#LXD~g5+v@!FIF=u4aD9EQh`Xog(|fu<(woJrJ5!b12{s(O@AS=1W}M#L zYC23pjRK%5z^+}HN`r#RN;aExnYpEi_D0JM)aMF;p#>Cxx&<0C!~am-FwBPOC!+s6 zT+eRt%M{aYMmK*8s-+M55kaeq=%I_~TS(s_NrjI>d~(ZCoBgQ}Ug#(tLYaBI{u|*i zr_Izn=)1sof&bR}NtQ@X?Sw)4`D|(*G=QmtO&|MV$ge1mi{QyPiJdbW=k6gFmWj^b z52#{0DLa&29R)-}jp3chGibn%BMAQ{CU35FN>`kL^LtqPw=qi+O>} zdmILkBJyx^%Aj`>L32Ms zY({@YPsb5}Wy9E;usjR*40kxowmVyQa%@HhMFZOVJB6^T;KQ5N_d=ARgYsfWFXc4p4$ zI~9ysbLtPG9PU>}|0A{8bVoI*a^-luioZmLT?q7wy(MUVkDg3_f=>b-FFy?T>&&C_ zzc2q8gnoS7=&(#_h={1t`oKqi5H!gpK$tB2E))RAlRMn+PvO;+{inPz@3Bd7v>b0f ziycQDRH&@>>r}pm7iTGw_uztTz{~ZN1tj3t6%HJBg0|Pw89(Q^vLJnOVe1>ZfD7{Q z!vdEgCES*8^Y!NooIh34?{HC|lI!z$f;vRiM2V1&i*9@=`IrdpPprpMuc=^$h)&Vl z0&AN1`NgY-2X)DAa#jVNsxFC?e!1{EvL~HmK6oG7K4>%Vfrj%l>QiL_y2WL63(0nP8jY|E@#Qun7ULzx)Cv%13h`CMt_A4v(>86BSD=eJI=TG zi(-~%Y8JM)pZ^8@kW)3!CEQKpnnyqVcp7R1oHvDa{|8gne*dK1OH$_RU7(TnS9mF) zikxxUqFqQTyPb(yDaMIqB5L_m1p73`kS7br=rg?BT6I7WOVNfH?7idsJ&(g;LjVSb z$(hD~%hEeVRpg(PkQ#qJz(y^?B8&sz94A`IT2N(jaYnR%19reitD!zP3* zWO)4-HhQuqG}_iZe#>q(?RzLu;opDf3zhJH5n+pYg62Qfy0N3{AiUMsPT#!1t^3RxKY4|G2jDuSl{N* z!Qzd-{tIBIfgx^yTlMO_27HB)5>x>B9=*=@-ce8Z6`1{FEJa0AGaO(jUha>Y0n7~) zd;U(w*KUwHwjEm{L8M$s72^Q+c1)qmuF|j|(%0&0Kh~4>$GZlw@8)C`Hu4gmtXUql zE4s;{7gNt{Zj|wLp!o+*Q+$E;&}y|E;@eyYSO&WOS~bP;V7Nt9J7TB9hK-43wsEFB z;&ukhfW#}h`7h@xWL z`Fp@S2f#xC8Ywmi5-0U4lm4_1W72EEc*QdTh84i&mT!|45eax3#Z;iLUjVSHgRdZ* zS0NN&OMGhjN7QcOh>HRSDsFr3CL2ZsD2t}NQ@5Yj+IFtI@9gj$+N%au$8*JCI_*!4zsP@EalJ8dV7NO}DS(f%GxLDt`>eSjFk(xF!g`XV#RP;N z-G2QB?o5X%^I`DLohqQM8Ypr(X>De;&?xQ)9V9<)a+O0nm(qV_yyXN86o_~K?4FsH zX6-LW8~5Df&kofuMSL7lK&77ZLMeBWcSSMjJNoPg-Lx3K;X6$^giDzxx$O$tUw6D{ zh#s{p0ZwYmKL8>h0050p0OP~}U|Cbq(Xr73@Q=0oMJY;R08tbU1iYg|0JixO03A`_ z&Kax&ptuOY+xGgN0(d+Iz{yt+@K*t@C?P=60f8nzbD;+UVy(+XEu;2F<1^vcc^x{2 z$;wi#p|B!&x2BNTGSr3$)}k~PLsD7Al}+L**nbf}sAfnCGHTh%D@ysR;_R1*OReG0 z)|2ZLz^MZ1dTZ?e4a)>v5CEWtN85L_^@9;C zYrxE1erf^*^2X(5_2un9GQ|4eiVClvX6V4(tJ(!Ez%IY6XG0;t=s7`<1Jb(zXntZyyuTEP34XpSye zLMI|$`GxfhAsnUrk0?@ee27SZCLRr1q|JnMPh(cDkhdYhh`pvX>pkk}zxEC81ty1s zcMotPSDl7W2hoAq33a!HjZ8tr($Nk`!JEe`WWupYT})z4`U z{?lbUj8&#@Z_W0R`kU_bm~B=iT&yfa4hM+7MVjTG!mqA+w)|9@GmD*~kF1`MFhp)r z8p2==xh6cQL0C!n(8TO3Xtxq;{f;6c$XMm@9DzWkJ>eJG+vWH!=C*P#TBx2-cz8`w z4A0}ZOLdD7DWfij>$H2aL1SeIk%*z@9`q3P)5pZwwKdzP?ZfL;#L6@P*9i|G-NXgn zN&`0TS6LE(#ce-f)~*8qY#@MBRiooE$vz5D#&=&y+fIQ`dJvpf7Nzy)aDea+>e#+~ z#UCpGG%VotfY}pZ)xEO)01?s4x^+1E!F#{_x@e)wi}!x^>xDk*$fLu{7lG$z`vb@5 z_WoSC4ph1# zqT+c+th0YQtw$&kM*gj~s##vD*eCtil2l#Yo%=VX^rt|jyd=X`J7oGwdG9CTFZXG$ zT=~^$_S2$K`+$+$Kcv3?SCkpO?OHlLFQYl6--q+wSL$%9OD0gveO5yKfiFwN9BE^P zS>~Y@aIRY)9<@QfOes1^=7?LDXZ7cSP_K6C$>n2?sMRvePH^UT{Pq0bUl+cu0ryul zTUyYlPgIvrmtWCux4M15*454a6#&%GI-{?)F+X4x1%P$h0q_Q%b^(!0(2)tQ^^yaChgXtE<$U`%Yi{GtDp_gDV0+ zq%Pcg_dzXZ3ilZRMnW1*SwGjsN_jqtD^;o$f))1uI6oIpFXw5s!BO=*NG$6-<4@43 zB~U{J9+!>2J+CcaH(zf(q8`3mx*O4AS5F?RE2bCmeK-5-R}8tYswL_1v!o)w2>B_V z#1#SF&u-DMG#T5hShau$(YW=l(-@96A?cIt{c|4-8;X1H%mlm8UeM>vtjS0(-;re6 zKXd67C?G+oP8V5j(u698SEs@chE|qq+(J$H>iH0R<3{RhDnzA*b5GX7a$2BOJpR{z z@&!*97+a&25dd%xCL~t=e*DpXX&3KWzd0nQL=N{(#768-xm=8t+IfQUtIH1Z7U+`BV$IRAnAzU1@uZ*EotlQVBX(QH{ zI(L{LxfqH@G@vLO1H7SQvw`e?AdqUgWm!=HgIC!^??#GWVB?bOGEDm3bpiEDs8aQy zPOqmaC9rF;(W@Rpv6F}*H;$%4n+S=xD&-9tHT55J7eJs~oR=*eod?&tRwg=PQs*Wtz;Kl@^ipStH%fIdQikw;D&DZiP?G+}i&qM|)p<5Ak# z76YHoLJ$k-_a_t%u{LV>nllJp0cxQfo=67;SO(|5dx#KGYYs13I1)&6zFbpMYldj4 zb~v|0n;v3HUY**=FvHUfkM81$CH@Iw&TRzBT8bUUg$)6QzDQ!{QpVDcZHUkLgYnl@ zhe)lrX59{=3-b-g0*37TMt@58cKBV)3d|Sq?XptDv#!UCP{Eu>$BpxvyaAJA+Vf{$ zsy8~BV#lL|5gc?;&Qmab^a?1H4NY4+%E8L|aq4Y|aZ$hPEj}FRSA%KiSiK^B^G6V} zk|h*u`oq(upkv@ie9VQEb|PTyCMn!Zmebnqfd^74tY-W%2`M7vA=Ho@a`xy#t`pKU4JV}sSt3PM2F z1B$i4C;^h@GMA~DJOlxq#6=)HTH?m5lP>IdSx*vl(|rGW{fEZJ%Mg+JX}wH8B=hj*<`!9{cc)n-442{$`EeUjzI}_7mh=1EJpl=<37^`gKi-1F!R7XW}B`qSQSy zk9lHGPa%9g4ENNQ5}TQexegi^Osv~~%Y9cPCA9D&* zoV82p*)=RVbEXB_C7tOdhdTWuE|rjE=T2Q9(K8REEbGG6_qI4Fe9Hv?-^0d|Qy^Tj zZp3Du*0&;QuBByolctiB0_yiK;l$-WEzQd1js~1-9t<|3p(PbHvM%AM$ZknrlMG9R znDVPiu;gU9Bn&;!NK}*aKl8aUtpmGCvkr6ok~^X%r<{I=cQP8!eOk8@8(s2GKzp{0=>)A9 zO%V-?eVFBQvJ4!};_6rXvU3}g!vA_i+Gc5x9cuoQlbcD;w1Ce}7E0K&jbP>#iC(@p z(5C@nI8|bZnit|Qow`t1T`$JXs+==II7qU%#zpt3u|o-QZC!M`W&%SKx_i2c{_?#i z(gm%kX%gY{+?Syz94LBliw{Uqq^)Xxd3BX(4EOiU8|)R>c6JJtDR?#!w6*o7Z%*)Y zeR(km6V2eFm@{8|7x->NseGLO!CT9Kexkv}0hxGoUknKQA{i8fGK1!2mlAql-jX_f zCw*47zwk5Rx%_4Lm}AG;)mE-4pArsH63!)UHhBZ{3tpnK8BhU^qz@W$wN|{cmWLCh zGRfao@gcV%r22~e{BXMOpaf)mA{+Hj4N?0CMUh2oaI%U=PPHCKBPcZ$5&ryD*2k^- z)xI~pR8mB;pd$J=q8m$y73C8`+f?UD18KkEZhxh%GY>Zi|BUXBeE0MzdEP;u`t2-~ z4&LcY3J`3GM2alIl=TquPxcQeMRvR-etev#`k;#ba3wzF-kto$9Z6%S-<_RQcls{1 zrrG_KQx7nIC4O&p&jBpPS1rx&?)$fZ2gP*B1|YEln(z>Sv_9Jy2WWsyj%Ew!SXoB_ zRB0rMQx^`;rW+nI_R_ZID@=EIc=%Q0`K#lU1#q3d+RRq~p(CwQPTM`n#1Ryz_d);k zTz!Ws%OMQoD?0#j3NwhJxd3g-h$boex{NqKnA;u%MH<6)XN2!<#N4Bd>%eboCOf&W zRz7ui`OgHe?K|o$@nUtxC1Rq?Ng*um3%AbL&;u9SG(@BRXI^W3#$lJ4j%`t4SOPqa zWXsj$)Yc!q3Nnh$ha+XZxm_=favHN=OvXip;trAkHR3lbDB|oFrb#&lm_`vjM~VTr zLJ;}=3|dK4SA7L8oSfL>ftfYGEr-b<6#vpP&bBmIxPBO0&a{%YjSEIGB;sGXJ}B4JIPMjV4;3D*n*Xbm4OkLyHq z*CC|DL_QuvJ!FbQn=nI}@ZNebtmiw=lso7Q?r(LZ03{O~-1rKftByEu(W(+hbhLr{ z>Y(z+_0HBx(bh_|aMW}B3$fA3VzW=b2R#>@rAHf{TTR;XK>0JmEz24j&SOMC;TQyZ zZ_{*XY-&6-8qb9=hx{O3e1YO?o?Z$(UxvH9SYC_s1mtxCpqIW5KJqoyzR}xc?=B0& z)}vps;FSg2gnymy#!W^E5;FS;3gwo?tjCUBf7I$}fI96ba?*cJ{)2l!+Dz`W_59W_ zDa37dwbVML2j^vVhUfkKcPg}Ie=_wroX#U2fEt{akVGxCp+7j{0VO}Ee6T8U+nS|w zH*xS@Q*k|8VIEKN_OEDynDqlK=P07G0C`>QW%Gb1O<~)K+aT4708Fi9$A1>JV{@QH z>t!+n`;^}~xD>9{`E3DCIMl)e1*+CPu{1>GSns<99sVH}<0HV8ldAV(HaS!pmO2Sj z;7ix9APjefq@U;Q7-hXa$R*3Oyt2T7QTSKe4&d)Vd^LFK90EvufCCPw>~8G$0n+}k zQ@}L|Ku<0N^zg6h5f^}jo;5KsK3-=&hWpC6h5^{vB)MWXzX#_o;4zz*c`DXF;$7jV z`J}_`prs|vP1&9o4GF4tCu-z{I?T&|{s^5*S38nV1voU%{|d*ci@vO`zc*skg)oRg z7(#a78%Bw3%+d5U+P~m47=h&y8Opg0u@ljG*WU(RR_+mAsp9mK5aAO-z>nli42hvkBd*slK2NNTuhM)s8~3S}Gt3~zc!V%{d}Mn`(*c9cugSVf=}yhS;% zS}de|POEJ2t|{(LR&k^`<2q)i5`4Q|2@m~n{PZ_^fy>)g%Qjh6wslO4Te zQVGP!NwJZq%5pm~Ok#{}h}X=oUtFrGkISJjZ_!ejTf-HR%6Ix_l4 zE)f{uNcks!=&LsW=>|(e#N}_aMj(yrV56U^!>Eh~Y3wTO4#yzU42!0sk~zSKN^K4d zBk>2`4ntDjfDr)< zpbwQJVk;_=;|1#vXshumGa)e_2yGc+(?hictmZo7)u>aI^s*1dLlPGTf0XCWoF%*j z-n|Iue%u$r4$p%JADw&L8vxFx+(zd%HGS%2-0ERnW*t?gKo{UB*dsn3*Z3Uex?TLW2a4%gD z1g|V|pWFVPRPH&)b>8pTmHxCOiL*w{V%|7e_w*n0u#kXqvS9ml zJE660cfn7S=rrF|!MN2yo*(%G2whQDo`y)){Qr7`wnCVmR1EWzA3W!bn8p2+w&aud3(=VF z(Uu%g)FOT%8odac5Z|^=8IW(di;R=iuYIkeE>5H_DG!1fCYFBG{~rJ{LCwDQLrI*? z5#7fzrtu&X|IR&6tZYfioeEt)Ol*c$$uDPKen6iw#<+qoCc~El!yK@y2xjxXM_`yd zMu;T_9TRrjhiP({)^O_wDO(`HNS{Xuh~t6>o9IZv9zJ+Y&4SrBz|xz9@-Rx;3n9d@ z5XVFFA8u8YD4cu({OJr&2nl$BR#r!RB~((yU4JB(W~5k%HXV-gQlT2nr3QYfigx!b z0Q-{d_TDVX&XPw+$Z|TK14?Y+0~cwlsN6wM4K|b*sdYco;V9M$m{|0**8K3ZZX%~(ceU6_`LX${pYKLJnc>~#`S3*bF^~boj zA0>l7^bns2CG*me<8Lf-{Mf=-)R88^D!ipGsAUT2nnYe`dI`tPv<6Ee%w1pX5sBR} zb$W-vznn2;naP$fC#gK30}C!Xr2l@zIAzx@xsTL3||gx z#xk6d&SxYhn{c`Y?6MDYNZ3+ix&&ewk##t4E!6UWHQ~j9Z<_`g5{ZmdX5jd}O%vD6 zZlp-=+RwT^xj`lm1~Eq}N7b5z`^C?p|HvwsW`mh-vf?uWGU}SM>kSP(OG-9~sj)8Q zMv*g9n~!wpdu=ow^Rh&T8b)$e3?t@}#OApzlgD(#Xjqt7$BVpBBuNgCnCv78u{~1DhqcDu&%lMV^&9i~LFyOh4tyOAY=I zzs|shCpR=k$K@l}-7DN28d`0YJQKfVzcGMO9;CyQ=Y>7bvj!*c$2>9d&C5F@?7cS7 zPL=9q7g@gO1EM_=5q2{sierp%1z=2uF9W#efP2|*5weMhb5bhd4uq!IR&2dPU)mXI z!gCGbfq|5%usURgM^;>b8qO2KJ+pGGun_e1jJ(_m7(voVb53a^n+a#3KzJJ zoI`fG>kk)e%H3Ca=U65bb0Iq~Y=jMmJ-D9)+am^$(wT!r!S94GS1f%nf3S zm%OyZ=_D>WR{i7zC$-gZlu6AdCeXwBa^z0SK*9838N=ih;{Rp{>}D{kBqJ+bR=+5i zqTnncg&3vJseW>^?mJab&U1bdSX1SYpnb^lc+3faCly>N-!oS zzB1OgZ#e{$!GarlnE z!ik56Z$=BDc`jMcfV)13Wn`Ww%oAF^5hf?mi%4qt@+SrcF|n;w#ra-NSlmm5%~+%J z!Vl*WL18r&9dy$&5QpVYCS4ESQU~UICHr?M(>pHsU;tw047u|81``?HZ;TYpjUf6B zC0zzegzl{jis_<V1M|tyO?1@YVIBi7d$mBWM7(61 z2u*E1_XymjZYBwieOHfpNYb5?F`xq!+<;!V{6+ z`V1hd^H?)H#ubb)8NOT?)yl)X6p_kWibo;%p9A9hVktgH!%xUzUf5p=pM`D*hy7j*nAlwr6QspX zWKoZzh7G^nrNAhCKu3Im>`6|WnJ7^|S1)b_ath`XZT?AuY!HfxjRw50{~(hHYbUis zNN{R0HDp`}k2@?Oy&2*uB98c;yNZ_97!rECDo8W-(|HeZdl9iUI~f9C}_e7P07ZLT;MlP6zOr@a38V z-fsXtgU`)W2v$ncfi-$w6BD=IggrO>HSB#807z)beeO%~_MY0$QM_|EP^*AFeh!1j z)9%~KcQ1hKnhkDfiszH_;^B`S6aRB2CrJ=W#d4=LMEBhgQRk*6=CM9l8ae+% zu_-V!D}F0^A*^!Y#*;Z>1E zezS;tvR|p;gA0a~jHL6_5oCjyz_Z8Tul2(H7!omgM9YD<)PYg2=r_ATLx3f6h;W>A zdtzTlvOnoOM${&vMX*s^t2H}mZ$g#8O|KP-t(I9xrh3mTTuAt*8%|e@-y(idOzGVUDz+)1@e-+LZZhX`z|J}qwxOG z&xT8*s#VAy4B$WfEdapU&DX*82be5uhyBbc(3^IF+;l58N^w$P5EJ!lZ-e{ie*xp= zZ@?41B>-ZOq*S^qitolYiGlTv6WCU=W8pb3Ck$f3DHK3UyFgY>h>b_($=D_+6*d4E z6b*L?UV>y;Mgg`dqAVH2#QENFoa>o*(T?k3(9glT`yh;$z7c(|4Fe_)z4;*w{^tW& z{7&HY!7|{#VLc$){$xu`XPyq^8&rF1;2Evy^*nz@)H^Ihe$V5zSGdBe9lI05$Ab zG(mNe!MKxZ`&gbiCZN9ShW=q)zXKp1Fh%X3U1nghTg1k|M8Wj2zc#?YH?Z0_V{Klu zeN5U6&opeT4uGb^P@CO}gFk&0CSSP@_kVsJ?Dz%>w{3^<`X9$ih2umESnG>A4ID!W z-XI`}lzgUpCLA1GJP*FS7CoOl6br(ONKz`{F~I4D&z1wA#X9^6@%uA~nGWd-fYjz; zP$59yZfr+szJsHUURZ}LBqtD(K+lyJmV422nkzBfFfGQpZ=KWs_C`U?_OWLolK05| zWf~N=QOdduK-9+`U5omJ{7om(_u8NaL(TTkbfPwpd~?3cu$pKa<~!JU(T$kgy$jx# zz5_B_1(}%=6CyxJYZlMLZ#l4UnuD=_7x?1&&;S7lSC?5U2}zB**2=6}r1RuclJqWY z1DOrNp^vz7#+?qZ7Wh!EP65SxrI*9bbu&7kkKG4MLDcoF5w3{aQ|k4dOyv&)lc`5V~i zCW$bI$HhzBBo;jG;#7xXt#9H9;~5RVBG8?bxVlQ8OHBP8P< zK6hdQ2W#ti)&84Nc$)`%@jS@EeQ3|kfLRmwoA2CSR|UvCH^99Z@V5cu`<;(`6L2xkV_9A=%ZSd*yGDV*;e*PgeG0xH%N ziV)$SW1+PbFz#UBb-;WlQ|Aikm;Ein!G5p8V-SFnCLJQ zO~=H>fF|-}!Fk|ho8V;ILXiRos~m6HH;dX^?u4~?9@u{nYZU|k;~5ht+XUwt6wbhe zU5M&H1Dz_hqyw+>m!wnYz)r9+%|>c>t8FZoC>j6wR)J^cPp&5liGZoLIHT$Yw-BSIY>d_(~TnN z^b{rw97YC7F^Gwc8?J@J+6Zi@BW-Xo2o*0HGp9?9;P*COm=U^X;(kt{fPuduF3%w6 z4R1BIVJu0edaMc8AB4N^PquB)+it}6@+3^w2-6Mx4%nd^fI~N+!`9(=4$wb^qB#L- za4h#v0ej|vJ;L$|cLP8PGX4k2>Ko{Q{?C<#PE2l3sfe7gOeifo`a%U3eqvS zC5C=rAx#ot6(`#S|M&4O{=vQq7EXwzbQPqS=_;3rPQd*Uqo#sH+;0%d`Iyi^mGyyt@O$HfBb`(A|WrqX_z<@4mr&){IK1ivcI zSF9Z{o6F$M^O)Lm3vQe~8(eFEm^0n>4SeY-@WrE%r8SuB@%0A$rx)QZbz(#^1`;hh(_6hF-zu0{SK$N#60UHB`jlr3KC{R#?W8jHp+h?1FVA+<(EWLoR z+#G8q!PF|-*;?lumFd#e%c-&3-B#vcC zEc93tEw>MVXo(a6^aEnnWk$FhPYsTfZ5xZ-t}Hn$gU6O*&vtB_>)D|%))Os?vmN1q zLJbuw{~xFV8xGLXykkywfOEb0WTa>UJ1b7wXDJX_g;Za*>I+bP4otD$$m<*DP;mSD zC{wciO|gT8n-qn-plD`rGH2pr5HsAo2Z(1g@J0*XVj2_$Ly#{Z+f5n`EQ1BpM>oU$ zl-dUdo`LPbV#ukEAjBs-1SdPiFr7MCu?^s0jbq&*IIS#at1oQ%?BsPP+tNoZi!Ff@ z%ZP1|B1I}T=$%@F(d?w2xm%;&0qaZ~Z>QzH>-F4x9?-Y!u&kGV|nSylH zL_|Y=>_ODj{53vtC)?_=b5S{tKY&T4Z*i=^@)+vJPs2a87S;^_x(}X=N2*zIY_KKMgd~N;qrg<`IUCl7 z4_XlAp|?(06`4ZWn-PCPR%Px1d^Le#CbENUmVqcr!Jkksl+mX*`gcz_zfXn z5V}EFA-7yZ*oaw(zhv?Tat%?=v%cnn6Gz!*WASR)}CAYFFk&R^sM);ZjNNCRbg6Npeli$PyNwOIx@& zAYP<)CHvX=3~IAb!-h-5y+gH%^0C2CS<)Fte8VB_R%wxW~nM79uD>V zBV`n!JF|@6xf}zeWjJruZWLsV_nNdos@K1AM;8@32e32o7a%p` zq*(P=8_FfT_{%#<43b(*nTKkf(^OIbH>nO>BlA zJ{uKDF9FHCY$KkJt$B_B(3D1Y4GC7SOX|X7&rc!6Kt$@2q&Rs_-F!vLmiWHb57ViH zICd=X7Q@{@W+VHB;|k)Z_7w?vE?IVYy~aaJ))iw!_s}CUA@AJTzzHZX`D(k8KriP)}f%oKTkvs^PBx}e`z<#QM$!4iL9667(bF2li|w% z1NpvCWg5#U3eB2E5|Q^EP_377LflK77snAxtGhO9X*o$EuC6<%VjJN3!Xh|?=mO9a zaZ$O;C`4HHucS3N=Dtm_ z7H5%Sl^_{a8{G9_RBiZcz3}?vwb}qLO8{MNt5$1s}E`wCNK(T)D)?p2ZT@jn-+THZYQNxdqF~;+ZF&TayktA>w zHay~Ho|oUl(5eOnRW>ywi7=41cnu@MLRMj9rdO{iQ;zAvPGFGOKp~gTlgnyJt8o@7 z9%aLanwMsma@OP{jKq~7!C9`nEQ5n(kYIUU{+}qi82AQyj9`5ry&R;|3PNUT^U)Du z0C@QhM{F*7@@Tw(8dA)e2S`#}F2>1@`dPMde-PWHACeK7uj;xBMFxG^0peRH!64>o=i(*ID#|xD3YiiIxcKtjMaT5CejA#>j3KG0q{yF)MNK zKP1Qjp-NsWH*QJGGDm{=sf1WX)-zWLa+c*-1G7e>dNMCIanliEQYpijE`dT2LvJlE zT2B&WZW)1PG)F>^ENfOcWO)y1X&uE+bO3*?hh9r@DVSj$R_g#DH-x*K>=?o1CvQU` zZ*+i02dH;}`YDj9-6NNMB*-z`&`h2IeISl8#<&78Cc~Ej1~Eo{(Tnu?mSA0w0UZ%m zzY8l`{QR)+w8`{3hxk4`;p5k^6{qg1Q+7pDnzRDzti?&GMV2K)$xCj=0+8v-OGTa! zTa`qc#6ZFDQLsh5+lr+;xfHK{rU`4L&iAZ}VMJIS_qHE`xp)qIHKEU=3G%8!wXkJb zi5(XE9+O-oNwJ!L)^f2*v;)b+NY?!kq78sM#W2 z(@9$+b(E&dF6vsB^ z$w*T`T%Hj&fQB5KA_`vCOE`SSBW^-cB{6wEkyWY7q%HDpGc#BJ4d^#Z>NZ8{pwoG) zL>K^mVowESX2MH^NY`0#7nkRsWuWT)nQeG-riHPs%y~ka`u? z)zffJv{T7d>o6d~xMx8n$!cH@@j1UvF_(Rtb+MK(Mx=hny{5=>t%0G~?7b79l!vYh zw*(_hJjVFZ!I%tR25d&tD%0nFhbfk5p(nygKde-vuhh#U)Lr^%@)zY9eLmHpn4liE zm(9@mJAiy*oJEQggJtsWS~qMmzyJWC2%S?_UE7beLD8ULDrztcf^j&{gNKgj<}J|! z8P>#vRrtZ>GAskwwrhae+_Z>dmRzDvlH!7$c2Sko5ld)DE-5HheVxTQc|6ZTtdqtd zdbyHdBjhMBi3QW3@O+kQO}+nTRSuD>D^3vM+h-X{ zr;fruE;dwYm$(Bm=Qjp0XQQAuyc<001i6*62i|Amnwpie`~r%UqHMvOE&`Sj5!tZf zvePLRVQC@O>4l*XX!Twt8%EVeu^I%hF{AdCq|PW)klAY7^%f9|sF<=2my1BB0HaLd zE$KJS5z7GY2AXB&1wOYE%l1iv9G;6$P(-9Sr7g-u@teqs9_VN!6y+kYZ5nju9I7oh zMrwPF_%m|41}al5e$N12Q=^Y|eW9aPk7=I0tQ(j&)WupD;Z(Z6RL10()F}X`Hn6;w z3Kg#n05ZlHS1`t8_%guohtEI_pTjV17{ml6X?Im&IwCgO8KjvyuKQe~9*SlQeJ|Qk zuk&YY1OYarqxur<DN`~-1w`;jXj z)s0&}a3@unfl;a^n+(Pv3g}QS*5Pp%%uie2liz*ML*MJ6%M37|q)2eh_QJOGxF2Xp z<7`|2?mm9I+`+@yn{dNV(HVTZw{AbfZ8@Dhy-z#!?RqEf?r8 zD`vHq&tiglseauFJe)ZicsBGfuLNMYZhsodgucu$@N-Bks- z^ThxF{`li?zjsPpr&xRGO}ju2?hk%X55aFau-^9aXmY9kuEGMAqvxnTgXF}twJxI9 zIW9m=keMkl&s4}>NPw6JG~0ssQ3|p!hr;2jU@xyl=T$HUvU>q!`$3>M5id*d+b3=x zeC4><{AHRVlH24?kiCF)?RB6}JP!9e$Kjl4i;ZVx3xyxs2XbgHaDENF&psj|?_G08 zFqSak5BL1($bDc^51-I+0{}U&8`ynNOvJ4s{6Z;|V#%>m_B(@^A{_j)$HZ@M*8<3% zTR;GmUi4BF!_BWEAO(Ny7&`ywIGQUF`7QnIEg*B#Q5&CHg!{cyaMt4?$4!$*8wvr@ zANEaxENlzgSY6rSi^~YztmU9p6ajGTVg(Z$!MIwigH>wiut=UIHX>UnPFw?H$MwLG zuYs>OMPHel2BsIHOgn2pqY2FK&As;+V?3W2li|w&cL0Ob_2>F+@Xo5(WHh-GMy~~H z>FIPj<%ME04~0BmpsIDkVW`;@C>A1DJIXmVy*j&}zV2pB%~PE3wQ#Z>k@KY7;!yn{ z_{JIV#iyct)v`% zeeiR~z)vlL%uU0*_C;WDP@z+xMq=Wjye#@g5iPf$B2i`PW2!KZGEw~KT1A}c91Yth z%Nne<-%GZ+xPEF1fBIDPqI=0U2RBa7Vzqx3-&vXnC5)B<{Pg}EKx+j&7GW;#Vl5=a z#X=N~PPU&4dHuFsB80EcfI(O62%ni1ZkQxdQQC%gR>ieycvtlW>-GTz&!o03iejab z9reHTtk7?SQkP+_*bJDcSW__~qMnO=CnnYhZMZ&(J% z&z%s*0*fChQyACm19t3#Hzi1i`6|GyOru#X#_A(Ibi^jhNKc%@)hmz1J(dIn7qyC* z+{ow1yl_JqZz(}^DrKNj1*y)11VIY9H%L8yGPx7${u-EfE-aHlOu!5#{G}qwdu{^&BWjTXqY*J0gX1BH#M zF)8jX>lADF;I~nmfH@zHC!}Np6J?Of4A%WM47?4jZx9T8@m%ApY2vwWo7#r*jWfWR zC&72$gtNhzU=jo7bS0>3O+?(=a|;xeT(_04ZCr zCy>%tOMlTu)rPTqS`gvcpwT@hf^7gmrv)spiAg}Q89u)lg74<+c09J;1<=LqbE5xk zI7>L!I2EgR54Rx*f9^NRX}VCm}`PO zcLZ_Z=QhHywzN_PW;aqr;H@R_mK3YAs8|*(!-)}_x-}2m z^}yGH2|z&Vcka9qtL`G);s7O@ZZ9BuaqgMm*j3pJ$M4}_O|-}U+5iV?SAm@R0d~$_ zh1cvF;AlfwwGY;8@FQOneFM-hU90U%O-WvDWKo&u<#lDUfRd>;Isue>OoMCsXxwFqTaqPq$C1 z^MD!_SVg4_UN`h{RTxCSr>z1ReI-Cu+6EyvPlMLZ1i zD^+0}x-(R4`NaH#uYMq6~IPwotOo? z;DHvl&Lf54kG)%r5n)V*F9UevEV!?D0MO~S&YTt@LmN$?KZuhZ#R?ee^DI;7^@}+bgcuBa&2*yVhOPcU zzpI$BxRqC3{--9;?0`2r!a_wUu+|XTK-Ui~X6$>%U?zh{Fc19n3fSqE@XOii!1&IW zQ967*$V?r8=0&f(ET`-pk@YzC5>+j-fo}865zH)HicZ3)#aN%y;;g$cZVhhkwK z^n?b`W2mEm7YA$XyqB>HJeX{xJOcCwfK?psXkQXxlY-10NT1WeDgtgF#4JQaQYFMj zVBPf@c)uZtu2qbm50KQlsfDv@4}99`d+%v z9B0BM^GtXQ)D)gIe1oLYs`>Kzc0rs2uQ7eE4P!cbjxoz__8qkt>ainOp#mVDkDRc( zeKF~iZIqnks@hwfj$7>?Bf#S>T6_a0wEz$ph#M0e%LEkS7~YzgVDRDZye6C+_}oLo zTaD5vdRFE;=ys#1bLym5{>0Tbn<|LOP|HPXvn&9t50(Hdh56WKeC0{atKqEzv$LV( zK=c7G^^C~e0buTcXg~RT1!A9d*7q1j3>4xYxgXcw_!7|a23GnOHXJ(C>kt66{0&s6 z6&ZvVtpJ1=Y|%t*j4>_&#$@<%puGXe!8~g)vZ+|gQfK(djV!A5RT5*%kMBMYh%ONM zFWoF5CYB)xr`w0E-!~)f=dHyDU|paLbr5D=YLiK9|s$L6{7SLuVv70@r8!1wF zM@~g;0mOEj6U%_}cSm7eJq5C_Ev&*i$a-`)gkMuKHMRiHKze-UL7k-QCP3Srfr(?uCn32*Ygd4y=l zMmSv_hDoytXpqi^1)Eq25+NCy zd*A!s@EGSDzx~_4jU797pj0a1m9Kmy9((Mu*mZ-!0Kfdpzl_=0SyU<&yyY!#!Rgbd zV`Pf0&B>D|@#Z(b8I?)}v$L~!&wJhj$B8dv9yxLZ zuXx2PP%4$MbLUR{?(hCCIKO~FPu*E7m$2oZ3Mms%(@EG?oE$6XLoHz_NHs%!S#q~} z?0X`OL3y;>nVMn%P5!BQ$)#?E3`TWMTodk8r=j0ak%t-Ic`Vb(P{Py{^;X&5Q0Ur4-C>^e@R7_v?|zAVH|urfqOpmxrH;vGyqWei;_aVT-*A&) zQUk5g`vQWXB_{@(iRd@9+(5d{S<)yq&9HkTAuG9n^2v5ogA(Z`N$GI*R`B15{U267 zc`PdcPt3YJq&^qa-?u7?T+C;+d3An!X6hyhVSe z#^?JOKe~8c$nXOXJb?fFpZ_y%y6L9a@!$Ks-^0g0{&D=_AO0a8c;EqS-@YBMeeG+} zYPG^N?|tuk@!8LQ7N7adXYkE$eiQ9>8$bDzKM7BcOM>p z_+i|0&pqLJ&-3u6H@yj+P6yxo<~Q+~&wK{=-g_^8?bm)SOw(*O@!HqE7CUzAzyl9F zfIs+yKfp&n`cZuR;~&4UN@tPa@K|DCQb~_`jU>gA7;8vik`!kWMVTgXEH9#wmK>|r zK5D1QpiG;5d1jGfwM~*i9+JdQQ|>%MY+W~}*S1OM2(ncaOa1E0Z5Sy|)>lV}fz$>! ztxKXj|EtNs2-F1Zve5QsA!mYW4#t1bbwF8?y_ zKdJ>+N0hTHqdxcGaTgxfFXLSD2}W|_CUKFZEsM;n$MK2@K-n&nWT;gP16pH5e>s2~lFK(H-Lo#$_kN?RFdQc*i^N$AA3C zn3|djk8{rPAO6FCz;FH5Z{clkdmC=J;Rby2lb=Ml+r@wTZ~qMd&}cO9Cx7xM_}Irj zhS$92HMr%LTkxq*eF{g89Kn~r{AB>Z6Hh#W`|i6B|K-2@7ucb>&8E=3e)`j&M!(<3 zpZ(dN;f5P-z}w#THoWhB@59GG{_)LQhjqjwNsg&0mbgtb{&LZg!Gu3hl>}-@G4w=H zM;60l)YKEhEGw$cI;#GK<)>+@s8YuiDVG0}R&gWEw`rt8AP!4Ru=CX)5k zU2kZfS?aU$Y_kZlZqlTr%Ou;na^}I@L|Q;=439+BQ1h z;y|_q9*86uKtzPItil)6=9dGpRma3LOFY9Yi9{I5)bpdwvbw)9#&`kXvXkLo`lVmO zo8I&$yyi8pi5)+F{5Z~?JBQc3?seg@LZN_Hyy6x3*0;U|0C@1h2jRMIEX|G`J8;7d zH-u@v{q1j~Ua#YhJ0d5Zciwp?>h*do%?&r)fE_z_glS&?`qyJH7~sJN9}LsH;uWtz zLD?n!`q#f6XV0F+i4!NZbsG!@Xf~U%KL7w#UQAgejGDszS-A*ODCmh(@#wIow#9p3CRY9f!J1S%{4 z%~*nUX;l|BYzo0Ei8BfsfrSo7`yRF&CAc#!9TqGdV#B-OmN( z(a9Q;dHURg<2fmR;#u&O4RKin`;zKyhxOkPq!Pez4;r}`6XP*n0JyBCo6mgaGkEBs zhw#7y52VhWJ16{2&dbLX&a+qP8x+qP|srAgjr zYHA9$ZO78=+qW-uA9?PotFB7j<3k_%5Ps)(en($<9T}8!22w^MkU0WGU*_LDR56Ajmb?^YMxZHnM@Kvhec!%%I3Oc zo#nmMHtA?2?w7UchF^G(mje**oPOh zBoD)uSdxcLE_KgI*+?gm9f4Ghc4~=nD9d25g|I9imbHaC->uARj2ApEn`QXasZ;os zU-=b$>QkRWv6$^tpOE;Bn{%EzmP9g*F8x-dk@ASF^8Ds+{w5lYM)-H?)G2Wy&sv)L ziv~mO<}%e%7<082mkPur5=AP)w(9i38rej6eiWI6Rg5&X5~IowlGfl+H)g;MAeZqr4`(Y@wfb3ymIT+8)xV~laBaM?^S4?g%H&YwSz+itrpJmz^G zzW(*E;}8Gv4?{igxpU{Run>iEJb(UtXp!B%eLEb-!TS1o%sPDj{CT|er7sQBEG;di z?!Uae9Lwjs-~Ddv{QCMjT-S}Ikyc{$K0w-fEm0^GVzLS?hRxc;Wp-%|WvQk8&|+K@ z1T;m>nFrqJgvUwQ67q|32fVAeHR~&%0~c)Ojk|;UkD!H2x)vK+CtHN+9cDq2q)=xS zO}Z8XQdZ(5NRfsX@C(IA)=r6GZpTJ}VlB>;c8u!IYOA2Lj3>|Q>OCqvz3Z{diCo{w zNo)TmHpEG6mJF$uu_}{iaMB=J_8q0=9qpuXs=PM!Qt@{H_Ay^ z8r^J`Re02LUuhUtwwTpebz7+7O5HOs#uyr0w%+>cSHBuZjvR>{`zQb8pWvEnuED?j zm;Vy`_wUE{?c4FCFMSEO+#*8iI*x;{eeG-bcmM9+0RV2h?KW7Jg)e>SOZb_e`56Gf z;^HD6ee_ZM-tYY$0N}2>?n0x{!2S2%kC(jUB>;f$e)qd*G#VjczU!{L@PQ9}0E>%@ zA@Tm=7r%%?p%9YwyY9LR?|a|-;5ZI!+YZz0*s&uepBRc$CxLn;ek{uZ>afhsWhy!1 z!8uYXr}K1}&>uJ3BK^WP5v6FN0djsV$Tu47c(V_`|Q1z^pZXdk41Pt0hVM2JP2>Js*{s^$J52RQZL08V4j;^yQuzi=fZxH>CpE(lwO&$VL zu*GDr-OWs6-2EC6txbL(fmHC$YN{=GuOa#?08C7$pRx2qT?jPs8hMCHSjqij6R)pM z;-rk{>Z?JvAI>l1@dv=47LqWsFb8tuD@LlL0TY%{1SK}i^~Lzftcj}Zqpc_y5Ko2Z zOYF44dj}u!?xrbXHc)r1GWgp!ibNa z7X|Gxh$-B4xj`gD%YuV!?-1ef_Bt%50}DdJ)h{dU(pifq_81CH58yK%DpY^IEW5*w3k7c0t;Uos4_~A{dL4QB7ePAh(K-lQzS?;%@N8C&D%pW%WSzy$BBB00t=| z0Wk~lad1qG$GF0A*?MTTTEz`F+z>lfsZ=mCGZP+v?|a{i4}S22ICSU`4jnp#4}S22 zD3{B4``h0R0I1jNc;`FciC_D*U&GAI45p{2@$0|->$vg88^aBG*Is)q-tdMu;9c)} z7yi?K`cD9WfBH}VDSq-Ne-eiei zLaip^r@#H}Z^!Ta&hOwCe&HAJzW2QkPe1)MKKQ{8;$Q#ke?3&Tk%WJ03I3`bE#oJ= zL8u$$NWspR3dnTzAkKT%PT+wF)Fxu5h-rdrqy}Wxf?0FL_rk>H1}^4BFHN5btMp(1 zES?9Z8z6JjBGj}=#h|>r26nm?k=&q7=&ma0t}3|a34P+~I{M!@h4y&^cG*W^n+0RK zq%8s*7wq^3*y&bCfJxa(Z=iEMaMuSvep=`~cit$<)mjlzwwBLLL3S^It7It0>Pk#1$}T4b&GX`=TB}545CA{$hxwC5keR*u z1VNA%zS6?_mzFT|e<{Q%1M-}VkZ2GSyt5`I9;2)nG&^Df=?<}APM2WbdQg06t%ILh z1bh4(yrmB8Yga&a%?eT+^e^6Tfc?)euv^66zP2iES`t|%vpGA@o08%JyacJh2GyhirM$R6)Tek*hUFe zOn|SP5bXo#Evc<_Sd(+`W_D*kj9wGyJE_TQIDRcI1CA@kT?uN6em)bdruH51#q;n_ zt-(FE4&IF>8Paf2e&q=iXkY>M82IT$^#A5jw9jz(L6p*&S3Cmi&3A*#vM8a)Q`mwH zbky=ew@~NH$C}|W6kJi$wcq%S-$1X|!!Q2gFJgUt9e3Pu2fp~lFQQtFtU&+%-~W41 zO7Sy4^E2r6dU*A#UyVQevp<8WEG2*X)1StB-t(T&>%?2$@)rEzAO2x@-ZV{o{_~&5 zFaF{$;$<&;8A_!R-v0Kta}d^aqvAh7_K$I*BiiEBYkhhH4>?mfk7Mm_yc0V)!aJ< z=E48|QNS`_1d-+V@)~&00VxGm&He!B3%LnjUIRO^Azr=-eXqCFf!`Q_HU=>21+e2A zZ~`MOa|qaJhEn4k=&nx6PjcunqpZ}+_29P>`o7?ve6S;&Csb4HyQ^-`EjMNO*Gz+-H#mew2-r2sW4IC2&2k(=GUG zM?kMSrA@+@)`C9#X#6**px-ia`tKO3M~-6h)-$kv@^)ZyF6@I+hD5mmN-BZ`Z#)++ z!SgdmV3tIG<9Vb?2I~R9AG#lft9A+U_tf$5ccYFUa^tZ3?W33gLg|@SawR7i)P!~N zQS9hD@kxgxHY$hL_L`WP4@|5{KfF4^I5`J+EVAy)XB*@di%{Bq61=ReY$;{qD=qNm zS&&8xq+ShWb-dFB8cjirRfOY>h)C-7INI<33taOrUJJCl7<}PAG>-J31Hb?KAh%u* z)Rf7+$FzNlZ$fW9#u%3ygkMldwJ}CPv)M$wUdQ^Ue-5>Bd~;mNDhz}gP=0PBByw>V zX~Cwj`DqYIM07r9!~B9{YfbP*Gd{p)1%U{xnBo01HroM6xiSmWS&6a)_wvp(;jQ$< zfE!q6@;178OC5CAA}c(#1AU%Cs0_-56Xid8AnbH2MsSg6KlNI+>Y%eh;jyS)Ooc2OLEB91Bq;sV&A|SH+2u`QV;OvTEp=FJ zBi?9%ue8z=4GnnL6?N;ShnOV6^%;Q-3Eo_>;Ple%MJ;j7%++FYQGDaIAlF_uv>fO) z#j?J}>Ys^VB9pQrCg3e~z*aZ+lJB)lbT%k_re9&I&bpZWCs%{qc$4bHyyHFEq|vg+Jbqp@bn>cWp6p~8-qwTrfCB}{BGTW`28^_s+U?vX&tUi zGL-I^hxz)u<1RKeXl}GHdDSnX(P)G#u%ke}N8kFXKZjK=55HhUxZN)P`seQ1ba}@3 z;l%S6j`>Fpc|@2}F>v<>F~XYb38C8;f0+^OGQ1RI1%6P@NzW3Qev5&$Pv5}bZ_EOo zCBJL2aH%gw?#Wf{y5;@&%qcR3FaCKp48eu&p%L*%Yv? zSo_8AZN&eAW74v%hS5%yJE)_qvq^dQ2M7`@iExZ)4)X|-@D3t9n5cg-P!nXfDx@e% zo9q5$ePoz#^)FdRgL1e71B0FsBf`|;;h%(cRUO4UcYs`d^=S2?HZV~JsaCZ0)7G~e z=;$@iGWM60;$$FMe`=-MB-TE36VJ_{K%oFk*G8%zF->7flrpJA9g=l4>V?o7O=fu^ zew&8LQK)#a=cTJZu?!)l5}jGsVCla~SxCQhzdc>xo{aHK);a8_t|uf^eU=Jkue;Xs z2z*B3lh8z4P&;^rIu9**f6{{ukUs{g<7#s31@vPL(#DOf@luYn>e#E+PmVXGJLbhc zj=&$a`lo%SFJOG)6Q96MH{FC%3t#xc7sB&|5bfVbKJpO&z}ngxe)*Sw z8HW!aM!8(Zo;`c;p7*>5jYcDNug`z}^SI-VJ5VZ>FgrVox4rFcm#v;Zs(4}d&KC-X z5#iuFUu}v3O?k;C$)_Cf_`r!aSm~_7F?U``(wlhfIj*|&A)Mo7$;>Aq^)TuMpk9b+ z)O18x+{1)XH(|CMc{O0aWIF3zdw}_%hj5&KTvaI_kuAGCe+sd4i&%bgfUUK*m*BC zwn(e7lv4p|nMm5_d^FyAK|QI>Lo2bYUwPhudBZ+nZdyxp(*bxc&IdK69CQnRYkZS= z?b@{qAO7%%aqys6ZTsXWKZ&=#^{x2+_rH(pufHCPi}B5?U--fo@XmL>6F>daKMepl zd-g2Oo;{0?e)OZb?z-#n+;h+2-S2)k&YnGszxu1c3a`8O-h1(`cfAWA{NM-i<3Il6 z;GCzN4~(((7?a`4i7X;4;rj5q*)QvGpz8+%XF-u(ip4X8t^%%9e$it?a^7YHj;gbUroaf8~={f1;Se^B)o6t+@+Qju> zP#!Kl=MhX&q{4H-sCAQW@c^LQ&EH(+F!B4!Ax^QfB%a+Upmty#9+vlJ{3M-&TO@uL z#V2dB-DY#MZEm&Mwr$(4&9$3t+vaB5*u1^7zxNMlo}QVn?!D)H&R1DvoYcG7DQ6#M zK>LSALYASF{5B7(2mVfnGaMk=(}*YYdd!*F)sWHq`#Y2MmH(PvLpI(MoF{jiYFZd-!;7onP7)bGOr3DB2!B< zQ9Dx4ph8=`q>P3tk2|o0F#7eCBUg51y(+ zFLN~e#=;i(U#AK8XS-rHwd?32=z(HSk7@GD=>bhm1_$Ezt#NGAlSvUu-qXSGr?4 z5f{^!j0vyCGV##a*%CSlbDg6#ek?RnA<;!C->=ypt|k+@xgePPUXsdd10g68MPWi% zFICsG9Q@lF{*JMTdUES!Ac~I^ z7_dl3LV*ps_`eY)PP3UKbnraOrG%Ck$cK0;SPNsy+Lizn%2x9YX+jug@c4|r7Ex>I zgq28lg%6X3aQui;CWl#ws@aRVLlnnCtymenv#DTH<>=4;&}efx_`agB_$PlYRTa%9 zi(n|*9K?6l-|%N+$}bj|fx)HhT%T$2BCBqjl>c4~z^M#E_?8$@9Q9L1B$pR#gR7_Q zHPfXPV{qC&m@jgIdDIO@B85+4hp#@Qe}iS$`7J?UR1sL6Q|xhiN5xMjwGuOl&sZkZ zxS0D$?}`Rt z6xovq$6s$msGZnyxth#JhaXtB@J8QQZm;N|k=St(y?{~T8n;AW;wwl3r#0BcMqkT{ zTi;9&nvAK0&a6qkZ}ag{&xrTe^RI?70G|jOC$2Ufzq?(7IF7gLprP)XY#af1(7(&@ z!;csp9sT*jTrm2)TGoE=|x)bqmm3H^DI_t9{(+At%40C>LK{%iYh zt~b){`*u?o?+g4l!gY8!QI=CQx8Wk(FZ`$9h8UB#zS9U`jtC>Kbb8^I4oSBAy?EHy zDZB!FaO*1dKn**T(ILBU5XXB|E2ZckFd>fgI=h>f#yeoCVS#-d@_gNPfXHH09IUDy zmecgugKezIWXe&lifbPm6~nb~W!*e3ds_6m#4$R=YKcWhR8zFwY6a>3n7Qht>ochJ zUxzVpVs7f80d)03hzr|Eq@kL{%&$Q4nb3tP%Gr&_U4BozqkfKrQ0x1Ngh6VtsQCgh z{XG#AG$F0?AA`fjNM>e=0p0Imi9y={Se?;Kyt|4r*(%aPVII3zojtF*_`Y~s96830 zik)g=yHZ&N8x<_a2^6$I)HfOygq=mASckDl;kYFXfE4#E_7kp$aRNtj=>j%3&P9prLXt#_$7rfdTrL>k(5_=>dp*;_%kvY28iKLJ)a-Dj@#J2mo0whEh1I7d4Esyj8>|3 zpC>?D8OM>x*xJ$b&onV>LKm-4x%kd|){S*J(%=$2h)MukE)4dQj=tds45}dLQ^Sc?k@D=~+&ycJtp@TfUOFK)tj!8LXp;{T2 zGhRkDoQi;2xY{?L0W*#9sU``pGG+$~F%z+#-g#_0N_y-*ZNg{8=qcdvm1V*vLX@3n zwuT!=xFY%UaHi@yxob{m1MQmjks+oqr8_wKLT}rGVMjunrGXho?#c$d)QvHcZDy{(UjM$W&P`%x;i_3d#L{vc)tU9>T7 zn*CtEp~^#j)XD&<0wEmVn3umBxW0jUyaz}qqd8o+KjQ{I_ZnDO`RbDM9Ts$Gxdk2Z zOpar35Qh%Y714D)CznynR2UL7BB!KLk_rrEZ_PaUkFw~HB{GBb*dsx9tdh!sM|@ct z;;xOyq5ImXIs+7dSUzG2Q86pJKc(ixjrEMUuZta~h9LeEYIeCnt<{|UzzO@epPMuO zOzQUM<*E|u)jmXrYtStgJ>&W)$#LS{Bv_6v3kFVqA>%&A=0Xmo##)<$HiI7=Efvcoou+v zVx7>Wt?PIk*^lX1V(aA42h2FV^$ZiXzDNYxuJ1y(gP3WA$b2^dzt1OsLEsG(VEcKP z^Jejz;_knWOrvL`7DMMQqCG6bL>lJDm8qCcstz_h)WvoWF_mKOhRfzK4k6P9(K|T! zws*tq?sQ8)EE_2oL`iSITf%9Vf!o(-+(Ae;h~az~zrU8dVuGjn`h|KBHTE#+E05~| zi#gI7;>_z|GyJQ=e68y+Wm83=90ZE5ix0b^KnG~K6br-@Ifw;b5KW?S8%p1cCt|q? zAkak@gGO=35J>|30IM}7etuwd$?(8cuhP6(Iu1C++u-NSKW10{?S^@>Rh=7hrWaCA zI3vga`@IOlX^AmmlQTpQ+~=zA)*Huz5MvS^KKy%Mo|jxFc`5d6g<|0;ebF^{2Fn}B z70$OJ0CDs){op4&LBkL~vpl@sHd3B9OA^I8JRoXm;MM@sj(GZj}@GxZ10ZM4=l3C1h?)b@cVQ@18RPj#iiFuxn9<{cFp0?~5J+zQWE-2FQ%Q4rVu!9J6`oBw(#j)HVNLNMljk0K=fHRdsT#Zi|3uqNU8j z*jfaSYf&&NA?`{!Y^r8jTVR!OutmL9{Fr)Q?bwc+FDr5oeA1n*pcJkagf03VxXl&R zSJw(zR3BaFFru&vXJW)tUZe)3`a0%kiGm)6iz3}ZY+0n%PyJSnrU#N9I#hfS8Gsl+ zOQqRpP#X^*eA1Nll22$V-Rq74-xP=mb=~#Wy%pB!^mgAlV%YUla-EVYt9>ZH+J(OS zHR<$@AkvE7K%%~X;OI)QBJPfV^i3)4px6R&TjXytpDEQxhqg+$& z?#t$NC2EZSHs4jpH8h~LIvSly!Qgr;<|NhF2JWBPA^+Odz?)!51v88jnMf){%9Y5k zAcRO;QL_nx4oI+`|SY2y4*WsQg1P zCafjuzAG&aRwdXF?YuTtMWZxGSJ-n`>!u7EB>Kb)ZeS5v6-8fg?g;e5H*uoMx`JP; zCb@}Q5%skK`+LBVbD0YbVBQu6B_yWt>baY?q3WH$bwn6x`0xKY7joN-z*-B~4!?$T zS~0bye`1hZlfTGXLvZ#drdG(;rP&#KbbZM12>hb~0b_+p?*`I>t6VxXPdH8;z)h;U z=d*J`$y_9;Qc7b3FeZ{o`l2(Q@GaWt96rFjDxn&rSeyqoK|XjF+aR_}=UrE5O<`Xr zssMw`<;!4ZO45-`%35da(F29&Mfmw_5(H=JzpK^E$ZbwSNEgtVg2i$UD9x^{KDJU} zs7piPa2>1=CbrA0)IPyG&uh{-HmS1?usOXNi)ON|e(Q`WRPIJUzTVDyqQ_T8dNZcj zbQ&rmAIusyQk}Q@mj%XYtB+zCeWt(ZzOTk_$CRC+-;%Jc=!N$^@PSU4eXy6uy&2Kv zk$YSm_x^TwaAbgZ14IQEDwVvOxW*hs!5xlN=ulOvX9cWthp?NwLCT8ZB;*0DED>7^ zelZU+eU8Ls^DknQi2%=iy9Cj2sNd=2t0V^95P}&8+6?^Ge-aojNryz%m6fvMoYBlm%qDn;}I5XZU-+3dO>q1V>?3 z`|(<>7>MK~X={k*>%@3ZP-6$anq2%9dsJmX6lXMna18+AfZA%o$zWY4z2h`a6L+uF zaC2N@DMi0M;mygY3RzGTPzglq{4G0FpAX``O$D|&x-dt;jLvyLC&4o8JMHHfy-=Fs zdF4dpsxdQiLK~Ud+VP~Ah8!ka^6EMqMXF_uYppd%(&vBsW8#RRbQU~cg-~!|&sy`; zb?y5cnfDBLvDJlNrH=5QHg2iL4-=$;)6Xac?Kq~-JEmLEW0&65w_>UP-$c))L-#+S zMZ<3(=k?UoRNq(mMJx8sx6SL}x9v~Af1l+2bcOhV@j2lCjLcNnYz!O#`NGVe(ZBVE zWSDwyKm=h6CDr0E@21Q2c564u_5fy`zZ)c-44psoL92P}wjq#IdQ zRRqQ+(LOefFYLAz!Fb)ff2rz)iD(Y@*945NOJEJ3F+dn(}G+af+;N`)<$_Eb5BYXIC-VHTA>rEWk?``W2lvmPU{p<7HI^IiI;Zp3m^FRAyuRSZ6f_L^ zAow5PG_=W~m9g4IQgYx4Mua{y0tr7lRIoO0h|uix-_^!zx17vPHosbI>{S`;xbJxI zKi~A5lg&ADrW~7u+QO6k!3AW+1%{^u24crzE80aIPqz~SFvQVM%ty;?MHBW(F+()) z(9^v!{C$m}s`ZEB#?bWieqdFQ!_)*ep^P$NIJIUTx)2j(fWA%CNLmfdRX_0%6NLm# zR|xDUXhZEHmAJJvT06gQGyt1z3UvgYDjO!2_VyQG=Qc_YY+j_ilbwFbfN?+{poS22 zuRo*~mWl#%%$wYGQ~JD7L?&{ecU@Q5sSGY9A!$7^pfM?kff7WU@eD9aGH|Ry%*Q|K zgMlz$9&Ju}LU)SC#z{*{a{wuB4ICX&AH4|wF`7YFfIuhc{g1c+QeWkP9TR*$6Myb6 zKK@h5bc2>BxDa(y0vAa12GV)J0G>xB1;Ax!uG)@?9=!NB97hPB$G>+6mC?B2#e_9(QP zqUsJG=}A*v6(38gl4v7Ye+VsQ$rBP&_&;{quvw~EaS=Xb1O^f_yp8dco2J|r}ZSFmhb2fnY$%zpe&kr1$8lMcW~|s#?lkQVWc7GTqzrx6NPs%|E?mKxS;J`0 z84|N~{{hRFl9R@}$2VavGh8p8m{PbwQ=)(ynoSG%%xsw;bZ_FxAgR%uf!;6EH6Jx*@6RCSh?s$Z^iL_6p0oz?UG%kx7gINP4hV;QU9LaEiBPx z`eT{AF>izID?Ilz;-G@1x)wnrGwfRZfM60S`>OdgPV4N3TjZsk^=405qr7nbDzWt_ zo?JXmwytC=NJ3~lkj9F2s9w)+4j)9KMy*uW$&4%=wf~{;UZatn4Ln#7>jk*RC?<~`g)6x{kd>@;0!cg0D6l4IyFKPZFUe%6_(SGK!s`m zU#BjKbU+*6IH2hLpBXyI)S3)#`96GwGq>^j_$sEjvo&`WsAAwTh1N0`zOecb0hyg%^tJ?O8N14JAE$WO^ zDQ~|oqhwv0VrSsH1HtD{#;)pbs`ZMp6ZW~P;6kfcvfkEI#pmYOgKG7Xzl>!S*1}xFqW28SsAPgrjjo#Z!k5ji zB|ZP!@4{L`P|+Yw52~D~>x|XciicF1)Q?bUH=p=q>nvw)6w@V%EDB}L%ZwM~_gEHWwDxnC6?4=Dm7P+j!kp{BOcOm_XO^Ux0n)}$>ikB7b<5qf7>4^Q6 zq0exr4&sBA_tN!|j18Exxq@>8IhxqdIb!^li4sDf^JdM-b)T_2r6IwLs z-xFrAb&zm;#X3$gG9hdz3%1DZubobf!(@pa^l03Zv4&@Qa7N{#Ndc4-oXT-Qh^Nz3 zER`2yJio{_7)Gd{@Qh=QaY39hTmuxcmGNv(T_Q~)7Gx4TLluT59$Whd{whr(iGU?z z%|Q*jKOHEf8Rj5^xMQ*jXBh>NL{!zzbMJZo<33iIAvqT}9IRmS)W-pbHL5yGRI$(& z88Yn{ZAQ2Hd4&QIIZZPtpDO(-i~Nh*2bk8?xRmMqGF4qtzE-%rQNEZpvrj0%ED_Zh zvaryIZP#3~j>H?7vRVuJ8|$qDoB;LnTyw%S+v;3dwCyRBJyOgO-s)(z?~t9iOW*>u zK2~sw#Jx(Sau+g-%S9*QOH=kmy^AQ*%GFB=I}S~~=-ny1E|O&ZtV};BIKKFkq_RdV za-UcB(>j{Q{T0xJ)RPQaatg6K9uDz{p~E(wy19>uZaPDp3I@&dp;^ebf56$=XMA^J z(-Dd|MDlyolm4jnqCfZOQze~26jn*6pZK{D0{+`eT8*mGD$8ZIBE1@J8B6AF&S!)CBOH-r%MNa(gyq9x zogK`h)+X0Oz!9;|6maZCN$V02wS-WDR&){~DIBRTo-07?`%Nb;9Tsz-u!tg_E|=m? z2$A=ujNpkixdcCr8pm%kJ1R@z=jD`>WBMX8RXi2@AR02`cV3rst0{S_5hMQKKLjm#ffyUH0?%@*w$}YXxbr0iwk}~063sOcJ zOmH>V_A9+k<4)t&&EQg2Sqh!Mq|KOUCS&c<*C3WdX{0I~l-RPN+fssaj!F-i9iVAq z?Nx=@?IpHwJL0%F!TqLmtT572Cl&1Ie*VU3W2zaUORRC3t#PVt7}BkgiLP$*0!&hY z1JO8G;X&uIqg_gg2x?GyI0Y9L+)Da=Ntp56aqaIVV>$O)Zb;1D;4t2uar((IDR~FwK{H0aA4j^f zN{^~=8Wj8~&iml^MW^=A!`~qHSylnE!4Kw6Kw3IP3)%`ilvQbT8v!KQouL{|+ns<6 z&ba+04gWq!;wT)#H8F28SY^FfYmBFy>LK+KDrb#5)H*2gC9r&mc0wzs@nXET9$IeI zq>+b;A$Xp+%*vHvPU~IZ#(=8+-Y2Yk#2Cw9Nd+jDOGTcf&KaCxXd*!KG%G9tm5h(A zCfhvI#jNU@xy*JSQLv50^z+WduHM8ue9&PQ!UuXFzixJ0Xl1xNgzdZbf<*N7g z)x)I<;~qEXFxA*z?E%%wVG?tb`5H02a3n^~x`Z+0f%;LMVXr=Zbl-D^4&92J`Gp^@ z0v1OmOPRwcRwP$6G8`(b)th~Sx;KRmN$kOzgtTq(20XeuQHv%q8H0dLI&Gc%3`eu*Hh>S?WJm%{RA?CvZowyv(T%{lN?eA5DlvAP&bQ0fg=d4=7W10^e4NCE za#^q$Ow=quN(I7+lc8&((pZH;Ibe{%`OK+W!;UHJK=k?ZGJK`OPq2O-QM3oK)whlw z@A+9(KTF(MWU*sgs7?bW3SG;Z`kv5b)eEOd;dzO{fB~oTP*#s(czuEbbm7Kvgot`h z?EEqU?`#9IwS8smfvL_M?QcqOoWAG-yiX?YnX2YN{&wuTu>v5!Z+sJSB=sIhT!#_# zg?z6w7P19D*zrpsTp3x@h0^2(`}^=M-@Oy5TiD2U@_Sq`F)x_2A^vFffWx?DTa*i! zIW7UhAq0u+NWi19vOfb>z!aSez}Wowv$X57 zKIMXMLA}^AWU}OoJ8arf2#?qo4PP@8vStnT#=F3F5J|hJQL4zXsQ_f%;9oYQ%aSz# zpvI2OsO4PxTP`wl@1y*z!IH7!oOmYuR22d8AGLL^IdCjqbsJXadpTrYTJ&GDnwR!V zB$Rr)^t*{mVBO9F<;RM;?8x;lawy6GiyE-wm0lXef#~qdrA>g~oo>Rq{*T{{R-3jB zkS?4OWc?#VkZ-R=JJrb41z~OH(Z=xaO++!LXfdo%{9hrQ43L>q<)dDZiNJri&Hva`@UkKdk{)bm%8I(4O^nd|Br$T3$%T#QUe6oBwrRcJ^U#*j z00u;@BTCg%!77G*DeAZ~7a1k&(Va3AKim0iQP3A_2LiyxraTHKCNeg(Z#q{!R360 zcggrZ1K{#iaA9611^}wbOqn@UeMN^K>hI_$gxdiIAS9$egRw7zrpRqY*6||+UyEGr zyy(^UdQjme{8NB-px`8A**+_dHNWvh`90KY3N43;Q9-LSXN&4m%h*_3pn zXq>>hw*cN=n0}nK5-@R@ZRf#P&fH_LA+gnd)_; zg#iA(E4$u1=#28oK|P*tCXyB(ah3|HrWf4S-+v(-j&46d3Zd*TNE)yr`&502a4^Wc z%hQ7t1kvkbI}9^RNoFq@N%XBI5f-92WHjnHwU zDvhHjdiPjc_rVuj6GXtws)Eq&1I+NZl7AL8j(>RO_3kvaL}LcV5`YJnjbvP)GeUsmD?Pi_>fRr7!yy z&oS}kcA7R~M2TK8C`);>e>>i(O1iR_RIY#9DpFm!(CfDf8YWL@#kp`+#>DXQEUhX_ zV8_{z1HrB$5oWRow=iUX_XrHc&dJ;kPIR3ATZN&&LSpX@=WfkoQTNHX0CAqw*tLYO zbN2p4eQO*yuo4=LNRs6cK7v=CB#`MQ5C310;!Up zoqciGOi|%8Sy079#plcEN0OTaCSRgpOXqB&Z*{f&4of*m#%l~lq-&GsK4qGGjAQuB zvGz_~SQ$OH@&Usp|GknyHAC&wzBt~t+T@V2>RCy@Y0i*bDlnpVC3i6`hge>n3rW6E)-J=| zRsPdBQmH8mOsA>;cG~JWa}`sm0yY4Ui;k*ik3!{6yGs-Zyj8&VXva*_CR`PriA1i( zW?U~s_a>+D>*)Is0{blOD4)qz zeGXuU6I^qwB^P6bIz;?{c#+dVR_G{LAnPRkeb8BkIOd#C8l;EJc0A8;LIxPYtzSm> zSvO=COZ2HH>p|81Eg>zsP7=mfZJKwC(;#Qc10(l#rewF-jn@9sPHU6b`)4x0rs56} zT0rj8=M1Oy-o(a~oW3+CX96zwJh;ZK$yfc-xx6y4L%>I32P#eXNGwfvo9yPmT%vd5 z#JO%QOzozivMtmyyui0I&r+U)TGF-|G5GFA572lB5fEvs++DYg4sdIS0{KCfH*;!w zf7utqvIk(CDkSx*;&Y?{ZppSIl>yp>SDNfj-dB z*w>h5ARq(gKOloBVQYXA{TTiai<9NVy#w>5)L6HGZ`G&BcRz9~#5977v#TqO$qdCv z0YV7`d8Z3yVj9WjPBc9CTTIL*nggr_b%hlAlUrKEM=q}=SRE3cs3TQNc%+pgoWcvJ zh9q~vSvg`B>QV=TX0qUXI#GTs;}Y$aUvp=_>npi5vH$>Ay|A#3cu8F0+l1g&BXD+D zeDNVB8h+`Xywa4Z0-!9vX3WY5;W|K(!O=UG= zGO5&O`lBR2Wc~_BHxPEwm5XSlt$%I^7$}(J!8}OBBJ`?vsNetRZ2(=%nBZHc03MP@ z1LJRDYAn#Hau(7s5I-p+bSS?SAydFb7W!|p>QH}Cf{_m{^=&&s*-ezL9SM-#KXRY= z0!NLzE1&Shx{|0}U~WQ^28I@bzMvT@8FbfA8E_&S8shWi_w~V3q?4C(yaFX;gnXd_ zcI{B{Z4i}N?-2U#6pET_iJ=B}u{Sdznk6FLI{E}fa67Oj*tUe~FF-1>l+t*R)rrcr zbWC)f8(!p`g@SqVefHRMw1M*6&%AtTjhWkv0e$hPwu&ndY7Ye0^H_lbfvm?d5@y(f zVZ$%KBk679m8sgOXfa9{3(Cf&M=p&ALd;)8Si5|v5_&V#)riWZ5992I{)1u)BqYf~ z2J55;rs#AX%K6p-7knuy`w0MiiZ=O5Rj`^&Y>22m)cs!)eRj`_Q3vwL`c+!W$y(dJ z?GEQ()fI>&#G<&UnS__D*wH-gxC74N_>0lBzf0zr<{Ealr#sYFdSV%t3mghX*+poYHjnq<|8UeYsDX7MZfT z6>l4tKj|%{D;zvxtuSZDC>TT4xFSI;@v2bH2~xSsM!LM5x6lHuWaZ&%2VklgB#9}V zgcchG8XSY;yivM~wCN%OXfYI7(T(iiMcjyQI~k;rx%(CrONxdJMC$qHDybD@MWgRH2@~)w2qS!MOWY1ymuQk*@`3KC$LvvNzx{a(r z`ig7nhmC{rYvD`}6nRZR zdFN^CT2rS8lY~Ti@~`DZxhrE|!lcPL5Q3d>QU*3c)I8Wg306Mw0a&ES7}CG+-+;9A z-FI*lRsCp-N0zoMcaaWq0wr@8(bm+k_YzcncR9%{X_PgH!+NJ@w&6bQKv^k{xej>)1 z()g_I7CHm4}Zj5X(ox^c)AhMAN{W_wP2I4=ugF|gwuo!n|w?KLJ5fPhE0@Tf4TMt|zT?A>{)=r z@p~0Npqm>6ss!yiGw+Su0YBY22Zc{tR9ZSKU&Yf-7ZGKgB0X_Xi7{2e3{?U^O<-*7 zxtGwZKcUfOUtT5Os=H1RrQ5L+_J^rBV*0#a`8J9ii5Ebs*7KpazVwye+_;S~Q`;E2 zj~+X;_I?pC1K{5==Np9

eE}CSEZTRH2RRtQ(|_sMNn>vp=vYI4Hlb1olH_sm)#8 zc`DH7g8QG;{rcg?)XVEY=aoB)U!Djo`Qy6duEc81Jj2fb&Nb@xn**`_7|S6zVB^yi zq*2l!&VkwoJC*3HQ5ldJ!zgGc>`8ysl~x*1ctWp$9XS^_{r2_~PhI!X6H&}pk<9TX z>hMHQM(|*YA^>WpRuz3E4DZ9oT-Y5^S~gOE z0xvZgyLdh<+)=*GH+-d;P1N#nxscU=my0&MVL_~VG>M!Py4w{ZqgQXYP{iLmP^v;YOdu?DnNz!zHCqcd)I zrV@c1iYLR!o{nR#INAV`2ztmdsUQ zDXbLUqm8jxHe{#k3newO_&xmBH~GxF&Y)I|3S46KSq;O-Ta8i;$w-;&xajqjWAX4G zyXKsEaQM}&-Fbx=RZ}y;+!u5)not2XFrpf0tbJNO>olCcB6P+sY<8AR;tVq@f?x6R z%@CI%cz`^NgzE~Lr#d@|-VB$Z*>Zq`^xPz#y{{Ew#2LiNgJ=jwt17UNF9x@M=%nYJULF#KE=6qsJTfvwsfds9%7L0-QFe3E?>tn<=DzqRFC9~e^aBb&Fi=hoK601KFsA?O! zJmJCH=*38fE3n@9Q9)xWmZ*ej@b7sOyo#KRjtwar@{=T4M z6pS@!!pL!&1g05||PyItYK<}KSkh_}jpQ+#rEm*S5Qy)L{(|d1E#J>%D zdQL?Ipgs*NC!&CZfzLkfzkDjEfu=n#OV1}92R{ZNJ)3hAve$^;Zc7&r1xHZX(?w%% z9uJbexE$BX6t8e~2a?H~A(tNVva5AQ+mUkXwili?vWu}A6@oL#N*A!R3DWOqqRu%9 zGI`*8;6*1TtBeQmee|QQv0%u(5C}5d%gNErk?qfr*l<3!(or7%YpAtB%-t5-yFUJY z2I9CpVi`-ff|PRU9&X+~YSZRMdnPLRtROZG>gt)pr16TC@h?yT6!8234}wr0Q1A{-Op_SGY6oWkWW(p=gI*vPcj~;k zav^5ScV&HdT!U*nA(?$#H1T729XNnp|^C>BgKvpR5Y zF3rr?H^^N3&ey}Bn~c6Q3~I!BWVA8Sxyp+vI0NUIklCn!s|!JbDdG>-17V&wb0sOx z^~h@neXvY@^pP0fO|0~Q(uok?JNGpwWEuU^E_RS~6|jR*R2RLMTFvkm*3}-Ql&t{o zS-zMrTCo5e3F*9Hn+r3|Xj4mHt)-jTSHh!GL%9{D)iz)yyU?F2lo3K`Ai?U&%+Z@V zh)l=Nz*i=vNXgyf>f8)@enyiJ{3gZ=Nn!>@0O&FnY~DmAP=zx|_*rMpJAS>2M6#L= z$`MN3S&gNRuarZ-`LCINi2Gw9zr|@ z8laY|&;&mc9Z5Yt13VUr{!);fWCpIRNDj|5A=jjEIxaxUgK1*t#wRSU2W%m~F1`62 zA$n+dN2hhrt`|5K=z}XuT1kWt6~k*__yY$h$g3pvtf_gYpeg0DIyuZ+0ZV^@Ph&}R zi&)^Pnf$vVWJz6wA&-2J&HMg7l}TDr17WOLw3p-KMsn2t<#&k&<@-R^8Y=7pj zp2lD5M?;#A_Z~j-(FENap)%xN=%)8t|MOQK04O_cCa*Hzf~OWy_=0`_NO0}!b9upI zal_xBB_N#MWQdkXO(&C$toR(h2AOdkAx#+lTK=AwB7!KoZ9PCex*dfO9L?tw48U$} zkqZ;yjG)Q2cc)nD$-EvcRyea?Iwlfg5c*+*MOh!bBQ#3W-<>9&=2{y?va*pF_s#`A zy784+EgqG<-kaCqaVhg~(1q|wmQu{Nq=d~9EOi9~o@9j>vWo~5(^dab>!BAIGEDP5 zU|qjDH92vIEpr2IqZ;L;k{<;v+&;pDibuA69b4TiSpw?`KvUtcQ|-qXVepi{bR^N{=V82NWFGz;m=~v4i_nJP1xxH z?Pf~Z+~*{lPj^gt{-YjVAKpe{JP6^&C>erIV`+odBmJ3>dl&)X`!N2EB&_!1-4<}y zR6sg0CeS|L-~@(t#=Ia`!$>s=jcf>y?*5m0`&7HDtPF$EiW!PgFG^O=4n=(l7S_&Q z#GlZF1%$3VuOC-X1SzJ>dvWM1>_#e)#85V7u6t1dGdG>k=Lu_nqv3ptTwmD9nKs$o zxP9r*+mAdQ;^AKAhKy97Jf%HF^-NkT`50lo?zVvPRzidR#Zj=>pcB@5N{bVXO?4nA zP?i@RlvpK(_w9H85zvHnZ?%pyAER)w4DeA&k_~E^bs`uT(lQE9oyf2IgU^u&KzXXI z6HhZ5hCLC77Fwm%oJ$R;REq;m_U&qNnWWMk&&DT9Tsqie_$d8lHBAf5PJVzz#M2C@ zH!{MhKKZmCSDeL4s;-jXFBv5V+DpJuvV$rL&VLmJsXh9p8S@PgW3sBL^H9?-S=~a~ z?7nh@c6Vw~)=Y|mJjukaL5wsWMZZyQPh}jQ5ezJTjI@63lJx2vD7P9q1?Bo;*lWh= zsYlNU)d&Awjd3u_mu5gK-ii1}Ny{}Ll+SaJGB@38JMuJR`8B9klUpoJZPmEo`hJ2m z9tSfUc<~hkA%+M2E1n|rYb6bS6q^;g)G~|VE)BJs{I}H0yUK=WWQ|D2!rc~OnxSeQ z8;Dniho$LE?>DO@Bu(k#S(O7&DgNX}e8W=tVO>pYbMiYzk&escuGG2q{p`Rgw*&R6 zgu1h$2D><+))H-Y?jSu@+(|Q$!1Lj3S%MuA{M)ZgA6ORQmvwo&ER0|NeJ8^0`Ry79 znhp)qYT){b{H33d_GSwz>RPEL=BHs(Ld2l`)kr{9HGn4Y6vikjBSl*27x!Yiq=WC* zlQYPUtSvtd;onwdRW*V`corg~71q+v<1_X+G=m+vNqg?N%$=4J;z2SM2g^#{c4J0A z5um5F%ksR4CXn+Xi=ySB!CR)jt6bA#!2c(7MG?EyH-@F!Mdyp0K@54bRgrGy_^3NU zwS6ewHUizkk#2?bX!?80jP?mD_>vOIIqr&Lwu3L58B6@Mcb_?`qmANHUtpF)>_e6F zybRUfZ5}Gpt+HZ82|S1Z=PS#c^Ab3zzMHxho@mxcQro6?#2hrvZ)UM!kG7$ z|GZ0^J2-2u#gOqI@El!etT5OJ>1TlhA%<&xt|cd4;@7kV3gloB zy>WbgJaVdL&VWZfA2DKOqEgB2MBx zSL+nz@Fd|R3KEW(vkZsXq^oU|2Z$KB6^J<@ zG6b&fH5V;{c2wEf9h~qFiF>aT zZ%_zi)lQ$9@-^oLPjI$5*CHEQ;n8VGE z+A-1`%DAk)XA+_%(44+BhNvj-5>*O|XN=n`C%h<}rir4FKXOOqVrynpXKdJ}IO`-X z&@#iqSFhE38h0YdI@#9QVpBBM4?=+>f*cAU;lENH-vxCGi#980h<(y}ZqepT|1>ms zmo-L_@=JhKqcl7+1XFVpaCYYxC5PxtvHG-T!838oml_!lhK^|sFCK9`*Amp3YKKZT z1pg&1klSZQR=zuF=K~rxK&^6rK~d6|hDb}GyaTqd|F-@zI)mld>0TiSmH2%6x5LG6 z@1-W{C!HJgc(5vku%D4TtIfJQ3mvl#X}zt%nizqP4MJab)%HjkPGfj)S`mnIVZ#X_ zo8Szo#dN}k)rB^?BXD3N0Qhbcxs>MYG}qXq-&uV;0>E%e5zmx+t&epu4caODg}rS)MgK$MGl-LcXU06_#baVK9;#Ym$^P8^MD%0 zHIMgSBnm07&v_QcGlOhp=WCOLAE4sPVhj?2K6|7bBz?H|s8{Z5V+19m{`w8o`qz?g zfqrLH3-?^%!GtYpJeocaY&T>6aZBhgS?7olmIo`dW}jag3$&pzNw4iY=gquHz`VXlAW)5CkoO%^E_gMemjo&QBoxcSb>P>zWZGEq0co4C zBE>3Yok6cycooc-IZO|`)$V3X7}P`RS0P%fTrVc+C}XhZB7-k6XBq5j43>A!F{Ob1`3zX%Mxh&1MP7h!f zMvN=#XB}S(CV{bozRkGt*7*@Xk)LwnZQC4|+Kq#JT>1yh42)V)!ct8UIBve;ZZsq7 zi{<2$xB+?b>Z@cFoR#IMnPl=qXCenhea}xjVP{W_XDZ^R4JI#QJO0|cz!e|1FaVG8 z;;y(=f7VY^SX-(N34`)xb#*imLsm|A@WUWng9lQZakv#8KA=%JA#MYLPWaT4JlpL z90^go5x$`))aKyyLA<{mFCafABJ)RkPtfO`5@re1|L8i$;K;gYfyTBov2EM-#I|kQ zb~5qAw(W^++t$R%>-k>2pRcNac2(EygS*c@d#{xk|L8{8yfGzCL^@N4r1iTxFdXvR z4}Yh$uLZnbcIsE)pU7QPj9VT7#z#p8B5EqL8sHVS+vgGKmv>{bDtd`zLI7T$3DjI( zez!2nRYz~XRZGGW@0XFMoui3@BV1^Sb9_TYeDH(^Dw2`Y0UIe$eWl@W6kvd032mkG%7m=G^ zyF~qFVg8Vqo<5^5;L8ejZ4t|LOH%2i$ou~Nj7+LXCx^#uBRBA|7A0Sh#0|rQP_ZYC z4g(8L$*!b~&?10PVsKd`mY=L;**iMKit2BBI79a1t$TE8U2Nb`NKggF_s^=&``PCJ zf~u&c=pd?dk`WP2NLSiRCeR5!nBQm@92cNLPyH-PTBr^i6tji}e#9R>q|wMowr(}v zaE!pUy%@)suzR*(^F*MGzfeh%0#eW;q5Yl20{yT9@H5FT0C$NOiBgKgtc>SW1U|>=+?}W0*m98)kJr^#i}nxirN>! z%>}JBO}FD8-q8hgS>QZP$8T`IR!7rAUf?(hkboKsX>Sm^ez|H1CmB&aX=o!C5hndC zy69-aqMI5QM5it?aWljYt`h?2P?rOuUNprc)UL zPjTHa%N&3ZeKGkSGc>BzRio67E3i!u1cEPPlxD6;ezsqChQ)+Pmqv8HERsEo9@Dqt zW~7{qnQ&Cac#3jv_7gpgXv}*tZ|U!qH?J90*i1-`28-EgT+U7Nt!QD;Lv$jmg##|UqdA*(&j?$sOU%4_**8s$tc>1NH2j62s5 zARD9(wf7Jb)cbsTy!Bur8&gO!)GCer_Sv@DzV}*5PlO*f|50U@V$n1{=P2i*!}4)W z{VJMQ_$KueE~4v*TDai`-iHJoUcnYqH{)Prp5e6z^Si1=q2ZF+B;(*Hc6!2_DbHXR zc4zb4USf;%>{a%iVsB99v;4M=AdRH*>d;(jI;nR|$-lBezk&v9%sk;EJJW*jUFRMf zo);8!X7(>mNqL@^{}ypd4dUrrDuUE=!k9Ul-}capPrmV?*@N8ijUz{QB#H>_8t^ZL zrg#1(%ka|=i9nsy_3_@RUDUi6FaXJ(9MDV$`23@t1BgC7NHPyYs0zDu_MWikPuvwt z)Yn}P^4Ywe%)H-#b|sXMgw>syuge*$8xAbE+XBpPs1PLHkK4g4+ZrbJ$a>QkX2IwE zj-)+D4)i2VT{pS@+d_D35yso0KkY@`9%yT#71=H!m@810?4YXBdl-|yREQ(H2x+Vm zV3w|O;Y_RaX!J;p4og@Yc$FsYL3Cnw)Kxwn^2SoVQ=z}^Dg7}x`X~E+m>kOs$ZBr(8Ggc5C&!bmBXeqkI_3+};n%IXl6dYc z`KG+WC$K`HNI_a?At3=xRr^p#A1^kO1ojzgk(Y5!j3U`N3JVHOHDiTlIT=bg^OIJ} z-pRPcYnoJTy!eQ6mhYROrS7uR?P?%g;KLA?*8>UYc1*z!#oqTq`|k6`pI}AbpD)+* z7<<$AdFww0>dtG0eWTLwi+$Hh6vZv4}3`Y?8s0YdVN#)(Jg?UB764>yw|l>UP0-*ICTJ+kXl+(GPhAGZ--wdm~`1t+u5JUIO%aZ z0JFYP$~e;{xemS|A<4spc11>#I6EbT^g&6gD>GcDWrlc2MP%A#lz6N#!FZ{G3K}mV zR~C#8OuNHiA%P&3_DM5yb5wDoJ~C(C+&IKtasx5=(pd_nN}B9mvcZd9$_coLcAyZ+ zD6(kAh44CB>je1FD27B^tf*14o;r1{3eicIbi6vM>&@rj|6v-vRPVgeb=}3<58Zrj z--KEMphkJ)r8@M+?|-k_pWgrzJm4R{zYTz*QeHk`qK5}md`Z24UoKF!`MXpk7fFhbvyx<5CGfnn(%hMBm53u&P7nuYxp(Lw^kgl^ep#<_r zPk=1Cshgt5g`rh4M;A2-cFW@@%dA$I2&VFqnnH3z2X}nX9bwM3mwj06C{NV1NHowT z&7Kt}E0Pi2xk;w0hpt16aW~Z2z4e;-J`_oDdx}-i!t~=D>+7_7kx|@P@pDrtcp!@X zO(si~B=)422`iXUXGjGq01_EH(7cE8v`e|8x>y6U91G#5w-X2C90ljbOdE<=&e;OC z84FW4$3C3Kl?(Wz$P`Y8QPuW}z%Hf58`ok!;UNaMqP=p%|MBBbUAX`04tC%9`M+Oh z4$doU|6J&Qd)aKX!2d&t@;|rF6xVz{mI}lIWF-IiQU9TJo3yG|UyF;${vmb;^1fg5 z3U%m9YX}bJcS9G9{h=I)g7+ToAR~bFtxjG113cy=Ib<|(M3W9Z8m*v~sBtIMN&K-? zQ4HO>64?gH9}JlZ7N3l3b^;{btC9??cZ=i9ks+T#>#>Ea7H}^fGX;};N~9dQV_)(X z@g^>Sm)0}LArf1X!9uv?XqUW4o(7>FBy(lb^pkM^#He_mu4}8;astQ3QLs%*31?69 zY(ZFIFLgoo;6vQvb7&v0YGMM-`u+n@Lq1dKYI@<^*^bgGRtYkMNDZ@IuM8Oyz0b0*Ts5W)U?6j3^2*JZDEd*-RvS^ z$)X-Aks(cJ6l0D^@IQ{^MoH*JC#s0g{OHr6R6vt|*`GEHCL7%!l2=uol6t`b|jSjUMd1)TzQ}s*n@YQ+` z>uGH(&(8>{GLTFW56J@6R3#=|8o~@ajE^b&7@)BOsI%(e@ab3OM3^UeAMmO-2|a0}kt!vn z=^OrRm~4;1yX41dKIlGi&=tC$7GbBXdYpa0xT)IU`r5VGdC;)W>B3}lyTUYU(S7Jq zqA@Sv^ZQ^S3VblKv$OvLpY5Ocf1TVl*ZRUICnp01{KvgJ`TocQ1=4#gz}(Z`dBgZR zjsJrB$6^A4>aH6C5UvA6!V&iVZrG2AAo7K1+jpb;-$MEam^DW3d`#_hfwAF{ApW;K z*DMI_+%sw~GI;W?;M+*^1CmLdH2ZToH(XRXzaL*Kg&~GVLD@LXqK^!KD9Y1ae%3-m z^_EOxf?7qgD=CCQhTe+NZedCh6lsSlk)lvXrXgREir14@BHxP3WgYq1Vl@@nK@maB zXN{^nh9~S79dpJbZG;gvNWoWk@zXjxT$*GVcxQ~bjN^&Vs&o|oNHO$|gsf?g`Guj0 zG9C*&Ebegi$}i+R7X{hfIYLkLFdXLy!eO^#cHwZ<@vG31^ZI8I+#?$ zF)8a>SrbgNHBd24|FdR6?EDj3<~i9% zk2XHSBE-5APyyb|lkDR!0vnj6i=t$l7Zphk2NtnCYtCp!nWRfcOgVEp$LW9(UzZGx z)K#_l_g`r{JlA1u^vImzCvNuM?I9y8fqD$*3>{3D(qWGXOfUctKF92q-}{xvZXo3C zJAfh!@aepODoQ(UxvmV)>w8}{zW{Vf85uj(t=ljY4Y!XA3J1&D_QUEu_vk(V2A&l1 z{Xag>e=-`t8{H|n8OQj){(-(cKHY(DS8Xp0|E9eIoD*7~ZxcS=v?FPm0ay5xakySb zchI!{yU39V!_4&STZfHJLF+lLwU)coMiuLfX1Lun?6@p*FC(rQbF3G$<7jr;XoXvM z^9hYBR2M8pWiY#}JI4(j3b>JvQ7hmbZvB2M{g5kg(U(KA$|RU>+%yWpDyQHqY0(VR z-}ADl-tj+9r=x&}>`b&Zs<;qp%@3^tR4qdgq{c*hjY5yoMvj>9l4hDTqBsJqp5!d= zSVOQBKfED`;?>^;moON7)^xakRwW@UotH%8lP3bgwBQTS=e+vcAw;t}X9ZYyyzAeC zP;t3*yY1%I4qkV#WY3wo7khZ_Y>KT1IFD)GXwM9&ynan#b|b>=`$0bma1^23OUbn!vV$T(*NFBP%u*Y?m%H#0Hp=HqO0$w z4T?Tp2b&Clt0*LC9gEfBcFK0GhFOZQfsu;vo|FXtn>g_?Hf6vwj__A@RYMoaw)C&m zQg5TpggC<%l@&Xq@Y84*~S+&HiMsadhN4 zxRa;tDwEwV6U8!bmGSOV3|2vaDfDa&-|sq3ZIvUQ4chN^6s|)qGs*z>4XD+p>w=Aj zQ^Va@k2BX2*#}S^qNXlg@0CtN@ArCyqeatb<>>Ak^zGr##$HqDdwPxs+T|4<9j-gd2fzHH4o~r;4v^2jII;10p8N5pFf^7SJ&;s1^`p%J=wm4k#EShkxONf* zXp~f_ye#>?Memi1T!mPS4_OH5O(p|C+g_^1+N1LK4pK6%%Gn><=0 z-|B#4ao}N;!Skn!(+23v>JE<@)jyvTV2A`6!kw1kfix}p8^hJD44|_U=v?9>`sRlnbC z5Mg7VCf}Pc#C%*^BR`dsOdNs8b1hML9Zeumh?9zhzkrG8)QZQejAgd<`mOZ}^QDv%Navccvb&xMG(lKzc5>x{ zu27sZp>oKxsHDE;$k!NP_o?&`woWT&Ux=U8>Mj#{a=lB z_F?%m0jLz@27DL$>*ndkM^7j$?Y)|md#UQtGg8*QPgT)lsTRb|O`TyBcFc2b6GB`E zz0j{dfc;{Imo2hfIpUnwgCg zU!UOskVPAb6H64Jld*B@w2Uegg)F}?^~}>?IOv?%e^zXUF0nxg(`$_($LM6AcC)y| zRalL3QDRROZ2~{1 z#isvxuI{+w`wR^9HQf7x`6BUsO0ajt;LoM^RH44t^L{<}{igp7`|oSOKr_4#aQvTV z3J0m?L1MKN>1AmMzPoz*~LV_1cV%OFE$5j+!5FKQ&G1zr|j4T@>)z=2L#Swo^fS*$J zR^9N~n(USr&HHIZtf~H%aq`zQ0X4?VM%lvidSGXLyWn&+d^k$)m*g_2YgovsRd=w6 z#btmv^dQQv?|WxBO`?U=?!_UuK7#h8&_y_5+=Gyvva?I!mVt!V=#Jbg;VkzJ?pl*$ zaC@QHkiUJ9JkJnKG#;zm;!r+noM)^>)2~Mhty<9Za2qfa@Pp>Q^vhnhSz(*h02>bn zOYu1X=?%ve1MknoY4J~IXZF2m0jIoCreb5E<~ONp<5#4X`A~aiQ=!PNui5638ogK0 zhI2|N%}FmJk~~WR`X9&ynFa8m(?)di4C<{5&msnHDq>n5b@OpICV~{@)^R(j@sFeE zrHPnI9em>y{5#`Phf&N3M}M>3*4=)(X8X0okaUt9AF}k#SGlptufDuRu9f*280vc+ zPzUjQ*UEfWCt_dMM3&sr+UF^>%;MQLzm8 z*s7^cF%rcR${;1O+g7+!moTeyu+F~J0!7@43uVY-ygfplqb21_j3#_vJ&-t%`Ep{0 z2l98G99VKba}+EsPyYt&P)70l?P}Rz(Yyh+{cR+fxqP)@0XWe-IO4VmPdOx+4YT5uVlZ>n}6(eR#=S}VlqnRO#PZBEIpYdl2 zCpWDVZ~(TN4V>mzT7uf#Q($CyP(<+4>+cXL9CGeE*jRNu0Jf%|m#HwoJ zd_Sl4Ye6pEJcd9%h7NEe?y?Ik_KD)1=H`lpoc3LQVXQb#(SOc#oSBa<8`=>vqhm}7 zEUyO%_uL2@A=Jf=oft+tQTUjA0XM0lDO3Cyn;jS#D~QjW(RdlZ3(m*4A##(ly(I|uW4epSE&Mr*k5qnor=r^5l z6WbqO7P$DU-2QC}^+988p^zn?Brq{~G}SVkA4e?eQsL5SiwE;K5u)?VwD}jMcTho& zW!wCuiv|>Dk6GFacx=9U+)FzTlp$I*XtL5+@Ax@$fI!aOGpEuD@ zXN7E@wyApH6TD)n6aK4)35W|Y9V2OoaM1IU0-=~e42ng~-&v1A8mPY!fvS@G*DLi=;`Rd zkby&|?xKsqz%odghgG4Jppl?Po=GY+$D7}5eFDNIqzl@ji6Jr zN#9#YN0L}cMJ#1Zl8s3c9-u<eB!B!49^gMu;Vx=TpRWOkV*(KZE1Xz%ir7=z<+$^qmsY;<7 zJRWA9NS6Vcm81a;ECTVXF~wL|c3fk`{nRS{t<-=V9GTvEIb&akAVj3`;AoyY6B8RB z)RuPf{lmfzHc9!riDja;+@7hR(JHKZtJ1X*VYi~kVt|B%^GMpF{fXfWSiEMp#9rFq zyrgxsX@u_kAYnIo**54sVcr8Hads;heWFf-T7Dx61$2E=1zBXMbd($hGFr1h#&l_$5=Tr_qHa5c{ zn9C;oFNG!@TC-!f%DB(LseD3!LE-$(A%VeGapr8ZV|X578}UuI8=Y0NmUI(zhQQYpFIP%Oy_oyFLsb1pn40E=ySFlb#t)w=g%t4!^n z%S{P1QF6*1zh1V(ctctP0ur{$KheZ!m91b?^Jx5`@_i6ui<5VfJNq&#BLvILDplAI z;!(}W6)v6r$KXv=r8tlSXnDxA2XebPT9$Jo9Ad@N3kn@vEYqJf1KF@V3Y{udjh@|N zHkvdwlB@*K%0dDC^pdk#iNzxtT*>zCv9L&0$! z&@K6Og&RhJH0G$R$~iO&qAuB?dQA|(F|Ua~4h5-btBEPG{!SX)7$Vp5jZ)sRTI{cI zTF$%Pp%k(GLOu-Ji>N?p`y#wwhhIH5N>y-|o zbHZ*fp|kJ2ZUMyPBgz|}JB6BNSM?{aj`z!?IF}|^It-|KNrMoR#x<IN;IhFeGQVMzY#q;2hTjnK?1%Gvx|P%JSHr# zJH;dMJnN8XM)6o;T;w)So#zRW2UE@5hE93W%fs#%sgqLo-mAl925~JA<;+m;U07un zhNGLuv5U6Si73*#Jk=_?o;WYZBATsNZQyD(O_uUO&W*v<)|+s5u3fc5jjGe>M(_)Z zQ3IPO5;#O+P|Mm&4lKH-DL}PExNw}ep(sb080Z!0e2ptZyXYXGEy7UoQMRS%bcIw? zqCEAp5yH#ne8n>eP>uw~<_DkEL44faa(|MZ^>Qu8s7X-B`is7>fel}o->ilqBa1d9 zFQ9FSyl3~Et`8$inikFVhx~9ZVjye{V{uP!lGLS}k6WYmMEc>v+0=WUovjY%+ULrl ze#?w}ArX!z?gtn$(Jd2ia;x`GHm|D~cIr=7P(AI^RcmZOQaU;TdEf3BMXDG0sSSNn%g1}!TIHt{k!=_&+v)`X7*Fj{b38o7ULrN!{F;w?pJGTAs>i+12WN7NBHXD&p%PH-xcU2sig3j*)_1g1|$u~ zcHx;#87d)jsfCl%efs6ej^nETWZyjp>qXXGW{?rVC(H*Tt-zRx{s4Gv%2C3hq{1ab zivQ-Ir*nH9KCqo(i-t7;XI|=T1i${kl3Qaa^gJXD?m^Ar$G{vZK1x;jN;(N$IE-e? z>AF^CT^K9~Ke3Gid!m2kE6QiaEsF11z&#|}TjR;sviVMXFpajFOIfBv&LRoy^~mTo zSZmL}aiqiaZ=DmY@U&wd@+r0ux4g$ut7s2lE-ua zowwKO>`j&OeDv=8=+}e$L24?xXPVC7bfhBl3jA`MJuuiByEj?(u|YG=s*?(-uIhJd zvU|zfE_u4L&AcPtU;=iv>@Bm32+?aAy`QuZw#US#Y>ThFN|{wo$~4*7m223B1;$#& z8Msfi?tI=ML5~_j%g;R@fm}G12=@ov!G#|4AriLk?cT7&tRg0!t;0)EV|zBEw|LDE zgSDp9D{$pn_Dwq!$9^sFUX+FRDHo>KU+yB)ROTp61j60dp4n~NUaxbg(oKtYNyo1( z+qj3#EGlsU8MP+6M!GP%c^qjS=3+G$Kz|9o*Mb;PYBw1_y2rZ$I|wvQrdUp0ecjq! z-SXuUnV=E09XPDeFL#lBfA!Biu6oDlIDVZ3Pwu)*g|$%$nw-;lsVRKn#=}pgXQ^h$L9}VlV!pFA(u27)Y~sN z!{h#rweE7X7bN_CjhOEK_71swl{@3(>==)G_R!&2<1c)CS|hBRc+q)pm#Bp&M!4>1 ze)6Teq;h&ysCKyXU~K+g5)A+Nl^8W{9TzC>qgbD3gj0wKaDn(-VJk z33cx^<6BRQocVr$U6AGN1nyhc1pm6o!t^i`iCmY<_`LP@^Gj6N(KPaQ z{%e0bfw}mSZVa*0Q;OdHIN!+Oc_q)|HPdn4_;cmuHb;!`7TM2W^@Inuz`FOZH>dC7 z0i=SNrrzXF`gPiPwgRX^!#7o#y&ej!z5G@X<%goL=vEkWoQEH~!}0&NSc^mWY@6BL zC@@-%1E)PM86D2!#?oDuB*%6OUJ-E`2Q$minH!F_?`0-tw(#{_xLWUFV*AyN-!|nR zgJ%bA9pf3rT=ZBA^?biF%bi{vyn$XS|Ip}g>Y1+K=UADhlxM)G=cpdA@mOc8WrOrR z=-SjyFW}%K%3ECiDtB@ynl{?nbr>$s965H-;%tRJ@}$Ak>OoE*I{SEohTd?O#jt%j(Czv~tze6tQV@zNpbd=|B|6tZnt6PhuwRv zZYtrP5txEcu3r7Ay0WAiGqI^H^98LG` zJYlI0Ok`)27z07x(S&kgSY5$FPvj!S*&;3WgjHJnxS@x%B`2yg7n(BwCsGO=ebw)= zY)V|3xIni|o6}G%_R5tjtoO{wmK+3}%oQHBpcn3jsY9RPk};XvKR1pVV;hhZ+g`O60vgu>?yv4}PNBp<&yny+4K=XfIy z1V;{^oMri+4e^ziwa-c)L-$pc?FP5+xfgNHX64hy7eZO}{BuqK0r94~PJ3VA&)b?* zWU>lxah9ZLjg!CeJUWae4~HEJmPJC2L;I@UwtD=k2QmBdF3qaT-f0Ld>`J964=<^W zpiVs`=?9Q9UX#^E5v`Z4FaA9oxEDB9@TnBk4Nv&Kthk_X4pB@{BR(j|VTm6Mt^Q~N zI0?W?Ind~7&f*}rEcQo{jY_cZN`T9B2Vo`M(Qp$JxmkN zajie5Z@W0Ial}+v<5Y4F?wV~5kv=DX<}5@hGZoA^(D)os>TqisvZ7Lg#hKsTRuCwM z6KYU8kC|l8jz&0Wqivi-cC&UE=z`3L>zt{#FR=aI`>g&#euDU#QA)r__=x^!Y> zHIW6o64H}KD|wTR=bndS*%-MUuwWLsa|sOH4#s{NK|1uWf@$K=iWqOj(G>1G+mj3o zxQd0`Y(41WYw<;0QN{d1@D3|6CgqfE)DVzmD?fEtia@l@#4WcdkFHI+`3zzTpCD(c z=gt^1&pn@_Xeb{@UBIAmjg?qoz0RG2F!7*z5g+Ivg~cLCGK4}qBK5?aqK}ah&=|^a zF7U!$t}I#ujAMUXMg=QnxXsRXJ|Qj3sH&mkxR(MEVT}?tPlWz~X1b+el+R#X?@Ym2 z0hQImv&qJ5%?>fg;2$uYzds+h;n-yCEcx|rRPcsrchRCad&FASf1uIguwCoRheRnX zR!9HA0mha$XnCW3ro~vlelk@?FL_|`xp{#Z0qcB8ms4F8@G)!hJsEILp-Wx4SsN^@ zRCpMzSPg5TX|G+kWXiB*7)icRxI4A#tR12$xzg~`-1-`KeyG1O5jAbH z@Jgu`^-Y{a=rYkUWNk#9sC3+!cVdw?{r#1vmOY?yVCrXZghWy@IQ?OVaS=|X?bO&D zR(ju0aIE>udg@2ZR2UR+?xt6$xBtzQHo}O{!yrKk<7OelIKJXq+1>KP*A*e|15jT8 zT%Jk@!JRrmFLdMVWk4tdzs;%W0855*n+Nes9XHCQg&R4sBXH1Mmu~z>6goG4eZO2T ztRtEFCWD*9=V79FQ1Uaym%N*sRJshTY7S4_#iV+uIGYe-k{`1<`HvWLZ7?C7GE}#; zz4~ques5S5f}zN(u_}dr2d2eC()I^xCrVlR&nFW7u>DAjf|M4l|dA|njOXzB4FrUK&CoJhuiH65%}hE+b~y`or$AJ7Oh@Wg?hXciQGW88pC&^3#3wD((Y>dgLFG#8H4 zk0?(}xI#AN-L~J>)m|qWbi%aD3U{ql@*K~vb_ShzB*S)CEsRGzoJwuNx?G_<)8&&V zCPx$lcW4N4owSo=e|fHUrriY9ear8CiC^Iv1tS2VhuEoTNb3TVCyKTuoT(_M+Xq;L z0|O~%2Eu%4w$Sz|d1T$v9(HNsF5{My$mX@p_8g`TSKvj29@HIsVmNzh8zk{2EcCSm zuslhh<)Jz|jiZIK;hskeoh=73E{()^rLqdfomm{@v_yluwj*#;RCP&;3BdlJdsFaKwj2gV z_(7){Zn_H5uo3&)4ib4=o+UtN`CoBu?XVb!G%b7O$8il08d;7H}89HLRy6h|OQwpyfMdt@Fga?tK zV3-237umoD9$y7&3$raAd&?GJ%&Z(JP;{JAC`BDIJw+*;l1T@cTYu)u0}C_DJT`uY%jts&U-{FHUl$o$_Y;UH76Hq3jR9fqx~ zbWhO;R)O`UC}iY)R$|;^_3BeJ8MTTZxXV{Q{lFkBkv0#_WEUpuf=YjBlNuFlSs18h z7z&SWIaUn2;X3dWc3C;qK3eTcvScD8FYQT&jJQv4ywAeXo?l`grLhz+G_TWdb0gY_ zQKf``X&LnLWR@pRaNT)zO_8I_-v4UI`M)^|UZ;beGi`=U!NY4=3Q?a-?ZX@acv{?j z4>{wWlBQgRc+u5*)yvuHRGT`(${4gDJn(KFWP}M7_s`=1@~?t@qfaIF3O?rL<8DN*~z3D;sHk?3jBf@)9+R3v}$P$e3b)AucU4RMv6F< zB}Pk&Edkh;wV3vgJn9F*t7PT8Z0bG@TxV*~7#_`gN(QRgBL{{p~N@S9dcGk~$} zVFGaXpt@1^$_&@8#Yp5_tPFVA%A6LWwj&&BtsEkn!~Wz)4dhRi7gTD=fc&Y>GkDlWqaVlg1<5LLUmI z1K)!I+fEB-RI=`chfb%#Mt@K>YlbeTEo6qxLqS?&RuB&%vJTGj+*ZqbxfsD6NAOP# zRcDO{-m2R}fvv!HDA2RC*E>;X>G-wg4N|^K0C287-01B?2r07so1rT!`b=wob0Nh1 zgRY8Lw3^$BDuqSDhxqJ^XTm}h6UDiJP5ca9C8$cY5;pm(+_hYtgT(t_qK3c*2m;z!dapB1rRpx%4HdT@YT zrE)-I_8@oQ_e_S*>?p7Dv_lsLD>D%?{f|2LRbn5yID4@nP>`Jg!$FgFHY@oI*UF$P zDma{kh4A8)6}6LDUP#k>INH{*NZ_UB-5;UEY%6g;`m@#G;zSmyICFev%g9-nXpXSp#hGcrIZ)`SpPXIJ%jKLdnjB!^AJ6$SNnbhlUSZQ8l%a<?3~d^WjyinFtc+cV)O({q`xw;LIDP8pK#X36h!KBaep5lE-D-2pxR4G=3ID#} zH~TZ}__)}wMZv(b$APr`9ljj&$$|O%6w#@AkgS8dNH^v1r4k+eAHXCu z%?y9HAXL&0JlTB_XxfvyzM`!hPe-&LmAgXi$v?eo z#k1t(S@K9I$E@x)r#Fn&+;}0lu0Yx}WCoR-ms!m1wj7tS@}?p;f}nBQDx^jsNs8O# z#pB}_Xf0D+@zg`Pgq@d$;qF-Zfx;mHl5Pr2a7*UAJmaFvMm<^wiA%T-%>huoP9+0z zn+Ps|#!)NQP3fuyHyzlKMn!b^8F$TAYNbLI$KSv08I#KMY0RQWcbU0*dc_p8ZmVIc zCiBt5u<XI-{t2Jr9%{$oSuSZuFPEMHej4JZCcG zF5+9fU%u`Kwe}8EuP2PIYPlQn;L_zsp%wKK-R1LZa%uJMl!}-ac7k^47uDb%M9}PH zu#8c1+YHeb80=|)qYM-O^E2fF31zwtLOTXir$g5`_V9wDS^U1hE06|z#sh-j94z4u^Hqjs(3M~g=*X9%X<8U#Plm=q!K6AJ5L>GU6_Ug; zAw{M{MKxGMks}=?sc~{~#Kx@TW>AZrc|+M`AaU>II<@_;C|6xm&VtKL5oY^hyblhaLOMDb)I1P}alwS|T$ORn( zz2WJ7=`uR`->V_-TkMpxM6<9d?=p_tboN_z+LWp|>13o%gsPM~8dXaB0da8CCa^-( ze$Psom+&lkEA^FN<6`7dIPmu*>Z|jg6DoxX;R70Vy}{5S`kHYBD?yYVWnQnX%G@5ZmW_xIsP^yx+ z#DrRZjnX+Z?E{jF*i*85Z*E1CWP4r+YR+%cDn|oX#U1@W@%k`+(4dR(f%VZi4Pw!Z z+^%5UonU~5O04wNBtN+{SONQgV$n`zL17yJ>hQFI*^)#l$k53zFX zy7>bA`#A!n7`GYgcgFiZ-I?%7qI@?!UehXJwBYh_baIP>@ih-2T_{bS9_xDD|DY_0 zxX6&W8J3?$gJ9x{MRfWyY`I^BP&hT)ve2&9Qvy@6jvp}i7wzjY5dN#S^_%v%^c(ml zk%8&{+}U%XU46eCX8f|-qtypTfK;Uz#751q_{e(HUc+FGj%>97G!(vIdJEEFD*!D^ z4iT*;SYPiHH?cBO!=L%l#SsL*Le- zik;O4(e02`Pk=8{U-OUuhfvDG4A6=pZ)f8(`D*FaYv2U_u22mtw8g1YB}h-=_O;$nU~uyobcfSa_N<#W=jTqyFPEILj=_kcq| z#5_Srd!qi4u67o&Q44l{I`))*c!%0ZBt^#P%^)pD=!LC^haqx&C9n2QvL}Dl4LzGb z7j|N#!guB+Sx@u)K80ky$2;80JWEccqm;Pq-M1L`}CpRgw=Z|A04c79bZ@c8-;w?P_Y_SFvOK z;DmeS#Xti_b^M@@S!;j0T>2%HxmGZ#I4|#PX#iO+$70%34bEqRmteVgDsp z3>z_;2XZ$p5Q-$??RzmS_M-`L$Yeysg(Vt#XQHGU+?00{SCp3{+W%4Vc4JY=g>SY# z#5_NAMz~2vuKu~|`ysgse|hflTDkCV<3-HJt9lT(RVVTs?1k0KhHm-627Yd#;`=iJ zp@7|=xYqL~j8DIvtlE8hSpHUmIS1V4awKb}4Z{sJo?Zr;>mB6P}jv6ehORn~Kd}}<^+;D%BayAQDKg14<1e=ji>E;gRy<4k5>Vjh0zA!{%s7W)eTe)Zw@nA(7LNr`%9BrITF_C}9hd zSoNhdB}d0oL^+6QwSlf!Ct5A72ejgMd$F$l$o1p@E^$DbL4$TV{0qWif?)DtLa>6) zDyq3<6gq^H^tfZ&PJi@Vw6OBC6my5*McXX7u?IU|lRn+x#7_Vi2(rpTT_+&_Z?Zb}jXOQjm7m?euYt^vRP8#jkNMa3qBm^mZ$jjE6d2)m z5ORy{JLl@_n)u~F2-l%YzwG!=Zhb=*=Jt%pB6^ek)OYNWb0&?s6OA*dX^C+|7R!_Q z-iu${{pe~^@{HPG(J#ZIR8@h|Ri6RN)nSemwppr7WT28gRo8qCWPc=Cv?C9qRd2!3 zg+V-qhbYUsnTT0EHW9BBa>Df&MpfRtPAl1-1TIx?4xGB*F2*2Lm1{cTx-E zS@(d`{*J`yHT*v8^ILuS%^;49fF6;_j$CG*Q-Z&Yl)w|b!tj&r*?x=OtW>o;P2Qyj zr?NY>PKeb8Zk#60DjXuA!7kb@ctlfJOIEdA1S$-2wn}KH;2KM;(;vOZt@~l`oCMP3 zdY_r@q|%9*68sx*OCcCFx=>Y_$N^fBPL6oJU3X)Ip_{qZ&}fYymDAdoacA#quNvEKlsy?KsDb zydy(Wu<{_gw%`3ku7{5!#A#h&lm!jaDu*~fC%_$kM#*AvU(|!f(*~T_a*Hx+(TW?# zG}x>9{S!@s)(Jaar=-y{bZNFs4Q~8`+*(agg*!uHsKWK(bpoQk=W6&XD7jTK0$>hQ z=f${g40+qx%L3Uia>s#kV35pgAtP#RPJgphC>z+y%(Np%vCN-Zm?SX~#Y(7X0ww0{ zi$(_pFujaurl%F!l$f5}o?30Sg;`0#3iHlhG$brK@l=_6f0C6VCa*-k%3VRMq2)|g z73_ShM_G;RXlD*=C8Jrd(=YJ3ARsp4yL0ldYLmzPnlydFaYHYGOE=DQ-8F^9Lo7>#ntdR+5g}VF0(UT~g z-#0V_)_aH38)!O=GYv`Llc3)Fwsh#k<#x3`?Eii9jkhD<$}awiVybCOrtL7t!cAqb z9nxwD?yssjLnF(^@11S5v{#Wsj~Tnt(v3^Zy#{L!-a~iR=gkD@f&3qy&H|{8F4)!( z5+Jy{1P|`+9^Bo6ySo$I-CcsaI|K;s95lGQyWin|@7^kQ6~#FhJ949=Dp_J=KUIiPl7YO21>) zw{$fDZUx!;XD6%1(=77gN;qCr1FlplzZEp0m3y8vl)^Sysai~oZq%hnNeUJ9-~#lV zbfq)uhI$$^MgAWs%PjGkq`k}fQg~0;YZKkzkkIxcLl=NR{BfKA&Cur}fDrh3@muKF zW9@hxw~dBA&v_ZnxiIy;Gxa(UCfoulmhyo>ppG-=YD2?<-JDyXAS%7y%NFM2i7Ef6 zYu7bC8#}xEhX;_lV4>pJWFVrkMR z8K_yD_I^S5CY)HLO?Tb4&>5Y@?Ro_aXbvK9TV5Lwgc~2mZP}iLqi7cAmIU7PQ!;3m z_>&^qY}9Fz#~&(^hP{7c*Nzvl8@ z1~o=E58gh-PAYoSaBf!juGchi(l9%Ub213H3xgiY1l2X568b=sZO5h9hmZZN?U-(Y z_g)*QivH&RVW8gp=ymXi*@jzCSZTzs`h<7cE6bx|F6RVKdjrKlpf3anko_xFFFd}#b-%|*llMLD=S%`-?w*|2rJPHx z?pv+zlD=8bpGK`(GB$$g9Ji{R#iS`PWDb-Cmv}*EMWa>CKCo5oXtV)(dbX2BZlC&{ zH^#h;gjkEQ3rDy+P)NGM^9(Xs#a^onjdWZ2Lw_d0aS^53KfucM4yo(ilV&+vpOtf5 z%C3!gj4k~0E+6q~Uvnt=)7}06GxpjZU`o!DvE%qjzEaYX%rib!;)R;R8|wKwM)*LJ z=0?R%y{ zOS;;~fX170!KuqYM}Zboc{skm+BT2f_Y38EHdqMA^@Bn~oub;+b)%$b7OZ9pGeiGg zNAT{)qG970LIu=)*C3g@O|$hhTEHC_jP!3_%dNxN$y(CSl|lcfUEz+4(RQk@dO8#k zcz`X+s5}cRyZ_5L>6|8W<(D8kY8Yv}NXz!)_!p<}y!s-++*x8se0Zd7p&(Yd=2xC9T#nW zFTuJp#~~3hGs3*nvjybQ%)u93v!$c(6zi@y+NhwPDT^)9$SI<)jS%mGLvpCN>F#0c zEbN}YznzyVQ)%1xqw_qU)Q?S0I*zk0h?p~_!BzX*mbY$4bN@I0J}SUkEk_qFwK`Jl z=lJq{n5#b~UF-D(H)WC}GBTvw(x|Rjsq$7d_u0lqPr!=%epaUM+vCS4ug7|F1=AbZ zo@bkYL3?k4`+Nr|pUj#jO`g2h?EBoDmX)>J0Fq5uQ!ALxoi>XLaNsmsd4ElD%}o`y z1|^yd?EaIQe?080R3)~W{kB$PZgBunKNpK#CWk<;xr8eQK8noJW(+GpRuHt$61G1^ zI&uS^Da453)N^YM=M1AX-kAj1QZa^FqL+vaM!eckO?3-=(u9$gCAXkGDpw3q@z%#b&0YboQdF%fhJDoB1; zpwQDr%#JWDUyNtSH*i}OCk*tYS2uA5ju@y$clMjJrAsd)BM>Vl+4?x`8Wa_KjapgT zQg@h-N!JrU4GKSvN_i1E;=ErZIlsL$7D&@pY@K%p+7fV&gmi&5YJM%x6IB>@;0(cM zR{6#|dp_#g)?raJ;^iET$iwh=L@`-Yg(AhZ<){LudP&1jobIe})9wr3dlY^x4}FVK zT*|odds_k=uvx}`^e_#^9J-%XaKgYb=lzH3Xa&6<0c40HjH2C)`sXFU-aV)+w8Z0E74Y#Z4c9|qFlLS?A>IIi9I}~c*gH& z;YE4Xwi|ryk?qQs$h)PVj?$Pf!RbDCk7hhXPzx|v<|hX0uls-{&XK*eZp&Bwr9W%= zj;R;P)I`5mtaEc}8Qm(lBUB#F%OlpW@r6cgjxp7@%v*jA&Yge=uVtQH>wFwxtw4}>$8lK?`?Y^Oxj>2W-t?_$f_3fIAM9u+-+2Ci%rr!dkBhM z4wWp6?^qjuGen%~r6lY7sK2bHZU5!gBP%bDsOzDh-T_#14uklvU<|CR=u-Twto@FY zyik8$UU-VknYg(AC7by8@JZGi4n{W}pDossB$K;mO;0OGgCYx;x_y0@oqG+Z_Tw2iK8Xeu_W#B&{nn@y|sHu%(#RcZ({i`t# zZh?;l1wgxg@uq;=)pw$h&BGEMbLdRAD50d{^ya`=16|VAwd&6X#%nmwYm~Jfl=VTE zv!J0)I$x%PvX)Me`b@Ra7Pk_^$2_kqs;Dy^m#8mCVP}JbA2zqRD#3^#n@q(<47)+Y z=;HdF^Dyf2w(+Cks1H_^3oIul-?hLjX=UAn<1xdz#7J5YD?*&z8o4+%1Zr{mRQ(9C|$Knf;}zq>>ruc#Lrg9tJ+Ar3?G?8IYMe zcruUw%8#fj>2YeAAg3v5H>~Gk2huumqAWyC9A@4!o(>e$WnQN2*B zo8((f2j`G?N*m!mp-kmzs=9D$745D1cj|CvhVgC>yZz_;$XVF8mAayWoq97rt`!zj zX63|7;*p(HuZ=iX1v7+E83>oiJhXs=L?0}cq8e;OnX2ROB<&?n=-SIR?Sy{%hW;lH zd?mJZ`teH-u}~cxk0jaLF7Fo`3QSIsS8j#<0x8kNI1NJDjO5LZvctwPS#@fOUd} z+#ivM5sb(7hO&!0XaCn+&!;wU-3N|Bqlb?Nmhby(MP;S^^*H-=ME664*Rj@mcr?X0 zqSyMlMSQF@iBvbfc`tApAGu!ceqDZxjFJ}wv&z1F7Bq@Yfe(=hOcI{@VObdeJyrp;DYKRO4AR6GZ!}+X3}Y+8@(KHF9ax>@pi@bPWlYWV z#ql)1jx)y!gP)!-%#RjUCP+6w^1g7G&KmO6Q&8dhos~a~$_Xd@whZq%%lpGJT+Jfy z2PhAjG=Et&M)P~hUFeFZVDX+3)8SOhJF*QO_B~ur4hX9slVfQN47k{DJ}3l7{tR|@ z9^ZeLsm2Dvl8&v!czqBHr`@;Iw~mv#(TBJD?n%A3UA-&4w^3j4Pjk*DMaJBoFAtYL z;|JUN7|lhZl&|min3wr3|+5g=g(o6O-^*6*ULdJ z)}$y(P_vw-UDooV*T_%jGr6@WpRj%-&}{gbI>VzgnRikJMy3y}Jqw02{xX!jH+Cta7GxG%p=7E^dFB=~-LR=adn$uxO2r zfZ|<;FKRI!v4{G6t077m$*xkj*Ba(QP?o^e`Q`2VK|#lEL$XHvesk9)kh4}hcWO0z zF}sN}W-YWX0*(igdsR(>r$O5UYO(1iYJuZRk^^?;di{OmGed-3J10eK?XvLgb7tdm0R z$vi7sm{Y}&CeejUT#SmUg2242e!Kn7Kh9HB#}6Sn7PK3d!EoXWQ%SQ!z~P2YV#cO# zU}tg&W{MVY-@?|=6M_Aa&-rNe_4Qzxu50cu&F^>XEkHO7*0LFl`w{=5bMF_@dsDiu zI;%DC^7BvnKFPg@RePUWT3K1yU2F)h-FMwzI`ZE;f{jf~T=~AQzq79cv2|)rj_LkH z)(6^Y%hhM!m0^4>02Y3VKN~Y+6RGPQWX8gA+5k$;&fc@sd&a@k^I`-`HomO1^^SOd zqOQ^JUs6uws!U>|W(MRoNxkN}AprSHb`Yd`PG zxV^m%WzYjY`3R$duZ#YDZd$e>Nf@>}EKCtI|F}@rm@U-bRPgAnbNFruk9)rcdZt+A z{v~1+*)umcM6)HbaX|INwnGv?jkLrP$ErMS4C5LP4Z&z|Dj6*-5ZD}E?d9rUFBO3X zm$D#h%ZbYwX*D{aE^xJcgjtp^x^76%(0Ayd60$ejUPARL(pb}?w9M=v8NE;{Jt}Yt zEx?}-r^GEHq&>dfpK(U4h*iauYhUE|%pDq&CV{U~on4dK4f585$hRhY5^No;A=e8m zg~~z9(>qPqQ?A4qs6EUrVt$>7D}{z{v%G_9{tT!3i{?5J%17$|dKJiFa0;^fHYFcA zG-&xqCXUHud(- zqW3*Jk3d@ww;v^TSzGU1*0?rsD*sHURGF zcwRln`e+|qEL#Ar#o>1G4QxT%5q>}0lkS7M_wkPc*Ld&!INZm%c0aG8Mf4=z zaIZhg0&zS0iX8+Z?+wy_2|D183TWNq574Wst_njOS6oQtrT$5ip*Hk@0}nPfq@<=2QwS%TS=@yVoBtxue1c z?`|z&Zrix)LvpXPa`y8YrvJ6=D0U_m7BnRv<}^4UEjhiusII-(1|%XLZ}r}t>AGJW zWcgp6KEQ)1adF6Jo$MDVXz_=ZRjt7wIsPp6&O@1(!S@HkN5Io-CwYE5h+G_5Nkc

lw2u_F?=`zGD*ggX zl$K3vkQLi#lA7-D^7@<0$2IUo8k6jLr(;;w_u08StUhv;xbBw@^djrSfhTWq> za`%|3d5w3Vue^Nb#=!LG0VCShS-DZ@3J6)-48%sPi)EMOz3Vg)gvW1I+|{!7V{XXZ z)95rx7QeQw@pg{Q<}R?j#`mgcYkm7$2P_ixm2(W1ig+Sg-}ui^yGiSE{NZ-Ro<3)| zhuLUNFoX4WJk;O*E<>Zk>o6+t63%gdMR+;&m~5Kh?Q_iS3M;koO}(ZC&gLW$Wu@H@ zEN^+wxvFRM33Rt^)IQ~&LXFXN4!`$*CFS-07?6R-n{EP|tlja+%yVU0Mm*&GnzyC* z!%in<(&w%|PP_uCdEJMb+vQ}VqJH9I1-Jsbvn}*$w=X%*EBopi8a>xMe9udhGiEF; zM`h)T)s02cXA@^iOtzTjl;8*sC&#`S`e9f6%&!o5dnGcC`y@7^+B+kF9m0pu?gCa`&+A=DCpu^BN1V<(2#=-*08-@ zcSIh-mPoX|+cY0g@qoSc$u+tJyMT!CnvKP#E63`t^^Bl(a)WmAbJW9-qzqPN0@Oaq*>uc zCSIw2wXKFd%D=&8*A$`f2%mBWYJ*X`cMuMpSU*n`M4Voz%8(1?Qz?xKi}Kt+z#Wpd zD6L5Z7LmD-pGlB(@TXCo;80~0(hTe}B-Y7Gimf=!orEz2-*#cvwU7nwVV<#-w=Cre z;Ga3fP~m8Jf3E>)d)GC4vFhAh-IG8WyTMFAy{|!OHdS}#2SnAMvuU1_z`?~s>L6-s z%;SQW@_gO<+}V^fvKA4*u+wueMfOHo^FLl;b0k0i1Va9o*>8P z{oa>fB~j`+)EUUnTt&NfkVv||J?=X$8K-=7s!i)|^7qum^S86}y0*5Fh3+?Ja&q#A zLEjhgkAA;Awe`(_rEB@-QVAq(>`xmPt^gKdl<&3e+j!IJJ(vTae1HY(lxA$E%~xv3 z9>>D#HU}LK%aF3D#CR!7Ch#v{WLy(5_HId*K^@3?W`g?e8-)r{ftu;Na>%? z=63=&RY#)LyIu#&gSMqPV_c-qnP4T#+-0@l$vq%=JT(FigXNm2vJ2IkxS-ytC5Aig znklK^N~-kT?JFL#N6IufGn}`l()-`vPPNyr&$yExPoOZEPt4gq?q;!wHaN& zGsZ&tl?_bF^xmP3B^tOm?l)x}B+Z)KqDEMeQVmK35|9Zg;-ajc%KL-t>Y(l8p+n-1 zgaSWzp?-x_Jl7Hn6iw1_U5R$-B_glqQ)DuWENG)ZfGkKuUNt+jEtJaw zx5vk0X2GnxT=7V>JxC)fz}VWyS}L+V-N2Rd;ocMgDLcgCTeR|DSE$Frf}yr%Rc-g5 zz6bn>?Qy>RW3_kuNSCb@AsPuMBPLz%r>E;T{nflCH1~o_mwYg|6KzqRJ?B`p3TFC3-A{uyUbI%MI61iYHJXeAN)l{RQZKq;!(s5|Q%b<6in9g@YGo~&;0g6z z_oj{c8sya;!K@)7q_On%ljDP91o+aViT_Ky!d?6$+o$f%#9%}7*SSDmM;OlahQ=lV z5n-{2lX<+x0t1gp1A^s%6d5vTFNZ%&s{Xxpvk#QVmcNK;636wd5!CUa?oOilt4Aag zRqAX$`{Z*!h4`^_QfrfS+KgjmEqXJvdZ*bYg!+FJUgF` z$^lQO)Z-2X|5CD#UjpC}@%bf~IfKw=G;%Q|NoD~j8olMF>3A79%~ND|XcSaYbTJk@ zDv4io1@D5M_~#V~2iGO5coZAMl8YM_VLwWfHbeiHHU)AzCsrBZwFKUmuL@zrdt~m3 zRZrfP9vEM*LJ!67tq&_@iQts|4)r|=lA%W7;dSl{OT|W3ml3dSkJtU2H+Y*D=06fZdm&z#KI&{ppSZ_BN5G$Kc$Dlu8Kc6CEL(9=Hg+fL)8NL{ z<~ozmsXPU6jOWoS40^ib_K%i6{-t#h?*d4j;=`%4bl%wP{7QKplFAE3js1G(7)|@Eq!qF0@V(Y0Z{!z+Qb1 z1cur`#Coz+9}*P>|8Y`rcs_0ZI7-&FwhsSyEP0x5W@2XU1LBB}m?AYbb;HzW&lHRU zc>Ts{w*dxhjol+a=m9=3IQaPS*Z@Gf)uNWE(fHg0Dr!0(IK;<4P<(&345;O&Z*E+k zGw=ld`oZx}s%KL&I5Y*hiWA4DEhttRyxY55=xo{$oq5Lc$F-l zp8@i~oSln+c_&+Y@_MnY*Gom;R;JjDZBZpOVS`1lp9DJ#2ml|1t;?L5c9-NaIdm;^ zTr$S~MVffAS#dO&5Bv~B>4VJFaNsCdOh3cmCNXP8_b_4|bj93xjFg+lrsLqbRi1Ji zwF)IdVxHhJO|o=(9QO=OsE+*+_M7(LL2G&4mwa$*6@1#+DGIRbw?^>Tdqw@vC#@9BiaL0rTA9EUXM{@zyHyOzTxHtp1E$|xUpkD!GXDbNWI<*|96Iv1>N zjkmq*C>-a28Sk30mbshV&$FJX^l$CnNkadif~?Ey z`(RcK<|3ogF1k`rKdwzuqgeJiEfvqx1_xM5S3!@1&UVcEy|Nqxs~P-!7q6k+urZ9< zaf* zEyEA5l5J!bkCiRdu4DcuAE~J*$oQ{QI)q_Rc!5Gw!+}P#zfvII6f4GY#Ew%81h*?= z+w&(tlWT_-v-@Om<5T@lLrhJki^WpWb$s#O(o@osVNYPM;>*OajQuqT2C?GvIW5fj z+El)v>jT2cU;9gZJ(o+S_wIUfx8b!2cL&Gh^)^a%p8GmAx*FG^{VrjRY%jOKyhgF* z_Gg#Mp*+wikJmC*e-hWb(?7I&OghKQ$Z@A=b)C$y9?QYOhuw4K#fO#&LR~Me?zbZM zwWsujxay@9TkDJc^_m*~HIJO=syaR($999)eUUH-*vdA8Br)oZno%F3pzgQh zZWC+ksI)Zfs;(!C56ZYGK`mV0#s}s4{kHo}?L+19vEqM0K>erX_y}OZ1$hFBvpvE; z+G_iD1ZCg%7Klu||Fo_nP6WKDIX-jNh?WBzV~(nvwj+C82FZQv)C{ajd1f9wwYm|d z(6pb(DQJfK&9)5c#TU>KRG1k3SL{>>)F%dK?qP**r_mFFwTKGPr+5+Nza6?RI$}+p z_ZTLJTZ`|)h2DI2?-c3L?Uh&KY)Ff9u}Wz5`y69ZG-Pqu#Q`L=`*aP)>z25Uz@iSi z`ee`2b@+g1#-r3vcQSbu<1F=1M{&y&0;?w9iiRq1IDGqOR4&WYZ&PlJwq ziFaDsE-q=*#XL4k?Zey6k-3}%&${))lP9)i^3&cSWeK=R&(qF9A*L{9(STilJEze8 zk`p$Q8HFXj@>$tnIge5zHU^U$vd8N0l|i(ORu$adHA25)fcBc8ZCP!99HeK+&O!~( zV#xupoaHIgXJH|W@wF-Rpi#o&!23<#DAsWfOa4U!B>z4f+AGtjQETeiGKA|cR}l_YH+S@#$MiHNi^v_3KPSl5SjMyGO+Jb_^-|N`b>XfiRWe) znP9Qpes8Hf3|uMua#LmEI}RE=!>pGDAJ{s_eEV=eY6KVHrj|3eMjT0=2lUGGGzI%< zWP?g>R^yNu91QWBYXz_@D_)7`3(;l@ZYR1I-Pv^42b#zKEcz!hBi!y4z2qr)M?J5Tw9i3kg6^)Y+j%bHPX0ysm)5 zX3t%^^-n0~%H z0C^VY?E?S{{{ys|q%C+mfBBalyY1h3+H^`(Ne|<`kKfaT$}i!OQNsRnGGBCx21N|M zvSnz*wS<->gvwIcU%BBN$;u~F7vr8#9$1s3Y&8@uHt=7K-HS7=UAl6QUyZTj`aJF!Fe=*U2Vr^^E0uoT0J9VH;NUYwk>gL6``lhrv# z*{g5j?#3WMCun$)SPUB*;}ol(a`yjO{i!yU*Lv>Ix*Wc{sS<^~9Co^}K!X`TfY(aL zR8f!7K^dx-=PBTsix^?Gp&BsKj|OOxw8*;ieq&@3GG3+%-i#Y>%szck4@mQRNp~(z zy1xpRbsvwMnB2t=CzHyL@BeC_%EvKZg%ARrxM_#e&irU+g}$s>stSiE9;HL=-YqN| zvGDenDn*7vfkVqIXb}FK{RJTcvi71?!dTslux{Vz>m#{}*wXdkZ6L8A-P!=&_DvQbmp+eo{||?)FgvTCe}kGybSv+PMVLpI(^E{(gmgY zLBC+ML-d`0uj-WxY0WZBe-;*t6z%1*I5V1+mTR^(!+cI>B>4Nq-{8sb=58LWJRFj* zsmT!RPlz4lSV$PpB6|LkV2OYw7xf4*EvH8E*dOOxG74cL~psI->2DB;en>6 z#oZD0Hxl+Kc$Y-noiFqVJlqb+fWR))-ECOlo41hCtaX&dlR-=@*PlDU`6>(k*I6vD zI5cuk6ux=!PlS2@deJ}P4h`A|SWuv^0T**}%zD#z`?)w zaF-rPy^%9dmkl14e@LWqR_MhlLC*9~uo6`?z8ctl){OLK?v2pH6>hx3>OZK`MMAR~ z@VMoHm4G`c^%8M5dSS3nPI48rEFp($zE0kd-I?`Gl6Z_D+wtl#^q!J0Ll=qHkjVRC zDeP|}ZC$SXH;tX13$MmQEP)qT1$rzN2M?MKS9Yf-0+Ai(oQ^Zsn+8+@kV=mKrdY)A z%tV|H#j+=8D%faMf_qJBRw{Q}Xl~~jWg0__uRlQn>y@R|wmuR5O{`6P8DxzJ7-_i@ zUT^_pIxJ-4Et(){g~2uria{J&*iJDn2eTmKm-biwxU6=q#R z_8x0ywQ65LAiEi>T+HKjzUieo6rk_H58spGHju`7>D9f~@o+uX$;EGp$rdZJ6hh?e zw4W6z502E}(;NAL%c4LwUZV*V(H)lMl%cp1_cL96vR9;$qR$3NaI(#D2uhXp@d}d$ z5=&t0{!YM3B#C;tD}WK-zZD2fh?VIPJ#U9{egF!8wlm=pUI?^Hu256b?ef61$qAlZ z6dLhs1UHfLA{+cr3+r>rx4>U57KkhiWDG(Z4K<^1ZaEu~A@)$fYDX>yw7Zx>ctT>K zd9F$7fn~6hl$V&hDpOo#{=|%Yd@1|ttY-X0mp|XK38IqY}Qh|wBu4znqoeMiv+q5%<N+g(U2%2q&mK((p@8U9~wENHG+T zkqRl@TE7D`9O=WVms`kkwW_?u;2n?VsuW=yZcpKmIp)|}#i(alTEb+ktjt&cPyXd+ zI#p(}m`JJ*EPT=!TMKUKsgrgC#Mv$0K}9~r+@=rru`V>gCnPo}M-?hU3E3|k7a*M; z=F?E^0{&i8-7d+a-LM?$m_b`3;1u=QJPz5g@4~IE;^MDI4MTZ?j_*H5iDvlZ3`tVZ z$PZ<9XO8S9ej#9zV1#K=#3!)76IR0pKUhjdm(B@a@wjSH``B z#BO8*kwz1zbd|TX*NF6LhB2)UE5z%zG0%=nK9)D0qpcJh6ZUrK!##sg({za?MdZC zY|e!r`v&PYZ73fg2OfXsXY>sE!8l|cZfsF2%_vJUX#SZ~8wst=CjohQNLy%b_^>~B ztm?Ppi8%UM!vme5NAo8IGCt&U6d==%qM(Zp?Kne2T#8_eNpxl+z7mBNkcoyX)WvkG zL8De3i1kkfBDY?$0+-;?A2ln5G)2*&0&1V^G$!FUo!t^fi}kXZSnXL6!swZK`|Ku* zW0()LJxzC@!h%Dw2IqCjAGT?c zl{YB8K(WccI~_H4hlRh7DBgsAbxi|>NhwSg_K+(tqg8}mXr)||CScmG@Lc_6bZ_Uh z?nS4&g=7l;q9E$m^cbao-V?x5`qBsHHIIWJQ36~&CbCx?d+ir{e9H*`&YdrIpjM9}ij$xTQhwQ$5-k7S?$Ts(v z5r-On3GFBv$*RvT_}xv>idcxs>rdo9-n=fr?@%Pm4$Ur~Ty)CvzdU--f?(0ny$F?Q zi%84EF;>cTY&lI?>wX&9^H9T}q4X*{D$KTCyfC0S%TmXyebO6=-U3|sV2wk;3SQ0a zFfdj7HTr$&h2mXGeNMqRPP3jN6^me$q+bT9AcH?xStLcmeM*#CIFr@~Cqs??UZjkG z-RqbKek}nCXZbgQiu9^ZA!xD?`U#&1q;reR_fJ(>c~N`;@%VASw9>K z_ZV9DGgm=)nU==%kE65t9gcn8D(?y~B8h90e}J`~ngX6$zx!Cx&gIiF$ zpFGOh@stVUiPCe)_uPjkjtGC9TprDwEpZ?Aa**BDo@5&KRtywB_{ZUf0>rA<)f z$-VsEj#S?azCs%!>Jl6s{DI( z5X>xv&;$j*Hy<_2tHK`|9obt=YyY@nqE)3|ws@$CL3bHmC+%;P$25DHg)BC@CID$H z0B;8Xg&v;CIq zK3|(Ei3Mp2tzZ_vQ7av+Z%Dz~JZ4caCaKeR#{$QCz~aJU-5I^`$$^B;DEO#gq5NTz zH`7CJN|q`J-11z@Sn92Ic(m!)^tjVBq(L;@ z1#nO1Aqv5X*C#HErq99!Ze0;)9uG;zFHhvNBSMeYv4n#3kpU)<=IE$8tPnGi{#A(j z?yOeT(N#?|57d)ijOk@1N6X6jOp_5ds__dMc?89%6BgKk$!)1RDrf&AG~k{!GS9@k z1%18}#!^*VW#W(kWD-3%e{ztSD~n!m%(en^J%@uW1Hl5r)nQ^9#VWPGd<|IyQ@yV9 z0jrA)QsJokta|;pTQ848gaIw;*7PtEZp^L>!1@gF{wsZaM2jWnj zW}N%uRrK&+2q@Qk1P6E1rF{KI=`SA#6aXqJ2U2jocrcI{98=j+V^q$G7${1dSC3eGs;~ItY!gqGH+7X5-3A@x7#3&9xc3uncuhWHFwLwh6|Itxp#w zMhK4QLDUnB183pTHt3)u8!wH%=Hn6MojlAt?#PrLQiKJE?~cKeb#)^P*QnDU^J%06 zNEUf^ICvyd7h|@Z{s{Jcd^4jNdzkR=D>u0-O1|AylDqbuD_ZiB+;6ni*j$(>wR^7R zxo6F(Hv9~3Ie`_dc5207_4&N_T4!XQxOwv71;h+F>1`PL5=^ENuA^gY+p|ymoIy&M z5^jC{r)7|LR0UWsgsp5e(JXFLOxWKe8)uJ<2+|4GZ5Q$g7B!xeb~kYPDcw1Fq27O;_r5_al5ppXdaxGbQC1V@ zQDKo_S#-d$7LT>5^vJ*dacO^C!?6jP6HC)4!F3Lluv(PDtJVOJBmQTK_AE?ggA+nE zSarEE`Q!XwLt-}CE1yb?n7}FNb_8wzg>ef}nC;oSW)8G9{xLJ57I@H2nf8OS+@tawkhO$QHn`ttrfsKXEP`k?inq_`?-X@0?*J7+ z;|z3Jew+qR_Dyz*kFFz`llqF0X_u$ByvSY9Jv zA_RqIo?W7nfDYOBxOga;tUifKZKs)KdYO&;fT5{NcP&&vf&t`gVFvuQwF@BNH6 z#1P?m`m|T9b--Nd-32My9qcE-kD=;~adW>l3GertDqJcK2Ayo?wD3Q2^PD}X-f$m2 z61n3KHrI6KD%eD1i;ZThy7IoXiW4bU8l?S>HPC@#4vHlYbJ8SW+No#YT$L3`I2e3Q zKmPoiRoO2gPqP2C;%h&?BGZ~!O<#xFUM@lWv4>|mk|Fq|!d+&JaVB0rsRq;x23D|n z<8Ggw8QWbnF) zrXRsOeh{wjEm5@2?Zh?G*}Toi0_&&edeQICx~|_MM{7K#=gc>97SQ9P(GE__%vcY$ zM08jSJuc{0+?Fgd+q@w;iMnoo)zX5W7684Ty{nm6nOljRI_=qlkvzDvaBFzo z8n*4N{WKaUyDsVGO@cf7jT?U3=U zykI!!&*mG0_m%6SZQyT?hTDk}0{CiUS<gBO96HS|Lf`3%zDD0>fI zP&p&vNLHM~#`ZTWDQ~*ntL_gc#i%5G7Ti=y4%M=#qpyPOTA=5w*`smvA@ufgkp5D7 z5ydQS);Y*gK3wS`GnGB!)W6K^VJZuHG`jF~bf@5AISUf4Ygs`5`>mTg-=(V<_1`Y+ zLxGydD3LR;XFTQM7tsh9r+9|qxWB5u0tHPdh~a)!vgJl%2sTJ0$89tiny*X7FjJQ0 z=RIj!HBgiEBLSX@8zA&QmTd}+1|UIs`*~8Z&{?mKYj8`J#M1=?x_*- zX{sUn$e2uXzQ_^8WUY(&9U~+%T}2ckZ^|NpusfS^Yo9`skJx#oizy+iY^5aZmTeoF z&c8(=Au{}d#r`n=3zJsV8P=^&wTHtALXns8)V=&Z2x>qj9@M@_#(@qqRwr80tqJ-C+v&qM= z3#L<#5J0h77rCMc!PzUWAQA=7b0e=?$Nz87c!gj16Y+KmoXZ@d6Imb43^kAt>C|2K zB6MrfHkQ$D0sO$NqZWrxc**qUP^&WTurcgq4^ea@cJX68>ovzyB}J*C(9gYX)5G(c zBGnKHe9BtWmLZj&U6!(>(R;VEW)00K+89yu304>iDGR54nvMNu!l0W&6ESBeWi4us zhkQfaotZBW{jhrOm%l3GFv`aNvmr;GO2ZnRK%E4@CK^7rmrk_Av?!u!l2#>O3)%a5 zh|ynD#jFzCQ!8}Iq1=aWhM$&UiGo|Gdr67rWn+=d-uRe#-EW{`V}2070goRKh;L z-j<~R%OqIyd1fl)Yvh8q6~&Wla*-4bgZ1+Iubn&e)|warx=tj0%2G+C073av&l=nF z`n6Kc_V`SzYLu+!fva+C#;c&;RW47dh+)}f2KlQxCUNhLs@ zO4^2``M2%k4Sfzjzt?)SN{R1QSGhK02G3t&ej=)}h2+b}SCb9wb2Y~4=@nB-fwM!| zBX3)CP*TH^?VgkcJ)7@iY2c|rqp$sfc2%+D&edb0d7dz6dddcQ6rt2*kSZXj9sT-T zoIj2#7!GfVIW#MTe7d798!lLd5#Ys``6E);iCC>udYEFkuIfqJWcyTs;u_2M?rpY1 zX+1BLg?QyyfKgj{r5w>^Aq?6+Q51$TdOVRuhAe+uXN>f3t`LL}fB=F2ND*#4+Ia1@ z)4*Q^*;sG-WJJZD&IR=2ZTjqtD91L5nz5=-ln-009G{Ul5&jQb=Nwhp`}W~#vTfH? zlPBBeWKFhhO?FMT&B?ZH8+HSHgZug1*F{CxhxV#4X~EV# zA-3v!7AA1-^fN(v(h_3c?Jr8gmtv>`&?!Qg$yldZDRXR>$Q}MSWe-Xn+MMw-Xdoxr zdn7W3WzT@UvGTGJCgO=`1!-(e)-%)FeenE@;!arg1)~Qda}ToY*t{*^e2*q}wQO9b zH@fDD)r0u?|DtXvZE;KV@wR5prP7@`CV0xC`9H8lY2X8xms(@46*%_JQi|a}X2kVO zaE(v&)LeCaj5+OY3)y&0sBr)7&JkR;$nip3kiwnQ2~LpaP+Riaxm~RmO*ZZ6%-GZnG%4YWxL=q|%B^27k(oj>DL+>q+`XJGx{>>FNlySfN*XK~2U+VIQl6$c|^X zv^)FN>Md=09gHsXoy@PbKf85G_m$^-gLEHD?&>?>quHCgT0|{i!Go(s1>%`3?NUn~ z=|B78W?;3kbSYo6ScKZYak~TcZ{q)mlxb~#yU_ith4HNOv>2XItu(H}XppMa9bD-T zTtj6PH1~{p;!NJtdXP~H6fRz-KABr*xZ}}_dXhS*Rnj_`^%>Pv{czRZ^jPJY>)%Q*ZUw>;pAL>zI1Pl&+O6FOL)_a5i)7h-XZq^? zpgjnB?pIn4FYx_5n$*XG=bc)plAlb+Oy~Yw&lS#}3A43F}9hHR?kzd0114JC|V91HM9F|^VUYU1*!k=-N@e_6=N`(f@lU!>=yl0XLZY4U~e zN*DLPaUrF6Gj0vHj@!oOKjNhAJrw&dQsN)u5Pihu2>K-&_zMQ57ovf6dd=vvF&P&F z^9E~5c~@7rta*0Z<|*Yul_=~We1Hw(OmV%UR~3U$T_r`^X5-aPa3=#L3U1KfQ^y88 zw}_ouFf9TQb?F+@qEQwhQw~HQUe65Oz^Ai5V1i*0*}kllr>a}(eQYdUS;vfX>&m(> z>2x|2EM&ExoyodL{fxF(@2n``-bq8%>+7Q zYmnc>6$mBDe*>5sX7m>9PzI(xqJMPWf!T0rw@E_hNl5}7Yk2S1ytTYoV&y+UqZSqL z(YE$xa|Jt%^YI;hm~-yk&Oavk;Eav1fbL2{9oFy4%PM7cK*AzS1;cLmSUSUdo4BtH z36dNI41z|@sKzH{pta{{UT}V_toI9SR!Hrh%;JWzDxR@kVw^^fksL&Mxip!!4K>^| zip7P)T5dgrN=xb7_qYewk#EOhUsPiR?U{=DL#FG#qEGdxIVXg5>;J1c(Fa)UW<{fS zfBlHN#q}eB$9F0TOLHH0HcerFm0x&G$DmYae_D(lmieds_Kr&Yy3soQ-AWYo7I)Up zOoM8%$3@A|Bc?NTZuN4Z-1rjHPp2L9gDdp0ikppR9;6CteC&r@PUo@=XB1aD^_n9U zgG2MOtL3!lD#G3R>yB#sP|79eNdkoSR7U3<=gTnH+8K_)p96rxA`$+t*BB+PL97?0{xY8kcS~NY{_p(;f5cj z`W7rI&mJOIWzmQn*ky8pNEZ{=ETc)It%Zzg0ncTqqI~iH85z>&%PJjW3{d1#p1G!Y6d ztQtZ>CauaXMZ!JH^M{quv7IUFuy%1;qfXB?mz8SmhbFF-TSuDq!L*5Gto^jO*>@$B zSn?2Z)eMy1?tHMPZ2%*dykA3>B!7S8Sd?jT5z7(aR*eh-3o_EXJmt}Kk+3qY1%*;B zmEiRE+FTdPPLjCegE9(76$QTsDlJV~2PLuF;gU~ecBDQ8V>dsdT#f-=*%Xg7PtB%< z5rOUS40UO zA7Fy&5Oebpp2uhA(@?bj$$Q-{_-*0P_Z!b-PNUF@Ade#OQo9LL&x5i&is|8iCvR@C zwQVGJ;(j^79-jhd!jP+2-@8!YRGdMftpvK#G>zGD} zDGVPy$57W89lQZi*BQT2*$`&;xaC7Rz#)Ai6c4b~V>as(BE{d`i-92L#;@SjrtgOY zAw@x~S)FcvS0}8_yA@emFZk09WYcp)-{!NMcaknC#UEKxu&f$rjZ3K43i)gj04)}?y z2Dsj>2h+>OpVgDN(c8}v$)?eBR?@^Bl+8IE2C5%eMc5Su(uTM+u!kA(4wnQ`&AT(W z^c(#0NAQ%?BvhFh#)ha(xS|<5m%0c8&$1_&9?u$0!^d{gO2MQa9uf2~d#^Dc%FaxY zOCr>Cw(_b#`PLs@Sz9}Q5zj^5GELeF(ojaIlxX~WA8X&(t#nP-x7JxF4kX0b%}XO9 zlWep6+cTjMPsa@37sImL6WlkXiR@mS-oLkzok)_^C>ox4%$zV#{5yP8=8pU&-yk`y zkw@KrVex-9mVZi$F7u&%;J{Cl%`HN znE>L795g=^m961H=3{0Rp}_c~14}k&u4%1;uJC+)PgvICHcf*Pd;jSv5DAgSzNM@p z;;~IfO4N*cS-I0QV{o;KWV+fl9g0+M!yENeE+4&r0;ZmQf2G{b)9P0Ube}Q>)F0tl z@!&I1AIZpizgyKcp>%ad+sN#c_BeCVot-!E!YbHn9`DWVpPTo2YtWS>I~TvJhjwSB z3|EjK1ka@JZotKXbGXRJkB1lh*3;102(3QDlSSn7%tnYr(_djVQPcE&h41w)xsI)dvb9E;2 zWdT+ec(ZuiLv;l+gT1F>UFmRattj6>-iW>bWCFq)jx3?R^NIcGw8CnAcJ6+(Hw*4` zIVZ|4!Pcin34iX`{ijP8QvB?1X7ZG$?R_taJW1`zXc~-jBjcrNM14g`eb*K9FVq7r zK}0b(Yv6QfBClgE(Z8@EsbPwb+DIzqNIYIK6RMn7AHdr5%Q^EG!b-q6TwEKM>0;D1 zwQppNR=2joe(RZ`=ques0d}CLiLWuvgaU)N7_o2BBB9KWm)Z>id!XYh@AQieU4RvaRhlAg#C;Z|@O@Lk&EV}(hA)FVu*bmL^XZ3}~lQ=bkqdK}bamhdzbLUq2Xki((JkK?FakkG(Bj$xT%zKHVWL#2k zciB|i(%hTVC>*b@KNP}`_DWdSs@Ubt;?r_ey24O)2L0Y_ z#SxKLTFW0D8Ldm?LIAd61SCHlGy^%Ihx2UQP;eRoS&=rN&s0gsIx8)uR$CAO(0zH2 zL0UmbQlsMwfH^FLebhvf!-NDph8(F9l^Z~(HG6!#!&Vuo*Vf_N?bOzy(0fU4Ispwb z-HHE2V=0N#!tt0-Js#)DykB8v8wMEd8l_S;{uXS})*B-Gx4`golUtmh>}#5L6cN1z z_3;KnbzniQeF+U^$DlLEdm9+CF`8K1!#U%8eZl^TcO^4Wttdxw_a%714b2v_$mJ)^ zXzW&8bbl-}vBuCk=h*|bJDD|Pda^OJ3~WN{eT%%%PgP+hCTgAa?$PF0W7@p?x;8<8 zCorJ;eO^@?wSy+~a@qnw>^=feUor(*Qu4|7jQGIFHz8ke4)=C7R&^eElkj>K()EZ+ zyJAB+&zrlTkWbj4e*!$fuKaV*?e`@zGV(5Aq+I8o+M#7LWA%e0kErj%hily~SBn2g zR#HxW4(?fYOt_Ij(w|kZrnbYw@ugBY;FK#i?tqvQ(V7q>O(C)O_~go?#xd|bG{G~o zSoc+d9-b8%lv|CJ8xjwC^z^#{C$`~}oSHqI`V?< zJ5H#Ub*}zdGkABKl>e9p`7tvtKNb0v%Z^H06kpnN{#<~jZ*M1x zWTLy_Z%RHV)LsP?bEg{>F{|~~h$Ci8ihq)k|1=tW&Hf%%hsCp8VJ%X!Ftk|m)r2TuDGDNMV zy_vsRm`{vIQM5P?xk>{@fq{&~@Q0;5sL%kT6Uu=bCZWx^aZ0#YU%5naW}H$vvQul3 zY6NcOh*g`BnI~}CeyFw{b_W(|@)yCh*1lr7@>D#^bB;Gn0@LabMv%l}clbZ=fc9Fy zC_{F$R^>vp+wjtk=!HgxE6AA}aT?EyQl+u1fK;NeXD+#b(=`Q=dYD50Tvaac&0i>U zf@I0|DoBFsd0@R_jp;#-#4dUnvSS#2&a^fQfjI@;c8ds&XDxgx0`jZjQ}L7AZntZ1BFwEpbE5lD>GO z^M?lA62{5LVb)kY66}uh1%^?<#LW3|>107#HFY)VQe) z##i_WvD!Io{8m#TC%By|J+yK=tO3#`>E)I2teF+x1M^F3?79{D`e1Pu^39^ZpPA&B zs61R@N8I<78o81df48{kztvX773Y@giZLo0@rWy%B}e^qHmG}Sadt?kTDI7&Rwo15 z1MA~B#(68dn0r|d>pEbbXi9tNPW`za+}s+hs}(bAGUOsYw+O_YvS@f9EYbu2G1fh! zu%!udDvJhq0F@7OYDw!%Fa7q0Ol65Qg&SH1;(nm{MCTi$m0QC2*TqUHtE)H#UJ3_X z2yZZzndKc-j&gEJGIQ|4i$#w5)SVUtGSYnE;4$S*eI`q#Mi!sujJ_W`Hw3J}h-0|s z@V?*JlFO}W&rv_q>A)kICN2~5zQQZ$)7s;(#~4%9=wU8=zrsDQ$I}-7eDafpc$ptQ z|3K&XefT$dinD8cno_iQno>O#m;t=ClrLrnP6BBKUQdfGo|X!fY|H|k{nw7ewi!M4 zut-(2%m7S?QwbrZ$Zi%&_H{z{?@5e0UFb_ae{B6#f_kx~?86y7v}=9bI`QC9d3nvW zP^W0U4x>%Kmt6{Ah^3AkW-7Pcz97330L^3z!9snOreVRbrU|q_=nZZZwbvp|_6*Nu znR`A*4_m?Q{P+#NQSGp^klIm&OziE9Ph|J1-O`1f!&`mNt&+dCQJvk*LHjW5{%KoT z*^hzXk;AlJ*tO!8Y0JMTZnHX^T{NUsGIi}*iboE6D?doIsauAs2>xMvdKKMrjFQ4l>3 zi#G$Ux~XYtLJE*17_UL*ZPi}jwG^GP1Nd36h{{X;&`PQpuzP--0^Vr8h9v4odF(La zCeR&>(P=oaLIrFi+HCCOSwc7}GuW!)SBHfC*}VP$r@_yM(Nh$`^30_BNFQ|%&0dI&>!Sq(!bEZY9@<38Y| ze|EYz?>Q`;TWZBYNu}V2F?A{g&^M=NPgtmI0cB-6$5M#S=ool(zK5TSW~fn>!>U!q%-3+%dMRSQm5er4zUoZ zEX=4dn;d-U=Lr#I#?Wb_X%&S4g~4F1sv~cq;0a zZWUUUw{#3YbUcI3A@tkf2B}`}HszHuq6k`4!c78DnESlqFDa}&8SwuwWoCos93YB8Rn}=4fH& zud1IGTxmwhdRY<@<#}O<<{Qa1Kv(6|hGjNhc-Y^Nl4bAk$s$RpRl+;NF(LZ6gPNhv z+3}08CHPop%1|wvdE|IXVq$zdy)~1lU@$U9yC|j0EQ1PcZ;Z~OVU_d}c<^rW14F-4 zfCW-I)piEqQb0^}3oAJ?$fCSz7?LAD zHS=k+uP69az&jol_v@f$lX3DjFI1hTej3Vf4ESZA_R4Gr^@L?Ac1oH6>^mW5zPU%n zUGSxf*HZ6m!pd@R5vGY*D+wM0i+1{PTG)y0o^oYT-<61!+D!+C4v$m)*&3QD82(n? zLDKhmD?AuEZvLB2uoMf#jmRm|Q1e@lD8K?b6Db0%J<%^=_eSyaP5eS1-fa$o!8+B8 zC0lS~BO#qb@`o#X&ALl`sSeQB9>0<{FG5EhohKI9m=oh5W}k5UMvc&fE01Nlb;pLm zR*W%XE*c!kl>Y3Dc`7DzFH0)vB7AqUT6@lywvPrip#PUsBTycNpPGLB6Q=$7GBGs; z<+yCWeX{*H@3P-;UIGR9*6dfM^4`=glhV2`iU4A)%IuYl=o$JGuHF2&>AAAJtmo|9 zFrmbzm4_hE6xbNRVco2yr#g z{S9bY^0l`YkqG6b{1Fvzj2TMJ0+XHO7gea5HchA5Jp7GEcR^4k;M?Z!?m(sa%xXo% z3uE`vcXc=29n$9ut=zD?CdH?BIB#_ILoa^dMiWR3_s&0Q|&4V-#EjF+UB z8*PkZfyZap{QPgBUZlia@wX=kZC z(9(j)=Yk3}mEavbP_)0diS=4qbJPU+{|j&(LObP39r@10yO_Jv3ocjHcFKX%+hh61 zj4mrv&n+VM7u*X~aGIzRW@(!PYg7D&E%%DG+CDd3QhaKCn58b)j)-JUS;^X&X)}MJ z$K%Du+cnY0cPK=BkZq;x7xd4CQp;uM>*xIjX?|F>{NzdCWExUH`Y%`{TK?%s`h0Eu zJKsvuIn2EDq7;wD-&xeMh1gc}*;i`@p!Cl-$zAJe?odZa+FG-ZT_5iNC>IbpKlM{W zUd+jXbe=+r%-e$r>2V4k64{IqBTqI)f4B74@&64ULJ$~;zSm4A%0dg(KL&Qb4>N@} zne5W7|73u#O_7$H9(C8Qo0xOa zo^g6iV8`8`oh7{N_-Q9n{DxOT{)9yK#>dlHFsa10bL}^U^yKdX9br}9wh6OPcjvN? zk(XJ@))&a6l2(Ol)Q8N>ajLjOS6uS2XNipw=V7(L%h8x1<}bYBr?>b{YD1FY;8SEC zBwjdlNXmwnrArci3NQ5cWouw{#9X;3@Bb8r@BnV!@#IEsQs8u_)15V?e~;Wiglq4V3o zK|-y0LA-%}R|0ZCMvg0Ke_o47Z6pD-X5?L=AURA2Y9>o>I{C2q-)3Ed^)Pf-MTddC zcjVppK%1(5p@C|(`wHvP^SX?1bhL1VY-kXGbht*q9VEh?_{hhm|f&bCX106b5)?3Q)sb zxY#iC57q2Gf_KF3O^b-gtVLl1y|P zw#Th~x8BE*1CJ6pT**eY6aGg3)L^mMujD5 z?8V>IJi}+M3C7`*AFywuOvqHD7QLG-v*5a&m$Zl0HXqm?&ew+OrufD# z-#0I>)0WzUJug~{X<87!^Yb%&odQ5%dOkj#F>TUAdolczlzi7P{{Zbr+Q5J)(3pQ> zJ@PmZT}5|B*Rtq1{d)i6*B5>)v-66(unB3C5SA41pSsp> z8py5nk?@D6i7Rvl%+)rm-nPU6Kkvc~1E(P@Fhn9gnVMxyp7pS1LLRr@ua{lf4GpX| zozEsd*I2%>w%(^&8NkH@*oT*)vzY*z|EJ4}@h5=k6GQi@csOt2Vd|NAd`CkirAdU% z{&+k5PdP#0y53`6oH^*Zc}r*mz&RUxx?^Zs7pFh(B=snWmcVEN;WTO1$enqCI@p$r z0z94EY#enBJ#sHgU6@TEhel_C$A)Cj$$%JB*ffDE(4Cs(d!tbtyQdRs&tLG_B4@%j z14kk!-6aeCzWJ~U+S*AVdL6*0JZ!`ZkHV*0lXWj+Vy3odd;~a;m5SmIi;(xwC2ZSb=T4Zgci3pGef08dw%HsF?kN5j5hwYC`KslJa!~HW!zY?{_a&0-p6>Fh}gw41i9%iy~B4 zru1d%o(%&+YnLoD?ZmFDjNuMd{<#wpKflQ@!W~1=D&tsOXoqqlEou-P6Bq13*u`Z7 znG*I4fluI&LN(pkX4+f2M`#?-gZW^pYJZSOaBWx>L*_#5W+O@S8%fVcMi-^Zo2-Hd z*ysbzo$9~Y2v>!oiannuSKM>!tx(ifo~$*QS<|@J2jM>+``9u}Lv&KYZatc_{H@Cz z8ymyt^GZogP0hM(1EvafUEM%$51S(-gPJ#By6XSi(hQqyt&N=8NosAt|_ zx~|~5x~HdqY`MPy?rj9`rM6Ac2F?9Q=1Jo0sV2G{Esd2l{%ImgDztnmvI$7FCC#WO zlZH|U=o3I%t<0_wYXGxucR8o8yT|TzpQC&iR#+VkU{tZFczN7`G=jW^EtZ&9%GcvL|=XV`ET#t+a( zxTF8P6#}b{bk4bGC!2<~*cCIxLiQuRiD9*F z+Yx?>G58px6EL=Rks$&4%%5{v%RPMWq%!btras68V@5w*v;`La{8oc~5+{Q9FCx#X zt9=Di?MQTav;ix1;0-Z%1^2zL&LA#!2PEq^hgk=~l~@hUYI&YTd+U65j>t6Z` zXupiq;#^>SGK@a4y~}l`NO*X7UJrHI`wwfjhrl|)*wHcmb4~U6B``KI30_&z_+;UJ z|Ngya>TMh#S^>5ZW&rG~B+m;0&NkfF*LSwjmJA>oCpi!Ct2!PuH{UN@#Vv0Cyp8_3 z3TAKDmyS5p`FL5n{bcjv*|x{_g&^HZcil;6*bm}(AKvc$s?vSaeH+lt@Hco1H8g;V zgl|Gy&GkS=&Qr8Tsg!{n_lg9e(JYEW1{y4gh1NRXtBq40wzA58G$vQKv&yiFkNlROa_byJQo|$_0-BYIkt`F!i$%d*=5!8o6Y*mT{gy7$3`%`Mi3lgIq6~#AG`5#}P+f;${%IjZ)wxVw zZ{Erq7W@pDz*vSyCp9*Kl99=Wmv4~hGR!^WVGvv8S?~6>v8RS!t>GYor~QfbwUjX3 z!%LHYrDu`Ou1qk^O3}F?kLgEg<0OW+3_DCZ!y=AK$e;;Lx?I55Uy7{}**+wwJCT|> zyA@)w&+x1fRVf^uqJ5RqcI66gm(@1-mH5_p-5DK@SozF{+x)M>Z*{tZ>@oO;w5K;{ zuexAWePxOVHHG;+P5RZgZc%l`McDTdPa#AWG}(Jv>un|10bdEqM-ETqPTiMvg0uOn zM~nvusy%3zzwsPmlOMp%H0^TH?W>s_5TlY$!JO!CSPX1ZMS!@*96 z$r~;t5lnlJ3hE|mJY{(gM}xl;`NP^uh)n|BIl-z;ri3k)$`hbs3o#T^e%dFNbbXek zDl%>uu{{oPuTk+wKXXoY6b&s_+rcaZ(a-j$@lI(@r8FX@NlZ@XNtF7;kCj%7JbWKw z-0E;3O#e1g)6E=4K&g5mgkjs^XHbIuhpJ(9<c%zwVrwdtdggMHD*|OU4;>%fMco z7(Udvs

l`$hf7ptdPlK-V4ZKczaVLeevSWbQ3p56q9@pLU%^xj(OF*_bYtmcD$? z`{`%k_me_+avZ8xR6nB?v{6m|Yn^)sI=FA`>5b?LFs2EpVL6XZ-U0>ISlO1eia9aN zuUZyUkD}p0K@gu>vV(&Iszj-uZaYEi9;cO`zO8)K^6TvYq?;w*_a(qi@Ew?b7Swbn z4*4EAgF`~{dHCLTkZz%Tub^fgK96@m_?}1P9e`yc$knmDZ`#&V)Yf*IWfiD@4&EnS zu~GTpb20jfmX!yv$zHo?+1vjKLTGfKrF@Q)eZoGG*I!&)z|glI=Xjlv?1ZS2#}cHz zE@nM3hlAlDs^n3%+e#Sq22(GQM|S+y{~f14I<#l8Z-OyMsX3FTcq6)Cj~)|V7rwth z%H5m6hc6PH&pPlePJc~l_?YlDB!J@{sKAP=sQ|f*Mq;)O2NN_U<}a^8`ni+55fFr0 zYT%@3Z(UxqhwC%A2=e;?oCn}ym9VacF?ItimaVS(9+8d}lI01Y$k9EmE)pCN`itw| zyx(F6bZjE9$W=!4{rByyj}A4*OtX9s9>%_;mfPPzWfMMnzYY`!G5e21lIrLa7*6z! z+yP#v;YQ%7*fdG_Qi$p*g?_$G?ipVwI}5IorzpEQNzX({(6CIN*6Q!S^BE2z!DK-- z&uXrg$^@*W9SHJKn{{M?e|gIbm~6&>6&bd$+VHjmbld&f5k;q{*JST#6;1HR@wh$+ z!^-G|PbJLb(_l@`+sF&q?jh2A%kZt9bxqVT1cUBTb)R7_Zz%_{UkZ#owgrzr$5?d@ zEX}Ec9eyDTd@&I;WZ}K6dPWRn#Y|2mBfT1hs8ZypgTP7p7oFEwQ8vQLymY>_1NMlW zd~9m$i5KG%Dh=Kz+Y&1GFX#TeRHlUe1Y3P&81SfK6Pae^j&@dQT9+9sqV#H)Y||>+k0Cy*jpq=qM{JpGPtk9$5uV6=b9-ow z-ZJYp!SLWO?&zK0V%w^E_w$YGj}Y1U08jl(p9CuyUqeve2hO(@2wWuEJZ$RJ(@D{e?VATd zVPl-6gKMOz9Y7Mqg+H%Rn1XOJQMEy}_gYeZj2Z$|X33~d4G*gIsY zLSwd`WIh>Rg!9%|(2jr(3TVm8NT(63U+`i(a=amPPz3kh%gW5-zWT43MJueVFj9&6b z+_*-^&BFcWO#&q4zKm_VvEtga3F&*OJBP3HFFRLO~0_<*YUn2(XQJ(akF^BJVtz> zSb9vmta;ZC1-M4uAGJvMa3}G2?Nb1Rk)NQ990q(T2ujWALOaj>oH2^tYUmWH zTmG^EK(Gnh55R`XK&RsPOL)x9(^k5V6F)T)dXw|znD@GBtD}V0nuA|jn0K^wJ#s#Q#t(ThEayxTl z2~_=0d3~VaF}gHh-tMIeP+wK>Z2RJpC4;3{ZL;>7L1BEJN>fV3o@*dal%^Eg?Qq`5 zO#?EEP*zx88$D)X<};_F>&$K^z_pejk_xCwq`)N2&JDc4?gj& zaQbrpRs|A3czeN(m1o+y*n`cl>S8q~?~nLWKCaXnqLQ9@AT~=anRAxnQKqT|)_cVf z3Z#XGRzt(2h7nVbZcN971R+b`e(ybtfUUL3Ly{Mq>#|_bAt|Vu3tdYKzvNX8n%j0` z+Qt7ss^lU=%;~o*MA07$&_cxd$+VLvLln5H$x_%saAis~*mBq+@fAT*EN7SvgWa$G z>C~8mC!`Iz+`mosl-KGU> zrXmkRYf8myP_mFmBP$eLNZ^P7YcXgg=Xducef3KN1TN6N_NdUX2yXf8Cwn)A6w-y)o$!wB~KsMR~HCcC5U56Tbq^gx0!F9i|_;D!0+|D=G1$K90fV z#KRS#N0|ow40-YM8jJr?N$g5kwC?dtr3r518rcBceA|G_F0dKwudNtn+50S{6{Xu4 zOl9%D0jItsT@RLBgYS=9A8(j95Mbsp7q5IouggOoI__p`lw0l}F%Y%F+iYA6BFOfr z>sCQ7*(7mr7IA+I*BYT?&sJ-;98@?`*-Bw4Nyx_6{Oj#jP^tPLsx!LZa`9vc2IjfT zCvz3i%IJ;tuXD%gborr2oW1KLqhHAcymje~?a<45YkQOqK^0v|@&A21WK0F^$=B+p zTVaa*e4|?a@z7>g8Pht0HS3=sAfh8e6&&8_iEV||w4TdXC>U1^pOr5{jux{v|T}`8UBlhZ?PELSIZC-5pJH_uBEh_4e`nwQ*qVTP~HpGxc zRXO9kneQ22AX89RA5(~NWaEHk#HPPdg!=%9{0=YdVyFh$pbG_KqnV9|YoPGFd7~Fbq^BpSYe>c|wqD?$qL0*0Wt8tgW z1|!DjE}z$wiI;cdz}Vmyoxp;^IGE2Lqh{T^>6tYh?UPVl5yf-qH0i*<6daiRt~6!U zp)9wdzp13{Q6UjZu}7hl*1lc1tj>Z-ImYUU&*OoP*s#nBdxRj5XfMNjo%kk#!*kDt9MKv-m~a0CVP>?5W#nlNn(w&teiq5Om0^4QEB%OzjzwWb^(>Af1OJhe9nD zX?@K(#Oj4Ux^SPnOQq$ijTGH9DYJJpRROvwTJijP%@3J!50PJe>UrOP? zHf)lcff25KKS_(@w4(0mb2RaO+!z8xqA!OnP7JgXS}!XrD@s2jiIm7;H0MBh#IV>| z!5g!EDBA|DMdHpz=d8}vo9-l4uz|c4CCHR3;N+^Dz!O2UZfs2r4Wv$$ss2%n*6W%) z)hkx$s2Pf;pIT{$%k^#eUe>FUkd_{OdIZV(k04vWpi&z3`s&iT+ZBH)?AYw^L*Zhq zjyG#Dis6vp2%fc6F1q*Xv2G^+a2C_m_HRHySe}4%X{+!U{p;4Yx7%; zdMtc7#0c!|zj?=SDQ7>%Zn%0FkDdsm;4M9Q47M#O9 zhESl@Fp-bqkmdKO+G#nXMWl(v4(5$UuASp zRjm@5ONlwO0!riokzEnx9ZQ$Y<{7(L^6p#h6C46#*Gq*!z#oLCrGAzqLhF%*I3Tng z;ewZ&0+C=eV7-L;+ z9MPj!P2Me()9}@~{PCi!>VC1ZZ69+hW_TFL+qFNcIy;y9y=EvC+n9)b{+RGw529Uq zw)(kvJDN7ha7z~$&$2@cLgrW#_0)(yO^xTjT4^TpQc22ZqG?1q|K(I+i@N8rYCbkC zjB|+%k@G1eYnrt+P?!$SB$OGxfeDh(RTSdsZ~Z(W(9_ok1@1)Gf6Ag7xCWQDs81C2 zl;bfy!%tF@edKh+KJaN>xf-36$ll!j&ek2C;UvDCY_Hwkie9Ff=Tc$Wb|-1*ZqVu$ zn&Y%hCfGSOu)|4Hq%zDslkzSe12W{!a0V9J%t^a1b#P^odC8*9TfLmlAH=HqdUm9= ztI?}$b3yaqq}U)vX|D@~uajhN|E}+9WM}&j{i`=+HG)*eP9Tm`q#=Gk=xu$Gie}0gC3; z`Nu3*ne%s`td5pko|!1LEF6L@XfBaipK?_*#cHSeeN2MwvI3>R9P@S%xK0WMrT;W~ zZ50ia|730P3p!gRvg?JJKIvcjUhI=pM|yA)uyI3BrKL^S#VSfrMNE^1Z#9Tk8@Trq_Y2a*WcS#K!o%cCAahVDxNA95e-9eq4AB>wSb z+?=pNG(-_}5l=Ti>K``Lg8S14n4|dJAq_GAwZk&|EeN3~h~*;%$w+1Sp#J7PX@BnG zz@xZJ3+4JbT_vg4#ht(s?RpKAkp&M7>X)mnN<{ymm_Ba{lmXrLLJCJU z;-~uqzUKgSdWDMT6t`D8FA8#tsav8aT%qjlZ%`@CG!D<-+N!>g@=rqkuoHm)(z7#X zmo4>EWwq%Hq{YEiG0O()-%_)#(c-l`2CKT?CfB zPFV*9ECz~tGYU7+!`!;7R+d5n`j5L!Dv6kQ`-s8lETKaZ!euh6=8SetdWn(03A)n1 z5-svxEOh33NwwXxSkZg9GNwc`SwJSvlK)z`ZFA;6?O^M=t zTs+np|3nI|S_p0q#g5yN24U(%s}eT!A4Ne?IrgqMMu{sKK~a5Di~!Bp5gz19#v7(vF~h_&HAgkgZ{z%C65ldKJ9A)!6%P}lDqDgt zr@YGVIXdXMF)S&&Vb%H@7>)LqTY|i=tZcGllytCfx85)-T#A&Yne>lyx^{-PfiSeKI?UYU5zud^-~dgJQi2fxaU zk*|NhS#5wZH6S^whTv7%At96eLOycBR{hDWA_sD1z+{;n6CJpv;Zef3Ta}CW z4;ZvgL#2D-W?nN9>RK4ot9Lui41y1KPl^;MMjtga!z$A39aXY#`x0J*xOsISnQo=) zu6GeNEvoH&Y|A)w+K^!XvMCIN#IWj1 z%x5(NmLW!q6t#5b*jzDDSRe@o5be@0WUjM`SuhX@I7u5CmcoVmRAxED%UItS_4 z`D$+@&}bLQU_tQ5?`I8?(HLm6Af9Rs?9KFd^^e_R!83;oJuHyO-=LKkKK!KBvu7xQ zTfS*(l|}^gTP<*I=Xle1$uoDVyC7`49jSbFtYr+^!cX_Mxvy9FAVgHD&v3^cwABlm z9^8BqBO)6x0K*ziPigx?drj#$6|0wv1H!?Kf4B;7r#GT&Pc9#krwV=(o^ac&(-B|r zDBtPz6vRtRtB54ntuuBER|i;P>{{D;;`v-0`p9{D0ka%~$4tZ(AS=?Y?|m=nM&KgW z|L2q@)81YkVDtN_WI`*$Xoju5Is#*99RF6>A0t^`%N$W9J!TV&TeA4<2NH#b*pV_y zEq&Sr>|}%0c$2%162#`UtFXfnM6F->R`M_t;`$`%< zHNV#E?g904bQ)1raN>K)J`CZrB+M;BIkMKD6?L?JyKTkb204QADo{?L^)y?9g#}M< z5RiC^^TrD{rGgebT(ehn%PhZzW$3{*jWKy4hSL-Mnz67e14_#UZD*9^83eyz;MbGz z_?hsgGzys=Md@0wS3W;1jSz@`Z=7fh8?$2P(*OgGtHA|dmy^?f=pc&Ye2JRy-$`@W zLMy^nzT1UW=m7l{K$TZu;gm#qWaHEsR2oA^%4DzkW3V$~yj@i4xP0H64ZgyjZjo=G zx-%7x_O@5|)h#ZPY^L|tn@zjlx~Uz0@t=}Lc@=8WJCRB9RSaAPxOGQf*!!iA%G>7e zQTQwbwX2a!wP`bo%bu!OjD&GUA3zXHZL!pW?sPiiln(jpwpd@LGWRL3T(HXhTUI5J z9|OX}lfYDx(4RlM3;a_XZ12ah6j|y;-(Vsbc(Hu8;GTRxHl&qia1KoduRK2_uKuEV z34A0QNFJl_;q*lmKS5ka=2%M` zh~8lIB9eueiA9DudODr7n%SOObB6Y#_+;0j366=ydyNJ#S{$<^;=P}_4suci05 zqhsw83Ii=x78~|AQ>gvo_(7Mm4;$XV6prd%==zU8XJbLg(`Y1D~Ai!#mEAVZrQPW^^s5IP1D_`S&3 zJVEh?)HNV{<&V}OHMFroTx+xzo}S`AiTN%fbN^h(FIXDqB*N8IIZ{u%9b^s@fcun( z;Y^-KhWw+_6NHi((^%a(D#c0p{6{Sa#iFWUaAjzB_@2-UF?5Vg*=o_Tw~mB^+H2P# zWbo?y7KjwYw3be=yCnh}UEb=^FWx5srVSj~oxzL#{)7si2Dk#4IuRK|hvhyGGOYw< zX(g|pwO%8OY2iWt(%i_dREyy`MWTu#(Te#G;y&Rw9}P??vJu9JwRN2hn7^d%{pPomLpv%kR z`i4CXR&c2&bzBzSPwHd>s-`1W|Ja~lnl9Iiq*BUCoA)y(!N>k`tF>;8Dz~D~9^k5z zVF5?jCfC`gkg~4bA4<0HATe(<18O$Tt8S@~j1^NE)Jqz+g-gG=JQk6cY~GVV6C z@!8OM(9F`DDrFOJ>r$0Ip0_e%HZ>*62PRsdyn4;JA_42hKf^V{e&a?en&)@EAG%th z!I4_Af928sp6{oP&L-;vLjo{%E%{lvVt%jJR%O{pgu6!dm+OSPMWsc_@a6Y^t^4IW z5^ZyKr8ZUtUoAe%*qhx`Okez%RQ zk0KS083>yVmv}L5og!9FT?j|l`8_~{9Tv(=g83T4J{8LYy|CJZt`#u{mntPQnLGE1 z8O=6w0+n&-6$t=vv;}T6eWIfAQU)ks*^v3tFa_is@X@=$wB{v|f(!ZS)$7KFoss+6 zN#d>q1ZgHZb=u~lk*nTsC|#y#IK*U{8H9u z``%ezCH4C6PGsA?PY%I*Jr2oflHu+V`X)A34xrhe$DBQsZ2aLbGvIc3|43DEf=8XU z0{+()Oy8o&lpj#D%OZ!_-buIz&ON8sw&Zoa0mM@TK>5!Dc4mm=x*w@mH^ifPApYT= zbj97Ze5Yci%S%2g#UP_C4@gsigOWs3L9YXxJFts8;BA7AlC5k1A|zBd-RL+iQrX8V zHUVj`88grJ);UW$lFIVK+CWaVMa#4XIk$6F0wKOd98dDDusbu%?^e0YZwGw$)$f$t zQR(da1MeU9?bsB$i)UN^_LRmXfDh~-47@l4>lj9|S!|8o=7+xM+jPNE@%fjiLg;-Z z%=f&X*bF>IGc+L_4nQGssu(IC}gJzN)GuV$U1sx?S%Ed-9dg=%=6F+c- z0=zROqBvnFVK*Qi<>zXa?W$@e!P- zlEDmKN3l=5m~@l-ld&*mVwQj2!JKB@{M;=J`Xybu=WlZY$O-d~s0=S*EIp@i5=Qg8 z_g>wf6YNiuZk<6{yl%V6I(9u8z|@|saut!sK8gvTrBD-jkFS>w%{YEAT3SKGb^kpO z`AjN7PEKu>3=OANim^k9QQp6wo2QPo2Cl4~+6vDhVgc#w9R2$&^f443Ey$Vp@VrT@ z5H&4#QNO>m4SKY()pns@Cp;noFtS(5_U6`FnfkkjxtCi0rFosh`Mdz@W_DmHhN1hU zl}#QKO+Bj#T9#Y!OnH}OC@m2qGkwGRbKr;w}Z1k5Q!P*%7Jp zY0m0|E%5c{R3QQstQG_V^fC8*hyPNKy}B$K&cS+V7r=Rs@+(^0?cK zL@yE9V9I3Zu1}B;dL&PkTf?_W;@i+*aGq=93G1|IWF_$`7ExLsLe;`P-kx>h93SXA z0^L zDZBIrBD;yE&ti=sx618|jx+bp&u4Ne-V`7*ji36v6f(^C-thHve{UNKbDMS;I-?j# z5mK!vH(3#1m$;3)9wzNsFcBz%HD@+nV1e@i2d9Z)_hBpN$BJV=Mnu?|xdWAJ@fkUX zfZho)CedrP1w?e>OSx@Yc_9Zk?-j58g56=1x9|*LW4`x+U4z*@F^=D?6LFvMc*|sq zm}<+;)TrLe=PSZNv=QE@h}$_^xU>g+ixT(f!dL1#@6Y;$X#!UzEw zpZ-L6u0!Q1e{V+Vg8hO+xJyc!LbK16*8O#6@-{G+>KJ`S@)Cr)>b05`;Vi*}9poG% z7Y+7Q8YA<;koe8RF>5(T!2X*^g=qGGtn)OjWh2eiPp{yyW>N!ca~kE!`GKE7sHWS2 zK5)f#D%nB)!WM&nhjNuhG?-XazoCu&Dj6z5;%huM)LH4CP*u@lpM?S3tS0@wz?Vui zVY2eR>6Rwcyso1v#FpawT@pl*Euk1W&?pmr@S1ccrKd@SwyUqiFRQ7Z`oLTv%w$Y| zRKPe2=HKz^p%jW0ZPt}?%3Fh?Ru&|Au^N453psBuI%VncOZ--)08fQ)2^v`4uZnN? z2gy|3U_RS|^OV=TFkB`*{z40yssrc8%-3@b_6#R+ihI3(ZtHsGjgF1Aj@#(WFe+M?pDbA0 z(qK5syKuTGvJo3MS+OjNCNQx$^Ym3T@NLxI%_2M|$ne!k)y%TL%20@{%`l9D*WupP zf1cX#%B&(N79^Nz$>hzYm9N#AiZqodG}Ry;lb8+1GxaaIfT~HhmBhFj&1@zRa90bP zV(C~3RHffAZ-hC3`P}W`%HLklsn=S2-imlV;zzXN@zCbiGgg@wl{uc1v*@+;n0HYL%CFe^6@gk$z!mRXl&Bq7Uw;iy|Q zde;6&^l4A;LM+aEO#@H<5d=c`ER(AyMRW$SFjP~2DPpMfw-`b!cWb`RDr9~{MlIa) zH-nAG;@J~d-OEo5lEA0*x_XJ<5K=lp2eu79!;krYQODM-GUCk8dPxPs8`Q-~4W!nq zBM^OMY0erIIv;Z5{@{Z05LICr+XA!ZTkIPHaD&UCl^rQjf1aEIwTbMY@oleM-Ot5d zQn6fBF5{+jgM|S>n$*~2Y4to@65M_d5<$X+-|d<|LhNo@IvPQ?Ddq&K${gS8|A}%V zMHpE5tZ)_{f)Ah=Db$Ky)o$>-iUXN4R{Ze z$RfT*z$+4^m}(3tBGU6~hkUqW25i@!my=m0teph1lM}V>vFGYai)-!TxB(2FQ%8a| z5b9@&FM4J@bsWd@L)>|ph@t$ssE0<_p>$*!(*=-JD`XT+!%z0J%(%N@`c#1hP$&!i zsLEexo_%TC`8_8phV0Lhtj-erVY2~tBV|LKkzZuB5hj4EeJ5t|;DO6`cBX@~d-uM6 zV@~<-A)8Q!nU_D3n28T&s=3BwF=|xwov&r>lL}SW-qqMqZ~39Vqkgmi8ye<+k@{T) zzbcT{-<9?4u)E=4veTBVQM~D{l*mJ zK0S(VP$YVlo_VoJC6ueZ2HpxZxjt7UhR-~uU=O!R4Hu4? zLW1vDsq(7mERY>D!FqH@_Ta4~g2xtgJ1FgJ(9NjU8&>iZ{MOdUb^$FPOTJ0DQG$6* zyQlB=&u?+2%S_*7BknAJaStEx@hDzy59JNh8KIR-xxj8Q0(VXeqn5F?<*Inb#;`p@ zJJuGz-ZPUSh3#W2Fv&9ox!j9&%Yr~h|McVBAd~W+T$|riF^wH_syAUWHP3cSJwXU^ z+;*9=9~|y2ppd3gu91GSAu9UJ6~@|9Abp-V!01Cqufi|Iye_lP{#t7SDx8LR92dN4 z*|1nHygLAm*p^gUcXx}bX!FB+m(suc3h3Cb$?q12-BIiZ3^}{HV}mP2+*cx;YcLL1 z(=2wGhQQ5ofMJjKYP&bB`Tbv&I~SL_P^EPrlg72pJ364F`eXwGi3yvjz(Q>XQT=*Y z1deLSeN}Hx@9p7Uz@{KPGD#|V-@*beE16?UE=wsi5(4{oKUl9GnclxL&C;F({J23R znB+Fd3&D|F_Zjp)S@XrK`=97jd?^V33K7L3e}o4r2iuZ^&4gm*o|um;F4keSA)+fE zPjXaJM|Q4t*SQ2}}ben%xgK*vV}_-MvejG~hBomwvIfI|{07Rn80Xrh5c;!4;WDh>>F(xz-@>i)dy2qE9y-O4GXM)!%(Bn? zJ-R((dZ>)JIg4ARfw#*t7zb}a%JzOR-q{}C$k*x$ra{^hk<^3+u=c%qdW$n$_>)FM zL-=DQatbZZrH9AOXia9MemS-8+o_Fkk0`CxRLNh6Hd?qDc81@(li{CCtKa`sXN6$B zXrict^nsU=5g(u$$}SRYFZTgwVb)`?_58n{x11wksUxsW}m$K+b53t`5X%+ls^aK}7P(u_;0H?~{2 zB;^8rOE}(Zf?>Msnv^9SwMJmd9J=av5(aB(HVoWV3Rg6Ynr_`i6i``DpBB zhPvSZ6BQ33SHE;E;?MjOYWx(o3U6;IllG4j^^nJEdIMSZYLa8845oVg&%X3A5CSEh5VE$@XQ)z^fqNsiE_N!;OWbmFuCwdDH_cKdARlieLA=)0ywJ~5rOmFrx8bPW#8&fw>RyqJX$*f0Z__U zJOFZPb;3oIiGpHxXQlrUIw~1Uuvr|{F+KCsWq|xsM|1T+YM(*7b`#0oN$kQ?g+Mat z0bf2f_I>h*`t(~#X65pDC#8h#W@isAC8g>`3t`6Y4-`L|euzqd5bRH#sId-S%1VtF zo1Wy8WHuo$I9II*9cjxNw}Cf<5!LM^rk}FyN5+CjQGHMQnbUu4k-lBZ!y;^ht55aO z3@uU-I)#yXsd-(W-a0H@X#EUsp7CS7Cmeudr7avIF3={S`>*n!OgtkY$SEx!lSe^Vi2CLUF5I{&hbOqsH*hdi{%e+YP0|mAoohR4sOluDbLs2-(I3 z@td48UBhp-Kfn$0E=BbKCF4)wI6 zMDV-w=fI#?!lNBm1WXW0BQ54Po~&_152%*j;h;hQ)IkWGRT4;A6b5{wFj-h(c+O1o z=?)%W)~#+ByBui!@tRu%V$D!nEBO*i4LsV&P#Oc{GpW#=fMdTTl4cRg!qM@4=Q>V| z=jVfw{>CK!b@kE!{s-I6haQeOYhpPv4};OYlNBnh3yA(MQB40vJi`e>Q%%q8zZ-kk z#BCPpMyR}hpb)kE|4uYKb&mZ&)@d5}n|LNNY~0^?@o~U$9wOvb8Pc?QM_00RR-#^x zjh;`W$NgZbMwbCpIvQpMk2ehr+&n^`X8NaDykT-%8)s3BFg%$cv@TIB^D`BOVjX>I z%eC%`4oeTw>Hw}y8I<9p9q9Wm7~E0w|Khp_p{KP)Ppu?;JFWCv#5CUse?yPOQDA!1 zG!J0TgRf&!^>K?~1E?k=JJZ;)gjes~b3nR(UrKg%E(s4{OE2bQ|KOMaNHJuOInH3! z0T3Ci=OS#=?f?L7>+XJX;M72DnGIwKN`WAP{xDyGEvv&ah#?CQaXO6bLeAe62t8q& z3XmgqP!`pC&7@m2J?*?vY8Wy?hU1vHloKaZo$(i?9Jl%i1i-#GwsuqNxgic_-PKCd z82Az-lg8KqYDRpBw_bUccbz=rX#lB^)t|*gP-x(?+*N@LS=(Fr!ka16k^z|RywSrN z!=U~ElE128h!{aq?!gQ3ecfV4ctyW2^G^qaDD7|z{>`w%LHc#p1%pbhlaBJ-mx{ck zjqEEl|53vtM1u9`7%=St)5!wk#X7N`k8i z7&jCjXuJt0588g@8P4C~v*}m7M;7HXaQDUM{lG3DLQ%&eKHkVXKwEBqFUz3i?y$nB zS_P3H7(tDPBC$pGdndkYFN1s%3BQsMq8O9zYKKQFR05-sl%4QG-r=&}xcA)mBRM|$ zQ@C_}ADRi-eP-g!Yw!k5zE2k$jc^J=KI-+CWcZX=Q&BJCYU$LaerLf#EH3%_UwF|C1|Geu3NX9(0?n)-Hi68=iBJTZ4Nf;Z1mBtS^~GHId?Vgr5a zUJ5a;z99VU$-T@T52Ef6NRjJd(MU*1*RQxO`HLs0vM`Vz4ljC=@BC7Pf%Opd!JIq@ zbwB9@bE7(`FJ<31-;!SOaQQ5Aece3c_1J$&EuF2E8uJHZ$9Y#tZfR_Aes6F;4evAw zZuT`spL|Q3*N(ayNT@UOE-RmUMfDY&Z``ua%_UTX6mlfw z$Xw0urSq{qCb^x1j1^?C5Tb*5{Rww&G(JsVHmgwy7$bYp3SlZlGZ-=~uD(1Vyv*j= zAS_nC8wi?DIn7r5U}#+U^f(Tc*EF-tv*gQS+=$vJj=6z!#JbYm_hb&o7!y-@%#dN# zyc_hb0^C+n*bjXkoXPt3x+K7We8RY^r80=wJMayIYZ#A zHug8?Ip*Dhb8=S2;Q4$280wc8liuAzVc<>Jhm(-P580#u$YF=pr_zNZ;+iZoS1yDAroyE8=pC}s9k*u!A zd8@1UK_&h<23AhqQ}*JC{Q%j7jKkU&LJ&*fDH6LlOESO_wEUL#H3LZk*)_N0HGSOR~u?)*GF#W*FBd9RZhYD1#lRlX}Q?{odp4OPw=kX&cs zrqmMbDffP86L@FFuR==9d$z1d%hHc52#>8D%Eat>vY7zE`TSydjlx+1llZb4TL-%k zNHRI26#}xYI~FQ_Mvc2Lv48`a3D4TZol1dy%p^H&M3&XUsK@}~26Yza6khW{=%sf{ zx*bR_T8Z)Tc4+RUL;k(oAzN&h^fY9^2e%(r7dKv&6R#Gik#d3tO|vNjpM1~6=kyZw zEac#2M%?~)mvjd?xs^X2_pf#fW_w`*|4vNf2DuK*2}ff&R?NM-j)*j_1F!Xv_O13Nq z6FC+YrO!6f4;V;Ds@@yp<|ui}g#oAciY^cLY%C50ScZ5V{;A4dP%Kfx+L3P&1d=nj zrZai2(`B{DXPAp4L$^0eA5&UVP;-;0MjkuH)#6dDD^XGNn=cFHb`s@VE&L7Lqofi* zr)`y&R=CSw$5Xis(Y`0IGM)1Hta#ZN6j{pFn{5f7$se9Y;te-rV53LU_FH3t+2*M$ z!@d2$a}ws8y*k6rv)ouq;gvoL-l`&6n+o<(07(mc>^5sDG!&3%u$35oYJtF6?IW}W*~04mbcGuT@5;c8M{vXa8hxW#eM;c zygeoNl=uC85jJNF47uXIRk@%afbABK={E!oVeyh79swfg>?MGf)6#NZ^wU1&@t=Po zA85X=$D-njNahDeK6iw@MeJh$`(Yg~0$QGB9$H1- zn(c%4r;7xVhhg%OzWgFWu}g1+opx0LTq7dX$M#l_@GYKkICM%hydTi`*^~2elCyiY z(?^XN-9~kTN&xFfiTPQP>IdtoNV{3rueTK-$!vm*j)06IF4;VM&az0kdELuC? zZSp;9y4w1D^^=6!|p@8n*m)_w)TBMe;+$~lz98~FZ=#WAXA{P5iS3A*(7%7+}@A3^ET_!(AyjTEBAhV z`LWRjMslVDvpvm1ZRB9V4WkQ^?7b~Q1kGcZ#Um4f>pzTTWrjMo@fUi#0N68$NCsSJ zCpaqgN6(12aRj3M3Q;2l5I;L?b-KVEt`1#a@lmCf@rk@kZE)2xz&PbtL>Q4j0}W9s(t-Fj3IzXFihE+F0&H*~T3%?0N&EgC zBMCj|KtbyhmLZuyhfa-@OBAEfZaXLO?;7eFklJk0tPuZpj zm9ef<)h&SlD+8LvCs#zVFbfslvNkpxDNeYVL!Y=CaLr?|`x3s^$&MxdR)$TK6VTLg z-BLfs{5{l9euo>O`%6*?q*{3&CfrnZV|&W?T-0Sg6$oO)u(Qzf`DYG>LGo(68vq3& zLto6>cB?S&X0^_p87eQL{RO1$GHGhm5{TTzYXolyV2Ok?MyI7i}7FBy>9pLN-9@NrZ%W^FI<4$-g^(v@#W5P9Tg!iHuYzsImzaD3u+MclYWgR_W z*}SiEt32DZEkO1mx5-@#$0TZ)jQ}M&ZZ>2f)QkML3~P+Bor)6h$1JyPu)t$MV{dNx z4KVJc7?HQDfG*LZjjFscU9W%V9K$!Tz(aXDkN^bjoa;0zS z1oHpLRjTv<0ah^&o;=n2dTLT5Aw!(#b&o*DGSQFXvVLRm z98>NChMPKv3%kz>n?l4@3(@v@>Uv8Jg*j=0XfZ}~7U+v_dAdvI3xM%gJI3e{X`&fY<%o+yBf}5hQN8F$|MV)(p8&f|L zl4v@c(l{GA^T(86*~IY=KW@M)brr7YHDrYj$RSNDfuBTwA`jNW-MA|A z6ka#$EfavsTWYjKv0H|uu(Kgx#2#>Whzo0fnfxujx`pt>siX&}K-FB}bmp}w)cJ2{(R&}`5)=aD=D^NRjm6oA%$QMj6 zq=}>0hypm?XC&1_Qg3b7(^S5qt7#ol~bY|7WKHnFmT zHF(>_x`qRC8UX%(&8LiyCbOQ(yI$zpfymiGU<4o}2nuO8FO0CavS||*;C`GJ=CEel zv;(|R0B;U}FGvgS*Qdhabe_g$ZLqJ^_e9p9H)HGVN2Z`3;er*$|9+6y%|~OPCn=^+ zdR$WQMcMmQHK+Gvt{AEgaR_*_<1^TN<3GUJ{4-lIyvyi@Tfhr#YWP)y7t*Dg#uV7C zY}x>ZjR%J58TvQEXHpE6pm6uvT)2nh$L_;qq3TUAo3%trC)$XUiU58$^pB>TAdk6= zXb3Vs?kK~mq`0*d-H9n{m+o{1yZbAjC&fw93P}PEM1)y~p}| zQ!8d&N;V^5QQ7x?kb23@Y3Qsy@Enc&EgLyh-X3j|*uF6w+=_*A$Fp8nL3)IL$T0^- zlB86cY|YJ-1`lVm5+AqiJC}0WuutP_)}27wH|kHV%F!qHg8{N(Gl~ZpjLu`a5ZMKg zN$o|@O-npZvQC;aJ&v@Wm#jm@DrHOOf~%5Hn?88L9wfls(MVRq z8v){v9SswhM%yNG*gP=WH6Q&kWnsabyhsCVbEJS%d(pl%c`z60LB$GaIzwD7 zEs=AB2J2&1Ky%m(jV*UW;kU)tbm{E6eJH8bCgOoQ`d*|2*Ojw$k3!8w6$u`Zq6F*b zb*aShepa=SZ0cgm+anF!i7wY{jPEIK<_K&uisIabcWRwbg)lF~>Yg}YUKPkZH{DRj zfFm(-!QaD~aiP#RP*1seNLCnXf8>k2e>*&Sb1?Lp+f^OK=zG9N>i6(DTXU$Pu3I~r zGNlTK!;)IJlgo}Um={(~{u^6~fg%iQ?iBkB_qw@O==SgKi_Gw=W? zOwyjQNZL@4lqmpP;lZQy2pW}v2<_E5iqz%U&9C+BLDX5{knkG-{EmV@s@VAJpw(V*nmh|0UB77MFVBjE$4@`fBD^j7oj9M#?F|}^D z^hd!Ysv%}=1v{`E;-rciXVzq8`KVXGPX=!za-P$2q;36Hm(xD<$5ZSl z_L80(0YHH49f;<@1tRwQfs-gPJ|@$ruXcsd=T6!COlNBpU-bYgy0$X`oc$N$`;S7D z$b|NruY_ICSJd?fQtF~%r{%z@C-FHC&7|b)uV0DINSsAfoB^Jjb< zX;nI#QJ?tosi+#;zGefo0dzE7aR3AF4Oah&)FwcTj=!=hvw-n~1;LJ>kTRF7k0;@x zZJpKMiY6(d(!DB+QONTF6^4!O6mu%gO`vOZ2_Rf!(F_fFB_nh+8eC zr;GOki)bgFA}uTLQey2smJEL-z*8e+hCabMQPY|Q^b=xdhL>*AzX)q$LX8*{>M=o* zW+gO5xEmm%G+2O;z^M?D-Ox7#rnU%sD(~Hbu#4yuilyCRzJr{+e&-iDUbj7kMD-9( zGktWj?(EED$xE&rscU=>i@zF_D2I;OEBq1c0v!nOyP@(6{P8zp&8`grfE-G4(fMlE z{h5B({&qp2LIxCVW=c3>1wyhA_sQz1*G5T#Yhw#-jA-NNuT z{M!}>m+-0cy;yVX7~OZmJi@UrB`SZf;=oa4-GLP~65VOI(ckESYRHOPst24QjaYS$ zI0?t@yBgUpg2>IjdE6sZVZ@(l_$WbtH2J0h3hY*=60nWYvFG$3FWlwNQEW5@ zg|k0dqQ&&*POon3S&>|wn2Hd%DBj->g(q3784u3>RM{WJ$yPVv#^Oac28yDXVojP(OML8j1)Gcx% z)g5@v4%EB9_Q*K_zxZSn? zQuKS7!^Xk+qAOmsT?(xGeZJRX(TPA`bbb1M?Z+i*wAARZ%}3c@4qHBtf7*=@YM+}; zO;edezW_H+bAs=x-sjc^W5e(d7aLIwI*r>Oua~ipEmcup?b(-(0qTEdOFt&_huiG} zpV05^nrp(gX(QCLBj(ckh}SXQ-tTn{I2kErixvFfn#|(G0!IG3-gUTQ&|*97+Ri!N z-nTyab(iG7N(CJW0g`PlM4$)y6iLW8Y$eM17&=xaMndLI5g$z{yhbj;bPAEiBUp;a z(n{(uAKD${Gsw#J!mkst&ZhSpV|U>k5=UB#)486 z^Bs_^q<;4+{f~k|T=p&orafkMtT1@K%+q5k1SE@z_KgM$^8F#2+TTg#j7-CSGy1J0 zX)`%d-<)Yk$iRb-2VuE-dOB)eUJ8>e1)YY75;N6EdFzS>e}{H6f3N5*bJ3#gY!xEI zG-Hm?z(PO$VAROuaiKNq_XN_yGBO^3&c7#McO47dPoclC2ceuDC-PrNy=!2PyqB2s zMlSIAJoT70@-blWCjNCjp9VQQ1L&&TQSIIP@TN~3R>(}?yFSjkV!rwoAbX|Xt@DG__h{Ab$IZqv8e+A2m*fRe0$FM_S?w`leU;qQ4)I0h061h#e!co~@pYElX2e(j16-T`b2{i57_yMT|Spse{? zW7j~_UzK1 zUCed+-SsU)ply8aTG1%EJP6K92@sBDu9~)Bq`RqcYS1G8UZl0Rj$X|`%NVJn#tf^f z$Mfo!%QZI3&>>XxMm){F+s$4QDCf1hCXSMNsY&bU==&F+hK15)q~O1lYrSWYGdrCZDq%aQ{R+Ai?S1)$;#i$^q;>NXLv%!c8k;(v?X zD!=2NNKCl`0T&;EpSfAGf1PFMoI7vJ9I+EDgxByfTyt&rzc|dWA9U+_)$_hd%;{%e z(ha&jnlb^_RgSB~(EqC|U$|alBy@l=+}+nz{3^h)@$mY-kd`|JZ&7{$)jsFePe9Ud z^ufVFvs}){U9scm`y((_^8~tioBe3B`3ot&m*RDF6WC|~{BwW+Lb>zL^&^2W&aUSP zfd3ajSOTa}R)4-!4+(RAJlKD7JTSupzS<7CxqiIOt5B}v!6U)XXLkxpz}wR2ive(# zYA1W(x&8~>z@GX9-};`Kjj*3aH97+gKJN{NfZEWk+B8Cdc4a6K(@A9SwYKJPJHcrJ zEZe%CGrA(SfVGA0=L8bVceuh0mV*&|)ADa|PnHYFM{FoDF;Q1S+?d)b^#SP+R_tiy z)%zVJ3g*h+nA#2N=*jG_*Smu~$mZ6|Ail-A2mjEXLl8okkb^Jg44Bo#llCBeaEhD# z0L3w`@X79ws?`;^?*z@`bj{z!09(u=j%Im5u~WwM6B6O0c5c-}fSHIhcC3m)hFT}U zqgix1voVAh3IC2t5CEZvJcUm!HS9T-KbLTb$y9e*3c>_AK)kqePamf`hm_zaIDE0q zVSByKa~s#N!c({9Mv_mNRYDiV^9{Kh4z0t5soY^Rzoq>hXUW^+;EjZG+`}+B4=4%) zKQl21PM}|$GRMaax4je~mke?g44}=>Srw*Y7SH_$2p3376}5q7#K9r#&tfJ4Cwkk4 z`XY6IMjNf#avvWh1N2xL-YkI(JRl8_F98E)phu*L&h*UG*1* zlyBIBM_Q9Iu<-pmcJ#|1kA9y!9r6F<3_HSyXqBRn2GP!>t-0RCx+v7 zyAUgw>Hfl(d%vF<3<0SgVG$89a&mHovpUHk!24W3>nzY^kN+|B`9#!wJITw;&K|;Q zKKZ}66FETY`%>(O3rI1K`Sok(OL!Ex3P8%$q~8^MFa8V$cE*++s_?ZQ?jMI+zR}3O z=S1Cz7vS8;mEXQg_r>=?Bj!jn&qLB&Zz?`b{ef}?+52Ae^ALYEfM(xjC3 z&x0Qjk+YPyK^Y&CR}{SX3=1vN5`3Re2>9xNt%q>q+KV z@PiJ%Wcy0owd{Ti$$x>}w@T(nTV)?Xc2GB8jVy;%ZJF(vRN;$OY@>`=Pn zqq=+cV)nuf{Wl>Ye4=)d;R-S|h!ECl5#bf1Hn)Ct(T z3Pifp{4&<Hh5p> z1Zlx|eWX_rXvZCw)BG2c3A^E(MQQimaEy#t-s=VdFJOlP6-nH>;=`4CYRR0DUj8}c zd-Ipe3}Avdb$M)cqo;g7$WotfxH1sBlf-HdU?hZKfL z(EA1X*?T#w?n-TXG>Ij_=>&H_jKy27-Gh>XO zfDb!%ZHOTH9aFIsCGklabnui*8Dz<< zlxXNIi#6!p8iaJ1uE{&wW6=Y?!HxI?^45Z>{j--AIbXB7&*C|kJuHU_V(-`t1My5R zIO>gTU6&c8b~!&*oC_Ly9dlr`f?%t>h7?XZ#E8X)d8#)?%C%-X)MWuXwvqE|sKe!k z|L<73<{Ec6dxKc@)tGdQ=YA7&TLG)5l%i(x+8wKMIrnuEtnKlt9X`>`_b3N~*B4h) z4{T*CVG2s0Dk59c!M$F<-!0XeK_PpP zk{hHRw!7ul@Msc@*NuEiIE;99d5Y;eB-{fPBP}{RV=2)PA^a~mhYun4+927SUao5j zJ66Eoq38Ex*cs5}YiH6FD21L>5mzt;nObK=O3>;0y3{HVxuiP+Y^Cs$`(~ zSrSn|MoM4+y~Hku!qz%3P;DjEfmvK|H@#<`#c)0!cJxgCzvO!{r|N2_=gK3svV}ZM z;j;`G@J4yV(AO#{ZHl2ex6M)xP=Fy;o0w~_=&H4uVnLVj>2^yEl({1x~~9-#Y>g;REK>>l{>&nd`w{^p zg4J`dM%pJ3^am(l^V_ewIiESU=*rd=dH7ntGm3rKFkz`EB`(j5gZA>)7%9AplBJclH04EuR!6vfi&Tu!oL>9n0{A z`UD#jw3dh3<6d8Ff&XQ1F&@tFDf1(D{xLBw4f~EoP#tTKqsgCRRpe>$4Qu0YE#+ZLRgv~;PM7Zk{(SdEBGofVo3cq=?;TH8bbRz;5qrHR+np^nug?41 z3n#czgdid>fNx7rm3-Cgjmw0HMgf$<{AR?P=s(jdlEfBD6uSS!n6+C3BaLR#JmqNd@_4e7un<%2}Q<*$b)_tVx{nQfFB z*ONxYJ7yovYewdh<=~pk^CS~V#m^QQ9>bVj2^4RRVZn`I@SPckNCe;q(p(!BM-qI86A1<-;>3r zKYCT{O+gH+e`*d9g(Dvw#-sfs-y0Df2|}0qEvb_W8D&cIET%bMaEbav{LK~<$zRQh zzN&*URbuh7)*n}xDRQtF)o8n+cQF*oL|2CR z^%6uE`|@=CdWMZF9m-xuZeT0XbEbj~qKNfEFCIN|0y+Ln5qBEyYvd4#z7`SuLn)yM zZeRoMj3ib+Y|6Dn3|p$}ul_I;QR{2sS`hIdmW(09V#X9D@)jHnCTl-(3RtM=6KZ!2 zv|K@xz44X_bWl%(1U53bK)@vg4k&#$!%RLaX-!l|L?en;t`9)n?A=cH1@%vOA#P}n zHB9mt+30VcABC|qQYK3Ga`ee5t?I|>O&L6^!eoFX3nNC?)^O_x_# z=_SJw7r`7_pUTRgL5=jXZ-}f4jX}tLq}~&4KPyTB2rYqqzkhGyOQty;pchR)L-za~s^+@0Uj`EnOs` z(?-iYOlYZ?R81XH{GWp6$(HK%ww9*`dWGi)l0jlM1+Dj=m-^E@SUGalH##~=D~``c48 z`ng1M5S(?9x1i2iS8t8WU$p7Wl$WH*pFZjZuf_q&ti!M=tF;e;tUAQ9wC(<5mY(pf z`;CV=cHO$VkT@wtCAWc9cO)t)qbwsl_nKz}q6oji25kSdUwxNJBwSxksdl+{BB>>n zIrwqN*^i9En5h2oA6@4Z7+1SS;hEUBjmAkE+h&ta%*M7Gqp{6~jnmk+ZQD-T=uH0m zb3K{4$o}@;FV=e2FJvdcsJ+k~MYV^PiLP0}L4q0e-tp(}7h;a;Ls`FVTeO*CS`3uX z8pviUe-~`jHBI1eE!h1efdZ}j3J%$OzY5-`N+kzn@YCZVOez^eSGgIkcsk~zNIFw- zC)u^pu|t*9sbnOuLn?#SZhg=%S0=S)#bKH+|w(m_fXE+ zdYu_IETc9lAg{#j)PJq(f$(4_|C{y)XOb(-w4$z-KCbaQK)Q3cE)+Yhp1(R6W@v-# znw5eKHWL3c>qMdOR-gnBgFR4qQSRBAg?qZE$?<)Q9TM$r6y-F@*g6@>1nfYD2&uSb z_apmbwDKeNSgO~=o+wJpl^B@JTcC5ZT9$Ac=+9IhSIHb!KFR(Sqg*SO-4WiR6$HQI zb7GY1yFV8XWoL{N*a7t|RL?~E+!~lW9+(lUqX<}e*0t8w8r8z6Jy`>U~yl*bwM`LDW2vlTy#eQDpV{O>SBzhje6 zBU`bFa?`@fLb);`{O_dHJ=}>hNY`RPhNo>%_SOi4L~95<;8<unoUGeiC zjgI(ud{{0~L6?H-3Rtgzt59(j>+M6ns2G`Nha^%x$(spqm=O@v4B4bcKZUHm zFx~dJJ1|bIej>V5+nnTQF9})m?JyAkLuASAob|cnD`4cO6+gCP!2qe`=@pvTOPIma zfi47|0AnqCNq5}_@r?nG;mBrXW{l@+n{l(oQ5dT&%w9A{*jm^A@mH@TxkDO8K@FLN zFn)|o-b$xkXSS)Bvy<3wBnd*eZ2ehsLD)z9E<+mIW6cEcFyK|Ow&2*cQGW2*w}X3g zb2(_?Cd~+b%A=EL?F?ATC0yi|so56e*Qrs8-=hplKWqqI!|ioah^vzqozP8*EOkAr z#QWs1Ei*9RX8fJCA!ja@`T#f~%c~Th7Q0Oq#;X>Sw4hYefQ0%x{wjWFx5~fD_XYI7 zFgE}5;vf$d|292|tX<`)O3D0izvSS5S+@7fM~!t336S&`!Er=|^*A6E8OGJ1jen)Z1f|D%xtD{;L-&S02Raa4t>jVyn}DE?7^%=(5EO z%eH;eK)>RG*q^>R`#s}qbna61iKL2h+iFSWg{^9ArR1O0$}_}gsA+bzh1TjS7C-~^ zd)i-64>`E%7NIz$E#pETvw)Bg&&4Kmwqkm8k0c=hz({~Di$t|JV&0R*^f*|cPM-{z zP}e!f(F{cbypV&$vmsXe<1DCvU!1F%Na)1%JaQmwjTw~70zejY0v1DPd@u5x?Nf4moYh{atU`zj<~P!T z5oK{2+FAF~Ct^?;aUxbIk>}GppFNb($N!aF{B`y>4x<=;Xi4mB?NLuxW%e5L6Ts-w zm7ACzwvS9>KjW)}C{0Y@O;^favtUz&xaD2zPmeB8!8CE^n^Nc@O1NJC*G923K;Xo$ z`<*6Z;FRibBJGn)DSYj&)&<1X8ov_lBy-x#R^MmtW9-Upzk;ogA$(DEygWyP91UvkFnCuiVY5L%@C$ag&9hD;x#@$ z0A5sSzUQBj7_(h>y2y$os>_P{%404xp_a@UL3A-UpDF0z0Cnk+Qp?)pcv-nM8r*mA z**;Bp#cJTK1mo`Pw>m@pm?p|o!PcL_YAE1(z1|0FAX*w`>LmBx&CKXWyCVredD*z2 zV&=43qc#}kWj3l$6lR=4tVWrc;?$5q4r1r{41$~OS`-TLJd6k*e}*CKDwiFv0!6bn zEI6V?)8%kHYg7a|#G+|~t4ThtxsoXHn+HHV?mAsACQ z+dfWjCZwwu++mwb|vDvp4!4?#BDHY)~z@Wp*>kRiR@jS5Mz(QBAUU4;~vy& ziU{u3V3Au|5PTFdq4|9rzCZ)9cv&z+z{st#4VxF6Z4M~r^*iy97z|Nb9N98#*KtqkZ1b#wH@Ko`<{n& zs|U_RMVy3rn2-+2Ov?0ZyY)s2wD*&6?g*}=9{-h4kG)`Psq6Sr;vRwE#D zbb}RXahLh14W+sv=xW)C6$!FDz25RBv>Jwy*^i0&_WS~~%l~L;hR60^_qUT~{Aplt zhu}Zmvfh1xo4a{ zPaUzNlvqihSX#a1UmgTtHjT|2MV|ym(N0T$T2872V~p?*^@k55`Z_rt zc^aFgA@>uA_v_zmG5%U;gtwi@vM7WkS&849rHEp=VvEShgfeO;TJ%pKeLjh)cX)yK zt@>luo(<-z!Buu7W74@C><=Z#5MK(Fpz0H+P!2L}FaK&I`h;I8@2Q1~aG1?x^j)Px zF@0^~%xds(Tu?i4h;_PXGTyL*snO5_Xww>3|M@XOnT{+}C1qAMu$%c9_8V`b&%%aQ zNP*WN#cfp=$rl^a_tv6d$ zr3>4?giax(L4GK|yzfu(U61Z1+W5Q>6k8A6G-yv$G~J)jrz8qFVHZ8_1Ywpnb0=Dw3EwXLmk)&BoE0G%l%vN^|o6JZ&RIUb%n!U6rx- z7L>^aV9Zt;%9rN^_l@t=MW=NWtTbgBNz2w80+koGsQO4C#-BCN+1DbE!q+dj zXi_3y@e-z?u1= zs=f4O&5Y}_zXy5hA%*o=@k7}q^yyPgrg(5$=OV>XTN4c#14o3 zYgw6AHsY|Eaw?5KDSCr#iUoWOEiw@l4-Q%ohA#H1*gUqLAV2kEw>ZXFmnz`ni%?7HNzMN*ez~~X3OVp z6Oz>%-WZw*8#m>n93-iOKv#(B=p0$n!_#0gu*E)nfxauh)H5>tddjL7O$h1(b?nDV zR+_$G;mHNjYf?I)O5JrMI4Gn2#ebuZ+s;xuR0Q67CBCQ;q3qb@u}-f<6%qdvdGzEo znz3PcicF2Q4Wjo<3e=zlB!t?m$~{H5^qR+nnN}f%!xC&D8jE65rZURkd_R9lt$+f6NB4VWS(#X za>WPCw`7!w6fD@F3gye1QQw&0B zbf+Vjk`V&?^sZ#&{c~jWqj^Y{wHtkS?eJ9%Z9e7Q!apb&DV2=NjL^<6O{J-vhpful zXHF-GgU}#{>M_hHlpn}?((2;PuzA{FGCT|)tTLnmp3w}59mc3TAkj9)Yq83P#_~&s z$cNh*ha5fA#1U1?D^aEQ=^KpY9ILm7vcdiVdR8zo2Je)-<8|V2gNmXeGXxOvdeczu zgzW)0l%-2zaViCJ5f@qK3R8FIh^0-MB9B2ERj%m!ZB20p|1yMIYadJ-djn0Z8C&7m zSmh!wC>0WI|3Fce!8D5=8y<}y61#8p{8Ld^cZhm3CDw4L4_|sQ%AzKbzXe)OoYnHZ~(U1V#vqxR=r>&mkyMaAxvdlBU%FJtZ>9K=0zqrd#bxoU*gbg*JHG-vmEwd&ncvCsB0FD4 zkpWC>4=q^t-{1VTW9lD7!>WHz6ZMUhQF3`i9NrXQ-1ughh?==9q8s@}c0D4c;smNo z^8%CL5bFqGWEZwn!$jciHzk~KS;^EYl0CExo2?DengNM2apFJ4a>zc*Sn?7NVHhW2 zJ&JYuFOcy*-lJ{vdjyfa>CrO19tTrdQWGC#9%#8vTX()ppXVqFgCTlkk^^KxOLRq( z#A|w84KxLdA-0w#k2FE-z(cBR8OL~Rh5UJ3m&k{WL>n$_wVRGy>(x8 zSE`3#rkoTpBHWINxT6rwLD(AWN(M;{-@F7}r0{FB6poMSD`m_JLI9sR$@rIx25aRf zlG)RcFMUlNXTNIF_0Bs;_Odv_k~A_I!bUu+F1e{v&=AAgywGjcnaNWmHgJMK7grUc zaI^4gwk6_O5r>S?X$`1+H%nA*TJ6%+vVQYN{%prbC->#}qOB;7Yb-C1xf=}5;-9j8 zQ!bRK2YB&=zsLE**qq!ZJnq|^KA`4fF8GsDp2kas`S7CRd~&u$y8kZh{p!15xPGev zUt>v(W6^i-%)3KImKy-NC-2EqqCn*%CmQxjiH3{t>DB>r86XP6Kr9SblJHl;+0@K{ z(_uMdFn5zO`EkIHO=c6aPh-Pn?j9aPD1M3O%L=U;0pm{u@X; zizYHGhgmuvD#v-Rgb0TJs;Q_DjhKdqkjLY`&x|n&&*wBXuR%`itkg8ZH3y^p=gkx$oClFb9%VRejB^Z8L_71E8V+p3DjCj)fMI^ z*w5xoAWto!d3}<5!>>+)m;#^u9ATGqIE{}LYB0dyetPyb8v=pXxe+uMqZo(L%{_69 z?AF!K)h!17`wNK(w`NG?^N^8qNOJ?XOc{p4)h+SVDbZqTd+JG8a3vasWnHh{s}gC_ zuxWRBN?Q%|CBp`|y+?$GU8e*qz(0mGHmXmDFfjV!#e_@4LEPWC%0WNZ!{8#4DPF!s z*k!82?Rp~kKrC4d%N=1luYTr#VMTnvXA)_T|jur2f9aOBs zz+5qsKfh||j?ga>2MJ>Y`ym7&b4^GU9G{Aa`mb?)#~sJNcHzE;rZbUqM$^uZN0Gkayp6>{hz|0|OLks7EkYVL=C^nUCAm$pKa!9zwx;*p(UIxnUgdh@8d1X+| zuOG8J$pq;1BXw}H-ytl;v!W0FIffp3kxN>_NdA^qxJN9}Xl|a(9E+X{%HY~|@HhX` z`l@jmG0_ZOg@mqpQZOH$d&rj&CQaT7gxtW*>vQogewL9B^Rft4do*#t|3EC`ZlYhB zjZ0veX7`Qt(ryu--fW@sHA1XnVT2Lo%!n6a9&Puvk zUdfcp@(r}RHu({q?2r%C)%ZL2Xr6wgycc6qf7KoYj{4QR5e+vh~HtsL} z3a-I}4&9d}{L)4WQcli1utXqNA62nF`F<+kiESekk>43x(vILyEs*qGa&}-5UQoz8 z4x;-Spkw29gy}9FR;`Az3i7Yg@{@9lA;pb`C*l(TM>R}aBrrGlGdDZksHs?H-Lm+qb=Y?<}?1JSxu z8O;ia_YgvfW3M$+P+I+V1O18Is~K;@`K|JLA$V7tmcjs=IYyz_;{y)V@gypw50;NHC%BSfM-VORAGul zTUonvt}v}f{TA-DMER!ibh5e+ya9kwDn7Xz6Ny>=kp>`sy;dW3&!_?COk4uOp)+4-b~9k<&=G|pEL559CcyS7VSdsZ>;=uz2dX{ zQUA?kbayI$CVo(yxnR`v8!Nh?d>Q;ep4J{fwNgey?QCw%J;9#^|T zbLj#WPbe1It1^4kj_yaERjXmHpmx`qMTlacfu~(4EGw^ye8qK1bhMdfd24)Ur%zua}!>K2TA2MY0;_-qd-z+CHcE@50TIFyt# z$0PkN-apIykM6Oq_4AAFA3D(-eKnHQG-T5Le;6@3-`LSBk(qkIkf#6AM9ioF6cI}N zuO4XLzDU2?C+b-#5)$HqQJ#{ye~5gF}~MQR$sOi?HpYa50;h zE=+gl_$8Lm4id2?TxnGKWUmC?@iamhDYSUG1=eImX$ES>ZW9`UbnnDx_^*EsO?SZ2 z3eDC(GE8GutGMs-N4qb=a$yyLYQqlF43{pIWxT$go?lMHXHotpY!1k$!QxF@a4-eJ z8pKYd#FVWVvE3`?m)i2`$!D1(&vp$Mvnk)(XsD zArc2)u>4iNY}e|D7mBxoc_4sv^4^m!l_0kTi(;?19lZ-gg@~;=c-(9=`eO_`u8u)g zuTKC)hxIzW&2rL`&nG}$oNy}rVUP9&Snua|81544r2N%g_S)q?B)@;5hziB{Nd_L4 zFu4<30kVAjXi2W8ERrcPGCNq2 zQ&ZV%+*i7Hj$c>@S|oDyQY1qXtqFL}!6Ow{`k>31F+Qv(m=*=d1xH-h(x`!%uEwHJ zQfpg4j3H|*ITbjph&sUHHdv&V^GftJT(2a9QeydAdg92yTU|uZ1(Ze z9B86r@>g&)R()Q!H7*zGTqDd#CXvm@*NI7i3S3}j8!?@>K25XEDsEJW){;uYIgrTn znRUj2!oTOY>Mh~W-l_=pu~VGu?~u?pyy1+c{?{2qIEkmbTWaufIdvq4A|(-V#Ozll z<9h57k5Yn-Rxxm1BLNZ~3&DY>Ke8NSZ;EoY9{hsH4w<;;WMq&Mx=&96FNRh-2B&Nz zf}J#nW773}5C8qW)nID5xsM^1X}mO|*VPaF2Y=ZptTFKGed!{j>X7Y4yNDm4ACaMzN#Nm}N-g2Xq@iPbJ_ zrr6TS#&|Sgc{NKz7JHikXwQ(K7>d(svcW#qCKnL(xRG|EPz)NRU)?`_>W236K4C$6 zjhKE9xUgVho;~i3=$n~#q2DP1{CDYwDx0)qLaDNyZliUY`j7S^!dnd(Rv92fvRJnc z%kI-+4_tBD7=x3r`(UW1xSDMKe}4ffqs4k+#n&n5qeU>W;`a$ZOBO*@r1zrXDDoj( z5K5jQ?4I*w=7j9@IGb&*y;B78GahD}#pEGPYadM-TuArM1PBxkq>k-^(V5aQH$QAc z?R@c9ld196k*4;mL(!7@>Cam4soT-8(*0XwM?|N{h6aYb$70+eHOMy!-kJmoU4v<$ zoeWHAQw-~G_E^{+r|J{7rdHJSg{{UIe9oio7hcfH9F`NN8B9ip1xyvjv6b)}{RywG zB*upsJ^2zxb7KTxI;>zGlBVM$)qxbwyv#jJ8EsQ=*1}CegFL-Wr_7B9t2;p2)U5K9dW-RUd2CBMTk;2B zB9#2c-Q!0V?Es4#8)>(MWs(z9TMYYc6Mt}U(E@v67z8QwQ{#R+=jlZvzHWie1o0siN$`iehxA4U%g!dKMv~fqU zNoc1KNXIw0dI3SS7=ty&?B(%W3Q^w2u!ISI_apyNlRh37j1g0DJ9q>YySW(QQAV*b zt+J6oMR$b=;53$PuKOsO1r(8TnEKxv7j*>+zeH<_7r+DliZvFohRnH4ka60u^N-RBrMCVU86+tH0uzj~V>YzP4=^uB$p?jv(xTb? z)ZLY>gWwKjY!JR*U>C9P7gnr$yqN;A7)aX8ap;mk~COwADs!i{vt9$Pk}v zJ0w{mzg$TH-d5jI_%~D7QdH+E3s4%`>0K`_W^}^6M%-b1RE29-$GuOiC2$YhYZ{gD zC;-WbSg%UGDMlyXOlw&^Lq6=64=)3oU!*g{k;qSfolEo;pBCl1pZxhb>hA3~VdGRi z5J~i?6L)|XNB?+eL=x}CqhpDD-03OU6*$!(5LpZ!>hHx(My48+Qv6>)QCcfOWxez%nase=R24^)^6Ql+H3mEWBqe;uVD;1D zArO$zSzY#nJgDDIxxG3P-1`#W-1YixU{Q>Q?c8fodm+!M?=)<9JIBHs3PG$*(%yPjwr}*itnf4Evys`w)yRf13^mk5nuYu6 zG?}^|Y1xEDgn>(5tm;Vjr1s`t5T_wF^i~<~eT;3!E?D|Ce1g=eRv+uBJSBq|e7egD zptRI``j6@?{BSk&am5>BMn)+LDof+;o*g13q2}NL#Z74ZBTo8HYP#IBIH=?;G%j}p zMmigYMtz9gT5B$>wQ#GiRfIr5xp!5#)SDpB0XLLa zRc-ZcKTx_`e98WLev+f@gsI0dEqW-?PXcG$d+@IeK3*h6?+zPcQt4-v;pD|p3t;KW+RKPZ=+0(pmOI4R98U*JEk=Uav;TF4@R5^t z?1>Q1P3Ty37EFdNaG4FBof`V>%BNZqbNkO>7q9P6Jj{rmCR6Rq=yy~!BJChHwTW1t z1895FETy%|D5>qDcECoBr=yI*>W+F*ET?#jw#5U?kwTD%vs6eD-Oq+gHZ0lCC<}2x zpHZGemgX_Mp*_%##0{b&J3!O_B8)knS6FS5Z$RYH#W33>QDPROAZ=*H9D5GIsK+z6 zDT`ok7m90lb{?C2)i3N&*GqA>A=c{P?#lX)(R*i0u!&=dD>j9FjD;iVzU39dEJZ1R zq@QBE30rNH9@E5^3*y+T)bvH3uIRzo>XcOK#Mqydy*_x9kE6SD>c2%1Di6=|egG*#>FxFKZEDQpxM ze1E_TGeQ`*0l+7Q?Ary*vL~`ZszC&87nt}^jfC}{b1ICYJE#QblWHZ$`jG7hK2l)i zKA@|~k(UPN4Kfs1(5pR?$8oL-=OxZ-j?Zc)>-XJY&lz$*p=+cZ*^fHUN)9JLozx5^ z1$^+TA7cDnyuoAKo@Z;{coGEE2z*<(yS;J3Mw8Sg{iiz>` z?trU6`B>O@XUM2xt!m%5LNe{D?z!W^tC7whSWfzyqTmyIk@C;}f*0U<9?`W%!<+Mj z*>w>(0F`=lxrLUo(k;HrY3t zKmrj}r&l<)MZYj4tJxu{MH`@N_`60$FFKg;Gj)8!I$owwZ5olH#{BE+fnU(mK(i*m zI}#jEP$tC`IUP1Wj1eyOT+?98lD>h!LhwbzFfg93fSpa5gQjbOKe+|E_8G0m2zu_Z z3rESXF4{>`f|ewp<9Km{f`*#g1qU!}eZFmtda#47|a=1ruGZeYY%M^dWBo6c7 znqcZUAR2c&$Ciw{w2e|Wm+-A)DsmBq6rF7j^v8sPk-{t3KUgEd&^aI%FE|V3m$X3z z@B3H-Ac+m}DJGK)&`2eFHx_H#wo$Z#vlUd}ApM+_#Av~oY))h^j%HO%WN^a- zD>72}q}>+)IC5sY-hv+!lD`^5#j|~;6+~cJ4ZjXG+kOwvA}9%SEOXH&xn*+|!^qaM zg}rG|XPy3?Q6gV&z(X!iE8b|4+sv4+bYmu>0MpqN9z_0=}- z*P8?|x~L{wj3RC=Bh?-BX{mx2ss$#7{9Xt=;+9gasxLg-4VO3jLTOGmMIn zdJcnrAvpxRScmDSOa?A-S|jN;LPFdf0~crD4+wx z>K!GS{Tg2qWMUz`{@yzIbcOLkQDd>E;q5vGo!l89|7!oaW?_n=j`@;o!n}SrnKN(~ZSG3z=?)f4}L@7=PwW)noQ{{=m2Tt^Js>=8+ z$7TKt6I!z-6){j5FRmz!9dh)He`K{PL_G^eQ-Bn=7gble7f|%rLl^0%Atfx~0}-dU z4CQ*EG$PmzS)dc3!tDP=n@keRcSU}PoPMP`-ycsF+Sj@Os%6n%*Gbq4xjK2!Ol#rE z=(CG3t+w`Pe4zqp844V5`UodGeJR=>Q&9;XLgCb>ES=|eE0f$e3teyqZx))v-B?z; zCyNJ%NiQUqTh5utJQ*cm>QsqMN1N*ZOd{Kj07-0NI=7OWx;~d|d<|q%gNdN}6#jk` zb_K`tlXihkykI#WuL`Kx91-_BfnsG2ZuiK8@(Us57szO_W>{p78m-m1{dQ$``(CDF zP4w2(F$zt^Fxm02Kqt7eit4t}ct(+b$l=~Rrha88yxdL{9wEsRtZX(i3yyj;n%e8< zA@sw^XRnek%qjPAS0=+LWIYrF#Vm1(hV9Wm7L8_Lx+qWwIsI7tf~LVAe3+&ck% z**I_jJebH~il6o0b>1Cq{e=?6ZvMF?}`W;Y|U8YvB3OaJP;z_3Ty~P1N&@KJ`ht&4N)1kE%2oO zrb6vcD;kS#Jg&N7|0BG85L*m2acrBmVP5X_-@p9qH_AK!vj`F1UOV3(-S4KQRG3q) z!RBG2A7F2!=kUe-;D>$)eoNPlAwUZ{5pV4$jW#JFCE2$PDEF*884cjxPaiTb3Wi_R zZ{bdI&`VYPP^WV|A9orHR&BjhPt!($t7V!EW{G-pUv6{ixOOszG#I6A(kabw=a63sWs#{5@p5~7I*Mb-;`bO+ zY*4|8zJPgCrPxjzn2zG>ib$LA?#33L;^{cv-MqkqHI9aYY&a8^icFVC3k>O_;!|3P<#uFoiaCdN0QjQb8sJ;ILW6Z< z9tt2ujeJO|XppZ#G(My3?4@w<;rno~{M6zBzG~9V0h&-Qn7b!?hl7Utl_P^RtNzbDjch`}m zo|iyFTPj3rMRBc1e}jVmgFs%{Hmrcm|Fw$r!)L-4Pj2Ij+UNmsedo>7m0jlkELZ++ z_*>_M7j`fYU#>=812O)qNbF|*ogN%`>Sz&bC~>iNgEO9n)17RiF|uCxvu9F>c7; zV!p|hcA#oK?Vn)kHwDAf?CGNb)g_m4M&SWD!~(cPSt?nx71=$->8;=V$(amZ$}ME> zB-M&BtUkBeu&!rI{vVN0OPx8WOPyE2EL;Djp@GA`hHKlBKkU!BpFKj~AK%|LKQh<@K0pTU z{S11*0X!0~Gd7#FkR|?)##lHEKps(7%LpihVV4UG`Uad{9wmYLJi86x{`(1AxSWR6 z$qEOpbjoMXQ)H3ngdesb7Bg0);Rq=GV`x9-PhzOB^si$ZBNN@k(iN?!1q}w3BkCM9 zmvioTc|$)>L~jEddKabT&2(=aA#$fr-7f7Q*`BswcjaGN9{aCn;m}~ClyO_^NfT5b z$Jxg7W>*_p@TR+yx4d5CL9hSFnsBEKCg`p1Kckr^oJzY#xNITM)OZ zR>vJH41Q7e2P9xmQ42015i(bw6bEb-L{P0~%r&b8$rRgCMpMui$T*tWt>~Dtg)x-c zCWQV@VrtXzOZy5Pb=wSlVo04Tv5qJREmxjz~bV9PTK>!f;`3xaX66Bjr zoJB9}cy2_=CU7rkBwkhMpTd6cPqZq@A)L@rv9vh<4icZ&zP*(RDH(YN!;*(?(`OM| z+Bgtj_RR3Sg4jgzH{}(L(~pB|DhI8E2+-n|LYuOD9%fo|Df>K*{rUoDiqLir(S>d~ zgc4TXra}dSz}Nv?RDnA*6k^^WFoiOzboa*<><_<5--kaR51{LjZ#VV$o!5k&{%&o% z#O{+`8<@qdHzN$Yn;n^^~k75nb*{*bWD15C)|hODIEygd-*;_nik zB8Az}l|4(zL%ktfz4PTbfd-PhTEHnz@$tiO@(LU{S;>S=a&Ww0v4}7TgbD{{Jrs5i zG@m-`FCuEywx%hE|KY7Z0bjZ<+(nB&iYCZ_r!y%l`!bb*Z|*22`P6bG%up1hS%_bV z9jl7X8xvla$!J@4TR5pssMR_V{%QV#_5U4_42#<%TORS7o_{B-_V~o9orKUC@fc>f z_Yse`qPkcDZwTLH_%bkypVY{F1CytMK0C*hlht$L`j2{c{R+v=3=nr?f`toA$Yk+3 zmNVzfXaXk(vJdJm{s)-N1Bc0h4Z*O04}9RqGo4L9AS$J8kNU$b;8jOMFOg^-Uw!WoO2mHIl8-77{yt5oQnuu0aSy}Yfvi|b6 zQ!_}?3ufmK4R%+(omA~izMW0lUu|_iJ*9NMe2sKF+5#HY$JMX?%xetuHMewXuhl0%O9ku{8s?I+w{dPWIK1riJU{k@ZQ+RsQ-?rT<4wKM_k}X7~)4n z-qWto+wRwN@GrhTfe|(yYtFL@Phd6)tSH>up3>W1Tw4$_xip)q?O0r1+7G5xd( zn+BTW%^coM370pRo~0q86*Ee)rb^v|BhNAzHco2q=|mxKUgqtaRPEugINsWbyx*IK z!RpAoD?-$Uq%b4G?LLci?a8cu>E06AwE2@#0_J`?6!?`deY(?KuB-`Ux^ zvCa~T236g=xkPDGe4Evyn?rYBvInPl!x7pJI0c~;nDnoV$n)+~@`UMeyXciAyyA_n z(w8|B(`ZZGo=I5427ih{TL@IdwJ+?q5nhmGM3%*%m$0MAlqJl|QU60aqqch7R;M+& z9x4pZt=@{H3Z9pG+w0YO3LP%OrnUe38#NcdH%oP5NveN;-nP&A$Y)ASY`Ad?^Ez{QX0 z+wWy0n0bX1+2lpBY+X|Mx2=72L!sD!uXnUP_($cb*RogT(C%p8K!F854Zc(q&Ho!l? z1?2Z@$^O$jlA7Z*I-VD8z>_3_21H4qd7j!M^&8Q7p~qJA?rgN!Ak1C}r8dPrj|GLM zlwSeZlilY>gG$T{i6;n&`PY^HxL zxd#eJ0i^2@m%S7QWZOiL>X^T0{jGonQ?H)w!SFvrFeKOfGr`kLN=H!DkJr9%1k-66VSity6 zZto}7w-4G7fSc`oUjJ1c{0A>6t`}?J>#c6PyQJ^jfWE&-4i5jVe*~R?1H*vtYn!Zv zFeNGg#y)cU?bNm6PX#{Uy{$_gYGwu)b&~tdHiBf0x2~Mf{NqJOx8*1J9xAx>GF`5|L=QCn)z!SqPudG;P%NJ9)7bGt zm7f?7Y`fyk{hS^}LmOv@@nkSbyiYv2K!4GpAS?D+FhsL)^bs=Gc)pIIK@oRDD0^ga zUm}Yji;fzol>e}eE6d$%Jva>Ic^tedD8Z+=+nbMs<6^uVB%+Yo7lO)#oi#y*WA_+$ z2v0~5@s$NW=;sLDJL$i!9nljsHl&S)5gjMRZytMGyn16Ua=4s2Ag@7@!Gt00t9aIt zw_{26+&hRa_NGj_-%a+V2^7GaFJM2qdGPbIo=@U4b~0E^r0t}WDbc5c;`-~K01TQ` zAeIO>AeXn_2VwNEQV=0l3m?2I_txJU1QLIcG4 zZspPTrCAhx$-RMZOZgZ1UKG>}*my%{Pt{3Y(BgGtXZfPSokO;R>dc?KknlLLZH`=) zi!aU||6I&}71bfRS4oqFxdJCyJ``sn1QY*N!}$Y{>d3jURoCx*Mop)S`OBJBS0{!H zyJ16MUYSZK_y_7)dCJQbN?Hd=@)Dd?Daoty$#3KwQW}SclrL&)$>^r-AsS+K_p0+% z$1>Msy^Uj-1)(&$H==#iBkdzJ9*lG00z>dZ!8|K)IfVkoHj#c%(eq}Hx4^*XCoo~r zFE|()j3L_k2sj2)wG_b34&B7=2Z4<@3&nSr%NJ5kPVPT$CYa1+yxHO7kp5BAvMOMH z{5H4~vTeWD_(1mcE-fwHI;;wD{wFzZ=tSr}%#tN?htv!(P(x%|2pZ&lNwoly-t0dn9{VFxzE{LbvW!U0&x_ zwR*4v=-7L19>jnzYNkqPvdvxX3AIOi*=4vO!e#Fu<^e%Pm#dfox;^ph|I)BK;R=#7 zOK{W}5H89`&4c477ZAd6=JAMms2LV8hqZFRr(-ivC46|3>LL+9x*Yy{!~=Cb$5ood zbG%U-D7BifBGaqgCGPL$jDlRVb0P%K&T|oh<;29X!P3JG38sUysoNW-bDl8M=Hh%W zS=oh44Yi%x>u3lEZqofSi1zyzf1&G>tjdZ4kcQp>Pr<&LKD{PO`p@6;(}i2#*D4r{ zqQvTY8Pt8lyn&^HjMjkNp8j(r$cwtWlC><%bt`93JmEj~#c(W9*v)1;@Mjzbxcck* zF8_YmUt&+B;?%!hm+^g`$2kM0p~Hb;XjCtx{!`2q=gb*J+j|)u zNm*dW%NGz$*>$5dm$adi66C%56rmnQW7?Jf^B-hmPa@|*4H9fNg2bhSTl-EgUWu^& zNX!bJ>oK*axdX$Us&rXt&Cf$H@qTDyh-|(l_=u36DJu?15#g;xB6e*EsT*;1l+8Xe zh^CFc*MzA*mSTJeM}wL`@T?wi_O|ON>|aRq16|hZL_{#Pva!yWnyUW=lio4jz6H`e ztO*R@qApUr{;rBMm2nYAIg6^oZwv-OOpEbt_IB3!HNIMA+GIsflaa&qiSti6%JG=u@x zb~AAkdCmm3iBti0C$doHIO^JPV^bb!o8-hMLtvX zQ2T~Y0}f#uf>8Z%(kfYY=^A02QZ++VOD+L)eef z1y?T1NS@$PUCGeY2o;GfH+4DY%MW}Mra%Ii5>5FNQ0&$b$*U+l;<>R5w@EYOY(lF0 zy-;xbr6G8zyvtjxw##3BedHRHNQI8}iGxFeQ^zYi5K2&7lKdJWd%wNq&{Q@rJO{R*CN!{D!HkAz~Ek!@jen;dEw zFrd0ANH+f3wO{;EC=lvywbYy=wS+lY%?pXpbrmhnyzvk~0+Mj4OsiGZnl4w6Z+Zbd zd|@EtYq$Xxh##m_2UB>J~B3VR|N^As~u zZEoz4>{1x#ljV(!tq+9x@yz3xWm)|KAa9G-OP6U$C{|%gB?B=41@r#RzXGaF1~lA^ zRPZ>y+iG$lcQri82ish;9tejVB^<4a$U{y{ILLofB#%8&z^z9C4CsA<^jt+0e%OEz z+I!6PCEa)H>Nw{vvJXhnA0v>qw_OLKmyng357^-TqOZnlGRLpCe4~}5Kg-pMbLON z(9lYdYqDO-)5L`kfWgNgU6pUYGNjTASmaMb1*1h|be|54jWhne_0J#8XMJFK3f86^ z%bgm4;_UPDg77hpH=lLJib$fDwy)q|%asj~+E11KhLZntu^MicAzD0`bOL$^)@Q{W ztpIJ5CHz;Rvc#&3a=rRa$fh*LM0F^GeLzwS_$l+riKp=(XZ<02^xFH22U%~XMi@?F zx(iq*lWP!lXB|Wowo)Cua2>T;U9AHH8yRXoHH~TDbELDx`uT697Wo;74q-d?rg+rw z@HRET<2ejSh#WFy2kJ|A2L2OvrusvTX%+<-z*K=BGu4jBw*1@@Yj-AesWj%qLTDntf-*H`By;o)oQc=QdemDEVyZP~ zYVgyRlXVb;ZFs_N74asG;RV%XJa13eNUk@G@rz5~FYOP6s@pEUiM83KE5vk84FV&g z)~gK+lh~-MY*pGJO|Lsu_UWD?jKi{2DQok_PngF`mOaBB0vwDaLl4|{k0jKtdtuC} zF@V7!?q8R%0H2btkAq%>rk|Y%|F^#*Ok+q}&q@Y{7LmAf;G)Evcoss`*uUtZBUmH1 z9q~%aLOvDa2n9$~Y8wF1x-;#nKr2B2#9+&V;F97BS|vxogAWF%kXYotm14(hQo)EE zLsVli53*9q+tsCBxi_PrVQZe?E2kSNXe!pM-VEz&@`eoB77zhojmPcnowNcN=%Ga+ zJzQpoWtXEz^APK=JRs`IP{QzO_cd1A(HclSyGx+(tA3l~LjRJFqUFgJkHUlV`=raZ zMdVsM34>&)8NC9z5tIooHjG^~8Onp_aO$~f(eldV1?QJQ(T~)UbDu;+jP{PiupI}f z0d#nO^&PvpSdy@59zR!(dV^UW{_1|~%|3pp+Qm z4gWul7sa#D6|xpJa$wnENH0=)%O$KKn@n27b^EPhM2gd-rXZagdk?CuQ8 zX1sM59b`e?Z82&CKyH&cv-{Tz*S3)Krv!Vj%$v^FQj|!Z021E!!oS^in4YB*xTtQR z`VRXcq4vHz7&phOTMl)cWnt5yxS;}}#CD|oU_ z=S1}u_OWYG+*C^G&96iBbLr-t+9!4nSU4mq(JbxYs_ZkEh@ezg?L-#Xv3xPT;thoM zx(V&XmYM0S_aQ83fLOSsu~+AT6?SzE90Gdru)=(UWA)LqnVLs$Phgu3VmnttcNQy`&qw6srqLLm`X;3YeiP#QGWa= zIwu-70|7D5W3bwYG}moUtUrlHTrBW(ws+3pJ8J(9@2bd*9DaeqwtI)w&uWTX@{1E^ zLk5c;^&@D8;e4fs4xGpb$a}Qbfa7FvoYQgLK`IhQkcFZ|56F=;qCguHYNHN`8@L4V zZL&D&2Oub68DtEA;4E}jPv0i373*!8>^w~ZBxG8mh&oQw|KYkBP~y^s6L@Fm=O3i0 zJZ28aQiq=M?wa-mwmTJ15(4B=w%F7N+E>kO7v|6wm^g=*6Htq3Ivsm>(Owo$Yo5j6L5`isQHE){cq zH!f|=#gWzaHX_B7pnPaeKRA{Pgdy!C1Giv)o^b#Pj^Th7;kmf3Ij z`I0P3mbT3>?3$c1#B~O-Aw68x}S_&HFnlRRZ-A z(bKHZ*s!-%it94^-(`t(D6lP9IP9bGEY`X|=Oz=QEMhDTZL9ljCkH}B2qLu>d4XyH z1c=fj5G3=1R=Ubl&sUd}fJQk0HxBAFAhe77yLdVU5(eZ7#rMeBO`mm@KJuP5wp;gy^?xjl< zglte{M*T=x$Iz2JF%k%M6i*&(BG_OevID~F27^B}{PZDxbcx8}I{>8X5knAg_}~R7 zvh!X)SYv@WjQwvt-lj5)uj?jEdK=-o{^Z5&ODmu8MT->joh> z_;gXe^LultT+;jMF+HV-#8mYp$NU3-1SpUHj{LYi`VL?%g~XmXDvgt7g)mOcB0wzU z?bEBkI&U;vd=eoiAAKMBt=S7U)KWNgnsC-K@JE*Lb+TUL3-c2jnN4`d=17Iz-4R1y+YcePJscsMekh;O5bg4wb(wu@<{G&j z?P`_7hq=*29~EXQtD-?qMJ5XiK4zG5BoJB1^e!5W-1Ze!3;ruJmzLuLV)|Gm*dX18pG!Op;Y{a!CGD!BOrv zwW*V_<&pf)4CyRXo>2eff!s>LW1RQ*50{xFk^A+t!U zhQZa_|M&!0E8(WXWnn9`n>%*8BF5Du2c-O$ZH866J{3d7R#>ry{Y) zqSo)iz(uenB(vl9Iqyt0)Wmc|gl|kO3J>%7>c$^L7;5h4@kgYM+5LX>AAh$>unZjI z7{XTyNqX5@Pm>9mwqUO_62v(3FZuFhp{Tss>Ul^VxlvMCQ0trRaJQE<$VIkF`d@V^ECseZB7$%zahe)A zy+XM{c@;mR*v_jxaNV0rr=xDQ?xzaSkTUn5Ht^_-CN_|{{5c*b$uzognf}Jksl%La z{NP9A!4ws0gSz;pZ_)6Lw2A2hXDC7e(<8L7N*)Ga`)Fn8hrQzNdY;FlCU~+HEM%L3 zm{jg`nL9&&P3ykN30$yBuZdEY@)`FKpcGuuI`u9K5~1Y<3p#qKD+_Bd8w@%FNf5IC zH(`J-aEw-wUCWn+(f-6gU>0tTXPF*oo5cNOXGYQ?nYp4~cpUoPy(TCzKCMj@X&#=bw}i|V z+@ywDS51YZBgagfxp$tLv`g6vLo-OmI0g)fh;7AaG$NQxKG;Oj6?Rl&zoRblMz{`Hn4{e&vY%`TVop9=_!A9TMA2^8uEyUwBbr&5^q}abW-wk(Z^mk5U+NCKK_uI!pCkEp%5PH7YAgsNGJ1Gjpyso#a8%rG!_b z8-Kjz?joNjT3QFBBD3>PK4U14UJrq0fd5SbI)0_hdR|v7&`c-Q@#2}@T*r=|RbyZ~ zkJ0#27cPo>`6krY=6S#0jPSq2E58X2*Cuk?b}L|aY2=(IBFoC` zU^#W~3v#b5!f~VgiAQ3sRY+Y~NSZyINnrm~)-)S#Fu5VwAs2TQ|XjAzDD) zko(Jd$Pa*owycRmSLmC$pez3P4mvS!o{yZAU8v2lXE#~k$~H77Vh<2ZoVWUqhowDb zMNlwoEU#b<9$!rTNf)bn+wZJo8po0s#HnW6bH=yyEl(op8=gA0JjkzWUq}o-r^2az z^zmSoPZnr0XwE%X@`e_&7Xmtr-P?Qp^aD5!cmS#|Zej7LaQs(GIZ_ecq--*L&k7}p zVY1{-81r}QAf{YE1qGYRRS7mstGDq$ z3DP9|`ky*4C^Mr6zGA$dpQ(b>hCXm6u5idqD3y(;{8XI8AaiuOz{ur-i+8rMRX4SH zn#t_ORSOWT=V63Xno0d04;(${1?R8wl(daNTv^?4DGcISk+)=@j;!&cwCcR628g(BtaS($(>WFvF=?b8*nn6jh?Oc)G&B=iieH!PWM zDYq2!0RTe~8SGzwn5aMtQChxmfPA?n7r6}42@0&hD6HBS@0mu+9k#>G|Tf?nij(ZtceWXum4mRu(b-dVRz4d5B=sci+^CUh9;9 z%gyE*Xv3~sk=ZhEB3g$7zHv;AKhbuw_AF2H)>*QVD#36@p`kp85(GpkdkeD5kq4o; ziMq&AI}ReS&7vepp_p6L{Btts0 z8_d5XI^V-tg=i9*pbFy5o*0$FyIUgPi!iFdOp@~V*zv}%BuP8A7uxj#MgamOZ*Qet~%1A7q+My0%p0;Bh{+XL~Y|QPN&qMjH zG@0%Rj#84|91gyYGzu^5&yp9HIN%dXp580R?1dcAjTt5%NG72D^*+vKC6ZZ!`-``V zE>v;K6pa74rC{iaorLo{hl!!9i`ino6%miR1|;|bi3`Pq!6S2>9SkGEmOP_p+A^y?%-;6hUc~jSrtyA&n z@}e>SG@HuQBxTI3)C4xwgu)zhZV2uHSJiM3oL$<#_~J(GLcxHQDABSlI(nWE=9C#U z!@*_GVCs7u7YKKDOQVEd&t2?xx*XJcTA_A$EuYsNv zJnm(m^H-hNUFJ7}LQUCwHT`!fChd03<^7gFFe1wO6#gQ3-Fu>7{dk?MMKN;SX{Ag6 zHEDr#599*_Glh}uHWIO9kqFPSPC_-b>&3C0a#B&Wtg5`;qmUsbU(rXZI5|;&)I9>g zxS$}|I-y2(MSf}MtQB*w*6Tsp%?XRJz#K`7E~}Y9%Hv30SsfUA4&1sfAkn3K&yW|5 zqP1MZ*A|CMrt@4qb}t>~5mS8+uY{a$$9Sm=OHFW=SEhJUByLPOnWxE;Py8O7v@oFAj!8Z#ouK&`j~cRWI-psCyf7a~V(Dh*@q!X@T~#q&^lt`T~*;ammt)1lVC z-ArTU3_HAnd9KANkC#+VX^pTCX;b|Y?1N&?wAIoVH6!?JIRX&dxJV?KjlbB@aq)a0=jWbPwPMSeQrf>;t&6wF6%V@Mw!kt53iryr^`*t{g*3LjRc+MY8tCG@+Ll(Qm?l{0rKn7h#PfIa?SXf;p9cf0X7`y^A zH~2TZEj$=-2SIwHA7+&pQPUc8C1*;hR7IhMKTL(zl#aHmKP#O??t2^Dn)XDR8h7?z z)~<8YGQcnZjF}2?X?+o|MFfI}+rf zRn2;wv&bnaED^Zl3%jup6D{)hh*dxi3p&UOMQ~6|=%*99Dir^g+Wf5nZGdWgJ zFBH@)Sr;6QEHq1wNny$4@J88ffo@v#-HV1~e%Lt?275xe_G9 zGmt#gM?gms6#}5jZN8M4f_WG3Sp;^RA8l|>SJA)QRbn-_Xr%mc4#O5WGQ#3;HHEPY z#P=0t>`>2;%`QeA-;$``dyQ}#UXpwy{i_9;et*Z)1C<^wb4OqZAo&-Zs70exP|Y)# zoariZ5ENJos-hC3s6LOfn8A#YI+VsYAIcJKX>DTYjNEz|=0DCp4ksCW$vxQmPmNbp ziwEdrW5s@ld8E4Z8fR)xRL&I&RD1`iJ_pIe2ks=$)5%A~%uDHi5T4vP{mhn(_EfR$ zAWJ}%sXxb0f{lv?SVrQrH=)A039GLf6Qk>0(?*h}-%)Jyc zM3-jty)6RzoY?b!cu_}L6cZ(!;Xbv^+!l8QCBsdMwTv?x@K9@6tjPW^v_!Q%4oG8a zcW>wS5IZOF6)8JvGRw*U_fS7(^Z*r#xd)Vy8W-Y}Xzc43ig?T~#Z|>(UNJu1!p)sU z2nLBVJ}Uakfz&iZ6MLZ)aF}F$PH^E_QHxX#aqt6JCK-10Us)^G29P{IV+3ONN~b+3 z<%c1ZJ5))v^`kocT?z8_c}2})XnvgIW=dsa-T@7EQ`aSfvY4(UB45~Ut;s-C#8-~R z_~~(_Ultlz**w}YDNQ6J;V$At*wAFc8}^!wFy?P_s=I!$-#SX)dn6^pB}|pW=WV;@ zu@k;sn`5wf8Un~IHuXRNdek%)VTfQUOT3aRQpELoqQkn6qIk@lTGsn`1d@xP%b2r_ z`UO5mr{A~gSI|(bT6sq0BABvbOkq^~r>qtwLODd0!(^|DuIBql?!=FyCnc}yfAUg< z(DZy3pI|)xTl_$DK?-fQ+{4J}cQ7Fhnh74=q0B(0MCo$W20*$5o&D{maU}S?yTqm1GJ+QuX6|p5)Oyv-_{Tqg%^GmQDh!5FtFU!2Qhz?A)f}5ZBMV?!{fbhb@4|dL601#1^S}siHzj+%gMA_wH#1Mus~OZe@GQeX+sl z!hRQ#39X-ELEm8MmT-tifq)86LlyQbIPV&~)^|qC{mZ7;49@vz%f!8{0ZU z&tQvFw?-e$Tn)pwoVQ8E$2_9Qvqk0G<{cwa@@!5v(C|jL6gRP{`4`pB#*7%-w7F46 znjJ@4OkLxr@MDO}010X-(pchj%Z-I8MX+XOoH*51xH11V?YAC=|J5xk%4-p5rHkx2 zg$Ir=_a3(1liEE&2-xZ$wCVsQPJvF7Bgz?V6Pr%jTd^`v&MLPvfaS1P4W3t-$CKIK zOwO^~#3B-5WnRzxIEP~oLG#)3(tmS5B)U6guY1Q^U>M>^Gq=F4g&oJ)fP3<`?3PucvR0{Z#yJ;oqhxU zAFzeFqt`4Bl{wqM$&Iw=3MTZm?U4@`@yrQ8M!cwVz(Z9Hk4X#zf8V= z+NQ>SErBpI)AeNw`Z~O>(!#;tq}%foCw;`5hhs@p|Ht*fPde$nWRCZ-j-y>}aul)_WS)W1kNHJ&0z&`>|^8 zq5~GbJ?yWb6>z}z8ymoD(~M}NVNx`!%;UN<7AMUL_x^;u8fQywtEM4jQ>;zXR6bzs zBC=o?Fa50M_mowYTT1$v_JUsYK})|IUzrXAKvYzhliH{`^O~2FS?sTpA4#z#KE9{y zAvHYl=Y<-!8?wB_NIpE$k+#M4GL4)ix-7qt&mz|)`1>mHbZ?Xm&CR>@y><=3*>2n7 zu`3B7abUrrQz3I)tY`m3za7r+;b>7Um*GdS}-+%F@-zg`>+6cHae zdH`wI|E`4mO6pFjzi9Uf_~Ae+0a5#@QQPlY+m3D^usYBm1ux6n<#w?Eaz>4Kcf+j^^$qa*yh`YJ zYhoQ9GAzTE4He@%bXF|$%<+E8Q9_ zY)ApP?kquAPSv-)Z7}|8l)B3=8$f_@*~(-4$1^v#e#nFvSWut~M7Jxp{}WJgb92N=_0SedDo#mIMk z+3ONKsM;;AxY}%vYoI$d7@*eg1N`%Zn4ra$VfQJwso>Nl-wBkzC=|Zw3{}L6naDjq z4!~auR00=n;3XwHo@q2(0xbYJuIKof{SN4cW^{39PcGN5bOg&W2LR0LcWamuS$Wp) zDdM8Y(TxLG z{)NgaJKV$TGHERxEdf9{!tp5Sui_KT&I5;Kk_4g8#pFthH(#zn*6>Ma#IiyguHH!> zo|{uu?(naQ5IR@*t$CDQn`X!BQ?X;@I3qV-LCq+~MQP%#uXl=8GmO&(#A^7({;2}G zeFc(G->W01Lz}Z1Boy|q16MS@Q(!YaKF|f2!xJ>s#nNlD+E^7Dx*?xbrt1%tEU;{{ zs3+sXKAcYn?J^i#lc^-LVDYCM$I`=UK*mu8Q$c+x`>@cs9d~*icj`o`pkTLgmfRXO z!XDH+sr|2a`dC^9y7GP_ufkpBg>|q;+uGeWad~p<+^blgKruS=eol>ZZ*UD*`D%XO0kW#l~S1ROE!!EhHpYeW+rTs!B}D;e`bQ; z{(eDsxW(>jY+t)^AkW&+Tc!Yclfy_vK##2E_=Qyyqi9HYl>=tz4%CwGS=?dDOVlq> z;ZXXotlv(vEbq~Aml&t*ia#==r7Ix8#$9x_&*p{@rXy{sPA3(G@9XqG#AVm$=<{Hk zSYbTw9ZnwJ=~WWTiddcICa3XcS~Tc@!h@aLUBqTAYtZqfKZJ}_$2)d&@->3|`(bjV z)UvQ8t{KgIID2#&OT>KX;h?MB?U@Zc^!LN&Rs>LN!Lmt-%((Ov6h9bT!qoZy$Cfh< zqx#$fhQNa=$X#<}C{8qJSENQ*#%$ay14>AL1;GBRhJ78AwyI?YTYI3@!pbB1+og!} zWE4h6rfJ(VrzM3&r5Zy&qaD`L4w-EbacDIJQ>fn&N+t($zWUt#C(3c^6Nwt-vKOY- z7Xm5olg2;W2XtSp_dcXp=?Z-xzbJ?$T642ySpZZ5P*lsQ74yJy1%o#1K+m=@_ z?swYUBP2vGX7tks-ik$f^{?|`WxAnK42t*!COpa<|7m`0qSkRIcBI_aaPdto%U;2T zK(~GkIQg~j95H@>kTWz?p1=5a%-5@u&NMTTN*`S*GSd$I(}wN#4Z4WN5G~lq+nNJN zvF?NgS4|CnBs>U4jO-5RU(HGa@>c<;-S`%fL6Beml@Jb|SeCAZ2PsII0FOHxM*{Wh zpQu-4+X~q!$Rin&*9NIvYc(9LP0UnF;t9oJHPfz7r*?Yx|*YGChD;R$s2&7j%<0Qi|-O7UmgGG&!vTW2Gt~rXM5RR1Ag> z3RG{ePnDDEMgY|)w;5)JFu@nzHqJekm2lb?_8v|l_Gvj1p5Q{E_y)?CZUPC zc<fq~X^QC&^fNH%6tE!JW2eEex5g_;l$yPAp>S<26R4zRxOiG?_odH}BkTLi4u2GR8RrUQo99?<14{ zMK=wz5%i63FeZD%cS!D31CmpCfJ>93kxZgHn7RUqRs?GtqZP+y5QWZnD&cwlS5es? zix93O(HK*Hs^J=e%K?ppG7TS#@OnPSJUfL&kmM8CbF+`Yb$M!3qjczGc)(OQ+ia2a zY(U@)baq(l^VAIt$Oracba>QcEF8yhNQ80P?|ry$oRt zho71+x}XoCf8gIqoMAFq>k~I;Vf=%ZI%zAe+dQbYb6o#!$dpB&4Rt9?zl~8vW>%`hu_YtLM$Psz)&E6`YkO6ClX9P0nZ#h=|BLY0~n_KnY@=o zpOo~gA09fUs>D3-W`H{ck|9)5@8(#~UWaYetirK^oNzSE%{)VGhw|Pl!4A6DH)Fw^ z&d7w}MNhOe-xEi}_`eK)<**rV7R10}=BgFP5z8Qdy!cclndlNFp zvJ2)I@~s(+Iv-GO zW^r70|KsjW-V4OsBgN4B6pDe>VX}r^L`n3Cqahm&3Wkh4#-cIW(fj*pwb&3b$NFm% z?rv|LORQ#p;8kR)gvdXDHt|S5SU0Cev^=%EoN&38vWWmxvNEXRZP~JAQ*pckAUbvb z_w9$T1K{9Ad7LcnF*nt}XtTq2K73c?qaij+-qD2OY{y1L`D{ zvh70@2P-?U-W_Ds;z#^jJMd>e(hg?z<}deWPtP?m?y>Pqw60_c7PDW<@g;4Dzd5kq z-ASI!)4#Ux42MNt+8C0q*El_<1;O2GQhAUj)}k%=9I>@;==A(6~Z3!4#a2ujy4h|l1IBCZk zRCKgqWno6D)!+Dv_OG}r#}#m9C#J!|Nh(kSP4UZN!0OQ=Xs^X`X`c1&d_bEd(s7j- zT};7`eNlr-bJXsQtPPa$7>4CGDEx_HJ~{*m^bqNqrdM($A;qZrv(R+58hZTBL6e^M zjC;8iXHKS~`QH_+^}w767_A7zq1Ll|^)s^num$oKmirrhNMvD=+xapb+45qwL| z9pt{Tpud{<-7t@{%(+)Lnl$$n>c~89+i8L>jpRZw6DhQQ%Yt?FS-YWelYPBp$v!aq zbeanqPThb+&p}QR|D+Pcvs5UD156G8MN!8$7Ap%xsLhZIdSA2+Fg#+Q%Fw@nXpfud z&$RDb(FtK=M;=AJM9vHHHHCWNzWmkT&1Z-fPovl;DB>&7=LQf9s&9d}V`)L( zY7kMV0lSVEPN&qhN%YEWt{bD7mmLh{)eZplE}LpbO{y!Kb@LWcz-I@v12}>zEDFbdT@lT%-!48ecm_!#fQa;{q;dSCD=j)kWNpUT-;Dg zZgU{pImkM~0(f4*r#|D7ENf=Hhxo26fGIyZDqqd%kV}Ww6HEvT4UZ}f#4k(eUcbIW zJVxNFPwlgM?P5kl6wRQ_h~RF!P34V9O%1bvv)y8k?a6~`oKkrli3Z0}s~LJP!z9~6 zq#m$(%zb!!>CPxWVdR-(!~0;}ECr?fA3F@`)-6a^ZDE!(iPm^4T<~T-4jk2+Up{LlDi*|6{n-}(Gu;!tT}P$(@}y+acR z5luBKc&Bs1K1Q65VPbn*4`n^(VMKJJ=tFYhYxTlDVl0HQcYD17vRgmhISX|CBzSCg z))BpFa14p`V~dxmErlGEZ6#cNXt*Jek-pqL z=7t+p3MM~{AS8^q3o@B!6ntBq-rXNf0t8gncH{rOW%wJ|aoLX0Y`2%@|B`m&?*HV@ zX)|eOSpHE^4=+%9Z*6-O@?E4iby_ayFn83!u5+?CI?Rh!MluU!=G&W+ne?{ zEn8j;xn8Gq{5Jy_|Ma;n$FlycHxLWS27;RM6|_8ygd8SN#OeV5ipgqMqiTr5p9u6* zVELD2>4}o1!-SfZ3?nQ}M(1|Icr5eBvfbdjj2s2kjRlK*E+ha=x0M?mu8jliP6ZB^ zpL6~I$JDjsYN&wD za~yC1Nhy=X_(JoW#g)tTV%2^oR$%@2x{a$xQ>o?05f$_EvoJCPC;kayfQAjA3A#=t ztl0!Q~#&&bW*wG8%mJ9Ix8thN;Py6g7)p!W`J6^w#%9FdKM^0nB3 z7XxSG6<^4E<#N7$NASi4|V+&@cx-O=1?3K$48<6My3Qo*z(g11NjUkXK8ey{*Y zE$~4Nk|iTv8OtG%*F`cgPP+Dl7#5(0lEAcIi0s({ge`RFg@qa$=JwFc%#r~7MS5{U&Uxx`r{}0jx;x>T+Ce1P2H=JN< zIxcxPKst6nz&}m9$J_dLEDVVcY6ZUCu+Z0?P~63O%U*eD?pkmZQ9cgzPC5&@Chq7D z5)TSVcq6Ia^S|L(iKBC{zqB86me=ir5iz1ljOcBhR6+!`?kRl8Zf`Zl&G-EQdD5(P zARkv_DmP+4LOFkGDovlyQC=fyEK{%wCrak!pfnR-tOjk;j185W=LYf|hsJ~E79u0O zeu3;v%}E&x-kb}$>1DjBC;K(M)c^|fQ^)2^otM5u=|SL%zOVv~Me;!Bp+be_LZ1SE z1kg>J+15x~O)}e6?3X<)ZECXg$2d9ot=X01g_vp^`LLX-iQ1F#3yK{=X%hrG!di2X z+gXdzA#)7MXK#x`E^6gL{QD{Ufv~TMeS^4YC8jIwqKc+fs-k%~gsLnk0O$5Pk>Oyy zRJIV`^OIPFvT{+v1!2xic`Vu8FpE4JZ5!2(yBHKo7qe|Kqlqyb*)YZyP_ynRr}JG2JfKLjJ+P+&5iu)HO7M?y75Qj9pwX z4ZdENZ%Vkk=y)DMlI^P-5NQa~;PW=k>0wa=B^e}%OQrAs2fg~=&&CNn;vOCzUZ>Rh zKwWt)cLaXq9_?uOKWN;9`9Ftg>gf$uw`@g%P;p;;HQleLr1CB6gHl4T%I|{)@Bf%{ ze*02>kpBaaWn?&ddAhn{{X>-n)%rbD0s{V>?dJ&#!JwU;9n#5@`O=$tp^y20AQL58 zOh*v-VQ)U~ljA$PkEh_>1pBl5*X8!kP8iA1@iDF6E{z{J$=CC60qsYO0+E~u4t-O~ z104C8BVM_xD+-i>aT3~MK)jn;9&JnUz_Ol|)R)w)3dI1vu<3!|7dmj%UWiij9A zpy!6Hb&xB0^gvY-D~u*LSDpgc>js)Sfo3dagq|_QPj}0a*}Rh&Mx-gQ5aC`E@w7`m z+VxfM4>vF3r;!gtr6=sf=##85-`k*8oHJ@R+G5dB_jnqmc~|RWYBG=Cv=#;EzBMm_ zZN*S*liXU<5S{ZJH!qHea%inPMW7=duJ*~POKQC^ZfB2B$yVjf28+-M#hV;p_OkfR z!^@V5TSR|{xqmz&UU`*+W$Kxr@8fTmM^e|h_)nT8ZvFvk&60R3L$ZQkfHbcG?)S<` zS6Q2@RXan~@>#-Hn=W#jE^nJVAn#=fu=)qYnJQTfo0w9E`~u(ES&-R9&{GIbh=9F|S`R16 zl(=4hxo0GK+SHwpYgA*iA56pbb6Ojz|th39!G%6FFkD}Cp zq^Mx~$q=O39TOlumExjk>dJupJn*=H!0+^Z5c-1l_q05VA{gAhx}+^Tn$dbh@ll@M z=L?pFw+BG6|iL(}y8`9+Wv6j1(QvZbZABw^kBndUtT;=c~pL-6f zPpEQbOke)ENX9Zht38xOR%hv7gNc$?VaBYG^FvEoo8>if0DR(vcFv>9%I*-}aerM& z1glL3sc@9Rr4dXXV0@FAIg9QYKxyg(fvP<{A2T;Bl3i+)%%ZxzC7PY^WJ4xBVR$e z<;OYbX}6z;xE+sj+;>4VnbxCR?`vQX%I=bm0~FwW`s+pL-`U+6#4#8EQM`Wr%b(Li zU;O4477%-n+n*QPLokBZVDGQBU%d1w@F3FNCt{8Qi~)#B6F+|7ILWyT97&*f&e?t; z^4X^#Ing1Sy1hNxp)6wo(V&X*b)v@jx zWP`k5sPGE|%h-!wE#k#3Wl&EoS{I()@j8oUw$B-DorUl3;HoE^nx<$gw2c>VVZ@eioJvpIQ|R&#y2Lp5Xl0);5yV{|C`mSZ-g z8jQpvjzta1zvSX6>U5cC>^U6w$Uw4+nuY25u@|uK&JJ|#b&&fX7{Wzd<`L#N(Asl} zIMm(XtbBX~-;$(%gw(d~!t=lECu!>F^#6nVb$)$Z4YzbZRKt=r+Ywy(UU~1dGk*e6 zK1o*uzkU1lkIVS{?*;EZ`CUEbSI~bB{(Z*z2eT`9Ay)s_ROIW|?&0{~;IQA%3B~bUwo?VK=+_C$`_)dN;-Abh**?|Cl<*=t$b9 zjZbXbwr$(y#@g7nxyi=1weiNbosGG%ZM?J3|I2&Me9D>WNq0}zeO298{mO{rM3SVN zKQXdQ+Q`SaG0IUq2UR_v93!1XVa}ZPNK%kAahiO>>BYJhs3-8et$k(@0Q6 z1rW%@?`EFnn(y}^)i2T$#K{``j50KsGXYJRcG8W?%s z6z+nNLgY&>9$s>&P)hBQAj~th0?m)$Xk{iI+rU*S)JgN$S#2{Z zAFsB50v|D)o|mkisDH|{=dGg$@4N+gPrPP)9QOucd_T?%f3A{lJB<)YX1fITJugW~Nux{)@~K<_ACn{F zH|@U%a~JM&7vYNg65q&iiU-*wFx(@9JA0HR)Wb?%%8;#B+1(wxe^}Q^(r_*T54vtGuY&H{D+xQa$KGF;qGd`HcIbkRn>Ly@7sMD4RiIfGB;XFw< z2rmQ65|~cFBF1!kh8p&&XSdq)A-AZ3B0C3-SvEdD?BDY1Ik><8oQn?SQVc;+E!amO zqQTVDjNr#TXu#LtUA_C3&9G!CI$I(w;_)hve&U=SHASQnvbkCj+}aM28JN0JTtX5hvlLVgGk<$==|F&s zo@4`Wj)VSA(Z}Mm8QM)scXP2sH71=$@31N=lYsq1I@EarJ|SlTnW)aVnSWZJY9iZb zg!$pK%bhUf)$p!^!x04&KKT|F=`Y4f#n5gFxBrY98Ep>@>Ngpxdsax(HsZU;Cuk`R zK5w&2`f9G?$E1wo9wka9Zjbt!gYmL5A{hR!rorcNDPAum4@>wMeKxMav*6Dhh`Gx)<#EA0_$k_khRmPD2=4 z002;PWAGf!B0s$KIBa)ECIMR{h|=J3ax)7NzmATMfE-x@TcLnY-~3TU1%BT)8Wv(Sh9lEIloFd7a z+Aj0iiwoKm&qT?GOkOqF$fI>ezhmBo!IAW{*1dBGbY-^}7R>>uLXv49C_2V9iH6zMrNQ8)3C6?rbF0{NDTg0|8k_F`k((ir2yopTiiN!Jd2 ztf9ocsuN)pTHUFA=bJ&cu@s#89O?E#LXUMb4~-T5*Z%KEm{E?v8dUf2BSn@}aRIwL zv#$-rYp!vR<08V+^i_7B$JelMLB7d036kk@#q2O#_cA!6bJkT++Ut?q&Z@ib>ypyI z+USNH1pQP;0Lv*hrFRwAKXc>=}+L5Ws21UxV; zXJPEvl>|5)cl<1NxV?ib8Ydlv#sS3)H-?_an5Y3*awLN0ig|HYsnAO6X;5@@O*i3V;>IKrwK3cE;^} zZ+ZPS7=`vPkzwKGjn?mQ-yIJQl^$!u>`nYBTc7>{C;6<@@3*;_~5xpV{KDEt&06wRBUbsBh*S9d` zB{qO-eCugt)phq%7gFBqVp&~7L-4R}s&Gz2 zg%HRBO9jNcy20P39434Kr$vzTy_3=kj)EZrXA;z%ow@%-a;qqY96{Lw2CX}qm+_Wd z7Zv=Js)!$Yu~*H?_$74HzuXC{j!x=3`>pmjcES#k51Cq?nmX;N6Ns@$VI?q@PzWk9 zr);dYB#H=W8^eO5>+K+E|L!)siw#7PaY_!mR@~C9QR9Y#u0J~N@Cq_K&1Y>vp69Ds zMawCt;}3D%G4+n}V0YJpfBc!quj|7lxyFxRL?t8t(QmN|k`c}TSCsC<$eb~BtEKRK~kLDv1q^Tu- z_f5sJsmr}+ENvNJccckJ z7Qo&^Mq^tmIRAe{`(dtbmggCH*sZV6r@ug!IH*4`1th$1#}j%`6T$%BYz4+r6~>6T z>#wtbkJ?!`f`7s`I3Mp{)&{yv4!Hieem`gAy=3&B4f1W>#6>!oDlA;L1iZC8SLD6Y zbUyyBjRoH{D%Y&~Z!O6CJjomWM~Y5JK>3&DMWu_FNqokEjUKVfa(gy_fQO2msx1-4 z+H9cH6D7zoL?l$Ef22cFLDTn2b0I6bG#Vk%v)eOWi)$Ym2Y$^!Gl2Q*j?c3x!P5(n z^>;FD9=3~3q#M<0u0kY_toOwXQA8^ZYB#1P>Ej~Q9+gNR1}hXjyhlt3h>I-HI)OGsZ> zkZ3v9{~g!7&a13zqOaCJDUG;ojkQ-x%G{4U)~&;RP0;q;juJtUH2OwrT0);_-BFB@JF4vA056r#_xJ34Uv!f&<%hd8yIW z0l1M0ch;OIjpMm7r;%~KV?mTU4`bK{L=zsA z`4R9)cLgbz*gr3?UZ9P~g$uL6@z>SUz{pW8WE^5;;v-U*TR}kiz-heZ{AL!Ax_3T@ zAMO`-_PjeKv8V)Ad6=JA3nI<+6S&8qEs!^op{8m3D0|Kqt$`+4bBM$^aDD&dS!%KX zmk7%K|;( zi_+IGT_f;zR*vpw7Hc4+A!P1pKzGMCtM?Z=blF@VyspvywUwE zI$Gx`pGfrWn{=Z`03wv(L4KzcTrCrbVh;Fc+Ct$bh;UhfL_bW#L5ffRju;+Qf{83< zp_}qIgeZ~ja!6Xwc&@V0vI5@fK4$cdcTK#ZuX_?=A#iSR#}CeZWKTt|jp6Pni2$@9 z_HX;aDaNbr#OlK4BqRD#QRye6ppM+)K?!AEu9>>FoQ3Sg5V8c@nlrf#A>K#po51_I z*aL0i!|m0CM;7VxbYya3ZudE;BCCloJw#};UW7JR*S+Tk=sjhH8RzA%h6o`9Xn%7F zmWVe+>*9c0{mnKi>O!TD)qyym9M4qQS07%G&szuqrYXoEynYf_AP9*ErbegFgZu z0=V$wUKXLYBBR@)cGDSxHw|0s94Enizl@k$ZomMWKN!VV9R;(W014RNV}A_y_OzOf zG)(I>`6cx=>T}1Twj!QlY^A*rV;D9yU|}@U&iZ(MHzIFce<*ez&Pl~vw}*2}4_)4< zC}g)K`L64{kuINEPs4-PGDDm- z2Cmaly_(HJti9wBd)4$bD1<{j3yuWB z_w@HNH92TPTrKr3q^ zTPZK3{WS8=vJ)$*Z-Kc{Jj(8rXy$}~f9dxwM0kyc?TMy0#&12ny)%2o3_DZ208k** zLx&efL?KII4W3j!(sw5ZynZ`nYW4>C$)m%dn%|@Y`8$Gljwx{E!2tT_OJMck%4%AW zS%>ZqBptT1y_t!rk?EMzq``!!k0BJE0`2c5QXW+?LJVyolS80H?;>MK`)WJ`V+-__ zK<}^#Wn!d#P<9RMC??Khq&+!B#S@|BnTQr+Gr3=FhWPMd1gbp7=>19s6$V3FJWf z4!g3l719|9cHW@CSl^xd7R5StufRqZH}w>wI-%!zO;&H(3xpRs1@V{8lppLZdJ1J2 z*Ud%`79(NF$RMl^30ckjSRT}-)6lFqH}PP&2Z$5PVoLn&(Piv>*diT!4y8=m%%q*o z(;-;*z@AHCY!)|-fRW_0x-sx2OVI`kOEi>AG`Mm4I&x5XvSa zOWIxt*dQ!dEW)DR%7FT=2-gP-*tD=Dt;_s6Z(tZ~ z_z=dj<5Uh*G0Cwxc>Us)ub zc-tB&=;?wszm4v`^DPlQ-2AI5-c#v_X{(NMxg^;bx^@ZGB~Rs@A?@11cw6Fn2Mw9A z99jJ@uXn8N#Mar5va1b>{vkgR=~%~9@UsnhkA}k`UYI>CzGARGXdWU{rgLLA9qRcL z=q&2NpLJ{dpmfn=T!Y1PQKP7vL^CQUe1jmZ;^ zY^3h!g0ANdTc<0g5nfKB3&$0gH;I4!5Vv%Xrzo~@gg;SonkYn#y4?4?KC-SkvGlhi z=om)=j(_yam~gBR<)p~n-xT8ntWT~+P7PXA^kbReCWMmruOWFU(rPh@(&yIZ`J|&i zptdrTW=jUYS&_*+jNBf*1y##3BXh;99Dl6S|HeJG6QWm(g2LWO2?oL0g5~xlh9=(o zjvdIV8s@z7CvsaG;EbjF+1*=f`{C;1zHgri z+o*3@`0@-}of>`m8=~na2g{c#yV>!+eQ?4AztEp9)X+)4(@)=PP#Sa%`Ktnw;0^_Z zMkX5J97qvvM-9X_RD|Ms$KjZlU*Lg?Y6BT+`p50TU|j2?Jx)l;ejPi%{_N!Fhb~8F zMU}rbi+SK1bwM~(1Wkt=nJkqmq*_X=ib>d)gcz^)^?UGAE3J%P(SnD5W9NbK{V24Pu^T;6nFl4b@fXX}H}c zVc#F(6ppcR%KQfQI%7-jz{3ioD=ye0MT#zsPWTymjH$7+X4%%O?)N+6h?3@Ebg|gSvOG73}(tz||=&I==26+fI*i zVyP|r%zhtdF+3^jz65t`1*QtHZ~aE1GM`I0o`$FIfS4z%O{-&VZn4dxD00v3Am3sn z@6U?s+_UiDU1NpQqRf{_#uW9F56hNKXqw~%hfn{>^J(+U5);9giSY0!nl(w!7AxP5 zzZ00vNEvUVW?3c)fC=b&PX?{+Q{#J%1Is*XzH*NCUMg>cJ)k3#9vFsx2{$4n-wAiY z{MVcjXhMihJD+|DpkLu`CZuwzP!75|fl0nk7(MLd1UJ8gFtSGhJc#EfQ|$_TVJ})E zuKRn!j$`-~OwQ7HT#c$JTT>NS5e{#$Ks@XaV!OojrWy9X{C$c1s52>Nt|g3UaG;t! z&HvE)2{pG*>F$ZWy()2e3)?iN!VRYYue9X!DNg9FH8gFL3G~&Z{wxQSM~QlE49{|M zMUwupn#XvBvUg?ieFIOL-rRKKFAd((+M@lFNz-tm6IyZ9)jI=jP-Q_!ZpWV zEuyMdNSB>M81W;DAXHf*K4%b`+hlw&KuhVre{gd&Yz~Qn^K5z3#AJP|^eTb;Cz=$^ zi(EU=5N(jXXF1cH&nPrgmY>l~Y=R50&R~S8kKKkJC#b~CVxG@?TEMTkF5JDMK% z;=*|=fkC#e_k(k4NADmyd=7@8A)j^3bijKGCWW`>;wG2LRSae{6L_(<9U+o!93b#P zpAxQmbv%PgJN%K7vjV`kZlr>0{g~zzYg^j`yK1dT0*(}^xi$bL?2!B6My|_Ft6x`4 zj<*iH^}nIkwpgf_^ZOuL0-_UpgV6093K%r?6& zDY(WfGC?}RO#X(vj_SG4K>~xnb~X|YZvnkfT*>&xIhp|(2-!47s>~olb68MyU$X4> z##ZgD2Raf%tFO=iD=%Moe;6{mj?fy$nrx3Z{=0?L5GT0d?Nr+PU_2}Tf-kbb#vmVD zcDdj@Tk;?eWQZ&#NVe?iL57*_i26{a^$k;x>ji%!9HPNCjI%o&78_T6b6|yWjfOP| zO5>^S&KYnWd=Gm(QL0U`;#3klzW$_4%HNj(Vab~ur9w?67=@;w;EFb`4e`R~D>~Z4 zO`!~rQ4-LQmT3088*9#Zk&e*Pqr}n_Z`9Cv%Zn~1;ngXJb&Z3&NUF@k9y%`%b>Ku* zsEMHTJAto>fLZ;VZ{K7j6!f&$e|8E;A~0|$y1GoDPi5#;F^ zM_Y+W5}gCUKKNvYVlWY|THqC*miqC=cYcIJfql+jNJ|w?V_^;s@S7CB{6nzo2lQ~C z=fH?HJ*t*)2oyTgkzrs9xl#->3H=;bgLB0DvBMW+GP6uj)w5TOV9M0h(^e(vn9>-& zS>;XsT4>o&@XC2mgoZ0g6+JKQ3}CJw2&!Cg(HgeH=9!|B-`$g!g!D?n2VSqIz+DFq zu`9~$XrS1{89=rjY>;Q*c#Uz$AJ$1^oVAWO%8~I z_T_#doT)pFTB+U2D#x8ZseT_2qeDBf6(=f>9y=&u9!z&E#Gvl)*l%9~p#7EVa>?LF z;r%WzPg;JP59L3IibBYR?M459seYaHH_tQonNwf{;%?m4>+k-Ue7;1i5#8zuZS@Mb z++t%Chnzf6NB-h5wSmGm+amUitYrS$zUi{tpD=C`{A0ns8IvLgE_9vbg=%d6cOu!s zfCLYF>p_k8$HxHuz~ZefdQFv?dqf7ue_XLp)9y$kWAZeiH$wOs^@5C*RxNQ4EkKAA9zPM*CJGQ94gO&P1` ztfZ}W*SvzKBG{q!qUnhYc%7@i?0`;lV6UMsYm%8Y8Q~Q#?0H-!c8&tP*JK10 za`s~W*yCfR?Cvwc2O`{SJtDAw85djdIsqZVRPgqatH9QlaL#@O9O`qK z3usS-0x&Cww}9IZz%FuGNFDrXceJU#vjNNiN69cpi(S2AdD>cG0)$x;O_t@fR`s|Y zA3*c*l=YeHVv?nJgqe9g&E9_(X}-I&%Gl1d1fpzWfhYsbgiLm)5?n6PEMc(K3^oH~GTgeckq?sc z>U$H>QoMXtBVX1x)p(zq_IOdmGYBi(MbNpZjP9UPh<1wqq?#lkCL1bDtPV+JY0i0q z1q-ER7hW<3Bn(9~`NGz;rqC9&b=U{8c7|Xu(wFCtKE+P+Dv#T}Kgae4Ko+eR8n~I+ z)8KeMC3W#%UK?1>cit2;pzmYh-sO4>`q14m<%-99xuC0v zQEp)XsV5eStfK)**e*|j>=h+W3myY#2D4U4GZgZz#m)$^H4C(tZI+Sl5c)l0+gft6 z%297)!MOc?+i+$iF4W36&7n8QHtY@TDGSop0!1&NpELbE+HF*+;dvq%hp|SdG>;wh zHzfU<$x&h<(J;{pjLOPeM$m-NBumaps-6=IAB`z(k`AUrQQ_yGAbatzJF}(B$~xVf z_U}Z2e`wyWPo6th-Tm`yZ!{RoUPr<>|5$TG^smy3i#k4qOs4{Iu2gjxcgXp-7WF1{nV{+qGmEYA(0$pGZ(^f~}LqPb~>`~;N z7lcZq5)*~-+Hb*#3<3_@ln#Zg!Jgs6tIHVBw^3jdbo*Qi?vx-HVAZO8pu^uY=r5E@ z$-|r=|DhD@Y3L(Tib&O#tj58FNiWSQ*PG9i>*^kOKtTtGtPy6u{+v(P`O{P9^~|0n z!Dr%kZ(K$w?us6;hL}9nctCHzTrGB-IOq z)>$^QdmUYBKWWj0u#k5$L@SaY?*8_Hwlc6&w>m3#k*V3<6QzWkJ1<`yRONT#bmwRn zrQZDLGd*R7A;cS7Qc z{-bF@%Pq(csz6>Jq=X+wuFUeAEhAem04p$vwNnC_&&t3LZXUlKQ`r66Zt$gumH@X* zbXH&>e3`I@8?{ALO+-s$`$hwG!We(7jEsg!+Ao`~C7YYf1$3&6UzO$WEZ>zS#g`WI--XT8DQO1*6li}cV|;&snEQoM zn%OU?*0Pv-kkgLUf9d503s@DR(%08coA6C88cVv9iP(a_88e7_i?vt?Yaj8qB~)}3 zqT*8zZFqUEt7M4!j)__<{7lvf482b|CDuzJ#fWHFL2UJ3SqT8~53cG?+A zi$O6-176Ea5%rjtTY$ZI0pz|c3-S{^NxN>56_m{tus+fEUn`(~RM)+@bM>Y(^2H5J zugk1k1C36R7oNms*n(8vViLR!r80ha;mLJFyln(v(|%FD5X+SzGJS;1(<%dURu5zn zRT+Oel}c>Qm7i?Vib*9;8-i)ae~KbdTofLf5&_07>39ucqlsDS);mMA7{x?|0}=C? zL@yLdyepvYI2_>javO@Bzt90RQ3!b{|Gfb0!wFAcndh)c5|XDT6owX~*3Qw>&tOM1F<7N6TK ziPDbw#chr>Nw{uwldHkpbl)N?7|qYKl4r;PpU-R^7V#9VMd!8@K(J5&_I!QYPE zP9^t^U5gbT{zTCl_vWv6H;u%&DBqqgakLzaQ@5;PycJQJvJyZr===c$S^nd0;l_6p zXvMZb+?tQN_g3(^Y4EdxWh1+iPcU1!mpMeG*RO?e3tTi4wdU+2nNt^~X9|$dl#zse zcC8$=rFdLt>PhdJ{1KS2H@u5EdUuyG9?~hZ^p_lh2d3f>%n0ZAFRE^ZFFiQXY8Kp_9yeNQv|5+*^;bZb>C?Sm- z`Mo}8HkKd#hJxbt=XrDBg-@%z-+{RuN;%iSMJS+1gSv!OnBH>1UqBn&;1{BYJB2fD zg%*_X>pcAU=$kZ#0>3Mp9{y;STI6SB+Zp)#n5{vEUImc;vIl!(i7}p=QBGG+-iW{` zbTvf1t2IuMuNy^MuE)-K)mFsfroG97`>+5PO77GJ@iyiHyraWGDyQu~dI%>VX~m4^ zas|oUAj+v()-!_gSyDXVOoMYDTs%8@JlHzpgbS1dDtJc_A}u z9f|9pFhjLaq_PZy`a5_yR~Xl0E<|_E?w7|g`?wHA+-U1TdWBw^&c0&-aRKH z^h#vZZ|Bc1tQ9|}-j*c0lCNp0lp^6Yg7>IDdU&gf>dgTDPXcXO#9FXt`T7ei9;!p# zVg)qQ31yw>vhc-F2iQh|TBQHMt@LiJsZ&sy{V>P(Y>_FoR(TN2t%Y#C0B0N<>~n*r zF(ue92P%sK@@cm6`*!M6u6fmkGNF~0AUEc)EDX}g$ZQZ9>6Gdeva=e?AtoM{j)(y4 zRYY@7DBV!nH7`48Sv$d+6+65zRu{Wg&yjzmjmn-WP4%`p4x=v-YSWH^Cf2aD1R_ai zzXDCC+rZS2?;JEVoVV=QfjZGgNlWO15nOs94b9RaKU~{MNd9n8FK878J*@1?l+vU~ z0=e(9x6xikX87aRh^;&?`Otu5Rh+E>CGja%*Br?MygX3fEC)+o{wkQOT__`b?2-hq zG7Hdt(g(oxUgLe%9icJsZ@W%qEnx+@1i`*6Kc|H{#qUthtvO<8Rl_{=A3PZYv zMQxc=o=?An)kzUS0b8U5)xsOTqsqo1DE8Z=XYjzhjl%wD*@QQ@4yY4o#d^5AR?H1D zSp*RaS#D7AT*q)_2$I{$;fFZN(CM8mkLmYYw}N&85F`Fj#7cS;(-t}_@U{aPet0V^ zi2Y~}*$i6NLtKk`miNrT{RLGGridlmjcXeN(M*Eb70_0&!vlOri*I!4-vviXC0Q@j zDp`WfOVv6%*IU-~O~%f!w7`c}f}TXS0zDr(X+d6}d|Lm!L!PFeYV6dp6u@J4e$Oqn zkmoBqxg*(9ivV2kE~d0E7RgL%di_`1tvF>p%tPNuI?(@N+Y-O65y&YRI;ZXK;eSLTA{~-Ygf8)}yGa`5J^eM2QeYep!SWdz{@ zP;+kcWK-AH?S%g zc#M-WU6`UM5M|`bK9GVATOn6Q+}uRA3Q#&7nmB8mm*p$?&*6=4tBlFk6y&oTUVy=? z3{T)}O-qZv1g#ef`S4f5N%Vcr^k3>uc^mxWl2|oI#4UD^VMKol8q(N-l)YZO?U3e1 z#CTkF2{C_9D2f3ctax7VR&OC^K=S6gl^+<3hU&UXK`HhC8VQT5j3?8rM!s^80j=n| z6QRL+FslFxZJQQ?7*kq)TrRxEK*3xcJO!v<>5tQL1(}x>=p6H%iPf3`n`L9a6OeR= zo+!yTI(5tSzj+W<5bWQCQ+i#Xf5j}7D06%-Pww}DnB~{Y$^D+nmN3UbeL$g`D+*y> z6R3HHuS<>(j&;vFxkpaGerN73Bdr%RP$z9EOBqsWIhr8&ml-y5TM$BTMy0g!VwJEBgZm{k zHqNDEai;!vdujivYQYOd>}aiQuN{nAMFuCs{p>;-v0Br_dC;KMNLD`z`V{wXF*&Qy z1<~YBXSz=dsR;RI@J0C=!Oef%imX#gXHOtB=HjKgxk%h$I^APa+w_%sYQ{OKA-0o+ zHJN-rIMYHtSUB>ifZHH5m&%P4#N@6#eTr#J>#_vt*btK@(&&Eu_~0RP56t}TjS!1% zoEnpAciDQ3zKn1fYvFN(PZPU&OnF6=!reSSonNY)8g5Y6P*^wC&#TO^>pvC6OMQ-E z-MYHx7uX;G`CGuIcqmFE8NoOV!&NO>FX{+H(N!nA`%V*WYhr8v)MQNPN&or&@rCz7 zuy3_AO$fxiAyW9BzbTW0VQTG$M5n;!!kVmCL%(;-)~tg4aQ=AlhTE!eA*NdHw`&do zLY)RjK4-!QScKe;2&nNSufSLfjn`W*i7p93O$h8x_- zyXI1>P;R?jy`B@#{>1&FrO_fA20$e0ZZUw?_Dwg(d()SmNICY>g#3R7}*{tNDO@4*CyJ;aNyc*3a*WN{u=Uo$#QcmhqaY9S2X& z<D>HR(=`PZoF;WCBsknL%vQTf&g_ME{hHZ{DA7L2XmIXi!O z_RzGI34mozM6vL=Aw@clJxbxcBoYDMx8x=I$%pKF5Cma`ifqPTKbw3GX8QtFX;l|s z=Z3X0y&AWHE_Vs$XX%@~+eF{P<5uF|Cx@g|Ml@Ts{f z-!}iKIs#n)QZza>BrQ3ds?ZO3_-C*0mZV(I$ zi|-vOiOKh(W3s`kSL~?tWT84Kvv6(A-E}y!RY&>x8p8Z=UcZ7MJ-iyQ{E~ZzQW$S~ zYBFar*y=7WE8OkStwOPnv(Ui=BI`YEgJH8>>8sY8f}or*EGsc>Bt<%i`7vvD~OU=tfAl_s5M$uM@S%sa2d-W!oT z(KceCbPjmYx8l;P z5=6MSV)L;|)H^HFQ^#Ok_`xU^y!L)*gN%dW@?I zein0lhh-wh#%T34{t#7I1J=Mi2XOnPH3?Qi`Wxd4V$PnMLP4J3upTEgT}YBW3t&Ra z5-%Jb1kIuexrO(?vu0vL9diIhu^{LMLw#P9*VW%dijr-B!6Z>@T99V`>X`&>rWvc* z>E}Q3QrDU=gPliWq#Q%^Wq(^{KsD+XTxnwR@iL55@R(<*EG(&#)#=xwB7iDRvI-~M z$Cj?=!0bC1TC0{09^%wSo_`WG`pIPF!Lq%nLrT!!V^MltLJ|WSDF|I}OXRp)%-z6H z1Nog~WV{CNdUE4LyytY!PyZZyR)g+XDzTUUPu<%}5_1zx)ZOdLn= zMS-rEB*2X~_@a69Ml~V!a@vxVVTsSd1{>S=w1$kyNvhN5STblmbKIiD&(A-jKBWPY z^m{2r@x*q6)to%eyJ>g3PD-{qLcOzz72h*G57vv>AZ5K&1$)ODv{^4&4LHBLpjnU+ zm0O+5fQ1}BWU8TlK|%Ca3l!5dYDdnwnL0U0*#`j0|HcDw+H$#ykl&T|N~4FAo~ojS zUJum*>P%whGR=OMAvmuhrIMi5a8``)ix;ngEi)jT4GzX%iu;D%?uQ1Ot6TGhCsx^7QZhozX=-QxEq^~i9z*<^=Z38lss@=A5RS?jeZ zURwN9I6Sip`JIrZMe0mu0j*YL={8avJ1MBm8cejOp_9p!m>kVlS1-G7O!p03lb0mw zFbeHw;Uy4JPyB-v?N8Kkw@sz+j;H(SIRugxR{<-ROXp7u7Iv00VzgyYbm6D{1BDpj z(ca4{(B5x+c!`WCh#>@z(!t+9Q#XtO}1|p1s&Uulm zrjKnQU72NuF_E)mWX{P4r8XK_wd4CuZ1az!qbG{iPi^e!uw5A(5I^TtFsI);LuMTo z@lbEg?^odp0cox~aT%Jz=PNIyZabC7?SR>^0`COn`A$P+!XL!9`{{P3B0P-Xd&DA5 z1R59!sq5hv?xbMY3FwV)umFZalc~a|giRXiJsbdkum1FMR&&oytn8lp$AfJAi+4H3wg|qS7azhY_2z~XG zJV#8P$Brz86dXF?SQqh53w3j_W?z9N8xmKWBd@Y-!JBV4**@o~%A`=Ak|`hHyH>rh zER1QZ2o9N>BVfj*3lytUu4CzNh6LUbpJ<OK~3itWggk!ZoVvHTsvVjYQBt6X3M)0Qm@4YwhO9`6g3}5-J^nasI zwg613v>Po2mw)6YrE{ipcS`a(Pn4{K_KOsTrhjm%8wF5A*hsF|r{R35HtR#!q{c;c zGH7g?9g_U$te7n%R}>L9o^IHYv2gE8%3gW#!$?gDqH^U=C<;LjsT!b0Ih2X6@vhU) zx3VeMarIGo0s@q?ZE(1k7g?4eW!uAZ5bfw7a&l`G)cMF+59sudsoG_Bk zk~5Ek>&=a??7*6UQPJ6=G0(+d5P;5RY};^_)=>jV!3Tz;>ZEGLNePEPfvP5Wf|daQ z2NdZ_OjxGN!`)c0h&4DlL)u<^dNX|k-~X_zt2;Vs56RQeFN7SqrPE%o(d0>EjufCr zkh#^Z2}E4wkUeMp-=NqF4_C1~S zl(pn(My(I=Rs;wl9B`Z?SLk$G#%;c6LoxKT z0ttAL#&NORDT*+Njcbf6OP&7P?IJ<%5jfNwLA2H#7e(h#IL>v~R()cL0iRvYaXslw zZGew&_4hOZh1&q?DW{Z8m`kZir6vw)CKhTeu)jDpKW5&?`FE$=eHlRS zl9pkt;Y*5PACPbXvEF?1uXX#mqvwqeU&tSS$r{7Kdm-yTbkur_0~DaTx_SpK?-~5E z>&akpdfLR-7ylof=h~*{(WYFp0{P!D-`8qCaR2q?PtMGkzCB(%-w=H{z0Wg!pvt?r zEKkED4*_@GNX%j;*2MdGS>|pp(pK)<=mmaqs?3E)55)yXuLcvu*ITv&r(gX>XZQ0L zkA&?VDw5+R)Tfn-WCZ*;5J3-?Sm+b5z|0b(decE@;2Kq)rkKOz;_P-;Z?1gx>p6!maO&8MT`jFlB#Rg#H;@r96{!}Qt zh#MDE9dUY9XNR~&!avSc_X`js-%WULcAagrimhFPOo%gMk@;KHAmk$uF;;s6dDyE7jZ*K2x3<>H5BU6maH@fbv=LHS8k<7P7tPh#C?QjQnD!8Ts0DC~jcd#XW@b&eYGvfcZCgX#sxjce zA_bWAFR?T)+3Ggu=bDa!1B$^zZ9g(gcJIK^5gGqsP1f#5E*4oX!S_0pXp10M$mQM+ITBC#Doc~&>&Cl* z^$Kh|yJll_otm23{g31a074)Fz5ai~$xdc+2HTxaZqF3_aR9s*bom^f&^!PlV(7m& zd%sr!dg-p)0a!;p%)F1ylREz&KfaI4#{X2MA?A&d3jXhlj2q2AM1pr+fe*dW;20`j zx9vYspNdL~D9eIpW*e0EZnwt9#pw!@aYtp_o@%i>GZD+bF}b>H^0(B2XBN(_iGIDA zhx9%7!ioh=wzxB;B1*L%g@Hv=+P28VGal-0)(;NLp-u}jAIb3yU2JNc8PX|8OiD?U zdncYnMF#0dQVqt`-4_=Do;Nk7$L>g=&3~M=srTdJ6!OHw%qExws%L*NZ;(3$swDDxgWiJoR02z0FqP|zHc(dLs$*)Y z86`eWs2U|gML!MS{6R5_6V%j$Up&zJ+^Ec4(^$vVwK>%Ji)xh_!a=%%Sc#}E(Qw7$ zTvq&Uj8uyov6|DCM``BMsbgJX$sU{E3pCIH8~5~s8x}o(hcF`3xeHlEBXhDSN~zE7A4N0dNBKRB850mIoTNz!hj^mQS6(+{PBM*Qz(=jokz{iO z?7qAx2M5*>RD<1{Qo>OU{McW5)W-lhE^_hD1FT9+L;sFU)?tgb8L)Fjg1yKDlpJ#I zDVu?5uFN(zbuc)De=>Jmi?4(|3a7pd0@6u~KYEqi-w!>`Co^Nu3O@U&uL?hB0#fmw z#~Bv?gCs1T8CqIG8N5wsI4-Mc3@^Cy-~&KWpCAA|`?ct@r>7@2;8yDm`;X})Nq10h zGJ2aa>jTmIwb7e%R{^m`1!4M%4yIHueO~N+OzL^oh>$4Pja+EBc1gteJ~R85!AC&k z*Yx^DNm@-*X&&RZj`|BgnB;6-?$7`!3N6tKnx}uIA%4!lfqeb4EvfdB>@{Vq(UT$C zM#$ban9&3Aw6<(qsw$Z6qNN9KJ`;I_ts?)%rwh(0KUa6p*U-iiQzA#Kn`t>b2Gco+oZwB z$Ig$R&xOuT6p}IE;@^Jh!K}I1M+Bgdir1p!EQ<>kSYhz6h=0d9Mdb5F7 zZuzvyk1zM`*&(pq@n7kZ5og$584{*}6#(l>pL{qAViK(j^5{rWMm0_GbF6pr0hY!H zGMzPjMz;*@?b!itA}#b(;%T-Z;%F(U%ve|D9um{1F+UwW_=L662?z&(zvl9bXD-CN zI4`?h6s~Z$A)Zb2)(kcsF@$JK{xwtzAd-fep4;PQ0gp zO|=*6;6rNPdByR$NBF%54xrO(0m^b|NdH7bue_-2Z)?VQW|OW9ifIJ{^A{0VQ(d!( zg%l5-1Cr$RICTLh`eaS*8X3I;@oy9c82^}6$rLbBLr@z=2aF!P-duxg(E7cc`gP#z z*SIkWAZEzgvNv{&LmALP2?_rrGi@%KVR@P&ssznw$jBZMP_X8WM>R68NB5KK$E`?GGwt6k@P*5TN2(;}dNsvq2 zp+dgafR`uf$0hG0fg2R7H!WIbBl+@D6tB5<9R#mm25XG6{8(^hY+z!S(RxlRioP;! z*%ACP7q12L$PKqo^P({leJx4TANYFNiLbA(*L(+{V*bNg0U#p=U*{T$v!kHh+5FxZ z4n7CCPK$D!d-30=@%a@3>8y1+u>h4@NS*l^)u}yM$AWqOWmd3Tf;~w+GG3Jz77L#2 z;g#wWk=%R|u_9f{^h@>W0I*XvEW*D;vAa0NLMi#q<%-)-qO0K+r3d`XU!U}OG^tq< zl9P$XIK(<=BM<>Exy+8!5pg*pSF%^Nm|8Q1FcOO&W;2!qiOZ1AWOhL~bO^#OTcI`H zMA=lh?2M5s%%n4XrWEML?Hs7xd>*%wDkqB(x1kBU`e2&RUC}3h;Z*Jlmf_TfMa{VG z@yJ%W{F8+h7Tz6bB{6~R{6$dr=+{e6| zcJM=e*>pyPBKCOc+=(3}^v5&!__w;tg>Zaw0<0L1T544|Z@C-Cdo5VGJn*0Nzfivx zGWvyrf+F7vXC{X?e8Zs^ztin%;6Fwn9RmZzNnYlJy^et3&;RN#S$}UocR{5X7Hp$k zCvbjO;6gi0iL6+)a(PP}S47_!%5;Rs6{9xUsR^SjsAGrsYSn>=JUMES6PT+U^Tef; zi>a1pvFY#48w~(Dm1u2EO;cBySeij4k!>G$!4_OZ^;V9|`60H%@+j#FdK+R$T;wwR z6Jt)wj;Q&qGWDx(5wg|`7FDHqvEdmi<1zCJ>E&L23EAz#Yp%Nv37f`&nrBY{4 zE$3|#aOm3$FXfse$3W%f;16g4JuK4e^0q_-527k-ShJ`lHH$!G7&DOSG+2ZfRYo{! zXR$dW;JA_|f`KZT>8*qp!~Zj#&7NW-sibB1(q)-X^t_YogseYkd!8gpGQ@tHwi(~% z2U-sjd5eiG01=M_yJj)-6(;jyDP;APrA`&f);c#MX{|imYiNMjYW+CQgRS53Eio}N z0>1Iy`C#JY47YBM5(!7x`;X?BwexA7&F6{o-;M?bS~c+ZJ#70AkJY;4$4lUS$;|gS zCjx|&uFdpccXS-C zi|vBYWKcWqkVloUw#&9pPi$fnn4YC{i6303`*cs^UDIhvT#VxCsxYpX^Ubtpbah;8 z1Kro++R%j~F=QC}wYeCuygX-RGY4O>HtzUri`-iV(yCAk2Fmaa-rD=G zKd=G^dIC_qnnNRPNrwhH*0K4|1n-F9wuWCWIhL=-Yhmb&LeG*!zF7hN>?!_e5YupR z<#wtf>Y%dVt57n5W>BxoK1u(NEPAd3b$ZV1B4*2+J^WzoYv(j39-0gXl+wKQxn=9) zZWrGx`g3AFc(kX_F*W9oslw6~3evythpW23m4Js%7GTs!xvamI$m9{fMs5gM4u^;% zi=Sjd%r1alg`nUu3G@PnNvGvqjcP*NbR-G{nRvFL7aE3L`L6R+>bhMBI?nqQ`45+F zK|H;k{XW`L1OLEp^z1fldg>nu(4(m z)3rpWl@(t)&%4A2=ULgHpRRf~BT+8uyEfe!gO|{RW5Y8z)G{%FvTemLaw+@#Y?0eS z{AOlT5*Sec-w*}~B+l_=j!D<$AJ5F1{g6QuT#F27*;H~s(Drb1QRQRyX8!sT%vgCz zF`d5B>*t9;UYo;gEu95ctir@eZNTIKlsZ$e838f3HweDeeRJ&!NbPY3~ZGc*%k&@zLF`#IJobHTrW0>01@Rls*UN1Z+1(=oE+6FY3oJN{;>x*939-}|-ga40!d0rNTW zR7tR&2(Ica*_aEu!S#On^ei60*kiFeIt~S0RlIJ4z+2uayiomJhXw5J{kswpgxb&$ z3?Nx{xOlxrm^RNsctO~uSxj{~A9tbtJ&Te2TsJ{D^qi!?KfGCe?C_Vg;X^((@O-U? zyF>FdON&iCJ!X|{S1>q#LlA9^+XXA7AZf3-;c=Yy;ueRcDrwsd6$>xy9lHe|OE`G* zM)Rh^?d0&twz$rAN1SlICpol35KN=q71=6qtabsWhnwClA)|yjK=o=<-G0EWvL3IE z4)KLOD4fJ=o?4(szVvK%^kiy1EV``$q3t9q`VoXDr!+NQ-LXgZOQgV+S*+~nu+Cyr zv#CKRBQwLx;wy0vVnNc)(ZY#_p7jCpI*9)`kdh3=A5Bf|0PcnYdN6s=E4iB5sp0l* zZ6=V0oqGKeZCDMwWQMY_wuz4U))j(EWg)a>?abggKN$1zB)SXy02}6ZQ|qn*WoMew zHpnmd)>j%Scnts5)!$SabgHlnYfYU6$|y5FX{%r45IY&1K@XtGx(#d)ty_xxbZ%&T zU4M5!@$jeaS#`o+R-FdZ<0{2%=~`U76jeZycoJJtuY&Rn*l%yOKmk!tcl6W)GA*{v z5*ab9V)z zrmG>6cI6vdNr~4AL@yr{e>e#rR}$iBZ|A^Gr_58qg-M;Fznd01*ny(qGjEZ{KIgX1 z<}Ws`i|Q1|y*6&C`YHDVz>t)Y@_z+j7kn&io}iOBguO9pPNLr-RLoEDdB@8U(J2mC z9#&phCeCuIbHL21mP4U#o5S_(Fy`*>(zvZ-L6qQd3(%LRx~PCd|9V)i#XB#rrkx zNlSqm`wneV*hnm#ah&ezM6P1;`Qa)_ZPO2vCU7fk*NMiVJw0!xDoy1)QQhn#FU4Gd-N9X8);iqDBMflzcv zC1*Swx&jUDj6R`O!Qat16<;}Jpv!Pjw7LR{F3WP_9$H%NDW^{lWO-)&lBI2W5PFC= zM?O0JJ{vI!EzWZICz)PDEnt&V6@h7%<$Nl9Oc_f)e6>!**t%SR4lwqQt_rqJbX7=|ca-S1}O1mpN-3%jKv1_P}uzhJ|Fy1`^YPwK-s zB|oN~76DC+cs>d3>-M~`DEEOH>odzoI4e&kSRl-wkU<+5gxdKXS{ctK9WPPfE6hoF z{GT-hbcgTHp9^lr!pCt47#TVAcs{jZF8~G@gVY#j|4ah|Rx^`UbdfxvPi2(0KRRZ1 zBVlbV(rs%jM`ytd2|}89wkv?j0j&3eqsQ?1*5&;!E8vSMEHb@sOdxo6w2y3X39?b7wW%u z^c35)z~!%&2JL{zBf8$HgOH8I!_?`?e^*^{iL-dJj3jG{JQ+Gx9BRf@q{9_j>r8lK zfvPC!Y1Tv^p$G+g+pjf}(Ee!VQZ`B}ng^gztFJ^MlMn5Gla1Nx=lR=%%?5A(F&-be zo;+V;2g|-8+t_9OI4<5rx3CB&nZ@&;3BBWZzSMfDRe`?WvfjDyepv+)1$a7kgikoG zV$#E@R&3=H8h)`TM6BNldgOHM6|!s&*AO$N+%^oaTM;BgR2tTp8CNqahC#Nu0P;UZ zQWumfyolUyjD+q-U}-@tW}w0l&CS{8yN#F{P~I}BWg{YaEDug;64S+L++lHjIua=h zF#hT(WRf90-daUHIwlo#_9H3NL*^?SkJ~G-1XQE-pmBXs%~Z|=*~diyVKFHVRf>g| zapxI8m}<5XBZExs4&4Rk+R1qqJ2Urq<5_4we6e>FP@ud&`=j6u0Jd_6 zo$oau^C$ubAP^&$WE~mMtur~xv)zUb9TPxpbk(SsdFDB+jNGF>0RB3YClbO!%Szfe z5U4E%LtxGR2O*DBer2~*p=4a3Y0wlDU9cpas4(EQko3fi@dr!|PEg?}W{2Wpm-GW1 zMecHLh8q?}3}p@e1%y>-UG}l!f(#I?@bp3tc24xAS!!V(b^txwmhpkQQsg}{6uRRa z)sa{vL+tXDz*!x<%gE7(S;$TVjyX^yn+;6i2u~)EQN-f4LUthJlw=2%{fGIwgXoG^ zlfZ4$dt<~y(PfPgu5>g=$WQi6YX_CcCL-aO+xixLgUP_;%f4*l*nkD^zhaxCcgL8R zAgm{bs|n#18S*G%I{VYYsWwO{cikU0REN5kw2MEuc#HNt*>W6z90B?mP{*}@+&RGS zVe;9#qywisPxm&H8+Z4I(f)5wgP7}uZFJ{#HQrRI4dLTO=6JHq z#~4eFjB&-7Kq}bS^XFo_3kf!;r!6v=W8`RgTeKM@SrCbTOWWrz#6pJMN|8BJd+j@w zNv0M`eH)6=`)4Ry%zjmCUPp9NkFz^0xi@kN?j<$>MrbITJ|B$Q1)cvu+U~zGKqNus z*zyu?5>F#Kpe)Fi0gUT4wI+(@CFt^tg?_}1j`3vGpxvBi&^Wlvg>j#mGwAZt29)kzfu7G(m}{eHbeS>zlBE zo7bbAsm2=>8x+U=Nb-o2cIu6pl1#?f zQmw$VNDa=e|GemwF+c@!@H@uOeHnS|&I!tuW{-WP@RNanl=!7Yg;e9Q6TG<+0(&8~ zmXFx}qzsuv;K&j;{`mNPawf=!c#c6i;&50C(6I{a&894?>$7DcT}3R)Qg~&^h)!ey z#Bd-K5xdZK7{+9!XKAu#YWjhSIoA?KDd6!)nDb^<2ve$s_8;HgywY=VZ(=S|6o4Ax z*;|)wDz|6?p$3DnYPP;Ru%a*@y89k}z{{_O^+PVJQqr>ygz4m8#NJE{vPc#^%($%-VEg8{kx)7~wO>DFA7C4W~Ei7W`hqRCc%ZojCis4J>0 zkG|)S4)HFpGwvXJh^#tIQApCJr}Y+qaT1VJ313VwCF%c;PuHJ{4!K+_=ED+w@|ad; zp`QXhC22a6_vw^HzYI5>yq984(Y&V8v@YGrqhnQJA?L5uiiy!IL)NIQG_t40eAP-r z7XJPfcXTS;xlaKFh6`S=Rz-*Ic&J-r@z`DsQQs~11IGk32*477%tfO;NUA(6v{0@i zypX_z4c#~-(M&N$$Y}G8wqVMDrR>@MMr&l8X$Yt>82B?RD9 zY!LGvCa3KKITl$LWBE*D!FZoF9L9C^z9`E&1aR(qvjJUzcIrJw;d}K$mmdxOU`Ik+1744nHUejjiYia^*# z*TGohj(vYzUWQN9)bGA>Pt;AaYbdG|I#tVWy-yJh@gys+ZulbMP-c8HU)mm?v8s2Q z!XTW`MQE8YKTVQnLf+3qY&0ibrAX}3@`8ooAqP!SlCfq04zWYbzw#fg5l6BONt{M) z6kA&P-FAMimR=Fmjsb6psv9ovtGClIIHF4Y2&?-LY{} z`UceqQ3I0~$uQEB-=|H@MEURzI6``HM!q(@C*uJ;$QS*b_+Xuto6j4CSL@u*bUf<^hhWZ!+}1;X#iZwmtMS z*oVtA7IOmquv}rJ)UvSrO)BE>+oqH`BCaUMo07pta4E@j? z8vY+KumdJ7O5(Dem|-UGO?KGl8-sX<9-Ts(;+h1PjzG82;yWo1)H(*Nm(p%F2gC?di2WytO z$&1tr*SY)SOAug{dcKlfm2%Ses|McqIj~5=0(slp8rn8Ri>r(}$HyC4R!7%=;a{$a zUA?NO-gCKD;c(AR6}ZO4xeMB&hi2nK1ND8ZRIkcr^XtjOEdh^>U%Wdah_6EbQ&4nA zL6L<+k1YoYqro_*rD&PvFt%zCq?BhO9r(wo5cMF3+unljn~DQ;2klU1ny)ig!tuaI zykdtbVxxEX@A3EnbjEF5)Mk2U!UGrpj1*cK(1ivh@QXG!{q-j&G@3nC0Xg0{n)*{F zek~z(jqowG%eT7|WHmib*k#wa11;-b3GrrsEzfYi??-45^jc$9<&@d)B<1?u39|c! zSY7dOYj-bG7@luxi;7jqABLiriFRjBvuq8Mljhzq$VFkD$^Xhc=0bq}%MPn_&>c}t z+3g=4Rn)UKY0n;A`<}xnRN{2>v&S-@7B9Ci*t9L+&;0_#$J zf0;Y8?f3oFX9*S(_?em|U@U4$6>)9Dg(K6J1I=l{fc4x-uQ4LQ`x!E9?@K%oVS>X9 ze;y}oUjFBzXtY5yfsU&(Y}(MS E_0O{*dX7pS~XtUSeGg;bn|5TDOq)=zD< z#<2zWP7=^E+&&te?%M|DTo!&&s|WshZMEy}5ugF{U*dj?TB|J~qv80I9n@GhS#Fh9 z7FKt%bXHRWn@&XG_?1QHSu6)YoHDLtfK}B>s%t~vD1g(KHfj1i%;UQ-)+|t=*1cj zt{f#gY+`1?Sl>6IAz5@`zl$A2y~Z*}t%B2Sx8Xvon6xhaY>1q@SGc%fM5-E|@l^{$ zWI)#T7G~DvwlJthYPZ=sIKml^R`-hJOPfjKJ+7kb_k?4=w%jjw07i++^Id--o_wG~ z!3USs_i2e6-shPnKKZe_ zNkfd3ZL}Gm;6N!kUGk<3384T1&NWkWW8_yS29xc=sqd`21oQ7-+-No!V%eOi`-=~v z=?Vu(kT~vqhgsaSCl*AwVW>ujl;PaQ#ZVp+XsLVWos|b+b>y@;$4yZb z6UQmh;on?jaQ&NWwvP{1N(w>?W3|+U%%YwL)7{t|NGc|5op}nB)is6-PG+aM@m&F5 z%iC(MgJh-b+y3@uKq{P{^`(YyP0Vs#A{|OdLOLI_xbgLbv%W zAP2Eu%z%W&QO!Xhcnef5t1i-PAf+&r4W!_}cUhLtd{r+9DdH`h1-jUvPh-$F`C1XN z!=L;Z^lIF49D&RKT0fUYu=spnd0@hjtK}~<@^YK5)#*h%<as9c*LcwjP#n0$yS=@nGIy}uYq*jgYK%%* z)+YnzxHEJp%-fruvI)@mg*N*DLBCH@pkG@AFeKom^dl58`R9Zw+@KDOD-B89B{kzJgiCPJKk3~4MD8#_$~Ik@;wW$?cINPG_*CS3ch*p zmLgCfV`Nmel08P%rGag;f_hsqm&E&z^LF4czwItFL8z6HrM7EC)4d)@G7xJ2JGa(M zryUt%LTaAQ%C_H!*9a@9$F9M1b36zM?&1hBd4lNS%oF(o^mBfXfx~gDF)GvlcoK28 zH{ukOX3dkU1CO4vQKkoXg4Yxo^k4@+TSFt1+>nH@$#iVwzZ`Z&0~mGmWs&X2I7_Et zS}k3?ykek#nLsf+n8HxE4n9*TSR7_&IXADs&n<}93J9XroErRe}CO=sSpr0(=%My$X7li*@cr0rnrPntDu zoUjbM!B8pT#&@9*&{l?H{;P=H*R`iuY|*LU+7lfc>Vw*8o?yqKH4|c!o6$|6D0tXX z$H)#$@DPijx*_t(=skD$!5EZlJ|yl7^TDK%rT?vye)FZ>KTx|mOu8hf%J62scm07P zdFd4=I=1lapU26#!=qjF3}3aJuD_)k~1)kYPZP;?6T!C>d*1}9TU@k4NIUXTa4R z;ncfVwz&D{&Zxv}1NbeuO$KQu{5MmKM-JH0A;xM1BcFL%uR*5q zuAnO#WJSQi`dl&!Tyva%yFWiiN}J8!Xu|dW6oscb5}H(=rdxM_&Xlg^7h=k;Bd!hP zBDi74ZvQPQ$&3OU^D4|NeGBEULx$bHbX((TWu{f@f-QJEWO#N@CoC1Ex4>vPt%%!U zl72xRY!frm4vdWIG0rPV?!~T=$9t+l1KgjiQ)@@tg$`gMU8-~}wS`@@u4tf~Ho*<~ zuK3TV$?JpAO`V*!L@(o$gNvx%aKYzh^aiA7KG7E++XODv0=FqzsyV-KdTDvh)|pn? zv^f_#1*=}uN~)&Lz$>3Fc@(giCYAYAqhXu>Pu&$zd4EE>fuipRB*Rytv<)+jlFZh?<}ar?BDc!H}6ngP4(2 zG1gk!J*}{K&~REp+bN?}riv(1QY#XQb|TaR0AD6BZeg{QlMN{%$Bgh;Kn-q$9gI&`NE&`cWnf99kHm3{j~?vlcq7}^kX~AqC{EG z$4;U)Oeo+n3a`?(h=X%r{lGRhuc;g7(+W&tnwZa9(Xcj{e?i`P*~j7$Oq1a}=JCh< zP%P5|()u2uOp#EHz8!lbrO;-@3o};ypfZoq#e5&c0}W|dlYd%!$wU4nip$)j^$HZ-$J*P^RV^a()oXHM_<{DIVv9cEG<0lbIKVkb*IBJBD0iagiEH2 z6@&je#m*K@qMl!#QaRVEOYB-p{t*8RcOYjV(|sKl>=osjt~OoyT#TFDk3x}rNo~-Q zR1WZDYUFa5j`q}*;+J0q!9DGnaEV0P14tp(u&4%gfb2 z+Z^V}NCs)41n$J2NM0%sW{!LHPM65vuv^k_(%+3=*|a zLu{w2s5Sz%3(GF*r%MB9w~ZA8n2WY1q)1oC*!l=19z}s+4Ymp@-exdPF8&=SIb)uv zvZN&2lFG7G4M8uj3$V7#S>g?lO;ReMsH?%Y0Z?Vt^mp%?1}uF*|IKV{laM7E$SDCY zqsvn5TMb*QqrH5gS?TAR%Rk=h#`|SThef)W|ayvq7Jbe zogej0yGNS56IyC_-Y-@^3w9o@N>Q{D$Z_-!eY~>a9*hRXm~fAafz8RP30~&68u_wB zLq4<&0mQQZ*8=K;ijW09RASa^;!=t9h*)t+qSIjlpBr}W3a7?Kp1D{`iL-A@Oe<-- zPcK+C{_B^xqUDebH919!H6#`yC7MnjvDZ4TY7|y1govaTgP-Qf>uOAk~pso#Vg%b{rc*ELG_P5Ecl zN$E+iqnL)zuMTj2MRafe-l;(`0Se;oWG!Ue>Q1(xjd-4^%C0Y>YJ)TIb;Hdm?!ZwT zg2Hac9zjLM3`ZCCV;-ibZ0w5+@PfVWtVbR{+K9U4Cl2<^9CpWQ4xsS=638)IK~hKP zFgcKYn!2sOm7s~b%zt1-j`)Dc5)93GFTH)GIm!~6K$Q5;0cuZE;xVmcm<*Ob=7gJo zxyA~n2N2+5)IFxyES&LJg{)y&VHG%+9P^5(sguQHjNKu=n7>ZHWrATW>mRK|HF+da zBA9Gc!e|hyX&L%V#!w0zSfTF36GNd!>E9^_@so=-!vL)|E?@iMs zdMRk6tQa5l?M(x9t^N2(+@h>F21SiYsnnsKR(t9_IDkbtZKrgi=3SLj?$}tP$xynq z2F8Ivb>aSNYX=wrfdf(Ey7c1>)=70sF%j0cz+TpdncCG?7nz5iX?e)2fS1CI_j4x^ zsobaI|E=j15~a>~pL9=FkX0wmahAoUWGbMs7vg)Ar5UTnb3(qKI-J{_D)Ya zKw@eq)x?bvDV%8$SrvlS=14MpLM|*GV&-SXOI}nPD*Kge#G25QpSAEWTX)G!gFE^3Qsym$|906O52NsU$vOvc}>peTN@f&vvJ0d5Z=n3ar%n~{ zz78*RN*NI%QLz&y{(x?{Exo37M? zY(BuXSCgrEzQ(njZ^o`_sIfjUgA$o!h3HY9I%+J@FDunwQ=mBiXC0BS^2D)0XhTqB zV9_$Ap+6-ocn~ZMCgv!hkl+|JMEbs?y5B7@5+tzTyiSi13eC6zO1E)*R*X1v=ka&* zNM8^*Q%aJ;bY+Z~bc!&^{C&(2CZ?Wi0%ai5Q1k&&M9} zw5Q9YNss{#I#6X#3jx|tJoi-PpoAP|VGicD#gWK}f^*eSvj`R9#%Y{Mk|jnI7A3zN zU_bP7@{g?UiGrLS@PN^icJraR{vgMTGLfw?iFh1Q11Kg4)*FGJm?lILRyROb3r^a) z;Ir9NLj*>Nf8T+aT>wL@3IBJRcH7y(J8b~WMOY7Gt$sja9|%Cf82tsu<5n9ABD^*B z>WYpMG9U?q$+icPm^pIXAGV%5vmO%bR_!y^8O<{P3_!^ROc`lfw>teNysIoK23?J7 zTT_dZkNj7&Pa7_6+TmSVygQ`{YT#J~XFPXYAWys2*&D`h0#+*hwdy9xCHGB4p_pC* zW6_!~lB3SVzXevW<|SwIJ&=@LOkj*RGZ zKJz>c=0W)~q|VH}HT39#DG`SV7+wKY0Y^~hzpQkdr=XE%hpT#DW>1CGZ;aiYP4oUh zfC#`)64ZqqYF1u0(qk^Lp@8uMeYl#VtSi6)NWKTnUmFAfVh&h#X%3l=u<=41s=-gV z;2JMWRP<;&oIrWFL*n29FU^bdbSfk?7tBHPM=@Dl@M!#lpPlV?$Z@5um+y^Q&ug8| z1?&0qz{F6&h;UOuLpUrFqJSJ5UQFKPAO}1=Wg)@DESLmcBGnSn3KUAWiLoI!+lkV` zWY`EPVXBZ|@OG%%%sygG~W1`PsAF>vb)D^`JMuiWau>UyHso zfOl@*00y#Oif&)Sj@&AS>ZNcp3jNP)1;uG`(F{z zSjfq?lm$&$=*L)u@!%FR^hM=b@vLksZ^K|L3`2k4ebbrG(t`yLc0071tb9lA@|o~w zXv1yMlpYz~X$}5`GdJ=p!`S;=hz@r=@WK6np~&4x=`ZO19wxXL-#_n^v1~=yO)J9j zyI<5A`)tC?rkns@B^*x0^k#mYEUN$TKEZHW(K6xs%@$ka{dF>Vdx>{UpVyaIKo|9K z;NMwOZgM;2)YV&tAFwl;5rofIIdPlk8g~Ud*H&fc^y1I@p{Ft``VR^YIi)bJO1UMQ z{er~>M9{AaC2q&=Tqw0&bwy;)5e8pEMkph)hK<5|QRtXYEnDK^Sd)jMVNSD>{K!TR8>+zlL@n>gmttXoyj&#?Ol4*wN&kYKA)E@S(CAP#C^he$LVQ>YG|#$pKFv7%po&xEQ|G7yjh01 z!Tx;To#1o>vkO=7OM~592b*rE51ve?ZuYv8xB?G6B13~Yc53d(cF@ksUPGYlN`DaR zC=LVLg(8E~yj+WJxuk)iXI1Mc`z3wxe4ZR+a4e`=bpogFr0x8?lImfsH9iB6m+fJM zxJwEC)U?`M3P-^&6o81(aa}+@t%0Y9_Q;UV&al|FZ-Ko@N3aw9SDLNDFlzd;&X5qV z0Vanuy0a8<#vyx^i}vXmZDHrA#x}m*ckd0a9{dJHwLZVE7~Yu!>{WE5rB^ou3q+mA z8PmvdX`SgclzJYqqvsD90vdeGx|M7$FNj5C*nV*&w=<>VG9TuSi7KXE>tYpWmDh-WVoXXRrLI}uB8DDZZ3%e+~_iqbG6`FR5n_wB4?oP zOx|*at-`VxT=&FE1G?bU8fiiTt866wMgQ4VAigu!d5B4%H$$yv@8p>|j*K zYstOcZ@gdKpG5ZA1_OrML*R|NQ!^O1wfttEFaGX(@6qB;TU{g*xp7??;(MD$w)D?? zw}sCSE>qsRbucz5a0aeB!@izoptd=t_W4^(yvFx4V1Z+*=k;Z;lONtA zAe1^|;VLPw>JVHK!-pLh-E3U37lEBuHyVqAsT*>SMTeEgpmxQ6&K$8@;ZhG$pVrCY z+YSGAyi!HR^A&$zwc-xLyVrdl8s~vyR29&2cD?m^$!a^~tKT z(swXNgVN?;FzC4=K_Z&%u0i~2d}OM@p)z4|FfP8_>+_Vj^(*`7Y@`JKB&v@L$yR0~ z=Hlbg8p}S<`~H5(*J{SBukPwny|8p4ulE@r)(ZH3IYHPBdlP5EuZ=PqtpxjV=Z8$q zMfg=|jCD)zZ^V4*(8_Q4(iWMd(+D(q2&csClb<=$y8mXj{8()LfhQrta0B-9vQZ0u zrAj}tAYIjSdhkw4ZRy8a5P0nCh4OP^Vq)2PUfn~Wi^tHh#%Wbx$jLdJ-KqnGd0 zkEWk~1Y>FmtY16Vf#b$hvG0jVfdz$;fnCAA;HaV2Df?CXjg8;CE+=)N{GpC6m{QpV zuUEbqeK63kzRBbG8^-+00_^f_qn)VS>B|~b(UwGKXY}BC@dPuwV+sB@X;J3OlsiB2 zY)k1lu6zDfSff!rEErA87XEi3(cR#Xo{Phh!?h2&cW4xqdPu7l-Y`8I^5xnT9fFz& z=SNi=HKgLZZY#O&K^L6bRZnTQc|5$3Y?AbTC?Z$oeqFH`*b*jvot~tU$n@jpIr+ZB zQmBA0NGvWomP8mEShWp_S&cVvlcy)V?Xu^A19AWDFnmX|rUSK8hI$~TTYoAKkcJfk z40X?*CtglpIs_uK-S#it{|xkJ?)_xD`HqF7YKK`sEq7RH=@Wgb+E{LijMhIHR`+uK z>y$%8uYKpf0K584QZ7{_#T0NW+-&K2_Pooz2d*(KN|z9mmoeNm1Kp&Pq3I5R58>5_ z4#YuGs1gi)4XL##;_l^TBBO#SWWbThKAR<|@h@lLpN+RR73iMojj7Db1(UMdTo&}K z{wb3oPP3ia>dS1(%4OUV+B|W^7aJ`oTF1b7mzLANh-b999A#GCl{9LufRZ#tI!^bV z?XK`D>N)d{Wg)rhuX`~@Zc>Axy+X!>M!B#h?X_#7k}ND0pZ21RuMs=LpW?7Y7^YvT zFjc!L4T0is?nS+Ss0wa%p@VpEaOl!n6DN7cOb;d{K6E>H%^Ku=!o-hWEvE7UNI5#?u29 zwS;O01Nl`yz7)_K-$Wz##UoXdSVE+gwGhXwEhp9Iw7Sy<5`Ta0D0+v(kIplPu_<;7 z99&~R;p8q8JBsUzjGV&c2$-4PB}Vk%*^qqm5SPIKu0>Jw&V}BYmZy$7y$UW>fl9w1 z2RN%SxH3n#Rih@I?!}tul4#Amg|;gxGxCLa%_L@IO|vCmYn?+GR+rp!B4T-g;5>%vJ7wy`We14U^K$WI>B9OET$rJrT$Z zw<u&DrylL?{}M2JU9fkU*pVF>8<0#> z`VBsT&d*Wf*7y|r{cDLSaQ?nRO>3J|DbGzUX5?*&Ll}K>QR<#K1t?WgM4IA)D6Q2* zj0uV3my1ivg|4Xe&Ykd1{o`xfX_)#=5o)U)4;P1T*!Xy`u?GZ`9PlDq|D$6zRVpIs zvUE0C1n_Rk>U+XC&#UMUu`c%u*s=Cem1bkJl#RuYV`W(72c2Y9i(uRq5##2+LoX4EvVRLH%aTR9DJvQnZ zwP$qMLs`SF>Hw{b5e9;uBhT|R$@zJw{8Jq+wWRGACx|BTLbaJb3_N-$Ml1yP$(35II;#Rm2{JOaA)7ra z62D~Lsj8wv`dN_-4mmR~(N#aHZbx*YOBYcc2=L-98(v{SP$o(5s^M9o6>W0)hhOVr zeZWw6o0)(Zc=)=gp6wQ9CAF{Ds>TSZy{h{T$RXP@;W>!Fh75*3`q4L+dQu#Hd}T*0 zo6PV-=(6hS0uvpVe2G!sP>HsKYF>=eM(qp{@SXZf+s?SlBCv$gtcmtGC`U8C-m+Av zvIe+Bn2*3G7cgC(8FlyelPJnXhbn&dzxoWW!D|+&ea<*@7RrjqxWd`&zYaChNda;w zI{jGm^Q$If?I`cS}_&eB}&YDh!rS?b7M;$UFN6B#>8R3Pqj(9WHO@V z_or%bx=lt_1F82@o%dJ0ZP#9~?rIDXs_uGD_5wc<(%_=Usm}7_zt|zhN({?) z-TPYkd|8RBW_LlW;?8rT0{o02mABmvMSdhl#KjS}&jQCB7jAl}&JU8{SA+y6B7W#hm}X8$c70CH7?` zWxfh`c#2-2A}%i1Q%uuD{jiIB?&|iH5il=d9u zslGd6o+4+xR%#epi&6-SG*A8vO;OQsaOUE+`fa6k9G35v+wdYFm0byQ2=Yf|MXfl^ zhpL7FCv-fi;08O-KUmH~s`*B2$;ujo^?)_=Wp!D>$!_wp)byk>G4Ctek<q2@WH*rn7)v&~PS zb?AHEL20X^#SX{!LgJ3U$ouFbwl94ezS@s99OSi67?8J$Clm z#LCmlyR32fdC5@r_wk#uqB>No5h^1lR~j-{CJ8kCgY1Y)u)6O34iYB8OpolnZAJkL zIRS5(t<-Hg41CRiz`&=7#Vdh_=-|jR}kW8Vsv$vcy&hnRyPNB{Fo}sIhcDlS`A6xDFjv%bIhv48~he>_c z<>`+Z$PmvR)r|JVhr7k>!ouC0>PTQ&Xl+$->zN{`MM>*M7OwIH(rsL7700!uPKZZ_ zA`y78CfFHa&%RAE4KQxuAzwzdT-$sX!;_(y+O2pO9X}14;#gf(oKxplL=4ikcXZy z2iBq|B;<-6LsDUGUalyIhc;FuaoP&XE*p1ag|dye*G^ik+G)ov6Dnx42E7k^>VCpJ zPA^I1XhYwKpp-^N;MUN};PPm2A%-W+Y{o{#2m9(Fi_txnl0hNoU`-s@!Eh6+HO4o7 zbD_$df}63Nm8}^VL@bb(d$XO6Ky5=FP(n(=9&I!v{!~n2Q9_*JGXH>(YQN|*b8SVG zMIGNI#~J(a3pQ-+8@cy<%kofqT%LohNlxrD-o`tC%7;DL- zKt@S#jTHC9FR6pHqcqRDP>vN3lc2ENdwqpooqTAY4LF2U)DNUg&y6?e#DjQSs>Y9q zt&y@-PwQVV#%N1e&#KD4i{r9F)N07fzX%dgjj!_I5DH-6WJ*ATD z@r*~zOTo;JHxqk440?6#C6!}+Q#%j{#k*bGv_sE7)PMdUUsqPU?ckl=|0Zb-Jdx#7 z+PA8I7{1s0Le0obBG~ZT{4k$Q=5dtn-D~YKPNN(DC*N?g6Tjr&lj1W3JWQ%fDIee3 zr>I~S-p!3@x8)6;9wNB!lhwEFb0Ai}V2@g3*!`Vv^gu4v0i_t@WHDKOS1>`v4X~kE3?F(n9nX0iN8x*?G zBfvn`^S)ZY++V!6ne)Ec5ACVHJD)xN^*s8~!;o1AQqm&8Z`(W$n}atqpp=lKbq*-0 z)kIMn?0y%fP}uU}Gd#Fvq_ULt;PW-AzP~DxKHc1SmU|KW+pS#!dcawtr_(wl#ocd* zG#M0YMHy!I2QK{&dYc>FM`>8!&wG*Qc`6ILUzRs8?7s=n<7vy{JSQNkC{^7oJ z!ndExgM{$kK%ZQ8&Pn$V)}Zcxi(|>2M>H6iB_WgVYWa}G5vw-Nd$f1p=xp?rvM#n$ z9!i$1zH69k`;$7#m`US2R?s(A5OQ#^o5jn?#N)nGy)i?HrQA98<((I5X?e66e z`-8rzcVzBv?SUmM{!|hBNM5o1@W}rgA3cF=@}7U}Zr;Km ziH`HKVX@7dfrOmz9%Y3zLu+2%<9gU$+NdIKv#<>IR62W?+Wwu5#ZUKgQn($a#e;0j zC5yMd`sgsq(J#DK6JDeY+E2V?Gc%&8dTA|`7u9Sjf0D>;w<<<|IDQDis53sGVYN0S zzcmnw!8q_@idz4eP_&IaNxj2Pb7enAtqv_Go>s?N;EXcBtowN3EA!iOi+wWT3 zCLPlQ-vmR?n^Zkqn3bP)ORBufou~d5Sal$&zpCayu213$2c@}ceT48W$eB_|$cltM zeSoGERQ1!M5gJS+i8RG9JE{5p8~X^$vq- zyR6J(&EJN!mNam;Dic=8pZ7;`i*5DdSh4Z&_V-2BYL^k^u%qO%PHsj3)c$tk&2QY zuN~s#0Mh45$@!JK{9I*kjsqp)92k8ae_nD{i(V$>hr)`cky>km(qm8u ze+3&FmuQw$#%njc`N)jjiZQ9o4;>_^v+ySMA|<=4ujj08X{bSH-EqJ79}VrSPT1F< zI(WZeO#Ft9`>Yh>bf#uzv+7{kd|Jdsb0*@~F9--948;c9@#v!%|fo zzsf7T$jQxH4$HR+G5lIm6<+caY!&v5c8u65^<9k% z9s5&@w9G?TQ1!TH!tYBYWzUu0XANmU%6=lHR}`A$=Ztr;9Lk_O<@&@#ptg!>%8U&hbeh6$ z&ypt8veK|I0Ot*=$Rz?sAfiUG4o~r+@YPz}<^2ULn*YVmmeJ9D{F3-kK zSV_=@XQ3UFXu|Yfu$aI4vy{Q>$R8}LJB1ysQi5J@zjDps?Y?4p`JL7JZQA(9x4KUs z&y0O?cP3JK@c0`@o{nfoBs-)A!#B9Z1?@bpfEv|aU0~>r_tmrHGIZ8 z1FT<)nzt-9pfDjFrReR>)I?h}A1VR1+?@CFPviLwkb{1p+VcOs@gfy;T8N5Qc3ux5 zZdc|~bvb*Jlkdm(^gt1#Ck!=pan+dm@W!#Q1?K+JlZs)0XzV(3;-e~?aHPQ@t!!g* zY$H2mEkVk72)T;&uYIQZ3$JjRf!sztD|8iy31wE~x`@(bB03j!W0CV7NH$-oFqQ36YW^_?X zh^`b^_9wUAMm(9lJ^y`r(n7eXit@^Py6z0?TaoV95T>WN;)INy4oIdruO+5gwdWXieQ$nHD8VvyTjSwW zH0pb6Yt|~EG==AB3O!!Pf-ZZlKh+DBm=lI4CW1buyQ6HTeo`3SY&x6JEjJ%|c6xEK zT3oyE56ex){b}A*ox^j;QmZdgl2D^Jz1#WTG@t#_o6$|0(O~0C0?vdl7G@7zX}sOB z&qC>mkCrB`{3IU^+ptjm|U75}oZj2WoCU!4daPdZwGoytDpH zd>l%G*2pj=LsXGZtzjr`mea3Bl1zxU($ErO;Yx7jsJV;B5aLf#1d%|d2CyQDGmhmUf@cykK^F_k7_P%a4$4Y?h zX(cUtoJnfZ*RdaIR*zM({j}uGUZ`<%sd0~db$+@q%Jdv864FyJyz(H!A?ndqMf%<` zrcYpt@iTqMBQn*>Sy5R$#h+KTa z(aL*V%R-9!9-pH#D^IpvF(rhR2@$Hql^^?16qwp|j$`i~&PRo6GFXt<4OseFt< zins$93uYbJbQBj_kMbDizEEwcC0c4uooOs39X?G)R+Xh_Op3;DQarYpBsG(uJ^5Tz2I{Z+)ARURW8( z3}wwfmFi8KQJFH+5F8m1!{uBl$($M5sSd&Kq8khERO%iGne9wRhhq8WZkB&8!)rAE zB(O|N7uo6XTr+g$V)ywrxc~rESf6}B3I}w z*W;xtpgR-!aboB+B2mWr7zVzvACVx2s|ppHvWSJ3n>zqR(oS;UR7N0Wnt|6%DWRVP zia$vfbwuvq5Oz7=DCx%M=^(Ba5jdt)J>k`bZ5^-fu!$5drpe&+9rEBG8D8rI&m>TX zE%Vc4qEq8!LUxKe9rmT4nSWec#P3q`(~7NaFy18!X0hJlTxt)+5}_YrX%5RKS^{#W zerJ%`Ql^f}l;@6NtM$f!5oyR123qrd-x3SD3j{!}iPbHL5pI?mYh9WHes(ZMZnKjCOkBw?8 z5g8&ZyL0RJe3GqqhsyNlBe4Ok;JB3nUY3w(%&ST()G!IPxn~t-Qr7yn$YY;7d|l@v ze5x=Qa>KBD&PxnFO2~@`f}srkt(T+sm!p5_+(s&i=IeMhrF&kPafexBV{$N85Ajhi z)G%^#BCu;ZMqzKcG={Y9mcpVy{h;SEZOV`{NJ|;EtlIDNXu#=D;wvZJ5Zul;ce0h+ z{i2+r#yq{X+SgyY(O1lhTclONzACbKovo(<`PPbat>T2EfArrrJnC%LS`|N5vq=xj zFYGMW307ZuRBkQXM)_9pI)Z7Jko8wYXHev0#XS0~kWX}>_+1K}uBvzB)p)!+yfF4- zqz1_niHZe>61-TxU3(`(wMzv}oIVq}n6)7ra{(L^wur&+;&&Ew%0_xZFK)Gl{%YOB z&a(KdrK7HwCGmCgjgQ<=xTU%AV51HR<{v1c@Ozba?adbnfPz1ieYwG$4*)2YHr)VP zgqobzXFe{uRNV+#ld%$}?{)2J-xM}_!S6FD-5|Vk_DCqGs9eIrQCMWJmU=|)9dHo$ z0sYccSy8G*0hnxLc)QJra=v80c_K%c0w*%S}1enmrpdLyO%y1$$QTn*HFhZ82 z-z=r6!>hcXlhX1JC)jeNlg#2DWL$%`4EM^7E(=tik5-nWvkkjBsNn6C#~B=0difnP zJ(D9e)EM{sQNzE@QNrfng*Wgew?#=#C>8Q1Y$d0lZ#%~+{Yk}>zfG2RV-GhO9g7H_ z2;6!TN=`jLnmEP+%}1=V?t4!*;AX{eSH zc1-r;0d#M>m2<82rW$f~t<8y?NHVQ-3WM`+klMYkcJ7kZgm)BE!}NwCwC@D@qpL_) zm)iWbD$TGGS+)JFO6pNcVfO;*(0ljWZo69)$P$2bx&ny}Ldfiza3M!mLr_X$12>wM z<48Nmkv^;UX*Shz!){4OES;=9K!A+ScE;U~yNHcQst4Ww_A)puxNpM0(`x?AlgMEh zb?9~I@p5sA$UkwJ>2ec#{}EtLLT-EIJ@!}YU;lxduz2Tu(gaWIyWYOyZ7%oG+~rB@3X&#j=6md*l47i?+mX+bQuRKU2O9` z?{w}czj7%jhF9Vt^^)#AKiGxk;RS5{tKfw-5n=@|MOF?0tF`}HaLfVHp&6^T;)xx*HX#qMyb-M${(;MFMN zJB8Rr@z@7WB|91vOGE*taI;}-Ul!epp_Z_xBXj~RIav)oS`9z+6sg=X&s-;|w|=Ag z*+Fk+u`Zy;;f9^Wu*oDlDd}LYp@zXcp&?*Q4p#>p>NA^2WBR6Sbar@#3oT z3^J_{EcxjDj+}e>iqAb1V%07atUgAC5tizLq@yj&mK1CCzWLGbn*;eQo7KvN*w$2q z$Gu2rC&Q5Y{*1mOW%?kGZ82Y1s9W_wYt*M-kx)0yG*eI_p|{b-$6_)jK<;`^yKB$< zjDD3h)N6*ga^Z|6RVVfbQ!})gw>$!niVOMTe_s5E* zQnOhT%_CVAWv$WD976KD_RR^f&*>&*II^C^fgcQY#>+AX5ozzn+c_q#sjoo`R5zPW zL|Yg-*v@@DkLTF%w$C1kIRT@_dfM;ippm1>3vR4uf|OT@_$~~y1HGR$)v^lNylu-q*9zhI_pzriLUg4Dxb7w?4$=4pRpYW8PO?lVQ zF`SW!%bw1XLRNh@p`VDpARxB%`@tvaS}rroGOXt{(c||C`^q;wC5my^D*HX=&q%au zR)PYh%3wb!{Q5u1Ov;FC>j*3*OPu_E$;>EUM>3i>n5=m$!zi#md?+qaQ~Lo4-{sD# zJ+eHVh*HibJD)$Txw7bgJ1j1Pg!(A>~9@Nw~_PF zU0Y#h(vz~y8avKmjgr!n-RC%#8FEEQz?qqSUlTUE)gqY=J+BnY!AD3izAM3RL)=Sm)sk! zIiHST><;JohA;G=Hu^)ce41_N1#Y_xZzbl>+uC#$bSThi9ziGt#tD-UTHJrK*e4$y z<~1Ppv|V2E2?z=*I`g2RzvY^HG{P4kjZk(7d+?qE*j?L$l%!YA>B?Y{dr~uN zYfRuZQ;n`10s<=?Ph#+~Z|=rgy+wG+7E`3qe2PwY9`oo|ONPKreV42L8sx#x?;{-rCy}|M-z%qDb36CMHJd zn~=x((ngA%q;Q6mogD|9%~OpzLFpTXpvw}-_u{Wox=25!`btr{KccFt&fA?R?&uLd z=c=l$H31#rW%1%Q8(^PiQ46~BUeShm3xO;|No%H6ZAo|!7|)+i4GCwEP892+%8%L) z30*vzow^9Xf%s4}1cDLQ|5YZKiuD+)iiQ zeRJC>$a@4i?teKHa4vGam7UextpECKOx3t2iee>E*A^F0))JbSn7sWacu*&n>d;MU zyxJXU3`V-LQ&>s_AmbK$at6jvcW0B~KzpH@hFQl&IO~MgH;&% zl9p@Ba_3!*a)(t(E>2GBgQk5I-@m6*;%B)OoEKn`M;$=54Fs6uz2)J~Eu*m#g01s># zcGiFWaC-u*(dA%{2@*1C;K9ZS2YwLV0Mb?%j_75U-lX&K{mmh&DWGJ%m(Cfr;1UpE z4!~I{@1ev`OH0dAV@5Uwnq)vhK?&G&XDDMZO9b4Z=n&)4AM&DT=QnbH=I7a30J(Dc z&_^HOz2%@Sg^SVw*f5H5l9wV{%&`0ltx|znnQ0$UkwLS-zcYlQa$%Q5Gk)!xsxXyR+5pCji97)V23=;iD7?4OeADULiV5a~0RdSZq18JBU2n1r2uO*M zpv-cd`TPp=ND6u?Rd?J?=CEHq8B|kwh)#nCe6n@9BY3%ieWU*y{*3U)L2`01N`mnn zfB(H~$vfAjR)icCCMQ={Ue=d@7PVm&kWLD!(SJ@qIIzu8DF`xMdl1Q=R7LXzF_4(* z;j*XPdin)q?;@@@ib4>M#5f5=0>ecbdVPX9$iGQ`ekE-N7X79goLPXhHEW~cg5#t( zkrp4V8h!}Gah`qmqUR5EZRQ zTh6OX+qehB3t4W`zfAZWU($Y&$t^SP!mysJ#m&WG5AaCBcx@1jB&DQ)UhN*48bI#=yGB&dZ#e8V1%pDBHsDeK zfgE%=elIv+w~maMe?W`mc^beCQ%!Tf>b<9@9#{jGhkqbAaPIcb8kO+`uyT)K5M#*N_qG!F(qz(V10+T4Gi7u(%cnXhc$1C9+VeTgz zfufX=5fLE(xCr6!Tz>pd4BgJlAflk4psM>K1z}tm{{hHcIpO~ZR$PdTQOE@lngf`&)BEG06fJ2@cK3q?B zfg~x;oPbBH@1%^=9)@=ON0tK};tZ{wcS*r%$Myh>!r1Tt7Nd~Y#UOl)4w&ephPlGJ zvg$x6kWf^N{$*APkI;C)uh0|t9oItOVwLdlXf(I8BL=avkc5)*NrF2t<*rEH1;&c$ zBH-G%VCEkgn__T8o4}&W3LuBa*>=(a=w^5@mG>nQ@d0BA3?byub5rmwDR7j{3-7}V zzs)y>h8cAm$ySIotdDLy=|jVe&V^{i(P+47k`{vgmBs1*!z^wD&-pliDwHts|EVJq z1C5jZbq7|04tVmX$uZ3&p%3uf(yFtk;gw&FRt_?Vx9E-(C{<2< z!G(@GD-G=Ije9RV0bqh?Qhw0uG3zJ|NE2%`e=xko)ZFT?vOKv23J zDEx6me{I8SjkT&yPR!TGo%n9|SDVLcaf&FjApL}=r&GSZT=K_)EiNoX0S%ZZyXc(( z*}XM1T>Kwbn;x%pY1P_NOn{4kZ7&Cl+|s2SnEoc(JD@PGdcP)8+2 z$Mvlv(qKYBY24Nx_;_Suf@sDC6s4;_IY7;b{RF7^%V_dI3h%1j!@1pY2h}|eeDw~# zDFqr$)V5ZlY2baSh0flqp_8ck7BFUEEx4g5=!SJY`-gPDjp`Pmr1@M2zJo!#qW53? z*Y}sJc@38EQ)&NoDtr?nKur(3E`%XM`ZGkRpeMXgf03&=k+y^RMn#)-V1S;C-@!am z6Rl^e(BaN_Jb&m73PRy2u)tosTG7WY$nJ^`Y*9Q5y+t04hUx_oyIzRLK|LxUZy!SE zUjR3PuL^*8w4c<`04idBp-j^xoWGfCiVvrXVA??=BO|KIj7k1zi>Pl5mU w|4};sr%w03w;~GrUs?Tk1pfbN42cie>RA>T(cz))5b!50p&(u&`rhxq0KVTM5dZ)H diff --git a/docs/images/specfem2d_example_files/specfem2d_example_30_1.png b/docs/images/specfem2d_example_files/specfem2d_example_30_1.png deleted file mode 100644 index 4790226edf709f17be73b3e977073dbaf77be661..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 79493 zcmeFZc{tYZ`#$(svlZFf(4y6v5@m@50*Lj`idA-6;o={uKvX+HHp{zW5 zMCBBPLR&`uWn#onMk7`#MO)sCP95;1#u(fx#wJ{TNIe*#7#{QC& z*j};SB0|>A&JIrd#l`LZw>OB{U$zq8DJ`gq4`FsVqUS`Ru$z*9X`U!PwxQ5aC`VP4 z&bTEF-F5Ziu9&YDkUcGnNqglsFT!>FQPIpW9U{ zC}sx_ZuAS;DMU-V^SBVVKRxZn;Mv91u7!oIKUxc0-?qN>Y=8Of-OWUA7fY8*uKiB+ z3J1(hA|yHJmB>FqD^3-+@CY#l{QJjB$t?aqe;(C6!p8NVw+OI?nf~YHQuB?H8vpr4 zH<2wN%>VgmRB*Y(zt5uY%8cgU`k#-I=)X#OFer$$D-q% zw*)_1^DFz5L)D^&Z}!Yh{_JVko!i}{si@lb@mANsKGI{# zcF&Pi=bxWOCngTzEn`0)r(FBK^!J;w+utubTKNv9^b8ECs^PpdeYcHkhQ4MPhJQ2m z-EeE?S!I7(hLdlcZ5kKyNAztEI1fe_Yk#aWk+^rc?_)yFhw?BkQwjc)FZA~|F5bCw zCtl8d_fG9}CPhU>?j5J-k0(l3RD|=nCtm!Pk$U>^iS6g|L}=;gR&#O&e9ygTUJ}6Y zzP6U9_m$V|W#^&h)#R2B9;AG{EgrS;P)KKgZKCCQMXwo-vQT!lvF-|TU)Okcb(gU# zsu&q1TN|t`B&6AUUR+{tn%gso(8e!6x% z=ED3PDJzztggrK!<_#Y{d^ncJwN>Nb@b}!+yu6IQzP_=d=XmK>tSY~?OQ+^zij3o? z?w%g40yjr~HpYtSU+e4(XaY-wz6)~Fn+g`(HKb8Co*d~AJeOx%GWYklr1Rj(?8Toy ze;zq@OxepzZquesL;AN{vaQS~2OEzZIa2)b)~>GM&J( ze0p${|A32#ex7aEeYGgF?((pFpT+%gqUS8fW>OD@n*Dfl#cg?UdaRUHymNk}sH)Yz zC^D2?&}?C5tl-Dp1FjAEj^;rjA!gXp(dp@`h&56T4~}xJm-pbt)^*!`dvPu_Cuh&+ z7w7ouljXCwD?ipux&G*QBFiTY2Ac~Pp0zmQ!w#F7ZQ6h3mxWVelAJrIQ-95k0(L=p zk089SyE1YexxNdZpZHHsIxj3t)VnRrNZQ}Nb0@5`(?la-5A(xgx0GF6q;JN=NZK|_ zkWZ+-Ek0oPSmRCrKEMp2x!tHhrY=P>YP!Q$@Z76Q6=7W4X5RGn_opG;@*TSV?b(@h z-PH$N|CBdpnvdaq=1U8+0dF#liv&=T2EXU-A^~~tp3uVVKuW%2Pe}2l&rh`C_t^^^ zj$9jzFzFd;$tIz9T|oZY=g((mW@ea%j6H|<7EII~2*^40@EEg#xPA`Pnl)uRI_Hu04QHR7QA$+~c9K9PgfkWa$RMzyyv5%Yj9i=dd)w!7kaLt{5UvI}3HRfMn$)^&GxH#^nKTUky_wc2MF7ayD&Nb%J_i;sJ| z+uq(j?$)h}#|X;mnm>b$_t_|(2+rA@mFuJ>D7F**wY06c@GM#e7HWs@@?Fh&gsh&4 ziO{;;7FTV(mzL)3`}_JTumW3;7#I1-(-kAow;owh-0tyPw0hgl(qCVmV=0gf!t*|S z_`pUvmuVI(^kXK0g^kUk&~rMjb^vKI-EFMf_D|bu%f*dK98Lo1RbJWC3 z(#34ktX!C#KpLA_jF1#ToaA2kqKrJGeCW{F_lqyPUKTBJ_BP>Moq4Xka(;S5tt@1v z7S%*)^7l9P+v3I{B__p5vQ84Ne+*)GoMu!~QnGHi=ig#}i6Y}N#J}Hpuvn4zh2dN2 zcMId{&+BUW|2WQ*lwn!JucE5Dar<_r;nr7GFV4Lh9ql^AwqAy#tE-ENom~w{er&LD zvy#9gQ%-~Ab<(!QLCjnn8#YAZ;O((*Uq4Wv^6GV+KGkX9gvI&usrDW30w&*i&j(0` zAS~Yt6rHc;m8evS@*VGGcKOrx;jyr=a2JyMVGRwo6yEjgBXo?tc{+UNUkK6PJ4iF{ z8q6-JP>!Dk=jY4BiW?_uzIt@rvMwpibNWwLAiDyG=G7|WnXLm7f8^yN0KyUVgo=L?u9wrtRwbHiMyk%Y!{l^Q&D%T<2SKy>DmJY5U_14+$pR3)SQAg)al!Drd%e9OtL((v1q&3VKhjo*Hfq z#b@1j8mMDpW-h_mknotaPCxhR#29-7R=fw5gRDAEN=P`Lc$)Y8)XmI<^%0UtpgX^( z_r2=yp`)C6X=E5Jz{3+fI_lt4)Ha61$|LuN(GMw$X`BSW(!zwM!jI2WA7ZvyD&G4% z`t_WBNo(u6l9CeZFVA>Z3CLNG#Ye8&w@FHh%l_T$BOyb(M2Dz;K5?T6B;Cd=aOM$K0Y4qC=xU^HJw?U?$CO!E$Zg!d0#ivj9<=;D&)2Cz=3no zD?*Xe*cbzaG_U{t{cW?55XHyG2U)w~+1ck7^$Zj-qk^lb*PXyHw{1Jx+6?5}$LY77 zNIHm(1O&N?SpH(xehQUg1<*%d$BpPT%@hUTrhKp2tS{$R({Bur`td2qCoDYN97j&% zz=1?f&w;zH{1lh2QU--#-{pD1T?YBo+CF4Y2?`r!ouW^{lj9dI?4&DJm>b-zG?#nv zn=aDCI(d(rdrOpNcEtrDYN7K_PP*b}Ixp)`4`wGft6fKCM85FSM~T)0+Ry_c6N;Ld zapUFTsZeCh-Kr6A;1PB;V6wbih0$-Npn^ekd#1S>FE8)bBjI6TtK~fU#%){kUKIbS z7B8}(=%Q?=?cdQNX87j8j6viY2@}f1#01w5olG;;uUY5STYAprSeNWP`)tdb`fuNE zv+pH)T85 z<|6NT7obRzL}*7W06H#wO}CLwJcM&((V2; z3mUezA^<|qp0qbMHfGHqFRVg+^vVx+Y!2UXc|Nu|{!ezU$mt8;G9vN46DjNVU5Yqy zcYmtK-(URl9((k2F9>_I0dhFZjG7kw{dx|#Qs*pRk2f+D!Sb1Qt7J}ADIj_XHv$?l8|$5 z#K&J1^qHZlP28teo3MB6le)O+)KJTlGfz47bFBUGJ7%MuB`8R{S=DE{!^P=S04gJp zW6iOg{0d$&g6$?6moABYP1g$?NcKE2Zp6&aUe$PCZEW)A>7)a$tMK6)5yjVVAUE#Z zd2Etjw(|N0RzX2Qjbyo&v|&^^s#yigm-8I-8`*=8a-$Yt@UtgRX z>?kTKzMlBA3&)8B4t^s9D{DIa=f|^Z5g=ib@EaOV=3Mylama1~c-UVu0$K9_ zFT1dAw4Sg1Kg_(a?<`V#shKR-RZTnIVYE*)ob{E2X#LvK(o*^qZ*TAOO}8|}t$wyW zAjR^9elEA2f%gLmyX?Iezm8t1{`irz#=dI7;9Mj5`6;#tQf}<$2({ILR=_I%Y3<@$G4U6V} z?b>tUGn3(47gZb@vOxsBpt5rI?qHZcG>5QBn~#Z!xe*t)bxz)q6cdEB_2(z6+r1`^ zlW3d4DXn>Ad%E<-W;LpH<0h|}uF&@%KXw;2AqY3_+sB7nD+YKxJD|=HwEw-7##K%Z z4nJ&0PjmC=Q{HoqnXDgsxA_AYaJM{V4PK zkFg~{VhuSqr?Jf}2tgIB5=}2Vl`)WJ#j5oZ;p^yY%$Z+|EjT)~45N{l*XzGL*Qr8tMsE1( zx_+an-s=PX#XO$OlaoK2n3$NTa}~QK`OPWiFJBK0*#b_i%FN7sa`t&#i_b&5aqM#! zpnx0tlQF>j#6GUIYp(%GtOJDSio7MA@%-lPx4*u=V5Oix3n*TyqQAG-qV1jcI$ZnJ zurMXmOJKU7Z$_TA-LheQHZ?dPB##6I(TBS`#%|Z5MbaYQ+HEdVmn_d(8Q*fo^Wf4# zJz{nS`-lwiWWRlYQ0yVI_~-||%S*ah7R;9Q$&vUP-1-W{VQdaN8=Fd^v|aSwyOGy7 z9O$mOBlWC8B3ev&grPaU`Unti?b6bcZlOo+!I>ApIoL~lP;Bk=Eghp0&>)$XwQEa;=$`Am zBpinRt4pcVuQ$-ElrnY@=puQy!)qeaLiegk;T84F@ zPdgwhyN06jTR&Y_(#JAMdXe$qi^9|JYnp+c!l&nQkFFwIf`h@{L3Xa9=*H&%E|kOSJou%V~>!` z=3u7q1FX=}(l(%)lh#L6bR~Y_;E^LtMu?^7)z^V`n7Xl%doH!{1KO#e1#%o}mMob3 zq|U^~R*qBXINGTMw7UT?G_x<3LB#M4x83&~B`i+EV@*MBaijIfX=SgS21WsvI-kFM z_bFXOp7ec3S3l8gWv-NmF5S1$7;~)0)^yBW@eH|)ao}G1X#U`bpD@A`VjD*cV zar^UnprOduSL4oZ1{6@Yu3$du#cyIF=knN=r+t^VF?sXvy}*s*5b84g-4xpfYOM_M zbOTijAI$RW3aA8fKn}j!?g7%|-O}7e%0Yb9tjFKMMmoZqV1YOU1g-&bT zohN-r`us=kwl`N;#S14nukndrM~*casJlBelwIHOP@T`;!D~488`ZpOl}5Y-jp{Y- z)o#v#fq@Ji9q1}g7J6L4hIAp}liOb8C`s3q$>=^2s~yw@V$B(HJr z2*8Pa15wDqooIJmJ^=iP#+p216*Os3Hgy1@mGR>A{0+t*hqUxIt(pn;xJt?>gA>* z2d@0${te=4mv%b;#MqcAs^Sn3x21ZVNSB@Mo#Um>Vw80ITDniy1NIw z52y#2wckO3q zcJ%-LU5&QqeSdw5xPBd$tYp8-(EEVEKs`WFtbJ`Wy2;w1{3)K+h?ik&q%5h(FqzTO z9E6g&#w+>}S+4y0df83-OQVDZ0P~#V+roH!iqx3kcNhcl{&M zA};5%5FfclDugry?w+36z$@=tAU0rNECN8eB-K}S(c7}nhHh3DcG#}$c zs~On^YBG!pFId*sT5rzN`?c%ATp5-;8x4lb@{)H;4|BlDQ2$Kdz$gFYlLk?28X<4d zLf$px32@l;ABifc4o8q}?H+5tqNTa&Uq5#-2XKUzOPK12ywKK0$cBmp|K84T&a2}g zmF#r;pS(5Dt*|qwLHN-`ZNep-ASV}|y`W<%x@Dc5{%{i6s>=(IqnYRFhhbT;cRzl; z7z8of4bY#3{f*Vydxh(t;x!fcKcugd@j;;J<{&q?;072A{D2nGV)p!`W0#Lwt+xq+#m$R_IvsArNt~#UirnBg&|L#Y$rTdbH3wdbTy%9i@SQF6nUF1 zEiKJDi~V&$<-VK$bD&_hKT$W&b`2A%2cOb3p7tZQTT{VO|;G|MSor-2BhJ&_7E(Qm(1ESWcm0$(U^?#>Z!t>FDSf zSa0(;;T-aEac!phP7SSjZt!~dbFKR!wm;UG+k)q0qs${-W^#b%5=pUx?)F|_9ukZc zh+J}kN^>Bq!OGjV?Ec{70ZdfGTils{<#(LkchGV~cleE#*CN@z@Go!7TCwu+n%dg) zdoO%80pGrw5B>aMt`HNn#;z<$CZJW z9dW3E7{1#sgCyhtAu4V6ebfdYco<fYHqZcif=5vU|2GB{pnv63r9&zYg1#zV(wtl;s$7nJ zhX9(4Qiz?B4xI;sLPIyp$*l(wQ2}L;-d)5XpW`34LrVo&hJav@6{*GQkV91ISFE_N zep@WS+;?G2&CT826uP2xO86;odmP-{7TUMbjuI_T#%qRJ(X;F9vmnNmYe#L`+fgPX z_c?$!Hz@MiKyg4TM6^SQZlhC6_QA8DqtnbPu7SDd?0xRMQxQZ6bYkYAm5g*i7CiE~ zopL#qSM+hbc1uYSMWe->eZ&5sf&#f5yH@S!x?nCs>PKfxCZRf8#_>YE;1oXA3EnB8 z?}R=myme(Kv7`X;D|YAEW1mA<4XGid8UoEL8yKvIIxK$iEy!j$ zkIDD8uPqx#xiY1Y11@55rEB=~54k5BD*WkC8f~ZKq0XvRhvqeZsfZSGAUCm0N zI`$l9+pwP-=n=P93VvO}tenZh((;+uzHQr9kemxNG4^3w3enM}ve)df=HTSwYAkSf zvTey?K(ZumG_ha-4apRIthV+jz1EJjE?f@(c^50wt?*|8V3C>f4B#t}egN z@}leKXJ=Uva@zrk0mULvAlt9AzChc=)mvZjXKC*DOYOTc{Jx8S`AGUF{9Lx2larHU zXE9Bq-1JaOAj-)2$cp!pUNa7)?2}G)&+|k{FqkTqmXGcf^O!?BN>kiZakA-=!FsCj zxu?>7KGx^nykZWBE@{cIQ5Gz(sK^AYiMxBZ_HiM^VK&NJD9|ZWMazp(JYojT{o`h4 zX8aUJzeqtvqt9FS?!8500-5H9&>~`%;QmMfdHs{V@p3mUBQkN~Bq`}=76Yor)vm8M zr8MKb%;ca(X5-zg0=ZI^x}b%^uU+dFTz8IZYsrQtbW%zlfLzdl*#*Upj5KF%W@TlK zsX?-h>g(;L;tqG?&o1EYN|um|B|yBzB_w<#JTbZ|Ntd3=mEnI4pl>c0>V6l|0!;e) z?Ch@WNvr{c24JtOs`;52s!|~1orlXPQvsuB(Pjc@OrAb{YMFiMU^f38a`f|a9kMI&^6uj*Um^KAvH1=D zwZ8UA`g}wt+$5Pq82|zfpFNiQ6B&+37oH=9(<1%wnaL>MUfGpN4g+9cDNbI)YbPs+ zX5F|?HNaf5bnO{9a)h0H<2rI3M`Qz}yDSfz1_0D9PugIZfQT<+ z(}4r)2(5VLOl-wmE(!-!fZShg<l>G07U=g7 zl2&@pO)9~$0se9q6)oO=Vw!*{q6g|qysXn!LZsuXR-?X3f zFNZ7niIRf2GXW8{T`%iFtvl^(s*s@9C=E&b1>+xg1$diRT@MD3*s7T_fum>R8w?I!C+8vcv}*({(dxDIy-xUvhr-Ro`AMC>V89Slw)Pyf16^W3CMv z&9rTM>6PAh+U`9u7>Jw7MuXdaDErE9ZAL$kcHe7U087$wI%=w`!`HAeYD34#1FLhk z&$0a;+PQFOeN+hSCE=$aGohdO=&=kNvQ~1E{?ElRIcc0jbY9EG-6;@gGces@g#Zl^0Q_~n= zHG~$(uI<&&LV(dsu#QZutcSoHjuKEkkG2~Q5C`y!KtP{uTeHrG3yEKp_cPF=NL*@@ zfe4Ocf`HV!Tl9hefID~YkbZNta-DrADR$uUwmfFUU3CyFSuk44N)%QiW~lb1>t$DV zU;fl)8HN_H2YJlWXxAUrfo&uC4FJ@;kt9u++EJoN%ImBi(?P zS?-^oo?gMg!d(m&aAr?tz9nTLN54{_1K4aM`YHk&K{-0WS3r0=WQ<~U@xljlNfFf^ z;F~i+C5afnTTgP=7xy*U_$%qvh-D^DM9<7c5qb`9gd|aBz_KqOk?r+@uZQR{a0t=# z8W(}%KMdW{{u}BSa}ZkUY*uaM;;*zC~#c(^j`oLVr|fSNllP0yxhkEyi8lk zKlSHFI6&W#@A?-`2MFc(!?2T#*f0n1iI?{z#<50Fw@YIg{GisXn;xyi-Zw%3hoy#5 zQd08SKZhex&5-xfVB8`EBLPp?%bFxvE@--H;1ca*_lBchG4t#^Q;emMfPnlq?)=I& zA?pQY9&@%7@2NX?>?|#}688!YlsWE!7~7!kg`<=)EAJ?8*sYOb zn#PDvup^>hAL12QdA5TZt!cg7bpSB!5X@ebdqCfW+)!9vaDqeZ8hfa$^B@OtyFtzW za)o{6%HX1+qQQvGD8JiJ-t()V#(++g^PJLZvyh(?c?r(yCMN=$thUq6VoJJxE(;LHUe>?VI52cQAg;^dO7uq_48N9#T_E>l`4b%K z{*SRc0>SW&+U}KYNn%)2%SIQVCeocCYp6~? zw`qcek%sF1zPh>$Rn=l%U6}M)((qcl;S&O}_$C0gUPFmH=or}!LhK;hfz(Ou-;zGYAhMw~aiQvDxIb!h3R+@FJiG^OCas!2G3w zmnE(gV3|OKUk?hgjO(BEKC^v%UXYIyZas`cV_f|08y^whkw^*Q4q-YxNV?A1LzI!q1EHxZNapA_wJMLyxeV@ zsWeEb<*>YoUF||%S0q9)Qb-IR6FTxT^x%!)(n;81$;#k=a#&h$2R*2E5^v0INK<8n ztAGJAZUq!VNtYpAIL2xH8?HgHNCUSp z`1QrQf`S4nxXyHV9|<=E=VGv0;Z!#(DucH$QMj#9wY)4&bl6>Cw7rD$MQb={d(~Mi=|h99SP_4xsXG3%26e-xs5)U`kQxu?ORUdXjF_ z^hjjWrhwVGxh$|NUvn?&OhFuewo~ob%5j8#7Wjcow3Bf+Z9;{y3SAop}6 ztAI6fG9J@^YAIBt1LjXnpFR<$UKf!vF+FXC?YDxC$SVqHX_yXvqNbxGB{(=Z6SQ5J zm{D=9+@`!WzK>z%!IvtSL!vZAQL%&-j38KBhy?+9ItbP(!h3)=DqC1wBv(v`qkmV7 z<6y46)KeAJ0`5W=S^UncSNlLIaH9oTFDPD}>HPDQ_QPX5gn8%X<|h2St#pi^&3u?$ z<+p$_5wS<-G&CZFG+*CQjp#}5`^Yzu&>Ul5 z6y22W`z4;cW?J>a_t@}<(tqwV5yDm+r{v^ZW|He?Z2-QoZ?x?!HA?Al5G(4P!1CMsE>I49i@m(rN zKMtg_Co$FkAN_Cl-^N(DxBh2#MTtzb$OqvBZ4?qJwmrMe99%Us2o{KV>e-jEwUMZB z*^@}`gs%W8dr(_D&a%(u19CEqm4wQ-(y6d(&bDGFkR726iaZq_I=9)r+p|2)vBmsl zK&&T$aOoKtH_6EGR-o>*}RosI(}H{Iqm zQ?xv<2o%F&yA1d57D(Ahe26#VnMK;Kt(*T3dv^02K9u2KuR}NvG*!@k(h#zsSQGW$ zS=A+#0J=8bQ=-GYd^DPXOK~f1E(95wI0KP0%HNK>3rFCy454srKBv=kYmt-;!s)}2 zOY{b!77!vY?aIt#ljeVE3aOBH-Ow`<=J~=~^a)@HHll4^UWKM?E7g5&at9GGLCPm^WOIxjzNxkAyaA0M#-U#r2mBP2^4wZ z;1V44TZDy4QpV@Fyr@RukVIjh9BSc$TEFr*bFUIQc10pQkB(Idn&SWyo2r+WS3`#3 z0jaSa710|H5!dpbi(lDLz{`kT7o=z>xbcEo{3p|8Sf9LxqhEpgu$qrA6dZy{u^&yq z0?GZPSHkKXIdP&A`B@8Ce9M+Coy$uj%WiMCX(s=}2Vr3)V7Lj3MMKAEf|wvK8U#gY zE1a`_k|FTVn4y&;oE4P32qe=k7$8>1F5`%Hf@^?uAP&>oF86jcAV-cL-`h&0YN6#7 z;#CM`vV)`th74LluAW$k(fu_SxMvG>;18x~wg@bTC}Gj605<|U$8t181iyC?!~^Fs z2W|_(XZt0PoM~59!YU1mH^cL@@RyGewFUT*kgQ}Tf{Yg+|J1zXem{mp(g}242^#U* zNYSzYsnXyZ#^8m$^W_TsVgDv!Fv#MC^Fx?@6x^LpwnY~`>qmqWMCt`}ubc0%5q(`C zT+-RMI&7ih{ai zO>W6tf7R|0PGf@Nl&h-^x_~6+*?N$2L+~(Jy1@9)Lsv{BILUh0-J~c(NCv%4<3uJP z9qXHbd+U!U>@g+MF2-2AzJooCN7g3}eulp9gSW{3FprLfF;>04ke|_kM_1^nGXY$FP#07?jZIAum(V54piNQ6q3m+U65I z%o}BBT^d39lH>9B$Q#2C?Q{ z!e54TJClR(D+X$WTQ24W*S-<=BS)?Z$)j?iQcHMVxD^){0_rAJC5&_Q@87<%JtDO) zS5eRa5(npv=x8D9=l>;G1UNwfz;Ni45Y~DHd@`_WuzW&)6AnZ6Js4(S5v8Trw&kxz z7Epz#0HK7S?g)O#QjvBoW?<~Wmh5eDVut@@Qq+g!JGD3x(eR%lv6>@G>E>9ku1k^) z#5X2XNOYj063y6Sa?l?JCI}0$9j_d^l!w|2iK(s(G8P#>AgYMa9O;OG+nFBIZzfD9`VN=`yy#EsL zkr?DV&=C9n5MlF?yHx=MB*9>mmzNgI&G zAPu~j0v^iIbP`NH3WJbknvQdphDO}#?C5?pvr8y%c2@Mf2iDVAwa;L?~ z1`OQu<9+@8{bUkBadDE1c(t&0t3k}(%+b`;tRg}NG;UJ1z2<;Q!cez}VqsZ@i7+|> zo|jLQ*cUA_QXuTVDHcNxfVqFchtgc+tN859(*Rgi?!#&plC#UT5|6uTzUqoP(S7{$!eg zfzZS1ruaa-WAw9Yruu9C({>Ht=5=Zbn@3bsRb`_mU&_qfYs%RsiDSt309L|l3NA>y zM0Ci0CK}<642Z013KkFQ1#jm5pCi84R=@-c_sqDOrvoo_F9T$th zIdwANmkqmxHU>zP@@cAYg6Qo&zp^*Z{$0n9i$&~_8LxEoVV3j6#6*S=1QfisAF*%C zmxRAcGes=n@l6TlKWqE)K^smf+l_B9lumVhM%OJRc9 zk+fNzbln@dwk)nP~{gy&QvN%}6KoKQSq3N})GhYeviwY!r2Zb@oBIC3YjtJ`B2f^Bc zp}1y5aS5gY>M7KEg?SB!q5q~=SX6IgQeMkhCO}XbM1EjYsY-sbFTjbGV+lz=(4W>p zfiDH}FhA=KS|uI&bUFk(C@i|pLc|zB=J~LJghQsHX-WC=;@s_5k#KCGgju>fn7N^8 z4VXmIW%R2}l8uq9YzAkth9YfMw>~>7zqtyM;qFRXt}-+pJP*VT-^2o!_%0U;-3?Fe zR|!wZgXGV<4jSk#t+XH$p?wO*l}lXNa1Fe@HzcecCqWSr6+J$cgptiU5TzF!=W!D} zubKe$n}HZfXz2kRkk0rVuyBQk!+@2?hATtOHy|)2hACc0KS{XyuPCh`iiIyYVM@Sd za!_juz%LVtG8;pM?<;LdB_cgA8h^6@eiL(mn<{+YM<3|kQ$ToxyZ@ScXoXf+P5gez z0w^vY@;?DgNd%S@6N4McmV|%adLrpPHoGQ+-8}Yc7u1tXi0s7aHwD3$igTk4Z+c7f zB7TPowkSSVep?8J%B)@3wuRWY7kuEa<|_lI@n0cz;mftIaSs_}$wO!H74#4<3~;0^Y0n@Lj?`{B-3J+&Ua|;LAF$ZwS{v4dl62>bFX*zH z$|;*MmGmXUFp+1+DV3=eJW3qD&{dcc^IULH(5QH>-H$g=C{Ze;vkl?gya;D7tRH5W zydnFK^sRo@y^YnGXsVbcGDVj^1agbFnIzsUfhwTs@jUPt#7<(__rB19)(?$qFoFY1 zF6tpOJoq7>?J5P_b8{~JNC*xIId)B@a{Q$s_61IY+9^jxX>hBy zc_R?hV3sgVM`JvMi@5fC4@f=Y^@D@UE)Nu^=MZeAR&cPIK0a~xRMG&r#Wj?pn)z!b z+n@#Z_wP%_U`R8(DIcKeOewJf`P_e~lTz%j07Z`1;|nGuE>a&F)P z`)Y4tWtEL)HX9}DpR*!sxVx;P+$VImRK z;Ni2c|IbDbik?_N+<=hYBBQpdhi~LFr+~mJ3O^Vd(iLkZqAC+%W4m2Anvs=Q95RdB z_}10lXBk>xs{36K#aq`7*d4?4sF?9P+p}xH#8-eOa)cN6!_&q8vh0BYzB6pTT*;dF zj?JaJoSAgr$X1YSZnuP=iu;v=nMl%tFQ}VQ9H0r2*Ku2=#9p|TZs+Z7(TXdmq6GaA zV?4$~PeSw7O2q2jhv=5?Hns`PFkx!R+%D8u;Fi3nUgm_AMt(SwOvX?t#UdGND8#4+ zdARYm2V6yw*p~_MOvlVp%)cK-cjWdKmUhfq^8wNKG-0|ub#T8d9J~DH0Z-fg7IeEw zyC5tatchZ+hM0iqLGWs_6=D2MAVYzaOYM}QcrBhtQLvK^ZihI|@b|Xzul?JYN~PiI z69OGtg=Sj&D%^p*Tz zstD8F*s?a_Com%h|NMcI?kr0(P%u=DVIj_fa+mSmqh#%ckHr=vg@SK+_RI(&r%E37 zkY}r>5Xn_aat3?|k*G<}>$u268D9R9IZX!flakhh*D(HC2LK2Hh$ecO6LMMg=*L|z zb+0TRBb@?vD=fJQGZg=(=5Qd>%RY@rhyqnEsHy0z8&cW{JBzg%_s* z06cb=&WS1gn{$$ec!C3Y`~j9g7ImYdDBWwYVI!d+!otFCLW>sPWdA*f85mL8Sdm_d z3F+0Jh;4AN6@v#U=I7dQas?Z|A7Y72AQ4VOUA+vBG1wZ-`c<_Kfy+F|u??FHF9W}f z1JM0&IPylwIwF9x6l&}< z%Rol-EzduF2$STs?`gn5+dl9Je2gwtyBgatYe{DB{Edu&4xtk^l-o)}c^{ za)kzm?!EDoE|93?#HDDyzTD?#KLXi$HO9u_G9so@^iUOqz=2rPg%aI242mcKpri|v zFyz4uFh4RhP4QrS8|^k-v~MIFdlaHnfS0%d)*mt3Ngh{%R=7`6nDmI}3W46R52Tiad(f(Z+h{*9gV$=f(Or8Wn z5({c&1!Pq!dO*?)E=!KW1J(_*ZZV>33|C5qT8^NhfzRU_jRPc;E`z5@ivWD+RXTHbZo$v#%CrSvyDI#-$zYj4@gc4p34)T1HD&jMMoKY#r z$H!Nd?DZL();&Erf^!bff`4p>#nZpKlzCl>Eb*n zoz9Mg5qMSJdi;IXFIlF)`{GxTDLnavih0R@QwrQWN=f^HQR7RN)fGkwm;e4cJB856 zCT{@hMj|gEWM_8=uUf*v6nNy0M3 zyLRnItor#WS~2s8f3^+3dn22els7O|a%KV)(kZec&L5T8Cx(VGf$2W$RM zg_rcwPviI7c0c|@YhKgMauI}|bglD0MI@-lQ7~6oh8tJf@&bccbs1@oAe`#T4PZ-T z-X{Eey4RB+xw4?M>kqhSxcCB<9lI?y9RE?qkJv;1*I|iFnZ5k~K5#DJzYk0N`*jRj zWHzL&bLjJJLjA$G&r8WVoS*Id%z1aw`ZjjNMs!6 z5~%bd8K2cSu7{LUH|#j`goD!g-Pm{IOviF|*DjlpaNE$&>MXC{*aXYhH?IDx6PR73 z8Q{R^@s?e*t7iVQmfiVUS^abSo@VV9P*C}hb$-_IhR`H^nCXGi;KTHMJA=@>Sd{Ud zYDyb$6{<_zW0-MC-?ZMzS!MA{=g>%uP!cnNCn=G0vN{(I3%%26jfuLm|{t2M87 zyQbF6*CH_H%^7qc^|3;^fXw(pTcIfPbWk~!uHh|*OJAM3=9O<{u17gMig`vDto{mn z*zGF(8ZI`HE6bzXH?Jdlprw6(FCd_g5&%bV9$w@SZ!yD^== zD=+3g#%z^c@}@e1p$sf6{#3OJD5t6^D>u6wVd4t9oIkHBKK=4kR@ZNr0Nr6(y>r`M zd>7lbi5GWH2sYs!6ja zH1DP`pN)+tCJ&C|@o$ntN1NXUUa_*LK4)7`pXzFGmV@s4?-d4_k>w5A&YpCmjoZZo zIF!X3WSOkOcW{<|?HL-mF4VSC$9wGajl~;WOa259eM+nNmywlDLzF0p{kGzQI zN*Eys!$`^tF1p|D)alcWFV5{FLJ%qw#+?o#DL7*GzkMru3>>|35F}fEOM^BXYJ1H^ za1?(Nt5(M*JncyOQXk;X`h;86qF$KBy0^_Zp_spqQ(`Nn8{be1P8^ zPyI<*V{T~^H*~z|OaBh?a3x28ZsI+KC9{f<+T_`0pyRWu^iIbeP);`8SK6-JED-(v zbcoeTkDzTm&sd!u+}=Ds%Tnl*f_UUAXA5@^rV)bBii%-r^qI_^xx2_BH>eI578Yt@ zKud4kQ@IK^JnW`2N-zo=n{)BoDhioDPWsPN&6L2yuZC|I%~xBIuW{!Fw9(Rd#Lts_ z5!Yb3vP%Jl``3DU2u^;N{l#2AvBVMdyXT0wLtbsKJeoGE@uGkP*M0WSlFaRebN^xI*Ft|D)dN8=IrP5OHD z9I3Dd6x71zL>{uRG=Wv1p};L&3D$y!f*zM9DcP!|*y zHp25mo)!c%P8og!Pgi{SMzn2Zf>rbNX3u0(94@*rlK_tHjKyGqd7ZsivhtF^F>{Nq zH7k=VGfZ8SD>HtU!QPdO$s<+A{@&jg9KR{mY9FC+1q~=Q33CQ5q5cFQDHvK)wlL9h zOhtYc-(IrryGO{+RGBfsEg^<%I;%^!1S|(K?hg>^6|$F9lHubl6QgG~{pQcOH-NfQ z)R;x;o#5X##T(nVG7TIwYgTP|L-&}I9>L|* z70T@K7HWf zy}!EK0vz~`u>IyQ3_a|2YCwZFUMMN_>&8`a+96K2K!(7sSxyZ-sH`i$#gAE8vH1{( z)2#l^Z_UXPBWgS+bt4%62IO1$?W$4^FUgO`+Vc z+PHB@m#ok4P7S4+TlQY-l{hjqX{>bosDfL99*(I>7pKK0b)k*6@>|@POS7p~L(dYZ%%@|S%!S>5zaF`A zqK&FZQCvB3e??EZZ#4f`W)H4Xk6%}h4ss?3B+S>HiEi*t6V(@qwEdlVeK6E+^%8xT z7<`R24tX4puHSL6%6U_i=gIS>)e)gs}iYI?x)%$x_(CUyKpA&40>87 z{8`A=?)zoY8=blAah9hfjyGi~I^;b5q?Z;imqni{k4WOz;Y1`ct3N5^J<1V(|7ocB zuHP7DS-PoRu8u^SZ1r}ph;tyU~(RE*k`_+qFWnB?LhBRGfkDr_E zN^be~zP?b%T&lfYqm*XwsZ)-te3CrJht$WndH?!lw=aCFF6?a7d7 zzPA@DvN9=oLf1C)Tdg$< zR_uijZ1_anuRN5iI+dnNuO|8>eV@TYMVCIG0HM#yrkwlLUMe@=K@c3bo&7Vp{erDh z?c0kk;nGy@of{ckBifuVK1$`((@Wd7Y1-|Fp;>4J)oL(E>d@Aqbz)r;Bae98*Y>OC z@81&ggZpv#;a&a0w@QBwYzlb3>XV19y1GpFjW?ScFL16n9?ey5)~zjax4P_9I`x=R z`WN{}18&-$VP;lU99%)qmCSUjbX#d;|4Ob8Gf_U&_M-5LaL|`~D*Wq4ZjUonGno~? z)6AM|PH`Aqd}vVkE$ZJ^o^VuoyjfE0XqrCLxiEnhqOSb(={7o69>KA(&#Nw~vix8% z6~5~iPs!V}F8G)dTYg;x>y&c!e64_@MC|AKc12sJQUM&kjo0IqYh{KsKj?1P+qP28 ztIj+sqJX=&)i5nR<6%e)HKrQ^W2-gm#mB}s{a?(-a9C&{q6Q_1f)sQWF&)v z?N1E>5`@5g8)@OxZ5!zuD7ZZ z8_Su){`Wy;nzgxa=pH0h2r6+fG`c>@>Ab4**@E4@h^5|g_U!x(GSbySkEQaWBGuKQ z2?@Qa4*8pOY-0}$(`1EM6zpQ&5FYDv{8?)#+jP3#^evdky!xPM&DuZx1A{8gziRZ4 zo1d(>+!A**0w#sA{bP{GKzV_f-OTr35e1682535vojXjD+i`MkqtVb>G=Mw;u{j$W zKDB`cV-I0-0NJI{Mhe+nzrTHg{TvzwVkG`Fr#14rkUGIL3|)sjMBW zgGEPvTl~)0-Ddb~_wscjJc0S7rRf2nTL=9F0-=Rf$8iuJF_+f@01ttd!CGbtW`W?e zRRXJ9EUewPjZK2R4dVL!c*uuYs1;N%R7t0?xuPKX+PWp zS)r=?IFGZ7?W)30vUBoss%y2>_;0D5sXRNAUL71y*=Z)M@R#2*M~|RM#Mh{uvCN|T z4&FW-tR$Gr+d4a2KsNXjdJ|PYxO_ICMtj2jEH%~X&KS6MV9Y`TN|^U@hQ3-GAQ(Y< zL?{uPLBD;*X$xkU2sams&`Y;&y?M9)iwka&2thTo5Qp!6E9jfHbsw1Z?)rewNcBl=4tDsc~&#M@6_{NrL})DN;UnwRV4jmMF$3cl2R!PyD&N1$or2dycL zyMnhtC;(ffNN#|72s*t4K@t4n_y065FhUz&S&4xOm-Y|{caFhF+ay|2oh{;~_bAuI z>#T);sO$>`U0p$b(o8EwM^m=xvP(-uHNCp+(%KKD3QTI>mkPFh^8fuQs4lKFqsm|C z_deT^%2a$-AZ0Yq+KU|2G=k`7U{8Hkem@XE96r-FR9OiS@05mpf|hX02)|jY$oHWs47PP6U(-!h)Z0Eph@(tKjQ? z;fn*gl*{bk45;dv%75?fUP<7;e9Ps{Ceswm=aE@3T$$uBwF3kif)4conF&JgM%6*t z9|6*BM%c*Dx}aWxBn#mRO}-yt-lS2abfC5^vQ9ijUr4w8Pq~skc~r88;j`c48I>mo zZp)=JhvzT&TCcvY4RzLC)>UL}x}lV7;Tw5#CV(sE|L%&wKNP7qR^$Ki77(0tC^mS%7*RaN1Vh>5@`Uv~;{JwhyFVH5UQ8^j} zVqnj;czBmR%^J^=<5qU?-7j?0V?I{|saQz1rsw^O06_vjydFs3k>8U5793;^1zVcq zsA!J!ClEmy49-cWyEsd2>W@WpUSL3cE&%=n2QFWVz$CmeKz!8T5iA7){{nGCDWFj} zm3-nq`fktDAO4x5JKTcBw>!+;5dsPbHNgFVUUQs9kXm4*f|VW_?-;50Znq`qto3ts zP9mccc{VH)H@ucW-XN_%wv#ssZM(;Pw{;GByYu(!+YQq)r+qc&lSK zPXI;t7h8>`v)}K`AwTQIgMGA`_Ej21l=GNY#S)V_JGCtbXS-b1^T$6~w&lmKmKPY` z0U0(ImthL>|IQc3r%%@ zPx-8f=~P1xE8kD>lsnd4I_#GaAX0LIC{JicGz|>dP5k|uwX0@Mmm z?(qnW^Jl%RT(THE!SQaE$^30z<0qm;oVTM)cJB9WePn6wVN)uQ1e3b|{LQ6u8S0!kqWJL}fE+S=3sd5ZXj z;6Am3zX_6Y8N@+6DhN+)_{o=Ghl4yU0YJb6%B*^DS*{SzZW6`tvNSP-JNrGyOkbd1 zHu?w~*3gc6Ml_RSz0wt5Pg7({gc3NDanr5=x`m(F0a8h`Jp?j=&B1&O*e1w*SO27K%GDp#;HuhL1(>wG=DFYiG^; zt;7!B4K7zREh@_KzN93k=E%(+s`|F-$~KdPZFKh!%F<86Q`{bL3;ku84)UhRCEPlZ zIRScdYN$tKu;MeY)`X?EIurGOWRwha3jUPW zC7?kD7a%~Arw4VMm`#G&43hEl^f4TSUc-O;eoZGfqc``^vmKfV0HWPuDX)7Y1H z8`8U<+ZcDU^M&V8+L~@3S~Lu8m6~$QFU(x%sBUn&=zLo=yv8nV8K1d!VZw`VOBYs8 z*#my`_#$~@8qf#Q*Y0mpBV}1d95!v(TX_}ghd^r!3wAKBBc@enBT$rl*atABAVFIE z3?xT@Wb?h;h(pi4rVH@*>RW}w@%UG_zCF#pZ)X<8XtH(eBR?O`FP@yQQ1IN3XL!PA zN}HniRPs6_!V^rt7TXiP2R-kqviibqr`W8>PR0%-_h*|G$aVX_)WP(ROGyWSo3{F3 zclZw+$`g`3RjFY-QY~U(r&ER^2AypiYn0C1cnPz5kZfm+Ar%MKP2jGI7d}bNOxOZ# ztDVWHe2JfUc6CT4x!9wi7%LuHnp2&FQIwX5!9Hq?CHmD=F6~?iPH7xF!J#@m1+NDa zXGA~)+luww-7xTG!8%+j=r8~(0&TyWP(F05ftgGLoV#Fflyvr5>KFg8xi(UD3O9 zvK_cHCILJk1i>IM%teN)hbb_jg~i`1@J^r}fwLGv$nTMbei^1@vRy8I@X;>s#oJF^U6IKm4pY&+}K%p6-q`vqe; zd*2$JDOBB%UDS~zaC(kfuL^z);jNfExDrhCkk7rY^5edftVQgLKXjyCO;4S;wXR$_ z4qEy6z`0oSeL{IbyZKH-`od$0)A+twTUtL3Gc=#y77cb^^?TO6Qq_XaD{n0%nn%vIC$Xg#2J zH^ky2rEdhKX|P=wSHx`3+Y9cq=o++b)zpZr+>d9am!0#KO?1&kr~Q6Y6*w}L{;`Rv zZt|QaLi|(e9rP5A~LS>oZu&+K5X-g4LYh7TXYO3Uq4}RRi{ls5h^jvULi9^=x!WW~R z6j`+at4Xu`@f!q<&x6v*)lCv&QP(O5>4t~CK&3DYd0_ z^kyce^Ah#V+im5}UVpV*Rf^`GevrE;>{fETw6U1?{m7tp;cTOnx-F^6Z^Y`2Bf3kh?QLE(6b|E{97b*mo>zkG8wAS%vcESJoj>yh& zkltuAliv!x&`=)FvH#0}_er1imVcdjgK5zNv+HQljpJB!k7u(pd^xX+7r1sGS4cPd z$)8b^gelNT6W>tr!n1SBKhUO}C}mpg7wdfco$VSd!yl)`caf%Mw4D~IgWY=+t`%(I zoUs^ua)`2Q}?>;cOrKzPPgH@IxhdY@)Fo+-^6crbdr`PK5g9hezCkCxinmiAc~;kRKYRQtuQcK8XQ`mF zt)aYS-;3Avxl~9nY$~=cFP(R4^J=MC3s{pyB9b%sTj#7NZ@*oygS1TAC}iSi~@zz19CS1fIbxw zcTK)!vJ!&0HHmF(n@{+!Cel(ss3Qn2(7+>+9AI#`wE`Y#3F-R6sGw>zF0x<-EKKl!fMB3vrsv|Kg$+DN0#jzd{sr0t_%AVt%o2=tpp2y_!q^8H z3jjg@8ki;+O~nD*!s6knO1{%!J5kK1@E>X#ichzU+(YH^oVs#1>l2Rh`S>pONsXkT zcE+O?D_d-8LVT}b{nOqvGZg@ZJR zOYdEg`~ajR2PN4!pebNVqXFhmB-v+F5Z()v`mHc6LMkAHFO20f>)omRw6qZg(OiM_39G`tTA=6cb+d@g=G+CV_iYmW2?HnD6Qpr0NQ$f6@6BI;mHhj1ZKm-O{9h!qn)yh9?GD#no< zH<)2Fmp}fDH1#$ym2fxRT&GOu8}TFHfQkJ_y?<@o@2*I<&5-wrR{rJ0?t zu+HSkQnXT2|I|rtyEz2&4&T*l7?lTaL-{m`I2@GW8|!QT0;6&SmI0E;{~D70S1ZFf zJq1D?=tNXipm5=b3jhxy$Dkq9`+YU6+E!K(-5Fpz$e~RV8|hR->>oelaZl$CezBi?T8}DUJJ!FLff{a zAdG?0Dtmwb)^~MvwXcGD0N^U>0D0wA1}!b1@w0vNV8}T%2YfR4!-%M;r)3G>joxvt z%J&2ylFRtG|AxV|(D4Uuhl-has#PPEujxH*&%gufj9qb+KF!A&Bt zv-_LXb+_S$9rwMZdXMd4W39HH?^lX4lsyvqrY$D|yJZFg)`}0m#j~7XU)lJ7&R|(q zZKA=z8E_~1MUMIV^SY*KdFA)g0G$pULmaqi5DhIG=oAo`4rsg!B-(z##+J0y_c1jG zkLIF#^;Btv%XD>9MSt^6Ws6T6pGm$$od$=3`T3T-n?~N!sCMzW-U? z!9DyRdB?5)N#2q3on%wF2{hQ*Kn0$AiSXGFa3KO3Ks|y!d=h4$V9?H*7h}yN^9}oj za`4sfMeASCOt<3`dlp&5?J8ZkBltO3v(1s)&Y?Xor$R@3GOVclp6s$%^3KrdFLwe> zw{*LNHdsC{GOCvYRg+pySb7=a37`!DD>+C;{ zr8Ln!(PyPqtO`yHj#(d=s&m_&+GZogb$INqlVP3RK!$epDsfoh37*NX>Ur;|Xn)J7 z0)zi9$&lpn>HV1$K;A^cjRnUj1;T3vVVXOLV`;dR*#3jBLhzojYax%n=!NLHq&%mu zB4lA$$be!r)FwFsNq<1_q97#?HMR032Qw<7Uq*OXqqAVIg-PtiKV67d1G)`JObml& zrQSx07q&of1!#hpA3-+jyj0;rE=?%(Q7ACUT>&ziG~D~(P^N&EsUGf50(^p?%Kr6^ z#rq60f74a)j2R;yPv>F1)661YT>LxXIeOq7C)WKv z`@IU@``c}IW1B`VM(qS1Iw40WqOV1`R}l200hu5Oy8u+Us5;m=k^i68mi#aKqeE{* z9TU2wjxA37KHwN)Y{t41Tuel2fJL3eA@fB&8u@4gQbQNUTqA@MAG}5Y~{OD!@+MbER6L| zO;L&HWK47L`=iTiq)9bD19*G?rS?C=RFq2;3uZG$r!SpGly2+P0EKZ=uP zlyWog9DfpNlT*r)tU+jMyWc|Gqvx|F^`m^^o{O$v7Jl$f^pknUBNoY!s)ji7Ql92w zeb~`6Gc=xPdKYV~S=!Lw(5Ie&HsKHJi?S(=rz+jo(C@Z7r(cPJA+y5ntimzpJN5~U zH`E1C1DIqc2~{8d(_virf(H`G3hvsU`r3(R`y%uWPImYirAE6XL&j;b;O;e(u8>!* zC3>1Z_A3JT9R`tX(wTXQ52bhcm~I+iKC5L=Hn6~z`Dp+8WxGr74I=U{^jZaLMuM=W zq6}3br_nI9j+Py@y&+=Fy?IuV&4JR^Us$E+W}$`6WN!KC)NLOsy!^i{%pNKFhg2;m z?H0c!Y{oj9$ghx>Pqt^H=bB0wq;cOk3UB-1hpNVVheVrx7N{&Z6J+WKxy?;ejs_SM z)~V96cTJuubei9t;hNp-mhmg$QN2qZXxV2ONr{Y~tHKH-iML#k!@^21z zzmeXK(bOwK#WQ@syBkUj6u9c^EZ(dp z!u)NQ;j10Y2StmMY}};hBkg(;yPVS-AtFXXOhv`r--!GoOpA-ZsmY@-M|N*t|>2s7P2%G z3Z`Z~bgMNBD0NH;O^GoR5T`U={opZw{G;{K$GIZ<*4(|mp#?5yvRu*TKZ_*()~q6{ zv=1^(q8kL!4doyXLcf2HvR+c~6ClMax12Aa5QItJg0+OCQKdVzJw1HiWy-vxms&=Z z1&lsL){N&d8R=!Sca=IG6zy=g4JvS$GQBIF=Su!}n6pYpG1WO~Ci+zoL}{QSv(mrt zM;<$nk}UaYbZTjgr0Zy`HTv*q=%NoVQ|*X#PyWywDem-UGJ<1jBAP}0IvbWj z$Ii;WSSSDAlffq|jKh*)r__B$T(%Ro=9ftPqim}78nzF+QShP`m*5Nj!OhUVsy(l}d|_A=7nNh?rulkX(S)7fc16~W!k~RZWHP0?kt{0+&LR#j zDqGo*DDyLtyYJJab7ijVFVV{Nb?xIB4!^9+#?s2MGy?fZxiNRty5}f{V)hlU7hhqy z)a-YRdZd(G@dxA7g({H^n$LzxrEGqfG*6+ws*@3(z3vud-QFbRx>HqtEL5zB5 zQxaJOgBYc49ge*m_a~~jxt@!A+3kJdRtQBMPY}BCbY+U|rTHD%!!h}eN?unUQ%Qja zB71absRdmr`x+q~U%eHq{aCNjb+ zHIVQ(+Q!Z5sGp8LVz*yphKiNB{+Lcpo#5z1Ui8F9Z7wX29;B9X9{`P{r*0lQf(k|XEFF~o>ykqO}_k@sknHElCW-3Z;7YorM|RUyE`hFCTYJOxJhP}%inK| z@d|a8=GAUKVD}G=nUhXt_+ppE)$&q2=S6PXDqJ6TPKC2SemAX&PYxd7YW`4U_RrNN zlDcANbc5HnP{5BN%kLev>RZso$^3ZYaK%}NJYvCNij{asn-G6i-15&DCbFz-pLI^c z`ZySFD+5kGU{hx~WNfICVr@9QvQRA~7uX^wfL{@gn$hRDQr~yu8hg0RROC!1+dN54 zzczJZK#-?g>}p9mZ}d&`rUg~J!smehJUL@qZiW(sMeOx;#~z4UvK{$`NLn9uo!XzK zIX&!Z|7)v>>-b}gB9&eF6m^zED%g0R)iEsl2ga~C{YBPK*P znmAX*aDA_~_dwDp*PQx;Th#rY!SdpcY4A%PpjqDk3qi&=t?*0gcEkjEe;b2GeKOas z(ps3C&l;s3q^&-|{W(&6NpNJkEOqv9i|R-;YHM|@l@t{hFB!bGZXKb)Z7TM>=I0S= zo$bgklH^fofT~!SaY~4XQfaTWC;uS3!M>YfWWV-zEG{6r+q>tXpo9x1BHx3bGDVv9&_)Igmb&sctw5 zyLOA$8tpKCk$#`-QCIEJ#e?6Hb9}Qn`Dn>qC3{t|xohwQPeR+|sF~#pCGX+VbI<+q zewi4Pn8Bu1LMpB^O6t&aUgX5Jw#o zmSF0=Q*B=r)7R(&*T>pCkEkZ|^fJfk>sqPi_R}tB8r&cK%GzY8COAx>m&m-+D)&EB2c`{!NQSta+~Qpo0*JMr$vDOUw9upM-Sx`$ELS#pwo zrF$;LHm%On)UDGfxIDvEafOK^&-|I|Cp}!Pa50M!PF$-~)7hiwHir|vI*zgiZD)VZ zhp&spW1+oo&eGtk_QaZ=bR+(N7hadbK0$B?eP~@jw{*1TFm?Id>S%}FR7KD?((#?O zqm~a>-F;NAN=!>`DqY8<_4gT1N9A0jw3EhS@dO5g_Lb*a9|UjWYSS~GPW5uS>GejL zU_;+L-CX`DxXO7EM=M8VpHnch;Q05p1C`wahAF(ix}DkFe7Ow0_pX+mbBr`|MEbZa zOXJ9H3GLjQnC% zvXj?iD&3RyD_Xpk-u@sH_XtDFUFix=QD5ZNf1IgN!ijvVaLVK5B76mOf4{Js+>yn) ztXe-#Z)JP5|D=!ZZx%z#1GWtr|8_ z{F5#gX(>Bu zBW-{i8P!q~D!g{yh1DKrVL!A^4|CM`U)T{0*8RzQXMitWs9!cP@X>Qe&UD)88S@H0 zB`D-19u@P*d<(srG9$LEYEtRo6}NHX&cTb5YfDQGVjGIMWSzr zc;xL9RTwHGtUq4+>mXL4zauo_j#A7`vNq zvUvp)&Dbc&XL#n;;)3-u*ZGNK(~{u}-@QD!?Fv2xNk4Y})MbWATkZK5bg4!t`F-D6 zOSN{ZZ_*WZvwHYN7on88%Fgs7wRLr4B^N z&yPoRj4iFvF-g!|3?Vs01;aUWuwgxqCt6F>i!sa9w^D2OX}c0whg&nk^NAm4f~G!Q zU18j7?+YK+S(3OTnIv)B{+r1vn{%Akxz1Qcxi2NlzR?>VT5&g=-J(AX-w^Js-c64v z+W2A-i*0%S!X!-=i3|VVQg1GL(jE_)mjglost%kBQV_L*@Qab|86-hc5ODzJC+q;m z^*CG+9MS$P!m7A@inF^mED~Z$x$d@1O+jjAa7$6y8qqI1C%Veog=FWP6UUbrn;QoA zGf5kWIh0(%TZmeeW4^9NpVA-{QPs=ylvfTtn7=lVN$+&IR9oKN`2GLkaj40SRix`4 zhQSn=-Vo$Ist(!ngKr9%0f2M`v1pWf&0Pma$=LOx84EVHz27$;s(Jmt{9$5_dEPnl z&OGM%3yHmn^>faPsxtleN#&X6ZkTv*5tSd1;*NY&R-+zwA{R&0^K3xqvNknvf!vH z1&UX}ck)M|07bHhK`O&@x@!)|gbfJM89-sMtiRtY<{OrQ{*8*-8)Nu%kRvXK{^}bh zPRrhMUsd(5)nw55l1C`A#t}uak0c^^g6vmcTptm3bLHz)1(aD*6{Z{#S@-5c$}{Et zebzZ=D2?~*>*@Juod|M4MZ*IL+?I5^ET1>G9U;pgcxAz;$MnP2xBs7dP|M8zM1Rl? zAo1TUHD5;PNc316P&Jq4nBL$^4CzX(qzXzl+HU6tkxcN~IyL6J2%PPAn#CO)OaQ7m zIGT_3?-n_SWCu-(buTQ9q%ESzN(Tj+q+Cw*unsrvMh?E{w-(ctxVadrIAt%N*z$PT zGuqN$xT7a^KWW-tPuh{Lq)OCR+{Mva`{FzBk`7<}WsmRs^OwZJsbVCEA{zA4RNZ-y zj|F_Z)Im@rvI6ZECefHTkgLTDoT9R5u)`Vb0f`Z@>cc$osT}f_K0|^h67dQ^<9G9c zs6Q}AUI)kkBI|i7mkIV$wMTtDl_#H=<$D_$;6##1CMKB$r5js(Zr`p4$Li>nY$8W@ zLB}^LTg^y*XN{5(mD0_eZq!aTTl|UFKh%~j6s|AU0mK5_;0skIv0pEAR55Q4A4_vx^f#Mpt zq7a80!Wn?6|JSwe0F-axFVtZxj#xBls+cQt6_#u ziK!Okp<8?xCiZyS(I-xrFv)NNKnDD6GH%NN_2{Us;Dotn_AcTe1kQ6I?en}LPdZNd zM?f*R2dY8#JwE^$Blb&3Is)xiJ-Fq1J9~iNPx0EBuYlPz+YtBCk@NM>{f3r}hG6g4 z53NW@{!)9@c`g&6?#HGRibzvaTPvNW@Xeb>&s-gOc%!A0qhyo68#(Ia2q>0&v}lzI zjv8t6<>us>>NRLn^Es{r7X9Eq90{?D{6!B$0|apk4}7|>3e6}+ zz{=LtKeCfXShfA(@oD?8s)O{DvpZy7lWbp)+9U0ry@yuN{2=j-@L(QOk3OYrwn-5x znFCk!%c1&Zqv7Yb%wM%OO$~#pKIPNCCJ4Irz2I-<)>9~B$f&?;v(16sipie|mTiq7 zR}Mk=vH&Cj;SD=zR_PfTNqK{ct*5Gj+JJEnPz*%)4OUt3?Vp3>%dV~iY80Xa2ls(A zAW3yn&r!lX(+Kn;eE@nj&v+sxWr#Xh8~s(d3TD)~ISHU^RNIV!JP6TArwz9zW%-7! zL@X#ZYN?-ImYyTj%(Am|U>AQ@8>eoJQPAPzPF4AaS3Mj#daxFCG4MIHxYXrHDU(Ij z3h(rMjImK{&igmr)7?qSri%Jl83J~b7yEr6`CmbPNe!-#bFOfUq->|j;@R`p8lT09 z{5a)HOv4IY@O)fY-|ctJoERCQ;go;n3MQC`e4tGT8+yL2k!MCKc5(FFE)8IX?{I44 zmbp&Q9qBP~*cVZJXSc;s_lGID@98YPmeWxC7Fa%NlauLVpIH5B4(;~wsaKCZku1DM z-M?&o8D2GY%d>*FV&>bU4=+V9_;3hO{z3M0{X{8=mg8G|V$lXNK1iUdjTcdO{M3Dr z`?W(Pi%cLSrzSMZ!b9wSbk5Xt?mZ)hDO^XDms~|zNx84cWoo)FMfZMMU`YFK8hQFI zs$#tEc}$mbU$WtSHPb|KRP3vYK>-tq=K7P%$sF5n?4Ibx(b9GOMtQxwuqO3UQdHDh z<3-pt_qSZPdhvW$vy3hCV<=1*cnWXeijwvU?YnCn!w}!x-F3Ees0ZT(1~ci}No*&(?S422KTiJNb8NW#{=g>lyqCUYF~E@S4$*$7RU$^M0WQ|DQc) z4#9~DnMis;7+;+WUrJ$q(Bc_)*nFJSo&?usBPnaCT%7^BfA~4S*3s;C|Sl8x}1F0!ug8wbk zB6V-k7)(P5IUAtA^$38@SLxwDCV=s%gHZSwDd|sO=l(AE=xrR+VC^}VP z|IMA^LkGP1D2U`Z1xh$T7O(-I{{4s0h80l2LB51KScs7XVz_nd`y8^oyx)d3Z@#H6 zZdn*{aAm}XUT<&d?eux}eb~D;=acYd+@)k}m9E69x!BF`Rx8qWa!$>7D7j;A*ol6$ zF65f&#JU_N$KH4r-d&CEQeCLwFCAkY+`kib20u%WH<8z&c@EBXhzM!|H?TXB7QMgO zhTw92>Jc0z;$TMhgord4$TI+8IR==I>8-0eI>-W5&UGXL1jUoE;X-0Jt*p4+dLSMR zv5X@^T?B9jYGg!Ky$4)91jCI)vOsl*EQ%3J)`L;s@Q>fVe!T>1ehdg0U_UeoTqA^& zie$e~lqLEnh|d>4>`=UG|JZTgwBwFQL{(Qyu$f4ZfSG7;jDaH2QNX>3`Gwv6{s?(c zclN53-p(p=q0`>^fG<)TNW#At^%1?970anr9F!E#D~P@=fA41uc(B_ul{tVwjA(_y zFoXbwQGcz*LGId~DoYK%1~mv$f^$0xKy3(G7WD{({fMp=R#aCY^#%!ZLo^w{nwT_o zLsCl+nmHgJxqv#<0EH>SaDZ9_+2~(7d?yZo^LlvFBM2x^4cL!VdLTqdC{s`<7{5P>;l(jl08cOYPZ zo+Jx20@X2~X@y);B=!e5S6Wg)%(P+rFTTPCVo^hs%VPF`Y=4N*UvXf%YoWG9A(14A zG60kYTXMi0tH#XYkZ=k}*wxM)fF0=Hoi8y12ZBur%XQ5SCv|>*3ssG9$<1PH@g3wp zwjwN7`0!jw|0yToi#e_Nw9NX9#aZ4jy9tz7qke!YK**PB}E+S(5cTP@D{lEY#pg!Nr!82b* z^dqcwk8$*PLa#Bgv?S`>_;4221bGd|c?vi|nhF*2_wx~CyUW$v{nAv6r)EzkQD^9j zMvzPtG9^!f74^oYg3E21Td`4&<>68$TYt=`RSTN~bL1>I)xS=C4`w3>MeIx-2%t@y zvp!ry`c@ExHo=XABB zCLWHUn_>1jgm38%&UGTo|*A0j3ejw;E^IlF0@ z&$};Vh?j>y{b#0d{sITK#KV8=l-Bs_jhZQ{opZ%6zdPS3SdeSp+K_>U=7Ne$=)_dtb&d?8(7C6Bx(X-$lr&9gM+|!n+SEq;lzN2NG1nM?e|OfmYk_@>s34)UP4X^&%%0NMfAF zFek3KWifC*eIhAOWuT(}bW%&0> z@K!@Vfx@{_qztWHdb^gTGIjjEcjdF>s{t=7c9)W42bL;TF&5)eUF!fb`I)QBfmr_uv`QV6d=EFR!g1+@@R4HZO;-#!8wlMTcZAOL0HXp^9j2M*|iHaZp8UIEDyase9O z8oWlr>JfG!3Zdr!Oq3n8(RJ`9NKn9((*VmPVy;3V6)Y&vqCgXY9F$P_BYzjkQ96tP z8;>6n>ZuO57Q(`@toA`f46UF;XYM+!Y8GBc$~QyuvjHnSbK~20hNv4x(zkVewH)Lz z>etZ)e{poUzudjt1?QC1#B@8(5-a?CS5_j+<$^Xb+NW4WZoBn1^(~F>^@M;tb@_2) z(>jED#mC1Z?kj!}J|kp7c&-3eh8k4|8nKP(Z;VI~DRO~<(F(DFKoc6#HTA!cTSxcb z*awyzG9e1=kAzSl;C_+s2SP7~wBtxf6%xk;LOOu&lY$dw!Ue&GgX-cxY1h!{z?mQo z4TY)_A=6z;D1=LT$$e%r+~wiE*bXs)!|o`WNCHVIG#5hcJ1funbicuYW#00$fY&YwS~%?Vfm&4 z#6xwiMoON*);#p2ePfKqKKrO#dc((@AO<>w^8a>bybWVv)=Tp@^7-tx91z8$L`IRw%U zL57rb#c7RgSrVF5ln(Z+P))LO|B_>tt=PgisYvl3-QDSytqn z)Ao7Ss_Q6L0eh#`{3;bOO1u31@)OSqbI(rr+jRVPpscYfFcdoQ$d%(ES4-KmcIk1J z<-X96Ke?u7%YbY`mhYIIGQ0UrQEX2w!?L=BovzeUpv=9I*poJWg2=9B8=YuMv{>fz z?3;Gf9VwHYAqFesOAGA7d0Kk!Vet2v-0zd4Mb`-=EoD7(&0nsGWsH}M9F4S4+G+p2 zI+I1#qtsNbViE9iRsO7#$91PI{Uzr6vhUw>`WLy+m>cCPTJ>m2FEB3CpDEng6Ik8+ zLN)Os-ob3{tDnnFDdPqU<7PV14UDJ@3`$b_0X)!5^JLH>q=1sf|4Vi5nX&-K&g7+` zO#SrI+ov_8c)7T<&TQ`|CIFiTOaYvHf;*fdw%Tm3HvWinT*R?!;;v!5Y#B$kot-Y1 zFHjBz3m6oJw~lw#S-DZ3oXcwxElgq^8{PP<1z&KrbBm$blf3=;XYzXG4=Yn=JugcZ zzkIoO-wnS7j)Qmd8#4?wIun8-<2iVOKnWqASMFEdITmx#!kBwW40E|2>BXm6q7$BI zCOMs{l47gd{egCf{$bHVv9zF>Xmadk+(2cNSGW3+lQ`5%mh{Lzqxl9=PbylT67ue|D?1NEVltz(54q;X^(MqF~MP3^- zObj#B7Ap`oET)RZ3>8ZyWAM`3$1)gy6h3p`Zj-t~^gK}!`|)WW?i=ade+=pAy88Nu zcbr6j*UEY{^m97sZJY35r4OuPj?S|*w2Xler}>3T&h)71@J0DjJ?VmQ7Wv6N1OJW) zFf9biT>0i^UNc%;y!=a0iEfkT^I5+Drg<`^W;$)(h#3rZ2Ik4N+3uK&9CKM@+NBK^ zS>Ds$#t+NXbbZKdBmfA<<6PS6?Yb+`^Xum;7aa2w!y6dwxqnwRsg1>zn^t!fGk&mw z6wJPG0pIJL+!;V4c;OfOt4{U8X~{VOxnB;8nF$QH{5H;6Jo{J>tKvD9zwyAa?Qg!p zsoc9er_>!)`mejpid+oi481aHt$k2fuDiCpj#f_6#yEl8^O^ph=&#gDTjeRKyb5-` z(j4J}H_!~r<-TlQJoRymctui8V@;1&j9lk?s8+Nk`t84(UWkj;iXo0Qm^#t~46xC90+E)o6@u4!)Y-bzZuLMR9*)=|hp2CTwJ6ck|U z7#^&S&?oi*i5dA9kd)R#U%UZ0Av$s@c|9s%u-bxe4IEw}J&P#R@fJ2OC)$w|m_$RP z1PR%)WUQisPE$gXg|b`;-J7_DY1~PgH!Y$c{5V(}4kVxF-sg$uQQ=FL*c}}5&e^+A z#&p->iF8qOP0kN=XMtq-7z=Jg$tl4#PC;IQPIJ~RoIoe=@RikQ%sm#EPzqU`BZK-D znLgjM1lHVa`!&r=k2a^oHm0u~zY=3;`V!oA6Cew21#t1-GN=Myfn^JlWU#)DKImN@HjP^MkEdshfBrZzXK>Vj4(z|)VUX`%F? z6+{LH2o^SbtNaY2;)ewnlC}lQ9twb=G(&BkVZsA9Fvc(Dv*+wNXSL2{V>%o?)ijL zhyAh$@Z^y=BPe8Zcx#|<{R409a@;jYnfTxay(o0(VF2Pb=aA5I{@wwL8<6}Wu0xQU z9zy{uKL+f0ub~S>x)}gABcWN)pNZf|hQC2fJG77pkT@G?5eR!3p%zR13V)bXKCx+RvT&=OOn*}XTuKZEeBncb`stV+tW?gP2Q0#|CG}D*@y=3@1<4E z*dlESQQQ7M{MV$B@A#?6F*n<+c++Vr z5)@85n>zh0e1#Pc%dCFYCEM>z5A_r{c{S|hd*`ByMjw{T(J7C7D!$_GPO#Z}mU5>7 zCLQ2zzEfHR9?~l?v%DM!rr^gf4iKX%U=zVFjQr*nMiLbE(R6!4H$R<&Yr^Aj-}i9` z&`&UojHlA#ih#>M1zjT~X<-m>F)T`u%v-Y$cVb*~@12q^B<=OXxoq@*3VuLjDr&GR ziaJ$s89gkTN$gf}{@Hl--EMjkUMq$Fex~1F`d6CULJ?eecKT&BUm@A~yY~%_ksd8w zDJLEy?HjP2{+eL+CEx;*OAXW&+olM51f~t3Ae#RKFuZbSU=>Pq*7aZfW&$rcMhXwumgZ>#EQ}$m>bNG|ymbxBv80Qy+zPDOA zb)u}i93ftykPtOH2rm$llx%ei+~U}Vcy$C8Q`*YSVZkG;1Bd!ak%?U854t9w7liO6 zEj^338U)Q8vuCoqT-DEL_{0d5PRe;-66{sYjdKkp(5O;a9nZOXR?NgSV)pP4AO1j) z#x#}J`0v)sqv-G7wNQ1C1rrHKehdtDnt;gT(Rag?2&O zwr%I^nd>hfUsuK5i!{$-%wAI}B%Roem~ZymY`hj7)iFcysXyktvUSQI`uDi<%i z8{_W^>U_@KlZ(WZe0AUg?)tT}mQ#=#*^;2i9SPql+uD~s2_VVxc&;h%Imowt!^_*0 z2#uLJ94t4VG`Sb)`!KQoTg;6brIMb(Q zX{Yn;KgS-SpENY6l`S8Uet~Q1TiyaKcyIQWCxZD@?c{0X{c~Qa3yf5xok*dOT++s$ zQN1$CGo%&#IB2U}6LX zPXMM%X^SRse~O0`1;N*^uPQw}F^<268!Ee2l?}A!SDJKDpLiQuuj#FCGsxU(5EI%n zm%}xrwvHzEL^CSb^nG*I6fjnk4Ny-Ox=<%FkpB8~r_6*!)p6qy8}n@5vyR6p`QMEI z`l}L9#U8)z4Iok9Z{NK;hB|lt{8Vn5D^=Bl45|N%vbTIkmE&Gl^J}oNro}bjsY0=|5y7oTR z?tu~{six%hpIBClBB~thzUb1|bP?Km_-Zp*jM_217RnXZCwLy4;--1R<04&+>)GAj zH+DX@wcc+?7uyLWN~IujdwJ-BRPK*9I3csuf4%FK;#n_t0-qfusI&n|7!$t;F%At4 zjfqS`k5wG+F^;jry33;{QXP)YF8a-7xy*JCXM0==6ZE7MC8Zk0PCiF59O=bM`5z@t zDQTsJ`j2T2bPDz*<6E{~_(tp|)UETQ6mFE|`A!|O_;LLKms(#| zd+moi;`2Jue^aeG4+7d@$rgXXoz>2_0!NXFv{Il}^-g~!k%d=~Sg(k1#xZh*bZW{y zpt#m>R?loB^Uick)Bze!>F3m6rFFC<47iX{yd_hPgf&O~RLUqt_Xd?14chOku+hC^ z-GQ)4+_G0GPiq68kb4ovmKK*%!6XXH&VEz1@a>>f?koEz$=^U1-CDkh?>{srZqH`l zSF*H8M`misu;YE8sDRxdQi{w-8Q~d= zw2_kBmM@;P%{E+OUE3tmQWyaR`<+^*5p4qId?ySns?^Yl5l`p#7bcoI0_1yOWeTCEH>zuEZmDIqMPT@~PJNtz*TK^k? zETP4@dn`ebtjXnzB3y7GuixlzBUU_a82b{UKN_t~$S%VxAkdtb zlYYldBHoc2Q)U#oO2$2S2kD>e`SIob`4Rf+Q9HU01VXz4)d`Dk)T5Yy`5R?tz~p1X zIRrNApF6E)r_r(TQvTu;A;j}PtKW|#Mi!UudImRM8kn0Z^MS1vx=Xl`@qd0js9Y@| zuV%kZ{wg+G>s^Ft^WP`Z^_YzthU7ShS>qZ@K~Kh$Dq<*71r7u$TLeV&D7W~fMadIf z`E0Kd=Bu3Z)=L@si5sn-2u3L+H}MtlvIaZ+Xxo{%FTR5=`Wcy1#atXMXOzWX9{GQS zR~KvY-@bpx1p~!n1Om}{2)3YYHNDo)F*~2H0NekfHJQkq6RpySA3||0si5`%|_ z6K>N>(B9N8e^z${-ho-!!0ihU@9)&yRWNW8TkyXn^t*=b`7wA9Y8o#Ei|co#KOA=O zV7r9$hq3sNNAN}s_Uf*FTs?l-BInpna9cmN>v?Ow;V>=PfU|+L7WL6t`(}u7h$(Kp z%Bib?>2b#u?8F)|=t6$~>rUy{{Ot<#uTpZnEZ)JeKdZvN|8C_M6o>-vBCx`dNnws? zDSb1-2ep!a|MmGYTaa;~Ieo5jYYe@!OzB?_yP=vB~#x%-7Y} z;Mp_($w`wma820$Y-53|H0!lTlF1Ng{+FhtfFo+$%>1?_Q@;xf^)nx`ly7;3tmP3p z>A$OQ!3&q`H2i#Xlc`qJyHW_|uys9m~AdWtZdH~%i49d2ggsJ>{0uX4UmTu_Fc?T39!gsmVN8VgDs=0!Xkt>PjD8T8 z^oZakJT(eUJyW(YYDu8`5u_Q@n2{-1bAES(O~0o^yz}wR8efW%OZ(RwvdoD|Z81+c zE;9F`0I1V`4ik zq{Wmh4KEG!?&B<$L`s!vPfz5B0=vQ)z8&LE( z4w>vnsL2aqe$VUk=Nrq{>T22~Q#X2xvfJR1MwQmL(_+B9ivfE&ooCP3^*a>snF0Zi zdC)SIBPv5TO+~PHf}{ZlZ_oK_r$S3H;pfI6UbFEgu9e^~p^9uS%zi4~$6~Meb{+fu zQV|Is&0TYF6bLOcCY_GxA`Z1S?tf^q`y2S&MLw$Tr>VJVV6yzh0$J_(Zv8<;#w9Ui zQcsM5oc#~#=PpUXW-_|?_5)%ZXcTy_4zr(wUFSdQXOmPTuWu_@U1ToU@lUS$AfI)h zStk|C6Y9#!;bPrVM(R)5obR1PSkW)atm7I~6u3?9H6x)Sbv3fnzlpj-YrUYQ8~{u~ zlm8Wlb3{qr0CX4Pud1f-@C7AODO@tSKQS&`2ObSw0#wQ_Yzk?>hqMXn{Nr$o>nK|! z2-bxi6btBK_%8JL%Ha&Cm`h|Ss_`7GPcm^?xfCX%XqU%V_$<{w!h+UuMhiTUR$FV_{>>(9hSVn{Ft=-VNUDA-qHq zWWQ^`7lIPqGQ0s*o{O_@hiB`n2r_4Tzj8Y1iyNq7jWmwYR2m#kG zm?z@{CHQV0waBUHrQtWqHj29V>#hVT}I2W57sWb1qr%=dYhS8X6O56P8yUBz8fo_keaqSw<*dZLPvs0`b!4c^dzhrc^CV&)&@|Gq;0dtT73 zohgP)vVT8J9YpgE%UY3B4{0+|dP`z~3!$w~&vzY^sieU;IZ$UFJ~=nGRr=nT#b9dG z8>XvEWr2f_N;ld07EQT6q&nvWSd83^PPm#yk6jdd9kG(5mp(08vpa{9k+=HwMEr6Q zvjxMDDKEJ^g~$)*M3Hw4>vG8NVlFg8l#u*HhFpG+Mu{I>Nx}8tu2OL0j!IbDqsh*ztsDF_)N>Lh{q6Pj}})n6%yS z$jAb8;D9VVrA>Xl7oxHt@cD)7h<@$7|E=UM06Bi5(vqbBuUy$%WS4T*9U+DFw%2oe zkEy!|OefSBjK(qiwOK}0;-fD0yap7_sKEGq4gspxd6$5cr}Be@^mfD1$MK)s*N`zy zEDGDhRhgmjtWoHX@9Uy!f*vwFA8yST%AZoDz8|hY_E&hD?0@N^r%iP){F&7CO za9xdO2L}9rapmw>uQeYEx2%`R^FckvXFEqfPz0RAQasp&Z^l!sjlLvEi3d&5b8d&H z@`QRGj}L56cC`{r9VrXmdqj&=$W|z>>3rOU%3AowdNYe7923sQjR}caD8-Os0EZT{ zdlM@&_0Ei{XMEBDb)xS^nyP41NWCW51P`Q-c2{xm}9cpS!-CGd+|&->!i2 zKMs$MAZJ?H>x-k#ojbvPb??@)000BR$RJZ0P)>iw%N7+CB}={I4v&Z!C@>V(NRy-h z#70L^qW7UK79Jp~7FgO+n6PLBTKsJ|>cs%$-~iD0zvbtLE3&gc(Np1WQXM6%Ceo>Y zNt3X)ay%%!bt(in`c$ojeWS7`D`Ll9ayL2&ESR%UX`!D7`#m4$^2G!+!{v@XU)x`j zg%TXeVzo0WFg^fx?B1I{uO->q3lxI)j5#n1C^EqXha7oa1p5p z6d_cO)4fk7tkR)ymBZzZ+~VTa>x;hYOcd%42p>WNCU?T5DTtPbc$>gE^d*2dL)(_1 z7O)IFtXAn?zTAN>4Fo98zTXnuo~j`OF6{fJkpP3*kld*pLNx%KO0gR$LkIAu(<*QJ z+9P6jkX>|qe9U|It^#}P?-n}qNZ?kww2_n1N^hIy2YL5dTU*C!|IuklV{sZ2x{?i+ zc0);<+BCMf#xowUzWuT!=uRcXHb|FmZFP7^Y|1}<{ppGR^Mr@OjQ|{6Aauy-bJIIZ zgVp|}%CjHpd}kWrs0%werOC8oq5U)0+LgVuI;(yDc4oN$qmgIbmS?a^n~uc2`}g7V zkE%R_A?uQ*C>c_af~c8I0&=OqQxXlFm;HtQ0mG;FP&5*h-}3pj;R`3ct2N&%e8|ZJ zOCw#DUQ<&OqI!Pz?3LaU__H-e<_p@vACvcqaljYK&C6>7S+iuBLwG`hf-T?(fZQ56 zDG33?njBOINp7ulVl2p)Q^(9K3d9pao{Hs4Io$w8c=oHNrUnu&j04{tpMwbVdH2S1 z_WP;I0<;(~ctrxK4u$;LKs1!`2q;=Dd%vvlCft-v^%g_EWt;0Q1smf((D{(r zDQB8Ru5Lz9ax9_wPriaEd@%@l$9c0s072a-CtuRH5vdVbjW^;TwGymBwPkcOtm~sm z#h%%zr9w${#sOwyn^ofe{U0BIagZtqF;Dv7;NSoaJtPv-F`pkIrX|6r4K_Xn4|)AG z;{(8El09tac=h(JDhP*%!dmT0epaiegV)9oH3Q^HUw{32_@n6J;zJ~}+#S2o!Y0VI z($FyEPjm+q0&@eZ{)OzjxqhR7}Ym3OaJUM`ZDsyQQrs@6Q=~c88H}Zf(UTC4~V0S+&!- zx7k1g1dex6%Ao?M7LmQXJ;2$rwG@uoUt+l)FL`Lqq~jbCu&Hk3KfV_bl{7AE{7q+d z^Jk}1$PceH?tqso)`DA$xQ7OM$B*uE$XW+g2NF~Zy`ygCMqS%y`JLi4?OCvJj*Nv00d#>xH7W&We5C~Re;S0QZK zYuNqf(F$*Yl%C>A<2rAs@$os^i_7AG&E{0 z#2}6H8yMkDUknEa2Ma|Ns>w3juI>$d!@o&c6_G&I zbJtNx2?r#`uGC(cNrD4M_ZLI39|&Yx%(%YbLHs;6FrP{cl1Xg_1UB%iEu2oS8o;FS}8%x75EPsSYPXxPmhjU0^*{j zWP)*~C+?+9x?7pY- zqHO9~G3l=rzQ;~`Fj5RD%u|ziisKcQLA!Fg5dD@(!eONA>Ok(Q+8~RTl=i#K_F9jN zTjkEwa}z9N(y%G<33y4hO-(-mN*^=$#76Bry)=PD~BqdBvg#{wRdlk2fnRP%ib${o|xBmp9r zXyCYN0haWTt2@{irlf7N(ni3+3!5zG^#I)TkHDDLvNugi5}?FRpaRq~Kc>I>+a`Zz z(n$J*ST)q8u5cOO2Xs=BXxWQjWa=xwbH0ozb4DVwSR2Cm6Mq}1xJkbqUtYgV^6Tz_R}Ylul1;Zefj?x-)%AO?3jLAgip50`igt3+{eEZmp40HX{`&8KQG__ID!Fm0W7k}zMDezl4{mTTs~`x>78`X zeF4R__qcKnv11qIuMyf(>#s>$^z)}8et&krI6N0SzE#6yz!;Vq?7{vVFQM9jjSG?L zMvW1QK@KPm)4_eGZ|;c4Ow{s&g@ z2j5sO2|!^}k!5ZJommv{_?`EfJ7)%&0~BEgJhqY+%1un9ouY6GeL58hSt^1A>EZLeeS7M?HY-;cYiMHDam{ zXv$S-(mOhCLHYx1f2N736Hcru=}TD3izS7Z(VuP~dCf4cJ*U<0eG(_FrceJe>`;tN zKmaqfA>ml@R)?a=gm{KEzyo79c%Se5^?+vWU}g0tQ`)G3w=0Dr=!uM>x+S?BqqGm+ zXdEn%AMFI5>&3!~UUpH9^`-(xYUD=5=7}zEJx%k5GpkcX6#uf%NYVQMqy|&g%IMYE z4zX9AC;5DL%{JEF_1<3*a$2G{+V?_Ad&?4NnzJrH+AkCC5h?al!K}h%>=!E^ru>rU zUIxkZbipJHqg+38a|r|~{>8=Ij$-wZF3)>xHM+fpZOzZ7gXP^lwjsv?3i4lw6 zjoBsJyZ(sn93)QF2>TQq=2cF8_dVdNJK} zOtEbx{arT~mppT7X7I*#Myla+Z)MiB_nUeD^+`wcHIp*vMVOZu%* zv@N$Nqm%!%)H%iJ%8zTEhArth@)p0&MAxV9;#8|HbEPoA@LG(Ijk{r=Twh|+!PjHA zB;T^cj@eG%>Wn_dM$(t$+ho}aB_I2-Dnx7T^cF62Ca2&q}dvT>L%a^_TK-CYeXTf)a{RV`E2mtla zgMk+V1QIl!g?>UkWHKaPv_!sp)#G&KP=D=rpvUP-N`1pxoq#iE*7G_){Q7plVz zhR*|1f!xPl)%$>bkOIv`pzXW)-!}3`l36%(F;BK96i66iS8#X8g9IaID(U0J3oGOj zoGN6{?5gIjHsrvIZSB$2QG0cXjFlp7tfim~O&X2FuG4TgHYFMtd-*n-F%s}H6xGxS z4NA;D0oCK^%2r-<>wPYtRHYf1w*EcVAA_-o8cW?UM`09`*5YpY2!yy z*4MAtDk>^QD3`m4hJ(i+4qE5{Folmb?YV~h3!;Xj0k@5nho{YnsmC^dZ*t{wVyyvL zTtN7jYir=s(?%DKnq>*Isd&M?nyI{Rg;5WsM<_-$=uwlp6zMRsA4g)sl}S{$y`Cd- zcHX6G;fpzVZbWzf`Vyj>OLR-Z+l`N-zK>Qeum9qg`&+6gN%ml6#T}1V%&JtbuDqKw z&rxZXKhICt42<)pS=hx11#Ki_pJ1&wRFGo<1T7eJ@<0zHl)@t~&jPJZ!Q3GNCNyx< zzyACw$E9U#Ob<~rK(h>8AgDG9(5e%`u_QOX$B~0&0QdnEnhgB_{PTFUA6^ovvDwOpGLKIW?|MsLx|jUrT@Bt$)=i z4_wG3kL98kwZDB6GS38vM+g|Au&{>5#&EEns;lcBCMG6Ann2Cf4q*D)=yQo$7VR1v z8v`4(@9L>sTwHfOw|Ai76}S}K^#rK>^be+Y^yjy=#$0d5K%iRyabLi5=~_BI!qcRLNU9m2p?DBgh9 zl=N#-A$6UW4BTf7vrn9FS7-7|Pp! zy+du5oitS5cwDY~U}>vhMeQerF*J3hNq@h27x0&Et%G&KpzEg=3s7g2K~6Eiub^-c zNPwgiLJEaJ4}jQQ0B3Nexc{$51}rQnOsJw)`WAplFkqVk0>$1`5mIqOnc)9<5O0weqm5u7!T`(`;6-= z1fmt>cZGp!3Wa=uY4T~WC@~gr6D9-tGe3wmT31I8NW?9GTl@JPG0tz0`4$GYi_%hC zP()T4;FK;OLX3m?psbo<@d&57vD z$wPIkqkcJu+qY<(3jMpg3CqzVn)1q`gRm^wS32vewV@g>T*rCb45nMjsFa6++n92? z2&uGB!m|8^zmhR=LF$<971ee|rbF)WF{gFVUk@yE?c1M6ucrW;0X zsm>^PU!gi(*7Z}pHT9fYIJo-Ycil12u!|SIg;F`mEL0~iAbMHyJpk+E8ySda&EMao zs%u3|lGjy&VE|tHlRfS1+u5~_u|y(P)F3exx2(boZ7dHTRy*}uFY9z>#dXFv$YcGQ z9cg1>wmUw%IfDZ<)miGLhl-p=$Ipk}pC-Nwah<)*`|h8S;d4I8maW6Yt|e!qWNVuGz7L=|;u=o&jZ)Dx?C{I(clTz9EF{X%sI;w2isPw!`rS(eZyAm!qwYsP zMY^pgtA3~A48{p`BkfhbFAD&7vOyo2P5~<=E{%rpdEN^*Ge+n0u;A3Qw9T4qsUWjl z=~gkY!IUMiI>T9~YAfGbdk{Qcm@)Qt%c;5RWSiPK3#X{9VbtKKDCS<(9XPnkzhhWW zf~NusVG9(v2(T6}ezjax^kuhF17AV1S$56fas2yF^ogI;5@*u4{l`gQh75Yu4k_bs ziKy~$*3nPvM4Adsey@RL6IqGB5jR=OIb{lI*aA5#@Kv5Lu4}4U5C|%bA{;sZ1uKZtIE^Ix~65)!y8_Qu_fkpnwh7X7gwT$`?qMqPCAr8Ua zVMQ&D^~%n?fK%1r*YYync11Ot9d2?zq1Ya-juaPQFx=KBuQw^ooUdL6N@b*^+8;S zq7AXH*wQKqPfF_ueI2KM9oJWBCU)K7L|o0Wvk91l@TTD&^|OC@Zt@W^(=cXP6wM0F zVan}HZmnHS{8WLZyEtj~rhNVe@jQjvVXQtfDX#NjhBB}y(YI1>ZSW1~2dbAvsE4(z-GRE$H7xYuI z8P=s7c<_9K{PN@j%wmM7@87auMa_cBMR@iLT?!=1iAYO_kZWLsEX5keBbntG&5B6- zWb*2!!e75uJJLV~G5zuPUo$@jmWD-*KQlvxe|-1!U4H!!mFe`tt?u_7X#NtDjKX!g zk-j(TKg>_=o!btG=``w(*F<|;G{2F5Rbzf{w&6-efne&q?ft2xeE@4}lq*0sK~Vxk z9wqRvtLuF*18@jf-o6P%Hh`v@nwHk0J6Y6Y@8{{W!^-Mv3oys>3JE<1b{8VRO$N*$ zN_jg#_CsllbfpFL8!F?6htA-C!O^T>rQ)cAwiQD5*0xH+=ws+n~3HR03EZAtKnw$cP6R2x_hW zH=|ZKfR(VYK+)d^RS@DaLy8HTzVuI^c4rnBlg^y>HEj>OL68^-*ISTi{6}(=lrc2= z;TZwcML>K<+2di|j;j}dk!Mu(h6a>51f%z#0nqONokorD5)Ga+F-8QvtDHSJJRAt> zUvsf3FCX9Hs_rKSw|Buv&9V+@Jb29CjaLzYsYA9$rrffMkJmdwv1)LS8KjGHihaiM zqL1re(F>Q@e<7%Eud*b`(9WCM+NL@YHDn^Isg=vqm7)-npE_p>WTmb8>MQ`hjiUYh zBe2+6IEVq@nvz8aB{dE0)1-HWHFfl5^y2a7OU-~F`w_5UUjoKDlw5!X{Q`1Rp)yA5}2C4uh3BcvrpuAT|RwKok)zpDn1dVA30$%@(5nErx7> zZ&hwdNn5Sc(&yLz{{6cR7W?HIrlw5)HPHZN{hF1DHhe?g|fSim0y__~!ctr@I+Fu_J z0l#Akwp4^rD5V06i)-~7=Wg2IG=Whf2Uou8Xcg6h0qZ}f!6xUO?Hk&hKKi)T#w>5^ zhW0wB8rj(jEgKq$EbM-X;ARpuo^f(WU#1fYJ^!~|(Ff>HpG&~R8JqGJ?6E+g9>uRK z0Px?y0y!k8cnRWw6hzCf7uk_=(e_hNw+ZD~UI0Ns3y|8qg&M@VZE%n%+1c?kdu@xR zId|TLcHck-K+$l}$}o;{Ehv@WAewoUlx=lLZKputdfK5Wm!Fk*I-%Czp2Cp24l>Nq9L&*6x!(XI0vpG%^KQ;OM8*J1J17ta@+bK3 zth@#W8`xN2Yu?u`Y2h4PffX*g3%x5ms!x}HhaXBwxgjtd)3r@-so(zmx#$PVLZ!J{ zVmm4S3LOp-jkm14*DhCOlcsiz4ku%gNhVc3$l8hO>Cug`Fj1-It7iZ_`xYhr^e-PT z?<0ME8p<%-Ss?tdngBa+j@T!hDg{U&_+Vv@{s#D!DWl+P0Db~bm!5$EyM%-US0CVj zl>zyk6|;l`4zgGDqgBJ74xWriXajkDb=nx`36>JR*jNz%ybfDkyq!LZJYVa(x~ls) z3NyMRtGx3v^T@g44YM(P`;YO19!<{_Yj%HL+rF(4Y_~i30}q;fs0kaU486_yB)`c0a+SOySTf=<4F%Ixr0c_2LE=AV?%jyYfLNK2XtR`d(ip zi`$Y$Jv@7r23A3X4kcg(0|ku&Xc`ytaRHLYhY-mVVl>_c!bz<8Nb%m^5bLQ6#7msc zdI^IuN9Moz22d1qrx!IqoBt&a<}aB_D&}+RzA5|omFe>1{6AXNkqqwrBxX|-Em&Lj zb3&mzbDmnhILj(!m-UfPs>iyX_ik29yxn@yTqp)RE_amna}?((o69BG6;Y%q=aNNh zr2~z|3-9BRjuaMdSXw9`M|@wNK)Lc$hAAJOyN;PcJggU5EN@NRQ52ONKHGsuAHQ~|C2Qwg^tZo1z zC4@(I1JnY@aQMKW9|Tc58ZUR=9+Tz?f-_5^d3$=$}bc*j(+bSMiyB?R+r>Om|*hHE* zX(jFkS!>v7*rQ}N>a6j3)_Fo%iLCMTxpW~)bc4t(1D2hC#+Pd?ausJC=%W2k`Ta*? zKTP^BU$QY|kJXW#dOXNGx4)PA;tm?<^8=~j&0MJtkM+s7Xx;M5s>}wBHl*<~pUO|K zzDu3coDhjhWnXBcLJ8>D_q`Qd;tT``Qz7f>j|sdo4SAJgYcZb^+v-RT1xX;C@mJQo z2)Y~iEfhwv{g|^$62pfm>#j8A%lJu-$HrLAZ?D3g_A#OD7pbgMcWQL<3UODrwf)zqSTaOG7+i{$yNE*b+T)vRUZErL&uOVgdLE1k{P(jz645)-m0LPgx8 z*511h462xN#1Oav+1oAY}-MlZDFig#9<2r zRIctuKi-PTENal9`PlUg$i2K}OLfiUkeCst}I?d`!jxf+() zhsKp@W5wV?jNP5`9Vv&iZ)QyW3MuQ=dFVzF2+~xPIYU2_8?>nP=hkAx*vGdptPP>s zG=3#GHOC?Jq!fDFs6ur?D%CEp7v(I)rI8UkoT2)Y&Pz`Uved2WY0x@!e@$M!#&&rq zl4KD~cnjS1cB)Fu{K!natE=Zmp;$u*y!}rb$;O@MTh()Ljht-$KbQ#KQNd7sQ@9T5 z)lZi&t&};|$O#U;!`x;8D%_^vX2)hiem(XlIR>`ReQKR$_0a5kmSIR`$J<$ks_UUo zO?`r2{nfmEt&~uT&+J2Fp<`~maZ=9rj;dg`bWJZK>5%<`wj53fCyHeqBmpl8zst_H zKWVfhB`-pWz-sy>&4GRROMQhMI)z(3F0|3X;yEhQWJ(`S3qLm288)?h^6f`D+rSJ4oWf}LJf|oO1Z(YA5I0A zZbmUZ7bg7?S7EPGO(J}$hOat)i=8cvoK?BWAUz0X9Exb$L8dhoLlQOYCSxZ_J3O_x3$#F| zVwJU8nH{ICA5>G3r0LEdsE-I=`Z1v*`j*~~$z|2@Qvd^+dJa4bDGcf8J9M)nWD;;W z#3Y5FE!)vNeadw`l@4X-h8y}R`35d{y~yt?bStUKf8(y!$1AVXcubJWKAzs|RhD=( z=;8gWgU3Hf`03(r61WT+{$e%pvd5|#FDIl?(sU+fBYKLTBj4Z1rjA!@xH_ox1w3cs zbJhbGZj(QlSrn^-HIyj^nw~F*8nU|9z<5-V9QA;R^Lk1oIoc1Vlm}7S35Ik1BnGGR)e&?d9a> zb?U|U*$r1%@0>J^sIj6bVtj(-l3gQ|%i;i!w@xq&w~*H-na3aOX?+YfYINU| zd+gNriius{XF{7X6cxR<44#@g9#Q!&N6k&4Q|P{){qAp|(BVmRs38~>&*NX03mcd= ztcbaG6z2TY%xTDS;n730DC1AMxS$#WHQNQqZVk9`NMrY3&Mi`$2(Y=ORcjiv<(o(- zknggBZFrVYAhP*Km{8919LrrG#vJCPZ&}=#DNEyscn@!&DDho7FkC0zfGyI8IojqP!tzdNu=Sd8sJ9!s= z-^*L<2v%X?Gt*2~@#|<1-K=S@H`a8)WVMv$c`Q@KaJ&ng@v~Q2lC9kzN9*^YaFbdEWcV|XHxF*Xq`ccn**i*lX5Tftv%+_@>f3RkRZ@H&?RQayS#XNHB_DGWV?DEh0p|ayg zmUTSBBnB6fIKMk2k1Q3kj35uvs!e&*qKcuU}&+Ux})Si>kOHKXVl93p3#Qw3xZ+ofvS?9Ok@6z&W@Sm$lZII__lEbsBllfRk9+^hlP`}O%D#zQ^JE)BNZR}zZ4W>tkf{S_<8N=pic#{UjT=*(~?hq(l$ z!4*TJQaCR>Dl31Qm-m+ZjEv(DphTaaVAs3L$TW$OmTjK8v~(=EIEPtxN(b?H0Kp4| z^MYRQmXeIozspB|A>qIPsi&lEva_jt0vkHuUE!yxDlv9m90qanpkpsXF zScpRmLy*o%&~^L&fHtrF#tTp~07e1-b?43@QhnOT$awkTz|CZxS zTDkLqJ8?Ntx|bbYi!57%tyT`!?9Wu>m`O0tXXBm8^X9W%9)$=8c@X{(E*hPK30qi@DKEE6tx?j;WBZB+s8tj;yEyY@OQtj@u^0k-Pr7YDnz-G zJH9Kej!M|H9d%E1w76tOEWYzxr!;~saf=u0JY?NkZ`@WgX^8xhBuafLUzE{votLtD zf=sfRBTcJjNN`Ygt3&8j_pnwQLM-^N4YL0)ZGtE5Bm1WcwR_&@f))%9cu(8H$R7U1 z;&>eS8>C1;Ht<-`AGG!LgMb>09Ebz9p0$b)Logl?YL1!v%6){<)dGPuutaYL%x(a0 zh&awak_Ed*$n*kh9>{4`Jw2rWsnG9WsjdEv7uc*rq@ewFj%WhBbBIebIQZ=1Almnj z>|>q4G&uWC4B<=+P4lYlK-|i<;<&UIZXZozofyxN)N^e@hnPG}bW+su(P!1xyNP)` zZ%E5Jt2@tn)w?*Ym@LFKZ-%YLdFk|^AkK)etW{2x9DEHSU3K*`I?>uEZ`=JoXSIFD*yp92U_sV`m5X+VXJ zaEw3p34~#g+GYIeCvj0WS>kj?&KkpS3HaHOMa)ZK*t-K1)Nh@O4}`heD|e}QUVJ>3 z$*bP0M2LB&A<8R8IqoRUCNK$GzPXl{xg6`cm$LJytvU-sLwalWEVYr&&fa(<3w816 zxeO?>Yd2?EOtc|_`iK9Upk7>1R8pc9%wPoEZWRDGy@nVoJ~1)-d(!_8-=qHZIq(4C zfIxd-1+gnF2jCL0E5~8>n8!w>yM#20Gy&Z`yZtnQMdsEvg`0vs5j^qe7FIBuPpdZ! zhIpFV5YX6(-RTgjY_xyI&OxN&X+1j7cb%`nqOx*9+hW#I#9)P6CWXN*DJ*&*Rr+!u`~6!bfjR=IJ>LMFt>RK225zBm?m|;9Vv9c2*W{%J9G*3u}3K*~QrA z_D%7baPK+|dN1aLYVd4CoX+{OM9ZDruDJr(IAzsDE3q5o3+!UZkbHSi$ib_t?mIv;D)+X*-(?mK&<3KW37| z>&6j!=^TPx#`>U4tB!k;*?-a|tAWYHi9cK)x9n0rlRbRMnh`rQH}?sjjR!EB_`9Ly z%hxULvHud7S`Y%1N+rn}@UJ!(FTMay1{Sh+7XXW&H-HmChuDD!BhX0zC`iL8gyGH| zkvGG+R^S@}G8G)s2?8yW)rlQQ!IlK@YnjJ^#l<3B<9w0Z<3}LY>Vf|__TluKMAlVr zo1JB2e<(k-1jaT^no0QR=*lo|WyIbS?mG(`*j{GeQd|j6%{-sid;9=4wkK&W;cbyH zlwcU&b~jxz@;YFhb2#vH+}ZAnd2jX9wQYQ9`k$l3iBmt>*n)4GHLlq>EiEmQo4MZt zOZ@$B=;`aT#XfZBxZjp*SX*-ef~@W# z|X8M>)jU@JvYW%{`8L=$c<;V*QDJEegMppi6_ki0Nqy-E(b^+FPV;o@p%Vyu&| z{wD1Rk8_xQ+DmyfztI9^gDe6an&lJJqGi;W;a#^|MlrI{wbws*!)33yi_-qH(*8!Uk!?rwz?qwBB^*WfB9ix48#zFlCYJr0>MENp+TF)yyC5MAoqy0CHs5gh@7<|y zjgJB5y`v6^+T0WXYw2G7z;+(uT=(?!+?H_@fHFRI6XS4GsSiRPA|Z+qur=Zg-VwHwE}2`c zm!r=5^-H|y*RLbjM+6cJ9|<1dIgM5AaE=|$d@)FVkr)@3$|$_G@;1l)+%|z>Z94oF z(!%J}PqGkYRdR3rjh0@bVG?hY(JJRNy&ArgIpneL?o8@sW0GdYn01NyF#f1}%5lFR z3wuJ)_QRI&)B^g3%Is`zV#allP0SIk9Q)X|Ht!owneV0gIUtq1SL_vuZSG5*xp>6Q z9h;=J9Ak`Jz)|#I`B-wgRvHdJR|}XSsa~38N^IJ}9@#6siF5#>{MM?34!gd-F8;IV zgUL9j=$+%U4e~AL&&FFkRNQdEwdLEk9DIhd9#N>VgRYagkL|=jSE_N?&+S@aa=R2k z0GGm?G&~v$xV!h#m-TTi;Uf;|pwj!Y=sV)uf5^$#LIT?tL&jYzG)76B^XD`l(ju4y z%#0Hp33Ie>rd&zY#lzSr0STahOq$VdVs1dF(+bUHw4&^~(Mq86j{?0c%5tG-V?mW@W2Jf_z zEg3sE!dY8=7a+W(4uLrwbz|EZk5GyGx8H21=VmAC`sya#-&yM|Fou!d+xK%M&?QJs zDY7taIZn70P2O^nx2R`eXcWK#D|=%mgJ3e30ALx1z!qhMtc9|9zr?}9MW(0>!V`3HDEEd zM#-{Tf7gG9)OoGvT{d|&tiZ-Xy7}jcZ|_v&G;z@X)!ti2Rk^n9-V;Fy5hf*|qJV@5 z(v6Z66)6!VBqu3?gpwj5Ou7V=kQ5bEY7)}jNQ2T{(h`CQBHwwt*864t7>g2$=rb=4$S-eLMG2!6R@QYU7zJSHzb`gpC@f!AATk2MOPUAXS$QM%CSnC zRJHlb7ifBob0gS6V!z&y>l7c&&7+yo=ekuV;^?Og!v+7r#o4D|R{oj2o!`XQax=)0 zbFx*Dqx5aD7PAZMNg}*`8I;#TXjXGh^6L9lxM5(zqxS1vU%}`{X_qbuKr!D22;PV z*ehy{p@3G_vdu{g0~NxC#oxybjYwFT;CeDUb1T+M@2+G@4gqs6A3B1beQauPPfbJL zXo9Arqq5sAI`N?O5l8y^#}H%dJ%V;LX$*HeO_(4t17q!?OWA1$UT&W|6#1748rn>a zIH;Rhv02k(A;YnXidmbO62L)e=~pe3zq{PUI8SP#b%j-Knd3Gq^Z>Vs8mm$q?sAH0 zA8~Vv;#PS>^Hloj8u-&2U~NLAF|bNc=6W4ie|lKYj|7__B?lglHf;*61#f9=RK~}T zbdUprac~eoW@X6o*Bs8o?Xp2Bt{RodwF<3PSxK1 z!jErlD}a#S1cpKlFw7$k5AYF4kp~OiVr}O?zLhS%>?<54_DLX|d}H_NKrOLL6=5Ul zM)x9`o`Aty&0#bmvj6mZ)=wnaE#OovHhjbM&n8p-^%YXVLTp6>aMd+JCewXO;J13_wLyq*i6JII_WOw9rx_< zIHu9u(VDh&cs|P1WFlzUm8!w>2wlCA*MUeCEWW0&(znk+0!$sCXF(N8Z8L}`fGsHE zZ`grFvRxBoC1C103t=J6dUln5fYO1e8nIZ6}q7+`SD3|XciJE3SdsHg1b<1G3mwEDo0t6nq)}29Zq-?B~Srp>^89F*^e;j8DtSBPXK8!OZUfHMdYKqyJMlKj;yiGjGY{5mXIAMuZX* zQ4t}z4={~KbPY&_Dn1h`ghHub-XMZe>;_C_vEau>oZt9|b2qZ|ijm+DBGl#Y-3o|s zr$1W{!Mq}SC}c=2y}u#^=Oh8jbAM!F8ssaDOfI8OLED1#F78=b)q?B;k!uA9ll^gl zz=0C5?&q0ZsK^wldsDCKc=YJQSo3VD<<0~}p5uCVpK0F&Zb=9LSu@bk@e?vjduxt* znLv2qJdnu1aSz@#Toh(c?1b(PBvQ7UO@M79?Ig1EsX?+yBxceI)$X`T)b zyZV2(LX?>$Lp$WWjEoF>7h)__m;Q-4MB#9q40-se?GPt7r>?VS;_L_WYZ8^x>?YJ) zb_35#PCR;e40WOY>9e4!eIqTgLB~MV0dX<*t2#|oMH#Im*hrz)ySA!Z^&&A&zKZ6F zdz||wQ;m$ycg4i2{q9w+xZReP`j|nO%$>D_){E6^D~Q>WPf1KP)?CjNZ_;oHF!#Ln zBHF@WS$U%lQ$`hkdSU5@3?W$4gxM>hc>!`AD?#%a^30?%i)y zh+L&|oF_;x5x+z060;l>6O+sz%IYZnf?~ljFk3x#IZ;5q=|oY^@wQR{#hBoADi3X? zz8Adbeax2}xW`??Q!h~3Npv|8ebzT|Phcf5;j_-wZu&_#Cz4lI|6whaDc=65A*1_9 zmc#SxzPlXJ2F63%(+`fPZKfUi+%uXze(92M7ys1hNUC~{opr)`{xb^HD{eYJon{5> zl4rIp!59Xr_+)(U5K4-zwp_F3_z<29+auTe7_UCAJ|sqY^r&0Q$i!4k%xBKe@d6F9 zmho5Iy<=kZ5p=Nk&%t@M4eS06cS}-3_fzVZKa@z>9?i&cEEd9)P}K^W47?Au(IMha zVh=VyN6j*FPAK9!Q3&SEjkAmu;+gY1b*!A60~!kn?*jSumGYe|NS6f-rf4;2#{@@S zG8J=TX31z4ubVa4S8VlrfUN}y#BBWzZt^$hPyajN&rcvrmwm1Vt%B4-(TOG3?_yym>a2YHd0m z+Chw3bTuD-y1k-irLyTV4K^8y*5}NxWwLm+MHccd+2)ic>!YAhhO_^wt~Y$oL6lYZ zU-BQ*sX9NDH#p8`=jYRa4Fzb9BdEWN?bo)QzRBzjkO;GbV1}v|R?(M+-9~Pf8AO@obC`q$-%+ zQwVr;k~M_nHu*Pzh@A8IuCcift}ML6%vGey4mk6W` zRRo?5ZcIw((Q?_AEpq(&cKDkQ@wLM$C}M39g`S%2-}SgT#q`~c`0@B#gTA9hWmQ_i zA(S|^IH$Ft=!<7=^L{OJ@OFBltwi&da4AB?ncF96?-gMrw~f&nEg=tC5~?iNM8iF; z?2f5_rDUdBV3B|&%c#vy{WvgUmieo#4_nmkss6h9mWj^;n*W{7s}r!YUDt*s{}9lJ z2!)cpI)UYAto}n%q)>->Ap$>t~Sp25LDB!3gY*of68zx~ROQD4X#GVXn&g!oOs zznNz_pGbnUH>_J`1xdoC= zFdj{R$jtczJphgY7Hm&kSaiIPic0RlP12;UO0oUA5dkUEGlt}xU8O>Pc&B)-XNnM8 zD^@(=^kV95P_NtcfU1Gv{z9S3v7u;s&Q}j4?#iQ3BJ)ZZx!WK1#w5deuq(G?W8<(r zF7bP}jbjVQrYy9M;c9_(ehaFTDPDj;5*&)T}5gD-XmnF5xXHCn_&pSfJ(9BIuw7?t9JJn89*Uh_UX} zq$2sT$YUim)oJF2etGSJOf7~xU*Ep>6vO&)tee>BrYNqq@CwQ3?bq!`v{jw6_j8kv zqlZGWirB&mtEzdg3Q8sX6}`T!k&jM{-A+X(UvLZYIL>YOEbYARV|N}#76lejduD3V zk29~_&K!^>(P%BDk;;0>mdao(sN>_XtOx7+o0%lZQZ`ObiTYyho@ccj?j;3v+|5XE zSl7Jl&*gb%f9@?)QVFRMKE2hmc)*nMHUAb2s4`2cfMl9OY>&5#gHPNeo-1wBrtQ&> zScysMf-@%jlJR&?ZXtsoUKe>-R^A#U$%~UzjUD#to|B7%dCHS|&+Z<^iv(}{Z3p3c zUXf$lZNJRZPMG~gF~6)^ORnxihzseRK{=8YJah-v){rFG79@rVIi zyb(T;1uBO}l{!a!@5oqF7{{O~W~ejo#V?((GaT6}x6S>jIH%)tlg&GO(N>XPonhnGZVG^e@k4$1yBU3RmcOSl7Rg73q}NU^M%P|3K~E!TeL zuCNcP@+j}*v&89#39P8fkE!{BkHQx+*LGNv%kJ~co zdg%Sqv3$s0l`jd)Q+XS9J0OnkaK-TsbD;8pTuGB$A;KKcYP|m@3ct%ZBs1cF76bob!Rp=MfPJhI&k((r}o+G5dy> zqtVi=!PT#R8ZDo>xOsiVZ!S4T|0<(B^W6H_LIg`udghx_ss;z_%@7$Jox2jb; z>R%eg%^lk+vddVlLi_h5gG}ME*nZ<4&vEYRcNEna`)8aHg63S8eOlO{5KX3H;;Ag- z?`JUY>5Qf4ojNvNt6s>~gD*afUlR@JBeUxJ*jnKNW z19=~`-*I2+*;JZ`PVr(5#Fl9;C>|aaveofR#o@yb?QfcsvW~%_x$tU+L$a8nP*Z|V zj)%L~T>b*ayuB#RJEilMPTD{hfSl|TiSQz0kTSC@wA>^~Cuj2@_G|jme)X^dn~qqg zghWH9&KUL)lWT#)o0z_G)dh6jBC~fZ6^9@Q{4iv4xEs4cK-9GLf3zH2s+e2Tt$Z`q z@W46ACu@Qd%QHj1jBdz3RP=DDcOEEadM`f+?7t+=IseFnX^Jg*cGR{#DU+LHfGW=6 zO9NZGDPf0@$}Svk`Qvh=(l2yOIO&_mjWXIkNS=v%7i_}4==lClhPcb=u1mr6E{^~Q z5lCpAP8wr>^2<~|-N`xAF1FfXt!(*0D~llKH_|UU@7nQt6Xw;|5XjjiiFRN(9DRs0 zRc^|Qs}R^kb#jm*!os)(A6u8Wxw_p&*#e8$ZjYZmsvd^Z8BT%s4CF<~^87sY)ttGX zDdyybqD1>#*WR{_y@i)+R<-U zst&%b#uV8c+kEwGLmf3=f*7?2h|m8RDc| zc#+Zq>TdzlCL|(HxfOh_!4MFeR#L(M<$4`rdjv=1^UE%y4#dC*@&my=R1H<_MgP92 z|J{jzauG)Yj3bE=kUJ1vkOGG*La_|O%1DU%36z?{T-ESIc?$)nu@`+$=Y3E>?Q^}X z%t}buel)^2*0R&K=tAc~?_m*Sn#tVHf?M4ljxDGnlvShPPL#uO-P5y|W%jB(G(WVN z&kMHN`qEC?v(TV~mP#TLe=Bj&RS|5a!C3wKt85|89-jZiva8eX-~g9qx-k@3I;9WU zkr_0=J>es{t78GVd{9LTApCs@k_K7$OuJB5!+528v>RfZ0a}9Dbr`Pr(zo@sOtJfwE*8ZngaXPy8d>(9S@^7A3Ww*vr=vtU>AIj_*IPAN)+ zgNPLVFfpJ*SXR*DpL8%wQx3;6TpdhmxeYZw;&QjvJ_02j*5w+b*jm<7p@|`ralB;K z_WCqV(Mph5@=is`9l0i^eWz#J(fECyJrA?rc9*sLe!=?SFFF_-G_Kf|wLP?z-z%wT zB_(MYjVIII+8QYOmfmu-Z2Yz*J7v-@FqrReo&8P6aTC+UUdz{;#7Fq~CUe9v=qY=^^J2K5^$7 zLnmbyTo*UBw2q+=Fdkwp78VwU$sq~C#OJNrHG#q~O|Mw3>pRdN>VS+80L9|${D!7b* zv~VJdJP}yljvD3)<$?TAvv^5L1~1n_Cu0wAAf_$XihIUxZ8% z83a`aWXGp)8UZOvzAOpstNgX>WAkTXR&x!E^(c2gEQsIRShAP;qD{NOdeMCO^HV)B zby1ENQ1)89!1KbSquma|bMyk!~l%)m~1r&*+UXk2xrFDJfEjFK4Vm}@3&zzKdx z?TixDfCmzN$Z2(}jt$DR_@9VJ5MZ68%fm3XM*&hJqfM}$KWt7d#zn_vajox#T%;3y?4pqLIbg( zGUc+5q;b$NY1@hZqt;_}ryh-Q3JWf?Jk(CoH_>$fyXeS>P(8cOa%|b}QnIZRBVSJy zb;;P!H}xOL^4_ZFeo64%tZ?c?j8ywxCwE5g)wnm&8?U0F{q;U>ic!d7GDGIzJ^!B% z6I3uyfDvL411Uq9A?K~BBbo^ugS+K?kFoc`q&&(ThRuLB=pG!5o2C#G7B>F;P9yxF zxacDslIMkBl`kwV<{T*l*fb!>af%@)*|#olG|(WSAmGDt=vCrWDvsrS#z5gMI?Hlo zUs4+xM)-@nCVBYW$r!4FnN*M9ff z&g1#C<(atEI6oaBOdRWA1!-4SuD#devt{Fn%_*vNVeZ@)XGCt-J@Bk<(PGI$ddL90 zVcLS)`|k;Q6A|saQ*!vw6ai1%~v$F~THNAr^luOko`Xk?bl{?6*|Qf4k5 zXhM#Tj>sB`@MM*K z4$$tH0(*^W@U{wEr&FiPj^=%k%GzA8u$JZ{W{^qwV0o=rbB*pw-kaalF*F&PwBX;! z5-wM^X;eZNRE1nW@uH>vDVn(4z3t(n1P9|766+S6?)Vz3iz3_oN)l~O4IaISixmgK z+So*1dGRqnZ8nTItubh!qWbJo1ko z2{nZ?g~0Oiwxk4r6x?T_p)u>CSy2W3D#U|V=JG8Zq5mUOd^PExW{6`LK2?O>9c`{A zbKr>dwRI2;8{m$Rtq~A>09%B?Vp#;KURn-b>-7NBP+C&@J>`XSeF@P+houCO0tFKyKeszc^kPl8Q!b!0$f?8)koX_DPwB3alra~Mb4 zkEVlfJHI&G_KiFUXkR}HpQ1+jqMjdF2uMs6KSsHhXjxLCbGezn`=@QEP`h4dFk`=4 zUm{8IKCQu4!Eys6{(O@=yj(xw``gVw=sQTg>V#OEwHldrgq(Fmc61xr!+l6Z9o&1T zIpv^dOIyL}I^q}GO&Y1pL&zt?J?0p%>qhy#)iIz0P2AVop`fj;U3kJHpp$E3b?qT9 z1<7pZH=d0p(JJkaiJgb310FY?? zIqn`bbaj)8i4EvFlzR-f35)5OdSuJ@|4Ix{BOZLLpwD~DGMrx~K|P6k_;7q=vs9=O z`qlI$CE{PGoI|4V{RdtgRBfCFCdm5%(WoEu7&c?aY?y!fStD<7!BpxC3Wrbe-nJS% z!TZ|@RUT3bY$}pt*sTPSV}rl+y$RLw7QfeRQndXTJ>b*)MImeX4kLqVY`rFsFh$kh zP2$bOXX8OzK;ua^Wiyz9#yp2o>iP_PV5ZKbxqaDgREUArw+Cp9Yd9u<%%`*kyvXKH%8v2Txs$j_(Jm+Rvvb%|Qm0ieZ4mev{c350iv=GIwH9zU&be_GJG<=4 z{=(mxy=&=r0V!)FtLF(tvbMYDc$MwRY6{aMN=k@k$y|%_|1s3-rFkF7uanjg8kQ3FZ53V!sl#r3xArs;|dV zEQD>XcI(hb{)XdUIL(IYl|#2ZQ_ZVad!{@}_ejMtEG$?rOOG}|Y)E3;t}B^P-tos; z=l7g6ar%yqd10-7abqFM?^qiv%_*$+r?pZx%PMn zKBKQl9UV^yx->eu4qhsAIr3*0isaMcBF?FwB)?0W;54it++OOZI(6L9pS!ToF?iv& z3j<0;&c^FP09T;9Zg2KR-NCbHAr!n9GGmZSm<)OfCHDPl?|(m~gQeoZ+Q^Sc$(fym z!!xjs`*7~nagCD=vN%lMib1fnn!sc;gV~3g9o8tfx~}B4@0#xMS5eB^(=v7^ zt3bYC=Diw{#HVvM!i8?6=BYCVdp7GCNzV#Zp+Nxg-z9Y&jqMorj$9V2U_HEx21SQw zG+ld`=L&+q_BzbfNibpq@m7X)9Ik1DWh!jJt8Q5bh5e?Tj5cL8TAbo%iEr!`t!h`u zYRD0E7o$`!xxLGES(D-JfGDu25kUxl2bZ`j#|`xip`c(LGJV>u`R-3Qvt~~1*f9wU zPU|>d6cxi`1o)B%d4oH4R>QLyo2`Sfn!7OhkHS*3dyIJRJ)Wcqd08|r5%Af`qO`7m z*QB5JzVmew8jJ-rvI5!4=9$BNl*w@mw3c{u5se>BD!*d%LPL$!MbUki@d9KR$lxfA~FFWBI%_P zhkzv8npR;sa?Ir?tO_LDRpK|Q-`^w0hz*vKzA%29hsjg9hub!%tFu_Kr*|K^RYP01 zL!WziF@@Bp#ReKV!|OAx4)GTPpH8Oa$9530guni+x2bQMTQ_)?7}+O%U#Oo-Zh*6mHDaM=r3uR(8;6e)HO&=#pG&9Y zz%#>;8Eh6~%Cm)$;%L%+obIXc^rq-?O_%$Exv=s=Si!Wip0 z&5B*dUCK!;I*egU&85DZu82%qOwct|rJrz%9PFYdqJ$fr9T8Vx<;vviY3gWZ zj$0(R0!bV43>cOJFFD^If7wLSSdlQBxYt0_U@(n4&x`AOdSOMIRQ?z|F!vd=mM@V2 z73oSe<+o-}k;ZJjcCymR4ngdJ4P7-4XPlTpf}3fwo6uRl%RZ1&CLxc(dNtNZRB5#H z|2dN;1dbY_rM{_9HOM}0yhQynD44so^mvC7?N++gqZ?mKYtu=bU&f9O)0d-*s&84m z_paYLDZp~(P8$A@jYJH&2gsRozMt`ztVxOsy?aJLHZ3lYguFP8Jvhm>&{U$f;=%YD zk>14Wpe4>&^-I%3AI-Y+X%DHRuq_RbXfSbqx=cH%r+BAueVt!IQp2K9B6iYw)uW$l z_tnt7{LjOj+@XKY@v^oy_)4{tnz7cwj^na28!q0Vj`!;WHL+iV#Tz@EY(7DbPeBaM zf4edEi^231ZRUcAOofkV-{vbCSc`{v zlijdXJLcgdvi_u4naR}v$3u@1RN?)c2xb*TqZZM((V`x}z}#~kt-^3RIZMGt-BhBb z|HpV`qkOT8U1~|(>JhyZljaKD@B-fW3pl55ZD2qoni2ystJPEO*X_$ZCp27w?yx*f zIrhd^svU1-4#_VXi~)oC9ApWT9n@I*+WB(+%d97G_Jd--qRgDUh3ZMs`Xr)n}YJGM> z1>NZRT2Pd&n+g9ruMfk}Mh41lmvSka^dTxg?LiskgXUfplD0L4J_8aO+yop-`TC10 zcQOnKchkf#$dTi`-V5GvWh6G#rEVo(@mlA<6X@gmy!3tei;4H78Ll%bbafmR9`B3_ zuHv7?lNH?gI%Y@oiV^sW(dmq)Ix{ttPZ!b zIFFo2Mz3wAv`#Me{Ti2Ufz~YY(7Q8p4C(tl&1L%2j%23fn?&BYyyL99%?@N9_7}Nt zm^K|vFvFvFPLH3d%crG9Jvb|-`}m9yav}${7+-OH>)ZCJE|Ynl$#^uFSSF}0X@xEL zHKldJq@QeoZ72=ai1(7W`9;o_6CC+)@n9D4XNFTv9GuGQz4xoy&KOtdYaRQZZFgHu ztL2g!C1wQIetA0Wa{I)Xl_@LB3JDAj5>f+f(UIOCXGBbc>hDRB_s;E}c>zrRh`4ak z{(zuNV@eNvbyQr}Z+4ay#^LY^WZDLzBAAT97gQyt;0&mP){-$`H!g56ps6OIXp-G`nk<@`)pvo~6OEdro1U;!~YlJ)&xy}C)j(KaG+CC7P7P^fjN7Slkep?+nX_HVQ) zfINthOodMI8FEw&K=+>l7zv@1Gst*eMj8Lf4~4RdbiWj6d>~;WMye}Aw>dhCWTV5q z0Yn7Pj{w1Z>x^@7fN z{r!UC^;eoCTcgGUbb`AlWy_ml8HM!0v{KP?3H(i|ogG3ChJ^tKc@!uZ9~>(eDJ1F%CU;1!hl2IA`|UE~2F^zQCR(z; z7!|%BX5%o~M`s`pL-<#EMEe~;s*RcU+|>V90}7u5QS(Ts1|)j$mGO*xwAQBoI>2@| zf^fmni}=K;=PGtU{fr4}p1Egjtzc?u8Z0&1-R%vDyQKT(b3ov1h7_9(Xvd=#X!}q% zf$M@$hPUQB>OmtH4)AFzmkAFS!7lhU07mYUu={N=k2T;JGlWTlxa@T_vBJ%WYv~h$ zkERZaJcFh7WT@m)m%ZjMz@qP?ihytA380SzwB?n!TqxXwFh_v$BC2+I1B0r8!vt=s zk~F85XDpD&@-92OkG~0}pP@(J_sIH}gZb7NmIv<+QX4M^~IOtR*M}0+3FEFe5gXAvT zl#cy6IWc)@eXWA28X8kpKN293WdCku{|QaqsRdYL{W{B55UE}XBxywp$sn0N5Yz@x zYo}!`HtL|+AOBfnA=vdl(pVtvS9tv|f7wcQ*i~#CgY{shdC7uE!k>{}{$9rW_n?|1 z4>Bk()Awg_;0RFD4r)qd_6bPDeiL6UUol;=Flz40>W!##M%Svk|6p})pn{Il4I$dN z=AI1H_vgHG?P92O)TaX$L7JDUK7qoLM|qf@lloj2GuwG;k(_ElgOw&5x$&~$I1P@} zPYE3vu%^Np_#IcI`>n;_&5f$odG+Gzu>!JvHk^};{7_f30L>yXjJ6+ivjlT_#xeUm z#o?tLadPYYA2a)CJK86r&ls~RfGZm{|CU=)e4+L+a|=$uJe!cznbn{b_dsxI;qv=f zH#H?4TYfo!?@pmup1w{|K{v(YDTpFZ92yLHxN?N~on!%iWubXz96FvD@bgo%)Gx!m z+dD-^8eBNC>^QOrBMr==)`d38nD#u_`QIhX-ZBm{G{ie7hwNN4)%~%=jBrRWj zVQ0&Ng4Mm7%3|R*F;n#RGplL(mYjo_<%HSWiu}h5G?29m;33|TV_ZL<4kYlp5@Q~w z2ED73w2hXH@g=hV-hCh}!JUlbw|<>=BJBEkgu19syU%1juZZ5V{eI&IA$g?1Gg*u1 zplNy%yTdo`m(Ba@AI$n_v9w#YEPq?SF>9@_n+-I0bNBYM2BFdn;B047)o5S44)O8dm@Ozo2?z|T+)WAThd%pg& z4an6lTpu{`vKwLw(36cP^!l!&X)wa1OG_teImlQU0&R70LC!2ZfmB6@9A)bFkCTyI zFQl&Oy|hAMCZtv{Fc`ZmNrIU(jylmz8hYyJ(M1;F*DJ=Bf*M0ErNcQLIs`#+1Y^A1 z+9c&+MkLHv;f%*M;EB8-SrvgT)6&wWLR8ox#FG?$=@_PeKiVdXjwc~CIe1fW&q~42 zY%iAw=jNk1MLE0k%5E61#UOhR#33hwu*AurB1N`Q(5-Jm^0#1HbQG2(QMh^Kd}JER z)Y6b(He>Y+yHr}g#w?eW;yB`kQ6eg@YdnW>X?faBS2Q!FCdMb$N`)DG#^7wcG2Mue zvykzQ2`r8!u%|>~quwgV-nR=WKL3h|JTm)@FSD9hucH3dyp&$fB8}Vr0O4H9#c`kc zc!!J{xvK3*W)dIfUO(8JvYrg_8$021{V5zK$YJK1I8nb4bqocW zcISbA{^D1aCFqGCFT5Ir2J3@g1bsk(gsmXLMFb2aS-F%hVVJvkcS!(YSovkxsYAvS z?9`8!a})I(rLI2$>u(P{2`?|?4=KzFx@+uNl4^Q4cR7lv{ zP9b{(2)}~>9&Oy1$e({kQg@!sp9%3vSN+;l9tB1m@VYq>0zDx5k#`hszO}XG0Onr- z1x^yLS9z4gr+(O{I>2u(J}u-A$zOiOAx}r*({c+4Cx3r?7n(sta%lL{Jq}ivKYz+< z4b2VYkBH>VF0uK0%u;&o5`u`?2XTRFX-%Iy+`Tqv5KL}Y^^>FX$`8bB!2(=2uY+YH z%^0AJ{!eG(U2pCCHx&|?691h6{BKdEvmmwC;&!Jn6m=TV96WCo%5%zx* zUSc_`AQUzsrX4Rukc@#p--BkLb#B6QKU+gX1N-Lz$Rj~tc?zVtutyMza-$ByY23Yg z{}(XBMMUk!|GcEDDbgOHa5ovLCfGzA^ryY{`cgtK=@l_RRVR#SK4zXNPzb=872B>b zlam6Q(jFw#D=b^D_>^9;tq3A$Jr5HO*cXOi8HDHM)^|qiP6K37G+bhyVdkZEj#7Hx zAPo_g!C%f~kQ3Q^&IEJkTvw8UO+t4LqY@O!QNTd3=0TO{V8wJ;{;B!q!5 zLXhI&0|tLA)K|?d9UUU@aVNJ!;>@pR2nJ3->d$(9a+vK;h@lvuxKp0jEqBf)sM&=$ zCAf%b=YWYSge26kZT*71zbIUKVHj3;C0K~3_2M_li|gs_jcPA|t>o*htoB`a3ButR zJV-4VP@ynSJ?$?ybCwMX8h`=qVozFq5(n@%s6wjuxxaJ}d(Su8AYB!_K+!WWSo&u=-F4(e13`e{YWNutRl~d)zzuI_ z-@kh&tE;Ok*!8anh`)Rf87f&app|$6XvE#wX!Y-uvIr;^g$R}jx=V=VK&bX%V(VcKo1C%u^|yauXX0~IPW4wfXYnxHuh{O_Gl=Pd3ls1H zh?ximy}q#SokYaSkW-QbS7%NN#M6-@d16}Gcm3d|V=H~i-G{k_apx&?M?jlg**5e9 z?!U1@UTNGgH<#5GYmoH(m#3a~{vQhe%RA2C@#+~L=WXxn?nb3%WE$|}}&IClT12=Gp>XHRsBP1)_AB8#& z&H&;8r?+{Wfh)cZc*=i!m%niixphM9o1o|42Kk4-E^>26CL|<8S^iamDGRFqgZ!EN z7x@$Lkx-mDuZ_mH7l6cM_Ul(jB^8YS3b!AX_+wU};D&{%9t0@cl-}xqR6%qU;D-BC zYyvU#4NryxB}F}d_weuy)3x(ROaPRpc@8s8v&*|P5zSqmJ3>f>6u{)n5OzflokZl4 zYv_zs%iaOj1_OAOsx&k;O`#RlhMbsnYj@d@%Vh&Ds#BmU$RVgf%v{L-a%3czgI)|g zbQYHZSI`8{5*ET&6(=#*1FM(~(q#GTwg(BI?OYMaeZ&;R9ZdiP4nry*_;;W>4}<8& zW+d||6cW9}%|E>chdl$t(=-_5t*i)SXu&|KmgJCly#NjFcqeCIYg3({j^ekKd5F5E~Q!;a)+I8~% z7P#HmA*<(A=t4L^vyD9i&q@xN9pn5cM>m6qt?d3-M>TgxSXLP~Tt^|hMhpqLLvHh2 zPJrw@4LK$Jpi;1dQTr(fz~P6r3yMqViwJw}6r?aB>jJDxroUD!WrW~N)ZBamK!7Gd zADAMKIN1LoX3-uODOeeaWk5i-NPDaid6wyo5&@UB(ZYnaK#_4&sLa8ldh2E3wY^fP z%%k>^te#VFOjXIS^{E1s)a4B6d7LD5{N(4G`4=`s|60*8&hi5Fe}CH#0LB0LC7<-q zMj$ZDuYv#1-he3bBXk%4+OFgSlNdGzXJApd3M(jF^LW@&sXK)+3UTNTKqK+v_Xv2V zKnfTK`2?~-Kqk_@gw)r%=ieb@2sT^4_6Dj?##F=Vo%iUg8ni~$50ImaEH&;Qe38fU z{`FXhh;4>bBpAGh(_ltWNk>vz;3I2>Fr|w;6OdAcR1mYXu1nVthX*dd{y40Qd=gL32Tg z+$TYs`3KzUbDUQe`lLvp(i4!xl|b6b1_ThJA@sAqoE2U*h7H+vVcxX1w$?%jvcQvF zd&IC(GUb0-f8fjbII@|ahP99wrSI6I=n6jrgi=OGa|4kws!6R1Blu&f(n&{ zbrT`wV4&%o_h3X6*s}FbSKuwGKt>TjsvF_f(F4NH=Y;SF*&l_W`sjw<=U4Zz_!cR1!ktFXs-G-d>632PhnrJba(@_dLUBM>k|;7#-|Jv|VXRyX_D&g(JEiw+o_uqk==;o#Jmr1p zqoOfQ8<0DkR$0k}vLD0-ywVf<@$~>nzl3l`@>C%U-R)KvPpp|2N;^|4*M%ZHJUq6KqZay1tGm_)keu4U;2p?DPKsMx_uA diff --git a/docs/images/specfem2d_example_files/specfem2d_example_31_1.png b/docs/images/specfem2d_example_files/specfem2d_example_31_1.png deleted file mode 100644 index 9e653ad132285dbe59ae36c2618986cadd071ae5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 81881 zcmeFZcQ}@R7&m;2M97}m$=;PcB1Fk3dvA*Dku57*5-O{xl#!LacSa;xSs~f8$o8J! ze$Vmz^*+b*ynnvO@f=5fzjAZm*YzFe`B~p9QbX-J(OJ5)7z~C;MOooC26L(fec|E4 zcQ#^(hxr@QVU{n<3v>v3bqZ_>N%4l{0T<(~v@3def{4n|>4H zPWh9>NNR|jQdjLXZn)*!n&rP8s`5`huqC-aQS)lZoL{tkn|R~R6E)rXqhE$jr)ew+ zapXwQpM-}vi4&M$W<2yqnTjnO|KHyuV!~Pl|Hn@hKc->-_cF6E6PjLpW6rcd47Et7S= z9^FRXb4j1Nx|-t{Bx~)T;a^aSx!Rq~mpDOa{GsX>U7Gt>m3Mb?&TVaNInP9L%oGM5 z@p!IJ7I0Sto&=1$bTBLo|8Zhs2>Y!UKl%cX zFYT<1W^?OmYCh~1XrM1JtWc7Z!`k}&yT9Jw_wZ;v@VcU6n8ra~Zm#pm(cf(A?&MFM zopSIN8?EH(tw{%4-2yHxM4~T0ex%sj+rz^-rB~%@ZB%uCtbBUXcU|%BT`s!Ic0tX} z^6snODNAiW%U`COE1#Y^ITr1eJ@NZiU`Xxl?JYJPO1{yEO*|sOfg!=esVuxZ@b-OI z-QP*yg^3!`8#ivC>s5-Sn@)4}r+E~s$c9@Ndg_UIgpkUTTV5613rqVs~D zD|+q=U$9P}K5aK%Dby>uF6Fn;bjHP+LoMyoeOpII{t8D}3JOpitS)C?k8huDd9*nb zE#Nx5K2|{-O)bzKgoXX3(#0~~FsIM|@5H0FXljlc+G;H=tsmd*3)`Xv>LcFVOqqFM z|Dh>gzw}F~t-6+uPS;$($&pvjiz@`zH7Mq*PU1g-LO-W-}xmrF}WY^DHd%V9)BW#5SlM*Tyf{R~v5`NyX@!R`5 zLU2R1zk4NVq#g)5R?ShVJ{MNhc0AhO)+@2XUmDDNQlN)wtq6smnSL~A)kJl?_&*26gZL|=F&(-hF5K!Uaj6CJK zqt)FJL)!v7WMsYJgkK<9DSPXruzsH#yHO`!k5qS_De$m~n}=sMIi5i>8OyBUa4WiY zW!N;(8W!^k?2b}%$$|`WjKj)Eak$5lroMh>ocJ#q&tK1NbCY@EO(m!pB|TRn45=a& z^g7}gMqzsu8pxP82 z;Nzo%?rxjjv`DpdiC3Ph-#IxsufpyU3^;sn^MDBFROM#-c_F7ssgI5mbg)wvh6>IP zW17_UGggxJw-SkqA+MvSG7#2bs-}+>oB<2TGqQM#Z!MMg^d8i=nV*)c?Ge28+WQ;Am1m)tHq}PXgd%C9n zVQ?cByBpJZVe*)uFaqis*Z@~y2^Yg!L)SFh9!tKH#qA9nU(k2QK{Zu`NTBWy+0Ob@ zJOO_treZ2UQs#KqQflvK;ivOi){9aYHD%!s(#)%g5^M7 zL1amopo}v&H^<4t)6zmL8}sVgqb%>=zrqjpVTXMwGQUPaO`VtQwKAe zEvP27so*{Oh$$e#XM1V7;p9j_!fP$YSu6(CwEgA6>)zf~M!mh_-kWXI2`MR$($eTr zx%~a>^T2&WUaD(sWKB*DN8$M7>_5hw8roJXrZN^-x?vmn{pr7MH&rj~<^Sj$1IgJi zRJn}&w+DCUQcP#MVrYa;J-mvMJ^GVqxyp*iimh_b=moPMDh&EimbBta;9Wg&gZvLx zE4E6`JJlu(zQ4mUeS~G!*4DPt_z-)m(aGVw>{baB z&QdBqgVw=O_)HxW6MliQdVfg*+z^MQZ|~*rlX=53S6`sfEi@_kzIOP#Pq*w=biyr* zfw#8^F}^<@p3&-_3Ow=04YIbi?YRH@>rH|8JF>1nm36eWt-r59_bVMLFmxM+S4-^+ z>ym4FKe0E>rh84AH<>+-Juj+OR_n1m#49SALP-*l?pf6h%;Pw&(5c3~hbV|>D` z;121(<1LsXxa)VxvIi@r4qHDv9Y#y6S3-zo%;3^3x0ePj;p1%@j`#C&SKeu6>v2+8 zpaI?pfUW)!AyplJY}`f@-_sF7X|F|CSlCLEu8Fzt&WbtIHz7&ruIMtW zs;XS(PIhOB%N-{qcACyG6?G}q|eJ(bHPrKO`D!^R!Pwu*#K zBSjBke-{s^%ce8P`016cg_5h8VP*mvm1UzQ{r?(!KOc0+8hh%pM^8_O$a(($EJ~2X zffrnK3IM!W41?5z$LKR*W5cQ&L2rX8+WS4NI$y7HzdhHR z2iUfP1Ic`bG#C;8efPmFSPX)gl|fz8q?E--^GVEmSgA#@VpGfC=jPs6coSn_X#V-d z6QY|=G%mM<$fNK=>^=ZrR zkA+vc&1b!QiAgc>xob3cqgtYGn{HiQcUkYV!wG|g zdn458BL4%=LD#!Mb1EF^R(VI5B9~dEG_Of-yZ)@x$pWTvSy@??!cRo?3Gz1Y@ti5R z=%e<)W2qlzVr8`SOpWKNFkfCrt@m%|&sT=cpq@WidY==DtIj>fEnyZ9#s6%3OD;ZZ z2#vJQCD^egyZd3lQ6w|5C?=|2#*g(B`)yQws=3hf;W^Y(!0vK`4<-Cq-4 zy`rm0{pQDqdjPJlH3S?vl=;Gb7F)0V{pI7`JGBREHSY{7_$$UAvs@FjAL6Y&+8JB; z`X;*8=*6Fzj{|DaW9@6=-fLC!kD{b4s=mf2sp@Mm%04D60;s3XEZr8Zm1#g6_AXp=ihK~1E&a*yIy zZ#s{<48n*pjM8-E?5bBeDbS?`&vmC*0zTP2m^z7rUe`IsB=tap>OG7EmImLx*ZL&i ziQcIor}{nI`E)Nvj2YC|-L;za4Jd-0+w_5lo32Y0GXDENnh69@yC#WlbN+re#~ko( z<;n4Z5Ulkymv-7M&#ZZ?{XdJl09T!1QnG+Aj8wUC{OWlgg05huHPY_O%ZEmuUtY>B ze0xuhx-E>;EEJuV!@b|d_XfESr%sMCx$D07$)50@MC?yLV!~WKUNIF(&)1*syG@}`Yjmau1N^L*}SSn*o2BLgvmFq@f_bKpyD;F^VzmQjbwCmH2?MMP-D+g z>s(c0*2YH}<~h3n2}Uob7&RMwv}u963 z#hgqVfO^(t_XaHhK-oZXwJ~Bp)lPG;I~zX=Tt-ht1;4wu*9QFnT)PFa)W+5EA9a9O zTrODwbtwT*QS|F`YU#>~gD0@ak`AUoDM!<sI`u2cI+7=j;SwIEg<>84gv+EBw4m{dk zfmw?lJAsXJI<}s zCEFmv2sd;cK(D5TM$qA*-$$n@#=w(IC`!a_>8{)hh2@oP*%9~PaI=Fn zR%uQc5X>_vZ{c2<0|&s8*+2>wzP!R_gps5N2JxZScfF1p5PPFg2Ym=od(sO^col(A z%qo8b6MU)lcKbOu_X;`_Cm&xMur(%K5fZ$G`tKj_lItEva%3QOf#@{i4#2Zyb8~aG ztOJg=b;n^!7Dh`spzxr#g>vRLwm)R(G!2_f3E(AEzBiKZ+gc;ZiN>m(r{$|wQcMFP z&pTFPy?OKIQ(xb8W|GFPB%Z46gld zKSF6TEC?l&@Vp3N#f0bid&3`M<7M{o$T`$nYu4+dp=9e`#9{LPqv^gfLW+InTeA@7H3{jSG;j2k-!tkedjI;tt; zOkT2jh7|4J2`{F#>ScaZSz$%A0050X0dWPGO0v<~!Fodnfk15#syEQdJ8lZpy&f9^ z<-roF@D>i$c@c*n$u+-T*jJV=#6qW#J=_SnHvt8$*s7Dveevt*`3ztFNx$E>CXP(u zlJpt^q}kQdA^-wR14V0tI;vq{5CwR=yY$i|++8Iw^s2G>pFdk~nIr<;AePx>cBGXf z3AJS7YY~!TOHgKO2GK2&?+!_wU~f&x3w`yQ6LmcXf$R z)S?v+k#x8o4uP>cU(xQ*pRJ);738k`>`c^WCNVP&*t=M<3d1$4_N9pjc($I+8{erC zYXSnCQ!BZ7AHEj+283sg8Hu9gnJGVkHbR5(T(A3^n;f{+$?+eyBmCO{i(_r463c0t0G3J@L8#`joXlDZQy8r!S z)9&Uh->N7H-jDY4POa!it3B+|Mg#b#S878>*1Gj*xF;> zsO_Wv<+HOAsZ(Ik+1=gM<-EILjtISW01$e!81v327q^6Y?yLV4o9|60XxAIp8qM;s zv9`v-L`6kubuWK=kB!Ogi|+t%0BRiP*jYIem4~f@3B@sVSI$1X%DmS9e@NJ8_f0-O z`2R-Oaa4ucw_&SZ1?3RQBGArfodOTe%N+f=gIa&d)MXgQ!rHB~fMU6#qxE>hc?xUE zVuWg;-)y-ol13_ony5M-^8GJ(y6bab6O2hoNtGZuZ30#@hi&};FhmjP3`jJ6d+?a? zO@-5x$-7%R5p5O`3ale#_SDCFeStGTKbzp|Zsq6ZFalJ@IRrt1BEVdQ>ZsM73cwAf z`qOe9D^)Z?ns$S^lrRl<^WuPgm;n@d0BpV3qU|ibm@@|LeixuU+0cnAfnRu3OjI~A zA=;ScyH+K(Gh#VA#3bR42TU9k5xegnxe%^}7Qy5)hdP6C=4IHhEGjWK$Q8aWLfN+e z@)9dAKmTdUM8Lr+AqH`h(DTCeI4j_~E^|mh0d0>pg&<6R<<%ob;er$BLAHQx9YEL)pIiCP z_Mv7?qUsjlo|Vj#!<Zw}<^z zYt$_SS8XsOAc+!n(~h#ySmu|MJb`Mcv@H%|OTv8sTtz0GPhb@Yv=ty)H*z6fsu>7N zFZzNBX4CT2oc3A(Lo76_&CO!b=RBIWOpQF(4>Ld!di4IrP zNIHN1XbQ=H_b$TNx#@I_P`gRskq0chOj+3vE6{rNp%lP!;w8cR$CDKek}zg~m$dm3 zS&QL=b@@z-Ely)Mn)q*Px9e@2y#*z;7_0z*Lu!AyrrMJ%yewmpndK#*!4&TY%e5MNsA0a~FumWBJ z8!P{A@d!kX3uKW$U>af!b@lZl0i~P+{-X#@XLjhOX25FWXGC=Wu1$z7zD_i{dnq3M z1eE6H;c!Mksi%S}KiYXLeUpQ0aQFWLOArgwePA0?B`o-aIie@jflQ$t?OCbqZ+B4l z1^p)+!0=0Gd)0FQH~Jd_1A*bpWJU8g15|x~fH$J@x?^5kTs(IUQQeBe?P1e+sBxze zivwtG`fr6ok)CCgws&b^e`O6Q9rLoQMC11D;O*t%3v{u$IK@vJbh$hO_vWa@dD;Q* zN{gS|0I}hrnP9|hoFu>F1n8&_p}$*xeXTNn|6qIh(fGJgPo^vrY|`9XKj;gfdRH!F zMUUU}q(|FIMJ1BkK8gVV7X|}7S<|1Y;pAAd{%FS#bpn?$dU01AV5w42eH<6hG=dr$ z4(c@$C2qd^419zPsp&a@Ll#DgFMvXe)lLIwnn4%-Dul$2ct&Z2YtS}@PM`>V%jj|s zAMk;Y*?3t-uL%!o8q0UOg^UP5A|1rV8f>E2`OH8@;Ca^olOUQu4n+}3{QaPciwk#O zkd!x>>~P5&S`{06eA+q@Tl^5(619Z`!LYYF5e}a1UXqe zuNhR{Xk<68Pci_%Zihv<2?S;a>UF#6$-b_);YBp)z$8CZ&YWEne-C$#1R^B+!zg4( zEw%&0aRKq_C9Kult=oogIR60D)~xZok7)!_&YE%nt9_11=pPCngGJZw|28vVpR4|G z>n0Rd6VaMafcuLKgR&c9E%*Qi zRE4GKaHgpleOH8VgFp<3s|jcdKAjH=Jkp?fB_&gno<1$==C4r|9SC7mZoJe(V`=KY zO}Pv_l!uek3(opXnSQe5wv)>@!2D|8a+W8E3k;l7OT9W z{*C~#`~(v9KOG_zpIl4-7F$f5b|;{6_wG%97F2LF9^3-e8Iy3 zj?4OH4~$8d9-$61*p!`)0I0d}6vOeGu~-u#ruWSRm9wW%?xp$Bmx<@h^o_iypI_z^ z{-;752Lo9N#eVjNwN%oO;orB`Kzx87M(=CM0vg4CIU1Cb@#};}iVP%>_m+~Ywz_x{ zK&}L>@xgErp$#x8eV(#^cC%z(lvQ)HyMKW!NYrQB49L^%p1xsP!F!4b%pUfoSXo ziNgN14D;p`q;B3!=50c@KPVk6jz>s$2c|$sBZxsZlsv(uco17DsHkQDY+Zwj2_A7I zGS}axIyM9ALtf>Y=gk!UwkH>FYUt_FRPd8Uz66}N3jlo+G7o5U6+r1n^1vYoe@F(J zEq^X-eHQf7HwHG=5>r4CUfoI+$+dUndNnpv#N`A%g@3!htBF0WT6F zd1~`ls*?rituU~O-GKlb{y_y`M$=3uyJudA+>b)p4xmArtFz!CDY&=@A#hC(8wAWL zp0}#cgJDV0LMM}hl~L8<iBy@Q_z|} z)a@9cDhDL@pM;^F5d#Bh4#qDKU=asmIg-1o!nTLZc+#v1cmR^kp+L`l$ONvA-H4i3 zyrGg^)k;aXo*2E&BVwjF!wL}QJYmxnU1#(T{U;{^zRcZ5wlQ`iaI)710jp)hC1!%3 zjzO>P>V9x(OJDBAtNYN|n#cV17jsa}tlMA88`nRDh~EEOrhrj5XHxMl7Ru9SOUFw__NSIe!r*p z{bWpx)YEzSTy^n~m$az-0wO&=SSN702J2By1iv{YRGx*9NroN-p+?YbXNUSyMTu{{ zxGZ;ad^Bf$$+lMk(ij@hsQ?qcgcVbrATA9n9x=xr_(>G*fwc~FBK(T|P>@jg;y}(U z=+cUiRdDGQpZ@_uRD9knu!k0uBY`gZEmxaB+UHLryimyf8}_p$iUfe4h`btlw;rL& zjb?(`IBg%oV}PL3p!xxv!3Q14Wzu_o8fLcG-NCUROmUnLxls96l^)2ZM-B(P^t@&j zLBp%eFZb!O%%JiB+Xlt2nCCv#tCA8j@T{6giY@yK3`HHEgER=23*J|5ay-2_8Srg+ z7`Sl}oB7ZVP=7W6$ymUZm2YW3l4o)JQv(B!$>kFyV+z=10e>wN0yva_`@*+HAfV!? z57!6_IXCx?{LeH4mj3Yx(5`VXp)G$NKV=rCC2I+FqJ^>pBL_Z5p20DwOy)2|kl(1} zZKUEiLZtu;fP3pqTQrj3Am-EiN0T=mf))g&wtej%?+$FhaG1laAWha8?Dbi=!gkmf zk@}@J(|LvU%^+ttQsC=n1Ri@MQ4l;^y&^L#6Yn`n6i)!wr;R@|6>vZVTfPI{PeVs1 z{N$kF@XF3PIej`$9Mg)v|?{c~JE{&EI6vVHGfnP58!QbDqmJ=VaI1KCyh zS6^m45Kw6~4WyGk0H`hmb?Ji!Zf={VAdP~KPV&7fwq~RQwBEl2LR)ByIh3?4r>Xkg zzYQmR|kWkrBR#u388?EV-;A4P=`)I^$Bt`Huc*)jk0FY83(sud3P-*MWm54 zBCI7y6GJ{h=GoT?mM8|pE!hI{4ju-AE{y=B;sG5a$qWhF2!antKnK2#3{9ix&`;t? z&qVIiL9f?@^@ijh#LYwFI%AaCf}!mCL9MI=iOsp4*7oJ~c*a~|XeB2D}ML>w6f9rLF(RC{xb9-vQsUaG{DK9D}J%uYc3p|On7*3yEI)KW1>wHn&C zm+7pLp8`mKc*2Q|%p7>jKcE2RDlz3|d=t!#pY|TO0%2HYpbCpfG2Zn}7>0JJ+DB{| zb1Pj!dy*X(EkJyZ4?U0q(uXdFTopcnS^ZP5-FEx0Grdoq0#r(fSsuuVuU&!EmSx4b zD}f=X;s*dHMiDh0E5EM~*1om1_1jg@eJVy#fB_Z5a`3ozekQ7yKo2Sb#Sk$!?NMl1 zCHeWhRVH=U{{lv^fr{{JO#rIgKQFp3G8xfPn2{k6z$!f=(-KkM>Wbs|Gr)$otVJuK zNzq_*ATj|A<1^&@q<5f#7b9~Wl&>OKueU0CA>8H(3k(Gdc0fvaHx!vM0I$S?Ruf(a zkYpu0UdBS8cH@-f>c;^Z%nl&Gg*C%g_F@!3y8_C|d?}bJm9Aj%r-MjSy$v|Z1c95+ zFaq6}BG8Cqg>?K&??b*%6117BIRuZ(VIQKPm?0=#K)G`bc0P+v31YZOL5c>GH?FJV z5Ozq{{es-w+jYpyf?{r!V63g(#;%^x^S%6jH<&kCq6@%>I}aYWuG~?Ve)Ih=T9LRx zd`6XDHXd|!caK8p3^jp_AF0H377%8F9JW`ykF;)i7Vc6gY<5VKh zh)f_2(^l=i*!-b-iCbG-T4)^PE5`|hNx_#)oQlpM=Tn#2dwsF+<0o;H+S7*+nm$y{ z5eVG9G!V7vp}}QV^K%-nOu+haylbBS-QEvElciw9K?lw!_p#+j79nTdJWT&zN~1G)8hA8l{ot(5 zc7d{(l9Zf`ygsO(%a9W@toN&W1DT?KlFdNPUHdZv(jcq7?bqcpKsml*=)Y_A2aY;A zI_*g1Md_3w$RQ1Z(>LL7H+C7)Z!NQtZ5A%gM(froAT9`D{%wXBZQ{pgaZWjG&a^o| zq-iS;YHL1}EcB1uhx$P3tpTbe^=Sf{83iqy1~Vb2cjH6Du@7z#Buu{O8~{7-00)k( zArs^S9&T<6fL7__JFs=ru*?vu0=JPkT7eZbDYV9hip*OoC5Y+8UhZRAZ>MoCetkn= zKT`B+X)%IUY5phV$;?0=6wWhkkU4+?Haj#0WcNQGVrJ;d-LIkB>r=9h-VkbpDY9rX z)3`#T-rOZVc&)k@#nsk)B(WF3W6k!>$C0x-_mh_0?-sOc0F4^ ze61`2&9xOiE*N@+Ia~?o`p`pnp`=RR&AU9e1!(&r>{=Jo+jNzP%maVAg1{L7*eqy| z5F|{U6<60SFbIQ!@M;)%yp=uESLS@sd8n?I<)jLQ10&4_4{6IDmiYs)>op+#2Qc!^ zH0jGNs0yo+MnHH9)gDP5UvqGgWBV< zNtjs7AXn4UPyr9I`wIA)U~f{U~9@f@3urwcE|FTxVOCP?$N z&^VY`n4C`j=57Ya7qielo1x_*f{p@mKncI{WoBl^Lk-Rb+(B*ZPKv1fN4x&!ZO@&B zer%u!|LztDWPgzZGfBkx_YDxeIRyB24d^(%{T(pMiec5hD!F*^V)+h|_%V;iCJIeu zy`Mipsp<|!UtW+UyQJHp{-1hBB@NqC5Liv6tj|-FnsKVzra~D7sJz|xk;8>#bd!Qu3dp_)+#ksNxkF5M84tR-00e%5B-d;2@XH1s`yo#X5H@BdGZADI z%)8@r5m{bpY%GTWKxUx5C_;>(a_sN=6cgNdGs=p9HqhA(VYf?2A<9Yjd{G-C6b_LR zv&mZT2LOUS&g{aFN`X(j0fu%qq?6+UWI=-F4!H|YDhoM9| zWiga;@qJOqdm!ly*rOa&HssZzybvH;kB_$?;vM(8=u{8{7|h^BvE}?yXT-2UZAR)S ziphYHN&zI{GzNV14r^UZ5CR)8Esjr*p-+Z@#`_XL%s)REgj9t1^{U<9-(!v7`A~TZ z{8E&<0pAAO5B%E)5FrFb{2W}5srEc1b&4V8aR_~Qi})2 zACglKgScx@R(^(k?s3*HK)bcMM<982z;6pdNEpz3nrjyqidfrxeh~(_&~+q16}X+k z0Doymq!XB|aokgTQfUr^dBGDehBOvv2-peA3RkWfL+HT;Fc3Bdnf55sB@nnrpcF&% z5D1oFZ~%}##YGNW3EpAh0tMp~joETH0NG(nf>2X#eDTN~wbknRDx zUYPxdDy6}42oPjQ`!4m`TqjX@kwEW-E2lS$ItfM(5@MCh)Vz9)0HxaKL>+sOk^_Le z2AJDVRpKmWtiGaFlyE#vZPW+>_YUaGBM^0H;jjF0O1laH6xhY3uvUuU$~WsB?q9)LEV5A`J<>fH(`YSdfw%S2QMfO30Yh&uJ64~7`*2te`5 z%rP*Q^bza>TMx{Jd=#M*|MacI*X{2h*p)&q$Zl_44g^V=XgXzv8#MQCXb{aV*cT zDjda-z0qk1@b?4}qXZyXdzoorFMui<#+pg-^h>tqP#Xmd$%yU;Dl%$vE5N|}3tAjb z0HIx}f&9K6q~!DZu*e~XRN6V(O>`J2zfelhLDWI1#H$G!k;YMnal^{yofz-1B z-2$DU=yW_MN5Xg&djW|`SxCc2*%b~JRT5epMNpR;9m31Z1Q!-KJ^txVx3Q}a$Y~$y z8x(71D_yLK{3k)NVRf;~S>f0$w!Nlr`u80xDyzi*j%dNbEl{!kQ>thQM%j$mz&QXa zcuh|3;p%$}q-L=Wn#Ul*#L30=s;Mh{y0B#&0YB?9j6t#^IB_v9|yd%y8BWy6z|^D?AP z$R`auU8bRD#~yx5=4`gwr^06pi34oE>8o7w7umwgM6E00Vq2Z>{n+*zT&`CpPMA&p zFfAr`ms#ZVQb|-vx@W84OUG;r27O$7S^0K`29ju+hTB99<9_4pG@k2v1BxS?aTn-Z z=6Am?o>7oU(-XBrz0xAi8*oHrI`y=6k5W9k^;DP-Tk z7Io)H41f8-Hp8jgH)FWkaxz}J9~@ZxsnR2D&Gq22*}NbeMR??`R;k3U;8!c7bb;wr zX0cC8oKl*2y@uG{%=gGyA}Z`ZnZHG$=#UToZ*1OKyJ<(s+0UyqeF1EyjF z8tulOMNQphoqfskR5?wRq`8x-NoV5*jiRxSL!M|5=jd*M^odMvUqq z2dAQfO_sV!j6$KdT-sGh6pQHUx-mAkoRFR#3l+O#`QmM2roU^U>ni0}|IDyIU$N}5 zI%JJXtP8ABURBf9;l94@xR`=3t_$X3UmW(`MG#&KnR z!bdrXZv}T^TCVS0)FO@ts*1oij*y&%Si!W1yxRCxVMS(}E|+}<$$0(rEux%U5}haf zS$fe)cqN$)-K<$O&XbO2iup_U7NiYc!GF`>GU;VXh(ivf!}Fa@#M-=M4>d#XC4k&422W>b*zKg@}XDql_Jy00v3OIsp@L-PN&p&^0PMIu4a6*P(-eS zugO$0fmiG*i~pFi_nK$28@$8Q*ALd^FhySEMH0bd>Y{Wd*RA*iiq&2VFY-s-d5$A& zuS|u%7-*cQz`B7`T>iOsIjX)ewC@$q3VcGbq9dy8Q zn!%i*DTgu{r#Ok1(i5i!yQ$V2B%L=b=ycDfIw0b5(1#f}AUue=JL%`vDI6~={z;Dx3~Pbt#0or=uM_mE zg(sL^tydg3-soz45Mm?pbEh&1)RF9H-JK*iHO)bdDaW4Zoj=YfbX#>3yD=6%#7%DI*Z=pQTg8 zJ#{9w{*lhx2Rh&Q2rTX!a-9)Mkk?RuLHL9(IEmp-$=E5jhU`D`&Xpb+>15YTBDi1R zj(98c<}mpLYuE6y^BdeZXEDf+lBuC!hzq?2laXp6LFQ&&eUH`pRmRtwPq?HK`NX!B zZE9jdL#J?@B_ip_+9u8Cxz70WXIR(=rBc+zM&aw+m3@1lY^5Vvx*#aGOH(ah$4qm> z#MX>mBt7Hn9SYe9H&Gm$ta;&dg+f|KpQ!EL3;1>S7No3jgcL{>l&PA9s0zw&ygR$7 z@G42x;L4cY=~{F5XS}x+&OVm&nj~x?wzw0`H1?D;GGa=Vtlmb9mXC_|+jUXfW_z*W zH)}s>biNedY$ZuL!8K=DauB+o`btrLky=eqgXDA8w|k+!UnayRHd255G4xGqRDBr zN3LMGTkj$%e*#u3$?1{)zw$zw>G@<&HU<^#6TTd)lgNZ-kiV9QR8>)x*JG-=!}O^6 z+hWbb)cL0}0<8FA7734w_CwUXKc5kol@LFw=>H+PsHfFI@on^s+%8GA{2j`Ms9O!? z-7yN+HOSX2soKgOGYz^<;7n7p-W^nZeAH}H+Fs@H*`AN=oYm8au#kvw*fVVw6a;K> z^19c!XF`9t@2B{%k}g@9iEa_l#~wc+*Ge;nl=Q{9x`kvl^S73G zR7l9VFvjWcgYPg@4ako;eNmuRVD-djEhFvB`@j}koBtMjjG|TV+Yqxvseh|=va|Eo zSY~QdKRihWbQ^)jXHp@B;M#;f2QohVo3TW*7 zC~I-4)b_7~m1EE5yTcy%uh zzOEl!FxXbfZAO!8ml&bX0)uoubKy;hnyr z|Ch}d^37LDH?KVv`Hbr;9(-O0|3cag*XrM$Dp@#!Mf>&wjMoAx@g9oz}`j(==zxehLW zO1SWL45B@}MwKKGy8&A=*02F+C9iQc1)N6)K@m9J2!ypOdLYRa0m*}GP<>Dy9N0wx z1BE&5(nM{0e7{+v5gtcy2FCL|SwSfI?yWB;faZ18(-Fu9w`EyEO!pFP>qmus2W3T6%yQHe!GGw2@Q9f4V>9!4#^6D zv5ovT+o}&TfrWrb8jbj9*90mbh!DaozV0-w(vUUUuGOXKFWT^XIY^pRTcgDr}3Udo+?!% z|0@n7_qMn{M?2kKg4)?FK}Vi9$6WReuGNHoVwNDk{h98SLf1JKc~8%Bsh|%i^IPG_ zfPxlMa4yF6IZBUD`TZs`fxP5|4+?RDHcIj@u^@wvg<%>YX|HZEqNq%mL-w9Clt`gy zC)~c~n#U3@uj?h{S53lPAxWvuxo7DMm7TAq=>O^cBe^W9xpLa%TvlRM#kteemEu94 z1C&R`1Gx!oq-iW&7-vDrf;Jn(Bwj)M0CdF`hz1G5@k0=K$8Y=M z+rQp5mb$i)N+J@4J4Vu!TgbaNO8r4XR2-tI}4 zr0$@1BZPBAhs>k-ZyJ<+>4Gx4g7N|}l0@A90Mu5-~0nDgpvqOe!<4$Ib;YwY}XkIMGtg|FwU z>4Z<;@35&LA5uDdSrhMiSW!O?b-;5B3#HRYWLl|0uXl+okErs_RiOkGv+*95-m&zz zOhw-~DqUiCw7NfW~GrFLnT2km6>`arnLq;1nwu8sP+8j0aVfSl{ zf-~zFkBXH-xv5i;iMciR4+Y1K=K&dtLeaQ%iU#6i64RpEN{rf?%GrM9j*9ztJH zn+ro;Exc1j<+QlNHzaHxGk+zo9@r(SsB?`xYko#iup(Pk0mqlLK-t6P*GFcJq4|$F zqJw>9Q-b?gEwnFl?7f0^y{5{U)hKK4jLz8L0{PRJY9J zfQ3D0!2OI10yrLmD-NPPUtiwjNDJXV)9~Xhi3s@%AM6<%2hz9)q1#G#mJ=3;zD1F! zogqz&ipcP)Q75c@K{ehN5oK}pVvM4&nq9+eJ!xw|I~-UWrN%cj>5(B=>_}#-WJo&< zVSYkn+_@MYK_ar`UM4>hjyDudhNl>k{)|u|UX`k8k&Lu7cr@1dCim0``Q4gN3c^u# z#X8@X)M{T%#4_O&C-$3*9^j?)KGKY{E4fMXT=neVZqtC@;QEVlc_l80RNp4U`owpS2RCplo`z$u-&ckr#m_0)?`ysEL)tSo}vnT^AW7}bnq-!n(0`*pEM zY$TNOKD!#{QgV~idC`}9>sp)OR1vLJ67yG_>ZnAO64vG$gt%SabVTf=D^l-yLqD?{ zZ_GS;nyCQil|`R!)7}bh>gGBBHR2+Hrp1(0oI0CCTJTXg-<0#)ldCMkQQr=9$nTLA zE71@>E#(d<6BV1b6O1(TQnqH{eMQ;IsLn{LThUK=&+$iV8Sm}uSr!fK63<-A@$-U5 z3IbXE`$~+Jg$@< z$;BHgAIxQbYv+80E%eTr6db|z8vAly+~dTT%-^`a1V8-J&*{SJs>QacP|SWr_v80n z@3P|st>sJfF+ESTgFk64+}I%##qHS)Et(9VCu^=gHk0f(;}W*q9@n^B`9hVl>AiB+ za6Z8)J<%I6*{mY%S$HLMa`c2O@9OT`HB6m#v7t)(lccPs6gWNoS9ed}F7uRY_TSr6 zykrbJjW7zALR-!moNw-_s*ZTdf&DF5ed7k+&A`)ccpSnSarV)IJ6L80gt7X4q7>zLFdlH{yr;EhV2pPL`oN6hVN-?6!B%$?1lv>K&Va-D=$=>-pN zCW$-eJ_~E8x0qe*<05*ZA^XgC@4DSdRcAyQ8>aHft87jy6eXV0vro}TPReQ~)nbhx z3FZxT7OeR$LK=%lR4)7?*Jhq6yM5IXf6by~@d=y7VS%`u=WEjH z*9+u18tl{dY7*nm5_yB)xGMQSq@dJ^GQ$Z{&M(Ars#-^XPy2wBs@4ovmQT5}zzF-@j8FO&@v+5Vjw}U8jNoj*9SsYm6i{6pw zXs?Hnl+)=eYqO||KKs*_OQQA!@7K}Xs=6X`JwN7NHx7xcW0UIR=WmQ~ZvU-u3>~l- z_$g)hf=i>1&io@W+`F>oLhh}LJ*>@SBKf4%dx~Wz=kd+Snk*iZsKsc-F|#v=7JO%! zITj^t{=T2h8?M3pu4YP)`79^y&*dnNDtSdZkx5rZp<5?Ux~2}S%%;=CVNo&PrdZNH zjIr|(Zgjuw)2x4ijI`<0YUxlVMV*5RPL8b7aOr856|2j7Rk0>@QY`t8ezL?BbCQU? zNYs;IpL;1W>7}iuLHqf^b-niDd`6#3lU1sm^lq2S=-h;Foln@pNi3Uvem1RO_0Sg@> zH~_vdf~VTgQJ5T_H^G9Qp9H?qxZm&3;IC^Xjn;Z!LMO7o5ksjd6j!GC%_;gS3CqoA z2Tx65r0Y-DZG$(V*-bvj%6au>b=9}A$eMc}=O%Ea%Ih7Z4=RNe;F;GQ(XvEZl={0I zBrDYCd7dH6p>w2<&M1=$s_fGkyPkMDSozKq*6`s1!$$z|UxDGCJBNHIM(>}b=(#8e zw8AN%eu%NcF)>qqH#nMQ0q!|^&cQLH(PqKXp%FC0Wc6p8&L9g6tSiV_(ZcgziXc7$ zH>_&H6szO{$=R0>{5d)P+fWP#K@lnkF~7#>ZEY<*q)L>)&4E*Ck01|v>SVV=b^`*Q zl@Dz038voDk37vnUvVD0Ce*$huZC4DNhK#$^i}+%M|u!R^2zmYU#MRF4N0kp)n}(| zc~|sM!;3IsoxndQMyS#@!Y2CV_!kBC>8dU<=O364wOco&ApL<(n)3_T#+ZZQSP5ZB zXGkn!V-Rn) zfoVkc;n%OXVFE?%CaSNX2Oq$(y0ZZN72)9WezbP?ST}-TB232VrrO(2c-nMI`0+(Vt!ul42%`(%btq%{5u_ z3z~Vp+0+@iI+{iee}GF*d09L6x@F6Fw0M_ z!es`Oqihk`4;X3TNkqKJBh&A>0kZb#u?nZ_5Nr5p4Y@ZIfs)z#NseiRb1`7}z2UwC zCmJCBs={9isT*)*JLPFGYQR+BukX9igT+cnaDyN!Favybq{uwP=q>nb@Z>Meq&+x? zwE;BHC4LoN;}j6kt>d-q;OLj!h`oEL~P2JHL5X^(|P*I5X59$mR%n7)j8_Bm6Y7;~9MMK24YHyg1^ ztp%hySxt+q0T+cAZPEy9~hw=N`cy^h^V( z)2^ue)_2dl-ETthJeO_M*qAtE)CpwFB`aApLfOYi6)OBq{7k=YOLDP>@Iu4FHJ@&9o4=HXEOaoq0+nL&)Pr0hfXJ+ftO#!hxakr}&?gir|$%~(UoR@t(R z%-B*0gX~I0mXakAD%mPj=X?L2bFTB8bDncu=Q{s&UH)k9`~I$<&-?v)XDP+s0l)PD z(6~*41rP`^B|0GSDP-6LOA8$+W^aQg3}ialJO%V~IN+7A*8dX*GXReTlgupXdal0>wwS(ZoJt;P@^7l%vKLW+7h7g8SsYY=l`H4IVx^}xmo?X7FZPpfgZze zs=mBIs;^&)a^6?v3elw*o~>(i7G3~0{5Mui+_Up6b=2&a?@Jt|ZLfhg%6*O>?rrr( ze(5tqda=(dp4kAcJ*lr@whH)wrHaBb16+WL98e6Dlsa}M&Z$7`j1W2klEgwB4M;Bw z88%=K!Sxox%Yn&~2GwxDjrZ5kg}?DYa?sDX2~|>n&ERJ^!(1god7eg-pZ)gk#s*XJ;#`8yu?c&$tJ2>Hw-O^3nB}-tNP13ZCynQM zzNn@)WHCquMIqJ`Zg-n|lEK1+ljvk{56x-2uh~Xjg&ugioqq zVnza41;n?5fG9w!)Eo5VL*h(u>qtAd#|hTYZ)3G|jBskl3s>*Jtrgu(5^BrRU(dLc z2ONf?*WPa*OdGy)IuU@LU8ihnR+>G&mBA25!Z9ZjhQ2BBX`_?($DWm0AZX9Ln~?O+WKf@{9X1wO_R$POk!<~%V-%_ z;cB7fbQsiO zLx7~SluAVcfh|x|q|QKV2!uX}dL9p?5|@X#MvVxXQyao!0lLBQ+!y&jXf6t$bIo(H z#=xam&!#++u{MKM=%4aU+(Ic`VY;Z2%yi{}q8P(JY8yV2$?@6scTLMLm$ts-O5d!v zuTlRWW#VoKaS-z-8c-j#_yNcVI+MZ1^J?$b0VEPQx_R{95epRp8Wjux`as0I4}Z>I z?&XE5r{Kr}Nv0ts3z$Z`*2l#xKmQ%J;6roaN>xuiy0WxKWS}uzaYx`w!$GUyOXx|7 zVKdBoSD{bdAvYvZynM5|zDNgTu_nG&12_dbXTk!jU41W#~5tw1nQ3e8b0NahYZx6b#kEPw{ zFy1Hqj&?woT7c`_qJq%8gLl$bh*J-bJOLNp4B`V*U8dmA&t|?9Uu`#kM+$v#+E6~z z{MB-dl@7g6TDCBgKB*Kx$sscxtj{(Nm7bw$Dma_)2Xh0@4UpFXj?*Df_r1IZ?9*{z zni7CnEN8m@|8X9e2eNfBpvI{BJz}m-uvHPGU|$Ir-~JY>)hhEA^Nx&`b*PHd*pc!TpuHqN%i$h(Mi+ApB)4 zsCR^9p~(i#fY65V+4syMx`-q97*pOnW0hUw6feGV0He?f?-4P}?!Upq&$}lJh`DmF3&Y9Q!{Pori*C065}5SIPJ3CN?0T zY(6g{#^If{ff5%RzLn*P!@(@Rj~pKMw?F&a5x&*DHDr}-syn>No*Wr3l)~Cdb`v-Q zM!T4N-Qq9O8xD>75ii_>CEq$KxAKdSPyJlu_5V}7d1()PB-*8qdH`qS?%nRVG zfQ8lyAdJ?Uz7EVk1fZE!iyZZqRxOmj8x?F-Z_;0Y6WS(x;&%FGkt`sLmwNcVlL$A? z;@Wr|Rr9XZ@L8AFlo$p{UXU&Af?a?YU=!@=fEUCE4p=PUaGeNt@I}bg1R3aoYIpnF zhjWSz;F1JDZDA`m!9r(scX)uJJ01uuVK7K83-Mbnwf#su{~6pNAdL@pmlsjutE`R0ny%H1~zNfLD(L`eYP|Mfcq7ImiAE zR32&DYw|Qw%Oj_}cp$BR?)UwYtL%lbY0aZx6MI{Gg$uODq}Io3XCLqBMUM+yxl?pu z=sKgJtQ^O}@3>NhC$~+{f_ep_tB`&gRL(A@D;w3_vI-Xq3|k)zmq@V}7+Z7ja`mw_ zTt6um$XpDkk=2d7ba<;2i610{%~=g zyL|lLQaCuw)hV;*P5CQ?gWVqZe0k4=q0ZJj7=nWwHeqp36rqto?GK-05&L%glxFG_ z#)>J!=vDUmQT7sg&Lg)8pLFDi)OrqbcTe(;-`xb_<Hsz{^*UWz;9f3%O9aDM#xsf>T?q8CEeC9Lvwj4FvK9r(><0q0shuY?E5RWsMW<;JbQ`nmkxV_p`lr zQy(CfV({%=uEYJ5^amWAGsCqS-#_a*n9K`;^pf1{h87+Bh56~_^%VbP3)YuVu6hc zPg2~({{5Y;v++w^qo)$%Cm!ifT8Ryxxw=v4c#YT}D&B^)H;$jI`^YT%L*&rm z8H;yS0``G3sPW_V@dl@&5)ru@Kc47WT~?M2)LyEu)TR5knU;TYwq-Ay?bOl#aBu@1 zgKa+P_MM2YF#lbu;S~j?N=_^ta|ObYu0bW869u z-=2QbdlW|f*n7`NQt$eaw$XtNl}Dz_%RUa1vL!`Lelv|Z2z?XspLp&EtwZR^i$COC zoiH%A@hmT{;qHF4nBbI!#I(ONa%}Xj>X<}I@Lgje^-Dz)he~*R(EG!f>tL07c6rYhmYhSg8@(v+ zB09FiDp{o?<(r`etxKR21RDoiOVi1szmaomR)47n|+AVS)Ljwuzxn& zBP7Z7W7+rxT#A{RT_1z&3NCwRehuc5!m^_o&aQt6Lrx2n6zk&(obQ>`x6^$zEZfuU zI`vADc0>lv~G6cqHG!#OI0T1b;FY8|Lku-d!om4LdquhJwX38o|iPb6$eZ<{6caok@O8 z`59ec4m3F$smWdnS%2h&$nZpix=#En-Zf^!v?shTG_b)A_k1&6)f$*wzoyca=qM)0 z>imF>Po1~Z&P0e9y>Z(KUW1`UbVPsU*3zhwzL$0H?4(7PbfCqCN22DF=AXJT{V8)& zDmn49_!&}UJAz*EtE{gd$xfthSiSx(R6|03#-SU>Jl+^uCheHx17(x4zaoR4pjzp# z*Ip_Nq{p=nvg4;-JiOwjrLI#bFf+7s@4D3KmoPE(_4X7FIj$l~ck*{K=!KEJ4GUc8 zw2Nj@X+YGZm)Jw)R7qvESP7>F8z-bH7cjq!hc{cQG(`{iW|Mlf4&?@XO=BasPn7XX6?i}J4TL(kJ#TGBD zZG_|HO8nf;99PZTwi(KJfi|TVsSz`_yF!pCv^SJKhx{9Zq6d>bG_H5VaCfC;nI?5( z_7(MABw;^9SlV`5HoD^(WV#ld{c7vTn!;I!kY``ScENd&g~xFG zgiik*A+NOYqgSYk=$+zA_iyuK6B4#=9Jgwmk8rs6(1j_a0{# zCrraIYhv~KwzR-=(sGww)n<5(1RLiT_VeH!(hC?@!q&pYj;}vLex4S0 z(0PYZ_|Pw(VS2$wl9csB^W*4W!4!^be7x4!Yb+VIKqm?d+O{Xpj+{^gZT-BK4`eCj zTACC5Vrlo~*4N~N!8P?UrTbEv86v{C*^2&+@e) zQtF}&!N`9T)w(NFz%(zZ_wNO_5r6pmfz`KGMCG&WTh}{W7fO2C;L0W;B)Ik0k&iik z96d^}x8%;HqR%O;og$O4Qa9+q@L@|nx+?{f!mz@oUJJ8&q-o7!Na?*~8yRmZ2Fh>u zh3}E&-I6i&+S;I6lIeld#ifZ8#c6}3j&dw7WrCkgcT|7&Yv$5sV&JMe9@3X=bCGh4 zeyA(aVB%uKtX@0M0GSo5Bu+Qpw~#0$^0uM6+}R85y@PCHSk}wzExa}blt}(*w?#>f z3D4)h7^}Xn@;_-}prUCl2L6-M`*^Nl;sYUDO6`MXjfsh)8nI^!rbkNPV?NJpCg#fw zCgdJi%6k(-9)5L4xPQ~LQ$wxuN4%~gTNZrdaZ=WT?VVQ15S=uDj(4pIahgEjvroyrW@ZHxm)5|T_^hj(RKU|FU3wn7x^jK zBZJ|_U^oZK)8K+=GCSQOF^Ep`n&ente^V6^tw6*+)_QUuwPJjGNoZzRWnJoA0+&j{ z1?{ZMzkfCS?+2IujZ1YJICA13$tS}mGv##tU?ug16oscVdRcUkAZy4DoA-za&$eN+ zhRGIS@Aif$qnMDGGGn;2%5%|C)}Hjhn%AH5hLf&cP{=9Y{i27SKx%Z360|Ma4dYA3 zJlj>dXxpmmKACP+Wa6JTGFlk4as8D5Np+nd|$EAu|5eC2=}G zn~?u`%)P2NRah5GUS1~@htE)*s1cl{emr9#Um!-pi7cHwA9A<2O_lh^al9_{i{mkR zv8nPm$H&rFq>uL$`yuyv|CtaN9Di5iU@RB^3a69dp42HRq=< z&%o&F-^-V{diO%^6wA80U66Q@rdZ>DjW;d0CM7W0IL(o9)w1M8;&Y#(ep=&AcQ^7J z`Q-%m0o8tI=7i!ovX$ZYyVT}TU4A{pd~HLPwUx|dAu`)3XP-fri}Tk>)HfCD3a4Zo zr3TnvAxk{4J~6`}VgLk}1lRo%&};w(H4(@O?*UAA5G~o(!GQ?%wE$1!ayWqaF~-F{ zue}6lN&F{$QVyPj67$4y3*3u7-7|-~*M1FapJ|`^cp8K1-29ghFP6Y%$Ky~Pb`rQ_ zT%fTk>(bPiN;St2vMZCAsU5P!TS@R>2|nd*HecpE`8zup<+Gx`%*W91{sm3BPA{EA zCqavujX;q^>HOLeA{NNIj57BlENo6ho}?lG=e?lY>% zL4sQ+0&z0qzUg$Mmq`Nfcie{f5{}=c015B%LLVYk-QU`yu+CZ z)Kw)mG{0xPW*XI8Fv-E=Wd`i8ChEoa+ugqwL-;#HIPf!FqA@!BosYY1+IO9VZ+xv` z@2}e&JU)X-En0ZE5H211Ry>v*g?ZmcUPl~oUA-cR{ zX|+auDQes(G%8Q!;0|nHV6)K{NN~W zqd?+hp;gqoGJV&zQy^uVR$Z-+j|=D$$eeZdO}|6D5|=)ZIs%R>_lXWgCpCV9}@}NS>g!yT0--U8kJR}zydFrhB3mu1=$@inNS~uck zdba=Oew^WXF}>8b+I%vZcDXyd zPxZ@QZ4sxLJG|f+#}K=JeKefA$;)u?TtB7zHeK_&H1W*sG~t_?f@hpk`A0{RUmzB% zMep#|aJ3i5n)5inNHb2B^E9`>8jK02QO7+_xSn@2es5gNJ2388)WPP9+f#0Ym|quc9!N_4)75 z0^@s-mmeruVX*gLe`^5%X@@mHS&aoyX0_mu`zV=AipFGG$l*OFiDMsKCFDJ@q<&kx zOm0YuBinp+DPru9OO%0=BARl@q~tbj(MGXZhb}mW;B=M6c94m-xCu znvfhlA)2AEj(1+^lTn(nU-#*gP2!v^gAH7oJZCgfXXcB|F?2&rLp+Iii}WdhtBMt^ zQMc!l!CS?b2WG=ll0%J$V%%}D>kglUdFkK4+wm#ZHHn_mXmQMkFRp&bHz9pM^#?B| zhU~P8Hb*~K$X&+#`p~a8|0~?{t%&Q$)%8Tt2$cJ|1F!74`O^Jtp$O2r0qr+D@J;|7 zk`XkQ!E=N397fn-PT>^5>|g~lh+cp~NdbjvPhi)EqK$|@GXMY{ATf_Y0QfXPt#~j> zATnJGAXvWFmM=+s`&`>z&_aW;PKS`ubwyof+@Zi9b6Fb66tCjYd+4$|-qCITJd=^j z`1dOTrK(PGXEIn1E^9u~cAFOS_%5O){ZCv#>oywh*n8)SW_;lpE=;!}raoRXQ@~ga z)sxYtoaR0~-j`9pBB;k>tchaWOi5FK(SB#8N8eWPwB@;d$nXuEHZQ7e{T6r5$;JJW zZe5D0Zt%R%tVe^Va`g;nRKW>(&a$o7Y~PkR}Lh1NZjauYhF`0;=cC7)x-F@ti8_E7?Uk{dN01zp`t2F4{TZ%u=v% zl+zDal@HMsD!J+k9QH@mFoED&?8|9_0k-Uy*4*wOhTCOL^^F%`mz%; zBi}!fKF=R3N_SDgNIW1WQjh_!8y(pQ1N!Gb#O(Yt8S-C6@_R|K`5nd3w%zqQroFZ4 zxO476ymqYg*uXYbE`l;k{qVeN-)v)(DjWYNep#QABFU_R>aq4bg-ka=Gi36#+(Z&{ zUumGTO*1$wquW&euVOqdQZmD%++nFc$h2lUNf_(q*8D zs-fw@G?~EY7#|~G!}wv?I^7aWz24|6}Q4hq9u&LQZC+p-({ zY@e!M{Sd8`RwT)t5K?k$1$OBx7kL4r=kI1WmRy6Gank=?h@kg@i@ZS9>o2QF%mGYs zJi6Uvt;-->wrNES9AwAsMf$3JbCVq$O`^Kh$2`iB;JYGgxjHjK;Pch|X>XbGJu_B= zY7|g}ekanMZ9QbJzmXiN!QtjeX}9qN!i>j4D=C{qB6JeMCg~~R#tXPGY7w85)U|%K zLS$Dg4Y}J;PFH;7^uP;2(5OWfM(h3=CDLJOkx%sFsc?x)i# z1uavV87otSs`==Y=*-kx8G;VIv9eY-g+^Ex;PuEfK{qk)ERv5WspkJini&`A!vpe(9Ja)tX1CNW@*o+_IXmoJyX z`De{>o#DyAorqmUoI+EyRj(_fFcN%sDqM38cVWS@*S#t%@A{@xXkaMwof#e1SZAN) z9_6B@ryVE(#t)%0`tD>J_%%mgTwY@*s$4qvb=PS?jiIprsksA_)U$sML>)7d%iC+J67HXe`1R&acL!9J>LMnEM_pbxa5w3;fc3;RAn*9{3Pzf6mLsP)ULeZt0a!;ws zD`eROAN90#=&iQl)sgjTxM=s~(`W3R+@tjQHuxZ0y7jZm5>KL$La=f9urZ2g{Z@5_ zPY&@?&ce+T(PN%cuef{0*LniEV=vzYx>^UP>I=VTrCr%uq*9htwQtE{8~7u$GZk!$ zm!C*Cyvc!gu;Jz2k!RCIyVqi+Y_Jrb81t$ew2U@_Zn1K1UMx`~(;ByR_SJUO5e8Q)Ff&mKYbXMpO$?6m()E z=nfyY^V97u8N-JQeU8Uz|E2mIyE>CEO$!yM3fxio@saVz7@;%Y+sJ``E!#Hxtc`?D zs+(cqH}s@+l#IoBV^WY1au%tTXM_UQ~s@<+??7b8e=&DfINruw|?!eRfs-zA_KX|$%FJryD zW5sM3D7pP-HU>Bb@N}$$FoDf$AiibKQHliyMGZ(x!$nbug;&MY0J|dyvrnrCyrWA3 z7G1zClyg9LvfGem`RG57aBtX&21B_p$Y|QyRVv8-2D@dG$XDn$05g&HY;^EHa7Hj30H-6f?12tJ@_uGj{i@=AtQX^$8SP|aOEj65>Mje*)Rz+ z@!Y7q6Okm$iTZ$&?xp|^aKx#luJyzwd4L*HnAr;_Qp~U;2c6#c}0pPBD3R3gpm-4fmXzf)o#@PAU<|Kg{Vz6^3U#P8!xj=W=4{k?}+4JLc)nHvaAjlXI4WU z!SSbhL2BmJsIn9=RM_InFH9oh0^cd(9gNReKYmjpeKo-{b&g!QB>6Qev(P;g`F#Z(F{F{Sjj3)6Zj(tQa0(!*!Rz2=Mi ztth-bc43;s_hhx%nF7`iv-4)aY?wvQ3!OL|OA)kwrj~HR$ViUp*vtDE{Cee|UwP%W(MGB`nWc_B-y*!KLYN zl^K6Yu z1F5vbf!qUWpfX_umwIhH7Dldue{aFWglT2wk8mjJDwK(sVI&O*lNNSgXwLCHM=BW? z(7on{@@Gf6G+p)Na3`+aR&P2}&)|%KX_*TW+u8={e_YnMCb;PXJ$`hK`ymqouw`O` zkxK{h{=X?ois`ndEk4k>g&#|9=jn+KdR6mo%`nUz6pa#|OvR+=IqN)l>MzNv|52wO zZCJ(-)+@;-5*-uNP3B;{&L!XePROG#Hbhw<1Ls}nc4+X}r+`gPMs@f1{53Q)Q}jk< zP`p%1)U8ho?Y)*)+XFg_65zB6jldJyfs&+}nT0lKr<~=W()Z~^x6AA#UkZ}9!`SGI zgn6I@DYe-#XUjfpgjfH{aV!a&-ff8#z`K|hAP8goWVej`SpKW4&mIDfL;(ONcpnh5 zUwyOCvPW%WX(4I)?q`LdLn%@zMX25gCfZbUiFYAtcwksM zgCkz^ScY%SS+xbZEi;b3W)LSH}9Th9_d$r|iK>UYRI@hPG10_RuM`-{EC+gjr{1-bIhu+}KhuWq2n zv`cV0oz||3_S_0iKDjW0Cefo%bTo-MM7e~=E;_^GVtQ|6yn67fqLI4+PV1-x?M3ky zPW6V;?_8Q}`gf*y`pCwqBR)NEI40gIX62l_;qbMmQ(HrU+q%NJVdk&~vyC?9!OpAJ zm>Yk@6Wh8l`3BCR&lY#y4oC0X8>eI70 zxfE;&q1uPbkkYd%3hW(VIj&Pw@M&hvc(y%_Z&Vy47}*kPnh_c-6I_40%zgxyE1vvL z^^DhCc^GaO@^SkX$@IkOf?y92a0sP50Kl>>4o3pzQ7ET!Gx`NTl=lUAWPtuR57?M5 zpty_bMc~h9`SPd$BG>`oyXRbI+%G^kaP)?FilAx$S+Ic$8?s98e)~`(y9H2%Q1BuK zDBK|;I8bvR1FHOL)dG!6#z5~2f#o3vdzPftAe0%W`M6gM^HCNQ%xA<=4O1_8!_Cq9}gbo>6g#~b9Cc1$ zAMl2RE0;|O^7*fprGn}xXMVdoKFQD(JFc~7j-0=uu(7S;_BaTw`@@o5pfumQg~L_kgj&aeLv)yC;D15j{8;B+Gb z_=OxCxpJCcDxrb>tX?y_yCxaUO=9BkT(4uV0lCHfB+Xr0R?~`0Wx9Tk6b_; zEQ7ZpxdXMEt-=f@<*i7Q9S+x zzOX#Xr8iJ#%uIi~WMX`6n3+~j;Vzjp|KN)0p=C%>gQ7#Y&dF5==R0EYklt8p2DPIiOx*^Zy+W@7=S<0K)Iy2tc(eu ztmPm|E^OR(4l+^!()<5mq$&nO2QpG^ROtUfz%~FvvKS~bam|6p{tqJ+KtgnbS~X-H zI0S?I{$QXUfVYSR6>CUZ?g>Pf5Gx)KFaZVRs3M326sLl$Bw(Z>fD!&5P68k?fLIv@ z18+AGGLk`Y8HX6I#K9brS3%isedebmE8Et%5Se7ayR)b5l3Vob>%*Y4R%K_736aIB zqebx9oBu#{8kDOvc@QN@j>*!$+l@rAJpV41);sysaQ9Z%;bbUH=mKAEEFVcC1M@ge)vJtrp)o!(w}$lrFmqd`|WNDu&$XDXzjxf8?D~(>s79ZK?Hrc_A|RQ z=7SiN&;#c1;%?3DFp)ozL)?{a_oRT2pJkA730}5l+An-3j*0anZC@Km}ZOFt0bw0sAt5qTQ ziae3wA%F*JhJJ#BBznL+RGC-ZAwEM4L4c% zxfdHyrxm%<2Dk`cZZtWfACXZFEtS+fUOKDwTdqqFNdLyX1FVoK2l-f!)K!gorH$zT z4Oa@~Or3)9_o6hUK(OaYqv3P+)3`kK;h|4L?BEvO<+%SYkXukMBR|Zeo!0{JW>i?P=O3;?EdY>0N`E zKJK2^`)&Com4|%vXgz}5tyMeTR$GG3jD+@zb@i<$7jzrramgRzg5Os@HfkdgOf)A) zaC0n$s9tLXp=P;nFa{eVdaS*1N1B;d{Q>=_(O8CZq`i+x%@sHsD&T#zuXBHsYI?=646O*dIUFCVzg9#&TmQilNu znxV&}E*s3^{wdY6+(jb&;KIL{26Jf>wJmp7wH$=_ztTL>Q8u9_^H2VV-~GVUI{`y? z=P2tB;rU;xPQ8BNx}(OY-=lgTh4aHb+oe^$-!xDl)w*&Qrl68p>ssK=v7OdUUD4LY zN$qqQG5P!`Bkv5DlxiTCzB>!kJWJ;BkA#$Yum?h6dQd(gOK!wvfCRfCWPZL&G2;JgoTLID?~A@HXy zse*8UV%ZPVn@dBsz)cCrzS=j@ZFIRBqA63HRFeAFliQpE@C7RR4e>rK2U8!ag;a{) z3FJk`PYp&y@2nus)iBNtGu7YGRmVJU+B+% zl6d{Rao^E;w5!0OJCM%azVnRxD!=6@o>yvZkO$+_&8@J=Q=(tp$Q{~)Ym83XW2$3l z|Ff@auEeZVNO{R>7d`o(D+6*G10*t(QUXa6U{I3HJ&jBE+pK{8t~w2B&VcC*#TG!v zur}ae`Ss?(Um~Ebmx53jSoKaHkZ3?o0oeF)AMnj0f#EnvL=KSZC27rJe13YA5gkpU9y@7mY190;RAUYlp!vz4gI~h3ijsQ<{L93LR7|e>Mqfqhg z&B^4F(-8@x91~@S4h3jm6ap0zALra;#}|kN3i9NL>%+dWV=o(rQlD77C5Xuqu=Z6? zQ^zQmod)3}HqKivvRGPHJkFJaKY0O&a@}2OyeYxH5$6Z!BQk~DwKEgGbJR=kzcqQV ze2eK1W1-Dj7r=yZ3R^wp>+tWi{={{E6m-xm9W_Xm8S&+RyVA3U(5tE2Fk9}g7v3L>=A zAQ2GYcJZqan4okWfE0$50AM-p0dcyH#~uSO-EGhS2W$gA2xtyGxbXnhd>GQrr0M^S zglI_MtDY-VC;|D2P*SN1h!gBfdtkHJjTFmxJ(-Hzvcb@zs!|*@lJA}Vd=v}JU~TnnUtwDasmxRt9-M?Z1@n@Q_bGVw&E)rQS@E9Oc2cz;aWXhe z^RW=$s!Gj;pRIQj?_qCeui1Y)-=k*8C(y+)?-|h=!&vr1$XaZNYnrF>|AkVfP;r|% z7OY&0AZ7(*jVVw8eGE!)(*()8&}qo!JP>;g{WsIVbBhadl!D0$!evyTM}-l1q8RlpdiFofTRxK^M{~03HSx<52yKP z05<^zw}4Q42I%8LTyv05&7~c-0yB``k()oQ=ZIl~sf?{2jr%I0{TJWIr1J3idEW$C zA;TAE)RKyuE==;$qi2p`>Fu4CNVy>fGMP{->Xc(YaY=&2;CZ?K+;U>ayQ*iD^;;O4 zW<;;>S!q|U^lHmvfKE|#?e^H5?uVD}i}#Z+)XB*C+mvrpVbHIHdgtl7yZ26eTmbBG zt5*O94w2Gfv0!Ip04GxkC?{sh^F3hxUk3x~SI577eJHHa=zqNb!eFNEZ)Nn$HSW6S zQ9YT+>c`Hmk3Xi6tTDDcH7o^U`;Icz z61IBxB0Zj;%6noWIuVPlA>QX7S->caP-Tfb(IyCv=lt^2?*_|!MC%lqRTgIk7=@!ooo z6{`*Lw$YQ&ZF8ZA%&+PNhr*ITx*!6?{g?n)xpL%&2MmgEe^u=$cOHZ{0x$L7I55UN zL8vq2r~UzOCJaamPK%aXFUM`7=c0SMFF7HkX2iqS&3`;Lefqgl^e_=z8E<__31l05 z78_|xxt%S4#3%fzLd*`88-J9y7bV+4m2{QI-i?Z%gmYb@-uV?Stxa*x{cwK3X{NOI z%iclSmxrh0R;c%-Cmt{R+_71x_^WTFV$OLDc)}r?AV4?BgNi~jc+n3*`e5YmrQD@$ zDmZ9CmqaM%>^w**haeu%F_W2%Zw>(ebANi~2bpt{``6GE(x))1M_A{SRiOyx-B z;jdNkhU}FXn*A{e*o}ouzK3JXMo58#il(9hiv?~ zM!yVv9#DqN12FoN_j+g*2-s(RPWpYLxu(KiQ#@{7WP+8z)amvp*_g+Kpk5+V8F^_= z;4`@N^c+`W9TxcHBl)YP>IKi(s6(guDa0(Wh*a9uBH#;Nclr&qOHCUptr$c4_U>2{ zq-`S~WZXAM8#<0pWELx|KKUx)kfF)V%Ds6LrFjuk_G?T(A4x0-@B!CYgSkZfl*$^M z@bJ+Y4P;MS-*mCTD>d`s?%*(cBe|rVwl*g-UNOoEuCp}0AfXa_tJcf6!emGCXH^^a zFujW2nN;hNv9qNY4Ss9gGfrUG={Y+1*Zw5nWS}CC-wPhYqi+Cz@6kfOhLW7aHDmZE zwJ77K^30*gAwriiQFD-RUCc>5sRn0o0>@2L@DndNy+&*lQ5e|Vi^i7dt76vfOpw3z z1!ef1kfJ&o1~$bYI@mlO$rn@q+FNxvqknDX?#OZMlqU*_ZpmUoD5KNR!Syj7j}P1voD$S<2zmYCGStH z_XBFI=;8Hp+*X!y^EBU+UVf$cm*;{jteLT6)lIodnV!cJtmA3unp#3sE8ZAZJUEHt@5hLQbcUF>9<1FF!K>&;n5c@NL|ZD0hdtje#fdY!XhYC&9rROHPp17$|m9=a6F z?Hx?>*pD@@dp3Vxa`!|JEd^X`>v=XoJ|0QOagLqueyxh?`JtJSu0DN;}?KNq2YP;#3iKkj5$x_seWMEnT4@}j& z6tvF>Z6^SDV72`6i%#xd$9zKGxKk7yrnbwbqOs@@?oF8Smtn>~HO{ah6os8=}a7ZIMYM+>+DJFAzH^A2UW zy05_xn-U^*7mH?N8c(|Ti&!O-M5KtfiUu^+*BO;ZU6D^xITL8yT-RC`UZ#m!PZB&O zh*5tY+b_JC@48|QIKXr(Fb87m#jPYB_!-X;BQ>~s1{uO$N1ve$&m;hZFAKr{O&LS} z%B4BK=jRX^;E65iNwMLf6WUUj#R>9aLRk(^cz7qK#WBX;lHsRoh8WfkIeu4pZj%Tv zpwDp9C#(LxCZCef-nvhP<(T#y$8VOs-2H7@E=6JzgS(B#UmF?~|-C!z?d;Hc5O?Ikz zj<2~-@vnej<=Gjc57eB>n=eWauZ0O*kg4rk<&u%$hN;lXoF(#>+DsJ=R2 zN&0v3D_5)z<7dp8mDfZIX5*H0bL)+24+|LMfnK_A9uhmJS3Kh+_3hYTvy@*uTr)5W zUiM?h1b4fKYEqV>OFzr_1v6886#H&KUp_EZ`3FjFE#olZ1UhM?q-TI1v%E~9JnmntjChHhw>->s~`4--9J6?Cc+^Y zalQlY`_<~!$vxM7-1)z3MN5a)vXwxd9FT|zkl#M%WKo|wqL#ijayaI7r~cGF zF)zr7o?Kb`prkuGenPr}ijwll+p@<@ez_sbOdGGHeITE<)6x!5RG)(4HmN8c z1rBYmOLh|`P{Ok=QL6KL@`JW+r#bBHxE9j0y!1)ajeydg=rO!^jGg}}9Rnf%B{D(I zmVnUh%B?hwF!B-rvLhmO{23Nh+jJ6g_nQ`#cCUym4=&3bKf=dL)7wCCV;&jkryeA^ ztKp^$UH>q1wupz+zWvhskgcI0lbo)}4;Lfl=h8Xl7fwvna4P@gw&;mU&~hipq3ynV zCuWWLREPs3r8-%ZJ9K4zAQT>_3(1NKY$X z{=QUha&oO&>ABNQH#ou|@PZfEUoRg?VPc^C5Q{0j@3gn|zxhNfH_}t#; zy}fGx_q)Sgoa~}Qn!D(4h&;o7&xE)`MY)6pbQTsB)QO1qMl@J!Hs2Jm7nf2$K72;v zki1=bmh?d%xXS%jG9ym~+lPd;i{eLN<5vXP(p>$jZ)nG>E$! zT9AKV6(_Po;C$t;cx4dwFzf3EbN-K2vbVp3HzjFSIl@XpuVA5+BmDM& zh_O0hps{zS*jIEMGvR6@XT9vA87+C33J1DU4-@`Ul|>0Tb5m(FPwg@+(aq99(jb1j z)`@BCbF?YZkgBoeL?qIX|DD1ta!ZWkWuGDg-YR+d{accR$rQ|pDi|hQQ8fRp zNb%%gm5;z)^;kV`q^8R8VYdTAJVJJ^k~}WK0;&BZ$)cZr7uV-93goQ)s#M3Yp&LQW zwPPv|rA=nISk`ZQ4D!ZBl8@Xd37r)|10bCJv?odE_P!P;p#a1Yhzi< zO-~P&pO;Saz4M$a^7D?0W8Q!ERFH%N6vM9h2+fZ4&?+BB`S@k%U6$*#<*M)+)P9Y7 z9_)npNqq$-#{Di3q4lwt()>J^f6Llm#s+b{?-V4sGGv>+=)~VHlxcsX63^e^R~3e8 z%c7{ja}RHYrCJ=5-#f;{emX3PUbZqAHr{s6iW{h6t8=VbP)R0vEGk#2Fpw2dC>P8; z!SHix83Y9Y*O{N)qlT0)1cDPgg9h{m^No>@RW|P?afru`SVboJz`+NhITZ-u*Rw@R8$= zlT9vZoX_PKOLpX|#QyvZYLNpNsqQE-)^XF{6@vc>+0BmCUhAV%7T;o1pqF!kr360K z&BAnuXy8}r(Pc=><&&_=kP&~-ywAyzC@gy~^0S}2rTtk%_Kc zdMt^^u3{hj`Se&0Jx4Hl%=&9UOiBq%4~!v-fo}*W;nsvF;Q)`y0i8j_-M5J~T&8s_ zS@`%yKY744QPzTO-C+E5yd#I9-ceG^56jn_45PgFkGATWq7^}I;TvpurMklgTCDC~ z;S%QB`KR`t^Qv$1=OA&9wcc11>u?}mQ?HamAF|dDN)1runYwUo+aUk|zyaIVtW~OQ zT=Wh!Vn3KjR$|WK%g)rm@)kKHIU!gj!ew|(I$w{ad(ayuXlumC$&{k#do{2%4C+;Z zAFZPj7ajzujW4S+iY0NkR?B($?;0wEBrdQ`sBruVF;ZyUmVdKE%x!k|5UqHZvo1As za|vI)V}8#gvo%2)xw*$jO{l`=k_X=^wEti@IV4=#V#q;2Uy)9^{N=O7*2ss~-EZe; zg_?Xn8xHOr=7)_4wZamWNuO4f!ppB47ub_&5+M0Lr!J_hBwW_YWZ6p;a~)NMeWRbQ zF@>RH_}hwantFj!l}Z4>+g)rzR3(c~O?F%z@y*;y;+_48sfFw21-YSxKe*bmpAjH? zaNJm%1Lw(eT9#$6i{QM)+XhypQB%9OItKcqRZrMS3*a}!3O=*tTuPk@yxgHSBsT8v zZCS`l(y&Dvaa$64go(Z6<|-xQ7SjMO$mHT8J%=U&kPU$B|6`5Lruf&E$=|V1K2ql| zs5U^3D}?cqntcDKD}nz?YN^KXrp_Y4l(cdk-FJ$5r%{*sS{JNML z;ph|2UZeEbnZ++3nGEvX#qV-UQepL5=@u=th$U_|zBvB$lIcU4-UsQgm%rqVR8)fF5KQiv}EmHVOTcLtby{xAF-MD7K0AqaoexB3HZ70mRDXF#AOzZe1qLpX29 zJOBu7psTZQuK?VK&PPx{#DU4M&-CmD$eiU~botA%t*@fgvA^IZw1lZWT@o?##8qEt zn0bqbE{!PJd~ntBvwWVEGRMIzETh^FF;GC)&H=KEd5^WLS$%NKC(LRq`thH8CN)x$JrdxLn zhZ{6LfpG^GXwT#Ae!e)5Kx>b>3>Hi^HU4+u*BAi#E&81-HJ^hS2_>liWbLRhXsQ2L zPdP1cc?=>_a7ar41m|a4ldZCMf0kZXm56r&`@|kocFY5Fl$?O0_{J+{e8n?fr&_6x zIQ0o4Brl%-vSVi~L#gk9@y()C&h0M+iyXfK?zEaJ5_D7+g0O$u{If;L0<8POCET%& z$<39LnNj{y;^8OPsQ>d=8pvh92uR-8>>&6OzROt30-VkV8F!0&>2*FJpMw!qy`?eoNsQ%^&n6<)D7=4R?NPmrfmm``M}~#8 zEwJ`0&*dw8kYNHfshNBlRL}-l4BltAOOWr9=u2Yx1fwO1^@>7;2Kzs=Mq4P zKu|+T0p`c#KpD^0V~T-R6A0%DX&xYfxDI3x2;T{TM$d_gR)IUF3lJ#wf!)Rg$bp+v zB}uGD`Qo^J$!i9jpeq>S0*{D&C99ZE5J^Z%$^#1Y`Egs=JVDc z$9AdPh{JR1ZT2vaMok`eiw!lsr2JMk;sorYBk9v2Z}*-l689yG^NEM}pO1=`!11A8_+T*um zUEmQK2R+j0`Gn}?4=R4)#XZ%6`9`U_F}}!R z4O#5bmEm?Q9~RFE$pnWRF4i~tO#LD`WutBZ!V8>xlsGHwEXYXQ6IA6F3l4rN+Cdlo ze~UP`$oTx-UbPT;PCsvS+~-ESHz*!A+5yD+)(Rf>N>JA#JR0HFLF5XR27euQJ)?ui)TW zw-sd~7@*zg*|#7<@G``WRt7OA z90Z4Q55Rr`NDATtsMK`e4?~VOKs+9Dha$$nY|;3y9*8K<+mAHV_AW7d$iZB+3417Q@MFGWUsRm}Sx>y;M!3nQ7qnJ>;sm zAnh_wxPW?c>~E z_iqh>bMExIg}P`|jUv!y@c=Za8}LqEfXF|Dy(ujvgI?}HA+7{&8cFcVpKbBvgR}(j zW2}8oGLi@6P5piVIe!DXWR3g-z}^=Z2mF|!kdfg3&O({BIRH4=-+)03wM8aNc=7_Q zaX9G8MnE)b^CScLEf?x!@@&>!R*LL%Q-SL{G&&WJ%wQSB!MBS()?4jA+t}FX_Z&R< zeDkmU%uvZ~ssaWSN81c+m58g=vXI`)F;Vz{Qa`p!N&dY+#nJG7kAY3=+TrD=P z(vX3TwL3^ndPb5Lnjm%gU*$BL zo=6Zgm6%AbWlw4H&rtL<6?VP0Cgu}Ek~pOCFC^ZP?yL!euqLhGT|OM6Y%R(L7Wz+* zgn-xl9nWiT&VWE2or<<-`z#KQgY)o1KZm1$TvU}~yM;66(>jqU<$ZEPo!6Pg0^kX4*7V~s1UG#EyG%o>+USuLAc zpQU&c`=nTaW0F(1j87FsG`!V?m_wSrsO7uI#)a{|G|a6KvV@3O{Kml-?cffA_FoVt z8QeuC;Ql%VZ@PE0vi~~U#BZ7=KlH8tJ+@|?4K0f5dQmxdq`11qPCn{|IkvMm7qSa-+X3s~Xu>-ON zMxkwCBwkngA!WoDV`Qhs#)MsL+N%tGFX_WDkoA1V2h|+o6xZlMNo~+j+za5qPrk~>CYUd^sn?j zvx+-w>CH#|k4G%+sDjYKT_qfgD8ZYJci&PLrO|&p4#J@^a3sh(Fw?-;#&o$>?U=nM zG4wZJ)I94%WsTesJnkOyeNmmoV8JYXd5D;AaHPNi?C877lKUut!J-FEpVaaRN2bTmDJikrQ9lssz*>I zW?pWNWfFaNE}7R&ne{hOwfyDhbMjpX2`n98^FxROX~>(C1r#{hpnVz$aE}Djen@N< zq-wFHt`F~dh%M1{U_3fH)1s8`VuDUb<%DFUDl)C`W!gro<*A79wm*q`-EBJTDSb&C zE+17UFP_o!lUe5HKVJC|+#_$nh!5;~_z_4+ov=497Clqlh{~`-HDEbw^GLC04Nqjk zm7nC*D@x1lY+nTzs0XS@$HgODt(!6I28$3ywvUKJ>RX+thhG_uDe_9m=Rs~+u|RcW z_gi4IQqSh1%fyXd@4ea(H5B3N-`jETyS<$B#bON}4k-Ir*Qg}75@pXD8d~sIjub}5 zv!(JpKJPfD+xuc3+IZ;29x}1$pjQ2`Ew}&kLxonUd+@a%-#f+k+J%m8S=_7ImIf`w z2mJKIijCO37^(237Ecg_{@Dpo(wqe^Kw=&Ssz8@t(u=q&YXXTBy*5MxI9ML%x%? z-J~N~SF(BBYRCbGF+OC8umrK<~hVI!yA5T2t21~nt8Rw5MGuB1S z3lJvAyG*%(tPQWQum!Lb9+=1R4NfVJvcTu+rOiB;x_D#lt}QC7Pn1~Yg2&H3GGAX4 z|L|7uCSUclSkGBHiI5*&aPvG|Zj3L?77uY&^}IAdfrL)^rlg-AM=#(>eVZr8&X5FWK3OKCU9x zuD#A({ORlGXFe6BDvlZBS8nXTVz2(Zu90tl^{}FHT5I?`>jaGVIps60m;FP6yeNbn zSCr2)5<_m{2IwG%qbIp-GPzl}6UUWxc+o;N>3_`MrXdgn-539&DqXUkpokHu@Vt9( z!FVQUh_^*a*f;E*l~6cv$jsHfHODU+3ln1zS*kWYl>_8G`NpT~TK9sF-n+i3@W{yI zujk)X)@3*L>`eF2Q-$9_O3L+=&w0E&SKkvZ>JM)`03~hes9QPbkFnqS-y$$dC*0M; znl{fW_RKv{#d?Ou5@K}}8G$mge8GiX{AoP^*Sw+ zhiYlN>@ypfSKdueHa=7L4qpB~?rp)fVjWC1msd5xkxgNX#20pC(jCt2(PXXlS=bk} zv5EmW>(IO&%1_bcY3Ajyzd5gt@w+~`7JP0tR#)zeo)x0>a*z*wOv8QSQ)|Om_5)-u zKUFuh{)07ke@e?J2OOWIuTJx{_MWO-u&vfM@?bI|ADwPViaT|WQ`cQPzaK@pqvPh4 ztF0%k06XZ(L1*$$0|8XZB3N5TSw%8sj-@f~sj}{aB~u#3lJ{2lI<|>8!+F^r&eet> zIf%fD&Pl_}hViQq!Lg!FBc*)QQP&TS^AJ_*%4Qy$1(q~H)RX=wikl+%>Vm%;)7Ic zk^0G}AQnNa(-J3_csgaxR1xK(gIDGF{X)@+X~Pxro_!Z@S)bk(LBgFIkR6%}?2!gJ zKfZmVQ+C+-o=jB}>nFmUVi_^`oq|h%M5-VoQX-AZu;xB z9OM1Q+xm|Z{IcBTrD(HXv^^;x-kG}ISE(wLll`{1~btp9tJ<2P59po|yhXM-^)3MvF~2Tucl zzo-I}3c%j{0-kU-O_WtJ>7cq}M-rU@BHi}wJ@O&pxx03&uV7KgF+{kXOUCqrNXtIMXl(k8AxUr9zjcgPg!En9Lc! z41JO9o3sb)_G@p!nYSN2Q+r+^f`n}Y`uVeW0>4o8DA#E@?*_e?RvoR-+vu@z1Lx9@ z^>=6R-pf@@P~vtv$xF24j&a_g^K2r3+p&9P(DdYjsme*eZ$;EqTKLmACC+) z>EO_Z-Oh`=?*E9Mn#MYBv-1Im>U9%oit8N2h|TSzd$}34NpTttc|FRk;%RA9^iiD3 zOPEFR6`vUMBmT4f{H5hbRCuquY`8qAik3czM^@`%n04QCSTzl~p{lGBl9Q%nIaz}V zO1+Bf=7exINsWohJ!=Yxn$IT@U9G?DU$CyG!+I==#v}d5w#yLINv(@m!}Sg891_`B zDpg^0h0|jyiM!iN>12^{8DfjQOm=A%Vs8FO#A zz#sy=*54zjdr87xjmxAGo^Lo5plJz&&qh+iR?PC-ztnJkz^f8E8AIHCp89&|B^`(O zve{pUw%0wJ+jTXrjFHjZUk?WBp3au`!+h0P1Bc2m>uF^O*5xc z;#lO!asO~AE-BLb^mjOi*~R?byZiC($hhck?sw{4{gRg@$`a?BWs0 z<5IPBlGvFD8rzwazaQ$%8{x)rL9fD0IJS#JHCR3_HN;icg2VShk_KP-%zF}`=~LiM zUQBdQqMx0v>dDi2j1?V|KAf6Qv(V1;9{D`_^qWALq76IqvIC1Ci(>9?l6vxUb)_u6nACN;Xj}%48mH2ded|D9t9vJII^&6O#WLd>)BgV!~6NM-EF- z;Keljma5&GaM-B*{j?9kyPW-iwLhDXXlk2r3IZUDq24@GCPt4ctG6eM_l7XYDIC z$MUvb%_tvcgbo~yNKknEIoZx2eHejex){J;!wWXtvjUkFXnO#)K7#(AwcH3^EO5N% zadp#m1Ku$d)c~Hqbid=d(?3Ie8s<>_QJOWVsQRP4~y@MQR%Na*I&Dw?!y1%v3wPF7cLI?7s4D=#) zo%40Js+?5(j?0n&;WT>pAmi6-A|Q`RKvqyF7`3znXfcuZA%tGRFev(~viN+fRJZQ> zsN?~e)Wz?|>3}oDNfXLZ38_LL1t()<#B_Fc2ARGOkB`N7B6^V{4>lMeJ{0s2zt>4PCxnFPKw+T=mMGZi{YE`bfUyU*qSVSVd5-F?>#Xc0C9s;FyIvjq=mJ zVEm?jPIH(%nZe(W==k{+X-AJg{^5%f*~!t-8kk%3g47Enrmt~G|0P-W+2MgE7C3{N zYrg{iou5uOw7)qRm1eqcG296iID*O3S4-*hn>g7W9ZZmd)qc|U%NWG2pi$!f*kcM~ zu%Cj08@MVEGxl0t->Y&&`QIFoxnDr+cxNi-8iv-gZu?~Q3^IQ2b#2te=do>Njn3O>3QNCGvPcbrXC zAmbEQL3*~`@^4W=W;hDD_E+C+TrN|P%dwv10DPx4hbJd^IN;;r;ebRIJyd|^eemOf zdG#DOboWD}PMkm}TQAn>a>R^QG^Qz}c3x<7vwS|f&mr%+I}$ z>*eepRoI(OP53|KH-aiSEvU*duAS|eG54Su%PgtWa61Cr;d^Qtd==7Mro}G$gU53e ziC^_=4PeHlH5oR+H$cbvPhTET0*%m(csuIewi^Xy9e5fRgEz7Q7)Pc5NlG20jIO$7 zo$Dvw+u#fM`wVcs$Mg6Wq1rnzpZ1hGS#*uDY+FgQN8Z~0<7K5oQ{MFB*6Xv$Eb#5z z$H9^C*u}vCC6FU(9-t5t$`xe@^6>D`J@j$YxaoTi@FJ_fyD2Jc4#4jx3C0UIANmOC z>gr0G1KYOxRCJpIm<4LslaZ5~I5~~|by-SKNn(_57hZ$S!iBdX;XB!hI_Rz;Y zPgnC^8muXI=8x0WMVXyfxN!nlH{UE(1LW@XYoS;+Mx=^?wX}$xxbRjDl7D2tB)p#p~MBq5PY~ zvd6R2&+j>G>#jOzC4`OEUynfZ$5hVk?$+l%RW(r1&eIS{J8FghQ01oCKgjyW07-5t zDqt+9&Xv>9K>P1v^xrPVlo5JBA5%O;gS_j1seb6FY4e2>=gP7E37LYz=icABauL6w zjFV@_`E7Qka^R=@b)7YmX@M&a#(=awqSaDxz3griUSrv@ywF> zOMs+XFR}#Lwag-p&sXtPuI83d+cKt!nTuM|H&#Ah0O%bH%NePpt- z`F@hHFPzx>-{(ARLDrUu@fHp-!=OA zzf>`Pk=;IF#!0SeEuJtO3%Ca~9FP!!Roz-Q1*CA#Q@ z=NS)Fl-z;>A_(ziX~_Xa$-%H37Y8C~eVDX{-hEhhzV=fSrA*12;4R{{^)bl_6hD9M zxZ3G}GMqRzj`d+yg>$O*Iy69)LqohRfGa9@xnD^U3yHd5VI;yKyK%#Kso5P0KH}m4 zNluOFLQ3WfKL~s-M zm_zS*x`76Cd+ic5^)jb@HUW~Ta>|`&?_XJ25raohIR&H|wVG6B3nf*r=aAfpl8eF@ z2Zx{tyc=;y1UqQf|NflR=yrrw!d@|kP}RF*4^`2ogZdyUL(xy18&X>F=q;nagIZ2tEGS+<2We5@ zT0@V+%H>bbeNaHKx?}WD98jM&)2YBe4NYe;P!J0Acz4-Ww7rGuDpszJ8@{@~h<4kl zj2<;8JFe)XJ$dwAAOtBOI8+g~QbNR>M<2E@&Z2H*ZQTW;s5m&TKZd(NCxO#OhUYr;;mZwL zoW8{=h?|2=2o!aF{qKB*R=GJ#*p@~xh0M@*Pk1<0_}SKH5%>*Z2?@qPN3VGIYap?DCOu0!Xt75tjMoH zM2wHPgwxO5z7Hlg{u#WNQHTJag%R3IS^9A$VnGqA?dv^TqwWH!qq|@;Xbgn9#=Uyb zya+BBz-RVCmlD9d{%Z*bm9UZyFjUW`;iEKj?5noesFE##nElW3&thu_a{Uf#(o<6d z=|8j%gi1z^y-aygVDcvF+MNH+&l)8d(I=5maqTxtJMNdE3e4}#jh&oeZEbDQG9y30 zcpv5H$amHM@01C<2cXF2-wwPtZqyAz?lH6%fd_UKDp3Kag(|Qmg?6G1i!P*K z#|gEot0!gwyAchaVI=4W!NY;PFHm+GdN}@5qrfF;1Yzs(>1l{Q_<*ntNPF}EGn~2c z`B+uq_M3ozCjp}Mzfi)g2hKbWY-(5LHZpmQPm?Lr^G_PaOA~JuqFwN^MgNAk=@dt2 zjW}vn5M^cq_uU!%+fnP&Hu3K|q>a|9yBp-#>y5-^J(>ceFHW}B~r4O->JX+B<3_At)D0`3>sA`h{bg=dpWvZ*s*OCY|2SPJZ z1JCjiW=y$_Gt?1}WcX~;9sTfCLB(8IQ3G?i=eguMZ*bmrR?!M__eRoIXf-prEDTqF z=PT>*4N(K{rB6FG#fjRY&1fTfuA@)KDN7s;oaFZf1|1`{RkkSS1emG{p>*zOl>OWFNgY!Xg0Z~~i+jef#Hx+OJddxi(KuV<%|r0s9r#wJ zOY$oIJ-e!(U=Z1KAWFKNDc-B>3o6<>CM_ao5$3+TIfAxokiSAUKr6ay~%kh@pZ;Zwod{qsdW4Eq=F zG)CZ4RutD{N(IBzHDInBEBo)fPj%)lFM1-B+Q7Ncwt!})$xK`d@rfiDFKo?6RYgW} zqSuR+#F$!%_?1Tr_R6_eCiVlRgB!}}%Qa2Qh2XyZSY@r53a&_Rzn67n3c@r$Jr;w- zo|*;EqFZDzC|Gfo-<}JjD)-=O(wE&BKgMuIrx4{rGMBy5DKl)aahCBUMF;9JWb9_j zC)iM=Ih83?$o9RRwVF*c&U`vm!s_9-;4;;F-BeTi>CU)*1?$T?M*QUV1<=Ceu1%Ea zb3?)71-SqnO-3Od*NiaYE0c&gfs7Ep8+s-_&LO9an(A3&syqT~{3eH2rnf>_dZNh2 zm>W^4Us9<#j?*yb(Oyycb3=~Z3Q)k5~k2Q*Vp&;74yDij`+j;XGB#KFJ;YyFBa1x=zp z^Vv3@1GDF`XaD+)dO&=*g?wMO{7y>MpOVQ@KUtdT&oN@C>hYWxLKlPuVT_C_H1cA79#dioV(AQrSCyxv>M9~x}B5Px;%zzKAYH-6)PmxoOLXBR}#Jzxa&&? zXP6eGLgA#PCih+cnr$DUf3KMRi*p}W=_7L6+vL7&aGlU4_ZDoFH+xmeZjyy}P6?X( zLrP(XOpkSq(FO??#qaFk@HO##I8gJWlmDGEk=8QD7RXM!0TiG}GtZeY;A+EZ#cCw<& zy1ZzLJWtM;4GJAg7mXLit+*34G8+e@i3zeLduZ~=f?5-fRgHMH#BD>k8mJW5Gk=XY1sCh}G7{xzoIornbf~F_k zeLfOx%OXRE?)j~llfp4k^y<&LBNwYaEV$3@2BlTjk&)Ys=~H5bhvUzy%it0A;M%wa zrw`@Y{tBtCOD-ElQ&cTQp9eH#lluPLVm#RW`{_*ZzUI^m=Qnt_1U|@W|B%O(hY>aX zB)WV!AQw#6H8%eI%e0^YMFc8Y#J##~>M7k02Cu`<(&*06BI||h$1rqdIdQbu;A1o7 z?BO>_L$>Rl3k<4cr`i$TYs=~cRX{_^;`Bfq8uNm-UMGtuH(0hd7^!IDU?OYR;rUt4 z_se6`@Zl^167y+vh~QcsztBA90qrjn;=ee^h2;2|onm51a5F(kGNHnqU|W{JpjSxk zJLk7mVvC7&=&5b12A(o}ksU_#BUN|VcNcD`QeLMyL5nvqdwlgAc?-vihw<963?Hn0 zKb0b?Cr_)s-v68vfl}PWu*-`y%UsfvoP2)xp?67(xaKF^UshWKpNP6MeBo}`tN5!y znMtXL_chlhm)@3>%F)S`ejCBwWu@#j=I$%*7pJdC+7QJ3%~L5JrxCm=)vq1Fzhjas z$eWwo=Wx*%waAQNe;a)jC!b!{?VMRVZY4V_@2M1`jrR7(?ur|**ddq8@r~ei^E0A~ z7_o5?WQSp9^7lldo?LDA(mKJFzlTddMIGN|5R2SGm5n=xt*^EJEY?nQ?=5CxUs38E z`(v9JF3(z{ea9u9`EA$=Tm{V$S)s$){0zNUWBsp#ZdviQTxE8o8#eu^<^#=Fa&(t0 zg7=(a-NuaNS!mZ#PeFBF>D zB(PL7>>MYRVo~vrEgz-x^Pobm*Kh`Z+tL3vN9vkD^PLkNkd9x)=~1LaT%wfx_4#{J zfJdV2Y;8Y%PZ3+#U2!Ah@*v_On=5?jay`t%qlKTwH?A&)y2s<@)C)&rbQMWlfp65< z!xQgztPBZaa_;S(G>LgGNp{}r4~S`dY=VHHhUYOmc(Sbr~{uKP>n zz$-4x$(L|!u|F2hHjat9hc5D)Jie*v8W20p_iTzA)|WYEC+s`Iexa z?eiiGi&JReseja1GyjA@VBvksO6!hEtgUCVExS%s7<*9kp+!#urw9w@mdQN@)5wo0 zwd(61&q$0#xl9BUH>%z<<#3^&bIiROD$>@NYY)Tb71i$0^hMUqQsg+%96tz* zK*ic?2P=sjJlPvwr@`v0k65>4aUBtbE!aJ^Li7*^MPD_l4q1^KU+Q)rC!(D=Ur!Ef z_dL~rV|AsvyU_veWv%$yDIXsPnGRMH?fHZ z3aPE8=rXF7XvX4^VO$b&^~^|X!MCk{4^)jGZQhX|p; zq)5%e5G1EA;culbD;7@oNhU5#YU-22qJ4_rpCN_<&d7(s+7`XjpFB9`N3(;qr^1WB z(y%zi6b5^eR}&I|Wyn2hy6NYHaHze|kBuvR$>iiFzmdR=(mR|-e~P`++(neZP4!MYe6^6kHTkSt zJ6L1eRizKndt0;e@OoLd_*J{$v)U|eipM;R)$Xjr{Iav~MM;)hAO6)*)h6smVFbX| zQSk5s)7>CQNYJX!;QmDTYLTlH#lX{5+F2qjE)Xt<(IOIH=(B$;42Mwnam|Q~H?hu-6i97c zH0)46&vrG{CEk&bwh}ZYkeMBeQ~C0iy=8!lXikeKPjD+LbUP%lFkL1~uLu@hLabbH zbgro&di@@s=I3wgVQC$}hgz5O23Wkk{9tluT-7LsygP*&UhPa5~Pl$Cm!u}{P7X<`LmrirP$-U_e; zd%JUynslxpchr_I`9CE5c(B_eL7x$8`_r}Gk^YIDF;5A<3h~f7P3ZG?>b54JT$Pxb ztlgFQL&EiC3W40p@W0z>%)c6FF0XpAze9QY%UuI3rMYHP(!H4GL^6MEw`0LBw;U#t z;rEm%gAJ~+;DWEuQ(ZvN#Yd@_^Ww543>i85{egC`$&^BobhXct`P@OEr~he&M6PQX zE9cTi+s3U`OX_KAtZMAjcn$41>U*01^^|UJ%W7%S`uO<#217Q99mmEs!q-5sP*6}H zl8<4GYI5B$fd-Etv@{#Eylm*^>6w?8hX({=p_ZnYzEJdt5R}m zvJD&gVxNRm{K42DGf@R*H^|qCxSzezAL6!RA4JXhFD?k|@~%B=$2Ys!W6+p3X3XuO zFU}e9a-eB#$8h(zKY4_|BS&LAwS&`A7W3+x6miM)?Ki!eAEOH8Dz|)f#((2gS(F}- zAlO&m>pA?-aSz0ok~(P`T?0)#JwV6V7Y#TNZQLnu`8^)vPX$fUZhJ053dGuIz}0W)wEKmD$G$`xjGw12~#Iy(LtDmKh5bB_RY6g6c1 zeR=fndhTq9GN0MaF2Se zg5VFhdOdmqB43aR2Got=L7ktVg2iik1xyVa0X1$vRQduJG~bEiyaJ+$c9jW%ve+6v zPG`r(P{)6@V_-7((8TLYq3Y((pV3}1#G>EWWz^M5NN@f^rYe;z1#X|(jCzFqrp8KY z5qaFcm!P9Xobv23v-DEz(I>>4d2@RvDdI7uceiA@G$N3^&wCqMhz8~ zg2+#$&ykHjz>9(A+YDBWio~9f-CQ*R$i+zgY&$W8x`3cq3Ayxz6OMTU1~T7%;>hZm ztuoyQ@&u*PDVFv(Py`u)tjUeDx?NJ?F`ov)j?fxH%G=mkMS~cRt>hjm_T-S~!o$M@ z*M2kLAMNJ0O@*iDA#rNiUAwksdyJudF`7-S(CA)7dX})ZyDWnWej4lv`x{I!th}1c z)}n-TDywmg7Prf?NvJh-K(KU+uk>4V7vp1%mC1GY>OHT8kQAjPn#)mrHMba7Pj62* z0uecvSbT(Jhxu*kHD(h{_P0Bmh9dlxOifj^K)YRGmAY)Wx1!)#apCJ$*O0t3dc_ji ze#)|U)tCZC-_Uhh%k=%ZRxS-j=KC@KPGg|9)BUrZ3RB>7hm;IR?NYg|mao(m49DuPW{5tb-p4iH`9!72$K9(_zF>yXdvfSEU3i`QY?^s`t2ePhyuA8^w_;XF9YKkWA((;*Xr=o2t%^to*D?y3K9@3a+5+ zssI=r?k=^^mS~n?Csm}Q+S{cd;UCgoyf-pJf%0`N;Bv>v8FXQN1qw$OZToKmoX&pf zD`%w?K?0-8Z7t^o`-U~3iuXdID)c;o4l}wym)bDsi>;khe$1N$l{z~eO=*1v-B8_e z3XD3VOHBJ?bF!Oo(Gn+o0rX=q>4KMTlj{F1w=p*#BB1O~KXxBNSx`HevDoEtVe%p$ zmtxeZKxLDmx3xj|wDGcsi1@U*VTT>dr)L}7f2gOM$lu(U`(fDE?AntE+D&JIL8>wr zh#f%LRRI4#@c%-}{{0a#JRpAcfOU*R5*RwY{#~9p1M1~^eAWeU+l9?AKi|IsH5`KR4Os$p!o)*|wvf+;hTfttMp< zc}{gNnYv46kr|a6wu9iVk0iPOdjAY>fIyz7x2UK-_%wGrd*>~sNSHztTsO>bks%>Y zJJc`UsZhQ+_BP(#pwmRT;L4d6XT6xY=A9>P=dZ9_>3nalvksKSFmv^+a^E2)7xw5U z2LF-84GTG^7r3RVI5PW*RTca+Qx%V%vyc2`sgrPiQgx3-Vi1xayYj2c@R?Ree1VJ~nnL&86xky7!3=pv0w(%eXN1sOg13 z=Rpl8>Bxnv?&>De9KT3!41P&CrW~%>6>L6M*TpsFcGo1?i{U%IDo3${xD2{-;MQ>X zt2YC1eRacMq+jd9->22l(0hW{!{E_j%Z+!7GAF>Ws!oD%pqYqtFHWu`Z`r9P*$#$- zsM599@fYfYbnu?K%Gq}s$yP8$GK2-cwG6*s4g7reHi`|sw4kALREc-K@VSKSr-|L=>V|2;=&Q)_f_QoY^Cc+mp_iVBcx@%=VEd@wPkpMtCrF4n zD_|`RIebu z-Af!zliXku7KXlw5_%Sy3FXg7wbQ>>gOpy1^(S?d5o4D(ZkVM^7Ozz3Pmn*b959f5 zL#Mw`_8P7^|2khT7zcc1&Uu72HGXd@3#BFhy~-4xfWOjHTf_mH_1DEOIy1^wn*4Okp-_8iqnuIlW|6 z8=BC@>7hFV=wKKl3Dk@Hv%0L7))#ao;kq=5Po9nZp=)`L{=7=l??;)#)pLoeF_zig z5e2eKpcpcoL}oZ&$Ku}xiMVu!!4y$|^!^r2Ve<^|Y1GZg@o4YdtPnH0Hj(f@=sL@& zD8KmI4?Uza#L&_q4FVz{F%Bs$F_eU)v=RzZ!_Y{Glr##`3?Qu_LrN)1hm@dF3Q9=G zJ@dQwzPM}s?^?WaDf2i_ob!D5{_Gu@92Z00&IjXrF1*Mm67Zl0QE?1?fCU#9d1Z8i zxRevK?H9!?HM$J)YkEo3MF-z`^>tV7a?**!1sn;8RQaY3(uW<)x+PagQ`Z+31!Ph@ z{`l#D%cTY%whLDm9EyITy)uoc`! zq(m{cycPmRkMUkS8|Wt)E3);)(%%CDr0B$ENU>YBZBZjlEw=q&NHSI_Y=>r~tz_ z?3XZ4iBx~g5;=l)W#c27VS$PE!+)#THY!d37Q*{v)NO96Cl*7-PyzpUITN8epU=2+bMrdTD? zPU(nMbIfMB4z0!`d8(i4MKR$iD57~=bs@uIc;Yl`fdp3d?OV^LR)VPag7IIJVxEPC8 zBjM&>?A@9a^gjx08az(+cl=84Lf*usa!taHXJm?x9v>BDHe5q;bKOe>**bRv6JD?H zWOAoCPsco-Qq*qWD&96=YE+Q}VFn7~3>XKTw~6`3SiYEd*OU}sX1rr1k2AT$M z;Kiu|Oe87PH6l(*ADRbvm2)%oR)($?&tAf~nSO@~X$rn^gBJ@9w`Fp1?4zUJ?!udw zq?SbT%Arg97a8mUeJ7%SsHd9fs!Tk#q>5D3^|TlpTglLTH^f@^=CAF_tCXN+%VNmt z-_}qR2p=XQcphZgr>Lhu4H5?owV;hl8W<}r;i2koWm6ljhdK)As#;28Jxun06Z-5I z1y_@@>Q|f{K#DD6w~{H< zJ*U^K&3TX*&s>G$f6u)K`aevg1ry{zC~RTPtz-LF>?)(*9QxNJt2ZxqC+HTaWl%b> zDmp5SSWC;Ja%PwwuL|-sP-zKZ<<29#_#*0rYcsgZq&!h1YFbyM?}HC4 zabnBcH~aUFn8#+Wu#UbvtQIaGuQvp8DM{-KJ9@P>Em%nQ{KKJZAH?RkW^YE=g~*83 zm(8PK&(@qMV7)Pm$EWgQsY*O%pEz^^^jm8`mQa&#??=6 zvwoR}0nef8;Nj~wV}|6%9x*A`!WHWlIE)ucR*2ylOTHY^aFgmU-=Vs;#vd5!jnVNr z&JOesga`P{_Z(a`>ITIH6O8W3SF_Muy&^gC@Tr2xjIr?6L@vPE;+e za*%w9J6OeK1;f&9J&&NOJf1!MbSet6o~*S{2aoVC_2gOG7es3Ouq~ z1uLx=yyb=WZ8TnQx2%7jsm%n{qy*Ixw1O?;S zX1U|7we-ZQ5^S=%}+YRK_ z-qJKhrrHq5Q}>9x|{VMj!^wOBl=hvf7H?xC_(25mTI0=Kh!4=)6Zh5wr@J32Z!T1TH_ zaqLI>UG#EzaqQyMiV07oqp|0>ep!tJQJy66=mv?6dNyY@Il2#q&|@O1QT$;jYb>sv z8`#Dz9c{L0ydZx+i}JF_+J;0=W6>t`Be%IjhR)mebLgkb%la!c3MDg`VP{ONwQ{3Z zT3;4R@y9g%iA&=e7Fh}31FG?r*9uJA-;6aQiI|wQ;K2p)dZ*n6TL8k zUb{`Kd$PmTtWEu4=hg|WmO9FOB{;!;QH2ySTABXOv_Bh;f72Oq@&nQEJdLMvj`n*P z+#EI^pdd`S`uZ%$dF$gNh~b zkUhC#`mPG92MFA5HcrU7W~yNq_j%?+WIeBDOrDu@P+W-?^czL2hHnKr5QDoAyxmix za0NDK_OJT@fmcsMOOYflm)pphR_9TL9x{zozDGTrzj8QmXZKH^A#8p)ayfl#;Q$32 zs?}wzYTv-E~+`IKBPX`?RYH7w*UZJlyuZ}=rAGhBGIRqR$_MfQY44PMcw6Gi;F&Q|qB z#4XZW^RTvOGnkoB+YCxa`XLkvQcHaNA&%J@V3+4zgCZkeY!b-ooLh}@_*?3hp)1{? zSH4~nG!_wjD9l%dw2JBJMksQcohsfNQRT$JC!*sRVYg(&*|7M>+ETqjnhM&{w4pN84V8>#Ns5X)85tPzg&Lq*0UQ`sF0baNAjNK4hdxm zalAuG{c;~|b5~;;-*$s|O%HSMY01w{I3u;1JT+s2bE384j#G@Nh1nr|j7!YAe&HYf zJtkVuqvA|;fY;`ZxkTY0f0ZMZXdg>5CYaiRbI$|cAbv}sTU>IlYrQ%v!IA43R;pu6 z#k`GI89O-nCv?Lqn%3$k$HPm4W9U{SE}H2`5bG{(!-qb@`WoS(_Uu$|HDw|G&*%>X z^iY&(OxanfJ@s`gCpf<0Tx{ zzH!-HyKn$akx5YbAD@a%>JqdOly~DxS&SI^`%An@5B?tLPdM}kiv_>++IGN+@RCdF z#@v$9IuJzqi{I97;V@Td*qJ#UYLzwBFL-cD)7Xh89VZ2Qq?ncH&+d@QPm&~#9x+}_ zfo~Cdrj9n>l*K75*iwY%8JE*?QL6r4xc5Xf0SGC$oi! zY0=J2(KzpBx%?e7cpHmp#u}DwZE}S#n}pKV>?m$XrZ`~6Hp}OsTvRPn()WYkdmPDq zoKlOeQqfnxow0$5A_u5_~zzLicyyR-vsvvjMW`4^0{6lY_` z^cxihJ~rT7Tk& z&&n6o+=$l`j08XaWgI&ALnec=n#zYg@p|-wFFC>;j-K3^-On{<98+Iw6al%fBBc`8 zS<|-NU=7FKFPehYJz=JsW}CY!ZQ*hZk;tCXOibfC2q&S-z3Yu zG5Q+LKYvp4bTvC`Vc^NBB7Y^ruQ9ui(acO3uh{dN7s>yOwnzo!oWT4W*x>}*+uMQv zFuI`NvNGT+#!lG1TZsrG!-K*&NUD=qLkC@jiKHJyY~XLK%pGkn ztX2K`=F5<79w3Z9u^dbW1VVC!ZJr~0Dc$GWvGuUwP2+$J-;BLD%Sf2~)AdAGB7;|L zyF6ol_p$;mG8-t=nbOLGZ_sQZctq;hRTs|}&js}~UiOcJnFz7Y-h7+dfxDCgo^;{< zuz0qNGZkc+(D?OD<>)%0vLst2RPo=2&p&byIM1wdGM=*fE|P>$7EfS$&i;M~?{|ph zi~*MWOTg%O*}G#$o)F~b)A?6WqGMZzkUDYPCmFW#y3xLyn2@&qeQS#Z@_1d;PMzQq zJzu(5T>ne($LhBzbJjpiwMtGd@;9#dGp=W6=zMp$cMwsF9Pic0?|KrQF}XK zUoYOUQylT*x>R>4>&PKF=F~qt|85k%&rH>|P8P6qWAbKA7D*d?*_vsWGKqF#HK6`S zkwobrzGTn9ixy;g0afqAGhlhs$~Sdkybd8f_$EN|D)X z%-h$$EPlhzW4yR-R;Sdl&(;rnf2%d@vqLjw__{=NLJvKno|N!a&dZa(w2ocuTlg(B zvz@ow;#K0L>A4+fEEWVIAvsND|J?$d=2~E&{vo-YFi38(3u9|<*w_vti6Z0Jt21;z z8W<(C>@5BaW48OZpH;P0_ve%_IR^&!vBiJiR4=ao`}gzWG6617%BFJ&H!crB<{d$8^7r?*2QnDJ zsw^%0HD9?YV9Px3{?HXS504%#m3{aE5W|XGW1&)eiu&eS^~-Nthc~s$hOfns9VP@Q zBu>l(Iw>V&7*ftA)63MDuV0k#MO>{ZJ%KtPY{0`rsD@N9%dx3g{^I1~)^XHFg4Hp|5 zJ|+C@?$`U*If54a@WGxu1+{rTThn!5eER?^1WTMhfL19>*K-Kr-OF}YUY9SQ#oIBe7O}vlL z>?U{TKNg4z#q7B$S<9;WxP+0)7XUk~b%tRoRLGB7~kt&?+GM5C9p3`w8;ysPpIs z!S_#S!T?JT?*6(ihw?+%CFNfbK(K*`u*i$k@C!-ruJb^f2cvS@{4^&LPn>k42gNDk zP0KhaiI+cMBoGm%-B*7I)j+n%BP(%Rzo>h6Oc~M7>B=mLl~Czii%#ozlD9 zMPU2q z`>@)x7!jL)ulJ2S+&e!!U>Ux$b{UR_{`NgR-|W>3JeM%|O38WliKZ&fPBloH0Y4sE z^I-Zz$42{8S^*Q*Jvqz1b$qQM3N;;4WhBFHRr56Y5hyb$SpPpIQ|}gC0HRB{gb6*Q z1W@zoEs1VW+Q*^(c+UNm15k4QlR3arvPu9Sz{#j0-F^2CLSQ@zPcZO%4yxDOsfQc1 zAE5L+OLPc%gMqXFU;s;7j-&yd2GZM~y%ou=8LLXxRhD zLwvz)0?;;?j;)>)9jlvA=*+lFb#7hP)wkr`6ST-dsK{pcP4<$L?I# zbms0w^vRun&MI{T+#1@5_cn+hH?2Q@q6AMVXVsNvQWGyqevxsZr#n9!z-R_la`(7n zjcw&*_r2b?{d`gdghN`Pl*jqqVV$A-HQnu*_RU_CJLlCM%1_<*v|c4ui|0^Bk0fk$ zd>ObmA}Tbe=_>}UISqW!!qZ3^Qr*u%?Pr9xAmSADMe~R$nV-+m zH+}ndnTWIz0`|MKgP@o53Al8>Jpeou^>Fj+*Y-eG%)aVMmnmtN43=)Xpf8VJHFg5a z1wmod5z5B`b3PXkk^ytt^(q;}$E{X3jv@aKcBSW{K%^TKbS-dq!E$mJEH}&qvhdv( zdS1r|r1N!<8Lr3w17sMIF--$bO!+-mkVgWjgS}@tvhF5kN{8+5(}gUWq!kptKkAc_ zlHy)+$8+VBet0{U9Om%KBJj2_Q1jmJJ9VHcl*c9Vz182dA%@?h?#(#b`1NQzS=$FR z^I4WJ!w6ihh=cw{cXbWs_@%wr0=NXH`Oz|g-y=CS^4aQa#fO3Q| zJa7%BsGJB}SzF&&4+#$bxU`h=tssO>D9@J|Vh>C&1cVH%)Ewn0Shjkl_E`%ekvfVQ z8Id|x%(Hr-5Ai3Bpv!Fml*WDP>}NYXuoCa7igp*xk%&dzmE0^~J<6aq5uyD$Y`FT~ ziS4~9HH4-^$JCoN-jv+DjLB`3IO?XFEBp#%>fhtP8#eGhNJKF`gT!d661FTi>f^nU zE5l8s!<~t9j2Ut(R6GpbWiDsGFE>9dQJWI9HsFtN#-k}Lzsn}$*4qsR>HV?!zGaR~ zft*KyCA1FB?L+%m*Ib9RJV@o~&Nl`QXI&R|P(Aaz=oN3$Y#?f7LN6}7z)S&|)oM~q z&-}$cR8h>bft2u|B{UR+i^_4b((EDNmG_Hyvxo-uhu51kTCg(=kl#{-%%#Vs*{k_kB2OA+_on!o~? z#j69J2)(}GN{wikJc#2<_Rah`*EC!|7#I|E7f^U$r+$cz4ceJoSC*@I;{q%!hon8^ zLvZ2!zi(dAY~cvZBxG{RBbVTqn6`QF73n(_aw2jy~Wz1%xnO%0Z+ca0+Rj+sKF zAo-k#*fP59;MnJb%d1-uH9^Zebb|w?+0AX=->P7*_dCs#Q(nJvQ!r_^edqP>3Yylq z+7B|_i&!{6xLf0awTh5v3E;1*u47=C;v$6764sn>Knni?89}S(M@s_$!ASs2TKe(% z&+wEVpI?y(cRZSF?@2cEZ1kF!|EB+EC_~f_(Bz7{MSwOdkopdBNS@&sPZu)O1mE>k zt!?63it1&x>&oxJgWUJOxML8Y@I+5Aia=R{$2cj3a1@en|Il}WjSs{qWb`Aza|uQy zus==y6$X-qQ%7B-LAdU#k*5N;q=1trGZXP@1aSLR3qqa%$Q~GIb*Buuoz|Uz$f+Xz zxsjy`h4?-d{as@6^-{1#kfJSup=N!JJI#P6?TTS#qeG1q@0QP_eAJu$%nI~f58yHP zA~WBsGmQ+o`^_@qyxK=(${}r;?k;O{i!(zc7T!zrNup7L-mKi<`C7Z`v5$u}*6UV- zcpT@96Z^+Jlu)kT56y3_vf@~0FUm|Mq{7Hwyhoj;`HI53lYi~*US55m%$axb-^6W0 zGpbQV5DBIH=i|+}b3VNB=NCskmsEQR-LKzHLE>@e@EY0=cNg6)Kyo za^kk|`1h!rkIw*xj2Z#~CylVP_XC;gs|3RWVY?4DIGn%=Q_WzDT$k$sOP-Y1oGd`R zRy&r?B~*@=Ngf0D!vKihZ*iPV+8{c zYUAnGL{|QWqhWkGnk8TJZM~R&f5}x>G;4;<&oheb(s_4x*L(i83Vk$;M>|9vlTyIH zG^`6&zcU^&&5E~4`<~V$P#IODW!h5dJR_-8P{{4F3A2jRZ`Fc0J5=(;v6_nYjy)QD ze1wjDG)v+|MfOuBZ4y1;rN&Pc&|6X)U|xT@7UuFnx+OrN46))U9qBl}@OIkC7PWT! zGv6s_;u-+qYkw!oiXo-i0H!wr@9NI~Goy61!c z4>dUyuyzzOnyOp+3xK3-cBgaGzbXtvsQ|=^#@Q1QHpH*=fc1hv{(_gAyJLCR0V^*{ zfa+7&d*k>kjogeUMH|{@!atLFH%q)6O8=g!n?>gDd_P_bI`7T=V`%iMEsEF@%_4S6 z-{DdtWW|GEa5(po+l2B*JPIA((R#+KAad)u-bdp5()c<6f@8th5y zD+AD4!oV@|kjyt@=~wDj$Gl|Mr{uR@e?uVC3`Y;i4tVJJuu)Ja_Ck-!0db@tcJbiH zpVIhheD7fFCu!i}D7_o_LeZGyW1_~7pzdcHNvRpGpRazq^sH;XA}2A4+u&7%=hW6^ zhl`&EO7|{&e8O=uls}h^EcIHi-fg=Wl6zTw9Rg8R)Iq76rY`!HZXK@`h&g+;7TIgp!i+C%YcIT7;v_D5<&JuSr|B9s$2HtK1 zSLQ!b55zOg8C&JSqI*`Tc2eVdcy@=p4aWSo&-6pOfZ^Wp4vPx=q>eK@VL)Wbo{489 z^X}qDG;wPfR)64Zqx4mARo_A@Ee(_J1j))LX$C%u;5R$VEh+*^b1Xi16 zuLX&rEdFTnW1`d7z?2h~7%-vok<^&tyRhIrEyh~<-Bi!R>K`U$j~ho`D>7_AehE#+ zuX;4#;OrvZ{}{YIo`2xyw0`X7+PmLzg#ss>@{p+7Dy32by-piFhE>j>EDOuoLt$88 zr*JKZXdF?pbJkt;=6!(_ff>h|(Lm1HRIGuLFXigc{gf({S=o*0hx4n`J4)4TSqcKM zERiXT=(QQ~d--wlBZ^ho%!zi!)@7ugoYB5-Z&tzi*ufZ4&U@Ud3f)s8Z%QWXBg1JV z9v8WC-_@6-nu-qiyGxeW)1C#uFsIXPCRp$b1ZA+0W z+8TEHpuJ_1vSPino_G?`Zbd(VsrEQOI6cQuxjtFLe~{_7noPnUrZaDR=$DMjzt>B3 z^k}1*z7ff6lqef%Umwe90X0bSnm1G5*jPqKh$6FvFvAF?x=D%nPrv9pc8X2AI17Ax%uMNsIBFYhq@rNNcV^mh-V?_}O=-ZSW0Ku?74`bq&EX%bxtp)Pcb@wb zowgfYz$E0&8>V3!U0e8KXkTh|+9zbxVxaO@GyHAfRO#kJM-5!92ll&ziIbm8O|Ka* zdR1$rmN~;=xc&UeVrMt8@rYF*Q5!*?Hy*6w*F|R0R8)~lZs01pGv8jX$bwCUGQ0@B zktibnhDSG=Gy(W)QK&a5VI^U$>1dQ$i~GWPfbGm|>r1OCPo~In29rcvAGUn<=Q>?> z8D31&>`l)#jOsqtrMt44$B(QACH+Fx*Un?za_Ew{$+?;OywO3Fpn6CHr}t6;;TW{h zrYn3cgxA(gQ&IDnI^B0rtk>J(3U?}O>hSlZx&>)0ywizEP?Ou=lwoB&AOrG8qq#D| z#YZzEkVAch>ha>XiA=avPI$SUp7pgdY{Mq4V*2yegZGce z1rCVIRcdEqZ>Xw!GH`#+3ks>~$zvnJZ)A#_5-`4xYRQkUJqzzs z6uX}VIZoerIL?nb{zL)CmyzMB$8ec;^xeJCm}GCquWA1A&}p)T&QU8*OCXc#Z(-}_A>9Kfxm zfqQZuF5-24E8U&C6j`#WnpcU&EQWhsqst0F+aDaX-a597vOJ0_kH(G3T@`_gRdvuk z)9o3EuQ-9?1y!^Z$7g_-42ntaAeH2ar9LV(dKM#{6yXs!kqnQ!!~L!`+Sd$f<70Gj zFGmW|YCHoKdN5=o`jFxK8EJjVjD9P_03+3;Hwmu=NyN|e;cj-rR@2$O1`n(_mU9^Q zP9NV)-!c7)Web;ah0d@Dd|!(Sp_#`NiH_8b$m|=bY-YRN+-J9hO5_UP9JEzVZa<$|0IDDhyD*E|b%Cf6ebw(Er%`c)V9xkV#HA3ELQLwP*83BY+C6H~ z0&Y;{#dcHryXCzw#01~LwM@%+%NEMXma9qH&9-ED*I1RaplaUIfb6(Ykr}I6ivQ(w zeO|<7zf~8`4+~7nCA0d)j9biAo^_uA=QU~Og;LNW? zgYHK9-=y^&Tz#1KfEiAS(H)uYRm7mO@iu;_F=t)GStNYX54(t*`NA~sm{;AZ$w-|+ z8PG?nOGceDMGu5qH4jVASNj^z4oThzLL@|`x$EhMmkIYCM}{0a$N-zvT9`!&=lc%G zN}fi&oWKkSp3>1WKcbC2Q}+|uH8|yl8tT#2n&^~AjI)iVSn2s@PgQ~RUs!X;0&avp zF%!?A&A^i`>g0=#Le&Ow%=Jz@L^*w9q19HX@;r7p@Xl11!jJn|+B6wo(**prOaGeN z2VtLECD=0*(^F!Wk*>7hQib;(20~Obt8`>hHLp~ao&Ht$sU0~80sD57E)P43Wgeg$ zdF6}?CFl@?<&OXwqwClGhKk)9v)dRfk%y>AcY{x0rKcuB3R*C$)vdtFEu*|<_av+ z_nNItB#hVv>AG|#l2Us}yF~jn*qbfz4Pg{=bh&d3xO0O3(vfT;XAtj{r(rE2*mF*4 zhHicSh+EO5y5ylTS2(Y(lsy{bFOkQFp6@VUdB^{z*$H#iO;|z|wN|=(w{p>(uPB6u zjHx?}wJ*YcpkedphIfikLI7#~Qa0rRFLtHxp(%C`#~nDyDmeOpOn!t7!nkj~?o+zO z6ltwHk66{^ST!x-xHq~ZLPX>G@-A7pqPRchO1suCtklmSx~+j*;HkDroNtU$9&e(L zrMywb`|br}UYQLaUPWzUmE2>WM<{MxJV`V*K317MZL(1RM-6WrXd`aB1^MR2Gu8S95%+EFqEtgulwZS}P`1HK znHNE>Z*G}-dnH$q8barZXHuM=OJeo)8U*0gdKKAfSKL49LD-OlcR1(XSi$*4JPgO{Iaw=xCvFAiv7?p{9!geIx`>r(lipN zSNV0nf!_$1m+D^XNUUQ~>3k|Filsgjx{bhlX_ut73?Wu9(f(6kCL012(saxY$RY*= zUJhyCZ}>_4I1x>_GQxg4-C-Ov@xwxrY)Syi1DHTJDOSa*%fP@kU2E7>P3bRqx3Al- z6~SDsj}O!R`K-^kJylIm)pPWgt4VS|8(Nz?J>ZDX4AHGT zjGH%np5+#`C=`h2ki42NVjO2bsi<#2F9>vDyY7{U=Hn>^G{#EI1 z)&NIyNU@{y@;8Etb-12RX=VD8`RvI89+hU~mj**eS1s_(d}WuxTuv0U6+_L-6>&?r z7G1UGQlIHP9#fZ9K6p(>GEOxWe7vWz{+YwY4*y4B&}S}=H(SI1PBvrjyI)6oRpEuE zPe)s;d*V&0GV|X{c%6PLd-Ee@o@o1n((uzAHTUqp7c{zqe3k{ISz@$&Q5h1h z^tIabW>-`{&Sj#SX$N0trjBK%y4OH=4r!k5u=3Ac)qeeI7`c#tFXstw@#?i|UaUT6 zxG}W@hP(A6s|G5umRnxj-ov@OMnJK+qvT7_q&7#HVBX%QH_D&19xI~md6(-*JuE!U ztW|_9x@tEepjG)?Umy003Zd&><;W?~q3hHjz_{PTurBkLlqy4*{)Zm1mzU1#rYzMQ zPdL!YtdtT4oo;Dw%%y(UzC^v!jHrWY_E}^zTccf=nx`A@Zr{0_DZIdYw#ofjSY1K( zdp_3fA*NNAv?(bWr9NWv^Sr8QvfUVz?=cEa5S1G&(Ij_OMTpE-Z3n&9sGs+lxpAF# z5?oA@-9wC#p*m^!>eh!W{GYVq2B7-XG=sW+y)!JwGlPCrg8KM z(J$|EYHE;j&DbGEnqj-!xP#pRBh%+J@_DV+Mv)d&y+}-K&qj+i7SNltEfI& zyHxyZBSNMoL&}39U6^UOMDF$;?N}h=_!l#^laC1gc_ohNI46n3-ty-Ar_C%e!*WPj z%?3Zm>1f&tgwUWFhMR-!kC-4E-FWmhJ*W60^FbFx-;=LCEP_1h;w8SvO`IAXCG|(t zIf9rcH>*FnYN8b}t-P50*4}8x4B`GT1#bocNQK_4Wr@ITY=-3Nzsq{19MVZ(P>dw5 zcx~qQ1PtHb#U_bdj5^2K@>(^jxrVeERznWYem1bo|EdNnChDWKyn4EIG$rr7?=*a? zi3uJzSyskrN)(1(G8j`j+KPgJouJc_z3~J0^*)}%D&}$nJQ24;;*u$qdAk^f)AN>e z46y8a3K$UMWHeqH8O+;&0jY=`Dx`fGYu(7;Pq>GgTe$y|S45w-dCs29&+Z09x{U^( zm=(-qUEaO4b-DYc4PrMWdj^l~BD)g_jDx&1?K-~56Zj}~{v>J#>d0w+a6r3OrT7Wu zccVsIJv>U73`eQD!F>+>Tszd43o&QSBq zDxQeD5XGC0bPvB=p+{xj2^FC9kG}I5hL_=fC$yLt;l%dPG$ZQg znHI8-Ql=$xYiAMpf!T6XCN{s?4ftiQpie~^4rO$>RXHq6L_|=oNx}=lrx!1FAL4tP1C4qdvVB^tVm1q;~&`WnX2AYe+{}^PM|f+X0?R z;x+4Cvz~n##ijf2%?0Z-Y+31N5&R97-$MTSINMrOUHvP5y_xoXy_YuUc>LE^W9_8N zWJxzj<5QAuuJWx#>@B`?SW9EM3XdOWNMliAjW>?vNmD90Yxyn3Kc_|VL$^yNqpPHs zZ6pdiAyO@4X}oSTal?+?%t-!Tmq0bTo|rJO1_&|1q622d16<)8kkk*~_C|fe7zi*R zApsYNs%Jf_XC$Bt;D#aRtAbz=`grWO2Ow_#(U9JA*^0^$P;6+?crf}!D0Q@TcJ!`$B$zT7n*QyKaX~RY8(FMjfABJKZDBbl*q#p-CwB2P@0)< zIZB_jMQC4AfBDK0jhQi_;RZu%;^dz`B`<2kp3f^qfU3q>V>J(o~nf?RXT09dSi#%#cU(UU$3w^W(k$8}@nSb{Pb688quX-hEKmlPK94 z2l!)qP-1gjc=0=Y6_{*#b{9JcoppIYup= zh1T9Y+lYY*j0K}bd4dWN#I2$LIz4`;dDlfL&5e`HNy%9InUTn4;ULPMgR*gqQze;j z=`fe|_k@NY(x<~sRP(3r9XA)!qeZIM|9V+vr>Ip)K}HHymwtx=ZHK@QgFd|ofZ7eC zI|6H5&o6}^-^}yHQxg0k|0U-Q&;J+RDemO~nBq=nXd{S?G3L@cos5tBEE;rsVpyEF z8fNYn>D%Rv2*tefn13sljGTGfwW}gi3xibJ^4PdhI`oTkrw!3iYaFI~AB25qU0_() zWwcBVK{b=bn^tbCq#5v~jq;`iv{}Axezx`gbuhLvgex7k&8*b9O{$h=rqFlBRSI+2 zlJ!eshy(_tUyp&aCA8%VA`w*DF@a3SSfJ{A=KwtwSYkNt5AqZcDiR5dsx*K!|C_jf zc^gvI{1!w={>SGr6dsd;vcQ<);$pQ^&GMVBoNz-FVznr94#zXI%3JOc`a*VnK>TJ< zA>OKC^RM;LiTLl?fSRL5()nRexR`&6y--p^<{f4{^N^>ATXTVv`s3=>7lycsbZZf$ z!sm^+Rb+)2R99FLIrBGHn^qN`)PeBx>F`I@Ll(9HOrTmV8d&7k+P)R^5VAtO=9^bKPj|24rm=DG zuo#AV!S7@WNeXhTE*|`Rr?z^~l{8_Avwn>uw5y=s9tu}jhFZhh zdx*I5L!(ol7v3*_8LNEj)sVSUOF$bhc39%l&15ieh)a*3_{Cz1!kLZyCX-fT9Xrp; zmwm;SbC=&i7si|uD`M%C!tx84YC=do z`}Vu_dr6{^NQN)qL_?Z`PKiEbOOp^p7(z=QNW~;nr9vXA>N@AHTm@0ZNtbW1G28e? z-W3-tDb^Xg&)YmG@lNnOb}_CwJ)ZSTdl6pIt?NbSm0bFFY7gS=x%0r32<1p?zIW*` zdM7cI?&R$azq+imYTk+n{&7kwy zuVDkGXALv|J9yGh@Z)ICRf=4BFFYZ#6NF(?s98eo2;4MCKn^>dUpkpm@|Y5Hl3{%V zk_VGnT(19knGS)3|NC7Ca$>d9^M9av;2GQ-D;CV6^qRU)FQxOcxT)}Pkf*`u+-U=? zBQwPCo>-{+y2_R)elAD&n^w1L_&!A%>Bpz;4^Z`Q4Z)4{&)zcP+a(&V#^!m_t&n`S z!`MS~G`lUdD$Xz?bpH{x8qHnH%(c6o)GNSpL~D5C;Mr5(P#~kEefZ`Fv|Z>h!AA(; z7Qcyo)jbyIh+1`hQeMhkE1(#fvfA%yMM^Sy1sjEq=6g;48;ffk*`==g06)`A=BD#4 zuu`^E-W8@xv>5D&2MNC8^Ye*2 z^DTT?!w%rG1+K~-R@b~pkXcPaupdB{!BYt9+5uKYD#FSL!kvF{UF>nSg5%o*rYJ|? z%25D?r#Sx~CNE9aAIRp8u7W@ACj_g4G;EH531g5_!PB|-#AhNnC^wm0X)7L{m=G`{ zF%U&sud2>_b3%z+Bn4-FW%6I_K_TPcnmJ*pgDrf7%6>_h{!M4AF{|j*(##F-=3B%z zAmyblq&k5NLh&|0@H37)2WASkE!I$G>Yg9PJAo|MpeZ4w9Tx{G%>k6bkEcvvARTO& zU`6p=e5sRe{}){&1PlbA7*A)I5NrTkjL->HUJly84PcXI+LJc16)fp}1|{#kYbRRe z`!P41F?6rveN|Ehj|c84=!>??R=Lu1!roESD{=8K<&v~@OwjK9)R&jb?aPRsk}&X9 zx0~$>Ew~|D@01rr#c23;+Vl8))aSL6wO}4U{y1wWd-))EblS~f)?Wj+q;H@F)l!G? za0o^6W#^gQ<`K(%^PW|-D@21yJ5plkRnuTMe#sV3wOVd-9ZzNdE>BLO zwkw~j@;viNbPNu6P`qwzZVU2xl@-ui@{zL*O`i{=%-4-T99!i_|~7bxjRqHjqx ztV}~Xg#(d|&M^%4TFLwxtVlyhaf_Mf`Ay`a99;ca-y1?3WL`?zB{^*I%gAnDaz%j3 z+W?dyPT|Fa+wP=99A5>mP*b>I*y5IpjCmI>JS?O5%5fm5!eoGVcK z!;WRNYd8a6`Z}Amj7D~Aw-c?PCY1K!20fPe37ez-fhK*Q=&S;zz448((206FEip`w zfi|@`h7U*efb7MO;}6xUotshY9|B4c5-TYZkdj8CMgK|!%hEfvp%Kcy3G;E~qEPpQx~ zN_+MEw7;5(k8{?N+~Fgl)&T`{6-`&T3tLjJu~p0X1&}-XQFA zeebVBjce{Pn@&ANr=>DqDlc7!_lcP^bqo071N^W!zbt4}JvO?QL`MA?Bg)GtREnup z|9FbYS2cI+2Jbx&-xn<0P&^rDQ}3W)QULmh{FR6Lq<#!sc8j&hg;w70<|WZxGjY!* z+zEw$>~g$4Tz6_&s;lFr?WB?SWq&>zQuTwN3=Y2HzObtd6KvZ@_KVt=Xi%TkwS?d_ z>FG@mN#Tkmxqh$}#zXv$t2*uPlkrO+8gNt4nYUls`p#5~Fj+k^PSy-w?L~XoNSb(N zBFE+X8e3Fx_j5l^DnZO)P@8Wsx2y=+y4n62yQVKo!yiK_hktW_D&Lgebop1a2V?g|Jk{Xaq+wyg^JC=7Ghm2256IVd zPK|`K^#?o~Bue(&AsK2D8F6P4Z73eAEdgu*3ak4D%>>Bq@+Mf|^ozL<+|r41XPCAn zQ6yScddz+9D`@uXi%HoNCdJWGI#6_6$o)vy;h~{1jAOKY@GzbAy*?&R+TWl4@x6Tg zD+W{ZIA$+1>EgSzhYVO59#8x|^v`W8x#u-pDAHm3=;WWI*KPfU)DooDsjIU~tjKPU zbFK16c=3KX`PTm$)(qG9xhy7W**CX)Ro#uAj||xx6HHyGDOe7pTk~PhxP;R^H3k6T zrrgTBt-6ru^IF*9D7TQ3iob~y1#611csCKtdtR3EVwgPqK!Z%@@i&}b%Oc}%H6Hh| zred^=Ig>Oox3mp4oBL{n4*a&^QCu)A8b&_Rm+F3D&wU4pZmNN-F$wxnr(_8S2IKC+q9D7@o{(=mdErv(&Ng++ONw}#MxtO(~TQB$!FP`&LOn8@Y*vsET z)xe-DMOU7Y2#i4{s=GmQLVR_IL!DvFm~+UR&C8cZ|5(RSX`ZrgJf=PkxdrkGcx(dG zxo?ZX?bvMMWm)_Xy-#?tJMD{j9x5W2eL)7ZL0L7)H1c_&zUD5h&5?&C*t#cr6UIM$5#_>`wHbs9vKx~5QXBH&YOo}Wfb zjhBA)s@t5vHMq`^M-@(SPGjOAe!zV!0yf4h_LcU8CRcAqPgaFCn9Rd>RX8rnsLF{= zeSUvlep_F#lIDKrO4y_djaCzl|GcMPbOyskmj9V5XQH& z<3eaBT$DGjOay##cyL+f5iAvkd@ZwU zKI~?GEbrLFkbf#wO#PwPjN3G_Uz2Y^U$nxSQjm8_E7eG^lUZqdloUQm`{YF{XEFzPF@cTpqZ%RxGNzMSDVBKs~`T zx3y?L_vD!3L6!bXZ5Ts+Y_IRzxTr)dm0#oWX2Pn}3jVnzX>Pk^)$3QH5s&8G&`~?N zjbi>;rVx^D!Ty{$NXh52F*!jxUWH_0W9Hd|inJrcm9qq^Ux*%-9c^qC&(c+EpGEFbZ-d8t!0x=PV zdn%qeEU;cV?fJXdDvc#MSz$ogxIqHsF>&c~3L~TX2jpx`+;qC8(veKs7*foZ2$Tju@A(&-(RolflZSQ^{VfRk1Tav zMQ%torN8p3ERRGj@l3Di!_hS}QDRcq$O-$zxmti~ltH_UU+o0nRVR+|(Z?)u#;w_I zXD)aaJR>KD#esioF|w=}&GHW`kTG>3OAPd9EsCR=2ClBavpLmc(YtM7u7t z{&%F618hn$Z~WpnA36`byAk-t&oPDeiyyBN-NNztKL?=(N(u-lL5i7NtNj`gl_Cnr&h>09>=lUFY*% zeFPq?wpQZ5aIdxpuU?ISAr|3n#YQ3)`~Xkt_H3ij>RUdx)9;?9{z4ua{EXX-&%+Ae z9mh*^8dr)wd~~q2@XLu;-Rw9AS$c5*>k?B(`IxR+@cTYmd-=e#{6w1K{5&9eOX~aO z7iD2ptyC*k@V>petHqX)Qq$)R-)sJ57iG5$txVE{COo=vE&l(e`hlvY6hgsH;olM0 zUu_>k=_I?(WFQ1=hVV)kZSCC_-ErO-dP*SM2>8=sOIKg`zi;7=z&!l>+Xt-*)B8i> z|5FVWIhO)5o?Mz$Ug2PtZ{7g(;t1YawbWUtvZ@XKa={$!_bB$ z9-%db$*l!czzenP1bTW+=oVFv)hStS*oz5mq{61r{U*(u(5j+z?H-jB_8ZT80g`oN zDGQ902oCVLqOh{27L#4A*q|<4 zA?;Fz-p^OP_uPBm^RBz@TKAv3)@$u$S=;^%`}_Mo&-eL0&-3|w46ZahXrJePw#WI= zP?~8NX!_9nI@n(7Dh0&ZrIN+s;<`)EZ_-HgiYqQDS(>o3kAR$ToB4oe08yn+<*6o! z1WXmQj>pxxfq6TJPkUv4fDAVw!)m3>8$TVjBsQ}oNx-RVg{HhEeZNq?h#l`K>7~r^ z-saWf7p1CF9~{~(9lZ0x*^4xdPc-Ig$2Bxpu#wJpYY{flUH;Hy(xKL}k0KCML!t2* z{kV#6-aKtqVMmsJ-rWu;so^%=MtgKTy}fN(uBgXrIA7W0M|7i*a~>u6XDG_4DY0rb z?|s^JX}cV0ZKmWQcOZUpqSxe^Bz_|`7~VQezk(b8u0$whGHsbi-J25iJgv|Iihj~> zE$>^_!pBBXqW6f8$p`YY6SvpDvi}sjHS|IL+}n~2cX}9q+XiF9f9 z3&-uvrA0+40E%(mOc=^?@BH!RO&wG!HnQSYSw;f6ddlMDUqfpy@s1ITBoARCJ@B)_ zR1Y6xlWIcU<*N5`WILVlc$6t8d?wRbnbo&Sp;^bKEH3Y4t#&ED-<^hCO2V&~q$o56 zo3C*UP>J!Kdr3-OO1w5gd-2>Ic}kPU@o!u!5~~K|jp;Skd*paP3w%{?jnM(e(QR_I z4uVe?Re8Ufm~;E_fJ|L~H=DhWfOWQP*)q@fWtf7h-ahLTrRMaV33Dj~nxf(SG<3sA zg$Pl$+T(|`%zffekOd&PlyGqmDl(BOC*B>RZ1VB(G4bT5On@OU81hIN!=iM`T>&=F z`B<%>h3zAKa=U&E3Yv*eQ%&OT@xR8o>wT>NC4 zrF_29{E(24r_Z907ovtg8*1&BGk!LPK`O8?O`HMop|Y^1LMNaIe@_WpoK^ zSjB0vkjbE(Eo1q=Mqltzh(Pct+rqUMu7HO^Fl&@1cK7hG3uR!4P5>5!&NK^(Xe8O2 zQ}y|%y-lY|qj*SR>-zbm-jLPu551m;{dXc#weAaaf?tv(i~)Qho%~b4)p2q|e^~O^ zwLqv*SbjX$_{>{ov4Pxh<^h|zCFg$0N%=|L*eIYSJ8@A>Ws=KIqqeFhVVyiXT_Gu* zMiU)s`HORRzpVdqeaQdnD#f}CQGREzZ zMGaV`^DXF});pf75@6L3^o>#v;MRIzVx!4($jucZNJvUgo4!>2Sff-7XJCxk-BOks6+QpU%kc ziq=r%XQlCWslxcJNjv^<`A7qi;OPV`r3}=KqfIMwdw?3huelg>E$9{Fh-X+ z(41diEU?8%=EK_y7NfOGe2P|luV_deuiB8LqODQkm8Pmgot#%)r)yXsz}ii#SrO`? z(xa@_J6}pYc>LI(DmWtcm!cT6~eaK0X^_~7jxLzhrn#!7p9ZcO|y(U7)dy!*gm+4iyOtJ^^&4auydsKQnWj-3TA|Cff^JEX)=)nC{Rg7ivPa%+?sT49eS4HXcMgQA*8&5}~dvV6UvF_F@f7=*|k0r5V0wGQL zy?lN-k5ZB(F!W7jUiQiY85|6ELrcf1bs{Gs=XV-CUWlOhQ!Vp9{1j0OwW z$}nJav$`#1@iDwMZ?Lf@l8v%G3O?*BzPhZ08(ntvqa)5EhzFe=6 zcB-N3>rH(8yy=AjO_nE8Z6}Ra2d}lt2%Z1&ClVmDXOFlQR=0-ym&V&xghbfaYhDo* zzEAf+EyotBg$@AYAif+UI+ER%kqhokc8w4y`Z+0v)F{0NPgT3I#q@V$b2iA7g52ns|TiPpxLzv94%S(FE}0~4HHVcedm*~5Fc%bmN>gI zw?Y_;Te7M}sY|_L`qf~d<^B6*rD}F*c7<+D^t+1*;Q#L8wYpz+Uw5164SxakKW(c3 zu8HAdF`w~oHE&O0H9*XJ;GKNfkK#F}VTQ8jw;deot8Y~m^9z=yP(?>H6Z<3j_tV>cuu=<2h!*EZM#Q zwr4L^JIn;KF{iM~XgL!Krg;Wn_nkcu^Cuf)YXQZ@u)ViHhbyM(a@7ld)(k^ayf4?v zIZ8~u=`MuH(w3x9wZ@y(vae0`E3l#HcF4J-png3H6Ino1J^T#dc9QDa;g=`gx9Mje z`0|;})VEJ{r6CWtY$M;tRjsc*5b>o5k5x0@{s{MKErV08w`fN)}`K55qXSSiKXf z2}RujA1%|H$!^H3!-@TBWTX_QBk)FYc96PyHYpvb>J(#~tT0&-D;TZo+)?a!`MYX! zuq4}=tsO2t1k5ZO3#z`Y6%R-O93>#H$0ozN*I->e{r=hyygKbaC+hNowi-f(Rs{Y0 zr_(g3JSq;P*=eYJ9&cEU!Vd7w?hPaV1c^371q+-d#Q&!^e+{_@71eAT1Ys-PipTyt zM0$*u&A_7?L%T&U%0z1z6m=5XP{>w;f_qM3DiMI^w?N;a*|D0a&5EP|2y?>zQHjoUO%0x`U4$By|Rcvecn)tk@~Nv!cBu zVgYe^7YJ7@#F(e>Ez|<$#kt4+ge#JI-eL$B`VKs zbk;b`$s@c9uR-PSx%u}lFx~81b-7Ryc??HLDznL6$mQ4T7+xlr9c~n#7(e`4?b;_n z&Hgs9F=rD42fIgU^u`ZNd<@jnT~8}c6mt778k(b-XEap%X`y|Lx=W|l>m3I^Um!Fm zufZIhkL|eFs{S^{^dpAZo&Bx8z&>ZAX1n1Ugq}CpIdrxVfW8G8qAWB}m<3|eWuauv z{O!;~Uw~qjSZOM`a>EY7aeB6fG~LBm=HBIg`JBs!mY`j6Q4u)bTRb*1>2X{DPt7Qq zKVIJNamLPUAWt9bYccU^P8yEWAHU2z&xV+)?<+`626@#lG-X1IGymz+r&$P3Ilkz{ z(YBlU%(-X&!vX*N*%boKIBblR(_09~?tKZ=Xc6IGxSgHdBBplu9681D+9hy;)4f80 zc{9%fCtdexB+gzC8`0F>S_x?A264etU8lI^g-bHg8}!WK377DW_reft*xX(K_rSmM z^pQ9G!Ju#7&J?{_D)VhI7eSHh&vkt^7NF@qLfwvp7t~+}bJPdFzPoGw8T8eXcW22I z|Hoj#rcUL^!(~Y9;6+kU#+F$5Gxu^ZtIoZT!HFV-NT3lRS8qdyHK@)EkIb|dR=~%R zn2Ts2Y%9I@$F0P?fJyIuk2^-w$07bXiWomEGlU$y`s>j^s1xM~^cWC^5BpDqI0`P( zAH5oJE(|QdP`kjI9{Q>gp3AM>I{d#Ju1xw+2u%Yqdu-0`=bq$()2n#)oT%a#z4Glj z#pm{`On6UzqvZX^8GGBhyQ4vdPXU(tJ`oXzc7`>U4`z`AJ+j_L7c`K(I(1Q=l^ZtE zcx7zc()5T_z)Y{y%p4M^l-`?m_U{w9Mm6TlOizx5NKH`)yE;0W+|h6LVru;NMwxK& z*@$8y@XN@T-VqGTDELss4ovm^&@xO#EJoi!o(bI%sX&OFp0bTzH;?q_<&+QKt@aui zKS5#}smb<63I%O6b4~(#ZUdh;gaiioT-?C>(F?urr69HDZCi#0FdbU{Ah}f3hY#K) zV*rW(gB~LDEFmLE0fWMQGzC29==j5|1k^7^({h*rV$hnyx4Z&F1-->^H5oJ#MBj7HkH3P=5M%6xYO?D9!0l6M3WH>!6cN-A0TX2=nWc$xa~qLRP|VO!wFFi_V5`# z9Gp9Xj$Kl)v<(a0gyDNKLJ{*Wq>%2lKELOak~2uZEhZi(V1qse`W$t3D0U#e3McJS z^*ln_LDA9Q+kXNo+a1d7;U1S~r)*-Vo{tD3>qYR0wM6$GU4F9MN*E5=L|dWzs@l4X zT>bdwI9z?}G7{4fHk_H686)o1fDauc37Bd{$8foaDB;_m)9Usg-vzN%O0_=Y^X_FA zYpzW`M;s!qwmJJJ3oCj8ruKXlxEG2#NGdw_WAFV221~YO#dHF csdr!I$UGFBPTq1ulY*b0^bB-!HXjWBJC4d5hX4Qo diff --git a/docs/images/specfem2d_example_files/specfem2d_example_32_1.png b/docs/images/specfem2d_example_files/specfem2d_example_32_1.png new file mode 100644 index 0000000000000000000000000000000000000000..070f0e6065fdcc9623932aaac62fd5f425513518 GIT binary patch literal 101255 zcmeFZbyStx`!BjkDWyZY1QaBck_JIAC?y5ylvWx^K^iPXr4*EIl#p%&1W~#}M7l%r zKGW}Sobfw%oO8!G|K4%N*zB#qTI+r1oX_)o>fPZQYRadH=!q~G%<1bYinlQs>_+rO zfDhkUi#n|U|GDC-r006a$;#Ek^noQt)zsD5-pSS8){NEN^1(w}C&$bDBK(*5SZ!Qg zogYdF2sr$YU*LCoU@dS#ltl^NgwR<<{~-oLYKp$FGG#MtF<2PPbwznC&%~u9uSZl$ z`zNvwxp67vSlNQ!MUDn3;Fe^1VzINn%ZWS{#Lk;K9hj4o`7Xa*mrCh~KbdhlQ1%xw zvq=-qx+0b(tzx}pv-uT8+y=JmR<~o`hQp8|Fyd zq>Jz~3HPP2Ru=z6gLt7QLnYQ}x&=mUU%$#bI`VsO{Rtc}@=-0=tUtx#9DC0via|`R zpwfN$E(yIbfijaD72HS9C)+zzw6rrJv__LF2XCyC<-3!mpCu$ja>R&Z!*w=4KX>!i zwy48!aDr3KS!tggMYtpMqOJL#rwVHJFYHQRG_GMh+TXq!Nptagq3KoE#s1T=(mQk% z;lWws@S^Yz{z{ToCJ#pTX9U=Rn6g?CyZ*_ycKP)#txTcUqUqUWWm&9~+-S!APkar= z&fiIQmQBme<#U{Xj*>-@4_zp1*rM~bkY1IikdgQNxhNLd@lxN_@oK$KHstuE%u$Dj zhj+ylWIV>bxbtg|_lIRj*iM~ctTR5|p#5Ywa7JHWU$5F*WTkRdhVR}NDr4Vm>eL<{ zjLAU$JEO>4F>D9{AAC(v&xst*8IarL?Y1HEtKf62Eg> z>@WY58tMG&neud9AdcsHGp*2rUn=%P#dsd0E}=#q8^6Am!>0;4j*8z(lAsPf!_+Vn zD;rb)_>}onLx}il)g}hh@#z$XoS-H7S71SO}z&d){k5`?&Y}NUFk^k-|0$$zxCPMDS06o4Zuzk+5 z-SNhLXN@1Nr66S=OAGoclKp)M1Cxm$|z;apdQz1zz5> z=26R|6)&(%UT~}bE@ct9Pu21DtIKFNTx5H3aq%G9{5Mbcq*+Ib7and9Ty+i$pc3bhu((JoYEpVF)KSRK!W zg-Y|+DRX@Hkp-W3@zY*fs6$t3AM*bbY%*q_I6(8zLZav?>^>k>|# z`^xCovM}AzU6)+-cp({IDtv!i({+y!Pz9s4`>O%ZgYYGFc z6_5TtIGmF`sfX9)Q*GP#=f0UQ!3j{|G>b^amebLBbu3sq>)TcBz1;xkbbZ9B_RW6O zwY1VOALu9!I(U6H4$wjDE#GSpKn*mh%N~8`Jta@3_=Q#IR<92_XV51*-->i-)tENo zKZ2T|gX5s^o(yAheE646)=z4GXE{y19J4g~4UA4r}1Rck`Rr`cg@^*+OrY z=ik|QRGg^)QF5y_ai=^A;!gI&hR+ffwI2-F?3QJT5^9x+=hOf9{oT=rq%{17Vd<&~ zW_xQ>d)@xWGlQbcvAoh+F^z+BfjFnuzH+Bbc1f-_!GEJ)tHo@a1=vL1Z^nC=;Pwzpr!{a9&#T;;Y==< zO|;~djo;6Hc(gr`23y!Iz02snIv(vXQaY8M;Mg!;?IUE`fIEL2_<_}FysF}QZVZFi z893gr1x>L_9mgVI)lJ5$yii+pteB-~mC+7|tND`_`~Blh+LfJ|7|AnmPk;aZEnh0` zSc85uykH}O8M zY^M)9eP^5nqobi=@`bwEbKML-fXV-GJ>6h9R%V|Er|x*Wz<=H{?OL=MyryXTO-f4l zjhi>OiUoWFYUK8WS#Clm-sMdelS;jh%;S1r3-yQ<+PwL zF4eb9^ujiEFd^Gu{$>m?NV@YyHk*yg43{}|LrWKsUhzBHFFL~{;asMara9(UnNtze+oL(goG(7optcRU2I+(C`Y zU=_}QMUmdEf)N;xJ8&peCOFKaq&GV+lVB2r%%3=nzMvNVK6TZ7eA8*DN?@suqs3u9oi8u_uoSmC1fgcWO?MCqCo4nTu za~LXC@~VXqse@4X&Ex>ALKrr2LM?hqN_ZXJ-PRe24~WXf!^k-Xp?0MY=&=eT`MVev zM;~1*do-^uDzLuLm!l8;Wbi55RWxAg5xj5*7*c2>+`dvV$84J7*i^{X#I2T?sdWN{ zZ(VQlRQ0u>e3pznSug`yRP&|D`p0|%0Nli;z zqQTPyjd-yyht{Cf{!PvimdSwO!|1FfXaUw3`ylJT8?&NQoD_}yGH1a3((;}nWwr>Es}s$F1x@x|IFBFTd;E89)He~jMy}W9?{rCWHGq0CA&sUx z9RjsL>JFee=)s8Cm0TSu6R?ApU6uk3{8e0BGyZA%ruO!B`w^erm2UuV#A#w%RcAfM z+-QmMAKP#K{x<5T-Mp5oU!o^SXW{?1!`SfX6)Gt2?S+qqDXatv)Elr=&*v-nzx-i; z`SPU+;NRCGb~N-N_k)S~%j56TlzT@k*U0 z94`#){~Wfqww@U@kELd&tV=Q3>C-iyg7eq_;Nyu3C%ZHa2TU6UDdvHr2?jC8CN#Gw z)unoL$}%$vV8iOsdd@o49*I6V&G4kg_rMImlXrw9huuKF62M@$l&Y3+?&L6l3Xfol zw71$@?ko+JZ?y9Y-S6d*`upoeK9~C4T5I6TweOyVux8U;wj!Yj$Axk61Pa)!DU96a z`@6tGKQ*;8_-7cyuD{@VUsc6u?0@8TnmO+z_wMH#^FkJFWa>u+dPUgK&us?slbl)) z7jg=w;pmCae|WJ~47I`lMfLi!bxhVu;+2PF1h|6sgMzjxS3}Pzv62;rAH#`cm6T+# zPVp@@a)*UOZGV6Ix zHby7k&^Ei3uCYCix97uk%3r^J{h3A3vCy>9dE+a$ISkV<=$S|G%VygPeWiG!pQOG* zfj)2>rGNOlvp!DODEy{CH5J0oylho~KpyRmd8Dtt0dyl^({nl~GZj{Q?2B7tTC5CF z3!QFm6q6(kV6s0yGf3~2+J~bJ4m`yyXJo`Irl1?obK%0q#}u)NN0i-Cnq~u#>*=~O$0%&`9V2_VhQnX8 zXBI^#guOic`6??}T?94n8qBiPoALbVG6|v%5t1wAIEXX66?MoK_#$N4PG#sd8~10l zqQqzyp>b+m!$9ac^Te{Q^FQ#+TcYZJeSJYr6yiJ`&TTeSY>CLj`flwB6V!Fz$ON1a zgwtIRz8?2kRe~nEhBk70z_|4)skFsSb@xBt*{ZgF+}xXCISB(4<|12LdpIl5_U)Te zfl>9-l$2OF8Pvoye04w`gKA+GdPjUoi;*A#7Q&qDw{P2ICY1QF>k1DqZ{uji!*v8b z;FJ3B=79f2nKnLo52yorx@3R;J-cD+xvnJOal{w|h0x$9IeQ5gCKfe}!~hs;q@=Qk zf?X1ee1P8XIqf!*%9=o*#{_&!5W@*L9{cPtqI05pQLhk#?tHzKB{nDj3lSjx5ZjaC zR3^-KfTV`r^B@28W>EqVUu&i{HW~h8%frJ{Xjwuh?JW#N9SH>|lcsCINxHDG9I0I zEo6>wH&G)Uc`a=zGcCpp$V91^E1>Le-=1n38Fg`~CwIn3Eb!1oU(-L>SssE{w~Tei z${x2}i=wN4D{R{U7l<%CbYz;cl}Le_HVi@8Hs_)Rn>U|v&1mmxLkRH@Y$YID zyOswJ9_YpM-y5vn9k(+GyLxcwNjl@?2t(t?k=?{)^XuL2K;QMCokS|K|C=YHCnII^$@hKe_0SlnNAImTmt(uU`r-(0aZ5gyip7F^-*U&}D zfrb5_^oP%rfGfWjCR$>IJJxj$q{FbzAbSeb|-pje0_iwAZ%Q^3`N}lg&PZa>K!6DW0hh?&}wIQ{~b<1 zY&N}_CPDb^t;khAnnq1!rVxaMXv~K`*-|>z{I%Lz z8lnUga_wijYEOnbi?pmjEJ!M+K^ReTbj&|KD+5A6x`b2BUoQU2rAv%3p28H_8N1%HlDbxT-4BEKldv5{+dkjc%=3~53!`}Lg!^rN+*gwt# zGqtU|yC8%^N(xjWj5&$em@6gHjbNref@xb0695n=%jB5HMBie~!Ad2apb17zdRt2h z04gX(^@|0yG4RElAm#+0a=HAVe6vfkqJbV$YCjYNN92?J5QVzTUrw}wpjem<7Mki6 znqYOwo;;dgFSz@eC?nbX0>FY0IRAk{PfoEsBC}5R;(8@u90RYeUdg{#Dd;>Yhr|Na zx5D-Q$D1rjy8u|w0!RP*`>UrgU*jfU0rh&up*-D0sjeu++=@COzzB@Tgs<4jmqq@c zLg+OwxKta;U1pp|9Lm@z!Y6@BDgoQb8V7=pD6lV9BoZkme!^_By{n{d4ySFf%B#e7 z1VCXCunvTj#NoD~GddB-=CECTVgjS>^(9LpAkk|824|9eR^(k=gpgPR=o6#jXAIP3 zrZl$MthCtJr01fpT+FJoA<6g>mx;E z3P{j+mA*jbuje=Q_-INlE`9%xSkSRNhp;CgWN5Vkl_p=cb?-GJVWV62Bsac!#-%^& z4tM_-H@jCVoF7`RnABlVyF9}v{w_Z5)vIEwZ*Plaf&Rs;K5Tq)ngmk`Tee-CBy|?evkl+uU9Cn|GuXOAg5P{42jKw3HM z1XCH6(Ogk%MIq^;tHB3OP#g{+*{80M%t(?JaamM_bE7akN zWYO0gG;5(X+RL7fC>1!Ift6cA3*dp7w-n6t^g;FYCJi9{da=X^pJH* zb8pt2b%5XI0FcmO0O}M56^x7M7Qz$ugN0agDgH9AO=A{+e@oCbG>k%p4cMl9F~4#R zdg;us7wXr5PzHQh+w(tJJ(&X8ucukb(()YYy#<^9mPH9Q&A7aL z^(qzg2ZS#WDPVN#)$~q+n?%@`lIvC-6ctj>k#Y(It>I$XsM+Es6kI*%Db67N5$zfn z8O7-FS@90EBSGML>`0dMs=|e5D(`Z0NhbUbF6LKl-1ubEgAG?x;VLWlLtqT(5qv{I z;9#whv0&%o3J8dm)gFDbda-r`E*#0R?#sjP;dmtPBYg!ODA;V=j(CAq zAO!2cmCPD~3BP#UZ34+;9bq_7Mw@z+SsX^7Sdg|O=f4V5Aa6cMe&*9pHOl=DFiSu5 zTIs!Iy`O*(04mFkjR)2C(@o(d7?1;A7`ZQh9w>$*mr*5)$$j^(&H@kV**JAEvd5l3 zmp7GJd|zUjoa_(Omiub!=oEv-zXOm=5VHgoa@oNjlv|K40lyYku6&6EP7F=?QmgqP zT+ms}$5X4XuEfG(4E3(ShFAkwF7<{1M+lgzcQHhPZD;Z^>F|Q@cAqXEMR*}Fzn?+| z4iwNa%we`!0phtFmjXZr`UkXwkFCCk>#ZfAm?SJ=!&@x@S1`p40>-znql|3cnt_#* z9w{_^>Qv?hd0dZ4*M|%pV>TMdFIwa!Q zO21JJ5^8Dh=olI-GFP2=Smro32zrOWvTg}yHAs%74nH&0tLw7xCuzA zpL{c{6J79$Lll1alHBuVLIQcNZ2>bER` z4TA3MP&Q_D!5?~&L(MF_Z6P4sh|l-?B4Bx6ti6_S%XaWb0zP0ZK01=&!`JLUln1l5 zb6zsTtMBG$lpSUSFavxG65f88SAsQT?^o1UQ4XD6Lt6$Ot*MEY%I}7d(Nd^n^vX12k!r*3Jo64!_I$w0k#J2 zYzU@8r{CeavZz%jUG>r7-%SUH{#^Y=nS-UvI}OAFg#fXN4-X%eg046v^NRmoJK)xX zpDD){n-t3IS?Vytl{d%vq&4bnBhaCCX0Ko5 zrDn}UNGmS{Uhcltqg(<)AHl)J3m43k8C`xGi8{x9 z*==<^NyKS9QF>?4+#b;15}<7pupeN*fPXn07<|4@jZ=s23v}j}u_dXg3iI^|1nCX1 z8ZdPIPj>yi^}!t)0EvX%VPiC0_KfhJkxHm6Ooy`6p4%?9* zKW_J@DiOPbr1YRH{^iR;u&zXHzO(A+=va*yfux2hgpT!1EB_u(H3$d))D$?1`oi>< zF!S7Uc_|z3y6PX~-Cu$WLKoPRru^`rx26oB*tp9HeYj!}%-TX?fhvuP(*OfWKyKN7 z3qaq{wMU8P{P}v=J2W4J@AneW8afB&t-!LxfS^qUf(|n8>gXClOIU|y(%V*)Z(PfK z0$3l2fUqHmJZLx~K06I}J=rhoJc+p$!x#>w&mk!}B6{UU6X>Xn@p1jkygIpSTSkEH z@L1nG)HR36`)8;m<6HM5cyVfRF$K`y(*eKc3O!bh7=4zCY<_$ogjNu=GFFMBlD>TZ z$A|E*9g-lL*uzi;;ja!(e8yb$X25u2B8BinM z0Zsc+I;?ne=AhRTYE=ltkFDhqT4Gv$MPd5See*!e%8Yep`_wFdFk;Y9fmLj;JxvZG z4j#tf?k8xvY2d`_)%r=7je&fA3X{LvO?UHeHJn@aI>Oc=g69HS0 zP<%@7D}Z94CqNKmfLu?(hV(zoOs8~s@YGFV;EuXGv6Nh}9a#a6dY2sB1& z5F(qdb0@w0A%vC^IOBq}l9JLN*bt=CfDr}jYQUtrhpb}g9!+qr*6VOcSp@_HEag*g z0JT{Ul|97rKNy*)qq_ z82Vr7K7v0V6MUFFYsFU)b`=(Biv$PS8P)+PPpZjN{zr?(e3Ft0V1TywPQ1Swst3A` zKHT9DbeMZgWx6te+C@FrOmy`0+F&*ygLV-N&Pv#0RbqV`fP+twrTb5+0iE4#{zu4| z&uVpPhcE2n-6L z1oWUG8j?5CKBa}~i%x+;EiExj9oT^Zwo{ZnbL~DLdbVhJz#T3P+ZFu#KqP+^7CuF0 z1gehFnuG1dRuGJWUkCz*5kugiztq9tRZ`M7SOG~GpF;qx8=!#9b0$ix)xmUQeIx*~ z3_EsIkEJjQb9oGvIkCXNkAQ-q0_Q^2f#r-mnH$O5KsnHFdTnJ6*RC>p{dz_x>2B}9 zLIgh|iy)y4CIyf`zhfe(QZn&RUcz}_a#?;a;11Cx2Yn0Rgh8yAh}*g3$z MxYfJ zapn9c2$cu^Ps-5$5Q&-upFJaCkzoYwZm`5Uwy^75ykU?EXAoer-qFB5bHDw0ZuIk3 z#)l+u!%ySmLjgKr0gVZEz@B<}{tlc!``CY(kYzTrH@9Sm7i<$@oBtp<6q=}q@=~y?P zkrD&op-ZbEH5D7l5yPbpkr0P~zA+7NSGJ9ej+x#&>PmioGLXxGK8mz`L=a2A{BM*V z$$r4REFh=hp%hPIBICcsmT=_(P-nil2^MP$lGg#%vC~AdkrDifjME!}0fC%<#)q9k zh%$rfh59TSL+Rddf&Ba1i=hn-3Lq9EiUdIUNsUJ6v*O}Qw-Q88qev1+P#c?@LcnWB z4m>s`ksY+_VRe+}3;Ixlcc2^wNgaM?-~f=eUA|?(i3DKq5Z8a)6fgzCS-Omn1xPJ| zP;bBH<^~$b`(;6q2pAnT9QB$@5?{zn(}0-?4#@PE#r($M&vwXvhY9lXCA5BZ|8E_c z>o72<;r*J??IH4ov^#LGBY^Ll0RK$?f;4ZS`5{?%GEzZp^PK+}@7$wA`@XpN$0tLf ze>E zf6dScRgYp=WSPO@Y6Jur3C0jPvVu_bWoe|06g5mECn#LxQ=o4O+x3$`JvPELb6LpB zc&k&56Y&439Ay+pi9P&%Yiam1F{rH404bwDnVE(z-2ziH7@a({JL7ZEh(h7&X}J@f zu^&8qxQiq)1tX5xKr zZl~)Z0u#po56wZb_12GNmfo_gj_ypnLJ7R1DvKY2o==Aj*B`SgLIXgZ)_Z5^>zEAO zBM>i`-6D@Hg5v_8HX z4{Yr%H`L6aWb~z&<5zM38UNGGi;HgypoxrF6Py^)zG_HU>8q*5xVnk9&=~-tBgVyE z0;(w%7t191%F^1p1P=K1k=3D+P$hP9QHVZOFF}yY95V>cp=tI3oQ6vndjJsLLr}N& zzAGbTvB+A7)Y4BaN5djVQ0z%C2k?##%M)I6O!xuP2TLXC8=#Jb13lmMKjHRO2Yk5% zTCD{*>=8!jK7rVvhJQc1(rr-(KLEMN!`$YF6K7)~%?1=6=vG{RPHwIRYGB}IL_3Jc zf(B1(@q+cza}Azg02Zd84C$3QCOI4|4VCm1TizsL6xR?)xbl$ei^pmVQoiArAPtyy z{!)g*|DkSHDuev;M6cg(kk#}U|MYiIvJv`8mpD1zt#yG=41yzlPLD~?UTWGg`aDu8 zP<&2?`fNul>Npw(Vh=lXv{|qu>SjbB97`$x8+LL3+8#iuzSY`l!8Jc`>W1rYO1Pd{**%vV1 z%U#Sdf@8-{J*gpi-DuGuiM9uOerq<{D}QXsxVHvmsPx?rvqPmjZy@7nBKT*J``wPD zd6X%PN%7yW&2MSCFe4!dsndpje`jCfB(g4C5ymDv+kyN*Io1G}XK&iYAS@(Mvxf}@ z_(MGk4IL2Ud&-=Q`QXL@aJL}53D#u!_$o?3f;CHXCqu0n?jQ=9nJK`}*Wxbhr~;+d zn<$Z!SOl4-L@;qoo&@uOMTCtKhtNN3vg8M@6*HV_eyrTR#P`5B3 zZI(Ddo(AciqE6!^7`+m!(`XQYt3rc>6T|>*gd;#e;L|T|az6xQsw^)bxFK|of>29K z%LLd60-W`9moKu7rmHfLFiB9wN^KAz%i!o>cLthOb1)&LbFZedDR}7(yM&w<6^;G= zo&z?(p2wZ4o+1M*lpA?15Y9A(sLCE3MIj(Tgg&q(U^fd z-d={#?o4ZJE7+*$;DKUk1{VV`hYvtNId5yl-z3{A@JLWhVXNqB%YUV=DxYFKr)|zi za)0|tTAnPF{4?!KE&^+aopm7d4%Dpe;&4iC=rDj2y@x=#>!25NOx!re6b1!hm-?Uh zRojD|PJ)qyXs>G7APcZ0`~ZNqCuUJX?vPgNhv1MXfQCCMK>Lvp0#xy4`2@62q?8r4 zGIuyutzWBt1hNRc2_&CxZJ$h>9QZ@af|B{Ls%%%VF*$Z=4za914&XB-2-`l->jFUE z4OBq}HQj&091PWBfc8i#+JPS~Zlj-qMKMzPtzQ|I5t*Rd1Fg(Hd<=pn0eQ*pIb-*= z1)r;M>cNdU^aqYrdX#`$CxlsoQECY)AT0Z344;@-{Pz6MP}HQCzKKm(fO8-L4LbM3 z2Sule0%O^J@OV~a(m=ZDFg`ZpUH$(4@$ui!_CwE+;8-dFebpYEn)KBSaQSXb^Z*KM zXqXZ-sP_I`7}LoGwgkW^dth+sM=9>ZwhAMy0a!R&-W3%UhP+6Ut_0B8pWCN_tHz0!kbc$*PwxF-0L$kZvL}v~msw9_|voQx81k-B)fI)ktP7XI= z9)U~>u~Q__!TP*l>Ctn7!-qC5#z>nSGpIy+&*H)eFan%9$I4~VJAdJrI&56DGwMJA zEO^;#X2eqA#=o@XXJ(opWpEK(a*z?ZdRzdxFCKhvS^{QnJG=`RpaW9~Nc84}x~=Vb z(6-`!K=}FA{AECw3`pwofzvz$$OtKUC_=|Hg2FzaN4`CL|CVmN#uU&pci`EVZy_Ye_)lYw*nt7kQ z7xD`ALi_uG(=WBqfiS;_LQ-X8?hL%=&znMA?+V&M#6uTH$_kuW`pw@0-P=0S($N_X zuJ|(*2X%M}V<>O_5n>JL1b^X7e8m(3TOURVr7#GXEf%Ot%yYVf$Tqx?XIz_%Wuh*< z{nB*;$?~9;SoGLvoyedF7viAMNFCtAH9xQ%?4~#7X<0SD?+#$nBw<^W9g25OH( z(9DI7)&w6NhHOd5KVh5f3P>`YfI3qIa(#DeZ<;dcPwO&xx&l)NzMoAtvi1Khj2I{W)Hd+Vaw}fX~3~4 zp;MtQcPQxtdx~;GfRSz<`~_!f4JF=+JNSQc6I0-7)}oUw1$0fG{aGCd2!+t^Q349; zo~*z7KWe6s?GMhE@$tm8+G`0&)B->RMm`Ss-sQ12!bGfBxCK^>4UZYvPe^^ zwg)DG{sJj#n`}vs6+>XB; zm_;%pq_=Lh%7T=KGT=#)1D|65Tk35~4`i6&I9}biGLp+adKC{oW}&n}q3utud!Ot^ zp=ls%AGz6p0rclDKh@OJgP2AjfChkapuoW$4edCE2qDc1t%x`PtSuR=10O&SjUWNe z4|21fB;^@Z(<6sY5OnN$TuIjRZv%goE0E!0eNSajWP0~MrQCKoMctS5EUc~50HmN> zgv4UZDP~U$^qf)~tuF{EGy5O9pxA%y(GJ5gI5F>mhy9Cl|LyiS19|T?pnr@B1Un%6 zcLoUr0LKtd0Gayja~|ib06sOew0_+*2IUaMBS~jqrPC-x0(yZ4AVcV`_(($omX&<2Lzb})DXl022S=g6r~s0BC{PLE ztSBH!h@T_*8X7}%?a9%q&G4rzqg@DIbD)eMx-D4RK_H7(U5Vj7npW42&BW569Nw`SFcE+ z`zbaC0^pa>lS0r5@X)c&%1B1JSR^2|f)o@BpX0TkWSdDe3U4%pLOv`fd&+Qg*YyO* z2;PD7+7NP`AV|D3Qz;T(o+s@u7SvSdm<$w_JCKMH04ylO20@g{wFcttTcp{nc-@69 zP(6bXi9+a2pOeBA1Q$*QVVkE}2BQ!xFqHglX7*VUN|^IRGX-h~C6}R1^#gVB2v*pn8h}MdpCJgWruv zaUdi;yLI3meC@$sN8g0#JS>nHf{!B$NZb7#egugFJ>W9>@BkZdi(KfHOK?&s_OE?j zO#^E&7rvIFE_a#y3vd}hb|V3vsF4KCNe>CLBW2d`?AhzQaX|U{uo3!@DkTnWL?3pV zMJ91%4(zf)1kBN(f}D*WEEQUci#{rFT_2go&#wk5Y=RhrttoZO z=usD4PO>g4)ZtS79xi3bk>Av_hELwNFa$;56jlq#_1j2OO=T{D=1syZMTa~DH+4y% z8)CoCa-o3T1;mdaruLMKE6f{L=}EYE;7=mE;Ri+k1l3-FKTGPp#ECy5?zuEmfA$Ug z&v&t3LQaQP@28@E&jVbP=Yw&<3emlP&+@`kz5o4>iu75zxlOP$Jur`Pu>*%?7?G-* zNlj-y2!b)lG`7W;p1C}wQ{w>qpai>YcOVE?M!?R2*!Cl1+ZU|2LzFZai9J%A95^0*2eegX)}j z$Bag5bp&p2>*V^EDD-bw`1fQFm|m5x=F=FvW=ESR(eM29%|4O#HZ9?$ChR`9h9?^u ztV66+BphL6*xCh;1IdB{e_=hrCO`5bW5dO%Ul<4^dzyK}L-&n}OhK-9QrP2j?K!1y zIyBFonx^h6pd2O@fA$C?=ViE>aE@fQrIwm{|DlfQabSt(hHvpz7r~s=Jy_J*QmooGudFAk47?)Igb z3T(j?fln!=Bb&{EzO^$SWmUg-N8&!aj?U0q5q7aMEPBy)Yz>j8@4f3vB216G;^^>A z=qH6WN6F;$Ex!w|ojrBVfsBMZTdBmwx&7J$!H#PW*0M8ki?iE{vlr|N%rR%0U-Ke{cqUhO-c+(MKqA-Ze)lUz_BV>4X(cqe~3knfY!9GrA$Us;V#5ngp#ga$W>- zBw?*D%=8M(Gh=x)j7-TY`mCMr{lUkUE9H8`as7RQ_V(Qq2CSU@ITPx*uL2qDnn(0s z?+xL)P=&>xdVV5a7&fgacVew#GfRH6I?QN{FY5HHx4+cX;s%Qn*YiB=*SfM6o=m^O z3^4@Cr-RC~V_YivojKeC?Y#4Dck=`Xe#nfb4;I9LTxKRgb)yEK#7x|tqO;FT{66`Y zzHXfNujNQWub7qZ8=9O>e!ZaIB=|0Rw{Px=isiN!D?dTREqEU>p1xD z7k3`LmwzSCPRS;eh=q&8=Ii|MCTH7LeaD^@qeYl5J{hrgYVHj(<)E+i*AMJgxb52s}R*D~ZF02%|Ihl&Ayd>^C`L)+LakV(J%XoWn zo~Me_S!G6@a(x!Bg6q0YD?s`uwcrx-_hvIob`y$c;huGzXLz?y&TV>FMbqb8^Uo%V8-42z*%d&i#uvAidEqY>lwVDFRY@;q-OOu zUTPDXEss9UZIqVg4hDGE4j9a+e zBW)ptMK#(44BcZoZ1&Man}v7zFoUTLEj3Y1L2;wYZ0Cdq5Jvijee_y{ zVo^UnnR4W|_p8i;TXpF{DjEiOf|EwL1|uKXgOxN*XGAkHo!#EZ=k8IR&lmdir(nCn zt&&f|p1es-1y9I?qPvBl@Wx9zvPiQ!le7Rm#)R>jpgL-{NI`g;r*8@HdqWEEXuS^o z%4`}!OYI&(mC*V95VoeXD8_h?NoxIp7&-K<_DBBlxKk{gPc9S085m1>>dqRS64yUr zmnV7cKza9UwqVP8Atm?J@mXA-^{2 z$^9&JWRh^TYFgA2`*k-h?z1ddWV}uVvD9t~cZKcy6RTKVUej;0D&+pbkSFCkPLD(V?H#%qMLIN%HtEBEk4G$=!Cyi5_~GkmP^1ub}`nY1yCOcCBs~p3LgB<9YTz#DajySrjSy?t@3>=^+RlT zERrye`hGvp9uspfiQvNfT6#KM8^oJyd{Ifbg>7QF_2hNQsg3+_+VVr`0xD$cqA73$ zl_Ic8c<`GV=q4j?+r1UxhKJBp_U^`BzsePm=a8r<_>_w+cY(UU%th^uTEjqy;Es2) zAikb(xjcE7qQrPbBfZphB{G~ow`ymwhJTYuPxAb+kU>ILW+u5cwKJ3)T7q)PnWdin$>0S6rq*N`%*KiZZAETbM5hqk-rMB2T~%W8-@$`E_B+lWY<&H zoDo=l+as16uN`g>_opx=h_2A`4Td#_0!NfBudnQyUmi`wF9R`u0T|PYpT0jKpzap> zx4HJq>PomcG6bgDd^-fv7dn$}&6zy=K6#Y#!6s#LXyK3~xow53{VAat#(N@*jL@2c zeq9~X3*;1yp9yp^l~u#Lm+HKzn*#Q-Q)tiOH>K*0SbgK1;*1ipz#ei^d~+cYSMVKI z5LU&-216Zf*`^$)qmDA=HMJYXnT1b!*x%Pj?s>Nhbrwm!{*iNiVcwFc$Mnv)shBvS zSzV7ZNn2XeU0+`Y)+idguqGjmi%&&vCuwj~)X=M8)2XQ9CM5Ijhu<6G$X%luDx7{S zHb`isp-3G!8GdUoJDC?VCm9hcRgDvrc~*sFfXzbx+$f2&loqZKYt6!(Qut@T=;com z{SEz(NLE%;|NG}ZW0gZ=@81* z$c1uB@a4`>G2wp*q6_F%&Xx6`Xb#A#F1=?FN)~Qjr(czht-go-sQw~lUH@_n`{4KS zuj)&~%xs%PcEJ~Y*Cz=q?%Wk&c{+C8l|ibgf1N@Kt9OMbUBQwwKrwsD(%k=D+*;Uu zm}Hn@1LI3M!6`V27182fzjTUXt-*pw){T~a@!ht2CWzl;*1MY6s5Zo-s6(PpHTY%h zI_^kE&hSTh0)w=M;_!!#7b(<{TL798Seaio+rX&MD)7w;NYuxnQtXzI^jfiHZ+7~JMV?96W1uD)-Qx%&0&au zF5P<4W}ET+y6ehp&H!z zm~V3>Vj)b?xj0{(o<#g&rs>L6$_ArnN+EfB^yIIU9%;X_>&MGi`jf6nhNGdDkuE*3 zu%=j)RZV`gNw46PhmmP5ZUOmwWnK0FEG2ULd1cX}E~w*%w~nd@yp$zx1$TO`u}R9d zm4*j#S5-CscF!UEs0e3{njkQ>d>r$Yc-0^1?JX-c`ZXG>0j3PK!&aEteu| z5}M$&{22|(=3!B8)7<3_0)YqiAK8_BbMGtPA+HVi>$@?01rUQ{q@c|19klC?d=$xC z-7bTV^B|=4$(;Bbg!lqyBP%Q2=kPyksoB#ZtbjJO(V{du3)9HaBs;W9k{IAEB znkFN5@sx}9$0l<8!DGW5ikhYcG=!&apMI-%UBuH&ku&VY0r@G7+vk|iu#@eqdN5gk z=n98ZI&jGmUwE;vW&rEVQ(`krjP4QUM2C)*rukoK*&PU%mfUuv%RG`gksSL$x!e(r zDRuOqsBe+5VwyA}$cUi%`}x@IXFs*0PU?&I_v0~p(7H12;goBd$*EE;I^-5yl;z42 z$Nw;`m7!pot2y5qpyFu|o1&{LQW;z%+iD{?8B3-XccDI4J^ALH--OaOW`xO^dW)Fd z9SJl|y)YqtlZSVMoQcDyNaQQGEtv*Kr$brQ9PiXFoLYhpk$Ul(_9FgLgWd=?DfhD_ z?n}?UU6~+eZ#@n(Ie6%#FleVW7*FVu^-iBdQHL<&Pa(NL(4a<3i7JN1zp!#8woj$&I5SGXk!P0c5&EMIwT=eEvr1|K!t+!~}!T%y1)hc)yG!>Vw= zE>sG~3g^L}d?_8o&FuBe+&5v0@cbMdtB_%+CetLw1CG@X)(mOdaI-uo zJL$Z9cSCv|-jL7vjaS4gCa6|E@`}@Bk z+Yf5f+WKt@@3_7Wt&=5j#w{wUDY|8nfSJ5bwK#ImB9@HMVn*gi^evkVj>_OP0{lIN z!Pg=U(PW~j^wjyL_B4byIrW<_Oev8i47*_S0Mfhl%#{5Fu&KZ>d~s@l*DU{afv1{M z>7FV_iYQ(mf+et%LaI`J*odt%_-B(uH#?oPKyY;V^^fVM6-sx!5k!#zUFKo}@ke37gt5JpIFZ#)#Xa%y`MrjH z(r3>JN?(o?U&B0Lvv0Z|JL#~=9wQArT7`B-qfK%N`rv&msyu($u+Xandw-^4bgiDS zB({-2|6z4hEab}xZl~XJ1PnT*UE6Pz!$Hw}H{q9^h(WM6&qh;G5oz5$&cXZdC#TL8 z^L^v5KWnVb-s%@_;=?4u##f?T9!`|O`+)EBjW*m%0>hn@Wi8j;p72p(_TaLUZfcT< z6VF&M9phffAfZSnC~WN{zaW0?CH3W-7-#MPED>`1!Io%zoGt}DtJtSrA!B-+h6Fac z74!G_MsdZVBc8|8c)lGsaY4RU93UUb{DMLvR*XmUDrXoLkMTBl%GCm#Fr}i;N&Wp_ zY3d{C?ew^(!zah^b`1X9onk7msU@Oky~s|t#uaRt)vHx}l}9!CPLWdE0??Rle$#DI zoCl;uMI@8T;h!Y}^r&#G)Lr`Avjp+Wr^WRLt~^$Z<|{R=yJLMa*lQF{+x2;=N%~nco41~x0qbJXbCUF7pJ(B;{NOE*(hr+MF!8Q6m{a)Q?`u~6e`P;I6F{cxNqcs&datQ;R>h0DI_+R`@_^8OhUo_ z>%|}3Qo=Iq*JWcl1g}2D5t(v4&lHRo-V5=nryTNXjAq4Wtx6*ZU^u5HqrTE{A%gHf zC7*f5`O=BtJN~d}w>-De2(vooi>0Ln{4*)sO4$01HvSsqxml^N^cAWTx#jE>a19pe zQZ^qoNcjZwT}WJ!YB0Nd)Se zR<>V6@YadTDeGP>mnsQY5t-g$!Dq{*qgL~vAq4uR+d`a7HwAV2NSXZUDUIhx?-tyO zQ?ztzbHhRcGX2eODXGp$b6=vTXcP%h5idX6nb_{Bdl;ZkhO>ip%kt^Z{hm_&wCWc5 z81AU(<vQd(&> zEtlTh!zLp(d*^*S>39^%&R)~3E`$gFR|A~}O)GuO|HIasM??9>|NmnjOB%x<5lBn7cbp7fo$@VTz$jMMY+>Ef^3_ z2Dgb;ebGnia5SmDHKi9$MbLePu{==t-^*O8aV*%(?zfH}ko|>cJ_$7LG??=H7~^Z7 zsN9{w=Xa!;ylis9x&*7NOM9mpwl;HvyJtEo5Z{moZ>Y{Zh?mydG7#INSAHNU&iDqL z%DJa+|7zBXE7VYXlSee=?NiCjy~S5~v^jL;kJHkVs!j}yjvd^xLdU{I@eCRUi7}23 zdZjO|URSs9EPy=_I7hR!&Q*8MUx67=5x~O*t8}1r(3rh(0c)*qLUGeQ+nKAc1>ATB z;+zp$6-&D+gtiX;t;o#W3bs{d*KP$%?BREr_`0wX3^=6VOGuQfWWyafMBru=M<3KU zs7e7PX7zetmiOZHm=RCK|SK1atF29uW~Pl4-Tis%=U- z#b_>oZOowI>W;SKKrmVOik_5!%v~D2O6-p5o8!ie8nA_VHyA!aU|Eh>7nU~Pq@{C6 zXHNeWJ;)arYR$(Za8Z?Z<;pAWlU=umB=f3a;7T>@hso$uO|4rEUe_k$>#Kzsx0;!| z!9{#eYV~cmC}#$zRP*yr4yWy9Wa_f_eEDX{SBKI~n}3sO>@3{gh8L()B}M#+ER|Q2 zujFv~MLFvU_t(Q%U>}5ys;zIw8{&^x740OXtWB-Y<63Wr5Wltsc!M22LhwDT6Wl;{ ze;s2yZVg1CgBlEl>0Y8atGLHHj(#PMgurkUtgU;Iq@?sSBuUGJIz-UCJN7CQ}^ChKBzPOO`L1z=$W3e z?fG;AV~@%>BE(Bpud_}(qeU=XdO8z`3ArZ3bwWY~DwX0x+>E^9o*aDe%B0(xaGf|; z*+gbhQD1G1D!Od#cxa2Nj(xzl0>lxk-&c}g&CM35o;Ynk%m4{GyZk$y{PIiTp-K(V zQ+OLvv>$6sAGmM#J}r5t8=ey8;CoD$G)j6GPGz$DP5c##?Cv-MkJ>p?xD&!4@yxdh zyO0w)7on}3@ehOJO-& zR?KBE?*NzOK1?_6&X%1ZW+mt9JBNU`6QXcQ6{%@Zn~-rR(LlTjLd0sR)Xn~u^>?Au z${7!l2o=8#J{*BL+Z z$NS{pzYOaspE|ca(m(wqJyro4b4W=5w0@9=8K^_vMs3Q++!RJEp9Mn3hcmMsk*97S z7fJ`iddMsVgjpitTU7VCaqzE7KsEx2_rVWCT7ED+b@BM}q*Fg@h3%Xg&C51t{^itM z=5t8Y8YWq_`0=0YL-GX}tUZTf&%RRz)A38>a1fhi_V86brkF*rW(=6UIk|%?xs(i} zJCIUZ7GPe>ad6dk!C!p+sNy|OZe)z+e1#yc?u>A=+0G|khP$ec{{FIK$SexIrp41Y z1S`*H4=-uj9?Rg|DxbIZN5EY1;M9dlab|VDZ%4AKlTAVR)zhr+CGKCQsk*Od{h78p z6VAl3quk_3@$zi~!Y4?;4^a+aZa_B23)~_=aU%;cihzph)YPrbx)#U~0*Mr0aX^Fo z;MU(i|6q>*fClRZnuuh`wE)OtaK`MxQ^2bFG-yc>BK1I63*a!v0mTWRWt;*QG|QNI zd>qW9_OolFmlP0R4vmiXzI`4ftgb$I8otY@?pH9S>%SQILa+9XWIg*}rN47~CorD( z404vq%%5Im39G$Z5lM?DwtmPWhUqt(+Q8`k5SHJcol0yly5AgQ&-1$B&*uo%0F5^* zQG_$!L~EI>Sv_)&J_ZQTr%i@iIS!1d|_qKN$?pqJqXp5cD&FC7U$0Kp2tva$e^ znGVF&2nekQgQ!#BUhD_dl4!W41Xn8Mj_H?M+)1}rS4)EE7cBSbOwxIesCvPcN z?Op4Ka_*=iHz{VdW@EDw!%jti49}^fls=ZL{$v0ac}uR5h2(333}Mx+&x+vGFH*i? zun=o|`?cUsM2RfBB!H0ts@}i5ptY6S90M$u_Klv*z=Btk2Y6$^QY6e>^XH_OmzM}| zG(vtO2k(+Z2>lD>3lty?28x*|Vc>uQLKR3H4x~g5qF?Gd@2rS^T1oRqC%CNj3a?kE zo_a;|X;mXq4)k_SGO0Gddt^A*qKzLt1Z(gu z44Hhd>hWzu0lI7d`ESkSz|HnB{nsBvjhT@w#G+Lf;BFQ%dd{wi4NP4PGt11dtFT17 z41T4RyH^k2j5;$~sw4vI_2eeNL?CMofL0+1ILrmKuK%+g0LkI2XQAFs&jG>_GEP81 z+;5FQs>ZCTso4t5#vy-?z9%T(2J#*hxD0Lmz=;6)PJ4i&=bz>wK@S+4Ac!X5BOH7& z#U$#y0vPr*8B*OK_C6{RIyGA@VU-epN;(L`41cY5NL($ z+r#C7g&_fWPjLVc0`yCXrigJs8_BzTjTz`%zBPiC(E~_e|2aH?)E4@_Nhu1D2oX_T zcz1-i7jiHFCwnyT`a`rPz@1A0IztZtH~{*!il8s|l|X@&yTa}x$fS8rfk?Cd-%H29 z1qq}Fi4e!pGC|WqdZre_zk5kjS_A8{NN}wTs7BjgzwA=SJ6s}5yvzZ{Wv!h3)4x=* zWS{60I-O8iwWTt-Hp`Lu&k4@DLHjiX=VO(BQI+q$3Ku3uCM;s|vHMmCeBetI>@J;D z-1j|(FSi`8cN*UOh0TC~EE3}lQZj5XAc4Jq&d%Bz4_N>Jhav)qYrbg#X*~zzG66P+ z{^?Gz0zxYq-V& zGm=RV$ecU3{`5t&v&s(M(t*xLF)MjYy&?9r`dQAhw@| zyC9WXw;i!mmwis{p!Dl}rh~$QTk%33W0&v9U}cuR%o+2ei@!1zidSsuwYOwZ7;tah zr^C>2xj0w)kef_p)>BN*8|SPs4DgPOjB$qFzxi1cVo?F*Jx?>>1fPg2|8WGI{=q;I zN(*Bb)PcjIt}v&$DG^4D9G{AnfKo{h)6#i4&zMoOyGW_IIh3m#*;6KScmEgrK}y^0 zJUD?EXM*LW!_mn3ZBFN17TqBY$AP)mn?!Qc$@=F;T+}oaI%lb~Xz0n(k6qnO1D)zE z^HN=NTI$umXB|)f)^OdSm2w1aL-20Xno34~qBC)Eq8wi}n;aLMU4gD$8zLTp=MsX? z<_GXpEk z1E6(`0K|;)tSjg+sqtVw^4f{%%te)JZ6#s>qbEKt930;XwT#*x%~0ETd%^VBYnOwv zIRlAko5Qc4tZY9yH9O}P@m$(FK7$crY<-p*^T~-=ou|cFwLwtk!qykX9uf2_g-KRg zLK;nB8m>PgAH(9#-2A>$wdSF-enR2b{9lpcoOcW7vVN4(*`L|(xC5 z>^5ZPy=H}KxA(P*V?8M&(s#ysjo;X#98RA>y_U{=eo%*wSo|!y*y&Z_!7(fNja@9u z#X~5rRcIEk;U}cSMH(`=D>`CE_&pJJ?7q&^5!}pXr;VyEDKbry?TKo9U{BC9E|tWb?9n7jYAmOyEl%JT3p8xGG60eWoq1>gAVpc6l&x;huX zLP=juN}9c~K)@Zd0i6!dQN)U+T*{6q##_ThS4hF-tY`}lY6J16dQlpVJGXsVq;6d# zAH6xF^*Hk6`sr0N!hWnvS+d8lm~%?to@l_yb6AAmKJ2Hw>{Jgsf)(9Dci;ckBlal1 z4yWJ(F6W)in6HK(V%qlIDo1Cwsvlcjr@na%I#SFs6-n+ z7rem7&|Cy#SswpMdGRcMrha~#-l7ORmso2CvaMb3iw8b^DTdAaS@AyMTj22BCULRm zIl4djwo8V5iHkQU=m>W62)Qsc-k$vPoG90Yy&fat+?-i>@8ddM!L?4q50~{21uSWO zO{qrj?cNL!ilm;f<%sKA_4|32Dp*<-sQmu5<+~WPZHt%>|NQz-_k5R~WwHk6Tf^`D z_@yN$;-FLBOP(+<0O*8)&5bSa@%xgwy&a^5VUD#ZYm#=8$e+n3bJxSLLbi2=7Se$6 zG$Zlrm9tG@7OQ(fqKoUSQ?ZK<4=qPI1lSG__mzL$5NCTeE<(493*DKkbh1n{M7$lk zJKkuJ(fgrX)m2kK^jTnTt3-zdD-UMFakozGWNjq8^KQ(#1h*F}K?;3sx zZd!_|l~9~>+GMV6zW!b;QvUVtc1y%m`iBPIP(m*^pVudv({K)q{Q3CwD$zI0vM9YD zY-z9XB_;$M$6Miv5Aeli@nYeXHQK2?EO9;OQaN(P(90+$-|z>O$6~$ol(&S{66UJ2 zqpvL{V2Sv6W64B5<;xsbvsm@1l*0VqPMn7aCNbKs2z*8+?@KOU4`FSAK5s2ubwz!} z$+MH!Q$i=!zdSKC%iF1C)-xu}Y6oJjRNoKPif+EjF&wsk+2Z0~Cd`^XuC;mhrkimR zZ%sW%l1cPZAok(>QiAKM!{L@CSN|gx0bRULTfdyVnXtolE#nh(t3#71s?OXM6XL94 z=d+Wp+W+o&QcUy3zF`SHsISqyqowpiHEycnzot$R&T^M7bsLM3LqRK!q2yLcy)7*L zlr_KA;c4dCUe!W56aIqLb*WM3&lfr`y9l|Erte{QSHe4m32X^{!2!$RZo4WEDpVqV zO8Z|$pa6i^zvdT#cy9D zqc~m#ioP(TOtmWBKQkO1L)7E|DY$Y?Vc9q!l zFM-(lQF4*^$l`vGh`<$iQp~rXw+n8?aD)jWdkbz)#=Soc`zclK%-U+57~tHMb_JCf zsCzuc{`#-qIsMmUXdSS;elZmYaWm{kt>!R9w+yYB&9{g1Z5B>3e9ATZ(aUYm{gO4`kS~R};^o?uY$5#c z(|*{AeN>FMTGp1Wa0;f*>Nb2zifoKoHI&H|r=?!>*JNHY**)Fgp#pag zHBxaZ&a_nNUw%iOUaR(EsaO&<;4U@WnKIgXKR)7MJ38y?I}K>$R?JLbWNx7=vZJ}o z+49c%@EZDF;TJh^%EWuu`Y(E%$${u@64-=2lU*HnHN*Mkxs#ppIB@FmGm0ErHn2+E z3~V7~w9g$atZ&oBH1)kc*|dwkLGG8|Z+QZqTrG7VkKCG}e$k_^+`pVfJ7G_|l7EZG zThEamuXGMPIU%Q7p9#Pd6CC+SFO0U+eu((`QH0- zkAew>YTP&DA?Pk?iK2kn49|Z>)#fLHC9iYV1}Y#BEc7&0U3QWaTU-vdsBY57dPClu z9Q_@`iK=brl9atfZp3)!go<`{=OD z6jq`5EE9?>$2mL~>$z&L$19tRv$&ft3CJGDL;J}jI5+k`XXe0+Kb|O#j|LxYtr_ob zPD^CDU3=I$a&waYl<=PpPqc$XrVV{VwvsKX|0+*k^*T%!(~xmPd_O#C*qMEGN9^Ne z@iRI*-E@E{*b2B`-+)IAvdRJ{5AdZx;JRLbB?$1fv$eeqOcLzCS#lnrAs{!!Z{XB^ zs0CQ}0{|ME1xg$c;*lz#i3Hkq<*A>*tN@WMAT|>)Lqq8SBcm@UUI6h7VFe&p7nEB9 zC}%Vtf|KNObTDd@j46l-Htze$c_Jbq+jeGdz zWCSF78W^BIK{!UJod67Fybxxo%AyQ_y1)UP9VR6&|Bn&`-U)R0q5>x*Fs`Hle~C%4 zhVmJq)RERc_}7B1v*TZDfyuUYp@T#k8(9&fbbvOg`7 z&Pl^MpQfV#yDbykI^8*iZ}ig$ zdKA5xC>1rfC$xv|ZB&_(QdZRW@8>&dOXRMB8zt_ZsR&J+Z<|(@b5Xam5c|ZWs&M-| z0IWc1ND#Cex>lPXQk5Yd(7z%VIKg1uz-yfaylViZzzkui0i!boqLM@W4bXI8fC2P9 z&nrMWg?!f#o3``k8b1V-2c0Sish(gvnKu?M0_G zaEcvt7JBJ38S}NKqdMj7b32mJOWkJHVJ61mKwo0JM58$DIO^Dj^;k4Gg-q zu-L>$X27%pK2P<`PvH6nCy+{3cNheV2Y>aho^0~7bB5Ca+%erH@MHrJ?#D1F7zH#+ zs-FO74hRuSJbVjChL;>2eWRq_oo;=^=1-cp3H$`}4QG1(xLan~QLcG>0cG@;;W;&*xOOqDi6?gbb zs)kKQH?@48ab=%c{I;Hdli^GIvV*M2Qp<xI?j(<$x`ub@Gx7Ww-X8-~P5`dH%1Lgtm1}3blyJUS2+&v&2La&}P%>Y8xJDsdM zg02&2S~&d$HXEfW^5;r$$RZe&J=6kT_NMI%^ANdk{s8jBL!n1&U6ChZ;qE-!&%!+I zzCDaW-co2;&|}MKM;I3%q^Hq6GJ_|NrDQm8TX18udPNRzP*V7uL5M(VzKQfT zVfzcd@PAQK0Q2eT<;A?|u+5aJe8D)riM_s4DD3HQDCym^?dJL5NmKQWdSl?n15eHd zS$p-0+a9vw3A=waU7^$NrkJ2J+}W0u!V6Hl60w8b+aBs-f75-x$XQTKJtF@P<*LO zx~SfjU!Q9!_F}|3TjsZZHhQ(ILS`q1^Ib*J_8+3%JDdy=CydgPSD?5r;GBbU#r7M4 z>k{gqLIhgy9K(fAgn=NF3YT^8A0|W_L03jfQ4w_At5GwHgG_%2w0nOMddC*r6qy zQx*z&FV|oyN64BiSF#M#ebE{(>&H2Jrd8hdX||9wPRB-100>=VgWPwgd$*sRNvdj5S3PCb*G`-TglTf%q86~o+1}zpp;qn~EA#;0SqO-odH~eGpedRD_91}c z0^j_r#6WO;IFd0YVW6vUdw+9gGYmM<$$+N_c_*Vv0D(sUaFpI|^WdnpOwL^@N6uaAqzWw{X*NDjWZ`(*k+3xRsZM&0bX}QSb zpU>L7&VTeHV^JryRfBu|yErv(WL@&t*@&eAshA?hajV+K7sM^x*o9g_^O)~M{rq*- z=|e=sf2x>Hn`4sq>zhi5-uZU-XF5qLPXtNdea{3I1lfPn)cl!Y)1@fssyuG)AN}Iy zy{#7gR`~$KKjx>U>{_Hn4&JRy~os- z0efcOye^5NZwvwOW)t2HXHs7us)M0anHW$OzB?zTR)lkx;)H@D$U? z9)qi(SxuX1QU~$iu77+*1A|!G5IzaofPpO#l(glt7i^y|MoFQ0? ztQbY)v$t?6I;nSUJeNnc`ST>7Jhy|?>W2gD*;ET$)_zZe>8!5*Rz2hEhDQW$AgK=! zqw@WHZ|e30P0Ss6Vg^^&JaDqIzTndzhPDyPkmIZMO;(DXCK1T0j+hpV@x(|JM zUfgo5O_+<)*q+qr(=h3Le%|lpu9M=oGl+C+^j6t;UY2*hQl^FMD=7Zp2lyNi91y@o z`GL=LpwVmen?NsY2e^cV1=!yKz~aA96fnQw1TdJ1P&T@5aIGOy;ztKbs1k(mG`|jj z{Z`yK*A1dgg8>>;;emVd9k6A--hBVz!wS?nhxRW3dO3adH9a8DXAg5;maT%j*V7eE zKFB4)4zzk6KMbsUwrFlYffUIX_C88&U8P>+ZRhA$*~G}iQza*A&~Cub(E_AM$(hM+ zpu#u&P3$YLrpg+lu|02cz!+qr^W<)qn~@7 z%0LROqzk@5&S%w@-f5iYu4CGe8|~QM9bY`>|9^Tlh%lXG6zXDZv1U?hNhtJcZ~T$N z>?*13cu$0RzAQTE0rTdamr>8oNjZLE(l0)kZk}j}Xb<~4Fk?XWOGP?iYsvRQoNS%} zMaU&P>(91*z8_+lSFR_!`NhNzFgtOy)LrdT=nHJq>7O1BQ^DOqbyDJE(Zwx3isw+Z;k3_#g_p@hKuMab5Oo$h9ui^cH>%93a52nn^3(3`hrjk(W85Yg z)ziNlf7)+q4jFmID#lR%QN+*5D#JS6Vt)_zKGx&yjk182gTcdetP3vZdNku*(M!_8 zM3&IaUt;*kx3jr?!%bJ2Ifr{6_ho|5}6 zToXNw4kGU#PPzEmKkwrsEtQU)_ZJU{Oq!I(N8WRbDRMVKzPRx!Ltdn1Y>EbQW`ky_ z2pG_USu99H7ytv9ilF24vPU++J&mauq6%BwEbVGRz5VaHdftzDMAQU~g zhYbL!4@yr{#2A!kq&8jzR@c7xF)Vdd5ETv#FS7%&0eDKX?tblR?ClLNhc`o ze*-;F<;4K-Gz(xvVZmttCT2GT;N}0{T(|$Uh!6~#cY{<0Mu^uAa|4!JYFn7BVAMwu zXkmlmZUCPv3BptWBE;0ZJiwm=rbs`ujGcO^L6@owNFNIQH;gs()RIqAnlA1zN>)0# zbm+;Q)VH^xzsb>!-jzkZIj5Cb@d!26qPia6|1zmko(IfXVU%ID z70)oGyCK`ijsv0^^S%5Jk%=Yf>t_1YI(Y8Xo-wSQY*iIlFJ1h{88aW*%v$rD5}1Pc zF7o6O?=~lTlYSihe8IBAN$Wb~h#GT}N}x6MBD_-C2hEayS5WGFcIcm#S&0z9po?j_ zC?^o&V5F7|CipmjTmdM6)BpgD=xqQ2eh@5zasWl;0FOKo3~j+`CMuXw2CBYRaC~?c zgWO0!_nshnSm)af@GtmULfd-!j~o_P9`BpEBo#RCc%w`VHh#flhCxM<&;Q7T#Nl+B z%B|dNLYVC2bT6lBOqg+rbDKV%ME8*{hLIZix(khtRh3=1FYh`gRV6y|KvKI z^;R`?Fz54+DMqj=J)Du*WB}wdIS{o2u#@LPLdXG!facHu$R}VDWjB{0(bsG9?i;9( zk|A6hoH0QIz*HIlbOi8icOyQQCPDdpd0$e4>5^CGC|6%yb6NxT2ksuTe>Gh3?sFFB zaKmV0&a4^!*oKm1?W>Ye zk$pzLHw9s4Lq9JuFWxud<>%y3a69|s8SC>=qJTeQlrG7~^(Q5`pKQYGbjt33UZpAB zNpFm^vDz#4j^%P+8sb1EJ_e0673SO9WpW8Cp0>eB0-ghu@>&FLNp>*e(YXE*0cDCn z6hgpjYmNecU;*2r++_){1y%r8w;zN&ROB52A_@%*A}0VW`~{$O*abwGGH^J8PRIaa z`su(KNd!&XbL9y|pSBg$^{GJ|wdgno?`TOq8P1l#koi1`dy#`uTthY=2ELD@1_s8> zx#hVDI4fT@hr85^2>wuxJxrbLni@`yW2n03#UuYo%ym<^dlvk_7?y&6SiQVIukYRw zg4Sltx&#ggb*uT3sn`izmXz8uz93O)I@1;Woqe%hvWhxnSMG z$?7iYgujob-plC;ue!V|%UKfmhoNImigdfBTx&P|#+ZYMYKR=?K!*?6kgLWZ*@j*@ z$g;#=1ULv9ET7u1EIbg6KPV3bki-L11ipiDE?`7MOizH_V1t3!o^F6! ze+AaNZ_hb^N$_FM3t{&}_13F9ffp-)+clw3j%CXN#@b&Wzq~JN>3~dUZm^I0r~R%Hu2+x$r`r{(%prkrud?c>CT@Lbl25e!#vN-5Y2d zn9X2Tdj#IhBGJt+9d{hxn*&ceYX4eueRc-$&(i_eiv$qv5G7&_9O93k{Q(1m&ZrU~ z)qvJFaP(`aI|2zAP(=>%0uT`C5DNGlz6r4b0TT&OKcJ0lI9sv|ybg%xNV`}01E3%c zR~C_G;NiYrn@~gq+Hd?3ANA?k%LKO?!}l!q$*?fl2%Aquef9c9z9N2_W_nz+GU?AK z)N2pbu_>T2En?*V#FW~nIC#EREY{FOXMoi*RcWCpM@WS z3vy5PlQ1}_LNQxVj3}s!O931M;BoXInza^SL^64>@i<@4syhPZ3ly$G7Z=#{>IXRQ zOaN>%3<5SG*pr}~XDHPJYI#ACm7t&&iwR19pwqj7DfFhw1l9>E^@Oi1OSF%efA7Ac z(ff?MJD$c;!pQHnVy!#sMf$wP&!oEj)LA+I7+#m6YbX3DQ~CAOyXQ6hWhcw}=G0si zaCMyrcDc8xh1%3M%oDfv{U*Z&N6}t09F-4cyUSbycdzsb*1{;64-qky#E<)aomX>L z_f7A9ukYr#^E>MHk;9*u)O}IP`t4$hO%^WntozL~0qwRAnQ<|X3M~wK+mE{o-@ulIP+N9{S4zd(&@0UtStJyQW2!tem$3<^UnY>M%~5G-6S(X| z3PM^fk_c{B4;eM%KD!oE-ZOm`e&y6vp~n@MDI48D*UNRx76tahe92fZ%FK(d|8T$j zX8?syMVHS%RyRvH^c$<+{XErEiB{!Q-x9>EMD1CeAD&7z!%r!=r?ETLAyw0>5o)V8 z@SClnhKPc`m5}C|pemOSqdF8|zB%3SQ!G9p;FQ=Cyt2{ge2by*UZ1i#uTu*vR(a5B ztjUbv&nXjczb4d-+h@PIi)X`qxw3e8mfiYJ_v^EH~S>{bjWTNfV!w?ZYtmZK+@*$p+ZY4?=sQvx}WwkKuM>nKz$k?|TS?pcWiIBwQc z^TZ>Q@=$T2*U!WlF)tChXE(uD2Zy|L(iMd{*7$}YzEX{b3YqvEhK7t;@rBj=D{0v- zrs6m8i$cXp$pK~E;NsM|;0iLR=xYHJ?l!fNNs9!}#5S2MH}#3t>u~pb@)T*lS|G#! z%l^61cxM#bC;PtTM`R1h>+n_VKy?c67Le^M{QunmE(~O=>-G#wwHz{g*xIlomSQQm zyTxhygp3{DjKmMHeA5|=$k9_xVD;?_>Uqcn-P=FC zSw@dF!X2%9FLKpjk|X0C#0VvrAejkw&?yNkr*8h#%Z-|3HCty@zj2%yO$Ta#WU1PV ziYFId3*#3t3D1dcZ{wtq4+HxibDG6m#mz>^>4a>(XJWiez?t2(_bgg=lprafEzGhv zQVl!0e~D>fBP?7U#PZvJH|kq!l<4QT$lGv?O|qkRYtYf7qaBOY83SYY)q`Bo|Ba;x zjN-{A(EIW_iz^VeZ8F}ujf1Jq(wX}^#EZ5=aMZ`Z@R>spm1aApy1q$}%#a;`du8=7OJUeezh;H5brk@kqSuJCGbsk|IkG zUhE6dlbzb}9J81YYD9s4#qi$blkTLxcHx#6G(lraGWUk zF6#>QUXam)zGGnU7fl3Dm*1dLC`sq84WLyyg1u4E3nY_q? z6GXS;H=c)%MA#-j#Uxl2XuL3ew1E!36OWMKFnPlOWHNk>vN2W#l;we%`-~!6E%0Wd zS;0=-w+U^3F`s;E$*(N@8Iv-pkrTKU&JR!9B<3NnWsUHf2v{6G@jmjZ!C!4D{>zzD z)xcqM6Yr`|O@Xg5yJh{@mo38kb`=_OCwtUD<6JY)FAUHZBSdO|BY0TJNCayzFP2{j-k^S2>DVGpfIAe#-350PQ8($x9d(j(3?Nl>T}1ORK2q z^!t*;Cba=W<#Ae?b3O@xh#+ki&TQrEQb4lN#}6i|rxu7611<)p!N}Ua8QcUnL;yLZ4iwdnD$Xtw5&ynhl>(Umi0EWaq5t3d~*=XYGru-R9lt; zEba1zM6Uw^Scbc>O6IT{_>#3{-H9jIor4Ny&$oEZ8YML%Zo4%#3-=DA?E)y*q9emwyEl2q_kQ5oT28yOQ{WryI<4x)y37uL;qWatqCL;M0t0&Y}3=sTT zrVrmSyEzo9${M8LKR$E3aJxOoCC_~g?py(0CPP2p_MYe`T3{GEIg!&jxjf*cZ&kA% zoD)?4<*mU=5_CJER`~0K71Mh;ep2`gyKOiI%%H6_)ATOgR;Qbnp8u~)mIU^80?T3Y zgrIwL;5Sz7It|Gb7JjlpVq^pdC9tf=K*S%_qeCOd*%e#qcnXwppY5O(Vat|lkJJbD zF^(+fcsr(L^Fq$#EBAuzZ@Z#rzbz=|uOd*k@M7>1wG^i{ko(MR$R@BIWQB09` z`OuD{JR-Pd!4A+-Si-N@7!`A9RW;<2#U`KRUbu9CNZCTh>1fq{`>(=VRZH?#1KT|; z<=5o|z~zCSXHh&TMgk{mhv$Zs3~pf$5fzqn)fr9_#I$?3nlK8V_yJIrlbtDqF~IeA z@kT6Q?;0c?8*04pQHt5U$)_!~7J=BaAeU?JpR#BHi_OKV%NsXOE<|^Xe{(Wc%@zewO=Gn9fkD6Cg=}Z4Mq%<^7oYL3PI@t!}e1PalsYR0D%yI4rZ0nPh)^xANtvwA|j$>8FU?WVhIA)o18$y5mYq=+ZkLtt9kN8uV=k zg1zXkQulq6bqTGpC*~R}#!;&E*$s8U@!|%rIW$BFCV=xN@$SIL^>k|piPBgTt^4nY znGNS=UbcQ>q~Vp>@YxB=>x3oC8Tp&^OK|qt^5c2h@ys6A^VKcPZu=mek9nlRYwX2} zNfg_g^g*s*KnsK{hOkP}8KrvjvU6(=Vi69aPq%dr=@pISzH;0|^%;0(Z@|9mtD}}0 z>RX?ud{mL~kNT_@j5L2Cv-17g80h;e0STU3X2lDO=dW*^YCW-nNvN0=jYd*piEdY~ zFlVF$^YY9tZ=cWjW`rkOaP4hzc1V$V^tOf-Xc9j*5N-5tn^UOy9@J)2Rg=ZTvV5II=E0s99;EA8h{vf+mzh^0u;+Mk9GxaH9TDel zg<2RqibDVip&7I3&b^hJ0uHr9~5o9i&%aD;}^UqYw$yP?HCpw@Nhb45n`4P(sk@!FXWMw~ils0S0aT@w%uR5(eb^kwCmP+p*in8ZR1@q*|9CC!HR%E-q)R*C@q&; z9pZ(H1h9qxeTM1asxTpqx`iB2d571YJmZ>Y%e;PE@x$;ng9Xq0Wv{eX2nR9iGKzuq zHV3c<-$&bHe;bUvIXgq-b$xo`dk^P;tt`X%SrNxXz;4^SL^j@OytJcY4D+>Rp7*}O zv8dW9_k?4ro!~;E6gL*y+lwMSJ0CV1ziB!hiE#uwB+p8nR^>`aaQ2*NG&iMs!mUMi zA}6QfvvErQ7`j(FuYsIy!KKZNt2?WxUmHpAGUS;H<~(UzV(7iN*775))eE?>o(F8- zwM?5yKeWn&U|oJj&^?<4vqe2eW46=K1(K-&S?*4OD-V>6YGnvEN4*c#&=P5a&E zkftDS|3zx#vr^j*s}sQ6q|Mv>yKghSHLM!23G!g?rprH`z#pV-4wP>cgTJ+Md}Di4 zd@T-%!43`;8zQ1EJ>Qbp9PX=)H!N#JewqC!t~NdMOF3}ztd-5*29D42#-al%Q`+od zh%Br=UO55p|GGF*$mZx!44-z^sfcOjYvKBrw7cTpm@+PPyq-!(@)7EI$8oZ2h`%nU zAo>mMadP%8-l{(@BbF*ZzKrv4tne4%+4S4Qn46~z+xOLNo-PJ$*U@%DEQ1*wZB;rH z9FS!cYuJ7E)lZ$)$dY4YoRnW8M)ajkXM*^J)Bk8CU!H1PAvg#7`B-?&((=!RgFbL! zfIhbf_nbJJ1~$p-S#pgo*Tp~XWkJBxUx=lwSCQY=Vcj&Ck)kr(%r4f{g|6pmxBVN7 z-@es@Z^qc{+^37C89Og_WwCoxl;iPP!FQca1af%vv|$Jpxy=Bm3?2oyeeqPnltPx= zUT1u^9n|j8HWx9ckHk|L+ApZ^rckpo4gCD^ETTYk3eTe zydV-yt${VOxH#M&Xq!{6BH*%76mLDYZnc7!@NsSbTM7+E8Y^DA$1=(rPoHvY(bF(3 zrYi;R$br6NM`>5qQ96m9KPuszOJ~6wj%bNj)k@42!_mpyzLC25kQ}8N7*5$cI z5~{|T0$!1=%0ax=zK(NxW+3My<_GvSS7Vc>EG66d-&-x?FDx*L2pqEnGNu@y|IRkl zbd=-&sKXY>=xYRbs)O6M$B%t>TeuPv@d%jN`l3v94)OajS}}rw%O%mR)7&o)JfC3@ z!=E*RH`@*C*XX8AkhZM&Nk38Wggop-fu}4{35?R*o1}*PkF5}m=Fg*CocwOS?W`O0 zerldyi{zfiGmfj2PN}bY<|&qXDZf7_1Lqv)F~YzV~sGGnfpI1g(#PR57DkaZX@E4Uq7DvGah_F1mccq zzoP#lQ@!guvLlxKr&DtxNIl;EJ$R|RB7N`WbH`4t$-hRQR}~_I9Za~%d1pk@QF8Po zX#h3wWiHa?f2aU{9G~%U6lnHERU(dE<44(Iy&*@7kGw+}flMB51d{=VGt7i4`y zbrW$PH>}zrl{53cnKpt})22tH(U3O_%R=)KFGko8V2`I-+aXVa_hx~&%dl&)#n;Q2<+gEsM$^89766DI$lB^0`I2vC&pkNQ zFJngrzu)ozQIL~!Q?K9AUH+6{d-(6^F4y0@g%4*s@@?|GY;2x9f-d@a$hAY_I6sw1|^Aou@yoy9d9^ zsj!0cheQRGQ_7^$gC(Y}9x9uWp5!{X=H=KFN>EQo4it>69we%H+DlFrAUx9%ruUxQ z2rS^LY@`~Pnw7tUv)tPW{>oYd&QxWThbq|n4MU=}r5gg9^qMvB=2g#t%u+O=j`P#g zqZ5)7SC4$c&hHwo(gj_orgey_|&+K%mS)2YzZ!fKPp*hLdr_~n5d;3R1n{Lmu z+7Ev@$E&g8Kl7kU$s+H8Us)mL#kR*ird035%*z{e2=A=8_MR7fs5KG(9YE)>xK1^~ zGE54&C2ggSNC%E>5Ss7s^~E1RxV*m& zSloOdW^qFq*9ZUn2k0P!0jpgU0e1tTj)A%g6mf92LcMhxY~TK{Y9tg_pHSqB&z@ma zVs)SF6pObKi(7;{J7~*Rlk&e`mLPbI8u44Cv$J;ey#6vZtiHu)K`%>3>Ib{feiPN$ z|4SavZdl`m9X#KcGAmSW$M!&!3;4LrH@>p?g+ z7qvQ@TK-fZjaCISvN1?cRNKg!lxU%9?CJ+TP1S(N8gDm{0s8}>*=b+^wm$%-N2y?7 zyb2V{-MW8&nnNLcAmmVG|5W&vz5jf(=`AQDb>RpS1WC!snH(OX?__$nK3-Wda?SM; z&gn5l-GjaV*TzBFOwuOutI zr^}4vvi`N4kE^(T5mb+dy!x7r{FxNF!@a5$m1X+YZJ2o7tkeCTxkir7cIuC2c+w|l z{^Sbw%%zZPZT#Y_#c#ZBvz@?2#Vo~qcLy=fDiSpW)@TgXt(43wK3*dvQLwls~yS z$}`75AFgdB@Q8;;1&*n>W4~$gtzeU$UH!}zbmLk`cGc4K^irZarsWQHLe1uQC0ow? zia}42ku^015uSZ9J}LL!i|zCHY&+`4b9-flF_H6YC)Z*n*(YKqnyqW6RdcVIM!db0 z?@9rp^b{%I-WS3aOdS+R1aQIOgye@ui9j9+!hqg^)M22GF#wrHxpEHiK;!BGzg?bpTH4z3SivwgE$WZDuD)&+WRyr^Ha8ffU(0&Tp~H&cErv0XF>kJM%VW z7sC$ER+brKdeAF(xlQrFv3^}^7M)4}g+o;sG#0U^Nseob0h(8Igxd=9(VmS{&=s8mQl|XC& z6rBe05eIv0R21uD90|hJ;{`oHuvev$|rR)72;~kI~@D94)A)Ep5Jg;`_ zy_{@0HJ}vr%?CVi1G*IwDizB4rqR;qqD(JbT@lMuOEDEmBslII4L*$ji|ROwNaKYcUPVeP{r)u(E1x_ch5F?wIajq83t2cpzGeUwm~tJ&ttvw? zi2t{*n*l_MvB4nh1C#{@>jsNj1{C)VWj_L)H>>al&oq!#%BG(=u!lsaAaf1_Ox`;n zAG8dNpg}s36W?2D5g?B#h@Yo1Uuou9K3h>(XWZXontO)wf9N{vps3zB+%M@8!qP|x zEZrf}ASp;A-7KlV!qT7;;?k`kAfX`AE!`}sAcE2%B^}Ztq4(Y2y?5r`nR{pa!*STf zbIyC-_ zx)GPJc}s!6e^1cuL*Ff_Op*fLPHHjE1J#N-pmKnENaa?`JIBl1l8#QX2D=@x)U1H3Eb?||qP zL^TkCo@pe2@&MdU)^-5k(532NG_l_G7}W!SSHyu}d!^-8&6J>{zKo&=b2%OaTs;DK z;T75}l>sGT2N%wU;SFf*t&CN}Xc?LP8la@{r;HD?hBBsrQiVuEKCa+8IR@n ztk-VG`1bGR6G#~?P0*dPSw{CX5_x-QjM1{GqUa7$Ia1sprvRWpfp#K0a3u!VPu@Si z1QG!t6JSJKV#&^c1%(C7K$d`NwrBC*-+Vr`CayPHsHW_*Irz9TX^Q8=FOx57I7A3gx+^Ry)2HS?T9P^m#;~xKr;C zHU_vz9cyI^`0)i$BpmFM$`I&gLvLJNhs@s|`TuJLAYq+{rYqy_ajU8aVSNiDu1<1h&fh&drOHKvO4m=1JKC6A{4(K}nlj05N>S?o# zTm_)%!QtqlnQ}vWxgnjMc+3%qM|?@NQ}w1T*6(8v$dYjLpX}=~7H+B2(FU-gOATUs z0}$@$&PdLE=oZHicfc1&<;9xXvD~-!las&plh5Q-z5r$0+%aEJ1Wt&N8N0Qz)K7aW z4UG`li?7Km=gEHz4#1&!lpn9X-IBxv+LCppOj0PI>^9 zLYQ1uFQ|9$;@dw>=d##Rwd6{MUPCO1XMt4xTx6kbjNHP zd8NrE<9Y$LZNqFMmcOzKz%;uTKqS1Ip)(N;FvpYhUv*wSnEv!GGyp>Zo|0&V1z*fK zPJN6IJP_B6fQC&V3x9*wI1ec&fL>w_64^C4>5>Z;oqU zH9fX zhoEo>;&xjb#$;YK7N-XGnj+DZPu{Tr9{u6kBEN^P>|1mD0qT{@Y;@Mu#+ni<<4Ulop^wH_uU+df2w;%O7I`=oS(XXdsd`s>}^yS(Fz^8Sd7V*>>`brs> zp(#>4r6yt$!pvA@t=%~@zJ9j&HmR9@%JY|Js%*!kg z?th_68{_*EZ}LC|%6R!QC`7I5yO$MjjAaA~dtN9&&ujxus2?FoVO?4g%*+JvND9-e9D)aeYCYlpWgXwvob&IfTIv>j!z$Cx6hR_vXN zcI~<&A4MO=yQe@zhHGX_Uv~0UFx`wZTf@`>&flR^Hw2s4Ezsg5-sBiIipYv&OevcO)assd)*1`rmmert3Y$b5h5k)66y5&ZD?_B~fX@2lgP*bm&}UI>He8y`G%d9k zAi%lQ0KxC^QBi8b*ql_QtjdCJsY)~5!#&QuxKbj$yI`gBMCEr}etbya!@Kjus=^=) zKGKxS_IV|x*AAaIP1-k!kRD5vip3%#q9yh-1fHF?CPsEotbW{%SmK`W&-Zzny~=;B zdk2DdU=;wv|h7#NjygPE@%}xQi(+HUX!tx zzZpfMr}PkDn@ilCGwnkP3a5KBw`|jeUfrsHeG=pDbr4jW-+( z?5fOZ=L?m6Fck@y9c32XU#6!nPT8XwnosU>Z>xGB-qQAa-TBn;&@PKLx&;!mtX&vs zO6~myZOjO`U%t*|2PDD+8r*3u39pim`JTBc7s#X}K6oNFFXRh{FHkJ@bPJcq+6H`p z<~Nkg-N&>yneN`kE zsARU?_f>OWJEB|koD()xbMh6wFr3+^!Ro(gIOdl`{?d;g9FNWtsCdI?^O4_C4891I zi>>J~u#Q{gDn5GXCaN571JB_#mCR zAmWW#P$k#JSLziS95nmsYCGj$eMZ~{u7~B)A0Dv3Ea1n}Mt*V75E|I^48_k=x_2Z0 z{(%GBDyN!pTtvJ(k<~S^7C%RfXa$A-`;myv!?2LTxlJ3!@$kKFLAy+R@m4&g>X%oK zsj7(J%*pgvlot52EeNPuXnd97#!ZwIrGBmE;In1;GrhVm^@w!-(A^#p^{<`5#*lf1qd!laDo7#$6eJe|aNTek%oUn%J_0?j5 zETuNpM;-?4ad|M-oWAkAPIzHn7-XcjB5tg-Yl^1R{}^`8xzsZ@d=cVG(pjHjS@uEz zw`2z2sJE&(5fsB{OHScNPDr3n3i_qP|M7lo{a1nSl{HuKx`heV_gLOccyPCV|4B{F z_FUUhj3bg<#dT-0iR(?hM$z5(_X6M9%jFP$VEgD9c%xqn7K!7#L6se z-z4u?r|Gj^cW!C>rVh3>co2BNDUDp;Tj<^A3qhojM82t3U}~_j?^ZMBvMhzd7sjWn zLP33F6VUU3kr`Oj;y|`p8>nPl`2RmG{M!H-Ogd#9z>Ga40iSp_;Dnw7fvJw4KOlXl zu&cwth7!;bv2aHa66R2P42MMlK18cEAS<&wj++TO@+9cCAmT6ZW$G&=9HL>V0e%-9J6>jdm z!Sf2~ho7gMVC_tHORV?g0)S+DhBNQfc&}+E z0>4BA7Ax7jk=xT2bc~ubcfo;RQMn*EjscLMg$POM!>|=nAkM~C(Lh=0CIp+UrEg^w z55)NS*vbQ_nn?i6{o9ZWBH$^7gkf2kfUDjg{Cgn^km=h%1qy5300Z@fnLs4qt=fZF z#SDdD8IP7NE_~d~G_P(|4yc(+lDe{DL?hLUZ9d=9(?I^=h#s8Y)i-_cuv)SHiXpeG z#9hh|oeZB?8@!`WK63Hg43c9(YZ}$NaP2i*fmG=f{;+?)y4d+inSkI;A6Z0^z^QN3 z|8KW0o|2{p26rOjz$l?t(xTPFp_kRQbixj3o>o=9K#G}C&~VW3(gBIBt(K_i1;v>A zVMnnHi%5~-FmXp?HfU#YTIlKjRdDOaA~*p;@;%6ldy)e#3Jk3k;MyR705&lpIA<5i zfIETptlDgVcsvywn_M9@&QifEU1jjs5?w$G_G2T3U{(I+=C>xx&EHRLfkX^o(k&SQ z2eTTdA=>3jfRt5v{J3N*C8jBpx?6>|#P{eXqd~&%XPdIK_p#eQ<%EF?vcOTzV36K` zs=4@@^(V@0dJoOjh&ws$>B8uk&U3|X&T^WI0ex?&aO@VFoyL|4Y?0<0UewT{{ zjUazcwam#J9aqs@RZsjueuyLBqae9BhdO$Emd{@=F%WG7o@8IU4r*Eloc*5V5R4T%X;IU47#`w*| zx_jav)bZdeHua5F}#qWM_@qg_hCPKvWPw*;}z)CVDE9O8j=O!;-L zA=-6R!F9SO&_(Xx(s{p>h4u%CmF&_AA!e$lMEP9BV~EcGRWLKDw2A@vcLrc0!hnR& zlRcA59Eahtmv$9BWxv#!kw@9Pfmn3=?n0|+D7NJG&7q3O{Z)z8d6$vFY4jlwIpz1{ zi&fl{#7vh|zJk%JVWaWqFCr4SnanNj4*asw_iyT=;`d0OF>aO@&QdM9o`7dhQoFVB zlxX_Wqqw7AoldCMmnMhCm~Mfh%{8ofpq*o=5a46?(-n-6jreahU=-M|7WcW zB(FlI-&b~C9mU;F5#-@f1TZErlM7aSbQmC;3klete+(YPS74JjFfd@NI0hv?NVR%Z zLa)83yk+Fs0V5)of5fc6Fdxu4XoKtSO8}ETx8oQBG$DI<;?>BPYfxM>pU~BQ zogmBU{U;l4{tGS-!$Y!5snvzY5tT;VeCBgQ3JM1IiGKJC7prRK$TjiZVvDy=|9$YS zv(!)JmpUbH1E}=F&BTL7j0SE{2wvp;N%4`QKj1~?rT;Sr$F`qxE8DvE%t;KgPQ48B zPsFiZ7q4#*xHB)N!QjHyI>N(ou_-d@Nw)(5qW5&qvcbI@R5DN?w1Hh#mNE3aheZUW zTv|5pV?td|WitM&gfRu5jPdaBbb(~n_n!P9E&$MN4+if2rGQ|)HmYz6!yHgUL4c*< zNe);y!9xZMz+r^V28c5q0P(Ooev?(UN#IAe{D9pi61?Vsm%Qz#aCM;aog4*HML>^4 z71+zJ|FOoS-@ioubxzh$lX`4=>EZcBRxPR>YTx-irv&ObSHt@x0&7{OCHfwt?)|bR zXE4yOE|8e|VV`oxX3v={xwp?v7ND-eja zw*!7T23&YG_y+Aa;zTUZ4sfuhGXU0}NA=vqg4Amsjls)pJ8y&8{yv}rqk!2P4+0u# z*jQm~we45?@7vhSVXG%wAO5r7?^6CB_IrB}*n(YDu$>4HAo?D>l#sB$*O%{suMfKe z!G7{T*!Q3HEK$&*l7IOW`~r5`IK;{3m>EbnpcS-0gA9~=zQSRR9{EtYDq|d~Nnz$e3-{#l!xqmaV0(S*~#SGmAbx>)!Bijdv>#M)(q)Bp<52 z+6+^0pXK!^_3qK^$tko*yd$M(W+sgKUK*K2?|3i}AKQP5yl39?{|Jjo-Jv01<% z9Coxwj|KZldI@)WtfjbJ7f_S2NvPNyDD3Y7(Xd`1Xk@uC%R}>5RO$#Y) zxd)Wwo7Fs&fQ+((w1zsQsYwN1dbfVFDkbrhQd@GGtLU+n;ntBc4>p3L?MKq)-`SOE zo$9VEXM0Y+q0qwieG~z(dbA_>X*{#6Nu#N2_Oqi;foo}|*kp%1@D6}opgLHAb!GR& zmpeevkQ>zm`X9cTwT+2j5Aap0fy+Dl+W>98Sw{F#RW8$4oZ^O7YNidIhC)(0x9tFx zaZ)LA&5QN+4K1_Jt1*uIgMql(L)=ydL?#AA{yb!bYpfL-97Clx#|@n1Y+68YpT^odqS&5S&bU zU&E>3-AEb?=&M%DGtdy8ryz9ZUFn!+cQgvV!K9rF_bh@q%mf43yIn<@ZgR1=79!ay z+FArC9it=oPFu+=%$r;}@9YUhoXJo+LJ7j51U)VEWQ58W?9|a5Z`liMPae-{Z{YVd zcl&pU08-xZpZsmB6n7V%sSz6EQ*$-td!~>`ALWT4^sN#0S+`Y*;CVfKm~fQ>o!P*@ z&w-Fu^8T^wJtu6aLfIej*`Sjl7MFJjj|Oj9?z8m2iMQ3QlfaJmldl{|lu0$27;N#| z!ETDdB$kKhi45HOkdB=SAP}3NH5%+BfSj%C#%>$IYD9Gy$OIyq#xCbt1B8Kv{oX2= zlJ83~Vdv0;?Xs$EB_)2)ug6m84}f)f^)r9f$zD5^KiR#HcEQSr5)He=wrg0pg8`KXITPokueNUVA;1pP0}ymY-PI5X;=Se)5Iir=_gyGCOv|_=GH9-r^(b!}lKUVCsC$6Vn1Rfpm_6(N$olD1 z>ee1&*VoP7>gdmkM94Mhi!{pFA&Szphw~=w``fN@3(I-PDCgAgp;InthWUm8F{kF+ z!+)vSJZiKwUaicrp;gLkng~aDi~S~}(fs>MpD6KAQ}iCJ$PZ`J%o1CV;_M}-8nZ1V zN`nWP{ZCyU3X%7Fc(#>0i1H*Vbji_DM8kn)5tr z^t4-5t7V*BnQ4*^bZQYk5wDP&7nsT{M%y3h7gRMrSfwxc#EyC*pDr9|H*U5#7aw;d zoIlY|4C~i>HW2O|i7bvagP;c4qLx5RP(Su?=vLJ(G2stN27R}m?mq9lS`&u23jLDo z{G%fW?)ioOYc~IdQ%>TpxbbBI0{;9;1Cr=LcJVRTPfAcm` zh{{>^1L`!C`eki|C*U1@a3j^Ss#mg)#>BRQ@@tY4}~`SoAkY1icR&8 zbjL`4QUSJ&j6tfQw)B`ey1GpBel&l1DdJW@V0J&KX+&8EEYLu(uOu#HcJ}4s<=L4(DH&Pt53C&-n@9~- z7D*>0W8RBmuzq~+t}}i;N)$tAhJYjhd8<9=So2#^cIrokBr$ zN)=uPpX9G<3lF_)4DG=qmkR^skY#Lf04oNFq2gY#{kvuhfmDTF@6>?i;3_-IA1HQV zzdEf7?KADXFctt=D%?4~lwoh!pPes9Ie>hPrj=O!gKt{G2v8px$@Gk{r?+VsIg5Sb z@ws69hYcfj-uD?%aS>b%`3tdMXUKr_`C`>#S?xZ~CNfcoi#x7{Y_r6`bT4pMuyq;2 zTJ!Y%-a{C zNneubg;4Ha2qIB$IQr zonLmxB27aentUQxc8oAaSXhpfu%|wKRzD%o!?RgXS&eG2@W5{^QYD{q&70cvb@cCc z9g)l09+|xGX{(}1ygD9}OCH>}(8Ad!Z%kNcrHHW-hNG@LXP?xYRKM~ZnIX$$pFhrf zo5DV~&eb_%$ZyKp#aa^RV6KkRJ5SCITc+B{Bp083^t-z{v&FX`5w zCB;&9oMykwEGKjzOBJkMNtRK+8Nh8uZyrtWA<=-NG48EPR=(>65!`vkeQ$~=@$LbC z6e}4`-@4wUzw13`iD|!Q3T#XaNvLK_b~O4}*}3w)rqImi(#+}45VMZOJi32!-)G;1 zM`W>_rkOE%^Z%JyR?T7x&tTU)ZD7OA{FtDHzD&%d#K@@q_XWbj?jZrizi|9iCT;TX zZD3SAbDx)$xZ#H?bG@xukPz!| zv~l7dmo;m1A%VmKV$n|K`nSGP`Q(ghjhnxu=B{_2m^yyefa?%+=a;njZKY<6vu)UQ zKesp>G1st;25~OIU7*v)!dUeCZhC693IK2Hu@leKDk%AMB262o6Bx+m5h5< z^!9Hb{F=Rbq>Kx&(;{7{y4jQ$IMIIF%fvnh3TN8#NV|}LEGy?P>09E94S&t%h2HGW z;dumPgj4nsSF)~08?+;HA19qEDECVF?OL%h5wCR^dS)`FERp8k$?JF;lIi8 z*|q#R8Z{Y+{z{XWZVsm$xxkob{~#o5GWcM=*}B{M|&QEXE7nyc0P zP&kQ#Yxzs5Lh06s`I{(+<|Gs^TB$7_aKe2JOJ4E>lmk1{##-6Ct$oRL;yg^A9q z4$71}MvqW;+};rSwV+U=us?frKE!q8>z;yBZ$f8Iwjs;9ACAY`6SGW zQ#@?D-VsQ=4R;D6Tbt<{6S*xZBr&*7TvE5YvzouTC5n9soc8*cU$=3{N&r4Xj;`F3Lf%^!XYMF>@H z#%S&GSy2#K+SX4AuK0>=KfBE3;F|RwVV)bgs}Nwumd1%TQSU{St@>nlr%-(LPq9Q9gBvqN;?ca-G=j5>+5h=f;a zAG5!cmGy^7tMKWog$>G9!qK%)#93&^C|-*4biGw#L?wUus!s&Xy!VqW#*%8r8qBg> z!lz>n(NVd)Nq+bB7}h#CJkm0zYhZ*e;4)^fxV&V5*#xzK2+k3@ayRDUIfOQ;iE@h> z)X8cyldI21K@n7j(92qkXhSqwizDJbia0lTB+8uZQ~H_!_wAS{>-gY(R2zAmtb3dm z$J`OVs5(AEL663q*|zq?^GU z3jA7f;nbbx)`<0pF~%>C^+_>I2QP1nyU>YTtnMclqrphBK32i6>6qudt&>jwu8(JF zgm`Yr!(px{=$V99)glCiu1@4P+`Z@|@{2$&-uhV8VsHR4cG-<_$Srmf0(lpc1=jP3 zya)=>dA@@EgM@*vLN)eOch#DEhGiP8l-%QVP}tjMxRMb!lk}CKf%*NPkmoW`#L7SR zUYdsd1-lRIQl~U+LDmeW{@-cS23N=oS>AtPE}Zoh>3i3aaFIjVCxmb(HqH^C@;Jw@ z<_!<_5b2`BbOhp`{-azW_Cc9)h|VKc?-fG1rHq3IsfWzpa;%H%Njc~goK=r**NqH< zK&)ow;zxATBVwbrIQmqA25I*$TE@pBAK8hVwl;T&m&QMGi?Et9Nfa^T&1;ueuD4Kb zzN7r1bG^LO54lG{SoXo}#F+m>AhSMIblUTu5)jJ0=WKaWX3X9merzSPyhl)b<~ac` zqsl3+@aMh?QWFaAVTD4f9mG^BdrTBDz1_09^n&f|IsX66_4fKzR|wTI(ASLhE()3g*g<11}HWYCBm?f&_;+z^JRs19=B zA~9zoUB2E(IDK`h8hf@~C9KeDInU`t2Ub7q&+eqG(=%V2I;7|{m#)&8I~_9h7e+Z1 zp6GA)ZoADt19`Hec3bm9gYxkdXJ(@LXtJjY|H_ly>|>96HtVP;>mbn)2$3tXuBC67 zcZ~7V&%6?S#ryPz`+_%YS;jlQG^`&Q{#okXcy~Hb%9Mv7M*I!axUU+1iI3@p4LIK1 zlj&w&`uSw{=IFl28sTg&UC}&)u@hz^wRDfCXqx(Mi`LMCDpW*uneDdO!>WYeo0OPO zQfd-x!xgL)3@OlC?`B4|OLrc?joGt_BxT*7zR9R(NMRLcpy;Ux8*=ig_}=HKXcTTK z9sV?&gr@i62`e-EJJlK;`nl}cWESGL=MBul+=ThRA5&puln$fIE2{#0PvNgh(O6PxvnX3`mTe^ocSQRy_5j(I7+JF3;flBH*>p1zU5lnmG@;=l# z`!j{21+>))G14V{8NiiQ&0klF{w{)et#y*gJ-l1(vl|`>wa-ffr>E?t`8^lEs8#eZ}=11xY6mUaiZB*yfP-QJ>-3r<|QOuN4F*~ zZR(R;Gf}fVpB_aS+43{GSbk?EX~y-`&unn|L2k5l4Q-3+?PX$1;n>%4#c|=Knswn-r=Q*|PfEGklZNgUNb;--S@0*BB=`TTIIl%@3u5}y~RJIb!y zv!}fiBkC?UMr|)!`TgqH8H!)dAV$onwk>e}eHeaVS<9~@0Pgv_9_aB3UV z462mT#_#Od7vGtz;A0AtcoE4$-lB0<<(bln@mxcN9(gt61etrqx1Hf`-#mc*_OoLS z8()&?5{^BUD7{B)$Z@$8{pc;Ea8@7QG&v%KrqXRuhqfO55Hghl+e0@8lb4SeE>627 zHZ3|s^yiQ-n9P`6a|27$pvrerJY8P#y1q-fOF}E`^Hb+zFDJys5tGJF_|4p27yr38 z;>+7|{op@|&s|-zUQ1IDjpcKw5hH&8 zEL>fWdhY9pTRp&4EKoE1I#y4A43AGYk40;cJOT;!FApewD{!_QUc(t1m*)C9#`52W1+c>7rB6sm^27tM%d@m;+WMGf zphtAKX&?2h9U@G;>=#Xtr-m(p)TnV5pYrh;BvCOb65B&!W?wQHkaDb2g;~<$d5jSk z^m(taAGw!R6YUBBCic%4I7P4#%A|u9jH|2%O^l3voZ9s3IdmoeDhX?%rv9FNo?9=c zGC@s;o;)!kP6vXDwGR`H_tQ>cigoLkJT{{i!m*m`7Ysi|T2*=!gLxcLpRiAywKKf9 zqhu{sZaz#UXhG)?f462W%6f|AWbG;c%UiVDG11E=>MW{s-i<7tZ&&dLV7-uUc$^J_ z@2ys5Ej4w&;joGhl4-Q|K?LLd2xF9d0f!DHJ!B-5$xuKC4}X58oI!&`@$am{G^u&qLEI25N8juL6l#NAI8k+yC>d} zMi3g}?_59h5Lu$bC=BnF(4)P>z!tjLsi6%e-)mCRPGaDfRr*uzLBT;L_n}yiT;A;* zp6D8`tsS+7?#l2{DA)i|T^BfA=7hJ*6%l?T$X==?wr6Fo8cqLWWzV`tji=GvSD(~p zt(3nh12PsyKRD;^Xm_ml!%v*d(IU5!^z~^tjQ*{k3}LVF zM?57aXoW(-)C>`)aXuPRv-kTaA#EOGICAtXUmf@8hiXa8Wd7>yHedE)N>CpBX`WaE;ovm=p z;n9e^MEaB()W-_px|Ch@87(Z4GA8Oj!9aL*8fk2V zStIiy{Juuf`y|xa9T!T~2Wi8YoxTdZM=(WiGF_%q@K2!$AhcV%6-AY&eIrV)FRc(h zixS(fwNB+9klxj^a+1EIpo9PNmc9FzKd-fz`;1mcFR1V%qL-J$et}JiiR=tbP&nQ^ zm{eQklL52Sf*Q{sQSSME^bW=x)G(G~tut`xd35o2hNOd5?AVyLiTR&lBwcc+H!dz* z$@mSny~7_YyEpZK^}cJLa;o9MeeSRV9>SNI_F=UB_5O8Ig$EOiWSIpoC_BSCC#!Yv z@jN8WY^zAd%CY}nssW8AjLLx8)%8=4t8JkU z`2P61MM|P9&sOya7`Iq8KTzgJXBN4;^}Nzkh?(j*tB<&y4f(wg5-ppp0>e`kn)aSz z;ftM+;p2BF*2$7G;YrE9I>#_MSS}JDXSiQhOLwo!e7>oBwNG!BKCk|cUpvnVQJUZ# zT+$}O8PA*E#EP@$ooszKN++O+M~QUwyMzyTvA3wp{EUP$40Q#q-I^5Ex|&w#P$YJ& z+W1qms=c+yIT108kkO)$>9l*9%31_3!YZ&b!!4JGG$4b?&0g8s^I15(#w{N6ly9!e z@-;R&x1Sv-?bZ$n{UFQd!2nGaiF`2y4yU&@x9~O?IWA2-*-iLew7rn4fNPDGURTC0 zw%CNdi6@p!;gtEtg8aKwwR!rNhJgek$$I#1bC*m%%MYW6E35N$ohErCGb{?dd!85* zsR^K%_eE|bvJ!rCnsOcbCL{{uipA*^A-t-OM1l?c24A}~W4wCvS1StArjOkhN9aI* zC^#@{BU&(^KBA_q@W2TDhMOyIooI==H_U%zk#B+nJsELDf{lvBmMM1u#;08O2Z&|0 z1Ko4A+f#%6#+vFx>&aBvn7bK5`Y^n+=ibiLn0U+09bbcrs;RlAT8vP)1+_##rmqYW zE^QoU(x3s({hl^O&QEl`x(=_B7+j z8b%!6R=V)?SG!UUw&2S1)9yY;CDj{?fs#9!zwvKK5s1PR^b=!sArFeoDkK-|Cpr^# zn6g04lX{*f;#Bml8?DsoEIiz>irE8Y9~2E6iJkpH14e8&r@wKkz5&q`K9fX1lZFzh zqfZQu1@+DxzxIGxJPimqH(H8Q|0RN+D91^3nyRDT9Ey+^`cfg-_i?>1vi)uNU?gB z?2b5|4hc4n?=9WuAjlrgcBJTqEOHXIfs=(ohz`_YVuVW}7~TwXziik|&!wE9j1sxn zaExW-LL)1yTMp=U@qO^CT&Wl;mR_oXQ8bO;Mb+n;^LGNEy*~;wrz=X_vUB~Je2;g^ zcaROYX;L8zIyr|zi`0LWtE`UU=R>&dc%&{r(XR^v_8n13)$@n;WP@~Q=cV@i;1#O3 zU5%aB$l+Xh##h{W_e(gA<8HiCm&#a?`b9*BBC+p!Iz`^~ixRJZ$7IJEED1$t4llPm zahmWO^&qe2T&TP2*Ls&41eBY8IMN&aEW4{+fA_{WC%-5h@Pv{}#SARh{bNcbo`fns zf#vYVpLS5E`nZ4dj9!%coltq*biwskZW=zlo6ZlS!9)V z9cAJavBs4iOLPl;j9PHoZgQV90@y1u0B?kWAQ<7BHJVE$g z$OZj!+@%D#HP52-M5W`{1J#Hfo~7Yp2WAD1o-Yp!CX2t?X#cD}C??sV>4 zJ5yj1@?p#FZ#d1rP%(qCWTr=rQ&2^>wu~&mroLk(tfj_f5D1X^uqga){)zyQa7Y-| zRSZ0I+U`C;$7&BmPKP_5fN^_1mK1_s8%lQo(oG<}2`<&|297f?kXyV0njLtMY!rqF zOAMYNxQTWTtg={GSa^7^$!7X?@S1%07Mj?;D`<)w#w{JkLm0nJk*nn0U><9QYrdEc z_jJcJu#6}uaFWfX_p~4pOnTH_Vc{tf5eZ zaI;P1^mP0m{&psVnAdg5XfvV%LWohV{?U2y4|g-ZniuVN)Ph;>zcV9YCRac`3bD_x%7gmK_dP`XFKCK!}zh>3KWk@A2Ck%vG?+ z-=(3SIMbJaNl~ujcl)mgf9l#YR!j_f-&Y9)T*d4OBz1>b<L8-ARIr*>R-{lYoa(hVJr>=1;zs|q~kc}*Sn&k z8(1!n^KeGWzXT}9kMBRQP4p|!aF@iYi~$Vo{d;z4KL0;QYksm)&%=DeeHIQc@kQ2#@jfm)^x>rO@{;+|%h9`5vf|6$RJ?+YYST3M?3 zUL*g!zVozC_qk&sys=t0nN}$mRs!b^YE2C_qAb~RDp(a>*ByPx==Z?LnFX0R+pu{uTV|Dew?KUD_&o+aG#05V{o2p4i2nB)38{6QWXTfqb1NJntFwg&Vjg%WGkR)wcUFG$j#2zghOK*+xL(O zQn?gKclc6H@i$<-^}!bV7dQ<(gm$4E{Y)I{F%IqRjZb zQ>1Vg;4Zu01d7gX;Wxk2_@}U&P#76tR>*er?|gUqZz-!p%GMVJ`C@G4m49pRV#>su2|C^}b zEnfrcSNY#eVC>L!`V&ooSbDp@SQ;!@&ZFaxb2h-s0r4g8*+PJAHV~$GwPxONSxHtQ z>&6NvWcQo!em$9LogPrR1%kQO#Nd*iKjQ!WdHb&$v|*!wh>-|LN4>ZMaFrmCc}`9Z~$Ox+9lRcX68V&&0#9MIgSs7XIHJKZM=)0fZh8bC2o z?0x3DL1On#io(6&kO*Nahv9UU7D9y?W;ae&^9!Yb)tS|Ss($ffjQw`K7Ck@DhFLdn zjftLBDBt)~oWPnG0r>R%2u&R1TzUF#H&9G4QJ2|Cb(a*Q6ZsXE7P?ZJufu;KG&v6-R>ay!nKWycsK&rA{XX>_Y`P6-!30c`)#&<3( z8tT1V%J|jIKbQ_^;b=kJH`Ev-Im|Ng07Z<GXqf8E-Qf0);Jx3DzPQzK z_N=@GZdE}w&^s>W4nE1&;|||$M(CX5${lJ6-pQHK2RC#G2qn$P=H;9Y8OZ^xQL4%Q_*Z$S=#OFh4_ zkuHka-|XP9{j|cf52z5)!l8eL0)bd53E-&+e~Ugmh+QUswuFaOJ=aXxJVk&X*SPua z5~!FB8ecG$B!lfNk?sJfKU_M9bOpcs-bnCLx5lC>UAn^i{3 zJ>0vjWFX>{5^Op(q1+e#z3jCDhEhz<>Fi7`iLquV0@37h71FRh%CZn6S?fA4wAbGB z%U@s9Z~4dQ^_i@`A9}JlIFk#md_wuZK@Q0PiF4PJrPsw#IJDo7=a0)@kuhAjIsNd8pTmkCh3CD8K%#U@uf50F9(>=Q({g z?KL#-;b*@H5}uy>akD=aWx^75^#3digqwMm%|a0Q^okfklVCn=MEP%(;0bqJbM-1# z3b=hUYK1=UcLLb9AE;H&NEks4@z$+C#aWC_En2oJXywV9;wo~AURUWZx;~NqM$$U~ z>83WEB}tCuIfBLJY%w%cz^08}o!O7N!F?ti%+V{Ci~kg`?i;L9>7&cn{-n?=hux;t zL@$=bi^;}=KVL%?Laq}7+VCJKpaypUlM5s)%cF$|8+imAIe70Rw)%mb>x=flRh;b= zE}+NBVdFxc{d&6C6HY*KaMsw#%yKarg#rq3t!Ar)ht!|Y%cod%Iamqrd;a<=>M<-a z_HJ>4zgtrfFH#rPLVt#=A}{{l_?^X&Gh}L(o?zoPbLVi1A@KDIAg7m!+!NsG3g~|UCC1Zrw%*9Zdvf49Tz_wmCY#c9D^P|9A&hpQ0|^z2aVAkZ6|qkG zE44zWL1LHBY>A(>^UOm8#)Yn5D}YVTJ!vRXE&tmp^k_m%lhmi-D|<9fD^KApEoVIP z`oom0=@j!@9)IITkv`!ix-O%)l}##R%Jc`(=A*_O-Z6;a=C5*yIzeq1p1VPtmk&$- z*Jg`e6bZPtIF{>8_4ECJ&Ny|JVCokybQEIhAU}_X4_5~q0Ni)ieyl3!iyIa-liAP= zt&3J!IZUr=OWdKL7dfFPt-eQ$_iYRm{OywTi#v3@T<-IpIK0DWZ=_E053kfx3h?Mp zctYNxa71huCLI1{iU7KNe<@ZI!n#V?uos*{bSj%XLWH-qiFUmKHv0{(l=V)JYh0Y; zX^hI1qqaLU&ox^Neo<(I-mdSsx-L@l0i{7((937mgw72zCqPRiftGA|Z9bY=F^M@Z z-+ykhXao^dY;w-I-gJ%Jz^)^kzkVgXzlGhmVj@Ve^UkxwINM(Jdlv@fW;OZEH)i0; zrVTu?2MfPK(&dj(c3sQ+L=Tj89kUgNshC7k*$8*JrCH_w>(?yFkC{i*{3vRuFy?rZ z=@5H=s^a8-5OwD9P`AK8SpfJ2~2^G$c%Qqa7eftigC*le(!N zI?Ze|BS!&V+1Fua-j%UVukR$4fBH5s93vh})($j7YX@gFdXIqmrZ90-fL%kwL?^4a zjGvcJ*#dJ9tJ_~>Q8)cJQ76@toP}~}W8dW$d^S0>P9EHuaH=VaMYIOGoy`q#vFEY6 z4=5Yav+h*Ozn*Z*{otFu_|-N8xD+u^{$-M>wwZmhnmvEJ9UST3f8=>ecS}xzto7V| z&M4Y_Y6h|W^Jfo@@0xSJIm0KO-44NsnK*I(+ z-j{&y`Y(k-nC}V8FZh)S%7lbFPGoqG+E(gXc>i4X=BH7a;>dQAz6(opEV& zvhAgy(4}sB4R^)fRrI|otjq=9dNsLAozZblpGZ%ceAFyC%j?_JKqXKhRV@GJ5e}3w zllB_X6_4E*-z@0J{vD!zby&T}hKyXeWpEX^;a4;4n#$l@-T_D-Hg zR$D@z_jWLzGtT${X&9n=EiijPO<&p^4kOSu(4wn3m&9VRmNXN{oVP{V+grMxG$9f% zM>S;>X(+%w`Iv!l?diRu8e;WaK)J)O*C(J7MD?t@d|<^c(NwPfnlDZO}mI5V~GPI zZowRRC{|lSP(}ht(WJK@ zUYO{DB|_R5VIv)W)=jKzR>EDH!z*{_Q~LfB?L%hmFuw@i;mxd~vx_`D6Cxv5t(<3A z&Lm?ZW|n(Ji;054YCNQbboNUwDEoFUT@0_S(!*);kl(MEk~o}ZOp#WYv)zikdCi zO&}8t0fzB}rsGZDKt&=#`!NeoWO-_q2gTv!E%|S&*r~{r7C%zIPUuw*z+Bbv@{<cvFy2BhXoU( zoPux0v$jl~tfjE+4@l`&=YTp*fmr_Y)p>C(&aQPO@^6Geuhc6HPsA!LBMS!tq+p+h zf~qU19V6MBV8*Z*sRj7l=M`;{!rKm(6lc00G?a6RN5;BftY`lQ$$)xYHff~bCnztH zsUEg4j$ish%{7-b8yhs3$}_7PYU(|(PeMIKFJ%2hYshc;rqi{;l~o4MF zNf$A>X`M%>db@($$sg|=UMr3*6pKa{saaximA-bb8#CsWOz8&+GIO*zykoPBT2-9W zI)Q5*A?4RkWJs~5V--+irTCV}>a=p-a?qyNtNaG`&XpcIT1|ABrRb{=GVgOBf#R>IyuRIfPak{qYfz^Mpe8c83uwvJoD&?3S>L%q zY=7hF_%KR74PHv|=I|D%_SI@#xL2#qLor7#@6*QA%UTEX(RqblR|${eD38CX{aoEc zu&*j^HebEA4i@Tw$rKA~a+@KnYf}ue058h4?*^0{#DEb}1+T&+rg!tN&Vj4(!t|fP zVATA$jtokjjuP)28JatMboF2k3@)BrCGusOdKo8wL2p~N)ZRW+NlnO=zeZWVKP)iR zk7y?Z$(YiOpDAxlVpc~jqi=3wQ`mTN41Cf|mB!*fFC^EvL|9c?x_4I&qVPJgz%w}L zm7ag?wp|(C*=NE3ArRIP-5RuQq@bYS;02JxG)HsXjD2vj{Gb!G8YF>AQ^|A}>SFn= z81Lj}`%SWSJOdW)5}=p{KqmToZSudOX_icOf2*R_Djc;}da?tAX4i*@V*;pZky=>w z@p%^T3q{_=lTCG zr7^sUy7uNF9c!d}Zu%tWWJMXr1(77FN}BIsXwDoC@~sO$5KWDn+^oZJMC0Hh zPRw$X%=$aXs}uITS=GtM1;dCM^3@Jhb5k^~iHz827d{Lfj&?T0L0x0KE;({yXWILs zy=>MPO@N~Fz27`32f%joI9kE^I7kO^yt4V!%%}wnIK_en;jioIIwB8~d_N{4O*kpI zj6=*Fb7Zgx2KDDI-5SbM31R3?C%B`Lqx{R|+*5vgAneiF1G~(-O)!w1rOS<9WoR+Z z_K-kkE0+4=k<{SrZd52vwjepI{qn`R_gdx!>t_OedhRzc;n>^57VALpe*pk6{J(=p zD^`~;lrnhAPxm{6m)3uK=L-lHhemg4I;k1q=v8^rp!9$C$)t1FhjJC$j-2q*DJSvW z(g8;m-sj|wD{C2`C6rEhx9Q#5!&ZXb>tfRqB)^AF-D`;UO0)V)ev+9Irj7b|s24z( z-*Zk^{>r4oKI*#+*aBJHTL55rID1yr`jE_f49gepXY3E#);fE5hCsdZ#(h4~0oR&% z=W=S4c4*4yfiRvk+Hz4xeGm0_D@PS^6^#uHU(@uR{Guy8RVS-pgeQB-0qs7|kFoZL zAAixYH?BuZp1eNDx&3=DcjQ&s2V3(^U32NJZK3xUJD`Q0FSrckVfVzcZPdLCFtkdFPWwcbW^JaHMpqv9I4uRG)7zxe{5 ze+*nviSI{=!nv+>T`}ElH2i&2);=nf^96Tnw|e8t0fD}27{@>7#v1SA&|hr|W77Gy zMigyLMwTZjhX&Z{!tAsQ(Qdw7tmZik0XNS{fAGFMab3nk4I@<9S6c(Tj4dy{2M!Ki zEZYvfH@&JJ89TQ$$35Hp&~7W?o|MfjPg53U+npZ+8u6C%a74!vO2I~}n%3&UUNPzO z?HmWnfx;-$UHAVcGh`%G>0Fy`9-ef@GxzOHuov>WJn^H2ER#&nzIdT2cq&sYW^u0s zbn4nBB|dzi*KL`hwz~e|^QOaPMPs|Cipuu42`OdEC+nlZ2oW0Xyi$&+&$%Byvza>$ zY*_l*UN@&M(Wad`#4&hCzTYnX5m+5PdSd?~$SZV#P8;FhaNG0ysjm9%ldp!eL*yD- zOtu-hxa&7fONM(jeBN9{o*3Ky3LA>+IuD;r@h$lLg;m@j&P~hSTvy=tsRUfQ+v)AN z^2V=W1v9ckd0w=Jbi=&13`siJ zER&fhn&#H9MXzC5|Eg$oVDe5J*M#c^PTLe>7m%M?_EfSNbshz7Ix_tRZfx!D0A%ky z=Ay3aDev(TZ~UJ1^^#6+Xo**t_!S*Iv*Y9trd$`yx7B__$c;QZ)mr%^+adPnkBH}? z+Ephf0q}**P1}}yTObfw{;^}XjUwo5-Ubs?LxwY_alFA(2*9;yy)OC^2VHwZB5_E2 z{~qCVg+K|=ubJ4!s0vyU7x-DcNhA`~018c^2NQ|ujL>tGN~eE!@Tm2%vM#_{`TYHR z;?|ZARNmo6d0qPuy8q4H4-lqZ`qM8!^)G0s`tHGj=mZ2S1?-(xFm?Xdi?NSXj)$!r zOxmV?{4^e-X`gismyDl#6DJvSU#yDu`FU-tYDYAdW+p0~&Ja{Ix+@J0Mrog(v(G!l zZKds`?pep3h|f2;{<#xKch2rtoV%bI(upEke1 ze~N~#&YTCcbUbkzqcoe5lzj3a)hM&B0^6fMX-N|$Z9GKQ)z!gZX%0bL zrHv#HXbXxx)0;jZg4F}PZ+SHb%isqLoO#EFq;u(+f{=awUnKNK7?xSwOlxh-v^W}k zw+!5}RN_5Ye$@HH*}M~3$0lRngYw)ApLliftr@ibuE1qd^Y^ngjyeybZ=OYme_ge$ z@LMPv4_rRT0~KyiDx@7R4dVU&b6M79Dk<;VWa!cN4`&n`PKGxYY=~Gv=*xnPpA5D? z>8pBwDL_9wbWQ7ok>O%d(q^pg2BX-p0@d#ZFK$*Dq5v z`#$r(2pMPz49CaEA#L2#k+KoL;=%3++B%RLzhiCC`UZR(7{suGH3L{rB2cQF2eah; zGD}Nk`d?h31>M=Iuvtj7Yi?G{9RO%4&{^D19Dw>Jx3;#d;S|kw)4$ols)3``-K8^NVZg_>_huV{(K= zFfVsgAB6q4eBWfG+8JFn=~F)k#b?_OPVfB%v%b3!x;zg7?&<>D;@_FmV@IXK*+@zWkjpZ?w1rR2RCEb=}?Fa|d=;hs};m*Y^P>Y(xbdi=W4?-u(}%l)k55Zhv-* zceW|-!26T3%^B63l4?@baV}nUSvJX%ANZ@3_a11=_qsJb)h~MBdw+<=(^aTa7iqr^ z`-zK=|2P>y8rMn5%+y`^um-FBn4WZ}+ufB|Sb9qP1(Uz8EnhXY@@VbT;ueFYKmEtP zK;@t5!ZtN$Djg(k7kOSi13jE7zetcm0E&bVJA9*NCIS}8aWjO>Jv$r)t=2ryu?+Wq z%`rYep8%rQ>LIWr#ZoY!VMUfDtvBy&M*mA>LGA5l!*)0$L?VftU|IDnt)+slfD5;J zpDHxAJux(E|M|^5J5lxT9OEHqhR(Eg?_|ss`>n&=k1{_(P84e4H$&K^tRulmxijbz zh-nD;6mlcLyGuT!g6|!0t;Q*Ep=U%0i zF-_N{yhpedKb^b48@fOAe#QC1Zoud0H|qgTG>cC`U27NbqBl;`@-tF52+B}D@7`bu zJ6YEr8jI6$eqrh0;D8rxW&P^GrV0+|^3WZ(-Q8UnjOy%J=rq2+W|ke-Q4tRYFE4;m z0$pIk;O`9Qlfi=?)k9CD~ev$Iz=^hKr-Jo8{(wQ$7RNIbH&$=$=j;P`~Q*QOw zUs4=yB#*D0$QUI<}_q<{UXiJKTo2QFHAHFbo4IdPWSQiPCq)>a?oVlsD zsr+JW1qhv-Y4-lqwLQJhB!`BFAC=hEIB$$s5CM{}0^rohVKPmB{h#*Tg1~!&-){yC zTsZ`1eIm59pyOH@g7^;(8o{pQdH4J$3|UbsK(d%yQbG@1AmEOy0GZVdCIyW1-!K zx}3pN{`K7or1>&+D@YKbbUBVde{EJ^WY{6f+Nju@l4@;=91ptD7k1GFKM$L;{*Yec zCbcnrQ?GM59xWqWD4!kkDU<=xEOTIWsxprAixn%KG`L&J0bUuEpujkIw9n*=u8S!V)y4;DZwCN=5<5pl<8&tBN0(ThxiwC5@K)|Ji z$J{>6IBJ%kzNh=XA%7OrSl)hJ8hjZK(J3Z8%g&het%7r!5BvmVs1*U{ZrS}sNl;2V z`8WRo6kOu;i}v>SoxyL6o{ts64rz1D0TG!NnyUUOd@Eq%i-+44>e7{xF}$=HosjMp z-E4esF_Q3APP@7aKyLgkBFd?UJ}(m1*v#*(g>(n?-%_6^L=r5?vMm0xFLEv;YD$>$ zx+RwG{@Q3gsF|N=^0ey<8hy`BI5s(YJu#6KeLHhG%oGQg>CLd*^|^oMp5aNzz6W!% zL!6&tlC$sfX7I4(#^s%=mae>=!Qe)gdz;l9Ak^j0dT{dRwkNm3sa281hw5q!@SlvT zAAqZyQ#C^A-%^j58F!RL>`6j57IZN146oljQ21Aln2n;n$XhU5fEoM=PH!?8Kn{jD z|JfUJOa?&^1x)35)z}5N3=YS;R33vfW8t$VV+W*=(qdplz`8e;N%I4GCiG9xfPUo% zXi4oFoG^$-2)&tpU-2wPXfo)zFYIk@Zi0wa@n=PHIGu0!y4?lPF`pGQ@ehMAj{-h7 zh>fIj@+)}(GJ8M(ByeSlIy3DFe8QK&!R|E8H2(P*{{5l)gPuCeH+dyN#yz2BdUBI0 zR~^o0X4gylWBP>5`owF}{o};b(ifNl(w<;Dyc@KzmcQ0n8thv#Ev78bW%WpTo~GI4 zF_nI5U%m*mx3Nfc{83S(tR?hw?^+&a1sTM#w}zH+geLyC`A{tG^VnDn81FF$lplBJ z?~ou4{hua3iK&PY2H6S71O(rIU2kdGY?Je_cwy-ta(*`8vAihfAU^Tl4M}9u9CM?J zASd!}OuU#Sk{C;nvHG@zoXlEK@{wL-&D=yYT=0CrbK!+1+)f{B`XexpO=YMLkrW#3 z-GKAU@Vk^6d@s9i!#|ZG%gXa!uJkHvz)Qy}-aPvCiDstOP%Z4xSiB*3&1`niu~v}# z;i-z_$4mE{J2n<-S90SaLZv|_iarzN-3p+C{|tJ-Uk4%kZ)_GAXD0#Bi)`tozrY$w zuL@TFg8Lv3WYGqy1_u_rLkmFArvDd2gQ)xvDCGZwMBpxA|L1cA{^vum6CV|o*3mGk z{*_}u&qlURH>JE0|9YPCTsG5E7Qj+{aARqbnOkS66x68slABBXXgKaatshfR(q}=a z?ItK)e5M>E-v)pa{&9v@X$wpoDz^u}b~2@VA?$H50^TuuWf4A#)bbW~PslBH5UJ!# zW^O6nwBVj`La*&ul7F-O)AIcEZDkYgNME7D=H(3e*#?3t5K4H`mwLO2B3}eGh)72oR(StcRr06q96hCcdtiy2ItT!&bmYXycqAeka?=Gvypcfd zU30{H%-oYm+suw1FeJ!#KMmOMPY|yeUt;B!xsV}@;$4pNr0sIxkiuz3qnev;t}Iu~ zF^9A0h=87R*jP`&v?yxlO=sW(Z&6elY?r#{bLuT2B&(nwyjk|evnm7Ld$rQe_=RF< z>UwzDz&NGoMMPPjP!dJ7mj>J&`_#;vNRBrDTStksN?_k)<%sr=3g2!Mer~~!Li8iL zcrY7rI_cgCd!uAQDF4{Sl!qRr|Kc;-)4%K5TRVZ(wqERwwoZ<%<)9UxrCWh!Oc)o> z-eOPYrP%VV-Dzlu+NViy1#xEU*P&LG{&_R{lm>l0;)^2bF~ z;U2Q+&iqA#^O{m0E&{}e!6>t5DDWC1(M7O)t(>ZPO0x~r@Ah+D97U{nm=p%m+{!CMiK5?PzYaSErJnastcb9#V_a%)1ErIGSCj9UBku6PfGr z3Kh|@PT4R9M3anP4_p0SKWov$z(yB8{4G5J02i3x5KgFyn>R@tUxLRF+oE-ZH5}%Y zG>F#_{cK=gtgz&k{Fh_i`X%Ti>WNppgSCJ2+K%C^#Hu*wYyqmrxH7|X|EW20!6Ic> z)>a#6JK1wS^Qg!O0g~7`aAHKJq;gjmiwX9#wb-1I6K3CW!|!}3_$;Y^ND9E;%2XrZ zUDD)Gd8{^C7rKN8k+E!nJ#cWCg7+()dxNRvCRsmQ6H2g$cw3iZptd|sA$?fNY`diD zk!TV%W+O0O+|=M!+}_L{8kZqtDL2pP8i6iI?a#O{SgoQ3y=AC20PfL{6mlkB#~S;T zdLSYl;a6`^7Vs>=eyuaVveEWYb*UdTx4Ck2raJbKC$DtM-X~nIfLSZroOPXI6ZA<& z8&jGA*3vUEJ*fh>bc#68O~BN$L{j_J$NVu-tckom*sIjVp9U;u=KQ#5g1k?KOx(MN zLH22A&#g57nDrl=6!#b2@a5yz-_12UEi}G}N;!jQqZjZr8Xt`zHN4VDmy8N0PtOzz zlD5LOdyD0S2X&TuhdIRDdMQml#|&Ovq!#O>z4Im19CLePFH$u2kYWMwn>M?#UgmS4W!tustu+UU{+cWlhM{pPJq#4XGgWYV z52RH|C4OEIol}bGUH2m#;CSf z+H<4J^(n2WXw#Ewo5*)LI6LNz!etUb6Kf4zaM+7{tIJ_esX~}U&DuP&HzXn>A60`W zeN;!7OzIN(PyB4g7it-dL2U=hbi*I7d8R^EwRjfYlCgj&{U|pkUYf=vbB(fqvV4(t zlliqxbZN<_|Kxdv0{Hdh%#Ll(R0<}Qlva><2Gm1Pro|ni<1!T)LZ~wrEP@i(8J6!R zIE+0m?xYsRg&Q*hSy=l4OP@1M6eD<=IF_{6e4!bW^?bp8(O4*CCG%p*v~RI<#c6y( z9Eps+PP%8VD4pccnttwbngwfS)L4QcXy%A!CdfSGt`YYLa~u264_fhxh3I}pW1k?= zk6;99i!?E533kLpGIJflMKV#MfONj2!kDvu%Grz+@M|PcIX|hLqiwqaV+_fsoX2+i z{J8V|atqU#K-ly@S5+>NFI2p+{=PP!V88skT6?FRuwJ&N(sgX?I6ZH5F-{=Zv2m*W z&$NLbcqU`7<@H$CGn^f+naNaeWrEK>^NgQhx?M=g^&~d9aT95bcd0H#KpQqumO)s} zd;W{0CAWozbEfs4eE-r>d7MkO9I7vO6#)KN>+PL0H4U^ySj{8G-y~7|fW3Oh?2#o# zyijL?P?EFmJw0D$OD1uq^Su4liPl(6aFt_U77{11Tfb{H(0%wsk8PHg{A>OHah2+Z z^7&-zN!{pLj?-S*o&^1lH6XMAS6PPeKDG04fJtENz~A!LyD_xym=PB%9*f_X{}rpG zfsTRi*EZ*iy`e0(_#39>dwlk@{Qk_451G(4nq35zNx1 z1oo(>#9iusEbz}Ego(yLvVCSIA?y)Z(YN5mm< z;Hm>>{F~TnxN+(1fMmiRPeqYzk%@@CYqnfaZHG9tdlRMnBv6>8SaJ1Y(ClE-?n{yH zw8SYI2ci-87qM{m$K2q2<=jb{QK~il1&}IiI>&J0iIrT+=ei81 z2D+I(NWP_xsb3qE@#igKKvC4ep%;I`;oT>e( zoMrl>)r7I)DeR+iE>ZJmF(!ij7Yro~RZ8Gdv_KmpBc$3{3T`M?eA6obbOxm@EPTG? zt1u@?w2UH$@lEii@#>j-XYj6p@N78(e*Vp+;?q}m@dHv7(z?a*H{bW-#ACg;%B3Z8 z{M(iU>gxK9&c5lWkmSoTnHMW!Vz~S08!}xyV%^jR>B*l(!~70TnR3630n?A@z&{Ln zs&CLC;st@9Bn{Lz&KZosyo?dGo%nTpW@rNztXuwdzFdzh4%2e(529WJB9^nOa&0YN zFpyHQh1^~N&=JjJzf9y?mallR<#~IiBF~eDUpOheb-bU`ovni~u2m@DLm9}@p<>`? z_Zo^Y#piCv&YCCW;-3k75hbpTQ~JNl8<0*&6g#8O3fgleP%Vh|r!G@k8l7p_pIoBa zaLkUv=kD8?0=O><4>pBZcZ`~D_d^Q??J>4yZHu(-`jVP3N#}k>VWA%No)6=rN#hc4x53)M zla?L_9Y5KM_FaWq&%fzcof8$*NDm8Jxn%g_g3W&dSb%4s6I=TMngukCylk|~L&KLD zN_V`?D8pQ%?36XU3z}s0IM;Knx3if$NN@O_>H}PnNz{0|NUWyVhxe4~60-KJY|nHV z0I}fexI`4M3|3iEznmm@&9HIq9iRH1H%k`^I;Oo$4QkuTqR`P?8QAJYW)pP~!34a& z?kZTu6r{aEne!Dqiu3l#4V76_Ytp!PEOzXOEDKnGw(l*0dk+u%yFMFv9hr@JZY2bu z0JWuK38pYCj2biBDl=rt+$yKfR@}%f4{H;gzdFJO_##zPPVp@Eu7T8^M|4;cbqOEH z{crD~jB3)EI!OD%3ygw6cn5iBO(wguBX4iso5C>2OX}gwc_n($b8t-dof|zzUyIFG z{a~Ra7MwRwXa#>~O=cX5%Df?%yxnMk6u&mCW8 zHmkrZMU8W$y`I$)t}LZ}&)Rawj!`gch#n9>%V2{hw%+CcZGN21D^c2gS^h~Xttm`P z%HQI_i)N4pczS6B-`(T6pvx4{Tat0P9Cz+aL6+?$9QLKlMpOznxPe4=O)Z6td_dfd zx{5A>=NqNVJhXi`qRYDewC~XmKVo}@?~O#MTtH*v5RVnt5ScGjl=;;s{+3< zgcnPb%A8%v5=-airsfR2hohcARlA?sUaTuCa+P`AC_saW0za;$$CNovSwTCf#S=&F zo)_StXuqzJkeY&8+C%I%sAq zSI_u|ewIu!>`IqZ^Zw7+Rp2%|84h*U1;>^|;!26wz3EE;}mO=0f6 z<|nSpR(3ug4(w%#`2dy&XI5r+In^^oVJL}Yi{Ny>a$b89u?xRLJ zbG7|dv}Yi-o>v{t_pPb{YYf3^K0|>@Paw4wohL>BKg?5M#T2m9hG!fQ%%^^mS(Hn8 zp%GVSWU_ez6qz60F z@&rlQ?tA8uh-Ye}$*IhpfJG>cGJPX3I!A0%FgMTLs>OVv7C|!G0Cs^iA~ALh1e__{ zUI>sFU}IN!ciY7$CWejmy^bXx7V)P7&eW8%<04!@9P3>{UB$y=$Fz=}!VF#>K>6zk z-QQbr=%l`~S=omczX3mB{PF~?ewz)XfU#16LV>%A;Z}Zk$EeF*X`s!a!&5LfIC6-P zClvlTe;=gy`B28;)@Yqe<%mnR9uvSib@@fs06aXf=F_o<|fvpx9? zPz!EKt?e%m3~a4jP*G|h@4zqU{7vaG!T$&J0Q%WF2FG!-7w4kP9;7cYj7?il(92+% zUM6k7n7?R573&#uC+lR4BdQy{A{TZ#}OYG|in(yM^47jB4MKj<2%Z~Cww5J9`FYl6$uovq*`w^}}5}AXj zZ^Z{;0NRx)s8j62{*u3g$r>_UGSXqb+SbG%7bub@N1j!#(S{hF^Kp28kI``)08h+z z317C}Do;!xN3XYYk*;)HA>iu!E&PY0H^VBb$#?PlthSsWKhSxw@$A-r^jjAjbl&7% z1JntXGq7KBB22xpse?dtf}@4!kprk8$jjWW}x*m%RO zqo$-}y4*i$Z{afUf`1o)iGa+YSD4Tta-RVtRdheUW5&+&7>zwOW7(R=^@_+gztbgCtjV71qwd` zn&ku;CH@Yp9LN zDi#Qe9z!7HY%dO6ok_U#Nr}ag^d$}3j?e|B6<{=~BpyhoJk1sJ7%H0n>Ha@WUY#WR z)A$O-ByyAbRI5_pl`-tUR2C8W;!-h(@z}cdS~Y+Hd63lLW3OvJiq?DtK%0k#8u}&Q z2y?kzLSlFQye2z&QVJM94)=X{*SNcBVRsx>lFQ_g5vR@|oxBpXxq6Ft0;NZnHksT0 zJLgvQO#KAa!W1@!@UdZpz3cqMXFgq_2|dlGnluHEvL`pkEIo{kioE{v)!+Wwn*tks zP_`@T{&HA|Y2-XNDGVvuAEyhNapIX;P-HyF`vdoV;rVKWy?SAa$g0mAg^uw4ARYMO?Sz2Oq{{i*&p2gj7^!Ex*Y!3hDhK`j8zveXlvq=5OEThJ zHVUg*&dph3{gq+rd+)WO7wv|G!hyYMo?TYIT)ds;?C~B0S#z1^?7??L07VVSn~{L2+v08&`M0z%_-A)jf*#u=fcs zzBT$JVQFuaSV9A1yrw^LDJv_#+XGtPA!sjzTyQ+tW-?f0;QHuX%US+*(0q>_$HYM0 z!jNbaaWpy8IVtVf$OB>5CnhF-c3y2nKzMFQDTM?e`g^`YY~YSgl9u%XRCT`4)%AB? z9(;m4{P7~VnCE}K&zg{VG98&-qbD2?u@M zl#_bWe=f$wrL2idd4*!0TVJQ;_pe)Q4#DZeCGQFrm)Ew`#a=!mV)ge$I+x>2GDsaW zHwO+}8m%rF7pq7r>(db(f|>OrtVK_n3L1r$wnN3#IFCH&B+&@!_let7->y)bkvJbm z1b=^8L(UC+SATc+zPUHr|KBM%z=)I;IBN61c7e`yz}F7~qf6MK0ac(`77v@J*p;s7Ec+}7G;(&{X8MF^O-tay-o;l?Ob{56XWd3BEDz`bnFxPERAtwW& zAahy>T)uXdSn1dk)Ip6&;`U<62+MZk&W`*#7k6_Eg%4!FcttS0JJ2Jx=f57E^ph1M zkOlUjR`&_Wq57{IwodBQWa79-&4w$xhlT}YbK1P7ygpj@u=nE15cpSj` z2Ms!cHP1S2Y94m$szgC8zab0UGqKRAc*(85`2h57YGr-`y$K-)^)vrV?pFqkD&Q5& zX8kEhgK~vA#LqIbgz_1hiProeO*D--MBEhQDGMOB#NBPcXyU@!J=yIig+;yz^cIq7 zb`|ZH5QmJ%6^}LgFo;F@`(6R4E+9nfWKaSN2*rZsAp0et*^8I`m2!vCx*1 z`fM-T=<9ieO|;xIMo@hJ<*#YKHg5089V$8}=l&*-s&}=EjWK01XiCDdxXdd2Lz)ns zr9R%@>pg%|V`AjXlP;MgWj#ycG~h_H9llQYYKQJk9+p0fworZJq7HG4?mc^W$-w7r zd#m&bUG{}H&q4s9g*jsmY%I^o!NI{0*muDgo+xNSpOr%(TWQ0-Evy;17RrIQ-32gE zIw6DGKd%DRpAR_*q1Oy{KFbw04qQ<`f!&83_AS4th_)_;Vqn`$5m+^{?4$ zI9eWkKR*9(lB!UXuC-1m2F(CIqlu*ydrjv`855zlMJC2#M&=69NYeYc72NFjTW|fh zq|`8e(mqLLcTXGLZk|bL9+Xa7({9UK`IB|Tm78YJtlh-Q`ZSzKgMs8M0cKB46H)uJfJnfJe82@R8U};U0Vs=4Y3^ znE)A%AnO~oXx6{ZamZU+TDx=(vWJF%)^A!EFo__D5^B~5HJk0t*f>MES7o=Lq})9{;tHefI|zDr{xdEFHu z8QfJ@+L_+UKC1Xi7LoQthtP)^!~15Jt}^Y^%@%2Iw_ZIQz0zhsq(Nj00X{Rx z>IO}31dfhz(9u^B^2-@=7mwEkO8y(s1E5Ilz%dlO0Zh&Rtl*G61R8)cuQI5(t>pE+ zj_s6Gb{Yp+|A3)@qTIEId82ylre7xH*bz(XgTO#gn5N07%nD|DF@m#sCZR^zIYj}e z@Wq$BMiY0xa-uwSUhGB7S4ZzvAPEXjN;jHa|e8lzctjCWv+{FRtJQmc6b<{6iduViZV<4Jv9&9a&jwZ z_pC}-19RI~J!hr_8^>`QJL_y$&4BRmE76(@2yIaEg%hZqGG_JgzpTACDB!#UFSkW4~neRz| zX^k%P%Idql(y-mIaEz5V=tht5{w#UT#IKHN;SGq6tanQpZvhWSGPjZR$HAYtKc_E? z2FuHj1qQM47?pkh@2iTZI&fwhl`B~GijO(~xhdz9YXM_1@W@7kh-XV~m6c+&P>UwOp?Q{A zeAxLaeJnu=lu%3M00+B)bH$hbz@AAAB;Xkzh2Pz9mjC%fhyF!?MSAR!5LI8tq@7k( zBRE7_@|g(u+2Z-M;bfTsG3<_Ce}-2V)fn2(f{Xc|DDkMr_Hl3E#Y^I(ADxN1CPT4AMh*D7 zaPNKOxQKy#?(;`w{H0>38JD$#5%+6a`mvRsA|t0PftOOPw-47=jakv@GZl4dR{HdB zb~a>%?WZix8;Ai>&)6dQHISnxajYtc4dzNg=dtRU=SeYd*z>O ze_UrPUCl5npU#tJI2RoToku( z>-iT?6rwn_V{wt@7LW;e-TBl3xKo^LGvL^4#rwBW+s6B_8=}8Y9Q8EuXQIbDh`JjgRyIXCvNAIo)N@L(4K&M+anhEx=s+Ru! z!>x}x)sH%#Y1B{tgUT=N7cBdG#(40V`UVb6U{r-@J8zJ-utuuzQ*^$Ye*f`@M`3Ra zYP}m<0>B-DmWh`%C|T|l@&e!|KH1k(PP{(2mQGke3hx*jD%n&u;u2NvYs!jNk=VeC zwQV-J%xV!`MCwByZ0$14>I}6&y&n=@5_#X#jq76qMpASBW;I=Kf>3whe=~z5=+ZXA6b`K@N9e9 zZDM#w&vV-jU{Y_tw#`hGnWnz5Sm}8&iK>;$ksP-eZ3xQDhp_}pre|^MsXOM^IOV%b zCgdW+HrPn;Nu@itlsum6l7M_99wkM91IUz|Uu!?0OGu${YEy$Bd(@KTt0+q<+J6swo8U zo?UL25g~~32NrAgM<201c|>e&#e#<{P4$dyVZMG?_Vjby-BwqnVliVnnrBuBbqnxUW;nAF)+X&>s_{tJ!~pT5hawZ}fH5+%&S88Wf8-Xc z*NoK5ASaf|>is) zVC!4IHrp;meZKbMG(p#?C3HhuTE9NBl;u&*qpS5|y>L%K<>9(#8IpeFq~Dqn zcJbU?yg?yRORO~HOmnt7fIu*|y2zJZ zB5R~gJ>w59{}#WPDjnheKvrqC=x!RWoboXas#(6<+E2}fdjN43cS#oxDt!ZI82rM$ ziKKG*j>d(8%0a>>ks`%@yk2^FE;BvYr_Yog6qOdl&Ka|Ac0v-$Z+dTaFQMI9QN?Yu zCURpRd#iB^-GBBEmELFX_qw9>StpZ*MPnVh`taE%Ny;3KKIzk){yZhflmIx3+2Ntc z#I;RZj++kw^3*>XNd10142TV6AKhIU(_$7RAnY)+me#eYIVmBlUmfk{1fIEQ(r@U~ zZPwl%ab8l2j^#(DLjSDNK6&f!)ojK0az#u*ASAi;+0^8y z2N@efnq=4hJ!OFI163+5doE{RA5Qou%CS3oZdT^VA39gg-&me_u1Gll$@;8%;Z;ya zc>2==@ojro9_wbbKx~bZLQrJFm*O1xOCx}LXzbz{unp+n1nfO272k-UAD4Y^9@M~8 z$-q-x>pv3QA{6=C6)rE6PdoXvizbOFpRhcrwX7gx_kTD$%dn`Tx7`mC4&5anC4zKF zqtYNqNy|_}3JfWrNHeq&A|;JVr__+bFbEO?O35H8A&m$kh@Q3mzvnvVT-W=4IUmJK zoLPJCwVwUl&;7eOpL0zm5Apw756hQy(a(;)scWNlE-Z#NwVK9yY{+gp_Z7{VR5bnV zFAj}a@`zMDhhm)GFd40r*)9N%h8V)}k1i<|%nH1M6L`E7P}xq<%{m>;0QoSOfi$*& zrPKLe6@_2HV9VDxPVdQ$X-V@8&1d)-tW~of+|LFRn!?7Y5Yc)dqYeqgBKoDJIF7;= zc^IQ4bazva_z3$SPFQZY{mJ)`t$OetS9czxq``n*LW8%Rt6n1ZWSK03bg3Yn?`F&O zM4IODo8l}#9HQv(H&yN&r%6SnNDKBvoZd97&&hbV_JQ`oyBvCdCCLMgD{tDcWEtVo zXm4%K8o0W4Xx0kd)=bHR=B0|>s{N2Z8mln`796<3d%eBz!(79!#_C|~FXpqUfuUo_ zwiDKeED=mXV8{5F^bWrHMujX-#Tc-}!jYZ`Yz9Ywp8KU2)5jxnd=nssO%53!ged4^ zG@JQ1YUXZ&1t=*|3ID1thaauIHE^Ac!agNgwWn7`Cx*h$z4D~Ga0@@j_Kt!Q1mI6K zyUO+61%4zKdzNp*`ZZ&kv00=PE#9i9Nz4Ax+)QQr-n$;=^u@K9Yh?*^&531O zk6kN6@5&`-yh|@QGHaVZO7RZuspVNkydh`K&P(>)B+1fe=*nYp{y*K<{xWWo^$)S9-FIZ{ zsW7Ym1$Nvvf4Rt+xv2-S@`T^Mzq{KU=rMh9b1&Q2O=3K-o3d5?3VI1RyzP}Y;GvuK z=JSf@>VM@8Jacoall0*2Ev$}zEt1n{@S-Y+=ZeGr4^gd4ns>_#*C-SQmj=Fl^@+yt zJUN3etdnhdZ(hVN#@Xnz)x?bk<%$Lyky?4q;AG=!nuou0_?V{5BndL0pRd14i95Y_u%py{9NGk4Z2%}!>G z&5MDTpWXA`u{6(^WJ-nmM5moClP`75sQb(-Ny;h?R}0z?QReKw!OED=961(ClPoaa z9#p2THZxvq)s^g3y#Yoo?s$)q;QVf@UVi+GMDc6qr*(A_Fn5yb_-%B{S&`kB!_za% zYNa86{j9_(e(OYF)<2?=GGC~8P$f=i7|hy!v14Xe$(`m1NcC^q${1vlefWlwIk#sj zQv5EBL&ggTQ1+WK%isv+ zG+#!W80ptgSJa62f2)pFW7qkFLv7&LD6xUY_eR;4L20B8a?ncVwh3u2>CQ{OuyoNN z#PZOw18_Gy2XC(UyB|?QQGEBq9zgJ)y)i0pEJ84~J7X5X_*WcJr*)RlHg?*kS}ag5 zU!78Y!@H`MLjB-4B!srDt$F0KdAy-$=0Nk>TTtk1Y`Up6-Bo@3`S0bU04QA615aTR zkyPYoaa}y_*}+d%RCVEX!Tpajwgd`^ow;lIP4!&E#$HowM;+=RjOqfrngW~d9GNz* zH^Fhq`dVRN-KNq^?XaO~PzMoOxB`Tkik9lOeE z4m?tAJ`P>^UG11u^bO^3gHvoP9zXDcZSC3pMFjaGeVyLhM~rADkf;;z!JCz4DM336 z{aj^*?u~Wl)l);q59Eo24PU@duaoVD=J*FI)Uc(PFvc@w2R)MO=J4Q9aO&V{Bzwks z*|`zxVJAAyDETmH<+;q=SIyKE&n%I)0T@Ji@!cBv7LE{8iU)kwa~-Yr_7791JBR5~ z;pG<*3|-se#OZAMP2-aN>>jL3I$@-%A4uRobch9{L|;cS7NQ;^d_%61t-ovEc$PA* zj4rE|F`wM1aH`YYLh=H#E%AFOW{iusA(j|A`pS*4nV z3^HONQ|#YAXAW~1AIMM+f_x#<`2`pW3CVu;XfTNva9E2w53@i{cgV?JA9S>-&Ixj4 zZ4bo$eiwsW`{JH+a{mI?L3i!_`O(qQQa2&BdbtTUfl+Al{8&?|_b;0ug%I##4lK$i zEU~A$mOK`2q~gZbnOY-@T0MR;@{&~a{UxgVpWM#0P_OL(r1K&HY5FAj?+LXq5Q$pm ze958aE`%gMI0jVbce(O@hJxwdfZn?ZNTVF5XJ`LF3*O=(9RKW>z(K$EXNKrtCg!Tf4(Rc~)o3H2k zQC-!~jgxSAw+M2cx(`Qh6}UEpo(DlV3DCg=Y|eL(a|k4ntLK2mJrm$IC_&0Ol=%yM z*cxGBVZ|fBq$=S)CH&;_jY|;laX(rtn84`z8$@;zm5(T~3JrQE?J1k=)zH(^-%TGX zCj}wM0O%aQEG>=o_yjPLcgxXv0kfpadhO430O-)a52g9^Qgm~(%x_56%j`T^PLw+w zmO6;y{0&pwu2buh<*&P6#xmdWND6qaV8H+Zc4Zn;tp0%{pg-b(wekt@0xv?gOc3|I zECW##JUfrfpzbv!dK~~T+#)dKsWmD57+3+J7QNtZssqhh2#hLZR@Du@_VN+1G6Nu+ zund4KFZ?-fv1oLqg&@trKh0w>jBlJJJoY;0_K<(er+ybIZ~BPSk{A;uK^r(R5 zbII}Lm+-^&(SA#pyl6El`Bzj0#da@?B;s5B){y|u{}nj$_rVYZ2V~$ns0r*Ohk36& zl|=%f^q&Xyf8!+}@dkP*4|t;?rbde6o4nJ0V5kMR?L{6howt^*L&U8yZf4#6AFJ(}OQZL=bcUvu(`Us_d>8h$b`PLBdxXpmi8S0b^8EA;M7tcndrTD89}GtO6vo5 z?g2L`zs(f*L(>^F1v5eHuT1hC#j(>!{M zczFQPYV7w(`#wn`E$shaz(S8-^9oRu32y%VHL950#CR=`Vy%Yovsu8Xs<}uD<6X_F zyPmx6f6NqTWBlW#6U_XL+sJb1npmGJ%vv;zeRg$EUbftr9W*iwvFCGREc&g* zHQ(*o*RMNzBjzI>ShmzYkIjAA5k(LUQ`ia=vvpf89QJKJDkgavcdIOfp-D`?QKRtN zkKl9b>F}L&kR?D1wzpo0SMxPhYZ;pC00;x02_vn4$R7v^v0e~%88Ws9eDR+?(dv^T zSd8b-?}p$?A;+IDLZqYp&!eGC<_I4R`h|3G?@Dw45*>2z`L+0aAz*$4Lhev0Zi~aZ z!Eb+(l$4~NBkex52xQ$v{QqGZ7|yMMzgGA1@+uwyWO}CLMWXQkA{ju0loc6(kg26# zodW23QBcoFGZq+vjr{d@E$n_bAG!f#J>#i+-I!GaE*)4bFg$4@cGg%bJ6mGRVoJq`bWlCWJq9ArXJ0bYnI*fyrBtzz5vy4aw@ z2WAI=B5}oWzvaQfzH$?6X_8goxdY$nA#kR5Mje>G1q)-Bw~#kBR`~-AF+_q%2%Itb z&GR3hpwS1Y<^ZQI#Kk%JnAwH4^6F#+5-bbk`{xLlAt=oYxCAQ%=Mz+}{NpYGq(0;2 zkRL_>C(qf~m1IWzQMg433wWj;u#>&I&`%61*PB7O-xY1O=b_-@&zzEJcv zeg6s$R1dPr==Em|D^l=sPix)DpJdf8a_b%5(O>oBm$~Y`E0f;4;l4$mb3}u)Y&lwu zZg{q?8MSh3g@5?r_DD&#{NFdnVLbldqL*~kyiCIYB;NsyfgEgs+J_V74R-f`ECrBQ zavu!;5p$l+^w)uch&^bd2m`J`9q{nK!y^Ec7f7*k(7cG#5EDDJkAs73`QsHBbg(Uf z(&%ZWK2$lz&w`Qg|K9l@-_Hn2tpCpT-`_vy_MnkKL(4hDa=FUV!S<0fy&$#65Y-kQ zwp;!}o@a)y!+q;p;w#;g*<56e&nsK+K`Nha+P5zyZB~Yc6TKdn^Oh}uIkV!5w;P?A zAE*k$xW3$yFceMa-gTwUuV|X1Es{)O2obcJvq>`a|4QHB{8+8oc=@{HEm7{=KE?pl z9xv{I@#D;3jej%2x&Kt{>US=|^xrXRAfmYG-rQ5u)DY6%f|!IQP-o4_M_GYl9I7#O zMO$&R&J$%uP=pUOD`j?h!od*UcG>qc%JUw}yjyEs5%9MTMTz1ROEHU^a{V-1J3zc&%O_GeT!YsCI*J zEtqFo-Sqh)MX^w(Zkb6j3ZFhUZGQHJKRo0pLH>e5CE*S}KSBG%7qr$%lqxS>MeUdl zU7KsbA5QVXSC$R9JbMHAOB$WLbTzkV&w~v0mFjs0;e$^*$FLxwovN(={a7a9&|~CE zoVu~c-5QVAb8Al}(a&DrvK}y|jUNLcb#5qnPmHJGW_e#uhH;fc=qJ9UqfMeyhsOnS zE6SugUvB$5#Wui~g+U$`zo=2NgWvdFr$ch&elo*>#O1jyOX_%y6Q@@xr^}i}`$_iIrRU5B%sv5N?mo z5Rkle`LJAU^$!}OCGu1+#n21)(9!eeWokzCT#CxAgRo!=j>fnj8dM0ru{Uk?&8XY_ z_`52qVbnEU!*OW3w-bxt$gb~Ma1R($c!)*f<3 zq{kzd*J*vzaN6yBOiO-3^5{D5t2=3DDD&C0J6i|ne_ma}~_GT56$oX8qM;mx{Gs5B(m;O%dwa}xk zZ%=#!QoTf_clJz4`oNw;F4JZ=#N-2u>+2P|`-7iNYSRzj zi&(F{DC0>KpX?JoT8V6U3x%Tn`uxkaJQx&I)|{BIQPBf;Me|8NvR^$q<@=l}hQNO# zd2?FWWZ#!W19R2p&5cuEdoUAk%J)ESoS=qFH0UG6V~Qx|WT<0kDB6MAN8Auo7g3=n z;Uu^n;l!rSTs!*f#D+O~4ujS!WRj15Q+*3qCy$(ZpJ-#?`Hwz4>8pFw+o#z1`nX2* z^uCyPVT7fZ(pH-KbkOdRI?am+&W$tr(oWsWcg1%Yg z=NBSxUOM)>&ZRyPFR#wkwQAPnyy4-TbbdYINh^Z;*_TO4HA2>2OebUH($?FiOz~6~ z)BIj2!5V*t_O>yfQ4cBUVoSnN>UI)k2~mw-Xhq@|BxKFjcXMn+rN&8nv)63Cj+zagL((D%;;OoSpHxz-5f%JSF`kyE!5cpah3$k_xR933~$ z)wx@CBpqND%y~wh=mO^!e}X*r({#qYenu>Jjrh9M$^`S&U+NIqn~qQIt$x1?AT)!G zu$$x^-9}~{MUDv$y!KodAK@qXMD&%1r>=`qS`&! z8p5O{o`CLPaQc<99Nxhj7v>h)c{o2md#=c_<-3hHHHtiln`2DhZ+%v?4L$l>yh=Q& zE*~k~LYTlf7#TIH|IEW$YSfZ{(r_yg^RmkCRVn51UJ0sO`se}wkLu0!#1xE~s|I^Q zPY)eQCGnrHxg(}CU62-n2>iQLQ}?#B@@eSZuk$;82Hv18{eH}sxPIswRUcnu1KfW4 z?7H>RSR8uif(g!HwAiJ<&$`2%l8lLZ;%Cn~nZn=NIcX31-Pc3ke)REyUUQJf}ZBQIPLHCZp?c zdVh4R@<8SgtsooyfFrFy`i`Dq7MH z#CKvJj|(fP8VO8{Jgpx#H=fC0TT^%@11;#%X&xQULf>)U3Y5rFU-mwwhD#NrdWX4|* zo7;BH#OPgVM~gELGRjO79LK3|tQhYSOEoTF5e{G@O3>Q(>+Pa*pHNoVo#?5-5Sh~e z07f|flMu`)*O&V-ae<`vqM}d&yf>NMJ4(7oD^6!Nv-zGApQYDKS#-MA)?&6$`Gx}z zh9TKxPW3BmIK%giA*S?2=N=5doDPi;#+VhKYYA-VVRAbHay5;5IAahcnJmPvFs`X8 zAVo5ojfO8^)xF{@269#>H0VDW5xE9h^pp#yn$j58qJXJ6VK#-6EC>Dp==PgSWL7?o z@y1c>_w3B%@e7R7i!Tx;f8}3kLz-x0gQu$k96=Yjkr7hi?}IsfTMYJ$xA3VBN3Ff_ z4p+YSimGh;#g_+&s+K`k0#^KWXoPP3M=CZ=p>23Rp_y}^i1(L{RMvN>dW?R19JpV=l;6y{p32z zTOKu&ovX{{S14MGha-#9ftoZ754oPV>S;^s8+q8r_hZ32QmzsA!foC6Nytev^$3+; zbe+DLxtvWusDO0JuTE1ZS9y~er#$rSRhTLxs<)9(9nAhp_0_jEmtDod)8G!hU-ow}dN1X*={DU+=8x601`AXB(7cJE(_F7qJ3 zbbMht$yZ*rFSX^8n>oH_P9knldFM%asQLPS&tS^K?TyOLzizFRJL$730zH;f^RGme zOcnE>`LU}V)+kkUo!I3bpJ-IFFiQ4D4S62w(i$!_`$Fq}1s%+Amq_sZ-5W{6rD<(J z|3=WAuDTBx5b^-fWYDmcDnW2>#Yuv!}sia@4zFB{kvEb7n4jyzXA+>dl zxX>ChQTvt7H5S>s>=B6d@+`G$EgEI6(?o|&k0{5-YcHPeO~{-+y6I2B5ydj_o660E zM5n9}Q_8XFWkdt>iHT)gbJ(m3Jma<$cR|@FD(1Sbc*jMEXJ)0*e~79S)Bm!<6TNTP z9_LX?f6r>>NFBs;6~W8Hu~%OfYEydn#xWxmct(9}ko zH^}pD&(r6Mh!%-~9J+982K=1uG?xOfg2*a*WVnLiNrtK%8iV0J#?-o|m$N0)EdwtN zj5kgt^MW25uwU4}rJvmQf?srLhI;=-zTy}=8~Yjfu3{y zT;>hE8d_vBj>PGjse+hwWrJObb)r9iPNgB742M0?_iH-_$_I7B5<0vz1W*M`XP zr$xu^iRzdn>p)y04Yt*K376wp8YU|tblWlBjNvO&PJLU-TPOU}1`$Ep+CY30FFwoQx+&NVk`6fhs=Z#8D3yyE|T3l=K48yyGl#V(* zW&E*9yq&GEYS^9$0%t0(+J79T+FW0?u6gB!#6!_Ny%HhW+)1UPsrC=IBgZxerUO{g zRy_;uG5G>M2F@hLg8AX;%djMY08$4Xc9)(>et!yfS(bf8=wv<$`{o-h&n#zdgW2fu zjc)I+QF#!d&oRwWg3xA0sCdxFumfhBWuiPpURTs)liFvRjG$Hv7*NI{{GgXtdgdx{qE zo!2rZym|}3A)Kb^o9YC(VF zmdCG3Cn<|-MfdFTmQ=K=gYCa^fAFT4xX99qj;icn)S57~6bHB8ek-VSV=%pRtc3_< z69jtXF$sK<$Wn2gt>591Fk1azkg zf;Sg^_4InO=w8IIxi?FP1$(y`pZWL6dhF@`RT}>2UcQs1n)UmZ3Bw{8f0uDh_WC6Y zvk}HhKXdj=AX7-ka97+kFzf8P5zReXz<0Q^cRdHJ)178}$DU!QNBZ8kecYLGr!sDe zA+5R$TSEeY8FUTYx2~Rc1uxHC{c-d&CoYKyZqMed6xsI6C*7F5hcC%5-ITmF(Wgld z$17|^ir>qBQr7Q-Ri87?N3zY z(uD5xj1aX0*jJ?vriQzQBJA=Zu4$OveYxERu38DeZ!C+x%N~Je4{oWwHQue``9Y)= zZ)HsbATy!|+VRLt@ql@Edv)ELpYGYmbVnfTxAz_1)`3iq?N|L`hNRo1fsM07$3R!D4uP^gf_1p|cM@r43eN1l_EVeiE5YPRzAm^As?qJ?r9;LfU0 z^jPZ|{#_?T@9Z3Tq<}L?Vo`QegvBe>V}}|0hc13}S>{2&*D1VX?DX_hRn>WhZyvqK zc}}zTju#QNCSWdioo8u~d^+z~(y(b7pENGjea{m!F`rac;fr-DEKYC@gq;&Q2F#e6 zXI0$D?RIr>jw5&l9-lZrTvJPKl@Ew zLGAkgNNa3f9kfso1k_pI22to1UBU8yR&MwO^kWvV- zeG`Ogy1~RiBA}>~xa9dWK|lZJstUgaL@E|`b{tsOL?GU=K~4P+K%s+dvycw*Y5q*R zkU_&Js@9t~7Rd9(pvS)@`&;bYt{fRmoW)ck&Mla(Qj_ptFKT@3yNbz5yllld7YT{( z!R-o3iv$DDQ^}*VZmwl|8`~z4dc=99zM~FBrT@84&fVpvOH$80&Ckr4U+Z85jjXIn z4B+Au0o^nWZdTFrvDHt>b%cd5#h)|${h+8h8hv%$EMWI`RhW%I*R`Uw@P=nK$2}G& z0j?pGB8f-|glFRNj>0TYW9IC#fC1aAgDj@{`j5wt%U>Q}`sR;%eau~?Xi zW$?4#hMpT%yXil_WKmjs@fkfq7Ei{d{g>$aTIcqM5PZv8!*UnnScHG8JQUmyS`aRgm-BT5YFsbu$p()ZJloW!4_w)}y1e zIP2e8hMSK1IQHvt9RqdSR4wz`FPpbEXd59JuOLR*;T!awot@C245n;rqt~k-v3}Kq z{+D6LUDocLP(PRbgAJ&mZu@J{-1{A?%d4pyK=t_-fd<_GKoe4IJqMW;^#8P(wUHd7 zW~KWlgXUe4AfA2ME9}gw#DU>qoYdTvH^W@77Mjj9Nn_i3ivss#Vp&*xAE%k}Zi`BU zqm3!JR+$JJ9jfX`zY2pF-NK8eN;i|?Q!QdT@SGFGQc-|?D;6suq~)z`5M-|JWjJSUR_Kl8E+cdWng_iO3V-+NlHHu0&j=~AcT zKCa;f#-MCz4O)JTBc2;13raKchvOdPR{Vb9Mn0qAQyp@TrSc}@(WP>a9QpTr;Sr7S z^>;kszrl?eedPaqU=`$^ZCEZ<8A}LR7)x$>7t@(oHQkcdkn%C#NYn+P$1oQU)#{6` zMidn3$WP-#Z@wAUNN9bXt&6v{dTTOCUU6fUWDE5jZf_n<>S6}o(Or4s-AQI00xiV) z?@Jk!(dA7@9+ejUy`8moJB91Rul!2lOfzHIY#{yW3cm$AqtAQ3%oIG7;sRXnke%>d z5=SB=*8yF{tKtg~1$}ymnHPbW*3k9=GGhKYy!Dr!^Vfh@RsRV{w_r2}^C?{*q)~Dq zJq5Vjds%FmhF7VWeIf}r5Lx-4oW0FJ=xI+e6D`PCz2B29`kZ|(Lxm_O#E9O_TM`Rg zkbrRUl+-7>-05_&6_I`gvyoK)r(MjrO0fs`)H@E7cW$5F+_|i9klk6;XkSG z9u=GBEdhO2l-t6(W*_LjP=u_d=0VdJ`_==f z);sKb`ineBOmy9i)8fM2}xu z{Bd}m5L1yD$Pr9=h#qA$1O4Y9j_sJ|cL|^A*STL+2+x0-v z^^K}#FWk3BoVfz`+jkuA16AiDsh{s@0Th^t0PTdnHlX5n6+iWef3|Kln!KB-fSlD! z75K6M2IV2$>F+%m!)E?s0U&PctqF1e29fW?z)3C!k|EYj&cNZc3=PZxiP*D!M+Q*! z1t-_Q$U*n^=LVnso{LbLgq9UP;H0OCizg;WS#o7E!tJ^pYO5VzO7hWXZi$CTBIQFg zL8C6kjD|$Y6N8BY?^j_s7q_FIwBHk-@fXTQf|YA+cFS7V8=2P21%2B@bG(7c=d=&w|W(1 zPy62ZxkZPqdWcpfwXYFk7ds4YVY7A~dB$euooCndL~05bP+iufXDjwyp*Q3_YNL$F zCG-dJu|I(B+k^2eXwFIoHH+3rWLg4;doP%FFe*3M&;QwRaVS%)f2U<332cKPcIHBv zX)d@?a9}h<9I(qffa-bzQbyvyioJ{a8SvSOxv{0i0h(+9$3#7(ze4qbu2?6-UKp5t zi0%yJehNGXxWILTc62+GB5^zB|2!TpwAinOttW*;@%~@C<#kxj&|U*q z*a&L8GPck|N=598RcrBG)$;*zhs%j#NHF>b1y8iKxBnY1{V%9{9jGbi0`MqUI2d{n zum1wdoj5eG@b@R9mzmoEd%&BE$VFLkyf_AfeT-V zA8MKRZyA;E0oL6znde+2bM>T6`M&WHjm8u+I_0b{ztTscH#yS^lT?-}r9J4Oo4lwN zf+?4n9=Br2+$#3lwD`0M?x^z#01{;^V~ipI$P#+DT)aCTKa0QP9F6h>>j1KFX^%PVe zRoH3+6oSWnn@h2ryC|u!Kf%KVw{8tBk;;R{u6oCX>;X#ZyezD~cfuGwqI#i`i)8VM z9=Pu{B$WI4VPV&#bHuArIbR6;jw%-?SV^!N;@zAAndb0z#L~&hHQMcXZHlHLL$jxf zc=kZ6)!*P%j+hh)1DvjV1{(Ym3ZH&Se*wX?1)>p%>l1$>lnE#vYIwV~a-;LG*+OVa z^DNwC%pkcj7DIJFx~XvY`J-oGo4ifv^mrJ+*{LCr+;^Pj+>X#@NF?FI!1M4gd?XJ+ z^O)SBTQn)+0jqRU;p$?g_7Z)!G6t^SLduLS+GrRd_|YwI&KMu0fOV_}U8Vr1P`yA5 zOof7`)vk9(+8PQ}t55w94tdT|R4v{;4jSfp@ zr3Cgsc_VST z4Ik(f8p4k;RH4}4JtcT(jhu9L#TTtKlR9vTD9Ja)B;ri#dDLM!TOm9aw)rz3xY26X z_GHFfTN}pWITLy;#uqI5t|E*`KXDw77`iOe;$Rzs^x>0yW_TEtk%tFo?ZrIC5}ZH^ z!+V&)Ok3TK7Oh}-`4K|a!dBB0*bB)PxG?HgF@D=|+E)fECbMY{asDDcPo{#r!(hqG)vN z2%Y*r=+xx`}PmR%OKAi@u+% zp;&!>wzo^=QL}cWE{sr#HrJ*LWz{)%pCh`iRmokQr$Kj{u7ga!Yi5OtnL94x#~pvr z1J$hxz4)xy0##cp3o_R=Rpk3cJ<`0<&QFc8<{%gbx~H1BNv0+>z@sMKZ&cH(tni_U zH~G=sS6n0?Np$A3)SDKw)J>6ekuhLNujm>bRq@Mpi^LK9w0_%a!(oh)7fB$1j(IF* zit~Ivgr^mbutc~W%T{!XP#L-JG4+IdNj`mGE5n`3xJuT}L#Kw4qR8h}M8a*P1bh5r z6X|f_Qd$%<7YDx;%Y{~l7-_e#XeZuDl$(lg(F=YM%)Pj&_>N8sPTO5R9g&T6*JK%x zu}g~bjZQyV#dHFty|$RhPSzkestWujVI!1 z-LtjIXX-mRrm{!iW0-P+zO{7lh!K5g>{k$F#xzsf65(gT$Vk&D55hi;hF|WLh~9IqUU0ZODyXWsQh<+mC!gLDZV9gTt@lQv z_1Gr{Wjm7!Tp~{h9)l4gouiv-2S=54-^iAO_87X?PHAYX{?`1w4FI#CT>Qjn7TLT6 z>Ti(vjq;0a^&#yRjU#w7NCd0YrQl-BD{Cs%sK2Mx+EbDRfO@Tzfo{uH7$Oj9jz?C6~a#GVLrt-M_GZhN{pNqs{p)B z>~hnEm#{}%$y_znhin3m^6alwU!9-_*kA50#n5mj94t5RylJ6Vz5cU)lXSF13e&Ua za%LWr`2o|4qV|d;;ryZH0e~TX{#cTUV2ss%8h5GdAv&9ps_#MSmS&kENXA8WXY-P{ zW@4J>@-H@1KI7#;E+_8N4V?ZF09xdvZ0RlEN1f{8Dc0~U2G(Q&m{W{^52Eo=F})y& zxn~uK97~8}xvc4J04)s5V!_wp1yr#`6Cq-f_nGR*)g;r$-6Dot(TcLU2C$r+5FVC+ zt7yOiQD}}spPB=^)t%p-^i4jVGfe5;fW+>@7Q;1_nJteD2al4$ZE27MJkmUmAv!^3 zL>VYgSGJ)|i3mMqS-36^rK-+k(3jK!I1#J%^p#)(`Xd>3kW%baNa0w(ZbGxEzxAgt zi3<~WCW;9BjZmR*RD55)K=4@eiErZ3u^XHJovWe|9&|6*sQiUJu&LJ8JW=qepStmj zKbnKN@9gltid47HLdp{5C|0dpG6ep%@EbBkEyNwgnC1`GH&mMd=5~qxy~fhc+rmw{ zHBOZjHVQ{(tO8ivC^@k?WuI-o*lQTDwXH<~wFFi*O|IhV1gZ!EeLd~1<|p**(7``{ zRC&~umMfYtxn*($j}S6l)v`)v500o} zQNs1_akiO?+k#DNU@L#-H2niLJVTV?8&A+KP*d$k?$GemZN2ickr!<)R>E-fQjVQT zrk#9GxGfRe&}Y>w`s9J-3)A&~#QU%N+|c_9M}}mNDjT8PQQs4nBXrOaU@}YNn2#b1 zeA*P@C~i4^1veh5Bv2`IY)wxS+I{&2Na^91O+D!Q*P5@g7v(Y+)HUZVmZyH|no++@ z>(N}gOwA6U06x(G_1&qh!8Z_fO{&E8Do%tu&i!lxG|n1zt1@B}kl}n!2!1YN7B^`L zpBx&*=r9yb@@=r!_Y#vN(Dpd9CDG`!N6{vak<#|d=OPbp7dKSf=WjUD;*>EF#iul} z7SMXOusEAUMk@3$a>pH^hTB77Hbw}1sH>u0b`w~u}M`VZ|Hk%BHB!VW#^J8qk?hdjI|gKfrXrJ)@Kg9W>4{|n4u}) zz7GZ3G+Eo^>41f=$ex|z;|w`v7-0Y{1)9{p(+zC^2Qvp$Mni(-Op6Q`CrkKiI43^g z3{|RXTW;_@h)4d5(P)8JmCJDO%jMC4yR>7=d`L~BzBO+)gFdk?-XU6^tCkhx<}{0w z?w2TGi6DrXD-BN%j^*`mfhNFe+Ru6Py-)X^bIIUe@XL3LCJ>zQN)Yos zaYsGdn=}pT=YMvsSu&qQ=nX>@^$5kMq3sJS0{TSlvxcfOjLC&WbwWI;mg4mCNM9KR zL9aU^4PbpmJUHq}xeOTyZ?{<3zO8q0V1VC1Al+;xpE@I9o1oe#lU9 z=UBpxlf;$#d56j9ZeBRVvPYrYliEIj7ZDog!im$~=IL*TSzL`gpkz=k;{x*=UGxYr zDWyDrMEET&ch;<0>acr)R|1Sd9EGw^|GC3><@<2J^FSGe={6_^lO^9%jo>*&MT>*V^Z{5XAPXkLMeE&h@ecqWG4%7psp` z&0+Lg;CQ>qUA5v9&L+K;n=}L}nF9qbaK3^~F+2`w{}4*YIMGK;ND7LkYS0k=uzu@C zxUb=})AU8eEX#MfnX41KEotiwc^sACCz?7DQE}%xEbX_|fG8=+PY! zIT;nj4$ngzbFC0onc#P^1<4p`^%GFGXx!@Y**l23tn_c@wB;qwP8dR zsYNB%)!7mv3GwS?REwbUl~f>*%R_cAGi{yU$EPl{)R8;7v9W1}thU7?=yNvwkNRl3 zm8obwj$Oc8oHhJ0VhK${<&$#bq=p%lJ_^Rfzf|$FfA}6paQ|1SKcFsT9q-w8Wgxxh@h-i$s02br>pBHCC?S!@59&_X*4o4f~CEXXo!<6BHGSmmsc>MiG4_&vi4-boX zKMx2z$P_}<6|UI`!N6m&*)($AlnqLTO;9qtgL z<*AE4J5Il!znoJ?(dMp8{>b(Lpz9Ov276~@snbf3w>cOz!K2-k^TcEbFrZl?d9%od zP|4n-`O_?jLTL@7&&-*lU_s_GbRHbvIdBJ#gzj)WC5a@teWlPG5$4wt4Iwf7txeW+ zLd3ISU+zXx5nm>bR&OaBD6i@kjtKvxu`4f}6NcJTj4fLnEhVaZ&qWc85PRb6+GwwdKCo4W{Z+cAFWL+PL3;WT&<{^jU3uKsf@)lb~#ZKLwVSdmGhsMFh?#a(8s7H=Uo_6Uk2mR6xXCtQ@D;>I$2 zn-mW$ULdsR$+9S*!xEdN6fP#%_=#JW{rf~*+d&{!9HL}!IlAdh-%g?%h@Z|#V^29( zFBNMsOQ?&x<(W}6sb9j4R5CefJ6(s{b&EwtAfvt4$mkx46N%~4fHzEv8L7V0fT;*? zR+53wXzoSkK~cePIdNP)Is7q8K?b>h)No?mei0Ggw09bP$m}@@RI}alvrv-@!t3!o zzZ7EQFT4Wjh@%VX1R$g72%zSp;MdC66nY3c+C!nIWj>xtTYtU?9QGl3dR&B_MexQy zagGZILT@zrJ%;4L@o7V3jBXoIIYCmQxkysjO)j3Cjo~*6c>6`n&8U`hOj%3QdG4AI{k=mV#Hs~kWuZ0$_8RAQ0@XTXK` z@sZ3$PG8L(2`CvLW9$#N;wqgb$}RT4C|Bu9$(=Z`_BGcUg(!X|1fo+NeWJ>{HffUg zjT$3VMf|b_!tvS!>g?pzP#=*e5fqOMeP8psR(8Qd^&tG*(Oi+_C+R4Aip$H52xgP_ z(i-FSO|$I9J6%hDfhusMuA+M|c1quie7~=Lo>Q0T zVsOStjbN%17pF^(;Zmi51x!eieCY!2&8QLqww9Tlz{5IYDac;2)`yiPPTbJ$4pRBQ z-rQrsMS(N*bvd2-8h@S94*=h6I_do$*_BE)$6G3tG+0@aeWoQF@3Vbtc8_J|0kLq@ zP`QP=88;#;?T%?ip?ZTDcoiW0jhtRPe(_gK)Q18?{N{7uRoXdKQ$E$?XnIa>Qd_P& zzuTJM^F|V$2}cTp7o%IICYU=6O$Hp(N2)aU7=Ja((0+G(C)e|NHaY=0?HiJ}<9Kn# z;Ni_wgyM(a$)gE$9~mBlo-R=iIzhQ$(G>H?Otr7pMX?#)d{m$YZ>XgN&*?rTLqoLzOX+N) z98(N8W!XnTjNPq4O~r5TKF{6Ql#rdYvHf6On$-9EHoKbD=ToT%xu~97S2<8dUqYW1 z+&^~k4`EvK@a`H-Kl|HfY4h0jcrW2Lt>=SN*aguP8QBk4)rAQQs(4~&HIEE-v=(9- zL?#Vd(|)eZx(NMo3<;YX75UK+c>eZ&+1^EYWzipJT1KV5?&VGy^@J0caPWqN_nkfh z;p4yuzy0>_A4u&49@|)uOF#E$J@4Su%CnUia>GK#bYKk!ezjMpPy^dYFrDrefQp{c zp&&sVK}1Xt(QCLK$UjhhkC3!N!2Z6wUp#>YIQe&BS@`HGDg23kz$5kx zNuTE6-`m(U^z>6*I;&ODlX_G%J-H4J_Cr+0RP}Dub-BpyC8jOBfJaR|cJ*@X549ej z%vkcGFvU4GKHInXp}A?!jy^eR(cayZMMrIRKA;NxU+tZVKh)d*$ETZ0Mb?xIp>DYm zNp^8{jcK9fE=5^$YupNrCF|JQ3`MI7QKMUF8Hy~~_qsy5YRH-;`!dLyd|$`C-|g|e zzsK(%xIOfENT2!4aX#m~->)<0eV#8{wUMKz8yoA-OzL|+R%w zPlul`{U^t?~gZdR53?1S8lV9 z`@v~!YR;Z)1ekd~#c#ZDB{_>fI2<=)(CKx00~SRTt_1ah;V%lJ7bIPj;6w^ zD*QS99eJH~-}tjwKQC>ZClpndWiaStAFF0%8k+IgW%~HX{~;K_cX%Z>nHNw%ySu_Vq5to}Su-5-nCp z%qLF1RP@p9$tbw~zHv=#y5fy)jgg{diYW(fnl5yR>lE(#-Lv%~@8*dX@n?ayqRLh~ zpJ0*7&avXG+p1JIx<_rn_2CR=LfVd-dqR>0Tsr+jT{&*1Ix*IatjKik(#ce2v=A@M zs#Q?snDIQNz_~|T!UV0{`azSW~K*b zjnxVJ0H;?A$;sTAsoa^uOJDDxP>%Ar#ekxJUuPb*X(9e`Xn-zAY(NK5mC`fktmBCv z174?Te~2BC%()yFmet~&eqoHooafT{MTe`u!(>@?NfY}!QDwgZi%;!jHJ83$F8 z9X}RiNGnC@>A%e1vQNy%YF^2P;3;>Hi(~tnkNeG;c~;Q7s!D6n=i*g3lAGPwIIkmd z+WG@40yOg3t?kTzZf*B5{={?_o)IQg3nq?YI&{7H^_cM^2Afe4!{%l8d+4-X_%6wB z!jyv`b-)x$26AIg)<8@rZjF(ifo=}7pttBOS4jW>gTM$ z1T#)GT{cmp&wZ)lxj8vHSP#CC)HTsKdnIZ9ij_=xrJ>E2+Potyi+{;JrJ1H*lGpPZ zn8C+=R$_{moLG#_Gv{IFy~}8N6SyB5P6NT>H?#n-UFfD6*iVkz6XFDM0_NHHI^CUK ziS~7NcIMfB8Cpi#O8nGq{P@K`X2Jx0Ax2w8ibxQBxH5Lt^$VA&q9-_R&pP(920sn- z#^+uBFlr`tQ2l7Co_mvr(?HnvJ9;9bB@Y4?*%}nmFRBa3cu2kT_*LwyY$g7UPZl!r zPcyEDr1KUhKTgcM!VzS#iq3y?nE>vIaW8g{7Ev%6ja^*S zzJW=^Yvw5p`XNb-=pwVg!Z)MgvXb9coX?oWSZ z#@xgjEB^X5+7!@S%ZMw+PW>FpE(5**#SS}@q`SU=X3}yu+PT1JX4q)fcH=X@l>c&< zzc@iP@ZY87ETtsjlza1ahw%Ixj9BT+assJf)-y|AHfQK1-;6yJ)*f|~n@?!cU@Xih z;fk0YxAwUN_}Wjq$uTohHD0dcT1zrFK3b6af^M^aqR2Wz=KL0Fw__$^14)O z8Jgg_Cg1mRW%m#LYN<{6^w~(MdGl$VT&|P(&Df_c-yOODLIeMy?erpoO}FuGUrPL`31WoQE2N}}uyV8;+$Ac2 z%piCM3JwsjZH{jGe0XkC*NZ!nw4kf^=*wrVszI5yax2%I%^*h;v!$A*`#t%H&<;Rz zdpc(_TTR_PJ>%2HI*?w??oMmB+ba}$Ya$QC!vR}&Oha=9J3Yry=HrIWhM*?O2%*Q6jxVCSzS1s z_}qA8Y^)Xb6ew4*x?o|5o$Gp#vJ*hDVzD={Ff1u{ttI<vvxMBNa`)B6Ml$hDFt8Hf+heb!O70v-2PSKfwXXy zK&R-ECz+WCc3v?*2;$LDt@fOW`skB>{pH4no^l5lEquKFK(ffKt6kW%2TFiiDZ|D2 zZ?*L*T;EIru6F zp>6#4w?#>_KMdY*P)uEg{CBYYISUh^#eZD8N(u?EjZCUo-+nf65N|#yQsUx29DR7@ z_ho}UwlgaTA&3xhpxkC)A7TC|f+Kj%%5@?68T@lv2Ma|?VIxs$5}lJ{7~@u9b!8f3cH0z^gV*aw6!FfVyPwoM!lNa4MvZfcDpX-}`5#OoTwc3DRB*E4i%2-zU zCz+~LLIbI^8SM3QyfQ}Paw!#yK(w7$!`rNh%a#|U1a7^*I817NsGgo4hX|Rf)(9gx zR*OVj2%0Ui8PcuXFeS2iS?)M(1e6J_=SW_wC{FXqoL<^ z>b75TzP|AQv(SlL=3G_Y zXNuA(w-mh4l+=Ds8{X184joDdSBf=K;}Agu@hBvG^JtAD!bb$+($)0ye*ML6sEeR^ z)-&lNMH0JA5S>ljQKCYVm6fd`byl>Cejm>_6Jw;iyW-^fpyjL98uHm*8GfU|@}RG< zmvbe^*oaTA&{KZW3*ZpT9dmwDSIGWlKM08|Sz-#g$VLt9Q?FW-uf_NG_jev>n%s-3 z)D#e>?#IWk+MnXMr=Ar1gut(b1KtpQk0gzFcL>PuPd#Q?|1oHRTnNP^0ERa4N)OmW zsi~=*;PCnvxp!wLJx6v!xM@JqzmOMTk8+Mdt}KjnEY=_&?ZnW-=E0tuIMzERIM3yns1cOn_AUi(QG($>={)O&=7Ib>EM|fp5qiyo@ zJFayYwA#6qMvb+H-`v@j@MW!e)D=gEe#YlUQ}-mE?U`Xn(n$Q|r>12KYcMJV zVaXT5qC0jDZP9pe0!B1xCB%NTZfVFH+TdMdG!}EH6YP zU2tyVX2DYkO_p^p$?vOE=s~P*99>*?HIySrt9o>(-MImM5tt&w3Gl}VG!6(b!h&+( z7%45fI~maR>oswwSJRJdbLHUVQK1EuJ@>+it7qmCS{kW9s|QV}2H2UF_Mr@31iFfp zaL+1JyZo<+1yOqUgNJPziFo2ef&|t=oI%=MrSSz4Rk3ysUl>TGhdt{MUd|bq2=Rh& z4=Oy!kPEgQoIoTXwnds<_s@s`__p@0*^Nu%pP@RRxOcr7AJ&IbtE#HH=$MR%Z!lWp zz>LPyd1Q37h0MgdKZTrmiZ@(IkQAcQ%SovdFizwhn9+p0!QQylv%zB-3CXA;S~fGM znynOi9D$=X@_=*x=CS&d_^a{6#&E1ej3zcYIZ1vQx}5jwy<96c;l~)ArMe0>&U_hj zC=Olf1>Tu5iIkcvwD-FFe0%#tyrIWzl)MS7Oci`#IG|c-PQBhAj8sem0>*KK6!cLz z#QmizKEiOtwOB-fG7gCVXaXDWBYo4SJK^V-@q|wF9HndVBskKkOaaRw$C>G|2sy9j zpiVOTL7>sT@O4Bu@LP_6AyqYaHp%uub+Iqek=aAm?24t5TU7zA7LSh>zFwj2T%V-u zJyI3nzo{E5Ja}d0IF?6g@+%)E=B!A&Sefmm3Jg{!N@hJqMte^aqStx$yLS==}ehdu3Z@W8i zn+VSRy`!BNVc~e5;vOCzv;nVDeG;43Ox8R-w1dQLy2Ki@5Yq@bSy=?#s^m(;Xvg89 zGBx@DC^hl;nfiMGb>hb$d#aElC7fdMfk7w2_j&Rf^XnTF^rm`~CECw(ltQ6|jZDbI ziRW^;j*!$<0JLoE{Y`dHoOWO*DkdZ9UUb+Ppd@xWcibSUOf}O45BO)5Q}J63hfNQL z&IY*|dV4^BRrM~jZ!b=JUp|a8NGGL`<;Y_PmP6(28){@yYtt#g~Zg1t=_pID-6P~fX z{vSi64C{(OkPxl>C)z22Bp%pKckkmT>|!kfLF-6={zBZiZr<$U+=l!SN(^@jgthAf z!NDvlBOE*Gi5mNi7I9n`d`pSuswsw>JAkyM1McQ=R3$Hc)AZn{he;?>ZvmvU-0Gb< zt!ROmPHNx-k7Z|PN1+V9=jBK_ zIn@qKVMQ{JAg8`vpG?&o1~oMJ_4|VDEPCDw$p^W#V+_C+RQc$ literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_34_1.png b/docs/images/specfem2d_example_files/specfem2d_example_34_1.png new file mode 100644 index 0000000000000000000000000000000000000000..157c1f1b1e661ed89d7fa18f091fc19d7989c867 GIT binary patch literal 83487 zcmeFZX*iZ`_%Hg9B$OdD5k)FONkS;IlthJOt`J3;=ZJ(z2_cD0B_SkZ$WUaSLK>*Z z97ziMclH0Twf0(TueCqyZ~Ius@xDjz8_#fG_jR4;Z#wVmM~`T%qvxTgP$=uPG*ypL zDAYCNUpiX+&2;#>gZN{gvzno^{>8J-ZWfo$P!3x-JKA4#wzsw1Mf3LeFipKp z?SYz^)YK^<0R@zRErM}3uO|MAlx=LDY#MKxv_I7R&ExC4_wwf^%P+gVacfTWdU_>< zj7r|x(z*V+I0?@%$ZVD5i^8z;mNX7L|CPj9HUjQjVS!Q1lx z&#(TU75M+}3aBc~HtnWkWK=aaj?X@PU(x5|*jO0v-U}lqF1*V>)0U;bHEd3zVu5;a zaB!qOjUoTpGnXB@y7QCo83L>P%e{Wd6%OQ|X|#OlPjy6GUqbQs@CJjdW2={!mqkzJ z@D2L@aTxyk^--V9-o2a`E0<*6#E3Ka`T3Dwx$phs`ooF)e#_S{ye|<{P~fYosD_#=Y@M~^aV$B13exbMqTAF=Uv z(+*trvvV!#H+c3ib8&@CPdiH6b<(X_&nMX@cB)7xZ|Pi9oP~bEV5OhH?sLtmKfiae zu(4eo8L=t2_`%dbhQcTB%D7o0LY2Ipl{J9;z^;qF)NQJ$;qv#+tXnRObaY4U^@A;( zuX5F0#RA7rTL1o@74FGMOVcwq-{dmUcf99PWArwajq1WStbIH~M+YVLNy%z@`78lEU{++3}U0VEEaHf&NZlG8y z=<3zhr`oGw)@^6>EJ%(K#>ih%&|I_m3|r3LiYj#Hp3Fw6s!6;=k5Q zhFe)kHH9=ZHm2fcghocjnyidw+-IdMV)fl z__bJ@(Mt$lDaGHP;`u3vQ+2c>{qW|%D&=#{iFyOebE6&D6eH!o1~;TJZIp|~I*!gy z^w$-fH1oOR?c+20xi+k>U~bMiG&D4Yf4?VJ$MWxQ0&iZw&J#U9+z>_Mzw>m7wa)qe zB5^ehjj)Kc@Nh=*n>ZXs@4Ql|R?*(9GEXK4G%h{u@P&b5i>Pm1k59ht>4~Lf;uq7t z*qzP2e|cf(#F+Ec;Qr7XH_{?D${X+RN%H=owOv1*aliZY%ea{P_jPd)AH?rDuYF+_ zcUa%iQBvHj!sHm^p^1+7rEc5gEs?6+yJjHE_lg~E;*W##27H2{5m8oOvT1V)VRpsxAyQ{9C zwe_g;Sob=-h4_yjKPVIy7MAIsKMO@4`z|d~{CAwp;p!j-Ui#u7A1-%yItofMj+LzA zN6ImM{WD{}za~#-pL)LjZTub;{KAb<nUl$4I;Cpo)sH+1Sc#ixStqOIy+pCj_^r9Xj-NTcIwh zN#=qlB&XJaD+&M+MV!-jXk!NJvy zjfV)gd z&N&^%Y39v>OTnk`<~j|jhx6`T|7-GnhslKt7j}{^hP}Xe`CD^s|HVoNi{19UlHnWW zIi467R^zVanO9MxK+>XRS_a(>KR%HE_y~lg=R$czuRQ2fi zV@Dh%=aE*b(a}-$g#BLgA75|14z)AvR)W0 zyMCrI=2H!m(koQYHuPAW$Bh;i7KYExt`pIT^Jm|2BGdOJ`CXJ~3GbO&&VP;j&s1e9 zzVxk`r|HZrxXT9OMVC;bDa!b!s-t;%c_E>pyK+wUEk|kaAJEYW7cD>gHa_L=v;6$& zdI3MKj<*i@Pci=Frg!CDd%eBAk7gYcwlY3)Wc}ZzC2{*8>8v%HR|?Pfe8!jJuxuKX z`HdSngAV;^re5H=;V-<$rd_*O6%`dTk3OIl(M<}^&K8S$TjBEuyo6st89V;dw{O=% zLg?nccQN$joZj#*f`32Hxt63_w6^JAAN+>8pPY)@bDjfbC-|hPM{UYqDXY3E)*5r>X zzvk!Fot>otNv@&w8TB%9Nm6J7sW>G}3rd(6YiwSo`P$Yw*rHylsi|Ez6{!6CqmjlR zr}~@@?;bn0pljFqPn+J|b%u^Ym8^AJM62)N!-ve2#pxO*wNZTa^p`J{<0UNuGM6c0 zmg^-Wml)?x zlcVKN({ahsxSPT~DB;)p3T#u0ea5<k0#dMl;C^QYZA1zu?z=RQs|kO zGS+SoX+@*7{Zt)fQ0DIR$S^NO&AkmLZkw1`le-wobo-k-JH)@wzjyl(_4KL4Jvo=q z5Pp8MuNJJw&^oVS%Z{Mq)=7W*%d~D?nqAkUHnIk7*jc)yxKky!D6N>tRHAybQg~$S zOxJ&fzyHR(6no;JELGjwA19=K}f6n_xWrSQN;yK-#|d=J%eb7YiK79#d5{ z92N|*m|d^)?%g}UrKY$8s;ZSM%kosoM$gU~MHiwXQ7hwnGO)bc8m#nZe7D}>x%)oq zlo6B!&NK$8PPeH+_QJc-T&Bg24{Z9){Fd%eT7h!d$D*U64roO1=@kxC`k6^d%*t%A z)B_;WrlO*{)o(yHNs+_jxQk?yXy4iXADhHdgSn=9#Wr+P@E88|IIHS7M4g#>o8L4y zb3EA~ck>39R6vf&i-YKfDOG`M(B_|8@`CroQ(7CMHj8(^>l69?`*-J4Go>H%^F_>t zm(WtfD6M-xcw6agkh^o2p%%-)N--|5iIQ^YFLEHT0lo1d{<{qyXEQg_Has+>awtYj zsxJ*N{Piti+c(kM>ZA)T-SH=lKjBDvi;+spniQaF-7U0$0HfEpCM9bK_!!8vptJ;0 zTB9~=ur(HSr%zS<*@=Q0KIrjnW8brLOb&eo*NvZFIIO3qH`k%7^!jV5O`8z4vP9+I ze9Pa|SQ{Y;35l?4mcbT$tHLbQZ~3h(#a35Whu`ayap+T}*nr<~6ydu)05ZV!i2&XG z9P8oyIesFr^~xl6;KN;K-W;{D$qf2-q2Z=r=-`_lUmAHG684-|?|O9nnJ5+)Or^kZ zjsGApr;t!zrC;UosS%XXkOoC5`<;w2J5O)-=!p4ly?JZ!+gY}G4{X{{mp3gf&zbWs zh3#qT*B1Q)T(*^R>mGM%N=hb9bm(tI0PVSk&5?!=&z(KXN{N?s5@KQJtE3IQV(Rnr zI72@UD+^_D;`s-$?j>9{8#lL>%UE|>L4ovZxu!U&z<|KO8-HSM-c%+ihALUWcj3UL z1Ymj=iWXCfxWg@=!a&+}WND1^EQ74?9y6)*y+;WdOrc9X5JztF!TK##7G-hTex}a)@$2O zWNQM+#WuNNgA9N9q9#!`9gyDq67`E^|Hs{oL$b1Gk`aYGwzED=F6 zLrzXW6eeZvEK*WZAt52ks;XCKxJEuyDgi;O&itlKg8*6KUd73|JhJxo4x(pQ-N<=Z zP$+DPbz!n}%5nDV;V?so*@-8GqpxpoJ)nx+nI!tYr-u{B{Z{ydX^Hc;U`Fl$v@t8R zf%qIP)h#cS7;9uHC$~G*mG8qkQYB;Cq5MDn?qnX+^BCr_&v{8E`Hzf`1k8|JJPy$>!{B4T19GkRyA!COS0Hsvt_v0=a0;48k*MWPc>?z z9T~bk(gpDz3pKeGHDbXh5+p6CQKYVaR@}X7*9ZX90}#y6A|>CyvTEw;$ABG20aoJY zN5Q&Na&skl4At90J4pGG8mTBmk#_lRfZ7x}vaUvcs!WBV zYQcUCASw(SNlj`D-_rmzCQPuAM$UCy6Qz3&WkxgSWPkeW*RO9q*o&@VkYlnB9j8dt z2i1Zc2GIHqwKk6hg@uF4%F3)Gw*_0w)z*)GPnhBQ-u)yD^v<$5ao;8(Mt+6f>a!!Q z51?SZx~;2ty|>p8yK*BIOvBJHE@+J!18_$b0jeo#3au&8;5JWzn)TY+?LaOKXLXSAj!6$0}MzWt`L*eD{yz z@18AyQ0Id5zkhRS4dHXoFPy#>!vc1-O+WqPjlF})*4A5qU;?4um}A3%BG91@oGn=T z(I_Eh)4EB_D4zxwxr(9yO3S6-E=kHM2tcZ7xo2;Mk31^k<-b#YD=OC351sy?C#)vt z0;1APv;5S{4<7{3=apSuWzvt_gRFwe*!t-B4$4acRdFlB&I&vR%H{VMW}&R+Z$X7m zg?Ipcs~+1LsFhJ+zSqkA*LyeNUmgUELjHq@F>&EGerArp;F7jsw(HCkfw4{fw&U23fjQXz>CXqyUx&K z1p5o-)^Cvye|5zA`Ohv)3`+zboNWc%d zZP2d@xIVW!a}~OM@Zm(;RVj6yki^Ej8XOGlT=5bYCVWky%yok2)~#Eu&(7(ps;X*s zYd9p}{kc%JYQTACz}Hj28#Q%x>$l$b4q)Ki8FKa$cEm;~4B@2=4?vaoX$Rer`6q2z8 zwT~PDDB~)lUB`12THplk-@s-rk3uRnaaPfblth=a64pLE!fE2^tE93;J( zyhlYv1sgB#q0Q>y$!Mn`v(0N@6p)cn9&gIE`Ca)&_UavRmu^}yCvtFvG2A83kb78xuq@*0pHk8`3Ws5mD@~tA= zKGlNqijxg4_+?g$uD|Ypa)0UBJ>T_2SIJ^ru@c6#5)NaBC<)x6Viy7tq0m0CiVGjcm&{+Kof6 zwhKLWkpb}Xpos||*sET?wHEPIgc88N%(0X88wX4u1D=%1S z;o~Z5Ffm9`TXSycVV{ ze*F5CA#ymr6-w4f!o`XQ`12ObgN?F|%GL?DZdvA`oL-}}f{gCW2N_=00OS`rlBnr5 zKmLG8als#~U+iprKU5KJM%wRvg*zPHP}8hY;0`SdCO?!n<&!W3yytg%0zW1qI?HHl4rbFf%*dFvR{hjg9&PzRQ1q(@0R64*GV&BGc&Ui_n8za@%{Vn;hbkeGrr~Fi)AAe zw=q^CmaPUPHw`XSTi#tTa}WzctZU~t3Gtvb;0`S={rYgj_Wy1n6v0Ax7WWx)^c#a` zXAigSbA_};+7tF(SP?KFc1tQi+xOnQ)UL~JxL1!djP`DY?C~a6LKoOA>fVoHEOaMC zrSBgqD<5+0#OB0?GmMV8b4QJE`?N!xdPZ3IbTsfrMV+;A-D+{&rrL}d|4r4JD*we# zl?)EDBL?+X5lg*=`fYfBCXd>oGP?a!>KCL)yX$aSB+$?tMw2+9GH^>6ef>MD`5{u;@W+&%&1A=&t~tCQUQX?D@qH>DVFh z@@_ffjP|ITWEsK~N?pd(DO=77ZD?p{AV|kowx0P;>WBrffelQW+4f95u2O05j)-eI62ETwS1TZ~#6k}i811cw$Hf0U#2EU{n<`#`H; zZY`iL8kpL`hhjq7{eFMp#ViaQVlROcT5({)xW0CF8q7`fbHYEb z15s0(37!4c0&p)cd9Il++qjS(r$Pl{&dsEx3kB~W`w){0UEKopy|=)218K`(d~fO~ zc4yijY889Til7bzGb#OLM(tC3YFgfkJ$W@K$O2R_4rK8}w&4{>z1NGDuuogTC4K%e5GI4&)^%uT-MJsdAx1^moDrlE=wrC(?` z1ayINvK^wP>L}!3>73_9<>osI%bCAzAKrZKyy=k>CpZYG&aISs+EBt6=nht>o|S`|{-rsN`x8nJREMJ?NW+ zYQYyKdVYiU$|O!z4cr^(cm;-TPyvXc0*3Vx{C0an{UM3+t1zv^Ov||3CI=26n@|@i z5DBLs{sif8S3sE?lW6h!lj0_V+WqfRR3VX^}MRf zF44&h1Xdm8Q%GV6?z0YM1U#v(0J^iDyL<8bFL$=-2UD0SIN7%z-WWJvi`uIXH~(;) zX@#5mQ`+llp8sS_Azz$HP4(jgz$p-X%ux(5< z7e?mLilswdomJ$1kx?Udg&0)Sq|fufm$wGH{4ASJ7TT&RG;8fI}DbNiFI~Uk7<`H!g#)l_tmjvVbDbQ}0xM4@iYd0`_=|_b z+yJzjsghB*LfRquAWlFoYmT0M`%w_NEscntx%TdEYS`sIZ9Y)q!T>Nud-P+i(ThvM zxZ43ZfK4_h(XVmVA3zz!S-)+~CM@4DAuM`Pgo!w_~PHM6;msoyTSy?CQ z*-ixhrsDxn+|%8nu!Jzq0a(0J6AWDws%H`<8Jks)?Hg zcy12%V2E!I>-b6cQ#2jfOT!_L)YfS~o65R-SGRHgQc?OS;mzh(e6%$+U&6kV`886ABUg}JJ~zdvQ71$POJ;QY>O7F=fx8F%L^pnHSO)PSZ? zQ9xmd^&p9@6Ls3sQYc2uD1cB8AOVf*timvrSAlJ)T)vA2Myy$w=vPQcN?2H}U>Q(& zlaQ*0#;K-pSL`4L!JIAgO~ zoy2F`AdZt`S{{l!^!b{A?@OSU@V#edAKV4qA=a|>xpS#FNJwuLeqZd$Ien_j@&;(? z5ELMeQFPkKVa5KE^63w6-o?l4hWJIieu$B3Fq*Lh;SPyWQCC1Ss72j#p*}u(b078= z#6v0U2CJli%s=3EQ86)R8L5aa1%K%Z&euoS`f5-MXHdUB-Z^PXb=2{QW}f?uCFLet zAj-Lht80;7>-LEi(2ncSWIy?>{1He=O})WXa&Y9z(TW%uc6-Q3JMu{&1**K0sN93Y zDk>^%xfUu>4!BWK_wL<*Vz1`9A^;gp0lq`ZTvL+{*?HKl>Lw(kGNpnWyCGe=9DZOQJz zjdGuVcTUQ-eG3k7!}2c#N)Sa=j{%h@W;Aj=B(-o$_z;oRz9o4zSGyAF66pu?sNT?)Vp&9|PanI;t&U-`f#I zlw+p$ph@-~2|N777Au>#&p8#p*dK1(clj$LIcXqkLqC@POs%49H^}q{C!~nV3ZN*9 zCY(cS1K4LuPJSX`S{4!)$7Pj-^`xcDO??o++NAW(^_Y6C1FNXc($65)I4+Aq8Zjg? zgrvmZG`@aa1qFgxKtRHSkv^~bt4q1>k{rIhaGxKjZBx>IUck~is6OG4cs`+M)S#Lk zh3ITm_9RB;PUsF9wP|-+TH4UTU3Y~P#56t7-<2YU>LXK8_c-d`BaY=bRJYC>9(>A* zGcZ-L+Y~=Mh471BzJDh6g1bM!;&7bld~%8tWnWtHmFUC&_U~Qf16yCl2HZk#0?9#BYaU0owFD|yj6MfP>i(BSA z+`w`?Y){dJ_u3R2bm){hobfCkV~47M)ilZmQv(AgoorS#*?L5#G7T z6V^ICTS07u1m}PqwR6m#U%2;~*@@5!1ebUey^BTB#6~$(9&0&`_e#OTOve@rY40i; z1yF`dZD=AvVuN8^Mi#?7vr($}z=NP6b+Q-q)g$=ee8d0FGmJ$P;P-tT!WgKOHu$b} zvXdyLjk0yQ+u&Ht4d2#12KPwn>jKI=LZnh*QJTQ#Fs)(l7ustci{Os2LKKv!1biEV zknBNXJWm^2gM5V$<}2V>Bw%NYg^Ny1)G_n<$&SjH055g~Qre@&sCefg;?BTcB^fnv z)5s8dxiL1dIO2JdsGcoY01*~=q%5y$@{I@v!zVusy4ab1nAf=6bC2-WtsO*IA&IhiE!K19-nxU0$IKlqT}X$ zqjlgT4Tviee*idX4PmnQtu)!uVE=(uJCY0q(S8JTg#=d1W#lZ+bbduUE2mK;TgHezQZK+^_PV+)c+M77Y6kYtq1R?xc}u4Hea z%jrYa5;rZ2BaM7WN(x*tZ0XILHz}xG$E_q2gnF*zpauW4YRl(XeSjw*N;23O1VPWAmtY{{rN&^)45}!Xs4X)5VNj%gOFIY>t!MCqH?(7?YVqKv640s?U z>2Tv`RQy%sop%|4njHS~Rx;cL?f=AGdAFTZ$Uw_9%CG^!ROdYzVv!Q?jyh;221x-eq};XxRUbBp1qRacOb3?KeemExNy`?S8|d2Y zaZ*;IA|k<%>M}`Ui$#HkW@ITJU%7f?D_Nd_1)jfH{;@RpEKh2*240ndHIuN*;e-zM(6P2!-$kHD3{ zk9deWt$lxmbhy%{Qf1F{E&*XFY0?9fZgn)#o5yjF6j16a6{)&{P z9u{cN#NHaoZYgFX?uMv;(ta!q!^)2!x%D7T=cL*p{Lfcy9QilJ@|H*gtgNhtbi2b> znYTy|IcC4r`TFI{najHNZdXI#sI5}t1%NMAFEJ-CP#2(&q_!B~IA7z0rD*6n-g#$u z*!uCGGVkA)PM*B|@AGoc#W_)9V;naTU}q1)W|qs?b>t)J!HIJuP?T8vP~e~UAS=L8 z^Y1?-b)tf5w*1F14H=>Nbg=sWvkh@9lSmr0j9mUG0Vs)#YuB#rEj%CleFAqwm%vBJ zZglI{t0Va{gBXlfA9f7~L0C{&aW*7f$01R?NdJE{GmLxTzzZN)aKPJJ0SFetJOLH& zN_>C3-U_}(PegoR10v%zynS1k+mBU7al8S~jSzgu9j{OW#lG9XJ0+RhcWIF3IesT8 z`tY>u|HVfd+rpnesW1nKVx%TR2n;OB5JYZZG;HIa<>uy&1H|2a{Lxix;|JESZ@Evt z_~r<|f}x*)4uBNmzo1x?oN(D}v-|=e@R|Ow5X9{D@rmI)d)`<+AB;HlD z4Lf(n2}4#s#L)gvU-#4iBh{w;`#18+*efHX!n|?gL~BV?;=T>Q1IquwVyFcK6q`cn ze@%VR0B{D<4+halL4G$*$xjj0@fsQwxsuR+l+X`^i~xG&A`1gLXbvm@pKu?dEdjt- zybdRy7zd%#Swc5jK*ZZ|a$p~!TMJ)e&2oMIxaw7)9M^!rNWujtR|Q!@9eUZ#`}ZTk znRq9Fae~O_9l0k5qvyEyQ4+2jbRSw*hBPa=X!1$Kvf&z?C(;7li0eYN1zgkOj zzZ}1}2n!1$9=Xu(ZID=2rhq=k0}G~x&~|_W!EM{t0t3mB-3q<2*T(D5yn{EU1~TEh zm$*)BH%emDc6cKhu5BXyZcXZLG;uagP7Qc)x5ku~=JctRkr;oH^CiB8XD=)?YGn|! zn8fne9N4^MprLoydA`&pXaj30aGWq5fK(__Y^enPzF+=N%cG603F&7xc6K%R>XPY@ z3ia&m#R_dZ)CiG|B-L2Uge-=`YiPYnZ}6;B0T(w~C*o4HQ9i z(63vSaIcz_}42`Azo zv__+-F;k2yeal6cf;de#L1I~ia&*HM9jtEU2excX;<^sL^WN zvM%4FYZuXKg|N$kWA~=}z)K{z5LPcXPyp(jIq;gyo%=XsESuHInRTCiyLSf1Bdo4X zSV+t;mqLm+h#*e(G-UM8;A(7NI?6mQ8$31L2sW+)#f2Epn6zqGD7oC7Z4|fPO9tEg z+Q*OPh7N8HbNp;!}c zj`|rA5mAQ$45HQlQalffXI-Yri(P2T;kHPd6Ip6K#?^2ejNdOqYue?xiE0zfW>SYB zES>j0?E^uEgpa`KQzq_X7>#Dl8Y{d_ib7yu;LO0~mh1M|03n3BLT5&hbm;U}oGS=a zDSr{53kV@Y0#@;eg8&#|&P+6a9TQWm_mc~6VD()=hesrJ6*gYo97GqvJ$u-J=pJ>= zJnEXfjn_~@6z(0|PZje0k@eV@FRMY(!v30J7vrq)&XknGPq&c!6DRa(RP#3$!WhngJ|eh4R8o^*F~Xd=MYqgO~>7?6GZ2T9aO)WOGLh1XU61Gu{30~kMK zusxQSK}~ECuypI^EpOiJQj|W>=)j&5lp(TfV)C1j$}+ueCWyjo_DT_-6KYfONTnmU##3}`#FZF&L`^^~FM0n>Vncf5*_)HWPM7o1fUxY+O zHKTtK2^5~G6%su8UzC0i-wuh4tVfS>f~G*;6nbm*L#^A>uQuqCn1aki?7mA5+m(sC zR72VkYO@7G2ksbq6Rs(T`9lR53;FV&9+USL$=YcI5$S!XP+2K2Q7r6deKT$KlV4W7 z-0)X2oZVzJ=ImSsFaxRU`0cs^u>QN0Rsf4|TkM+@jAE8H?m)++LScpQrj-yK%|@*Z zv-W}L60i{oT;P5)cL`8HJr7xXeX3qftxQ(Eyj$^q8iIHLEkuu>xV7N8Lpx5Ks@`(d zfjIlx*opsx^CD9iL==W-^di5dpPW?5Xu;e)YoFSaSVx--W^IKC0`s}C)Bd6Z$yHe@ zs;a^)LFisG%=y#tQjg4lZU1!+BFv@w@g>2(mj6OfhzN_@_oK@oAoHJc5OHT+;iYY+ z%nf=?X?1IC)3F4xAD)_$cyT&S`;J)kUUHTZOWR$PhNE4(a^?u=&>b?IL4_yAlX8qxXD}` zWK2$8RgbpO_E2jB2|=ot0t{>x7hi{bL^Wo<#7xW2lc^`s(w{IeD^HGu zJfNLrk;Z7MUG{ws5{I&4ywlpwK?)8IuihhrZ3_zvFME1=xD*|s;)Kb$jJB)Im4Z+= zG&k1)EwKOkg2qgw_w1e88=vav{WzF4bJX^oY4eFE_xj{)-#0tIN6(sW+TF5AQIVgF z(jgOf0|Kul5*{S$d1h8qTe}*u7b!RhVJ_H%6n`Ml&%o3gaD64Qzlg*6t>r$cR}Os{ zq*a5RlVWf)F)^G>yTKcDhfEOujq9kSHVIkjVHCz25fRNJN9xuHc>BYAH*z;Yt&aej zw7^aaJ@XCjIII|1r_VGnjILrD(gK;tV$Yx3L8_h{YKT0RKu>~W81$$jDK11S&A&F? z<=XFA&>$iu#e%f%K_CEPEYS=Nk>e(H9hmJibZ%l2sktIgMXFDVS{U)pp&pPZ z?gBDN*8l;}Z+`}swm^o;NsbtKU@~kQ*9PIjKg3!ikL2A)+#v7U8-0CNwDu`4X4S&a zP`%vov@8JOUA0|IURNuT34S>8oO$!M*d%xhfFNBCQRoLqEs?72jy-%76JsQcrlceQ zF+qCr>9+1Z^$2J)(ZqHWM1DPks(2tCLuetZl^BA2+z?uYUAq&=j=A-x% zD;$Y;-1ysK0u%^pJG3wUhea}e)L9#V-U68?Lu6)?eCCa;JQHLbjuzP)fdjIGd9J1q znuLtUOKiMwK^B}}IQDEvR$PS;^Z*5UVR7tf6ihEDZ>K`uB_{I0>J$VKMTIjgbC-f5 z8;oz540=N$E&++tlYu>Kh(My`%=+F^U!Z@6wHJ)@|rHxp%R`DRNrXHY&r0-L@fhBFLR3X_TpatQv2);;cTxx0G}sX(>7USw8ekLcVg@LfBdu&}V2wp0!Bl#8fM9CejGU?1W?R-ge!B_!rcIL?vcoDC?(&<)%*zSb*`duVs0}1^56vL0VID`ip{Yp~QLk~u zb*QjtBhN)2W6eg8q$C2xP@oD#Z=|pNappq$=I~0)ofKKi+XBeH$pZqUC?i|NK7qJH z2>9qmbo3|_d|@NX>VV&9y{fQ5AKtF!G46}D;Bv|3+If{&U_>DU`c_uG#kqoo6v7Y_ zd6Wh+0!|1Nkx_Tx0gfa=agbZ}Eg{&lp*ZRvNq<9l(rIo)51DZ`2r0z&1l%NpwBcM* z)k&v0W`H6dpoNf-FwqBLihc$Pt%6oTgg^_hs**ctcd!|b9X|ybel?QyFA*&Zj~eDqw5EB*!T=zVcHqoD|Q2(697!`{r} z3p)u-q1(U0l*=jrPo&vbVGJVWT`?yAXR6i+Y(lpJZ&QJuM5ZvTh)f1g+~#Z^obXhT zFD@xd8jSZIg(*k~1$qdw6KR^s$Sr)p$Iwo0yy_zOsW0(0W*l<=q1w{PEe!lc$vpyW|Wsn^6s2Oc0k zraJ;%7`zIFy73u%q88~W>!!p9D4Kl?e*U6>#pFV^pN}^KFqD#x37oT;Bz}sSm^2LQ{ZPkLTdv_jD)IZH;{w& zI0p`RYItk7h}7k;I$r7Qn|=)lgF=UYiZ?)`oTsemTBnq>kr718)UJTV(kJ0?4avkpABc zlMKsaqI5f`1TlhugYXcU)AMrY<>VrNTTUp%obOmzaL3ou8;G$8m7^8%HL-?|5?5UZ zO^VEt!Pqv(lT&hX*4Gq^4_t{L1`WL+QNyr{j<2h#lT_oLXWV_ukTUd+_b| zG;s1kjLkmstnToC^Lte4exD)cP93WIe|=;cpUA&S7RDMjBlq@oYly0W-6FVU%T;+( zDSWCLhfp=S22ReCnQ~^kgI00WtRDu(t=o2nd}Mm&Ww>Fb8Qo{O$}ObEm9a@Fl-QL; z28dJ?fA75!Ix`0=COzaV{eEU<$geOl4sGXiT1Oce@}7+zOYk@G>58^(sra6!d+f_O zYwKhKJVNA;P)+d$vEYp%%sebSJfU#;o)-&>KKS*vdgImH(&zi|(+JiYf3L)_q%9#6 zEH&EwkE;fKj%`m+q2+da_48zgP=NdZUGy}KV0Mv72mJhBFXx(^*(ay{b2z-l-t;I1 z>oMII4?lGA$b9wZSc|zDqi;8Ns5$AezRIcAAA8GodLhJxT5Y2GW5d#!nMTQo+PmNG zJXX!yoFmZ8`l{JRLf7@CWVm>4yy)j?wMYxD%ZW?LquP4eTPHA%m%F9Lw(E`Om|D)3>{DSbji-*B z_MtpUero-?=I59^#HJdI9!Z%*f8=jzuHSG`F@40yZ?U z@j>RXlj%$pvyDG2xDFXIabv-GOcOvim_Nm+@_X8iOau*h>6t31f3SJA!^~qgu zF&n>^6XPV-%v#sXTC4W%(75f-Gh9#bZm;levI8{!#kitJ zgR+Z$?T?%Jie5_Q1n#d1qT{G$aw<7$A!xECO0HR9#@lHtAB*~@k&}Nt>sjQ5F7E$$ zbZvTWwPo?mqn$yyD)W^gbS9^kt=wMhE8VQ{BE)xOW5SN%Q93^MA64JtDR}HqL?G57 zSycCFc4Nhuu;*#%w2a4|sjIwGPpk^F`qTQyaF$IXFXqSiyOV4SuYw&Q~KJ-%Ky z7hHa=RBy0SIDO+;2FFe@_jbDVV!OEOo|#LHSFx!H+RrMM=22XK$+*chCk^)8$(8I5 z-g?+u&v3O={kq*jEF3lb+Ip?n!7oexz&}urB5wpHn+&;*S)(?%^grY z5~43K!n<2X?rW{PoLKOF=5mRgNl(G9vildd_`feaynkbst9Ur|yF1Trd(bC+7T%f7 zZyCHzCzoqplD?GL^*U!<&{GZlxbk|j&?l)GvArGY@vW;k#u#fXiyJ;)*n3i!r7Fi} zZ`OO~wwLVu2Q23JIq#kPRPB(f2Eu+No zc6GzjwIt^wd7DnCOHA!xuym`PstmH2yH=ZfExD(*CqVEVg)>R>^MLAzy~B2r+;82!<_f(stj&7J}n^iTe*|e&SSEJQhtORU=u11-Lo%C?TUpEtkG9 z!}SA0;KH7upxpD0(UNDW>;=R^xP$X(&Ca}M(~a0rWc+K~{@U74-tOF-=WF{B-;sOnmbV{)q<5J5>Iw892xjZRqIeFoUn)yYOj^+8-DQ;F6m$|B5H7 z)K>>Fh}(nCM1mz&VK^9m8XzyP>OVuSGuvnbYB-sY!%!eV)!C>PAoDhi=wKKD{ecEl z{1vRC@Uf{6m62dNn*kI7^hw$nI-#Z2A-0_h+GD})kC-_we8}%jRb=l>Izcr)n!E5* zp=ota`{yHZO0wGGNdct{mR@5g7ivo+_}4#8uTQ}|8XoIZ4L?c>&rsu2^5w(O!U6P3 zwSbOjGN22El32$P2=*axYXR_X2)nCI1ako}22|1iFP zI-f>Llc$5AV3KJjX}NjwU<}Bg;m~GzI)Wk30S+S>yqZErrLC>4LlnxPbE|;c!&=*X zDi#hJG3h}nX(>eZ$Fs74zIJSxKy-TsPwFto|Bc|uP!u9vi5`E%29-7xH~f)ZV0Eb1 z3&Bv?B$2BdzpgE+VHmd^+)j1*qJ)6l%q@N~duiWIQpeMq5ULA?0v6H^ z-8vA&K=Z9>v8%)km7)Hf2yohIq=Y;W4K0-ML@qPs<0#5^!N8o8=i^41;Y~5fSCaZlw!O&BV zo?c0zi4^%HQvA6qPTY{as%X>Yy~lqnds2&Cx?3IGZPoYJ#3kc$^?QxGA6Z12+Pvhx z2GF%3*>wFFAwnc|;kpA)ylf6?5PBP5?okr2fPhXo#@04L&qi)t19n>!gj<|cL8Z!% zvL5iNhz&(i#;tbx_>xM@q?j3r#oJHr7cO$L8#0zs@k?BFiCEixh-Sw-`OoR&k9f<) z>zOJ!&X`;&J|`gB9nd zzWz&p7iKhdbX4)-Q5YKsf8fKzhzRYaqTuemf*FH-aXk1FZ3V8HpC=4p- z^M=yeugE+S^fRK|*OP(-K5PLkUOjRrg}9jT;5DF8Ig*FsAr?g@!j2ug)%F#pni`U> zB&bqg(?$*TVF5Zv9%7UfWkW+Q5*~s}#!bTW&`L}pco2aRLC*X%Dh75uCRxjw>H1NY z^$(&8#RXaC2X6i>zRQ`$8=D$Lu~L$`*I{?0Y~=`t;7W=&U+$)z19Ri=Hjvmg)RI7~ z95M1?(C+axgJY{^wLW&oN%Am`T1?SNB9ZwDPwIpHsSdJsLk2v(8g)eq0Y6eyi2z)I zr=>{Sw7#^tj3D+F5fLHy*d)AU^h|_2@BtI$sc%WH3Bf~B@rWvdAs06w>IoS5 zp(A!Ym~?)AekbBB@Hl1mZI%tg zCSBzpTzizNhE1Qv32}ODnR&kq0-qiHIWBN+;rNJB^R&*}pBD66 z$GKgpCdHBr-b;50v24f|Id$&3`Keb=o(LL(L30s@+5xhQa}CHo1N$5{3&|B zlP+bCeDOHLBvs?iAr^cuytHnud^_*>5h24c%GZR$R7pbCan}reGVd(roZvci-TeQe z>_4NLYQwHwI8;LsLRXp;>0PBLpcrW)9f43p0xG?VR10DPND+`Cf}nJfmPip0L_$@H zA`l}@0YSPbMX>I3-OuxmZ+v6FfA$#OKlBbES?gL?Ip>_mS<+bik3cRHHX<5eD&#)a zRtHV}Q;G!iCll;6xYu;N3I0>ALi!|8cV;J^MsFsP$K*cYxUzVDL%~rjZnezWg^n)k zBXRoR!52~1ra^eFPLuVmJ9trw8;vF0`6_7;OS8>)^;zD%WEm|J&toXU-&5zvRe6vw zXMT2A+=;dP9**;Yc>F+LE%W(b`wZC=rzH~n@mzwf?RT~r6{=>1qO%JR8Yj>jMBKKv~shtcE{D% zs1{?F&WuZN9iBapyLX>uXXh~wr8GSH9?gb{?7W+wtg@MR=fm*$tsx%%4*z&bmF#9T zey=#!olVBR5}y|fN11K$-(72|SxcN6Ry*6l(GnS zwj0s)zcVI&TAzB_bachxVm1XFnT4?o1X7;?Y0CRdHNAN^53xq>&W@AmM(C|JV=kp% z0Y6?m<|_>rbsYX`9fMO=Im$`?B+?+=Y(`WMd%U5=+HqW!{iPdiu2JU*c5!m!hSweL zcIz&FTP|muzw8~}mupEb;$qRwr`|3d#Vfhcgl(pUM3oo!^Rt{hiT3bd@ba4Z7_9AX z7N5J4tNoA@cBZB4?QpVk+uACRXpWJnH$Ye1UagakVXH+cCuyFrk9Un~>5#v2e_m%( zZ{xaycH3yE=iwi$dl)}`^i|O-4ru**SS~ht-Hqu>`KJ$NXB2RzeVQA;UsH!}QKV3B z_&W1NmZtZJIwlA4D#o6Rx0xYi`V;JCcnCke_U;`ycKE?!z+|^xLo81~Gtufdef}~N z^{4OSOHQp;?}$%YDb`-z+Hd~I5K4q!lzxFYra%HQ&MC{Qs-RzJ+&3;Ur)MPn$NTi< zK~;KqcS0Y5^zIiUdQz+Wuz!qr0PMeAC9;Q-=3Y;RKfd&O4!W{xSqV_C(8HPaG~A6Q;ZgOr%LT9*o2Y zR?TxfK6YU=)+k%vVZ*Oj@SwI3Jici3`d!_Je9L9L9O6<0U0EH9umx}D9dxFv_#5P? zm6tRnz&;={hpNEh%zQ~X94Cmji~{qCFJ#bNg$WB+$yBw$98A`8LqeR;?DbZ9dW@(` z|2}44!P9ubIk6}AsAYR?#8(OmX*^71j~Rw*J^QonYsJdlg$YK&yy@jpW3&(7=|f$p zKoXj|d&!X&V4`?kS6IEs$hb;Cx>xlC>fJk2hL~w4F`bs|88NQi^_Y7P9@SHa?FJK9 z@P*m%rqug*MjX2~%e^?m$57oL!e$$gqS~>v%c)zexe{OYHb@f~=%f2hgIuK7Tx$Zw z#2#h$E>`T)$ozuhlF_=SUCCmX_Prr?k$3{1TS@XBdwu#!yv=J912xpyseZqcGF;9X z{>Kz!CWS`h>IA>}{M1#kIGRtpaFB(O5oKS^Yx;mo)aBFeUQQ$OKPunhDo@9Tiz?ce z?Vr9jzuf&*bU}n!#|WeC9k0&6o>T@CBLlgw!#fURmsZsk78ibNwdFMbT%tM~{>PfW z%oWcw$Bmz`B&zZi$6&I!E8#i9sr=@bo`Kndcc3)l{!Bp()kVhuqs`hgYX3DT_P|26 z!0aM&%&kl~vq3_$WG+1>p~Lvv^Ft(qc-Q3rt`v|K6?2KC2QT?l1t`{ME|r$VQO~lo zVR4u)iie)w%^$QD`@D!e;@5eX^L!!;I%e$jit)NtFW_iQyY=><>Og?vAuLUl%lB?o zLn>N{EZ|K&^HN|Yj@MA!S7mKQg#RtCjN(ZmhTmN0H}Vb#>_W8Jxo$PLgSNqn&zNRQo^|i<1+@?Nsm1SJk5Dg@{sX$~(SY zx76=4J<+90n?xb0$KhQnqNKU2DiQ)%fI;IcdrsRj;3SoxvyL?+aJkF1w z61+S|Af3hOJLZJ%s;r*0S z)g6+3R3^4v7e{YVp<)vPlk2=EKZOIGocf)<;yZKS#p;X3towK96_P8u^2(;=Pb!9G zSHQ0dqBs&ra{J5RUCdS6(ruDV0>r30*aZ9lT73b(MN5S=lBF<$ow0rw4 z-xnQN8leeeCwEuZ0Y{Fb9sZ|Tx&RYsa*&L8lRiGG7_{WwQu6JRR*@L0C^OPDpitgVvPQ!M#`A^zmpOi9e8Y;v048JR8BHzVm z)I8tANtPzM#Nbqd7EN!uoISv}?@jx~C&>N>$UFN0`lgl~k7)a_xq{#=1~%3`pxWq< zBhFtW#0Vv6L|=vDIUM>8F2L?w1ld|CDzd}Y3fZFOyjA;r0x>1S&K$9eBMwQ}SwZnp zUjy9SSg`ORV0%P`%L|*L<60c!&~PuqG{o*YnQyr9229Kc#ZqL<0FNEM0XkfZ%lLTl6YINdx;-E{42T0 z5T2ST#ZQ^vRTv%O-TR)4zw=JV*cLSp7M$%*n?^L=LWqkfeP6MG|~n)Jq8e#shrB72IZs^Bb^eso-P*ZSTKIP=$RD zlHrECkaXaLDD$m$yx)b5m0&vpDT{<2{`#b)oqEV7-Jkw^NEd1SicTrMV%s-h?`bue zu;b+{X{k?0*5QQCyKymZ<8=BSpl}JFeR;#JzoWuEJOsj_yvjU`*)tr-(!~6fU%p+7 z(c;Eq*L}J{%`^Le)_p8=#gn&|9;A;MC5=&oBKHI6lqD-$7Ilf^-}(6Z$A+?yjT9W@#^r-^QQ1?F5sxl#5?U9ac^sR74~h$tZfx{tu{{O$h%Bj`>CZk-VRU&yD%KE1T=|^6`bO32B9i5dy0$ z(HPw}*YYBG*;WiaiPG8RKa=39{_DcpG~bf@)XP$@(y2MDRx{%#7fI7_L+vHqLDEDN zrc`#O?(iotf`l)Y+#>-)icxmrVt)r`e6P20OjB}3tEdL{%h9HvV2I&@LD@YAFHP98 z)31_$Cw_!-MBzDslsx77rV*pfv5gv!ty(SVzFod2A>XxWIFIbe$x^phj{;kP)7q zon?Ts#6cOESvX|Irlh3wE_=U*`7n7IB+FFr&O(Yqb_~Sjj>6w<|Nc6`rGzOj3^>vi zo|hrCi^`hvLCmIr8%*G@mvwp2AK-r}!Io3pH=z<^XU$<9W8d{_wlLi4N*!9k*q)!5^72HCM|EEIH zD-DNY@a$-efg>KVErAbDV+^q+!zGu<1$(8Wy85VRE#zQeP$N)!&syjrFcj#6)Iz|@ zVX#AJrRf9{I;FQGWB7<9YeVmMe~V-}(z|Eg2N@s5`d#}(`ti?-x80i}VcO=zmPXQu zBsgE6{~cES^Y0HEbIhJk_!ZKR8{1RNx0=Jb<fs!ra^t%Fd9;wFCwTRHxojE`bjXsi`5EEHD!I(nu%k zuEY8UWL8m-4J{$Q7_vIX2b{v(Ug^V!c@QuIgozVC=sjEI$cIFcd*{L8i7aNYCctWk zc#c1TBc!2RgjL8~JLeRk@$gQPrwYZN_Uv=S^(IM=(XgUTYdVo00 zQ5b&ySXdlpp+3_Mb3)+nogf6{1IA$0(B29l;y~FV4m>Y2kVnu8Ul&6PHxNT80R9y! z8tR;nz!nLgr4tCMWZ<~8e1ENg5Z;G!Ay*XuH^m)nPg>BE2JCs!V25}!EqPjYio`oZ zFw?Y^M14Nix4+dfSX7}Tsd&lD(2Dydip|wy_DKU(m>Zvh(cnuD&K`ff*^(1`94*d6 zk@(F|Ahn4R%slSZ3TXd*Stt?j*AyEWJl@EIPlvS#dXexUkuFGQ zLVENzqGy2j#W45A-`zdPmw-AY9qL?jNIRfZF#d-mA-HsJ9da^mPNZmU|PZ}3)db$WO6^85Dp{NuZxYo3*MPL&!c8a?sviDc4*vS|;y z4lm_6s)d1pO;ACnMUOo$PCyZx{*uQ+NBnyuto(eCQ0#(PL}}%G z)T+AgRLg$w4XT&!J#buD#v)(e#Do=v;8GCdCKU0LG+@K?f3yIH6qpZ%kP17@HV}qm zMFFzq7?6T*YfgoCcnTaikOI!zPvDYfLP2n477CJl1J5lHUobdyAqhx&q9I$^7{Zzb z#ruToLjUCj`9KiKoRkJl3E4j(M0AH-kQ^$Vo2^RdmsGxE0ywSXy80X?<6F{~?vvJVL zk)QOa3V--8Gjxz(v9Was{V%!fTvUc(c3=iZc`2Lo<`Nj;gA-Vg;xnuk;b1y4SOmtp z8ppV|xrs@Fr!4M~YdjT7qLR?c2|TLCr%$&-#Zu9iQKopkx-5othuaIH1NA9?-?UQmAA~zl`&LH?EhB#t$dn#z+*XhvLkd^TG=;ywzVzAFe4b z<=JZn>`~N%f-lTXmz;}rT2KgK8@9K4!8`UFgWL4h9gT)YMv^KjoZz&xu1o7nk5|3^ zI~>$2+$QxmQgj8Q7@S{HC{X@}JKq5S-?xoH?nMLeGy#8E2deqPz#Z79;R}Cg(GXrX z&a%z;^s4C`!7ZGSVUPPFK0>f~PEd`yl}th_3wnNMK2zerL-GDj{Z-!Axv`}5S%FJe z<~y?!n@3bP=-Q^MyH90Jv9A?;6R6YYN7;v-NWB5i-!wRx zyFnW;SOlky8e&0&D^~<5dD^pp0|>zrn(GMuI%{_S5EIZq+TogWf#(+zI5SOO^1+<= zI~o>8*|jiyTo;M$ts+6(uh0O!yvCJPo+~pMxEVtXoIZKl=_r(+SW;B$ZMnOxMcpqm ziu-PlJ1rS1^1WB+{F76o`O%Q`Y{L1YI$%>^T|06!-fo2BmLMM=69iJarq2(g2^Eg^ z^z4BVVqcf``Z9=zNcs~-Z5%kcSphk4AV&sxE~mlr^b(;u zfiD;#L8GE!eSq}Q^_P%Zlrn0PHCeZ9f3?6R3lusulsBk-|fjg8}n(uHA# zhus5g^pMPP_|~XB7o2c`@g)We9Fj?aeqehMt`{r#vg6^#;z2Q$b!pK;0?)8B!-<$a zl7-X$X&fI#gJ6U^WrbE4HIV1IA9-}fa7MPEyzsXATsyD-17*UT<#*QQZ;_O%Bh14g zm$hxg75TI)>#C|~`$h44`MZ9)Ph}Cics_zcJMrS0(ASm?4#<*N!Da>VXaXCP&Qg^n zdojBMJkA}US0dUTvKYb~v;#K6A&4;)nZbsL6uRmNPYqK*%Qt2OzJmlgV0BO(L!WB8 zpYju-yCL}t)PJvo{W&C7+aaNH3%)aQ(labrgO-3uRsu}tMsRXOoXwyGBmHV1;BiYb zr>`h*QLBR}g1_3isU6m-cADzKW)hN9t7%TdqAOk*pF~I9McXCjXf~Qocm8gBFU&8V zS$!}(Q>ShI;e5JB_6<$Wv{WaV`l{46=X1r?bn`(JircYRl9vuSqS?8HoWl`eEmJ;- zZBo7MrYERC!2 z)G1x`R1cz9|IoLUG@?y&QGe0DmdFU=Yi7aM&)EBg6UO}N zSly0V)Oh7Me>pn*jZnp6ZBtWI6!eyVKHsr^yn<{q9P~!eI&Z$8iJW?= zIeD?{`6t59@W=&188sLG0QvF4Z?PB6+Fld49ANXpeL*oz4L(M?RZ->u72! zi<4Wj*>G|9pL&6M7dNF-#pPTriV1mlBs(Pg-|P>gosS&?qoO}y%=~gGE}5r6O^0$W zRp_UQpVNm5naZT=J&jzUZ1||w1}as1rk*G&@@0fzoPGV?a;0mPv)qJ^Ax@#1zYDuN zm>>}9@B9>GoG<@dikgHDof$D+*OgS>_YT`_CfvW8UH@h%cVaa zQg~&2ub;1dwnVdh){|KwPY<=RMhn|$r zB6l!VCK1OjQ&K59M_Fu+xV|A(Sgy1Be3Q zC$<}E{IRsGE8amDT1Zq33%+$EtjdcW^~cRWv2^G2V)lOMY(~qJWiKhc;_2!z^mwy* zXu#ibn-w3WPukUJNO05iu}(3n*$!#OG}QCt1F-&V^S*YKSv-}7#!{3wFNN)asjU{sDG<2HD2@_1uf*_ zXNimidr87vOS|=|r=Pv<5QCzv1?SrN3!Pq|%NXCPnsTk5=C)p(|3-=YUGB(Olang% zr}1&?;DwM~ek4~uG6V|h5mM@cGxWG(b0 zC_8s-?CD_IVVM*Tce2*n`5nc6bv!S64Oq z+^0a6?qMjnEB5<~HH79I?katyZW{P3F>}Pss5-B>le8N~w=rq|UGRCL7`0Y7Z0n%5 zEhEErnD?;!U6G;N<}3#u#!X$6t0NerHLO3D_?n(NxEZf|XzwCP@+_8V1Bps7uxo)57r;Ph~?xjgA>*fW?;3MLJ9xR#04i^ex)_GS#vfC*Q?f z!IFj{ec4-iI4G{oeBsVe`x|6%qg%DAJd}n=BHfSt;19w+n(P~qys)(-kmdiWSLme z(t-WJK0Am^mxr*puo_a1>8Eh<${ymI98H?z`29pT53uTP1l5x^53UF*o2iIb&i$?} zVQtyxy^^(>r8`cTm&cn&n@rPdH^i{hGvN;d!8R0R*bkv>C3f=6lAW zIqAW1&5vL@P0YJ%gsVbj@pO8(Qr2R$sjozaLJnWa#89;xaDC~uat+}(s;cg>rI0RW zupAY}NK7lzEy(4&wT^Yzh@$ox?nNX{r5_r(?56KTuACzMhYU)Mcme*-nvre1d}zt>UpN1HQK(OX|2DK{!7xGAvEgN+`D>KdtIFu)-@+q z45}J!pC^y0vcRL^5$~aSTf~miVj9NX6IsU+6?dOPpNN;ir^w*c>~N^# zG52Bl+odID@r*Nut;aU!YF#?n|DUUZ{=*^rCmujmW#u(MD6Ee$GpG&3BBm3Oizp#RU}jusOE$1_$J3#9G zf8dc2zfAx9mY7DD$V?J3c(VLl@wdMLLx*A85#2>fe=9+__*KqY=yg--r17irZ_ItS zU2RlI5kgO(Pfvnl81I|4m9!wwNnaMPz$^^)Y2JtrM-;KvYl4(vgq!WCE5=Zrc5({m zFFft&o@69PSLjx5*CkdUIs%Lp7IZ#-`Z>RE^FuAt@PjG=oul6rq+;fDUYfKGh+wU! zz_xKjD_uBNCgR~Fvy)rc*1D(}|NjbXqX-@UQJ9+yh@GtV2$kH&I8u0yi zF39UvHz8?z(<=H^zE}??lfA#uk4bL%}Ru=o1fF|EqIifCuUn3O0Eez1)N{d7OBmTP|Jrs ziA>34xg%s!!(R4tjPBF2vY@B6a_pk3}~+~1NmLIV4`Uw`#IXJK-oJeF7j}a z9Zc){)qfb;ihMcix8Rt8l`!oPXLK4~Ew-$UD$PH?F(l>7)mb|Cn#Eb&#ao@WBt_kt zcdrPqo!eJ$B)hb@btMDSz+{x@QU8rHkEQVsEhjCfWy#=(=|f<5&zD!!t)DU->iRSI z7n|U0TvXaFR(Wy#fO+dnHawz#bEImDn)hVs{MwO^1#(R zyOd}AD}UeApS4U0Ug4TtlO~M%`<(eRQu(Y)p@LUMQHC&@Q7+Bw;1j1y=Ok(}@^??* z$25nDlf~oQMk^d!p^Sh&*8|Qs5_p8X%Wr5Tl&}reYp~TBLGTFBpDAG4a-=~RNEF<} zw?MZ6VF^6N8u3&Br-^_e?-Y>iO)_L}LdA6km?=CTu0kme5wQLzc8k=>U;RWdn_$t! z0u>ba&q&b_xSU=-1g!D2j^iY|)7LUPmE(6J)yo@14^49gPkmZhp||puPnCK~)@uxK zVq?kRsigd9X^Be&kH0$JcdyfC;eh4=53r+xYSrH7P=>B(edO;Vw}yPWwK|={=Z8VH3*2zG+$>wP%e$2oQfn_otr~W zzxxX|YB)PFAkb$xtRgr=L{|l0b-;hp6qG>Ipw$dw(uGVRfQep0O*u&et{S3tA*B#F zX#%AO=?B;jb+sf7s9$y<4X_|5)k_5sArn%O#ph=utYytg z3%-PHeB6Ezy`7)UDwC;=wvcjG8uPnv30_+UJQo-AVlwi4y!pqHb^18#ZzjDzq4L4Z zmWDRhkl3wEemMPqG|?*Xup;ro|N0U98}q5bZ_E!MExpzJpah^5@%&L!73?hRmcb#JjDJu)C^i4(tt$^I;H_kU&--3V1E%h72qeU zpZrlWY5cMOygt{tqS1+rb9@TE{G#Gt_VTwpg$hym3O#-Fdf>N!qhCp9^BuGLP0s|7 zC)`}}7XvnaW*5b!TUQ;w{6nZog6h0H9}0_%e^FPr1?5#$Ae&i=}@3bzSj1jK#eSD;jK6j1L(m?qJqLZRty%Yc8DxY zFm6N4veAV8X9&~LuCsI3g{C

w{r+(DdXNMBz%6x5HqAVP~Y$i51Y7=)2#{_uD* z0Mt#dxFF#af5OVOQ|1nG{>7Z$%1>kL_oZ&PJPFz+#tB?yojSh}6&gqi-=|Tah^J{x zKZ~AlvcAmalXFS=ZV6+hdNG0QJh{Tv?Wj+FvPVIem@TQFCuu<9*A6on;JKfplW~3g zZX9<*H{1BF3^6;CxL<5;j~?H4yY@eIOv=ZP=ZB_TRpYPoq#5L>M{R^CMcffoXN8hV z?WGj|>(|@=AuJbmXyJ&mEHf8b8LMXl&So0>hO7zf4(WeRfZE(zR~IcZ$JF2vH>z{9oSZg3n7=jH zJ@!wYFFqg<6S}9auJs+cD7p$eOzjxpcUCf-)Hu>-jzFQL8D&?t@I=7Rr440y5247L%ZgZh#8Z2)lu6l3kayQ`3m2f|*`{BKqv z@b~hVepN^i;L&WRyMI0;lkkW)hPIdEI?ZcvL%&HQ-7&*A;-e$*R3?^W z)@J_nTMnIXgX+mbf8Wn*v-Wq!Nm- z?G5l4M9u?71yU@9xcENZSKtZ)k&F=q+`|)%07r%Om>Fd_Bm|l?IR61d((-euA{@fK zmKAnNh-3#b(;guFCBT1UvD*sHFuv7tlv5A6?6;4k&(L{HiKN?Dii=|aUsxO4!!CN! zDPO|xckfs`Nlh}iC+_(f>wL#EU$D_T?SM_K$H3nAEL$k&YxJ!1^O1C6E$96&F7KcgG!ioKJcVLn;Ar)I$rr zc7%EeLdYiw9bqAQlB7Yg^oOZeVAKPk^hl>Plq)ys+}Wtb#d@w*a--Ty8*+ z%5g-Af~&B{y=ke>XQWac9KOoAy%Evr^xA(PFd((=52l^o-gq!A`+v;tT*2?73{vtK ztCRTn-*OAm#dp;V2_@aQS?6md{edpcP^A_l81$!^cIrXqR*l2j3)OwBE;sJ8PW79T zdoy`DN<}}l=mdSy#<%sixPu=sPEBZY4N#WR|B$Qw5zaOWH{>YR;kzi`~ zk~c|Y`poctSoG57#{n6oDlwOxnXb6}>5VUJovK4^s6%wwQ=6@HD1D~k&`TG0#T6>_ zgmV+l6)-%=Kxy#x&WrN|7vl8Hd2^qokOsL5aTS&g^6@3|0Sbe>jf33nj^6`2dHaJY z_5(M{;si$REUKu-KHR;>Uy0b;-b)^Q>G=4WXyYxhhLpHF9J;cN7OJLnaJG)FxBucl zckx|xPPW5_l#Xx~8N#_c0$qWBB2UT^F!Divby9PFszhs}o}wlgQhlsrRKr@=7x#*x z^_dE_w4EGaFW{=2V76Ri$a`k>S@}H&d5iL|*uN%it7Z%#@sf74w?ph2Z)wN7>h_VJ z9p6r{YV9ho$FL}AVTGTk-J@~Qf7oDB`!5NbAI*k6Sm&&oi4~+fQ*|($nA}lXa=-Go zO6<%`ja$I_De>O|tet@ztb{;*R{a{)!&Vqk))_GrCyEiZK725NcrA^)n_Bm9;?KMN z(>&ff6b_bLl4d2v7K-qqt{zYdOMFLHaiQp9tDW-}b3aoIZuPw9z|AUV{!Vsx7C37a z%qJH=Vav#cQqtpZ%(;ms8*gv9mA=*zL%pw#n*O;JhuwL9{wAA1Fr70)AQKaIhpsap zfAaVIrvkCqS3f8IQFm|3qCx4kzfh_vDTnvXQKp?S`%uYjl;9Q@dAq7L@|kUhL)24} zN0ja}vdoPVxC&Q>PVJb?c_|HKt?v;yU$H_lKgq5|b->riZtI^E#-LG|lDxy$(ivT2{F`-}-TIe8+5Y}hG9zv^vUcBD$7hc+KcF=Ye!$|sK7aUp!pv{i zVnnB4JojGh##t&iMA7_w2i3^pXd;ORW4I=G`N;p82Ir77Oj{xX4)Ikx$da z6Yycs>xb^}ipRU+Wz`ESWHFRysEL=S0&2t(u8D7>Dr6Mc`120+2bfUxi`C=Gc}rI% zwDx9}CO2$P)?Ibde;Oh9h;pVMP}CV;XkNpBA{3#p9G}tX7nU z_b)6+A;pmDo8Y)!|MA`x@)E-XT$DZi!-UDZ8_lfP9copa#Ln*s$Z;Lf;ceHXE1t$@ z6ZH6__0m6@v=Wqbdzfnaz`L3yl>9E)^z|A47gH_id5ap+-^1En1_Cx#GvA?zLZy<7 z)m|4@90Dq;_&v^-z6b!=JO^x9NJ0s;#i(y22-dCn;f( zSfP3@$yBCNwbfXmbw+?dQk{Fc?tl@v%BiOz8f$>Y(vG-j?cpq2-n^xCiT0-7u2n3H z6>mwoDpW=9@HN~`x3%*L6S-C5LpqVf8_8K-T5@fRpE4LJ7FM?BhLXu}Lbx5zG5niF z_lkQo9!9ku_QOa8k|&KdO;)j&$l6lhnf*7*i2K4?+Ir8ikG9Ml-tx^U%PqU;ae}us2E%{peqTSY zG&PmG9ZKsZy=uSyqO$VVJFoEYpUloFWzm%1I5K>NlIllY`Rq&3F@1l3%;}f%Gjs1& zMF!Lj4$sUdkKObkNLlnidsA8mq*7?hiYsyC*~XjL$Zkq8zZ&;4Rz`2#5viUz7}7O zI`y5c9ptZzHS47v>o}!oQ)jCq?i+*Oge#w(#+oUcBp|Yp*f`M&NB((HT3j|OPJGJV zM3`-QFO`uj7xRU7l~(UuB*u?nEFc{)ncg%1v5M%}do5?Y`RT2^jAXMIT#6-&)aKy$ z)Nf%mrdm1gvElqiywkf?xiiUC&%@K|J0*K*OS(RJv4vGL{xP(V2iD(_%fC;0yx*sZ z6zKx*EkBb?-S_XVa`VCYDKenuu){egN z((#GGRf&ca-=k%HwDx-9pIy!0+u(ZUnsYs8B*9cmKEQr<;iu0Q_qbU6KuuADB@WWw zTC5x#!Q%Om57nxkVIm)YZn0vu$Vj+#E&hP$p!ApIxI&yiOYEE{*L=~L$3}ka)e$;1 z6F*vX`n24t9+nnJS#McxOy+-_-=*WmYex#xs*fEle%R|AS2W&kC%)1f88Jh&S`CtP zpIzAJMl7tl%c*iNZeA^^2>*t}^L9h&;q&tu87-;vvgaN^9HUb4WGCyeA{*MpO;5*~ zQ0_q!qB4=1zR-@S1nCa^=+kj-56M&KBsYaQtd^ZU9^BDb{*C+0=sE9)qrV&0#k{td zpWh0jxxCLkN(D(!_o5cJkAS$7igmv1g)RMLHoNvy?6T))S9Q(mw4M$G)!)++iw3%U z&-B#mC#ePDbWcm!CoxJ>u0B)l8=Em#UZCiKnIyz0#+xOIKVSPb2BWdXdL~6h(eU{X zoZjmWr7z;lBT?}K9Y)39hnA!oF6QNYwA1Z$OmUZsGRk9%WW%@iy=5zTf234nyE06` zc{jA3L&zs)ICJ3Z+TgxeGT-s1`_EyN-%|BS>U6%%jLfX`8W=q-So!pL<1d_)%}w~E zXUvADD_3Q`l0DUCns=Q_AUWqa_t(M8m3%3Vy|HJZSwwFRR(kX5MM|%vK;JsG67tf#&(+KBt+NdIs;EzB0$-cC7oa)ou8yZw^a zP3c6jgpwJ;fB`uoo)DSASp6X0_WR1~Irmi?WtFC5CfDrU%Pxwz&Ry~{Lsf9~RwrD{ z#F|?z98DnTinDn)jJkb6JO9BHzrPiu)JQwk4`2e;Pm*J=j9IW2`d%k0iAKGCGFqtw zKT3yLYe%Vz>t!on`8$99I(Zy>LMX>%!HNZC5Sa@l?>4zRw+UvCx46&v6+L_^oyB@t9g|YDAR4gyg1Ui{Fnp zRU!r!Gz!mG9!FJyo?r;EdCkwfzxwT)+|H4G2?ctea@gE1b18(%A=`@if%(W6^}SGnndA%6-2B!?!ApEa>I%cb-z_M#9y-L+@J4j6z|4# zvhrZUx&4ReNMe_C4jhlsMTb5Agu6T_7ZE#P@U%&jrW1-=5$A}(@%}PVoTuy~@lqP1 zh?)Mv4QRa7$;wctrr#^8&K}EQdhWkT>UC&0qXaEoNV$mKsjQXM?J*GX;gohv5nzf6 z6X;wEO>x^-zn-?t`1{Yfa|}I2yrKo4_iKFh^k3rBfFxi*-};_mu7mwuDu10+6s_~! z`oi(IPP*`(nN%z;OKX_uwmVsQ(W&W(Q%k4y$2m*C0EL{bT=A(Wia?B&S?lJo0`%cJvE&&2GWyLjjI5YA|^+7r&wBw|Ev z7RA{r^wVVH>8>%VMcuw%$atV?Em~ogb5;LzMK94LdptMJFq`eudSFmvXGbav{w&MJ zoy+rVu8Znf{1g)xyj0yW#!<9G2{|cGDgH{z0gbM)ym8T!l?IrxMD1|mIq{e+-gj$% zU1xorW#hM^4b*1k)~#L}OI)E#f4<`#G+%!0nv_&3F_5L*-C4}ptV243-=-3ze*c4x z#0vG3zRS2y>nq&fGfbY1D)`!j6SD$Y>NU1m-NIf{o0}75vWE@`ME%eEuB{KfT8PO& zHO%t?qfFaZ@DN@Ui&sVCdAtqCp(!Nm$vOSfs@~hDqolu(?ChOdDULr*zJI0l`Q1u8 z7yS^wdV%dovo&Mw<4_Kw9%ekTDyZFrtpg3`W{-(=-_fyL2NR6Kxr_{*_82tW=qv#A ztfOs;-{-R7b#u=7Rg$t)8DWL-net{Nj~%JkG))tu%18Tc?W>ri=A}k8*V&@9-TqBB znbjY!kAT3~{%$;Qok9$%#Il}R2`P);bNM8-tb|(19hd)8+$N)VCw!&NQaKtTpO=x_m|?zx4YGZ)YUohMFm!@cid77K;{@xsEg6 z>6eLDyX>bZFLGRTziFJH#PIr^BtVH*BMqh>4iB*y5k-tVJb7L_P*Gt<< zUO+ImE_37<)Pb%to%B_*XgXHm#c3ndG|T$3gMRLM#RtRHP{;2Zybpp3g66tRzox&j zitv^bdTaLrd#&nRF0s&8x5cl#+GXe0vbNT3?ai=@6MH~L+Hb+z)lk^YQ_wxTJS(Z& zpVRcGgBhy%C;r zB^PhGxtaKMlYyH7KB9N@7cY!Ft=jJ$yYg9J54&Wym)j2bUkw1N@V^u)FygyHprm_C zp8$q_31wvtXw`u_B!04&(AxZst*PXM?CGmxz%a-kH8fK?IqGGM`wvPN|LrXMe-Vc))2V9c2pa4(6f zDPK@eIbg?HlG=A>pmj1$lePYbzZBjpF))+$x$3iFZT3@Z&u3^I)-?I}(a#qvl3gx- z$Zew@s(Zk0a9Zss#MI6)j!-+`d_?>E!+Ug%eRfUDjQzy_9gyP3+XB5p=)fnJ420)t zFi``m^&~V-2m&I3yC{&{yFlGR+-57#h~@tM`wP&n6d;tYb&HeFHO+xQ3YjDT%}xWH z6uk0Bs&4>@0}?**NIzI$THv0CDj@_KfE9f3Ob06%ly4;A$|3+^06)gS#lS-&M{`fP zAK1mr+}0S{=CiwDvne`i=+rMML8lbw&7ESh}GWF%Yv4P|q) z@#U-Z*00swUB0cm>!WMw_id$_zJ$Rp<@X3p+i|Y^)%mzcPp(eIgwa}{C}se}003MF zUIP54k31g&ZUZzfr1=1Jmj#?@0dW9)^GI|7X$b@7PUs98y z7}O0R_Jspb>5E@$+6es;6%8e_S-8UOFd(gp% zP1k+S)qO`0@c^Afl5Ysp2Vn&R&l0MVcZ>gko(T5OJxF5}P~LigG_QK8e;){pQ=UMV zi2+6{BC8?JcX+lUHy3UK9B98ElJhM1qIE1DL=l)c=BLdZl4(A_0XlP$On*XXJ#ICn8k(K5a z^Wt*0V7F3=a^lOGVttbzNh7-?iZQR82ra63$sJYiXCzZKv2>HUpmr) z8l@K!QrCO@*s-z3HMr8yJ`=(TghDf*wJN?=vMMC>cDFo$%H+=OuG|>9jY&uj(Fv1m zIbiYxUwnp8F{bEX64=d0BBjWRqXp*4k2K!AvD`P+Gb(eL!v{5N&9ZXkU$O_bJ~cDGj9_$0id^I-khbIsDe#ZQe6cCGRpA$^2G|TjfW7r#f1Y z=W`z+;bHMr_OGPYh^QQNDC3}|)4achdSd>?@u!1~ustOHd3)$aZWII}Pd^7$ZW@M2 zg1PqP&%!={p+>r)6ei!DHA?^^_yNGHfQX$`IRMYjTPT$yog{L;E3;}{d4T`Ffq;B! zTA3exdK90WtUmU!C1N-{wX?HR4B7~Ro1ZHpE?}zVHV88N{h((l-f9g{vr4afj_~i1 z-FH($Q`7!}`*ksRQhB0FevI+Ln6dI?lI#v)?~jg-S$?)I=lXN}_wz-WN7o-Hj(c4hD-WvtFoQla2f-4g3)JC+hxssAF+_{c44uN>bCwMDlHIuf;PeNGW;1&6w)Vm^dy7>PX-qQoRD+&cHDgz*M ztA;FCB9UkWU<}I$5*9yO?Yv*_hD26j`+q^_z|O&9SSYf*Hdc-HX2d4Y3HgMp3|DbtN30$ruM-t7}pq8{1S z*#zqy!ft@gki1lkA6R%PY8gwFb_W^cvB97J%9e*z#o#P5IGCOKlqN#VuEQ{R3@tRtw{jmOJLg+NgklCs)gW~K zGazjt)6rFEe}IaHHZPMDX4LVY3zCZGn$KQwAo7*9_B991GDFrc4RFuU1P8(U!Q=)^ zYju<>z^!{scX(r^Z|y1`RHb2;T-&Eijm4pkWLb!U%_El}JZvtFMFb`{0`}fChwrB~MDA=ie@TKlIy=rXd+hY+2jR;pwe{aeslz#WXLoMyZoZ!1 zI>dQu=)0W2A-vK-toOf+75&VtUpynlxqlmeoU5TW_Y%*b$5Bg5?iJrHH$vuLU4G}C zEN=aLYI2DDw}D`a*3u4<5Yzjp%EI&EQ4V|tN!U67%Nrpa9{>0IGWdB|pw-PD%eMgw zu$J!ttDO!7|IqXQ5?j?EDB|9~QF6}(3!Aua&p*~9^R1P0ht zz-lcbWkL`fCN5_$ymBTkJ$)vb+e%wHo!Sv{qqrrj^o*lp`?YbMfz4;Tkv{pB8($li z=;c&u?LHG;WL&oK$~)^~vX$Ovvot(XTU}!AO}&5Po({FHMeyFQ^vsFjh8IttH4NU5 z8P0mobLa6xXWbFPV^0=$vijAo^ez&^R50ywfR#f0;X{W2wjGNsQBJt}aUzje;PXCY z=jW4;gMv*>`)Q3T!xI)>rYj z%iA|NT2&gLeIUWvRihk(^UhP}T2WME*K)xu58=(;92=92T{W{YdG9@YM^<-t>}Kl^ z0iQApJXZ%~UFw&fpr`xapU#hIqNVYiFHPK4^|D@`qdM?Jl>Xoouf{FqSJw@Sj&zRX zR3GO1Y0_rqe%);APEH)-Q75^{;(7cjKS8m}mo@$sWx&tujci;Wt-d_6zE4Iwwj-y3b+ie;qy z{)?`?-}tgG2%&F{$^OGq5l;sOAtA+j_(!Me(sxIyq1q7s9xZYx21yA4>5^`wn~|=&&vWnB`+j-Xa=BQ#bY{++v-f}hvh1!2{%WyI*tq+u z&#&s%eC!yuvy?%0tLRD9D>gKX)zGdaT*j4UpE`x{2gO)?6F$}bR8KKbtYhJOt<0%SMR zXv}4k^z~ZU=|22x#Q6~>YMS)g(()pT0QJ_9+cO#K$?=!Z?C(nz+yk=-Nt15%170i1J;$=h@G^|!yo4#gK&#;K3x1D>wV%y66hb!GUgp222pbCIlz2Xs zaiSEJdtN<1;aBrDbTFl&p+tc^SqWrjLxG380ty?9w$5xc4(4VKf=Eaj|%mV5qX4iiTn$m9B}h+)lsuaIdcioy(y&!$QG zY?|>(0sbj?pH)_9&6SeliL$>x_N4er!P*|s=^Q`&Ol#v|Ix&qHN|O=^XTZFp;#~&L7V7e?Hbl^DBg};?2dX2VfF|+fhN1 z`meF4rWbrk{!MeM{72q-%nFT#Y#HeUGt1aD>#&BYp(>@yf^v_Uzh9{fdnyhvE4W1a z^S?VvZLS|Zky5#?W*FRbetwksucr(X`zpfW=w*tZj~lssWO#aDr?Z+;%!smxodVVv z1p>81<@^}Y!I;zc&|*YbQ*ftNo!lhNVda}R@!LT5tU)DGzwN|vYUnP{rw{YL&6v$@w~smM~p_WpLt%)BSm-(3L`Ama#&cma%^o+xhRChDwmo zuDk1Y-d!|hh9-c%o+kFl9xDa21m?}hsR}er3N|is#BoqPlVu5m!<#l??{CtH)e)Vw zaZ&8%i~-ixR~4!Sqo`4QIo{T}oF4)sEDU|k;~ey@c!bkFOVfQK#2Zvm#~=v1B%iY1YFl{=()gB)V&yuK$Vsg}od>)k(N3fs?NF zW>Ny$^?sF1ZU;vkH>W-Yi@SecPzgr_S0o1#(-QTHw2LHo5byq}>AC^INXDfd+CxSv zrP$@j=W#)yEXCR{5GAp5#k+N4_)AjwYY+K_GV0RPvh>Lt(|7NQ{Rw=h%(`v<%8fRk zm^)YH{c=l7YMorcsBY^tXxG!Za4>sW+jhstIWqrU-Q(8&((*~zAd50-2@8v~OGWeX z!-uWvM@{22z(}{nuvTLv}1XlI8&_7)I-9@^dxGZVL@MY+2t;XT=LT#-Olqd{vPuJqTY>CVsEFG_4 znm_}Vu#aj(6~e|WKd0U032iHL;I1Zp_Ag^frzTEtb|j@YA}nak=kC#be0yocCc(8_ zXyllV5LZS>gcBY=x(tQ!6S4w~u_H=&AHkJG)o8kX=X;*r?21CE??F3 zlMzg_Sm|NWYZF9vJvy!Q^}Z4)c4$vCwMsjj;8d}kRIVAEjy`)jz*Bh_V4D_ETUJa> zZbDlc+&*CcCIQnT?fC$1cCWgeF zp!bV~r{&xNG*C%R)Q(u2_77hu)SnsoC1n=H$v{H8*vTkSV?#^MOHqGR^6w_}(U?CMGT4k;x?51MKgp z^}R&vC<8tdqhmFF=&3~#$5BU%?TbJys2&S&HlF&W`#>cpvCr!Ef#)ntx|4!`xWf7v z(b=?EX?Gy(bpCXn-6j2AE3?H4zTQPhpl2u?Sx>k^-zslc>3VQo;6Y7wGBW6>@F5VU z(`_C>KGH2|; z;Lpj73BrQPg$L3~Im6&|9_LSMc{14fXJ2O;XbR--S)Mr^6p;GC_`n1@R~S@LSTgD> z`pMRL6s;o7R8c0jH|%pg%(*4ZshtP(o$xyTSR=azAG00mi-Rzq4XL|l92^{cz|lQE zG0`<6Ia5TeP)lcvAo|r*5jwpn%BZVI(AQ!pQ~ag2gji>WxnEQb(O!#QL01%{(Fn7% z)8TZW#GUxw;p#Uvg;({fSyCqKaXjG}oN@m$e0M!B0r0Mx;va$Ra~XVxP^+o)oJ;qw z8P=KH@aJKdX5WcQ?7x)KPY`yA)`s)JTu5Z6ScTB}59-ohTLcp%uKw~g6(anRFKg)0 z62ZJrA4J9s3%6gLY`uNz*nBea?*QbkEP*PmPVTz70H776gLI&fW!#=2e7Tr8yv3Z> zTrphN9gAi*=&Iz2&r5>Ypg||2APPdE@Z0Ub6%1kO672}V=>r@@rQ+rkQ9vx3OnQ(| zr+U)m-xW;Hsat{(sOT`eu<#+uA#kOyroSI-1E>C|nVFZb-2UjIe8`O!<>(@de-xd_ zCGmig_>YYC*C#qcn2Gcg7kbk?o_qh^o1J=x8VkpmHr>~mtX)zhxbpRkR!_J&wGeLz zN_+i;lKO!QM*wqCTu^Nkq8%o549bdE0qlT*()4dsRpf81+#!fTUy4(tZ38W27LLYZ z|AtgB7l`?34*!ir;qAa8;Q>=IeCzVz)?<}|(+wAfCf`ibM5V2boTq=hk738NNZ|Xf zeKLD)@kdioMCtQ1nM=@bA`YRbiW=GrA_|7%_|ef9_KVFitx!Y|=#4@#0~zk^0BK#d ze@Xem7{=U5K{FAB(-^jk$MLa$aE!1M!Cnz1ooh#XYW+w&AWS|}iBvwkdCSj%2yvm1 zgo*!Bt|S%HbVR@f>sPtF3(48HDnqLTde(QJK>`RZaGG=hOy!f*-Nlf|PH`0q3IO}f z85blmFc+ljK$_fY0F)0sC~BkK{%}8SsxrJ_(M;z><;L}jM&D@D#>n36g;Uz<+6hm` z`p(?5D(YI}!c&X^V%L_32VNz4kyGzn zJ>vP4;fvfnkBg6 zuTH$iwG?x*vr(eg7hV_`g!$hhvqY9YpcV`9Waa3aZg-eG+QigM?fFAEz`AH6gLByD zF{X}bk<9nIo3Zf`xc;oqjb(Nf^D5UOW=csK(yi<7RHrr89b(^5q@w8U^}rmn8?{-{ zL^TP;A>0mRCt84NQj`zCO+p7G`&+RGpPmecHQ31p<;;P0LTvAY=DJFhZWpL)wK%PH)2zf06EiEt7#*lHtJ@^R8d%Yy>CAL-Vckm$f1 zW{uRLn(N{YvM1}UJn3CS{c5$**CiGJyFEJazoPX+dJ~*V)KL91v z@$p1Dy1L8YtuzYW0aQXuS2q~^8MX7zd*?R?{)-GlKqn6sjDn(esCG3)*eTPc866#c zZpheU9zEMQTO)<<9uQ2+0{pB3w3IFbmz08~Wo~P94}ZPIdCjB=RG(Ijohs!o39x>f zBK1y39l{Ux%@U;D9j>+L{8uHMvG7{2Oxn?B&Q}uIRedQ2H#ZL`<=a!(BAUUM%=I=< z#Rr*`5N@2Y7JOB)MXIiY;7EhHr0=Q8(kZ(uC9Jk=OA&sym%zAK17&i*0NU=-$6fay zHwJ+DBk(Ec0Qa!84%!qY{0;-@mZ0Syimn2lvsLhJyTB(LgTHzEmLG6RJ-6ckVt+6k&gK|?bR7!e+T8ip>Avf~V5 zNkYbrrsY58zQtkvWcTKcEJtEH2Av>C)yhN}Z)0$8*)~fksq1eS2|K=&W&U7wU+rW7 z?;h*b1h?F{39aAIAH!H$86N`DAOVan1Udy7^ejHP1Kg z4O+#lV=Hggk&$^m^Q)3WNshz`tDf50#4oI^ZSC!0z;HH@r26&nYEc+bt>gcUbYMWe zekJ0wmN%4O1`^dMpV$nleWP)oGKZE2fVNcQU4TFlg{H%HY^XqW%ufH63;OL*jDL1* zEg1^Lw+TLdx?JXe^Hy{Sz+BOll>*|({wFQl=pU*EMX^DnX4~TJsqpgU^_Hf8JLvuk z17(_qG$_m9#oFsyPPhSP{p)3_dG0IkZkI!_AyR<#k8*owr{b;t`rsX?MGu~+_hF{< z>5vv#Fwe{?&4W2ix_)zOohD?oTKr%_vEUy3F`QuH7fki2muzpx-XE@*Y<8vlZQfo| zx4F`8!O0_Qb$`g-avIJ!R&P6Flwa`580H@>Qt?=?gE>MdXo+UxW+>%nEz>OGm%6$- zMJp(0)Oz)5j=}WpTh1h2)95tEhR004powfQwBy5RL77;7X&)fFq5LoixdbU=G7b*h zrOl@^cyK>t+TwZX89+;aLh1e8bpGjLi@%x)vg3XVb{;;Rd=&^ne;%=AxDxgD^=SbM zqkQ8#A}I{|MBDy#430cTMrIu^ITm|kwPbB93#U}ko$Sb{NKPYblxshoaGeiQbCgE4 z)|$jk$P>Y-uqRrU6DGlVsV1* zzfp!eDCY@`<)4$2ZSs68N%>M9o0EMAc-v= zOoNrvTCD8`9)u02sA+pIu-+Qpd50Ql*Qn;z>C9$0pY2{8 zfV(IHo2MRyB_L{Ud_3sMpa?1`GwA})Cx?Bbsfwzq3s^1EQNHG2B-7V}u9%`qnF$)XU+pK6vt3OS@sn);!mkFDIS^!yBfZst2Ocd<>U| zy~p{;d|f2mfwacB;qF+}uqM#UgW04(J+45Tm5}D1CP6jD8Yn|}vdTo%0kU;uK(d@D z%yMUEM-1j*45qyL3jm;h0=J3kmu~K{>V?+3n**p|m#1-8z%dO%#{mgT14ttXQij5M z9b4%C?M&kHHvfx1dDj8^E(A3=&N?>Yg1u3zI`mMc7GAB!NBXO>WjM-nhOD!4&0t`e zw5ti9HwJV1nU20rkw%`V?0BBBXy5MKZ#rw)2_BPYLg*E0B=1K^I|c6b8=0_xjmzH2 zUul#24xW}3zy}qn=YVkwV5_}Kra&kF6dYZ~`3(&Xa<_nOUrDiyR*rnGMO&vf=4Au2 ztqKb{e0Gc$xB1Gxf5!q<@zPpageIQL=;nW?gg{FxCkiJRC2oSG3$e)mH~Wet)X zD>WK~(4Br%x~(@4P8;j#Ce!r=vE#;G`^zU`IR!S`H6<>8E$SUoAce^qM3nlc)OlND z*OqO#Ux*|^(S}c-J{4I{v3zc990fgsP;n2b{;PW^kgx#4_piZ{hBhqut`ltfF;J8j zfT9aZN+9>)Xf6z8Z^$|W?7S(GzM#zusRo^FAzJ7VR7Jm;+!+P8p482jW<8kl#j1V# zlDMH!4hq#0zxbPA`{s>`lz2TDb8^AHzD|R{5_3F;OuXbKp7&aB_MC{HaFxBlG4(n6 z1?BqkG#$!%ec)+hUN(^$4xv_q%;@<0)f-d?Aw4c^=5 zAqe#lNdq2YoR-_mw{w11dsEeR#348o0iY4m5-jr=!;%wa9=nS`;9zlkeNlfp^Y-W` zDt8J@c@z+-qve@mb2yq`9JyTZ8UT)H(nPaA)+2?Zb7D!Vdk{!5uR8t|w12=o_hP}@ax z?}sy@Sb9h`4BXJB`R#}BQ3FNQ2T}cadTyYvwNjwU#dm(~#dnfScs`+V;|!I}d79G~ z@VVCa7_O0EWm-i<^0b4gCm1Bt-v5^2PD$PU-&w&wvf|iu4Db^(T13(<4~=P>S}YQJ z!ZwAy#Rhe_Dx3<5*EVWoP6%rzdHuMF%;`t%iw~21J^LEAOv);HdAZWQ6>-a(SZqla zHjs18x-_*;Uo^c_TiOfCFX%lqQY;M>!krxY8=ZQ_DmPj}T)6T0+9zx?<%ta*Ps1i7 zIOfr$h`2DSsHhw!w_c+|6)a#3ipr32a(DpyPQBl9~(#HZ9yHC3$kQ&A{oaeM6~@ zeC^orwuWm`R`C2W++MZbQ9+o_w7JP*i*JSP2qQH>A^5B9 z@m2VDTZm#Y@zXFeeBiM>YHDZ|+iAuRHrYSvybSpxBXE<8q|ewsHJf9TiF=K#YEtX; zGF{2xF#X)kY|I??G38*pv$;+EckO9I=lDKzb3X0MpK5U9gy?G$GBOJ= zK0}^&6f=+s>j_NGmJYec_e9&JN{{@<^4$Ylwv;o4V`%fRF%mZ7t^BkX1BHSy7D2o8AyPK}?h01< z1E^(=hUM^=q4PFmy#!jVRd815xVt^LTLF^CPmORCG>iJ;Vw{tclbPUMkPmwf5-p3L zM$oTFv+%*k7~^{Vyn_o=&MVipVC- z691mh4WQB=;)q2DD$>Hyz{2U}{q&nj`guYK53}yZ<<+|J z51)fZ$wXCAKdqbxLYxGQ z98dh0TaqFyeci-%g&=$McgKHVf*uYxF2iX-V%r4 zf6Mt3=DxW%M`-cxY?$mXO)YjKuC)-B2W9M)viyasZ(s2@T^+hIoLU;L2K<%pNy5MB zLZf4+8DX<8grhdr^ahAeKSl*A4RewtT;4dUO}{gzhE>6uW~Jci?Bz3Y8kzg<}53`UUm8~z~B^L*cT2;AZ*6Gl7`R7c5;3^9?cdoxE1l7e;S>$0y9;)cuK5RLxmSKJ0rD)+_|b z7*xGhpBq5QE?0)8Cup8L%B8!(1Ur6Iq58AXZQaj)cmnxxCdZF3y2stk-o%)VO*tJr zf6F?7Ip$@(Lo}(ZrT49Omg@^IQI_adF&~~q`17wntgbh7^_Z+ zKi{Yl4qDAcGS!&15Yv@lizk1ae@M>9XAr>;?w6qekt`bEE4ivFr2K0kE<61R2O652Wp07R+Q- zQkrcAY!;E_Pklb;DpLat!}Dsd&IL@Mt73~6c$vPZhUs40-?gf_56tAT;?!K-LX`53 z1ta%`fBMU1kY{*JpA3_Bimy!R-@Fppz6{cJtGF?IQE6jTU*_sQrtZ@wx<~323WvD_ za~Dnu#{4GDcl;rWp)ET6&gHCv8C^3Xa?i1pMhsACJuZvl86s=l6hwH5vq|hs@We!`%MRoK`$b&h03~{I2dgI3}uPepXjX zf64>KE+95A=T2KsY%A&@Yq-}yf2qMD>o$?N$K;gS#9pC7-B()!YN=Xne+9G)y%@L6 zxY`!gPs!gQ_&PkGrB&iBtnJDcOpmezj_k|%ca#1%`W9UEvbuk1@CR>vyJ*?|7BA`_Jzd<~K{y6`h`&lF7SLPa$K)1{njG zV#J9&o}ef(b};&PgYs2A+hO{2H{i*xdCXf*n1d_u$iEa8c7sVpf8CSs7~988*&jJq zd2)#Og~(3h;3yue)7k`F^>yvYkY6^j?z()OTQMQ)$P(V2w-!vq_VZL;f|`6;7U1Tm zWf(s8|N5uyW=?J6VA>k1&ghrKWf%ag81-rQq!~k?pmY%VpC)!tkQ?0&DeFg7d4ng) z(=D#tKOpy!_2}Qvg1%t4PX(1XPm2nn8q4&r6V@ym;ScE-TSoOH&1SHY%lKXYtgM`p z+~CgjD$uYBALh>D44Wn;3OA)``yJBUQBOkvBbc?vAfz_(FU-F9sm|(1ZAM?4#&- z0yGzb#quy_tbgo>oc2?GlY37x4|T9C+@EE#lWkEuxu!T^7=Q}3f7c;;n^72 z(I=U$9q-}d&yTYuX9A|gFnH8){&(3a#_LzVH_f~^m`2f_38U>f&dL?l)Xs254zDKa zo3sJG={ev8pw|Yjkau(HDqy#JQ~5Vjs|Cx#*ovGM0cXX}EbwU;AmmD8t5hwRArfL7 zs={ey(@mZFThr|{EmJ~-XuQ908a~5C^2-mMAODX^r;86Z#~0;CSF9?L!f_e)v$eQV z=WY1Ujf^5AA|Be$)&CdP1*EOf;J}>Awvk#`z)+Jw5HB)kNHqJGsJl(Lr-!D=TE6Y6 z)R^c6tnB@1Qd<%!TCJMyGy=X`^=emqL{TTneo>2?^J)*H4o7PmaiaUxtsZ67!TGc< zx<@y$|5-G6O+EqgXnb?^C3oT^ng?A149G)VhY zCs8SQR`(85NH@hWD2tOa&33#^EIK}nDa;d+GeZgHH>b1sbiV%xQL;f8_xYbPzhDTd z0!|p`er{&|bmE|8DtCsD3(*6&*76mlf7%WNi#{6QyUck+y1~ThV+i^%IU;oZjEP|u z$#o@GSLnP^9y#M}LTx){^E5w`Fi#s3E=byT#h3l3hi-1gBOgYFwR4ywOG%|Om)S3X z(30PFI2&&Z+GbCKJnfZmy5-5_LldU*U;UgdYcMgJb|sM6CHnJ2B6>9oup9xoT2t3< zwG6Y8^VsYkewfv|snRoOnfkSK8^hG#b2_k4>aClu^I0ERbvQ2LkgY@u_7t^mh4Wrj3iqpG##shSMpKEY{~eVRy=n$Z zaSMuz0m=MWL;MKV1fVSn_{*0s`OMqVprRU}*6je{WJds1xY$I00uCrie%Qu<)Nuyw z3aedIPMv^c)TD<0jmw!VLk(XJimyghADu}Man;l)ZaDgRTA}vyINzAUrxpqTfj?az%t#y5 z29GkJX|nV4AKaaHOFh@t4nz)$;X5^-BxyB6LWlhy8?TZ`6M_4I@D}l+WOFixH>L%80A}huaa?tbb>qWjtta5kc|3>U1B1xrv0Gok7hA^dt!hrZT4EciT$XVw zeg~0Et$vTetwtHexs$0#McJP;_PDONzgPmepngF|BEWOzkKu{!@kdpR1Au+2deM!JyA;t71?V7JjGkv zz1TQ;m-Oq7PBH5BFe1O11YtDY*!w44R4xGnJV><2QJ8hPde~?ym98&`r^zxqZRYzO z7eWV&1c%a9RXpt3ZbW(XGcD>TsJY1Qus3XfVBJKSkh(;`kDQ!5x4yn!u4Q6EkIS@$ zT6o@7Tj4T{kO>m8TA&XpBD z7w-TY#Kfctt^@?60>e`fM+k`Nf|vM2uXeJAFlh?`zOcii1xW){&jS3**xdl`fu-a7Q*&lW+ig!hs@wn z#L?U%16x&5X~RRXef$D43P=b4=@I{Z;Fwk20H2*g%$*CgWCQ~_iCJ3!x3cUTz`fb`J}Ojv8W~>H8sTc1a|*3HY$r3D8Nj>i{GZ;y_<57$hO)>8A_z^}29t8zhhc$5twoLx8vDf~N!YzPZjI z1ptRA4x~pSC*#`pP#{X}^6Vf6D9S*=MRX^W)COG=C}~X8l^taX+zF^a98uvoFA9~= z07qgckRpVF|BECsF%jhhXw#tr4hwz=t;+>QKhN#&-^zhCs6SJJ>esJdke~1NV#t35 z90J;ayM}Qd-jf-N+Cvhw+22<2+;fk(aCS-N8+n?rc-|G;F`_kV3>i(l0OG-*?ZEbtP@FpiG zzkzN*8;eJ2|lwR=n40~4La^cl*gc3h*JEynT7n|>~>O0xQ zxOf&an5yiv(sj*_bX$H_*4tA|*RWvqa;*^Me}BrX1C4n;`7$K2zmp9r4+|0=N>`=;;}onTY`XB;SzW zpXGo@fC3I0!h&kvPR2h{P{SX7799xqre*KND_XE{+?U>m142Y|6t0t*3?4R6J60!` z0dA>*o{kA^J-rZca`_|<{70M5W5k@mOVDiF+S$pds;XWJzwO7DjW2CV7*EPBz?+Iw z^nq!Eu!nvBpm@MYyb| z+N@k`WOYM|IDpw{H!cJO+=to&0aNy?4TJ6zfMOqkpXGs$1hRIZNQ3h;u+~6K0v;TA(4)D>KQcs4%woH1WJ}_`3}EZBk1U8nDGAWHcf2 z(wGiZDsdidW;3P14z6R*^cHSI08zu zis#smRxKFEt!8_OIJ!Pj1cIzXN)S>k27Q+dav^4bCfl0Cahj=qZ2AA?&723HZR8=L z#!g^0ZsYYk!oEIEZtaAmoi^dN;7K3fGy=d97!{McW)$s@N;$Pk&QcU0ofmJ(ypFWm=~C z8%*%bBBsdlXH7pZzP`FadtD+QTE)z<8=v=H$KVxwEwLU*-F_f}D|ns(iuE<9un4a1 z2kSQZMy7Y^f!D`V`uWd~wfU@jNz5~W=xEMk(HC0Y^W4^$;`VC5WD4A2o?tvX1S%c( za*CCPy9k2XFYW|E_aTNyrlnJ!lY^-k=5z)j);Q(nVq;(MZaqQ)hWV~ zrssj{3w0rdJ!o$Yk z^FmETN8qGk32N-N{(->{oZ3*JyPqGJnZ!@0EbWH+z%3jNMuD$#H;^>%2%_wOcu2$B z1R`j`xFSxo4NTUpF;MMQPAKhtl_2nOvJ;CL+H*mCjudhzat4*F{dcj$c-pssL<>xzqe{7n~ER#Dlf@YzE` z$5ra3jqKt-SwiCXSUGLIwAPg0*O7950kRIby|!UmkeyD7x^TwCcm0qzS!NqZT7l0J zp0*7`-;b+C%rh|P)o0n>1lpNyA-rYGQD@t^#%=HrnBJi%2R`M#-iN}&PfJamZg5?{ ze?*O%mHW#YH_bdZiJ1vzM2f8#iPJ~Wn?pGj=hc)rAt?pjYX1s|p(a5<&1YpU0-q+N z&4lhE7eI67R9BNgkP-;W7=?qO1xhY}W{qy@_c*=1y?l0~c{o%-PjT=Zm78!$-O~ax zNp3R5sx_@-KDqcMCCrPi4It;P7KmAR`VC;N-WfG&VdSJ_-1#84WY94-k}^@KeA&>gZv_lI z1RHD|T#*{R+ioKi?*@!Y_ZAU?x{cG;f%!;GRkjCF5k?X`R5RO^C)3e*)zwqYFOP8o zRR~;p1IwdJ0?W3P`6fPum-IH98;n^u(P^csNuJ#kE4xedEzl6eMe{EDQkR~$q!?Q< zVsChc@pv|J`zv*mmwYSS0|nOVHfzHq(PPTM74Vs+#_eYb@8h!18Z-VG^i7?2_zcAf zL8w_CB!T5-!D-x#;dv?S*sW`Q<2c=cKNsF?gqt}@X42z%U5R6D+CPw*z#XZH@W?FS zSrA`H+lHkXyGnEx$<@rB*L>f6xLl6z@H_xkUV^2qY>g1Lt!4-yAZ~rb=o80{LD{-D z{)2_?LB&ZChj;-}i+d<-;fCA0rYdqjI8=q;>SReFe6S{B&?zkmC6S#B%hK@6;7L43 zR>8aw563k^TO;;{GmQR$Ak3xq)iWYkG(ajaF?S-wO|xcjSH%enF;Bfi&fdpNVGk8^ zsLZy|1cQZh!DNFw_0X%*jkVF1Rs<=`v(=%WR(k(?a8H z=Pa-2te)UN?SS6h=Fiz$zn$7G+vC;L(-qoQ-x!fNO$7YPJzJH$agDIk@mN#&7wnZ^ z1+$q~b}~(Fr3U5>L6WtsyJi|W!-K0+QMgq~jVj9C{ZBROVT`>pjP3bM)KiSMf>WI@ zvU`gf_7_`n zF*94_ylufj1T`V2y*e{%N0p;GZ0Bo#8@n3Pr?enA^2DJm#v+qYw_u73b(-G`z0D=<+De!1m+1D+w6+vEE?*) zzx8D7RS?Ali~%rTw}ZsU?HBW{`co`ZuBpzt5@y{iik+_m=^y-qRs2@e3n?~wntj4B`eT3FDsha+tF`1r7+Hda3(EXK4UgiNI!f`rk(S|b_xBYLI zzjrVU$5Wf>27gEmMoaW->=>{BJ|m9Rm5Zc72%BmmGP`{;23Pi9Tw-6ow?8ufrWE6# z&i18F^lsgt0PCKhv7{qxmea1=KA;DE(^Q^$f9Z{FC@Mi4)n8Zn@-$O6bsNLPFV7#d z2=SJ^ibh#q8zXENogIiVc)J&gS)(Zd$23eeW^T^W57L6U&!?JL(=&>_b~~i;X%1Dc4WV3 z+e(dUdEbskWH0&GA4Tkp4|n8-jivu~BpNc!UF^R0@Nd+^nsx+iQX1=w9*65yM;UHN zod)9M6Vb?B=s*H#Qh2#o_19meHYp)`OyX8KFMc~*M<`NZ{3<3Xtt}_4JoZi^<91@o zv!;v_3d5_iE8P4Zj^3^rlqtDmN+zyD_4Q5-(Qq(Y4KK4V@}A$G}<2(4o9 zG|8b=1YKO_FURyZpW_ep=yuerblm~mguB9>ma915h!u4Hd?V%=|AdF+3qSuN8MJX* zyLI$uplocda1CBxruy16t-r`fFO!3VOT}YH2g`82c9Tc$oJp(OaHas3B%5i@D23%U zEQGt4GHypXk&w9D{iMIIk&5P^yjQz_9T^y{Xs}N4pwlhX+_?4^-6TbVM&)6UkHxZIbd!D3 zJ@5Beh#R9}ZMIT1g=^;C*EQJHuGyae&BUm)k{mJGa^1sknmzNgCt{3u z)lWR@5{Z+)zcfn$yXjk*VSP2{<;F#+C0!dBgi}T4&Q@1FRiivS{3a-r`UN-akyT(h z?$@XWEdyQ5;m#L15f71OS+%1-7E6ti5qq_CN>2>+gjaxjkAQIUBob#Vj&5oZVas=r z7Da-jtwfID8HFK=e-JnfoSqWHgkpWZCTv&*K01ltJbge~$9iF3cyB>KV40IDfSz5l zn8>ffu5Fl9K7Zx+_>cB=T?Y=M#>lkNhW)r{2~R{yiDq}H%%+@d3O$0MtvC2kuBAnO zP=(4Nd?{OYN>gcAlh#;pmYWz+DR@wA-@nX+C*1SRO(Yeb4%C>P}jd)n^AJX;hrVWzUF!bZ87!)WAg_N^rIl`OZh3w8#^OmbXc0vz0 zt||-AU`%sYUbx2`wwJ)UffW!&dAUI_(}Pznim}YD;Wwf2zz|H+7eDfE*#H#c_*pZR^zARh>-WX%EKdJeQ=pSD3Hn9#$A z59_loFTGHHLWeF$vH;5Gx^ z`bf(>lOXB4a%6Ap33ljX(LhX#1Rv492Q*&>T*r3)PSz-G@5V3eh^LyJa)v3-tx0|y zBHq=oT_q-hPADKstsI2OaT%1OfE*eCqeQu;iXAi&pUu6;-*3J1134BrfRqy1s~#%{ zX%?=TAil){WFJAA&IKQ&I#dS>`h8@LjMCiap_X%SxD}9ukix^|j*&ViQr}3<6FGk$5j!Hxu_mpfQZMcd>tMh4g*)@?&FCLFzKISj=*NuzFu$$zgeTA zcF!RIE(>-})trivU7t-rOwf7bNHn_FOyuV~wa9Es-FDPVa4h)W`Qp%uKY{>bAicYX z0)CKpb9*XzzJv;nvIQLiKz9TgV*wWfv}%~y5)WSia2iDNtOA5X(bAIXbivyRf>t5g z0tJfR+gxmwS|7@aiDOc{EW83$8J!Sv4zkUZ(XS|M(mx&_zY_=Yw2xQp;Z}A^y#6Dk zS>|*E9y!BGm^N1T}zo#R06+g5>{Um5;d$D}x&Q0V$=WuOCXtq>wij5gEzvbAI?w0P;(m$Yxf|irb|b=R-M-eO6w?YTN z@gF=BT_t{iyKKi8ni~R-7b*%nJNssN)2hgvEAOsPhV_&&Ji6=K;>R3_jmH^e~`Ep1c`6`1Hkz|0k9<4IylJ7 z$;m0W*0;3Kf{t<34gT*}kVaNZkp}W$I5t8I3s8lI)&mUfa4hRqr+Vg@%<-9yY}mGR z0&|7^P9CYURZk4Tgk1_d^|zN3QMW+l!IN)37WVw9>eoNIawX{U`Z^E3>ywb;dHd_3 z_rT!uLf*NJl>%0T7A9$)$kpg;qSKxS3^-8xR{wceCxq`iZ{~!mfEF^Ag3?mp?qga2 zPJ(}xfI}stq@o%_BwGJp2>d7Dd`9g6z7MKsT)a}j8+P3qWnmfu-xY`lopGg2XaLJ^ z1f;?yR0sy~U~cIyT@>}J(PD>HSvP7E!O!l=hg4CYeMn$lrh33Av8|eZ-mLhxvUvZ- zkt)RtO-(WBaGF`@WzS%OdfIr73R1h)u35YZt`<~YyvtYm*3)-W-6Oa0gGl?%I#R)7 z+GoKU4vajb;csS}hBbb=F);wKkF+@j9}h3ue|#v&a0C4W;1ktBQ{?D8O})&)qIazN74 zxAb=pp{Pe-d!qP*i&FJ^pdDxf=9fQ;XW#syUi3lYg6|uw1GK==Y68Av|BQHN+w^4u z<(QbM;SXRRQt+DXIS~0NRL&9vw+=Vk*>n~dCan=26K&Pq;$m$vlhTa*Kb*Y>IMx6E z|9=!2p@W2E9W#3rGQ+X5D=Q<%NXpD6BlDn02_+N_*`w@HMpl`HL$>TaL-;>leLuh7 z@A`lL*Y9^-|KIy^y)Pl1@tlvx{eHU>)@j^(u1`|s^w{=RBVK^m!V9}XLykNf9^tM% zxkMQjUs6UYB#vHd{``2G(%N7+<3g(MyRfY;`yWntGfL?2Z*A$!_KSR$Zm8R(^1GrY zC;Ik71=EKpy1Y0EZCl>cOtGk5F<+;jOr&mP=`=#0==F|_8Pa1{o zb6C97ByZ)*3ml8QG9AM0H+ZUjy_XZz@x#9d91J`NW@VaT(n-0ryNo2fc&^LV$t?kY zv#6Lkv_;;{e>bG$4~e#l33G@Cf)Gnpn9!(b!AmZ(@mF>qgw21+SrWC=HI5V`hs@px z_70MJcEdgo7zOrywPGwfSC?P^Bs=!1n~O}#ag=o>%HqZ7rl5@$S&Ze{Z&J%CBM(J_ zSAq%AN@8xKAqS;QiX`VO8J)}*w^Z>=bp7&Cj8I%szFF)YUl$qKr2{V#v6N0TYT54# znQu(gJ?1|RmzvYm6UXQ2+a{A~_xz2m)z8D~U(3lBep>Q6?{?vbOV^I4k_n}}gAzs5 zVm6#2Wabyci&+KT`VmVj6W{;aW*=d7H5h3D`iIW{g$YBfrh-b;yxEfg`4)IcU(}s)GUP+O-50zBa5Ss&}s1^ z=Cx4I;;ej!z^7zIR7ZuQ!ch|Zj#^|@yM*Cn2Bz%}i74t4DMQ<(ixscwF5;X^L>H(+ zxm4ef*AoxAZ=i>d8zqNG$6K561gqNHYzyXdh8QN2TWBw@sk1+>8M@9Lau979vsL8talZ4*c*`mtuI!30fwaK2@$TLsBEc z{W{XASFd%Ml?PBMr#f2KNdjK!8rCj>0hv6y)tQ&JHp8J$_;oaYiIX)jD{zi_seTQUePh#B5^CFiDd6<)q}brJf<-HC*C7CCK+Yvc{A6_Hcjpj74h5%=yLuZ z-x4qhMZah7E7ECM=2^f-sCtp7wiG%a@`*iqqi&k+97x+p%n=b`)PC*$Dfu(OxiqyI z5`|aDc$-3R^@@+vflAt$-g#$Md*Ae{>=KK!j#0kgcUuLs_Z`JDc0435Z2r9ihcmzX zE!0Z|e=@fY?-@D}qUS1Sr{X5dU8sf%^xpN0(Xq~6jVBAwmE&k7&etYWrzhWL*4@1O zTvXLM$tnf6uT)tmHe6llMfsFQP-w$>Z5tMwqFTWB`u~>-|OqWSi2{rBB_|+zbZ*Ab}H3Qr@BFjZ2qcdeR$^0*SxgF za=33=#^kt>i?^>f7DaQNwElcpWPII{cH1RHKVF|(8LMQX{9|g&{+jK+!fdwkRRgNv zvzxiEW$VM7LWN@Nl+H!yNmFQtZu0ydXkjLfXFn5lb4TYlCaCDP@5sk27EP{EVlgFK z0icFqIPM1Ak(*FBK2)mpC$Ay+6|430G84(0(=61-<6Q<~(!Gcss$%U2PhsNt7dUPO ze6}nQ>vaEiXyhB|IYiIk_DQ|WawmvsTCDO7@$EYlCN0}b!ILHqr%>yZbWB}#95ez^ zQQBF{y=}|g#W>*QX)!B}nz>s>=pcESG;a&0ikGg-(_a+7nbovonct5uYNxjv~ zzTGiHSTo$hMveM8S=|3)%5&aeg3IC+npjIYfsBTs^i;4L%W7_aj(?od7B*fOQzGC} zEBGiWzmk+KK8Udpf)1XGY*4E!b+HG$Z2zE7;KqjZ`#)->tCp!Zd6sqohBHt5t~?tT zPnHr|;kA6S#yKU<`-52>rN#Y1r1B-IZ|`KB)l?3%Q*y+FOxAxjTeY1fUOm7*ciKtS zKv#`cCrL*;S0^iIBncfOoKk|aRdE!3sgslcw;4$VCnvW8ns|2F%6>XRNC)`^L6IAL ze!9GWZSP4^+%xJklvRqb#vki29f)J6e!>$?J>-|zmH6kQF9%~d6){>plHiht|6P;Z zkaAN>=B3cU{a3=@YC++CL7O>VpvzL5`0Kl$Kg`}`D=gT2^m9YceIFZ03e@X9CiXkRb9A^%iY`e!DX^ZO9?1juiFS=_=g8ZBh z>x^g%YZP$g)*=MgGP_E0;ox|KQK{KVvYpO7u<@z{s7DLhO zU-mpbayA5;;0g3VW~q1GRzm=?X(tvb$P%>lFlnw&r|O<69L$;@;#w{vrs3s^AV*cW zpZr$#XFJVJHB)0Yts*3CT)U}+t!QaRGq14TBxK&FSH?kdiB^*Bc02F&kmOXaBQKd! zvb0dm%^^vgj7~FB zt^s>HECBUGSh0n0nch$Q;^8j2@BFvk?=D*O;kLS4dy%RT@ljBiZl^O1_eSPYhoxKn zt+p(l#OD`Cw{=S#ioJ?{SNPO47|^I%Xl~1=$nlIf4f+Pd@5OUT{Zi+O;8F`$p&88Z z|HPjX#`g9N^E=A+#XF&7e;WfcK2MMr2(uTJ4tq z_2i}t^Vw$a9xC7Jx-j&c4%?%d*2ZDY8I_Twep}fj!P)PYxPhkJ@f<3 zw6b1sEd8A|R`olTUixVNuS|Rly9? zopN!LO74Z;53X^W8ARF#5lPjfBMxS5T1EvY z0?P{G`MhvL1>L%e2HY0$xr2hm>)K)ECkqzue_`f6qZ;94wU_irc}$fl&)7HeS%|cD zuV-3!S6A?h7iZsGJr5s%P(h+Hd+fkX3GxnoQ`0EWLA->Xzt7IFx5WC#j~@}(@NDn< zQ;=~Q0q}`QxFWT;Y#>}Pxbv!j0;n6@i4Li7LAC4r>pN+m}nn zvwOV{#YP@r!y2$2*Um3iYERFNvAWZ}jx&@EN!Qar3K>wXs|Sn=QoKXJ#!!6hv0JX* z&_%?C<)D-;awLdfzkYq}W3O%lP>_3k5h*O_H*t{ufe06ikf2eB26l3Cnv;WT@E>3e zJWN0OJJaT6={NUQdcB1+d;`g>MHpJ3R<8bf!(NIjBI<9L_sMiaig9$Mr0f7 zq^Z*fv5!T=#0mt>LQEt(;C>0K^PR?P)J=(8U1^r?AN`M9SZx7luY8p zaf*l1{}=`Uct-_;h~(Rgizh*hBc&_9b^ZSS(CAkLVgORqF%YwBCV37ym5l?nw~0pm z9Ea1)x91W?z8km9gATUpq*AM zIjo7jG-L0!@#xHY@%!>V_QBtEIIr~9IEy`R9yyJ668{+)c?A`5ph!+`N}jlc!vb!n=4d=pb<+be->Y>H6?T=mj8e~m_D|Kq zBGr`%#U~=tsUadFqSu*|lcNHt4bZoQ`Feo2fm6scMpZ>Q%Sx)8NYGtw+nB z9?lQNP$>y=I=V4VZS`Q31nHU<*DK?vxE?1s2~e23wrgecIXe_BFpLQKL1smIV3*Ld zE4aar4!`E#1ET~ad~@J?93eu%6!m!Psx5&+sRnCem9CqNxSeyZWbmr(5SQ_-21PAX zB#Rd#LcGAG0qYP+`j8$Eqx;zY-D~|1lYPBb*BX17i{59kAO4N~Q7?7a)|)vfeLX7|W|!(xWry}dyz|-;n+{0`egjSoiC=^ney;In`)QX-4Cz(r4+K)L zUXZ-`w;rk9scn{&mnWyVfcorDt6m^R=q?!ckt%!bpNSaijoQEK?bPu%5v?6+se3f= zVDD`&z+ZaXVP$yr=@UIj`Ix%Lq3;0lKkY$bk%HPiejtU1B6=^>VABN@VyZxpY_)>%p<{ zM)8b4IPQ$+&^v5?nCYm*Lr4fmHU-c3B?(!qX(VzPj2G|wDvx~z_Ez_=UoQ`9U}ZJG*UJ58fAlC8 zK|@@wS|P|PH^D*~2gQCweLn!o$&U+dJTSn!X||Z~?wdQ&^^^vS+4KeCgVnxzGMyj! zXuni;kFX!>UuRO_r?JD>df-UJM2>xkK2f!6sQjFPdz+4FI?B4t{O6vXM70K>9tjHT z6Wd8rYz1X;LUke*^sk=?Ul(FaTOwL3Fsvl?elBGXn9yLrb_y&P){_YCH%Bz<~A8!r;zft z;KEk&T@7$sxXz_~`~)Ic zZ4)TKf}1-6Xk)+=LN@L>IfVZw185|~e*E8+0ME$oNJ?4L$Pn|KY+oNX<`n$I2 zBGvO3c9-!+Iz37oPxp{x%@-eHKO>L`WZgqLC{SJ$bs3TSCwknCog6D2a&7?F;mZ*w zR-ZAVbAf-x=a9x=`QhHe8ek>gct=3p77e~87a2WxOdvG8gJ8~3gWiqsMUhD=e#CxZ zXlxMW-x+J;nuh02Oz=rNJA_bh!7Q4TqMfCJaG5-pWh-uADoO_{_)+ERa9&; z(pwV9wbLG7jiOGyXXuG<;p-hjr>ZR-dM(iHo;+D}Hx30EVG`E4{wp`>iTX@+z0+)& zQk11zq6~Jh=dih}gS=IbM1}&c?^Zh$m*uq98gBWu_c>MRvb9XlB?$O86+72lZe~6| z!Ys7xd4At5-G1rUr4547%7rSq0_svK0zNy)jv-~_5Y3XUeYjE`Xd8C~-8YSA&;Dok zEhneD*V?w+VMh1OoxA@f#vGv|lsYljZsoanmMh;Y+B$LO=g>{?fc#&1F*dcGX}=1U zJruXwx$Jw)$koH%b46l3$o#8% zL>76-U&KXrd?G0rA~+D_EMK&6bME(j=r{AC6{8_!$Ssnh>pVNE9^QUIzZzW^Xp~92 zo}ogzpVDt%F>sTZgR`f_RjrAHgee}^?1mgSVFFHoFO9g1l|)!Xq#2Q)18xNo4uh&% z3e>0MNZ1;x5F(+#0>cIY4b5N%LINBR#Gy&0hl5|&!dtDR3^+g`$!AD5QXSB0886;B zt#Gh;4VrhyP)JS^vh@O=WR_6Ed#mGR6k_#;FKH-R_#sYf$lhvzHR~NcOUF)2VYZ{8 zJf^%GXX^9NfUQcuMc$2~*j_E#vok*sQ(d`naeV+?Z}1ZBC z!HZA?ugQHt!fng4$7oEEV}J4;x8r^IFbnfprrXMJ(^%>k=NC1sLUzmJ);voKkI>m- ze6FClVDx6C$k_zIyxSG~>hy_GUuU2f=jf<%MMpVED(?4P8kRj(f$tdSe0Y+`fuI6h zp}0yNbNaIh7e zs&3iSNcj4Wv}wZAo9|Cek!?;88HQQ&A){B(+KDr%Wp#gACuOc+m!3;HokezX2eT5Y zyOSvO2aDR-=kdNDMcSBB26%|te-5ijF41HU0pEJE+Rkvp(5}!ksxO>3(Z>^yt<^qP zGV!b|Hv6~Xl5t)P5PCnT^l!5dZd(#9hSPtQak}-M5YMemlIjqssN9P^mtuK&@ar2z zK7Q>f+9-odBT|JvG&K)Y6V%+7%HFZC)qEOY*A1U4G1U_;>dNE9b73cb@9w`X5MgS z@$c1Mq+I0jbfPPkTa>d*86GVj&(-N0;^8+Cq^-Yvt1>0-lbp{Idc?!~MQSrBomy9F z7s~WJ4-el(64lwwPIcFyV$QAT;ucgu==6|ryY@j-Q^4_<{k}6R%qHf)qzcP@t6hTJ zaHEG;f!YRs8EY`m&B=l73G3!2mYtp5zPM&0i zMs73Xv#XCmq4D%8DbXF%+4XrFMV^6&WJBy(V;2D#z$!W>2T& zK^tv%2X$xULCx{l-otT+Gb3blBYp&zSDEjn$%^ob>0$TzF!+~TSH-H~N(XmA{sXmy zt%ZJ@pV@}sIaT?}Y%={lB@!O$#6*n9nc4@xU4r(R5$`GRN<=5A1V_s1Aa>_8B5Q#3 zEb);;aqC7hMCbr_N|TCv+=p;X8sA$eXom0h9P@(XFv71vdeg|$N3t~6T@?HK)wuf6BF%OERrMsliAl)0g8Ki5^q z^L&w2G_d&?fSR4-mNq{RrcMOg=% zvh>`Wr#*GNIxmP(<+B+v$liR{#mb=O;4K()e1L803M9MDXSVT^9A8=9=k(b7pzz+qTTC zN!+HNn&;ZIUH@?EjLy!x)_1;3TOBq{f+@g-@jmz^?sICkbx?TUDY~QB+8>)^^kNb< zROa1kqMkPEIa4))D^;xY?sP0kk2xNlHLs+c+;YpB*2r)yIE=D`40n>p8dhy#hpyhiGTHeOB3C>_C>nA_G_Fgp zN;i<6vkH1S9;cAu1{FebsAjkFd@zclw#$hf%NBjJpBl?(fA-81{H)PE;nyX)O8sWG zug6TeZO@Red=yNN{jGE>9WDQ|Igy6`OITsb$o%s&{&-ckGM3__2T_Lgo6ey+{?8nI zB^RVD6h1Vog>-SdspQZQRIcXI2G?W0oUn@!UvU7u72S~5fIFS_=s zdL8e>d@0dcT|6b%uJZV|>QYZCbyDo%SgZ$;K%zx^Sj>=RfzYu5n@lSq(R{=D1E+nA z(sfpm;VI`E`cFLW^Wfj8#N#mbV`_NS*Rmqj`m`&o?w=*Jgt1POwRX9^k)?ad47jJN zH+49xWN0i|q)v54=1Q=fn82a}53V`P zz^0cgBiE-mY(}!w==GL)3hSr8?Y3h2IQafLHPh7#JAp}|fnw4KWk%%KTdZBURD^qm zj`vu*f(}!FV#{T&!!Y)f@w-&t8PhI4k3TIRiyOItj$D-&X3WN9Ba zr{g8Tb)P1;p1yvu>(0mpV@ChX#^<1t@G#k=rMC1#(+2%IdD&!N`zot24;kx6Z`ycT zUk^rfB*ABD-BkAh+XLqJe5C>LuQ{W2G8-LPpLP8#(#D4sdHWiq7H?hsZP49~A@X=g zQO0qNc;)f^>i7wk+i~cX%kCv3DxPvaa}_>C6kK;}G?1b$>nqM&)pS-V(2l{5>e`;Aly+TzEIHYGLI`cVK*`W@%8%o{^gHO_7xRlnxg9yUIRbJLt;D z8d2r6Li@9eX}@V@j90qM;l;%A%ZHc2RQ}!XoUuOctKyYY>jYORB@sxHQB?{r_O2UW zdYX&!>b2#RoF&8U46(2oa|Igyo~;%WHm}C?-+g4omQVLcaD3V=+||I3sd?_nnZ}XZ zu-+Ue3%VY~h1=LuNZOBLH=i9LiQjO&>EJj|w=K+@#o50)q*{Sr#B?`GzFuJ4-V3&~ z#1Z5O3+bMjpc>P zCW?yG@lSm7_bll+x|sFM`c$rb2m{NRns*f~Pe)nqmeU3IJ)9NYpZjGxqA2{%D2n|| zG}lq&-&~QJ+o3Joa9u4LGxiwD9^!6w>C@uJd`ZkpUXFpivqT3q?L~f#BM+{j>x*PJ zFAF*nvc&e;Q$Yl%%F-y>b+~i`;~~gXDtbP~zNqzLE*rDijo^@D{=Y8)P92}id(<(7 zwZhha*=&45%rO^0C{DMF@_KUL%tYPw4$Z_L->GI(Sk@s~9@2rd4O=m}5|1htv^X+x>nQHh` zkenYm$|tQfMSGfwM+R;G<4oZZI#rm>B_1o%~zbde&(6R%EMcVVYDU#wW*G@*xPVN z&c(>Q;uSkfNAIQ@aD8BaHLy=WxXyMUgmINO+LN4*iO#$JU0am<@(KincdDMbE&VoPO88g%^)!zk#dnqq9VZOf zi$A%yUbHkvH9@EQqHI8`>)_^ej`40}O>ePFd|Yyw&VWNfWO7nuKkG>8df9Mi|^b#_^ATGFTnAzz!7V4)8oYX`i~K>2W<7X)OUvDAmqZ17hOVsJpI^LXLE?3!EGY6*)NKCu#ANP{P-psf7xR9?U zoF}1_tZbe9nD#pHECsu%JQvlYvlFs1GBN|0%7@wKwSYsdKlioy4@C7sq@*AA{(VSiNa$nJqO69ATcbSb6(cNdW zje=k3nsRR@r;dcjdPT+71FNsvK+IziL(t7;Cks!IIe>(h4z)nmqe4dQaw$2=MG%#KZcAo z3gI8b9&tbOtS9!ql*)%mN&3XGIZxs^B3P_d=j zHf&HIt-$15K!_+4st%~%C@emJmnieyVvJ1nMECyOh{fU6Q^r2Uz7!PZ215ZmW&4TJ z-j#SwQgPKnt@xR$l$oJ}O{|iV$o1=s4l%~3O9CdGjd#qpGGZM$^N(~+&qStj+^^4g z{hA2Q^H9@+kE{KiB^GB*uD%6*V zL9dJGoI#5?pQBhz1WSP_34wbX{oeJ_9cGB?(Y=x|AT+9ahDp+)MDWVuqZ11W3u;lr za!Yj*CIEJ_a62{YA6V7AH;*>ps4%|O3GCP1dFgw2S42vgM=Ie!UbGfjsD-#)QGUX zdaKV2DZiJ=_nW&@As%l8*$NfY%b-LB)388HO@biBxk$A%>X>)$c%TIdx8MvYUb{&( zQy9n_XzK}YXev*g!IvFno*{jQ;rr&)xLs8y;?rC0GV+m`!)~UC%|&6veq&nR*ZgGo zHx_yd7sftE7DEMtT|5J%(aDgqp%#0t)d@-G2nX)Z1mM!ipPo05nCyuLQ&@^$E*?(mm_Ur ziDG54El}PovD98sZ+yBBo=}a9mdBAQK|QDK4|Icx`3oRo;=^@*C`*m~Uv%;qZZqsd zV6fzkNW>yfdd?Mf2(Se!kR&sL@EW1+|AnrCBtLHodkS&9$@Q|dR&g46&AF8<7q*nx zujuX2SH+QwFd9ae?>S-#04I+D%9!T_!0sP0fIO>0*cMv{I>ieuLGCMmvmUVpF0ic+| zp;CPcda`BRGDsXRqQ+l+uXsR?G%vgR`XV5F`wU3Jg^>i{%;I7aI7o>ZL|>CLc1LO!8AFzF_I z&R-Ea$dnMy;wC0F3cY_<=oD+V-vF={3gEG?8swVY%I7Qxc4gY}>j<+2X{rRm6PPS+ z7k--frTA{YFpP&W$PnN}An~ZrxuzxhkVpf-gx_yGLmEZLW6Cp$E!S1iydOHBDw~H4 zE91dy`4ZM#Ri(v{luz8*2sZ?xA*oLzxa;`H`kgs z(09li=yx%wM4%#B2Ze(z#N@0#r+HO5<>f3eu2C1KKjs@z$!EFizrFb3H`D)A@o!Kv zilPw2Ck(P~+z8N62^{MSR}Bn^Uditb72K@z@CyhC@OutzK`2zg*1*9jV}A2y9Ihe4 zE};y{sxLiyG(kT96*?8U=2D5!H$-}U4j{BgTB9f{X#Bv%w_fYINNX1j-7W?n72CMg z7;rmNC(B3!^AM5^4LnEeOx?c4&~B(@xT>ezPVXm4k=hBF^idTR(5QsmB;&zD*DfXh zuvI0}PXHB0J)>Vb3Mfmflv%56+j~GP!jTD$JP=;QiQfc|4fJc)wuf9Mt40rmQDcy# zp$tlJ((ZZj|JKbzfh(a2vVp_`_B>FR4GrllJ?26nm3JI^{Krv_gCEHe00*>zp9?QQ zzph!6H#H2JehBb_Pw;}G2rFRL2P)iok-WEY2p1qm{ROWGF$zgK`uf}MI9G)GWAoDy zGG#B_-D;kyUEPg&A1*xuur+z{}v9*)z+ULG{Sl zpE>e-fIfL{Fy0nzvDCIRxx^=UUa9{H?IQnNs&LHCcwVNiB6_X&L{))4^@8U&q8ERn_# ziv8J@ab&~x?6-)7l#i3J_8?HkIL=t(d7;RxFTQU-3QeUwgO7kinx z`jwX|^i7TOrR=TPlf_r?t>={%?d_xwsh;umImqs#UdUbvHMVL4@b{C&K$FgVZ(9m) zN}TuX1!FSr;X{|P$?yIT+p3zcZ6vl+AD>y`83_#=sZ>4H#l2-M+FHJErNB~_<~M)d zJYehRTs)gv9P1clZ?>IYHrPMMqCb_r9;K(f@U?2# zw^M=gg9?L>5=npm&s`A6xussj9tZgvy{#6?j+7~$XZ?~_utXReY^Y4%zLK8A1k^aZRfas z;f-;@_SPEN`1h2d@WOAb<9#zM5s&7w^;;qWdQTagiyO4sp>M+xxbTZ%jjpU{RSy%7 zdpp<4I>-rFbWh&*RSoOWTcH-m@R!m4%+rY_%<%R*#TsvBFVZ=)SmGAJxIklCU_Wqh z+WCm5 zhU@66_Nim=q^hQFjH+qchA@)poGuBG+OT83Zx%L-lkBS<+lv_9t-4Z~QE0q>$~$NX z8k?9!aFlwEljFS7gr1zCk6rw7nV`mt4+Bp`VFcBKTYeocj=xPtWl^|n^)bX1EKMlzI+qWS9S7B^Mhe2MB zbgILRa})1cdO#jk9oZ;~qfepH8h%=oF7wpKe>8zhHPUo8qk(eL4NtVtN6x+xgp*kh zn^jJvZ{qoGFW=(WNZ1cfyZaOktXpNX?awchxQ_a@@qo%2EF>aX&mU$pvpwqLa)g^5 zo|tZJPX5D*N4g&diEYcQHV)cG@%Z%&PVz5V?E5)IW6_^wzI?kPlEE2Gn66;O?Og24 zn65fiTGU?bWX1M`PF}Q`uF3Iwa^5KSha-V&j%+Fw2eePfc<_8sNi%8w+Tej3;{IDI z@PX^nJ$kRB>7I(dB=!^5G)|c5eQ+_xOG9`;i1k%MPJ0~>L(VbC~ImtgWLt8ZA`JO z$MQFZ>grMPwRYjmyHQBdMq`(O=MJQ(ig!9O}fS&BFaE4_SoFO zF(>G$U)m>@2OFMlGfrXYv9vx>L>1`+vO;^)hQB*@D6B`uj?0OCyIXovz;Br0&Z=eM zxJ87z@Hx5=3Tr2ha}(+Ayo<3CjwOPa{no>vOG>V*{>KCw^Bbcy>J|rUBsDR{dy@Re zoK#YI8z^yQY{#pp53_U{}QiHzkh>djW%hSro zMiFTRT0dv%eQZ8&mQ_f{E>s$ zU8y?!tm((C0h!l2=jsPGiA>@f)a;VboY#L+l*>a2aZAUpQE3mVrlMTIUXK7q|2XV+n%7X_BOR7EMCwf zj>-5kvLYJh+Ow_0l1qUz_@iKDo6KGx1|^2`73}y2vzd*OO-4QU-&bJp52lEl?G79& zmkw(Ac=7CBZb>U67Uu6~&3Gapi!4<0*U|OWzPg4(D}l3%&r8LMsbJL-g_}QCSD4(o zOfF?su4J0F650|nRE9WV6Mge17`$rO&(7@O#zxX_Rex;4C1r)8Q44Yx-uLoq($t+H z^&(d%lfVEah6qyCty|QTC1DC&-tl16h;YJ?x5zaJW)G{PJrdL+ z3Dtp-dRlFPJa;0WofI80)5UHWG9UNfGu+HL4gPkRCno5qB0l+w(xqccP4^!^Rh{kD zplz&0&qdyE+DD(;Px*OW26IFGbW95m4Q0zvMv0522!$Yc?(4Fnx$$pcdf=&^Gk%X? za9?eCH+1lIK{rGi9dBk%dko$c2j|LprAww2#SYzvd4qMuxFB(*!6cbz!wpR}$+Ln2 zJqeNnTf3#Ef-x;=VsY~jrW2D0qcJlur=Gwu8>?)ZJEds?e=f6YKA!Rk&*e^06L$;y_L z!$&=v5;mnpqa>}V!M#<{t=cwGg8jWbm$%(k>;r}mr#LQIc31S3VVz;DX%NeV45Ucq zN)~$VHWdWNU2EC340@{JhJv@rcb_TV;!j0O@37uIr=voJ*ut?W)#2NP-w)rqMMNQ^ z!j=UGK%)dcv9Y7KdP-y;4`rxMiEfgpMwKvk&(cV?s&g!A0r=G?oZ>5W>=iOP>;ODu z+RzVVC$F6zdPqykAuPt=bD*+GzaL;@L8ilTVO8QPc3`SLkbOag(=6~kj$ZxzyVLW5FWTUedS$=V%D zI=>;GT>ay6BozM~qiG{ejjv)gk~7t81^P%ttx6>{iA4+em_>|=Xqb39MUj8OCb;oA zE3g?d+@EX+m_HFcmzu<-9+ipyC0XWFO6NVLs8M(K;QjsBIzGBDrI;_fm7O#MQdp3> zAG60Mvd33*sYN~I!B3vHtBx;O4+rMbqgtwcj-Oeog;ffgmxR&8r>>sBP7pr%%TZ&_ zhD1kjISJJ9j+vi%Xh5;fwPmBJ`6r#dJd>KlQjEH)=j{p;=KFz9(0<;FovMaCE<&}_ zbIAArr8u0WIi6j44ZMdGDVIdyNoi^%`wj{p35kglP~B*R<9$l}`?qgN;8=JWA&usl zNj+qhKMVL}Q@=ydP(MWcx5r7T5q>qb-0J0DehYcG?d13Y;oNZk{mT%`8o$>NBLra` zpMlFDzWy&92CgPZ=pn)@MuK7r;WBpl;EC-M_dX06i6qudL7i7yw{NkvC&9ctxJYPf zT?3?hiD+H%TGc}0ff2`j55{p3WB;X#xTbShhS}?R)$b+K@mSE z{(niBMtug!S}^EA5j%Z7ya+K+?qR5dpe!V|^nLq4vE4~1^h62E| zE#zD`_Z3?%o%dL=!4nfkO0kYl8eLB-KWi*ZE<8L{eei3_u(i_YthYiZHAnWF54Eg7 z_yc%upu&$P`M6q&S5@0r@01>sW)gLdi{2RxVnebTd){gxk#VTc@QDEkJpf#eg5=ow z!iSU603dHfl3OPqNgcZ#cML)+5%DMjT!!C@hqsAYPi~DEaGb|c1Lba<2t5}`umcg( zukBxO5lg=0&ZDq5%Zd67B!JMB`!li#8XSJ?6bfQfsAA>THINuG>DAB2*O2Vdne-q9 zV4UkiQ%J7{N|e$NS=bF=Sz(JxlZApekJF>sd3=oL!-BFDGr94}?bA*PF&V;+xU`sn zGpAj0`%XA+CNU6At3FVjFlm-ue1tj~F4`Fs|3*M5;(sZ-|3ilOpA_5wKV*pddk?&d zMytG6HdmBFPrQbEd-BD*XKt98fn4?>z%0fgySf<^Yo}01+9B|Fd6E0}?Ynou&dvEx z;>IY3;SCqPY%T5PAy>ULFM2aUuhcxBQ&tS^UpVfxdD1Cq3O%iGS-G53X~p_Otc&IM z53rm0nq&KHjELQZXey%zd8vaf&L}PmtwDzQ`rah@(mtKTi>d-lgv$9Svlv(+WqJASImG;J1rvD12p*TPa^z_}qjb6+|vm z2oh#N%W6h2^-BZkB|fL)#@QP}rwX@tB%c>{oO$q6XzAgxx&|GBPrPzZ1dcOAMS0*{ z?__-2LeA49DLt+*-(Dt+Nm)H{??0^a>YugAwWsNSu`duU-2X;?j`{e1#7DIAxd0Fa zk@fs14pZ7@1ax4J!0^Ec_6Y~YRpd`dk}t$uB3kzla6Ta1heo8DW4YYQn~ps?JXq^9 za~X%i?6YkZNo8y4W2G*n(b0qNC*^QqmpYuy3lylY)W*r5+c`;|;bW?<;BxZ}ZSLBb zH`@i8x?&HeVzH37wPWnhZgC)Csj!46>;l^wnbttnWgb0P_9jC8ha@43H%fveN|41sX>N2GBBG3y^fgeYK77PhY6}<7049QzUS;2UOO14wP?E~Phy7g%CBB7>0 z7BxYn(y&tU2?~D0^HkM&FAYBH=!GiI!{5I~ozu)iJ7{S#*ImK`CQ8RGo__C?tfpzZ zzh&7x$9baIy^aH4C|ab5udc7eN2vD}W3hj&e#N2{aIOQm$Z^1gBdV=JkGZQz(H@C5 zgHR}OwI|X@4GDC~sHJWEe>C7o++|02BYwfK$AZ$J_^q{=a&@n9T|B8)zXUdY@=Lz@Wo_W7#?R^$0T@%E1grYivgk zfVDmO=Be&66oS)0atxdSko%ARYLsj8;OI}>(PvmH($6eZoKTIhQI-tT8R#y4)!k)I zCz4%j^u6=h;p%dX0jd9!Z5jIzJT0A8s9;^|-EvhLs{*p=GlF-}!(JL2Kd$K^;oiD& ze?|Q^ZzG8bOui6bABm_7SD2m4iJ+u~uv!r_*lU$Y>+$+Jal4M&v`N8lU~Qt%5VlV`-2c+9t@B3k%AUx5=?rZV@Vt5FXmg1L2_=HX6wj?8d|| zsp=V56_WJjZEa%snk_GK8-G1ZZC3D@wMXR>8~FW)4>X%8aDpM851Z3AksWbwYeT+c z^%!dSW75?Us?T$UiXEcysgSvH?0OomTh%l96w~i21eoayXTb{W`z)&`pz!+*&G7_vTkv{us@cYM1#H9#-BZoter`_JgcY5L zrKk!E$c@@FIdjIqNo2^tiYXVJs21v}9-~jC%AwW!3R(dOFG^iB(HRX975YnlYV1Okf8qxD2})2?fu6u zb7_e9&Y$P#z7j?eHJ%(#;Hjr=Jk1@$8m;?P>(@a#m(o|-XPw47z5>j4yir+fiO1pY zl%{MG9~Mt*<^Yl;t6ny*5XVA@5?%9s|zE|1RLY&@w5O{aq-9(w|UawI5uX z<~-y>A?93uzPo=h_XNpqzT&u(oZjZ8G9!R7gE2x+$s%(aBHb^5aQnHg>|$X9l4XWi zn|kbq*J%0+q?nua?W!pJuD(BhIz6kAb}L9d<8*fE%}31J#cuHhXTFP;8J=!e z`m@T(PQi}X$q0;2vwsxtf-S(*H2UinH!Znu1UGa8tasOcm(RUR5${od$oK#fBRpD0 z;jodIn7HY(vm|a-dV%TZ(2oS)`?#RvUvB1TdqCyy{!}qzhZ+avYMgAvmD58l?sxS2 zgxUnGn`2{p^YWI4IuAw&Z8Y`Hsv~MX0;84me8SVl)3M8AfmP35PX;;eZ_CdpMc2`2 zhBX$3fdvWiB>oRuS*K5bSvwGJkoJtHhT?k5;p|`PA#obu%7y{;-{~V*WkCcOh674&{BYPpN}&DTtKlhI{QEI73_Di@J)-tR^ZFu-3=rhNFYfFG`P?QY5Sy$9#;-vgGcb6 z2SOar3?h1BB{Y0sM*s-%*(yx-FbR9Ly9;D7p8!P3L)bGI})B$#|RPftKgB#8b0BSQZxZZA< zyEV~+RdsO^-u@O-fXKVUK7VO+udnPSaFyO|yab9<$72qamoTxUwGsv0AYEYsY`FaL zK|n3~_noJ@GOftpEP>SD_r=9MOp1Z`W%O)pGOt-$F8`h4RdfS~-Xvs>^v`u?MoPdx zzbeB=3>U09yB%kCEug1>^}bIl#u3 z<=(3!)$}7{sy=!gjtiGy(eGgK{uQq~R2xtQffz4Gfejx!Dcu1=lT_qohI9eVnO!*g zq}JCf+rt)#d=qYpGbqt?sC(ablwx!+(ksAqL@ zTEP{&1Da!t$os+s0i-u5uZ_|Xk1I)4A9_r;=S%(E+YQ%sO)!Y?4u>xA_$EHfQnh&y+QmRZWV5vl=>b;mIoVDv$CfmI9jW5u8gdgGVer;%tGI8D4$ zhzmygYVby$0CV$?haU6(A&4hF@-tY!kZ7lbq$K+{aQ)28&j&51-6?0b*1ZDg*TJct zPe9=5^xROHOXNBeJlJS$|9YK!uX2{-tKLzO zFOq5D=B4=KN#2k6QUGB&p`o&ldmvu+`3g6aBCAybGtugwvj9w zH;CV`f0@BlKCU`f%~ z_?IHlc7&uztQY=wSIM*D2jp}-W8n;zpFwsI0U%DPRNVtsR^;Y0`zqA+n^?0IY@~ns z%4)+$!RY|cw;24_5MY-Hr*oLIYA`R0U_||e(XRrZhZ`8f`_Q5Y@55zqJHzpy@OF2` z!%b*1-#jS9Uo1z`y~EEz&vMx%pq6=qK^^|G5On=>4yz_WKP)H3W9mZ!INW zOE+MpKc8xkycoj5YKDe}GM(Tjj2ENqf#xK#{z6Rsz)J9A*K?$k&2i1(_K!rIfN)y* zmaKQc$^s0^w{OGuzzzWzga7FOE2bfG`8bdp9`Ck0a$A_!?5rcwbuD_aQIO6JgCQKUN1STXcza6UDzD zg}*cUkRuMVbQfVj%R;rI7BFpR|NUy%WdEP`uKXp+D2lpZ^I0Zh*$g&XjG~BW+U5*n zjhUL|u0fe&S_+y{jJT(g8s?H^ism+!k-4DM7)4~6oRa@o<@eIWt2L&6Qa3X)`>rI%5ml9L955!A8yN|J zsp1YZ)~zvnVYtb1%D(T)4j$oq&&sx;tF1A>&+i2`eW9gPl8HB}$X{DgSy?ruY!l)Z zJpmBD%J00J0MMeneHwS_Lbh0v(Su5zdUw!ai=QJp!$*iWCSBLfS6JED#6vA}B7c== zb6ApDTa2`~ahH&k6#~TKaZr-^0kxhTEiX@@}2$dlJ%JFV(! zvSgH~b*+yz;EN>OHY*AD@U5jkw(zs3BFYG5Fq!Q^D8A2QfaE2)e*pn3=5flq6^1_{ z#Qw6?Inpqk>>*m|goXo56}P@=nUAA=@DtQ2o30e#iSGIYD%{P1-GF#FFqM(!zlS~p zu@*^bp{5I)(FD1R`Zw&XPH;rofoQ7QCG_s*Y;>W?(+qW*^iJ+=EF+CjCqGq5^?<^zjVBfvS! z@2r5=#FtnU(Gn* zLr)};dDZH*6&s@8HipbChQ&$orOPBqK^Z~;P(iCkn)Y#k%9kV#LZ))+5~o1LO`S{` zR=`_!{33(zE_A0^DvU&($Bv*2XwrNfttHr5XKbUvjiXW_6^b?FSZK!~C9D;aI;GQs z{mOA$W_5ak9>)m;R#30khi-=fe7|6+D>T6TcpPUhyF%H zO>bWxD{2kB!6w{WFuaG4p*;%eL^X$fY%EF)1rP++u0R+^b$kx?^_6=KVT+yoXozPF z=ukizdfxF!<8#Wo#z;C;&x64K6(9G|JEST*8 literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_36_1.png b/docs/images/specfem2d_example_files/specfem2d_example_36_1.png new file mode 100644 index 0000000000000000000000000000000000000000..cad9316c483c44de16abf6c0a9a3dcd5ed5f6e73 GIT binary patch literal 74825 zcmeFZbyQaE`!Dz)NGJ^oNQx*aE!`od2udpTNGsja(j^E=sDxmlBHba~AfO^3ASI!6 zH_UbWojLRS&6zc8oquPYwS3o$2>aRlj_dl=y(6_WRY*>qJB7huNYqr7ZelPe8qt4* z`0$;T7!n2epSYW{f!i%dD>qN9izVhd*3HSz(ap~GE{lhyi>s}pgAnf(UO^rf8#gy6 zR|!5o`~UF+ypAr`d|V>T%5V`PCsjjN42BGg{=>j4ndmNSS^I_H1 zQWnY;hQ;*~0A0}PCbGIdiPRw&DHG7oC)c2v} zQaNs#q-R*qY;fa5-9%&fmHi^eF`3VYTZ_Z)jEc(2C)2$qiG*#x;>l!?UA|M=wB94j z{3BQG$t5Q-hQhewVqxv!gak^dwYCd3eOV_31qHQg{r!mP1o3>fm(G+7m)xh>+nf)F z8$K^B%~*1;U!lxlG~Z=fz4`N(3|Z!6BNrlgM(rZ2>jx8L0d>iy{+#zb7X}4l&Rsd> z{`b55?c3*mmfR1&sF4(6zud|k&~&&x7RMy*{nD!YIoyH4XWxn$amj!qsoTXiIN^;C zD_mzgwr=%^pTxA#!o!Aj@>UUFx%XYp!$U;E{cp(jSb(XUl=ql*M!-?UJ_?NH z`%HWKERURt2~(-vP!OGvl^Ogx>+bGCQBS_})K#~IL5iWFp`C;Eo-6y5#P|YMU9`Wa zrzd7J0)F@rPqoIi-p{KEgUeGUn|O1|9B$ki@f`CLbDbf6tC`kOcBjaSq@%M_d7eq! z1utOlTL!;PFH7GV4lcgg{?=lOjGsiM+n*rjfCCC4t1dY-3qIQp!VV*}7$;a^!ghn? zWg{-9{|@BEef@ef=XS}d3s+;%f>@n<6&Drj*!xm`XEK^^WjvT{k}O~cS6xG+z`T|8 zX;RYKVpMdrbMqPfy5;SuXV&TRHQt*mE%c7#v64%2&dvfyYss}M_GC;_5xO7sG8Mx~ z%a8WvSK$ZdB&_44w^D2}ta>;xBYxYXFq`7AtV0Zotj?1Ynr$zQX7QyJmUD_w5al#Dlh$`Iyc?1`I52oruFo z8=s`pI0mtkf-oXD3pMvNU8$(o00Eov+9i-D#^UY zS_TG$EwnRT&w@|$Rg*t^_N@HxhmTGx$5&gK zTVZ=dEG*cK&VMqlIvXPp!z6vX*mq;DPYgEqk56~rmGgewdr)ip?JfHFo#}h6L@YdS z6k?&~m5)v`|2fNR6v3TWO=(=^p=-Q7c6=oI_s6H`FKLp|N!!a~%x~Vj$ubx8PCxXQ zh58pvM0M$;U$k)nDVeh@djkz%Xp?`OaL zeEVUM7zS}l-sIDmeDBSBG0d`1hBoTpaq>MDZ(n;ZthPCey@;Nk$E2FJ$hrqsc=bae z>n|@&YyDHC9ta*CE(c77(wNkB^3}%p?QdaM#_P>uY#r8L#mO|l&;~+97$5ZL+Gl=!}R{Cr$)Ssj=3OqRQ?OXF${JGl0T>y3G zV5O1lz$faJ^HfXuL>T=FEYiE*-d-2;+2T3cu05Xk<+H5(>gpqYyTSZ?dtE&}R&v7e z-|bJlR-0*7|GdkX%nWCm%#iio;2>p|iP7M#z`ONMQ+c$~eZr%v@9lN^9D@Rd;>)#T zWEnj)rDP66uxMXRb+rkZw-7_|m~3ay(6M{9oeIxsH(GfHR%_G2?s{Ljvw67@udw}3 zYS`WVo4=m;WH?_-;m2_(qlX$f_w60oXDCPcBAv;618MBn$(5ogYF`S=D`mi>&bn>egn4n(c%8CB^A4-1yu1EuKY;?ELd%zSSq?#G;*-^qLi`GGiQ zW4`MowRXST;&Wg$u){fb%6PdsIVX}CW&Kmd(=DR$ zbRHed%5vxKzmq+TtT5u;nu?PRlb+q)AA%C2)H;-FEZJ;czWzmW*TW<)xdt9MYZeN3 z2PPjj%8yF-`&&QmI2NG$81-H6CdT+c*WWFL(kJUGk+u-d>`!iQ-V{MW95^Xp`$lbH zq~gf~DJCdB5-qgm;iQZS*PrzIXvQ&0wlLoc#wQt!I>S9^o#EHAR5{O!A9y`YLf3ulDFUtV=(;?&nwRI+HHj{rUPP2WolOw9BgBtU|KJ2p+vTm}_ zT}pVaZ|awbW42tqPHG-g5EXSwugt-Ct5x<$yL2=k+c*e4eW?8j`}IXKOx1MK9i>hH z9CzR|p9v}#AAGwZOVW8qFJS`P7#6z7Ei0Qb>ONrn+>Z-N@#fCvfGG(Br@5rZf|e=t~JZU|d(u&76-Q^fIC z*Dv4o>p$LT(0ELQ(i9>*R&qQM&TOEqO|cIxa?sdwv^iDtovPq5?DO?39;4dA!UTXY zkymVb15HZ-RL!jK4xZ6Bs^3}|YV<$c)Zc<#&ku_L!|_@6yG40cR*?I`VEm}Zu>FDH z6}lg;ngM%%*pE&J3X|k3SojZ09PJI% zW_d3E3fnULsCT(<%*a3I>sn!IwDAgI5qoD}*d4=%2)t?>hd8S&p=oa=iPzI2F_nb9y@Y99?B zy?$}MoD0voCtcau+1X$z_c1I8^MPDrY^R2X#>Do1qX~0tBDa24bv1+Mh_lL|>->*T zjR_YuRg`~_#I zcq@7CuxfYJspU94t8Zk;q+Gdw)_-@J=KK3w1Teu3P{N&H{@41cpi4)w^PkR{@KkV{zP>q`KN5$u8n7jE7f zi-n!l*3r@M_`G7n&sZkubEf{g7Xe+Z_Ng#G6bOS_HU+ynLb2ylR@5V$h}k?ax(F*SxS>Je_sq;%9JD?R27xI`6>;8* z-;}9R4=7vXm}xH0;u~-!PTnrGAVQrJJ}X?hHIl{Chyg06Qjt}+8{@2HvT>LkOWiDh z=sxAPwzkLiogZB8hXzmVZ7oJK`|sfFZ!fn(vvh*JXp)^*y{6uMs4-MzO$N`$ZafZ@`z0^lva6!j8X;wgqtZep#zK4O7o}QsK#S$O~R$lZF9N=BI5+ z6?a_$fM7nDkButC!5}mb!@SydAr1g%`1SP1Hq>X%{P8BH<(G54Q{}PPaAm*<%Go)y z#xRn$?(Rf;eJ!oP8lUaSg`uLXX#nvjF~T;zbt}#}CN<{(IZ;ZNKeUGFNw9K%MDI|J zLmGbJ+FmlBX)N5Ek>{v8cHVC6Gb8E@0H^5mR&fX!*#q;5m|$ItE{xTh4mdmfEGE)? zM|J&$$Vp83sKba;BgxKkz%lo8-w=T?n2L$4XkG;qlXM$;(r{cTODZ4rK9LjS7dTBQ zxXty}KP8rh9*muR_EF7uz}OQD&DZ8f4jsmP)(v(r2PY@d3*q0;8m?MdUHVyU+sOBA zU*^datlk~y+>Mram=k6;57>w1I)JO!#>K@`AtkW2~QSg?JpTN{1(gkRS z0!Fdrwc3-%$;sicoVuQ0IsNHQ+1bQm$p>p}P$G$6N@VRoLmv-1&07aZqwd|UwnVxq zivsB3SyR41ln|%kF|MR88}paMyo3RxmGt0wd;JA|a%ZRpUkx>^;8p~WYL7Pa3ISYR zb8uOv!<7Gd`(g#k%+ylVa!Z`-QG{li!~~S*6d`L;KzQuW<)(WAj)V$}ikycmlQSJg zD^ZtNMYW<^bgb$4aO`+>mK2ljyQb#5*3MoI4UXS$&keY;`RZiz4*YH~Y;TS4;XX?h z1kyfRN&pR3;hCo@X44zt^V%|Qoky(I9zr?NQervBOC|qJ_|LF*NSH)5eD_wzw|=iADY$AF{p=4+zeZ_ zv)Y7@n}fp)$jcdB?_OMt2q3^d!8i3PE>!p&Brl&hJP~L)C+g4z%hxtLAij=7@0PbJ zf%)Nj#<9hKiO=QEo*wHzfBxhsN1wG@``wPk-7H^c*+w-xS4NGX*SYhJ-`f769W1>Z zxSy{1&BC*nZ|BdZ`)GO$&wfcWM{T%+J5Oh^5g6eh5D4IJ-3Gwi(Op3qJx$M1>h|X* zYX9-m)6)WF!`%R0+r2mD>P>(<3@tAGs(Gs`a^1W9m*&0_3})l zXI8xsXrsS!@99FFbjx?{=b|pr@_h@(4pu)wnx=MjOge0?#Uw)2-oG@Ev*-e7vhNlM7 zDwPg0t3>7J@D_QsQOeev(qOeb4>xJCwNUPyQoxf{uy4B!OZT z0z1_I-feL}D5P<%!2npBa?RDgKrJ0#-yL@n%SSxX6`&=PL&fx2;rl;`Va8DZgJ0nN zpwfxT;Y%o(*}5Oke*OBjx7ha90dU+OsfJEdEssDcfj?+dT-o=T>7tW@)mXmu^FHd1 zbrVizdmDcW?K6Cq#N8Huo_X-#!OE_$4YboR68g7d^_{>h0s%n1eEAXsA`nbe>r44y zC429!h4yXzrSqv5mm0}rn}7|+BJ|G`r{ey$6j=6MfS%|oNW3qDrEzqD5i~0WPjwq@0 zHJPA#7R2EImc$k&7PQF(_)5<}rDDYan z+YeNIOBr$I7cZhgIAB5)52$@CP?m8}MrMYWhKl}G52)V)u+yQ*U_jt$e3#+R^>YT% zTM)|n3ZWKGRLNS<>C=4$<|;eBGElJd$icd>>g!GM15mRCHCefs}UGloQf0TA8M z0|WvW8;6zoe1H7yx_eb)0K@)3?NKNQo^;VPd|{o_Uq>C6-uV}`ZQ24@9R%HUsrJ|( zRz%~l5kN8^Evvv1)ryTA>Ez;CaWQS}?G%^u42v#dLf*&{Vq>r{3^qTDIdd!ja^cp1 zPZDvNtr0IX7&b22;Q%bNreX0mmf8>VyZlx)Nrlq-2(Z8_l{h8?Sb_lcqd^79EH3`O z;tzP_e@Vp%TFoEx+h#->G|T}OYQEROYU^shzUf31cdi_$$bpZ$syBb!*?|qSv*whT zm`E$*D@JSXHT6hTIFz59aL${b(cGQxzbh6Mdq?}rt594bZnC{Tlma0L@s9oFTIS2Q zi|ek7j~ z25|b>+}b1W*KgjOhcg8*&@SelmK40F5W-kb6zz*f6P))jn2KVj3 z_x=dV+Z<~;);36$4K+O=Mk!;HA}$z)^J78`G$mvIN?e;K*e|@C0{VYzFOFY zJ`%a-0%Af@hW{RC&M2rohEUXoKwPIaj{($n-Sc?}d5tZlOh(-DEszoip-(CGj6Il5 zBgS-o`C~I(L7hT%fbF(_HrWplGs`*?aChZ1&Mg-4e2Uwv;gfTVN;@ z0b+~%G6t+i_?yVl#yeSokd zWhr>njQQ_B+Vz!Dd{7VY;(KB^z#r@tR3x6j2Nr-hdxU=s8%_vg2Zb7I57KW3?C2KI zkzK_Y779Cgzn!r?b0YA13cq}DOmx$iXF@8)zOXJpcmge)&O8(6CZJ<$8Y3qh0MfIA z(2ED5+!$c7nOU!4kqKZBb_7bR>?sSfx|?)Jyq!2`Ev=OviyZ*zn`Mu-%4%1&r-5FF zf4XI8*bZ&J5mquh!GPQLE>zF1MUNt%<(g#EAD}FXShSJ%9aYTz1#Rjb=ej}{@k^x9UFEedy}6+zlhBy)6OAPEYPlKcNCUAg*!{t5yK(jsyEZ?oMH0A-_f2 zQzu((Rcefdu z1rkP_hV9G#{3Srl76YEhU~PbGt=;mk8dSM{0qV-%LTv75nPVKt1Al&nYnMMvYLI~~ zp;;hpe$AO>1g#*D$77&b^_p=Ia43kuI&BO@SVY68;6aqe{)xCQwhAQ88M zw24%Dc&M>nnV2=O_wIrxGWV-SvNp$Y>@!FibpW(jy)S=0+Plvn>(2nAL^AvZ`r|4{ z4^wYnI3#?^v(9zwK+kiQ>_;)JRA%_zq5<8pyW5hJR?=k$ff-v2M^EhjP+gLIly(8 zaTxh};Py_?U|zwvIZ31q*7%5~`)wJ1&o!nelUl*lrW<|VgK|wk{+xxCk1x(t1~mMx z6am}}zb!h{*!YfrKe?d=TL4@S452PP^aD=}2GE=|@`b@k1+YDZsPFnrcYJz!EG#B- zFxgPI2JE=A2py0L%*i@LpAmkEC_d{PHy!ik4+7|;a6Co7I%cy{;% z5c0sR9NGaH3dm)@mV(%KCdipyph))RV-=y75(FI1n`(muP0TDKWjCym#Djww>cPiU zgH-4Rq^cJXCKAxz-N^*2z|N}4t^sim9Os<@Aa4yWlh0nslSdLJlMVfU z&~V+HjhA?=ZFE*V!jX!w2@L@mpth?RMvPU7WuTZY^oLRAk(N$-#2|jNxCXS=9~G|F zKVGX*d4R5~cvwpL2FL9Yy{KN!ZRCV}9)(dDvM(EL;jNrwO^T1N2g-jRz+TmSZk5GH zO;zo4a;=w>_1d)N2Y|!UnrFKDv@&|;>wUUi0Ig}pqskEJ`{)8&OQYPwaUjozme>y` zf%2_a^M-)#8NdZndS=a``CFpV zU)Y^m`-=p=WcL+?x5rzvadQiLUeqOAY)k>HhLvD#q9B&6&|m?^ zW?A@(khR4Z`a7zTM<7FtCus0SdU`_i=cdi;6TrE#8c_H`plinyQsGhPa={2To|xl+e} z{SpL5Vt6J6Z|_PQbra72ny)CJo`F(M3-OERBKA?BDYLM%6Ch&>O7cr_t(DSY2M9|% zPAl97Ilg@Rmyb3?9ssEq+w`62ky4QpLFgOdOXfh8 zsJyqA9sy!y0Tc>Qq0zNRn*HYhY}N@UF=}Rz0n;Y8M8Q=q+XpJ#n2s8=^SA4wnUH%x z{03IlD*Quu$^EadBNsj|gJq*#1@O+OAfusO4KohPl_Fx0$;kv6J>dw(f_w_~H}9|b zFc36f8D<7j0w`QeTL)lO2cd$^$43Sh?%a=0^r%7Rdw>x3-CYK@M6UM{w4BTLdT3Fd zbwUywT(IrSm#gnI)7-8LXp$@al^1VRYT)-+FvtP-77U}xg|0iz&CQ5e>}@Z{Asmqz z{$9n_mJ?LEUAn#le_5HM9rF=*Y{YfW@|o~d{Ze7}3xSrzDk&+sP$9<>2<5{3_~`JT zjFzQ*8r(Qi&?5K&8LCKakGT2{1KF4WywwQVfpF*xQvg(vjs|!l3NRftLWlQ`VH6`| z{PxD7Z8st3111!-IGH;1OUs}4Nl(-8;$ff&$7KW=v_Y9(1rBTuafiZTS?~#wdJ1L# zKT1OeXypM1Q_M&Lc%zZb3gi%|Ad>#Hb#$mjLfxUMAnFh5+xFhA8`7aBHQtd)u+#K5 zwjFB^!vKL~A%fc7-Hbd1P{yY~WdP_WY4NU?6hD|&$ch-)fkoVVFh0OSyP}yP^9cFV zfR1*C$Bx2azmo#6rtTgjz`#~){-FC&sT0IB&b@s|TRc8&5O5d~^W7fx#P*E-zXmEG z`D3&b$qMvvDufvi8v$xQM1u@KjIhiwEw-V+tvgzc3ur304tWZdL=dDpXu1vQNJ05% zS}Ox!N(KRX&}lQ~b|F|43?|>_{al+}u&1qO+$4q&?eZUjoKiz+04Pn!_wxYZ_x_ga z&dNmB?0Nx!>Zl~--T>dY<9Z0mio%!}Vm%`xp8W#|YZ$<241pugCHZ6&3AX}qt&ISO zy7;(xd96U2vYYG8%qn%6RVS?&B7Bq&wipW`*Ie3_pQ79G?J0vZ#q^T6hv`*rmv#_NNz!-M6{ z7ji%E-2*xL!i5XCAmNbh5ADD|ArTk|Lo5srLSwl2#DtQ1OV%qe?6^Pz2vMdB6r%gN z75D({KV_OnpGDXk0J9OV{-7)P-&Y}u;{^S!BX=MC2yh=1HzZET!IsiCG>imWXQlJ+ z_xDt#{$MO1+6o}{-qyFN)w=mjR%vPD;%X>1su~)%jJF|Z&^XimLcncKYlv_g)Oo(@ zgSAcrka89tU;^Pv;~zfeDgYAOwFG896nug zb1A%^cka5)|9E5yEy@`XEEd5)09QPJX1~7CsHbgY^c*>V`!o0?D1in{xWqyh^jKN8 zMkNJgC5SPQf}5aI>3(%=3& zeJ&Y21ehK8F`fOJfTN(mo&)gLx3CTP`DE=_9B?8UAlO2vUVx-ef}R^{Ty|w{LJUqF zxVHjOnn!>q&V7IXWMOZ%C!-ZeQ#d$9q0-PMBvWMrm>@_}W3vmc!{fxnlb}IEK{fwX z{U9oD8@A=RM->_XR7XL{)RIavTguwAyimD;WWN7(fDEi0wHUAq^Z_(mae{6Dr8B?$*s^-YLSCMj2ZsN zemHJ@o$p?jOc03knASikQC=a1*GsmDmm4+}efUL=kXnq$CTp&;kLtZScGa z`dt$yADoxaPsf1S!rz>Ogi<=#Ay4gpRX>AFRT2raOezkc2Gu`E2hE`sERsghfEtj# z0+Z7W)ehXzG`j#l8HfoYCHF)j#)}}$<#Dj%3|cR6lPA}otawQwt%Uf_G1zsW zI{~Bm!sqilUS$xLM;nUQ6+$XC0_j>6qYfU^iTZ_R{2asjEwuZ<5iEK}fd$cGlG4(; z&k5Vq>4BRCphL(5a1V?r6s4>!^OhJa80=5qDj;|PaE$>r1s87JuLrY?Ee0IS1^<(} z6E=PS@5%p~Cy`_G0D%eWNz_`BsNG=Qb_wVp8(wpn;SlBTQT{-1wJy}P*Wp9Nx)6uDg*AZ(6C#gqM`0{!R!>Jrl#h*o)7Kp_5)wZebWa9 zItO~ZU0oo~0`u_>!Tzl5aXU&9qALT8q#oD@`VV@Q^_SHA+0Q5w=u$BV{>+Z$JwYiD z7xL|$1amfg|Q2Y8`uviHsYR|(_cnG zB5eb=Y4Dklwa)g9|7)J$caSGotyBZ36$Jm!z7GtB0WKB7j3H$Y^<0pX20{8EfdJ48 zer%A<5TFeUOH~OkTPU~B`vyQ0;BTR=0+TW2+aC)Eb6{bknVb4;o`Gq&i)1DU-)W76 z7vF&OcuP7RPzt|*zITcx6n0j%eb50>UK7e77BK20GYN=AetR3}FO(#u&}HcF_kTDO z5PNSRw>yc)5MrUQ9y^v?!3YDzNZj@9lD`Q=L>7RTU?0lK6$4jcw$^<21h$Q5;XDY0 zpc^p_;rK!k#saIOV4PJXlZO2VSSU8}=~Mm|g=O>b#`>e><0C#hdcNwF6S#FK;?#dc zbM`DKl+84z-=*|;B|4NpCW68Le`{9A26bQjsq1!aM6Lo5UIA!f>-OvG>q96LQrhYF za0lS2?sfodMgTtG;}!M*DosEcrbZIc5b4&mTNU+jsD#jAwm^V?zmx%ClVJ6a6htZz zT17Tk^;!qFn8yMw?E5GPe?nNBEeAz(1iUwFkR$~onj&I<4&ioS=+XF>l}|g|n}#qO z6R0AI_Kk@xw<}yOI@BI|NNs+Xq z8Mj81X^cZ4(T*ZUDAfuj+JYb$Y-f7V^sxI$4If<0(li$*n2qj)H)j5frMIbsoAw`q z1_s+smPJ%lG{-N`qz36T1IM3#Cul%lBjj6t8}e142C%`({$XLoPvpq{suquhWaw6E zysI*~(mhnS*gy?$hHyg&gm=e5n{Ub1eg#?l%)!sVqUMIn_@He$RIgrL7_Ab$BshW; zA<#jPR|6$QcUXdf)c-MUE8<3=#uI@VRg`lB^qi~O+VQ!ip!L1oDzN=_2{XR$2Qj(T z&JbdH5n==~q4QnziAjwRYT! zJwJ2rlqdvG?b3jHfL?nB!WlUWBGa+1fK5=$4|zneY1camz_11}3;9_#AW8-HhFn0_ zG(IT<$DKa;pEQ^#(_%5GXQ3#R$|&L1o0G8mUo|&7P!>5Lv{wTChB4iL&$b#w#;p1% zAmk0;`u;PHfEW>wpBpR%t;-0u;`8PAfWESszJY+HrKLr#XCGn?>6jGAa(zBn(?F*O z#*+hJp8`AnekDHvC9ELCtNPypG3`<9kgR+RkbG&h>J^YPF);98oI*kTHuC=SM&OS% zK;iU&qX#JJTYG#Y>F{~i3gyJW;cP)Vf4{lSmk~sf|D14B&B*-HFaez!c(Re$UQckd>9SJA~K+lG&gl zQ(q2%HtN)VG5ICBL5Mh@eG0wr6tmw(d^YjV>Idup!Z650uJu1`uri=J)epKt!QJLl zi25DSWP*{0V!O=%H&L>U6=((0=m5coBenqLlWcw+2C^6AF}N+2tyI;xlZ1(lxC*AR z<))`G;|~d#>dt-(|==M$jD&JLfUp?L)gT{$>{C>Hkm-8;nd4a%L) zqZ16KJinWseyr;SNvv<*76itB)c3q%81mkbooC{^s_YAv17c2NOQy$rG>}_r?=dsb z(+j&Hvx|qoHu6Cs62@Yeftm)$UeN%wx%4hPfM?6U*UyEf0DhJY;76e6uLlIozAHF0 zU(&d}kI~T+ZoM4-!_$QF}10q0*K7S21 zA(#Kc-wH!)2$Ny}3?Zd;3Jc}j8U~4~MAH2)H9cgVKEmyHwzZk*8#$ju25>XzrdZoA z`H8+O^#lvg@8@EHMp!zOy+AD)%4ZB@IbADVViPYVl*6GDLkJC}49r_1A`Gj)Fz*gX zlRE1Kp|D!rub(Jq2xDt801& z?Ti08`Xih(3J+xneGbO^>C7r6UVOC}?GtJfHY5d7v&hOaqf;%AD4ZNU6T~t}*v=2q zV7v>IUK&WOH-ad`r*3@yKOyFuXFt*X05bhZiXHtnTlmt3Qpe<~mku*P(@0MmBx43e z2>mA^hUh+!vFTA67~C>oF>rdVxUBHb87vQK@G7n6QBxk zaB#eQ*dDUTLKn-5c${oA7rMr432^62eD$seMNlV9a3laR!-#p$T>+_}sX{b_>*1+G z`_c5BCE43;jLD39mMU4ROe}=bHh!1v_kQtkiid~M#EvgV<6+rV!(I_4p92c_aADz` z^AgElbA>(zcZzBZZbV6T;y)PuB=4Q`+5_jCYVXq*yVv*1vg2x;WoxN*Jz^pg?Y|OffewpCS3w$+d(BPvI$l2B0${~?aab;aw&%|!G z6krl!VU%}K<;PJC0v$&=K`sK$d~|d~3(Qr9u9SbfJnW!6F7+d)ip;+@13nbO>J0A* z*>@g2gxiauR!xSVnbQht6ksXeoO5~9^%Hc$;#BiO8$Rtdwg8w2*g?HaK z{Yo4vB|FuxbNup3aF&*JSGAZrLZ`yEuXqp-OU41u#R^mPn?)N>Ot)!(P}oug?uSAJ zzSne-!X;46|Ir00Yql0VEa@kmNW5s$eLn~OJokZvQv`p=v`K2{BbpkPPF!2Ne;IxT zME0j}NS6|~iZtZH?jy$ke2W?ec|k)MFXgwW__zr{!rdUPOYJu=60+U~^Kh$PefLf3 z*!RHKDJ(aGUbYgwYqcHSN^u`%rDTS?{cON^_@;X7dkFmV@66|5Rui@JQ}`?-9m$DC z{eB4FB@E(+ZA>A#@DyMEMCynZFPprMVjnh0E7T$-LdN5H@R^8$u8g>^phztmWi$r$dhj={}Fo5GSC{>8hR?vJua}-vXT#AVi079APL&T z2MWtJ(tIGU2?~T607>lp=E4va($r{0>{7C?Ke=?h;inYXv~Ty-=Ym-qLpGa)C{tNz zwzA0`&-ecfkTRi3rkDe((^f?U)dts3b+_g z^k$I8$8eIrPYQa>)oLqxcXvpww8ut}X&TQ`M*Ge0}ef8}mA+&`QvjHR5M}H2X z&7Fc?Wb^GU36s}24iwf)Io)u6;}M8%uRyO$fo~l6?-480M-fxaM7pzy(K&qJ^q=Ze zS~_5BoM&>J^dq(9vfqz4%To;PIXNSgG0S~1u($NzaXA^tyIsqWka3`L)6UZhh=%;*hBNalmJha4!a(ThA5-k%G(&SFB@0DA zLl_r>xGhEwQo69TRv|Eh?f;;Q&S8N66b^<5%1|Mfxzcl)6f;=q&W!?(ANBblg#I!+ zn-J|BU~PRsjA)shLF`FYPoZm~?6%4O^&;CylG`!WjY^YrqdJ4qxbm(x?qHksXF)S# zP0=^k$+_@GH0$h*adPB(f8M=~Kpe_?9d}=UTTjxq?p?Ek4%dQyjPjiz0w@7C zQ@F6ci)7cyNcMEO2M@#{9~}c*Z=#-nxwtq_NsP3GHrkUtArT^*=q7i{Jmb@hFZ>!6 z@FQHj?Xo<*%@vjd_0%4%wy zF89c;Iy)Cw#pZg|^!gPKoBnz@oQyRLI59n&?|#%Bwy(&>PEDtIGUjT?g)-{ox2gI_k%QPKK$3T3vGq?*GEtJ)w9&|sNZaV4#S+DE=xG6>sc?o?50D;;36({ zaLm}?M|6ubVVZ#oFJ9*{F}u)J2dO^w=!iFXPcXwzY-W8wF0%Lco^Mbfn!z*RsQnt@ z^f*%X8*liX?@3R_)zAK(PPsE<##8Jl6n{60l{p-HIH6^jWgc}LB=O0sGFB2v4(#WufJTc`J>{1R*Y#N+iiCB+% z^jh;VIk?4^s$owe4Q2`EBk}KW)>}D7^mPPlo>A3WeDozEKb4R^(JXW0)NloZgLX$q zD)pTN3DoaSwoxX88mNSPibcQFm(IyIbe>bqj+GkwNr&iDy}JTuQg9sQ=}=m&Wb~wX z6w2@^4-IAr@1)V&CE}_0Bvo64{TAhnr^0?JCj8@aUj5CFa$zFzkl?=<-qvyj!w8&d z-@BBPPcMzT8cGE6w&e_;jo*P0mng`grTA#$#KV4)B7uwb+S-e19Y5ZutPPo#6RbJZ zBzhmO=-eZw9ukd7B4jVb!)^Byy0m-U#Ld_0_u9jL zCkdkii3T@XbJ2yi4#T zrj6KR>Vq=gPHkF3Mq(%@`PaF;74ZU0mGYvp0*^9hcuEL#+UWCino4&sHmt_rs}!A3 z5>)4J&y$YaaF67F_sd4dKw{@&)0FN?p`nBqDsJNBrYmb6713JYXmf>r^>`CJ+cca_ zzSyaA#82d`KH+x9$H&Y$ws-V{wV)uh+0thlbE&Bv>6qeH;RRsW;@>I#ii1o zw$$Uw;SGO5WASIBLtYPu>;v~L)p-)`c0Lt%Z>625U!wj{-b1Seivxoh#CY=pYnq&* zxeKOK4WFp=y_wdXdojThk!$qzH|kE0$=R@9>}CDgfH zcA0hcJYA{KRjZ^T^^oovf_XYN6-ow8uG9JPI$^5!Zna8SHr%^5Gc=!OVrX#UavPV{ zAHs&IYr%~#a4=37xi@4yTD-NdIxq~HqOw(~ZzGS`ND?Kx%yRuF6}dW%|T67gX!>&$81$KbeVohY03u9M9+GPh5O|l z)=1AcY!LSA5MB5;Z{!JB$-D7{uA*wq8H|ZagB`_$31$Lp^&PZlQgl?~dg;#SsmDEL zm8DQQd7P(n6_>Pb(GA!3S^sWh;KHmH@2MP}pz9<f1cFkQ@LvIvF!0uz&B+fpH za1!o#Ylx%9Pr(_P#G5&_-t0GVvWb=F5#i}umtJd6uD!&S(ch%8N^ZOmMd_3F2e#Xa z_t%LHtF^D4e(hGIDjYQmDx`03{<%`}yoo|y8)nW;PSDPim3$&wImGD?~<&-77wYh-gqyyaJay25&m@|qHE zl}dOCe%6OBVfKT7H?L>-wml#8K8#Xl$Gnu9Q?jj#Tzgq`uL75eT~RraAsIfG{aL#D zjuEkp{>6LcJuKg-LVB9VUA)Gf_moCIeSfyieL1g%F_=U5LV^wvC-uckgbFZrRc5b~ z@(nkl_y;sK?!Ag|5P*<^=&Z4V~^B@;m3hdb3j$aIog6gxokz50eYUedm9p zafp)7=#9KrN3auX1SarQ#%b&OUe3ASgGX*#iY3#@eOfq$A(rDsWqkBD%g~CbIQpoYp(S;rZ-?RSp3ifZo3sfNUgRe!e$>c{Q|M6+ z+eA8LsX4Kpb`suC|GQSlSoKr``dOW^{=oBtLE~|$*G+r z&vs(fng|?Q4yqkFdE){3lH5hUhF@!#1KqMy@K?Hv{!c3uDeh+Q86*l)d{CNjmiX}Z zZ1@&Yh=0@k9~S4?zi?goG@0i8u&?S7T@&g7ORi(+ti^iTUjnXLkdn<~OUu zK>83Dh!skgO>9T=F+~tql`B~eeK=X-ih5w z8*yiU-theIG8}3Um}G5)HL?2`c`qtpoJwEvNt>~o|Sy`+gawD}Dy{Tqw28OB? zy)y$|p#iTLp+Rq%Kt_{U{vNCM{HLi&3IN+}Vj1IUUt^Z&%FJL-Zs3jlHZ=lyCp>PZa0|K)gD2}V()J}nqt_1JN0Ut65WjBCX zlVHri21V8iyjbR6cn!iSd}vI-L`H51CJ-W=Cy`_c@waHO+|k+ZeU}$&It?nLv$ELL7!EuJ&M>&xy7|m4FMAeSl|U=^c{l^t_!y zbNXOhseE?KuT&v31k!ue#Rjs8isO&yjXRf@Yz zbm?%c4AygNCr>LFz)oOl8bLDbKoByE@FI_Ku=MaSa3l^F%&068@Vab}0wF|D>+2u0*E$ z)L;DyOGZ|9{z#zs6^f+!xE0f2KkX2uL5WF59Fd^>JiYB3jIuN#CcPq`OpBAg#QD2X|BabVf?Rl~eO?-Vgn{y;O|>GEkuM$4eXm0^l5n|IWV zXPJsvy<0?-f|Yi1DDWsK1QI78PA~=bNeiUCAyx04m@Apec`KaC?*uAn9<6xs*sQldUZRt{`k(N9o4;)tX=(- zGNz4<8c-eH7|QJUIeh+r=Si6PGjD>z6dRxrFkjoxF+=h(lU?Nn3!%cpl=c;HZ=E4> zjfDlOs&P6aEkg0Re;w_&Yif^6tuB-V8vZ%;e}hy-e0I>*yZhTouUVE^0_Av~-OZFVk8{h_Ruw%_jTC86=k zOVpF=&rG!4c6>?VID)#g&r% zKWv;JmuB+c!G80*xIrOA_p8910KN0UZE1uK-XQ~jUWhujK>C!RZ1@wc`yo1)HVfhf zyn6z@TBBbCoIAqdV~E-)+rQpN#Tt(C=nNy#2Gj6rfB_D|f^Cu&&WfL<{9Kiwi;iM~ z@SCvk{!_xi>8r`=CwNrY6mmR%-E}wV&w2uC!S8RZ7PLM3h6RtCUT{)=#C5Hfoa+Wc?snMz{S($a2FBpM1u(MV#Rrqj#+7dM5G5)An;gA52PtHriq*!BEhA%UHC*-p z2ZL-ih?Hr+fGc4kx$64@)?a3MIV~7CQ^V+xJ_j%F*%I{D1{8BC13OC^;=&T1OI>A< zX^hSu`3XA~6_xgJ18%8%Q*0jLA(UTBL>UM z-+ybE^XDWHa+lo7Wjdd9my}nxfiERAiRyNqC}AGohEt^?D}$3Hg_ET7=P-iV`(ETu zlFFo0Gne&Xv;BA`;o(2J6y6NZrXAjY5!VIQPWV`v3VNO~?cLHr?%fXNF3{^``K3V8nj zH;gi(NPfhR^eqgD?L?4 zyuNUPm{!(b3ba7$;*Z?7OdFqLOlwlV4Oo%qfrxaX@%$9JW467+LzWT+aG3qVLJ7|yGFiTn%Klq>k3y6&HusLdqy?2#nHZ@2%(yUUL~Pd zDN08nB%vcU1Oz1!kPgyR4k9Ii5CQ33q=ha90Rcsk07|m}QWW%nf`I5bieN8q?Q`!N zp7w0>EI5NoeO?2?dKf5)j=Pi5o;J=i{dYpas z#y37?wc4JE-UkDUJ-gan69zd#K16f_FzbI7a$s{ngWVadp5Y>OcZhrf{GN-;9H?9L zHo=R)-c>g!C(QdlJuI3Xg(W2!kd+2Jlm;l3z#9f_q^&<9K~NrIhs_y6NJQYut9yQ5 zR|Rh@$lQfnV6?8ul4;pX-qhC@Tywwt7AXg>%nh@uZ9N8RLn$}mlf|Cy6A#4LbK*pE z?qkX)Pm{`w-hK99@GS5l8M+c;Z?492hUoWDX&xS?0oy_kWLLLOkN!xdn?~+0yyi<0 zC-!KE%r$|~56uMb1%r?ct_NYd!0q_^4=^`a16B)UgE->jh~qtu&u|xR`$XM?w`9P> z{yCm|j={QupM7+}!L$9GlNO46=Bd|j)d1#a7`u+0qU+QCuS0zNqw50A716{0o*i$r zh@Lb?z8M*L-y(|7=&2i7x8l`TYMS`4Cga>2zaWQtSp;P->W2P_aV3*EV7b6%3KA46 z5H<~*bOaPce_ivsF8?>71(u>~`V*WFKD;hp+kD=m30nb^U!`GJC7oHlCM}|G+(SC+ z&@qxSMs{KA*c|;0w=nV4#$9DhLb?C2|H~FBc^>nUX+`_~S}BRe z$Qq_R3J4yZv5Ms;BSQA6nMmb&a==VL@R$#V8CPk~#0+<0(stoT^fkp!T*5EvPUpf^ z>s(YQSKT=*u3xIy47Fq3-x$w^Z)fq#)H)LCMv?yDj4eF+y=^(B79Q(Lj`H*}FSuBY zke4Y{)k=D_?oxiYT7e?y1+%2Hz$SkeW(nd^kSzjoS26a%fJZF{+$XERlYtQXe^<{J z<>MGu`mzGc1p>F9?ZSocu$k7>2q`{iT&?5C5mnT*ykk>$gvF0T>g-pBJD7G4pB(Fu zm8$Ln?ozX=H#`bog*DstkrRJ}m>OetdZprMF|v*}R`aB>8=Gg^yIjMH!s}#|(<@5{AI1Jd%7RIrBJlR>Sst=(~edsDj z>kbBY>A@+XYO@2PlhNK!Qg2u`&qsT^n2X36l?fw`&1&J)*sya_k3MGvEWYNBxl=n9 zeX|!OubTdNG;a%>&I3O5x0d$H${Wk+^vOp4{sa3u$l+meQqB>6TRvZKNu>Poal3Jo zwWo3!;MB6m*TS9`cwv)yw@db=v{Xs_^vOiws2AoF(HH4!RLrp9{cgB`YhTL}fhyvu zBGU7B3u8$$`Jq;c|Gg@>fF4TBumZDs2HSaq+slHzEwqDe7fme`Az!c2Bo>hhu^|xc zLZ)DqM8Q{g(9W|PZP#rD`J$6p8Wz|vGoEc8foYAajk{IgXv$olNsVP|pn_ILdbHHU zDak*;+g7iy2HR3?FYOY4>|$M#G?;5T+h&|f4N%drcJ=P}e#4EO;H(Y(Cfpmq9Zo&Z zzTvv+kp*AskD~64*|Aa&<|b~#9j+ES*P(km;>xRjR@a|tm$B{50H!xa8{e(IFJNdy&bQX9pDqSCU=nlIV z>T!OW&5xWn_)&E(+P5#Ybx!O}fY*ByvP@4)aU1WXr_+tq4te9!H=HxtG2YCl@X4S$ zMU-$y_tiiTl37ZwZ8-QKwzy)MsRkQ(>DI_+jFzg6(#W`7dz;PX*LKNog4^XD)-AWF z;=gTY6qjFxl+&<+W0$((+=N1Kq?V$JmvMZ`-{!K#-SJ?Iu9XsCOpwf-m|)t#dnMFL zFT)*X6{p@Ew{6FhI&$RIUp>zgRpp&Vk-1ReyOV9zsL$^z-{&w|+5D5MXM7}vm{xJ%3lynH)!`}2g=>0TUYSv3vl8$50&$alO4s;x zY48QinXLO^&ATVu)Gi0D8OQ{PW$;dMys2l)Ca!s@N2FG2JNxiq?WoMhe5Wfv8MnDB znLlzlv^WMc-74kkKPUi()zi?8hD~TRu|P@Xn6I7_E>Wy?@@r3iFGQr%m87T0hb*ui zMHPr^N#r|f#a+7^i&Xu(@V3MG;TAq4?LJQrpFW@n){e3K^7$KZ&fi4&ip^K4 zqGatU+@-9MdlL(u+ZQNq)P6OV+o8qaM5=6zI*Q2Ne@>)|v%eLA9dJIA$jvJuW_W2g zY3m!t3Wu~eP;?Vz2tI)I%QPMO<8)Xg;(la>5f?|L?EF=B~9O9Ev&}`68ee`p2Z}8=H~7 z$vyqz(Ahof_;O2X&&>m<*Y+#0m6o3H(vy7Pvq? z+gFTFaZ|nYeowwbaZPGm3+=I3B59vff-St(>}*w*nucImt7?1S$=m)3L|vMC8*QwZ zS@^4tEFL+iG&-Tw3=b>DUW&W0bZ8BnA`l|uu-2z< ziPch`M+t5w3t_IHog*(;Y$2x^{6Bmh;~7EyNtA1DA@&$8Ib(_UNvqAr?xBmmRfb8BF&I^#%nqB{Es79_k(xNMIPit z=Hk+yC|2%!Y}ZP- z^x9T>T~Nf88er^9Z+JSU70aWtK!1BID{=LETYR>?kp#1{!i8F_WZZn?Sn2P|^6-e$ zW~i-W6^Zl*$Hojr$a@-y2~0S5PZC)(ug$DoTwR<{v_7Lq&G)~m_Q2RwU8F>?;nLda zqyowXmsak41+e!bMw?ml`odg=VPjd*zO#z$18Nhv>GMdUh(FrbjLR+DfpWnhcm4O& zJBKFtBytO8a_uSHqA(g)7$*^Zf~CpKGHz(jV$GzOkUbX1R{B4@MRN4X&RuVrS-I6W zC#RyWLT^Zk$#|U-?m==AjVE4qx$V7#IaW3)S6u1jynkld;xJN}2fJT;ccSZs?VFI6 zhw_yi$dY8@(AYRjHO5XJ~@Ta+-C&bk$9+x(=LQ!f3S9=KG&8c(xgwyhSu) zSKASpYw{SA4&y9Vap3gR&#G6>=N1M;nyB8DS9KQ+CaWI~xkZ%@?V9BKBX(56@1t0w zeQ=5QY^9DBR@QI%1Z)HIoVvhqPWz{JC0)Ard}T5bjE@mqe1u&(nRo zz3k}mxJ zt6V-vvwpYTI@v3 zkPoK4N627HC=~9lvZnIfh4GW$Rb=(U`h+XFt5~@qeG`^GO;$+YdP{w>VyYJ@<6(q> z?*otFlsb4Dp5|%aQqJzcv{PROv#L3wXPU2P#qrI4W4D+K_;o8;u2)r*2YDZpF~GD- z^k1-PYpAF~wDpK#B&Iz@e6PD7&zsXV)9#}D!;(km65qofrDGeX4m^wFmTy~Ld z2*i6VcGx~nCmxc7OOPv$9R57AEqh#noj5CreZ2Jp)uK8R-dI&}=;Wf{3`cw-mE=S% zo>4U3%6StvW$)_06@#J_Ld&BLEDwIB0L%Y;8C+)IoJvw6wLF-$Ok2`9dQ2tJ!}#UK zG5Y=f?n-#&P&k9?y9d9&wtX)lF4YxH6FnhsiE`OoUj@G+Zpw4IzqZgq4_kPv8`c((NWl~yDlVc zHqn;#(wBTE{iLFt`RSX>6%}w9tH``7bDO!sTpvX!_e$#Q5G}&v(d|zVWLE}`yDOMO zdJCCgtNx@_MsTxqB?V`@oMxN<{8-_*OVC66cL}HFr96*uBMoopAnqiQ71f0D3XeC6 ziV=r5JwC>yZ|?eMA-JXsDYq~DWBl&`HFdwW*+-9YbwPpj3%-=heboE7g$&q~zXh-FJX^p2;7(>7A^p7?JE%7- zUX0IVmk>CITePJbiHk(ws_N>#JeR)q*!IRFUmFA;fs;fms4+T>t*xq%z7isrUAc}Aj)2u;mliF-os>X!xI8@IZRGJniTf7QX(rBL} z0^KmbxijCFqTKIU;o9;2{QG8Bg=OXVH_u7+lE0i|gKnLB3Z$bAwN5A7SiJ`C@*t7X zB00zun!AtVC~RGzqczx*FWm)3HFAB?&+bH!4~x#=*f^37zt+e>MZ~hcGlR?O%q=Ri z{gHNuAW7y~?@pssTjh29gX<+K0baWb|X zqm>+5&#dO{#CrBef)`%?HlLoIo)u0GY{^4-Q6?&Iv_|W=GYhJ7OimQd5!5-=fpaa>y>8192p!f5## z`4mQ!UD5Z}Jd6!l!XoFpgxd6E&M*98PC18&6zP-I0r$Di=6wI>cr#$ugu+YO+IT=> zhrys6$C0lqTo5=B0Cxcm3mU9}7@?xiS)hM{@QXG0h#vsbW(C;%$x8s~-Q)_8D}ejU z0k|mCzmHu%-`&}HhKW#dR}uv)>ikxWP4D9x4r#fT>Au!vjBgZ0(80Vk<6+*vcTpWAQV`3)lK zX;8U=2K&UZ9@y$kuE)Fc0n#^cpu+GU1*)21mFZd&20Lr>P^ zg6c*Rqw@6n@*6AQ4-_@p_o+6!sn5H|W9{NzONkk#y@cN&qj`3P+7;0^EqvqQ761X2 z4D*BPJ3Kt703kvFMCdXAB!K1`Al1bI&wAJ4cN-!SpU7aw0Z66%WnPfKSqUWBgAqIj z3{bR`Ko|vlH#h~G0YQ8{12+KIJg(9riyqnL(4S!|k(9C`PkK_H34MJ`i%9eI@Ni&t zcUNGO_0HZd^gP5o#LpDvZxQ9XRX>`cI7+A=G3>J<_$a3hPyF=n8o8yzl27WecjYs@ z_Uz5>8ghI5qo?$t(>FU$Ra*@gB)2_*c!=zj)cEGQv( zzARaRsPp9S{zOLq>ypZs-p`#ECGORdaD# zv1Vdx>8wFcV=o?}intuF(FB%soMim<(KeFl-b}be`(-GtZm2MN3w%8@D!a?FdoL}8 z7=7Tx@B+Ws+&8gj74i3Uvr?^?9MMNLsXQT(>g`ROl*simrR6ol^(>hS7^N3Ln8+B4 zxB`-WP_hab+d)P)9U_nebHXM_w8Egv1Fd*KZp;OU2|0kZx(~L(Ga%~E0cVn+K^heN zgYcT*d0PjSrGW6UZ->iiFb{(|7tBA7h=Aw;M1z3nHW0g5T;3SXJ05MGUnroMf7EP^ zUlR?c9MN7vDsksmKg>6m_z&&Q3f~Wil5gMjjmH@yaO+z!EdGy=U2<Q__ zj~SH$68-f!$WD4(eGHhx0Ei@dH3~9nM7?ak1#JYiEY=f`KlCwhE)|RU#>U3^4hZ^H zoyziWG&$l$;?vQ17nAvjO9D;Ur9N&^T8R*WK;z+TH#7*qZ;2QxgIs{UN%MEbl^|VZz*G*AD)|>qmj;s z26e)Z%ZWKF2@2@>Up0S4N`A9PxX;JF4>ls1D-!LjOE-jKX@^zI5hX5MU!TI~u0GXl zQyDP!5}y$H?Db)KW#ZKnK)L7C)<+^{ z_0vq2zV8YAx5CKueG{oWUHAI+SC-GS{&qnA+%rEo1U`GS7H^g3-A%Rq?A6%RV%o^! z>Y23SGsx8s!JUdu_4`lkm-H%dGTqm$#_L`0+!>cA=ij`88#zB>m@Vv}r^3p=6y2>j zG?TojyrY#_0dFH8($IP+aq~t2PFaA!OxEM;w1_r?U8cppAugW!9LrV#*M+l*V0ZYg z-`5*ujfArP;0d7rs4?#^h=@1X+OA;ia{ckmRTY1H)iiv4IjfGOuUy|~4KSup#3;C| zTI#N(v|-|^m#Y=3#H@_XYb!CDuVXUty!@63rxFoLWS*Z`QqiI!om-RX3D|{mYdpU``%bHo;A&s2d*d#mWu+pAUsVJ|mGYPK1eZAKB{a+$Y~jeyHrgji zj4Ax{AyV*Pfv1Ni9>bWU{;C)EXMGs|1g|!~yyIRB=c$4djgcQR@4mc!M^NXO^1=IV z>cSV>VlO&0kRqSRW|pgU?i!y$D&I^+m`NI#@9P3*4e5i(o5MJnAQ~x*RrP#L+Q)U( z)?Mk{AqP1`DuU~+Tb1Lik^67m{2FkL@^rK8>Y}z8%5%#)oyJ5yd4Zzg)p#zBqq1xn z!W_Qxn?q`BQ|j#Llv!mo^7o!O=is;1qyG}_{c9O`FBRAiBlo8tT}hdJpRzOwqegy+ z)HOznDt%nCD01-SQ-Il2+}5~)ePZdu$T1^EUZ{7aFnuZaqKk}M!55pWgx9D}$b#E6 zwO1sgi3R?LhjO|naQgoCbdCtS?DaKS_634HYW|3-n@FO>gLK^BxnRF;lhoJsNPT2= z&4H)5z7%4IXD+5@*whWkdYd+?PD zXniUr3Y-a4D3V@1%3D;FB6hW9LgdKhiB~aIN8jVlw+I9>bv*bnVZT4=82f>}Tn0Aq zO2#wL#Dmt?8ta+jtYB&RAnJ#kPGLsSjbnM7Zvk;wULI> zVupp7eA{BxI+YR2cXcD7lHcOh2qzgAbizK(q>q1mkA&Gjb5lHr6lU6ZRDZ1h>7hK~;P>I`S@y-3Su+ON7rB25 zd+^A4x>6KY&MJ^raV(9Tv~*AIp^5Z?4;dP6R2-w2_ncKwVCviFqrL&9m7kxTbiJaF zu9B_@(+ofO)2r{Ai|X*>OPf*UGL7u1Z^~B?zmyIFz3=f`n2b$4vF(6;%I3*KvO?9%~Y5Fav|9&!j z(b)xitu_0(_fgXM<|H3omtw_tM!!phJd9n`KjO&|l+^~g3M_c#Q5vy-&wR|`X|T%| z;O*reTiHRCXeDIjX8vCv^OMz<@+b*VD62|p|K(Dtu6dOCoO5_hVz+pyWwkNV!L-S}NQxf1h`X=g8FhbcIZ7h+S9IM_F*1TaqMUxowYQK!@S$^*l{KI(>sSB zI4!hm8@Fzu*cY#%DED4s!#})fZfeEpZxlT*wgrNk2kCKG*n@*d&kS{dFVYUu1nqVO z$}`{}r^yyrL8=WcF#05){J6L`2pu3)5B~XrRP5$AQD8O2$P+2 z0ade5_I86UY+~Q)zR@+g$dk5g-xEU(sDg20pk^oIkqHg`tG2O2uB#dK=5W=t=yVP^ zXWr#Qe9ELU&37K<%{hOc^i(oEq}+vfwP$9Ta6hK~I%#}L4sqh=3FB`WVui6dQ#~8O zGbYPqx3_V9b=6H_z+W2o!B;Cxu#K-Lf2+K>j%}yiEKTxrHzTWT(9w}{Ax85Wy9Mo;#SF(Xk^@1Y!}-kNype+$CbLc-XeIhPwEe>b?4H) z-w*J#eo?+IptTAtAf2a%YDLi{H{E4Or}5g9E+mC(nrv_b(ci-Y=?Pb-UgmI=Vy;S{gm%TL!O{N3Pl(yJvFVcy61<#uZy|FH2Q(r+l zfd(nMwmYs!Lmw;5vlH%U;rn%}U?xm6_D<8}MuL$3sjTIFno>OT>bT568cD}g(4%Qz z-wRH3LT24?NJr}*FM-Zk-g5@!w#l?_L(5!BrA?)r;MGAVva6cPC^?rA@ z*lu68Z}+>RgFwyyNwzGop1P9WI{2%0z~}z@%C-I!SN4|w0n)-`#L{g8dECO4kn-{|6~+)$#Uut5AaO*NPlIGuY?RJns8I%(0MmK9Ah%NdHj(Sn-MK%^x7W`*w>r(#C*=)%Y4 z)^iqWI&8U*_;|`ats6=?4}8t3v3jGnRAX?CHhX#Tziieie0$8TSLH_=ZRo{2G>&`k z`SFga8tMrjvG1mKiA|2@syydZmIp)~Rs+3v20W+_aWs=PH;n+^(Q$ZZxDaLQ`^;bt zyi-)uT}5jo+jbP=$?i}`1wBz5>SVx=gUrOtPQ;p*%!Hx}`~^t-X(otM6h!3`JhN^u zDLW$(xJ(l?kBg^woew=VwBNJfWb)shJ6b*}$W^+1YYU%t%?UC#?1BNdy-QfH#`O}3 zk>8w$$3|qfqO#~E++5GU4dv6L_4ij_(o8^5?ksRb5+0@;fGgSD63MRuzfNRE;AFQB z)n~~QNrAncQ)-wd5BZx4yHZJ#%Ea@wdeTU7;X0800|4YBI+tB!K$%Zr$IS|eBv6*_k+&y&##(*EjM zgBpyqgu_;H8&3*dWetH2mVsvosl+yXJO(rZ_Nu_e?N;Iign}wGdcmh}^$kVZ7luZU z2{ns!9PF*Gwu<-Rdb{>K`T^Rg**Vhk%5s3LVP%cA{Q&Q)aw%X)@vJj%{@0=M#QFK- z>X;Mh>vdjI4eXeYZ>YwN#mdx8IS*c3l)s-K&FgWgxgs|z_&y%8XAY|@5KPq$x_|>l6@Y$uQ>8bS1c8Z zIO_ou9%Ng7cFs)$^ZiKp(4d*|HHgFizZiG`)F(~1CLey?w zD<*q&PFXYtNVv=7@f1_bJnN|i0B`mY!G!ZzZ=v)jaa*XF2wT5s-gDP4XGN)30%+Pqz66(yp^)?QKXstyXG_s#bK|U5qjsp}w|1%(K)bq$$kOuSn4`|EF){=&|>m3|m6j z#Hq-oL=ZL3N0A>4#dg{kX7x+T+_?<0bvVh-e}ot;qh*?>Q!e%BW4qW)jx5Bb-r*(( z+h*r-7&Sx$c5k9h<)^OtZF_Z8jJgCnj_=tr$dQJKkbfZ7_G?Di+|p(mCeA3YJs+<< zt)Hv5A++sOtb0pHGwTaCx^oOLEm+A^tn8czzv33k65Ht57oXH`aLXcXrDiNzqgF|S z2+z*v7s0mZ7xrps_p68~zmX^Cb>$)+J|C9VC_EF~=-3?T)%KFb7IH_S4Lu^Aa*Uaz zMLm5fr(IlX>X_nCzSC{l7mJsweLtQ{_RdNiS=_p5Qw&HRmbMvu+q%Z9nL#he%s9T} zi#u4Y?3etbB&WE&i7ww!{?RzTJIwipNhFH$B5xq3uHj+6UUqOa{2a|3fK%TNC+x{=OvS{{*Zc zND~562MEL*ECbwfeE@I=wW$Fnu|FtX`wB2~_y`~((2$A*h&l~0dXjn+Zh-aF4vhsR z#(-$_UjZIS6a91N%ZabQUdj9b{$>b(3H@jw?1Abj9?}3o@OV}gi%>s9osYS;$pU5@ zw|5DAJJc5pw<&b-sV-!|u$oX}A%CY&5y_dpC)ntYqA067qfqLm;U4r;+Cv{J=S_cF zNQcB3y=>94C#j4QFe9RJDsY%y(JIuf2Q*$#`e6p4@7p?V@f$5ia~&Lj;MY*51klGg zKp+Sx_ckD#a|RGFlVzZS7D#)9@(&=dau4{+r$MI^clumG^#7l^p9ARzOl)_|K%M7l z(u0`MO%{qDE2yAlFX-WLMrl?@25;zzrF-}@yJokF!ehAc72>@eOz+MUS2LlH{%^BWV zpPU8)^>W;-6QuZpZ{(^hnDHA*SStR=0|%ZN<*yq(G*aaEK+Oi@R~~%#q|t^2IzwbE z-7{-gK~^y>sC1JBvMP-0)6JdUd^hb=UY~!I^R!I(2IFZyMH^*Fzaz|ZeU_a$ytske zUWmvXM*o1S`2Hq5zP<#8Pkc-Ffkj&O*|_4NEQd$Ypu!RGJD_F^5Hwf?{b~?&t>eyT zpSwAaH>^RZ?E^5BbHYGoCl!F2T`R#d0jP-P)DHR0B{w*8Uhw1u%U|dd;`U9X8=WT^tA>M4DIZ)Hqq=z3E6a$yNzFJyB$0J z(Up)Z!8nz|MzFqn<_bEMjVhy^+2UMJoI~bkK9O%zG0KHmj`!~)ywDCJ9|CvuLii!VB`U_1jk*d3ItFsdG^asMOlN30MiA{ z2-7zKz;n7xK1>5OtN9CBrC{(_R9p=84goNw6-Y6icLno?j^+zc5)5227!0rjg|9DM zT3%je8G=rTjsKAX8vI{VKu;S1cZB?7wfZ)o6$f690?X5u=#J#Um}m(RLu&nOm#n= z+4wrx_NaFEKGQSN>BGP~kB98{0=;tSE#<}b4Wltc)7w)CrHsPBW~b}E<7tg`v+OU0 zFCG;tyC2EFJ2b{sf9mj(`#t8UWXFHvf+Q z(X(&@S_ND%(5j~lDd|8Lt^?oc&s(6Ojl85-=iq343N*0jL5yNBje+{%q1G=zaeQ#} z-@GKQplq6UAtpj`;U&Y+H<9Y|zh;i^HVMWcxxv=ge9fT>#X(mbvE2I;IHN+{%UH*Z zVyUjDo^hPZXRz)&#+lEkoe{e+4f;~!QvJ^{2=}gEacDp5;zyl6amOhBc7q8ib*}KZ zWEOW*;_iZ)Z#U_&;+C%To|6^1-ciQthn|XgR$53sCFWHUWTP^*=L6An*j* z!G;d}{=j?pAp}(a{1>QQn@)h}uhXAE5CeEjR!8HatCvM7@GZND12&6B|g36W=^V-s!H@_1gobZOo`9in9M7 z^AJ3P=1L(`7h5-3)pllrl*~<5eliC-ReL|-bJtmYo3w|7`1&3>3zGIo=yj=B$Z5U7_X5^20OHgcg7rQOsGMI7!IH5Cp-GVY zyWjf_;9fz!h*l^7AIZy_C1gi+CI3nUjSL{|RUXv^dcUT7J3(TlzNSV&>jE3Wm)OY? zRCZlp2n+Dea;$Q_?c*0&{zLn7%MXJrdSw3q&k!1Kr?RR7wx-V7iz$EyL?C9Q72F{a z(HEXDL^bi?Jt0&3Zc7Eyh#CK`YCFsjTh*HH&y?aR)YlLwyJR|fLHzZhRj2L`{TkXA zVV2;dd~<6D+gI7)uoB9F?&KG5pdAC6hyc7$`89g}Zw(6&w}6P{z^CvZP#db#0X-!{ z0F)Q>svVh_^-S*6|9(C8g@?<#=#L#4&g`h%@J54(;Bn-%B=f`j{+7s6sf zuqP;pho|nxR>4tb!Es4JutwBrrEZwLspO*FGxKwm z!M_gITR5R?KUHhwqt%-mvW8*X&l-l|Gno&xUg#{y!!L`*p7hvte5i$!{CHSWEd7vH54{SWQBZ4m zesS?=)az%buhN#@-v>`RC^h8^u!^L+NhZD>Zv|e07%s%)-#Kpr276_n;L3I#1ud@Yi(A z>h&c6_1fq1Yx}doWApmH%K&1^nW9E3V#)J5RIvL$*Eck9gZo_VNT>9(XHvB^`!3cv zIpO>9+Z#d-m(zdTetYiQ)mJ7`!aS{i4t&VOIU5JJ+ed!eoov z+agg%zg^UIuJDs)Z-)n+xil@}Nh}QQNyh(ZO1jNxC=i^)XD}c52l(~x?R{3BM#wk) zGp3uldqTuXir9CoxTwn7`2`t-9}ShRE??N)RusrDzY^(r@XXCMbJN4Oj-9=@miz+j zJvY^wy+F}9c$kp^9={K)9QMsKz(VjEJi$l6+3VZM-iuH*G>9$hlnMZrCLTNop+_J1 zHbGN0d8WY*DujA@@y~_H+$-=0ceCPgI~cFKsw)e*!jnt~IL}iP^Xj*7J+A~O?TETi z3t_Ulp*ph38lErnHHdR`Q#aGigQPBGO()!oikEIJ*&GSX(pZ)n&BRv4C`9W&obC)!lFUJdi?LSs+S~;=19tb=yukT$rmnrPvz&kjkcC7>jw~T)HrXo)+~RqxJh68b_`=7d zwQ2+klXr2Me)<@S2c6@TD<$%HqI_ajfqxr+C+dc~@%FjDE9^>j5pp*<6{pFHJ93ZJ z&eRE~xwGkGgaVEH?rE}FlhR^;6!cB%A}@BUgrq!*@VU3?`(>jv*m(5M&af-C zw`)8yy>WrbTP0)-RJZi14~z|F24`7lZbL_}55*hiK&OQ?}2SPyEHuwORyr zcO1s^U`z}WQQVT|3Eo#~j@oPaMKUFi7uTVO3N~5t6og!^Xit_g>=be-*jA4$l<206 zQa07PaM}AKK3{h5_?R2XQkjic<&>)}PwWU`8IPm1DxDOQbPK>GSf?9_Up6@W{ z?@*-p@2d)KfVq1PIeF<=o!{nEqeFAVWHurUpSAvc94&gv0u@n2YOo*S&aO|2vAs0Ro_d~~N(^v6xBgWF;X1^U2K$O0ddwQf?>G}PL&6}^Am&OI;4LCJ0N>Av?ogCSOJ=&BeU1WM^3?0w+E!{SpBeaxtvBoAtDk8q ze?^~fJB^F&x894UP4-3f`OUfS|I4B_l)q{vrdW(S!WbPSmewjT^Ev5g+mREgYRUb2 zl|e{2V^DB&sOG~&vWXrx(DG+slRctrxVDcW-@g`Q8f#+C=&I&BW9myj&y3l=B^x>F zJ-v3b7Ertr7L`YbS+MPI?BGKhvX@S#I#TvZZN6jd;UL)Bnjd_$93OK=e4?_tAS{KX zBQ~P~<7yGHjBg-CH7vA_#dOnwqdtLa;oHmXL!l}IEpJ;63XTaBzPu3@x|Fx=eu!nA zm?rn#UyL|NbVZT@o(u#^_IK}O^sqkmekrTfFLO4$NTP#G{2i>8;wYwjCzVEN-(}^o zem@i1`f>7mFWc#;&r#*$XpQSap2jGty1zOYOdLXU_ zON&u*d?~|j;rkMramY(NnkTiyIuH;(&>%8Y_G7oyMz=&iT4~)j5PjfW0>U zJb+bJEcj`IagP2rY#A@ysmtqKVJ+yf!5M2ZD$Bm9TXsxV-4wSt)66QK(fp;w{qxm9 z<(a|a`9do@ou@n5>nzOWQW493bBZ(j=?>j`+vmq!*U7M4@dPn)*T~+aefNwaNl4!;rkoqkcat<8GSEny|Lf5^1#7}!!xrYmLc%`=ZM)Bu z;WE}>a;+9cl2LpRMx--;xS}ZigL{H3kq((G(YE$5Z;-%b^6kT*D9pg+TS(malzr#R z=fkUy+b)rB@O4hVuQVZ;T}oJ{H^H~P2?#@4fbogNRV+F42q`r~?YPE>O5I4STezqu zj-+ubpMKuuhs6l^zq-k0A!4@$4)C}Zf_J6*rVBR&&J5HI;ka?qB-bBFDw7r&wu!bG z?pFftkXqJDDv+<>bt5T^X6Y=HjWzX}WhR0PtUJ{aA5WE{yopX{J42Lmu7}SYb$ZO> z3DKX{7xUm$!f~GmVmWa<21^ZqRjqXJhSzoQW_ABV2Iv$M>b(+Hj~dU3!w6d@>kFH# z@yv}!xQ9hw`4Hu7+QYMW#+G+O%CZ!`{Sav=aC9gup(tzL#IWkx3UzMko~gxH#7W*D zo|!GVpN)s_Ifq1FnQPv&4wJ*glnq-MJleYV_N3gVg(E!wf)Qk>7S7~y+~9q>6-NPW z0-y}Ng?Yt69n(Lpx^wp$&Y8ZCP9>?`Nx6mK+L=>HiO!m9Hs+wNdAib5qt$bjFyTt5 zsrRY{o1L3g8iP%J3syu%4^@)R5H*vWwWzVX+|I9<6-o(jU|SzL-Bvh}$~rcU;$5;i z-ey~ri~@MDs~w)$>skW1a1yVSIYMf^@5LhnTLd)!ZA ztR6^kTLb%&wtc(CNa(N29%=n|L(oY_xqng0h4>@K5=Y9Gcm{L7-VrY`t+k=|ug7ej zKR5}FA8{n7BRP!*&32uxXyWtS7g?XRE`n$>A^%Pt=o24*LVzk99ZU;%MvmLQzH?D~ zioouvQxC;zeHoZm>!e|2#gHY$5nYD2-c5V@dfwe*Mf0;#XyC+{yLmd!EgJwZucf#N zt#xXhG(IsXs_}l|)n8eYtDU9xb~8T0NdMnW~wvrnnPZm-$m|vylr^w z@THd6;b`MT(e`lY9xsY>9|=X4paiK$MVG!0yQ#BzOnmkVS*cmD_V%Og8J;biRZ5E= z-^knj{m$(px?*Fl2!7n6Fyv6jw*=wVvH*}o2nMcgU=4>F&LEAt@Ys>ns|OB;ipmOS zZbH()v|-}scT)2~fTmMt2r1lQp8y5q!J4GI)Wc(9rv(2U_#_M!mV$2UeW2UEZsTu& z3vZ6kRlwmAr-_pXc-9n0QVxfRm^Q`mVCPgYtqAfy;>)RS%!2~8&hQ?-T-#XMdflXW zg9D6m-k`ui>qVp6Eo$|9`%&!^uBXgEJC$v@2GUM#&<(1q0Hc$70G@-TKy`E=-Ej}} zIZcB;Y}mc{1;5O|$&!!T=kBa-1TOcTfu=!!dVLvN03ogm%(K7$1%0rSx#@W}?iv5y z{`Uyf;Ount;ur#>-0YXfI}!cWZWMugIf$+MOz&sE;IFZMUW6DL!{4TYNaF zrBo_^7+vBJ2+pJN{GGCiv#8yPwi!b(RLJH(s}+0cn&?V^q_Ko2l4$>{&T7u}6sWYS z8w9mgS)i;Fcw_TQ$pG#JB;mRD0RaKQH^(O?X2PvWm)^`>1j7)hj5iw82|cJgN|i$9 z+~4;k5-U3@FaW0P2Cfvq(*zdmG5a&5N)r0Zt?lLm;qZQjD1j#VB>AM;oy_=w!JHx= zceX9g%Ng)?zYh{dzzIQiTP+$RSnW_wk4Cw;xnaI9ZG0NqaQ_PAKQwelpMsMi(x>{M%e^l`q+u(nfB7KGU$7EzD&K5W<&Hm12~R2rX9z zKY;i2Kik-4bP1!y$w9BOQI8M>-H|V(VNee@ zRC)sWuK{cA1E`-{1*MH_FhDuiFArdK|EKT@m{5>k8|vltheX&T|9~3>N(l7#_d_L% z5Zeo=K+u?~M9vJEn;tUN4t38!;uz?AVeW+RKvX_wXJN)=9ehGU#*UMDxGs_VTi&z+ zQDQuJ?_|hr{`9VZ)2)T}SL6K4K73=fQ1_)_iv6#7Z)89HbNGh#9sPFYo1yM{+xe7! zSxWhyXe@a9i_!XWqC}@K{1})~5;gYVo%s=(_}sbAB3TF<15~?B!c)vJ;d`T3d$xR( zV?8^R%Q5G~vHGMd2i4W_&hLkSutP{lxS6_#{WATx^PNke2czV3Q^G&~vKEORPY?8r zu>d6t&=;ejG8<5}0!3SZse4MGGY^omYJrmSM%?!x*q)H!9ClH4z77> z-X9Cv4AG({tDi!R#QF#PdNPriD?ZQck-5M!bHlQKC+>MM$9kq{|CjQ(@?9^kef@fx zwC~i%BA;C%!;&g|3@%(w7-iVv7llX6EwJw|)wuTeEL~6~M9-o7GJP1-|1o!fm`YO> zhXp|Q&jU71AaH3O)Q&^XxNS46e{McpubCt=VfUs;%BGM^s=gH?s4`2P5Ge|yDH{uDH za+-NFJ=3B1`R2U+p3;lkuAkk(^(}y%_!ih$fCYnqhKra7Z(m{LzJ0+RiI z9c)nI4F@?(zXZ@;od6Sh2-N>&K>h{Ku_TUJEe|p4Gr*6<0ybYbUs*kZ_EO!vq>PkD zHQVgWa@tS;e)HKc3~tJ2!j|t+V4)3d!iQpRUX;z0_$G_S{Au z@6FPIs`(C(a{I645>!Azjh0Zr0feg{XjK8IFak{5NI)b49CdO)y}E`2k(-Qa9B9hg zu6zJv0tJYs00$}}Yswa)Y5U<`J=Jx&Y>th~HfkoXgF`Eg&&VXWu45^!{u zK}Q)D1QVcf>N1F8bpVoTREtB49p`P2v&CrvDwN-c1y(*IZGybGX6D?zxd`R{fy=sOhyQe-H| zRV@Lu;3}UA$SnP@agcAe*o|M%-|L{#x%&oWf*@WyG_e4fQ@f(!;NW1Rs%L}?K05;7 z!iCVS(8C)Hm-%Jy^aictGy)nW0qESiYwokf0bsK159T$<&Tu{CTNoJb=c7kex}C3Y zp_P5IB5m=WI4<(O)x+i*J%5_9py0`5qepv8HuShicwq0lU8|6)*v)UZRJ#4Kh%QCA z0pphK704<1W|E(;stmr5mfI0)fIZuL$HqM+j8N+ zO#)F`!@cXA!q)X|KyXZW^CmpPcuDg!xX4*EG>pkw?5PytNR6Z)r}kd&2-q&yf25TZ3%^I`UE?}Ykx$T^V|AI&{e8=3n8##H#|txR$0}Ej=*SW1(e`+fEi(h z$Ce)SSc0h95Py(_S>}D;8qqh+c-Da&S*>eo1Hhkfb@~16ht?joN{2o)*cZ*+E0qcb zUNybrG5TmREd(tOrN(1f$72=X-QJ?)bObjmDNo{qV5nqf?Jw@iv$Jt`oP_;jUd^SH57Tv+J5vXcr*|B)~H@*A0FDz_wUhm-6Mx_ zL>mY^`{=P`8>=h2etfeXIwLY7v+N(<+Cjjfc)X@~IThKbQ>82ruZ|{+r*HA^&VEOk z6#?B0&}bY4sf2t_onC{z&})teq^d!PySw`#=sVk7Py_vJhu~UxGEw-R&1BiZ7GBF} zKv)SY1me`ggj~a!2jp&}d}f~#>X?orSVpbAl-0w>(NpX;=qXcy7O1rGN;Fpym+26%;B;oqoI5W9~|C1(w6g{kTvXn%*=z zI&W@OKCk2fHrh2P$CFeA}q0JLg--#nh0Tw z+B105-gaQ|IRHl+@bUfq{f!a`6}d)e=Z#1|J>;~P)QvHEjKTdy3A#F;en4UpFzW;E zOo!B#qO;?QW!jZ^S@c_lGPv|fmZcXK_N^}L9ZKjuN*Zkf5NbyhO1(Z40xpH?tVqr} zutkNIeNgrm2JVTD2JchF(;^65PVddu8@C?9881bo{%NI35rg}R=O)%#+x>{p-j@_E zq10^NW~7QKh5@%-xOr~|RYshkc4Q7mC(}r{5LXj{BeR7fN&5G#^+l*`FbVdOH%%yxq3HU_vFjyT2u zEH?%$gbS5l`}bP=-710Xk%!KY3ib%Mgj&yCMIh33|!8M*~KMErbEK49|hqwnmN|P1I>2^7VxZX zLa5|fg5SJ&5Vww3+*_VVU#wPXqV3B6$z#33*SX^2Z=C8kKI2$kYn)1*6rqQi*qL)f zR^g%sSS5g@u|{Tc#Uv{&-ONFzfv$`-M4QQN@~k8a)~g?P%s&@4%3f_Ee@*; zp=Qh&86r8PZL?E(lh7)r%(upFpN;j&VkL^Z#=TAgP=@2s5sBLH0x*b1KHGmU@Ce5s zj^h)>H+!2r8{1iUrRMIv(oKx-Qp?WQc-3F&|AJekqLf#`7KfHQ>7Ph;0(nUyOL?LN zzk+tfKwtX29=R!5-I^a!7134Jco+BK&}=ku+$woIHb&xByBPcvwaV5cWp zhT!QY-S3F%xZFl6j)IgFotS-cjWA>ii3ye*@QGiKu$*zz$vN*HVAU(LnXY%`8QC*Z zzT;W$A*@Kpa~D12kwfpT);%B8^goP#-;Kw%Mb6%#Oq64y1+@V{AyD8fR2JVV`BEUI zLe+H4W(+fM74mV`&oxqJ*XMrUVbrL_<`*;J%S|iYF7vBMf6YkHgrBR^L3f#(qI|O= z9fz;C>`0<$mZ!HW4pW}cFxh(?tdgi^6V3+bq@>rs)w&eI2(=CD0{$g9Awjr5mSTSn zNiPar@M^c>`YPv?!sA4q+l;WK8oampKAt4i_U}0HHC1M+HeC6|`>9M=zlvxATR|m- zWgd5hK85KYzwLO(96z;QYN)WQmtG)u?RM!)m@-YOXUG#^s{n4bEL3|)J;0lS4%#lG zW4=F?58qFb`KjrzE?gJUwd}lWS#4R8Z(dmu5U1QibN)2vH#1kK8~F`twoXOOv6)(# zBl@VT;i-8JEM-6pG~?&cnr25cDv4go;wM z7GWjsF;S`)dd!E%pdWwz8(VYb(7YBA1^B-Xn^9K;&2vgi#Mei!yJgw){DI*O!rp@u zfhCxAp8;a^t&^cV5-%Pzt0ey^Qoc6sf((nTKS^W%#?pI~2y4Qm2R_G_S<%?27-{)5 zY?SmVB^Jh)$hhKX%C%H~Zc#rT2360v80g&c8b4z<^wIP}Je@u} zG<;g8@Yh2Q1DK+bg7R@aCe^VH-E!Dq5HzMbj z*e4mu8o8hX#l!E_pj2b5NdMt!1E?%`3hYOa*(-aZGFNd}rO#Q{xaovzq63kgb=;{0 zG>5_IJrdPO+%>|x2%1GZb=%xRa&`7jjm^?}*dVv--TuVFz1b3+Sqa{B?%bmmv>E~R zPXY*JZB_}M`t<;zD)95sXf~@DVwW@1Ye%OF;r(GP(O%g>jIB$<9%dps!$a{fYi#@D zh+3_S?yAbPKC#Mfqg)@&}kK0AB%8u>LW^EQvc zhbk#A=?;UZ?8_zWUwpEg6SZQVcYj>Y^V2ZUdv`;_s1l51mE{fj2k@Jna~48kcH z3zgDiDVbu91C^;z)$DzjZ&<0-;&h6%M#9NvNt-MVEE61=qbMH)O7lqYb=>d3GTMtF z>stkdCDInM03bfjvRct8S4ZS+$+4R7qRI_v1BO@|iRX$BgRJybu(1SuW>)d9o~AK` zc`d>*^szyP*V3{i&4R*{R73PPgiuP*_ zqynx}6`u8P@2m<}c~!y^&@-B2k_(h1^wg-OUx%p^QqvW_6=+tZTBVL-kR=yI?aqxm zw0_~^gM&bsCaBcS7WkqIhvCifT7FUuU*YKpTp#|Uxb>LQs-d9VU|OU}*)IVjB@l$U zH_|MR{QD*|_~%y*#)WQ7y#knkY})eq!h-KGyH#cTK8>DvDl5%XYbRsd4k|bwD(3z? zsc1gPJX+MSEJ=`o(=6NNYHV&1XYzJy6jEz6bo%sHc0PF>Odoyox`!MG0Tu?vp{~0O z%+Z`T(K^Ks3VDEJPx~;>=x^PC4~6P$s;v!+8n9BoH{w%t^29UV`Nf{3jeAfYoC+*_ zVNsbh;F{^w7`E&1v4C~goI@FK&B16Bz;?_TwJEn#-Zj5FCg>ij>hbIl5=$+JQ z?QB+W0nFM7oW9};6$pvCphg8CCV;pm0a?}oR9U%pFT;C*Ftq&*fP`ZJi}?SKK(Qaq zC4?0AL!hNIZu6ni0bKx~4P3VJk`SPn9hjcKMoBJUfK$(44D^5i@dOw+alnRobGn)f z5S{rPayABmFv$Z|ssm93s%HnFOGv=eO=DAyehQ>#fE2uWbaVun?yx`U7EJ*dF$$0+ zAVdo=gmwd2{EHsSN1KiP9ZdBNXqB34rS3H1t<}RdFyS;c+@~OY_Dn&n;10ug6=GrD zjt9E&@H`LvhUeU22{#l=LJ~I_=3C#r+@Wxr_p8#lpBGeo`Uo-Idfy?-qgmbSh26JI zTxf{|nwu41tk-WB6}z;PN}{FvK-WA3InM%yRHy$v8nNs+3f`d0?v(J=Ay{=DoJ?Wp z`wl>pzc7GsQq$5}fRzp<*a`()y>14+aG($=f-WAP-}_NO2|0Lv z+??Xva$>MMQ$q~AobBM3ssNM#@XZAU+@mLfYBxZq5h%rZ{RT>CfSQs{AgTS40L4d8 ziw6-A5!53C6_*1iZs*0HUpcQoQNo%mj*pM;gmlB6(NvMMafesFqjpq@uzC}u%xzE? z8!?Abex%x3K?&kyQ~7pkO>@%kp4dFXoTwF35GIz{;^k0S4erefP&(FKbp%nLU4y_k zrU92Hb|cw0Og`Ja0mp3wFv|mN=XKgg|G$JlR_Xu_${&ZA#g)#^PDt>9Feebw9LhuV zCGbJo5;#fej-CFS^*tBj>64xRSGHC6>IFWmi;!S9th<2C71vN#aS~RN%-6y$#Kq(u)Xt)qlpk-46~zy>FXy#O>W+%j$(cFW=Ump zYyXvhz%f!w|Kzd0j=rI%q4(m)oo(Vzf47RZx3|jxh5O^ry5eHumX?;T((3AJ-r>rW z!kJsm0D9BE2yPJeu4v{6z=vOQ|9H-XhP~X(3WYfB%MlhA2%H~V`5(IgMBo5ADKRdd zg}91b9)!ww+@LeX!8sd=@dpk0oIk)%)d46ohd=*a{e*;R2oxhaBy}C<;4RAqj;PJR z7a)&D0j-PzWDOvp8nhX)&@V2uUhciHf_#ghnSW${J_=&>0FAZtv5s7@CgA9(_vfCKtN<}^zSy{rL_GDkIY9@1k!wr;)5DpZi zTb8GGtnc|EqhZ0OYx*)55*VS4bU%;J-zidQO;m1bVZH@$=+4ynT$Ge>jNdc&jAg#( z@*{BVCwN)SuFDove%iyBe`hh!fgBW+;o{IUFkt5z+#x&c^83fyJiY@UJPf?C(y z8koR{?^$GuwEL$uEn!HU0VD(HG={xP9rZST#m-#NojYeC|K|O1^+cJjswpL;bLF;9 z?*R-uUNrY8tjUy^*9Ei3O^oWC6#cAc%e&*S>g3!)StDyYkaUktu_@u65|?K3Q)S-j zY5qikC+qdZpe#$t)|N{og#^mWK)D~TkFP}n-vw%M#@BFawQ6~97Dh$@C5#m6?z*BMuUc1BW$i>=)oU*WidK6{&_c75vH# zPD}h>_ZzVy7GC+|yJW>;KMtN4v+|?zrQ_|#09t$GBcZM@RKi{?JTy_A; z#(1PA=>Xfkhm8q{C8D4|I)bD>DGS3#_dTz z{cQ6b%9>ot!=2M92HT}$ZB&sKZdoQ0q339k4asG1gd|8=ZzQ233-@|TfJC*WR0ot5d zG1x;UN(Y=}a00>lwgT3>FVH87*Onpl{k`7_l+qWG0<;nJf7a6uzbTO~wftUCdhz1U zO?-SP2^Nu6=l#<>-E+b?diL(G0a08WXb{!uf=0@5Rs!m637A_#PkS&4h*|>=Bb=vy z8gRHXxEt9V@1@Ljy}mf?ww}ENfU4)WtQLn_{m#MNW!Akr-$Zx6!MC*fSuZ6C2?>22 z_$j`usm0pdAE&uZsj@Y=<3DXQeQzp?jHO+;Jz~4c5YR61A)#kMRDC^j;{Ic zb|<@xf5|qIuFB7I=AT9}2lsw?3rX7dL7H(Xv_k@!{=g1#)k1yBt%UuUZMp)^WHs9d z1aC|QLmS*T{+ncgi#O^CxXGba>tgZWc>pdB5NMTn6R=?MjOqr#LdMy;7v41OPimcT zahSa4Tu1JuaOOK$8WBL-jvpWj);;WhT3wa=6|7_ss1fWDo=1WKJ1MyDz!S$N@)ZDS^RG=n@x|8G)~YkKHfOwW ztM%VMwd$#Kci@cA%$yaCIm2;{L_3`uoMR#~j4xz}o?6*nBcd}_#y&jonJ<6G?A0fh zmiX{vbv&$){r9%M+h8+4kzpBwN^G4p5V*qz-;uGEkMQ{;l-#t{uxi68{2?YTGg5lPkmSak&txo>(yL=~@ zCpb{!LHwWAUl~82g3AEn)m#n#`y+qWCE5B$+I`)~)Ryv|{yBp;P?@3BLMH@lD=QOh z_Z+mTwsUlR`^g@nmAL@i(-N9W`wJmgdLWpLlJD*9)gSfoMOFUo6$6?*l>DfhbBkDe zCbN|re*hXBZ$tDqs~EYPIA?z++oHkfvqOrJ8;HfLy~SnkwsU6ZhBaEy zjJ61?08vK{=++xZlO%_}g@soe%yZt0erM~FZMV!g2=)9N&fE(uD0Wvxir*KCyeL+A zNWY_D$D;&e93hmGSX#mUMIrD+{9GyabJCQSn=G zs<*#_l|E9q?R@?xv~7gqoj8HuXZ!KwxqC4{E)5G5;CPMhin<*Fn zPSo)){Q=U`5|~DJ1K3#fhYzZsZ`aE%);YXNepx4Z z)dA~?0je#hwMkyVnok68w$_*a{-Mj{zHRYmfn_uqsYN2mW^GAdFi7&tCzF;=CV@C0q0{qAYwP%V`5AoiSNOX9*m0{x?0u?drlZfQCp-8|v1hrn=OT zPpFe89m@o>ex_Y{8*ho9yNa4|C*Y;2K3pkUrY(;(W8bsveK-}$eUVV?-gEF+g!B;~ z*C!MGudQy8%@6*GFy)TFfA7~thSm3QjGEm---|Ka>fV8-&ZGtbZ#7s_9qUwaUU)5f7U zX3y?yh&a$m>?;~^mG~9rc6lJtJZPRG^$Z1JCj8~otSPmrvQ19l$z1WKRiV_J$n94_0{3qco-p-E3yGxSPVQ@936P4Ui{v315_m zk~AN6`nyO?==WaV5u#Keu%gt@%5?c!^Uq^~pzMQ(5yvjF3tNvm6m>q1I2& zER%@pow}#SNSH<#FE6~9e<^sMOqTGRAe%}-xQ%o4j-WQx(zCe03P#jh>_*n6ezFU z_|ks<*7>9M=(UM~sbAA%#vNYKqiRo?mQz2 zitWjy=N!*ZoZcc5#P|nS%w9T|x%^q-Z6c5fv!n?%>Sgw#>hJ;!0rVw(muNP%%rvDg zCR!?JZN8at-!SZvLCTb5q@yXemt%rZ#$JGTWaIOKkg^-KJ1a6KkELjj$eoh8kcvCR z@y0yrAJV6}h$(`goyOq#Fn=+TZYv;wInma=nMX<9?WlA^V)x0K2rciMQOi=;L9!JJv=r7G-=6H6 zDFITYqEA_p#?VNGK$g%cf9+`0{sxBv|Lg^{fbF1r0KH8A(cRZGLCQ538k90 zc+_6d)Y_ky5}P=@F&xUQ=)wN$hQft6v~AQMQRPvfU9#x+ePyIDHxGCkdjX2XzWg*Km{o!Q_)BJ(L_N8rDR4=jfD?_|D?77+=a zZ-2I^>U9u7b~It>n>LZO-8M|A)p#mvlfjKtohV{UMGRYssOiJ(p`p~tVTNuEWjOk> z5nC1Qkr3|qN;KxE5vy(0&+qr)4o*y^!pWs*gXsPOOjcBRb0tl7;(WfhC2 zE-*L~o+N6!);T4f&pk|^$?{x==~u6=GRJQH1T)!J4lj3$96NdbSr*?;V&m573#mKZ zQ>}|$zbAR*P1XDD&Rk+01KpU{d_onIVH{`Lh2rD11+K6TVKx#;`U686#ZH>CT=D9A zL+aGUwJ3uy4drltNhT!hdO|}-kt<$8_caH_spbLu(T}aS<-zmVW1ivdSy)g#!G;v! zxB6XtIQ#8KVBau^z|fe+aRy@fU?$sY}%+xVk+`tL+cH!WGY$@2Ov62VAQ4B1l|o*eGwG z71A!zMm(axCV=%E<1lW+>R(Hv(qzY@9W=1B;akq{+Oo`%-cr?B#Z>fIyWWVqt?);j zY+2sR=M08Yf)ruUyA(X&kGifaRl}PySTEZlPK!0S)X{%bBsO@!hjv%lxEy9*6@31! z%>A?g%`z$F*4zl9=`x)PMRG4ol{#r^b7sUk1fK90J38J=)V7egsPDeLHiM=7RJ89h zPq-u%aF1&AKKL4BUFkX~9u>k)SBm<0l?t5N2_-3=?L9!71EC z1~wWjP$haFwCwes^welwdW;q;(_dd$o_djcZJes3wGQ<{(u|m4%{_&AQ;qq)ux8O) zi$mQUXLnGPkY{~$=bE;qu?pU7FO9fr(o|HcR$?(VO_EV}=}Bn@>otQDVePVtR}JCc zPGlEa18iJ(#|Q`e#l4C(C@K)a7TZIA60-hIZ&*L;Q1}+w`}DS2aPlt6Q3Q#-5yNJN z-o_X&FU5E*U)F;|OvT)fQMccpZaI4f@BIdk^!4sW!sT!C7VfXaRmPr(_)+%eEzM$8B-#MM-25t($a!rT`(;p|%tQ9C%&w$p72!+mL6&sR`NGKR ztg(_DTI7nYKM_jNfhYq-Dd&&&A~i*|2_#%TKp*%yt{9pXO8*{*aHFPGnapXCh%HH%IAuIP})Un_)m%4!^=13%6LcoO(T6qXqh~Lb=JG-x`2Ban+Ikm zh&6tUVNY}+N{Ed!81abUl^>c!$+rF$<~+1KiEY=mfgDSV)h3mCwu5mSO=q!ue8(sx z>FLpvK0Zxc8@iZ;E;fg#wEo?7%GrR@IPqB*Hw>Fg*qa%N;{w8(E0vhon}I_@VbL1Z zSpBQm-?QpNd#+X8eG_os68_t|TH8e>CZ)`lZ3SIySi5}+YGY1g@DCMh*Ee)%*I?vk zB=I?FX?W*c{x(N6r6{Ofzi(S_eDJtQgakSHcx#nHWjB5U$t&@a5LIU|z?;B{WNYc8jN+!PJ6;7?brO#%@HLr>C#@>RUwUlJ9dIKEjZkYKJ!-! zn=T=F+u`-L9z3_$w7%B!6w`c$w2ByVU3yhs3|}dCmJCn5`3=`(se~IPtLtw8uW`1ikQ9LbTZI^TdJ&7@1iubO~xKxj})pkE95g>d5KPg8I+P`$utP^!Rrzzau0?Q77oaFlN^7qR3 zk5^*!?Gd5k?{a`)qg~@~{m{0JV zHIAJ%m6nz|JpqPsXqph!CMzq;=3}57YFVF()N2^<(!`^Ui7G*BMY*yyy%|n6_t#KDy$G7D}{`77m_J zic?yvMKW!z!Bw-4{0)zqh!PySIXr@7Y87}zGueZ{-+kqjEXh+v5Nwz@b@VcrsWQBn z1xuGbWsPZPb^e$~x=A$4LmL5!w~#^jmZ*(dH;~}&e-~qN9}rGlgBrHFB5%EYtSx;5 zNG`-=x9=LAPC?Rlj%rMoeSSs=^a0<#J(Nt@X7=|ix#8-9Ik_Z=s6e~KuIMRz?%-)E zmKho3d&ut_8SUULeapF$;10ax-Hm7!^Llev$NUmDim$F;npv!es^y5_V6nHP($;>F zV7i>D${F;!t5fSh0tPSv6&D%3&tiLfhGT%tfCBFbf-A_#%2v9qX`}o;o6(9DyDQ|CkE!h$(qdoV-YCT*9qZN{c+j4zrgK#7Kmjt;qbz@;bDkp%&g zS7PLEkBV}Nh{2WPkz3{Wz{^5n*OwQDnN3YOukW)Zj1uPfD05iAc6Vx|W7ZugZCtlG zLi9VT{L-D8qaQONh$u*25~Hg5oNn`_ndUFPXes}!DH;%&oB{vk=n&w?%*1Z^d#In8 zWLrpPqT0YCWS(<{yZ)=IDnqYOH`jpm)Go)yz{>8=$6UHQ9N|iWowRC9hN2-qP8+s< z(Ixk|zO-PGa-p9dvA}-$5~#xJlVzd$`?B5Cqb~G!Bg@${n4HBWYWk>YzmXWoSarw3 zZ{NP1s&S+{{ka$eC3k?f3w4GF1WA1yUV#P{&_E6f-+9}9jQ73|1V&mrnKXET7EGp?s({RG0OyP1U(^@KCrdW5ivwN`Sof=U^tIyNdjk!|#V z`SqtR<`$$03=Qj9)7XdBZ5>(WWd!%z=KMo4$vopg9E&+iZU5p(4Q@* z*narR^6!wvY9Lt{GU5K0D!Kak@7~b8b0?fH0Fh7uVCL!G3$J=?s==H`vchfz0cv@= z_2Poi*%a2_6)J#Xa|>11By5_^9`^j-<7}kn6HC1jqok_b1#sDN;&6pJ9Lt>gE@WF(neB+7L#Zf!1dL_ zYQ?AMsKMH*)`A#U+w$b_Uk{X1F#<)=A>-VDvYNk#=So`8Aj=f;MhJ;fZCScm-zo<{ z64Ae*_?~$U0jFkiAaDRQMW=v@Jg^$j+x=6s?)YJ*xcyFMfT)SsqL^=&Hp7Jyn}B&b zy^@YssX@BL3IrDEn(Q9N9oGzHTe>f(*SH?;p_g8{#EtR_eR(%1zM>*b%l%>rjr~{# zAmQk;zCEy!wM^GE2sX-e@SQ{O8*?;=Gh$kcKsM}$Lej2_NmgD}hEO&|+)|y1GSfUt zUYC%HW+SMbw#~op1&bqXcW_WDtCw5oTcYK93cAVh2%l*kMF#@eZ=GSuQU#T{LQ-zU zu%-%6%4P+$OWBkjCmKIgY-K%U@{+fJXerZr66e)|Nw;ZN8Oiw{0og@n!I@}z!)_I! zSA;hDa1(Cjm1~9!y%pu{%`vbY3-_ufZ<4Q}gBt^~$A8%d!3$gmcPlL(UbiA}L;Rdt=PzQFUaV z_b-tn!jE;z9Od?k@mxO>j8HD%$+(Jj^uEm9&k|*l+}^W%M2hgBMOI;f!Vpfp+mRXi zMS@Cstf+(c;sNh&cgX;AtwkW83nmY5&(c7^L0@*tv8i!(XO&5I-qw8G@Qbhhd_~)& zoGjUc9holYBbz*AJDf9@EQ_9#G-_w~l&nXi1b0nwiidJZ#a~U-SvMQu@K!UGI5;p! zinhjL2bTuE>+PqlFXo|e_o8koaz}B}_9UwD+_)w2TJ=IS4O}?bQYu<3T$ZVQ1MVKE zpV*78xFsn$#qYm&O^RQkWO@JZ^R6ZQ#r=v%4Ln!Vs&CiPssQhOVnd=agt_PIVmzdD*P`RbCo+>Vt~+Afys7)eOsMv ztXXOj&Ox+>@_ec+H#mKtT&%r`Wl$2} zNQ)p;H$+P&Ojs?LkTI*VU6+_Jf%|?HnVuu=jY-d;71y&pFN!O;JQu$ccMxU3a$~?x~p*4#-3Fm@%*QMbylacM?^0kTMHF4 zgzp-zg3;{_yLSF|zU@bY5`%p~QxWtA?6@#3Q$)!p#_=NaB_6x$M3!90B8?7lL0#e^ z4ooroCl!D0V@9|P7)iW#fIl6W^>BgB&k*cv8l$Q=Ylu-P1%ou=E3^{MmeV|Um_lDF z+fi+sb|p!BE4a0bjQr@PAzQZWihC9;p5FqbHz({BeUt32B(E+Li3+u(ver(l$rRP- zCit~JsSM-y15u9M$6E2_s(%AcnKFI88M=HS+?W$|J5D?#;QE}K1JkzSu~0NxBM#w$ zuZFHD|L__>=@EO=yU=yip63Nkk(-N$Zc)Z$A~3g-ShYyN0u!JJd)O#c+l0N}06S&# zShJK)uglP&A(SsoY0^iMcMqDU0b7s~7L&r-%k#!nqz( zlzfn=ld2?+m`BdZrbvt>lvQWOki;^rW=dP@O z76H+px|mugiH*{nsEOAsUh?L`mnpOh#5Ny2@5$m#kJ|IgmRP_QHVU*Oyc5ECa|<0$ zu}KpDmoq5*`r4}>Ztz_L6D@ORfvM1X!IF6dC9g6MS}9BeXTRJmvh`UUj?p#&U#&BE zKJTHYvZcKg>kVF6RDY}aCvUg6`Ygl17_Nm2zA%ex1nemf`6JXe%PPzWioH^ZN27)W z?l`G>`{|o56)>X`>K|loQ#zNw_;yDQCAp3{UzO(iEgr5}Ihm`J@^G)tH$!`_zaUtB zD*gv@(weqqe7`_dEde~@PQo;~Z@|>F<2MF25wF-qvKkh6In?}6buZCQPGchk`ge;T zChJ}vQK@jrWJo0;i6b301*WmP1Y$y z7~^pHzO;f_a16V>q=-TO4lYn~vbtrXWn=+eI6yHfDadBV75U5xZNv zEv+vuY~_vQ6HqlEEz&nuRGoOQG-EcD=UIK}%1ibdN5Pa1F%_1%oE*od*!KfZhVsrF zr?$#r^&g?CaB?p=Kcnpfy3)T=zZSLovB^&P3^50kSby|$emnJ}{8PhEtN>?;f+-r+2pIgY_p;ppn|5x|w_9bZsfYRC zv{f-($@Ko2Uj_npdhXM8y14H3yD|XDGiq*v{2Or1E0ZyL=)nfPq#*t*(@3B4%}axyqidymC2Zx z?U{s+9teqQZd0kinM#&I^a)s8|8$?Z;BbhE9 z!7Nn{)7FEI2VV?)NAqWE;Al=2wAeN3_LFc;Zi#GGgG@^JZipay&lu&aJw@odMj$%w z61*o?0wbeLsIUre#%N%ZokpJpgk85rX{P>SL-V;hInHzrt<6ooyR~ua%D<|e7ahl<&6&Z+i-rfW z4M|4i9QjR}#Mip2yb3WAmnV4%imz0$USWGX-{nR1kJ`~G|DQ7oJpl9?SCIVSwG)J%sPr> zFwedeNOa}#fwM|=5cuh$`BG)ihKG~%ol zu014u6RhDH9yX#Q%#>MKUv2!UX7++>BSFWYFqw3KjaTp`5y}jY^D{E#$MGzM;MxIM zA3NIGY@Hiz_%`b3l2r0`7K1w`wMVe=poh#*T5w5b;-#jt^{9jKi6wp0)7tkIqIJ$* z;hJBv^hFP2`aKn>5Tn1@;jST;$;cQ6?Vi|9GLz4ElqQsWz3d`ka8UmvLilF?7&b%6 zku{qNvrE{ml}3!D1`6Mchgq+U?Pk|~zMGz2vG`J1K&8UJl5{WIk*?HvBgyQ*Ko=I8 z%A82iK|`j%-qe7tsua<6`oWIb`*(-B|KCJq)4$p_t7)bj6R8CC;?S_yXe4g<(gRNC zeW4#ZF#M^1a9uICuU-R+k3XvAH?=of?dXpya7J2hVrMSAXKJIQh)_*WNq>FPRHNGz z@t!J9H<=2mpXm5PQ)@-nSr$Z3uuc}5LRijreERJ)?aftd_=@L$JFYo``n9#~y|=>~ zSE+22HWXlZ`&UX1kx6Vh&s-~8&tdp-^-zSOB&Mhvf4A&x`P6o2@4o?-%te~bOhWJ-5s8?eIESR1ArmAAOO!F~>ry0hyp_-xMfMIr0W z?IC8`1~|r4xPvjxIhKMugfUo3hqX}guHyPl*@li(7%e>go1R+D=WJ1Nbo6R02k%J2 zwMM;brG#&+MDhZjP+^l`iPG4=FRP`Ve#AyNY;_U;Qa0x(2u`>9&~+cE>=%moU% zb)g(2@EHO-43M!z4}hjQR{sw&j{$eBu+0FyU1|uh9wwHuCH140u)*}AHY74KGD5aP zOs~(DLKB7KIkkd5*(c8K)h*sW`R?e$9g+qx9-JsAE=%2VVtFkB_BiFDJetBpl2L)@ z;6qw^IO67r-0=7mBGl+fFwc|8Wk%UqNNdK_M7*SF*@Hm8p+Gs&_KQf?gP^5%Fqk5$ zAg0VG$BMfO`>fhK`kA$JFKsbzzTs6CbAyRNG<|+^g<-@KE?v{Vh6v2_{R%N&ct2^A zGDoU8Otxh)`?Zb)4kXKh#Bhw{;%h2U&BS@N8FNKoafYQk0FL8pI4+Bngx*qgB zFi*OE*OEkmE|&k43jnTUlJOu&GIb*iSJ|O!&U=_-`Fnr9Ywym#qdRPV&gi^xH31jC zx7OXZ)4AC_NrYeEx}U?9zt_eKsIya=CH7Hf6ppH}#oH+qalBFbLz`(^Y0xfJ$p!IK-b}KHpkG#){L%jDv>aaR$&sj@2D01-n=?V_j+HkQ*w;xj|*d6 zCjN6bHll{J&$eYWe-HKkL_R;FC&DrH*~&|710Fl`yMH%xrs`eUw58Xm2Qp;oa1MZ; zq0S;NBoxT?;pH{?izRZ`uQ%v$aQu&RSWrO5cnLCRko(ul$GBkETx>uRV955^0;R2Xzgi;sj&D05Y9k+s8b&zpSNoIpINqaDe(EpoM(!XV<@ z$T*k6Yr?sF!}aap@BXgj$tcl73ySWg78Y{yAFv zzn&l$jV4*xi81-y)1RjsY}fWLVK*=R76sC>C7W|45Hy>eCI`r{&EKHhX%_2FBJq1#9i$$^!;d{oG`C*=?n{O?2`KdZ6 zB&QD|254v-f?TWrJvVpuZ|3kvz4&U%{Zc1a)XM7*$F+u$WlHm)DYv$gD&EI`_Lh2uT;tJcFV#>&@!+@QW3h!>$mE{6slKEW>(Z2kofn#-UB;=j>}{CTx}ds6FhUe)=( z^%qw+feV-QgU>e4#pJ)g7Kidz-T%G>)0zKQU<8H~I2tKwAlBUt-L(&5Zbw0WQ0T6O zBxL1mk2ej#uz9!?$^y}=aRSQ&E_Wceqd%x!xX$fY+;p}a;ksMdy$nJroi75;pFpkE zFvTCfi|4lkN9!PCC=3J?ZZEuCA^k5O0KAOfz>f)DrGX)okAB>4gsDs7LYafzPO&Gr z6weICh^^!x{37;-JwYZQhAMn{Qf?L2nTIqeF zujI(16!r~O0@>vaaf0*aDpj)V```?^VN9DAtAYrmP;iRTk@75k9HrF*dN=M-+(dnj zJ-uJkl+;6$X}$YA?PSQ4aK}|Frg!6EOV5A>FOdpP`%har23`K1;*iZ9Ldv9rRG4Y| zorLub%X@7JAFZe^g9?6uPz0DJ%$~`{yWTSZH#`FBSpl(ltIlwmdSDWV?84Rx{7MA4 zgB}7;03H7SwD;ZdRQ~_pr=pHk$Ck(*$$=|K^?p6q)-g~+vw#f`o!s{`R0;O4 z3ux+>vLjvl6{wXr$mRZ$?Lqw%&KIy1iFybwG_;6I$=grTkuH977vL!c9`6OVgYgLn zf)z8|+RmdMG8|5yL7ck21{~bYfG7t;;2tA!7zhR4-`^kg5T3|*im1!q%$NIKUUNv3 z7+gBGz-OH)p(CrIfdTOa-_aL)RC&n!-o0B+JIW1`+PJV#P zGUg)Jk%S-VV7x;`+C3ZrPq?1yiR;<+PO2_rPQ`4i^IvKR#yJ)Er7@1{b14WMWl{iFUlD%3c_RYB6PM{DUD{f^ikn%iaVf z*j!or#ce;Qe@Akc`0y{1d#uF2C%NO;uY7P{)PQ}uJwERrEyt_4JnfE&|Dxl#wtTD8 z?ro9)kfuX0rxD{cWETf;r7Z;(9^-m8Fy*MwZ^^k}K$R{{Ab$mLX0RQK?z2JF{^D*%)8q=8K7? zw}aNo2vVz)Zboj>M{d?=6)KW{Cpp73N0aFqp*h-~svWNW@z1;1(Ce2(Y@C9n74a!A zPl$hlo?`A1v<_KRW+;-M;8^J1w)}oysAbel9iSrrj@9vt+gmQ7hnQjtCag{y4GK8v zA$nZFVB}BRh0v8jURE11!(;Le@#y53ZJE(7j@3C{e?)0{v2#vu=yY; z3JXvZpbA~XGLQz)MRVW@!jUH$c|0}{Uat3!{;0kqfg|}Y+$5u~G=R6c1`cS?&c_cu zmRO~1q2WUDD68saE2xTjK0BpoYMqHq3bL#A$@MVC)3(AWC1Y2gh?IY&;(3JaV0t$< z-&Y{it>y7(@|~_WD{~lX*H^9blW@sW@O7t?uK8joo*HDLCd{m>M)9UsDaPAO=&bp? zs!y+%-M%E87ef2)pmJC~^}18IDoR9jGN&9%E;~7s)jS-lN_YQ4fSLW6=b<_EYye64 zL%8Bo)Mocdk%m54h#%?&0veXz zbc`r!TiH=w+D@?=(6&jvRbC!`Ut@Mm|Fi~WEg<&Ic3a$$@*kPWa}Tu4?~pu1$#tBq z)mdIlIx=|8KeASFcI-gv&8I0^f|(bxjNQ-Nu1m{wBA$&%p;PO%p$OOa^pY;(Qf2Br z6O4LzvrvEL)1TE(QCkM4ZuqEa0Bf2-3J8%2yXjBf%~DhPg|L94Y7CLAxS2(ZZr+_-hVXko%Wp#A?FBv z@tvNTI|>}xUo^=z9v9xRyw1Z*^(x0jX?7+DbY6r+Y zPZRhCX-;KNO-x`5`2G8L=PbE+s#+U*?toxHlunz#b=!BR!<b{$c z-_q-(7*{Rxu??^Lf!p!SBG6)7A-MZA~T%9l=LlBJ$LwN?EtA< z*r}V8EeMi_2y>oIB6u%+RR)+foRE;bE2sw<^ovcy5w$A_4DDT9+TmIVP)XfA2oMPC z)3oOCPfecGbVS{RC~gFR3xfFGTo84}0SUydgDrU)?7i?%h$9rDbo%z%h#Nm`Zp$VQussDi|qKbpJwm7;O|0MjOuWMu`F0!RQT_Gnup`e|%JE)rT z2TQggwL*>9Y2vt-k(v+GEgM7+0uD$UUVJ8sNkA8Wd*`9O${r;p?{?n#ZsyTvw$t;? zpFtDW>mX=`E6Thn-m6SMlY>8JcTrT(M}s$P@<)5yE%Bk6mI9&QtYR`kWtY`xpBK~* zPC-^Zg3Go|`M#V6Pr5clQaSEiOM=MM5NA$=3lnvvw-MaFqG($ldVM>Mdgk-(`~-+Q z6oj;vtaQDf5gm-9zlI8Dl2E;nsHV2J3KaOFlRvk^Iv zsv>iFl^!%UK~CcvE6zAV<|xgSDw}o|-BsF5*DkV^@!bMdZij_c@zh=(8B?qK%{n_x zx$*L2h7US~J8W*Scd$jbKV|=9#6mt?7EdA({>L|kU+pR9yfB5FP&VN&aluNZdHW!q zA?CTpN2j1prrBR3gv#Z!uUB@5!|zN+TWSSaGqvsCp(B@sdN6r4bC=0muK9SJF?via zb5ew}KA3MhaJRakap$0w9W7f=d{edC`zC*!mcD=UpM(#S(Lz%eyZ9daheAXKN5}YY zKR%ssF^X+*oMR7L+e@ulWDFtU7-3?zik5ku$ydWU?2hwgBj8C8;!#aX;vi>P_Yx#{ z8Ctt!*O;Sy_5uA#rYUdDA@h z)MI?L-v=J`d!a(?WgWx`Tw3a(IAue5)2Oc(llezBJR-PIrD02PoC;qJi@&34tzyMF z39O`cE$j1VIqqqZFujox;S#X8c)O|wr%^^=6fjDWTsj|`+fSH0Dxato zp*0_Yx%%K}W(M8r>LgckgZmzSu7`@ia~Z24x?;+2uVYoHq`TM11{$F|dEwi+N`868 zB577L_QBxn)H)383UN}j^eCB1i`~SF z8?WcmPu?WM<#yc1ADjY`cEcxv1!d>N2y=R~!_%pL`duAQ1?-JhBF-g`md#=pT<~Q< zf}s6QlQ(Ge6Rw7k;QK)5gk|1A53k#@%Nbdx8^dMAX;?OmqvE_T&H_v%^5pp0VZp`$ zmLZpdy2)>;k$>-Y3x{Ud_jBVML#dY{f^sZHG;7?mv)5fb3z&3r(zqABG7H{!8>@xf zOSk7(=G7l=?UnZFEn+V#Q`hykN+$4l_>w8q$(mlv$o=edG27rSW>O!Q5&bUKkP(6S z^HlFoRyg!AiO zm0zZ)onep4d9z85w7l^EJM0X=a1X&-$$uMIfV$q@hMtf256B^*0{fpjGrME&{`*3N#Xd|p>=m#vRp14jdr&- zq2tZ6B@AYJS0ffiDd z1PP~mj})ZOsSnrjsfmi6-DqLYHnf-3CUWTwENlFI;uhXB5?1kSSJ|7q*W$Uz8IURl zhAx~XkMNZPl##u0o(xb%YYvqmj*JZhvSuzluJ!KNb7^@bs+J_6yg4S8AdNIeHKbbG@oC7Aq2dr*(u-NL z3&*0uOZ>I%FuO7$UY&kGDEE}(>%0IHN%{uaTs@sRUx*y zBzn8ed?Xb!@Kb2iC5_cnevDIghr`J|mq6kjI+(Ay;I)>6a15tHq5q_tTlo>@+tt^! zm)#0g>GYkN^^DcU%X;;FdxQm#W2 zujBvaV@emXJrXH)_CPhYb7et4h=j(0$+<)s@)xam8|=(4GTz{(#Fc+1V;bS~yi*F# zKx2qaMVJL;hB>!@N0uKi@x~wtlb;kHdDpY5>x*#h^E1$0`FufuyaxN3HUgOD+Ex8K zEUcGPonEP!ntkPb&EZDZ>hqc_BF8oSChh%d0&AP&c$S1-x(TZyVQs4GeL6h39ge9l z?{U<~nZH#_IrT=antzF+fuK7(=G1n4H(_OUJSov4;i>r*L7ZS2 z=Yx!TmzE%1$HWFr+c9enn3n9=&(->%?Y^T=*NC7-wf)Z zi$%f7GjSCACiv|bQxdRCdhemftg7C1)nItTzy3&(=M}}ODK=PSRpuCy4JtpnulSUG zAlH~tF!xJ~abCXE+c)Hyzuqc+BDwKsi;a!F;o0kF8v>Nwu-0EU_D;2`iV}B_hKFl2 zn^#v%PEkFhySzg7Em*vB6k8uq3$P*AAYb`_R~B<5@U9wrF;T1O*%=X2D-$8+ z7pB84-p$)lrk|$Foy@XC?F=Bj_e|%*7O2iW_OSK@qb0z1T z-(H}z+YU()r&o`a($S6_ThoppC|R6m5x27BZF)tPjxtp(NmO9}$wllO3sjx%osh}S zVoIVk+u01>Cmyi&H9x+(vX*fDdhWsLP_tY9Qa&Wi26|NURH3y=Y{SiB$vI&+Hs8i0 zfF3Jd_CAKh1k*0uuA=yaVE(m5)$7ShMjvaFkgr!%-|)Q^UFIjUesFO#meKP?d|Jyx zQ}klY+4EH`p%EYH=>_q&w6xvdh|heq{CZW@$+5>N6-UE%$j!_u0{g}HSp#qR{;$c@ zOxAg{L1IqYs|#d>YHxHYafIt21K|QdnHNih|42@DdUJ+p{$B3!N|2#fsE5~B{{3|P z+S25@uPqv7Zhk$_rDWL`$>hGDwhK}A-ggL^S)8@LEK5l!%kf1adfY9)wO)Kpb0Wrs zM&9fs25lap9?#*~LsmE+c2f{1UcU9}&=qV)`O56tGst-<@b0}II6f2meJeEHzLz*w zy((H#Up2L6ZP^1rbK%>y!*GYX&(+?|Ie`?e7`s6d(1x(U<#@j^NPJB-R88~#u0-dS zmDkIAwBt(6)wDr0o6;K-w4NW?N5?LBh}}$gEf5lj;yo9&>{#yX{Em=(x08%zee>g- zv6lQj?;?fd&fD*;whAMs<*d9lW6m-qTq+VxaF7)=yC%r2! zbyo@?NDM`&3w_7uE-p*R((7V6-B~rKzx~Dh`Dh25XMwWQ*ARx}QB&U@{VGF81tZhu zia8b_CY@cOUowtA`O(o{8I7WizeMu*s-tq{t#ToegiA;1YKd(egD00Y9wj-wy1$}w zYOUy+;8kYqk!69X>2S>Z0YL}tp-Ofv_B2pZp7WQtXapHH@Nw-Y*xCx|_+{%ex2@59 zfj&vn=*4tY=UZG2qsZJ-w&9Hg0_!Mw7Cl-w*7%c+7{bQ{th(8Um)M2p?={b!J$21M zNWwi@i=%OoT_plOQx;ThJqL2L0bKAU2iyGwq=9Jq!oMD>*-Mm!$ zEn?>%S*OTf*9$VV7)J97t!(*38IEFPu$& z7Q`7%7o);DNGq7idX|AJ`?87gh@}Q&W`AFQ>b07?=(RD)n)dm)-+B^cHea5I6}z*t zO!S-I3q7$?pQ>80Y%OE&Ts^SO81d;TI~fiuj}P0b6ju<4$a@6e7n9n*!jrwO6 zPkm9vjE8@rA0{|p)^*grNkpqa(LPfNk_%^Ef$58xD9bSGE56d+`LZ%Smb=w6tusnt-`^)GB}pt46uVBm&huwu zW#^aGm<=9p?Na`!&mvCx4gb}%R>ts8D;$?=?JQm;TREQ3e>(l8NyEbK>BQSaE7jPi z+=DtTm3}?yylOTT!+6Fq9fqC74n^Su$0iAVf&{GMMvMTqksd}M!ItCh?qlHZA zX3JH`dK682?-E>B;Q5)(03JdigPJn*fDX|}cyjaBt_pqti^(JbhQLDs#5fD^zly4= zIS6`?MBFyIQrtgDQK!8!a)$0-ux&RO%y+g;1RSh2ou$(b0#(+= zI5#&MW&UQrqYw4nKA9r{KX5H8y3V6k{7Y+OD_3nYXBs?`4ISw{L#|v0Mu&U>{?bYL z`gw|~`)4=AwF)r(X`DBsXa=QcPsg4osi4;-`>@u2&7L-bIadDFDdU>D`)^_{mR}5Q zCf%F6otL&vrZia!Pz>S@CU*35P@9tiG0d_C7!x7M10c_cZM01`L;B)K`aA&o-e7oz zAh$F&_aOm27JzHoz^cm1#Jeub1Gy-&`hf+d%m2JVhqzFx)z`T(WF_XApm5^SR=EIld+lNk!Ff>hvp$@&XTa zh!%MVYzaz@a4xIc%y`a?YA|+6Z;d3(xK2wI)ik^z$e75^HLrPg?Mv=DHGN4 z=DFjCGRNC8q8G=%evJV^&B&UEhlfuL(@aweUjD@ZY0Jl^THpKo^Y@7I=-=*_PtnFz zOY!9udzNcFHs1=*>JN|Eja!m`F#a)RSKmI%MhC`-xWN{^S>%FJ=sKnhS;Qh+&YlBls`4c{L&ZJm}Xa6&*i1bFmTn z@NQom@@4>hZ=JU6mUg6#64yKTvY5bKj=qnEZG^Tz+yO6?+j&3y~o&+$hm3c8;I61=)r-*dwBQJ>z*je;OT^y;P#rm7K|BP%q!{GODecgF(L#^!r*+LLL(dMv; zixJ%vOdLd%l;&961fGdclvrJ1?o2}rK)K{_#;Ns#jo}`WBEVd zjxawQnmsf03Se92kUGRRTEECR7<6Wc`mkz3^zIiSr^y=1Q>RYRKnotw#7M+tXE0CG z%XA8w^>He>o4pbnG}fcN0HYG1yrFq~DTE~m3@$?WFROiy=bS~k`4Q_Q8{OSQ+l7%7 zO5XO3MQt_uX%$jAOCSv)8TW_?2=ceb+?+(x@ll96%6q#tbvIw<0YVK?YVm z7voNc1eT**>92F;2z)ZuVbH=zkdG{?H0Q>5a()whtPx9MoTNVRp{4Q%mgVdQ(S!3M z+xO_-ZeHwss`83$uy6H1k{heAZrMS}OC0mY#4C7b=eyhmPOsog*vmPx3Z=c^93Ff7 zxjz-(hs~2UH8rKcQ9!ZH6ecSkvN=6NK0IgT|Gn$`DHo+2{43NpM_ewkyX`a``ZZ=f|P=z;T!-@ZJ-PbE%9G-+%IhSec8t8e<)S@ z9iP;3YZDYrGtVBZ%kn0-;KIof;9|ma{BF~8?k#z8xoVFgR!W3(bL*`U@u4SvO|8TS zhQ4k*Qgt`V2yJv@wX^{rXGqQq9qL|Hx-N6k1Ho}|`KG4?!URUZO79{z7-2W`xZhu3 zQ}R2jq{{wY=uXsTDTWH@w4qMCr}9cfCog7Rp0Hp1Fe2b4M!hz>2MubmZz)&7v1~K3 zf2bs9CC~q2X86;+QxsSAx^2F_8v5Iz2Kk31dX~9u=xVO2q+CvI%g%lp>g!dTDz&ou ziErYyo|RX0g`RiWJ#r#%vr9JqbaH%S5TD(4ReKDyEb{)kXUAaM-H}Y8ludt1o%(!zvF8xV0 zY|G(%vUB)uvFfN91&%vgrjLbu`ogX6Srvs1`sh2<%`)zXYkagOH;*H5A3WRm<(-jN z=$bHg$M&~0Yslprs2{xUi5~)@UC*w3j5+1r^fDZ*S+?>>-ErbOTxV~tjEMJhUY!+t zc6)aOr%o3-!zEFd^lc##v@FKSqpLLO3Z;JxQ!hBhC@#$f=@hz;+^v;;7Mp&-=`nMP zkRY^RrJ)12)83Y;g0temH)6}KHg7J#91K7GwtPx)NICpxc zWtJPZbSgw%oa>WjKS@j^x_1%pH2I9WZK>{)BnNh~?bFC7Wt?x67 z?fh&lBAdVyu=EIDqcK}`+UsCnXkwz$zBD9$Bj;;O5az52p5y9g-@Qp23m*Cys9vQbS8^QCOEa_(A_EKhE{!bINWY}=oK z=a!1T$W8fnwz=ts)z9E81AQ10yM}Y|rpVmgH;MWH_t) zr-aDcGE%i43BZkhV*Ga0Tmu2bp zwwv?cn(z!$R@n?W$yF;x3rQ9#e6%LrU8I*24wpN@S%EbuC~Ex3kBp48Q≠hU6BS zX$&|@X^m#@5YFB~*S^k}bWX&GDL606fmmVGOx?yoN5ms`vsr-RUBDLwB%eU<*EXmz|!1Xhm}Ub{fn^s*_IDaw|*;SSl}@0KVPG2OK}vc+v& z%t%>&B|7P7jn&sAo-$B`_#0k4lSbABx_>>|mua{mp3}{gZ2^3K(d%^Dn2~4IbyFFy zAE9~48?XI(Fi?2QSXf1XjEq#$ogkmm%_H(roIha;&*=%i_#vw1%6svbrCz-h(3WD5 z#M*%?PXv0HVU7*!^EH76o~2Te!!7MMgG;?73mDU{%1r}DG^pi)?O{lL0(!rcW>^GLoLUu>f!O&%fRCNgwxC0zCuW< zMxFBcyrd05xC906Pk!iYWxD)I&Z3>&Ii)@oZs)~-zC8tew=fmjN2qHr7`6JE9iM7z z^%x|)0u!_+zFFFIAMdc#8gB3V=&taIxrMuaCg)nLoN}L99zE#BGvLA!ghRhx?mJ1% zv&4R-_fvL_Yda3?FX(^L5;~9Mw zO2M1c+K)`bs+w~C2)2OUy#*YkW5CA~IV>idd7ejjgIixLk9;{WJk#LnK5C>fdS9jNGmUVI} zW!ukPjwT%e1xdC!L~pu*=YkLt=6()p-gu$ah|nLwKh+A-GM1K>P$+KW3N&Iv8yoPG zMGZ+$1xIRx5CQ!MzZoJ66l&uBp!)t+Y+%$vSF#P*8z6SK2phx_&caHpWNo`iyk-#y z`6JNF(^G$sK=eEXd>Ha5yw|d_YRMmr@uWU|C{WvXPNvI54`a19VyJcXOU&>7IzVhU zp+QgvAs&9~?$04+2`ru=rB}FDYR?qaIMVRPLvnZ2=5Hk)%;$Fk4h_J+cD4CLkMAgDUnSUB&(DSlm{Q*e)097d4jz>|91Ol{!y~BZOKZ`SpJ@ zx1JLK*5?u&xg1OC?2L|2os)csWU^HZYP5j=Z)B5fK${{#rj?wMn1;QSS~WB4o$PzQ zN7EpLIrj2aVmLc!)80fR{UmaHqO{ARgQ7bH5G$gY|RU51`1^LN7$REtVk` z=v_%kRFY8pi!EljqfkKFk`>QX)YOc%^+zbIU{w&+;PPQhQ7u!P66}?|;fa@lMKF@b z7%TI~Tj3L;+gC$_cu-Wm)Z%9g1qHTRdpWtCv-c(+DffYdJSj1j4?75M)ejz&d4D>l z{_guo=d2e{sgrEICOxRv>kphq+Ib91Q7&~mROTQ(==%Es5qdsy#Dlb`Szr|X9XfL{ z61`yxA2D**uF&rRKkxkUbI2@(Q?)B_|1LNS5HP?LR0`*JFV_yYE>V`HXlHe5_SV#! zll-}II=wAafV5W^?~LSWFrk6-_ia{z6SZjk>19Gb(`pRzbihb8Xlt(hLRT!^)gXjo z2=T8t@LVU(V!c%b6k!+t6_e`eAfmqU@yMnoSx6N6G<$XfjFWF?dL+$>fKQ7Wsu6tP zRR!osVXQt`LSGSoAt+(KOG9Wq8%ir)pZ&!BgQjXtq!5v_b7>H{DTUAS9dct8e}?;V z-p7^i-ep%-R?hC|1z}DSQS&0!_FF%?_-ua6cO)Hb|C0RiOVZf*jcyrPI9^Cd2&n2OnHk0=Gp2=c?EK3pbSiIT^AAqc4#Tu~vgmD~3rej8OP~z$C83=}iu! zNP`STa47@nYVc=D=Tg2Gkkcjg%zxJi2^3iR{#{V8e$0sq2>*y!1{Mm$nH^#8Bi#^K z0=D*m+KjZ_qRU21-ANGV3dFG(i48@XJwS&V3e!d=Akx+HSkt|zJjlrnF}yh^^%L_4dS89pZvW8>hVX%k(zWd3)7s%Q zXRo8ryyriVVvp9>&WYo=KCFZSrkAH5krjh;X#qOvYDbt6^mnWDjwrol7FC2RlPH8vW0l_e~e=hJ3idr z`p6PXGqwOGeSSI(F?4LtyZrog14ezxjky{l}gD3@O34S4_VVN)XNr?4G6LHaqjnMkt(x zqJ{Smte$1T6a^T|++Az<V-#Be#kMCSG-&Mj_N-Xwg0VRl(IfXMVwZ!tqpW zt+*VTPSP6#D{bXhO1aJ~8c!>*T!G!jmUr`O-Gi

&ExdHX`W@XKbTkynibzIU%`T z`KY~4WV5YXxEVBItv^=xgRt$Vd?33RQdrQwmQuDRJvlj6G zeIH)>)bUE-5g$TGhMd2K2m$hi(x4p7?|;4p zOCa*qKn2uYe?QeLFtdk)6=PaUu; zvxFOgBp2|DiP@ij3q7XpjH~3ZqU?XplMaR+efHOH&v=1I4Y~<&Xio71P2JRU%+?!< z5FQ)viIznuSrE>0R2wmpaRJWxx^n>+x4)M*^Yv6f zT_J;k`GtYSCI<=<%tpg;K#>;@72IJNQfRa1L8w45iV?`G4(~w%w?Pevi8Tm7tRa74 z_OivV2(k6*IUMx3qXgj56(OIMZMfL%G8p-ALn~2oYwS~iJ_RAZO*e#~`M|^DLn0-R zXo_&i(?ALtnmuYleB>XHA20LSwu8JcC77!k==Z%79%|0Z}T)%!jyQ<1yBJlXAtsFeYBAi4n|5-dfd=BFYjI8){@}Gj@ z=)J%VY>Y!nADeEO z!xot^HFg%DS;DxL{PB?m5;r2?J!oxU-m?Sy8Q0gR6?P-L1_B8TP?(jG5^A~4YJ&uD zGv5M}w(S&yM*tv1kZXv^zA>xShmkahX_4H;V(8mgnJxcW%9RLy|=70pu~jg z@l4~~MYjKTf=H|nj@zQ1E?v~6t=zV&bA7Ii1G`j8?~b)kv-@R&)_xZyMn1nk*8UL+ zB}HP*JNY9c?r?PQhW&mMn9WI(?Q<8U|2t|aWIAsC0x6O!2zsnx7q!28*MqJd<|G*Y zoPc{E%N)mfAkyHq@wMFL&&v#euTTrlVZZiw055@u29Sw6{Wh4RB^Mn-eO_rB zyDt6Qi~cPr2v7^fI#Q+ob-0D(dVico-qx~aAT4zI+u^D0OBJ1+otDRC1Ouc{K%x9GVA^os`!`XjW&E1BLZV%a)d=LH4r2cz{{|b=U z2N@+vzFw!G9f)B^>-}p5?BL--KeiF3nRC=H$UumJaEY!Igba`9WmAM5hZz$(EMc=~ zO98B+Rp+z=+#6U}TL5NlmO+s+VH*)N=5YJd+-;eI^I(32Oh4mQtvUZi1n72@Kqskl=(?=*EN97!~*j3ac2BGJzz41NC$gNr+*R z&tL5~^O|IXIGL@`!2M9>gpM#6 z%x-`ujhMY>8QVI|_{{HzvJG+UgZ;y*-4S$+ z1{K8s@{bsfz>T^-CIc_J1-%>$nJO$(z2Ym}e#@#B<=hM~kioER6Lys3;#dm^#r`K2 z!=yhz5-MKgMVCqs3$Vvjx4~t&?FbIt_XHslp znh?-?4iqBt4<1PHHXPogllG%Q-Wc{ZEG&fFaCmFA7RbI0+ZwAgt7F|MEM~T?IhY7h z;h~I8%U?x z2N~q4lDxXQNrTa$rkarC7H|ti@Y_ci z=Dr%(mls^r2VZu<@$lpZA5xJ5!iga>iGlMhfbq0b5CZcT;zevI5s@1_l{dq+iZIG# zp@oLUB_Zyeu>E_3FdT(~BZ?#v9X1DOaVsn*2IHA5@Zm8?Wog}k9R7|r0vV7fZ{T7? zEg%snMz=F>BF=Ym=>C4Z5_as9(>4$u^*2xk90r2R>tVY*m%yRf2D|;qWDj^bGR-A; zIokM!{m6!Ekb4FDD3|dk#7q&6e{3)7nBhl6|Nck}65adD?;>jRLBrkydk2C)b;q!1 zQNq=o%zA3HJN_#MO5qRxHeGDU{?BI+QqM!>{QqJy{{NTyUthTX|GoO(yjKgyXH)|c VZpyP4Qlj9GvVw+uv7BYle*&c`P literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_43_1.png b/docs/images/specfem2d_example_files/specfem2d_example_43_1.png new file mode 100644 index 0000000000000000000000000000000000000000..8ef291e257962411afedaf6f226f12fa36b2375f GIT binary patch literal 88490 zcmeFZc{tW@_$~TY6j6qZWlSQyGLBg+f_( z^vJW@-r?dE z8<`!uc1TkNEU#X*b=V^zVf|lTu;YsT1qm@(epOtA-u8&D1BJq5OukmUR*JhwSwW#3 zJ*a%f>G9wbM>n>T`7)*ZE`NOXuNB^T(bvLqh2ZN6o2Q#Do?=%WRo7Bp6cjBydv~({ zU9DE0C+%j{K+z+j$`4=D)v~VK$hy+|{p=#kRO8PUm&~(a3L`%T3>Hk`R|G%z)Eq7nJNQ`$(48KiV&bCJvI`VJ+oti35zx;zSKJ!xj+usd| zkF@6EVm#JrXlP9Qu343xo$XtHVTNk@9b@W!G~T(ryD zr%#{KF)|*UpBl28_^lc57IR}ser|HWuQ~m4QBlz<{9Oc9V%IMA^B=FPMu=&3{QBkh z_pj}iEnAEx`|GuxxlMIGT;0~y-Oa+o6KvmGAt)uq((XR}#H{JY^5Sma^}K;mQCu@~ zbI(jl0-eUnMTEy~no?;40s`pPuRpYZKZVa@#+a&`dNA}?Tdr%=K3CbUt}bR~X3x)` zk6ayYGiTZxB*3AOa(yV!TdHw+b z%G1L?6Dy9Xs}~I^+zK>;~AuF=s^om4aWwG0f_!>40srepRx?&$xK#H6I8 zKxTHjI=T0^c50BSc@f=Iz zG0PpLw>P~V5~fq(H+W}5>D=SHZj>FPG8?sdl=?xg44b9KL( z+FFAfi`UL&+n1<)J1S*S#g(9!zIG&MeEmaN>%fsu%X|`_7Nl){e(>3L`jyVu`A;6a ziTas`bac2PB@EZ&sUOH(cxK&_apdSxW!#gv^Vvi_pNWa9J1;jds;a7{7B2LCdGz{R zw)EWeNJt?2_O7X+7M(PUb=Vi%&O+LprMZE~oVr)Xi}sG>+|qo0$haXv_w$!8C1w0K zg7L1#SVyP+H*r*FjcA2{4C|I>E|dK;9k-ZHzBwiQ;^oWE`H@eVmx>Z}(32Bgb`Q2kIbJ*Q?^vaT(B{o6 zFJ8PDg>YzofAJPVoP;mMw&yd8+tTbWr{U~he@i!A$!}@d)RJLc^tT8!ZQMN<6#Lo~O-uAoEIlsXvR*$ux`OQC}>06x|R!Rrxpxc7u&lGcz-mm-Z?% zZ!|ji;AL#AXGw8!^304=`4E=HgwnXX-Obc8Hzg${;qs4nkt0}O3rb^Sim9%q=3T*S zt$FS(q4vdCt4Ax0K01zEKQj9=VAF0J$+V`bL&02vM`93hG7pXoet&a1a6U%CIqbo) zty9AvN7mN*G4X$0SXgMpX*E4MUwvb#C?_|!$%lcHdJ)S&-Mrar@=x92 z?@adLZ7lfs_y%*Q+fG;AfApwQVc)){v}(oeM?Sesiml2waQP#w-dy`qotu*3@au$f zn`68C{S`)sL-@231`xefEiI3Pg@tu%mlmfDBk$k85Han;X<$TYED7RduQWUML1THo zeOa1`iRpSr{)!U!3tu0XQ<97Pm>6pJUj3cFa^*@L3yW96x0hSuUc8W`4C1X%Q zdKfDzDh^gkd@`dn4mPFHwhRr`{i%ynAC@R7^kKlwT>i16K8Hrx(yw((g=BPeG}lf` z<~uy{UK>PC=vXh~I?TMhx4%Bwt6$3@uIG)+uvt=)Sy@^6_35}f`6_XK&z@}#=G(VX z=EB$FM_2L!oX7hL%%pWQWJ;55J5@;ZAkWY-FcisDE8P0DG^c*@1j3btlhe}2^C?)?N8=%%W1Z-jnEaZo4&khhmT($2 zUbS+Q`w@tmWYSd};D6`NAtNJ!4~`>u5I&s^7ef4}T*kByDZ5BsY7$4Yqf=EDB3KFAL$ zDk?M=Ez+9Cx*9XD@Si$;TFRzX4h2W7LFUGi8@@3aY)lE9RZvjq=G4OhmNn0O zy7H73CpK&r5@O-!mpC%gkhlpaUR+LNVrk0R*_mt4RZ#<{PTHLpYY$3?>~pW+D!LHk z?%Q7<-#uE!f7V)KcC2@W=kQ||?}AXS9o>w)d)QDiY`1TqoQP4peZX(M@wZszzY`NQ zlmx?1e5R$r$|yT1Z{Da9-4SOE?&i9`KIq}0xOzR0KLWPd`+xIzC6m&vG8$syN%T!3w4N_QqW*?RoCIX4x(oSKQn7`Sa&|WPiyE zUwN>nYmoiQ>NJ#YhlVmI=x46qu=QB}Tdnw=hDOI8NYfGoptv}38ugv##=__tgpN&b z{5D@HUoWqf$0hXToyWFNVm%h;ye5ACwnVMg$=E(*nCIqvP*s(_cGFHv0Z|eWa*o4~ zh0i}mZU3mvdD2BxOiV>tdBr=!Pj`@Ex==UDiUT&#IvaS*nr{&iF-7J6Tvc^YPj91v z`=l00wlD7+r1rERIy_A@n_jAOB5~5JUj0lz(`IHUvz^9#xFwV6+CW1IDzxUu>()*# zF3(QAREyeqF)aUhA#y+VqM#yTdy4b8h1rD*-8j=+if(cUJW011TlF@BT$iV65n^0Q z9ttO(?D2X0m}d|dOtbi+f?L+iv^gK&EkUJ{t=n-f%d_VB;agI^oCZ$H>Fpjfook$& zou2|ee3+j=;>xn^TnS(jf)Y(oje&uI(@dvdihZw|vMxd_jFaPBbJC}!x6Rt}Z65R1 zNZFfE;qO@S>CfFW{q^+;$Fg0Xpr;0whtwic7Ew%A^SMuGzQ0tj7FuQ|{S+l$mRCrb zSztH4S4wg5K@Juc!K`|Dj|HdIo{LNKBa!bp4c+eg`1&@VH?*>%uF9t*<8F@h$=h~N zR^|6qJrFwb>FOWW@$qp}>^Adze%8$O)iFxdlw_dBG;FN;+|vVoT$Bu(pL^8xp6t1% zgKVPf;gJ_hU_c5sx^hTMzjaHNJHlbd5&qpakL#_iO1TE=<2f0am^fdQl$NF{-&(C3 zLAFXcPa&R@zZF3kMxtorfeti67sUb>FodS13^6vut>=Raoj z$nx{^2hEp6Y(L9Ik#*=h7Vm~+Wlm|VR$8X&-r?9Ca98NC-dtf>nVLsaQ=W|`^!+!kuai5l!HYGV(QWn`| zs)$J``OWD#X<&3&qkM{THjvUF@{}3MRODRznKy;Fq(%ML__Il=fTIOhT0c5o(apS# zqpClqdiZb}&d>HKPSarb<;Cf$qM}>5V-?%OTI%QS%`dN6vnCA~DTOQm`RBn07ov?R zjbXy-ROhnWo63;I8i9etMTNF)3s{kCU)OokAzbeIAlLZRltp=Yd2q^_?f|4?sYUmS zn#?PPeSiLx?=Z}xWFWo*O^chN%*GQLXxR9bE-?nYr9vVnVNd=k* zh?fUTRm#d=zTYgXKb4ueL;lsV2VVE?vAIqEbo`f&-9}a8{a41gPjQp%kTcU2)R^rc zg3t_H&$}n~LUpv4j~%v*;)%_1oBI>z)DC*MSCc>bWdt ziJZSH`CJF37TT8=`AhHc2B9!^A+Fx{JOMINoatC~EJl$R$f-0^T>m5z$@?qqd}Vid z(|RhAkE)~h-F@=p_O8nfMo6bRS+;^xBkdsoI!D^*8?)?$JZ5`2-DZ35zdoD9x5sff zf$MlL@aFHjI3~UKmNx;;o4?1MQ|j&OGZ|<|{QdLe?mbt3dm=VghA52Dkz}CW#v*ix zK-E=i))ylv|Kiq+3cP3=lZ{tVT3Suku3am6_4mn%p%zZwz1PoFT~?1-ng3~dDF`*= z`RTY5uXR$MnMLCe3keI;x=s(59OifTHZ8mJ6d)qY;ny84SI42|m-BM;URfdW^>Upq z!>!pxNP^U$<_xQ*LP|3Gc5NNfGRdnSIbsBqQ)MO%bo(%6s3mjYZHWHGol_#q0ZK=}6rNw!z#OLTsO@o^*a4!L_ z)BYhlxhntEsZ%t6fQ?NljgtdEXx+D(b93A;=S^#V77L^l855KA=cR8}Qq~8N;}44| zM|M~Q`}-T=q@AT^8h-LfaGM>|{v$6h&q#Ts;4E#LFte}=s8(rtHbkp!cKnwNWe}Au z>{?^0r_J}*npKsRLFQ&=lBI#1p|i8IDahOfVpmX_5;_&Nhdc`JQ-Y?iS zt64sF_7X}mD&N`A5tOD2lt#cgF4N#AitZ1Am*dA3BqT!W6LiDVty>zxWbL{R_6-e* zC-0XjZDdkf5SWko6&@2)jV4&<*6MXzGWqwp-1G7COWS(vttU0B=SA_xKz|9{ja1-r2#iZtuP{G!R(1zWM@;_g)~&>DfD5?qsO+rSd&OWoeL2>c-^AMzKbe7`hLE8;>6x>Sv#iY!faUjxoC4lAc_D@O#w*g4> zR^As96{X8{ozAG(YxbFWVPU-bb45iVaQ2!~F0?PNE(P2p*s?M00#jj8QB8{JVdcSZ z{{D1P$F>f(e=@Aq+h*Wq9?~m;#)~59JZ7dlV2KQ3wWFQ4>7%0rx`ti3D3Y-{ky%M7 z59>Q_CM7%BS-80Dv1!e^nUy71Vn2ZLh%cdi`_6}cjVK!$0U_~l*JZUGEBD!T(Vz=C znd@?`t1O)KiYZGi-B{8PQt<|k1ssIQa9O8?~wR- z#rfA5pOOcDj-SiT&8Z`Yz%iP*+@u8D2#m;npvD~Pt3p} zVnm~S07Ww6O1n*Z>@j+~n1u~^B z!KP&z<;L{^#w+)y#2+*^7PP32zK#8VhQLk@XQ9y0(8MAj3Hlxz8?){IzU@&zilo@o zVACyZ!`1%p^aR6tn%oEWes?b03xTDRTO5=+_!Q~c>GxAV+l3js@(&NOOtG;7Mg0zI zg0F@%PqT}t?77xYlh$OFPO&QqWS4w!?00?qeUt2cu2bISW~q9T>7YhtW@n!wlSIBp zRb^FL_`7Py`447CKVBQ)SepK{{1jQ-_g!9luIp~pF6zoh1Nbysh5}2+yK#KiU4#kqK8*eW?~fy@*L&#a&RsWy*+}`C9Y2Z|~;FA~WgEr+$1Y=wmc>bo@gU=jZ@~Q;#xgfNVi1apYu0 z6(ep70ZGN(jnrfK(1)Y(+79OE#Xu{Hyabxpgt-_2y7|}{DvhU!a$T(QDmP#`qhMns zWNl|(CjRxHp8(6&f*QbsmQ_8FVPR$6e389Q4IxD~tc=f<5df+X4_@=(+T~y_sg(zO z84Eg#{Ayku--N9e5EoxJKRt4Iac)w|Wx~>Ry>5P2Nl;C;!-cDZjV!m;Fdf2Hje`5> z!o}rWCPecV#?*`Y?bmpDd6^whc-w0@ZiS54<8{x~5sYbF`&Q*T2B z;Xz|kf@Wy6)uDRDKemnl1SH>Ead9GqSweO2jWeJd$%ZY|{`d8?0L7;biS7!kJV?%lhj z_L6(GYD`|SJX?K(YW(i)nKxd9uT+nu-UN|JS{4*3(HTAmHm?hi zzVvcZu5ZDuHP3G>FOj9)bS38|cAxH9EF-rx4ak(zC@E9h?$UMN}O< zQo5FxMwXemxi5}BTH^@>KtRiD{mdOGk%Sb<7}LN9uC{1J8bD^e29+X~UC^Gn?! zN`H}@buxau)-0+$t2fU^X>{f{F!T=0r7O+TeooF$%_by z3pSt=8`SvGF{$3Ue6is%``q8oB6RmO6ov6B8Hy(kZY&xTuSGdc1MsKHJ*&~27VP8I zxb&Dd@W(Og`44RSTqgD-=)f4;&HObcar#;}Z7U(Gls&@Bz0oGbDRGAjsIA-K@J*m~ z{a3%^70Z!QrP}Y#l@mn7!OdOn=H{kz>=@$!0L%R355sHqLLR?Ym!VPB#nI6L)7yem zVVcl*I2$)i6%gj$ATQWQvAuMD+!#{ z)YKeA6MZ4ZZ7e`owz2jY0JpBP7#Yj;#8@*>(L_Z*K~ceG0Z* z677I?ytX)K28D8$rG;^ghWN7*Kp<5Mi;GPgG!zQJ!d!QTz;$r@N)U*hh0Iy z3+TP5J9pj_-numv9kFhN^Yrj}Sx~YKILI7qY{e*Vx}en>(ccU6Z%MoQ=M)DgXBk%9%G~u`>Rw&@Kx`Hp)MT(0;yvG~l?jevVk?)QadbI{rC=OQE!knBOoik_H$Sa!= zB3nL}Enc^mSi15yPJ`QY5PdPB`lzC!{tv!bG(1yfDEFgG4mO3O_0V6+M1tT@@bn2e zr5|x}qsIHGZKg~OmWcR68Sg+fC0~ek_C+%$4gRmnLMHxn+Ng{V&eVwTH1f|;GLHfq8kc(U;F&txaaEY_(ztadWGQu zLW2JU!%l-x^C-z+a8}!GLj3*rLk4+L$0cG5oL(Kq!njTPe7CR&PcO!5SBNnu^x267<4IT}xLmqThXl71k1J#MwV zy}cyJrQ+h^d@I@K;J9@@dF1vj%1BE~LWKc;k>B3VPft(Zn11=bSsSYVW|3s@W5EU%dBx=g zhlzn7Oz1Xz{rvp;_VS{y-*#+kxNx*Me<>HJGe4a0{2xC!QAoJP85wcN|#w$rnf>ea^ zsaq1d+Ox1wrRvFEPGm6^L~+N+NC+UJN$rcHVcjteORea{nlrD2{3m@##b>S4!f06v zqDMIo2u*b9#DZUmXfONnjaM2mJ04V9$?EfNP-fm^r*&+1VYb`&m)(pM{bZw?JyQV2 z(%4jTvJVVI1a4aZjUhv!qAl+I^=p$}%-u%T(^(0%dG4+p8#h)EV(VYy4h<=Kg%KnL z&7Zq>@4jDBQj!81Cj}iz8j4yP_FWo)FXKWrpK=>ujwF6)NV}ks;XZ#o16{Fpiis*Y z^7al6|DpNx4GdJa-B@1$BVX z2Jv$(>6goZ_Z!hPS6*sJCbO&EMnPfGj{N~PHN-@iuST#P_vUEuea z5o7>U0cp$2sfwGMdl1pAodoFt{Yz%MM_SL%9A_EO^$FOR0j@fEY9>USNi<1XNc(G3?Um3}!F;xo+)R z6QM)FMur}aXJBA3MfYdwINZw8vnD^y1 zS9u9cD4S#jpFDXo9|udv%`K;AN;QZ>iW0VBXh@mrE20r?#l7&7?~oA#^cC3`JW^YH z(?@?gwo6g00P(#hu&il_Q|*%{W3!e47Pu%=$m{yGD44prE|bu~zR)-W)mNYzh-CSb zqBpkGCB@4 z+`cx__GI10ouAbh!G%6>c5z9CjJ38Fx=AG^Sy(+%H1bJ!coB|l6DVM@BT45!%3l5! zd$U97I$%a$cX!chMlOLyB@vObx2-5OhzG!n_b>kZsY3|pMmz`$L$eNrtSpQ)h0rlj zt~q-aXMe?TQ)C^7&#CJ{59)OS!MbC+FT>ik3Eo>kP=T7zE{sSqkyi9Gzup5P%nJ3FEPfcB=xoq%5dZvS!g7L#H=5{+h}-Y!tSBp;(I zcz>yyVCd(EnE+Uekjm}4OSMCs(rLe@n_#=6{ta0ERcOAaV$$x=yNCSDfW87EqpKx+^^M9lcUYQLjpKC+qVNLw!W zrl&nqDEQBklbNA4vb=D3rwVcJ4D|-MPVzJg(bG^y3lK1*e<-*?m6iRsq&d!M!dr~+ zc<9d(Dy$n4xG5cAsv~#qbJu&SLK`pL-QC^!=g&6LI#5p(W^^#0H*JK!X(cD+tN8wP zNO9$=@u$knB-+~A=+>=E-=k6dc(3DnV0YCRMR({!RyvC`%3P}gI;D%DQ4x{dZPs3S z4sC+n?{9*P8+X!yOQLv!=`lscI&$n-F;ZtT9y|wJDb$OMVHc3mQnnrYsRlV*1Qxcr z42Z`oK#46zAMx$o`Mp+cIot>w!is%MHCNxx-}nCgPKEiwG%iUaLR1GznU?Bgi0dR% z_Ff;%_v82Q2fQaT?(f={45_K9ROjm>ZMVVFccR+P^n`09n^$rW-3=W8I;`zi`D55l zzdELT=+J8I1f84m4t+*wED3QE?J;-J+uPfSC}Jp(xP^cD%9pzMy-V05q zPDcDtb#Fv-%s6jv#ofxvq+j3`L=E#4o;`cEGxH7h96?FMg+n2H>q@zZOjVMx9f0H} zLZ2x0ug|;*GmFm2QJ{DxB_#>`#9nRmgId=?sIb zqELu7A$~DqVp|LtAq3XRlNM+qT&4yCmXW9%k=}ur{(=)G3XBTOBj1t?l}e;11+E?A zK`Qcr`321(#Iz8E`>~A2An(A~bRdUD$y#spSYC7t=2tRE83yfiOKNMDWv9&L1}Zde z0<+MQi{>rOU2aMxMh-;T!9$0-vVTPvq2ov#W8_od!u@mZICs*DQ<-_%?xpTSTSd4| zz~rlR1fjk7f2(#-P$lmRNH~5>A-Yw|7}N(S>(~hD#cTcFjc;$-oiTQH7}8+SojVz= zYcorZd$q(N*u5sO(o&Q`tOVHhj4uzHn|XLWQwqlPq*qDjPT(6QSa717F*G`^lk zE}!qlf}J*w+4aeOt@`U8Q%x5l+f|2NmLf`u_go*ejPSretj_Px_`r4L$`x7ro+I&B zhqdK@c@SU0YEND{TM#Gk3q*y4g!Hm^GY-<|)+MJbR9Kx{LvGOBk3MMYImc)V}4c!Spj zctx~CX1!sX`({SFtE#I*_RaQ$dtHSpCA4?%qxwYs`&#eLJ-{JQPZkIN2`k4r+poJU zzj;1Ux?zx^AiSG?8>ERUNUOTwxoF<)2$mvxN(LSR+?wJ);Do?a|6pSaW}~L|E2x60 zPs@uMDZ@~l2olqdJHZ=o4Xk61w%~%H+bHck8pbBT79DhHD8^{elnJ5n_)C=3E$g2j zA{PG^F$z!MxPflhc;GLS99iozZd+wiE!M2 zUfSliCQg9BUK6dY=T>`yp9+$i%0EmBRr1@*kZu_%d)?=DnpP=F`7h<|Cp6ALTkc+HWtpt6NHyD&2jNl%T^dn@khFHCkK-3qVPVxe_1k`YF8&D2 zaErI0v&k;`9-S_qlj;bd%jKz*VN=>x*Jrq+!r%O2|8Iv1Bg8&6)??* zRDOa7jbKO!{FEEUwbUPtY>oz7t5-oC_7f&_h7WkphRq@sCn z3aGYJ&?Hi*=jASb>o%35>4vXt-Y~;)#2~}CXm!JjqZ^P@cj-#S9cEm{RwY0=Oh79! zh@$^?mV0}iu+seyShjtkM}RQ6@?yy7x1j zT+5IfpvM*UZ+;{|=MKHz6c_Y^HAROb-MT5&XNA#r?S$ltk0@1ytk!sFd679tK?%@{wI@Zz4|Zxi1bKHh-5dIIh?GSP z*MDdnkA=0V=Zb?&mLQUGFf-@#Irp$+fKQtOQIrZ8P`O#=O@?jI6Y~2nLsT)b)DK*t zu5W74-8a0ycshOp8>eQ#5lRYy>uuA^;rm_W8+y zvWoi>S0W@tMEq75;SaT~PD7^-3JNj>0uB8lB;tGJ=Z6xU%O)IbUASL*>p$JNL2iq5 znL!Om3l=Gd>>D})Hi)FcYNQQzzVL%^!s*qJ z?sc%$x@aZ0WVY1C0n8_WI!3&tp>fu;ZqKlO)Uzy%a3X#naCz!{G1^iKXfsj|^ErD% z-@U`D*+Cr{mdBV4B*dHy#*RJiQrja;kywLK3J~x!BT|GfS{8(>;k^Y z7yX-nf&veSWVT}4+y4HZ&^wVk?}mk$Of~~7#ZtwCEPK%MQz*xx6?9YIVaos&KKG3c znG;nJb_>$QbiyWG0{k8b0zSX2?6CAQ8imomM^}hULC$#J*C+9BqVb$>71bWPz9H@T zV|jP|M|!88Xia>I4e%`Lz$xxubzXC2)pKn zpWylkom2*4UWj8biY(dzEw2RFaujT97gE$~?Zk%>OyflDKr7%SK>VUSXnTv z6r@(^RSq6QP)26Mk0is)=171R(8?TOXhP4Ou{^jKEcKINFTEFY=c#QcvS@Y`*KAM9 zDJ1?gu%Nq!G658IDc=Gtuu{86Jn+wPA&$ z1Xcqyt+ap8$kejw-FDFE%-pM_6ho-Z1Q4HIImi*FXjQzVvFgY3{>ki_9*j^CgCjnOC1lV!|ZD?HPc7o-&Hr)DPc4j6SOQ@Yuh44~~-V3>( zB==Oi>UwI?V^z7GJI~a~Q(r-mhht8^eqX}t*ZzbDg;%QlqiE~-P2wCDcYqa1*@J!L z>0CQ8hY)rG3AFB0pB4f@{_PflQ<-A zwgRO7A<*kYaU|dmT68hdwsG+eykZ9Fd|kY{1b7`kR4#Jv={IZ@fJg*zkm|CLn?f9? zoDv4b@UDvxlJc|oO_`lPy(Mj;&#>; zx=*rGVo`vI%K)TqbB6WhdJU8^&$zg_`V90PD=C-0zrG1Z%>-1mPKFhCoBQ;6B6@1~ zl1>#3=I@qF2_)GqH^NCOgjWESf?~=DAYAA=lIsVhp%dQ0_dS(xikXJ&^Tl3K^)ndp zTwZarVCu_Fgd6JOsuji=ktux9l0AcG+3T+_N+r1~O2?bH=t5$1M1$T98qBHZ?%_~~ z&*)6MfdQQWM`+8Sp34&VQ>M+&)CInC%Z`6)X~DE+;kW=6`{S^5;tU*AR=yd#glm8? z*hujtSHNNrlLv7fo0*vrn|EWL`(7}NHre4c6g<&E6s;Nr_Py7A0X5fTINP#0E_2)Bk~O4 zDt;RcWSVn z=|<#}j>ZJ~Ocg9uK=k{W3vQXh$jIoa^}-YO@hRwrDHs^AkbU$|E+H1Hfo3fE<(g-- zc%Oew#B{4e*isY>ZZN=KOaKW>E{0T1tSQxE?F4#YDRseK16hza8^r8{8HDU`Era3d zFqb#8NfqL;`Z-Qg@etey9SJ%q0W7N(DsE~oXoFiTj6lNNvWf4hA<93vL-ASz1q^P|YfQj*`bVYMcAPsFX}^!OeVeUGafM}zjp zWu@#N#uE#uJ41%sOgS`}a9Pnwdb9k5q7McOBVBP#FgYM=3xeL6`SI*z)Y*6E{`6b0lGi-lkjl70mgt5hLo6&TFE6o=~k3M|xAkAtfKB`lcHyZ?DSQ^N12cQ#83zV8mOsGsX54?^kd-Y=m~~>dp79~1ORYIvG{{1r5kxY&suO_&!Ff)vOjETDGFrb zOC-wPdDwAkK(Ty(cYYHLh^aetT;{L-seS1m5^@-}XPAThpyU#BT$s7TV@3Ckn3}Ya z9jn=a>77#0{=smvbOIx%_5k%rz+M%McEbd86fq%#_Xqc&(E*hA7rm<(`0h1m{SV`q zzB9}{~bt7yrJQbj| z1d@&sR07M3nr2$BZvpCjlgeBtU^Na32rz~W71qKju2)P+zLGav`pu<8BZ|1|R^`Je zSqU=?vR>;F;wE zf0FsaPGglm=xeiCV!*uInkD7BIQb(nnohI~#r!`;Jxbi*;!Hq?4c0o6or6QK_GR=# zXer{vnGo&NMX%lr67d1@$ELm469h((TkwZw<*X%h4)*ps7;7NuoA%E_#)}s(jwsfI z9vChU(E|m|L<$ai)5!NI^172pH8oj?5KiJ6~Eq>x66I0eRtUX&m}+am43Z7wO5P({;HMxqb`08ua6You?XQ&ECiqV_*c zE$Q3w-%?9vaJFcA|C@RV8yY0i&0?g@^Z(I|NLEV+Xq*z9NEXboQD5 zgl|duVTNESg3E9KKjb%ymO$GXMHg!fHOH&51zm7*#U@BT2%=7+Z@mAn#FC!g)^J&y z*4H}A!1kfx;kUro8iWp4$#o#Apvn8i-hgWmf{~~t?p_7xsAG41opz#oMLjxn>TAoJv_pM^vZ6-K~ zWeY4K+6jaN-Ea0F7>Z~JR0{!A5G2k*~#f85I zNDhN6dI&j;=Ghg@G+5TZWyjQN0O}JB7F!vRzc?D6jLK7xXd#be0wFhc?v(3qe~zpV|ED<+t?5m>F0sM;__tPFq7zaAnPtJ* z^#PYb-aFC_VlNG4r{%Z&w`9;$C&PhEbCT)?v54>{mWp@4Ky`s>%2@bykF-GGRTF6L zu)zmLh#At8sp~=gr08Tj0;mwPAmT_XQ3;c#Al$SQ4FgcP1VIwPLj*_RY7oMKpfc6^ z%!8lC#!|p@5KlHyiblK37B7-}*|Rk(r9)QUG#K%4n^=)-vYWfM77W$F@uED3ZGgOv-J`E{ zo$N0Gs*MK z_EG_~qi!bcHjlYKA{-kwm^QTo+V)5NNYE{!B>zJJN=Q%Wt%Qzj!t@UDSP_ZKbWqvw zb@ov>q9m2r&K3Mq8kh-s-@v9U}y}4=)@rGOn=vCK)O?Xv4vFs_gf#KAh)4YSt zl%x>XSK#E^?4xkZL}1t?ln4(0oEUKJZzgpGQ*JC-lD1WkB$T%siP^4>v2%vMyn>;Qa z2E6?){E>uHx@C=2LbVniF!{U#{-lcSCFCNvvN{ym;;WNCS$S88=>Aaz`Mrg&o6E= z0}b66aAu{UvwUB545p$mb$x1=#IGcHoA~vuFT*ZFY&%4tA|XZ0*sgG0M**53fK$!$ zrkXE5Tu`eoPG;kG`@3RQJ|T;Bt<}}lO)>Z~NJa`k|Cy12Q?M*-Jx$nJ21Z6RR1jk@ zHl`4;jlh1GBlTDTI;KwcvlOYhe}GOw>`A2|{MBHc%At8zfTk=XwnKaSRN;0)#{&h; zqpcLbc*;blx>2a@>-psM5bCC;6SU$Z`&H|4rge>sViT%ml$mQGiJ1RqNn~rkxPAr# z9$bmG^L+`!ugK~D9tiFu-82g;uv;JcyE(pL4GjrEL+_o2bS z0HIv{mhS|kI=u*mPyxYGr5KV)y42YUV+WDMs2scPBR8jH)i!e?k`llul4%Z#Ol!)!X?_W9GQNhdSA%-xD$CyL>9%^?#q~5be9%mXlq7enlyl zE9_(s{QTCS_v0}QP63;@+S474lD0Xqm{9lZX&zeyi)n%UZh`zA`QxAM2umrCDJtMa3!#{RB@T2IkNyP;B0+!*GoTmH(*}*5WtWriVBBLy~v5jpYdr4#1y+_y1cT| z6u`r1-6q*H)^Xw{a{Kl@SrMB1sNe!R1PFnsHW*JS+_q=W!)t$POT4a*!rU%F7{q3S zr}aha*NKC4m`rp3XKkb-rHt-vFb#^ylslkqjX)qp4&hTD;ySHeaN>j)b4rR!OS>?6nc4!s z3B;DoN6>a?QqvG$#E|h975FJaA$1lLz%{u4cv>4&d{yA}uaD(#A&m;{*s-2s+f_^- zPkRBIkZiTa6M9o8L?J>BC-%pqP;ZpA@&|htZw*vLK7_%{%~}!9QbayR03}iVx6C%; zEg@rG$WHgq=Mx8v)z1&?fIRS-V@5ZNk$TTQ4F>btLM2a+k%Sfv)eDZ!$_e^unC?cy_qPTpk6pJw*+fi>mDmVjSux^6Oszi}g_dH-2Y}?SGVDa6h=t}5IRpy{s;Y0tLc}epzV9V>X*4$q zNS#~DjlPn&A*-VIZ6bXqj!x&uh{Pi$0Rb|*atIg)XxInK^oOHp|L84xIptQw3vs4n zrbGqYt0a;)*jrlnxrvlt-_E>&6^+m3w;<7xh~e$PKq_sbd%<~Tf7)?$;p?u{!HRIk z=gArUVj5c7rzip+`caO^ILN=L9XE_}$hpl(;)6P9y`qBN=!2!D>_=Lu0XqhIePdGY z)I;GBsDXA^o8V2mPn^t*BJlz*d?W0RFr-?hFCu@>Ak#=07t+*=a$zf1om{waultE( zTLB>SD5`)da!X+EijrqhK~a)$h7%?kMfsW4qD2}vaKRbz9~|(u(^JUQ_a%dON#Nk< zDVVUo)npYJOyhtd6DKDp0c3?&*DwA#J-m5{WSyYnrCgY%_lGYHBnCy)z>4Z&d(z%s zx(y^Csofj}?=B49osS{f2Hps?JF~y>@QO`v5T2q=qb8F{2I5yL!D*xu#137oeL=r* zr==(CHq60N<>gM8d?h|!IETnb2B7K#JZumY6bx%%O~eUVOEU_T^*?7=qE`Jkj0}hF@DRh^U~@WyLtm9L`jc-kw^uHW z{+3~_AAj9GehB=adCJ6S&1TybM9o1Ps)`LKL)YaB zxLN_BXuzjE#Xo2lhDu1IhglojXyT5fNWvJeErK_8J2!1NQUuWTA*ZaSZ+qzkqB1c)v`ukBn(JN=_yrpgXOXXFB;6hTk@ z0^3?6O2$``oz(fx&M-Py{s}_LO+)ob!(1An(_N;Azw9u`vCOJYmLX;8zcaYe%e&Ju z)a)aum(OGl9(rW~Drh6rp(=vekG9tmvo}6>gM7{j@t0t4L}vG|mQrK*Eq7x96zA*6 zBJrNndUU0#C+@nA>i&0B2J`CwqB5B5P5-`(z(|IaoDBU)8aqZ51dK~G5kojrjZtt4 zIQWOi|94n7}@a%tSi{46-08tbX)=?Wh;=FZ&`Hi@i{#;AJinD6JbI+0YF9q(h088 zc9+H+17O!a*tUv^b;@hfmst zYO%gI+KC%+0DisTU?H#XWc;r_Mb19_pS<8DP(hvewr*J=kHIeLo5o^5_UGWPs2YqaFpb_26$YPkjVd$IrFoULGqDi zYeVa~&aczM>=({huA#8Kacb9@ytVp!#TM_s8shn5b)qJfBP(^5WxGDC=&jRTKk6*z z6WQIBJUJ8mD&a}xsm0;nir*IX)t|iAyDLXOTXtbYQex?=mWbRTyZK4BDv5i3HJ>!E zUzas8-LBuK>SZf(gmEwP*Ik=&uTKkZHgLPS@wxRe8R)H%K9T**sbg%E<OJPj4F&db>4~ocO!j$k z+2)E~_Zu&|d++n|?&TNhv^7URD{Zx_(W6ay$hF$3tbDmBo}H?dm1QJ1tRQ?}xsX>- zYLI5j8Vg~En>?q)I2vw6HWWl0I7Jr}@&25#UX`Q5Iq`#!YgRL{W&3p0h_T*gmT>7a z&Shg0jj?b!s3c(ZDXsdjqnt!=vHwzch3IkjBK}oX7W0hNCiV`KhLmQnkHMzc``^bL zX%F2F&SB9^IG=vzscui_ z1bt(NZ%B*}(OoCxE$R0-OKU@(%fXcAG*Xo94=(H+rhe%4e)s%f zQp41}t-;AX{kyJHlFysB$Gu-%Pb28(dgtp)ZV^47`m5<(6!ExIW*lF(8CQE=O7gVr zE$)BUwI*4EZalHTMLfr3FeR{DFhje=>x06XC2L;scS8jcDrcEaTzOQGx29`qJm~(O zU+D{+FG`(N2a+SbAgjd~$35%QdGpFZRp@1+wy|AJs&*%9aJ-1KP>C2ew&>Xo;3GG2XRRlgfHbn8%OTub`8^I8sX}@cxG4z{Y1e zBi(8Pwm`TxKh;no&v`Y$h>p76f3VZ!i*y-h83D=Qo|>RH|5Tc6&?xGJj^tiec763?`3Sg|jNMR(|(#YN34E zlU+^IX@fgnZ7&sPwcm=p@ABDflV0y+E!Se7a`u&*RAUSJRtB;@4c@1s6GGQ8`GRVv z%Cq(t&2lHLnrdT^cu4Y&KcS-9vG3_j_WAs_`XnQZn)!7mOPV*wZ{7Hw|e=8#4T?{ZrCYu_`}IGUD;=z zH5yZ_rz4A{0!+Boq68v~qfKpPl#emr@hVQ1Nf}p6i&k|wrKdM}xAM}eSNpV$HMyrc zKGT1sGLG5b-E5Vzdc0cZ#`vOx*!{DfwLe!Y+W+$T9HPAN+hEB?ug~?Jd`2tx4u-C% zgDI2ew|ri^d>d7jF(F<9x38l8!srdm(Z znu#2L(!XEfTNqsi(@RzR4DVlQdqU&{t6m<}+T3fz$QHBdvANEr2p&UGhmjLblAimR z)@jb`N9_E3DwtK!|K;0SbKcdA&RlD<)tH6xG+z%@(;1hA_Z|GmQ1j8VT2z*L!S& z30EIlN>$m0NAn3LsHQ#qGX3dSpWdgL!l>;!Z%z*HFJ^G+Q4G>dUVr(Cr?tDSzmwr} zKK3thTj+bFGdsSD`uy6WY~_%(%T9T1sK8dWRWA<@-8)#k>RDC3kU4t;+5bNxj7ON9 zWc7T0TB}gEt>lutUKpysWeuHA@~J1MR2qe*zpfgs%$;d4&g1G6i%eTNPMabpv7Dwe z(|nP)VYBFj|9K%Fsl!LvKAWqt?LEo7N$d982d zkreSPIeU3wWTCn%nSIY!^*4JzxumFa?d?iBeTw6E#5PSUnmw)S2S@q)z6~icTCx_i zo%a&`bB|hb`r+NRt!poCPj1uCc^lMcrjnKYQ7dZ;Q{LCCYnDOGeK#`bOjDTioKLq& zQ!_>HNqCmT@5xp$DHyQeG}H4*5lSdAX+6(#-$m1^XYmHD@t>0e$y~zei3R2=Cz!+I zX*5}FlbT*72=3m~grr`(@vV>lmz#S81QU2K1RCxC$lNFNSBCTBAzPIw*ZUvxS%cd1 z_qV7fD=QA3D!Wv@`Anj=(P6!y*{pcES0&ds)`S`|@g=umoC+{An47pJR~Q|u8g z>Hm$kvkZ%>{lERt3@9js^3H@CYRM7ZqDo z3$<3;BPQM+-D2e_6K{>N+Nq(ny;pCf<6ua*mM7wsJE6lmc+a1*0>9-)ck$FAH(4D& zF{Xnh*1!EEVj14WQZ}kCFIFVAXX)yWh@`f2(5AJxtcFXZ#@;*V(H#?DyN-pQ{G46v z@~@T=3XwM+@QIqGV>}bU8!W)jO^YurZ&P*X++XIk;12RI^LS(mZ~my?@qE|#k~-^Z zFW7b9FH5jVurgfx7K=!Y9(RxyBt*&3MmhMX=b2$YnWg<_*3R?7idmJ^S!qVLtE|BnPu{R42)6+ELw%NZI>F3rs z85ihASix;ve7RM?twu^BA$KA* zNq?Q_7R)<-hpVR*mr(NcU(wk6H65HttX{tGmGjSHzC5U4np#&Z zE}E4&QAD7~!7BTap-777L_Q>-ttq{QW6I)vxgbqf9HsK4$y@@;yc*Y3=w@ z+#vuWM!KpMMVU(8Gnb@0h$2kA31Ny3+D z4)E!l`g4nBncU~2X>z{pyGP3}o}u+Ybc-PAXQOpdwSt&*rd6r z)zfch_StV!q)DpyZaqnCh`sudZl2Y1-2NnL@X1n)y#Z@KE#5$t!;x>vXha%!;J5q5 zI!>%Y$SS)enbrXvIr3`QK0h%Vi|ec05$rs(B!mn~@J?XcI5TGEcV@&o!F(=SGohbCm(7Td^6qs_SM zK1xgn(CqJ!gJ@ir`hG_^&9aD4M8kH2k;}BAP;i3_-U02MH)~z#=>e0J^iBUnPG3WjnT| z^?~BlyDHQ@lImXRgHUC5x#<%vdfs*y?FtHhA#_*K>_&{k;Fq~2{Z$)zIX+y03A5Yw z5S}k!PJQd}VXJcec7HE3oqgcDD}f3sl3%qXZ1h=|moWdBcMiXrg$0e1O!mwmAzYHn^UqBFi1&eH+5 z_3VP~?5tW2$H|T%>(X+lSjX3?rh3>Q&kN6P+OupDlk;~22gB9T<0%?j$3vMZSSN=p zEEe|fpN&2f#m7c{*oIg%*&aa$9K5j!THlZfTOWAgj{dgvC%>{YT!Ms#)(^(4DTy~j zq^PfQYw7WMgIl5en<%=2ncQsMmlGAOm&D{v84@GRkc~2%edQlCm4#zeOO|bMmfXvd z3{y5Zq2s)ULlc0%An@?)9K$ z%AIgYJ62En?S1o_Lvwsk)o;f*laO>p1A!pD%XRQ((s))0F`zG5$~)N$8)m$Li13$5 zPEJbX-MD_QsEUc+A%zwZ0KJt4kde3fZ6$HA6_potRgggg6E#Z37H#3xekH{b{EzFJ0hd}(MUVywTBh7p3DOKe?5kN%-W6>A=~HczA#P;FmO}q z>9*H2`6N)!iUwbTeKkTyKZMmY%wF6~IXep`mR-_Q`^>^4Ut%oQ+_$FdHv@$3N>qpM zCybcHr3`**<_Xkaxt6Hx-{a(eM%0n^D-);e%p8hE<({X*P z=#vS_IsV!VLHW@OVS+K4@rJqy$Fb z8ep(LySf?!L=?!3)VO*)b9xd99MHhUL=Hx+fJLR68G0mt}z)to~4pn@437*?K#=ggm zHM~pemTq(CdUm0(0{pq1;}sO8v{3Xj1ks9D4NYY0sIP|O{iBzotN%oe*B0sH{ezgU(P7V#h|Lv~FfdApo%~+F&DCv*5?}QNyn0*1$M7-BeL`Y|649nwEct9F$!(UgE zVF4n3Vg_B|_I&DvO5VpuNt#ybM!!Z zEb)rds4%3?(J*krU=RutL|A~7k%2MEfqC2 z9)wE3*{aM3(G~_EJ6{9Z&YMC;jM(jS-ekLAHT(VbieBW&l19Vhqn^e+hKW; zHiTtv<&T^jSuFMZp@p+i9wd6%mN&7{A)gBXtzvfjPC1CJQSj1qU2E5bZ5w^?m5AF@ zW>h^n{xf}8HuYhs0k*NYtWv)3k?PPAo_{6wdFEoN9H`k0pf1F@-)CitCuq+)kFmy&1ZMCXU28*P1ANdW@R z_l0K@0&B3r+uzSg*lAq}Mzh9zQxryaQSI4HkAAX@^xT^LHBI?b>~HQ-Kzf;7q=@jl zdgGj&4xbH`Hu3a%+sqUW-`BJ9%-|hJI~ztBv${Wgv3`DeFR7V>E3&>?pl)`U_Dob= z5xcn9j|F6YZ3tZ>+A;+eNv(16qhGKnDUl57ke=007E$8d?$X z6lH=Sa4-NZ0yxJvCESbJQL%1tmLYE+l!gJ85(p#?lz$^2;MgoCYhgZqvpOFiwOq7V z%EB8IdE@KrlKYt2vxtu8+8<7aY1N9uQaw$~X?G~y9jwl~lGn%JzY@R~{_yyy(pZUh zF$a6(2m2jX!z4j!hP5q^i~DYOm16fr+r5O@T|y4gyT|oBA^M_|ly}kTfXodo#vt#c1t=L?Ky%6kx&FpJQJ3VW4kJ%y z4_CncJZ09|vV9`=(JNd0pK`OdXz`0y{qEYQw*KznOjpj=yhD+GTTD~-`f&a3=|wgQ z{hmh3T_upS(&Hpqt%DmbNwUV+Ze-;#F%qTg?6`}mDu=!|m0M9HWmtbmjPn;IB!7{; zN4CTed!6rM#kjWo6g?b&D5Y>a<9absD^rS2<-PK_Lu8g%=`QLfMBX5OE^cWM?1(b0(mn~RI#AnhlzG}l*MU@HRRQjuV43V|jeRs$If7)^-4GDe`H zN9t%b2=w);_oZtr+6 z=7B2P+pXi!1J`QO4y$ju)+dsGf82uGsaa1Ad$1%oI!yL@z0`A--fO;YUW3i-q^CjB zd!zuuCb{qje~T5N%nY$_$f8Y5An|Cd7y&Nb8P#g;F~^t>efVU!wNzj01mAqtbZ_qR zP)WH*D$DQPFsu1;1@Enr_Xq>XQi~FbcoGo61aJ``ETmV=6Y%Qq z&sTlq^tW^2@a*z}lHC0S&+?JHOjPAm*h{Z;XK#_ud~x(rLJMf3UqB8~DCFq| z!d$aqANgvWs?e|ROF!_{MT4vaz{OL73<}gw0-l-#U`8W@T{O&&1&-!f5VfK)0+EuF zqXS=%HIoLoaVTs6RO>2@C|EEQSO9W!I~2PEY$hlf0pX1y%T$9cY##`^?pq{HD7FWK z;yAFb)Mb$Of{x0RUPZtlB`&^|AQRkc;sTTDkX0IIg>m`Gv%RU7lm_~P;_`X z4>zq1Be(?&MmlKe9(YpY;g|(dVZd>8!qH|F+9g~k#7-vdC{4=WW^nE z`p9LjFo)_H9MsaOak|od?nle_eYs99g_RiD8_BlQs!qv)9-d@8JO^F6m~nX#RvHhs zAc^LrO0nWj%&p=oA$=dV4!?Lrhf~g%{q;Hi6!@et!;z>&&x44sCDzE{z9^i*#5Vg^ z%f2oOdMTl>hDX=%tL5y`w^%8y`q(dVfC^y@Rr&9Mc2fHcSaWHrqyoJ}iPTu&HT<_9M*)%|FMX5#gkASTXg*JXd%q(9a%fhA5>C?jeQy)&MR>o%! zTE#Rf?y5Z)!Z#ku9jS3Lh{W?|>cKe?dfa|bE_MCxzWRxAQmRd}Bm4M(B{mPqEbnCE z)0JNOh|}rGJMRP(vf1gR6PM*dUh2D*`HtWH;-Et2tA|nI1MP4;j}jA+Bx|+$%qDOE zZ@}sQ!*DP8*QJfNdN-#waDGp<;}N|_JnCy1L3T{+_maFbX0PcvlreeI_`vV|;?thy z^LVowCZYB~Y~wChi;tl)qgp*JqSHXVPg%XJtQ^k@Z{YH!U&cMnv-omBxv(jZY3WDJ zpMuQ##oFGe+b1nYy@tiiR4=;dtk)Q47w^CeFYcZl?4Y?Qs)!B9a^byX#j5xPQ+)80n>x(Ov(RfIOZ`1l z*criytYF*We!eE;bG!I@qZh`wRSe!I-RQ3gVrqcztE;&C-2>t9oAWeWbKCD5bna_) z*>um3i}&ZsKUY#Bhz;nHxsqj$f4*|y%Ujt{d61iaz3Q}_!$59|pFpNt2XB+l#fm-u zH&ah~{#ci-EAc<$2(|~8uUT70X2lLO*7B7xgfNQBdLcZD_Qt4DTmP)xp;g!2SFqk4|}=FxqY zA50NON&aLVG`_4+*Oqf86b3Z2;+5;#SkBmk z8rD^A9-B3O<3u<1Jz9YP?ZyAdg;N(JO?58!HW&cvWL&TFl}-T_J6>BVm+KYwe-Q=l zITOiihDWj)n~G@fG}XYCv776+=NJ+<4binsJK~)tNPLSk^(L}L(JG4Tu|=1e^Lx%k z!!vS&CdIvzRwgB#5`i9EYWJTeCtl#cJZp78@BHoOwTNj3ADO{whNc*%@tA3KIoFKj zITP0euG4}pg<@Jeri@QgkNrF88M8IIEeQ?3?_c|{dDMM%=SzJWvR>q66$3lW{s4gD z9Zr&V_RSqy?qK`gqwm~hw{s*Edyr;X17Z;m{el#=vrkJeu_}=2_f?vQvF9XAg~+LJ zj$9WB2->W6gAQbo)J)smr)3Wc=#1SGK7TPkKgAhY64=4%!ICsB!k1#`Y^$#$qI7b2 z{0@Pa?myVu7VjiopV!W1I;7BRKVb4SCv_bD)PyN5B1fpGudOf*{<~OvW=Cabp3$>g za{2nelgQ6;>3YZuhtut86ZdiFy!sPvy#SJqInsjWkZ~%+Y4j{j%}{XRr}s)Bv%LM~ zEJiFHCi4-aJZ4{WsT6Gl_g%*44V?rBIf^rt-%f~zEru1@7M1T`9sM`;{sbAY>BVk8?I@#vvS@!;z z+n>|6F(h7_`_=F`z7tK9p%M2=Q>Q19(CdP$QpR*Z2^9Q8>j0i05@$mb#FL&TQjJ)W zu$%ku-zsn5pHy{K3JL`mj1YY`$sC!*EuOPs&eik8T3`Oy)ZEVAJe{l1(zE!G{q3q( z%4}yH13iOLpN%?ZV4MBZPi7*Hi?sQ9=}LP+3i8?9uX(qRr#5RI`F}hV=u&T% zN|duIQ>6%J0a<|DirS$GoX~*}PrJ{Bmda9A{Gg%ZNa(&F`-g=(Kge2SPOQcz^R7-1 z0VhBic+J*U>fiuQSti82&ny;Y*YHT*eLyooxGgmNk$Foe-p*cxZ{UDgFY4A-6D}F9 zDl5YR|dFBZcQ_t`Ft)PK&WGsQ6}d>Ohrz>HTz<3=bqDQz>|65q!52C+i&+ zB?s2uwU>2#GZxI8yH|X5SE(+}w6Ut9+YswGV!C}gM&jm^(A#_1Q+MJ4v_pp$;lWSg zy;B#s0d-L5qb}c~%D@2|yXrqRE~k6`eBAp&{@YK2>z^n2(Q(ZLVMTvPwK5WiQTay^ zZ2bDaW9BTx-(1>fZR(W%z3N>Mcyn9v3NZ+K^fpy)Guh}oi|LcduKj=SmyN%D*P-wX zZ1LmHT~keU5aO$ewsSf&?@W6wb)u9sK(}X^#iiL{nTk5m)62+Q9N~*>reBgv9=sr7 zBYr;Y`X;N+u~dLVfJz)#mHJQ}NqZ#gFfvE63OO74%wqd#bkEfsJ$Xw#%lJifCuWm$ z4120+*%y~SlV#O3Nt=1Vp;!-7a23F5b;=%z!{^Qf>c;Rba#!e5S4l1_h1<^31&ni2?e2^J-_Ggx}OgnpkU zIa4%Vt>(i}fCaqY{pqqI8Wp%`&fN#cRXB(3H`RaXI;4mO`wt7zta%c>hW{zcAd;888m8y`f zuaMBA6iVq+#jgys0v`#Q7{_t84etk~tRLTpU}O9))5@!%66aeQ<26luFeFlX0pFW_4_ThkT%|e42Sh(|c~yL(>nlu@B+YVJ98@GY((~ zM69jXhp9VP*q%CQ`p{nHu@AiFey{(S7nfx+^Vrb?yc)WC3zj}&bF;`HIkD4aP*tes z)et#TD`|K5z`6l!>ucl-u6lZ!ai0aVdo(*r+(vURHbm(RQHr-TJIWrh+%zcBJ)n=7 z*<8N**q@>t`60N5m%6xwh_61PM>~we9*b4rI4(E1c(}4yQA+O(9=b0a5jK6S3qNLQ zR>+pGs`PCtg(?oenfK}DN#ym7_weBN;Kx?Amiw}rSjsJ9#3B?&H|df;1_+E_abjz= zI*Ryv-~m$jt+9(QBjLYdB%6Ry^#|VXV+; zbJDu;E-&*As`i^r$o0~lM~#@CoPM8)L7v2EL0WB~7sDqiReMuaM6WWP;|ruc=8&(S zta3AON=$Xr9}D{xCYf!POqASv(b_Y}t9Hh=(bWRprm%MIG;37~MK)kKzguI$wDSu| zkFP{D(V*0sitJbCU&v1{=0@?Zwco+}f@CHLm4dNtChD1V1hD!FT)apPnm+DN)rteN zG-?8jLi{-ty#XwdAA;e4MByxesDvni)9ssj!OG;0MjTQE1F+s1wHWd;^#Z4f2{ zzX0Vf`6ML`^7Dd@nP*zlx5H~J9nl@%l zqgE?s7wMNfU|>O=OC!vIKo?Xs20YD7`K_R12_HrMy=;KQhI)QLasf1FwnO|ED7y(v-d@<&9)>?oEo=sXN0r>uE;3$}TJ#Pz;ht8z zKBF!;wHKr=4->9q3P>ux;?=k*pc-Bf7!5~s<8kh3|nys%&octubZD?sz0e}belnD;;}AlZJu zL_irS)RO>8d>8<*jUEPNMnQ@c>TrWl22c_OxZmADHf9a57+`Lo5Ca^5d0;Hp1OF~d^j$yCf%lgz7pfsN+uaQBy;(_Z-j6a_ebSZ{h~$e+VQ zQJ@$L6S{II?&c#a9V=i(PkbtQsrw>M+}_@Lw43f+=QROqb!fO%Tgk90VoD9YZ#Az4 zC|ok`b8F-XoC|0FT;ps3zMesRASiACDoY-Sk*8h)R&2qG7fHYdPYvUg_n-t^)DR_b z@(3|8RSOWt3S8Nr0h~ZD8%)x91qC(Yg}}D}Kai>frcOj)xrR8#df5P^vA=yH4gDQR ztwGI-y|+NdmmBz?sU)rEoN2ml?Bxg}O4}{X9sEnwwQh{QzeBkGUKj3wI(1<9anFE> zqMWXY`iEkg1l3F~T8^9b@T@g=o5MF=J|i+`W3)lqztU>bu)W%vuvkTt9X1W6wszkK zZk@f0_KC*O;X~YRX1;$7rN9B49S`nk^Qn<9U&vr!o*VK90E7B#K{y1kQfbkBCXYo; z-`Sf50`wH+W8z-`erpH7IcdhdtbT#J;5U&fiy%E@T8cXdGr|f7O<6g;PT&k!(6T&# z9~Y5#6m~%PZpo$m&50S=&`@rh`iZ^CM4G&yxYHy>k8pP@R9x zDC;jdT0pCuEokY2az1y%RU&$CBLeQlS{6hxFDLXp)ZiXeRxecsh(e%*q%MLu9IDG( z&tWK?@5;p#vrK7egLUemFjmyYL;-#M~)Rp}GO6!>IEI9DK3ge@?_UvItl(1Qome#Ve?Wg6YCE z=i9785XXi9zaYsmx41|JEc;L#3-EeWUfG5bm7X2#& z5bYj;QXxRE16Nw~V;LD47}mN>9^&2t(1ovK`y0(VRF7sZI@(j9q@&gB&D~;jfN<=zle{MB8wXO94`@*Szz9mD|S*U7(Z5u8>N(Py1#s3RyhEE2QfMEGQb{$mJJ6X;MwZ)ZbU9qR zUi+P8xJ%9Mq(2|OKfq*k)NM!C>56CHM0}KC7FsxpBy(09@X7kjpL)l*lH}y&^;wi~ zKyGEg6tlWGB7V%rDLYzB+(6SlVC&lOxS@5PEWgi$E$>RSq4>vh?z3#F2mhY&PIJAD zngf9mumr+w$;ilrElN27S`9572}-JMKo$ZHZ~(;r3ckgWQBcF6`(Nt8gcKkTbAu>S z2Z;VbWCTbRNTqrV)G#GoR2L_G_4OA%uX_laf4@98D zA#M!7($rx+Y0hxK!0H3h>7aiT$SA)-c`gZb0+@MCm9w|==ChjXT?68gvr;gm^pS43Lqv&0}_5v#{-n~^7Xrxz6%nmp&&90t)dVe21=zt(4ks?KR*(P zP=REe7D%Oi1|gn5zsBf6cKIpF5Ns5nu`&qI=YgyrXevGfRdPbu0)}-8YZ`Z-W;&lV z-CkkN=KBUpF9<4ni)k{L$(Vh)$Ii9+vbs^WEd?A#wo2XWMPF>xV|Z)fsGA=$V?q<_ z*)}D$TzM#{D$I@1$nK489*L5WiJr>LIf)#vOg^<6$$~cq&c&IE<$=CV0YO2^sk(c7 zyssxnXfK-dLrxCiQ6_HT#4BXm-mEGi-?Gr1rJ1puV~m*Y+p8Z0?pYc~ZxqyC)Qedy zG@WYLiBn|%v_u-3_P>9B%io@NHX-Tk^auFDf|Bp@wdJL2`-9EI(da}4)XsJ#GZG0^wSHQ4 z45rz+Z}qa}xH|a)S4pd~#?LT`F`P7ntdHz?;RjEan_!U-gozqd0W=zbbE zY3al~uJ=IQwQO*6CPjJ>jw8>i#gs)OPwg9GU~P>7%1Hdll@*^1VR-Uwv5FCW8iDxg zw)6XW{cHsb5_~@lm^P@R<`To2VpsO~=A2cWSi(lQyp#`x`L0O4|CEus-KF?DPup#( z3u$w>@9W{z1ynHlFQ$tQdZ8eNKRQ~+ zSD^1mr@GrOs+689M-oj!Gp2*P<4hgGku$6{=j>usDsV3t5Jc5)Rfx1V?t1!6di*VJ zX1y1^j^9U^Up+|d14=hk4ge})iQV1vVEbk|&E z8KyAMWo|G1&0b5ToD?ylaW4in!Ne@MEGWGEi&rS~;4r5DYk9hXQS6H1sqQ1Zor7v8 z?A=?>nntaj2ECq?u2YGV8zCI3-`I$l9to@`iE&Wn>^fK4f$@cBen0R0|1f0$@<1He z#6emVR1pslb5J-F#D*=mq2&aE(17KkBIq=5VPWAl_Ki>2(F`I1Kt<$`;Cu8d=eQ)aRaF{%q7X11{l9-QtNX zlJDjvv*(e6?weNO0<8iXG=1AUWVGx)(BXC392~zQe5m*(_T0pkt;OQ z|9g4$;d4M1ri6f?`G8o?4$M0pAOTmhZI~&?3=#f7ko=Y|M3;e5>cGDOgF$K(*z8HfEASMlUaD!KgOJn^U*FmBV?2aP=7nxkRmRuXq=>h1o6NqjQSQxxb-2!Yp2ulWo zc=zvc4Kh#<0We%Rtv8y$EhDlBqc#hPco%WF3ngZ7;SK7Fkcz&OiZTblw6hY3$=Jo; z;aPH`I>e-(;-8Sm3Dhw60xt0{u@Wbw9xxwDSM?zyYIz2frv7qUKeUG zUt(8znkxNf-_)w`i1bMO&iNGW*i@xEWG1GrVQU`>XZM!xPk(nZNfeS&ZBoe|bw7W( zcg03TLh3HY(yhx_aKFebKftPsexv@;g_6$Te{FC4XOldgKO-&}0$Xcl4OVpF<$jed zeMLmL7wS8vc$ote-Tx9ftri^JjXt+Yk;Ve;PJL8t#9qELgY(^mOwB zfUJ5BHn?qvCldl`|2h5Oj=OGZn#^kmVqd!(-<^9|cz75=ZGu`h*t%vaJvOO5z7vJ` zS10*c=iCr04g1ylYM*7@cAKzr?##Kvq6qPB;Mw5RRL@*m^g2Zr<8ny;LjiU0mY6V; zJfZ}`WHA~@3fBBLVCT#B|Gw<*`h{5&<*SQJqz|942?=`jqE+(r+9j1TaS0Ygx4`n1 z_B-N*EAkPE8&}BWzM?eYo&Th-vj5(aekV2YNTwBRlAu`&*rLV9#|MMjpIJaq-~g)+ z%zk^J7lPVAv^L3)%Mm1NZ&&`8rhm3GGHZK(hvDiibhGNqYdPf;!DX#5NM-$3Flt%{#l+ zYXF^h&+}?3avHnA6m|(^OzW)HN4OUje8mr+_Q!A`MtrcN-x6H>^77-ay6*fA=dpM( z-R^d<-?4derGhtAeMA(!%!2lj>4~y;Z+ux+QGe$0se^mdLRi_;5Duxqw22gT{Z;AT zO@){2t2fJSG1pZ<=9?X`6d9qCV}NSs1MlPD@uCS}8^L%zF_qniAl(d=&Ov=J*m8R^ z@Uj6x9h5*1L8=lU(-6UP38Fp##s7yY;I5Pd?l-W@;XIpRQeZO-AvU1R@ZGx?p=SVi zfdL)2J&DVpUP2N?qoExw^dp8!Ta*CVMP_ISyt{V%IdYv0VLbQb1O>5Dbt2&x*@zrV zof*nR=?JoUnhQQPXPUl*$d|A*X7-Dm+Wa!8lk*K8xdIX^rxmH!lC~er()i8V9@Tf| zHBH1{+T-7NTuso%a@d+{L_ z*xiE~ z9B=REyZ`J;4pLKH!e*l>Io_-(u~LnxC<<@UR--HGUCfQi;{_)4oiM)K^oKvCerYo8 zfqf-^EI0ONka*nilRTg8ucSS(%MQAlLy1#%^cWx11GOE&qDL`yXxGK_d0h(VI-3%g z+Sj|G_nT#sFlo^ee1C0vuWI#K6>H1s9o0XtMqG#z@4z}A>P7R`b}OLA9-!OYZ5^Md_^bNj;Mu9*UjhExus$y9#rs#^wZt<~t#d25Y|^G>I)Ms8RtyXO7@ zx!b7w+&ZSnA^De;3bTb=byb1n_bd-wvPLf-$m+pw6-FPBe`9_lZ*A7fYL%Q}wS2#Z zyr@B2_<&K*W%=QkRV#;3-tiqf_m3_C%DMHxR7p6*7HyW}?2<3#!PMS?{VJUB%mL-d z1oE?!eGeKgHOo1XNOhn39%5rNi^5DtDGEK3ks~6Okq3ABp0MY=?KH*FQ%)rl#Vt~& z@d|~T9w(h9js{?;IZu@&9@GAZmIM~Nx!4$|nkJp2wC{$m1ztIHJOwfwvlIOi{4q|N zOx~$IGjF%1Aa3-zvB4gEvY^{c-H9*DG;d)fC7xwLOVOY|XW=IL9v5=i*dxwpnPSW~8M*me6^ z$v2*lL*?^hfR}VM@Qg^SeFN2FDR1s5g7&1J>cP5W*U-K}iiiFBPa_el9%q%?}IFa7sLq~Y@KVUkw+%p3F4 z=@5m2P4MBOgQ|z=N2~3V-P?rI7=3tVTq@d{`e)#K8TH zGlhzrRuDOfc~x4&$snE@;7@Tf6`iW9UsO~gPSPmO5j>7KnCZH!hO&Sc%KW*4m3YH> zT9s%vVHrf-Jnm5FVzT6Saxagv0>{l=D`Dix9^HVHWy)lP)02iCCI$bHxdb5l8Z}z1hT`jF9#+>_)lX0m1#di%D9q|s& z@Sta-rxyKv*HOcTUFXpf)&?t>t}Cg1LN)p&gNJe?2lhcCEzkXXa8e>GQ;uLwim*TU zVhE2=AZe+T2WMUxZhY0m>wIp>C`NW*=wVz@ShMi4nv2@{FD+dn zKsyV?r;zBKU0x+oRW!@txx$%USq7PaitP81DsNrf>iL)NAH_qMpu4TU>Ox3Ut^R78 zi{7Ejx9%57AGjC(^{&jAi7E-%U5AH7C9{3CwSZT6y=aXyUoGblx3JK%t(bJ;O8tjk z3w9D?s4<3SNYdad{7mj24Q zSQmJ~QgN@%x~F+xBOscf0KFvJjQK^q$uz(Yc1f(-9+q@T064 z_tvZFiiq^ASJa{MzZjy&=TM0V+sd7n(6VKW9AOpvpqZNeXs9B zAG)iy9z!VUv^t9Z+o&iv&zRqxh6S?$@eL-@ll<-b%)=h$j)j|u2lY3dHYAi-&hmMU`lrNQ)ed#X^m?-S?{@Tb3)jc#jv^X-tih^-?mhBB z4Hs!MDOyR1b#15gi=7lN{Nt_rjy!cJ@Gcq?*!vz8GVuaw;7?T{K$S161Op>$v245R zOuMRJg7A5E)|SJCEj1&4@#4G0wZ@BYL(xy{!A0#GB);;Dz4-2uNB#>#XHNT)sj-oT zUuK9;7#FvjYHK$zFBvOrTOI2DJzH@f2%`W`L&4;w8x{<5cWlxX{W?snUYA`uC$G-C z>fSjPDu+m4tjc_s;+et}WbXHps})^Bj>W|_WgS^jy|s!}RNg@N@!!yauZ>(JxM1Ur zkTw_h>+@EGXq&;+#a!UPg#P*NEUEU!={d+=aL2(DH##Ji11+2RhTe`+Glg15ZTRyh6z97lB{ zhM+Pf!=i{u(8;-*Wj3i@$XQV7Qevm8(^SYi?!slRXm=?Z?^Der=CGM1{ML%lkkX{p zLQA>^Y-6$6HS*6RG#Xbw%fi1Y+->3~o{vnKDWCWy_SX^v)4QxQXx70z?vOY9@76Eo zN|UMBM`=dRY3(5si{^OLB?8{ZxmEH0HJ^Xch$xvz0SWbFw6P!1B*k;hpI1qi z($R6Fvsol_DNNOid!Hcb?HhhSz>gMp`aKD+dGtp1p09ORMF}t)R!S&hLH3On6B%Jy zWz5tBGQ9M=*Pg!wb8#Twt9#jAk@{HP#PIG8yu|tS=xzo3y;t<4TghiDE}o#hQ)XNH zm9t+=-F=v8udMzpp{j-Z)E0QrQG6u@$|x+;s`}yKa^%Z_{)uX7PY2YuG?)OO2F z!Q!vv1>O3i-#DaSh&WLezGJqsK`rEJ|7IQ~ ziO3K{8yP(n)Y{=fso{_O*vG%+ncxcD*1Te7KUcmk zrG(?(D(8L!YMkp1)xlYof^*>Tfy!ltPs0?EO=t5rf@Qgzitn=3j;Y?G#3b}`dbQC0 zd78*HP7>w&VL>N9b6XqltZdcs?i;>g%qlfIsU(aZZ!;llRA0e+#RJXvUzc_|F9!CU zsmqBUyD2NQ@F=+WjzO=BdY_rP$WnR9xPwopuyd*ToO9f1InK(FiMTsUo(8wpsG2ss z#TsE31E}ZS@Y-cF?0q+isKhf-4np$`NNb<_p-m)0@A#MmVlcR@q~6GxJozZ1YtsrR zy1yuz^?5gYZTFv0nnpD?Cx!n8;fr1_Z>>evBrjpnZMX35D8E98ux>oZ#Xic71%6|5 zCUh>vf@Uc=+~U%aDFffF49E+VN^2!9)NmLKfjq2NQv&a}fN0jz)dB6dyxxC*7EoCq zN9c7_FyFZVj#vkq#o(iwjqLklQYLbGMv4zil33cTa46#0*>28MM32*96HDpIa7|{c z75|N%^}Ne*qdpWR#f?%VoU{&8(>!+L&+-VzPksll0$22ZXGRd+=;Y`G>IE|k3k3j; zRfAesAlD!k8h|njQI^3Z18Qr~j^nNmIH=rc1pRh*piwVStiX$5;)5aJnU8~nUtwWd z!0_w_68JNK5nWx6MnDCn5sD1&QD>FSFZzF+8X?){{F2ET`_I`)A92gQ;7-l~bPPvp zM^>WN>mB^Zgb-{=hD$r2bhw@zc&SzeoZ!TyBnXTNISf!Jk&PVyFTMpzC_t^lHGtb^ z0sh(mg&Ivify5)&XcRV0u_~+ZuS;B_WhL zh;_&TQEv+XlEJTD@cmWzc5Q`i?@jEh$^stAG8zh7OP<%9Q3AK<`%{*ME7l0hrmXE0 z+;?T;lXhNz4k35cb2l*9@>gpQ-J8Za1WHJzftd8$t)1Vew9{m%)U9l#hV?$BjKn8* z^v(t3_oeg=%}At`qQDs{^!^^nLX2p-?zSA)+*AFXLNn2&w!rE{WP@(>S6cLY)AOKB z=?wVl?f{w#<!}XxZO@{1tu9sn=<>Y1QalnSAbz7j&F5T*3HCBduR^XhmC4CT z=!xz#IkE|Fb;m8{alE{_C&4EnoWt#N(8Rl)j$o>%&pEqmvQ1ncMt#-&Uz60PKE?mC z5TNm_Fwpz>6ig_OKr2V$At?Fb1{h9o+CovEz~u&t08^iUx{#2gqX4yRkWv5&rRDa7 zNgXRF&3X!Gz}F7fWLc3&elan6=(|TUaA69VsKFD93Xw}0nSEIg#ntlEJb2`ZSxuK0 z{*{CHUUEuE?#oY%wkR^?H!8{oD}LWm$;eSh{jZ{g#Yr?pUHzcAW(I>A&cr}h8p9Z0 zO)nm2F@8u6^%=zkxd5&1?qH^)g)9ga83PPo(I2QT1@(9h-gJ0v zEyTj-U#_{2vMf#Nfky!9<1GXHQ@tgqto+8sB+@F-U}3PN-rF@Qw{FN}#rZa+J|RAS zP?BNj=ckYzbn+M~5eD?+3D6=E5D@TtKz1lt`b|S-q6Yk0IK1QFojyYAVC|dq=~Otg zXG><26SGoSbNAlO#Y4K~1=>2@17wVf9^WpD_uC?>X5syQr)@^_NxR-5tW!qfX?eXw zUH~CwatR%)6#3{MQ_}@hL6#N7!UUNmrxtd*0A|4byE$+Z=-)?R3I(XuFUM+ug~-}6 zP#$m&VXQHqLEcW!PfIJ}&MT15Sy)^IWp_92xdwZBR6$}z96HclpmZE`CC7sGX(sXG zfe_SB3BgI1Dlv2g^A99`CNJo|H0okjDXT*Eaky?7Z|{xGi}HDg3cG-fhSByxjaLTl zOnpK7m(o(iJ*-f^NT=)L(hT9~&llkrJMM@JQ;OhE%M@E`0wG&%hybnP1Vj~_omlmH_bfP3>%apGQj?#qK*U{FjqQopIG>ADhl z8zvY5@6er)`6=h=RsS;KlaWBC$(nuO%jBZ4X>|qbU&D=Miul_P@Xd2y)|hKhmP{91 zqEhcSS^ra5CGu^spcdQ*{_l#rnqZWI*DreztcFF~T!6F|pP47@kPZbd4r$-t_WOs2 zw?Lr*EEwE`P>I@ncU(89XmMMckcPUS!7#H0)fhJ32=%l8ZXrMDqVw7Op$V30u#P6A zrP07vCTql?8kF6shaeev(gqsIq(Rp<0IlYNG9HGXS1qpN(|Olk3to5=+p%;lp5?8R zF)Dv|%!zAUjG%WOV`1oY(t>dW2@0#yNgXD=JT;~ZfF*Y6Q?oYOpM{gXnEJxZ40b*K+#^aKSapY@4C^ zB%rj?f%da~fOn@f$BBD^Hk+OMpeO|?X&d`LS;Jc3q2La>f?;jon>+{LNjz9Lp`QWA zkPXI@Sy0leB?@V_acVALO`SL-MSU=onm$)sr7|oZ2~V5 z?2QPAa(J)m>;}ss`gdZ)s_SQ5tp;ueY!%hU8e=bgeeFQN~!(lj#+oRnuUtw^D`Ee39BcUPe3oH@kv<6 ztdh6hu#o8XVRdpDz4bE%Q`Jp_)ytSRW4iF{?7DaIinw^r7g}}tN3|?r&sH8!L+LA8O{wTgVEblgxo z%&(A}4~89FuM>#t(tUQ=IAIAmwRT2=!t!D<(IcjTShP>%$BI^lVVM-SjR$JAw4^F+ zl^?rQaPJI@n(JlodQ&PKM}F@@sSjT0wVBjr@&Lz(md4>W2i5{_dg*`A_SR8Vu3y_I z2ueyLAYBWjK}4iMLb|(4q#LA_?oR2D2I(&8?na~qDQRiG``N$!j`4nV&NzRZF&um7 zR#=N?-7)7iui#*5@Z0JX8LSm97x5M-s<2qUI~RX$7lfw7|4h5=hH&B;Xfevvj3rQv zYMV$t|8xu@cleH?+9VRplPBk4ggVsvpC$`Ymk3v>!JW?~G0cD0-a=ERPd@47u^P^I zrCC$gd*$cOMue>=lNrI7Qpa!rg>^V^d@YP#7{-x)h+| zmol8QI(|_%7tldE!I+%j?F71fX6FwJeR}(?236T3;<~xN8=u7D?wD@z#Qq~uz@fE1 zq>isN%TVi_*$#9+EMF&y> zT}oqqi4HLe*ZT}Q&JKjN8nPwL{?o2yHU#dAh0fTSyxFI_Uzolj8VZ7=UBo};`>%7t zp&FZ)kC@T6Yhq9g)JG$U%7YY?_if$%>IdG z2(C>tW@rcE5JT4n3>sv05pa&8cdFT!I19LJt-ncm}ft{HuZDv29TxSEEFwX1Gx8k`1h+vO^=vyQ<>v3jUFt#Leum>Id_QTK&5TN8`SE}bVx|qsaA6q(CRxs zE9Ntb(=Be8>zs`ELihu4*%hAuOjc&JNn&ZKDbAc$O)zqxUJWO`rCNn?Iuz}g1S~3@ z4OP%}wb%D}5VXnY05=Y8cY1g2qW&*tiIc#Bqgl59`ktj3JP50`qo4^~4p4H?j!-C| zA%;75e@>`XnHD=o&9wQ0wnig39Vqb(cNgTptyE0jyPwQgXN}IfZ`!Hr8@X0uG#jsA z`9s(uJg0ZO)fr(!gKLqOmDgff*@sHhz2$QJu2Hu)ilv)$Oa!tbqg4BabP>T57NlHM z0-3y+JmO4Xz_XlDqTsqCNQ?xp-YnhF>5WD>(z@MAxVbLkK+-XFAidWgc{nK39C z6Y_t|JbVPodBrcRP2>e*fe znIMgJl@g-phH$(5;H|-;7cM+;!`R_4NDL=k9=LcGD?)`#plM^(p@MzlW0gPV?7I zu45g&*t8Hc6!>8q0%9X%{{f;-!U6q@1hk4Z$Ui}yP3{Pc+JS`)2%GQ)WjRFhhtg)_ z*+D@D5l0~v02KTU;=q8Dbaq9>c&r&HHz6`D@cf55eURY?1pY%8pdEEOSi}c}gkJCk zP_WL-AgBi)qUXaw@d=>C>jtBJD25HNdksM@E=cLZ z2mc2NPNUWR6~wjyE9L*Ondhnlv!;h@}c5TypPtzJS63@CXa zqkbrI7;xzT754}b%ODH{GB_~gNJ*Qq_D|i|qD^BQd2hT8vv(7p-ey7Dc5tMH$sWTm zBG7p@V#MysWHkr?YpJI|GTqQ?c?VB}sbT6N{P~{TpHad>-!|*y5F&AXCeq z_0Ltze^Uu8Y&89sN}%KJDVo3WIPtw22JppuY5|b=E0E8 zzdnk*SJ8^OtuXZG(|p~RJ+5LBX0&5)9FtCPz3BGt<2vKjG(!>LmBa4>xh6s&#Rrhf z*@4dwv`7JG@h$j~;6RL?QnVn*>8xS~Z4R)42UIoClR|yIJEKY=1;kNjVnPRh5$e|P zM~CbMgasU{VxXW1gT+yHq9BU0y;e9NG}K}eHde;(n>PQ&n z1$kl^J*9eLS$YwS>j2xp{n=#W+JOtac&L}hpuN9y7koLB+})dW=NM7@Koq1k6@0a3 z7i-XXt%Eg5$nVYx+8=+ga0Klv1a0*uj2! zp%Ek<`&d1EHcsJ?(E6M-amdV)Ok45#z$%1k9oDcsFM`FF#sFE2D1gLY$d&_2CI?i? zW015C{fFgm6a&~!B7j1~@$x19DTsU+DgFu00<@Fhy@BCj05i22WrT;L!_CfG z3II$b@dMG1A);t+7uLg9> zvbrbg@nvA6bOIs6U*E#J((~f~SDu_QUoB@;+RLsmHv1Z`-0RgIF zAU1+_3}jLuuFXPQ7$8zAWm+>88?JwwV`+)ZFn1lYEgCu7+9uZn8C2WS=o2T++;v#G z`zU&8dEWg-nw~V*dRrW_rv%JBfQpaLp)Y&O#L53pMeY;A+@7YF>^!JJC6U@|k4BdL zD+~#y!~<0wXS@BNakpi=|0HlwDv5Mzc`;gJHZf-c583h1$$Wcmg@T zTwELDuH#chm+oKd3$>O6&!0c907$9{2T_{ytR@tr0sOum!zBY`4It4$07=RH`t>p3 z{6jhDh;wU)1{p}kLJYc!kPBeRS-uE@Cg@eeMt?l_p_=^ zFIoK_jOJN`bq{U#9`uuLBL7%osl1rH zjbdAD%UM$C%}T-Bph!K;y}g(H@2k~L&2RTUxb&hsxqdXVU2Z2&SpeY4+jyAMjd(nX zxf@@>Bvn-@PMud0fBNfls%BVXWs+>2vTPo%X|zE*h4$xxhZQFyT?L(wLAo-*)w1yK z7v*q}N}lH5U_1G!_Te;#GrA%koa}4UrnB!K8P=Q6B)^_($_ESK>C>l;oF(ADAX2;D zfq3kc&GDDa^vq0lQ`2*BNe;JW&lQxFJq1+gf1s(a(gYAU99*yU7B?UVh>oT8ObPnu zRaH3W=jX{Brc#Hk$W}gJEd+s43%|MzD8{mTX-A?7w2Ed(zT7Ie z`MTJNeTdzDT@)(0fDok*P_HY210g3TCw+a&zXDOPPT{~2E@5rW43>WYID0k+Ik~uu z24ZP7K->!ywhW2AK=IRKC_cZpXfsz%THdgZdb@_{)1m)xt-rdDM*44=nXa332)SmWG3xJmmBGEi!jFa6ZtX2rcLyYAG{g2_Bt zoK2#-)>ex$zk^wqEMk?-#l*{s%(^5ye7c-hxZ@_GL@zuz@l^NCAOPP*hB{`RCSP8{ z^;cPip}Do?+xLe$+gu^gfCSLly8(0E!M01c-i8#Iz6F9nHU8HrnLVd`&<9poi46q2 zyq|IvSHFCD{sTBpH5~U6$Bew6Xm+(_0$H+vfcgr~05EV1zkTb2#HH_tlZC7iI^?}i zaBq)-1czIR*J|hVx-`ww0{|!UUHyw!^c-nev^Vr6!&v-Yag^2K4ZSAiQC4onkakTpF&t?er zt>sU!_?T6^pcE)r+(3vT95+ZaiUw!Q`;q5sTp%9tt+KMR&AOo7S?gnJ@$i1@YCr`A zLN2y%GP=5?p#F$w#LYVZ)!Hhs_3Q&#We!7-tW{Z_A0K4h(p>-j69wSfHR6@aCqIEV zARM(430SGvk6+qN8F@2Pt&>z$5KzU`g+8B?pEpIk5GlDOtKwk59%eOrNDL@e^(krN zBrxPAWohZ+klDw{r#UZVuxdB$wnr*Sh3gR2b)&R$f180P7dZA+KbffT`uaMpohxp@ z0HjD~H!Vz0Ll&8MOn*R)^nIvh-uhE#lKaf`^yciVSFf_cmfM-g4XO$^Uz*c#d@20Ien?FS04t?#y7wnG<+YOLDgNDq%I=uqNV`&g-mc!%e@?)6pjb>x*;{3|Sc z3n;mMPbr-?2V52;aDmF*W|Js`!xXjcc8is9=xlEe6Ph=Gp#th`>&;>F;~4$S#YHVR z3F>BW>5VYk+SrU*D{E_qL2jpCztXbu{P^)B&7;f4+PchsskXMZu&k^n#VjKPSDp_$ z^J>`asP&H*Ciqe@aIsDRF<}}=u5CQ|hmqZKKC4apn>xSW4!xi0o!TQY$91N@Jv{m6 zy+U;Ux?%ycel`pVPZq{=vspQ#gwXxh-Wpmnp7+d5bvoEpyVRtD~Gr`uvuR@SE zV`ocIC}jA?kSd;o*BN*@VbCFfoS8?@l8mnR2$JuaWw_;^D66UlK+$BWBkKVKdi~Zn zpckS}9r-27C=WQ~ir~ir^N3%Gq`;953}r{HUxLvH7|F7K8wS3Em8L_9Iw=&^2oltN za1P$TK`8A8kVjtLtUP2ep3b%315dia7X`^rHDY3NJl;Lxc0Xb4!Ifk;e!k2Wfjl($ zCE9<65?fSJC9c1i{y7?+xV0*_k>*)anLYvK?D-5#YTuZc^jAHuwK1;g?Ds?0FP(A1 z!5YX*ZP_DddJ-;zYB>8Vm<=-C_zpQ~;Xv5A3Tz2_Kz`g22;oJ5vuRj+0z_I|tU2z# zQp}9N2D|JeX!{fziV7Y35F&6;GiA4EUI3v3kfAM1E)98gC)FOLcDes>-z(z=GTMo1 zGx;AbOV)(o0AXp|#M!7zV%81>a`-jn%xkp1!b z3EUZT$GPNp$WX@f$m^AGVEeZv7AB1nie8W&`zB6Ida}!e%D+oI!tXM^3o9Y3Zc?(C z0PE;s&NMuF)ACj1{TESRO()!49W?RO@oY(7EyWb2Bji5HX<9lOuE~;4pO_~PB2V#Q zv(8jxfY0C$A`^|zb|#=UYm{e?37pt$--ZFt0G!~CKJp;XG9n@ZL~?SB^8eLoIUVJN z0=&U}kjUr=wx;3j<#95b;iEuI@<{N}LYa0SR@z$amq00Z3GTH}G?oT9h~Z#tObxLt z=rTPy)bqiEfcyv`A6hil7OW&)7b3`Ap(l($f?cQR(+Rpna3=Zj`CRqRGVe-Ux4tF3 zpJ&$(ltjG&&vSTxl4s+hXZ0hEito`dW6cQZ&)&2@c=z*l#nCm7y}VuZJL7r(2u>`}m>M-($|dxY zs?$)pFVI?Ef*o-uEj;D$O$AeI$;qRkoX-6R+1YBZN^JeAyGg_ALbwWbonlUU!`v=I zeJLEoIcp71eGbZDaWApLUx;+n~I zW+kqOtrolemP2=k_ru_;B;WbI_f+W&O3b+3RW2G%))KVt8)|lxbi+lW6$5!1b;O1N zc8d0wc5B0HY~;W2dl7|;O9E@`?% z3bO>(7Eq?*t?uR}yHpa!)8u~VE6?pJzLOdfxS=6KssH_n>G=?A+ya9Nwn2h!=d9rH z9Bv?m$dnpZNlq76+_}}@F=DMs-i$mR&N2d`GIpB#rKcl{0HQrQP8U#jOpwxA`;I?} zE7;>R55=Hk@wR5Gq&q^2v+zx8|Iy156HnoiKJp!QRa>kR9pYrT=tyZJCBr6B{#VMX zCHN!&Pu;hHJ1XA6z19e?Qy9^NT`VY!Om$RS^#VzgQ#0wU`Yg-CL*e+9kLi}E?>vl$ zsd#DHcwY;vnPV^Zh#GmD1f)WHZhgXd zChyI&)aYg@iqsZ!|GRecH=6CHh;L%%-F;*cE3G_IIW5Z{S6ZZpe8OOGZ**TrRcYuK zRm5wMDN*C{OVoqphfB8Yq~urq5=T9(-q-*akgfq^9%bJhS4|tW5F_009KO566Bme` zqV7j+Yc6A#w6T~*!z{06@3R7Sg0Jf$T|bvlIP)g=Nb!92vWM%R&|w1)ji>OgLkHAPhlm7b*74&aCNwvRAikZclCFkeq38nHPK+A79 znI~CTQql!%PLC&|yzu~ergP=t-qrJu$I4qTFRw{m#Gb5R(RTqKLqm#-H|F{=NOPJg zzOIR=<0x8RNS{3X(Wbfh^ICuGVT3iQ*4%d=X|vwA>;5j_yz)GFc5l%nsq*G$wqJ{Y zD)0V$|Al2kPb7N6?UIkRrCX}+(L9Y@C%_Mw3x*t$PKcJd{>A?E^>}ZzS;Ge+Ag|Zb*0vwx|7!rG zs{h=y;MFMDNe~RZ9bs*2MopG)ZTY{`WqlJ zybtn{9n!z&I1X_H1XyL!qD*Zi%5ag`Zt78bU&|ucpk0auN9ymAFIT3*bkmOq+}BVS zgpE%wc&2vj#+$j4d}jh&=RZ?m;F8Wh?tC#WiHGpdGF<-SP2lrzvvLexBe$)MY~}XX zYpCu3W&(x>i?tyaQDFXshkg5)bpS2Pars&5gUCb%1FpYKr%p18GZ%Ph<|tPFFCJW2 zmUb8)e83L4<;pMgCM<60r!w)K@8-%b48!kMG);V0!X~Hf6Kry|ZzdQPfJR`nJ(>=g z+UU9erUjS<--JL6p6P#-4)iP~B5ZD;Wx z_DQ;1VgI}XVFH>^OWy3!8a=W&68~baIaBe9O4(qlR>f9X`u^`sINh)b!_+(WW0vGu z=kP*rL1A4o#I;bU2myY#$Z)GrYuQDa z-V_Z_CyDB{s^UULOmc-|n-$xxWpX%9@kvu!C(IYn(FU?ffxhN|9e2A}+vV)DJ5x7R_He~IF%qONZIP`U8{!j*eLj|2}#m+_Gbu$WR! z<{ZYcQ;lNfM&om4< zm!LcOu?w3#ZonGN0q*3wO~G})qlU+a;zgYZ-*JhMG+8U!G**yPJ^QC=0b`HLZx7e3 zx6rwFdAtD+=L7mLrQ?e?aOJCeO8#Fy9uv8ECbxl^npI0Zn zUY4qn!P*pexTdk6m~^EaV;6(;1S$SbdpdAu#4)FSXrV1zZkk|$!@CtdDcgNPazLNO zJ(svS{7z6i>A`1Nk`=kCe)!l+?ZB_tMo2$nh4sQVztx4?2v2y16r*mZO>Hjv7Y)#T z3g|eFyn;YK$f^m{{P1uP`uE3kn-^$@=sVv&01FgxF|o&dV=s&IKw)>er~d%8#WUvH zQl!gnsT3-r_SLwe$V&ocuI`>g{!HH}KE_y51)DN->zCsW6rX!)3h5M>J88hiJ27fR z`%#915m}=`F3~+c^@}!O#NFSV-}GOI(FQ**#8}SDzM}VM24+gVZ!!7(!LbGhC--Ix zuT---KkJ8SlI}Ctxx9Bi>0^Qqd>{k3tgPdd4-owN%?pAJlEt3~pBZ?pIeNu#dM%R8 z{$zMt6ru4M-=xp_ab+<^%sbPhu)!+pP{eOm9#dY%f2Gx7=v0(oq0U;{R!2Og65glc zVX{D~2(us*4a$AiZI7t4GhlLc0`YV~C-8<{2OZf513(8IeF7KkX?C3`;t4t**8&R5 z%Uu>&*9rIC7H1iRv6%852j;8tA8DSs8p!Npl~4N)R~Z;3MK4gA_$J|Z!>q${=J@7xiATyeZlp*H9{_PRG1To#)X+!eK1-WlM@Coke(zVYGd7G@_^LmP-xIQO3Dpj>7Z7dTHvardJI^!EUZI&+m zzQ39^n8g>)$?xk7*ih^W+w>-W2u~prDhkQdg&6rqF2>`Wi6%@lnRcQt{ZUOyoUJ1x zPam5T*B`9;652tqPLE*`CyXDWGPRZSa7v{S@8yf%a{u5=m5e`@|HNj&A!e1cY=~y$ zIje%|`IlfPMO|T$vbviQ8lqlqXU;8r79axu|rrraDgA+(PpR|<~PdAWT~vCwoT4e zDRa4JdT&VX)40OgmdW$cGLV_)#;;!hd)lI7miUQgYEFo^;a+_9i4fW@N6H`UZlcYz zMQkPAsimk8&fExeAAsqJynTxRG9Us$zfTo6u;~^2FD_$!}&|Q%m~Szu_{PhmNpDuvUWH3lAcA3p`wn^-W|}b)C~# zWK_g)1b>{MCBS+tWnE*KTv$9(jM*-k@h;nU6+<)7e;+~`DOm1!bY`{3i2A`^ImMCXsT!nPJk zBX?AFrGDR@KX+Z>SZY;C%4p~|gUE$jnTJ~W7+<^TsKMMnISRRY4-CTeM<1+l*b@&5 zN*{!+5I$)-&5Lbn1bldsQi#43xW8%Pv0CN*K8^=LG)PxyJw7-Nj0V<=3NoaiSM50h z7|}7ne#pUk4$BqvN90LKAQOg7h5V9R*roO%uG7PAGG>`w*rAF-ZkMYQV5)+jB3GN73>8t45jk9xHb*grbaT)vV!kLh}o({?E{#vp#469h~WvdpQ4tgCn zwBj`GL2MdOE-1cNVgc$EBd;K4f%HSO~Re<-}-P02C4V5Sm!TMMORWrVK~A+*ECjpD^;w>{Ix;I zd+gu8Ah$bI5FpH#$5B3MUus$wUv@gr=>|cNU5Wl3gN22K!WzeKXQG%q!WW@&7TCtc zj8+JiIWF_=A1yzyBkL*4(zLAMKCO{r8k%huhYhOc=x(xJ?BRSz(|nc!w|$d~+YLji z3eis{@GcI)ZV_^(RZ+b+P4z;VB3EAFlu-G(MpK0|K*AyF1{e2y5C;pj+JMdMeZI`(uLciOg7<;YR+QMsDjk_Q4nYX(7*EdigSyWPS_6 zMEzoL;}sm)Q|M;}cjl{J%Tz3oEFP&jf!0qqTe+tp>M9^m_vnX-pw;8b-9y;mfITd^ zF5zrI5*ri}Ud%lcJ zJ3J}G{kFa|(<-%PEw${e2?jw*$CX2lK+!dY7F|i01m4NUT{F|IC{G)PcVpRKwYmr< zuP+f2+`~^3cgxikzdfjkx_&4~cy}nNo3HvZ#fiu_G4UA~G;Au3b8&JS03ODmHQ!hl zgoUcB2kq`!gp<6%0YL>)dMR~vTo4@tc+Q9b{||`s3rx9|n+`%lLw(15?zeqVZ_ex6 z@18C$MO03;NoHizN^hRh~Qohz8{Iy<-}(-^oN`F2i|=7 z%t)wK4?M)mpBMKUqGd>ZpVJat1RJ`V4>lk&98<3|&PtQ%%fSgyG^7@C!yaPAMbVo{ zk0=#rTh8*GM_hPmcmKe%_5!!C*iRPr$q)H=A-fwoO;h&jyL9Bb9fd|s8i0-k0~bl7 ztCKBggve#{BRDYd$rjhY44UH(1WW@!f``z~LdDz)KyTJb>FpJVR#O-OYp>%Ne-JQM zG}@o91WcR?=cRT~i-NJ_=#OpiGcwaV0^JBypj-}{3E&!WepWcLkFk`?Dop) ze?^L?I$TJiI4omp~X z6USDQJ?rZi3?)%?uvK$H>}z=)Z&^Su@A$X zFCN+&{to>{Y(-PScB_l>T)DIsJ#XB_Y)&Ian`qQ_x;L2Hi%$1b#nf?V7gVKIRc*Y# z#)O~mIvJ-l7|T#Ye;zN)m0Ih*xUVl!4dIHsd;(gSq$2O{-1qKxJ|5K0vDvK(m1@^x zfGO=`IOsQkv(UBotv&MPD0i*_7}6<#)dn8-5AT};xJdEOmKGLve_H>p_Y&KRa;1s^ zv)4+HX{O_KJ_Gj&%s#R}qXlFKUCHdm;Y;O(g&nc9(rm!$bgK>e2Eb_riKXq*2;ig^ zxl0@jjEweRAiRAMu?^fcIsnjlJj(kAv3TY2BK4kx;I$(9GKGxf;?HM+M*AM)#K==` zbQt()aC>s>;}Z!oxx54SxB!Az`kK@PEmz9;d`KYU@ z#T{teEGuWezw!%9Ztyp$a1#yJ9z)W(BTT$C~l^^ySr>3#woxG zdjh;cDlI%fc-dv|>$cB;z_kHX9DPq;|Aw_i#JV~|{QL`r=)Vie{Y<(q#w5xYoScXfFHM=)~NxnGpnwzpILud-h2poSs|z|{kJI+CU^vSOK?K6 zva&xQ`zbM>>zQ2rw-}9lTsht-JFhzl8%57WU$jl4Bs7S)J9k?SbNEeD3Ca z9>d+9Wf}n>-*lG$%fTtAaJIuNAPBkGW+wyhzB^MEH9BzY{)BGl1 zOrn8=LcOd~%iYD2o4dp_{0n`dd?RoU!BNNv@401gy<%?vX+qo-E0ae2Ef7zO4Y>!1VT0XzY4ydLJIvmvW0 zfrmE!Ya+~O4^NrtsCTs?yT*I*vR`nsPvT1kn?zNvMG% z39>a*Bm-(`8|DG*(-hYT<4F@Q@!z?Q4WzG?h6W3It?uSSVAG;6SUqEHIeH{;_gfwT z4w8JCRBNVzprB4`XlM&&asX_^$-Ld9gNFm$y$;Ck7#x9*-~!Q!d_j$81W0bsgagh1 z06+6prf9!L(}^3b|M5^#R8>uo&a4Awo-OG35DI(P`d1G+80gZSVqMTb-h=uKc}4ZO zGRg~`*Y&WboE6pI%s)GxhyRB^DUZQys#K) zRh{)UUj9RGU%gFLvefOMXqKE?u&DhHiyo7UJSn^(#L6OFUwkKfSs~-4XW#z@)!Sa~ zbQhyJod+bh&^i3NRLzI4v+XO*Sz}P9Yp?36MYmPOqU?!9L z`tt$UzuiD_c^ts%36GDD|G~p;h0-%m5)v85ZxjS^V?|S-rGiM#VgZ`xg zNcjc|Yqb46{xyGGR2ajf4zR@-(-e{sJN3!7@K~&4FA@_Ro#s`rZua6t=IX-Q-h`ko zp~@#*CItKx#a1VqNGdo%+^d^A*RSD^+BqC_dX#SAV|C5gWpa{k)rtb6BWjb0r-Ln( z5@G*T5v@)2Mtzl0BUZU#@Lw#X6!QOKA^p$8F3@2>AoRrKq;K}yAS1wSayzYrU=XLB zad=#qOb2L8?2dZ~jKBLn{?DWfVsJvcz2u%dplkk7Sel5MffiaA+poRTLNheP-9$MgQ`?Q#2?QyT5Ihf!U zn9>H)n)&1B+gCik;lB+E?0@MwtGP28+*VOTCJ;WHFFOj}X8<37BS9b}F(8H=ft!3) zTK^hHj{jWc2MEl{*56qR#nV2LCRg8{r%(&Y%kBE=Ka%HD$44B#f#Pn}jV&8l{FIuK zNd#{oL5y7%ed)IPy{3uArWwj<7iy}i?*VQY6V)*Jr`wOgR9iV-zm_f@7w97~`rnxr z-!D=S6aS2}Bu1P9z4nx8Kg^8x&(i(fr>=fGl?=n2XkhNm zI2T38PL-e0FS+-%EU&OsCg@07SuF$vq@n0v(5PL+3xs>KEpxE|a93_8B)dwXr9Bd# zia~MTc8^-?+bMFY+_)prWLyY~i=gIrOOEWwGWl7(_zPrQY^J3@G&$d?M8u0^$th?^ zNuTVKaEbnQm=Ght-{g5u+9VN4lZi<2*z8H?6GaMm`q5IHEke>nF=N%vT{tSazs^m@;*-|r>JioAR}^LwyJ=@B9ky{e$;0|AOrojilBJf4WgD?N@e z?j`a0xQM;D1R1!YoGx>JBFvxU!?86Kbg@BW5w{=_&H&Vpmp}iuB}tPeaZc(l^bqKW zr`om=sq49YwY!6Ee|gaDomEBDbftGM?ASf0Lh1=Gc^AYG{ncHGbx(P6PL807aylY? zco6i(3ka7EpZK&&rEe{$qD@U@o+w_JhUJVD-V5rWb*lHO6Ve}&Z9&_$0+y0q|s zdy#JLp0S8p2u1r_O|_755*`)2qM2ZkOO#NE%mV69MP1zp-opm!q$?`Pys=^RGOYl> zMO+0n4orge~<&4pyUXVipR{ z->z17%Ep@u1@43?$&yqbR~~syCE%V*)aXnLE)ZU2mg`0({a$?K^XA5|eht%P=Cd`U z|KC4?_Y>CNL~2P_#1%}e3D1@}jiqDdfA&)e??A^wCAcW_n&E{g1L0S*gUC7o&~5Cw zhNj;E#1R|2xQ3rkJgukKtY3cgO;=^1$s=j5xQLN2&Ug^9)r^W(b* zADgC+?Cii`%9-k!&xCNF_s5u_P=lWg-$M-+2vZpNi0al=oY7P2h}8&F>BW8AP^pnP zkpht4!s5PX-k%k;)GyNpoDlf*;H$6tqOo)U^qCzPTk}B%;NX33>=IK7UxGKD(i}^SF%2?M z{Hi=9mU(A=+3r??xMCZV(DQ5t(>LmU^~3fJU0B8v&RJG{jeVisn3aP@szL>Ej&Y#o zS2PFQtq8%-a=pc>B}V%Zga@p4Kr#UUR06w^S97ZnZ^HXDb!AiUPC`^dC8}90+LaqP z>=5aCy9x(*MSI!pT61Cda0u_aimRy;IvX;0%F-oXo!L5)sSqnT8?%L^y#W2%(5uJV+qUnEej0#Fix<0@Lx z!zz;CyNJi?#ewslcK0iezlOg9!t^mj8Cn6o3DqB+A}q7`*Rqe2xFaprQ$9F+IS{SQ zk~f?3efNMUkm!dlo=je30eGLb)%`b&r&2?=-8`7(@6f>oB4GGat-~X*>tmtn-LJpG zCO*+#^OD|Fss5o^FU7ll2orzwzathSPOY`XF1_)ZoDvu51L+>e{nSx3%TM7#`zwZ5 z?16q`BmCtkw9ayOl_fhfvScz*c_gsCW&KpC$|el)Ve)Qbia5Gh^vGN*hF|WZJAmZH{;GG|s5gO-!<(2?EGQjUTzlasdgHjAy{H3; z-Ud904~->ls4nR^7ec-=%`Jy2xvGc;mjVN8RsW6EdgIoOAyu?>bVM9V&OnssW>OSf z*aah#@LnwG+4Cqig=AGKCh;z#ip(}P7;+{EZP~nAF4yHnC*j5d9P& zk;=mk#V9~q@MI#Mv{S~#|14@BpDZV(T(;d_K|z(Q|1I=7l&aV2&4PE;!;=UNgbSob z>${eMlqkG{r)o#N1_{X1f*4KjvAAx*mXL2k(^C5Qo+8aSJ93gDZ<3I7HX@9r;~DHZ z@$@cHkaWjcla3K-_?dMh8Vyi}aovCpx9Ma2*lvLH|KC1407GXpPlSNGY7N!2Kc&CDC_rr6P zSutk6V1tFvCb8DOtbMa(O&gOT^MzE^IXi5&3Bg&`n$C?Y37-q2dRX_>-({@jY=Zi) zV_WdStyH)98R)AZBn0%YfzTvVqt1#5umdxk2qfWqgr8>)e@)NJof2l7VG!PX=H(>% zLZ<653N74bT?fOLNvlMA)Z5Ve3u|3?e;A{Ci>(7iAzy0_&q9syt;8IrH@TPS)g#m3 z>&|-fQ|yEK4?3C`e+V+2WH`LL?+C+`Q#`-Cstc==w~@&lENoH>-?pLBYP(tfV>Fh* zf4Q`B9|%g8T)@X385!AGZhj5w_PV@gq)**;Rx~#18)FWkFVz;AP<#ACDC*u|IBm)9 zPAv%K!fIdpHTB(cR1<g$?!#)VT`Yx)Tczqv=0P)t0o8=Ln>Te>Q!MTy^(~pS@`C zDktfoP@&A#tqQMpgRjLsZTg-iBzB{+kE{zIl6EHpblZ~`!1^EC^`{${wyuZxd${6V zzv)K5@#jDdFT>GUlif;~R>z57XZI`3PChv0O-Rd{PKB z-iNSVoml&4G5H}by0VjXKO)=G6V`B3+zZjT`}yO_<0q-1t639f z1WUo!x!Pn;W`?*$_h@i`e-!=uZl8zZ$6<1Vp~%$i6Fb}9rvaNiM*bcamX;7Mwi>T2 zH=unFD2N;2s#6hZ9Sj1+tUtc=XWwUu7Qu-2+_Atclc$S7dzLGqJa}3>K+_lf({CBk z1iM5OwKmc=8`5HQ9ICa^i?=k3&elP13Z1!dQty&TSL+Z*Y)d;$a55ydBd1Cm=WA>D z`DsG^AmSYaMcCh8Z6m;eVBn}JIo_wBSq5Zvr_NShRPaFT?}8WU3RS5h^1gZq+oHyL zqf%H1hEqhI4A>|CSzxI4AAk$a$*QXPkncOM|E<&Ilk z=F3ZWRWJLi4M+Q<>bsZ_&84`E@5H}Nj=F4P#e5&p_%m0Vjr9U#0uGKY&F&G@OM0H= zlJ}^p>jvP;aZ@gglKOSqp%;!?mghKRD|`%k!9$Xf_qY-{h3u^IY4SiuaVnFeSTQ0y zMdYKB$->H|U97D|)$;`1Z=uK~$nG3iD2B@%3m5ix(Y_={pWHn~z2?M1m?ujY+G0j` z>-!H__Xys*h5-dlFhq(5jXMrp7C@ns`8{0z(^1GI3z#Qhi;HfCAo{&DU4%`2rR5=c zqAu_3S4RqqF6ioU-PpaUb$^?VCXC*1#t_0+Yq*ciAnh-C!=Y#u%A{V2o`R`G@N{;8 zS_b32wrc+AO1%^8D~te$=}GQYJD1`mj7N8_kY`MbuK`?8d^c;0N7mbu!KoW zX-4ouF`E4z1a#+3toEPs@Nb1SdMd^HwyhSb*A)} zoe(q2<-zK@O;)+%2*Ge%*ZjMb*r?{<9MG|OL^p^wb!MKiO$!S&Mtc~^;3v+!o-P0q zp4U*i2jqnU=%1&9A2WhdUYg~Umtz1jC*d0h8a=nIgcc5KYilSy3c^@G*0I5l2K)Io zFAu$x{|q!J;s(I4tn6%fFr^=5JO!xW8Ze}h0Hcd>5FhfxVThR<0G@g&AX(YCI~W^` z$9o}E4CI9HCQ-A}^9&(ApoE@mQtu+Bm*EJXr-#i3;HOYU;J_GC^9$L=uxrrnl`y=s zWMGa(gVzYm#CCDyEk$J_YDx5utle`^Hnx<+)cueRRo`f4uyQSbHs3`c9tthv@61ax zALV$Tvhzg2Ne}E(RB~b7wbWlK%ce^&E($zE?I1o+?${7(dzuEhF>V*2E%!p~TZlFW z5FntC!xE1oi@+4Pq)>nVuP+zb$5nVJDGZ$Wkoz{E3db={fsqSvLoChcAQ=T75|l9MwGc+}Ul0O} zWmYEzAfn;VU!giXgVZo@{zJe;g%CMlJ%-8uOfn5GTom4sYeT-+i7G6L;=!;PnKHP-l zPken#^|`tB2s}Xj{}!vS@TfD82jK)jA31;o3<-T%T8>1(nrLd`0SNy(Fup;u<3!a_ zR`vsxF99@1s#;(ItcwUhl3L#_`St`33~dmAmIt~4L6PkD-^3(rPCE)9RK$4?%F}@| zx4A)mc+@9&j|~ZF0M{@Ayb4?gur;?|cAm>_Y$Spjyni_#1|V;(u(TBMAN?>;V+%r} zL{x-7O8=2(X=zn;y4p&RhHs4-K2}6fL~4l8po}p&;x<1}WcqwsG550~dHC~s$X@fS zD%m4_PC=pK1(D(^o=$Ny*(tZ8x|kW(MYHA77b#CW6R>_&a|B=KJZDWOoHeb-y85o_ zRU?+KCFW(KdRS?C@3yqL<OayM@%U*W}OEGC~19KPxp){`fU8m?7oK zYJNLrSF%m%xD)N{6Ff;%si_3c*^Y^n0JsW3cI15Z$`BB+8#xjZ5(wFi5CNM60S-8< zBVds6C9CIy{RiOj!30gfzT!xckwZr40JUQfaJN!_4{+T#l<07fN4d5(F_+bRG~-L7 z?%*`6iy`RY+qN7B&a?%lBxCW0R+~-w#$(~a#@9MyyJi#KKaxe2^$UG1Ot6S~y@e== zZ$RxI*8yW->PmRkY2p!QUvDMvwu8DmdFK*Jt09ENfrH(Zv2D0mW8MH-MrZ&6Cj?MF zxUBqq*f%RMC$P~4e*}&}{-C;~9|8wSLDmQmrEDgwE&T?gHt;ujOdAgeNo(eomTw_J zPM-u#aBf@T30)zD(WiZ!-#zDXZCT#Vx^B9<_ImGX+u`TjKFKP2rPS%y3?`A(2*Lst z+H~X0PK0k~^7~~jJu^R2l5lQUMwO78MhEjD3HslzJXSOmTM<(<#1_uLz!sgParh_) z+{Yjt2ACtNS47s6f6OSTr8zPc-O`OeCZ(;qAI{)kVhBLSx|7j14J6atK-uP?{?1G% zm#Y0nG%Nzk^aHZ8T)+_P{LDblwA}X`kKwTgeU(JreCdeQzmkcDU3sL6t%`>0`f!_? zu=y?DQk)#mV?J2iFQ;U(a+bhJUMFN0{`7c_2!jxQ4nF5ym49Smpu;_iiSneWZ>g($ zCS*8W+t~PqAO?)5dH~;Rd~z~}X`}tO|JJhW$_Qgu{S<&A0dmMN#QFL)0)4pN&2Tb1 z0wkYt1F?IjvjyK-VrF+L!h{rF;LdnrCUJ!reFto+Br=$}Ol~cVOvgJNJxN5Pj%9d$ zkguUhAUTVeJiS#!rFS~s^7Ay^ezF5^JywsjmC^huALP{raY^n$@t*7RaPPJULJx>w$({Cj~_4k%4#kZ8(ux z8yeQ?q=3l3ETHTIUpJ88cClb~I$2f*#P=bljmjNV5E>FFiT8zQ9oq5Byg`dOP#`3aDo=*BFpJNtaBFI zx2cQ7XWwdO2=ME|!a^+X+kzFJt08?mfCXjQuC(n;enlG+0ycOqkp2O!cyHr&Mi{8(k$`i95b(ipFop1PC?yTT%OQaa zm>n?bHsOK%gs}uofPO=d5D0o9*$MYvX?2C&TIUZCn6tD2`f?FfReVTI0%?dLamj02 zy>f8YeFxkP$WAcLb$>~l7#G6DFd zxnR-#7jZi=Q|pNt=9B-y+Is*s75(47AfTa#4gvxJ0@6W5n$(2eLXj@L3Q`0Vq#1*R z4gyjY2)&3jQ9uO(NL8drm)@iZiXxr2EJ?^OLM5G7Q>!|_Mhx3l%WU|Qh>w4UHRNvDtY z;1;E6nS>w$6XJ>8R~}Lkwi6Ii3Jl%8W7h%Vo196eAzC7XzH-U^NpJ57G*e31VBf`| z$k8ft(PZp$ot31?VaV8KoKILo-kE@;xFth~G(h|+ssoYFMt z`>*MB#>GkBA)4ezKfT36RkZ1%$IrldE2d3iI}5XL7+4YDShD@=`)34K>W58xRnUOi;a!IVX|2|mC$-vTjp^jef?wm@t85PQ z&2Es_g(G<0df)DAKR-YyYgmR=2+-rUn5v*-`EeALg3LSvt?c>#Ql0P}d8ju@=iUpl z7eKLGBV@>dDqVd1o8S#3z*t&O`dhX785Q`R#AVie@2SFd#P$XtJWv}r+223!?5)pf z*vG;Or0Co)7rbVQtlRH6O85TQQ!>lFyAS!w8YS1>*I57a*a~7U`cB-E>`p5r^1BU^ zod&r}90{VBGtTvT@W+$&Zj{q`a`#FC7PHQSfkZ@{`Mz5PVY6eoOSp6s>g{YIPX7!a zo&U;cod>S&4lpY>2?dW}=KIB&+CNXN$YBq%$nrQiWp8&%i?@825t}RK(b;%$q&Y*5 zs=^yT+fnw!g{(jTC8t$+7>9Fk+n8+9$}V#7TxpLx?v7h8C7OS6aD}NSrGhpIZ^CL zf7-xeQli(M(R$+IVhbd30&2ElM}FR6uKo+))Xex#K4hL)_q})To|t!4??YybfBJXW z{$x{Hog(438SHh5U@EzE$L=`W>y7S(SgP&>lCClZx9Qx$_>n4Nji4C+8V2alQz4!z zeBf^r#wey@Qj;(XQ>EKO@>zlH(%GWIcNQ&~k&XJivoe?By`-|WIqRf6%tAsFHF7L{ z&=sbZvxr?a*_Y*C5AKunbov6;p)c5?g_Om?8m}#LIZ9PA$qC}O;57P;*S{y} z2bjW@9$UZz)FxJGruK{Ab)ma|NZFh$t)=viym2C7#DlI+B|Nx{+-{;ydJc2(&3nXT z>I1WZL_{Dc2?ut)3*57RMGinZp|u?dio5BrLW}LWLU}^_Mc>TF*_}B4cn{qH_w=S6 z&t&oH=q5nTse2is9%{lul#5+_MwW}w$*In^8RUv%k=J$y-dQ363)q7`W!Fcic55j zj3zG}zO~R0*@L7kAO>{hezF|aC-(=VJ?5nTFtwwn!OOwD;2lPIgJEzVc^XLY{@7O&lyP{ND z9}_XovSQn^su>k{iz8=eVy^MdxXm{&c+C5UNj^fGQp%kt#8DM}4O125_-LA;BCKcMJ5pN{%`czDo__q3N9yN6 zx4&ri8!saWlY}uCQs6}L(^;NX3Ky2m) z{+UQx`*u}=8NRbnehlw*~E38fQ>-rvBw^-3AuAlnA1WOhuufM z%axwp2*xpc_Nd6+N)f>pD=N5yv`d-D(TSx>WXnG3cD(bvWjRyI9j$c-gaCYka=zk}g8iGZHz|e)B2R6c+;_P) zix}qu`+Ri5#_U=f@$nG^CZHzNi-W7XP)d&-nbae-FmUNVW9n z!Uf0zT0l-!gacsq@8?fcjk_okjq+&PHdsV`e$gIb4x<&Hez8q!$u}E_vtXolJ!js& zl;mAPtr`*7WoB0?V#P7mjCkPy(*aOOGSXNY_6dHk3SlN4ZAeA}{8(Qrh{L&$_YJ-G?G+>= zAE)xCXEh|U?T1-V$JI3U)4dT&@1SOu`T?_^sP|R7)K70E+!41|Y07UooBQ2p4BH0V zCyz&s4(7Sur6MO~tZ&+T@V==oh{tl$c+IcZ6nOK#QZmuw#mi(}_L{1vOY>8#SVY#` z_2*}K$z)K+@E(F;>V5}Z-6=UZO8VMQ8{KOTi=!Zkhl-VIq7g%Y#wWoWX?uZN)n*{= zHB@FMc(PXXeM;JBWgJC)KS`K))fdy#XOFEoO#kd+=#UO4eX>fQ@jKo7+w>)NnDs6` zq5ca=B7FmApN=s|wM<)aHqCum>0rqMZPT~;b&+qwqolej$eHOoJh+Q*kr%GlEOuIX zGFHyX^^B+DJ0#84@9ti>Y3UawBFZX`MP_2JrS3n5#nD95t#%txII!D1=nh2rj>sUC z9MYl8ws%fio6dz8!9(?&{?Qv!ssoL^KS&pHro#TY4ys8U(Ve~=d=E6Y@{)67P-jJAEszv$xDJ*t(ROG?A^pk-g(Fv7Xm{UA zBioGtS5xzF2g`?2;QAFb{9>E^Oz(36P9FTX7IQTT&}Rox)HnK1TkXvQ7!DvXe(t?Cy4w1|PY8$I52Z6} z1w3E#2+bh}+yr*-LEz8hRVM)O%_+RilVbS>QCb>!VOIFNz4C8zqaC9UR@N|)Ut z8Ti$2Em%P|H)O85ZF=Z$ToPnxt{}fB^fu$^`mCa8?3#NazL8BH0^?b)yDUJA>p)>O z1<)2OoX_+xk`IMn#>y9Bdav_VL{oV%1gv2D=bnh@h*Zo43*F%QO6+}n*?l}r;*h8N zPhkyH9Q?Sbxpy8@(<@oJN6}(XtO4}{sph-Jjv2oGLuOai!6b>eKNrq|nT|KZD1tw`n$nRVLXc8aZdL6Cz__~V_ zmai-u9TwZ^?EU!mgg3$AquOOfi9i3KQMq}nKYC^#Tf zIp^5~Mt=NOjI`Za9FxcAZ;_eKE)ccLdECNwwj#XoWOxlhfm8KbZ{_dW4;3j|YkrUg z6IL1%eTVkbx-_DcX?|(+TMi@Je(zU%&FTWk=vz3%A7{S!QdzMu#*kK9XXWISF_O_0 zxvN^gKqy6$Hq-h5GNpYZeT8vV;8TiurXZPdhz!i8^~IzqR5sy@RYi+q9L**E#QA3l zp9Q0j>Bdox%qE7uGtJziA2e3{0(m0!BUBobd~D94HX0+7VU2Q+u(#VqcBwb*qa<3X zR76k<>b}SFuCcZZBH;cJ?gEmnX_dCHcr#cPx7aUrxFn9TtNBe+xe+I&>W4d(r+gadN=a zeyZItzF`p-;fJ*!KjWC@vKVIAvMIiIk7-DzL2La74}y5*U0F>v46P-{_oSaHrx#H` zTHcGSLXi4d=na=mjjEG&q)Y6_`2Wbdj-p%;)ZeJP7qgKNG;oZ%ve8J$3?a1)TCvC-)lOFN~yH{QT$YgKGP0cT2 zeA79j$GQ<#~N$)lm6Yl}io&q{NxF zh5Em5S#m_9AiZT&8)B*Vj}fBl==dnFMUK|buk83R{AKVxoqH7hM;cHhBxXT&=y|3K z!*}Cde~K*DKZD(&e~Tvhot^A=)e@yC9dm+}!Yy;!pbmz~KbPK+@73QseWqqobfZu^ zu!q0#%;8%zAH*pEIte@Y3y&LCk~oj8(^|*We7VB&i=w}*;sOoFmkbjX!VS)Fxrh#% zW)ctBAS{&5Ob+|ij-%sF@h{r~VDCS7usk#7bTmI+S@e)K#ED`24Y?fEBu@k%To-Ps zW<9EyFq7h`3LW8~e252<5E4qmBbm$C_;FCnb&cXfcvp-rf1AsD7%c{Aq=f0zB zq0QCnF>3Fgl#d6^W(cPl8sV=X!ljM>(9yl_F{Spj3i~2Iv0f=2ssEHj7yhL@k#cCI zOa(GsWL%iaghBwbfP>nny<{&|E9h~Vm;q7*tB(ztO%T;4!%r-YtQJ-XCn`k}yMW${h~c$Ub_Nt1&{4H~%< z4w`Sga=;1S34FA*p@;q=b{{y{Z`?(wt3US7`EPCD59S|TBDB_N_ zkYK=LF`5ul0)xX2;C+(}+Ohx~i%_2cZyx|AC5&+VK(20)Ff;`c(9dY)6XN?bewx*K zK;a=!*nl`h(A@~y4}lK{h7AfF#Q~^=^tw^QOrVzmW})-_9|(}D`Xn>_J|VH?LAh8^ zN$MjE{^>W1ngZ>X6W8GFGFP?wo)^<>zj?L2;3LRy8l$IQP*lu%)`+F9^F-%v*W?Vp z^#;t3<9qwDt2HpK;USe*-M9W&-ayIeeRGgFEU3k&zR|4dw>3A1A` z8n{42_zg%{|Kq~3x#gm264rtNuR;-a31V7vV8{QTmbvmP{kmJ9zQnO(z!HP}RTF{Ug&u8YDbr~}?`7oAxn3{Q}fw~N@8nXlUYnr>0qRvcvbE>uB z0>GBn!kncC7tkP{2Y4ZZMG?5AG1CN)1dx>gmMGw^rHc!{Mm%fEv@7tR%7Xrm+gV@< zfMmCz`NyJd5RfzVYwZGNb3z*uP{De>{znA67)hAm0-XXFly9J^bT@b;Iaug|e|vT1 z|3sRMnqN{IC481*?#9DrZ>~Qr%$Z&8O>d&N7p1k1 zu6)zTj!#a=95rCyDEp&?Px>86i1$!sj2M0K;fb^vjcM2(eLjj zHSd6Y>h9_J^ezbz`1XSPLB`5|lORKsn+SjbxVojr_&x|!5kPb&N8_y@0S@b*A!P1s zdya?*#0Cbw@@`O0j~fFU#0=*BysVKLPAI-m@-k1~&Wk!xlXD4sK5R$qq9Ee+r}3A^ zo`t*JPoXqPy?&`r*kuGRjA)E%btKSi>#GWkWI-D84PSXVL`>9e(Va<|nP%F4L_`Na z#0XxOgsMUImiYQcRwH@oLWw}qOX$bSfP_?7& zQ%7wF-aXJces*x3L2rBuU?8Nvj=q;Jfw(0J5eU%Uo@B8+EmjHf8P{R!?%jF(F5dAx z{8OA1k-({QrTujOYnPEHpA8e{#aDO#D#WrpoY-=-X}mz+-kUmg-+o=b8+S?kMexamD59SU+>9|7NrKp}kx=!W3?x(L!Ed6m&gL^u8;%Vkh7vKhoO z4&+kUP_y9DkkN;C(i(2cFeTH>zJj-=AEHck0t3*{rx`&VPnf_ z6c!Tl_n0BjS_l-CwcL9K)i2!g!k8~*vS$)RJD@&;8Spi>F&tQaPmAXH3UZe(vi?Q! zVUYq3L0P_PwrF(bw`U2AEwJ7USH5pS<@EapTH6zu0eUW8tHvR6Ijp5>_meBD=(Izu zf_E~~LOUj46hW;`!|4U8o@+2R2 z{($AeLe$7my>Uj;--K=Y+;MyZ?UpOvPck^5*9wk!K^u3rzI(jp8G2g%@h4VM)KU2L zGa^cSqDz`1_tPD@o{ZHAc9EMt*}qj?o+qy`Gl<@(b$E+TBCXt_1JC>qvDcT2jVOgM zX0w!U<@RZ>9KXf8*eU{sI9~M4%+vl8Lh@H}w~Zv&g}`I-lF2!K2= zM^32OJz@zto=vfLDDulJYLcRObImlIY#%#y>I`1U>le+m?uS;0`>uR^d6FE54!CJpSQ-xnnIkfDK3ZHpc}TID&? z)rt9vS|FWDvrCsNsM}8N8wa2qEJ<*aHB@l4vR1@l$ji>!jYx*)PKbV-qVn_+=JZU^ zpE3usz=6Zol=+;^)t$6c@NC^shk6t%>M36Bn2Z|o`(XPrV#3#{k*k?9?~A(E!`IS! z7j}#rIPR;$m9JJ<_$@feOwRfUxLY@Gn|8;47G}T2{TBLcjQTQ#!(^^73vOL&R{YDC zBoTIzN#{0MiJ#0>1@%%!**}{dDC03hrMDQdu5zWuVU$V^=X+1;|e18@8eMGiYk-` zO#hTZ%8)1Vto~H0vH0g2+gFTy+stwM8~$IbQ$;9~WyY~jd;NRl$J?=(n)R0)CrZ6z zlF3kbELpQ>X@a!v_e6*EyQ2BF=;?+U(V@+ofpm^tS+adG{)|_}3?}SvrzxwOWm|Gy zRlHer<-5-$pITMF>eizDP%+ABdheXcIVpL&bXY(nq~rPL8&w`{JJDV=S5%AW=sP6y zn|F~88NNK7xLw+5FCj0(03iN#65s4};C;6&3=a+1v6A5NRm>Ozkr$sf0<{x=iG!ZcDJ$cO?WG08Ui&Q&|CJU?E z)||!2cXa#9i70mZVa@12u4r2j=enA9OL4gv#wF8=U{77@GU6xfvu~;`Qr>#+Zy99- ziMxH!&eZ_FDsmm=fYwr2W-}oFDBg_CYCCgqUE)4-X!V+Xi&X?!KXgGfYw|Jn`9U+8 zckLgBE?pbtp$4q>i?WlyaMq%mEU**(oCnxo=d~-T?0%@Vz)5z-eTc2n{c@=5G*j{E zyueQRkpRdDAtY7I7g=jR_)ggnU-uZp+vr7o9~7zmLtDRn*%I!YbVw!25XxnVdp8m1 z4~2ezOr6C3kePE_YYrbznjf&mj!jb)Nk5E zar=WR$^n-NZojT+Px0H(jf&AB)|nuVw$)#t9^;YDq_t(V6||}to(eso6G_i|C)ph1 zss=s=Yj<{K$W5j(f>Bw$eAm-&;*B6Izg5!>^!FF3EsG^JqiB)4JP;s$klP0u)6xyU zPN1n=HRAiu^^C$XCr0cUo#RlKoanQQ^gW2F+MDpgfnE+R=q0(G4H0WxV$5y2(mir^ ztkHLjT&sAUxl+zn4opZ7+C{*qPLf02Gr$1lDSjpfRnOD z-Q(u>R9U!})}|i^)1wzXF|NcLu4KQ~cvH(HT1DNW1hFdYh$!M1!-;cX!QHO>E+<)i z<2M~bFKwJn5{dB4FtV?xbRi}wkC=d^)aX=|zqoRdzO%VI1*||176!h=Z>m>%oc*q! zHQ&3N4}c_sApTtcM`u=wZ&8HMscx+UF-B8RDf`hX$iKJ8^Xvd-B7fbEl-@wd}%Z!z?E97+fw#LHA^`5u`xrZ zcEj`Rh6ka)Gnm>gTU}{jmE~Oh<{BD%9%(E!?Q7HSSWbxu-?h9(PVmi-Hj}u<4HnWHk_dG0Tw|l?q z?H9U&PC)w9N`0rC4zKq9X1#F|N8GB{X!7jf7}bZ9{N%CLM|NJiVq8W!H^5BiA$J?S zD)ua~rB}OOS@S0>^NkJ!Q&Z7rV>+=@Gyre+5v+*+d!4o9UYs$M>&f&?TQuhwl2Q4) zEN{AO9Ybkvlt@6u^~9PXz&Je@NhA*p$@3}%UIo|Iokd5Ww(+y zD)_}rt=PjXGFmQgGspt3+4BU9@0E8f7A)zj$DMiCCSA^2)2uTERoC4U$;~`yPbq5R$cA8+#ehq)Q> zwk?ZVW^M&7s;0#fLIY?0agL}wK8Af~wF%PHh5^zP=Dw}1G#Yd+tD0d6gR@`qf*Mr# zhA~FYi%fEkwt#z8_?IXnE}S*me&DJC9d{(g?>B;uKge(E$xDH|bj1vLebmSv|ASxn z`ihM*=qkLg+`xovO*0&wD{_x)?!%mbI*-V)QX%7qXx;-ThSs(?j!hFSI}oEAbT+OL zeOMpbBOJ`FDzXt>CPiFrcf;C%u~35M7dsvDBQEhNGUX}{HuH7g&>a;Hv;|!8r7^lz z$(E~i?_^mPPQNA2LhkUD^aIB`&52i$;5??y>&4wMZ-TDUSjcD46+`s%g<-hdd05Vl z>jj1L0e3Y{>n3}r2({<#VjR;YcIof9y5aS`Q@6JH?6O*Esm?xR-R9_X@P97a=#&}c zg#4n%h!;yQorLaSI+;^`OR7Lo zs+vKy3MD$+Pw5<4_Qmj-4Dq zpY;kGXW3pc2ltGc5Jd=yYE`x#iwd-I>P;VVz_2dWtnXG2beYfYbLysP(J8u@@|BnrnTsk{0DBLn#^)<^0v0*1 zHc<@OhyDBF62Mz$NNs1EE9Q2Mv4X}OFy`pG<45&3lCJCL}dXSyqlhi9a ziNH*bAZ~xFE0eHp>dEQXPjiZrILE|AZ18tVU;adKyM#-wRbt6nCVabrG?tX1>!NLp zF4-iL%4%GKptExkyP3K0qd}fVNbUI>1DATHE4%|SdAQD~FHxpcF^)G;$c{aboRz12 z%xCgg4`S`|YW^74X9d!gw@&=mECU$aTwHdieO~vb?XmOOv@MOWniz(OD1TlwukKitobR2nt-47po4=*wuL?OSA zm`2>&oVb^$t^5?)7EL(vhE?X@2oHRq)m07v9E?z?M}Ud?H+b{r{|1ie<|{p2T}ohP z2Sk1F^X1EzNMP7rOAiJN9^b>2j6whfSpQnda<^%PnFEZxUJZb`oup$Yga8*SN;SX( zuPgPSZqxQ{0W6XgvdBH_;7#M0bCHzJ@p(k%cC;W%n8AZSDg7QH8E7Y8>^GDSdSZ0~ z@{l9F(1_+v%KT2uOH55GafFiG>foPi8oP~<#yJp$|1B6GQx;?~%7VgJ)MdpRAKj!U zeBNo`;wQ>G=oA1?Q?!ur!RHDrz)s&yLaP}0XLGy|m~sm>67Vl>KJ<6F%+6j5%%KEF zK7glk05oJ=tyA~n?!wYe>i=Oof0Dg3dWo+E!{b0!`v)W6dO;gAG1ob^GT$lVkm-W1 zV!#-FacXx~2*=qr#n`v$LD=2gA`y^HAxB{+Tzlw8NEVcNJ83<@)Qn$NOz()1o*s`V zH(uap+^G8Rq#iIs!~@eU!S@O#B{cKyjBiUyE`o`o_}zCuH2@jo_m6Mvlq_PM08T?q zM98siY;M*9t}CHu_SO6S%NJ=lumqzkD5fQfB>V;#)gJ&X2q8^15AtsRDBlFYKX?@) z0?~U3INj6%n-65*5~Ht#K(4tCw1Kpbk)Ooe%QdxLrgRb5?X zuzc>{!~`?u79q?p4&?}0WC{zOPsG2%Gf&2Ep(zu-JEu8?F?zc`{jO#7+}7@(FO*cM zGd*AQFC|KHj`i)qkJ#YzrM6pC?70`e(m8xkJ#%eVzr<0#A@W?XRQ}U$kW>CHzu&em zDOrIlDr$?|@Tu;^@&v_0syB^|u#v(`b(Srg1reOK6#2SkSC;pPBm0Rr&!ENHo}a7# z(-px0(jd>RZ&_N#(D7>6f6Bg2^sh1De;@?q+hl<*T>=ddBSDl4{IOv2AM8SCl3>6S zfes8-P+fwz}*GpC5vrq7)*olvg7*>Se_+tsGOnj zsvZ}`LvxC%zij1J?zGOlWLOEmX7uCu75?L$$|KAA8y}l8Jj*Z=c`qNuQGngPF1$WW zV5Fz@iyu9}%m`SRY8a)33##=5~ger;A zxl+TtcT%AWH$#4_fWJv|IcYtWQUuu_cW>`c#|MZoDM@DSC$l!(S5$MyeKgS)r4BFQ zW8aTD{`T)!lPWpp`7?KUycJ~ljzLm_Cg71(f_0=u>)pp(!E#n>_ z(yIG&@MR}Kkj3~ua%KC{i!~2X@=!KZFpEp5W=xeb2#0;vpXzs(0_7ot)?CLi{AGS$ z=F>l=kUOScq`KKDqiVYu6Ic;`h+yTv*k{f-LYBSj$B!ZY@#L!pgi;Z&$-NKROT5Vb zYl}{%QHl<|jdqph!5VX4HyO~VJftT~A;Jc-ALd^(;Va5~tMgP(nd{D;jVQD@;rR-g zk}AEd2+ZGqA`d`9fj}I(Ml{vS>K{UHHh8VT`psQJa+5&hbp#7>%n2n@v`R768WBOz zSU^yz$>qNwHve*c{|#cZnm!3~$G~U)RQMW5+<^1^-7cQ8Ns0hUt()|^odtSV2z;9+ zDZ&5=OxwY~dn&vK(5|bT+=M>@9Vmc#C@>S<*QXP(GkbG~7nY8e)i|%2S(>^t-Md{zmJezJmgMvVlO*nU58&ZUcE<4B*Hu0?#bN z?8BX#1Xm)DCj5P8w!S0Ca1zq37l{s*1(ah5*3DFcv;yMz%quyQJa^qxGy{Z5dlA`7qS4T3O$O~4TH z;Pd?tk3kIKyoHOX(mI7w&YmN}n8nftY!yC0*^ zg>2G@dUZ1}*&Eikl+TL6=?;s?+a7iGXGvryu%!0QHGEDI?&-@9>8dNQeAK$;I+rUF zPq8VbRddcl#zs}Q@D}DJ6T|PDr@u%Ee)+FeCPK+90y-I-R1s5rIb(n-tw5mYxr1m< zOOWQE9JpMAJb=w3AgzGf4uCr@j}I!xtCDaMNly80X&D0P68(q*T*ETB!Z*=V0VGgnE|SEvcWD`<30oMo$LlFYv8yjC_=v)HoZFsvp-jVzMyqPv~zn5W*nTH84 z(+FvWoqb}VBL|MSa_Bz!274k3lEDCHd-=e|WkhN_Pb_DQkZ~X+6j)jh$OwI)AP_-- zfdc`D|0;&Ktu`KY4fJEKu+Iny2@#sF26E+0tV${>D8MR+5JL;&K&F%sL`e^m11s(4 za;l+FKjEVfDjiqV>9I~NXgRaI<#jg~q^PJENcF1|=sP{WC!o_hSYmeg^$;8IvNhLZ z^}+e+6ZrsW-tW^7bu2X%6;9~4wzDOnOhPUgo7XCCJPlMMvmDUbvHF@Fem3WVAL0!t9oImJ(3m07PymZ&|B4tBm` zK|&c>9+CMz2)otmbx%VM>k>P4-s*s{_*)`|%Gb*B#&_xt&^x6~l+NI~U{A9pxm;)Z ze=6ukL7%-Jo=|~o&d-H8EHkVg_iJ7@c2Dx{av+N42oKHh27Lb8%w_*&vWJ7ioR&x6 zNJUyU3ekzxd1U2p5+t_|KNEcB3HVF!j%!2ycm`~YlAGHGrc32p4t();Y~rE(-UoZ7 zgkG1hdtO0d`zI1c(J#YCxu=7h4985^buy3ehnH2*TmLLVIi_+l{TcDuVnu1hgqHn?;+T0j_#RVuLMW5WeI$TFKK>OL(}z1eN_s6(gcH z5aoaR;nyu?&WgSiYvx`~R}l|F@H&9c&lTT;Z8FXem{G?C@&pY`XT8HY9Gq zN^Hn##aOA`;iKiGl7%)%^n}b(@@sFkOUgtSu0zckKmJy;Fz9r#L?r|_g>qG2dq{4V zPpmaai|JPjxf_H2ANqL+f)IgWNzjMDo#~#G zc5d)$mPMU2d1PT@)c;x(iY!b$`mb`H|5=iY&wR()=Y166>H=gVJkVbWEpT3-6b>AG zGNSk^H!p*dCSYtJxgCD!qPRD3?d^8sw1mfSkqzdAfRzPH?H}P({ra?c1{&!z%Xn)2uK|by>A?0eT2IL-0m0W)@HEa;Ytpc z61Rjg!3QmVCU-DJBr72UUF|qzoG*wMEK4a9D)wjZw6ifJC`;y2tzNLMknsxamTkTZo$pe3h0&)AYuID8TR-rbn8(&OhKVFp@7hn! zk(?>y+Q2C|mwRqK?j!a^BnfhSdi^JPw+QBOE-ikQ?Tk9|GwA<1gtmS4&2!5XG+3vy z(;y8|;Ea3ZqQ+=JZgsOo?@ktUlK+8EKKBTwN2b6(dA%ySFFZRW=K2_U>$#ut562n{ zpNj_rY}zivyX2dct9iRDTX7qgDq47`1u@=7ujuhjI$@@(PV77bRM|bxmT0rq)uAhD z!FCJAS}=zDUc(!t&`t+(5$q%dX}$GCZ6jT0xE&(JW&en2LU-U+pG;2*hFi?d&Top$ z4_eEfA(*IUb9Jt+ybf8zh1!rlpL6ODRFmyt;J*c7*`kerp>F<>qQe`-*)w_2cXlnZ z!DCZ@y{qVofB8TQbgsq7kQ9{U7?qB^tm_?lL?&rXevJpo!UIr9Uad_VU&FpS$hM2c z2-?ZTElQ`XzWH(Zwg$1=+HpY_k?dZxmD`Q+?4WSipTR%GOiB&k7?`AR_`I~WLqdrR zBga9Tv%3%|ifAHGJkx=Rxub%)rW#sRm!AbcINSZYhg!7Z#nmLordbI@{)%HRMFy1E z5|R86rHka&#b}WpN5skVR%9}z=zWBk@KjA*Y7IHJOEJS+K<$3Oze`eEJCuaY)}(6UHEq`8MlUox3O<%!^Lp@!V(? z^J-G9ID0Gt%EjwN<7me4h*YxGu8K=tqW1Hgjad{VVf8ahmymev-GMk2#?lp8@#{8; zcdS0}3e$OArgjx}Ti|WK5K#lj4i#)eO=3Q14rw)uQmbH|0da*V!aQ3cXPT^u2%tyg z1>}f1*d0M2B)+ue8TRvhn3mz%@)g$|pt9MoR1v7cR zcYo)LFXY*Jpz-thga#(?76iO%_SmDF;*fW*ad15wO4xYRc?3WSaYtoqt6v0{@Y^nP z(Vu*O8kuGanypi$b0YJ&_|Rb z6OJu9J0^%xl15XK5-lBLe`TSzoWA``is3<2UjXLMrM*u*FMgF}JLHU5@t)|IF{~b> zCc$7^yvIsjKX}qonaOdTf!Q-Q< zko7M=8D1;sVK@k;#2GqcT>sk2ZfE| zh5Y_y=SH6`g9||~=!1+BWs-## z18>p3u3GXsUCmRng7>#T4nvQyG6ik#>4zs_r9s+)j6+pnyBAKQx;1Y1g~eKR zfZhm7as-bjt8GnY=?vF&W~yh{tf=sJOn;?QQaKq0W++CfzrGE{I!;$+M+sgW=83m_ zx}LOkKeMq`o1&e^`DU-qVI38hwE|`fj*@KB``e)LmG5DMsHct~;Q*O^t1G?tWDN5B zbfTzN8sdP)UY74D#WWm56L(Oy>OYAgO5M;)37*H4512k9kKolmy51<1>cs$a7*ry2 zJ>GIgKNrb{ZxX2wzgUz`-l-D1EgXFZFMqcobum&c4_(fw_B$teAjFK^VQ6r!!4l3B z6;8iKU+FROtT%|!%mP7!`Y1FuIzQNzfvG)m*s$`~rRfO@HA)AjZ1Of$UVP{rQvaxE zdqpfdG0aA_-47jA?TggH1(Bz-s9@IVP9?p5L8CuO6Z#1w(dG-?<{%XsgYc*P+?+rTw(%-yvqx*h`ENo!z zPn-~wbO}Sc>h@O=4+c=3c0B-7l014G?G2{dR?umCpaVbQJHsm?Snet7h-kIKD-23a zCQBZiehRr<+!TWx^g$-S%9PcxU?;Wze#uqx4@p0%M8sP8?r_Ds!!0S!(0W`of}So> z;vVU=7b8JKC$7^jN^6+lC(?XI{sJSypgH}e=yqyxG&Gp)!USBew$Y$QI5;kLKxu)u z&hnst;&W;OZrzVRGC^pJ^FGY^hCjV9hBksK)~iXT*>vok)~lobcuY-C314NV<&Q{C1V`wu&}KDNCu6ecKFW)x#O5MY4?_ZNBKjbZ--X_5?ri8LiS9jGN$=%=M224RNEM zM5-bc!y3@zmC4m&bml7y_yHLk>&c3$NzKm>8qY#2qbn3*wQAiZoS)mXGr#0@;9$+b zjbAT-wNPndv*gvnhgQIdYz|@qfCO~N}GcnTve_r?!LK4)kLbOsN zSh1SWM z=h=)c0}FGoQ@(L>X0r^*uz5o51s~@$De+3noHOOyM~1ncGf`)`pBJY%eu&g=$lTF` z3U>{CUOp2(vgPARejH0>GW1>Nq&fHJPUnRJE1FD03`vm!3xaenqVl8N7?R;H+89!K zSAJ6GppQ*2oKp2k9yeBPeT|;MtKk}?dEIy7=y9@)>Xvz_deP~G)+Sv;f1XA6{op@`a&^s8N_w~=06?ngUNg@*q<99#8Lc{b5TV*zp zqz$SEnH#^kZJqqUl_eoC{n}<>oyM*$Q7kVI{88$Tvaa}pha;<87h#N@;Ws5%IvXvf z;QRCwjsJ7!E6*kh%?lIzaHH1)s|t){UZ>|QMFs>9*%;&z^j5)fteyyc7aVhSP=byh zlr{2|xr=%NN>#coM0Lxj`i>e#5bQqu&&cgk1#9OV+WjX<6@nPPhR5zd7G>{ISsw&riJ36ie?|LVDE3RO^g;jK0#z$a_mM%{`Mi z=5V(DQG(J|p{-d@rrGc?ThQ5zn_4SuSMj58ur-fdOr-eFPR`~6UMnmuvz4e9;YS5- zAK7t&KZhDQ5HVqD69NzV{lB=sZGHLKdSL%i0&`)-y|epw>7@e7AK)>=Hh+=G%pk;l z(JCSt>bTfvmK65fxztx7s!u-4UZ!Gv4!vdZme_q()}2iW5X4ZiV4d(3r#W2k<;I#} zcIoOPa=2sZ+1+w?g=@0Nx-~ONG-4mSD>Y8bzoa30`1jX%SWLRws6)DZtZ}9Won)e} zRvc-(r)#EXQ}HR!K!OWB$|1GwjWHw#Y6R)`l`GNk;g)9X)TUTa?^Y7qY7j|UV z?z!B)WCcmRi57HOUl&u=Gqlo1q!fo;le@|#A8^9!cz%Yiq-serGuw#QR2AC_CHnrQ z;N9T%$m!3l+>>ZkC;mv`Qrt2cDe1ysvFtu!9xn0}sr{ONv2QO=p$&g>Gw zJV2w_7Fr?C#g$Yclz(R&|NKkXFilHD9c_}A9n#K!ygE3LvwS1>#z(FnKBXtsq0V!8 zSG7Z#aO&LtJOeV9Q?ILGQmS2A4;tJ|uR2;;SrOD}FhmAFpowN{_Puoz$XR5{-GdY4 zZvc=6pqoWt4(=5m85?_2Zc>Ufe|4LH#UTLW!C-nV9n69s`T}{S5DYtH2>|=4!-(^p z^M&j?)v94(HvxJ?5}<)jfXkM7-);6?u&Yqx=hpUspAIQ=XLh zO0KZI01jyaD-H1H{?l^}$V3DYW7r#X8pHwJgaEZCyxE^V=lebcq#eO&eD_;3F%dxr z5BP3O(7_26i3IvT0c!`s7Ajy6|DWcBj1Ry0sX*a^^6}&##ndDKm=S1jgnlvt1g_qd znozAx&{F_jq&NL|?9GQLFjBS$2Z&IU4d77(T_>X>O-M*_aPR34L^)9CV!^lMrArCK z<0}=_`2vM}vu|Bu>wIJw223#z6gh%E${)W$ZNO25jY*@2kgv6YxYIHHwEM+u`qH^# zI^xZDh24581!W{f=tNbKw-{50o%@MS)oEV{9+l<_cFRI1b8yxkl#JrIiLQo_Rc(-%D3(N8(TISwpme`hhz+yV@D`M+gu_;{3wKsDM@G} zQ!-^pGziI1h76TV$&evaGEbR@kRhJq)NkGQTF<(l_1^dU{_+0vv|1|}w(~mod7jsC z9mnzge$Jci`#m*r6O(yzbx39dbAv5+HX{800{O zpY~?jE#&21k-w$bz~5VvKe702(cHSw%!3V@SFhiA;4w5M`=}?3UpwNil)vgq;ywLe z`SB*9T2e;r1QRcYdg+|EbfcV{?5zDyqE7)ic4;doJ6qMp#%5r>BgZTh{FtD6;|v8! zPEd$I@tfdM@=qf>@85sB*xdn|Cmk%2_kb8*s&D`L)e`*bkX8R})fzU-s?B;hO5~jbp~o^q=cMxk_DS|G9ELBwyNIIX|+#*MI8?;QcXOS>OARK6Qjd)A>l-x24m=v_NTnoaceefyO}El zZ0qMMmR^-6an)o>$ImjibJJJ(tcFZA@o$?%aD9HzICw=OoLH)$wOOR3 zQX|Af=u$grAAt)M(Bow1-Kjrl6QKS8XIllxzl5gFgM%a{H7za8B6-}qa`fot^=L<} z`Z}-C7-M7rHUL$-D!_2LevV+5^@rl$=A`kvO0ZVmi}}^v>>I>+G6=cG@Y*NC^AFzA zm0Vqz6s;^ox;@V#Va`K1QL-1uA7c3JK(JNcRm-+w5xs^7;%|sz)r*<uG(;iYqBlJ!GkKJzhKner^8PgiHO?}cEmENA z$0%0-87hRFN*Vlzs7LFa@9$juHoj?q%2<2{_fS*(+A{D|D4iwOp{&y1y9jmtUTLuA z1iMiTocfDtAEAOT1Lc!9zsJ47OBk>Wm4kGi%PNNG7p)o zmM6a=Q6L%SZ(F`R*U{5j@nU2c@ZQrwzIL#g-t@!)q=Ayf%#ALmeC2#E7$QXQM8K??{?dp*86qWg+S$;kZ+nfq>S z-z;11Fa?mD7}&7lFyNk}govH!ZvO#%($1k$4+zCRuZ6)9iU4IQ1qObc9{j{*f5F6r zAO1a|F5^0aLl9)}WIZB!{sNp(I%M`tRhsu7aO|4SX0YT+bvU>ax+WC8N$BBsaNw0T z3b9_!uZ(|57(F)jIbW4CGCiY>$2)jx#j)on-H#LwW>V_-T>+a@bF;ey zZICI{!V-7k>-bUe-Ph=YCHA@8k0N*6z7Ra*S8~B@gl|PWtbM=PytZvw_ei0X7PrkY zr6W^ntZX5){-iG%)R7@w^;;In;W}UJ3DUcX z(D_sxoCOL^wI+@3+UObjmL5qT64{-tk`=lQ_e0zwQ&@|KH@N}=E8E+%PGcK78b_oU zx&?pnX(u1dp4}@!Y@w{?$+lS)PAhzR+)#Ov_{B6@|CuUWft_DWFSQ=%AEWFK& zdGTdjR-sGqnGaXk$iTH_&w6RF{ZPCPPH6Qm^plt7G))nyTosBNk7-3zA@>u(0Bl~o zN$aaMTx%}bdT*5<8!16dzbUITYo5An=h0jMB{T_=IhQaUZ%+C-P4Ucea3m3{_sBHIBgpw$1@cm#%d)i=XGOfP#x! zMK3S!vjZKk|G+h-f}3<9Ru!psD=8Z6p$C|MH^%CZN{xN9sn1`b8OTuH^;6ct-FjL* z&ig`WF^5gq(nig+rdVS-TcR*zi(cY8z6VC)J^Vj=?0qb=2uq7Pc#z8vo0rs;UPU9C z*MFE;AQ5`f6vMDbFyqjxc4gw7c9Gj$BvlX@9;&XM7~3dHa$^vVnB0h&05YOr|V;=0GNQsnvF_CVT4 zzd(*%y{7!+I{6g6I8PU8aux7O?*2&oxgfB3%a4^&>4@&z_PA|;#b1$+;>})uwjHZCZs_1Q71iO)p5IU5 z5j}rN)BocsEkoZ+`^CpCzjA&4-jHLw+|5TOKE(7sUxbV^{X@P@<|zi!F4Mp2BHfjZ zZU^b%QQjS9osquka&~%^vcromjL!!4-BE#j<*baYFGKOQ?(H%S(m@@;RRbTFxfb-X zeyaefEx`R^dV_95N5nvi)nVg4E8_P| ziKtNP=&@ntcMB{E}*9Qns>tD>wLn52oeY~SwKoujFKrOU-IqPpj~ z800pJ@H%a4$s89{tctO@i=SMviXURiICjzJot;n>$CrzBe0`el$hcR(bn}Xr;a~2O zXD{71DmN0DSfw|(&`m$Wh)a+{TAA*5?v(GxFnQgAY*zvVF3pe^_?wT)>Pct6OEVj^@K> z;de|It|Wfpu5+pyqGgs!iNuS1C5fp#px_BQb5DlSMO-_BqEhY4lC$8wJ^gmI%z56+ zVi!*tcQ7Zj?qgKkRYiB{9Hk0jINwvEw2~+32%T(x|GiLS4ywG~o>*-j!vpWMIQ`c| z;-&4|n1+wn%hq%5ez0|^1!al(*H!eMk0B@C7~(os=mRgP2WAY zHFo)BHq~}qt~lA5a+P5>_TJ<7H3*L!g)zn zpneXfH^OhY#}`&R8ShrT&-5`+tb=6rUW=7t(0pKU$k9u|QX(~&(&TXrPlR>an%yV6 z2<^81kl9?)kamM~hSU9|G8wLWIA-@sjsr;#izZ&kJ;~A_qqg+N?F$~H=gWrk?5no5 z8!Jgh`vPPnH9zgbGSv8$CvwoJWOGeaDHjZW#f{^;e9P^F=NG$hgI4$tX--)Co+t8Y z!yy4;DvbMJdXsXArilVB;-efZ!B3k-0`f-41vh-%e)wwNtRk+5@v1myc{otYZ{+N` z?~KM(0E&*kOZ-~*u@ zf+Cr6E)G3qp>eki45L!rwIe-!s#g4WcgG1&y49=1VIsDgQ41I-at~7VGy-KGUb!zu|_9kD05gL~7pPn` z^0AG8PtTKhq`6FjTf4ujjxH#EY9Gmh-JFKt3u)i1>8b;aias^h25tUn1Rjm2yUGhqB`8F}X z#hI!s8SlQZkR}OaWiv}O=W1aS%d~Yp9mDEqXx`6C)upW`(^?q&(k0`iU#k|=e>h@A zSBX_&q~rE2r@QAOF0&X09N{s z2M_`cl0$TeLxEhf(IeANKn}o#A!sVqdFvBJpc^8z%JH2hCbbLoSF*}6MXz4KU8?YL z@xH6=Sg4eT8%RCY%tJ7KqeM;Tu<<=MAJ2y)Xa$aYo3|!w9D@gkYT5CmJD}ANC~^P< z8|w*Q1?ZoC*<1LBi!CgC4t0P}=A81+Vz3ib<4!BiC}w}8ESTCFd+T1ckqSXE#WIPT zFPK_tt(&WWcD2W>;p@Heu?(yP=AA~4NO4P&-55dm02R%oG4=Y}m1aEZxvlTC2?s0UiEnu-NIEPW!C9mF1J#?d0 zByAnhBpa+{87?_QFyuB^XA@)(AbaRY_Y%h$UlD#GheuU(H~&B<1%IL5_! z!@=x)fY`fxKhk_S9pZndCRK@H&TfWjaPtH)mBFJldPIbl?#0;7_V!fG$R%fBd;9`6 z%f;Ny2l|uTQ`{5Xm?VS)D z7^M>?Y7ZZSO9drEEg&wmBSx$OY83a|^+w;W`Oe%&g3uPSC#7z1lz}u zm7pXJKq|xEP8?$Z>}tLFc=6~@UxFn#At$P1{RksD`$>5?Ww+$4?b)*=4WXx&L-$BJ z$#Rx;k(`huu<2Vweh!;U&AJ)JSTt&UfRKPhHUc>y8!FV+j4X%VZB4zKN351-iB6~A zUitH#su~)*uN1FOW-WkiI0HN(9`~5-4OY3c%d$J)MrQPZ{_Af>Mn*%3u6UlGWcN5v zch`Z{OQ|mKkEg%D9)V`DonMG07Q$)Cf%AvI0;Z5t`Sa>Fw856>QyjQ72TpMfcUui_`lEkl0Wlw6H^R6};=;L)v1aY#FE&V+{$& zC&}Gi>Qp#;FyuLSUul82#WS7c5HyL<&CYtAN5|b#S&nmDi}440#Eq#o3RzYZL5#`ZIG0a;5SQBi2;JOXM>3RG(a?Ai-RIb;8)hkGN^dU3w zIZ$0KS1iB0>TUMcZ2{7VjZaErX&~b}c5}6~fBBHlwD>;1qD!Cdmn{S0ZvjkF#uQh& ztouMrSDy8%qG#$`(W_2yAQHOPrhVKSL5PbW6*LFP-$f-z%3nvCw=&q^qxFbe(3h%m zr%dWfhZnfpFMuv-B zpF_?%MPNKO2Vk!yG!U><5q(P*f-IN3-hn)&3?wC9U>7p#0$I%Gp|5s4*}dajUlGhn zuj>IHe-5Y&XzW(6dVb=!{TwXSdQ%VZg}IK*!3c_{Max)~Tt`U8rlwPk3CH-09AFKZ z^F=RgL3*}rNul{$xld7Np0)Z_fb*0{KofO1kYwbq0*WVP+`A7ZaFT2uL?LlP1s*f! z_xY`Yk&I7@r@@1wE1gX~(uvD3ltVY>RYapdc>yJ(IVM5Tr_k8g zc>JKOYt^7e)tPJ83aH+jmS2A}?kzd%(hAb5xhVBRkHsTyEBdT>Jx}&{h~Av502q)J z*Rs|H@p3m0*8ng!5c&nF%ZhG*x&Woi3FSu)6*_(kdiLyD*+N!!Hv9;;>u?dMQ`jNF z^-2rGIY?HvGi^E_8&!xUBUO0Zi8 z%2)e7Len%6QsqTupe6*@F6!k>ulZUHDPQ<_qWuNK^`8@ukG7$t`ufJtAJN7^SD&j# z9D=Vz=il4*%=3Np-_SCWv&4K@Ty8TxOfcKUKb|EbLN_)69xhAx=jqGIU-xU_591|V`?6ri+_m}#f(YOVo;M}_?vk^!vVa@Pg(h#P{;?s_ z5=x0?o0rQKrPTB)Lf%{&Z9+@XuViFq-j79_)t~Dl9RgTE{i^(- zi)6sTcOWJMVJk*hSh!xI)MMsI#`eF)w;W-jfa*c@;jMWpgvLI+R;TXz*}gYD9X`90 zkA%c53nHTND=ko?65=!Qh)6(IBHK2U-h~u3Y)~o~>;Yt2gg&-!kEu!FsNY8qBLq*e z-TNi5LdH1_rWLTf5a=Ae858~QPJqGHQqA1o5ErM-|95HFQ6+LcRo)71VlK-$BtMQs1tHwO&B1r#_ZL&CX)(I{a2<@q=D6ldp4 zz$s9%S^nY51l(&E;e9Lz8Qxqat>{nbt9?nvwZJ4VgUW~(94tTKPE`&PQS%DTS@R0l%lG^p0i^s#5dig0TtLc)@cbVU1S{W80KriY3Dm#ClWu}lJO}B1 z`o(v?5DqA-sZn~&^&QO2fdc;6WKXe6dh`|@eCvzd{j-A*|qT0RVTR z(^~rr{hc}kz_{vXN`dwXM}UEWLBOOs&^B9ues|U##WX*5F5<=L>o%Q_)7=H)0D(ei zE?tEMEIP<8ZY{>4bI{NXQuObs`IG$kAKjq;E6HWo-v|{NM1@1YISnoos*Y4Bs`+?# zpZaTcG`yaPNH;2&83V0kIVR+Y)>*M4g|-+{Zve<=TG{>Pufe;&KI!@*%S~$-Tk&GO zkPB4&h5{IL-h+T^9wHP9q>gm?K*=%y4-y`w+~}o`>|A-~3y8E(NCQe73*@3U94=4Z z={`T8qVV&}$zSk*LxU-v%*+Ca4*`mCv}UCq)o{ivK)sMT%jhK+itLDdk=p(or1qty zN89W$&oyv2%Z1SP{j%F^uPi@Q_u#exHghN8e!LVbb^Q3|W@YbTI#6Z0(nDZbGK%C#YvYd&*Ng0|RVAiFX4(+wiX+J!h>}1QDfeP7 z?0BCtL?a6Tk)qO>It2^k2}1}(!o>T%AS0gWc_Rce+>Gns!PY!De0aM!-5jl4`#W5) z)*rBg7LN~La5xO2bGPJ}&2MZW-V$_PP&l_2IBbl`!-nDdjz+k%bLyG%HUGrZ`2R7= z{!jMU&a3`Aq5J>7C|X$m*17e+bNcT+4gP;!Qj6PUk67;|mFf2HTR$Czom5h)?sie#hl~P7B$}Tfm4Wu$sDoH3SD_g0EtZYiz zBShx!dH8(yxbOSF`~Kth=(?`1@P41?aUQSN>$#5ijU!t7nHhN*DT-n~psuP-QM5w% z`!oX`{###uZ7%+2m;F9H`(rj|?VV29ouLk$vbVixV}J3ynULcdyUXWothb9xi%V@4 zI%jWhdwI8ngw?x#F|)6s39Kfa+eID-Q=- zuNvL0>rxzH?N4FaPV2u_gu#DP!1G)8H4NSkJ4#*-#&O6 zcUCsD_TcugnieUV!c|9?muxfjJ!P@;o#O1MD-VzFK5n(yT$ALhANKs(V^KL~>;2cZ zaxBn?P1)0*e7#?~^+7hRD)}1kFr|b=$k&}y|1bT;S!v(CeZo6;a)*b9H@-e|(^!A+ zUK(T9(S2zbzpWe^8k(B=9x_oO&CC2$D~geei|e_L=)s3OkBa6v4)W45^Dd3oz7ZQM z#J|%vwn^b`SXigv!W6why5+JJD^{F7d$upE>b~@f`T2QUJ3D1PJ?^fqt`}CCiFI*@ zV-##19DLrq*&cnRYq?RD?OsunZ2QgG_Pt9kT)0qDQlj4c`0-=mh>zsYoe!qw=4<6+ z6x?>Z&kV}$`O|1_>*(nF?AgY%pYC0|eS78k1uo+&G||z~M>cUXEMHzY)S8nx_&wX9 z-_*)VEL|evE4r4wWVuW^Qwxvdwz?wy?7DmB!z1Z!D@4btQK0+V$u{!z(O{;*;0CU!V0y z(ev@~1#(L&iz+(waVo2*bar%j=DW>wO;7Zz&8+0$pp})C&C1H^2$F5{WLu*2+5F|B zroP71$M##X<|&z(5z!03KT2$pkSM>9oJSX?vCPTI$#uH-nRD{rVphditL6+_d;5~- zM<0jYxpT~F;q~j++b%Y4+qrY6(56ic^sE9ewV%Cw$s{Z+e6Bs;Eq$=o-a0TSHK#S- zjqk9+-*rYtMjhY3do?!dc}+Y$9An%+Ov^59e%)U{oloW>+sx!Jm%Q^h+XGpf`YkT~ zNtq>{G_>9ZNvmb8TiEcP4v}i=Fa_T zj!R3^;ooJaid*!5`Esk5+a@uwRhr>j+276mc|ZwSx8)}2D%iB`x%BtO2>x1XsLk*Ua!cF7vWL_M5B4q#DcO z_T5xHefmjThM@b@-iz(|C(orDT$=e~#V#Nq{tsBy;ei#5>NDIgYC`ty@=ei5syA2ncj_ z6nZH$2wS&iuh$U`Ys_&<{$iPKR`cXQSENOBLPp5<@(`}CPY-eY{rlGpcTn{0+uMqJ zGvi+m?;CE*+jr#15wbV-r2kbscB-r7hS~2QAL5=rSAQtyq=j17UblXIZ{6Ry$@YC$ zu3SmVXH~7umGoqj@0k8GXt>_fzQ6v^Kx>Y!v%s1)VjHv`Zt`a9YI%FPsG&g@Re$`v z=HqGxl>Duj7zryrGy}c2c4va-o_~I@QbI!F()4&QZ?ou@EgYH=;;XE!t&dlTtX4{yxxqRZYz|B{h}ZAgTVGN8p;n zKACOKnxF1T7N3i9xpn`(!Ftbi>(=>)iy8J=;Ymj|zVq-1o4a%8j?cjj9B<#g#d7@_ zY~I+EX(JJKA>H7Vjg7>slR0NcCSsiXHnVeZtd%!;b2jM8Kx+Am+QiS?7yL7rmWAR8 z1&A4Ds8_YSO`eoIQ^6_h&Gs=ug3F7ZHN4`L(OVI8jwhyu`o_l5De38}@Dyt@Mn-H$ zCmKvNtF~|7zR!eZ{BwmdoazugfAgD&Lq zeFp|Erdc)DpUbO^k}IyPWWio8KySNRmF$vfULO1i|8Z_McK>^(vAOwsr=MUMHV!*K zKNB^DOMIlAFy1F1@63r8W?*3{``!I9BI;%Gm02DXxF*?0dd+MjKCBE6$G4x=(e|&-R-v)HLVY_iCfZV6steGk?M|CVRiq zV@K7Dp|y)hO0w(g>+9t>ilO&}3^r%dQe=+JVk)5ftP8k#Gxc1xh@PIF`Y&rVOSNQ) zgi16F+p(XARMph#zx($~pm#euI_l-S?$XfIOuagG*66KWX@_28+Ifx*hwiVFZ?H_q zG;?;~WL%bJkW|=^os*xMEq(rdhGnz$q4FGD-PV)YX(t>!FcFQi?GFsQo(K;Ojdl8b zLWO6it&qa(hzjTG)#OT>Gpz39}>>9(o|t^W_n( zFB8x8(eLGtk0+j>C>Ix(slR_u_0=Yz_zD|S&Dq)5Jlox8m@L1n<|ByC`Plk+^aQ?=2qXDo6Vcj&R-dN`zz4+lOY$1yy))c zV=3n4ELk}@x|=g!zgAwDpSv{Dv6n0zUGvD;mG|_Fuths!7G|GuDqZ*TA{`hD z7w6DlKQc1ni2}DD>NCgOzNhG+;5gjI?BX)R+fT-5&8{_4r`7XJxTuR(R;g|?ju#tK zXwW=y5A@TM!zSHVg4f9TK77c}v}U(X(}swTkE+j&_nqIt+k1T|XXc92T);nzZ1(b` zdAZ>+xv>85h=}jFkc|p61KaULTQ0}+ca2pk?gvhCb#ohSxm?xR`z$6rzhUg>=R4Mx zdsUZG^@mz%M5Gk4$2W+&e*_+(}}L?G}~lP8?e{Z@#AX_?n*|{VU@o%AJhS)ej#ozbTRLzw7ePf{Ka?Q^T_0UjyIXaLZcr zo0*&QxqWs!dXycFCDE0c!lT$EF0N*5Eb#MFq?h=~?4D(fuU|`DY|T!uuzTb_H@!Ep z&a5@t0Y6k$9dh+Cn(8i7Qm^465D=^Wx4n|5X zqij+B>o#oAn0wK9qIH2o#F^UhA%0l3_6NH4GAeI>X_Slm{9g+Krv?TG_cgpaxzEVx zVO##_=%~ontp|7R-W`A?@F!jVjG){2E!#_%*zMjLVQv|GF|Le`!&np3NimI!Rrd?>zT71OG zb-=WpJw2OH2qn2!$5gLgeXH}QkY2E-b@PYD(LFN*Z;EPaw3DmCCau(+CJTY7L|q2c z8=hR|U}qP$v$Grj)0*d!Ir8Vv>fKSVG;%f`j^+f~FRHB6^7ix7b)kRBh|XSAS9cub zjEuKDjMYGCHA7r}JOKBn$n8Gb37ojBt~-Yns<*Viu?QKNoaFlR=Z{&5Kf7~go!e+B zS1C5%Ciw*vOG&7(ig#XK9s?5-Cp`=Qwk!MqG%xJ9USb9E7F5cD%Nx0KTrQTEl?9;J zqkQQ{QK11PC8}O-E8`rU)~=2F`B~Xtp(wbfo|~r{d-I~j;&j_-p`g>lnOjKl!YWDSTT50(soq6rK1aV3B7ge8rYPqgY4o$ zk3WfzFKlkkNys_HM*ChKlzWNoFTR&YHr>yXU3`hyujh80Lys6&sNqs!=X zoyME|_9x$6CISVNnKF9I)Zbq*m-_3)?nXq&Iym)+pEz*>6sHt@wHj^w=@1K^;n6oG zl$pqd`j>@hC>?!$j2<2ydiwg(4iP=#C~$%_Q=KO)(GNRD%LQ%v#L07)mSYmyU_00( zz11*-3A2#wxpNs#>x5#TJXt!NKO_G0^8-KNVwDYd@IvIW?yt({khzwXwG&X*9B_n5 z@N8v${c7N5GJo9{<|c7D(&qj3Nh(#*^0yv7Y^gm7)GW0*pHJo*dKtJ(L4AEjLXL8J zM}PkcDhr5!W77Nn7PRQd?H1rc99M?(CjVLF4W*RX5@m);*OvXF`MSABDe3SS_vz)l zL3DUOLfnoR8R7LI*GTc?Z;_z|3ht?X>{s~uSF{TYz#JfIlB0+4($!n_DD>O+-F8#c z(_QHe#&;^-{8!Rm+pM@@108A-y{8cDkVe>B$FZ+=v$wBrQDGqs=0qu&X#8vRSUkIe z4Upt?Sn>%X69Z_41-cOY)tXnreC|YLw&1 zyn6NO(2w2tbFS{isy2@Ww}e^TvF+u{Dkn~ar&)b_edbEfBfrq-Xck>vT?`^M(XYMs zJx%Fb@~8U}4e}I@s_eAyVM8AunH{To{QNls5S-=Wvy5b-Rp*d%9N>l=L53O7>%Qcd z_z94vHT?YiBkvaGlAC0}pD$c&&S1WD=@Q85RCk2Q$QKpX1Kr8FzZr9Lb8W%kU8g$z zxE0;^pwR(%P7ak~L)mtfEC(Sy1%yXHHWizd#SMs2idJ?jDk=z%f^gnjO+f(x%8rgQ z-~y>jw2R&a^m{o@8vMbfrI>9mE#_qV^I zi|&Q3^C*Mfo$CDHCgy<9G! zYDzH4B^?L!_RLRx_YVrH+cGmhGu+wLb-lsFBTqx0kl><}Q^ij%aJjm=K8eLO5fJhz zMp2N3g@s$*dB<*tKJVdo3j!2=iY|Bd_eb<`Kj>h_9&-*CTe8?G+o_RL*mvhw|IC|g zD~3E3uOG_HCqqUzqtB8&=ZT{Cx7L!iq6$#T+fEfN_4e`Eo1oLx>eL?Aly_xRMBF&n z|Lx^pm@b4@;`WMD&CB~-=dlUCK>m6NnWZTM_j2SbDpkI9tJyvOn-BBzD4jf=$X7&jRVg?-#x%{hA+94Aaez5E%t@pj2Uuf%+#Fl4FPEeb6Fi(YENCd#fMQpLk_-qx2@%cWf8u263Z&R~`^p$b&T*U%ni{zM`RS z-?_uSa;0{n)c*bZmo8l@v}+g7u3fv{fBN)tBLC5&N9ues zV(>AI1w}l=5(-7l%K3&xs4Sf2_}Pn_j{wT87B}(-1zv$SD8^lrC!9AoHa3=O+o^0n z&{(~${CH=%pa;;yE)bazN%OLfrt}Ln1|#6S1I?MNSQpQC?-bDhPIU9$WW2NSa2Ww~ z5Ro1^4Y!SqkKcWD9yLfv<;1FgNTr?mnXr%P24XK?Vzzf2>37_c(NO#BJ|`EKO1$>o zM@NYE*z@&Sh%rUu2|+_8>4bS>$|($%nl1f}scRt#2cW)k|NeZC?tCcD_x8Pe43su? zzBxk-xW4J`VyE2vhFM5jY|V>LjoPu#V%&KT?-^ZsT8al7d>bm^;hwA7HVddFQ#AK; z)p0%tf|H6sMM#x2HZ~S~`^G~{&vN(d-VEzjMnOSA=upfQQ)Q^mY95{&#eS@7Wo5aJ z9zA*mQ2N&0yG!31u>`3-*42Gntt1{ns}#0)gWYz!?02tWWMs5#wJ!a0e_Dql@}Mu2 z%yT<VwS9a1ZeY}!T@Y@<=S2*U>ASltXlrZZQkg6)EHLb9o!h6Tu7JB2 zwzUZq78YiqqMH?bP(@GB<^ ziMXeC@82imyf^!?j8zkqmYSOTDY}?KPt7xEo@9Kqw=`hX`S$N}hDP(*%7-^t6=&IG zWMriOoUe}ChXSs746^PZzx4wE@|U=MD~xiluv=6`mqJFzm=1(K`cnT59og)+*6ts# zAo7XV8zB>qIcYo)zu8&W9{b&-rD6JF3;P&}m!osB|2Nh_QNR^?85eo9j~%-e8A-~1 zEmSk=OR|X~2-r)*OcqG9M5`z&DtdCW72ixTEnM=WySsC0^m}9a1+EPT?@`pfotH$g z#R5>WN=YZad$B5nHZe0YDjzw*W@cuFxgQv>8BtVG!H5?6V(jWCh*1#VsvoJ)Q=SG% zWf1Ot&wLDrQNXe=-S95tN1eQwYN_j&&|rxGpJa_#zt-2xRJ0X%2T%8m4h@3 zG&@!*B_o3R^)}r~*wnb^iQ^#eT}P;?&a%$I=YMj82}sG&k*l za-b*yxACI~AILDH9o8rI_x9ev>Zl9;l)d`OKZ8?zVgo5CA0JdUu z)_A4cQBllbH=piHYc@4-2dUA1z}aH<{MB$YYszln!m!x|L}-cZ_I| zt+gi~oqYls1c-2|>!!puw`u$HIRI>Emj;6;r!n&^6ElVnKe(-5<;iWhTPHF#UWrsj z)}`-ke0+&q3Z8OYF}lV}R;^y`i>f*@%_b)j=Q|Ef9O_2zXHSYW54Zqzs(EBPiD5e_ zO=$W7TTF=S$z*W$K!q!A_gDymh@tt>Q8auKl4!5krPt}{;DImgn(JN8fYDBV<3HU7 zoEsi~cCOuPNM%)KbCN4FgY8C7o&2Lq31T_hTDxXj+2_y9KxIj<-QYCb+j0K(cuQMb zev@G>HgrZkmyn=>YnJic%Nq|K@S#7!9V%+hZ=)Ag=xwddJoEHtvf0JIQ&T-wlOrP? ze(WpRt7*MFx}>jRGI9F&_~^Yk%WR?i$p}JixP%D{lps;fKmJ33Ul?2x_vT$ zVfBmSiK5M0!cCV8KdGVzH?Vxgt#t4-YKh3|Fk8GKg;aXqgDkU!;27?0rk>;9m{gfR z=uw-+#eEHud^O^w+{y`5@uw;AR#sLXS4fTW7ubp^(1Y3u8(fviTlMMFX*jrXXG0o5 zaU=axdDy6|t7A_Sa?m$V+c62Ls%`+*^fk=1F8ug0Q6mz|MRlOlJsrXvx%B~73wxwe z>As)7XO$q9V<3;fhm_r0Mc(!%DBAm_Qc_Y>K?jpRFa|dGE?NR1meR3_h;TqUqNlvJ z3sK-<6+HMCXCcBdBbBg>7cX8U-Pfy|T*7!P@tdWt1qL!*xq9{Z%wDhm_^*A|g@%vz z-CVu+Z%Y6CWB^ZS--w7kUh>F4FL`LYkkR#hcx%Rgee2{)bn7sM&zw24VPF;RrI*}` zv{cfG6+vppzDo;Hur1ABSQGlU9KRE%c4Ac6TUxAeNkPAozyI@Z+xw~8VPQU}ihVJ! zX!h>iyYtFOY@suD2kxDaU_gZw=;H}n0n%vcm^`%;RAFx=4j3931OPa%flEz%UshI| zwC}=k^mkGZ?@d0!u5@J$1K!e!XtCzTSG!l?j>)Vi(7r50Fy!uCP6(_0bvOTwLR=bZ z*#%XY6aE7m>Yv!Uu)5g^-URM4>Xs&A8~P?3GZwVeoi2Y~-Utr%7vNkKbKQEYr_QX= z$IqXo_YvNDKk!?nC&te}%Uh1IUsZk}X2hL<?wg=$N$XWCyA$I-dzy}#^x0kwo1Uc=aHJCjEHl}>C>kPC$xK; z+q4_Km4cejF70uaPf6S)p9yX1@ZrPf4bPq1bo=)0@xJaKKZLe#=YVFU*3V;yyS(D; zECNO#W{{?&uFjBQ({5}v*VSbPK$J(%e)JG_TA=X)4TT1l^5)I=eLbqGwF8k>RP{gT zv3b#wunKcV;n_kVHmC{>SZ`QaSxF>J(xhRTK|}mtI)}{!ZlMu^Drxxs-oIz>v9Eq? zCxE0L(vVuIx=8D9B%Ul)3?t^n)>ELVUwZ8~ZQ6uaWP<|%{MP~H{Mx|{Dp0Tqaf2CC zU^)kOqMUR>GbAl7&6%HvUH%+wB7gt+kZ*LMkY%6OSwaWaXar3_wMX4o$Ox;ZPn?nB;bin_^YVYbA)Q$WKeV{5KSzI~V|!~93`{~+2%C^V1dMt= zOg5baK6dtN0INiZDGw1WM++nrigH@A58^DG;qiRBA@7Gkf821bmG$*`v>xt+f5j5( zu`s_u{)C8SzBgNXHr>(=COj{BZlFi1peA1PR(Loa2zV~c=0rC25={+&mfoM1lebe-CU5e?OJ6n4UanU(CViGaB< z#V;*Klc`>?5DrY*CGvO&FEd&U@MMHJ`>nm8Wj(bC92o2Y#(B;>Ni!8&k~`p*kbuL% zS~>Jf>mk3%XK234s`l>^KR=7r{pac#$g=Yu-A5(NMyk~vP0-0@h{Dd7U##)Fw{Fqk zj^3Ys&D+0QPEO@_Yrm$Uze6#l9Vz0UV`?p<7?$tY*DcA?1BuQhr&SPOt z7Qpwy8q!XwO0=Y-V`bzG)G-riYKK%9XbPH|c(t^&7GLP)KQF{5YfVw;HM)kXb#=I#>wkAYN!I*RNkE`nlHxQU++TG=NW#e@w9*oV)+KP&5Drri`}m z@Zm#3Z-|Z5C&^yz^++LxW=YF(A$TE3Z&(E`cI#c>r~h52$t}z&Rz+k;PL2=W3=#5; zoqN|4&wvWOch6t{&Dm1`_3E0M#l)=zccqk22cUF*K>pYV9nhc&X(0m-4l0`iK*?PMFx1E%(fBnXdx|=os5ehJnCD90o z*9fHp*h?O6K=rGWa$attzz}MWt6kXGdFwAR zf}0=jgR6`wSZJD;)0{As9p?%IV+wvAGZ^b~jt!;|>_R`BrkhEF0JAAfqxWb-{3@i# zvh2DUmn>P*mn*n92b^&AKkTlC@xXCAc4n8Ck+`4MGnKu2uN68wWgZ(%2bY3ELE1E# zPcXKoAkmI~+Fqr8A#+&9X~+mYv==?8UZ`9{^>bBTrRT`kFE{+3zm;mHR&sMQq#FbQ zGo3edb=|Yuap1Xb73vcftNOu%JM<)W?#$ANjEND1RYL|U^h^@=N=Zvoy>ewI*{zWF zyxeYoI8B5IR*|?IsNJ0?pb17HC@K&v|CtRR7iYu&%=uo_2EoX>zHCKkM1&uJyE!bO zd)rPep-iFYk_HOPofa3#sxU>^A?1lqDI_U*l#!oAk_tmrRCTyuoKi=UDYNtEm-{Fe z68`Wx9IcA*-cp)dD?% z@C`DpgEHIQ`3j=+!zJ>kmVk8l0>ErI938k`Gh7Hub09dv|GuBgav|!U{vx|V*!x_c zR!j1KYRYiK=p-d2-+%aU&Bte7)Z}nY{0isEp&&5z*X+*lM?Zg?8=0?tNgBe?ej==~ zu)NZpqINF!3_j8`Xyu%S_#rjv4A1>*Q~G8`nvxQL8XVAB`DJX2UGef_SM-F60G9iS zEQAg-X>4@%czTr6P=T(=e`vL_Ajk!+t!q#*6V_hDI=H|6pP$BK9Uu5M7TtvLjv20m ztD>Cf)se zp^nty)UrgqiWLmGu&C7dq zWYacO?cKX~)z4r9_q687;undZ50hFJo&4yS6#TyyME|gTn483D{jY8o6)ge<`hsK> zItJ0yAX31&STvT+%tjDpKv&-3pnJprQ?$b|r-FOB##fiYW`b2B^Jlm{1n6TebWb28 z=ZUzuxKQZtN4hz0XB?=12m=?tm^>4-9@nPg18 zG|uBC`V;C0Izat1U;q1h7;J3_T5UDS=ihSTrDsfxiC0Flc7iQ_pU&z|-!Jgqvf6}W zgwZqc?qGm$yzgVU*wG_LJRt(iLO>@;ALys>%DzC48Skm4ZOw7o4~o$F>zCh&Bm?QG z;V`%)L>>mk_8p(XEyD^Xvgo)%M{pTq3 z%>*5QV3kKlcKqn%xW!X*ZbudpxxxIqu7_>W71_LbIdYQ1XRD%HJCda@)Nh5P!-}eR z^~!90*!}C*_lmGBNI_mhpEgK4cj@pTu}1E}GC}Imulr-f+D)6@o64hPZ*oa={rGTa z=cTTtTG4xMczZ8Jq=ANHygG-5h-m~73DL~eB+QFWhuzrG)AM{X86*{G<|r5%cm-5e zVek*cv}zs{VRGc1F-89%mK1)57>#7ZQpgXGnnn}h04`At5s=5CJ0Je#!>jc#%pUI! z-qVr%ZoY`f8+c_>2_dM@JmLl-y>Z0AfH6vo9)EE()i>(ZsQ*-W^Xc$tqs(7c@Z{8rLN>T9JNGkXXp6>WiD<8JWPeGeQ>j3>_ zZQ4rUJs{hlKa0spa5pFu)QT@}EDrPUvMYJn9&>+C{q17#EuK?>656qY6aCP60v=Z= zL`uZy@| z<`g*ZkRZd8{HSkaV#?VyugoPcK=uxlR|pprcDoPEvHBN+4yEh$94=3fpa1kgmQ`_n z>hZYS5>G-*NLUaaVE_2f=g1Estx*PXo9Jq;BZc&89+igr`Xmkx5OM{s7EOzOh65_^ z$0k7iXVp_Zo_ns@; zh@Z6|coYfDmBSV-uE@!q_-;UI|M$ z?xvfdqkSa(%^RC)ZN4haNxY)eDx|KT`bz6IW9)} z1_pS1%Ff$aV~tJP^OAl$s#IMVb2v1CE%jtxclN?LL#uv0{1Ajxc#vfK%+Af7I&&tz zA!er2UcUU#7D<4CctpdrwCJZOIW7#?nnbuZ7jkEY za?UQOc=-=WK>Q&gI8o8-QBfz4Ih7BIR6yV@t0?YD(DA{vC6A_w7c2CXB z6hmvpOWnt6i||8QEm(jJg>DUMoDM-uBMPf`F=h1j&@hyqCqpuyi2Aalaq zJwNTq@eOwl^w+t$xgi8g5ns%Nm6f%Z`6hgyD#e9B#5Bxd50mG5;-%g-ix{^P(>&Jd z$a|8li(>_xFen=VF!E=AYclc4931}q<-?tgASTzEGi|=3h-zF^>K=Y;YAR}N%|m#{ zajTeEe7u&9EcCTW*SS^FHfLSfcT<6aiUN=w^saWVxXJ_wK79Mz|; zp;3gS_az|lrOTEPL^d})Q4IMBAx}@3_;Ij-Yfh#RQ~@!I97id*FMVMI6RcrcT#u+X zyqZQv{0RKtL|mfw{PK{^b7&Fj>go{BM8KiEk%IpYfiKH_F58|x5l%ijTD%|J2Hx`+7>2;OyBCi30P9>qa3IBF z!QH;MW*MrAczu}h0Z6nU-^Y}intBcduQ+NGr0#6NHjGv#1`6S4PKYH0cYt^icNhj} zNm-f5?%f92LT>Z3fA7gy@#6YmZ4vKI<6Vl1vhoPx0;b5k;qb{+x#IjakTpZ+AS9rL zVb>$DfD<(GXx;S}pYFTSGk;u?)=a$N8mh4a6O%-mMqz3RW5YrEr-nYUWWqtZcI{dX zy%ZfCod~unV6#L1vWwU@_MMIz8jN5Zr_9a0V57#uLqVYK<>Vz)k~t3Q?6mEm$bLaF z#HFOLMeTMdLSaaruUYr_&1O|q`{7T{bR{jVtjq8C4;=;&^+Y>{eErO6qvA1k<30X`mZ1-yq(`LFu#90d@5PoEHduyg$SY?jy;Mg7UU*N`~2>!^8D^C3|E-8G{hi z0%Ao9xKEwJi0&Zp`;7%_F+DqbBom>-pLC$ShK7aJnGUYv;#!RPke~}7uOfKIL(ULJ@3G-V`S+#Y8b#>!-luG}MH#Z`gweH^Bu?VYlAfb@{A{BQ%faZHt#) zn@1P={Q0IIzkZoR5SmQ$zKL%MkMe>bZ+DQO`2n4R7>^@Jt((?+kj4A&K!H_g^(E<_5Ob&nE}YDgo{?$jQlhh4`%CQWlTUjXa4qP9Rg$i-e)p?y!%9{Q#E| zwE~!Es^Q(dPiL{83d5nGUb$2hLq{WLXDl5xi_H1(=KgTh? zxMA+E^Bib@Cx};|6C{>Cj-T8D(x|Jds@jj1j{lpOwhH1o9vwOQ*o0Fzo;XvY(H+(t z5E2qmfrCZcENeF*`dI{n0g{~*aHj5{pZkZ?Qkys#iNj|8!is_#&WczPPIR0PAaZ-% z1ASxKn*S-ag5auQyfu<2Ackxl9E3cO=?8SsQ%HLftG->z3;}x zwKqv&t2;TOBn@Q)R$ zi+dL!9>FiNvY8s+Ab#C~Ieql8T4cUC>2d%3F8Cisfw3R2!0M58h3ZsXOWNoQE}~Oz z*JW2ic|XrQ$#4xj(!BQh(Ui0wA(!zciX*bCF%K?Zx^xY|1)F6&14sUZ*RS_!@W3Uz z`Cy>*D13?6Ay0VSZAPNd0fn|NV#P7lp-ZC|068I5+3d{V@#Wm1abPK2(c) zh|4A}Q#LD6!3bFgL8l;nlS8%y@Kl!&2kr$Qkv(S$%tPeqU~-du4n+>aAuwY)(ouM* zWjlEx;-h7=g258ai41WxW*>mv@6geHEw0xvS+CZ`L)a$ne-{(T;Mc%*-xfpCFBX;I z8FF%Y8&pXgPH>%Ubpm3uT1*hvMdC>O4u_3Hx`=oop9z@H=o6Qaqk?5tWzE7<+`MRb zK|(%F#vZ=@r@y?!Vfx880sWKGyoZqNCO_7*&=zrj%1mSP`dxC-mHaU+^^3zx>)gOV@k-pY|^s3j~hA zSM8#xjCv=BA->S=+i*u1J~K|fBBFlQ|GQUU=ai87PKEc}!K`kJhAQsopzn4F&GD{Qr6N6PV+c%Vl_q@&WX{3nRJ4rsLgQyr-SiI z-7ZSp{R^#@yQ}`IYk8Zus(r4Y@vn@d^>BUY_sYh%TK^R++_-F+HNyelTTgZXX=&L_@5?p7eM$K@dQbbYFgdBoLKfQ_guh-!4w>SIY z`}!l*0#+ov+rCE#N6(KX&bNPVysD+H&Ib9O$ZaCBvby8_4Tp(>poVpg%O0~DXlY9l zET>_9lBH8f-rt6YS<`?)PR@qYHFr&IlX%K4xC+r1G3SZC^#~W1TF!iZSWZvNa0Bbt zw=5Jrh1{e@70zXqf@CodHDgSqq8atR1+j!Wm^D6&s6RVW@A-vplmBv?Yyt7B>oAFZQ#A_$AUxd-Q$Mb69>tY zoEd@y%i{UH_+g}_E3|r3tb_B%<}G{FzZYjG$SM7_0D&Wd26l%JL|3GBD^2srnR9_X z+|W8G3Mn$=^6*&~>i>EWdJd{43GT?4PXysK^pJJK=g*%_a|m2B*^V3<_2t=N!QKlh zZZBKj-Je#()68=WjIvNkK9<@FwOFg%M(c&#ew^f1s}iH|;Q_UcT2^HMZij=~zXl8j zNpDDSek!mQyPm)n9Atc?Bl@qmhNGDsz#Sz}Z$`f!RxE6qu52a`^~{UW)GMQAWNy*u0CeBx8`@I*7(tNMQDJ^wiQ=;^dW@3HR7t$OCSUszN~iu|X8 z*y%$Y)L-}c z-!Suq0dtj%GoM-q5i(i@3mOMk{yo*sEMRlU>i8?ei1`NlXy&}&n3#4q`5Bsmo_}fj z=B15qaRR0coEesqXxPSe>vWnWvYnptuf=I-QJ60&m%gj%8Jt*1ylY2|G=C%&$cNf2vKtb!wvtX9tuASZJ;FggjRdWa^k>MX#yGA4 zGif8z0410L`^blVyz_WB^85En1YewI5HfgEv8-8{VRX7b`6l9v%Y)R`lFz5XjwuC2 zVaj(ejS{JUb#e>&SP>kq8Xw{$SC60$pn$htis?1XT~4e;P(*!t=|1INix6~lPfh$y zfNbeMe&!{)_sm>h8l-DLU}3-l;GDu%PR4!dT#qih-is&`Ak?S}icZb<_J#ROoS1kG zPbi}>8!;a9`d3_BRv@KT4fPqU?^&h^))87R`Q(}8nzIO{ zz*mpMZsWw16p@jsKPL#IaWhi3-mrBL>TJjXTfvds`6T3xtDB@amAtbq&lmxulTY&i z`hUc=jeJOpik3Ho+t=`7LC|&N zT3c%t;0F1C7{~`8lsDhMSI4-}8N8Yk!%fWB>}TV_ATalhs+HfCOCilW%| z>{dQNQ4E3cFh=0-ka+(`|Y<5)9aXe^i?&xyt^l?h#n4{e(TgOutCW6k#PdixH z+H4Y+7T+i)c+%0)&Ou&6!uszIh})h%A+b(IKm`|>Z?{|5fuh)tk^j*pZcnhFsN9M@ z$~z9Z-tBEVV{qvB%=YQ}N1IqTu?CzM4hUEiaN9N6!aP*nJWS7$=X5 zC!a%IM%Ico_9k~;zY}vu{r;V>OLtzFh%;ScVrG3UDaOEBKfvyFx6y*~FXK@)dRx)4 z)$EN^l~eNx<;@ZgGhg^}&@0n^X}22p&78M0d4`p%s@ z+#5{h99p-yw6yfmiMNsRR*4TDls;qMetE%ic}0;BAz9h_IFJ6%Pr5!o*|c@rw)YA9 z1o-6a?!8GLcH7pU*CReYKCYOm-BC2z|LmyO)T*qCva;wSX-0OZPnTB5tH+N7E|s{T z6zz@Q$;qO3BO>DKGf%uNA1I!=BDC`YzWJ=BMc}Q%q}aN3>*B_?kJKC-92@gLkfdy8 zwldqc#ppy(@{zO)At51BMM}|6H5iZ~P64pL6D!epLz@4M0sL0O2VUyMNGe1@`vT{@V_U-#@U$K1r z=iBY^*$tT|!rd3VdGm&Qo7>}>$lJFA5);?F_;Q++e=GM=38R#pP~5n*zJ6(QbF=G6 z?GYhg%I@bt`d402VPU0DOEKuV`T6Q;UXy*YhmIWSC|i2e_tveYpR%m{XQs!BMH+v1 zCq%uAS6}Mt>e?FZ&#!ds*s+L_FJHbKt4Y+l`sxc43(K?S!n0KqhYlYW+PHCHQ=U_@ z!`*NXnGuiRDML?B1rg1=Ot!YRa~K(g6%>lP6WmZ{Mh83)`4OXjtYwRkP1lr=T4?3rw| zEnfd7V$15ws<9t)?PK>R*D57^sFl}NQSsZYuFjro4+YV>8o7BTS|1vaIT#zq~1`qNH@*&dEvIA~`XU zBSPM3VU)+{9jy9=J@sizckI|vYAjhJU$@-lvry4^JByGn2WCoGP*BnR*Oyx{DJgpk zCcY<|yt}uATNPZh64Mv6Z)cp{wVG9X^``-i&F^Qz(sn=&2Dvq?*lhe(gY zuTCzkHkSY_=1axX6YAr?eqAg)JH{;Jo9j06VDQI}ggzF@0WL0hLqJL9aK4U z=E?3odpNBdvlk~NC5d?8V(c4Ez7q_b<`3u^EvJ-fUb69T{V3)=+~1_%`!Ri|TcPWa z$%ZpO%lhG-d?d`H;=-Rnw;&@MqX1+L%o@A>lzc*Zrr%>HT{dEg9*wATN-sv zeV-2ZHWxPbPGQDNYikcLTD*9^knhJQ4hda#so^yb>wEn2^YdT4ex2epi900fxP~am18;%mk;Yx-7Uq%I>nxa!xL4qEsH)R>|3hDG=wdAX>y?WsO1)~ z=>mj?kn?>(mjVO*0s{kcPk*`e*akD)9&TH7&FI_Lub29p@&o%CbLy8ViZuzS7gZpJ zs_5y34NoK`L@rD#p3WQ2%gfVa<&)dbx83tDoo~RLeI>#%dKYJA9*2ab9XxoDj;aV2 z*j4|~kdupxK|nxYxUX?(@ziLz%7FEy*RS`Ul;U;lu8wc^+;(=w;hox6f7eu3zQ3hWNlB@-v(uMlsW_E8JvD;IpeSUrOZy8Fnt@jja%Mv&1naRp-)z6$FNM_os=3J z9#$^)oO*=idg#z0JV*|C0& zPyH=Z!yopIQBOU_n*0s(o!bzMB)M4;#pauByffTTIQq$I#OUaOTS#84n>TO1jV-WZ zGw~;NEPT05lJB;AZpGvdVk0o*PB-=io81$<*Bw_wlZ&m zJd%@>hkpNj+X2LbfM<2Oif!oqE`eykCuD-#8%!Db&-QNU9+*I43AM4@p*)Au%og_! z(Bo%kXHP-2bDJt(W_xd6lmg|=zs>FTNbyijAht$0pLdH>yZP^A|nx z(D>V%2s^v+mVv!CGNBywZiW0$f1ml?GBYJWPfyQ#_$RW!;B&5h#uzx+ZPuyf_jdS%eaV@Ub{p#t z+UdW5j=HS60+ah%v*coMaK(z?t@H@U7KW~_xs_u__w1Qp{ow;3=z%spJw0>n+UPq^p9vX@6$bWr=HkpUxJxHw8NW_c6gc3@_wSY=X>_eWzPx%- zRps~oXtZO7BWG8uZJ(F88KF50MQbpz^X6;c^E5%Um*U~z7{rbWJU?-$wrIRPuc=zP+ zt(TDSe}7Wy*MxaSMuw!xb0#svyqZ(nfqmOMI)GfX4j=ZzKIO-oJj3`~F1NxQzj*bE zfx0VaPcPsxe67-H`D)F(iohEgnVB1`>ck2VIP4r9Q=C#JM!z9(yLMjN#UUWz_3G^t z3EZv3SaOn=x*ig8Op<%Qfx+c^qqA&*+G$2?J|*5N zflH#X0GXJXA7ov)eVdzXC>|ajj8@sD#iATsTr0Bb$F@0(R!mIhzPcr`%gBiTP2{#f ziK20(PXqQHQTL&_=Y4$epOx|_o_=qPy6`)E&%S-TjvW)i)TMh)x&0n(w7sq1 zAx{|(G#BpH)C~RpK=(*}F_*CA+*7B!w{SLmer)k!4iysr_06{8-#-GGn3y;aR@$#@ z>F1cYfKT#_?STW=yFMfY4-O7;U=S7pIwjX+yZ<^(Kq@K#SHROUVDs;(E7q)ek#dEX z^2LV6r>}+r?A6I@nwZ3N)h6HCzh+TsW263M?hQ&SSFPI9m!6((-uP>xCrzU~u}@sb zws>6v8L7a#%!mmHVXK>w{Im=W*Jl+@_UDVZs6DXtn*R0Hiy3u7NSLj= zt;57wHbj>LjhKTq9x~VtF^?X->nv={v0aMNrSzm!SkT$tj~h67c-DUY{P{T+*7pJi z?Vz&2r7VCBDBe~Xo%ymj58+n7;{gxVWth=c;J~43#h`l9l3fX26 zw(1fLsmXBHdy$;l2x+U(+xXw`1d0=r&KK88o0<%LFI>0;*in-wfK|LHpGBKQh~nsp z(F9z+*vqz}q9QQcx{>*bfp~w>qz&SPft7}mj(T ztya>T$)#w$h1UP`zqSoZvf6_pXVRCx&A3t zJ?F?ngB^(S)`pC0P zy5+J~Wi(RPZ{70un*JH}F~?Rw-nlm*H&^bnON)p36i~!qXUIMi1VUsXf-6X}%k;$R z**-eZ68z)G=|HQ*&3$S~hc?pYQ!DWObqV%Ijnu{yZ}=YDw($S@_3LBdSy_TEkgF1F zEkiu9wE)*%ym_OlrpCG+I=~Lc#w&Cs% z^P)T_)&gaGy2ry2p-J#)s`e`$4ze6GHlLMK$a=+d)#2Nl9q|YDv@uXIF)>%e!Yr%P z9zEhf+6uUQS*qIw`>cBeOa-YS^&GEVDKYjgF}`ZlmHl+)_NSIML5 z1XRrQymI9V%65?{OU;~@uU|he4_ap5{(OGt*RRcv`Rbu!C7>Zbbmb9f0ZRWW@)kpg%X>4y99Ic*vm8f8EVmrzdX)kK|IEhfe)s-2>k@7#CFkQr;_ zy>*2+!*1lT$9n65qY18}b|cTdzOzYVBB|CA<)_f*&ANGvE7z`_kIz%yQgi zn;nd$c#(TrzkTyZ&Ak{kta+o8lapU^vXxIyZMWm?O(zz}yYyeilL@a}IR|6GhF42{ z`BH7=>eU^EW6jS9+yP1RxNFO9vK|{&gkUq{ zJR9ZuhCl6K^@S_eFMur4<@_w)7iq+hka4G(K;f6Bcc zx-+@99R(mT_43ia#(6?>_U&6CEF7bn-pF&canJ7E0ggd0TdHnvV6d^VF?SiyyT(Be zl%~9YKgS~Gx#!QHA8ZelQ0qH$<_x#A<)Y5hn+eb7GGG)kCSjPj2#{=WbhMl-rDXza zA^%Ez-S~tM0RX`OP!96R1jLj`2N*S8WU2k@Zj#haXuE9POmiVDg^hPucU|F2?=+>i zn|gB`|Ak4%@8$B2l20}@ypP?5tQm;<%AyG@4CnIYLA|}FKp(ae8YwTEew4#ZZ z?Yw%xZ!5th75x73>c!i)-+IY9lICRy2wJY-&W)Fmvu~e+9bsFo4TMMl*y$&HAR!(& zT(&Lx#TYJYTMkHfufAspgq4uIyq;z8P|^?}>@(l_T>Eu&m?%_p^RyotT#VfnEG#X( z7^$}cONXs>!eL)|ut4xqBUd`!AV%zpiW_SW#@XAtzx+Kh(ldlovIC2k^6u<3dmXW5 zsebmU9opJUHg4LKe)7F=ccJvWsnD%nUj_^e4S^2v+aBe)`}D7GBurBGjuv~~ma`W& za_e42DQapiXm;&jLlwb{A$nTs$1+rNa9_zuDSArb_u$UNL+kcNDHN7CJr==Mv2%7V z&$aKM42nH3VHqcG;8w&|Qs76$R)IZd<@^9VTVrcqU(lJKUu)0u>YA7cs|NA<0o_xI z#>V#+EdpT7wrRRFmt~2f_$^aZ)m`sn=ixhyluo8OTjZIqJdXXJd8VhQZ_C>9*F7|3 zX`L`E1;&zM`B|rL+crMbQ7!f&OxlWL*)kRcLOKRUZjP;Wx@I*ZwEpB#*ybwD#&Y zROw_71G8L4dJ{7$;7-;~ZSPi=B}F-CJRvzbZgFw(-TU_CIPJl{GE2Y+BxYnR#O8gD zdrMkWugtuf?%bybqKOl9(3%B&a^AqZ_41m8IIyf;m!gwS4=gTu=0#goByUt`sQGBz zc-|-AIF5x2&p&?rSUzgw(Ux3b=QX0DR)gOTMPZloVZos!zFD{SrW#>GU5DTAvPXbI z$l7liQfa1>Wx05Xn2xu_hx=_nV2VJ5;aT?^-~amg?R}Qj5jlBzVL7?mG+?9^yTSY8 zyN8DP`;qujubO<$wFi5pjH#j&W8ahV@V1o2LK0j-2ZtM)YMCN5=oGncMo^TrYgHVd zoK&xusu`&n4@)SSDJ(3?Ue;(kdgIrp@>JcHLySIjMn*>1mtEEIEQFd5q39_*x}SD( zS)x{KYj?Lr^%73bbENjy)zuvbX;a(jrso6lKyA}0zCr&XCcnpru<9=8 zrIsW9#Oq!SS|%$jDanC?p3z(H#BLiY>rYa>EyV&VDk=d%L1iKP6fV}()PyTYPY?8s zWHo*C>^S&!{qh`hkAqM0@?sJbnNSg8>ta7wAmCV5pLlb3^KE&jbuyM}~N!CN{Wk_|`HSHe+LUADL8o1=Hg2$)Mq#hd>n%msuHE70 zCXc&nL~gY0&P7(Xb8)dPO)!6`5iSGDn$NlK)2h_QT>BMxQlEVazvh7HlQ(}GX$@h@ z@-`wFH!I^>ZzR(@?%NTdIHl(xLY-!{~N@LnAVG}0FN z14WaT5p%IsY#%v%(?m*pdQ!@y?^D*hZpYk?D_izP@*dUJzToRSCnTY~;`wvqFE4Mt zc=1Bf#ztH_MduunCiQgN*k^`9qu|=)BhQQ_jo-(pkXp%6Q19oBU+wKCe49_tnLmF% zSyD6t0mb7Al;?D*+JOLBM|hV~2;TdRj1~y_R@So}K6J=8RX;~QjbCHLc6G_#nc$Xwk|C$;m1xGIa8tQ#q6Z5WbCu2U?CI za)1|8L8(~AzWujg;lRJwD7P=?g8*#n=vYxuQ1Dzdtw0!;iqAH!xN`Bui`{Kszlt!j z@vcNPj?b>HK0tWwwzf7Q&?U;q?UlJiLpa$|REToW1YjbjpuoU#*;dy_lyQccnHiIi zuj^QoOWD*|i^NFb%=Ba#=1A0+LwLoCofK$Qep3Cpo;@2l)KL)#+>XzaS}Ne;#SKXv z*dh>!j&y$ca;HWHJVEB$TvbQM$CW2Oh5?_&d!ey@Myvrrucy1tyj^tmS>EuR$sbwiF(?} zvpTh*g(1K|+~41S9y2rZDV@ax-H9@Ch>|D7zr^{o9(XnSVc+&0A|ZR;8e8-ME3Auf zKD;wkduQzXkBPJ;a{>g~J?VfeS5yxjTJ*Il++QnJH5xJ%IFZLry2G+yP34@vFT&pQ z^XGSC!d6Om+Ou8>ZvmihnenEvahac=p9~2I0lhp70gDl0+h?W+W(FHhL>+_N^6{|+ z*S-qNb9~E}zfU^2dh5^En-FFmq`tD?^yM&5Fs7T0bLEJ03!fNVxn<-wU!rjMdaAlm z#%;|69}qAsf`2~JE-k2hC;=#&o;sn3`z1D@rqhb}&ivO0OemokdCUVHG_?Y|0$R((ehF%TJC-P}l| z2BHr6bcJv8c`#Bu)<8p85zV!XQ9;p;tQ z4HBj^j=z#TR_d!~%fgGKAEfF7zy^7lALO=e$LRjlr!*S|;&&bC-Cs8C!3PYc6S`mXKOB6!g7RZ=_GBQil z;ukV7vOWd%`UngXr3h5_E_&xY%A128h!VM3yJ=}mXv)KbkDx~Xb>+UrqR%l?s-)eo2I7bZ&^ib6*lvnO@h)1-ZjXp=JmE+BW_r3O5(Tb8zeBoNPW=n z)){$>91hw4(*?EPIkoufp;wk~k@>*SnYDNB+__ni=U0VP-aEAJ%rYaae@jVPF;v{pr+1?mzBqHv13hY2EN{e8^{y>HIn-bS&fYKyK%s@C|-6%(4AlER9Wmi5M) zs(-e1b~#4(ZuACy1EE(~R`!VAts6J6{+L2MEwgx0u7GiSm~%7;1ZrGDLj4m%(7(_e zLj1a%4?6@JGLkacQq!475d%?vnaAf}>AruIW@Tk%a;H0)2nqqpqMqXY?7qI{VG_C; z65=D<;?4!VEq%0~BWt%bU0n9TN7U@K`S7X~$I_+#$jiX_#?1w1NDiv8lm>aKVJ?SN zAZYkV0XpaNvN9pmu$0}%_rsU@HZMfg@c#XK(1A};DOhKzE3a4Ev4hS#?}Q>Iorksq zO3aj)j`axl-o%zwi${j~(yimz*idk06Tj#9vCePb>g8E}pr#kzzFlDZ%iK78vvo6hyp*Wtn$F0@aFS9#Zb z*4+sPB$H+KN+5qqpjtry|aJpZPepSL$v041VsT~uNjIP0Cz&&xIm;zpQb4w9$R zzrMcXgSvYKR#CpoKsn0CtC5j5&TXf_WJvL{feycR{rY+6O%xVv*QYE|Xvm}#{0#Mn zga*~i+~=SNnL^T+`6MdbD7t11MFpNvbY%t<=alv}eB+Ina;hnBF=z*G1MvzJrl^$J zPc>#&r40NJCbLK2EYKFSCAh&N_Jc}+F1y>;A{rhtxs)cW~*27cZp zbBsoU?MylpmU0lGu=rwa&j?bsuYq`4jsWF8+Hm4UWn~G{%lFUysPOI`NQ#RGE~AC6 z1arpc)vKc!TE)oh>%JCe2vCZa4EF%k1r#%%f=~tVp{Fm$W71hn=MjY&^3Tsd8_^iC z-Am!IUg~4B^?ByY>4_C8tjsoMhyfOe3XyRX1Zmk#-9bM`;zvE zBnzS34a~^cxN_x6!Bwl~0%6JYEaT$x0sDot%?-X|2QDh25jKaCgSCjLrjXZH$jg8F zl)s}!Sa$;YlvjeWJ#Cqj2c1LxPux=_YsLAwEO9J#t3juNq{SMhqcH)C7A-PHy^f*6 zZzPDgROgF{DvyR?Lz+zkZU1d7e29w4kB=hjms>;e8p!d@;!k2laUozKXBD6eu z+s12baE-3IKbuUAY_b@kdW5R>uzC^zuEi5QS$U_qBJfmOfBzfWp3dOL4&LL-!4^hG z_poJtAZ-ttt;I&aj^%tvTU&1{1HD1<0^fi70k${w=QbO0o0Ztwls99QH(XJ(Q9uj^ z73GDr;PO6|{QY|Q8*dtRpgqLy>rqkcCr+FIy3za1@25nfn6mN`Q`iYAQLnzsw$^`P zwlT2f*=*EdA`b(M6pgIP=Eg3ew3^^AV$~y`Ztdx5yf^kI`kY7fSt*@hjQWihp2#12 z5KMTtGL#0syNK-}ghAL{{gLM?$_iM#T4D(N>~b!}BT(MhD3EMa=WT zeF4{`47?bbyj2Z-7kDQe!@pir!DX19j(kX?q}&*N@d+$m@*32`quvXo+!;XyQ?q8m zSLD4Z+E`q3B7gVpp?eOohIvuwgYLHpBJkhEGnZco*&?APU+*z{CZTKlT zs@D?_bu$?uEdYgaOBz!Iu8j25Gf+x9cW&^QaD;cJ>{GsCO*{M}vCwvd+|p2^(575C z5L(Os3LNUhX8(l*K0Z2_N?CGb>8}8~2GxdriBa z%+j-{eEHI{MoxLX1~hR>YGRSt-)lVm6}6C;ml<$ys%{B&{rYum%wyI2P(6T{uB@ya z8O^)_vg3wYe5I1(7WkK#XP3_V)Dtv)fiQL8XjCxa0C885v5;fJM}jV1ECKDP1(|up zt}B8| zp9gTtogEd!O4{H)Zl~Y3@LE;P=kqzy`*x(wf`yD5hRt(XNHvAxU_s_c@b+mrey`v5 z-C6nhTL2ramd74U(Bx41oWXmsSH;=cId)$${p^xF?Ysr>rs^9IzD8d1vf0^J-+;XX zLICcQ&s}4)^_du;L(NO@>+LWVbU{{%t!Vx8VvHOy+Wojd;=_kuX|O|gE(4R6=&ftl z=qQZ^g23OByg^lmN$zgCkK5`!xqO)wQ3q*Q#*NiaiH?K->xZ)`lXjcq=H@UDQlKt_ z_~Ei(pj>%r-v$K2bt5C2<36N$&&=g83ed#R$^!G%yoCSgC@gOJA?362QWx+jaq%YJ zAUTJxtS}ii$Jx)m@&UxrR2@iXFJHY1=To#4S2}_CCL9wEm}prBPYK&B2&6faEz98U zy0?D~q`?Z2pl7te_JVeWj{;u5&lwfEp=_77;FFb=#T(6rVGRslmWkKzp?MRK+dA#d zHu8WjrQN)X_WntwrAnwSknr+!%MY$uM8i&w2g!3CBD|*5D^{jIVT=Sny(DC#XxORX zd9?~1!nIsE<;h^uh9e8Y#OJdEg&IXvAtNody&$MB^{Q%Y33){PD5s&^jJ%?-I^tZG z5}1BQiZ~9dWJLZGj63lwIlYx;h8T3#@ zNz3C)B#bTt4{n|4imj4|W<#Rf!v7_xyz@BiUsaJ5Ern|uy`P^DE8P0#GvAg&+L7w{ z$SSzL@uujJ!7sOtnxGy6fwUyjYx)c^Xp_Ping)C9d)HT1SY~9hi441Zi*qYb8YI=C zFO93f8@-( zKx+Z*EWCL$4D^Fc`soZn1C}RrrV&=OI>xFVITyM@r4;o02UhC(V;V(Zm({H zgg9<00!e0+TGo;aKUcM*+Z6yEXbmOI#%;Kc}JMUhRac_J%7y>98!mp)qL&g0K6 zP!6t}Sj<)cK%sOopCT$W=L%J07?8O)nlatI+dH}o2~Af~#FrymJSG}a1)Pjm@7$U1 z<>f^^ZE|S|0-G8ZQQto>5DXca=qQvo6yg~0My@@nIg*H=;2@5HBc;5Ldj6Wb>BO7o zfM{Y5cK$`IDJ30}>EK@|9f5Ki@f8ekx_yT#u$t*pZ@O_Pa&6t+4ZV$%(C0STHgAQ2 zSa$MbjUD7z+@lNvM-ZxBlj+~TT*uq|iT#9l;!vG}W>8U6yYv_fD+aDHsuk{xxtv*g z>(^t;6M&5DfL#M?6j-#Ykm6zKYlnnHiUUdzs+mjknbpLy1(Jr4HW0EvZ;>Dgzn(8% zwiOZjWMlSvBC^A3vIy*mw~tSgW(`-9voFUQkl0|v$>jqBtBPc}S*vH*pvl62e;!uW z#|YhF1tHQ@u(jQQu()YM4Ag76M!atU-)C>3CqENWbDNgORV4c>NvaOzq0MmtfH zr6zo?G}{Ot86A<-h;A_gQVJrA)clnoI?JHSM87||A6z%m8w5uDW)cE915XVRgTbY= z<5^T-K?SAiEkBT52kr^p83v-WA^iAnpB`s`Pn?JjLzSze1TkYPR4*%ncH~^LdS%D@^IvBUR~|zliHEIqU`%cMGf_# z4?E74U!w(+f9^W6%Y#oj~zA`dd+Kr8xW zyN@^|L>31h{F!BxmL}~DU;mtef}d9!Cg2}?iZMUsVc4>=Dyx~du{FETr4fW06DzAS zED5kA+WfK&Kes;X7U-x14?vkX2A?Fl2KM_{rEET&jKIdd$$YO*OA9x6LXU~z9Z?D%gD|bm^Ix#M z^a9&5yVj?4#KO-uaqj!qui8EBot<;w$dZ$jLz~MUujX+lYirqwNxI$E^H$3Ce5e_# zaW`zt3(sn_G*nM))2^$nHmdjiwruBcOMO$W5x!Eayg%s>e#0(!9wt;!kHBA#QJvKN zN`P4+b;g`H7`3#>S|(ts%vkbiRh34Vp_7Bdvntd`!k|ncf|ZcInW-md$7~iYSrYT$ zf!g;TJerG(3otNhquc9Iy~EPx4O=)$u=tr3mioLu9BQf`RbSn2YS98GOaa7-CBarK zG%n9iYH~lK-kxHf{682oX_1mm@7S2VWzqDcob=bXQNd3fzJ(1Bd`w@_?ADXIWJ{Tf z*?LyNuP7D?tp`q208w!JRoDT*oN-|hBaSHt^KW}s?B%r;=0lM87t+!skPb*dtEo9e zWI$pEgv)5=9`>1Q`^D9gP+vkmBwC^#B$gfIXm(BwxAn)3i8-5}hqr18FNXyA#Cj%H$GOC33vCtXtB z)Kqx*&5IsKdB&^yLjPa^YCI1dSO_DL#XrI1YH2~NcqDd;g41sW95CObK$*6-w(6aL z!Kk)2tM1MM;fbSmw$@8yScI-dMFqo~4{2z(m&mGBZ7^$AtJLG>@ZV3LyU4XV#RGvY*Q}@k_?5z<1|*61JT=d$z-eUEwKlzP|OE&aBHf zF8uLQRL)~U3Mi3Gz-O{HE?$jWBA$rC-csZ_U?eApST&|h0t?fDt0#ah5rjZ zbZ=bo`rRQwTA$u0ACb_%^&ti9i#;4Hge_VsZgBOyYSn4et{<@6Cul~zBdLAYE+9N! zm(TXQGG8+r7P>8lqpR%5Q4c=|w-$wvh%q)KZNlA@RM`l8HhG-ABEfkx13d*lJG}9{ zq&0zq!y6*9QmQtLFZ__5L&bL=h0h+dL=rt@+CMz-(~-c67OxqP%lzAT!IDD_l$@R# z@M=7r6VR(&wN_{Jx72Xh!TZy{f9@m3pw;^#pJNXl|B(WZ;+57`W8$#_CA|YrA6JhK zpYwXDMaSzKA6wNgkSPAW(a7`Hacnh${;{tV@hO{R9(GW&g$;eIyVZ@^=ZCz|L(`P+ zy?cT{a34DRPp?00VX+o<*WOaq)2A~Wm$l(8!{2LJkgBi}Z`w>k!_aU3aV;P~PmK7^ z8o@zW>e>`A6|Pz*E?$m_BjJZn-jN9pd&7o@kCRi#(18rUvWiN{t5>h;RsjGtg#scc z>OOuR`0nS=pXpFb2{8y~EDMxc4*2IWk=R+0v~}I#8Dr^|N$f*lN>8d2gi1 zW3Um7!`hl|-6(?uYdY9kGLA*#19!QgoZQFzBY@jk&Vbc5VzX%elrv`@ECR?IS1{5X z$f`t{gDLw8%JpaU_4OjsguB=bKE+Z7GN^VG-C8lR=dctCxc{hJO_XiSK5@~rTd1t;aCPY^ND88Cg z$bR1C^Eia&go^2&-{He}to7-+DqUW();OR;#F&4m;kgQENzCR1ZHH$P&BAiW?A?>< zy@^SRY5x2Y{QR$2Hd< zySusN>;yqc5kL+aImsHGDP8qx0`PNffSt+ehNfeq)oa!O6r?bGOM3nu*FS_&!0nuu zDzY*%{JVGTd+*Fg)8J!h+<`5YJUrZ@{(!cWcTSEh5e{G9-TXoC3s=+Vp>>CS7+wHE z!aE)WSlt{JgQ-j`dz4RQV5wmsz~T^_AE|ikK>F*Q*g=dbsCA4{m!OC38Qc~uvF`%_ zh#9E%d$Gz5P9sIE+NI6lP*Pu6{i<^a22ScNRD^ptGx? zq1sk0j~+<^EAH-b8|@{w9#!i`V@bt?4|l|r%^pP4wl%Q9CJ=EBEXlKD+D{Mu?pCDq zeuxB0Y4x&6X{)dp=x?g6T8|R;6qv1?O<8(D0P=y80^8gcVFh!;`;#h43~hRsmn>Dh zz%H;rRyIfPmP+7~9mEy8^^YqyowvGv;m>bx{b582O-V^n4ch6r<>%<=1t8$u8ML&r zqCFPzxTkKh3JUu57eZ25#`Dn>Ti;k@RWD9!)G<78;Qa8gBNBi32pc^*{!a3Q8uK?}f^#egM@lHHh^WgO*_B*+{IeIgf~lx80bd$!^FIlhWtKcyqNE#7r0l10L5?TW+Lda^+6FE`1Q4|Uel$Nm%9=z3NukNX}@^2>=>j{;0DdLy~Z{9bWyJdDZDuT?tfCUaqVvFmy#1OTOK8MWHxJ%?V8%B-8kjVy)Z3yi)uzwbLqe#c&nT>b|=S9H5!a$)8 zwEZ*&!!Np9o`Wc{ani-O)hMCAy|hl{qv&5|YAfgTEm~GiFfp?7N--tui&D+8Y5Lxm z4~CYQ;b3a<-Yb%Mzz<)}ksygLpTvp=OLIlBCkr}BxNXdlcs37FM3ivlRS!hGKlf_t zC^7M20iX>mQ+4*fw6L8a?bAc-RySyq zOjvs9Ew;7;;YJMPhs3@JL#y@!+IpfVfzmm2D;rc>WXUW|5)XP2_r9|Ug4QMIhbAQJ z3DG`C99xhDzMt9-?+Ip;aMD_$&&e~tL5Di*;!fFQ(V}UNAij}HWX&%*M{-vL!2jvf zr}0$)FoYDe|CyH&eIRiah@}|wZy+tO=+R13`{@k}krVVJX!iuJr}p<)==`boXKzVl z&8jz`bt%hjY@!=Ba8mDbY>y__VT6^}lgE0dTZR|@t?29^Fp(~VW z!2(rP)eDt*sHdXu-J`%xBm|M5DXb5nB}SiEz7ZxxdOT;QT&ULN#Gj(K0k4y{3ZaA8 zphKLBXQsD+rCb2(ODq|Ozb-w0K16gnQqlHf<$dcuLLQ6{uhg{AFwc>Wx=Un&d+$$@ zavw?Qjw0eXZ#N5TgA&4-SV}BeMF;mCnI;w+UCM~gOw4F!we#)YO zGbW}-e?EfZ2&EB|T5|O?-&@kyVsx*5v^_&BLB6Z219BCH!EqSG;(d53zZ9IHi3ip_aqu@{uu;hOkrO9dIzm~&czYnh{nR~lxM8)Ezr*FdcOr7L10%Rq6?AtQ7#L6#hMM?# zNykoRI-02hQ1i6|aAYSg`D=5-#@q0G+lss?#3;vs=H)QgpoC_HOW3mKI_AyBYShl% z(q)q%=p8gm+%Q6sLKrLjXVxei3rk4pJc=~?qSf5o17y=RP=x^0@;TO$+@$kziSUDP zs1nZopD!*J)i$mQlb-e9>rt!qm%iIiScNLE3TT2A89`^#5~AvWo2-A*w@N*<6%xIL z*%#&1gK*RmC$0Xi9b^kA2Zqz}D7ed^G0M^qL2Zto(lMEzxE+}7*X0?H2dvTxFMzUZ zLoQ6t$p+yA2fdoQwzl?)G4fIYiB6XGn*<@|Kg{vKrQzSbISk2|tm>>t`NimnL_)m> zJ_1{v@`l*ZcJqkQwF$AKMSN&We}WU$rhJ>a@K^x%x?!`Jk`{! zU+uX>+#ulYT|UR2I<{E{K1!|Z2?Z=AET$#SF3XxjpYz)|sA4#kQ~e3e*F@7gVCEx% ziTuh4TjGL((L{=ujzU3TlYY>Ee7eT1X6yNwujnf>p)AfLAu~|;@F@e*L&Euf=I(Yc ze$t$N%1|}cmD7z2MHY0UWpFUjtSG|5;UBskyFfd@C==-Mdd>;Ou%}3j6bLw4EC$#~ z+^lJRaaI#RX~RZhB7XhTU()E(V_?2VV}JyqP~rcyHe4_j1eO)sKoX)7ioeR)UMf;f zrF5deCZ|5YH0lE?GpCEiM=u%8DtudAIS6GDDsFfQ#9lpZGjldM<12#TW#I3ml_JQb zB_-!h6lEPk(s2D*B|C(kMpJ-WnANjrMs($z#r*U2OAxR?dtQOL`g~igpM$-92}oWo zJ-tg{44?gZ9%omnQ*&W~CS4@hFDUd`=FFW-NB#Ku)0#Gh@B94eo-_M$-2L@vg|yd^ z0xb$Jul2J-%btZ;)N#T`?I#)2a#pZk(TRzPZ^l@J9@(`i;Ua)bKpsqJ>Wrz01S#`h zq+aPWGtjiqeZc~}L5{EBP}*$`gDD8z^RS$t^W7f$Tv94XeKaGIR(oS(K`;v^HughD z=H%d@VE9LKH%OXkQ^A!49|n zQ|w@kPtdo9P$lg|=K>J9)0H8dN|gpnAjYOlwxE?Aybeb1v$H;C#{%~!XCXWu$^C`V2~cvL(E~MhI{JSxmIgF2QM^-B912Mp< z#l>VP1^Jg^LWHm_{_^TpAcn8*(MPwP$nco;^4WcOqQL7!Q$zoL7`yx8F z!vWjgGBfRxY7Hk}X<3BuR4F~b1vt(bLYC6@@1(S`JJa@u^tIGk5h(} z;F61U|FH*Tz7paB%Ew`J5W>Yo8P^#dZ4Bx|ewuA~ToSCGS%h+~1iL&K4HC<-9kK=w z=6ka3*3#mH5CS_6;bXx$*2cYs_9^M~{m`k8kLWOM=B9+rUAfXXM^yyRp0SaUW7%49 zaa9( z15scBx^E-^2*O{lU!(nZ5eZK_%olIl$G{Ae-Xt_xQxD(zZXJBe;0hQwh~iLs)KnSv zWl5XQa)6`idN~jr@#KtA?my;}b8lWpZfop(V?-8%*%mB@43uv$&@mEC0Mr}lv&Zo) z(U5CEC#_l_pl}&1XKh>`$f;zfC7n3-paiP}=Nr%?ilTVIQA}-UoyS>Q|E+P2k$V0g zw2=(oD}s}pG-m#*`xj&%kxuX8fCHTW0Cwe}l#PnYTta=oe2mVm+&xjIm^9LD1~|t+ z!E0^gKBPj=F4w(ds0F+iNJbg24>j~LzNUlF}O_T)FTt8nnggB zw8Vi|`INT^i(WWT*UjBhoiLi@SIPz82%J+>nYlUfc=E6O({`=f!Eg)5d@WxgCJIVO z1rAV<%4iqXZABqOJ#0Bf`)1fJv;d&93H1##q-b>ienefAN_xfr(Fhv0_4NRFI^v@T zDM5^PZ|1gl@ zFsl*<_O0GsT_-WUi%HBv?}0Cr@q5tPall=6Ws}bPPwDAdh2ry5mi!*071MQJxsq}A=P3PE{{wm+Nd&CXqbb|RvJ^t|RMi6pbxR`Wz z&;Q^y*gJ9a#*J1~ZsdwGHlI&wEoUoyrFi=EMr1XAv>V{f6#?&IE#d+%c>$77LmnR) zea1}xeB*{MtS^8gh(mUejzT?YzHh$7-=18J36N!b-8{OhSCQHZI}9-r7}7MNQJR|- zClFOzMQGOF%UiKxg@z@q^suz<{lUvoXk;7O1p%^QWEoNd?v4(1r%@JYuGos?6g(0+ zSJwO{?U#RVs|oQb$exsiP)fBfk+ETGz-P}chsZ;Df6;oVe z#Jq@N>ThdWAYR-8B-=u~=-z)cnLlavlm{UQyhMY%|JoN~!FcL$Rm^wQC<3s8^a=%i~zz>8^Q+E-#p zfA)4eh`h_-)!`5mh9d`$0xrqU-aef$ZjM~2uwQ~Q6W$mCTneil(a{MXKn z&60Yjq1bCX%6dthy8ubJ6_P@>IEW-0E)X9u+XM0tERT~Q@Yv*x15&?t$FM#hzQqJuE}&f(J^}_z z3%*EEuvpFoV+%WECLvTDx6rJmTkWSyAL>o9p1nH zYUKoa&Dv1tWUnDZx{3C^C&WX!JEt|39G?jm8l-Jw4EU(LAo3p9(0Bn3Jv_x0#vE!; z3O}#}>JWzExU-WSYKbEo%skLlN70PGS|P-Rc&!stE}@OTgm@M&CY4%`!L~NJ|130 z*cQlxw1g?kIAxMW#70vK!c;|EH`>Pj4Vogas3<#20G9`E8|8-hY+yABKOiAda6Bjv z09w?|WHf}S|J4tM&_w!?&do%eFVi1d$f~l`A0zgTS3{Wv4r_$h67|pnEGr`J1 zq5T#o=a5ZXvy%M3FK9Q)Y5Uwl)v7aPNJ&A2&Bw9GLqC5e=R|?0g9k8WKiRYoNd#ho z;RWY!Jp8$~OPbc2r9t~V{M%}U^t!)n#6qiASHw`IBvV+fBhe#6Zq|<;Mmnbg z(1+*nVasf1Ys`Jp5n=hoGV(mFS0jTFpO4YjOs+-0^XGQz0Ay|`@uG*o|K+Tp{p{ga z9>GwfKV1sslmZUUtkZ1s1%a9=@|=l7MFKEJdT-LrpUTI$_+cA+_-k>-0tE>^B_C8L#Uu#-L@B!mn7hs181_BwTJIT*(f+5arlSXuVq+2f`#S$iXYU?z+$>~DZV23YPCe$S)fb^v;$rZP>HOy7 zn0+0o|F_)`%IlQ?S} z{C5E{D*i9&mu)IqL%F6}O2!*JhwQ}60W6;;#4B>xQNuh)5x|{wZ_xye^EaA3L&N@b zeARs3b|K&e|9l}{59TFQ(z%Y^3%xIFW0*6$IfMRl!09?9 zOxhn{g(G?w0zJ2adoDV<0$w~2H^`-^uFp>#e3~n0Tb((-fMp2AJCGA9JkS1AKOBB9x z;?{!Nt6CUE+uAy`t-T+3l!%A({L81f35bj-Cz#RF56ue*$nU$x09F1DL8?r|EQAOo z>&8mMNweW+BP0g^5t|>Zs37Mft%avUQMY8H1(-XabSOn6{@4n*Hz^9`lo%XNT0I1P z*1Y7~;>-%LsA6nv99xk%UvMiM3S(XpW)p92hCdZ-AIqJ+bzK`!`cmFYW4O>GON)8J zN=$3LrDj7}I_*x^h=`h)7(hbwDbf&@xVRzTMFJBb33stb&_S-*K2Taetd?lTiMRYj zJB*Bs)ZoQA>T|I;h;S0aNQ>yJkckGNW*FmKh^meJQ5Vp=5JY=sHFBO7Dn;Z->(HTb zDM!33=~|A_CPy{_*xOb!Fxe6@`_C7c4PfB|HC0O5AclVjFC!;K;5*Re6p_phIzPj;f~fk-Z&$pKt;tpigykzv%U z^#4X5(9V(S!>J0YINjxj+N%5eqDZ%q)s211WGOUUgDhO5<)TdQQyim?~<_Fv5c zq$7fy$OYX9qQT+|tUTvo(<7n=PJKBK_re$Y-04j}@M46TMeT#*o=&11N?iO1CuaTA z;Rc|lHlXz!%`4$kc0oZweyXuM;JLy#K;f|qLZ^Trr-GvX>zjx`SV;&ehygAGxP1ha zwybY4FvClnl7M5GNKsONqra-;Wzy(=3E)f?oPZ*kXP(agE_HcEjgH1PCm}9kK6m^wSD-BS9!G zgE>CjJ^yFpoxP859DOF`4I4NNFQ~oR1_s!vTpV3VP9NVJAzvGpR$RQDoUsf2iH^eQ z1eairY)#E+F2yp?f|nk;4n5`h>&sF?oxni)C~-lA=ISX*d)>{dTz^3PgE%G?6+H2l zp`IMa3VMfH%)F@_C#(b#(;B9bfF0VK2!^I#;1)@MKBrQh(o9d8<9n6=7v=$i5Y!L zI=5kCJ;R`*`*7HNl3x=<6%JV$f~wSxLxTQKac=_FbKbsxf3lBdEF+Pz&14H%%NmWD zF+wCQq=ckR5f#dkB?cK}30Wd(uOW$&teKHSD^f{gsi=&yM0#G=*UbID@B6nLzvqAa zp5vKg=9s9y-|y%1dB3msb)DyVotOW@KM_a6NYf3{c<&^;(+|&4G5{_%eyWLLm|?v$B9lu&?9XN*w^t8I5pG};yt?aT2glOXmsfC;o`@S8)#@~ zK>uB)7u3?S%yBCn(c%E(hB8PfO;|lJBHn^szZrTC;>-=(U@JOtz+R;#SVRiko}!5O z2Y4aSfBv~gd{XmnN}GQzj&#qLOlHZk0GlY#Ay?_yneyN>57LAKDDI_Z%O<<)JEB`s zWXY}%44j>;J6!8oLCk8GBzUM}VT}{X3{)zSSJm@t#p`4S88=hNZFp_qDfg)*6r?u!hn!6>CPpjZzX@>&6 zNlFT4XodJCNsp6kx;}lv3_U)H@hnDbupqm3?)1TE{LYI?7wShT8&Bl1+O8t`T2hwX zS3C>BKUI47y?f2d`=-%7Al((0L$+;e;Zr_t9OB&Rq|87#;VI~-q?iSDx22PjBlSB9 zOEDIpEm&@&*inTZU9+GAS2Qe{``xjdK)-y}6 zC(<$$92{J2pMKHH+dG&uP}+_Fs?$GJ*VKsr}5)>a6C5Yfjb4D9B>?Y)($9PH$Q~J}0Ba|J_-saKm(UsSr=tMP+&O6a?=oY|v z4($okr|&ugF-s^zOw|AcIV>vb%(erLNr%+l6FCOa?~Bl2j^*3Rwe_8GV0nj!=?M=` ze0H+lfjOwcGfvs1b@<3LJqJ4>KM(PNbA4c6_KsDOXDe{Jh54&Lyi9n-hu9x&p}n_5 zT~&N_Q}^%J>|8eG7stx{r~A`KpS05XiNF8|_6lMT;`+g3OHC(e@BKsUnxmL^t_v}8 z#tq^Zw3B1r|FK)lrUSBSV)x|*6AW+>wC*}t}sPNEwa zLkRINcKI~+2-7ZxuiMI!Jzr`Tu6k`GYFau-JBt-Debna7C$=(M_Q(?UN?I*I5kTN@ z6T3uBELVUo5{rcc9~;mCdJOZk%uo2D-u=Tl-m=w!DZN(r!jnnQ2I&%=5_6YU*~Dc> zA#m8WaFeSQgki`yeSLj66295JOCKcHqI65j?y$mX{0;~`0{w}Q6DO{{sGM}nm>vtW z=0lVdr`T2H9~HXr` zDH>3A(iS4xcHqw?x!7@~u2T2M<9mcKk4G0KupA-}r82GziFkuw(D9Ai=b~VRMlbr{h4LFSZ z)ZHl&cp$fiV_jIIRP-fx@f?^PVCx~SzTz7o7Ll@rqfV!P{J2V*x8AX--6--~cGhbt ztsF4Wu5V`Fr%UG}tw+}oXN4$BlLUjL-*g9LTsQKn{iB!b2$jw~AUWzm#zb?8{@B{* z-y-{ND=ZSXQ*+F+AF?0vN#%f%lT>y{TG|GfZd%pa5aUTRH*VY*gusKn=wLcGep|_m zd7+Z7h;Qc>j(}4h<>qwYl1UCOA5L5w%;|M3tMnQUcRHr%1IP|Gwi$nDl*c5ok%QFv zo{qXLsE;hfGP6S-v}j|612WJhg-rTK%+HnXkRS8QO`<9|q@d7$Mz#E4!3TmOlYr*P z6c>e}sI7DnbRc2+3J_Httx5;ZdYVa%U*sob^wPDwieuk(#LB&S;Efcq$>Wmv;*USH z#PJ!2%|+!ywnW`za>&c2O&Xp1^!3iaIDCmZR#sojAO|Q>xZRnF-II|CA(6X=K!}Tl zeH$|6$e3B0_RR2j_co=z)#0g|QFU}=s?Mxrjs69{>9p(B_U?eC5L)Pzq&ub8@M?!I z@Rj$sV@Tdq>i=S-tF zRT@)%aF2vxrJA^OhV+ct8`&o5N!McoI{&AVfVB1RUXgrx$Vi$$s47eahpzz2EyP^s>ZPk4vCTPcwO;;0C|3OLiVUy#3z2d#a9~cvFFovbDIY5PpmA zcyDa8f*DD#q?R8u=3@sl;O+r!V+Bs>MQ}6PU~eF7J#ecuG9;Yr!^NHYjJsy;4?Tv> zc%ImKfiEoGhW`EdJ{8b@@C4bBaG>YbLQFFk!jIP?X)3sahW@Y5*z48Xw?DbM#$2x( z?($$G-ceHy40+PQ8~}2F3d`5sA`Jt}mLcj6tCz;)4E?u3APWiS1f$xby1|A(!3<<$ z^x3kki_ot3;D3=v+xq_N+cZ_!mk-ZWvij(L65K*%*A?b_I!*EacQ@~-xW!&xqndpA zbu(}`42Hk$+t<)3AG1twW3dtwIg)0`S7=}i@$9L;1Hkus;h>>Ai8=AI0YXT#h-42~U zY%&OIuW~R2CYbH6wVeOEe@{Tf%qz1ewrgumr^ni?PCEs{A#0W4WP4RhC+vFTodg}~ ztms@j_6+6u!lA7{`#&y<+Eg8XjU1M9KcpwFei#qI=}J4Xm{;GAVVD&u(maNBm`818 zH+=(0SGD{<)vr_Y4=?ZhpDWlMOS- zm`Tx|bN}XEaMsDT%hj$y+los&l1v~HU&Ma%Xb&*?0PtgUq*Nfr`2=t}>#s;#Ds!%` z{$5&pErYU0MAqclB&V+$^Tfq#FS7D0tW(QT+iYwTU%0C(HNTQx%HRK!R;ISoo&9(1 zQW^5`@}Dg$K!dz$%6$K(1-EN!edE+c&gY7S66&5{=Jc)L2)lO8%f)Hl^ag40|3cXbWm6K!o39t)*=)torI3kcXzpmwb{;G%_ zCn72YLUyNJf%wB>Vp0*0x`;?2ewZqt^%umCV+AKO!*a}33s^oYj#4-bQtmdf;c*5iW@bs1WAJuj51kpMB-?m2{%qmyk__oX1J6 zGO82eyu$>Qt;>};_pb(5Z239LsM$KCLRJ6{_S65mL#M3=! zZT%^AmmQh}ihZ(Ra3Ha0VBtl+G0jpf`FQ*Id<2Ws$>mseuEr>|UX zSk5j69!76-_?haf7|`SzMUtArd4PiNI$vX^y&&@~Q$3{34uvcct%1TIs4HxgC6L^K z+x4-H7uXe$_17QcsV6^c3j6H6*{eeOWZO>9Qc>XPK7UOD^mvG(~$5UtijVp^g;lc13+ws}|=Gj=yHBrmeef#AY%% z-}Cc$lkYucLI@I|JC7F{xIR7NU9k>BI`B2dq5Mjm0mQlSqJg`Dca=D*h?WoxjvSaw zM#L$Kk3jp7bb}ETHAcz!()zPN&*Q&sJ1KejKv z;tS019ZG!gWd4;Ah!XMS**VW!o>1&!_@Y?PUIcL2UVlAHsR`Tes#A%rxKaQ6bBRSA z^ajJ$28y7L5UwRoa_7S0Y4A}#EkE?29g~SJqZd?@4i>!_)uw&ERuCHTo;a%$Z2q~a z?M(!Fpu)mJIx1A`AU#NjriOk`EX1b=(7?rdYV?SPnbLc!ARqW$stOXR3F&T5ld(xa zu*KqYk|6hAe6gZ!;$EbTk7)`2=XM(t;99o4Gmw9lsmc%S8$P2 z)5rCtln~f%{JeAL&JL^X*XKr{BPF{=UwD-Uj8_c)yO$^n@p%51*pQ2D3KZ0MjzuU! z=kldtUFmo*;JH=Nd!a$GH37zLku^sXUGu)r_RqYGkvvst*8HOr3{Or#gxI4ImD0R& z6S)>w6yfH=buiS3^03_Gw+14|h^bHJ_f7w=?EAx zaR>P!7m{{)nnT}?dRsXGi!hPMsEkXgts06CT6i5NoG6fyKc8_$Z7Ejp5O0(wQx@uh zFIAi?`EpfFjz#9ECO^vEoxNG@TB@ku!LLMgj^uE-V?RJp;GNc74d+eH$W%PaHV}$S zz*UJqLNUPz42aJ-FtjP{K0h%q8jDxn(RK!EzU$WbA zC#M|vW_#!V-2NPcZGrOyZ3aFS2lQV(`$44Gc;WD` zpi871BRwk%TPbq8^J1c%QJBqRuW z9T|aQ8@?vt*O=-uXyL7n;tH=+N!pfq!ce9G zAeRvw+R;j3E&BlTZft{b?2M(%j9w~jDU|UCecfk$x+gQweAH; z<0dp}V-Y@cYv)lh%b*o|ec2jO8`Z9D0xOa(1Q7*eS~;Xer~gUo4-%BgE^KRY3{Oc( zIfDegIo+#@%pU<^3GfV>lqUx>}Qk30dg_;pIqA{ z!wvwDTXq@Mp7yQpX)S{(Q&Y$l=Pzb;>qt~ z^Te9D8Y+X;AAdG4&(k*PZ)?)?*GqDvV#WFwmPz{ORIu7n$YCEuQq(en-X>KfroDKR z%9HqS=Ec~(5-S$GSeU)z023mzOK3?zJF)X*Vesi;_4a&u%Q>*e`McoIVv+*L*#m+1 zw6X8CsI*`TRAX7oR0GeHLC&$UFH=3S&J4cmu=GK8I+yc;S^Y~@cq433vdpPHy?-$vTSH)>Hem5OVrg4fvN)$tI9Zf@-3nFlW!6 zZKj387V`nNm1q^s&G%)WK>^)BV>lud*Gyt~3Zc7cj3AisjeplHJnO!=1Sb0DZzk<`seSRN)@? zNZ>X~o&gsx9hSA=I)Kh4v9M>Eh^@z?dgsd9CBYFD^*d7H41Qa%|Mx5H#y9(BuGT!a z?>{zZ?qsLls6~ugM96yeysdj9T76S)aSEn;;&*Mo!?)Yu(qoeoL1z1WnteC1`xlM; zZw=bHvH!ETn^SHD^zfdza7dNc*siY!4TWA9_jc*VmCqhNp$Rz~m@16=H7qE|0I~cX z;E8H@ORxS(OfBtqsPRf*k$76#x{O<6#pQbebv|()R0 zumLwK=eo{|Uq-X-}3qQV?tR@1IR}<#FFG;QT<(X_F>p z&X}ez_Ti4)Hp}x%LtHPuUuc-=l2CAxleavjzApCbFE;}<6jv;#ud5bT03~-2zJ$pf zb)%L%^0{$1$w?bZ4SwYq%ljL{r6a!f!U~hmF)*A?94|nhCrcQF_@)8n>yA#@2d)+m z^7p%19Co^ZhEEsQ#L`|nGGdY{Mh#^?+ftX_Mh6!h9OgKm9#I?D`^XlY@wi+J3uweN z`IX#;?SoUr#PjLaeldeQlM3!F(p&a>&w%}$QANpx6#wa9m_`l`VWkhx$MOE#e@fv2 z52O17EdC(?`hAj=!~kq4ey49ceVB9ZEvuDJ_AbO&u)h7&zK&%!ilZ@YdR@R?ymF;_g1Utj=f z!V9TuXgqW4mydy11Z}3wTD9Pm97b>5j{IwU5+%%LO=kns&+=D~yf1#5k z8qQymwOtfc5K|JQFf{MuQ`AU!OSNMdhz0gS7qm#N(hskT89}E``7z? z^`g8%*?fFmPv^gM$~w9ILmax#J>C;0fGYytW`n2f@FbmFnlf$ja6J8r7wBL?yy12n}vrR)*`@6;z{L#6V{MYn4c>kCqOOH_0M|?L8_fhm(8DlT<*7)f<$+F?uNI3;gOtQWp|Ekh@GsaC?lNT+bOc&h!xzl_T+o zjjr*Qx*T{td-v`)Zk!FB<=J4#y0oJ%b=mFjUkx3|1Gas@v}Or}G-}TBuO_2$LU=MH zwa?I@Gp3DswK3*mt<&PlFL})+x2w{WZwy)FGbsK^;j3Yco!|fY1ibGK{aRxdj)3`o zdU5V*+9D1PUwniP)}DqWh?xWxyLd|vS}L{m^vq?9QLHBqP#IC)xTCFK?6xY4PgP;w z{KcWsAB#VP7co4Bf2zhcY9s%j^S#1tQXc8bAIrkdoG~R~zo^qt`Pf{ok>WEdk$|TD z)mOm~0ax=v6rZB*K8j-8l%zQa(+X`vSvWf))s*`0c%7gxAp}F2J688{@!BlD9;x0! zar&7VbOv2S?NgQ+vQ46@VJ3&lDyz22yQU4ADT+rGv`Pd_-PSEzrn95ZU|VMs&`4Rc zPJVO1-hKO=*gIv^_*&tVD-X^u3*8afK&dy7x7X2WvXkwqSqNzx%R9!O!Ow}c{3C_|{tRQ-bM$B|09!YUCd&41a^02> zz$^e@gIKVJDNWiK5*A+D%~Bp|H0!P?*_mMH9_TBQiV~djrmEg{z3OcbcQvq#cM9QA zY3u73Y&KK#S*yBXEm&1@_>E~Waqirp`L?$4Bt_lKn<$??Un3$0s$gT-!K!x`D597t zTRq)Oc{EP-cA^CQ#_&mliR@I5cUALj_Hc82Rc}ZkVeH?&bLa9`E4g#H-uC#nZ+6)B zBWF>`Yo5ke^m#W?z2JEKeX#w1n4$E|LTF`YZy$N)O!iNE|M77-0py;a&zQ~Cz+86G z_sVX{)zp8!8eo&CK|W_(3oQN5wdtZn6ep-@jUGK440rGK`O_&vcsGlANn~kc2;m$= z2nMpiaSGBTo3G2L|G0x=g4<9-#PEt-rT84x9^JUyJ=!wfUn{1envYYX4~agBiIm{& zS$sItKPOh_Q8n&8crb#li5;F);WvN({VptVJXvik{0boc1J>xElt8^ZWc$4lr(I58@+O`$H*_6 z+Z#lgM}ogiP`HwJcFO%^?*y)wl&<7c6kBJKq2VisfWScJIrT?g5q;CsjxO~ej`B$f zvuDoi!|>);4cMUxw9cit*y=}Vw_ z4x)%fy$vNABjD6^eRytCf&g&$UwXcc1R1kG*IQB60)6)|RKM*r(S+`2hG?GKouAR`i zUAu1r)1Rs?7FA*P@gG}oUro;)Vr}QVR-F+4uY)Wf)hRn{y5;EwTXd4EO%`LgaVdjs z@@wY()}?vMl?~0*f}GZLGSG6wd>wteg{kSDuFQ)XU~^G=>E!orw7kL5{!k+d!&^%U z$*gFtQn>0oC~RGh`&rTE{M)MQn0ppUjTDDJw7r{qbz)Hkd8ws#EGhry<6iD$fos6k z;z#cNl@U#?P{vC9n&bU4zIgx~#$=fG9Av*2tU4(lZ+5$QwDu(?`AVVr?oK;_rwDmo zr?i!-ffALS@Ok-N6J*nwt2MSEqalx2K-uv&DpB}83ylFIFF}VKu z;}|uZ$e>3VrE;;mQZ++9R0N9Q6YQv=c*EBCNF3AUaMm)bYq@jCEg!`oM}E^Z_(hM6 zIR%X;&!>4KLXN2*P2H8;XWqzkyXu!@$(%6!3IU*5{yt`o1v!0w_1&RC0jKg`Qc{@C zn|Dk@yP;D5*YB@xcC6Z2*>%lvredtRAvt{l)xyQ(%kc5A{z_OQxnQSk=IXQ?$}Q|7 z7nMWIGpOq!=bkTV6`^pCyw{O724tL9sK2!gse>b@dk3cX+Cpb$SW9^kZP0T=Ia{2v z(GN_-wUCdzw~8q&hYv^N^m23lsXpj;*!_{eT2n5OX=h(pxeTWTN37T@?BI~@z%lhs zDu}@}WQ*`h@YvzarWuc>q&Ri52ixwKZG{82tj=m9dlz1ZI1X2lSb)P-@_Lhp6f zV3O#z>n3(d2Z^@(2(cf`0$;CFQ$F=YCX~CjNEX=M&vE2GWSU#F^K-Hh&ip|M7<;+} zSc`pc+m@ko)eQ9cjZDy%kzap_RQ>$8d=f^$82tzE_kEZo&A}LX+S-Un_1nU@l@}Dn ze&FV-_#0fOjxpZxafr`MVnesFR&qpTWJt7A9Z{Y2qO9^Mg!O^*&=Ky(HXsa!w2bku z`>M+qpQU_rr+;$CQ8i`fr^-&<53O&k)Z7@@@MkSR&1rP@0Dojsc0^JC(!f0)Lgm%| zVvLm!epp{aU~(p&k!J^Jy(~(xp$ANJ#FC&jpWfU1ZrbDoHF5DlPsQNdIL0m;nxN%y zj-SJ}B$WFNZe^^lyc?c!p~XI}_(k_kkls0-&%jyCvj9`2inqKJLDA56^&zx|A4^#D zri=h!#pqWg&iu+V$(l2M6o~2J*wKxA;`XW%%sY2T%W}}8O10yppH!e@Xw|fVqOM9G zwjkLLqq2{mGjPlpEB|v}vgTB|Tsz3g>8u~8|SHe(mv{8o0|I)w3D(^1)5_OipZ z@h3gW)*5`n`DPfP;E2mgPi36AsfC zo}>Tin-^Cnfesvh^e9n($hOd94L`>%Q$~IL$gvsyx)vd)1f|9jln$kK3=-Fsn6E71d9>rFgob=LSEk< z9eaDVYDN3;(Jwj5QlPEJ3X!iz#fEKn)Pm;Abxxh*^MVrjL^kp^B-8<};jt zh^=};Tz&9GCJc*-qavUP1;xeW_yREaV_A-|{L)X=!GHyilGHIdLX zL!`lQS^sEH*~#9^*);DGr(CN1{Q80j zU%zpq98c1*B^Pf_y*$6kAN2sIGr4r?@{ricucUdS?$wU9*%1842w!F3HT0Y9L2!1G zMA!svR36?qJtgX9^$f5&jzB0Jk~Q)9@ol%Cd!}DHFBON+39J+ti|*}(-oNZgi=IQf z*V{{_J80f|ZZ~xSy1g32igkVit7BVZuMB{3OC40=} z(&NGS0cQ-?zE86;1!}^A!~p@YAPMSSy1WcdRz9}KRQA54Gdz&c%*2c~SH zXCGVsCVts9FY_&Q0wz<(Gd9`Z17?fs zj+D3lc8vS;oiJ443r@AwY`rX9*Xw0`9w^sIJo3hK3(VN;)kv0Pl;t|@w_~YSCtsQc4)hxelwh24 zx{O@<11i9~lKInH5@QXtLfYz%8!ZXu6ln7V32}y*a2|-ZTbBaM8*@ss8bcw+y}d1P zm!JbQ6mlvYmdFe5^s@L$EGn0IHCcdDy}*vBZ$sIcN#ho0p4dW)rn_BJcM|a_hZntI znaA-PghOBS4#{|Z*2GQp%GJO3KugTyU zYzXr6CaoJ1BFX-Di?f?70743z)4#wqkD4&%r>-l1n0)9aUqi%Ce3-X`tNHJ9S&YVZ^K=gy<9eJZS8I(+oes;`-~Yr z+(H%*WKJk^<%|vvGfa56bQ^j-^U^nz(jJ%*2y*je4roJ#CrFDRT%55v1PrO<+4`ph zn7ec-v2M=D0RxQC`uLj1&WUD3@N*Ue)lVXDbV0^7w-H|pppzS89Z5zR35t-2T--g& zXm~h4!&Kv>sDsu%RefoBCXK5&|XQ`kd2tlLfORp6$9m|1Oub zhnoNe7IN}r1i*i0Y!3!B%)v4z5tUyK4p_vIPPXoNEO!~P!~jqGJmOD5-XT&QYxlc9 zCW5(p-2G9bFA$Veeg&=)0GYb}$I|oiOCSu8bJh<|*>0Az4*LxfgXaYH94=oM7ebWd zlUXKx6Q+^P*MbTRLp&di&ouy@L|9$=G~)?9g}+!s?NBZ3*}ePQfV3w^)JC~I-sm^D zd9!9q>fiICeFhD>lYCUYF5!iG`}TjlYX0Syp7pDod`5dL>S$|fVsacXgI3aWHlY{C zt)4}n(bOYj!s*EXeYsOdN6RUaEK@717q6DxFLDg6%qtyd5g+y989z}5dgq$0c5Ptg z`X@`z-|S)>m~QTRF#pL?hFJbqGF)3P&`2jB^2(Z|Q*FUz^&wZWhb@5)W@>55K=f+t^3ort}8N(BwV`1%KwqbQ!oXKMYW-R%bE<_A% zWRA#Qaz3q(AzligU6E412A{MkxT{!iPuLA|HG6TgnUEZ44k9T>06)LC#Pm$sC)h4i z$YRVWFz9N{#>i$hV_Iwe4Ep_`1E;MtxTGH%IRi;{9;e?PfB)ltel6b)9L<=z9HfDD z#jV#GvjTHMCTmccaHU}r^6`xRdCj}xrf;2jXkLVx$X2BUGzlKC3+~YNkqqaes`xQJ z-c%nQ#~wasvuG4olR{Q3;O@!#zO%K1agEw-1s&t9R=b%MnL<9zhr-C!od$ za@@(mt>3^u$H@$!Tadj^ix(}50;G<_YxFm#ctXw;Ds+MuDU+q<_CU-MJQ^x5o$sRT(S7Ysn#%TlX4Pf{Clf{8Oz12@hSakn5 z;sNh7bhsO1*}{?c^kS0*bYNC2TlH1Dc4Kr_N%_O)GA>>03|CsKPMZf>&KkT6hk5SW|_65|C? z!=R-+V8O7jQx2)^IzbuKZ^#f6v&Q$HTuyu zuWEtc@avFfm( zmgZE5UKTwybOue-yRH`B!T0l}n#%r&+)m;B8kX*wER?qkGoU{xifW2Ra4f0 zKb8B1t_BjoIqs%OS%3~o{p+uzXbgXT!2ZZx!b>Q|ev?uzbsObAQBFVG9r`C*k9}uA ziV(w=n*HPr6X=83-5l)C{mRbXUsQ|K(4Ap1!bcn&x$LCWhJd`^qw9_mi02 zQMak-s`HCJnG+zqDwE%4<4o8*|H;#*+8nvUddXqXE$JBH#OTn7=~P!ctIK_FBl?hx zyjeE`b%>n4l(5RMoipqWG%fL`l9ulDBl@#}ZSNo~b?0S|+|4Q=JzcsQ1%;-r(;gw4 zk|}x;DL?febhI7j_V@?N8%H*ZePU-&87;H>7 z*-*6gt!#Q+V?&a?-#U?$N=6MvKV#tP1Rgw(GlxwZirnq3q-Dr6f)}PAlsu8s>>Sp$ zF<2BQ6`oxgLH>|e{?%EvcPa$3iAe{8vZX(TAEf0alTPvokqGb>xis;`B3nu=hV(^VVc#Wz_^0eVo9;2>G)hD+WET6o8YB)-g}i58>yINJAW zmBIo}=M*fDUaV9#QN3u`*oMME5IbU_&0OyN`kg?D0c+GQ1q$3SEC^uM>x=HG9k+KI zH-~L|7meHZ@03Rgns1zR73H>Djc&s~S$+&oFUrOC{-l`ae{ZKe>MZzyrtxa4jcedQ z3f9)wX<{y%kkt6m+s`jtyI<`9SUxnj?(&L^_varSlA8VA@i}^C0se+D4aX~{rLsyz!Zp+mj1Nn5oGDNy zD*tMHk+nzc-`znu)aCDsn`r3KqC3&ej3bVmU`COhnokCRA+HUu5TE?jzO2%0co%r& zMikO#dQ57l92JD)j!&6a^IWN*sl=&VgL~X;pd9^t+c}}NBXcavl|PXWJ0dz1DyyMc z6XoJ%br){xuMftySOA1l%Y(1xKfSpyZJmKvlslI!6I`Q(>p53Ph0q%r0tC}=)%R65 zbS6h6$*0r9Pc)R}5L}^MG=BxDSK;EVqV&`jKs(6`4}*kg62o1+InmeLy3j=d32-Q7Gt^~MeFG2fj<Beo+0@r9L6UZ?ozEy!$scTGsLkzF-o zoZ_==vQfj|fW9d0XM@gp1!H-*WrBtQA1R19W%lkM#_dt&&gTy_4bAGyB8rK9a3*>S z;)CCcmz=X9FZC#Esw{DJHFH7S{XGyY zj)9_80jd=Q>%z=V$_krc$cm|yk`y3kP@|*paAFN5zBrwhP5;+Ymy(ha$tuaPBVm)} z^ugQ`9m)Vhcp|x5qy+kFnkYdR0qM*~F1v`cq7-7oQ{HdafKsn~outrUavUJ%ISvJ8 zAjC3t&zW+y;t45T^@@`>s5U|{tM3bRD@QIHyZzT6%dch7ovf~@89__sb0)FQAf?09 zr=n&xL}nfBkz;^OV>6$Cz-5sFN0G~}i0z|Pty66MUU{_rbhFg`rfWi4@sd4B_qqU4 z7I5m@RXD<5ednRv?(nIqF1u1=NU`m1!-Ty^CQvfv1 z_jGr`rS8-U2@NfWqP|1=w+gawMQhdPDlJM$0Y{Kc5hq1Pwz9B!vC#mvqMDKBENps!_x7+8NI=hO(B%2NoF6Fte#+)h- zln!PR5FhwpPiqO0RMmcN1@X%tc)Ys>_O-R`gLSK>^*B_WMoESPB?Z) zbLSxSi=8BVTum6!w_lGQ-;qaEO?b~6UmBTK*tb&MR%^uedx z*^6_~Gy^aMb4@cqVNJmWv?zWj%6MBS6PX@aK+iHdp_<$nxt3>#KCk0=8T+D77p90* zv`Xm$5>T6VtZ=Dq&J@5z=#Y|$;DUPA{{(+4n=7#_BJyTULFlw@`k153*Z$lo$q@uukoP@WE`V}9E^|ktuQG0jp6vLSCu&{~XK)bYD3KGpgT|5(3;^R3!&T&C-Ncx$U|&sUeUnakRs0l{+$Uo*>Mr^g6>Lfv z{0cK^L|2a<7Pl^%R_6+l#2v2x#)tnYRhkkW6eU(tng88C9-M2V@hHP@u)h}il9EZh zx=;OwIhJqq;|G7^b7&n~+0Y*Yt7m_GYZ=Xih(~M!rXN$X_LofmR^SrQA+iMFsV?d? z)qMnz2&6=aN?REBKJn{eL;PBs`o3BhF=(u@`r=<&+xiJ-L+ozcMDKRwfc8Yg!NN7xmShjWz z$}uC>KEfjtjwVs8o(ouw!uhmibVUGKCQwZ9n4X6JB0>#iIEneJtN$UZTRxD6)+0KJ z&%bHhw5csqNIy=^$)MXT`k1FL6}zf|l3-BYDY(GK`pK4;v2P*B;)&>3?+ zsCuVP;ldJx7B)N{Q9I3|z-JWb%lduH)7k=e&w3yLTjJ>2`( zq^btr6_!luJGYGKGYUI?%Q)?wqV|+W8DQ;s0AWs~w)1?yVOpePEI z*?iVlCBd(%Qs4Cv@))=(F~!;RX;hbPO`b);^#tOl_K?AgY5n1o>fYOY`cq?Bfk$4a z%~$8)*Eof$;1>C%_KOl&vEgVlJyMQ>?sP(s19bnCLNNiU#zIa@^_bbl#&fx-bU279 zKx!)ykltcsL+PAPWVwMm#@7Dk_w~q3=E6qaTphlHIje;(lD{0X!gn$6uTY zLhDOO7y4>zM;zU-uK7w^KXJ}`QJ9>MjmLgS`#^+iCGMm8z1TK5^V|yCRpKp@N-DS3 z74qXg7`yN4!DBTw7W?fOA|oNFe)VV{3p;ZpZsn>r26F*7p0zd5IsZqy*Fe#UMT|hn zdgz(&q8{Uo6-6LQ?)!CPv8clC{%+kGn8~MLIZ;arNY)OBgru(U$7<;`9JEC<$*{}OwYw= zAq>45?1JDO_DtFwvJ(qyUqnW%p-2tG+UjLNl7*yR5E$s89;QtzD8h$g0{HgcHy%#; zWo0sUGbZJemtjt~XIsy{1`X*mZd|?JFTSy69K)0KNoz#v|+8^rG>~Cw>O2H^(J{v`A@C41Fi+|Zc{@xFiSHo(_I)O!{s%lpf zJot6)JFI9<;28PB&CC11GRIY@B$Z)fIhXGU(}pOOp15hGr4hf%jE7aIh15&vwO%-?3H=d5sAos(0~ zv-PT;k>eKQFxu|u=1rS&o$5R9zWK}aIdkUhy%eKfh8rJ<~f|b_QIx1+P$PI)+V82x9tH5sW;@rrOrLK z*3m73D;(5t{nD;@-cro26!~xyl&7Ghk!WO}JdoR*2v1i~8Eqcyb=flcYMtYs`%+PeyxjMrM_b%VH~+#4k{@@5(I3e&G8sE ze>q{XaZan=z0+*}?hYyqBjWgZ2GytY?Rl648UZUAPMbCy-uL9WbN57v(yLdmRP>p5 zYzv6cDGwXxr*?cTK6(Uo&Co1I8E|Wxke^O(ylL^9w2JnppctrY=SqX!j?q7&P&k0l zc=w(?3xr;W5L--@+c_#WqGCN*wDvM?8{hoHO(O~szyWD;qlNU!D)4u+!p7yuMfE66 zhl4ff@}YVS9(?Md^{?8IDS9_nk`eS8G9**n5_%0Bm|=y0!9JaDjxIFolAo3H>|A8U zOd@8MjJ|2#zWsjbdRXJJx!u|)+Xw%Nr%;X+)M#q)64TkOZBMvy+i-Ea_f{ zbe|z(GxKUYswCLW@%gLiToUwfLF~A?(rF99MV`{ZLfFvT(YnEJBMItm6Z~%grq>3% zM?5nH!0d}wt#pMbf6w9?liN>6M-Q^}DQjV1-ZKL6EqbLEvi9UhXCdI)tGnpmT8p|a z-$MVYjztlz!rZW}4SpV+QaJW4$I@^VD+}rS>8e%&7QB!F^1X%)%NG9*YJ=3|7ij;7 zkh^qU4SSfy{Q3hV$wS%XGla0KwWlk~ZFo%CFRyuFBLe#=%jkt%z{#MXpv;n|(;`O6 z4a6JkH5GnhQJzN>9i~N$5IMj}o0MC|#&LYXDUPImwyEOfB_=Uj}v<@I9 z`Km*Qr)%~`r*(9Ecwz8ZbSaL|ciXYZ1ZsK8VdXZ^cGWOf(wWdvbviSjWxi`R=;YSk t;gSy;=s!j@#y|hk`|$tcA79riQMWSp71?i;N=Y&Naq15-`__ you can figure out how to navigate around and look at the results of this small inversion problem. @@ -147,47 +129,65 @@ We will have a look at a few of the files and directories here. I've run the exa .. code:: ipython3 - %cd ~/Work/scratch/example_1 + %cd ~/sfexamples/example_1 ! ls .. parsed-literal:: - /home/bchow/Work/scratch/example_1 + /home/bchow/Work/work/seisflows_example/example_1 logs parameters.yaml sflog.txt specfem2d output scratch sfstate.txt specfem2d_workdir -In the ``output/`` directory, we can see our starting model -(MODEL_INIT), our target model (MODEL_TRUE) and the updated model from -our first iteration (MODEL_01) alongside the gradient that was used to -create it (GRADIENT_01). +Understanding example outputs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In the ``output/`` directory, we can see our starting/initial model +(*MODEL_INIT*), our true/target model (*MODEL_TRUE*) and the updated +model from the first iteration (*MODEL_01*). In addition, we have saved +the gradient generated during the first iteration (*GRADIENT_01*) +because we set the parameter ``export_gradient`` to True. .. code:: ipython3 + # The output directory contains important files exported during a workflow ! ls output - ! echo - ! ls output/MODEL_01 .. parsed-literal:: GRADIENT_01 MODEL_01 MODEL_INIT MODEL_TRUE - + + +.. code:: ipython3 + + # A MODEL output directory contains model files in the chosen solver format. + # In this case, Fortran Binary from SPECFEM2D + ! ls output/MODEL_01 + + +.. parsed-literal:: + proc000000_vp.bin proc000000_vs.bin -Because we’re working with SPECFEM2D, we can plot the models and -gradients that were created during our workflow using the -``seisflows plot2d`` command. If we use the ``--savefig`` option we can -also save the output .png files to disk. Because this docs page was made -in a Jupyter Notebook, we need to use the IPython Image class to open -the resulting .png file. +Plotting results (only available w/ SPECFEM2D) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +We can plot the model and gradient files created during our workflow +using the ``seisflows plot2d`` command. The ``--savefig`` flag allows us +to save output .png files to disk. The following figure shows the +starting/initial homogeneous halfspace model in Vs. -This figure shows the starting homogeneous halfspace model in Vs. + **NOTE:** Because this docs page was made in a Jupyter Notebook, we + need to use the IPython Image class to open the resulting .png file + from inside the notebook. Users following along will need to open the + figure using the GUI or command line tool. .. code:: ipython3 + # Plot and open the initial homogeneous halfspace model ! seisflows plot2d MODEL_INIT vs --savefig m_init_vs.png Image(filename='m_init_vs.png') @@ -199,11 +199,15 @@ This figure shows the starting homogeneous halfspace model in Vs. -.. image:: images/specfem2d_example_files/specfem2d_example_13_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_14_1.png -Here we see the gradient created during the adjoint simulation. +We can also plot the gradient that was created during the adjoint +simulation. In this example we only have one source and one receiver, so +the gradient shows a “banana-doughnut” style kernel, representing +volumetric sensitivity of the measurement (waveform misfit) to changes +in model values. .. code:: ipython3 @@ -218,12 +222,16 @@ Here we see the gradient created during the adjoint simulation. -.. image:: images/specfem2d_example_files/specfem2d_example_15_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_16_1.png -Finally we see the updated model, which is the sum of the initial model, -and a scaled gradient. +Finally we can plot the updated model (*MODEL_01*), which is the sum of +the initial model and a scaled gradient. The gradient was scaled during +the line search, where we used a steepest-descent algorithm to reduce +the misfit between data and synthetics. Since we only have one +source-receiver pair in this workflow, the updated model shown below +almost exactly mimics the Vs kernel shown above. .. code:: ipython3 @@ -238,35 +246,47 @@ and a scaled gradient. -.. image:: images/specfem2d_example_files/specfem2d_example_17_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_18_1.png + +Closing thoughts +~~~~~~~~~~~~~~~~ -Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory. You can also run Example \#1 with more stations (up to 131), tasks/events (up to 25) and iterations (as many as you want). Note that because this is a serial inversion, the compute time will scale with all of these values. +Have a look at the `working directory documentation page `__ for more detailed explanations of how to navigate the SeisFlows working directory that was created during this example. + +You can also run Example \#1 with more stations (up to 131), tasks/events (up to 25) and iterations (as many as you want!). Note that because this is a serial inversion, the compute time will scale with all of these values. .. code:: ipython3 + # An example call for running Example 1 with variable number of stations, events and iterations ! seisflows examples run 1 --nsta 10 --ntask 5 --niter 2 -Example #2: Pyaflowa, L-BFGS inversion --------------------------------------- +Example #2: Checkerboard inversion using Pyaflowa & L-BFGS +---------------------------------------------------------- + +Building on the foundation of the previous example, Example #2 runs a 2 +iteration inversion with misfit quantification taken care of by the +``Pyaflowa`` preprocessing module, which uses the misfit quantification +package `Pyatoa `__ under the hood. +Model updates are performed using an ```L-BFGS`` nonlinear optimization +algorithm `__. +Example #2 also includes smoothing/regularization of the gradient. This +example more closely mimics a research-grade inversion problem. -Example #2 runs a 2 iteration inversion with misfit quantification taken -care of by the ``Pyaflowa`` preprocessing module. Optimization (i.e., -model updates) are performed using the ``L-BFGS`` algorithm. This -example is more complex than the default version of Example #1, using -multiple events, stations and iterations. Example #2 also includes -smoothing/regularization of the gradient before using it to perturb the -starting velocity model. + **NOTE:** This example is computationally more intense than the + default version of Example #1 as it uses multiple events and + stations, and runs multiple iterations. .. code:: ipython3 + # Run the help message dialogue to see what Example 2 will do ! seisflows examples 2 .. parsed-literal:: - No existing SPECFEM2D repo given, default to: /home/bchow/Work/scratch/example_1/specfem2d + No existing SPECFEM2D repo given, default to: /home/bchow/Work/work/seisflows_example/example_1/specfem2d @@@@@@@@@@ .@@@@. .%&( %@. @@ -297,46 +317,30 @@ starting velocity model. iterations]. The tasks involved include: 1. (optional) Download, configure, compile SPECFEM2D - 2. Set up a SPECFEM2D working directory - 3. Generate starting model from 'Tape2007' example - 4. Generate target model w/ perturbed starting model - 5. Set up a SeisFlows working directory - 6. Run the inversion workflow + 2. [Setup] a SPECFEM2D working directory + 3. [Setup] starting model from 'Tape2007' example + 4. [Setup] target model w/ perturbed starting model + 5. [Setup] a SeisFlows working directory + 6. [Run] the inversion workflow ================================================================================ -You can run the example with the same command as shown for Example 1: +Run the example +~~~~~~~~~~~~~~~ + +You can run the example with the same command as shown for Example 1. +Users following along will need to provide a path to their own +installation of SPECFEM2D using the ``-r`` flag. .. code:: ipython3 ! seisflows examples run 2 -r ${PATH_TO_SPECFEM2D} -Succesful completion of the example problem will end with the following log message +Succesful completion of the example problem will end with a log message that looks similar to the following .. code:: bash - LINE SEARCH STEP COUNT 01 - -------------------------------------------------------------------------------- - 2022-08-29 18:07:14 (I) | evaluating objective function for source 001 - 2022-08-29 18:07:14 (D) | running forward simulation with 'Specfem2D' - 2022-08-29 18:07:20 (D) | quantifying misfit with 'Pyaflowa' - 2022-08-29 18:07:29 (I) | evaluating objective function for source 002 - 2022-08-29 18:07:29 (D) | running forward simulation with 'Specfem2D' - 2022-08-29 18:07:35 (D) | quantifying misfit with 'Pyaflowa' - 2022-08-29 18:07:43 (I) | evaluating objective function for source 003 - 2022-08-29 18:07:43 (D) | running forward simulation with 'Specfem2D' - 2022-08-29 18:07:49 (D) | quantifying misfit with 'Pyaflowa' - 2022-08-29 18:07:58 (I) | evaluating objective function for source 004 - 2022-08-29 18:07:58 (D) | running forward simulation with 'Specfem2D' - 2022-08-29 18:08:04 (D) | quantifying misfit with 'Pyaflowa' - 2022-08-29 18:08:13 (D) | misfit for trial model (f_try) == 4.73E-03 - 2022-08-29 18:08:13 (D) | step length(s) = 0.00E+00, 1.00E+00 - 2022-08-29 18:08:13 (D) | misfit val(s) = 5.30E-02, 4.73E-03 - 2022-08-29 18:08:13 (I) | pass: misfit decreased, line search successful w/ alpha=1.0 - 2022-08-29 18:08:13 (I) | line search model 'm_try' parameters: - 2022-08-29 18:08:13 (I) | 5800.00 <= vp <= 5800.00 - 2022-08-29 18:08:13 (I) | 3193.01 <= vs <= 3821.37 - 2022-08-29 18:08:13 (I) | trial step successful. finalizing line search + 2022-08-29 18:08:13 (I) | FINALIZING LINE SEARCH -------------------------------------------------------------------------------- @@ -355,25 +359,37 @@ Succesful completion of the example problem will end with the following log mess //////////////////////////////////////////////////////////////////////////////// 2022-08-29 18:08:21 (I) | setting current iteration to: 3 + ================================================================================ + EXAMPLE COMPLETED SUCCESFULLY + ================================================================================ + +Understanding example outputs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -As with Example \#1, we can look at the output gradients and models to visualize how the inversion performed. +As with Example #1, we can look at the output gradients and models to +visualize what just happenend under the hood. Be sure to read through +the output log messages as well, to get a better idea of what steps and +tasks were performed to generate these outputs. .. code:: ipython3 - %cd ~/Work/scratch/example_2 + %cd ~/sfexamples/example_2 ! ls .. parsed-literal:: - /home/bchow/Work/scratch/example_2 + /home/bchow/Work/work/seisflows_example/example_2 logs parameters.yaml sflog.txt specfem2d output scratch sfstate.txt specfem2d_workdir +Running the ``plot2d`` command without any arguments is a useful way to +determine what model/gradient files are available for plotting. + .. code:: ipython3 - ! seisflows plot2d # to check what models/gradients/kernels are avilable for plotting + ! seisflows plot2d .. parsed-literal:: @@ -390,8 +406,18 @@ As with Example \#1, we can look at the output gradients and models to visualize MODEL_TRUE -The starting model is a homogeneous halfspace but for Example #2 the -target model is a checkerboard. +Visualizing Initial and Target models +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The starting model for this example is the same homogeneous halfspace +model shown in Example #1, with :math:`V_p`\ =5.8km/s and +:math:`V_s`\ =3.5km/s. + +For this example, however, the target model is a checkerboard model with +fast and slow perturbations roughly equal to :math:`\pm10\%` of the +initial model. We can plot the model below to get a visual +representation of these perturbations, where **red==slow** and +**blue==fast**. .. code:: ipython3 @@ -406,15 +432,26 @@ target model is a checkerboard. -.. image:: images/specfem2d_example_files/specfem2d_example_28_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_32_1.png + +Visualizing the Gradient +~~~~~~~~~~~~~~~~~~~~~~~~ -In the following gradient Vs kernel, we can see how the 5km x 5km -smoothing blurs away some of the detail of the raw graident. The blue -colors here suggest that the initial model needs to be sped up to best -fit waveforms (and vice versa, red colors suggest slowing down the -initial model). +We can look at the gradients created during the adjoint simulations to +get an idea of how our inversion wanted to update the model. Gradients +tell us how to perturb our starting model (the homogeneous halfspace) to +best fit the data that was generated by our target model (the +checkerboard). + +We can see that our gradient (Vs kernel) is characterized by large red +and blue blobs. The blue colors in the kernel tell us that the initial +model is too fast, while red colors tell us that the initial model is +too slow (that is, **red==too slow** and **blue==too fast**). This makes +sense if we look at the checkerboard target model above, where the +perturbation is slow (red color) the corresponding kernel tells us the +initial model is too fast (blue color). .. code:: ipython3 @@ -429,9 +466,26 @@ initial model). -.. image:: images/specfem2d_example_files/specfem2d_example_30_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_34_1.png + + +Visualizing the updated model +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +After two iterations, the updated model starts to take form. We can +clearly see tha the lack of data coverage on the outer edges of the +model mean we do not see any appreciable update here, whereas the center +of the domain shows the strongest model updates which are starting to +resemble the checkerboard pattern shown in the target model. + +With only 4 events and 2 iterations, we do not have quite enough +constraint to recover the sharp contrats between checkers shown in the +Target model. We can see that smearing and regularization leads to more +prominent slow (red) regions. + +If we were to increase the number of events and iterations, will it help +our recovery of the target model? This task is left up to the reader! .. code:: ipython3 @@ -446,6 +500,333 @@ initial model). -.. image:: images/specfem2d_example_files/specfem2d_example_31_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_36_1.png + + + +Re-creating kernels from Tape et al. 2007 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The 2D checkerboard model and source-receiver configuration that runs in +this example comes from the published work of `Tape et +al. (2007) `__. +Here, Tape et al. generate event and misfit kernels for a number of +individual events in `Figure +9 `__ +(shown below). This exercise is meant to illustrate how kernel features +change for a simple target model (the checkerboard) depending on the +chosen source-receiver geometry. + +.. figure:: attachment:tape_etal_2007_fig9.jpeg + :alt: tape_etal_2007_fig9.jpeg + + tape_etal_2007_fig9.jpeg + +*Caption: Construction of a misfit kernel. (a)–(g) Individual event +kernels, each constructed via the method shown in Fig. 8 (which shows +Event 5). The colour scale for each event kernel is shown beneath (g). +(h) The misfit kernel is simply the sum of the 25 event kernels. (i) The +source–receiver geometry and target phase‐speed model. There are a total +of N= 25 × 132 = 3300 measurements that are used in constructing the +misfit kernel (see Section 5).* + +Choosing an event +^^^^^^^^^^^^^^^^^ + +The Event ID that generated each kernel is specified in the title of +each sub plot (e.g., Panel. (a) corresponds to Event #1). We can attempt +to re-create these kernels by choosing specific event IDs to run Example +2 with. + + **NOTE:** Our choice of preprocessing module, misfit function, + gradient smoothing length, nonlinear optimization algorithm, etc. + will affect how each event kernel is produced, and consequently how + much they differ from the published kernels shown above. We do not + expect to perfectly match the event kernels above, but rather to see + that first order structure is the same. + +To specify the specific event ID, we can use the ``--event_id`` flag +when running Example 2. For this docs page we’ll choose Event #7, which +is represented by Panel (g) in the figure above. + +.. code:: ipython3 + + # Run the help message to view the description of the optional arguemnt --event_id + ! seisflows examples -h + + +.. parsed-literal:: + + usage: seisflows examples [-h] [-r [SPECFEM2D_REPO]] [--nsta [NSTA]] + [--ntask [NTASK]] [--niter [NITER]] + [--event_id [EVENT_ID]] + [method] [choice] + + Lists out available example problems and allows the user to run example + problems directly from the command line. Some example problems may have pre- + run prompts mainly involving the numerical solver + + positional arguments: + method Method for running the example problem. If + notprovided, simply prints out the list of available + example problems. If given as an integer value, will + print out the help message for the given example. If + 'run', will run the example. If 'setup' will simply + setup the example working directory but will not + execute `seisflows submit` + choice If `method` in ['setup', 'run'], integervalue + corresponding to the given example problem which can + listed using `seisflows examples` + + optional arguments: + -h, --help show this help message and exit + -r [SPECFEM2D_REPO], --specfem2d_repo [SPECFEM2D_REPO] + path to the SPECFEM2D directory which should contain + binary executables. If not given, assumes directory is + called 'specfem2d/' in the current working directory. + If that dir is not found, SPECFEM2D will be + downloaded, configured and compiled automatically in + the current working directory. + --nsta [NSTA] User-defined number of stations to use for the example + problem (1 <= NSTA <= 131). If not given, each example + has its own default. + --ntask [NTASK] User-defined number of events to use for the example + problem (1 <= NTASK <= 25). If not given, each example + has its own default. + --niter [NITER] User-defined number of iterations to run for the + example problem (1 <= NITER <= inf). If not given, + each example has its own default. + --event_id [EVENT_ID] + Allow User to choose a specific event ID from the Tape + 2007 example (1 <= EVENT_ID <= 25). If not used, + example will default to choosing sequential from 1 to + NTASK + + +.. code:: ipython3 + + # Run command with open variable to set SPECFEM2D path. Choose event_id==7 and only run 1 iteration + ! seisflows examples run 2 -r ${PATH_TO_SPECFEM2D} --event_id 7 --niter 1 + +Comparing kernels +^^^^^^^^^^^^^^^^^ + +This workflow should run faster than Example #2 proper, because we are +only using 1 event and 1 iteration. In the same vein as above, we can +visualize the output gradient to see how well it matches with those +published in Tape et al. + +.. code:: ipython3 + + %cd ~/sfexamples/example_2a + ! ls + + +.. parsed-literal:: + + /home/bchow/Work/work/seisflows_example/example_2a + logs parameters.yaml sflog.txt specfem2d + output scratch sfstate.txt specfem2d_workdir + + +.. code:: ipython3 + + ! seisflows plot2d GRADIENT_01 vs_kernel --save g_01_vs.png + Image("g_01_vs.png") + + +.. parsed-literal:: + + Figure(707.107x707.107) + + + + +.. image:: images/specfem2d_example_files/specfem2d_example_43_1.png + + + +From the above figure we can see that the first order structure of our +Vs event kernel is very similar to Panel (g) from Figure 9 of Tape et +al. (2007). Our kernel shows some additional low-amplitude sensitivity, +most prominently at the ring of alternative blue and red on the edges of +the domain. From experience this is likely due to the ``Pyaflowa`` +preprocessing module attempting to window and fit very late arriving +waves that are caused by boundary reflections from the edge of the +domain. + +Example #3: En-masse Forward Simulations +---------------------------------------- + +SeisFlows is not just an inversion tool, it can also be used to simplify +workflows to run forward simulations using external numerical solvers. +In Example #3 we use SeisFlows to run en-masse forward simulations. + +To motivate this use case, imagine a User who has a velocity model of a +specific region (at any scale). This User would like to run a number of +forward simulations for N events and S stations to generate N x S +synthetic seismograms. These synthetics may be used directly, or +compared to observed seismograms to understand how well the regional +velocity model characterizes actual Earth structure. + +Although this could be done manually, if N is large, this effort may +require a large number of manual tasks, including the creation of +working directories, editing submit calls, and providing book keeping +for the external solver. SeisFlows is here to automate all of these +tasks. + +.. code:: ipython3 + + # Run the help dialogue to see what + ! seisflows examples 3 + + +.. parsed-literal:: + + No existing SPECFEM2D repo given, default to: /home/bchow/Work/work/seisflows_example/example_2a/specfem2d + + @@@@@@@@@@ + .@@@@. .%&( %@. + @@@@ @@@@ &@@@@@@ ,%@ + @@@@ @@@, /@@ @ + @@@ @@@@ @@@ @ + @@@@ @@@@ @@@ @ @ + @@@ @@@@ ,@@@ @ @ + @@@@ @@@@ @@@@ @@ @ @ + @@@@ @@@@@ @@@@@ @@@ @@ @ + @@@@ @@@@@ @@@@@@@@@@@@@@ @@ @ + @@@@ @@@@@@ @@@& @@@ @ + @@@@@ @@@@@@@@ %@@@@# @@ + @@@@# @@@@@@@@@@@@@@@@@ @@ + &@@@@@ @@@@( @@& + @@@@@@@ /@@@@ + @@@@@@@@@@@@@@@@@ + @@@@@@@@@@ + + + ================================================================================ + SEISFLOWS EXAMPLE 3 + /////////////////// + This is a [SPECFEM2D] [WORKSTATION] example, which will run forward simulations + to generate synthetic seismograms through a homogeneous halfspace starting + model. This example uses no preprocessing or optimization modules. [10 events, + 25 stations] The tasks involved include: + + 1. (optional) Download, configure, compile SPECFEM2D + 2. [Setup] a SPECFEM2D working directory + 3. [Setup] starting model from 'Tape2007' example + 4. [Setup] a SeisFlows working directory + 5. [Run] the forward simulation workflow + ================================================================================ + + +.. code:: ipython3 + + # Run command with open variable to set SPECFEM2D path + ! seisflows examples run 3 -r ${PATH_TO_SPECFEM2D} + +You will be met with the following log message after succesful completion of the example problem + +.. code:: bash + + ================================================================================ + EXAMPLE COMPLETED SUCCESFULLY + ================================================================================ + +Understanding example outputs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This example does not produce gradients or updated models, only +synthetic seismograms. We can view these seismograms using the +``seisflows plotst`` command, which is used to quickly plot synthetic +seismograms (using ObsPy under the hood). + +.. code:: ipython3 + + %cd ~/sfexamples/example_3 + ! ls + + +.. parsed-literal:: + + /home/bchow/Work/work/seisflows_example/example_3 + logs parameters.yaml sflog.txt specfem2d + output scratch sfstate.txt specfem2d_workdir + + +In this example, we have set the ``export_traces`` parameter to +**True**, which tells SeisFlows to store synthetic waveforms generated +during the workflow in the ``output/`` directory. Under the hood, +SeisFlows is copying all synthetic seismograms from the Solver’s +``scratch/`` directory, to a more permanent location. + +.. code:: ipython3 + + # The `export_traces` parameter tells SeisFlows to save synthetics after each round of forward simulations + ! seisflows par export_traces + + +.. parsed-literal:: + + export_traces: True + + +.. code:: ipython3 + + # Exported traces will be stored in the `output` directory + ! ls output + + +.. parsed-literal:: + + MODEL_INIT solver + + +.. code:: ipython3 + + # Synthetics will be stored on a per-event basis, and in the format that the external solver created them + ! ls output/solver/ + ! echo + ! ls output/solver/001/syn + + +.. parsed-literal:: + + 001 002 003 004 005 006 007 008 009 010 + + AA.S000000.BXY.semd AA.S000009.BXY.semd AA.S000018.BXY.semd + AA.S000001.BXY.semd AA.S000010.BXY.semd AA.S000019.BXY.semd + AA.S000002.BXY.semd AA.S000011.BXY.semd AA.S000020.BXY.semd + AA.S000003.BXY.semd AA.S000012.BXY.semd AA.S000021.BXY.semd + AA.S000004.BXY.semd AA.S000013.BXY.semd AA.S000022.BXY.semd + AA.S000005.BXY.semd AA.S000014.BXY.semd AA.S000023.BXY.semd + AA.S000006.BXY.semd AA.S000015.BXY.semd AA.S000024.BXY.semd + AA.S000007.BXY.semd AA.S000016.BXY.semd + AA.S000008.BXY.semd AA.S000017.BXY.semd + + +.. code:: ipython3 + + # The `plotst` function allows us to quickly visualize output seismograms + ! seisflows plotst output/solver/001/syn/AA.S000000.BXY.semd --save AA.S000000.BXY.semd.png + Image(filename="AA.S000000.BXY.semd.png") + + + + +.. image:: images/specfem2d_example_files/specfem2d_example_55_0.png + + + +.. code:: ipython3 + + # `plotst` also takes wildcards to plot multiple synthetics in a single figure + ! seisflows plotst output/solver/001/syn/AA.S00000[123].BXY.semd --save AA.S000001-3.BXY.semd.png + Image(filename="AA.S000001-3.BXY.semd.png") + + + + +.. image:: images/specfem2d_example_files/specfem2d_example_56_0.png From b1ba4a62f3a08b10f01cbda5ec61b62dbab4e0c7 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 9 Sep 2022 11:26:09 -0800 Subject: [PATCH 165/195] slightly modified example 2a docs page to show a better kernel match to tape et al. --- .../specfem2d_example_43_1.png | Bin 88490 -> 75677 bytes docs/notebooks/specfem2d_example.ipynb | 14 ++++++++------ docs/specfem2d_example.rst | 12 ++++++------ 3 files changed, 14 insertions(+), 12 deletions(-) diff --git a/docs/images/specfem2d_example_files/specfem2d_example_43_1.png b/docs/images/specfem2d_example_files/specfem2d_example_43_1.png index 8ef291e257962411afedaf6f226f12fa36b2375f..0ce15028ede43f21c3c3a37b1501eeacd5eccda8 100644 GIT binary patch literal 75677 zcmeFZc{G;o-#2bLWtL=CWLBAp+(`qalvK!Al6e*(l_@fY zL>V&=@8{_Ed*0{S`+eWN_gZ`Zv)6jpx?6V{uIoIH^EkfW&-A@Qj%%r}U$=Q3g+f_> z7;|zB{x%NONyrHB}ZF_OSTux_+2fXT`oA- z@08pvxkH@a`qCvwmwi%FcK`hcBpsa3ONq(yso_QF91rWeP$-P1JpTbT=i}0*kB_MF%@ctsDQih#bC*963EVw^(cb)lg&!s-@LYMcT z!f1wcB?s*_e)3-_Bb}q$>i_u1*_#|9|N8qP+r~0#WhVUR-=$)9_wUbM8#6r2u<2i4 z^`Q?j{r4+42*?~GKS-@SE3qYz?q6Rm3MiNU`|H#_Isf}b|M!|=1^$1qrKZgvx({&r z2L$vC)WwFn&rc0q@9s7+%5|>D_SmkQ5*!`P5mB;i*h>&_j zbxdN8_VP^8%Hs>4pV89OAG~yF*FM(~QNw`(&l%~ZO}a8=^bJBRXIe~q;} z6opLuYR_SmDx4LxX?b7aLw)6@?g|G>afvka5b&H~xtv~vZa%S#JF zxXzxQ9_x;`GO~7GEp9o~-QRs>d2UcA&()5ahNjFcL$uj_an|Y5aPxW@85vqeM)k75 z_2Ye!N;Ly#-`H|uO=*&wLf^jKGxhr$*I+|@&igZ1_BJ1no&fe!Gx7Yi`%V12GCls- zto6f7A9Y=-i~A-6yTq z`q_2nwy>fYe zSW2f8dnfbzcZ=p62V>n_XUmwocb~UK(6dXX|M+1YbMt1gprD{_bJ4=@JlnC0nHyaB}x$Cd56@#8je_HgfuU+3dHT1ddnPzNjq|$Qr z*BpliN;-C8ds9;KnKY~Z+B@gXt0F9wmZmnfr<<wE8lrjcBx%Q6Wn^Te=%yOjR)n(J;%TNF z4BGI)EF*oia6v2DZQ#Q_1`3z_6=}mFAB9*s2j1-`pD`RgcFaP~zJsY>6MxZ+m3=*w zRJ5{e_=bmCxs@@*R7pfhDPDNXmh|~Q!?myCcb?y{x>z^uoSjX<2^o2hDeJX<1&b54 zDe37Sqxac&720X+J<%Z?SP*rw<&{iwQ%&Fo9x;u0Y136%dg3G1Q9>`<`4qkG>Wj0< zI`yjR%-<9^sE4hV=d-jge%g0s##emLp1TkBx&&(1e)wSFgV=1r#N zJU0hLiLG0M)~sEdS?IkGT9bciXyfYQbMF1DiodY9vcEnwG@QTu^NZ-S*4TZDGst9XZ^rDl;L-tY6Ls=vHAso$1q*|s&_OK^MO`MUcR zl=Lp2g&W$nwYBEEFE(35Doo!MO&gQ%nO2K1Eej;;AZhfrIH`YdFl+N}oAinP+R6U! z-@lV>+niyp-Z)*fG|jcTxH6nmNaN1V%}mri+|`<;k#r0Us<_W|hb~3#eV3}OmP!NY zb)FsL%)ZzXp&g4y!Rs??s(R>9f?kH%^K%9J@cZUxmI49-I2671h-lvTckA+I$4ami zgj$4~PLH%bH_VYNEiGl*wCVc!cyBh}m8G2LacmL>{CoFu8s^xm-4fAc;^mFFx|*i< z!@Zs9dg8M`oBq+hNex6PV&IUbw6(P*?09Ow(deGB z@6v7@xG;ZzYE?D0$CkA*dt68Emf6W(|1;bov~?@Z>a`3^iH!K2aG4Z?*BX}>PABVL zl@ZBX`j+RG;j`qSXos_Y<>!l}n|JS4C#m5zu>JH3Ja$h^PR>pFQOt7+P_zXlB-Ur0 zZ;;JC`~DwcDvGkQve*4i#a!&Y2%i0cINc$yLdwfkQRU5>UY^dUSHX#0wQ3a;508Y{ zPBF1{=qBj~sa^&zP9)lX<>cT9#*t{xf7#NWMC$H_4R5y1WK{94rWn0-RDK*3F4U65 zy;Uo&IB&EttS#%jkeHZ;>%#5rXA;n=NHvc~P4UN`G@JST?d_Fu!T47*@^gP$jK{~y z7@yd-WqKKynDBpneKBZqu)!QZL-8vMVielBa}!z)yIt2?C-d^k%HD<1qL$Nq%1i?X z%~~5c_c-#S_OglV@oOk~Oo_UVcHZz=nkOBYl5SS9E}TPV6{>p`Hhu=GVE+8iWvu|DdxNv#?qGBp)L&~`V5836KZQHh`;6W@VYk78Td29DHOkRBS z;sv~lPNy2&=27rCm3_`3o`r=ay|qz8WqI#k=`sWzwii0{e*A3ZItNm}9jOHuEY<)snhm3elpWRY&%j_Y+>&-j;%GAYrO(<*mZ%)!3JMQoDqB(8Ex&ES25L(;Ewg~x^6=ChO@;G7PGm%!|8F-m2KR=4B^+$f4!dqLlCl=g>J_##& zmj^Qwydy3laf4jmpP|n|ROwDZrr{aI#RsOpoYa2*CX%1lu6oBYlaG&--@5+VtTew@ zNr~_19Z9t;tGeTf8mx+4=8+14fCmX@($3BH1o1ik`no%BI0d~!?9_9=2E~PA&6cJB z7w8W^+H=yXH8}bBB7^vRT1D<3Ja&xXp~uf{ZSVG7`cZ6{bCpK-5lZeViq=E2I5owxO^Mzz4}Ye!}@Lr`4J8y+gWi$Pat z%6uAQQOQxHWk+53b)V-Ow`|F61R?^6+`s`kG4r>9VxwF|nJ3-w%EbGvb}2VJzH%}# z`LP>&F~`cpI;Bc@+Plaf`!|Xe31$;Bj_wvcajZa{c0X72l7~NsPX}8+kwLXIYsR z`%zu#4cYoJ*X6wU*>@~b1ydUV7j0aQO-@c)3YjrcKW2nB@z8r(UsYY*yr(pP;`jPu zOD`G#$1dxeqQ*8hV(1orct!~T0HUW~vH*t$qt9=Cm4zPEnrTT7T>SBwCf7)7#=-1m z{Gv%XAvx%GY!dt3erGfHTGmACq$I0`Y)t6txLA|tHac;cs+h|m-}EH=pnXs9*kJID z8>~wk=;(AbTQ;53y4V#R93HOv?cL?e5=NfUH>caMx98pf5RLU}R^zR0rw#49UKtnJ z-||5R`93f((Oy+vUTl_8Jy77(x0ceb*etkzKNn$L=X~ZYw`|$c4F*a&%gW0I{4Mjh za-{qOEs&PKqW8SX&ApND7F6aKJ#=y^;H+s3PkcEK{U#7Hl;89IDYKGzSG(Dor(&M-4wz+ z#ZJF8`Sta6rXiVXdM`I{1b4H%Z z52SZ9dD-SvL!B2VgwdM%uuG+umqvY8`&Hk$g6{F7@d?eLaE_}Rg*6_bk`kPUv*q{k zFmhOeP#dqmE|@7zJ#i48zd zfKtT(5E++;b;G&jHlQl+@mYLp{pbeoKmYtgSh@V%_gmJVpRI3BGmb>Pq)^Zx2w}Ht zmp$z(zrj;{A2)D0#jo*+`V*k6Om}c6E4R6ahYbuiKlGY7a@JitUNLoZm>UjnLKmn! zg?F}sci$!2^<1*wTauEJ`haP$AiAkJXc)M*HJ?6zR`V(AFwwSOz}266Wu))Q^yBft zASO1pz#v|a!>=W`wY)l82IwSh_jT8?SlK!&Z`2vkp_F~JH@Qqazj4b@wA zE*>|H!!?=l1Gv}2rWHF##dl zmn<$Zi7GSwgd9j=$<_GqU_UzmMg^9xvB=lgKPYJX zKxA<60mu+HV`Ib6Ai6=W0xP7Cvj|_^RBqS)rsCb@;g8uDPCkA5)MVoOdjc>)6@OR1 zx^N=ZVE3sPC)R-F?HAFC`|;(S{F-`A6-Knh^_zFy)O2WnBax!J9Z+G*MxQV?iE9;R z%HYbUYJYX)?(Fngup{Wkp>Xb*HF;dwcI`3Ro&)#JOPg0R#3}jmg8R}?I^JETU%@7B zd~tHCW|V-iq9QNq=$j+)^6oo6efpGc|83v0cJxN_Sn;6Abt=|9R166Z|E@L#%_9S- zBI>|kL___9{f+tVE{aQ?1)i-%zD0G#MQUMereobD=sZ$NQNi4Y=BFSk5Xl9lDG1f0 zX5C5Q9XocUTh(p;l4^K{Wlm*7uHxAYvw%9oXwZqiGDfBHj$9YD)vMznUlBx%MeJRO zccH)7n*Mko_tl}}$C*awqwn1dL4{d`k{?qbRass><~;>5qPI1}d=>zG_wX!qCJN=o z=G~cj4?vZn`%;c?vHtnx#dXe|R(>*8eS%aJU=?N1+xxP1p*t*V_!Sg*z_3&=0@Z7rP z70=h~3)itqge1I0L0n#()FurH95nU9W%pI!{wG;7teCmD!q9`bM)M~(kXG{U@im8Qf5~@OwYy z0KfuyKfP4lw#GSZDHRiwN7iT2_ekx;qkRHc4Z*E!ysv8f{nq$ye2GKOKJKhHSOgon zXb^NNa|X1QO5luO;OAa6&fZA{;NB}!jp{N!i&yYWX|(0Xsdwz$IS%Eh7y67|rUhO6 z3}m_r+|uzJ`?CyOvf+#i6*_6>6qZxNP`+J9I1Jv{(mkqno5M-n{rX*vh(H_j_#tSO&DCK>Q(SWp+5NNZPW7g_@e$ z1h12@14q--=-nl{-8NqiXlZSDW7~F3TXBwBDu3)+^?A>^iT>G9-<2@Pa{Mwf%yJH$ z<#^6vc;!dFE6Y~^+0^q^8SF9ZK1I!K_x-bv*~ha>8a>bRt{=Fit!N6WZz&)k zkb;K+Zs{a@YnP+9fSsGYy(I7=cQWK#A}^Akg3=M4I{5wltrVbHaWS#bfS{l(blCgo zcMT$ZEk({@Q*k#1*);_r2(9OpzuWX&=epXVLz(Cry047(5?Qe#L~Uy7eOl3S4bkHg z5)$-4?~ZC|S@C&KMU7CiW3erWvWF*Q0#!Bzg){{f$rjCD_Sc!OZq=$A8b2p>WSlhc zue$W<>5&xB4)J~a?i2m#AK{~!=O4NU{^~4f?@_#c@z&H=v+#_msY}y9cUfQ`R<8~8 zfhb!mZ*Z~J-Zb=Y=|#cPA8t<7hhU+PensxqbFTl6T8k9n@cO_|a|?gf$i=xyI}xt0 z8Rj&eP{;MXyyWROY_P%=j^GGeVmGpBt}W#-2M95v=%F+3UI^f)br%n(3-tMGQuXXk zIh)4@G%yPkYS(*a6M*AH=~m*!NLd0w{bDlAmhMaPCDQU$VpW}uk zq@_PTKFt2t)7rz{r6c0s9#t88TXHqchD&anG=(K3G+p9z@8~g=_j0cTaNLwj(=lD*m;>eqaADepoEEY1z&O`RnL4KFuO~|7|n)h?(ys zmcWS&m5-hu{e^4dTL6(B_~LuFDE z`1*P~L8;Z%hqG;()-BA8=DeS2I%E9!e8a=%x~ZF?d7bLoHKfo079LS@o#qK7B-}?p zg;`G@OD!p`37|XV&H$A zzoX%Cxl(g|$a1TTt?KRz=Pd)Qi;IhgUmp5Y@x`ORmr?uPjsPl?7cX9jOG!0+ng3A! zaJFn&gV1~E5pAgOZD4z)YZ-YzPykh9F4)K3x>feity}uJ&i$<*Rc+{1dV}>3^wGlG zGcChJN1-C=;UB|*E<}hoe0OQvcEdN~px{4LV0Na}AZMN9vBdIx^W^7>r zns=p@qoo7{t`Y(*VfZH8t}Qdb8#O8gq7acW2x)J)bLUPKDHC8wt; z3$3+MMYdVS*oo$l4O6hPBPg#HMT-;k3lp_cZP-p#gHZq3;FNK2?YktpFx~FZhV^KJ zR-*@Wo2;KDlIJoQ@%$KNr0smX<$l)@CJ87TEd7SBZCIhElOi{QZDVW&ucXr+}4A7Nql)D3-LA1mznWe$D+3`Mo zGc!SWMf4XN69R1WEh88eXZ?u44|CuRJR(_aeYTAoO9L4=1#8^CS2M@@bY)-IM9LGu z)5d-tXqL$*64woP7VJ+pE>e6_wL|$W@4KJ0To7;dRa92ti-jZedtC;kDYk!pHa%ly?-;;+3OrX}z$hiY1X8@60CNBU00GvKl z@Z_LOqX)-oFW|R0DbqMsVH0S`(QBxwgH<~N=-Em4`of>XoT$uhvz`1R+ zl+jxzaC~LphhVv)90r23n18q{~CYC^k+m;i0=Oe4<9D;=o1#-(8Jj6{$E+3%O4n z^@Ugnkh(`Yaz8&)_+R@DE~$EjUVA&eCN&A+gU|b;HACo?QSLRU8m72$=)VV1($_L@ z_>GL%>Tp8qD&3?le-+R~0G2K^kxKlcYMPyP+@7m2Y2{}+ToUYj;o=e){J^c#>5B1G zrgOgr?3Ss(Ge~rmqg^zdl~6A&G2C^s

}LY2tmC_bSeP-$cBAS$EX& zz$hX01QdBFyR2jrq1inGJC;@aa7W7c5Oj}5czXo2;FY^uaG>dd2g}1bcc$C6?dT}< z=0dYo2gQg#kGHk{n!U}wGd~2#wigWI0Du$p3r2Vi)nm)=Wvo7M5MdC^q!i_ss31f` z!4HuL01>joH}76|G)6pQ?z+>@FWZQbj(?S)Zb(Cbg&4$&!`U}USTzw|2|69m{gs>V-0tE77^>kO z@P}K`ivt3Is+U*(Sv!rRM-M71Q=v{&B=rvr2=en&N=ix+^3k^_eoD);*R_er42n07 zNBkIolXl%Y6_`|GrSww#+qWNmZU5+p_IirW5;t0fI)DesQNYs{H+p+KTTxE#%ooWE zhNJ(oFkTGYZr@taQQ*lAfA566mfL9O>$zLWH0ljI6L(Ox9lHkwRV^%@_PpB*81&;Lvpa36xnr8?{V|Jwy9;`N>haUq$2%z_Xct~zk4hDk1AqK> z^acfHp#01Cj8z{x{cCP=kR%VdcH2ZhU!t^v9;p&Fsg9Bk91(Wz&hO5GSSk}@7sl%% z2m<+6fy=iaYMU;uYMC`j!G2?h>d^&TVF0$C)K;hf53PWh^0ciU6?~#f4LuECN`dnsI|L2HjACoV z`V^^)EZDkjPgl^h6Iyynlc$iEfWn3jKum}tH0cTmVl_*C)kO8%JtAF_!Ax0+< z4G6bJUzob(5Q1Ja&|AN7L_hZY6L2qsSe8d$5ikD5BI-a#zL^Oik&J3coG@TB$5pjvZ-I~XDp(^BO|LI)!1&T6A%$utF7=S z+V(6G0NttW#jBGW;ipnjpyQWgF9bkm8(V0QzWB-)Ux z!M(?kLNZ7p8-t( zkXY%6X^L9&S0Gtp`fUsj8FlN{bzqAG?9F%WXTa{xhOr52L>Hrh+I@29cq@?CFm2z! zW0;s<>JeR&kDlr5;$qo;34X5p<=BzxS|ZB;EeEa211%}X2|-Ee>}+8_C4zQ!lrF;{Da@zx+;>>3PXW_ zDcJl2D?gkIGmH!ms;Cgb^VIX>ROF0%|EUV+yngpCN2B79F!nZESjA%(l?{I@tc$br ztP&eEU;}G9ZG~UN&yiKNlL|-ot>Qqof^lb)<7ijx*m5(8z;U*fjO0( zAbcv4a)}L{z7*dd?^;=ACx`~ZXT;j|o5vFLYk={_QEUDxgW#0zrq3#1-|S9$Fu*23 zGH|d`K35jq<$8WEE-odvpyQF&&~!)AiF2k31Y_a5LZM49o1X#6J;o^`jvH!H0ARbp zn^eF)(FkA%K)=4Ro-%^49RB#i-kSAtUd}ual_qPlzgSF2Xf+sF`OxR245z+B6~F$( za3V;7fA&FipT(s*!U;{$&sqy2cn}B@$DwL46|9B$gD_jVQJ;#z;m12%8hX%I61+dr zvnT5h?E%OiVw+dtR%nQ>VTmb;Lh}Y}-xjkM<&seA-MgC{A@#nc&DnQ>iIsM&qB3iO>|Lw=Q%yXoEXU^7eQr0j=y<$#=V{A z(cD0BydIX8s!Rjpamre3%w4 zBX@kv?b{U^G2-t%rhYuudv?Deo%E-MF&y=KO*WQ985Q*g_XvI5gp)yHa<(ev+ms(S z(UvMuU*$hVblm@E+WanF?3*7&2;?Tv3I1ifD3f*uB_c=vUx!}dyB8G7Co2$ z)=U9~?&kU-OGZ41gE+6!P@gO;EgwTcB3T)dih?10>U)_25Gtwlz;nH2_UpO#FcI$K z(x4DTGA@9ue{($uKmmd4pK2lcI!0+U}hnb$jSfHYzV`SEuaeMgbj7T9~v3S z6p`}^&BKrQB(PMk{`fPK)u0%LjbIA5SX3v$zdB6;!6`&gzWYY<>}Nv>IE21RZcSV- zodUd4iUg)Vq&-Dr$ebiAmJhW;R9svYZHbs6gbo}&a-;;udc&jYUx`3sd*HcReYkrS zJxphbfMlrA6bf<20O`k3{YY@MN(G-P}vTHb{PJf5V*BVC#9Ib-hy zq1+l?*Ex?NVV!ubdpp*QkB^f$Frkeri-SspdBlk8oArrA#l%!Dh_JJ;kkHXA${&RS zETc|hWGuM?68f3cfF{L|yCY%Cl1>fEBpangY8jM@Ric^Iow+VSQds!=UMpOC8;IBq z-;wHy$)B@1_B`0vArOZX5SFHd8f_;Y8*!mwo2y|}2!#yiQ{shG#m3_qfkPw&Nux=v z7uS+sq`;ngy*&w3JVE*TTCa1G|M-7paEBjtHLqz;&zu)>5DXM(N&mO9zx~>Ml^o=x zC7*h+F)TRPiuBiD?L^>9ey}h;)R5D-_yY(wJtfq`&>FhsQp03Hs=1P&HDJ9P1MmLwaz7K`2M@=R0lx#}nD&iq`_QFNNQ z38J1rh-OI(!5XB?b$Q*oEoJ-=%526uRPPBSbRo-Q6 z_ZrX^a#O9iIg5qRj0Dk5DC?(g&?c~@s@Z5phJ|I_D~aHzt;&#g?FtG1JChRm9q5zb zT$oJen=S<6yN{?Y5n;Zk$F?({6ChMX;24vZpLm)7=f?Z@#QFJ)lb&s{3?Dz)D#pyg z@#FYY`o9w^A4=Rqv;CRZ^^vVq7#LO;6P?*Oq$ zoGq+ZFit~%8~klMHOq&4T@GdBlTJ7h!KZXiHonQ`^@WQF?2#ZU>YN~Cc&HB*q)Hq_?k+nUgaFUn3s%m;5*A7w3KAU!Bdfa*N-)g49{`<(v2KheGS&7Y)|h*-J&xFakeU;UrpES^fNKg{*OPP0hx{Z!l%C z)76&d|1k6MNg2!lFPkDeovmqg5mJfYZ9dgTxq2xLZNLU%D{-o?7 zlTZvYK8Bkj-prm$KbVwad8;7Jj-xk+euBWIRwQTl)gS$f6E}DeMWmPSEo3E-sjnB) z2n2=%-wKl4>AT_$dZ)JQXcusU4m?W+EGw!$anVUC74+Q%MV({|DBY-Eh@`GPaq{Fi zc^Sl?v2n_vU=Y{|D^f>xhlZ=GEOhN_xNq3CN8S{8EKFf1a6r!&JM)SG*=S6TnBn;n z_^^R{j~}=VMNQ>3bSz@DkS>OZiqFc-uXgm^*%HV2b=$y6(c@uFCB4&*kTxx)CavHK z1|??of0NEY_zY05PJ8<}+RD;?i*T1vy$G(g`5y9eVbwh}IE7$_;fhep>q?)Q~>)HDME)MIw`}E=Z zi7!@y(SmXd@g&e}LTLp!mC#s$!2|&r>2O8O3u{&OLUNcL#rC-U;GXskRAuPxNXoyQ zLj@*rc_;yOv)K?|V;(%PyLIPc6$qV0Em5A~2>to{lI?CD3#UTB?RQda5drr4im(MI z#dYHQ5uHu|FQ8r^Nw50~-pFR1(gmvW(bXCfkBV?cKoQ<)8}j99LzpEofrG=d*V$kD z!f}DTG68p__H{Wc6U=kUT}aEP$6hWCm^3^;& zJ-rNo)v^1#=tw>cqeI&=*<>oEJ*RCEE@3w{HHDW~LO>5Jd&5&&P!Mm%#f5|BCEyw3 zJXYaZ&Yk%R_n7&ac6~wSA_%N)L+9&ay5vGs6om`$C5TFrdXUmA6E0RogLz*DhQ7b1VqFv5TfD)lt1b9 z%?pkT5i>#MMbEz51)27F`@~N%gakvgvv+-XsLlbEhlA~fO<lx!2ET+zGt!n6+o_wNA>dp*AW%fWN!c!@pSptQnG6a!*S z#>!(E%8-p}M3RdL&m@=udGO=YBb&JR1|Wz&ap)@i0VNI8XuI>m-Q5@2z{Y}+;W5Fc zB|1CkiquAL#Fq|XPZB|egt3$s$5#JrP7UK#@Gya%6F8$CK{DxhhvGS#yRk#I`3@&$4IyjB5)SpAuqA!W8B^e}l zyG=Gtm(KLOX))NiY18T2MiTH%K~?hdLS}alq4=95}25j zw6ik$EX!1u;Yu1BBI##N6@>1jbhMp*H-oJ|eCQBUuf4h#L@lcmI{K zN7n5?Qjz4su`JJ#?Ra$}6OaY5Fm}ftnZ;&9hmcRu2+?+N;wxKM z$Jc>hR6mofuNp&l50|MbAH$7GYCtM#!0tkpSUb9Y?s(U`%e9Wipv3`TC*cUvMi85t z_jkwgj_CuoWVR*Y9hyfiWsK2LSn^zcH7fO!ToPe^+3$D_&(I5&E;0nF-zTlpIO?(I z0Gi${UfZiU|3hf)fs;RAOJRcaX9hybqM_;$NFZcjIw4l+0462PFq1d}zGMZCFcRxf zXbMDUf?V(j0(37ei8lewf{g8n4m1h{LbffzyO)sxT3MhUHdfXOd~eJ4N|cLw3^dh| zg#I+NI}#~-gJH9ZOkxq$+>vS^6Cp4xB@J>ewn(yZa8#p`S0{0fuh;!~vNF``&J11` z>C;w(-%1hqCv`f7-gLtroKqSRNy*~Gs zr$>24UQ*clC5VBuG(|VrmW!}49QY?+eaQqSyyq04pqF#B*O)MqRrMAr$gqfr0h-rK z@I7Gv18{400z0Pz%w$3QB0&SRQIZ}pd9G+r`G(1cI&N4u z*?g4Y^UzbWU#Q!qZ~7}7R&tmF%e7=X!uh)`GjNw9W`oCxOqL@7ew~GII80C&q_^v5 zZUOBTAw#$A7|&_P$g#C=|IeFmj$Ax`Tv_>QU75Z;v%&YK`9p8x6us|bUxtz6TY$M+ zaUr4W#(20DL<2Z!UCbsVMvq!Mx-7DUOPWF(f0;byP#cjLazO z8>1VLryLTo^L&NU<)6_h!e>IWwQqO7TGR8W9BnrpB&sb=8^dlU6c&jmHr`(!AEar1 zt|Qc_2u(7q$gLya{g#Z?NT-md@mog$2&Xxn9${2Bd3JHLvsd9d6WgRv%`BlFefprz zRK8kt;C3W4BIgL%_aMDfPV%?NJ+f@qWoS^CiPP*vDKa6(KQIBAuOcFtu<)9yNWL7p zm8T>NMRJf{>83~{AcFz+)3Vy2 ziX)O;I#bgXL|uoBWDZF21HG+i8Me%`oFSx3?);gI`3LjPn}c2h#e7 zS9ky3y=JBB@p`0| zT}GO93s4b3QwL{whc5pU9ZlVRHEj$i|08myKHk_@g!pc9*4|LCM4rxJh6R2UlTxrU z8K8e+{A1i-{mPZMX3N3Bv_x)2hbCz}%qW`aF|1bGzA4aW?;o4229fy_|#ROgue)JaQCX-8zK2 z0MeXRrR7hoizh?tX`9X+Y)Lb&BH?GKm&q~rqN1+ih(E%4c2$3P^ZKxFs<&CV0H#-= z{jvWUCB_&mM2xJFq+{p|O>SR4W+;isi&CTl*m`>S&hSZLlsXa^`I-bmNCE|9;P&cm z1j#6rytVeP^fF4VoC)Rok4XF+mH(mN3eGKb6omTObdyOQVq=J@{k0pw9M5AsQ70E6 zEhB567@;6Ud+mC8I^!pp(O`Kr82JQ*#{b`gWVaY*81%J%rV*+ji`QQeU zVFoOVYFHq;fRq#?u1pQP0)d@K$aX9=jJ)NT=2H_WA@e1$v)O@`{F-b?Fo^73O!*Kh z;8lnn-b*|~D3DGt_vI(5h2DD2?I06k05aWVgfKn_h@FVin|E3JK`S6T2Zx;u!`KQk zqRT5CK6-RDMe$NEaLRGev}kete{x)XfPh=y*l}S#@&=e>A4CcAPsOFFlO%10Dlt%t zNYzeqfrQ8s*A$K=8O0@A8v3ADbtbZ}y-4GeLP!z=Bq0O7(Ol{O z{xkiegHQDL`Xi`5YNgGMp4x!p|3wM!-}(&^8hNzBaQHA2?r=3jwm!VF3W!n}jS|X@ z|F)CQFeKIu(=z9I2Tl{wT+0BTEF+nfXBF&SKJv${V`n*6zY+soTk6~g;`Wn31(BE` z%#rlmZki)UqO{(XIKiRN1!W?36pj&xxtfnB5q4q55Y&14<*5(_U@Tjh(2K4bn?!#6 z;T#~zX??tgKB6}ynHLrrc^#g-KAiX5#xgZ9}+u9 z&T<&J!Mg5GUk(1{fIN#cr%4@m|S6+07@@c{s4-7Cf02klDf6=rxP zNN`LSh@D&sW>kxTthRBe^PAcr+?KVsbh7rlTbM*3?%b?Ip-?> zA|1W?49^!5c)vEbm#ita@w-2%9LiUA{Og07O4Z-j)TlrnbQ0d4_ za1?y}=R5#!{N{`g$i$nHO#Bz-<-d{lw|reXJN;iEG?e^*%ESj#|NVj44ame>wB@;_ z{hY_KIF+K;xci0^72JqYOpu(K#Ah#Xt{YVQ`|(nP2mkZqrK&ams_3{}L+elLx1K-% z6OQ_0?5tg5q2w+MIn3W8VT`TqWiz(BhwCPXs~{W(70i!(`^ND1Mrl#A03BPYdyXAu z*dK+3qN1QlMWxpB*33+#iE;+M@F2vk=Quw$@EH)*( z$e^N4=eD?&@&1RHW;|G5c{1Wf4j)abWL&q!qm>NQ(MCK}YPjcvg@FxT%E6ceiv zDo@|;(EW<(KJ_AoHfDRh=(2dI!jh4*>_bO+?;eiU?ZG_1e4RPB z$TM#&;|<^1G4-p2^_OeV>DDuicFfJkAJwN*Z!fw1LY>9s*F^Jh$e8@9<3A>6Hu|=z zU+dgSDH`#TdVkf76`f$pzCe*jNqjHj>3px2rw8>$$_Z#sv$|4i zF9{{IMeGXD!#Y_iv6u46ZiIsNT3bvlcXPr1rrmQDVH zBO&+no$yH=i_)Dx*|s%@9_q^k7RbnQcLr$AcSi4RWMit1`I z-R`BWx9YcP7jH_rZ^7d#33yapqfte}7Z=oIV;p>9ud{RJ*mQe;RBY@~>?)a&3_a_5Z^|Yx(NHZqyUT11LfX_5zQZZ}2 zEDfaqgiS}p zbj0m~lIvOF1>U?l>7Almm1Zaqe(wxh&(ckfX#p=C+FPev_tdkM8f{L}XH`pgJa|FC z=`7T#;Lnic--cD>rKiVKDUs) z#vH0u%Gd6WsUK#@9XRmvkHSC4H8EuhKVu%GYD zw3ErB+*j+bULCltc13AR;5R=xoWegrA^VLKxmj)NnMyU@HQBJfRr~&3KAjeVc+vJ; zbz1u9cPg|?egPLWdhgV3zoYG!?%QM}9KFo&!@c_-(di9dnoPB7$DQN~o2&eNF}``c z{GQyN7l~hZbWO8n8a}5EdIY2&&s+QGqb|iIK~MBr?r3S~p5Zj6SF0W~#e`b!-YvG( z@0a79<5{8Gmt<~USC#46ATJTkMQ2vpE+8{vmR}+^awCd+kxE@q{YOSbje&o_s=J2v zo!PI~xxCt_V!EBB@Q_;i2@ARn?6Y*MC&q8zzQ6jW=(MWW>E}`WBD9k@kSh5-hkDlA zMfcL_nw~e0VTy@m(R!(zs>{zm7}5Gixn4|s{R(#P%}UtE`3qQZRf zH5*-b^gC4zpQC=pgURakmppU}0|YRW#LguB!k3*)TA=}8B1 zBxMnq^QU(jxPIb->t2ajC%d?6R)edFf_hrCF01rRcqFp}+c|u$U-KKAJ?!M(aq5Gg ztC5*xWQRZ3+TIQHWnA=)8ap?CSHUGV`1#*=Q~4~jsor0UMyia{tcHt^q0^ex^)?fm zS*y05_1x`HGt+X~$HIChoRZ<;V$RzOryu?9t>F7|I+#LzxaoOZo34%XYjvjBaNP`# zl=APgJ)AfBT@}An`O7Jr-5sO%ntLYBTI!Kfs!~#!r%o#uqxC}k592^eX@AZ5wLRPS zQ{<$AS8F;-mPJMVv$ncoo373C$ zB(YA|C@iadbFPNGAGJ)61P-&yk3;>NJH{QqY;+YA5aDLoy8hnU;Ib!9lFUv{2aLFX zQ>*n@dFVW%GcBg;F1hlq`mnO6eJAy+vspKE1=ugENQlQu$8iOnveYmV`M^|e)KqG< z`K*+!B%a|N0p(*?Rs$%dl|4_N>gUS1plgbu(=TVQwFhr{xN4=lv|7|C@Ay-@M4c9Y z583^B*0=mdQWC<4hTbT?H?n$sv;S1~7Zvfv2M;8qLVvN8ANnX1dW6YS(t>B2xBC2D zN0CeWt}tJ6`J)wgx#Np}x@ofX%r?27nm_vZr&uE*tLkEzB%B*R?J2WA^^u2v$sme} z?dACw+5sOoe|T{u_uk0U1U9CFbbh!3N3F&)9xdSNc{L zx2KdwC{joBezB4_vh@l;)!y(pG%TDY_ppT}4Zp%!asPl=NBasamCE@3;`g`IYVYlY zHQig{J~zjhQXfZ&3>O#E3rl&QhVV>fXU_b=%j9cOPqu1_zi%-FPG%ocL`U zjef|t>pQ7s^n)sn8#6s*c<_L_XN&y!fYkQN=wrDZ;m&c={r-*?Th^ua$i|oqJ#~p= zdUgEO*j1+GVX5vhQ+zsLLVtHjLVsFOD4UkJOYNGgjB5ukitko;S+8?{hk<=%ejN9? z#p*f+J1GyE?iZ%h)B^sB^5Y)DyiA*4%9kW69JPM#{forD@R1K>E)r%j1S-wlzR;+d^iT2XVC>r$!Oz zY=lybl$U z>HJ(gtKxP}=hGWg*Yl8DK-@f3{cV8LlyYNc&0FSW<#mFjQFnlRlVtD zjHkuLH|E4~K*HJM#WAxyN3%jPp%k6JN-3qNuA+Ud$LsH~sd5LK!HdMMCN|-C^PZW7 zrI+8`?7mp4LHvT~()?9}7m%nU32Jx>T(9ssx;qbRXpj%mA>;Rr@8B}yOEg$EF9T%p$WBkS`qUD0wEd^Ml*-?Vy`Tpt1i1rsKdSBs`2~Ncx z@ZKSWFv!1R4W!?aP(I@!N!@uK^}-F6Rb_fMC*(GU>+$3W>*J1hhRV-|d_;curKU*{fV<3%rZC+u5M*~hnBscu8?Bn|cJ7{@8JTVh zt!bDtK|h&Fp``N7zm#8h&O+Vrm|}Ers){rz9E$tTv4#|#H$a8B;Yj;(Mt0*a&;Mid zI}}lt{`ciuZ?6bjt^gyMZ6Rv-z2AY%y&I3J7)Cn<2 zA51M;7^nCO2*VbAi5JVcT6sF=DQ9=C(likS>hmltEJvU(AR%wWB!C!NLDVwqV35iCAIm&5B$H(k8a@Hfb`MBidvA;8frhg!+JTeN)3T6xE*f(cC-6zT+Iq& zdo08+A`$T%ytp_aU=CtN%tzpAzgKK^MCW>sx~R&&=%z@m|L@SsPvs* z$g09*?ma0g0&n%JXNe|>hkRRD&3!)>mgaEoUjgLQR$T6e7yQXDI36F4yKlLs;(rwh z2{=?B-&(juRn2EDl}YA!bZx!NYB}b_(S33HdC{#O`a;&#rb4OIVoJUu;P`$48C{sG z31|a>kSF`9BljC!&{!Yty3W+#!emd;&8^0Xz3N85k95R?h6Ad|uR1|63r9pOlv55O zXXHflqJf-<8vey0ZnNkS<%)XtnuIo@88VgIBpzHNB354sA2Ej9pf|^Ce+v~<6=9zX zoH_fFak3$exAXOj43l3NZq4cnR~ESgR|ADdg79tDz~`OjVT zc%LDpsGp|b@c|1G=cZt}LIA3HComR{1!!<~U~)~4kVfQBcT_yL=2#Ff2nenYV12Om zX~%H`P8YZ*s6cAL!(qMdO`({wA`Ji>P@^>v4$y-c(Li99Aa@oLeE`#?4Q#A^*Sp`r zBR}y`9Ljq&$bYF@M=zR`14r9LecfAoMO7US_Y*DGpn23~tIqa#ihKCY3B)D~526WO zx!9wZLQanHI2p0-^zgZ)#jWw>4P?=ExW^i1^{osHGrrO9AGG1$<6$&;8PWa-d8}f* z5Ka0_fZ{WV|NofuG0CGtSjw)5W>XpkYq_;}&r;Rq!Xak3!6 z+}Cw=h9Ep56ARc*eJl$6$mtzsVzOu)W=7AKR+FGBgLdq=gytlLbwr}%f-0~N(|Ypz zHD)XX7`vE6=#MElWJy@%<1JZO0+|~q=*^?0eWC(K3)bi>A_^?DbD-)Wh}1DnN(k68T@-=4$kia%5yx(1gQnyRL9dJEexILtl1^XOV) zAIm~b*Qr!@rR8~7>cyO7yP5D`O*tjBTbsnLQbY$NXh(KAte(uHsQaqs4kxm zGrVBcO<+gpZbv3BjG`{ZXK&V^f7Txse{#%z@2*-3pOj#&Cx0AM<`k7~*u66F&Zt_~Cj!276oq`gdpPIiFdm zD>_V~i&aSiOzyK~RN+6czDTyy`I-U;H=d!FJA=QgdXQ{K_S7Un-cf8YQ1N{W>r8<0w7>5wQp=W|yVx&IRW!87ndp@-9txU=c{SjUR7=CRT#tewnwg!{7ss=P`< zO{rJ``b+p5I6EdbF9jsJwJWBr!w71f#f(v@URj)TfGnnta7o zBdg6L(%DhNGx~Mx>Q%YSN>w7lU4m;1SVqgNzUcUGMsub z-y`!Y$|4+}aF+2~sMK(K0V58*?yS(Xz3?)o#?zhZB`4!w%j93Y8E`fl$i+2}vLnm9 z4UJI!clVB;p>>RFh5gyN)S)HPm#YPwBA(n`^VXZW$f_>fWA!wof|JqYV(%^aUiHP# zB6|^h54e0trxoS9G2(^ep*zllzMVO|n4gcIy)q9e8RbsH)S^@})F|QKI26JArAXir zmQ_bG(4zf9H^$LWbFFca?|bLjE`G$;d90q{Yg%&Qer-mZtv4V*ut$V?&0T7Fh3lbO zTRerXf`rWz)mmrH4N-tufV6A+H3olm4ozvIEc~{{0RP7?CdSw+YUMSoMn0j>I0-C- zNbD%21!&81Bg~i?@RFNQ1IM&FDXVK0-B!nbR;OqlRdpxoQn)fgDmiKgJ6lf_jyH`4 zUzY*1M>JD}@_>^8JGRs5PdxSM z9xb+gfL=YlGu*d3m$MP4t=CLyk!X!+aD`kgr88Z`$t|ecN@xkMuZN9mS`535eXr82 zzbLb)$}_gREMw{B_Wa$a*~bC+2AYTYC&|9NB-;^?7SLF7WJGJI))ZqkK7N&!J|uCx z-4Ner#?75dgyKAhwX#5%bfKW9WAY!0ayC!tMZv?ojr)42FJDZmXE7j0wGtfD zrvkyqR}d7A4s1Sg91C8rxs9qGj-Ved$?xwhvix~|deibGgteWwxJ4B>`UmJpzi~#N z1w<4v8vraf@tNCQHdi)A^(V=3d|l>|CAA~X510SSeP`&wzNW9}nX_Mr?I4$m6@f1? z>fb`GENYj@TO?lqv(J9rakilX>)ualTO}05!|aA-LcLR@HH*O)W+Zr~xo5G{sXS=z z-J)MuP@|TdIlyC`mUzj*Z?)&z_I05-$3+FA^$wCkg_75P6l5*}3nbIeLbxBHYG&p&01BiSfl zv&f!zf9pC(`vi-!ApFTEl#!u%+)kb`ZVg7Wr)F?jIb^=Uk!nAcqw0s z<$6yni|Td4GjnoWRj#_&mz?VH*ucFcnQlOxu-0vHjBDGb)2pmpZ2a81YZcwwyYE*L zpDM6PVikVD4z)bd3;?w)8K+{we*LJ8M}7(TN4 ztJb2-H)?2bEB0OvZNChF&K+cTr9I`c#XkeT$G4qA}9> zOM9#o==QNj9EmWq^}t8zoZgWUsTBzaOVwwk2f?!o5u8$Rcq5_L!phDGWAZ{jcS`d} zy{_zRXdrocr-uG1sZ<()*j?u{28$S6KS8m(f?<=1^4phi`{N9F1#3UsBt>MEo9d#R z&0<uaOB&)mR1hAJ9Js=(;o#$)b4>6|70^n|s0Y!~=L>gsxpSv)8iht+Zm?!cvmxlI>oVw+r0fnW3cPWzK1`r#X8YsN0I z_9a)VGLgapl1RduTc45{KW%gR_CmKf8cK8_|mq4 zk`K>6U)64M&(t>Z*33ev2ll6~%Eh-eJ55%qq>e#PN1Q_{1u;)JYID8Jst%<(&?)5v z&s^9Vr*-j0*0|AS5oQD0n?qZ4f4|D087K4!&{X-=oFpAeS~#yrtpn6*n#>}kSy`m` zqa05zH{dxRlXx6Ir}NgF+MwwPIhxFPB5G2kcsG>ME5m?QM`6EJi}@GJ6m8EH{EgTH zQ)`loq_!Hv#-@MQ_tXm49&XX*n_X6t!f%RMgaLmSbc`(brv#p}r2sFp20YnAs0i^C zu}ZtE*3Uy|1xdgo%_CrV_&)KH4kEdnA5y`W1X36{d3Zq00u2X{yQKmj5jzqDHz5j( zc$^ShlRNLWE@H?4?*$KVe~=gznA)iM0z+s^=jQg!yj%8_gKb=Cu?O-}gUnK8t9Ksg zU%$tYF?UzyCCcQ_RV9?*ae(8WP_2Jr0_G0sLT{bEP17g|IoPd!E*sYt>bVhDTTWP8 z9V0^9L$K)AtVXd7h)CophXe(+3!q#C$yxxYngY_(O5n^vFq7bZ{^f_LfuLi+oSOm3 z?7}$&Nj8Or;mPZRl>-^Hhw96qm_$*rAuM}1-?0IhqZ906Nr(yI zV`_SO1RUYuP>c)zP#1*QW5JG#kc%YS71|aVI#50h)A9c8T<(~uPU!$cQPEecw{$b9 zvQp!ug&5kj@jfXjQOv~JsNi!i|MhwibK9jo`-PV(ihTC@qJ-fD^;==>z{mdvJEu>g z;SqDVXXOVf{b^5Bwy=5NsgEfh?8{I02FP zFiu8OFZz^Xc2ZBNTxVA=OrF=LiDlL zbKPj7+>{zTfCx!`XC?Cvx1b<74g%UixSwEFgwvxsINuPE4)AyLD!Tc;Jq#vTc5A#f zL&HRx85dmmoq?O71A8h%D8{L9_Il!)@{mzQ>;!MuQxo)Mrk<^4m&fn5H^~p>sP0Jf zVS<--1$U8L0etcZg4gg5#QPC}86?Kvj$ouj(jP%5KP7QGLAQgRApQ@j$;ly54I}>% z6iH}oNPtYmt{;Mc1|N%IKKu?~qIdid2m(lcND3%0AGtiQUcH&N296jhkJb3iw-7#{ z22e{;?^E9s-Tp~x0@p^e>)%$tzKFv-khb7sYFW=(DY~IpdSh|>b zD_)C2qjpf6y=6qn?EA^C64GF25*yc!%l8)rPu6s{0N?Pl`DOxwK?2y`JA_O>1+H^^ z9AHojYhQ-MMTZF32jM#6j(csD4N&`?s;5xqf8?5fVrGG)H)=1N^&{tO{0v9IyUvRL6RPJXZ9a9j| zEsCh=H9cL)wPRQ{7?pmNwSKwceoO}0UFjy0mtR+QFUdtbm+!rTXYQ!T7B%+8e!pY< zia^Wd?_LRCM>a&bOrzM9gw8}fM)EGk%Pv|RcrUJ1$a{Kq_?|rCJUyQ||2{wHk0UY^ z06XAvCZy({flXZsys_;5-?0H}6I0WI~rC>O7V(aT;3U_uS^Gpz#dOd)F3RudW)eoEnlKmE?~o z_qP`PkdHm49ayaMY*vZjk3?oHNURcZuTl3SWe5oF63QIzLhfLu#e*M-QG!Dk zLGR-rLi|L9IUO=xfv`XHFkvJYeDQ&%yja-+o0B>)SrIrVd=j>xsAT~t3DN0vn<%m3 zZlx%169UqUP9n6!szU-Fc-H!!t^O-t6|bOoR93C?wr+fwjuI)`wBVHrc* z&PW17ULS1sNNNq}CO|qSVivO@Kt7PRgU`-Y>lD;|3+LI7Ne7A@zUH!OTinRjp!Vmt z{W{A{-!@nF1SRpKqHI+`sDf@6e@j6QSdl|wj#=ee3Xqp*pfL7NoHMVR1q zU1*LZN8swR>``8x^`7OQJZI)6=Gtc;PFIzSAGHhr+;2N6Q08LgJZ8UN`{Io&i9$=F z;RpVovXyP_Row0w?uEgPR@pmEdv8ROaO$cx^yw_~FO2MeBQ;bUydQ4G1{(#0Kh^E+ zOACKpo%6WL(>>$u|KZx_eAs%v0q&$LSK8yK9=4!oV9R@L_!{B$AyK;{a2y`jBZ@O* zMnPAe!NmbrC^3?i11N&LJ_!9ZP|yTnHw)ADcrn96_CMf@Az@=AkJ7XeNW1;U62%^BNKQwJ_Nylv)*5d(_{b2{dwd+` zEvS}~T(m4Ml&SBMoEQ6s;2Ep7?spxb-YRh;VRg|c8U-}3PW@O1%c4&^qYauJ*Pi^c zarGlQk$d`dYyNJ%kH;9cE-XwOjH}nZUhq!n5`q>L2t4J^;}@cG`XN430&weR~J7_ z7+0JBzIr51@0i4Sqi6JGru0O7p!Td(Y<_c&gz}t|uv7F+lC?DjRNb5pnitzPmniU< zX?5)qHJQIb)iWhr->;Xtw8++7*L|#)m+4y++?d6>$O#4cS0lbeuze)Gy(qIK*;GB} zy7-s;_oEe(lgM(FEDc2*GP&7GMc>;qq3^Z}a@op+&M2rI9^ddtT>6qWh;x)^^M^ZgTXrMuc$r9I75tU%$U zK|`14xy30=M|xGgVr5i_kq~;_KVY7_UI^=yxHRXpST-@K43br^O@^rZkH=)tE8|mo4=KA zJ=~%(O8b0SS5o|M%_z;}YcG=CsySCKqhK_;^+`yEpo&@31#4Xt`LE`jdAaK9#ILT^}Y_$J!HjkLJx?r_(rErSVB*Et&Jx!kF*Z0Ut&ew37 zS(jN9uHFtU3W#VT*B<|Kou8P5^idlt+K3?&vNB@bYS{RwFu9DoG0v4v^1MqG zH|d$Uad6!Y+0z0eSL7qoKOB>j3#P|96n4B0<0SHI*8Kh`Bf~o^<>7K;)4O1^AD0JL ze2O@UHWeJK`Ia|Py$ctjALF_*?Xkl8j4;&x52K-H{bQHn&vMezFbEV5a@V~ul1zq2 zZ-7!E`O?6AVA|b<#}8jfuKgOmzWodyW{+U6KvF&P`*>=h3q5$OKkAbr{g5e-$i9|e(#(EVPPgDK{2|3?SieUm0=aphN9C#qWsjT5{#|72LX zv|9u@9&7g#dVf`3B~yra6ov1;)&Gue^&2HQ51yOf?r)AjvJS!HaWWtE>TMxT+8!g- zw^)nXz=)1XE1At0!3u|f5(!f3bD0{B!Ou@Forw(bcP%)7+B!+&VQT6Mu3X@ZZC?zk z?j5Rl5cQ41;r81H{<(|auh>yEMeXRy{u5C|U15G~;@+y=oE1|{Ehx-H8qg4W8^1K0 z!OWsVGeq!d$_loKbo}`@z3S~6qZij$f|nKJ)VxD-SD#5sPpFIjkb7EB&|xI6`00+> zjD$vDbjk4r-|mW3S)$8~uBhw<&Y6at$RNH`rtJ=F8~vT;7C#va?DPYriiqr6X4L*? zQRy{nLvI(90&(hvpJCPe&7~&|a-vn#Q25lUwG~p{J@ZNrRf{d2lW}su&bF^ z{JFbon)Q$`H+MnU?b17{ePNBoxXg%#{LT%9NJ3PG)0N68B|p%yO?`jT`o zV+5@39VLvmi)E>VVo}AxMAl)rf?_a(*ircYiaQX`fedZhs@Y$7K;bhLZ0Ft;lQe~(A6%s8TNGW}4x<*-hgQtHE* z$G%ZB+T3b1_=8@tVBJcG)p_NXM^Z9fj}y1K4r<_R>SFW?W0YH8ISU7>=iW^&lHbqD zV|M)K_8SKlh)e4D$;FJ9E~0s2Ckf(=tk7F;uIiGv7tUbzbvDxKEXaSKuhfsuj$Rpg zO{EhocqVQXCn=P>1` zv(~pIeWn^N94XS)Sd!}Q8=+3s43qK1#q0@a`$4q0aNp~oZsiHSc?0+Kk#m}5K2h<1 zaC7{WUmiCKm`9a3YX6Ez57Oz-QLEb-zoE40WVksPTnh7UY;~bvG)T7Tw`QJ#t4{tq zy~gxA=)R2|!Mj~J#Fg<$%~ zu@Ik0ZWG3du!|N)1&%kKib)NEW4Qfu*HgStnpxJ@HX4e`LbBCNhc3ZS^ZTcts}|!G zuP}LZjQ!$1jwj%kru36A$&iSyV~K zzFBz77k59*$`9Sl#$FD>+RVr&zx|Ye=oD7P%A_JG_`BwivWdszGV^1cb8-vrGTr7x z6dHe&UKKnb8oSt{CP4Yjn5?68%6HwTk-%X0=L8x00y3JZU}dSr0v%8*9sMqiUFni%FKci8rL1&=h$&2z%K93{v>5yWj=345yMsYr*Tv@6 zbyK@pTu;;I%p(c{SNzp#YihNt=(Jy$N3HC>im@u5d6Snh!w@v>OgVLZG&1{p`jkr8 z5$=U(Is9D~zT9Z)+hUk%p2s^``#1JH70~)hTIZM7bl9=#*1XRPEX1N341Oz2@gxq( zaP75fyGhwlGM3JYKhtx`8}l#uVik19J%5O=w#a zd(QEZ*UGmUprDb1G6sFQ_sid3=V^K@xbBtsrH=%@&{}KtK_PNWSHmrO8{Oe~C6Q7X z`JJX!F%?}+9%kRDx;;=$6I#L0s}w7TXRdqtp`nXisiKTc`xql-jG8@p*L(YmA=~sD zeo~tPKa;sP4gnv%?zQ-QoDWd-MajFTqyC2MlveS-#uzXU2s?eJ#qup`MT#5q#JnfH zTOvS>e3%={$$}~$UubLCdyXz~2S}`S7$_g)?jfi9SJvgGwnYn*Rqaqu zUBcc{CvzawN}klxPT^_x^0(rB{$<7Oo&#{x0h4$RsliCsl*GSrePJ1+JOs zowm9sy0m+(?~_Z&H0ufKTD&#%AuVb2d(G*+`uw6icQk33FHQ^^yY1G1^6t4aW1PTb z#CCzni85q&`J6f=I!fKWJu_sA{SuDEazbx^v3AUUO6Ll4MdO;;pAgOiZJ5EsUUH5E zOJTKnd6SacT&(BZy)npwJoig?^VGHzC#658(D ziIQh;4ly|${Pjwd`lEP>_oaIukL+?t%-&M2a^Yz_f-j#+otgAgfBJu>sf4%(hcgU zHoQVdEL>ObvHCy0zv(5=G%c*GZ;t)>d_5n`G@-+YlffIk^gCt=)h@Wta~# z&mxQt)WHD>Bnbq^W7X`|+`cu5=UzqR^v&$(qE+>zLCb5lE^EUJ@jZBrO%yzK zL0Df`gs=+O=C=IglZ~3k)gb z;8p|NP0(qJ!90q@C<`1wg#q#lFNAkP!L^3KkN_M6j#|;1lC~63cZ75z+?(Bn@lY|G z>5w{VHy9|L0t~ksPD=X-0S4^Fi#-);hLQ|=iYJDRgY>CE#7O5hQTInlK-Oog<`5#1C%`Q)o z&+=IFn`RiD*Rh^%nnBEk7DrVV`+h&2(C z#&w?}|DPdJ+gA`N#b7Ft01~wAObxmp@PA-?tcAk2`UjtAagaFxXe#W$aTZ4;rZ-z~ z@WaD_94`k#i;?*GsUuhcKyW)<#2lQQ&%Or+LR}nEP6`!4P)0nneA`2T{jX^<=U`W! zq;JXEtNdESh4}j&6ZTn42C)|k@2O=_J*Ts2^qOIiI#CsM$Fi^(@Sj$_vsM-^FtWBc zi%uYMsvACkort8>GTy%}V&)#mW~u{n#KkudVG$r_ZOnuraP1&|dni@U*^~e#3pkx+ zAPGNI1`%omvU(~3=WL*b^nT@)-HcgNlq2r7lycsT$x?@mBL36tg@+kboBkYQOu7r{KJXzST5cf5?kNQAAZUB~BVpg3@k7 zBs~bBoPy&Ln%axA-`$^ghg2{k9wS;R0+0laVF?feaDzl_U1_7FmR%ynT3OjSKI&0Z zj(v*#R6#nksa8+z6gCrWXXZp>LSAQYFL2eg*b`6cN@d}cgg?>HOH%WOeTc$nJevL` zDG)vXknMmUAsE1nA&3P~;1AwHgudIR_Js)CxP&+W=Fj=bV*7es`T55F1D+vU*Lmgt z<&z_2G0315(j)Maci`3u6Dxhg>WWnvWQQjEwx5MXD@N##jrNPtiKt^r%SuJ>#-IGp z^ikx$JsijKOn=izd{YqWx%IZw-nLp_jB}eu$eO=GWw^tv`Su^{mzCNbE$+B$CS_vwH9u+Vg5s_iq2nU=LeU<9s7a_g6FqQNlVXQ>#p0qXb*L1NLk7aqsHe)?T$1mB;`V zstao&W*;;QIT9|Is4-O&laDFq;I^Qq4DgJ7dS7mQ$i1ZhyQV16F*uBc*JU9)%;*R&@7fl9ToqtbN8HtV0w}`MA9@W~+8}F>3r5WLZz!atn zEYr1sF+q&cuml!q(t@`cDWn4$vIIhI`~Q6=q>(vdc?bwxWCZ^lI$}XmMrLJzJ&m55 zv%*0}@W^_M(4mo*Mg*e`I3A?!48Um~aD|+w4(`xEu}4StKU)25J|N&gZBLb(DHvBr z8|5)y3KecGH{7njT;=X+kr5yzUleq4^p)UpdN(#c&oN=(;hJ2uDpKf>XOwN2N$SYv zZ^gIVI37-8%2GGai}UzhZ}$#U6REfvOlFXfko>L+SoC+GmMdl#Sw&%~INb)=%ObpL zWcC6hNJQ^?0FHQ&!j^sq!rF+8EddVk2zusap{FU`|&62$sTK6np>L> zew9tQ7dPb7bo>@M-Sevlo@)9-;|V<4$E`2M5b3 zC&E21I2+%+c99@jxbKVcVm$a_TZfEm=)z&`u$FHv`dL(*0`+szWYkUNE}z`D=alw5 zKC-xgo7%T;5n44us4%pxn4#Qz}PZ5pH?$Q3)zv_?L` zxjH1CYPYJ5yZ%&TQodx$wq?Z8|FQLoTdA3ZMPtU%M7W`0d6S+)v~?XpZQbok=H7dP z&-u-wNU_tLVmF#8?=-(W$?@tjOfZYau?>GwZ*>79Kx!NO=&2h)@zlLamhTh0&DtoB zSu!Rcn~x->)ZUpmr`vxujzm29=rCGY=uYGA6ir(7>1gMtxxBo3|o@zEEIwot361KSV2R z#+Z{_Z1Lv^%O;WR3P(Ht*SN=pYb`?8-fB_0ZuuXySdqU{3msYF=8ESl#4Ip3I%Rzl zt3tUPv^|-&a8rD(gI-V=VMW_%8ba1`cn$t67VQyo2%E+gaJ zlgn0@%dWy}drB1IGINccrb`AC8Z; z%U-9NRIFN7Oi7irKHopOWItTL+OPF99@oqLq5EXS+GZ2sGPpEF!iTLukF!_k$d&dT zW_hvIksBAz{%hc|w(y5BEh*Vv(-~u`C;7Ne?i)kV!WEJQ$Qkb8R!_fQi784@QG|{F z4MBF&rX?N8M|5*Ix?fDFwY!-2Ry~E{h;!yWk5yv)cD0PJHlCDcT ztjNR>&*!rqi+%q@O|4K3$pK#;|@JG3E*-xwtI=^|3czDn!&*)0&L+oH;Q&t=fP zcM3CeH%XIjU<+il-tEs{4ROW@NTKWD%{KOF64 z=Hih1Q{%zS!InBU`#*=@_j#^-R)C+iw+(wk0D|lYbzUU_npoX+FVQSEB1^bx-z=hm zqNLPOy%N_IlIGZ-^%E_kN$g4wh!RPx9bzO+)iEQl^o6Taa0C6P{ZeN!q(9T>dU6FL zJ}aaC62+h;l_lA}fEGJoncqFEc=&cex2JHKUx+_Hy`met8!_8zgG#%;ljf~C`r6IO zykrQqXn&Ycx4_N(=$c_Cd!h4G-TRvxHBbLy7xv1c-ALgZ#NLaK4}Me@GWGk^d-}q| z*Mv@__vGH@Xs2ArWkF-jnWe=x{Yt(@mt#iFI{iO8G~W80Zqq-?Iq%eww;ZR|cMe+s zkCrOQNf{34RV(5uY`%E{Ta|%s|BnWOfpq>e5!1*g1<`e?we3N*Rp)LwW(cHrv*G`! z|E$KST&D7o7kmC$U7DNVU$^4r{04QQzTv(}CEDeKfz_FEQd=0G%FSMSShgZk$p42R zil)OXSm|R>Kp5v#-NJk_q$P4=GkYm_%6C_H%$+ z=JjH^kH$@M;rkeCy3&`|ZVp*1XMcPU-^w9X9LUQm_bJ|@mo4U1Ap;s4|7U(hhU-Cj zv56NQ*M{gKb+SA6Tx|8i{gOUSaZI&1CChq}hME13uq$tJ6bJ*0vx>Qc78_ZWr4uxO5 z5mi}|wtMjO^97c%50j@6lc#|zd|#5)Qw%Izsr~=qI>y}4kBPo}+5b?hx@7#tznT;Y zfyp(}DI0Xa@>{_bN!%n+ixJO33>`AIhwA454IG(mW9rvnoI>z6q6>x6R`A*Ygf5Kc&D#>fb?RgvP5Sw~o5cn96|QLE75S#EZRsA*(&aLp4=Mi)V= z_^%a8chsAH)8m$`aio6o`u?b6M>YOb3qF7NYmiepDUWT?p6r`Js>h`oGud2y>3_Nw z*BYi2rKuX;OJcC5js|&kr;#NaKN%wP@7Mj0d2QDS&OzW<5qsqC!r?O%t9ZNoA$Wudss=24`|lFzeb37YB`c9pvQPw9Qb$qHFz7Ci0 z-)^JA&G@`2XRzbm!rni>x9V}QDRy8nnQ()tvVl7PzTAZr9aQPk6){<0gCm4HFpNQZ zTNx}_wP4c-lKVedXK(iX|81T1@KE#nKX_;RvRd+#adr|E@GMd-o*FXVEhxvB`{iz3 z-i#i(N&DX7QFKH{#6yGEtmGSGadO-@T-oK6KN%{mX@!j#a^0`y^o}aA{kML`1p$d#IMDYL~IzA3kCWR;-2(l1}2Z)+d1k8Z{ zM@{+f7w~xA@%Ilos43kbRwaX_7}(D|U<<~nvFRm4Y;lnGRRc`j>fqCGuuCq%SqXp& zggD4ofV^|?SL4JDACLa`9Q~i|3C_2UtCF)Hr*r=HUT@v5S};WiM2O@nS8|^T5Aoc{ zEZUcysLT7@#-N-QU#8wT?%s9l%3F)dFkAl3t1a7eR8A}7e}>a}4s)D|Gx<*Gt5S=2 zpFlRCl4_C+-yx}Hn(mg0{%m|2ZrPny zAN;!g2>5crR2n27(9=w}QKSp^-t*Rr@rZ_Ia83ytt?c^W+#`|RbbOYN>#c1pJ}`Ol z#`JGjRgvm*>VZ)|X_P@BZzc;!tdn!W^Pl65&)9ykfsxx1QMa-id{H18pI@tEWOdEu z2RLVtBBTE;7XfeRQc33R*J2A|eLK+pUI=Alfp3AqFEepDKVGNT4REuFFp2ONK|Rpu z2s(4y`)(N2K5-TzR=WO#bBHJNOT28ZWQ;|CdJ=mAA_zeRTAR}>=@-SVhb1X7oAs)d zxh|=6z3z6*dDnYv30~iRXWwqfyLV&g!QOty0=~oc-RnG~JkO`lbrDbAsMWQ}2<2eqkYQ+LEBw)1Z(gE_LMGn+s9peYyapeulVVKuH8B{Uc~+B|(J7 z+rEp0h5>)~tAo+tR6l~o<{hx#qv7E1yIK40#t*KK-6ctHp;`lJJ-|V%mj5j%&;YQ_ zp9`k(D|R1tjuDHn<-Mh)CBU73xNU!($CH!i(gYV(QEVc>_4m&bH-PhN>qM;VyD zmn*>7y+6yyD4de#SsyM%;r{s&>-O!|ca4g4>g4SQXqGwG7W}?+{!L%Uvg_Oe?(Td4 zY-#dk)v2?_B(R=xE1!*&v!ilbF!Lp|+>HijUi)wX% zz0Qm10zhvsgmqM6RLJ!Ue=-8dg@J4<5(6cEFj<`Zx~iGLk(2y(2LHf3z&)v^AvB59p=^4q#nG zXfp6)$FkrVVu-Lrs@dV{HK?^w`+Xg&CxuHBqU>Jl#^qFG?b4YgYMrey)MWbpTlu|< zCIR_5i(^joZ#G_QRO-z0EE_=B?++RI1}!^IC9aLVw8`xGpNg&R*#QyectEVnDE>Qc zWK~;WG4=2oaq#-_C0VBZzvz*eYB}fUOM#%*tQq+E_lamdT4}y`5fb~@;D0A~kd;Q? z5_;+pt2W4jMDVs>fVzmlM*%%MGs?3NI?%HNT5JvUx5DQ{1o9LX3|_TJb1;+{GsY1j z#$R9xBfK1hz573`Vk!T_ElQl|#Kb-@we0{)*A`f=h{YMOlyQ*0|NZZY)5MEVz*N{E zjxkW|y|?CKz$MKI1ug%4#{a*4(Hdz7P)ZER2n3M}4F?G1-R4_Qj4!y=JT;!U5gQq9 zI!g-cD{7GlCcGRYa~OC$Ek2^>NJYYnt}w;9Zh7IlRbw_ehGmOpO#KpNZt4I(f9#N| za78rxXnC2eW9t~_)jHvP`vT9z`j62%WQ*)%WP@HQ&D$0Ra3zhJ6+o&;dg6whZRT<# zu9dh;Y%%P3NFNckG%$b|Hy**%MZ}h zNXZY(rx2t?Cm6U97vEyT^lc9%{dE=H?@vl*q`!MDC68+uDOK1%pP((Xz|KVX?J#qo zi{7m5G280Y+7OM+-?2!H7Bfv-bLp_T7Wkf4p9T)h}?%zmB@h95dxh1 zE+l+r0P7C9m(tJduDy0iSg27huWB+ALV&q|eyPrS=hW~G`k#6sq4X+?UqXTr_Rw3E zhGXS^Q$=7OX#`=9cG1)o_ZBG=`?xGTPs%Zo$mWCwSjM^CGbcX3q^#vGG4JC zJz&qmQN!N~q;YNFpur5(NPdXO#Wl_nad>dmNFpjbWx`mjSM&w_tuVUIF+GFVjTfJ; zuZ+#vae0?|nKds&d(8~KptbP*Sx&{K`H`liiOcHt`$qRe{v1iW{2-MP6+NoEtC$ul zsx)I|DeraIu846c*ko>A^(MsuYHlLjfr~(^rb)(G8t$(*|S|wX8Np#Wt?n;oyak|hucTgS8ArUXFVAF8$bWx=u z^3xRBCrv5ZkesF1Gw1^edhz9=VBw{9n#x)o9JkFGG1w(`JFKs{T!NS&vY{b$G=SE{ zht*S6TRXPj>nfC;L+}R~8s|gbrsww&T!3kJ!U-gI)S5jsLQMRh6OHnb^rZL|ilN6< zYkaHaB7})^oq3b|77xe9_{O^a%}HplyU+gUeQH?0oIgFb?f%C=#~JT1DQ{%Wl=-64 zjNzE9d&f%S^k{Xt4I|qY-$o!~NkG*tL zl${OhzlwlEl$=ND;sFX6s9qOj$y{lV{rO(Fm(UEIr||Y}|7k*ZRr{Oadv~G1V$-XL zi|bZp5bx$w`xycC?iVlf%-n-XqPgpD|9X*EHm1gnk!}u1PI(W^&zgvynoQ;DPFW6~ zNDhsSN4Ko~4aegm$wZ$(O+;>chF$*QBtNle@9It#h zGoc%Be|yfJ)TY6k?6-6*4f@i&dbBxqYLjJK)@vm9DFnNp{!XLA-Xr}FXL-Yybz%7u zmzo~&i(`UW%cu;A+INq;Z!2wnue-DFyFrtvy+w`P*Pgmt*sCjikeAC*aqfW3M()IU zN>NXny4VSx8>7G8 z{ea%0+~!H+Ot;X#C++-B7OoO*sK2-`FH&P%So5LiO14sR!s3t0053L`==XZph>E52 za!0n8nO@otHpQ}4Jai=I>h5g$-S{>q(H~S?KFa43n$fP7c?qMz9{!0*Q_`1AOUK+f zT4JtFw2m?;&pcGm3d8d_iy$YPtK-0E0E2W#Q}!oys7XM5AcpN)z4W*94_yB*zTP@2 zsx|Bz9tD(=?hqJKI+PR;7(nUnaEPJ1K~U*Nq@^STlx`#ykOt{)6p(I^koVr_dDgqW zwcfS9v;5N5iiI+?mN_4Um(i8-GZEjXb$^N|HCd%^UVZ{^y?~}+ccJ<)$C1-ID z&UhN%yIjK2A3o_Ad==;{ufeMoRH!_EX)F7Nx8tbT%8>cce!Os6oA43McR~hEWnIGW zUo;<4TVpR@ol6Hg-!nN0XU6==%+@o%QJ41nYoGACPB3kkzpi4n!4FL?v^tyiS7+l4 zT$urk z`a)3Wb?Fp%AoEI7_AiVH{d8@pmESER@#L#T9fLZ)@0MC5(YiVXY3Jzv8KUr=V`1W6 zG}`v&GoieoVZaR=yp6%s^yBP3!!)hFKlu6OzE&TesoO)Z5u)HLfCMvM6njihNKZ#! z4&ZSw_hD7mIH%7AKRic&B2_X)Rq~sgp+2)1z4GBWA{VIm66I9}DY2?iq4Z~on`GS2 zQew5Kr~lk#u)l1X8K|(GmnJwrRK}3KzyNsGl)1H5hskz@07j+wPi4j|G`t+0cNrI2 zwy8z|;;7dxd=V3~`6q_>z6aJ-z!Sl#&_=y5sWgwA@aS`?v64T5^rxe*{YG!n4(uV72uO_o2$l^;hp-JJarB(GLW?g4EAYhfxU%%JIyOB}f@ZX2 z0lHMqtb_Yl;A;29sH`sSI1AUQtph^M;YD9@m@2S<=X3$L@&Qzq2dICjZ*6a}Wqa~$ zIBCuN;&M=JNMR>duxOkU{rtq|TekAV!EtMEb&b==F3Fz2K~l2uK z^izGCH{~bb{Y(bjlX#oxJaTpN1+wq>_Ib|Uq`eAl$pYmR<}2+XPzWGkd>=r?ND$=< zp&fvvZ>)7_EzQ7e?@$xKr20PKKug+CpjS0WhU+U^I4|ngS?(;x7^qkFu=a7@=7XGq zL>4Q{Cv&1D?mIEqWS{saW>8zr&VK{oy{`ODUK*=>--x|Gx}v4t(dQuZq(qQF)f^I=}j) z6i0*FZ^#O8+WH5X3I)wGjeJ~BIR>3K*c${D#v0CGmsTGW6xWtVe{GG8$uZc@;q>dK zyQu8jyZatJI?a(58*D6hD~vHX4nA$TilJI*gNA0%N74;K1BVM$>A)n>*z`j1-RP0j z^Jh&DO(|bF-YaO*DEfOt^<%RQ_KA(q_ukJ(NrlO#{r3CT8&oce!{#kX{l&>Br@y1S zJ05uz-Jrt=;r$TkOkjG*Iu1-Mq_0GbD!?KohMp58^<5Nn}`xQnCj&eWpz4fO!ZQ~PDc4*Ppd_sL{KDjMc z@=5fxW=#TR5GHaGX=bGt(aWw>1eG*GdpdYE?V!da8m#E%7Y8fQW(_{=3XnTlUl#|; zRn}_BVEA3M{#)EZ30Yy)I98<|xLlPsh~}*qnjB+`f_*ux*(0x2Z6|fa1%^LID06LB zFm5_j6V!h9vn~3p;>R_?vRY!Bh|YtBY{!HucYu#H5F`VbgMzkcAk+dQ-`1pHya5~& zAF=N?IU-cAP&629g<3|NkR*@&Vl6&5NBlrq^+UYF!l~2u#RPd(5-joG924fhGTU_Y zN9#6g@rsj}xpaH+4gb{Bw+WPV@K3OIyOKnRrTugjBhr*X}b9RpI!N?P;^XSDZS|9o**(niQ^(XA%w3KRA1x>+}ljb@2 zpJ;sN@7DnT$z83V-=6p(Do31cgTb3xg*KyyAVa?W|7>w z-6vjRe$O(+pU)MuGr^-cvbs4*8_`#n&%H5j$ko{Ac6mh1DR zw#`*{YOXIzY6$bP%xVKkntCc6w*+oCRqfq$VUK@(0n z5T-YWf@Z;A^O8$YNiek9!qjpRSOAf4s*b^Rk}Riybv*C347 z7{|)JViebYK7jf~f?;`~5fJnUmAWRKX_wkR`)Y*rQMjS+S?d{aN9~(1+CP% zL*lKGTRZ1%&NwS|SPz&wbBB}f3hI$^+$+uL`$3jJX~6UObMs}cj+Ew!_pW-rJe;Ib z=S!_^ls2b-sYa~<6Z?X%NO=nyLP5B zAao;yT?B}q)U~vj#<+>-NjeX|59K@(P|BJt2?Ch9$%{DPb>a z@#Qy(U^p(J{aJmb3agYI^8rGd9nryEvg38sCyJa(HjKBck^j}*zCp2ccT}t-ua?x> zDMgpgJTwAt%xfRSwGfcCe~b4h1V(hWeiov;8ES=sRV_lfcc<7K2Q~hDxZ#qf|M_qv z!V3O7=4vo80A;vt+O(@Om%$zQ{30j?haqx-iE$16aUmyB7e8ulV76)&RWoQKotV^u z>h9^GwCCgzt;GK)peUS1h4}JBdKFLJ53{G?Gx|#J??LXxp2=q>?eKxVt9A#u2>RI? zw}kYhWA^aDzSIfJ>&^P@?aIrG9}2^w5xRtLIcHm~@4>_fx5(Q9_2e?M6ZH0Z7zkI2 zLLV!4B&Y&0Us)seMyA)pAflnCJo)Aud^v6?9h*LW{MfNk-*!{_*%(rE4>x%^>5klW=~T}#_S>y3`uzDjfHjA~E^mL|N&-Pc zicuLU$V^#3(+0b$U-xwC9X#t*idmmJEZWDJbJ-->Th=+~Bk1vL!@kBe)WzZ4gb3=h8nfkRNqxV5$QGiBwN zUB2V>!Hz%-oC@a^X{f`?($W$_#sE*1!lh|w7zI#rGeG%4P-z7K+n_mPw^7e_r0(`0 zO!6g&wVC2q2&#gSMfdw=e>CHj~xD9b{Fs^}53_xv-^`Vchyzh4DjL;qkBw|xgR6Oh?R$Y$dD0?QF*~J+5 zG_d=jA1*j5(VP+40O7=h%4}IwGB&^Lf;^qvl9GWlqkwsFIHS_erO&bg_ zMB|2LY~e->&Cevq_Z2(iSd)c5S!1xbn@_}K%8^A$@)XnHBWQDu3gXadnG${9pzrrJ5Gh37B4M}7Z9T5sXnxsPbaYb z!V>UA`kDhNRRrKXc z-@|G!Y0!YS-$ErH9}#wT_A1Ny8gbB1o|u@pY`Anu7H~DUw0f{&&II#)=b)MR(&S8gRmFi~wpC2v&pp;D8RUw~?Gc=9cWD*$x9ldH;#d;QEa~UT7SF{ZQ zPyd*(4u?>PaYhpT413eg1RUgv#FzTIx*PoiU0rgZ3GZXa8Bn!;tgIY4qJXh+aShIx z7#Mt5n3|pr2hNC`hKA|7=;w277e9CoekG``g6Ca(2)Rl4c3Bf1=#lQ-y9K%YF`qRH z&A{NgIaV0gV>34j#P{x7LxYbR<l7>UQDtv{d|jpJO}dic8d;SNwK`p-6!h{ofF|Cg7ya88gXw_ghio07j-2At zr%$ouq2W1S4zwo9gjaO4^=a)2QlfKm_|5$?vj%fYQNKyVI7e4hEU&x9d?WZgiTXV$ z;;JK6$w)ilsaTr+&E*Nx0>#}8KW#sW)qBV23U>T_Rxjq&hOV!#)9gEI zY7%!vQzme&)j2FbXOmS_!~rF@F{7gz&7i2*`)tMv>fVFNcbABV-t%hf0H3_= z9KIYlec#{Qf^jProMEfmrnjOGy_fHl7=6`_DdZWv%W%yVb;=#G8n1tWiVGPmZkn6)89TmB$sAq@Ac~<utFgjTlNM1{nI8f_p9X=rIWw@D32znU(Oi9tggO9k59w~-n*KXV zX#j5-AK+0yV*%Fb>1lkq+0Mlv-DB%_iK&F6gh@_t_Bk>Psax3LC9iyVc5947Gjnr@svKOg=?-U5 zsBDY)>K+hW7(Zh{JjE_*%NUXu|IYmaF=?J3OY0!+8AvC_?qGWo`d_0prD= zZY-U@yOHIG7ZVdxR8oRaS0{u_NQO==qyQH15ky#kj3JSY6M*nTa7s~8(ZM{AVlwA< z@Yo7$+H1tAt*wQ@-K2*QtozL{}*?8ey2MR42IUXx451EH6IiepHXIZEo- z9AC-9X2(MMx5J9D+#}j;HBx5+s$EsOt=|2S5>zp%{-9^&$+yeWMcF^A+}Hnd-l}$~ zVF7OqQ9E#3$}d3CPu)*po*>{MVw|8vxz_!Kw%Cnu!Lc@@Mtjb2?#Xu8&qJ~J*x-I( zV&MZ3LQ1K;cZgY(zJVh*3_O-N3kN{*QM^iF_3I_)jt51hr9ZTFjYAStM6u{z9o$Lg zF^vU+C98hW4JTbH%tvcLz62F-9Dx4`$(Y(5ymn_vq2q;}gTn=ki+5N1A4ff*hwtuHQMz0QkyshPtep_Jk!T9a!s@W^h z6AoqO`GTDXd3OPN;upPjDfsjW1N^DMK^w#UMsj?6Ju^P*{faRk#BQeN*iT2Y<*M2J z;JIEm$0u2u>s%uTIvirMr}jf0UR!!#0LXOoXs(QQ$zBjFUK{L-n*KGOyzn)$tZ2P9 zZh)6~<}$+7xbYXNhZoyVj3N8`?l0*z7r5Yur1R}hu9rEe^SmDx+5b#_v52LQ+4K-h z!O#CBCzItzM#ZblN#ZNVDSmniI8Zksi|i?T~9CDW!QTJx+lJWnF&Lg<#4eqg-fZbIq)KTq7dd08$5UE1gl5yxs5qUL@=E*~SSOmnQm*zv zp-%5bP&04_Yuek5S9YWc!a&P`3X<6OqSDzXVcIv;yrWfN0DsmD zLa^m!J#nX_c9QxxeJqp0DXOZF&-o{oqxQpdD_Sb<*%*YOCil8?WZv9F*?Xar2q=lV zjwuVRyuRJPjRC}|75S4ti!EXSXVuv&fM`UAnI87=^J+75adDNgkCbOBzYkLyp(Ve= z)1lHN)app5<0!)*YZ7BnI`vXJEc<@RL}e@kkqP^gIlAOguVdT!vJC1HlX^cN=KTql z>S3H}J!G{xqCP!I;A*q-a%GvMV6_X6b*Hu2lTYiRSy)U;CIP7)sH=YX>Oku0^+AXC z>4fe`u`UlJor6+is?&ILyG|lZjf|oT3RqSYVnw&un!yb`8V%nfBquCpSAY6(fMxcp z$Rrlwo!v9YQWhSm%qq+qI0$ht zjusR-R1wDX3r0nyD5WxJF-d*}b{pvNbA8b*DFMzk&OM)m&Euv`6YmI^(NxsT1;I7$;m)6}l;^#Ok*wR%c+Nr!#`Mg2) zUbU-~@$;r<>ecTe2ly_XBa}pn-&zYji>XTuf%V|Y9$JMN@X z*%4gS)wJJg*QoPjs`c#24v4(G8zpLX=^%EwnRhrWgO8=Fp`$a&(2xFt#f9{fI-DrW zhHUopT}Rr&Ty)o19kaSRa2O175=zowpR^DNc@*-Gj;69JC4zJrrRi)bxASzta^}BEcq;SLWRm!upSXZpV z#%g)RUJD?8d{X+(`9Yk~V&A!S+nxxh(Y@hNGX!|9Kl~PN9SHK_pps(RBOZB-i5CMA znzNO{nEvI$;?dD7nVvc6D#*`pWbvhMiL_#A-*nDA+L(2Najr$v3yaI!^g*`Ap2^yU ze@T_Q)=JH^cDRElLWHQ@yBsbBOYapf;;~-sRuFfh<}%DeO1H2W_9jVnJP|ZvO3&5i zUHiFae#l_s;JAROBB($K!q5&o=>GAVZO0OfUNJ~t=Y82QI{9ni&cBrz-{spZoEI1{ z$DxRcWA*Ofa#`qjuknxoZT*lPbr$@4vOZF=PMVJU{ddl%(x$Ib>G}=9#`aaMO6#U; z($rnIVwpkd61Dxr)}-A#f=1F7ukY2HBC4ISe8a?!W~|ZT zwu3HMcwG@ANk=4MScE&J7HJ`J_4geM(yC>T94?-sli_2o;K9x`aw*)@C^P>|)Y%M{ zynYT53Q6FZise)6jm*2Kty*Fioas{;IX(>3%-$k)-)^&pi^Sb=Biv%94$&6NO}IR{ zq7YLu>jM%ohjU$R?GTHICnO!6A$~~${m{5gl82P(kaf^V zCeJDZ8DR$8<168NPXWQ0z-c{hw`Swp)S2JENCj~Q34ZLRe79eT;RSVdFPUw{BTZ1r z^j}=ND6O82JqE?z7WFobz3+fH?^elbpdzr7>)}*P%L~G)H}&`9Cd|k^89u8-nTOYq z-y6-vxNew>p%DA_D0y-#P>Nm#;ruH>Exhpovp%9!h#g#ilQ_?4D8Q~nM z%g5nFj=eIeY5#lj7+x_b%^scgvQQ24M$nuhWQ<8R?`0iPyXTZ*T>7|Mm%pQUiBu@P zo=?GUa*SXXo|tz%@h+{SQ%bsl@*O9OR=_i4|bU+IPhjU)t?Jv9m zih%znfwMU$p@pTz#aOTm@bGp#zZQ;Gk-j@xZmr@PDJURc@b4Dc_S+-M>3+t}g@L%I zK0Nw$`q$qv9_h8_b;{#@JCiX^XCJ-~5j+0=`{du!P=fvXgQ4p--Ey9Pdy6+cOI;3f zNc)O5=BH#C%Iydmkk9>ZNnGATjdh8~hK?$3WIh@GMUV3KiIAbzG*Qtp>$(dn<4~J8^ zu^vKhb4%7y4xL(t>EyNHX|}bg-ikbW`i&Z<#&hazL7Wuc0!?Bi(v%dZ*yo%tK50NV z=}6f#6#iV(C0GajGdyQ)pgBoRUq8Ys%jcfy-#*>;s+i7HreI}sQudte&AoeT>0a?d zhgHLpUJJ9kev9v?h&_k}krT<9b0{PRs@uTQvO>BhA%@m2`KI0e5Vwhw5S1pfGh0VA zl;)tr*C*$y5JJb5h^#DwiO`X z`UZu9MsYV{E?rL6A8bh8Qi6R6r$cb{PLgA!XP_RlSj(!AgsPl(uDuket3+l0j>W`_ zu4sbGqc?8sg8H=k1>CIaC>H)w{udN;f*dKI`-kkf*#ieJ=LYf7;=kK4uLCGD20baF z{fo)SG%||E9Bv*ad4;>lbeIN?^WmP7rztDI{XY#FjG)-e?CW2wBNUd;Hs>-GJ{*hs~i{fZw1n^M<4nlzhc zZ(R$-;r>>E>~J0u*+91>e!=EK_^paBeTulVdOU_c_Ed)dxq3RFxhP_ z&6D`cOBN@0~^e;(oa1nHJ4+AM)(ID(4W2i3J zWI)Jj+MXCNZ$kzG2#I-1DHpr^L`zzB-#h{M#t4*FA$Knn^-km{!k*oStlQQ z*}Tu%C-!QSz&zBv4?o}_D5LF(atBZu9)O{Axo*xes^^OlXPdE#o$TvBil!PY2Wjtw z%}I|oF=mLj;2kma_lR6aS;D(&sbuc+cYipIvfd00pH5nNP***M)zs^+gCz3Z*?AyM z67>(e?&wSbJBQ#co)tW5b#*nPP0V8}*gQ_03_vyCfl!MwUi&LL#RVcabP*{ce41y! zA7yHsLLpTGS0Ua-Xe3AYhPAYI2^B95h}omElb%%{-J`zc37kthD;Zi~H<{*c3en8| zFvFrqN>yH+$vSP5{vhHEFG26v?kGI;3OK4o7TZ`M&ykLlo&7=&%|= z?6c(LltR5>SB;4t-w!Uyzz(NSQ=x;L zUp97jX@J~7Da7C~ldwI8so{15KlEx``bNz}rOwaSh31xPr{8Tojf#*w0k36YXAhN{ z8ngtEf8;Jiz-;-wbO}W!@$!ssPl$Ls*QFi>4ho^5xsvDTBN0B{-{%dpg zg|2Yn37a!HQ%`j1B5;o*%w(F~Lk}s;ebxfZh0$M1+6=L2#nkCDyw^~6D%bA`);C5u zP&rihopJ<*PZ{MqR@?5wMvp|zt1jDrw_?ZVtOLo6mHpUsYf*}5(DSzGU9as2WD%rw>F(>SygFSkJ*oV3^u^}K%gK9Dr>|R$ z5d{6b5d<7tTU!+%`~mh1tmZB^r&DXirZ?vv z>gLuhz%28Luj%c-Te!_?MsNi+!&c(k?_8cXzvibmbug*tgzUPl!va=6&Iro*=brOW zM(yeQ7aAHEykqB<6W!hON%e^>XmXdLi{R_v`VcyvBLlF7Uc{5vcnp1n=X8XQPdh0y z)-@=%UEx)nMDS`-*{7ZGOlwjUa-vncd&bhb;z%@Vx?FOo^jy>8EuO$NHnLvoARypb zL@@k9s{gJ0s z{7MK6m(U)%$SN^KIfB~fv^p#3Ca?LzXU)#HyB-BIvNdBPIn;M1*Vuhyb;_SKW16+y z*pi;TBqv)z%8E+2BOd#ID6ol-SQ$1l@$m4tn5=IN0qBzXw>Nj7nW+Nk1v2SlTF1gzziT#=+r7G^K!=hDIQWA2I7od<69RRw`*=h#nswr%zH~NK(it zD7Xh4c7u^GutByov9>ruLb6sewVg-`DM7w_Gi&b9=l#g4QlqgZ7{szU|dNBr>= zG=R|}zXxJKU! z_$8p{AQp>?iVEke4~+XRG@zPW=2 zgB9zPwnM;VVU{m8uzqwx#{e`gdhdPRU^-6}MF_ri{Fx1x!~k*eekIOYzv60P;8~We5{GwcQBD zil6C0t`lGjxCev&B`GP%8xX&|pgHpTX8(2fuigYGn-_XRV33zVDN~db5DS3u!H4kw z`B%q-fPD}Gn>&y~EO?ObHSJ44ZZC|xZ?C14KB5Un3`NtoJgmCp+=_6Qo45GTN6+88 z6rOYs=haaLsUz4%S@OQtF72)onQ&)m8+)FLU?Jn}$u4i_eqc6brlL^knj)-C&G~-S z+h~$&(-lR?Ybcit+0MEj-s5iMW!Bk>5mT>H4B9Q2ULixtHNmC)g(FS9{~ z1;j^!A!X5v?(=htKDJC1G#Ie3-G_moeQGLdYCf>l*{1=ggO;{759=sJ*I~O78VoW&fpq8qh9W(pfO)DQjjE zc+$6hzapG2*`6#mN}*(28k?SZvejsduC%}qcQ_AJ771R;a_Of`J$vE*|8sodbeR4!qO9MQ(ocy#5X( zGzZH;_y)-lV)3u2p>`c0c3f3`eW@Ad-*tedJVql!6m2=s*Uy#^!B$ySSXRbOU6ZBo ziPw6V-mod}nf7GYOhM z0dMMdCL|>EKbK{6TRy)4S4`U?KXmVpj9V`q*Mz@h|1! zws>6>(u3U&6_v79ayicZxLvu-LS6ljJcZv^yj)KV=HLb2&B06gHsjmZ=2;fi{`qL2 zf;>QFpdv}v8zj>;fShrMZ7RTWgUxlbNGdw`^Xn4`gB1qr6CbchX*NLz5qN>rIAomP zR0EEPi^o*Zb9_R4SdBMl1A_Y-b5aWM0%=$-v%Xu55B0c1L;MHDJfo< z**$7{df^iOm%m;G29`GrAlr)G_P9+=)N1^d+7qHp?XmX~@M=luH+jsh>#6trT{#iL z+;w0z2xtHT91=_BEQI<)%*`3WIpYFq+F|lW zSKz2l6|llf<~ELmUKJ>jg6?RbCAk9w3=gz_mo@E)HeVn01AjOgck6{2WJ8106R`g; z_4mYX@+EKzLv2goX_t}tLIfxvY5aC7A?*w3gg5||T5G`b*9|(9s_xc-eH+|(kRcsn zJRuDV=v)VvPJtQ=7Fa0Xb-u4acTuaPQ}2X_(Z<=?|5QE0j2A>m!x5cdqYp48r$1f4 z|4Rn%3cPTJWz!Rk(8C}PC#P{E$+Lz_){gAkYb&UI20Ea`GGyd1P2C2cT&&=~PMxrW z2=iwxWa2pskLbYj0`?797v1V^!55+X&T76C>?If# zW=ag6d4u-?61;#PyS^j%>2gmy4P>|n)3&QwQSp~A2jG(FFf3$KvG55!e*5tVcl(h2 zGPmyur4B`qJ>Slcy#~9w3L1;7vZRs_-1(jQs2tMXZ_5)M8?yG1(_4v+iaN3LxbTO@ z#cr-!s_IRd?TpR1zU9(-?oT&&AFmS$Ud?%D9Nxb9lm5OQS?K$S1UG4qXno1H}X>g5Wh z`$lBAd?AG%q10B_z53O0WfN0Yp4@29-7WIcDW}bl^cy(GV9&QLMV3Zoi?%m!bZ)X} zQc{sbs%)XhsYOl!QhpIZ0lO)xo#MY_C=t2_Zb!ogmMP8xZwDRQGUaD4D!-_rw@KPI z2fw3eY1i@J9uL)R{zc&_s*+DD8TFaqy)ziuWBbbU5DqvT?tvGKn^soVi^w#6+Iiow z!M@GMTlL4YjaXI$FX%QrnZ=q8Fq_=%QJx|b`(zxI+o;@JYPN7J zK3QXCS!sqp+vD;J0i!)vR)ygeBv=9jhntbuPXu-lnS_O&h$E^dphQwGmn7Pmt>7s9 z$b1 zDChbTs})61^-BW*=5r>xua6raS3k!Vjz4jN-=4!Mb~V~XX1K-1!YlXC^NqzW{>r2L zgDpO8J%V}+r$_i9j8Svt$Urm~dg`5i%A6YC%Q(HQH`rBMH!aFK_bwE%c ze)X4n@>kJx^>7g`8Eaj46Q`>g-78l*l z*|?@pc&d+}bi1}Fs?QcW$;7zak&~g?ZB%okw+ z-U1+ap|etiOIIsFa3!ZyiT}TNjFd%YU$#){y=U=SWX;hl#o4u4wNN zw~&upkV+IY`|LueWO{^ z-40Q3Pw-MWIw6qa&>7}kBIDyEt#i-r$v@;~z$uJ9A(l-4yrfbxg3-bkN$Qr?;rK>it@DMmv~y&|?h`*L1AWnUw}ueA9lkeMovz+>gt8XnP6-!Sy-! z94oNJc#{v|&N0MGI~9t$R$k5eU6@Vt-{EtZ40UR_@(4A!O5M2tXXPJV0;?_hJuC%u z!zAr>(GXIFWv!vDyTU$fE#aOVZ&BKdgA!|kh0%nL8p$(A)@E7p@w7TwmR_H)d#IZ- zr+)5WnYN!4sCWiV-M|oMF<6?_6n7;z(QCHQ2u2rz&Nr!<$QnY{Ys{4j85QYFr45oX zcHd@FIPLzA0M__NaM2dbHl;aFk2`zKV=8qbwfm<}EvC&kM7$Kx3UAxOg@o~gc^RZ+ z_-Ghhh;&{Mbs}?ZUD3WZ5u9-Z-WcT#vyNd9-X%QQK@>MPbd}uG5e^ZyaPCuC{wc&CJR;>%AQcNavTgs?_FPT6{f(LMTl6RDoZ#Kn#E)0pVWE$_ri$ki z87zGh&m6ux`X((zA7-|yH14*0k0Y*NB49*HzhgO5T)b_|E8}yCJ{qw7p6OtrxaZnnPnk~m`FMh`W9HLO2$=c zhf;)(eU2I7N~#~ir&Qyf3x{b_>PH1^_D6+_7V`%rmywZv&&?f+;?fZew-`8hFQ^ii z^wF!GTRgp2?-#Y;dsQ`Dj%V|o+No!KM%p~w=$i+1( zkfhU9{fU6a=#@BGkI`Fh&1^!RC^KOOjW~M-&b5?6Tn0{R0Y6#u6CYzvaizQ$7I5|A&stR8 zMIS}2kvPIvNs}$wu+PP%1K*hGF<2~Fw-d$v1p&WVA-- zRftN39+GyG;B?KaT+@mMOyskF`Olv@&Pqy~1qXU*6UiT`6Lde2Sd;GDUL{mtW=$!r z%%BUT`WO&gVcH(8es0z_Q*Of%=hjJcea%=cAb0uOEM{*@ZBm-bcWy{nv8%DXQNhO&orr3SG-_ExTvZJ5hfC+o)^RR-G(PcCa0vy ziolCfIwB1$yUJMlzdO~=A{spW#rd;vAX;oY`HtFx>PYLT5lFpZu6;8OY8JsFk6-+Il>p1dkDd8zPIdb*@;j*d>zeGO z-Q2Ey9y7{^X4Mx+Sx5Nn23^`I;d`mWCbS3v7qU)u`Z=+Z9)S|HK1?&7HYE#V`f_r4 z6!%NX{zvHyzAF5P&$?2afzdp%y4212KaWLShIaIP!(U{ztCzFAIKV?A=|q7h`VUJR zKEpRf(e$1{xNqUdLL3%ch4%KQ=;f8=DmdmnB%M-at{Y^96$I6;CInb%YCVu} zqjSdwvHDztWumupYX;75+VeSjOImL!cB(Gl*lGsfr#Om{U!U{21rCys-ycbSf2SaN zB0zxuW_Nre_csD-Rky4%JL9smRM}-HFqaK10APWUVo#C=zm%090HJ`LUvvSeO12|| z;20na2lh)dAQTX>G%z&e0~s_xZ~f8gXI3hR5(D`qe;Rio^P+iIv=oT8-~+1adGECt zVGD};fGwBS)+UXNjC3AXmq&uldbsA-y_8NF5rRjEM)BGb=lL1JoO`vBZBptWV=Z^jYwdoU3^5{kI!^ zgrE!=8MI_B!%*N102wKFo;-O{*FBIfgb%IAAV(WYbOW0(^7`TskUXY!N)8TO&^idg zkRbG<1Mv5JK1UWc_4PRQEg%@=)xO_ShrU&22&gA}30Vh#T*3vY$SnJ7YHD7B?*hQ$ zZh)CMFZrJ%K|Y6G#ml#yCK^$9xq3Au%?tpT4y+cAj&j)&{!b?u45vR6$PpCi#mpbG zg|q)LSQC}VpXM?g&@&>a-(Yoj2-DeOdov5$@BTwp(@eQf`>ew*tBaWAEeNQe$V@QEm%w*B!s}Dn>#6aii-&FW;u2- z1m?__X=Bl#j0pCmzDRYL@b5%T@b*^NPOy)e1ItM$fZl+_l%c7#qJltMTYJX*e*^#5 z6CZ(>4%SgfQxEWuO-G8?;J^Nh{s)A#y*T*I`V6=*D9rkQ0Ytw)WWOWAG{Qv!9*#?4 zl8~b3ZUqV}AU972wEm=hA=2nznfELi#E7qasaO;^{b!9#hyfQh*D_8W%yveEjkJ0_ zZo1syTgwa(?f1ukKsePl1yIC2T#8}j6@Z(Er>CubaAAqb$?Nt!K>fdGXK#RCA+WjexE2mB?E5d)>(#m+P^5+h1t^=v}<>BnKuvN zk3)AgqAsz`sH;1s;4oHVYI>L3FD@P!FGkjT`;jq-j7wF`$K=C(jkLoZQoJN~D4pa4~M zs9OOyB{A_Ou+Y?HgP$?4s*323I~Az)^gRQA=@cLptz?ViLAcXLz;gn%`iukk2NXhs1t)P#vtag&hU{Fxs!64Fb{(Q~MmiSK{0rf-BuaOg*g zxUIhgxp+_xQGrTkp2GvPLvWr|3J zB_L+V6@tkcN>nj|WmsTV-x(WM)3Aj@NQ#KCi3A-rHY2X-hf~ajLpaEIOrq_|zOtnM zMFOf0uvSQwG@wC&K84%Xl~8Jc{oXP1n9#O%bnF7~UnPJrPxfwPrN8>^eZ6no=>8pG zSaIO8S{@Mi*$FBNUCsPuXa4~fBUWs`nHU@&7wbZ8{|T&?ZuY#YuYf`7|An?9KwC!N zHq(!nSu3#KU-I^j|KM>sOJS}A_-5J|NWEN{U)Mo(KL(#*jwXXZyrPSRgph-;Ur+B| zk|xQGF#F};h-KJ&&C(Ux<2aTlEO?CUC#2dP--U}w_K=a?;c3*H+QHGG zACJf@r+l@)?T^k#U|ork7XD6saUK5ek!&~`5~W??3)=`veILONr|4<3BM(mzhVc}K zXTHT*ZGao1cRykZeg{)qvynB5cUoM*{kzT_i`}+Srm^(-pBxLDk#P{OM&{pep$A$7 z-6LY0ikOBIYqfDjc5;-=(xG{&@imU1ns+3Dm1Mp#&UfjUFE+Z{GR)H{I2w**WvO8 zoqkVAR3}~J3Wbc+!0-1#orA(^e?)^tJl77yT|%fwtXM1DrG>*uF+whl>*$kZ^%jl& z#o&R{^4!R3y6}iA$9IUlA>wEP{3713+`Zuz)oPzjFJOD&+uLh`Hy;KorMQXK>_{be z7>G@-I(Ogq@HDGAuV z2uP+?kRTwE8YBry5D)|*Y@u`|J0;g2k zkJ#67Jmk@z6G*J+9&r$DlTMUbR3-H|nK)5-ah)TOR5dAH#@>$YE4u19v>t!f&`#LI z%{)F+z=zb-Ynjw4bM?LktBPa0L$y^^t|}wp3her?vuYpM6^JFzE!sWRSED)p@pXm8 zv}=aZ4aRJNcl;pk7__ldJtSV9N##?SnV`tGnHAt?$S8To#3@B$BvH;L;?SmisA@#L zkW(tLLbXhc>laP4r9P9KWkxfS_88jhwIn`Le1pSL7M1>EE$mxM8+Th-M>82Tgz-&N z?MbS*iRJI-_@o%l<3sZ;9eU`)+s(qklB&ZTisSg+kQ~C?UX+p$MILw0PI@fD0H5p~ znnqPkmW0{9`Ceb!bS{yRcCXf69iPjQ?0ngJ;>r#&KYdFUtBIItv3g@cg}O~bL3h{j zv5_g6-WT!5lPdf(&4hC&Jb)CNPT^hr249u&n)v@rx14d2y(M z5SO9YYGd+CUR#jBeCe>0PLaf^hrv6ad`>&nublK(ET@)Dn!V9^)b`lvcO~TAJ$$X2 zlALN(d$o4^NlwxgBzPEvVSS^M1a3=d26_~cPCm%iYuv1Aek=eZl*K{3$JNgCw07rM zwl=%;SbaeIru1Gu6`$XJ?dKCiN+Na28RmD5og#~0`=}YQk^1x23YdHzTXokK)k%7i z8cCYO?U!(>5Y#tAdoCHT*ZPFKwj*!nAC(x&8oBsbUYm+2(6^`E#Fiei=9O!T#21r`*}`ZMK&k6o-5- zq#f4STyrBWWyWg{xVtaU@@mr1HB(dHmhcfKT|P~9V97d0l{dhg_J(eBXe{X+yC*vn zGRZ?^_Xs38wCR}l2A=ZM&;tCRPfjb0=-IdK)HAVA%sq9TLorwg4<_0P{md3-wZ=8C z6Nv<8Z!?xYOldH)RrFn=seQT5X7}_`=GQ6t$t9nhAvY~-uI$i+=T4QB62Ca>>qTOk z0|F8Bnt4wRG`|wcX((S*%W&2pqHDeM%EGhUWrmdirz~qCUOs9}q7>p6CEe~s{zS<2 zi{OB#?1_g1^|kZfZ{_$)q_k=Dt}VFvUGJPDFr<|1=i7LuRy~gk`t&HwMMWs*o|pFf z7aoSGF@AQ{lW#l(ohmnM9&I-r*NAmk3wCPp1kbcxDCO0K5U?EDn$S2u5}qlvsCo8` z2@-Trxxo+Woq{0CJ-+AYAz(kMg9!=B1rk1UmTo{Q%-45y6^4L5Br%a@b#9mz#^s>d zM3+0p{AMy4r5(w^vljx6_Pfs$?_?j)S?9M>cK+pl5$hT%XjE#PKFtK6&iKHsb%!_a z2L|jQmPW(JYy#$w0V{_cV(#Ms0Rh$eR#wbGtGVo-^Hp{VofYQi=TkvW19~i4q_aZL zKq}GSmPV080mMaQ2sy|$7`!S+Ss3Cmjl;hp3_~t+lF1fe$m+()pnjg zV*)Adty87N2TRgaNoH-?+TVM$sLKm_OO4r>8O3p@wrFa)^sAF6vNjSxjl% zCS*8!g&MM!p2EIcTOH6CjznrW(AH>ypyAT(13Myg>0^58b!R~=%%S{RLQv{^Oy%Bwy4docP-&EnNWt(|xEO z04uu{>=hsF5_3)LE8hz#>u1i0pF1_C5W$#T)qjo$OnMpR%^^EXVz*%1F zafQxhqMJDir=CzsM_ws=JEJLQUi$fuT8y=&<;61||51>H2aNL7p{G#%rC=K-2ha*8 z4&NPe;GpAE*<;5X;su3;HDC+7o1T8Tt{KXNutmo_KHFA3P;xfC@-giDU?J_SUQ7SD zO@uxUY?2iYQfFKNSc|H9VWT(6I${h@OGZ zUmE2Ak6%>ix{P0We{7bBe(h?tmRhe;Xc1MIg^bRE$I1G(l13+wUYnZ5?jx){>Yu5v z`}y2V?E!mPM*JN{F+stX04sM_K}=`|2j1RqM`2>c+FUt8C&_14(>;b6cxtd^LxNv9 zIx;d+c4@j}PBQm+tU7EUmpj0hN|r9`>BAc#EG%5^x8jJ5su2UV;Ga^rMYQJxoM>BPw}lhHNR%)>gpP~!OdZfyY(Paiz){z zpxOGUc=fDL`G<;4(GKJ22hr@@LjG^YB94XyW+uvrDF(J@GzsWeGjDYkM`twjli5m_ zmXUFa%mmTJzjr~#D^#;ac2dwO0r~k5A{M~Vy_pM%jLO%rP+}qdq%))r)nGKI0!fm9 zoP!if=op2A45KP^r^zAZYy<+1h&OIaAwUCSYyhsevqA7+TxX=q#fvY1MBNPryod-Q zr1S;3E9N>0E#D_7L~B9+06how0|4Q#1h1dGmS6<51|;mA8?IbZ*;`TZU3n`DM297I z?3Yw~uOTNR>;ST7Tc)|2acc3hVd)d zv?smmhK0McHIChIYcBr5)A)gsdHBBCFZEt^SH;M)&lcP6DlyAH;rF}q?144A>|ctd zb5gGjI)bEb5GYhSfcTdU&?AJv*HA`6 zDddfWIkz246CZp=-F@Mdt%UGq7Ceb4QbF)L!2BteJpV3~;s3o5c}KjxkA3ON%2N6Q zr}GP_<%J+QHB2`^$}?aVl)DW}0d?v1yoi?Zaq>6OX|QrG#|%vDkbyOom?tD5+1XzMMMWE4c-yn`iYoPKy-q7{AZZ^ z@UE@%pU@d1_Kpp!55@1FYYeK{-JHE_=eW8gk8C2CPaw7HiW=-`@BCe&24uq+r(+&e zB(IL)4x$ay%HtU!+-ZBEP*Oy;ucUjrTslUoy^1ZWiuEnOROvpvec&IxZ|QQ*#;gua zTX^YKMvC!4*+;_;#3saV;#Q`gMtmhPCvOCW_r|-c4M{r+v?sk@^QN4KowxU|L+gL1 zZsSbPwmX<4uzrK8CCxudB?lj3Fu}+W&UtuXYP!ZtI84hluZLToMn5F^J$VOd!fDg` zXTv)qGir)MiT+86;}*K}`DIah8Ph9kxg0Y5arRApRadyf#-|P?C&=XhmZG&)@Il{? z-~Av{j6W&+bSFP1h`6RYk|$|noO3yh!{dW)pmE0!;WpL|&JOF=UwSNB=NP9}QYBhr zWwBFqE@7G>Qo}qt+BbZ6(%uh7sMXzd`WhCTqsN^59w)Znv??uWW1+J1_Qm7-GC0*a zuMxjcdkyW+5IZc9S5qpZTB{*nRbvyE9wZc53FJ6NhLGTM&#(MyQgGwF7TXPh*c&QlU5X1k=#lP6OT zv`gvA(>0T*daH@powKx4{2J*(CtUhXw@KrTFNF{>hj@X!n(#Xbck7yhqdw1Aq)BK% zdqh0>MfAiJ;Tnd4zGZV+E%AM1(YRdU>iNqWWA$yit5ZoAnsIu|hoJI8{N}`i=P8yC z*UkOcju6>&nLa#de=@9GFHmpn)|4y5z!ovVYN6&UHJBvAXX())RA|<2MiKkKvb( z@XyPKr=2tCL=SZ06B{*W?nj zrIpeuI2X{gN;5mUVyZnfzsW0@!x7WJFZ4z15Ps9TiG0n=rP-s=TqXS2KvF`$h;wo4 zTAfaix@0j2jyT;|m&$4G^?Q0A8}~I=3u~ne+>37`1!EtJM)<7e2+N6$84LUa>p1+y z=w9-~fmlSZd%}<~K9|jW^6uNkyKIJE;tvMagY7Q;r?T;MtyU9f;o#_7zoj6x3DQxbmWiL5Bw8BYjLK6L%c!@iDt^G|! zYkZ_-fBO9*TUs^l6O50pxkvf)I2RYJXHt+lj&p?BS(2E&e)=eyBUx0;ocfB%@aIA9 zZ;lzSYdnOkA90v0wI{JB`qn322`t8sUR{&8?(@f9VM)DBd^qicow?045hq@HjVPp` z-lRn8%b*p@K&pf*zw-@Yj~iI$9Z#){k|>J{nf47aB#G>Bks^xgYSW%?57`zQJ#aTy zmn|mlRhVu2P*C4rwEdNum&EV%q^9yZ&boojCc)3+7gk1R`E$W3synALqBq+ZG`F-b z1!(SlGJQ#8pO=K~7IgJq-I+N^zois6sYYZH`;cQx0l%QD9Cs*@y<56iphEGgl+7FM z9X;8C_0Yw4&#R7gltJ<5oPB9QZ?H{N#mC7JCn;mw;)BC`6%di46?Ew7*Rx7@h`^*Cd z(jJtwrJAgi=?`jpYFZiC-<4y3PUgF%T3UHqcC6w1j+sy2t>N@oFVgvc20ebc{S3&{ z$Q_BMqe1>Q-~DcHr*V$~<y7$&5S)O@K5n)FPsXw& zsZq@l*L*Tp_nXSvP>AgT~(Ee&VNN6A#a65njqDN$(hZMbhuCO!tCc;J**- zIDhWKc@J0D=J=ph?(Nllm1FKs5CoyAIcW9-6qN`eRTK7T_~i(-8HxNckbm5S?mr{? zD3E4_B61d(k}Ck%o4((mk5QYA>K~TOT%#=I-dPKSx^UeDN-cV&Mb*_o9dFKw$bv1I zI37PmeD+A{lD|@ud_0&#=os=73~K|}9Pi~e?lb1;xpx3lLS#KU*)rjJ;t^>s{ zAspO?fd^`khCqJFO3o}(+${MY9A-=VQ<9SrP^|_mW(kJ*sE~yU1T~*-kYOR2eQ`Fsh64-=9KSaPH4)s&197DwAFLS=@COzO*z0fn#X>hhfPM%NgB-eloE*%l2J(@)69?@>E11HMY-+8xM9p+wcnzPF)$4LFu< z;MrJu#T|bhCX5d~_kNULZ5Da&a~NkI8B-*kc}0DRzu8YJC*$FCPe+Rk&E$?iW&+%E znF`$|?^8=GQuccNi*$&pGxW$#zl<@G}_MF#cGVGmfFtET2Y4oa1|pq@s=z+f_qo_UHY*p>{@@m5h ztM#SVyfv_sDa@&?y*I^u?dIHW-21s#G5Wh;g7NBQ_&0f469C0+u9l-PnUv zP42@4kD6r0K?1=BjCYfu0KSnUu1U0j-BT*czES@ErQn0Q8Kt?=6j9e$wH^OTmt|I( zQMx>}1l73z>vUNiKtq)d=nhu|ronKd5%x0y295SXNwXrDjE5?nD3NXh#tb;UVFi}; z5K!wd2yuw)w`kg322Ak!3ZClU1vki7lLvL9Un(~5OMD%l`iH*mc8%@6&*M*W8XgS z@lScOm^n{D;HKFCZ|@p>E|KHbb**%*ulYKb7*b#&7K?hFhGa1#j;`f;UAlAX4Exlj zerRgueJIEl;Iq}(ClWW<5IyQgLqi7|aZ=nnEOpq=WBAL)YF|z0k~r>TeB#rUZ_di? zzrOyb1&8reLXBVKTFbFytl@;<_ihpnWqUJE`}cvzJJE0JWH~hC;*_+({=bud`X0>; zb82U#6+a6_mH35GHo8cag){+@t&t6_aAoduRMTtt(ILWyui`z*P@d3a@sH5ukVwX| zn3Ww9yHCsXRWvTHpk2qh1dh?@H-69WvtCLuc62$G6KR)9px4k&6X{SXl!J9CpFB)D z>2+QpOd7ZK1D_~Y`rsbBE)iWbDQ!dzu`AOswwACCAvk~mCE9b%U{MfD&xsxoCr++>LP;Zv-~V0#SD&B<)3OikUfl6ca< z!*sgJvWfZ-g7OQQP+zF6&^(jMNsK$ZX#L?dh2so$73PHAM}OY$yFb;92lekX5dV0# zuh6OBxF@xFHX~m$fvBSy{_>%80YW=7PC8xMR{!lUz6N$#1P0a%3~Dy6=9^)YX)WM_ zVWe6Up2;5lIq4Uheif_ne!pZiJ6BQbod^TvdzB())B!g4;exqi{a09em@T{g?^qQt`7C&EN<;T^OzUE+mcZ-MFKf+$UTe2>PGDD&cvbJSHdc{1G zcKTU&j$c~64YRhf_U4_?%4b^p;Mj_&fZ1>kx-XE-`n=HSW5kdofKbyamPMyhg?QBXxdk*Oi zqc=Mh4FO#XWyTjM?KBf6L zG9FXU*GXpaceppZF19&o~_&e>#<6WKQv@u-3;yF5$aq!u3+QxZM%%m; zfE_E+(DMGo241)gm$&SFaN=@(^IUt)Dha2Fs$?;h+T%;fg`?s@gb5-6og)?o8)1Sh zITV@QquD~MM@G3X?P!+b811=82F1TF#JB`b{k)duluAI-T4qN;pHg^c=tjTXnc@8J z7nG@+XktvnMp^kwInR6K3Qh8Y>7dYX=i3GC#8T~sZDV|M{dFp^Bk119DB#hMAau`~ zdv4~3h2+&7J5%F(GnS`6fThiQvDZTP+d0{(o3dDskAdoN2lJA@{5I3Z#BY>My5Gde zG6(y8CAN=IlAC10(wtL&3XGb>1CwthNN8BlQX1%OOslTTvFi|(UKTB}B!tZAM-wC7 z;-Z#iVDa}~k94R8HSg@k&tAQoKn~nM+7#cun))MM44&nBH?SHsVK}0Gf=gpt(uJ=Y z#DoI#<-X|97|$?kxsgnM;h)UQ>oqt-(C;y&wwmQKQ!pbTKYcAxmB0CP_^@Lt&$K^b zROf8Y#81uXfD^YtZkh}153moz4>YrfYOj{gL)`v<0un(@9VD6uu5CAn(nn>WnHxO$ z<{a4TNJ&NJw;-rOtP+I*`m67Moubx;UEBP*tpatm7mf?RYdSraVZ0Qwz>tegRvMVN zR*g|wxA7L zC@JSa?+Ye&Q0=ZiZM20(K_2QBBU)_@bir^C3FPGD>_?n?<(*YiMIhZ{u3wRl)n@Y} zK>ab8RU3&oYVj(&SQ+<`uoN4AL90Pv%7h^KFQeS02ahumtPcSY0p;|eqO&V__cA%V zG7D7q8zS%F8C(MU@DjKsngcE$-p?D)M`U%u%`(=OU{PH6O3gocXXI`d0nWgTc~&U) z85SiG4^9d~yFk8n9w`f;Wdgi2{rKU3gImm1{{gpfh(FyJq(s4{m};5_ty=&^B(I%8 zSX^X<*Z_P1-Y~PXeMGpl?gpfsG>yOBdRq6hT3|!O+FC@l82E?%v>n?h==uAjXr4;m zrnEeJvnEbbA(bC1f960@DKu-H0wDPU42aU;C?Mp4`F>?c`TPsaQ5l&tYzHtP^_Lqx z0W1!HBRjmgGCOdnwY8PC!?NG?ILIo*o`2=~T|I}MWh`9Cry6MpjD*@jC{qTMfOgFf ztcGL;rb*`|-wGdVikTae8BJ>izLJATAbL`@OwMU?#ZmuuK|_2|a3mVV1LEwlN%h63 zUI5x6vANUe{L_zdpfmRtQ1}zNU%du>VhW70v2nL;)<0!L$GhIjevE+(0_lgVMWo$F zjsi7%5?}@lC9*$^$@#;;sij|!<8;|4xOGH3P+1B;iRIeW9a*E;3Si9NorQh|G6R4V z{F`?=iLP+zB76cISQ$nJWPKOUyN%UQ*Ir%tQRWFW7gohaCV-7$SeAC7yCYFsUsxy@ zpbrf{==F7vjb%)-LjR=+2F$q4_pZPwf%71d-hhR<|C0_oMirRo9`$Rd&%YQV zetvaL)TAXB5AlW) zJ_3D1#g*@xfN_9;A^S06joX*dL=CW;yh&z;E+aVa7em>%F(6bxY;QCq=gL=O)Ybtm z9@^}T&z?Pm0qIZ8T*Vu&aqq#;C(dos03Rk2Rwo-8t6YPdtXTUoRDJ->{(*cl1T+!Q zX~bX})~ibI!`$K1FVjEg#w&M>WWMHAv}?g%4S{X8T)c70^z43d#!zdc9-dj|V?==y>g=4y2(3~dR${7&v5 z>KP*PHmaX>Dg9(YZD7&MqwY^XhtV3oKnns=wn_Augg@iD><3@&4cd4~!ZUp5!%~+K zD-({Bn!VjE-1ox#33!DT7@`*gH7hc0_P{6e<^L!~X-jcS$2A=*kzL|x-R9NRY4cXR zwXNQE)o`u+0|1rGaFV^>F5Zg_8&Z>;djWN(-;m#sgKV!nm|>nBARk$v!#d2CZYD`? zOqEWZhwn_GGm^s3`f~jW&04UsZj)`5FkxyVA4Noe1n9|2_vjc_hAY#@Gx(cTv%|$~ z_k|uW8E>1~(xX7$GDGCaBSOt|e9xGQmWIuv(G$nqmo~$(2 z$ZKz;#$ao*k7Igo%gh-@mFPJ)`jiqdKQ7Y5uOZ>U^k@#DsTBwpu@eA2S=1^>6^Tv$L~j zA8)7=!~0WzA9m07AR_+Uy?Z3%O0OW@RqmcpIVi88{P;FWIr_b^WyI}l9_Pfg<>L?atL-! zSR^A)NIjnKRDd}XPc}FG=i&T$->{Ooa1qIqs$hD9!y8oUIisZ&UJYI|cPM$2-_Hc8NEHa&+(9riEcNZm8DUY;ezCemb$2*AMgWWQaP7yqRk})WkQXZ* za-6;21tsD|P>~D(BJByF(VWrpt`6SYbz@quy>>5f{q#IIQUo#>VZop#mP z_k~H-pj9yFJ39aP>4#p-MJQIkPCi}lUqz%E0L-$Z1`1pq06u*X2)p61RPbhB))NSR zL^BOt0lWtyy~bp{hflhcw?wS+N=gic#l;6Sc42atf;RlkEq6rJbGy5tLj}O4D1&>}_nV46Q{}Q$$Hgoom#Epb4CO$11V|pV33%MB4EG&i zj3PkSGdEt#V5GE0_geyI{Ye2p}C-m+ZY*ah(O~(5Wo?cuwcoj1hR2}x>6gSd_49@ zxY*g}*)XLL%yqm$;8VpSD_{&)cFknV8UnWX0t zz(0K;y2^GRDpNau*7u` z7r8iP;3Awmawp>y46R^QS3`Q^KK1Gr{N6ht&;H)q5D<7C!rx1V9l5ZPyFgwsqQ!9b zf&0i4-2fP#QUw687P09bgo_isqvyN_1j;Aq`lx^m&bgX=>#Q=I<(2C|>2d*`Y#-cl z1>-P$;0(-1eFDZt*Sl@Xl(c~|BnIe?ii4HIfl{F-_HlB@;jl>ef$;>6rk2zOR^@i# zL@~sUzrKux<*kqcribP-DB;T;#Cx2JhJf`T;~x?*UmAZk|L^ZUXia=L;5 zW%Q7jd?_kH>Tb`E4I40bF9LAG_qF5MunTo7i!f^H6J)2Yu$D|X29tmnR1zj&fRGjd zc$b>U#6Q7o(^ksh4Gl!lN4?akd+?sAc+tfbFo0oB$l#88-6$zAkR6|TRs!Scie+z5$O zfBYUAhXc<=7y!&Ch|1gGLd5Q^HSRK0dwyhljDuT?W*_?IbP;I~g+rE4E>Z&+F>PEK z@^bhd+AL~-@rKz0rnO1;>;G*%5NH{|G_saOM*9clI|5YsgH<#Q0{3*yg{^we8{@#24Kimw- adz7KKEygcn^?qXDKV2Bg+f_( z^vJW@-r?dE z8<`!uc1TkNEU#X*b=V^zVf|lTu;YsT1qm@(epOtA-u8&D1BJq5OukmUR*JhwSwW#3 zJ*a%f>G9wbM>n>T`7)*ZE`NOXuNB^T(bvLqh2ZN6o2Q#Do?=%WRo7Bp6cjBydv~({ zU9DE0C+%j{K+z+j$`4=D)v~VK$hy+|{p=#kRO8PUm&~(a3L`%T3>Hk`R|G%z)Eq7nJNQ`$(48KiV&bCJvI`VJ+oti35zx;zSKJ!xj+usd| zkF@6EVm#JrXlP9Qu343xo$XtHVTNk@9b@W!G~T(ryD zr%#{KF)|*UpBl28_^lc57IR}ser|HWuQ~m4QBlz<{9Oc9V%IMA^B=FPMu=&3{QBkh z_pj}iEnAEx`|GuxxlMIGT;0~y-Oa+o6KvmGAt)uq((XR}#H{JY^5Sma^}K;mQCu@~ zbI(jl0-eUnMTEy~no?;40s`pPuRpYZKZVa@#+a&`dNA}?Tdr%=K3CbUt}bR~X3x)` zk6ayYGiTZxB*3AOa(yV!TdHw+b z%G1L?6Dy9Xs}~I^+zK>;~AuF=s^om4aWwG0f_!>40srepRx?&$xK#H6I8 zKxTHjI=T0^c50BSc@f=Iz zG0PpLw>P~V5~fq(H+W}5>D=SHZj>FPG8?sdl=?xg44b9KL( z+FFAfi`UL&+n1<)J1S*S#g(9!zIG&MeEmaN>%fsu%X|`_7Nl){e(>3L`jyVu`A;6a ziTas`bac2PB@EZ&sUOH(cxK&_apdSxW!#gv^Vvi_pNWa9J1;jds;a7{7B2LCdGz{R zw)EWeNJt?2_O7X+7M(PUb=Vi%&O+LprMZE~oVr)Xi}sG>+|qo0$haXv_w$!8C1w0K zg7L1#SVyP+H*r*FjcA2{4C|I>E|dK;9k-ZHzBwiQ;^oWE`H@eVmx>Z}(32Bgb`Q2kIbJ*Q?^vaT(B{o6 zFJ8PDg>YzofAJPVoP;mMw&yd8+tTbWr{U~he@i!A$!}@d)RJLc^tT8!ZQMN<6#Lo~O-uAoEIlsXvR*$ux`OQC}>06x|R!Rrxpxc7u&lGcz-mm-Z?% zZ!|ji;AL#AXGw8!^304=`4E=HgwnXX-Obc8Hzg${;qs4nkt0}O3rb^Sim9%q=3T*S zt$FS(q4vdCt4Ax0K01zEKQj9=VAF0J$+V`bL&02vM`93hG7pXoet&a1a6U%CIqbo) zty9AvN7mN*G4X$0SXgMpX*E4MUwvb#C?_|!$%lcHdJ)S&-Mrar@=x92 z?@adLZ7lfs_y%*Q+fG;AfApwQVc)){v}(oeM?Sesiml2waQP#w-dy`qotu*3@au$f zn`68C{S`)sL-@231`xefEiI3Pg@tu%mlmfDBk$k85Han;X<$TYED7RduQWUML1THo zeOa1`iRpSr{)!U!3tu0XQ<97Pm>6pJUj3cFa^*@L3yW96x0hSuUc8W`4C1X%Q zdKfDzDh^gkd@`dn4mPFHwhRr`{i%ynAC@R7^kKlwT>i16K8Hrx(yw((g=BPeG}lf` z<~uy{UK>PC=vXh~I?TMhx4%Bwt6$3@uIG)+uvt=)Sy@^6_35}f`6_XK&z@}#=G(VX z=EB$FM_2L!oX7hL%%pWQWJ;55J5@;ZAkWY-FcisDE8P0DG^c*@1j3btlhe}2^C?)?N8=%%W1Z-jnEaZo4&khhmT($2 zUbS+Q`w@tmWYSd};D6`NAtNJ!4~`>u5I&s^7ef4}T*kByDZ5BsY7$4Yqf=EDB3KFAL$ zDk?M=Ez+9Cx*9XD@Si$;TFRzX4h2W7LFUGi8@@3aY)lE9RZvjq=G4OhmNn0O zy7H73CpK&r5@O-!mpC%gkhlpaUR+LNVrk0R*_mt4RZ#<{PTHLpYY$3?>~pW+D!LHk z?%Q7<-#uE!f7V)KcC2@W=kQ||?}AXS9o>w)d)QDiY`1TqoQP4peZX(M@wZszzY`NQ zlmx?1e5R$r$|yT1Z{Da9-4SOE?&i9`KIq}0xOzR0KLWPd`+xIzC6m&vG8$syN%T!3w4N_QqW*?RoCIX4x(oSKQn7`Sa&|WPiyE zUwN>nYmoiQ>NJ#YhlVmI=x46qu=QB}Tdnw=hDOI8NYfGoptv}38ugv##=__tgpN&b z{5D@HUoWqf$0hXToyWFNVm%h;ye5ACwnVMg$=E(*nCIqvP*s(_cGFHv0Z|eWa*o4~ zh0i}mZU3mvdD2BxOiV>tdBr=!Pj`@Ex==UDiUT&#IvaS*nr{&iF-7J6Tvc^YPj91v z`=l00wlD7+r1rERIy_A@n_jAOB5~5JUj0lz(`IHUvz^9#xFwV6+CW1IDzxUu>()*# zF3(QAREyeqF)aUhA#y+VqM#yTdy4b8h1rD*-8j=+if(cUJW011TlF@BT$iV65n^0Q z9ttO(?D2X0m}d|dOtbi+f?L+iv^gK&EkUJ{t=n-f%d_VB;agI^oCZ$H>Fpjfook$& zou2|ee3+j=;>xn^TnS(jf)Y(oje&uI(@dvdihZw|vMxd_jFaPBbJC}!x6Rt}Z65R1 zNZFfE;qO@S>CfFW{q^+;$Fg0Xpr;0whtwic7Ew%A^SMuGzQ0tj7FuQ|{S+l$mRCrb zSztH4S4wg5K@Juc!K`|Dj|HdIo{LNKBa!bp4c+eg`1&@VH?*>%uF9t*<8F@h$=h~N zR^|6qJrFwb>FOWW@$qp}>^Adze%8$O)iFxdlw_dBG;FN;+|vVoT$Bu(pL^8xp6t1% zgKVPf;gJ_hU_c5sx^hTMzjaHNJHlbd5&qpakL#_iO1TE=<2f0am^fdQl$NF{-&(C3 zLAFXcPa&R@zZF3kMxtorfeti67sUb>FodS13^6vut>=Raoj z$nx{^2hEp6Y(L9Ik#*=h7Vm~+Wlm|VR$8X&-r?9Ca98NC-dtf>nVLsaQ=W|`^!+!kuai5l!HYGV(QWn`| zs)$J``OWD#X<&3&qkM{THjvUF@{}3MRODRznKy;Fq(%ML__Il=fTIOhT0c5o(apS# zqpClqdiZb}&d>HKPSarb<;Cf$qM}>5V-?%OTI%QS%`dN6vnCA~DTOQm`RBn07ov?R zjbXy-ROhnWo63;I8i9etMTNF)3s{kCU)OokAzbeIAlLZRltp=Yd2q^_?f|4?sYUmS zn#?PPeSiLx?=Z}xWFWo*O^chN%*GQLXxR9bE-?nYr9vVnVNd=k* zh?fUTRm#d=zTYgXKb4ueL;lsV2VVE?vAIqEbo`f&-9}a8{a41gPjQp%kTcU2)R^rc zg3t_H&$}n~LUpv4j~%v*;)%_1oBI>z)DC*MSCc>bWdt ziJZSH`CJF37TT8=`AhHc2B9!^A+Fx{JOMINoatC~EJl$R$f-0^T>m5z$@?qqd}Vid z(|RhAkE)~h-F@=p_O8nfMo6bRS+;^xBkdsoI!D^*8?)?$JZ5`2-DZ35zdoD9x5sff zf$MlL@aFHjI3~UKmNx;;o4?1MQ|j&OGZ|<|{QdLe?mbt3dm=VghA52Dkz}CW#v*ix zK-E=i))ylv|Kiq+3cP3=lZ{tVT3Suku3am6_4mn%p%zZwz1PoFT~?1-ng3~dDF`*= z`RTY5uXR$MnMLCe3keI;x=s(59OifTHZ8mJ6d)qY;ny84SI42|m-BM;URfdW^>Upq z!>!pxNP^U$<_xQ*LP|3Gc5NNfGRdnSIbsBqQ)MO%bo(%6s3mjYZHWHGol_#q0ZK=}6rNw!z#OLTsO@o^*a4!L_ z)BYhlxhntEsZ%t6fQ?NljgtdEXx+D(b93A;=S^#V77L^l855KA=cR8}Qq~8N;}44| zM|M~Q`}-T=q@AT^8h-LfaGM>|{v$6h&q#Ts;4E#LFte}=s8(rtHbkp!cKnwNWe}Au z>{?^0r_J}*npKsRLFQ&=lBI#1p|i8IDahOfVpmX_5;_&Nhdc`JQ-Y?iS zt64sF_7X}mD&N`A5tOD2lt#cgF4N#AitZ1Am*dA3BqT!W6LiDVty>zxWbL{R_6-e* zC-0XjZDdkf5SWko6&@2)jV4&<*6MXzGWqwp-1G7COWS(vttU0B=SA_xKz|9{ja1-r2#iZtuP{G!R(1zWM@;_g)~&>DfD5?qsO+rSd&OWoeL2>c-^AMzKbe7`hLE8;>6x>Sv#iY!faUjxoC4lAc_D@O#w*g4> zR^As96{X8{ozAG(YxbFWVPU-bb45iVaQ2!~F0?PNE(P2p*s?M00#jj8QB8{JVdcSZ z{{D1P$F>f(e=@Aq+h*Wq9?~m;#)~59JZ7dlV2KQ3wWFQ4>7%0rx`ti3D3Y-{ky%M7 z59>Q_CM7%BS-80Dv1!e^nUy71Vn2ZLh%cdi`_6}cjVK!$0U_~l*JZUGEBD!T(Vz=C znd@?`t1O)KiYZGi-B{8PQt<|k1ssIQa9O8?~wR- z#rfA5pOOcDj-SiT&8Z`Yz%iP*+@u8D2#m;npvD~Pt3p} zVnm~S07Ww6O1n*Z>@j+~n1u~^B z!KP&z<;L{^#w+)y#2+*^7PP32zK#8VhQLk@XQ9y0(8MAj3Hlxz8?){IzU@&zilo@o zVACyZ!`1%p^aR6tn%oEWes?b03xTDRTO5=+_!Q~c>GxAV+l3js@(&NOOtG;7Mg0zI zg0F@%PqT}t?77xYlh$OFPO&QqWS4w!?00?qeUt2cu2bISW~q9T>7YhtW@n!wlSIBp zRb^FL_`7Py`447CKVBQ)SepK{{1jQ-_g!9luIp~pF6zoh1Nbysh5}2+yK#KiU4#kqK8*eW?~fy@*L&#a&RsWy*+}`C9Y2Z|~;FA~WgEr+$1Y=wmc>bo@gU=jZ@~Q;#xgfNVi1apYu0 z6(ep70ZGN(jnrfK(1)Y(+79OE#Xu{Hyabxpgt-_2y7|}{DvhU!a$T(QDmP#`qhMns zWNl|(CjRxHp8(6&f*QbsmQ_8FVPR$6e389Q4IxD~tc=f<5df+X4_@=(+T~y_sg(zO z84Eg#{Ayku--N9e5EoxJKRt4Iac)w|Wx~>Ry>5P2Nl;C;!-cDZjV!m;Fdf2Hje`5> z!o}rWCPecV#?*`Y?bmpDd6^whc-w0@ZiS54<8{x~5sYbF`&Q*T2B z;Xz|kf@Wy6)uDRDKemnl1SH>Ead9GqSweO2jWeJd$%ZY|{`d8?0L7;biS7!kJV?%lhj z_L6(GYD`|SJX?K(YW(i)nKxd9uT+nu-UN|JS{4*3(HTAmHm?hi zzVvcZu5ZDuHP3G>FOj9)bS38|cAxH9EF-rx4ak(zC@E9h?$UMN}O< zQo5FxMwXemxi5}BTH^@>KtRiD{mdOGk%Sb<7}LN9uC{1J8bD^e29+X~UC^Gn?! zN`H}@buxau)-0+$t2fU^X>{f{F!T=0r7O+TeooF$%_by z3pSt=8`SvGF{$3Ue6is%``q8oB6RmO6ov6B8Hy(kZY&xTuSGdc1MsKHJ*&~27VP8I zxb&Dd@W(Og`44RSTqgD-=)f4;&HObcar#;}Z7U(Gls&@Bz0oGbDRGAjsIA-K@J*m~ z{a3%^70Z!QrP}Y#l@mn7!OdOn=H{kz>=@$!0L%R355sHqLLR?Ym!VPB#nI6L)7yem zVVcl*I2$)i6%gj$ATQWQvAuMD+!#{ z)YKeA6MZ4ZZ7e`owz2jY0JpBP7#Yj;#8@*>(L_Z*K~ceG0Z* z677I?ytX)K28D8$rG;^ghWN7*Kp<5Mi;GPgG!zQJ!d!QTz;$r@N)U*hh0Iy z3+TP5J9pj_-numv9kFhN^Yrj}Sx~YKILI7qY{e*Vx}en>(ccU6Z%MoQ=M)DgXBk%9%G~u`>Rw&@Kx`Hp)MT(0;yvG~l?jevVk?)QadbI{rC=OQE!knBOoik_H$Sa!= zB3nL}Enc^mSi15yPJ`QY5PdPB`lzC!{tv!bG(1yfDEFgG4mO3O_0V6+M1tT@@bn2e zr5|x}qsIHGZKg~OmWcR68Sg+fC0~ek_C+%$4gRmnLMHxn+Ng{V&eVwTH1f|;GLHfq8kc(U;F&txaaEY_(ztadWGQu zLW2JU!%l-x^C-z+a8}!GLj3*rLk4+L$0cG5oL(Kq!njTPe7CR&PcO!5SBNnu^x267<4IT}xLmqThXl71k1J#MwV zy}cyJrQ+h^d@I@K;J9@@dF1vj%1BE~LWKc;k>B3VPft(Zn11=bSsSYVW|3s@W5EU%dBx=g zhlzn7Oz1Xz{rvp;_VS{y-*#+kxNx*Me<>HJGe4a0{2xC!QAoJP85wcN|#w$rnf>ea^ zsaq1d+Ox1wrRvFEPGm6^L~+N+NC+UJN$rcHVcjteORea{nlrD2{3m@##b>S4!f06v zqDMIo2u*b9#DZUmXfONnjaM2mJ04V9$?EfNP-fm^r*&+1VYb`&m)(pM{bZw?JyQV2 z(%4jTvJVVI1a4aZjUhv!qAl+I^=p$}%-u%T(^(0%dG4+p8#h)EV(VYy4h<=Kg%KnL z&7Zq>@4jDBQj!81Cj}iz8j4yP_FWo)FXKWrpK=>ujwF6)NV}ks;XZ#o16{Fpiis*Y z^7al6|DpNx4GdJa-B@1$BVX z2Jv$(>6goZ_Z!hPS6*sJCbO&EMnPfGj{N~PHN-@iuST#P_vUEuea z5o7>U0cp$2sfwGMdl1pAodoFt{Yz%MM_SL%9A_EO^$FOR0j@fEY9>USNi<1XNc(G3?Um3}!F;xo+)R z6QM)FMur}aXJBA3MfYdwINZw8vnD^y1 zS9u9cD4S#jpFDXo9|udv%`K;AN;QZ>iW0VBXh@mrE20r?#l7&7?~oA#^cC3`JW^YH z(?@?gwo6g00P(#hu&il_Q|*%{W3!e47Pu%=$m{yGD44prE|bu~zR)-W)mNYzh-CSb zqBpkGCB@4 z+`cx__GI10ouAbh!G%6>c5z9CjJ38Fx=AG^Sy(+%H1bJ!coB|l6DVM@BT45!%3l5! zd$U97I$%a$cX!chMlOLyB@vObx2-5OhzG!n_b>kZsY3|pMmz`$L$eNrtSpQ)h0rlj zt~q-aXMe?TQ)C^7&#CJ{59)OS!MbC+FT>ik3Eo>kP=T7zE{sSqkyi9Gzup5P%nJ3FEPfcB=xoq%5dZvS!g7L#H=5{+h}-Y!tSBp;(I zcz>yyVCd(EnE+Uekjm}4OSMCs(rLe@n_#=6{ta0ERcOAaV$$x=yNCSDfW87EqpKx+^^M9lcUYQLjpKC+qVNLw!W zrl&nqDEQBklbNA4vb=D3rwVcJ4D|-MPVzJg(bG^y3lK1*e<-*?m6iRsq&d!M!dr~+ zc<9d(Dy$n4xG5cAsv~#qbJu&SLK`pL-QC^!=g&6LI#5p(W^^#0H*JK!X(cD+tN8wP zNO9$=@u$knB-+~A=+>=E-=k6dc(3DnV0YCRMR({!RyvC`%3P}gI;D%DQ4x{dZPs3S z4sC+n?{9*P8+X!yOQLv!=`lscI&$n-F;ZtT9y|wJDb$OMVHc3mQnnrYsRlV*1Qxcr z42Z`oK#46zAMx$o`Mp+cIot>w!is%MHCNxx-}nCgPKEiwG%iUaLR1GznU?Bgi0dR% z_Ff;%_v82Q2fQaT?(f={45_K9ROjm>ZMVVFccR+P^n`09n^$rW-3=W8I;`zi`D55l zzdELT=+J8I1f84m4t+*wED3QE?J;-J+uPfSC}Jp(xP^cD%9pzMy-V05q zPDcDtb#Fv-%s6jv#ofxvq+j3`L=E#4o;`cEGxH7h96?FMg+n2H>q@zZOjVMx9f0H} zLZ2x0ug|;*GmFm2QJ{DxB_#>`#9nRmgId=?sIb zqELu7A$~DqVp|LtAq3XRlNM+qT&4yCmXW9%k=}ur{(=)G3XBTOBj1t?l}e;11+E?A zK`Qcr`321(#Iz8E`>~A2An(A~bRdUD$y#spSYC7t=2tRE83yfiOKNMDWv9&L1}Zde z0<+MQi{>rOU2aMxMh-;T!9$0-vVTPvq2ov#W8_od!u@mZICs*DQ<-_%?xpTSTSd4| zz~rlR1fjk7f2(#-P$lmRNH~5>A-Yw|7}N(S>(~hD#cTcFjc;$-oiTQH7}8+SojVz= zYcorZd$q(N*u5sO(o&Q`tOVHhj4uzHn|XLWQwqlPq*qDjPT(6QSa717F*G`^lk zE}!qlf}J*w+4aeOt@`U8Q%x5l+f|2NmLf`u_go*ejPSretj_Px_`r4L$`x7ro+I&B zhqdK@c@SU0YEND{TM#Gk3q*y4g!Hm^GY-<|)+MJbR9Kx{LvGOBk3MMYImc)V}4c!Spj zctx~CX1!sX`({SFtE#I*_RaQ$dtHSpCA4?%qxwYs`&#eLJ-{JQPZkIN2`k4r+poJU zzj;1Ux?zx^AiSG?8>ERUNUOTwxoF<)2$mvxN(LSR+?wJ);Do?a|6pSaW}~L|E2x60 zPs@uMDZ@~l2olqdJHZ=o4Xk61w%~%H+bHck8pbBT79DhHD8^{elnJ5n_)C=3E$g2j zA{PG^F$z!MxPflhc;GLS99iozZd+wiE!M2 zUfSliCQg9BUK6dY=T>`yp9+$i%0EmBRr1@*kZu_%d)?=DnpP=F`7h<|Cp6ALTkc+HWtpt6NHyD&2jNl%T^dn@khFHCkK-3qVPVxe_1k`YF8&D2 zaErI0v&k;`9-S_qlj;bd%jKz*VN=>x*Jrq+!r%O2|8Iv1Bg8&6)??* zRDOa7jbKO!{FEEUwbUPtY>oz7t5-oC_7f&_h7WkphRq@sCn z3aGYJ&?Hi*=jASb>o%35>4vXt-Y~;)#2~}CXm!JjqZ^P@cj-#S9cEm{RwY0=Oh79! zh@$^?mV0}iu+seyShjtkM}RQ6@?yy7x1j zT+5IfpvM*UZ+;{|=MKHz6c_Y^HAROb-MT5&XNA#r?S$ltk0@1ytk!sFd679tK?%@{wI@Zz4|Zxi1bKHh-5dIIh?GSP z*MDdnkA=0V=Zb?&mLQUGFf-@#Irp$+fKQtOQIrZ8P`O#=O@?jI6Y~2nLsT)b)DK*t zu5W74-8a0ycshOp8>eQ#5lRYy>uuA^;rm_W8+y zvWoi>S0W@tMEq75;SaT~PD7^-3JNj>0uB8lB;tGJ=Z6xU%O)IbUASL*>p$JNL2iq5 znL!Om3l=Gd>>D})Hi)FcYNQQzzVL%^!s*qJ z?sc%$x@aZ0WVY1C0n8_WI!3&tp>fu;ZqKlO)Uzy%a3X#naCz!{G1^iKXfsj|^ErD% z-@U`D*+Cr{mdBV4B*dHy#*RJiQrja;kywLK3J~x!BT|GfS{8(>;k^Y z7yX-nf&veSWVT}4+y4HZ&^wVk?}mk$Of~~7#ZtwCEPK%MQz*xx6?9YIVaos&KKG3c znG;nJb_>$QbiyWG0{k8b0zSX2?6CAQ8imomM^}hULC$#J*C+9BqVb$>71bWPz9H@T zV|jP|M|!88Xia>I4e%`Lz$xxubzXC2)pKn zpWylkom2*4UWj8biY(dzEw2RFaujT97gE$~?Zk%>OyflDKr7%SK>VUSXnTv z6r@(^RSq6QP)26Mk0is)=171R(8?TOXhP4Ou{^jKEcKINFTEFY=c#QcvS@Y`*KAM9 zDJ1?gu%Nq!G658IDc=Gtuu{86Jn+wPA&$ z1Xcqyt+ap8$kejw-FDFE%-pM_6ho-Z1Q4HIImi*FXjQzVvFgY3{>ki_9*j^CgCjnOC1lV!|ZD?HPc7o-&Hr)DPc4j6SOQ@Yuh44~~-V3>( zB==Oi>UwI?V^z7GJI~a~Q(r-mhht8^eqX}t*ZzbDg;%QlqiE~-P2wCDcYqa1*@J!L z>0CQ8hY)rG3AFB0pB4f@{_PflQ<-A zwgRO7A<*kYaU|dmT68hdwsG+eykZ9Fd|kY{1b7`kR4#Jv={IZ@fJg*zkm|CLn?f9? zoDv4b@UDvxlJc|oO_`lPy(Mj;&#>; zx=*rGVo`vI%K)TqbB6WhdJU8^&$zg_`V90PD=C-0zrG1Z%>-1mPKFhCoBQ;6B6@1~ zl1>#3=I@qF2_)GqH^NCOgjWESf?~=DAYAA=lIsVhp%dQ0_dS(xikXJ&^Tl3K^)ndp zTwZarVCu_Fgd6JOsuji=ktux9l0AcG+3T+_N+r1~O2?bH=t5$1M1$T98qBHZ?%_~~ z&*)6MfdQQWM`+8Sp34&VQ>M+&)CInC%Z`6)X~DE+;kW=6`{S^5;tU*AR=yd#glm8? z*hujtSHNNrlLv7fo0*vrn|EWL`(7}NHre4c6g<&E6s;Nr_Py7A0X5fTINP#0E_2)Bk~O4 zDt;RcWSVn z=|<#}j>ZJ~Ocg9uK=k{W3vQXh$jIoa^}-YO@hRwrDHs^AkbU$|E+H1Hfo3fE<(g-- zc%Oew#B{4e*isY>ZZN=KOaKW>E{0T1tSQxE?F4#YDRseK16hza8^r8{8HDU`Era3d zFqb#8NfqL;`Z-Qg@etey9SJ%q0W7N(DsE~oXoFiTj6lNNvWf4hA<93vL-ASz1q^P|YfQj*`bVYMcAPsFX}^!OeVeUGafM}zjp zWu@#N#uE#uJ41%sOgS`}a9Pnwdb9k5q7McOBVBP#FgYM=3xeL6`SI*z)Y*6E{`6b0lGi-lkjl70mgt5hLo6&TFE6o=~k3M|xAkAtfKB`lcHyZ?DSQ^N12cQ#83zV8mOsGsX54?^kd-Y=m~~>dp79~1ORYIvG{{1r5kxY&suO_&!Ff)vOjETDGFrb zOC-wPdDwAkK(Ty(cYYHLh^aetT;{L-seS1m5^@-}XPAThpyU#BT$s7TV@3Ckn3}Ya z9jn=a>77#0{=smvbOIx%_5k%rz+M%McEbd86fq%#_Xqc&(E*hA7rm<(`0h1m{SV`q zzB9}{~bt7yrJQbj| z1d@&sR07M3nr2$BZvpCjlgeBtU^Na32rz~W71qKju2)P+zLGav`pu<8BZ|1|R^`Je zSqU=?vR>;F;wE zf0FsaPGglm=xeiCV!*uInkD7BIQb(nnohI~#r!`;Jxbi*;!Hq?4c0o6or6QK_GR=# zXer{vnGo&NMX%lr67d1@$ELm469h((TkwZw<*X%h4)*ps7;7NuoA%E_#)}s(jwsfI z9vChU(E|m|L<$ai)5!NI^172pH8oj?5KiJ6~Eq>x66I0eRtUX&m}+am43Z7wO5P({;HMxqb`08ua6You?XQ&ECiqV_*c zE$Q3w-%?9vaJFcA|C@RV8yY0i&0?g@^Z(I|NLEV+Xq*z9NEXboQD5 zgl|duVTNESg3E9KKjb%ymO$GXMHg!fHOH&51zm7*#U@BT2%=7+Z@mAn#FC!g)^J&y z*4H}A!1kfx;kUro8iWp4$#o#Apvn8i-hgWmf{~~t?p_7xsAG41opz#oMLjxn>TAoJv_pM^vZ6-K~ zWeY4K+6jaN-Ea0F7>Z~JR0{!A5G2k*~#f85I zNDhN6dI&j;=Ghg@G+5TZWyjQN0O}JB7F!vRzc?D6jLK7xXd#be0wFhc?v(3qe~zpV|ED<+t?5m>F0sM;__tPFq7zaAnPtJ* z^#PYb-aFC_VlNG4r{%Z&w`9;$C&PhEbCT)?v54>{mWp@4Ky`s>%2@bykF-GGRTF6L zu)zmLh#At8sp~=gr08Tj0;mwPAmT_XQ3;c#Al$SQ4FgcP1VIwPLj*_RY7oMKpfc6^ z%!8lC#!|p@5KlHyiblK37B7-}*|Rk(r9)QUG#K%4n^=)-vYWfM77W$F@uED3ZGgOv-J`E{ zo$N0Gs*MK z_EG_~qi!bcHjlYKA{-kwm^QTo+V)5NNYE{!B>zJJN=Q%Wt%Qzj!t@UDSP_ZKbWqvw zb@ov>q9m2r&K3Mq8kh-s-@v9U}y}4=)@rGOn=vCK)O?Xv4vFs_gf#KAh)4YSt zl%x>XSK#E^?4xkZL}1t?ln4(0oEUKJZzgpGQ*JC-lD1WkB$T%siP^4>v2%vMyn>;Qa z2E6?){E>uHx@C=2LbVniF!{U#{-lcSCFCNvvN{ym;;WNCS$S88=>Aaz`Mrg&o6E= z0}b66aAu{UvwUB545p$mb$x1=#IGcHoA~vuFT*ZFY&%4tA|XZ0*sgG0M**53fK$!$ zrkXE5Tu`eoPG;kG`@3RQJ|T;Bt<}}lO)>Z~NJa`k|Cy12Q?M*-Jx$nJ21Z6RR1jk@ zHl`4;jlh1GBlTDTI;KwcvlOYhe}GOw>`A2|{MBHc%At8zfTk=XwnKaSRN;0)#{&h; zqpcLbc*;blx>2a@>-psM5bCC;6SU$Z`&H|4rge>sViT%ml$mQGiJ1RqNn~rkxPAr# z9$bmG^L+`!ugK~D9tiFu-82g;uv;JcyE(pL4GjrEL+_o2bS z0HIv{mhS|kI=u*mPyxYGr5KV)y42YUV+WDMs2scPBR8jH)i!e?k`llul4%Z#Ol!)!X?_W9GQNhdSA%-xD$CyL>9%^?#q~5be9%mXlq7enlyl zE9_(s{QTCS_v0}QP63;@+S474lD0Xqm{9lZX&zeyi)n%UZh`zA`QxAM2umrCDJtMa3!#{RB@T2IkNyP;B0+!*GoTmH(*}*5WtWriVBBLy~v5jpYdr4#1y+_y1cT| z6u`r1-6q*H)^Xw{a{Kl@SrMB1sNe!R1PFnsHW*JS+_q=W!)t$POT4a*!rU%F7{q3S zr}aha*NKC4m`rp3XKkb-rHt-vFb#^ylslkqjX)qp4&hTD;ySHeaN>j)b4rR!OS>?6nc4!s z3B;DoN6>a?QqvG$#E|h975FJaA$1lLz%{u4cv>4&d{yA}uaD(#A&m;{*s-2s+f_^- zPkRBIkZiTa6M9o8L?J>BC-%pqP;ZpA@&|htZw*vLK7_%{%~}!9QbayR03}iVx6C%; zEg@rG$WHgq=Mx8v)z1&?fIRS-V@5ZNk$TTQ4F>btLM2a+k%Sfv)eDZ!$_e^unC?cy_qPTpk6pJw*+fi>mDmVjSux^6Oszi}g_dH-2Y}?SGVDa6h=t}5IRpy{s;Y0tLc}epzV9V>X*4$q zNS#~DjlPn&A*-VIZ6bXqj!x&uh{Pi$0Rb|*atIg)XxInK^oOHp|L84xIptQw3vs4n zrbGqYt0a;)*jrlnxrvlt-_E>&6^+m3w;<7xh~e$PKq_sbd%<~Tf7)?$;p?u{!HRIk z=gArUVj5c7rzip+`caO^ILN=L9XE_}$hpl(;)6P9y`qBN=!2!D>_=Lu0XqhIePdGY z)I;GBsDXA^o8V2mPn^t*BJlz*d?W0RFr-?hFCu@>Ak#=07t+*=a$zf1om{waultE( zTLB>SD5`)da!X+EijrqhK~a)$h7%?kMfsW4qD2}vaKRbz9~|(u(^JUQ_a%dON#Nk< zDVVUo)npYJOyhtd6DKDp0c3?&*DwA#J-m5{WSyYnrCgY%_lGYHBnCy)z>4Z&d(z%s zx(y^Csofj}?=B49osS{f2Hps?JF~y>@QO`v5T2q=qb8F{2I5yL!D*xu#137oeL=r* zr==(CHq60N<>gM8d?h|!IETnb2B7K#JZumY6bx%%O~eUVOEU_T^*?7=qE`Jkj0}hF@DRh^U~@WyLtm9L`jc-kw^uHW z{+3~_AAj9GehB=adCJ6S&1TybM9o1Ps)`LKL)YaB zxLN_BXuzjE#Xo2lhDu1IhglojXyT5fNWvJeErK_8J2!1NQUuWTA*ZaSZ+qzkqB1c)v`ukBn(JN=_yrpgXOXXFB;6hTk@ z0^3?6O2$``oz(fx&M-Py{s}_LO+)ob!(1An(_N;Azw9u`vCOJYmLX;8zcaYe%e&Ju z)a)aum(OGl9(rW~Drh6rp(=vekG9tmvo}6>gM7{j@t0t4L}vG|mQrK*Eq7x96zA*6 zBJrNndUU0#C+@nA>i&0B2J`CwqB5B5P5-`(z(|IaoDBU)8aqZ51dK~G5kojrjZtt4 zIQWOi|94n7}@a%tSi{46-08tbX)=?Wh;=FZ&`Hi@i{#;AJinD6JbI+0YF9q(h088 zc9+H+17O!a*tUv^b;@hfmst zYO%gI+KC%+0DisTU?H#XWc;r_Mb19_pS<8DP(hvewr*J=kHIeLo5o^5_UGWPs2YqaFpb_26$YPkjVd$IrFoULGqDi zYeVa~&aczM>=({huA#8Kacb9@ytVp!#TM_s8shn5b)qJfBP(^5WxGDC=&jRTKk6*z z6WQIBJUJ8mD&a}xsm0;nir*IX)t|iAyDLXOTXtbYQex?=mWbRTyZK4BDv5i3HJ>!E zUzas8-LBuK>SZf(gmEwP*Ik=&uTKkZHgLPS@wxRe8R)H%K9T**sbg%E<OJPj4F&db>4~ocO!j$k z+2)E~_Zu&|d++n|?&TNhv^7URD{Zx_(W6ay$hF$3tbDmBo}H?dm1QJ1tRQ?}xsX>- zYLI5j8Vg~En>?q)I2vw6HWWl0I7Jr}@&25#UX`Q5Iq`#!YgRL{W&3p0h_T*gmT>7a z&Shg0jj?b!s3c(ZDXsdjqnt!=vHwzch3IkjBK}oX7W0hNCiV`KhLmQnkHMzc``^bL zX%F2F&SB9^IG=vzscui_ z1bt(NZ%B*}(OoCxE$R0-OKU@(%fXcAG*Xo94=(H+rhe%4e)s%f zQp41}t-;AX{kyJHlFysB$Gu-%Pb28(dgtp)ZV^47`m5<(6!ExIW*lF(8CQE=O7gVr zE$)BUwI*4EZalHTMLfr3FeR{DFhje=>x06XC2L;scS8jcDrcEaTzOQGx29`qJm~(O zU+D{+FG`(N2a+SbAgjd~$35%QdGpFZRp@1+wy|AJs&*%9aJ-1KP>C2ew&>Xo;3GG2XRRlgfHbn8%OTub`8^I8sX}@cxG4z{Y1e zBi(8Pwm`TxKh;no&v`Y$h>p76f3VZ!i*y-h83D=Qo|>RH|5Tc6&?xGJj^tiec763?`3Sg|jNMR(|(#YN34E zlU+^IX@fgnZ7&sPwcm=p@ABDflV0y+E!Se7a`u&*RAUSJRtB;@4c@1s6GGQ8`GRVv z%Cq(t&2lHLnrdT^cu4Y&KcS-9vG3_j_WAs_`XnQZn)!7mOPV*wZ{7Hw|e=8#4T?{ZrCYu_`}IGUD;=z zH5yZ_rz4A{0!+Boq68v~qfKpPl#emr@hVQ1Nf}p6i&k|wrKdM}xAM}eSNpV$HMyrc zKGT1sGLG5b-E5Vzdc0cZ#`vOx*!{DfwLe!Y+W+$T9HPAN+hEB?ug~?Jd`2tx4u-C% zgDI2ew|ri^d>d7jF(F<9x38l8!srdm(Z znu#2L(!XEfTNqsi(@RzR4DVlQdqU&{t6m<}+T3fz$QHBdvANEr2p&UGhmjLblAimR z)@jb`N9_E3DwtK!|K;0SbKcdA&RlD<)tH6xG+z%@(;1hA_Z|GmQ1j8VT2z*L!S& z30EIlN>$m0NAn3LsHQ#qGX3dSpWdgL!l>;!Z%z*HFJ^G+Q4G>dUVr(Cr?tDSzmwr} zKK3thTj+bFGdsSD`uy6WY~_%(%T9T1sK8dWRWA<@-8)#k>RDC3kU4t;+5bNxj7ON9 zWc7T0TB}gEt>lutUKpysWeuHA@~J1MR2qe*zpfgs%$;d4&g1G6i%eTNPMabpv7Dwe z(|nP)VYBFj|9K%Fsl!LvKAWqt?LEo7N$d982d zkreSPIeU3wWTCn%nSIY!^*4JzxumFa?d?iBeTw6E#5PSUnmw)S2S@q)z6~icTCx_i zo%a&`bB|hb`r+NRt!poCPj1uCc^lMcrjnKYQ7dZ;Q{LCCYnDOGeK#`bOjDTioKLq& zQ!_>HNqCmT@5xp$DHyQeG}H4*5lSdAX+6(#-$m1^XYmHD@t>0e$y~zei3R2=Cz!+I zX*5}FlbT*72=3m~grr`(@vV>lmz#S81QU2K1RCxC$lNFNSBCTBAzPIw*ZUvxS%cd1 z_qV7fD=QA3D!Wv@`Anj=(P6!y*{pcES0&ds)`S`|@g=umoC+{An47pJR~Q|u8g z>Hm$kvkZ%>{lERt3@9js^3H@CYRM7ZqDo z3$<3;BPQM+-D2e_6K{>N+Nq(ny;pCf<6ua*mM7wsJE6lmc+a1*0>9-)ck$FAH(4D& zF{Xnh*1!EEVj14WQZ}kCFIFVAXX)yWh@`f2(5AJxtcFXZ#@;*V(H#?DyN-pQ{G46v z@~@T=3XwM+@QIqGV>}bU8!W)jO^YurZ&P*X++XIk;12RI^LS(mZ~my?@qE|#k~-^Z zFW7b9FH5jVurgfx7K=!Y9(RxyBt*&3MmhMX=b2$YnWg<_*3R?7idmJ^S!qVLtE|BnPu{R42)6+ELw%NZI>F3rs z85ihASix;ve7RM?twu^BA$KA* zNq?Q_7R)<-hpVR*mr(NcU(wk6H65HttX{tGmGjSHzC5U4np#&Z zE}E4&QAD7~!7BTap-777L_Q>-ttq{QW6I)vxgbqf9HsK4$y@@;yc*Y3=w@ z+#vuWM!KpMMVU(8Gnb@0h$2kA31Ny3+D z4)E!l`g4nBncU~2X>z{pyGP3}o}u+Ybc-PAXQOpdwSt&*rd6r z)zfch_StV!q)DpyZaqnCh`sudZl2Y1-2NnL@X1n)y#Z@KE#5$t!;x>vXha%!;J5q5 zI!>%Y$SS)enbrXvIr3`QK0h%Vi|ec05$rs(B!mn~@J?XcI5TGEcV@&o!F(=SGohbCm(7Td^6qs_SM zK1xgn(CqJ!gJ@ir`hG_^&9aD4M8kH2k;}BAP;i3_-U02MH)~z#=>e0J^iBUnPG3WjnT| z^?~BlyDHQ@lImXRgHUC5x#<%vdfs*y?FtHhA#_*K>_&{k;Fq~2{Z$)zIX+y03A5Yw z5S}k!PJQd}VXJcec7HE3oqgcDD}f3sl3%qXZ1h=|moWdBcMiXrg$0e1O!mwmAzYHn^UqBFi1&eH+5 z_3VP~?5tW2$H|T%>(X+lSjX3?rh3>Q&kN6P+OupDlk;~22gB9T<0%?j$3vMZSSN=p zEEe|fpN&2f#m7c{*oIg%*&aa$9K5j!THlZfTOWAgj{dgvC%>{YT!Ms#)(^(4DTy~j zq^PfQYw7WMgIl5en<%=2ncQsMmlGAOm&D{v84@GRkc~2%edQlCm4#zeOO|bMmfXvd z3{y5Zq2s)ULlc0%An@?)9K$ z%AIgYJ62En?S1o_Lvwsk)o;f*laO>p1A!pD%XRQ((s))0F`zG5$~)N$8)m$Li13$5 zPEJbX-MD_QsEUc+A%zwZ0KJt4kde3fZ6$HA6_potRgggg6E#Z37H#3xekH{b{EzFJ0hd}(MUVywTBh7p3DOKe?5kN%-W6>A=~HczA#P;FmO}q z>9*H2`6N)!iUwbTeKkTyKZMmY%wF6~IXep`mR-_Q`^>^4Ut%oQ+_$FdHv@$3N>qpM zCybcHr3`**<_Xkaxt6Hx-{a(eM%0n^D-);e%p8hE<({X*P z=#vS_IsV!VLHW@OVS+K4@rJqy$Fb z8ep(LySf?!L=?!3)VO*)b9xd99MHhUL=Hx+fJLR68G0mt}z)to~4pn@437*?K#=ggm zHM~pemTq(CdUm0(0{pq1;}sO8v{3Xj1ks9D4NYY0sIP|O{iBzotN%oe*B0sH{ezgU(P7V#h|Lv~FfdApo%~+F&DCv*5?}QNyn0*1$M7-BeL`Y|649nwEct9F$!(UgE zVF4n3Vg_B|_I&DvO5VpuNt#ybM!!Z zEb)rds4%3?(J*krU=RutL|A~7k%2MEfqC2 z9)wE3*{aM3(G~_EJ6{9Z&YMC;jM(jS-ekLAHT(VbieBW&l19Vhqn^e+hKW; zHiTtv<&T^jSuFMZp@p+i9wd6%mN&7{A)gBXtzvfjPC1CJQSj1qU2E5bZ5w^?m5AF@ zW>h^n{xf}8HuYhs0k*NYtWv)3k?PPAo_{6wdFEoN9H`k0pf1F@-)CitCuq+)kFmy&1ZMCXU28*P1ANdW@R z_l0K@0&B3r+uzSg*lAq}Mzh9zQxryaQSI4HkAAX@^xT^LHBI?b>~HQ-Kzf;7q=@jl zdgGj&4xbH`Hu3a%+sqUW-`BJ9%-|hJI~ztBv${Wgv3`DeFR7V>E3&>?pl)`U_Dob= z5xcn9j|F6YZ3tZ>+A;+eNv(16qhGKnDUl57ke=007E$8d?$X z6lH=Sa4-NZ0yxJvCESbJQL%1tmLYE+l!gJ85(p#?lz$^2;MgoCYhgZqvpOFiwOq7V z%EB8IdE@KrlKYt2vxtu8+8<7aY1N9uQaw$~X?G~y9jwl~lGn%JzY@R~{_yyy(pZUh zF$a6(2m2jX!z4j!hP5q^i~DYOm16fr+r5O@T|y4gyT|oBA^M_|ly}kTfXodo#vt#c1t=L?Ky%6kx&FpJQJ3VW4kJ%y z4_CncJZ09|vV9`=(JNd0pK`OdXz`0y{qEYQw*KznOjpj=yhD+GTTD~-`f&a3=|wgQ z{hmh3T_upS(&Hpqt%DmbNwUV+Ze-;#F%qTg?6`}mDu=!|m0M9HWmtbmjPn;IB!7{; zN4CTed!6rM#kjWo6g?b&D5Y>a<9absD^rS2<-PK_Lu8g%=`QLfMBX5OE^cWM?1(b0(mn~RI#AnhlzG}l*MU@HRRQjuV43V|jeRs$If7)^-4GDe`H zN9t%b2=w);_oZtr+6 z=7B2P+pXi!1J`QO4y$ju)+dsGf82uGsaa1Ad$1%oI!yL@z0`A--fO;YUW3i-q^CjB zd!zuuCb{qje~T5N%nY$_$f8Y5An|Cd7y&Nb8P#g;F~^t>efVU!wNzj01mAqtbZ_qR zP)WH*D$DQPFsu1;1@Enr_Xq>XQi~FbcoGo61aJ``ETmV=6Y%Qq z&sTlq^tW^2@a*z}lHC0S&+?JHOjPAm*h{Z;XK#_ud~x(rLJMf3UqB8~DCFq| z!d$aqANgvWs?e|ROF!_{MT4vaz{OL73<}gw0-l-#U`8W@T{O&&1&-!f5VfK)0+EuF zqXS=%HIoLoaVTs6RO>2@C|EEQSO9W!I~2PEY$hlf0pX1y%T$9cY##`^?pq{HD7FWK z;yAFb)Mb$Of{x0RUPZtlB`&^|AQRkc;sTTDkX0IIg>m`Gv%RU7lm_~P;_`X z4>zq1Be(?&MmlKe9(YpY;g|(dVZd>8!qH|F+9g~k#7-vdC{4=WW^nE z`p9LjFo)_H9MsaOak|od?nle_eYs99g_RiD8_BlQs!qv)9-d@8JO^F6m~nX#RvHhs zAc^LrO0nWj%&p=oA$=dV4!?Lrhf~g%{q;Hi6!@et!;z>&&x44sCDzE{z9^i*#5Vg^ z%f2oOdMTl>hDX=%tL5y`w^%8y`q(dVfC^y@Rr&9Mc2fHcSaWHrqyoJ}iPTu&HT<_9M*)%|FMX5#gkASTXg*JXd%q(9a%fhA5>C?jeQy)&MR>o%! zTE#Rf?y5Z)!Z#ku9jS3Lh{W?|>cKe?dfa|bE_MCxzWRxAQmRd}Bm4M(B{mPqEbnCE z)0JNOh|}rGJMRP(vf1gR6PM*dUh2D*`HtWH;-Et2tA|nI1MP4;j}jA+Bx|+$%qDOE zZ@}sQ!*DP8*QJfNdN-#waDGp<;}N|_JnCy1L3T{+_maFbX0PcvlreeI_`vV|;?thy z^LVowCZYB~Y~wChi;tl)qgp*JqSHXVPg%XJtQ^k@Z{YH!U&cMnv-omBxv(jZY3WDJ zpMuQ##oFGe+b1nYy@tiiR4=;dtk)Q47w^CeFYcZl?4Y?Qs)!B9a^byX#j5xPQ+)80n>x(Ov(RfIOZ`1l z*criytYF*We!eE;bG!I@qZh`wRSe!I-RQ3gVrqcztE;&C-2>t9oAWeWbKCD5bna_) z*>um3i}&ZsKUY#Bhz;nHxsqj$f4*|y%Ujt{d61iaz3Q}_!$59|pFpNt2XB+l#fm-u zH&ah~{#ci-EAc<$2(|~8uUT70X2lLO*7B7xgfNQBdLcZD_Qt4DTmP)xp;g!2SFqk4|}=FxqY zA50NON&aLVG`_4+*Oqf86b3Z2;+5;#SkBmk z8rD^A9-B3O<3u<1Jz9YP?ZyAdg;N(JO?58!HW&cvWL&TFl}-T_J6>BVm+KYwe-Q=l zITOiihDWj)n~G@fG}XYCv776+=NJ+<4binsJK~)tNPLSk^(L}L(JG4Tu|=1e^Lx%k z!!vS&CdIvzRwgB#5`i9EYWJTeCtl#cJZp78@BHoOwTNj3ADO{whNc*%@tA3KIoFKj zITP0euG4}pg<@Jeri@QgkNrF88M8IIEeQ?3?_c|{dDMM%=SzJWvR>q66$3lW{s4gD z9Zr&V_RSqy?qK`gqwm~hw{s*Edyr;X17Z;m{el#=vrkJeu_}=2_f?vQvF9XAg~+LJ zj$9WB2->W6gAQbo)J)smr)3Wc=#1SGK7TPkKgAhY64=4%!ICsB!k1#`Y^$#$qI7b2 z{0@Pa?myVu7VjiopV!W1I;7BRKVb4SCv_bD)PyN5B1fpGudOf*{<~OvW=Cabp3$>g za{2nelgQ6;>3YZuhtut86ZdiFy!sPvy#SJqInsjWkZ~%+Y4j{j%}{XRr}s)Bv%LM~ zEJiFHCi4-aJZ4{WsT6Gl_g%*44V?rBIf^rt-%f~zEru1@7M1T`9sM`;{sbAY>BVk8?I@#vvS@!;z z+n>|6F(h7_`_=F`z7tK9p%M2=Q>Q19(CdP$QpR*Z2^9Q8>j0i05@$mb#FL&TQjJ)W zu$%ku-zsn5pHy{K3JL`mj1YY`$sC!*EuOPs&eik8T3`Oy)ZEVAJe{l1(zE!G{q3q( z%4}yH13iOLpN%?ZV4MBZPi7*Hi?sQ9=}LP+3i8?9uX(qRr#5RI`F}hV=u&T% zN|duIQ>6%J0a<|DirS$GoX~*}PrJ{Bmda9A{Gg%ZNa(&F`-g=(Kge2SPOQcz^R7-1 z0VhBic+J*U>fiuQSti82&ny;Y*YHT*eLyooxGgmNk$Foe-p*cxZ{UDgFY4A-6D}F9 zDl5YR|dFBZcQ_t`Ft)PK&WGsQ6}d>Ohrz>HTz<3=bqDQz>|65q!52C+i&+ zB?s2uwU>2#GZxI8yH|X5SE(+}w6Ut9+YswGV!C}gM&jm^(A#_1Q+MJ4v_pp$;lWSg zy;B#s0d-L5qb}c~%D@2|yXrqRE~k6`eBAp&{@YK2>z^n2(Q(ZLVMTvPwK5WiQTay^ zZ2bDaW9BTx-(1>fZR(W%z3N>Mcyn9v3NZ+K^fpy)Guh}oi|LcduKj=SmyN%D*P-wX zZ1LmHT~keU5aO$ewsSf&?@W6wb)u9sK(}X^#iiL{nTk5m)62+Q9N~*>reBgv9=sr7 zBYr;Y`X;N+u~dLVfJz)#mHJQ}NqZ#gFfvE63OO74%wqd#bkEfsJ$Xw#%lJifCuWm$ z4120+*%y~SlV#O3Nt=1Vp;!-7a23F5b;=%z!{^Qf>c;Rba#!e5S4l1_h1<^31&ni2?e2^J-_Ggx}OgnpkU zIa4%Vt>(i}fCaqY{pqqI8Wp%`&fN#cRXB(3H`RaXI;4mO`wt7zta%c>hW{zcAd;888m8y`f zuaMBA6iVq+#jgys0v`#Q7{_t84etk~tRLTpU}O9))5@!%66aeQ<26luFeFlX0pFW_4_ThkT%|e42Sh(|c~yL(>nlu@B+YVJ98@GY((~ zM69jXhp9VP*q%CQ`p{nHu@AiFey{(S7nfx+^Vrb?yc)WC3zj}&bF;`HIkD4aP*tes z)et#TD`|K5z`6l!>ucl-u6lZ!ai0aVdo(*r+(vURHbm(RQHr-TJIWrh+%zcBJ)n=7 z*<8N**q@>t`60N5m%6xwh_61PM>~we9*b4rI4(E1c(}4yQA+O(9=b0a5jK6S3qNLQ zR>+pGs`PCtg(?oenfK}DN#ym7_weBN;Kx?Amiw}rSjsJ9#3B?&H|df;1_+E_abjz= zI*Ryv-~m$jt+9(QBjLYdB%6Ry^#|VXV+; zbJDu;E-&*As`i^r$o0~lM~#@CoPM8)L7v2EL0WB~7sDqiReMuaM6WWP;|ruc=8&(S zta3AON=$Xr9}D{xCYf!POqASv(b_Y}t9Hh=(bWRprm%MIG;37~MK)kKzguI$wDSu| zkFP{D(V*0sitJbCU&v1{=0@?Zwco+}f@CHLm4dNtChD1V1hD!FT)apPnm+DN)rteN zG-?8jLi{-ty#XwdAA;e4MByxesDvni)9ssj!OG;0MjTQE1F+s1wHWd;^#Z4f2{ zzX0Vf`6ML`^7Dd@nP*zlx5H~J9nl@%l zqgE?s7wMNfU|>O=OC!vIKo?Xs20YD7`K_R12_HrMy=;KQhI)QLasf1FwnO|ED7y(v-d@<&9)>?oEo=sXN0r>uE;3$}TJ#Pz;ht8z zKBF!;wHKr=4->9q3P>ux;?=k*pc-Bf7!5~s<8kh3|nys%&octubZD?sz0e}belnD;;}AlZJu zL_irS)RO>8d>8<*jUEPNMnQ@c>TrWl22c_OxZmADHf9a57+`Lo5Ca^5d0;Hp1OF~d^j$yCf%lgz7pfsN+uaQBy;(_Z-j6a_ebSZ{h~$e+VQ zQJ@$L6S{II?&c#a9V=i(PkbtQsrw>M+}_@Lw43f+=QROqb!fO%Tgk90VoD9YZ#Az4 zC|ok`b8F-XoC|0FT;ps3zMesRASiACDoY-Sk*8h)R&2qG7fHYdPYvUg_n-t^)DR_b z@(3|8RSOWt3S8Nr0h~ZD8%)x91qC(Yg}}D}Kai>frcOj)xrR8#df5P^vA=yH4gDQR ztwGI-y|+NdmmBz?sU)rEoN2ml?Bxg}O4}{X9sEnwwQh{QzeBkGUKj3wI(1<9anFE> zqMWXY`iEkg1l3F~T8^9b@T@g=o5MF=J|i+`W3)lqztU>bu)W%vuvkTt9X1W6wszkK zZk@f0_KC*O;X~YRX1;$7rN9B49S`nk^Qn<9U&vr!o*VK90E7B#K{y1kQfbkBCXYo; z-`Sf50`wH+W8z-`erpH7IcdhdtbT#J;5U&fiy%E@T8cXdGr|f7O<6g;PT&k!(6T&# z9~Y5#6m~%PZpo$m&50S=&`@rh`iZ^CM4G&yxYHy>k8pP@R9x zDC;jdT0pCuEokY2az1y%RU&$CBLeQlS{6hxFDLXp)ZiXeRxecsh(e%*q%MLu9IDG( z&tWK?@5;p#vrK7egLUemFjmyYL;-#M~)Rp}GO6!>IEI9DK3ge@?_UvItl(1Qome#Ve?Wg6YCE z=i9785XXi9zaYsmx41|JEc;L#3-EeWUfG5bm7X2#& z5bYj;QXxRE16Nw~V;LD47}mN>9^&2t(1ovK`y0(VRF7sZI@(j9q@&gB&D~;jfN<=zle{MB8wXO94`@*Szz9mD|S*U7(Z5u8>N(Py1#s3RyhEE2QfMEGQb{$mJJ6X;MwZ)ZbU9qR zUi+P8xJ%9Mq(2|OKfq*k)NM!C>56CHM0}KC7FsxpBy(09@X7kjpL)l*lH}y&^;wi~ zKyGEg6tlWGB7V%rDLYzB+(6SlVC&lOxS@5PEWgi$E$>RSq4>vh?z3#F2mhY&PIJAD zngf9mumr+w$;ilrElN27S`9572}-JMKo$ZHZ~(;r3ckgWQBcF6`(Nt8gcKkTbAu>S z2Z;VbWCTbRNTqrV)G#GoR2L_G_4OA%uX_laf4@98D zA#M!7($rx+Y0hxK!0H3h>7aiT$SA)-c`gZb0+@MCm9w|==ChjXT?68gvr;gm^pS43Lqv&0}_5v#{-n~^7Xrxz6%nmp&&90t)dVe21=zt(4ks?KR*(P zP=REe7D%Oi1|gn5zsBf6cKIpF5Ns5nu`&qI=YgyrXevGfRdPbu0)}-8YZ`Z-W;&lV z-CkkN=KBUpF9<4ni)k{L$(Vh)$Ii9+vbs^WEd?A#wo2XWMPF>xV|Z)fsGA=$V?q<_ z*)}D$TzM#{D$I@1$nK489*L5WiJr>LIf)#vOg^<6$$~cq&c&IE<$=CV0YO2^sk(c7 zyssxnXfK-dLrxCiQ6_HT#4BXm-mEGi-?Gr1rJ1puV~m*Y+p8Z0?pYc~ZxqyC)Qedy zG@WYLiBn|%v_u-3_P>9B%io@NHX-Tk^auFDf|Bp@wdJL2`-9EI(da}4)XsJ#GZG0^wSHQ4 z45rz+Z}qa}xH|a)S4pd~#?LT`F`P7ntdHz?;RjEan_!U-gozqd0W=zbbE zY3al~uJ=IQwQO*6CPjJ>jw8>i#gs)OPwg9GU~P>7%1Hdll@*^1VR-Uwv5FCW8iDxg zw)6XW{cHsb5_~@lm^P@R<`To2VpsO~=A2cWSi(lQyp#`x`L0O4|CEus-KF?DPup#( z3u$w>@9W{z1ynHlFQ$tQdZ8eNKRQ~+ zSD^1mr@GrOs+689M-oj!Gp2*P<4hgGku$6{=j>usDsV3t5Jc5)Rfx1V?t1!6di*VJ zX1y1^j^9U^Up+|d14=hk4ge})iQV1vVEbk|&E z8KyAMWo|G1&0b5ToD?ylaW4in!Ne@MEGWGEi&rS~;4r5DYk9hXQS6H1sqQ1Zor7v8 z?A=?>nntaj2ECq?u2YGV8zCI3-`I$l9to@`iE&Wn>^fK4f$@cBen0R0|1f0$@<1He z#6emVR1pslb5J-F#D*=mq2&aE(17KkBIq=5VPWAl_Ki>2(F`I1Kt<$`;Cu8d=eQ)aRaF{%q7X11{l9-QtNX zlJDjvv*(e6?weNO0<8iXG=1AUWVGx)(BXC392~zQe5m*(_T0pkt;OQ z|9g4$;d4M1ri6f?`G8o?4$M0pAOTmhZI~&?3=#f7ko=Y|M3;e5>cGDOgF$K(*z8HfEASMlUaD!KgOJn^U*FmBV?2aP=7nxkRmRuXq=>h1o6NqjQSQxxb-2!Yp2ulWo zc=zvc4Kh#<0We%Rtv8y$EhDlBqc#hPco%WF3ngZ7;SK7Fkcz&OiZTblw6hY3$=Jo; z;aPH`I>e-(;-8Sm3Dhw60xt0{u@Wbw9xxwDSM?zyYIz2frv7qUKeUG zUt(8znkxNf-_)w`i1bMO&iNGW*i@xEWG1GrVQU`>XZM!xPk(nZNfeS&ZBoe|bw7W( zcg03TLh3HY(yhx_aKFebKftPsexv@;g_6$Te{FC4XOldgKO-&}0$Xcl4OVpF<$jed zeMLmL7wS8vc$ote-Tx9ftri^JjXt+Yk;Ve;PJL8t#9qELgY(^mOwB zfUJ5BHn?qvCldl`|2h5Oj=OGZn#^kmVqd!(-<^9|cz75=ZGu`h*t%vaJvOO5z7vJ` zS10*c=iCr04g1ylYM*7@cAKzr?##Kvq6qPB;Mw5RRL@*m^g2Zr<8ny;LjiU0mY6V; zJfZ}`WHA~@3fBBLVCT#B|Gw<*`h{5&<*SQJqz|942?=`jqE+(r+9j1TaS0Ygx4`n1 z_B-N*EAkPE8&}BWzM?eYo&Th-vj5(aekV2YNTwBRlAu`&*rLV9#|MMjpIJaq-~g)+ z%zk^J7lPVAv^L3)%Mm1NZ&&`8rhm3GGHZK(hvDiibhGNqYdPf;!DX#5NM-$3Flt%{#l+ zYXF^h&+}?3avHnA6m|(^OzW)HN4OUje8mr+_Q!A`MtrcN-x6H>^77-ay6*fA=dpM( z-R^d<-?4derGhtAeMA(!%!2lj>4~y;Z+ux+QGe$0se^mdLRi_;5Duxqw22gT{Z;AT zO@){2t2fJSG1pZ<=9?X`6d9qCV}NSs1MlPD@uCS}8^L%zF_qniAl(d=&Ov=J*m8R^ z@Uj6x9h5*1L8=lU(-6UP38Fp##s7yY;I5Pd?l-W@;XIpRQeZO-AvU1R@ZGx?p=SVi zfdL)2J&DVpUP2N?qoExw^dp8!Ta*CVMP_ISyt{V%IdYv0VLbQb1O>5Dbt2&x*@zrV zof*nR=?JoUnhQQPXPUl*$d|A*X7-Dm+Wa!8lk*K8xdIX^rxmH!lC~er()i8V9@Tf| zHBH1{+T-7NTuso%a@d+{L_ z*xiE~ z9B=REyZ`J;4pLKH!e*l>Io_-(u~LnxC<<@UR--HGUCfQi;{_)4oiM)K^oKvCerYo8 zfqf-^EI0ONka*nilRTg8ucSS(%MQAlLy1#%^cWx11GOE&qDL`yXxGK_d0h(VI-3%g z+Sj|G_nT#sFlo^ee1C0vuWI#K6>H1s9o0XtMqG#z@4z}A>P7R`b}OLA9-!OYZ5^Md_^bNj;Mu9*UjhExus$y9#rs#^wZt<~t#d25Y|^G>I)Ms8RtyXO7@ zx!b7w+&ZSnA^De;3bTb=byb1n_bd-wvPLf-$m+pw6-FPBe`9_lZ*A7fYL%Q}wS2#Z zyr@B2_<&K*W%=QkRV#;3-tiqf_m3_C%DMHxR7p6*7HyW}?2<3#!PMS?{VJUB%mL-d z1oE?!eGeKgHOo1XNOhn39%5rNi^5DtDGEK3ks~6Okq3ABp0MY=?KH*FQ%)rl#Vt~& z@d|~T9w(h9js{?;IZu@&9@GAZmIM~Nx!4$|nkJp2wC{$m1ztIHJOwfwvlIOi{4q|N zOx~$IGjF%1Aa3-zvB4gEvY^{c-H9*DG;d)fC7xwLOVOY|XW=IL9v5=i*dxwpnPSW~8M*me6^ z$v2*lL*?^hfR}VM@Qg^SeFN2FDR1s5g7&1J>cP5W*U-K}iiiFBPa_el9%q%?}IFa7sLq~Y@KVUkw+%p3F4 z=@5m2P4MBOgQ|z=N2~3V-P?rI7=3tVTq@d{`e)#K8TH zGlhzrRuDOfc~x4&$snE@;7@Tf6`iW9UsO~gPSPmO5j>7KnCZH!hO&Sc%KW*4m3YH> zT9s%vVHrf-Jnm5FVzT6Saxagv0>{l=D`Dix9^HVHWy)lP)02iCCI$bHxdb5l8Z}z1hT`jF9#+>_)lX0m1#di%D9q|s& z@Sta-rxyKv*HOcTUFXpf)&?t>t}Cg1LN)p&gNJe?2lhcCEzkXXa8e>GQ;uLwim*TU zVhE2=AZe+T2WMUxZhY0m>wIp>C`NW*=wVz@ShMi4nv2@{FD+dn zKsyV?r;zBKU0x+oRW!@txx$%USq7PaitP81DsNrf>iL)NAH_qMpu4TU>Ox3Ut^R78 zi{7Ejx9%57AGjC(^{&jAi7E-%U5AH7C9{3CwSZT6y=aXyUoGblx3JK%t(bJ;O8tjk z3w9D?s4<3SNYdad{7mj24Q zSQmJ~QgN@%x~F+xBOscf0KFvJjQK^q$uz(Yc1f(-9+q@T064 z_tvZFiiq^ASJa{MzZjy&=TM0V+sd7n(6VKW9AOpvpqZNeXs9B zAG)iy9z!VUv^t9Z+o&iv&zRqxh6S?$@eL-@ll<-b%)=h$j)j|u2lY3dHYAi-&hmMU`lrNQ)ed#X^m?-S?{@Tb3)jc#jv^X-tih^-?mhBB z4Hs!MDOyR1b#15gi=7lN{Nt_rjy!cJ@Gcq?*!vz8GVuaw;7?T{K$S161Op>$v245R zOuMRJg7A5E)|SJCEj1&4@#4G0wZ@BYL(xy{!A0#GB);;Dz4-2uNB#>#XHNT)sj-oT zUuK9;7#FvjYHK$zFBvOrTOI2DJzH@f2%`W`L&4;w8x{<5cWlxX{W?snUYA`uC$G-C z>fSjPDu+m4tjc_s;+et}WbXHps})^Bj>W|_WgS^jy|s!}RNg@N@!!yauZ>(JxM1Ur zkTw_h>+@EGXq&;+#a!UPg#P*NEUEU!={d+=aL2(DH##Ji11+2RhTe`+Glg15ZTRyh6z97lB{ zhM+Pf!=i{u(8;-*Wj3i@$XQV7Qevm8(^SYi?!slRXm=?Z?^Der=CGM1{ML%lkkX{p zLQA>^Y-6$6HS*6RG#Xbw%fi1Y+->3~o{vnKDWCWy_SX^v)4QxQXx70z?vOY9@76Eo zN|UMBM`=dRY3(5si{^OLB?8{ZxmEH0HJ^Xch$xvz0SWbFw6P!1B*k;hpI1qi z($R6Fvsol_DNNOid!Hcb?HhhSz>gMp`aKD+dGtp1p09ORMF}t)R!S&hLH3On6B%Jy zWz5tBGQ9M=*Pg!wb8#Twt9#jAk@{HP#PIG8yu|tS=xzo3y;t<4TghiDE}o#hQ)XNH zm9t+=-F=v8udMzpp{j-Z)E0QrQG6u@$|x+;s`}yKa^%Z_{)uX7PY2YuG?)OO2F z!Q!vv1>O3i-#DaSh&WLezGJqsK`rEJ|7IQ~ ziO3K{8yP(n)Y{=fso{_O*vG%+ncxcD*1Te7KUcmk zrG(?(D(8L!YMkp1)xlYof^*>Tfy!ltPs0?EO=t5rf@Qgzitn=3j;Y?G#3b}`dbQC0 zd78*HP7>w&VL>N9b6XqltZdcs?i;>g%qlfIsU(aZZ!;llRA0e+#RJXvUzc_|F9!CU zsmqBUyD2NQ@F=+WjzO=BdY_rP$WnR9xPwopuyd*ToO9f1InK(FiMTsUo(8wpsG2ss z#TsE31E}ZS@Y-cF?0q+isKhf-4np$`NNb<_p-m)0@A#MmVlcR@q~6GxJozZ1YtsrR zy1yuz^?5gYZTFv0nnpD?Cx!n8;fr1_Z>>evBrjpnZMX35D8E98ux>oZ#Xic71%6|5 zCUh>vf@Uc=+~U%aDFffF49E+VN^2!9)NmLKfjq2NQv&a}fN0jz)dB6dyxxC*7EoCq zN9c7_FyFZVj#vkq#o(iwjqLklQYLbGMv4zil33cTa46#0*>28MM32*96HDpIa7|{c z75|N%^}Ne*qdpWR#f?%VoU{&8(>!+L&+-VzPksll0$22ZXGRd+=;Y`G>IE|k3k3j; zRfAesAlD!k8h|njQI^3Z18Qr~j^nNmIH=rc1pRh*piwVStiX$5;)5aJnU8~nUtwWd z!0_w_68JNK5nWx6MnDCn5sD1&QD>FSFZzF+8X?){{F2ET`_I`)A92gQ;7-l~bPPvp zM^>WN>mB^Zgb-{=hD$r2bhw@zc&SzeoZ!TyBnXTNISf!Jk&PVyFTMpzC_t^lHGtb^ z0sh(mg&Ivify5)&XcRV0u_~+ZuS;B_WhL zh;_&TQEv+XlEJTD@cmWzc5Q`i?@jEh$^stAG8zh7OP<%9Q3AK<`%{*ME7l0hrmXE0 z+;?T;lXhNz4k35cb2l*9@>gpQ-J8Za1WHJzftd8$t)1Vew9{m%)U9l#hV?$BjKn8* z^v(t3_oeg=%}At`qQDs{^!^^nLX2p-?zSA)+*AFXLNn2&w!rE{WP@(>S6cLY)AOKB z=?wVl?f{w#<!}XxZO@{1tu9sn=<>Y1QalnSAbz7j&F5T*3HCBduR^XhmC4CT z=!xz#IkE|Fb;m8{alE{_C&4EnoWt#N(8Rl)j$o>%&pEqmvQ1ncMt#-&Uz60PKE?mC z5TNm_Fwpz>6ig_OKr2V$At?Fb1{h9o+CovEz~u&t08^iUx{#2gqX4yRkWv5&rRDa7 zNgXRF&3X!Gz}F7fWLc3&elan6=(|TUaA69VsKFD93Xw}0nSEIg#ntlEJb2`ZSxuK0 z{*{CHUUEuE?#oY%wkR^?H!8{oD}LWm$;eSh{jZ{g#Yr?pUHzcAW(I>A&cr}h8p9Z0 zO)nm2F@8u6^%=zkxd5&1?qH^)g)9ga83PPo(I2QT1@(9h-gJ0v zEyTj-U#_{2vMf#Nfky!9<1GXHQ@tgqto+8sB+@F-U}3PN-rF@Qw{FN}#rZa+J|RAS zP?BNj=ckYzbn+M~5eD?+3D6=E5D@TtKz1lt`b|S-q6Yk0IK1QFojyYAVC|dq=~Otg zXG><26SGoSbNAlO#Y4K~1=>2@17wVf9^WpD_uC?>X5syQr)@^_NxR-5tW!qfX?eXw zUH~CwatR%)6#3{MQ_}@hL6#N7!UUNmrxtd*0A|4byE$+Z=-)?R3I(XuFUM+ug~-}6 zP#$m&VXQHqLEcW!PfIJ}&MT15Sy)^IWp_92xdwZBR6$}z96HclpmZE`CC7sGX(sXG zfe_SB3BgI1Dlv2g^A99`CNJo|H0okjDXT*Eaky?7Z|{xGi}HDg3cG-fhSByxjaLTl zOnpK7m(o(iJ*-f^NT=)L(hT9~&llkrJMM@JQ;OhE%M@E`0wG&%hybnP1Vj~_omlmH_bfP3>%apGQj?#qK*U{FjqQopIG>ADhl z8zvY5@6er)`6=h=RsS;KlaWBC$(nuO%jBZ4X>|qbU&D=Miul_P@Xd2y)|hKhmP{91 zqEhcSS^ra5CGu^spcdQ*{_l#rnqZWI*DreztcFF~T!6F|pP47@kPZbd4r$-t_WOs2 zw?Lr*EEwE`P>I@ncU(89XmMMckcPUS!7#H0)fhJ32=%l8ZXrMDqVw7Op$V30u#P6A zrP07vCTql?8kF6shaeev(gqsIq(Rp<0IlYNG9HGXS1qpN(|Olk3to5=+p%;lp5?8R zF)Dv|%!zAUjG%WOV`1oY(t>dW2@0#yNgXD=JT;~ZfF*Y6Q?oYOpM{gXnEJxZ40b*K+#^aKSapY@4C^ zB%rj?f%da~fOn@f$BBD^Hk+OMpeO|?X&d`LS;Jc3q2La>f?;jon>+{LNjz9Lp`QWA zkPXI@Sy0leB?@V_acVALO`SL-MSU=onm$)sr7|oZ2~V5 z?2QPAa(J)m>;}ss`gdZ)s_SQ5tp;ueY!%hU8e=bgeeFQN~!(lj#+oRnuUtw^D`Ee39BcUPe3oH@kv<6 ztdh6hu#o8XVRdpDz4bE%Q`Jp_)ytSRW4iF{?7DaIinw^r7g}}tN3|?r&sH8!L+LA8O{wTgVEblgxo z%&(A}4~89FuM>#t(tUQ=IAIAmwRT2=!t!D<(IcjTShP>%$BI^lVVM-SjR$JAw4^F+ zl^?rQaPJI@n(JlodQ&PKM}F@@sSjT0wVBjr@&Lz(md4>W2i5{_dg*`A_SR8Vu3y_I z2ueyLAYBWjK}4iMLb|(4q#LA_?oR2D2I(&8?na~qDQRiG``N$!j`4nV&NzRZF&um7 zR#=N?-7)7iui#*5@Z0JX8LSm97x5M-s<2qUI~RX$7lfw7|4h5=hH&B;Xfevvj3rQv zYMV$t|8xu@cleH?+9VRplPBk4ggVsvpC$`Ymk3v>!JW?~G0cD0-a=ERPd@47u^P^I zrCC$gd*$cOMue>=lNrI7Qpa!rg>^V^d@YP#7{-x)h+| zmol8QI(|_%7tldE!I+%j?F71fX6FwJeR}(?236T3;<~xN8=u7D?wD@z#Qq~uz@fE1 zq>isN%TVi_*$#9+EMF&y> zT}oqqi4HLe*ZT}Q&JKjN8nPwL{?o2yHU#dAh0fTSyxFI_Uzolj8VZ7=UBo};`>%7t zp&FZ)kC@T6Yhq9g)JG$U%7YY?_if$%>IdG z2(C>tW@rcE5JT4n3>sv05pa&8cdFT!I19LJt-ncm}ft{HuZDv29TxSEEFwX1Gx8k`1h+vO^=vyQ<>v3jUFt#Leum>Id_QTK&5TN8`SE}bVx|qsaA6q(CRxs zE9Ntb(=Be8>zs`ELihu4*%hAuOjc&JNn&ZKDbAc$O)zqxUJWO`rCNn?Iuz}g1S~3@ z4OP%}wb%D}5VXnY05=Y8cY1g2qW&*tiIc#Bqgl59`ktj3JP50`qo4^~4p4H?j!-C| zA%;75e@>`XnHD=o&9wQ0wnig39Vqb(cNgTptyE0jyPwQgXN}IfZ`!Hr8@X0uG#jsA z`9s(uJg0ZO)fr(!gKLqOmDgff*@sHhz2$QJu2Hu)ilv)$Oa!tbqg4BabP>T57NlHM z0-3y+JmO4Xz_XlDqTsqCNQ?xp-YnhF>5WD>(z@MAxVbLkK+-XFAidWgc{nK39C z6Y_t|JbVPodBrcRP2>e*fe znIMgJl@g-phH$(5;H|-;7cM+;!`R_4NDL=k9=LcGD?)`#plM^(p@MzlW0gPV?7I zu45g&*t8Hc6!>8q0%9X%{{f;-!U6q@1hk4Z$Ui}yP3{Pc+JS`)2%GQ)WjRFhhtg)_ z*+D@D5l0~v02KTU;=q8Dbaq9>c&r&HHz6`D@cf55eURY?1pY%8pdEEOSi}c}gkJCk zP_WL-AgBi)qUXaw@d=>C>jtBJD25HNdksM@E=cLZ z2mc2NPNUWR6~wjyE9L*Ondhnlv!;h@}c5TypPtzJS63@CXa zqkbrI7;xzT754}b%ODH{GB_~gNJ*Qq_D|i|qD^BQd2hT8vv(7p-ey7Dc5tMH$sWTm zBG7p@V#MysWHkr?YpJI|GTqQ?c?VB}sbT6N{P~{TpHad>-!|*y5F&AXCeq z_0Ltze^Uu8Y&89sN}%KJDVo3WIPtw22JppuY5|b=E0E8 zzdnk*SJ8^OtuXZG(|p~RJ+5LBX0&5)9FtCPz3BGt<2vKjG(!>LmBa4>xh6s&#Rrhf z*@4dwv`7JG@h$j~;6RL?QnVn*>8xS~Z4R)42UIoClR|yIJEKY=1;kNjVnPRh5$e|P zM~CbMgasU{VxXW1gT+yHq9BU0y;e9NG}K}eHde;(n>PQ&n z1$kl^J*9eLS$YwS>j2xp{n=#W+JOtac&L}hpuN9y7koLB+})dW=NM7@Koq1k6@0a3 z7i-XXt%Eg5$nVYx+8=+ga0Klv1a0*uj2! zp%Ek<`&d1EHcsJ?(E6M-amdV)Ok45#z$%1k9oDcsFM`FF#sFE2D1gLY$d&_2CI?i? zW015C{fFgm6a&~!B7j1~@$x19DTsU+DgFu00<@Fhy@BCj05i22WrT;L!_CfG z3II$b@dMG1A);t+7uLg9> zvbrbg@nvA6bOIs6U*E#J((~f~SDu_QUoB@;+RLsmHv1Z`-0RgIF zAU1+_3}jLuuFXPQ7$8zAWm+>88?JwwV`+)ZFn1lYEgCu7+9uZn8C2WS=o2T++;v#G z`zU&8dEWg-nw~V*dRrW_rv%JBfQpaLp)Y&O#L53pMeY;A+@7YF>^!JJC6U@|k4BdL zD+~#y!~<0wXS@BNakpi=|0HlwDv5Mzc`;gJHZf-c583h1$$Wcmg@T zTwELDuH#chm+oKd3$>O6&!0c907$9{2T_{ytR@tr0sOum!zBY`4It4$07=RH`t>p3 z{6jhDh;wU)1{p}kLJYc!kPBeRS-uE@Cg@eeMt?l_p_=^ zFIoK_jOJN`bq{U#9`uuLBL7%osl1rH zjbdAD%UM$C%}T-Bph!K;y}g(H@2k~L&2RTUxb&hsxqdXVU2Z2&SpeY4+jyAMjd(nX zxf@@>Bvn-@PMud0fBNfls%BVXWs+>2vTPo%X|zE*h4$xxhZQFyT?L(wLAo-*)w1yK z7v*q}N}lH5U_1G!_Te;#GrA%koa}4UrnB!K8P=Q6B)^_($_ESK>C>l;oF(ADAX2;D zfq3kc&GDDa^vq0lQ`2*BNe;JW&lQxFJq1+gf1s(a(gYAU99*yU7B?UVh>oT8ObPnu zRaH3W=jX{Brc#Hk$W}gJEd+s43%|MzD8{mTX-A?7w2Ed(zT7Ie z`MTJNeTdzDT@)(0fDok*P_HY210g3TCw+a&zXDOPPT{~2E@5rW43>WYID0k+Ik~uu z24ZP7K->!ywhW2AK=IRKC_cZpXfsz%THdgZdb@_{)1m)xt-rdDM*44=nXa332)SmWG3xJmmBGEi!jFa6ZtX2rcLyYAG{g2_Bt zoK2#-)>ex$zk^wqEMk?-#l*{s%(^5ye7c-hxZ@_GL@zuz@l^NCAOPP*hB{`RCSP8{ z^;cPip}Do?+xLe$+gu^gfCSLly8(0E!M01c-i8#Iz6F9nHU8HrnLVd`&<9poi46q2 zyq|IvSHFCD{sTBpH5~U6$Bew6Xm+(_0$H+vfcgr~05EV1zkTb2#HH_tlZC7iI^?}i zaBq)-1czIR*J|hVx-`ww0{|!UUHyw!^c-nev^Vr6!&v-Yag^2K4ZSAiQC4onkakTpF&t?er zt>sU!_?T6^pcE)r+(3vT95+ZaiUw!Q`;q5sTp%9tt+KMR&AOo7S?gnJ@$i1@YCr`A zLN2y%GP=5?p#F$w#LYVZ)!Hhs_3Q&#We!7-tW{Z_A0K4h(p>-j69wSfHR6@aCqIEV zARM(430SGvk6+qN8F@2Pt&>z$5KzU`g+8B?pEpIk5GlDOtKwk59%eOrNDL@e^(krN zBrxPAWohZ+klDw{r#UZVuxdB$wnr*Sh3gR2b)&R$f180P7dZA+KbffT`uaMpohxp@ z0HjD~H!Vz0Ll&8MOn*R)^nIvh-uhE#lKaf`^yciVSFf_cmfM-g4XO$^Uz*c#d@20Ien?FS04t?#y7wnG<+YOLDgNDq%I=uqNV`&g-mc!%e@?)6pjb>x*;{3|Sc z3n;mMPbr-?2V52;aDmF*W|Js`!xXjcc8is9=xlEe6Ph=Gp#th`>&;>F;~4$S#YHVR z3F>BW>5VYk+SrU*D{E_qL2jpCztXbu{P^)B&7;f4+PchsskXMZu&k^n#VjKPSDp_$ z^J>`asP&H*Ciqe@aIsDRF<}}=u5CQ|hmqZKKC4apn>xSW4!xi0o!TQY$91N@Jv{m6 zy+U;Ux?%ycel`pVPZq{=vspQ#gwXxh-Wpmnp7+d5bvoEpyVRtD~Gr`uvuR@SE zV`ocIC}jA?kSd;o*BN*@VbCFfoS8?@l8mnR2$JuaWw_;^D66UlK+$BWBkKVKdi~Zn zpckS}9r-27C=WQ~ir~ir^N3%Gq`;953}r{HUxLvH7|F7K8wS3Em8L_9Iw=&^2oltN za1P$TK`8A8kVjtLtUP2ep3b%315dia7X`^rHDY3NJl;Lxc0Xb4!Ifk;e!k2Wfjl($ zCE9<65?fSJC9c1i{y7?+xV0*_k>*)anLYvK?D-5#YTuZc^jAHuwK1;g?Ds?0FP(A1 z!5YX*ZP_DddJ-;zYB>8Vm<=-C_zpQ~;Xv5A3Tz2_Kz`g22;oJ5vuRj+0z_I|tU2z# zQp}9N2D|JeX!{fziV7Y35F&6;GiA4EUI3v3kfAM1E)98gC)FOLcDes>-z(z=GTMo1 zGx;AbOV)(o0AXp|#M!7zV%81>a`-jn%xkp1!b z3EUZT$GPNp$WX@f$m^AGVEeZv7AB1nie8W&`zB6Ida}!e%D+oI!tXM^3o9Y3Zc?(C z0PE;s&NMuF)ACj1{TESRO()!49W?RO@oY(7EyWb2Bji5HX<9lOuE~;4pO_~PB2V#Q zv(8jxfY0C$A`^|zb|#=UYm{e?37pt$--ZFt0G!~CKJp;XG9n@ZL~?SB^8eLoIUVJN z0=&U}kjUr=wx;3j<#95b;iEuI@<{N}LYa0SR@z$amq00Z3GTH}G?oT9h~Z#tObxLt z=rTPy)bqiEfcyv`A6hil7OW&)7b3`Ap(l($f?cQR(+Rpna3=Zj`CRqRGVe-Ux4tF3 zpJ&$(ltjG&&vSTxl4s+hXZ0hEito`dW6cQZ&)&2@c=z*l#nCm7y}VuZJL7r(2u>`}m>M-($|dxY zs?$)pFVI?Ef*o-uEj;D$O$AeI$;qRkoX-6R+1YBZN^JeAyGg_ALbwWbonlUU!`v=I zeJLEoIcp71eGbZDaWApLUx;+n~I zW+kqOtrolemP2=k_ru_;B;WbI_f+W&O3b+3RW2G%))KVt8)|lxbi+lW6$5!1b;O1N zc8d0wc5B0HY~;W2dl7|;O9E@`?% z3bO>(7Eq?*t?uR}yHpa!)8u~VE6?pJzLOdfxS=6KssH_n>G=?A+ya9Nwn2h!=d9rH z9Bv?m$dnpZNlq76+_}}@F=DMs-i$mR&N2d`GIpB#rKcl{0HQrQP8U#jOpwxA`;I?} zE7;>R55=Hk@wR5Gq&q^2v+zx8|Iy156HnoiKJp!QRa>kR9pYrT=tyZJCBr6B{#VMX zCHN!&Pu;hHJ1XA6z19e?Qy9^NT`VY!Om$RS^#VzgQ#0wU`Yg-CL*e+9kLi}E?>vl$ zsd#DHcwY;vnPV^Zh#GmD1f)WHZhgXd zChyI&)aYg@iqsZ!|GRecH=6CHh;L%%-F;*cE3G_IIW5Z{S6ZZpe8OOGZ**TrRcYuK zRm5wMDN*C{OVoqphfB8Yq~urq5=T9(-q-*akgfq^9%bJhS4|tW5F_009KO566Bme` zqV7j+Yc6A#w6T~*!z{06@3R7Sg0Jf$T|bvlIP)g=Nb!92vWM%R&|w1)ji>OgLkHAPhlm7b*74&aCNwvRAikZclCFkeq38nHPK+A79 znI~CTQql!%PLC&|yzu~ergP=t-qrJu$I4qTFRw{m#Gb5R(RTqKLqm#-H|F{=NOPJg zzOIR=<0x8RNS{3X(Wbfh^ICuGVT3iQ*4%d=X|vwA>;5j_yz)GFc5l%nsq*G$wqJ{Y zD)0V$|Al2kPb7N6?UIkRrCX}+(L9Y@C%_Mw3x*t$PKcJd{>A?E^>}ZzS;Ge+Ag|Zb*0vwx|7!rG zs{h=y;MFMDNe~RZ9bs*2MopG)ZTY{`WqlJ zybtn{9n!z&I1X_H1XyL!qD*Zi%5ag`Zt78bU&|ucpk0auN9ymAFIT3*bkmOq+}BVS zgpE%wc&2vj#+$j4d}jh&=RZ?m;F8Wh?tC#WiHGpdGF<-SP2lrzvvLexBe$)MY~}XX zYpCu3W&(x>i?tyaQDFXshkg5)bpS2Pars&5gUCb%1FpYKr%p18GZ%Ph<|tPFFCJW2 zmUb8)e83L4<;pMgCM<60r!w)K@8-%b48!kMG);V0!X~Hf6Kry|ZzdQPfJR`nJ(>=g z+UU9erUjS<--JL6p6P#-4)iP~B5ZD;Wx z_DQ;1VgI}XVFH>^OWy3!8a=W&68~baIaBe9O4(qlR>f9X`u^`sINh)b!_+(WW0vGu z=kP*rL1A4o#I;bU2myY#$Z)GrYuQDa z-V_Z_CyDB{s^UULOmc-|n-$xxWpX%9@kvu!C(IYn(FU?ffxhN|9e2A}+vV)DJ5x7R_He~IF%qONZIP`U8{!j*eLj|2}#m+_Gbu$WR! z<{ZYcQ;lNfM&om4< zm!LcOu?w3#ZonGN0q*3wO~G})qlU+a;zgYZ-*JhMG+8U!G**yPJ^QC=0b`HLZx7e3 zx6rwFdAtD+=L7mLrQ?e?aOJCeO8#Fy9uv8ECbxl^npI0Zn zUY4qn!P*pexTdk6m~^EaV;6(;1S$SbdpdAu#4)FSXrV1zZkk|$!@CtdDcgNPazLNO zJ(svS{7z6i>A`1Nk`=kCe)!l+?ZB_tMo2$nh4sQVztx4?2v2y16r*mZO>Hjv7Y)#T z3g|eFyn;YK$f^m{{P1uP`uE3kn-^$@=sVv&01FgxF|o&dV=s&IKw)>er~d%8#WUvH zQl!gnsT3-r_SLwe$V&ocuI`>g{!HH}KE_y51)DN->zCsW6rX!)3h5M>J88hiJ27fR z`%#915m}=`F3~+c^@}!O#NFSV-}GOI(FQ**#8}SDzM}VM24+gVZ!!7(!LbGhC--Ix zuT---KkJ8SlI}Ctxx9Bi>0^Qqd>{k3tgPdd4-owN%?pAJlEt3~pBZ?pIeNu#dM%R8 z{$zMt6ru4M-=xp_ab+<^%sbPhu)!+pP{eOm9#dY%f2Gx7=v0(oq0U;{R!2Og65glc zVX{D~2(us*4a$AiZI7t4GhlLc0`YV~C-8<{2OZf513(8IeF7KkX?C3`;t4t**8&R5 z%Uu>&*9rIC7H1iRv6%852j;8tA8DSs8p!Npl~4N)R~Z;3MK4gA_$J|Z!>q${=J@7xiATyeZlp*H9{_PRG1To#)X+!eK1-WlM@Coke(zVYGd7G@_^LmP-xIQO3Dpj>7Z7dTHvardJI^!EUZI&+m zzQ39^n8g>)$?xk7*ih^W+w>-W2u~prDhkQdg&6rqF2>`Wi6%@lnRcQt{ZUOyoUJ1x zPam5T*B`9;652tqPLE*`CyXDWGPRZSa7v{S@8yf%a{u5=m5e`@|HNj&A!e1cY=~y$ zIje%|`IlfPMO|T$vbviQ8lqlqXU;8r79axu|rrraDgA+(PpR|<~PdAWT~vCwoT4e zDRa4JdT&VX)40OgmdW$cGLV_)#;;!hd)lI7miUQgYEFo^;a+_9i4fW@N6H`UZlcYz zMQkPAsimk8&fExeAAsqJynTxRG9Us$zfTo6u;~^2FD_$!}&|Q%m~Szu_{PhmNpDuvUWH3lAcA3p`wn^-W|}b)C~# zWK_g)1b>{MCBS+tWnE*KTv$9(jM*-k@h;nU6+<)7e;+~`DOm1!bY`{3i2A`^ImMCXsT!nPJk zBX?AFrGDR@KX+Z>SZY;C%4p~|gUE$jnTJ~W7+<^TsKMMnISRRY4-CTeM<1+l*b@&5 zN*{!+5I$)-&5Lbn1bldsQi#43xW8%Pv0CN*K8^=LG)PxyJw7-Nj0V<=3NoaiSM50h z7|}7ne#pUk4$BqvN90LKAQOg7h5V9R*roO%uG7PAGG>`w*rAF-ZkMYQV5)+jB3GN73>8t45jk9xHb*grbaT)vV!kLh}o({?E{#vp#469h~WvdpQ4tgCn zwBj`GL2MdOE-1cNVgc$EBd;K4f%HSO~Re<-}-P02C4V5Sm!TMMORWrVK~A+*ECjpD^;w>{Ix;I zd+gu8Ah$bI5FpH#$5B3MUus$wUv@gr=>|cNU5Wl3gN22K!WzeKXQG%q!WW@&7TCtc zj8+JiIWF_=A1yzyBkL*4(zLAMKCO{r8k%huhYhOc=x(xJ?BRSz(|nc!w|$d~+YLji z3eis{@GcI)ZV_^(RZ+b+P4z;VB3EAFlu-G(MpK0|K*AyF1{e2y5C;pj+JMdMeZI`(uLciOg7<;YR+QMsDjk_Q4nYX(7*EdigSyWPS_6 zMEzoL;}sm)Q|M;}cjl{J%Tz3oEFP&jf!0qqTe+tp>M9^m_vnX-pw;8b-9y;mfITd^ zF5zrI5*ri}Ud%lcJ zJ3J}G{kFa|(<-%PEw${e2?jw*$CX2lK+!dY7F|i01m4NUT{F|IC{G)PcVpRKwYmr< zuP+f2+`~^3cgxikzdfjkx_&4~cy}nNo3HvZ#fiu_G4UA~G;Au3b8&JS03ODmHQ!hl zgoUcB2kq`!gp<6%0YL>)dMR~vTo4@tc+Q9b{||`s3rx9|n+`%lLw(15?zeqVZ_ex6 z@18C$MO03;NoHizN^hRh~Qohz8{Iy<-}(-^oN`F2i|=7 z%t)wK4?M)mpBMKUqGd>ZpVJat1RJ`V4>lk&98<3|&PtQ%%fSgyG^7@C!yaPAMbVo{ zk0=#rTh8*GM_hPmcmKe%_5!!C*iRPr$q)H=A-fwoO;h&jyL9Bb9fd|s8i0-k0~bl7 ztCKBggve#{BRDYd$rjhY44UH(1WW@!f``z~LdDz)KyTJb>FpJVR#O-OYp>%Ne-JQM zG}@o91WcR?=cRT~i-NJ_=#OpiGcwaV0^JBypj-}{3E&!WepWcLkFk`?Dop) ze?^L?I$TJiI4omp~X z6USDQJ?rZi3?)%?uvK$H>}z=)Z&^Su@A$X zFCN+&{to>{Y(-PScB_l>T)DIsJ#XB_Y)&Ian`qQ_x;L2Hi%$1b#nf?V7gVKIRc*Y# z#)O~mIvJ-l7|T#Ye;zN)m0Ih*xUVl!4dIHsd;(gSq$2O{-1qKxJ|5K0vDvK(m1@^x zfGO=`IOsQkv(UBotv&MPD0i*_7}6<#)dn8-5AT};xJdEOmKGLve_H>p_Y&KRa;1s^ zv)4+HX{O_KJ_Gj&%s#R}qXlFKUCHdm;Y;O(g&nc9(rm!$bgK>e2Eb_riKXq*2;ig^ zxl0@jjEweRAiRAMu?^fcIsnjlJj(kAv3TY2BK4kx;I$(9GKGxf;?HM+M*AM)#K==` zbQt()aC>s>;}Z!oxx54SxB!Az`kK@PEmz9;d`KYU@ z#T{teEGuWezw!%9Ztyp$a1#yJ9z)W(BTT$C~l^^ySr>3#woxG zdjh;cDlI%fc-dv|>$cB;z_kHX9DPq;|Aw_i#JV~|{QL`r=)Vie{Y<(q#w5xYoScXfFHM=)~NxnGpnwzpILud-h2poSs|z|{kJI+CU^vSOK?K6 zva&xQ`zbM>>zQ2rw-}9lTsht-JFhzl8%57WU$jl4Bs7S)J9k?SbNEeD3Ca z9>d+9Wf}n>-*lG$%fTtAaJIuNAPBkGW+wyhzB^MEH9BzY{)BGl1 zOrn8=LcOd~%iYD2o4dp_{0n`dd?RoU!BNNv@401gy<%?vX+qo-E0ae2Ef7zO4Y>!1VT0XzY4ydLJIvmvW0 zfrmE!Ya+~O4^NrtsCTs?yT*I*vR`nsPvT1kn?zNvMG% z39>a*Bm-(`8|DG*(-hYT<4F@Q@!z?Q4WzG?h6W3It?uSSVAG;6SUqEHIeH{;_gfwT z4w8JCRBNVzprB4`XlM&&asX_^$-Ld9gNFm$y$;Ck7#x9*-~!Q!d_j$81W0bsgagh1 z06+6prf9!L(}^3b|M5^#R8>uo&a4Awo-OG35DI(P`d1G+80gZSVqMTb-h=uKc}4ZO zGRg~`*Y&WboE6pI%s)GxhyRB^DUZQys#K) zRh{)UUj9RGU%gFLvefOMXqKE?u&DhHiyo7UJSn^(#L6OFUwkKfSs~-4XW#z@)!Sa~ zbQhyJod+bh&^i3NRLzI4v+XO*Sz}P9Yp?36MYmPOqU?!9L z`tt$UzuiD_c^ts%36GDD|G~p;h0-%m5)v85ZxjS^V?|S-rGiM#VgZ`xg zNcjc|Yqb46{xyGGR2ajf4zR@-(-e{sJN3!7@K~&4FA@_Ro#s`rZua6t=IX-Q-h`ko zp~@#*CItKx#a1VqNGdo%+^d^A*RSD^+BqC_dX#SAV|C5gWpa{k)rtb6BWjb0r-Ln( z5@G*T5v@)2Mtzl0BUZU#@Lw#X6!QOKA^p$8F3@2>AoRrKq;K}yAS1wSayzYrU=XLB zad=#qOb2L8?2dZ~jKBLn{?DWfVsJvcz2u%dplkk7Sel5MffiaA+poRTLNheP-9$MgQ`?Q#2?QyT5Ihf!U zn9>H)n)&1B+gCik;lB+E?0@MwtGP28+*VOTCJ;WHFFOj}X8<37BS9b}F(8H=ft!3) zTK^hHj{jWc2MEl{*56qR#nV2LCRg8{r%(&Y%kBE=Ka%HD$44B#f#Pn}jV&8l{FIuK zNd#{oL5y7%ed)IPy{3uArWwj<7iy}i?*VQY6V)*Jr`wOgR9iV-zm_f@7w97~`rnxr z-!D=S6aS2}Bu1P9z4nx8Kg^8x&(i(fr>=fGl?=n2XkhNm zI2T38PL-e0FS+-%EU&OsCg@07SuF$vq@n0v(5PL+3xs>KEpxE|a93_8B)dwXr9Bd# zia~MTc8^-?+bMFY+_)prWLyY~i=gIrOOEWwGWl7(_zPrQY^J3@G&$d?M8u0^$th?^ zNuTVKaEbnQm=Ght-{g5u+9VN4lZi<2*z8H?6GaMm`q5IHEke>nF=N%vT{tSazs^m@;*-|r>JioAR}^LwyJ=@B9ky{e$;0|AOrojilBJf4WgD?N@e z?j`a0xQM;D1R1!YoGx>JBFvxU!?86Kbg@BW5w{=_&H&Vpmp}iuB}tPeaZc(l^bqKW zr`om=sq49YwY!6Ee|gaDomEBDbftGM?ASf0Lh1=Gc^AYG{ncHGbx(P6PL807aylY? zco6i(3ka7EpZK&&rEe{$qD@U@o+w_JhUJVD-V5rWb*lHO6Ve}&Z9&_$0+y0q|s zdy#JLp0S8p2u1r_O|_755*`)2qM2ZkOO#NE%mV69MP1zp-opm!q$?`Pys=^RGOYl> zMO+0n4orge~<&4pyUXVipR{ z->z17%Ep@u1@43?$&yqbR~~syCE%V*)aXnLE)ZU2mg`0({a$?K^XA5|eht%P=Cd`U z|KC4?_Y>CNL~2P_#1%}e3D1@}jiqDdfA&)e??A^wCAcW_n&E{g1L0S*gUC7o&~5Cw zhNj;E#1R|2xQ3rkJgukKtY3cgO;=^1$s=j5xQLN2&Ug^9)r^W(b* zADgC+?Cii`%9-k!&xCNF_s5u_P=lWg-$M-+2vZpNi0al=oY7P2h}8&F>BW8AP^pnP zkpht4!s5PX-k%k;)GyNpoDlf*;H$6tqOo)U^qCzPTk}B%;NX33>=IK7UxGKD(i}^SF%2?M z{Hi=9mU(A=+3r??xMCZV(DQ5t(>LmU^~3fJU0B8v&RJG{jeVisn3aP@szL>Ej&Y#o zS2PFQtq8%-a=pc>B}V%Zga@p4Kr#UUR06w^S97ZnZ^HXDb!AiUPC`^dC8}90+LaqP z>=5aCy9x(*MSI!pT61Cda0u_aimRy;IvX;0%F-oXo!L5)sSqnT8?%L^y#W2%(5uJV+qUnEej0#Fix<0@Lx z!zz;CyNJi?#ewslcK0iezlOg9!t^mj8Cn6o3DqB+A}q7`*Rqe2xFaprQ$9F+IS{SQ zk~f?3efNMUkm!dlo=je30eGLb)%`b&r&2?=-8`7(@6f>oB4GGat-~X*>tmtn-LJpG zCO*+#^OD|Fss5o^FU7ll2orzwzathSPOY`XF1_)ZoDvu51L+>e{nSx3%TM7#`zwZ5 z?16q`BmCtkw9ayOl_fhfvScz*c_gsCW&KpC$|el)Ve)Qbia5Gh^vGN*hF|WZJAmZH{;GG|s5gO-!<(2?EGQjUTzlasdgHjAy{H3; z-Ud904~->ls4nR^7ec-=%`Jy2xvGc;mjVN8RsW6EdgIoOAyu?>bVM9V&OnssW>OSf z*aah#@LnwG+4Cqig=AGKCh;z#ip(}P7;+{EZP~nAF4yHnC*j5d9P& zk;=mk#V9~q@MI#Mv{S~#|14@BpDZV(T(;d_K|z(Q|1I=7l&aV2&4PE;!;=UNgbSob z>${eMlqkG{r)o#N1_{X1f*4KjvAAx*mXL2k(^C5Qo+8aSJ93gDZ<3I7HX@9r;~DHZ z@$@cHkaWjcla3K-_?dMh8Vyi}aovCpx9Ma2*lvLH|KC1407GXpPlSNGY7N!2Kc&CDC_rr6P zSutk6V1tFvCb8DOtbMa(O&gOT^MzE^IXi5&3Bg&`n$C?Y37-q2dRX_>-({@jY=Zi) zV_WdStyH)98R)AZBn0%YfzTvVqt1#5umdxk2qfWqgr8>)e@)NJof2l7VG!PX=H(>% zLZ<653N74bT?fOLNvlMA)Z5Ve3u|3?e;A{Ci>(7iAzy0_&q9syt;8IrH@TPS)g#m3 z>&|-fQ|yEK4?3C`e+V+2WH`LL?+C+`Q#`-Cstc==w~@&lENoH>-?pLBYP(tfV>Fh* zf4Q`B9|%g8T)@X385!AGZhj5w_PV@gq)**;Rx~#18)FWkFVz;AP<#ACDC*u|IBm)9 zPAv%K!fIdpHTB(cR1<g$?!#)VT`Yx)Tczqv=0P)t0o8=Ln>Te>Q!MTy^(~pS@`C zDktfoP@&A#tqQMpgRjLsZTg-iBzB{+kE{zIl6EHpblZ~`!1^EC^`{${wyuZxd${6V zzv)K5@#jDdFT>GUlif;~R>z57XZI`3PChv0O-Rd{PKB z-iNSVoml&4G5H}by0VjXKO)=G6V`B3+zZjT`}yO_<0q-1t639f z1WUo!x!Pn;W`?*$_h@i`e-!=uZl8zZ$6<1Vp~%$i6Fb}9rvaNiM*bcamX;7Mwi>T2 zH=unFD2N;2s#6hZ9Sj1+tUtc=XWwUu7Qu-2+_Atclc$S7dzLGqJa}3>K+_lf({CBk z1iM5OwKmc=8`5HQ9ICa^i?=k3&elP13Z1!dQty&TSL+Z*Y)d;$a55ydBd1Cm=WA>D z`DsG^AmSYaMcCh8Z6m;eVBn}JIo_wBSq5Zvr_NShRPaFT?}8WU3RS5h^1gZq+oHyL zqf%H1hEqhI4A>|CSzxI4AAk$a$*QXPkncOM|E<&Ilk z=F3ZWRWJLi4M+Q<>bsZ_&84`E@5H}Nj=F4P#e5&p_%m0Vjr9U#0uGKY&F&G@OM0H= zlJ}^p>jvP;aZ@gglKOSqp%;!?mghKRD|`%k!9$Xf_qY-{h3u^IY4SiuaVnFeSTQ0y zMdYKB$->H|U97D|)$;`1Z=uK~$nG3iD2B@%3m5ix(Y_={pWHn~z2?M1m?ujY+G0j` z>-!H__Xys*h5-dlFhq(5jXMrp7C@ns`8{0z(^1GI3z#Qhi;HfCAo{&DU4%`2rR5=c zqAu_3S4RqqF6ioU-PpaUb$^?VCXC*1#t_0+Yq*ciAnh-C!=Y#u%A{V2o`R`G@N{;8 zS_b32wrc+AO1%^8D~te$=}GQYJD1`mj7N8_kY`MbuK`?8d^c;0N7mbu!KoW zX-4ouF`E4z1a#+3toEPs@Nb1SdMd^HwyhSb*A)} zoe(q2<-zK@O;)+%2*Ge%*ZjMb*r?{<9MG|OL^p^wb!MKiO$!S&Mtc~^;3v+!o-P0q zp4U*i2jqnU=%1&9A2WhdUYg~Umtz1jC*d0h8a=nIgcc5KYilSy3c^@G*0I5l2K)Io zFAu$x{|q!J;s(I4tn6%fFr^=5JO!xW8Ze}h0Hcd>5FhfxVThR<0G@g&AX(YCI~W^` z$9o}E4CI9HCQ-A}^9&(ApoE@mQtu+Bm*EJXr-#i3;HOYU;J_GC^9$L=uxrrnl`y=s zWMGa(gVzYm#CCDyEk$J_YDx5utle`^Hnx<+)cueRRo`f4uyQSbHs3`c9tthv@61ax zALV$Tvhzg2Ne}E(RB~b7wbWlK%ce^&E($zE?I1o+?${7(dzuEhF>V*2E%!p~TZlFW z5FntC!xE1oi@+4Pq)>nVuP+zb$5nVJDGZ$Wkoz{E3db={fsqSvLoChcAQ=T75|l9MwGc+}Ul0O} zWmYEzAfn;VU!giXgVZo@{zJe;g%CMlJ%-8uOfn5GTom4sYeT-+i7G6L;=!;PnKHP-l zPken#^|`tB2s}Xj{}!vS@TfD82jK)jA31;o3<-T%T8>1(nrLd`0SNy(Fup;u<3!a_ zR`vsxF99@1s#;(ItcwUhl3L#_`St`33~dmAmIt~4L6PkD-^3(rPCE)9RK$4?%F}@| zx4A)mc+@9&j|~ZF0M{@Ayb4?gur;?|cAm>_Y$Spjyni_#1|V;(u(TBMAN?>;V+%r} zL{x-7O8=2(X=zn;y4p&RhHs4-K2}6fL~4l8po}p&;x<1}WcqwsG550~dHC~s$X@fS zD%m4_PC=pK1(D(^o=$Ny*(tZ8x|kW(MYHA77b#CW6R>_&a|B=KJZDWOoHeb-y85o_ zRU?+KCFW(KdRS?C@3yqL<OayM@%U*W}OEGC~19KPxp){`fU8m?7oK zYJNLrSF%m%xD)N{6Ff;%si_3c*^Y^n0JsW3cI15Z$`BB+8#xjZ5(wFi5CNM60S-8< zBVds6C9CIy{RiOj!30gfzT!xckwZr40JUQfaJN!_4{+T#l<07fN4d5(F_+bRG~-L7 z?%*`6iy`RY+qN7B&a?%lBxCW0R+~-w#$(~a#@9MyyJi#KKaxe2^$UG1Ot6S~y@e== zZ$RxI*8yW->PmRkY2p!QUvDMvwu8DmdFK*Jt09ENfrH(Zv2D0mW8MH-MrZ&6Cj?MF zxUBqq*f%RMC$P~4e*}&}{-C;~9|8wSLDmQmrEDgwE&T?gHt;ujOdAgeNo(eomTw_J zPM-u#aBf@T30)zD(WiZ!-#zDXZCT#Vx^B9<_ImGX+u`TjKFKP2rPS%y3?`A(2*Lst z+H~X0PK0k~^7~~jJu^R2l5lQUMwO78MhEjD3HslzJXSOmTM<(<#1_uLz!sgParh_) z+{Yjt2ACtNS47s6f6OSTr8zPc-O`OeCZ(;qAI{)kVhBLSx|7j14J6atK-uP?{?1G% zm#Y0nG%Nzk^aHZ8T)+_P{LDblwA}X`kKwTgeU(JreCdeQzmkcDU3sL6t%`>0`f!_? zu=y?DQk)#mV?J2iFQ;U(a+bhJUMFN0{`7c_2!jxQ4nF5ym49Smpu;_iiSneWZ>g($ zCS*8W+t~PqAO?)5dH~;Rd~z~}X`}tO|JJhW$_Qgu{S<&A0dmMN#QFL)0)4pN&2Tb1 z0wkYt1F?IjvjyK-VrF+L!h{rF;LdnrCUJ!reFto+Br=$}Ol~cVOvgJNJxN5Pj%9d$ zkguUhAUTVeJiS#!rFS~s^7Ay^ezF5^JywsjmC^huALP{raY^n$@t*7RaPPJULJx>w$({Cj~_4k%4#kZ8(ux z8yeQ?q=3l3ETHTIUpJ88cClb~I$2f*#P=bljmjNV5E>FFiT8zQ9oq5Byg`dOP#`3aDo=*BFpJNtaBFI zx2cQ7XWwdO2=ME|!a^+X+kzFJt08?mfCXjQuC(n;enlG+0ycOqkp2O!cyHr&Mi{8(k$`i95b(ipFop1PC?yTT%OQaa zm>n?bHsOK%gs}uofPO=d5D0o9*$MYvX?2C&TIUZCn6tD2`f?FfReVTI0%?dLamj02 zy>f8YeFxkP$WAcLb$>~l7#G6DFd zxnR-#7jZi=Q|pNt=9B-y+Is*s75(47AfTa#4gvxJ0@6W5n$(2eLXj@L3Q`0Vq#1*R z4gyjY2)&3jQ9uO(NL8drm)@iZiXxr2EJ?^OLM5G7Q>!|_Mhx3l%WU|Qh>w4UHRNvDtY z;1;E6nS>w$6XJ>8R~}Lkwi6Ii3Jl%8W7h%Vo196eAzC7XzH-U^NpJ57G*e31VBf`| z$k8ft(PZp$ot31?VaV8KoKILo-kE@;xFth~G(h|+ssoYFMt z`>*MB#>GkBA)4ezKfT36RkZ1%$IrldE2d3iI}5XL7+4YDShD@=`)34K>W58xRnUOi;a!IVX|2|mC$-vTjp^jef?wm@t85PQ z&2Es_g(G<0df)DAKR-YyYgmR=2+-rUn5v*-`EeALg3LSvt?c>#Ql0P}d8ju@=iUpl z7eKLGBV@>dDqVd1o8S#3z*t&O`dhX785Q`R#AVie@2SFd#P$XtJWv}r+223!?5)pf z*vG;Or0Co)7rbVQtlRH6O85TQQ!>lFyAS!w8YS1>*I57a*a~7U`cB-E>`p5r^1BU^ zod&r}90{VBGtTvT@W+$&Zj{q`a`#FC7PHQSfkZ@{`Mz5PVY6eoOSp6s>g{YIPX7!a zo&U;cod>S&4lpY>2?dW}=KIB&+CNXN$YBq%$nrQiWp8&%i?@825t}RK(b;%$q&Y*5 zs=^yT+fnw!g{(jTC8t$+7>9Fk+n8+9$}V#7TxpLx?v7h8C7OS6aD}NSrGhpIZ^CL zf7-xeQli(M(R$+IVhbd30&2ElM}FR6uKo+))Xex#K4hL)_q})To|t!4??YybfBJXW z{$x{Hog(438SHh5U@EzE$L=`W>y7S(SgP&>lCClZx9Qx$_>n4Nji4C+8V2alQz4!z zeBf^r#wey@Qj;(XQ>EKO@>zlH(%GWIcNQ&~k&XJivoe?By`-|WIqRf6%tAsFHF7L{ z&=sbZvxr?a*_Y*C5AKunbov6;p)c5?g_Om?8m}#LIZ9PA$qC}O;57P;*S{y} z2bjW@9$UZz)FxJGruK{Ab)ma|NZFh$t)=viym2C7#DlI+B|Nx{+-{;ydJc2(&3nXT z>I1WZL_{Dc2?ut)3*57RMGinZp|u?dio5BrLW}LWLU}^_Mc>TF*_}B4cn{qH_w=S6 z&t&oH=q5nTse2is9%{lul#5+_MwW}w$*In^8RUv%k=J$y-dQ363)q7`W!Fcic55j zj3zG}zO~R0*@L7kAO>{hezF|aC-(=VJ?5nTFtwwn!OOwD;2lPIgJEzVc^XLY{@7O&lyP{ND z9}_XovSQn^su>k{iz8=eVy^MdxXm{&c+C5UNj^fGQp%kt#8DM}4O125_-LA;BCKcMJ5pN{%`czDo__q3N9yN6 zx4&ri8!saWlY}uCQs6}L(^;NX3Ky2m) z{+UQx`*u}=8NRbnehlw*~E38fQ>-rvBw^-3AuAlnA1WOhuufM z%axwp2*xpc_Nd6+N)f>pD=N5yv`d-D(TSx>WXnG3cD(bvWjRyI9j$c-gaCYka=zk}g8iGZHz|e)B2R6c+;_P) zix}qu`+Ri5#_U=f@$nG^CZHzNi-W7XP)d&-nbae-FmUNVW9n z!Uf0zT0l-!gacsq@8?fcjk_okjq+&PHdsV`e$gIb4x<&Hez8q!$u}E_vtXolJ!js& zl;mAPtr`*7WoB0?V#P7mjCkPy(*aOOGSXNY_6dHk3SlN4ZAeA}{8(Qrh{L&$_YJ-G?G+>= zAE)xCXEh|U?T1-V$JI3U)4dT&@1SOu`T?_^sP|R7)K70E+!41|Y07UooBQ2p4BH0V zCyz&s4(7Sur6MO~tZ&+T@V==oh{tl$c+IcZ6nOK#QZmuw#mi(}_L{1vOY>8#SVY#` z_2*}K$z)K+@E(F;>V5}Z-6=UZO8VMQ8{KOTi=!Zkhl-VIq7g%Y#wWoWX?uZN)n*{= zHB@FMc(PXXeM;JBWgJC)KS`K))fdy#XOFEoO#kd+=#UO4eX>fQ@jKo7+w>)NnDs6` zq5ca=B7FmApN=s|wM<)aHqCum>0rqMZPT~;b&+qwqolej$eHOoJh+Q*kr%GlEOuIX zGFHyX^^B+DJ0#84@9ti>Y3UawBFZX`MP_2JrS3n5#nD95t#%txII!D1=nh2rj>sUC z9MYl8ws%fio6dz8!9(?&{?Qv!ssoL^KS&pHro#TY4ys8U(Ve~=d=E6Y@{)67P-jJAEszv$xDJ*t(ROG?A^pk-g(Fv7Xm{UA zBioGtS5xzF2g`?2;QAFb{9>E^Oz(36P9FTX7IQTT&}Rox)HnK1TkXvQ7!DvXe(t?Cy4w1|PY8$I52Z6} z1w3E#2+bh}+yr*-LEz8hRVM)O%_+RilVbS>QCb>!VOIFNz4C8zqaC9UR@N|)Ut z8Ti$2Em%P|H)O85ZF=Z$ToPnxt{}fB^fu$^`mCa8?3#NazL8BH0^?b)yDUJA>p)>O z1<)2OoX_+xk`IMn#>y9Bdav_VL{oV%1gv2D=bnh@h*Zo43*F%QO6+}n*?l}r;*h8N zPhkyH9Q?Sbxpy8@(<@oJN6}(XtO4}{sph-Jjv2oGLuOai!6b>eKNrq|nT|KZD1tw`n$nRVLXc8aZdL6Cz__~V_ zmai-u9TwZ^?EU!mgg3$AquOOfi9i3KQMq}nKYC^#Tf zIp^5~Mt=NOjI`Za9FxcAZ;_eKE)ccLdECNwwj#XoWOxlhfm8KbZ{_dW4;3j|YkrUg z6IL1%eTVkbx-_DcX?|(+TMi@Je(zU%&FTWk=vz3%A7{S!QdzMu#*kK9XXWISF_O_0 zxvN^gKqy6$Hq-h5GNpYZeT8vV;8TiurXZPdhz!i8^~IzqR5sy@RYi+q9L**E#QA3l zp9Q0j>Bdox%qE7uGtJziA2e3{0(m0!BUBobd~D94HX0+7VU2Q+u(#VqcBwb*qa<3X zR76k<>b}SFuCcZZBH;cJ?gEmnX_dCHcr#cPx7aUrxFn9TtNBe+xe+I&>W4d(r+gadN=a zeyZItzF`p-;fJ*!KjWC@vKVIAvMIiIk7-DzL2La74}y5*U0F>v46P-{_oSaHrx#H` zTHcGSLXi4d=na=mjjEG&q)Y6_`2Wbdj-p%;)ZeJP7qgKNG;oZ%ve8J$3?a1)TCvC-)lOFN~yH{QT$YgKGP0cT2 zeA79j$GQ<#~N$)lm6Yl}io&q{NxF zh5Em5S#m_9AiZT&8)B*Vj}fBl==dnFMUK|buk83R{AKVxoqH7hM;cHhBxXT&=y|3K z!*}Cde~K*DKZD(&e~Tvhot^A=)e@yC9dm+}!Yy;!pbmz~KbPK+@73QseWqqobfZu^ zu!q0#%;8%zAH*pEIte@Y3y&LCk~oj8(^|*We7VB&i=w}*;sOoFmkbjX!VS)Fxrh#% zW)ctBAS{&5Ob+|ij-%sF@h{r~VDCS7usk#7bTmI+S@e)K#ED`24Y?fEBu@k%To-Ps zW<9EyFq7h`3LW8~e252<5E4qmBbm$C_;FCnb&cXfcvp-rf1AsD7%c{Aq=f0zB zq0QCnF>3Fgl#d6^W(cPl8sV=X!ljM>(9yl_F{Spj3i~2Iv0f=2ssEHj7yhL@k#cCI zOa(GsWL%iaghBwbfP>nny<{&|E9h~Vm;q7*tB(ztO%T;4!%r-YtQJ-XCn`k}yMW${h~c$Ub_Nt1&{4H~%< z4w`Sga=;1S34FA*p@;q=b{{y{Z`?(wt3US7`EPCD59S|TBDB_N_ zkYK=LF`5ul0)xX2;C+(}+Ohx~i%_2cZyx|AC5&+VK(20)Ff;`c(9dY)6XN?bewx*K zK;a=!*nl`h(A@~y4}lK{h7AfF#Q~^=^tw^QOrVzmW})-_9|(}D`Xn>_J|VH?LAh8^ zN$MjE{^>W1ngZ>X6W8GFGFP?wo)^<>zj?L2;3LRy8l$IQP*lu%)`+F9^F-%v*W?Vp z^#;t3<9qwDt2HpK;USe*-M9W&-ayIeeRGgFEU3k&zR|4dw>3A1A` z8n{42_zg%{|Kq~3x#gm264rtNuR;-a31V7vV8{QTmbvmP{kmJ9zQnO(z!HP}RTF{Ug&u8YDbr~}?`7oAxn3{Q}fw~N@8nXlUYnr>0qRvcvbE>uB z0>GBn!kncC7tkP{2Y4ZZMG?5AG1CN)1dx>gmMGw^rHc!{Mm%fEv@7tR%7Xrm+gV@< zfMmCz`NyJd5RfzVYwZGNb3z*uP{De>{znA67)hAm0-XXFly9J^bT@b;Iaug|e|vT1 z|3sRMnqN{IC481*?#9DrZ>~Qr%$Z&8O>d&N7p1k1 zu6)zTj!#a=95rCyDEp&?Px>86i1$!sj2M0K;fb^vjcM2(eLjj zHSd6Y>h9_J^ezbz`1XSPLB`5|lORKsn+SjbxVojr_&x|!5kPb&N8_y@0S@b*A!P1s zdya?*#0Cbw@@`O0j~fFU#0=*BysVKLPAI-m@-k1~&Wk!xlXD4sK5R$qq9Ee+r}3A^ zo`t*JPoXqPy?&`r*kuGRjA)E%btKSi>#GWkWI-D84PSXVL`>9e(Va<|nP%F4L_`Na z#0XxOgsMUImiYQcRwH@oLWw}qOX$bSfP_?7& zQ%7wF-aXJces*x3L2rBuU?8Nvj=q;Jfw(0J5eU%Uo@B8+EmjHf8P{R!?%jF(F5dAx z{8OA1k-({QrTujOYnPEHpA8e{#aDO#D#WrpoY-=-X}mz+-kUmg-+o=b8+S?kMexamD59SU+>9|7NrKp}kx=!W3?x(L!Ed6m&gL^u8;%Vkh7vKhoO z4&+kUP_y9DkkN;C(i(2cFeTH>zJj-=AEHck0t3*{rx`&VPnf_ z6c!Tl_n0BjS_l-CwcL9K)i2!g!k8~*vS$)RJD@&;8Spi>F&tQaPmAXH3UZe(vi?Q! zVUYq3L0P_PwrF(bw`U2AEwJ7USH5pS<@EapTH6zu0eUW8tHvR6Ijp5>_meBD=(Izu zf_E~~LOUj46hW;`!|4U8o@+2R2 z{($AeLe$7my>Uj;--K=Y+;MyZ?UpOvPck^5*9wk!K^u3rzI(jp8G2g%@h4VM)KU2L zGa^cSqDz`1_tPD@o{ZHAc9EMt*}qj?o+qy`Gl<@(b$E+TBCXt_1JC>qvDcT2jVOgM zX0w!U<@RZ>9KXf8*eU{sI9~M4%+vl8Lh@H}w~Zv&g}`I-lF2!K2= zM^32OJz@zto=vfLDDulJYLcRObImlIY#%#y>I`1U>le+m?uS;0`>uR^d6FE54!CJpSQ-xnnIkfDK3ZHpc}TID&? z)rt9vS|FWDvrCsNsM}8N8wa2qEJ<*aHB@l4vR1@l$ji>!jYx*)PKbV-qVn_+=JZU^ zpE3usz=6Zol=+;^)t$6c@NC^shk6t%>M36Bn2Z|o`(XPrV#3#{k*k?9?~A(E!`IS! z7j}#rIPR;$m9JJ<_$@feOwRfUxLY@Gn|8;47G}T2{TBLcjQTQ#!(^^73vOL&R{YDC zBoTIzN#{0MiJ#0>1@%%!**}{dDC03hrMDQdu5zWuVU$V^=X+1;|e18@8eMGiYk-` zO#hTZ%8)1Vto~H0vH0g2+gFTy+stwM8~$IbQ$;9~WyY~jd;NRl$J?=(n)R0)CrZ6z zlF3kbELpQ>X@a!v_e6*EyQ2BF=;?+U(V@+ofpm^tS+adG{)|_}3?}SvrzxwOWm|Gy zRlHer<-5-$pITMF>eizDP%+ABdheXcIVpL&bXY(nq~rPL8&w`{JJDV=S5%AW=sP6y zn|F~88NNK7xLw+5FCj0(03iN#65s4};C;6&3=a+1v6A5NRm>Ozkr$sf0<{x=iG!ZcDJ$cO?WG08Ui&Q&|CJU?E z)||!2cXa#9i70mZVa@12u4r2j=enA9OL4gv#wF8=U{77@GU6xfvu~;`Qr>#+Zy99- ziMxH!&eZ_FDsmm=fYwr2W-}oFDBg_CYCCgqUE)4-X!V+Xi&X?!KXgGfYw|Jn`9U+8 zckLgBE?pbtp$4q>i?WlyaMq%mEU**(oCnxo=d~-T?0%@Vz)5z-eTc2n{c@=5G*j{E zyueQRkpRdDAtY7I7g=jR_)ggnU-uZp+vr7o9~7zmLtDRn*%I!YbVw!25XxnVdp8m1 z4~2ezOr6C3kePE_YYrbznjf&mj!jb)Nk5E zar=WR$^n-NZojT+Px0H(jf&AB)|nuVw$)#t9^;YDq_t(V6||}to(eso6G_i|C)ph1 zss=s=Yj<{K$W5j(f>Bw$eAm-&;*B6Izg5!>^!FF3EsG^JqiB)4JP;s$klP0u)6xyU zPN1n=HRAiu^^C$XCr0cUo#RlKoanQQ^gW2F+MDpgfnE+R=q0(G4H0WxV$5y2(mir^ ztkHLjT&sAUxl+zn4opZ7+C{*qPLf02Gr$1lDSjpfRnOD z-Q(u>R9U!})}|i^)1wzXF|NcLu4KQ~cvH(HT1DNW1hFdYh$!M1!-;cX!QHO>E+<)i z<2M~bFKwJn5{dB4FtV?xbRi}wkC=d^)aX=|zqoRdzO%VI1*||176!h=Z>m>%oc*q! zHQ&3N4}c_sApTtcM`u=wZ&8HMscx+UF-B8RDf`hX$iKJ8^Xvd-B7fbEl-@wd}%Z!z?E97+fw#LHA^`5u`xrZ zcEj`Rh6ka)Gnm>gTU}{jmE~Oh<{BD%9%(E!?Q7HSSWbxu-?h9(PVmi-Hj}u<4HnWHk_dG0Tw|l?q z?H9U&PC)w9N`0rC4zKq9X1#F|N8GB{X!7jf7}bZ9{N%CLM|NJiVq8W!H^5BiA$J?S zD)ua~rB}OOS@S0>^NkJ!Q&Z7rV>+=@Gyre+5v+*+d!4o9UYs$M>&f&?TQuhwl2Q4) zEN{AO9Ybkvlt@6u^~9PXz&Je@NhA*p$@3}%UIo|Iokd5Ww(+y zD)_}rt=PjXGFmQgGspt3+4BU9@0E8f7A)zj$DMiCCSA^2)2uTERoC4U$;~`yPbq5R$cA8+#ehq)Q> zwk?ZVW^M&7s;0#fLIY?0agL}wK8Af~wF%PHh5^zP=Dw}1G#Yd+tD0d6gR@`qf*Mr# zhA~FYi%fEkwt#z8_?IXnE}S*me&DJC9d{(g?>B;uKge(E$xDH|bj1vLebmSv|ASxn z`ihM*=qkLg+`xovO*0&wD{_x)?!%mbI*-V)QX%7qXx;-ThSs(?j!hFSI}oEAbT+OL zeOMpbBOJ`FDzXt>CPiFrcf;C%u~35M7dsvDBQEhNGUX}{HuH7g&>a;Hv;|!8r7^lz z$(E~i?_^mPPQNA2LhkUD^aIB`&52i$;5??y>&4wMZ-TDUSjcD46+`s%g<-hdd05Vl z>jj1L0e3Y{>n3}r2({<#VjR;YcIof9y5aS`Q@6JH?6O*Esm?xR-R9_X@P97a=#&}c zg#4n%h!;yQorLaSI+;^`OR7Lo zs+vKy3MD$+Pw5<4_Qmj-4Dq zpY;kGXW3pc2ltGc5Jd=yYE`x#iwd-I>P;VVz_2dWtnXG2beYfYbLysP(J8u@@|BnrnTsk{0DBLn#^)<^0v0*1 zHc<@OhyDBF62Mz$NNs1EE9Q2Mv4X}OFy`pG<45&3lCJCL}dXSyqlhi9a ziNH*bAZ~xFE0eHp>dEQXPjiZrILE|AZ18tVU;adKyM#-wRbt6nCVabrG?tX1>!NLp zF4-iL%4%GKptExkyP3K0qd}fVNbUI>1DATHE4%|SdAQD~FHxpcF^)G;$c{aboRz12 z%xCgg4`S`|YW^74X9d!gw@&=mECU$aTwHdieO~vb?XmOOv@MOWniz(OD1TlwukKitobR2nt-47po4=*wuL?OSA zm`2>&oVb^$t^5?)7EL(vhE?X@2oHRq)m07v9E?z?M}Ud?H+b{r{|1ie<|{p2T}ohP z2Sk1F^X1EzNMP7rOAiJN9^b>2j6whfSpQnda<^%PnFEZxUJZb`oup$Yga8*SN;SX( zuPgPSZqxQ{0W6XgvdBH_;7#M0bCHzJ@p(k%cC;W%n8AZSDg7QH8E7Y8>^GDSdSZ0~ z@{l9F(1_+v%KT2uOH55GafFiG>foPi8oP~<#yJp$|1B6GQx;?~%7VgJ)MdpRAKj!U zeBNo`;wQ>G=oA1?Q?!ur!RHDrz)s&yLaP}0XLGy|m~sm>67Vl>KJ<6F%+6j5%%KEF zK7glk05oJ=tyA~n?!wYe>i=Oof0Dg3dWo+E!{b0!`v)W6dO;gAG1ob^GT$lVkm-W1 zV!#-FacXx~2*=qr#n`v$LD=2gA`y^HAxB{+Tzlw8NEVcNJ83<@)Qn$NOz()1o*s`V zH(uap+^G8Rq#iIs!~@eU!S@O#B{cKyjBiUyE`o`o_}zCuH2@jo_m6Mvlq_PM08T?q zM98siY;M*9t}CHu_SO6S%NJ=lumqzkD5fQfB>V;#)gJ&X2q8^15AtsRDBlFYKX?@) z0?~U3INj6%n-65*5~Ht#K(4tCw1Kpbk)Ooe%QdxLrgRb5?X zuzc>{!~`?u79q?p4&?}0WC{zOPsG2%Gf&2Ep(zu-JEu8?F?zc`{jO#7+}7@(FO*cM zGd*AQFC|KHj`i)qkJ#YzrM6pC?70`e(m8xkJ#%eVzr<0#A@W?XRQ}U$kW>CHzu&em zDOrIlDr$?|@Tu;^@&v_0syB^|u#v(`b(Srg1reOK6#2SkSC;pPBm0Rr&!ENHo}a7# z(-px0(jd>RZ&_N#(D7>6f6Bg2^sh1De;@?q+hl<*T>=ddBSDl4{IOv2AM8SCl3>6S zfes8-P+fwz}*GpC5vrq7)*olvg7*>Se_+tsGOnj zsvZ}`LvxC%zij1J?zGOlWLOEmX7uCu75?L$$|KAA8y}l8Jj*Z=c`qNuQGngPF1$WW zV5Fz@iyu9}%m`SRY8a)33##=5~ger;A zxl+TtcT%AWH$#4_fWJv|IcYtWQUuu_cW>`c#|MZoDM@DSC$l!(S5$MyeKgS)r4BFQ zW8aTD{`T)!lPWpp`7?KUycJ~ljzLm_Cg71(f_0=u>)pp(!E#n>_ z(yIG&@MR}Kkj3~ua%KC{i!~2X@=!KZFpEp5W=xeb2#0;vpXzs(0_7ot)?CLi{AGS$ z=F>l=kUOScq`KKDqiVYu6Ic;`h+yTv*k{f-LYBSj$B!ZY@#L!pgi;Z&$-NKROT5Vb zYl}{%QHl<|jdqph!5VX4HyO~VJftT~A;Jc-ALd^(;Va5~tMgP(nd{D;jVQD@;rR-g zk}AEd2+ZGqA`d`9fj}I(Ml{vS>K{UHHh8VT`psQJa+5&hbp#7>%n2n@v`R768WBOz zSU^yz$>qNwHve*c{|#cZnm!3~$G~U)RQMW5+<^1^-7cQ8Ns0hUt()|^odtSV2z;9+ zDZ&5=OxwY~dn&vK(5|bT+=M>@9Vmc#C@>S<*QXP(GkbG~7nY8e)i|%2S(>^t-Md{zmJezJmgMvVlO*nU58&ZUcE<4B*Hu0?#bN z?8BX#1Xm)DCj5P8w!S0Ca1zq37l{s*1(ah5*3DFcv;yMz%quyQJa^qxGy{Z5dlA`7qS4T3O$O~4TH z;Pd?tk3kIKyoHOX(mI7w&YmN}n8nftY!yC0*^ zg>2G@dUZ1}*&Eikl+TL6=?;s?+a7iGXGvryu%!0QHGEDI?&-@9>8dNQeAK$;I+rUF zPq8VbRddcl#zs}Q@D}DJ6T|PDr@u%Ee)+FeCPK+90y-I-R1s5rIb(n-tw5mYxr1m< zOOWQE9JpMAJb=w3AgzGf4uCr@j}I!xtCDaMNly80X&D0P68(q*T*ETB!Z*=V0VGgnE|SEvcWD`<30oMo$LlFYv8yjC_=v)HoZFsvp-jVzMyqPv~zn5W*nTH84 z(+FvWoqb}VBL|MSa_Bz!274k3lEDCHd-=e|WkhN_Pb_DQkZ~X+6j)jh$OwI)AP_-- zfdc`D|0;&Ktu`KY4fJEKu+Iny2@#sF26E+0tV${>D8MR+5JL;&K&F%sL`e^m11s(4 za;l+FKjEVfDjiqV>9I~NXgRaI<#jg~q^PJENcF1|=sP{WC!o_hSYmeg^$;8IvNhLZ z^}+e+6ZrsW-tW^7bu2X%6;9~4wzDOnOhPUgo7XCCJPlMMvmDUbvHF@Fem3WVAL0!t9oImJ(3m07PymZ&|B4tBm` zK|&c>9+CMz2)otmbx%VM>k>P4-s*s{_*)`|%Gb*B#&_xt&^x6~l+NI~U{A9pxm;)Z ze=6ukL7%-Jo=|~o&d-H8EHkVg_iJ7@c2Dx{av+N42oKHh27Lb8%w_*&vWJ7ioR&x6 zNJUyU3ekzxd1U2p5+t_|KNEcB3HVF!j%!2ycm`~YlAGHGrc32p4t();Y~rE(-UoZ7 zgkG1hdtO0d`zI1c(J#YCxu=7h4985^buy3ehnH2*TmLLVIi_+l{TcDuVnu1hgqHn?;+T0j_#RVuLMW5WeI$TFKK>OL(}z1eN_s6(gcH z5aoaR;nyu?&WgSiYvx`~R}l|F@H&9c&lTT;Z8FXem{G?C@&pY`XT8HY9Gq zN^Hn##aOA`;iKiGl7%)%^n}b(@@sFkOUgtSu0zckKmJy;Fz9r#L?r|_g>qG2dq{4V zPpmaai|JPjxf_H2ANqL+f)IgWNzjMDo#~#G zc5d)$mPMU2d1PT@)c;x(iY!b$`mb`H|5=iY&wR()=Y166>H=gVJkVbWEpT3-6b>AG zGNSk^H!p*dCSYtJxgCD!qPRD3?d^8sw1mfSkqzdAfRzPH?H}P({ra?c1{&!z%Xn)2uK|by>A?0eT2IL-0m0W)@HEa;Ytpc z61Rjg!3QmVCU-DJBr72UUF|qzoG*wMEK4a9D)wjZw6ifJC`;y2tzNLMknsxamTkTZo$pe3h0&)AYuID8TR-rbn8(&OhKVFp@7hn! zk(?>y+Q2C|mwRqK?j!a^BnfhSdi^JPw+QBOE-ikQ?Tk9|GwA<1gtmS4&2!5XG+3vy z(;y8|;Ea3ZqQ+=JZgsOo?@ktUlK+8EKKBTwN2b6(dA%ySFFZRW=K2_U>$#ut562n{ zpNj_rY}zivyX2dct9iRDTX7qgDq47`1u@=7ujuhjI$@@(PV77bRM|bxmT0rq)uAhD z!FCJAS}=zDUc(!t&`t+(5$q%dX}$GCZ6jT0xE&(JW&en2LU-U+pG;2*hFi?d&Top$ z4_eEfA(*IUb9Jt+ybf8zh1!rlpL6ODRFmyt;J*c7*`kerp>F<>qQe`-*)w_2cXlnZ z!DCZ@y{qVofB8TQbgsq7kQ9{U7?qB^tm_?lL?&rXevJpo!UIr9Uad_VU&FpS$hM2c z2-?ZTElQ`XzWH(Zwg$1=+HpY_k?dZxmD`Q+?4WSipTR%GOiB&k7?`AR_`I~WLqdrR zBga9Tv%3%|ifAHGJkx=Rxub%)rW#sRm!AbcINSZYhg!7Z#nmLordbI@{)%HRMFy1E z5|R86rHka&#b}WpN5skVR%9}z=zWBk@KjA*Y7IHJOEJS+K<$3Oze`eEJCuaY)}(6UHEq`8MlUox3O<%!^Lp@!V(? z^J-G9ID0Gt%EjwN<7me4h*YxGu8K=tqW1Hgjad{VVf8ahmymev-GMk2#?lp8@#{8; zcdS0}3e$OArgjx}Ti|WK5K#lj4i#)eO=3Q14rw)uQmbH|0da*V!aQ3cXPT^u2%tyg z1>}f1*d0M2B)+ue8TRvhn3mz%@)g$|pt9MoR1v7cR zcYo)LFXY*Jpz-thga#(?76iO%_SmDF;*fW*ad15wO4xYRc?3WSaYtoqt6v0{@Y^nP z(Vu*O8kuGanypi$b0YJ&_|Rb z6OJu9J0^%xl15XK5-lBLe`TSzoWA``is3<2UjXLMrM*u*FMgF}JLHU5@t)|IF{~b> zCc$7^yvIsjKX}qonaOdTf!Q-Q< zko7M=8D1;sVK@k;#2GqcT>sk2ZfE| zh5Y_y=SH6`g9||~=!1+BWs-## z18>p3u3GXsUCmRng7>#T4nvQyG6ik#>4zs_r9s+)j6+pnyBAKQx;1Y1g~eKR zfZhm7as-bjt8GnY=?vF&W~yh{tf=sJOn;?QQaKq0W++CfzrGE{I!;$+M+sgW=83m_ zx}LOkKeMq`o1&e^`DU-qVI38hwE|`fj*@KB``e)LmG5DMsHct~;Q*O^t1G?tWDN5B zbfTzN8sdP)UY74D#WWm56L(Oy>OYAgO5M;)37*H4512k9kKolmy51<1>cs$a7*ry2 zJ>GIgKNrb{ZxX2wzgUz`-l-D1EgXFZFMqcobum&c4_(fw_B$teAjFK^VQ6r!!4l3B z6;8iKU+FROtT%|!%mP7!`Y1FuIzQNzfvG)m*s$`~rRfO@HA)AjZ1Of$UVP{rQvaxE zdqpfdG0aA_-47jA?TggH1(Bz-s9@IVP9?p5L8CuO6Z#1w(dG-?<{%XsgYc*P+?+rTw(%-yvqx*h`ENo!z zPn-~wbO}Sc>h@O=4+c=3c0B-7l014G?G2{dR?umCpaVbQJHsm?Snet7h-kIKD-23a zCQBZiehRr<+!TWx^g$-S%9PcxU?;Wze#uqx4@p0%M8sP8?r_Ds!!0S!(0W`of}So> z;vVU=7b8JKC$7^jN^6+lC(?XI{sJSypgH}e=yqyxG&Gp)!USBew$Y$QI5;kLKxu)u z&hnst;&W;OZrzVRGC^pJ^FGY^hCjV9hBksK)~iXT*>vok)~lobcuY-C314NV<&Q{C1V`wu&}KDNCu6ecKFW)x#O5MY4?_ZNBKjbZ--X_5?ri8LiS9jGN$=%=M224RNEM zM5-bc!y3@zmC4m&bml7y_yHLk>&c3$NzKm>8qY#2qbn3*wQAiZoS)mXGr#0@;9$+b zjbAT-wNPndv*gvnhgQIdYz|@qfCO~N}GcnTve_r?!LK4)kLbOsN zSh1SWM z=h=)c0}FGoQ@(L>X0r^*uz5o51s~@$De+3noHOOyM~1ncGf`)`pBJY%eu&g=$lTF` z3U>{CUOp2(vgPARejH0>GW1>Nq&fHJPUnRJE1FD03`vm!3xaenqVl8N7?R;H+89!K zSAJ6GppQ*2oKp2k9yeBPeT|;MtKk}?dEIy7=y9@)>Xvz_deP~G)+Sv;f1XA6{op@`a&^s8N_w~=06?ngUNg@*q<99#8Lc{b5TV*zp zqz$SEnH#^kZJqqUl_eoC{n}<>oyM*$Q7kVI{88$Tvaa}pha;<87h#N@;Ws5%IvXvf z;QRCwjsJ7!E6*kh%?lIzaHH1)s|t){UZ>|QMFs>9*%;&z^j5)fteyyc7aVhSP=byh zlr{2|xr=%NN>#coM0Lxj`i>e#5bQqu&&cgk1#9OV+WjX<6@nPPhR5zd7G>{ISsw&riJ36ie?|LVDE3RO^g;jK0#z$a_mM%{`Mi z=5V(DQG(J|p{-d@rrGc?ThQ5zn_4SuSMj58ur-fdOr-eFPR`~6UMnmuvz4e9;YS5- zAK7t&KZhDQ5HVqD69NzV{lB=sZGHLKdSL%i0&`)-y|epw>7@e7AK)>=Hh+=G%pk;l z(JCSt>bTfvmK65fxztx7s!u-4UZ!Gv4!vdZme_q()}2iW5X4ZiV4d(3r#W2k<;I#} zcIoOPa=2sZ+1+w?g=@0Nx-~ONG-4mSD>Y8bzoa30`1jX%SWLRws6)DZtZ}9Won)e} zRvc-(r)#EXQ}HR!K!OWB$|1GwjWHw#Y6R)`l`GNk;g)9X)TUTa?^Y7qY7j|UV z?z!B)WCcmRi57HOUl&u=Gqlo1q!fo;le@|#A8^9!cz%Yiq-serGuw#QR2AC_CHnrQ z;N9T%$m!3l+>>ZkC;mv`Qrt2cDe1ysvFtu!9xn0}sr{ONv2QO=p$&g>Gw zJV2w_7Fr?C#g$Yclz(R&|NKkXFilHD9c_}A9n#K!ygE3LvwS1>#z(FnKBXtsq0V!8 zSG7Z#aO&LtJOeV9Q?ILGQmS2A4;tJ|uR2;;SrOD}FhmAFpowN{_Puoz$XR5{-GdY4 zZvc=6pqoWt4(=5m85?_2Zc>Ufe|4LH#UTLW!C-nV9n69s`T}{S5DYtH2>|=4!-(^p z^M&j?)v94(HvxJ?5}<)jfXkM7-);6?u&Yqx=hpUspAIQ=XLh zO0KZI01jyaD-H1H{?l^}$V3DYW7r#X8pHwJgaEZCyxE^V=lebcq#eO&eD_;3F%dxr z5BP3O(7_26i3IvT0c!`s7Ajy6|DWcBj1Ry0sX*a^^6}&##ndDKm=S1jgnlvt1g_qd znozAx&{F_jq&NL|?9GQLFjBS$2Z&IU4d77(T_>X>O-M*_aPR34L^)9CV!^lMrArCK z<0}=_`2vM}vu|Bu>wIJw223#z6gh%E${)W$ZNO25jY*@2kgv6YxYIHHwEM+u`qH^# zI^xZDh24581!W{f=tNbKw-{50o%@MS)oEV{9+l<_cFRI1b8yxkl#JrIiLQo_Rc(-%D3(N8(TISwpme`hhz+yV@D`M+gu_;{3wKsDM@G} zQ!-^pGziI1h76TV$&evaGEbR@kRhJq)NkGQTF<(l_1^dU{_+0vv|1|}w(~mod7jsC z9mnzge$Jci`#m*r6O(yzbx39dbAv5+HX{800{O zpY~?jE#&21k-w$bz~5VvKe702(cHSw%!3V@SFhiA;4w5M`=}?3UpwNil)vgq;ywLe z`SB*9T2e;r1QRcYdg+|EbfcV{?5zDyqE7)ic4;doJ6qMp#%5r>BgZTh{FtD6;|v8! zPEd$I@tfdM@=qf>@85sB*xdn|Cmk%2_kb8*s&D`L)e`*bkX8R})fzU-s?B;hO5~jbp~o^q=cMxk_DS|G9ELBwyNIIX|+#*MI8?;QcXOS>OARK6Qjd)A>l-x24m=v_NTnoaceefyO}El zZ0qMMmR^-6an)o>$ImjibJJJ(tcFZA@o$?%aD9HzICw=OoLH)$wOOR3 zQX|Af=u$grAAt)M(Bow1-Kjrl6QKS8XIllxzl5gFgM%a{H7za8B6-}qa`fot^=L<} z`Z}-C7-M7rHUL$-D!_2LevV+5^@rl$=A`kvO0ZVmi}}^v>>I>+G6=cG@Y*NC^AFzA zm0Vqz6s;^ox;@V#Va`K1QL-1uA7c3JK(JNcRm-+w5xs^7;%|sz)r*<uG(;iYqBlJ!GkKJzhKner^8PgiHO?}cEmENA z$0%0-87hRFN*Vlzs7LFa@9$juHoj?q%2<2{_fS*(+A{D|D4iwOp{&y1y9jmtUTLuA z1iMiTocfDtAEAOT1Lc!9zsJ47OBk>Wm4kGi%PNNG7p)o zmM6a=Q6L%SZ(F`R*U{5j@nU2c@ZQrwzIL#g-t@!)q=Ayf%#ALmeC2#E7$QXQM8K??{?dp*86qWg+S$;kZ+nfq>S z-z;11Fa?mD7}&7lFyNk}govH!ZvO#%($1k$4+zCRuZ6)9iU4IQ1qObc9{j{*f5F6r zAO1a|F5^0aLl9)}WIZB!{sNp(I%M`tRhsu7aO|4SX0YT+bvU>ax+WC8N$BBsaNw0T z3b9_!uZ(|57(F)jIbW4CGCiY>$2)jx#j)on-H#LwW>V_-T>+a@bF;ey zZICI{!V-7k>-bUe-Ph=YCHA@8k0N*6z7Ra*S8~B@gl|PWtbM=PytZvw_ei0X7PrkY zr6W^ntZX5){-iG%)R7@w^;;In;W}UJ3DUcX z(D_sxoCOL^wI+@3+UObjmL5qT64{-tk`=lQ_e0zwQ&@|KH@N}=E8E+%PGcK78b_oU zx&?pnX(u1dp4}@!Y@w{?$+lS)PAhzR+)#Ov_{B6@|CuUWft_DWFSQ=%AEWFK& zdGTdjR-sGqnGaXk$iTH_&w6RF{ZPCPPH6Qm^plt7G))nyTosBNk7-3zA@>u(0Bl~o zN$aaMTx%}bdT*5<8!16dzbUITYo5An=h0jMB{T_=IhQaUZ%+C-P4Ucea3m3{_sBHIBgpw$1@cm#%d)i=XGOfP#x! zMK3S!vjZKk|G+h-f}3<9Ru!psD=8Z6p$C|MH^%CZN{xN9sn1`b8OTuH^;6ct-FjL* z&ig`WF^5gq(nig+rdVS-TcR*zi(cY8z6VC)J^Vj=?0qb=2uq7Pc#z8vo0rs;UPU9C z*MFE;AQ5`f6vMDbFyqjxc4gw7c9Gj$BvlX@9;&XM7~3dHa$^vVnB0h&05YOr|V;=0GNQsnvF_CVT4 zzd(*%y{7!+I{6g6I8PU8aux7O?*2&oxgfB3%a4^&>4@&z_PA|;#b1$+;>})uwjHZCZs_1Q71iO)p5IU5 z5j}rN)BocsEkoZ+`^CpCzjA&4-jHLw+|5TOKE(7sUxbV^{X@P@<|zi!F4Mp2BHfjZ zZU^b%QQjS9osquka&~%^vcromjL!!4-BE#j<*baYFGKOQ?(H%S(m@@;RRbTFxfb-X zeyaefEx`R^dV_95N5nvi)nVg4E8_P| ziKtNP=&@ntcMB{E}*9Qns>tD>wLn52oeY~SwKoujFKrOU-IqPpj~ z800pJ@H%a4$s89{tctO@i=SMviXURiICjzJot;n>$CrzBe0`el$hcR(bn}Xr;a~2O zXD{71DmN0DSfw|(&`m$Wh)a+{TAA*5?v(GxFnQgAY*zvVF3pe^_?wT)>Pct6OEVj^@K> z;de|It|Wfpu5+pyqGgs!iNuS1C5fp#px_BQb5DlSMO-_BqEhY4lC$8wJ^gmI%z56+ zVi!*tcQ7Zj?qgKkRYiB{9Hk0jINwvEw2~+32%T(x|GiLS4ywG~o>*-j!vpWMIQ`c| z;-&4|n1+wn%hq%5ez0|^1!al(*H!eMk0B@C7~(os=mRgP2WAY zHFo)BHq~}qt~lA5a+P5>_TJ<7H3*L!g)zn zpneXfH^OhY#}`&R8ShrT&-5`+tb=6rUW=7t(0pKU$k9u|QX(~&(&TXrPlR>an%yV6 z2<^81kl9?)kamM~hSU9|G8wLWIA-@sjsr;#izZ&kJ;~A_qqg+N?F$~H=gWrk?5no5 z8!Jgh`vPPnH9zgbGSv8$CvwoJWOGeaDHjZW#f{^;e9P^F=NG$hgI4$tX--)Co+t8Y z!yy4;DvbMJdXsXArilVB;-efZ!B3k-0`f-41vh-%e)wwNtRk+5@v1myc{otYZ{+N` z?~KM(0E&*kOZ-~*u@ zf+Cr6E)G3qp>eki45L!rwIe-!s#g4WcgG1&y49=1VIsDgQ41I-at~7VGy-KGUb!zu|_9kD05gL~7pPn` z^0AG8PtTKhq`6FjTf4ujjxH#EY9Gmh-JFKt3u)i1>8b;aias^h25tUn1Rjm2yUGhqB`8F}X z#hI!s8SlQZkR}OaWiv}O=W1aS%d~Yp9mDEqXx`6C)upW`(^?q&(k0`iU#k|=e>h@A zSBX_&q~rE2r@QAOF0&X09N{s z2M_`cl0$TeLxEhf(IeANKn}o#A!sVqdFvBJpc^8z%JH2hCbbLoSF*}6MXz4KU8?YL z@xH6=Sg4eT8%RCY%tJ7KqeM;Tu<<=MAJ2y)Xa$aYo3|!w9D@gkYT5CmJD}ANC~^P< z8|w*Q1?ZoC*<1LBi!CgC4t0P}=A81+Vz3ib<4!BiC}w}8ESTCFd+T1ckqSXE#WIPT zFPK_tt(&WWcD2W>;p@Heu?(yP=AA~4NO4P&-55dm02R%oG4=Y}m1aEZxvlTC2?s0UiEnu-NIEPW!C9mF1J#?d0 zByAnhBpa+{87?_QFyuB^XA@)(AbaRY_Y%h$UlD#GheuU(H~&B<1%IL5_! z!@=x)fY`fxKhk_S9pZndCRK@H&TfWjaPtH)mBFJldPIbl?#0;7_V!fG$R%fBd;9`6 z%f;Ny2l|uTQ`{5Xm?VS)D z7^M>?Y7ZZSO9drEEg&wmBSx$OY83a|^+w;W`Oe%&g3uPSC#7z1lz}u zm7pXJKq|xEP8?$Z>}tLFc=6~@UxFn#At$P1{RksD`$>5?Ww+$4?b)*=4WXx&L-$BJ z$#Rx;k(`huu<2Vweh!;U&AJ)JSTt&UfRKPhHUc>y8!FV+j4X%VZB4zKN351-iB6~A zUitH#su~)*uN1FOW-WkiI0HN(9`~5-4OY3c%d$J)MrQPZ{_Af>Mn*%3u6UlGWcN5v zch`Z{OQ|mKkEg%D9)V`DonMG07Q$)Cf%AvI0;Z5t`Sa>Fw856>QyjQ72TpMfcUui_`lEkl0Wlw6H^R6};=;L)v1aY#FE&V+{$& zC&}Gi>Qp#;FyuLSUul82#WS7c5HyL<&CYtAN5|b#S&nmDi}440#Eq#o3RzYZL5#`ZIG0a;5SQBi2;JOXM>3RG(a?Ai-RIb;8)hkGN^dU3w zIZ$0KS1iB0>TUMcZ2{7VjZaErX&~b}c5}6~fBBHlwD>;1qD!Cdmn{S0ZvjkF#uQh& ztouMrSDy8%qG#$`(W_2yAQHOPrhVKSL5PbW6*LFP-$f-z%3nvCw=&q^qxFbe(3h%m zr%dWfhZnfpFMuv-B zpF_?%MPNKO2Vk!yG!U><5q(P*f-IN3-hn)&3?wC9U>7p#0$I%Gp|5s4*}dajUlGhn zuj>IHe-5Y&XzW(6dVb=!{TwXSdQ%VZg}IK*!3c_{Max)~Tt`U8rlwPk3CH-09AFKZ z^F=RgL3*}rNul{$xld7Np0)Z_fb*0{KofO1kYwbq0*WVP+`A7ZaFT2uL?LlP1s*f! z_xY`Yk&I7@r@@1wE1gX~(uvD3ltVY>RYapdc>yJ(IVM5Tr_k8g zc>JKOYt^7e)tPJ83aH+jmS2A}?kzd%(hAb5xhVBRkHsTyEBdT>Jx}&{h~Av502q)J z*Rs|H@p3m0*8ng!5c&nF%ZhG*x&Woi3FSu)6*_(kdiLyD*+N!!Hv9;;>u?dMQ`jNF z^-2rGIY?HvGi^E_8&!xUBUO0Zi8 z%2)e7Len%6QsqTupe6*@F6!k>ulZUHDPQ<_qWuNK^`8@ukG7$t`ufJtAJN7^SD&j# z9D=Vz=il4*%=3Np-_SCWv&4K@Ty8TxOfcKUKb|EbLN_)69xhAx=jqGIU-xU_591|V`?6ri+_m}#f(YOVo;M}_?vk^!vVa@Pg(h#P{;?s_ z5=x0?o0rQKrPTB)Lf%{&Z9+@XuViFq-j79_)t~Dl9RgTE{i^(- zi)6sTcOWJMVJk*hSh!xI)MMsI#`eF)w;W-jfa*c@;jMWpgvLI+R;TXz*}gYD9X`90 zkA%c53nHTND=ko?65=!Qh)6(IBHK2U-h~u3Y)~o~>;Yt2gg&-!kEu!FsNY8qBLq*e z-TNi5LdH1_rWLTf5a=Ae858~QPJqGHQqA1o5ErM-|95HFQ6+LcRo)71VlK-$BtMQs1tHwO&B1r#_ZL&CX)(I{a2<@q=D6ldp4 zz$s9%S^nY51l(&E;e9Lz8Qxqat>{nbt9?nvwZJ4VgUW~(94tTKPE`&PQS%DTS@R0l%lG^p0i^s#5dig0TtLc)@cbVU1S{W80KriY3Dm#ClWu}lJO}B1 z`o(v?5DqA-sZn~&^&QO2fdc;6WKXe6dh`|@eCvzd{j-A*|qT0RVTR z(^~rr{hc}kz_{vXN`dwXM}UEWLBOOs&^B9ues|U##WX*5F5<=L>o%Q_)7=H)0D(ei zE?tEMEIP<8ZY{>4bI{NXQuObs`IG$kAKjq;E6HWo-v|{NM1@1YISnoos*Y4Bs`+?# zpZaTcG`yaPNH;2&83V0kIVR+Y)>*M4g|-+{Zve<=TG{>Pufe;&KI!@*%S~$-Tk&GO zkPB4&h5{IL-h+T^9wHP9q>gm?K*=%y4-y`w+~}o`>|A-~3y8E(NCQe73*@3U94=4Z z={`T8qVV&}$zSk*LxU-v%*+Ca4*`mCv}UCq)o{ivK)sMT%jhK+itLDdk=p(or1qty zN89W$&oyv2%Z1SP{j%F^uPi@Q_u#exHghN8e!LVbb^Q3|W@YbTI#6Z0(nDZbGK%C#YvYd&*Ng0|RVAiFX4(+wiX+J!h>}1QDfeP7 z?0BCtL?a6Tk)qO>It2^k2}1}(!o>T%AS0gWc_Rce+>Gns!PY!De0aM!-5jl4`#W5) z)*rBg7LN~La5xO2bGPJ}&2MZW-V$_PP&l_2IBbl`!-nDdjz+k%bLyG%HUGrZ`2R7= z{!jMU&a3`Aq5J>7C|X$m*17e+bNcT+4gP;!Qj6PUk67;|mFf2" ] }, - "execution_count": 15, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -822,7 +822,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "From the above figure we can see that the first order structure of our Vs event kernel is very similar to Panel (g) from Figure 9 of Tape et al. (2007). Our kernel shows some additional low-amplitude sensitivity, most prominently at the ring of alternative blue and red on the edges of the domain. From experience this is likely due to the `Pyaflowa` preprocessing module attempting to window and fit very late arriving waves that are caused by boundary reflections from the edge of the domain. " + "From the above figure we can see that the first order structure of our Vs event kernel is very similar to Panel (g) from Figure 9 of Tape et al. (2007). As mentioned, any differences between the kernel will be due to the differences in the parameters available to us during the inversion. \n", + "\n", + "Creating all the other kernels shown in Figure 9 of Tape et al. is an exercise left to the reader." ] }, { diff --git a/docs/specfem2d_example.rst b/docs/specfem2d_example.rst index d18af143..ec360916 100644 --- a/docs/specfem2d_example.rst +++ b/docs/specfem2d_example.rst @@ -648,12 +648,12 @@ published in Tape et al. From the above figure we can see that the first order structure of our Vs event kernel is very similar to Panel (g) from Figure 9 of Tape et -al. (2007). Our kernel shows some additional low-amplitude sensitivity, -most prominently at the ring of alternative blue and red on the edges of -the domain. From experience this is likely due to the ``Pyaflowa`` -preprocessing module attempting to window and fit very late arriving -waves that are caused by boundary reflections from the edge of the -domain. +al. (2007). As mentioned, any differences between the kernel will be due +to the differences in the parameters available to us during the +inversion. + +Creating all the other kernels shown in Figure 9 of Tape et al. is an +exercise left to the reader. Example #3: En-masse Forward Simulations ---------------------------------------- From 780ed7bb387aca5731908c7861f002c7a8071bf1 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 9 Sep 2022 13:24:47 -0800 Subject: [PATCH 166/195] updated specfem2d examples after final proofread --- docs/containers.rst | 14 +- .../tape_etal_2007_fig9.jpeg | Bin 0 -> 585756 bytes ...le_14_1.png => specfem2d_example_15_1.png} | Bin ...le_16_1.png => specfem2d_example_17_1.png} | Bin ...le_18_1.png => specfem2d_example_19_1.png} | Bin .../specfem2d_example_32_1.png | Bin 101255 -> 0 bytes .../specfem2d_example_34_1.png | Bin 83487 -> 0 bytes .../specfem2d_example_36_1.png | Bin 74825 -> 101255 bytes .../specfem2d_example_38_1.png | Bin 0 -> 79890 bytes .../specfem2d_example_40_1.png | Bin 0 -> 69093 bytes ...le_43_1.png => specfem2d_example_50_1.png} | Bin ...le_55_0.png => specfem2d_example_62_0.png} | Bin ...le_56_0.png => specfem2d_example_63_0.png} | Bin docs/notebooks/specfem2d_example.ipynb | 163 ++++++++++----- docs/specfem2d_example.rst | 195 ++++++++++-------- seisflows/examples/ex2_hh_w_pyatoa.py | 1 + 16 files changed, 228 insertions(+), 145 deletions(-) create mode 100644 docs/images/reference_figures/tape_etal_2007_fig9.jpeg rename docs/images/specfem2d_example_files/{specfem2d_example_14_1.png => specfem2d_example_15_1.png} (100%) rename docs/images/specfem2d_example_files/{specfem2d_example_16_1.png => specfem2d_example_17_1.png} (100%) rename docs/images/specfem2d_example_files/{specfem2d_example_18_1.png => specfem2d_example_19_1.png} (100%) delete mode 100644 docs/images/specfem2d_example_files/specfem2d_example_32_1.png delete mode 100644 docs/images/specfem2d_example_files/specfem2d_example_34_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_38_1.png create mode 100644 docs/images/specfem2d_example_files/specfem2d_example_40_1.png rename docs/images/specfem2d_example_files/{specfem2d_example_43_1.png => specfem2d_example_50_1.png} (100%) rename docs/images/specfem2d_example_files/{specfem2d_example_55_0.png => specfem2d_example_62_0.png} (100%) rename docs/images/specfem2d_example_files/{specfem2d_example_56_0.png => specfem2d_example_63_0.png} (100%) diff --git a/docs/containers.rst b/docs/containers.rst index 4def8e76..b609d941 100644 --- a/docs/containers.rst +++ b/docs/containers.rst @@ -11,10 +11,10 @@ on high performance computers using .. note:: The SeisFlows Docker image can be found here: - https://github.com/SeisSCOPED/pyatoa + https://github.com/SeisSCOPED/adjtomo .. note:: - The `Pyatoa` container is shipped with the latest versions of + The `adjTomo` container is shipped with the latest versions of `SeisFlows `__, `Pyatoa `__, and `PySEP `__. @@ -38,7 +38,7 @@ First we need to get the latest version of the `Pyatoa` Docker image: .. code-block:: bash - docker pull ghcr.io/seisscoped/pyatoa:latest + docker pull ghcr.io/seisscoped/adjtomo:latest .. note:: These docs were run using Docker image ID ``c57883926aae`` (last accessed @@ -110,7 +110,7 @@ SeisFlows help message, we simply have to run the following: .. code-block:: bash - docker run ghcr.io/seisscoped/pyatoa:latest seisflows -h + docker run ghcr.io/seisscoped/adjtomo:latest seisflows -h The following code snippet will run a SeisFlows-Pyatoa-Specfem2D example. The extra fluff in the command allows the container to save files to your @@ -123,7 +123,7 @@ computer while it runs the example. docker run \ --workdir $(pwd) \ --mount type=bind,source=$(pwd),target=$(pwd), - ghcr.io/seisscoped/pyatoa:nightly \ + ghcr.io/seisscoped/adjtomo:nightly \ seisflows examples run 2 In the above example, we set the working directory (-w/--workdir) to the @@ -172,7 +172,7 @@ singularity module, and then use a familiar ``pull`` command. module load tacc-singularity # on TACC Frontera # module load singularity # on UAF Chinook - singularity pull seisflows.sif docker://ghcr.io/seisscoped/pyatoa:nightly + singularity pull seisflows.sif docker://ghcr.io/seisscoped/adjtomo:nightly We have now downloaded our image as a `.sif` file. To use the image to run the SeisFlows help message: @@ -193,6 +193,6 @@ system to 'frontera-singularity'. # ... set any other main modules here seisflows configure # fill out the parameter file # ... edit your parameters here and then run SeisFlows - singularity run ghcr.io/seisscoped/pyatoa:nightly seisflows submit + singularity run ghcr.io/seisscoped/adjtomo:nightly seisflows submit diff --git a/docs/images/reference_figures/tape_etal_2007_fig9.jpeg b/docs/images/reference_figures/tape_etal_2007_fig9.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..4ff405b73614252fb276db1c93113acb5bbf8377 GIT binary patch literal 585756 zcmb4qby!==w`icyLXiSRN^uIbIKiD#+z(J3LLs;Z8r({YI~0P3wpei|IK`b54NlSE z?$W-TbMEinci(?+ef#_N{$^&)?3p!dX6c`qKfeGZs){O#04xk}VQ~Qff93&lfCt#v ze?J(&!92KlxVShtxQ`z_dWc8(n2?a*F#!P)F&POFF)1+t0SP4u=~HqF3JSs}RL>~M zpOKMMkpJBY)&mR<4lX_}ErXd;4gkQy zd4Pol_#eQ+efS9b0S+EMrkWO0gN>>Fzv{6tb(j`-f93#$4=}YP4@fY5oGbs`0bvN; z15#eG!FSnYU;*tf+ISElk;fj-virnvxjONLiLKHgOb-(AfLvsX|1%x{!1RHVx#tr< zS#DZEU{pHU!K^DQ4 zM9I#`toW_-#pdZ}2il1K8x_T*DfWqmCG|L6yCa2QN3MkbM#IdL@NvU0ptzdd_+O!E zvVBZHBZ%_X->(0NCwy@=sERAV)%it;l0B_oRpXPLi?~Yv{|pHLJWQ&Rz^8t~&0H!V z9yY-gfo6zyJ52}E%E^{4L9?tYT{s1Tce%bjH)MIgq@Um7`Cr50VFzQ8)AWAm&&g1o z@e%K)Q6G8GSn5L4C)Z*p7_XRQ!$%ZuxF?c?O)C-yzS_cIG5#|uHl7s#`x%J`a0dLc zkO>rTEBoU;tt~b8vsgKcB?%%%(M)_JO1>A}-+v@0=xQ&iXpX%G$iDt}P#kgqp|a?b za-91+Ibw^SlS)btv@0_bz%M=@3O|d!H%fWH8M2PFJ} z2M@3`l$4+MkZS|FwdF~)6@WsSgfXvi$z=h$Os@erB-;OsfrCXDj05E3Cz*C3|Ish2 zPS{N@s{kY+4E_s9{uc=$;SV|BYfK0K{?Fe?gc^!AY&JH`0IY~FuL_uhzc78M{Q(%3 z1#}O~VfrOhzqgkS7@iJU&Vzeg^=& zlY8{xj4%=_Jpm9xyG9a{VqqT)_<~JgZx{S60{gLEe%>np9%H_t@jGm+gl8!bJL<=n zO=?WZ^pj~)8uMu>63eEDYh%I>kV72~%E#>bXcm@N=d!1jjlqnIE$p*;ED%Ys>4&YJ1)cK|>*3|}lEj1BXJjfX)3 zFot2O84CdHxGWzlzomV^>|eZxY?gSk@kS)>Jf^{b{|)b6D_TzT^Z#2&QV^*vK@Pxq zMYh25?tixfIC5woCr#83WDx!lvC!Xi8- zs?h#Vkz9-b!0W$D@vxY2f-&z0BuvMAL**RRdOGs>EC7HqfRubapFKMYfK86?LiP&q z>I1es03Qqc@76dZEb_qsG5~1-TV?8OrV#ZcPQ+8}w<;unzup-8Py2GvxdQ-l!!HX) z67f<<0N6MH{8tz>KnTvKV891PJf;uo@-y|3g5)GDcw_*;TV@q7FAqGA(F(-trbsVM zAK;&rH(I+B+@EoZEYNV|>g32k@xfTq-}Si!_!qE~0E{>6{&JFydyNOcR$)7C9p-D- z2%9;+=I=`f62MqJ_q1(_$ygB7CG+zrpNovi#cyxZXTAWKUZ<`w^*W!@uL{oR?%I&y-~_XF>Q^$Rak508+#qG=TrvI^0#SbY)xUZkAV38}%;@1hhj;?v|#t-*yF%XT6>(aW;klG%PKW ztR1-V>SO)N@i}-I8EYvUqk2tko~N@!Vq^bBs(TY_A1^)*cj*;MVsgak-7obq{(`L$ z#b)Z-wrf&YWX|()viQelqQ4Ojb)MJ8J&z32Pc~9UW1Z?scD)R0{AB*sZ+~g%JEb(K zmnJ<9spDmt?9sW_u>u5Rf61~}vD~*Tmy+iE*tzFau8Z#+X)`mRgDWrV5nhGv5B!QO z$me(&5)25%Hu)5e{qlt80!}w2I+mh1OioS$cuQVwtnZ)`=^vuaNx~Sxs7^}2QWu%T zO7_)|$9U`|EyL6=%enlLH7_+Y$QZYK9?nw&fGWLo&an4IQ=qdHWn3eMUpJpl2-=Sg zP+oEV9Bpuehxu-{NuNkPEC9-4~SR#AaA@ zj2d?iki0I%?&f;Rn#?Bla#r*{+ezAVz*UzMJ4(^fFRK4?*mr@R)0yn?r!;2$PYr2? zB}&?A4!O z3chnUeFmeAse4+9lll2Xx+FQq2Tw74Qan+V1U!Nd@GC@Ce`S;}#lqFW+No;zl^*nP zAa20t6$=+D#o!C_jik`xG@h^a%qkyVeWtWnQb_<4kTRFu z&d@?VVEIh@P@Y5lHu(?OudxZ2LeWRLp&RfD(CRZTZ-eH$gd=%DQ!=(A2OWPf=~a#GgV*!a-PVSr9nz zWoTjCGi8JnnEC@i9WMwkD$y@n{R4Qim*%3L5`qz=6r#g)ZHjs7lDeZ47_Exz(L*tj zTk0=cKR%1>%NexnH(`mSrKCL>FACtB#V^%g_k`#pY;Au@}NydFG>uTob?Z1Cf zu9sXBMv$}=!MWx%(xb|Eht8W{5gE67O~Qf=jM^Ye`CM21S0;?ADk|>>>#o)7AU2S>G7{#GHV%VH!vAv>9%Xh&`DRO9PWDqpuuAne|#z!ml zJ5=K=&adcGxttx~qt7O0DxadhxA%)L!2KZ3ZxTT3IHc5Sv^qsx@?;!5Tma(+&tn7l zx76^+S=GrI?wMihsKL*#Kd^~YG%JCh>i5>xd>rF8MCDC|Tma{np4dAklu`%3elzZQ z@0EyiHutkJGs@D%>J^~h=li+3qIfd-RggW@gPP?nP9n2vC&9bo;Ruza5S++r9ZPAL z2?#I!$h|--`Hg8k^5e>O=E?nq8jO& zpYjQuINhA%s~Oj&cemO)ejKKO510~^u@rJO?ZSKqHT|8(^X5cczymZP5x8KyI;bIt24Gz!Qy!}bR91x_x3Z>+j# z&z^muYiN*E+|-8F;T4hLG9B*T`GUuPS*D+bhzIurx=%^BQw)qPgUAkE%J5s^VX@}* zQ0pgDsKi-xwY_g3V|o2OjfzcOP(|Q;w>-svqSbnbPqlXOMskw}#hWp+Zfb7u+7Iak z^BUS;yKo{l&#IIRe8kOF6i1o1n`2f{0cK5Ht>;g)1XFUC#r2B4oD;2OJEwLxn1t}D zM06Xk;&^4thZvfjWe@LHn zr_N@{MB0#L?o$`5;%fkxijJ)1Qz;FT%&FCxK8;&Rkw*zL5VR3HG<}dgHh*Hvf9?-p z*-kjwNV5lk^%w_%Py0fKeHU^qRr@xbj1fP{{_)wu(uiP1^rUJuu$QG8KxQnb>CoNW zzy>!FOE4y@1~75Es9E>&mh(=jO93O90af8e73RLaCU5~)DLY;koYJmCl=qZDeg{eE z4Un$-UumJ()UL4m*7rI+=36DUno1NUu=5_o9-lRkDiO)@moa`KE)QcS*xP<-dcp(F zr42t!5A~Cwdw#h94{WtsVrcGImmX@Lv21niC@uS0>W}mo&*2{1nk=?TCL)S{9iUi9 zY+oa3GZ4{e{fd{pSw&_}w2pqCF}33R>N^k8jFAo!A4cK8}rtT zq*%byZE7i#4!K${Fx_t`U-tEOPtu|Jr$xxrwmh^Sfc1p0YeLUj-eC2zeAqpKQ~|Uc1HzOrld8gVm{l9rvIb`jLItr`eP$q~IXh!hKp} zuzNydMG^BmsKO?KZ20#JNbcsnU|tdc3tLSu$0IeJ=QGN6YuBaEpOJu8V zb9+$KPfSyWFSbxJ4Mvp21ta6ORNzp5%7RB?{6@vy>?MP=a>4y*e)C$5*Xb!W zR~^hX*WEcN&7ye>xQ2rk0-(1wOdKpt$t%Aph%bmo>Uz@+;R=aNzOkJP{PEv0`DX}BiT2-TE;Tx>XcpnHHI0i)6LKVJ`Ohgr;>=$#S z7e?LFn7Hkq%z4*d+7jvUf^w^01Mqx8=`;8{qwc`Xg|VOeNw8I;h@zi`_HeM!h&S*J z#m+|~dJyp+UE*4H+z!^_&+pa^#(lyV6gHu^(t&>0pg`!>dLZW>1#j-91|3~!*@Q@1 z&*To`K^(kk_Zmeue9{JWHFfk~g$xjoK0dpFw0)lY{X%pg^%<%?&g`O%H`9v z0_uVKjUb;7bs13`haXZ*tn$Jo3V?i|A?!LeoRAR>yI*^{h*-8w;~^9{!;J%7B#1_I zIC|fT**RM$9W2YQziC~9c1U1w^ifL&ElWo+twyreB%( zKGNu`kf{Nxj^Ym>zsKU5aQ)3@8Fv-~Q)AD86P?Lod}{{aY)?R7`jZ8jj9s)JGk zRP}ybk|V1xTKo)26Y^s4hHGNfOJGF-cgq8wmg5^px{Ug%)H{af{99JHCpi6xj^ePhU)-iY}CHwsLZrj(7ndeVqm7NZoHXq zJVje`_7wt{?NX*O%ln`Oja;xkP(wZ8xzQB+(qU=!mH%y?HEUf}I>}?6S4FLDoH8Tk zp4sP1!sCs)Y}qY>eNA0X-uK}=no8}3Cs$JCun-%m-v6jIFFplrX0stlf3iI$_=LR} z>ohSw2|=UhnpO!&sX0Fh4646Z)JvO6We$uRm&Q%Bj`Fh869JZUmd&gdTUGZYp(gws z1|*G66`JXkslKi*Ea7&*pu$J0qD^ng{N|<}A!O*Ws^Uj(ZP)XL$@2dBbo1TI?8Ggf23MO@rG$Ee zSPAZhYmM|MU&6nZdI>ywoM?nn18U+oX(Nc08pd##k4>Vgr_jRb(n=_m5Ec~@W4we< zH)b5>I}GgUZjLY3d<~X(UBlVhDSywq%0?;H+FUcT$d?lbTzF?cudHjR=D zoT5{Gp7wGf`tp=NKQGM?Uo}+E$pY?Mke}>HC{SWcA+itM=Y5f3eps6wPykCM=>Cs_ z%rA8s7wsChl@b!tlg0>3;?%w^r#&1xvl6EXB=c-rrtZeu2HBHA7La@JqNmDa^hIf`=(K7 zS)=WS*js$C$_S|KVO1^Jo89`W#axriXoHQ^eME;Vs^_*TVRU0ZN6Ox7=IYL8Nl>a8 zi1W#kinhxjbF}9~bHE5NW@_qpwa8c1kzP_YSakmfFf0yj;`I%1UbwGzraYs4g)Tg) zpe4L-T2xwcb-w*L=ec=y(q|hG7_~aeVGQ{G(Oj1%EE{1_&rb3s#$|{+zqE+^O?3@E zX$*>n9T^n1d9bB+Pua?-u^|cg_iBv+Q9%mPbe5mlHePT+;@=R7P1F>l+KZwjYCZj+ z2wm>RY6p2Kp3-*Y;rXsD@MnQ!&H6^Uvv7a2kh-vfucOAX#?zDvu!GcmUi*g+2%cqW zr?j7Gt)-(kqRWkUODYI3rT2yn{x{ZtPP6}n^89c6FLv{74EZ!oSoJ)Y?qsriueHJ|isVX;BHdGQm~)bb=N>A0ci(*X8r{(yWR zsjEU5!w$sv(Ts&57mW>Qc) zk*AQ)W!=KnefW|&WJt}j<@`5(c-)--RUjLnFb zb%^)*J4UhwW$|4US$W?z^h6U(y{n=1Ii6@kgZ8gCcWgTh?`_jveAT73r1-TkcA~$n zS755J1^erE!vg+U0zC-3%r|h8zuq-x$w)G>5o9;llP-3`t0Z(&-gs8dc9bXI|H@K+Xj0>)+H)^7qn zZm(VhWUJ|RI=h|k8{dbAyC3!?um#i@d$Rm32Ej87#MNEb7d3f-ZLb>8w8Ngvk(YP7 zg3g5-#r3v`ZMD3%^)?zDJRS(;2hKqi1{eBwNbeZ}HiQHiPo;;eKEc(~7&Vq%BAm-OA!u zv01lwapGa{kZ2NCZvJigqjjG_phDMv3*@F%XfP7MC@WtHAXh0ep{V-g^fr;jAk)#L zL>FRpdG5lkwR5EHb|zVt%!ft%Vzg&Vx!0ViVeB-pNR{=3)uCasA0ExQ&!% zdB0Mi_T;aVMQlj91P#u_M^6pvu{vej{IRGDu_tp)hI?BzE+U<8|7Gm^6+aAr|~Zgs>y6PESs|L+uoBA3|PG|h1L(wMDTF3 z;qyM!*0#Xz{JhYp9)OGg_}|lx`xB`fMOq*Wv~g zo$u$BdPREpt%y=?1^8uPYMa{&N_>~ag++gUX%V6M%o6zXv!%?ps&ze8wJvYKAyY~B z$gqKSa|ZRB0(L1)#n%t8Ha(^l-Qw;layvG})l8ok%rolus*yfh@1CgnTIi=LFuN&m zc6S@Nl&*qGea^j*b9A~NQ?cNxkRvmxBO|x1AihYS9WcSIZluy{9m2u&8YkifllSfv zQe5&W7{M4LV?&6;$= zBCAbi{Sl-QP0?MNHt+|q>#xM1_OZ`4m-Rna1yg39i@;q;`2?!N)Yo4a9Xb!t{#cTq zD_sc6&hRCj3R!G`pw&lPerJp;$G9s9?E~jQTGqLa9xyJM(<*D6h}GHAKGbqitCn>4 zuZwey+q$}o^=W&AR&?&*{?syb^H<8T_x;>V{d5VR_198i1&p1Oe_H#Jm_c~a-}dRg z+C=q#olXJ~ad%z$9ji@x%cWy|JTx?ePH7&jhh0@=g*H{?hYw(mX&pc9Mt=0UQr>G6 z2JqCx!RHGZzHO9Em9~P=f_^)P6YHI*K^9pO{r8*Qi-DYN46lKyZCqjkBJ1m31{L!q zaIL<&kDGV3Ly>*^lM^gDDvkWuR5c++7jZ1iW1EdRwh4xctZrTLId;fyiF8Z(R)dWA zb8oT=iJhi8e$?;zE_vi0+PF07ce=2j+Jzh) z3Ky-y@0|PW7LYeT;@kKVerWsA+6#Iz*`%*iJU_FR>Ykgcv*4GK2q|Y#CSg`?baG(* z>S$H1aQ>Uu>syBwnY%AWrpK7-ne}o8ocZr^t1&z=LF5vgB(fPoDfb5 z32)YRyVa-C<`{W^u`)(=MNEjB>PjX^AYQnH$}w?yc)@FGDbDliCsJd56?EBY{j+m^ zyQy+9CjjM497t%pxM<+$~F;<@KjU7@g)4SDyESY?DX6@K{ z*E%4Kt~5KVyeu0nPGL}7mxvZNDqAXOMHj`N9hHu%r$wc_ktfx*dNUWAm&V*}D1L06 zA&`o;3iNQOx*}Pm)mZ~MS8h@HqKafDyn~U+G*vi(n0X$iM>^Ok` zf_de|?W3pdWA6$ERQ}@+RIR%%E8tD?)TO0%(C>V!66}0o6qaj+i0#7yr9?VMX z7L66AyGK+AJH?J%@#aq~n@FGd(Mnu{7gZt7`?cuZdgt@gh(rg7#MwEFBI&gKAr;s2 zYNSM;@8rbnv*DUp`#z^0_Y>!pciWDm-eP#HkxA9<4Q`jteVI&K&8YH!POaPt_F?Pm zL)k*~;tN7*Cwc5WK}|}RK8pB~+@YG$KB6@#;yiR{4ePJ>e&-?@EzXIpTDKK?SZ5N$ zCZ<&WX0Z)>$?+L>Y6Z;%YEcAKtUFbo!JI5wHe4t4HY&DMvAnBp>;6l&id^buT;dgE z^ul_E0*4kU_sL<19G=3-hz}_~ykXzn{c~$XS7v%rGD`*=<~C1lC-%DLzXc|vbL=D(UF7U5w&$vd49+86)IyDpCC;`=IUgumb@yZCDbU6+7+G z+o`KR^S|UlQru>@Pvy5<_iZB9ESg#E+se2` zgBpPZQ;-ejZ}^2&!hSd6trGr-10~$U%wBWq4EweF;oIKZaAGed{ZTgO8<|rN7Mx@@ z2|&mj^-6tpOADK#q;aikx8`Q=qH3Lg?A3&6ovv@aaxxyA-d`Cw#LmA*M(9hq-e|)S?oTF9k#EnR z1BKQ%-|J3X?0RIMLuvUupw_cv;+h#vWYU7FR|{=-&n+L%k{H%lV9PUqQC{fdzBPDi zGwD+fipJ=Hgj(FNN%~dBC0iHLO%co17@*Xi&c3A7a}#|nSPh&-spjL`ZIwnU$kY~e z$3@Z4(8!CM|Fl)P-8J9v##NW<5cRNJ{mQDdD@gJWpln-kvoFqjxumu>*7{zUXa;({=c*#iJ>BmWurN! zU-BQ0wwpkd_qBh;JM$GP%teo0Ulk)u+~bwvD`Lx0turX8x3%@B!~qY1rqyZ&(g&F{ z24MPfmnA<)3ZKXpi{cAf+R>T3gZ#N!Do-Cqe`mQ!N(F( zn8HuB`U3#3czOYKt^WHqc_ngm+7~E;LK>^EggVODmJZc!cli+vnKwc7;1%%}J|nPl zTVt{5l7}~rU9%f)>mGHj>NmsgbTaR{rcxIV3~cIAf~b@trpdE;q2o4(t@mQisDq=8 zl~L~&m3CO?ZOIpq04l~^Q7Efmh#4>C4F?X)gS=+n)H#!Mv$^lvXyv~eVHh+lh-%FG zx?LMg`4_*?1fA5uQOjwSqPW0&@5OBIoxaI*B`WFWrJA$30N_IGr4%he^OWoCYCTG0 zjmn4L1f=P*9|#kkE-xTnFiE!oPa<+kQQH7%IMj=U^h2LwOPB8O-nU6|0zEzWPbf-E1J+nflT zSIgb{1K@KwYcy;GMdy5-ozPe#kZ(L&E0OZr&-6jK?f&Xt*>rxtzq_A4Bu%erD(P}m zAnD4=Z~|&Nxki0Y^I=eFHs@deT=~KOeMQ}5lfQK5^1HJBA__LyWzi} zG2nRB#T?Q%QSijilm;4gSvAs9-VH_ss$Y3uh)et3Q0}HOsE<|kyOsamGdf1b7Tlp? z=(@{*Gu>mEpKkNFytB|;5&>!A+?g30U-Dz>gxq(LBhZNs!Id-X1s>Yup^lAo3Q>rcJsAe}`g4c|Yehm84Qq6ju{E%%F!X*vd-*gQb81)?L{OsXh zb2xO9sugylo`bxR@*`GHaoe2F@pwbDeZ_k>`tc8dp$;y&Ys{nEOGA<0+D4GsVLCg) zek(&&SP_-UinBEgkR$uZZK+~>a#Ew%CN#S`+cWi%XVHWj2S3VS+0k=*+@oWpE7h&_ zxwrtw>RE}5Q3mJu_PaC#aQ4sb#+7~Uih-OAaNM3*9Ov=E_82NYHt+dM4gD!Auv*9+%>*CPtVJ7$<1@ifbZUy$x9y@?WsZ- zO!$Nsp57zjlQ&IauAB?63Pgs9}U^jS9VNO8U)X@+cJEe()~m$bA})pom}d z6*L(0dO^plM7Q|s012~co3C%TaITyUl=$T8lyyhG>A4K87UP{WLz|k+aYk0;7KI3| zcQsX|62Y7$TzjhTzvl98^Ihj4V zPvyB?2XRow`*%`C(0W2nI755f)=9b;M1BGmN4M25Svc0x$6L_f5%~L=Ey2bZa?XA4 z*OcM1Xw?AC$$X)wSZ&1!5~Bl1(|c-WHC(vr*-PE}v%?aPs-M7pqeal>TJz3Pe*iyE z_hs0pHnV_1vftMVi#JBLMYj*B3dDr2m`9&o;9JKP`Fy@_51$zC)1+mcb_I|)NiN7~ z$xc@`nVqgLs!Ghi%h}GfAfKt5Me{d7s#U#FF}}2VeL++TrrtITOSwx3)s_Q?em6fh z?xy2q*xZ(v<+g3bxXaw>HU*>*0`uroZVa3#ZeS1+=gHdl34;Gp6{Ce|XuNuv-+5kU z3kL5EG*so-oJ> zQrdp(G`w}Ps_`5=0LulPw$a-cQptG6$OcfhsI}{w6Bk=YctHjmFG}u}ObSiLz)5Az zroYPq(2{0#F{RCc+7pk=4m0bX>_e<*NB;oy?8iP9HF;9ebBmxH<~k=3=!K%$gGuCU zQGkyin$|SFWmN6*X~Jbm$!s*eXKzDgI!n3cAAoH>(~TE9n|}`HSxlCVE!|r*gTvCX z*lMft!NkzZvGnk)fsxb$anioJLZe$GTp<9JWPOqSP&3E5{YkFXX>;buDD^A-IH@S1 zW9zlX=a6OnGT)nrOTvAM7wt9&bkCg9?Aex%-P_YoB>Z91PDr}U3SDb{^JK4d{aY#O z!}KAJ(|eS(mlAEwkaIwdb3;9WnVy2RjPuI-vu%xR)=DP;$(rPjnF5Pp#wnVZLG$dy za82r=|J`_YK>8!%`_FyzC9hHvjjN&Vr@+!^lq_q74W9T#)qBJjQnvc+xEU^) z3yU6bu)JAInpO@Wn8!#Xe=}u9HP4)SK@UIRIZ{w=d`#N0u5e*UPf|Jtkr-c)-<9gq z(RL>c+0gVk(CO}_E-E;lEdd^!OXi#tiP<0!5qqZ+?$E}g?Mv`Z)9$&~#0T!NPV`8t z*>(ee8N-*2iVUL3QxE!}+(7hp?csK3Q-kj=N+mqj46#oi#N#5-E>Mi&Or|x+vLMvA zD87)mY5gN@66C_z^$$REJr9{;z15KrO?mvNboZJ{tsQy5MOKrltUB-pSZw0ecqC)C z#6detGP9vj@5hUYsr2Rj~C zHz1+Dk+lT>wIvNnR7nz~i1aKFOcx{ZLa=b~hANi0SdOrEGznalG^DJN_W2$WI?<}? zl$@OV4iLtQZSrvzFpe$&p>V6bgL zpFAXJ{S#7fN$KKO-fmmpO3yLTRIl#G=9gws;uy`h=Ia3-TmU_aXIZz{>WKqx*(04K z>U5=v^-3eyhLT8e@X7cF(kx@M{rTH#j@^goooa75==d=)xsu(!ps<-*fe(rE>j6&N z2~mmcsr=pQm+D>vx**_OOx4@Wt)U>902&sx#&Naw##->#nZ zbl1=wSCyfvyFY+0r2)2V23_Z5^q_cW!IE|@!sf;plO%2)gnp@OSMg!=)3zM3KY-+c z!=IC$ec>hMM(%?a^?D`o_2YpzuB>do&C<@PahW&zSxNo?V$P4&oVjEjx$TlUSUQY2 z*5=2V=;%45?97ed=uW8 zM>Ra0kBh=gqoefkjd|Y4Co>CQp63Udub1s&Y-I}B|3rI+7ksTITJjR~TMzigswW@G zhQq^GF48pDEgL81S?$xj{VdJTj7>zmXZ>Kn=Q8<3_yry9t!?&;jg@4d`+||h7=hdX z&0&+)5bf@E&oWPoFzL;Qcd%c`bk2qG(Uow$2@{3e%&&`u`SXS4+hqlZWx@S?ou=D| zf(&i3L#oR|)#ohTB+)R&&kEAA(_`q1Xjw|;y#5d_9sRM$m}%fv%aqsNZ|{)<(MsvV z7T1Br-No*a?jeMYsn@Z`w4Vsx59`5(XA6tNqOQGOy{Yy69c*at%O{!ZscttuYiF5I zH@ks4wvAo2miB^WjlsTYyP4k}9*AuB3vCg|P~ceiY_qZ3=coUA|Em=(^6kQVZrS4W zN(+n(Jt{JU^*>EHJ5h%DK9SY(V^HpyEpIX2_X7nriA&hSd8;-U>h38?>A085oLi@0 z`$Unh1nIo%kato@3Gb^SzJ)p+((-BP5#_bH>0SXv@pHIOW~0O2W9}5*vizEj>Sud6 z!Z&nA=BP$_)JW=oC?X|nYw+ZepzGRwPaew;JZ9CIetyx4fLeqmm!og3xsA}`(8B|d zQt3ys2(W(G#av+gk=gU)$x>H=3D{9%c1?K)tY88)yE2qobxwhh^fcX#Pqq~nEx|gQ zDW%8V{XH6Z>niKpMCp}17l__!@Tk2O1}Zg~&U^GlhI}Iqyp_G(YN?IBhSKL%<0%X! zsD5i_+x571&SfFBWW?dnsprL&pP*6qE9nltm3j2+<`Egyft10E@3CL*BzA4E{9wp=c3axsrON6||1e=G@w&WNf5gmJ z)qBzG#s@!zZ>fg|BNW=~+key7di}TiZJx#Ec{1@;pCgZpjy%A$$`#*~sbF4Dq~?Oc zwRi!Aa5_IqPUkX(PGxGt9Fb_)OGTo>0O@(OK%iX7kL~f33-rf=03wX$H)a>=bzBPe zO5Z`XbFKBU8Z|w8aee6MeLr0FCcgxsq^Z#pL9)1YZf$P1!GapmN91bH{2Tgf1EH0a zJg$hlqy_s%H>y;ST2gY#B%8=)pyxl8+#l&h`V2|{tj96=GTW8kD8XH_dOLT50_|v zSbS*Te1vxD1V1Qj`{{qf%loVymbjzFm}lCEQ!I2cTEP%MCqM?{mV4IE3~7CJ2&wS7 z;_iII&fqiZ7V|`Rvn0OAJHnvu{Du=Hm!m@?nx5TCNi@sErtXfQW)i9@9~p+ki6Mm; ziq_44`=BRah9G2_$=*CjqRPsLesE=wU&5owj}kXcV@@q_s@tsT`gNNMW*soW)mAZG zIzRsa;ykHR(kdgEm9z9sQ@~rhKcpy}au{a5v?cGYWw&StM6SKb!FB^ zWICk6T;$FCTEtgMMGNJV!PX|IRlWINj%lY+T1nHf_E;}M%QFD8+MwfF`Mot?54>x| zda)!#X0c1%w}sL*W555pZaJh?r~^T30j~{epFA8gfo=M!sJEC&0A2QX`^FTdn$DJ; zyf?eo3gbOn1&!}AX-L{-qn>P?i}E|ogVZX~xnEZD4Ppbhud2B7fgSc9H;<$aw@iD* z=Lh&N%Dz3uFbEUvwYfofzw=t^=JTg4vKi~L6ccufuRnhi+7gm%Kf71S5zrZ1b$@3r zdqNWAHS037U&dXb`vL^_0@bG)l@u!89ZTKT^*z-WzU%A>8<`%Vh zziysJ_=86B*F1PQ%ABk}EtDDT)?PYlFIn<`kIXF%{}b(W79k#qgOupZGJRuZS9JZR@$5oULeM<#icg$Neyt}g=rs2-PiGy z0<9-pkNpPt8@2)G&s(myEwAa$%UK4JnaGs;`?To1_A3=6L`z+{)6pp<<^jB2dJINC zdZy3t9ofPZ;WoA|2eiklDqu%0CE=F$2T^s~CW@Q`^>=w)8*P4|@Gl=cB`!n=jBUHm z#xz<`N*|WDCgxadLceT*Q}1iS(F;dcY6Jf!ZOpy^c8A~D*18Lj4FdH*H6XR3B!kVG z)4e^YPUE{i9X~BS-CLKrxlmRZ_~S^<8`=DA_wruHLGPw|+pHBeQIIe9b_0~RV7l^} zR@1rI-F9=!QNX3Qv@ljuY<#cTOvRkHdN*I=svbf&y$r^j{H--LE|Kbo+wb5=-SMO=BEdYH)QOF~Bbq%P%TZ0enk^efJd z>*F)vu}-nGUa!mx93AUhqkkO8`aSp5N^3!m?w)Hrp5i2UWS)C+)w+~NA+*=3CKU2F zo%sCG-=}_E>T#4l8h6wSY=cK%7oZi(p0XyfC{v~MutybW+c7s)0JUt_wu7p!y>q@F zfCI{mXXmd`9y`AV9gHDqxKtR=Uoxl^`d-NP4?yIY?zeeKA0jqRD&Y8+1UaI7WUC$a zzGkK|gkbRJd!U;1Y)`SkG?$V5ztOBtiD_$T@x9H4C+_*wYkk^&S?W^kZEdbqBQWWv z3GS@VwhiZQylTn$^`DDP*z|v-EVxaS#cujgGGv}On=vrpowpg~=6A&&oIzK`H&(4R zpjj$9wpmq3%^X>Xi{!Q!EuUGJmKO|czZ^Rq4&4{{1;U?QXl>E_Ena8RK}K^A%FEel z8I<7$Q~1j7Cj3hu#UUl0IAuiFZB+Gm)9Ko`fD8ObFInr>Jrdcq?XassKIzb7@W*uk(iIbX$g&inn6_xekmqrU*aSIn6E zUUc)taoeb5%!UP!lGWplRkhB-_D8SV6cNN(_WdCN*~B?bdNSn!6l2`!HGw-0iDKOI z4ECoD%U^$SpN(Hr)`#k%4n|XUeYl{WviSN}66~35 zINI!CJN)b^V*+<13C;i(Czs_bhJYd{CV*0kuu%c`-25dCFY%H~vj-Ey>*LQT)b(() znG2x_v6&R18+v`b-CVJ8*dnCSin5^(^L>8xNeBh2L&zNcp6b)ZgbRw#{nSzk&!tsw zpm}LP*t{<(+N%UtvDkXxh85B86MQzn4D18)CP6DtO`<;4>ER@?)aE42{FVIO*If!!8$*BS47Kk+n&nJ!bG%ih`NK+HMq)6uiiGd7W9 zKQE_L-Aq&IDGs$T9H3&p<+IGbM*6OdE(Wb$0P7WE9X`&k)wE38^0ul1dHD{xP)JzYy%3r9(#@v?jDak?HQ&h{-4zoGP}cakM~4dr7H!8JJib zZuBVnnfWbu*_aym-^8;cXSXK>j5UH3$tknq2)faPYtzloA5v=@MJ{+)JkaX4l1+AZ$9L)&j-)%D_{`R$IY<$9tj1b|@x5iX7?PE2ny z<+X^3Qu+cj{`U{e_>IPLQjhdM-(=mmdi3jONW5>W6-Q+=pGh-|?KU*uJflB8sXCpU zLRULZH;xQ6&6~KLTh6ye!Z>#Ov5)hMAcmrL za~TkP)cYmT)ofY9fJ?j4SC*S_F3I_nE%D}<;b0=$v?rQ{PKu?kU|qKb`9A;vKy5jt z#M96!AA;S5+sm#!L%0D1l4O+;oMhF9yZLfq!g03l1KRUz_Q>O0l;zo@QIVU<#dnNm zERR!LZw#c{QoTMP+bld3jfFOMl=KtXp9E=cHv5?g*7-MzoZ~PlWAsAV6=;NBHMxN6_f5~z8c9O zF`$HSB({SN71!=mKbn@k5P4VDdh!QQ(CQ{dr4Ki}bfxrmX8c(%SpU8tAdA1E_V}c~ zV8H0#&>E-2$hRiz_klsc2KmPkWZ0@PQ{R7whqUhcBJft#1lzpi{95A70^hbbZZy{k z`ub1TmkaAn%x!lxE*I5JRWvvGlJLMRPL<-hr&8w+3Pj%*5P6vS*rlxune(sB8gDEX z?76nM-xxXSP;WVdeTZS2k{gC|zW43YDre=EaOeIr)Bh58?ZtW^y%GL$E%v6tnCxhN z9Wtu{q08d&uK}ZoufKzug-)9lIg$a`>RuEdd^Pmx%f;FsS*mr_3QX+wH;QEmx>Hbw zpty162Uo({Vtp%@ZPZg>enh#O_E|=ptY6XFcYWs81;y8pAf0c2YkZ6YD_$9akn!$U z{CEHWK28faXNe#A4s+n$#DLB{D~Mkfc<)Y$v`^XX5rYR^xpKL-R}DOT2|Tov&u73+TUM?Vmc|! zF{KH^ummZj)UZ_%71m*imL$at{0jdRK;e_lkU0uRJn!?7yNT#nI^+yR%gDC?N9de( zhWY`INf;nBD61Yk;_&aStCdXSdJh!1X@8xx^C_sGh4VO|vTsl2-)WrXlZll^#BELz7yiS2BP8 zEgf)96wewIHJ{%&%`Qgm`8yJH)Hy~D5XuK9M~sws&)<@53&*Oc*}_Q~uCHRvw#Dh} z8P#ZOsin|#!thv558=~)flPknA$Yi%%;!r@02o1rs&X#_of#dV?iaoXoKpS`&tJ*O z_`N+IjIO%Of*DUT*$PI(nfi2^wFgRm((9Mrs9_R1KjB(P7cXC2&7a38^D3hK{6|ObH&h6BJBMiI#v&iT0(rxr~QWu2R9G*NXBn!q}YrK+kf=Ezvb>lEfP^fEO8}w; zi6<%&*1p|b?j>D&*T(NaAyBtDk>lh_8H`MsolGy77EBi;1+We@$YBbI+h;t>zC{*i z_mgE-34b@AF4l(Lv%qiCL-{t$rpRasv?y|*1Z-qbFmg|ly^0ckS9>?Z)^^^FQj10= zQ*$Y4i$LAZ6yITQbrUHe;1;WyHM4f20-G&bKF}li@SjN$U87vE&dIo-KRJzmLuwKT zRVob6OiHpZL`L!k!#QGu*tTWRTo_Bd2fV1~DCxESyrzySUu?R{TX42e4)i&lJ`}kpI z@Tul7Lm4)0ranp}N^uYhdL)Qm4i8zupaKW2Ej$~+?{Go@2^8*oA&;F}*RQpeiAlYA0f{s`J#uNzaoc?peXbeNFlui zQKH0vzM=)w8)%ev^m|^vtYEZ^4q}i;0?`IjTfWaY`VfGna6VdfcjErzTz9XqLPGq{ zySHMlV@bquO7MK^v-&whJP}tyQc|u}t|mJ1J%|OQLyLl@SUc#bl2&QBU-0wP4^1A# z0st!#kief=GK*c!OCOHAz6dQjibfcdsE;2bXspUZ+BGy=Arum{Pz4YBrs?|-gSvP^Mw_uxHE-eGeUZai%TZ6&pIS7V&+9=Bm zIV3j?e1O7&8uS_G1ImbW!Mys9c9SC+uVC6lU>HM2lX(rRYGkG@n$ag>Ul`U*4E?e5 z6GRlxmX||IO`{d}dp33Wg$?eDq*rfQ!h&`5(`k`cK;pq>A)sKCsD6S@yLX(@`#3XZ zkw{#?WDZQvAH`RGHia-l^4Reyf~0lV41pr@97Me1Qd7dgjv76RGb|y$%M8-=d&UTH zb%XQ?d*nZWP|-rf(amyfi;FgJ9EL6ArHa0Y*V=;ypbANuXj-nD(Uu-H5ZbNm0p=x{ z7qJqy@t-8MLB!Btx=RQiLp7*GBfFt~c&-@>0Irq#{XIhE( z$&|pg3}{>^Xn*6Lkj1H}K9r_3$MwhsQv#zJl3JKtJ`QGPtDNb9piLT)3I`SqO( z`#m-=bYk}fk(;xa_Fd-xNzrxzoExCJ0H^x#%)~}%F;%MCs60;3T-$5u; zQv5^Ts}+G1VZX!eWciav$rctAsNJ@L;|VfG&^&F zkd&lIo&kLcKFaHe58|lUz!wdt`1>a~4KCcANI-Ph05FL}7QiH7ppryz0>~zHoC*)1 zT%RD-xIdu+z2_u}pb`gC>nJq#nd2WA&r7TN56vr-KkP}BzGH~*@(~9;XN(&0d_6(a zKJ88#ZcWvo-VWs8e*%V*_`4@IMUH~tDQRp874@R`oJh)6^qU##DR92mFX?AeoOy}= z=W5`9C`(C&b8N^_U=ZLpeIJ`QaYPdTfJxKP_ftsaUBiyx)5I}H@;|Th-#|q(tdZ>M zXz^Y;M3C&A&({T8l8MtjN0L~1@ij?B?}`aCnYVr@ z8&1+^rp>bqvx?C_Yh}9IpC!kJr4zrVrg?v>EA6SQP!vcU6Z@wI{u7YP1yqo=6l7gL zvmn!Zko7VKQ}W@M%D$_KirWTrrk!e#fZu%(!9Jw1NC`~?s?q-jA_CnZc^S1?;^?or zsW&Tfk(_ZoFnI63qOI1E4kmb@ESZ`_tI4`@q?#0`iO# zva)zJj(o3UpScCiJCp5L)l1B}V}|N}-Jt+eeUBy1Mng;Zf{adCfDXh3v@sAmh>Dn- zixm8e|09JIO=t!Y);qM!uZJ8wIiW!a${vBZ&Dx@&XiW2rEuiLuf{-(!LC$0);y{nI zA^@BKt$1Vy0c5P$6$hXMo&+861_2F(F|&CH^o|k$df-d6y8u^lk_vf9#RmXt1(64KN)1c3|p$#Aq3iZ3@W8_FcpP5Yd6NF5RBQfUn#KwiJ zAP5xZ|E&+dTJbq>?LW7mF#qcLQ+mujy&!yX5WxFD0@6SkHoNwu){!^}M3lgV{S*ZQ z0>nX-KIB+|vuMTzQb4n1wsR_`LA_HGRMHO{&XhvyYfPepQAVpO&px+Sx z=M;KHE!xj7AhY*jLjiyKoc|lZ*dYu5RUqtqRps0-fN0u){T;{uy$DGP3E+o)&58c! zBr>|s{pE+J1)LuJNYnr}3l#L6S{$eg*nj_xA!AmMwL0b4Oc(-s{@DParlCZdsn`9j zgYWwiW1oA6v-^OZ-EOi)8?f@D5HQm)t`cWTavM0#IQeSO(vp*mOTPSeh^-jckScY%;^f6GfvNJc|AiKtzs`z8b2JGh68Us)Wxb z0O}>(04sK@DHW&{eI=y)^DrcOd9$nm)+SLQcD47omMjBm7zyG}gfHnAt@ClVm-T0p zvH3Gb9El3~;+MBK4srN@*$tv{Wn}%vklY#!&|zy)ltX!L8QlYt!$y__o`-|F;&ZCr zx&CtaSDicDieu4jSR$)PJb_h0z}m|eSWi;=DL|B zhc}pp^eFVGc}&9z^(EwRGb+%7K)~<}R9|{Ij=AL8@b*j1#(Nq2hV#k;WjxwU+U7{T z9^KSJmYUNOpX1JIZ6NnC={kR}_LQqof4*C%{q)crFgA(|AWX z1d)YUj~ic~Xyqm(Mn(^k;L14IK4}@f2n=B7wo3l~H&TY0mj4LO*`URm9Fi?X)!F-DH;Bp@Gqm7CHHfBig?qYQ!S9f$@BpR)b z9#>Xt0AJSf;adjuFMh)w>!PUyx=~ujq^|B6LR!Fiy!vmqrMzL7#nfdNoa1JMl0}CL96h)cJ$dZQ= zXxTO!d~89ZNG=5R^Ot@>KF*ungO$DbqA6e15@6Z;oJt~Xg;rBqQ~);feNpL$c@mS6 zJVCH!dlikCKAGS8Y@@%-w8aPrl&_=b9r4>p3mH1^uWX%cK-~Eri2Df6~Kk0i{j?2*g^5uEo61lmDQ%97tp1VxgbZO(!K; zOb~P%U|SA1_!?-de7X*+H|Fb8qIN_JXV1LIy4Sif#TG{m0-#m6MI*hT+v6I3>DJg+`7Jt% zUaMyF@|Z_<-YoXL>lItnWPN*I{@_`(9G?o0fso9Fc7(JYt8Jb7 z*(oMUg1*Y-c-ldhylbjHo46ROEO@m(>lfhlZqh|YV9=m-RHct;d*s5R7{aWrOfIBT330VxVn;=`XZx9IxRvoi- zf8?4$wOMzlHuJepVi$9DrSHoq){xE>4IQr%{rqL{#cTE2e`q(d&nJg(?*rdia&_|p zpu`w$qb}tuNQipxs?Jae7o`$5avD1$-e5hr?$Q?l120>wz-;!lEO)tz4{7BHSxHHB z>PL+_NQ>mz?61qjzL>VO%NQMDl<8Y~GvU_w++GppUo_Kv5KWK;DhKvC+J3%^-kVdl z9nzK0U&PTESf2{cJi^JKTlJ2x=Gc-C$YsbTy&jYCMi@CQ=Q4M#u|jQ0e}Q2h&sy^2(QmqV-2~-Wo~Np6 zIO>IE+^9U3|2mppon(7wR3eW2J&G~9X z`&TFQ(SRHOy4nrXNUAv!#1&^Y-@Y1saqdd}i&G$Rkpm64!1%T4c*!D3Qvu_i@2dZO z>#Xw>U~VtghFLP^s*|iK7w1FUE%2p1HDt%J6KcK3>~ej0^K(ci^|L-%jw__W#g;8a zyv$fl_epUfUvaOz<*Cp(1>Zg}hodK?qt~Lc(a6d2bZ&ANn0r>+bJsSTp+JW=Xi;JV_jmXe0_N=Er%{KR#UE5h6*0{}8jOjf_>#3>tPn9D< z&3DF_ilePb01+f0pHUWNN|wB^T^Uroi&J#!-*uZAk&eb=l0b;E>M!@|uO6Uy0t<0K z);^Wi%6bZ31FM*AfKZ+zN7)eK#J!)CjjFe%Js&=#ANPfxTJkV5+Q<1INIX54ZnJar zdEB;tdCb7PXQvNJa82p)<*}J)DMQv4reC*t+lnbFHuYIAE0thaDQ>hx>m%~$=-RLs zd~>k{^|*ak_{Y{{Js{f;93T)j9rdVQi8lRwig{B{tS<$})a*2THhlcii;(@}QN#oS zZtXm^-?8VO<0E3NY*?jeFXrZ{*d0UV3v{q}Pnn57Hd}J*GykH7K7)31Y+9!M=K2PY zgkKz+W3|kjql@sW0*i$|&=L!$?FZh!Km?tQA>x!s7zJv!$|MMAtMk_GaC}5r$>sNh z&3c~rN?60a%*Kb0@6!Zcl0BKEOyY_JmT$Nyv;B#@r$rW{1Q^Y~J73!^SAL?hCU>0j zQJ8;+a1>!)?$%j7MEP5B@rNGvJ;vXytuQVnAqYeXk~91eJ3->^WUVtc(^5*YZ;^Kc zw*dR92v}AF=^=dJM>tKDH*OYx-7hWL2sO6o=0FMRGYG|@e6*oJaXL$0#dd-N zZNn}ChE;t;)thuLQ>ud^arnoPCRAlneV6QQ5viIW5H2r_GKs4 z_;3R>MTb3g6^PGfT(&1mc3B>?Xx_nT?&?C#_W(@&PrV+l^K}+2JlMecAZbHFL=>$$ zuhT89>N10VMgG(7QYqqgT2#3tP+uVJ_%D#cPOnI3d^X*I+P@zCG&Ei8fHQr^Wd^nm z3JNYevz!F=(uqv&nw55a75HF4W}@+#3h#s$ot@mB<@!cxwk>qMOm~f$9-qyd616CX zGE%x>yqVXn-_KyN>6r(oTFli7e7(=&AZNC;1$Y;Zvbh*#;Ax6_7ypNqZlv}*LYkU? zEb0=|@bxzz#)XB4kxkIBS#*NrYYBC}retn*OgC-ry<;1gS?4CiaWn#>LuR)j&c1OZ z*Ho(=qtC{y++aW4e@uJK!S+iq!k&lJS+LTCn$eK?j`I`FwCEWx*sVTdnRbTo73ZHX8`sk(^p-(Z`J|RY#zdGY>L<5^hv_$H}KS7Gj?kOfMlv+XAn~ zH1rxRBNET-74vU|M8=)L@Uk0YY%64KSTRuC7@`2+6;hvn{Fz)qB z@Q;7oD`j*NKP6lVToXq=XJar3>r<*Vx^iCd7w%`1!d3EwHSWX|ZQD-PE{Esh#3$4C zbv)BoI&!vmII|wwk5Qh1l)(zW?G~3@#>n$dyi<&-LWLxKzP$}}c zL(3qB(I=x!{F6uztzFrBia5hai^b zBXWke3v(i+&;VniXvG)banN(#T67&)&jZES$)UkKxk)q^{{u}NlS3C;QSh1zTmqYK4~K}a~@ zI~A}!F+YOaWovv{IiOZ1ZoF}I6~P8k;G5mI#=glP_nw=d)W;MeGUjh}74;JHaM_H$ zbuG*bA?I)LWi)DcM?t|8^kmNC-&yKaet3daBofcpO0HHvkB2Qt!w2nG;C1mN3KUqN zmP6LE#j=cUxP|08AF3%Eq^4`N^4$ciJa|1CF@B0Kjyr!mj34*)Ked`8<{BC$*3|i& zq=yoez-KOS^HSgV%v9aIXLlRV?jnD(QLcYB-mzS%&(|@TKQMrm4AWIa?SJ`UFbF@AsHF8YJ@Nan2~)BbZE7yK1EiOX+8bT)A?m~ z?Lh8DxUCa2m9Xs8QP;t*Qap$DvqrxVyRqfrRjjq*$o5*PT{ZJ5 zXVc__jz&A^qlfK2JWk?Pe!k4RuZt1cA*nw%4`lFzEe@h`uKG%Dmx78Lr{kAoVa6i_6v2qSf_(KYZ8hx0f{8d;l z>b4zP61oIef!vqckNUXN=JYx|8&~l5$T#J%b9+`FU;H(Y87H~12)~@B)oH-fPnqsx z&UCIx6VUkwE zba&S1iF?xt!%i~&4&6#Y&wX}!VM8O0@&5JY-CJI0A;rBp6#UQ#2{*8T63e`iav?b1MAma-aD~WZR5t^G%vot_T83!#487!F<9m2Tm4ZrWpl78GkRK^W92s4}EM&!KS zy90jA@=km2z+tAu=6Ttn+tt%KB+0{{-UU~L>y$tptel=jxTQ2`o>!EZy>qcIZbL-7X=qN;t z;@#5~KeARL&jAtM#`bKIS~D8_P*vG3W1TNL8o^vmW!ORA^rk;GIxn^IxBI+8^q0>8 zN(@fn0bf&t{f~f`c@8v zXz>nA##a!y!~+3oNbFE{#tK6q&*9F?m<$9kub!j_g zdAS1qeCTve>UWij%p-?h=M@H{3)R+a#J7NLMCNWzt3?8cRs$LWlgmd2919Vc-0>x_ zvwgSZUP>gCKf{DVy${*^rzH0!!Bb5?Olin=)$YXJrRhlT!nW+KuTu7c_wA#g2(-Su zxO=a^DB~b)80z@=37BK$t~upx*KY*8lBu%iw){BUFxAr4TMtQgvyO26fjRkl?0nVX znz1C!anJRx;r0WmPEBW#Bl}X=Ic|Bapno6x7Qb_~*vdh=HCuXN}Tz*e4;RzOh zZ;`+-kxYJ5`k|}$M6!doz!-mhe3v=Hf>FmQALcR`Q7@A~p&D+}Uk?*O*{d`S|&#J$6pa3!&wc7>ru5a9h2(k^n|8`CEg@&(^#;UoXpcxAWd)o8HgBl>H;B z)*~$6P$jfp8hCJp5FFT0ZMQY()laHqY9UL@P|;Yu^uv44Zu4rvdxAW|D4UMz||H1KELyHgL(rctD))<+9*wD5UBvz-zP4v-a(6JWXrLT#VZ%SxAhz zan8i)_@P|0QMlXIgI|PLRrl-x$3?4hHc9(UWfelYbyL4wrDz=@$hf#Q=`CbfV6RCfE6zsi=$mhAcAmp)It{iz1uT;=&LPGx^(*fXhDg+4yZ-=PMtx zGA=0H*4JSjfMC}+GViP#E-*vVMHo~~~E?d7OGp4wHg z)8Pqh^WzhHF`Ppb=rd*iTZ90LQj8)mXE4XvBi+(?dCg@vD5Ucm@vU|75L47PX3ln* zT;H!voBmLsa8=l;{mynYJ%WB9b9|D|67JONmlwjgyz+5%Mqxs85Sn`>VReIvck(7y z<22%#V`mu$68_2N3}gHgs%W&v6Nzf3J1jCT;SMY{CGmXX)V`1XA0a({F)`GI7!6M2 zrHyGv{jIRJiF2pDE)w#KRqEz3ukHCsSVvH$I$ihM3I_?i;ZnzAFx{Y_59y+D&epOR z6QaJ0wQIR>Mqxp6hguOJ#{>3al85h%RjP8b=~$=;lLFE|udn|PVM@AAE_|J@X7Kc} zxz>A-Z2IEk+OBz8Wv-E5;94k_-Nf6YGn(87C6TQr#95Qcp^Mp3v8#~Td2(0gzDlPJ zBDx9Y7l1i!IWbzh!)IPpnmhGr*ZdgP+X!8)44yI0yBwMI=&!6N(E6?QMG5~E8*fFG zN*KRen1b9SSQ{}xzq)X4wic6h2`EnU%tbh?2`p}|q^oxWP!>{(!`N^#hnu22N*(f> zyxyVDGp^Jl;)H4>f@B<*tT&c=&d2t&Ma%U(cFqy-Y&Rp|RkgTUrn$7)lRSJB^J*QQ zo0&?IACS5*8~=F2N}Qhe^SG*QB0NHxK?&q`0z((PLD1vE7Wdq@yNtF<N_R}lHHci|BSqYFk{>XlDXv+WxDQ9RjvM-O-p-t z628gYBSV!--E7v0$Y~q%Ui=ikT^Fa@1BunyH>EDx1Mj9Zh4rNXDX^E^yBR?-0~IH7k|6ulJA{ookW#Z4vBzc zRe#)CbyO>di^STcHf7>IQqW&qN6dfx3-syertafzgp-kj)dPiRp?v8 z8{hc$M>}w5CxW)y;Dl%_2v-MNo+T2ABikeOp**6=a%Xh1VD4|oS1nh=)e?1{o#p6| zh2p{7f{v^y3*mt%|vtz2gpV!Yg$ zKGj}lUG4ephcbv|F!Xa8-8oyX@D`)yfIk(L>=Pj{SM7+2SEO%kfN8ZtZwibjIbm^-W&8U4HfROR`+=hZlj1 z<*xUO?k+KW_NQ&9mp6!JHBt8b=Jq#vsV+Wb3p`q9fUJN3AQG?u2&sL!&W@3RneBrP zpl#65^_YT9KVhCYOs5o;sLi*Fh}d#3*(l!lwVpaCJNullJPgL>L2O(%9X!dCo0CL^!vwiYJMl5?Fu zF7@|zl`G$otgVZ!!YY%RZrM}LCszP!>_~d&h?(7wiOuPr4A$Wa*F#OK*0)Y=oSvND zNPLL>JQokOMZMU}ekX}#yH`MR1IQJ-FLdE6Nr%c5N6@O1XQ{3RMadw!I;6eR$@arc zR{FbFc=fg5oc|_Q?tdCh9?u!(j&H-D)s0CRM?wdq?>2#j z#&MIFaH5`@ygCURw?Zk_!ZjIwlyB~!>8Fq+mTp>-Mr_Sc9YUzz&YJ&Wl+s` zyKRe)DPBT1g1a{7q|s@ObFmuWnUwk!twY0U=Fg6AI|B9L=6)XPZbpulU2VTaP$5wY zt#MskheO`}X@^%e?T_vWNRq?xrA7{Y>66B7FrW!lj>tjS76DUAZPZ5sDN)wt@NK7d zIiH%Tu8Q;imHiasZ)FeR)q$jluA~m_3o#t^2VWm+>vTfHz15t_{^9j0$KjYl&t|x8 z*Za+dYSFm!ijTd9*#rkmgH!2QcjddZpG0QUyp26?z9YDu#Oi7V?A2fDQY#LDSQFMR z=|vrtGm{?*qhND`%1I&K48XpFIKpps*|}Nlesx4&bpXDN?CtG2*;Nl{${v1j=$C*F z*&~4(Zz18+&k@xX59JD>(;Ic|2rEo*yKyzZSRApx6uR@gjMb~YH|AqKC+#qDT3^aD zt~S2pb5td3nks`p$Oni|ixJehN|;N{s~7bMyN$(ca-tV}ijg6Tx-+)@ZA9DmEKxH> zO-DJx=d#(%8ZXU%Z2m*h%o%VEOz+$Oksiyno^c5C!$w z$F28!l3b3AeRJ@-gwpa5&Gw&|yR>dg*&de(2UgmW_q`1n*42kjno3q3h9(BHeFi%S zmNq&Dy?Z@I=^0Xwyrbw((szCw>WR@V`popEvQS2W7#M8!VKVQoxKHN%XzqiRME+=R8&fC-RM|(vQjd0R=+2&RtMI7%<`cy?V z8NBIW+~&~6%*Q@g$BkCrH<*$^e~wE}9Z^N0s!GN$ttv$lghDjQj;^4x!nJz77Appg zHVxKuAD=f0)Tfzb7lsWT+8mgMdoUB7n8xomDmiLqRnHu(i0V6K&0y?p2CV&@|D+Ey zXgj)RA@TGmX}MRYh&k3J*G{L|@g+9Sy{I;DOxJ4MdD~bqYYrE>C>}JX(woccdRe{2 zVm@R*i5|tqMDNG00+54$Zl?(kYdoGikf4I7B2o)j&`k2GjK)HDv++-=2YKfDwLR+; zz2`IB*sX5Jnv5KcR7##>Ig$Dm#w638EmO#7+U@NN{=6`7zW9=xqmnqgS`P33wTkt6 zBLX@XVHr`jy~+bXv(!$T2(2IObvi$d%LI6hnRZG1ygYAU{S<$@X#Hfi*RQz(@Ip%s zLd7sEYG6HDKYCk4p}G}w^IAJr)`y7hv-Cbxz(el(an>zjp!BrMmYC4X{&%z^DS@fUWt;2o5%41 zt7&~&mV3KYa=+ceI^)&3F)LiZkxS6Ty4=OA8zmZ}P_OJqL;2yoXdYPbV+ycW4ay%s zY04*<4U)p?Dto6bKOcNj&Y0<^x@1_2O$G)~wuoGZ8LOFneIN&~U-3aYEcfhqe(ol^ z*z9&ST@y|Q1S*Lnfh%&xZgPgLW6zI;buE4O{{lTLk8JfJ`PEyRCpZRpL; zl8fP#MH~AWrJF-3CFz1kagUMpjvbFBac60=fb9UV1@1d1l`SroQc-#N!u5K5QI&+9 zP$$*3PGrwwU2c%H(vminO@Ux2BggOZ{LS?b4-C9GJde?ZRqeusMTvcMUBfq4j zVV#C>66u#;Om!R4+NtMc>iz<`)5!M@NbuLrwq6m|;y~-s#lJu}SIN~R$KD7gcxf&Z z3$4ZrpV*arlm3iYvUE6;i5@QJLh>fHwtrlnlswHY$UVV#P7`*b ze}O9YI#1X-mEeIB6J5MeDe5+!G-k}kP;Yn8%EkGmtvg=vy#9nwwHf%7y0qnc~2Bg@}wqfrIVns#) z6t=8r?oVdy<~x)1dN+)oEJeMvKPP`3ds|gvRBzcO+f?t^u`H@DCID97xnCxX2z)oz zO|yMLE9|(d>{p4?HA(EyMb~UztCxr(Pfg{T6!Pl@XMI~W)9n?NYx_JzM#^L1AG^74 zwVqX&o=)+egbB%j0yYSQ#6mxt-ae}jDBxUOvKQKJ`JJc>Seo2gX*`k zrRy)6>bH086%n?nMGoH?0|+HJpA`3&>fH1Ey#&vIeK#62eN>Ip`tismDT7lQ=%k`0 zcwMgaxUh=PlGwKweG~tbwb=*Un^)S#naixm{oiPjq(G=1({sDfvq%41aJ`B{;KNZs zz*?!%9EO(xbaSTKNnAR*u8mBe&6l+-&LXRX&qzi87>keoW`fZx@}lug?Cl$sMzu^$ zRF@)P_o`8%WKTT1{6+MT{zE}E+Ee^1P841OKmlTNM2 zd#0t*1Cb+%OPF=~-?F9XLp5SXysv6o{Hj(&!^=%A_Gh|~04hsEa(p>C*}{Hd^<>op zR>b1Zth@q>~8dg z)5(5;+_w64W|~F6g5sJq>=zds2g|_3aeFm&^IcnDR}NwRFSYS`^KADy|$ z)>e&e<6Ui$D_JkizP=Awsm|9kVs852yTVr*u{?=7Uo$tWwU(5&8{7IbrQt=ZU#Hv2 zv_NE6y5%3TZHp_KhW3`BA-T14l6VU%GqO2Rxys`!u%{VoES_0;C0Y{4xD4hAZaYF0 zm-z7JcV|}xY-)AAX0_gxs$AvR5Z&^F0IthsRH^KT-ooiE-ofVQg%Tn*wnl>dHeKtb>ufJ(c|5NFHiL`hVa2*0wDDP#OQt2DD>g%yw5)1B zTAG(jjT{tFQVJ_hW{K78D(%L&SkglXfTy-HMXXaCE|*VZABMfmN3O1O9Sr2AMn}dW zb@0jc!~-+8X?V-tMQ($Tvi4rztyhPrS7Rcre1?|7_vg!dm&L~V+r%_u!xu?{TYvX3 z$~2bN5piier+I517(yFLhoDs`&bB8z_7a_yi8RQ_VYdvXQRyjUs0kX>Hlgvzu8kQe3;VIaYhz%@sKB zAi)|wBsOLAZ?eteGN3HZ75zN!e@h{Px2+4&`rA2Op%B7w;C!Pzn@L^Ntw@+mD9me? ze3j+(DRhtSnB!)BPcN&n;P-ERtd-b%zgB>WB)wB$1nD0PcqT}&da3t7h!A-hT>F`m znbV&6Bj+wr^yX@^jPfVEDSKtF72DH*8?nTN8sYechI?ySR*{@WW-u|U>l}koxB$Rh zip}OZE89Es2E2;?Z0^7b%ZTW2V;moQuLl}*gdn0zxIwK*A+ld}eT(dPw9(lJ^qW5NQf zj=gg~ESQv*9t}2`-zc|;aho$?NYw-*lXU#y#H@VHlTA)OvH=6V|DTOQ+`JJqiyCoOZGt?Y2DaB8de z^zU-uwzrN4cJuJyfaR_CybE|0zq>HKYFOoG({^yVv!=c>?jK(k?)9;MX}AB%%ZVLw z%x`O{ugjp1OPRr`ySz_YD&|*epmcMHD4_h~Zye^g-63;A(W=#7Tg7j1=wivG$uM%A zOzu8PFL-{u?-P39I{`I@2(Ei?E<#H4(J$9jSXa+p8mbsD|M2bTEM(`CEgdiH7zYdS z4p$38YcAaLT`c6&4LTL;+4+*PSxHZnZhpQs79cq@dR5vW43U7RHa9a_;xMaSa4I}5 z_nm|LMDTw7`;urldO0a#JzchTsHIq@*v$#XQgv`pqi|E|jTKeLAlfr2XN@8+&I2l- zXBG0gJqc4QQw1FppMxj18l8N+pB2IO_gxGO5aWR*mCAz-U_wToI^i>+Z01}WoR@2> zncE$9q5-A3b~=xW=7q)rdeq|K>)K_sw@u7r>F!Fm(quvZpnP5?lD6O1#z!H>)Dlq^ z&0HG3Jug^89plRURmvYRuKBNb3)9KvL{nG}|j`RmqFXyd+?)-LEk82Si|Xxsrbkj-6gZ zgjymp4~x2j?id(U=U@!;m|Yln%NC#Eh)HZWc-+)Ho>Y#`!6L+*`;!a#0Hz-nWD-M$ z_rWn;^`$-8YyXZ1WztO=t5P?1u|k$};kGxEh>ZoIwXmDgLXO!n=7g{70MXS8Gh`tG z+3_DYLtuOfr+v2>Q1okuw)yu>*MW{@`*n-xr>5AIOcu@`gUq%54m#=PM(k^Y*4Ib5 z*HvbT_Gaq5^{T2`;a4j$Z!$+rme1n?*w~pm76sdQxPPDcR5>iY)$cqSU+|wRFrN=| z_YLswkls9ByUWwSa^tDqLL?KujST`CQ$_qidln`@!<7BU%8KJ+mX{`3k;VL%A#|2_ z#Sb5Vh0Jmqtg+3rXHC@5YDlm!3Z74sEPtPxE6&~Y!ZR9J=%wvhst9nfErd;<-3++V zEi?)6Om^JBJ$;WOC+S&EEx@}7?US(%RnOF=)+~HT{rrSefOqZ?)|bL`ddqvm0$Q}s z{no}suC>5h@*kr%D%L`giHW76xM@)g!qJor#KRe*5q| z;|hL!kt?V8DA%v_kqbQp&gvmU05)JGUxlo1YABppy?L&k7#~J1EsUMR;MnS7NGR zSFD_hr-e<}r>9h;hS*9c&9ke?pwSa17y)8{f*HfxN`uC|lY!wjK58U*yEXSamLDSy2=MG&=}AE%u9BHTE0oQVlY zQ9BI27Rxx3p|si?xidyDhOnv85<${wP^Gk&0{K9iEf5s?)@DpWCpRqz*$@i^o)tn>YHP02~{+V0(FB12&%Q$5gSh(|#dDHnWL~ zZIxy9GAR%N`YwX+813;o$Bx%N>Z$X(Bse$;)`)L0Rq!yV6A#geks0}ZgHf9}ehk^J zQ}C&m@kj;RZ>Ua1*72XaLl}C?&doy*5oF?Urf{Y%Z+Vkcy^2_Jo0?DXsj#?z(h6r| zPn!wxSn6iK4kV906rzS_4|ie{gd`EF5%avT&IE2j>-1_O?$1xaV(p{)7RYhTlEQ_A+0a#EL*8oHyke!{&^Tq9}z)fm`>h;%AuT5zglJ&Ssr^S#;R=w@5 zX;*g3ml$*X?K4hXz&Tv3UfC@*-s(naco5Lx3=g23q zu%p0r$-f{?=oItj?n?-iUiKHR*&lzhn6#5blU@iLkZOX6Vb9RH6S;SvLdF7l786|E z@=ZXYI<5{oaxH!e4TYEl=G>{|D?(zkTJgYX)pp2!dB^?9)!C`F?OoYxBU}3AV}pfe z4v}&sp_O8cxTnj8=Z1mWS*eQ<2ApddJ*{Dw3TX;9K09F7C7pZ494r9>+|nBrhO8s} zVk(fE=LE4DSwIUYB#@juRzPcOkI@J$xuExxe zFYNZTYS+)RtPstv@k;KVU9&ceb8U%iGm;Un`7wIzpA;Z3ZNLwyN+fVqE}Ys{Y_Ayk zFboq54c$$CFF~OGw>*op%Q~jJWw2NRIB#hJlZ{H_P1z~f90f}}_#?dFJX;A;Gz~8@ zH?9j7AMe|b7?HSDC$2s5P2vbcKrRWjSF)Rvnp7-Y$*YIGF=io9zYoaQ>91wGlc;~7 z!|@lM(}-mcdY=8TvAy&Nd@myz+T{{PG`M=6a_2DlhN))~IO_wRj{^n%XSt$mK)l?~ z11Zwo*W>fZr5>RsJP{KcXRSI{k5@_HM`Y%uv9ai}F9Yi1@xf}sZA@%ZxOW18M#dq^ig1og9;aLR z3j+3^V0eZL0%6Nh@)=xvTdVsPz4~q5;Fq!aHhzj2r1(0(VNX+g>|&|)hpxdxIgw~R z(dZ@Ngq{!VZEc?E%bxu3rLuj1OU66S~ z@CQ;5944;=XnuhCt(*%5q*i|Qws*W4XmD(0i8xk&LtCm9+eIT9ORKJVCLB;4!xU$> z{~}R^e(sd2YLj20_cYz`%6Q43I_L;3aJ84Dqveo5PAjSjYQLjJEgSipk$HEzs&_%2oj zk>7Ug+I(+u{eBGAW&qmKzb4;9uXQ>Gt`_g4od+3kfTaXFJUTK6MdcfuAS`<7BZM*I zZD4}gA6M1Jt6{<8c_Wtcl)>OIeN-li;|ll7Ee}=>wk?;gPbD?qYTW2os94mE_2ujr zy;-_4X~aDL0loj!J#8Z&`hFMk-x~6$H~`2*^K`#L_ziGvIHAOvkMz5=couox8I zD)diul&yD^ZC!DouU+=bgCqtN zQ0qlMPFZcWn+-AcLfY<`ERj`ApDs@SooFiXT$I%tr+5Tah5{!8-6sN6q1ejA$wRmH zMvhnVZx&F;wolFi-`!My`L77`5#={Cj$=UB61NC&DgX&JZO-2-!(S|;Uy1^Z8kxxp z#XR#xZEyZisouWfvviSdMU=IUGxNwQES^;?R%@0H+Ovk=r{a(GY#)h`LGIYX3w_fU26Sjfmi(8aVJ;j zlgJeN)0a2^n4WgxZ{M?=787z|?ACe)i6Iy6^WJI^fW_z+J{3$ChDzYYx}AwiUHmjdOFNN1@?h zgWY?ScI>Zs22^3xu0?Dgb!zh!xhs|W^u4V+ifxyTlG3~0XlZ{E0mz`(SLT9}1JbJxkNwQGM>V3pG9Q{e21 zHIV($46Un}u4Q*DuQkX+>ZP0fP4fVjeig;EnenrI)WAUe--Ci^B|w#rNEi^&WMgHilWmeMLR;{!$B9Hm*;Zbh6<}hQ?4)_J2S>-K?mR&E9@! zXsEFKn^a@JEI~MO-sDzVW|Of<(gHmkIQXMaE)0^KZ;(^)m25rO0;I`LYrwSm_g93J zD~SowD;Ypd$Y`r5?+c9tBdJ&S1?Ti$=V<*e>7s~x+VR8v!Vi3u2n;Fz-Zo$=1Hy}p zg%PxcAIk{t1V$qNe8A1+sbS1%JuR4_wvT1UApi#`jaRcY2J*s zgJQ7l|8d&p(skm*qtEL8xB(X#3c_LpsGK=#;~*gOdBhOz;_y5FHiJcecu&z=H_;r6 zuEd&^o4_m!M+Xk!6+Exo3Do^E3XV|h9{;TbI0P-{C;v-8=DT!AK1W>B6$n$lVz>ts zc~+9rYD&bCyr)&@<5mok(KI^L7&%^`zG}h^0(55)AYxXAIEL_EpKT9Ie?1*>*-f^| zx&J+f_!=oAFXlD*`;Y!NN4*@}1X6%(aUYk6LGylZ5AHL{2Lde7$ya<-xt&(s4^+x< zKscZ1aDpVGcT=Cs?!;JSd$|7*zaEyryaxbO{|kU-vH_Cw6X+V?lEXm{un4kn@QL2x zbtP-OHv_;vR?lSjxeNjxn#2*mba)k?MXLjn1aJTjwdz?i~O1&1dJ+~D;UP6OrC=d~s zjwBt9f}Q$Xl4o|{L>Byf-I&73LArEUmjz`I)`-tZ6XIzkMQiXmdF-63FMBW9A0y>o z!xH#O^rn-<+!CPg_>tN8)(mDO4-|5Qz1iD&uX6b`gYLaZUI(T!wx!2w-@0sJV|Iq= zFVyZ}cwl>us^9(Z?!{s#cj(Qza(FTA!5I(CHu?=dkJf))+mK`k#so-h1Yvj4D*Q<0 zOsL{+JYtyR?!{m1^}ihYwpXdippzf}E$dMbf!%ZGk#C7~*(W+q<yiW2yIv^zDxMY!VHmAw8Y`QDV4_@9H!lGcHdsQ^}6&C*eUxd+TtX>YmXQrGCR(VgdWr6bV9;jtmr2@p# zRk8T%Q#yrLpAq*-89)@_uds1~f;xN3P4B0)M^^%1mv^9GTB6V)pLt8L-WTX{t`_OL zucJ6>@028yA+h(R469K64jnZLm|{;_#0NCM!pyaDNOX81Kb3WEEA(U3r$BVK?t zg1EF;k(iZ*(LDa^M;Q=4a6K|WOY}=82U8MH)Pf{|X37HLihg&ojoyVWX;K8?wN_iS zf9|BkiY&n%15SY5$kYu?nkZu9eg}ZKLD+3f_hSG4xjGcU4fuEfy&@07ja|Wds>Ps4 z3wl#xVXX{&J+3!vW5Cse-c*lc$#QWM^_1cZ087Lmt#6;*@!Sdj-klfstgC-L`_8&; z0itD4Qr6X1wI2ndgH#zCCjiMIE@wq?$%3%(YHK@z{YoMvB!uO8I6-eyx;bM(511Z| z0-wI6Oa)$hdfxE>*VOp|*pH|O05k!g0iQ|>d}0U!;aVqlbAs*>adQ7fMM=L;Nd`z- z&xdmWyc4c153t|gjfE@WbE{tAQ@_VX{!3aj+*(Lr4I zXhCnEM}LVt3^&gZ1-32)KDf5Sk~ZKT&+dpMK7AJ&}sZ0_HV%zz)E$i-(QN zMQv&2ou`oS^nJgNAa2oH(wLY&sc_may5p8_qu{#JB0*VZudu@Uy~43US^w^3@-|e6 z3U_uaiq%y#^fFFr0dBbM7lTZ-7s{@)$`^YZc@H_O^E z599qeN}*51`JO)gv(9Fg%ABXOB_J>D-KnZ@B)|guo}9k^ZdXVSl{W1`m`iB^wBWxR zMXcM;d0yC9Ua_K0pLj&ZV3*e@hV!cfk`{xuYA{)3_T` z1~~1AJHh5rCxkMLVp^2Ur53=7{oM%gW}yOd$H=#&jcXG4p`WP2l1DtE&_rKeU2zkC zM!tr;yW*h=dr8Rv;!F>grpO_CM8-t#gD>>hvMaf2KaLnnjfW&p zS~3|cC9h}R+~gIW`|~Kd33?Kq_dk2~`2O>se^2_E5){HYEBF{yl#(|zZEi-JlNx3D zpvIaanMx)4o@woetjXKxcJ*Tqs%V!YQbt@<1{)DHm4p!;+<0LYI(0ym6){I!5VEjmt#U6AMEa#(DGulS?Xk3=;OaNZkzYBvi3o6u*hqo6(h~{;)Z18~ zP~syHK%>I_#K{F@D%iBjLqXCnV=+ywxMK{!O}J0Do(8nZ1FYZ6z#9)W+%#|6BM8(f zlr8}RnY^VAF)7F$h0Mi*a3%19hHw!~ATm5+P$coYdoOXY6c9|n6q*PZ!A!Iv^f>4N zgCnsZ@SDZK77$NmpwAZz=LagSzt7=4qbLwi1dd05yUjob!s*0T>0AAKatV5d*nX!M zDzc2|3j+2oBb*!Q>-N+X@XM~KMBmI&1B-FdJXP>1Yvi6#(GT0 z*lHR1Q8Q-_4=<<^#Ke`TQ71hF6U(7(9E*&IzAyVbMd?@GC!#op2;4V#2yb8=?42fx zRL}f9g9|MO%$QfY`mD(@4W=^Lhj zuSMqZ_lc!IxJ018Ti@f?g_i6-A*36`GGwF-o!EJ`LAbg^n2%Oto*w=Gp#*80OZ5&Y z>E)wdeGkLFpRMu^pNx(x&Xg|xyM?#%M>B_k6npzUPA2Z70$3Jnu zdugWdnHFeT5(j)uY63p6b*wA5h0i-l*L`gU5ZjJ9YyH7YMIbf*>-Yb4`TiO@6TT5% z%*Yi_0df1?Y*wYf!X)sTR*_3hXa?J)h)xEJ7`Vw;tV#>PW=VTmTiM+(R~#5^oolN_ zBAJZjcOzwaZFTU?#mx-QR*QC-$-mVXW|7~@5^LdRT=_0_#1_RD^95h%xG@&4o4sjf zea`!lR4Bs^WwK$F@)vio3jW-wFV=5YIN19f?dQDDcwE;9hkcW(Y_}zXOjT@euIUz* zo`2l!RVy~#>58Zz0~h^jh!Un~r80*uL)o6p3Z+Xy>HV+TC1FrPLlb3V*ddtuhaPhprVqJ?6Gae%(nW$q}-9YF)BG> zz@1UK*?sAcjfbr6la|?+$|1ML2@pOx;FN@9kaOGfAJz{*tYRmn3L;ZY>!yl{J zsZ=lzwlsrHdks4>qw=CHBqM-4o!z&CX|VtiDiMzxvN(&J{_NK#Rdag(7SW z(ESv2{NB2Rx2v~Jcs(s5d4F{eN>V*XX(QS}LNz-V-$hbGf3EzSUugdfuMKaIZ^%D8f zx8D9UVtENyYLP*}D(0YL(c|~(Q6970uB&3HF`UQgMGpz%F&h(=zny7sw?;5#cZ_nuZG%^K*{ab~#LJ2l+ z5{F@OLi5R#O6dTE=6GIHBpA_i)IW?JB$ZcAQ z@Ia?b2dqLLF3a0=naVPm?nRm8Z-v0NcErRU_KU(`|a_}oZK4s?erBn@w?o8Js;dr z5)9Co{{xs&QG3@be(uD^BV$~pLp&?F4Nk2OR-C!#B=S)rj*ig|H*qEFcn2`uQnw%% zC2$YI<;pM;N-mZv8 z23aYuGH+fg{|Fo$;8n3_s`kZPhY*FU>Gv#?T@)MA{yP}shkJLa`<=&`o& z2})@&zaJIh)MsCFk}IcwX68JPg0L; zu;RWn!h_LgLi8iN6qDRkb1V8neec>P>f*mvZx@X-aXo9?q-Z7lSc6XO2gW;{gdYV8 zDxMs%1$40RI2wzMSBDKg-tgQL-=@nlCzh&;r0o&|v6aFneOKnSB1u@t4}-d3HRpDN zl6UvXMjU?rY%3Q|Mf+4WIp}py?=Od=wIl_f)4lkz_+Li<=imPt;xaPIyx}}#0hUP zP2?f)JS@Z{ziMOl~n2iKy*{eG_xzc7697TyeZyE#}&KEqAR z3%5yDsoPvZ_qR8ds5?#b+CigqxW}Mct3PVI9bxJtLUh15C{1oh%2B2--)Bkx5(aKc z)-F5ZC7-|f&OZr7SwuL6TbXB3>7{#3-WBs1NrEaqB2fgW?$D^45mv;@(9`|Bqk=2roYI}2dX zzPek532EdksTm++PzB=DCuJ@>`67{L%rPhUzQ^O9>rr)NeC~p$N%fb@v#I*%4z-9g z;VQ=psr=LCdijUrg4-^{ysVjwi2d%MBuj#$^CbjQsaXCXLx0 z8i!!7&J-GYYo+NN6_-S7pR1MUKTmY%rlFj>L;%Egh`GR|k%{@}$#ffw)%!%nDxF{X zNPLC-wrQ4_K8popRlLR-tDe+aUn==P-cLz=={EK!DlidD6Xlh_^+~md-5dkVBGS*F zfY&K2A2wJMLeIWrmttMQM6tQ75paHg__wRquKk;wM^!rAUN2JjTJ^lLi3UaGN*`PI z2{e*g0fdH_A1A=?BbiRiHf7bLT-L*WSIVCzp;WAC)nxg6X4?r%G2KVhs3Ya}7tPX6 z(hTPuH~$!5GHF<}ezTBRo|R+#+TMcuDYgtA{>wD2w$tY~EiBCaRs*BS$7Emgfy$-9 z&%VQC#Ge0KvZj1~>7`M;ebG#F*nBfFOQgl!+Guqgj}%2W3+gQa29~ydyW1MI($RL51HyaIj-LgK2%FN zyA{aHTR&avGQGIl58Du|m|x86wfI1t%Jj@|-^1LmMfoCC*OVg6T0f5lvNi=gZES)H z>;a=Du>M{AYc08=*B9C}7p_R8_sh9d#fgyhssJgyBeI-}thA z8)2!IM?ZF!ecK^5ST(U#o|crE%Ybru;c?`$w-J1LRY~|hJ;@E}IK9-=>e_jHL%t7& zYG~0`eoEK8ek=&ci{Qf+2G!rI%@qQ=dWwZF>|Q~OA+`TmvM!?h`0S#?O`C&HVAhzK z?f7_wU(DbKU$rSoh2^Y<*3_WhK(q>yFX?&~Gqz*G}q}VmiuU&%}*4=u3-`%JIvCxTlw3{=W6U&dhN?rwLGpk-f$hdx9&g{{)Z}l z6}mDAbpRXNCS7ayvp5xbTrB;H%TQHI{i98Nx;}D&;b<36o#@-IF+VuhmXlnMcM{!6 z@r80JuC$2oyP(o%Oou0mkMeJO5!q~)(gHDUak7hm*u}6rI<)@aUZ1jW>`mgM{xPTDaH-x}R-OiJYkuF= zF=RVjXmd%07JxnTx$>|XhKE9;PCLjNUJW9qu4}(Y)48~?(-kxE%WeM%$Bv(DQuTdFgQDPz7paid6^k6v z@`X~T{el%TM=L`i2e*LC1lS zO*0Wbu67>ibfgm>`>er%Nw6O#7)0VKONW_ZpK)a7o^zG|_(US>)c(QwaBIMx9 zhY6gxe&Q|K!Q>A-@KgS=Y81WXxkyP+h49m>`5-X6)olaE*Z2V6@Y=F-Mdt~Zp;-^v zCO41`dROA2Ufvfw-SMSo$>7>Dk>jS*GKOpNC*KYsg-B-=U^(e8XK_k*ExDt=#URaK zzkbek>)`F-3DsFm1A6}V!s7a1QYMQbpUYs*Jc@r06}!8daOAnH@# z_kxdiC)2oua}pC9qu3ecC33KLbC7Y??(fB+&fXT;yqm-)I_u)NX(s4~>>94foH7dh zS=ZWNtN!ai+t9y68-X6Hvz1@cG922mpW1cxcn$T(M=z@mh8V2Ox)BMK8cjFRJr_wF zcUKdsjqq%>XN+*CZn8s zi`LG-?b*n^Gd&}EQG@>tY{WqJE4%{$P_hxDn;QRsOfLzfx3|vV#WU2;%DLx+8x8sn z3Z+>uU1ktTgdFVCHJSRb*ONyF8T{&ngU}+Yw3B+{sI&J=cfB5aqB7D&Gq$r+6LnEm zPa`!G>$RpRBg|dKkgRJc@3D>3RTp$dYucr8;)Jfy2SvF0M;C;>hgIX0$3*Qpd{0qq zsmFd#yXQ31+bG@UZzSbB8LH{#iitnH5V^bNTSoD#=M0Z8TFow6FK#(II=Zb-N9_MG zhc1<(O&jbYi@mz7eDl;r7jU=~3?k_H&xT>9LNM z+6l)blHB}ieRg}Fz9fqi!#{2>TF)xTQ|7kTPYW{ir&ayn=yqrLCg#I+l~SGVBlZnt9hdv*Ez z7wV8xroms?kx;t}xiFX5Cj6ZiW+iIGob?Y#$oGn4#-BgN>!rn=E6R0XKK7=9x^pT&pGdS4xJllz|1Jdlc%pLBXuuhQB4so+QUK@?y1AR5gff9 z_9vNW{R5{Y>Kfg+SGF8t2ttSu+S$b&CW1hLayl>WMftQD4m^xeP+RYIHr zAW{UG8%6)15^`$y+$_KQQ1G_x$EB)R{)h5^A#NEdeD5hPX>@Cl?zv0sFv1T7h{-wA z#RFakV?dCl+G@~L%iUcobG$LRUz(iXd~?kaHi@c8+V3hx7v@5IY`kXRH2W@g|A35F z&6Z*PCs((YNac1!YF(FF1z)B`3z-*nGkLjIZ`<(h;6Pw+mn-Ino}ZQtbLQz8Vca?4 zqS*A1Zfeb;ysxOjKOlYAs?+CB=AZ#phko7uRTuM4dmARjveS)gdN*f-g#FFE3<{sC z$WNdKdmJ}urPS@b7KeA1nNq7~xvmyg^izww3Y)<815UzmgWW?y;&tHJ=*3kyHh^odZ#`=m38^oCHyn==Ju!KC?> z(YKYUZV57(LLkv5edI{Y!0mVKpNsYfRjf9zN z@f?fQaHQ|aLzi?8jXi~@cR8I-bm}j3wVhyg>N%+?Lk#^1aMf9Ml;JrWUW@if!*5K? z51|I~U@D4S>O)bzYp2v&s1bN2OM|Cn#lA3qETS-S{gtvNPGWIxzqz1hzn1cx9MvD}s`^bEcro#uITDg9wVOov z?%4h1kr4rwRC!jKUhB7fgglE;Ud?0e6>=Oidv6_=g`3cI_7fpY1vl@fVoDaiWYrhT za+S-o3JNc9yl7WRk`6|VY|I*Y8IuV#1P=X`Ui!5+#C0Ef<|g|?JRRpvXD9Mq&sVCV zC=}DG=eSJf%JMl@j@ZFenPcl$iP|AoGTnpMPd(Y9zq#zy3-DhPI7y*q)^)*O)}LrP#>_0a+?|pIJe;pa> zIL6!GKfQ8N69$$`J~b~)&TJ!NEDyNjjX)nOk`fjQagz+dW@{IY!1_|xty1dQT|3Fr zwlyL&g--UZ#f+^BLnEDdX4Y;*X>I$B&SKqpIxm+>(+k~)G|BtJ=<`0d?}bJpc27gI zz9NW?>;4oUWN@%*GZ#DPo6o+&A{3d0p8gAvgL3@?Vp)ptygG`88*$C-@Ht6a`n{m? zGjBbHOnVfnJHE)}E{m!>gtL9oKFyOM6(n8CVvM`n_U;% zm7jhU98SZI`}RGk`JQQ#LfBH-fbH0CUsfiMki_}ZP~Ix5(t z=eZJmbQUsj*CuoA z9aPtD=B*!3r#K=a*Q6t1P!gN@Wxs9q2gTfG*=80FRQ}$ZupX(Qz6_KTUcWv)FB|Hb z*{#u^s5@MBn4ey6;Ad^Dm6Lz&&I6Gh!yT@9Y{+{~)6_g35QrxZLoNr9XtbYP?Hhd= z=)GPMgfC*~GrG%rEB1U&h2}lb@!dKbvjs|dU7!1)CvsofjTsq_U$EYI$#oskD5hU> znAZ+cZ@aH8MFX1NrI^EgcXt7!=7XE+pLI4Cw^7eN0~A0KHFn1yr`6jj8I}p#VZUkD zdWGQID4mre3@OL7-z0M0o6pwc_xv5EBp0Sdoj+UsQ>)Xoi?#4m=8g2|tP$02tyB9s zS4Qj8@1~UcWxo#G&*b{vHarP14@nt4uv7I0vm=jSOA%Pacy4M2Q5cPvuRr!HraYVm zcyp=7$lh3WAl?64$N0|bxP?{x%`V@es`80(=FZ&l4{n==>oy&$lJlGAqF{ez0e73O z62r6l+cgN;Q;$5#+{bn*jbeCLH`^!EPh!SwIqbIP8o01KQ*38foA_spU#7C?hwfG^ z*v+jD_ymOOBf`80gARvB_a>&D%SEfyN_DEkb0j3=8O7~?A8tX8qpG0^MxFlwCi8p+ z@)C-b*h7h1ts&pCIWxpoDt}#S11}!hYPi=q)qQQ3a~*S-ux&mPm+D9*WbGif^E=Vi zyW+-(p&=&Aq8INJEZ2BW^R{~dLw^S^?GBm4*q#bH>sQzYzc#4p9*DjxU@Bvc_J1gQ z8KZj>83T9W^KOp{TfIvXIL?4S-!$1i$!W_d{ZO|MEi1?8S|6@A|+Rr(#*wX5{ek@Xi&!eRFr{Fc^J$g)rFT+G%w66|Ucr*`8{@ zP4lPp#(=H9rTPia>w@WbPMNFEJPr%yr=YO=tPSm~GD_3UH8w36VG^)WYf{p$M4x5p z&5T49sb0HohcX}f5+>@a{A3-*c#aAe-&-)A^LJPkP+s(j?U(EWC$<#WhW}9AZto!n1&{Jgp0*m+g9!MAp0S?}c@%wRoW(>-GxsnYs*)5HkAQd7n78(iCc} zNS?V2&og-sypA+y!HvvO*8XuND&VDBY}=Xc%Ev5b9CU;n-@DXx~$bG{9pj?y9 zf=;D2!N1{KN4EOg;oIjGI{#7lQuc7(Eabm9N^gYQ6;bSa(zQ7*s7*7qmC3eHtsx$; zeM97Z@WMCg!_1Vx9Bf!Om$iE~5f>u5%p8eLysOKZ1JmuO%`4F)#@yKx6lV9L$|I3G zsn5LHZX}JX!?n4#ro7j;`Y4YFmEot(VHLYG7eKWQ6KC70L?nui@5o*odUrtTz)SO9 zTRw+c=K(r3Vuq<#@hta?IaoqBMr(~%ms%?Ht zAT2P;YIPg_99j*~eZ|G&I4 z)aLk_Ad_x4|CrGITqkk0S-Q zU#9Q$T^aIIJ5E~F%ttw$f}0HpKX|pPlw5jRO%`|VMEqK9$VMzxJM&cg1(qi?`Eq;QERv7={4A_IN_KQFK|1Za?ASk*CW!OA zWt}toK3nLxZti9SSC-nCAqB5fqq&wa3CNlwXYj#ea05?L;YOW)$6!QFut<*9lyVeXG%N2`Zz1D> z_a#652`S`d)+P>(9Q=<| zn!7BrOs`Q;^|Yn{^mOK_h%jN)57l9KA)ob(n^xhuQGi7U=7w*(BFQ1ut6W%I4q4V} zI+9}BoEEltq1KVIULOECjouem0yKraGb>-Nz>7}VRR|cCJ)&ae6u`fz)Bh!l=+S=ZO{Y@DaQ%>^1#sT|FZyf5^eS|^UF(o$%zr~JT%+cEnGr3W zGEvpJIlt9;7q#rzHM74nF!RXQ7L9hCY~PvbsEZVQtB>g$4qFO|zs0Zv3ol~1MrXot zclnP7WFv4v&x$x#>T+xJXn3JoRtadO#x(5=FP;uCb#lI)%zS*TR*%jyob}r4p`{|m z9GP=y)Cd$O`WPfn8)oCK@45MmM8pUeKHVLSZcj%_m$#9XjVOE0a2B9F**|NM!Fp>p z6t;ywxZ0o_(s?g@?EVzA8n~*lSBTv`=UDo~;E8#!uDn)#2ueElA6h!Np~5&)Qur5?!6LLgWig`p1wM?`nGx3%+n%tJQ~I# zbXYnDlij6Ju6Ted6!#x|l2#GbRn?lA<_s@x+){}%qfKFc3VUgb2!QwQ@0ZyAV?>o-7&`&iO^=9ahnot zdShmu#5*xtL*&T(z-5D!#lWe%Q}yzGL*5MRIV#O{#z@JfFT=BUDkQsxy1A_KXkhM# zb7OThKa=F(y5QOjg3(qd&Y)Ns(W2`#-{^ym;WP3l18nKV8rdTcwbn*dKE2drc-L9$*%3hM`>BleyQ;8JO(Ad65_UsN%qh?p7uKgB_ z2TVVo8c;t5JG2|6XTI&7UsDuien=yqP~+uMo=z=LPgy6VF03c0Pt|rYk}SBpX_q^^ z?uqiSSaw@by@8h=qEGP59p~oEmzE&AhqWjCM!q)-3llfLQ!ib_@@0r3k|?7EL;N_J z67!Q7zPoI~5mkj+zJA`uWTnf-mVv^QTTpqG4CzcrT08uiMa))ebHnyv5$m@1viiO0 z%68wex;v*6+v^#t*dwn7)PnWmLRp)(M~9t9VfNFu3ii{GQG(=!4{y-OCteO}i65Ro zGi>*Pw)o*WHLY8u@s(H4Wj6gsT%wX<`(W?h{{IWpg#?nnby{mHEmj)P$LGjK^+K-jheP1g{Uw&+dI{ok9LdoDKXaQuKxW^ln1Rgtu-6uuSkP?Lb5j-|of{q5uS z-9y5;aWHDC+TN4OtL{0^pEGTiV6h+CginzC#VyeW}8@X+ZfK=s5c47MD{oRSmGV*Rrm0q$$c@twhUcMQa(B;b7?E8K8yQ!+0KDB9I-P6>8d>w*-Y@+YF21 z$}P&TbPbxgN}-gL?DQ|(9$$p`vf=79o0n+Kh#UDm z3bx_MvQ@41;W9dpNbot-H#}eaSQJlxB2EV_d&SQ(t9-TWko#r&;8?R+x#ADP64G#lQjO*pZ3JyJ-&?hEj&V zte}IPLC>9{W)ZsLv)*m#LvQDpm#}X) z89znAuf6IpE;Q0R`j>5NYB7XdV+{ft?jP`@*PX35w(5?zR`=(-Dzp}=&D^@WGjDdu z-h&-Pkzp>%rsbj)^Rj*Lc)4ECaVE*4A`y&_MS__*+pG)?^R5lbyBS*s zGd)3)2`_C*2|cI2zG0`b<=l54n(~4VIKn4(2EW8;=d+BjS$i$H`(iTLMq`h!sax-& zhv;UH?4@oW)8C3BI7s|wX530weAdSygArG8Ixl6wWr9D${H)5f&ek;`Bgx`!$RQuy z6+vpz*TuJec>jQ!`WyT#_c9YkquiTD2@N+;{w0e3h4JV zg3439vzXAWnT&Qoxs0?gyLGJfwVSDTKsn4!PkB!XHSd-&jvW$|sM^`}UKTabAWv*p zRT=<=H)?5mf743!$AH*a-_EXC0fOtV6}zq!^|yr&+B^(_>uq}cQ>X-+X`7x_nzo?> zWRJ;?3+4GykL&qtTR~cCcBko%$Go8Ediscp4j9^axpwuoI>ofRq$Gi5xGa+bKG6{o zfgI}4AF|uCm(i9rT+1-GJrO@2^rRI z31ZH?e$UNSd=F(Js2_v6S|Ov`yJH$gQ*OyWtN3^_PksQqzx*2NQv7rS(|;-0?8#!} zu^+9_Z(I5IE)MfLf4b(Qn-*9 z-@(zgaSB>!ciVz&g;ZG*N1K&9HF<-^3gv#vHIZj>LOBXD;|7~Ba+-WCuE9E@Iuu;p zSNc+6!<6_alV3l^E$Ff^=eqyEWpfD8R)ckb@wj?I>Ne{n>$j5Swl_ndJq0~oZnEe@ z&GjKWXGdliubdIR{g~zMiKLIHu->XWk9bp*sC*#LtTYrTq9rTwKhtXv61nyz+W!Z{ z<>V7J_wZrzb$0%ess=;9o*bX~m%?cMGc_ikWk~Ta1lbVjUk7_5HocMyB@fqQ@7ten z)mKx!A3XQ%E=$g|Eqjg@*r7fV((=Xx%ymC!yyJG(W8CYu35`E5VW`r*og26h;mX2; z4*i!kXrNHkdgSIz_aP6X{;soeAor~5&$VHrG`iV3y;<|#>ILDqzkmEWWI2=$pFPqa zR8IPyrL-7Fv00_-eD<81qu@B+NP&G_;OS@hYh0Tn{jm3()}^5rWD!Iq6=L`Ol3O2lcyT4^RRz@xQoT)ZdSA_>z6sNh;5EGIR(Eg3u#d)(`Sz7-4 zsn_}7ZG@xYwBZ2^eD@FN$%uU%Jqlwkl1}c=_G0rZ*{MXZVVRHB%*CZWGSvng((<#v zAAmR#h;n}94t3>Y0OPwV!-tEXTxkvdf4seQKpi>vKYVd$af%i9QuIP`FYX13TXBa1 z#jVBNU5h&xcPZ}f+Tvc^Wq(7vyU*_Peg1vlaL6Q?b0Q~qA~VS+;^YVKb8^(}5PfSD zyW6?#RX*RU^1BT7Ki^fEKGj5Rw9lJ$+1QvXt7kL|x;kdSY~!htzFX#r=(IfSbUv~m zw9l8u8ZnZn)u} z{0VyQ8kh0x>bCqDbEzLKGSSX;yxYz_OyxC$iY8e%Z^N~gQ6IDs!X16rM_m%Ejq9{6 zT8fuT{S-r@f;jS2FLiJp!+>cbu%Q43(}y8i%yg_D`x>I`z?xeT+C^~X61NRm*C3{t zFbba=v9_F@wro1qA6TgF9p_CmIM-pNu^Bh((oW_&>U2!ga(%HmF?YD!VQ9OLn^Te#Iik_4V1@=XX%Rkw8fW!d?jrdN&+uN$s-sBBK#07Fej4#p!uk>}+fcetRKh zbVlA6xK+&=8MU)bK9+L+%aAoIU02HN6ut$PKS0?jI+A64R3=Ld!SV|hOFF_fVy!Y& z2A^-W2(pQr!Nx9WrH$8)qP5@g!xataDl+wo&U+ln`&9+3ieKI06zRCvW+-Mo1GZyJ zk?WG~o1Zlq!5xs6NBQ~pG^uP=<<+h@SCx{s;NPk>ubz8)G2n<}@$V*mPZ*{i8_qhn z*i*jpNo;<37FII3IODJ}4?YmT<1>ZW6u;QNn7?GV>#l&)|hp2&lGahi*0-o+nitMTYY~4I90q+8`&=n!^qe zV%jsm-@d#XDgWNN5CPy(<{J=~h8dRyu(Qrg2RO0Kv){+Mg$^%|$;~`j(>|Z?W z^$Z1%mqMl?VJsHB_O_S$d4tn*AqknXjp5qEVmbj-5VsVni-r=2=s19*4xIlT+%5qi z7K&(Yw8(j}Hos565Pp&8R>tezP;<@An@_};e$O+gMxHyjNX!~zT#2yHwilrev34n0 zVs8mqXUWstexV1{SX6ZR#X>Dw^6<25d}(uqb$U$TOZ%NC=}-IMvh zn%eHnG+Cz-ZM>g9^RPm!U5xvCtK5(BgB`9X)8SUN`RLqw23P#~hcuSl5{pO0A$m6l z3az8We2ZtH+Nj7!V@}pqqiXRPj9s_!7EgE(R0>`(4qWa%yWu?=IE*ZmscMG7ceD2S zk39CDtPPUdD*_y=&-XW!L;YqUGzM@ChZWWfz53UO{o-kTNpz~WB{&&TBk{huzzU8E z3Ea%y*K3Z89FA-{_dE@By5hl9i)WACHwk7}DP`Lcnyi5(aHQ>KByPV&y0kQ-pz@|6Qy>!Wh=b4Q?8qf-BnFh-)5_M z{}PQt#-nY^0n&I*e{WqhcQ`wvRZ+&WGalY@8>pe_lfh}wU&b&VkFuoQgxzB``fVb? z{i<;1DDD<9L337ut9jdsUssH}Ke}AGX<|>RwW41p?sWNZccEAN_rjv_%8Jgu(U;fT zdc|%@Xy=}eG&}bp0!p7J=l7f(%V{)m`DF?n-D2l8KJBf|122WbQ9Y3x>|O0L1oo+Q zOlDYZKJEVjk}PdyT}XdkKUmX*aDkQ0c)Ge@d(OedD&pi7JRcLkPT*FdzMs}aH9lOK z+DBsFH*~Fj*hWx)Sel(?yPiSl_I=#4){dlUe(x~#(R7!|@ zs!y$+64ZBxD0~Rgid0cNFMd#|$zH$2qJG~k1+#NoZvB&IzjG_&1|@bd(t9OQr@F3X zI_^XTH(`NAo_K|QDd4BINY%@#_=0r8Mc#^x7y}LjB|ho>>KtdsM7uLa-RIT&r9KcP z)GewSDJ^ds{rHEv5S@eBQSqFhv9G^CDk<1jpFk?bSzk{mk=C*jMbp=1+lapq$j0&# z07jurc<0L+X!9-`!>l75rRg^VBfLkcy-ov)B=$F{1hcM})-c&d6by4KYcb^9J>kWFo_bl!%PE_%$V(JPUl;~1T9Zcs-qltoZMKxRGa#HpQlcVW` zHtMSPi5!2omSO`9TrT?G3HEw<2=O>_Pi=L@*CQl-ObUxR#B=6ja;9^?>9PV*g;@Q#s-@wW znW$;8Vm){-6xd*gDDG)8xq5szHxyr%7D}l3@~8WXcRL+z1-?F25IBtu_+)mEa#z#b z48N2zYCKRYQ~o>#TlwJPa(`v)WPX7=vVE%e&6)a*Q~CS!I-=oK)>6BjIS8ud&1zqN z%eb#=^0&Lx8&CgjRJl+4BZg@%MHhNKMU;{_94FHJi=AheLwqrqe?h(ufn|i(iE=iK zs1>;D*c{D`!5iZ-j4rfI@~F*MA&!k>z^jd~;SP2C{M#WNHO==KSNnHd-dZP~|KQEH)811St&G=hJDo#qo_8ed#@3)^RH2IcXD2yV2EdgYR<7 zcIEj#q1SibOrYZpw>W0sKJ}v?ncyCQ4j5exhAyIn={(3~c={hHTX#?0+!x0MbJY#o z&uptLAqs# zFfH2`N641$+r&C@tftz|yqccx*c|Skg&0aw;02d%6<#h(plS^_kJ!qX zd{6+sv$5p7aim2&QW-pP)6#6n)DDeo)6Dx0nX0VEw-6BRZEdx$sDtNkT4QdvAW+L~ zvt3hg!|nqRDSm(26Eg@xyZ&y*+0ez1u6^sDV9c8ya#MD~Qolcz?PytUBfax=C1C9M z;K;N;Y*2S($eF`q%l>-0WMLJ_a|eSm z!C$K}r`Q#Si=)X-%kdT`6xK0u>uzlsbav~yF+m|-cyi<~pJhL$l-k}febr2r>t?g) z8ddxSvJ49>gJj*QxegB=dQn^2j6#%(ro}h3Pi6i&l3ZHIHc$;XHU?A6cPAg3t}8dipLH~? zNtO+_3gD{lwR_k^lsz~NU*7$67q8pLKiXj%6@;>TUkD!9Y;Zm3Ejf%CkaFR-7az5g zZFXt~;M-glGg}5Lny_~rf3y~3yDiVlsJoUh?*<6f)&9YLq|iufhb!9A+yZH0C3*Oq&m#)kUE^Y>X%Hj2eMQK##O;*Yk# z*=1>%q*8{V#qUG#U#WD#ei2b^@>lJxR06YMW5Na^(t>q`y@_@%4!w}ts$lhM2-wQR zUb`*n*WO!?9H7hOF6Px$!q7f1*BA2bDq3w7khHmdUyaGM*jC2r(s){oG>UfbrzqiVBU z$0v^>2)SMXk@mO*o;Of1mvnmy%};JSKA#GChC86wBN`Ouf~{Ls0<*aHbHjmj@!m_q zS*~Pocq(Z!fxkJqx~(x@UVilocn8X#KiKObo*mI!x;nOSw5K-?NsIAI`wkIiZ!@C%gQ_%V?_-#h$#aFwrNJ9ZfF@JOB$*LF)@wQM}vLq4fUN4I$aj1$|_NeWHw zQh(83`?6ez;Dor;ZU0^iX2E^qYEFN7RBSqAa=*74#PZSHXs4TZA$m3^%2kH3DP2yf zbkos&5~~hoNy7c8>3fKs=;$7+l@obO_@UQwceax*Js-7p2Iu#T==Ffg^$7cX;x)y! z&9p{UyS)2|gl$}1AAOfFyjjhR$&57Ya~)K;0~d(b+l_8J*9akC*_*Dt9m}ck0DH~( zCvp}oJ$PM&=Fzk8EE&uf_@F>)5R{o(z}M-sj7etgRv7(}(-bpO=&W`)%E1@n;|@#_ zXzg`i|vZ89yUVPC=CJW zi_=wAndtJ;nQg>*>NlZ$ZDhn3j}9U8ma`{E+O8KeV~d^h%T+`v8e3)(4W>+RR6^Wr zr9j<0^ zJ{@zzt)AOks|SIMsyhLa?C+bw-)CuLt_Xaxo_l%+myMWAIj3`s zU-fp~xStjqbhw(%qc|HAo#-?Z)NRmt*_?&8%<}W?HOWNnb5&d*#)cYIK1Wpk*ltZM z($}QJu3Nh0aKCjX&v0a!fpyeW&A!O)ieX(R$2Pw&cy|{i2Z)E{5i)7+sn_f{00^lTS>mz@FWG90^)jY_a9`0Ez={56P z)mj>gVRyURaOnq{6a^vhbDw92@QU*|-@eKAF>lr^eR(;X+Q2YA-Enw$GycMg!Tayg zw0?z6j6=hH-tI?40O^TRYC`o5)rVeMH#?)j_80;7>E#+WH`@=E%MVK=skJUxJZPU5#X0uJ$ty`cpY7z@ax`>LXL^5@!MPNwaY$sPM&r~k_JEKuzx#7` zVMnvoVAgbdtK0^g2(oWl@**UGR4Ap>hUI>-NF&P^SPKS{RM3d;)A&jX0wLn2xfE^- zeBIG{)Md(O2`4z}IN-3-jPOjYHDDXn$9K$~ealm0=U_J9&sSF!UR5l%{1UUuu=?ny zh45o{U!o4_yZC{>Yd|^VKBIJalS3L2r~z~lVDX%B(P{;2e+(=8%q*iv!UL+O%gwtZ z$t@Swod(lS-#J^-nv$9q&r#?&G^6Bhk>iOI(*18!dRwL_EXGIa7hM{qU8^EVx> z?5_+bW>YLX8|n;nY`2?RPHxtBId^Y4N_D)vs>VuMQ-u?+65@ z#R@tRsEwB-{08Ug_SuVT;Z8hZ)rYog2dlEaK{)DhVLByCD|aW9uJ`oK{EQjksWcZ| zH||r)EN|K_jDGs?u3nR-(43ihNz3=i3`G z9c^z$wze--Zck)u(2K)qlXo)KCjSF#a@W?4Z}Izp2RZ)0zAknISYst8xE(ld1WuNp z!!~5|!EX8&77XQkt(qsuYiLCLT_rbqzT^a#*<$aXFYT9y)21rdFiD^5K^rDX#dp5I z{bDNKxGl^dGFnjQ_xaXW~sSr9J0!kxy&#Ri7|v5?fMlV2-fb0@k8=^!Ym8ai6=TxHan> zj(7&`=+Da-);RUljGmOJnDl!lEOI*>O`MZIcFN6E7VuF66MsY(KjLJuzBK18nv?WF zxSKH&?Nxo9fL@c`8r&&hGIY*KQ#C5v0#4O5Iyu)&nNCQ4$Q;-`!{cg>cY4&#On1?> zKIyzbd#QfjBgXH)jw@W!Ke1%Iw_V(VfHA9E++dk7kAJB**o3NeNfqxrg2%-!fbjLM zd(3motYzQKQZ>au3~Tqkgl6j6xNH@e{FIlEpRk34ak2#Z%lYV3QBP zFqQ=x9}q~01s1Tm&QubvIB9s11{t@$DnKHtd*FXJ3V`=^@%ou zr8(B)EZR5C+ogOod>*2zDm~36 zxjkikv(Ywt&ey%dxx2{ew;n0xOzLL~kM%VlasU`p6i<0`fzy$J89z%6Z$UuAzf5&0 zg_x@e=Prpu@Zs?t0UKjYrB2t_Z%|V3SDiszFHNcCs|9uP6e^Lw&}^qeXL!!S>kxdG zN!3W7Vv#^%;NFIlJ=6=Buvgy7_mp=O>fUL#zrDMtIy(o~9ne9fA=b{N)xA*`in9aN zJ(HpPXI5+ew*m}^w=_W^ZUqtN9tgyqE6$~Z`BtfXO?8`Y3RaIc*&i>ARwiZsfpuEN zX%MWRL2__%O6F779pcKwMY4aBm$stH|C1<1t(Igo!#^8ECdK7Wj_|P*G?#?$zYkIsMrW)cK zRUc%xA2)-1QCi9R^PS z+hu@lhxztriGMHLTB39?FpY3OD)_$25vnf;k^p@nhepDVAx-@#FCNrU%{)~6r6OLz zzpGu6Ri*8M6TcQ%DWNIJQopC8$XJ4}OP$-m(NF;q-dZDW`+|BoXRy2y;+cN$(|t$G zcoh|Uy*w&^;>MJICkSZv)t@M`RooRCbSERN;Z!${Y)QB7m;4!2bxyIf4I>-#+j~R3 zZy0Rp4R_l!vQeEFPzTe~_j@^t4o7$2Ho4r{QZ5aZX{BCkELd6dg)TKXaymjZZ__RE z%Fc^}T9c^AIaE??XR|d)#CVCEk1s9OzT?GLlO~yI-VQUc=Jrmtqwd*zFwM?IJ8&Sj zB@|syt-*^)hmtOD)l#%k9x#wmcjTynUZCR*1-=JGLVxIoM#4cS?_=aFe5fTr`@)#o zoFtP4i}9M8ClY8o^umnccA2HzZfj}As#yV@3h})FAxpv5NxooCDR)0|Y1?k<(JT=J zLFqwz`;a!1>K8_;sF3F1Z&KDq*GLD(;=-BfX76jKV;M24B?;C@RQPJ-2x%rjs4w%0 zM|=$`f(dr+TZ>KH*6-*bj+G>~IRVL|qC|oKzUCI5t9faBsD)`=uWMsH4|iVUnZayL zLPj5!nkO%(;4GQ-vCLknW6@lC-qRtP=6e?Qm>fwoT;Pv zvM`gHWshXpE3=i<#rR6i8!GOk)9t-|s(TbViDcmplXThUQcsl^6T_ZlDV|fpE8&Qk zxRjoso38XymhTcNiQMcYpzNnbg~&xd$Ey~+B8>zEPg>s|izYzusjM-P&=U_Nq7>ed z1@{-T=}f8J)f2kSX=Ryper`tj3XLM3JSrUhnz^~=CiFhto(sSzu7Eyi(&s3OqROeT z6I1n}j4yzK`=VzztYS|27H`4~HEU!mhh+#PHNsW_f)gZnsobyG+G@1Fje~#G%$k~C z>|An5t?9ohe+SL$l0{tQ-(>(Vk5M-|GCwfZV6KCCp*icZZmj4VeNZVxADKy6!C-{_ z+>{!G=&d%rJu+~5hm0N)1zSer1(yC!VtO- z33z%b#aP9jt>9va>#T&lW;vnkdHWe9KbdS#!cq)Nx!3LoHg%4gRw5h-9r`WQ2Ng+7 z31HkMO(6<4ZL?rRQotsEFX0zu26`nJWvCDAG@^6LIZ+)+vf4!~hQebc(+g)=fx--g zmZl06d_ngCS|kYS9Xhn&XL#liL*WzlWs7g0q4Y>e1;3CoaMHbH*v6~zVJpWl#rnOs zp;F`(;^%iDP$YnChza@}`7V$YnC&Vs_m?`TWyt1#go`2tNdlOBz9qK8!zwL2rd7S2 z6XL(NB1FhcSAxFSd4G)}9|VbtAb}V_loB9xQV>Wz4_&dEsl5ZF2H-!!zJ>J$V{O(~ zznyK!CP4<^`}?<{julGm0bEOv&xb7levOJ?q>~v+L=b_jvU1YCTShSo1l7q{Zwv*Z zM6?sNPx6^rC`CmmLIOvE@Zz{Mhy*!MpRfacoHu~kNaU*pE<`BwczO^4f@I>MUe^|} zw-k~UA?O{*o6Le?Vz;uEP`qkpTM*bjkq$oxVh<zeN-n0P*2G;;{~$- zm+gn;RB}l@tVp49miXeWUjjn21i^4uIAoOZ})A`V2xAp^NTjVF5wG z(na^M0Q!2iQy%JvKJ@MdkS`Dj7T^Tn8Ue^gSadkRMivDu0Ic!}zZMuA{kjV{fx8M% z_LCo3un%DAQV@Ca0GwTb7Z&s+_DlFT=TnSNp--~^pBX5;uR(%h(paDntmo*U*CIir z8aR|v(3qln#$8dAfqp`mROqj(48_Q^U(ZE9W%{>4S0KlrrA#EBf5jNB_5~Ix8XAVu zTUJQF1A}v@2pf?e=mv`zUq{hV1`deew3GfR1zfzz$R(phwS+Kb=+Q|F7)Ya@V@f1K zS4u=b!=}m!e3vNI&Mb*ZB@_LZ1O=R;%}}rGqCs@hvnlWHiPtievFN0Uk(l$ZRJfQfL`0oHpAs zEPr#fQ|3M&V)EhdRG~4dM&{0@o%wJ=U2ICXEl_%wu zM|Cyxaq1jf5r~M0OJx|QS=+rx ztZ`6iei(VRygj@7ao-ikllVwXBK_FzHa1p;CGxMbLM!_gH>nPBKZvz>sV!=A$t6@c zP1ZWB;1gYZO8s=+RAJHdVRm}!l0MqlIafZ z)1wIG8)c~}!n2&ai##@4e5N~27JFA8X6+{@cV?#Sr;7dQwYhJ@oonoSwfw3rROQ^k zt)tkG?4hvB`*r>+q$Ud?$7P)WH1XULCyU~a`5&E28*R$j0c}+VjP6>GpEorg;!gyB zr-~62q_f_Z$`C{7!T3^ro%ro!oF<*jzV=k6#z84-E=wtEDQk%Vn^~Z9kTi2Gzxy@w zTzfV(pE|RF>A>`;Ym%WIdyUQ^M%+NdmAUTtlp5!@QP+PSQY7@4R~9N+d9K)Tw&&p7 z)Ys&T#WHJ26G`K#3TCq7TKihXz@M^NNYfD2uD_K1fyI8RYvt;A3g%`}VfwwEd$Lsm z+`L&_FR>YX=>wU1Y}Y2$-`WD9!|w#+S4gY!{3I%qar#)Z`1M4~>YQt$c|4?w=u>AS z?Wl&+L~2~P?@r<{Y>i3#XaaF_<3cU7dGbMx!@(rPoZ!@G#AZ-7Ei^3ohQZQ)$5O>X z3IKZkZQv0l%#-}GoZzHn&@m;Tgb*nu1daH;gE0jK>0!S@gUK)xM9zm^zaN18{HFwP z5d(AfqmO;WbWZhyC6|Q$7Ktt_`7HM5GiZ?0Xnh>l*~6l zATBTr76s7X34(+%WMurFx}d)d>-z=*^?eftBYzeG&YArN2Xu@8_g@AvlZHb4<0asQr@_agGJF>u{&Wi(LtjRGYD0bF=Nr2E1=WcCYbWI8M zw^#RdMI>TUFoW^MrliIr@p9w%4F0JysDiMl${|`7OWAKgcZv?_$viOQc|x59I^fa} zyh0?X4^QsD4Ad7K^6nhgNN{<>&^KW85Jd>I;*IqBb3pk7;i*2RfGkO~_3WOo-Tz@w z3?;tcKry@+6AvupC+ud6Q}Zh^r2W#TvQs@C{l1+I^r!~^;UD}KU~(GgB~HwzFfb=# z914md z0R79ra!CZ<^CsaD`npFGktbsKK&u$S!{8?#8`B28;J_3n6Z{7|0J<&A4EWK3VaU6u zaKQ2F`Zo`{;0qy9zy}P|6ySbcyZVGl|Gxdp0S1K8K>(t*FewxqfUFJs;)(PBPs0pA z=>Hy8{qIzTu~^Yr(0>)=e>40J{VxtEph)jP=m5cTq3TV&gZaG6@qfhsL_zlseC6*$ zK>-%*+UEZJf0zLE{xZPx^)#?s$CJcw{wGsl*hcv_p@iwVKvbm&YXo(+uTYK|Pv7yW zT&S!G^EV#UY{6qg!+%NuW7(1~;jraqMDPmdp)V!DLtLR0yC^K+mwn@gn5=5qcoQYqZu;RHcj9XsrwzllDt z&zFUpQuPZ|?eoLBJsXKL!~AX$Dvk`ZV!rw4ol0|&`Ie}SUB2GasrF@Bl77!b=-`dnNXdoGg_ROrq^g7G zqV&6*<7yeyyNB}nAbKqC7IfmLY-f^J9dop$CTL5yqX#sjm#XzADFxmb;`HL**b(>U zZK|MkloUD0tCVW`MKmAGJC;f&J77{P>1u0}Yv;aEB^P~M+J~{T^7A>aOq|4v#ZUjZ zeVZDsnAqjIy!3iY_X}B)W#fd=8_NoCl1P(80p0V&i*da{ky;kXi7f5Zy!voiqsT&8 zD%z@0JsjKjXOPU;p?G;!y(*m)t+&8_T@I=bjc!fmgGf7FCEqI`sW+klVTH3~xe3lfnJK$lcTwslmHxp-4-@V;)!#$5J7-MeAQHyY4|& zpSO21A6Sh&=(>6*m0wh`(r;K{BtqV~n0}vhY^LjH6S$*dK>9W+VLPL=q>wt)JoXRJ z>M1Q1agjfhN{Po*c_8-ILtGCB>S_tC4K>N7jHlUjTm1Jo31h=LSI2!7ZPop`S0#YzyvMqz zdYpo+M_<-2sD5v+t@@}xuwW@k@yc{bS(!rxeDxwV@>A4dkC~BV0kE?+wx$Zp?O8={ z*-BlBD+I4j5Bxg6(r-K6r+QX9N~d2`n_^0lUSB*g$R#e$6>s1}#=8NF$EM~SvVHT-oYg>(ENoR+x$+lH^&IhQA!y){3JPx9y2 zU#E9ZbC>>*?@3^1=waEoQ79r2(ejMkHF%^iyj{vOt1kC?nO<03Q})eT`)%%gND-Hc z-KxT{QQt)jr>%Y-1=T~YJ@r~q*;+4w!y?YY!CWrk?ijeC};&ep|Cc=3@y_vt%BdB}AJg z__czazNyi5a;Gz>{~?uMZWZK(hX4c@i(f>C;PN*;g}_@ycH7nBi0dc->;HNB|02Ns z%gb`$Prmo65|1|jh{_DQZ$H3!-{FYr!{0P?idbA)+P6Qcy&~2AFVXq{O1c`@? z;;_YTzoNs4RISe`h}99EJKG5lKUJ}DiY_OXRC{YIIO^W?JI!Bw|H(+d8r23evB|%p z{xhX*cSls#e$gsGqNt}&Hgfnw+;<#F zpuigcOzoFjgO$*mJ2fI&_2X|Zg?2|`AiWBWVsZwGI5x#D-`)Z+ij>@RP2bDTHT8C8l?bTvQ$&cy*PbmD(i z7}Q3bH^UuO5}>pHrucHF`102e;dg)Dh%XnZ4CC$jaJ#lX7mpqq4(SN&>>(&1v`~*LY06z@z|0eL4bA=aujkKYHz(4gTl?4Mu{R%_5 ze@4L{wDu|_D>3^i{r{#+ZLBT@XXO{pN>5}|FYUanLwK6=&ZSW$dL5gs1z$Yn`JY10 zKL1DhcYK{4fyvj(xbn})BmPAOXwM8_cG77ho*5)vE8#gSy!bZ(AsC{oG6uviL~)7m z98A?7N#J)O&j7LC5oIMFXVGRn6&w72N)DEARzM%^_+6;PtgVnn+$c8A6(#&_%w9Ui z;H-jXK)rNZ`KkE2ZC@*zL;U_>9zZC9= ztUP8S`gMe_V%(`t;F^o^&GMl0z+RMqPZI4ozM|k2y)I@NO5FXhq?X(ba0aDW{`Dc?R8v9 z=uzA^_b7O1S;;58{we=3m0}Utd*wMRbQ$r8qYy&ay>=sD>iZOB=TnsD1Al-bQ*H#V zUrW9!qct=*+d0B(3Oe}%G{4Sy*#?Z!Q2SPkA(RdqFzHbXFpvU=3)K1_`_`znPgdp5 zK4bWkgv$RUW`;uj_vKx7@5R(hM`ENFwnJ+V` zL`LH?+P^KUcAU2}KX#QC)x_&~ml+?*d=3$I3WKB?PZ4w^-k%bA2v;K$Uf}J^h5yPy z^$)=HcQ#pz+C}PF(Yo zi1RWmxA+yZ{KAd=B;Dg%@qrp^TrG+H0t7D70|ZmN{k`YORYX?pGfPBP-|UwDlY0a* zbAo~YUHrfDfN<;AO&J_eP>J(%VG7XJCdxW&F8aP4YUK|=jlV3QOxA(>90Vi>r}(`! zw@jDYYbG;)fPPq1uH>d9*2GtWllm03dms|XpV6?aZ8&P;%n&uIRM>$9<`rsZwY`z(c9Aum8 z-Z}XLIPUyo(W#}sU5>6Mxna@n*nz(19EJ{UPcn=LBK za^W)JPO^obgyV*Y5#b0nyKe0L@|=5UK2%Gy`iEI@W;d~;9D8XFhX#gE(em*f3sf35 z^c3?Zfj1<#x)FYPUt3|0>hNnxtfgJ|ShlF8in|O3BUHE8b~tm`X7vvG!PE85D-tP& z=7u`@d@zCEMH+B8yT!$nY4s~*@>b6yo|BiQvm9tNGV+ZF)WHIUW?SY9$p6N&LbV$0 z)}7DiB-8UbLg@^^dKGn4fFCg3dfU;G^6Fq9!Ea71Iw;JQgy{_fN3o(>nbHIRzB0pn zZ`^YGi8Mt%+LC=6JfV%uU9^W*jU=Geyy7!valF~{zF;o>)dOK1%mwimYH23ExEMC@ zt4eAcrOLgy6zA%zh)Ed=3MTHXxG+y_DmM8~@!?d<)~wLXEC~0Il<;4?kh{9!YGBK#?*!hPN zUcR3;-~y}R-Mh$d4(y`tMPM|@mKr984eyepa_EB2>}K(I+T?yB{Q=_mR*}4H=_->> zH6S?^Ch>?AhRBuh)_gQR8r>Y&_-=x8HnJ~r=HMJF)&C%-Laf)G9-h2S}+oZx7$>z2a zQKNev)#NR5_?w`bL~X5w`sVv0KIqv(P1Va(OY68~wL8SV@SjmBiBnf-V*~Pg^08fL z`EgzQ>H!k4R!dzE1x#e2kQ=DB$Op995z&H*L9!Y7xBXM@42YTq;LCc0n=?v@ zeWOn^271SP_Ads{{{Wr;*{J-;*gs|<&$E2l_-3Yla!zMIfMJ;m5qki zTSKw!N+UYB6nG1EjF9w+d6=!yciy^^{No*bO@FpGSp02?z3Y_O<~MBMXO;K>`e9kX zj;G0@@S&3axS8S2(D^g)HG5yDXny=!CeU_WMy#`8SS?&gSFFqz)jRkW$|Bly$ zcy6a{(Yy0Uqll@DA!ZQLxPnq~^vpswgIr8fj>M&vgmCWGhSxa77=Nc?q7vqDQh6S$ z0f~;=hx_>@IX)aSR>+6MzxyRae{HSnyL&u^xewS=Qhs^``WJ4(> zvp*+_eDsrKwUUn#^WN|U7)rh{IPYtnm1iM^o6!4-<$BMbMEbYl!Xb_<_44l;e}Mdlz5eRQu^#xL?u!_(3lHp=Fm!A6J$Ri=I&5WGF*dpL zPtC9G1N$|f3zLtH#&?2uj~@{DnujFx8tD6s#c;V_%pB-PXveM7YAj?@9(~~ahX!V@ zA#V~i3wkmq8ma0_k&h8l zKRJ`7?Id5wFS`8dUu`z-`7S&e{M>MC_x9GOn5l-%TY`%NYY!PFBpaAwLr`GOI+i(N zC6=FQe1a5cRlF9_pf;K3Ve8ny8WO7XY_!O+ON+8%U@J{8U9%5dxcB4=WA|j?wQA}C zFNIn1n&eI1C=BDThwzr>e7uz)OLf!D`U7PB98Lan%?|PfqEHE;J^XxBzu1|4d0dL2 zNFwCeFAdB7@GGyOguR=wXhNMR3t`TXzq{`>PHzlOPKK`zL|&h#kna>fUGjBcp)r?% z#vO{3u_4FtZrlvYeAiU(R`aKjR<+Sb+H((IH~Zn=O$YUZjlkFMW0)5Uu4uBwLY%?w zY{70Q$v>l69cMp6Ca4)YLjr}X^`~0V3TB168KfrYqE&9kat3hKeS3cXXj~sVe7(LX z8pf_eqCZ&}IR<{db6%hSrfF}>R={FYKn8My)E0AmHGSQM+`S}rs5drV72e}$hOmWn zRxjI8y2G`J8S+q1&!6xui7F9=%?jyK zvr;nI2qWp06bl){@}{UzCb7?3jEMUjw_+=|4hKpeadhA6m2_<`*Yxa@4T>>CJhz$4 z@uaRaG8dY(|Xdh`9FxU4!?6qw^@9>6HGa~ zc@UY8(tG(r%Ca_nRGu!FZ{n-3Qka+`eixA@F8s-{Tz=_hc( z1z{lVR1WRKkDB<9c%gZyU245uf^Um7m_uUOg|$<+`>(Nxno@GAml8&Vo8%)I#jAwy z-69kRrg5TBN7^vEX9Y_G!xyFIBMlC9x_gh(AaQ-KD9^>Esz;0D5Ogvif-<0ibmlUyxB@2>M`gh@P=GA(8Ge!Fot3TvWVg?CSE!$7gL{|l7_ zzsKVKZ6{B4aDVK+G3*VKpoaG;1Fb{h^h5=%gJYPcI0Tkk%h!LU!{hJ9y48!LY^ak& zc|8urfm1hX=gk=848CBidRM~63@(G;Q{)zg4|;_X!-P)zE})U)hI5C54PI{=hFn3! zLe$hyOhgZ9%;M_>pXq9YXrxP8>1KxQ3+U;0J0{piNu(J)ej=#f!RV-k@i8 z7;1jYX_#v&mmYzm0CS0v1U)TJ576R=xym?L-%F|CN zz|iO#wO_GahhZR&I(|JIV|nvJusN*QARUsesGmn?FT1R`o?n*3M$m;)My@iDXvYKq zUKjcj2hNE$a~;Wh567yc#`q4EMFxSzCBky?-~2t%=%ezmp`4 zL1`Ut63UR24+}2hf%uuSS0+v?M%}L|tmggqh6hY)hD%hIr zjWo#`Gl6s6Ejfd2{kO6Oabf-Wb=EWRwz2&UyfllgPgBo`hp+NC%?;0;Ok8e5`O6oL zvwkFnp^%|j`^5B7QCIBg2qWy*5D;E?2rfT}UFOswn*-mOQ?e!OyO=(4q6 zU&PPEC9*C{eWxNmMNE&Cq);#5qx7C`6(C`G-%%Ijhu>YwR)+0rkhd`En=~1F8&J0L z;l}%X@#e;xLgM|xRfKK!G_lrj5k z7s*cV`FfVg*h?3B^>tC}Du)%4>s3)6pkhj+rFz zOd#2*dL7eSnJhMncVW&}bmv|&gU-=Cd!cyV8a4LsA30u+KDNW4wfGN{;p1C@sinwk zCLF3QUN(CjLU(SSHJr)(Kf=BOEY4kNxQauII}~?!FYfM(6&77!kpeB=;_mKli@Uez z;x5IDJH-nWIR8?)=iGb0@Bbe1guIcN$>e=E$z*1-Ch+0~q^dY3cj^)yM4+^1W_nDn zLt0V9Y<5PN^34t3R`faK^?IJ@wlmzeNbjs`#Ebn1@BBPpM5eEjS*%rED~KC<#6F8x z+)6rcp8cSe2>H=i@sfpd0nU2do2~eI!COJ$ru|*eFrNe;PP_(}n)NFXs)Ud0-AN%A zZH#K^mxTMkg1xYH?Xt;WM3jPw4kq%>?iF3qp0F~sx)D{PJE~*kt>!%QBjU~YGC@Gn z(AZXVxyb;&IjJUEVD1ZWaOP`*fNRv%3Yzwm!P`D}`wbbMWKSRUh~CvSM@}-24#rMN ze>+QZ6ma=KY&Q3Tc*HmYy;K#4zkuoDn*E$%=FAx0$Mdvn<`j8^ZU_1%O$1poVcD^i zs>lf~9wT)F(aVppDD@#`t8O>4bid;8cPCRdy;}ZVN#@{ zOdT7ucsxnGEC91M0bJ~;Bo>M889Lo|0}Atc^;}Z0s1M#E;FTHJ|C$({jb@3O71OyK zGn46*br7hQrfZ!jc>8JgYc#m4eF~%(rJGSmL##3D65r9q2k|Jx!G2=<$OY0kvu-$=4X^HT;XB92S@WVX*$+<9b=M*SLiM-vvx!;4;t}PPKM;-y_is(@z9G)C zWwms#MTpk(X4eN-gZLV4y2kGuVKkVgio>w21^IGMYrr0^Ot&CgY z17;v4(P|}}+XT*%RD#@i5ebh;0^#3Jt#{AKB=%@Xg)vAzixPfQPo)`gk~ij1nV9gc z>#XnRICLwm@gQ&lQ}C{~^5e#k@~UpW1Qfg1uTMf~Stc6fp{QmFM^xO{xs6*ON3e zjhq|xeRKr4U#GM5dZUUT?}{mei&kh-Y)W{3Em}+wi^@f?Ru7un8E~~#t0fYjo--rn z(v{G21-zY~orKB9d|>ji!d=)5LPoKH+3wAE?|*MbMrX9zC621E=t%5EYuk5A3hIsdW5s`q(dHq8Gh}j-}bKM}@scV_F zr>M9vDPU$0Jkg?v#%cbAsIP9SO{R~@qFimLsnQ`}qYL8rny0gTwfMT;VU7RhyJ#l& zWUCEN)|gcl>Ni5gw;?lrKJ&(gIr?fz!#H#VG15XVb>~o-`>(-2jOcD)J9gR|6Yt?I zXT2Z|pYb^)-Q*-;aq{eFr;w7fU_Bgu0F!G{!u=Z4_P6KwMG9uq#h)g83A^KJ$X?*f zi3%Jip*qqQP|)&JFK34q)z&)f?OkPgtCYlz7W)d>wh!39<)neCg+_OGR1?- zQ5u6$t;04SP0Ev>5fYbARimpdSydfPEgzlB#9W`%FcA~uK0wmq`OIISRea2mH69;9 z85AmaxlugBdz>Y;hcc@}8$lUkUvFv7c_nZCeqv;=HL5*0BJQr{=N=7qC)(C@d|d{` zOsUc?L4zZlGF;EZ7LhY54}rYe7(#&7`3%T`4kNYL*P3AHI!SM1F0WrgdKitW`zHKp zD7ykOvcIWvvICKh-a?K<_}KY0BepSCQzephpVqo8lY~o`r~O>0prlRNE+1QgkYVXeD%<` zv@Xw(LNQVq>i5TA(3-2ZU)T2AF^b4H(ZM&$Y8|^9XLq@STfABNxD}I;)m|PIEEeFY zGPu$juFj5(Nyqlc!l#L&YA;FFyj#Z$gni4u4i0 z7q>%aJ!V9iTQJJojgz%;&tFWMsWL5YMH{1(lABzGu&q1f$~ec^OPkIk*($LGX#zT{ z;3~~paf|7u!THyE1?PuKlIxp7pzUJH6whKp0%h9I)7fPkfz(y_=#6S$LcSQcA+LF< zo<{sW^}r8Bh|Q4fh3JTpRZlQF$jws8caWEklTwwuqxF49w@2Ulkrh2|Ze0GO9nN76 zS5`H@SRc72a9FcPg6Z?3=M#)LloZY;XI>AwV@TRtu~dq9zaG1kaNw9D(ne7AqDJ_W zxPY<2Vy9L}R6?Yhc8mz?KvVa57@^3--05kz$mzkuTmI`P=t&#;sjoIqY&TV}OiM38 ztz75AL~Bb;#lEw^U{HEHeo_ zjqwnxTuch*FG-gqDfk)6quZldY?wPqyUGjykkuHCGo|eC1T=@oRW-%v3 zUd?i5os+aUZIRs>Wd1rvVZQvTog=K`(fd(mnFpiHd{(*=T_r?5UrIEe4NIDv-b~Ot zkIwx=oD$r63{hOJJ*%&{l&Oq~SektR%-oO1S9Udb%yD{73CcUUxD@dn9l6}ScArVn zHhYA2Qkl9Lz6LR)`Wa88^)yY z7P0PJ7ib=v%bJsMG5^Ox1C|x&rvHmVSFJ{`)@~7q*k>(|ATIaXM>C7=Tin<#VYrG` z3;NOH)G#S@yeTq%R2PMWqT>_&9J9KJv^&9)aYS?L7p4Dv;f+p_ghd5$Rz{017@?#g z7hW7(sr<2I+ysm!)0$dqxd!KLuBc6k8f@kLBW0R;UHZj0XX$hbglH)X@Hep}NGYy{ z&Cl=SBs`&{=NQ0?gs&a6w!CxT{lciGwBenTUDST`9EP~JD0nOek%Eh+Y-GhjFYn7o zFW(Q}RgH({FO7Nhes$4f>%{V>I4K$no9)*%L!3jn90W<*K-HGm)quTU35(XU6B;S^ zVRzH;8#+vAt-W7`@*x{=~nzZ^k7>^!~aH~3*FxTdXU zqH4!Vlt~;r6+~LzdO@(mVrec~TekZ+qD=K2!ERVVxb8C)K)43>wG`viHV?&D2xreXnl;7<5d35Mo+K(ce+v^FH?`)JUa)8yGruOz6ymZec>p8 zn!cSXXTx~$ONlT0+F7?5sf)GF&wj9oR(BcMRRHm`96X zH4>u;UU#(viA*rL=aZu`ICXh$Rri|94V7*S&q!>@(U+#DCWASx1o*W`Y!7TH_oEA? zmGxDhx9yuDp%5WN{^knBwEBlJR=b>` zNSN&{wlZB4Ou$U7h@4=SM%w!HvbCll?z@bpBDJ!t8WE77Z=u%T`SlN73f^UjPQp>D zS#oY&doaMPOr03*_4KK{8jjAAXDs*)JA-%vKCupS6s3$}Ybaz6xvj;ot3Ir+Hr;e# zSS+rIHj%4a@UKURWJpwb*QpaJTvBo4`1d}P9Burit27C~BPgWQJ|tfd9cpaQ2@ zzyeM>*#M_=z){Jb!*#VyI;3x3Cw77Yij3D@XV8{lhf#0qv@s{Hi!pBPuRR}d!r-QD z*bgodtLdM_owh6ZBGYe6uUB4gE(nng<(_kpkC^Hy*Dc|2@@-mHL&BVm?DZv z1Qgl}V%+;f=J?uj8irp_@V!*sE8M^7?5Fgr4*#07C~2K9WJ?o(r}756N;7DlN_M9h zYtHjD4|H3Cn!LrSLb2Y4&lwBl7}CUvW)n=QYd(k!jM0DRpp|q77V(;&^%XI>)n~3I z&x{y6gjR&&k?y_VXxEBwfiS5RbM*sOEXPo~rz~w)0ZeF^o1`H(6H0lxW%>T>fq|NK z?qhjU%jhxXc&;9lQ1_4|weR8r#m={1zv@(hgPG309MonR0Pi5&b#f64q^uV&D5q=- zok+{StSCU`EDAUR#%Eh(;$r0c=>;59cEt*)oNb?4Dk?dI)u_{@m87T4?58)@_gCdM zgHcIdugiQ^`*HDQieT1M!bB7rG39hPMNag7-?K}mDoHP9fl|(dMq9#s(MB}DHm%R^ zs={mr=grq_aNTp1#=Jdcadnn_xOxP?7ESGv$`K8nVR+onCXsB8BTJImH_x(qcfnQu zQsygP3-@R?ImVo#;+j04ggm7^f4-4wMACu(Op0u~T*~T8^**@?pRi(_26G{DQA()w zt(vYPqu1`G@%dZy>av1BHR95MA3nc?d@69X2Q5nkdkzz z{7E6?nsz$0Z0X{3mSGZ*;7>@^oNx()9C%0jC#8vaQF+i6Of$NsgNFY4hDkd@NN)uo zKWjW^@Pd%486nk8$O-QPWIL(byMez!sFf|;F5@i>^I<`gS5zBCjfXnU5uE;vx0PN&%n50K?_+f5m-58x}!J02ig)sX+s}sjet1G zI@Q+1w!5Il%&DyasHFH%`S+v6wz8}C;^f8BrqH8(2zIE1e<*WGt(gsk8kS6e^`%nA z=tv9H$kaH*qdDA$P;yXyJh`|{2rznH{nsOMFVzW=Mw9z5xKX{D6+yJu7TVG^7EN&% z8*!MX>0HvCW0-Z5kJ7 z;({bqdDD7>ZKCj(YLdYZEs@I)+XIG@FIgibYwxH^bp{sYBOIP*Cvy%>)pu^R(J>Bi zPdKR3V#ty;B8XSuqBk-&j_8uM^{Ig~SbE&(vxcu7)U*1Mbb5wK2aTJT*gQ)uo5p`3RVU`L!(P76ynMdp;TTD430z zWJavbzpqs;lLtlO&BN*SJHvhUsc}$ZaA3<^cg+*bV}dVHPL42P^f71hxSDywuP0~C z@@DRnwWTv#@sZLVrio-P}CJ-<Hr zr63tj)LOzR+jNhc>>{=6twFh?!aJ?Cx;rk`m`<&_Bgue8X+zIIKzW~RC_>ueIY}XP zH768*EJ}LR__oYbM06rK(WNpH{2+0AczZvIo$Uz0H3v@T*ir4^+p?QS?AIxzSh zycvoUBu+}&6XWUDDN%85AQSI0m#;(RX!cYSAvM>tpf9PwsEoDJwpAoJ48lIt?5-*_ z9}zO+z&a_9f6i!vFW#V5Z=EG+!`XMrbul=0jTSw64^y!FeIS;44HM-ekJOBT#K-!) zk4~SKS=#b63rVl7g>Ws{X)l@#6xNpa0W2862A!(S;yiJ89z?EoL*+t%XLP&@v@Hfr)rHqEUFIm#trp zaBSa$#zV_ODiuy7ZrTN<=%=Q5_sXU)UoN-uUSCRIAjt>^m|EZSym=yp)%Y@aDyHG7 zUS8}uoP>}^hOd|m=N?0zr8UzNX@q>8PmlKXbL!}ZC_5aVmlsXNZrE+8#qg^&YBW?< z*t!1ZZ-p{@q?l}I(+i36E~Z19rOLMs5Ld#Zo9DW;zG^C~uEOf6xE`zpX)cTu_Tptr zsIO6=wth*QmD9~c0Ij&jIGR!r=BqlnU@?=pp!bJF9{$i2_h;1~`C9N=xK3*>2FIaM z^Ns@kdYj|0T= zm>1U@VjF{+P!RE^$@SH3FVi8Q^kZ=ALFp9i@H-;3t*P2>`u0$$c?Yo;qkewf{%`=y z3H$19wpiHqw#@6eYwTqM3L>Z8zABig7K_KWRMRp_44X(A0E8yAe|(W|Q3v0pq5Xbn z&!m&0$gSOxs#vi_-eg4CuzswzF(CS;H8buunJ5+aEn^n}C=~a%mLF{Xn}6(kF?S`b z_aYfR@^y^7I9Y6m)hsFq;}!Q;bMkZ-!B{K9b}5tME$Al)Z63;Q=ulFSvArkYR1mGeI@EN^}Lja9(xr=tA|bW4H~l#0G(nuB5j-u z4u@mC$`^f^O+GsF)pyGHax_BojiL-Kua@Q%*6)C_J~t_m>z&NH)64?x zTffLC*&E5-YVmyH`15d5*mfRT`+D}Z$6&u1Iwl3Qr}Qg%17?-^u6}D;z3KZ&ZnooF zf5)eOrb>L-bn6_ZLp@u3q-3zu9608Wh!ps68YK{!5zG_cVbHq-Psd)uShl8#S5ir- zH%g=C5e_Wmc;#PMECFDRn1{ z{mZCh(YTeU1=6^zvu+(vEni4J<4)+rZfvx(%h6EtOsc}@1m#_F6)T!^>NHrj4FxsG z_Zb#l^UIncXAK*uH6PIK+yZK7vn}Mc+1<-Z~SeUQ=cWnjaw9_z+DFH&*Lal zcz!peCYn^HVMkvpJJF2{0M=k*e0w=3)2KGpG^kS_ISYVP0p{016`}=8@8C{neEp{4 zC?~p5`j`+qISg!c%XPVj28NX87?FwmOB&Nj2lriswS*f7RXYax#f88RtCZhIEEKyq zvoDnz%*LDJj>v*#bG=WtRG1z!3}>+=j58CZ$h#adMAIe4$-rJAB#hmx5l=eGD4l3M zRJGF`NaB--;TD-D%>f4EuSLs6RF=FS>1U1IKF?_xC=1U1^=R_XkIlQ`hK!Wm8YAuu z#V28X7hu`nt#V=;^?pZnS94eTvGN)DdtzmWIP<*GOLq+Q8iRD3 z+HZw48#!faTq*0_Y*;jIlW)SIHxi3SF8{_$;o*seQDE?<8L&eDKKMIbk$?%ZQf#=* zST|B4RY`L)dNlQPQgAZ3Vdz5Ve6HojqG8(nf@UejYy;4sS5&W89o7`>`)V@4-#N~T z9atQRgIboKCx`f5OXrAk_-Tet4F_rNxEju(g1_Vgu)1lwudRpld@4sOaM5 zks0pl=O{v#;rn_IaVxw25Jxl=_;%kmtd+ zhkW-cLuH-&2Fw;Gr!YTDRwmi1GWyOq!*43a!8^K3_Hc~74N6ZUK7FQ=K}maff~+zR zUnHW?IbdK0W-zAjt)$svNw^PA-O&XL02O6JwurT=>g)=wPH|#K>Pb9fiHDG0)Y=%) zc1qv?x%R)5P%dRx zkZhUWRH2^GncO0F`0EkV-L^@cvDN%_i}x$1Iy;yXT>l-GMK>WOx>zBTAC^LxyW5kh z84~L9716V=NZDddQGvUqaat;&Q4Vpfi|-jFlwk+iU9janyPR064F=p->gy&?(`5zy zzSq~vGusG!Z~41JY-TbU4n!Cq>If}vP&$&9i8_I_oiLrhh{&{f!L*XbNoBM2`Z zHC$s-*h-t}j+@9uaX8A$AV6=4I#%|lHsUw1P38Gj%xVL-P#eej3lsKIW93si!j7xe z8AW)gI&}}k5#!EEc7RcRZn8~TQQRT8f&2b3qaU9jwzRv4MqLgdk+^4n;B>bH!Ra09 zvIJ4UM-hJKC1Sd_y_K1N7Qf*!!k;q7K%!T%Ms10Tv}sl?;EGty%V61v#6>GkO1K(RSEf17AGzOCH0?Fc@-3p53T6QAiv=6TXg3!I56*Kjsg3D@@j+G3d zwlHtbS>!LBm%bSFcm3M@&Kd8X2#GC-_ge+z()1Up@%SaB<#(f1+LrVV?H^@bdZ}7i z1h;moLv8ORH$}$evH@1|7a@t7&~T!W=0MC;J?BCJ{-VpOeMruvv_>xmuEXPMEk(eG zu;wbHZ&R%l&W)>~MQy)<_C&YjnVoAMxnz$DRuLlL)9t}k}oXvmo3QCp6dG9W5!pvk`}Q%u~Ude9nL z?RrMDB=K8g@i$XJLMTKsd-m<9P1c&ouZ&X;_@BXUSjexv>D@K`#9Z3i56}XtCas@V z5ES?vAT4n*?{yqLb&d1a>9(1T(&h#YFsRv@PaotM$*@t>V0tW|%WR zCB1N(62Oa7v;H3I5Oz_x$y(Avu&^EMub{Bdf?_U??2zA3qlTzUcZG*!OW;mm`~Ljk zWr=RN=Vh5Zc@rm5X^hOlZSZF&Ts!nN4y+gOHXX*;{fOOrF$(MPe)n?cC~hrJ3takGwcI4n=)XGIKm&`AIUVVPSg1KzG2v&dQfLS3u5Ti|8_Hx5QK7OGw4olL6eQNjH+qtW` zBAbaox7RVtQDG50Kc!_qwLl*>58SeM(2EPAu=1DFN;-F&t&Qi6o5R3uy=Y;B#YU%= zgquKzT+3x_oeyE4GP36PC@Ex6(R@UiS&Jf=M2M3xhb)m~S>Khf8YQgxA2w2U8}K_7 zsXs90=+JjfF9in+%h~ZXoMz+3-AV3VSEXwE*w-=1c9LTxckL6ZISlj;W2>afQLuj@ zUn1DyBDhu~XQCXzrAx;3@B1{j@n==vuDoC7!M(cma${s9Sy!T5%!WRHoXW)DaUh6T zMjRuF7sH%ZZvuL-w=fGL6rWI%2zIokl(bAkAMa95@*PziaHPHw(obgSJ%r$<8R)dg z`u%wKpp0Gh*P~jS`p~tbyJ_Rxn(7SrQt^Dl96)@Cf4@8 z6-#NFQF~7P+4b0Mz~P?VdzU%CU!rj4F4gbOi*ud>H>0kTd>R{IY9T34#Hp|LCC!}@ z50j1>k5`!f;^gz^D-zhaZ}&49#RnPq=LxqN`03CgvBUK<(l^!l7TfS>Em)9~Q&wLR zB1-ir$X&zz zPIOkOm^UQ3JPE4r}KELQzy-w&3Zq*&Ck@x}2R8gjmA@-VsJyj%wA#K^fg zMIPb(y;UL2O-sLr7Pb1$YdX)m=$y;#4(s%=gn9VxO$ZZoGFo)8oJ6txmKMR(_HB}3 zMl5xIJt_ytl{QCw*9G=xZ615`P1)V@7v6MH)#Qu(k*c+NAN-*4G&;EPC0CVxTXm-C z$bPjF_VKwvtTxH%A0m<->>pK6pT4*=I>5UfF=jV@bDGfI#z}B%i!kt^g@?h_k#i@|P;JzIMR4szfC?ADqX14C>)j2XBrJGHQqNXs>Ff;>>vl}1Jw#gkHNGNN z=UPCijb?CZ)$}6UbOL{M2UHie2X&GFZ;7oL=+qm)$(HS7m*MywE|SDdv5P64?uP}! zW`wK4IWe>6gXv@SyQ#TsS56o{U(xJ8sD8HX)KeRU@WPOkH1b1!MGzK!XgDr~RerNi z*lI-S*S!(6(y!{sGK(s|u>GW!lPznk*K`|arVcJax@eblk*%p$gd4VLTKUwiKnNp|#k1$1FnMSP;qg1B^&bioum&bL|3>w*y)ji$ zU>gTl==oqm=e-hHtVAEW>bR@-%q49@;B$%(A3wkTnq{xTOG`u<-u?TplhBU`0sL}_ ztXbSCU>6mp8jlSq+lRTY1u|)lD8`|tpu(-9{;Av@4y(><%7d)mSv-ht#>eTjv#VP- z63A9u>XhewQ3}9$T{2U*c&e8pA63)$UGX(+%jk|Zp~Z_p^bG9@{NtxSu$g6*(td*1 ziiqixb~Q&ec5Ank-!PYJW^RzGG$QiH*xy8f~mr4b|7%2QYP zjsFgEsw=SY&zygy>47*6aolW7t6WCZB_qw&x^VIaA{d>nK$s>h-?ZB1G>X={iKKTk zaS!B9#66_{hmfdrqZVJ&E@%pY?wUwBPdCV);@fV>g)2Qro@Vqdri&Q0u>(S*`&uZT6#p=B6<}0{djrl1li|yGZ_y3|0#)<1m7q9c znM+ABr?p+L4esRiQb=EmRKTyMTyu;>bguFNO z-Uvq7e*x$_-qCc)z@6Uz-2jH=p%RQ`dmTIFd+}ShID>{L9vFl(U!utVzfi`wJ`fHhCeXZts2-M9{=5epJU#I zRE=)GqhyxxA8)}Q*ro7+VvH?aNU-5kjYOvRr^bg1ULEacZ%Y0gs{E0;EqMjb6sM3o zE(UWu9=)lIbpTka$2C_zEYYZ_Xj_XZGds#mPF*=kXGV(o+N{XHoguz3^SBYE+;G?< z07b}f@H8|t)}Vk&n~lwEn~l0D*zS6$4kL?$OIB&ugJq+;=oML^@+PLD_1S({^b=HLq>xls zu0Petk<;^J!Ac%qg);)HkyeG`E0(5_-_LH!%c3{?*d~u}K!9gSVV)37jh&p^gAF~b z965kz!(_p*6TzWI0l=Qt`I0BbExO%D$N9WEpTQ|)f*=FXj|iGz81dG7RjuJ%yameH zIK#TgUmwwAVy3bZHq%kSF(Ph!p`*Q0BXkKS0OVs*nu{v+*VP#NJhxRASB0Uee^qy|hwu93)#^BCmlDhaU&aJ7vw#rL$GO z4b`MS+9nDa>F+-+hJd`-iEm-4z|Z8i#45qNAyVo3myZwUI_N}oHLQyULxOg@M7 zEU?VD>32ripNl!qDm^X=3q&*BuX0>I9l!}Q;(z2 z+s5MJ-Q$?IdN}*m4C==@gsen?g1%Q0Z+8GQF22Kw;b}$XbM{%KJoLZ_xW0IR|`hz77 z_7^z6&914tg|mI3LSN|9-3JWw`NSzg7_in`_& zJ%PEDrKFKM^BDjokj~117BM6gZXdN~kZlva&ZjxHV8rP_!LUOUVj@lzrw|OsB*{*w zg>KNO1Im=g9_lO;pnv+;qXv`-ntLVvT?I(+lX(g}(P6F)j1VS65!{j)9i2MB5Z%k! zSIgmaylKp3JU@(LY-L7Rj3hjAu=pkRQ< zL6w^pL$UvQG^OXjOv7zE`)$uwof$%;>9nWUEo}~V@uQ|zY+f4DPGO99FzzhwRK9N| zuXesJOO+I0ZKSQo#!GXCLRxi)>nV@o%UT#q$|VqnO&NQt@}bENA=UTeA?I|ZgFLF# zrkRtN&uwKO_$#RI)U6qUs$B%M3Q#g;Az6yf@i<~ZhuGzNZ{2WTF6$cqK%!Hc3M+Bs zEySsM%X)-ay^9DR&sygq!ChhlVF^e4bi1i?b4P?&tVA|vK~TtG)sVwlV-Cl3-~+&K&9y0*4@3OzVgdWuj?hX5@5y0b+2LlBeI zAZ*5|2Be0+9&yS>B-2KQiHA%f6)+6taH=s{0RcgEjFJ&clv*ZD(%4_vatkQb=qdW+ zzf^_juCq?lOEOw1DV3Oai^vnm*Yn=$Nm7^a8_&+x0Y1kYPIZBc15!gJN$9AaMNbjz z=a>s&*aV%U1IeifUrxk~h28}AS#M=N8j(mTD3$a@YaQYZ@+DMKFUr+vZUr-ZY%Br` zpzDP}owJ>jHPN?<=ieU<@yl%U_4aQ~iesZIMbKw;K-XsD_yb;*mFNt~nZ$6aV&Vs) zNu&gwn&OhHVg&6{6fqMjNrSQj6t`qA$t5JH&7cwmm?5HM)FFa-Rj4SW=aeHRG@r+0 zGrC25>4B^;eHvKNz^C7%8dMysp|EW$%ulxj;bDe>*9CoF(2LLkF ztOsFRo7OpT{0aUS0fl+IxGJxliggKa{}cbO3aNQ+`yfzx?7s2q2fCVc2zCvtw#f#- zZ%M3Miq0Jbbs(~t@-Wg<+Dx}A4F?4ON#Q@qqO_>gAGigSPX06VXKl@-6Hw{Eg0L?) z%;jK7wFpkhfAK;Of{*5kG%?uITrGl24=es~11Kf?n^$@e+@=j=2A^F}<@-9V|Dd7L zlSwn#4F49{zh^EGP4LDId4*#z<{!Vo|X5rgopu(&F0`o95 zM)F)BC4tP>B?&N?kvJuNzktDp^7oj)I;Wl95g7g7R8+xO&zw-wg};GwT7k3A3F9WN zJXgSPT7P!xVf+aNeP-0xrgdNZ4{wAXg!sMR8T zjTZL!6|I3k?C8SUs=WoJ*z|u@{!{1Q8p4YHxBUOJ)i1*Ak9zF;D_!DrwoUbUmQqgs zu=6+b{yhFWcOO{$_5A~COJhIrUD^OUn1hD4raNM(T-Bl}5EnuCp9Hd80aK1dA_Y=1 z@rKMB>zbd%r`8+0@(=bR9!t!Lw=iX?%#lyHM!R@@RlP?^x$TZsr&_rNDYu3(T!&Yg zb!TQqFo!KE;a()UM!U%%b{hkwmT)u1d3?N|m^_-V+uT&hf4i^x49g?z=ItXgMPrA@ ze;W3&_w_zgMD>^dGphWONy3$8c}Cn}(OqR?YFNFTZd^4(NaO+~uIhcg{>mZhCs29? zyO*;T|Kaw9qMYYEDR&|)36VAuN=mBcZeTa|6kFQ(;TKn5M!`Y4aN;Bro9%rR%57rGl^6&3Odz=XVOxb zGIc6Us0g36q7sl#@XLhokDCbAgZykyhmKhTc(zGmsAZLaT%q(|-p2k|Q#$Jf^M%enQ2Jq`5g74xAMH7R z9qPry-%}xJvVvilY;$yQbk)lnpM+a0e7#8<{hKniuV~h!`G>GRJ6cI0z)x3b_53WC zUz0Dqa8mr5=UVQJRH+#p=UtO|ZFbbr%`nf7k!J`{67CjxN6$l}wMTP0J==bJDPsNW z(exEyhtL%*`maaYQ)PR}jp0uQl*ri7sAixnA7qwa4h9%(mr+@8SCz4>{Y$GuRz#*v z7-LzSjGhKrd2ffE$e|^`;UIj5R9IHTN0!J*ETA-}CJ@P5im&0_5JxgtCuHtv4me&b-0kxGiXsw1$cr;H->eP+DIbd9DZ>0t?qnOF^GDw zQBk1&9nRH&LnwkpsSzE_i`4T^G0GDxfyt_$-XY^vxRtaCXTmwnK<53~iVr=A;j=e5 zQJ1Bmj_?c{k)x@q@#7-a1jKqZCkNJ;?o{#08X-2f0rF`L+^M;!0*y2tFa?xl%9t8j z**g1c!L@e;9Yf!QaR;lq^DQ%VX|OW2&6i4rrME8N0K_BgkcKLx-Gn(iIn-}J-g;1w z^C2W?c@h_gN*kVkV4?jZ%n^jhg*WL$)D12ZI*j3@P&B5vp`L0X>=A#uH`ENjE`Qiw;NcBhLYK>ZUxerhVn`` z>>%0qOD@lq4!M}}eXRLk7Y#+*aG3n{sPz1e+q%!Y;X71rrioWSJ{92bAsmpX;*oF6 ze-~|x%c0t!n-DxT#WH6*7#_5aooi`Ll`A~yk87}5k~~AVw7++MCy?wuArYt8Z6C7? z6)aK8pO~}KhIu2Ph+T=?6`U{vW#R?PY;|r>$$>C6FQd!QxBCu95*pC@(%M5|8>*s2 zY)oJxpkrGsDfpyK@Ss{PM`QFT|C`K8$tk<{NrUrgGRlLiu;{hvPs#z_a5H70meZUE zQ#`H2T(o2Yoz8J`c~Vh}^&Zy+a)%gJg~a}EgvE~HAz$jWmB!>)rZSb;ZWC(znhU$w zHTqPOA$flsf>mC(Ki~9$Ft9ErFMcFZR^1^o+)*zeiBiN^hPf87e9@T_)l>AO8eq))Rr_zpGTzRZMgf#>?j>KsR{b)9LE}%`>_B%S>4DDNOQoT zFIBD`nIxy-P=G(kQ2jg|F?o$&ZNZ%rXIgPds;J(bFa_Z1O@9r%BeL~dGF^E%fUUcM znF>~3T)p5{CTEmdqv+czrf`r#72Wm2a^C`;=FlKjR~0Nrt#B_a6XqE`YkG1D-eaaU zD0B-sfi&LhkaD}Z=jP@9^{D8#a(6S#fu6U~SH&=xg=|<*vDkOTx^GWe{1(lVwK~s| zZe2~;gH<-=%dGfUxS^H}j&j-EhPf)#?$`H-{2+Um8!pld28+4VhS znCddWJKBG=ENwVVL~Xks-#ajmm@L79s<>X|uSdTfR*{kgwpVnsPnqE;PimSp#4zR9 z`RFLK6-}z{kg}SJPJ>a;IIKkL&O{@X1B|%Bf!gTCBi=|!{;^?)BGIHu%W_t4H5k)& zSs&)amIafpuZe~0V}jS*lsbs&b*O!|%zVb}{PROUR;Tj>tEn2uWDyhOXl*b*Cw>MP zZ7-;aD8b_?~2Q zd`odYqG;hJpwV{R9BO9;(=|=vLZ_zc)*ZQ3lxo3p|2Rd}dqCC}G+I#!n!vktD!8Aqh`xxrzF@u>%@ zC`6RmWhed(X%dKwaYl$6mzv%@F1ZWVxDlY>#uEmJ6+!q{u>a61mf!^C4<^oM z`REJU3$lGCob@^QcG&5_FX{e5zFK1)LEh5&eFK!biw!mhe^@2mf91Y+edn=vfuSc6 zVDi}wxF!1oNBJh9NojZ&kEsZ6FV zhms%E6{C`ASBkpQ;bgZY?kqf1uysI*m;P{9;jncny2S+IFSn=m%GZL;;V$}mT#9ID z3d4(tZ^Px(!Yx`VFQz{3WfMmQ6@U~REy>_^B|@9+sHAMGZkq7jt`X|yDiX&IPLdL8 z^lVb3?|X`$a?Fmk!6}E+CWe~^H3P?9<3z~~z{yG+iEtoYet$T*L6Cw;7HXh zPK;35E* z37d~cs(TE@6gX)QC}o7mM%j($BHDB3(@yxxx@xqIv&9XEN{SN%^#y#WBiOC>fIC=c zqdFky6^v7`IF5|X3sZFo{>*0vd)I87j1D_QcCVdYfn>y6_WGvrcT}(JgRXH_i=3S! zF!}(4E*xAfm)NRb@l#d4%a@dP*#}WkK`h5=r>qJS)$qdxxosH2p$v7iYx`OK4s91e zJ|x?5_}5!yS7zA8VQkBV(0WZX+jpbE%wccm|Yx^6+Q&p7WJI~s z!mthKVU5CKKQh|0_GSMSoq&0j)q{UeKa86y^T3_EA8GKfxXw#nE`}37UWj4uwTYzM zQ3YeUcZWc(;}c61jPsK`PCg1x9FXf% zxr1Rx2*f`wKU0U#t*fbB9aa-%W%7Z>h7busNrNP%AVK~-qGm$(!? z;dmWbXv)he@WehThA9C#N?J-n)C8-qxR&M%qwE^ax^>O*)(biKd>e_oT=rIR)xscF zz6kk=R_|+q!@qg)as#a#%(>~jV_fIuVe~7Zdynaskm}7o{nW^!cLNGoYZnZ@Xsk(P z-I#q?L2CV+g9s;5LBnms!C+Yzyn>?ba(jTvhhJUJ;Y=t8)51aV5VbmRqbrhp*NE1U zgD&dk(YNXn&`L=;@2*}PN~E(AV-Imp#ce2Kq(G3LxlP-^A3sI<)SYE1J7y`Pvbuw} zo=#^}3Y}?KRp5{Of*ACgsWH0Kjh#l?JZl3DNVWfU=aN)vQ9Ubza!g9Yc8@LGX_9QW z4`6RyT|5cow)N0&bzL_K6qKV4Sde{)$M3q&{#2=>hlqDD)b4va%g_8Vi4I#?3E0ca z5bal~ycgU1E}GHl0`oj?Fs^%Sz*%GF>CK%hIUnJMVe@Qm;hfNvD#6UslyIUlujmo0 z0{4z@BlykO_$D;I2mytp>Q7v)?O53J3fyryBw^&8-%VNhVyPJZ$j$uQT)w@^W2 z06QfQUVu5G3Fk|EkN9j}HN|$$>L1jaau18|eDynyl_??a^ggC+Q=Tz=XNMC64^nx(uOmX&t(u!uYxr8=GFWC0aCzy^l(UO*wty z{b)%CUljLdZn(gr4>=~r4yl`Jnmg(S)1y6HR&gr-h>h zg5Yfrx&0oygPVqAhdu-0DO-e9LQAZLU##0a`WnF%gjS=tfwW3D8>at;@5@NuTK{JqbAkCk~p@63$)51 zCJaXfOjF+)^;^=nI2M{Xm1Jzwc=l(o(>WMk1S~3!w;yJ2yh~8L%2o1M%BS&Dj9zpn zmMw_nUAjzYj2maSuM!U6!Sk&l4@(VS=I@J=m$NjeJtf4j8)sQlhoH7glRNYDxagG2 zA>|Rusg?8u%pp^e=N!zg)LDf36vqZ>kGY2|0F{IB7nX7=>7Erks||6{=SRC4XM7AJ zLdB1{$nLYuozQP9nrkL^OpnMlsu{w^?8*|YLFgql$$f7PSiUSj!5{(dTD^?XT#p_l z@YUR9@(n?VNUS@gkcE71gWGlU!hQY4e&q-7lERc&j2})?a+uJ>rH+l%J^t~${!+3^ z-oR{xCwPmb*ss4Xc?=3ot85`bPk><0aYaHAA>4{#4_vvOgdfg6UHZE2_cWShQeCx& ze^w{BvVZeu!O*=NIC%VCu`A=s`bYU#yj_7%;$4Mh>b+{d_3&P7l~B|85`Rc$gkpOG z@Wk<0g%7A?#r>HV^-eQ1BUaKO3Ji0C)eb#smrIc6*2DE64`El^ryX#*>Z2NTM1WKj-nmn@&N?5q=a44x9Zi3sRPq0f3|HgSzHv8$(m~jqW zrhEjh&aY-*P|7j-S1ah(y~mO1f(<^6u%tkd)Mq6qkfKnS)T{7zTbFfm^S1+H%(4Ao zH3u*9iq0vTGg)-#{oyCTJn9H%M(X?nGEH5X#)(Z{30gU+c`jiq=BkEgulEZPi~#-1nP(g(T&GDAG@y! z8?cXBQpM}r#Wf76?z3W~nwIg0sC)??DuC77pJS>e7-ZfzL2O-x2@!uaSS|&`@m6dx z*8rMPErd4WnP2b%D6n7{ADEPyE$e$aG~<&jx-Jv<4Nu|Gx6XSfq$82tKqc!>rK=E@ zp&uWx9~Wq`i7~u@w#66XR_J|TfVY@fQbhwy+T(l%6`PFSAFi&ogFV`Ht6BDJow72a zN=*yS%?5_W&7ih?@7TeD#sjaGowS%xs}=#z zPaW_%|+q=&S{6Acv=8oXWqp`0*={+v1l?(6XMhM>#uhQR)I zNa;z@Uergi++`?u#7u`1Ef|azCM6dwM@Uq+XWt$Uohnw5WVu{f%2&q_n40y1gm);! zmwQlzpZFA5isPpq3)vE|CJ}1tg?_SR#r7!qLfBDJI1SoXo;{P9;}E}|xJkhU2AZJy zjm8oy>Do!h%~Ox)L}G^-iCeR`LUz>B^&jrOoO~Wu&?lE=MLi_0=US@#u$Lb93&$4R z*B(Cki8rHrN4yS-KSgzu&G+r|-#2_aACt!-qk8ddif7gyGo?3rsK_c>n!}{Nu}(9v zl`)hLL?6l7=Jc7?yzpBYbR(?{t@12w{yAZriX|5el_vCi-;pUu(yLtBcb6bU$uVAq zCO>=we>}7=44-TSvAXy;v99!wYQYViHq#~Qm%Q-{x*hQae%WyalJC8%t;%{A2HkI=lKveAi(U+jZ>@ArKRqmqO+d&S(E~~GNYzs2@08%{O=6! z^U`XE8<(G-K+;%?>IOL;1z?+A{X^F^7XJu%{Cd6h*B$CE9yqg{tU)QcGwGIeZge{% zmdm3(>VozP8{>#3I5{-u4S3U149x`kOA<&!jbAxuu;xfr z@*l_nMy=sWS7JGxyZA=Dk`PZ>E{`n_b)E6PzwS_sF=#01@Eec5QKN`f3nL5W#B&nr zo7dJ-pKI~=-YbhK8-Jcn)n3~sx>Y5Hd*XunGKZ#)p3$4@y+zJlx=+4nt!ZlHsMZmu z_=AHz;(rRy12g3Qx^s2Io451xI^Zsu{ZCowm~#fRJ6SQa!47-F@Io0D3+tx+)U%x} zRccFBnt*U#A3ipSRE(KHj?x>$p;m_Bv2ngZzfA+b4`+@wn^WJKo8*z%bIebJ*VVB{ zetMShQ*)~sEEv_Cy5Dfag*zO^h%qMVNeyZxh;HX<1R0T4BQ-EX62(b4MB^C&4Y=U3ejZv|-BG1h&t6lO{O?`Zz>iB9q1~p@ODy12~KdL z&g93zNkZtJeG`K@)COKY&*V9=W}aO@it8**qThKVvIzSsY#roxu$7MQ4q?P!Ra4t` zWbSbuWPBF!Xj5S2J{lbozs;C*!YAHh8p2Gjkaa`nAblDOL> z$r0oluJ>Y^ohYie5OXqATj0E>0-0Tx%Z{KY?___DNX*-x*mt0$U29f3zsT0-InLKM zEDzy=?kT0fH?}U#oIpR#2}J*cU2cU*bc((>w!&Gj!O}`*I<<>BKF^m*Ovcux<09tj zyWJ^&dTI%15HVm?)uBZ~ipYVEre^IqroD2cpDO5)!vrOM()8Ew@PrCTf5%nkIw=X6 zyVny$H8?|8Jj@e<%U@2v%l^d=3-{rI~4oYbucp$xM*uR7*=zdm~I25yP8H&@g5*R$_&I|$Aq=UF%qa(i{Dy)6%bCd zOXiA+UDYGu`*9_Au|Wx*`~))y=nhqaBDq$-O8KW^I4|y~KB`~x@#d1i^2Uf%>&w~x zSD((v57w36q4skFY&`#5qCPM0VqeoMT#?6rIHf#0dqm9XxMHDE-?4OG54dv751V23 zE6CekNoC#l3O_2G`%HjWleW_WvY=A1PtLYtXL?;sgE7j50jEV%&^c5RN$Psj@P&*+bC>B0cf?h<}b3m5$5R;Y;NBoT(`NdP_72D7Dtg4W`<>xZOk zHkz$t0>!(@Na?%~{J-(P(H*+?mgpp29La<4>Oip!-WqUytA1=P#g*wUu;NO1mE#t= z!tSC`KrrlqSJ4bA2E+HL*qw4i3-P%7F{P27au&8cfuT0Aa07+05rr}myTrI27)Nok zJarfL+{Gi75sYS)tR7B3LncYYx71b1_Eylmdgj~{Id=T9|oz-Bml1NYvk2QBeyuN zO-wmJrG&lWMOvFndhM44jusgv7Q_876Jsi(;^#KTRANnb+FEQgK~$&w4gF$OO}F*Z z@1)xjw&svHz0KV1BQzR<_>8rwp>j579rpbm{MS;BC*1{R=c$xk{R;*&SjF--7vI!s zICam%z))-Mt}f6y58<*l3DgCIIxNczY9Ha{A+dZxrp#|i%f3E zAq2dZmT`|Mv$DZ)6Vr{{8proC*FMj&>QR^m{blgE%7~Ektu&LOCDb4ydv1BKIlesS zr00Z=D`ux*33pY(e}2O%+PA;A|wBKkC>GgWhL>_@59bLgPMjR8IU~>Vgbz` zo(HGGhSuVFNyaIjGIZ2AdE#ao4_vB!HHfsU^}Vo+ifXB9v<2gISC!L7)kQU2GM9#* zQ4KRR4bOC3SiB*kt#MJ>?y4eG?6ct+PXF>yj+c`PxEYC*ODG*O&@Q=(S`x03J~}E= z+Z7Qfi&TH7z9K&x&y80D7EmS$p&Lz8G9}wgr1&&+WhtcoIo9k_>SFG&Du6=KP|+0? zXY*RCAIA;5BbL@mc3x3#!@_O*{vAPAmt4Y84{^5fVZ(LDW3KzeXfvRJDr*b)D6Nh;yiVEaqWatVfd$Pic4gfpmI?JWmG7 ztY4-$NS?rU)mw5XGRu>arR`w5&4L+DD>wJ7Ohd@DFC@l7zQ^wqY1lcRfr24*f{m+Q zD+-`hAWfbtn5@e1t+R?FLxyU3g>A-Nh)=&NV){Vfi)3FFjliljITts@2+dyoUw2f` zFyW!$M9fu{aac8`%qcSTjsh?z-aZejs|bz1?l2TdaJJ_JpoU|@8{@Ee*A;eZh6kHC zlIfj!(f8ahkO960ng9>tB<0Djkl_z4%%FZNf&In@ zMo&hhyuGtm_DGT&j_BU+UJ(&&n4M2yrc%TJ$~)y_t}C6A-eZ@sg4@l?+AH+PjSmOq z-lk?LbBX%zDs7iJ%}ees=<~rL&m%(=xUg!Z+Msf8QW4f(NtUFg_3ni-dEL~B)%Gqc zX&ga9HZ8>U%RtgZ+vf=rA%IPbpDmo@&>a{a>u?W!am6JBOMay7Q=KK?JxG2g*MY}K za?bSL?!v|TrIZa5{gYIP3{qM|{3*J*~^drE@f?%%9Gm)}W;3Rt$lY0D_cEDE!+bvtudYm&b zMEn_CXt?Dg)+6}R?}tEO8qm;kRSag+^))`BB{XfhHC#@TGxdioB-1W5$tkjZtg*?Z zt(d}*{`-tdk>4z&ICGYal5btFHF6@WV$qULv?(E)UoVMTGE_@jc-Z0BUw1<5qytrc zr(4`gw%ycYq9p3eQFs27AnRyZv^OVoWvOaUahTWDP)sYNl)cg%QJ<~Ee{6$&s&)%yn zv45&JETs4HV1 za(1>Oe@5jiSv!5@X~`@SIWmVv+(k`KoSK~*KWb|`Z98topZtA+zu{_IqWk_hPc+vU z0;c6Qo7qi|jM&c>*ViOtVTg$!uEmkmPb$q){3d(D)){q99agR%i}7kRhmM>0WX)w1 zkA?1Kot)=8Kc%o?i_tdbuNM(SHa~0pL;htE116f$d>@tdPq~utJgt35NTF)r-Zq`O z*|@=h-X575Gv2Y1NYmqtpPodd)(Iisp*yu9C@FiiZv zawOD)XW1YUT40|%;uIrkHe?nluEr0KARW$5z`-vTpsH|N^qjJcNDS~iJ z;FB|h1kG}W5VGp}i{M@@P^yoYDt^aKOi*xiX(c_w2Fuf7+w(yeB4DlVI9(qI!Ftx_ z-=H}?3p(hT@oJ@IH`cB-IA^+3SB8K(xIfJN_ugX9!fI!^Xcfjg5d4_T+s!SsJYNb| zFeAVZzY{fFlHoSP_1@t}=0X@Hx46+MrlqK4B1l`jyyje38ElE4Jb2qGCvGmvhk?JGG=! z!JKTt;!{d3Sk&do;IaWO5hCb4Dr5NRq`>{`S^D2)$ZYS%j6IOnb%TclK}}N@vyOHL z4c7@;n3enKo-lkmHE=9yBtixhT7wRM^FGaY$r|JF6KQGvSYC3+VD$XOh|U5|OmVyX zmr2V>tQRq69gj?Cb!fLg%ZzfJ5I^GnaldZiPn|WOmxn()`^iYg*T|FNh3Q@W{RVhu zR!d`7=plz}jS#JhnO$H+lg8S+V#gzLM%}H5Dh=Hn!Hw1Vur1BV6~7m z_E{WPBxM|%KPRX5uU~9$B94EQ9+~2A_9Z)oX(pRmp}Eh5mI zCVhUqF)C(GuC`8vro2Znq}-0FwJuF7x35W_BqA|ig=^MQBZex!VtD=a%jKxv1@T>l zgcU2WUu5>q1=OShV-u~lbyx->Zl1-wMiyoz&Rhglh~ZUa-=Sz3;R?_D7D(E4`&OK2>7iv?H(LJKXRkZslc;Ne`&m zC@o>fZpgKt1!LI{3ndx2B$UpUe=fGd9iZ;zCP+0MYC&&!5<8$}m?0vBdAvN9W6_zV z?O=8p#C+*QOLLUqD^VA3^2Stj?S?}T`1PY;ov%zvZX-nf6jf?sU(SIj?;p?@FcP;O>yyVBp^w+VQ&E9gM4P3VgIGo!^}Nw=bwog++hWcq$l%+j=D7JMK?PtDOgei< zM`9)?_JOx0tfcl}h$L7do+rZ@W1$7ll=2Wk%KfJ{d)eJn=!(hg@kPtJ(8_m91ABkS z19MIfC%6RX2$_7vUGkTs;9qcp(LZ}=nqmQQrWG<9e zN9#%Bs_Xa)e_e@$F|+M*d-aZHWJ68==bRjs)H|JZhw@{1u=&+l<)m=up!2xsOY<&9 z{~z|Yw973Ub3US>z(vR>2<61Mi#SKBy|^$7Lue!eec4#DT&P01I~AVlMRtxuz0dF# z<*=lmXIfxy&<4YRML+#@z9tVdM_Cmb+dQ4(!Jb?7vLk~qvoZvkAXRX=2ylJ*%Io8W z@Jq&gYFBCV?~J<@Fn(ofB07#%%YEPh8={Duxf$38`D}&)2!Y7 zYnRlZH0C|j<}LtUpcp>*<1l?{jRS(MzH=XK+ANVN4VlOPSy?i-)29(h*bw^$!dzcd z3oBTW&#J>y0Ui95bb3?HcEo7@*B#Du*r${*WxA9?Im=5c0)TR8KBhI};FV#FHeGZs z@L*_py|~-AlEwJ*BTmbGn&j%?z&e(s3egWt+kL-O26!r$;u=WU7!GKk?SYto-3^0g z*ovM|hi-~%>NZ&(?QtaH(FCgoKob;dwZD6<1$^Ti-^1yTzN<#5QG1M$&|yKP)UM3< zJWu^n=(%|7wTlPd3PEp&d5=03_*d2AAJPLr=@_&OSEKxjhb-h@bZsXB6kAbg8laY|lc8f7ZBU)z*JE>RGQKc%d!n7W)!91^40JWS$roRw9`j&(l5olL34$wX> zzz}13%V{9ZR72syewHrHWyQr^2B7H2cp?^+?J-id>U#Ldl#!3mEYtCFV{D&S@pH*AOVDX0XLQN^c=CRN6~Zmm=m6PkPDu{(K`|v84DXwWOlAR z|H`P1g>u*%@ig=<_$<RG=jTzzu_!e~7I9p5I}u?61LvX*_r@8#a?wb33& zOIe>5i%{KZF&la>YT<)MxL=RRnzIw%b6%PLw9y8lDIco1@1b{2PwB_q^fAvU+fdjSK54nx z;ZmD>9SAZB5iytr*1|;?L{&goh|A+F>bz9$p z_>72Ld$sF{^fNd%#=N4Y31=UN}B!^FPJ0VD?hNon#zR=;ziFtdUrymFBWP6KW#7)zP+Ng~{Y;ly{ zkm=|4geYakVvxSRmFtKBl(9+O0GhK$91;0kAO_%P286)(4-)J3jh7Yghz{uRErfkt)_Vovm8!bLoJ;5fcqoS8{Qo z6*$`BpJ4;7*HJeO|*=4CT0?G*;;P7Lm4Bw;73xGq;`K2$&C@6@j}Ml zW6_dRNLqTJ$moSjY(|ACy;8xmR+7ny(e5|A1QO|Mp+S>A4#Go7eS1#SX6gKF`3SB( zV3Osw{-iOe?DM8CUeJ9Bu8CaN&g&v3{!%gHj)AeaF1 zVM7FS1R+pV9^YjW)mxS^@J9N)#RO9j%mxw8&}t5|dU~b}LH7B8J2DIqrK-jHmV8SC zpfDrRe*{9MVPfqUp?>dU20MdAzPzgOVso(2G%?jfwXuWQWhd#pu0QhzO204M5(nPK zM2o4tr?Jo+&(`JBR}1+Y&({*D~eOPX$dLY`AqOyW~^l8nq%t; z&z?b9Z8%3m`}b|!$a9wzE8G?_7x~$dQQOGX@qM`=?$m7VQHE}N#G~56&&)lQQ3h|8 zWJ5H^Qia5UEHd-L8-}<`mCY+$QT!bxMZJmbbF2_QEViCuOM{s097iFEBfA8<5v1&o z&)Sp|H0j#P`(XhFRtfA4)xkX+>cjIga=xFALd$RkgvnDM8OyU7w=l#6zD3tcn86H> zQwzD0O(}=$tnZD?6?Tb5>eQYF9>-e6T<$ExpDnq3_XbO>&~F8 z>s3SHv(EC6j2u(Krcz>=G$rp6wN>SI`9>MFrAwkx@AKK6Y~JshG1PoNye;f(r8#vI z<{tVzuiAV9OPwjtGXWT?Afw6V+@k_b#yCllbQn_}y(<8{ z$4P@Nw~=_yN6Kc&oz>edX+{PRZ~Hs*8z5{tzwWC5@oV7u9&B%tc;dcz?^~!A+CNt< z(NQEVY#8!_*N;U?b{B)bc(Bv|VVw((r51+rAUEbBuUXo&c=peVdSHjj8bxW(^v7enJGZ%v0pJ_F>78R+-w0Vu&CpR2lJY-5( zkfr|*60ob}&Q_}q1|iEA{kfj42;U%yZ)?Qo7dVe}Se==lW{d#mBRQ-HZv$w{q`?MSz33uy~FPpj+`%ITy z^~3kuh3cs3Uw4=u{2_!_<~aWAj_r36PYBY^4{P5g$j6djBGN?(2tho_1O#__w9N&6)>lDXSy#&NB9qs< zVr2b+U@GkJGj;TTnYe(|b!pf~ovZ8!8bDGmbzCtN(WQ}@Hv!m4>mSWRervJnUI+Ls z0iN=nzlD2I2u0h@&dFl|!x1zU_p=xm`@N?)ZoTr7|D^Isw0=@nZaFO)@#*GPwv{t` z@QUNx4ou2U2GcyWp;z~lfB+sIO316<gv`*H%H+dpB^)d6JGIc3K3DfR1oKd{#z?dp}p&4~_3)0bqP7gV$bqmRgaC};najEg~c?^ZS!X7(H2Yv+3Xy4NMH`tt0 z1z0H`#@)hmL<)dY`3YGIaC9m1rXyMYj)w^F1Av7NU^IDy0SZ+v0M)_Qex1$FIlxDM zV{;piDuCr5P+71do8wUOiv(*V@s!54io(~sC|%gjQsKKtF?CqcSZPJn-a9w7c3oe6 z{<wO5VMnnxm{mM>#-F4yA-9y*jnmsM`D5|Qp8mV74VQ}TgL(|DGowvvd-Hfn5RNR+0_$3keSR}ip zvhZMq?dTh_P?;`Um`t%-rNtDDB!FgaQ>_xn9*m2gyl(s2a$>UsxBKc&Vx;%Yo->Qm z!n;+m3gN?hy4PTwW&>koc$e~QJM-{eU&e^9F=ogQr_=4d-!*o?Cda%NX{xjkwl3-g z^uXZV+D|?npFgKYP{vwWBy5>c%OB`$=(BVV6{B!>ME@`c`!DIRCm39cRn&a|RHCxR zd>NGOSC%)v3Z>XbB|6U#(+meLMz<~|_*K+eFA)%0JZ5s9VF#FpV&@N># zx8S1|?-1-*$!*S=Y8eQ8{w#-(l5WqIIu|TSv$;z9cL5Y*#FK2`lN8WPKwW3 z?t2ZC1JJ(g)C;!^0RLCqebj7yXftEnfCK9P{TaCL{tOVs7!b?f;ru6xW87jS1!Ti} z+Sp^}dfm35ZM`jiu*9A^rFG!HflAKay8r(i+;V9y#m*uc2}2ER^I|drgCY922|N9` zLeTP;HAb)Rc;ej6G~d$&#$0oN71X+szEn`^x zr?o$ZyDgeIf1oElj#_&A8pZhiDePyDuF#FRp}D%U}M3+TX5S!!gSq4NYlu{Wq*PeqS*kpM5W?e`)i7bVK*z3ZLtM z{FFBTmE=vB|CqkB`vfEXM1kW5n17Gb?>-WvVcXaPBn+Ek!1Q2M>+?iA(v5{TwJ&F4oX(5Aj}3E zH_Hjjx0&6!Xhrj0YPLjr&I65Nr51Gwm$;H`INa2z-ww=$1zRZ>AY)KU%t2rD6W#cw z(&?spxLo?GbV_o4l<$G%k#MU}FmOwwR=!Tcr=&d;#Y|-W?8>~2WjoRZ>1v%iv1}q! zDKsj5s1J9t_Kg(}Ug{QCSX1`z`dxVsf1Qiaan z@dbY{KRy9Y-i&8B;Mk{DI|)3*OBZ;Ex7j41)8AY-9zmIcQT%gc)5_3!Wa! znHr}wrblH;Hbt3>w$W;K-Rs^MN=#zGX@SId*xb8ZAs-X+@4_G(TB>5`f)}q9=f$VG z*li&+AbrYuEJ{I6&CW##Dea3Z_t9`GwyT|&Gp6wQ`u;boF3DXYb6@obm$zWPg!EnJ zck#B#h&;zs1|3OTqkp-Pg%!-ru1QGw2lgO6968N$=PHKS{M5^iGc~B1E63vNw%UIx zmt?lNHo=ly&tN{YCt5}c29?Dpa+H(k4Z$@^6ru;}pViQWDZN$Z<&@slB$4x$ z#1N)#-@>nZDsP?H4V6tymW?GCjiri)R@#2;IH_iJWlbs$V`NN2HR>tlCO?Q>urEfa z@bq0`2~d?HWKSByp1TD}@wy_~9Js8WD4EmyRO$JkBP>rWDQoQLHVoxjT>bq~&ufN{ z7Gy^=gpVNu?>zW1TRjcSGq{zxlO_U#tW;Q)+%+-`RE-G%yAl#fh zQP!b#MCd$M;(~ml_dffZXx$I1^3i?x*Wo;+erzf`P9)P?{U!#V!OFcY58KhvR-3JP zND9*D(bqLU>RL^oz<{8lY;nyucHd`d!#-|(v+yuvlCaPU=vtU&)-6V1YUEu#}7feyvZ&i*gXYJpNq!ceK znNLVJxR%!Lbo%pTe62C(sqj2`x9w;~wKfjU7GNFbeaXp(o2a%#+sKZ-Q{Oc3*PRWM z>ev-VIiFI|y;*}rEs>{sYn3UU(bRWFsT9 z9oT~r%3Ki=W{uAadHd-JgX&G?7>Tg(HDt7%T(yD>&B)TQOhK_cyR`Z9-4+rIJ4?Bm3~MM3m-nCWh6`? zBzLGUq{EgzrWJMwwm>bkK*bV<*IiTx_}8pUrLH#s0N{cp$bO%$#R$D{QY}9E&-y~GaQAbdF zEZ2ix3f?EF=?Qp*S4pUj(iZ(5(rukx{u1FIFnI^)Y3P@qWyX4bgeXnl`@B8t0F-Gz zN>a)M2uHB@o7G;JuGdchd?(`h?QJjE$S=c8QEf4PwzbI>MU%+r$L=hotTo!$y;M-# z?eZYMY&j82Xdc)ZU&}t5Rm-0eNobwhS>qvh_&GUj5a!IYlFzl2-!^Pek%d6Kj8+N< zbD{6Ed0JyMQ*@6yto?9*@*yixGbr*OBy4NgQ+T*w>ee+~hI?nUJ zmE^M_F3`T1wG+g4G6@tv1oYIi!`hr~f}C=Uz0bK$GV;T*3v5rIgI1eRyOS5tsP@r5 z+0YR3NbXCmY|@ujS>Zz{-VaDf&(f1Gt@6N1+!dnJaP^~MT0o=tNB?B66%f@on9T3} zey_Y3*pc*lm_0;ik^2Ku^zV*;ugHR3*}|78+3ILQ9`$rEXDzKuQk7r+Ivf144~_fV zl`K0)BSmDx$9^l#VgKL>m0LIxWcRR6$SEco87TnxB>!x`4^60V?`g;bdJqxd`ae2yyRtw} zvY_*w#fck6@f*kl9rqB(ToUVM+cszVPVF@8OYIHxXqFx9DPH{Nu73Of9+Uq#K-xA? za@(Uutg;`6P&?o-{sY&)E~SM1E&WkMIaCgwgt|vOC zyPp~YF`xXqtpxbXa{GUME&hZ6K*}T>ecHjc0OI^;m`vgT-H*0{vVmo97!f{TYV&`v zzopkE8A59SniQ1iLw6hA-@FHo!!{3I{M7nygNc$D59NQohYsxd-d+T^EGq{~n#xp1 z6jZHDWFES>!3VH*6XX525pW#VeKeHd*E4VANat@E6vFUlAvw%6=TCUw=Wdn@&4?!b)QBLK zh``FBz{=N_bC$wucV>L5pJ&f7)F6)6G<0w~g~b_!t|Y3b5~>EF4-*@opQIxmX1;j- zWtHaRu=%@$h{y*wOV9>(6>?=US@5$($V9;dJHE&bMsQpqTVfJzw>6BUru+t|SKCFn z_qi})GaJj9)wwcH*-zdRAoxKIx3UH%g*O}lZ$ueNdBxcC?yKd`n$|Fj3p@`8c=&NK ztR*FG+5bz!kXa*EmBp$bTf8Vqr@}*2_=3rT(%mZ#tLav99d8pPlFqy*qq@z#2fIAz zI0o}j5)eEze@r|8_5iLww>(|)rX7mU`n!b!+;{AYPRMaFT$d(Cd>_1mKyE8mR(x*e zw!lB*b0hVT>ah^lTpx!0NhgsJgIz2Xv!m@^-8(8L&gfsiPk?RjYUAt zrg8zhE+C;-DYnK%X}vln*P>^b>A!yHxQt!?yl*H8?jNZnJm`Vi(TU>IT>CqR8Ej5KCXEWrpBP6qm_Pf4nkvUm(|XAh zJL4ckPlmQ%G;Zrkm*7!kEzDfLNn);JqTZ8I6;&w=F|tB%$9WIE*fClq>M83*&~2!h zulVqi%os*f!8~;iHrfvsPrq>5xpqXmm`c#T9eR1nwARoQg7&qe7@~W%DIAB0HE0#_ zM@kqvE>K0GFu*GHvY-~E#r{D+8dRsTiTDgqVr}qrTmo@k_8bVP|Dk8dPHY2)IU3fMk%w@Y z9exQlm6bePT#z4NV{yo6i!r=L9gbBo%PhqfeCYVhhgvdqwn52;=v%)pFahiPSQht} z;A45k-LC{6T-~?mO{0B!A&R?ZzxB;-^#$d8+SLZmT(%i z88pu=l0HMf3Ec#@E!vPDPO&DW&VLPvV;238ucygi;O_F0mHb2f`br>==Z1TnBuHCP zbB#3PySwsL9?I!97rdE-FDg8ZtBpd(8zG&i!0T4UEgVIB9y^hsGWZTUn-Zg~m|INP ztGFU2ni+4D852#eZZdeHsbA(D^RpO3AwSwTn}S*n@{93gh*JY56e7IJ0s1h4)LX8@ z>jGEvz6FLo_PG5@h38PeN4VK^Zohj+V<%LYcy6rTU4ki&m3tQf4?J z{dMKJ6n5&3LZX zW2~3shUB__)yezd>&kL4NPBiON0@(vJib5#FmsaUP=kXk42%^VoL_Fm_A=5zdkfHd z)y4a`v1{+6NHS6W5E!Fvf9Nd5jTxStXDWqJ<0*_c+23Kbshe|n@LLGopytVOcT9Dw+o|~F zDW6ecUXJd=Qld~luMzW-kFBZ!`9^akKPVU8B!3l@S(iZJ(p=s@h;2YWXHR72xKENA z#ZDAzz#rbFlBhSiMxyq(f%u|Ywq;_AQAaSeb2gTIN{LmCZ{Q*C#g6LS5AuD4K8*gn zi2zomZN%1U9-;B-ytW1@h9!Lk-YZrcDe7`OVfOX$!H`=w)0i+L(~*^D1X3{uz=-B|Sh*g6ZSHnwOD zS183P?(SY(iWDaVcc-{(acyxY1b0c$;;yB|U4vVJK=Bp`ZQ(-i3+=V{)?1S`E15Yn z=bSw=nIn6D|0r;;{uXM4s|q!_5cjPXO|&)*>d4G_Iyv_gukR2&ZLr@x+4XP_DUx${ z&&$YIVOKC%$u6uswU{CsN*!SDdhOuf0+}kuZ#JHhkS^D7DX5eNF)UdR|8N<59Xx`z z75tYPfUrt>1_4_QtJHn}J51NH=(qR%z^(Gge6 zp%o^xy}Im4r@2`llKr|tn76(to=pWQy{d5a)i5scD5St0@lRQVVQ4C>SF&g*LV)}c z8J?-nF2x>=Ekr{B>l^X($Ar3C9|ek~xGrfcRpJF+h#)p7P;hSv0{sHb8yES;o1YZ@ z?8xW!3i}IBq{FR&%JS>%`b79`A%sQ|*Sd7e>CXp;@W0?o7GJgD#<9+ZhG(&0L0q1g z{dH9%1Ng{#J$0_ePL5ch)gotF=i9nIrIB;!3Jb-k$he^Ey=?H?OS?l&`9q?C7tt2K z)yMAvb@GsF2J+mI?Jl^5qjc+~8@_f$#9=+0Y@kFrR=##}#{j{0vpyiZNhpaw+Tq#%eOh1Ul<|p!Ja2uhrG^{_;-_+b%(x+!V{-UT*X= z?L{Ko2tAspQ`7@~A_Yo*<3WWlIA*sh;V^Opr53Wm$|wC^HVLGTm&Cfog>P*YI62`| zu|+Y2y@Lq`JQavGr+w{Bj5sAfGEH!wHyfNdsIsMa!i0gc^N=i2q4=9IXkui}y|QHy zYfXU<$-C{M;5pwJKgy=zAsBj%^hUaC=afWuF@}aUZR#vYED5X>-CB;#jdLla zN=bnwRNhAA3oU3mj0u1}#BO<1v#EvR1+4t>+V?k}gw`6YnhsZ=rrW*!kL3!D&ZMZh za;aswRN`N%xklM!Q+Mq>vVd++Zpymi&s!c|neYoXIQRCp~NE-_P{K=Dz_>nW}Gn@ZUl(qpR{oO(XKv^yW> zY>%SUJkTNO5+d<54sH|;1wRHSa68KEXX(a5sfr^FzF@MA=_pvSx#$5>$bHQu_CHgX z@}jzoX`({E;E`^^@*Q}Dg$NTAY`jy6Qzj@PUT(lBw(B6N>Z%H_=GtzQe|K&^)&FqP zq%EJ^z^B%Uww3zGR1L!fA)RcNsCJ(f>FpI*Ctr|36C6oISp#7azLTXoD~_7h_~T0s zSq#gsno(aSs1%Yvuz`1P0+Q3;`TdlsWht6z)lWFmqPMbE%T&x#Y!m<8jCA{RG{8mlJYh={)6|XD&ExzLw3(UqsLdl7^DW83?;(+Ofux5`k z10fnf>VjR=6(W#cqQQ29(_6`{Ss`BYDWtpKVbj#HL*eyHblwmxzoUY(q_T#J(dpy_0 z7a?V)Tu*<_h+m|_+=TswxA!u_4O{$c4T$cv2FBi|+H1F)jDt=aJ%T6ZH4h{3W+I<|v z6>#!=xSC*=tJ7NSk&n*OP=9VBog@xY&1r1?c6JaJV(>e)5_ z99;cY*v+IpsNO7$ZTM~e%U7d-oo?k2$j9}K#I==K4B&!Pq)&`WY%>T zoTv?~iiBK=(+sW-dQ>)bD_wTk2>DlOK#Q1>xTOl_k7v-%*=M3?!{IZkdhckz7=iQMneDi$HYt6j#4ZusUGS^b76&TeCQ8rM5Etp;Lty#1y~_)$ zf0%HXxTRnDjGtB=v+?X1eavT5)H5oHa){^F2e^U7bqUAb!w;=9mYO!mtm=Ot9nImz5EfVS5J==0^nI=i4$(j zs#S#a!4zXrwXc+_bh*_DzHR>PQAC<@m3eS};eIW)AF{`NT8oO?*TP0gCa)X<20?3l{V`&x13V`$?7FSH`>UzMXTdz ze?JqU(Ub3u`($Rjtms~y?Y4m%#xg93+lf^Z_o#CzL|c6k$d3-qiWuF>Evrg zp`##~t0@RBH3mc}u~QNQN3*rSmW>j$DgD(%%NO)<+KXQG%%#}uU323}xO8#?YU zQTd-~vgl{BxgFqvf)uL>nH1XPiEtb1to7_GvJ*36yMOGed4bOK)2@e+BX@je%S(L! z(5XW3EK*`(B&{}(iB7$=b#;3veqlXnAY!@sEb6X1%dLc6gyvX+Cpp+ zu144lz*pP&t(rZtqZUIwlUl7z;pKv94wr#2j73sTOLxGlR|#}>kuMQh z`(4842?lM+6SL*@5bofPa0L~n9e#~dG z7UF1ZlOopsptrFY#ES`wP#(b$wmqGYrzKSPjJqSx6dJ4V<=oR+UFodNy?l;0uFEZ;TD9t)X4!wbBogNX*3bC z<2BVLuSqNS>aG(|Z&8mPF0V&WhxJ8CoRB+}JJO6E$97S2ti6|oVQv3VvLit7RuMQilpCuVj>bBW-_nMKoneM*qA(uS0I|N@`-zM$7%s_ zhc!kgF2=>|Fh`4Jr3^UkEV&eIfvri*TLukiyfW0Nzj$!Dcn!2G;a}15Sf8j`NU1v} z^hal6P>1=wUlmH@pAR_S`~U?OUxnYv!`5U!3-(+p7ic&6xyYw18n0SFHi4m~K@4g0vt1Q9JI!?m9Xkrhcc+P?KHU%n>joE->K0-CpAbKwY01 z&q`RlfIwty#B;bUp43i?N0HKRe-?R1?0sk)>yvWwR!a(r=;CMw^5cB;ZwjT&zAD5I zw$1_(2jJa|*vF!Qjbm(Z+t(cIyAunJETlMUhV_L+(N>S%(rbGVSRRUH2Q4mxYh9^_ zwIGa+rDBO6#)!@I66E!d+~sf5%Lop7Gcj{d`X-S&qqc*cHpL?YEmeAtgSEmMc)7Gil}4Lr_Hmo4&zSofkywRBNE=Da zXuJjQi#mtmQy*m`z0UHlXp{5=JK{YU1YMIUw^Evq4@Jz&89^>Rk%57ebK9YVyGR-s zF%A2)SG99o>tn-t?U}2p0`f0ZIanOCt@xk{xY|!C%G&|*jIz=XDIM&q^rwy`8d3(a zD1nqkh^S!F>+q2Gwvzd?9F4j9w*zJ#_dEim zFl_EM%GNttvsFQ@`PZ6O#DJgWAsRQTb8 zdsCqWY?@ZdZ5#qfXaC>B!J)ENq!FlgM*`Gg()NtXGV{b^D!DuZdju)ltvg`o;XWfc z-DK;a2!03lg{<**eoi@X2)5@M$hOA)( zG?`zg=lNhwaamU#od33yS%M889kt{#r{WQv!vnf5!ssMrR`6iuMl(QfxOl$r)4js1 z2y>;Mppw=x5S9^X=9Mub{b>6!fQxgOk?lz_8D7c(2v+l5saen?V7O9nL|$E3fCY_K!N{{)(eO50$me^&J7eMojz7Y#)@;jHpp4 zAXUtoU>@2%4Y+iUJbEcp^uDCSKdTEN?!&^E9>(g0DXMfIX=I)iYye#=74d>%t}a-~ z&Z2bROTCal;VJp;as4-lxBe#JwWK8w%mPtw&bNJ^sQ!%5z)wV!P=dJEmSK;+(=g&lgQww*G-DBnjy%+5s?dnC3M#W^UjHe zE?fSiOdLk!IP?jESObf$y}ee$mq=c zLDQaNDgmbK%d{jXuHM9mIjy3WGbWa9)s(|$E!rh4EF9V+J-FEbI5o1@&znSYdmVs_ zbYZ=3F?Fql0YYP19R+7ZenR#MDA(oML~0p%=2dmdz$$`t>fIG~15YQi6I7|YcQP*W z_0bc=wmXvF7oHn7Drl{IMnX{wq^fo8ommxpUyilKJAx>!CrYTs{b_ccX-cgAB}Co7 zfRGIgi&$)rhvn{SnvM=zvU{ETOD5Y)<(+-_Tl(%INqmO(IZ6nO)CC15=V*f*uz#*X zn~t@;9%O#%IATssQzYt$Q6bs1hx&T<9eiE&{6SjXn}Y2`v^eE zy;)Dh{4(-DY8B-k!)X?J)q{vmQ+_Ft+$|S)$k@RI#9^pbOtze8OWRQz&)R13Lp;SR zTa)l!g-5h{pMH4)%@cR65>O;gcLmC*SeMde^XK}vYhw4ijsCdhtC@E&qV#=?6XTk4 z9gNz23wr-AY!1oh^w*(?kg){2yj~OBdG&&qnZ_J%>wGwI5d&}vFWGU|ajBdg)**>;2gx}LoQTVu2K z`B=la8fj;V{{9p<_aPO(X$G~yv`~b?HTqVi+HD;Olsb#Br{r1?NmNrwQxK@m2$vA* zT-8e((~#3g^9lP7DM$8UIRw6)7*TqNB~g{k%o(~OpWk=^&g^%obi>pkTKk=En#0v{ zrD!{lPBS^~xe|aSLu)X>4LKgg-V@648Hs~ybhZUP?V@3{sgu_GXauO~@&Ln@a;X*Z zi0_%l+HwPIQ`=-c==%MOj#5h`3^?x(Teo8^96l4~-XTqos%vFZHe;5-g z_pk1`O^r>kkE#%%v)R|dQ(}1{Q#U$@C$~TL!iF85rMwlV&j(&7s+mjMNO3?aUi%;( z-j?wi5ajFYoo$l6VKgzk%?kn=wJGjJ|8PupgI=o(KQ9}^*bi~Fnjtj(Y!Vf%+$n|q zTwRVYw6r(nvAOUb4J}fD2=88iC?|I?k3E?+i*(Rc#IuUe_JpFhqe5FW0iCUTY-Y5{ zpIpv*H2L{Nv#2{o)@!W_k6kX;rlO7KX;}?242_d1l9NC-|FSh0JG*ro@a3eErLm$g z7$1@GY$3Se1xRK4TqjjIhnFt#)3FKcjZ0#`(mFp%IK!tS^4Lzh2N@L&-yg^Chi#fL zz79W-9}zRzeCaP1okJQQ*!JSrjgKV7Pg7tZ+)Ozui`QuDtKL_d&fW!)oYdcpo~YNg z4i4HNfEiy(y!EUAt_}{xDbEBBeBOGwSw|oX&XUR80;;m@}3JzNj-h3AsyQ6mTA&o|;{ENO^lAeM{ zbEJx0G!1c_s@dWiG7C79qo5dAYUUZ|`y|4Fwt(f*_LwEm45@LDT&_#~vj}p;%78RQ zvPa%73$n?g>rp-)t}!_9j@)`UnyAA~S>UX&c2d@rpu{QOCCimziV06L7i_HQ z2o=ASt943Jdm<-cYUiG-_^iBUF=O1(7(l<9Cd=RwQIv7kMc+&(SgfG1gE=Ff|9E8o zNVIbiLgwbPWcSC*-%(=iLa_)FR)>Eb_BTyo3oS_am2T_%B<816fujNgb zAytOjcQwf}j9|s>rdj!k0F3NWQID8Wbi@TG0-HngnwQ`p>tFU9a+day`Rpq6D3hEC zJq6TYqj2Sw&8nbk1~;n+je&nB4TIWyN=;?GJ37$mSs;PbKzu}nQrgwH&Q#N)vqCZg z6Gq+!MQgxGzm)9_QRKnBo2m7mU>i_Gjb3>ZA|oxqbF$-Xm~4zuyJBi&h3JHhae(K= zlnnFd_3NK&yEHG7{)&krGrz!)lzxRJZnEJf>+#;nDX(+iCVF?g=&7=Hp@~rlpJ3iFwQ_Cox!4Nty2b073`n~xy+;n=+A4#V zhjS*;a6U7@jbPL!%!O6DbvxXFG4OV!!Pv6oP_<7#19;EGyfXsw9b-mP;U#FCpg71-2pn-T*3MSC2SV7M2X zsYo6mq&XnCPKiWzOJ5rsJ!z@rigd7eu-9MIzzhrnqsLcnuDmd$rzgBM_Q%g{bDexo zkvsSpH+Cs*nk5>@Zsjn|tT^~e7#T5sg0-`SH2EJx)iI0amkW3h_K$s+wmRs<8Fxy1WqU z%AXI$SANdW<=Xo#KFuAjOo)EAqt6>bfxn#A4dL|x>!^VsB3Yt@6c)nV2?JG!l{sVD zgZPeXd9Xa8p~`P&^|gh@{suc%%5UcNS03Zh_IKMl@}Y3Czgax7N}JgA%%P;CC&;Kj z5BThKoS^2SE;n#~c-5q5axqn(b8DE*y=bGOt{#ut;(i2I+~9Yi>)YUmQ@O9YR(__@ z8#4Rz0hd1WsySCskAg6XHcaux?r^TK)xFTo-y7!DF;#~?xjU_Jjt3|t%}%;t61JE_ z$zW-i!(zb@gaZ;fa`h{Ja(@jDQe>94^`|0A6FE2YX;5tWeQd7wY3C5rtR`aLUB@iS;Z>ek$xy@&rgKR0t{ z#mgkJoDyhbVMPX2MM4VY59#{B2|EqDDRwyG%Iitkske-vPi~mbY7$`Pr7gXZcg&1* zJd0CI+?*c4ugQl7@v5x*`$|Ss6IMLfQaDIzMg|E30?~}Zns}7Fh zO`7rh#+DluEw}*5NouNV^{Px1q#mxSgX!;dl2=PqA1atsl>h$HXLy(R~fTFxO)Q}ki$8DoF%6XhVW#H3OTs* zj;~Ru_{iz8opPomTH^9bu93HA+894^-=;u^Edyc&p4(xnJmQ#?KDdm_curoH3fjhM z!f$jwNZyb)&EPUk5q^w6z&f>RtDR!BU~08=x+Mz&9!-2tPLA-&F&qn6vfA+viefx0 zcEyW)LDnXMB7%-7tC~t>rmRN5O@k}5P25`L9d|3_omWZzjN8l(_FBp5fP|btZR8PDN7YgORU^C%RUCK-muyR~o>J>_ct% zWv0$#pzjgOa zPMM&LD=!dDwvK8m4cXAf#A?S6xK6nuIIx1c`eT`|5x?o~&T&hp!s=4$BHKsHJYu(iHRdr5BYYL+a-AJ!M zg{mqm9sb(#i2&R*4wCRys=YTp>6 zJVgUrHXlR(JxjWoOLTdYu_5Hpq_qS>ta<+7{_dPr^NdbV3_=r*H{zcLWY5K57q{Na zx7Fx^t`8ZFQ94hQn*EeN#T1^cWXDs)WKLw3S0h4oHsBGg$S3hDU91>T9%U<}D<2z< z?M&7!ZDy3YhOi=J5GaSF%H6$Dm~tV%$e;IQheBs$VEEhVw2tJd$X3VDL40Gkl~R-y zN9@32b)0(qLsEg_zNunCbM&fa?vCM^RqTin?OVByiJ6s7H?lLPSW2tq6Hjk|S|l4c zsfaj0cn0}3bXy@JeJmJ6f?E9 z?>#7n!#e-1Kcx}=3&zmVjcQ$Pd1A!kHXW9-qoJVelkBK~f`0td9eokt zPO+Q?I!V<;?-dGE}$zec= zr&byf6Qkcm!HczjIilc@-u%nirsp4j7EblkwvG{?$+pbK3va6M1OPlgXGcAqUJTNl%hx!~64rftCt| zt%BeT1sr>pXebY#wn4BfP8MkZ!gM}lqz+Hp5OYdrV)O{zKu6O%`@>RZY6*9*>IRst!ZvD%{rYI0m=+&BVs(0n=eHKc-w=>{MkKZu z%hr}K{D4sjkR+^=%j`?mK0(KYuUm&Tw4FpMKstk9AzW$RQPtcd*GXrxf8S3+cB3*x zSF%fxYUdS+uXPcYM^N7K1T8OCRrSvYBZ->YE4V7j)B#TGa&|Sgd`IiXg6S7f^$ZV2 z)|HV|(QSj>ideDqv!z(NwlxO}G1B_vC5xS`flfo9*^z0WmXBtZr{3YGV{I^MQSbd& z;WBcpFqbhS`Fb6|hCTx65N$p?_3YzdAy>BLuan5hN=1*2X&GkR_2hIe-6LFH!{60) zDAIHzG-1r@y-uD9I4LA8ml?4cp z+7G0Xj#q=_ny$z{4!sY}A`ju65YzE0NQ6g4rD>T;GH+0T50fR!en5ai ztfl5LhB+JFtVC`=xQ&*TBW?)&qMCT)waonctP^)1H*D!*pr@P*yir+MC)}QP5psJ| zXfFx1 z>dM8}`lQ#7>h+aaL#XNMY>^!MNW2#}AW{s%Y{?}vRwF}i5|sG;6B>S@A>B`{@-&gf zrq3oH`|=&0l~W@(?2Y>#t>aV7pAYDJh@r(qsd2+l%X>i^ZX}~4FCTFc z;IgsBYVg9tRcK$N`}>LGMJ_vC^4`P-hxtN_J+Pv2plneh!8*TW>60=T#>{@Uv(93g z^Rozw7bze;^tP1{%-}yYHd^C^u_`HHTfs;1JRFvCxTiSomNQUQKR(ZWCP^?&^*4@^ zy1?pl<5+hMot0m_4xI~Fo3v z$J?aEd_DKS5v;;TKYb)GorS3##ErezE{VT$RA9@F@nMoW1X4Dc_ULt!}pc?IGDa86ltW8!tF`A3k&Z3p3dZ`tKB(gZq%O*41p;T5$6pGk%mwIs1yA4tI zxi=+%QgT<^GzltpW=8wan#_42V;5~}Vy!hmbu6E1ViL%S^Rw0k62<2_laif?ynl#8!9IwvTomp?y80TA zQn$8pDdwCL@2EoD*`-mDS)-V()XNcDLezsnH|3)TSJYit$aXb{U#)7*0IS`6#e6rV zlV*xmZC@j?K-m#*HVVK^TSZ$=yn!~oIC+FeC#VB12pc=Z-U-F|H(CaX5=FK|*7#nC zEc$H%MF}RK)?pF6iiuIuXPXn2o%2m}gt_A%HtCZoj0aZQhqKR2UzJ_pqOZ*UaFUdU z<#NdUs9egd%h6W$;G~_&2a^gvuErA_U`RB9<^`e3kOwWjKQ?C%7UI2{e9`}ogLM2x z{&V0zPYaSPxc3ftZFk#9RF%lQ>q!lc-kC7|Xjgf18}jgm_PdN$Dqgk&ax$s}@Du4{ zpPh<~=!%tWGGb$0@H>SZZz^sN=0=x6V2mTv*^eY}OnlA!QLLjfFhM8Rn1vohf?rmq zE!<31bUG)f)eWGjh|iH^5!5khUnCRLyB8uD4F>wDd|JQ!62kb!$$qiFx~mlYMBYH{ zg8pY1NR56r(*tw-w!d)zJwF8RbVgK?Lml^nrlVT9#<9$qw9eYtSgsBR8ZnnON1&|q zmoN$3C5wRay+gVS&$<`M3+@U31jrx>qS|&6=JC{;{J=;2k+t&#lIh)ZF7QGrje%fU zPJ2~ap*M3fxE=&H{5IsWD6N}r5iPVCs$}(tqZ@&yN^T(KguG297PN2nfuZahyxmH{ zD^U&ySJ9oTsr}k)cVY*a)?P>7cNvgV#}l2hcfuZjt5o-bq!0^-QgGkgL{F90nIn%5-94-b+fdfT3yj}k z4AV(Z3Pk(!ftI>f{6uwZIY+~>(#iA)S1BCwI0m8YZwK*FemViCK6WELSfHq%K#=|s z{4U$64luxPx2DIBoSqj_zi{{}#RH$QoOt?GicH{9ec8Zjw69Lo+?W8$j^3-5#Ux=v&qPKM@pU_3ruSh0zFBh=bW3#6u7!^za>4 z4zGfv<{XMa>*XTvbf7F98)YtIyW){eC53U77G6J)`ID^}s7JiK7);0D&pWd+x0e5U zQhXyG4Zvt|Wh&j+d@87!lA zKUKYKrGJ)-7HoK-TqrRjj0#@LR=PV)rq1lp9L(nmaeg$-n_7z1w2sS~TpKRXl5~)n zlrS4vap*}F%EXTXv@zo2gTvp$NQbE?45j8i9&|j@w7~De4_hO=(qzxggOs^clA|@@n3!^#k%PTjT@O&sB&TZbq|9$a|8})jp5pQaE1vGe@T)2xgF_KqSdfhA5g(etDUF2; zPqq|qP?a=ir^;KRI4pevA5|-x_Wbe*W9b)Y{y&8}{RnC7m#^)=e=rwVovT-HvejPr zQD~O_8hs*UGb+f*Z=g>Dy971=(QXqLNsDPd_hdA2Khda#cq0C%ERUyMm~fb+vbJia zY=mvrAFGbG0`ubs@*KBO&0xJlat}=X_nBAe)u!6bEbA%9MS+FI|bd`sl)32$GyN<^G z`Rx>}k_Np6-Sf8Rd6;@Jt6mGFaA$ z334Hb&a+r3J(t<)9`@&hTK`T{o*xsTrxc8Lp>OI`Y6-sdCnsi{qL9@)Uv`pkF~G)5 zokTVj1`*~O^+wM^!sJVP%9z(C6y6!?D_3s_A|JOAXzMP1;wOuJVH91?IkN)wsVRJP zSE0>>cWrDH*JqhgXyy#D!sd4&%LM}PjH1$R=lxS7iw>qw`!&o* ze}x>Fo=#>^7ZPX&#x%Hki!f-I{UDECl~;Rh!M8DymDxGLi5#~wh8Dgp@(*IR_x$W! zt2AQsbstbS$S|2~6aslUr>e%1qS6-q;6|}2{smcIFmk@Y_Y@f@y25gNiz^rIf-3CA zqv;V=rrm4+4S14$fHedqsD;RA7y~p?%oLdQIedD+$JmNN1zNFm+;r2T9Dz>b+a+Q@ zYJ|eI7N}*Xw2N7*%$XF-N+;wLY75@}aezlXUB=Ii#1Q@tHK2vSF%af8;85V`?9fj` zwEdEc<0cp@xcLfuHC8W#4aeP!(0y>0E?O=;4E$x!C5V%ert=*sKAz3Q1&_ za6xBwSpbzo1I{Ggl5sW{IFP=f<__-S7TMq_Db+)8q0nyx8^nNb?N})v*3nTi-^|_ z-{hT>>SIq*D`V`LTQ4a_8G?-)j-9pY$3W6;E6y7!dgqEG>{-f9Q%q#ILwzBCw72+1}|~3Xsi+csjjuX ztY$a)O%EO0)WmQVX+`a!($zhZ_b+h>A;8@*QUFAsfkik;)H8TvU?fzRLY9<)&UuSU zRACRNHN!$=`bw13n&m;|CRP4z^t-P1Q=F>v827$2Q=VoRXy7o$SSneZCs1$Zrf+R0XLsIa1V8e{f9Oc5VR&GQul(^NP;UhDWLy^?@*1(e} zuakq_ih2wVIT7p#XiQKfF=MQH7mkXJA{U|=H0O_$i1Zdq8=9Esr69g|HuWN>r{uCO^NuGz> z>gq}c)d6EB|GM>GXJ7RevpHDAl403t;~Q;Ltk7GFtfa=oeauRxkmjS9v)D~uUfQ&K zzPR?4vCNCBAUsRba;l<~*+*27VB_7|i(uVCet0d38wV%>R ze?a-5qRp=otcnGGWVp#}giTyF`F51xLQ|st{WxkqJn$V7!TK7-h3o@IPCB^R2h%d*Cy_H zAJCaEGg~RLd{pUTs2WQAM7(V8gUHR}1hIxk3DTVQ=%5T~0sNILm!6qbuQjesOm6Gy zDej^Zjnj8PqnWN)zdm1frMJo7JpQJ}PM2T*9Hu8BodA|9u$((>np1XQEkKYGJjO#Q zzh-Fu38$i92{u0nNMGRiPOvq!D?ve77f>r1K5v^VIAge-!bvq~qZDgz)_DwHvN)oQ zS{r1bmKm4`cED%TAu&3_zPb7uC#-8JiZ@asQ|0ORwDRP?e_g$)R)dfuTId&o1|1OG znw7o1AEam({>G{z>*!?>S;P`4E3$1ZE}I ziTcC)52=-1k#EDu7=;y1q*~|KEAm@YAv+J_jY{8S<8$OBkN^H@@kA(;7XWWWy(nr{hl=L`?GAW6TS=s833m>>Yec+BpU@hz3os%dN?85rOEGSOI ztwCOE?*;a-48I@R_VB$>nVE&5P;$v#U|R!%BKF9M3Sd!2w|0`|D zTbPCza+A{GBhf4JW&3zMJv{K|ibJK|W04GVWAb7Q76N#E&PI@H%7qdM5dzu9W9G{@ z*D^SA#esf0!laV^2s1?wEB;+BI+&6-VG{D3;D3u$QS^5yQ>`k6#E`2ZZ{lGkq6%9V zuc~X#Gyxpw@_pGKY}5W-#J{WaaI9=y*<<8T%gM;TQDm5f$AvX&?e(&MNa>tY#NdXR zsWI2|FnIHfi$m{Q${Byg&w^n~F5r>ceaW~N^7*njQI%N3=v}#PI)!6D>J}H3awb=p3=C&s?x6 zu`iWfy5Ln3dX*rSfr$X99r`mWxM~Np!UoryW9VZ3HcP{Kxj&ryrgN{Qdfbv_yIeGv z`!2FlvkJBbpRbd8UGT4FUjiu#Z4!s7I^tdXPlP$38Eh5`WW(aW+|@%v7S9NU&+1#v z6-Znxc+H9Ak>2y@ps~F*6;CZ~vDL2UE<^4re+|PVXWlA)-)yXH&JK)IsxYIozpF7H z;N=!oP6k?2Js+H`uWR55h+Wi`AUy|9oHv8YyC*D=F_Gy$xBPct6|e9f(Zuke_|*6%)y|=lp$& ziN8~{W#Oz(JlwR|(Nj(DbLfud4$ggI-O8u7%cI4C$x<1JJn*0NOnag_gl(ajVq3qm z{CCIitk4aGbTP#Eu&T86VEV0f`m@&FPP%HULe!#9ywfFJK?l}m3&Tz07A#fxjxqcfOYGcYnaWK|8eW(!!`fkrZZ#O^OwW- z+~P=E?>0KJnnk_|JZNXlO$?qFP)KT%O-WhqO}pCk|29oxh7AGry*)Souf-qu`iIFm zx3Oe>cC{t{_lo^rT;S2v~;frfoU6}6|@wN{8=lJ{6 z+VE#S8=XKXX{GF)(*q=1=Wq~O8+hb(6ChoHBq@!lTGsf+Cdr` zsrq=9Pe$gy8x;=GU}|ldu8jEq$xaw(u>8m5o^?dxz<-v$r!UXVToR7q_?F$l)$^Sz_j8|izaA5Dv)W%foTB4f`Uj7; z|K4F{HQ0H+1An-4^6-9*{H*`_{5mZSF#Sf`D<329e9Kivs-bptQS&$_b*`J4$*<$V zU!N{Banm|#9{psJcfayHLgwjr9?<<3DWBC5Z*!j-JuYz~|eV(=l zek~8~4>GC4@#@0#jD}(ygVNndzUf$Q(MKw;nQ{&6{Ho^fI(|UbCYi)(I6fVDvYp>Q zklFmFYF)qT%%hJ>a{Q~#$ShC&lkY84|McECBaa8$83rqmYn1yMaKFSwbPyP+)Do>e z3<#B9(iro^0b49F2M-p=bl}Ckfc9J98Eza^<5Yc+BNjFar(9T>jX|P3kJxu|y4dMZ zbovEKO324rHVSMHVl1&2vBvQ}-RdH%PhJ+w@(&um?fT?DF0Oa9wNObY= zx=8iWE>}urn!~~@#M#5Ny0>9?bNEIn+L|mF7jhGYg}~o$c=B#DZS7?S;*U(L<}?)` zwwt%!Q=M0Y3f@O5sI&?iszDYj9ovkx95{n0|%&I=HCg4CnWaFikziTD#52%cI<^lZ*X&7WzS)6*SLv|WG z12{5YZ0U_w+xYVVV0v1ZL5fvhC_QRdz>&2&sp^A@f^Xboa^6RxNmB^~`h__G9KKP^)awk&!JZTRnYhRA>)|FQUZ_-7ojd381%S5n+7jJ3 z0o*o`Af(v2iW}^3M4ko`T#$8G}ty7xifQlw_m?<-(5{e04vt zrI-pHbysm3b#B}y<2wa>3%2J<62e%nSsT1e%!J{y4w8%m)VWm{3@~sJKx0vtg(4lK3ZZvIdU+|*2_!(M!jUQ+0@4+t zv;e|^0MZQ-qzH%+X`IpcgmW8jUYb&~A!@DkZ+7*3 zPn#2q+a^cK$Yv{_i+ppU!EIuTS$9Vz8(mISfqZZ9*F(t8rFO!99gf^n?a9A7iml*_&qoeT zXnK)JNc_ZPsH5|3+k$E-6XAB5hRLh-!C#Rh6DeWX7nWIDVtfnu(U4%%HAr5V37Bsl zpU?(D;Z`S;!hnCyuZFI%-*i5$^G>W(HXqhdq$#SWodZ+M3-bqUMo zZ)eP#t`Ur#?q*I4tqaO%J@;7UDErr()t8H3f_&=FCLg>-FLe!zH*9V?aOOUHY{z}= zew+p2*(08V_s3$Dzb9|~oABoEL-M!j4+MY8x?hYKRG1g?9d*K8j#DNTOmRl)owj(S zWqn!Ym!q}2P5q(qA=44RmcXEVXV6wEJzN@(Ym%H+Nw>!BxV>-9+OZTX77lyP!<>5W zii7{qpHrB%6XUFvVVAyFZ;)tw!Q&-f4eO`uYnHjDnn(8LP0Tu2)3gw?7U=stns!E$ zz}AM*hTG;An_fYpzBvV4aJ&H>-B^8okfk{z(OPBP@h&K*z*cK04<&rj%cS6`m;z1t z*d9e`>T^8%$LsrAh-C8peevq)4gTpd$%7ramGk4JJ-d)ayPG*cZa;#1e+JPIFBOMu{ihb&nxkO4e@c`IWO^K_NJjXc;19Pjv;+tX;=4q`7A4Gl6VbQ zltJ<7bG2j$WcfdZQ%xs7uVAZp3`zIO^J5N8LnoW(hAGzl7UGBGiiR$e@A|pc51+kw z@>nzmbwsgB6IwoA1S=pU2rQVC_i>)nf353N@7l(uKy29(v$7PdZZmJ-hkeI>(A=x8 zdHNWvWXb;X%EO==AvVhe>kadw%3jgejwgO#;g?o=5rJ)Q+}~C(mRilI{k+m&?OzbS z(ci20kmDwIhh>xd=o7feX^v|^6U{`2$7{X2@B?!Da3 zT4&a`C2hvaxy`HU3wWNG8x(KHb-gz33Tb$b@?x>TIBL&g>PHLHEgSMSqUj8U;Cx9x zuUPJH+o3HEN3UloBm?K_%qQMXxg0*7P;}SHBR$k!$3B{t<&)yeVg3Hai-xl%lD?iO zgq8M%T0XxpVCxZ=nUPr^X1G(CMpOQpw&1-6u37Wrn9UXJWeXn%-@wBWgZuIAs zBbA?5zC?~IqBK;>$WT${*OcM4pI4rBv7m;GlVY{h>AL>e8~ApJ_shROrLfr=HA(5p zf!c#>o`+@Mwg5&oOqJbx9kr6)9ctejSYzk zW^0sw4eWzrPe~Q(Sun1qlyzH((YwcNtL0t+-CuA2R!kGBToZ$faeCY^vC9hZ6J>FH zj&Fzr-68~AMH@35K!<=Qv3MXbjx9ceFLJ%v4w(e>$v5NLQ)#4mNIM zvE=zo8vL;~Z07gAPjhAN__;$C%Xt60oaL^WJ6RI&*!YeGxkR|tv6uHNDw>arZONe~ z%*=E%<_hZfZ*$A-tOd(IGIPcqUR?95uJXgy8fC1dI@H-37r*ViQxFbs`IzoUMX93E z!!cK#7j;K?(tJPCMbsBg#PhG$H3&&BKOtFJ^D0|C^0RHDe)(47Bu2H)Ok1XpNvHvXLLp?!C{Mx*e;bvL_4qtt>gFZ9M(ovJ<$bK5Th`05N%D0Jrc8FL$7hi@t| zg-zt?UCNQpkP0@`7`Lc;oj{6=W^Dn}DNJbdqKGQIc=$^q#cK_{fm>4jE$3fp z|HoeG23A@xJ&h8=bJ>m*P1Wnp`+SMJ)3uP~cPL%RzCtM1@iw8{I7X>slptUjBTWg9 z!Vzzo=%VVmn3ejA9@CZplz{*HJcY^tFj!I4c7yhyvNJ{h_Y*fzbNa3;7odCHP#yIp z-pA915``RwoKnuXL>j8hUw-`YvJyY-%a-NE!li)t=zLeNB-gcEp_nYX-(38w6mQg! ziHS9yBY|b?8~_cCbeP891gY`zMg=3L4U1&o^8FI$g)ICnRmC|^mjyxw6KK>4u(FuK zoi~cvkE>_R1`kPwI)+6uh_SLrjWmjn&(&Dcw$()Ca#5a3(A3UQV<1%rf}qLKw{lre zNYiac2nViQA;Y2*1CS#%*-u^fG%r zni)CWX^aiady2zG4LMI^bzWI+-82^AVM<<&a+QeGv+H8m7%LoQMMLoA9=U@P;hN_n z(X?^b1OQ0tL-#=8G7JL%UmmNXAdea{p+b19q2b^*I4OhFbQC+{r%+<(`oY)G7Xw3u zjGE9yy79aR_3GaMfxn+|$=UAPXQFE2uH9N^diAl~x1U~(G;IhJidovtMijs#x_6SD z`#+PtE<;=#_i5u89}lLCy}WtVEf;5m45$P>hA>A+e|qtStc$l!6xfx~OW#eT35+<> zF*zluuG5slJIHNrtTjQg+WU1mSStxyjWReeft_yq9hB-a(*Yo(Q?jwvCScKyUrz)g zVrfJ&*T#A!6KPZso zyD5Fuxq+||6HT1=%$FJBx{b_?MuOZD!+NKw`ZFCk^tl7#xw}#^h~D`BsqoXS zZmSQg;K9$?toD<)NyW?4i<37%7|z0eh9!>#M;(cbsw~C9jEbt18svL<9kFZahSo9) zSOrwO#_F-pwu_XU0_>~D&cGHSd}sIo4$em*xda5Ra+d47q$UWF6z5r3@FGMLD#w_v zSSJA4a`S!ch@>|Jb3OL8kk%+jH}f$=t)-` zZt63!o*fn+S>=DiY3H56UMvp*+VNpIOlWj@b8YVAyugHmNiI9tiYq`zX7q%PTN&l{=S#3OcVG1Ce^WVpG<80u)*;Z5q@p+fT{4-2dj5lb&MQH+aQ^B%?-D`(!y;C$ z_~@dYJXvfX$MuwH7&3S0&tzCN|U4 z2CWHJrJ@u5{ESoClmwZ<6ZTFkO`ZI;SU=|CMbg?dFlPegE<59D+3Rn*3e@CL%SiNUu01hwhSxCC zj_7NzB|zE-FTZisjs--@y=6tBK*pZOJj;cU^QrEO({#GFgk8SIJ$C8B$O3BDtT0sboX^s zurbO~qk~CUKNbKO1*ayAB~P%!co|3ZwXQ~^P?XF7lnY$rzV$&FiJL5)5XU`Q67R>3 z3K`g{M(C92i-8kozbos~r061z>KWocXd-W+>e}XchX{LHJ|j1U2&q}540-uOBz*Jv zw?M(%WW7L}Gw}9e?^}|iIy!>54;2o*ea==XVRCOy^A_&Wo>eUPwrJC^*n`tpWSo1u z?VV`WIaNnnhs^p>0kE|P&ZvAw?d*0lIMn}CmPUQ)l$3!N$w=6ByX=UX@og2(jioir zOvX=C2UIHGdeP)j#l_2-Y?S1z#A7HI7Mjx)uiIcnFc%Ry5x$)iJd_<0~4oe2;LUA7}#C6rPoqWz*E6{n?<6O^p zWDpMNyB?CCLEXjL-5Hex$N3p+%e^TMFj@DM<6*9v6|%OPlNC}gi%IPpz1D2(_WV8Q zt;Y7KA*(&hmrpHY{f~Ufkx5}%w2{}vWX8PaT)V)LmbFoDj5}poJZNeP$BlJ^EoF_G zpBN%vObPWK%&J3S3=P4kXPKS_*XNEbV-cE{f;L;kYQuVC5Puv2fw@<|41PSjeHz^n z)i#Ug$r_1N0CY1Ev(-6ZgPBpxoQO$L9 zkdJIW&KAlxCSmPl%?z9E3INF_wQ}Ohju#Ay}%c_3p z{?y-*VIx^T#Bt7n7#k_+O$MK!(0X6hwNes|nsUS4%SOKm%g#M#GNDO))XDKm-W1>9 z9V(YPlb>X}JL?1L_>#S2>VsE?IHymDHzYv4D&LM&Wl+Oz4*7{`syQhsZphV%m%lyR~5GJYtlj1jK`KhWrE_^#~_V zihA$-u&-EonckmQsx5W-sg0xA?uDA_l(Wd?xp0B`Bcv*c_*`L()1;oLkk)4?qHG-& zSwN#SE-}B4q17N6yc}_o2RZP=V;Lx)CfGqXDi)xwlOk(W9W}K+l+{#8nS%gh#4dMP zJYZpNXEYNKRMBQIN#ET~wymkFbg*!JQstFbWR(wdD=t$~fNo$0biTw_lf@H`GLGlvjM3*s8@dr@1aJIb)~^w0e!c_Dm?!V1-~K5}+vtyJvXe zOEze{z2J*)oP~#)R!jnuy^qIz01hu1YBVxxt{=FS#X3NZYStS)i^s)Va{US8!d80o z3B5Ab#T6iV6o5R&%Q zk%3a!%Rw>gaDcP+R${-kTFzKnXQ~>C6%1fuWf^O@4F_8^=G1!KPO=HWt*($JJxJ)$ zgo)Ty_A#u3ltdw@)njo&?Xowv$UTyXp>yt{uCl2_%jYfJnWj>f3#ld5!2l~(fw0<{ z&ojZ;h?8?w{a|Uie)MOYmUuJ=fTWQf4|RJ<7jZi5hRR;npo3JH;%;|@!gQ}Df0?_J z^@!|{HL35M)hE>I)e@?YSYZ=N>p}sAA&Xf$MF#VU4%LZu&U0Q{H)$epwKD<8P5tU^ z{QXR|v6{tg{Ho)A(diNZin=|D{hhf2*Erg7YSPWQwyH2oVmeXJD|Qkf>qyNuqohb| zF1n42oqBt~{5;&H)OAActXyOTr;w*_QU(WK0#a`S*`VkCP8FdBI+!im@1ym5uFt-) zN*q6-=wOw`#N|6~rNy-V5hu-==_YvjTvH4CXzqG@w>&R-bfyCF{)=qz@~(bad1J(D z_u?~r2);a29nFV$5FheA8yB!ep4HJg4$uwanat%k0TP3O(uPS`4=T)t)&UOd?G}uY zf;~VX!*NV*6cewHrz#*WB@(UC-%OI)pm|~NZ`lI z#Oi)_cDqScqp97r9CMe;Us(L{!4zmOZq~rSMi4EJsBgSAWCFn3+qov?h3h2m>e!$G zoAMaf(n5WNS(=--<&pK%fKrU-7LPgpf|Z>Ml$p+@z$qQCmGFFu0dPMfIW4LsI+_8G zq#G_JzUp>J_hpi9_Rqtr0<`a8M$`92_(Fm*lIN8wM~A51?Gv;9SSr5)v3lp)>OW& z4Me5`!riA*0)IOPt%d+UlNL z4ZaboQuaA{cCTdH$lgs+8gr&@?InhZ7^w;I{rtV#AA|Vsp)#e1+x_Q^zc<#ejRbmt zs*_A7gfcSHSWcZbYj+&yNiBKusJrYIg}a`Q)R*MhPL=M=3`fZKdMeixoxHsXRtcz^ zERidAGx@aIYnawLMWfR(vnTiS3eA&X(kx|}OMniN8LkX?dyG|v1&+20Z9*B2?9QW~ zp96^_M$eX0*z}omwaT<7)L8BFGH^n$&M^ATZcO>XMzK0uUymSDHg!vY@Z4)Pq-{1$ zwSOH@x6&XAYY=2FWULlwccKecX`JTdCFt}v@7-3%;)%i2_LpX0Qk+o9*est{33HNC zmM<%*0Fshm&+MXrXx}fODKlLuEwG107*5AhCmkucUY$3Gu~<-CE(_Id@BuMZzo^P~mrNHa8v zMr@pr?irE2iIsLi5_5RF)DB)9f3EDeHE9s_Q*Of)qDTRYDGb>P|cI0JF|Z6 zW1F4ew-4CY&`v=eTC!s=xmd{1ToV$$e{BICxEUX;U8?s~jsDfxCzo1gxu6O1-M0cu zjq~08+OvK^c!(li#bPg9?!x2h?G2VGBa2lZBEe2rP_4LlMNY-)9k}B_rhvxqhKyXWaC~t`?1$n@;KFU9AER!FnxP9 zo{Q;_El^boTxOW*qN$}r`?L|Wdm20O0t!Bc8^5{H?qe%wT{o0r#B{($kj^z#?7Euw ze!NLg?JFLwnTFIQQkt;dWZ02%uqc=8EL=z`jM`m4IQ?&9x_09{cD4u$h?`ze6@;cv#3t|Eo=|jvONIh7t07x@_eFSc73Lhg)5Qih7sS0hj5+OCdfdd zj=#JiFE9(VT5(@!1Hfv;zIkFxKU8^fhglE{A^SYG=nO!Twm zP2vP)8UihI-)5F&E%TMu*lLlP!s4j4cOe<_&>xkwrP7WcJol3}k__xzeB_xbb)Th& zOLqCn7{`25mh;l2E|wszrn)?p z!i?zD1$TbJ81dJ}(bUgVd6oJVwTn?l-hQE9l;jqVi;!irr55fklg9a@txSUNJk{jQ zA$2-bqhI(;F*qK=QL@)K|LJwwtUvuL$T!m{#q*v*7W>RgC3Rhb)E9Kn6UjuQJq6w5 zEQOYbg5qQ80yH|k3J62r)MYR}0sK6SDHb)n#bz|`g0EV5CCBEYI-Sc?X4qZu4q!dj zJhB7_$a?1V4p9BPB8dTUP!V;wfO>U&I#XpvHLq^jiq(i`>vaa&RV}&O-eIjwJggDQ z)@5)!*IV#fm;@4b0#Pb?m6_$*wGajC%D|#W{y{i#&{MTy-*FHdYLBBkT&!mtw2$+} z!ce%uB?+T`loJ!B)gyqvDwbeLvZQab@{=ae%=s$NQ$KeL^zzE>E-U6yLkEs}@s~e+ z>?4D!Cn%dF!gT{M#(X;mu$QO-vdB!6>_+kUHxzN^txBWl$_TtAQ;lU_<1-IWnwZoZ zt7=@JmqaM}&5Ev1T*a+Xp=OEUgeD1)-?F_)rGR0`T=?FLXZ1p}BBNcqcQU zuefkA!F5OGA%CCCEw2_wg#r9hb!IikdKDlj?VL0oYZ@as z2=j6*G__388iagi;jT_#S91e!gh5ET_lkG`Zx+F~mC(K8)k#@$r`ARMwcx&lhQPFG z8EJHQ+Nx^JL&DWFu7Cu`Si}5tK^8dQ!k2>PVFG@M2D*8E-p>Y`EI%5 zJM*G?Wz`~idzf(HCR1^&VzAB@KZBp?7C_~j;wH_0)sjMAwYeR`Kvm^Bl75>{=Cwx4 z{;HSXC#?vFQfI{eLCGn3qSba*OY`G1wGhWW9Z7$tO4wJ?O3U4qEXQ=yBdtfi$KQkP zWt2LVRl{8qqMuHC^$8s|ec4Y_c#MBmZ46%4*NH-le^oVG>L6U?qwH+0n#KW`FL+US zkkNpbVVB@go&m+W3^{^NPY8e=ufJ92BAV1Fi#7FdM|KXGz4B+sym;22onJzFup2UVhPcgRyuKn56S=O-Sr?4oe( zouS!$Jgl+=p_t5`jhkC7WFRs6oAkbx<8Vkrn;Pp^-$s$#c?Z$jc>9BJwA^y|@DJEO z>nDdI1d*1p`H`U?3znkQc%Hz3RgoI9X0 zL9|+0$f(9bHchadX0hb#hgFWq=sU0F(q+(zt~GMaTnx@tHXC4^h2#4oKdoZ0hQYZ5 zXNDT3eKm@=j?Y-0rqS+^%O}~uuZ<>*&uu=(MA}vpba=V5VxSM9ay)k}T zn_8^^9ndwJajwvvcNax+3BA#7N=)?&7RLoGK3RjV|vRP*7Sy;6svz7 z(7GxU>+?eOB-Prz%vP@WtILYu=J=mv@L>P3yLt~7vwXt18D?|-5j2$9s>1R)z_C{J zb3$6cHgyEfGEMetZg>yM_8VtL^na7(8%e@o6XPZJN=Q@}2Nota8=VVN1N~<&EGKRz ztjSg%-P_F6yC_xDemWkjuQW8j*9tcy;q~#Hq%=S*Z5!EF7qOJ!_HeK)(s}Sj!5K&r z-9kwx$I%%sRvs=iyPUOao<8EW!Z!X<;CFgSP&mTZk>;)OOILP>}oYYTezdo z;!@Bgm=v-_s_*BxSCtNEfL#>6{U-9lCWGBHVUeDHP1o{}aK`z9kW)2uwsQtSEn7v% zUkE%W)`pf%nO4n>%qRNK=Y=V;B~bwCncGW=*Av68eo!l`tO;M$w11FxfO5Kg>F?&7bD=6V?wirLF3NMh^OmYI0pyzN&r~hF9GkW2zV@0>J2o57 zg`8!_=ugCZ#XcoALk*6mwu9AJ#&eb=T56t_4c!sUb=0@|lI;CmRKADZ z(jOBI)ZgQIxm5E0G9(kt+ttVtpUJRPR;b2Z-1Rom)UMuLG1$}h@GTbBYpWTdQ(%7L z>lW@KjP8)gguT4Jy#;fmk$k8_AUv1`k^|qw7TIFVYgc4V>K?tcby!<036zGli44b# zK6_r?dcRIL8SewFog2nD;Fuhth_4wJF^+MFuS)zaKSrBi_n!mqBMrWCsn)ds;zEt^ z72-8v)R5HJH@exy17nUV&MUc{A_pfDP3)s6H$b1%V@Tn4gDoWE`>k-cOym-PL%%Yx zDV;p(63a-L{_2AtH&7N&cft<`zO%!cx;BtCo*I_&_6W2e+n=9>tl26Pvl612z8rey zF(ud%=R6;HljbkXn?4AY-`kDy)%IW*V25_$IA--?&$6d(S`mVJxb<2XXW#c!M0w!o zJ0~B*{q=4)H~yOn8Z;hMHL7}(X16Xpt*@gRS(DFh8l|y&l@wJck7beNAEPHu3O<@i z&ez3GJkpOHjwN}^@73te&Ao@);l(4EV(C6&V~q9f@;rUVaZoC^4y(MC+%SN*R>Gez zma_%q<4^*8JcIkHuiE2qU7){3g0*8O5v6)?st7h1OCVwoAqYxJQ)B7#qWiSVfs50i zZwd-my)%ryu(Z!kDPhAnTe+oY1!(4W0e@R}2V1X`o#`s~x;h zDxqei7cv2f`4xNWL-^LPuX$Fx#mdx>qUeNGaFY770b9-^A9XE(cFVoRBZob5G{~-{ zG>gA!BH5>54Nv>#MgV097l9ZpVAXQXOxxqKEa@-OBTO8E5qdVN=^o{wm7{N*NV=ms zDSs?zDxKYWuXG%{fHhEZ3kHJxc^8Xvl|gA*kfhMB&B|oBaqg-nX}}%3_Jc`nK+AEZ z|5C+Wqj7YQBoVnK!BjGQKV^R*5+Sebhw<{C8ECD%S9>x&R&ZpWyY}Ua*_psgeghw)%9y}xN+udPQ98C9 zH(()(&L+SujIorXk>h~J{`^I~Q@g_+#@L?SN%V)|mv2Dc{PBAQ)a+sn%M-#DJ}ciK zUeocFd?LtQ`cx76=X8Ph%V5G(sqY|UolD45A08BZk_v0e7&5l}vF`I1>vLuS`)Dq` zlywi9het}JI4>?Z2r(Iw%e$=D#?a`Nu=4U9RoJ*AHJt~Vd3kbs=|bWQLF2ok1vDNR zom2SMau8!YE3X1`k=H1Gf2y6;dH2Ax!k%4d6D@wG>Q%U#8`vvz+$nn(+=eS&ez{*s z*bOeC_4@{64k@|{8AyUc<@t|?&ViDx^G+cir7U@+UAOm|;Ix&N>hFRq=j*#Vyw_PDb++vHI=P^*CY zwjZh#?MhnK%Z``qo)tgRW(WO+(?DtJG<--QX$}4mG9)amfKD|ST`Nzj$0q2{e-&{a z#hbY_>i@iwWm98<6oF-XAgFCTabTLFkR1I2FIRb7!*T5v zAY@H@ylGNe@Hy((oiR$-kz@<41xB{x|4tZpf7iqL5d;g=o(n(UIh6)-x)%?>*R2cv zQ68d4a77wH7k_-Qu4@)ZtNY3jTYliS+_(Q;duNr5pYLefBI*rR+##!k%RO?Q+YOsX zd9}V#IhY2adqF#kzFwqdwTz%n!$*2q!8q>f?&D9-gEed!q$smd^Jw>azx0gNR->%r z1zL6sb;b7q1YQnV$P6v<4rWXbuCRItac&|@C@p9P;;%PDbg{NDCc`!ts}uV4M!Ej;49?EXl5KFfvTEYV~2iE2S zt6gTva3dT{Nek(-Y+FmZa9S2YPI1*Cqi>XV+z;A)e0K#$k5!SD zhfK*nb|7_*0=DtT1vI7#oET~d2*OimC*tx%>0t$uH2X!0T=?*pOq5cZpvgT}neBgb zsQwiFLjCgbUfZRCmFFG(588rc}@ z`TS+(XzNEB434)8bGd2xjN{ z8#-qQv^{D)`s*Ri33$dONLwZ&S{0z>X+k{>I1?eq4lJagpTL{-f##a?a7drY@kMGm z%rf8Kqt3H);)gKG+QlhEZ$$Y>{rt!cK(|6V@a0+=+xwO!$7>4oabNINxY1^1Olfs~ zG5tcsbsQZ2#`U1)?xYQxz6N!(MJOC86-v(ruIki?@X+dBa|lHo@I5v220s3xOBOqV ze&w*rFtw&yvVSwO8PvV1%JjZ9*q1b!IkuGB5sF;gz`2aR)-C_Kg5&B(&B=K;J;X}D z!i-H9Q){@^pkDaL5JS*mQSjAdC6CA=J zn?jzWDUtk<%*fAJzhoNEm}jgZU@2o<}C)$h+xJ_6YbJpSk4l5~CW%Xij&5wpD0S?(M{aGR_Q@dM? zGRS0KbaE!+ugLYWyB&>)gg(;HzL1s`ikm9{+8l{;od}6KKNNt{=;KKRBC)aFjQ_%z zD9|GU=jo9VCywsXG6il#v6yB(dnNTE8!t)q4*XKXjnwq{0G}%qYmZnC-^GcLre-BI z_Bl@xV@pC3@PGR0ve!(?P~4OUDKF1U!Mv509#0!)GrrnoO{8oZtDMqrsZ(RGZ-00i z_zR&x@an*IP;gbs|8A#x*=UF#myAcv4N8{br>&I8PMf4@?H(~W9|f|k$0?IO`U)GLoCn!95-5qvgV^uXJ@R09ye;D%fy6R~7 zC%(=8u$gzdvBLklNZ~-MCp#2(_Ipq0{V(6)6GDV?*7vIZ%f@QrA^rR})i%}CLq5uV zW8%JQ?Z0yVE3$Hc^z2YLsx9a98V!-MvJ&;RSmKIr&$g+Squ^-*YdRgfO0lr9aA0}8gKW7*fW z=}BkkQrnZ7(4rL&zhB4yPp@^65(Y)ItE%tfo6O%-Ll6MOP-;ygMNKTfp-|>Q`~NEf zzvE$eAlo^$Nc8n^ql82W!s|(muls@@g%q+EQ)X|CJfc4n zy57Rx!tTOud{v|aaH(mRGvxckp)7Ma+~qMhw{+p-?nLmWt{ zXt2tI*jkQvqKt<`wYoNLpu35v>`L2RljEkqJMw>HY=4OO`b`YF9o}WVgu(AXcpF z+c9sP{dtl;17A&6fR#nUbN#6%i}ol;Mhe98=N0~j)nVZDU>ZPLjSHX2^H{CubSx=J zPELb%Ec@jrC@4Dr>{Qa_tQdbAiP8zh*ub{yPnLwyGBIwt_D$m{c0mpHu}et0)cxfnvl1|kK>_f22YM8C zuvpa2Cna-_-9^;nf5ZTz_xfrKVgxHUgzX-_g- zWt=s_`+ekdfaTdGd~wN1Xr{SPHW5#oldEZ$v)MKHo=NHRC~__vMBkb~QKRkY?aNz^17nj$vZ<;f)R+;GYv<7@(aTt0 zL}t+Jh&dAp!_)&lsbFV5f}6G{G(1Vvo)Nr+Xt{5UhQ+JD)EjdVrX4HI}xuI7|QI{X`9Hc9_|o)o6xpyh5*DzV1{S4}u1hX$rpt(#Ua+VQfcDItNI z?<06^Z_o`H4Vkn4GD){Rs-5nmQ8BhNa%|ERYIiDMQe7QDls7J zp=T@gb>@u4k5a9(g*ZMgB?gwoJahdIMg@3`z=;qu{(J+UI1d?m{8mYkCllT7f%2{t zj=%pHf<~YcKLa1!h$-Ann^$x(t17H@e+m19@JR2 zbpr^odGeBTC+BaabRmNC-*;AoPU!8jYOj4vu&38v&@S>Q$7By_ogf^f58+qc^ zMhsVt#=o{0AhQpc>;BNmonJjG0s4go`%@b9Dio6^|AOD?b2MFz2eKgIoU59%cd`p) zw;G!!xfEJ$HQZo`td_o?;S0vMCY|J&fZRrV1O>G-shOXK3|7FL=Uzh+21$s3dWdwg zASTvHoHCpId=^7hb%LY@X%dxF_)kvvpW|BzJ;$ZGtk+;DNa~Odmnty%`TkvAEGe3>jFTKvv`mM$ycWf|yYy!#@(C zniM#*1C-G{Fbw9d*Pko#japGKh~LO3ZL<7o`%N?l$hIC6?lOm$1kRHxRx8rT)*c`M z>da(qtO#>smiwE^Hjk^w_g>rA{ho9T8w`H<+juh9m18(;YbM%|z!;2Ml|3Mq=IJeq zmPNV((l)pRh0&7ILhA+`S6M~Hz9j5h^XBx*pzaW~cZAJht-`ivIj+K=?I_?!iPRV| zvgEbBtQd#IjT=3?A1r;klHIb79jD(?@il#)%wrp=rcNy`d6W~OTN~N_UQw^bR{K)g z=ts`GYr4Q}DipG*NJcX481^r^F`KI5{g?s;izkevf0`{+YuXm*5PHsif37x#_|~Q2 zzUB+!VSE45I!>pmCa%NW-=L~hzWcFTAn5=V&&k>%k}nxy5!eG3=pNkav=JlCcd=W$ z>qF6>CMwR3UsHZ7)lTY_G2>nQ0tMPd(;G1tp~82|Xzl_eXU;o<*kr9Fu4}N z`FMu$J0|8CQWy1>0hn;WU>gVwZ7_jM>14cpa5e>te74%o8b+}pkLA4gJ1f_wsQZox zW)iml36|j+uOhpaw|g^FIsBVjr;3%SZ!O{rKso~FX7>Q4SAS!s*3`Ixfu?xmTn;-9 zC^9n2pY_Fc;7VCM4M+EJ&l+UzludEfuLz1aPCqX?wL1@S;x8GTN%YEgO?Myi!wI&B z(r@J|X|*Qe1$mOjCe85Zo;+K;=qW(BW0kDw_K%fz%iU8%pHU~cgX}lh&kjwe*lIte zpu#^QvwvhN`0RSyq0A3;DL<7d=+;aX-CFjk=W|;QHwqV@F}N8*|0vY!-5StnZ_X)| zgaq?5I-Bp76`qkLUNXc<7MKu}WL$-lRn1h3z+j}2&Vq4Jy1XnbWc*v`5T&2%`}0cP z%Qtd+-}H97UNW&4S(3ieTlA!}Q6Nvp-@4Se!~OJ&BR5^{)ZJxnfn-Hh&D`lkGC{JF z;22Oa@&g0JFh8lb+@FGVIgy!G=NPT!EHI(jRNh-cq^T83-6iHXTqjwdR7Uy|A8O{5 z=}pk=r_ZJP%AE)qh@gSQtu{5LLwPBjQrZL7*wwUekRzzZ8Rbuz=1X=PYqcVIW-D09 z6V{dQY%*Ahtn7*t!3i}UT?;3Yw;X-YxNfbfif>dl*>e5_n`Jf!?N}jr5vNCy18u)_ zorYeaLTV96H{s*aQHC(?(VKqm+7ScskncNv7GF&iZXM`902;RD%MlmRCbcTs85m_ zOTu?nE?3aVWYIaoWEyt#G_M^{c7xccShT8_*Xov&{G}^?Fi%fQIDpExAK7!V5r)Kg9Y4+A@~=(|LJxX{HEl_tlt- z*;&M!?iWLvcDIu69+C>KM(mxPK&jZNW<+X41b<#(IBvxXHQaTJ9%?avB*`VGQCn~- zlLZUa&MVkSA`g>)OwUk&nr}&Zd7Q*$L3`BmjBFuuttJT*Q=>Dnq?}FADU^D~EGm6{ zLQ#NZfi{&Z_>{e>rUCn3e7y%ao9+Mb-KRwL_4eK{O;A(wMRdY<3&^Zk5j%KSL& zu2%U}mk9=SbbJtO-oCd*v}1jhQAPhU5nku~3F@CzW;*7c5XOcUb)p(lEL1S|$6)yM z*f^*0Wed-d`$bQ2EFg%5nTZ^~Ah;AAQ^ZAF!*jIWC+8rn1t4=X0d7Z1*KDO*3|&n? z;1bX(PX;9)HuTd2=WE$UbMK_pM++xlf58h74F^qNyDPW-Rj}kY+}!IN#wU@Li9Lq~ zBtz1{BxYi4g__8ndB)8?Mzk6Taom`RWgO6n1Q^yB(?)h+qUszrY?(kA5{gH+4&qJwHw5T zB%Q+rC-z?e%Kj&eSN{EiQJkXhmzj?}ubF6H@5w6KCQPxt&W$EMVrZX2;k76$96I%MD15V|)TnJe`;HcPj5BR2|BJulH3 za*mF0KMMRgA7zIbqDjpJG8RQYLDpGYV$)*2Em+8$U4Ko#np1Hql1W8EV$E2VCPN=2 zI(*1xtj)Q%c4w16FWGCrNadP$zJmN$ZMH+CJ{8D5Xa{gjU%Zh9f=xW<#)e_r}ZDY~-en!dobvh+ZdiR?FgBKL5E+(ys^-5NDE+aD(0h$E>3=`ygh zB1o&f(@lM?^jF<{ny3Vh{_L)sI4Jxhik3$PL&;*3#M3nb^$K64`)5q162q019@~lV zL~fwym-~4dR3CYY&wGo|nQSXr*X7q#d3&0cy&Ka0cYL}Ivh|w7SliG_Q`I?YLfpng zMn(`X>t^VZSAUT5W5;MAtS*+(r(_uG-q;{IL| zMw1K-Q3rKwkip*QWp~!M1A_0 zoH5z`R!>I7KX?~pozTC-`&uc$%omiX@V3AmLS7T&y7h^wr$%mri5-IA{Kcky*+>bT zqA;stP!=ptk5Xnecy~QN=RT#l^L1b#cnddU8Z(J*lNWBI1Vd1X^M0?IpRIMjb-5Ou z=QEE{`C5|5|7WD)kYWT0MvV7GY86IZ&krHmEo8r2LOUmwx9n1NBGN0u^K3<0e%s>I zQ1D`8nHMEG6Y6#wvMg(E(Wk|!*JI4gvrQ-bmBU*m7mo9aF-|HJ3c)A@xUsp=^s}E0 z+7KA1Q1uNQ5G1uLdB0%nWWUMdHn#C`g6BO-+KOyNX$h2_omP*(wqtop1dkmP8c7l_ zvEP2l8d}#@ZAr|VbB2uX7Y=zAoRz8U2J&Hye)gxi27-9m4|O_^M0SOlh2UTS(3m&} zQhD=P)%e&&tnM+lU1Te$K#D0@N}oQ5cvBooj;P*;i?W8*wP`UUm~SqE&2!T&Y#%)w zTc@r!I1?J$I@tPZbBSY7PSH1NS@t|x!vTo8vHSdWagCE=;`}-MQHfVaWSVrP-KL$< zq`49H?pAbR@tbQEqQ^%~)YucbP!P7=sO|m-4%mRM-YVDFJG$CNN*H8e<3U+lG#vJ> zPG^x*pG7nzijqWuh{Gqf60V{V-20&~q48*2~bE$>n~g22kdY3CDkeR}I!&xb0L*I*5{{cIoN z^+S|<EQOSjU}pt|Hc;Q>>OREsi*`A|IDLbyJJ6?9fu4WfdmN6ike({1MgcT(N%3aW4Zi zWcvi=J-OgEb+np4O^`KkFUOA3Hc7e5zE#&M%cv+{Es(Q(h@p_CqnYSqZrM>vKEwZE z{B(Syd7l+N03&^*mRnJlmcI0ri{4*xP?sKQMU%ShPl#HdAGG`3AQ?!~b^=j-Jg${f zEke9yXwmt|kf*i5$i5zS&B*Lb^@wZGbVw-t7@?IR$_tViG_9f`+LzmwRbVah2e18N z?|-`^qBit)`yL~*IkK{1l;HOqGq!sKQYWouSOn~>!lv&Ywvn{BRihmMQrSd^W!1MR zBS+yqxYcKGcCHex9{{ju4%s6rOUV3<{j#4%?y1#{*Ie1c#0YQ zDD5krt9J-I^zW2Xb)5T8`{O5D4=e)U{X`CAuRUU_oXpnyj*bfaU(-p>v1rd^u#K5PJ~${`$0)2}gS$fv zB1Enre3RjK2LQO+P9kP3HfTx!SLf|t5E(W>zjw5)AAKzv9dY!C->x^?2&@Q1(nSuQ z&xE+f-qzm+)-~PFEzUs*Q(r>uEKv(sgLytbUoMD=meVf)$&AKp?O_SGx<_V8C$2u+ zQO5e_Xd8K897az(7EIR@;eWRb5DVzv+}s@(!#$|oAdi?((;|-DDRsjqu7s{egJ1Jh zB#{DfNALxiGAo?S^%s0(Kj*a3$j8r*bRFhxdUXo=C`-x_mZQQl62z(&okLD%Vk>L< z4R5sCgxFPw30I*+fHN*py@-wCLbE8jKLat;eNW?SB|x3@@Qj*e+u!y_nq?Vc8onlm z%{bx=DM*rssbQPfK10u~i)a+FY%tYwZl*Rk=NDUsC%%J+rzlSp!(~_`G-z7FuOMp{ z6&P_8`bj%qaUqtb2Q+I?6>o1eSqxpn+Q8}R%*PvY6~yO_UaGCL_UJGL8B1V>yEzf$ z=t5o3+Ag(%C*qKr9z`zCLuaPFsi=`fj*l32t!KB4{zZ>~L8wH2#T$fw7q%R(=SVtn zT{5L@mTL-8jhZrXxfSku*IR`nE82!Tq)Co_L}>OhFGNvl zB`!XL0${3ZjkNP9Fr7RWM~^sXcLobXatxa9?0KzpB^(}5-XVz5juCp9t$tYj46_+h z9?o0*f@73+I&tDJs*y2vv}@1#>nbTqfHoV5kr|~82NM7n2H4rbYkuQMu8PR$EKTxR zb0dh74}}LDFvA7tWPeE53sA4L%j0;;h@0<*W4eSUY^*kGe-(GP`im&azRS(*v7v5z z}m`{7b!gn7{C#2oy^s#36KC!=RsPRsW zSU&%{^aCH#;aNdFVjPr;#t@nHoY?ciK30}#XDDRp)IEw&;zXiZBLK{lWqJx8zZb#_ z64LeA$i)0tnaF%7M$|_b0aOOFf+tKV`knZJOm4Bz)u@*(Et{`!Yip!V?fRi4WVYZc5bc76n>!$s8oPws`VvdYqVGr^VvoX%G zb~@h2$ps5@Z)r5We~26+oi3xGp<GNZxaf5o2s!<$*HH8SXfeF4CFu$V-1_#I zb*5VQT<1%S4!tE-%#No0!`OyR7;@GGu-CaZgn9x;f$)Ez!7lZ~u6Sr=Pz2jS**&@* zsk9nsLDrEz>b7~pM8flL9+bciDSFC+0ERV^p<#Wj8XEg0gH??(XMt%@5fouf zH{=?ACz6_r5OXk^#~24@7NExV=0QcdrPN;e(798=*DPbGwOxCO`%iIZ0@_Ut)s;q# zUR^NWEF)Bhbb(iZC$9C1TMUm%mMf|_W0AEWKJ?zU9Kco?l*w{)H^tXiO|A`uV+&7Hm7HU23$^4VNQft|pO9M0=V z?Fq8(R{ljvuJfe?Iph*5XVjpWbd^%$D+u}cP`^B3c$sIUdllyQCEe?}`}#*tA!*iQ zgwm)Mj16+m>+!${9=@FYN`F=*WcqFsr@t}YTi~qS-S2ifz688>#;1_sMPBeG8HP3- zfhq#T-{~oja&Z=fO>ArHk}9m{F>;NzKiN>`oovgC*1;S~59pwu?q0Yo8c&ELx6m24 z1Zj&Ir9KjzWkoPb8!CQAw~>ZuqIS!!k$hgfl{9A+yM@yh)$6f!^MqB7>GvWLbogyo zB0z8&6R!?m(CD-!n=f)H$q9TBA;f)_Q0f*a>7y)=Bp(n;=hl+bm-0k|9yG#6v1+P? ztpV&nDuvc9omhU=;_A3f6HYs#T4%<$sSo*oH!=>tW_`6y9&EF7%F-#0*)jFbe&vjB z^v%&H)n$wuy~4L|j~=)QV~m4Cr)e?c$KQ@ysIr)K_TQJvT9e|4CyP@@D^tPdFT2T|5^S=O6#*R z2V}9q`YNyI?@OMito(en-Kife{{w=}YRqD6=++;*?G$!@U?YxdLPRzr93D?F&fF`Kphk`sx&deNvc<#A1>WnReo zwd2h{n=R&K)(*zR_!ga_{gQ-f-Rp(Zr)+vMAX!?0tgNCork9(^tza~PK**gnYs+zG z`GP<9%jYhp>mf2!W+F!z7(rvLNMcTq&|vp>g_Zn>KM>!;nKoSN>q=P|-VC9>fu;be zqomAJX^%`Jv(xsAxc8n6!cugRikFZ5#g2d*j-DLdc5P2e9rJ^)1My5YtV{9syT^cZU-G zPtE$bga5Wf+cK`q&I4QgBR@!Q|7PMQE6@=By%;^6QlL52|Hoea@8gp=S9JnB02sA- zIr2U?C;rNxVJVvf|J#U^InbYeRQx}O`Ty?6t$%u0^JfAGpYm1vR*Aq)XBtRa*={3= zu8ErczO?g)OjHEuFx^B!KqR;ez-GTMB^Bz*0^j?-GF@`G(sI_9c^0k}4Zwhnz@a+I z7hr1s@MZhsYC!szS<^nCerwa^1fD4WeEH8mB`G>*Ao|gf*YD^w+&>VfT|_mgilUJ~ zYHa4vYH_~t)vH(OB6Zv0qQHKEgdH`|0<2_ays%2rKUkS!XIS>klBO|o>p8YHjHODa z2vF%!|JNte|6Wg5aTZ0ow}xdC_WrTrslV4010I0yoXQN2lLctTrGJnxMR!eOuRoA# zm^pE83%Jk!_3(f0`tQ|0f<8jC&Cb7Ht9;=4&u{+I2z~p_LB2R9d8&j6P;ohbvSE3VF;n^b(ys0c#P3V*f%@LM7o$fezb_r=zJUL})N;WYcaEY0 z31eGvPk^~_`vENy#0(kdX6%Z6`-S2~{Zs(Hr3=HHqyF>z5`I?gd1C8GGa~GT!+H6m z4g7Z;1RgoA8{?*UV8fT*{rtb*3x)mCT1CeS-Tc!!MFC=rOiT*$;QRM2 z)IF_>#y%4-J}!^-25f|#qVEgc?qN`uk7k_QMxBfuKu+e%#=r**tzz(j-4E8H^6CS- z&+W`m@~-PDAJ^@mf8Sh})Of?v^*k*Sy_4>9838x(*H4!L29hgeY@SeKPxTe^p}Kga z{;-cRe4^1)ra@#~fMmCn*b{vyP#fXMs&kQtacxm?ZF#3k%~+*oj8e<(Z2J2*ypr;$ znLs!%dq%ts`KKM`bHF>W4H16>_T2k{;d~bg6=J6^Nb@Aozt1519O5m%tcX2oT6F$p zN!Zx2tV2J7_))!&k5=e@iJBFgGk$GV*XcC3w~(;(jS}zW3|f>VpD92E@rjA_I=g5!oQ0?16!P`WP1u>HW4@eQ+mnMoM*H%+7atTK}%AtxjRenWI=EgZv z4mzb7mNLd$_^?u{&tsdH>TSek3rT!L`D}MVWIB!{%>I{=J=Mt1QYe5nQnTk~$|HV? zW=ceTgX1{Jy%at70}R9Dfi~QTwN)Y~POY1Kh^pB>u-EsXCOVDMOj7ufoe9XRx80QS z0PYv(S!idi`_t^5Q`OORw$Y_28I`8R{4%Quj-+2RXKV_xn<& z^|ajsnivVAqRzXytda}*!$qFEqUh!&wQO*zQ0TPT-j1G*$>$%hEQ-QGVyn2Dl_w8Y z68Xj0UxIX#4Tr#583gY~5r!wxW#=FuZD&RjfHu9}izLFTw+iZ>PYW*}NtKRe=jM1j zi2q&LD*9Q0{pK?vZ(ds0`kQ6#0Q}plX}%$`V@MqjI(Xa~qJp2$)}OO+NfCZGVEnDDCc+GQqW}968f1dEr@{^S^JQmtCiLsPD&nCa z7e)l1gOGgG-4W;Alib$qCi=aa5qV3GlYzJIGm2VLvlgx1n8rBV4fmS;e)D^RiU;@D z2R^{Y_ybnjR5fe6ljgyW*SfjUoFPfbj;X8v+Ww?(ky6CunmKv8 z__zckU`Q?jAw-NmPYHQuwi#&O*wdfU-Qd6OA{{AQ0uL9g3b838@C)55q>&(Sx%yu5 zOEJ4awj}gh-AoDH;eE5(pWChZvKV@Ma+{-V3%Ld?eEVR8y(6>>{U00=AniO2XQ4Du zzxS=a+9u-NZ6;FEZD{M#6XEprULUcUt>9*okE$_Y`73cLGu*SzxT6zs4{XSND6h5e z8?>4Yncm-a=6*a8SXI}!ELsy#ZU~eQP*Qv0%QWvLyx^wyK?$QIP+N)da7Z14i>k}d zXOw^9gvB;7(iNM3XdVyUY)8S9iK32b+d4#rU|&L%C$Icgx@LqXQy)w;T_Oj(E6W1@ z+x@az>}mfQ8b}m*Cps(d{$D`wPHeVi16~foiF(_Wi>JHRjA>1T*!!gEMtLyL6gd>#5CgRR50j|41)a@Dj#3E5fuqpkNCY~O)J zBNS&sJyv9(k@nhmdLOBSCRJJ2xgKEcjO=J~_I|yAiPfpOgJV3^r1q8Fg|xqm!ahye z^a=aQKFlwzcr!N^f{~1}G+cZhE%4l?@M3pUk=zB*)<_U-o~AQHCN5Ii9C?O}P!={b z6Vi>$9=F7sXi9`P#Ix=r8)Jgp8!iCRrW92T@QGGxv@3|GPKNrH0SMb=X<=lJDyzMq z-7rO+H+467hMO-$w>|R}u-?K(vqzuaAo2tzLxt_RQndSv@te-=v*3!_wlHQ9O<^S+ zNdD`w8LfHNaQ-YtF5>eETEH~rY`dWHpi<}R^p)gU>D>pHzfBA}E4+d`HSPHA zoknH23ocRRIi+9Cle*iKFHqINN*YbwGrkWwo`@(Hmy{}45*qTDI?lhOI*2&PRK#lI=C*nuV z@<&|f>C4Xv@G>M0ei>Z^fPJl6?7z13!QM}PzKMe0U66DqJUZVfxaPKsF7I}hpP9G_ zjeM+R5MgwH68-V^h?2NMsGG%Ezcc))VN|7HMK=8WcS&eFi$m+5N^DhXkf+3o3A?VVY*SXa6)+vn$Nd*iq zLM~0i@xd&m31VZ!toK3S+Fn~L0xfwO&1uuC0~Kn2+8^o$#`3%bDe6oN$zgO%`$LDH z{w?|X3eb6cr^c}+-K4@vKE2|7Sr$Ovi52l=ltJ!a7bzG))QdIf^ohMAr&J>Whe+I0 z-Lad#2z~^=k?GbrCG!bUd@tihnV(FuFoH5|tzcC2lPWg*A*^63V8OS;`K5_n2!v$Z z^*#xhR?gS7mzIIGAOc4$k)B!X^BA-*H$}f7D_#DP2fi5C=B%W$?#nA|X9Dl2}tJ z%j#jz@3|ZrOl`n24yk>UXa#zSa^vi6O-jFv(Vws65PZSx#Lhkyxms% zL%OWcqrA&k>EsF0@GI>^(eosi8O+rAis=@C|f`_@^@J=wDY{le|NL)&fDi^ja zQkZACjHUamKr`&T^0}NStSv85zr3ho?C-iXKbxYP8=98OnzTZQ_ML3R#-O5s8WnM< z5H!JWuy=+ms&E=#0AkLyZ~N|1tgf#tnX2;;xUcEU#yuWOzvm``ktfho?OZO$b6qRF z+k$n|^rg+cn0WMjsLQMU&5z^jXMZ2CHV~0H4D%)6(k_B59R%ymQy4VS(Z_7mu{0__ zhIrb(%lW*-?EPND^)!&ISg6x(WON_)gHQ#OOmZ*;XdKLKqBMc(y*160so(>!D7-Qe z`PudQlD~GoRx(V`&jV=@h`JD>`i^IIBTVadW{`XN*sXqh)PLGSETo;#PEn=j9*4$+ zP>`(2D4p59mxWeTdG8&{T=X-ge%XTYt~9O~%x-``x9#TGP zL}?S(+BeH#nCuUbhD9sN+wZrwd0>9e`{L;+SMcybuv=Cp{p5sfD2q;;Mk{{Xsjbm209kkx{mb`x`(T$iA{12T$EZ_g-x zPmM9dO7##!Jd~WTk%6|#QFuobxvuk~T(3CK?N2>ID#^1|etV=)u?EWLIb!xQ~< zw#A#aT%S-)i` zrnpf&d(uqQ=U03uaNfgbD1A$72mtZR@x5x=j{1Y0Gm`6ODDz@UzWS~)`W0~Wg0PdL z9r7grUVODtaCH*8W^Z4P4tuB5-Y=zc#U>|MMEzvC0@%d*+ic+l-OKoY3!*k^g^9#UQ_}D^rFSH z;hJHl5qu8uk8nnYC6QbuFsEkU25B6ELYlLyBHA$Dv>kF!;JEu;zrHgWVMjaHqDztr zN0)YC($;T0z?9o&&wAOIvyV&nU5MuEUKnqo1#%;F?~Rz-bG+6nm=Iuov>QS=Rw$U_ zqiZ&B6CKuG-@g_SdqCBj#883(uzKTU z(|3hWpvE`=P#!F0v)Y|emqnV-Qur8L$BG%wm(kHISm~F%IU=~!$g+a%)_l3es_2|G zZ{!mIc8CsfQz!O>#>Z2A{ewM=xA2y`-E7Fo>%yrEr0$f%LKR%Zv91TLSElKVS%eI3 z40*ENNB3nR$nh~4G{}AX^MfPg4%yN#$(ErWk1&ObVZ1UeK#t^hho{;x%b^pHfGs3^6Ks^Ac5c2%C4%1%A zvVKy4O!7C}!UU%VknO)s6u~HOe}7z(2Va1S)qgvb#=V}UMj9R`b04FDiRM~E1?&`- zd@HJG!+eChMdfc4l+z+o*$K9m0QGTzPwGmLoCQpF{bNPj}Riy4t4K+ zC8JDJD#Hq3QcW0{*8)|#M_jAA~q+zS>^1gEnB+ z3Q7Wp3yLL3CC(MI{JzA4`@p@i@H4(?5ipqyiCu}&eURgf@Q)DVQ`BYrmI1h(^5B$M zdML(UZn3FVRu|m}pr_gr+a7TAL?XDP11*Rh*R~Y=S)5pH;RyNAf!zDvS6yN)-9+0G zCNzQ|NQUit*ZE@m5~r6R#~Jz_IFpMq1WZC>PlseP)=0TjJO0-eAc6$yhvEASsksrx zE2hUBGfPGx1|e*ep`YR*pWx51L3Baj53`iGgtX6wjVLsJi)M}i{Ic&Z^)bu6t^ z3p6i%I(_F985!L?_6y-sZ026|tr*WfT!9XKbM>Yg)#cub$k8<2_1LR3w=P^{3yJP8 zB%uLt>xBd8z?~^h*c4^&7(AXLTO3oLrXbo`p^?P_th1zwPte~c=u1l6i|2Fn?JKly z>Gp|t!d|9Jsf)JHa_j0AgMtQB)X z^2`Qy$BJXxy!aDClu8x*w~~h;Hw9;x%E|x+M&u;lD4Jt%Jwi52>UI`j;c@|HU1-&0M^BdC5aL z4&7pGkXRNA<+x{4@|Dr7?w*mdnJAb^-P0b=!d-3E7sAFwgoOoYZs-Uc`+ELS1|?&y zl13#^8NRK&l+{XZbCjUIp4@c@b9ziDjYEdVTA_47K08ZU23-j3%&q18s&J(rw^g<& z8N9;4+KU;LqoFXR^H;M^-OhE^cpv$B9T?u8_uC1O_|y@>(S3{d|iKDdT- zu#UY`w>9kxlG#vz@5!=KAWOjR$Ti)iZEn*i0J6t>D8lJ2a!7W139?6kh^i@x+VHP?Fxee1%S#N+V`^nkkasjzzK$?2Q$>bMM0$g9HhV8p{ z4gTa=Xs8*$2AsmJ+ja;*jVFpx`s8bd0w^C;nMH>I;SQxQoj6E-y`7c<`5m;H4OWyl5%MA3|MM^b|ODFEYl($CHvJgI1ByqBM4QP`1S{h;kuP>zuDzxee#B*&6aJWe0yO zt))Tgm=5wj{Ts`h3K&B5Z0|bOxc*U)zWtV)NvR>*je#lTh?;Vw?APT;C1*HY_7UM& zh#vNX=x>1q-Q-%0dhEJ`%oERzK(_axtLl(26Zx^gMvXG$*;!`AuEfoiByG&>fwAyMUae!jr`m5aCgqCHTJFd-KT+ ze_e0|4xuId;qDeMF(Fu)Q6AX3MxiVkmErW5iyJMY3973cpBx|i5-UF-Ll&#&s^M}hrF`JMx!pn8Tkmx$2oN?Q z*CII5*BG>4DN}3wrFvEK8j4v1YGamJ3zzbNKws`$UQ)o)s2h?!nD+%`-l0%>Jxf44 zwaB1Z0njuz?CKNZsVU48nD^osYOwE1=|LX7lDl?Lx_JtAEkP~_k2b!-b6b{qa@nxb z(H4*!ce23whWDnef!&wUOK4rqghXy+!dZyk7!f(=C_btt)R6OuJ}~nz{oBebG%_d8 zKgijy!MXK0G$+c#A#3FU^?7%iW=_T#n?6@BQ0vGm4}IoGYJ`-vz{;2hv1N+JXF1b{ z2^}9J3>CMH=^DSR9TZ6UtsLI^*r{%?zuizlZ4C=}+M&>>CON0BFq(6(hmFI8IY6c+ z&q{4K%aFbI4YWNV7psfc$JYc|suj>T#n~-~^mb)U0#vNO;#&i_2^7-9WgAgjHZ7 z)UPo?dhcS5c%h-Dt#4MBx8(iT7w>KBIpX3_0`olW|wO^UgBZ z4NnBm{`TGv+bBsi*&G;Y^?KCe)$-!xCq@G@_Y3pbeOqa6CxTd$Ve$J?n_aa@?~ux9^sT4t3kW24l?rnVNi#)K=-`@vWDX1$bykmOx#X4!rgWN-Ruz z$o_jCeUp`x5H919Le|T!XvT^mf|*l;=rTCt=ZTC#Oe0?!6Chf?Pst$XWF2!f`-q(w7G~+^0h`^` zmy)%8$DVcO{r|b!+Y>I)I=yH*jrEp(#&+YUu*GmiwuWiP`ORz=E*X-sg#c8k38p<0 zp>#q7tjOo?ECG&Io7~}!Q}oef~i>bhP5rl%jV{`2Qpgp)_5|sQNta4Zw9gel|Q;Ks?`#t-0kqNSx?ifESiC`{SY($L1k@h&SQi* zo%Tc=q5Y-oMkg<8CCS)4b-wRej;ae<0l^jl$}#s)VW^@!sTH`^fdF|LUso`l@1rTJ zV23+Eg-0LaqjqjPA6lEQ%I{ zNtZxVaT0fe*`_Tz^NtDvt#)D!{IW6<~Ca4P!94p-09b{SLx;A+A?%(c>bgf}0uEF{> zobL!o!33r3`T~e}y&}?4K%V5YAvqS4kUvCMY&k6w`MlvqTMr_J^KnR))@OXO>HF8) zw|`&aFlwl8g9|R!HOiksAD*%ek8Yh~r~nI3V?;+7&ZOnY@=jhfq>+Mbm+xj`8x-v} zeCBhej4Kzbif!TWIcQvfF=d*ME#*98o7dApb!=h-oz;G4XE#IXC&1aEURm~;?q;#n zzL`Fv7;S-VLQoRv+ZU!=&_twDTf&7cgG~~QP47VA2hE_pG1%1)sKl2#O7k?6nGY1g zf$m}95@1(AW5Lj=E-)+55NgoxXEt$JR6(ey8ioO!tAz~ALUrN4w z;5zEGH|oeRicL=akMGf)Af5DRvc9{p$`w;fEDL-^ib6cC zWHLrY-csJHu_emSAB&MoN^o7oD*{sp2Xg~q%(t@lweD4k?vTO8Ep@StnZzAr>x8>* zJL&#tXg^L&YaH2Y z#QS?^*_G%e9AtI{JzHkfp)k&~%2sA_qt@?Hp*o*gR5?|>bQ!H_okF!EJBJ{Nz)GM& z_}5keQ8J$=Dk1v@U16)RI5z}_u%sR z5#MB~5D!XU!kn)E1%MZ$Ch*8@g0|7sT7!KP&?eSnssBI4?I)z~Lt73%PIbDQ?pXkq zT+XJ8*RhZZuxKV_obU0CcrN}{c>!G{2lxzY$_NT6;gU3O5;uWiGqsT0uVop)YI5NG z_TkCGQQ?UoM78w1l3mzp_>qKQ3y5FViIHeO(CsYUB>L%nMYmHZ;iwP=u3fh749z^q zurxnjODNnK6$^8W5buroSTU2+nm+%iUj@;z3kXB=C7w--&ZGin6kV|^koOqtA*Y6!Ia%Oz%G6`_=*4FPkAacQr3!7DBVU@R$D~akGnI)wL zYocT3F2Rkcz-M?;$AScTcC(vOb+>%VNQKgB^rQRU#2J%|h|ALqkA&k@&Xr`xh9$d) zgVH9IKK`S0kGTOWk%a4$H*z8x8z$t&FWy_@e@O^Hf^1v;U#OC6H8UiZn{DtWnAz85 zz4y5zltYrhWhtC>%c*)+#fWP{ZCER(vT;{R^8~(CZ=Fq_JChB^Y`DR>`I9{4qE(## za0nv-FQyLzHupcN`5Y^VuP;jIo-zl=yXs8<%?@GAI72?>KV+FYzHXS2n9SXDthnp;b zxnY(j*_yy5-%taJ+T0wb-IFJ=AC@g@N9nLO`8T4Ivp{eJVtE7Sc}EY*j-hf+mao(Vv8#%N*$o|l-2tqK~d)wcsOIT&lyJyT_wejX^I zqWJS&;`9C+j`=o@wh%}c{G(E2gbg20q(`x_ncIYfBfS@1J;ZlFMY9WJd=HecxBAMW za>v9iSh~FDz|H5Ylvs{;y^kgkQ_Dp9((V#!`)Ci>F*u8F3BRb`1MhD`v4LP)4G311 zwHaOqZZ+is$r{L0#omb%u{|Yp2Sx;G>?;qVdS< zZ|{3}R4@j%^jbGQN?e!ojxC-S1Hl@L1ZJO`UvNjWQ++@u%1iVgn6N7qLrk-qH_;p^ z*Ygj*;@N~heRjfk5m$1V_O>6kg13k_G54m7fmfQkUBN^fl`Q}Dwg6KGoPrN|(hsJ$HPeKx zh_}wA^XO_Pc_!4wDCYvHEv!Ko%&M(nu69V2xF4abPK5Q96KgcXDG*vR3Ri&W>090& z+p{Dr6Y0bVl2`=tk#^60_Da=J(DPjFZdEbz@Z02n2!9Lm(_~fR)fu5zBlHpCt4|Rk zW+Dh}8oayL$Hfxbus#rZZn!AUxb7s(_NXAL!mP6uw~a6gAAUEGQL81d^^6ee4vu^j zZdf>%4kShyzq4BV(zFYn@>T8(F$oOUo3%eC*l?Y5Sn55AH}Xbz^$@UKkD1r1#*-;w{?M(-cbVNwgXYvnYRfUXVKO#1o_C z&NtTAwrpS>XVwTAtp0EvW@&>+dabsGIeI{tj7DQUX1x~P`}j?!K^isD8?3LcQrr%` z2lB+wvZiNT3J(_JUj?yg0gkz%U?TU|GUM!L@-t-;XdJx*Nz5;w=do7qgm-`lE4bvc zsC(HTqY*Imr9moiqSGW$+XGX*Yhn9EuZXq2^%?Hl{i4#C4BBN}*-=0;_vTW-#3vMN zzTY*ekm3?7o-|x%DfMFt(j=Yv`6F^q_H*1Rio@^_!BD6*u}tU#B}Ce`@HR&9Va>) zY;QhRZrN0<)lxVb_-XLO?bRWzkYP^&P+epTwVC3v!GH zQ#v5YOyh7DEeJ}d*p9&CwQjj2gkkcLY3$k#-RAN3-&*j{X#a%a;+g*EE%i}g_evl^ zjMqvtTh4uiEF=&>ILf`uRTRr?hai5c1wN;J}9lJ7qY@k|Og%HX)GvL&0tuLUI zUhXU2y0v>G>BN(g>bh@>x8fU|?dU1+3h{P-Lfwcg-6QrbEp}TT)f+^ksfrQkXP(-H z1t8HG8I3~DT!SSvH#s+-uUnP-Po|UH7Jm4|9k0i8Tf#N7d3+tidC=pwZ@=apTLI58 zUF$YABrWO5u87q*ke8Wl7=LN2T73wA@UVxRL`OA2%g^k^fadw|xXeX{0$#@^3^627 zvACc~P)S$lLabT~*_Y1?1BZBjE*nTg0us$Eb|;=!4n4xtW*%~hYDzz(C#GqGEt5$$ zj->Z>E^ROajtD7p={dD+%382^eUQG{l2UI>E2ULDec4pREHBZ{vcvU6gbra!IKtb> zvRGjYmb5`zKP0jjyxm&UIYHEom`p;Vz#=9OjFgS#KDvdGMzhIPYIlPUFhgGTAtGpY z#T+ATz}o>hmaoq1q{al8ONry1C5ypuyN{?Vtrloz_>v~AqPlD{#e3@|VKcN()}Lp* zf}Sx{046#VpkP(E!*V*S%{93<+QK4jiV$OJGh6=4>T!s@rl&l~X6^ljc&z>z+~OS9 z)J-fi)ER3NjdX2G@3!k{&Gx$d^7`lzLSW@v|qZl!9mIAc>(ZhJ{Gli+kCCg!_h8a@ed-T&_ z`?TxKS~$z{W98WAjBY;KVu4AB%3L_1e6AajEQPI+H#}AV^n#0A&y38zRvNsPH_4B} ztyyV&BkiEDvk%mr#en1HJbqmLw$Z|uv=vfr*w zU)Jk?vI~wLW~URGDIYL4=q8%G$x7PgYn*A86{pHPO2o*htRfIw5}R1Hg*`}oa`*!; zhcVrxzb9qnHL)EoU>Nw3;Px>EGX)DiMNVC-yLOjVr=Y1o$M~q=m(4NTu6KS_9t~1A zz)+ggImy>=nWzJig+mRcwr^X#kX+BD9xFfFGAV%RWy$a`n8Fog2it%4(eRXH!+W^m z+UO>a*hVo?Zq|o7jInbFcVcy~%Zo5YtW{2AQQ22*OE7*#tbUhZ1<)IR zblFy`EYcaE?DXONWTmw_c=vMk>>0<#X{UivngWx@wClmu+N5`qtsAJ;*9)ZxKE5)R zt58LA+XNqPB3$CVeQ)86CeJkabYHKd}**na!1NSYvO{Kc*-IgWC~ zr1HI!($X}0%#~l9kcpvCI(-a{uGrG{hOW56xc4isblKZhTqx^DSr z5-noc1v4870?q6#g<>TzZGzE;rvI7F&!+OKyt%8lZ++-CT0@#GB zuZD@dkCvz44}%>p!SB#d?lh4ii-&^d;FM$S1O36m1LpS(Yy1v*(eywh!KX7SRgNcX zol7Zu@d3=iJWh|(-fu0xM-=>Mjh?KhnKEbmG-aS~WGli#*4UTDkhY}AE(tyHJ6$rz zW6V=*1n$2;`j}TJN!Y?Pi$yD(=*(oOXzunBS9qu3#b9E-{e*j%ZBzlH&H#= z+KD4S_>j{*>ukx4ZU6GEdJvc>Wt+$Er z_m|7lLQRq0Q3(wshfgDe)odq}i$f>X#}{7O+fS8mx!>%5{zq#V9WC^&#TL*by9nD( z5Va3u&)AW*z**a8iKLJaVSrV-@HlW1&|A%^0mKU4ub-ry=@ZY(;{Y4p;^%n4%^8G6 zV=vWVq=j83Bmj~1abPSsa69~NTq|);r`_1P{!}@`oPUno658(2EP7#JeD5hipxW17 zy@~*@i>-`Os@+0`>x#ow4D~!oj)|Il&6y&PTnaSR51y=JLbUwg0xxEdQ^z0f{JsV_ zSMC(o*jAq*13pwa0F*-u9h%HlPxQAudVv<(g0K5|QLRFCIoK3(1`z(~r>TvB^<%7= z<9*z=41C_4{ufINT5Vge43l>VSe+IloXL}?zxJLXI;~rqR17Vd;lu`%V<`E8{l&ba zG1HgEBK+-Y)HAzHlCYO05GYAKtSDS%&iR;kcB}dn{}o^;6Ask8H7W1Mr zd`1jZ>auAF@peVZ_I90in;Vz7Q;Fm?b3+3pM@lq=t`73$oX@8o#BHpiEBgCdboGFG zv=jbyu7S8hIJ}Il5}UQ}i}5g9VuKrC*r>=lA;>ME`xLIRJS` zd-+WsT&dsxtx~J{Z3W+TEByQ0K3eB&XXJn{JQR1V>|zS7bkq;S7aE0i z{rLA9G4_Lu7zo}XgDYQFlR?HWP`^bv!h6;6OcGzC#2Iaxi)uOK_#Gxu!HgDHfs zBxMg?;;7`Ohd^WL`*p+)W2zv|bOxF&%J?`z4*=yROt87S`nWjNTCvV> zH~kK+CZvd{4EO)JxL^!XQ~!O<+~39b{;QwEX#gdxZc%OAWlm}GK;+X~%<@7AH$VP% zgG5$(`f%h8PurSHPE&TYdi45(!+FpJ@4yFx2>2bn-`9p?^5u_fCx2KtW^i>7mz;QC zSXo$QzW&KudEF|dTp%+H|Lp+w8A}N% z;>|bqOD2~o_#Kc*mK%@F-I?Vl_GQ6Lu@}ka(dveIP4B-h`99nWe*!?EeQ^EHHoOMT zhOjy~Z5snE#pOv253M}}d2A>}br?X5{ZWGVmiO0R@RA2YCaHpX{Yp?rycqDAX(;MHh)YRXXv zE3UPC?E(FU6o`heZD`#~PIu};I;1LavZ!1tu&-lgJ)eF5}QVJz`C)GuxWQ%+! z1@*H=HhnpJg0y@cbEfOwkIv1BrYI9aIM>>P?re~~0BxRyeeJub z`uAD%*1b|7NdXe&?H|%@qd%30|9=U=A5hl&|L@%YIj@5U7`^ zTAcTE^!z{d{Zson&dKKvdGI^{O7{|zbK$wB`k2W{gaEA2$+Gd|YtlG5oBm3DDL9pj9DL{!o zYz81-MIL^?6#F0E6`%>;A{EyB`O!4=%FAi20&BxBuQcMQnNH~FF8|ta(G*RdtgWJ zG;sX_(9!!JmG3_#fzWx5fAWui0Im$6Jf=DFLn5YlsB<=N&jO$7X{@%dxH(#@=iuK*uc(y_GK1>_E9Ay9r_D+-r1 z9NSllJm)UaI8`&KJXN7`c_DmH+wAbI#zfBx2NlH`PJkzd{}SUVj;F13!Poctm~Y{Q z$Ptx6SA0j|I+ymw8q@WL>PNIo*b0X{Y>pv?#+*g#st@Y2r~zP(9Awm?n{!{Y6H{~0YPT8p0 z9gS&Oi95EX^RxotAVqm8PP8@7kQ?FNhw}#%j_i!IgtH>gOdz2Pd0Wg4+sRmeTMMZ#*$@|Ozo5C^M<_G!tLLN`DFWx8+ z&Zb=%i+1MV>9XyDYC)lphc-0dgZEqu2ioYvZrgtU#V*q*90K~>TM>s_ST8#WlDfw) z7V3v(?)_!&bCrTqD=Oyxw$A-+`}egPzsLzACkRQ$53(X77grNOYqa3To8c(RMf>l` zJA0Wh-J zE5pf)q<3fYtVbr?@aId;0Xd(8%(gui43*#R?gw(vv;o66Gp=!^Dz?u`JUU!EFjgEo=aw%^x; zT(6*?!@~)m=f=wG&f?UBLV$)c7VYb+0qqO$MVzY}(3sSjHQn!POeI&`tNtC`7m&15 z?TNbmJ@o!mf`$=uW}PsfEBg3+(%rRqdcMTl<%21laqM6&k@j-{U|W|a+8>2Kxw1I0 zDfhiH{2Ym?1LFL+9yQc%c|;ig=XuPTbckadE2_BC0%F+_PAjCYL=7&uizpqhPm{ox z+-o2fg3;@ua#lWlyY}(_>OcFA_M(sR-Pv4OUhX>Hdmj1CCoz)H8S^~Ur^Wa8wbCK* zXoPIPey!M$!lOjV-`A4MfA?HdroVRmUw{2|{jXa$uK#uIuWQ$CUHjMdzi!Y|G4MQ) zy3hNBk?G%$z;L6R%zV=7&-rEk>#6TcjlZASA>OY1p1XGYU)TTjFSURDzV=J5H7tyS zO$P`HugV7Yf{+~_VsMV(BSX86Y_@))yI!__sPhbn>B8W7#-Go=U)jzx&&ni5TKIT4WOnCq? zlIIg1OOCjE#rmuHQ~~(g|Fc}o!ZiQWvSax0|EmnBGW~M6f7eOPFU*u~6R;9X{W%`g zIgtAy1}K%GAidXPAFQ=l{Lp4|msL{Zgif`8mo*%{@aUYo>G`q1S*)6!ZK>(ZWmkLu zu1rVIi{l?pzSF&!XRa9wllo4FuMi9!)IUi?2M?U!&>_PwVy;%FoI<P>xY z=t}OXb35A)ytc(=$`a9X@))$eOhySF1&lSA(v z-H7Pvcq&|_$?jc{5EneY8(VeyZt?aAPx<0rLCG}%>pM^v)k)TaJ)X8y67 zuQqV3=$Xp1mye%wUH!hM-O(}rX;_yjg`(~Tt ziOQN}Q$2`p5v8&&B(XLn0DPea93^moK$oI}foxa*WLp9GV!Mrz`Qw=IsfN72I@MAH}!RvG`PIVsCFnRk#T zhx>rBtKd(P~WkL`1=`Z7f~zpIH>+vvv5hiNc0tw%LraSk2_kEqyP@ zACma9x#s}HN2Q-(5kwLU<-F%SMidEl8ZW$Q(6`|%2$p??ani1B-;kPLUKkl(=odsm z%z}kZ#Jt0E9o?ROcx{x2st3W}Zl(ySvO4nt^4ve)WqPt|dlUqEuaDu}pU(U8dE=s% zeHm{il`Lf4$=mL`BSHQ7=do<)3z<1eQbRP>+dE%MSKZ3_eap(`nWuf8dHvD^nl zAk0cHLY?1{5jp|9-93}u$Xk<`P`h%Ca{U~6gOwa9RwvdJ)(e>ypK`>g`Ft7tAgA}> z{aPkibh1~M`VK&*zr~RwUE=ZRI8#6*!1jQBM9F`X{O`7sMM(Rd8K6lnb7)HGsSwLw zxf?!S{~d2eUOMnz=_}XCZS$qRIwhtM$!!7MUF$flLN)fdBBPki4PnGA*UdH`iB&Zt z2|MTIvCde9T6eVYt964`lp-0$q6*AekGfQ_CDKt5hBUH;*;1{M&qozG+EBnCR5x=D zhm+a@#VU&-dIF(P)4G=NUDLmpdt=%;-%<7)`*gM;RK8fDPU+Sp*>}!cIxi(a41w{L zBx9xkF@%*ox>Msk1x>fns9|cTDaXK5U#HK{v&^gGZ%*N%{_6;eCb218-ApDqi?|7? z5P@gSK-_Odas=}c_#D!FYqUU3k25{D-LwlWr!!--zfBD*gMIpMl4u0~TycI;eRV{n z*j50D{55T_@Q7jCo~-z6i@Gg4-43Gfu(M|9#z5jUVrcX~P9?P1#~Lj4FBqR3a~2iU z{J}Y&a=)rms_l~SpTp(1YftjRK27dAx=MsHfi#Q=>3c&%LEd80V!E}g;1?PEHDi-M z{M3J;WP1VBXvRUpN(!&;fxrnEbcglS#<$bncOox? zj;h%bp=(YWJ2&zL8!vgd>4MkUlQXk!31bO-+xFUss()YaS?j|fl!WT7h4ILDqY>6$ zj%p~8Vi@k%PHU>s%SNh|uUX}vEqci{KG17>)d-F&TU4*tFVgk0Vhn=+d@#JkFTQS~ z3Lp1hWc?CGDF0qJc9pIil&ElgvVwUyTw`Y2?+hs;mAZO~R@~~G z+H_S=d*Tqn3sqDHoXc|wT*AD6ozkDhs-SH#j!#U3B@Q#j1=M})^vg1NX9hZ6_AIPw zIVR|*;ISuQ5#68S)qSyTtzolO_E2cHx$!5_wHyZ3iT z0|E{3TYc1CuxR_tA+hbRL%QrqxSh?q__<~ox4MGdL)*hm(}8%o6kIFr5H!86lbfI< zswm{~6^LWDZPJUCBl7MJ1=;09J|C3a&2gpgyO~%&Y9MKhREs4D<`-9PM=j&Gz+Ddp zM*G$TDvt|Dku?<}5T z4G8S^V{-Ty;v(ZLJjCy3k z5&@G!iK3a%n|I&$ek}iC7D>Yv8(9P6U3M3|nF}`CvSt&mS)E|<+3G3hO8Cj++ImP;V;MWoK$8g}#})czJ^zOI|THbAC`3K5+YTxPGTvtAa`?D}%;2p211MV~VK$ zbdEHBs#E;S{q!*M`E;N zy|F6!y_ol9Tzzp*$8Pw)76~1Sm%vr;$qe*I1As+0l7euyjz7*sbEJc7n{y;RL_S%y z2;&;IUEC$jX@n2gn>Y0qe6q{!d%}0be(TeVu(2t%W40^)2sR&xdctnf1PS656vD{DPI)C%tKK!t_fMR{Yq@AemPex5L|w<2y8DsV*k?_I}LSPxbw@vmWW7N=j(iwxW!F z-N6Xd$J>$9=-hpwd8s(hpm+GsoDd7j4+XKqbynOrb##7YIb`B7%h{zKp#fBoRJRqf zF`5Ree$sL9PzXWqIF^|rsahcHGM{^U1I@rGE7VRmdGuH!$Iw8-Fj)z6Br-WOP~CP4 zD5;>t0O6G|I`!R%zio_p!rb|t#y`~3B@HF&j7($P5uRc!#`0~c`3+{w8A?@)@%Rsl zC`I3>+j%&&D%Y4AkpZ>+#2#z&TxZw$=2}N*_QP<40iBTe6-Kuf1fmo2PF5r=Nb+5o z`FcCl-8U_#2>&@EH-zw$?dVcS>rk zpC%VRfpWcq-o58BFvMjHwY0^d{l|*|i;WGvN`!%TerDrIuw)eMdX{`h7`xOOP-+vq z`)fguZ!kpoX^FinZ^mBQ1Wv-d>1x$ew|vU!Y7iM1Q383VZIez>#1I<|tvBx{)nF)nfl zAClbFA{_C#&Ue0vtCSRkSzWy0pf2$1q!xr{CV-H`3Iaw3%at%`Et>e8JH6N}C=2zj zQz49i>;#W)n4puP$meB7bLVNFN2gZ>6jcv|hSXr%jJ3d{qVmz3AYk&##^Jk=h>9z` z70K>@+=fk45H_9_?_I1b)*t{(XRx*aw@gDd#Q?sQBs@~kCtAL-?M9!!ePu{ySxCFr z*)P}=TfK)$T)!XdpbRN&#%PIHmc%QCtHzo~GC{)FJ$Il8^Drh)$`+%1f3pRyV!iQt z^6iQm(*F*MZGL9Wm3>va`0V}MFu&-aw96#fC`n&Oq^0qK&6gm6jXn)dEfe3t@@X-T zAS7g&ZZA(Cu^Id_clTB%;4Li=;h^w0)wK#>LDYzPJWek&)BzEDMg7$0P=LRcx$3(y zxpk6g)M%8zJu7X{5eN(mB0KH)e$#8C8@c_HF76!QUZ)!I)1o&+yQ&d4+{;g4uq4Kc zvk!5uKW$!DE2N6g%B;-P$6l?ou)AZ6T~vGJ2txw!V^Oi5%x;m%A(Ch5xvWZQrSA^I z!0H!%FOfAjf!ysg%wY~%dfV~+hVnZ12>)IvqNs_}kdT2PH&z-g zn#VzkRiNCYg%6X{G+7wXhM5|yx9su7(v;pXzh?N=ZR}5QQXwu_6fw&axc@b}bkJ&w zoTaD0@lZYaF{q;5evz%X%ElRs@Yy!3E7Q2~AVFvb%?EfGW~DoB(mm9oi_dVW+K<{= z@ekzJ{guIz4D*_+jw))Y8Kr*Gk27C1ZY(VstfOrCzetERE%+v-3jg1cf&IB%9;m1? zrYMDk(buHJuKM`rC68-h6|BHA54I5vA)t9&DKFrNU}ex+-_-K4u^oJupd8?Hv0Vs} zyL=^9d9#TTl6Z$YjW$eg>mh3BVZA!R9zLbCZ^a2&dTt<;&E%%EH#buYqmXSPODB(P z5-2h@=7^@(78xeEf|?Pj-`Bu^b;XF`)XqI@oVzmxeRm;Kz;TL<1C1)jQ@nz;p!T&( zTf+WucSw*Vm4S%wCLf_T+9^czxD&|%E*9@1RC!0yp-7a@x^l7hJ8JsJnV~hdmLd$h z>b7^~S>2~*zhe&6E#ZO-2c8CwcY~MneU;rZtmBasH~+oQY~fBjZVeH+p*tsGOH-o5 zfy-~sFX+j(rc_B}7Y&^4h;bgSkA5MI>b6KFHumjzZ9pXg$sUux<-K+tQ1PS7dU&MF zRfxYOK8*F)Vfd;zMrUDRa%q)nUt?#^@FKjjq;4#CSHySRs+?U2^ff zCF;pG_fQ{lAcKLsS)H_D2mX8Nw-Ze?(-vA z3p{0st?GD%Jq5k1Eo`M|5ERZB5;ICHNJGL19A8v`**;%jHwr7W{e(AVSuob*!Eb|M_y`G1w|$xC(Ofc8~F(%&&nm zCuJ>IHag~MawrCzkX1|-WBobDoEd+RBEBF*h#!6a)KeEK0FMZFbDV41#iFd71Z{z!iSKTTQ)gJo|@#o&#R}t&SU$4~h zfd|?nV!Xx#`r<7Qxp;nZ^~7pJv%GLfvKgo8lY7mRCkMvkmaL)eL(@p9}0!GyY+|G=l+xRtv!viSk~axzL+ z#zJgYokbt*2$$ptc56sDkQJlO$?qr8U7tlh zb}~$+9+%@ccBgWRdmkZoVVP}0RvauCQoak>5IZ{!l_@aWpbCkER)ouM0 zCxuhjeqVMg4B_KiEKfB!&vy!EspZkW7OZ~yKz=7g^E;G)lDxqf#5)KwGUI9W`{iAI z78eN?;R$@u6Q?WVNJx)gEl*}WY0yw0PdY=h+t$D87>C5M@-n{ZzOLy?WGDb8{+u2x z@(L27gGQb1E?aFib6*iQK+vxFgs%vd9##jPMi9&hC9!4URoqka2jsOGP^;oXsZdYQSoee@crb?2kbIbmd`!>If zmRPXFqGaxB$g+F%;Z`qUrUubQg()Lfk@Qb-3|r?>7j{*l?-cAW4^utN%on=Z_3FTDF0)5#`TBe6g`*yp5(*z7F<$OmiYeEI{s7fCxd4#b+4za`kzBBGwe0| zQC4l@glZ&e5E5-KtO1tvQljqydAII{wu)jKGA9Q)i)v@8^Cx0;M(W&9eg}AyxW@yn zg;ZR3vj$GJrog6!-=j(*78znKWX>2lC6y(47%z$y(9MR?#F>^7iZrbL81KexIN!|d zKw3a`vfw1TB0PfadClycVmekTvw+k8*Og$F@Qw2r@*2*2ERr>z*5{G0o=kV^zUBf&og`Z7}_I?~baoW+| zH=h2DC^1UDyT_!ei!iufkW`fi{U`?{ zt8G!^RKur)Z~aUXy{~TZCUI7uW-!Z1g|V^m60K1tkjIQwgJ?kosgFrO7gNpHGL0S8 z6kb8JmJ5+x<|-9~3W`G>sp=E8anOeC$M~R8`eln~+%I9P0G1o5Tyv#Cy{JO`fg%Nc zHtVkF&U`)2|agw(aS8U>GmqS&)$6h=tD?R4*GyUnj~0a1$3?`NcY3 zqF};>cMCrrHv6~4G~vg&2){CgE|EV2etc6-h_zov&y?(coJqf+yk)*lToY0#Ed_@p@O>Wo_qRGhwM4#9 z7x#Mt&|E8~rVt@XI*v1H=cc`Q8KoM@cPg3LPM5HwHN7pZ%0ulg&i;cA_$6GKl?>n0 z%(9L>d0RL}M`*bhh4tI@_HR;05x*IgG_FFb{jsRiA`>kK6C1g}_jSibwiYc6-Q2gwuFH&_KT=Uu`hD&5VEUHS+6_3z zv+Q6dAP^jB;!r$jrg_NBmq|#$dYrUQFy@q$o{W^rah~my*OcSjCZ^~v1}Es zpWO)aK_f0k=p%b=<*kxENBdNn*o=eU)ZP>2t?|LIRrFRI6n7GBx*{B)t>s%PC=mByIA6}OY- z+wE+BS@Y_vlJ!veX2+nFX=?WZNjox7z0y!20kjK<(>1_t>{+cCjoh(>duYHNf_|kI zuVq&znxCH;eqL8GD699&dQA9`VHtw24R~-7p(r3+HvvFn-ZVq zGn>@JtcF%YH71|4rhUdF>XjRlhlZ@%@}au)2~J;HZva2jsyCnQO0dBXybt0M+QWom z+oWHII!M{vw>(w)V|`%lV?!L39z56PF_jFlvm(fAsILdvDY_Yp_dT z74Q~;cQdjJe_9x#bs>@|y%Ki_UVWP@Y|BfS)8)=6;jrLk3<6swie*E~t=f3scs3r= z97ow7DeY|t-8J4=#;6}8eZjk5&-bJb*RFe-7)XwJE`dTetVN}^ih|Kcbn^|gn7o=heGNXx1-PtQ&y$<~UVfv< z50BY0)|yUSJ(0c)yVtaa;j2#ZA@faP?!6oTeQm2UeMG&s&=V()()H-{Hd&;EG>L=Y z1muT-DJ3Ru|4=I0H@>_-btq!_AcPs_IqI99U_Mc_^uP!ML2+s`!^<;gohpo8K}Cxf za9L(fCR7~B?~3odDfR}(sL=RJFC^UnRAR}aS#L1%QH2bos$xB{W=l4sY7=vZwAX$v zX#;g?3P`V>n%5^jJnuFZ)&nacdf`($;cAKi~m>IPd=EmxIY&(d@ z5*!L&X6%2&NJeS4redt@PwQakdSpF{<6P*>{2{1WC>xuyI}82kCUzt{r;c+MD|lz+ zCcvjtaAqzf{-!)+QwJ9GTn}3dPlnSH`1 z#Y}hg=B>X+olW<&CC;5eHi79&4w*P6A+Si;xewKTA8}jomt9`|%gSVKb3nyp+Eywv z6J8%83QNA-9Kt%&CrWX+VGLoXQ#2|lJBewE#F9# zpq?~I+z}kHDcKl2&Jk&SAnwVf$V0`5h(s9#^Y`PNu?(Gx4tmiybft9k(~`AG@MrH# zSucFo3Lm z<8=oj2mI18@82Ss6hzNuXq}~s;x=2H^I6xy#UKZQK~bO`xzgq-p4N85D)Uvcxu4^O zchv4zt#+F6d7fPlZ;s$D<>DxO)-8|CTpKF*Ba^E>1*g~X|6tj zHt*U~>iTxd+8z*MrS3T^g?HBz~;Rztj`j zf}(uQq!g+{ULkyi^_p2;eJnSIRTtZk`n~0;YK@!_tCuWeR7Phruy59?l&Y>U0nWBHy~kI)2=zM^TAqiz~9|89v*GiSWdSgHiUi<$1Y(DWj>RYdO3(xF4X%l zOLh>-?aKi{%tbd=6-es6Pu2&Tli}`$Qa_ozOedhz$e(wWK`V@FvX7J7{x&LC>R!fG zGsr5kq~p%4=<&zK#7WTf7Vp8LDZONc75}Qu{IfZug008AAKraC7?7JaP?`PrWSoCZ zQtQ);N3xxFX_T_V(+E+1Bc44%?XK(&fuC&UpPK(Y_~U_(3N}<;n3E>S?}7hH--Pnq zcHl0^PEjjqS~(%Wuu#GL1=(ch5zN>h``wN`9~BQP61xAN7hqY z(+lyYM;|Z%V@g&OX}+BAxV@vBLY#8EEfR)>>Zirv57l$&Yh4zD86R_dq+k}}$%%XD z(m4m5wwRA9bl^R#3q|%BHjvo27)vqkFjaJkUjFnY{qXeC$6YB<1f==tyZ=-^Ke8#> z6MCbr%+ysOLBCj?m4q-rx~+mGJU(P9dK3##JJhw~x51;EqQb>Nl&BzvLoMi$Kpzbl zYn56is|uC%yUxTvYxMr}VP89yPutx^9Q0 zXLd|zD1x>GRP<*NW5pSgX1+3-f>JEz3dm*`Bd&IF!vNyDc?dkHad-Hl= znD8%{1O^D55;WUHBq6F^J$o+1WwKHQADTh5DlY-qDMKSdR#GNA(4m@X2K#%x%kE-n zc~z^mo&Oo{Dq-hnlUjn!LzJ?sj7oW05 za%(=VtEUyFDccce;f{2PKgQ>C7@Mg~yDedzn<}Onp$@_p>S?gxx;Y8mNjwzC5U*4C zL{9hdGA^)R2xY~X_c)`|SG-ynxzJb5fz4&z2vUBC$;Qn#^+A93+i^LWB==%rzSc}E zF$G@B@FVs?_MSTrT2xf!ls*wsktrRiA0l}IO1mBz=`tQwl)p(mnjMpZ^M%8WM`=zF z<=>tR@rw+CWzI)wMSGS|UnhxMP>y2}jYRO)P!I?|#fUI+8mNS85P6M#VK>BcFOu`9 zpb|Q-%1IM$3L>BItBbjdv!^ima&6QFT<4nIYVek8efxDK5Yk6^VvGmOjSq8LG z4}PMMSa6NE<|g*947mJ2MlDKW%QIM1KMKh$Fq#3C8_zXJ_n1o)$0iyLg7zO{r?=G6 zx`86PpYi7N%MOkt>VttHu}QVI{6qR*y4a9q;uEc1kE!o)%7y|;tey(#QTcLdB7fLU z?})#!=b4RLfW+l(>rvbzn5-jS+r$1P;hQJAywhM1E#;_38n$ZJ6U}ofZFrnJ-k#|z z?j@A=ad8t{bWo+WoSh>7ET_}gubI)^6SD(-%AJKlZrl$_RZZPfEG`hP>RsXJ0eHlZU>C8RyxxI7LBq zIK6jV_TeUqK{l%uMrU=`VwcEfJ-CMH~-Jy|Seji385 zV_7SK{dU{ri+jx>1SNkaxKGuS_2up~;;q-{*AL&E@Z3mB$CQM;r%{7Y9n6`N-Wj{a znY=4H<)}#-HuqSeU&+eLznaAwH>&FNC-NFkDbrV8DS!ynUJ$eiqGa*`<$l&V8@gO% zpCcc+Fxb)0QLFp~SDw1C@V5Mnk)T(&gn`LI)xKcc+Ij|zUGXDR>T|_a73=s3#34Ug zKj$;_)sw=ib8I|TZspnGoJ*t$)!^yoVXZm(CoL}Uep}Ep)YlbHc%N4N@x(l$UofW> z^3G>yR)`w}ZGCA}ThT*fnctHL(aC3us=qU_Z0!3l1kO2yO%sk_<6~^rvVr;^p9*y< zg(l1^^r8&!Ct7HQBBvG-JsVIH!{; zMluzB$1##xvV3)5CaEj^7o!OjHP5HxLo~qFCje;V!6bqDfl4itpXyqATjOY8@dMAj zNR_2&d^%fKQ!$Ztz-QWGl(vtl6#T^m8H562y%%5Kj2csx%MpG+V1Y7A>m4O*K&pDN z=TQ&?{^a9TchLga`F^L|0rG9LkU{0m-i0F>{>I=Jv@3ZN?(R%F$9vk|%${KT8xG@+ zzOAtqUt2^6Eo@uHyP4{o@2(f)T-%}e{j>?>l1^g!a?alNc<}`R&E2Vc~+- zsn09f6!=#os$QkI10dugRc~t?jdBsjCc3!OMAfRM$d8XA_RiiH<|j!xw4rC}gFOis zNIM41iKZj1S0%Q;uK^YcwZGKO<(6UC397b7FCI2j8*}P&IzcSsCP}Q%vgENC6HnfX zZULlDYO18u)+VM`U0+x3iQ@`G^7N3*cS+Y3rX5Fbgu8e}cumQ~asP~iXp|{bdgv-n+NP`?8)#3k>h~rsC{D=r^?b z!@^aXBm$_Bj`+VRdjs%dliYPusJi7I#ucJEw$NO*A{d`qGx|L$c4Pmg6Alnx+LXxV zfi)}21401NMYBeg5MAC^67?+n&_>uJu?H0-8#ks$Mm?qAd}Hrji#{-(jc8u>$dLck z4!9^JOSS)QXA6{_zKFX2dQUZ2TU{?jHJ3hxFjL=Bj{Us~uT?qE?@C(_Xp2>sK$KzXaAy67 zIvt6fd;lZZfajC%cn!)tr|xd$zJ<#43DKCECrmmt zhbC@zp2&Fr;5$s%0N@*+26KRs`74V7mxPUrCHV*fFwxj>E#YM>garWA7xW{_J*qH} zdfJ%~z?=`QsB6nkedh*6o8$`@^D0D?q(KwcH!x+o>Y;XsG#FiuIV{SktCRZI5bHz* z%ZIdsUgxU1X#q%z5vLYHT1?_HGXvC`*@|)2t*>i;4FP1``7tyf6q$C{P57H5xCq4j zaCH@`z4pG=o*qfMhgAYtoq~eRxCiz1Nj3OgXdGxyuUc=cTV_Xs$#s_$;%PE}_F0c+ zTKXd4CZ@ET;%rJB-0NGdsOd8dde&IdK*q3=ar8GZpl63mh@eS`O|xZ|h;h2MRw~C%}Hhi#L_Dd-gw)H59GmYev&i(@nY}a$sbqVrTc; zPPl}?vsSphHf_pn0v)#GKyN^cJkYa;Ad=vFR;H9RdC-CKNLxV=xJ+GA)j^mDwz26> z%u^6wpWKeG3OG-m_t4UFdpKu_m=!<>d?i=7sz24vfK^|uT)Ps38ow{@%Otj7>f%-_D6Uv=J66}hdx ztN74w=s~}|q5_1{4wij+%#!Lb8K4NqnhP(9)HQ3l1Ry%qDRai;$@&4~m4RXflVpVQ z9S5RkD_~qp0O=YycNJy81j(<(IIZ^HlnhI~P0J_FJ35@%u$G~WhqjSWc(>@RqHdib zL($$ioUB>=GLYBx;wx|3M7zhAx6>Wl9XBpGAx)i3O1Y0?Y3l^MDM`}^}Q|oxRgLedBummtGN?KX~ZL5mxgzg$KTJ;FtlnLT4n&z^AzA2W>JdhqPEPD@9? z2RajP5W9bwx{clHXQslYz=!dS)?ByTr^v@vjKm!w=6-$SgHREd3T+q44*}R?W@c<+ zc7a0Id4S@HM!C^o`EuR#S?w&JdExDfftXwU2{QM7II4DW52o3joS91qlB8?ISElik z3vN%1B*i(~+UepoIP^rmf*f9CJAKw`J@adrQ#|P9wq@);k@=w8u|k}g_TXy-e4?V9 zg8|24_hZ~pP-Qk(;^3F`G}+4nOR{|!_>Dt#)p5LpK`N#1fe%TDbSv&19_2P)7B~5- zSG8t0)Bz~|`9L1#kYo`>c-+4dsi$TbE`0QhyYx#gFX-5T`HrMfY9YD&9ijsEspY5f zvfhfpvP;+tdR*Lk0$t2kd7Nv@!ngXFiGa)?YS6Q+#P(S2%T$Usn=lgR_;Q+0?3AqE zC1k)U{%$@!^FvF_3FDTX!+RB)w_6ASr*+?tJ4z;F0;ch&0x|NVR5R8iYF87WaN3Qr z>T-O$%{yTE!p8*O_7^67CD$+HZ#Y?`Cbn@T( zq;$TsfvjkADe%5sLsJ33*1|N7YD1%7`&i|Bja*{LM|+->u`qLjb=hGHLh_JO{yMo= zFFa@b@R)y|H-$Tlmc+s9SukXj!){2WyNloO922@BxlS8_l}X4jw3c&gcn>}(gw${P z$@a%LovLUb)*fz70PyhtOWJ!twUKp;nmyf)fCHFd@^5mc!Q}WGn{IR}H` z8Vn{0j3k7~O%Or^6Gb*yWD!gfIfF|ad-u33qto7DgQ>B8fBdO}_Q>Us< z)!zHt7pau^Ouaf@;yAJ9d1DL2MF|nZB z`f)}M#M{D*=BPJA@mZZKltDk1ybZ$z#`!*h8ohF(=4F+4PMvnW zO6P#$H8G>1-lgvo{u#HX?{5VdrCy@IzYZQxwwC!2UV%M^AHlrZm++a@RIZ2LqUYwo zVVZc=Bt(vXVoiALt=K_kAjg zxW@je8F zgEgbdeVi54NB1Yfq*n82swoiH$^AvPb0OkB(RRRe)~aGX%bAR(+kkt^w8-p|dbDHA z8nL(IYq=o$dAlD!Tts^O%=-H`7O^8D;8)xz-t7DN-hc+-%jPqM@zy?-KfRo#XZVc~$H9Rob$9RN5YeLp99>t#cTV zd;+@U=yl|c)7LCzCDNdB(=o91>|C$QRn0xs;p$C3XSh*jP|@<>JG zJgBkH@@%yz?deNZrxBFU`E*Y$+1Id;!6{0j#=&gjsOXrpJF_wdGXOP2q4<+JhZq^B`q3-&j2NFo(kv6HOe zZe9QW%Fn%peYY^Ea7}}3U$KkAf?w_3YcF^#=~~M#F=TtKA2CMofczK=)XA`+A8Y;U&1^GHYy&or{whP24kS-#w2P+opt$(Y_hoHzN~)>#Vxu_@2XjhpOY+A3rU34&_pKq)ueu znkLtBK|)_Sh-^8o-@+ZkOj-lhSB{>H_}hbJDzw&=;SRHlwnE(`&)h_w4RvYFlse_0 zTFuGMD%F11z7!S5Jby?-`jG#7qhjhSeJi8O$kJ&AKB~4jGWGV(HsC?ccFv89{1}g! zP3j;TIk0?$yUh>F*w~qs^>0nDuE1?88k&{TvJR}R%TVEIIJ?1Nt{yCfllr6f>yNVG z1=jC6Wz?WL$W5g@eYRxoI*3HP3gLs1(~Hw4bb7p7_JxPZd$0Kdv>9N=J$pdWuSI)5 ziLPvfx)&R~#^{pfd9~{r%O7kwV|)ymRM}t* zPPnZ|BkK`n7~40qJ^hnruC1d7eG+6^CzLJ>3G@>XS3~866b3_y0VZ4o*sduY4dmiE zzn`9~HqIZQk?$#ORq?W|=J{0FR(yd+dPX7hXA|n!Uli%qoVDp;+k`6t%vA-DI_@&_ z%dX2?O}m=Z5@!~)&V)b*XG1kD^nUo*>`UC7%Occ8<+j$Ei#{^nJPL`jjP*d zU<(SlrmLM;5ZN?#8phw9==D_4J>4hl)sBzp3Wp-6zs0cJyJK%K03$g=0^kz?D(S`ir##ISRim}2M zva1z!7KK9;N20jXmLN_Py@0g?`o~?wheH zAwDeMG6EP=HE(86#?*d-nl4Ns;lcrkXl{qGI7I29t;cAa zU*%0UIDhnbZaOwszd08}YE(o7e~6GaC+)o9!$$<`yk4}|r=Q-HtPy`*F5-?Cp^i=F zB!DcXRfound7I=E?t+FJu;x`>jpChga@N^0?3nwwpz7xG-@oxN@(RZ3>CS7Hxz_3Z zsd>4jQLg!U9ZP{s3TSPWFJ=~h){8ZaS!QLkYgL`U`M@J?y}&SCp5!#Vuk`Q@@Q}&g zHP6zl<;^>a`tyJ{LuV74mazBWLY;AOUcGyWZ$BQx-$V&h)POw;B(ARZu+C;ymx?RCp`m)UvBu)uT$lyCUD6j}%J;X`Bh=(Nm+P$*deZlA1#D>2fP zDBwktocZ)HGcA~0-xNHt_z2P#a!+U6s?tT|QAF(l(OODEp1s)HIYMeRKgQc2-jDFM zf))wF2x&*OG6yXGQM3DfH>qE*8A!tZE1Y}?;5^)#c*W;t9LpZ!cOov*nyV##)prcriY$CD{^5DopUJ$mtM*d4 zDVuEKnA*Zjwb)6%oXE2RbEr#Kv*zEwNw6Au;mc5Oj3%z#j|G2V zkLoP!`=56R-lBi^iroayZc;tt$>_J5k4iC+D~q)t)*j9+U0pdHm(}5F1vXvO*}jj& z`ML2K3rNVr;NNas1)S#h9oI`34}^XCy)8QArlDc)=&N zP8~djdKH?PbGZyT{=+84)xw!&VXl31@>Jo>Kk9rHSUZru5cs#6f8=rn*s8RmMwi~) z7*ct~SU!-Xn_k48Eh}J{<3>y%k6g${6@^?py-xl6H#*>kQ+;~`c+&j?SJ zbuwPjrA^&XW=Ara;pP-{j)r6Bad$z)W*84l1%XfV8)5-~? zIC|(nNjS|^A#i~UPJeoo*XMUuH!FHgcVeANNF3h)*lntDTU3{78=#0bpO8lgID5Jn zVjrVA9rRzqKPBq_RiYllocUiRlYYQ=+g<%uRD@dht0n`*1In! z$>ge4(ilqcpCG|OIVek2u1{)cakg4}J=HP$?=CIg>bJs6)~PNnpQ3Jsf7%6vgAPCd zs`I}HyHv-cLCiH>T)ur>lFYswMl^oJO=~K0DqAWw>u1)+ZHcaW+*#t+s$wHp@{j#C z#3mB>=$Ehn2xfo~xS&pT825-2!xfqJ?pHL_=GX1JwvD?FL}(^ymfzX(Q2nP-%(-KJ z3DQ=!1HiEt-T)}qD)CFXf3*Ci?mt>a-4d4ogw_M|Gij*2>WOqEd{B4KIn~47anj;~ zO_mKs8HorzANlyy9HVFypGSm*j00+QLxVaV&Fn_jG|DS|BN)zyt^3;EX$Mvsg zFD%8`%K!e2S)8X1(QOItEv}SPNY$zO$^*0uY#Z2Z>i_5gn~*RE`avVmY36_Rj7FfZ z%>L6wfRgF|>MKBr^y{F1TI1ee>S+H?qy1YSFLeiypG=Fbk_B5|KTaFBaQa5wWT##e zJI;jR3+H>_^dFUfr67&~xYbV7YLaV2-5*qY;fj>EYz{?CVyRouMzhGGMd0gW+STK# zacO%pvF;yAivvx@fgh}x{0Up#BEy8h-M(s(o<+zaWFdcwTEL&sTCB-N+Qbg6QL!kE zb`4k+L4Tp?9Y{Z>q^%F&!!Gw$D2l$YHNsoTm_OnS5lW#P5lzC{?yU5e?f36Lxb8S} zY?k`_w;o^+lXI@OGBQa1|C+kEZ$*SDDk=ibcloJEWd5bf$4ENzR#*Og!>I3D8;5|y zAu>(C|JM}o!*4yE@`{6lgFUUCx12HPub>s>kG%6jS0kQ9=Unr8hpG)3w zEIz;52dHap>cYuDRKVQM)rbf7RJH8m0q#R-i8`vkfY0~W1S)>Du>0lLoIWXZk$90x z4!32w*2a(7lf#`J^qh`~H)kQMz2q&kwl@G^0N3Li`qy z^EmCc_oXIBX`C9VWL1s#(~op+1WZW#ZW)?9LB6$l2qt46ZcT ze*&4?p`J^^0<=nuTye6SoWnXNPlBM&n{dqkW4-Qq-^;=~tMN4Fs=HPK$S5e@wrbN1 znK&RJn?>4OQ;l5ZJ-rw4;P_^DYUBb?+vN=VZFF;R_$Ck%vuksT_oE#5;ifW5tIA)e zoD}R&8h~CW*%VWe!CP(8Cy)Ru}Th%G7V=*F^khYzGYQ z{vWSBN*(JDbjGCk7P8#P1X~j#vF{EJ*Xh&`&v+&LI)@7qlS=n-Vfg+s(<9}GmLw@z zo6b!gw|%)VgC@r0GXPWcSW`(=o1pBX>;D=a>g~Mw|9&~;WY2N@Sa^RSE_-)waA+{e z>UFF{1q(mOJEvN=A=vIQ6(Fv0#%fMRu*tS2Dzl!Or@c{pS&@yZg>eBVIqoZtoE!vE zYt9UGa#;LavLjCaO#Xk+iT;yO^xuCYZ>A5(TtQ$vBQ;Uj&P`RT7X>1axe>dFFloob z%mjj$HqPYb1a7Y+ZI`OH#9ew;n*58uo*hY-I{;2rE1LJ>ht;X1c67yX-Q|6&9ni^- zot*FZBiY4^{EnYyC28A8ExKIWB#y=ZWGVRD-G^R?{31rk-b=#UGZSC1^{~_^ zibb#K+6L}(J;A=pdYCy9P2Ka6JK*oqsR6CWV;=Wzi-i67tjR&>m?Pq7{uiaT`qJ?{mq$KPTSE_|NE z#9|<0s+XD(awRRQu9CnNNB3BnRa%%~VVLaz{$O7=kt8}OlSx;_3?mc;-zL@#BIf4I z?Lnee1MeAFgoyb`v|Y4{2~M~HaJJgGOoO$jYB2t|}Uj9o5%XdfOonx*CfdICqiBmog?}(yNsVZV$J^)XCa9)_v^q7;gjekb{}(0~ ziych+6g3CCFuCSA;}ar-`)>b~Zmk23I&RKNerTwq%&8Auy>=ibdY}$pjvlr)Hh%~b zi)I^?Z(n|-$k4~@)=uj&fKKgKFrE}XZ$?N8Dc!4}w>Swg3#MDkNcBrYftiM=eb>0vzrJQTdmnsSrDbIkw@k6IW2OKt9Qq7 z0?(vRzI1HLx1tX?|tlrgHrjsjsld3`VR%qd{$@l}^e&6;b!KhSipy==f%Eypr1HLip;R8>rk;$aee~jcBG9<)bT0}xG_8^Q(boykgqtmR2yPhN zi008GCw39tBDaYFgb)|dVcv!60E%BD+&S*LH|BUqZ3RWAF^xRVH<+e*4TpE2GrA|se_-Fq|EPMXA^w z2+XWC^?oGSKQ7yP!9cx`59D&kCCt z^T{I+9 z>1$KL2L0v+Oo&mrfxjtM$aGF-ojUjTZ|*>X(4FTjgh$6Tt6UvCu`U{xnmvFW_^ATl z0=#gg8%(6rt6_5#rjP%ybkp2JQZfgpz({!|qe~4ysytYURA6N=`aO)-cSmo)dU3ot z5o?wemoKC`X2b6Hq@yuIS>A``QD&j*W~@z2k+z|ax*zeU_8+10jwXDK z%+s=78#G*1?IozC|RI8mq6cz~J^}c<`_Ha!w1_eQ_s`gZFD1QtrYs8k3I03>OiiE9)H?U6^)F)xO*ZMwv`T>#UEw0gM5#$( z&W*Mi_AhHc>j3Iz3f+0Fp=hwqdi5G|#pIlxqY$uZYb~6}M&bS_z@9MYv&%@4GOXen;aJ5<(FVJFBcg&AR zfTPz8)iL6dhFyo`S&ZD&H2Bylkl?Skw(xS#8M3n9^%PGZ7bbSFcso8r#*HF#YJ6Z; zAR6ZIS2I^gRMBY7HOVRptg80-RQBxrVe4g_V{4fsp><2Zo_(`T`deQjrzR} z#1dW{grL09+(@^Qf*1{r2KGIn)~+}LqcXY1S857CZHPihduAP^reOwk=(?gLu zby*mh!F`ad>%K;wC4Ni&mfHQiAH%=Lwtc$0{R3kZc}J*EIsWqxazmw?;c_}L{3bNK z(4;-k5kibgeRJ>VJ&#V2GNp7ef>Q<~7G$f!J-w0k>Z%`q zT@PEeVcU|?jgaDw#S|Z4;<b$0PqF^1Css2qw{2h>8R=e&4l$ zix|IyphlGj(=wv~hLr?90U>h6?Wi~-1|fHebk1gxsb%q5X8whx_3k?r=fw$l33@{? zW@h5ssvRfWH>B}IF3V?$yV?xe06u)1d+6%fgH6>)nL%6W&*YGQH`SCsTZ0u6$9FP8?R)M52{mi!gLpnyy=fal<#iE$$Y@{y$kz=m$1JrTEl$;!HtI_Mcw^zM$W6} zAKPMbTG^K!KFu&6yU!nHg7D%R8HP5s7rpq_ReIw*was)o>w={GbQ5Q>$+I#kR;ks; z2ju0iH=EUN7DLk|YWb?E*SE!6SdKo5L}hN>ymVLA zc7sI;d@28T>J-a&sk1AA{Z4nDc?mMahh7VgUHCR+6gZv7ktX^&co|GC5B>S#r16xu z6xPaVL9!Gvhs!UNmsY^|_3Hb46Ku%o`sv(#*IM~nOQy@lq$hWb`kz-{hP>={^kQS_ zVyne$C1CBf4v<)L(xe!tVvsO!Cf+;C7@pQX4t>&X!T#raqyg!*D67P$*N1-^D#M$E z4+jm@(nB}(n;N!j!6MI9lF0mN-3=v;x$HhJg9p$ZVQQN%|66^cWE?F=jS>RQ;*c9Q z*Vc`1jw{gAsPaGT4W5Lu+{*d>j6oyxX+Gj7+qaXXPTeE{a~w(c6@7{#J7PmxsW_c8 zljBt7@}aJ&E@HwpT=i^VLn%aSP~ey(;VkVI^niawESz$2c{|Ga5!jC zm{F!YF+I2xZC|o9Dcn7=x4+|?rqJhuB8j_z#f$Cc7dnmZ1T?4mEt-yqofehUAWATb zYPW;L{DT%gQrL&rqqs>y6o}1zaOq)xI}jqi=yr6am&Ar%HpU@kUBjG9|VF)Ry6SEHB!;sSP| zz-&U(XH#UfkKYp;{A=X;F-{Pd;Nxc7{Vxd~QX#HVGAmSI}c8LtoU-q1Ld`MPZ%7 zO~8nS6yp1ev(3gjJT^+Tm7VWYB`porEyE)%++WgPSooX(oIEw|-`J!`N}0at<@Meo zXaQ%-)|;BOp^o{4ScH#iBJ)JqPo`}pX>$GNat(`-o4Fq0Es1tmBe&ME2+`(pu~8?( zYXwJC$uQTU45kKM|F329o8h0+=6@ew1z)6kgP+t^1n`+wR`KaoP29uc z+2UfY{$r=bM#j^hZ1?!P{iF5j<^z?am6{5ijYvMs?DI+7zg>-be697cDs{$fjg`-Y zm>ly_MITjOj0!5wg>>k+JS`z~ow~j&7u^ zx#hLpM`ftpgY~L8*nzqCGA@{xe;ece`?uDkRa&EF zSrw?RiYGqVRoV|1)WVc=lT&Z7KXOG`lk3rQt=UXN9*_eSX}k(M)G(|6M=}pHFglqP zXKLekM10&F%wZD_XMd4Q|AObUK^qg-&A0LIbah`N^0>5#tuX=-PuDXgi~SZC zqIE0SqR@++v&^qA(NuWUpfPylU9lF}(?b0xm+GBHMCbmzksr=hndto-t>CQC-^@RQ zkIA9h?0Ba$8JCjy>n|*d<9diQ(N5CY4~hStlYy3)rShT2CHZ`TU@-14m}r}X)qBMF z3G0)OAJzn;m?dfd{%zM0y;IA&7&9Z#fgDAJN#WV<8B9y*12Eat8ql0s@hp_scb~tw z?AgnW!|pL2K|0(sgA)-q6s4-TGL{0qzaba)6e3mE| zar+Uy&|`qml%}WLr=dkkEm%n?@J1I)2Zk{{0rSc-MX#gHFiq%e;W2-Sf9;5|IpRQ3 z18_sRkJmC@VT_vkrip>sEuOX1;8kDF5%bN6?} zvaBP%rG|L@f9Iv!q2zTRcsgy#EIZ(ii;S_}#Vt3O@3eznm{bQ6Axcg<>28I^hNuBa z&Vigu3#pZExAJR!z-6{wbY?S~u|`0{Z<%OrT)20k1x&eP({G=Wb~x>FXvuBYCB z5TPn1Zquf2W8FyuHOQ3`>8Y<~tvn}7n7gaII*n$O{mk;Y-l-B6pCmt|Urzk7`p{^` zrPB|ewU1nYBE7Ti`N4g}FJusyTNp7nRMZYJf1}g&m@PqEAznYQtniF#$U8_HHe{(t{U5 ze6U;BhFhdoTUc!2Dm@dZ*fH?7`yd zg}l5A$LIDqmOP%rL(jzlIT%tglEJ0`&oB=OUQ9|_c6IUYxd(z$=S<6X4^vQEGdQw^ zllF=D-Uc)eR1*jgPam#H+{f~S+1*{inBS!75qYP`q01xcAqep&1Q@7wf7;UGd`kIn z#-|?RtW9?}bSMAhXzDghEb#Xfs5Q^pA$Sh9R+OALARBTMoZ+Xz5vKkmKdANxeS?*(G!`7qHHKq{)y zhBl%62cU@3L}m%j0Y78S4FCo_<3|iHQQO#17{5pu#RXV1#$u;RzMD6LX0><nX*%Q%4;UqBYu3^>ci4j)+1hZjd#_?rQpnD_+z=k&ywIxj*oH| zh^YIy&YzapWoc#I#GX`Sf4)U^qYWZy&J!YJxzjSlMUn?}Ao@GxWVyqEj}91Cs^xfV zT}5#oeX;#dGllfW=YK*P68Aja7|$IM`la7z0=oWnXtoE&eAR!M9V)821WnqP$XU%{ znFA%~@jx4Ql6)tKyejmW3;W+){`kS@GDd!l+Te@<`}R%D0bxVZtAs8}=M!V-MP-PyV=M4}VZvXHVeH zzDQTQGsrpg;m7@KBi`isgFte;wP{%!#>yMno#?@5Jk4KuSz4i)zS~>zLqfk(hXRWR z$0-V%P*h%2X^vVt&XqR4oWM(@v(RNcqD&3)LrSPt;9WC9048vyIDSX8h$OeS^4Eaa zyCL#(!I{=nzO$zUsR-t2>7t_yb8zKC@^BkDOGf>tkZl`F=eP$QuDG|vhGx$3dottE zMVW=_v=u$r3B({Mq^00gX)#`gk?6U`c!8yo%>@$7z|lUWcSTUZ_M`mbBro{Ge%kr_ z8B~}skL&vzCGSWniJrLUQk@d@SjcF{=-iR$jA2Fr^q$m*1KE+^qj+m#eBPJ#zi|fq zP|PCcDSuWyr^`$I*!Va-aG)CS1&M{br<uppL7#>aQ>VEx))E2xkcaMlCaEK5wBmC0=AfST1 zdtr`Vo$RjQMJj(&B%~S0Wa?fgV^y`Tac~XpJn(s2J{sFcS6MVT#=;il{w7IWq<+i~ zX7z}mWQI!$oMOc+jn&5qh%n*-lR0acm#Ctrt3QDxXo8+Ptn8Gi-0(i>PrX5Qn|uWd z%dD^+Z;76Hc96o#()bP}oihf`>&wE(6`n#IB}JzW4}@*ZqIa6_-`5lY!W0wf8D;y| z2_gDb9MbwxG!gWc9DjOsQURmtUR4@o+wt3OXOX2i-bTzUOm)WSQ%p~5;#c~M05kJHK}G^RKk00%O&jtqKjgf2aPwOkS4vR1 z`)$uZ0mpaKQ8C@w&{8uNi*I9TP#b!7)rW`kQ$f}`gCTK|_qS^{{{g`4 zUt(h%4IQIP4TU8#!KOf( z8+wW+dOrLL+6}bIPzqn-l<9h0kFHv`>q_#UuudV5G;N_)Z1i_8C+)ZXR5dQOThE%> zL8&CjfN~c1Rr;aG8@lF;nT;Q2>FsT+e|A7RE?*SP%g_^o84h$=02D}+; z?h6h`ZGAja4X2?&9g!yat4M;4|*as+5dsU=XYK8s5 z86U^bI7sRMqKayv52)>m6X?L^`T97`l3kN7;k{!#uLpZ zZ(e?ih7)^bZl;S}&>LMFp%dP$T~EC-CfC8V?_wV?B%fPFtn+%(P7-YeB%|n(l2*sl z=%0v=fdj3I;#$zEV4SvWQ-U8B`d1@hYO95JS1vgK;ThgruPXeN!qEop@hGSJR@|a| zMJO%d2L$%ydQEc8b?5v=&kuF*^MOo`rzL!2jRF^G5zJP3BjScVJ-M{Y8wCtZ`(8T= z!~W1^a8a&WPmU0&w1A0NzB5*r;sD-ihANOpON}cHzG)R{&{s`FtIqlswBA^SC`860 zO*c!1?XGj@t!aG2!+71m7^mvITsu)&BPW6e1D1GOB$dw8H`pOgSF`&C3>B!;ccm??tIa))_nv_Hs$W;mh9y}-^ zZ7EK&Ky`dG79kBzV8APc2z&M2XyTo}=}Od#M*H>mxv}MriK}JB9AQ;W0-z3W?!bIqTCzNh62Udb%;ZwzfM6ls7{PE1NxrB8LuQ9q&^((IPUI8!jYCA(;{Bl z@+;X(OFizu@#O@;DX(FC`k(&Lu?_$RJRv!)nf*;<$_t8wuN#Zm(>fJ4Oqpet4L$Dh zxyfAxm5BogzODUzmZgZ*SGYc{PEO@TMeMM(;lHSs6O|$Mfq4d2YfuuC*r9Q4Q(KJd zgx4!K7WQJ>iIR;=*CK8$t@{j%^pm+d=dmnJdeKQH&PT+GG-QIXqXDOByj}>bMzK^Z zYoA=^htvx!Fj4vpcdl#)yz3tst@u4c|LJxT(3D5}^R^E_8X8sa_yt@$FrD?lkXll< zkz*bjnv3;2GKp3}x)TeaoOOsBSoX=xgrse88`%uAzK|AFpk*@5XIc>8WFnTO_GxEW z!*h4M{P!i}_fn!$WVnLt=X4QBIcI5X9o(SDD$nLc1NfNwsY!^4dw_zL?x40h5TCVL z8AH4VIU3S%tqmZ&i(Cq>6(~FcbbO z`2bqoT6N^s#~SZ;?*bNZl4cKES~>pVn8ze=vzr>g)W27*Wvz{cCQJ7>LqZ)FHq>bE zL1kbQWe|Mz=kT5G&l658i5}58l$j}_Un#UoQdI1!#P}i+?;%`2AT{qX>4;~m3lCwQ z>!=|rRpiytHaTR=Wc|bmHKvWN`)Sy(4eozZAnX}`YGt`_e6{#MzvL$i6q4LA=7JsD zk(b!mXQIhruj9D80v0roMH*J`_O~@|o6dR8nR-jF;Gq7g0+aRjzdH#ZVVjyJUHptn zW{M|dP8JD1JyH=3kpZHW z2C}ezL{7D-tt_F|vEA`7P4G&rAc4l7sV`1}TO-NX{ zK;dBSI4(}_PlQgzDbX?XD+@tUMqp0N`%UJC^x?I+Bs$pnKRU9>FaZpvtV+g!OI8?5 zm%-$X(|g2JDMFE`591##&@FCyvWNeqXv0=4UfA{y6+mE{{Hr6yLOe)0%jcXgd|;|w zsb)}ks`mXM4AEyBJB`j37qXp9*{-Do;q;hTH5%L)PoI%<=aDl)P2xkCz`D3#>%>XR zyDABvW396D`8!}mcl}4V9*fa>LEK}w`E@3;2vJTGLxu3?zDg zez@2fRPfzPY4j;Uys12 zU7zRm&;+wEgs-{NH(;*rbmufaY^!`0#%HxF8xkd!xjz@=Q^tX`@?yl)V=67i4tu!f zVOCK_expTJ%a|L_bz||p&WHBakSa+rT5F|X6bA;#zLamx70X5`Bru|qvZ~6)oU9c0 z?2Kc*eQm~lCB#qL?|v((PDD@Op3DvF7C_u>;P{!GGL0;!yrNOd1iPK-ydC<=*64J3 zXcd1ilEth22F@^_j+oE%Wx@B^>iK(sV5J|{B>aZwJe2t6j#&z^uoAWJ?&BvyD%;UA z9gr0@4R=3GgvyQm5X!3TsfQ8^r&6+Znq}+*NkFhkaxtW%3DfOp?fw%gQ9Q>RQnJwI zDX6NpxaIckC+BDBrO&yf_3?z#*@@<81Lg)(aZFsT&1{gUn6F{Fl8H$l-xI~Y0mGct z1#G4Y4Vng(Xu71$!U)_iybC$zKX;fuSA!=vlS=0*)Hb}dWkbe7MRp(J zK#CFRL7>{df0Hw7ujGdh!QBWO(q`^vVMr?3Gc_XzQLe6Ky#R_Cy7z}|xEb(Ngxl>} z1GWBuS5q5L#wvlgNOL)1s>r7c?@qP2m?B|7i3$xjEiN&K{F7N@5({0J*X zMuX)>!jz=SIV&auKWf*6JFK0FK6fe5x~Pzg(wo~20xo5WMdU^nn=>Fp`E4Fl6lsTez;rTj^mc_DLvOEQm+j-McYVwrpOj|#-CXj>(WnoYXb+BpY5N@h#ShQnTUlj zDfwr6nm)OWg7FWh8aFp?4&Wkc6!;015ET~uk< z_n(PSW}^CdN-(zV0>lNws!6f5DzM6f5#kJN#940jD4Sx`DwVR`SSb?3vqCjIFh|eh z+IzCgNz0JY@K0pQ_>rg?dU0IHPKk3?d1l%|9}7e)D`USLSZj*H+YoIFnySrDpo-+( zaT8(?u2Z};Gk4OEwPeQp7md7y<8yy1>a%HX4XP1jVAUc0EY5!Ufpabq{R zQEMP@CKcz(J@-03itZZiVLu~z^Y9h%RnS-|U`97{EltC;C^DGXq$qBRnK>D?3Ymg6 zCwqyn7)3U3*PmA_dTZD)@qm+vfXR+nn( zJq^`L4nnC%EDj?->7A}bHy8i@4I=wspK33mNGRA?C~UxaxmcNE78*{n8m+hWqRr7L z@~VFwPdXgm?PS7io;U|sA6c$Eg{9V{h-_EdZ^Lvx_gv*2e*Q%0ipDbppNq^(&mpQH zj&N-QjE0`u8>~idj`RC&orwi6#9;yM%eR&6V~%mH0IHk%5@b&jJ#2r$3TbM0ba@}6 zV=a!&1A>_d6!ao1B#}Jv`Ugf>lNxSzcYNk&-k_n(>mdv{8;9q)NXE$u)n=tT5$uE1 zw(5)HmtLM$N}$K=!fG?`;N}&{ru^U%Jx=+rdGsD$j}4dv<5wBW24rSS7ge5uacEs{ zXNLHUxI1kO2!}o(1VwCA9S9+ZTv%2{y=-G4+L>zBAG&2BOU8*_W#>}Jxm=A!m2)_W zr>(!pDx*+z+>AemhF;IpFon;n^AVfAg$~X{?G9MSkNburi2k6*@TusmW|3Jfkag?m zy3pt5q8h3pLCjw!s$dKiYtRMQtj4w_dh$)x`EXYK_kw zbU@so2O~zvAzxyv@{S^Z|BemVo8HlJ$Lt51rPX)LCxX(4wkCu;@8Y2n`T6Xht0v}1 zdkCc|dEC}3yol{g?;4bFA0FRf;u)U5X^7EozR&PxX8oOih?4Yy*ZlIzxOy9Q#*UU; zXMP=L)YJ~M*0lh2W$xUx#M~^GPbIa1@8H$A{jPnhLHRT_l!y;(vaf1lT=2}}T z)x!R#beN=1%QvB=+14vWUie-4IZctt0!}#9ts$X9k%`UA>xuagxDo+QEExv98P*bS zD|*0-kxTZ}23)4v@0xftH@Yz^e3W^xN401Cr?dC0v>OG~upyET(HH5UH?uytuUMR0 zx#ybxNuPC%ldX2bqnr%>+bSE#6c|cVs^`U0vJ(@}DUE(AzYU*;PP13AkZGEtToT2< zTrh7_aYPE+T1G$h6X#2Q+_@NoiO&NMDmQ^(ty21*4o8;&g!++b{zQoI)U*!s(o^u4+m$bntw zpJgYX?y9W3NwgVBGj2Swxky(mohB4Vg&9=?9nZPyiY`A`GTV?6$bz+w{XQMw zRXcSNJh6hW(xM<&NMcx;)^#pgi_u^>>A=jOqWfKQ7avuNN#ulID=_2Z1eUANjE1yd z_DX|agxwGS*zW+6r!zf6v{mG}@TwjEn%jjwT$=^AxCIM!#?(ipSxHEfU!2Jtv+51G zGw!e7tS;w!;dw0cpo$Oy-e9B58z+u@L2LKDgKoW37D-foPeAY#Z@PFkq~?Ru-Aq;* zDg_Q_-2&VYLm}SR!AoOnhxUzbt_UlC<#=V&SCZ z_X1al7YX}HdsPcuKV@DCsieOwGAZa&O}*~1^0Nb*akS>W50tENsIz>5PZ@BFm``~* z2JEdFzlWKrbPrCFHV0g;Xr|9$Rz@BO~O;8!I`f@3Gisb5GTx&tT?6S13$U|mg`2nTpqMig4;7xKvP?y${7?jYr( zx?%Y(uZUy^oLDHMSUO0C#JfC)W2tDEJ=Gl%cup2VrkKz*fs%7W9 z-o?OY89!7W=(W>?C#xuSFw%b!#(8_1^PWh_>d3Xxw@=b0B2p~;lFc(ceaRXfXv1|Z zWSz~K_m+?LOUio!dS6$tS$M-q%kq)D=YsoNOgO96DY|s)JbX{Y(AO#L!OWoGicRdo zByjdtm`iiT`hEkz2no-+ts^~32a0z-cYI}T=>^gZkl`~NkPR=iJKCYl^!Mr z0_WNu?;f`_=JI_t*u3c|kfJCqcgt$T!wGT@6PW}tG~me|{$EEtmhzuj*$x!@i~(HP zcFdtrJcC54Xx4MrEo!n{dzxu3+&HliWvy|3S`{M41HlUYm?_|_CNlD58u+Q-bLC$e zj)+mme$@QwTRaDA_-A`7 zv&uUKo^ZHzdQA^lvPZ?Zz_mG7tnH}*S<7V;kI#rX(&M5N@T;#bIA zZQgNi83&861v+*0ZV;cfNmcEQ<7h(8u8i^zzchg(J^AHrF-$0qaPs*&0>_6>okxB0?p_F5hOg2v+o%?}|_Y)vV7 zS1_h>fvWtQL}4Y*#OM?}M9lqp(=<+Y-_BO-H3oXmO2R{dO|lM&aV-*OgUAlcod|dc zIXunrUoc&Pagxmb@cVPN8M9d{=0%L~o`flmyjaM>a}K9}xyX`^PmA=vYXbPB*CnXK z&+50`e_cDK3gTu;nkl`qi^9opJ>g1xne+$5s80w$eQA9@0(?$m35&(P+2lp!8;@xb7ohkIHI- zUk`cUO><|Jl!rr#A*QK2taxo;;8+lA>W z$)Z?m0AD0#K7AAXX&v3Ed$>uf~hP1}yly*k#e>2e-C(kVYu=NnMt&Eyb>+l(=54wy!@fASd= zpbnCjUyit7@oGtEjqV1k-6O3cqE>~HYu)HY`bdDbfsolsft6FMTo`sq0FF|=m7w8_ z>l2+abj@r0>qqptdD>MTv-w&h<%h5WgW`6Wgua(hNsFVpA>cxy37~8^vV_90=h8uE zvOde=K(J7vCZ}Ad`s_O84Iw{X4->1A{33zff1#%Oy2hG#WpKevS2bk)VCzIMV4)^~ zJxYKBF64CrWktetp>jD)lB;IBAI(iyZ)eC+N+vj1rEC#WQo@;maCH=LKn@PMUVl5w z=&}@`XgzP|KDkWSUKjYB(1C8k`#a+x?i`5T>CoWwbfZb{GwMI`j-sKhXi=aO(2Py8yfn^Rx^$*zE&Z#&Mm8`f zQ}KLSH3L_43;9rpKe@H}`uak0=p9(0#;N93 zdYzJMNkNGzLNNS;2DHJ>+p3+23=iuxVwzVFdF7qXktOI>iY4Eh4FNVJ>_r&DZXtC(w#BDxyUXN}g9WLY5F z$O+&^*MRM6qbym0S(Xmkb;NqQZzR*RrpRDrYxG_4)o+rg2aRmG+yinzCcdzW+ih*dc)ySEG z9NT3U6LV72uIPf2{{sc{X#HtX2r`(ZXXu+#(j{E(xQ+wjjPgZW^orW;tW<`5#@DpI zzG-kGEr56cX7Ltu%P(oE6qf8c!~MEe2D2kxq|48=v(c1{L?^23eYKw_YwCV`<^zLE zCiX(5UNSMSb9+Ptmu4NQm_LyKH;;&hgv7%eM0mNAJ?mVnEz%T~@At1_Vw%iMoR6!y zDNTi(rTc~u@dJZBIa2Gf{K)lGK**l}A={M*3hoyT_kz1JCQu#$6Q(pl#I!{DU`auo zK}cQKJ%L;x6iw@rq{uoCfqjGq3ZHl z-S?Zt6Zy$UGFVG%_)>^O;IKi+c)7c&S8%j6O>VEyh_2kK&OGJkAI}J0rSsntMF-5j zkdzv?jCc~uGtI+mC2!rr_KUv&DL#$kdC(|hlq5!AHEqb{&cW8wEG@03OZIK%ODSRc zUtShUKfiorG^Uy6ge@6vh*8AI1|^ z`dJFRFd2N0)=`M(>d$jkf&PYewD9k}UmgHW+=K*jJ2R38?hm=+1kN);u~njnvsy{m z@Cv-=i_LX0w`SZq_7FbOraEFK&UOfC8K6FKt81>zq3Uf$0#MwVq3X;S;V<)~3xo*o zG1&QDJ7f+f^Q1s2ASe`gt>^aZ)oK*=q>-4zGc_HYoJ>N3LH0<~W(+cB&*0+=@hZGK zrPyv!RdY+w+15_i+c~u5v20lL!U=nyoxr$zHnK$<`_j~9Wfsvq}UGaeE+uW0_Dp}G6e4S? z>jON<>V;~6ji-zuu)XPoGq&Pw11r~Ca$N(DS2~Ie13>GCB5o2(CX0{Qg=@&J7A&e{ zTOrxd)Qbd5(=GLi=9U-VJb~~>8^cI1mEO>wkb)Ri`=xoQTzsc^TxqiWx;8vCG(s{$l5oma zyHDjzx#Z`Xe02u4xkHBlX{j%EJyCROiwqqz_OE7d%{nGqd8PXQ3r?6$_F{a~{|BHX zslCs=VUy~!5Srh-tNy^1y<67G&7?6T8x}Sa$dvYYSN2q;g>P@N6P)*>{?%IM_e7!E z36V-;z?zJel5_QP+2Z2e_phrJyZWCmYHOHGBU2r6H=aAM(-SDobk>2O6}jb z{7yqpM`Y$C#)RfL_DUz-H$CTxJLr)W3(?)xAsmK(r>IOz|GI{IoD_23pqic*+F)g^ zk&D5$^X=Ei8q71aT{fE4A@~Sx%@CoZ$IEYnj=CQ#O#_^UvQ8tfYPlo6aVvEM*f3(2 z?P;8<);KuNG;UCZZF582$T*~@S-$+U2zY0Upq7dCy$M{WS>AfTWrQqE zN+X5n;&o9gQfXzHktNh<<^3bx#B}kHmEzGg0gCWFW7zMeDrYUfrI}{0C;uR~i;sq7 zWB3L1J$8jsnBn>6CCqrM0I<-w-1{zdiXNFcag#dMGZG@PkT$t$IZtHOttx#MlRtLsmN8sX*4x{@r=18&=IOMwi~h7jIQbLyFV9UV?9No;EK34R}dJ zzPQZ^1tN?l%nvo*(#o4ys%RU2R^+`CU>1Ctj4653eFzWF1pNHTX*X_%8;HIiFC|Zz zM7)_cTo;nc{TUy`F-m#`fS0K86rXh6WySFsH;(%}RR+i&L$Ah13np0GSpftl>}}pI zfS|d}`S2;})%9t;_-9}Nl?FHYc_EsNUgcD!!o{@F*0YN4w>DQ^w}V$mFW+DyV;SR3 zBzJ%Q7&(;H8!~@YcxeD1z*j634x6Nm9gB<&0=06o@^JSE6fe`|DBbIF)W_iNs2R3i zI_}D-D+}wtlYjTnd+^4D#N%2DYYEYG+u9OAG>Tv|UF6!)D9#u6_%sJJMp*yC(FkU!(}8&ns-J8>vu;A_pkR4}f`R!_iq1IZZ$T_~ZXA^Zh#eI>`ft`e;O_ zsx|#%JBP_Uy1-&&=E>=P98k>fyK4QIl%q5gFR;R;Fu({#gy;JI99)PJyK$T8ADP94 zB+1+kpf2g_Y<=utp&_?jkDSe4nMk?9*;`bG<^|I}0OS176Sy<=mbRF1Dr(q0aa#iu zJ11~@wp?oA&&Rm_Mff%+x8lS88*nBTB%2WMR!vE8FFDjLJGP3@`SelO$v1DC$H^1j zq&59dIj?R^=u%5-?=ZZ>=ueafejQ~w=f25Klgb*Td8p4w0#iGe{5$zmZnz@|RwI*q=BT{K{P z&+q^F%arKw8t3DN1mcP6lo@)Q){SsAvpeHkD?j5~Ek9%Ys|=VqFWW5+)V-!I#^xKN zWR7?2K3p~e8J=c9h8d7C1!Oe;lkv|Tfl<aoJDHy%mUYcC(TP`ll_0!6A09^_&@dh-xdGU z5-;FZFUj+(+>a~$sB+5{&&BgPhIr?bg$lsoG(AiZ=zkf?6h@fp8u0EM?6bB zT!&q0T&k)MWo&JA1K%G5(#Sr?)?ECi@A-?Uw+**Mj_$R2;P2OmK)$jDS{FU|%5t9H zya`By@L!4LQWUv|V* zKpr#Et-eycB&?(=EN`pq63{07pZ@un0ezf`505e6Ei=@=Mt)E`8cglSYus>Gv{jY!5o`0ZoR2S-(Ug1dF@P|+5JkLh69E)y* zsnEeixBBK;ndOVz<%@vb&OQB1sLQ&{4W?F>!BHpTfJXD{nd4xFB(*_9b^9LSKB1I5 zzzisr4@?^u9h?tc)}QL}U%ZIAdPB~Cr7j{Ib>afdk!rl04;_D9i?LJp$;`j9^Md_; zL!Sr6>UvS~ML3cjKt55UE;jiurXwZ8f#r4|C-UoBx3IzT`2m2=$iD=bBxA2uQm;N- zxH{O~xh-=;eL2No`L2kFi16nxG4`BV0Q!#e;fIL6&yIw~%}nD)_ddk0V{;zLn>Ly6=p02(-&jDtmIY+*3R+;_aJ<=;aMJRCCfR4}H zbCYqcUnP^rNU4c8h529KASQ-%N zus>E^zgzoVAtE)jcROsF-*H*`obN1k=Hx?U@AN9)*U&?N75D4f>zR`awZU%3V}2Ta z^$&I5-aU0+lZ(3xroXQJe!`~y|Cd-#ZmTm#7Q9|FI%1L=e(7CpQq{C08OZK&|J-PS z`NC-7q0L(48sU_`DJCh(xjL7F3YVh|k(;*az6*o9%3lj;2<^@X$EsU*YmQu{G?$tG-G@H4zQ$51 zO`w6S|J}&{xGH?T61n#Oq%Z&d`TxBF_W>%wU)Pwg{!RpJrIijN`iDV7=FBCdqdq%Mpiw6`UmsoQ%1wVwhK?1=1{Dmqr(0mQ4*t&!|(QPbC@r}fa= z&R6%*f|f}6x<+XDDx)y&P z$M1M@J&HwX+wL^c3Rs<(-G4-_Nf@fXsfLQx&mnehHspN@)7=rMOsg_HaNF6!P)s9k zmi347ohBTr9^9>IbnX7jT{<#G3JTeJ+c%mh+;pM#DxCWxmDun)LT0{cRBM-=ztpbt<%jMTg6Pj&RElRNy0P9-@sZrjvS4`f{v(}b z!GQm|2zjSHKuv^*dpia+naU|EVQF5k9ZL`5ywR;c^Srg5MOKWQXGQ^q1%gflk#>G& zPOdo6v@Ijx0B!)MnHGzk4GVc~=25F?>Lzm#b;LCBAYRJff6L*8eDH{26=%TknKJ*{FcF=IR3w zW=iiedwIbx%0HlM4d`L#hg#tPm9H}e^B^F9QV z0PR8Kpl(D;!Z}NG5)3ZPG4o~H6zkB=@ra&?fOaGjp&R;0bk}2uPArOzR%-_SxRNwe z{PDvG)H&0k^wSc;%9rAXd$vw9O*_YAs1B+hLq3LLJ)-L78nVDf(R1Ng8mtPwzr&z2gucWNc`aKwuW4;72V9< zd)#~28p%jTOSN$md;HuXT9R(RdX0v3W6#*HODz=4VkUdr35m26*i0UYx+|`tTMb-5 zN;F#nB4V^S0^aQVpVcNJrJ}ea)dhh@3lmDN0p9&g%#3Vq=uLlYnV_5^lZ4)Naq*L5 zK|N3@%r&H^up>;B2*%$IUJ+x_l;^R#OWYuKTOPDe+w;LXd>~}Poo*xBat-Bdp!VW&h=N&(^qrJ`bz>(sITGhZEOmGP zK{y7Ds9ui~f1BR4n|>zC;H_LQ*G<@ zb`cF*U0PpIx3(WkGRTeA@^mS`ZKWPp8F@e!oRUX$h`ud2q}jM-otW9+qD#yran|y%Rl;5d>TkPgw#1OGZ zDub=QT7a#^T46lc(+3hGYuYrq^n7y0PZqa#4|OhATplYh(@37&FsWjEge4&N}OR?-XSu40(nrU%~q4mw_+k3_x_^|sJ z>x{Xu=7U@IXRnQX=^DIO#((nWhW_Tx2je|`vd zUcdFJbo%xYQ?49VByZD!mBd}_k$$3*UL7E_S13Xg-AlDg#!hC7nfQWbDDU1(1cF`} zj<1^oy8EKZrf3H%y_UAlO#eFxRJ=tLomtAj$B}3}y`h3@IsU8zKb--QJ)zFW-(59+ zB0jPFdZr7nAwO(-j#;Iq3VQJt8Fj}Lj1y-wroCQg<%3gx{}J)QPi{orFi3lO!`L{*avxJJ8@iJF5h8$8foCCBgAd>+J#M)B0Ra@@`yYBh8 zC^{#|2Q}x6b*gl1ryDKrszQR@Roz2Cs{J3OB$1HnF9VELk1T`bnB?X=YAd@G+58ao z*i732-7Hmlmr;)h(SA|JmLHM~Qbohgl~c+?z{@Cic!7A4|9@tqQ(sZWEqrjB(LicDLQM?NG3EaWj;-g&hh$TM~$!+xh>UP?4fyhc&bx5eMl6T5PZ z3-3&RV2q7=M_E)|(vaFUEnWtvTVR^9j->UB34?yL;mVF#uH7e&Uk3dJ<*iJ^#tGeP zs^Jmz=-tSIf3%shUr7||G#CNEbX*)U5ed?ZB*NAxV7L8I)g;cxr$xRprgZmN{d%If z(|Vr4;P2rn;C;KnfQQz9O{QzBoKhV)?h1V~^zedR4Lp#~zg^dzlu<`PNgiG%$}V4D z0yXJ)TvzE0&nwy;oBVoomh}bG=6We&#W_?I+nJ9X=8Olat&e6h)IO^&-pRj_O~4;< zm*m&3^Y%P(@mJt6pvOoEwx%B<<3o=pARW+&5&^`A5_l3Xv+c498@P>?9A#J5l(zdI zelvP5rud_h%6?)SBI7iJZQZL`V9g|7A~z{>&>?A)%Ny3Xqg;Ae;;s}zi0YY*`m8OFjn~Oq+lACJZ1$c zjrDOpmf!R8+;=lAfRH~-3mR2ZxAp2}cQj}J9G=SUtNQ?;0{b_kbBjxw*#zlH{TcUC zJG5w%Uldr=ex`7fW+F}{b~n9Ms3{)}Q+&xGE@Gj1UOm0?UtVqqtACkAFqu#!Uq!^I}+xq~z&6(%0kgfHruAL@Nc z?eE6fGp6f*%U8rGBS?Vav+d=8ggHNwzbyIN@y#hdw}12HBZ zoZzVd5cbJZ5AD8ENfF`jVtm`h`}b$x>6@``{8I-IDM2|p;7s7HYUFjvK}GNsk^6~a z8Wl^&TqwIPU}|Zdt*E%IAgz5J|I(k#J^5N1VwS6&?iigbyD~IB7ZAiSl{YlYz=P7h zlQ)6C<-JnaCI*%KyGnRZ>9?Y2W8NEyVXyz95-hoMRdX{#9F;>b;ZIEvPaF(7PA#L{ z#iQ_idD7bt_)9Y|BGp44Lgu%0*@)jIBn;Gg6(mZP9zSym{3FLwuKVYKY^ICfDgSk6 zOa~h}$lbJfT#}26r%U5;k?2{P>_>BnfD(6ktIy^cj_-av7)xtazq zjlrMcd?`gNy1PFf2lIf8LQ0?P%?7&vy`)!W>kUS-+QwyShhKc9e4RXwTGRR3FruUP zQtuCHCkCs%P?9E*6>sPWHG73dF6NDDd}?me#TIcE`la+VeP&r>Ua*FNebjk(9t-BJ z<-_)#EcbMT%E;Y+MA#TQ$ay;RE}e_!rv9nR*{&cf`pS)Y8SCamdlIYiB zC2if@+eLb@s>?&}33=bwwnbTznk!fq^50=&$9z4tSlJNVD6lb!(P_xCSjjD{>)P^b2O!@0C0a@HbDANA^-3u*`e(o1m`r%9yM6i){u{5t7aZ!etkShtI=BpB&fGcNak(8ue;=vB^9jVNeZc}z z?Kr!6g^-)xV-8D;LbiB@aQ1R_L`Z_oFq;($T$0J2R!ByG9&hby2sxxZG{U_+VAX9q{YQ9SON+EqgcsBCz<`_1l4?}S7^1)R-_xRw5ah=Qolf9(MKVee(5G5t25{{EDcQI@~Q|Su`@~z;RQgi{`*8sQ6lvug1 zO0rkIMTXW-%N;ryrk}vzoJuI?{<=fSugr!?Cj#G}SOkRf_&}#S;Yd3NoV#Vx3$^tK zCG#b`!b($|3nq1ZPkYeHu222d?+dZ%3NnWEv8Xlu@{*pre>mf_lWInI)EImaLesY> zy=?oAq$@wOtPotfRxHzie1-*o@9ULfL!%pZ&qSgXUk%HiA0h8U-cSOTl(1*u-Iz1kfn2&( zjonAbg(bbR2>phyxcPbV>%}`xNS9a{@5x_(jJ0bp*>na zkTeVle$yZYHn2A=7i%F)I)H^y(y3Z zm4JNoM<02v6dEh8gFn1r{xO}gm%1{P_I6cBepva7c)C@|nS`j<03$p?jx2e*uFw-( zI64q6>DZPXA9P{CDZZKIa9Z@BcsvXS?Nrh6AaOp&HtpGySLSQRNP?V%cUk5|^`~Xr zxFpHduFRj2`S29d#TbQ;7r?o2hG!WpAvH0+!1OoTT%w85r{uC|psH zmvavr_obmU&81#T&li0D2p5VIFFnh(BXN3RHK(8H{e^1By9jh z%rx`oz9}M{JNEjTY23svT@N+G7mA_AD2N&qD&)XT&scg+(G^l_pd-0GXwTSOu+2!j z?d#i!5s7%ob%nt~!)eR!|9-I-`R>7;isQnPTnO9A9Wff2Ky$~wkTIHtSbaH& zGUlSDtrS==akEeO>Eu2pIwfzoL}NZc6RMwwhz=vSW0$dp;;A#Eca#%d&$bPIkbUnI z%2_Fr6a{D{pbZH{(qC^0sV^@SAP)+qR|sC~IXIO%*NRc<#X~=MQQMjZ+YP83?+CcMVA6&HX&0_+qJ?Fk->W#jEAfeY}Bqx}BEa~PQo}pZ7 zvVcYwSAo+160(%T%yCL!u!-<62O}now!;%rYHf3`Fcj>0-+HLrh{!_Yak3ta-tseQ zDT-ziwwzZQiG$n+`1cX@bn0$Q?T%rVi|#o#UwY2byt{!Sd7bDq z{@tGCkz@%raD1sJI@JH3<|kd44Zu9nP{YpaFaP zLBXuEf;ugL=6&v@`hKi3U2bpX_Lbcp_7&FsfZ@kH-q9u zpj(258|gX+2XaRVvCxE-!Z!lE%;`G4f+JtkGccHY4K$RR^_r~{yy@XPFo!-Rr z?2!*{L>3jVo2^W4DOAA~NQm&~Wi5~ivTYvckNu*B41ZpJLKH20nIe59a05UyEKD;y z8hIEL84-siLgEAULX~*()Aoof>YY+5YaZ<^MojBT_x7cc4 za;?w&Hs+Z=4;?Ef%=~}^?#istWA_{8sKJ{0Xq1Er7^S}Azp+qQ!EF9H3e?Y(G)PYM zv*~M5H>y6(e`L3jdL2MgrH{7|e163Y z3Cq)8eVQTm5^hx!S%iN_Z7L;NP=gRz!(ejvOHTQBkJE4S6{TKJ=+`ohlv*P!-s3-7 z3%zKbxzy^$fTRxHrZ0Wx56{t24mn9wef>zzy}=lKvVqLYs0U$q{*DZfS1TEc0UAYqW?LqrXQ9{<8b_!-QMSq)1UV^`$nur zV+|Q2T*_*NOxuzYI3P0OQmhI@{qii|6@sFopBlnKw0K_i&drtaJH|wbjrM0{2u}{m zx<N3-l{o>~gWvkQ_GTiB~y1P~)5f)XY9fD3tRNtgZ})bxZQg{gz#HOL5HmbsIM z;(YX!-$>GDQm6QHTEjU~TOWatUMxv`T zwXT5cadW-riTKy&M-Zd|+g2$~K`Bwl64XP6HzP9jUvSz!F19 zZZnIcOof_1-k&}4UBP4Fnf`ioURn4j@8kp@`Ez9RjW zA^KCtf2CM4SWti(&WfHGCR@FZZeq4`7aCfrb#0>7q)$K>;st-FMk}+c^tno|^*n*t zL$MTe!#tU2bjB@dM@MZ>`;Ng{ufG&ASScC?@4dk)C)T{)gVyas3m45W)(l1Qbln(6 z50J!qu1ei>Ogf{oOA^}Zrb;2+052AAu@b-s4>-o84KSF#>E-2NvaBwsSd$*%Iq*T5 z_JW-Y1^4WjOyMfHLhFB#^10FtTrkBFo!M%5FNp8TdEz%&qo3s)-^#BZW)DrnI50_h zaH;5N=<|v7=GMM+;}3hDVpBd(9z(q2Id}4OrdG+ds7f++gwloS$tDc$KX?W z^l+6xS{JWDkEYDul~6J7&EBr(5-v5dW4ic-^&GQrnGl5Y(v+FMA?8=bI}B?zp#~ z@B|{4cV`3?`le;uZ9rYqm^!}R`u5#*S?FA>@c zsZkj}F;dZYOfMPan!Dh4MPq8TbPL5(g(q*^B;9~NMk6sKkw%7mbJ$V0mZF$`)LW-Wp z#@{XM$0)Jplv`6diJ^;7j_f>o-H$wcAqpPXzg84>m_8jj$;p`Nm;s~Ut6mxT~Ghn=YV;L=Vibk zd7BcfS<89tv(}5%_Km9#$Ms+;eQJ=5gOjtSi8RuU-o#QM{nc-rm)o+tRRK@p?nVE z(1sts;q|fK+K^eEyj&ETYqP|}`9nWP zXM!y1$sSQFCFwVOKy60{O5Ix1Y3gI}ThMxpa$7h&rA6Fs@h%-PFvOS7rAARqMj5(G zMdW7U+L3&*JPAt0FDO>1Ko@0;3lCwm3E?TV;mMdHN_<(=Bwj^j5u!DD}qYp^Y<&a#``13NQI zuM{eL>2X3Ua2WSMg17;TvZtgR0Wp=tb0)#7;z+Nm?zJHr98^-N#CSc**pOvgH8fC_ zF+wlO*HBImzVzXQtuc6d|1APTPOA8Wr05yW6nN?kM>K|jP3&eddh~=DBI2)16Oq7f~68V;TKv2HFH!=Jm&EwF#W?wDN-#E{6s`z#;Fl9leFp1x&^I%4Y^{ z0f5-CI7U9my@`*~;T=EuOC7#6zO7d1z&2*~D8nuLx_T+jk7n>89KGzKQz%U(2s1K*?0LTUp6MCSS`^%ffvCR>x#7PHI|G&%zFEjRS{+^i_40eQp)r| zozBLu<}7VXPr%k%1c5APUD1lS>1&nRH>1;rK|&g?)#lQ$F#K0*Kqp$oSk@oZdaAIR zi`EMM^W@e_Z60dt2jwT1|52@chGWLi=>y&qfkiIwmoBA&MNLIw$YYl&!Vqxc6g+Ta zGpTO$2dHtVy;7wl5mM#1>zTJeZI0DegX4G=B#M{)yy+>Bvl@4n*$m8&wzQRr?X7A2 zMrP3S0z_p$_$L(CucO*3`q!v(tcnlv-JZ0t|LTKyr}m{~cXh;dl z(!SK$+@Srsb|hpl@+t0^4ABg;JW@a)3%) z9AY!!#U=wV?I=-GY*;E|J@@;1HLA7!0#;BBVFnj^(9&M?1}9(;&KHexT3dT#^r?2E zz`Z-kPUeWWCI0T!5SdC)6kzAX)2yuFQe1zo%H`n1o7gGApbFoPE?D8{UuY+HcT zGB|UvX7E-KVCU8-Pcsb9%jdmHw_cNRD!!yQ9qARxIaVP99!ITHvyzMqWq97Zp~OC2 zq<<<%K`U2Z-r77?DdMBDu~qxMpIG1MxeADO^k$G5(;<;sS?U{2BOtPhGlgd1w199T zyS?y9DB(Oi#?vDuTUqM5kEDw6fwge_*^LI^75W?uDl&1Ud}&RD7!9I-5^vqg!> zkKD(L_EfWgH-+EMH>1wlx>SK}1M?!EuA*-IQ$i+m?iO?o)=q6~pQ+Itts8k)x{ucI z%aW|ejPK~=>Q93!#%gWri(51+Kd&ZW9cS=Hzr(Fr;Ak#^${ddqx#T-J;p33cm7dy8 z4v2ruJVetohO_6)v&-rd3^p-Qmuz*zG}~B-ahOF~epO%eI*o!T@Md*Kq}u6bEZdw9?O9t6Ny?UFmySx zQ5tU53WLluhRAKImWQz|(NDcCzC_);8no$+8SN;B)m7?;vgXk*lx95AEyO?Ff^q^U?9Q+OQR+z38*`s@OAv5zJGpM2a+$_!Omf z$`R$cc(L6a`Jp1Bc*?miPfVwdY0M?O(V;~%Ej)45B1OP#+w@dG!z-sQeuaUm$6E#mC{ zv8qw9vyV2S2NaP9e?y{G_#L?T(rAFS$Mi_Q{9T_&H1%{!$ zYm3#4yB_tBBixvbx|!}tn@`%Ac^BXo>w(MPFb1H%^EqZLg#o03#IG2`^c(H zE-#H&q#j}2>>&r^5Gk;8+LK`ZRKD9$ezVV90UiK8oXkQL)#Q{qEDJ(a=1aTDK~!(= zD;VaQzOgn*YIWWy;{F4GG!Pn8p!mLsTQ>IWl1ss0n#@Zkcip$s2TAFVOaTY<`}EKE z>pwEY%;N-d)>$AXXsbY3)PnpTdA|h$_j)3sl-(-k!h2`KXSFa^8=3#kXk1`_l!K9V zrR!1*ZtDu&)T;KJWuuwD>U}(KtX~uuw>ReD=UB0q7)lHhD}`s;re;JJKa^YPka^`N zLoWGsE#$8ab(t4jfe2mu3?(PmU)N;e)pKrIva^~GgP$kErLBi3jqHd0>7OY$kyfYn z)@8(wHsU8b|6Jk-YU3QEgq{Topl3xO6BW zF?2{bD$USCw{&-xTq$W}fT2N}p}P?QVHmn|=%G^(5D@&1_ul8e&-2Cme)Bu$%)sok z*IqF@&R*-k)V3eCu^O_nPY9F_05}ym zvxi7FA)#$Jn+FzlmTn>yc}SKih4fff;$5rM?S#jp;mYe!i)O26_I{&Jg0U5~`x@Hw z3y~(8Sw_9e>LWNppg@Sl{!|W}j2*pl$-T$&W+{6kAPUan+NIpS&6o^tFZJQvbxK#~ zeQGG1&$)a=i}cx-)RWgA{z6;xWgfE6PZzsHzAirCxpzV2i?l6KnXH~V7i>v^RW7Yg zurX`)=l6ZolJ*>tm5R^z=8LIB|f@cG1yn9*=uH4{=!*8L4Dnduq zvM4Mj&vzBfWN^l+sIEjJ<;7sKI0uM~su*=$0ljX8Bi-~L3^2}H} zP1eDF7LOa!>F>;j((ci+-&ZqKB>S+CMsLa^BcNS~X!hAtIs|}{^l2-av&pmiON-!} zBQFk1j$V0w`*yg%I7#BY(U3SCtx}D&JY$uDMq<{h7LepPLl#V7$-G9Q+2jlM&qo>fXK8WbmdWcFDC`iQ!R*rcXz|&>u(N`B*$sPizB^@T zaW+m3QlDYw$(-m9O37ijl*u(}AZ>--Krz%gparBF_as93f<%xmxx8qgkw-qZJW(8` zr0sAaASx>=0G?1tH>46F>OZQqCIjOJ_bBDadh&*g?v{Kjm99M8w)={zQ}=A|tF6dO zQEVyN9d9>G4|^|J^kuls90@La$Dv(tcx_>Od?w$JjA_YS>p|v|WHaE_cBvnRhFi#^K3oyRWC?g!3{xg59ey3%wW{q*LK`8vo;``gZ&6xM zY`!9UsFPbfv!gjQ;0?PZcg$Ct%600DEK;8}vdgeT1YatJP3}P~x3Ui?-Ori(Di7!a z74@vtL8T)d)QPMJF2?D1nAK z1yojw(!{y?mlfnpv7P9ZG<6Rclvtv0vB*pGFuQgzrSHs~<%SH(Qhm zbqkvXmpw)ozLpN48lvY`Y%WE3;l#dyD4YJSLO94WtdPvcT-(9#dS7SUTS|zN?@A*> zfoEjKH83hMiD_k%2p5`qUF-WA_ZjAa2=A^ zPu1(@kz*^L4_tR7N00mo#XnrUo`=>eLTA7)5e!1=P2q0_S_{E?QE_stexU+dr?q}c zYbszdXd#<-i#G}7EX{y{$-sm&c3X=#FG?{EN3%9!eDneP>6F6!NQ_q!2g7%c@?3>u zhYITQ6Rr9zVT-KxZKMW=nY1H_v%gFV-==&;)$6ef2q_pGOQDnU;4llcC8r7!5vF&T ze`;kr{Gs>Al~A@vtOh5{g;0e0g&ilTS4QiIHiq=8Cn!|2 z7&31OBV!qT+*yHr3#wR0>6B5te$!B%Pp=VL4EQ*1_Aq^k0r~)QfAWb7J7+_H*`Xfu=I0aqE7sr1Z{K_IDmZ5_+madA6`fVlNE??4KBUt`?$CCt>8d6gW#vNh-p+ zg!6Ru-&uU=69)ZhyE#AZ$=x3(QRU_I_=#Z!AnkJ&*m*H)53*h5zx#>txYpl+s_2F4 zu-NxcTd}vjELMzftpMO`W6Aimq*)M~8!?4swDj|NoF{G`hW)^(=4ahT$^-6`Pp+Re z9aA{f&QGH&#Kc6Efq8vd5f;}GjZ;QG&DyJ2Ny96pP}w7gO+YHW>Q74|By=%AJ|ry`1VK8jZ0FnvKg zH1UibPl&NrS4*=HS-LctX_gmJe!;BH0&EU97S}wn%=*MMH#>WZTm30FAySCoDU0}o zI#pM57HqoUH=3!Nui>G{xz9wg&l+Wa$8!9dE)yc_k42nNX75tWPt1tz&0 zBzrfBBR4zWQXf7(kEhtm6O++JX#c>@ln^GLdr9LqdG|#zXx~JjYQm1@qJYk*mz{QW zNFT+jCSK=oYK&st2lmd~HS8>xVh-C95@je(nVm_>dmZC8!HSrEx|^g;b-5ZfAMK(# zVbXBf`~g<0L>BGk*9XroNuF;$BZdnNCfd$rM#>DQkWOTR`5Mcg3Y=;@(`<_?RuLoF zZ*8ZXPTG7{;E??2lxZqbA9g0B`(0caKYbH~h`M5*3M!SnP6G>Dw&Qq2X+{ZTNyffY znSYI^{!XC}PA)@5-l$VZ9F?>_Z#?VGTqcv}agoeyiS8)l|3>+?bf==0&7kjswLs5X zB@EY+xP@MlH(N#(A2U`Z(p{nqiER;s6h z;^2TmCJ%RI^aK!&n2jVk*wu;C;HpR9=`bw*dP19BB*;#Bnq1HX#9?;8J@zQGGvS}g zh3Qo^g8C&h{gd954VrPWgPeC{WEERfK6A=1@ZrGXbRz5!d0H`|q7;)m$5 zY&Jm^X#i-N%%W!T05YWI^&JHbde8>l_)eAs*4P$BEF$eg0|JXi5nl)PNmr4MYk_%a z`Mz_quv?N5__9@$w7r)vlbME@>DrO7{|JfYkj#J{iTaLZtQI7}c%qeQ*@n($4!D**@?r{GOu z*!OxnZM8yyOKe}B38EzwYDawBDyOWwz|V77rAz3X`81+9tGuB_yMZ|RRz*i%la|wf zBVV;LF(F80M&M4aeB20RQN3)RP5&&-s2C(ngk;#yv z?@Xi7F9FOdfBJ7fn%3TShRa>mjtFz?!lnj6#AX~WysjA7+mmEAVLI24D6_lU3G zS9iUTJ>3(Xe&Kt;ZzLgbuJPW?ez=PX$+46`vV|0Gagl4(BQ3C9G*x%v2T!4YM2{_R z&}wajs8-dMdlPj)DngAXA?U(Qn7T`$_6mm=WBYf87Vi2SSKnyCjMTjM=T#XJePz8< zADVgln@eIDH47E(`2z)(U6-0|HL`JH>F6DkHjviJjT+(G?>MR+lpeAgwwscGpk=Ii zS#poif`;m}{+vhfd_b5rG z{^l1f43QOIU~7oSvC1F1iS{NvZdGzrGL$CGTC;|OxU1@$j`ZY$gZaMWNQ4)hu@kIe z2a)Z`Y)9fla;&6+!=`q`zQAg<)q1FOAbK`IIA(nc3^xQDojvi`?ZkGikUiKrtjv*P zY23Q7w5^HEYam&PD4RiZ^Mv74ai`03u<2nENp^-B9=RivHTc~ZH?`h)l#KyCP{s!Q!a;&b8k;cB z>S~Xv_AmMM@u6}=w(-G6$O~p+PY9=@<}S}n68jaL-mpxi!mv-K6UdS9yMQ){;VA zObsVERsnWV*@@lWklaRlHw;ARAR|=)*jA%ha{x>71#K@5mU$?nET?L4Y(3yXvuC?c zoXCVP0EW%Qopx9i25ZITGD3>>+Ub@NL}xgY+^P>VI1_uM4Jmc4bB(d{vFnOdam1k4 z&Cl~@=~Yx8*!D-+cgY_qtiH8G9+bMFFLd(_CpNU>lqKUOeV7CiBnPxMT1a+VA&B?8 zvw%N)!hzhD&K;cSuDjO?gq?18nn>gPZV*!`Pt48pM7^@~q`y+Sg)1M;$qkE|8E_@0 zb!M;KgH}o4)Kg&r^J$if@w??Asqc_y7eDBd@;s>)E<{|Squ7FnPZYbVaDKPkYOM~~>q z2~IN6Cp3LE!CygqDZ&*sS)T7I zQ?HXhSu&&WMltd6}!ASWTB-geYGu&MW~MW)1dFu!iur4~3z)8>lDpIVmjRu1IH>GBWPf ze8Egyki#nEj5t3T3O&Pr7(ggWXwX7Kz%q?4)5_~mX<(|y0@T*wp9a4Db697*5SeyNrn-c9#(2)%}YqH%U2!B z^2yejWZyE|Nb6D0(F5m8-h&4Q?Z5k4wk>sm)*kQ)2w1PCxCKTmcGv$nm^z>bQ$*7` zLJD~6Ym7(nUmRYJGB*|0Q2L?sz7l+TBDF7$`Sq^w+I)@VWMeJGT)t&jndHJ)qlcg4 zY3`4t{;O<>$37b%fsHOO`Q)-fx0|z_M55~So_dO;i2_`5(i(!Fz~7$oR*VP)bOeah zC$NRg3Sd*JnDy8tZ`Li7;f926wMAS$E`U-;kekKps;cHXBpN2zwG=>3M8miY00n6w za%#ji9F-%0%pXaoZRwZ?>#d%mWUz0?^tD#SMSasJGVQCQVWPdVE5SfYkYbSiMRAvH zU=CzdQ?mo?J+MwSpu2*KnG}GZ80sIu6z$@l%75j0k{20*eINn$`aVcP!c&mNxUSi> zKZP2ds*RhQjQFUzmWsT#qJRs?ZTTg4R?4UzSjI%Z?Mwer(Duaj#QMQnX97gThl|-g zNpibzlf!b_FlAZS#Yn8S-c>Bc@4fOGUF@ZHOj18{rTVLP)~L!WhW??LQ!T6GaCHie zL5|*~Z)Lu?_6zle2m3VvMFp(^u!ORMn+0@3g$VRZf;o`9tKU3C&Dea*gl5mVi0R`e z9XB42?DavtOdtuAL9$`j1@DM@Oo04S11uJ$|EAa)99t--(ZW!s31&E8)$e(WWn8G! zH0Cjy-_jn9WQb67Hgk7w6?8F}2t_xMiO8^eh(x9tRL62^5*f+b-Exc;^&cW!pFXup zP`s0t2e6GyF34ve_y-7`9D$wNW%L?GT~#1QlAYiHQoj-7`PHd&7L*td2k$dz$O71> zIG6|OpYX|@dDev)_35B?3V?*${t=CHtMDdSB}1gNtqWT+oh(~+h$^-Rrc~9k!=7x- zPmSxV>5Ig6N*v(gXjONY1+r~4Llac|6AXljDXy(JR4nAq*n$kBI_Cx%)p8!D@d^Xp z{N{AJt8)&lkY(`XyToG$O&vF-m=+#m&E`jmrQ7PQ7+&}nxQcR;@}ZJ6C<3cuxOvg zEU?}0kXl-B`-#Cr>gV;gwl6HxUapw7Acscuoa`1R(S7hTAzOhHdvb#=p5bGJ+`ZN4 z0Y(rsi@sI!v>7$9e!n=bSFb+l0M!Gw93oMNSuT@|dwz*X{Yb2)`y_?YY-n z+#IX#b0pjFvUz_pFpaYLoMq-qt?^(5Y4jmpW~uOu4{h;0Bxp{hulKAyEIVhPSFzB! z6&ynM5_UrpRFOh6H%O}H%Xgh>lQ$JfPlKnFM%ToBrCu_76m^R9ovVy-d(~tqpg;IH zCXr17M+03p$iq0IB;c_q!VZ63pjmMD<#2N+D$ve;kgy_a7(9|6c{G2W7aJy2X`#QU zUc9Gqdcnaqy+(V^c*SMDEsh<(W(`>VOWud$^!Vr!#FHeusY1Lb)W>Dc%(ZtD?p3Ya z%wsO~uIHd)LvX&oF;<~-pAT)JK~S=^C@%A5iR?tzWeJ2%Fvbh&Fz} zC=HmpLES5o>g}c%&nWl1hYfAytX3A`y}Y07$GU0p)!N97Q~@)aJ!3B z4izcaf)$+9!aRj8X_5m8wI@ba&n0ZiehbsWDP_`Q&}w6~!=s8y@3r_YeO`)g@SBhk zy_yPuO?wktoaoM+5x_PR)viZg(Ei{#c$*iuXWt9pK`;PmEg?k3$h;|V%z|O^xm|r> z4DnA4HRHnYgyWm+VY;F+<6`#(CP5?<3pv6ygChPL(^~V0%;#k#f|OJ^$0?XG-a3sn z=KKnP2RgNIe&={u4fW1>wM;Fp%US5`SDkFcM!d`4n!u}yx z5j*~#jWeSdL*iNvoNp?lG=buDQs5|nk|ae|GzT7^I#AU={QlZmm|IrO}3w$c|hv*Nk znyMhxn9kFQbv=t*$%@KA7h7*5)`6US{#H9dmg{E{vbEAMY3~=GG<@EfD-Q?NB1;L> z=obNSFTI3!0Yi@{x@4cC)#_Z2*!bPiq-m7To|-EsA3>x6RHqK*S!#3jVwuI`$O3Iu zJ{q%Y!eV3jsA%g)X*bU@3dxde7h-^vB8c+`n!Xl6YJDc?Xh&^+|5~D$8}85Da`&SH z!+Hk!uU+6yCx)C^I>gbqa@scanTB3fs#!X_4pZMt)ct)p?1=4%?TMWQlAJY2rYK2t z``zMEka(0Q{Uw#p?Ld<~)xf3WiDnhFL0Va)Xj;-R*%G%IKyH|byO7CMD&|zA=$UG9 zHOyN!0uxGR=5v&Znw^3riQn{(9pQQds@N-J4>s8e!WzOLBx`QY(amC(? ztDhJpWT`eL0t_jbl$Dv$PgB&dqFHZQ7t;bu4-)0!r78|puB_n~38Whwy^2Vcr^+IA z`39~*HkCmzi9$tduyl(w{kwkE9=Om2i=i^9Uq<1c?e#&Ro@1#-dBjw#l=Yndx+a|N z{QUW1X3ENTWomIA~#iB!oMdj zcN?u18uou`OIlIB;EwCIuz*xB$E_hr z$#ne{qr{G+OC7BZnAG;Dw87Q;cr_xS1p+T|2p}*V?XUUal3Vx#vcfXLeZcm8q}%(| zPaLjRA8x+Oo6!G_iS|(Jh50?j7EX23fWwW3Pmc~iX{4~ z;tdno6Xlm?uI!er)P!`OIP9+npkJ!3U$WT?)ctc5jU(m=uN>13kL^!AzJ<=wu`W&rh{yD@DA#$0?U(D3r|7cFTS~wO4wJ{1^J?;;EPw+a` zJT$geL`gjfh8Ios(1T*aTBb(bjii1m;_8q@z;LlyIX`bfgnd_WY+ju(=2p4fAV$e0 zvjf|cc1L!vT$I*Mhx;I!L%aTaf;n?(#wI;vmWuo^L?)}J83?F!zEhStE1Xa7yr4iM zNo6bXZMzO7Tj{++7IlvnsRqT1q?!{BiHst(;PfddBy)R~KpU0tQ>Gn{Jt|?pEEb$B zX`!hF{nC0nmXuwTfs;ipgCjidNrQ5-(zMhbE__d@&it2PcpWzHEnj$j^TLIc6eMyU z83E4)OE)djio`yj^H{HU)M>4YWAPmLzrV$mEdCz-?Ut+N#xL#0??b1`IN9#r zchrF(NG+Idy&qFciNtmb$EfQf^+uz3ufyo#1>*3={NlFyCx+@GP-pz&4B~L#{NlWZ zYjO(Lh%$>cN?knK(E~x%$?q0@!`Ud8*Las;WB()1KOFyus*A=A^=gsaw_Aa?sE==# zJ_1*+$t3*6B+P5CcQ;;hCdELFf0L-Wc{_KBSzV87juJpLAO30_x=DP{$sdM-#l9vk zFPRK~v`fq?7A@T*j&$;eqAod_zp>fUG#&n`qM0M!#o!l{UB4Kn&olVqXGAhrmaAT> zzw?b_b==lmWgj{Z46*?VJr4fibNW=Zf3@vbD-2w1X4c1d`lPCJ zSq)_J7SZ|~Ek_3KsK)K)iut3b?kEA^ZdDgRDSx*0mqgEN0QPS?oZc?w?`TYJfESCR z^~IUrbnS6P)5%hVB<9ro#Mll8K+9ZQTwG6pfwn8jl0sHJNi4$omg)xpCm0j(40usE zkHzCNiJmHN{+Rwe{(ddz*^jeq!G9k~VtPgvR++PjI?-IjVYjZ3 zzL36XWXR0qdOpcXRz1;;IJO_#l{mH^OKp*7d$^#&~5&iz1 zN|IlQ%2+{L{NsMy*SKqWzu4D%o`G0!)HUs1lf2*b1a+I2|J}*u?b`88&&p-U>@l`| zQ;h!fB=epQ4+%OAHc9YDXeiw7Ow06AsMcnTno&bUXPxx)L<(h8` z#bpb^+!K~UzHJKXin$MFjEyJmy!B$uFzZ?U^RL`!26Zz8Qu zYQecGO*bHjiF=7wz|#v=_9}PM$YH^?oF6g9gb^RX4C@Nyl#G#5**(F)!r_O4%x$Ek zR5ABtLakKHaIL_QdK&gnn6O2tSRwhTmzl9)QX6q$Bx&L*$~nk&_!c2}$;q(5GOKoE zh+<)T;xY%YmxE{p$yitC#S;Ww$!yPg;X1%S4h)@U`K zw0btcGNF5*7CdSmTiCiZrwGNzOzI!b<8hu!%0VqNLD#OL1PL?;2L=K=Pn*%7cZ>YR zR4t4A`FZDUsSyg2l^j#RAZ+(3ijt|ugGUc>vF<;(cMk*WH;jAt2_6vAa{o^BS{?H_9S@(WYXX#*{)Jo38ZZAVNyxjz z+`O)F5(cx{y6zLT;Cv|!_Ym{14?%A z&$&tjv$vUrhLGLX*164FzR#5e4zTwR=a(rLgkqzL+!=^L(+uNO20fp*32Ml&g2x+- z;?&k-cNbXF1)zW%Af{cKm~4elX{`b-{O#m3>wT6O=<9&o^1$&9d#+Rb5zX1gk6QeB zt~%%{APsyL{DaV>Rd2Uz|4p~3R7PAhM-*3B_N&RMiE>Z>9L(Iqh?MlxD2Ew0?w8Qo zj_)nweA%0jipKXsdyDjWHkIq`*<^NM+khgP}8yP@UK^v}9pc{>I8_eEG+y(UWZK_Bc;HaHFyLc+TF_Pb9%SBP7ded0Qj z(tB=aKlBGbYO+IgR1oTvJw;E%*M6Xr?S$803ms(^H21C%pU61EFJ8)%cpNtCODC6* zwJ=sRmjn84@rHwwUobK+eQfb{*tllj43teNF*bkA)HmXMTp4)EU(|iKS_p%v)Jk4V z9mrxAOv!;)wBsH%zBF(Xx3@TCneh=)VWwVwWhI85QDkhmTD~%^?e^skpnbZl*1pl> zukJypUb)S_h=S@Z?a^TAtsU z>G`m~^Rr;fgyXYHN1JLx5b=aI^YTxOGLW{!rT*{x2IZ*O-Bj_EvG$q{2Y^kE2PID2&n?Yv=WlLqv=6YX2^bd8(73}W{Ot5gjtg3Je zoWD}07z;@6CA$@**6~r99W04E^L;gGw_0I9bDvY<j3Z@#O=eTS)U81pfdS z^>U%YY?A*gTZ{O>yj8-shJD#ayW7V?5~u(aq5o`R?|Mpo;ruX8fUmxxSu5!3(T8T# zhb6LFG@Ap2@GJFwnl-kN9qws1(e&<1foUqNnF8n=nM!JfSeG)~MbBFDKZ*q(e7C5l zpsILa#Ppb`LMIz^DroLsQi)$bz3%k7!?>^uX1|eaN%+APUJ9Gq?JLzzDBCYxdlwr3 z|A_&M!wVV)#a{0tXhWQhJKV6>ayC`XD$7*YgoOt;>r<*W} z47a>;liqj`+QvfhuF5WZl!fberSA*t_J8zjX0ilrks6*=UlEJb-lBW*9J}Syg0G&>zdshSy$F`esw|WD;2@Ju7 zx3)##Ip@YRBz2*FGtV%na6-H>RnIr>rGiP=1pjfWc9r2H8*>zc$5>-iU0FiilzMgc z>%(D}OsM|-MFt3IA6qz1(2q`7A;YE z`|Lcn%5Cj6CmmUM_)(c=w_r=Rl)mt^AwSs=5&q_Q+hs&&n%=^q*24#8YO%Fcftd|o zLfS|y95;MpIzf2SoFtB0V_>gSnc4;IY*8^U!nMurH>Q_@{)#aAM1 z)<{tjs-TYz$4gqcATI*zvmdg{&dHBTRuavGGK^RsQq#fX$w}i#9eW#c)es7q@d^)9NQiAMqd7GTj8t zS6vPtDhZO@`JJ3+0~lRm2vdB8XY6WnKe7(Du7ws^KEKHq->!=5+)u7~+z zu069_h}wnzo>xh;WY3nR`LS>XAJ*fNT;JiL2bTfqfB5!&kn@{rPhC-S-!H8l9*npT5_!?x-?%dClg%C1+rR@MCF3ANtLjxJz&cE?%4U9*Bl z-3mIgfq)HVTU2|F(KeT{d(`QZH`MkzCUB{)>+!AKsG5ka=>>;F3^Afu0?$%chWd|f z&;}Jt{Mmk!l{_&gQZp2mBd&N?tUGKoA~)lw*5zqGf_3?pUP+EK#!rnuf^+=!uta@GL)kz z48>3wakqH(@+8Ei0WJ%AgUdLcdA{dauce%Ygkw00u1g9nTFaz;_^0<(1j^)L`lQhf z_o8Nhhh4N^y4j?4_34L`HdBA;FY*ao8o*U)sF=o4i)-Mhd=z2|Yg!j(*{oUcbXD0u zvMsH90Yvn2qg$KDrUgbUp5*tGmcQ7~P~=TLS}ZDkYDi?q!QHs&noCleR;OAHl_i~} z%2lMgxm@y>7D&yePYX5k%6CXxJ6md9>QWHp7{=VDH@xSPZsd*}ma=ibBKWYnTP16*cvoaOQ?elfB3e z8CdBa52?{>_=pQIFfnb_B*Sbm-ndq|SLw}SkbU|7N_iu$TjPLtup)YkCO_DMXOU|@ zZJ2yo1jRt6h|78VrsQy8jFab3q7`1z_v+9>C8nct!tJgdow#jv@)E;!Fe4&oPL&Nl0L&nytCCc@>dG4zSjKcXRhI}Eb z$TZ*6mR+&eb@9{r?BXoC0d>FEYSMj*t{OYPru6ee6PPx<5ZyQ8$no2CxS38tIwpOY zIaH(89k{hGtULbu|FeqL%dG|y=M(dnm9UZZ@@z%>tL`Q{2{+)L|M+gS!=o{9|L+?^ zkQG2AbdsDw!$2w9MWb=C{{OSMv|dGQr%^JhT++b6v$bfZLG$!iJ=M1|=JwXE|JjOf zql}HXv!5Kj**I>@o%b>fFF9fVLHFONIFQ=g5E-JEDo;KV=`WVIvSn}n$-`&|#-fIT z@MEpl6+V|}&zWO@p3Xl~csJY_&$zig%YA6nXSxNlC?5VIl{t>%Br=AZBW zy77qhllEwbE)_|&uSD)FTwnY2-`e(fLp&P2N&f!mVwJZj-%zt$C^y>sw;Xl#Q~m!h z5)M`(?J6UUIG$+vi+7EGwf%o9>!Jf)d`OgWX`f8&*-+agg!9HvRMex0(R{;hByh$bi)2Lgz3Ow!f_{?N4j_$MF6X?%u?<0ajwFfzs~C zf2$mb=-^Aw*5Pjp|E3!nrX&TW-Mm?Lt2i6#vG!U6>2!q9k4tAGMw5ECU7p)~7;k^j z1<8cvjT~np*MhJ|+S~ELg29Wpe+r~1q#QnLRqC|cjLnl;xcnbV*=+u*idAHszA;{C za{}}~R%^2v z!9ZNSyuSro!JyJ7g8zG)|Lq2~1%{V5IJ-Q62X(@K6%MS$RZ8zOW4&Y(UAFW7x=zp> zz1SuhXKs@uyz=8O8T3s8V$mE0dG7;v-{${I9RF7Jf65G=4L+U`R$KW0kSLl>EHt*Y zyYv^&|6{!**^;tLrvIoVakF-mt-#Vq*%a|W|3;~1Va{gf{QuON4f;{Gq#WS#W5oKm z!v8x$l8up1xcmM$OE9ECpUF$DG;F&?wJbgJ7yqMwOL{Nn5sg3z4a;Aq@s}*naoV*D33|6QZBh>#jhx_{c$KdS#P4gRB(vQ0pW$)2a0hckdV7vIUT zI}#=U${rBjfayKQ+w|=Twk#U8PZ;)k>pDmEf31MfSV-r8CiJHvnlMA#j+6i6XM=3S zwsK$Nv|LqS<99ru86pz5_755ht+{H`3@8$BHtV!<$w{lPOQd)yW+5TPbyd$MNR78L z#P-tqn#e~kB(8FijCBV&g#f{Gh7HWopI(ll#mM%5V%WW(q8<@{U;h(BS+MT*L9Oij z7Y8gecX)Wvp^fdl3L6yiCebqNd|8m@1M#R{_Au#k*N-mV8SkcByyLDRlpeiHFCO-q zgi@>^ZQ^ds`+m?*41qAKjjqM3Ff8k9@-w<^A_8l2)i26ARK zNbTWUQ}-+c6=lrdg~_QkxtcWia2D|d{GeD%D?&3yY$RrUQ#t;?J7ZlZ(^MVwLg_r~ z5LgDYr|`RL+w-RnTh-~6f3vC+-{)Qa|G32BY-%Oq*$3ZdbX$Zc%3EGAw%!FycDP4< z&OT2&)=SQgnX%{3juMsb+!`xK`G^L+_;@g`EM(SFmR^nf0w4u^ojz=)ZE58{W8LvT zUM#KbYeZ%(U9GXDxp0e8;K#;NP9hl=K3)fN|K8ZWKmMxMss?av?7S!me2u8S$k{Er zVExKtI6b8MrtSt7t_G(qM@F&O23mN3hmjv3d+>wAdO z#$!#^O$4O1*C4|C7f0~1Q6oU9M}I4I!m<~E*2RqC9$3~H7EL+03E~{tkS|zj;s2W6 zfKs}B{BP133w)@^l{9H1>!Unq&TUGrd4PLijqT>B%tzfj-HWuSU8j0R@t1`?^T)Tn zOLsPtNCZI#(SiDS%Y`?pA$E)ptD@gdd!nMHUby>>?`>FqK|XnWo^~+)F9Q!`t32Du zL^KWE8oy`vIKP&Yc|HVb`%ts!t1T#!fNW-z5Y&nzp$@yQ3Y%+>;cnfgd|_l)e!7SL zh%R;stCTb)AJ=Q1D*=>Qew&V;?|;x;=KyJ(Tfq1JSlXlVFxNCC9|WWcGCRZWp^CmR zd34HX_1Nn+!t?MOmuFP?n-{jvjtUvnUr?ltSk9~x&v=b$uoQ~SVhuX`ZnoiEFn0jj zI)dLxFMkQ74+v`rlxvW642EiqpZkG{mkCzylnc}9EhIf4ZX7XPLpLyTR@Y$->l%!; z_+cD9%KHvKF@&eE^=MO@>&wIhQkGN23#Kh9#t`;+fe*=4z75%Ni7xKi@#^f{@4zcS zZa1j|;7~JaR~)xDY&*StA{6iG-)^F3KA3c!0;0I{WE>&fFTS{P6ANjR#5z@e zAuH!|#$0^C7vn>N4$P|@&!``q?ZX(l?`DiCyhywjjU2r${8Z{WP&CL!-Xy=-#L@l+ z1ky$K8msYeFNUNN$sfCrA>)Mf31qEe4)930@=lt!4(#JUgkL9~lO}*hJb&vlD2ijk zQVTfi_|;!Y1wLWh+3k4hRKIsTJ6A#~@W;DG6QY*qBTUj|egrybyxDuk-|J8q@l@DZSBp2C6nLl2j4?0No`Om23`DAT) zjKI8R6~B=b&*a8U91BshX+^^xmOQYu^Jf2pq;kSI$lH{I|Ei169X_JO1H@vvlsXWs z&%_F?wLDeM7+#oTe3$nMCq-cc`_=X2ehe6W4`-n z*reqqi_2C)KF!0%KF2q{9zm*qw16+9R;>4Qz`oQ_voWnght543E*avGXk7Q+TBUwM z*=2pd92ITo6U8+@vm)pa55>F9RR4(CJ>)d_X_nD%=)$J)0)OjKc3ns7(;aYWA&Egc z2Wv5dgXrtL_Q}(fUV7)g18iBqi&I2ufJT~8m0-x#u&^FKv@Uw+=0g%qhH6LYFe0Ss z3?sXW;!$|OtP|TsVB1rMxHG3iWp`J+FRpJJx&#jM zG)!<-Be6za&gGtC)y110zMND(7&}(7PGtR~p~iFvpEY8=O4!KmaiL-8OgT2POb06? zhBe!DxjZ(ig7LMX-;{vuRzY8IlD3}n-N7jqN<-f1H(9^twkSfGtwZ(oX9898Gi!>9 zFRmMDXM1tv^#hiQb}o_zZW#f+cc>r!#q+MSjc4)p^qZPtf&R;@p<33H@hmNEN)~^T z*rY<^={w*a%;BFFC| zj*^pBpqYF2^b!%0HW#rV{RZEqAKjTRt`6*TCUE{`H>y!R9GpPB0=*r6SsX6agRF?T zP|ta-a2zkhNUJTXFt95BgKfmNV!SHtn8FZ6Pp>l1DEGmoSHng~%q-5cy_J>M3Frn?-7s16!rS})s5Q*hl8wbPM=)%~HuiJrW(RDrrtxvM3zQznrm-1i zWo`@Nor`C`_L!wU|JOV{-#JMlS=k+*KGKMIeYG84bG1AjPeWMNM_Wv?2^AZYxLhvF zj{esB1g~!R3`iC`8jsa~q;M@d$!OZ~w02TA%;c@1*Je6;4@X7#ztq20T_z82Mp zNd0mW1zmO(Hj-B*-xMYDB?*z~%~OUx4eJkxPq?SJEQzc9_qN}bIF9@LW+bRWgl8V! z9gpdfjZerqhazueg8k z*Ylv_c>PA3Nmlr)Y%lRWk@p&uC5|tZ8|0!>X#Ct6`k1V;oT@j>w&jQW70GUb-4OiN z*@w?gCF@*Q4}Wxr)V=zK67mv8lN6Nsn4wrGM2=zv8+2*FXymPF-7dN@fA#h)tln=^k z7_$+E2f>~n1VM(udF?)#3BiQIzY~ao^Ol)k-$(4}sM5)vS)hKcXsyj*N&U$y059Zhbg9nI@ti#j~D!`HD}@rqHW z(U}d9*5+i+ypf7;^^xdOl%>>2X}Gj&k|bCjGE-I#N4ZZwPW&L2V@N9H+4v-i*NF ze-?LRJ{_-l6uI;7QBG>&09jZ}Y1Pe(+B`P$a@}Ch{HD$GsTpeKKm8se!`x`*y3xOL zwfd$oYW(EYxwCF5!MmIBH5ELPKimq#TYyZ!%GqKUVH{BT28Xb|)a|Ih6kK;?^>cZo0lfL6B0U8>B-*=~6&II(LDkq!*ShDTD41q?Qntj$J@lU?~Np zTRNp1q!mQ(Z^5{I?)QG)@B6N6uZw@ooH^%rhX2f*Ip@s$+-v(V2uDw|fmLc1VO-SN zE0e4fmu;znGuuY!4YGywO?Fdh8@lNvaV}?r_2uG3g;kV#hdT9@1^{)8bYhIzGDm84 zVC;>T4s4CxBA_NR?Zi2xHUX+^Cau|swY%sL?dG4Ml+a9HRafszmigo`{Un3DGmUjE zPS_*pBYJ8<k*m_b;&DvK?suk5W}Oj`7x#O6`2u=mN=C`WmBg^jt<5x}k}$8z zYYQl(Fdty9%Z@6GJ#eKv(%ZJ(w@kd^cel@Aif{s|zvwILiBK7LYc^zy=%r!IhN~Z4 z%&drpGoj3|c?S~cLi{oUm|4Y_o;Vv>Wcu>RC@|pV8hLdt`=s%Wv}-R$J^TvCSz8IB zw#ycQ5V`HqQ7?!&@*$7hU;o%0HpPO6uL^XYd_mOcwX53`F*db0=AXpEP2lN; z5H4`qV>VY6$VdYM;yZRQo3>tAaWN$uri(m7W)jDLb&(g7$ zsF&k)Vdb@tc`jVj6ZccteELt;J>xAUV~adCm^`q)EIsGAeY8QpsYMR}LayeJjc3=W zE0wx**#tCQ<6tbx@9$v}FXf)ga({~l;))h@os|!nE$owi)J4=5n|pQyvW(4{68pCK zb8PIpDtF9)3#T`7Zb|jnH(E=B%MXcv!5tQ4uoW!6)v|p5nUEl7Pu*> zxBBQg_~radt}=|qTy*Et^(KRUxo{sFV}$bI4aSum;8Hi&v9p+qcrwV(TbGQru+QJN z^?X|$)@IhWjLtYA$^{5jq7AI#>XPDAdXh5SZbbaOQdkoQH?&aPW0aR z_tD?8DJN_H0@~U{EsU=r_ebwi&+*7%v9byUTKhjJ22ygZGd_;Z?vS}EXtbS#Z%`8^ zg*(iE7_k05a%ImbZ?IBx(Fw}#HvkdRc5Ng`@0Q9BAn>zB%GHYYFzQiY9p^@cY+FoK z8j2U5Zu`71`_~71!$q&m*v>slWSs<-8pQuB65FTE@c4Rv4e-ltD8wfME)q&YN3~F| zK+QiCo9!M?uOhD-C$Ei8^4}UZ`^zHpx6SXt5nTzX;*I=4bqo%+9tVvD z0zR|pS;!!87+hOm9x<>i7iRq$iX60hZ=K|`{l{FNC_V;y+gTsXBt}s?N-MA=O3(>- zd91%$ZsL8!ZbjZ?^MSX`r*|`^fei3eNF>`4CyCCNMW8kMPa9<(6Do&R9X+{Kc9JX( z+W>^bs7GL7Cyuy|PW72;!H}T1PohDt^{-Zdi^ClqgH06lUa)v;>c-Rgy4vVprnBv( z315w)VPC-;O4ox&2nHGzu^M1k9L9zf#F%67UaVU{y*abiiym@kzH$*Fv5ew(SiGll zxpXU^kjfUQZ2Vj%fibnC=Qwb}O0$zfR2$*I;!E#oq*iwl_k=7HlUx|ohU~*;<7SC~3e}0tcyaiSN z5;0n_56X0nL!I!^0(xFt zkF4uci1a~Gi!57o|CE#0nY>!z)OjuZ2W}4N=o$_ya$xeyOpeV(!m~lYeH`+VeFdIR z6DJXghIBcG3?nxkV6oxnt8?n)7DbL*BdQ)1nOfwlbxrRg4fR)M7UajG$m(?upB<(b z*9~dZXOPU=J+)wduFW3iLd}8nngPi7bG@ujY=6ty49O9qPiI@7A29u@D}6DXyL9s@ zD7Aiz?3<*Xic(XqYu9AgU`>}A_^4}Y^*p}o&3f@odDasNW-rEReZFHgU7ygfkY+D) zq!BCe%eP7mxu#d&^c7&yJY@2Xq@AfBz72mg{m^qQzL%36%sGgY>^9_ z0Y@|dY3<0g+6rLQ23z+gVZX+K{ZkoN`47R+X}$MPIN_d7VvJcZHkSx|;KCZ2ZPqK< z70dEL-sO;Qw0Qw|r?RPBuLcPP)GP{Cc6GHU2L{Z{lOCVVonj3A@h@f_>hgqbibt?= zN?~?=;)@Z@SB45%dy34C9lHo6dHU_mx`fhF_!0JuCd?xn-Y_rgyYiUG_NtH^qwOp} zt!QLzupo80k!m6&icYprC#{hpYG^1E6DTs;Y>puDunR1SB|Q`PyEp!@VuNY5C$VLP z=dOEn5cxiV1FFlXLLQf~`G@Kl;Z9Xh6=<*vvfJ6=`y_*4!7qjLj#$Rw@?y)iHKYc< zbVT*g+iH}{D0VsuPc9K9Ay_L}1knQ*=Oap&|A6X@!1bX9rPn0DuACv@ncSu#fjgiz zxzQL$308;K1|TlDDz8Rrlu>9R(<(S^Qn?1;mx!6BFWoGg{W@%16(e2z)oB;;5@vb` z20BX8y-m^d1WOvZlTY2g;n_hK;Y;wP={84Eh32vjd?4!?05lP;4`qLfKUUOUQBPe^ zEqS$~*rHVD1x+T?wN7sfyM}(P9r+K!F^HFpqKqZ5`Bg;KNuaDeX}s7d5f+$kot_m2 zj6g-Z;Cb0ZA)|ZV#_Gi1iQeI*iFpwc^Uqz8ESK^%c92Do@DP=Q$-O=q0kC^1g|dfE zb^>%op+V@=$AA(wnf8*dp7TxH*Q-_mqctySXyjS8<0}$0i;%)8qgUK-rXM(e0H@PN z)bR@$A+*Ff+nPp9_T|RW2Yqf5A${1dh{uv;R!TwdOgp2ulxX~P#b%(#8%%VT(N-df zK(QdF;{YjIp>V)VK$egk77Ol+CZyMDnPr7M zu^L4fz^-9+)WngR6Ycah0+AID=QAFVC$H2qAQyEhPIDS_<(oUn!t8l)**)*mkl{G3 zl9GCP(hvm*3W@_Q&Sl)TP&zCM2`zpUH3A@y+YUorw0#rQCHMyuTK@6I9z%D)!PvJEt!)$7Qvoa1KjrI-On7_ z7~f3frbg$p=BZC>lABLyiWWLtQQ2!G)WF3UFuJ3MCt*y~LZ`dIl-LKc?JSNMcZlwH znc;E+6)yRT_kbgnINOFo?|VOd@8PJsCW6%7Xh6*7`+IQ_jN&b?mMNns!EJa1V^ntx z^m$~n2I=y>TzPGED5Q@!OUG<0`u1WrWgqQB+VRpsF4w|+@AH?AS-{84r3rBeV#$V8 z3T6c#@W|od<0L)9#+XMw-Rr=Iet6er0M$b112A^Yt zdeoN`ihD>{!Ts@i2WnQC?^UPm@XSUw9k%+kau3a4y4 zYEkqeCi|-tz@}0W-t>U7vLtGJif{J*1As7u`}Js72WxSS;=R({uC`Eu;S8HwYK*5f zB#+9;MK*2%;qg_<3voigBzf>i&-MN+JuGYTS%;any&zTW>axsFaN+Cp*3qNwwQjme zPue(n&UiSJlCF&1M_Y_*%>DY1*R-1WCwA%cvY7 zQ)pSpL6VO$D~<__ba2rX7x`95C-!Y50-7D=c7we_sc}vB>D-|#j;096snX@z(d7(UY|$0g zpQkQU*u~#zR4s?+$o<_ex9eE_FX3xVFn_3BO@Bp?ht>+R_>o zGnjqH@qIsOz`)a#Ey|%|EP=Yd(yOE!UxcsH-hV&Eu@a$@(9W-D*rE|V&5MFKjD>=3 z>|>V(kRzAYw1D6=#w`BnRLgZkk|u~72qv?ouh%f z0O}v&Q0fTYp3G?<`=W|~`xqwZh#S3_Xkx6nX8KmyW7MqjhHU?c zpfki|x{q&qvye5WxBU?{;e*YkYg1Sp~-S>i4>sp8OEWtEwQ2Phfo zuQ;6ENiURzy{Cb+S_JFk<$6z;Ra-{wPO{XOMGBP1MqrD>&^9e>7Hvz}m;32PvqDQ5 zcPvY9n7Q#wg-@mN*f(Zev%8$PoT1mR<4WdXZ%erhvh0l=^bca9$lZrtlVDT~>Oi%w z3d+TBAsZ(GUk4QG0t_~mOMy(T@`BeS%-=dwJIJ={%XC+1P10$vQ4^4u^cBteQ0qJa zbETVI4$W4{)M#%84&0eY7Kf8vj=p69lVdG=!qFOMW8YD)lzkUPvXBrl6qEO79sQ{| z=(sfi&{ua)fBmtQicf-bo8k)p7B||5)6Ah0v64fqg;H@G!9QZldTM7Al4Q5JG?8H$ zMQ5RQcT2ZV%W6Gsx**`&^POKyS+#9Y$-~>={*K#UwgpVKAKZ(R4l_*D9LgZ`O5JEY z=5SDLQI7bW!}x`rmIHdo=t!2W9wg8PM+hpAAHGaH#R4_QH-WDKI14f+BIbIEcn}P5(Orzb^%q9kPunKi^u=)| zm$RkkS(-Qr3JTUS=YugadoARU$wyc>CL@m7+*QP^4#suhPx+{l^%5#vmbvX% zps=q{Z_Xyws8srOui6mBz9 zm*mROfNE_yNCKua$I1J{M#$khlMAQH4e?@fsJ zh!UT+x0qyw@Rk-8!4q7$2dcqwA8lt~&>j3K(VWV^{X0s(Wu`3U>H=Jyb$emBZRC0h zjdOt8&1W&|2f} zS`u@|JGkdvliiRal$=fckx$LFkD>tCHOWVdQ&7_BdrTru+ErU>-tQ81Vgg~d)Le4P zFW(3>XIU%i>ki4w(-Jv2(RIaAi30eEQ`O=u=Yumh^1z|iA;(2|VEAA`#G{$%Mq{uG zUEbx~t}*a5z^3$*W3mt77G?n{IMVi^{$5>`c0?)1-G@Yvi=%OT^83g>*g_d$!$=Ck z!g6R8+~OLm_t%2LY|F~Y$zqpmS6f|u##0!Pn@<9$*&~~t(O6l=sAH8ZEfzg_BYR!> zL6=Zy$=Fl*NWIk+#SLC=7jaDPqH&VEx~+|`LyOUU><)RT#{03r(8|m&F`q8d0AdSi zo(l3z8X=IEJ@AsJj=J{(6ea8ut`R>}l(;W^2wF^Kf7>;UIMZG1 zm@Wu>^6|n9^BdYBn}Q+_UO4&;gVZ%o@h~Nu)Zxj{-m-P%LCX;2aS^0ay+SCLe7=S& zXnZooXmJ7LN!n#?)j_wlaRo(KZ{$2ks^%Z#rbNYI=~d4JW)-$w!rqx9(Qo!BCB2?M zM5pp3h=#JZo#;I~IQn4ROxD0qK89JwKKcea%jV-C{(5KqeY(6fZ`D5xA{trVj%?wB zcIgu}byYnYoB5Te_n9p!WGd^Hr{@}`q2J5x5XH7ViH$~a09SVaFx@VQtfgk%js6iX z$n3q~;uYJjR&yN3mu+}K+1BCX*^%iA%0G;F1C#5^N&V9wA~dn~Ar>h^N5v7aX01+( zSn99Nu8&_vi5q=c`UbRDbcNNzMk^G2`;m~47ajdA7C`Qgvq#(~KW8h48v zTG{2Op@-}2c8uad-0|im?>#N(pNk|FH&&~MkMv|i3-ZAq+PJ8ruwq#gWnLG_qbj5$> zpiE#{s)mb@^z_|Gbj0D4QPj4C$j0TQvy?BsHnw|Bv&;4jc%=$WE-D#kol`p<~gHbz2 zaQY51A72Fu0~T}bzK)h**02!Sd5^qZ`L^1vgl^6R!T52!rS>Gg{OO_- zLqq)SbpE_<(~(M%6eNsGW1J; z=})^UCpgBEbn1Uwc$YRasNB=m5lt0J=lU-Fu{;$ZI_tDG^7)39%5JK^Fgni?X>XxO!}Fi$h6_N$0T*IorgMmg;vaHSM7XFChP1~ z`BmvK>QZ-2CVv2vH6MF5IQ3bIc$!WrNo@*u7fb1YcJ_OZ(w08EJhn|9>!`g4ReIEH zy{ofQkj;QN4sHbWcyzjcT&%jQK&_5El(!eDt2M$`{mrQ%bf4wSZU5PTDQLWuw`C- z^9-kzvBW5Y>~)YyXNX!;8YEt!7B9w?Y#?gGe%l^cd#d-MPrTVd#6jRdUfr9gPZld8 zV|_`NE45Tah0s+sfER*I4)!d}B47~>rVYgJ!%@K9v#-!4d9cZ0KOFy6Fvv*aN@=;m zXB!aPw5X_EX0H(?M^^IM@~!}|cKa_3yw&;FmX-<iJxfDd6@HF9PIPbY zY8@u{ZE+Af0fd_3LvKc=`U7Acgrs^5$2?z-xUq&&L`X&9Y$I^pFf>W5C&-mv>1?p7 z^OG=*FI_RkE$Xq_YtWNybv;wELQWRRFZ)h2IlOSk8#_NtHo#|nydOS9!>(i5xRTUq zQj5^v0~OUr#$yG?;6;l&#rOh?<<@8dYK%;hqmWe^^IIwzaQh%d-(BtAM-79{#Wm_~Pn|c*s50tA$rb#V^E+Dfurg}i{^`A% zwNFPA4B8$^FjyfZIxYIp!ao9x$0Z@RCCsh^(Ob?M*9lPqv0;&?VOBKU4x-GkIp%DuiqC< z7wsQ%h@qZ|Q}q3$b@qq1O@kZCY3FD)3qYbAlNa-1KSj+=U4h!Q{ z&8N|sd656{?NW{w^$Q-VCl}QWwlA-mwaSY{9mkQuAgV|!+&rHa_A>Qjmi;$}HBXgR z!M&Ecy5E$cw%MQFgi0NWVzbr_(C4O4YzF97I;Wj4y_ssrNPMdFej`6VVu5PsmLP}_ z1JW;sQrxPXgiYFfduH<9WdomJ7Alm- z4Ksw2*BejGOUIlTkrL8|=F3@|+BwW^@lOr&>(%A3mBT~Yz?H-H6|+-W+aLbIke#GF zr4|m!|Gv+1Ysa>Zs{zXEco3BUGNnAby_uKN$;6<7g{A6NGExR&kQqa?Uyaqy^@}TB z)7^Jdr%~k8Jf9Jys0G}bO}n{V>TK6A@y_$iC0Gl>_W0TSicSVVAtlu+ye+Z!3M^jB zQ&s@spPg{mW^#vkaa^JF4swdlp71#faKFo-v`NM;CQJBmA*&~<<5X}ga{9K_ig|(# z4`rrmbU`oLw@ULUUJ3KI49d>ouIp?VOR1;B5m22tGJ`hS_G@=#znh=g6s5_B#ih8v zFvMSZCP9T-YTU^m4W49d#5#_`WV$wMVv2e$7tfBG^^l3k=8-$C=Z z4tI&hYdzTz+9PgPjgXvc0Wavf<4Yv_*4+3!a8H;&|_ z)(Y)hOP47KZsQqopMz>oCZ*YPv0EZ`Stg8%a)Lt*d{>U{?vk zS4ul*SJZFk7&c}QW2$7DIcJa*2HudAvY z|07u81M!iSIig9pF)j0^y+Ab^VKnIx6%T)#yp#a=e0Zg*9>5(#mT%kdKh+-fz|PGo zy7xGgx~PFQ=C1Kskujlp?aa&+K*cu6cRv}JxTU`XDp9eUYb%L}a&qN$->dRK=}t3# zeNd-ss_U<3=(S6PKW`%yEj!Q*G|};%I!Tv!6}K1s5?=Q0(Ufh<)bEeF228}cxNdb0 zG5P{;!-sJZlt`5=^OnkpH(WZ9f%?^X(RQ z*X5q(&s`+xG}kdo%8h3U&|){~kWo$C+E3=mfdvt8zvSX;`dT;>nGC+^{LS*q0#tmW zz;*U#D+Ea)Gq3zLy_SXEWx@q$B&X^NxQ;pIeal1%##DNEPiGGB7bxdG6mIF>kthp} zM#tyl=a!#H^2(n+RVH1l9uUi)u4S@~=pxTqkK5{|vJTZ^^0n*M`8`MdAgvBmK6b^u zmL9F6lBuR}T>O+*>Lb)`@i0nszHl|^B)Gy{_OV;51%j=pEMTUK*^>oll%4?VoNoG? zyZqsF4&=c*ibc&4*)27?U~ElGKlJvW!tz)cEQ+onFFIe~`)98EL5@{xo_YXGcD$)a ze_?coy!mM7HLaJey&?7Z=C=>*p6w*K<;^E%;x3PaKb^vfqjblnX~nV&jLX3?-oU8NSK`Ol45@CesZJSSvG<7gTH>C;HqzAIe5~ zE@NRA{%Ynk6MTW<22i^JJs||)PAXAkA_v$ZNq6qvSOgp2x;OQ%44;<4n$(kVxG1dUV z2`#?1UctgPC;fSp4!>t&5AxmpIdb7nBcEJ6l_dXCX8bZdZ)*=2L~J&;Us0#|q~OLm zq}N$@{CUjn!X6Tf4g1cF;px8)-+|H3Hco0O!pw6}L^eKck-W;Fqeek)X^dOZ1e%!+&LEA2$1Q7jn$ z*ZwOn7$>&11+t!E!|U{A3Ka)jy{p_Js86TnI=F`nK})q#CIa27pXvZ~rf|FLmuDdn zC}gWpA$dyF+mla=QNYlKwtfppfN(Mfix?NQ*kw{j{&D3;htCc3zN8{*-WX;Rd4Gpn zp+~D{I?7B;6{q^XeAk4MD;n~{8z|QoeF+}hh2_b5}2h2=n|Wj>I=&a5oG1%}Vii<`l(777}6S zLjeQDV9#+A{b~KV4wUyUN!*S3S7j0{K(uNi`!ytUzC;653FDsA$QD+}K0gkYv3TLh z&-;+a$pT2}bIXa~o)I^Sz0Kcp`xZJo=*8dsvI@uE>HmsaY$ zrew8@zS8-bhmSi3dwa$%YN{lDws3g|n6llM8$TMN1_!OGFvEo!{pgBYzPhu=&$n#V zlTf$MKK}acdgY`|d>^So5b`|}YtyXYxOe`yN1ybz$=8&d|H4qWiGOWVqu;|FQc)^6 z@$1|An%f;g8NfGamKVeEcMD|8$9oH74caG<$D7zvEj1#XlM2_8J~ zrXt;dlcO@wM|;$co0m;GNbB7^jYsu!2L>1SZb?Qz8yj9N{AGL@L{CN%Msd2w>k7=r z-odMF)Aq)fZU4e>KBZZ9P>sbB4zCV%ezmv7-8mK)1DlrAS@SM~72KXBKlJX`>|;@& zps0yoQ2QOex8k)}I@U?uNk=nfETg;#ze$|#Sm0XaY>6a#5jXgRkTN*V01Fp`nPfwm z*Tqq&*}L}B>qSf*Ag6H-i$o(Aq4 zw;yIj`|4tI$jAl;#o}S>CYe^UTWZ(++f@qR-QjmEp5%v?^T!)2I}JD2x?VVx{uzv@ z(xkbb7yf3%Zvn(PLD%UQyqHFo5PaLg5moAP)tdc4v;Sk}yH76-c!*us8tjI~NVQ&u zffeOAFjnsI{vD>cQl;?GymBirlxquu6dwSGO*$~hw?vZ69^jLO95belIG1Txwoxue zJ=?kaAM+FjuK0TiQ-%>p+|vHcUK8UkTh4YUYC16I6ay5g((qoyh;pZRy{p#tpH^|a z`<#6mgqTmSU)@xz1ljZP^AGDYi?I#he-dhaX3FT678rn>hSQ>QL`k-Y-^czL-gxTB zm3r3Q>KOe((K~zhDqNo1)z`_#kJNLlYKyVs0H`E_Z0h?5o7{xX4Z@>RHCQgH9Q=89 zJ5*=pwc=Al3QCL?Mb-W$-Ee9zzRUmAUlvpL6)C%VaDH?zq>SHR3u!1S3=B!45cSl( z5vREfsP6K7*-0gHoXLFY8C9d{D~q-rJCX28%Uc5FE%o>jW=0*n7RdrVDJ#9Mt72|I z71nrku%7|P$C9S8E|5-P$-OA`*uEG120TgVSF4CW%F?2O-IS+tqsESEv8}M*3NqBI z);>?f>ucw_3{|y$Ss*3Gb1|(z|5g(($R+kl>crtTHbvdtD`5GhDPtqZWjLaBLPyu7Oo9koqYr=7 z?c@F-5>H$+$bx^Qv4FhBYOfq;>r$dVqn1C4_Hskfr~tBeu)?NVcNXtm%>PQKY%0^F zS3{k&&>o%WIL<*-wk3riFW6}C4L)mp=bcFFs0(Cz2D`2jj;~(d21UyIf0#6H1$Fi- z<3DnkwYXY4c`0g_CAo}c=@ro^|2H&8RCvr_fn>WBemr42gp7&dY{gyuT>EI}zG4lu z>&lZ>NqV)~xnhT14}rx71Kw(f;BMxYyDh7FtK-i>ft6~HF4%CBT}A&}WB1`hFZeOQ zj_*-GGty~51bfK^=7z_(S&SKF^$E>uit5E)Dwrpr%d#{nLnVX2 zD*u?jvv9@T>T@x_T8vjiCVLv(cMn$#(J)-adxKb0js(y6w#Jo13`%y8Juv%D@;$79hK0$w=zM5#4RrTs z$Z+Ym*Xx9q*zm;IF~PXtgpeh|i1hFmSziaCI5_3I(oiL4Gv6sLYSQXwl=Bc~eyq*?;EZU( zx_OtWhU8$x<8}$ziy|{2yAZ>sQl9MrDb3Ve+mD7 z6kin2cm5{+e|dy1`EQT^rQ{!vrm!!YX(xY9X-a8uZuWP}?KizzHuk(OT0ZgDZ;1J5 zBka2~c2Mo09s{w0nmvK8U4eHP(?Ka7ZTT<%rc!mm}Q4({ku)lA#bZ#{RNd>Chs&|Ã!&>n&S|Rdl;U_oN*4a(CcV`3^6E?mC9mmu zxK+Ql1jp1opuKkc>=!!G?q4MT5J3Yi=*G!&N@Hm>cma)YOUL?f1g$ z*J@DC8u4lU5EQa#^&)(|qK`Z9HrD8FPfD=EiC+`+7f}C8H~P`&iT`h{{FB>@Zut)Z z{y!ew^cw$N`4LqMx${;nU~^1V_9F)PdUJbw77F2Ou@3<{d3MK%B4W zU%1gb`G0Pfn5bqlU4$Z-w%X7mh9;4+IFN$vKuN zR7%w`*xePc9Ok4vR4eATy6>AT{hR`2@Q}?^47BLq$TzYw@Vaf+==9v=pBD`#EB$G0 zyFdq(+?84a4ba-a;%8pJ?|iQR?P8A4H3Xc&d+)BKaYJD)FBCyTi#qgb?0GE`IfFX< zg1)%_9~WMYoqbf$&xq0l)FDn6rOOJMI_pnvRDM+YUE2$tN>Jg{ZcT@RTQctuu#aqy z*)%#uvp9fe@!u}c^4K92PRrV-BI@BX_cHFR36dy!@Vd{jrq3~*F`{jUk0u^{BQcNC z%845DO21b62wLQ%msrc|hn8%u4=ug>h4dQ#;{yGPTgo31 z_wb|vT7OZ}XyXFB3tTtQeEhz+kWF9uIdz48;PPk}vCE1@Ke~W&asgT^;%Ke7{p&?y zzyQr_Pj6=14&Or5@Fk4lZfpCOU|kB2ZsGz3{U$UCXRFM6LS1VXblr0$&zy?7v;PJ6 z-P(_0j} zS>HsbzR-PM;_y%LapbcrPWZ2do;v-rOZ>v?0yr0<*Mz%9thBL7agV5{B#M6YK{UV@ z#4bDIKQ7R(40-t6p|z1OIy~+J{#*C_DfK17d^jJIb$M1*jn5za>Y?Z!4f#jMLyMb% z?urHFCJDNo(C<(7wdjq0cewx2{V(XF^`-6X><7(9hGsO<8=?D73KZSyvfBq*q(lRh# zbaS8X5pk+MU5Up+0EUmZW%LViWxX46%uA1L<3>lQ&ZyWS7>TD)9|};QLRIySZ4SKz z{LbSsRE<(W_CZ>p(X%I=-n_+x@ejtyl$Yw2;4lHzO-)NTfnAAM`lDDvIxsroThe~W zf*yZ5Wza~Ss#su$cW^7@m{8EJjL=3rL-{<006e92vv(4=KNv@i*~0NNR~xe>L+e3z z`jvOZC4EBFd{WIhaJ_DePkJz~_}7ZDC487`HngaI41(?(7RAHS3NJS3DaA+i=l4ef zZBi@f`nk>>Z&>d|#uya0+i}YqtXi5>=q-BrK0zACdkRd4>p^9ldbpMzlu=;JZuG@i zqrUnNuUSDP^ps*7b*Tg256G`kW9!e*iY|o6_-zkA(H{l43{ad95;WQR&C->KV<2S* zTiJ)OO2;-FTeVqN|NihS*AVFE{%ETz#Vu#6E{{%lF3;;Wj`C?w;M*1 zwe)6c-@frq>|;yd_Q9OHgAl|BezQtz?=a1%Tw81=seHD>Cx&Xu{_|dbfj#BC}fNprMz-VK{yejrV)k@-qD)vo{J``9olP z$8D}QNnWPGPCn{Y49&0#s8?$z)eFxOXWvh?piHi4XJC(EiM!ZfY+*ifH}}DEsfj!@ zqVpu2QqB1RhzA&M|JZ^@9|Kv;c&wZTo`T4~~VXeEoZvARhiL5E7^>X*3 zJ8lLCpLhAYdrYg{ipj%DN)0Kmq3K|~Q+H(}+XYK&g3T}mANEYCA%26Fi}D`Vpjf5M z-b+351>MPsmM=8_Cj3tyP0hai?q zgWo4O`wB|;8|%X&j)xk=6iFb(nM|EqyxK9O6;rUVE`@%htKb}A8`I#Htg+&uqmMMu zp>cV_%{eb3Aq|i0{#yCzECg|QjC-}$CnGY1kOnQEb=71ED-HLo!jNK-hsAC9eI6@+ zBmr52q7@)%fQGK*{xdE^-P@1y1wF27_9cY9cN}US&(!a!T?(tT^{OnuG;c6_{&kZK)4#IA2NKo6pIjT>Mr9x7w*8B@iYWa=ka<~uUK%SGda231T|LZtqw8u_2FqSmfuY>#;L;EY!RlnGK>dkI+C+uxkE_c8 zL&|5b6ZUj-Ps=B{O0^|&uJ+7=B6tbz_}a$Y*MF!-XYXE63bQzERV08AdYflrM5cU_ zVp<)Qx3lmjPfBWf{b-()ZHK5%%8LK=Bdk)R?5<{HdK0oG5hD|Le+TVv+@-i*xApuu zpZ{ek)r&&sL-xc$I+6kPr)1m@ zuEmy;(S2z3m(>aP>FIp`VanxEY(p-7bMu)g!0w@Mal>0TXrHF~94mgl|ec*(;89Xd-8fO`*jgZkcT( zyv+lrHl6Rsz_eB`pz!1z4abXgUsqr~_lua11dfpDLli2TFn{o2#ZWx|+chm`N#dL9 zA&3pp^JDYo(rdG1&I7M%IYxxWb0~c_KVlclk<5Dct@yRI%qgg}E+qD|j;yh3d+<&^VZ0N zfww9JhXIPKa&fPd)?#xv^TVlpHVQe~Pewz{)cs^u>uEP%waq&kTd z5tFT5J&M-ZAwX1|uJbrI5FNF4d(4zkug58HJ{=#hv#{*SKOm&Sd`Kg-$bG162_G{t zE5x2)?DlMg7Vl{+y}PaZvwkxJX#^I2z)K z!=B>baIWOZZR!kp7EgTwtzj1tG8h& z7$cl6LpVnilH&QonMf{s_~o(VoeR8(^ZkCUF(m_dY;f#1zU+TA*sMvAWF_D07o zq~_S_QWh0vgS4Bow&2w@Osw=F!n@=N=oHE_S(?mt1sN#UMv%~(k4^IYt}o#?a@vNq zBS9vsV^zMzMF*WbF0tah9KxfDtl1%7J(;d@%cUhS#$GGek+V#v5JQo5yLWtBm&HlD z@=7g4*q=n6cZlkpFTEO=h_3tY$vGWInw`gvoBTEI?)8VE;_L!5<9N*01mf_nYDK|1 zrbM@gihkQGb;XJgaruO}4CUmI@xT)YT>7kT|*E<;zamRkxyb3DW3@2ZvNSMU{hf*ObSVXQtQvUh4~uG(IUA zOcPD4o9BMwAa%WR%MihE&xz_#d8?x4t`-G;-6w?EesHfef9Y9C-{|<-&$}i9w6*8n z68`)^6knh;KPt4H;@*C+%_yLT_Il3QIRAgV{YPO~1V6}7f@N)&OLS%!81<7AnxB~;)sI^=QKW$dByhzFvne}xhxZPc_82YPMe`6_*U$ZYYEX6) zi|QDOf+|VOdLPNaCHxdWGdGPWZU$V7l89sZZwo(o_%9s4*$WXboY*sb?z753Y1H}~ zpo<26K1u!3Qa%l(a}`xlkvkjZCHcO0A?-i-MBk!o<26fq5Jo6a;D5~ks9YAJM$3$r z2l5B*7e#5nR;$(5Cz(;cS5}|#mpK0`{AfX(J&O-LZhiD%7)kli8fZIkp}!0GI&q+U zf@H3Ro%`=HMxPHAqglN`jb3IyxJ5_FyT$dx)LUnxf&aoLZe%FK5`K_noLGzZ)lj}7 zG(!I!{_5!r9opa#hi^y!fajMsZI*n0KglFWItz~Mvs zul?_1kVDf8_&GH#6pBvH##Bu=>m>Y`+&#a@uJ7yx|M`lpvDw}8Gxkv0uhK!hF&}Y_ z>Hb@d|NdI!M_XuuN<>-0dxFlG-h8<4hAm$n#b{r{6-)9=64e!t%&DpUy8+*T|77QX z67NHEn>ItCfEEHx_|X@0!e{86Xl@~|z2Wos9JK3K(-qv&Vxnoz&DTl%@ARxMq~FEQ zxn%TzHg)j|O(+UY=-$6!^|J;VFKaYj(=!*yYFG+{t&q8?2@hj`#m z|D(tskpAC^UMS(G%FxmpQSYBr{@csSA+36&-m}u@USU}^V==3jg zTtJ3y`jY-}r zz^nSiz?ghKg^s?saS?q{!Ei)NgcwBUVtukL7bvQ_xdNZadonN~E%!60=nwDxL9~~y ztP`%Y%cvpq`zp)*x{NA?K9RJVha6wNe~PQT*oUky|FPSbx5n%G>*s7Vk7{-cSi|ne zPp1&&{rlEvJ~zZ(h7=T@ZZ$t?3T!y<)v<|q@FlF5(J6wg|FTxHnA_#g=KT+Le+G+K zqk4q;jaDvy|4w`WKONOfUOW5Bjh?^5{99rRZMxsc`?Yeexn{RyQ8aTr<6>?}5TSl_ z3fMiH{|L4jPzwJ++5qu4um52E^467n8gq0yXT|lI>w%%c$h5_B(x-_cUo`707ov)x zxlBhh`uf)WKQpAtUzw-||H8&~?M{i4&-7gNXL#e5Q)dQgU!gOsF=~eP@b!?^!1cE@ zHTIWjR%;p^J{kIs%^lagRTLv|zl>tM%yc&}345_VQO)bx_p>#mgCTJ47x|GO5fj!WPgQhkOA?nqb|_m zy@Vyaxc4)>#BQqkAN0`;!OEK<+jEYS^pdaB-`Y$!j225j!dbhNK#B&<)uj|bY_~YX zf4E;XLD!#iS1zw|8hVEhSN2cPdp|fI%*mvcYx*Rg2mnXjRq-v!DG~#x&^MsDQ@UC(6?y^!1X%|hebL&uTM)=M_lwl^e^OFRn zXR)*ATz^MYy?@GTwH)k4UA1!HyLVb*NVpkYa$<`6qHDVE*?yevdNdb>gcIbuX72VKYkC->T!ge z!L^;D1lg_L69(D!@OtB7ZqBOBXecF>?yHQP{Y)%_4ziPu z-b0RGpUOQ5)s;9pvg%;u3JXwKwh4tHRJ=slC-d8L;y=L}GDo&fD4+t<6{=8ai;iq} zHII(rctB2IF48W_T@VEd$grrS`TV-1c>W#TGersFKOAk)Np$1x;taK9j!dw7ti>vp zW{guM0^d-WqK^bo)M&&|o1Bbf7(*vdi)FJuuy}Uv-0XQqGiJd1Xf|Tf9y;C`q%}0V zl@G4E(j!5{R~*pY3aseu*c@`GJQbP=b~?`2*^rpd@=G9FzAt@Drtm0w!TVV~{^t!1 z#gTG7d?%p^G5VWtyn8rBa-D!+HLAkXR@XTxEVowaVz7&CJzzzr>v@;4;zH%kT%5;f zEl)~9-?lv!nr`!Y1HyNjJ^ep?y#-iQUEBT*A}Amr(j_3B0@5WR-7&<_Juq~Kpn$Y= z$bWY34WOAhv4oGYwS3>A ztV;jj-93(Ox8}zH-&k027#W)Ea;2mf0MB5pUa=U!E7o+t)CtS2Xig@38{9{+`hHfR zGR^P{*&>Gkb0_oX470;Ayui5=L`j=_nC?OyNri=p!a|+uxswx1g-MOKT%yAEs%Lc zqP}-R8r_vtA6;mzXhFlzDA~S**i=wZ!G4HcMR=(bgasZ@1-ZwaXZG+6?Uzw#ctBJv zB^Aitswh&iVt*XyR`NWC2k#0 za?`qEXh7FWT2BSd`=8FYGMso6I7z&fB%*Z9whkZ(dFrUPIzPg}eP;Vn&D<&=Q7nq# zPZqJj_^^nK5(xT;|8S*4dNvVReqTCnc={O{gj)CBK6P! zkEO1Sj=(ZD>mEmG>3kpSi23u2B^jL(Xe;C&6xQG9Cdtp}GB5`xj|-^0fyYXMzN~}o zbJvtHdN1GtWLCQD$YWtcd)uVL`{*-zY;U2V1&Ga3 z|3onNVWarKk!s=E^hX^yrsIy*$$#+Mbh~L*mR=CwN&3R4_Mbx$1a?lSUx@qhsX<@B`L>$> zgK6#f3)=23Fuvqm%o<;xyuZGdR{#@uOpA`mc~%2!tunYJ@(!yo_rh{^5~P^mHg+W7 z)s#JrT%9FQls^b4{N8yB`wjEDH@+0#P%;CrRQHvhf%O?NIk<0q%Es=eU5}CS7Sg%b zk|ZAUdGUo{aR2Ig+iJk0#veIAf2k(NKl-sAD*|2aFA*YSB*bvZT!d4gFWZr}JE4oi z)gl;TeD9~>M3e!K_l2I?Pr6&Na4>l&0mA?-u=c`|$OBW2KMCqggt zvtrS$AZgtORtJ_E3A@Qd?e#f9>3>kRR*d~p(S{$t*jQ7a+{OJ3s+Vqi27L{fg*<%u zm5Q(;r}*<%>&&}(!DhyC;H|j~A3S9@7w{>iIv~p?y=nnxW$jo)sEOn+zRs>w9{la+ zeg3j(40-*6nw63kAS?vZ3qVbP_ZIV9t=lSf&`^+EMc$Tnc8}JOJoAO>gqmKSQkJ)t z79at&bK^o1**m{^F}^Q#$T+1zRjM9rlG^*6(4<9xN`|h8g;sv3(wL)pRt9HH0=GyS zBksPjz9n^&ypO|jeMxV4t}4B$K0CoEUHjr+}V9(23*wdWDn~wUpwo{&9cOD zhK9t<(&-e4W}O}=2QY3`OA#LoX|wUTy!3VEF&LQ3v`GRKIU-r$W%innmHKxfm+P}w zr*|q>JXZU)>$AIZ=$;Dvm7j_y-B{+2;zF9Eb6*#ofPE*?o0;k0{qGj~9D1eA0o|69ya@ysqqIos!wy1OaFpm>3?R>_;y?R)AtWy8<6J(}m6u{efL5CwcqGPAW(|*5Vs-Sk?DfJGEn!KSaX}&pH zvOz~citw}TK#C-XSHj`J;X?UcI!}erqOF`X?Z-v%GK4>S>{fli8x`+;e_iD%pDFeH z2cG2*Tr(&#`7;Jneff(Q!})cDcT(iX*wJL@I7l0)a6@b1%u%x`;xS6nS5=WE2Bf(* zdqLig?wzVvV~`5niSbKb+m=n3NErij3utnn4I^zP{)GA-3&~ zKqb{P*YX;v2(gAFz^D|P1$>2}Kr2cpRCbB{14fK%g^1jChwU8B{6g7UaW00ijx`MsPIn-%L>?bx`bqy?6QMyv1S>WjsPAo4AQu73i4{29+hl+EU(5 zgLC=cD0`T-tcd_n+HUjCarNwv$|`nn+r2MazX zt%8vb@GU7q&x(H`xNN5+aurL+vi(4*X2Sg)qk~?+R%vRgY251JqL$U$X}Go|&mu05 z9580flA?f|WBFg5xKnPg5$WAsrY$Bp43ynrd2a2bdHT(caMsGtC>O;tac5jQTF<+U zNZR;3pDyUoxlWQW3;0eABRR>Y8XxmU_?|KRzSeVm?>yweHPF&qY7CU4#MxwQmXy2J z)xa<=ARiYm9coX<*Y?)z9*V4s4_Cvz$Ha#Ps!56DTK>T-{++Cd`*dE^_*DHHUV*o?FO%Y(^w^VS z4UIknuphhTe)b1hsB%0!3tO%LXjz$+QiY4UD&$}xoh%=Q=yZ??2Uk2BE%wbAA9nMZRrd8 zt;EocrKO7b?su~}^&LiLW17A@Z;$yn!XrPj9iIyocevdB1LMXcgWDF477R1QrR6wY zA|&z6VraGev0vbSoQZ5QcDEM%0$1Ejj(}~!bCFhi+XfrCCe?hAs7IagDja3DW_O$2oO}O)= z2qgAL#DlUzvw}kS=gS7RUd#xX7CnB>DTAW7~ zn-qtw&TOdHb5%T8G>q9(q8dI`GN)~BvwH@&BFA_Fu|c`25q;6FydL1`ybx0z1`Qwa zymMDrE7zX3_GCv*)KqgD2HiM`17I=#OxnEmB=&BL=K4p$_l-OVx6%FVm&ZDO0trpY zC^}(YWU?o3$p-zk6esF4tM#X zKU9(;ss-{-kMwrEvG#=+dL=EYurDLYv&+T1yWXYpUiEx+GI?;dWUnRL3jw_|hDCaw zIib^~MIAv{_&U&xxxg!^t`6L`3&p$}XSju3s}xD#S84j++xf8`I9L4ONk|}kr9E<~ zw2n2j6gUUfS#{+!JFOzSCF8r3!kHbVJ{UkY57o|0LN%`(85?zLqGX&!bzPy$M3Y*d zg6c@HyS9~rfw+$~7^m@IVo~CJVU(<|;st6Ve07cN@FHd*-kqxS&(Jk`oST%F&hg zDEuP1^ade(PMOK8+%7Sf^(lY4$>vk+{T`6GA0U1Ir+bbK5=|?7$8lO{_84t0h;JN3 zP_D_J!<1702@7`n)PwDFOFjo_j?{hC@BUt#qavXvZ?8vX_HOsjCusZz;x1T^vG56X zJ85M=9F02<+L&cxiEKyoA^j_%`mDmygg;4#Ob$PAnSzj9hJL(heu^)jdSh;!NQ!r& zYwt<3mj~Ut2|^XopRR{^?h+15vTjt<5#A`PoX6;eNHhTzF;~es4Pd4DL?srZmG-oc z3x?^;%1jjauC(cP7xR>O^Apw}p#w&~2f=?-Q{zWMcj-O@+||nj8y_=J23kzdlhDO# z4<9vomGF!%NlS4!m-6R5aX|e{nkBlN{qFYw3-mbfWRw-l&CFps2q%Cwnw*OdF~ke7 zE!NNBzt#ahop?jpJgLXs717)`6VBJj>x<=L@PAN*j|20@7kgW$=JFg+491gBqt;Nk z&=`D1n|XQx(EL&f^tBEkE@^Oo(W87Be8;X#u>*x~`TKf{6kR>jFC;cwe#CTJ4HP4Srj`sq5AC-cXsp`eTKZH`>e^*?thu zO}N1bm*!&nGZ+%TXqQ zTQXU!&7{`6?8E3pSv(+wOvI#5-!4|w0Hqud7BgYltUr}k)4+(u%3@V`lLKL)Nx)8( z{5X|q_V5g~&}9V{DXJcp)5PY)XB3e{Df^qMbopi=r!pg2k@87|S|aLg)%Yt?+0pKc4)iziU;Dyjah{^nPb%nmcrv{o zD4D%@(#6u#V(9%khEI{CT9*_QM8w+uuI%ft=2=_(2W3t}#%lEtL}BC|pcLO37Ymfb z8@vx)odL|-4QF04*3VnMWcM1w@w~scZ8Nh

$zkh|$+v-28+>4GOA^4{gZ=1SQ;$ zo`qN!q#$-!R3c`dw8%t4-vUUF81~kt^6_gM?_tF+ym{vuN@y_S`!wY&&c#ul7mF2C zG_d&lQi!!o*{=R1_^JwzY4yDxfAh(=kV`M$5aSro z(e)ay*ldOW18vVx`M#=~B~-)Ix|I@Gr|ehy!llkb^?i!+)RlBQoMxi}s_+rI;-Or6 z9usmN*h>`wL+zL>#T7WEsxwn@-YoWr(6ja&|9$1CcwJ`Sd=>!^Rx3IQqZn~ ztm)5?)?RYvaHK%o(M9soVsrF6ahbyexWNeP7K(65pO+)@?RW4=?vO`GqsG)fMq17} zYvehyOtdBl6~tUN^2Fe)DM)MnwXG5zWH-HpxFTYu85_H&1{H z!?g9?N;lE|W@F_yo?ll#Y4}pn5PgNbqAg^bvgMQA=?Pt z9kThT{VwtWgNa+~l}|J*6KUJMJj1L6;_4E_%a(zwn#478kI?%|-~ zko&sv<>BCZY~5VUX{u|@f;X$w4A#m$oRWBzx6va)Q(Je<+*OgBU`~MSHmK?9q7*)Y zdy;Nd|DGCM8hEN%+$jrf00d0Z**!A`uzmXn1z{{}=#kv=TL1Bu)WWUe4PAeg5vK!K z5n!2ho`~wA7Rff7-U^yl9kCD~g4I;=wHi`RUR?A4W(5DnOrum10uXI(?S*iswA!~B z2#7=Kn+?A;QcPwo2OZmciGtIO2M8pj;wFSJO9KObbiF&M-&>zaq~?z=T?eRfVDi#(YD1V(zS#w)w%{Um6+LN zA7m7jSt>ipvvLoj*k49AJm=jU@bT>q;Vg4L1l+}+{$%mD9@QUHz-|Jzro{U(uhfw8 z;~Jll!er=XG$JJH1#)ybeW_dX5y+ zP^AaqsK(iyRosM#vFM+3vOS znxmP>P6Uy67HxXwcTwm&gDx(_;|9v+<>L`~AT?-NMg9z#WBKx|Ujs;G@4}Vk;O9NZ zG;|t_t{o@4Kx`BG`Y#~%FY)+&7dxoUD0+bxbbiy>a{SCk_DvaJf_1qhF1*;Jk?{j! z&>6;0r7@bES5}6%tbL^nu;C9bSLw2Eo%Bt0gekBA4|_YMZ}?r@-GU8s?Y|D8z{)ki z)hsiC5zI&9YcF;PLL(oQd#IZ{@IA7Q2OACSF;tTVZ6(ZneQ-=aH*KQFM-r*d_o}z86K~TpZ z|5=I~$lkoV+?rQnf4h9c@23NmlifbHMNZatwhhsCQDasoiD-Gqq}qnE%!nyWZ`BFQ zR+S%iqFH4&)ThM1pb{%dwGE~`iLx-W2VCW&YYZ+*gkEz>3Z!O@@V|T0Cr7l_z&nV0 zcRM#`=&>m$QK47y@YNTW^$2=fXU1@#1)-Bkp1ax)d#wa-IgVT49mn4=Wn8fo9~{yy z@T%mc5BaIe8?$^bJ07It+b-P18U7iKgIgDA4hz^3%k7ZQz_-_uqotNvg_V_RJG7Fq z*e~iQfH{a+8?E<*87$4JcK${6tL3eS0kv0jVD=C5y7*Ttt7{2Y zk8P#OzA-#(oy?*N1XF-a_ZT{0|DasVj4{9cHuKOwV$7YV*;R(p;(1;~mCudDNaL~G zFfF&t#dolu#wDTCJmhhJ2gwotmBrqBI*ZZ*n@PS~A_oE!C%a~P8X8=?EfSVtohh~m zy;XNp)-VQi_qQYr>M$1+<{%;57hOVXV-gzr>F6hW7Lk#PM(yLayP*-1|DbSVjoH}T zBa!)hB*r)YNU(Z@(08^z$%;_9c8-s1yb1nzYSUY2q|RPngGKo3%>njF`wF8x^Q1P^eS=JM@R9A3b$ z3h-;ng%^gaU-+ENiVe>AalGNTFBvLU%~A*qtmU=XQ>Eqa*tybSIpBFkf z<{uO#cqAQfG)F#4x%R?7T27OqD^-l$&xdr2^UScBY!ZHr58fZlTO&W3XX#TUZbTfR zgE<~vi5iSZw|`zF{2svld2-3p1MfpK(dGNuta|th4$xd_y#BNq1U?N}sbQ`f2;!0` z-8b+truJQ#_LEiOpz`%$OU;4CC##ph?lMO1+Shc=Hnqr0mOIQe(1<kOZY|D9d&Eq-k$wJd!^#`2`cp?$T?Q8)5zaTto}Oa=p!5*YnVRky zq+F!1aZohRFv;*38=uhE46JEDP(wx7tTEob_M)?`RsQrQZx@t1c9$bXcbUiD|Bi5{ z?g5nL%l87iQe}W`F0{cDTK}~|UvD$-Ocx2)e#U*Cv{0kD)cXa8r5!nE+EEN&IF=)7 zkkdR%dB5y={bXa;VBr^p{tt;O%-jjv`K1-&)l|gmjSzm%e4DBh_qEY6eeCxdi-(Vz zg}BchhMy4aH#gO{-tDAy8(0|+rmNxdKp28>oHXB$vu^v&0{66G-MGCmVO;^v#wt$M z)dIoNGB@0bJmmNivp7+gR=G$1U$7qDGk*}I_;#`aOQAjTlgD*g3*y|&l|shz9fy@X z*4B0^Zmr$NCX9Lk!vmI(?jzj{3Cz>^XQ~8KiM87eWuCcHM6*~`^FdK%WxHV7*A zzsErC#%`!A-RYmeb)xdNFSa9>b&UZ}m>ndNC0I)nT8a{0yD~=MtB`Wm0%h;ZqSE$7 z6g`z!|Iax@jzxp^gDx+!r$0$OQM_mDz*?pgHneR>eZjSm6Z^&re6;5MP}Oe0o7`@$ z@4fGJ62I*HMf&4ws(nKWIn7$t2*gCDBAgIAF`t)m))a!}SXl68c8FOAoS>c1wJ_|y zHCK*XCjqoTe;?#UrUwxIzGFFRL?b-#_V=e&`*nF zEGt^@Y~qv_Z9J+H%$BXV-JSlw)d9?jY(n8#p?nI_w+$+c@USp?g$OY-M0X$pkmSF2+3~zo}S5u z$p6)vVj?n`AzN@Fu#75r;E-GVX%0wI_XAYo<4rGb&6jZgTJ6auZ2LS$L9?Cv7{%gG z`YU50c6G>UH4VH@!RTh^L2Y)&X%F^?eIZ8Pcb||cA(0sTjQr9K<2JoEj#>Z5NTJN1 zla);->)uFcU&1q~zMFB?e$)Y2%rt#!R24}KOXcFiC;O%GZz{rx92{KSXIn!k>%|5> zg_?p36JE3gOF-#Bl@RFV>(_|#0w?cM|laTL1H4^wXqnlTX<{kIQx{iv6@M{^H5R__mPP zjL2B^V+~WxdLNqy>0m2o^W7ppg}aH>=?jO)S)sv-vS{=B_^lYThn5d+C`t_AX7}-`Q$^ zrn3EZ44?4FtbE_R~eJyjp~0uV;!-Xx_~q_uG%MtIwdelL{hl z#M*%1T9yZ@*_y}sKn*#Yy6Vps*aN~N&y->WutVHUi9n@oq+31qs_a%@0c(LvRbw(p zuhiaN(?COL7>SdV0WG0h}h-e(ovp!oSUZmRK=F2#nMjoy5}Z>Q6U58WO2uDK4zJrB^C`oYp@)zh~s0WO{)0 z^sjYViOK;z=Yb0-|0GNNj?W}h0tu$`cJVT3hJe6vIi;2v^B)w?)C!E-eZ2*tu!jb9 zfKn>>_7goV*HcJngFCtr^nWGqHO5a-z@y!uXyg90dIZ)5tm4*z|4#dX?~<)b%9~ zDi2%b=xd2FBR6JuMfXVo*B8F@I)WLs*v zSSM$(#vGf7>QVjLb~@JAzKXahW*|5ZbG6p!4Zgb3%)5yrbq6d|Uha_TB?4nfTTzKf zKT6hFQ|**efsAUQzN*_Bd@vjmV_LZCN3c$8%b_E8E={_FUw5B_Tfx$=dX|6nW*Qv& z(uPehewNIOuRLpDHl=OW_|hgq=NIe-(hS4l7cJF%*;rY(^Goppv0Dki038^5e@s&(n zANdjSJ+xMJd}RTr$DgSa+$(}&R>&)=Z4IPT?sHL0EqFJsW>dZv6x1RLF|vHO?uoS; zys&yH@&w=Zetcf6!;Q|=zp7<=DLIki#^ z;&`$ehz8cO3&_s_N`qIN_Of=+rj4J8XxI+qntFrt>J@@->~w$5#s0Jb`sF5lL?8Rs zIL>l;cV?e6%M8YyvXo?9?CCOWxOgan<(1y#xBI%aFhOkUT3dU4JNxbw1#qqHc~E)J z-kyi!t0@ey_gwY9oE*DOtH1vnnJzwNBMr>KBtnnJz^6iM-km|73b;st&L9r}d zZ1yo6H-&B=r?`f+=d(3CIsF%sWE<&F(;E zKD0#WZ{%L9pn{JTXuq?*3@aDM#25;`U_zp1zR;gxF14nOo+r0JiuFO;SzCS#I_vN_ zk`ow86<~p2VPnwG5mG_xLG>WEa}lPMZtZ^~U5&#!_vvY~E>_leUjJr6a>1%3l_BV; z;%emW)4$1`M~sTMBidm+@9|%%`W1*6$;1Q%SBzh2KRJXw2FR{yZ!b`}`f=q4R|>MQ zpNNcd7mUZXw}~Wsvg7y>(-6$|YzKK2)tBSNRG2+i@F6Pfj1AYka9*yXU^NFA_(Y3pdO5)z=Nq) z`wb ztRX__ueOCd`2KZvZZEnb@Z%-)N1D7Athy3 z5}}Kw2%$Vsl}b6mx3q?W?}X6DI>1HOP%g%=Y^7N;$z)DMUS# zaW8#3h&6J%Dz(8_?k+wuDcL#f=v;L5%7?Ef6UJ0E;)k6!WL7+A38)#;w;^^~#f966 zWgxQ=f@1S;A7%+zO*gK*U#pV6=?30o)+M?+tuz81V|IT+7t5}rOf0Dc2&Kd*`JNa? z66XiG>B06+6-Mr_NQ2vC&-PYG;>PXLH`O@&Ty!~NIbRvS4szGx5(_iK(qDZUz37Hz zO_U+E_&nj_7hrBGnnnzz@ozr24D^ zs_Y-v0MdE(33YcBn7J?t7~RCbo^0=yku!C_Kmbv=!Z%W;F*`bpD zeMbzQj=H5#l6iV|8(R$?E#1JFz`QLeV~1NwxDN4L#*SzQDx*G|Kr;Ujd!x?QUcBnF zSJwP=jLQzM7|d_;kb-~!+}dpqWG<0-iq4Dmc?>~1bhzBIf55{{7!J_Yc^DyMM=H*O zdi|PpnBNK!WS6bo-_y07p@3G$-MfClgRW)%KE2hhsI_@tk2RB$C+O=rNzkB{j7|se zWma8Rt;&HU75QMAf_U7WlKKE#k1OeP_mLybD=^Kxo9?UqZ^;e+DoK7^DUAHa$#3j6 zf$U!qE3Q=ed%F2)XEj+5>aTCXAm3d3n3mmErq~OLJH3Edwj9(?xDTd7J^pvctQ0|uwQq0rOz}8 zO){}dI4|J8e8?q#Fkn}rJ+8>+JLsn97KL3h6~*Q$8M07Xj%`Bd=pk^Y!#m~^MPFt~ zGdC|RCB1{|_an^2vEuF~31su@!DHVK$M3$WEk$Ih@gJwh=4J*9aCaXWvf(UF^uL^~ zf+_J<8lo0alqR7s@4=%JDsRn*B`GXymjsg+ijmm@t8dTH+}RM@(+MGQ63Uj5aTECo zvdb#&Vn)D(r*~n0rtqp+;ay!KDHwC&kzlLle#4A!ptRpN>(@nQKiS zTrO@?2CDP+MYib3+jdSXckdw4?!V16KRH3)U$cX=rXN&dojvEfS>j4lqZdviJTqk7 zCMUeLDi6t){Q{(SF$!^+OD~U;!o2E>d`6MZNcPrUsIU>gNqnZ?brgxLRA74J+2pei zNNRBL*44MIc{c3_kjbss19zP}D}V7YZ=FR4t{f&s@Mqu&KJQ00!s1>eNL+(>>Fe9< z_y}=m8P^LVtcz}S6Sk~>X88QLV>m<+>>8;It=La(i3S5V3qrTa-|>)YSYkLF;%OIFUW z+fu%U_tAc8i2*yFCUMGH8emncxbayAFz3xWb$lz&&xx5F_A)N%irOlos!}_VA}Qsn zd_sRuNpH?XQoT_qrD-I`J!>h%_TsLgdj^z_PC{j! zQoC08{9iv@5TWw$+ZYk$!biD1Kp3_s{m&>*&z+v|jF0$mv_x8E36Y}(#B1{pkiR;+ zi&?9$oUM4H@z?-w0o?=cp0r32LPT2yw7f9T_MjvJ6&W&UKE`o-e)eLk95RA^uXr`2 zWQoq!s_+P(mr)m`FY@@Ol?H@!ev9gS8c#)ZZ*qC!i{cjG9AhuN1hd2QJPU0ehb_Oz= zdn)&gi{C8rI#;5G822M#BZ2eh$&-$zPA5$RU~g4~m&3d+=c2tc5|M!r9@;_$bs?s5J%2B~>RobSx;B1pN{wZ*rWm~iS|_Wm9dD_PSAm;P zpLgjb?hTYOz-O74KCxY~W`b{h1H!)_bT5ooR?Dnnl~?zy^ufXxMD7ggeP#V{N?O~z z5hGH1#e8sj&@&q_{ZmlbCfWaMZI$ICvzvUWDwbc0*((xlUS0aj{=1=LQ3}nr@6`M% zw3~yDZVE+5I8h+RV&TShJtD?1hfBA48Y507Pk9phw3yu`taD0g+eG-5)<$rU!=1d0 zV#S1Ms^k&3Xj^*6kANt%sM`uGc%4-DlwqmB{YJd+0?EDs_;soOpgd^b^hk-)THeP) zn9nNgtHUF^d>2R<`|)OeFpI-(bh-0dLL*G$zu5EJJzBn~*oDk&qTl%+rfO#&!gcQT zzkzJ?!&O}B`#LKD0}D)b)XZ(h(#h8Kz`?!5rK*?57a7lGLek)eAnh~x{+m0f_3|?O zOM0>&i`k1|_1C1m&`Co2TLBHd)f(l&1uETU0W@Vom6&OKZ_uU*k>*j+FOw|fLyp=| z-kBV~kjZ1mi^QJ#?PX6wT-Od=*e&co zQw~^OLtMQ=(Apz97+WSS>J0RDk9F@6d5YMVSue)sZ7r0m9wshTyWRS7 zMj#z_OaTrF!qwpr%UD6i@>-?ZAg75krn%n;I>lt0pX2d;%gTRs$B;ZjT(IlNpe<8*16j^wT%#(tCdtB}!pKXb1S1C_AnSD^Ud`3}%fdg=Q`ffp#*!OT@Q= z@D3GMb}9}TZO1H;vqtUaK)aWj(T*nwfM0O=WZ!W(14BSW0Kz?B851Q*Q zBjT4e!zcv}wh~an(sx~_3#h;dR{A#+*_uO{CNx8(m+rg?26FU)@04GkH{D+U@0nR7 zK0TlSDB-4h!C0U!uW&s@{8cU^NK$JGRmZ3E?lMu4`Fo4mvj-|DI*xcXIF>Ggscnth zVuNq5pFs3~7^D3D@A<8vv;^BB#$S7_wr4x+-bq~BE653+dC`C%Z>xx=$dMooSkB@6$%%&9M7 zdXJrvONmO9>q;U*xm#FsjZ1ke{hM@aTdUXb~UqD+(kz}t0H3b46Q-;t>F$vV5YWk6Y$(9tPHtA z6)%B2B-S?32(kqK0*!x`AUy8_d)H6#HnExYzdy(V%!;%*yN~!|rtoWT3Muk@sT(a4 zWd9*J{_vN;8#{xT6mF}}iCwk)4+;!#>9r>cukC7=Gs!U-Hc~UO-CQ_J(wtrXPOOGb5E=1BVA$Q|E#C zTg4-CHAx3I0Ved1&W$GsYv#(!JrZavr`wBA$|i+I+?L)OQq)Y&v+mtDHc~55+BE-m zVA{-F%Bww1-pmFqI+oU=nL!=49xpr?-p3lT^~jr`j-^)$0?T$bM1G~*;S~YnV1*!5 zY~!+Ts*QihSGTV7_7l)_T3qJJ;2tm`d#G%W(;eH$7zrmpQ>@y(`^H~+a0skczt+K# zMqZ4K%!fKFM#;y`NSBN)@mi)Dd3vXl-MlVA1jq zio+}*RPZC+sbJgmRYY6%Q!CgoOU=Ukd1)1YcNcN^CV1|?2i^o$3tmy(!m;iU3gNQU zD{avPta<)Hua!&^Y}0->>j9d}^h3{?T(qpqs!M z;6HQ2wP9?F8qNy>GgSDg%*9R-*N@BAHf*oe!A36rRd^qC-=fSFq^3;zzU8GQGoLXy zARNvx_^!c^DCMSvw@k{QVNl^K)#6Bh{L*sDt4Jum=TbQU^Ps}Ds=a5h>@e-S zMHs zNgB(~SHpwen#>u4&bZSXhf>{qX^9dF+s{Vv%6$k0dZQjN3S`#(BzD93vB#XrJm0V< z&VMY!6_LF_WUpiAE39LaQi>Q7^V@t0`TfR^H~+-*9{k(+?=&Iy$J9sId4uae2RR@`b5*;nD5(MkRc`;LyiN=dlntC`HCW#n)`Rv*c;v1+MPv`U|wrhkvLnzfkX468= z+`YVmc8^cdqcgwLH1lTt|3=B?aoYlkOkxj-?0*TFU+ticM>JrJm8E=r-Rb_LkQ2xQ z{FflAY1L(y;;T^zJH7iIzlFaXan6@%2g-XLbSdb%>&c-#-ZaJuzsni*t7(5Ur`#8> zuR+kl&VEjHz4?MubQ8w^QjT9`dsvwEb!!N72CR~z&QjHB{934Tdm(AJ?xEt^h)+yu zFoZ^6-Rr}F#+3Rpr5|5w&yLj4#`gtUC6Te4KjrNjJ?}{Rua*6IkXPaC?A5w6*!dmE z7D3kj=NbQBXYuzLl}+)|wlDtu>i=xXzSAIE_w=qr;55b4ySo>U_`eo9q1(;y+un_J z3o&Vvn4`_X!xeI5C2h?-VmGzjLPsF$|0hgL^f+T~mUI7WPx;+@kSC*Sn8DvPy)4KG zG!%<<&f0}bl4Q~>Mfovnu2);lPbTnZep7B;Ti?U_hvE;|%BZu3{qt>!e1`M4c4{ zWg}(a{pFD}Y`5xH?c%=PsT8Vzx-6s{jqqYXn4h5kj3>zL{|@A5mM!Lwm0T|JWqua> zuj2kG`mgE`h4-32Rx1&RMkuZr5kE!w8IO?L{}P7Oo0nW>GjajZ)Cxaqh^)wG_NmRZGq^9|ZVK2*O26yS{dU)|;RYvh*hra<4`)R1jU zhpn6^+UW9aaWgxz&;5vBeeZv4k?)sZFOr_wwSVFuockXi{k=PKx7Z`(=}D-k-E3EN zX=X84bJwf6{=d!fSF-@0>d7VS8Av;8W&A(C_t!BBz2XCQT!ks}(sf^i{pxD{}j(<8-n@YkM3%3%*v%?LkwM4kvmX#(GpSz;mZP zjNKmx#MUuBg+=xK4Mbz{76&9QsWq|!n+%OM0^KfPs=Zcx@L?o9(X1V9%!E?h2Mtxg zMI}C_6p5mHtR(7$8=n?UvLzs8p#&%6vhpm~uHk*|p_O0rVg4}!h=W^$HjLBywnmgY zeaKxyb=mnU9R%4|4&u)&G^uG6%a(r$Q;0aXzZy*J9g4ou(r0>d378mWKgJik(v>db z7F7^&Lo?@BECUSE6VEBKuY)0Lx{3}ZiFgO1Vau=dKx!mrav8|+&}TigP*Lw?Z*hBSOMh( z8E|_x*A^0R9G*LY7bd7?v@9Lv4%t*jeRL`B+nF*64kX{T4uZ?PPKaW~1&HpI&ZFpQS^m z?vYxJ%-aK77oEYkhArH*-TvrW9QIYu2bXah%st?2bagHwqgE-?R!OG&@+5M0x7p&j zPjYU-Z=%IhYeB0mq}#)`rq7K45S=q4w9X1sb>OCj@lFq=QV5`as*f)k&s}O4I`t(Z zly%-gs9BE7ldh8h!e8if&5> zRI>IR8}~s)p`+UoPk7ns_^kdxfl^)?Q$%m!?2A19(&~B?z1M3K`2NKu3BGDwjP00P z@XN{X)dg8ociAb&7Me1ZU&`}=7rLhL60`rWj5L)F;r~M6U52~9C(eT!B(Ag z56Zok%2jKGI$E@a8)t%G3gI{+%|~#&e^9!ntt)jComIZZxj5`$sUwwfMxaRUmo+nk z3J$MjYy-=`(ow01SJy?qk-DU)Fr^lfD{}@Hc=QG3RSRNLaNQNOFVPuhU*A}5UE4cW z_0I_O-d{e95tfCp-P9vQJ6RF8(8 z$?kuElUt2%?~_FfC(Rh}3YZ5AP_^hDqGCF?&P=o{zp$yDf2-qE0LrW1!!DbMmtFwn z*PJ_W+Irw30j}@V)zDq8Vd;GNkB$l}rqhHRoP0xl%3_Ia?>jiZPiPd^vzQT@(PtK~ z;|rZejj;|BYBOcwATKwx_cnvo2xX)KQQYhb{Hq`^@qM)k9S5*<9waCq>rrWyDtmc5 zZ9w@5St;K;{Uz%pwE0Mn$VJpQDXDckpkl2tJeD}YFr3diN)nwjLE{vSN%jOW`VJ?@ z@W=(4n9tnzWH-J^0-bYbo1|&N2g~A~9X-#h0o!jM=I{!z5Am~U%d&NyV;*WrTUovE z*vfEODi=P5rHp89ALk`VT_H=|Mjh_r50+kxpfVT`PFYF%7(G?u*2=1KzxbO5}XVqcO ztOg)zY|q?|t~vzO-~TShxgJ?yieryV(9LJ&c)E~9;pRMLfZyr!Na+h!e{%?~x^41$ zol2Hf{k&sbN61LK{|C@5GPO9J+EGkbAucj9uauDaVT5azD3SJ$hanf#bKja9LUuL6 zI)k!mZy`Q4a0`0So(DX;LqAVZFfS(TAj{|Yex(((F)}->)(Em8t%7wZ z4TL!57G&5XCm`eC~U+xjtPmH3Q^;yO!bWm`FERv}c35rKtz$^4K zai7+kWVq+a5%wD}RtTM<6TN-GC9IIaZ$_|*=Dd~q8nk_L%nsIzQKmPQ7jwU)E(pUsQ?-|!V7Nvpk2yb4>M%+NS@(K zx!LHRqKd4IA~rMXjH#zIfFC!_Iwk3xmJIt1bgOU5LLK5UFe?nRTOZ-o&p9Xe%Q5{> zf$Xat!q=H%B97aU2T(9=uL*tN(kGa^sM)l-4TdvUzdcCG!SSTgpy|63tNi*Q;%j-k z-H5&eAT8}Uw$YCB)B&`7u^RVo;H6`=^C3A+ru=$&#}E8BrstGR2H{P|=umW$vgcB8 z=k{kk%XB6so&fQ3$njnEbfae|r8WQMxn{mc+~rwyZ56kU@z{n1kffn!VQF1qd`)xY zw0%3@(s~*ziys?2-VYFzOi`yob8gecKXq@K-M5jMIgGY>F`(0JtOAQo4)VN%oSLLz zKwu>}lSE92uxX(Xy;cdckJ$RS&9)puXJBl7)JYNWlOpH4jSf9Od@1*F8GmAw$6ll* zkKp8{4$zh_cF({GZC!Tu>Vy^%caKGA8~xmNyN%D@5wJ5jWs-(1U-1@R)>je{6O~L8 zq@KI)2cl!l*$?g`3XP0WQF9zbWe%!DObMkb=c9x!2OLnD`t9^NJ7T44Z8qi_g3ItJSd*V!T%^OvYUb&f@~(zl z0*^Y3BRIDf0MSG~X@Zm2aMN4r^OCmx&=|yOI*DWl zdXgnGdJ2*z8U33Qf_Tsk-^TwuQaV20GN+& zI|ahcfX+MIt&Ncft?&iAmpc|M1P%eW+fjlNzBC+e`v5|q6exiLm!Q0S4}dM}zUFWx zR~{*xug7$4*wJBmoDJU~te7}io55>wYm$y9v5qFWCgCW@5;Sk+cY#3LspsdntIeGD zPffcQTGSnyELt4xE;D%Jy+k5f%v;e9E4>PGMku@-;fF|H1md&epoQQP#V(9*W{0a& zxMhC3-1yVtl-})dSJ|?h1(3r_!ng4yPzamg*VY(hW0{kn_SAzt?i5<Rl>`Is7ylKYecGNq#O5LIJ zkm&ReD6-t!DC+ruAkt!<2YaotJgMz;OB&*nCL-9lA)sA7SJesLkzzhI8QM^Qqmz@* zorm@PRpKb|+z2_AgtfUjtLm0`{!2Xrgi}XnOuycezVCxY6B%biCQKPxSAe6s-HvnY zH0?rFa{sFi0?&TJUF^kqK;ZixpGCYiFx}#mxl_E0g~6F4-_xEJLbMC0=IAw6@Q3Z% z(s3p9=XDG!lE-6+i%FcU2%YE?bngS@VRf;1lj$ zJTw((XsTzKggR}m1FILDyur+yhWw7LBnhu;;$LGtW{Bjq#y`vMAQ1mRwM+O&%JY;b zcdwI?+4`&c+rX8w%Giy2!iTivlOV0zU0`!76=8aA|q zw3pSfV=LDNeOre&P~KNK;Cke>J{@D|SqR|B@5fW<_x2k`WT1Hn@lGfI)2Oo-RQbKX z-{}AKhEwPv`IIhM8e}~qelMx_#aRI_unkS z{4R;^iR>#n24{t?&)Misj69vcEMiH&jUpIhKQmaV`RtjB8PV@f{@IQ6k2l03tmKlPk;?d@k`s`8k$(+e*QU`B;TpK*uBRWl zejwe9KPHA1)Og#_ee>5i7d|5`yMNh-h~zrY>n$p05t2Rq%f$beQU2izJxS&($z5tX zY3I){%kKZlOCurkmz6@zhkozK_yQNN(Hq2nV}xJU|IhZVYK$@@+%}yKT#Rg+?n8ID za&-;uBYI%1{hZ&!g`6wo`3!%}`ic*F?eo`Nu5$)h4c}(n#e!@$9E8(_bmp z>V|9+jey>LM}7xr@BW&DXl{XN^en72ojCLpKfe2i!T;;f{>yaTVl+6@uV7w2x$3QE z_^YXZPv`&6(5C2l52Kvu-aJKIN(3YRHOYTH`7fXN!+^ic%#KS$EZ)mdz4;Y>cH~xV z9Rg4~^n;0roN0j6So_;73DM?s{NHrExG8~HWRcos<6_%8g7U1@vXt>=xlpIM$%(CdS$xZY&p99{NMp%G>VO|}2&hyL!`puJEL z;iBbV)MX!?P5xiH`*$n<;{pEpM#^$p*c%$sn$lUPD&pl?I?R`)hLcS!1I!MlXqM;2 znNGt0xyk(0Ya5=TSfb9nwF!X@IE=zKCq+e*TLF8_g?C zPM^Q68Ts?Q|{{Z;U!&$M}_iX-%Z{g zI6ltLZ)1&o`ruX7*vr33xQnFu&^b|bVs>r4&WO(*EizjP{zIPhmp*K?hpY0NW~maC zk2McqHfzK@c7=8ZsKq4T%HCM z@`=y!BM%p4_52QSlV-0O$5>`pyv`|pDX&iE<)BluuP6Q!_-0HK-8Y&q;oRw1p0z7J z+pQ*neAiU!E)kz0j2)Oa)4{RD#Q5(NKjFAtQ$1s#LjOs$cF7fU>oV~R1Qg118_lMG zkM4vO8U}S89$YDEhv;%wC(ht@r;875FmO2x}FFb=*X;rsn|G(hLlW`^>gP+$CAN!!cac7_Lk3 z+hbNh_A-<5r;OrK8|+0WJX*%q-5>e29Xy-mPp zU^Cz=#*P3W?KR@e6aN86|K+)kuq=NLy>h$` zTxqF<0?d~b{&5HI5uvR!5&o#lY3G!$Zg|VchP3!eV*&ToaNxPK;pM$=t-IK^jGvVl zyS`4?yS#XHJ;*pAK0wYw0~3ER|8kz@?w`ULRcO6M5{*_j5%ICc*z6SM#C7hp zne9kc_~Ly_UfxzyBKz?xa@O&WyS=G6n~*vap6P*t;RoLcO)7Mryr>_t-&w3KUJ~J- z%ek*V*z0#REqzLT;ytybmW4h|5Xp`h&a-}HZ;*^~PuMB{F5WdKFhcHiP<-Ou2(tPm zj3C1Br<`;Y6*)Jn(iwTZiaz+OY|5>`;<2q(UXD@p@B^rec>bI0@4&(JkW0O*AUe7dHgh%Rcd?JF9$er#w}HzD)L3^>Hu`u-|C`@osX zS>jYV;xM+grAFeQ;@XKbIUO;}dIZGm^!z5)jC#$cZqu%uy>pE*j42;-Kr zOuzo3|BgUk*j&q??WM!c;)m^XFAEx;@wF;V#SdQRrtyimI76qU&eFawL9jj??wRYK z(+3470i0E%#?OHx!4u0rF+}WMaWuA{txvl1x-D;B4-q}p;caLD+sH>l8dSfT24yby zI7B{Fs}J$jH`8KJ(XFj$y7*ym!PvVupm?POh8{Q{wV(@3#1b~KHfq2Io6K@|XTzo? zk%QZ!-VbK63|Lm1c;^%;>72UnGg0wMFdpb+ZMN__sC7IO{xnzHB4`2rU@^5RLD{S= z{!Ee1e{i(Yr-1cCD4$w2keBIDEPh4eji}^O{Ygoz>+oiEkDq+rVxM*Yj((*Y^@<}w zS5%r*RcBqxMnqe=0nX0NJv1(_r)tUIIeV|Qd)fW`x{IF}68s~EA;3@9n%$@3DFLLK z2``r{cOePG*o_}Ar@y-@9^QI#NU;c-4&>=~R;{Kh3Gdt(fo=wEyW5pvjTrH0Py!5v zW7EK;ee`uhuLF8bCllkd%$EE4$n%X0%gTaRW+7;n?mx*;3;cNwSEsFbEloE-p+j#TcIBP&Q1T1e!~x*? zc?2s&S{5RVn($)2Rbd{0arE2e@!~quA?9rsfk0L_u z1>UvH;{xeDD@^b0A5^bsTc7+{M*C}7?&u7Dv)>yY;{A9*XuP7<1zzfhDGc;6Q1ET{ zYKlKG1aB|3RC;F`Pn(8X*ZV)x%Bt_sDXDLF=eO|GgCppTe49fd4MGi_x7Gy3ruYRh z6`t1jDek#1q6&}mBMP8H@+-NmA0)LR0tsEPr55J{bYH%neoe7Ph&{$p$-q&(Y$7jw zOz4oSOMLVjd3QN_zU@*NlKg`!B;)2q2Ia1YvK?0|*Pb>lrfMpk2_UR&WU`uc;$RnW z3YoVSuQc_&Tzod`WbTZlr1F8opQMH11%KsUVA+GTP`3_+6XX58^>`+lBts4(=IfAOu1@nl2JY(j`aBHn@$mDj*F0|JL3~}3D<;v@7elDT0ekvV{}9H z9w$^TI(Aa;9$q_itR{~? z)?z$Q>kg<6K~sMJW_KVOAvzUWMK$0ROeap&_G$)ds@cakVt9ojN7_4YuY|BJcOsqx zEfa7xnJ)T-IU=Z~5#X*Pdb*K!WRVa3067l6!t${qPW$R$oGH=|_z@2>aM~Z|9;lZZ zpb6;z#mv8!NG7Nsn82+q6=C7-O(#>CU6?rVo|T~+6+^9z1Ae1 zUCCc;@b$;k)ioJaYp^|6=Gy2fBSQ2^3Qu5JQ;-B;a&w=jd(Wi#wULuS1q+`Cm=nCL zl1o3=7IIkLA^TgsL{K6oY%CT$@~W_BWUO6;|FhpvFz5?cA(m{6A((fUfRfMXdPq{+ zT7XZx)kt#9ucB`h<_e=EGC_HwMPfW#s-2cym5?^hjXfIXgC{fvy8+aZgao$(0B3HUv@-b+s@n;U4$wY9^aSzyF{Mvn&zt>t#_#@w?IJ>aaTE7n)^FB>r+gTQP;+*{< zkK$i!no(|#Ci3FY_lLab<)@NV6yOb;7BTh!#I@TePpX*NWF6fWbo-H-p#lOO(K zWOns8GTM#*j;3<#R1M7|Q%H7IY_igsay>;*CXXr%V9a4J*cL>#7&4OAHxn(2yob$- z7R5;(Q}o=dH~7Xjd!WO;g1AJ=bqi0j^i`Eta)NDmH$x*xSELC~yfZHpg1Ee43ODxi z3|M(Ltl+6750%RrQ#6?aQX*Hgg!ms~^2s($|0k0mS8DQIGvQ_KTI`kvzl(BFr-`uj zO~E0$SLrKZx#wl>xPsKy$pJARnwePpDEkN2YyrtbN;LS{;GiS#1Eeq0=VFdxgu_s8 zyz?ZyvJ$9y2M}c?JWt*6QnZyH@&@LmIgv)``vBW67bIcImLS17RfS54P{UdL8=rkC z^86K5ZkWeDVc~>MxuA7lB0>O7&vr^kQ z0P9X1?HFoeik{0S2s>fSRA^c**{uBI;LIT*nrdWGjb$b%CpsHr5N%YHz*#&H>z`)6 z`&p-;yD}9z8OA?H?$fevRSm3APRx@GDF67u{R9Tkbij(9M79KvFCQqDN^AG$E=7Pt zL>ym|mjVll!?ca#$avr%#f$z8yO-}Eg6HJYq7dy_*tZ0!{N}8~0@gP~DZdCHZ~A7jN!$Fnv0i3xr@Z)!^Idkfz^>cO9nwoLS>>75VUBAi zXl9?`f<@=DuHe=I&RgSG3`n+*Ev~n>rgecfEQ5Lz=mUs^Z`sOkKQVt{aiZURVP1D^ zVvyaa{F?T3W>ZY^^>;mUbi5|u7aOyn=n+wl{w?#l`f*xw)iy8jFY9gO8i8|!cq?Hi z!D$;+xdr&ePZ&1Hb&Yy+I3|Wh9N40?%u-wol&A6l0D!O^gr&_nXWAU}Kn_c&FX-8q za>a(O&A4+(>x*Hnbo%y!qBA+pq_&&0pjLFm?jr0})mP{6K8Rfg%^BMm!y=B#=`BiU z+)I*3ar=Crhl`ee%vaLIwthZu!n-J6vn}lVyc=e3bu16v2_rl81iV*Q~4SqQkBTYE-7Vs8#)VuGjJZ@PJdZa<* zWDjXj;-K&MoD^N4UPs@9`CM-(jEfv={MtNy!`rVN26)Y#=NVbTo+!SbD0KCWn1;W* zLfh;2(E?0g@P&1jX{1QT`GyZKN>TcBjZfw!xT_b4LqGMLe-nKP?mG2A-E0LOiB6 zk`ac;L8hp05Mk1xoV0q+Augoj!$W(b?8>h|%Tlirwii=U(;KCa++Y;?`(K9Nnx<^3 zoEq$PQaJS+j64%4zidrIpj@P=i*kNc==@oPS#=Gj@qCL`Jdr)^vjUHW$0 zFRGiUsN<%=qP-lhhf2{A%zM&C_PwPr(1847XpylX5%=ELE>V(Ps1V--D%-i{B9A1B z5`5Bzgm*hjtJuY-`iCQge6y^5l{PCUcGBsI&zkgECE+Pm%C-SItX>0CD* zmBwGxA3tu7Eh7u7d#q%?7}RW_SUqTIZLyQoHtB5@)Jp%MR|DI@&}8WIhxICt)n|(_ z`!;E=dZ!Nw^n-IJ2E|MmTU<+GdK%_$&R&wdA7kyOx7KyB*s<Hc%O4WlI*R0{$mhSLy_KmhqATVjay0x%Vcq=<;buuZ0T8DLR zx%;>&7nAGEWeRzG;MP7#i%(i(w)Msv+IWO$G;2sIv)Wy4I=9BmZ-iscRlR7SzLWM; zlrb}V_5+QJF8R2JvJt3t0f&5Xgk;Y!g2FRO^$K)l=1bp7Y$fi;2Pp!fg%Va%7kSra zm5(0IKvrm3$r!S-mMIy0Hrd%GLD5zd@<{zGcYl0eT48YM zvwVwH%_@C_^@o0XrZDIc-b?)qupIc)1^4}mHH;1I_qbNCXTQWhG36ycvtAlUpYHx# zO@C0q`|QoY-!B>WS-m#IO60`xXFIkhGhg7Y73cWu)lXCAK)B~SE!&4*NV@>N9zd9! z;_>)KjYrrKP>8tVVgJNHl8F~}DE?FL6jPPlk-95qc+Byo&6rE4!vRyv_xppK!^afQ zV~*1683zDQw65NeUX(8jm96ajlC)EiuZ5qTh>({3W$k;a{lPq}q}mG3W$1 zGR%W=#D=rtNl90d4Y~tv(ulp-_n+ zPiN&Ol?eq;ylox`_jliLnQ_lH#SGMs2642AUBXOJy<#}#oagT;6e=)rvyU7E)X}@*YU&$JC)xQd$7zhdIm7#f*^?UE?Gg11n^p z+cel=5uUoiu>v|+_on1z-1dro-)St&H~;@oOR zFjS5mE_@2#xzPMOBwZdoQ(n;r6}2t}fn6&5aR7SG%6IIW{P9xdO~A*o;d&;%tD(SB z(E_Cdp1GneXE3KC>_C8^a(<@ud;FgP>3=NFkkqVS>BbE(-nJ7fRT5^~29Z&mup!C2 z8;B_sZE67wZ}2RlOYv{XR6;5`z)#(K)ZOsE9R#Vm<0xjMme@Asm3@wfFKwgh@HBL~??W8B^szVA=?+iP?IM3?zrO3`H3g(9S%3nEYn zV9C|+sC!K=B(Z$h*A6DK0qz8(VfvEmHo@-|Sf*Zu?W=o1NWL{O*=N(z@HOGFe<0?- z3`_nhRx!P+=yQ`#3D%I4NWt2p!1yFSzBldzWL5-#x2rh`3H~UkgzGVk7db@+>51gV zue_`E8>Pu4s*E}|s9N9`gfGY|uV=G0t9EC0K2<=?^NiKE*|lmXRR_GANoZ|NbjKJx z)I2ZPloTtGW(U;{9E;>CY@d0?1xJ68NUy>yyK`6O4yECQpypM{N2$mYvv|O>j=6WN zp{tWI0MOW{zfAdKj@-D-B}HDHujL&?{D3yc8#@@pHruRYG~;0MO?kaqU9$96CQ)?_ zcVoIV<_SwNY(#7f?f7|0Mu7H+~0&6?1qdLG#Zqw}O9 z5@uEsEiehgns3krd8SHNkEuz$M9|Y-VYu4*o9(zxJS$koRdipK$8VAd( z(HkA)D4i>~k}5ne_n`@n#?G$G&s@%zat@Vi@6|<%N(d#yI}Pjmez_$~HI*_IepI-l zE~P3G<7}!m+goi)4&~NkW|KI*LhVFM)qHxU+0G$aME-AHQEn->URkpMq)mO}`46r5 zn#Oz59@>>cTLEd?AzsW5B$Uao-s~&9w_ohPLw6u6kzur|wOorU)iDRGf%aqh(wsvF zokauGR_#s6Ybj%xUcp&?Q)qvu*K zL7F-{`=Xk$Ltmg=0vvkmEg3hUnLP3^_PdM{x0zk-;E%vk7vnNI1AXwGOj~w~FpeOG zqBfFIa1G!|kj^<;^`;)rbS}S#x6{vnZ*fK+BG39FgPFoW#OzgrJ8ggfKnSiJV2;qH~-ZSGeK^$~R3@?697D(;pb_u2G8?IXr=oy!%8Bn92eD{oqtz4N+ z^;EWewqLqIfiBHM6RV7iNdxGgbQ`f}pb?NpLob`4n$Rv?qHSywTdB&fjbu*LWcK_k znfbd+m9`WLEyD6P>|WT=r#*KXXly)r5l=ye2t3{Q?`v^XgggoGBF)x+23O^lDokLn zKqw8*DfE~R_Kh-QK>JR*wIM%II8Z1^5IrD z$n~v7cBGFMTjiD{#w{3vY9N~yPZSG|)9st=*Jlp2T4u_WIYjBYlwQv`L3l-KX1(y` zT`-8&IS6;04I+^SG~D|_GJ7(*eEe4ZLW!h*P*?Ys|9Lq2q_o6-=*;bE0?cv*R^5Av z5Uh#Y8-L81ee?19_DL+E>;+>XFU|*TM0|xf#aET-B>^uC|2Wdw{Yw;nH0i16fe=6 zq95m*ov%9I{9Vjn|KY@7Nyg1_v^v`Xn>a@k`(rJ6qH!p$f*|x0v;+eO6`=xsk95z( zj*Zu2r!bxZ!mxaxVJ%AE?CDyY+$pEkUC2xtdIe2B5{X$QvflDwys@rJ4z*1)A%fKsgiwpFTBuhUr&}s~v$Lw|2W2%joa|3u+{lP_)@~%o8YBd`5O4hcu;rEUG zR1Mihx`US2f#T^6iUf}(oX}y?LHKz2UVv_|T>|-YKb9$|&}tjB{2ZV<%m+%Nb`f0G zM0$06scSIx(v`1u_e>;o!y(YRD5|iZ9bJNdyhLh4UV9y>Pdxg#=c*Z4yYpY^xu8A=33XG9B9>4 z6%hL>IIoBnJ)^KunySKM@Ugo|MG{}GFZtWQPTA(pJXw3#?BYxAqhlhULr~y%A!qNQ>J;d?dE4Wzsl;_oAH$rs(O72-;jTj_pW z`i8^SadY=sPlsKc9}Ox3R!-_gzCyz5eaT%%q$O4+)B;`fh*{t&N}ckCV${hZU9&}i-G&6gRW>`(=@ zm+M})wTNvdeq!vH8&qTShLY-8$Gu&fs(@jf7wjxo3&kf`o`fNVb-sVllU|>3I(jzU zv_)AsXq|Wj<}NkN#NN8YbJj-U&5vhjA>e=kI|k|%9yc1+64_oi$eSuyKUA2vJ@Evs zm)0BENNX*7kpGxUFB>FadnZw^NX}oUK915k?5x@g2w%X!&MXUhUnZ0gP&M6X3wD)| z^GpoMf>WQBQErx`kMEASiE^yhA7h%0+-<6dfH<}%{ELyw*oB|SWCI1$43NVCE^DZk zckb)LAb6pn8+@?qoIXMa8@FF);7^WdN8zj@;lRfk)wTHQ^THLI9}&k9C_rRio!Ku8X4tS)@k za8mt|aTcRLKN!KsPePfamjoCST4+yS0d}ZPh#HyNWK`f&yfZY{xb@IwU+V&MVL@5Q zuv&dLCwl?j`F{MyOTb(QO?AlhF5K9E@+GkJ5@M3fpPae`*d8($2Z?e)?~%-v)B30z z=a{_Kn$Gvs^MClq@7*hTo?wkOqXP}%EvMCX!*ceXhz}tCIh_wiiNdP;^s3y32x-nI zRKN(3nsqj93%nx|vsPlzS5Ae^#}fZMAalAQa9NLzX-K$^i+1F8+wFE=slK+ru@0$r z@>xj4XW{+ZuTl|7a$?gOD(YUzK>%qdVEzW#eLDZ0dZpzuo#F|c^CDm=Zq4>pu6RiPw-jtzV4^J%)?Er?HSj`7EhC6q6SD zXm3BLVL+-i+#*BJX*pzX?mXGogW|;JMV=QHg}-M@Ht+4J8f{RyU$14$>h0~8btN$3 zaK7Y)#L9TXLbX0OZLnF*QES3tTVRDv&ZUXpFuzE(kpHS!BebMZn{1Ko(9loEf;nIbM}uF_C+Ud9 zUJM%z?J9gIVmMxFZ3&vlHGVPM( z!Y}4Jp!hHDQZ?$E;ozl!9n(e4IBl69G*vu}$TK60ZAn!e;Xl>~>slIbHZ+7QTOw2{ zyH5r6hw3`Na^+OJXPn0_{LtXiZI9@yHy?H`G?#VpOjdm^x>|1tGbv8E=-J;G1nvM@ zA1f&@5)77@$Bd-ZKwE`dvsFvP#2(5jN))mi)7UB6IkjF7qCwOaoL@MtT^*6OT)@)f z*&?BmK^3!W)kV|trcS3=ewHi6Izp4m z?67-E%bOA~Kcm-)$xU?wufUKBfN|Cwoj8)yE$yOE*!OO8J}nC}cYV?-sqWbzE#wMstUs*90IgQj=P98JbP<-#Tx!oZq6Q9XI7`33XjZua z2weKYOyjEp(z>mq&)!xLSUm+;CxioZ>Lx*581Z72=1*`~u*5!!!MX}f@gS8-lE$et z&;hzI+xz-@Wn>TE^FD&{F!{3O$~%ewRWQ`#-mDs&c8E0Ajlvu#43z z+(XCKSO;&^zIOm+sh`oS=$A%pA?`K_z~srF7+$6gJp(>e4<@V=iAucUT1QI~9(p9w zN)g5Xn8xGy%&3r6?6aJBXO7xjWU;5?OZ)woH8`_s5kH7H(}D1=V`;)R(#Ub@4YX2` zKnoa4%M-f^tHaN^qIGa;IoF0reDG7M8B{{o$q~5(BgotY_lqWD$2cC5Ow;V|Jg01l z;^xySFLXZ3oKT-;CszGi=;;Z{r%A2yODR}?I$3!E=Gb7?yk(BLqti=zFX=>gZ>6ec zkpAQm6g1XdMncIbHHFIYweOef z2!GtIyGrS6Mk_+_6h;hi(kG zk3y&5DIzMkFX7?{Qp>Q>d zs8<@~=FL-o3`# zC_*GTnRQmPkAENMnMpi<&@)wQ)IFIJwC!(Ya5XU{;+l&LRe#F$0xkhI+pb6&lrZ((iRYphufj2q$DGwRaI-(iUKUF}D_5@l z8^%OKs=7{$Fr6;U={3Z<5!9~q*baC>WXRT1S|tkaU@7vB3XT&1c;lV8t=g|A?7@ZYPRI_TZ@$+*ZEU1^X!s8UK%`#fD8ZwQ8LT)^dTdIco|DUT%1W?HIlMKEoa`i zU@AuO9fJy5$>MkuI8sN% zd{?i-XV)a1AH!=Knbm8vs8uU8>6;C^+jCzbqAgy_unO<}YS|9v$)`US)bGr)T8HqN z*Rog}s2LU6=T&-RjlJg(7*?r`m}%2qXiM;E&TjgM(wFFvlA*9lJUny#`FemS%i zIZVk#t7g;Y35uY5A*0iFDy?jR0wJYpI^oXtvWz{GSR!fb?mE~OI~Jv0Max&Z;9k$7 zJIRPKQJwR*MR|ASu^03Nq^1`zC@!0e>i^NdLvw83#MIA@r94N5x=+n+1+wg8$9KANd+L##S=@61MbK6hHv-=o(VE_QeRo%n?%9>+;eUkVju1`g z`EZGJ=sXvj(p6*heoVM|JAS&g!>$B&=bDdC&HWCAZv&2t(UObt!-Y~(&#;KP4--$g zbw1yu>KmYNN>tKZO-aii|^w|HpX9RXtV11`hi42WPU$H2ojY6Y3g zq}kFa)UPgx!FdhaKwmNVFK-a0?QBB!U%b{{>(OWzu~AeXXzT&Ivbs z>GNE5LzuoOaCpKp$^WUoMa~$w}Lpp#atAn}g{X2Hg1|6QXRwh@P zeS`Zf)%F1{*bs0EZr=&d%7hZ4Q==0fX2W^9&qDk7=T5E4olKl`XP5?gu6rHd|ukEd0+DNQ$}R>+<0+#2On%9VI_*XbJHleAO#?2wZiz# zD@j)I8~`P0=<5)@|f|a_5doss6lqUH+L zc}D1x$s7C0p7iL&JL(KhiR3%_!IJdvGPS(@35R@5Cih0W#KgKjvwz`o8J83E+AKvZ z4=8?w`A|fT;Cx~F!~qvGzw`E8tg>;Rp4%fs9)S0@J5M#Lx*q4v$CqN3;QG2pUVP|G zNiPMc?4C3dlt;^(Hz_#W6PM8Zt&+74>8l|b8SmY#_z$E3M~0S^Bc%vt)r2+3!d;{U zta;$p%j*4d%0+fh-XA-&6hhIf^l?(_8Y*mDnml188EUUV#)6hpJ^~~zK;fd<8wQpW zpuzGfi&CDKUfNl-3AdwxNw8r&n6?jRvzed#8=j~n<5q#CZ06^jMX7iVJ;(A!Bh~g| z5i>daLok38@C{lkk@(hwg2zLtP8_c4(%Mk zL|G&z|6W$vbNf1RwI>%cN`vK2ruWGkIg5I>od#F4fNv?^!E8%Y^@N@`xdwt`0WR9j z06(0&w2kSO26U($_SyBGL(#HDKd+5i4d{21(p25XDceVQCzbEiV&lh!t3@6JiO{o~ zDUqIhdx%wdkUZcYAEf7Dl!H=Vknj14QM|oIz9n8l*_Hx)NraPl#-YGV=&8rg?!r=m zG5C*uvD<}v?K|V{?%wh$!L9dRegMtszJMJlaXpnF*@*0nb?JB96;M&yIUgb+wpC25 zC_r()e96$R!&uCIaj6A+KiIum(jccWVHnlXj6;*UXe$(39m8lZG~gN!WfN-j|Mb<8 zJ1pvG;|59fH$DYN{uC=btm5>JlVY8MTGNERqG@jtf^eI{G^u`&tH%NKSovXkpRrC$ zNUBCMvsp1;2@FcOSYRsmP0T7DRk~EbO^-pB-Z{WJ5FD;)H{Oa47*M{mPpWB^5c(n3 zhv<`MElG-`n(9FG3GcaG2+Zr$me|#jdt$)o!{-3CpBhgv1@H|IM|I=pUS(--jlB#4 z|Lr^a>iSMImD&61Mfp!uHYE$z@(WIC8=o8LtC15)3{iYEoSAQdXM?pF7}Hq6fbWV_!%b5fsvCoff)W=eG-Z=2Z32;KA9kc0F{N z#OUji%PEawLT^V-c<&z>y9uX0^eT*hyVovgty@sVMZ%t{oi}{gZ;(0;EON?&Bc9C# z4c^^|nDW>$l{JJO(S$ig8yHC$qk}~QERn?fzcamd-e3wf#XPZVH$YWFA4c$DS7Lp% zmZeyk8#G3OJn^N-BLyct1@0(TZ?FfTBW$$YL+^7D0QyR>Qg$Gs;R?yw_ey)BTT4XL zru{3d#8pk?>D9krr(mKeCTP4d6^m}X=A#K%@aY%$dl0jtp^*ig@(RVMd6!;KG2(K%Q8a^*A=2)Mmi76{{IID61ELjyyv zelDhhDaX*0eNyq)myM|X+spm$2bf%gnY1-PBn+RN2|G-kwJ{Nf&xGD@?692!#W_0| zWdIxCUeJiso>Ct@Xqcsal|H2M2j{t(#$}h6<<)c+%Y=1H5bzmB>mIs5Q~=Up%;6_x zzjow&riJC+ZC+8Kbo8O!nhc747|TfQ#+^#7$WY<>B=$!P$x~c!< zNKo$X3pIK4A<+PM%4gRH?>5=H5SH5#^Z}+-iI^M9KR5Q^ZOmdN_Tmg~)3vp$H0LU> zm-Job4d_kP)!9D}*I;4m4PL?5t>Pb_qWJVkXK+YTBROZc!_o-G9Ko9u7dUUbUfM)u znYB8AZ|liAwebO{r|E-h43pAT(MIq6cG6K?35X4WI$>4m%KT@AW+|{Tz${pU&V{3f1kSwi8Kb2$U>V9uYmV*7F zVY_(ZvE>h|$^pl(!b%w;%YG8%P0gC~QkNbZ1HbVDi@c}s_|O-_UYxYBM<%Ocm@?~* zsLGnT`7?tFdJ`Zs)$`%&a4qSJg+q?}%39lJ* z%0i0Ay(+t=ym$ofkW8?K49oq7(c4Lb_S0K?njoX zqz-9B9JEhtJ#hPxwruxkq{R8t#mm$>>~&Pm^g)!?jo1B9?MD50U4RHb)XS+j;I%Iz8uI?WBzPQ zOfB$XpR2kvEWQE~gr#lptk7Z-KyZH%9Z{f}olaHL zV=InBq@X~52ojFdRg?4EzG!2U<%i&wEGP?gk)8S4A4Fg0KqM`ydS3K#Iv@14$9q9v$u zlA}w#Yhk@37j3)YNZ&)UN%a9v_o{AvfXDF`+k~sZ=ZV2~^S>AN9+KwO`4?1%E?O1$ z@f%njD-YVZj=V(iXv$_&=+I4SG|5fkm9v#-i`_B}$753Es&;01h3%2{U2E$y)x8?! zRIfvgbKP4|LvU=Aq`6gOcZ}pHp`Gm$#WIoj{*Bg#LZLPsHQeaz5*s?6Xwvae=V|^WVuBF zVP-J>;6+|2nJ|lW;BBZ<=GmUAlv(VOs!#87MU5GP%zb2!m55BbMBFVvS)I)2*19YV zo8=nhuhwz&HX!~2ti|e^$Hrczs{^8h(1mMT8o1BR;$a1K6_Lk@z;(3Kn=)@3Lu{=x z&Y0m0Gyq?tHuwAVgp;X`{@p=$(m(jDp-@mxX59pe_~}TMtoUHXTcPU#tB2zfR@*N; znPnS^l=fP?TuM#lxlEJay?SNHS+P1zo{<(bV(DHk<)* z)7=PNW2MLN@~+HxYlCaWVI+hAgrUV?_KPKN8U-D{d?FXG*VI#X{L$1z03jDo^ zK#;l+&G787H2JEE|nLxp9spYtw_JM1Ik9R7dykIJv%B>S|?HMK8;}>t0nB$ zyJuHXIE`#yZ_*JDxcwU-lks-jc@M&B!uY=cRw6+u+6OjqxMK&+15Ig}^hKe;7~WH* zH2-YAMTK-9!nTP9>L6g3-m18Z2*HUrAqF`yQR$dZTcy%;&zT@tKfqI2#api?Higq& zlhWy_4+FVzrGvhiTWmG#Kg!{hux}h^ONC!T(HTw@LM0)RC>jpY%fOsu=U){ zmJ6(bU-PwTH&eG4h=${>l~Xv=lH9;@vByf+W0k`zzb0O-yjN>39Zum&i_Cs&uDRh~ zBl3aTvU&&?mx%2&w0y0hXQoX8M`sAFg0L`hIZLkcZRKa0`XP;#T3oi}z)WCDsf^IS zuZH*D+7zKzOZ=?PNPpRih^$KewsMARe_s7ct7k>w79Taq!i_UQ1$!zz$?HgE8@iOVO^`1l{@Mh%OPs=8%~x~x{;zh8M8 ztU|)c_7KDC<;txRp$TBJLEPOHOmce3($$5`zN1D#loP1iN8n!8GtPM#<{ATrY!|^r zSht7>A|$wCOg3l`a{GZ4OokkrV7Tlb`Uj)as()$LN^uC{tHkxfpD}4V9NPvj0#$8D zY)Ng!RdYz?crZL}N{VPE!g9}-o%X>WCkRM+_?yc8_LW1=louu+T4eroLB?`$G1}poPMtQOS^gH1FI_MLGzc@Wp%a z`W4Q)mi37`u+s|G)k)6jt3Kii2Z>~Js>*7qo$EN`y6*PRd3WdfqJ#I!L_eiO<3C}v zT>ET(L)vwH`EVHy;RpPOXCP6G<$bxE+54HK{p#|1Miic?MY&#(t`abWImG z#W-yO@a_RR)`x*2sVz}$^-C{Q&B#FH4+|coTr3N!u#!AU@9~`@ zAcVhjnNhaFB}e5iwF_KZ(_mdS#ycW<4d&VL9_h6R)ij)`ia-3^zEu7D_vPWeVQd{0 zy50-bRqtB+S)AHQ>Ox+c3VVgss+rE$j!6ENBd>E&Q@N4l*>^Yxk`xX2A(0%pL;t*S zwj4#--yq6KvP-kzic1Jf)88$!Xk68~ZsZ2}NvB29@5q(6cM5aYd>GU3l2b3FiqCR? zm6FD&c50T`eJmQUr2Z*(5-GEtLaC*E4%jf~5$Y`}d}-0DN>q^|>k*kvVu^OynZejr zDl#L3{6CM2S*E4b9T!`1K1%Xg4)0OCXI3pjbyy9pFt%b{PR4_T9KBd21p-t?05^*B%Y(CL4$A^Yiu+boW1?TzrY;ou~!#w5tg*pezN zG_-GhM@4Pn)!-H^YuBFYo0jy*fG}45{i%Nw4vY6v6P}25wb`zUM9$0sm9AMD=F=k5 zT9BvnZZ3~B%+$~&%5>T0xZK@wDzh{7mA#r^z=oB&J;v_Rk=`t>INuU{{v>!P*LzPu zpJj2Kt73p&EEb^X###116bAamb2Jfy#!=(3N&9cdT{c=_HKOv`Wo??|_b07-WFD6$ z1UiU9&-Sog2}c%ZJ1yDzs$J52InN^A<0nEtPU;+Q< zCUfVe~NNZJ(^>$1^zx;KZ zxld)vznflYR$4HPDiQ~7jtf1qQAwZC8#q~&E;uJOPpxq}xy4h|pg|~RCe7nKKBxdn z&T3hcW-od?GZ~RvykTN0Mt%W+juuI7cG{s+NURXB_uj6(g~SB;Hv(Vgvk&)JC8<5D ze9|`zOq^dDSAK?s>-Y;MhZuyJNE)Z?y4x6Y(4r>8R(ZM^riT@l+~#tBR-_7q*R(@Z zX6DQOo?Y52YGf~H+<}=Uclt+5Uq6F=sp+5D^jqq-t=eBW*(HXhB?J%dQ`4Yrtee8Z z(%Kieeq3Z!?dNzY%bPUlh`FY%!w{#HEVg#9kTRjV#@ckohe#%^W`(~*tbl*TDx{_1 zZD9zAup2Mv_lUR^u zZlSxZQ1!^^s(j4U7!9N7z%oq@JY}&!#gSAu3*!IkK^yfrw!REm+u<|y^A{jr(zL0o zxrykVeoMJdo4|&wjU_#XSvoR*G_W}t9K3e!wsHM)H+ADr|9qif>UQb?wfcDhsf%#v31cRE zLk!xKiA~&w8F^FrH35!ocTqhCrIMDFn#&H%{r7UaOOflA3Aw6u314cX`d_mdMAlV( zZQwreAku_>d~y0I{a=J-x8C0StvFP&1Prl*AqfcZ@+RqmgN%pH3!I;C>8U;WPGIgV zh2PHbr}Nbo#^LIkHHlM@H)`!Hb?M>e=qf()jWP+T*foG}jNHEj;hFNCDBnRglQ(H+ zWcB{jPkR{|hku|BC*uO?LBmSerXWh|m!&aKNi|1c`4< z_TM`HX~uu&x;FS(!j`svrn{_*TSMz;7_oJ-oEggr0xxX0t(ADUh_%ccvMzaQZU&?h zXV)If{PaA)GboB7kn8;;_bE#$6yA}sV;_nm3|10~us7#(KZr6UGZ8!V`wZ|EBOm_OU>khrtA5;Hkpp1*SbTS`^^ziB4KDOgzaJxejm>r5P=(tELI!mk zIS!5>j8|EZ5a9>Z^{?6bLh73Y7j`eSNL*Um_yqS)ZUt1-zAZ{ zr;k2EJv`dkRp z`0EdRgd_S{$L(w%#q*uFwiuDP;^Qe~P73qill`U1jnM!2x`HZh3aRKTQtrP2{XIPY z!S}Dxy2$;z1_4UieG!kL1j`@L{Db~KWA5*v{p_=QPMSwX#*{r|Y=i#x{vR;@bD%*w zd#<`$hHI;}c5P)Nd(NnwGJKLD$8vLf-84F9|GJdhmpGqoDZmsGmPg_<)Q6#UQpbPB z=pREd^m()s(KkZ#;!y5S{p*AF{}}kY=-GwQ&UA$E$+l?P&7qGsF!Q=UxPy}#jJ~pvRi9PX3*rf9+OUvIX*^CA zE4}IV0&V-vR<*@Wbcw4;lJUPw&0eL+4BHt4>9?6VNo;8n&YneGMfO7{k;vNwXK@as}d3Z(2kw0nCYS2XM6c2q7%@f~&~i#Ul*7qRHj1S`6~znLtQs59AAS z`QhW!h@tm~jb<0zEYX&A#v-91JW2nUXU-LTeS#;}4@|kN5dIog2w#pdgm$J6!i^I; z^JNEVlkAUN^zje*xMz71i2N&voF_!?{9EV+8bmg42g2hr1Yx)NSBB`1`b+<_JVdWM z)2zYz8)m)9d9^LCs&D-Fo)6WdRw-h=&Ep!&BpiOpdcRdjK-B!5|83@Ac*};9lFsb!t+s?jhAgu&HQ`Au~^W>ZKdo_ z&vj6e=rdhVD1%ZW5hV6ghdYXPVvg!Ak9*8CX1O9UdFhW4mer*h) zq4^^}1Kgmxgz%w*=dxXSiRyN5B55C=i4nDkk z4gEu(R0!~hCuter7hS~Bhu6c?he7#VRsIYyi2M3wu%iXf$cG9NGP$VT z3@c1Of*(OHhKy^uRNR_Wo~=K{RkO%_>%0BY!}&s^w@xlvy!Ol4%0-<$C%XM0uqNMn zRXW}uW-dNIDM@2%ZF?Ey=wt}|0_7GQze1rCR+MXZ2^tQGmvb8_s05Q>3_4XB3ZPGAu1gE^| zF;{N;E6iY|W~{d$!UfIUy`PbyKFRr;%eAeC#HuAtW7i#v3|FPL5Gc92#vw;m&u7OC zVKz1)k34_FSz6MK-VODakzT+X_|n_rMv_=Bi-+KY>44 zJ(=(~_H={WT|q9r1u!edsWTl-rTvZ$-Nbb~Fetf727VSZ-wp-1O)IjRFq0MQr*OO3B*@pwHxReyvH%O3>oHJdc1PWP z;I2-SrRFqi(8g(1fY>)uohELU6U0jqbk|lEflfVFT_c|a3FSUOpCwS~c`S5VKUmIb z#(IlOSwJ+gF#f(3R!cIa(HvM25&(DZK|O>VmFgqZ{dr ztnx+(@&XM~8hqb%y!mwQv+qatANl(W?>mG26TMIU=YM5&w#SVtdCjfsx}f{;qi&dM z-=&`1bDtYBh$;|7XKC59VyrbGbwfIVF@ZN?w))O(}p_)Vz6njNc8hlnSC0_@~l8 z&AzTxqigf4+C+1DRCfopa}OOvr1lWEmL*#__j3JQvN5S;T2(T`h>FiXQ5=h=iLC`y z2>K#t*0joGv}i?NNyNFZ^J7B$PabO{iv?!7#;BnTeAoE!iNN(0R`!jQ)zNj??Q6(1 zp9hh0;oS>r<=BDmZx0*$#)eKL={92G&GFY$t_wJssuVT52uN4q z;)~98Ms$@E`#18KVs}~9o`pqL>zCscyZEhjM;$Nj=V)U)!x1mv9$t=3N#Spui%6|# zkkOues3e``{=M!?|1=J_-UHK4IL}D{8 zM3KGh5+bssFOe~Fwd7~&*)_nj`carV#yrybN~`wYH>{z0V|(F5iFDvrO}~4#zKCK3 zyY^p&5O;BSN!)Z)GL`T@a>ecRi(wg#SBR51+k&-V-;FcMsU>hNA+=NqB%YzN#mnpm z%Y-_*=J*;4HlC4Y3Suk*hPZ-Gc}TEtjn!%$VfoTPEy#AUR_L4rbBe)wjq!5c!jIMXF_IPik2ps1W-6YelEICQt1y7E76&mv2{~oa=(uE(ipDZ< z=v!>yN0$%ZG*SqOz&NDPS<4kNXen0@tyPcE!~)#@M@_f5Zu*AIK|{K#^wflBGfYau zZ-%EtBsO2Y#oF_e$5B?K)-+C!4y$|`GfXlZ+VY`N%kh zA~DX$rJ~Z7ebW>L&Cv=hHr?X(rs8C#?bP@(I82*=&A#XHrm_Pgup#<5=ojGIXrZqp z%!fKhDG*6sp=qH--63n{+>E3v2cz(bhL5pFiogM62JX8gSz859)~m?V5AC|Br11e^ zUzkYyi}ZUHA8)JiR-JdtTFz>nE~{Z4PCqhzH>O{F#4#B#J0HdV1)w39@<>#F37Q&@ z4-4ESo@bL}O&TVrJ;cAhBjECWQd1&Svk{`qr_0;@nAEcI)zr5yTK@v7Gxy54qXol| ztZ>ut7hoz@wL<1IGt6KJP-4Mh^Ip`UYs$+tsJ?}-|0Jzqz!QG><8IwtC?nelN5m+etOcL*QpJh?M*|?$}%(VwFJ&gTWh`M z0@r;FdcCVLzAv5it8QeBYCLS!Ul%NupyC@V4`yWc4E4i%_1o`RZ{Di~N!Di$C9E3j zpru|)x-_hc_KQ*UGaoU_^#-`Mb7@q`p&intFf53Zqjp|rcFYLk?QV&qBuO(uSd9YZ zM{Z|!E!ZdZ*L>%Hdgbkx2=t0W`x%uL)xVY^T&BfTIadi*W;I_@TWGH2UMBmh*Gn{r z-LO%$H~58VKk6qvDJda7>fn86AJ1K7p~Ml7z6ug&U~*^ho0bAmu8O7H9+zG}gTQYc zbcnReSNSWS<)d)>>CNLHR2XLqI=aZYHq$mvW!8jXm|CZfT>{PyCQS}| zr)`u4&$UgWz9>|Wf2zXOcjaV{WlF&5OqmguB&o1#@5+CFwvO+tU7oR6o zIOpSk0Rrf+l_hTU1KqJuf5xZsPfzq`u6m?edO4mao0F+K%X2)?&O;5JkG$y8F=@;y z{519IqHrf3Bfm(cF`O%0cc^J5&h!ZHyhlq+4VP7kh!~sG?5aJ2 zPqT<5Xodb!VAPxD}5f^f=>>4|4%~B22q;HT(mh ztPoql{2cdI7XHIwiC60Dm9q42zc#r9rCGs_$hmds?5IboFK2##vuYbAruhgnNy{4m zvcXieY$JXNL?l+->JaK)dBFO$l!*tzXz%8 z+htm$wWXOT-)(M59(mN2)E5|=g#6m;z?;4`Da|RupgHgtx4tCli#4?frM{H)M|0NEgF?n(F}Mp%PZ6Ge5*YXfm>QoT%#D?_iw z8*$xhX)21WLguu_x-d=K54)pXhtfl7)Va({`L*lS37}lIeM!~9J_UNYdehul*Z<<< za+WKhs9|5&r76?hSrw5P*$+{_5|tNFRT8_mg3dF&YWv-@LkT4f&E3|E_Qu2Zdwm%G zvvIRO0hwR<-zgalMcls8tZopjZZg<^lp!!VHNHzt@5rgL_x(8SWjIoN!=SA(_Zqi> z%_+`RFe-88vJxjPPh8vX(+z0gE9rXFFirX!DrYjCBgWvfQP<=g2(PhNT8(Qn3%On? z-aC~osc=^LTNGke!zugX=B^Y%$j#X{lToZpr8aY$K`|9SO-`rfX#MOVqrNEwJWEy&!exgjEEiv|DrX7)x#Le_vL)JZS z%gO$gOw0EQX{RGSB8w!QHdd}1%cy#h8$ieCUJKilAn(67U{RroP(kpyp+ zd>XnjM&436oic{U1pTbk=JL8?L1|L`WLrdVg@eJjE@DOV!Iecb{;gIO2=lWMpWhS z^>g{IboYflh43-EcUC$i9y!)Y+MmcDhxfujA7aZHT0ogYSazpx4~DeN3Yr?XsQQmq z14jj|@+#jHy$iJ|Xy_lYbFd~;LGh#En*OLk`?_9c$pk};9vH>rVrm+a)1H zvc?*r-_<3Ja$K<4R7YKNbLe>_^6D3$1M~%B?ozmBKL&*Pi7H24bRhN=X}metV{f8` zVPi>C@B8JdTUVGO`!yb4%9q9J>Gcj|xUM4V#h8GyJCxEzGR;rX7e|F}yYbc%A5O5+ zC1ANHoNZZQU51!PN>}&&T9j6y(`@GN7cd2z%2XD{>wEi~%wj7gkL|HbPLgZ4Wl{$= zk}M6KkEd@xPrS?K|KaV?IHli_Ht;-&VTID}{~9~Qr8sqItR(%b zC`N2r1^LudU)HsXLMor*BKQ5=rd#QcjEx>rD=ub*#~p}q6v;ZEI|Q5(<;L~}n$v`i zYG$*##R=9f8FEHNA+ly+rdeBu)+7cQ274#j3ihm7M2+u_-B;@h&|RVe_esN{*7Zc< zck`t3xFu8hHR`!ThkO{giD7#rnFboQaiD5iL2IsBQ-`M66pd-J*|o1iP36@ViabR9 zVMIZ8;9ZslDe63JtZwsFMpoN1Zag5!Bx6H)zZeGptd5R(7g^FKPCBnYVDz*Zri;aFK;x{NXS~CLqk!_q-4xd@%07C`I`LQ%?@<5ob)M}hPdbiz> z(E%uR#Lw^njoW>ve}FSl!Mc8`&u&I z6jn)@mw+>DXp^5w;#fAs5liYdJ5fK&m6gEw)DOB`p_7aB1WRPJ#JG9=yJldW8(e z@$Gw2rvuoAhjLJ+w@qQf*aL})V38T|ZZl}jH-7#FP+~)S6fqkSf6tw2pi@K9W=?Jd zeF>XL9&IuzgP*GNpc-rQX$Q-vfp)$*EI6e_=&FcF4k*Rg`59ovh{NGfjh(ADq0Qk` zjX|xn$Bn$xKqKX?B-+8ybG`72+&q{-}KOmmAP|9Vy~SNd%+CNu?8~hw!6s3 z_`=KO=R-*A7xHnJK-`zi-)M&d!}7r?zyy?*;O%l~nSGTuNlf_A3^nNhL^!;*WH_^s zR}OtyHgKYym&3=(V6`yJ*fF<^fwhVf7_C{16>{ zwMjpyAC&2L3CkJ~ll`8b+5$D;G*Fk~3oQmd6TF4*)SBoo0MfZ#BJcplm|vm!#xw@GemgpR1NjJYc}0<{c`>RdV3Ym?TyBN&*b_?~ zfI%9%?;}n=pYYJXi3y*Wvws=$RmH`>-|z=38A60Iu!AsnMAY)6;qWd<6o?oAFD_Dn z^c60A8=WFXbVsTerxv^n1&1ZuhiXLyD{$aaxOb9$cV+6A>7o9L z?*>pdhGy+G8yv|<26K$z4?tmb;AGZR8af@&helbNVhF%$aR-V{$E-w!H8Oxl=%Xjl zYJvimnwWVO;Um10M0Amjn!o4}MJwX8!<_(Ipp@9QjZAdg6?*rJt3iVifDR+tJ|J-kYj{UK?PQfGhFmBDbpkxVo!E(r zJgjw<x7Ym0plUw5~~in0cG2uJywNMRDpdv?>?^$Bw8$|e%w;WOBLt{0A#6qDG`gW0#4mzlhkl6$YYYI~`dnG-qzW}z6sTC0rFouQ{{1`91 z*(?m;J0=hTQ4_r1esQF2Q%_GYK~bKB9R!CD6R3#ObwXd9>hDHE0f!F~C1mNaG0iLvtu?^(mMvCry2zjg2W zB@}HxlA|OB8jEeCZITr;7%V-zB;gl7OLj~4+$zGwd1*owlKY*UqLPUgSqgvc=^dE- z0dfwaBJdB%_kO=|iJ!#3vt_m5Jt5V?Fc7=e|~ckKFQkOIh8`knBsJDgvE5Y8(q zjdW%bD(~NJ@RxSiqy4Bf!<9k1`SKg1)V~4yjh?(nsO~GdT}3<-|K6wMo4>49+=X-* zS#i`k2?&Nq!1Q$*=U!lqV2(|2r zpT)_{MIbANhUz%{vsE#O2R3hC&e92nt_(Lx9z8oE{qQfZp2rv&WSGFCbDsTJAYLlE zlSGUD5e#a+lUdr#pLg!m8n!`%LlPNwyIY#L!<(Q8Q0|mw*K>X>o9(uo`&XLnwot#~ z3n3T%5PQFIdH99nzmp-`!YE7>5O{C+Gf(06Ka$MtyTiB5*{s`Ap^z)pd-9gy&)Q;% zfW%atK1O=fcI&T#v6q6Oea6OcD{2;7p(<3*g+!bCLenDe5$+*2u&~<$#eLZJrcKhzf+cwZn^~G z4D($+w^FLG#H!CRl`F5DGE#WcCf%9-IHD_vaDfqRMUP z4lZIww!+g&p3Q9_R6TMzeDyc>CFm-_%UB|^b%<9?WU^DQRRvdj)J-BwiB!=(b2PsF zPdyU18EJ2u)7Yqu!MgD8X1Xn!{q2o|KN@vedYLugcW*F}E%Dp3RUsC|t2O3ZM;z<5)FyXMyJY+t%!H0$rb?N<-pYP>R z;0nm{x+Wk-{YTQAP~5oAqbG)@xp#ygxifI?^Lyuo@IpBRtD1U&;WgSro8f`8HhPn# zGz~151#<8jyz1nnaEFt2^uv-I@@1ue1}J1#(d!pri`N91sS|8jJ+{dd%HhkEB!aJm z++!EMhYZ<%OtX2dbw`rRM7MO7J9=~R@-c)*$rT5kclr}0at};FKml}!)Z(=11}94a z4#!g%{{2HflqqDv!~n7L@WL>$bHqT+*F4pM7p-CYE^P_3Bh9W%^gI{}lWFER0g%(b z0Fk}98~%x)fc``QNSqor1>T)FNMf5AW*;PKgtrI27$Fy#`gW@2Q%s_v2WG#HFN%X~ zc=`9`6EXjy= zGD*x+W1&#_LHrSaJ=vO|k+G{`~R&Y1|~E8640Q_(<-Ys6Dg6~?2an7{Hu`cr+Z z{#FXIbOR8I4GQMM`8ZTLgg1!35?jf6BJ&{#4HQkp-nLPIw6Jpd^Boa6XRzEvUzpt z=-L8SoXA@~3Ovsq@f73F%|a0ikSl1p=Xs{|mk&lbaYaY&!7umR9Pi;_jj4GnGVEHW z$kKzqJQ&7Uq9O+&yVb0!qC^z>-~k7mw9MrdKypXq0==^ll5&a+d#}rqvh-ekQ8X5s z4DK-=$vvE@p4L~=K1Ezr9jMuk8S*$#U??UjOZlFw9KeQ#vGjx-gbhQjBqb-M0+Z+p zMLMS;D(4E{!s#|WCN^t$H4lnVL^qmE4LEeH|2!C&r})9wa$EPX8h!nBe&*DpCWbQ} zhVwLeM4Q+*c*1l6{|mhGSd=|h7c3J*H6trgrqom+I68E+&Z%o@50v>Ku@K09Mr5OJRP6IVvVuxG$I_(Ld4Djdaud z7l8AvecOqH6S)&?;Wl}2dZY$ggav*K?fa`R8boxlubaZUD9Wv{5`DCp+suypVv^P4G&?5#KO5E3yy|eS9Zw7i7qGHFyRH9GM27W+wDF z($}C#ozP)JOwh}2UhSZVqzxm>p=Xb=4v(eBaFFZq1bQWF?)D4b?-7%a`e9^KJUskV z91!}*YWfg#%wjMw|B*rQt(0r)jU#!5tvZpRl~M^_JP{=avDh{|e`x^{Mi5wQtPSZM zQ-kt~c3SP`t3K^53@=f8C{_A^dZjO&h-v5&bw4TaLP^haDbNTra1lb(iQ1nKI5 zFuhM&fkvJ{?9zh=W@miF5^Vyp*Knmp0*+Bd>0fS|vn7B=eWD0njXLq3>AXFWw#F5G zFHQWEvR_LnZSyk{%R(NSlA4?&){6ENSdRohFi>FT?8Yt?Par^V@&?)kOM5xNs9Fz8kU2wzxC?Hi8eA(7xke5e(A=b7o9 zYie-$`6Cu&Vh4&-|`Br;a>5K#xm?Y>QqnvJZ* z1y%mm4b{BKECv9QvtS|h!cb_BFc!uT`%%?Hf>}3X1UVE@irn|YvO+(= z_hESjIEX?QC?&Bm5eZ8f+qALuaq=V7OaX#fIGw*MnK>{zZW3h5!xjSyE9=){;N;&& z?&0T62T}phpayt=rBF)Q4BT?HU%h{}hXK<_=`sQUf+x89))EG&d0W}x1U&%8gxJ0w ztd)sUl%4|Gc_Sr&M5<=@Rc&D;IuNbY=j(D4_}c2?fS`cpjw4URX{*$U=W_2(8Au zrHUt!py^Rl3~u;uv;4j~{tFmHB!b{A*;~7EVdzT~ZX+fkxOE(3C>zBG zVJpJk`W0X)4Q;vl%W^{7@8;)^_|c3^dOJPo z<+jmbP>b>|@IH+w!MD^mI{}@r``9y)l?GhV6wa6|lOwY1?`7#gz3;%Tj^ukU0FSw* zCh)s$FKa+(LU8CtCCsI@q4=2ngE_=I629xNhQTb~Ak$tzEj22H0s0S0sd_&^$Oa;H zIBj3^50X$(V}z7~n8JMEM}oIidr4*BKf%a-9Y~U`JiJ-7qrDgQL)Vm*puNoMOkv$R zShxwT*P+CMMt(AiidcoEf`*%MIlL$}7QhQAPy=1}o-^TLh%7_q&k%?u`>G7*dm*Hr zBjXPRruHh~NPw%OU# zli*xq7l|8W$+jqTtEO|-WyQ}sl{k;+?dx6#`Q;W!h=ER4woN^mv*@8-+<`PKL+>S> z-cZgN=q+ZE<**$(nR5o8`NtJilHqm8jVmFhx(RH5jx`Fv=L{IoBBjA-Aj3fOgZ_pZ zj&~mv9a!`!x^vMuZb*^N7)}c%#F(Ads5Zl0wD4?o%0cxqe(aB*j``|FMO^e)f^Z5B z)sCBV$WuYdj(i^w=YU+X%^NYf3cFTBd{GZc7*xpB5-b(+iw=^&a(QQPHCdlZqnf13Lc&$P$NCSiAP+ro8M>oiuNq@7>U6X zene#5?GqM}fFkq^qY&8jXC>0Oq!1|D+MORg@p1!*W=~U=X&2kSe(MI253j2 zp2){t#hNp8gWmfV-cUbyiD986x$DWf2eOJM;}k>1`tGyKT)>EAk8}iP2AoV<)oldV zjiL&T_#P7m*%dP{><5_OqrQU&yWkBI_sCcdY)@c!IX?|!QQ|927y!O>^)a=o!ydO9u#1tIxjk-6h_YZr6-?y%E186BP_%wgi;b4 zy9nV-20mv}-y?iPoabHMEfNP&ayWBxFL)4S<@yk~QuM;ZkH!YGE}g_#h!k7or@|$R z($E0;TXx<~nKtzFF#g!`&Gk%p&=xisb=T5FaJ4aN7j51q(+3KeMmU#HZyAi5ECV4W zw^U?tDs6ltD%`JgAP&~)@UIgh#xkV^DR6acaDmmLMLkOckwZqj=o5ysW_>LDEE49~ zN;a>C9nlNh`7D)jc4h|gpeUg&SZvt?tH2X^hg_YFm*f}tE_5H<=r@1FN64VdQ#h8x zZ2r(@BRLvy)5#5kB~M1ts`5!#!J5uqGh{Gh*V5CCu|+_<@7ny9c36B0Bf^kTR>eB) zWQR|p_i1>(rO|4Ln{ElHTpkWZ8j#tHA?^S_^btyVC^V-1d(%w@-RxQJ3?x7$pz6%ZzdAq^Gm0lx5+|eF=OSqDuh>Fu{4O-;x`fU;g*?zF z42kgpWezLJ3Q#BMy@`nqc&f+LXQo$M1q56l1>eKPP#YX$!*Mlx&;fc0BDn6&>W8r5l@AknAXZ4HNg3 znIsP(^F(I?GQ$a>@k&vHZ&)*!=FO14L)e1>b0SbkB3$sA`6^~xJ_QEKkK^A-YmT9b z@G3DEI9yDwLU?gZy;cb@n0)(pb*X5hv_e8`V4x{Ac!9XE-gp?C2La@~;hm_KI`w;m zgK^nHi@QlSLFjmkNn>#*;4E}LsziWnzn^6{mO&S=KO(oW$$Kld8fm&$7P?@bD*AM@ zuXYWFH4H$`M0_JkiTI(-lQO~ScAs=a06-7bK9En%gDwx|J^+eY!O!Y|;1_bVM=`?L z-SQaNZt}B*X2TBUCu0Z<$JcZ(SsGW}Jfrz62YAGv<;a9qTkL zG~R$+LdmB9@k@`8>PGvI4W5ER=NB0_M>3$T?opk&}#LE!;7y!6EA zMhAf~+UO|&Yrw8b8)%uFBpU_ffxlv7lAfk3OdiOzZxUE&$7luCL)`ZE>id1u_-TMw zXa^teh@Nq#z#>1EPqKoiv56+i%n<{VV*_`*NfIU@qytqeW+D@4N#OV5=}z=Wonm>S zr+H4x79$Df)#VI)%uPMCpI|H~Tk@`MvXcgyA~GeG+**_s_I>6Lz1nxduPmp?!uyQP zck?OmU4{;D1?HfQ#crBZO0D^YD2<=;IN6Y?xk>LCQg2>o|C`~ z^Si#EZ;CH1sZA`qw0{A-(~M*DF`LLs?BL1~Za1(XH=T-5vW6G{4o->?o-0-~=NHxU z1F-yTCg#Y2@zpMrKTtk+AYip0@V`LjRf#$U0QNqZ=Ce&>FG2brC-ObkDFPk&`4tChe_Ak`iBx+roPrNPClrX9 z@c6P+C}rzliGF$0zLJlkRT;_#F<`#H4rQB2?L8BMT@O+%M_NL$brPsiYGN5y1IZv1 zzGXK{Qv`9A>UzuyTa5KW59{Q7%jivFLZ%Yf6PuSt^-G9IkwYY+k+?}fz7$Xn2eW$L+x``(08KnfA@r*6`5tt>ZY;|SiXW^KuZ0ONcY4Wz4FlMwLL%fFagPzL zzV=Lo4YM6qj>|!&yu*)7y3-0K;Ri*xmm?fcA=YPxL#9Pfol)k1 zgC_{Vt`=dEnSko)7ykm&vpW8^aFiPp4&_eF00AvlciP!lby0YlEbr834JkftPji>FCI7pG- zD68l?gLNbA>zKFb$uZc|&Q>BFQMLO#h&_RuMS($J%Fa!8_Jm--AwCs2tUF2tT!+F# z8BBV7VZmCuSlb4n+wn51NI1kfIUu zfLtv`j1WlGvyiauM-Jz9Y_Zc>XflbAh)gPNf6c-aXXO!~3oRGT09B}{i2m+T27^ib ze7dMdjv6tc+KEH(>`{iEx#$<5b7&w#tf_+Bkdh0aJl^&P`uH-NSMS|K5Wd$$&sCazkB z`2X&jP{K+>*$o_VGB$nO{m-`@8~ls%#w2OtFd`TqCUYV05Ne}1_&`h%UCs9KaDP@& z+XDzL_MuTG*!~zvXQ!@EpfVX|E=@t^Ri;Y&c>h}(`<>c4THcD~sm~*aQa`SP?mngX z=s>wzg>tS+Oc6M2bi>@9=&6)7hNG{m{h6p?cHNehzX4IKp1s#+l|$~d9;m#*{A#B% zbmzmGSU&P$-Ni82IZGNgIZ17SpP1P#blu|;L-PTRdl5eCycV^QcDF3zukToKwnoe5 zo_?DmlOGOf>?1jR33j5zk+_Rbj&5~rK85R^teHD@`S3y%2?Knew+l`tWuoWsde$Hk zSpu~Jg9~jbTcSUGmiO_h@GLp|Rgix^TX6OliI!V`MmR<{8ze65cC;J! zCr~wo_Fc!6^F5R8_B1v3WFR-xTCIn-(r#VPzrWei1(^6tjBk1=$J8$0`ua-Bh79p} zyeA~dnE8vIJw;)6+m!gmDw5nu80X7)hsUJ!jD!8$NRfyWM?Tq&YU^;e+4U=1L$rZ2 zpX>cMaHB%kfD-DI*YUMuYj2KHfl8(+H{2z*IO<8aasyf)+Q61<$)A-Fg61!oC5B%xENgQ@he zhhKKRP4WKc#YB-qpTibi_*O0jR5QfD6?wCbreXPc#=STshCDp3aUHq#U0A5hLcMMX z&)=rt=wBbrSm7&_HtaGq$BBjgzn{QxSM6Xga7t+S@M?+OIhMu8Gb!nqG7d`Nc{>gz z%O^S(CRK97{@^n6rbn6i+%$gT0?0Q@%9oqp!G34-ZTG*=x{vG`aG_HFSj6Ovs_*HW z_Vn!(H$cJTTN{;_3Mnb$FuDZ4#|Zv5L^7Msn5Lc{p6coIUaOk`RX=5LzjdpCA#xxi zSA*f~jN~yvSiX>)*IkJuHKcEmc$r0?uMN?(%;&$08=|LbW7<;0OAKw6h0?=Y&IcRgyQ{Icd}`GTZjW_b5KB|fAqcSMo` zy1V-&+%_I{=!sbgu)eXwPoigEY$eWnEHa(HL{F!Z=GV{1Lv@;$ur-C2g?WK{k<80k zM?C6(r2LXPaEjj@^ov__E`;=ARIpRbTfGF6!g7$ZniwdIzxTEFP3KRddMkWJ(cItn zp1Zq1c`~N>m#I(KSc+%j9JquRtd_|gwJ%t^M({B})+*ro>MLzSH|C`)UNUOf@@a#f z>iw8+>ltHn6%0|Ggu~YM2XR@dnSJp!(49L49Yu3y-d(HESC)L(N8foiFZ&oCG|L3L z4S;`+?7x+cSuaCQ&~1hck)MLA+dQOh#mnI*O020Jno;)-asP^34Eq$N@O|kWv=u2K5ZJ$JVsBDR!=; z6S%BK(_PCxJ|}p7n-mcxzgtY`CupW*lPS)nur2)H8Wbl-AvC|nh>_i-3yMB}D`&mq zTz6!$?U^Srj*}buc1c|(FGt4pYBzV!@BF}%U;jk2malCyr@D;_`oXA#?FQU=*|PP{ zb@x-ii_Y@>b6eIK@##N!mjZP#<|b#DBc%;a4@0cVcYh=WX9~iymVMr~emH3snr-kO z^ZmG$Op=KxyILJ@iawCDoR$I4QLN4E)#X>Y+jz{<4SBWM6kw_+d$gO@6TF(=w65ns zDRY`nW*ZFUDZXlDaLf8D3*}u5w)Rc!}T@zv~q(eBXv2rWt22@dxh+*3N~?dfWK#9hAA!1wGPt!3VKy z#;%17blX+F?zx>_t_pYz#qc5`dActpQT8 z%NDVylD&L=Z)^?a5LS_(9ZdQ;ICbp;Z&PQHE2WYow^uTYx5~(}o1xyeeZ~L2-SJOq z-!8#>V9~&I1=H_-ZPEbu1o{Y6F1}fCDQva-(Q!NTyMahjcz!lR(+hr0yNvw!V!SPW zE+q)jYQL>mK81Fqy7R8{TWLleG|44}M_OpP+n3QZPNgORdlhj>{T)bRNYkgVoOp|x z5Q`{stA#GOZg?{;;oxwff(zV2OcJ~CT}QiQ`HylJuOdHe8@l^YypnYnGvdyO_MTj- z3g3JQpSlFM!Hge~-MLE#BiJujbDb6vi)s#GmhAHog9e^5=vTAHOW$T_pXVJA!Zn-E zybst*_N0sQ0Yme|>~=^SK=(ylk`mg*_s(g|1{C2S@u?2Bx^b@H-80J@Z|3GC$r*gs zgC9BchxH$aZZ1*t6cv5S*E|zhGKPI?J#>NgsA%y}O)Hh*G0sYuRH30^{$@!$+ZyJw$;6 z0uz2Rg}E{4f;keyh@fi397B+2w&bv`C7GQZocL!-UF1=dM&T6qS&MSsSzD3DA=WoU zEs4sknv-RU{WWGDfxrW+KECTRJhRT@s!3wwTsz~Q<`ZLJhu&gw$8ITB%@M~R-EEkD z`v_wbe0nHa9{a*74!&^5K?CX0$YYvAy0gqj9>=qC0 zbL!9NYCQ8!qAjbf5$G=2rcGp4+-^A89vW7A2r5QDXlKE?JUQgHZ9OVI=w6fIPGp>3Gm$S9-- zHNPT?NI8v2eK&)#Vwkz|qs=69!qps=uDzVCVRYIe!BtauFGk z`w-Zl!Lcgq2;V}__f-rELSG4fj`q0WTZ=zc>Db>fCL!C~#7}}Wji4F_71;g4fQ_dn z0kwCYp?&6oB=6=)Ip`-4^Hwn4B z>SnO<-ZI*IC3T?ZvIVBro{Ft!CEhAUStR4ej{1kQ%Oi)r-D2t&L`%^cXHX!tm^g5J#pu|EvCG7eMh4jSDd!sG$1Qq zY!gP4=2}L!%+YYXkSNAlBC$6qz>rT14T}`~9(K_sWZ1~6W*)&c z$5!<7)1wj$CASTYgD-7_ zy7fS`)U(#)xp#KLg9a%A4er3wB1hcm!qg4tV2EAJZ=Mq7jJ@~) z8cYM@+PFK%h7BfRSy5JgH0FTBNKh~#R4X)57=v+x=R)`FzcVCoxae+meg0Eya1Qww z3rf;E4aWtWx3QMXE2z_MI>zQxwj#&;*X7A62H2hpU1;jZ^_k?>v?oAZZ{vdT^U1i= zQ_bz(+?}E*dE$(gpa*5~Nwlq_s*z1>FY`XMoOzo|d~5@b;~@bUh737rv>_~`j4A&G zr_jpQ613-!8Q(oif>Lr?^>x0LM>|LLxqDIg>$}!7lqI}< zGC2_!an(0EF-w*$(1L!~^upQ<=2;RizEs$RyM@j5y>z7r(s*EeSL9yu9m1w)((VYGtmu`5j>S5IwkC6RcA6^G8YNcuCi}rnF;MwX@!v z2oH0kIS)DsA%$)H5m)cV`vM0}7p{B1AU5bk9#of|Sw1@f0+qv|EDjU;#)B^DYl2_c zFB6=-FQ$xqTQe;jqO>Rd2vTnf^mg2tG@jWvp!X@mmGi_Mi6Ke2}Gu)f_c*BK_&xj4!*EOYf=xdj+N#^iR4XOrE?FehO6yde&Eqb`4B>rBtJt?BT zTYR6+k_ku5`1iYuea5`F_|;vYw=EfjDaZb8+iRr3)3#*r#*XnLJ%BL>SNxIwh_4DI zvs}IMhu7_*6`AAjoKt=S$rrYsO4Ra3SYPk8Aaj$uHsa85ikl8JEWNb={GMo7+p=<; z4H6}TLHe>zLR)Vtz$D6~_ZwQaDmZYl0v9F707*7{5LC^5VnA~l@jZcLx(3E=&Nu1S z!yvdb+Ne*{x z&Hdb|yzZWn4cvE(V}exkMBFuV$0=81ZF&Ir6^NbaiYo5*<8Z$0Kh8tW9B+}PPaV_t z9w;@I4UIov&xeA3oNj~GHPtCo9!L%8FaC7W8^k8T{Xsh@sK%AG_XIbZ6h+_j-cmFk3D<5uXGZ;?naktr*@L2{RAr_ zY)=2)AMkc@u&w@y>eejSBflStzLLD4mmn+pHk&NXABL)xLNapv1-QXFzIPyI4^!W~ zknQP=c5p>_Pw%NtphlCWPk4L+YTQn`K<{1o-O(wsNjrZai|u@w&i;3a(>vWo|A|^Dx)4%(CM606m7eCi9da0eHt5Cr_bE*Sdm?TAx%0+Rh@o zy;5BvwKIo2dAXCAs79{ALm^@$gt*2z`-&#MEf-Bk?W=$2I}OWoHh2r$RBAW7505`i z9Wq6qm*GPvsPh2S0m>-b(D>WGd=GJ_M&QtPJ8#m4(IKxCjl4Ak4x~(?T{RI1H|FM& zh#GIPt^SM#6`mP1I~y zUWU&_NIzA@CylaP zBH^*~rgbGI$W6Q@%m9{xZe%(y{K1?;?B$E&mwwz~J?hlg7AslXtxE7&+3#r9tfLu= zq{y6yaw06=2x{cM_gPM6gI=Av@pQ9$E;ff-9MQmM0{*rr)f`2yipi8I6CRj-#HdP>12?fUUM$UkDp2OYX9AqcQ8bKH$F) zkuT}lX9hJ9d&WB%G^P9cFk!2EW0@Tba?t#>e))tt9<| z>YalYTpDeV3WiD~e>TV{icAN6$xOBneA;r1!Dz~^uPp%>9?x>Eu zxj!QGaRv?Nv2lqy-my4l>G3(?tGz?8>epZAt|rUv{-Ud>sXdRmO$&ixaL8oW#V3=< zZrcF*1==O|*t<28uk`@)VyF@aSC@O(#Rt|P)d6FC`s0Gh@2N{=ZG54&V4&On7=L>z zlKxB-U489#0xDdJ*ibC_bn6}82}~%G+?gTq8OL$zS$zTt5AVwsB@u~<-GF2`tmOAKY?qcNW`p zUxw~?nw4NdA?R5bVP_@gyR)L1L-4~*bk@hr{Neq9apZb${6PiV96I9_TP(_nc*Rf` zRH~=XXMRw*^TC8*M@OVenwV3N*4MTGN%>Wq^8~}Jbv=f?ak>{Q=i-W>XGC}Aqp|0v zD-Z9u^}iv;vQ^ou`Q5`a>`~QupheMEyP9?^kgKBhMu@vq>)7y^!+~zP3h}$mzeGv| zR*4;iC16V?jKpwmMm17hx#v`d6*P$UC_q*+|5pm)Z@|OVr<2nw!4RY_i+W>iVA)pg zea0Ivi4l>RL-OfevIjl`1Cf|&h3&6-oU$jw4J28T4un-S>~I#AJn9#|;jl*d&xr<2 zIRVkRuz%^!ONYL#v_@|b+Y`z9mZ3J9ZZk9Fo@5*qJwFpr;~y4)Bydq&elNC;ma|{p z2s#o3v7Ps>evj*77sAb&qu80;JH~Po>zgT<4lrr=x***;5?=B&s9NKG$eF~`QlAd( zyEANv03;W`Da{)7XG(;wS#325)$>S*&PVPnS+AcBF4>gxyuydy>>uhe%5 z_EoWxobahKuwHF2F&a}!CtcmPOO!mCSw3fBi&|fI^LRLu)4>SiANw@EW@8 zf%1?!?V#L5j(B$=^rr^jgp>s(CSj-Y*yfAKQ&_i@Ez~WRBCFka=;xc!H)rLdW81C6 z_W+7ipw~F3S(*>DVBZ0Yc<;l`MuIK)hHHk$S(kSXl{}9}wC{|OL>=*8wx2Paljo_m zyreB2rT5(mcS!kz*Yx+9KAza)rm5a*E%z!dsOb z*-Fe9CKy)7B>+Ux$zJfr=bap-zbHNe49S<=8F&8tcEwz?lr4+Z*WwLTfEdJ83$-35 zs8OxA#d`t9yVeT8A?`7fUFUA%SioTg^zCWWhj08IFNzZN+mlDVCA(jBf9#dXtllRI zajo4HGl-5NE~rAzyE3h6N(9@zVefy6tWL}z@$f|Q5|5N*y{YpIXF|?HndH8AKozRd z{QyYGQ{T`W@6!ZUd`>flWiqipN#R#YK*-69k+sI-nS>o8b1I;Wl>|Xux7#TBRo|Xe ztiejGFCOGSOxAkPa(o*lmgO1zGo|d`=r3m{g=IKLyri})@U(_`J(C44Vne^265z^l zK3s-nLeLY;u9FVkb88)Et;iTf^j!`lsa=D)zm}zNmLBM?&rrVJIQTm8(Ze}o5O{n6 z)sqB<3V;kjfAWIDckj0T^^Npx^q%AC0R3ZMD-tL?ltF?#4r;+e+^tIA2x|{|F?}pj zMY!Dkv?&1}%_8!;jhAKqsvcbP6JZXfZ*BvtKqW;B*B8+3PPm?_*d8&a+TM+b@hJW) zh=DXm5vYZOt>24}s~^lfg|z^R?y#)38m&32Yrr)Hl_enM?Fv{=D6u30JQ2Ea;<{y^ zK2-NaC#1H|dvwZI+42?-R+xuw-gzLsy28m5e={m5LF%{es8KpRu*)`|h(72%MR2V% zr$6*SxRoI1=hYVMhX(%*UR)aSA1=NhvduU%hyYbLB?NFV%10-r>O}l+9fwscEnrB(4MeA}hlfM80cip6^MD%xU zi8;tx^PEB{zrJtY-_kYcePqsWV#ZjGDxX80_;T1wNbNqQG$HSU&ari^q9I3zwa1~* z-ma{S47M$dfRkTuuU2Y#qh3OW0J zivDbGc%*r{b-C3uwH*<`aoUa1_O&HIFT7dic?~t zsa5{2Y=52yKO~TV2|i((e=Quqg1K*YW6PTy{*uH;eWQsdobTpIV9MaRPPz55e@K2G z__&OZ)09uZJ?35;x__+(A2)s<8HS~&23~q`&9=XMli+|s)qjH7UN_X$Ii+UBR`cJf zr@dgq{(`M$+v}%0ohb?SWy_?sp!zeSs)G*lmx~9R@7ogX6i-gjw3sreL!LUY+x#=( z;tItuhGQXDn=ZWM{ctF^b2|_2;}B?4DG|+S)v?uH4-?+c?0hJkJ?-?VykHD zhPwYm|D4`%`46bd0@&vsj4h;8iHw&ivSCZqIpxe=_j}p68!&=M=I({k5iWImi9$6w z+)F#39P5V!G=Rg6T?b{X#>YEvzF}9}{a|muCLvqD>AN};{VPlm935NR7A+xIA%3VC znli<_+Hdi?68xQxyZj%xEb_K8Qtp);f1PaD(_Uru1wn8OI?kP@a#<>0K@=-aVf$4+ zgEX@p;R>q5;g>%$WSS*bwTuLA8=I?pw+nVeY}PvYdL_!sOT) zG;ikv=~f%_XnUNm4rFa0`(N-M1=+B4&1$#~V&PWgQ_J;FA>kc<)+-4zofk;dm4Irq zlenY6Af3W*47>^>5q1P>uzm!LBR9`4dq7|>mHOuXyXIL8z}O0OEc8C4pA-B@n7>r# zACY>P$#FPM!RayZuY&w6p1@F1i}S!0!HuC-hz`&l{_-QfBJptKisOvRRyae9|X&}Us0R0cXN09BgRCQWWr)UU!HXzl+KeT4Zd|< z_78sIe4T&J=65g~-TY39S_!6fzzm3?!)1Ya__*_XNEvJ07!+jp0T{X| zTM?959vOn*a6}KmBk`2a#{u?^l0;o&K#!t$eN}XnL_O)PVe*Sn#);d#S{A?KF5J#R zw!JY$CQx3xiC_xgEphLr$H2Cl#R@|;(aJT6h6k?&YI!T;NhnAmYH&6(N;rZOM}>K9 z9+BUv&f6KT#BiQ>j`ZvX1sqS_ND`)Jc&MsYRHR3GPOb9jAWJ$RQ{C>&!7AMMJBF2+ zub{~dy3N+?hVMFcb#ICAI~bBgC!wJ6E>^?J_n3x z>s=h@56}uH4lN4LH6ycg11&AW1gH6Omauh5uM%kTHCXPtB%Cr^38UFOGf(wA5ah2* z$JQw1kGo1}ORbM&g1Pis(1gJOLBh5YVmJ_)vD<$zSrNzGn*eVPCD+~t>S`(iNAkHW zaOEy%q`B_%oRxTsH$$KOBG;1F%m$5o5YFqtR(u$jNDlXlX|B#TJ&K6l#w2x^gOlPh zR*O6j+1VTl9~t-cB<##f9l+VOqx0CAKDdgDt(PkAauF}oJ>_*Y>`f{;QV7t$`R;*; zRP^t&C?{n%{UskvV0p<1jJqmc9NDL~a6v}q4LzxdC&(GWjV3lNVDq2wXs6*UD+(@C z%}qc^IDBt!IwlT-)Hqtb%-b_6e}6R_L-V91qM&26f321u1 zA@D&~Gq@SWFpmeCH!NZZ9PeE?p$z4xXm?i#4vZR;q>#*CG=gQrr}!f7*1@!?NYrLr z)FHE9%yo5+Z??r(UreMTvVJ!#&3RIq_84k*EWgh>N}tjeM=v`}hxLRzj@oo#fB9V> zoW#&SZC=?qhHU&~%m|HGd~kAaBNxnhyoo!vZiTeZ;|>x`*#Ms~dx4gpUXst4^V`8c z?-E~%0XdLv_DM)#s5dhvn&hH7@l0gFMz91lri484ZZT_nffJb8L7Ce|v(G}f_gg*A z^xC$JUI%$5E6MB7-ZN-hm8ap=It2^_h3T?|BfWN8GwdyAK~Tp7cJw_d)=QUaw`8hZ zeBA!sug`_xc1v#6p=Lq!;9%ap!8qBasow$s8mb^Egxx8z3QWoQ2BtO5$Ea+?jY(BV;r83P$;FBT}0M6%~@&em2F#(d(`P+1+?r5720o) z@V%fH&Tq>4)z z_hlKk3hsIIGK^Iw&mbwH0kP zSa5`WuNk_snj!xT&B?l;H5?vJZ=~Lc4E^>veEh`oH7o**p$p76w;Oa0T}N8tKsz6v zbemHI!unnKys4Th4iBpMm1`pW5>H)>(mL5Lu-F0|OeJX?t=+SI=7W*D57X3j`AqY) zypo=ldxa(Gow-xQr}W>Do&<2(U{`u(yDa1xJ^CrScX=SQDB~GDZ@7|p zD>}rt0~YpZuu&aWqSxh4s9cftl44Ta*N=Bce~pgvXT8{m16{Mwr{^4}krZ#}rR(Do zJCT{@EUgIQiO6Q=YprdG*XcvBUWlpW#lO>KT!o*1X!Abj%(8jRuQQ zS7Y=y_jOyDB@{E$<@}EQavjgn9CQwC0VETF6QSyHgbc8tq?*rwkMG_CqG`Hq1R@^T z^g!r4FX(OFz#gtmu+k-pwSHyB50_aAw86)alya~K+@UsNdnt0SgSw#O4krfnk-6%I zmp37lnmdeC>?MKwDxXHd>P?ES?CX;HIHe((S7RLc>kmqalYvy5seK|3WZi)LlaP72Pb%rm=JB-jRQAqu zGSOa^xl)DG2~m9~)3uDF7K`l!qE@<@mYBWF^a=S|1-pUJzkzT$m2Lwmp|5q6(+dfF zm9lewyl79S6FT z^NW!F+1|NUM$~;H7N#oK$$6!MsOrRrxl#~$jve5BYGpuY zM@)_jF>+moj9ZDyDHQ#4zWfxTb=1s&Tj%I|gdd1k5r~v2SGiRR2i_tKi49>vAv#0M%BBPWORPL9C=PU(@B)d z`IP$*U$$5nwp{e=|++8&8P6dGG;I$zccbVM*JH$8pJ~o zAI2o89-1%lbH~e&S}azwO6$$F*OM62_4hTE4|@fvsb#GJ$2P&w0q)`Cca8q^{8u+L z0jJ%o$Hk7)kt02d%slc!6@@>Q4JIz4uxvXmg&D1K>$F*eiW)@e>6+f(g6d6j5inHP zF7Qi_AKd0(hF;Cz(yXZP{q@>TCsB^bMnGWC)jrg}su-996t{z>=^3RFjG4%WR)T{u$pbuY4 z#ON1|K{rqSK5-#>zik1@i;coi&~_d0th^6u!0%qeS>;Hz*s$u?zy=o;@Cnvhw_E=7 z2c$PTQSH8hP*LNjvtPho+@~1tfN6~1a0gl;-ow^CRpId-=b0a7Gm60W0>+4}WV%8~ z>iUwn-hN~T}p<%9Ce-908{L~hHUi7ebVA^n>M<+WWzke z8}V8Fj5u)9%$B5D=Ct;@X_sOIx1+e9rSJ}!4vqahp#j@>1^4!Wj=N7hcq=H5tR3kc z`>Z?`qhA7P>uV2>F0?P_<)bsQ=hc+r(P9^->i#~-$EC2>}NcENoC5F5pWPTy3{qj`Kt{>)}ZR$SoER&ZtM}~G>!w6@gW-mI|{|zK{uJHZ_ zhARWUWZ1eX&k>{ZHF(RK8D?Knq0x*@15-HOkJSU>8AxU zOp-5gTR&LbT-mKr_CTms3`Yj0gULgz2dT#A9DZWe4hYV4g)SCT8yqXiF96TuQN09bfkZ#wxFE{}a!s+kE) zsRIHwZ$>+PKbmhW#Q%U4%RM~E{K@g$8Un?1buEFV9lsMFWPu^5kVRRxIG;iB(~ibT5h(owtbcWo5>~ zfN4*Rc%b0lFyu*xtv98i;fk|RJZO?W zok(<$W?()cwvwSOf!;#NLCKa0SsG_=+A1=Xpd_bCQA#SwqFn2zJ6P3dKx_ExdSdAT zo_gHYDV-yICip8;P|NMA*((fYtd5K)?S{QCYX{+pKCKhkukll=z4u>);o=7P{jVT$ z22W;A10v*_Nw_BEdg8J6xy-j9YL<+6*@^u>oHYIe?YxUV{6g!e zLaMCV7+<4#HNBWiS4kQdUxK)tGOQ*SrH$WQb%S}DFaw-9eB~4_+8mX0;h5?69Y#;G zAXMx%!BJ0Yt$E)c)kS@a1K8@rHnV7BJ$jk$Pr5AhnEyB5fGzG(4yH(#8zHE}urcb< z>Tf~WWl>+*GlZe~zX1!(3T8d-{nOhK_x&EcfAuFhn#5IXsttar3(eVyCX4TeD*Zv@ zq9>GS7rk)dnA-Wb?H$K7?CcjgJCV`5mYu&=<(I$_SKx>o7sVZKc6Y@csu@ku)vnjo zg-D!B1AeTr|tS4I(DhYp74Q!0+0 zGkTJASNB?#!R<}WRozvC(*2)pu&Te(K~DgDVI3*M_|z|{=jyD>QrNF_KEH97`71vC zFLADU!{=cx=j*fS-h&G3DRK0fS!v4j_BwYhFMP3cp>$3F05oNtqrsmoUs3&EtLWJr z0X*kIv9YGJYBZGq{!KYnn{-Tnf+X~?_nS^x1OTPFNvo{e{InY2#Z-&Xu{9lBiUgm! z%a|7a4IufwG4PZ{RhC73G zDca4ZGmxPt*thj_KYjQ8Qyi2QuJ}*mPjFlJUIWXxGHVv9=vC2`pFJ)(>Mb2Xt;MYQ z0YI8f8X7Nuw%a<7J@k6(M=t%zj6aGkBlwfUE$O~=VNO7Sv%i1UzwWI>8LOBB>wJy3vA&#mFU{{wcofhQA*9L1s3tTPeqBP z8U1DMXH{HU&r6$2Rbc*aaaVttZ0nT1$6yb(YQrl%ByPoq3H?N&`ak^)A;5COBjf8t z9h)>S06Ct7ebXj$^&YD2-tIVLCFMcif-$lTN{(K3Do3onlU@g?wRy6iL3Ka-bfw*k8S z|84P4^APNlC?<;K@Qdu|5c%H7yZrobZ3I9~6^7dfd)S=+m)4H^E5Y7*pWp9M+~#{e zLUbSPa6GuL)ws7tNiebJ1Ommw!ENw=aM7EV)o(xJ^TNsD>;d?ur7347(|>{n^}}TQ0?_F zD;|gHzV-j@uk;u1eJxmbF-V9$M@?^lAN~f^>MLRzDt1S&lUDVl)!Y4;jy|nvonjxW z5uXywS4)#Zhp-o@rC(Q~<$5lKwS)tmr|TPEkkXwCzfdT*5M&R*h^v z3N3Qau(;8cw)jt558X~3{mZs{S|mD%sW6^(1Al(nZ=z0aLiuhP+!sTCq}+|`k0dWS zWfx3G*ju{Kx1}fFaeJSpuGQPO)Up;Qt@QM|U(5|ae)%SU({d&FkBw7a!Rv^X@qa3L zLvAXlMYw$HL%!0G!fMK&(ElD(M%g(wM>b!?7T{|kFA66B7pRi+&#Lae#rx;ih-qe8 z4?EL*G5xdl2TEf(Z+H{`eAD-3X{|lY4EfvEBo(9ZrLqbBLVQ!l#5w1tuh!)faNPwO z%>Y~t-8^Mm!o&?1bjLd3(czh3V8Uc6&0i<_jQKwY{@X$ws=NP$ zZ;VFfc*LsK=pX%WPC36_QY+Kc!QXcn8>|rGrn>P)Pat^>+3&Ga?f+wqf6d}>B~Gf= ziJY>LOsP6=zvJ_E_P3iWgmvngdXoGU0Hoxyg$o%C7X@gSit}2%9m+=jzv;3lPAVUH z_X**@#$EXniicjgLH&tWxEbSTc0gtie)6%?ssFWm!RxRc)W-TQ#$mO@j6bgbHM(>} z(*6G87oQ|p`e&}|o-@|$ZwkKiP-^znbBhW8GnmU?7_>IhgDKvfOVXkEXMq2Aq#t+E zE8K6ZoWn&a$~Ru=?oTU&_kk!vJWA6@1WX2JL>^aT=Ey_+hZy4}Ke%6R`Cq{bZXnoDEM ztvAULsX6UO`-~M0&PmV9+~Da~SRbg7^T}P&RZrkhU3GK}6$OjsUa5^opL4zBUO#<||MJ@L30 zk@Dr*mIk?Q*pESICO-i+h;7J0a+u7Tk1g=x(Yg`mV0#Na2tR;6f37 z|5hkF15Ji^i)Wu8T3c-J{Ku9?VB`Y3KXeHBAVadKxn&jQKIV& zq*ZMC8V^8@DSsM70P*o*mkB00b-u@IFQyj^66Qb!-n%WD6%=k|!e*>XIAz8OpwUr$ z)K$c$FcPd-1QlL%MvCY6@U@>+T*mRqITPfLW`VhOGX0At7H~bhQcPl3o{stZu zo`mQyx+&;W=dI16VB&Mp+rw~rDZD0}{3wGqW<)4nSZ;ESj{*Dk52O_7UIZJwx&hd5 zaSF}++m?ziF({hrZ}RGz2K%Bt;ZXKFx_?W|i&&xr-eA+EKh6*yt>)jr@H@>>u5-4@ z@$~D{%u=q*`2t%tU?)SjKC&B_7K@zESL=j567^zXmy%GylUo60jz;>(i1DpZ97l8@ zr~B-K4Hx9@dqkMb!4(VQ!)6hGiio;V#y0&U^8QsHa=13|@RWigaWL#kF#T1#p*k$W zlUByn9;ko^QgR;ebZ_2mz7x|>7mT^-4+&0X8~JDu69>eedh-s1{Wv{J@M2+*yj0n} z>D9m#2n8t*4a^k3@;7HaZ8^<>} z@Iphc&4ml$Y(+wydR~!L&35H}6z=_bh2@j=K;Sgo#dgp8@9_hd!&?3ZnvxX0EU+jW zbTJv#5&h?nx1Nth?+dV`K+1$YS!SUg=wEbhF#ReBGNWdt5z4>` zu7Pksc1p`#J9}fXR@*zGoUou9HF3gAYZ5pTwXO;`zIx8Mmb*-~XQBYIVVv*>e-GH&DZJQ2`Dn^{WH>afPXB;51 zX=L8{KRs(=WMs`f%t|b38!FDz9XY*}@ zNup~?r~IGAQAft1KIER`t@XZ9`o*)bx0#I(8Ye-5_t4hcw37VJL0`*hE0X&me|MTC z#tUaflZKKEz&pGnd6xp0}6bDm4qQ3`G0V4KQR*r0P^kJav2KT#+@ zf|E(X>0Y|zedURc{61m2_jkXD$2$alNSlRB-3v$_1JKi3yCW}Qf6JKdiP<+#SHCN& z3Ah)Lt8R#H!C1$&$pf>&1sijLk#L-u;Bct6LOlqo`E;hsU70?<^Mf4Il&&BJGT7K^ zCQ6Dgd~2d148}tt^rYuVoIAvd(2|?~msQD=$lPXC@nUsV~WD$Q!n!w+u8 zhWXuYOAm&Gg>*W!w?+$ytg9+j6_+*|Zd&A31(UuUE;20Z~#x(AT+X z8OOA^VhLOmM@EkrGu7O}qLw5k$7TqQW3BZZDE?sC;%vzl?{qEs1|wy~nu#DJ#1z(4 z2t+PJO1&`a3g*ZQZZAkk&a`Y8_OYVao!8R_y&!y}ZmPyJ#;x0lxgWRD_=vdfY%Y}3 zQ*^+V(%1g#YV1^%tuWJqCu2@SaGH+uCqm;>Q7-#}_kMA+Uf;GQ$@(#fg$~ZwIWuNF z7q`m% zR9~uRr29v)64t?Bsy%0h_FXnGJc277clq6zGIg4YHU$|WCGh_2u}wMGf670#aG#G= z&-^dEoceee3;d*8d(v-aAvXJ${< z>}0ZM=6OC}ybU^j_7A+3{5;!k!MYHWY!CcN%2-tg%X5M$`x!qq{-mw+D6dHXln#v% zVOv#_a7KSMAs`^O1g>LG^dQq1o73LloD5q2HU8&LB~}N{f?4_7Tt^i{d;g@BIsIjy zdvf{HVCO%z`25GnKjEXBHJQ$X3^{23k>f%Jys7NA!%GRhEjciZb z(AD5xrs-I+#uv8T5LF*EL$KoF*{W~XUmE}U9_4;SwhgJ#?ysUIMb)>}VD1&34F4yD zUf#9^CAvUn-;d7Vk0ug1AlW~y51Q`>AMUW2-sP0E0i!svi1i?$@hp&08h?D>fpE)5 zuXLG^wVs`#sgAXG688IkbBF8W+Xufs6-|B2ANal=UmQ?e5{Q+ECP=Y$&t{ge^hRuJ z`WAlE%@N^ZqeQW=H$~~X6?Q~AHu&q3Kx9eZ=wqLTw*25i8YtTk2`9C7msBE8GRX-m;Tt%r3{(>ocx>o z_xNKeLuCJB*1rXkmom)$uUh|RRsN|c4g2!9dr$~RdaIXrdPbOEfVqVHeM5%2?#?jc zt^aP?W+~(2|KlbyOBuWW*xoNU@fi&i*kP4H(%4wKL8xUQZ|{i1cdgmqzWg}uE&1#Ue9 zaP4Ehf68C`kG=Tc>i)TYR`~twf9@bU|G!O?E2=0e@PA~9S`>X4(eaB=0H&sX=WkTC zQb6Q)O(7Nw3@@4DMf&^SfbQMzPtS@v;iqeChhk z46hQ<;PG3(|H;h=O6t#pXzWRwP>kI5-t|y0Xi(+Y!k-c8mt7Q3~fq_Ct5AT!!! zaF2R&3RP}SfIgxi5LN#(aC$~kf5@Uj$asPt#s)rr>F zrT&9&b3}T^*fzb~qcn}5Hd<#l>6O*;iyn~6;)wp93T?rqpU-PYMn)PHXXRC#sDoCc z4k%P&+rV5Gz%PYl=fQlBXxC{@3NzpQTXxA)!jE^T3`AE5P$;Q?VIOu`1Yj2JhUqLJ z=}oh%p^(Pd{2q^`1QVbR*;j{1VJ9w*ta<$gV*fM{xrNvYGP!9j0R?A)YyzqRMN&MJ zHI+UftE*12H@~b3&8o8!*0~7la4@dNDq}uFGFWq1Lg$x`eWNNx&1>z}DKTmLb7AM8 zVyAuY-2#B>Tdnst-j${tZF;IWZ#VJpncCVHryF+To!F?3Y)FbOxwkIL8>+j58vOwmVf(QPzKd+UBP zeWD?pYzG?Q=TknU$^Sus{Y6tz(WR7^@|7sf2 z(5`4~>uzE>0K$zYf;-0gfTqARs8Ebs()GwrZlB5OClM5#O-1N@0&9LbPBwE4na+sc zA$eOnQGYR*a3&IKYlRW*c@5DF7f5ABf8Iv^!35GsW;$68vU_~p>JH_6x{joEoc#tFe=dx3Fwfzlhg> zn4feT3kVplD-vf+I~%_xlgmY+^HXz&hEzytWol62Eb@jPe4;A7;$Fx;(kOM;P%zeVnX)XcrB zUdPI99b;z?#T1SX5Xiw=u%#r^yG-q0*_J=RdNocz4PSU;)I#3us=({WVPwy!B?B@; z$!co0TysA9ZDCsAmlAk{((Zd2kHJgO^4l^ln}u4W?ESO#^*Yi~zr1W|%q0kEW#2xV ztZOEL7sjB8pK9a9BB{?xKg8M&b=`R--0DVHQi^)P=N&(-`&MwY=j6vMkZQfHn}h(F z19m>!s%f|s+oH?thPdBpV}zV5{nkn%=-GTV;UUg??<4IOlnRr^rQA(^1B1t*!PMT+ znp-ln(hYSd?1s|&ViBM{VzzGL_rH>5Q6t>?ipZeBZlAK6?)GoRL^eUQRd6XSKq9TP z3&vAfbh&aR{G%9k!#jcuj&J)YyLV{cgwXSN+tY;+`Nv0-%}?C6M9ps({`fIwKSpZ2 z25fY)vRbJBP_Ty%Q=9=Cq51QRkX4)M6u(IhC_%J}+j^a;$eusd6mg6=Sx@UNN2wsj zR26Q6HpFG57ktElGqnzZ^8{pnU;%9pM2c#2S4u|BilH&9)%YA-|6@}C0~ zwP|wMPB#Z%$>IN^qJl{Ch%C}oN~a(6O*#7YFFD!T7yd<2Wrr-QG!f_jI-GcUnBvhD zi!k-zg+=ey*_(E$uMXf!?sca6r&!L+$ez(-aWaiw|3fba3?K{ajaw z`I>i2{RdX$O#{Pjch*6mY3boxL6M{BV;~D&nIv@9IS3!U(?E^o9`NCg{@=C^=n;)z)CBb~tol$uL;9_ll94Za-~Ba^VULI%@fs1>u^k{+- zIi+5B=?qzlml+y)|5Va{W2UP}4}`JGi2MOycLOtWE7Xc>hn7>P)Ami!$}j>gDT`M_ z4Ly0{bcy#%a3V!H?>y(PVd;logH-Opd5We}eeIogtB8r*Jl{{QsebWE;fiqw?@zz| z*R6d>o<)1~6Qb0LJ2RTVuzZEj^Dj0MC&d+zB_$NSAcwjh&Gl_UpOcQqATv<=VR|oF zX>gp+M;0ZOaYGr5)yXIe!_|8dXYUn@wMU`wOl7vdV2fTo5gN^ZRP@n(-#>1BGiUGq z3g_0TB@S0WIAP5@3ziTqAF2&+#NHk8EifZ?$gfi_`@`jfix~8O9uyzApQ7G9t#E3) zwgxJC`X2hrf&0KG88X;U4Jpmb`qW|nUoQ}>zogd5yzm>C9QWcHN@Vtu7OeQWVPl9O zy;1i`pZeEi-HVleqtbRmecvP;kH&MS2r5~6_4yrgCk^_7E)$~v};YO928hq{Fm=}9n4SDmL~>;(~{^yfkI(hd+X%vQs^Clx0dXga#k zK@SMm%wJl@*IQ+YR=)d>5;ru!j|COll8*O?J7@|~m=`~Xp{0kfkvJhE950!6T+ISc zm2&U&=!Xpcsl5G@EuXHJ$4I$1p~Jy-C%-<{>CBA! zeozSI4a$n@*+%G! z$Z|tFI4l?s#7dlN(|Wr7a5g2(;OYY%5p)yq$>l#PBPKC`P<8V(pKv!aOBE*_q*w@&Kpem2yHZAWbWamNzS8C^e<-R){}Y+~ zvwO{?wpK`CuALx8r4o1l!YI`Ihwt~wt6%eLp?BFC!~V2AoTCj{Jwts_vPJUcG^}); zb4_I8UK$DK!a2Gtji0%RUAkkB3i8eY3v#Jd!Uy34_dgCGJporCAZ^yyrKN_g@U* zU0;PKx3XLBa)+DFvX(#viYA3WMrsz_O}ex0$xw4n$R$8U(20wdP=3cCsl+1>A^+(F zG+i)oeT|$$P~hHJ<6``|NlT!Po9=&0f5=PRc*IGE7a1GorKvX0CC2Q~&Ggco(!3jr ztl1*vAZyMFq#i3_3x`H+z(YFnx8J4DQ@Z*u44c4j5%HsENlhHer!7{%dB#s#hN`A= z!xF)w2)!CjV9Ac`K<)KscFVm-sT9upG!~kf?(xruvV^@Vht^{<7CO^dlC}ofS|rzN z6Cby10Et^-w*WXoUl!kTfPYYadl!0tf-=SRpD4wo4$&aFbp`Rzq|%F{u_`4*UUfFs z8u{0k&hv~x$I`v?%&VgWnl#190emNO{dni7z(Fw!UzKMqjABF_kDvH(S+XSiMtZe2G^Iy|qKR>x4EqDUGFJ5+t#5^Gm7Tc@~Q?o;xtkb{~kZ|HVz5 z9d+>YY<_&A=FI-0{*D-c*`MgaS5baweDmStZ$& z9%m2HJ8V;BU@(8#1I9)aWGP;;z{|c!RubFYrxvMdYCV{m-cLY=_ zRI1S7y?$Ox=*jtrjMY=vL{=aabu+Su;l6hHbBN*yrEsX#thFF$hW!Qqr7XAp{xIlk zRyQYORrL@e-D7MGV@>e-z;F~YKbox~oqKb~MG6QfQYftDrVq^L9I%3F_qV7zS4#D` zP>eMtVQ5!&{b|WoQ{KsUyO7whf1-6iAqP88hUr|-3e>fH7&X)z<`#4gN136ebE5wJ z8LW8=W%u5o+{RiQ-vYa10EXcnPwUhC&@^$!pi3uTbTRv+5!gM5-$2ol>_UVb5**XO z-<;LKM23cbZ}si_#DVH!fHctf+@bEgE7?mcnyf)aYK51V2073faWjT zqd8>tb=IvYij^ymEvfS_H{}{V9@NL>QVJ&T z(AV8v_VYsMGpsO&PuhC$U4W{LR5l^syzqLhFXA zc4zS->>@#5savg|C_a*RZ(K@CD4?}QkSY6H0B&jYM<31B>oANuLYt7Rrau zT6WI}5%1Bo1HP(3-g94hnj&myuMlH=BUK;|umMcGw&Fho)?C}CEYwmXFpw!(;-=`7e$~$aqRv0$~n%YFQ&1xd^{!h9{e25 z%`x=!V;$x4RRj;%-K&_l$qtFGA$_yMEP#c=u;8Qxgm?|@&vTxn4=Y5=^rry8ugj%T%GXK-c~ zK5V7$uyFt% zkPyvYIm3!cvP0D^DXyOjip#Q6C#9%4^tJ|cf5oWyU2+7*(+*j)=JclObipTstoDB# z{!*ZGNoa@B=<9K`kI_DzN}!W^E6Ta1r?OvwF3Hy^B>In9eK&|(NQ{+5*g1IuzkxU1 zobf&!86^om9BLzCUAqK_JQ_hPq6(FZRRR!Ez`PwiYSoVCulUp$LzsQkCBA%|b}-9I zzClPsWBwt{gl-2thJT3hei~yUt*p!EqVvr)-H!o5}Q*l*yPZ1~mTE_bt$V0W5p$hWQ>K+BvnFm_3 z7UN5LvgbhhBhrbqlfK>6z+bgbd=YF$Lj?Jd0pYq=qK&0a+Htbh4X--YI|%4v15EbW z)I5dpR@IzqdNe--vsr`*UGKPT&QFEaN3>C{-P>hSce+{oNaUBfhS&UANISa3fbuiet}6H=)*bFe`})I-pY#)6 zk(P@Z2O(m=wS*BO zfkg^$>)R2+Rtvjwddk#R^(vQ9>YkDT%agNedIctG5c#CY%Z+%rBI$4=vXPzhEE{4$ zmm1TX&9sJXTc@$B1hDbfv&osV@D?v%|AMO8kmm&lzJ}d%jf6B)4KFK0s594xglQU; zGgIN&iCHPrDDxOKzv#;^z>)gkr3MMc7tU{B0~*tl=#4X^3eyQN+(F7`)=1e$j>G5* zC{kH|q~tteR<9=xmpiy)R`trrhr|%A5l>@qZRU*yoP;v(HQ&p%70s*eRws@^O%|-g zo@b_8$eu7D4Hy36Fj5>zx{Fyw0#*7eebdaBJf

~x(R?FZunN6(YF4#PeItqMt7}B+ zTTqgiv~AVnjha;XUCV7W2rI1;Kqb(JxSmbV;bRQ<7*n+R=aPer@WnLD$!@opCHC~B zKxlvogvHnICI-gMIM0h@@*B~t=y`d{ECILLhNb6(#X3K^el@U06w7Q%5U$?KyzN?W zfTYilBX&`i7WDtj^iQZWV{i6dGDLD|K8`B_6zhp;#r0xi3<5<&BJM&mUe4iI=1NfOjz)`zlQ8b@o4pJPrz{uT zW}xIs#OBJd$<7}+`we{U4@<=P8P)<-WoAPd=nm?h*j9iOnsAzO(%2}6o>2sLugJE@ zr!eWAjELMT<&QT9jgpJ!-m}CmvLQ@{e%|p`o~^MN#fUW|p_0K?pjG=#dz+Aj;(jB7 zMYWJ%rb;s%>fum5(uJHQe3g3)xz9Y&zjrIYT5+5AC^{c9$Yz#CX2IG2t~cm{i(WL8 zz3SL1N=KdZPbgm&J8R>PnxsTFDRCdXz{}eshi4?_-x=J<4M9=Wnq044W%#sW?aD!n zA>E>8k^!T&Xtg}eRDsm894E6uO&@FQ1r(xX!;J_om6nmQThoILC6#MTP-Gv%#a7ih zm;Z7F;uJ_@4t{hdOYv*jlqHBYSa8=vXS7UHBhZX4$J7F=_S>h)(a})sVVYgjX6ERF zU~q|yWV2Acj6)oZu)I&=B^Y<{0Za*-?{`d_H=}*lR*z|0_`hMEGSpV=QSex` z5vWVu$SXq>(mLpbYP7p_nq$Z?GJZ-bu#z}7A)KVKT9zT z{U_)JBX$Jb>(ZBD6AL1R3;ABj0Y;`Y*})rDOkff~C~=(+u3Z9MdKS4vNhTK(kSLYK z_Qw|~`1(nBS66(Db1ncGsvHmv5K@WDRfD;)EKFnEz=dNY%fv|NhO1@gwsaDv3tK~N z4NFF@Wr_>-9A;Jx(ocdVTR<$Yui`+*UX!+K;67FBDs@e_pFrY@Ep{RecZdK5$XJ{- zQ3jv7Rd0F=&vbp^tOpg#EwQY@c-?^2^g~F3(4L%42e%kBh!BZpUjE#N`Rk4?Hor>o z15OGU2H7Gw;<*gs*cHu!nW!#wjq8|R9^%rzbHtluQmBaiAD6#cm(lauGO1X~1iHS+! z3}av-T7KU%r~KIAum>Ykd`qYhFal;Yq51K#sh3OHv9DP5;w@&mu>j*TLq8G1^0Hg7 z3s?%qxW-N2BO5y$=y%*1=>$!``p5Rp;ppGsarqApbq|*FYoXDC&6jz?BJ?qG<2BM8 z#iBcx%@-c9(SyUn&+}qHCYaRS`vM6TPQCtAwT+~8xskNQhbVz5t4-F8pLtb&A&7?f zQHK#gCLv67LrQjzNd#>!$kwIy$?=-GndQxf<}9Sm zN*Ex$wMs4{DSI5xBd(0yP}w_(O!c+Ba%So-E=H$Jnk$5PulCIsiI4JIa@Q@s@z`MK zcvl-?vz1n821ZCITAI-$VKE1TfQ|y16M}RHwFjwx1d0o{mz!FhDX5?7Pr^h@wsaRA{~*iUwlf z*6d|V>MG-iBNSv9>MQdmD~QY2h2H8QxuT(VNLSJHv(HD_cJ5i>OgWaX%|sk(5vX$F z?ink_khQ)i(-hxm(91{s^upz4sv%%uA~Z!W(>gGYd~XPsQ;fl*QzP)5%+{`_e7DeL z-Sv*-Ui-4Vxu+ zlmh_JAv=X8mS#dx`?2T?91&YuySmMQ33h8wYc-t zWYiu^^i^}Gej|X2``>LE2X9uzn{)D%``y+xN^IdN)ELB3>>D{N7)Y!|EV}8+FK^4R zM9S?mqfG3VoQC*g!E*d%3nc;T@yNjd%0iwfOmabX`7h|?=-T^djU~YVKuH@hLHTk9 z7J8iG*Vg*s)wG~-OquHUq9sRi|Ag{1E)Dx%38dgBC zs91&cI1+_85Kax_>8oJ;Ny4sLhsJ=lE0z|2Qaa=Fjl?DX*meqvIoqo*8rT^& zsh<}J43iCo{=_%w#b6^;njaS%i;d9L_?Ka`$4Mm|RVe8rR7#Fy8 z{2ZnFP3MJzPat@tCTDoo4Z+tSS;koPh#U&P zfvgYzmsK4LzQoA`#gn3~@MqZlW40LWPtFW>bLI>_%YOi_0{^RtMXTh$Dp?TzuR>_; z42r?niI{TB5K%rov(Rc*fp2?sH378L)v=+E=@8PU>{wO_Z)BLphHwAXR9**4Q>0ZV z)845$eOhqxSEes}qhRo76=43)a=@eR`SiceXq5k#p;oIQf=b_&Ofb55N6LH2p981Y z{_n05TMbMJj%{hiPH`D=q-Ulw#&Jb7KB4yO|F;y~lzxs93j$MgSE?VGAc`gCv}N>* zhkMbG&Dz?c`FFTm zVm$|feytiU4=4;oDtPdS%w+O#{5_n>1YYQaTe_sOPe0TaG;0p@LQ7G3zoMA-g0k?y zRa4k`l5v{OfU5_jkq-o-lZ$NOTQnpbnYL$=3!8iN2w_Tb1)U7e>JZ(ov*%&l=VOh?_XL~)fcfUoo$5p zFp!u``ZDBClaH^%KCpL^n}AM(xg9KHC$>ZvAoa+)hJ@dXh7K5D*I_hj6XMO`zzxuR z{fn7hQQ7Wqpy#0snMX9y)Tc+XnuXYXsVfq67bl`nV)W1@*+Vv~wIUd{NE&$!Dqz2Sx|@A>n8x4~~MPle|LT`xAbV(UR3 zZygU}%I`KWE*C-V??*2j7eUSMN9TpJ{~pyI#6=PF!xTIPR_nNhHQ3wSHSzBq^(0&% za-b>OTI{0>$G6>4KI+_o$;f^k5Bm^Y8?d_toy^+_1-62~Sb&wITS4u6lz01}tf+Sj z?ev5yG8h6A?B>xH_^Cn!G1Wz<8@ub>e*mhpo`{+HFUzeqV*QNvZ?EEXSCQYXEtI9Y z#qH;dza3I&US-=1ZOY*`-~|mHh4&#S1ucnPpeBOvp(gVD>%kJ#5uyjNpU^LX2Qf#e zKTt=Y{y-i12jKKJzaf_WKJ!xeXP~p=Pr$yJqj_#{`9WX4tk#f}j#c*;w`HG$YEta- zI9=;~d1;NYf(|x06S3yNsn;JLPJF)UC$_x}JM%kvyrx~5OdV2_s)if~M79J)m6ca2 zcX-_AA02nUZku0)68KKtQPUK8VS2p$VOn~*%OP4Z9rbC03dNqy<9`d9LACr*-d{+U zcTO@{uF1XN9Dx0~SQr+*ViK9Ur*@#r=3$`gJ@;QTyWZno3XlI=`yRyecOLS;s}s2X z`hU)B{I|R3CEN%j?j^H(0he}5dHA;WQ3jjI11-#&V;Z%{v6|Mbs7Ln!|Eh}&+N!YN zN8q>JLoa8ry7GZeD zJy?d?iJ-l}f{h7|4(Ik*iL?7Y?d$XOu1jsdmk4CV|CIX-cLXA8x(Xd60Xq^>G^Iyq zm2O@bB09VA0Xc>|29iO|Yhr+Y)U1z@B7>rNy%V+1gFDpQ4hHE(nO2dZLLQ{SYaQqx z{iP`7oigzl;(Qo}3byrKTxuI!PGOGj(*_%6UiOfxZ!d-;7{s#rYia%6H3CR<4o0HZmq zLyDz_hTxcG&ElxUJ%`W{CWaoSN|J-BL$B)vEu6SROz+_RYJ&BYbL-yI--sBYol0-^ zV_kqX|4*7C10JQd@T^a!K~7K>;mQ(N zkgeA|0c|?nH3N3E@7vhlya?;qj8(t2@#Dn7OozTtW(&JxG6Y*c)4a3!pm&Z%u@gDC za;2HZZseO0C=pi4*U^2LASPP3+Pzn)_JkB~<@rIdas{fu? zlj(9+Sb?fPF5dPw zHrnM#Wutj1t~zEpZpQpgOZJ-XKp#ZQS?<{$8})9~aFZWAj9uI#M3^SYZg%}8FQ~!D z72VsIqLL@4r=-$g8oqS$9>_-?UgDs!?!NY` zPRsinvkuyloMkjw4X1AU`t_ATny`37gwhl&Yq^R5}(Zjc}RG9*f(;1z3C)*TPtzcO~Niv6MS0vM!_xumW1654@ugs z#`nAm?t+wc#{vCJ(lj;+^Ek7TIX3mr{q~Gvy)oL%l<3NcsdmoE>NVM*>CPxb<8F?u zCW}%cuCrRL%(J_3bl{$5-r!wiZ_+=2kOJCs{Vdup69s#oM&Ejo61}eSK(v8m9ofx$ z^eJjgw>jMp+`~yfpn7o;YfK<6!aTOC+v|OQsSwQs>w%pRZ}KW4+wXg5s%97P3$d*! z)q)h<(eQ&Todm@_ALGraJHoL<8xg*+62NCap$}&ek{Y5MC}CMx%w|fSd!etpvc4=S zb8}0e!c`KZm>QT&yMbZEiyQ+L&#O{s)0Mo`y@xO}XzS-}ZW_9{6w^M$kKs_CT5m{5x#yGeYvAxUW)>G^g z>ywfkCdiB6;IwC*`rrvF6ZDdi=`M;Q@Xl<|Zf%|8%!(ZQn_UrZlZX=jxpEAWOmd%n(U}5fP zb;Y=r@!{LZdp_GpVdC}T#X$)6z>D@G$90Q7DDyufQbsxL(CcpDfs)#ntv2X`4}V zNv&m(SCW)Oy`C(Dg47*ot|D>{B!dl_A>?80ilt#SAuL(!i%)NrT&N3d18CEf#MFmd zZk&qambd*{`)YPCOf~9@yQ!~|4A~dDKaOi7PAGE8)Jioejbvmu6*EVN*CU6EOB2y* zo0o-uv52e(6qVb(SShOG+}>n^v>F+gyBS^mWc>k1bjtZN!iKJ8J*aX7KuzP&rZr)` z5!Pxc+YJyd7H)DxSgIf~ImTfu>7O9#CRU_erEnb?RELj#5X&!NMnV$0MkJvl4ZUpV zk?3LJXw{Pr1?3tzO<`0FUzaCwM(m}h^26)N$NzG6b*y^#XZ@IxthK!63GBGlEyvB6 z*J|N^!y)XV!WN(U1^MVwn1#*+q^vK0Xc~Ws+;mYcvW845e*7i@ux)5~fT6W-Y#5!c zI~4hS*NK%gTvhW98iUnAO`P)1MEC@xq0JTUm8<;PQNeq*Cd+G&!a)9BU{5&~j$vtF z%*MebCwhz&&e%>|s|HvC9qi-rU2pX};8-rHVF6`VP}%?DZ8A13bKJfy`%Alw{=nEQmYcg}cn*B&@ zm&Uu0mY*L8B6(aXuz_i-#j)n2F2`i&@CcBAnI_@}g-B!2 z1EZ=^v<(Ye3HFo>na_H%3^Cej+*gu;EuNGO9owIk zPE`Gk&HMK}F_m6>b{B4VCj9$n0jiB#q%G}Zs%Xs-sCusTxX9#zAX&P&qne>q$c38K z5t)IGLuCizj@EaCR>y(|QyS`80aq9al3GRTV~x5Eruyki#R2s13hN~ypRlU+=E5}> zF)-t7fXpwf1iDSWAZ$`?oj^rRPkuV4(lIFrTI5TVtGP>+m3jI>g5mOvjDf>X5{+9G z)^P*j^vFt7|wO(`Athr=hRH`=+ej zM=_Rl{>tK<^83I5+7?sh+Q%4tU6GLDbB-gU3N7}LW-V6?(*L|XL&CZ6HZLD+^!7qv7L-?;*yzSe6@Zrr3jqzTWhwuP4z8g;=R4tOEd zS@X61>FGQ(`QXuT<6{O%odi6x>v4P(;?E@8wVx?85$EFuOf|CdN*JHl5SV|kw*lpa zE$SIgZAPS<8g$Tyyv4E=i4ayQ*Q?8801~au@K6O#9+y;ws6n*nz(8VOq&)_#Jh_dr z$4~es#DV&fzOUA%^{{BQaUiVFs z$z9-gz?#)#fJITg6Q7ZPMEB2LX}wIFRsAHeqW8y2iI0;~c|{0Jly8Ls>oO+A1TT4b zyv`+Q3#ac$%AEPBTr}m@4#DI~zDPC$lizg0)XK`xhq1(xZNWgz9#EtK%@-2#kK+-( z!3TG8NCDqAh-oHEq3sxl0rX8PZ=W-FW2F`BQCjvb!i4jdr^(`6;57tU-a+;^bJEWS z?!ppc=H|A=-8m!>elMGruws_D4xZ>MacIA>eR`RL%}DH?Yo4J0OcamFO$fZci}187 zJq;?px5296aHMW(25(+ej44_sSB5c?;Oh@MD|}Df;H|^9u3Ml%Ca>pTQA{z9Etj0< z?L8_{2Ryx6LL-#$Z_Y3p9tuf#yau4CbAfmrZ?uSPJMEk>{9nZB#-fFERhBe?j4aVB z+^1UK2hO{7P=X1EeEWA|o!6X{$k{t%cm0Oa+fyS^zG70ZeF?jh%P5ZbXD?}44vUMr zWk$_JsOY`-3w3R*c8VLCod0!~>!0KA9kg^SRA?2*m}r_C$z0f%%n&8fP39{AtitfZMT>;xoPVM_RUK?*a4!z6#7up2&-(VlR9K0sS$ zlAP@d$)4Q#6g!s<;vNlTXAlbtomk@1ExaH?kkpMvLA&N37!bDD)+zW=T6OG?6L{47 zTa4fJX_FJhUrE}-gCcqTCljJ3!-BO+YS&6WnILxb~ruNJ9bPHz2h8_eCo>CX85H&v^Hy_Otn>H8h zl4jf4vkq6F?kcfDfs5ALr-fV2qLZ2;!BohZW;R zj7CC@lL8*vcE{)C&cA5m0;5&GDck?bw_l|aSo3Fm&#f2^fKIy8Y8J98$NfD`sqd_9 zrXSjoCeCDE+o;jaKeqq#S^5nMt)u?^Y?VJFBP}1V-F@^6OOv; z1Z{>xZog?+nVfeH?^eu*1zmimzxN3PBsMySn;KAun~>LWW>$U> zfuvWzfnqjNN&F{St~8(3Yb|(?{Z+<%a zRsB20x6WK!^VF~Z04T(HdP=VX3<{n0P{OGMFWyj&NGWtBsOfEX;s z$iODUqi-M0SM7jR4nItL5h~GoCJ!=)Z9CbEkT`H2YvvGCh@_nxCY0=2zlV%sP2!Vp zKU*O0?8@#tiO|j$KESD>ZZQiW%=vV2SQ>E=rhmTXf8u?FDx6e6(C8du-x>6tCuSp* ztJ2R)@Ey+aoYt=_8A!Y0vSwVxYo08*8>ZNYJdBE8N69f1&3H=_zFWZzh8s2;TygB! z&`D6N{YuL4V&KSAX0O|s6g}1iI1vzO^ov%epTvCaXGi-RWB5qyKQr;&zT$&Ar(=1q z((n%8io#jLcYT}zC;gM9hA~`oJeXHvG)b*mK$$4Wu7-

8#pYt)~p45Aat^Q_FzeLjNj?&i({Z6V?xr()?-*pxxa!_?~q!-W} z^U3Eot_}OThFQV2NOj%WZ}t_&QfQ4JBB@^-Grpi~<0N^)$^mrwP=SY3R+Dj|FU=Pj zq^WwiEL-8=Cud}9%IJt};_%m14*@|(b=RXW7=3JXyEO%#p4gU}|L<0J0p(b3H4}!$ z$VW!uxX79gxd@)36+sOg<$wyRF2f6F4Ya8m}x7p_8Uf zwqATg@*&>NO4o9S)|?fi6Fk8x5)N}w!P@A2^J!T3^8rv< zNo80h$6LJG29pyqCTBEGfJgs1*nWTo_`Po;(ehJxl6qP(Vfel+cKB~{-azs>i^bF7 zUGpy8oHbS(U-(3sP~E=yG=GxjYP6c;;p`EzX?)PxI5ZTGfQZk^XDJcg#{XxKB*4_xA_JYVUvM2=mXy zOZpdHza`TjprPYaHp}8|Oi&NwG~kfpSnHw~d1N%dLiuJ94U|(Ds~PR*FER96WU?#~ z7J}W}R!P%qD_gQ?a+!u&S+=T?49q7>qioq5fgLm#`8hOP*zDM7Uwq*cnzq{#nOU6uJ)jc*GOK%dAldTd35l18Rl;&u|HG8WA5B;c@@k9|elcD4T z(PZ`C@*m5&e9>bTx6iJ{&d|VNDO#W1qIGhS_qoi#w+kjlvEAD6HsSed(SFl*8+Jg0 zgEDPGKV31KjSgF^?{y9&Sf%U>J>pILZ~+QRt+xK<9?<_k9b%|_8|U=hN6WQ)DjWN+ z^saidcB3T(5vKoR|O_v-{X^2 zbDpHlNgBT`HPZpP&{#pZQiKVDxi*3bcRpU__1AKIOw^@BK^qVUcQdV3S>`oRe3o-^ zD4~J~=zBUxcE++us?C=`jOTY%$q8r51Xwu>F-17BnzS|o{}Jaz)wKIwq_2_BI80aP zKpsfiRBX`&U0xKNp=Bf;Yr{Ve{!kDUMUN^x?&ymC;yrIzX=!#sTO>nD7+=51ZG(@( ziY;dHiov|T#jLCli08PI8J-Jm3)MbVdy{=&G~JVP@X(UkXH?P{N3|H)Sw}Shfh1TD z+F!ik3zjiY1Y02$DU^IR8LwGx?65P3EPuho3y9W5i)qvJ1ttysNT`*@b&j9$M*({F zt$t#j=P7kqN0wqv3PEl8 znCHp@pmvNmVRtGMQlv6_my$tMiI7Pnb1mmmEGc&MF*)uVN2IGokhrJk)mFS)2u3%7 zK&7V=A2BG?(R~0YIb0!<yVy;k{~fZJw&Y%F=Z?Dr2%4Gt;%iRA)<@I6^vWo$K50RkPO;0lbSk>?uO$8@hS@ zl16rQ<5y?@kFTUKp!et3&mpZgTdszyAaW*sx7lq1eVnm?7ws#I8}qP+C!+ko1k#~N zBcGAVYmL=M++?Q$yUq{bVG0$B%Ob9-s!RE*HG;0k;>Tnl-DsOo^esF7BHTRxk1Y*t zQUKQ+$*iCuJ_Xg;CDq7Jv67yKeU?Vz$ZD9b$|tn|dLEm7zhsnG#oVDVAQizt8A;HC zmby#Ac(9u@c_*Ej_gS^r==Z_CiBds*BDJ5kkkIon)|qdDvT`SY^Pz?g4}752Syv*1 zwVxiC!OREC+Puje()VEe^NHdqu+qwcpwNKbMm>@pL>)7cQ4~ zG2ETyhLT>f9lin$0QuT9Z4u-s38YHA1w?!2;>PLBC%d}l&82GCmZs{T{(P5pPt`i< z`bOi^cAA-km-`J|aGx=otY+iEN@>Xq1bGpM8{J!PE7C=02}L82VG%hfkH1WlJQ{Z0c?^6g=#i4baG_VNtM%d0w1wNLEuarE7M}#Z2pEHTyd?r3t!X zGdBDhMm&dQrWm|Y=4Up&N(W~;$y*oo!sxSqJWe^9x=*0+=={Hflb8SWVdM#8a@rEw zc3M}Hv2JiNJEl_r?h@}}ldnzwDG*pL~KYNk~GcH1|_tHID2 z{5ICTth0rvJ0lUVf6cw;h~r;0Gl2EdntP0Mx+{_&3y}6fHBE z4DezaUh?mAiY?0&sicHWdIc1?j0-4?M7b{R)-HGs-Iknc{Inq5gtL(5ht0MSHx(u{E{9TC{Uk4TStO=oXT5QIesllEJ-y6of?|9lh-m3)nYc1U_OfCO?mnvCG9FU zTobkc=N7`K^dx15qh%Iz@5!j@J1WUm za2;a^iEKRjbLrQotWj&dlJwl}iuBJr1gie9iF%~_s}4J*^#`6MlU}HCNUlePG!}kK zITJTE8fI2D(Uppc@fbWY*LcwOeJ1ueHkmYpv95C7Ue%0zQVkb)tVpiOZY7fnJo1it zGKH!%_UgJ;e>2tF!o*d_Iabr?KWvM`d(->KkWaix-`eN$t(Y}g_qnitI9-ZMnARUB zUe}SL=Xiu210m9=-)U|nS@hI=rbjMnT~-gdb0!zZLnEx=Z3z!M7-e5qAO8O}d$Rd9 z%u~{&AOPIlP}MdNC-&{V3J(qMkj@~heOp#)lY&mLGOf|M0^Ha8?>G#f=JP_FbqqsH zleK4VA)VyY@FWdW^(HzKo?J+n;9t!?b5&iV;qTdXa__Y;QgxU3LdxHSz@v&z&bz+7 z^E$+n#w;mn01}e7Zw}omc--vEgkPLWS}FIk0;7%+Yu7#rJ@K%hp7H@ zJRM|d%z`J&R1bRtQK^Dw}^61M$H%`*PJKM+GY9mn&78tXm|eAMKj`-D}11tlKp5_oDpX zEs^M6Clh}?KN9n`yk2c8=AwBhf0V)V+zWO_3{fM0)7_{ z95UK;qkOU`H8Mviu=ee&XG0o>)e(fE%mxsL2vIpwowg1jO;BNuqAeOfcuSPY+zqBQ zv4b@Zd#A>;a*$X&8=W_$V@m0670IDJ3w6?=dI7T{s%NSTBna@GqwL6y%$MB8&$)v( zT?>*3@B1e#V5OL#bH4Joe--KUHkBT%Dg0PSJgHedGdQCv&#!r2ZW!I(twZ_C(@z(Ez1nXZ!E`e3Ug}1 z0+6|U?6hY55TEhjrg4G(lvJ!o7f)bulfuZeZV$Re8VGAFb)7Wp$}Y{ajB>@YWv?$_ z=YsAe?HU-1q!x-D=6(XdUThTI(p)vEQ@YGgLsHD^T7PfX${pTCMfEfuG^V9ryU60t# z+66n@Cx>2e;MLX5*d8J(gN1Ty=B7mCyAT!OTw7DFkJ1JSi^G&HWU&FX#B?Oed&!J@ z1^9Jy0z`H5w#xJu6XNk$X%r64{%enC5M;tk9=kguMN)+*R?G4rLX~XdC6^{;{1HC< zgMB!QX4N-(>(+HCvrXPu7rP?X<`=UEZp`HMhx=U_7oo%5KuD4#fylxrd4d zPt@^6+nCVUn|;kKtF6H>Xr0lz!jyUG>}{b-SMp&X0rf8!`21hNQT$r582YZW!=&O> z`!4;oOfSWcla+OsawSPzn?}3qmfF<4ueF)G=2D^=s?Nyh$7&rlR9dtKMNF%eYLTUGpvNH@o(*3KEF!x$7hRB z%h{q{Zrsle3r*#dMc)eVMYk&c*wZHoMnPtEf<-peBaV;!eut)WWZDFPe^Az3CEC(@ zO%ABN&&td#w~A$qqa{=@&IwCa`3`W$r?S4}k5l_OJZ#q z-KUxhx*W6v1_~yw88!&p+;ig>*6N4YVBk5TipWqS5^NS(`#Wxqnv8hX+m$6&mBRia zlKq{uzOIgWK!l5O=w<)X*ElM`;zztm_kodr0Q@NLpo?cyh7I4a)Gv86Jz^Ha3R?41 zA?d^sj!3N@e7b{???k5c0q3Q$4K6J$)4h1^WXv>j2|^BaF@Y|xN+)xRo3d+B8(G~C zsQC22Urj#F<4~&$mpM6>^&m<2|9Um1_3PcLifna>7{+k?wpYMG0}P!K8>~|H0h{gN zROr@KYcrMt4@4>y6x14cG~hL1nJmzWtr>($?&@-u?Qy<xy!kC>`Rv?W1ywyR8s@V-ES}ra2!GZ~_&0<)#08X7t_JR@Yflo+67M^4X zYo^&r==L#ctUV($LX&FGyJT{{%~rmjDpy`FEBzhcyxr$x?yt;ae*kN6d_&&SueWdx z3a;s-@aV%oj`j&5Q`SP(Lu0nc{ku)&cR6tVgnffZKfk9hByMl*)@>;k#*;i6q;Sg6j<%T=ZdyPf$TwlC z@+ucP4dC|Cch~jq@B~}a%c7ZSwja9uHQya})<78YP5Va+m}_WbID;a~H{HpKZk2I@ zY3r8?OcxGKgj%*5hrkmL9{2XMP9Jx%Xfg-@ZlD5sb=|VKMdMRKr7FkjZ(eJ=fGk1r zUIsydUqt-Zy$MC5e%8Juq~=GvWOOxW^nUaqV9FUv2DQhHV9MuGr4kyy;!x0F%k<{QPc`x9)9vL2{1?S3%`sA9!S=p62F;@cE|Z z%~3JqU)2!Hq{wE9s;rZoJtHLU*ridP&N4!;SCpIYQ3y9uMd$3gFfyVYUb#wC+0*h< z$g76k=ng1#k>-@4j-wLu$;gTw#jjTXG&qS8*92H@1+hCd8H3s#&UsHZNYK}5wTvh# z6mAs9dw&VXC1IoV0i-~^aFu`SKS1k$31ay{MAvK?*Zu=FtNjc^>bJXi^(By5JcR3z zaD{berJ+v6Vy>}+_rxrRFzGMiauA;xqO^?j9!zl^?+Bi@nuEEhcX3))*=@BmlinbOx!Ak8a0M`beRMZ~Bwl9O;rbIjh9veif-Y@qQSPEeA(Q3J`y_ zZmH?cTH4;0&VuA$4YwJedM2^PNF@%1j z(%61G=0t;{KXhIE2f%YxwY2ivcKRRD`?yDK-fhN7;_)-F#+?UDi?2O)iZp*N;2j^_ zwbWF_b^D6#ft_JTcx}Y79oDTvu;tf(GqAu%(jM1|uz>V|J;h9t9vZ=!q(F3pe<~fw z=ud)mkBl4fYE(W&YRsWW$N?QAH%;#=tQ+Bjcvzho4qcrS8}T*HTg4Z2A+9@WU}rxG zO%}>0Xjd6X;-Pbm==5{kQ2K4c<<_D>%{0LyPJP8J>=H*cwH9wZo;xXK_8*{Gh_cyq z7wK*qbjbM1pNHWeV7UjoVD|ENf}V`?o6VY8u8lmV!`xqa)>Cc&do3eA`^&NLh3%(x z&d&fb4w$ToNd3^e;!{EX-eRwX@%OBXA)p?1s3fe`bC=^_JZ9>RI=VzTf)dGA*QfjV zTla~v&|-X%70uycFiR^Kejd>?N!HZ3-8j zU|lX~r1aqA@qnP$VN<7%rApq21YiZ?Dd}1!6v{gz?nGMu&!1#(!Mi1WHqw7o20okT z9}`y48>jm|4@&(O8cRuIamj-U6cNMfheg}4gCMWi$;Q_;@Ikv^8gdB1H~O@%9-(WL zp(Y1p&n3B;MQ8c!RGa%E%UjlcTGjbZVC(L{K0e1%Xm5Chu0IVr)^q=dk!H z3*{D)^)g+#DM?a#-g}&)TeR8gz6JGL41J|PI~R9(lQmB4m^kH}6d<8W+vWj)NJaCz z2JI8RVAIUJ1=U!EgkAJpH&IlDT?|OYL1FJe5r_|w(B zpx<{n_KDHI;&o&I83N8lY83uC-r~@8oU*Q{)|V)wwnbMYd-AW`-eFaoLt^t#qV!%p zCsw1~nnv3=L^Vf0WnmRZ8o4>9?mIzfQYy-%(OtoF^7&6#gHw;QlVjGhFUK^UX!G9> ziFzE-Js0f$b^F`T9y}>XSu9zr6ZFHu6L5`4k=V{$S$34LQvFET7~%#w@NBy*f@Oec z3u~IlBb~nZRETNqWaT6-IC(a2 zN#|eE3`(Tm#*~|@Vd<#{on=Q3Uy0JS!^mBL#<*Da>q4RD0@Tj z0{Ul?aWmnh9KG$wv}kGSm3_-E3o zMGP;gF%rP}_BVfg{{iGPny$&Feu-Su_8Eg-=zQ6f#L14zz2nM1mbi?U^bkFO@TKXA z2pi=LO(V<50daJ-04raYDo|8Kmab%z8hN zPb%-a($9vY?X-z6UWKQ$i2CX*p%rB%T@bF0rH&sYw<^NOAeril*{>&vZ?f-+8Ar8) z&-_oprtufK*}w-IA<|5xzv~wI2S9+@xYdOV?#!Pe6-rsMq*7j+eDOhnx6Ur?9xkWq z#V@qx4#BzYFBcbWwRA=p(vrRRxfs?OnwZpl5Q()CuumZZuW~%2H6C&nnM(gZKN~~= z`OWia>74A@sKA|^f-uhx zvnvJi*V@tUG699Y&73`j_b=;ednxSlI%R0KgGrHXNS z7WQ<@;gm|rDaLv$K<|wO`9nvv#fy!^1N39R**}*=1?hOzh`8FPsy48&n6*6Y(Hg(Ht|8Sq->Ir z6kR4xL-S%?80n3X92cfxIb>b9qU{vcC1<^wc_PoHo-0RFFCrTNwq=|+i|O=rivRTs zN_y4RF8>afFZ><)2gq6cHibyaCKklid)ak$oPgoW$HhsZB<59bo6@TqHZ9hvS>RR2%Rknx;*oa6R~C?|(3B8q#;}}_6#cB5`~i-5fK}Ax&%^&_&V;8b z4qYo}GAd9_-Rw71VyRRuTf&wuOW1JhqNEHiQl4YKP8Fgo~*@zu!X z%0ABIC7#n{tH~GG2#lA~fU>RBBk?H@rTGvQab; zS@_->m6@pAZvAH{a@r{NIyFy!8Y{=Y$(D(<>{Z=S#(Vq^0Iuox@Nqm2A_y4eoP_%) z@wQo5P6c#uWKY?X4v63nYP4{t%O5<>m$QNcZZv%!*^Tu4A1g^@Ci-v*Ypu{;L3dlr7X+ew_*)iBDwJiD+eQl4Iz`pezp^pd>wA2ZbToc>C-9 zJSnkZJ|>XNBZ#o8|M(;R51W*aX0(uqA_e7HWjG%h-HxD1v`6QxeV~kkX^Wm5KtM#P z2$lPskYN+4bI=1;iYM&$`NE+Y!lC?f{KaYXSE8bLo4N?=1>AnfReWNu>fkm&QU|P! zLEt&zNrhx2G`VaV3p&>Eh9dh1y*Je6+XeB|QC*wA)4SysyH_{HnjSEg_wmbBnoESL z|0s5tm%&m|@K5VUB@BEyemit8hW6=so-qCc?87;$$jE_>_@MHYK`5VrQT^oS8kwge zPC;B6CpEdiz$OU6`)*za(~h3Y`yx?BK$mKwkeGl_lTBmPSowtEOU`STiHXi7fl~nv z$a@{{96N81kbnQ%yjY#G`n3n%m;M6`Y+Jptks=mJ>R>SPrs>l|dgMKH0dWPCQ?`V) zm7534dD9Lt*ha~mznte#Gp&500WONOO`drNJ#iZl zS=UyfyMccP>AL3p%7E5^;53L6fa4he-%NZokNgb)aJ~2ACk!%*(~C&cP*R+ zTPknO4v5He8X}^@*dgK4b%-B;ArTnwa{jt?fR4d7aGq-yLH| z65QV_diD?SsUbqh6yG#Myx=aby_H&+)T;^3x0vG*Ac=DyE$kTaY{`qVCwYP6Ft9B7 zJK$%p4>VJvDw*v-o^GJ)_$k-zd+q-<_Qbm_UYFiu7`7|xG;YE*{9Q*z0J_$xfjK3gtuM+~Y((#yz7}Xc-^s5c zNyDLJx7M8vrnk4j6hFuxq>uetea6olc~3-CioYw96Ii+__FLqMxb-_DY2AF52shtT z!d9qye^s`^%Za{&#(+?60FW_K%jS48mX zYc6_Q6&dLIJe^IIx~b0YQ{I{vo*4~6))B03iy5`8sLQKYC- zT2Qk3&$^Fh9wL>>-qSuZFp79FpR@VPk{^j5QSJy8AF6S9d?tN2<(t_b zmQMi{qI8s8Z()*=a`5n_Xo*Z1JrV?TNRxbdC4TXDSRDt+pYXJgNc-buv@M&qjt|~j zv;VKHuYiiB>c zjr*8{Ri?NxZE$=e#Xg6eoH8=oYkh$g+i(CK8A%q^iP%9O z>4qFc2PSs(>fCWwECetYY^78$!m!YG0tF8RYI zdoFp8JMtaMC)C2wr(s4lby~HYcT-=J{rGu&TFa30&wIN01+xsI?hlngg*55FES9ki zxB7P!3}v5P^u9?>u03(<1kY{pzB9%|z;-|zcmman^`+7xQkIvM4vm8YSF8(%yJw_= z#eL`a{+ySyKOc7CjAG<{&mWi%PBN0WEXns3Zb8Q1S#wvy(F-97Pjv0hRiYhi9hkD= z=^yORMB?dluN3{SY2&D^8mp7b!u7pOl`&s4mq)`)BecAoyVu0I?OwwU$iEm&8a}ay zFvRM%<`0U7f^lur2z{VSoUZU9BPO#chO(e|2}xN#+JQ_~V3T-Q9KP!qDN)E4bYtM- z{IKtU6X^>*(nt`ZXl(^Utz_Qud(@FJW*3k;n)dKdc9D>M<(}fn3z11I+Z!94`1+P< zk(A6e8!+{>IOzJ4ow5E*VL4R)@8`RM9fesDeD}GmjH5<|7s2m#6jhV+y5p*Pext1j zr2ct9*VFWSMCn1}QnZVd$g(y#eOn&!OwNtyZt)|q6j>r5=*?g=*GZrH>+hwpG0F5W zTN|!T&*vOh#~f=M@RSZa#l)SNB%FS=cG?8)HXt4taVf@l&=%2q+IK1FySD$FaPgsx@!JIR z9ffe&A*b-lQh8{RY@fmJdu`s5&6|wi&E3p`O~q9A8w~f@;G&(F9L%kSp?7s{I6Hln zjv8VB0~scZqF(|D*}f`W)Z_}4J24pyrcbfd%x~tbyrL{k`}5?R-)h$OP9F-Ag$hBH zCV;=5B_T(QdN&1J2B2Zo>Rck`HW3yH8cU@ves9mJ8Xy8{%RSU_#Flx_rY2*C28b6? z)BN?NeA9x8K60~;vrPD&5!eTXCx?}Ij9xrf9!OZCNq;^n;Bp-b-D-FH`|Qtv@A3Ry zMeb66LT}}-vE1k8x$M^kqk5sbnq&^weRyxNn10*Vu~6G?XXY?C8$JSJF3}zVQ}^1% zq#&ZV?+n9O&vxCGxcw;B4d=~%hv@7KrVka&l1<%T#Gn7N|1z@yT_@xd^!iy<{oax` zp3HXq7llOINUVyHNESue9PismpoZQa?pn`#oTDQAil1*&bSDBs?7J{@+kW4DPQh9= zcI}EvFRIsa_6^>#8Lh$(Mh0r&CkT@{J`?AUPTIcB+_9g3GTvm$7xxlCKNg>$t*s5Y zp*l(n9DV9Q-;}hd;ZAj8JD7(tGp?@RXt4!qxC2xCG-CVu8?j}`;P~_nC59a;S-Uv- zes|aFS8Ay=dr3M^nL!0?J(ir_&q^d+-9w+Mmh} z@~7y95DtLM=2mRHPQX+~DJ+*YwKd(Cw-Zdo@M-4-ga?W&4i*5U1%-=^|K;!Q%-;-| zT%8O)5ghM}V8kMDcp5IupV*n-rr&1VCbr|y#UuMI!@nu*32C;DZ)sc`rYfP93+8e+ zqp8z|2bI3vOkUvci1z9&E60 z-J(l)k_jx~QAOp=pGelp@LxX5Q`!^P$J}O|RZ#5pUVPl{p8YO_gYNwt!3eaXGNLjznUuai?=R&1 zD#;Sn%_pKOlQ-$=JDk+Dm$=>w^0^tLubdcH4=fYjV0d|N-FX>rLGAhF%3;^t z9rD`dT3A?^=ohtdz`hXLWDTAf?E}dv#{j9iQRYL`^vri*u9v9 z1(LszGXdl9e^JCf*F8If!#@-xpW4HyWkpz8?;O*4oSx*=C27;WLr`Zdve@9lOw2wZ z#KTe{3!V^@igmZ_hD}7@rElD!oXgo!FD8rpLw$P25&OIYyaN|;LGmd=Xq$6aHoL^K zT>$ceY0S-!Mr2Y^V<^jC)`Z&%#_)pBd4IG?S_cYRkFCc3B1^uH<2`rL*q#MZtvm0y zh#7DiN~a<6jash^oQ{HuwCMExM?^%2%%9Yc@+kv?o4(thg$6|F?CUn)99dYYR8Fo@ zeM27rlJlp+esW7m$v)TK-E+k|$Se8OwdB$ZRIkdxlbil% z<7mK^Zb<83h)pfZW!&RZ$3eg>Ir>~=e*A|Is4YwID|7LcI$Os_Abjr?v1=GchqwW+ zjACa-*>+S=7up7OV$L+zrF*yqES;iH00&U0$hZR&s?H6wS)l-hT{06E#Ke(t=@u25 zBLN7}(r*K|(F!b4Ao@oDj_#IV*wd#I{eqM8MwF+y8R)7e*D#kQU8Gmj=W4$W>^kC# zmiIvy+C)qvimw^TK{!;-5@M1myjSC7BgN>FhqpJnManSHGBeiR5))>94un&T+{J;W zn=U1OA-#M*YFBPp0rbu6L%B&S&|7h~N+63h+Nmr~*YeM2&sG#rkPmYJS#2Et`2GQJ zI+~sP*Hdsx!c)IDDc-xi9LaS3@smh^Hfw!437cjL`WAhlLhQ_}`Z>Xa%~Xkc3}*L6 z<3NqKHIWzDFQc-0KFE;xiX!;?+4&O;DIuGvCz!Mr4Lt2V9ORrq>RII;41$N7&AIv8 zI`Nbk`ds8Us_rxgVK-o)?vzJAkws5~A_LCrSMf?=M%KXh5qm4g4hyVIw9w?MT z9G#IUacgG;`GrA4bwI9;R(=8`{L5OE-fB~e=@uKAq3QX%9;v3$qo|Oao=poJf04k< zZ;r94LZ6GZVZ4c!<i^F5K; zN2$7-pQOXz1^|HX7z{!NhbrqS!}N?9aB0sj7uYv|-&JV)pj zeTu>M_01AGvl>~;HZyeG7mJ)id{1@K^1>nY61f+0amTV8rAmWgS->3x;@dkFTSA5L zPVY;6s=X~3+h^`o zm|7)h6$LbRs<0d38{BwFta;{a^LL8-_V25sE3Lh>whzG=c`8mR4c?c1K{LNIpInfEvNPW zNG{mkj#hBGM63QbbveOGKZ@=+IF@~pJx;CWb*6x_t3yKwy)J2M!d%OCvE(6GELVi2 zjT(Nb`EmUsb!2@=RfxY2{!jFm&pFyxIv*r26~-O``hV9i6(;^W=Xc4Ez!rYn$rwFs zLqZXTy@Y$Oa1fgNP;uM$Z}!CNgXVN&8T4dYIvy@WCtSB<1{sRx$x=2{Kp6l1pSdw2 z!%_QAsI$UcY&{K!y&6r^dj*uHO#iPes;3kN|G5*ql=x=X`cT-v;7WKYv|=)EPqkyr zQ`q2X1lXCp{CA%J#(U*VsZZ;WAVR722d{)ipY*K zDMLuXE?Rj$tevA~3nL1n^8Wu$oBten?a-%&4<%%tmeKq_@}Q$%b>wGI&HB$O|I-2lPf48;BrQR<=d%txKpXu zIhp;w%@c5r&apBWcYV%u%&x&60ODOA5D3ElERuD0&S`h=@TR}x5fCLmCm|Z3OKL67 zZ1k)AjM5NvRMTHwSQX}s_G70k$!CX4j4l^uEn`Xn5$GYJwp0u=Dw9bo6J4oz1ndfw z?4G6z;;=V1@r=DL&}TpoOiq~Dyo{``X`vhZfjvI30)5X3)msUQg=E8(R@ws&33=0K z5%!cz_|1sfxjQ9CWZ-C5=6kr&SB5OMuF3?I$!WwD+3G0i!)oIn-o~go44RL1rYwru zlTaHBVyBI!g#^gGs4k)rarkRKZJfE$U`r3tVLe5Zwd`){ z(>)QC&WF_bQbs4^ii^vC_y{O6bS!rB5%c5OVr`Oi^~%WVrAl1sGkFiupEbCAZZPRP zeq_=9fb3>fKw8%)>iy zE1ji3si+XlT7{2RnCC~RCO>`PF8z#?zN@uC!Y6^g+ql?Lnrc=fyY06*8N&$?ZA4Ft z$*}{sBa>X`K9glshSzX+DR?0@oDT23HwoA4!&sA`n7w%sr*A)~WX>reBkTF5#P91} z?yk=S?@wB~!8Z?xW9mB}8nxtQy)4d)ErXLY^xV%B+4lJp-Ux+D`kS0DhzJ7}&#*KvspuQE-Fp$7cqagKppA<9O9e5y3=oRVsHMmW(e67&MjD)fxb6 zG>BHng3UIjVrf>`7!N+S&TpVxNzm$dk=1Tz6 zC#J}3>{HiacUF#)e@yEC*;m??uQ!iZQGLim>?SQ=4Z}4Vt=}@Ei(K70vKzD)r>pA9 z%H;`j&S+-Wui`;JGEl+mb#ZP%3NHU_ORjm5ZQhx6W0XK$yD|tnmVuNH{MAf0SLRC* z;SNzA!C=DbB`LB=MgELijv|BS5v^$5(S?$1UAGKSlrZ5S5g0<^VEWk_4T`j~i1!%i z7@oW)0~wo7%-G`@AKcwdg@|pTnt<<1YTHKARsq(cL=0yD=ZMk<8*Hoz=!Jo{A)7j6G0EH+tfS zG3V{7?JkHtilvCqWXV9ei>_SVJ^SdAH`2?(6lPMn+suqIu-LSpJqWYDEL_+!#e0v= zRg&Xt3LCGf90BsQ^i!pu@`4%2uzsx*;qM|_ogS`8-mkhBVs>;zDs8)p5va}eri;~Q zt%hol5s`-^BGhzKZ$?nTT1^e*~m*%vqC-y_xVIr|2{2 zmFj_LY%7QIgZkdll;V0FCjg$a5!5&+#ena>8SXuk)82U5o%Nx$IWzWm?33^^@S$$p z48Pi;Tv@b>OxSnp$oj~oI(Q*P?V{Dze0i+9cb&a_qN$XWmvs;k?jzs}Vq8hZQiv#^ z-qsYepX^!IUbmBbK*YqDU@5DQ_UQms=_^I3)Fpq+AyxLo(6dBWg8raPqrsd~#-bUa zW$sV2w4BG$U0rs<*$0M#*WmcxZpEQLvGF$>ZlrT$`W9GU?@Dt1=w$sReHq!b84TXP zp?z0kg%LwzJMHvACL6@yiggiEEKf(ai|qaLm&jKr%c$+W8rhCH)J9r|C)egv!*HP& zYhCEAB{;{BWVo8t+)skN5Qw|l%Y^+(*kH!ho!tV3Q~Zh-9zJzxN8eJ9flD|`^k$u? zq|9Pd4*mTi{~qs#Hl^~icGKHWzy_xX$q0H?%;LZsElRF}d*s8Ss_kV8jX942A)%Ln z8Tqq0-w01pk(h|LHAlS(P2OI@W_K0@>*IPB>;C-CM?*o;;eWIr0i^JHkM4Nv{>IIL zYFLr8Zd+ZAtY@av^h_beE`X94W<#s&b>#u&Aan{dhRghm-XX`+DGz_1dm^(X5`(NB zj&=?LV*joP>VTzyG_|{>`400wRWOENrq+>WG!6PHuii9a+!N!2JFb)!NoPf9(LF zhQGG)fuoe!h+<7opjkW?nj_AT38a` zep~jERr7Lm2h607w&EV(_?OrSlz`A)A6>&}Ypx#wLwX5CH<6orSj9zLTL*&=XMMQu zaXja*k)A*-9(}n!t)n~em2%$bOVID<(2M-$eYqzwzsb>A(MGV8^9GHA_BoPc|-Dj17;=(j(@|!Nv`1XqOCowuT)1l zgojf|k0JDS#ShnqFi&8P*YYM&N5%1V8Ku{p^0aWp`jsXB&xFjd#Y=_867f3TJGOlEKdV<_MSCm?N;wZ&Mk16} z5bOI65fA_%AJ``yRVA1daxEfUM`0-c zKGg~^F2KdP1#qFmQ?JR2d*p2K%_|S3W1xVf(U$f6E&#H7PQWzVK8@gH(e`wr+^8PFF2zR7nV#RbUW9!s`%F)SMWb+Qav0wFw0=#>O zVUn(IM4C#Ap(rt|4$!X-bHXo^HT$WI(za+zi^gu^eU|D;Zi~B2;hTK&^$(?;6pAft zTQNMbA;rI3&Syta$4kqi^Qg=$qPGT57%@+XGVySC#YH{Sd%(?Myz?UbYSb$ba5@Wt z_IFQcp!lh_+UXjTsjtR1%-)1Zd$3h z`LT$p(9~VkeK;6rad8F0R9uVN^faPbsuRHHY-jL@&>dbKJM^=V)yaBX#S%+M?bOiC z7Dbv<+MCN&5{K+HN?0~cYm5?j5#zm=q+a=66Z|0xrQ7~Dp`FaP5G&&=A2ey-@FE_!mg{L z+B@J=cwKy-v&b?q+xq^b-Wd`Ry7(}E(^M1J%4jA!r@;?lkFt99S4aapEn!2%u16%Yf1_|zHR z7#40?qtl00HsMKRQ@RMV`7OHeO0R4_AZ6OiCtms;4YPEVNeY`K=)L2EhgH#0y5sRl zg?}q`UYzik$)OOLUyJxLT4E1&gbu?pZX|KoFjWMu%&{+X*f|PbVe$h*jw*dFSIq%X z#T+2q?-4K;#PR3;+ z+F<5bFOyle_UN=hgT9uNUIObet}zF3A`9~1!r0&Lm>Jr3fQ!;jo$rk%yk=nUBCxSW z1x=0q{t($hBVI|8kPZt&gjbDt;Zu zq3-mm3-{Bujb@7hpXk*~pZ=TlEV_Ao)M7Nte>|z~3&gW6OzEX_wmNu1_Q1HW@mCWF zOK&F+q(jr=xbeCE5dcPh0XKN0xdae)l@y5iVn4wqD0_tl?v1>Tpiv*Ni}zeFU72&F zOPt8+@H}oCdZQ0NJ&_Pm+4To4f}7TZAT)$<_v!IJm}S9}##J>#gVFrTHmkqq)Mg8f ze1uzeWWsfsc0ZZFMM!FwEfN+WT6Y+qmV4BjTEwXG80s}s?3E=z?4_DYSZqY}BF$)b zOxfuNjWp~5af893*Omiv+e{+@?uduz)-T&LRneedhW2^Gn57mar$I!%4l6~R?s>kn zliqoZO<@zlOb11{D#16n8(qOjk+wx6<+5{l_6PaImn&q=d23AT1074PJP zGr)XBw|G@C*0|Y^d7g=Bc}3ozeqgy9iC;@`GOmd+kZO#G21U5`v=`j4r=S;#zmYJ| z;+WUhf7e7&>0Z8pP5ua2H5EQ2nHzs*zy`GFqoogu22^puQ^t7ROoL$>{oFRuequfy z_$=7kAauhw+?m4S;l`4=TLx1mFvU00(lKdWVW1lDoR2Q=Bj9kp@8P4fb35WFnXT~C zg3K)yFWy-2Gw$_A0Ae2VCQ5uz>>7_cQy=sJc5x#y*M)3*N^F$ccYm*DTj56_Hqih% zLVekOZM>a6uKq)xc!urBlAM@FK-|ZHz7J73w{1UWHmup&E6o=# zZv+p2OUI*SJ0PrH6Jec8X~egnA~`~E0-#vsBZ-5BwI)OM{AzlfuY?NAXOf-Mw;00t z-;zayQ4AU1hMNpx6ImK&^~|oqaj8B|4XM>(-Q`;9_`h;`3A%97O)>2nOhmu8$_kXy(?M8 zwr+bv8K(HvkGvTLu`~p0yP4&u#UuaJQd7`r6*NsoU(Mt#K1kj}4zxS{HrJSOmm2Ez3m2kW#of zj(TLpS;jt%!YWc??Wjw@p}#U{OSg1~=5V=8n9H;alu$Qcos9^*AYV}^`Hdvp33bv|GaN?CPEY}~lTH;>gQRM$;BWBWVe3Er~l7SWbrca&Z|n<6Gq z42j>Y{L>_~w7w`xU|(FUI14CK+M8a4)z*Z^F*`UZxTx+my=y6~vI{muLR_jC3(}43ByH55AO{Pz)hp|fe zERyhtKDSli23)0qYTN>-4JPn#^DjaCNI}p<)-Wq9K-!;GARsn049!WPKo}dXTgl>1 zF_V|1|7FXq-xP^*m)V5>O>nl$Wb}By&htk=AaKU2QG!C`3~=DK?wdlcqN$ukut(PK zyc(t2`wrE7QsS_ZyuR4TpXT||qIvJp;%nRVp6YE;Ou3u?2`QBAO&5%HJ?G|gRdkpB zY7fH#c4xbH3t&|7vrCxtV;UWgVILH^nFo*4fy6IMDLlER;v@%R_IGGxAqiTSOnN54 z0%OnT3C51eS9#;pe7{>!RJvRwvA+-$#BhsInjWmKaiH7Cg*Mwqb*f1_xhrJ9oi`03 zaq!e@B!~`Q7OECN!7Gz|hdS}3fdSRNCS~_jpL!G?fD{^bwhr@$1O|EUGfFE;;sbxb z#KC-9x@lt`xYG`z=`k&o8J;27j{K89JHP-})2BCuX~a9pPcJXy=U- z<8Sf$txizAqL3q81~rtJTW96(3CqQpxI}6nbQuO)Y}AIRHqk0!q#Es84omYwKlpcj z3n_QAjO`S$I40!Waqij=%Gfe=ScY`f zIc4|!%a{^(ozGddXkjku3-J7eg>0aGFjYOTOJS& za#PEPhI_T@vY_L3UEZJW)$v|JI3`NZuq-N*YUd%QBhg+&4mF?s$X6s>R`&q%-&z&^ zWO3oK3s!2i0*$fuih&YlZ8Pb3v%)v3BN~$CH{ zg@Mt!zt&+@VO6FGWg58Uq=kL`Z4}4#Gp$I=iG`_s2UNL=X3`=IIG!8u$(^>Y;p-?A z-hsYM5&MeYsw!!WI@Wak6wN=r^^-jNFI`?9O!~@jb{e)7kkZF-o!q6!_BC9H#O-T> zItiIqH@my%{2YVbvQ67_3bPB?LWVV!71Fr}*chH2p01e&-Z00Q*k@T|h1fqH0sXrK z(VOeu#KGhOABHD9Wg3Qa#%nsU-hst)LRenLv3mveWic>@F+1Trq!@PrvKJuq3*GaQB4M}8(4s#NT1Hh8g!p65(9i$o>VV{#om8d82_XOXI=@m! z9_{q!?06QFbNDu<=!)2Fh%URm)(M8rv*Z@9pQ-Uienw63o%&?v4+iROU#Ux$XU%Cj c6pJ8c_&2ZNfPZQYRadH=!q~G%<1bYinlQs>_+rO zfDhkUi#n|U|GDC-r006a$;#Ek^noQt)zsD5-pSS8){NEN^1(w}C&$bDBK(*5SZ!Qg zogYdF2sr$YU*LCoU@dS#ltl^NgwR<<{~-oLYKp$FGG#MtF<2PPbwznC&%~u9uSZl$ z`zNvwxp67vSlNQ!MUDn3;Fe^1VzINn%ZWS{#Lk;K9hj4o`7Xa*mrCh~KbdhlQ1%xw zvq=-qx+0b(tzx}pv-uT8+y=JmR<~o`hQp8|Fyd zq>Jz~3HPP2Ru=z6gLt7QLnYQ}x&=mUU%$#bI`VsO{Rtc}@=-0=tUtx#9DC0via|`R zpwfN$E(yIbfijaD72HS9C)+zzw6rrJv__LF2XCyC<-3!mpCu$ja>R&Z!*w=4KX>!i zwy48!aDr3KS!tggMYtpMqOJL#rwVHJFYHQRG_GMh+TXq!Nptagq3KoE#s1T=(mQk% z;lWws@S^Yz{z{ToCJ#pTX9U=Rn6g?CyZ*_ycKP)#txTcUqUqUWWm&9~+-S!APkar= z&fiIQmQBme<#U{Xj*>-@4_zp1*rM~bkY1IikdgQNxhNLd@lxN_@oK$KHstuE%u$Dj zhj+ylWIV>bxbtg|_lIRj*iM~ctTR5|p#5Ywa7JHWU$5F*WTkRdhVR}NDr4Vm>eL<{ zjLAU$JEO>4F>D9{AAC(v&xst*8IarL?Y1HEtKf62Eg> z>@WY58tMG&neud9AdcsHGp*2rUn=%P#dsd0E}=#q8^6Am!>0;4j*8z(lAsPf!_+Vn zD;rb)_>}onLx}il)g}hh@#z$XoS-H7S71SO}z&d){k5`?&Y}NUFk^k-|0$$zxCPMDS06o4Zuzk+5 z-SNhLXN@1Nr66S=OAGoclKp)M1Cxm$|z;apdQz1zz5> z=26R|6)&(%UT~}bE@ct9Pu21DtIKFNTx5H3aq%G9{5Mbcq*+Ib7and9Ty+i$pc3bhu((JoYEpVF)KSRK!W zg-Y|+DRX@Hkp-W3@zY*fs6$t3AM*bbY%*q_I6(8zLZav?>^>k>|# z`^xCovM}AzU6)+-cp({IDtv!i({+y!Pz9s4`>O%ZgYYGFc z6_5TtIGmF`sfX9)Q*GP#=f0UQ!3j{|G>b^amebLBbu3sq>)TcBz1;xkbbZ9B_RW6O zwY1VOALu9!I(U6H4$wjDE#GSpKn*mh%N~8`Jta@3_=Q#IR<92_XV51*-->i-)tENo zKZ2T|gX5s^o(yAheE646)=z4GXE{y19J4g~4UA4r}1Rck`Rr`cg@^*+OrY z=ik|QRGg^)QF5y_ai=^A;!gI&hR+ffwI2-F?3QJT5^9x+=hOf9{oT=rq%{17Vd<&~ zW_xQ>d)@xWGlQbcvAoh+F^z+BfjFnuzH+Bbc1f-_!GEJ)tHo@a1=vL1Z^nC=;Pwzpr!{a9&#T;;Y==< zO|;~djo;6Hc(gr`23y!Iz02snIv(vXQaY8M;Mg!;?IUE`fIEL2_<_}FysF}QZVZFi z893gr1x>L_9mgVI)lJ5$yii+pteB-~mC+7|tND`_`~Blh+LfJ|7|AnmPk;aZEnh0` zSc85uykH}O8M zY^M)9eP^5nqobi=@`bwEbKML-fXV-GJ>6h9R%V|Er|x*Wz<=H{?OL=MyryXTO-f4l zjhi>OiUoWFYUK8WS#Clm-sMdelS;jh%;S1r3-yQ<+PwL zF4eb9^ujiEFd^Gu{$>m?NV@YyHk*yg43{}|LrWKsUhzBHFFL~{;asMara9(UnNtze+oL(goG(7optcRU2I+(C`Y zU=_}QMUmdEf)N;xJ8&peCOFKaq&GV+lVB2r%%3=nzMvNVK6TZ7eA8*DN?@suqs3u9oi8u_uoSmC1fgcWO?MCqCo4nTu za~LXC@~VXqse@4X&Ex>ALKrr2LM?hqN_ZXJ-PRe24~WXf!^k-Xp?0MY=&=eT`MVev zM;~1*do-^uDzLuLm!l8;Wbi55RWxAg5xj5*7*c2>+`dvV$84J7*i^{X#I2T?sdWN{ zZ(VQlRQ0u>e3pznSug`yRP&|D`p0|%0Nli;z zqQTPyjd-yyht{Cf{!PvimdSwO!|1FfXaUw3`ylJT8?&NQoD_}yGH1a3((;}nWwr>Es}s$F1x@x|IFBFTd;E89)He~jMy}W9?{rCWHGq0CA&sUx z9RjsL>JFee=)s8Cm0TSu6R?ApU6uk3{8e0BGyZA%ruO!B`w^erm2UuV#A#w%RcAfM z+-QmMAKP#K{x<5T-Mp5oU!o^SXW{?1!`SfX6)Gt2?S+qqDXatv)Elr=&*v-nzx-i; z`SPU+;NRCGb~N-N_k)S~%j56TlzT@k*U0 z94`#){~Wfqww@U@kELd&tV=Q3>C-iyg7eq_;Nyu3C%ZHa2TU6UDdvHr2?jC8CN#Gw z)unoL$}%$vV8iOsdd@o49*I6V&G4kg_rMImlXrw9huuKF62M@$l&Y3+?&L6l3Xfol zw71$@?ko+JZ?y9Y-S6d*`upoeK9~C4T5I6TweOyVux8U;wj!Yj$Axk61Pa)!DU96a z`@6tGKQ*;8_-7cyuD{@VUsc6u?0@8TnmO+z_wMH#^FkJFWa>u+dPUgK&us?slbl)) z7jg=w;pmCae|WJ~47I`lMfLi!bxhVu;+2PF1h|6sgMzjxS3}Pzv62;rAH#`cm6T+# zPVp@@a)*UOZGV6Ix zHby7k&^Ei3uCYCix97uk%3r^J{h3A3vCy>9dE+a$ISkV<=$S|G%VygPeWiG!pQOG* zfj)2>rGNOlvp!DODEy{CH5J0oylho~KpyRmd8Dtt0dyl^({nl~GZj{Q?2B7tTC5CF z3!QFm6q6(kV6s0yGf3~2+J~bJ4m`yyXJo`Irl1?obK%0q#}u)NN0i-Cnq~u#>*=~O$0%&`9V2_VhQnX8 zXBI^#guOic`6??}T?94n8qBiPoALbVG6|v%5t1wAIEXX66?MoK_#$N4PG#sd8~10l zqQqzyp>b+m!$9ac^Te{Q^FQ#+TcYZJeSJYr6yiJ`&TTeSY>CLj`flwB6V!Fz$ON1a zgwtIRz8?2kRe~nEhBk70z_|4)skFsSb@xBt*{ZgF+}xXCISB(4<|12LdpIl5_U)Te zfl>9-l$2OF8Pvoye04w`gKA+GdPjUoi;*A#7Q&qDw{P2ICY1QF>k1DqZ{uji!*v8b z;FJ3B=79f2nKnLo52yorx@3R;J-cD+xvnJOal{w|h0x$9IeQ5gCKfe}!~hs;q@=Qk zf?X1ee1P8XIqf!*%9=o*#{_&!5W@*L9{cPtqI05pQLhk#?tHzKB{nDj3lSjx5ZjaC zR3^-KfTV`r^B@28W>EqVUu&i{HW~h8%frJ{Xjwuh?JW#N9SH>|lcsCINxHDG9I0I zEo6>wH&G)Uc`a=zGcCpp$V91^E1>Le-=1n38Fg`~CwIn3Eb!1oU(-L>SssE{w~Tei z${x2}i=wN4D{R{U7l<%CbYz;cl}Le_HVi@8Hs_)Rn>U|v&1mmxLkRH@Y$YID zyOswJ9_YpM-y5vn9k(+GyLxcwNjl@?2t(t?k=?{)^XuL2K;QMCokS|K|C=YHCnII^$@hKe_0SlnNAImTmt(uU`r-(0aZ5gyip7F^-*U&}D zfrb5_^oP%rfGfWjCR$>IJJxj$q{FbzAbSeb|-pje0_iwAZ%Q^3`N}lg&PZa>K!6DW0hh?&}wIQ{~b<1 zY&N}_CPDb^t;khAnnq1!rVxaMXv~K`*-|>z{I%Lz z8lnUga_wijYEOnbi?pmjEJ!M+K^ReTbj&|KD+5A6x`b2BUoQU2rAv%3p28H_8N1%HlDbxT-4BEKldv5{+dkjc%=3~53!`}Lg!^rN+*gwt# zGqtU|yC8%^N(xjWj5&$em@6gHjbNref@xb0695n=%jB5HMBie~!Ad2apb17zdRt2h z04gX(^@|0yG4RElAm#+0a=HAVe6vfkqJbV$YCjYNN92?J5QVzTUrw}wpjem<7Mki6 znqYOwo;;dgFSz@eC?nbX0>FY0IRAk{PfoEsBC}5R;(8@u90RYeUdg{#Dd;>Yhr|Na zx5D-Q$D1rjy8u|w0!RP*`>UrgU*jfU0rh&up*-D0sjeu++=@COzzB@Tgs<4jmqq@c zLg+OwxKta;U1pp|9Lm@z!Y6@BDgoQb8V7=pD6lV9BoZkme!^_By{n{d4ySFf%B#e7 z1VCXCunvTj#NoD~GddB-=CECTVgjS>^(9LpAkk|824|9eR^(k=gpgPR=o6#jXAIP3 zrZl$MthCtJr01fpT+FJoA<6g>mx;E z3P{j+mA*jbuje=Q_-INlE`9%xSkSRNhp;CgWN5Vkl_p=cb?-GJVWV62Bsac!#-%^& z4tM_-H@jCVoF7`RnABlVyF9}v{w_Z5)vIEwZ*Plaf&Rs;K5Tq)ngmk`Tee-CBy|?evkl+uU9Cn|GuXOAg5P{42jKw3HM z1XCH6(Ogk%MIq^;tHB3OP#g{+*{80M%t(?JaamM_bE7akN zWYO0gG;5(X+RL7fC>1!Ift6cA3*dp7w-n6t^g;FYCJi9{da=X^pJH* zb8pt2b%5XI0FcmO0O}M56^x7M7Qz$ugN0agDgH9AO=A{+e@oCbG>k%p4cMl9F~4#R zdg;us7wXr5PzHQh+w(tJJ(&X8ucukb(()YYy#<^9mPH9Q&A7aL z^(qzg2ZS#WDPVN#)$~q+n?%@`lIvC-6ctj>k#Y(It>I$XsM+Es6kI*%Db67N5$zfn z8O7-FS@90EBSGML>`0dMs=|e5D(`Z0NhbUbF6LKl-1ubEgAG?x;VLWlLtqT(5qv{I z;9#whv0&%o3J8dm)gFDbda-r`E*#0R?#sjP;dmtPBYg!ODA;V=j(CAq zAO!2cmCPD~3BP#UZ34+;9bq_7Mw@z+SsX^7Sdg|O=f4V5Aa6cMe&*9pHOl=DFiSu5 zTIs!Iy`O*(04mFkjR)2C(@o(d7?1;A7`ZQh9w>$*mr*5)$$j^(&H@kV**JAEvd5l3 zmp7GJd|zUjoa_(Omiub!=oEv-zXOm=5VHgoa@oNjlv|K40lyYku6&6EP7F=?QmgqP zT+ms}$5X4XuEfG(4E3(ShFAkwF7<{1M+lgzcQHhPZD;Z^>F|Q@cAqXEMR*}Fzn?+| z4iwNa%we`!0phtFmjXZr`UkXwkFCCk>#ZfAm?SJ=!&@x@S1`p40>-znql|3cnt_#* z9w{_^>Qv?hd0dZ4*M|%pV>TMdFIwa!Q zO21JJ5^8Dh=olI-GFP2=Smro32zrOWvTg}yHAs%74nH&0tLw7xCuzA zpL{c{6J79$Lll1alHBuVLIQcNZ2>bER` z4TA3MP&Q_D!5?~&L(MF_Z6P4sh|l-?B4Bx6ti6_S%XaWb0zP0ZK01=&!`JLUln1l5 zb6zsTtMBG$lpSUSFavxG65f88SAsQT?^o1UQ4XD6Lt6$Ot*MEY%I}7d(Nd^n^vX12k!r*3Jo64!_I$w0k#J2 zYzU@8r{CeavZz%jUG>r7-%SUH{#^Y=nS-UvI}OAFg#fXN4-X%eg046v^NRmoJK)xX zpDD){n-t3IS?Vytl{d%vq&4bnBhaCCX0Ko5 zrDn}UNGmS{Uhcltqg(<)AHl)J3m43k8C`xGi8{x9 z*==<^NyKS9QF>?4+#b;15}<7pupeN*fPXn07<|4@jZ=s23v}j}u_dXg3iI^|1nCX1 z8ZdPIPj>yi^}!t)0EvX%VPiC0_KfhJkxHm6Ooy`6p4%?9* zKW_J@DiOPbr1YRH{^iR;u&zXHzO(A+=va*yfux2hgpT!1EB_u(H3$d))D$?1`oi>< zF!S7Uc_|z3y6PX~-Cu$WLKoPRru^`rx26oB*tp9HeYj!}%-TX?fhvuP(*OfWKyKN7 z3qaq{wMU8P{P}v=J2W4J@AneW8afB&t-!LxfS^qUf(|n8>gXClOIU|y(%V*)Z(PfK z0$3l2fUqHmJZLx~K06I}J=rhoJc+p$!x#>w&mk!}B6{UU6X>Xn@p1jkygIpSTSkEH z@L1nG)HR36`)8;m<6HM5cyVfRF$K`y(*eKc3O!bh7=4zCY<_$ogjNu=GFFMBlD>TZ z$A|E*9g-lL*uzi;;ja!(e8yb$X25u2B8BinM z0Zsc+I;?ne=AhRTYE=ltkFDhqT4Gv$MPd5See*!e%8Yep`_wFdFk;Y9fmLj;JxvZG z4j#tf?k8xvY2d`_)%r=7je&fA3X{LvO?UHeHJn@aI>Oc=g69HS0 zP<%@7D}Z94CqNKmfLu?(hV(zoOs8~s@YGFV;EuXGv6Nh}9a#a6dY2sB1& z5F(qdb0@w0A%vC^IOBq}l9JLN*bt=CfDr}jYQUtrhpb}g9!+qr*6VOcSp@_HEag*g z0JT{Ul|97rKNy*)qq_ z82Vr7K7v0V6MUFFYsFU)b`=(Biv$PS8P)+PPpZjN{zr?(e3Ft0V1TywPQ1Swst3A` zKHT9DbeMZgWx6te+C@FrOmy`0+F&*ygLV-N&Pv#0RbqV`fP+twrTb5+0iE4#{zu4| z&uVpPhcE2n-6L z1oWUG8j?5CKBa}~i%x+;EiExj9oT^Zwo{ZnbL~DLdbVhJz#T3P+ZFu#KqP+^7CuF0 z1gehFnuG1dRuGJWUkCz*5kugiztq9tRZ`M7SOG~GpF;qx8=!#9b0$ix)xmUQeIx*~ z3_EsIkEJjQb9oGvIkCXNkAQ-q0_Q^2f#r-mnH$O5KsnHFdTnJ6*RC>p{dz_x>2B}9 zLIgh|iy)y4CIyf`zhfe(QZn&RUcz}_a#?;a;11Cx2Yn0Rgh8yAh}*g3$z MxYfJ zapn9c2$cu^Ps-5$5Q&-upFJaCkzoYwZm`5Uwy^75ykU?EXAoer-qFB5bHDw0ZuIk3 z#)l+u!%ySmLjgKr0gVZEz@B<}{tlc!``CY(kYzTrH@9Sm7i<$@oBtp<6q=}q@=~y?P zkrD&op-ZbEH5D7l5yPbpkr0P~zA+7NSGJ9ej+x#&>PmioGLXxGK8mz`L=a2A{BM*V z$$r4REFh=hp%hPIBICcsmT=_(P-nil2^MP$lGg#%vC~AdkrDifjME!}0fC%<#)q9k zh%$rfh59TSL+Rddf&Ba1i=hn-3Lq9EiUdIUNsUJ6v*O}Qw-Q88qev1+P#c?@LcnWB z4m>s`ksY+_VRe+}3;Ixlcc2^wNgaM?-~f=eUA|?(i3DKq5Z8a)6fgzCS-Omn1xPJ| zP;bBH<^~$b`(;6q2pAnT9QB$@5?{zn(}0-?4#@PE#r($M&vwXvhY9lXCA5BZ|8E_c z>o72<;r*J??IH4ov^#LGBY^Ll0RK$?f;4ZS`5{?%GEzZp^PK+}@7$wA`@XpN$0tLf ze>E zf6dScRgYp=WSPO@Y6Jur3C0jPvVu_bWoe|06g5mECn#LxQ=o4O+x3$`JvPELb6LpB zc&k&56Y&439Ay+pi9P&%Yiam1F{rH404bwDnVE(z-2ziH7@a({JL7ZEh(h7&X}J@f zu^&8qxQiq)1tX5xKr zZl~)Z0u#po56wZb_12GNmfo_gj_ypnLJ7R1DvKY2o==Aj*B`SgLIXgZ)_Z5^>zEAO zBM>i`-6D@Hg5v_8HX z4{Yr%H`L6aWb~z&<5zM38UNGGi;HgypoxrF6Py^)zG_HU>8q*5xVnk9&=~-tBgVyE z0;(w%7t191%F^1p1P=K1k=3D+P$hP9QHVZOFF}yY95V>cp=tI3oQ6vndjJsLLr}N& zzAGbTvB+A7)Y4BaN5djVQ0z%C2k?##%M)I6O!xuP2TLXC8=#Jb13lmMKjHRO2Yk5% zTCD{*>=8!jK7rVvhJQc1(rr-(KLEMN!`$YF6K7)~%?1=6=vG{RPHwIRYGB}IL_3Jc zf(B1(@q+cza}Azg02Zd84C$3QCOI4|4VCm1TizsL6xR?)xbl$ei^pmVQoiArAPtyy z{!)g*|DkSHDuev;M6cg(kk#}U|MYiIvJv`8mpD1zt#yG=41yzlPLD~?UTWGg`aDu8 zP<&2?`fNul>Npw(Vh=lXv{|qu>SjbB97`$x8+LL3+8#iuzSY`l!8Jc`>W1rYO1Pd{**%vV1 z%U#Sdf@8-{J*gpi-DuGuiM9uOerq<{D}QXsxVHvmsPx?rvqPmjZy@7nBKT*J``wPD zd6X%PN%7yW&2MSCFe4!dsndpje`jCfB(g4C5ymDv+kyN*Io1G}XK&iYAS@(Mvxf}@ z_(MGk4IL2Ud&-=Q`QXL@aJL}53D#u!_$o?3f;CHXCqu0n?jQ=9nJK`}*Wxbhr~;+d zn<$Z!SOl4-L@;qoo&@uOMTCtKhtNN3vg8M@6*HV_eyrTR#P`5B3 zZI(Ddo(AciqE6!^7`+m!(`XQYt3rc>6T|>*gd;#e;L|T|az6xQsw^)bxFK|of>29K z%LLd60-W`9moKu7rmHfLFiB9wN^KAz%i!o>cLthOb1)&LbFZedDR}7(yM&w<6^;G= zo&z?(p2wZ4o+1M*lpA?15Y9A(sLCE3MIj(Tgg&q(U^fd z-d={#?o4ZJE7+*$;DKUk1{VV`hYvtNId5yl-z3{A@JLWhVXNqB%YUV=DxYFKr)|zi za)0|tTAnPF{4?!KE&^+aopm7d4%Dpe;&4iC=rDj2y@x=#>!25NOx!re6b1!hm-?Uh zRojD|PJ)qyXs>G7APcZ0`~ZNqCuUJX?vPgNhv1MXfQCCMK>Lvp0#xy4`2@62q?8r4 zGIuyutzWBt1hNRc2_&CxZJ$h>9QZ@af|B{Ls%%%VF*$Z=4za914&XB-2-`l->jFUE z4OBq}HQj&091PWBfc8i#+JPS~Zlj-qMKMzPtzQ|I5t*Rd1Fg(Hd<=pn0eQ*pIb-*= z1)r;M>cNdU^aqYrdX#`$CxlsoQECY)AT0Z344;@-{Pz6MP}HQCzKKm(fO8-L4LbM3 z2Sule0%O^J@OV~a(m=ZDFg`ZpUH$(4@$ui!_CwE+;8-dFebpYEn)KBSaQSXb^Z*KM zXqXZ-sP_I`7}LoGwgkW^dth+sM=9>ZwhAMy0a!R&-W3%UhP+6Ut_0B8pWCN_tHz0!kbc$*PwxF-0L$kZvL}v~msw9_|voQx81k-B)fI)ktP7XI= z9)U~>u~Q__!TP*l>Ctn7!-qC5#z>nSGpIy+&*H)eFan%9$I4~VJAdJrI&56DGwMJA zEO^;#X2eqA#=o@XXJ(opWpEK(a*z?ZdRzdxFCKhvS^{QnJG=`RpaW9~Nc84}x~=Vb z(6-`!K=}FA{AECw3`pwofzvz$$OtKUC_=|Hg2FzaN4`CL|CVmN#uU&pci`EVZy_Ye_)lYw*nt7kQ z7xD`ALi_uG(=WBqfiS;_LQ-X8?hL%=&znMA?+V&M#6uTH$_kuW`pw@0-P=0S($N_X zuJ|(*2X%M}V<>O_5n>JL1b^X7e8m(3TOURVr7#GXEf%Ot%yYVf$Tqx?XIz_%Wuh*< z{nB*;$?~9;SoGLvoyedF7viAMNFCtAH9xQ%?4~#7X<0SD?+#$nBw<^W9g25OH( z(9DI7)&w6NhHOd5KVh5f3P>`YfI3qIa(#DeZ<;dcPwO&xx&l)NzMoAtvi1Khj2I{W)Hd+Vaw}fX~3~4 zp;MtQcPQxtdx~;GfRSz<`~_!f4JF=+JNSQc6I0-7)}oUw1$0fG{aGCd2!+t^Q349; zo~*z7KWe6s?GMhE@$tm8+G`0&)B->RMm`Ss-sQ12!bGfBxCK^>4UZYvPe^^ zwg)DG{sJj#n`}vs6+>XB; zm_;%pq_=Lh%7T=KGT=#)1D|65Tk35~4`i6&I9}biGLp+adKC{oW}&n}q3utud!Ot^ zp=ls%AGz6p0rclDKh@OJgP2AjfChkapuoW$4edCE2qDc1t%x`PtSuR=10O&SjUWNe z4|21fB;^@Z(<6sY5OnN$TuIjRZv%goE0E!0eNSajWP0~MrQCKoMctS5EUc~50HmN> zgv4UZDP~U$^qf)~tuF{EGy5O9pxA%y(GJ5gI5F>mhy9Cl|LyiS19|T?pnr@B1Un%6 zcLoUr0LKtd0Gayja~|ib06sOew0_+*2IUaMBS~jqrPC-x0(yZ4AVcV`_(($omX&<2Lzb})DXl022S=g6r~s0BC{PLE ztSBH!h@T_*8X7}%?a9%q&G4rzqg@DIbD)eMx-D4RK_H7(U5Vj7npW42&BW569Nw`SFcE+ z`zbaC0^pa>lS0r5@X)c&%1B1JSR^2|f)o@BpX0TkWSdDe3U4%pLOv`fd&+Qg*YyO* z2;PD7+7NP`AV|D3Qz;T(o+s@u7SvSdm<$w_JCKMH04ylO20@g{wFcttTcp{nc-@69 zP(6bXi9+a2pOeBA1Q$*QVVkE}2BQ!xFqHglX7*VUN|^IRGX-h~C6}R1^#gVB2v*pn8h}MdpCJgWruv zaUdi;yLI3meC@$sN8g0#JS>nHf{!B$NZb7#egugFJ>W9>@BkZdi(KfHOK?&s_OE?j zO#^E&7rvIFE_a#y3vd}hb|V3vsF4KCNe>CLBW2d`?AhzQaX|U{uo3!@DkTnWL?3pV zMJ91%4(zf)1kBN(f}D*WEEQUci#{rFT_2go&#wk5Y=RhrttoZO z=usD4PO>g4)ZtS79xi3bk>Av_hELwNFa$;56jlq#_1j2OO=T{D=1syZMTa~DH+4y% z8)CoCa-o3T1;mdaruLMKE6f{L=}EYE;7=mE;Ri+k1l3-FKTGPp#ECy5?zuEmfA$Ug z&v&t3LQaQP@28@E&jVbP=Yw&<3emlP&+@`kz5o4>iu75zxlOP$Jur`Pu>*%?7?G-* zNlj-y2!b)lG`7W;p1C}wQ{w>qpai>YcOVE?M!?R2*!Cl1+ZU|2LzFZai9J%A95^0*2eegX)}j z$Bag5bp&p2>*V^EDD-bw`1fQFm|m5x=F=FvW=ESR(eM29%|4O#HZ9?$ChR`9h9?^u ztV66+BphL6*xCh;1IdB{e_=hrCO`5bW5dO%Ul<4^dzyK}L-&n}OhK-9QrP2j?K!1y zIyBFonx^h6pd2O@fA$C?=ViE>aE@fQrIwm{|DlfQabSt(hHvpz7r~s=Jy_J*QmooGudFAk47?)Igb z3T(j?fln!=Bb&{EzO^$SWmUg-N8&!aj?U0q5q7aMEPBy)Yz>j8@4f3vB216G;^^>A z=qH6WN6F;$Ex!w|ojrBVfsBMZTdBmwx&7J$!H#PW*0M8ki?iE{vlr|N%rR%0U-Ke{cqUhO-c+(MKqA-Ze)lUz_BV>4X(cqe~3knfY!9GrA$Us;V#5ngp#ga$W>- zBw?*D%=8M(Gh=x)j7-TY`mCMr{lUkUE9H8`as7RQ_V(Qq2CSU@ITPx*uL2qDnn(0s z?+xL)P=&>xdVV5a7&fgacVew#GfRH6I?QN{FY5HHx4+cX;s%Qn*YiB=*SfM6o=m^O z3^4@Cr-RC~V_YivojKeC?Y#4Dck=`Xe#nfb4;I9LTxKRgb)yEK#7x|tqO;FT{66`Y zzHXfNujNQWub7qZ8=9O>e!ZaIB=|0Rw{Px=isiN!D?dTREqEU>p1xD z7k3`LmwzSCPRS;eh=q&8=Ii|MCTH7LeaD^@qeYl5J{hrgYVHj(<)E+i*AMJgxb52s}R*D~ZF02%|Ihl&Ayd>^C`L)+LakV(J%XoWn zo~Me_S!G6@a(x!Bg6q0YD?s`uwcrx-_hvIob`y$c;huGzXLz?y&TV>FMbqb8^Uo%V8-42z*%d&i#uvAidEqY>lwVDFRY@;q-OOu zUTPDXEss9UZIqVg4hDGE4j9a+e zBW)ptMK#(44BcZoZ1&Man}v7zFoUTLEj3Y1L2;wYZ0Cdq5Jvijee_y{ zVo^UnnR4W|_p8i;TXpF{DjEiOf|EwL1|uKXgOxN*XGAkHo!#EZ=k8IR&lmdir(nCn zt&&f|p1es-1y9I?qPvBl@Wx9zvPiQ!le7Rm#)R>jpgL-{NI`g;r*8@HdqWEEXuS^o z%4`}!OYI&(mC*V95VoeXD8_h?NoxIp7&-K<_DBBlxKk{gPc9S085m1>>dqRS64yUr zmnV7cKza9UwqVP8Atm?J@mXA-^{2 z$^9&JWRh^TYFgA2`*k-h?z1ddWV}uVvD9t~cZKcy6RTKVUej;0D&+pbkSFCkPLD(V?H#%qMLIN%HtEBEk4G$=!Cyi5_~GkmP^1ub}`nY1yCOcCBs~p3LgB<9YTz#DajySrjSy?t@3>=^+RlT zERrye`hGvp9uspfiQvNfT6#KM8^oJyd{Ifbg>7QF_2hNQsg3+_+VVr`0xD$cqA73$ zl_Ic8c<`GV=q4j?+r1UxhKJBp_U^`BzsePm=a8r<_>_w+cY(UU%th^uTEjqy;Es2) zAikb(xjcE7qQrPbBfZphB{G~ow`ymwhJTYuPxAb+kU>ILW+u5cwKJ3)T7q)PnWdin$>0S6rq*N`%*KiZZAETbM5hqk-rMB2T~%W8-@$`E_B+lWY<&H zoDo=l+as16uN`g>_opx=h_2A`4Td#_0!NfBudnQyUmi`wF9R`u0T|PYpT0jKpzap> zx4HJq>PomcG6bgDd^-fv7dn$}&6zy=K6#Y#!6s#LXyK3~xow53{VAat#(N@*jL@2c zeq9~X3*;1yp9yp^l~u#Lm+HKzn*#Q-Q)tiOH>K*0SbgK1;*1ipz#ei^d~+cYSMVKI z5LU&-216Zf*`^$)qmDA=HMJYXnT1b!*x%Pj?s>Nhbrwm!{*iNiVcwFc$Mnv)shBvS zSzV7ZNn2XeU0+`Y)+idguqGjmi%&&vCuwj~)X=M8)2XQ9CM5Ijhu<6G$X%luDx7{S zHb`isp-3G!8GdUoJDC?VCm9hcRgDvrc~*sFfXzbx+$f2&loqZKYt6!(Qut@T=;com z{SEz(NLE%;|NG}ZW0gZ=@81* z$c1uB@a4`>G2wp*q6_F%&Xx6`Xb#A#F1=?FN)~Qjr(czht-go-sQw~lUH@_n`{4KS zuj)&~%xs%PcEJ~Y*Cz=q?%Wk&c{+C8l|ibgf1N@Kt9OMbUBQwwKrwsD(%k=D+*;Uu zm}Hn@1LI3M!6`V27182fzjTUXt-*pw){T~a@!ht2CWzl;*1MY6s5Zo-s6(PpHTY%h zI_^kE&hSTh0)w=M;_!!#7b(<{TL798Seaio+rX&MD)7w;NYuxnQtXzI^jfiHZ+7~JMV?96W1uD)-Qx%&0&au zF5P<4W}ET+y6ehp&H!z zm~V3>Vj)b?xj0{(o<#g&rs>L6$_ArnN+EfB^yIIU9%;X_>&MGi`jf6nhNGdDkuE*3 zu%=j)RZV`gNw46PhmmP5ZUOmwWnK0FEG2ULd1cX}E~w*%w~nd@yp$zx1$TO`u}R9d zm4*j#S5-CscF!UEs0e3{njkQ>d>r$Yc-0^1?JX-c`ZXG>0j3PK!&aEteu| z5}M$&{22|(=3!B8)7<3_0)YqiAK8_BbMGtPA+HVi>$@?01rUQ{q@c|19klC?d=$xC z-7bTV^B|=4$(;Bbg!lqyBP%Q2=kPyksoB#ZtbjJO(V{du3)9HaBs;W9k{IAEB znkFN5@sx}9$0l<8!DGW5ikhYcG=!&apMI-%UBuH&ku&VY0r@G7+vk|iu#@eqdN5gk z=n98ZI&jGmUwE;vW&rEVQ(`krjP4QUM2C)*rukoK*&PU%mfUuv%RG`gksSL$x!e(r zDRuOqsBe+5VwyA}$cUi%`}x@IXFs*0PU?&I_v0~p(7H12;goBd$*EE;I^-5yl;z42 z$Nw;`m7!pot2y5qpyFu|o1&{LQW;z%+iD{?8B3-XccDI4J^ALH--OaOW`xO^dW)Fd z9SJl|y)YqtlZSVMoQcDyNaQQGEtv*Kr$brQ9PiXFoLYhpk$Ul(_9FgLgWd=?DfhD_ z?n}?UU6~+eZ#@n(Ie6%#FleVW7*FVu^-iBdQHL<&Pa(NL(4a<3i7JN1zp!#8woj$&I5SGXk!P0c5&EMIwT=eEvr1|K!t+!~}!T%y1)hc)yG!>Vw= zE>sG~3g^L}d?_8o&FuBe+&5v0@cbMdtB_%+CetLw1CG@X)(mOdaI-uo zJL$Z9cSCv|-jL7vjaS4gCa6|E@`}@Bk z+Yf5f+WKt@@3_7Wt&=5j#w{wUDY|8nfSJ5bwK#ImB9@HMVn*gi^evkVj>_OP0{lIN z!Pg=U(PW~j^wjyL_B4byIrW<_Oev8i47*_S0Mfhl%#{5Fu&KZ>d~s@l*DU{afv1{M z>7FV_iYQ(mf+et%LaI`J*odt%_-B(uH#?oPKyY;V^^fVM6-sx!5k!#zUFKo}@ke37gt5JpIFZ#)#Xa%y`MrjH z(r3>JN?(o?U&B0Lvv0Z|JL#~=9wQArT7`B-qfK%N`rv&msyu($u+Xandw-^4bgiDS zB({-2|6z4hEab}xZl~XJ1PnT*UE6Pz!$Hw}H{q9^h(WM6&qh;G5oz5$&cXZdC#TL8 z^L^v5KWnVb-s%@_;=?4u##f?T9!`|O`+)EBjW*m%0>hn@Wi8j;p72p(_TaLUZfcT< z6VF&M9phffAfZSnC~WN{zaW0?CH3W-7-#MPED>`1!Io%zoGt}DtJtSrA!B-+h6Fac z74!G_MsdZVBc8|8c)lGsaY4RU93UUb{DMLvR*XmUDrXoLkMTBl%GCm#Fr}i;N&Wp_ zY3d{C?ew^(!zah^b`1X9onk7msU@Oky~s|t#uaRt)vHx}l}9!CPLWdE0??Rle$#DI zoCl;uMI@8T;h!Y}^r&#G)Lr`Avjp+Wr^WRLt~^$Z<|{R=yJLMa*lQF{+x2;=N%~nco41~x0qbJXbCUF7pJ(B;{NOE*(hr+MF!8Q6m{a)Q?`u~6e`P;I6F{cxNqcs&datQ;R>h0DI_+R`@_^8OhUo_ z>%|}3Qo=Iq*JWcl1g}2D5t(v4&lHRo-V5=nryTNXjAq4Wtx6*ZU^u5HqrTE{A%gHf zC7*f5`O=BtJN~d}w>-De2(vooi>0Ln{4*)sO4$01HvSsqxml^N^cAWTx#jE>a19pe zQZ^qoNcjZwT}WJ!YB0Nd)Se zR<>V6@YadTDeGP>mnsQY5t-g$!Dq{*qgL~vAq4uR+d`a7HwAV2NSXZUDUIhx?-tyO zQ?ztzbHhRcGX2eODXGp$b6=vTXcP%h5idX6nb_{Bdl;ZkhO>ip%kt^Z{hm_&wCWc5 z81AU(<vQd(&> zEtlTh!zLp(d*^*S>39^%&R)~3E`$gFR|A~}O)GuO|HIasM??9>|NmnjOB%x<5lBn7cbp7fo$@VTz$jMMY+>Ef^3_ z2Dgb;ebGnia5SmDHKi9$MbLePu{==t-^*O8aV*%(?zfH}ko|>cJ_$7LG??=H7~^Z7 zsN9{w=Xa!;ylis9x&*7NOM9mpwl;HvyJtEo5Z{moZ>Y{Zh?mydG7#INSAHNU&iDqL z%DJa+|7zBXE7VYXlSee=?NiCjy~S5~v^jL;kJHkVs!j}yjvd^xLdU{I@eCRUi7}23 zdZjO|URSs9EPy=_I7hR!&Q*8MUx67=5x~O*t8}1r(3rh(0c)*qLUGeQ+nKAc1>ATB z;+zp$6-&D+gtiX;t;o#W3bs{d*KP$%?BREr_`0wX3^=6VOGuQfWWyafMBru=M<3KU zs7e7PX7zetmiOZHm=RCK|SK1atF29uW~Pl4-Tis%=U- z#b_>oZOowI>W;SKKrmVOik_5!%v~D2O6-p5o8!ie8nA_VHyA!aU|Eh>7nU~Pq@{C6 zXHNeWJ;)arYR$(Za8Z?Z<;pAWlU=umB=f3a;7T>@hso$uO|4rEUe_k$>#Kzsx0;!| z!9{#eYV~cmC}#$zRP*yr4yWy9Wa_f_eEDX{SBKI~n}3sO>@3{gh8L()B}M#+ER|Q2 zujFv~MLFvU_t(Q%U>}5ys;zIw8{&^x740OXtWB-Y<63Wr5Wltsc!M22LhwDT6Wl;{ ze;s2yZVg1CgBlEl>0Y8atGLHHj(#PMgurkUtgU;Iq@?sSBuUGJIz-UCJN7CQ}^ChKBzPOO`L1z=$W3e z?fG;AV~@%>BE(Bpud_}(qeU=XdO8z`3ArZ3bwWY~DwX0x+>E^9o*aDe%B0(xaGf|; z*+gbhQD1G1D!Od#cxa2Nj(xzl0>lxk-&c}g&CM35o;Ynk%m4{GyZk$y{PIiTp-K(V zQ+OLvv>$6sAGmM#J}r5t8=ey8;CoD$G)j6GPGz$DP5c##?Cv-MkJ>p?xD&!4@yxdh zyO0w)7on}3@ehOJO-& zR?KBE?*NzOK1?_6&X%1ZW+mt9JBNU`6QXcQ6{%@Zn~-rR(LlTjLd0sR)Xn~u^>?Au z${7!l2o=8#J{*BL+Z z$NS{pzYOaspE|ca(m(wqJyro4b4W=5w0@9=8K^_vMs3Q++!RJEp9Mn3hcmMsk*97S z7fJ`iddMsVgjpitTU7VCaqzE7KsEx2_rVWCT7ED+b@BM}q*Fg@h3%Xg&C51t{^itM z=5t8Y8YWq_`0=0YL-GX}tUZTf&%RRz)A38>a1fhi_V86brkF*rW(=6UIk|%?xs(i} zJCIUZ7GPe>ad6dk!C!p+sNy|OZe)z+e1#yc?u>A=+0G|khP$ec{{FIK$SexIrp41Y z1S`*H4=-uj9?Rg|DxbIZN5EY1;M9dlab|VDZ%4AKlTAVR)zhr+CGKCQsk*Od{h78p z6VAl3quk_3@$zi~!Y4?;4^a+aZa_B23)~_=aU%;cihzph)YPrbx)#U~0*Mr0aX^Fo z;MU(i|6q>*fClRZnuuh`wE)OtaK`MxQ^2bFG-yc>BK1I63*a!v0mTWRWt;*QG|QNI zd>qW9_OolFmlP0R4vmiXzI`4ftgb$I8otY@?pH9S>%SQILa+9XWIg*}rN47~CorD( z404vq%%5Im39G$Z5lM?DwtmPWhUqt(+Q8`k5SHJcol0yly5AgQ&-1$B&*uo%0F5^* zQG_$!L~EI>Sv_)&J_ZQTr%i@iIS!1d|_qKN$?pqJqXp5cD&FC7U$0Kp2tva$e^ znGVF&2nekQgQ!#BUhD_dl4!W41Xn8Mj_H?M+)1}rS4)EE7cBSbOwxIesCvPcN z?Op4Ka_*=iHz{VdW@EDw!%jti49}^fls=ZL{$v0ac}uR5h2(333}Mx+&x+vGFH*i? zun=o|`?cUsM2RfBB!H0ts@}i5ptY6S90M$u_Klv*z=Btk2Y6$^QY6e>^XH_OmzM}| zG(vtO2k(+Z2>lD>3lty?28x*|Vc>uQLKR3H4x~g5qF?Gd@2rS^T1oRqC%CNj3a?kE zo_a;|X;mXq4)k_SGO0Gddt^A*qKzLt1Z(gu z44Hhd>hWzu0lI7d`ESkSz|HnB{nsBvjhT@w#G+Lf;BFQ%dd{wi4NP4PGt11dtFT17 z41T4RyH^k2j5;$~sw4vI_2eeNL?CMofL0+1ILrmKuK%+g0LkI2XQAFs&jG>_GEP81 z+;5FQs>ZCTso4t5#vy-?z9%T(2J#*hxD0Lmz=;6)PJ4i&=bz>wK@S+4Ac!X5BOH7& z#U$#y0vPr*8B*OK_C6{RIyGA@VU-epN;(L`41cY5NL($ z+r#C7g&_fWPjLVc0`yCXrigJs8_BzTjTz`%zBPiC(E~_e|2aH?)E4@_Nhu1D2oX_T zcz1-i7jiHFCwnyT`a`rPz@1A0IztZtH~{*!il8s|l|X@&yTa}x$fS8rfk?Cd-%H29 z1qq}Fi4e!pGC|WqdZre_zk5kjS_A8{NN}wTs7BjgzwA=SJ6s}5yvzZ{Wv!h3)4x=* zWS{60I-O8iwWTt-Hp`Lu&k4@DLHjiX=VO(BQI+q$3Ku3uCM;s|vHMmCeBetI>@J;D z-1j|(FSi`8cN*UOh0TC~EE3}lQZj5XAc4Jq&d%Bz4_N>Jhav)qYrbg#X*~zzG66P+ z{^?Gz0zxYq-V& zGm=RV$ecU3{`5t&v&s(M(t*xLF)MjYy&?9r`dQAhw@| zyC9WXw;i!mmwis{p!Dl}rh~$QTk%33W0&v9U}cuR%o+2ei@!1zidSsuwYOwZ7;tah zr^C>2xj0w)kef_p)>BN*8|SPs4DgPOjB$qFzxi1cVo?F*Jx?>>1fPg2|8WGI{=q;I zN(*Bb)PcjIt}v&$DG^4D9G{AnfKo{h)6#i4&zMoOyGW_IIh3m#*;6KScmEgrK}y^0 zJUD?EXM*LW!_mn3ZBFN17TqBY$AP)mn?!Qc$@=F;T+}oaI%lb~Xz0n(k6qnO1D)zE z^HN=NTI$umXB|)f)^OdSm2w1aL-20Xno34~qBC)Eq8wi}n;aLMU4gD$8zLTp=MsX? z<_GXpEk z1E6(`0K|;)tSjg+sqtVw^4f{%%te)JZ6#s>qbEKt930;XwT#*x%~0ETd%^VBYnOwv zIRlAko5Qc4tZY9yH9O}P@m$(FK7$crY<-p*^T~-=ou|cFwLwtk!qykX9uf2_g-KRg zLK;nB8m>PgAH(9#-2A>$wdSF-enR2b{9lpcoOcW7vVN4(*`L|(xC5 z>^5ZPy=H}KxA(P*V?8M&(s#ysjo;X#98RA>y_U{=eo%*wSo|!y*y&Z_!7(fNja@9u z#X~5rRcIEk;U}cSMH(`=D>`CE_&pJJ?7q&^5!}pXr;VyEDKbry?TKo9U{BC9E|tWb?9n7jYAmOyEl%JT3p8xGG60eWoq1>gAVpc6l&x;huX zLP=juN}9c~K)@Zd0i6!dQN)U+T*{6q##_ThS4hF-tY`}lY6J16dQlpVJGXsVq;6d# zAH6xF^*Hk6`sr0N!hWnvS+d8lm~%?to@l_yb6AAmKJ2Hw>{Jgsf)(9Dci;ckBlal1 z4yWJ(F6W)in6HK(V%qlIDo1Cwsvlcjr@na%I#SFs6-n+ z7rem7&|Cy#SswpMdGRcMrha~#-l7ORmso2CvaMb3iw8b^DTdAaS@AyMTj22BCULRm zIl4djwo8V5iHkQU=m>W62)Qsc-k$vPoG90Yy&fat+?-i>@8ddM!L?4q50~{21uSWO zO{qrj?cNL!ilm;f<%sKA_4|32Dp*<-sQmu5<+~WPZHt%>|NQz-_k5R~WwHk6Tf^`D z_@yN$;-FLBOP(+<0O*8)&5bSa@%xgwy&a^5VUD#ZYm#=8$e+n3bJxSLLbi2=7Se$6 zG$Zlrm9tG@7OQ(fqKoUSQ?ZK<4=qPI1lSG__mzL$5NCTeE<(493*DKkbh1n{M7$lk zJKkuJ(fgrX)m2kK^jTnTt3-zdD-UMFakozGWNjq8^KQ(#1h*F}K?;3sx zZd!_|l~9~>+GMV6zW!b;QvUVtc1y%m`iBPIP(m*^pVudv({K)q{Q3CwD$zI0vM9YD zY-z9XB_;$M$6Miv5Aeli@nYeXHQK2?EO9;OQaN(P(90+$-|z>O$6~$ol(&S{66UJ2 zqpvL{V2Sv6W64B5<;xsbvsm@1l*0VqPMn7aCNbKs2z*8+?@KOU4`FSAK5s2ubwz!} z$+MH!Q$i=!zdSKC%iF1C)-xu}Y6oJjRNoKPif+EjF&wsk+2Z0~Cd`^XuC;mhrkimR zZ%sW%l1cPZAok(>QiAKM!{L@CSN|gx0bRULTfdyVnXtolE#nh(t3#71s?OXM6XL94 z=d+Wp+W+o&QcUy3zF`SHsISqyqowpiHEycnzot$R&T^M7bsLM3LqRK!q2yLcy)7*L zlr_KA;c4dCUe!W56aIqLb*WM3&lfr`y9l|Erte{QSHe4m32X^{!2!$RZo4WEDpVqV zO8Z|$pa6i^zvdT#cy9D zqc~m#ioP(TOtmWBKQkO1L)7E|DY$Y?Vc9q!l zFM-(lQF4*^$l`vGh`<$iQp~rXw+n8?aD)jWdkbz)#=Soc`zclK%-U+57~tHMb_JCf zsCzuc{`#-qIsMmUXdSS;elZmYaWm{kt>!R9w+yYB&9{g1Z5B>3e9ATZ(aUYm{gO4`kS~R};^o?uY$5#c z(|*{AeN>FMTGp1Wa0;f*>Nb2zifoKoHI&H|r=?!>*JNHY**)Fgp#pag zHBxaZ&a_nNUw%iOUaR(EsaO&<;4U@WnKIgXKR)7MJ38y?I}K>$R?JLbWNx7=vZJ}o z+49c%@EZDF;TJh^%EWuu`Y(E%$${u@64-=2lU*HnHN*Mkxs#ppIB@FmGm0ErHn2+E z3~V7~w9g$atZ&oBH1)kc*|dwkLGG8|Z+QZqTrG7VkKCG}e$k_^+`pVfJ7G_|l7EZG zThEamuXGMPIU%Q7p9#Pd6CC+SFO0U+eu((`QH0- zkAew>YTP&DA?Pk?iK2kn49|Z>)#fLHC9iYV1}Y#BEc7&0U3QWaTU-vdsBY57dPClu z9Q_@`iK=brl9atfZp3)!go<`{=OD z6jq`5EE9?>$2mL~>$z&L$19tRv$&ft3CJGDL;J}jI5+k`XXe0+Kb|O#j|LxYtr_ob zPD^CDU3=I$a&waYl<=PpPqc$XrVV{VwvsKX|0+*k^*T%!(~xmPd_O#C*qMEGN9^Ne z@iRI*-E@E{*b2B`-+)IAvdRJ{5AdZx;JRLbB?$1fv$eeqOcLzCS#lnrAs{!!Z{XB^ zs0CQ}0{|ME1xg$c;*lz#i3Hkq<*A>*tN@WMAT|>)Lqq8SBcm@UUI6h7VFe&p7nEB9 zC}%Vtf|KNObTDd@j46l-Htze$c_Jbq+jeGdz zWCSF78W^BIK{!UJod67Fybxxo%AyQ_y1)UP9VR6&|Bn&`-U)R0q5>x*Fs`Hle~C%4 zhVmJq)RERc_}7B1v*TZDfyuUYp@T#k8(9&fbbvOg`7 z&Pl^MpQfV#yDbykI^8*iZ}ig$ zdKA5xC>1rfC$xv|ZB&_(QdZRW@8>&dOXRMB8zt_ZsR&J+Z<|(@b5Xam5c|ZWs&M-| z0IWc1ND#Cex>lPXQk5Yd(7z%VIKg1uz-yfaylViZzzkui0i!boqLM@W4bXI8fC2P9 z&nrMWg?!f#o3``k8b1V-2c0Sish(gvnKu?M0_G zaEcvt7JBJ38S}NKqdMj7b32mJOWkJHVJ61mKwo0JM58$DIO^Dj^;k4Gg-q zu-L>$X27%pK2P<`PvH6nCy+{3cNheV2Y>aho^0~7bB5Ca+%erH@MHrJ?#D1F7zH#+ zs-FO74hRuSJbVjChL;>2eWRq_oo;=^=1-cp3H$`}4QG1(xLan~QLcG>0cG@;;W;&*xOOqDi6?gbb zs)kKQH?@48ab=%c{I;Hdli^GIvV*M2Qp<xI?j(<$x`ub@Gx7Ww-X8-~P5`dH%1Lgtm1}3blyJUS2+&v&2La&}P%>Y8xJDsdM zg02&2S~&d$HXEfW^5;r$$RZe&J=6kT_NMI%^ANdk{s8jBL!n1&U6ChZ;qE-!&%!+I zzCDaW-co2;&|}MKM;I3%q^Hq6GJ_|NrDQm8TX18udPNRzP*V7uL5M(VzKQfT zVfzcd@PAQK0Q2eT<;A?|u+5aJe8D)riM_s4DD3HQDCym^?dJL5NmKQWdSl?n15eHd zS$p-0+a9vw3A=waU7^$NrkJ2J+}W0u!V6Hl60w8b+aBs-f75-x$XQTKJtF@P<*LO zx~SfjU!Q9!_F}|3TjsZZHhQ(ILS`q1^Ib*J_8+3%JDdy=CydgPSD?5r;GBbU#r7M4 z>k{gqLIhgy9K(fAgn=NF3YT^8A0|W_L03jfQ4w_At5GwHgG_%2w0nOMddC*r6qy zQx*z&FV|oyN64BiSF#M#ebE{(>&H2Jrd8hdX||9wPRB-100>=VgWPwgd$*sRNvdj5S3PCb*G`-TglTf%q86~o+1}zpp;qn~EA#;0SqO-odH~eGpedRD_91}c z0^j_r#6WO;IFd0YVW6vUdw+9gGYmM<$$+N_c_*Vv0D(sUaFpI|^WdnpOwL^@N6uaAqzWw{X*NDjWZ`(*k+3xRsZM&0bX}QSb zpU>L7&VTeHV^JryRfBu|yErv(WL@&t*@&eAshA?hajV+K7sM^x*o9g_^O)~M{rq*- z=|e=sf2x>Hn`4sq>zhi5-uZU-XF5qLPXtNdea{3I1lfPn)cl!Y)1@fssyuG)AN}Iy zy{#7gR`~$KKjx>U>{_Hn4&JRy~os- z0efcOye^5NZwvwOW)t2HXHs7us)M0anHW$OzB?zTR)lkx;)H@D$U? z9)qi(SxuX1QU~$iu77+*1A|!G5IzaofPpO#l(glt7i^y|MoFQ0? ztQbY)v$t?6I;nSUJeNnc`ST>7Jhy|?>W2gD*;ET$)_zZe>8!5*Rz2hEhDQW$AgK=! zqw@WHZ|e30P0Ss6Vg^^&JaDqIzTndzhPDyPkmIZMO;(DXCK1T0j+hpV@x(|JM zUfgo5O_+<)*q+qr(=h3Le%|lpu9M=oGl+C+^j6t;UY2*hQl^FMD=7Zp2lyNi91y@o z`GL=LpwVmen?NsY2e^cV1=!yKz~aA96fnQw1TdJ1P&T@5aIGOy;ztKbs1k(mG`|jj z{Z`yK*A1dgg8>>;;emVd9k6A--hBVz!wS?nhxRW3dO3adH9a8DXAg5;maT%j*V7eE zKFB4)4zzk6KMbsUwrFlYffUIX_C88&U8P>+ZRhA$*~G}iQza*A&~Cub(E_AM$(hM+ zpu#u&P3$YLrpg+lu|02cz!+qr^W<)qn~@7 z%0LROqzk@5&S%w@-f5iYu4CGe8|~QM9bY`>|9^Tlh%lXG6zXDZv1U?hNhtJcZ~T$N z>?*13cu$0RzAQTE0rTdamr>8oNjZLE(l0)kZk}j}Xb<~4Fk?XWOGP?iYsvRQoNS%} zMaU&P>(91*z8_+lSFR_!`NhNzFgtOy)LrdT=nHJq>7O1BQ^DOqbyDJE(Zwx3isw+Z;k3_#g_p@hKuMab5Oo$h9ui^cH>%93a52nn^3(3`hrjk(W85Yg z)ziNlf7)+q4jFmID#lR%QN+*5D#JS6Vt)_zKGx&yjk182gTcdetP3vZdNku*(M!_8 zM3&IaUt;*kx3jr?!%bJ2Ifr{6_ho|5}6 zToXNw4kGU#PPzEmKkwrsEtQU)_ZJU{Oq!I(N8WRbDRMVKzPRx!Ltdn1Y>EbQW`ky_ z2pG_USu99H7ytv9ilF24vPU++J&mauq6%BwEbVGRz5VaHdftzDMAQU~g zhYbL!4@yr{#2A!kq&8jzR@c7xF)Vdd5ETv#FS7%&0eDKX?tblR?ClLNhc`o ze*-;F<;4K-Gz(xvVZmttCT2GT;N}0{T(|$Uh!6~#cY{<0Mu^uAa|4!JYFn7BVAMwu zXkmlmZUCPv3BptWBE;0ZJiwm=rbs`ujGcO^L6@owNFNIQH;gs()RIqAnlA1zN>)0# zbm+;Q)VH^xzsb>!-jzkZIj5Cb@d!26qPia6|1zmko(IfXVU%ID z70)oGyCK`ijsv0^^S%5Jk%=Yf>t_1YI(Y8Xo-wSQY*iIlFJ1h{88aW*%v$rD5}1Pc zF7o6O?=~lTlYSihe8IBAN$Wb~h#GT}N}x6MBD_-C2hEayS5WGFcIcm#S&0z9po?j_ zC?^o&V5F7|CipmjTmdM6)BpgD=xqQ2eh@5zasWl;0FOKo3~j+`CMuXw2CBYRaC~?c zgWO0!_nshnSm)af@GtmULfd-!j~o_P9`BpEBo#RCc%w`VHh#flhCxM<&;Q7T#Nl+B z%B|dNLYVC2bT6lBOqg+rbDKV%ME8*{hLIZix(khtRh3=1FYh`gRV6y|KvKI z^;R`?Fz54+DMqj=J)Du*WB}wdIS{o2u#@LPLdXG!facHu$R}VDWjB{0(bsG9?i;9( zk|A6hoH0QIz*HIlbOi8icOyQQCPDdpd0$e4>5^CGC|6%yb6NxT2ksuTe>Gh3?sFFB zaKmV0&a4^!*oKm1?W>Ye zk$pzLHw9s4Lq9JuFWxud<>%y3a69|s8SC>=qJTeQlrG7~^(Q5`pKQYGbjt33UZpAB zNpFm^vDz#4j^%P+8sb1EJ_e0673SO9WpW8Cp0>eB0-ghu@>&FLNp>*e(YXE*0cDCn z6hgpjYmNecU;*2r++_){1y%r8w;zN&ROB52A_@%*A}0VW`~{$O*abwGGH^J8PRIaa z`su(KNd!&XbL9y|pSBg$^{GJ|wdgno?`TOq8P1l#koi1`dy#`uTthY=2ELD@1_s8> zx#hVDI4fT@hr85^2>wuxJxrbLni@`yW2n03#UuYo%ym<^dlvk_7?y&6SiQVIukYRw zg4Sltx&#ggb*uT3sn`izmXz8uz93O)I@1;Woqe%hvWhxnSMG z$?7iYgujob-plC;ue!V|%UKfmhoNImigdfBTx&P|#+ZYMYKR=?K!*?6kgLWZ*@j*@ z$g;#=1ULv9ET7u1EIbg6KPV3bki-L11ipiDE?`7MOizH_V1t3!o^F6! ze+AaNZ_hb^N$_FM3t{&}_13F9ffp-)+clw3j%CXN#@b&Wzq~JN>3~dUZm^I0r~R%Hu2+x$r`r{(%prkrud?c>CT@Lbl25e!#vN-5Y2d zn9X2Tdj#IhBGJt+9d{hxn*&ceYX4eueRc-$&(i_eiv$qv5G7&_9O93k{Q(1m&ZrU~ z)qvJFaP(`aI|2zAP(=>%0uT`C5DNGlz6r4b0TT&OKcJ0lI9sv|ybg%xNV`}01E3%c zR~C_G;NiYrn@~gq+Hd?3ANA?k%LKO?!}l!q$*?fl2%Aquef9c9z9N2_W_nz+GU?AK z)N2pbu_>T2En?*V#FW~nIC#EREY{FOXMoi*RcWCpM@WS z3vy5PlQ1}_LNQxVj3}s!O931M;BoXInza^SL^64>@i<@4syhPZ3ly$G7Z=#{>IXRQ zOaN>%3<5SG*pr}~XDHPJYI#ACm7t&&iwR19pwqj7DfFhw1l9>E^@Oi1OSF%efA7Ac z(ff?MJD$c;!pQHnVy!#sMf$wP&!oEj)LA+I7+#m6YbX3DQ~CAOyXQ6hWhcw}=G0si zaCMyrcDc8xh1%3M%oDfv{U*Z&N6}t09F-4cyUSbycdzsb*1{;64-qky#E<)aomX>L z_f7A9ukYr#^E>MHk;9*u)O}IP`t4$hO%^WntozL~0qwRAnQ<|X3M~wK+mE{o-@ulIP+N9{S4zd(&@0UtStJyQW2!tem$3<^UnY>M%~5G-6S(X| z3PM^fk_c{B4;eM%KD!oE-ZOm`e&y6vp~n@MDI48D*UNRx76tahe92fZ%FK(d|8T$j zX8?syMVHS%RyRvH^c$<+{XErEiB{!Q-x9>EMD1CeAD&7z!%r!=r?ETLAyw0>5o)V8 z@SClnhKPc`m5}C|pemOSqdF8|zB%3SQ!G9p;FQ=Cyt2{ge2by*UZ1i#uTu*vR(a5B ztjUbv&nXjczb4d-+h@PIi)X`qxw3e8mfiYJ_v^EH~S>{bjWTNfV!w?ZYtmZK+@*$p+ZY4?=sQvx}WwkKuM>nKz$k?|TS?pcWiIBwQc z^TZ>Q@=$T2*U!WlF)tChXE(uD2Zy|L(iMd{*7$}YzEX{b3YqvEhK7t;@rBj=D{0v- zrs6m8i$cXp$pK~E;NsM|;0iLR=xYHJ?l!fNNs9!}#5S2MH}#3t>u~pb@)T*lS|G#! z%l^61cxM#bC;PtTM`R1h>+n_VKy?c67Le^M{QunmE(~O=>-G#wwHz{g*xIlomSQQm zyTxhygp3{DjKmMHeA5|=$k9_xVD;?_>Uqcn-P=FC zSw@dF!X2%9FLKpjk|X0C#0VvrAejkw&?yNkr*8h#%Z-|3HCty@zj2%yO$Ta#WU1PV ziYFId3*#3t3D1dcZ{wtq4+HxibDG6m#mz>^>4a>(XJWiez?t2(_bgg=lprafEzGhv zQVl!0e~D>fBP?7U#PZvJH|kq!l<4QT$lGv?O|qkRYtYf7qaBOY83SYY)q`Bo|Ba;x zjN-{A(EIW_iz^VeZ8F}ujf1Jq(wX}^#EZ5=aMZ`Z@R>spm1aApy1q$}%#a;`du8=7OJUeezh;H5brk@kqSuJCGbsk|IkG zUhE6dlbzb}9J81YYD9s4#qi$blkTLxcHx#6G(lraGWUk zF6#>QUXam)zGGnU7fl3Dm*1dLC`sq84WLyyg1u4E3nY_q? z6GXS;H=c)%MA#-j#Uxl2XuL3ew1E!36OWMKFnPlOWHNk>vN2W#l;we%`-~!6E%0Wd zS;0=-w+U^3F`s;E$*(N@8Iv-pkrTKU&JR!9B<3NnWsUHf2v{6G@jmjZ!C!4D{>zzD z)xcqM6Yr`|O@Xg5yJh{@mo38kb`=_OCwtUD<6JY)FAUHZBSdO|BY0TJNCayzFP2{j-k^S2>DVGpfIAe#-350PQ8($x9d(j(3?Nl>T}1ORK2q z^!t*;Cba=W<#Ae?b3O@xh#+ki&TQrEQb4lN#}6i|rxu7611<)p!N}Ua8QcUnL;yLZ4iwdnD$Xtw5&ynhl>(Umi0EWaq5t3d~*=XYGru-R9lt; zEba1zM6Uw^Scbc>O6IT{_>#3{-H9jIor4Ny&$oEZ8YML%Zo4%#3-=DA?E)y*q9emwyEl2q_kQ5oT28yOQ{WryI<4x)y37uL;qWatqCL;M0t0&Y}3=sTT zrVrmSyEzo9${M8LKR$E3aJxOoCC_~g?py(0CPP2p_MYe`T3{GEIg!&jxjf*cZ&kA% zoD)?4<*mU=5_CJER`~0K71Mh;ep2`gyKOiI%%H6_)ATOgR;Qbnp8u~)mIU^80?T3Y zgrIwL;5Sz7It|Gb7JjlpVq^pdC9tf=K*S%_qeCOd*%e#qcnXwppY5O(Vat|lkJJbD zF^(+fcsr(L^Fq$#EBAuzZ@Z#rzbz=|uOd*k@M7>1wG^i{ko(MR$R@BIWQB09` z`OuD{JR-Pd!4A+-Si-N@7!`A9RW;<2#U`KRUbu9CNZCTh>1fq{`>(=VRZH?#1KT|; z<=5o|z~zCSXHh&TMgk{mhv$Zs3~pf$5fzqn)fr9_#I$?3nlK8V_yJIrlbtDqF~IeA z@kT6Q?;0c?8*04pQHt5U$)_!~7J=BaAeU?JpR#BHi_OKV%NsXOE<|^Xe{(Wc%@zewO=Gn9fkD6Cg=}Z4Mq%<^7oYL3PI@t!}e1PalsYR0D%yI4rZ0nPh)^xANtvwA|j$>8FU?WVhIA)o18$y5mYq=+ZkLtt9kN8uV=k zg1zXkQulq6bqTGpC*~R}#!;&E*$s8U@!|%rIW$BFCV=xN@$SIL^>k|piPBgTt^4nY znGNS=UbcQ>q~Vp>@YxB=>x3oC8Tp&^OK|qt^5c2h@ys6A^VKcPZu=mek9nlRYwX2} zNfg_g^g*s*KnsK{hOkP}8KrvjvU6(=Vi69aPq%dr=@pISzH;0|^%;0(Z@|9mtD}}0 z>RX?ud{mL~kNT_@j5L2Cv-17g80h;e0STU3X2lDO=dW*^YCW-nNvN0=jYd*piEdY~ zFlVF$^YY9tZ=cWjW`rkOaP4hzc1V$V^tOf-Xc9j*5N-5tn^UOy9@J)2Rg=ZTvV5II=E0s99;EA8h{vf+mzh^0u;+Mk9GxaH9TDel zg<2RqibDVip&7I3&b^hJ0uHr9~5o9i&%aD;}^UqYw$yP?HCpw@Nhb45n`4P(sk@!FXWMw~ils0S0aT@w%uR5(eb^kwCmP+p*in8ZR1@q*|9CC!HR%E-q)R*C@q&; z9pZ(H1h9qxeTM1asxTpqx`iB2d571YJmZ>Y%e;PE@x$;ng9Xq0Wv{eX2nR9iGKzuq zHV3c<-$&bHe;bUvIXgq-b$xo`dk^P;tt`X%SrNxXz;4^SL^j@OytJcY4D+>Rp7*}O zv8dW9_k?4ro!~;E6gL*y+lwMSJ0CV1ziB!hiE#uwB+p8nR^>`aaQ2*NG&iMs!mUMi zA}6QfvvErQ7`j(FuYsIy!KKZNt2?WxUmHpAGUS;H<~(UzV(7iN*775))eE?>o(F8- zwM?5yKeWn&U|oJj&^?<4vqe2eW46=K1(K-&S?*4OD-V>6YGnvEN4*c#&=P5a&E zkftDS|3zx#vr^j*s}sQ6q|Mv>yKghSHLM!23G!g?rprH`z#pV-4wP>cgTJ+Md}Di4 zd@T-%!43`;8zQ1EJ>Qbp9PX=)H!N#JewqC!t~NdMOF3}ztd-5*29D42#-al%Q`+od zh%Br=UO55p|GGF*$mZx!44-z^sfcOjYvKBrw7cTpm@+PPyq-!(@)7EI$8oZ2h`%nU zAo>mMadP%8-l{(@BbF*ZzKrv4tne4%+4S4Qn46~z+xOLNo-PJ$*U@%DEQ1*wZB;rH z9FS!cYuJ7E)lZ$)$dY4YoRnW8M)ajkXM*^J)Bk8CU!H1PAvg#7`B-?&((=!RgFbL! zfIhbf_nbJJ1~$p-S#pgo*Tp~XWkJBxUx=lwSCQY=Vcj&Ck)kr(%r4f{g|6pmxBVN7 z-@es@Z^qc{+^37C89Og_WwCoxl;iPP!FQca1af%vv|$Jpxy=Bm3?2oyeeqPnltPx= zUT1u^9n|j8HWx9ckHk|L+ApZ^rckpo4gCD^ETTYk3eTe zydV-yt${VOxH#M&Xq!{6BH*%76mLDYZnc7!@NsSbTM7+E8Y^DA$1=(rPoHvY(bF(3 zrYi;R$br6NM`>5qQ96m9KPuszOJ~6wj%bNj)k@42!_mpyzLC25kQ}8N7*5$cI z5~{|T0$!1=%0ax=zK(NxW+3My<_GvSS7Vc>EG66d-&-x?FDx*L2pqEnGNu@y|IRkl zbd=-&sKXY>=xYRbs)O6M$B%t>TeuPv@d%jN`l3v94)OajS}}rw%O%mR)7&o)JfC3@ z!=E*RH`@*C*XX8AkhZM&Nk38Wggop-fu}4{35?R*o1}*PkF5}m=Fg*CocwOS?W`O0 zerldyi{zfiGmfj2PN}bY<|&qXDZf7_1Lqv)F~YzV~sGGnfpI1g(#PR57DkaZX@E4Uq7DvGah_F1mccq zzoP#lQ@!guvLlxKr&DtxNIl;EJ$R|RB7N`WbH`4t$-hRQR}~_I9Za~%d1pk@QF8Po zX#h3wWiHa?f2aU{9G~%U6lnHERU(dE<44(Iy&*@7kGw+}flMB51d{=VGt7i4`y zbrW$PH>}zrl{53cnKpt})22tH(U3O_%R=)KFGko8V2`I-+aXVa_hx~&%dl&)#n;Q2<+gEsM$^89766DI$lB^0`I2vC&pkNQ zFJngrzu)ozQIL~!Q?K9AUH+6{d-(6^F4y0@g%4*s@@?|GY;2x9f-d@a$hAY_I6sw1|^Aou@yoy9d9^ zsj!0cheQRGQ_7^$gC(Y}9x9uWp5!{X=H=KFN>EQo4it>69we%H+DlFrAUx9%ruUxQ z2rS^LY@`~Pnw7tUv)tPW{>oYd&QxWThbq|n4MU=}r5gg9^qMvB=2g#t%u+O=j`P#g zqZ5)7SC4$c&hHwo(gj_orgey_|&+K%mS)2YzZ!fKPp*hLdr_~n5d;3R1n{Lmu z+7Ev@$E&g8Kl7kU$s+H8Us)mL#kR*ird035%*z{e2=A=8_MR7fs5KG(9YE)>xK1^~ zGE54&C2ggSNC%E>5Ss7s^~E1RxV*m& zSloOdW^qFq*9ZUn2k0P!0jpgU0e1tTj)A%g6mf92LcMhxY~TK{Y9tg_pHSqB&z@ma zVs)SF6pObKi(7;{J7~*Rlk&e`mLPbI8u44Cv$J;ey#6vZtiHu)K`%>3>Ib{feiPN$ z|4SavZdl`m9X#KcGAmSW$M!&!3;4LrH@>p?g+ z7qvQ@TK-fZjaCISvN1?cRNKg!lxU%9?CJ+TP1S(N8gDm{0s8}>*=b+^wm$%-N2y?7 zyb2V{-MW8&nnNLcAmmVG|5W&vz5jf(=`AQDb>RpS1WC!snH(OX?__$nK3-Wda?SM; z&gn5l-GjaV*TzBFOwuOutI zr^}4vvi`N4kE^(T5mb+dy!x7r{FxNF!@a5$m1X+YZJ2o7tkeCTxkir7cIuC2c+w|l z{^Sbw%%zZPZT#Y_#c#ZBvz@?2#Vo~qcLy=fDiSpW)@TgXt(43wK3*dvQLwls~yS z$}`75AFgdB@Q8;;1&*n>W4~$gtzeU$UH!}zbmLk`cGc4K^irZarsWQHLe1uQC0ow? zia}42ku^015uSZ9J}LL!i|zCHY&+`4b9-flF_H6YC)Z*n*(YKqnyqW6RdcVIM!db0 z?@9rp^b{%I-WS3aOdS+R1aQIOgye@ui9j9+!hqg^)M22GF#wrHxpEHiK;!BGzg?bpTH4z3SivwgE$WZDuD)&+WRyr^Ha8ffU(0&Tp~H&cErv0XF>kJM%VW z7sC$ER+brKdeAF(xlQrFv3^}^7M)4}g+o;sG#0U^Nseob0h(8Igxd=9(VmS{&=s8mQl|XC& z6rBe05eIv0R21uD90|hJ;{`oHuvev$|rR)72;~kI~@D94)A)Ep5Jg;`_ zy_{@0HJ}vr%?CVi1G*IwDizB4rqR;qqD(JbT@lMuOEDEmBslII4L*$ji|ROwNaKYcUPVeP{r)u(E1x_ch5F?wIajq83t2cpzGeUwm~tJ&ttvw? zi2t{*n*l_MvB4nh1C#{@>jsNj1{C)VWj_L)H>>al&oq!#%BG(=u!lsaAaf1_Ox`;n zAG8dNpg}s36W?2D5g?B#h@Yo1Uuou9K3h>(XWZXontO)wf9N{vps3zB+%M@8!qP|x zEZrf}ASp;A-7KlV!qT7;;?k`kAfX`AE!`}sAcE2%B^}Ztq4(Y2y?5r`nR{pa!*STf zbIyC-_ zx)GPJc}s!6e^1cuL*Ff_Op*fLPHHjE1J#N-pmKnENaa?`JIBl1l8#QX2D=@x)U1H3Eb?||qP zL^TkCo@pe2@&MdU)^-5k(532NG_l_G7}W!SSHyu}d!^-8&6J>{zKo&=b2%OaTs;DK z;T75}l>sGT2N%wU;SFf*t&CN}Xc?LP8la@{r;HD?hBBsrQiVuEKCa+8IR@n ztk-VG`1bGR6G#~?P0*dPSw{CX5_x-QjM1{GqUa7$Ia1sprvRWpfp#K0a3u!VPu@Si z1QG!t6JSJKV#&^c1%(C7K$d`NwrBC*-+Vr`CayPHsHW_*Irz9TX^Q8=FOx57I7A3gx+^Ry)2HS?T9P^m#;~xKr;C zHU_vz9cyI^`0)i$BpmFM$`I&gLvLJNhs@s|`TuJLAYq+{rYqy_ajU8aVSNiDu1<1h&fh&drOHKvO4m=1JKC6A{4(K}nlj05N>S?o# zTm_)%!QtqlnQ}vWxgnjMc+3%qM|?@NQ}w1T*6(8v$dYjLpX}=~7H+B2(FU-gOATUs z0}$@$&PdLE=oZHicfc1&<;9xXvD~-!las&plh5Q-z5r$0+%aEJ1Wt&N8N0Qz)K7aW z4UG`li?7Km=gEHz4#1&!lpn9X-IBxv+LCppOj0PI>^9 zLYQ1uFQ|9$;@dw>=d##Rwd6{MUPCO1XMt4xTx6kbjNHP zd8NrE<9Y$LZNqFMmcOzKz%;uTKqS1Ip)(N;FvpYhUv*wSnEv!GGyp>Zo|0&V1z*fK zPJN6IJP_B6fQC&V3x9*wI1ec&fL>w_64^C4>5>Z;oqU zH9fX zhoEo>;&xjb#$;YK7N-XGnj+DZPu{Tr9{u6kBEN^P>|1mD0qT{@Y;@Mu#+ni<<4Ulop^wH_uU+df2w;%O7I`=oS(XXdsd`s>}^yS(Fz^8Sd7V*>>`brs> zp(#>4r6yt$!pvA@t=%~@zJ9j&HmR9@%JY|Js%*!kg z?th_68{_*EZ}LC|%6R!QC`7I5yO$MjjAaA~dtN9&&ujxus2?FoVO?4g%*+JvND9-e9D)aeYCYlpWgXwvob&IfTIv>j!z$Cx6hR_vXN zcI~<&A4MO=yQe@zhHGX_Uv~0UFx`wZTf@`>&flR^Hw2s4Ezsg5-sBiIipYv&OevcO)assd)*1`rmmert3Y$b5h5k)66y5&ZD?_B~fX@2lgP*bm&}UI>He8y`G%d9k zAi%lQ0KxC^QBi8b*ql_QtjdCJsY)~5!#&QuxKbj$yI`gBMCEr}etbya!@Kjus=^=) zKGKxS_IV|x*AAaIP1-k!kRD5vip3%#q9yh-1fHF?CPsEotbW{%SmK`W&-Zzny~=;B zdk2DdU=;wv|h7#NjygPE@%}xQi(+HUX!tx zzZpfMr}PkDn@ilCGwnkP3a5KBw`|jeUfrsHeG=pDbr4jW-+( z?5fOZ=L?m6Fck@y9c32XU#6!nPT8XwnosU>Z>xGB-qQAa-TBn;&@PKLx&;!mtX&vs zO6~myZOjO`U%t*|2PDD+8r*3u39pim`JTBc7s#X}K6oNFFXRh{FHkJ@bPJcq+6H`p z<~Nkg-N&>yneN`kE zsARU?_f>OWJEB|koD()xbMh6wFr3+^!Ro(gIOdl`{?d;g9FNWtsCdI?^O4_C4891I zi>>J~u#Q{gDn5GXCaN571JB_#mCR zAmWW#P$k#JSLziS95nmsYCGj$eMZ~{u7~B)A0Dv3Ea1n}Mt*V75E|I^48_k=x_2Z0 z{(%GBDyN!pTtvJ(k<~S^7C%RfXa$A-`;myv!?2LTxlJ3!@$kKFLAy+R@m4&g>X%oK zsj7(J%*pgvlot52EeNPuXnd97#!ZwIrGBmE;In1;GrhVm^@w!-(A^#p^{<`5#*lf1qd!laDo7#$6eJe|aNTek%oUn%J_0?j5 zETuNpM;-?4ad|M-oWAkAPIzHn7-XcjB5tg-Yl^1R{}^`8xzsZ@d=cVG(pjHjS@uEz zw`2z2sJE&(5fsB{OHScNPDr3n3i_qP|M7lo{a1nSl{HuKx`heV_gLOccyPCV|4B{F z_FUUhj3bg<#dT-0iR(?hM$z5(_X6M9%jFP$VEgD9c%xqn7K!7#L6se z-z4u?r|Gj^cW!C>rVh3>co2BNDUDp;Tj<^A3qhojM82t3U}~_j?^ZMBvMhzd7sjWn zLP33F6VUU3kr`Oj;y|`p8>nPl`2RmG{M!H-Ogd#9z>Ga40iSp_;Dnw7fvJw4KOlXl zu&cwth7!;bv2aHa66R2P42MMlK18cEAS<&wj++TO@+9cCAmT6ZW$G&=9HL>V0e%-9J6>jdm z!Sf2~ho7gMVC_tHORV?g0)S+DhBNQfc&}+E z0>4BA7Ax7jk=xT2bc~ubcfo;RQMn*EjscLMg$POM!>|=nAkM~C(Lh=0CIp+UrEg^w z55)NS*vbQ_nn?i6{o9ZWBH$^7gkf2kfUDjg{Cgn^km=h%1qy5300Z@fnLs4qt=fZF z#SDdD8IP7NE_~d~G_P(|4yc(+lDe{DL?hLUZ9d=9(?I^=h#s8Y)i-_cuv)SHiXpeG z#9hh|oeZB?8@!`WK63Hg43c9(YZ}$NaP2i*fmG=f{;+?)y4d+inSkI;A6Z0^z^QN3 z|8KW0o|2{p26rOjz$l?t(xTPFp_kRQbixj3o>o=9K#G}C&~VW3(gBIBt(K_i1;v>A zVMnnHi%5~-FmXp?HfU#YTIlKjRdDOaA~*p;@;%6ldy)e#3Jk3k;MyR705&lpIA<5i zfIETptlDgVcsvywn_M9@&QifEU1jjs5?w$G_G2T3U{(I+=C>xx&EHRLfkX^o(k&SQ z2eTTdA=>3jfRt5v{J3N*C8jBpx?6>|#P{eXqd~&%XPdIK_p#eQ<%EF?vcOTzV36K` zs=4@@^(V@0dJoOjh&ws$>B8uk&U3|X&T^WI0ex?&aO@VFoyL|4Y?0<0UewT{{ zjUazcwam#J9aqs@RZsjueuyLBqae9BhdO$Emd{@=F%WG7o@8IU4r*Eloc*5V5R4T%X;IU47#`w*| zx_jav)bZdeHua5F}#qWM_@qg_hCPKvWPw*;}z)CVDE9O8j=O!;-L zA=-6R!F9SO&_(Xx(s{p>h4u%CmF&_AA!e$lMEP9BV~EcGRWLKDw2A@vcLrc0!hnR& zlRcA59Eahtmv$9BWxv#!kw@9Pfmn3=?n0|+D7NJG&7q3O{Z)z8d6$vFY4jlwIpz1{ zi&fl{#7vh|zJk%JVWaWqFCr4SnanNj4*asw_iyT=;`d0OF>aO@&QdM9o`7dhQoFVB zlxX_Wqqw7AoldCMmnMhCm~Mfh%{8ofpq*o=5a46?(-n-6jreahU=-M|7WcW zB(FlI-&b~C9mU;F5#-@f1TZErlM7aSbQmC;3klete+(YPS74JjFfd@NI0hv?NVR%Z zLa)83yk+Fs0V5)of5fc6Fdxu4XoKtSO8}ETx8oQBG$DI<;?>BPYfxM>pU~BQ zogmBU{U;l4{tGS-!$Y!5snvzY5tT;VeCBgQ3JM1IiGKJC7prRK$TjiZVvDy=|9$YS zv(!)JmpUbH1E}=F&BTL7j0SE{2wvp;N%4`QKj1~?rT;Sr$F`qxE8DvE%t;KgPQ48B zPsFiZ7q4#*xHB)N!QjHyI>N(ou_-d@Nw)(5qW5&qvcbI@R5DN?w1Hh#mNE3aheZUW zTv|5pV?td|WitM&gfRu5jPdaBbb(~n_n!P9E&$MN4+if2rGQ|)HmYz6!yHgUL4c*< zNe);y!9xZMz+r^V28c5q0P(Ooev?(UN#IAe{D9pi61?Vsm%Qz#aCM;aog4*HML>^4 z71+zJ|FOoS-@ioubxzh$lX`4=>EZcBRxPR>YTx-irv&ObSHt@x0&7{OCHfwt?)|bR zXE4yOE|8e|VV`oxX3v={xwp?v7ND-eja zw*!7T23&YG_y+Aa;zTUZ4sfuhGXU0}NA=vqg4Amsjls)pJ8y&8{yv}rqk!2P4+0u# z*jQm~we45?@7vhSVXG%wAO5r7?^6CB_IrB}*n(YDu$>4HAo?D>l#sB$*O%{suMfKe z!G7{T*!Q3HEK$&*l7IOW`~r5`IK;{3m>EbnpcS-0gA9~=zQSRR9{EtYDq|d~Nnz$e3-{#l!xqmaV0(S*~#SGmAbx>)!Bijdv>#M)(q)Bp<52 z+6+^0pXK!^_3qK^$tko*yd$M(W+sgKUK*K2?|3i}AKQP5yl39?{|Jjo-Jv01<% z9Coxwj|KZldI@)WtfjbJ7f_S2NvPNyDD3Y7(Xd`1Xk@uC%R}>5RO$#Y) zxd)Wwo7Fs&fQ+((w1zsQsYwN1dbfVFDkbrhQd@GGtLU+n;ntBc4>p3L?MKq)-`SOE zo$9VEXM0Y+q0qwieG~z(dbA_>X*{#6Nu#N2_Oqi;foo}|*kp%1@D6}opgLHAb!GR& zmpeevkQ>zm`X9cTwT+2j5Aap0fy+Dl+W>98Sw{F#RW8$4oZ^O7YNidIhC)(0x9tFx zaZ)LA&5QN+4K1_Jt1*uIgMql(L)=ydL?#AA{yb!bYpfL-97Clx#|@n1Y+68YpT^odqS&5S&bU zU&E>3-AEb?=&M%DGtdy8ryz9ZUFn!+cQgvV!K9rF_bh@q%mf43yIn<@ZgR1=79!ay z+FArC9it=oPFu+=%$r;}@9YUhoXJo+LJ7j51U)VEWQ58W?9|a5Z`liMPae-{Z{YVd zcl&pU08-xZpZsmB6n7V%sSz6EQ*$-td!~>`ALWT4^sN#0S+`Y*;CVfKm~fQ>o!P*@ z&w-Fu^8T^wJtu6aLfIej*`Sjl7MFJjj|Oj9?z8m2iMQ3QlfaJmldl{|lu0$27;N#| z!ETDdB$kKhi45HOkdB=SAP}3NH5%+BfSj%C#%>$IYD9Gy$OIyq#xCbt1B8Kv{oX2= zlJ83~Vdv0;?Xs$EB_)2)ug6m84}f)f^)r9f$zD5^KiR#HcEQSr5)He=wrg0pg8`KXITPokueNUVA;1pP0}ymY-PI5X;=Se)5Iir=_gyGCOv|_=GH9-r^(b!}lKUVCsC$6Vn1Rfpm_6(N$olD1 z>ee1&*VoP7>gdmkM94Mhi!{pFA&Szphw~=w``fN@3(I-PDCgAgp;InthWUm8F{kF+ z!+)vSJZiKwUaicrp;gLkng~aDi~S~}(fs>MpD6KAQ}iCJ$PZ`J%o1CV;_M}-8nZ1V zN`nWP{ZCyU3X%7Fc(#>0i1H*Vbji_DM8kn)5tr z^t4-5t7V*BnQ4*^bZQYk5wDP&7nsT{M%y3h7gRMrSfwxc#EyC*pDr9|H*U5#7aw;d zoIlY|4C~i>HW2O|i7bvagP;c4qLx5RP(Su?=vLJ(G2stN27R}m?mq9lS`&u23jLDo z{G%fW?)ioOYc~IdQ%>TpxbbBI0{;9;1Cr=LcJVRTPfAcm` zh{{>^1L`!C`eki|C*U1@a3j^Ss#mg)#>BRQ@@tY4}~`SoAkY1icR&8 zbjL`4QUSJ&j6tfQw)B`ey1GpBel&l1DdJW@V0J&KX+&8EEYLu(uOu#HcJ}4s<=L4(DH&Pt53C&-n@9~- z7D*>0W8RBmuzq~+t}}i;N)$tAhJYjhd8<9=So2#^cIrokBr$ zN)=uPpX9G<3lF_)4DG=qmkR^skY#Lf04oNFq2gY#{kvuhfmDTF@6>?i;3_-IA1HQV zzdEf7?KADXFctt=D%?4~lwoh!pPes9Ie>hPrj=O!gKt{G2v8px$@Gk{r?+VsIg5Sb z@ws69hYcfj-uD?%aS>b%`3tdMXUKr_`C`>#S?xZ~CNfcoi#x7{Y_r6`bT4pMuyq;2 zTJ!Y%-a{C zNneubg;4Ha2qIB$IQr zonLmxB27aentUQxc8oAaSXhpfu%|wKRzD%o!?RgXS&eG2@W5{^QYD{q&70cvb@cCc z9g)l09+|xGX{(}1ygD9}OCH>}(8Ad!Z%kNcrHHW-hNG@LXP?xYRKM~ZnIX$$pFhrf zo5DV~&eb_%$ZyKp#aa^RV6KkRJ5SCITc+B{Bp083^t-z{v&FX`5w zCB;&9oMykwEGKjzOBJkMNtRK+8Nh8uZyrtWA<=-NG48EPR=(>65!`vkeQ$~=@$LbC z6e}4`-@4wUzw13`iD|!Q3T#XaNvLK_b~O4}*}3w)rqImi(#+}45VMZOJi32!-)G;1 zM`W>_rkOE%^Z%JyR?T7x&tTU)ZD7OA{FtDHzD&%d#K@@q_XWbj?jZrizi|9iCT;TX zZD3SAbDx)$xZ#H?bG@xukPz!| zv~l7dmo;m1A%VmKV$n|K`nSGP`Q(ghjhnxu=B{_2m^yyefa?%+=a;njZKY<6vu)UQ zKesp>G1st;25~OIU7*v)!dUeCZhC693IK2Hu@leKDk%AMB262o6Bx+m5h5< z^!9Hb{F=Rbq>Kx&(;{7{y4jQ$IMIIF%fvnh3TN8#NV|}LEGy?P>09E94S&t%h2HGW z;dumPgj4nsSF)~08?+;HA19qEDECVF?OL%h5wCR^dS)`FERp8k$?JF;lIi8 z*|q#R8Z{Y+{z{XWZVsm$xxkob{~#o5GWcM=*}B{M|&QEXE7nyc0P zP&kQ#Yxzs5Lh06s`I{(+<|Gs^TB$7_aKe2JOJ4E>lmk1{##-6Ct$oRL;yg^A9q z4$71}MvqW;+};rSwV+U=us?frKE!q8>z;yBZ$f8Iwjs;9ACAY`6SGW zQ#@?D-VsQ=4R;D6Tbt<{6S*xZBr&*7TvE5YvzouTC5n9soc8*cU$=3{N&r4Xj;`F3Lf%^!XYMF>@H z#%S&GSy2#K+SX4AuK0>=KfBE3;F|RwVV)bgs}Nwumd1%TQSU{St@>nlr%-(LPq9Q9gBvqN;?ca-G=j5>+5h=f;a zAG5!cmGy^7tMKWog$>G9!qK%)#93&^C|-*4biGw#L?wUus!s&Xy!VqW#*%8r8qBg> z!lz>n(NVd)Nq+bB7}h#CJkm0zYhZ*e;4)^fxV&V5*#xzK2+k3@ayRDUIfOQ;iE@h> z)X8cyldI21K@n7j(92qkXhSqwizDJbia0lTB+8uZQ~H_!_wAS{>-gY(R2zAmtb3dm z$J`OVs5(AEL663q*|zq?^GU z3jA7f;nbbx)`<0pF~%>C^+_>I2QP1nyU>YTtnMclqrphBK32i6>6qudt&>jwu8(JF zgm`Yr!(px{=$V99)glCiu1@4P+`Z@|@{2$&-uhV8VsHR4cG-<_$Srmf0(lpc1=jP3 zya)=>dA@@EgM@*vLN)eOch#DEhGiP8l-%QVP}tjMxRMb!lk}CKf%*NPkmoW`#L7SR zUYdsd1-lRIQl~U+LDmeW{@-cS23N=oS>AtPE}Zoh>3i3aaFIjVCxmb(HqH^C@;Jw@ z<_!<_5b2`BbOhp`{-azW_Cc9)h|VKc?-fG1rHq3IsfWzpa;%H%Njc~goK=r**NqH< zK&)ow;zxATBVwbrIQmqA25I*$TE@pBAK8hVwl;T&m&QMGi?Et9Nfa^T&1;ueuD4Kb zzN7r1bG^LO54lG{SoXo}#F+m>AhSMIblUTu5)jJ0=WKaWX3X9merzSPyhl)b<~ac` zqsl3+@aMh?QWFaAVTD4f9mG^BdrTBDz1_09^n&f|IsX66_4fKzR|wTI(ASLhE()3g*g<11}HWYCBm?f&_;+z^JRs19=B zA~9zoUB2E(IDK`h8hf@~C9KeDInU`t2Ub7q&+eqG(=%V2I;7|{m#)&8I~_9h7e+Z1 zp6GA)ZoADt19`Hec3bm9gYxkdXJ(@LXtJjY|H_ly>|>96HtVP;>mbn)2$3tXuBC67 zcZ~7V&%6?S#ryPz`+_%YS;jlQG^`&Q{#okXcy~Hb%9Mv7M*I!axUU+1iI3@p4LIK1 zlj&w&`uSw{=IFl28sTg&UC}&)u@hz^wRDfCXqx(Mi`LMCDpW*uneDdO!>WYeo0OPO zQfd-x!xgL)3@OlC?`B4|OLrc?joGt_BxT*7zR9R(NMRLcpy;Ux8*=ig_}=HKXcTTK z9sV?&gr@i62`e-EJJlK;`nl}cWESGL=MBul+=ThRA5&puln$fIE2{#0PvNgh(O6PxvnX3`mTe^ocSQRy_5j(I7+JF3;flBH*>p1zU5lnmG@;=l# z`!j{21+>))G14V{8NiiQ&0klF{w{)et#y*gJ-l1(vl|`>wa-ffr>E?t`8^lEs8#eZ}=11xY6mUaiZB*yfP-QJ>-3r<|QOuN4F*~ zZR(R;Gf}fVpB_aS+43{GSbk?EX~y-`&unn|L2k5l4Q-3+?PX$1;n>%4#c|=Knswn-r=Q*|PfEGklZNgUNb;--S@0*BB=`TTIIl%@3u5}y~RJIb!y zv!}fiBkC?UMr|)!`TgqH8H!)dAV$onwk>e}eHeaVS<9~@0Pgv_9_aB3UV z462mT#_#Od7vGtz;A0AtcoE4$-lB0<<(bln@mxcN9(gt61etrqx1Hf`-#mc*_OoLS z8()&?5{^BUD7{B)$Z@$8{pc;Ea8@7QG&v%KrqXRuhqfO55Hghl+e0@8lb4SeE>627 zHZ3|s^yiQ-n9P`6a|27$pvrerJY8P#y1q-fOF}E`^Hb+zFDJys5tGJF_|4p27yr38 z;>+7|{op@|&s|-zUQ1IDjpcKw5hH&8 zEL>fWdhY9pTRp&4EKoE1I#y4A43AGYk40;cJOT;!FApewD{!_QUc(t1m*)C9#`52W1+c>7rB6sm^27tM%d@m;+WMGf zphtAKX&?2h9U@G;>=#Xtr-m(p)TnV5pYrh;BvCOb65B&!W?wQHkaDb2g;~<$d5jSk z^m(taAGw!R6YUBBCic%4I7P4#%A|u9jH|2%O^l3voZ9s3IdmoeDhX?%rv9FNo?9=c zGC@s;o;)!kP6vXDwGR`H_tQ>cigoLkJT{{i!m*m`7Ysi|T2*=!gLxcLpRiAywKKf9 zqhu{sZaz#UXhG)?f462W%6f|AWbG;c%UiVDG11E=>MW{s-i<7tZ&&dLV7-uUc$^J_ z@2ys5Ej4w&;joGhl4-Q|K?LLd2xF9d0f!DHJ!B-5$xuKC4}X58oI!&`@$am{G^u&qLEI25N8juL6l#NAI8k+yC>d} zMi3g}?_59h5Lu$bC=BnF(4)P>z!tjLsi6%e-)mCRPGaDfRr*uzLBT;L_n}yiT;A;* zp6D8`tsS+7?#l2{DA)i|T^BfA=7hJ*6%l?T$X==?wr6Fo8cqLWWzV`tji=GvSD(~p zt(3nh12PsyKRD;^Xm_ml!%v*d(IU5!^z~^tjQ*{k3}LVF zM?57aXoW(-)C>`)aXuPRv-kTaA#EOGICAtXUmf@8hiXa8Wd7>yHedE)N>CpBX`WaE;ovm=p z;n9e^MEaB()W-_px|Ch@87(Z4GA8Oj!9aL*8fk2V zStIiy{Juuf`y|xa9T!T~2Wi8YoxTdZM=(WiGF_%q@K2!$AhcV%6-AY&eIrV)FRc(h zixS(fwNB+9klxj^a+1EIpo9PNmc9FzKd-fz`;1mcFR1V%qL-J$et}JiiR=tbP&nQ^ zm{eQklL52Sf*Q{sQSSME^bW=x)G(G~tut`xd35o2hNOd5?AVyLiTR&lBwcc+H!dz* z$@mSny~7_YyEpZK^}cJLa;o9MeeSRV9>SNI_F=UB_5O8Ig$EOiWSIpoC_BSCC#!Yv z@jN8WY^zAd%CY}nssW8AjLLx8)%8=4t8JkU z`2P61MM|P9&sOya7`Iq8KTzgJXBN4;^}Nzkh?(j*tB<&y4f(wg5-ppp0>e`kn)aSz z;ftM+;p2BF*2$7G;YrE9I>#_MSS}JDXSiQhOLwo!e7>oBwNG!BKCk|cUpvnVQJUZ# zT+$}O8PA*E#EP@$ooszKN++O+M~QUwyMzyTvA3wp{EUP$40Q#q-I^5Ex|&w#P$YJ& z+W1qms=c+yIT108kkO)$>9l*9%31_3!YZ&b!!4JGG$4b?&0g8s^I15(#w{N6ly9!e z@-;R&x1Sv-?bZ$n{UFQd!2nGaiF`2y4yU&@x9~O?IWA2-*-iLew7rn4fNPDGURTC0 zw%CNdi6@p!;gtEtg8aKwwR!rNhJgek$$I#1bC*m%%MYW6E35N$ohErCGb{?dd!85* zsR^K%_eE|bvJ!rCnsOcbCL{{uipA*^A-t-OM1l?c24A}~W4wCvS1StArjOkhN9aI* zC^#@{BU&(^KBA_q@W2TDhMOyIooI==H_U%zk#B+nJsELDf{lvBmMM1u#;08O2Z&|0 z1Ko4A+f#%6#+vFx>&aBvn7bK5`Y^n+=ibiLn0U+09bbcrs;RlAT8vP)1+_##rmqYW zE^QoU(x3s({hl^O&QEl`x(=_B7+j z8b%!6R=V)?SG!UUw&2S1)9yY;CDj{?fs#9!zwvKK5s1PR^b=!sArFeoDkK-|Cpr^# zn6g04lX{*f;#Bml8?DsoEIiz>irE8Y9~2E6iJkpH14e8&r@wKkz5&q`K9fX1lZFzh zqfZQu1@+DxzxIGxJPimqH(H8Q|0RN+D91^3nyRDT9Ey+^`cfg-_i?>1vi)uNU?gB z?2b5|4hc4n?=9WuAjlrgcBJTqEOHXIfs=(ohz`_YVuVW}7~TwXziik|&!wE9j1sxn zaExW-LL)1yTMp=U@qO^CT&Wl;mR_oXQ8bO;Mb+n;^LGNEy*~;wrz=X_vUB~Je2;g^ zcaROYX;L8zIyr|zi`0LWtE`UU=R>&dc%&{r(XR^v_8n13)$@n;WP@~Q=cV@i;1#O3 zU5%aB$l+Xh##h{W_e(gA<8HiCm&#a?`b9*BBC+p!Iz`^~ixRJZ$7IJEED1$t4llPm zahmWO^&qe2T&TP2*Ls&41eBY8IMN&aEW4{+fA_{WC%-5h@Pv{}#SARh{bNcbo`fns zf#vYVpLS5E`nZ4dj9!%coltq*biwskZW=zlo6ZlS!9)V z9cAJavBs4iOLPl;j9PHoZgQV90@y1u0B?kWAQ<7BHJVE$g z$OZj!+@%D#HP52-M5W`{1J#Hfo~7Yp2WAD1o-Yp!CX2t?X#cD}C??sV>4 zJ5yj1@?p#FZ#d1rP%(qCWTr=rQ&2^>wu~&mroLk(tfj_f5D1X^uqga){)zyQa7Y-| zRSZ0I+U`C;$7&BmPKP_5fN^_1mK1_s8%lQo(oG<}2`<&|297f?kXyV0njLtMY!rqF zOAMYNxQTWTtg={GSa^7^$!7X?@S1%07Mj?;D`<)w#w{JkLm0nJk*nn0U><9QYrdEc z_jJcJu#6}uaFWfX_p~4pOnTH_Vc{tf5eZ zaI;P1^mP0m{&psVnAdg5XfvV%LWohV{?U2y4|g-ZniuVN)Ph;>zcV9YCRac`3bD_x%7gmK_dP`XFKCK!}zh>3KWk@A2Ck%vG?+ z-=(3SIMbJaNl~ujcl)mgf9l#YR!j_f-&Y9)T*d4OBz1>b<L8-ARIr*>R-{lYoa(hVJr>=1;zs|q~kc}*Sn&k z8(1!n^KeGWzXT}9kMBRQP4p|!aF@iYi~$Vo{d;z4KL0;QYksm)&%=DeeHIQc@kQ2#@jfm)^x>rO@{;+|%h9`5vf|6$RJ?+YYST3M?3 zUL*g!zVozC_qk&sys=t0nN}$mRs!b^YE2C_qAb~RDp(a>*ByPx==Z?LnFX0R+pu{uTV|Dew?KUD_&o+aG#05V{o2p4i2nB)38{6QWXTfqb1NJntFwg&Vjg%WGkR)wcUFG$j#2zghOK*+xL(O zQn?gKclc6H@i$<-^}!bV7dQ<(gm$4E{Y)I{F%IqRjZb zQ>1Vg;4Zu01d7gX;Wxk2_@}U&P#76tR>*er?|gUqZz-!p%GMVJ`C@G4m49pRV#>su2|C^}b zEnfrcSNY#eVC>L!`V&ooSbDp@SQ;!@&ZFaxb2h-s0r4g8*+PJAHV~$GwPxONSxHtQ z>&6NvWcQo!em$9LogPrR1%kQO#Nd*iKjQ!WdHb&$v|*!wh>-|LN4>ZMaFrmCc}`9Z~$Ox+9lRcX68V&&0#9MIgSs7XIHJKZM=)0fZh8bC2o z?0x3DL1On#io(6&kO*Nahv9UU7D9y?W;ae&^9!Yb)tS|Ss($ffjQw`K7Ck@DhFLdn zjftLBDBt)~oWPnG0r>R%2u&R1TzUF#H&9G4QJ2|Cb(a*Q6ZsXE7P?ZJufu;KG&v6-R>ay!nKWycsK&rA{XX>_Y`P6-!30c`)#&<3( z8tT1V%J|jIKbQ_^;b=kJH`Ev-Im|Ng07Z<GXqf8E-Qf0);Jx3DzPQzK z_N=@GZdE}w&^s>W4nE1&;|||$M(CX5${lJ6-pQHK2RC#G2qn$P=H;9Y8OZ^xQL4%Q_*Z$S=#OFh4_ zkuHka-|XP9{j|cf52z5)!l8eL0)bd53E-&+e~Ugmh+QUswuFaOJ=aXxJVk&X*SPua z5~!FB8ecG$B!lfNk?sJfKU_M9bOpcs-bnCLx5lC>UAn^i{3 zJ>0vjWFX>{5^Op(q1+e#z3jCDhEhz<>Fi7`iLquV0@37h71FRh%CZn6S?fA4wAbGB z%U@s9Z~4dQ^_i@`A9}JlIFk#md_wuZK@Q0PiF4PJrPsw#IJDo7=a0)@kuhAjIsNd8pTmkCh3CD8K%#U@uf50F9(>=Q({g z?KL#-;b*@H5}uy>akD=aWx^75^#3digqwMm%|a0Q^okfklVCn=MEP%(;0bqJbM-1# z3b=hUYK1=UcLLb9AE;H&NEks4@z$+C#aWC_En2oJXywV9;wo~AURUWZx;~NqM$$U~ z>83WEB}tCuIfBLJY%w%cz^08}o!O7N!F?ti%+V{Ci~kg`?i;L9>7&cn{-n?=hux;t zL@$=bi^;}=KVL%?Laq}7+VCJKpaypUlM5s)%cF$|8+imAIe70Rw)%mb>x=flRh;b= zE}+NBVdFxc{d&6C6HY*KaMsw#%yKarg#rq3t!Ar)ht!|Y%cod%Iamqrd;a<=>M<-a z_HJ>4zgtrfFH#rPLVt#=A}{{l_?^X&Gh}L(o?zoPbLVi1A@KDIAg7m!+!NsG3g~|UCC1Zrw%*9Zdvf49Tz_wmCY#c9D^P|9A&hpQ0|^z2aVAkZ6|qkG zE44zWL1LHBY>A(>^UOm8#)Yn5D}YVTJ!vRXE&tmp^k_m%lhmi-D|<9fD^KApEoVIP z`oom0=@j!@9)IITkv`!ix-O%)l}##R%Jc`(=A*_O-Z6;a=C5*yIzeq1p1VPtmk&$- z*Jg`e6bZPtIF{>8_4ECJ&Ny|JVCokybQEIhAU}_X4_5~q0Ni)ieyl3!iyIa-liAP= zt&3J!IZUr=OWdKL7dfFPt-eQ$_iYRm{OywTi#v3@T<-IpIK0DWZ=_E053kfx3h?Mp zctYNxa71huCLI1{iU7KNe<@ZI!n#V?uos*{bSj%XLWH-qiFUmKHv0{(l=V)JYh0Y; zX^hI1qqaLU&ox^Neo<(I-mdSsx-L@l0i{7((937mgw72zCqPRiftGA|Z9bY=F^M@Z z-+ykhXao^dY;w-I-gJ%Jz^)^kzkVgXzlGhmVj@Ve^UkxwINM(Jdlv@fW;OZEH)i0; zrVTu?2MfPK(&dj(c3sQ+L=Tj89kUgNshC7k*$8*JrCH_w>(?yFkC{i*{3vRuFy?rZ z=@5H=s^a8-5OwD9P`AK8SpfJ2~2^G$c%Qqa7eftigC*le(!N zI?Ze|BS!&V+1Fua-j%UVukR$4fBH5s93vh})($j7YX@gFdXIqmrZ90-fL%kwL?^4a zjGvcJ*#dJ9tJ_~>Q8)cJQ76@toP}~}W8dW$d^S0>P9EHuaH=VaMYIOGoy`q#vFEY6 z4=5Yav+h*Ozn*Z*{otFu_|-N8xD+u^{$-M>wwZmhnmvEJ9UST3f8=>ecS}xzto7V| z&M4Y_Y6h|W^Jfo@@0xSJIm0KO-44NsnK*I(+ z-j{&y`Y(k-nC}V8FZh)S%7lbFPGoqG+E(gXc>i4X=BH7a;>dQAz6(opEV& zvhAgy(4}sB4R^)fRrI|otjq=9dNsLAozZblpGZ%ceAFyC%j?_JKqXKhRV@GJ5e}3w zllB_X6_4E*-z@0J{vD!zby&T}hKyXeWpEX^;a4;4n#$l@-T_D-Hg zR$D@z_jWLzGtT${X&9n=EiijPO<&p^4kOSu(4wn3m&9VRmNXN{oVP{V+grMxG$9f% zM>S;>X(+%w`Iv!l?diRu8e;WaK)J)O*C(J7MD?t@d|<^c(NwPfnlDZO}mI5V~GPI zZowRRC{|lSP(}ht(WJK@ zUYO{DB|_R5VIv)W)=jKzR>EDH!z*{_Q~LfB?L%hmFuw@i;mxd~vx_`D6Cxv5t(<3A z&Lm?ZW|n(Ji;054YCNQbboNUwDEoFUT@0_S(!*);kl(MEk~o}ZOp#WYv)zikdCi zO&}8t0fzB}rsGZDKt&=#`!NeoWO-_q2gTv!E%|S&*r~{r7C%zIPUuw*z+Bbv@{<cvFy2BhXoU( zoPux0v$jl~tfjE+4@l`&=YTp*fmr_Y)p>C(&aQPO@^6Geuhc6HPsA!LBMS!tq+p+h zf~qU19V6MBV8*Z*sRj7l=M`;{!rKm(6lc00G?a6RN5;BftY`lQ$$)xYHff~bCnztH zsUEg4j$ish%{7-b8yhs3$}_7PYU(|(PeMIKFJ%2hYshc;rqi{;l~o4MF zNf$A>X`M%>db@($$sg|=UMr3*6pKa{saaximA-bb8#CsWOz8&+GIO*zykoPBT2-9W zI)Q5*A?4RkWJs~5V--+irTCV}>a=p-a?qyNtNaG`&XpcIT1|ABrRb{=GVgOBf#R>IyuRIfPak{qYfz^Mpe8c83uwvJoD&?3S>L%q zY=7hF_%KR74PHv|=I|D%_SI@#xL2#qLor7#@6*QA%UTEX(RqblR|${eD38CX{aoEc zu&*j^HebEA4i@Tw$rKA~a+@KnYf}ue058h4?*^0{#DEb}1+T&+rg!tN&Vj4(!t|fP zVATA$jtokjjuP)28JatMboF2k3@)BrCGusOdKo8wL2p~N)ZRW+NlnO=zeZWVKP)iR zk7y?Z$(YiOpDAxlVpc~jqi=3wQ`mTN41Cf|mB!*fFC^EvL|9c?x_4I&qVPJgz%w}L zm7ag?wp|(C*=NE3ArRIP-5RuQq@bYS;02JxG)HsXjD2vj{Gb!G8YF>AQ^|A}>SFn= z81Lj}`%SWSJOdW)5}=p{KqmToZSudOX_icOf2*R_Djc;}da?tAX4i*@V*;pZky=>w z@p%^T3q{_=lTCG zr7^sUy7uNF9c!d}Zu%tWWJMXr1(77FN}BIsXwDoC@~sO$5KWDn+^oZJMC0Hh zPRw$X%=$aXs}uITS=GtM1;dCM^3@Jhb5k^~iHz827d{Lfj&?T0L0x0KE;({yXWILs zy=>MPO@N~Fz27`32f%joI9kE^I7kO^yt4V!%%}wnIK_en;jioIIwB8~d_N{4O*kpI zj6=*Fb7Zgx2KDDI-5SbM31R3?C%B`Lqx{R|+*5vgAneiF1G~(-O)!w1rOS<9WoR+Z z_K-kkE0+4=k<{SrZd52vwjepI{qn`R_gdx!>t_OedhRzc;n>^57VALpe*pk6{J(=p zD^`~;lrnhAPxm{6m)3uK=L-lHhemg4I;k1q=v8^rp!9$C$)t1FhjJC$j-2q*DJSvW z(g8;m-sj|wD{C2`C6rEhx9Q#5!&ZXb>tfRqB)^AF-D`;UO0)V)ev+9Irj7b|s24z( z-*Zk^{>r4oKI*#+*aBJHTL55rID1yr`jE_f49gepXY3E#);fE5hCsdZ#(h4~0oR&% z=W=S4c4*4yfiRvk+Hz4xeGm0_D@PS^6^#uHU(@uR{Guy8RVS-pgeQB-0qs7|kFoZL zAAixYH?BuZp1eNDx&3=DcjQ&s2V3(^U32NJZK3xUJD`Q0FSrckVfVzcZPdLCFtkdFPWwcbW^JaHMpqv9I4uRG)7zxe{5 ze+*nviSI{=!nv+>T`}ElH2i&2);=nf^96Tnw|e8t0fD}27{@>7#v1SA&|hr|W77Gy zMigyLMwTZjhX&Z{!tAsQ(Qdw7tmZik0XNS{fAGFMab3nk4I@<9S6c(Tj4dy{2M!Ki zEZYvfH@&JJ89TQ$$35Hp&~7W?o|MfjPg53U+npZ+8u6C%a74!vO2I~}n%3&UUNPzO z?HmWnfx;-$UHAVcGh`%G>0Fy`9-ef@GxzOHuov>WJn^H2ER#&nzIdT2cq&sYW^u0s zbn4nBB|dzi*KL`hwz~e|^QOaPMPs|Cipuu42`OdEC+nlZ2oW0Xyi$&+&$%Byvza>$ zY*_l*UN@&M(Wad`#4&hCzTYnX5m+5PdSd?~$SZV#P8;FhaNG0ysjm9%ldp!eL*yD- zOtu-hxa&7fONM(jeBN9{o*3Ky3LA>+IuD;r@h$lLg;m@j&P~hSTvy=tsRUfQ+v)AN z^2V=W1v9ckd0w=Jbi=&13`siJ zER&fhn&#H9MXzC5|Eg$oVDe5J*M#c^PTLe>7m%M?_EfSNbshz7Ix_tRZfx!D0A%ky z=Ay3aDev(TZ~UJ1^^#6+Xo**t_!S*Iv*Y9trd$`yx7B__$c;QZ)mr%^+adPnkBH}? z+Ephf0q}**P1}}yTObfw{;^}XjUwo5-Ubs?LxwY_alFA(2*9;yy)OC^2VHwZB5_E2 z{~qCVg+K|=ubJ4!s0vyU7x-DcNhA`~018c^2NQ|ujL>tGN~eE!@Tm2%vM#_{`TYHR z;?|ZARNmo6d0qPuy8q4H4-lqZ`qM8!^)G0s`tHGj=mZ2S1?-(xFm?Xdi?NSXj)$!r zOxmV?{4^e-X`gismyDl#6DJvSU#yDu`FU-tYDYAdW+p0~&Ja{Ix+@J0Mrog(v(G!l zZKds`?pep3h|f2;{<#xKch2rtoV%bI(upEke1 ze~N~#&YTCcbUbkzqcoe5lzj3a)hM&B0^6fMX-N|$Z9GKQ)z!gZX%0bL zrHv#HXbXxx)0;jZg4F}PZ+SHb%isqLoO#EFq;u(+f{=awUnKNK7?xSwOlxh-v^W}k zw+!5}RN_5Ye$@HH*}M~3$0lRngYw)ApLliftr@ibuE1qd^Y^ngjyeybZ=OYme_ge$ z@LMPv4_rRT0~KyiDx@7R4dVU&b6M79Dk<;VWa!cN4`&n`PKGxYY=~Gv=*xnPpA5D? z>8pBwDL_9wbWQ7ok>O%d(q^pg2BX-p0@d#ZFK$*Dq5v z`#$r(2pMPz49CaEA#L2#k+KoL;=%3++B%RLzhiCC`UZR(7{suGH3L{rB2cQF2eah; zGD}Nk`d?h31>M=Iuvtj7Yi?G{9RO%4&{^D19Dw>Jx3;#d;S|kw)4$ols)3``-K8^NVZg_>_huV{(K= zFfVsgAB6q4eBWfG+8JFn=~F)k#b?_OPVfB%v%b3!x;zg7?&<>D;@_FmV@IXK*+@zWkjpZ?w1rR2RCEb=}?Fa|d=;hs};m*Y^P>Y(xbdi=W4?-u(}%l)k55Zhv-* zceW|-!26T3%^B63l4?@baV}nUSvJX%ANZ@3_a11=_qsJb)h~MBdw+<=(^aTa7iqr^ z`-zK=|2P>y8rMn5%+y`^um-FBn4WZ}+ufB|Sb9qP1(Uz8EnhXY@@VbT;ueFYKmEtP zK;@t5!ZtN$Djg(k7kOSi13jE7zetcm0E&bVJA9*NCIS}8aWjO>Jv$r)t=2ryu?+Wq z%`rYep8%rQ>LIWr#ZoY!VMUfDtvBy&M*mA>LGA5l!*)0$L?VftU|IDnt)+slfD5;J zpDHxAJux(E|M|^5J5lxT9OEHqhR(Eg?_|ss`>n&=k1{_(P84e4H$&K^tRulmxijbz zh-nD;6mlcLyGuT!g6|!0t;Q*Ep=U%0i zF-_N{yhpedKb^b48@fOAe#QC1Zoud0H|qgTG>cC`U27NbqBl;`@-tF52+B}D@7`bu zJ6YEr8jI6$eqrh0;D8rxW&P^GrV0+|^3WZ(-Q8UnjOy%J=rq2+W|ke-Q4tRYFE4;m z0$pIk;O`9Qlfi=?)k9CD~ev$Iz=^hKr-Jo8{(wQ$7RNIbH&$=$=j;P`~Q*QOw zUs4=yB#*D0$QUI<}_q<{UXiJKTo2QFHAHFbo4IdPWSQiPCq)>a?oVlsD zsr+JW1qhv-Y4-lqwLQJhB!`BFAC=hEIB$$s5CM{}0^rohVKPmB{h#*Tg1~!&-){yC zTsZ`1eIm59pyOH@g7^;(8o{pQdH4J$3|UbsK(d%yQbG@1AmEOy0GZVdCIyW1-!K zx}3pN{`K7or1>&+D@YKbbUBVde{EJ^WY{6f+Nju@l4@;=91ptD7k1GFKM$L;{*Yec zCbcnrQ?GM59xWqWD4!kkDU<=xEOTIWsxprAixn%KG`L&J0bUuEpujkIw9n*=u8S!V)y4;DZwCN=5<5pl<8&tBN0(ThxiwC5@K)|Ji z$J{>6IBJ%kzNh=XA%7OrSl)hJ8hjZK(J3Z8%g&het%7r!5BvmVs1*U{ZrS}sNl;2V z`8WRo6kOu;i}v>SoxyL6o{ts64rz1D0TG!NnyUUOd@Eq%i-+44>e7{xF}$=HosjMp z-E4esF_Q3APP@7aKyLgkBFd?UJ}(m1*v#*(g>(n?-%_6^L=r5?vMm0xFLEv;YD$>$ zx+RwG{@Q3gsF|N=^0ey<8hy`BI5s(YJu#6KeLHhG%oGQg>CLd*^|^oMp5aNzz6W!% zL!6&tlC$sfX7I4(#^s%=mae>=!Qe)gdz;l9Ak^j0dT{dRwkNm3sa281hw5q!@SlvT zAAqZyQ#C^A-%^j58F!RL>`6j57IZN146oljQ21Aln2n;n$XhU5fEoM=PH!?8Kn{jD z|JfUJOa?&^1x)35)z}5N3=YS;R33vfW8t$VV+W*=(qdplz`8e;N%I4GCiG9xfPUo% zXi4oFoG^$-2)&tpU-2wPXfo)zFYIk@Zi0wa@n=PHIGu0!y4?lPF`pGQ@ehMAj{-h7 zh>fIj@+)}(GJ8M(ByeSlIy3DFe8QK&!R|E8H2(P*{{5l)gPuCeH+dyN#yz2BdUBI0 zR~^o0X4gylWBP>5`owF}{o};b(ifNl(w<;Dyc@KzmcQ0n8thv#Ev78bW%WpTo~GI4 zF_nI5U%m*mx3Nfc{83S(tR?hw?^+&a1sTM#w}zH+geLyC`A{tG^VnDn81FF$lplBJ z?~ou4{hua3iK&PY2H6S71O(rIU2kdGY?Je_cwy-ta(*`8vAihfAU^Tl4M}9u9CM?J zASd!}OuU#Sk{C;nvHG@zoXlEK@{wL-&D=yYT=0CrbK!+1+)f{B`XexpO=YMLkrW#3 z-GKAU@Vk^6d@s9i!#|ZG%gXa!uJkHvz)Qy}-aPvCiDstOP%Z4xSiB*3&1`niu~v}# z;i-z_$4mE{J2n<-S90SaLZv|_iarzN-3p+C{|tJ-Uk4%kZ)_GAXD0#Bi)`tozrY$w zuL@TFg8Lv3WYGqy1_u_rLkmFArvDd2gQ)xvDCGZwMBpxA|L1cA{^vum6CV|o*3mGk z{*_}u&qlURH>JE0|9YPCTsG5E7Qj+{aARqbnOkS66x68slABBXXgKaatshfR(q}=a z?ItK)e5M>E-v)pa{&9v@X$wpoDz^u}b~2@VA?$H50^TuuWf4A#)bbW~PslBH5UJ!# zW^O6nwBVj`La*&ul7F-O)AIcEZDkYgNME7D=H(3e*#?3t5K4H`mwLO2B3}eGh)72oR(StcRr06q96hCcdtiy2ItT!&bmYXycqAeka?=Gvypcfd zU30{H%-oYm+suw1FeJ!#KMmOMPY|yeUt;B!xsV}@;$4pNr0sIxkiuz3qnev;t}Iu~ zF^9A0h=87R*jP`&v?yxlO=sW(Z&6elY?r#{bLuT2B&(nwyjk|evnm7Ld$rQe_=RF< z>UwzDz&NGoMMPPjP!dJ7mj>J&`_#;vNRBrDTStksN?_k)<%sr=3g2!Mer~~!Li8iL zcrY7rI_cgCd!uAQDF4{Sl!qRr|Kc;-)4%K5TRVZ(wqERwwoZ<%<)9UxrCWh!Oc)o> z-eOPYrP%VV-Dzlu+NViy1#xEU*P&LG{&_R{lm>l0;)^2bF~ z;U2Q+&iqA#^O{m0E&{}e!6>t5DDWC1(M7O)t(>ZPO0x~r@Ah+D97U{nm=p%m+{!CMiK5?PzYaSErJnastcb9#V_a%)1ErIGSCj9UBku6PfGr z3Kh|@PT4R9M3anP4_p0SKWov$z(yB8{4G5J02i3x5KgFyn>R@tUxLRF+oE-ZH5}%Y zG>F#_{cK=gtgz&k{Fh_i`X%Ti>WNppgSCJ2+K%C^#Hu*wYyqmrxH7|X|EW20!6Ic> z)>a#6JK1wS^Qg!O0g~7`aAHKJq;gjmiwX9#wb-1I6K3CW!|!}3_$;Y^ND9E;%2XrZ zUDD)Gd8{^C7rKN8k+E!nJ#cWCg7+()dxNRvCRsmQ6H2g$cw3iZptd|sA$?fNY`diD zk!TV%W+O0O+|=M!+}_L{8kZqtDL2pP8i6iI?a#O{SgoQ3y=AC20PfL{6mlkB#~S;T zdLSYl;a6`^7Vs>=eyuaVveEWYb*UdTx4Ck2raJbKC$DtM-X~nIfLSZroOPXI6ZA<& z8&jGA*3vUEJ*fh>bc#68O~BN$L{j_J$NVu-tckom*sIjVp9U;u=KQ#5g1k?KOx(MN zLH22A&#g57nDrl=6!#b2@a5yz-_12UEi}G}N;!jQqZjZr8Xt`zHN4VDmy8N0PtOzz zlD5LOdyD0S2X&TuhdIRDdMQml#|&Ovq!#O>z4Im19CLePFH$u2kYWMwn>M?#UgmS4W!tustu+UU{+cWlhM{pPJq#4XGgWYV z52RH|C4OEIol}bGUH2m#;CSf z+H<4J^(n2WXw#Ewo5*)LI6LNz!etUb6Kf4zaM+7{tIJ_esX~}U&DuP&HzXn>A60`W zeN;!7OzIN(PyB4g7it-dL2U=hbi*I7d8R^EwRjfYlCgj&{U|pkUYf=vbB(fqvV4(t zlliqxbZN<_|Kxdv0{Hdh%#Ll(R0<}Qlva><2Gm1Pro|ni<1!T)LZ~wrEP@i(8J6!R zIE+0m?xYsRg&Q*hSy=l4OP@1M6eD<=IF_{6e4!bW^?bp8(O4*CCG%p*v~RI<#c6y( z9Eps+PP%8VD4pccnttwbngwfS)L4QcXy%A!CdfSGt`YYLa~u264_fhxh3I}pW1k?= zk6;99i!?E533kLpGIJflMKV#MfONj2!kDvu%Grz+@M|PcIX|hLqiwqaV+_fsoX2+i z{J8V|atqU#K-ly@S5+>NFI2p+{=PP!V88skT6?FRuwJ&N(sgX?I6ZH5F-{=Zv2m*W z&$NLbcqU`7<@H$CGn^f+naNaeWrEK>^NgQhx?M=g^&~d9aT95bcd0H#KpQqumO)s} zd;W{0CAWozbEfs4eE-r>d7MkO9I7vO6#)KN>+PL0H4U^ySj{8G-y~7|fW3Oh?2#o# zyijL?P?EFmJw0D$OD1uq^Su4liPl(6aFt_U77{11Tfb{H(0%wsk8PHg{A>OHah2+Z z^7&-zN!{pLj?-S*o&^1lH6XMAS6PPeKDG04fJtENz~A!LyD_xym=PB%9*f_X{}rpG zfsTRi*EZ*iy`e0(_#39>dwlk@{Qk_451G(4nq35zNx1 z1oo(>#9iusEbz}Ego(yLvVCSIA?y)Z(YN5mm< z;Hm>>{F~TnxN+(1fMmiRPeqYzk%@@CYqnfaZHG9tdlRMnBv6>8SaJ1Y(ClE-?n{yH zw8SYI2ci-87qM{m$K2q2<=jb{QK~il1&}IiI>&J0iIrT+=ei81 z2D+I(NWP_xsb3qE@#igKKvC4ep%;I`;oT>e( zoMrl>)r7I)DeR+iE>ZJmF(!ij7Yro~RZ8Gdv_KmpBc$3{3T`M?eA6obbOxm@EPTG? zt1u@?w2UH$@lEii@#>j-XYj6p@N78(e*Vp+;?q}m@dHv7(z?a*H{bW-#ACg;%B3Z8 z{M(iU>gxK9&c5lWkmSoTnHMW!Vz~S08!}xyV%^jR>B*l(!~70TnR3630n?A@z&{Ln zs&CLC;st@9Bn{Lz&KZosyo?dGo%nTpW@rNztXuwdzFdzh4%2e(529WJB9^nOa&0YN zFpyHQh1^~N&=JjJzf9y?mallR<#~IiBF~eDUpOheb-bU`ovni~u2m@DLm9}@p<>`? z_Zo^Y#piCv&YCCW;-3k75hbpTQ~JNl8<0*&6g#8O3fgleP%Vh|r!G@k8l7p_pIoBa zaLkUv=kD8?0=O><4>pBZcZ`~D_d^Q??J>4yZHu(-`jVP3N#}k>VWA%No)6=rN#hc4x53)M zla?L_9Y5KM_FaWq&%fzcof8$*NDm8Jxn%g_g3W&dSb%4s6I=TMngukCylk|~L&KLD zN_V`?D8pQ%?36XU3z}s0IM;Knx3if$NN@O_>H}PnNz{0|NUWyVhxe4~60-KJY|nHV z0I}fexI`4M3|3iEznmm@&9HIq9iRH1H%k`^I;Oo$4QkuTqR`P?8QAJYW)pP~!34a& z?kZTu6r{aEne!Dqiu3l#4V76_Ytp!PEOzXOEDKnGw(l*0dk+u%yFMFv9hr@JZY2bu z0JWuK38pYCj2biBDl=rt+$yKfR@}%f4{H;gzdFJO_##zPPVp@Eu7T8^M|4;cbqOEH z{crD~jB3)EI!OD%3ygw6cn5iBO(wguBX4iso5C>2OX}gwc_n($b8t-dof|zzUyIFG z{a~Ra7MwRwXa#>~O=cX5%Df?%yxnMk6u&mCW8 zHmkrZMU8W$y`I$)t}LZ}&)Rawj!`gch#n9>%V2{hw%+CcZGN21D^c2gS^h~Xttm`P z%HQI_i)N4pczS6B-`(T6pvx4{Tat0P9Cz+aL6+?$9QLKlMpOznxPe4=O)Z6td_dfd zx{5A>=NqNVJhXi`qRYDewC~XmKVo}@?~O#MTtH*v5RVnt5ScGjl=;;s{+3< zgcnPb%A8%v5=-airsfR2hohcARlA?sUaTuCa+P`AC_saW0za;$$CNovSwTCf#S=&F zo)_StXuqzJkeY&8+C%I%sAq zSI_u|ewIu!>`IqZ^Zw7+Rp2%|84h*U1;>^|;!26wz3EE;}mO=0f6 z<|nSpR(3ug4(w%#`2dy&XI5r+In^^oVJL}Yi{Ny>a$b89u?xRLJ zbG7|dv}Yi-o>v{t_pPb{YYf3^K0|>@Paw4wohL>BKg?5M#T2m9hG!fQ%%^^mS(Hn8 zp%GVSWU_ez6qz60F z@&rlQ?tA8uh-Ye}$*IhpfJG>cGJPX3I!A0%FgMTLs>OVv7C|!G0Cs^iA~ALh1e__{ zUI>sFU}IN!ciY7$CWejmy^bXx7V)P7&eW8%<04!@9P3>{UB$y=$Fz=}!VF#>K>6zk z-QQbr=%l`~S=omczX3mB{PF~?ewz)XfU#16LV>%A;Z}Zk$EeF*X`s!a!&5LfIC6-P zClvlTe;=gy`B28;)@Yqe<%mnR9uvSib@@fs06aXf=F_o<|fvpx9? zPz!EKt?e%m3~a4jP*G|h@4zqU{7vaG!T$&J0Q%WF2FG!-7w4kP9;7cYj7?il(92+% zUM6k7n7?R573&#uC+lR4BdQy{A{TZ#}OYG|in(yM^47jB4MKj<2%Z~Cww5J9`FYl6$uovq*`w^}}5}AXj zZ^Z{;0NRx)s8j62{*u3g$r>_UGSXqb+SbG%7bub@N1j!#(S{hF^Kp28kI``)08h+z z317C}Do;!xN3XYYk*;)HA>iu!E&PY0H^VBb$#?PlthSsWKhSxw@$A-r^jjAjbl&7% z1JntXGq7KBB22xpse?dtf}@4!kprk8$jjWW}x*m%RO zqo$-}y4*i$Z{afUf`1o)iGa+YSD4Tta-RVtRdheUW5&+&7>zwOW7(R=^@_+gztbgCtjV71qwd` zn&ku;CH@Yp9LN zDi#Qe9z!7HY%dO6ok_U#Nr}ag^d$}3j?e|B6<{=~BpyhoJk1sJ7%H0n>Ha@WUY#WR z)A$O-ByyAbRI5_pl`-tUR2C8W;!-h(@z}cdS~Y+Hd63lLW3OvJiq?DtK%0k#8u}&Q z2y?kzLSlFQye2z&QVJM94)=X{*SNcBVRsx>lFQ_g5vR@|oxBpXxq6Ft0;NZnHksT0 zJLgvQO#KAa!W1@!@UdZpz3cqMXFgq_2|dlGnluHEvL`pkEIo{kioE{v)!+Wwn*tks zP_`@T{&HA|Y2-XNDGVvuAEyhNapIX;P-HyF`vdoV;rVKWy?SAa$g0mAg^uw4ARYMO?Sz2Oq{{i*&p2gj7^!Ex*Y!3hDhK`j8zveXlvq=5OEThJ zHVUg*&dph3{gq+rd+)WO7wv|G!hyYMo?TYIT)ds;?C~B0S#z1^?7??L07VVSn~{L2+v08&`M0z%_-A)jf*#u=fcs zzBT$JVQFuaSV9A1yrw^LDJv_#+XGtPA!sjzTyQ+tW-?f0;QHuX%US+*(0q>_$HYM0 z!jNbaaWpy8IVtVf$OB>5CnhF-c3y2nKzMFQDTM?e`g^`YY~YSgl9u%XRCT`4)%AB? z9(;m4{P7~VnCE}K&zg{VG98&-qbD2?u@M zl#_bWe=f$wrL2idd4*!0TVJQ;_pe)Q4#DZeCGQFrm)Ew`#a=!mV)ge$I+x>2GDsaW zHwO+}8m%rF7pq7r>(db(f|>OrtVK_n3L1r$wnN3#IFCH&B+&@!_let7->y)bkvJbm z1b=^8L(UC+SATc+zPUHr|KBM%z=)I;IBN61c7e`yz}F7~qf6MK0ac(`77v@J*p;s7Ec+}7G;(&{X8MF^O-tay-o;l?Ob{56XWd3BEDz`bnFxPERAtwW& zAahy>T)uXdSn1dk)Ip6&;`U<62+MZk&W`*#7k6_Eg%4!FcttS0JJ2Jx=f57E^ph1M zkOlUjR`&_Wq57{IwodBQWa79-&4w$xhlT}YbK1P7ygpj@u=nE15cpSj` z2Ms!cHP1S2Y94m$szgC8zab0UGqKRAc*(85`2h57YGr-`y$K-)^)vrV?pFqkD&Q5& zX8kEhgK~vA#LqIbgz_1hiProeO*D--MBEhQDGMOB#NBPcXyU@!J=yIig+;yz^cIq7 zb`|ZH5QmJ%6^}LgFo;F@`(6R4E+9nfWKaSN2*rZsAp0et*^8I`m2!vCx*1 z`fM-T=<9ieO|;xIMo@hJ<*#YKHg5089V$8}=l&*-s&}=EjWK01XiCDdxXdd2Lz)ns zr9R%@>pg%|V`AjXlP;MgWj#ycG~h_H9llQYYKQJk9+p0fworZJq7HG4?mc^W$-w7r zd#m&bUG{}H&q4s9g*jsmY%I^o!NI{0*muDgo+xNSpOr%(TWQ0-Evy;17RrIQ-32gE zIw6DGKd%DRpAR_*q1Oy{KFbw04qQ<`f!&83_AS4th_)_;Vqn`$5m+^{?4$ zI9eWkKR*9(lB!UXuC-1m2F(CIqlu*ydrjv`855zlMJC2#M&=69NYeYc72NFjTW|fh zq|`8e(mqLLcTXGLZk|bL9+Xa7({9UK`IB|Tm78YJtlh-Q`ZSzKgMs8M0cKB46H)uJfJnfJe82@R8U};U0Vs=4Y3^ znE)A%AnO~oXx6{ZamZU+TDx=(vWJF%)^A!EFo__D5^B~5HJk0t*f>MES7o=Lq})9{;tHefI|zDr{xdEFHu z8QfJ@+L_+UKC1Xi7LoQthtP)^!~15Jt}^Y^%@%2Iw_ZIQz0zhsq(Nj00X{Rx z>IO}31dfhz(9u^B^2-@=7mwEkO8y(s1E5Ilz%dlO0Zh&Rtl*G61R8)cuQI5(t>pE+ zj_s6Gb{Yp+|A3)@qTIEId82ylre7xH*bz(XgTO#gn5N07%nD|DF@m#sCZR^zIYj}e z@Wq$BMiY0xa-uwSUhGB7S4ZzvAPEXjN;jHa|e8lzctjCWv+{FRtJQmc6b<{6iduViZV<4Jv9&9a&jwZ z_pC}-19RI~J!hr_8^>`QJL_y$&4BRmE76(@2yIaEg%hZqGG_JgzpTACDB!#UFSkW4~neRz| zX^k%P%Idql(y-mIaEz5V=tht5{w#UT#IKHN;SGq6tanQpZvhWSGPjZR$HAYtKc_E? z2FuHj1qQM47?pkh@2iTZI&fwhl`B~GijO(~xhdz9YXM_1@W@7kh-XV~m6c+&P>UwOp?Q{A zeAxLaeJnu=lu%3M00+B)bH$hbz@AAAB;Xkzh2Pz9mjC%fhyF!?MSAR!5LI8tq@7k( zBRE7_@|g(u+2Z-M;bfTsG3<_Ce}-2V)fn2(f{Xc|DDkMr_Hl3E#Y^I(ADxN1CPT4AMh*D7 zaPNKOxQKy#?(;`w{H0>38JD$#5%+6a`mvRsA|t0PftOOPw-47=jakv@GZl4dR{HdB zb~a>%?WZix8;Ai>&)6dQHISnxajYtc4dzNg=dtRU=SeYd*z>O ze_UrPUCl5npU#tJI2RoToku( z>-iT?6rwn_V{wt@7LW;e-TBl3xKo^LGvL^4#rwBW+s6B_8=}8Y9Q8EuXQIbDh`JjgRyIXCvNAIo)N@L(4K&M+anhEx=s+Ru! z!>x}x)sH%#Y1B{tgUT=N7cBdG#(40V`UVb6U{r-@J8zJ-utuuzQ*^$Ye*f`@M`3Ra zYP}m<0>B-DmWh`%C|T|l@&e!|KH1k(PP{(2mQGke3hx*jD%n&u;u2NvYs!jNk=VeC zwQV-J%xV!`MCwByZ0$14>I}6&y&n=@5_#X#jq76qMpASBW;I=Kf>3whe=~z5=+ZXA6b`K@N9e9 zZDM#w&vV-jU{Y_tw#`hGnWnz5Sm}8&iK>;$ksP-eZ3xQDhp_}pre|^MsXOM^IOV%b zCgdW+HrPn;Nu@itlsum6l7M_99wkM91IUz|Uu!?0OGu${YEy$Bd(@KTt0+q<+J6swo8U zo?UL25g~~32NrAgM<201c|>e&#e#<{P4$dyVZMG?_Vjby-BwqnVliVnnrBuBbqnxUW;nAF)+X&>s_{tJ!~pT5hawZ}fH5+%&S88Wf8-Xc z*NoK5ASaf|>is) zVC!4IHrp;meZKbMG(p#?C3HhuTE9NBl;u&*qpS5|y>L%K<>9(#8IpeFq~Dqn zcJbU?yg?yRORO~HOmnt7fIu*|y2zJZ zB5R~gJ>w59{}#WPDjnheKvrqC=x!RWoboXas#(6<+E2}fdjN43cS#oxDt!ZI82rM$ ziKKG*j>d(8%0a>>ks`%@yk2^FE;BvYr_Yog6qOdl&Ka|Ac0v-$Z+dTaFQMI9QN?Yu zCURpRd#iB^-GBBEmELFX_qw9>StpZ*MPnVh`taE%Ny;3KKIzk){yZhflmIx3+2Ntc z#I;RZj++kw^3*>XNd10142TV6AKhIU(_$7RAnY)+me#eYIVmBlUmfk{1fIEQ(r@U~ zZPwl%ab8l2j^#(DLjSDNK6&f!)ojK0az#u*ASAi;+0^8y z2N@efnq=4hJ!OFI163+5doE{RA5Qou%CS3oZdT^VA39gg-&me_u1Gll$@;8%;Z;ya zc>2==@ojro9_wbbKx~bZLQrJFm*O1xOCx}LXzbz{unp+n1nfO272k-UAD4Y^9@M~8 z$-q-x>pv3QA{6=C6)rE6PdoXvizbOFpRhcrwX7gx_kTD$%dn`Tx7`mC4&5anC4zKF zqtYNqNy|_}3JfWrNHeq&A|;JVr__+bFbEO?O35H8A&m$kh@Q3mzvnvVT-W=4IUmJK zoLPJCwVwUl&;7eOpL0zm5Apw756hQy(a(;)scWNlE-Z#NwVK9yY{+gp_Z7{VR5bnV zFAj}a@`zMDhhm)GFd40r*)9N%h8V)}k1i<|%nH1M6L`E7P}xq<%{m>;0QoSOfi$*& zrPKLe6@_2HV9VDxPVdQ$X-V@8&1d)-tW~of+|LFRn!?7Y5Yc)dqYeqgBKoDJIF7;= zc^IQ4bazva_z3$SPFQZY{mJ)`t$OetS9czxq``n*LW8%Rt6n1ZWSK03bg3Yn?`F&O zM4IODo8l}#9HQv(H&yN&r%6SnNDKBvoZd97&&hbV_JQ`oyBvCdCCLMgD{tDcWEtVo zXm4%K8o0W4Xx0kd)=bHR=B0|>s{N2Z8mln`796<3d%eBz!(79!#_C|~FXpqUfuUo_ zwiDKeED=mXV8{5F^bWrHMujX-#Tc-}!jYZ`Yz9Ywp8KU2)5jxnd=nssO%53!ged4^ zG@JQ1YUXZ&1t=*|3ID1thaauIHE^Ac!agNgwWn7`Cx*h$z4D~Ga0@@j_Kt!Q1mI6K zyUO+61%4zKdzNp*`ZZ&kv00=PE#9i9Nz4Ax+)QQr-n$;=^u@K9Yh?*^&531O zk6kN6@5&`-yh|@QGHaVZO7RZuspVNkydh`K&P(>)B+1fe=*nYp{y*K<{xWWo^$)S9-FIZ{ zsW7Ym1$Nvvf4Rt+xv2-S@`T^Mzq{KU=rMh9b1&Q2O=3K-o3d5?3VI1RyzP}Y;GvuK z=JSf@>VM@8Jacoall0*2Ev$}zEt1n{@S-Y+=ZeGr4^gd4ns>_#*C-SQmj=Fl^@+yt zJUN3etdnhdZ(hVN#@Xnz)x?bk<%$Lyky?4q;AG=!nuou0_?V{5BndL0pRd14i95Y_u%py{9NGk4Z2%}!>G z&5MDTpWXA`u{6(^WJ-nmM5moClP`75sQb(-Ny;h?R}0z?QReKw!OED=961(ClPoaa z9#p2THZxvq)s^g3y#Yoo?s$)q;QVf@UVi+GMDc6qr*(A_Fn5yb_-%B{S&`kB!_za% zYNa86{j9_(e(OYF)<2?=GGC~8P$f=i7|hy!v14Xe$(`m1NcC^q${1vlefWlwIk#sj zQv5EBL&ggTQ1+WK%isv+ zG+#!W80ptgSJa62f2)pFW7qkFLv7&LD6xUY_eR;4L20B8a?ncVwh3u2>CQ{OuyoNN z#PZOw18_Gy2XC(UyB|?QQGEBq9zgJ)y)i0pEJ84~J7X5X_*WcJr*)RlHg?*kS}ag5 zU!78Y!@H`MLjB-4B!srDt$F0KdAy-$=0Nk>TTtk1Y`Up6-Bo@3`S0bU04QA615aTR zkyPYoaa}y_*}+d%RCVEX!Tpajwgd`^ow;lIP4!&E#$HowM;+=RjOqfrngW~d9GNz* zH^Fhq`dVRN-KNq^?XaO~PzMoOxB`Tkik9lOeE z4m?tAJ`P>^UG11u^bO^3gHvoP9zXDcZSC3pMFjaGeVyLhM~rADkf;;z!JCz4DM336 z{aj^*?u~Wl)l);q59Eo24PU@duaoVD=J*FI)Uc(PFvc@w2R)MO=J4Q9aO&V{Bzwks z*|`zxVJAAyDETmH<+;q=SIyKE&n%I)0T@Ji@!cBv7LE{8iU)kwa~-Yr_7791JBR5~ z;pG<*3|-se#OZAMP2-aN>>jL3I$@-%A4uRobch9{L|;cS7NQ;^d_%61t-ovEc$PA* zj4rE|F`wM1aH`YYLh=H#E%AFOW{iusA(j|A`pS*4nV z3^HONQ|#YAXAW~1AIMM+f_x#<`2`pW3CVu;XfTNva9E2w53@i{cgV?JA9S>-&Ixj4 zZ4bo$eiwsW`{JH+a{mI?L3i!_`O(qQQa2&BdbtTUfl+Al{8&?|_b;0ug%I##4lK$i zEU~A$mOK`2q~gZbnOY-@T0MR;@{&~a{UxgVpWM#0P_OL(r1K&HY5FAj?+LXq5Q$pm ze958aE`%gMI0jVbce(O@hJxwdfZn?ZNTVF5XJ`LF3*O=(9RKW>z(K$EXNKrtCg!Tf4(Rc~)o3H2k zQC-!~jgxSAw+M2cx(`Qh6}UEpo(DlV3DCg=Y|eL(a|k4ntLK2mJrm$IC_&0Ol=%yM z*cxGBVZ|fBq$=S)CH&;_jY|;laX(rtn84`z8$@;zm5(T~3JrQE?J1k=)zH(^-%TGX zCj}wM0O%aQEG>=o_yjPLcgxXv0kfpadhO430O-)a52g9^Qgm~(%x_56%j`T^PLw+w zmO6;y{0&pwu2buh<*&P6#xmdWND6qaV8H+Zc4Zn;tp0%{pg-b(wekt@0xv?gOc3|I zECW##JUfrfpzbv!dK~~T+#)dKsWmD57+3+J7QNtZssqhh2#hLZR@Du@_VN+1G6Nu+ zund4KFZ?-fv1oLqg&@trKh0w>jBlJJJoY;0_K<(er+ybIZ~BPSk{A;uK^r(R5 zbII}Lm+-^&(SA#pyl6El`Bzj0#da@?B;s5B){y|u{}nj$_rVYZ2V~$ns0r*Ohk36& zl|=%f^q&Xyf8!+}@dkP*4|t;?rbde6o4nJ0V5kMR?L{6howt^*L&U8yZf4#6AFJ(}OQZL=bcUvu(`Us_d>8h$b`PLBdxXpmi8S0b^8EA;M7tcndrTD89}GtO6vo5 z?g2L`zs(f*L(>^F1v5eHuT1hC#j(>!{M zczFQPYV7w(`#wn`E$shaz(S8-^9oRu32y%VHL950#CR=`Vy%Yovsu8Xs<}uD<6X_F zyPmx6f6NqTWBlW#6U_XL+sJb1npmGJ%vv;zeRg$EUbftr9W*iwvFCGREc&g* zHQ(*o*RMNzBjzI>ShmzYkIjAA5k(LUQ`ia=vvpf89QJKJDkgavcdIOfp-D`?QKRtN zkKl9b>F}L&kR?D1wzpo0SMxPhYZ;pC00;x02_vn4$R7v^v0e~%88Ws9eDR+?(dv^T zSd8b-?}p$?A;+IDLZqYp&!eGC<_I4R`h|3G?@Dw45*>2z`L+0aAz*$4Lhev0Zi~aZ z!Eb+(l$4~NBkex52xQ$v{QqGZ7|yMMzgGA1@+uwyWO}CLMWXQkA{ju0loc6(kg26# zodW23QBcoFGZq+vjr{d@E$n_bAG!f#J>#i+-I!GaE*)4bFg$4@cGg%bJ6mGRVoJq`bWlCWJq9ArXJ0bYnI*fyrBtzz5vy4aw@ z2WAI=B5}oWzvaQfzH$?6X_8goxdY$nA#kR5Mje>G1q)-Bw~#kBR`~-AF+_q%2%Itb z&GR3hpwS1Y<^ZQI#Kk%JnAwH4^6F#+5-bbk`{xLlAt=oYxCAQ%=Mz+}{NpYGq(0;2 zkRL_>C(qf~m1IWzQMg433wWj;u#>&I&`%61*PB7O-xY1O=b_-@&zzEJcv zeg6s$R1dPr==Em|D^l=sPix)DpJdf8a_b%5(O>oBm$~Y`E0f;4;l4$mb3}u)Y&lwu zZg{q?8MSh3g@5?r_DD&#{NFdnVLbldqL*~kyiCIYB;NsyfgEgs+J_V74R-f`ECrBQ zavu!;5p$l+^w)uch&^bd2m`J`9q{nK!y^Ec7f7*k(7cG#5EDDJkAs73`QsHBbg(Uf z(&%ZWK2$lz&w`Qg|K9l@-_Hn2tpCpT-`_vy_MnkKL(4hDa=FUV!S<0fy&$#65Y-kQ zwp;!}o@a)y!+q;p;w#;g*<56e&nsK+K`Nha+P5zyZB~Yc6TKdn^Oh}uIkV!5w;P?A zAE*k$xW3$yFceMa-gTwUuV|X1Es{)O2obcJvq>`a|4QHB{8+8oc=@{HEm7{=KE?pl z9xv{I@#D;3jej%2x&Kt{>US=|^xrXRAfmYG-rQ5u)DY6%f|!IQP-o4_M_GYl9I7#O zMO$&R&J$%uP=pUOD`j?h!od*UcG>qc%JUw}yjyEs5%9MTMTz1ROEHU^a{V-1J3zc&%O_GeT!YsCI*J zEtqFo-Sqh)MX^w(Zkb6j3ZFhUZGQHJKRo0pLH>e5CE*S}KSBG%7qr$%lqxS>MeUdl zU7KsbA5QVXSC$R9JbMHAOB$WLbTzkV&w~v0mFjs0;e$^*$FLxwovN(={a7a9&|~CE zoVu~c-5QVAb8Al}(a&DrvK}y|jUNLcb#5qnPmHJGW_e#uhH;fc=qJ9UqfMeyhsOnS zE6SugUvB$5#Wui~g+U$`zo=2NgWvdFr$ch&elo*>#O1jyOX_%y6Q@@xr^}i}`$_iIrRU5B%sv5N?mo z5Rkle`LJAU^$!}OCGu1+#n21)(9!eeWokzCT#CxAgRo!=j>fnj8dM0ru{Uk?&8XY_ z_`52qVbnEU!*OW3w-bxt$gb~Ma1R($c!)*f<3 zq{kzd*J*vzaN6yBOiO-3^5{D5t2=3DDD&C0J6i|ne_ma}~_GT56$oX8qM;mx{Gs5B(m;O%dwa}xk zZ%=#!QoTf_clJz4`oNw;F4JZ=#N-2u>+2P|`-7iNYSRzj zi&(F{DC0>KpX?JoT8V6U3x%Tn`uxkaJQx&I)|{BIQPBf;Me|8NvR^$q<@=l}hQNO# zd2?FWWZ#!W19R2p&5cuEdoUAk%J)ESoS=qFH0UG6V~Qx|WT<0kDB6MAN8Auo7g3=n z;Uu^n;l!rSTs!*f#D+O~4ujS!WRj15Q+*3qCy$(ZpJ-#?`Hwz4>8pFw+o#z1`nX2* z^uCyPVT7fZ(pH-KbkOdRI?am+&W$tr(oWsWcg1%Yg z=NBSxUOM)>&ZRyPFR#wkwQAPnyy4-TbbdYINh^Z;*_TO4HA2>2OebUH($?FiOz~6~ z)BIj2!5V*t_O>yfQ4cBUVoSnN>UI)k2~mw-Xhq@|BxKFjcXMn+rN&8nv)63Cj+zagL((D%;;OoSpHxz-5f%JSF`kyE!5cpah3$k_xR933~$ z)wx@CBpqND%y~wh=mO^!e}X*r({#qYenu>Jjrh9M$^`S&U+NIqn~qQIt$x1?AT)!G zu$$x^-9}~{MUDv$y!KodAK@qXMD&%1r>=`qS`&! z8p5O{o`CLPaQc<99Nxhj7v>h)c{o2md#=c_<-3hHHHtiln`2DhZ+%v?4L$l>yh=Q& zE*~k~LYTlf7#TIH|IEW$YSfZ{(r_yg^RmkCRVn51UJ0sO`se}wkLu0!#1xE~s|I^Q zPY)eQCGnrHxg(}CU62-n2>iQLQ}?#B@@eSZuk$;82Hv18{eH}sxPIswRUcnu1KfW4 z?7H>RSR8uif(g!HwAiJ<&$`2%l8lLZ;%Cn~nZn=NIcX31-Pc3ke)REyUUQJf}ZBQIPLHCZp?c zdVh4R@<8SgtsooyfFrFy`i`Dq7MH z#CKvJj|(fP8VO8{Jgpx#H=fC0TT^%@11;#%X&xQULf>)U3Y5rFU-mwwhD#NrdWX4|* zo7;BH#OPgVM~gELGRjO79LK3|tQhYSOEoTF5e{G@O3>Q(>+Pa*pHNoVo#?5-5Sh~e z07f|flMu`)*O&V-ae<`vqM}d&yf>NMJ4(7oD^6!Nv-zGApQYDKS#-MA)?&6$`Gx}z zh9TKxPW3BmIK%giA*S?2=N=5doDPi;#+VhKYYA-VVRAbHay5;5IAahcnJmPvFs`X8 zAVo5ojfO8^)xF{@269#>H0VDW5xE9h^pp#yn$j58qJXJ6VK#-6EC>Dp==PgSWL7?o z@y1c>_w3B%@e7R7i!Tx;f8}3kLz-x0gQu$k96=Yjkr7hi?}IsfTMYJ$xA3VBN3Ff_ z4p+YSimGh;#g_+&s+K`k0#^KWXoPP3M=CZ=p>23Rp_y}^i1(L{RMvN>dW?R19JpV=l;6y{p32z zTOKu&ovX{{S14MGha-#9ftoZ754oPV>S;^s8+q8r_hZ32QmzsA!foC6Nytev^$3+; zbe+DLxtvWusDO0JuTE1ZS9y~er#$rSRhTLxs<)9(9nAhp_0_jEmtDod)8G!hU-ow}dN1X*={DU+=8x601`AXB(7cJE(_F7qJ3 zbbMht$yZ*rFSX^8n>oH_P9knldFM%asQLPS&tS^K?TyOLzizFRJL$730zH;f^RGme zOcnE>`LU}V)+kkUo!I3bpJ-IFFiQ4D4S62w(i$!_`$Fq}1s%+Amq_sZ-5W{6rD<(J z|3=WAuDTBx5b^-fWYDmcDnW2>#Yuv!}sia@4zFB{kvEb7n4jyzXA+>dl zxX>ChQTvt7H5S>s>=B6d@+`G$EgEI6(?o|&k0{5-YcHPeO~{-+y6I2B5ydj_o660E zM5n9}Q_8XFWkdt>iHT)gbJ(m3Jma<$cR|@FD(1Sbc*jMEXJ)0*e~79S)Bm!<6TNTP z9_LX?f6r>>NFBs;6~W8Hu~%OfYEydn#xWxmct(9}ko zH^}pD&(r6Mh!%-~9J+982K=1uG?xOfg2*a*WVnLiNrtK%8iV0J#?-o|m$N0)EdwtN zj5kgt^MW25uwU4}rJvmQf?srLhI;=-zTy}=8~Yjfu3{y zT;>hE8d_vBj>PGjse+hwWrJObb)r9iPNgB742M0?_iH-_$_I7B5<0vz1W*M`XP zr$xu^iRzdn>p)y04Yt*K376wp8YU|tblWlBjNvO&PJLU-TPOU}1`$Ep+CY30FFwoQx+&NVk`6fhs=Z#8D3yyE|T3l=K48yyGl#V(* zW&E*9yq&GEYS^9$0%t0(+J79T+FW0?u6gB!#6!_Ny%HhW+)1UPsrC=IBgZxerUO{g zRy_;uG5G>M2F@hLg8AX;%djMY08$4Xc9)(>et!yfS(bf8=wv<$`{o-h&n#zdgW2fu zjc)I+QF#!d&oRwWg3xA0sCdxFumfhBWuiPpURTs)liFvRjG$Hv7*NI{{GgXtdgdx{qE zo!2rZym|}3A)Kb^o9YC(VF zmdCG3Cn<|-MfdFTmQ=K=gYCa^fAFT4xX99qj;icn)S57~6bHB8ek-VSV=%pRtc3_< z69jtXF$sK<$Wn2gt>591Fk1azkg zf;Sg^_4InO=w8IIxi?FP1$(y`pZWL6dhF@`RT}>2UcQs1n)UmZ3Bw{8f0uDh_WC6Y zvk}HhKXdj=AX7-ka97+kFzf8P5zReXz<0Q^cRdHJ)178}$DU!QNBZ8kecYLGr!sDe zA+5R$TSEeY8FUTYx2~Rc1uxHC{c-d&CoYKyZqMed6xsI6C*7F5hcC%5-ITmF(Wgld z$17|^ir>qBQr7Q-Ri87?N3zY z(uD5xj1aX0*jJ?vriQzQBJA=Zu4$OveYxERu38DeZ!C+x%N~Je4{oWwHQue``9Y)= zZ)HsbATy!|+VRLt@ql@Edv)ELpYGYmbVnfTxAz_1)`3iq?N|L`hNRo1fsM07$3R!D4uP^gf_1p|cM@r43eN1l_EVeiE5YPRzAm^As?qJ?r9;LfU0 z^jPZ|{#_?T@9Z3Tq<}L?Vo`QegvBe>V}}|0hc13}S>{2&*D1VX?DX_hRn>WhZyvqK zc}}zTju#QNCSWdioo8u~d^+z~(y(b7pENGjea{m!F`rac;fr-DEKYC@gq;&Q2F#e6 zXI0$D?RIr>jw5&l9-lZrTvJPKl@Ew zLGAkgNNa3f9kfso1k_pI22to1UBU8yR&MwO^kWvV- zeG`Ogy1~RiBA}>~xa9dWK|lZJstUgaL@E|`b{tsOL?GU=K~4P+K%s+dvycw*Y5q*R zkU_&Js@9t~7Rd9(pvS)@`&;bYt{fRmoW)ck&Mla(Qj_ptFKT@3yNbz5yllld7YT{( z!R-o3iv$DDQ^}*VZmwl|8`~z4dc=99zM~FBrT@84&fVpvOH$80&Ckr4U+Z85jjXIn z4B+Au0o^nWZdTFrvDHt>b%cd5#h)|${h+8h8hv%$EMWI`RhW%I*R`Uw@P=nK$2}G& z0j?pGB8f-|glFRNj>0TYW9IC#fC1aAgDj@{`j5wt%U>Q}`sR;%eau~?Xi zW$?4#hMpT%yXil_WKmjs@fkfq7Ei{d{g>$aTIcqM5PZv8!*UnnScHG8JQUmyS`aRgm-BT5YFsbu$p()ZJloW!4_w)}y1e zIP2e8hMSK1IQHvt9RqdSR4wz`FPpbEXd59JuOLR*;T!awot@C245n;rqt~k-v3}Kq z{+D6LUDocLP(PRbgAJ&mZu@J{-1{A?%d4pyK=t_-fd<_GKoe4IJqMW;^#8P(wUHd7 zW~KWlgXUe4AfA2ME9}gw#DU>qoYdTvH^W@77Mjj9Nn_i3ivss#Vp&*xAE%k}Zi`BU zqm3!JR+$JJ9jfX`zY2pF-NK8eN;i|?Q!QdT@SGFGQc-|?D;6suq~)z`5M-|JWjJSUR_Kl8E+cdWng_iO3V-+NlHHu0&j=~AcT zKCa;f#-MCz4O)JTBc2;13raKchvOdPR{Vb9Mn0qAQyp@TrSc}@(WP>a9QpTr;Sr7S z^>;kszrl?eedPaqU=`$^ZCEZ<8A}LR7)x$>7t@(oHQkcdkn%C#NYn+P$1oQU)#{6` zMidn3$WP-#Z@wAUNN9bXt&6v{dTTOCUU6fUWDE5jZf_n<>S6}o(Or4s-AQI00xiV) z?@Jk!(dA7@9+ejUy`8moJB91Rul!2lOfzHIY#{yW3cm$AqtAQ3%oIG7;sRXnke%>d z5=SB=*8yF{tKtg~1$}ymnHPbW*3k9=GGhKYy!Dr!^Vfh@RsRV{w_r2}^C?{*q)~Dq zJq5Vjds%FmhF7VWeIf}r5Lx-4oW0FJ=xI+e6D`PCz2B29`kZ|(Lxm_O#E9O_TM`Rg zkbrRUl+-7>-05_&6_I`gvyoK)r(MjrO0fs`)H@E7cW$5F+_|i9klk6;XkSG z9u=GBEdhO2l-t6(W*_LjP=u_d=0VdJ`_==f z);sKb`ineBOmy9i)8fM2}xu z{Bd}m5L1yD$Pr9=h#qA$1O4Y9j_sJ|cL|^A*STL+2+x0-v z^^K}#FWk3BoVfz`+jkuA16AiDsh{s@0Th^t0PTdnHlX5n6+iWef3|Kln!KB-fSlD! z75K6M2IV2$>F+%m!)E?s0U&PctqF1e29fW?z)3C!k|EYj&cNZc3=PZxiP*D!M+Q*! z1t-_Q$U*n^=LVnso{LbLgq9UP;H0OCizg;WS#o7E!tJ^pYO5VzO7hWXZi$CTBIQFg zL8C6kjD|$Y6N8BY?^j_s7q_FIwBHk-@fXTQf|YA+cFS7V8=2P21%2B@bG(7c=d=&w|W(1 zPy62ZxkZPqdWcpfwXYFk7ds4YVY7A~dB$euooCndL~05bP+iufXDjwyp*Q3_YNL$F zCG-dJu|I(B+k^2eXwFIoHH+3rWLg4;doP%FFe*3M&;QwRaVS%)f2U<332cKPcIHBv zX)d@?a9}h<9I(qffa-bzQbyvyioJ{a8SvSOxv{0i0h(+9$3#7(ze4qbu2?6-UKp5t zi0%yJehNGXxWILTc62+GB5^zB|2!TpwAinOttW*;@%~@C<#kxj&|U*q z*a&L8GPck|N=598RcrBG)$;*zhs%j#NHF>b1y8iKxBnY1{V%9{9jGbi0`MqUI2d{n zum1wdoj5eG@b@R9mzmoEd%&BE$VFLkyf_AfeT-V zA8MKRZyA;E0oL6znde+2bM>T6`M&WHjm8u+I_0b{ztTscH#yS^lT?-}r9J4Oo4lwN zf+?4n9=Br2+$#3lwD`0M?x^z#01{;^V~ipI$P#+DT)aCTKa0QP9F6h>>j1KFX^%PVe zRoH3+6oSWnn@h2ryC|u!Kf%KVw{8tBk;;R{u6oCX>;X#ZyezD~cfuGwqI#i`i)8VM z9=Pu{B$WI4VPV&#bHuArIbR6;jw%-?SV^!N;@zAAndb0z#L~&hHQMcXZHlHLL$jxf zc=kZ6)!*P%j+hh)1DvjV1{(Ym3ZH&Se*wX?1)>p%>l1$>lnE#vYIwV~a-;LG*+OVa z^DNwC%pkcj7DIJFx~XvY`J-oGo4ifv^mrJ+*{LCr+;^Pj+>X#@NF?FI!1M4gd?XJ+ z^O)SBTQn)+0jqRU;p$?g_7Z)!G6t^SLduLS+GrRd_|YwI&KMu0fOV_}U8Vr1P`yA5 zOof7`)vk9(+8PQ}t55w94tdT|R4v{;4jSfp@ zr3Cgsc_VST z4Ik(f8p4k;RH4}4JtcT(jhu9L#TTtKlR9vTD9Ja)B;ri#dDLM!TOm9aw)rz3xY26X z_GHFfTN}pWITLy;#uqI5t|E*`KXDw77`iOe;$Rzs^x>0yW_TEtk%tFo?ZrIC5}ZH^ z!+V&)Ok3TK7Oh}-`4K|a!dBB0*bB)PxG?HgF@D=|+E)fECbMY{asDDcPo{#r!(hqG)vN z2%Y*r=+xx`}PmR%OKAi@u+% zp;&!>wzo^=QL}cWE{sr#HrJ*LWz{)%pCh`iRmokQr$Kj{u7ga!Yi5OtnL94x#~pvr z1J$hxz4)xy0##cp3o_R=Rpk3cJ<`0<&QFc8<{%gbx~H1BNv0+>z@sMKZ&cH(tni_U zH~G=sS6n0?Np$A3)SDKw)J>6ekuhLNujm>bRq@Mpi^LK9w0_%a!(oh)7fB$1j(IF* zit~Ivgr^mbutc~W%T{!XP#L-JG4+IdNj`mGE5n`3xJuT}L#Kw4qR8h}M8a*P1bh5r z6X|f_Qd$%<7YDx;%Y{~l7-_e#XeZuDl$(lg(F=YM%)Pj&_>N8sPTO5R9g&T6*JK%x zu}g~bjZQyV#dHFty|$RhPSzkestWujVI!1 z-LtjIXX-mRrm{!iW0-P+zO{7lh!K5g>{k$F#xzsf65(gT$Vk&D55hi;hF|WLh~9IqUU0ZODyXWsQh<+mC!gLDZV9gTt@lQv z_1Gr{Wjm7!Tp~{h9)l4gouiv-2S=54-^iAO_87X?PHAYX{?`1w4FI#CT>Qjn7TLT6 z>Ti(vjq;0a^&#yRjU#w7NCd0YrQl-BD{Cs%sK2Mx+EbDRfO@Tzfo{uH7$Oj9jz?C6~a#GVLrt-M_GZhN{pNqs{p)B z>~hnEm#{}%$y_znhin3m^6alwU!9-_*kA50#n5mj94t5RylJ6Vz5cU)lXSF13e&Ua za%LWr`2o|4qV|d;;ryZH0e~TX{#cTUV2ss%8h5GdAv&9ps_#MSmS&kENXA8WXY-P{ zW@4J>@-H@1KI7#;E+_8N4V?ZF09xdvZ0RlEN1f{8Dc0~U2G(Q&m{W{^52Eo=F})y& zxn~uK97~8}xvc4J04)s5V!_wp1yr#`6Cq-f_nGR*)g;r$-6Dot(TcLU2C$r+5FVC+ zt7yOiQD}}spPB=^)t%p-^i4jVGfe5;fW+>@7Q;1_nJteD2al4$ZE27MJkmUmAv!^3 zL>VYgSGJ)|i3mMqS-36^rK-+k(3jK!I1#J%^p#)(`Xd>3kW%baNa0w(ZbGxEzxAgt zi3<~WCW;9BjZmR*RD55)K=4@eiErZ3u^XHJovWe|9&|6*sQiUJu&LJ8JW=qepStmj zKbnKN@9gltid47HLdp{5C|0dpG6ep%@EbBkEyNwgnC1`GH&mMd=5~qxy~fhc+rmw{ zHBOZjHVQ{(tO8ivC^@k?WuI-o*lQTDwXH<~wFFi*O|IhV1gZ!EeLd~1<|p**(7``{ zRC&~umMfYtxn*($j}S6l)v`)v500o} zQNs1_akiO?+k#DNU@L#-H2niLJVTV?8&A+KP*d$k?$GemZN2ickr!<)R>E-fQjVQT zrk#9GxGfRe&}Y>w`s9J-3)A&~#QU%N+|c_9M}}mNDjT8PQQs4nBXrOaU@}YNn2#b1 zeA*P@C~i4^1veh5Bv2`IY)wxS+I{&2Na^91O+D!Q*P5@g7v(Y+)HUZVmZyH|no++@ z>(N}gOwA6U06x(G_1&qh!8Z_fO{&E8Do%tu&i!lxG|n1zt1@B}kl}n!2!1YN7B^`L zpBx&*=r9yb@@=r!_Y#vN(Dpd9CDG`!N6{vak<#|d=OPbp7dKSf=WjUD;*>EF#iul} z7SMXOusEAUMk@3$a>pH^hTB77Hbw}1sH>u0b`w~u}M`VZ|Hk%BHB!VW#^J8qk?hdjI|gKfrXrJ)@Kg9W>4{|n4u}) zz7GZ3G+Eo^>41f=$ex|z;|w`v7-0Y{1)9{p(+zC^2Qvp$Mni(-Op6Q`CrkKiI43^g z3{|RXTW;_@h)4d5(P)8JmCJDO%jMC4yR>7=d`L~BzBO+)gFdk?-XU6^tCkhx<}{0w z?w2TGi6DrXD-BN%j^*`mfhNFe+Ru6Py-)X^bIIUe@XL3LCJ>zQN)Yos zaYsGdn=}pT=YMvsSu&qQ=nX>@^$5kMq3sJS0{TSlvxcfOjLC&WbwWI;mg4mCNM9KR zL9aU^4PbpmJUHq}xeOTyZ?{<3zO8q0V1VC1Al+;xpE@I9o1oe#lU9 z=UBpxlf;$#d56j9ZeBRVvPYrYliEIj7ZDog!im$~=IL*TSzL`gpkz=k;{x*=UGxYr zDWyDrMEET&ch;<0>acr)R|1Sd9EGw^|GC3><@<2J^FSGe={6_^lO^9%jo>*&MT>*V^Z{5XAPXkLMeE&h@ecqWG4%7psp` z&0+Lg;CQ>qUA5v9&L+K;n=}L}nF9qbaK3^~F+2`w{}4*YIMGK;ND7LkYS0k=uzu@C zxUb=})AU8eEX#MfnX41KEotiwc^sACCz?7DQE}%xEbX_|fG8=+PY! zIT;nj4$ngzbFC0onc#P^1<4p`^%GFGXx!@Y**l23tn_c@wB;qwP8dR zsYNB%)!7mv3GwS?REwbUl~f>*%R_cAGi{yU$EPl{)R8;7v9W1}thU7?=yNvwkNRl3 zm8obwj$Oc8oHhJ0VhK${<&$#bq=p%lJ_^Rfzf|$FfA}6paQ|1SKcFsT9q-w8Wgxxh@h-i$s02br>pBHCC?S!@59&_X*4o4f~CEXXo!<6BHGSmmsc>MiG4_&vi4-boX zKMx2z$P_}<6|UI`!N6m&*)($AlnqLTO;9qtgL z<*AE4J5Il!znoJ?(dMp8{>b(Lpz9Ov276~@snbf3w>cOz!K2-k^TcEbFrZl?d9%od zP|4n-`O_?jLTL@7&&-*lU_s_GbRHbvIdBJ#gzj)WC5a@teWlPG5$4wt4Iwf7txeW+ zLd3ISU+zXx5nm>bR&OaBD6i@kjtKvxu`4f}6NcJTj4fLnEhVaZ&qWc85PRb6+GwwdKCo4W{Z+cAFWL+PL3;WT&<{^jU3uKsf@)lb~#ZKLwVSdmGhsMFh?#a(8s7H=Uo_6Uk2mR6xXCtQ@D;>I$2 zn-mW$ULdsR$+9S*!xEdN6fP#%_=#JW{rf~*+d&{!9HL}!IlAdh-%g?%h@Z|#V^29( zFBNMsOQ?&x<(W}6sb9j4R5CefJ6(s{b&EwtAfvt4$mkx46N%~4fHzEv8L7V0fT;*? zR+53wXzoSkK~cePIdNP)Is7q8K?b>h)No?mei0Ggw09bP$m}@@RI}alvrv-@!t3!o zzZ7EQFT4Wjh@%VX1R$g72%zSp;MdC66nY3c+C!nIWj>xtTYtU?9QGl3dR&B_MexQy zagGZILT@zrJ%;4L@o7V3jBXoIIYCmQxkysjO)j3Cjo~*6c>6`n&8U`hOj%3QdG4AI{k=mV#Hs~kWuZ0$_8RAQ0@XTXK` z@sZ3$PG8L(2`CvLW9$#N;wqgb$}RT4C|Bu9$(=Z`_BGcUg(!X|1fo+NeWJ>{HffUg zjT$3VMf|b_!tvS!>g?pzP#=*e5fqOMeP8psR(8Qd^&tG*(Oi+_C+R4Aip$H52xgP_ z(i-FSO|$I9J6%hDfhusMuA+M|c1quie7~=Lo>Q0T zVsOStjbN%17pF^(;Zmi51x!eieCY!2&8QLqww9Tlz{5IYDac;2)`yiPPTbJ$4pRBQ z-rQrsMS(N*bvd2-8h@S94*=h6I_do$*_BE)$6G3tG+0@aeWoQF@3Vbtc8_J|0kLq@ zP`QP=88;#;?T%?ip?ZTDcoiW0jhtRPe(_gK)Q18?{N{7uRoXdKQ$E$?XnIa>Qd_P& zzuTJM^F|V$2}cTp7o%IICYU=6O$Hp(N2)aU7=Ja((0+G(C)e|NHaY=0?HiJ}<9Kn# z;Ni_wgyM(a$)gE$9~mBlo-R=iIzhQ$(G>H?Otr7pMX?#)d{m$YZ>XgN&*?rTLqoLzOX+N) z98(N8W!XnTjNPq4O~r5TKF{6Ql#rdYvHf6On$-9EHoKbD=ToT%xu~97S2<8dUqYW1 z+&^~k4`EvK@a`H-Kl|HfY4h0jcrW2Lt>=SN*aguP8QBk4)rAQQs(4~&HIEE-v=(9- zL?#Vd(|)eZx(NMo3<;YX75UK+c>eZ&+1^EYWzipJT1KV5?&VGy^@J0caPWqN_nkfh z;p4yuzy0>_A4u&49@|)uOF#E$J@4Su%CnUia>GK#bYKk!ezjMpPy^dYFrDrefQp{c zp&&sVK}1Xt(QCLK$UjhhkC3!N!2Z6wUp#>YIQe&BS@`HGDg23kz$5kx zNuTE6-`m(U^z>6*I;&ODlX_G%J-H4J_Cr+0RP}Dub-BpyC8jOBfJaR|cJ*@X549ej z%vkcGFvU4GKHInXp}A?!jy^eR(cayZMMrIRKA;NxU+tZVKh)d*$ETZ0Mb?xIp>DYm zNp^8{jcK9fE=5^$YupNrCF|JQ3`MI7QKMUF8Hy~~_qsy5YRH-;`!dLyd|$`C-|g|e zzsK(%xIOfENT2!4aX#m~->)<0eV#8{wUMKz8yoA-OzL|+R%w zPlul`{U^t?~gZdR53?1S8lV9 z`@v~!YR;Z)1ekd~#c#ZDB{_>fI2<=)(CKx00~SRTt_1ah;V%lJ7bIPj;6w^ zD*QS99eJH~-}tjwKQC>ZClpndWiaStAFF0%8k+IgW%~HX{~;K_cX%Z>nHNw%ySu_Vq5to}Su-5-nCp z%qLF1RP@p9$tbw~zHv=#y5fy)jgg{diYW(fnl5yR>lE(#-Lv%~@8*dX@n?ayqRLh~ zpJ0*7&avXG+p1JIx<_rn_2CR=LfVd-dqR>0Tsr+jT{&*1Ix*IatjKik(#ce2v=A@M zs#Q?snDIQNz_~|T!UV0{`azSW~K*b zjnxVJ0H;?A$;sTAsoa^uOJDDxP>%Ar#ekxJUuPb*X(9e`Xn-zAY(NK5mC`fktmBCv z174?Te~2BC%()yFmet~&eqoHooafT{MTe`u!(>@?NfY}!QDwgZi%;!jHJ83$F8 z9X}RiNGnC@>A%e1vQNy%YF^2P;3;>Hi(~tnkNeG;c~;Q7s!D6n=i*g3lAGPwIIkmd z+WG@40yOg3t?kTzZf*B5{={?_o)IQg3nq?YI&{7H^_cM^2Afe4!{%l8d+4-X_%6wB z!jyv`b-)x$26AIg)<8@rZjF(ifo=}7pttBOS4jW>gTM$ z1T#)GT{cmp&wZ)lxj8vHSP#CC)HTsKdnIZ9ij_=xrJ>E2+Potyi+{;JrJ1H*lGpPZ zn8C+=R$_{moLG#_Gv{IFy~}8N6SyB5P6NT>H?#n-UFfD6*iVkz6XFDM0_NHHI^CUK ziS~7NcIMfB8Cpi#O8nGq{P@K`X2Jx0Ax2w8ibxQBxH5Lt^$VA&q9-_R&pP(920sn- z#^+uBFlr`tQ2l7Co_mvr(?HnvJ9;9bB@Y4?*%}nmFRBa3cu2kT_*LwyY$g7UPZl!r zPcyEDr1KUhKTgcM!VzS#iq3y?nE>vIaW8g{7Ev%6ja^*S zzJW=^Yvw5p`XNb-=pwVg!Z)MgvXb9coX?oWSZ z#@xgjEB^X5+7!@S%ZMw+PW>FpE(5**#SS}@q`SU=X3}yu+PT1JX4q)fcH=X@l>c&< zzc@iP@ZY87ETtsjlza1ahw%Ixj9BT+assJf)-y|AHfQK1-;6yJ)*f|~n@?!cU@Xih z;fk0YxAwUN_}Wjq$uTohHD0dcT1zrFK3b6af^M^aqR2Wz=KL0Fw__$^14)O z8Jgg_Cg1mRW%m#LYN<{6^w~(MdGl$VT&|P(&Df_c-yOODLIeMy?erpoO}FuGUrPL`31WoQE2N}}uyV8;+$Ac2 z%piCM3JwsjZH{jGe0XkC*NZ!nw4kf^=*wrVszI5yax2%I%^*h;v!$A*`#t%H&<;Rz zdpc(_TTR_PJ>%2HI*?w??oMmB+ba}$Ya$QC!vR}&Oha=9J3Yry=HrIWhM*?O2%*Q6jxVCSzS1s z_}qA8Y^)Xb6ew4*x?o|5o$Gp#vJ*hDVzD={Ff1u{ttI<vvxMBNa`)B6Ml$hDFt8Hf+heb!O70v-2PSKfwXXy zK&R-ECz+WCc3v?*2;$LDt@fOW`skB>{pH4no^l5lEquKFK(ffKt6kW%2TFiiDZ|D2 zZ?*L*T;EIru6F zp>6#4w?#>_KMdY*P)uEg{CBYYISUh^#eZD8N(u?EjZCUo-+nf65N|#yQsUx29DR7@ z_ho}UwlgaTA&3xhpxkC)A7TC|f+Kj%%5@?68T@lv2Ma|?VIxs$5}lJ{7~@u9b!8f3cH0z^gV*aw6!FfVyPwoM!lNa4MvZfcDpX-}`5#OoTwc3DRB*E4i%2-zU zCz+~LLIbI^8SM3QyfQ}Paw!#yK(w7$!`rNh%a#|U1a7^*I817NsGgo4hX|Rf)(9gx zR*OVj2%0Ui8PcuXFeS2iS?)M(1e6J_=SW_wC{FXqoL<^ z>b75TzP|AQv(SlL=3G_Y zXNuA(w-mh4l+=Ds8{X184joDdSBf=K;}Agu@hBvG^JtAD!bb$+($)0ye*ML6sEeR^ z)-&lNMH0JA5S>ljQKCYVm6fd`byl>Cejm>_6Jw;iyW-^fpyjL98uHm*8GfU|@}RG< zmvbe^*oaTA&{KZW3*ZpT9dmwDSIGWlKM08|Sz-#g$VLt9Q?FW-uf_NG_jev>n%s-3 z)D#e>?#IWk+MnXMr=Ar1gut(b1KtpQk0gzFcL>PuPd#Q?|1oHRTnNP^0ERa4N)OmW zsi~=*;PCnvxp!wLJx6v!xM@JqzmOMTk8+Mdt}KjnEY=_&?ZnW-=E0tuIMzERIM3yns1cOn_AUi(QG($>={)O&=7Ib>EM|fp5qiyo@ zJFayYwA#6qMvb+H-`v@j@MW!e)D=gEe#YlUQ}-mE?U`Xn(n$Q|r>12KYcMJV zVaXT5qC0jDZP9pe0!B1xCB%NTZfVFH+TdMdG!}EH6YP zU2tyVX2DYkO_p^p$?vOE=s~P*99>*?HIySrt9o>(-MImM5tt&w3Gl}VG!6(b!h&+( z7%45fI~maR>oswwSJRJdbLHUVQK1EuJ@>+it7qmCS{kW9s|QV}2H2UF_Mr@31iFfp zaL+1JyZo<+1yOqUgNJPziFo2ef&|t=oI%=MrSSz4Rk3ysUl>TGhdt{MUd|bq2=Rh& z4=Oy!kPEgQoIoTXwnds<_s@s`__p@0*^Nu%pP@RRxOcr7AJ&IbtE#HH=$MR%Z!lWp zz>LPyd1Q37h0MgdKZTrmiZ@(IkQAcQ%SovdFizwhn9+p0!QQylv%zB-3CXA;S~fGM znynOi9D$=X@_=*x=CS&d_^a{6#&E1ej3zcYIZ1vQx}5jwy<96c;l~)ArMe0>&U_hj zC=Olf1>Tu5iIkcvwD-FFe0%#tyrIWzl)MS7Oci`#IG|c-PQBhAj8sem0>*KK6!cLz z#QmizKEiOtwOB-fG7gCVXaXDWBYo4SJK^V-@q|wF9HndVBskKkOaaRw$C>G|2sy9j zpiVOTL7>sT@O4Bu@LP_6AyqYaHp%uub+Iqek=aAm?24t5TU7zA7LSh>zFwj2T%V-u zJyI3nzo{E5Ja}d0IF?6g@+%)E=B!A&Sefmm3Jg{!N@hJqMte^aqStx$yLS==}ehdu3Z@W8i zn+VSRy`!BNVc~e5;vOCzv;nVDeG;43Ox8R-w1dQLy2Ki@5Yq@bSy=?#s^m(;Xvg89 zGBx@DC^hl;nfiMGb>hb$d#aElC7fdMfk7w2_j&Rf^XnTF^rm`~CECw(ltQ6|jZDbI ziRW^;j*!$<0JLoE{Y`dHoOWO*DkdZ9UUb+Ppd@xWcibSUOf}O45BO)5Q}J63hfNQL z&IY*|dV4^BRrM~jZ!b=JUp|a8NGGL`<;Y_PmP6(28){@yYtt#g~Zg1t=_pID-6P~fX z{vSi64C{(OkPxl>C)z22Bp%pKckkmT>|!kfLF-6={zBZiZr<$U+=l!SN(^@jgthAf z!NDvlBOE*Gi5mNi7I9n`d`pSuswsw>JAkyM1McQ=R3$Hc)AZn{he;?>ZvmvU-0Gb< zt!ROmPHNx-k7Z|PN1+V9=jBK_ zIn@qKVMQ{JAg8`vpG?&o1~oMJ_4|VDEPCDw$p^W#V+_C+RQc$ diff --git a/docs/images/specfem2d_example_files/specfem2d_example_34_1.png b/docs/images/specfem2d_example_files/specfem2d_example_34_1.png deleted file mode 100644 index 157c1f1b1e661ed89d7fa18f091fc19d7989c867..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 83487 zcmeFZX*iZ`_%Hg9B$OdD5k)FONkS;IlthJOt`J3;=ZJ(z2_cD0B_SkZ$WUaSLK>*Z z97ziMclH0Twf0(TueCqyZ~Ius@xDjz8_#fG_jR4;Z#wVmM~`T%qvxTgP$=uPG*ypL zDAYCNUpiX+&2;#>gZN{gvzno^{>8J-ZWfo$P!3x-JKA4#wzsw1Mf3LeFipKp z?SYz^)YK^<0R@zRErM}3uO|MAlx=LDY#MKxv_I7R&ExC4_wwf^%P+gVacfTWdU_>< zj7r|x(z*V+I0?@%$ZVD5i^8z;mNX7L|CPj9HUjQjVS!Q1lx z&#(TU75M+}3aBc~HtnWkWK=aaj?X@PU(x5|*jO0v-U}lqF1*V>)0U;bHEd3zVu5;a zaB!qOjUoTpGnXB@y7QCo83L>P%e{Wd6%OQ|X|#OlPjy6GUqbQs@CJjdW2={!mqkzJ z@D2L@aTxyk^--V9-o2a`E0<*6#E3Ka`T3Dwx$phs`ooF)e#_S{ye|<{P~fYosD_#=Y@M~^aV$B13exbMqTAF=Uv z(+*trvvV!#H+c3ib8&@CPdiH6b<(X_&nMX@cB)7xZ|Pi9oP~bEV5OhH?sLtmKfiae zu(4eo8L=t2_`%dbhQcTB%D7o0LY2Ipl{J9;z^;qF)NQJ$;qv#+tXnRObaY4U^@A;( zuX5F0#RA7rTL1o@74FGMOVcwq-{dmUcf99PWArwajq1WStbIH~M+YVLNy%z@`78lEU{++3}U0VEEaHf&NZlG8y z=<3zhr`oGw)@^6>EJ%(K#>ih%&|I_m3|r3LiYj#Hp3Fw6s!6;=k5Q zhFe)kHH9=ZHm2fcghocjnyidw+-IdMV)fl z__bJ@(Mt$lDaGHP;`u3vQ+2c>{qW|%D&=#{iFyOebE6&D6eH!o1~;TJZIp|~I*!gy z^w$-fH1oOR?c+20xi+k>U~bMiG&D4Yf4?VJ$MWxQ0&iZw&J#U9+z>_Mzw>m7wa)qe zB5^ehjj)Kc@Nh=*n>ZXs@4Ql|R?*(9GEXK4G%h{u@P&b5i>Pm1k59ht>4~Lf;uq7t z*qzP2e|cf(#F+Ec;Qr7XH_{?D${X+RN%H=owOv1*aliZY%ea{P_jPd)AH?rDuYF+_ zcUa%iQBvHj!sHm^p^1+7rEc5gEs?6+yJjHE_lg~E;*W##27H2{5m8oOvT1V)VRpsxAyQ{9C zwe_g;Sob=-h4_yjKPVIy7MAIsKMO@4`z|d~{CAwp;p!j-Ui#u7A1-%yItofMj+LzA zN6ImM{WD{}za~#-pL)LjZTub;{KAb<nUl$4I;Cpo)sH+1Sc#ixStqOIy+pCj_^r9Xj-NTcIwh zN#=qlB&XJaD+&M+MV!-jXk!NJvy zjfV)gd z&N&^%Y39v>OTnk`<~j|jhx6`T|7-GnhslKt7j}{^hP}Xe`CD^s|HVoNi{19UlHnWW zIi467R^zVanO9MxK+>XRS_a(>KR%HE_y~lg=R$czuRQ2fi zV@Dh%=aE*b(a}-$g#BLgA75|14z)AvR)W0 zyMCrI=2H!m(koQYHuPAW$Bh;i7KYExt`pIT^Jm|2BGdOJ`CXJ~3GbO&&VP;j&s1e9 zzVxk`r|HZrxXT9OMVC;bDa!b!s-t;%c_E>pyK+wUEk|kaAJEYW7cD>gHa_L=v;6$& zdI3MKj<*i@Pci=Frg!CDd%eBAk7gYcwlY3)Wc}ZzC2{*8>8v%HR|?Pfe8!jJuxuKX z`HdSngAV;^re5H=;V-<$rd_*O6%`dTk3OIl(M<}^&K8S$TjBEuyo6st89V;dw{O=% zLg?nccQN$joZj#*f`32Hxt63_w6^JAAN+>8pPY)@bDjfbC-|hPM{UYqDXY3E)*5r>X zzvk!Fot>otNv@&w8TB%9Nm6J7sW>G}3rd(6YiwSo`P$Yw*rHylsi|Ez6{!6CqmjlR zr}~@@?;bn0pljFqPn+J|b%u^Ym8^AJM62)N!-ve2#pxO*wNZTa^p`J{<0UNuGM6c0 zmg^-Wml)?x zlcVKN({ahsxSPT~DB;)p3T#u0ea5<k0#dMl;C^QYZA1zu?z=RQs|kO zGS+SoX+@*7{Zt)fQ0DIR$S^NO&AkmLZkw1`le-wobo-k-JH)@wzjyl(_4KL4Jvo=q z5Pp8MuNJJw&^oVS%Z{Mq)=7W*%d~D?nqAkUHnIk7*jc)yxKky!D6N>tRHAybQg~$S zOxJ&fzyHR(6no;JELGjwA19=K}f6n_xWrSQN;yK-#|d=J%eb7YiK79#d5{ z92N|*m|d^)?%g}UrKY$8s;ZSM%kosoM$gU~MHiwXQ7hwnGO)bc8m#nZe7D}>x%)oq zlo6B!&NK$8PPeH+_QJc-T&Bg24{Z9){Fd%eT7h!d$D*U64roO1=@kxC`k6^d%*t%A z)B_;WrlO*{)o(yHNs+_jxQk?yXy4iXADhHdgSn=9#Wr+P@E88|IIHS7M4g#>o8L4y zb3EA~ck>39R6vf&i-YKfDOG`M(B_|8@`CroQ(7CMHj8(^>l69?`*-J4Go>H%^F_>t zm(WtfD6M-xcw6agkh^o2p%%-)N--|5iIQ^YFLEHT0lo1d{<{qyXEQg_Has+>awtYj zsxJ*N{Piti+c(kM>ZA)T-SH=lKjBDvi;+spniQaF-7U0$0HfEpCM9bK_!!8vptJ;0 zTB9~=ur(HSr%zS<*@=Q0KIrjnW8brLOb&eo*NvZFIIO3qH`k%7^!jV5O`8z4vP9+I ze9Pa|SQ{Y;35l?4mcbT$tHLbQZ~3h(#a35Whu`ayap+T}*nr<~6ydu)05ZV!i2&XG z9P8oyIesFr^~xl6;KN;K-W;{D$qf2-q2Z=r=-`_lUmAHG684-|?|O9nnJ5+)Or^kZ zjsGApr;t!zrC;UosS%XXkOoC5`<;w2J5O)-=!p4ly?JZ!+gY}G4{X{{mp3gf&zbWs zh3#qT*B1Q)T(*^R>mGM%N=hb9bm(tI0PVSk&5?!=&z(KXN{N?s5@KQJtE3IQV(Rnr zI72@UD+^_D;`s-$?j>9{8#lL>%UE|>L4ovZxu!U&z<|KO8-HSM-c%+ihALUWcj3UL z1Ymj=iWXCfxWg@=!a&+}WND1^EQ74?9y6)*y+;WdOrc9X5JztF!TK##7G-hTex}a)@$2O zWNQM+#WuNNgA9N9q9#!`9gyDq67`E^|Hs{oL$b1Gk`aYGwzED=F6 zLrzXW6eeZvEK*WZAt52ks;XCKxJEuyDgi;O&itlKg8*6KUd73|JhJxo4x(pQ-N<=Z zP$+DPbz!n}%5nDV;V?so*@-8GqpxpoJ)nx+nI!tYr-u{B{Z{ydX^Hc;U`Fl$v@t8R zf%qIP)h#cS7;9uHC$~G*mG8qkQYB;Cq5MDn?qnX+^BCr_&v{8E`Hzf`1k8|JJPy$>!{B4T19GkRyA!COS0Hsvt_v0=a0;48k*MWPc>?z z9T~bk(gpDz3pKeGHDbXh5+p6CQKYVaR@}X7*9ZX90}#y6A|>CyvTEw;$ABG20aoJY zN5Q&Na&skl4At90J4pGG8mTBmk#_lRfZ7x}vaUvcs!WBV zYQcUCASw(SNlj`D-_rmzCQPuAM$UCy6Qz3&WkxgSWPkeW*RO9q*o&@VkYlnB9j8dt z2i1Zc2GIHqwKk6hg@uF4%F3)Gw*_0w)z*)GPnhBQ-u)yD^v<$5ao;8(Mt+6f>a!!Q z51?SZx~;2ty|>p8yK*BIOvBJHE@+J!18_$b0jeo#3au&8;5JWzn)TY+?LaOKXLXSAj!6$0}MzWt`L*eD{yz z@18AyQ0Id5zkhRS4dHXoFPy#>!vc1-O+WqPjlF})*4A5qU;?4um}A3%BG91@oGn=T z(I_Eh)4EB_D4zxwxr(9yO3S6-E=kHM2tcZ7xo2;Mk31^k<-b#YD=OC351sy?C#)vt z0;1APv;5S{4<7{3=apSuWzvt_gRFwe*!t-B4$4acRdFlB&I&vR%H{VMW}&R+Z$X7m zg?Ipcs~+1LsFhJ+zSqkA*LyeNUmgUELjHq@F>&EGerArp;F7jsw(HCkfw4{fw&U23fjQXz>CXqyUx&K z1p5o-)^Cvye|5zA`Ohv)3`+zboNWc%d zZP2d@xIVW!a}~OM@Zm(;RVj6yki^Ej8XOGlT=5bYCVWky%yok2)~#Eu&(7(ps;X*s zYd9p}{kc%JYQTACz}Hj28#Q%x>$l$b4q)Ki8FKa$cEm;~4B@2=4?vaoX$Rer`6q2z8 zwT~PDDB~)lUB`12THplk-@s-rk3uRnaaPfblth=a64pLE!fE2^tE93;J( zyhlYv1sgB#q0Q>y$!Mn`v(0N@6p)cn9&gIE`Ca)&_UavRmu^}yCvtFvG2A83kb78xuq@*0pHk8`3Ws5mD@~tA= zKGlNqijxg4_+?g$uD|Ypa)0UBJ>T_2SIJ^ru@c6#5)NaBC<)x6Viy7tq0m0CiVGjcm&{+Kof6 zwhKLWkpb}Xpos||*sET?wHEPIgc88N%(0X88wX4u1D=%1S z;o~Z5Ffm9`TXSycVV{ ze*F5CA#ymr6-w4f!o`XQ`12ObgN?F|%GL?DZdvA`oL-}}f{gCW2N_=00OS`rlBnr5 zKmLG8als#~U+iprKU5KJM%wRvg*zPHP}8hY;0`SdCO?!n<&!W3yytg%0zW1qI?HHl4rbFf%*dFvR{hjg9&PzRQ1q(@0R64*GV&BGc&Ui_n8za@%{Vn;hbkeGrr~Fi)AAe zw=q^CmaPUPHw`XSTi#tTa}WzctZU~t3Gtvb;0`S={rYgj_Wy1n6v0Ax7WWx)^c#a` zXAigSbA_};+7tF(SP?KFc1tQi+xOnQ)UL~JxL1!djP`DY?C~a6LKoOA>fVoHEOaMC zrSBgqD<5+0#OB0?GmMV8b4QJE`?N!xdPZ3IbTsfrMV+;A-D+{&rrL}d|4r4JD*we# zl?)EDBL?+X5lg*=`fYfBCXd>oGP?a!>KCL)yX$aSB+$?tMw2+9GH^>6ef>MD`5{u;@W+&%&1A=&t~tCQUQX?D@qH>DVFh z@@_ffjP|ITWEsK~N?pd(DO=77ZD?p{AV|kowx0P;>WBrffelQW+4f95u2O05j)-eI62ETwS1TZ~#6k}i811cw$Hf0U#2EU{n<`#`H; zZY`iL8kpL`hhjq7{eFMp#ViaQVlROcT5({)xW0CF8q7`fbHYEb z15s0(37!4c0&p)cd9Il++qjS(r$Pl{&dsEx3kB~W`w){0UEKopy|=)218K`(d~fO~ zc4yijY889Til7bzGb#OLM(tC3YFgfkJ$W@K$O2R_4rK8}w&4{>z1NGDuuogTC4K%e5GI4&)^%uT-MJsdAx1^moDrlE=wrC(?` z1ayINvK^wP>L}!3>73_9<>osI%bCAzAKrZKyy=k>CpZYG&aISs+EBt6=nht>o|S`|{-rsN`x8nJREMJ?NW+ zYQYyKdVYiU$|O!z4cr^(cm;-TPyvXc0*3Vx{C0an{UM3+t1zv^Ov||3CI=26n@|@i z5DBLs{sif8S3sE?lW6h!lj0_V+WqfRR3VX^}MRf zF44&h1Xdm8Q%GV6?z0YM1U#v(0J^iDyL<8bFL$=-2UD0SIN7%z-WWJvi`uIXH~(;) zX@#5mQ`+llp8sS_Azz$HP4(jgz$p-X%ux(5< z7e?mLilswdomJ$1kx?Udg&0)Sq|fufm$wGH{4ASJ7TT&RG;8fI}DbNiFI~Uk7<`H!g#)l_tmjvVbDbQ}0xM4@iYd0`_=|_b z+yJzjsghB*LfRquAWlFoYmT0M`%w_NEscntx%TdEYS`sIZ9Y)q!T>Nud-P+i(ThvM zxZ43ZfK4_h(XVmVA3zz!S-)+~CM@4DAuM`Pgo!w_~PHM6;msoyTSy?CQ z*-ixhrsDxn+|%8nu!Jzq0a(0J6AWDws%H`<8Jks)?Hg zcy12%V2E!I>-b6cQ#2jfOT!_L)YfS~o65R-SGRHgQc?OS;mzh(e6%$+U&6kV`886ABUg}JJ~zdvQ71$POJ;QY>O7F=fx8F%L^pnHSO)PSZ? zQ9xmd^&p9@6Ls3sQYc2uD1cB8AOVf*timvrSAlJ)T)vA2Myy$w=vPQcN?2H}U>Q(& zlaQ*0#;K-pSL`4L!JIAgO~ zoy2F`AdZt`S{{l!^!b{A?@OSU@V#edAKV4qA=a|>xpS#FNJwuLeqZd$Ien_j@&;(? z5ELMeQFPkKVa5KE^63w6-o?l4hWJIieu$B3Fq*Lh;SPyWQCC1Ss72j#p*}u(b078= z#6v0U2CJli%s=3EQ86)R8L5aa1%K%Z&euoS`f5-MXHdUB-Z^PXb=2{QW}f?uCFLet zAj-Lht80;7>-LEi(2ncSWIy?>{1He=O})WXa&Y9z(TW%uc6-Q3JMu{&1**K0sN93Y zDk>^%xfUu>4!BWK_wL<*Vz1`9A^;gp0lq`ZTvL+{*?HKl>Lw(kGNpnWyCGe=9DZOQJz zjdGuVcTUQ-eG3k7!}2c#N)Sa=j{%h@W;Aj=B(-o$_z;oRz9o4zSGyAF66pu?sNT?)Vp&9|PanI;t&U-`f#I zlw+p$ph@-~2|N777Au>#&p8#p*dK1(clj$LIcXqkLqC@POs%49H^}q{C!~nV3ZN*9 zCY(cS1K4LuPJSX`S{4!)$7Pj-^`xcDO??o++NAW(^_Y6C1FNXc($65)I4+Aq8Zjg? zgrvmZG`@aa1qFgxKtRHSkv^~bt4q1>k{rIhaGxKjZBx>IUck~is6OG4cs`+M)S#Lk zh3ITm_9RB;PUsF9wP|-+TH4UTU3Y~P#56t7-<2YU>LXK8_c-d`BaY=bRJYC>9(>A* zGcZ-L+Y~=Mh471BzJDh6g1bM!;&7bld~%8tWnWtHmFUC&_U~Qf16yCl2HZk#0?9#BYaU0owFD|yj6MfP>i(BSA z+`w`?Y){dJ_u3R2bm){hobfCkV~47M)ilZmQv(AgoorS#*?L5#G7T z6V^ICTS07u1m}PqwR6m#U%2;~*@@5!1ebUey^BTB#6~$(9&0&`_e#OTOve@rY40i; z1yF`dZD=AvVuN8^Mi#?7vr($}z=NP6b+Q-q)g$=ee8d0FGmJ$P;P-tT!WgKOHu$b} zvXdyLjk0yQ+u&Ht4d2#12KPwn>jKI=LZnh*QJTQ#Fs)(l7ustci{Os2LKKv!1biEV zknBNXJWm^2gM5V$<}2V>Bw%NYg^Ny1)G_n<$&SjH055g~Qre@&sCefg;?BTcB^fnv z)5s8dxiL1dIO2JdsGcoY01*~=q%5y$@{I@v!zVusy4ab1nAf=6bC2-WtsO*IA&IhiE!K19-nxU0$IKlqT}X$ zqjlgT4Tviee*idX4PmnQtu)!uVE=(uJCY0q(S8JTg#=d1W#lZ+bbduUE2mK;TgHezQZK+^_PV+)c+M77Y6kYtq1R?xc}u4Hea z%jrYa5;rZ2BaM7WN(x*tZ0XILHz}xG$E_q2gnF*zpauW4YRl(XeSjw*N;23O1VPWAmtY{{rN&^)45}!Xs4X)5VNj%gOFIY>t!MCqH?(7?YVqKv640s?U z>2Tv`RQy%sop%|4njHS~Rx;cL?f=AGdAFTZ$Uw_9%CG^!ROdYzVv!Q?jyh;221x-eq};XxRUbBp1qRacOb3?KeemExNy`?S8|d2Y zaZ*;IA|k<%>M}`Ui$#HkW@ITJU%7f?D_Nd_1)jfH{;@RpEKh2*240ndHIuN*;e-zM(6P2!-$kHD3{ zk9deWt$lxmbhy%{Qf1F{E&*XFY0?9fZgn)#o5yjF6j16a6{)&{P z9u{cN#NHaoZYgFX?uMv;(ta!q!^)2!x%D7T=cL*p{Lfcy9QilJ@|H*gtgNhtbi2b> znYTy|IcC4r`TFI{najHNZdXI#sI5}t1%NMAFEJ-CP#2(&q_!B~IA7z0rD*6n-g#$u z*!uCGGVkA)PM*B|@AGoc#W_)9V;naTU}q1)W|qs?b>t)J!HIJuP?T8vP~e~UAS=L8 z^Y1?-b)tf5w*1F14H=>Nbg=sWvkh@9lSmr0j9mUG0Vs)#YuB#rEj%CleFAqwm%vBJ zZglI{t0Va{gBXlfA9f7~L0C{&aW*7f$01R?NdJE{GmLxTzzZN)aKPJJ0SFetJOLH& zN_>C3-U_}(PegoR10v%zynS1k+mBU7al8S~jSzgu9j{OW#lG9XJ0+RhcWIF3IesT8 z`tY>u|HVfd+rpnesW1nKVx%TR2n;OB5JYZZG;HIa<>uy&1H|2a{Lxix;|JESZ@Evt z_~r<|f}x*)4uBNmzo1x?oN(D}v-|=e@R|Ow5X9{D@rmI)d)`<+AB;HlD z4Lf(n2}4#s#L)gvU-#4iBh{w;`#18+*efHX!n|?gL~BV?;=T>Q1IquwVyFcK6q`cn ze@%VR0B{D<4+halL4G$*$xjj0@fsQwxsuR+l+X`^i~xG&A`1gLXbvm@pKu?dEdjt- zybdRy7zd%#Swc5jK*ZZ|a$p~!TMJ)e&2oMIxaw7)9M^!rNWujtR|Q!@9eUZ#`}ZTk znRq9Fae~O_9l0k5qvyEyQ4+2jbRSw*hBPa=X!1$Kvf&z?C(;7li0eYN1zgkOj zzZ}1}2n!1$9=Xu(ZID=2rhq=k0}G~x&~|_W!EM{t0t3mB-3q<2*T(D5yn{EU1~TEh zm$*)BH%emDc6cKhu5BXyZcXZLG;uagP7Qc)x5ku~=JctRkr;oH^CiB8XD=)?YGn|! zn8fne9N4^MprLoydA`&pXaj30aGWq5fK(__Y^enPzF+=N%cG603F&7xc6K%R>XPY@ z3ia&m#R_dZ)CiG|B-L2Uge-=`YiPYnZ}6;B0T(w~C*o4HQ9i z(63vSaIcz_}42`Azo zv__+-F;k2yeal6cf;de#L1I~ia&*HM9jtEU2excX;<^sL^WN zvM%4FYZuXKg|N$kWA~=}z)K{z5LPcXPyp(jIq;gyo%=XsESuHInRTCiyLSf1Bdo4X zSV+t;mqLm+h#*e(G-UM8;A(7NI?6mQ8$31L2sW+)#f2Epn6zqGD7oC7Z4|fPO9tEg z+Q*OPh7N8HbNp;!}c zj`|rA5mAQ$45HQlQalffXI-Yri(P2T;kHPd6Ip6K#?^2ejNdOqYue?xiE0zfW>SYB zES>j0?E^uEgpa`KQzq_X7>#Dl8Y{d_ib7yu;LO0~mh1M|03n3BLT5&hbm;U}oGS=a zDSr{53kV@Y0#@;eg8&#|&P+6a9TQWm_mc~6VD()=hesrJ6*gYo97GqvJ$u-J=pJ>= zJnEXfjn_~@6z(0|PZje0k@eV@FRMY(!v30J7vrq)&XknGPq&c!6DRa(RP#3$!WhngJ|eh4R8o^*F~Xd=MYqgO~>7?6GZ2T9aO)WOGLh1XU61Gu{30~kMK zusxQSK}~ECuypI^EpOiJQj|W>=)j&5lp(TfV)C1j$}+ueCWyjo_DT_-6KYfONTnmU##3}`#FZF&L`^^~FM0n>Vncf5*_)HWPM7o1fUxY+O zHKTtK2^5~G6%su8UzC0i-wuh4tVfS>f~G*;6nbm*L#^A>uQuqCn1aki?7mA5+m(sC zR72VkYO@7G2ksbq6Rs(T`9lR53;FV&9+USL$=YcI5$S!XP+2K2Q7r6deKT$KlV4W7 z-0)X2oZVzJ=ImSsFaxRU`0cs^u>QN0Rsf4|TkM+@jAE8H?m)++LScpQrj-yK%|@*Z zv-W}L60i{oT;P5)cL`8HJr7xXeX3qftxQ(Eyj$^q8iIHLEkuu>xV7N8Lpx5Ks@`(d zfjIlx*opsx^CD9iL==W-^di5dpPW?5Xu;e)YoFSaSVx--W^IKC0`s}C)Bd6Z$yHe@ zs;a^)LFisG%=y#tQjg4lZU1!+BFv@w@g>2(mj6OfhzN_@_oK@oAoHJc5OHT+;iYY+ z%nf=?X?1IC)3F4xAD)_$cyT&S`;J)kUUHTZOWR$PhNE4(a^?u=&>b?IL4_yAlX8qxXD}` zWK2$8RgbpO_E2jB2|=ot0t{>x7hi{bL^Wo<#7xW2lc^`s(w{IeD^HGu zJfNLrk;Z7MUG{ws5{I&4ywlpwK?)8IuihhrZ3_zvFME1=xD*|s;)Kb$jJB)Im4Z+= zG&k1)EwKOkg2qgw_w1e88=vav{WzF4bJX^oY4eFE_xj{)-#0tIN6(sW+TF5AQIVgF z(jgOf0|Kul5*{S$d1h8qTe}*u7b!RhVJ_H%6n`Ml&%o3gaD64Qzlg*6t>r$cR}Os{ zq*a5RlVWf)F)^G>yTKcDhfEOujq9kSHVIkjVHCz25fRNJN9xuHc>BYAH*z;Yt&aej zw7^aaJ@XCjIII|1r_VGnjILrD(gK;tV$Yx3L8_h{YKT0RKu>~W81$$jDK11S&A&F? z<=XFA&>$iu#e%f%K_CEPEYS=Nk>e(H9hmJibZ%l2sktIgMXFDVS{U)pp&pPZ z?gBDN*8l;}Z+`}swm^o;NsbtKU@~kQ*9PIjKg3!ikL2A)+#v7U8-0CNwDu`4X4S&a zP`%vov@8JOUA0|IURNuT34S>8oO$!M*d%xhfFNBCQRoLqEs?72jy-%76JsQcrlceQ zF+qCr>9+1Z^$2J)(ZqHWM1DPks(2tCLuetZl^BA2+z?uYUAq&=j=A-x% zD;$Y;-1ysK0u%^pJG3wUhea}e)L9#V-U68?Lu6)?eCCa;JQHLbjuzP)fdjIGd9J1q znuLtUOKiMwK^B}}IQDEvR$PS;^Z*5UVR7tf6ihEDZ>K`uB_{I0>J$VKMTIjgbC-f5 z8;oz540=N$E&++tlYu>Kh(My`%=+F^U!Z@6wHJ)@|rHxp%R`DRNrXHY&r0-L@fhBFLR3X_TpatQv2);;cTxx0G}sX(>7USw8ekLcVg@LfBdu&}V2wp0!Bl#8fM9CejGU?1W?R-ge!B_!rcIL?vcoDC?(&<)%*zSb*`duVs0}1^56vL0VID`ip{Yp~QLk~u zb*QjtBhN)2W6eg8q$C2xP@oD#Z=|pNappq$=I~0)ofKKi+XBeH$pZqUC?i|NK7qJH z2>9qmbo3|_d|@NX>VV&9y{fQ5AKtF!G46}D;Bv|3+If{&U_>DU`c_uG#kqoo6v7Y_ zd6Wh+0!|1Nkx_Tx0gfa=agbZ}Eg{&lp*ZRvNq<9l(rIo)51DZ`2r0z&1l%NpwBcM* z)k&v0W`H6dpoNf-FwqBLihc$Pt%6oTgg^_hs**ctcd!|b9X|ybel?QyFA*&Zj~eDqw5EB*!T=zVcHqoD|Q2(697!`{r} z3p)u-q1(U0l*=jrPo&vbVGJVWT`?yAXR6i+Y(lpJZ&QJuM5ZvTh)f1g+~#Z^obXhT zFD@xd8jSZIg(*k~1$qdw6KR^s$Sr)p$Iwo0yy_zOsW0(0W*l<=q1w{PEe!lc$vpyW|Wsn^6s2Oc0k zraJ;%7`zIFy73u%q88~W>!!p9D4Kl?e*U6>#pFV^pN}^KFqD#x37oT;Bz}sSm^2LQ{ZPkLTdv_jD)IZH;{w& zI0p`RYItk7h}7k;I$r7Qn|=)lgF=UYiZ?)`oTsemTBnq>kr718)UJTV(kJ0?4avkpABc zlMKsaqI5f`1TlhugYXcU)AMrY<>VrNTTUp%obOmzaL3ou8;G$8m7^8%HL-?|5?5UZ zO^VEt!Pqv(lT&hX*4Gq^4_t{L1`WL+QNyr{j<2h#lT_oLXWV_ukTUd+_b| zG;s1kjLkmstnToC^Lte4exD)cP93WIe|=;cpUA&S7RDMjBlq@oYly0W-6FVU%T;+( zDSWCLhfp=S22ReCnQ~^kgI00WtRDu(t=o2nd}Mm&Ww>Fb8Qo{O$}ObEm9a@Fl-QL; z28dJ?fA75!Ix`0=COzaV{eEU<$geOl4sGXiT1Oce@}7+zOYk@G>58^(sra6!d+f_O zYwKhKJVNA;P)+d$vEYp%%sebSJfU#;o)-&>KKS*vdgImH(&zi|(+JiYf3L)_q%9#6 zEH&EwkE;fKj%`m+q2+da_48zgP=NdZUGy}KV0Mv72mJhBFXx(^*(ay{b2z-l-t;I1 z>oMII4?lGA$b9wZSc|zDqi;8Ns5$AezRIcAAA8GodLhJxT5Y2GW5d#!nMTQo+PmNG zJXX!yoFmZ8`l{JRLf7@CWVm>4yy)j?wMYxD%ZW?LquP4eTPHA%m%F9Lw(E`Om|D)3>{DSbji-*B z_MtpUero-?=I59^#HJdI9!Z%*f8=jzuHSG`F@40yZ?U z@j>RXlj%$pvyDG2xDFXIabv-GOcOvim_Nm+@_X8iOau*h>6t31f3SJA!^~qgu zF&n>^6XPV-%v#sXTC4W%(75f-Gh9#bZm;levI8{!#kitJ zgR+Z$?T?%Jie5_Q1n#d1qT{G$aw<7$A!xECO0HR9#@lHtAB*~@k&}Nt>sjQ5F7E$$ zbZvTWwPo?mqn$yyD)W^gbS9^kt=wMhE8VQ{BE)xOW5SN%Q93^MA64JtDR}HqL?G57 zSycCFc4Nhuu;*#%w2a4|sjIwGPpk^F`qTQyaF$IXFXqSiyOV4SuYw&Q~KJ-%Ky z7hHa=RBy0SIDO+;2FFe@_jbDVV!OEOo|#LHSFx!H+RrMM=22XK$+*chCk^)8$(8I5 z-g?+u&v3O={kq*jEF3lb+Ip?n!7oexz&}urB5wpHn+&;*S)(?%^grY z5~43K!n<2X?rW{PoLKOF=5mRgNl(G9vildd_`feaynkbst9Ur|yF1Trd(bC+7T%f7 zZyCHzCzoqplD?GL^*U!<&{GZlxbk|j&?l)GvArGY@vW;k#u#fXiyJ;)*n3i!r7Fi} zZ`OO~wwLVu2Q23JIq#kPRPB(f2Eu+No zc6GzjwIt^wd7DnCOHA!xuym`PstmH2yH=ZfExD(*CqVEVg)>R>^MLAzy~B2r+;82!<_f(stj&7J}n^iTe*|e&SSEJQhtORU=u11-Lo%C?TUpEtkG9 z!}SA0;KH7upxpD0(UNDW>;=R^xP$X(&Ca}M(~a0rWc+K~{@U74-tOF-=WF{B-;sOnmbV{)q<5J5>Iw892xjZRqIeFoUn)yYOj^+8-DQ;F6m$|B5H7 z)K>>Fh}(nCM1mz&VK^9m8XzyP>OVuSGuvnbYB-sY!%!eV)!C>PAoDhi=wKKD{ecEl z{1vRC@Uf{6m62dNn*kI7^hw$nI-#Z2A-0_h+GD})kC-_we8}%jRb=l>Izcr)n!E5* zp=ota`{yHZO0wGGNdct{mR@5g7ivo+_}4#8uTQ}|8XoIZ4L?c>&rsu2^5w(O!U6P3 zwSbOjGN22El32$P2=*axYXR_X2)nCI1ako}22|1iFP zI-f>Llc$5AV3KJjX}NjwU<}Bg;m~GzI)Wk30S+S>yqZErrLC>4LlnxPbE|;c!&=*X zDi#hJG3h}nX(>eZ$Fs74zIJSxKy-TsPwFto|Bc|uP!u9vi5`E%29-7xH~f)ZV0Eb1 z3&Bv?B$2BdzpgE+VHmd^+)j1*qJ)6l%q@N~duiWIQpeMq5ULA?0v6H^ z-8vA&K=Z9>v8%)km7)Hf2yohIq=Y;W4K0-ML@qPs<0#5^!N8o8=i^41;Y~5fSCaZlw!O&BV zo?c0zi4^%HQvA6qPTY{as%X>Yy~lqnds2&Cx?3IGZPoYJ#3kc$^?QxGA6Z12+Pvhx z2GF%3*>wFFAwnc|;kpA)ylf6?5PBP5?okr2fPhXo#@04L&qi)t19n>!gj<|cL8Z!% zvL5iNhz&(i#;tbx_>xM@q?j3r#oJHr7cO$L8#0zs@k?BFiCEixh-Sw-`OoR&k9f<) z>zOJ!&X`;&J|`gB9nd zzWz&p7iKhdbX4)-Q5YKsf8fKzhzRYaqTuemf*FH-aXk1FZ3V8HpC=4p- z^M=yeugE+S^fRK|*OP(-K5PLkUOjRrg}9jT;5DF8Ig*FsAr?g@!j2ug)%F#pni`U> zB&bqg(?$*TVF5Zv9%7UfWkW+Q5*~s}#!bTW&`L}pco2aRLC*X%Dh75uCRxjw>H1NY z^$(&8#RXaC2X6i>zRQ`$8=D$Lu~L$`*I{?0Y~=`t;7W=&U+$)z19Ri=Hjvmg)RI7~ z95M1?(C+axgJY{^wLW&oN%Am`T1?SNB9ZwDPwIpHsSdJsLk2v(8g)eq0Y6eyi2z)I zr=>{Sw7#^tj3D+F5fLHy*d)AU^h|_2@BtI$sc%WH3Bf~B@rWvdAs06w>IoS5 zp(A!Ym~?)AekbBB@Hl1mZI%tg zCSBzpTzizNhE1Qv32}ODnR&kq0-qiHIWBN+;rNJB^R&*}pBD66 z$GKgpCdHBr-b;50v24f|Id$&3`Keb=o(LL(L30s@+5xhQa}CHo1N$5{3&|B zlP+bCeDOHLBvs?iAr^cuytHnud^_*>5h24c%GZR$R7pbCan}reGVd(roZvci-TeQe z>_4NLYQwHwI8;LsLRXp;>0PBLpcrW)9f43p0xG?VR10DPND+`Cf}nJfmPip0L_$@H zA`l}@0YSPbMX>I3-OuxmZ+v6FfA$#OKlBbES?gL?Ip>_mS<+bik3cRHHX<5eD&#)a zRtHV}Q;G!iCll;6xYu;N3I0>ALi!|8cV;J^MsFsP$K*cYxUzVDL%~rjZnezWg^n)k zBXRoR!52~1ra^eFPLuVmJ9trw8;vF0`6_7;OS8>)^;zD%WEm|J&toXU-&5zvRe6vw zXMT2A+=;dP9**;Yc>F+LE%W(b`wZC=rzH~n@mzwf?RT~r6{=>1qO%JR8Yj>jMBKKv~shtcE{D% zs1{?F&WuZN9iBapyLX>uXXh~wr8GSH9?gb{?7W+wtg@MR=fm*$tsx%%4*z&bmF#9T zey=#!olVBR5}y|fN11K$-(72|SxcN6Ry*6l(GnS zwj0s)zcVI&TAzB_bachxVm1XFnT4?o1X7;?Y0CRdHNAN^53xq>&W@AmM(C|JV=kp% z0Y6?m<|_>rbsYX`9fMO=Im$`?B+?+=Y(`WMd%U5=+HqW!{iPdiu2JU*c5!m!hSweL zcIz&FTP|muzw8~}mupEb;$qRwr`|3d#Vfhcgl(pUM3oo!^Rt{hiT3bd@ba4Z7_9AX z7N5J4tNoA@cBZB4?QpVk+uACRXpWJnH$Ye1UagakVXH+cCuyFrk9Un~>5#v2e_m%( zZ{xaycH3yE=iwi$dl)}`^i|O-4ru**SS~ht-Hqu>`KJ$NXB2RzeVQA;UsH!}QKV3B z_&W1NmZtZJIwlA4D#o6Rx0xYi`V;JCcnCke_U;`ycKE?!z+|^xLo81~Gtufdef}~N z^{4OSOHQp;?}$%YDb`-z+Hd~I5K4q!lzxFYra%HQ&MC{Qs-RzJ+&3;Ur)MPn$NTi< zK~;KqcS0Y5^zIiUdQz+Wuz!qr0PMeAC9;Q-=3Y;RKfd&O4!W{xSqV_C(8HPaG~A6Q;ZgOr%LT9*o2Y zR?TxfK6YU=)+k%vVZ*Oj@SwI3Jici3`d!_Je9L9L9O6<0U0EH9umx}D9dxFv_#5P? zm6tRnz&;={hpNEh%zQ~X94Cmji~{qCFJ#bNg$WB+$yBw$98A`8LqeR;?DbZ9dW@(` z|2}44!P9ubIk6}AsAYR?#8(OmX*^71j~Rw*J^QonYsJdlg$YK&yy@jpW3&(7=|f$p zKoXj|d&!X&V4`?kS6IEs$hb;Cx>xlC>fJk2hL~w4F`bs|88NQi^_Y7P9@SHa?FJK9 z@P*m%rqug*MjX2~%e^?m$57oL!e$$gqS~>v%c)zexe{OYHb@f~=%f2hgIuK7Tx$Zw z#2#h$E>`T)$ozuhlF_=SUCCmX_Prr?k$3{1TS@XBdwu#!yv=J912xpyseZqcGF;9X z{>Kz!CWS`h>IA>}{M1#kIGRtpaFB(O5oKS^Yx;mo)aBFeUQQ$OKPunhDo@9Tiz?ce z?Vr9jzuf&*bU}n!#|WeC9k0&6o>T@CBLlgw!#fURmsZsk78ibNwdFMbT%tM~{>PfW z%oWcw$Bmz`B&zZi$6&I!E8#i9sr=@bo`Kndcc3)l{!Bp()kVhuqs`hgYX3DT_P|26 z!0aM&%&kl~vq3_$WG+1>p~Lvv^Ft(qc-Q3rt`v|K6?2KC2QT?l1t`{ME|r$VQO~lo zVR4u)iie)w%^$QD`@D!e;@5eX^L!!;I%e$jit)NtFW_iQyY=><>Og?vAuLUl%lB?o zLn>N{EZ|K&^HN|Yj@MA!S7mKQg#RtCjN(ZmhTmN0H}Vb#>_W8Jxo$PLgSNqn&zNRQo^|i<1+@?Nsm1SJk5Dg@{sX$~(SY zx76=4J<+90n?xb0$KhQnqNKU2DiQ)%fI;IcdrsRj;3SoxvyL?+aJkF1w z61+S|Af3hOJLZJ%s;r*0S z)g6+3R3^4v7e{YVp<)vPlk2=EKZOIGocf)<;yZKS#p;X3towK96_P8u^2(;=Pb!9G zSHQ0dqBs&ra{J5RUCdS6(ruDV0>r30*aZ9lT73b(MN5S=lBF<$ow0rw4 z-xnQN8leeeCwEuZ0Y{Fb9sZ|Tx&RYsa*&L8lRiGG7_{WwQu6JRR*@L0C^OPDpitgVvPQ!M#`A^zmpOi9e8Y;v048JR8BHzVm z)I8tANtPzM#Nbqd7EN!uoISv}?@jx~C&>N>$UFN0`lgl~k7)a_xq{#=1~%3`pxWq< zBhFtW#0Vv6L|=vDIUM>8F2L?w1ld|CDzd}Y3fZFOyjA;r0x>1S&K$9eBMwQ}SwZnp zUjy9SSg`ORV0%P`%L|*L<60c!&~PuqG{o*YnQyr9229Kc#ZqL<0FNEM0XkfZ%lLTl6YINdx;-E{42T0 z5T2ST#ZQ^vRTv%O-TR)4zw=JV*cLSp7M$%*n?^L=LWqkfeP6MG|~n)Jq8e#shrB72IZs^Bb^eso-P*ZSTKIP=$RD zlHrECkaXaLDD$m$yx)b5m0&vpDT{<2{`#b)oqEV7-Jkw^NEd1SicTrMV%s-h?`bue zu;b+{X{k?0*5QQCyKymZ<8=BSpl}JFeR;#JzoWuEJOsj_yvjU`*)tr-(!~6fU%p+7 z(c;Eq*L}J{%`^Le)_p8=#gn&|9;A;MC5=&oBKHI6lqD-$7Ilf^-}(6Z$A+?yjT9W@#^r-^QQ1?F5sxl#5?U9ac^sR74~h$tZfx{tu{{O$h%Bj`>CZk-VRU&yD%KE1T=|^6`bO32B9i5dy0$ z(HPw}*YYBG*;WiaiPG8RKa=39{_DcpG~bf@)XP$@(y2MDRx{%#7fI7_L+vHqLDEDN zrc`#O?(iotf`l)Y+#>-)icxmrVt)r`e6P20OjB}3tEdL{%h9HvV2I&@LD@YAFHP98 z)31_$Cw_!-MBzDslsx77rV*pfv5gv!ty(SVzFod2A>XxWIFIbe$x^phj{;kP)7q zon?Ts#6cOESvX|Irlh3wE_=U*`7n7IB+FFr&O(Yqb_~Sjj>6w<|Nc6`rGzOj3^>vi zo|hrCi^`hvLCmIr8%*G@mvwp2AK-r}!Io3pH=z<^XU$<9W8d{_wlLi4N*!9k*q)!5^72HCM|EEIH zD-DNY@a$-efg>KVErAbDV+^q+!zGu<1$(8Wy85VRE#zQeP$N)!&syjrFcj#6)Iz|@ zVX#AJrRf9{I;FQGWB7<9YeVmMe~V-}(z|Eg2N@s5`d#}(`ti?-x80i}VcO=zmPXQu zBsgE6{~cES^Y0HEbIhJk_!ZKR8{1RNx0=Jb<fs!ra^t%Fd9;wFCwTRHxojE`bjXsi`5EEHD!I(nu%k zuEY8UWL8m-4J{$Q7_vIX2b{v(Ug^V!c@QuIgozVC=sjEI$cIFcd*{L8i7aNYCctWk zc#c1TBc!2RgjL8~JLeRk@$gQPrwYZN_Uv=S^(IM=(XgUTYdVo00 zQ5b&ySXdlpp+3_Mb3)+nogf6{1IA$0(B29l;y~FV4m>Y2kVnu8Ul&6PHxNT80R9y! z8tR;nz!nLgr4tCMWZ<~8e1ENg5Z;G!Ay*XuH^m)nPg>BE2JCs!V25}!EqPjYio`oZ zFw?Y^M14Nix4+dfSX7}Tsd&lD(2Dydip|wy_DKU(m>Zvh(cnuD&K`ff*^(1`94*d6 zk@(F|Ahn4R%slSZ3TXd*Stt?j*AyEWJl@EIPlvS#dXexUkuFGQ zLVENzqGy2j#W45A-`zdPmw-AY9qL?jNIRfZF#d-mA-HsJ9da^mPNZmU|PZ}3)db$WO6^85Dp{NuZxYo3*MPL&!c8a?sviDc4*vS|;y z4lm_6s)d1pO;ACnMUOo$PCyZx{*uQ+NBnyuto(eCQ0#(PL}}%G z)T+AgRLg$w4XT&!J#buD#v)(e#Do=v;8GCdCKU0LG+@K?f3yIH6qpZ%kP17@HV}qm zMFFzq7?6T*YfgoCcnTaikOI!zPvDYfLP2n477CJl1J5lHUobdyAqhx&q9I$^7{Zzb z#ruToLjUCj`9KiKoRkJl3E4j(M0AH-kQ^$Vo2^RdmsGxE0ywSXy80X?<6F{~?vvJVL zk)QOa3V--8Gjxz(v9Was{V%!fTvUc(c3=iZc`2Lo<`Nj;gA-Vg;xnuk;b1y4SOmtp z8ppV|xrs@Fr!4M~YdjT7qLR?c2|TLCr%$&-#Zu9iQKopkx-5othuaIH1NA9?-?UQmAA~zl`&LH?EhB#t$dn#z+*XhvLkd^TG=;ywzVzAFe4b z<=JZn>`~N%f-lTXmz;}rT2KgK8@9K4!8`UFgWL4h9gT)YMv^KjoZz&xu1o7nk5|3^ zI~>$2+$QxmQgj8Q7@S{HC{X@}JKq5S-?xoH?nMLeGy#8E2deqPz#Z79;R}Cg(GXrX z&a%z;^s4C`!7ZGSVUPPFK0>f~PEd`yl}th_3wnNMK2zerL-GDj{Z-!Axv`}5S%FJe z<~y?!n@3bP=-Q^MyH90Jv9A?;6R6YYN7;v-NWB5i-!wRx zyFnW;SOlky8e&0&D^~<5dD^pp0|>zrn(GMuI%{_S5EIZq+TogWf#(+zI5SOO^1+<= zI~o>8*|jiyTo;M$ts+6(uh0O!yvCJPo+~pMxEVtXoIZKl=_r(+SW;B$ZMnOxMcpqm ziu-PlJ1rS1^1WB+{F76o`O%Q`Y{L1YI$%>^T|06!-fo2BmLMM=69iJarq2(g2^Eg^ z^z4BVVqcf``Z9=zNcs~-Z5%kcSphk4AV&sxE~mlr^b(;u zfiD;#L8GE!eSq}Q^_P%Zlrn0PHCeZ9f3?6R3lusulsBk-|fjg8}n(uHA# zhus5g^pMPP_|~XB7o2c`@g)We9Fj?aeqehMt`{r#vg6^#;z2Q$b!pK;0?)8B!-<$a zl7-X$X&fI#gJ6U^WrbE4HIV1IA9-}fa7MPEyzsXATsyD-17*UT<#*QQZ;_O%Bh14g zm$hxg75TI)>#C|~`$h44`MZ9)Ph}Cics_zcJMrS0(ASm?4#<*N!Da>VXaXCP&Qg^n zdojBMJkA}US0dUTvKYb~v;#K6A&4;)nZbsL6uRmNPYqK*%Qt2OzJmlgV0BO(L!WB8 zpYju-yCL}t)PJvo{W&C7+aaNH3%)aQ(labrgO-3uRsu}tMsRXOoXwyGBmHV1;BiYb zr>`h*QLBR}g1_3isU6m-cADzKW)hN9t7%TdqAOk*pF~I9McXCjXf~Qocm8gBFU&8V zS$!}(Q>ShI;e5JB_6<$Wv{WaV`l{46=X1r?bn`(JircYRl9vuSqS?8HoWl`eEmJ;- zZBo7MrYERC!2 z)G1x`R1cz9|IoLUG@?y&QGe0DmdFU=Yi7aM&)EBg6UO}N zSly0V)Oh7Me>pn*jZnp6ZBtWI6!eyVKHsr^yn<{q9P~!eI&Z$8iJW?= zIeD?{`6t59@W=&188sLG0QvF4Z?PB6+Fld49ANXpeL*oz4L(M?RZ->u72! zi<4Wj*>G|9pL&6M7dNF-#pPTriV1mlBs(Pg-|P>gosS&?qoO}y%=~gGE}5r6O^0$W zRp_UQpVNm5naZT=J&jzUZ1||w1}as1rk*G&@@0fzoPGV?a;0mPv)qJ^Ax@#1zYDuN zm>>}9@B9>GoG<@dikgHDof$D+*OgS>_YT`_CfvW8UH@h%cVaa zQg~&2ub;1dwnVdh){|KwPY<=RMhn|$r zB6l!VCK1OjQ&K59M_Fu+xV|A(Sgy1Be3Q zC$<}E{IRsGE8amDT1Zq33%+$EtjdcW^~cRWv2^G2V)lOMY(~qJWiKhc;_2!z^mwy* zXu#ibn-w3WPukUJNO05iu}(3n*$!#OG}QCt1F-&V^S*YKSv-}7#!{3wFNN)asjU{sDG<2HD2@_1uf*_ zXNimidr87vOS|=|r=Pv<5QCzv1?SrN3!Pq|%NXCPnsTk5=C)p(|3-=YUGB(Olang% zr}1&?;DwM~ek4~uG6V|h5mM@cGxWG(b0 zC_8s-?CD_IVVM*Tce2*n`5nc6bv!S64Oq z+^0a6?qMjnEB5<~HH79I?katyZW{P3F>}Pss5-B>le8N~w=rq|UGRCL7`0Y7Z0n%5 zEhEErnD?;!U6G;N<}3#u#!X$6t0NerHLO3D_?n(NxEZf|XzwCP@+_8V1Bps7uxo)57r;Ph~?xjgA>*fW?;3MLJ9xR#04i^ex)_GS#vfC*Q?f z!IFj{ec4-iI4G{oeBsVe`x|6%qg%DAJd}n=BHfSt;19w+n(P~qys)(-kmdiWSLme z(t-WJK0Am^mxr*puo_a1>8Eh<${ymI98H?z`29pT53uTP1l5x^53UF*o2iIb&i$?} zVQtyxy^^(>r8`cTm&cn&n@rPdH^i{hGvN;d!8R0R*bkv>C3f=6lAW zIqAW1&5vL@P0YJ%gsVbj@pO8(Qr2R$sjozaLJnWa#89;xaDC~uat+}(s;cg>rI0RW zupAY}NK7lzEy(4&wT^Yzh@$ox?nNX{r5_r(?56KTuACzMhYU)Mcme*-nvre1d}zt>UpN1HQK(OX|2DK{!7xGAvEgN+`D>KdtIFu)-@+q z45}J!pC^y0vcRL^5$~aSTf~miVj9NX6IsU+6?dOPpNN;ir^w*c>~N^# zG52Bl+odID@r*Nut;aU!YF#?n|DUUZ{=*^rCmujmW#u(MD6Ee$GpG&3BBm3Oizp#RU}jusOE$1_$J3#9G zf8dc2zfAx9mY7DD$V?J3c(VLl@wdMLLx*A85#2>fe=9+__*KqY=yg--r17irZ_ItS zU2RlI5kgO(Pfvnl81I|4m9!wwNnaMPz$^^)Y2JtrM-;KvYl4(vgq!WCE5=Zrc5({m zFFft&o@69PSLjx5*CkdUIs%Lp7IZ#-`Z>RE^FuAt@PjG=oul6rq+;fDUYfKGh+wU! zz_xKjD_uBNCgR~Fvy)rc*1D(}|NjbXqX-@UQJ9+yh@GtV2$kH&I8u0yi zF39UvHz8?z(<=H^zE}??lfA#uk4bL%}Ru=o1fF|EqIifCuUn3O0Eez1)N{d7OBmTP|Jrs ziA>34xg%s!!(R4tjPBF2vY@B6a_pk3}~+~1NmLIV4`Uw`#IXJK-oJeF7j}a z9Zc){)qfb;ihMcix8Rt8l`!oPXLK4~Ew-$UD$PH?F(l>7)mb|Cn#Eb&#ao@WBt_kt zcdrPqo!eJ$B)hb@btMDSz+{x@QU8rHkEQVsEhjCfWy#=(=|f<5&zD!!t)DU->iRSI z7n|U0TvXaFR(Wy#fO+dnHawz#bEImDn)hVs{MwO^1#(R zyOd}AD}UeApS4U0Ug4TtlO~M%`<(eRQu(Y)p@LUMQHC&@Q7+Bw;1j1y=Ok(}@^??* z$25nDlf~oQMk^d!p^Sh&*8|Qs5_p8X%Wr5Tl&}reYp~TBLGTFBpDAG4a-=~RNEF<} zw?MZ6VF^6N8u3&Br-^_e?-Y>iO)_L}LdA6km?=CTu0kme5wQLzc8k=>U;RWdn_$t! z0u>ba&q&b_xSU=-1g!D2j^iY|)7LUPmE(6J)yo@14^49gPkmZhp||puPnCK~)@uxK zVq?kRsigd9X^Be&kH0$JcdyfC;eh4=53r+xYSrH7P=>B(edO;Vw}yPWwK|={=Z8VH3*2zG+$>wP%e$2oQfn_otr~W zzxxX|YB)PFAkb$xtRgr=L{|l0b-;hp6qG>Ipw$dw(uGVRfQep0O*u&et{S3tA*B#F zX#%AO=?B;jb+sf7s9$y<4X_|5)k_5sArn%O#ph=utYytg z3%-PHeB6Ezy`7)UDwC;=wvcjG8uPnv30_+UJQo-AVlwi4y!pqHb^18#ZzjDzq4L4Z zmWDRhkl3wEemMPqG|?*Xup;ro|N0U98}q5bZ_E!MExpzJpah^5@%&L!73?hRmcb#JjDJu)C^i4(tt$^I;H_kU&--3V1E%h72qeU zpZrlWY5cMOygt{tqS1+rb9@TE{G#Gt_VTwpg$hym3O#-Fdf>N!qhCp9^BuGLP0s|7 zC)`}}7XvnaW*5b!TUQ;w{6nZog6h0H9}0_%e^FPr1?5#$Ae&i=}@3bzSj1jK#eSD;jK6j1L(m?qJqLZRty%Yc8DxY zFm6N4veAV8X9&~LuCsI3g{C

w{r+(DdXNMBz%6x5HqAVP~Y$i51Y7=)2#{_uD* z0Mt#dxFF#af5OVOQ|1nG{>7Z$%1>kL_oZ&PJPFz+#tB?yojSh}6&gqi-=|Tah^J{x zKZ~AlvcAmalXFS=ZV6+hdNG0QJh{Tv?Wj+FvPVIem@TQFCuu<9*A6on;JKfplW~3g zZX9<*H{1BF3^6;CxL<5;j~?H4yY@eIOv=ZP=ZB_TRpYPoq#5L>M{R^CMcffoXN8hV z?WGj|>(|@=AuJbmXyJ&mEHf8b8LMXl&So0>hO7zf4(WeRfZE(zR~IcZ$JF2vH>z{9oSZg3n7=jH zJ@!wYFFqg<6S}9auJs+cD7p$eOzjxpcUCf-)Hu>-jzFQL8D&?t@I=7Rr440y5247L%ZgZh#8Z2)lu6l3kayQ`3m2f|*`{BKqv z@b~hVepN^i;L&WRyMI0;lkkW)hPIdEI?ZcvL%&HQ-7&*A;-e$*R3?^W z)@J_nTMnIXgX+mbf8Wn*v-Wq!Nm- z?G5l4M9u?71yU@9xcENZSKtZ)k&F=q+`|)%07r%Om>Fd_Bm|l?IR61d((-euA{@fK zmKAnNh-3#b(;guFCBT1UvD*sHFuv7tlv5A6?6;4k&(L{HiKN?Dii=|aUsxO4!!CN! zDPO|xckfs`Nlh}iC+_(f>wL#EU$D_T?SM_K$H3nAEL$k&YxJ!1^O1C6E$96&F7KcgG!ioKJcVLn;Ar)I$rr zc7%EeLdYiw9bqAQlB7Yg^oOZeVAKPk^hl>Plq)ys+}Wtb#d@w*a--Ty8*+ z%5g-Af~&B{y=ke>XQWac9KOoAy%Evr^xA(PFd((=52l^o-gq!A`+v;tT*2?73{vtK ztCRTn-*OAm#dp;V2_@aQS?6md{edpcP^A_l81$!^cIrXqR*l2j3)OwBE;sJ8PW79T zdoy`DN<}}l=mdSy#<%sixPu=sPEBZY4N#WR|B$Qw5zaOWH{>YR;kzi`~ zk~c|Y`poctSoG57#{n6oDlwOxnXb6}>5VUJovK4^s6%wwQ=6@HD1D~k&`TG0#T6>_ zgmV+l6)-%=Kxy#x&WrN|7vl8Hd2^qokOsL5aTS&g^6@3|0Sbe>jf33nj^6`2dHaJY z_5(M{;si$REUKu-KHR;>Uy0b;-b)^Q>G=4WXyYxhhLpHF9J;cN7OJLnaJG)FxBucl zckx|xPPW5_l#Xx~8N#_c0$qWBB2UT^F!Divby9PFszhs}o}wlgQhlsrRKr@=7x#*x z^_dE_w4EGaFW{=2V76Ri$a`k>S@}H&d5iL|*uN%it7Z%#@sf74w?ph2Z)wN7>h_VJ z9p6r{YV9ho$FL}AVTGTk-J@~Qf7oDB`!5NbAI*k6Sm&&oi4~+fQ*|($nA}lXa=-Go zO6<%`ja$I_De>O|tet@ztb{;*R{a{)!&Vqk))_GrCyEiZK725NcrA^)n_Bm9;?KMN z(>&ff6b_bLl4d2v7K-qqt{zYdOMFLHaiQp9tDW-}b3aoIZuPw9z|AUV{!Vsx7C37a z%qJH=Vav#cQqtpZ%(;ms8*gv9mA=*zL%pw#n*O;JhuwL9{wAA1Fr70)AQKaIhpsap zfAaVIrvkCqS3f8IQFm|3qCx4kzfh_vDTnvXQKp?S`%uYjl;9Q@dAq7L@|kUhL)24} zN0ja}vdoPVxC&Q>PVJb?c_|HKt?v;yU$H_lKgq5|b->riZtI^E#-LG|lDxy$(ivT2{F`-}-TIe8+5Y}hG9zv^vUcBD$7hc+KcF=Ye!$|sK7aUp!pv{i zVnnB4JojGh##t&iMA7_w2i3^pXd;ORW4I=G`N;p82Ir77Oj{xX4)Ikx$da z6Yycs>xb^}ipRU+Wz`ESWHFRysEL=S0&2t(u8D7>Dr6Mc`120+2bfUxi`C=Gc}rI% zwDx9}CO2$P)?Ibde;Oh9h;pVMP}CV;XkNpBA{3#p9G}tX7nU z_b)6+A;pmDo8Y)!|MA`x@)E-XT$DZi!-UDZ8_lfP9copa#Ln*s$Z;Lf;ceHXE1t$@ z6ZH6__0m6@v=Wqbdzfnaz`L3yl>9E)^z|A47gH_id5ap+-^1En1_Cx#GvA?zLZy<7 z)m|4@90Dq;_&v^-z6b!=JO^x9NJ0s;#i(y22-dCn;f( zSfP3@$yBCNwbfXmbw+?dQk{Fc?tl@v%BiOz8f$>Y(vG-j?cpq2-n^xCiT0-7u2n3H z6>mwoDpW=9@HN~`x3%*L6S-C5LpqVf8_8K-T5@fRpE4LJ7FM?BhLXu}Lbx5zG5niF z_lkQo9!9ku_QOa8k|&KdO;)j&$l6lhnf*7*i2K4?+Ir8ikG9Ml-tx^U%PqU;ae}us2E%{peqTSY zG&PmG9ZKsZy=uSyqO$VVJFoEYpUloFWzm%1I5K>NlIllY`Rq&3F@1l3%;}f%Gjs1& zMF!Lj4$sUdkKObkNLlnidsA8mq*7?hiYsyC*~XjL$Zkq8zZ&;4Rz`2#5viUz7}7O zI`y5c9ptZzHS47v>o}!oQ)jCq?i+*Oge#w(#+oUcBp|Yp*f`M&NB((HT3j|OPJGJV zM3`-QFO`uj7xRU7l~(UuB*u?nEFc{)ncg%1v5M%}do5?Y`RT2^jAXMIT#6-&)aKy$ z)Nf%mrdm1gvElqiywkf?xiiUC&%@K|J0*K*OS(RJv4vGL{xP(V2iD(_%fC;0yx*sZ z6zKx*EkBb?-S_XVa`VCYDKenuu){egN z((#GGRf&ca-=k%HwDx-9pIy!0+u(ZUnsYs8B*9cmKEQr<;iu0Q_qbU6KuuADB@WWw zTC5x#!Q%Om57nxkVIm)YZn0vu$Vj+#E&hP$p!ApIxI&yiOYEE{*L=~L$3}ka)e$;1 z6F*vX`n24t9+nnJS#McxOy+-_-=*WmYex#xs*fEle%R|AS2W&kC%)1f88Jh&S`CtP zpIzAJMl7tl%c*iNZeA^^2>*t}^L9h&;q&tu87-;vvgaN^9HUb4WGCyeA{*MpO;5*~ zQ0_q!qB4=1zR-@S1nCa^=+kj-56M&KBsYaQtd^ZU9^BDb{*C+0=sE9)qrV&0#k{td zpWh0jxxCLkN(D(!_o5cJkAS$7igmv1g)RMLHoNvy?6T))S9Q(mw4M$G)!)++iw3%U z&-B#mC#ePDbWcm!CoxJ>u0B)l8=Em#UZCiKnIyz0#+xOIKVSPb2BWdXdL~6h(eU{X zoZjmWr7z;lBT?}K9Y)39hnA!oF6QNYwA1Z$OmUZsGRk9%WW%@iy=5zTf234nyE06` zc{jA3L&zs)ICJ3Z+TgxeGT-s1`_EyN-%|BS>U6%%jLfX`8W=q-So!pL<1d_)%}w~E zXUvADD_3Q`l0DUCns=Q_AUWqa_t(M8m3%3Vy|HJZSwwFRR(kX5MM|%vK;JsG67tf#&(+KBt+NdIs;EzB0$-cC7oa)ou8yZw^a zP3c6jgpwJ;fB`uoo)DSASp6X0_WR1~Irmi?WtFC5CfDrU%Pxwz&Ry~{Lsf9~RwrD{ z#F|?z98DnTinDn)jJkb6JO9BHzrPiu)JQwk4`2e;Pm*J=j9IW2`d%k0iAKGCGFqtw zKT3yLYe%Vz>t!on`8$99I(Zy>LMX>%!HNZC5Sa@l?>4zRw+UvCx46&v6+L_^oyB@t9g|YDAR4gyg1Ui{Fnp zRU!r!Gz!mG9!FJyo?r;EdCkwfzxwT)+|H4G2?ctea@gE1b18(%A=`@if%(W6^}SGnndA%6-2B!?!ApEa>I%cb-z_M#9y-L+@J4j6z|4# zvhrZUx&4ReNMe_C4jhlsMTb5Agu6T_7ZE#P@U%&jrW1-=5$A}(@%}PVoTuy~@lqP1 zh?)Mv4QRa7$;wctrr#^8&K}EQdhWkT>UC&0qXaEoNV$mKsjQXM?J*GX;gohv5nzf6 z6X;wEO>x^-zn-?t`1{Yfa|}I2yrKo4_iKFh^k3rBfFxi*-};_mu7mwuDu10+6s_~! z`oi(IPP*`(nN%z;OKX_uwmVsQ(W&W(Q%k4y$2m*C0EL{bT=A(Wia?B&S?lJo0`%cJvE&&2GWyLjjI5YA|^+7r&wBw|Ev z7RA{r^wVVH>8>%VMcuw%$atV?Em~ogb5;LzMK94LdptMJFq`eudSFmvXGbav{w&MJ zoy+rVu8Znf{1g)xyj0yW#!<9G2{|cGDgH{z0gbM)ym8T!l?IrxMD1|mIq{e+-gj$% zU1xorW#hM^4b*1k)~#L}OI)E#f4<`#G+%!0nv_&3F_5L*-C4}ptV243-=-3ze*c4x z#0vG3zRS2y>nq&fGfbY1D)`!j6SD$Y>NU1m-NIf{o0}75vWE@`ME%eEuB{KfT8PO& zHO%t?qfFaZ@DN@Ui&sVCdAtqCp(!Nm$vOSfs@~hDqolu(?ChOdDULr*zJI0l`Q1u8 z7yS^wdV%dovo&Mw<4_Kw9%ekTDyZFrtpg3`W{-(=-_fyL2NR6Kxr_{*_82tW=qv#A ztfOs;-{-R7b#u=7Rg$t)8DWL-net{Nj~%JkG))tu%18Tc?W>ri=A}k8*V&@9-TqBB znbjY!kAT3~{%$;Qok9$%#Il}R2`P);bNM8-tb|(19hd)8+$N)VCw!&NQaKtTpO=x_m|?zx4YGZ)YUohMFm!@cid77K;{@xsEg6 z>6eLDyX>bZFLGRTziFJH#PIr^BtVH*BMqh>4iB*y5k-tVJb7L_P*Gt<< zUO+ImE_37<)Pb%to%B_*XgXHm#c3ndG|T$3gMRLM#RtRHP{;2Zybpp3g66tRzox&j zitv^bdTaLrd#&nRF0s&8x5cl#+GXe0vbNT3?ai=@6MH~L+Hb+z)lk^YQ_wxTJS(Z& zpVRcGgBhy%C;r zB^PhGxtaKMlYyH7KB9N@7cY!Ft=jJ$yYg9J54&Wym)j2bUkw1N@V^u)FygyHprm_C zp8$q_31wvtXw`u_B!04&(AxZst*PXM?CGmxz%a-kH8fK?IqGGM`wvPN|LrXMe-Vc))2V9c2pa4(6f zDPK@eIbg?HlG=A>pmj1$lePYbzZBjpF))+$x$3iFZT3@Z&u3^I)-?I}(a#qvl3gx- z$Zew@s(Zk0a9Zss#MI6)j!-+`d_?>E!+Ug%eRfUDjQzy_9gyP3+XB5p=)fnJ420)t zFi``m^&~V-2m&I3yC{&{yFlGR+-57#h~@tM`wP&n6d;tYb&HeFHO+xQ3YjDT%}xWH z6uk0Bs&4>@0}?**NIzI$THv0CDj@_KfE9f3Ob06%ly4;A$|3+^06)gS#lS-&M{`fP zAK1mr+}0S{=CiwDvne`i=+rMML8lbw&7ESh}GWF%Yv4P|q) z@#U-Z*00swUB0cm>!WMw_id$_zJ$Rp<@X3p+i|Y^)%mzcPp(eIgwa}{C}se}003MF zUIP54k31g&ZUZzfr1=1Jmj#?@0dW9)^GI|7X$b@7PUs98y z7}O0R_Jspb>5E@$+6es;6%8e_S-8UOFd(gp% zP1k+S)qO`0@c^Afl5Ysp2Vn&R&l0MVcZ>gko(T5OJxF5}P~LigG_QK8e;){pQ=UMV zi2+6{BC8?JcX+lUHy3UK9B98ElJhM1qIE1DL=l)c=BLdZl4(A_0XlP$On*XXJ#ICn8k(K5a z^Wt*0V7F3=a^lOGVttbzNh7-?iZQR82ra63$sJYiXCzZKv2>HUpmr) z8l@K!QrCO@*s-z3HMr8yJ`=(TghDf*wJN?=vMMC>cDFo$%H+=OuG|>9jY&uj(Fv1m zIbiYxUwnp8F{bEX64=d0BBjWRqXp*4k2K!AvD`P+Gb(eL!v{5N&9ZXkU$O_bJ~cDGj9_$0id^I-khbIsDe#ZQe6cCGRpA$^2G|TjfW7r#f1Y z=W`z+;bHMr_OGPYh^QQNDC3}|)4achdSd>?@u!1~ustOHd3)$aZWII}Pd^7$ZW@M2 zg1PqP&%!={p+>r)6ei!DHA?^^_yNGHfQX$`IRMYjTPT$yog{L;E3;}{d4T`Ffq;B! zTA3exdK90WtUmU!C1N-{wX?HR4B7~Ro1ZHpE?}zVHV88N{h((l-f9g{vr4afj_~i1 z-FH($Q`7!}`*ksRQhB0FevI+Ln6dI?lI#v)?~jg-S$?)I=lXN}_wz-WN7o-Hj(c4hD-WvtFoQla2f-4g3)JC+hxssAF+_{c44uN>bCwMDlHIuf;PeNGW;1&6w)Vm^dy7>PX-qQoRD+&cHDgz*M ztA;FCB9UkWU<}I$5*9yO?Yv*_hD26j`+q^_z|O&9SSYf*Hdc-HX2d4Y3HgMp3|DbtN30$ruM-t7}pq8{1S z*#zqy!ft@gki1lkA6R%PY8gwFb_W^cvB97J%9e*z#o#P5IGCOKlqN#VuEQ{R3@tRtw{jmOJLg+NgklCs)gW~K zGazjt)6rFEe}IaHHZPMDX4LVY3zCZGn$KQwAo7*9_B991GDFrc4RFuU1P8(U!Q=)^ zYju<>z^!{scX(r^Z|y1`RHb2;T-&Eijm4pkWLb!U%_El}JZvtFMFb`{0`}fChwrB~MDA=ie@TKlIy=rXd+hY+2jR;pwe{aeslz#WXLoMyZoZ!1 zI>dQu=)0W2A-vK-toOf+75&VtUpynlxqlmeoU5TW_Y%*b$5Bg5?iJrHH$vuLU4G}C zEN=aLYI2DDw}D`a*3u4<5Yzjp%EI&EQ4V|tN!U67%Nrpa9{>0IGWdB|pw-PD%eMgw zu$J!ttDO!7|IqXQ5?j?EDB|9~QF6}(3!Aua&p*~9^R1P0ht zz-lcbWkL`fCN5_$ymBTkJ$)vb+e%wHo!Sv{qqrrj^o*lp`?YbMfz4;Tkv{pB8($li z=;c&u?LHG;WL&oK$~)^~vX$Ovvot(XTU}!AO}&5Po({FHMeyFQ^vsFjh8IttH4NU5 z8P0mobLa6xXWbFPV^0=$vijAo^ez&^R50ywfR#f0;X{W2wjGNsQBJt}aUzje;PXCY z=jW4;gMv*>`)Q3T!xI)>rYj z%iA|NT2&gLeIUWvRihk(^UhP}T2WME*K)xu58=(;92=92T{W{YdG9@YM^<-t>}Kl^ z0iQApJXZ%~UFw&fpr`xapU#hIqNVYiFHPK4^|D@`qdM?Jl>Xoouf{FqSJw@Sj&zRX zR3GO1Y0_rqe%);APEH)-Q75^{;(7cjKS8m}mo@$sWx&tujci;Wt-d_6zE4Iwwj-y3b+ie;qy z{)?`?-}tgG2%&F{$^OGq5l;sOAtA+j_(!Me(sxIyq1q7s9xZYx21yA4>5^`wn~|=&&vWnB`+j-Xa=BQ#bY{++v-f}hvh1!2{%WyI*tq+u z&#&s%eC!yuvy?%0tLRD9D>gKX)zGdaT*j4UpE`x{2gO)?6F$}bR8KKbtYhJOt<0%SMR zXv}4k^z~ZU=|22x#Q6~>YMS)g(()pT0QJ_9+cO#K$?=!Z?C(nz+yk=-Nt15%170i1J;$=h@G^|!yo4#gK&#;K3x1D>wV%y66hb!GUgp222pbCIlz2Xs zaiSEJdtN<1;aBrDbTFl&p+tc^SqWrjLxG380ty?9w$5xc4(4VKf=Eaj|%mV5qX4iiTn$m9B}h+)lsuaIdcioy(y&!$QG zY?|>(0sbj?pH)_9&6SeliL$>x_N4er!P*|s=^Q`&Ol#v|Ix&qHN|O=^XTZFp;#~&L7V7e?Hbl^DBg};?2dX2VfF|+fhN1 z`meF4rWbrk{!MeM{72q-%nFT#Y#HeUGt1aD>#&BYp(>@yf^v_Uzh9{fdnyhvE4W1a z^S?VvZLS|Zky5#?W*FRbetwksucr(X`zpfW=w*tZj~lssWO#aDr?Z+;%!smxodVVv z1p>81<@^}Y!I;zc&|*YbQ*ftNo!lhNVda}R@!LT5tU)DGzwN|vYUnP{rw{YL&6v$@w~smM~p_WpLt%)BSm-(3L`Ama#&cma%^o+xhRChDwmo zuDk1Y-d!|hh9-c%o+kFl9xDa21m?}hsR}er3N|is#BoqPlVu5m!<#l??{CtH)e)Vw zaZ&8%i~-ixR~4!Sqo`4QIo{T}oF4)sEDU|k;~ey@c!bkFOVfQK#2Zvm#~=v1B%iY1YFl{=()gB)V&yuK$Vsg}od>)k(N3fs?NF zW>Ny$^?sF1ZU;vkH>W-Yi@SecPzgr_S0o1#(-QTHw2LHo5byq}>AC^INXDfd+CxSv zrP$@j=W#)yEXCR{5GAp5#k+N4_)AjwYY+K_GV0RPvh>Lt(|7NQ{Rw=h%(`v<%8fRk zm^)YH{c=l7YMorcsBY^tXxG!Za4>sW+jhstIWqrU-Q(8&((*~zAd50-2@8v~OGWeX z!-uWvM@{22z(}{nuvTLv}1XlI8&_7)I-9@^dxGZVL@MY+2t;XT=LT#-Olqd{vPuJqTY>CVsEFG_4 znm_}Vu#aj(6~e|WKd0U032iHL;I1Zp_Ag^frzTEtb|j@YA}nak=kC#be0yocCc(8_ zXyllV5LZS>gcBY=x(tQ!6S4w~u_H=&AHkJG)o8kX=X;*r?21CE??F3 zlMzg_Sm|NWYZF9vJvy!Q^}Z4)c4$vCwMsjj;8d}kRIVAEjy`)jz*Bh_V4D_ETUJa> zZbDlc+&*CcCIQnT?fC$1cCWgeF zp!bV~r{&xNG*C%R)Q(u2_77hu)SnsoC1n=H$v{H8*vTkSV?#^MOHqGR^6w_}(U?CMGT4k;x?51MKgp z^}R&vC<8tdqhmFF=&3~#$5BU%?TbJys2&S&HlF&W`#>cpvCr!Ef#)ntx|4!`xWf7v z(b=?EX?Gy(bpCXn-6j2AE3?H4zTQPhpl2u?Sx>k^-zslc>3VQo;6Y7wGBW6>@F5VU z(`_C>KGH2|; z;Lpj73BrQPg$L3~Im6&|9_LSMc{14fXJ2O;XbR--S)Mr^6p;GC_`n1@R~S@LSTgD> z`pMRL6s;o7R8c0jH|%pg%(*4ZshtP(o$xyTSR=azAG00mi-Rzq4XL|l92^{cz|lQE zG0`<6Ia5TeP)lcvAo|r*5jwpn%BZVI(AQ!pQ~ag2gji>WxnEQb(O!#QL01%{(Fn7% z)8TZW#GUxw;p#Uvg;({fSyCqKaXjG}oN@m$e0M!B0r0Mx;va$Ra~XVxP^+o)oJ;qw z8P=KH@aJKdX5WcQ?7x)KPY`yA)`s)JTu5Z6ScTB}59-ohTLcp%uKw~g6(anRFKg)0 z62ZJrA4J9s3%6gLY`uNz*nBea?*QbkEP*PmPVTz70H776gLI&fW!#=2e7Tr8yv3Z> zTrphN9gAi*=&Iz2&r5>Ypg||2APPdE@Z0Ub6%1kO672}V=>r@@rQ+rkQ9vx3OnQ(| zr+U)m-xW;Hsat{(sOT`eu<#+uA#kOyroSI-1E>C|nVFZb-2UjIe8`O!<>(@de-xd_ zCGmig_>YYC*C#qcn2Gcg7kbk?o_qh^o1J=x8VkpmHr>~mtX)zhxbpRkR!_J&wGeLz zN_+i;lKO!QM*wqCTu^Nkq8%o549bdE0qlT*()4dsRpf81+#!fTUy4(tZ38W27LLYZ z|AtgB7l`?34*!ir;qAa8;Q>=IeCzVz)?<}|(+wAfCf`ibM5V2boTq=hk738NNZ|Xf zeKLD)@kdioMCtQ1nM=@bA`YRbiW=GrA_|7%_|ef9_KVFitx!Y|=#4@#0~zk^0BK#d ze@Xem7{=U5K{FAB(-^jk$MLa$aE!1M!Cnz1ooh#XYW+w&AWS|}iBvwkdCSj%2yvm1 zgo*!Bt|S%HbVR@f>sPtF3(48HDnqLTde(QJK>`RZaGG=hOy!f*-Nlf|PH`0q3IO}f z85blmFc+ljK$_fY0F)0sC~BkK{%}8SsxrJ_(M;z><;L}jM&D@D#>n36g;Uz<+6hm` z`p(?5D(YI}!c&X^V%L_32VNz4kyGzn zJ>vP4;fvfnkBg6 zuTH$iwG?x*vr(eg7hV_`g!$hhvqY9YpcV`9Waa3aZg-eG+QigM?fFAEz`AH6gLByD zF{X}bk<9nIo3Zf`xc;oqjb(Nf^D5UOW=csK(yi<7RHrr89b(^5q@w8U^}rmn8?{-{ zL^TP;A>0mRCt84NQj`zCO+p7G`&+RGpPmecHQ31p<;;P0LTvAY=DJFhZWpL)wK%PH)2zf06EiEt7#*lHtJ@^R8d%Yy>CAL-Vckm$f1 zW{uRLn(N{YvM1}UJn3CS{c5$**CiGJyFEJazoPX+dJ~*V)KL91v z@$p1Dy1L8YtuzYW0aQXuS2q~^8MX7zd*?R?{)-GlKqn6sjDn(esCG3)*eTPc866#c zZpheU9zEMQTO)<<9uQ2+0{pB3w3IFbmz08~Wo~P94}ZPIdCjB=RG(Ijohs!o39x>f zBK1y39l{Ux%@U;D9j>+L{8uHMvG7{2Oxn?B&Q}uIRedQ2H#ZL`<=a!(BAUUM%=I=< z#Rr*`5N@2Y7JOB)MXIiY;7EhHr0=Q8(kZ(uC9Jk=OA&sym%zAK17&i*0NU=-$6fay zHwJ+DBk(Ec0Qa!84%!qY{0;-@mZ0Syimn2lvsLhJyTB(LgTHzEmLG6RJ-6ckVt+6k&gK|?bR7!e+T8ip>Avf~V5 zNkYbrrsY58zQtkvWcTKcEJtEH2Av>C)yhN}Z)0$8*)~fksq1eS2|K=&W&U7wU+rW7 z?;h*b1h?F{39aAIAH!H$86N`DAOVan1Udy7^ejHP1Kg z4O+#lV=Hggk&$^m^Q)3WNshz`tDf50#4oI^ZSC!0z;HH@r26&nYEc+bt>gcUbYMWe zekJ0wmN%4O1`^dMpV$nleWP)oGKZE2fVNcQU4TFlg{H%HY^XqW%ufH63;OL*jDL1* zEg1^Lw+TLdx?JXe^Hy{Sz+BOll>*|({wFQl=pU*EMX^DnX4~TJsqpgU^_Hf8JLvuk z17(_qG$_m9#oFsyPPhSP{p)3_dG0IkZkI!_AyR<#k8*owr{b;t`rsX?MGu~+_hF{< z>5vv#Fwe{?&4W2ix_)zOohD?oTKr%_vEUy3F`QuH7fki2muzpx-XE@*Y<8vlZQfo| zx4F`8!O0_Qb$`g-avIJ!R&P6Flwa`580H@>Qt?=?gE>MdXo+UxW+>%nEz>OGm%6$- zMJp(0)Oz)5j=}WpTh1h2)95tEhR004powfQwBy5RL77;7X&)fFq5LoixdbU=G7b*h zrOl@^cyK>t+TwZX89+;aLh1e8bpGjLi@%x)vg3XVb{;;Rd=&^ne;%=AxDxgD^=SbM zqkQ8#A}I{|MBDy#430cTMrIu^ITm|kwPbB93#U}ko$Sb{NKPYblxshoaGeiQbCgE4 z)|$jk$P>Y-uqRrU6DGlVsV1* zzfp!eDCY@`<)4$2ZSs68N%>M9o0EMAc-v= zOoNrvTCD8`9)u02sA+pIu-+Qpd50Ql*Qn;z>C9$0pY2{8 zfV(IHo2MRyB_L{Ud_3sMpa?1`GwA})Cx?Bbsfwzq3s^1EQNHG2B-7V}u9%`qnF$)XU+pK6vt3OS@sn);!mkFDIS^!yBfZst2Ocd<>U| zy~p{;d|f2mfwacB;qF+}uqM#UgW04(J+45Tm5}D1CP6jD8Yn|}vdTo%0kU;uK(d@D z%yMUEM-1j*45qyL3jm;h0=J3kmu~K{>V?+3n**p|m#1-8z%dO%#{mgT14ttXQij5M z9b4%C?M&kHHvfx1dDj8^E(A3=&N?>Yg1u3zI`mMc7GAB!NBXO>WjM-nhOD!4&0t`e zw5ti9HwJV1nU20rkw%`V?0BBBXy5MKZ#rw)2_BPYLg*E0B=1K^I|c6b8=0_xjmzH2 zUul#24xW}3zy}qn=YVkwV5_}Kra&kF6dYZ~`3(&Xa<_nOUrDiyR*rnGMO&vf=4Au2 ztqKb{e0Gc$xB1Gxf5!q<@zPpageIQL=;nW?gg{FxCkiJRC2oSG3$e)mH~Wet)X zD>WK~(4Br%x~(@4P8;j#Ce!r=vE#;G`^zU`IR!S`H6<>8E$SUoAce^qM3nlc)OlND z*OqO#Ux*|^(S}c-J{4I{v3zc990fgsP;n2b{;PW^kgx#4_piZ{hBhqut`ltfF;J8j zfT9aZN+9>)Xf6z8Z^$|W?7S(GzM#zusRo^FAzJ7VR7Jm;+!+P8p482jW<8kl#j1V# zlDMH!4hq#0zxbPA`{s>`lz2TDb8^AHzD|R{5_3F;OuXbKp7&aB_MC{HaFxBlG4(n6 z1?BqkG#$!%ec)+hUN(^$4xv_q%;@<0)f-d?Aw4c^=5 zAqe#lNdq2YoR-_mw{w11dsEeR#348o0iY4m5-jr=!;%wa9=nS`;9zlkeNlfp^Y-W` zDt8J@c@z+-qve@mb2yq`9JyTZ8UT)H(nPaA)+2?Zb7D!Vdk{!5uR8t|w12=o_hP}@ax z?}sy@Sb9h`4BXJB`R#}BQ3FNQ2T}cadTyYvwNjwU#dm(~#dnfScs`+V;|!I}d79G~ z@VVCa7_O0EWm-i<^0b4gCm1Bt-v5^2PD$PU-&w&wvf|iu4Db^(T13(<4~=P>S}YQJ z!ZwAy#Rhe_Dx3<5*EVWoP6%rzdHuMF%;`t%iw~21J^LEAOv);HdAZWQ6>-a(SZqla zHjs18x-_*;Uo^c_TiOfCFX%lqQY;M>!krxY8=ZQ_DmPj}T)6T0+9zx?<%ta*Ps1i7 zIOfr$h`2DSsHhw!w_c+|6)a#3ipr32a(DpyPQBl9~(#HZ9yHC3$kQ&A{oaeM6~@ zeC^orwuWm`R`C2W++MZbQ9+o_w7JP*i*JSP2qQH>A^5B9 z@m2VDTZm#Y@zXFeeBiM>YHDZ|+iAuRHrYSvybSpxBXE<8q|ewsHJf9TiF=K#YEtX; zGF{2xF#X)kY|I??G38*pv$;+EckO9I=lDKzb3X0MpK5U9gy?G$GBOJ= zK0}^&6f=+s>j_NGmJYec_e9&JN{{@<^4$Ylwv;o4V`%fRF%mZ7t^BkX1BHSy7D2o8AyPK}?h01< z1E^(=hUM^=q4PFmy#!jVRd815xVt^LTLF^CPmORCG>iJ;Vw{tclbPUMkPmwf5-p3L zM$oTFv+%*k7~^{Vyn_o=&MVipVC- z691mh4WQB=;)q2DD$>Hyz{2U}{q&nj`guYK53}yZ<<+|J z51)fZ$wXCAKdqbxLYxGQ z98dh0TaqFyeci-%g&=$McgKHVf*uYxF2iX-V%r4 zf6Mt3=DxW%M`-cxY?$mXO)YjKuC)-B2W9M)viyasZ(s2@T^+hIoLU;L2K<%pNy5MB zLZf4+8DX<8grhdr^ahAeKSl*A4RewtT;4dUO}{gzhE>6uW~Jci?Bz3Y8kzg<}53`UUm8~z~B^L*cT2;AZ*6Gl7`R7c5;3^9?cdoxE1l7e;S>$0y9;)cuK5RLxmSKJ0rD)+_|b z7*xGhpBq5QE?0)8Cup8L%B8!(1Ur6Iq58AXZQaj)cmnxxCdZF3y2stk-o%)VO*tJr zf6F?7Ip$@(Lo}(ZrT49Omg@^IQI_adF&~~q`17wntgbh7^_Z+ zKi{Yl4qDAcGS!&15Yv@lizk1ae@M>9XAr>;?w6qekt`bEE4ivFr2K0kE<61R2O652Wp07R+Q- zQkrcAY!;E_Pklb;DpLat!}Dsd&IL@Mt73~6c$vPZhUs40-?gf_56tAT;?!K-LX`53 z1ta%`fBMU1kY{*JpA3_Bimy!R-@Fppz6{cJtGF?IQE6jTU*_sQrtZ@wx<~323WvD_ za~Dnu#{4GDcl;rWp)ET6&gHCv8C^3Xa?i1pMhsACJuZvl86s=l6hwH5vq|hs@We!`%MRoK`$b&h03~{I2dgI3}uPepXjX zf64>KE+95A=T2KsY%A&@Yq-}yf2qMD>o$?N$K;gS#9pC7-B()!YN=Xne+9G)y%@L6 zxY`!gPs!gQ_&PkGrB&iBtnJDcOpmezj_k|%ca#1%`W9UEvbuk1@CR>vyJ*?|7BA`_Jzd<~K{y6`h`&lF7SLPa$K)1{njG zV#J9&o}ef(b};&PgYs2A+hO{2H{i*xdCXf*n1d_u$iEa8c7sVpf8CSs7~988*&jJq zd2)#Og~(3h;3yue)7k`F^>yvYkY6^j?z()OTQMQ)$P(V2w-!vq_VZL;f|`6;7U1Tm zWf(s8|N5uyW=?J6VA>k1&ghrKWf%ag81-rQq!~k?pmY%VpC)!tkQ?0&DeFg7d4ng) z(=D#tKOpy!_2}Qvg1%t4PX(1XPm2nn8q4&r6V@ym;ScE-TSoOH&1SHY%lKXYtgM`p z+~CgjD$uYBALh>D44Wn;3OA)``yJBUQBOkvBbc?vAfz_(FU-F9sm|(1ZAM?4#&- z0yGzb#quy_tbgo>oc2?GlY37x4|T9C+@EE#lWkEuxu!T^7=Q}3f7c;;n^72 z(I=U$9q-}d&yTYuX9A|gFnH8){&(3a#_LzVH_f~^m`2f_38U>f&dL?l)Xs254zDKa zo3sJG={ev8pw|Yjkau(HDqy#JQ~5Vjs|Cx#*ovGM0cXX}EbwU;AmmD8t5hwRArfL7 zs={ey(@mZFThr|{EmJ~-XuQ908a~5C^2-mMAODX^r;86Z#~0;CSF9?L!f_e)v$eQV z=WY1Ujf^5AA|Be$)&CdP1*EOf;J}>Awvk#`z)+Jw5HB)kNHqJGsJl(Lr-!D=TE6Y6 z)R^c6tnB@1Qd<%!TCJMyGy=X`^=emqL{TTneo>2?^J)*H4o7PmaiaUxtsZ67!TGc< zx<@y$|5-G6O+EqgXnb?^C3oT^ng?A149G)VhY zCs8SQR`(85NH@hWD2tOa&33#^EIK}nDa;d+GeZgHH>b1sbiV%xQL;f8_xYbPzhDTd z0!|p`er{&|bmE|8DtCsD3(*6&*76mlf7%WNi#{6QyUck+y1~ThV+i^%IU;oZjEP|u z$#o@GSLnP^9y#M}LTx){^E5w`Fi#s3E=byT#h3l3hi-1gBOgYFwR4ywOG%|Om)S3X z(30PFI2&&Z+GbCKJnfZmy5-5_LldU*U;UgdYcMgJb|sM6CHnJ2B6>9oup9xoT2t3< zwG6Y8^VsYkewfv|snRoOnfkSK8^hG#b2_k4>aClu^I0ERbvQ2LkgY@u_7t^mh4Wrj3iqpG##shSMpKEY{~eVRy=n$Z zaSMuz0m=MWL;MKV1fVSn_{*0s`OMqVprRU}*6je{WJds1xY$I00uCrie%Qu<)Nuyw z3aedIPMv^c)TD<0jmw!VLk(XJimyghADu}Man;l)ZaDgRTA}vyINzAUrxpqTfj?az%t#y5 z29GkJX|nV4AKaaHOFh@t4nz)$;X5^-BxyB6LWlhy8?TZ`6M_4I@D}l+WOFixH>L%80A}huaa?tbb>qWjtta5kc|3>U1B1xrv0Gok7hA^dt!hrZT4EciT$XVw zeg~0Et$vTetwtHexs$0#McJP;_PDONzgPmepngF|BEWOzkKu{!@kdpR1Au+2deM!JyA;t71?V7JjGkv zz1TQ;m-Oq7PBH5BFe1O11YtDY*!w44R4xGnJV><2QJ8hPde~?ym98&`r^zxqZRYzO z7eWV&1c%a9RXpt3ZbW(XGcD>TsJY1Qus3XfVBJKSkh(;`kDQ!5x4yn!u4Q6EkIS@$ zT6o@7Tj4T{kO>m8TA&XpBD z7w-TY#Kfctt^@?60>e`fM+k`Nf|vM2uXeJAFlh?`zOcii1xW){&jS3**xdl`fu-a7Q*&lW+ig!hs@wn z#L?U%16x&5X~RRXef$D43P=b4=@I{Z;Fwk20H2*g%$*CgWCQ~_iCJ3!x3cUTz`fb`J}Ojv8W~>H8sTc1a|*3HY$r3D8Nj>i{GZ;y_<57$hO)>8A_z^}29t8zhhc$5twoLx8vDf~N!YzPZjI z1ptRA4x~pSC*#`pP#{X}^6Vf6D9S*=MRX^W)COG=C}~X8l^taX+zF^a98uvoFA9~= z07qgckRpVF|BECsF%jhhXw#tr4hwz=t;+>QKhN#&-^zhCs6SJJ>esJdke~1NV#t35 z90J;ayM}Qd-jf-N+Cvhw+22<2+;fk(aCS-N8+n?rc-|G;F`_kV3>i(l0OG-*?ZEbtP@FpiG zzkzN*8;eJ2|lwR=n40~4La^cl*gc3h*JEynT7n|>~>O0xQ zxOf&an5yiv(sj*_bX$H_*4tA|*RWvqa;*^Me}BrX1C4n;`7$K2zmp9r4+|0=N>`=;;}onTY`XB;SzW zpXGo@fC3I0!h&kvPR2h{P{SX7799xqre*KND_XE{+?U>m142Y|6t0t*3?4R6J60!` z0dA>*o{kA^J-rZca`_|<{70M5W5k@mOVDiF+S$pds;XWJzwO7DjW2CV7*EPBz?+Iw z^nq!Eu!nvBpm@MYyb| z+N@k`WOYM|IDpw{H!cJO+=to&0aNy?4TJ6zfMOqkpXGs$1hRIZNQ3h;u+~6K0v;TA(4)D>KQcs4%woH1WJ}_`3}EZBk1U8nDGAWHcf2 z(wGiZDsdidW;3P14z6R*^cHSI08zu zis#smRxKFEt!8_OIJ!Pj1cIzXN)S>k27Q+dav^4bCfl0Cahj=qZ2AA?&723HZR8=L z#!g^0ZsYYk!oEIEZtaAmoi^dN;7K3fGy=d97!{McW)$s@N;$Pk&QcU0ofmJ(ypFWm=~C z8%*%bBBsdlXH7pZzP`FadtD+QTE)z<8=v=H$KVxwEwLU*-F_f}D|ns(iuE<9un4a1 z2kSQZMy7Y^f!D`V`uWd~wfU@jNz5~W=xEMk(HC0Y^W4^$;`VC5WD4A2o?tvX1S%c( za*CCPy9k2XFYW|E_aTNyrlnJ!lY^-k=5z)j);Q(nVq;(MZaqQ)hWV~ zrssj{3w0rdJ!o$Yk z^FmETN8qGk32N-N{(->{oZ3*JyPqGJnZ!@0EbWH+z%3jNMuD$#H;^>%2%_wOcu2$B z1R`j`xFSxo4NTUpF;MMQPAKhtl_2nOvJ;CL+H*mCjudhzat4*F{dcj$c-pssL<>xzqe{7n~ER#Dlf@YzE` z$5ra3jqKt-SwiCXSUGLIwAPg0*O7950kRIby|!UmkeyD7x^TwCcm0qzS!NqZT7l0J zp0*7`-;b+C%rh|P)o0n>1lpNyA-rYGQD@t^#%=HrnBJi%2R`M#-iN}&PfJamZg5?{ ze?*O%mHW#YH_bdZiJ1vzM2f8#iPJ~Wn?pGj=hc)rAt?pjYX1s|p(a5<&1YpU0-q+N z&4lhE7eI67R9BNgkP-;W7=?qO1xhY}W{qy@_c*=1y?l0~c{o%-PjT=Zm78!$-O~ax zNp3R5sx_@-KDqcMCCrPi4It;P7KmAR`VC;N-WfG&VdSJ_-1#84WY94-k}^@KeA&>gZv_lI z1RHD|T#*{R+ioKi?*@!Y_ZAU?x{cG;f%!;GRkjCF5k?X`R5RO^C)3e*)zwqYFOP8o zRR~;p1IwdJ0?W3P`6fPum-IH98;n^u(P^csNuJ#kE4xedEzl6eMe{EDQkR~$q!?Q< zVsChc@pv|J`zv*mmwYSS0|nOVHfzHq(PPTM74Vs+#_eYb@8h!18Z-VG^i7?2_zcAf zL8w_CB!T5-!D-x#;dv?S*sW`Q<2c=cKNsF?gqt}@X42z%U5R6D+CPw*z#XZH@W?FS zSrA`H+lHkXyGnEx$<@rB*L>f6xLl6z@H_xkUV^2qY>g1Lt!4-yAZ~rb=o80{LD{-D z{)2_?LB&ZChj;-}i+d<-;fCA0rYdqjI8=q;>SReFe6S{B&?zkmC6S#B%hK@6;7L43 zR>8aw563k^TO;;{GmQR$Ak3xq)iWYkG(ajaF?S-wO|xcjSH%enF;Bfi&fdpNVGk8^ zsLZy|1cQZh!DNFw_0X%*jkVF1Rs<=`v(=%WR(k(?a8H z=Pa-2te)UN?SS6h=Fiz$zn$7G+vC;L(-qoQ-x!fNO$7YPJzJH$agDIk@mN#&7wnZ^ z1+$q~b}~(Fr3U5>L6WtsyJi|W!-K0+QMgq~jVj9C{ZBROVT`>pjP3bM)KiSMf>WI@ zvU`gf_7_`n zF*94_ylufj1T`V2y*e{%N0p;GZ0Bo#8@n3Pr?enA^2DJm#v+qYw_u73b(-G`z0D=<+De!1m+1D+w6+vEE?*) zzx8D7RS?Ali~%rTw}ZsU?HBW{`co`ZuBpzt5@y{iik+_m=^y-qRs2@e3n?~wntj4B`eT3FDsha+tF`1r7+Hda3(EXK4UgiNI!f`rk(S|b_xBYLI zzjrVU$5Wf>27gEmMoaW->=>{BJ|m9Rm5Zc72%BmmGP`{;23Pi9Tw-6ow?8ufrWE6# z&i18F^lsgt0PCKhv7{qxmea1=KA;DE(^Q^$f9Z{FC@Mi4)n8Zn@-$O6bsNLPFV7#d z2=SJ^ibh#q8zXENogIiVc)J&gS)(Zd$23eeW^T^W57L6U&!?JL(=&>_b~~i;X%1Dc4WV3 z+e(dUdEbskWH0&GA4Tkp4|n8-jivu~BpNc!UF^R0@Nd+^nsx+iQX1=w9*65yM;UHN zod)9M6Vb?B=s*H#Qh2#o_19meHYp)`OyX8KFMc~*M<`NZ{3<3Xtt}_4JoZi^<91@o zv!;v_3d5_iE8P4Zj^3^rlqtDmN+zyD_4Q5-(Qq(Y4KK4V@}A$G}<2(4o9 zG|8b=1YKO_FURyZpW_ep=yuerblm~mguB9>ma915h!u4Hd?V%=|AdF+3qSuN8MJX* zyLI$uplocda1CBxruy16t-r`fFO!3VOT}YH2g`82c9Tc$oJp(OaHas3B%5i@D23%U zEQGt4GHypXk&w9D{iMIIk&5P^yjQz_9T^y{Xs}N4pwlhX+_?4^-6TbVM&)6UkHxZIbd!D3 zJ@5Beh#R9}ZMIT1g=^;C*EQJHuGyae&BUm)k{mJGa^1sknmzNgCt{3u z)lWR@5{Z+)zcfn$yXjk*VSP2{<;F#+C0!dBgi}T4&Q@1FRiivS{3a-r`UN-akyT(h z?$@XWEdyQ5;m#L15f71OS+%1-7E6ti5qq_CN>2>+gjaxjkAQIUBob#Vj&5oZVas=r z7Da-jtwfID8HFK=e-JnfoSqWHgkpWZCTv&*K01ltJbge~$9iF3cyB>KV40IDfSz5l zn8>ffu5Fl9K7Zx+_>cB=T?Y=M#>lkNhW)r{2~R{yiDq}H%%+@d3O$0MtvC2kuBAnO zP=(4Nd?{OYN>gcAlh#;pmYWz+DR@wA-@nX+C*1SRO(Yeb4%C>P}jd)n^AJX;hrVWzUF!bZ87!)WAg_N^rIl`OZh3w8#^OmbXc0vz0 zt||-AU`%sYUbx2`wwJ)UffW!&dAUI_(}Pznim}YD;Wwf2zz|H+7eDfE*#H#c_*pZR^zARh>-WX%EKdJeQ=pSD3Hn9#$A z59_loFTGHHLWeF$vH;5Gx^ z`bf(>lOXB4a%6Ap33ljX(LhX#1Rv492Q*&>T*r3)PSz-G@5V3eh^LyJa)v3-tx0|y zBHq=oT_q-hPADKstsI2OaT%1OfE*eCqeQu;iXAi&pUu6;-*3J1134BrfRqy1s~#%{ zX%?=TAil){WFJAA&IKQ&I#dS>`h8@LjMCiap_X%SxD}9ukix^|j*&ViQr}3<6FGk$5j!Hxu_mpfQZMcd>tMh4g*)@?&FCLFzKISj=*NuzFu$$zgeTA zcF!RIE(>-})trivU7t-rOwf7bNHn_FOyuV~wa9Es-FDPVa4h)W`Qp%uKY{>bAicYX z0)CKpb9*XzzJv;nvIQLiKz9TgV*wWfv}%~y5)WSia2iDNtOA5X(bAIXbivyRf>t5g z0tJfR+gxmwS|7@aiDOc{EW83$8J!Sv4zkUZ(XS|M(mx&_zY_=Yw2xQp;Z}A^y#6Dk zS>|*E9y!BGm^N1T}zo#R06+g5>{Um5;d$D}x&Q0V$=WuOCXtq>wij5gEzvbAI?w0P;(m$Yxf|irb|b=R-M-eO6w?YTN z@gF=BT_t{iyKKi8ni~R-7b*%nJNssN)2hgvEAOsPhV_&&Ji6=K;>R3_jmH^e~`Ep1c`6`1Hkz|0k9<4IylJ7 z$;m0W*0;3Kf{t<34gT*}kVaNZkp}W$I5t8I3s8lI)&mUfa4hRqr+Vg@%<-9yY}mGR z0&|7^P9CYURZk4Tgk1_d^|zN3QMW+l!IN)37WVw9>eoNIawX{U`Z^E3>ywb;dHd_3 z_rT!uLf*NJl>%0T7A9$)$kpg;qSKxS3^-8xR{wceCxq`iZ{~!mfEF^Ag3?mp?qga2 zPJ(}xfI}stq@o%_BwGJp2>d7Dd`9g6z7MKsT)a}j8+P3qWnmfu-xY`lopGg2XaLJ^ z1f;?yR0sy~U~cIyT@>}J(PD>HSvP7E!O!l=hg4CYeMn$lrh33Av8|eZ-mLhxvUvZ- zkt)RtO-(WBaGF`@WzS%OdfIr73R1h)u35YZt`<~YyvtYm*3)-W-6Oa0gGl?%I#R)7 z+GoKU4vajb;csS}hBbb=F);wKkF+@j9}h3ue|#v&a0C4W;1ktBQ{?D8O})&)qIazN74 zxAb=pp{Pe-d!qP*i&FJ^pdDxf=9fQ;XW#syUi3lYg6|uw1GK==Y68Av|BQHN+w^4u z<(QbM;SXRRQt+DXIS~0NRL&9vw+=Vk*>n~dCan=26K&Pq;$m$vlhTa*Kb*Y>IMx6E z|9=!2p@W2E9W#3rGQ+X5D=Q<%NXpD6BlDn02_+N_*`w@HMpl`HL$>TaL-;>leLuh7 z@A`lL*Y9^-|KIy^y)Pl1@tlvx{eHU>)@j^(u1`|s^w{=RBVK^m!V9}XLykNf9^tM% zxkMQjUs6UYB#vHd{``2G(%N7+<3g(MyRfY;`yWntGfL?2Z*A$!_KSR$Zm8R(^1GrY zC;Ik71=EKpy1Y0EZCl>cOtGk5F<+;jOr&mP=`=#0==F|_8Pa1{o zb6C97ByZ)*3ml8QG9AM0H+ZUjy_XZz@x#9d91J`NW@VaT(n-0ryNo2fc&^LV$t?kY zv#6Lkv_;;{e>bG$4~e#l33G@Cf)Gnpn9!(b!AmZ(@mF>qgw21+SrWC=HI5V`hs@px z_70MJcEdgo7zOrywPGwfSC?P^Bs=!1n~O}#ag=o>%HqZ7rl5@$S&Ze{Z&J%CBM(J_ zSAq%AN@8xKAqS;QiX`VO8J)}*w^Z>=bp7&Cj8I%szFF)YUl$qKr2{V#v6N0TYT54# znQu(gJ?1|RmzvYm6UXQ2+a{A~_xz2m)z8D~U(3lBep>Q6?{?vbOV^I4k_n}}gAzs5 zVm6#2Wabyci&+KT`VmVj6W{;aW*=d7H5h3D`iIW{g$YBfrh-b;yxEfg`4)IcU(}s)GUP+O-50zBa5Ss&}s1^ z=Cx4I;;ej!z^7zIR7ZuQ!ch|Zj#^|@yM*Cn2Bz%}i74t4DMQ<(ixscwF5;X^L>H(+ zxm4ef*AoxAZ=i>d8zqNG$6K561gqNHYzyXdh8QN2TWBw@sk1+>8M@9Lau979vsL8talZ4*c*`mtuI!30fwaK2@$TLsBEc z{W{XASFd%Ml?PBMr#f2KNdjK!8rCj>0hv6y)tQ&JHp8J$_;oaYiIX)jD{zi_seTQUePh#B5^CFiDd6<)q}brJf<-HC*C7CCK+Yvc{A6_Hcjpj74h5%=yLuZ z-x4qhMZah7E7ECM=2^f-sCtp7wiG%a@`*iqqi&k+97x+p%n=b`)PC*$Dfu(OxiqyI z5`|aDc$-3R^@@+vflAt$-g#$Md*Ae{>=KK!j#0kgcUuLs_Z`JDc0435Z2r9ihcmzX zE!0Z|e=@fY?-@D}qUS1Sr{X5dU8sf%^xpN0(Xq~6jVBAwmE&k7&etYWrzhWL*4@1O zTvXLM$tnf6uT)tmHe6llMfsFQP-w$>Z5tMwqFTWB`u~>-|OqWSi2{rBB_|+zbZ*Ab}H3Qr@BFjZ2qcdeR$^0*SxgF za=33=#^kt>i?^>f7DaQNwElcpWPII{cH1RHKVF|(8LMQX{9|g&{+jK+!fdwkRRgNv zvzxiEW$VM7LWN@Nl+H!yNmFQtZu0ydXkjLfXFn5lb4TYlCaCDP@5sk27EP{EVlgFK z0icFqIPM1Ak(*FBK2)mpC$Ay+6|430G84(0(=61-<6Q<~(!Gcss$%U2PhsNt7dUPO ze6}nQ>vaEiXyhB|IYiIk_DQ|WawmvsTCDO7@$EYlCN0}b!ILHqr%>yZbWB}#95ez^ zQQBF{y=}|g#W>*QX)!B}nz>s>=pcESG;a&0ikGg-(_a+7nbovonct5uYNxjv~ zzTGiHSTo$hMveM8S=|3)%5&aeg3IC+npjIYfsBTs^i;4L%W7_aj(?od7B*fOQzGC} zEBGiWzmk+KK8Udpf)1XGY*4E!b+HG$Z2zE7;KqjZ`#)->tCp!Zd6sqohBHt5t~?tT zPnHr|;kA6S#yKU<`-52>rN#Y1r1B-IZ|`KB)l?3%Q*y+FOxAxjTeY1fUOm7*ciKtS zKv#`cCrL*;S0^iIBncfOoKk|aRdE!3sgslcw;4$VCnvW8ns|2F%6>XRNC)`^L6IAL ze!9GWZSP4^+%xJklvRqb#vki29f)J6e!>$?J>-|zmH6kQF9%~d6){>plHiht|6P;Z zkaAN>=B3cU{a3=@YC++CL7O>VpvzL5`0Kl$Kg`}`D=gT2^m9YceIFZ03e@X9CiXkRb9A^%iY`e!DX^ZO9?1juiFS=_=g8ZBh z>x^g%YZP$g)*=MgGP_E0;ox|KQK{KVvYpO7u<@z{s7DLhO zU-mpbayA5;;0g3VW~q1GRzm=?X(tvb$P%>lFlnw&r|O<69L$;@;#w{vrs3s^AV*cW zpZr$#XFJVJHB)0Yts*3CT)U}+t!QaRGq14TBxK&FSH?kdiB^*Bc02F&kmOXaBQKd! zvb0dm%^^vgj7~FB zt^s>HECBUGSh0n0nch$Q;^8j2@BFvk?=D*O;kLS4dy%RT@ljBiZl^O1_eSPYhoxKn zt+p(l#OD`Cw{=S#ioJ?{SNPO47|^I%Xl~1=$nlIf4f+Pd@5OUT{Zi+O;8F`$p&88Z z|HPjX#`g9N^E=A+#XF&7e;WfcK2MMr2(uTJ4tq z_2i}t^Vw$a9xC7Jx-j&c4%?%d*2ZDY8I_Twep}fj!P)PYxPhkJ@f<3 zw6b1sEd8A|R`olTUixVNuS|Rly9? zopN!LO74Z;53X^W8ARF#5lPjfBMxS5T1EvY z0?P{G`MhvL1>L%e2HY0$xr2hm>)K)ECkqzue_`f6qZ;94wU_irc}$fl&)7HeS%|cD zuV-3!S6A?h7iZsGJr5s%P(h+Hd+fkX3GxnoQ`0EWLA->Xzt7IFx5WC#j~@}(@NDn< zQ;=~Q0q}`QxFWT;Y#>}Pxbv!j0;n6@i4Li7LAC4r>pN+m}nn zvwOV{#YP@r!y2$2*Um3iYERFNvAWZ}jx&@EN!Qar3K>wXs|Sn=QoKXJ#!!6hv0JX* z&_%?C<)D-;awLdfzkYq}W3O%lP>_3k5h*O_H*t{ufe06ikf2eB26l3Cnv;WT@E>3e zJWN0OJJaT6={NUQdcB1+d;`g>MHpJ3R<8bf!(NIjBI<9L_sMiaig9$Mr0f7 zq^Z*fv5!T=#0mt>LQEt(;C>0K^PR?P)J=(8U1^r?AN`M9SZx7luY8p zaf*l1{}=`Uct-_;h~(Rgizh*hBc&_9b^ZSS(CAkLVgORqF%YwBCV37ym5l?nw~0pm z9Ea1)x91W?z8km9gATUpq*AM zIjo7jG-L0!@#xHY@%!>V_QBtEIIr~9IEy`R9yyJ668{+)c?A`5ph!+`N}jlc!vb!n=4d=pb<+be->Y>H6?T=mj8e~m_D|Kq zBGr`%#U~=tsUadFqSu*|lcNHt4bZoQ`Feo2fm6scMpZ>Q%Sx)8NYGtw+nB z9?lQNP$>y=I=V4VZS`Q31nHU<*DK?vxE?1s2~e23wrgecIXe_BFpLQKL1smIV3*Ld zE4aar4!`E#1ET~ad~@J?93eu%6!m!Psx5&+sRnCem9CqNxSeyZWbmr(5SQ_-21PAX zB#Rd#LcGAG0qYP+`j8$Eqx;zY-D~|1lYPBb*BX17i{59kAO4N~Q7?7a)|)vfeLX7|W|!(xWry}dyz|-;n+{0`egjSoiC=^ney;In`)QX-4Cz(r4+K)L zUXZ-`w;rk9scn{&mnWyVfcorDt6m^R=q?!ckt%!bpNSaijoQEK?bPu%5v?6+se3f= zVDD`&z+ZaXVP$yr=@UIj`Ix%Lq3;0lKkY$bk%HPiejtU1B6=^>VABN@VyZxpY_)>%p<{ zM)8b4IPQ$+&^v5?nCYm*Lr4fmHU-c3B?(!qX(VzPj2G|wDvx~z_Ez_=UoQ`9U}ZJG*UJ58fAlC8 zK|@@wS|P|PH^D*~2gQCweLn!o$&U+dJTSn!X||Z~?wdQ&^^^vS+4KeCgVnxzGMyj! zXuni;kFX!>UuRO_r?JD>df-UJM2>xkK2f!6sQjFPdz+4FI?B4t{O6vXM70K>9tjHT z6Wd8rYz1X;LUke*^sk=?Ul(FaTOwL3Fsvl?elBGXn9yLrb_y&P){_YCH%Bz<~A8!r;zft z;KEk&T@7$sxXz_~`~)Ic zZ4)TKf}1-6Xk)+=LN@L>IfVZw185|~e*E8+0ME$oNJ?4L$Pn|KY+oNX<`n$I2 zBGvO3c9-!+Iz37oPxp{x%@-eHKO>L`WZgqLC{SJ$bs3TSCwknCog6D2a&7?F;mZ*w zR-ZAVbAf-x=a9x=`QhHe8ek>gct=3p77e~87a2WxOdvG8gJ8~3gWiqsMUhD=e#CxZ zXlxMW-x+J;nuh02Oz=rNJA_bh!7Q4TqMfCJaG5-pWh-uADoO_{_)+ERa9&; z(pwV9wbLG7jiOGyXXuG<;p-hjr>ZR-dM(iHo;+D}Hx30EVG`E4{wp`>iTX@+z0+)& zQk11zq6~Jh=dih}gS=IbM1}&c?^Zh$m*uq98gBWu_c>MRvb9XlB?$O86+72lZe~6| z!Ys7xd4At5-G1rUr4547%7rSq0_svK0zNy)jv-~_5Y3XUeYjE`Xd8C~-8YSA&;Dok zEhneD*V?w+VMh1OoxA@f#vGv|lsYljZsoanmMh;Y+B$LO=g>{?fc#&1F*dcGX}=1U zJruXwx$Jw)$koH%b46l3$o#8% zL>76-U&KXrd?G0rA~+D_EMK&6bME(j=r{AC6{8_!$Ssnh>pVNE9^QUIzZzW^Xp~92 zo}ogzpVDt%F>sTZgR`f_RjrAHgee}^?1mgSVFFHoFO9g1l|)!Xq#2Q)18xNo4uh&% z3e>0MNZ1;x5F(+#0>cIY4b5N%LINBR#Gy&0hl5|&!dtDR3^+g`$!AD5QXSB0886;B zt#Gh;4VrhyP)JS^vh@O=WR_6Ed#mGR6k_#;FKH-R_#sYf$lhvzHR~NcOUF)2VYZ{8 zJf^%GXX^9NfUQcuMc$2~*j_E#vok*sQ(d`naeV+?Z}1ZBC z!HZA?ugQHt!fng4$7oEEV}J4;x8r^IFbnfprrXMJ(^%>k=NC1sLUzmJ);voKkI>m- ze6FClVDx6C$k_zIyxSG~>hy_GUuU2f=jf<%MMpVED(?4P8kRj(f$tdSe0Y+`fuI6h zp}0yNbNaIh7e zs&3iSNcj4Wv}wZAo9|Cek!?;88HQQ&A){B(+KDr%Wp#gACuOc+m!3;HokezX2eT5Y zyOSvO2aDR-=kdNDMcSBB26%|te-5ijF41HU0pEJE+Rkvp(5}!ksxO>3(Z>^yt<^qP zGV!b|Hv6~Xl5t)P5PCnT^l!5dZd(#9hSPtQak}-M5YMemlIjqssN9P^mtuK&@ar2z zK7Q>f+9-odBT|JvG&K)Y6V%+7%HFZC)qEOY*A1U4G1U_;>dNE9b73cb@9w`X5MgS z@$c1Mq+I0jbfPPkTa>d*86GVj&(-N0;^8+Cq^-Yvt1>0-lbp{Idc?!~MQSrBomy9F z7s~WJ4-el(64lwwPIcFyV$QAT;ucgu==6|ryY@j-Q^4_<{k}6R%qHf)qzcP@t6hTJ zaHEG;f!YRs8EY`m&B=l73G3!2mYtp5zPM&0i zMs73Xv#XCmq4D%8DbXF%+4XrFMV^6&WJBy(V;2D#z$!W>2T& zK^tv%2X$xULCx{l-otT+Gb3blBYp&zSDEjn$%^ob>0$TzF!+~TSH-H~N(XmA{sXmy zt%ZJ@pV@}sIaT?}Y%={lB@!O$#6*n9nc4@xU4r(R5$`GRN<=5A1V_s1Aa>_8B5Q#3 zEb);;aqC7hMCbr_N|TCv+=p;X8sA$eXom0h9P@(XFv71vdeg|$N3t~6T@?HK)wuf6BF%OERrMsliAl)0g8Ki5^q z^L&w2G_d&?fSR4-mNq{RrcMOg=% zvh>`Wr#*GNIxmP(<+B+v$liR{#mb=O;4K()e1L803M9MDXSVT^9A8=9=k(b7pzz+qTTC zN!+HNn&;ZIUH@?EjLy!x)_1;3TOBq{f+@g-@jmz^?sICkbx?TUDY~QB+8>)^^kNb< zROa1kqMkPEIa4))D^;xY?sP0kk2xNlHLs+c+;YpB*2r)yIE=D`40n>p8dhy#hpyhiGTHeOB3C>_C>nA_G_Fgp zN;i<6vkH1S9;cAu1{FebsAjkFd@zclw#$hf%NBjJpBl?(fA-81{H)PE;nyX)O8sWG zug6TeZO@Red=yNN{jGE>9WDQ|Igy6`OITsb$o%s&{&-ckGM3__2T_Lgo6ey+{?8nI zB^RVD6h1Vog>-SdspQZQRIcXI2G?W0oUn@!UvU7u72S~5fIFS_=s zdL8e>d@0dcT|6b%uJZV|>QYZCbyDo%SgZ$;K%zx^Sj>=RfzYu5n@lSq(R{=D1E+nA z(sfpm;VI`E`cFLW^Wfj8#N#mbV`_NS*Rmqj`m`&o?w=*Jgt1POwRX9^k)?ad47jJN zH+49xWN0i|q)v54=1Q=fn82a}53V`P zz^0cgBiE-mY(}!w==GL)3hSr8?Y3h2IQafLHPh7#JAp}|fnw4KWk%%KTdZBURD^qm zj`vu*f(}!FV#{T&!!Y)f@w-&t8PhI4k3TIRiyOItj$D-&X3WN9Ba zr{g8Tb)P1;p1yvu>(0mpV@ChX#^<1t@G#k=rMC1#(+2%IdD&!N`zot24;kx6Z`ycT zUk^rfB*ABD-BkAh+XLqJe5C>LuQ{W2G8-LPpLP8#(#D4sdHWiq7H?hsZP49~A@X=g zQO0qNc;)f^>i7wk+i~cX%kCv3DxPvaa}_>C6kK;}G?1b$>nqM&)pS-V(2l{5>e`;Aly+TzEIHYGLI`cVK*`W@%8%o{^gHO_7xRlnxg9yUIRbJLt;D z8d2r6Li@9eX}@V@j90qM;l;%A%ZHc2RQ}!XoUuOctKyYY>jYORB@sxHQB?{r_O2UW zdYX&!>b2#RoF&8U46(2oa|Igyo~;%WHm}C?-+g4omQVLcaD3V=+||I3sd?_nnZ}XZ zu-+Ue3%VY~h1=LuNZOBLH=i9LiQjO&>EJj|w=K+@#o50)q*{Sr#B?`GzFuJ4-V3&~ z#1Z5O3+bMjpc>P zCW?yG@lSm7_bll+x|sFM`c$rb2m{NRns*f~Pe)nqmeU3IJ)9NYpZjGxqA2{%D2n|| zG}lq&-&~QJ+o3Joa9u4LGxiwD9^!6w>C@uJd`ZkpUXFpivqT3q?L~f#BM+{j>x*PJ zFAF*nvc&e;Q$Yl%%F-y>b+~i`;~~gXDtbP~zNqzLE*rDijo^@D{=Y8)P92}id(<(7 zwZhha*=&45%rO^0C{DMF@_KUL%tYPw4$Z_L->GI(Sk@s~9@2rd4O=m}5|1htv^X+x>nQHh` zkenYm$|tQfMSGfwM+R;G<4oZZI#rm>B_1o%~zbde&(6R%EMcVVYDU#wW*G@*xPVN z&c(>Q;uSkfNAIQ@aD8BaHLy=WxXyMUgmINO+LN4*iO#$JU0am<@(KincdDMbE&VoPO88g%^)!zk#dnqq9VZOf zi$A%yUbHkvH9@EQqHI8`>)_^ej`40}O>ePFd|Yyw&VWNfWO7nuKkG>8df9Mi|^b#_^ATGFTnAzz!7V4)8oYX`i~K>2W<7X)OUvDAmqZ17hOVsJpI^LXLE?3!EGY6*)NKCu#ANP{P-psf7xR9?U zoF}1_tZbe9nD#pHECsu%JQvlYvlFs1GBN|0%7@wKwSYsdKlioy4@C7sq@*AA{(VSiNa$nJqO69ATcbSb6(cNdW zje=k3nsRR@r;dcjdPT+71FNsvK+IziL(t7;Cks!IIe>(h4z)nmqe4dQaw$2=MG%#KZcAo z3gI8b9&tbOtS9!ql*)%mN&3XGIZxs^B3P_d=j zHf&HIt-$15K!_+4st%~%C@emJmnieyVvJ1nMECyOh{fU6Q^r2Uz7!PZ215ZmW&4TJ z-j#SwQgPKnt@xR$l$oJ}O{|iV$o1=s4l%~3O9CdGjd#qpGGZM$^N(~+&qStj+^^4g z{hA2Q^H9@+kE{KiB^GB*uD%6*V zL9dJGoI#5?pQBhz1WSP_34wbX{oeJ_9cGB?(Y=x|AT+9ahDp+)MDWVuqZ11W3u;lr za!Yj*CIEJ_a62{YA6V7AH;*>ps4%|O3GCP1dFgw2S42vgM=Ie!UbGfjsD-#)QGUX zdaKV2DZiJ=_nW&@As%l8*$NfY%b-LB)388HO@biBxk$A%>X>)$c%TIdx8MvYUb{&( zQy9n_XzK}YXev*g!IvFno*{jQ;rr&)xLs8y;?rC0GV+m`!)~UC%|&6veq&nR*ZgGo zHx_yd7sftE7DEMtT|5J%(aDgqp%#0t)d@-G2nX)Z1mM!ipPo05nCyuLQ&@^$E*?(mm_Ur ziDG54El}PovD98sZ+yBBo=}a9mdBAQK|QDK4|Icx`3oRo;=^@*C`*m~Uv%;qZZqsd zV6fzkNW>yfdd?Mf2(Se!kR&sL@EW1+|AnrCBtLHodkS&9$@Q|dR&g46&AF8<7q*nx zujuX2SH+QwFd9ae?>S-#04I+D%9!T_!0sP0fIO>0*cMv{I>ieuLGCMmvmUVpF0ic+| zp;CPcda`BRGDsXRqQ+l+uXsR?G%vgR`XV5F`wU3Jg^>i{%;I7aI7o>ZL|>CLc1LO!8AFzF_I z&R-Ea$dnMy;wC0F3cY_<=oD+V-vF={3gEG?8swVY%I7Qxc4gY}>j<+2X{rRm6PPS+ z7k--frTA{YFpP&W$PnN}An~ZrxuzxhkVpf-gx_yGLmEZLW6Cp$E!S1iydOHBDw~H4 zE91dy`4ZM#Ri(v{luz8*2sZ?xA*oLzxa;`H`kgs z(09li=yx%wM4%#B2Ze(z#N@0#r+HO5<>f3eu2C1KKjs@z$!EFizrFb3H`D)A@o!Kv zilPw2Ck(P~+z8N62^{MSR}Bn^Uditb72K@z@CyhC@OutzK`2zg*1*9jV}A2y9Ihe4 zE};y{sxLiyG(kT96*?8U=2D5!H$-}U4j{BgTB9f{X#Bv%w_fYINNX1j-7W?n72CMg z7;rmNC(B3!^AM5^4LnEeOx?c4&~B(@xT>ezPVXm4k=hBF^idTR(5QsmB;&zD*DfXh zuvI0}PXHB0J)>Vb3Mfmflv%56+j~GP!jTD$JP=;QiQfc|4fJc)wuf9Mt40rmQDcy# zp$tlJ((ZZj|JKbzfh(a2vVp_`_B>FR4GrllJ?26nm3JI^{Krv_gCEHe00*>zp9?QQ zzph!6H#H2JehBb_Pw;}G2rFRL2P)iok-WEY2p1qm{ROWGF$zgK`uf}MI9G)GWAoDy zGG#B_-D;kyUEPg&A1*xuur+z{}v9*)z+ULG{Sl zpE>e-fIfL{Fy0nzvDCIRxx^=UUa9{H?IQnNs&LHCcwVNiB6_X&L{))4^@8U&q8ERn_# ziv8J@ab&~x?6-)7l#i3J_8?HkIL=t(d7;RxFTQU-3QeUwgO7kinx z`jwX|^i7TOrR=TPlf_r?t>={%?d_xwsh;umImqs#UdUbvHMVL4@b{C&K$FgVZ(9m) zN}TuX1!FSr;X{|P$?yIT+p3zcZ6vl+AD>y`83_#=sZ>4H#l2-M+FHJErNB~_<~M)d zJYehRTs)gv9P1clZ?>IYHrPMMqCb_r9;K(f@U?2# zw^M=gg9?L>5=npm&s`A6xussj9tZgvy{#6?j+7~$XZ?~_utXReY^Y4%zLK8A1k^aZRfas z;f-;@_SPEN`1h2d@WOAb<9#zM5s&7w^;;qWdQTagiyO4sp>M+xxbTZ%jjpU{RSy%7 zdpp<4I>-rFbWh&*RSoOWTcH-m@R!m4%+rY_%<%R*#TsvBFVZ=)SmGAJxIklCU_Wqh z+WCm5 zhU@66_Nim=q^hQFjH+qchA@)poGuBG+OT83Zx%L-lkBS<+lv_9t-4Z~QE0q>$~$NX z8k?9!aFlwEljFS7gr1zCk6rw7nV`mt4+Bp`VFcBKTYeocj=xPtWl^|n^)bX1EKMlzI+qWS9S7B^Mhe2MB zbgILRa})1cdO#jk9oZ;~qfepH8h%=oF7wpKe>8zhHPUo8qk(eL4NtVtN6x+xgp*kh zn^jJvZ{qoGFW=(WNZ1cfyZaOktXpNX?awchxQ_a@@qo%2EF>aX&mU$pvpwqLa)g^5 zo|tZJPX5D*N4g&diEYcQHV)cG@%Z%&PVz5V?E5)IW6_^wzI?kPlEE2Gn66;O?Og24 zn65fiTGU?bWX1M`PF}Q`uF3Iwa^5KSha-V&j%+Fw2eePfc<_8sNi%8w+Tej3;{IDI z@PX^nJ$kRB>7I(dB=!^5G)|c5eQ+_xOG9`;i1k%MPJ0~>L(VbC~ImtgWLt8ZA`JO z$MQFZ>grMPwRYjmyHQBdMq`(O=MJQ(ig!9O}fS&BFaE4_SoFO zF(>G$U)m>@2OFMlGfrXYv9vx>L>1`+vO;^)hQB*@D6B`uj?0OCyIXovz;Br0&Z=eM zxJ87z@Hx5=3Tr2ha}(+Ayo<3CjwOPa{no>vOG>V*{>KCw^Bbcy>J|rUBsDR{dy@Re zoK#YI8z^yQY{#pp53_U{}QiHzkh>djW%hSro zMiFTRT0dv%eQZ8&mQ_f{E>s$ zU8y?!tm((C0h!l2=jsPGiA>@f)a;VboY#L+l*>a2aZAUpQE3mVrlMTIUXK7q|2XV+n%7X_BOR7EMCwf zj>-5kvLYJh+Ow_0l1qUz_@iKDo6KGx1|^2`73}y2vzd*OO-4QU-&bJp52lEl?G79& zmkw(Ac=7CBZb>U67Uu6~&3Gapi!4<0*U|OWzPg4(D}l3%&r8LMsbJL-g_}QCSD4(o zOfF?su4J0F650|nRE9WV6Mge17`$rO&(7@O#zxX_Rex;4C1r)8Q44Yx-uLoq($t+H z^&(d%lfVEah6qyCty|QTC1DC&-tl16h;YJ?x5zaJW)G{PJrdL+ z3Dtp-dRlFPJa;0WofI80)5UHWG9UNfGu+HL4gPkRCno5qB0l+w(xqccP4^!^Rh{kD zplz&0&qdyE+DD(;Px*OW26IFGbW95m4Q0zvMv0522!$Yc?(4Fnx$$pcdf=&^Gk%X? za9?eCH+1lIK{rGi9dBk%dko$c2j|LprAww2#SYzvd4qMuxFB(*!6cbz!wpR}$+Ln2 zJqeNnTf3#Ef-x;=VsY~jrW2D0qcJlur=Gwu8>?)ZJEds?e=f6YKA!Rk&*e^06L$;y_L z!$&=v5;mnpqa>}V!M#<{t=cwGg8jWbm$%(k>;r}mr#LQIc31S3VVz;DX%NeV45Ucq zN)~$VHWdWNU2EC340@{JhJv@rcb_TV;!j0O@37uIr=voJ*ut?W)#2NP-w)rqMMNQ^ z!j=UGK%)dcv9Y7KdP-y;4`rxMiEfgpMwKvk&(cV?s&g!A0r=G?oZ>5W>=iOP>;ODu z+RzVVC$F6zdPqykAuPt=bD*+GzaL;@L8ilTVO8QPc3`SLkbOag(=6~kj$ZxzyVLW5FWTUedS$=V%D zI=>;GT>ay6BozM~qiG{ejjv)gk~7t81^P%ttx6>{iA4+em_>|=Xqb39MUj8OCb;oA zE3g?d+@EX+m_HFcmzu<-9+ipyC0XWFO6NVLs8M(K;QjsBIzGBDrI;_fm7O#MQdp3> zAG60Mvd33*sYN~I!B3vHtBx;O4+rMbqgtwcj-Oeog;ffgmxR&8r>>sBP7pr%%TZ&_ zhD1kjISJJ9j+vi%Xh5;fwPmBJ`6r#dJd>KlQjEH)=j{p;=KFz9(0<;FovMaCE<&}_ zbIAArr8u0WIi6j44ZMdGDVIdyNoi^%`wj{p35kglP~B*R<9$l}`?qgN;8=JWA&usl zNj+qhKMVL}Q@=ydP(MWcx5r7T5q>qb-0J0DehYcG?d13Y;oNZk{mT%`8o$>NBLra` zpMlFDzWy&92CgPZ=pn)@MuK7r;WBpl;EC-M_dX06i6qudL7i7yw{NkvC&9ctxJYPf zT?3?hiD+H%TGc}0ff2`j55{p3WB;X#xTbShhS}?R)$b+K@mSE z{(niBMtug!S}^EA5j%Z7ya+K+?qR5dpe!V|^nLq4vE4~1^h62E| zE#zD`_Z3?%o%dL=!4nfkO0kYl8eLB-KWi*ZE<8L{eei3_u(i_YthYiZHAnWF54Eg7 z_yc%upu&$P`M6q&S5@0r@01>sW)gLdi{2RxVnebTd){gxk#VTc@QDEkJpf#eg5=ow z!iSU603dHfl3OPqNgcZ#cML)+5%DMjT!!C@hqsAYPi~DEaGb|c1Lba<2t5}`umcg( zukBxO5lg=0&ZDq5%Zd67B!JMB`!li#8XSJ?6bfQfsAA>THINuG>DAB2*O2Vdne-q9 zV4UkiQ%J7{N|e$NS=bF=Sz(JxlZApekJF>sd3=oL!-BFDGr94}?bA*PF&V;+xU`sn zGpAj0`%XA+CNU6At3FVjFlm-ue1tj~F4`Fs|3*M5;(sZ-|3ilOpA_5wKV*pddk?&d zMytG6HdmBFPrQbEd-BD*XKt98fn4?>z%0fgySf<^Yo}01+9B|Fd6E0}?Ynou&dvEx z;>IY3;SCqPY%T5PAy>ULFM2aUuhcxBQ&tS^UpVfxdD1Cq3O%iGS-G53X~p_Otc&IM z53rm0nq&KHjELQZXey%zd8vaf&L}PmtwDzQ`rah@(mtKTi>d-lgv$9Svlv(+WqJASImG;J1rvD12p*TPa^z_}qjb6+|vm z2oh#N%W6h2^-BZkB|fL)#@QP}rwX@tB%c>{oO$q6XzAgxx&|GBPrPzZ1dcOAMS0*{ z?__-2LeA49DLt+*-(Dt+Nm)H{??0^a>YugAwWsNSu`duU-2X;?j`{e1#7DIAxd0Fa zk@fs14pZ7@1ax4J!0^Ec_6Y~YRpd`dk}t$uB3kzla6Ta1heo8DW4YYQn~ps?JXq^9 za~X%i?6YkZNo8y4W2G*n(b0qNC*^QqmpYuy3lylY)W*r5+c`;|;bW?<;BxZ}ZSLBb zH`@i8x?&HeVzH37wPWnhZgC)Csj!46>;l^wnbttnWgb0P_9jC8ha@43H%fveN|41sX>N2GBBG3y^fgeYK77PhY6}<7049QzUS;2UOO14wP?E~Phy7g%CBB7>0 z7BxYn(y&tU2?~D0^HkM&FAYBH=!GiI!{5I~ozu)iJ7{S#*ImK`CQ8RGo__C?tfpzZ zzh&7x$9baIy^aH4C|ab5udc7eN2vD}W3hj&e#N2{aIOQm$Z^1gBdV=JkGZQz(H@C5 zgHR}OwI|X@4GDC~sHJWEe>C7o++|02BYwfK$AZ$J_^q{=a&@n9T|B8)zXUdY@=Lz@Wo_W7#?R^$0T@%E1grYivgk zfVDmO=Be&66oS)0atxdSko%ARYLsj8;OI}>(PvmH($6eZoKTIhQI-tT8R#y4)!k)I zCz4%j^u6=h;p%dX0jd9!Z5jIzJT0A8s9;^|-EvhLs{*p=GlF-}!(JL2Kd$K^;oiD& ze?|Q^ZzG8bOui6bABm_7SD2m4iJ+u~uv!r_*lU$Y>+$+Jal4M&v`N8lU~Qt%5VlV`-2c+9t@B3k%AUx5=?rZV@Vt5FXmg1L2_=HX6wj?8d|| zsp=V56_WJjZEa%snk_GK8-G1ZZC3D@wMXR>8~FW)4>X%8aDpM851Z3AksWbwYeT+c z^%!dSW75?Us?T$UiXEcysgSvH?0OomTh%l96w~i21eoayXTb{W`z)&`pz!+*&G7_vTkv{us@cYM1#H9#-BZoter`_JgcY5L zrKk!E$c@@FIdjIqNo2^tiYXVJs21v}9-~jC%AwW!3R(dOFG^iB(HRX975YnlYV1Okf8qxD2})2?fu6u zb7_e9&Y$P#z7j?eHJ%(#;Hjr=Jk1@$8m;?P>(@a#m(o|-XPw47z5>j4yir+fiO1pY zl%{MG9~Mt*<^Yl;t6ny*5XVA@5?%9s|zE|1RLY&@w5O{aq-9(w|UawI5uX z<~-y>A?93uzPo=h_XNpqzT&u(oZjZ8G9!R7gE2x+$s%(aBHb^5aQnHg>|$X9l4XWi zn|kbq*J%0+q?nua?W!pJuD(BhIz6kAb}L9d<8*fE%}31J#cuHhXTFP;8J=!e z`m@T(PQi}X$q0;2vwsxtf-S(*H2UinH!Znu1UGa8tasOcm(RUR5${od$oK#fBRpD0 z;jodIn7HY(vm|a-dV%TZ(2oS)`?#RvUvB1TdqCyy{!}qzhZ+avYMgAvmD58l?sxS2 zgxUnGn`2{p^YWI4IuAw&Z8Y`Hsv~MX0;84me8SVl)3M8AfmP35PX;;eZ_CdpMc2`2 zhBX$3fdvWiB>oRuS*K5bSvwGJkoJtHhT?k5;p|`PA#obu%7y{;-{~V*WkCcOh674&{BYPpN}&DTtKlhI{QEI73_Di@J)-tR^ZFu-3=rhNFYfFG`P?QY5Sy$9#;-vgGcb6 z2SOar3?h1BB{Y0sM*s-%*(yx-FbR9Ly9;D7p8!P3L)bGI})B$#|RPftKgB#8b0BSQZxZZA< zyEV~+RdsO^-u@O-fXKVUK7VO+udnPSaFyO|yab9<$72qamoTxUwGsv0AYEYsY`FaL zK|n3~_noJ@GOftpEP>SD_r=9MOp1Z`W%O)pGOt-$F8`h4RdfS~-Xvs>^v`u?MoPdx zzbeB=3>U09yB%kCEug1>^}bIl#u3 z<=(3!)$}7{sy=!gjtiGy(eGgK{uQq~R2xtQffz4Gfejx!Dcu1=lT_qohI9eVnO!*g zq}JCf+rt)#d=qYpGbqt?sC(ablwx!+(ksAqL@ zTEP{&1Da!t$os+s0i-u5uZ_|Xk1I)4A9_r;=S%(E+YQ%sO)!Y?4u>xA_$EHfQnh&y+QmRZWV5vl=>b;mIoVDv$CfmI9jW5u8gdgGVer;%tGI8D4$ zhzmygYVby$0CV$?haU6(A&4hF@-tY!kZ7lbq$K+{aQ)28&j&51-6?0b*1ZDg*TJct zPe9=5^xROHOXNBeJlJS$|9YK!uX2{-tKLzO zFOq5D=B4=KN#2k6QUGB&p`o&ldmvu+`3g6aBCAybGtugwvj9w zH;CV`f0@BlKCU`f%~ z_?IHlc7&uztQY=wSIM*D2jp}-W8n;zpFwsI0U%DPRNVtsR^;Y0`zqA+n^?0IY@~ns z%4)+$!RY|cw;24_5MY-Hr*oLIYA`R0U_||e(XRrZhZ`8f`_Q5Y@55zqJHzpy@OF2` z!%b*1-#jS9Uo1z`y~EEz&vMx%pq6=qK^^|G5On=>4yz_WKP)H3W9mZ!INW zOE+MpKc8xkycoj5YKDe}GM(Tjj2ENqf#xK#{z6Rsz)J9A*K?$k&2i1(_K!rIfN)y* zmaKQc$^s0^w{OGuzzzWzga7FOE2bfG`8bdp9`Ck0a$A_!?5rcwbuD_aQIO6JgCQKUN1STXcza6UDzD zg}*cUkRuMVbQfVj%R;rI7BFpR|NUy%WdEP`uKXp+D2lpZ^I0Zh*$g&XjG~BW+U5*n zjhUL|u0fe&S_+y{jJT(g8s?H^ism+!k-4DM7)4~6oRa@o<@eIWt2L&6Qa3X)`>rI%5ml9L955!A8yN|J zsp1YZ)~zvnVYtb1%D(T)4j$oq&&sx;tF1A>&+i2`eW9gPl8HB}$X{DgSy?ruY!l)Z zJpmBD%J00J0MMeneHwS_Lbh0v(Su5zdUw!ai=QJp!$*iWCSBLfS6JED#6vA}B7c== zb6ApDTa2`~ahH&k6#~TKaZr-^0kxhTEiX@@}2$dlJ%JFV(! zvSgH~b*+yz;EN>OHY*AD@U5jkw(zs3BFYG5Fq!Q^D8A2QfaE2)e*pn3=5flq6^1_{ z#Qw6?Inpqk>>*m|goXo56}P@=nUAA=@DtQ2o30e#iSGIYD%{P1-GF#FFqM(!zlS~p zu@*^bp{5I)(FD1R`Zw&XPH;rofoQ7QCG_s*Y;>W?(+qW*^iJ+=EF+CjCqGq5^?<^zjVBfvS! z@2r5=#FtnU(Gn* zLr)};dDZH*6&s@8HipbChQ&$orOPBqK^Z~;P(iCkn)Y#k%9kV#LZ))+5~o1LO`S{` zR=`_!{33(zE_A0^DvU&($Bv*2XwrNfttHr5XKbUvjiXW_6^b?FSZK!~C9D;aI;GQs z{mOA$W_5ak9>)m;R#30khi-=fe7|6+D>T6TcpPUhyF%H zO>bWxD{2kB!6w{WFuaG4p*;%eL^X$fY%EF)1rP++u0R+^b$kx?^_6=KVT+yoXozPF z=ukizdfxF!<8#Wo#z;C;&x64K6(9G|JEST*8 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_36_1.png b/docs/images/specfem2d_example_files/specfem2d_example_36_1.png index cad9316c483c44de16abf6c0a9a3dcd5ed5f6e73..070f0e6065fdcc9623932aaac62fd5f425513518 100644 GIT binary patch literal 101255 zcmeFZbyStx`!BjkDWyZY1QaBck_JIAC?y5ylvWx^K^iPXr4*EIl#p%&1W~#}M7l%r zKGW}Sobfw%oO8!G|K4%N*zB#qTI+r1oX_)o>fPZQYRadH=!q~G%<1bYinlQs>_+rO zfDhkUi#n|U|GDC-r006a$;#Ek^noQt)zsD5-pSS8){NEN^1(w}C&$bDBK(*5SZ!Qg zogYdF2sr$YU*LCoU@dS#ltl^NgwR<<{~-oLYKp$FGG#MtF<2PPbwznC&%~u9uSZl$ z`zNvwxp67vSlNQ!MUDn3;Fe^1VzINn%ZWS{#Lk;K9hj4o`7Xa*mrCh~KbdhlQ1%xw zvq=-qx+0b(tzx}pv-uT8+y=JmR<~o`hQp8|Fyd zq>Jz~3HPP2Ru=z6gLt7QLnYQ}x&=mUU%$#bI`VsO{Rtc}@=-0=tUtx#9DC0via|`R zpwfN$E(yIbfijaD72HS9C)+zzw6rrJv__LF2XCyC<-3!mpCu$ja>R&Z!*w=4KX>!i zwy48!aDr3KS!tggMYtpMqOJL#rwVHJFYHQRG_GMh+TXq!Nptagq3KoE#s1T=(mQk% z;lWws@S^Yz{z{ToCJ#pTX9U=Rn6g?CyZ*_ycKP)#txTcUqUqUWWm&9~+-S!APkar= z&fiIQmQBme<#U{Xj*>-@4_zp1*rM~bkY1IikdgQNxhNLd@lxN_@oK$KHstuE%u$Dj zhj+ylWIV>bxbtg|_lIRj*iM~ctTR5|p#5Ywa7JHWU$5F*WTkRdhVR}NDr4Vm>eL<{ zjLAU$JEO>4F>D9{AAC(v&xst*8IarL?Y1HEtKf62Eg> z>@WY58tMG&neud9AdcsHGp*2rUn=%P#dsd0E}=#q8^6Am!>0;4j*8z(lAsPf!_+Vn zD;rb)_>}onLx}il)g}hh@#z$XoS-H7S71SO}z&d){k5`?&Y}NUFk^k-|0$$zxCPMDS06o4Zuzk+5 z-SNhLXN@1Nr66S=OAGoclKp)M1Cxm$|z;apdQz1zz5> z=26R|6)&(%UT~}bE@ct9Pu21DtIKFNTx5H3aq%G9{5Mbcq*+Ib7and9Ty+i$pc3bhu((JoYEpVF)KSRK!W zg-Y|+DRX@Hkp-W3@zY*fs6$t3AM*bbY%*q_I6(8zLZav?>^>k>|# z`^xCovM}AzU6)+-cp({IDtv!i({+y!Pz9s4`>O%ZgYYGFc z6_5TtIGmF`sfX9)Q*GP#=f0UQ!3j{|G>b^amebLBbu3sq>)TcBz1;xkbbZ9B_RW6O zwY1VOALu9!I(U6H4$wjDE#GSpKn*mh%N~8`Jta@3_=Q#IR<92_XV51*-->i-)tENo zKZ2T|gX5s^o(yAheE646)=z4GXE{y19J4g~4UA4r}1Rck`Rr`cg@^*+OrY z=ik|QRGg^)QF5y_ai=^A;!gI&hR+ffwI2-F?3QJT5^9x+=hOf9{oT=rq%{17Vd<&~ zW_xQ>d)@xWGlQbcvAoh+F^z+BfjFnuzH+Bbc1f-_!GEJ)tHo@a1=vL1Z^nC=;Pwzpr!{a9&#T;;Y==< zO|;~djo;6Hc(gr`23y!Iz02snIv(vXQaY8M;Mg!;?IUE`fIEL2_<_}FysF}QZVZFi z893gr1x>L_9mgVI)lJ5$yii+pteB-~mC+7|tND`_`~Blh+LfJ|7|AnmPk;aZEnh0` zSc85uykH}O8M zY^M)9eP^5nqobi=@`bwEbKML-fXV-GJ>6h9R%V|Er|x*Wz<=H{?OL=MyryXTO-f4l zjhi>OiUoWFYUK8WS#Clm-sMdelS;jh%;S1r3-yQ<+PwL zF4eb9^ujiEFd^Gu{$>m?NV@YyHk*yg43{}|LrWKsUhzBHFFL~{;asMara9(UnNtze+oL(goG(7optcRU2I+(C`Y zU=_}QMUmdEf)N;xJ8&peCOFKaq&GV+lVB2r%%3=nzMvNVK6TZ7eA8*DN?@suqs3u9oi8u_uoSmC1fgcWO?MCqCo4nTu za~LXC@~VXqse@4X&Ex>ALKrr2LM?hqN_ZXJ-PRe24~WXf!^k-Xp?0MY=&=eT`MVev zM;~1*do-^uDzLuLm!l8;Wbi55RWxAg5xj5*7*c2>+`dvV$84J7*i^{X#I2T?sdWN{ zZ(VQlRQ0u>e3pznSug`yRP&|D`p0|%0Nli;z zqQTPyjd-yyht{Cf{!PvimdSwO!|1FfXaUw3`ylJT8?&NQoD_}yGH1a3((;}nWwr>Es}s$F1x@x|IFBFTd;E89)He~jMy}W9?{rCWHGq0CA&sUx z9RjsL>JFee=)s8Cm0TSu6R?ApU6uk3{8e0BGyZA%ruO!B`w^erm2UuV#A#w%RcAfM z+-QmMAKP#K{x<5T-Mp5oU!o^SXW{?1!`SfX6)Gt2?S+qqDXatv)Elr=&*v-nzx-i; z`SPU+;NRCGb~N-N_k)S~%j56TlzT@k*U0 z94`#){~Wfqww@U@kELd&tV=Q3>C-iyg7eq_;Nyu3C%ZHa2TU6UDdvHr2?jC8CN#Gw z)unoL$}%$vV8iOsdd@o49*I6V&G4kg_rMImlXrw9huuKF62M@$l&Y3+?&L6l3Xfol zw71$@?ko+JZ?y9Y-S6d*`upoeK9~C4T5I6TweOyVux8U;wj!Yj$Axk61Pa)!DU96a z`@6tGKQ*;8_-7cyuD{@VUsc6u?0@8TnmO+z_wMH#^FkJFWa>u+dPUgK&us?slbl)) z7jg=w;pmCae|WJ~47I`lMfLi!bxhVu;+2PF1h|6sgMzjxS3}Pzv62;rAH#`cm6T+# zPVp@@a)*UOZGV6Ix zHby7k&^Ei3uCYCix97uk%3r^J{h3A3vCy>9dE+a$ISkV<=$S|G%VygPeWiG!pQOG* zfj)2>rGNOlvp!DODEy{CH5J0oylho~KpyRmd8Dtt0dyl^({nl~GZj{Q?2B7tTC5CF z3!QFm6q6(kV6s0yGf3~2+J~bJ4m`yyXJo`Irl1?obK%0q#}u)NN0i-Cnq~u#>*=~O$0%&`9V2_VhQnX8 zXBI^#guOic`6??}T?94n8qBiPoALbVG6|v%5t1wAIEXX66?MoK_#$N4PG#sd8~10l zqQqzyp>b+m!$9ac^Te{Q^FQ#+TcYZJeSJYr6yiJ`&TTeSY>CLj`flwB6V!Fz$ON1a zgwtIRz8?2kRe~nEhBk70z_|4)skFsSb@xBt*{ZgF+}xXCISB(4<|12LdpIl5_U)Te zfl>9-l$2OF8Pvoye04w`gKA+GdPjUoi;*A#7Q&qDw{P2ICY1QF>k1DqZ{uji!*v8b z;FJ3B=79f2nKnLo52yorx@3R;J-cD+xvnJOal{w|h0x$9IeQ5gCKfe}!~hs;q@=Qk zf?X1ee1P8XIqf!*%9=o*#{_&!5W@*L9{cPtqI05pQLhk#?tHzKB{nDj3lSjx5ZjaC zR3^-KfTV`r^B@28W>EqVUu&i{HW~h8%frJ{Xjwuh?JW#N9SH>|lcsCINxHDG9I0I zEo6>wH&G)Uc`a=zGcCpp$V91^E1>Le-=1n38Fg`~CwIn3Eb!1oU(-L>SssE{w~Tei z${x2}i=wN4D{R{U7l<%CbYz;cl}Le_HVi@8Hs_)Rn>U|v&1mmxLkRH@Y$YID zyOswJ9_YpM-y5vn9k(+GyLxcwNjl@?2t(t?k=?{)^XuL2K;QMCokS|K|C=YHCnII^$@hKe_0SlnNAImTmt(uU`r-(0aZ5gyip7F^-*U&}D zfrb5_^oP%rfGfWjCR$>IJJxj$q{FbzAbSeb|-pje0_iwAZ%Q^3`N}lg&PZa>K!6DW0hh?&}wIQ{~b<1 zY&N}_CPDb^t;khAnnq1!rVxaMXv~K`*-|>z{I%Lz z8lnUga_wijYEOnbi?pmjEJ!M+K^ReTbj&|KD+5A6x`b2BUoQU2rAv%3p28H_8N1%HlDbxT-4BEKldv5{+dkjc%=3~53!`}Lg!^rN+*gwt# zGqtU|yC8%^N(xjWj5&$em@6gHjbNref@xb0695n=%jB5HMBie~!Ad2apb17zdRt2h z04gX(^@|0yG4RElAm#+0a=HAVe6vfkqJbV$YCjYNN92?J5QVzTUrw}wpjem<7Mki6 znqYOwo;;dgFSz@eC?nbX0>FY0IRAk{PfoEsBC}5R;(8@u90RYeUdg{#Dd;>Yhr|Na zx5D-Q$D1rjy8u|w0!RP*`>UrgU*jfU0rh&up*-D0sjeu++=@COzzB@Tgs<4jmqq@c zLg+OwxKta;U1pp|9Lm@z!Y6@BDgoQb8V7=pD6lV9BoZkme!^_By{n{d4ySFf%B#e7 z1VCXCunvTj#NoD~GddB-=CECTVgjS>^(9LpAkk|824|9eR^(k=gpgPR=o6#jXAIP3 zrZl$MthCtJr01fpT+FJoA<6g>mx;E z3P{j+mA*jbuje=Q_-INlE`9%xSkSRNhp;CgWN5Vkl_p=cb?-GJVWV62Bsac!#-%^& z4tM_-H@jCVoF7`RnABlVyF9}v{w_Z5)vIEwZ*Plaf&Rs;K5Tq)ngmk`Tee-CBy|?evkl+uU9Cn|GuXOAg5P{42jKw3HM z1XCH6(Ogk%MIq^;tHB3OP#g{+*{80M%t(?JaamM_bE7akN zWYO0gG;5(X+RL7fC>1!Ift6cA3*dp7w-n6t^g;FYCJi9{da=X^pJH* zb8pt2b%5XI0FcmO0O}M56^x7M7Qz$ugN0agDgH9AO=A{+e@oCbG>k%p4cMl9F~4#R zdg;us7wXr5PzHQh+w(tJJ(&X8ucukb(()YYy#<^9mPH9Q&A7aL z^(qzg2ZS#WDPVN#)$~q+n?%@`lIvC-6ctj>k#Y(It>I$XsM+Es6kI*%Db67N5$zfn z8O7-FS@90EBSGML>`0dMs=|e5D(`Z0NhbUbF6LKl-1ubEgAG?x;VLWlLtqT(5qv{I z;9#whv0&%o3J8dm)gFDbda-r`E*#0R?#sjP;dmtPBYg!ODA;V=j(CAq zAO!2cmCPD~3BP#UZ34+;9bq_7Mw@z+SsX^7Sdg|O=f4V5Aa6cMe&*9pHOl=DFiSu5 zTIs!Iy`O*(04mFkjR)2C(@o(d7?1;A7`ZQh9w>$*mr*5)$$j^(&H@kV**JAEvd5l3 zmp7GJd|zUjoa_(Omiub!=oEv-zXOm=5VHgoa@oNjlv|K40lyYku6&6EP7F=?QmgqP zT+ms}$5X4XuEfG(4E3(ShFAkwF7<{1M+lgzcQHhPZD;Z^>F|Q@cAqXEMR*}Fzn?+| z4iwNa%we`!0phtFmjXZr`UkXwkFCCk>#ZfAm?SJ=!&@x@S1`p40>-znql|3cnt_#* z9w{_^>Qv?hd0dZ4*M|%pV>TMdFIwa!Q zO21JJ5^8Dh=olI-GFP2=Smro32zrOWvTg}yHAs%74nH&0tLw7xCuzA zpL{c{6J79$Lll1alHBuVLIQcNZ2>bER` z4TA3MP&Q_D!5?~&L(MF_Z6P4sh|l-?B4Bx6ti6_S%XaWb0zP0ZK01=&!`JLUln1l5 zb6zsTtMBG$lpSUSFavxG65f88SAsQT?^o1UQ4XD6Lt6$Ot*MEY%I}7d(Nd^n^vX12k!r*3Jo64!_I$w0k#J2 zYzU@8r{CeavZz%jUG>r7-%SUH{#^Y=nS-UvI}OAFg#fXN4-X%eg046v^NRmoJK)xX zpDD){n-t3IS?Vytl{d%vq&4bnBhaCCX0Ko5 zrDn}UNGmS{Uhcltqg(<)AHl)J3m43k8C`xGi8{x9 z*==<^NyKS9QF>?4+#b;15}<7pupeN*fPXn07<|4@jZ=s23v}j}u_dXg3iI^|1nCX1 z8ZdPIPj>yi^}!t)0EvX%VPiC0_KfhJkxHm6Ooy`6p4%?9* zKW_J@DiOPbr1YRH{^iR;u&zXHzO(A+=va*yfux2hgpT!1EB_u(H3$d))D$?1`oi>< zF!S7Uc_|z3y6PX~-Cu$WLKoPRru^`rx26oB*tp9HeYj!}%-TX?fhvuP(*OfWKyKN7 z3qaq{wMU8P{P}v=J2W4J@AneW8afB&t-!LxfS^qUf(|n8>gXClOIU|y(%V*)Z(PfK z0$3l2fUqHmJZLx~K06I}J=rhoJc+p$!x#>w&mk!}B6{UU6X>Xn@p1jkygIpSTSkEH z@L1nG)HR36`)8;m<6HM5cyVfRF$K`y(*eKc3O!bh7=4zCY<_$ogjNu=GFFMBlD>TZ z$A|E*9g-lL*uzi;;ja!(e8yb$X25u2B8BinM z0Zsc+I;?ne=AhRTYE=ltkFDhqT4Gv$MPd5See*!e%8Yep`_wFdFk;Y9fmLj;JxvZG z4j#tf?k8xvY2d`_)%r=7je&fA3X{LvO?UHeHJn@aI>Oc=g69HS0 zP<%@7D}Z94CqNKmfLu?(hV(zoOs8~s@YGFV;EuXGv6Nh}9a#a6dY2sB1& z5F(qdb0@w0A%vC^IOBq}l9JLN*bt=CfDr}jYQUtrhpb}g9!+qr*6VOcSp@_HEag*g z0JT{Ul|97rKNy*)qq_ z82Vr7K7v0V6MUFFYsFU)b`=(Biv$PS8P)+PPpZjN{zr?(e3Ft0V1TywPQ1Swst3A` zKHT9DbeMZgWx6te+C@FrOmy`0+F&*ygLV-N&Pv#0RbqV`fP+twrTb5+0iE4#{zu4| z&uVpPhcE2n-6L z1oWUG8j?5CKBa}~i%x+;EiExj9oT^Zwo{ZnbL~DLdbVhJz#T3P+ZFu#KqP+^7CuF0 z1gehFnuG1dRuGJWUkCz*5kugiztq9tRZ`M7SOG~GpF;qx8=!#9b0$ix)xmUQeIx*~ z3_EsIkEJjQb9oGvIkCXNkAQ-q0_Q^2f#r-mnH$O5KsnHFdTnJ6*RC>p{dz_x>2B}9 zLIgh|iy)y4CIyf`zhfe(QZn&RUcz}_a#?;a;11Cx2Yn0Rgh8yAh}*g3$z MxYfJ zapn9c2$cu^Ps-5$5Q&-upFJaCkzoYwZm`5Uwy^75ykU?EXAoer-qFB5bHDw0ZuIk3 z#)l+u!%ySmLjgKr0gVZEz@B<}{tlc!``CY(kYzTrH@9Sm7i<$@oBtp<6q=}q@=~y?P zkrD&op-ZbEH5D7l5yPbpkr0P~zA+7NSGJ9ej+x#&>PmioGLXxGK8mz`L=a2A{BM*V z$$r4REFh=hp%hPIBICcsmT=_(P-nil2^MP$lGg#%vC~AdkrDifjME!}0fC%<#)q9k zh%$rfh59TSL+Rddf&Ba1i=hn-3Lq9EiUdIUNsUJ6v*O}Qw-Q88qev1+P#c?@LcnWB z4m>s`ksY+_VRe+}3;Ixlcc2^wNgaM?-~f=eUA|?(i3DKq5Z8a)6fgzCS-Omn1xPJ| zP;bBH<^~$b`(;6q2pAnT9QB$@5?{zn(}0-?4#@PE#r($M&vwXvhY9lXCA5BZ|8E_c z>o72<;r*J??IH4ov^#LGBY^Ll0RK$?f;4ZS`5{?%GEzZp^PK+}@7$wA`@XpN$0tLf ze>E zf6dScRgYp=WSPO@Y6Jur3C0jPvVu_bWoe|06g5mECn#LxQ=o4O+x3$`JvPELb6LpB zc&k&56Y&439Ay+pi9P&%Yiam1F{rH404bwDnVE(z-2ziH7@a({JL7ZEh(h7&X}J@f zu^&8qxQiq)1tX5xKr zZl~)Z0u#po56wZb_12GNmfo_gj_ypnLJ7R1DvKY2o==Aj*B`SgLIXgZ)_Z5^>zEAO zBM>i`-6D@Hg5v_8HX z4{Yr%H`L6aWb~z&<5zM38UNGGi;HgypoxrF6Py^)zG_HU>8q*5xVnk9&=~-tBgVyE z0;(w%7t191%F^1p1P=K1k=3D+P$hP9QHVZOFF}yY95V>cp=tI3oQ6vndjJsLLr}N& zzAGbTvB+A7)Y4BaN5djVQ0z%C2k?##%M)I6O!xuP2TLXC8=#Jb13lmMKjHRO2Yk5% zTCD{*>=8!jK7rVvhJQc1(rr-(KLEMN!`$YF6K7)~%?1=6=vG{RPHwIRYGB}IL_3Jc zf(B1(@q+cza}Azg02Zd84C$3QCOI4|4VCm1TizsL6xR?)xbl$ei^pmVQoiArAPtyy z{!)g*|DkSHDuev;M6cg(kk#}U|MYiIvJv`8mpD1zt#yG=41yzlPLD~?UTWGg`aDu8 zP<&2?`fNul>Npw(Vh=lXv{|qu>SjbB97`$x8+LL3+8#iuzSY`l!8Jc`>W1rYO1Pd{**%vV1 z%U#Sdf@8-{J*gpi-DuGuiM9uOerq<{D}QXsxVHvmsPx?rvqPmjZy@7nBKT*J``wPD zd6X%PN%7yW&2MSCFe4!dsndpje`jCfB(g4C5ymDv+kyN*Io1G}XK&iYAS@(Mvxf}@ z_(MGk4IL2Ud&-=Q`QXL@aJL}53D#u!_$o?3f;CHXCqu0n?jQ=9nJK`}*Wxbhr~;+d zn<$Z!SOl4-L@;qoo&@uOMTCtKhtNN3vg8M@6*HV_eyrTR#P`5B3 zZI(Ddo(AciqE6!^7`+m!(`XQYt3rc>6T|>*gd;#e;L|T|az6xQsw^)bxFK|of>29K z%LLd60-W`9moKu7rmHfLFiB9wN^KAz%i!o>cLthOb1)&LbFZedDR}7(yM&w<6^;G= zo&z?(p2wZ4o+1M*lpA?15Y9A(sLCE3MIj(Tgg&q(U^fd z-d={#?o4ZJE7+*$;DKUk1{VV`hYvtNId5yl-z3{A@JLWhVXNqB%YUV=DxYFKr)|zi za)0|tTAnPF{4?!KE&^+aopm7d4%Dpe;&4iC=rDj2y@x=#>!25NOx!re6b1!hm-?Uh zRojD|PJ)qyXs>G7APcZ0`~ZNqCuUJX?vPgNhv1MXfQCCMK>Lvp0#xy4`2@62q?8r4 zGIuyutzWBt1hNRc2_&CxZJ$h>9QZ@af|B{Ls%%%VF*$Z=4za914&XB-2-`l->jFUE z4OBq}HQj&091PWBfc8i#+JPS~Zlj-qMKMzPtzQ|I5t*Rd1Fg(Hd<=pn0eQ*pIb-*= z1)r;M>cNdU^aqYrdX#`$CxlsoQECY)AT0Z344;@-{Pz6MP}HQCzKKm(fO8-L4LbM3 z2Sule0%O^J@OV~a(m=ZDFg`ZpUH$(4@$ui!_CwE+;8-dFebpYEn)KBSaQSXb^Z*KM zXqXZ-sP_I`7}LoGwgkW^dth+sM=9>ZwhAMy0a!R&-W3%UhP+6Ut_0B8pWCN_tHz0!kbc$*PwxF-0L$kZvL}v~msw9_|voQx81k-B)fI)ktP7XI= z9)U~>u~Q__!TP*l>Ctn7!-qC5#z>nSGpIy+&*H)eFan%9$I4~VJAdJrI&56DGwMJA zEO^;#X2eqA#=o@XXJ(opWpEK(a*z?ZdRzdxFCKhvS^{QnJG=`RpaW9~Nc84}x~=Vb z(6-`!K=}FA{AECw3`pwofzvz$$OtKUC_=|Hg2FzaN4`CL|CVmN#uU&pci`EVZy_Ye_)lYw*nt7kQ z7xD`ALi_uG(=WBqfiS;_LQ-X8?hL%=&znMA?+V&M#6uTH$_kuW`pw@0-P=0S($N_X zuJ|(*2X%M}V<>O_5n>JL1b^X7e8m(3TOURVr7#GXEf%Ot%yYVf$Tqx?XIz_%Wuh*< z{nB*;$?~9;SoGLvoyedF7viAMNFCtAH9xQ%?4~#7X<0SD?+#$nBw<^W9g25OH( z(9DI7)&w6NhHOd5KVh5f3P>`YfI3qIa(#DeZ<;dcPwO&xx&l)NzMoAtvi1Khj2I{W)Hd+Vaw}fX~3~4 zp;MtQcPQxtdx~;GfRSz<`~_!f4JF=+JNSQc6I0-7)}oUw1$0fG{aGCd2!+t^Q349; zo~*z7KWe6s?GMhE@$tm8+G`0&)B->RMm`Ss-sQ12!bGfBxCK^>4UZYvPe^^ zwg)DG{sJj#n`}vs6+>XB; zm_;%pq_=Lh%7T=KGT=#)1D|65Tk35~4`i6&I9}biGLp+adKC{oW}&n}q3utud!Ot^ zp=ls%AGz6p0rclDKh@OJgP2AjfChkapuoW$4edCE2qDc1t%x`PtSuR=10O&SjUWNe z4|21fB;^@Z(<6sY5OnN$TuIjRZv%goE0E!0eNSajWP0~MrQCKoMctS5EUc~50HmN> zgv4UZDP~U$^qf)~tuF{EGy5O9pxA%y(GJ5gI5F>mhy9Cl|LyiS19|T?pnr@B1Un%6 zcLoUr0LKtd0Gayja~|ib06sOew0_+*2IUaMBS~jqrPC-x0(yZ4AVcV`_(($omX&<2Lzb})DXl022S=g6r~s0BC{PLE ztSBH!h@T_*8X7}%?a9%q&G4rzqg@DIbD)eMx-D4RK_H7(U5Vj7npW42&BW569Nw`SFcE+ z`zbaC0^pa>lS0r5@X)c&%1B1JSR^2|f)o@BpX0TkWSdDe3U4%pLOv`fd&+Qg*YyO* z2;PD7+7NP`AV|D3Qz;T(o+s@u7SvSdm<$w_JCKMH04ylO20@g{wFcttTcp{nc-@69 zP(6bXi9+a2pOeBA1Q$*QVVkE}2BQ!xFqHglX7*VUN|^IRGX-h~C6}R1^#gVB2v*pn8h}MdpCJgWruv zaUdi;yLI3meC@$sN8g0#JS>nHf{!B$NZb7#egugFJ>W9>@BkZdi(KfHOK?&s_OE?j zO#^E&7rvIFE_a#y3vd}hb|V3vsF4KCNe>CLBW2d`?AhzQaX|U{uo3!@DkTnWL?3pV zMJ91%4(zf)1kBN(f}D*WEEQUci#{rFT_2go&#wk5Y=RhrttoZO z=usD4PO>g4)ZtS79xi3bk>Av_hELwNFa$;56jlq#_1j2OO=T{D=1syZMTa~DH+4y% z8)CoCa-o3T1;mdaruLMKE6f{L=}EYE;7=mE;Ri+k1l3-FKTGPp#ECy5?zuEmfA$Ug z&v&t3LQaQP@28@E&jVbP=Yw&<3emlP&+@`kz5o4>iu75zxlOP$Jur`Pu>*%?7?G-* zNlj-y2!b)lG`7W;p1C}wQ{w>qpai>YcOVE?M!?R2*!Cl1+ZU|2LzFZai9J%A95^0*2eegX)}j z$Bag5bp&p2>*V^EDD-bw`1fQFm|m5x=F=FvW=ESR(eM29%|4O#HZ9?$ChR`9h9?^u ztV66+BphL6*xCh;1IdB{e_=hrCO`5bW5dO%Ul<4^dzyK}L-&n}OhK-9QrP2j?K!1y zIyBFonx^h6pd2O@fA$C?=ViE>aE@fQrIwm{|DlfQabSt(hHvpz7r~s=Jy_J*QmooGudFAk47?)Igb z3T(j?fln!=Bb&{EzO^$SWmUg-N8&!aj?U0q5q7aMEPBy)Yz>j8@4f3vB216G;^^>A z=qH6WN6F;$Ex!w|ojrBVfsBMZTdBmwx&7J$!H#PW*0M8ki?iE{vlr|N%rR%0U-Ke{cqUhO-c+(MKqA-Ze)lUz_BV>4X(cqe~3knfY!9GrA$Us;V#5ngp#ga$W>- zBw?*D%=8M(Gh=x)j7-TY`mCMr{lUkUE9H8`as7RQ_V(Qq2CSU@ITPx*uL2qDnn(0s z?+xL)P=&>xdVV5a7&fgacVew#GfRH6I?QN{FY5HHx4+cX;s%Qn*YiB=*SfM6o=m^O z3^4@Cr-RC~V_YivojKeC?Y#4Dck=`Xe#nfb4;I9LTxKRgb)yEK#7x|tqO;FT{66`Y zzHXfNujNQWub7qZ8=9O>e!ZaIB=|0Rw{Px=isiN!D?dTREqEU>p1xD z7k3`LmwzSCPRS;eh=q&8=Ii|MCTH7LeaD^@qeYl5J{hrgYVHj(<)E+i*AMJgxb52s}R*D~ZF02%|Ihl&Ayd>^C`L)+LakV(J%XoWn zo~Me_S!G6@a(x!Bg6q0YD?s`uwcrx-_hvIob`y$c;huGzXLz?y&TV>FMbqb8^Uo%V8-42z*%d&i#uvAidEqY>lwVDFRY@;q-OOu zUTPDXEss9UZIqVg4hDGE4j9a+e zBW)ptMK#(44BcZoZ1&Man}v7zFoUTLEj3Y1L2;wYZ0Cdq5Jvijee_y{ zVo^UnnR4W|_p8i;TXpF{DjEiOf|EwL1|uKXgOxN*XGAkHo!#EZ=k8IR&lmdir(nCn zt&&f|p1es-1y9I?qPvBl@Wx9zvPiQ!le7Rm#)R>jpgL-{NI`g;r*8@HdqWEEXuS^o z%4`}!OYI&(mC*V95VoeXD8_h?NoxIp7&-K<_DBBlxKk{gPc9S085m1>>dqRS64yUr zmnV7cKza9UwqVP8Atm?J@mXA-^{2 z$^9&JWRh^TYFgA2`*k-h?z1ddWV}uVvD9t~cZKcy6RTKVUej;0D&+pbkSFCkPLD(V?H#%qMLIN%HtEBEk4G$=!Cyi5_~GkmP^1ub}`nY1yCOcCBs~p3LgB<9YTz#DajySrjSy?t@3>=^+RlT zERrye`hGvp9uspfiQvNfT6#KM8^oJyd{Ifbg>7QF_2hNQsg3+_+VVr`0xD$cqA73$ zl_Ic8c<`GV=q4j?+r1UxhKJBp_U^`BzsePm=a8r<_>_w+cY(UU%th^uTEjqy;Es2) zAikb(xjcE7qQrPbBfZphB{G~ow`ymwhJTYuPxAb+kU>ILW+u5cwKJ3)T7q)PnWdin$>0S6rq*N`%*KiZZAETbM5hqk-rMB2T~%W8-@$`E_B+lWY<&H zoDo=l+as16uN`g>_opx=h_2A`4Td#_0!NfBudnQyUmi`wF9R`u0T|PYpT0jKpzap> zx4HJq>PomcG6bgDd^-fv7dn$}&6zy=K6#Y#!6s#LXyK3~xow53{VAat#(N@*jL@2c zeq9~X3*;1yp9yp^l~u#Lm+HKzn*#Q-Q)tiOH>K*0SbgK1;*1ipz#ei^d~+cYSMVKI z5LU&-216Zf*`^$)qmDA=HMJYXnT1b!*x%Pj?s>Nhbrwm!{*iNiVcwFc$Mnv)shBvS zSzV7ZNn2XeU0+`Y)+idguqGjmi%&&vCuwj~)X=M8)2XQ9CM5Ijhu<6G$X%luDx7{S zHb`isp-3G!8GdUoJDC?VCm9hcRgDvrc~*sFfXzbx+$f2&loqZKYt6!(Qut@T=;com z{SEz(NLE%;|NG}ZW0gZ=@81* z$c1uB@a4`>G2wp*q6_F%&Xx6`Xb#A#F1=?FN)~Qjr(czht-go-sQw~lUH@_n`{4KS zuj)&~%xs%PcEJ~Y*Cz=q?%Wk&c{+C8l|ibgf1N@Kt9OMbUBQwwKrwsD(%k=D+*;Uu zm}Hn@1LI3M!6`V27182fzjTUXt-*pw){T~a@!ht2CWzl;*1MY6s5Zo-s6(PpHTY%h zI_^kE&hSTh0)w=M;_!!#7b(<{TL798Seaio+rX&MD)7w;NYuxnQtXzI^jfiHZ+7~JMV?96W1uD)-Qx%&0&au zF5P<4W}ET+y6ehp&H!z zm~V3>Vj)b?xj0{(o<#g&rs>L6$_ArnN+EfB^yIIU9%;X_>&MGi`jf6nhNGdDkuE*3 zu%=j)RZV`gNw46PhmmP5ZUOmwWnK0FEG2ULd1cX}E~w*%w~nd@yp$zx1$TO`u}R9d zm4*j#S5-CscF!UEs0e3{njkQ>d>r$Yc-0^1?JX-c`ZXG>0j3PK!&aEteu| z5}M$&{22|(=3!B8)7<3_0)YqiAK8_BbMGtPA+HVi>$@?01rUQ{q@c|19klC?d=$xC z-7bTV^B|=4$(;Bbg!lqyBP%Q2=kPyksoB#ZtbjJO(V{du3)9HaBs;W9k{IAEB znkFN5@sx}9$0l<8!DGW5ikhYcG=!&apMI-%UBuH&ku&VY0r@G7+vk|iu#@eqdN5gk z=n98ZI&jGmUwE;vW&rEVQ(`krjP4QUM2C)*rukoK*&PU%mfUuv%RG`gksSL$x!e(r zDRuOqsBe+5VwyA}$cUi%`}x@IXFs*0PU?&I_v0~p(7H12;goBd$*EE;I^-5yl;z42 z$Nw;`m7!pot2y5qpyFu|o1&{LQW;z%+iD{?8B3-XccDI4J^ALH--OaOW`xO^dW)Fd z9SJl|y)YqtlZSVMoQcDyNaQQGEtv*Kr$brQ9PiXFoLYhpk$Ul(_9FgLgWd=?DfhD_ z?n}?UU6~+eZ#@n(Ie6%#FleVW7*FVu^-iBdQHL<&Pa(NL(4a<3i7JN1zp!#8woj$&I5SGXk!P0c5&EMIwT=eEvr1|K!t+!~}!T%y1)hc)yG!>Vw= zE>sG~3g^L}d?_8o&FuBe+&5v0@cbMdtB_%+CetLw1CG@X)(mOdaI-uo zJL$Z9cSCv|-jL7vjaS4gCa6|E@`}@Bk z+Yf5f+WKt@@3_7Wt&=5j#w{wUDY|8nfSJ5bwK#ImB9@HMVn*gi^evkVj>_OP0{lIN z!Pg=U(PW~j^wjyL_B4byIrW<_Oev8i47*_S0Mfhl%#{5Fu&KZ>d~s@l*DU{afv1{M z>7FV_iYQ(mf+et%LaI`J*odt%_-B(uH#?oPKyY;V^^fVM6-sx!5k!#zUFKo}@ke37gt5JpIFZ#)#Xa%y`MrjH z(r3>JN?(o?U&B0Lvv0Z|JL#~=9wQArT7`B-qfK%N`rv&msyu($u+Xandw-^4bgiDS zB({-2|6z4hEab}xZl~XJ1PnT*UE6Pz!$Hw}H{q9^h(WM6&qh;G5oz5$&cXZdC#TL8 z^L^v5KWnVb-s%@_;=?4u##f?T9!`|O`+)EBjW*m%0>hn@Wi8j;p72p(_TaLUZfcT< z6VF&M9phffAfZSnC~WN{zaW0?CH3W-7-#MPED>`1!Io%zoGt}DtJtSrA!B-+h6Fac z74!G_MsdZVBc8|8c)lGsaY4RU93UUb{DMLvR*XmUDrXoLkMTBl%GCm#Fr}i;N&Wp_ zY3d{C?ew^(!zah^b`1X9onk7msU@Oky~s|t#uaRt)vHx}l}9!CPLWdE0??Rle$#DI zoCl;uMI@8T;h!Y}^r&#G)Lr`Avjp+Wr^WRLt~^$Z<|{R=yJLMa*lQF{+x2;=N%~nco41~x0qbJXbCUF7pJ(B;{NOE*(hr+MF!8Q6m{a)Q?`u~6e`P;I6F{cxNqcs&datQ;R>h0DI_+R`@_^8OhUo_ z>%|}3Qo=Iq*JWcl1g}2D5t(v4&lHRo-V5=nryTNXjAq4Wtx6*ZU^u5HqrTE{A%gHf zC7*f5`O=BtJN~d}w>-De2(vooi>0Ln{4*)sO4$01HvSsqxml^N^cAWTx#jE>a19pe zQZ^qoNcjZwT}WJ!YB0Nd)Se zR<>V6@YadTDeGP>mnsQY5t-g$!Dq{*qgL~vAq4uR+d`a7HwAV2NSXZUDUIhx?-tyO zQ?ztzbHhRcGX2eODXGp$b6=vTXcP%h5idX6nb_{Bdl;ZkhO>ip%kt^Z{hm_&wCWc5 z81AU(<vQd(&> zEtlTh!zLp(d*^*S>39^%&R)~3E`$gFR|A~}O)GuO|HIasM??9>|NmnjOB%x<5lBn7cbp7fo$@VTz$jMMY+>Ef^3_ z2Dgb;ebGnia5SmDHKi9$MbLePu{==t-^*O8aV*%(?zfH}ko|>cJ_$7LG??=H7~^Z7 zsN9{w=Xa!;ylis9x&*7NOM9mpwl;HvyJtEo5Z{moZ>Y{Zh?mydG7#INSAHNU&iDqL z%DJa+|7zBXE7VYXlSee=?NiCjy~S5~v^jL;kJHkVs!j}yjvd^xLdU{I@eCRUi7}23 zdZjO|URSs9EPy=_I7hR!&Q*8MUx67=5x~O*t8}1r(3rh(0c)*qLUGeQ+nKAc1>ATB z;+zp$6-&D+gtiX;t;o#W3bs{d*KP$%?BREr_`0wX3^=6VOGuQfWWyafMBru=M<3KU zs7e7PX7zetmiOZHm=RCK|SK1atF29uW~Pl4-Tis%=U- z#b_>oZOowI>W;SKKrmVOik_5!%v~D2O6-p5o8!ie8nA_VHyA!aU|Eh>7nU~Pq@{C6 zXHNeWJ;)arYR$(Za8Z?Z<;pAWlU=umB=f3a;7T>@hso$uO|4rEUe_k$>#Kzsx0;!| z!9{#eYV~cmC}#$zRP*yr4yWy9Wa_f_eEDX{SBKI~n}3sO>@3{gh8L()B}M#+ER|Q2 zujFv~MLFvU_t(Q%U>}5ys;zIw8{&^x740OXtWB-Y<63Wr5Wltsc!M22LhwDT6Wl;{ ze;s2yZVg1CgBlEl>0Y8atGLHHj(#PMgurkUtgU;Iq@?sSBuUGJIz-UCJN7CQ}^ChKBzPOO`L1z=$W3e z?fG;AV~@%>BE(Bpud_}(qeU=XdO8z`3ArZ3bwWY~DwX0x+>E^9o*aDe%B0(xaGf|; z*+gbhQD1G1D!Od#cxa2Nj(xzl0>lxk-&c}g&CM35o;Ynk%m4{GyZk$y{PIiTp-K(V zQ+OLvv>$6sAGmM#J}r5t8=ey8;CoD$G)j6GPGz$DP5c##?Cv-MkJ>p?xD&!4@yxdh zyO0w)7on}3@ehOJO-& zR?KBE?*NzOK1?_6&X%1ZW+mt9JBNU`6QXcQ6{%@Zn~-rR(LlTjLd0sR)Xn~u^>?Au z${7!l2o=8#J{*BL+Z z$NS{pzYOaspE|ca(m(wqJyro4b4W=5w0@9=8K^_vMs3Q++!RJEp9Mn3hcmMsk*97S z7fJ`iddMsVgjpitTU7VCaqzE7KsEx2_rVWCT7ED+b@BM}q*Fg@h3%Xg&C51t{^itM z=5t8Y8YWq_`0=0YL-GX}tUZTf&%RRz)A38>a1fhi_V86brkF*rW(=6UIk|%?xs(i} zJCIUZ7GPe>ad6dk!C!p+sNy|OZe)z+e1#yc?u>A=+0G|khP$ec{{FIK$SexIrp41Y z1S`*H4=-uj9?Rg|DxbIZN5EY1;M9dlab|VDZ%4AKlTAVR)zhr+CGKCQsk*Od{h78p z6VAl3quk_3@$zi~!Y4?;4^a+aZa_B23)~_=aU%;cihzph)YPrbx)#U~0*Mr0aX^Fo z;MU(i|6q>*fClRZnuuh`wE)OtaK`MxQ^2bFG-yc>BK1I63*a!v0mTWRWt;*QG|QNI zd>qW9_OolFmlP0R4vmiXzI`4ftgb$I8otY@?pH9S>%SQILa+9XWIg*}rN47~CorD( z404vq%%5Im39G$Z5lM?DwtmPWhUqt(+Q8`k5SHJcol0yly5AgQ&-1$B&*uo%0F5^* zQG_$!L~EI>Sv_)&J_ZQTr%i@iIS!1d|_qKN$?pqJqXp5cD&FC7U$0Kp2tva$e^ znGVF&2nekQgQ!#BUhD_dl4!W41Xn8Mj_H?M+)1}rS4)EE7cBSbOwxIesCvPcN z?Op4Ka_*=iHz{VdW@EDw!%jti49}^fls=ZL{$v0ac}uR5h2(333}Mx+&x+vGFH*i? zun=o|`?cUsM2RfBB!H0ts@}i5ptY6S90M$u_Klv*z=Btk2Y6$^QY6e>^XH_OmzM}| zG(vtO2k(+Z2>lD>3lty?28x*|Vc>uQLKR3H4x~g5qF?Gd@2rS^T1oRqC%CNj3a?kE zo_a;|X;mXq4)k_SGO0Gddt^A*qKzLt1Z(gu z44Hhd>hWzu0lI7d`ESkSz|HnB{nsBvjhT@w#G+Lf;BFQ%dd{wi4NP4PGt11dtFT17 z41T4RyH^k2j5;$~sw4vI_2eeNL?CMofL0+1ILrmKuK%+g0LkI2XQAFs&jG>_GEP81 z+;5FQs>ZCTso4t5#vy-?z9%T(2J#*hxD0Lmz=;6)PJ4i&=bz>wK@S+4Ac!X5BOH7& z#U$#y0vPr*8B*OK_C6{RIyGA@VU-epN;(L`41cY5NL($ z+r#C7g&_fWPjLVc0`yCXrigJs8_BzTjTz`%zBPiC(E~_e|2aH?)E4@_Nhu1D2oX_T zcz1-i7jiHFCwnyT`a`rPz@1A0IztZtH~{*!il8s|l|X@&yTa}x$fS8rfk?Cd-%H29 z1qq}Fi4e!pGC|WqdZre_zk5kjS_A8{NN}wTs7BjgzwA=SJ6s}5yvzZ{Wv!h3)4x=* zWS{60I-O8iwWTt-Hp`Lu&k4@DLHjiX=VO(BQI+q$3Ku3uCM;s|vHMmCeBetI>@J;D z-1j|(FSi`8cN*UOh0TC~EE3}lQZj5XAc4Jq&d%Bz4_N>Jhav)qYrbg#X*~zzG66P+ z{^?Gz0zxYq-V& zGm=RV$ecU3{`5t&v&s(M(t*xLF)MjYy&?9r`dQAhw@| zyC9WXw;i!mmwis{p!Dl}rh~$QTk%33W0&v9U}cuR%o+2ei@!1zidSsuwYOwZ7;tah zr^C>2xj0w)kef_p)>BN*8|SPs4DgPOjB$qFzxi1cVo?F*Jx?>>1fPg2|8WGI{=q;I zN(*Bb)PcjIt}v&$DG^4D9G{AnfKo{h)6#i4&zMoOyGW_IIh3m#*;6KScmEgrK}y^0 zJUD?EXM*LW!_mn3ZBFN17TqBY$AP)mn?!Qc$@=F;T+}oaI%lb~Xz0n(k6qnO1D)zE z^HN=NTI$umXB|)f)^OdSm2w1aL-20Xno34~qBC)Eq8wi}n;aLMU4gD$8zLTp=MsX? z<_GXpEk z1E6(`0K|;)tSjg+sqtVw^4f{%%te)JZ6#s>qbEKt930;XwT#*x%~0ETd%^VBYnOwv zIRlAko5Qc4tZY9yH9O}P@m$(FK7$crY<-p*^T~-=ou|cFwLwtk!qykX9uf2_g-KRg zLK;nB8m>PgAH(9#-2A>$wdSF-enR2b{9lpcoOcW7vVN4(*`L|(xC5 z>^5ZPy=H}KxA(P*V?8M&(s#ysjo;X#98RA>y_U{=eo%*wSo|!y*y&Z_!7(fNja@9u z#X~5rRcIEk;U}cSMH(`=D>`CE_&pJJ?7q&^5!}pXr;VyEDKbry?TKo9U{BC9E|tWb?9n7jYAmOyEl%JT3p8xGG60eWoq1>gAVpc6l&x;huX zLP=juN}9c~K)@Zd0i6!dQN)U+T*{6q##_ThS4hF-tY`}lY6J16dQlpVJGXsVq;6d# zAH6xF^*Hk6`sr0N!hWnvS+d8lm~%?to@l_yb6AAmKJ2Hw>{Jgsf)(9Dci;ckBlal1 z4yWJ(F6W)in6HK(V%qlIDo1Cwsvlcjr@na%I#SFs6-n+ z7rem7&|Cy#SswpMdGRcMrha~#-l7ORmso2CvaMb3iw8b^DTdAaS@AyMTj22BCULRm zIl4djwo8V5iHkQU=m>W62)Qsc-k$vPoG90Yy&fat+?-i>@8ddM!L?4q50~{21uSWO zO{qrj?cNL!ilm;f<%sKA_4|32Dp*<-sQmu5<+~WPZHt%>|NQz-_k5R~WwHk6Tf^`D z_@yN$;-FLBOP(+<0O*8)&5bSa@%xgwy&a^5VUD#ZYm#=8$e+n3bJxSLLbi2=7Se$6 zG$Zlrm9tG@7OQ(fqKoUSQ?ZK<4=qPI1lSG__mzL$5NCTeE<(493*DKkbh1n{M7$lk zJKkuJ(fgrX)m2kK^jTnTt3-zdD-UMFakozGWNjq8^KQ(#1h*F}K?;3sx zZd!_|l~9~>+GMV6zW!b;QvUVtc1y%m`iBPIP(m*^pVudv({K)q{Q3CwD$zI0vM9YD zY-z9XB_;$M$6Miv5Aeli@nYeXHQK2?EO9;OQaN(P(90+$-|z>O$6~$ol(&S{66UJ2 zqpvL{V2Sv6W64B5<;xsbvsm@1l*0VqPMn7aCNbKs2z*8+?@KOU4`FSAK5s2ubwz!} z$+MH!Q$i=!zdSKC%iF1C)-xu}Y6oJjRNoKPif+EjF&wsk+2Z0~Cd`^XuC;mhrkimR zZ%sW%l1cPZAok(>QiAKM!{L@CSN|gx0bRULTfdyVnXtolE#nh(t3#71s?OXM6XL94 z=d+Wp+W+o&QcUy3zF`SHsISqyqowpiHEycnzot$R&T^M7bsLM3LqRK!q2yLcy)7*L zlr_KA;c4dCUe!W56aIqLb*WM3&lfr`y9l|Erte{QSHe4m32X^{!2!$RZo4WEDpVqV zO8Z|$pa6i^zvdT#cy9D zqc~m#ioP(TOtmWBKQkO1L)7E|DY$Y?Vc9q!l zFM-(lQF4*^$l`vGh`<$iQp~rXw+n8?aD)jWdkbz)#=Soc`zclK%-U+57~tHMb_JCf zsCzuc{`#-qIsMmUXdSS;elZmYaWm{kt>!R9w+yYB&9{g1Z5B>3e9ATZ(aUYm{gO4`kS~R};^o?uY$5#c z(|*{AeN>FMTGp1Wa0;f*>Nb2zifoKoHI&H|r=?!>*JNHY**)Fgp#pag zHBxaZ&a_nNUw%iOUaR(EsaO&<;4U@WnKIgXKR)7MJ38y?I}K>$R?JLbWNx7=vZJ}o z+49c%@EZDF;TJh^%EWuu`Y(E%$${u@64-=2lU*HnHN*Mkxs#ppIB@FmGm0ErHn2+E z3~V7~w9g$atZ&oBH1)kc*|dwkLGG8|Z+QZqTrG7VkKCG}e$k_^+`pVfJ7G_|l7EZG zThEamuXGMPIU%Q7p9#Pd6CC+SFO0U+eu((`QH0- zkAew>YTP&DA?Pk?iK2kn49|Z>)#fLHC9iYV1}Y#BEc7&0U3QWaTU-vdsBY57dPClu z9Q_@`iK=brl9atfZp3)!go<`{=OD z6jq`5EE9?>$2mL~>$z&L$19tRv$&ft3CJGDL;J}jI5+k`XXe0+Kb|O#j|LxYtr_ob zPD^CDU3=I$a&waYl<=PpPqc$XrVV{VwvsKX|0+*k^*T%!(~xmPd_O#C*qMEGN9^Ne z@iRI*-E@E{*b2B`-+)IAvdRJ{5AdZx;JRLbB?$1fv$eeqOcLzCS#lnrAs{!!Z{XB^ zs0CQ}0{|ME1xg$c;*lz#i3Hkq<*A>*tN@WMAT|>)Lqq8SBcm@UUI6h7VFe&p7nEB9 zC}%Vtf|KNObTDd@j46l-Htze$c_Jbq+jeGdz zWCSF78W^BIK{!UJod67Fybxxo%AyQ_y1)UP9VR6&|Bn&`-U)R0q5>x*Fs`Hle~C%4 zhVmJq)RERc_}7B1v*TZDfyuUYp@T#k8(9&fbbvOg`7 z&Pl^MpQfV#yDbykI^8*iZ}ig$ zdKA5xC>1rfC$xv|ZB&_(QdZRW@8>&dOXRMB8zt_ZsR&J+Z<|(@b5Xam5c|ZWs&M-| z0IWc1ND#Cex>lPXQk5Yd(7z%VIKg1uz-yfaylViZzzkui0i!boqLM@W4bXI8fC2P9 z&nrMWg?!f#o3``k8b1V-2c0Sish(gvnKu?M0_G zaEcvt7JBJ38S}NKqdMj7b32mJOWkJHVJ61mKwo0JM58$DIO^Dj^;k4Gg-q zu-L>$X27%pK2P<`PvH6nCy+{3cNheV2Y>aho^0~7bB5Ca+%erH@MHrJ?#D1F7zH#+ zs-FO74hRuSJbVjChL;>2eWRq_oo;=^=1-cp3H$`}4QG1(xLan~QLcG>0cG@;;W;&*xOOqDi6?gbb zs)kKQH?@48ab=%c{I;Hdli^GIvV*M2Qp<xI?j(<$x`ub@Gx7Ww-X8-~P5`dH%1Lgtm1}3blyJUS2+&v&2La&}P%>Y8xJDsdM zg02&2S~&d$HXEfW^5;r$$RZe&J=6kT_NMI%^ANdk{s8jBL!n1&U6ChZ;qE-!&%!+I zzCDaW-co2;&|}MKM;I3%q^Hq6GJ_|NrDQm8TX18udPNRzP*V7uL5M(VzKQfT zVfzcd@PAQK0Q2eT<;A?|u+5aJe8D)riM_s4DD3HQDCym^?dJL5NmKQWdSl?n15eHd zS$p-0+a9vw3A=waU7^$NrkJ2J+}W0u!V6Hl60w8b+aBs-f75-x$XQTKJtF@P<*LO zx~SfjU!Q9!_F}|3TjsZZHhQ(ILS`q1^Ib*J_8+3%JDdy=CydgPSD?5r;GBbU#r7M4 z>k{gqLIhgy9K(fAgn=NF3YT^8A0|W_L03jfQ4w_At5GwHgG_%2w0nOMddC*r6qy zQx*z&FV|oyN64BiSF#M#ebE{(>&H2Jrd8hdX||9wPRB-100>=VgWPwgd$*sRNvdj5S3PCb*G`-TglTf%q86~o+1}zpp;qn~EA#;0SqO-odH~eGpedRD_91}c z0^j_r#6WO;IFd0YVW6vUdw+9gGYmM<$$+N_c_*Vv0D(sUaFpI|^WdnpOwL^@N6uaAqzWw{X*NDjWZ`(*k+3xRsZM&0bX}QSb zpU>L7&VTeHV^JryRfBu|yErv(WL@&t*@&eAshA?hajV+K7sM^x*o9g_^O)~M{rq*- z=|e=sf2x>Hn`4sq>zhi5-uZU-XF5qLPXtNdea{3I1lfPn)cl!Y)1@fssyuG)AN}Iy zy{#7gR`~$KKjx>U>{_Hn4&JRy~os- z0efcOye^5NZwvwOW)t2HXHs7us)M0anHW$OzB?zTR)lkx;)H@D$U? z9)qi(SxuX1QU~$iu77+*1A|!G5IzaofPpO#l(glt7i^y|MoFQ0? ztQbY)v$t?6I;nSUJeNnc`ST>7Jhy|?>W2gD*;ET$)_zZe>8!5*Rz2hEhDQW$AgK=! zqw@WHZ|e30P0Ss6Vg^^&JaDqIzTndzhPDyPkmIZMO;(DXCK1T0j+hpV@x(|JM zUfgo5O_+<)*q+qr(=h3Le%|lpu9M=oGl+C+^j6t;UY2*hQl^FMD=7Zp2lyNi91y@o z`GL=LpwVmen?NsY2e^cV1=!yKz~aA96fnQw1TdJ1P&T@5aIGOy;ztKbs1k(mG`|jj z{Z`yK*A1dgg8>>;;emVd9k6A--hBVz!wS?nhxRW3dO3adH9a8DXAg5;maT%j*V7eE zKFB4)4zzk6KMbsUwrFlYffUIX_C88&U8P>+ZRhA$*~G}iQza*A&~Cub(E_AM$(hM+ zpu#u&P3$YLrpg+lu|02cz!+qr^W<)qn~@7 z%0LROqzk@5&S%w@-f5iYu4CGe8|~QM9bY`>|9^Tlh%lXG6zXDZv1U?hNhtJcZ~T$N z>?*13cu$0RzAQTE0rTdamr>8oNjZLE(l0)kZk}j}Xb<~4Fk?XWOGP?iYsvRQoNS%} zMaU&P>(91*z8_+lSFR_!`NhNzFgtOy)LrdT=nHJq>7O1BQ^DOqbyDJE(Zwx3isw+Z;k3_#g_p@hKuMab5Oo$h9ui^cH>%93a52nn^3(3`hrjk(W85Yg z)ziNlf7)+q4jFmID#lR%QN+*5D#JS6Vt)_zKGx&yjk182gTcdetP3vZdNku*(M!_8 zM3&IaUt;*kx3jr?!%bJ2Ifr{6_ho|5}6 zToXNw4kGU#PPzEmKkwrsEtQU)_ZJU{Oq!I(N8WRbDRMVKzPRx!Ltdn1Y>EbQW`ky_ z2pG_USu99H7ytv9ilF24vPU++J&mauq6%BwEbVGRz5VaHdftzDMAQU~g zhYbL!4@yr{#2A!kq&8jzR@c7xF)Vdd5ETv#FS7%&0eDKX?tblR?ClLNhc`o ze*-;F<;4K-Gz(xvVZmttCT2GT;N}0{T(|$Uh!6~#cY{<0Mu^uAa|4!JYFn7BVAMwu zXkmlmZUCPv3BptWBE;0ZJiwm=rbs`ujGcO^L6@owNFNIQH;gs()RIqAnlA1zN>)0# zbm+;Q)VH^xzsb>!-jzkZIj5Cb@d!26qPia6|1zmko(IfXVU%ID z70)oGyCK`ijsv0^^S%5Jk%=Yf>t_1YI(Y8Xo-wSQY*iIlFJ1h{88aW*%v$rD5}1Pc zF7o6O?=~lTlYSihe8IBAN$Wb~h#GT}N}x6MBD_-C2hEayS5WGFcIcm#S&0z9po?j_ zC?^o&V5F7|CipmjTmdM6)BpgD=xqQ2eh@5zasWl;0FOKo3~j+`CMuXw2CBYRaC~?c zgWO0!_nshnSm)af@GtmULfd-!j~o_P9`BpEBo#RCc%w`VHh#flhCxM<&;Q7T#Nl+B z%B|dNLYVC2bT6lBOqg+rbDKV%ME8*{hLIZix(khtRh3=1FYh`gRV6y|KvKI z^;R`?Fz54+DMqj=J)Du*WB}wdIS{o2u#@LPLdXG!facHu$R}VDWjB{0(bsG9?i;9( zk|A6hoH0QIz*HIlbOi8icOyQQCPDdpd0$e4>5^CGC|6%yb6NxT2ksuTe>Gh3?sFFB zaKmV0&a4^!*oKm1?W>Ye zk$pzLHw9s4Lq9JuFWxud<>%y3a69|s8SC>=qJTeQlrG7~^(Q5`pKQYGbjt33UZpAB zNpFm^vDz#4j^%P+8sb1EJ_e0673SO9WpW8Cp0>eB0-ghu@>&FLNp>*e(YXE*0cDCn z6hgpjYmNecU;*2r++_){1y%r8w;zN&ROB52A_@%*A}0VW`~{$O*abwGGH^J8PRIaa z`su(KNd!&XbL9y|pSBg$^{GJ|wdgno?`TOq8P1l#koi1`dy#`uTthY=2ELD@1_s8> zx#hVDI4fT@hr85^2>wuxJxrbLni@`yW2n03#UuYo%ym<^dlvk_7?y&6SiQVIukYRw zg4Sltx&#ggb*uT3sn`izmXz8uz93O)I@1;Woqe%hvWhxnSMG z$?7iYgujob-plC;ue!V|%UKfmhoNImigdfBTx&P|#+ZYMYKR=?K!*?6kgLWZ*@j*@ z$g;#=1ULv9ET7u1EIbg6KPV3bki-L11ipiDE?`7MOizH_V1t3!o^F6! ze+AaNZ_hb^N$_FM3t{&}_13F9ffp-)+clw3j%CXN#@b&Wzq~JN>3~dUZm^I0r~R%Hu2+x$r`r{(%prkrud?c>CT@Lbl25e!#vN-5Y2d zn9X2Tdj#IhBGJt+9d{hxn*&ceYX4eueRc-$&(i_eiv$qv5G7&_9O93k{Q(1m&ZrU~ z)qvJFaP(`aI|2zAP(=>%0uT`C5DNGlz6r4b0TT&OKcJ0lI9sv|ybg%xNV`}01E3%c zR~C_G;NiYrn@~gq+Hd?3ANA?k%LKO?!}l!q$*?fl2%Aquef9c9z9N2_W_nz+GU?AK z)N2pbu_>T2En?*V#FW~nIC#EREY{FOXMoi*RcWCpM@WS z3vy5PlQ1}_LNQxVj3}s!O931M;BoXInza^SL^64>@i<@4syhPZ3ly$G7Z=#{>IXRQ zOaN>%3<5SG*pr}~XDHPJYI#ACm7t&&iwR19pwqj7DfFhw1l9>E^@Oi1OSF%efA7Ac z(ff?MJD$c;!pQHnVy!#sMf$wP&!oEj)LA+I7+#m6YbX3DQ~CAOyXQ6hWhcw}=G0si zaCMyrcDc8xh1%3M%oDfv{U*Z&N6}t09F-4cyUSbycdzsb*1{;64-qky#E<)aomX>L z_f7A9ukYr#^E>MHk;9*u)O}IP`t4$hO%^WntozL~0qwRAnQ<|X3M~wK+mE{o-@ulIP+N9{S4zd(&@0UtStJyQW2!tem$3<^UnY>M%~5G-6S(X| z3PM^fk_c{B4;eM%KD!oE-ZOm`e&y6vp~n@MDI48D*UNRx76tahe92fZ%FK(d|8T$j zX8?syMVHS%RyRvH^c$<+{XErEiB{!Q-x9>EMD1CeAD&7z!%r!=r?ETLAyw0>5o)V8 z@SClnhKPc`m5}C|pemOSqdF8|zB%3SQ!G9p;FQ=Cyt2{ge2by*UZ1i#uTu*vR(a5B ztjUbv&nXjczb4d-+h@PIi)X`qxw3e8mfiYJ_v^EH~S>{bjWTNfV!w?ZYtmZK+@*$p+ZY4?=sQvx}WwkKuM>nKz$k?|TS?pcWiIBwQc z^TZ>Q@=$T2*U!WlF)tChXE(uD2Zy|L(iMd{*7$}YzEX{b3YqvEhK7t;@rBj=D{0v- zrs6m8i$cXp$pK~E;NsM|;0iLR=xYHJ?l!fNNs9!}#5S2MH}#3t>u~pb@)T*lS|G#! z%l^61cxM#bC;PtTM`R1h>+n_VKy?c67Le^M{QunmE(~O=>-G#wwHz{g*xIlomSQQm zyTxhygp3{DjKmMHeA5|=$k9_xVD;?_>Uqcn-P=FC zSw@dF!X2%9FLKpjk|X0C#0VvrAejkw&?yNkr*8h#%Z-|3HCty@zj2%yO$Ta#WU1PV ziYFId3*#3t3D1dcZ{wtq4+HxibDG6m#mz>^>4a>(XJWiez?t2(_bgg=lprafEzGhv zQVl!0e~D>fBP?7U#PZvJH|kq!l<4QT$lGv?O|qkRYtYf7qaBOY83SYY)q`Bo|Ba;x zjN-{A(EIW_iz^VeZ8F}ujf1Jq(wX}^#EZ5=aMZ`Z@R>spm1aApy1q$}%#a;`du8=7OJUeezh;H5brk@kqSuJCGbsk|IkG zUhE6dlbzb}9J81YYD9s4#qi$blkTLxcHx#6G(lraGWUk zF6#>QUXam)zGGnU7fl3Dm*1dLC`sq84WLyyg1u4E3nY_q? z6GXS;H=c)%MA#-j#Uxl2XuL3ew1E!36OWMKFnPlOWHNk>vN2W#l;we%`-~!6E%0Wd zS;0=-w+U^3F`s;E$*(N@8Iv-pkrTKU&JR!9B<3NnWsUHf2v{6G@jmjZ!C!4D{>zzD z)xcqM6Yr`|O@Xg5yJh{@mo38kb`=_OCwtUD<6JY)FAUHZBSdO|BY0TJNCayzFP2{j-k^S2>DVGpfIAe#-350PQ8($x9d(j(3?Nl>T}1ORK2q z^!t*;Cba=W<#Ae?b3O@xh#+ki&TQrEQb4lN#}6i|rxu7611<)p!N}Ua8QcUnL;yLZ4iwdnD$Xtw5&ynhl>(Umi0EWaq5t3d~*=XYGru-R9lt; zEba1zM6Uw^Scbc>O6IT{_>#3{-H9jIor4Ny&$oEZ8YML%Zo4%#3-=DA?E)y*q9emwyEl2q_kQ5oT28yOQ{WryI<4x)y37uL;qWatqCL;M0t0&Y}3=sTT zrVrmSyEzo9${M8LKR$E3aJxOoCC_~g?py(0CPP2p_MYe`T3{GEIg!&jxjf*cZ&kA% zoD)?4<*mU=5_CJER`~0K71Mh;ep2`gyKOiI%%H6_)ATOgR;Qbnp8u~)mIU^80?T3Y zgrIwL;5Sz7It|Gb7JjlpVq^pdC9tf=K*S%_qeCOd*%e#qcnXwppY5O(Vat|lkJJbD zF^(+fcsr(L^Fq$#EBAuzZ@Z#rzbz=|uOd*k@M7>1wG^i{ko(MR$R@BIWQB09` z`OuD{JR-Pd!4A+-Si-N@7!`A9RW;<2#U`KRUbu9CNZCTh>1fq{`>(=VRZH?#1KT|; z<=5o|z~zCSXHh&TMgk{mhv$Zs3~pf$5fzqn)fr9_#I$?3nlK8V_yJIrlbtDqF~IeA z@kT6Q?;0c?8*04pQHt5U$)_!~7J=BaAeU?JpR#BHi_OKV%NsXOE<|^Xe{(Wc%@zewO=Gn9fkD6Cg=}Z4Mq%<^7oYL3PI@t!}e1PalsYR0D%yI4rZ0nPh)^xANtvwA|j$>8FU?WVhIA)o18$y5mYq=+ZkLtt9kN8uV=k zg1zXkQulq6bqTGpC*~R}#!;&E*$s8U@!|%rIW$BFCV=xN@$SIL^>k|piPBgTt^4nY znGNS=UbcQ>q~Vp>@YxB=>x3oC8Tp&^OK|qt^5c2h@ys6A^VKcPZu=mek9nlRYwX2} zNfg_g^g*s*KnsK{hOkP}8KrvjvU6(=Vi69aPq%dr=@pISzH;0|^%;0(Z@|9mtD}}0 z>RX?ud{mL~kNT_@j5L2Cv-17g80h;e0STU3X2lDO=dW*^YCW-nNvN0=jYd*piEdY~ zFlVF$^YY9tZ=cWjW`rkOaP4hzc1V$V^tOf-Xc9j*5N-5tn^UOy9@J)2Rg=ZTvV5II=E0s99;EA8h{vf+mzh^0u;+Mk9GxaH9TDel zg<2RqibDVip&7I3&b^hJ0uHr9~5o9i&%aD;}^UqYw$yP?HCpw@Nhb45n`4P(sk@!FXWMw~ils0S0aT@w%uR5(eb^kwCmP+p*in8ZR1@q*|9CC!HR%E-q)R*C@q&; z9pZ(H1h9qxeTM1asxTpqx`iB2d571YJmZ>Y%e;PE@x$;ng9Xq0Wv{eX2nR9iGKzuq zHV3c<-$&bHe;bUvIXgq-b$xo`dk^P;tt`X%SrNxXz;4^SL^j@OytJcY4D+>Rp7*}O zv8dW9_k?4ro!~;E6gL*y+lwMSJ0CV1ziB!hiE#uwB+p8nR^>`aaQ2*NG&iMs!mUMi zA}6QfvvErQ7`j(FuYsIy!KKZNt2?WxUmHpAGUS;H<~(UzV(7iN*775))eE?>o(F8- zwM?5yKeWn&U|oJj&^?<4vqe2eW46=K1(K-&S?*4OD-V>6YGnvEN4*c#&=P5a&E zkftDS|3zx#vr^j*s}sQ6q|Mv>yKghSHLM!23G!g?rprH`z#pV-4wP>cgTJ+Md}Di4 zd@T-%!43`;8zQ1EJ>Qbp9PX=)H!N#JewqC!t~NdMOF3}ztd-5*29D42#-al%Q`+od zh%Br=UO55p|GGF*$mZx!44-z^sfcOjYvKBrw7cTpm@+PPyq-!(@)7EI$8oZ2h`%nU zAo>mMadP%8-l{(@BbF*ZzKrv4tne4%+4S4Qn46~z+xOLNo-PJ$*U@%DEQ1*wZB;rH z9FS!cYuJ7E)lZ$)$dY4YoRnW8M)ajkXM*^J)Bk8CU!H1PAvg#7`B-?&((=!RgFbL! zfIhbf_nbJJ1~$p-S#pgo*Tp~XWkJBxUx=lwSCQY=Vcj&Ck)kr(%r4f{g|6pmxBVN7 z-@es@Z^qc{+^37C89Og_WwCoxl;iPP!FQca1af%vv|$Jpxy=Bm3?2oyeeqPnltPx= zUT1u^9n|j8HWx9ckHk|L+ApZ^rckpo4gCD^ETTYk3eTe zydV-yt${VOxH#M&Xq!{6BH*%76mLDYZnc7!@NsSbTM7+E8Y^DA$1=(rPoHvY(bF(3 zrYi;R$br6NM`>5qQ96m9KPuszOJ~6wj%bNj)k@42!_mpyzLC25kQ}8N7*5$cI z5~{|T0$!1=%0ax=zK(NxW+3My<_GvSS7Vc>EG66d-&-x?FDx*L2pqEnGNu@y|IRkl zbd=-&sKXY>=xYRbs)O6M$B%t>TeuPv@d%jN`l3v94)OajS}}rw%O%mR)7&o)JfC3@ z!=E*RH`@*C*XX8AkhZM&Nk38Wggop-fu}4{35?R*o1}*PkF5}m=Fg*CocwOS?W`O0 zerldyi{zfiGmfj2PN}bY<|&qXDZf7_1Lqv)F~YzV~sGGnfpI1g(#PR57DkaZX@E4Uq7DvGah_F1mccq zzoP#lQ@!guvLlxKr&DtxNIl;EJ$R|RB7N`WbH`4t$-hRQR}~_I9Za~%d1pk@QF8Po zX#h3wWiHa?f2aU{9G~%U6lnHERU(dE<44(Iy&*@7kGw+}flMB51d{=VGt7i4`y zbrW$PH>}zrl{53cnKpt})22tH(U3O_%R=)KFGko8V2`I-+aXVa_hx~&%dl&)#n;Q2<+gEsM$^89766DI$lB^0`I2vC&pkNQ zFJngrzu)ozQIL~!Q?K9AUH+6{d-(6^F4y0@g%4*s@@?|GY;2x9f-d@a$hAY_I6sw1|^Aou@yoy9d9^ zsj!0cheQRGQ_7^$gC(Y}9x9uWp5!{X=H=KFN>EQo4it>69we%H+DlFrAUx9%ruUxQ z2rS^LY@`~Pnw7tUv)tPW{>oYd&QxWThbq|n4MU=}r5gg9^qMvB=2g#t%u+O=j`P#g zqZ5)7SC4$c&hHwo(gj_orgey_|&+K%mS)2YzZ!fKPp*hLdr_~n5d;3R1n{Lmu z+7Ev@$E&g8Kl7kU$s+H8Us)mL#kR*ird035%*z{e2=A=8_MR7fs5KG(9YE)>xK1^~ zGE54&C2ggSNC%E>5Ss7s^~E1RxV*m& zSloOdW^qFq*9ZUn2k0P!0jpgU0e1tTj)A%g6mf92LcMhxY~TK{Y9tg_pHSqB&z@ma zVs)SF6pObKi(7;{J7~*Rlk&e`mLPbI8u44Cv$J;ey#6vZtiHu)K`%>3>Ib{feiPN$ z|4SavZdl`m9X#KcGAmSW$M!&!3;4LrH@>p?g+ z7qvQ@TK-fZjaCISvN1?cRNKg!lxU%9?CJ+TP1S(N8gDm{0s8}>*=b+^wm$%-N2y?7 zyb2V{-MW8&nnNLcAmmVG|5W&vz5jf(=`AQDb>RpS1WC!snH(OX?__$nK3-Wda?SM; z&gn5l-GjaV*TzBFOwuOutI zr^}4vvi`N4kE^(T5mb+dy!x7r{FxNF!@a5$m1X+YZJ2o7tkeCTxkir7cIuC2c+w|l z{^Sbw%%zZPZT#Y_#c#ZBvz@?2#Vo~qcLy=fDiSpW)@TgXt(43wK3*dvQLwls~yS z$}`75AFgdB@Q8;;1&*n>W4~$gtzeU$UH!}zbmLk`cGc4K^irZarsWQHLe1uQC0ow? zia}42ku^015uSZ9J}LL!i|zCHY&+`4b9-flF_H6YC)Z*n*(YKqnyqW6RdcVIM!db0 z?@9rp^b{%I-WS3aOdS+R1aQIOgye@ui9j9+!hqg^)M22GF#wrHxpEHiK;!BGzg?bpTH4z3SivwgE$WZDuD)&+WRyr^Ha8ffU(0&Tp~H&cErv0XF>kJM%VW z7sC$ER+brKdeAF(xlQrFv3^}^7M)4}g+o;sG#0U^Nseob0h(8Igxd=9(VmS{&=s8mQl|XC& z6rBe05eIv0R21uD90|hJ;{`oHuvev$|rR)72;~kI~@D94)A)Ep5Jg;`_ zy_{@0HJ}vr%?CVi1G*IwDizB4rqR;qqD(JbT@lMuOEDEmBslII4L*$ji|ROwNaKYcUPVeP{r)u(E1x_ch5F?wIajq83t2cpzGeUwm~tJ&ttvw? zi2t{*n*l_MvB4nh1C#{@>jsNj1{C)VWj_L)H>>al&oq!#%BG(=u!lsaAaf1_Ox`;n zAG8dNpg}s36W?2D5g?B#h@Yo1Uuou9K3h>(XWZXontO)wf9N{vps3zB+%M@8!qP|x zEZrf}ASp;A-7KlV!qT7;;?k`kAfX`AE!`}sAcE2%B^}Ztq4(Y2y?5r`nR{pa!*STf zbIyC-_ zx)GPJc}s!6e^1cuL*Ff_Op*fLPHHjE1J#N-pmKnENaa?`JIBl1l8#QX2D=@x)U1H3Eb?||qP zL^TkCo@pe2@&MdU)^-5k(532NG_l_G7}W!SSHyu}d!^-8&6J>{zKo&=b2%OaTs;DK z;T75}l>sGT2N%wU;SFf*t&CN}Xc?LP8la@{r;HD?hBBsrQiVuEKCa+8IR@n ztk-VG`1bGR6G#~?P0*dPSw{CX5_x-QjM1{GqUa7$Ia1sprvRWpfp#K0a3u!VPu@Si z1QG!t6JSJKV#&^c1%(C7K$d`NwrBC*-+Vr`CayPHsHW_*Irz9TX^Q8=FOx57I7A3gx+^Ry)2HS?T9P^m#;~xKr;C zHU_vz9cyI^`0)i$BpmFM$`I&gLvLJNhs@s|`TuJLAYq+{rYqy_ajU8aVSNiDu1<1h&fh&drOHKvO4m=1JKC6A{4(K}nlj05N>S?o# zTm_)%!QtqlnQ}vWxgnjMc+3%qM|?@NQ}w1T*6(8v$dYjLpX}=~7H+B2(FU-gOATUs z0}$@$&PdLE=oZHicfc1&<;9xXvD~-!las&plh5Q-z5r$0+%aEJ1Wt&N8N0Qz)K7aW z4UG`li?7Km=gEHz4#1&!lpn9X-IBxv+LCppOj0PI>^9 zLYQ1uFQ|9$;@dw>=d##Rwd6{MUPCO1XMt4xTx6kbjNHP zd8NrE<9Y$LZNqFMmcOzKz%;uTKqS1Ip)(N;FvpYhUv*wSnEv!GGyp>Zo|0&V1z*fK zPJN6IJP_B6fQC&V3x9*wI1ec&fL>w_64^C4>5>Z;oqU zH9fX zhoEo>;&xjb#$;YK7N-XGnj+DZPu{Tr9{u6kBEN^P>|1mD0qT{@Y;@Mu#+ni<<4Ulop^wH_uU+df2w;%O7I`=oS(XXdsd`s>}^yS(Fz^8Sd7V*>>`brs> zp(#>4r6yt$!pvA@t=%~@zJ9j&HmR9@%JY|Js%*!kg z?th_68{_*EZ}LC|%6R!QC`7I5yO$MjjAaA~dtN9&&ujxus2?FoVO?4g%*+JvND9-e9D)aeYCYlpWgXwvob&IfTIv>j!z$Cx6hR_vXN zcI~<&A4MO=yQe@zhHGX_Uv~0UFx`wZTf@`>&flR^Hw2s4Ezsg5-sBiIipYv&OevcO)assd)*1`rmmert3Y$b5h5k)66y5&ZD?_B~fX@2lgP*bm&}UI>He8y`G%d9k zAi%lQ0KxC^QBi8b*ql_QtjdCJsY)~5!#&QuxKbj$yI`gBMCEr}etbya!@Kjus=^=) zKGKxS_IV|x*AAaIP1-k!kRD5vip3%#q9yh-1fHF?CPsEotbW{%SmK`W&-Zzny~=;B zdk2DdU=;wv|h7#NjygPE@%}xQi(+HUX!tx zzZpfMr}PkDn@ilCGwnkP3a5KBw`|jeUfrsHeG=pDbr4jW-+( z?5fOZ=L?m6Fck@y9c32XU#6!nPT8XwnosU>Z>xGB-qQAa-TBn;&@PKLx&;!mtX&vs zO6~myZOjO`U%t*|2PDD+8r*3u39pim`JTBc7s#X}K6oNFFXRh{FHkJ@bPJcq+6H`p z<~Nkg-N&>yneN`kE zsARU?_f>OWJEB|koD()xbMh6wFr3+^!Ro(gIOdl`{?d;g9FNWtsCdI?^O4_C4891I zi>>J~u#Q{gDn5GXCaN571JB_#mCR zAmWW#P$k#JSLziS95nmsYCGj$eMZ~{u7~B)A0Dv3Ea1n}Mt*V75E|I^48_k=x_2Z0 z{(%GBDyN!pTtvJ(k<~S^7C%RfXa$A-`;myv!?2LTxlJ3!@$kKFLAy+R@m4&g>X%oK zsj7(J%*pgvlot52EeNPuXnd97#!ZwIrGBmE;In1;GrhVm^@w!-(A^#p^{<`5#*lf1qd!laDo7#$6eJe|aNTek%oUn%J_0?j5 zETuNpM;-?4ad|M-oWAkAPIzHn7-XcjB5tg-Yl^1R{}^`8xzsZ@d=cVG(pjHjS@uEz zw`2z2sJE&(5fsB{OHScNPDr3n3i_qP|M7lo{a1nSl{HuKx`heV_gLOccyPCV|4B{F z_FUUhj3bg<#dT-0iR(?hM$z5(_X6M9%jFP$VEgD9c%xqn7K!7#L6se z-z4u?r|Gj^cW!C>rVh3>co2BNDUDp;Tj<^A3qhojM82t3U}~_j?^ZMBvMhzd7sjWn zLP33F6VUU3kr`Oj;y|`p8>nPl`2RmG{M!H-Ogd#9z>Ga40iSp_;Dnw7fvJw4KOlXl zu&cwth7!;bv2aHa66R2P42MMlK18cEAS<&wj++TO@+9cCAmT6ZW$G&=9HL>V0e%-9J6>jdm z!Sf2~ho7gMVC_tHORV?g0)S+DhBNQfc&}+E z0>4BA7Ax7jk=xT2bc~ubcfo;RQMn*EjscLMg$POM!>|=nAkM~C(Lh=0CIp+UrEg^w z55)NS*vbQ_nn?i6{o9ZWBH$^7gkf2kfUDjg{Cgn^km=h%1qy5300Z@fnLs4qt=fZF z#SDdD8IP7NE_~d~G_P(|4yc(+lDe{DL?hLUZ9d=9(?I^=h#s8Y)i-_cuv)SHiXpeG z#9hh|oeZB?8@!`WK63Hg43c9(YZ}$NaP2i*fmG=f{;+?)y4d+inSkI;A6Z0^z^QN3 z|8KW0o|2{p26rOjz$l?t(xTPFp_kRQbixj3o>o=9K#G}C&~VW3(gBIBt(K_i1;v>A zVMnnHi%5~-FmXp?HfU#YTIlKjRdDOaA~*p;@;%6ldy)e#3Jk3k;MyR705&lpIA<5i zfIETptlDgVcsvywn_M9@&QifEU1jjs5?w$G_G2T3U{(I+=C>xx&EHRLfkX^o(k&SQ z2eTTdA=>3jfRt5v{J3N*C8jBpx?6>|#P{eXqd~&%XPdIK_p#eQ<%EF?vcOTzV36K` zs=4@@^(V@0dJoOjh&ws$>B8uk&U3|X&T^WI0ex?&aO@VFoyL|4Y?0<0UewT{{ zjUazcwam#J9aqs@RZsjueuyLBqae9BhdO$Emd{@=F%WG7o@8IU4r*Eloc*5V5R4T%X;IU47#`w*| zx_jav)bZdeHua5F}#qWM_@qg_hCPKvWPw*;}z)CVDE9O8j=O!;-L zA=-6R!F9SO&_(Xx(s{p>h4u%CmF&_AA!e$lMEP9BV~EcGRWLKDw2A@vcLrc0!hnR& zlRcA59Eahtmv$9BWxv#!kw@9Pfmn3=?n0|+D7NJG&7q3O{Z)z8d6$vFY4jlwIpz1{ zi&fl{#7vh|zJk%JVWaWqFCr4SnanNj4*asw_iyT=;`d0OF>aO@&QdM9o`7dhQoFVB zlxX_Wqqw7AoldCMmnMhCm~Mfh%{8ofpq*o=5a46?(-n-6jreahU=-M|7WcW zB(FlI-&b~C9mU;F5#-@f1TZErlM7aSbQmC;3klete+(YPS74JjFfd@NI0hv?NVR%Z zLa)83yk+Fs0V5)of5fc6Fdxu4XoKtSO8}ETx8oQBG$DI<;?>BPYfxM>pU~BQ zogmBU{U;l4{tGS-!$Y!5snvzY5tT;VeCBgQ3JM1IiGKJC7prRK$TjiZVvDy=|9$YS zv(!)JmpUbH1E}=F&BTL7j0SE{2wvp;N%4`QKj1~?rT;Sr$F`qxE8DvE%t;KgPQ48B zPsFiZ7q4#*xHB)N!QjHyI>N(ou_-d@Nw)(5qW5&qvcbI@R5DN?w1Hh#mNE3aheZUW zTv|5pV?td|WitM&gfRu5jPdaBbb(~n_n!P9E&$MN4+if2rGQ|)HmYz6!yHgUL4c*< zNe);y!9xZMz+r^V28c5q0P(Ooev?(UN#IAe{D9pi61?Vsm%Qz#aCM;aog4*HML>^4 z71+zJ|FOoS-@ioubxzh$lX`4=>EZcBRxPR>YTx-irv&ObSHt@x0&7{OCHfwt?)|bR zXE4yOE|8e|VV`oxX3v={xwp?v7ND-eja zw*!7T23&YG_y+Aa;zTUZ4sfuhGXU0}NA=vqg4Amsjls)pJ8y&8{yv}rqk!2P4+0u# z*jQm~we45?@7vhSVXG%wAO5r7?^6CB_IrB}*n(YDu$>4HAo?D>l#sB$*O%{suMfKe z!G7{T*!Q3HEK$&*l7IOW`~r5`IK;{3m>EbnpcS-0gA9~=zQSRR9{EtYDq|d~Nnz$e3-{#l!xqmaV0(S*~#SGmAbx>)!Bijdv>#M)(q)Bp<52 z+6+^0pXK!^_3qK^$tko*yd$M(W+sgKUK*K2?|3i}AKQP5yl39?{|Jjo-Jv01<% z9Coxwj|KZldI@)WtfjbJ7f_S2NvPNyDD3Y7(Xd`1Xk@uC%R}>5RO$#Y) zxd)Wwo7Fs&fQ+((w1zsQsYwN1dbfVFDkbrhQd@GGtLU+n;ntBc4>p3L?MKq)-`SOE zo$9VEXM0Y+q0qwieG~z(dbA_>X*{#6Nu#N2_Oqi;foo}|*kp%1@D6}opgLHAb!GR& zmpeevkQ>zm`X9cTwT+2j5Aap0fy+Dl+W>98Sw{F#RW8$4oZ^O7YNidIhC)(0x9tFx zaZ)LA&5QN+4K1_Jt1*uIgMql(L)=ydL?#AA{yb!bYpfL-97Clx#|@n1Y+68YpT^odqS&5S&bU zU&E>3-AEb?=&M%DGtdy8ryz9ZUFn!+cQgvV!K9rF_bh@q%mf43yIn<@ZgR1=79!ay z+FArC9it=oPFu+=%$r;}@9YUhoXJo+LJ7j51U)VEWQ58W?9|a5Z`liMPae-{Z{YVd zcl&pU08-xZpZsmB6n7V%sSz6EQ*$-td!~>`ALWT4^sN#0S+`Y*;CVfKm~fQ>o!P*@ z&w-Fu^8T^wJtu6aLfIej*`Sjl7MFJjj|Oj9?z8m2iMQ3QlfaJmldl{|lu0$27;N#| z!ETDdB$kKhi45HOkdB=SAP}3NH5%+BfSj%C#%>$IYD9Gy$OIyq#xCbt1B8Kv{oX2= zlJ83~Vdv0;?Xs$EB_)2)ug6m84}f)f^)r9f$zD5^KiR#HcEQSr5)He=wrg0pg8`KXITPokueNUVA;1pP0}ymY-PI5X;=Se)5Iir=_gyGCOv|_=GH9-r^(b!}lKUVCsC$6Vn1Rfpm_6(N$olD1 z>ee1&*VoP7>gdmkM94Mhi!{pFA&Szphw~=w``fN@3(I-PDCgAgp;InthWUm8F{kF+ z!+)vSJZiKwUaicrp;gLkng~aDi~S~}(fs>MpD6KAQ}iCJ$PZ`J%o1CV;_M}-8nZ1V zN`nWP{ZCyU3X%7Fc(#>0i1H*Vbji_DM8kn)5tr z^t4-5t7V*BnQ4*^bZQYk5wDP&7nsT{M%y3h7gRMrSfwxc#EyC*pDr9|H*U5#7aw;d zoIlY|4C~i>HW2O|i7bvagP;c4qLx5RP(Su?=vLJ(G2stN27R}m?mq9lS`&u23jLDo z{G%fW?)ioOYc~IdQ%>TpxbbBI0{;9;1Cr=LcJVRTPfAcm` zh{{>^1L`!C`eki|C*U1@a3j^Ss#mg)#>BRQ@@tY4}~`SoAkY1icR&8 zbjL`4QUSJ&j6tfQw)B`ey1GpBel&l1DdJW@V0J&KX+&8EEYLu(uOu#HcJ}4s<=L4(DH&Pt53C&-n@9~- z7D*>0W8RBmuzq~+t}}i;N)$tAhJYjhd8<9=So2#^cIrokBr$ zN)=uPpX9G<3lF_)4DG=qmkR^skY#Lf04oNFq2gY#{kvuhfmDTF@6>?i;3_-IA1HQV zzdEf7?KADXFctt=D%?4~lwoh!pPes9Ie>hPrj=O!gKt{G2v8px$@Gk{r?+VsIg5Sb z@ws69hYcfj-uD?%aS>b%`3tdMXUKr_`C`>#S?xZ~CNfcoi#x7{Y_r6`bT4pMuyq;2 zTJ!Y%-a{C zNneubg;4Ha2qIB$IQr zonLmxB27aentUQxc8oAaSXhpfu%|wKRzD%o!?RgXS&eG2@W5{^QYD{q&70cvb@cCc z9g)l09+|xGX{(}1ygD9}OCH>}(8Ad!Z%kNcrHHW-hNG@LXP?xYRKM~ZnIX$$pFhrf zo5DV~&eb_%$ZyKp#aa^RV6KkRJ5SCITc+B{Bp083^t-z{v&FX`5w zCB;&9oMykwEGKjzOBJkMNtRK+8Nh8uZyrtWA<=-NG48EPR=(>65!`vkeQ$~=@$LbC z6e}4`-@4wUzw13`iD|!Q3T#XaNvLK_b~O4}*}3w)rqImi(#+}45VMZOJi32!-)G;1 zM`W>_rkOE%^Z%JyR?T7x&tTU)ZD7OA{FtDHzD&%d#K@@q_XWbj?jZrizi|9iCT;TX zZD3SAbDx)$xZ#H?bG@xukPz!| zv~l7dmo;m1A%VmKV$n|K`nSGP`Q(ghjhnxu=B{_2m^yyefa?%+=a;njZKY<6vu)UQ zKesp>G1st;25~OIU7*v)!dUeCZhC693IK2Hu@leKDk%AMB262o6Bx+m5h5< z^!9Hb{F=Rbq>Kx&(;{7{y4jQ$IMIIF%fvnh3TN8#NV|}LEGy?P>09E94S&t%h2HGW z;dumPgj4nsSF)~08?+;HA19qEDECVF?OL%h5wCR^dS)`FERp8k$?JF;lIi8 z*|q#R8Z{Y+{z{XWZVsm$xxkob{~#o5GWcM=*}B{M|&QEXE7nyc0P zP&kQ#Yxzs5Lh06s`I{(+<|Gs^TB$7_aKe2JOJ4E>lmk1{##-6Ct$oRL;yg^A9q z4$71}MvqW;+};rSwV+U=us?frKE!q8>z;yBZ$f8Iwjs;9ACAY`6SGW zQ#@?D-VsQ=4R;D6Tbt<{6S*xZBr&*7TvE5YvzouTC5n9soc8*cU$=3{N&r4Xj;`F3Lf%^!XYMF>@H z#%S&GSy2#K+SX4AuK0>=KfBE3;F|RwVV)bgs}Nwumd1%TQSU{St@>nlr%-(LPq9Q9gBvqN;?ca-G=j5>+5h=f;a zAG5!cmGy^7tMKWog$>G9!qK%)#93&^C|-*4biGw#L?wUus!s&Xy!VqW#*%8r8qBg> z!lz>n(NVd)Nq+bB7}h#CJkm0zYhZ*e;4)^fxV&V5*#xzK2+k3@ayRDUIfOQ;iE@h> z)X8cyldI21K@n7j(92qkXhSqwizDJbia0lTB+8uZQ~H_!_wAS{>-gY(R2zAmtb3dm z$J`OVs5(AEL663q*|zq?^GU z3jA7f;nbbx)`<0pF~%>C^+_>I2QP1nyU>YTtnMclqrphBK32i6>6qudt&>jwu8(JF zgm`Yr!(px{=$V99)glCiu1@4P+`Z@|@{2$&-uhV8VsHR4cG-<_$Srmf0(lpc1=jP3 zya)=>dA@@EgM@*vLN)eOch#DEhGiP8l-%QVP}tjMxRMb!lk}CKf%*NPkmoW`#L7SR zUYdsd1-lRIQl~U+LDmeW{@-cS23N=oS>AtPE}Zoh>3i3aaFIjVCxmb(HqH^C@;Jw@ z<_!<_5b2`BbOhp`{-azW_Cc9)h|VKc?-fG1rHq3IsfWzpa;%H%Njc~goK=r**NqH< zK&)ow;zxATBVwbrIQmqA25I*$TE@pBAK8hVwl;T&m&QMGi?Et9Nfa^T&1;ueuD4Kb zzN7r1bG^LO54lG{SoXo}#F+m>AhSMIblUTu5)jJ0=WKaWX3X9merzSPyhl)b<~ac` zqsl3+@aMh?QWFaAVTD4f9mG^BdrTBDz1_09^n&f|IsX66_4fKzR|wTI(ASLhE()3g*g<11}HWYCBm?f&_;+z^JRs19=B zA~9zoUB2E(IDK`h8hf@~C9KeDInU`t2Ub7q&+eqG(=%V2I;7|{m#)&8I~_9h7e+Z1 zp6GA)ZoADt19`Hec3bm9gYxkdXJ(@LXtJjY|H_ly>|>96HtVP;>mbn)2$3tXuBC67 zcZ~7V&%6?S#ryPz`+_%YS;jlQG^`&Q{#okXcy~Hb%9Mv7M*I!axUU+1iI3@p4LIK1 zlj&w&`uSw{=IFl28sTg&UC}&)u@hz^wRDfCXqx(Mi`LMCDpW*uneDdO!>WYeo0OPO zQfd-x!xgL)3@OlC?`B4|OLrc?joGt_BxT*7zR9R(NMRLcpy;Ux8*=ig_}=HKXcTTK z9sV?&gr@i62`e-EJJlK;`nl}cWESGL=MBul+=ThRA5&puln$fIE2{#0PvNgh(O6PxvnX3`mTe^ocSQRy_5j(I7+JF3;flBH*>p1zU5lnmG@;=l# z`!j{21+>))G14V{8NiiQ&0klF{w{)et#y*gJ-l1(vl|`>wa-ffr>E?t`8^lEs8#eZ}=11xY6mUaiZB*yfP-QJ>-3r<|QOuN4F*~ zZR(R;Gf}fVpB_aS+43{GSbk?EX~y-`&unn|L2k5l4Q-3+?PX$1;n>%4#c|=Knswn-r=Q*|PfEGklZNgUNb;--S@0*BB=`TTIIl%@3u5}y~RJIb!y zv!}fiBkC?UMr|)!`TgqH8H!)dAV$onwk>e}eHeaVS<9~@0Pgv_9_aB3UV z462mT#_#Od7vGtz;A0AtcoE4$-lB0<<(bln@mxcN9(gt61etrqx1Hf`-#mc*_OoLS z8()&?5{^BUD7{B)$Z@$8{pc;Ea8@7QG&v%KrqXRuhqfO55Hghl+e0@8lb4SeE>627 zHZ3|s^yiQ-n9P`6a|27$pvrerJY8P#y1q-fOF}E`^Hb+zFDJys5tGJF_|4p27yr38 z;>+7|{op@|&s|-zUQ1IDjpcKw5hH&8 zEL>fWdhY9pTRp&4EKoE1I#y4A43AGYk40;cJOT;!FApewD{!_QUc(t1m*)C9#`52W1+c>7rB6sm^27tM%d@m;+WMGf zphtAKX&?2h9U@G;>=#Xtr-m(p)TnV5pYrh;BvCOb65B&!W?wQHkaDb2g;~<$d5jSk z^m(taAGw!R6YUBBCic%4I7P4#%A|u9jH|2%O^l3voZ9s3IdmoeDhX?%rv9FNo?9=c zGC@s;o;)!kP6vXDwGR`H_tQ>cigoLkJT{{i!m*m`7Ysi|T2*=!gLxcLpRiAywKKf9 zqhu{sZaz#UXhG)?f462W%6f|AWbG;c%UiVDG11E=>MW{s-i<7tZ&&dLV7-uUc$^J_ z@2ys5Ej4w&;joGhl4-Q|K?LLd2xF9d0f!DHJ!B-5$xuKC4}X58oI!&`@$am{G^u&qLEI25N8juL6l#NAI8k+yC>d} zMi3g}?_59h5Lu$bC=BnF(4)P>z!tjLsi6%e-)mCRPGaDfRr*uzLBT;L_n}yiT;A;* zp6D8`tsS+7?#l2{DA)i|T^BfA=7hJ*6%l?T$X==?wr6Fo8cqLWWzV`tji=GvSD(~p zt(3nh12PsyKRD;^Xm_ml!%v*d(IU5!^z~^tjQ*{k3}LVF zM?57aXoW(-)C>`)aXuPRv-kTaA#EOGICAtXUmf@8hiXa8Wd7>yHedE)N>CpBX`WaE;ovm=p z;n9e^MEaB()W-_px|Ch@87(Z4GA8Oj!9aL*8fk2V zStIiy{Juuf`y|xa9T!T~2Wi8YoxTdZM=(WiGF_%q@K2!$AhcV%6-AY&eIrV)FRc(h zixS(fwNB+9klxj^a+1EIpo9PNmc9FzKd-fz`;1mcFR1V%qL-J$et}JiiR=tbP&nQ^ zm{eQklL52Sf*Q{sQSSME^bW=x)G(G~tut`xd35o2hNOd5?AVyLiTR&lBwcc+H!dz* z$@mSny~7_YyEpZK^}cJLa;o9MeeSRV9>SNI_F=UB_5O8Ig$EOiWSIpoC_BSCC#!Yv z@jN8WY^zAd%CY}nssW8AjLLx8)%8=4t8JkU z`2P61MM|P9&sOya7`Iq8KTzgJXBN4;^}Nzkh?(j*tB<&y4f(wg5-ppp0>e`kn)aSz z;ftM+;p2BF*2$7G;YrE9I>#_MSS}JDXSiQhOLwo!e7>oBwNG!BKCk|cUpvnVQJUZ# zT+$}O8PA*E#EP@$ooszKN++O+M~QUwyMzyTvA3wp{EUP$40Q#q-I^5Ex|&w#P$YJ& z+W1qms=c+yIT108kkO)$>9l*9%31_3!YZ&b!!4JGG$4b?&0g8s^I15(#w{N6ly9!e z@-;R&x1Sv-?bZ$n{UFQd!2nGaiF`2y4yU&@x9~O?IWA2-*-iLew7rn4fNPDGURTC0 zw%CNdi6@p!;gtEtg8aKwwR!rNhJgek$$I#1bC*m%%MYW6E35N$ohErCGb{?dd!85* zsR^K%_eE|bvJ!rCnsOcbCL{{uipA*^A-t-OM1l?c24A}~W4wCvS1StArjOkhN9aI* zC^#@{BU&(^KBA_q@W2TDhMOyIooI==H_U%zk#B+nJsELDf{lvBmMM1u#;08O2Z&|0 z1Ko4A+f#%6#+vFx>&aBvn7bK5`Y^n+=ibiLn0U+09bbcrs;RlAT8vP)1+_##rmqYW zE^QoU(x3s({hl^O&QEl`x(=_B7+j z8b%!6R=V)?SG!UUw&2S1)9yY;CDj{?fs#9!zwvKK5s1PR^b=!sArFeoDkK-|Cpr^# zn6g04lX{*f;#Bml8?DsoEIiz>irE8Y9~2E6iJkpH14e8&r@wKkz5&q`K9fX1lZFzh zqfZQu1@+DxzxIGxJPimqH(H8Q|0RN+D91^3nyRDT9Ey+^`cfg-_i?>1vi)uNU?gB z?2b5|4hc4n?=9WuAjlrgcBJTqEOHXIfs=(ohz`_YVuVW}7~TwXziik|&!wE9j1sxn zaExW-LL)1yTMp=U@qO^CT&Wl;mR_oXQ8bO;Mb+n;^LGNEy*~;wrz=X_vUB~Je2;g^ zcaROYX;L8zIyr|zi`0LWtE`UU=R>&dc%&{r(XR^v_8n13)$@n;WP@~Q=cV@i;1#O3 zU5%aB$l+Xh##h{W_e(gA<8HiCm&#a?`b9*BBC+p!Iz`^~ixRJZ$7IJEED1$t4llPm zahmWO^&qe2T&TP2*Ls&41eBY8IMN&aEW4{+fA_{WC%-5h@Pv{}#SARh{bNcbo`fns zf#vYVpLS5E`nZ4dj9!%coltq*biwskZW=zlo6ZlS!9)V z9cAJavBs4iOLPl;j9PHoZgQV90@y1u0B?kWAQ<7BHJVE$g z$OZj!+@%D#HP52-M5W`{1J#Hfo~7Yp2WAD1o-Yp!CX2t?X#cD}C??sV>4 zJ5yj1@?p#FZ#d1rP%(qCWTr=rQ&2^>wu~&mroLk(tfj_f5D1X^uqga){)zyQa7Y-| zRSZ0I+U`C;$7&BmPKP_5fN^_1mK1_s8%lQo(oG<}2`<&|297f?kXyV0njLtMY!rqF zOAMYNxQTWTtg={GSa^7^$!7X?@S1%07Mj?;D`<)w#w{JkLm0nJk*nn0U><9QYrdEc z_jJcJu#6}uaFWfX_p~4pOnTH_Vc{tf5eZ zaI;P1^mP0m{&psVnAdg5XfvV%LWohV{?U2y4|g-ZniuVN)Ph;>zcV9YCRac`3bD_x%7gmK_dP`XFKCK!}zh>3KWk@A2Ck%vG?+ z-=(3SIMbJaNl~ujcl)mgf9l#YR!j_f-&Y9)T*d4OBz1>b<L8-ARIr*>R-{lYoa(hVJr>=1;zs|q~kc}*Sn&k z8(1!n^KeGWzXT}9kMBRQP4p|!aF@iYi~$Vo{d;z4KL0;QYksm)&%=DeeHIQc@kQ2#@jfm)^x>rO@{;+|%h9`5vf|6$RJ?+YYST3M?3 zUL*g!zVozC_qk&sys=t0nN}$mRs!b^YE2C_qAb~RDp(a>*ByPx==Z?LnFX0R+pu{uTV|Dew?KUD_&o+aG#05V{o2p4i2nB)38{6QWXTfqb1NJntFwg&Vjg%WGkR)wcUFG$j#2zghOK*+xL(O zQn?gKclc6H@i$<-^}!bV7dQ<(gm$4E{Y)I{F%IqRjZb zQ>1Vg;4Zu01d7gX;Wxk2_@}U&P#76tR>*er?|gUqZz-!p%GMVJ`C@G4m49pRV#>su2|C^}b zEnfrcSNY#eVC>L!`V&ooSbDp@SQ;!@&ZFaxb2h-s0r4g8*+PJAHV~$GwPxONSxHtQ z>&6NvWcQo!em$9LogPrR1%kQO#Nd*iKjQ!WdHb&$v|*!wh>-|LN4>ZMaFrmCc}`9Z~$Ox+9lRcX68V&&0#9MIgSs7XIHJKZM=)0fZh8bC2o z?0x3DL1On#io(6&kO*Nahv9UU7D9y?W;ae&^9!Yb)tS|Ss($ffjQw`K7Ck@DhFLdn zjftLBDBt)~oWPnG0r>R%2u&R1TzUF#H&9G4QJ2|Cb(a*Q6ZsXE7P?ZJufu;KG&v6-R>ay!nKWycsK&rA{XX>_Y`P6-!30c`)#&<3( z8tT1V%J|jIKbQ_^;b=kJH`Ev-Im|Ng07Z<GXqf8E-Qf0);Jx3DzPQzK z_N=@GZdE}w&^s>W4nE1&;|||$M(CX5${lJ6-pQHK2RC#G2qn$P=H;9Y8OZ^xQL4%Q_*Z$S=#OFh4_ zkuHka-|XP9{j|cf52z5)!l8eL0)bd53E-&+e~Ugmh+QUswuFaOJ=aXxJVk&X*SPua z5~!FB8ecG$B!lfNk?sJfKU_M9bOpcs-bnCLx5lC>UAn^i{3 zJ>0vjWFX>{5^Op(q1+e#z3jCDhEhz<>Fi7`iLquV0@37h71FRh%CZn6S?fA4wAbGB z%U@s9Z~4dQ^_i@`A9}JlIFk#md_wuZK@Q0PiF4PJrPsw#IJDo7=a0)@kuhAjIsNd8pTmkCh3CD8K%#U@uf50F9(>=Q({g z?KL#-;b*@H5}uy>akD=aWx^75^#3digqwMm%|a0Q^okfklVCn=MEP%(;0bqJbM-1# z3b=hUYK1=UcLLb9AE;H&NEks4@z$+C#aWC_En2oJXywV9;wo~AURUWZx;~NqM$$U~ z>83WEB}tCuIfBLJY%w%cz^08}o!O7N!F?ti%+V{Ci~kg`?i;L9>7&cn{-n?=hux;t zL@$=bi^;}=KVL%?Laq}7+VCJKpaypUlM5s)%cF$|8+imAIe70Rw)%mb>x=flRh;b= zE}+NBVdFxc{d&6C6HY*KaMsw#%yKarg#rq3t!Ar)ht!|Y%cod%Iamqrd;a<=>M<-a z_HJ>4zgtrfFH#rPLVt#=A}{{l_?^X&Gh}L(o?zoPbLVi1A@KDIAg7m!+!NsG3g~|UCC1Zrw%*9Zdvf49Tz_wmCY#c9D^P|9A&hpQ0|^z2aVAkZ6|qkG zE44zWL1LHBY>A(>^UOm8#)Yn5D}YVTJ!vRXE&tmp^k_m%lhmi-D|<9fD^KApEoVIP z`oom0=@j!@9)IITkv`!ix-O%)l}##R%Jc`(=A*_O-Z6;a=C5*yIzeq1p1VPtmk&$- z*Jg`e6bZPtIF{>8_4ECJ&Ny|JVCokybQEIhAU}_X4_5~q0Ni)ieyl3!iyIa-liAP= zt&3J!IZUr=OWdKL7dfFPt-eQ$_iYRm{OywTi#v3@T<-IpIK0DWZ=_E053kfx3h?Mp zctYNxa71huCLI1{iU7KNe<@ZI!n#V?uos*{bSj%XLWH-qiFUmKHv0{(l=V)JYh0Y; zX^hI1qqaLU&ox^Neo<(I-mdSsx-L@l0i{7((937mgw72zCqPRiftGA|Z9bY=F^M@Z z-+ykhXao^dY;w-I-gJ%Jz^)^kzkVgXzlGhmVj@Ve^UkxwINM(Jdlv@fW;OZEH)i0; zrVTu?2MfPK(&dj(c3sQ+L=Tj89kUgNshC7k*$8*JrCH_w>(?yFkC{i*{3vRuFy?rZ z=@5H=s^a8-5OwD9P`AK8SpfJ2~2^G$c%Qqa7eftigC*le(!N zI?Ze|BS!&V+1Fua-j%UVukR$4fBH5s93vh})($j7YX@gFdXIqmrZ90-fL%kwL?^4a zjGvcJ*#dJ9tJ_~>Q8)cJQ76@toP}~}W8dW$d^S0>P9EHuaH=VaMYIOGoy`q#vFEY6 z4=5Yav+h*Ozn*Z*{otFu_|-N8xD+u^{$-M>wwZmhnmvEJ9UST3f8=>ecS}xzto7V| z&M4Y_Y6h|W^Jfo@@0xSJIm0KO-44NsnK*I(+ z-j{&y`Y(k-nC}V8FZh)S%7lbFPGoqG+E(gXc>i4X=BH7a;>dQAz6(opEV& zvhAgy(4}sB4R^)fRrI|otjq=9dNsLAozZblpGZ%ceAFyC%j?_JKqXKhRV@GJ5e}3w zllB_X6_4E*-z@0J{vD!zby&T}hKyXeWpEX^;a4;4n#$l@-T_D-Hg zR$D@z_jWLzGtT${X&9n=EiijPO<&p^4kOSu(4wn3m&9VRmNXN{oVP{V+grMxG$9f% zM>S;>X(+%w`Iv!l?diRu8e;WaK)J)O*C(J7MD?t@d|<^c(NwPfnlDZO}mI5V~GPI zZowRRC{|lSP(}ht(WJK@ zUYO{DB|_R5VIv)W)=jKzR>EDH!z*{_Q~LfB?L%hmFuw@i;mxd~vx_`D6Cxv5t(<3A z&Lm?ZW|n(Ji;054YCNQbboNUwDEoFUT@0_S(!*);kl(MEk~o}ZOp#WYv)zikdCi zO&}8t0fzB}rsGZDKt&=#`!NeoWO-_q2gTv!E%|S&*r~{r7C%zIPUuw*z+Bbv@{<cvFy2BhXoU( zoPux0v$jl~tfjE+4@l`&=YTp*fmr_Y)p>C(&aQPO@^6Geuhc6HPsA!LBMS!tq+p+h zf~qU19V6MBV8*Z*sRj7l=M`;{!rKm(6lc00G?a6RN5;BftY`lQ$$)xYHff~bCnztH zsUEg4j$ish%{7-b8yhs3$}_7PYU(|(PeMIKFJ%2hYshc;rqi{;l~o4MF zNf$A>X`M%>db@($$sg|=UMr3*6pKa{saaximA-bb8#CsWOz8&+GIO*zykoPBT2-9W zI)Q5*A?4RkWJs~5V--+irTCV}>a=p-a?qyNtNaG`&XpcIT1|ABrRb{=GVgOBf#R>IyuRIfPak{qYfz^Mpe8c83uwvJoD&?3S>L%q zY=7hF_%KR74PHv|=I|D%_SI@#xL2#qLor7#@6*QA%UTEX(RqblR|${eD38CX{aoEc zu&*j^HebEA4i@Tw$rKA~a+@KnYf}ue058h4?*^0{#DEb}1+T&+rg!tN&Vj4(!t|fP zVATA$jtokjjuP)28JatMboF2k3@)BrCGusOdKo8wL2p~N)ZRW+NlnO=zeZWVKP)iR zk7y?Z$(YiOpDAxlVpc~jqi=3wQ`mTN41Cf|mB!*fFC^EvL|9c?x_4I&qVPJgz%w}L zm7ag?wp|(C*=NE3ArRIP-5RuQq@bYS;02JxG)HsXjD2vj{Gb!G8YF>AQ^|A}>SFn= z81Lj}`%SWSJOdW)5}=p{KqmToZSudOX_icOf2*R_Djc;}da?tAX4i*@V*;pZky=>w z@p%^T3q{_=lTCG zr7^sUy7uNF9c!d}Zu%tWWJMXr1(77FN}BIsXwDoC@~sO$5KWDn+^oZJMC0Hh zPRw$X%=$aXs}uITS=GtM1;dCM^3@Jhb5k^~iHz827d{Lfj&?T0L0x0KE;({yXWILs zy=>MPO@N~Fz27`32f%joI9kE^I7kO^yt4V!%%}wnIK_en;jioIIwB8~d_N{4O*kpI zj6=*Fb7Zgx2KDDI-5SbM31R3?C%B`Lqx{R|+*5vgAneiF1G~(-O)!w1rOS<9WoR+Z z_K-kkE0+4=k<{SrZd52vwjepI{qn`R_gdx!>t_OedhRzc;n>^57VALpe*pk6{J(=p zD^`~;lrnhAPxm{6m)3uK=L-lHhemg4I;k1q=v8^rp!9$C$)t1FhjJC$j-2q*DJSvW z(g8;m-sj|wD{C2`C6rEhx9Q#5!&ZXb>tfRqB)^AF-D`;UO0)V)ev+9Irj7b|s24z( z-*Zk^{>r4oKI*#+*aBJHTL55rID1yr`jE_f49gepXY3E#);fE5hCsdZ#(h4~0oR&% z=W=S4c4*4yfiRvk+Hz4xeGm0_D@PS^6^#uHU(@uR{Guy8RVS-pgeQB-0qs7|kFoZL zAAixYH?BuZp1eNDx&3=DcjQ&s2V3(^U32NJZK3xUJD`Q0FSrckVfVzcZPdLCFtkdFPWwcbW^JaHMpqv9I4uRG)7zxe{5 ze+*nviSI{=!nv+>T`}ElH2i&2);=nf^96Tnw|e8t0fD}27{@>7#v1SA&|hr|W77Gy zMigyLMwTZjhX&Z{!tAsQ(Qdw7tmZik0XNS{fAGFMab3nk4I@<9S6c(Tj4dy{2M!Ki zEZYvfH@&JJ89TQ$$35Hp&~7W?o|MfjPg53U+npZ+8u6C%a74!vO2I~}n%3&UUNPzO z?HmWnfx;-$UHAVcGh`%G>0Fy`9-ef@GxzOHuov>WJn^H2ER#&nzIdT2cq&sYW^u0s zbn4nBB|dzi*KL`hwz~e|^QOaPMPs|Cipuu42`OdEC+nlZ2oW0Xyi$&+&$%Byvza>$ zY*_l*UN@&M(Wad`#4&hCzTYnX5m+5PdSd?~$SZV#P8;FhaNG0ysjm9%ldp!eL*yD- zOtu-hxa&7fONM(jeBN9{o*3Ky3LA>+IuD;r@h$lLg;m@j&P~hSTvy=tsRUfQ+v)AN z^2V=W1v9ckd0w=Jbi=&13`siJ zER&fhn&#H9MXzC5|Eg$oVDe5J*M#c^PTLe>7m%M?_EfSNbshz7Ix_tRZfx!D0A%ky z=Ay3aDev(TZ~UJ1^^#6+Xo**t_!S*Iv*Y9trd$`yx7B__$c;QZ)mr%^+adPnkBH}? z+Ephf0q}**P1}}yTObfw{;^}XjUwo5-Ubs?LxwY_alFA(2*9;yy)OC^2VHwZB5_E2 z{~qCVg+K|=ubJ4!s0vyU7x-DcNhA`~018c^2NQ|ujL>tGN~eE!@Tm2%vM#_{`TYHR z;?|ZARNmo6d0qPuy8q4H4-lqZ`qM8!^)G0s`tHGj=mZ2S1?-(xFm?Xdi?NSXj)$!r zOxmV?{4^e-X`gismyDl#6DJvSU#yDu`FU-tYDYAdW+p0~&Ja{Ix+@J0Mrog(v(G!l zZKds`?pep3h|f2;{<#xKch2rtoV%bI(upEke1 ze~N~#&YTCcbUbkzqcoe5lzj3a)hM&B0^6fMX-N|$Z9GKQ)z!gZX%0bL zrHv#HXbXxx)0;jZg4F}PZ+SHb%isqLoO#EFq;u(+f{=awUnKNK7?xSwOlxh-v^W}k zw+!5}RN_5Ye$@HH*}M~3$0lRngYw)ApLliftr@ibuE1qd^Y^ngjyeybZ=OYme_ge$ z@LMPv4_rRT0~KyiDx@7R4dVU&b6M79Dk<;VWa!cN4`&n`PKGxYY=~Gv=*xnPpA5D? z>8pBwDL_9wbWQ7ok>O%d(q^pg2BX-p0@d#ZFK$*Dq5v z`#$r(2pMPz49CaEA#L2#k+KoL;=%3++B%RLzhiCC`UZR(7{suGH3L{rB2cQF2eah; zGD}Nk`d?h31>M=Iuvtj7Yi?G{9RO%4&{^D19Dw>Jx3;#d;S|kw)4$ols)3``-K8^NVZg_>_huV{(K= zFfVsgAB6q4eBWfG+8JFn=~F)k#b?_OPVfB%v%b3!x;zg7?&<>D;@_FmV@IXK*+@zWkjpZ?w1rR2RCEb=}?Fa|d=;hs};m*Y^P>Y(xbdi=W4?-u(}%l)k55Zhv-* zceW|-!26T3%^B63l4?@baV}nUSvJX%ANZ@3_a11=_qsJb)h~MBdw+<=(^aTa7iqr^ z`-zK=|2P>y8rMn5%+y`^um-FBn4WZ}+ufB|Sb9qP1(Uz8EnhXY@@VbT;ueFYKmEtP zK;@t5!ZtN$Djg(k7kOSi13jE7zetcm0E&bVJA9*NCIS}8aWjO>Jv$r)t=2ryu?+Wq z%`rYep8%rQ>LIWr#ZoY!VMUfDtvBy&M*mA>LGA5l!*)0$L?VftU|IDnt)+slfD5;J zpDHxAJux(E|M|^5J5lxT9OEHqhR(Eg?_|ss`>n&=k1{_(P84e4H$&K^tRulmxijbz zh-nD;6mlcLyGuT!g6|!0t;Q*Ep=U%0i zF-_N{yhpedKb^b48@fOAe#QC1Zoud0H|qgTG>cC`U27NbqBl;`@-tF52+B}D@7`bu zJ6YEr8jI6$eqrh0;D8rxW&P^GrV0+|^3WZ(-Q8UnjOy%J=rq2+W|ke-Q4tRYFE4;m z0$pIk;O`9Qlfi=?)k9CD~ev$Iz=^hKr-Jo8{(wQ$7RNIbH&$=$=j;P`~Q*QOw zUs4=yB#*D0$QUI<}_q<{UXiJKTo2QFHAHFbo4IdPWSQiPCq)>a?oVlsD zsr+JW1qhv-Y4-lqwLQJhB!`BFAC=hEIB$$s5CM{}0^rohVKPmB{h#*Tg1~!&-){yC zTsZ`1eIm59pyOH@g7^;(8o{pQdH4J$3|UbsK(d%yQbG@1AmEOy0GZVdCIyW1-!K zx}3pN{`K7or1>&+D@YKbbUBVde{EJ^WY{6f+Nju@l4@;=91ptD7k1GFKM$L;{*Yec zCbcnrQ?GM59xWqWD4!kkDU<=xEOTIWsxprAixn%KG`L&J0bUuEpujkIw9n*=u8S!V)y4;DZwCN=5<5pl<8&tBN0(ThxiwC5@K)|Ji z$J{>6IBJ%kzNh=XA%7OrSl)hJ8hjZK(J3Z8%g&het%7r!5BvmVs1*U{ZrS}sNl;2V z`8WRo6kOu;i}v>SoxyL6o{ts64rz1D0TG!NnyUUOd@Eq%i-+44>e7{xF}$=HosjMp z-E4esF_Q3APP@7aKyLgkBFd?UJ}(m1*v#*(g>(n?-%_6^L=r5?vMm0xFLEv;YD$>$ zx+RwG{@Q3gsF|N=^0ey<8hy`BI5s(YJu#6KeLHhG%oGQg>CLd*^|^oMp5aNzz6W!% zL!6&tlC$sfX7I4(#^s%=mae>=!Qe)gdz;l9Ak^j0dT{dRwkNm3sa281hw5q!@SlvT zAAqZyQ#C^A-%^j58F!RL>`6j57IZN146oljQ21Aln2n;n$XhU5fEoM=PH!?8Kn{jD z|JfUJOa?&^1x)35)z}5N3=YS;R33vfW8t$VV+W*=(qdplz`8e;N%I4GCiG9xfPUo% zXi4oFoG^$-2)&tpU-2wPXfo)zFYIk@Zi0wa@n=PHIGu0!y4?lPF`pGQ@ehMAj{-h7 zh>fIj@+)}(GJ8M(ByeSlIy3DFe8QK&!R|E8H2(P*{{5l)gPuCeH+dyN#yz2BdUBI0 zR~^o0X4gylWBP>5`owF}{o};b(ifNl(w<;Dyc@KzmcQ0n8thv#Ev78bW%WpTo~GI4 zF_nI5U%m*mx3Nfc{83S(tR?hw?^+&a1sTM#w}zH+geLyC`A{tG^VnDn81FF$lplBJ z?~ou4{hua3iK&PY2H6S71O(rIU2kdGY?Je_cwy-ta(*`8vAihfAU^Tl4M}9u9CM?J zASd!}OuU#Sk{C;nvHG@zoXlEK@{wL-&D=yYT=0CrbK!+1+)f{B`XexpO=YMLkrW#3 z-GKAU@Vk^6d@s9i!#|ZG%gXa!uJkHvz)Qy}-aPvCiDstOP%Z4xSiB*3&1`niu~v}# z;i-z_$4mE{J2n<-S90SaLZv|_iarzN-3p+C{|tJ-Uk4%kZ)_GAXD0#Bi)`tozrY$w zuL@TFg8Lv3WYGqy1_u_rLkmFArvDd2gQ)xvDCGZwMBpxA|L1cA{^vum6CV|o*3mGk z{*_}u&qlURH>JE0|9YPCTsG5E7Qj+{aARqbnOkS66x68slABBXXgKaatshfR(q}=a z?ItK)e5M>E-v)pa{&9v@X$wpoDz^u}b~2@VA?$H50^TuuWf4A#)bbW~PslBH5UJ!# zW^O6nwBVj`La*&ul7F-O)AIcEZDkYgNME7D=H(3e*#?3t5K4H`mwLO2B3}eGh)72oR(StcRr06q96hCcdtiy2ItT!&bmYXycqAeka?=Gvypcfd zU30{H%-oYm+suw1FeJ!#KMmOMPY|yeUt;B!xsV}@;$4pNr0sIxkiuz3qnev;t}Iu~ zF^9A0h=87R*jP`&v?yxlO=sW(Z&6elY?r#{bLuT2B&(nwyjk|evnm7Ld$rQe_=RF< z>UwzDz&NGoMMPPjP!dJ7mj>J&`_#;vNRBrDTStksN?_k)<%sr=3g2!Mer~~!Li8iL zcrY7rI_cgCd!uAQDF4{Sl!qRr|Kc;-)4%K5TRVZ(wqERwwoZ<%<)9UxrCWh!Oc)o> z-eOPYrP%VV-Dzlu+NViy1#xEU*P&LG{&_R{lm>l0;)^2bF~ z;U2Q+&iqA#^O{m0E&{}e!6>t5DDWC1(M7O)t(>ZPO0x~r@Ah+D97U{nm=p%m+{!CMiK5?PzYaSErJnastcb9#V_a%)1ErIGSCj9UBku6PfGr z3Kh|@PT4R9M3anP4_p0SKWov$z(yB8{4G5J02i3x5KgFyn>R@tUxLRF+oE-ZH5}%Y zG>F#_{cK=gtgz&k{Fh_i`X%Ti>WNppgSCJ2+K%C^#Hu*wYyqmrxH7|X|EW20!6Ic> z)>a#6JK1wS^Qg!O0g~7`aAHKJq;gjmiwX9#wb-1I6K3CW!|!}3_$;Y^ND9E;%2XrZ zUDD)Gd8{^C7rKN8k+E!nJ#cWCg7+()dxNRvCRsmQ6H2g$cw3iZptd|sA$?fNY`diD zk!TV%W+O0O+|=M!+}_L{8kZqtDL2pP8i6iI?a#O{SgoQ3y=AC20PfL{6mlkB#~S;T zdLSYl;a6`^7Vs>=eyuaVveEWYb*UdTx4Ck2raJbKC$DtM-X~nIfLSZroOPXI6ZA<& z8&jGA*3vUEJ*fh>bc#68O~BN$L{j_J$NVu-tckom*sIjVp9U;u=KQ#5g1k?KOx(MN zLH22A&#g57nDrl=6!#b2@a5yz-_12UEi}G}N;!jQqZjZr8Xt`zHN4VDmy8N0PtOzz zlD5LOdyD0S2X&TuhdIRDdMQml#|&Ovq!#O>z4Im19CLePFH$u2kYWMwn>M?#UgmS4W!tustu+UU{+cWlhM{pPJq#4XGgWYV z52RH|C4OEIol}bGUH2m#;CSf z+H<4J^(n2WXw#Ewo5*)LI6LNz!etUb6Kf4zaM+7{tIJ_esX~}U&DuP&HzXn>A60`W zeN;!7OzIN(PyB4g7it-dL2U=hbi*I7d8R^EwRjfYlCgj&{U|pkUYf=vbB(fqvV4(t zlliqxbZN<_|Kxdv0{Hdh%#Ll(R0<}Qlva><2Gm1Pro|ni<1!T)LZ~wrEP@i(8J6!R zIE+0m?xYsRg&Q*hSy=l4OP@1M6eD<=IF_{6e4!bW^?bp8(O4*CCG%p*v~RI<#c6y( z9Eps+PP%8VD4pccnttwbngwfS)L4QcXy%A!CdfSGt`YYLa~u264_fhxh3I}pW1k?= zk6;99i!?E533kLpGIJflMKV#MfONj2!kDvu%Grz+@M|PcIX|hLqiwqaV+_fsoX2+i z{J8V|atqU#K-ly@S5+>NFI2p+{=PP!V88skT6?FRuwJ&N(sgX?I6ZH5F-{=Zv2m*W z&$NLbcqU`7<@H$CGn^f+naNaeWrEK>^NgQhx?M=g^&~d9aT95bcd0H#KpQqumO)s} zd;W{0CAWozbEfs4eE-r>d7MkO9I7vO6#)KN>+PL0H4U^ySj{8G-y~7|fW3Oh?2#o# zyijL?P?EFmJw0D$OD1uq^Su4liPl(6aFt_U77{11Tfb{H(0%wsk8PHg{A>OHah2+Z z^7&-zN!{pLj?-S*o&^1lH6XMAS6PPeKDG04fJtENz~A!LyD_xym=PB%9*f_X{}rpG zfsTRi*EZ*iy`e0(_#39>dwlk@{Qk_451G(4nq35zNx1 z1oo(>#9iusEbz}Ego(yLvVCSIA?y)Z(YN5mm< z;Hm>>{F~TnxN+(1fMmiRPeqYzk%@@CYqnfaZHG9tdlRMnBv6>8SaJ1Y(ClE-?n{yH zw8SYI2ci-87qM{m$K2q2<=jb{QK~il1&}IiI>&J0iIrT+=ei81 z2D+I(NWP_xsb3qE@#igKKvC4ep%;I`;oT>e( zoMrl>)r7I)DeR+iE>ZJmF(!ij7Yro~RZ8Gdv_KmpBc$3{3T`M?eA6obbOxm@EPTG? zt1u@?w2UH$@lEii@#>j-XYj6p@N78(e*Vp+;?q}m@dHv7(z?a*H{bW-#ACg;%B3Z8 z{M(iU>gxK9&c5lWkmSoTnHMW!Vz~S08!}xyV%^jR>B*l(!~70TnR3630n?A@z&{Ln zs&CLC;st@9Bn{Lz&KZosyo?dGo%nTpW@rNztXuwdzFdzh4%2e(529WJB9^nOa&0YN zFpyHQh1^~N&=JjJzf9y?mallR<#~IiBF~eDUpOheb-bU`ovni~u2m@DLm9}@p<>`? z_Zo^Y#piCv&YCCW;-3k75hbpTQ~JNl8<0*&6g#8O3fgleP%Vh|r!G@k8l7p_pIoBa zaLkUv=kD8?0=O><4>pBZcZ`~D_d^Q??J>4yZHu(-`jVP3N#}k>VWA%No)6=rN#hc4x53)M zla?L_9Y5KM_FaWq&%fzcof8$*NDm8Jxn%g_g3W&dSb%4s6I=TMngukCylk|~L&KLD zN_V`?D8pQ%?36XU3z}s0IM;Knx3if$NN@O_>H}PnNz{0|NUWyVhxe4~60-KJY|nHV z0I}fexI`4M3|3iEznmm@&9HIq9iRH1H%k`^I;Oo$4QkuTqR`P?8QAJYW)pP~!34a& z?kZTu6r{aEne!Dqiu3l#4V76_Ytp!PEOzXOEDKnGw(l*0dk+u%yFMFv9hr@JZY2bu z0JWuK38pYCj2biBDl=rt+$yKfR@}%f4{H;gzdFJO_##zPPVp@Eu7T8^M|4;cbqOEH z{crD~jB3)EI!OD%3ygw6cn5iBO(wguBX4iso5C>2OX}gwc_n($b8t-dof|zzUyIFG z{a~Ra7MwRwXa#>~O=cX5%Df?%yxnMk6u&mCW8 zHmkrZMU8W$y`I$)t}LZ}&)Rawj!`gch#n9>%V2{hw%+CcZGN21D^c2gS^h~Xttm`P z%HQI_i)N4pczS6B-`(T6pvx4{Tat0P9Cz+aL6+?$9QLKlMpOznxPe4=O)Z6td_dfd zx{5A>=NqNVJhXi`qRYDewC~XmKVo}@?~O#MTtH*v5RVnt5ScGjl=;;s{+3< zgcnPb%A8%v5=-airsfR2hohcARlA?sUaTuCa+P`AC_saW0za;$$CNovSwTCf#S=&F zo)_StXuqzJkeY&8+C%I%sAq zSI_u|ewIu!>`IqZ^Zw7+Rp2%|84h*U1;>^|;!26wz3EE;}mO=0f6 z<|nSpR(3ug4(w%#`2dy&XI5r+In^^oVJL}Yi{Ny>a$b89u?xRLJ zbG7|dv}Yi-o>v{t_pPb{YYf3^K0|>@Paw4wohL>BKg?5M#T2m9hG!fQ%%^^mS(Hn8 zp%GVSWU_ez6qz60F z@&rlQ?tA8uh-Ye}$*IhpfJG>cGJPX3I!A0%FgMTLs>OVv7C|!G0Cs^iA~ALh1e__{ zUI>sFU}IN!ciY7$CWejmy^bXx7V)P7&eW8%<04!@9P3>{UB$y=$Fz=}!VF#>K>6zk z-QQbr=%l`~S=omczX3mB{PF~?ewz)XfU#16LV>%A;Z}Zk$EeF*X`s!a!&5LfIC6-P zClvlTe;=gy`B28;)@Yqe<%mnR9uvSib@@fs06aXf=F_o<|fvpx9? zPz!EKt?e%m3~a4jP*G|h@4zqU{7vaG!T$&J0Q%WF2FG!-7w4kP9;7cYj7?il(92+% zUM6k7n7?R573&#uC+lR4BdQy{A{TZ#}OYG|in(yM^47jB4MKj<2%Z~Cww5J9`FYl6$uovq*`w^}}5}AXj zZ^Z{;0NRx)s8j62{*u3g$r>_UGSXqb+SbG%7bub@N1j!#(S{hF^Kp28kI``)08h+z z317C}Do;!xN3XYYk*;)HA>iu!E&PY0H^VBb$#?PlthSsWKhSxw@$A-r^jjAjbl&7% z1JntXGq7KBB22xpse?dtf}@4!kprk8$jjWW}x*m%RO zqo$-}y4*i$Z{afUf`1o)iGa+YSD4Tta-RVtRdheUW5&+&7>zwOW7(R=^@_+gztbgCtjV71qwd` zn&ku;CH@Yp9LN zDi#Qe9z!7HY%dO6ok_U#Nr}ag^d$}3j?e|B6<{=~BpyhoJk1sJ7%H0n>Ha@WUY#WR z)A$O-ByyAbRI5_pl`-tUR2C8W;!-h(@z}cdS~Y+Hd63lLW3OvJiq?DtK%0k#8u}&Q z2y?kzLSlFQye2z&QVJM94)=X{*SNcBVRsx>lFQ_g5vR@|oxBpXxq6Ft0;NZnHksT0 zJLgvQO#KAa!W1@!@UdZpz3cqMXFgq_2|dlGnluHEvL`pkEIo{kioE{v)!+Wwn*tks zP_`@T{&HA|Y2-XNDGVvuAEyhNapIX;P-HyF`vdoV;rVKWy?SAa$g0mAg^uw4ARYMO?Sz2Oq{{i*&p2gj7^!Ex*Y!3hDhK`j8zveXlvq=5OEThJ zHVUg*&dph3{gq+rd+)WO7wv|G!hyYMo?TYIT)ds;?C~B0S#z1^?7??L07VVSn~{L2+v08&`M0z%_-A)jf*#u=fcs zzBT$JVQFuaSV9A1yrw^LDJv_#+XGtPA!sjzTyQ+tW-?f0;QHuX%US+*(0q>_$HYM0 z!jNbaaWpy8IVtVf$OB>5CnhF-c3y2nKzMFQDTM?e`g^`YY~YSgl9u%XRCT`4)%AB? z9(;m4{P7~VnCE}K&zg{VG98&-qbD2?u@M zl#_bWe=f$wrL2idd4*!0TVJQ;_pe)Q4#DZeCGQFrm)Ew`#a=!mV)ge$I+x>2GDsaW zHwO+}8m%rF7pq7r>(db(f|>OrtVK_n3L1r$wnN3#IFCH&B+&@!_let7->y)bkvJbm z1b=^8L(UC+SATc+zPUHr|KBM%z=)I;IBN61c7e`yz}F7~qf6MK0ac(`77v@J*p;s7Ec+}7G;(&{X8MF^O-tay-o;l?Ob{56XWd3BEDz`bnFxPERAtwW& zAahy>T)uXdSn1dk)Ip6&;`U<62+MZk&W`*#7k6_Eg%4!FcttS0JJ2Jx=f57E^ph1M zkOlUjR`&_Wq57{IwodBQWa79-&4w$xhlT}YbK1P7ygpj@u=nE15cpSj` z2Ms!cHP1S2Y94m$szgC8zab0UGqKRAc*(85`2h57YGr-`y$K-)^)vrV?pFqkD&Q5& zX8kEhgK~vA#LqIbgz_1hiProeO*D--MBEhQDGMOB#NBPcXyU@!J=yIig+;yz^cIq7 zb`|ZH5QmJ%6^}LgFo;F@`(6R4E+9nfWKaSN2*rZsAp0et*^8I`m2!vCx*1 z`fM-T=<9ieO|;xIMo@hJ<*#YKHg5089V$8}=l&*-s&}=EjWK01XiCDdxXdd2Lz)ns zr9R%@>pg%|V`AjXlP;MgWj#ycG~h_H9llQYYKQJk9+p0fworZJq7HG4?mc^W$-w7r zd#m&bUG{}H&q4s9g*jsmY%I^o!NI{0*muDgo+xNSpOr%(TWQ0-Evy;17RrIQ-32gE zIw6DGKd%DRpAR_*q1Oy{KFbw04qQ<`f!&83_AS4th_)_;Vqn`$5m+^{?4$ zI9eWkKR*9(lB!UXuC-1m2F(CIqlu*ydrjv`855zlMJC2#M&=69NYeYc72NFjTW|fh zq|`8e(mqLLcTXGLZk|bL9+Xa7({9UK`IB|Tm78YJtlh-Q`ZSzKgMs8M0cKB46H)uJfJnfJe82@R8U};U0Vs=4Y3^ znE)A%AnO~oXx6{ZamZU+TDx=(vWJF%)^A!EFo__D5^B~5HJk0t*f>MES7o=Lq})9{;tHefI|zDr{xdEFHu z8QfJ@+L_+UKC1Xi7LoQthtP)^!~15Jt}^Y^%@%2Iw_ZIQz0zhsq(Nj00X{Rx z>IO}31dfhz(9u^B^2-@=7mwEkO8y(s1E5Ilz%dlO0Zh&Rtl*G61R8)cuQI5(t>pE+ zj_s6Gb{Yp+|A3)@qTIEId82ylre7xH*bz(XgTO#gn5N07%nD|DF@m#sCZR^zIYj}e z@Wq$BMiY0xa-uwSUhGB7S4ZzvAPEXjN;jHa|e8lzctjCWv+{FRtJQmc6b<{6iduViZV<4Jv9&9a&jwZ z_pC}-19RI~J!hr_8^>`QJL_y$&4BRmE76(@2yIaEg%hZqGG_JgzpTACDB!#UFSkW4~neRz| zX^k%P%Idql(y-mIaEz5V=tht5{w#UT#IKHN;SGq6tanQpZvhWSGPjZR$HAYtKc_E? z2FuHj1qQM47?pkh@2iTZI&fwhl`B~GijO(~xhdz9YXM_1@W@7kh-XV~m6c+&P>UwOp?Q{A zeAxLaeJnu=lu%3M00+B)bH$hbz@AAAB;Xkzh2Pz9mjC%fhyF!?MSAR!5LI8tq@7k( zBRE7_@|g(u+2Z-M;bfTsG3<_Ce}-2V)fn2(f{Xc|DDkMr_Hl3E#Y^I(ADxN1CPT4AMh*D7 zaPNKOxQKy#?(;`w{H0>38JD$#5%+6a`mvRsA|t0PftOOPw-47=jakv@GZl4dR{HdB zb~a>%?WZix8;Ai>&)6dQHISnxajYtc4dzNg=dtRU=SeYd*z>O ze_UrPUCl5npU#tJI2RoToku( z>-iT?6rwn_V{wt@7LW;e-TBl3xKo^LGvL^4#rwBW+s6B_8=}8Y9Q8EuXQIbDh`JjgRyIXCvNAIo)N@L(4K&M+anhEx=s+Ru! z!>x}x)sH%#Y1B{tgUT=N7cBdG#(40V`UVb6U{r-@J8zJ-utuuzQ*^$Ye*f`@M`3Ra zYP}m<0>B-DmWh`%C|T|l@&e!|KH1k(PP{(2mQGke3hx*jD%n&u;u2NvYs!jNk=VeC zwQV-J%xV!`MCwByZ0$14>I}6&y&n=@5_#X#jq76qMpASBW;I=Kf>3whe=~z5=+ZXA6b`K@N9e9 zZDM#w&vV-jU{Y_tw#`hGnWnz5Sm}8&iK>;$ksP-eZ3xQDhp_}pre|^MsXOM^IOV%b zCgdW+HrPn;Nu@itlsum6l7M_99wkM91IUz|Uu!?0OGu${YEy$Bd(@KTt0+q<+J6swo8U zo?UL25g~~32NrAgM<201c|>e&#e#<{P4$dyVZMG?_Vjby-BwqnVliVnnrBuBbqnxUW;nAF)+X&>s_{tJ!~pT5hawZ}fH5+%&S88Wf8-Xc z*NoK5ASaf|>is) zVC!4IHrp;meZKbMG(p#?C3HhuTE9NBl;u&*qpS5|y>L%K<>9(#8IpeFq~Dqn zcJbU?yg?yRORO~HOmnt7fIu*|y2zJZ zB5R~gJ>w59{}#WPDjnheKvrqC=x!RWoboXas#(6<+E2}fdjN43cS#oxDt!ZI82rM$ ziKKG*j>d(8%0a>>ks`%@yk2^FE;BvYr_Yog6qOdl&Ka|Ac0v-$Z+dTaFQMI9QN?Yu zCURpRd#iB^-GBBEmELFX_qw9>StpZ*MPnVh`taE%Ny;3KKIzk){yZhflmIx3+2Ntc z#I;RZj++kw^3*>XNd10142TV6AKhIU(_$7RAnY)+me#eYIVmBlUmfk{1fIEQ(r@U~ zZPwl%ab8l2j^#(DLjSDNK6&f!)ojK0az#u*ASAi;+0^8y z2N@efnq=4hJ!OFI163+5doE{RA5Qou%CS3oZdT^VA39gg-&me_u1Gll$@;8%;Z;ya zc>2==@ojro9_wbbKx~bZLQrJFm*O1xOCx}LXzbz{unp+n1nfO272k-UAD4Y^9@M~8 z$-q-x>pv3QA{6=C6)rE6PdoXvizbOFpRhcrwX7gx_kTD$%dn`Tx7`mC4&5anC4zKF zqtYNqNy|_}3JfWrNHeq&A|;JVr__+bFbEO?O35H8A&m$kh@Q3mzvnvVT-W=4IUmJK zoLPJCwVwUl&;7eOpL0zm5Apw756hQy(a(;)scWNlE-Z#NwVK9yY{+gp_Z7{VR5bnV zFAj}a@`zMDhhm)GFd40r*)9N%h8V)}k1i<|%nH1M6L`E7P}xq<%{m>;0QoSOfi$*& zrPKLe6@_2HV9VDxPVdQ$X-V@8&1d)-tW~of+|LFRn!?7Y5Yc)dqYeqgBKoDJIF7;= zc^IQ4bazva_z3$SPFQZY{mJ)`t$OetS9czxq``n*LW8%Rt6n1ZWSK03bg3Yn?`F&O zM4IODo8l}#9HQv(H&yN&r%6SnNDKBvoZd97&&hbV_JQ`oyBvCdCCLMgD{tDcWEtVo zXm4%K8o0W4Xx0kd)=bHR=B0|>s{N2Z8mln`796<3d%eBz!(79!#_C|~FXpqUfuUo_ zwiDKeED=mXV8{5F^bWrHMujX-#Tc-}!jYZ`Yz9Ywp8KU2)5jxnd=nssO%53!ged4^ zG@JQ1YUXZ&1t=*|3ID1thaauIHE^Ac!agNgwWn7`Cx*h$z4D~Ga0@@j_Kt!Q1mI6K zyUO+61%4zKdzNp*`ZZ&kv00=PE#9i9Nz4Ax+)QQr-n$;=^u@K9Yh?*^&531O zk6kN6@5&`-yh|@QGHaVZO7RZuspVNkydh`K&P(>)B+1fe=*nYp{y*K<{xWWo^$)S9-FIZ{ zsW7Ym1$Nvvf4Rt+xv2-S@`T^Mzq{KU=rMh9b1&Q2O=3K-o3d5?3VI1RyzP}Y;GvuK z=JSf@>VM@8Jacoall0*2Ev$}zEt1n{@S-Y+=ZeGr4^gd4ns>_#*C-SQmj=Fl^@+yt zJUN3etdnhdZ(hVN#@Xnz)x?bk<%$Lyky?4q;AG=!nuou0_?V{5BndL0pRd14i95Y_u%py{9NGk4Z2%}!>G z&5MDTpWXA`u{6(^WJ-nmM5moClP`75sQb(-Ny;h?R}0z?QReKw!OED=961(ClPoaa z9#p2THZxvq)s^g3y#Yoo?s$)q;QVf@UVi+GMDc6qr*(A_Fn5yb_-%B{S&`kB!_za% zYNa86{j9_(e(OYF)<2?=GGC~8P$f=i7|hy!v14Xe$(`m1NcC^q${1vlefWlwIk#sj zQv5EBL&ggTQ1+WK%isv+ zG+#!W80ptgSJa62f2)pFW7qkFLv7&LD6xUY_eR;4L20B8a?ncVwh3u2>CQ{OuyoNN z#PZOw18_Gy2XC(UyB|?QQGEBq9zgJ)y)i0pEJ84~J7X5X_*WcJr*)RlHg?*kS}ag5 zU!78Y!@H`MLjB-4B!srDt$F0KdAy-$=0Nk>TTtk1Y`Up6-Bo@3`S0bU04QA615aTR zkyPYoaa}y_*}+d%RCVEX!Tpajwgd`^ow;lIP4!&E#$HowM;+=RjOqfrngW~d9GNz* zH^Fhq`dVRN-KNq^?XaO~PzMoOxB`Tkik9lOeE z4m?tAJ`P>^UG11u^bO^3gHvoP9zXDcZSC3pMFjaGeVyLhM~rADkf;;z!JCz4DM336 z{aj^*?u~Wl)l);q59Eo24PU@duaoVD=J*FI)Uc(PFvc@w2R)MO=J4Q9aO&V{Bzwks z*|`zxVJAAyDETmH<+;q=SIyKE&n%I)0T@Ji@!cBv7LE{8iU)kwa~-Yr_7791JBR5~ z;pG<*3|-se#OZAMP2-aN>>jL3I$@-%A4uRobch9{L|;cS7NQ;^d_%61t-ovEc$PA* zj4rE|F`wM1aH`YYLh=H#E%AFOW{iusA(j|A`pS*4nV z3^HONQ|#YAXAW~1AIMM+f_x#<`2`pW3CVu;XfTNva9E2w53@i{cgV?JA9S>-&Ixj4 zZ4bo$eiwsW`{JH+a{mI?L3i!_`O(qQQa2&BdbtTUfl+Al{8&?|_b;0ug%I##4lK$i zEU~A$mOK`2q~gZbnOY-@T0MR;@{&~a{UxgVpWM#0P_OL(r1K&HY5FAj?+LXq5Q$pm ze958aE`%gMI0jVbce(O@hJxwdfZn?ZNTVF5XJ`LF3*O=(9RKW>z(K$EXNKrtCg!Tf4(Rc~)o3H2k zQC-!~jgxSAw+M2cx(`Qh6}UEpo(DlV3DCg=Y|eL(a|k4ntLK2mJrm$IC_&0Ol=%yM z*cxGBVZ|fBq$=S)CH&;_jY|;laX(rtn84`z8$@;zm5(T~3JrQE?J1k=)zH(^-%TGX zCj}wM0O%aQEG>=o_yjPLcgxXv0kfpadhO430O-)a52g9^Qgm~(%x_56%j`T^PLw+w zmO6;y{0&pwu2buh<*&P6#xmdWND6qaV8H+Zc4Zn;tp0%{pg-b(wekt@0xv?gOc3|I zECW##JUfrfpzbv!dK~~T+#)dKsWmD57+3+J7QNtZssqhh2#hLZR@Du@_VN+1G6Nu+ zund4KFZ?-fv1oLqg&@trKh0w>jBlJJJoY;0_K<(er+ybIZ~BPSk{A;uK^r(R5 zbII}Lm+-^&(SA#pyl6El`Bzj0#da@?B;s5B){y|u{}nj$_rVYZ2V~$ns0r*Ohk36& zl|=%f^q&Xyf8!+}@dkP*4|t;?rbde6o4nJ0V5kMR?L{6howt^*L&U8yZf4#6AFJ(}OQZL=bcUvu(`Us_d>8h$b`PLBdxXpmi8S0b^8EA;M7tcndrTD89}GtO6vo5 z?g2L`zs(f*L(>^F1v5eHuT1hC#j(>!{M zczFQPYV7w(`#wn`E$shaz(S8-^9oRu32y%VHL950#CR=`Vy%Yovsu8Xs<}uD<6X_F zyPmx6f6NqTWBlW#6U_XL+sJb1npmGJ%vv;zeRg$EUbftr9W*iwvFCGREc&g* zHQ(*o*RMNzBjzI>ShmzYkIjAA5k(LUQ`ia=vvpf89QJKJDkgavcdIOfp-D`?QKRtN zkKl9b>F}L&kR?D1wzpo0SMxPhYZ;pC00;x02_vn4$R7v^v0e~%88Ws9eDR+?(dv^T zSd8b-?}p$?A;+IDLZqYp&!eGC<_I4R`h|3G?@Dw45*>2z`L+0aAz*$4Lhev0Zi~aZ z!Eb+(l$4~NBkex52xQ$v{QqGZ7|yMMzgGA1@+uwyWO}CLMWXQkA{ju0loc6(kg26# zodW23QBcoFGZq+vjr{d@E$n_bAG!f#J>#i+-I!GaE*)4bFg$4@cGg%bJ6mGRVoJq`bWlCWJq9ArXJ0bYnI*fyrBtzz5vy4aw@ z2WAI=B5}oWzvaQfzH$?6X_8goxdY$nA#kR5Mje>G1q)-Bw~#kBR`~-AF+_q%2%Itb z&GR3hpwS1Y<^ZQI#Kk%JnAwH4^6F#+5-bbk`{xLlAt=oYxCAQ%=Mz+}{NpYGq(0;2 zkRL_>C(qf~m1IWzQMg433wWj;u#>&I&`%61*PB7O-xY1O=b_-@&zzEJcv zeg6s$R1dPr==Em|D^l=sPix)DpJdf8a_b%5(O>oBm$~Y`E0f;4;l4$mb3}u)Y&lwu zZg{q?8MSh3g@5?r_DD&#{NFdnVLbldqL*~kyiCIYB;NsyfgEgs+J_V74R-f`ECrBQ zavu!;5p$l+^w)uch&^bd2m`J`9q{nK!y^Ec7f7*k(7cG#5EDDJkAs73`QsHBbg(Uf z(&%ZWK2$lz&w`Qg|K9l@-_Hn2tpCpT-`_vy_MnkKL(4hDa=FUV!S<0fy&$#65Y-kQ zwp;!}o@a)y!+q;p;w#;g*<56e&nsK+K`Nha+P5zyZB~Yc6TKdn^Oh}uIkV!5w;P?A zAE*k$xW3$yFceMa-gTwUuV|X1Es{)O2obcJvq>`a|4QHB{8+8oc=@{HEm7{=KE?pl z9xv{I@#D;3jej%2x&Kt{>US=|^xrXRAfmYG-rQ5u)DY6%f|!IQP-o4_M_GYl9I7#O zMO$&R&J$%uP=pUOD`j?h!od*UcG>qc%JUw}yjyEs5%9MTMTz1ROEHU^a{V-1J3zc&%O_GeT!YsCI*J zEtqFo-Sqh)MX^w(Zkb6j3ZFhUZGQHJKRo0pLH>e5CE*S}KSBG%7qr$%lqxS>MeUdl zU7KsbA5QVXSC$R9JbMHAOB$WLbTzkV&w~v0mFjs0;e$^*$FLxwovN(={a7a9&|~CE zoVu~c-5QVAb8Al}(a&DrvK}y|jUNLcb#5qnPmHJGW_e#uhH;fc=qJ9UqfMeyhsOnS zE6SugUvB$5#Wui~g+U$`zo=2NgWvdFr$ch&elo*>#O1jyOX_%y6Q@@xr^}i}`$_iIrRU5B%sv5N?mo z5Rkle`LJAU^$!}OCGu1+#n21)(9!eeWokzCT#CxAgRo!=j>fnj8dM0ru{Uk?&8XY_ z_`52qVbnEU!*OW3w-bxt$gb~Ma1R($c!)*f<3 zq{kzd*J*vzaN6yBOiO-3^5{D5t2=3DDD&C0J6i|ne_ma}~_GT56$oX8qM;mx{Gs5B(m;O%dwa}xk zZ%=#!QoTf_clJz4`oNw;F4JZ=#N-2u>+2P|`-7iNYSRzj zi&(F{DC0>KpX?JoT8V6U3x%Tn`uxkaJQx&I)|{BIQPBf;Me|8NvR^$q<@=l}hQNO# zd2?FWWZ#!W19R2p&5cuEdoUAk%J)ESoS=qFH0UG6V~Qx|WT<0kDB6MAN8Auo7g3=n z;Uu^n;l!rSTs!*f#D+O~4ujS!WRj15Q+*3qCy$(ZpJ-#?`Hwz4>8pFw+o#z1`nX2* z^uCyPVT7fZ(pH-KbkOdRI?am+&W$tr(oWsWcg1%Yg z=NBSxUOM)>&ZRyPFR#wkwQAPnyy4-TbbdYINh^Z;*_TO4HA2>2OebUH($?FiOz~6~ z)BIj2!5V*t_O>yfQ4cBUVoSnN>UI)k2~mw-Xhq@|BxKFjcXMn+rN&8nv)63Cj+zagL((D%;;OoSpHxz-5f%JSF`kyE!5cpah3$k_xR933~$ z)wx@CBpqND%y~wh=mO^!e}X*r({#qYenu>Jjrh9M$^`S&U+NIqn~qQIt$x1?AT)!G zu$$x^-9}~{MUDv$y!KodAK@qXMD&%1r>=`qS`&! z8p5O{o`CLPaQc<99Nxhj7v>h)c{o2md#=c_<-3hHHHtiln`2DhZ+%v?4L$l>yh=Q& zE*~k~LYTlf7#TIH|IEW$YSfZ{(r_yg^RmkCRVn51UJ0sO`se}wkLu0!#1xE~s|I^Q zPY)eQCGnrHxg(}CU62-n2>iQLQ}?#B@@eSZuk$;82Hv18{eH}sxPIswRUcnu1KfW4 z?7H>RSR8uif(g!HwAiJ<&$`2%l8lLZ;%Cn~nZn=NIcX31-Pc3ke)REyUUQJf}ZBQIPLHCZp?c zdVh4R@<8SgtsooyfFrFy`i`Dq7MH z#CKvJj|(fP8VO8{Jgpx#H=fC0TT^%@11;#%X&xQULf>)U3Y5rFU-mwwhD#NrdWX4|* zo7;BH#OPgVM~gELGRjO79LK3|tQhYSOEoTF5e{G@O3>Q(>+Pa*pHNoVo#?5-5Sh~e z07f|flMu`)*O&V-ae<`vqM}d&yf>NMJ4(7oD^6!Nv-zGApQYDKS#-MA)?&6$`Gx}z zh9TKxPW3BmIK%giA*S?2=N=5doDPi;#+VhKYYA-VVRAbHay5;5IAahcnJmPvFs`X8 zAVo5ojfO8^)xF{@269#>H0VDW5xE9h^pp#yn$j58qJXJ6VK#-6EC>Dp==PgSWL7?o z@y1c>_w3B%@e7R7i!Tx;f8}3kLz-x0gQu$k96=Yjkr7hi?}IsfTMYJ$xA3VBN3Ff_ z4p+YSimGh;#g_+&s+K`k0#^KWXoPP3M=CZ=p>23Rp_y}^i1(L{RMvN>dW?R19JpV=l;6y{p32z zTOKu&ovX{{S14MGha-#9ftoZ754oPV>S;^s8+q8r_hZ32QmzsA!foC6Nytev^$3+; zbe+DLxtvWusDO0JuTE1ZS9y~er#$rSRhTLxs<)9(9nAhp_0_jEmtDod)8G!hU-ow}dN1X*={DU+=8x601`AXB(7cJE(_F7qJ3 zbbMht$yZ*rFSX^8n>oH_P9knldFM%asQLPS&tS^K?TyOLzizFRJL$730zH;f^RGme zOcnE>`LU}V)+kkUo!I3bpJ-IFFiQ4D4S62w(i$!_`$Fq}1s%+Amq_sZ-5W{6rD<(J z|3=WAuDTBx5b^-fWYDmcDnW2>#Yuv!}sia@4zFB{kvEb7n4jyzXA+>dl zxX>ChQTvt7H5S>s>=B6d@+`G$EgEI6(?o|&k0{5-YcHPeO~{-+y6I2B5ydj_o660E zM5n9}Q_8XFWkdt>iHT)gbJ(m3Jma<$cR|@FD(1Sbc*jMEXJ)0*e~79S)Bm!<6TNTP z9_LX?f6r>>NFBs;6~W8Hu~%OfYEydn#xWxmct(9}ko zH^}pD&(r6Mh!%-~9J+982K=1uG?xOfg2*a*WVnLiNrtK%8iV0J#?-o|m$N0)EdwtN zj5kgt^MW25uwU4}rJvmQf?srLhI;=-zTy}=8~Yjfu3{y zT;>hE8d_vBj>PGjse+hwWrJObb)r9iPNgB742M0?_iH-_$_I7B5<0vz1W*M`XP zr$xu^iRzdn>p)y04Yt*K376wp8YU|tblWlBjNvO&PJLU-TPOU}1`$Ep+CY30FFwoQx+&NVk`6fhs=Z#8D3yyE|T3l=K48yyGl#V(* zW&E*9yq&GEYS^9$0%t0(+J79T+FW0?u6gB!#6!_Ny%HhW+)1UPsrC=IBgZxerUO{g zRy_;uG5G>M2F@hLg8AX;%djMY08$4Xc9)(>et!yfS(bf8=wv<$`{o-h&n#zdgW2fu zjc)I+QF#!d&oRwWg3xA0sCdxFumfhBWuiPpURTs)liFvRjG$Hv7*NI{{GgXtdgdx{qE zo!2rZym|}3A)Kb^o9YC(VF zmdCG3Cn<|-MfdFTmQ=K=gYCa^fAFT4xX99qj;icn)S57~6bHB8ek-VSV=%pRtc3_< z69jtXF$sK<$Wn2gt>591Fk1azkg zf;Sg^_4InO=w8IIxi?FP1$(y`pZWL6dhF@`RT}>2UcQs1n)UmZ3Bw{8f0uDh_WC6Y zvk}HhKXdj=AX7-ka97+kFzf8P5zReXz<0Q^cRdHJ)178}$DU!QNBZ8kecYLGr!sDe zA+5R$TSEeY8FUTYx2~Rc1uxHC{c-d&CoYKyZqMed6xsI6C*7F5hcC%5-ITmF(Wgld z$17|^ir>qBQr7Q-Ri87?N3zY z(uD5xj1aX0*jJ?vriQzQBJA=Zu4$OveYxERu38DeZ!C+x%N~Je4{oWwHQue``9Y)= zZ)HsbATy!|+VRLt@ql@Edv)ELpYGYmbVnfTxAz_1)`3iq?N|L`hNRo1fsM07$3R!D4uP^gf_1p|cM@r43eN1l_EVeiE5YPRzAm^As?qJ?r9;LfU0 z^jPZ|{#_?T@9Z3Tq<}L?Vo`QegvBe>V}}|0hc13}S>{2&*D1VX?DX_hRn>WhZyvqK zc}}zTju#QNCSWdioo8u~d^+z~(y(b7pENGjea{m!F`rac;fr-DEKYC@gq;&Q2F#e6 zXI0$D?RIr>jw5&l9-lZrTvJPKl@Ew zLGAkgNNa3f9kfso1k_pI22to1UBU8yR&MwO^kWvV- zeG`Ogy1~RiBA}>~xa9dWK|lZJstUgaL@E|`b{tsOL?GU=K~4P+K%s+dvycw*Y5q*R zkU_&Js@9t~7Rd9(pvS)@`&;bYt{fRmoW)ck&Mla(Qj_ptFKT@3yNbz5yllld7YT{( z!R-o3iv$DDQ^}*VZmwl|8`~z4dc=99zM~FBrT@84&fVpvOH$80&Ckr4U+Z85jjXIn z4B+Au0o^nWZdTFrvDHt>b%cd5#h)|${h+8h8hv%$EMWI`RhW%I*R`Uw@P=nK$2}G& z0j?pGB8f-|glFRNj>0TYW9IC#fC1aAgDj@{`j5wt%U>Q}`sR;%eau~?Xi zW$?4#hMpT%yXil_WKmjs@fkfq7Ei{d{g>$aTIcqM5PZv8!*UnnScHG8JQUmyS`aRgm-BT5YFsbu$p()ZJloW!4_w)}y1e zIP2e8hMSK1IQHvt9RqdSR4wz`FPpbEXd59JuOLR*;T!awot@C245n;rqt~k-v3}Kq z{+D6LUDocLP(PRbgAJ&mZu@J{-1{A?%d4pyK=t_-fd<_GKoe4IJqMW;^#8P(wUHd7 zW~KWlgXUe4AfA2ME9}gw#DU>qoYdTvH^W@77Mjj9Nn_i3ivss#Vp&*xAE%k}Zi`BU zqm3!JR+$JJ9jfX`zY2pF-NK8eN;i|?Q!QdT@SGFGQc-|?D;6suq~)z`5M-|JWjJSUR_Kl8E+cdWng_iO3V-+NlHHu0&j=~AcT zKCa;f#-MCz4O)JTBc2;13raKchvOdPR{Vb9Mn0qAQyp@TrSc}@(WP>a9QpTr;Sr7S z^>;kszrl?eedPaqU=`$^ZCEZ<8A}LR7)x$>7t@(oHQkcdkn%C#NYn+P$1oQU)#{6` zMidn3$WP-#Z@wAUNN9bXt&6v{dTTOCUU6fUWDE5jZf_n<>S6}o(Or4s-AQI00xiV) z?@Jk!(dA7@9+ejUy`8moJB91Rul!2lOfzHIY#{yW3cm$AqtAQ3%oIG7;sRXnke%>d z5=SB=*8yF{tKtg~1$}ymnHPbW*3k9=GGhKYy!Dr!^Vfh@RsRV{w_r2}^C?{*q)~Dq zJq5Vjds%FmhF7VWeIf}r5Lx-4oW0FJ=xI+e6D`PCz2B29`kZ|(Lxm_O#E9O_TM`Rg zkbrRUl+-7>-05_&6_I`gvyoK)r(MjrO0fs`)H@E7cW$5F+_|i9klk6;XkSG z9u=GBEdhO2l-t6(W*_LjP=u_d=0VdJ`_==f z);sKb`ineBOmy9i)8fM2}xu z{Bd}m5L1yD$Pr9=h#qA$1O4Y9j_sJ|cL|^A*STL+2+x0-v z^^K}#FWk3BoVfz`+jkuA16AiDsh{s@0Th^t0PTdnHlX5n6+iWef3|Kln!KB-fSlD! z75K6M2IV2$>F+%m!)E?s0U&PctqF1e29fW?z)3C!k|EYj&cNZc3=PZxiP*D!M+Q*! z1t-_Q$U*n^=LVnso{LbLgq9UP;H0OCizg;WS#o7E!tJ^pYO5VzO7hWXZi$CTBIQFg zL8C6kjD|$Y6N8BY?^j_s7q_FIwBHk-@fXTQf|YA+cFS7V8=2P21%2B@bG(7c=d=&w|W(1 zPy62ZxkZPqdWcpfwXYFk7ds4YVY7A~dB$euooCndL~05bP+iufXDjwyp*Q3_YNL$F zCG-dJu|I(B+k^2eXwFIoHH+3rWLg4;doP%FFe*3M&;QwRaVS%)f2U<332cKPcIHBv zX)d@?a9}h<9I(qffa-bzQbyvyioJ{a8SvSOxv{0i0h(+9$3#7(ze4qbu2?6-UKp5t zi0%yJehNGXxWILTc62+GB5^zB|2!TpwAinOttW*;@%~@C<#kxj&|U*q z*a&L8GPck|N=598RcrBG)$;*zhs%j#NHF>b1y8iKxBnY1{V%9{9jGbi0`MqUI2d{n zum1wdoj5eG@b@R9mzmoEd%&BE$VFLkyf_AfeT-V zA8MKRZyA;E0oL6znde+2bM>T6`M&WHjm8u+I_0b{ztTscH#yS^lT?-}r9J4Oo4lwN zf+?4n9=Br2+$#3lwD`0M?x^z#01{;^V~ipI$P#+DT)aCTKa0QP9F6h>>j1KFX^%PVe zRoH3+6oSWnn@h2ryC|u!Kf%KVw{8tBk;;R{u6oCX>;X#ZyezD~cfuGwqI#i`i)8VM z9=Pu{B$WI4VPV&#bHuArIbR6;jw%-?SV^!N;@zAAndb0z#L~&hHQMcXZHlHLL$jxf zc=kZ6)!*P%j+hh)1DvjV1{(Ym3ZH&Se*wX?1)>p%>l1$>lnE#vYIwV~a-;LG*+OVa z^DNwC%pkcj7DIJFx~XvY`J-oGo4ifv^mrJ+*{LCr+;^Pj+>X#@NF?FI!1M4gd?XJ+ z^O)SBTQn)+0jqRU;p$?g_7Z)!G6t^SLduLS+GrRd_|YwI&KMu0fOV_}U8Vr1P`yA5 zOof7`)vk9(+8PQ}t55w94tdT|R4v{;4jSfp@ zr3Cgsc_VST z4Ik(f8p4k;RH4}4JtcT(jhu9L#TTtKlR9vTD9Ja)B;ri#dDLM!TOm9aw)rz3xY26X z_GHFfTN}pWITLy;#uqI5t|E*`KXDw77`iOe;$Rzs^x>0yW_TEtk%tFo?ZrIC5}ZH^ z!+V&)Ok3TK7Oh}-`4K|a!dBB0*bB)PxG?HgF@D=|+E)fECbMY{asDDcPo{#r!(hqG)vN z2%Y*r=+xx`}PmR%OKAi@u+% zp;&!>wzo^=QL}cWE{sr#HrJ*LWz{)%pCh`iRmokQr$Kj{u7ga!Yi5OtnL94x#~pvr z1J$hxz4)xy0##cp3o_R=Rpk3cJ<`0<&QFc8<{%gbx~H1BNv0+>z@sMKZ&cH(tni_U zH~G=sS6n0?Np$A3)SDKw)J>6ekuhLNujm>bRq@Mpi^LK9w0_%a!(oh)7fB$1j(IF* zit~Ivgr^mbutc~W%T{!XP#L-JG4+IdNj`mGE5n`3xJuT}L#Kw4qR8h}M8a*P1bh5r z6X|f_Qd$%<7YDx;%Y{~l7-_e#XeZuDl$(lg(F=YM%)Pj&_>N8sPTO5R9g&T6*JK%x zu}g~bjZQyV#dHFty|$RhPSzkestWujVI!1 z-LtjIXX-mRrm{!iW0-P+zO{7lh!K5g>{k$F#xzsf65(gT$Vk&D55hi;hF|WLh~9IqUU0ZODyXWsQh<+mC!gLDZV9gTt@lQv z_1Gr{Wjm7!Tp~{h9)l4gouiv-2S=54-^iAO_87X?PHAYX{?`1w4FI#CT>Qjn7TLT6 z>Ti(vjq;0a^&#yRjU#w7NCd0YrQl-BD{Cs%sK2Mx+EbDRfO@Tzfo{uH7$Oj9jz?C6~a#GVLrt-M_GZhN{pNqs{p)B z>~hnEm#{}%$y_znhin3m^6alwU!9-_*kA50#n5mj94t5RylJ6Vz5cU)lXSF13e&Ua za%LWr`2o|4qV|d;;ryZH0e~TX{#cTUV2ss%8h5GdAv&9ps_#MSmS&kENXA8WXY-P{ zW@4J>@-H@1KI7#;E+_8N4V?ZF09xdvZ0RlEN1f{8Dc0~U2G(Q&m{W{^52Eo=F})y& zxn~uK97~8}xvc4J04)s5V!_wp1yr#`6Cq-f_nGR*)g;r$-6Dot(TcLU2C$r+5FVC+ zt7yOiQD}}spPB=^)t%p-^i4jVGfe5;fW+>@7Q;1_nJteD2al4$ZE27MJkmUmAv!^3 zL>VYgSGJ)|i3mMqS-36^rK-+k(3jK!I1#J%^p#)(`Xd>3kW%baNa0w(ZbGxEzxAgt zi3<~WCW;9BjZmR*RD55)K=4@eiErZ3u^XHJovWe|9&|6*sQiUJu&LJ8JW=qepStmj zKbnKN@9gltid47HLdp{5C|0dpG6ep%@EbBkEyNwgnC1`GH&mMd=5~qxy~fhc+rmw{ zHBOZjHVQ{(tO8ivC^@k?WuI-o*lQTDwXH<~wFFi*O|IhV1gZ!EeLd~1<|p**(7``{ zRC&~umMfYtxn*($j}S6l)v`)v500o} zQNs1_akiO?+k#DNU@L#-H2niLJVTV?8&A+KP*d$k?$GemZN2ickr!<)R>E-fQjVQT zrk#9GxGfRe&}Y>w`s9J-3)A&~#QU%N+|c_9M}}mNDjT8PQQs4nBXrOaU@}YNn2#b1 zeA*P@C~i4^1veh5Bv2`IY)wxS+I{&2Na^91O+D!Q*P5@g7v(Y+)HUZVmZyH|no++@ z>(N}gOwA6U06x(G_1&qh!8Z_fO{&E8Do%tu&i!lxG|n1zt1@B}kl}n!2!1YN7B^`L zpBx&*=r9yb@@=r!_Y#vN(Dpd9CDG`!N6{vak<#|d=OPbp7dKSf=WjUD;*>EF#iul} z7SMXOusEAUMk@3$a>pH^hTB77Hbw}1sH>u0b`w~u}M`VZ|Hk%BHB!VW#^J8qk?hdjI|gKfrXrJ)@Kg9W>4{|n4u}) zz7GZ3G+Eo^>41f=$ex|z;|w`v7-0Y{1)9{p(+zC^2Qvp$Mni(-Op6Q`CrkKiI43^g z3{|RXTW;_@h)4d5(P)8JmCJDO%jMC4yR>7=d`L~BzBO+)gFdk?-XU6^tCkhx<}{0w z?w2TGi6DrXD-BN%j^*`mfhNFe+Ru6Py-)X^bIIUe@XL3LCJ>zQN)Yos zaYsGdn=}pT=YMvsSu&qQ=nX>@^$5kMq3sJS0{TSlvxcfOjLC&WbwWI;mg4mCNM9KR zL9aU^4PbpmJUHq}xeOTyZ?{<3zO8q0V1VC1Al+;xpE@I9o1oe#lU9 z=UBpxlf;$#d56j9ZeBRVvPYrYliEIj7ZDog!im$~=IL*TSzL`gpkz=k;{x*=UGxYr zDWyDrMEET&ch;<0>acr)R|1Sd9EGw^|GC3><@<2J^FSGe={6_^lO^9%jo>*&MT>*V^Z{5XAPXkLMeE&h@ecqWG4%7psp` z&0+Lg;CQ>qUA5v9&L+K;n=}L}nF9qbaK3^~F+2`w{}4*YIMGK;ND7LkYS0k=uzu@C zxUb=})AU8eEX#MfnX41KEotiwc^sACCz?7DQE}%xEbX_|fG8=+PY! zIT;nj4$ngzbFC0onc#P^1<4p`^%GFGXx!@Y**l23tn_c@wB;qwP8dR zsYNB%)!7mv3GwS?REwbUl~f>*%R_cAGi{yU$EPl{)R8;7v9W1}thU7?=yNvwkNRl3 zm8obwj$Oc8oHhJ0VhK${<&$#bq=p%lJ_^Rfzf|$FfA}6paQ|1SKcFsT9q-w8Wgxxh@h-i$s02br>pBHCC?S!@59&_X*4o4f~CEXXo!<6BHGSmmsc>MiG4_&vi4-boX zKMx2z$P_}<6|UI`!N6m&*)($AlnqLTO;9qtgL z<*AE4J5Il!znoJ?(dMp8{>b(Lpz9Ov276~@snbf3w>cOz!K2-k^TcEbFrZl?d9%od zP|4n-`O_?jLTL@7&&-*lU_s_GbRHbvIdBJ#gzj)WC5a@teWlPG5$4wt4Iwf7txeW+ zLd3ISU+zXx5nm>bR&OaBD6i@kjtKvxu`4f}6NcJTj4fLnEhVaZ&qWc85PRb6+GwwdKCo4W{Z+cAFWL+PL3;WT&<{^jU3uKsf@)lb~#ZKLwVSdmGhsMFh?#a(8s7H=Uo_6Uk2mR6xXCtQ@D;>I$2 zn-mW$ULdsR$+9S*!xEdN6fP#%_=#JW{rf~*+d&{!9HL}!IlAdh-%g?%h@Z|#V^29( zFBNMsOQ?&x<(W}6sb9j4R5CefJ6(s{b&EwtAfvt4$mkx46N%~4fHzEv8L7V0fT;*? zR+53wXzoSkK~cePIdNP)Is7q8K?b>h)No?mei0Ggw09bP$m}@@RI}alvrv-@!t3!o zzZ7EQFT4Wjh@%VX1R$g72%zSp;MdC66nY3c+C!nIWj>xtTYtU?9QGl3dR&B_MexQy zagGZILT@zrJ%;4L@o7V3jBXoIIYCmQxkysjO)j3Cjo~*6c>6`n&8U`hOj%3QdG4AI{k=mV#Hs~kWuZ0$_8RAQ0@XTXK` z@sZ3$PG8L(2`CvLW9$#N;wqgb$}RT4C|Bu9$(=Z`_BGcUg(!X|1fo+NeWJ>{HffUg zjT$3VMf|b_!tvS!>g?pzP#=*e5fqOMeP8psR(8Qd^&tG*(Oi+_C+R4Aip$H52xgP_ z(i-FSO|$I9J6%hDfhusMuA+M|c1quie7~=Lo>Q0T zVsOStjbN%17pF^(;Zmi51x!eieCY!2&8QLqww9Tlz{5IYDac;2)`yiPPTbJ$4pRBQ z-rQrsMS(N*bvd2-8h@S94*=h6I_do$*_BE)$6G3tG+0@aeWoQF@3Vbtc8_J|0kLq@ zP`QP=88;#;?T%?ip?ZTDcoiW0jhtRPe(_gK)Q18?{N{7uRoXdKQ$E$?XnIa>Qd_P& zzuTJM^F|V$2}cTp7o%IICYU=6O$Hp(N2)aU7=Ja((0+G(C)e|NHaY=0?HiJ}<9Kn# z;Ni_wgyM(a$)gE$9~mBlo-R=iIzhQ$(G>H?Otr7pMX?#)d{m$YZ>XgN&*?rTLqoLzOX+N) z98(N8W!XnTjNPq4O~r5TKF{6Ql#rdYvHf6On$-9EHoKbD=ToT%xu~97S2<8dUqYW1 z+&^~k4`EvK@a`H-Kl|HfY4h0jcrW2Lt>=SN*aguP8QBk4)rAQQs(4~&HIEE-v=(9- zL?#Vd(|)eZx(NMo3<;YX75UK+c>eZ&+1^EYWzipJT1KV5?&VGy^@J0caPWqN_nkfh z;p4yuzy0>_A4u&49@|)uOF#E$J@4Su%CnUia>GK#bYKk!ezjMpPy^dYFrDrefQp{c zp&&sVK}1Xt(QCLK$UjhhkC3!N!2Z6wUp#>YIQe&BS@`HGDg23kz$5kx zNuTE6-`m(U^z>6*I;&ODlX_G%J-H4J_Cr+0RP}Dub-BpyC8jOBfJaR|cJ*@X549ej z%vkcGFvU4GKHInXp}A?!jy^eR(cayZMMrIRKA;NxU+tZVKh)d*$ETZ0Mb?xIp>DYm zNp^8{jcK9fE=5^$YupNrCF|JQ3`MI7QKMUF8Hy~~_qsy5YRH-;`!dLyd|$`C-|g|e zzsK(%xIOfENT2!4aX#m~->)<0eV#8{wUMKz8yoA-OzL|+R%w zPlul`{U^t?~gZdR53?1S8lV9 z`@v~!YR;Z)1ekd~#c#ZDB{_>fI2<=)(CKx00~SRTt_1ah;V%lJ7bIPj;6w^ zD*QS99eJH~-}tjwKQC>ZClpndWiaStAFF0%8k+IgW%~HX{~;K_cX%Z>nHNw%ySu_Vq5to}Su-5-nCp z%qLF1RP@p9$tbw~zHv=#y5fy)jgg{diYW(fnl5yR>lE(#-Lv%~@8*dX@n?ayqRLh~ zpJ0*7&avXG+p1JIx<_rn_2CR=LfVd-dqR>0Tsr+jT{&*1Ix*IatjKik(#ce2v=A@M zs#Q?snDIQNz_~|T!UV0{`azSW~K*b zjnxVJ0H;?A$;sTAsoa^uOJDDxP>%Ar#ekxJUuPb*X(9e`Xn-zAY(NK5mC`fktmBCv z174?Te~2BC%()yFmet~&eqoHooafT{MTe`u!(>@?NfY}!QDwgZi%;!jHJ83$F8 z9X}RiNGnC@>A%e1vQNy%YF^2P;3;>Hi(~tnkNeG;c~;Q7s!D6n=i*g3lAGPwIIkmd z+WG@40yOg3t?kTzZf*B5{={?_o)IQg3nq?YI&{7H^_cM^2Afe4!{%l8d+4-X_%6wB z!jyv`b-)x$26AIg)<8@rZjF(ifo=}7pttBOS4jW>gTM$ z1T#)GT{cmp&wZ)lxj8vHSP#CC)HTsKdnIZ9ij_=xrJ>E2+Potyi+{;JrJ1H*lGpPZ zn8C+=R$_{moLG#_Gv{IFy~}8N6SyB5P6NT>H?#n-UFfD6*iVkz6XFDM0_NHHI^CUK ziS~7NcIMfB8Cpi#O8nGq{P@K`X2Jx0Ax2w8ibxQBxH5Lt^$VA&q9-_R&pP(920sn- z#^+uBFlr`tQ2l7Co_mvr(?HnvJ9;9bB@Y4?*%}nmFRBa3cu2kT_*LwyY$g7UPZl!r zPcyEDr1KUhKTgcM!VzS#iq3y?nE>vIaW8g{7Ev%6ja^*S zzJW=^Yvw5p`XNb-=pwVg!Z)MgvXb9coX?oWSZ z#@xgjEB^X5+7!@S%ZMw+PW>FpE(5**#SS}@q`SU=X3}yu+PT1JX4q)fcH=X@l>c&< zzc@iP@ZY87ETtsjlza1ahw%Ixj9BT+assJf)-y|AHfQK1-;6yJ)*f|~n@?!cU@Xih z;fk0YxAwUN_}Wjq$uTohHD0dcT1zrFK3b6af^M^aqR2Wz=KL0Fw__$^14)O z8Jgg_Cg1mRW%m#LYN<{6^w~(MdGl$VT&|P(&Df_c-yOODLIeMy?erpoO}FuGUrPL`31WoQE2N}}uyV8;+$Ac2 z%piCM3JwsjZH{jGe0XkC*NZ!nw4kf^=*wrVszI5yax2%I%^*h;v!$A*`#t%H&<;Rz zdpc(_TTR_PJ>%2HI*?w??oMmB+ba}$Ya$QC!vR}&Oha=9J3Yry=HrIWhM*?O2%*Q6jxVCSzS1s z_}qA8Y^)Xb6ew4*x?o|5o$Gp#vJ*hDVzD={Ff1u{ttI<vvxMBNa`)B6Ml$hDFt8Hf+heb!O70v-2PSKfwXXy zK&R-ECz+WCc3v?*2;$LDt@fOW`skB>{pH4no^l5lEquKFK(ffKt6kW%2TFiiDZ|D2 zZ?*L*T;EIru6F zp>6#4w?#>_KMdY*P)uEg{CBYYISUh^#eZD8N(u?EjZCUo-+nf65N|#yQsUx29DR7@ z_ho}UwlgaTA&3xhpxkC)A7TC|f+Kj%%5@?68T@lv2Ma|?VIxs$5}lJ{7~@u9b!8f3cH0z^gV*aw6!FfVyPwoM!lNa4MvZfcDpX-}`5#OoTwc3DRB*E4i%2-zU zCz+~LLIbI^8SM3QyfQ}Paw!#yK(w7$!`rNh%a#|U1a7^*I817NsGgo4hX|Rf)(9gx zR*OVj2%0Ui8PcuXFeS2iS?)M(1e6J_=SW_wC{FXqoL<^ z>b75TzP|AQv(SlL=3G_Y zXNuA(w-mh4l+=Ds8{X184joDdSBf=K;}Agu@hBvG^JtAD!bb$+($)0ye*ML6sEeR^ z)-&lNMH0JA5S>ljQKCYVm6fd`byl>Cejm>_6Jw;iyW-^fpyjL98uHm*8GfU|@}RG< zmvbe^*oaTA&{KZW3*ZpT9dmwDSIGWlKM08|Sz-#g$VLt9Q?FW-uf_NG_jev>n%s-3 z)D#e>?#IWk+MnXMr=Ar1gut(b1KtpQk0gzFcL>PuPd#Q?|1oHRTnNP^0ERa4N)OmW zsi~=*;PCnvxp!wLJx6v!xM@JqzmOMTk8+Mdt}KjnEY=_&?ZnW-=E0tuIMzERIM3yns1cOn_AUi(QG($>={)O&=7Ib>EM|fp5qiyo@ zJFayYwA#6qMvb+H-`v@j@MW!e)D=gEe#YlUQ}-mE?U`Xn(n$Q|r>12KYcMJV zVaXT5qC0jDZP9pe0!B1xCB%NTZfVFH+TdMdG!}EH6YP zU2tyVX2DYkO_p^p$?vOE=s~P*99>*?HIySrt9o>(-MImM5tt&w3Gl}VG!6(b!h&+( z7%45fI~maR>oswwSJRJdbLHUVQK1EuJ@>+it7qmCS{kW9s|QV}2H2UF_Mr@31iFfp zaL+1JyZo<+1yOqUgNJPziFo2ef&|t=oI%=MrSSz4Rk3ysUl>TGhdt{MUd|bq2=Rh& z4=Oy!kPEgQoIoTXwnds<_s@s`__p@0*^Nu%pP@RRxOcr7AJ&IbtE#HH=$MR%Z!lWp zz>LPyd1Q37h0MgdKZTrmiZ@(IkQAcQ%SovdFizwhn9+p0!QQylv%zB-3CXA;S~fGM znynOi9D$=X@_=*x=CS&d_^a{6#&E1ej3zcYIZ1vQx}5jwy<96c;l~)ArMe0>&U_hj zC=Olf1>Tu5iIkcvwD-FFe0%#tyrIWzl)MS7Oci`#IG|c-PQBhAj8sem0>*KK6!cLz z#QmizKEiOtwOB-fG7gCVXaXDWBYo4SJK^V-@q|wF9HndVBskKkOaaRw$C>G|2sy9j zpiVOTL7>sT@O4Bu@LP_6AyqYaHp%uub+Iqek=aAm?24t5TU7zA7LSh>zFwj2T%V-u zJyI3nzo{E5Ja}d0IF?6g@+%)E=B!A&Sefmm3Jg{!N@hJqMte^aqStx$yLS==}ehdu3Z@W8i zn+VSRy`!BNVc~e5;vOCzv;nVDeG;43Ox8R-w1dQLy2Ki@5Yq@bSy=?#s^m(;Xvg89 zGBx@DC^hl;nfiMGb>hb$d#aElC7fdMfk7w2_j&Rf^XnTF^rm`~CECw(ltQ6|jZDbI ziRW^;j*!$<0JLoE{Y`dHoOWO*DkdZ9UUb+Ppd@xWcibSUOf}O45BO)5Q}J63hfNQL z&IY*|dV4^BRrM~jZ!b=JUp|a8NGGL`<;Y_PmP6(28){@yYtt#g~Zg1t=_pID-6P~fX z{vSi64C{(OkPxl>C)z22Bp%pKckkmT>|!kfLF-6={zBZiZr<$U+=l!SN(^@jgthAf z!NDvlBOE*Gi5mNi7I9n`d`pSuswsw>JAkyM1McQ=R3$Hc)AZn{he;?>ZvmvU-0Gb< zt!ROmPHNx-k7Z|PN1+V9=jBK_ zIn@qKVMQ{JAg8`vpG?&o1~oMJ_4|VDEPCDw$p^W#V+_C+RQc$ literal 74825 zcmeFZbyQaE`!Dz)NGJ^oNQx*aE!`od2udpTNGsja(j^E=sDxmlBHba~AfO^3ASI!6 zH_UbWojLRS&6zc8oquPYwS3o$2>aRlj_dl=y(6_WRY*>qJB7huNYqr7ZelPe8qt4* z`0$;T7!n2epSYW{f!i%dD>qN9izVhd*3HSz(ap~GE{lhyi>s}pgAnf(UO^rf8#gy6 zR|!5o`~UF+ypAr`d|V>T%5V`PCsjjN42BGg{=>j4ndmNSS^I_H1 zQWnY;hQ;*~0A0}PCbGIdiPRw&DHG7oC)c2v} zQaNs#q-R*qY;fa5-9%&fmHi^eF`3VYTZ_Z)jEc(2C)2$qiG*#x;>l!?UA|M=wB94j z{3BQG$t5Q-hQhewVqxv!gak^dwYCd3eOV_31qHQg{r!mP1o3>fm(G+7m)xh>+nf)F z8$K^B%~*1;U!lxlG~Z=fz4`N(3|Z!6BNrlgM(rZ2>jx8L0d>iy{+#zb7X}4l&Rsd> z{`b55?c3*mmfR1&sF4(6zud|k&~&&x7RMy*{nD!YIoyH4XWxn$amj!qsoTXiIN^;C zD_mzgwr=%^pTxA#!o!Aj@>UUFx%XYp!$U;E{cp(jSb(XUl=ql*M!-?UJ_?NH z`%HWKERURt2~(-vP!OGvl^Ogx>+bGCQBS_})K#~IL5iWFp`C;Eo-6y5#P|YMU9`Wa zrzd7J0)F@rPqoIi-p{KEgUeGUn|O1|9B$ki@f`CLbDbf6tC`kOcBjaSq@%M_d7eq! z1utOlTL!;PFH7GV4lcgg{?=lOjGsiM+n*rjfCCC4t1dY-3qIQp!VV*}7$;a^!ghn? zWg{-9{|@BEef@ef=XS}d3s+;%f>@n<6&Drj*!xm`XEK^^WjvT{k}O~cS6xG+z`T|8 zX;RYKVpMdrbMqPfy5;SuXV&TRHQt*mE%c7#v64%2&dvfyYss}M_GC;_5xO7sG8Mx~ z%a8WvSK$ZdB&_44w^D2}ta>;xBYxYXFq`7AtV0Zotj?1Ynr$zQX7QyJmUD_w5al#Dlh$`Iyc?1`I52oruFo z8=s`pI0mtkf-oXD3pMvNU8$(o00Eov+9i-D#^UY zS_TG$EwnRT&w@|$Rg*t^_N@HxhmTGx$5&gK zTVZ=dEG*cK&VMqlIvXPp!z6vX*mq;DPYgEqk56~rmGgewdr)ip?JfHFo#}h6L@YdS z6k?&~m5)v`|2fNR6v3TWO=(=^p=-Q7c6=oI_s6H`FKLp|N!!a~%x~Vj$ubx8PCxXQ zh58pvM0M$;U$k)nDVeh@djkz%Xp?`OaL zeEVUM7zS}l-sIDmeDBSBG0d`1hBoTpaq>MDZ(n;ZthPCey@;Nk$E2FJ$hrqsc=bae z>n|@&YyDHC9ta*CE(c77(wNkB^3}%p?QdaM#_P>uY#r8L#mO|l&;~+97$5ZL+Gl=!}R{Cr$)Ssj=3OqRQ?OXF${JGl0T>y3G zV5O1lz$faJ^HfXuL>T=FEYiE*-d-2;+2T3cu05Xk<+H5(>gpqYyTSZ?dtE&}R&v7e z-|bJlR-0*7|GdkX%nWCm%#iio;2>p|iP7M#z`ONMQ+c$~eZr%v@9lN^9D@Rd;>)#T zWEnj)rDP66uxMXRb+rkZw-7_|m~3ay(6M{9oeIxsH(GfHR%_G2?s{Ljvw67@udw}3 zYS`WVo4=m;WH?_-;m2_(qlX$f_w60oXDCPcBAv;618MBn$(5ogYF`S=D`mi>&bn>egn4n(c%8CB^A4-1yu1EuKY;?ELd%zSSq?#G;*-^qLi`GGiQ zW4`MowRXST;&Wg$u){fb%6PdsIVX}CW&Kmd(=DR$ zbRHed%5vxKzmq+TtT5u;nu?PRlb+q)AA%C2)H;-FEZJ;czWzmW*TW<)xdt9MYZeN3 z2PPjj%8yF-`&&QmI2NG$81-H6CdT+c*WWFL(kJUGk+u-d>`!iQ-V{MW95^Xp`$lbH zq~gf~DJCdB5-qgm;iQZS*PrzIXvQ&0wlLoc#wQt!I>S9^o#EHAR5{O!A9y`YLf3ulDFUtV=(;?&nwRI+HHj{rUPP2WolOw9BgBtU|KJ2p+vTm}_ zT}pVaZ|awbW42tqPHG-g5EXSwugt-Ct5x<$yL2=k+c*e4eW?8j`}IXKOx1MK9i>hH z9CzR|p9v}#AAGwZOVW8qFJS`P7#6z7Ei0Qb>ONrn+>Z-N@#fCvfGG(Br@5rZf|e=t~JZU|d(u&76-Q^fIC z*Dv4o>p$LT(0ELQ(i9>*R&qQM&TOEqO|cIxa?sdwv^iDtovPq5?DO?39;4dA!UTXY zkymVb15HZ-RL!jK4xZ6Bs^3}|YV<$c)Zc<#&ku_L!|_@6yG40cR*?I`VEm}Zu>FDH z6}lg;ngM%%*pE&J3X|k3SojZ09PJI% zW_d3E3fnULsCT(<%*a3I>sn!IwDAgI5qoD}*d4=%2)t?>hd8S&p=oa=iPzI2F_nb9y@Y99?B zy?$}MoD0voCtcau+1X$z_c1I8^MPDrY^R2X#>Do1qX~0tBDa24bv1+Mh_lL|>->*T zjR_YuRg`~_#I zcq@7CuxfYJspU94t8Zk;q+Gdw)_-@J=KK3w1Teu3P{N&H{@41cpi4)w^PkR{@KkV{zP>q`KN5$u8n7jE7f zi-n!l*3r@M_`G7n&sZkubEf{g7Xe+Z_Ng#G6bOS_HU+ynLb2ylR@5V$h}k?ax(F*SxS>Je_sq;%9JD?R27xI`6>;8* z-;}9R4=7vXm}xH0;u~-!PTnrGAVQrJJ}X?hHIl{Chyg06Qjt}+8{@2HvT>LkOWiDh z=sxAPwzkLiogZB8hXzmVZ7oJK`|sfFZ!fn(vvh*JXp)^*y{6uMs4-MzO$N`$ZafZ@`z0^lva6!j8X;wgqtZep#zK4O7o}QsK#S$O~R$lZF9N=BI5+ z6?a_$fM7nDkButC!5}mb!@SydAr1g%`1SP1Hq>X%{P8BH<(G54Q{}PPaAm*<%Go)y z#xRn$?(Rf;eJ!oP8lUaSg`uLXX#nvjF~T;zbt}#}CN<{(IZ;ZNKeUGFNw9K%MDI|J zLmGbJ+FmlBX)N5Ek>{v8cHVC6Gb8E@0H^5mR&fX!*#q;5m|$ItE{xTh4mdmfEGE)? zM|J&$$Vp83sKba;BgxKkz%lo8-w=T?n2L$4XkG;qlXM$;(r{cTODZ4rK9LjS7dTBQ zxXty}KP8rh9*muR_EF7uz}OQD&DZ8f4jsmP)(v(r2PY@d3*q0;8m?MdUHVyU+sOBA zU*^datlk~y+>Mram=k6;57>w1I)JO!#>K@`AtkW2~QSg?JpTN{1(gkRS z0!Fdrwc3-%$;sicoVuQ0IsNHQ+1bQm$p>p}P$G$6N@VRoLmv-1&07aZqwd|UwnVxq zivsB3SyR41ln|%kF|MR88}paMyo3RxmGt0wd;JA|a%ZRpUkx>^;8p~WYL7Pa3ISYR zb8uOv!<7Gd`(g#k%+ylVa!Z`-QG{li!~~S*6d`L;KzQuW<)(WAj)V$}ikycmlQSJg zD^ZtNMYW<^bgb$4aO`+>mK2ljyQb#5*3MoI4UXS$&keY;`RZiz4*YH~Y;TS4;XX?h z1kyfRN&pR3;hCo@X44zt^V%|Qoky(I9zr?NQervBOC|qJ_|LF*NSH)5eD_wzw|=iADY$AF{p=4+zeZ_ zv)Y7@n}fp)$jcdB?_OMt2q3^d!8i3PE>!p&Brl&hJP~L)C+g4z%hxtLAij=7@0PbJ zf%)Nj#<9hKiO=QEo*wHzfBxhsN1wG@``wPk-7H^c*+w-xS4NGX*SYhJ-`f769W1>Z zxSy{1&BC*nZ|BdZ`)GO$&wfcWM{T%+J5Oh^5g6eh5D4IJ-3Gwi(Op3qJx$M1>h|X* zYX9-m)6)WF!`%R0+r2mD>P>(<3@tAGs(Gs`a^1W9m*&0_3})l zXI8xsXrsS!@99FFbjx?{=b|pr@_h@(4pu)wnx=MjOge0?#Uw)2-oG@Ev*-e7vhNlM7 zDwPg0t3>7J@D_QsQOeev(qOeb4>xJCwNUPyQoxf{uy4B!OZT z0z1_I-feL}D5P<%!2npBa?RDgKrJ0#-yL@n%SSxX6`&=PL&fx2;rl;`Va8DZgJ0nN zpwfxT;Y%o(*}5Oke*OBjx7ha90dU+OsfJEdEssDcfj?+dT-o=T>7tW@)mXmu^FHd1 zbrVizdmDcW?K6Cq#N8Huo_X-#!OE_$4YboR68g7d^_{>h0s%n1eEAXsA`nbe>r44y zC429!h4yXzrSqv5mm0}rn}7|+BJ|G`r{ey$6j=6MfS%|oNW3qDrEzqD5i~0WPjwq@0 zHJPA#7R2EImc$k&7PQF(_)5<}rDDYan z+YeNIOBr$I7cZhgIAB5)52$@CP?m8}MrMYWhKl}G52)V)u+yQ*U_jt$e3#+R^>YT% zTM)|n3ZWKGRLNS<>C=4$<|;eBGElJd$icd>>g!GM15mRCHCefs}UGloQf0TA8M z0|WvW8;6zoe1H7yx_eb)0K@)3?NKNQo^;VPd|{o_Uq>C6-uV}`ZQ24@9R%HUsrJ|( zRz%~l5kN8^Evvv1)ryTA>Ez;CaWQS}?G%^u42v#dLf*&{Vq>r{3^qTDIdd!ja^cp1 zPZDvNtr0IX7&b22;Q%bNreX0mmf8>VyZlx)Nrlq-2(Z8_l{h8?Sb_lcqd^79EH3`O z;tzP_e@Vp%TFoEx+h#->G|T}OYQEROYU^shzUf31cdi_$$bpZ$syBb!*?|qSv*whT zm`E$*D@JSXHT6hTIFz59aL${b(cGQxzbh6Mdq?}rt594bZnC{Tlma0L@s9oFTIS2Q zi|ek7j~ z25|b>+}b1W*KgjOhcg8*&@SelmK40F5W-kb6zz*f6P))jn2KVj3 z_x=dV+Z<~;);36$4K+O=Mk!;HA}$z)^J78`G$mvIN?e;K*e|@C0{VYzFOFY zJ`%a-0%Af@hW{RC&M2rohEUXoKwPIaj{($n-Sc?}d5tZlOh(-DEszoip-(CGj6Il5 zBgS-o`C~I(L7hT%fbF(_HrWplGs`*?aChZ1&Mg-4e2Uwv;gfTVN;@ z0b+~%G6t+i_?yVl#yeSokd zWhr>njQQ_B+Vz!Dd{7VY;(KB^z#r@tR3x6j2Nr-hdxU=s8%_vg2Zb7I57KW3?C2KI zkzK_Y779Cgzn!r?b0YA13cq}DOmx$iXF@8)zOXJpcmge)&O8(6CZJ<$8Y3qh0MfIA z(2ED5+!$c7nOU!4kqKZBb_7bR>?sSfx|?)Jyq!2`Ev=OviyZ*zn`Mu-%4%1&r-5FF zf4XI8*bZ&J5mquh!GPQLE>zF1MUNt%<(g#EAD}FXShSJ%9aYTz1#Rjb=ej}{@k^x9UFEedy}6+zlhBy)6OAPEYPlKcNCUAg*!{t5yK(jsyEZ?oMH0A-_f2 zQzu((Rcefdu z1rkP_hV9G#{3Srl76YEhU~PbGt=;mk8dSM{0qV-%LTv75nPVKt1Al&nYnMMvYLI~~ zp;;hpe$AO>1g#*D$77&b^_p=Ia43kuI&BO@SVY68;6aqe{)xCQwhAQ88M zw24%Dc&M>nnV2=O_wIrxGWV-SvNp$Y>@!FibpW(jy)S=0+Plvn>(2nAL^AvZ`r|4{ z4^wYnI3#?^v(9zwK+kiQ>_;)JRA%_zq5<8pyW5hJR?=k$ff-v2M^EhjP+gLIly(8 zaTxh};Py_?U|zwvIZ31q*7%5~`)wJ1&o!nelUl*lrW<|VgK|wk{+xxCk1x(t1~mMx z6am}}zb!h{*!YfrKe?d=TL4@S452PP^aD=}2GE=|@`b@k1+YDZsPFnrcYJz!EG#B- zFxgPI2JE=A2py0L%*i@LpAmkEC_d{PHy!ik4+7|;a6Co7I%cy{;% z5c0sR9NGaH3dm)@mV(%KCdipyph))RV-=y75(FI1n`(muP0TDKWjCym#Djww>cPiU zgH-4Rq^cJXCKAxz-N^*2z|N}4t^sim9Os<@Aa4yWlh0nslSdLJlMVfU z&~V+HjhA?=ZFE*V!jX!w2@L@mpth?RMvPU7WuTZY^oLRAk(N$-#2|jNxCXS=9~G|F zKVGX*d4R5~cvwpL2FL9Yy{KN!ZRCV}9)(dDvM(EL;jNrwO^T1N2g-jRz+TmSZk5GH zO;zo4a;=w>_1d)N2Y|!UnrFKDv@&|;>wUUi0Ig}pqskEJ`{)8&OQYPwaUjozme>y` zf%2_a^M-)#8NdZndS=a``CFpV zU)Y^m`-=p=WcL+?x5rzvadQiLUeqOAY)k>HhLvD#q9B&6&|m?^ zW?A@(khR4Z`a7zTM<7FtCus0SdU`_i=cdi;6TrE#8c_H`plinyQsGhPa={2To|xl+e} z{SpL5Vt6J6Z|_PQbra72ny)CJo`F(M3-OERBKA?BDYLM%6Ch&>O7cr_t(DSY2M9|% zPAl97Ilg@Rmyb3?9ssEq+w`62ky4QpLFgOdOXfh8 zsJyqA9sy!y0Tc>Qq0zNRn*HYhY}N@UF=}Rz0n;Y8M8Q=q+XpJ#n2s8=^SA4wnUH%x z{03IlD*Quu$^EadBNsj|gJq*#1@O+OAfusO4KohPl_Fx0$;kv6J>dw(f_w_~H}9|b zFc36f8D<7j0w`QeTL)lO2cd$^$43Sh?%a=0^r%7Rdw>x3-CYK@M6UM{w4BTLdT3Fd zbwUywT(IrSm#gnI)7-8LXp$@al^1VRYT)-+FvtP-77U}xg|0iz&CQ5e>}@Z{Asmqz z{$9n_mJ?LEUAn#le_5HM9rF=*Y{YfW@|o~d{Ze7}3xSrzDk&+sP$9<>2<5{3_~`JT zjFzQ*8r(Qi&?5K&8LCKakGT2{1KF4WywwQVfpF*xQvg(vjs|!l3NRftLWlQ`VH6`| z{PxD7Z8st3111!-IGH;1OUs}4Nl(-8;$ff&$7KW=v_Y9(1rBTuafiZTS?~#wdJ1L# zKT1OeXypM1Q_M&Lc%zZb3gi%|Ad>#Hb#$mjLfxUMAnFh5+xFhA8`7aBHQtd)u+#K5 zwjFB^!vKL~A%fc7-Hbd1P{yY~WdP_WY4NU?6hD|&$ch-)fkoVVFh0OSyP}yP^9cFV zfR1*C$Bx2azmo#6rtTgjz`#~){-FC&sT0IB&b@s|TRc8&5O5d~^W7fx#P*E-zXmEG z`D3&b$qMvvDufvi8v$xQM1u@KjIhiwEw-V+tvgzc3ur304tWZdL=dDpXu1vQNJ05% zS}Ox!N(KRX&}lQ~b|F|43?|>_{al+}u&1qO+$4q&?eZUjoKiz+04Pn!_wxYZ_x_ga z&dNmB?0Nx!>Zl~--T>dY<9Z0mio%!}Vm%`xp8W#|YZ$<241pugCHZ6&3AX}qt&ISO zy7;(xd96U2vYYG8%qn%6RVS?&B7Bq&wipW`*Ie3_pQ79G?J0vZ#q^T6hv`*rmv#_NNz!-M6{ z7ji%E-2*xL!i5XCAmNbh5ADD|ArTk|Lo5srLSwl2#DtQ1OV%qe?6^Pz2vMdB6r%gN z75D({KV_OnpGDXk0J9OV{-7)P-&Y}u;{^S!BX=MC2yh=1HzZET!IsiCG>imWXQlJ+ z_xDt#{$MO1+6o}{-qyFN)w=mjR%vPD;%X>1su~)%jJF|Z&^XimLcncKYlv_g)Oo(@ zgSAcrka89tU;^Pv;~zfeDgYAOwFG896nug zb1A%^cka5)|9E5yEy@`XEEd5)09QPJX1~7CsHbgY^c*>V`!o0?D1in{xWqyh^jKN8 zMkNJgC5SPQf}5aI>3(%=3& zeJ&Y21ehK8F`fOJfTN(mo&)gLx3CTP`DE=_9B?8UAlO2vUVx-ef}R^{Ty|w{LJUqF zxVHjOnn!>q&V7IXWMOZ%C!-ZeQ#d$9q0-PMBvWMrm>@_}W3vmc!{fxnlb}IEK{fwX z{U9oD8@A=RM->_XR7XL{)RIavTguwAyimD;WWN7(fDEi0wHUAq^Z_(mae{6Dr8B?$*s^-YLSCMj2ZsN zemHJ@o$p?jOc03knASikQC=a1*GsmDmm4+}efUL=kXnq$CTp&;kLtZScGa z`dt$yADoxaPsf1S!rz>Ogi<=#Ay4gpRX>AFRT2raOezkc2Gu`E2hE`sERsghfEtj# z0+Z7W)ehXzG`j#l8HfoYCHF)j#)}}$<#Dj%3|cR6lPA}otawQwt%Uf_G1zsW zI{~Bm!sqilUS$xLM;nUQ6+$XC0_j>6qYfU^iTZ_R{2asjEwuZ<5iEK}fd$cGlG4(; z&k5Vq>4BRCphL(5a1V?r6s4>!^OhJa80=5qDj;|PaE$>r1s87JuLrY?Ee0IS1^<(} z6E=PS@5%p~Cy`_G0D%eWNz_`BsNG=Qb_wVp8(wpn;SlBTQT{-1wJy}P*Wp9Nx)6uDg*AZ(6C#gqM`0{!R!>Jrl#h*o)7Kp_5)wZebWa9 zItO~ZU0oo~0`u_>!Tzl5aXU&9qALT8q#oD@`VV@Q^_SHA+0Q5w=u$BV{>+Z$JwYiD z7xL|$1amfg|Q2Y8`uviHsYR|(_cnG zB5eb=Y4Dklwa)g9|7)J$caSGotyBZ36$Jm!z7GtB0WKB7j3H$Y^<0pX20{8EfdJ48 zer%A<5TFeUOH~OkTPU~B`vyQ0;BTR=0+TW2+aC)Eb6{bknVb4;o`Gq&i)1DU-)W76 z7vF&OcuP7RPzt|*zITcx6n0j%eb50>UK7e77BK20GYN=AetR3}FO(#u&}HcF_kTDO z5PNSRw>yc)5MrUQ9y^v?!3YDzNZj@9lD`Q=L>7RTU?0lK6$4jcw$^<21h$Q5;XDY0 zpc^p_;rK!k#saIOV4PJXlZO2VSSU8}=~Mm|g=O>b#`>e><0C#hdcNwF6S#FK;?#dc zbM`DKl+84z-=*|;B|4NpCW68Le`{9A26bQjsq1!aM6Lo5UIA!f>-OvG>q96LQrhYF za0lS2?sfodMgTtG;}!M*DosEcrbZIc5b4&mTNU+jsD#jAwm^V?zmx%ClVJ6a6htZz zT17Tk^;!qFn8yMw?E5GPe?nNBEeAz(1iUwFkR$~onj&I<4&ioS=+XF>l}|g|n}#qO z6R0AI_Kk@xw<}yOI@BI|NNs+Xq z8Mj81X^cZ4(T*ZUDAfuj+JYb$Y-f7V^sxI$4If<0(li$*n2qj)H)j5frMIbsoAw`q z1_s+smPJ%lG{-N`qz36T1IM3#Cul%lBjj6t8}e142C%`({$XLoPvpq{suquhWaw6E zysI*~(mhnS*gy?$hHyg&gm=e5n{Ub1eg#?l%)!sVqUMIn_@He$RIgrL7_Ab$BshW; zA<#jPR|6$QcUXdf)c-MUE8<3=#uI@VRg`lB^qi~O+VQ!ip!L1oDzN=_2{XR$2Qj(T z&JbdH5n==~q4QnziAjwRYT! zJwJ2rlqdvG?b3jHfL?nB!WlUWBGa+1fK5=$4|zneY1camz_11}3;9_#AW8-HhFn0_ zG(IT<$DKa;pEQ^#(_%5GXQ3#R$|&L1o0G8mUo|&7P!>5Lv{wTChB4iL&$b#w#;p1% zAmk0;`u;PHfEW>wpBpR%t;-0u;`8PAfWESszJY+HrKLr#XCGn?>6jGAa(zBn(?F*O z#*+hJp8`AnekDHvC9ELCtNPypG3`<9kgR+RkbG&h>J^YPF);98oI*kTHuC=SM&OS% zK;iU&qX#JJTYG#Y>F{~i3gyJW;cP)Vf4{lSmk~sf|D14B&B*-HFaez!c(Re$UQckd>9SJA~K+lG&gl zQ(q2%HtN)VG5ICBL5Mh@eG0wr6tmw(d^YjV>Idup!Z650uJu1`uri=J)epKt!QJLl zi25DSWP*{0V!O=%H&L>U6=((0=m5coBenqLlWcw+2C^6AF}N+2tyI;xlZ1(lxC*AR z<))`G;|~d#>dt-(|==M$jD&JLfUp?L)gT{$>{C>Hkm-8;nd4a%L) zqZ16KJinWseyr;SNvv<*76itB)c3q%81mkbooC{^s_YAv17c2NOQy$rG>}_r?=dsb z(+j&Hvx|qoHu6Cs62@Yeftm)$UeN%wx%4hPfM?6U*UyEf0DhJY;76e6uLlIozAHF0 zU(&d}kI~T+ZoM4-!_$QF}10q0*K7S21 zA(#Kc-wH!)2$Ny}3?Zd;3Jc}j8U~4~MAH2)H9cgVKEmyHwzZk*8#$ju25>XzrdZoA z`H8+O^#lvg@8@EHMp!zOy+AD)%4ZB@IbADVViPYVl*6GDLkJC}49r_1A`Gj)Fz*gX zlRE1Kp|D!rub(Jq2xDt801& z?Ti08`Xih(3J+xneGbO^>C7r6UVOC}?GtJfHY5d7v&hOaqf;%AD4ZNU6T~t}*v=2q zV7v>IUK&WOH-ad`r*3@yKOyFuXFt*X05bhZiXHtnTlmt3Qpe<~mku*P(@0MmBx43e z2>mA^hUh+!vFTA67~C>oF>rdVxUBHb87vQK@G7n6QBxk zaB#eQ*dDUTLKn-5c${oA7rMr432^62eD$seMNlV9a3laR!-#p$T>+_}sX{b_>*1+G z`_c5BCE43;jLD39mMU4ROe}=bHh!1v_kQtkiid~M#EvgV<6+rV!(I_4p92c_aADz` z^AgElbA>(zcZzBZZbV6T;y)PuB=4Q`+5_jCYVXq*yVv*1vg2x;WoxN*Jz^pg?Y|OffewpCS3w$+d(BPvI$l2B0${~?aab;aw&%|!G z6krl!VU%}K<;PJC0v$&=K`sK$d~|d~3(Qr9u9SbfJnW!6F7+d)ip;+@13nbO>J0A* z*>@g2gxiauR!xSVnbQht6ksXeoO5~9^%Hc$;#BiO8$Rtdwg8w2*g?HaK z{Yo4vB|FuxbNup3aF&*JSGAZrLZ`yEuXqp-OU41u#R^mPn?)N>Ot)!(P}oug?uSAJ zzSne-!X;46|Ir00Yql0VEa@kmNW5s$eLn~OJokZvQv`p=v`K2{BbpkPPF!2Ne;IxT zME0j}NS6|~iZtZH?jy$ke2W?ec|k)MFXgwW__zr{!rdUPOYJu=60+U~^Kh$PefLf3 z*!RHKDJ(aGUbYgwYqcHSN^u`%rDTS?{cON^_@;X7dkFmV@66|5Rui@JQ}`?-9m$DC z{eB4FB@E(+ZA>A#@DyMEMCynZFPprMVjnh0E7T$-LdN5H@R^8$u8g>^phztmWi$r$dhj={}Fo5GSC{>8hR?vJua}-vXT#AVi079APL&T z2MWtJ(tIGU2?~T607>lp=E4va($r{0>{7C?Ke=?h;inYXv~Ty-=Ym-qLpGa)C{tNz zwzA0`&-ecfkTRi3rkDe((^f?U)dts3b+_g z^k$I8$8eIrPYQa>)oLqxcXvpww8ut}X&TQ`M*Ge0}ef8}mA+&`QvjHR5M}H2X z&7Fc?Wb^GU36s}24iwf)Io)u6;}M8%uRyO$fo~l6?-480M-fxaM7pzy(K&qJ^q=Ze zS~_5BoM&>J^dq(9vfqz4%To;PIXNSgG0S~1u($NzaXA^tyIsqWka3`L)6UZhh=%;*hBNalmJha4!a(ThA5-k%G(&SFB@0DA zLl_r>xGhEwQo69TRv|Eh?f;;Q&S8N66b^<5%1|Mfxzcl)6f;=q&W!?(ANBblg#I!+ zn-J|BU~PRsjA)shLF`FYPoZm~?6%4O^&;CylG`!WjY^YrqdJ4qxbm(x?qHksXF)S# zP0=^k$+_@GH0$h*adPB(f8M=~Kpe_?9d}=UTTjxq?p?Ek4%dQyjPjiz0w@7C zQ@F6ci)7cyNcMEO2M@#{9~}c*Z=#-nxwtq_NsP3GHrkUtArT^*=q7i{Jmb@hFZ>!6 z@FQHj?Xo<*%@vjd_0%4%wy zF89c;Iy)Cw#pZg|^!gPKoBnz@oQyRLI59n&?|#%Bwy(&>PEDtIGUjT?g)-{ox2gI_k%QPKK$3T3vGq?*GEtJ)w9&|sNZaV4#S+DE=xG6>sc?o?50D;;36({ zaLm}?M|6ubVVZ#oFJ9*{F}u)J2dO^w=!iFXPcXwzY-W8wF0%Lco^Mbfn!z*RsQnt@ z^f*%X8*liX?@3R_)zAK(PPsE<##8Jl6n{60l{p-HIH6^jWgc}LB=O0sGFB2v4(#WufJTc`J>{1R*Y#N+iiCB+% z^jh;VIk?4^s$owe4Q2`EBk}KW)>}D7^mPPlo>A3WeDozEKb4R^(JXW0)NloZgLX$q zD)pTN3DoaSwoxX88mNSPibcQFm(IyIbe>bqj+GkwNr&iDy}JTuQg9sQ=}=m&Wb~wX z6w2@^4-IAr@1)V&CE}_0Bvo64{TAhnr^0?JCj8@aUj5CFa$zFzkl?=<-qvyj!w8&d z-@BBPPcMzT8cGE6w&e_;jo*P0mng`grTA#$#KV4)B7uwb+S-e19Y5ZutPPo#6RbJZ zBzhmO=-eZw9ukd7B4jVb!)^Byy0m-U#Ld_0_u9jL zCkdkii3T@XbJ2yi4#T zrj6KR>Vq=gPHkF3Mq(%@`PaF;74ZU0mGYvp0*^9hcuEL#+UWCino4&sHmt_rs}!A3 z5>)4J&y$YaaF67F_sd4dKw{@&)0FN?p`nBqDsJNBrYmb6713JYXmf>r^>`CJ+cca_ zzSyaA#82d`KH+x9$H&Y$ws-V{wV)uh+0thlbE&Bv>6qeH;RRsW;@>I#ii1o zw$$Uw;SGO5WASIBLtYPu>;v~L)p-)`c0Lt%Z>625U!wj{-b1Seivxoh#CY=pYnq&* zxeKOK4WFp=y_wdXdojThk!$qzH|kE0$=R@9>}CDgfH zcA0hcJYA{KRjZ^T^^oovf_XYN6-ow8uG9JPI$^5!Zna8SHr%^5Gc=!OVrX#UavPV{ zAHs&IYr%~#a4=37xi@4yTD-NdIxq~HqOw(~ZzGS`ND?Kx%yRuF6}dW%|T67gX!>&$81$KbeVohY03u9M9+GPh5O|l z)=1AcY!LSA5MB5;Z{!JB$-D7{uA*wq8H|ZagB`_$31$Lp^&PZlQgl?~dg;#SsmDEL zm8DQQd7P(n6_>Pb(GA!3S^sWh;KHmH@2MP}pz9<f1cFkQ@LvIvF!0uz&B+fpH za1!o#Ylx%9Pr(_P#G5&_-t0GVvWb=F5#i}umtJd6uD!&S(ch%8N^ZOmMd_3F2e#Xa z_t%LHtF^D4e(hGIDjYQmDx`03{<%`}yoo|y8)nW;PSDPim3$&wImGD?~<&-77wYh-gqyyaJay25&m@|qHE zl}dOCe%6OBVfKT7H?L>-wml#8K8#Xl$Gnu9Q?jj#Tzgq`uL75eT~RraAsIfG{aL#D zjuEkp{>6LcJuKg-LVB9VUA)Gf_moCIeSfyieL1g%F_=U5LV^wvC-uckgbFZrRc5b~ z@(nkl_y;sK?!Ag|5P*<^=&Z4V~^B@;m3hdb3j$aIog6gxokz50eYUedm9p zafp)7=#9KrN3auX1SarQ#%b&OUe3ASgGX*#iY3#@eOfq$A(rDsWqkBD%g~CbIQpoYp(S;rZ-?RSp3ifZo3sfNUgRe!e$>c{Q|M6+ z+eA8LsX4Kpb`suC|GQSlSoKr``dOW^{=oBtLE~|$*G+r z&vs(fng|?Q4yqkFdE){3lH5hUhF@!#1KqMy@K?Hv{!c3uDeh+Q86*l)d{CNjmiX}Z zZ1@&Yh=0@k9~S4?zi?goG@0i8u&?S7T@&g7ORi(+ti^iTUjnXLkdn<~OUu zK>83Dh!skgO>9T=F+~tql`B~eeK=X-ih5w z8*yiU-theIG8}3Um}G5)HL?2`c`qtpoJwEvNt>~o|Sy`+gawD}Dy{Tqw28OB? zy)y$|p#iTLp+Rq%Kt_{U{vNCM{HLi&3IN+}Vj1IUUt^Z&%FJL-Zs3jlHZ=lyCp>PZa0|K)gD2}V()J}nqt_1JN0Ut65WjBCX zlVHri21V8iyjbR6cn!iSd}vI-L`H51CJ-W=Cy`_c@waHO+|k+ZeU}$&It?nLv$ELL7!EuJ&M>&xy7|m4FMAeSl|U=^c{l^t_!y zbNXOhseE?KuT&v31k!ue#Rjs8isO&yjXRf@Yz zbm?%c4AygNCr>LFz)oOl8bLDbKoByE@FI_Ku=MaSa3l^F%&068@Vab}0wF|D>+2u0*E$ z)L;DyOGZ|9{z#zs6^f+!xE0f2KkX2uL5WF59Fd^>JiYB3jIuN#CcPq`OpBAg#QD2X|BabVf?Rl~eO?-Vgn{y;O|>GEkuM$4eXm0^l5n|IWV zXPJsvy<0?-f|Yi1DDWsK1QI78PA~=bNeiUCAyx04m@Apec`KaC?*uAn9<6xs*sQldUZRt{`k(N9o4;)tX=(- zGNz4<8c-eH7|QJUIeh+r=Si6PGjD>z6dRxrFkjoxF+=h(lU?Nn3!%cpl=c;HZ=E4> zjfDlOs&P6aEkg0Re;w_&Yif^6tuB-V8vZ%;e}hy-e0I>*yZhTouUVE^0_Av~-OZFVk8{h_Ruw%_jTC86=k zOVpF=&rG!4c6>?VID)#g&r% zKWv;JmuB+c!G80*xIrOA_p8910KN0UZE1uK-XQ~jUWhujK>C!RZ1@wc`yo1)HVfhf zyn6z@TBBbCoIAqdV~E-)+rQpN#Tt(C=nNy#2Gj6rfB_D|f^Cu&&WfL<{9Kiwi;iM~ z@SCvk{!_xi>8r`=CwNrY6mmR%-E}wV&w2uC!S8RZ7PLM3h6RtCUT{)=#C5Hfoa+Wc?snMz{S($a2FBpM1u(MV#Rrqj#+7dM5G5)An;gA52PtHriq*!BEhA%UHC*-p z2ZL-ih?Hr+fGc4kx$64@)?a3MIV~7CQ^V+xJ_j%F*%I{D1{8BC13OC^;=&T1OI>A< zX^hSu`3XA~6_xgJ18%8%Q*0jLA(UTBL>UM z-+ybE^XDWHa+lo7Wjdd9my}nxfiERAiRyNqC}AGohEt^?D}$3Hg_ET7=P-iV`(ETu zlFFo0Gne&Xv;BA`;o(2J6y6NZrXAjY5!VIQPWV`v3VNO~?cLHr?%fXNF3{^``K3V8nj zH;gi(NPfhR^eqgD?L?4 zyuNUPm{!(b3ba7$;*Z?7OdFqLOlwlV4Oo%qfrxaX@%$9JW467+LzWT+aG3qVLJ7|yGFiTn%Klq>k3y6&HusLdqy?2#nHZ@2%(yUUL~Pd zDN08nB%vcU1Oz1!kPgyR4k9Ii5CQ33q=ha90Rcsk07|m}QWW%nf`I5bieN8q?Q`!N zp7w0>EI5NoeO?2?dKf5)j=Pi5o;J=i{dYpas z#y37?wc4JE-UkDUJ-gan69zd#K16f_FzbI7a$s{ngWVadp5Y>OcZhrf{GN-;9H?9L zHo=R)-c>g!C(QdlJuI3Xg(W2!kd+2Jlm;l3z#9f_q^&<9K~NrIhs_y6NJQYut9yQ5 zR|Rh@$lQfnV6?8ul4;pX-qhC@Tywwt7AXg>%nh@uZ9N8RLn$}mlf|Cy6A#4LbK*pE z?qkX)Pm{`w-hK99@GS5l8M+c;Z?492hUoWDX&xS?0oy_kWLLLOkN!xdn?~+0yyi<0 zC-!KE%r$|~56uMb1%r?ct_NYd!0q_^4=^`a16B)UgE->jh~qtu&u|xR`$XM?w`9P> z{yCm|j={QupM7+}!L$9GlNO46=Bd|j)d1#a7`u+0qU+QCuS0zNqw50A716{0o*i$r zh@Lb?z8M*L-y(|7=&2i7x8l`TYMS`4Cga>2zaWQtSp;P->W2P_aV3*EV7b6%3KA46 z5H<~*bOaPce_ivsF8?>71(u>~`V*WFKD;hp+kD=m30nb^U!`GJC7oHlCM}|G+(SC+ z&@qxSMs{KA*c|;0w=nV4#$9DhLb?C2|H~FBc^>nUX+`_~S}BRe z$Qq_R3J4yZv5Ms;BSQA6nMmb&a==VL@R$#V8CPk~#0+<0(stoT^fkp!T*5EvPUpf^ z>s(YQSKT=*u3xIy47Fq3-x$w^Z)fq#)H)LCMv?yDj4eF+y=^(B79Q(Lj`H*}FSuBY zke4Y{)k=D_?oxiYT7e?y1+%2Hz$SkeW(nd^kSzjoS26a%fJZF{+$XERlYtQXe^<{J z<>MGu`mzGc1p>F9?ZSocu$k7>2q`{iT&?5C5mnT*ykk>$gvF0T>g-pBJD7G4pB(Fu zm8$Ln?ozX=H#`bog*DstkrRJ}m>OetdZprMF|v*}R`aB>8=Gg^yIjMH!s}#|(<@5{AI1Jd%7RIrBJlR>Sst=(~edsDj z>kbBY>A@+XYO@2PlhNK!Qg2u`&qsT^n2X36l?fw`&1&J)*sya_k3MGvEWYNBxl=n9 zeX|!OubTdNG;a%>&I3O5x0d$H${Wk+^vOp4{sa3u$l+meQqB>6TRvZKNu>Poal3Jo zwWo3!;MB6m*TS9`cwv)yw@db=v{Xs_^vOiws2AoF(HH4!RLrp9{cgB`YhTL}fhyvu zBGU7B3u8$$`Jq;c|Gg@>fF4TBumZDs2HSaq+slHzEwqDe7fme`Az!c2Bo>hhu^|xc zLZ)DqM8Q{g(9W|PZP#rD`J$6p8Wz|vGoEc8foYAajk{IgXv$olNsVP|pn_ILdbHHU zDak*;+g7iy2HR3?FYOY4>|$M#G?;5T+h&|f4N%drcJ=P}e#4EO;H(Y(Cfpmq9Zo&Z zzTvv+kp*AskD~64*|Aa&<|b~#9j+ES*P(km;>xRjR@a|tm$B{50H!xa8{e(IFJNdy&bQX9pDqSCU=nlIV z>T!OW&5xWn_)&E(+P5#Ybx!O}fY*ByvP@4)aU1WXr_+tq4te9!H=HxtG2YCl@X4S$ zMU-$y_tiiTl37ZwZ8-QKwzy)MsRkQ(>DI_+jFzg6(#W`7dz;PX*LKNog4^XD)-AWF z;=gTY6qjFxl+&<+W0$((+=N1Kq?V$JmvMZ`-{!K#-SJ?Iu9XsCOpwf-m|)t#dnMFL zFT)*X6{p@Ew{6FhI&$RIUp>zgRpp&Vk-1ReyOV9zsL$^z-{&w|+5D5MXM7}vm{xJ%3lynH)!`}2g=>0TUYSv3vl8$50&$alO4s;x zY48QinXLO^&ATVu)Gi0D8OQ{PW$;dMys2l)Ca!s@N2FG2JNxiq?WoMhe5Wfv8MnDB znLlzlv^WMc-74kkKPUi()zi?8hD~TRu|P@Xn6I7_E>Wy?@@r3iFGQr%m87T0hb*ui zMHPr^N#r|f#a+7^i&Xu(@V3MG;TAq4?LJQrpFW@n){e3K^7$KZ&fi4&ip^K4 zqGatU+@-9MdlL(u+ZQNq)P6OV+o8qaM5=6zI*Q2Ne@>)|v%eLA9dJIA$jvJuW_W2g zY3m!t3Wu~eP;?Vz2tI)I%QPMO<8)Xg;(la>5f?|L?EF=B~9O9Ev&}`68ee`p2Z}8=H~7 z$vyqz(Ahof_;O2X&&>m<*Y+#0m6o3H(vy7Pvq? z+gFTFaZ|nYeowwbaZPGm3+=I3B59vff-St(>}*w*nucImt7?1S$=m)3L|vMC8*QwZ zS@^4tEFL+iG&-Tw3=b>DUW&W0bZ8BnA`l|uu-2z< ziPch`M+t5w3t_IHog*(;Y$2x^{6Bmh;~7EyNtA1DA@&$8Ib(_UNvqAr?xBmmRfb8BF&I^#%nqB{Es79_k(xNMIPit z=Hk+yC|2%!Y}ZP- z^x9T>T~Nf88er^9Z+JSU70aWtK!1BID{=LETYR>?kp#1{!i8F_WZZn?Sn2P|^6-e$ zW~i-W6^Zl*$Hojr$a@-y2~0S5PZC)(ug$DoTwR<{v_7Lq&G)~m_Q2RwU8F>?;nLda zqyowXmsak41+e!bMw?ml`odg=VPjd*zO#z$18Nhv>GMdUh(FrbjLR+DfpWnhcm4O& zJBKFtBytO8a_uSHqA(g)7$*^Zf~CpKGHz(jV$GzOkUbX1R{B4@MRN4X&RuVrS-I6W zC#RyWLT^Zk$#|U-?m==AjVE4qx$V7#IaW3)S6u1jynkld;xJN}2fJT;ccSZs?VFI6 zhw_yi$dY8@(AYRjHO5XJ~@Ta+-C&bk$9+x(=LQ!f3S9=KG&8c(xgwyhSu) zSKASpYw{SA4&y9Vap3gR&#G6>=N1M;nyB8DS9KQ+CaWI~xkZ%@?V9BKBX(56@1t0w zeQ=5QY^9DBR@QI%1Z)HIoVvhqPWz{JC0)Ard}T5bjE@mqe1u&(nRo zz3k}mxJ zt6V-vvwpYTI@v3 zkPoK4N627HC=~9lvZnIfh4GW$Rb=(U`h+XFt5~@qeG`^GO;$+YdP{w>VyYJ@<6(q> z?*otFlsb4Dp5|%aQqJzcv{PROv#L3wXPU2P#qrI4W4D+K_;o8;u2)r*2YDZpF~GD- z^k1-PYpAF~wDpK#B&Iz@e6PD7&zsXV)9#}D!;(km65qofrDGeX4m^wFmTy~Ld z2*i6VcGx~nCmxc7OOPv$9R57AEqh#noj5CreZ2Jp)uK8R-dI&}=;Wf{3`cw-mE=S% zo>4U3%6StvW$)_06@#J_Ld&BLEDwIB0L%Y;8C+)IoJvw6wLF-$Ok2`9dQ2tJ!}#UK zG5Y=f?n-#&P&k9?y9d9&wtX)lF4YxH6FnhsiE`OoUj@G+Zpw4IzqZgq4_kPv8`c((NWl~yDlVc zHqn;#(wBTE{iLFt`RSX>6%}w9tH``7bDO!sTpvX!_e$#Q5G}&v(d|zVWLE}`yDOMO zdJCCgtNx@_MsTxqB?V`@oMxN<{8-_*OVC66cL}HFr96*uBMoopAnqiQ71f0D3XeC6 ziV=r5JwC>yZ|?eMA-JXsDYq~DWBl&`HFdwW*+-9YbwPpj3%-=heboE7g$&q~zXh-FJX^p2;7(>7A^p7?JE%7- zUX0IVmk>CITePJbiHk(ws_N>#JeR)q*!IRFUmFA;fs;fms4+T>t*xq%z7isrUAc}Aj)2u;mliF-os>X!xI8@IZRGJniTf7QX(rBL} z0^KmbxijCFqTKIU;o9;2{QG8Bg=OXVH_u7+lE0i|gKnLB3Z$bAwN5A7SiJ`C@*t7X zB00zun!AtVC~RGzqczx*FWm)3HFAB?&+bH!4~x#=*f^37zt+e>MZ~hcGlR?O%q=Ri z{gHNuAW7y~?@pssTjh29gX<+K0baWb|X zqm>+5&#dO{#CrBef)`%?HlLoIo)u0GY{^4-Q6?&Iv_|W=GYhJ7OimQd5!5-=fpaa>y>8192p!f5## z`4mQ!UD5Z}Jd6!l!XoFpgxd6E&M*98PC18&6zP-I0r$Di=6wI>cr#$ugu+YO+IT=> zhrys6$C0lqTo5=B0Cxcm3mU9}7@?xiS)hM{@QXG0h#vsbW(C;%$x8s~-Q)_8D}ejU z0k|mCzmHu%-`&}HhKW#dR}uv)>ikxWP4D9x4r#fT>Au!vjBgZ0(80Vk<6+*vcTpWAQV`3)lK zX;8U=2K&UZ9@y$kuE)Fc0n#^cpu+GU1*)21mFZd&20Lr>P^ zg6c*Rqw@6n@*6AQ4-_@p_o+6!sn5H|W9{NzONkk#y@cN&qj`3P+7;0^EqvqQ761X2 z4D*BPJ3Kt703kvFMCdXAB!K1`Al1bI&wAJ4cN-!SpU7aw0Z66%WnPfKSqUWBgAqIj z3{bR`Ko|vlH#h~G0YQ8{12+KIJg(9riyqnL(4S!|k(9C`PkK_H34MJ`i%9eI@Ni&t zcUNGO_0HZd^gP5o#LpDvZxQ9XRX>`cI7+A=G3>J<_$a3hPyF=n8o8yzl27WecjYs@ z_Uz5>8ghI5qo?$t(>FU$Ra*@gB)2_*c!=zj)cEGQv( zzARaRsPp9S{zOLq>ypZs-p`#ECGORdaD# zv1Vdx>8wFcV=o?}intuF(FB%soMim<(KeFl-b}be`(-GtZm2MN3w%8@D!a?FdoL}8 z7=7Tx@B+Ws+&8gj74i3Uvr?^?9MMNLsXQT(>g`ROl*simrR6ol^(>hS7^N3Ln8+B4 zxB`-WP_hab+d)P)9U_nebHXM_w8Egv1Fd*KZp;OU2|0kZx(~L(Ga%~E0cVn+K^heN zgYcT*d0PjSrGW6UZ->iiFb{(|7tBA7h=Aw;M1z3nHW0g5T;3SXJ05MGUnroMf7EP^ zUlR?c9MN7vDsksmKg>6m_z&&Q3f~Wil5gMjjmH@yaO+z!EdGy=U2<Q__ zj~SH$68-f!$WD4(eGHhx0Ei@dH3~9nM7?ak1#JYiEY=f`KlCwhE)|RU#>U3^4hZ^H zoyziWG&$l$;?vQ17nAvjO9D;Ur9N&^T8R*WK;z+TH#7*qZ;2QxgIs{UN%MEbl^|VZz*G*AD)|>qmj;s z26e)Z%ZWKF2@2@>Up0S4N`A9PxX;JF4>ls1D-!LjOE-jKX@^zI5hX5MU!TI~u0GXl zQyDP!5}y$H?Db)KW#ZKnK)L7C)<+^{ z_0vq2zV8YAx5CKueG{oWUHAI+SC-GS{&qnA+%rEo1U`GS7H^g3-A%Rq?A6%RV%o^! z>Y23SGsx8s!JUdu_4`lkm-H%dGTqm$#_L`0+!>cA=ij`88#zB>m@Vv}r^3p=6y2>j zG?TojyrY#_0dFH8($IP+aq~t2PFaA!OxEM;w1_r?U8cppAugW!9LrV#*M+l*V0ZYg z-`5*ujfArP;0d7rs4?#^h=@1X+OA;ia{ckmRTY1H)iiv4IjfGOuUy|~4KSup#3;C| zTI#N(v|-|^m#Y=3#H@_XYb!CDuVXUty!@63rxFoLWS*Z`QqiI!om-RX3D|{mYdpU``%bHo;A&s2d*d#mWu+pAUsVJ|mGYPK1eZAKB{a+$Y~jeyHrgji zj4Ax{AyV*Pfv1Ni9>bWU{;C)EXMGs|1g|!~yyIRB=c$4djgcQR@4mc!M^NXO^1=IV z>cSV>VlO&0kRqSRW|pgU?i!y$D&I^+m`NI#@9P3*4e5i(o5MJnAQ~x*RrP#L+Q)U( z)?Mk{AqP1`DuU~+Tb1Lik^67m{2FkL@^rK8>Y}z8%5%#)oyJ5yd4Zzg)p#zBqq1xn z!W_Qxn?q`BQ|j#Llv!mo^7o!O=is;1qyG}_{c9O`FBRAiBlo8tT}hdJpRzOwqegy+ z)HOznDt%nCD01-SQ-Il2+}5~)ePZdu$T1^EUZ{7aFnuZaqKk}M!55pWgx9D}$b#E6 zwO1sgi3R?LhjO|naQgoCbdCtS?DaKS_634HYW|3-n@FO>gLK^BxnRF;lhoJsNPT2= z&4H)5z7%4IXD+5@*whWkdYd+?PD zXniUr3Y-a4D3V@1%3D;FB6hW9LgdKhiB~aIN8jVlw+I9>bv*bnVZT4=82f>}Tn0Aq zO2#wL#Dmt?8ta+jtYB&RAnJ#kPGLsSjbnM7Zvk;wULI> zVupp7eA{BxI+YR2cXcD7lHcOh2qzgAbizK(q>q1mkA&Gjb5lHr6lU6ZRDZ1h>7hK~;P>I`S@y-3Su+ON7rB25 zd+^A4x>6KY&MJ^raV(9Tv~*AIp^5Z?4;dP6R2-w2_ncKwVCviFqrL&9m7kxTbiJaF zu9B_@(+ofO)2r{Ai|X*>OPf*UGL7u1Z^~B?zmyIFz3=f`n2b$4vF(6;%I3*KvO?9%~Y5Fav|9&!j z(b)xitu_0(_fgXM<|H3omtw_tM!!phJd9n`KjO&|l+^~g3M_c#Q5vy-&wR|`X|T%| z;O*reTiHRCXeDIjX8vCv^OMz<@+b*VD62|p|K(Dtu6dOCoO5_hVz+pyWwkNV!L-S}NQxf1h`X=g8FhbcIZ7h+S9IM_F*1TaqMUxowYQK!@S$^*l{KI(>sSB zI4!hm8@Fzu*cY#%DED4s!#})fZfeEpZxlT*wgrNk2kCKG*n@*d&kS{dFVYUu1nqVO z$}`{}r^yyrL8=WcF#05){J6L`2pu3)5B~XrRP5$AQD8O2$P+2 z0ade5_I86UY+~Q)zR@+g$dk5g-xEU(sDg20pk^oIkqHg`tG2O2uB#dK=5W=t=yVP^ zXWr#Qe9ELU&37K<%{hOc^i(oEq}+vfwP$9Ta6hK~I%#}L4sqh=3FB`WVui6dQ#~8O zGbYPqx3_V9b=6H_z+W2o!B;Cxu#K-Lf2+K>j%}yiEKTxrHzTWT(9w}{Ax85Wy9Mo;#SF(Xk^@1Y!}-kNype+$CbLc-XeIhPwEe>b?4H) z-w*J#eo?+IptTAtAf2a%YDLi{H{E4Or}5g9E+mC(nrv_b(ci-Y=?Pb-UgmI=Vy;S{gm%TL!O{N3Pl(yJvFVcy61<#uZy|FH2Q(r+l zfd(nMwmYs!Lmw;5vlH%U;rn%}U?xm6_D<8}MuL$3sjTIFno>OT>bT568cD}g(4%Qz z-wRH3LT24?NJr}*FM-Zk-g5@!w#l?_L(5!BrA?)r;MGAVva6cPC^?rA@ z*lu68Z}+>RgFwyyNwzGop1P9WI{2%0z~}z@%C-I!SN4|w0n)-`#L{g8dECO4kn-{|6~+)$#Uut5AaO*NPlIGuY?RJns8I%(0MmK9Ah%NdHj(Sn-MK%^x7W`*w>r(#C*=)%Y4 z)^iqWI&8U*_;|`ats6=?4}8t3v3jGnRAX?CHhX#Tziieie0$8TSLH_=ZRo{2G>&`k z`SFga8tMrjvG1mKiA|2@syydZmIp)~Rs+3v20W+_aWs=PH;n+^(Q$ZZxDaLQ`^;bt zyi-)uT}5jo+jbP=$?i}`1wBz5>SVx=gUrOtPQ;p*%!Hx}`~^t-X(otM6h!3`JhN^u zDLW$(xJ(l?kBg^woew=VwBNJfWb)shJ6b*}$W^+1YYU%t%?UC#?1BNdy-QfH#`O}3 zk>8w$$3|qfqO#~E++5GU4dv6L_4ij_(o8^5?ksRb5+0@;fGgSD63MRuzfNRE;AFQB z)n~~QNrAncQ)-wd5BZx4yHZJ#%Ea@wdeTU7;X0800|4YBI+tB!K$%Zr$IS|eBv6*_k+&y&##(*EjM zgBpyqgu_;H8&3*dWetH2mVsvosl+yXJO(rZ_Nu_e?N;Iign}wGdcmh}^$kVZ7luZU z2{ns!9PF*Gwu<-Rdb{>K`T^Rg**Vhk%5s3LVP%cA{Q&Q)aw%X)@vJj%{@0=M#QFK- z>X;Mh>vdjI4eXeYZ>YwN#mdx8IS*c3l)s-K&FgWgxgs|z_&y%8XAY|@5KPq$x_|>l6@Y$uQ>8bS1c8Z zIO_ou9%Ng7cFs)$^ZiKp(4d*|HHgFizZiG`)F(~1CLey?w zD<*q&PFXYtNVv=7@f1_bJnN|i0B`mY!G!ZzZ=v)jaa*XF2wT5s-gDP4XGN)30%+Pqz66(yp^)?QKXstyXG_s#bK|U5qjsp}w|1%(K)bq$$kOuSn4`|EF){=&|>m3|m6j z#Hq-oL=ZL3N0A>4#dg{kX7x+T+_?<0bvVh-e}ot;qh*?>Q!e%BW4qW)jx5Bb-r*(( z+h*r-7&Sx$c5k9h<)^OtZF_Z8jJgCnj_=tr$dQJKkbfZ7_G?Di+|p(mCeA3YJs+<< zt)Hv5A++sOtb0pHGwTaCx^oOLEm+A^tn8czzv33k65Ht57oXH`aLXcXrDiNzqgF|S z2+z*v7s0mZ7xrps_p68~zmX^Cb>$)+J|C9VC_EF~=-3?T)%KFb7IH_S4Lu^Aa*Uaz zMLm5fr(IlX>X_nCzSC{l7mJsweLtQ{_RdNiS=_p5Qw&HRmbMvu+q%Z9nL#he%s9T} zi#u4Y?3etbB&WE&i7ww!{?RzTJIwipNhFH$B5xq3uHj+6UUqOa{2a|3fK%TNC+x{=OvS{{*Zc zND~562MEL*ECbwfeE@I=wW$Fnu|FtX`wB2~_y`~((2$A*h&l~0dXjn+Zh-aF4vhsR z#(-$_UjZIS6a91N%ZabQUdj9b{$>b(3H@jw?1Abj9?}3o@OV}gi%>s9osYS;$pU5@ zw|5DAJJc5pw<&b-sV-!|u$oX}A%CY&5y_dpC)ntYqA067qfqLm;U4r;+Cv{J=S_cF zNQcB3y=>94C#j4QFe9RJDsY%y(JIuf2Q*$#`e6p4@7p?V@f$5ia~&Lj;MY*51klGg zKp+Sx_ckD#a|RGFlVzZS7D#)9@(&=dau4{+r$MI^clumG^#7l^p9ARzOl)_|K%M7l z(u0`MO%{qDE2yAlFX-WLMrl?@25;zzrF-}@yJokF!ehAc72>@eOz+MUS2LlH{%^BWV zpPU8)^>W;-6QuZpZ{(^hnDHA*SStR=0|%ZN<*yq(G*aaEK+Oi@R~~%#q|t^2IzwbE z-7{-gK~^y>sC1JBvMP-0)6JdUd^hb=UY~!I^R!I(2IFZyMH^*Fzaz|ZeU_a$ytske zUWmvXM*o1S`2Hq5zP<#8Pkc-Ffkj&O*|_4NEQd$Ypu!RGJD_F^5Hwf?{b~?&t>eyT zpSwAaH>^RZ?E^5BbHYGoCl!F2T`R#d0jP-P)DHR0B{w*8Uhw1u%U|dd;`U9X8=WT^tA>M4DIZ)Hqq=z3E6a$yNzFJyB$0J z(Up)Z!8nz|MzFqn<_bEMjVhy^+2UMJoI~bkK9O%zG0KHmj`!~)ywDCJ9|CvuLii!VB`U_1jk*d3ItFsdG^asMOlN30MiA{ z2-7zKz;n7xK1>5OtN9CBrC{(_R9p=84goNw6-Y6icLno?j^+zc5)5227!0rjg|9DM zT3%je8G=rTjsKAX8vI{VKu;S1cZB?7wfZ)o6$f690?X5u=#J#Um}m(RLu&nOm#n= z+4wrx_NaFEKGQSN>BGP~kB98{0=;tSE#<}b4Wltc)7w)CrHsPBW~b}E<7tg`v+OU0 zFCG;tyC2EFJ2b{sf9mj(`#t8UWXFHvf+Q z(X(&@S_ND%(5j~lDd|8Lt^?oc&s(6Ojl85-=iq343N*0jL5yNBje+{%q1G=zaeQ#} z-@GKQplq6UAtpj`;U&Y+H<9Y|zh;i^HVMWcxxv=ge9fT>#X(mbvE2I;IHN+{%UH*Z zVyUjDo^hPZXRz)&#+lEkoe{e+4f;~!QvJ^{2=}gEacDp5;zyl6amOhBc7q8ib*}KZ zWEOW*;_iZ)Z#U_&;+C%To|6^1-ciQthn|XgR$53sCFWHUWTP^*=L6An*j* z!G;d}{=j?pAp}(a{1>QQn@)h}uhXAE5CeEjR!8HatCvM7@GZND12&6B|g36W=^V-s!H@_1gobZOo`9in9M7 z^AJ3P=1L(`7h5-3)pllrl*~<5eliC-ReL|-bJtmYo3w|7`1&3>3zGIo=yj=B$Z5U7_X5^20OHgcg7rQOsGMI7!IH5Cp-GVY zyWjf_;9fz!h*l^7AIZy_C1gi+CI3nUjSL{|RUXv^dcUT7J3(TlzNSV&>jE3Wm)OY? zRCZlp2n+Dea;$Q_?c*0&{zLn7%MXJrdSw3q&k!1Kr?RR7wx-V7iz$EyL?C9Q72F{a z(HEXDL^bi?Jt0&3Zc7Eyh#CK`YCFsjTh*HH&y?aR)YlLwyJR|fLHzZhRj2L`{TkXA zVV2;dd~<6D+gI7)uoB9F?&KG5pdAC6hyc7$`89g}Zw(6&w}6P{z^CvZP#db#0X-!{ z0F)Q>svVh_^-S*6|9(C8g@?<#=#L#4&g`h%@J54(;Bn-%B=f`j{+7s6sf zuqP;pho|nxR>4tb!Es4JutwBrrEZwLspO*FGxKwm z!M_gITR5R?KUHhwqt%-mvW8*X&l-l|Gno&xUg#{y!!L`*p7hvte5i$!{CHSWEd7vH54{SWQBZ4m zesS?=)az%buhN#@-v>`RC^h8^u!^L+NhZD>Zv|e07%s%)-#Kpr276_n;L3I#1ud@Yi(A z>h&c6_1fq1Yx}doWApmH%K&1^nW9E3V#)J5RIvL$*Eck9gZo_VNT>9(XHvB^`!3cv zIpO>9+Z#d-m(zdTetYiQ)mJ7`!aS{i4t&VOIU5JJ+ed!eoov z+agg%zg^UIuJDs)Z-)n+xil@}Nh}QQNyh(ZO1jNxC=i^)XD}c52l(~x?R{3BM#wk) zGp3uldqTuXir9CoxTwn7`2`t-9}ShRE??N)RusrDzY^(r@XXCMbJN4Oj-9=@miz+j zJvY^wy+F}9c$kp^9={K)9QMsKz(VjEJi$l6+3VZM-iuH*G>9$hlnMZrCLTNop+_J1 zHbGN0d8WY*DujA@@y~_H+$-=0ceCPgI~cFKsw)e*!jnt~IL}iP^Xj*7J+A~O?TETi z3t_Ulp*ph38lErnHHdR`Q#aGigQPBGO()!oikEIJ*&GSX(pZ)n&BRv4C`9W&obC)!lFUJdi?LSs+S~;=19tb=yukT$rmnrPvz&kjkcC7>jw~T)HrXo)+~RqxJh68b_`=7d zwQ2+klXr2Me)<@S2c6@TD<$%HqI_ajfqxr+C+dc~@%FjDE9^>j5pp*<6{pFHJ93ZJ z&eRE~xwGkGgaVEH?rE}FlhR^;6!cB%A}@BUgrq!*@VU3?`(>jv*m(5M&af-C zw`)8yy>WrbTP0)-RJZi14~z|F24`7lZbL_}55*hiK&OQ?}2SPyEHuwORyr zcO1s^U`z}WQQVT|3Eo#~j@oPaMKUFi7uTVO3N~5t6og!^Xit_g>=be-*jA4$l<206 zQa07PaM}AKK3{h5_?R2XQkjic<&>)}PwWU`8IPm1DxDOQbPK>GSf?9_Up6@W{ z?@*-p@2d)KfVq1PIeF<=o!{nEqeFAVWHurUpSAvc94&gv0u@n2YOo*S&aO|2vAs0Ro_d~~N(^v6xBgWF;X1^U2K$O0ddwQf?>G}PL&6}^Am&OI;4LCJ0N>Av?ogCSOJ=&BeU1WM^3?0w+E!{SpBeaxtvBoAtDk8q ze?^~fJB^F&x894UP4-3f`OUfS|I4B_l)q{vrdW(S!WbPSmewjT^Ev5g+mREgYRUb2 zl|e{2V^DB&sOG~&vWXrx(DG+slRctrxVDcW-@g`Q8f#+C=&I&BW9myj&y3l=B^x>F zJ-v3b7Ertr7L`YbS+MPI?BGKhvX@S#I#TvZZN6jd;UL)Bnjd_$93OK=e4?_tAS{KX zBQ~P~<7yGHjBg-CH7vA_#dOnwqdtLa;oHmXL!l}IEpJ;63XTaBzPu3@x|Fx=eu!nA zm?rn#UyL|NbVZT@o(u#^_IK}O^sqkmekrTfFLO4$NTP#G{2i>8;wYwjCzVEN-(}^o zem@i1`f>7mFWc#;&r#*$XpQSap2jGty1zOYOdLXU_ zON&u*d?~|j;rkMramY(NnkTiyIuH;(&>%8Y_G7oyMz=&iT4~)j5PjfW0>U zJb+bJEcj`IagP2rY#A@ysmtqKVJ+yf!5M2ZD$Bm9TXsxV-4wSt)66QK(fp;w{qxm9 z<(a|a`9do@ou@n5>nzOWQW493bBZ(j=?>j`+vmq!*U7M4@dPn)*T~+aefNwaNl4!;rkoqkcat<8GSEny|Lf5^1#7}!!xrYmLc%`=ZM)Bu z;WE}>a;+9cl2LpRMx--;xS}ZigL{H3kq((G(YE$5Z;-%b^6kT*D9pg+TS(malzr#R z=fkUy+b)rB@O4hVuQVZ;T}oJ{H^H~P2?#@4fbogNRV+F42q`r~?YPE>O5I4STezqu zj-+ubpMKuuhs6l^zq-k0A!4@$4)C}Zf_J6*rVBR&&J5HI;ka?qB-bBFDw7r&wu!bG z?pFftkXqJDDv+<>bt5T^X6Y=HjWzX}WhR0PtUJ{aA5WE{yopX{J42Lmu7}SYb$ZO> z3DKX{7xUm$!f~GmVmWa<21^ZqRjqXJhSzoQW_ABV2Iv$M>b(+Hj~dU3!w6d@>kFH# z@yv}!xQ9hw`4Hu7+QYMW#+G+O%CZ!`{Sav=aC9gup(tzL#IWkx3UzMko~gxH#7W*D zo|!GVpN)s_Ifq1FnQPv&4wJ*glnq-MJleYV_N3gVg(E!wf)Qk>7S7~y+~9q>6-NPW z0-y}Ng?Yt69n(Lpx^wp$&Y8ZCP9>?`Nx6mK+L=>HiO!m9Hs+wNdAib5qt$bjFyTt5 zsrRY{o1L3g8iP%J3syu%4^@)R5H*vWwWzVX+|I9<6-o(jU|SzL-Bvh}$~rcU;$5;i z-ey~ri~@MDs~w)$>skW1a1yVSIYMf^@5LhnTLd)!ZA ztR6^kTLb%&wtc(CNa(N29%=n|L(oY_xqng0h4>@K5=Y9Gcm{L7-VrY`t+k=|ug7ej zKR5}FA8{n7BRP!*&32uxXyWtS7g?XRE`n$>A^%Pt=o24*LVzk99ZU;%MvmLQzH?D~ zioouvQxC;zeHoZm>!e|2#gHY$5nYD2-c5V@dfwe*Mf0;#XyC+{yLmd!EgJwZucf#N zt#xXhG(IsXs_}l|)n8eYtDU9xb~8T0NdMnW~wvrnnPZm-$m|vylr^w z@THd6;b`MT(e`lY9xsY>9|=X4paiK$MVG!0yQ#BzOnmkVS*cmD_V%Og8J;biRZ5E= z-^knj{m$(px?*Fl2!7n6Fyv6jw*=wVvH*}o2nMcgU=4>F&LEAt@Ys>ns|OB;ipmOS zZbH()v|-}scT)2~fTmMt2r1lQp8y5q!J4GI)Wc(9rv(2U_#_M!mV$2UeW2UEZsTu& z3vZ6kRlwmAr-_pXc-9n0QVxfRm^Q`mVCPgYtqAfy;>)RS%!2~8&hQ?-T-#XMdflXW zg9D6m-k`ui>qVp6Eo$|9`%&!^uBXgEJC$v@2GUM#&<(1q0Hc$70G@-TKy`E=-Ej}} zIZcB;Y}mc{1;5O|$&!!T=kBa-1TOcTfu=!!dVLvN03ogm%(K7$1%0rSx#@W}?iv5y z{`Uyf;Ount;ur#>-0YXfI}!cWZWMugIf$+MOz&sE;IFZMUW6DL!{4TYNaF zrBo_^7+vBJ2+pJN{GGCiv#8yPwi!b(RLJH(s}+0cn&?V^q_Ko2l4$>{&T7u}6sWYS z8w9mgS)i;Fcw_TQ$pG#JB;mRD0RaKQH^(O?X2PvWm)^`>1j7)hj5iw82|cJgN|i$9 z+~4;k5-U3@FaW0P2Cfvq(*zdmG5a&5N)r0Zt?lLm;qZQjD1j#VB>AM;oy_=w!JHx= zceX9g%Ng)?zYh{dzzIQiTP+$RSnW_wk4Cw;xnaI9ZG0NqaQ_PAKQwelpMsMi(x>{M%e^l`q+u(nfB7KGU$7EzD&K5W<&Hm12~R2rX9z zKY;i2Kik-4bP1!y$w9BOQI8M>-H|V(VNee@ zRC)sWuK{cA1E`-{1*MH_FhDuiFArdK|EKT@m{5>k8|vltheX&T|9~3>N(l7#_d_L% z5Zeo=K+u?~M9vJEn;tUN4t38!;uz?AVeW+RKvX_wXJN)=9ehGU#*UMDxGs_VTi&z+ zQDQuJ?_|hr{`9VZ)2)T}SL6K4K73=fQ1_)_iv6#7Z)89HbNGh#9sPFYo1yM{+xe7! zSxWhyXe@a9i_!XWqC}@K{1})~5;gYVo%s=(_}sbAB3TF<15~?B!c)vJ;d`T3d$xR( zV?8^R%Q5G~vHGMd2i4W_&hLkSutP{lxS6_#{WATx^PNke2czV3Q^G&~vKEORPY?8r zu>d6t&=;ejG8<5}0!3SZse4MGGY^omYJrmSM%?!x*q)H!9ClH4z77> z-X9Cv4AG({tDi!R#QF#PdNPriD?ZQck-5M!bHlQKC+>MM$9kq{|CjQ(@?9^kef@fx zwC~i%BA;C%!;&g|3@%(w7-iVv7llX6EwJw|)wuTeEL~6~M9-o7GJP1-|1o!fm`YO> zhXp|Q&jU71AaH3O)Q&^XxNS46e{McpubCt=VfUs;%BGM^s=gH?s4`2P5Ge|yDH{uDH za+-NFJ=3B1`R2U+p3;lkuAkk(^(}y%_!ih$fCYnqhKra7Z(m{LzJ0+RiI z9c)nI4F@?(zXZ@;od6Sh2-N>&K>h{Ku_TUJEe|p4Gr*6<0ybYbUs*kZ_EO!vq>PkD zHQVgWa@tS;e)HKc3~tJ2!j|t+V4)3d!iQpRUX;z0_$G_S{Au z@6FPIs`(C(a{I645>!Azjh0Zr0feg{XjK8IFak{5NI)b49CdO)y}E`2k(-Qa9B9hg zu6zJv0tJYs00$}}Yswa)Y5U<`J=Jx&Y>th~HfkoXgF`Eg&&VXWu45^!{u zK}Q)D1QVcf>N1F8bpVoTREtB49p`P2v&CrvDwN-c1y(*IZGybGX6D?zxd`R{fy=sOhyQe-H| zRV@Lu;3}UA$SnP@agcAe*o|M%-|L{#x%&oWf*@WyG_e4fQ@f(!;NW1Rs%L}?K05;7 z!iCVS(8C)Hm-%Jy^aictGy)nW0qESiYwokf0bsK159T$<&Tu{CTNoJb=c7kex}C3Y zp_P5IB5m=WI4<(O)x+i*J%5_9py0`5qepv8HuShicwq0lU8|6)*v)UZRJ#4Kh%QCA z0pphK704<1W|E(;stmr5mfI0)fIZuL$HqM+j8N+ zO#)F`!@cXA!q)X|KyXZW^CmpPcuDg!xX4*EG>pkw?5PytNR6Z)r}kd&2-q&yf25TZ3%^I`UE?}Ykx$T^V|AI&{e8=3n8##H#|txR$0}Ej=*SW1(e`+fEi(h z$Ce)SSc0h95Py(_S>}D;8qqh+c-Da&S*>eo1Hhkfb@~16ht?joN{2o)*cZ*+E0qcb zUNybrG5TmREd(tOrN(1f$72=X-QJ?)bObjmDNo{qV5nqf?Jw@iv$Jt`oP_;jUd^SH57Tv+J5vXcr*|B)~H@*A0FDz_wUhm-6Mx_ zL>mY^`{=P`8>=h2etfeXIwLY7v+N(<+Cjjfc)X@~IThKbQ>82ruZ|{+r*HA^&VEOk z6#?B0&}bY4sf2t_onC{z&})teq^d!PySw`#=sVk7Py_vJhu~UxGEw-R&1BiZ7GBF} zKv)SY1me`ggj~a!2jp&}d}f~#>X?orSVpbAl-0w>(NpX;=qXcy7O1rGN;Fpym+26%;B;oqoI5W9~|C1(w6g{kTvXn%*=z zI&W@OKCk2fHrh2P$CFeA}q0JLg--#nh0Tw z+B105-gaQ|IRHl+@bUfq{f!a`6}d)e=Z#1|J>;~P)QvHEjKTdy3A#F;en4UpFzW;E zOo!B#qO;?QW!jZ^S@c_lGPv|fmZcXK_N^}L9ZKjuN*Zkf5NbyhO1(Z40xpH?tVqr} zutkNIeNgrm2JVTD2JchF(;^65PVddu8@C?9881bo{%NI35rg}R=O)%#+x>{p-j@_E zq10^NW~7QKh5@%-xOr~|RYshkc4Q7mC(}r{5LXj{BeR7fN&5G#^+l*`FbVdOH%%yxq3HU_vFjyT2u zEH?%$gbS5l`}bP=-710Xk%!KY3ib%Mgj&yCMIh33|!8M*~KMErbEK49|hqwnmN|P1I>2^7VxZX zLa5|fg5SJ&5Vww3+*_VVU#wPXqV3B6$z#33*SX^2Z=C8kKI2$kYn)1*6rqQi*qL)f zR^g%sSS5g@u|{Tc#Uv{&-ONFzfv$`-M4QQN@~k8a)~g?P%s&@4%3f_Ee@*; zp=Qh&86r8PZL?E(lh7)r%(upFpN;j&VkL^Z#=TAgP=@2s5sBLH0x*b1KHGmU@Ce5s zj^h)>H+!2r8{1iUrRMIv(oKx-Qp?WQc-3F&|AJekqLf#`7KfHQ>7Ph;0(nUyOL?LN zzk+tfKwtX29=R!5-I^a!7134Jco+BK&}=ku+$woIHb&xByBPcvwaV5cWp zhT!QY-S3F%xZFl6j)IgFotS-cjWA>ii3ye*@QGiKu$*zz$vN*HVAU(LnXY%`8QC*Z zzT;W$A*@Kpa~D12kwfpT);%B8^goP#-;Kw%Mb6%#Oq64y1+@V{AyD8fR2JVV`BEUI zLe+H4W(+fM74mV`&oxqJ*XMrUVbrL_<`*;J%S|iYF7vBMf6YkHgrBR^L3f#(qI|O= z9fz;C>`0<$mZ!HW4pW}cFxh(?tdgi^6V3+bq@>rs)w&eI2(=CD0{$g9Awjr5mSTSn zNiPar@M^c>`YPv?!sA4q+l;WK8oampKAt4i_U}0HHC1M+HeC6|`>9M=zlvxATR|m- zWgd5hK85KYzwLO(96z;QYN)WQmtG)u?RM!)m@-YOXUG#^s{n4bEL3|)J;0lS4%#lG zW4=F?58qFb`KjrzE?gJUwd}lWS#4R8Z(dmu5U1QibN)2vH#1kK8~F`twoXOOv6)(# zBl@VT;i-8JEM-6pG~?&cnr25cDv4go;wM z7GWjsF;S`)dd!E%pdWwz8(VYb(7YBA1^B-Xn^9K;&2vgi#Mei!yJgw){DI*O!rp@u zfhCxAp8;a^t&^cV5-%Pzt0ey^Qoc6sf((nTKS^W%#?pI~2y4Qm2R_G_S<%?27-{)5 zY?SmVB^Jh)$hhKX%C%H~Zc#rT2360v80g&c8b4z<^wIP}Je@u} zG<;g8@Yh2Q1DK+bg7R@aCe^VH-E!Dq5HzMbj z*e4mu8o8hX#l!E_pj2b5NdMt!1E?%`3hYOa*(-aZGFNd}rO#Q{xaovzq63kgb=;{0 zG>5_IJrdPO+%>|x2%1GZb=%xRa&`7jjm^?}*dVv--TuVFz1b3+Sqa{B?%bmmv>E~R zPXY*JZB_}M`t<;zD)95sXf~@DVwW@1Ye%OF;r(GP(O%g>jIB$<9%dps!$a{fYi#@D zh+3_S?yAbPKC#Mfqg)@&}kK0AB%8u>LW^EQvc zhbk#A=?;UZ?8_zWUwpEg6SZQVcYj>Y^V2ZUdv`;_s1l51mE{fj2k@Jna~48kcH z3zgDiDVbu91C^;z)$DzjZ&<0-;&h6%M#9NvNt-MVEE61=qbMH)O7lqYb=>d3GTMtF z>stkdCDInM03bfjvRct8S4ZS+$+4R7qRI_v1BO@|iRX$BgRJybu(1SuW>)d9o~AK` zc`d>*^szyP*V3{i&4R*{R73PPgiuP*_ zqynx}6`u8P@2m<}c~!y^&@-B2k_(h1^wg-OUx%p^QqvW_6=+tZTBVL-kR=yI?aqxm zw0_~^gM&bsCaBcS7WkqIhvCifT7FUuU*YKpTp#|Uxb>LQs-d9VU|OU}*)IVjB@l$U zH_|MR{QD*|_~%y*#)WQ7y#knkY})eq!h-KGyH#cTK8>DvDl5%XYbRsd4k|bwD(3z? zsc1gPJX+MSEJ=`o(=6NNYHV&1XYzJy6jEz6bo%sHc0PF>Odoyox`!MG0Tu?vp{~0O z%+Z`T(K^Ks3VDEJPx~;>=x^PC4~6P$s;v!+8n9BoH{w%t^29UV`Nf{3jeAfYoC+*_ zVNsbh;F{^w7`E&1v4C~goI@FK&B16Bz;?_TwJEn#-Zj5FCg>ij>hbIl5=$+JQ z?QB+W0nFM7oW9};6$pvCphg8CCV;pm0a?}oR9U%pFT;C*Ftq&*fP`ZJi}?SKK(Qaq zC4?0AL!hNIZu6ni0bKx~4P3VJk`SPn9hjcKMoBJUfK$(44D^5i@dOw+alnRobGn)f z5S{rPayABmFv$Z|ssm93s%HnFOGv=eO=DAyehQ>#fE2uWbaVun?yx`U7EJ*dF$$0+ zAVdo=gmwd2{EHsSN1KiP9ZdBNXqB34rS3H1t<}RdFyS;c+@~OY_Dn&n;10ug6=GrD zjt9E&@H`LvhUeU22{#l=LJ~I_=3C#r+@Wxr_p8#lpBGeo`Uo-Idfy?-qgmbSh26JI zTxf{|nwu41tk-WB6}z;PN}{FvK-WA3InM%yRHy$v8nNs+3f`d0?v(J=Ay{=DoJ?Wp z`wl>pzc7GsQq$5}fRzp<*a`()y>14+aG($=f-WAP-}_NO2|0Lv z+??Xva$>MMQ$q~AobBM3ssNM#@XZAU+@mLfYBxZq5h%rZ{RT>CfSQs{AgTS40L4d8 ziw6-A5!53C6_*1iZs*0HUpcQoQNo%mj*pM;gmlB6(NvMMafesFqjpq@uzC}u%xzE? z8!?Abex%x3K?&kyQ~7pkO>@%kp4dFXoTwF35GIz{;^k0S4erefP&(FKbp%nLU4y_k zrU92Hb|cw0Og`Ja0mp3wFv|mN=XKgg|G$JlR_Xu_${&ZA#g)#^PDt>9Feebw9LhuV zCGbJo5;#fej-CFS^*tBj>64xRSGHC6>IFWmi;!S9th<2C71vN#aS~RN%-6y$#Kq(u)Xt)qlpk-46~zy>FXy#O>W+%j$(cFW=Ump zYyXvhz%f!w|Kzd0j=rI%q4(m)oo(Vzf47RZx3|jxh5O^ry5eHumX?;T((3AJ-r>rW z!kJsm0D9BE2yPJeu4v{6z=vOQ|9H-XhP~X(3WYfB%MlhA2%H~V`5(IgMBo5ADKRdd zg}91b9)!ww+@LeX!8sd=@dpk0oIk)%)d46ohd=*a{e*;R2oxhaBy}C<;4RAqj;PJR z7a)&D0j-PzWDOvp8nhX)&@V2uUhciHf_#ghnSW${J_=&>0FAZtv5s7@CgA9(_vfCKtN<}^zSy{rL_GDkIY9@1k!wr;)5DpZi zTb8GGtnc|EqhZ0OYx*)55*VS4bU%;J-zidQO;m1bVZH@$=+4ynT$Ge>jNdc&jAg#( z@*{BVCwN)SuFDove%iyBe`hh!fgBW+;o{IUFkt5z+#x&c^83fyJiY@UJPf?C(y z8koR{?^$GuwEL$uEn!HU0VD(HG={xP9rZST#m-#NojYeC|K|O1^+cJjswpL;bLF;9 z?*R-uUNrY8tjUy^*9Ei3O^oWC6#cAc%e&*S>g3!)StDyYkaUktu_@u65|?K3Q)S-j zY5qikC+qdZpe#$t)|N{og#^mWK)D~TkFP}n-vw%M#@BFawQ6~97Dh$@C5#m6?z*BMuUc1BW$i>=)oU*WidK6{&_c75vH# zPD}h>_ZzVy7GC+|yJW>;KMtN4v+|?zrQ_|#09t$GBcZM@RKi{?JTy_A; z#(1PA=>Xfkhm8q{C8D4|I)bD>DGS3#_dTz z{cQ6b%9>ot!=2M92HT}$ZB&sKZdoQ0q339k4asG1gd|8=ZzQ233-@|TfJC*WR0ot5d zG1x;UN(Y=}a00>lwgT3>FVH87*Onpl{k`7_l+qWG0<;nJf7a6uzbTO~wftUCdhz1U zO?-SP2^Nu6=l#<>-E+b?diL(G0a08WXb{!uf=0@5Rs!m637A_#PkS&4h*|>=Bb=vy z8gRHXxEt9V@1@Ljy}mf?ww}ENfU4)WtQLn_{m#MNW!Akr-$Zx6!MC*fSuZ6C2?>22 z_$j`usm0pdAE&uZsj@Y=<3DXQeQzp?jHO+;Jz~4c5YR61A)#kMRDC^j;{Ic zb|<@xf5|qIuFB7I=AT9}2lsw?3rX7dL7H(Xv_k@!{=g1#)k1yBt%UuUZMp)^WHs9d z1aC|QLmS*T{+ncgi#O^CxXGba>tgZWc>pdB5NMTn6R=?MjOqr#LdMy;7v41OPimcT zahSa4Tu1JuaOOK$8WBL-jvpWj);;WhT3wa=6|7_ss1fWDo=1WKJ1MyDz!S$N@)ZDS^RG=n@x|8G)~YkKHfOwW ztM%VMwd$#Kci@cA%$yaCIm2;{L_3`uoMR#~j4xz}o?6*nBcd}_#y&jonJ<6G?A0fh zmiX{vbv&$){r9%M+h8+4kzpBwN^G4p5V*qz-;uGEkMQ{;l-#t{uxi68{2?YTGg5lPkmSak&txo>(yL=~@ zCpb{!LHwWAUl~82g3AEn)m#n#`y+qWCE5B$+I`)~)Ryv|{yBp;P?@3BLMH@lD=QOh z_Z+mTwsUlR`^g@nmAL@i(-N9W`wJmgdLWpLlJD*9)gSfoMOFUo6$6?*l>DfhbBkDe zCbN|re*hXBZ$tDqs~EYPIA?z++oHkfvqOrJ8;HfLy~SnkwsU6ZhBaEy zjJ61?08vK{=++xZlO%_}g@soe%yZt0erM~FZMV!g2=)9N&fE(uD0Wvxir*KCyeL+A zNWY_D$D;&e93hmGSX#mUMIrD+{9GyabJCQSn=G zs<*#_l|E9q?R@?xv~7gqoj8HuXZ!KwxqC4{E)5G5;CPMhin<*Fn zPSo)){Q=U`5|~DJ1K3#fhYzZsZ`aE%);YXNepx4Z z)dA~?0je#hwMkyVnok68w$_*a{-Mj{zHRYmfn_uqsYN2mW^GAdFi7&tCzF;=CV@C0q0{qAYwP%V`5AoiSNOX9*m0{x?0u?drlZfQCp-8|v1hrn=OT zPpFe89m@o>ex_Y{8*ho9yNa4|C*Y;2K3pkUrY(;(W8bsveK-}$eUVV?-gEF+g!B;~ z*C!MGudQy8%@6*GFy)TFfA7~thSm3QjGEm---|Ka>fV8-&ZGtbZ#7s_9qUwaUU)5f7U zX3y?yh&a$m>?;~^mG~9rc6lJtJZPRG^$Z1JCj8~otSPmrvQ19l$z1WKRiV_J$n94_0{3qco-p-E3yGxSPVQ@936P4Ui{v315_m zk~AN6`nyO?==WaV5u#Keu%gt@%5?c!^Uq^~pzMQ(5yvjF3tNvm6m>q1I2& zER%@pow}#SNSH<#FE6~9e<^sMOqTGRAe%}-xQ%o4j-WQx(zCe03P#jh>_*n6ezFU z_|ks<*7>9M=(UM~sbAA%#vNYKqiRo?mQz2 zitWjy=N!*ZoZcc5#P|nS%w9T|x%^q-Z6c5fv!n?%>Sgw#>hJ;!0rVw(muNP%%rvDg zCR!?JZN8at-!SZvLCTb5q@yXemt%rZ#$JGTWaIOKkg^-KJ1a6KkELjj$eoh8kcvCR z@y0yrAJV6}h$(`goyOq#Fn=+TZYv;wInma=nMX<9?WlA^V)x0K2rciMQOi=;L9!JJv=r7G-=6H6 zDFITYqEA_p#?VNGK$g%cf9+`0{sxBv|Lg^{fbF1r0KH8A(cRZGLCQ538k90 zc+_6d)Y_ky5}P=@F&xUQ=)wN$hQft6v~AQMQRPvfU9#x+ePyIDHxGCkdjX2XzWg*Km{o!Q_)BJ(L_N8rDR4=jfD?_|D?77+=a zZ-2I^>U9u7b~It>n>LZO-8M|A)p#mvlfjKtohV{UMGRYssOiJ(p`p~tVTNuEWjOk> z5nC1Qkr3|qN;KxE5vy(0&+qr)4o*y^!pWs*gXsPOOjcBRb0tl7;(WfhC2 zE-*L~o+N6!);T4f&pk|^$?{x==~u6=GRJQH1T)!J4lj3$96NdbSr*?;V&m573#mKZ zQ>}|$zbAR*P1XDD&Rk+01KpU{d_onIVH{`Lh2rD11+K6TVKx#;`U686#ZH>CT=D9A zL+aGUwJ3uy4drltNhT!hdO|}-kt<$8_caH_spbLu(T}aS<-zmVW1ivdSy)g#!G;v! zxB6XtIQ#8KVBau^z|fe+aRy@fU?$sY}%+xVk+`tL+cH!WGY$@2Ov62VAQ4B1l|o*eGwG z71A!zMm(axCV=%E<1lW+>R(Hv(qzY@9W=1B;akq{+Oo`%-cr?B#Z>fIyWWVqt?);j zY+2sR=M08Yf)ruUyA(X&kGifaRl}PySTEZlPK!0S)X{%bBsO@!hjv%lxEy9*6@31! z%>A?g%`z$F*4zl9=`x)PMRG4ol{#r^b7sUk1fK90J38J=)V7egsPDeLHiM=7RJ89h zPq-u%aF1&AKKL4BUFkX~9u>k)SBm<0l?t5N2_-3=?L9!71EC z1~wWjP$haFwCwes^welwdW;q;(_dd$o_djcZJes3wGQ<{(u|m4%{_&AQ;qq)ux8O) zi$mQUXLnGPkY{~$=bE;qu?pU7FO9fr(o|HcR$?(VO_EV}=}Bn@>otQDVePVtR}JCc zPGlEa18iJ(#|Q`e#l4C(C@K)a7TZIA60-hIZ&*L;Q1}+w`}DS2aPlt6Q3Q#-5yNJN z-o_X&FU5E*U)F;|OvT)fQMccpZaI4f@BIdk^!4sW!sT!C7VfXaRmPr(_)+%eEzM$8B-#MM-25t($a!rT`(;p|%tQ9C%&w$p72!+mL6&sR`NGKR ztg(_DTI7nYKM_jNfhYq-Dd&&&A~i*|2_#%TKp*%yt{9pXO8*{*aHFPGnapXCh%HH%IAuIP})Un_)m%4!^=13%6LcoO(T6qXqh~Lb=JG-x`2Ban+Ikm zh&6tUVNY}+N{Ed!81abUl^>c!$+rF$<~+1KiEY=mfgDSV)h3mCwu5mSO=q!ue8(sx z>FLpvK0Zxc8@iZ;E;fg#wEo?7%GrR@IPqB*Hw>Fg*qa%N;{w8(E0vhon}I_@VbL1Z zSpBQm-?QpNd#+X8eG_os68_t|TH8e>CZ)`lZ3SIySi5}+YGY1g@DCMh*Ee)%*I?vk zB=I?FX?W*c{x(N6r6{Ofzi(S_eDJtQgakSHcx#nHWjB5U$t&@a5LIU|z?;B{WNYc8jN+!PJ6;7?brO#%@HLr>C#@>RUwUlJ9dIKEjZkYKJ!-! zn=T=F+u`-L9z3_$w7%B!6w`c$w2ByVU3yhs3|}dCmJCn5`3=`(se~IPtLtw8uW`1ikQ9LbTZI^TdJ&7@1iubO~xKxj})pkE95g>d5KPg8I+P`$utP^!Rrzzau0?Q77oaFlN^7qR3 zk5^*!?Gd5k?{a`)qg~@~{m{0JV zHIAJ%m6nz|JpqPsXqph!CMzq;=3}57YFVF()N2^<(!`^Ui7G*BMY*yyy%|n6_t#KDy$G7D}{`77m_J zic?yvMKW!z!Bw-4{0)zqh!PySIXr@7Y87}zGueZ{-+kqjEXh+v5Nwz@b@VcrsWQBn z1xuGbWsPZPb^e$~x=A$4LmL5!w~#^jmZ*(dH;~}&e-~qN9}rGlgBrHFB5%EYtSx;5 zNG`-=x9=LAPC?Rlj%rMoeSSs=^a0<#J(Nt@X7=|ix#8-9Ik_Z=s6e~KuIMRz?%-)E zmKho3d&ut_8SUULeapF$;10ax-Hm7!^Llev$NUmDim$F;npv!es^y5_V6nHP($;>F zV7i>D${F;!t5fSh0tPSv6&D%3&tiLfhGT%tfCBFbf-A_#%2v9qX`}o;o6(9DyDQ|CkE!h$(qdoV-YCT*9qZN{c+j4zrgK#7Kmjt;qbz@;bDkp%&g zS7PLEkBV}Nh{2WPkz3{Wz{^5n*OwQDnN3YOukW)Zj1uPfD05iAc6Vx|W7ZugZCtlG zLi9VT{L-D8qaQONh$u*25~Hg5oNn`_ndUFPXes}!DH;%&oB{vk=n&w?%*1Z^d#In8 zWLrpPqT0YCWS(<{yZ)=IDnqYOH`jpm)Go)yz{>8=$6UHQ9N|iWowRC9hN2-qP8+s< z(Ixk|zO-PGa-p9dvA}-$5~#xJlVzd$`?B5Cqb~G!Bg@${n4HBWYWk>YzmXWoSarw3 zZ{NP1s&S+{{ka$eC3k?f3w4GF1WA1yUV#P{&_E6f-+9}9jQ73|1V&mrnKXET7EGp?s({RG0OyP1U(^@KCrdW5ivwN`Sof=U^tIyNdjk!|#V z`SqtR<`$$03=Qj9)7XdBZ5>(WWd!%z=KMo4$vopg9E&+iZU5p(4Q@* z*narR^6!wvY9Lt{GU5K0D!Kak@7~b8b0?fH0Fh7uVCL!G3$J=?s==H`vchfz0cv@= z_2Poi*%a2_6)J#Xa|>11By5_^9`^j-<7}kn6HC1jqok_b1#sDN;&6pJ9Lt>gE@WF(neB+7L#Zf!1dL_ zYQ?AMsKMH*)`A#U+w$b_Uk{X1F#<)=A>-VDvYNk#=So`8Aj=f;MhJ;fZCScm-zo<{ z64Ae*_?~$U0jFkiAaDRQMW=v@Jg^$j+x=6s?)YJ*xcyFMfT)SsqL^=&Hp7Jyn}B&b zy^@YssX@BL3IrDEn(Q9N9oGzHTe>f(*SH?;p_g8{#EtR_eR(%1zM>*b%l%>rjr~{# zAmQk;zCEy!wM^GE2sX-e@SQ{O8*?;=Gh$kcKsM}$Lej2_NmgD}hEO&|+)|y1GSfUt zUYC%HW+SMbw#~op1&bqXcW_WDtCw5oTcYK93cAVh2%l*kMF#@eZ=GSuQU#T{LQ-zU zu%-%6%4P+$OWBkjCmKIgY-K%U@{+fJXerZr66e)|Nw;ZN8Oiw{0og@n!I@}z!)_I! zSA;hDa1(Cjm1~9!y%pu{%`vbY3-_ufZ<4Q}gBt^~$A8%d!3$gmcPlL(UbiA}L;Rdt=PzQFUaV z_b-tn!jE;z9Od?k@mxO>j8HD%$+(Jj^uEm9&k|*l+}^W%M2hgBMOI;f!Vpfp+mRXi zMS@Cstf+(c;sNh&cgX;AtwkW83nmY5&(c7^L0@*tv8i!(XO&5I-qw8G@Qbhhd_~)& zoGjUc9holYBbz*AJDf9@EQ_9#G-_w~l&nXi1b0nwiidJZ#a~U-SvMQu@K!UGI5;p! zinhjL2bTuE>+PqlFXo|e_o8koaz}B}_9UwD+_)w2TJ=IS4O}?bQYu<3T$ZVQ1MVKE zpV*78xFsn$#qYm&O^RQkWO@JZ^R6ZQ#r=v%4Ln!Vs&CiPssQhOVnd=agt_PIVmzdD*P`RbCo+>Vt~+Afys7)eOsMv ztXXOj&Ox+>@_ec+H#mKtT&%r`Wl$2} zNQ)p;H$+P&Ojs?LkTI*VU6+_Jf%|?HnVuu=jY-d;71y&pFN!O;JQu$ccMxU3a$~?x~p*4#-3Fm@%*QMbylacM?^0kTMHF4 zgzp-zg3;{_yLSF|zU@bY5`%p~QxWtA?6@#3Q$)!p#_=NaB_6x$M3!90B8?7lL0#e^ z4ooroCl!D0V@9|P7)iW#fIl6W^>BgB&k*cv8l$Q=Ylu-P1%ou=E3^{MmeV|Um_lDF z+fi+sb|p!BE4a0bjQr@PAzQZWihC9;p5FqbHz({BeUt32B(E+Li3+u(ver(l$rRP- zCit~JsSM-y15u9M$6E2_s(%AcnKFI88M=HS+?W$|J5D?#;QE}K1JkzSu~0NxBM#w$ zuZFHD|L__>=@EO=yU=yip63Nkk(-N$Zc)Z$A~3g-ShYyN0u!JJd)O#c+l0N}06S&# zShJK)uglP&A(SsoY0^iMcMqDU0b7s~7L&r-%k#!nqz( zlzfn=ld2?+m`BdZrbvt>lvQWOki;^rW=dP@O z76H+px|mugiH*{nsEOAsUh?L`mnpOh#5Ny2@5$m#kJ|IgmRP_QHVU*Oyc5ECa|<0$ zu}KpDmoq5*`r4}>Ztz_L6D@ORfvM1X!IF6dC9g6MS}9BeXTRJmvh`UUj?p#&U#&BE zKJTHYvZcKg>kVF6RDY}aCvUg6`Ygl17_Nm2zA%ex1nemf`6JXe%PPzWioH^ZN27)W z?l`G>`{|o56)>X`>K|loQ#zNw_;yDQCAp3{UzO(iEgr5}Ihm`J@^G)tH$!`_zaUtB zD*gv@(weqqe7`_dEde~@PQo;~Z@|>F<2MF25wF-qvKkh6In?}6buZCQPGchk`ge;T zChJ}vQK@jrWJo0;i6b301*WmP1Y$y z7~^pHzO;f_a16V>q=-TO4lYn~vbtrXWn=+eI6yHfDadBV75U5xZNv zEv+vuY~_vQ6HqlEEz&nuRGoOQG-EcD=UIK}%1ibdN5Pa1F%_1%oE*od*!KfZhVsrF zr?$#r^&g?CaB?p=Kcnpfy3)T=zZSLovB^&P3^50kSby|$emnJ}{8PhEtN>?;f+-r+2pIgY_p;ppn|5x|w_9bZsfYRC zv{f-($@Ko2Uj_npdhXM8y14H3yD|XDGiq*v{2Or1E0ZyL=)nfPq#*t*(@3B4%}axyqidymC2Zx z?U{s+9teqQZd0kinM#&I^a)s8|8$?Z;BbhE9 z!7Nn{)7FEI2VV?)NAqWE;Al=2wAeN3_LFc;Zi#GGgG@^JZipay&lu&aJw@odMj$%w z61*o?0wbeLsIUre#%N%ZokpJpgk85rX{P>SL-V;hInHzrt<6ooyR~ua%D<|e7ahl<&6&Z+i-rfW z4M|4i9QjR}#Mip2yb3WAmnV4%imz0$USWGX-{nR1kJ`~G|DQ7oJpl9?SCIVSwG)J%sPr> zFwedeNOa}#fwM|=5cuh$`BG)ihKG~%ol zu014u6RhDH9yX#Q%#>MKUv2!UX7++>BSFWYFqw3KjaTp`5y}jY^D{E#$MGzM;MxIM zA3NIGY@Hiz_%`b3l2r0`7K1w`wMVe=poh#*T5w5b;-#jt^{9jKi6wp0)7tkIqIJ$* z;hJBv^hFP2`aKn>5Tn1@;jST;$;cQ6?Vi|9GLz4ElqQsWz3d`ka8UmvLilF?7&b%6 zku{qNvrE{ml}3!D1`6Mchgq+U?Pk|~zMGz2vG`J1K&8UJl5{WIk*?HvBgyQ*Ko=I8 z%A82iK|`j%-qe7tsua<6`oWIb`*(-B|KCJq)4$p_t7)bj6R8CC;?S_yXe4g<(gRNC zeW4#ZF#M^1a9uICuU-R+k3XvAH?=of?dXpya7J2hVrMSAXKJIQh)_*WNq>FPRHNGz z@t!J9H<=2mpXm5PQ)@-nSr$Z3uuc}5LRijreERJ)?aftd_=@L$JFYo``n9#~y|=>~ zSE+22HWXlZ`&UX1kx6Vh&s-~8&tdp-^-zSOB&Mhvf4A&x`P6o2@4o?-%te~bOhWJ-5s8?eIESR1ArmAAOO!F~>ry0hyp_-xMfMIr0W z?IC8`1~|r4xPvjxIhKMugfUo3hqX}guHyPl*@li(7%e>go1R+D=WJ1Nbo6R02k%J2 zwMM;brG#&+MDhZjP+^l`iPG4=FRP`Ve#AyNY;_U;Qa0x(2u`>9&~+cE>=%moU% zb)g(2@EHO-43M!z4}hjQR{sw&j{$eBu+0FyU1|uh9wwHuCH140u)*}AHY74KGD5aP zOs~(DLKB7KIkkd5*(c8K)h*sW`R?e$9g+qx9-JsAE=%2VVtFkB_BiFDJetBpl2L)@ z;6qw^IO67r-0=7mBGl+fFwc|8Wk%UqNNdK_M7*SF*@Hm8p+Gs&_KQf?gP^5%Fqk5$ zAg0VG$BMfO`>fhK`kA$JFKsbzzTs6CbAyRNG<|+^g<-@KE?v{Vh6v2_{R%N&ct2^A zGDoU8Otxh)`?Zb)4kXKh#Bhw{;%h2U&BS@N8FNKoafYQk0FL8pI4+Bngx*qgB zFi*OE*OEkmE|&k43jnTUlJOu&GIb*iSJ|O!&U=_-`Fnr9Ywym#qdRPV&gi^xH31jC zx7OXZ)4AC_NrYeEx}U?9zt_eKsIya=CH7Hf6ppH}#oH+qalBFbLz`(^Y0xfJ$p!IK-b}KHpkG#){L%jDv>aaR$&sj@2D01-n=?V_j+HkQ*w;xj|*d6 zCjN6bHll{J&$eYWe-HKkL_R;FC&DrH*~&|710Fl`yMH%xrs`eUw58Xm2Qp;oa1MZ; zq0S;NBoxT?;pH{?izRZ`uQ%v$aQu&RSWrO5cnLCRko(ul$GBkETx>uRV955^0;R2Xzgi;sj&D05Y9k+s8b&zpSNoIpINqaDe(EpoM(!XV<@ z$T*k6Yr?sF!}aap@BXgj$tcl73ySWg78Y{yAFv zzn&l$jV4*xi81-y)1RjsY}fWLVK*=R76sC>C7W|45Hy>eCI`r{&EKHhX%_2FBJq1#9i$$^!;d{oG`C*=?n{O?2`KdZ6 zB&QD|254v-f?TWrJvVpuZ|3kvz4&U%{Zc1a)XM7*$F+u$WlHm)DYv$gD&EI`_Lh2uT;tJcFV#>&@!+@QW3h!>$mE{6slKEW>(Z2kofn#-UB;=j>}{CTx}ds6FhUe)=( z^%qw+feV-QgU>e4#pJ)g7Kidz-T%G>)0zKQU<8H~I2tKwAlBUt-L(&5Zbw0WQ0T6O zBxL1mk2ej#uz9!?$^y}=aRSQ&E_Wceqd%x!xX$fY+;p}a;ksMdy$nJroi75;pFpkE zFvTCfi|4lkN9!PCC=3J?ZZEuCA^k5O0KAOfz>f)DrGX)okAB>4gsDs7LYafzPO&Gr z6weICh^^!x{37;-JwYZQhAMn{Qf?L2nTIqeF zujI(16!r~O0@>vaaf0*aDpj)V```?^VN9DAtAYrmP;iRTk@75k9HrF*dN=M-+(dnj zJ-uJkl+;6$X}$YA?PSQ4aK}|Frg!6EOV5A>FOdpP`%har23`K1;*iZ9Ldv9rRG4Y| zorLub%X@7JAFZe^g9?6uPz0DJ%$~`{yWTSZH#`FBSpl(ltIlwmdSDWV?84Rx{7MA4 zgB}7;03H7SwD;ZdRQ~_pr=pHk$Ck(*$$=|K^?p6q)-g~+vw#f`o!s{`R0;O4 z3ux+>vLjvl6{wXr$mRZ$?Lqw%&KIy1iFybwG_;6I$=grTkuH977vL!c9`6OVgYgLn zf)z8|+RmdMG8|5yL7ck21{~bYfG7t;;2tA!7zhR4-`^kg5T3|*im1!q%$NIKUUNv3 z7+gBGz-OH)p(CrIfdTOa-_aL)RC&n!-o0B+JIW1`+PJV#P zGUg)Jk%S-VV7x;`+C3ZrPq?1yiR;<+PO2_rPQ`4i^IvKR#yJ)Er7@1{b14WMWl{iFUlD%3c_RYB6PM{DUD{f^ikn%iaVf z*j!or#ce;Qe@Akc`0y{1d#uF2C%NO;uY7P{)PQ}uJwERrEyt_4JnfE&|Dxl#wtTD8 z?ro9)kfuX0rxD{cWETf;r7Z;(9^-m8Fy*MwZ^^k}K$R{{Ab$mLX0RQK?z2JF{^D*%)8q=8K7? zw}aNo2vVz)Zboj>M{d?=6)KW{Cpp73N0aFqp*h-~svWNW@z1;1(Ce2(Y@C9n74a!A zPl$hlo?`A1v<_KRW+;-M;8^J1w)}oysAbel9iSrrj@9vt+gmQ7hnQjtCag{y4GK8v zA$nZFVB}BRh0v8jURE11!(;Le@#y53ZJE(7j@3C{e?)0{v2#vu=yY; z3JXvZpbA~XGLQz)MRVW@!jUH$c|0}{Uat3!{;0kqfg|}Y+$5u~G=R6c1`cS?&c_cu zmRO~1q2WUDD68saE2xTjK0BpoYMqHq3bL#A$@MVC)3(AWC1Y2gh?IY&;(3JaV0t$< z-&Y{it>y7(@|~_WD{~lX*H^9blW@sW@O7t?uK8joo*HDLCd{m>M)9UsDaPAO=&bp? zs!y+%-M%E87ef2)pmJC~^}18IDoR9jGN&9%E;~7s)jS-lN_YQ4fSLW6=b<_EYye64 zL%8Bo)Mocdk%m54h#%?&0veXz zbc`r!TiH=w+D@?=(6&jvRbC!`Ut@Mm|Fi~WEg<&Ic3a$$@*kPWa}Tu4?~pu1$#tBq z)mdIlIx=|8KeASFcI-gv&8I0^f|(bxjNQ-Nu1m{wBA$&%p;PO%p$OOa^pY;(Qf2Br z6O4LzvrvEL)1TE(QCkM4ZuqEa0Bf2-3J8%2yXjBf%~DhPg|L94Y7CLAxS2(ZZr+_-hVXko%Wp#A?FBv z@tvNTI|>}xUo^=z9v9xRyw1Z*^(x0jX?7+DbY6r+Y zPZRhCX-;KNO-x`5`2G8L=PbE+s#+U*?toxHlunz#b=!BR!<b{$c z-_q-(7*{Rxu??^Lf!p!SBG6)7A-MZA~T%9l=LlBJ$LwN?EtA< z*r}V8EeMi_2y>oIB6u%+RR)+foRE;bE2sw<^ovcy5w$A_4DDT9+TmIVP)XfA2oMPC z)3oOCPfecGbVS{RC~gFR3xfFGTo84}0SUydgDrU)?7i?%h$9rDbo%z%h#Nm`Zp$VQussDi|qKbpJwm7;O|0MjOuWMu`F0!RQT_Gnup`e|%JE)rT z2TQggwL*>9Y2vt-k(v+GEgM7+0uD$UUVJ8sNkA8Wd*`9O${r;p?{?n#ZsyTvw$t;? zpFtDW>mX=`E6Thn-m6SMlY>8JcTrT(M}s$P@<)5yE%Bk6mI9&QtYR`kWtY`xpBK~* zPC-^Zg3Go|`M#V6Pr5clQaSEiOM=MM5NA$=3lnvvw-MaFqG($ldVM>Mdgk-(`~-+Q z6oj;vtaQDf5gm-9zlI8Dl2E;nsHV2J3KaOFlRvk^Iv zsv>iFl^!%UK~CcvE6zAV<|xgSDw}o|-BsF5*DkV^@!bMdZij_c@zh=(8B?qK%{n_x zx$*L2h7US~J8W*Scd$jbKV|=9#6mt?7EdA({>L|kU+pR9yfB5FP&VN&aluNZdHW!q zA?CTpN2j1prrBR3gv#Z!uUB@5!|zN+TWSSaGqvsCp(B@sdN6r4bC=0muK9SJF?via zb5ew}KA3MhaJRakap$0w9W7f=d{edC`zC*!mcD=UpM(#S(Lz%eyZ9daheAXKN5}YY zKR%ssF^X+*oMR7L+e@ulWDFtU7-3?zik5ku$ydWU?2hwgBj8C8;!#aX;vi>P_Yx#{ z8Ctt!*O;Sy_5uA#rYUdDA@h z)MI?L-v=J`d!a(?WgWx`Tw3a(IAue5)2Oc(llezBJR-PIrD02PoC;qJi@&34tzyMF z39O`cE$j1VIqqqZFujox;S#X8c)O|wr%^^=6fjDWTsj|`+fSH0Dxato zp*0_Yx%%K}W(M8r>LgckgZmzSu7`@ia~Z24x?;+2uVYoHq`TM11{$F|dEwi+N`868 zB577L_QBxn)H)383UN}j^eCB1i`~SF z8?WcmPu?WM<#yc1ADjY`cEcxv1!d>N2y=R~!_%pL`duAQ1?-JhBF-g`md#=pT<~Q< zf}s6QlQ(Ge6Rw7k;QK)5gk|1A53k#@%Nbdx8^dMAX;?OmqvE_T&H_v%^5pp0VZp`$ zmLZpdy2)>;k$>-Y3x{Ud_jBVML#dY{f^sZHG;7?mv)5fb3z&3r(zqABG7H{!8>@xf zOSk7(=G7l=?UnZFEn+V#Q`hykN+$4l_>w8q$(mlv$o=edG27rSW>O!Q5&bUKkP(6S z^HlFoRyg!AiO zm0zZ)onep4d9z85w7l^EJM0X=a1X&-$$uMIfV$q@hMtf256B^*0{fpjGrME&{`*3N#Xd|p>=m#vRp14jdr&- zq2tZ6B@AYJS0ffiDd z1PP~mj})ZOsSnrjsfmi6-DqLYHnf-3CUWTwENlFI;uhXB5?1kSSJ|7q*W$Uz8IURl zhAx~XkMNZPl##u0o(xb%YYvqmj*JZhvSuzluJ!KNb7^@bs+J_6yg4S8AdNIeHKbbG@oC7Aq2dr*(u-NL z3&*0uOZ>I%FuO7$UY&kGDEE}(>%0IHN%{uaTs@sRUx*y zBzn8ed?Xb!@Kb2iC5_cnevDIghr`J|mq6kjI+(Ay;I)>6a15tHq5q_tTlo>@+tt^! zm)#0g>GYkN^^DcU%X;;FdxQm#W2 zujBvaV@emXJrXH)_CPhYb7et4h=j(0$+<)s@)xam8|=(4GTz{(#Fc+1V;bS~yi*F# zKx2qaMVJL;hB>!@N0uKi@x~wtlb;kHdDpY5>x*#h^E1$0`FufuyaxN3HUgOD+Ex8K zEUcGPonEP!ntkPb&EZDZ>hqc_BF8oSChh%d0&AP&c$S1-x(TZyVQs4GeL6h39ge9l z?{U<~nZH#_IrT=antzF+fuK7(=G1n4H(_OUJSov4;i>r*L7ZS2 z=Yx!TmzE%1$HWFr+c9enn3n9=&(->%?Y^T=*NC7-wf)Z zi$%f7GjSCACiv|bQxdRCdhemftg7C1)nItTzy3&(=M}}ODK=PSRpuCy4JtpnulSUG zAlH~tF!xJ~abCXE+c)Hyzuqc+BDwKsi;a!F;o0kF8v>Nwu-0EU_D;2`iV}B_hKFl2 zn^#v%PEkFhySzg7Em*vB6k8uq3$P*AAYb`_R~B<5@U9wrF;T1O*%=X2D-$8+ z7pB84-p$)lrk|$Foy@XC?F=Bj_e|%*7O2iW_OSK@qb0z1T z-(H}z+YU()r&o`a($S6_ThoppC|R6m5x27BZF)tPjxtp(NmO9}$wllO3sjx%osh}S zVoIVk+u01>Cmyi&H9x+(vX*fDdhWsLP_tY9Qa&Wi26|NURH3y=Y{SiB$vI&+Hs8i0 zfF3Jd_CAKh1k*0uuA=yaVE(m5)$7ShMjvaFkgr!%-|)Q^UFIjUesFO#meKP?d|Jyx zQ}klY+4EH`p%EYH=>_q&w6xvdh|heq{CZW@$+5>N6-UE%$j!_u0{g}HSp#qR{;$c@ zOxAg{L1IqYs|#d>YHxHYafIt21K|QdnHNih|42@DdUJ+p{$B3!N|2#fsE5~B{{3|P z+S25@uPqv7Zhk$_rDWL`$>hGDwhK}A-ggL^S)8@LEK5l!%kf1adfY9)wO)Kpb0Wrs zM&9fs25lap9?#*~LsmE+c2f{1UcU9}&=qV)`O56tGst-<@b0}II6f2meJeEHzLz*w zy((H#Up2L6ZP^1rbK%>y!*GYX&(+?|Ie`?e7`s6d(1x(U<#@j^NPJB-R88~#u0-dS zmDkIAwBt(6)wDr0o6;K-w4NW?N5?LBh}}$gEf5lj;yo9&>{#yX{Em=(x08%zee>g- zv6lQj?;?fd&fD*;whAMs<*d9lW6m-qTq+VxaF7)=yC%r2! zbyo@?NDM`&3w_7uE-p*R((7V6-B~rKzx~Dh`Dh25XMwWQ*ARx}QB&U@{VGF81tZhu zia8b_CY@cOUowtA`O(o{8I7WizeMu*s-tq{t#ToegiA;1YKd(egD00Y9wj-wy1$}w zYOUy+;8kYqk!69X>2S>Z0YL}tp-Ofv_B2pZp7WQtXapHH@Nw-Y*xCx|_+{%ex2@59 zfj&vn=*4tY=UZG2qsZJ-w&9Hg0_!Mw7Cl-w*7%c+7{bQ{th(8Um)M2p?={b!J$21M zNWwi@i=%OoT_plOQx;ThJqL2L0bKAU2iyGwq=9Jq!oMD>*-Mm!$ zEn?>%S*OTf*9$VV7)J97t!(*38IEFPu$& z7Q`7%7o);DNGq7idX|AJ`?87gh@}Q&W`AFQ>b07?=(RD)n)dm)-+B^cHea5I6}z*t zO!S-I3q7$?pQ>80Y%OE&Ts^SO81d;TI~fiuj}P0b6ju<4$a@6e7n9n*!jrwO6 zPkm9vjE8@rA0{|p)^*grNkpqa(LPfNk_%^Ef$58xD9bSGE56d+`LZ%Smb=w6tusnt-`^)GB}pt46uVBm&huwu zW#^aGm<=9p?Na`!&mvCx4gb}%R>ts8D;$?=?JQm;TREQ3e>(l8NyEbK>BQSaE7jPi z+=DtTm3}?yylOTT!+6Fq9fqC74n^Su$0iAVf&{GMMvMTqksd}M!ItCh?qlHZA zX3JH`dK682?-E>B;Q5)(03JdigPJn*fDX|}cyjaBt_pqti^(JbhQLDs#5fD^zly4= zIS6`?MBFyIQrtgDQK!8!a)$0-ux&RO%y+g;1RSh2ou$(b0#(+= zI5#&MW&UQrqYw4nKA9r{KX5H8y3V6k{7Y+OD_3nYXBs?`4ISw{L#|v0Mu&U>{?bYL z`gw|~`)4=AwF)r(X`DBsXa=QcPsg4osi4;-`>@u2&7L-bIadDFDdU>D`)^_{mR}5Q zCf%F6otL&vrZia!Pz>S@CU*35P@9tiG0d_C7!x7M10c_cZM01`L;B)K`aA&o-e7oz zAh$F&_aOm27JzHoz^cm1#Jeub1Gy-&`hf+d%m2JVhqzFx)z`T(WF_XApm5^SR=EIld+lNk!Ff>hvp$@&XTa zh!%MVYzaz@a4xIc%y`a?YA|+6Z;d3(xK2wI)ik^z$e75^HLrPg?Mv=DHGN4 z=DFjCGRNC8q8G=%evJV^&B&UEhlfuL(@aweUjD@ZY0Jl^THpKo^Y@7I=-=*_PtnFz zOY!9udzNcFHs1=*>JN|Eja!m`F#a)RSKmI%MhC`-xWN{^S>%FJ=sKnhS;Qh+&YlBls`4c{L&ZJm}Xa6&*i1bFmTn z@NQom@@4>hZ=JU6mUg6#64yKTvY5bKj=qnEZG^Tz+yO6?+j&3y~o&+$hm3c8;I61=)r-*dwBQJ>z*je;OT^y;P#rm7K|BP%q!{GODecgF(L#^!r*+LLL(dMv; zixJ%vOdLd%l;&961fGdclvrJ1?o2}rK)K{_#;Ns#jo}`WBEVd zjxawQnmsf03Se92kUGRRTEECR7<6Wc`mkz3^zIiSr^y=1Q>RYRKnotw#7M+tXE0CG z%XA8w^>He>o4pbnG}fcN0HYG1yrFq~DTE~m3@$?WFROiy=bS~k`4Q_Q8{OSQ+l7%7 zO5XO3MQt_uX%$jAOCSv)8TW_?2=ceb+?+(x@ll96%6q#tbvIw<0YVK?YVm z7voNc1eT**>92F;2z)ZuVbH=zkdG{?H0Q>5a()whtPx9MoTNVRp{4Q%mgVdQ(S!3M z+xO_-ZeHwss`83$uy6H1k{heAZrMS}OC0mY#4C7b=eyhmPOsog*vmPx3Z=c^93Ff7 zxjz-(hs~2UH8rKcQ9!ZH6ecSkvN=6NK0IgT|Gn$`DHo+2{43NpM_ewkyX`a``ZZ=f|P=z;T!-@ZJ-PbE%9G-+%IhSec8t8e<)S@ z9iP;3YZDYrGtVBZ%kn0-;KIof;9|ma{BF~8?k#z8xoVFgR!W3(bL*`U@u4SvO|8TS zhQ4k*Qgt`V2yJv@wX^{rXGqQq9qL|Hx-N6k1Ho}|`KG4?!URUZO79{z7-2W`xZhu3 zQ}R2jq{{wY=uXsTDTWH@w4qMCr}9cfCog7Rp0Hp1Fe2b4M!hz>2MubmZz)&7v1~K3 zf2bs9CC~q2X86;+QxsSAx^2F_8v5Iz2Kk31dX~9u=xVO2q+CvI%g%lp>g!dTDz&ou ziErYyo|RX0g`RiWJ#r#%vr9JqbaH%S5TD(4ReKDyEb{)kXUAaM-H}Y8ludt1o%(!zvF8xV0 zY|G(%vUB)uvFfN91&%vgrjLbu`ogX6Srvs1`sh2<%`)zXYkagOH;*H5A3WRm<(-jN z=$bHg$M&~0Yslprs2{xUi5~)@UC*w3j5+1r^fDZ*S+?>>-ErbOTxV~tjEMJhUY!+t zc6)aOr%o3-!zEFd^lc##v@FKSqpLLO3Z;JxQ!hBhC@#$f=@hz;+^v;;7Mp&-=`nMP zkRY^RrJ)12)83Y;g0temH)6}KHg7J#91K7GwtPx)NICpxc zWtJPZbSgw%oa>WjKS@j^x_1%pH2I9WZK>{)BnNh~?bFC7Wt?x67 z?fh&lBAdVyu=EIDqcK}`+UsCnXkwz$zBD9$Bj;;O5az52p5y9g-@Qp23m*Cys9vQbS8^QCOEa_(A_EKhE{!bINWY}=oK z=a!1T$W8fnwz=ts)z9E81AQ10yM}Y|rpVmgH;MWH_t) zr-aDcGE%i43BZkhV*Ga0Tmu2bp zwwv?cn(z!$R@n?W$yF;x3rQ9#e6%LrU8I*24wpN@S%EbuC~Ex3kBp48Q≠hU6BS zX$&|@X^m#@5YFB~*S^k}bWX&GDL606fmmVGOx?yoN5ms`vsr-RUBDLwB%eU<*EXmz|!1Xhm}Ub{fn^s*_IDaw|*;SSl}@0KVPG2OK}vc+v& z%t%>&B|7P7jn&sAo-$B`_#0k4lSbABx_>>|mua{mp3}{gZ2^3K(d%^Dn2~4IbyFFy zAE9~48?XI(Fi?2QSXf1XjEq#$ogkmm%_H(roIha;&*=%i_#vw1%6svbrCz-h(3WD5 z#M*%?PXv0HVU7*!^EH76o~2Te!!7MMgG;?73mDU{%1r}DG^pi)?O{lL0(!rcW>^GLoLUu>f!O&%fRCNgwxC0zCuW< zMxFBcyrd05xC906Pk!iYWxD)I&Z3>&Ii)@oZs)~-zC8tew=fmjN2qHr7`6JE9iM7z z^%x|)0u!_+zFFFIAMdc#8gB3V=&taIxrMuaCg)nLoN}L99zE#BGvLA!ghRhx?mJ1% zv&4R-_fvL_Yda3?FX(^L5;~9Mw zO2M1c+K)`bs+w~C2)2OUy#*YkW5CA~IV>idd7ejjgIixLk9;{WJk#LnK5C>fdS9jNGmUVI} zW!ukPjwT%e1xdC!L~pu*=YkLt=6()p-gu$ah|nLwKh+A-GM1K>P$+KW3N&Iv8yoPG zMGZ+$1xIRx5CQ!MzZoJ66l&uBp!)t+Y+%$vSF#P*8z6SK2phx_&caHpWNo`iyk-#y z`6JNF(^G$sK=eEXd>Ha5yw|d_YRMmr@uWU|C{WvXPNvI54`a19VyJcXOU&>7IzVhU zp+QgvAs&9~?$04+2`ru=rB}FDYR?qaIMVRPLvnZ2=5Hk)%;$Fk4h_J+cD4CLkMAgDUnSUB&(DSlm{Q*e)097d4jz>|91Ol{!y~BZOKZ`SpJ@ zx1JLK*5?u&xg1OC?2L|2os)csWU^HZYP5j=Z)B5fK${{#rj?wMn1;QSS~WB4o$PzQ zN7EpLIrj2aVmLc!)80fR{UmaHqO{ARgQ7bH5G$gY|RU51`1^LN7$REtVk` z=v_%kRFY8pi!EljqfkKFk`>QX)YOc%^+zbIU{w&+;PPQhQ7u!P66}?|;fa@lMKF@b z7%TI~Tj3L;+gC$_cu-Wm)Z%9g1qHTRdpWtCv-c(+DffYdJSj1j4?75M)ejz&d4D>l z{_guo=d2e{sgrEICOxRv>kphq+Ib91Q7&~mROTQ(==%Es5qdsy#Dlb`Szr|X9XfL{ z61`yxA2D**uF&rRKkxkUbI2@(Q?)B_|1LNS5HP?LR0`*JFV_yYE>V`HXlHe5_SV#! zll-}II=wAafV5W^?~LSWFrk6-_ia{z6SZjk>19Gb(`pRzbihb8Xlt(hLRT!^)gXjo z2=T8t@LVU(V!c%b6k!+t6_e`eAfmqU@yMnoSx6N6G<$XfjFWF?dL+$>fKQ7Wsu6tP zRR!osVXQt`LSGSoAt+(KOG9Wq8%ir)pZ&!BgQjXtq!5v_b7>H{DTUAS9dct8e}?;V z-p7^i-ep%-R?hC|1z}DSQS&0!_FF%?_-ua6cO)Hb|C0RiOVZf*jcyrPI9^Cd2&n2OnHk0=Gp2=c?EK3pbSiIT^AAqc4#Tu~vgmD~3rej8OP~z$C83=}iu! zNP`STa47@nYVc=D=Tg2Gkkcjg%zxJi2^3iR{#{V8e$0sq2>*y!1{Mm$nH^#8Bi#^K z0=D*m+KjZ_qRU21-ANGV3dFG(i48@XJwS&V3e!d=Akx+HSkt|zJjlrnF}yh^^%L_4dS89pZvW8>hVX%k(zWd3)7s%Q zXRo8ryyriVVvp9>&WYo=KCFZSrkAH5krjh;X#qOvYDbt6^mnWDjwrol7FC2RlPH8vW0l_e~e=hJ3idr z`p6PXGqwOGeSSI(F?4LtyZrog14ezxjky{l}gD3@O34S4_VVN)XNr?4G6LHaqjnMkt(x zqJ{Smte$1T6a^T|++Az<V-#Be#kMCSG-&Mj_N-Xwg0VRl(IfXMVwZ!tqpW zt+*VTPSP6#D{bXhO1aJ~8c!>*T!G!jmUr`O-Gi

&ExdHX`W@XKbTkynibzIU%`T z`KY~4WV5YXxEVBItv^=xgRt$Vd?33RQdrQwmQuDRJvlj6G zeIH)>)bUE-5g$TGhMd2K2m$hi(x4p7?|;4p zOCa*qKn2uYe?QeLFtdk)6=PaUu; zvxFOgBp2|DiP@ij3q7XpjH~3ZqU?XplMaR+efHOH&v=1I4Y~<&Xio71P2JRU%+?!< z5FQ)viIznuSrE>0R2wmpaRJWxx^n>+x4)M*^Yv6f zT_J;k`GtYSCI<=<%tpg;K#>;@72IJNQfRa1L8w45iV?`G4(~w%w?Pevi8Tm7tRa74 z_OivV2(k6*IUMx3qXgj56(OIMZMfL%G8p-ALn~2oYwS~iJ_RAZO*e#~`M|^DLn0-R zXo_&i(?ALtnmuYleB>XHA20LSwu8JcC77!k==Z%79%|0Z}T)%!jyQ<1yBJlXAtsFeYBAi4n|5-dfd=BFYjI8){@}Gj@ z=)J%VY>Y!nADeEO z!xot^HFg%DS;DxL{PB?m5;r2?J!oxU-m?Sy8Q0gR6?P-L1_B8TP?(jG5^A~4YJ&uD zGv5M}w(S&yM*tv1kZXv^zA>xShmkahX_4H;V(8mgnJxcW%9RLy|=70pu~jg z@l4~~MYjKTf=H|nj@zQ1E?v~6t=zV&bA7Ii1G`j8?~b)kv-@R&)_xZyMn1nk*8UL+ zB}HP*JNY9c?r?PQhW&mMn9WI(?Q<8U|2t|aWIAsC0x6O!2zsnx7q!28*MqJd<|G*Y zoPc{E%N)mfAkyHq@wMFL&&v#euTTrlVZZiw055@u29Sw6{Wh4RB^Mn-eO_rB zyDt6Qi~cPr2v7^fI#Q+ob-0D(dVico-qx~aAT4zI+u^D0OBJ1+otDRC1Ouc{K%x9GVA^os`!`XjW&E1BLZV%a)d=LH4r2cz{{|b=U z2N@+vzFw!G9f)B^>-}p5?BL--KeiF3nRC=H$UumJaEY!Igba`9WmAM5hZz$(EMc=~ zO98B+Rp+z=+#6U}TL5NlmO+s+VH*)N=5YJd+-;eI^I(32Oh4mQtvUZi1n72@Kqskl=(?=*EN97!~*j3ac2BGJzz41NC$gNr+*R z&tL5~^O|IXIGL@`!2M9>gpM#6 z%x-`ujhMY>8QVI|_{{HzvJG+UgZ;y*-4S$+ z1{K8s@{bsfz>T^-CIc_J1-%>$nJO$(z2Ym}e#@#B<=hM~kioER6Lys3;#dm^#r`K2 z!=yhz5-MKgMVCqs3$Vvjx4~t&?FbIt_XHslp znh?-?4iqBt4<1PHHXPogllG%Q-Wc{ZEG&fFaCmFA7RbI0+ZwAgt7F|MEM~T?IhY7h z;h~I8%U?x z2N~q4lDxXQNrTa$rkarC7H|ti@Y_ci z=Dr%(mls^r2VZu<@$lpZA5xJ5!iga>iGlMhfbq0b5CZcT;zevI5s@1_l{dq+iZIG# zp@oLUB_Zyeu>E_3FdT(~BZ?#v9X1DOaVsn*2IHA5@Zm8?Wog}k9R7|r0vV7fZ{T7? zEg%snMz=F>BF=Ym=>C4Z5_as9(>4$u^*2xk90r2R>tVY*m%yRf2D|;qWDj^bGR-A; zIokM!{m6!Ekb4FDD3|dk#7q&6e{3)7nBhl6|Nck}65adD?;>jRLBrkydk2C)b;q!1 zQNq=o%zA3HJN_#MO5qRxHeGDU{?BI+QqM!>{QqJy{{NTyUthTX|GoO(yjKgyXH)|c VZpyP4Qlj9GvVw+uv7BYle*&c`P diff --git a/docs/images/specfem2d_example_files/specfem2d_example_38_1.png b/docs/images/specfem2d_example_files/specfem2d_example_38_1.png new file mode 100644 index 0000000000000000000000000000000000000000..0363acc0427a73865be0df918f1bdc3b34cd9afa GIT binary patch literal 79890 zcmeEuc{G-9zwc8aLWX3B43QKvm1rOdDUwnV88go+nUxG>h*DBQQfVMlp)$`RL&`jp z24u>V>3pt!@7jB>v-kevoVEWsYn`=T>wRB6?&o>#>$<+*&-A^oA3LhXxMsr|3WdU` ze(2zF3T0&p`Jtu3Z^l9y58%J#FR18VIN@k<;gX4qIYratf|H%&1v_g~ephps^VW_I zGTV1a{6bh3G`C0KyG0B>;f+{|2Qe{op`r`N{N~L=jQ1MPT{}5=I>xUbRAf@s5&y{k-g#zjR`E7PUspLNw?aliC7ybYD6nEhNg)K#O;d}iGA0HpL-`{U0 zYlidg>lqmddw*%PExF6IEI8rfP?PG9c;6-Yz5DhxWZCPVJ9n-nSwY`rtViklh21=R z-Rcvj*hNnnqBY!#c;*Qlka(wbr3J2Vs$9nG0L)8$$D;luGeyF^9lNAqTQgV&4F z7#SJe7T0Hw_xbbu@yPPhjAHI|n=LIJoznjOl)nCc=fN5-!S^dx(L6j5um-=r5+BcZ z`0n~0_KnbGcD8Qv2EbgE$+0-ik+`99^L^ZYn&l9`p& zui4O(ae2ObIdu5K?$`n8^Me{!I*oi61GE!W6O^vfkP9D8D!ISYR%5!gF-c4N-34oW zAzVW(&7tkJb;i`th22G2-b-`eth)2}k-HxuaC5Ae|!F0{fm>LY~p9wa8qgN>6Hx(c$!l5Ezf!W{;tiyDM|VA;^fuT zREZ0_H#&6W2(KXhLODc&XdFf|6Di!g1u4@9*y{larHX zc<*fMyoQE`HDZ_Gr*Z zmG3EGQarai_J(G(=Q8u~6?jJkbWNY|k|Up#G(QxAoniOEv) z{tlDQcNfhlE%;N->DHEXGd&$0wpE1|b#dalmxh|e6Fnkt-O>$MvpyO-)N^)Bz>yml z_4xh0s43N`ZY}TL$|wn=+BF>8Yu2!fRUSWnoa(Er^(X(6&yHQ08g7leBc^vtMNREU z)(GyU-B?eN-ALOTyXB?D;rFBYX5=eVT2}LU@u$Vg+HVNCal--&V~Oo?j?ywU)V#S` z{KQiR&$+L6^$L6zTaHNNm2TK!#ow+dV^L$w%gbxml4fEz^Q+UYJKx)`;gQNP4(3<; z?FKo8#U&-J-y0HJr$^dbvAC5_HDk(ud+f9A$dRh9s_L~L?R;M`@vW}T)YP;E$D?Iw zalWFJ#QIle>USB-Ks*Lg>f~7k@?XAOG-;1BR5sn`1rWk zwr#=YmX?#&vAZvt_V)IQ?c8}s>%DV7&E)j7MSpqNx`EY&flPc38JdBcehyScz9=2T zcD)xK&NM$5<0w>?#@3u_WQnbgRXh>lGxO`Lp#H0kroA>TO{Y@MR0W&J+kAOZ7R#^lC$m;iP0a zb}L*NQRDM2rKHJN){a@D0Gs15`b`fG45Ve4S7#i)vu$hEb=>FuCanGxEiJ9zzdE^- zwBpMH=s7~0QVsJqP}8#?3}F|aef{Lf-A688KhV#Hl1geOM;jZ zkH+qt3d`<~)$W|F-r9pW<2yUQu2fyQd-DOpS_~dfXLPu=@Or1s8mwo6W<^I~bcG zBO}w0YNW`(r@(`cbvo7&_1!qsr10_zzuzmV*KoF;dU=X5E-o(T;!xB{`}OO1dAEP} zJYTJ2``)Ty)9jx=rZ@<}u1iZxV>2_m4yWp63R7say4%~iDa<@PVrh(YbSo%mb64#5 z@4x&o4;?~DNonOCKmOs>*G-DA`7HiXN@_I0d;0yZzAMpRdVSsZ&iA{}tXELb6^qkM zO6ngft+MNUx4u2gz69s~W?YuLr^d#H z4D%z8pFW+CUA>lPKdR^W_Xa^R{Vay|Y)7>_+fLR$Il^($`MyoGobx8EdJx)?@vn}z za&BY%?=B7n-q^TjlbjqUHdbklbAOua$eAy@IM;1CT8g87y-snNC*FIS%V&OM*K6xW zn!0$!(=`>G%C4?iFUpQ@H_WA_Jkw2o#Ghwer8chm$~{(%96L3JP1A$COQ3{;?ALTlnwa7re%bR==1W7#J}Acz>se zUWO3rvGJ#+`UGV+luYz+N6iyABO|X458Ev)&UBO8>oeQCI(M>m=l1Ig*a`?h45 z(|@?VbrsGv+jaxa{)%ul3yY^!3#g5&DMi!Sj@`T}A?#)7M$SJzZQkoXK^4TrSB^g1 z@Klrgw&>{_*&C%ysa_ep^~3J(A1zoeU!0$jvaIEKpy0j1F>fmB;VT92KO*Jo>!?fw z+<)E`-f`qA4Wq7`n_P8G%|K)Mjg8fmG~4D^@>L1w-ou;@Oerk1$8+J%~lz!Cx)o(;e25R(EYuj@4fia~8M|bWuDOxX1 zzT8kIiodwOUQ9Q_H`!V}n(A(nW{j-gZvZkWirqlvO~2o0NttPBl1gVTT-Y(x`953w zp16J%TZ{MNR5JtR$l=4szXn~<$?KVx zb<&QGj#1Ikm7JdGqcLkDTk<@!?Ygh4A30+7^}`)Am0&iLa6ZMTHz(E!OSz31=Z|`O zd9~cye1vU8GeDj55t}eza`nnptMsg_MD$-cTI6uP?Id#K+V%FnC}b|MTEG)F(2!#%#GFRaAQzs}= zDd~pS=P5BSHx&5#{{H!eevj+$eiZ1Nv9V!jDhY;p9wH}SusNR2w9phg^O_dNRk``q zS#5$AgM##REOB6gN>-77vu}H?gicRAg!@7ldo(C+pXZv~$eTBBJ~Mcm(O|VUAtAwS z>dWcPLn!v^M>}Z@-KLioCbcMU9sQP3`xjzn0;k^CwX*KH^s5wAlA4$I2y^(uqC3ri z%89>GuX}M<(WZ`xW#a$%bqBT!|2mJXsQ7 z9}Nq0iFM6sJe>;wy-iKWoEq`7Z93mYcaG?5b-K(iofWWj@W)(NA8lN&+)IPX= zQ&4R}fZL`DXCJ_cRHPlYO*P56qNiW^-@SXc>gHi-Y3VTl@?KP&Qh*=LUw5C9fG=AX$u0>n4u`Tf$<#6IH#WI zwacMn|4>tk_Txh=USJe{7n%4J4!(CC8N6|KW~kI)K=oX&R-REzlv<36c%vlv?@n zbgC*=I^DK;dqH^p_B6(9!u)|D_Xc$H zJa&>Vg8eNhD7b2QX+Cwo@yf!htC^0aoY`6CGWo48{QS3Ct|v)JNrEymk)zr5^~b=^ zs!Wo3_qtIEbHW!F7w2-?u-y{@x}KeVFH3q^L!#Q`)XS}r^GpMF7k6*uQ{1M88<>9n z+tCNRFCJ!2Obx^*@AqAv=gVLEW9t)L`ug<_%G>$+M73~cPEL^=0Vp9J^arcEnT$fzr^NW+!$ifMZg`0KVx|;9$@TpC^Vy~O(IQS|Y(961m-3~hr9C}GR|ze}rWnKLnj8Wj z0Qz$RJAJU%{gV|-f!CArYLV67I^!fw{LY=-q7|nj&J!B|+FR7#uK&e!n}v4AX%vJN zW1CLtF1T16KD_2vcR~1?_1i?E^wUjMNOL=+uFmrK{8#6>w^B||3|Hnk^{zyP3U!Dp z)k!tn2zrv^I&%Nv63!f_dw$u}T@me-_%0b!cg6HR4ODA~N>QTnuDOo)sQ^qo0>h_e zWK=+`m4vE9PY&_xOMR)?#z`d zS7cvm(L0&2+OVH6VeQNB+xz5W%&s8A)LkAcoPjIqe_VhZk!SiA)%Ys(3l1YMliS^O zbxe5Gx5nKUzF$VWr|+8Z1)$DfoYsGB-`@22(mX&&WmOf68}%N%0xN1<9VNc9T_S&W zrM9+qZqVoIYI>|_5hRw7ig3P3*IkZXrB_z1CS`DI6XU>|6X;r|^{_+#|eWi#mBxqS@})Z9Q}fnq{h1vm$tdJ0##xw%E>TBk<=-L0g! zj&_M3>V9L(v3KuYw-xjQOTOsNr8w=RViz6S90-)(n_93`jQ&miLtR~+Qb_-u9Q`Se zs+)GVZr$qX?M;~V5BV4U5koUkdvf@Wr0YjoSfuU(%0RPX4%@Kv0M>=9;^&vAnSg)}fG0cu{JiyZsu3T+_@Sdm%W>$nv7b=@ zKHt}5PxG2{d2Q9O5{sY=a(e99F@e2qW0cdc42tf_SdM+%)!mZ3T^v=!s%cC=ikY1~ z5N*i}D@+bs<5NxNi2-$u7+JL)e-OxPm2jTw6T z*zey5@d?u`>v+AUTPm_Uv{I$CZB!Jo^s|*F(4-sU_78ta4~5L+<>q_t?M{XgcoiTQe>DC%#r&K_!5q5sF4=0*KR+X~_ir zz=G{+f%~KdrDxw$@TWdyOVWra`%%-hv+VSg6lzO!Axc%Xwt!UKIC6KpNnh!8)!ubH zSm@o@5n<%$_%1E1WZ__A6PjJ#Zj>JiGPA03YJmW6uXZytGxv7rVTAvIGaNj4kcyNX z$NV`OBk!s8L1!0u887bp0_&BMbKMG4nk^=D>O zq9th_jgOo?$Ow018^ZZ%=_@l&&(J1;xll7uAZpz)ST5r*O2cxbqw@~-_m>bY8X9kW$LBMTX5v{uCs2AM*YFDW;P2=M+Znh^TtNX*VlLO+qa6tw?&GuwaUoX z|7KhNaD}K*ey+CrVaLy_j87yTUH>>%(Kqhmua0}`MUGu|_w>xHtUNT0CIrA9H7?r} zDm;!|P5bF|s^LdU8i3fEPgva#l(d57r5LS9Zp{M*!r32fEVi9zBjOyy1`A;CWUGcp zcG$#zH;-_7HgNR0T3T3SKoQ7zq!J>{$H#XHLTi>&?|~{0qF6SeXtT4im11jEY}n;c zb2MH-JngN^*EOEN{Ce2OjYCr!sm+;$L!dh8OI}}H0kqW$!9?%eIibn%aTCDQTRc1c z(mUujk}Hra`T6(vFH1NT{ScLCz^af4Sp28~{NsZ}> zOS8&Z3{T#bCGK>ZPyTG`_5f!r7^NjVASg&iLPCO_m9-dbuCVFVSzDcgPuI5e{lNhc zw-xP50-EEK1-55rVJXVZ%hUVu=}9a41NAzS=neKNUcZ0<7>4Q-R*4$qNKQ^onPZ1p zq68SD!m_pO^Idw7qMPoA(jOb(@1OSYA^)j2HYc;73?!O80%%puT**phvTt|!5`E|< zVyPU+gyOMDKwt$LUhU9RX8$8l+lW=QqZap{nS&!}d2!U2oyka@*?$Kh;d@h?ENLbt zrk6?fUsyw>B4zTpZoEB0ysLv~$*9$!j{0^95WVoy0=`*f4jlHZZ|C(6ttKIR} zE+`>oQ_#q^Po4UW`|dpT^Q1})^q$1)QhyzuO78#Qj|HeRtNzPPSlIFE`0wuxtGc?n z7G9TSJ=9G%MP+%T{RcE`Ex0ZE5<4oF?8~|+QjZ~PtY+e^8G33JN4nGJXWG|-gZ&Is ziD-~!-6;HJ4yt4jh%5izy*$v;h^S7aJ@t0)`Dp8;cr@kF^Ued8^uTHWq3lJ1>QJ`v4 z$r!JE+h|Y#U*+2M>+m@uc~b8wfAq0&h{tx?GGTRS*MSnEfH6??bKTMh{-}lXO2OVB zr!l5UbZ65TU}_B|&EKCY>dqbW#y@t~H=8lO7bW7UkdQw}dFV)YK|CX;BxC_p!d>@v z2?|~%!uI;@2GJ?{**8X7GlSmPHs5e}cTWeXUt`AvIUMIt7o?{J?2(XF-Gl=HL_XJr zhUZ9h`lgqsC9-V3Y$Fw$)Pn~#?PuRzxc+0xPrJUz-9tRkUHMC0=eJFE5`v0^MFuSCvb@Tw%CF&L+7?bzsQ&x?RXnGH$R_=I#A_Y0VSXqx@)1w^l;VTD6y(XiHV!5 z=YXy^&u`ni_rdyYI@gGdoz>dfN~{_&Ik{-fc!gMEzKq~P(DXd*z<&H(s&8*CG4z=; zhnAr@{ppAVSD1ZGf~(@rBrQ6>G(J=b!HmpIVs5-Vm2!XJ4+@Dig_sbT)_JBGUM{z@%_jo6sF=&CRE zGM^S^p_7Tp%ARssHw7dNwWsRVX5scW==6hMzn0N|1K42a;i-Y`CYUylwS{uy+;>pP z1Dl0xlF)-0(SQh26xB#)h7CKet&qG|00obfZcx^b1G2cmH&#SE&=nLF4LSMzct9AB z{Bf60_fbmH@Wc5vW}m0*s=^yQ^2JGvynCau52l-qe8;WHorC6O01l}x)1#)#kqlXgT1{)K%yE^Cc3_Vb^Wxq#m^5EHq#dS z9E+wh@lQ(H;xY3p45s4biMS0JPzl+@beYA^yzXg?+I}_|tX+_wp8}{aqMs!ueDr~p z_9Au%=k5z47B$gV;K*^%b8Kg0P$}mufmTF_^X%N5z>Xbk1THD=6IUwUHAT7Zlg#VZUA=snQd(BVwNHWC#b~8ndzN@{aq+|E zA#Jo6FSJ*7`xpTOt1{4`vD!VO4~cFH0UWBa6D*CrJ`0=#7Gq0;AU0$>8bND3c&xmy zEJVA&$D2*$7zHpHit8qYrCGCc=H}zF1&h<%=)CoiE0nrGLrNMO*PVE(k?x`YIpgBc zDO5YoH%}n#=lr9tJ4pN9lQu`osz^eWNPxI3=iEmH4~~(N<2^5XG;Z&8)E_tZyy%Ph zKrkXu`k=epWTZ&s{bmJyn0$hkH6Vq%{{lVo)yHJ zyw{9Uj<2cu1E`aVqV%j%OL5U33z&E;;egkDEHoj0`q>V>(A`zPhHl)$4mG_L;KaP$ z@uOrY(UguR$!sXH0J3{#RG?tf{K`Iq;my>`POXnWPW&U{AGr13i1-q$a7X;1v=hG? z1ydAtDiEY3CRFqGCiv<5Jbo7f?W7wQtt39Xsw@g^`7`ar`p4?)u-c4AqQr`DmX9SJ z-I&M;_vqa3;nsDK6)RqyeJ^R(BI(nK#Z136YDh=|!L!i9&t%zM#~tk&geUn-KYKfl zgg?-r3DDFtn1Ams{P4rAh|cpquJJ&Q1^yy&&?PVZG9X=?D2R}qSa^6saUxBzAyMvA z8W_uojt=~62GZJsngCTMCtLJNcqCb=RHv%sU@^A%ZK(yJQ`oa%!I&>s9uG3aOiE z!ANxM?46+F6m)aj+s)0*9Ata)eRChEWRWaqUcWv77(oE%&?Ao*c>Un<D6FDD|F26jx3Ksyy^gXlQ7z&38_1=%TB2Z}n<;H4gqoII zcNyT1Guu;c)uB+8|XH9XN0x`IW@(-S<~Scn#FtynP$yB7zEQ zJ~?*2DuzI~yr`YH5ZSO(GYv`ZCjU^NSW_zij_teQ# z5BINd{Z_j%a>M{~;BrCq84c|hI$N8P^<)x%Ln?-9pBS!iyk-;zFAWo~-R;_dZBD%$ z*s7KkAwF*=w1T8wDvW{qijdiwBCYJmko7=-e0Q9$_PtD>H>38O>bIq*u0 z%Pjfebyo6|;f{9A&~Ir@HO_}Ur3QMLW>&G5fJQVje5#E|Dg;4K8h6DREd}4IPto5+ zL}_RtZ`|J1@#TCEGG0j<{T_jeaiN+?R-TQidiiI8v|=ZiaRka@!f;+LMxc!dT? zmwW6%^C0di6=eZh;w%Cg#7?3VxBe!@0_UR-Z!2>8)dQ9G4+1{6aiXaJBdR}$-3ZR; zHrk1!E_Lyz&cg3TEmc7_gZHkCxWj$Ez7thj=5n7ONdozqIqC`Hj zk33*Ky>F+?q<2UzFm7I8*+};q*dZEW+WP%c_mp z#e|9z^Wr8i!&@BXGuaMd07yNMTse|G`@?pndC$8NR|ft13K%>D;$fpA&|ezuDnopR$`z3wVs9gLP>+9tZ}|{+j%ZCR ze0+|lVgbyHi5`ewCg7XFi(o75gf7AnDh2)J&>(tmPEYo&mUUWQMf-{o|JrKALCKwJ z(svt5$rh^4@m5WO_-#pFUjMnrCP6_K zE-pHXRom;WkcFji`+g5KGhq)>M{sl3ahAXWmpoU=3>lIiyqSfC1!4`~tjF6rR0~>% z92Bx^*!KOfP`%n_$NO(0V}*h~F2I61NEjl?I>0L%k0zYg7@QGB7Zpa3!jS z9fPt(&KR+{Q3sqR2Q`UsMvN#gFR$5Nw#>{-V*7$(6`>1(r1`lZnx(bF<})pd`Yhs1 zVSh56`^$+Xg0>aHy7@4LVrphKUbLFe7($ts*f@GX+PNxLulbSe%F4=~5)Bs@7bI-L z$TjQgw4?_Ph!-qO&;um}?CSPve8%(3cN?&!g#Q(T^fpw}nrNw2xT(rlR#MlzXuP%9 zp+k6}qKHLwL>Z(~(zi`bH{FViOb7b{gWZs~KsAt0nZjlj+_`f-iCuA;5oK`Hd?!hJ zkY;aUVq(>le9t(!4xtSa1>EPshQqMq3{Z-&$dRxl?X|V<_klcAy(3T#wMW+={|&(< zKYsj}#qu^}T59D^d=Mpa_%Qux4hh3jaE=h-N?|RccR9wr@W`L-qmMkHaXw@#X@$ft zDC0OUVG~@Db?1Y`)bS)a#hI;^wl8>l%8qD&fcG~pEH0+Q7U(GO<@;6_Ujej}Zt-yg z+RJ(%<=*~~Cw(gNoMtQQzN7syb939WaT_G6GEzP{f4+C`9?*(7JV%Qr1(B|&L`QMM zuI}=h)btMwoTw(y51)V^Kpgd)`Sv(?<|Cjpi249aA_h5W=gvYlRD~Zx1WYiKu<*z) zKQ0g?bGbv;yc`JsJO8s~ln1f{Ns$FQd(ow^^|r$XNOf1d<|fn!&6Yo^nO7b0w3#`v z_Ko*pW`A$~I?04X(A3irZmWsg$4!nu1n6@Ty!&72LTsZ($8SK>HF$SHy~kPm2oww_ zq%+C>f@JUxnOfdGt_+YD%Ya%nvZinw zDg5$>S8Zvd7z0P}z73IZ4jOMbzSv|I>mKFajOlJT%(&MiePHNu&r)CZ4MtA8wU_SiTm`^>*%xiHV5=Sc)|0 z-T=B+edWWX0wGP@7SS$-Q1oVgtFaF`WS-E+f{E#c4^j-D2VNZ3GR%%!>`39}1=m4m*A zak|$gIid_EPpofrZ&Q>J zzX(5g82up<`GvszMfColHYU(z$UY+GI|5P0_zSG;HpuN;p4kHHT?-FagRV>%Nyqz3 zOlYQR=sopdoLvskk#js}wnLx{heg*5@`FB9N?I03rq0V#VcDI?%OFB@6)`vRg|MKd z5Qa#>e+~I5dva{7a7((Hz%JmCccDUPMdjuum58{w8-i*#dPv|IlG|)npuhj2 z+DDLz{a`s3y#t3yK(vJzNoX(5qh0%o?0g^+4F*i2N)XCK)*dPVK~&@D0wu^0hj2&? zPI3l5<$TmUbW_pSCo$`6z8BYB2_u?_J)1s2cMrklT~*0gaxE-ueTyTCDRi}C44dbA zt}>;0&N%FF?Bapfqzt&Lu)J{ofue7h6>S-`{$3<;C@z-aW})L#usKVHiDE%r7;^Cy zBb8FiwOn_{a3^7QG2KE+8oqedl#$mswJnlv5JHV1>XXPMF$xxeZtj_-_U zDr}FnAl0of_FZ1w6+aDRl#W|UqM}5tA?{BWzPpnCsbpQ`a{!6xKg>fW(>r!7;-e+& zjxubi|IILv_Nb1RDu+q~V*_-8{?m!$$8~|Hb)n9|aY#nQ%?@Pn)es$%ErnREZ5MQ3$A9Qgse*Vi}lJz3R4RY$O1_GdfW}xAX&7TF-X~kzXSMx?R zk^7}~A`LE2l)5+e?NQJqt12B(4w9`KpNdIK-El%1>mX9sWomb(85%5y=-QP)@V%eM=A z@2mlECXghA6pamcl|7L|J{$=nZE#nj--B-H<~Su(-CZjWz1a`7b(5GF19;%yM)&Hh zsP%jJ7i35QFc%BQiGqXF@1``cOD32C!!E-uQdhjelc72Wp|TP0n*8~Rq#MRb4d8p$sGTAr#&Y!`}?)I}x2{%=im32SGTI>T)M4IZ3t>#{(J|`F98k zL69}M?`&;e#)rCN*G=*isPO{Zwynv}&nK@TASZ1OoK_N=zz(Z=3cd_(A4Hk3bMBGC zng^gEu&}e!&;q?VtoC1CkGVqbEQ%0N4*h9^v>EOub*6{{V8*{9L{bhNa-W}{SPft$=ly2~ z8WHsz;-xpXo_I>o6=5(0DkC@0kM2moh}(O-TLPLjrgKi=YIYi>u%k>mXRn;;K@lf4w@(O>_$) zqN>}%Z0+^%=kP5Al04IyM?y50-9&-F&E=$77B zT5~eKfrV=Y>8JXER&S2DweVzfivC^9YGi^_Oj<*%Plkq&jHB;$#?@6;R5y*EWKj8+ z@y)m>#JMW-_^&+!w#n`S-*_|=S*v<}C75`P_l_p5t2vPEHf~CDd2wN~&g%?H0hwz7 z%48ex#Rk0xbzr_fT#;>P*SXoT-efp~b`t|tsxq7#CQ!&uA&7!->fS1@9t1kzQ^1|0 z{j{2KLn*3l3oL^VN!Kms%)~AY7U6g_#;ObuuS*C`oA1Rs8BrhK*n+{DW9OG{|qA3ewW%6v8PxCgMN%@8H>H>VdAG?XWfMn0U#_Jy;xPC1pq`wi~YCQ<`13BlF$cWQW$kCt0ej?#fHVH$6 zbf3RyHM35kzvR|!&ONST-XKE&-qTlhO; z166qZgJ|lZ@+UB+SU~*CF_}lSK5R!N=2QG?n8`u4(%f!i>O;sF6wy!~c~<1Dix5sF zvk+v40~Jr^o-ZawauAV$Lv;g`fSYuu2lD5g{`|Hk`de-%zT*lC+5qdo%=EM>5cS;D zaRez%L25~U3pir-H!-ci35bCQ3liZaTBK7GAVH}1tDgUQI$2jc!Z6KP3CDr{X8{ zVZ{*NZF(9Z{NmqtjeN9|iL_){`#=e+xw(Aa?o|^hw6dmd=kkq9V?^xCjX5 zazIc}Ce}m2ez+x_fdbOMA)Z7N(r~h04w1<`3g=(LT0Q3RVNAjx3i z9&fQyq)elLud#bu0f2Yv9MpQRKhX3r?FH(rkV2XXs=A-rolvQ!cNc9>;l?kqyxeTU zY7hran)Z`g*oHDn8V>84PmmewVB?DYq*um4)g}H4R62AW$jLsPKo@Wj0BPtakZcP@ zqlxU@X5e$;$b}29P33tM7k{tAq-EbEQV$#6XkN$BN=M~VD8RfIHbiWp1zHj&Esh?Q z{m=~pL9$w{6K^8~O1uNpIhHm5HFAjs*g22e+X9qVOGzW6so6*!@FU-JN2~x+klz?1 zXa|W!3BCtHytl%bTh`7vG>`TKCR$C&L>p!ijN$N{L(I_>lXRPfh1X1kZ`>2LUc&If zB1%^%-Y!v2qYuXhp+-}?Vt+cX`#RC3P*AuiuJG`b{@mVrf|HUM!6pSClyI4A3Zb}EaheT7#m5vYK6&WRGk=F70at4{GmkPz808y8AU)s$=mFi| z@51)L`|rQUG;)xu<33pc{aN7D`i016=Y{4mD+Nl$hDwnkTbj#H9zPawXau8ZMTytk z4*5BxYDxa$Pd3qG4=J`lzaSx_e`iNAK}lvOJpnp32T3rKo|e`a{nZ>XYYRX*a~Kq4 z{p>&tayM=Xe3F#{I-HEgmT?inS?t%k_->KycS1&fBkTt|uBQ=Iy#>x`4H>OX!hCTA z_IcF=N;MF^ZTa#v5<1F(3{n~WrIK4d$V;tMv` zX2ROV)Quo3ury-&dELLw38$;zZ&U}E6nmAEjQ6%9!0BuDDcAjc)rfiM`1l7h!JZr@ z0No7hjLgOCYZMr1ieEmWm?RuTvHSE`{g(N2mJ%%0Fz&-JNQ51zCV8i1oRgJT&H}wP z!SG7#pFjcgi|!`ck;kvW`}51lOIzqHV~3q{jFW@LOUze2m>^*e1MmUYdW3a%!>5NL)cUT}(dT@)6XfO(&D0b!KGu`|PT*-^+;L@M>|}?B zhnteUh5-+q85O+8eOdcp93*4po=Izg!a%$a@W#n@+iTDBZwg9FAD5=l2{mEJ;eqg| zh9oa~{0GGwj`$n^tdjO^JJ9TvWqG5d0zoVj@Z)zZ9##!Mx&?O1epr^hqoZ|>LtrFk zpYP&iN&exJ^O^g~ff0{2hy*{?HrRIB0$q<~<3{n8UuXp;<)K_8!V9VC^1lz9NFY05 zspAVTlIkm&&``DSEvCxJa+zudMS~KO3+Zi+3{NWYxL{I(_SrgO}mw{^oAyR!ic0M|C0|pVL(4TG{)%fK=RPFMHyIBOgoE`8kr?`?1F`+_*_J5FjoDnHC1# zy)9N}(ME{(+lOw8l*C@Xm!7@F)TQO+6RzmBL||=z6JE9Z)GGrz3dsBAhIeq;IO+7) zPIn)S>j=>goFer;`-r-F5v*kru2M)rGV_+i8yD*bDLTo|O%?+s!l2jDVZ5UlJXrAU zM#Kin;UYPKu1c1Nmj9r3F?+0xq3NnE@g%@XahV6Ss3tKEzJi*tjRr_fB}x;>N~Qn^ z%9#JEKQ4PObFt|->_T zJ=sd=$;7cl`YH^qOh40F7@`CN0eT2M^dp6lVS6^}VU|P=_sVo*!+fu|AKQV9_^aqR zOQStX_$t>kfWs8ywbXucTes5fe?@y!5b)3=&(P&U1W*y&*D)p#bd}6ES4tP?@^n zTHs+Mp&Q?npuCy{`qAgV*~4~Ccj(-Wk*yF8Jz}wt$S@{-A3u3AZnlEV706xq9%1Ys z0&k1+jV~@U3;QY!jkhbL9W`FP9ou^o9?F3SD(r`65!S@*Fc0j{0)y*<@***3K>>+S z^z>+~jZPpdi46dbi?%!^_uDAns|C}bJ!N%p-S{_eE*qfb8yv&C_JfiiAiVT7Y%oGf zM6@4K!MHY`{Lrbvfhjza-N2HJHR(H!&o4s?c0%ZSDNy-Fa?t&JrAJI7- z4nbhnetvv2iExEVK^yC?v;Ynno19dJ9ixrHfjpHl>L2aewd@)PjJN*}TT4QD);As@ zN%i8-BcNFFRWK33RL%*AItHEI1gBKi@dTo!5|zp3DD0f_E<(6%S5Yqnaf^uiO{An9 z)}N?wo(ApTR($M8I|(U~Q`U}?P_m#M2Fe!mqs>oOs!N`kFm9HELRnFQW; zmEY(1oK8z^r5DUDJaBI)6ir9aW_F;aYf`Kapca+tG12M zhfg}ji<2S#zfZ71F`t~7vBX!X)DAI0m4qm?Lc!fBR{G6f40p-0b*;fiC*yG59n~lFwrq$8IcRYU(kb4zPXOB!*@%z z6DHm+V;21iSZpZFDk(D0gTx*L5V>h+kyTlLr&%xufLvZ0pjIZ-nlv|0=>8xZxJTWn`P%>*kmW0FyIh?r6{ys;CLiKICAAgNe!u>br*FAFn0; zc46UukMv-CNGE+xGva$8Phs%$t4;AveknUO@(QHO1}@4F3+%wUj&~QU2Q<8?daVvI zwBN+vQVQdJyAHq*Eg72Gf1_k*M-Wf&CxMBGTm=QYyyb6G(=Dsi9tiTZI-dDccc;x% z{q55%adC0Rh6a_{p-oCwbgU(={`6s}otvcWDA$cQr8X3&n}ql8r*Aj69rn(5x)9&$ z;`v%AQ1ecelE77ec7c<9kF2I19Xb%rKYWQNr*GVR^!&ZVc@5ET7EA+U^h!BS7b&W#WO+#d@o!`?Qp!2v=8&F?NSGiuI zu&L+Tvj3kBccWY}7QIkq^?@(=ooxf171=-I-Qj@c`Qb(cz&c+KOD( zahtR<-`h8Du23vsrqtOrimXD_cV7H+k+qcSy2)vN2`&FuP6D@-UvhBnyw?8f!}2;4 zE}LmOOF0_5A6IIQnEW{0XBfJ(SNtt+uO;PvVb-n9+*`NKN8G!ojtMWR;hKRj>g{)q zHq|<%XHy5Z|2VwNXJYjEm#DipkM-uyh3q+>vRc?BC|&NIw8bib^N$D0$|~+@)w_GA zH?c;!g{6!rijVAhEz!dJcDebc_sHS6lc(F*{hVkHG3*hj-Ru2KkU!mw_r`Y#@v|Lo zWe2`gAMbO`k#=WE8vf^%L*tk2R~J6=*=)GqG&-X6-qAuKpV-yn!KSw97nWu2XwiG0 zv*p?OE+A@J#@6|Xy#Q^>0n?T$r#JVa#R90(&i5bYmGGq7d)k-o6H9T+ooN~J=Jgvc zoMWLpu=Ha%&3z$0jgfbOclez$gN@1jaKOGg#aEv#U%eKmO4wW}Gkmb6|KPKWD~1nm z@jc;fUzOF?x7_&W*zv(Et=cZ_`FD9i-(1X@67u@qo_$`|vCFP_b=F4B1C}Kjw3b1o zY21llBA;ijF}9tTNnHxh^-2(v7`kX-px&W=^RCP{Yj;+9&%FvZF;td>l?0m+6rS)XPa6^|4dp_gezBFH`%3Zd*Em_2T#h>oy4>!BBy>T zt9d>?+Zpro!@yJ{{Q-J13Zi(3;XU0M))i;oKeT@C_}c&N%F<6h7arFOC=GYWxfltI zN-E_r2?cgiQVbT}xR^8?_LZamY~l>k((V*N7=>hz-_R4W4TMD_fdfdf*uH=rcI`Cd@a!jYT#lo|XRw6xR zDD7@V>l?F|dB*M0CKi8hN$rd6hmcx$(?d;jNK#Jp#!|OkUco1Zo9;n^f6Cb}I+=4S zq-2=CrBaG!au3{jL!P5KSApvmt?+~O`fkCU&c}IDdarRB*$zp1U2oJg`d(A*{E)7g zH-fWCvUZdI8z<=t<@9R=Gz}Gg?zEiVt)Cq}ZBk)Ozru!IN$lj)Pafyfl60Re-gZ(s z#9+&2$y_YtN9XzI$*#GLJ6W#FJlZ+>G;x|+|FdATV^#-^=S)!ljT3dt?D|n^%x|r} zF{qANouxftAlWNoxAFAz^#<0SuX8ruu!-Eatfn7jJGxZgr?8)SaDSXhn8_&J+GG{_ zO`H!SQ^lpG;%%O%Ze)37?D+a~{IB4Yyw)fWwT(YcUfRec1ruwxs4XpP@lSp!lZ^+A zUjA6t5!G5b;G|L~WwP(-^lHm%Pu@)Bk96>w^6e2D%tRIwPg2;Ahg)IVmQdYCi$Eac z$rW&V;I{C9qRC`Hf}lr^lROF$nHtFVC)1#yKY6C}oE6S1GaH+KPLAAgS6=(G2S^z` z1ZD+DSB0d2E*FN5I58Bz&ohukP?Zcl!hyHK1P@6yhx{q}^6+I4P5rx;dXITp^P2Sq zhre2FOrbYR$*Mlv;K$$eZe6LtgD0_3W0-U^0T+$NGi7Sy_Ju$>AU^8KBI`;Z74onq zGW`yVxeU24DS$j+_<(FY;^zQpZUh7*U?f3=W)bo(hh*R$1231%$H+nF1L6xH57mN# zS^`$-7K16;RjGJ{5_!xRpm!hIKY3IG+O?w$906iqkS9{XU>S!YP4b9{^JObL%5&^4 z=M39xzXci{9(ffS#B_oMW8k()UpP%tg85D>w6?8L)7al5W@WDEn&oqT{pW?{tR=@` zdF@;Bf^pIMfm@UBjZ2_e6(uAb(ma{Z8{GRUalfzb&yRP6*A*VlY&-GtlsNGtbl+Xr z8V?CT{xu$=1Xd@R;rlK25{b}b1}s2}TlyR=$rXaFQudSY9~C7$_8ZnJ4@NREA(3dO z4@4sAIc-NG2$Xurw8&|bnU-7A$RN1kVN=AWfviVOAznP&*5gzptBD6~=uBOCdBF19 z-clZ|*u=cEXIPm1ciVkkJgI+ICc#`wDuMAqm9iZ@4_8w1Mcf3cYKVtIBar-@Vd?C! zZ_|nBf*8L5H}94^2G2r=@c_9%&=Mp;jx?ygs)34P20`Hvrcgn0Df|e!lgKW4XeOXh z!u~5OpCNz=O}YHr9^?)H$*C@?sHkAFZcWC;x9i%vPn=~Fr(YwU%~BL(eKB1W0HD$72PBOcB9um&7AF zNq)_9dRPh4)!#?(08V-B0}jUXKTdY~T=G+mtXx&I@5k<+2ft~oRI@dU*}c;8kMHZy z#BPsEO^Z7OmGe@RbRP*4egAcL#tK)sQwUMWKI+jOk-{0!# z{O-OqMkBA12eDvR63|ZO_Q0$JWM$dq<=-xwVf`dMep^xY1CNuZrI_JN!etek2H#w%@e5%Hsy@8=%bx#bO57fmQHK-aqg>DYM zcO4|e3>+R0TaqRjz3h+G)gd!%=gH%~eBVk)OS2-p3eSo|6*)?zm2zJ-H7v@{Jw+f9eo-DclZZ?W;Ku5-uUqH>-oq$5DPN%l7>kzr9b!} z+87wC+KZ?Es7{l$fWpu_GLm8?cv^V1S!lT9G+qw9ji?e=KEmT*-nfyG^6XT~2Bi3? zFK*tlr5~tXc*te7h{gfT;2iiFx<&Rh3nx$Q1YgdX0&dfxin3Q7r)?w|Qk`VeYi>51 z=(?XRkWKfpGq$ebJ7kNj`k_OI_TybyFwqBZiGgrrglZ@h#I6e=VvR%TTUohL-V~3u zFC*W3&=zzP#T#K?tu*$b+h`w>+Re?w1BCKR=D%$Jd* zG_tD`vW^9dvP2mrhC7LEB4!E}9)v=+lHzyuDtU$$8Slg6gVc}_B+ok{BiDEsVfy1$ zXV*Z93C_GGsci70uSa8X^zh>LpcJa~J-_d;_Q{!vuQ7YG{3ege+OSzm_b4jM7{(ZS z5KvTuJ53&}h+yh?S2M)SqUaJSDXA7b9z`{rHw@x~AaYfhiaQ7j<{pCw@fqWo|CO9H z?)gE%?0K1*e*mo4ErvX@289}l0@6e9M3ji==xb0zx`?1m3~ge6f?JWi0NLnH6*OcxvlsUVZM4de~(9ZFupqjgb!L(PHKDk3$-Zw@wRcSiRY3 zQ?)02=Psf9DNb<;TZaD^XYU==RNHp@Mromk4pJm^q^lqiQ0dZ@E?^*_0->Wwvmk_C z1f@w+Ku~&6sx%2znu3&2MCmG^0)qYVT3(21a!c5$@b zt!}cxt7n+f4;sT!ddh`#65n)nu@$Q=mN(4#O`^@-@0yDz)N__U*uAkR>W5n(!lnl$ zK@xVntu;!avthJ*@1`Sc@T(}DYLhD!!_|?8;k}vQov+QE%h@e~+R14>=#cDx9`=PY zDg06c)7=ePSPoMU#-}9m!XsIW+Cuc|4LL^FuGECTdbLMBCyvbDaMZc3-NY#ov%?>r zXS$(4@{Ek+^EgMV5&o7l6DvoWh;wPS2sjtvi5;50Y&G%c+xbDUf%(rm9z0c~c#Ixi z+f^O>gq6e0MF;AxE%>kAkgU`tJLhcER~T{KJf>HL$t14b{NV7$E~C3Jv!}JVuwB%N zjgfcP&uNPgEt3K|L4K zAUP7Y@VXpLpVw%?IE!t$nIle`2#fC7qB!MzFFCGK^qruq&EnyAQtJQQ_6jHQMw5&E zdlO@Me@zMeO7j;bxg28t^hCUgu1!*HVV#g*>NG8X}kTk|a`W9&ms2suo>6QPNGmb9%L1 zu4--IDyO!ojP75-g$+0wpgtWU<BktdZf4w?&IZ7(Z(EIH(D zVxGpk*3bH;ygT+|EN>xLQd^$43yU=9 z;6!)3^4A}M^_#_f)4O4}|Jtraose+$ z)lkR&dVltlm`%-CVhHDY-M??G68UDHs?{*+&7X3m#{1K!eSDv|KNuU>z7A_JT%cYnj zJO_U3w1j;*GQfyWI3n{>rnu~A@*rVEjFfGdEav!NqH@ZT-x4xe6-~m`f9Ke z8JoEmEvqFXc!2Qze6naJXNA+uO%XhMn+O&w67sdb>AX}>1$D{m`*~tMMcH>`+4D+i z!wlC)28sY2k!h*3a^9XlQcf)3))^zd{)41MMR= z_YG;z_RK;YR-U(`bfeqVMm}ygj6_;KGT=KVCm(yDhTQA?@bYe&r1!#~s~PR0b2P}q zr&;>=@v^e6>7Vhm^qYbSZw6qb^7 z>FMUTpWogbRsWDdaHr%tNp8>ROPS%xf`f z+>T;Ykh)0mEkpZ|&#UMvbBqz~OCBJS_y?6^DkUKxifMDEjIBy`<7 z(k(_kgT8!!@$fA^tD~1Asb3nivbMNK7DtY%T9UY!U6`_zS$EkBgJAjPAex^Z5&b0J zIVtVt{$3hhX(Xm+-sO21wsM(Ojr;kWEC0tY%Z#aM`!X}=P_IJ6JJ9#ylDL@``}>{3 zYx}5UBdML!nn@#*c$Eg;ACp=70Av0ms#1yF2>s?=?(KfUQ%+kfyPvsoo1P|xk1_|$ zdf0cT-kLjW-)tLl@uK$q47xu{eP7yd9z?UhQ?%eY_i z;>ThDwO8o6+KW?l>f$Y)eR|K>u*Moa`71$>tVTX(Pg?M+*RjvDtHQwRY;3t*Kt)Ra z>gZYT&}SDFm1F+7d?DoTnwG(ZhvXBV=rmMTP0O)vOG%4k0<)kl(8EKuJHvb^B~Jf! z*v&NbB%2z0qVjLWf0o-#{;ZBIlgNabn;oqBU$|N^T}~#~zqpQ6d!zQ5E4yFV8Yw#e?Kv$GS~z3Axd7m1Jg(;T`Z1+PH^Fe`AOAr|%ip&@RnQuL`D87)`qj-jTaKIx*7llJ;FFSzHY1Vm zpm~{H%dT{(FKl=t#0tENZfCArsucck_r=7e+c>OZ?99ot7Yvo$n&sxM3^h3P^PO%L zwW$7zgnZraUyp%#DB~EMbKQm@-3x?m3V2^2d>RiMEwJ5WHwu8cAF(WggAv(q0>hdS zF|4hH9B;u?D za|#jx{&A(3A6PiI!9BGAraBtbwXGgLFbO_KT=y_@L)?U*yd#0hoTHxmQOM{Pfaj60 z(?-I=h&vJakPvNv`71LD0X!fP1vtmZz*rfS{3rxg4Fe&#LiVGO;TeprI>8PNCw~%1 z69^L&yq32h^?+=UA-Ye1C=9aMhseal^@aYsZg^%5_ZG}@(9IXxV&CZ+u9f?KzM(1` z+0&uGL5cAMVg9OGcE8+^!XmG`_*A&-dx1%sFKS;|1XFPG^Cy~54!-CTAG$TmUKe%) ziw^EtFkFWG@hISE@k4~Oc(IVoo~lE2bm=&A264jVX* z-?rr%8jkH|#-{%U;^tNhXqL{OfJj8*-)I&VJqQUSC{1KY;j#ltP3u;#Af#KBAvkje z#1r}R&#Yab_#hJCEHKqWU{?U8I}AFBH^HKbm#yui-%K4N_&PhGgd%AYd}1gR04!)f zK=S(cGZ;sG|Nb2^wAQ1gpi3C6@X4GxMW@qyh)A2;5K*en5mdlZ5VPJl*^SU9!7)g{GC|1S?(b_ZB`05xGP0 z=j)56tWP#!M#2h)G_Gxsv-?1-Ldrh~;K@Qfqi`+8!l3>gjD_#)0RYVqzLm2zc&$9G za9)Ht4&Poa+==s2U}pg1hc>KAh&lwH8e#GNYcYUKJ_$_GOORBc0v!tMyQ84f0Q`4H z4LrLBaHk_lSJ3uckjXb-x#2K6G7Go;ze8js-T;CK(o+Jj-w6hY;ZMwVT?D(oFfdyH z78&9KcwpC59@oXr?)Bw(EJRho#o`&U%r z=p9Uh0l8Vu^7+Y_LRghx5klyi@Jn>}(+naZWCVQ+!k{7YHvmFG z()Iu`Snxp>3|I*fATCUYd*Cg;g0ulR6Ye(}0m&GFX0~4owXSv&06uXq%(s6?PoJuO z4BqTx$P)tmHUzL+AtDE8i;`pk_`(o?E0Pj|yaO`h2FtGZ+jHhIUEI&XAA@8nAp^<^ z-oY>1+Z0e>$-or^ht!L(^GJzBO(JxpT)HGBa^l)!kIUeTEB*=IBEMV7O$EpU2NBO! zLGC~$wM_|u;{b+Roboa1mS_zo_mlU$WaT4i$v*w-H_~_MD>x{nlY<$>%RIbmYbRK} zd-hY$d`)=$^$eyfPzOJ!SaQub=IMRieBl6(rT?zoX=h8JK)*|8@8rIlo_^s1;^=~D z;Gu6TR&;{RhxZ|#HWZ*jdmpty5FQDYhVQlXYkCPi^V8n*_$}Pk&1rvQ}i0Oup_d^rJA+Wk&z_dm4KXe*3 zPzoS8E#}7sA`2v=AvX}&h`aGy9YDi$YLLa(18u?&K8pybW<{WKw+_RVPS;fhfk*}j z63N(BW}ln=boz62aa-p|f~}r%=&ke269kSx9jbL6xrqffpLV6_TEpyL)qD!BY4UOj z6C1CLeZ!e`BE9}2c5 zh=CkoGa&9ki1&dJk{5sk{T-=*f5jo9CCrTxhUGpK!puTQ-+%%{H3tWRl>yYO=MbXa z0!|%b&*ulD^yguyOwmBRVDQLeKvo-&pJI@I6dZijW(If2swv!^4u+1>{+_3QKjY<% z){nbc!RU2{^ZE4j*oQ!$?ZYSjT$Y_yZdZ@f>bcfL8Xq5A{Mp1IC4Vn;MA@v6#V(sl z;c4icMoK5%$yP6z>{wlFw;VVgPGy!vUHIXjfW$pRL z+NgcAOoWmMkFv0dc5>+y&AD@TD90SX=KeaGBrpkEc+3RxxS0{Af@4tXRZg~bPKG(# zfg8iMr=yP=bBKr_T*{s^<|=^;neeXRy67lMw!VkpQ^1Pr|NRRA3K_C3Zo-E}5)(-H z27*PX2)JGrz!!$>&0sGSiHt#zts$s)XJNTRoq~N*02tQg@vZiO>CC}m7Cm1Ow`2$K z$zit_177DBtE20?h&5&ld>8{WU_?TihZ2JLV4(#wt#w@)SZM(|Tj^0uClmnBFQv*T zJ+hZ8AGXpuGw-{qkR8?9QSW_g+rqB%Z!v~7fxXCACh{6Nq{6t29ABI`4H}Ipjh~e{ zX7==ZBje}>QzZYZk*oGIH|)9~00EAfE?6f#x_h?rK|5}WLlcV1#MxOLPvnr#DBbJ9S#42DmBsnPjG&i-9*fBlpy{^ z*o|PO-U(O<1ZDvKGFNbZT)XGj{zD2O3c%`G2+}JRXpIPr038L8FLgC< zY6NJ^;>yaY-y|3q7`h;i3lTshjD!Tu5fb0=;|E|@MS%>JIAPjuzgV~J(_>6FWLdN=y-dl%maQ;_;D{4(xa8X zofjqbU^z3TWhDIWx9+|@ZFSKIh4V?PK{3phZt*^V=1uTU80G&k2SYTT! z@6?0=zxT2aEca1Jk_sN3$QTX*jKGt`SUG_I*p=Ln@mPq-7einN6}T3VtxVXDJUHNY z6ouCYH}YEaGjIwcJ}(&i6~oIQM;T-ifnbXvjZ`ptACkGO&XcJb#|V<{{4)N z>78ckPWS0~mqFlQ&Gmm!zS~EVEaZrJyE2yEo~SD!f3E2_ih6T_bMf2<^$;w}@>T0o z&zV2_pN`uK?mAlAHb==AzCIA`l8w!-54=%35vp2qiKjjW6lL1j7%^4ViOO|surQq( z&6mbo(NlVY?r4hqhL(JGu{8bYK=c4_D(0%$h9arNyNdO$a_nD{r1X^@ zmCifxPKwXk%UC8WORr8Rop@zDR8ch&ufoz7Lvz9lg(qXfOY3grK{v{J>YEvTaguwegX%6n5i4wgSm#>q(v^jG5l(5Z;d-Sla$3jHiBh5iM84*yWByj`s1lr87;>R2Myd*pu21+T;=dy}>yc%Yxb z(DYJlAVzMb)ES?~d{=pD)~h6#-=AH3XyN$$BA=DaY_(=&e{?tb?z`X8hkeist(CW5 ziIg8r&k@$I`d+`hg2RR5EGnEFO+lvFwWQeik{GOHre_D1yb49>xBr>@DC1XQ+mIz% zhZg2BkB}o7%J@WS;Zvm1lFMK3jcz@VDwxXQTOFUox_f=NB|aY_d%I@LuPkVBTRvXg zwxvouOkh2#BYg}Y4Re$ccOJ`HywLELB^q2yPHcQRd6m;+!Rft+w)Y3MyYBb=^S<#GUlvQ0yc~2Y4|$ zVB%7~a(WTM8O4;aDwWz!+UQwM!(`?SF^ljw^j`lc_Z@+;cBH?wwF91r)BC9|0_$ksnNkn2RbO|UU(qwF0p(@{K1naf&BA6vmcwu%}Xyqwu?@BWD9XiZyp z%BkGh)2~&y_P`%z;7^D3R!GpXUo299AqiVYIk!}qno_*$tXtxV2@PY&=y-^QGJ|0>p{rHsGpy_R-lHZ~W8l*7rM+P~#UFWw zCVoM)S2&tnwthzzE5F97W+(S}3+1JcaSZ$uY~W;z&b2DQX*A5VoWQ-TDf?X-V{7%q z&Z<;3j@`T@YGR)*x%mmhg#WMYPY2xAKVRlj)TQsiBz>aGjrURYMI{Jzj^P74l5|PaovK*CP59gIVf^Eh8%+njq?fqU(mT1SH*%bVq zarRFd)6j?smikNOB8DMXg#9C0o{37K?V`K=MYMJ7wF383^B(nQCJkLkZj)5Ej5FDd zEv}u|n=wN>3a+}83pvJl)XVfR=MG5!~6(Fi@exUBTZXgub0e}=4x)&PD= z$7FEW3tLIDoxK$JwlNE%W+&nJ@q7bAp!n(RgoBnXT-iI@PWVsuiZXF8G)ys*5VP)V zD#ECBTepn+cF69lG+?O+5Lwx^vZ+ciQ*cYe*m}8}V7)(uIl6kvkj9Ry;t6aca+S8f zXSPrEuSd+C33+qH17PYhUpT^zqcFB zD@s3y1J3BcUi8?Y|717gAU1gO^(!kI9n#0^wq82+J{$gctx~cS8#UdII)`Blf6y6~ zgD)3HZ^DB(dUPh<&K&K?dC+^H_TtCr%L;uQEgF~J)=e*6#5pn%Oa|2Y%-Kw0t(G=Q zZa7|c@z{D0_@(m`TDy{`k3n0V3wijupXdzWLtQ4-;KZo@ZB@Dw-sdy50w&L)6^M;E z*YQjps#6-#=W%pZYafxWHV>0&e0PT_*Q#B1TFFAk(06$IEHs$jlQRaOJ$@V1uAeYf9XB(Y=u!JVtpzu)U3)% ztR^qsJi6?pBeM>5PPlh0%zNLlD>=*r~v{FoQnD&iksvOHv33$#eupY24)*jym%__tGLl48AUjoBY0^f zt^}J@IyI!03W+HGhclR`5p4cM3z}h&!ZAn!-i8$RQEw^+_OhxqTuzux8EFc!PKJbA z?yk=15lYvQTOLcVuCeqvL(Hn*lwu+83g0e{CX15|`y*kUyXX~fN98E6KaM$%_5*L< z*8kcv*A%)_`tZ;HKhqo%)qr>@a?C~!P@qeICd3U8m{v0&E<+kM5p=DAhLa#PBB2kk zcmynVGXesY6G_5rYStACZ!-zIC9MRBJ7pkyVFre!g)VErNSt#@abS;>RoOsWkn+&B zoRqx$g-738a8ou`Df0DGVXB`w?#-&H+Lv=|{QPSiPa7U5aJf4Uw>UXp$U*#={!5|p zb>ft}d&N^L#}0nDF9YB9bd|lhe(aH{qflL-r?I+vT~~oQi$duA*N8XoK*G57PIc^D z5O))s=&KloFc#6?$~{EkM-*V79Sl5zLlztI!y(%5##_k7KxCcww^D zkTga4W{~vztEZNz#^^OVqE?5o*tv4~=4a{cxek8zvE#?fb_1`jRyR)0uRacXnY+H& zIN^q>*NC*tv3xeOyE-#n?5iu^CU+Nxg3{M0<7mzi&SOJqYYd`=`v0%3ccv)7ebAxc z#9rq67ox;Sjt9AR5iC2n;6V3}042Cwu`6S=AX3a}zxi@`JadB{^F8A%uI|$I!73}x zVR)03Sx=8KRQSdX`MBU+%CCcmRyaB@%epmt;L+qP@z6uD8gk!o0_*6VZ72=Wy zc+=gwmj7qZ-Tx$-MV9-}Mj&8IR0PNl1PF>DJ|~D$C&AZ@1VXLOr&Q<^8#SSbda2^N z63g8W?a_%o`_^^Ynx0hN^E-8@qshDMt)-9hgn?DI8?(Lo!#kOD!YH7 zyz#sjuF%gs_u(1Ak_Wa^>iJnlo@=R3Z5;f};rb-{443sy z?x)`2>z7X!P@9tTzP&K9aj%azbojZ*G4h@!yZRfPK@30vI>n@8pjQ%cA8)*Au}f_S zA0K?jhKDVnD>Cg5lx>^=RxMan%=S({#ZKr~=x}zju`CV?K7zeFHlk03>9Y2N9u-YJ(`ql~S{jZgut%3<~ z32OIio0_s9;tXhUZa@QrAu0u&*$Clz9#UV&sX(chvM5MG@_)b${|=Q-XTSqJA0s$W z1*3z=J%kqk1J`{hSe>J8)6qvj)OA0m_tfnJs!WjaL*yicvJK!ugp~uSPSWtt{&R%^ zF`IF!ODwa;@zet8YN3$RG5q`~Vq5RiuH7g}MR)nrZawCPx{X+Q{!H0w-QW4YxY^SV zee*nI_Ms)`ZRuFmIflnn26>*qP;A5m73Y8+oIc$%^!ShBh!?SvVC8d`!U@U)b8u$m z)8$ilO{|QMF=#NmhQ|>U(01#60`1Jtx3_*u8q;G4i0VVq>@rWtBq_(Lr`T?Afb%C0 zTq9j`!MK_yg_zau+J)n|&+^}7SN^QD_F9U#Nyer+HIcrzEbLXV7N_pe%SBtL&n;Yn z?Jx7b$_Ak-MuKXPY-sd^=AAPG6;i`@0xM-L6cl+W?@Z?jk^Vej(7`Co_2foL5;&eS zk9x_(G=Gj+nQuxH6xn)zw%Ua!JkKoJIj%!6tf1sX2B~(uA$JVrIw~g_IZ-NGB3ONw z$Q67m<4uRRfMOx<<&RG@`s-sc4ZPtKgpVg}{`JY3Wq2_=dey?*T4$@O`5S{g5@B%| z&b-Jm!Unc6iI=VPVkMFjY_)vUGu(;MveMUBqse&o<=1Pcd$Dgj{4~>I?OEisj8r9K zSoI%M?|L^~UkyoI8Cz-XS$%l!4qJAUvaxJH_&XLcYMy2aW~kIPCgZAR{bL@=+U3DYdEmQbW3n`$hTK2m@G2$vCZ48qF};+X%%j&&z)2n8J z9G=_iWYVf=H?hDv9#eYo;tMpP>@AU`+^A=;Uqs;V{@bMT6lEezL+BWPc05-y$>Z>$&x6XXT7Vls0#$H2JY$+(a4O&=*{So zzxQOZm3t*PlYs`>TFh|8D>`YWd;ZC10GMVij8Zq`IWMv5P{&A6-0i&v!<7kKB~1*Og%;xa$}_p0Vsco+f(rQfsT` zgV)oae)eU@mZvc>etT~8GEfgMek_5+={ov?*?i>BAcsKw&9vL>QQ!Z3c;b@+V zqbyJt7NYrA>Cb%I_wMgo_iE9RfdQWW`T1t)leMVT8AbCWrgk$@;R&u~YW<8Zs*83n zOuTDF8=_s*GMp2|)Rng5)7HbcMkE^Nt)GSTsjaNk+j1YTcwBc^v=qJ(fA}pJ6IGJ9 z)J(a=S3Yo~Efh5)P0)G<%GTs18cCu2hn0|tbZ4<710dY4l;wMNhO*Zs@8GzO)J=9QnjLa1-4 zaxqU)ntwhY+3C?tw-sG`^6uqFUn)V#I~-$DNU;p_2%|8le^5Xm7S!g zPRI&c{ZPN4lx-YI9SbtfFWGH!QDDS-4Q9=7n8MwjP8g6<>M7=mvx{i$5(?9TU#42K z7e92`7=x6j5oAa(Y$_y&e?_C2Lkm-J*lSDlU#6UuPB^0%j<#YtV_emln-@4-$0TpK zW90@9=83N2N1jduot1aZIDrdqK3ewKY1+7hb^VxLvOm2k+O;cbF{pv_`rbCZhFJSl zK~O(y%_YybgPUJhV+=ib44LsvS)%AiBv9YfR`b$(3J59!0?#`HL|(1$Y$*){EO6x6 z0i*tAss@ky0em;}<%di99<*O5f-Gr(pC)hxI#6=Fat~a0tp;&`+mXxJ`z%P(bhVtT zlZ16OPi(7BQgiKb%hPlnjtAHlJUYE!bQ0OOj1f754g8Cp^Hx%qS7tRX4UHGyls$YH zpTyr8Pw)->u1wR6UkFEuh}m(w3oNg?#^P%HBRsTX>qO~IW6k1b%fXy_sI`+jP{gh4 zuxYgA<3B#x&Wfy1$3r>b&7td^+*UPc#bxg&w|rGybr=BmKFFT{vTfgj2T$l{~+o&1)%1vJK&fh^< zY}^Doyng=ehWCdL`NORFs3f{4#jV}tbhVPfdc;xVyz0!4=@cjIrDTk)qa8k8*NQTZ zr`U8wQU$iQpIjeO*7k?9GuQUwR?Zze>y2A0-JkDDQ$8!vR_CE?O?bzL^lP}EJTH`p z%h>+7yB%p?cC9{0Cf-GooeY<@HCG)2ObT3@f(vLY%qk^P z_LZzh6_O{GdcF==MrNC=(bkrsC3(+}@<l9m$T_YOpCKZr^?2~iOGA^e&-gl&zCjCj1 zv;6bLwG3FyYiUPB=t!ebFlJnZe~~21U3N}wn4WEEqs^6vTaWMeVA4~^52_MZ7A z8c7Od>+HwFSyL3lVd1izT?dZZlrM9~_sgxT<}lI!g-HiYM-{ zG0-3AWlN;1ZS1B*oB6NrTY7=33{Nv>on#_(trzEsW)8X=JtmC@Tdgl|B>7u6k%~!K z;ysCo5UJ7<%EL=|`G{floyRR?mEUGLz8{@iBylZcF{+1Inxv}}*w(9~EiakC+9l4? zMzMT49#8k=&YHb|BO_jw0Q+c;*~ON6$~l!A_HvPZlQKQ8?4z9eqh`*aYugTJT%I*t z78vJ+h^9HqXh*I&+hGLKR6n`)PgyTRvv3wiiFBlhfKoyTJQuz9zssAo5B5 z)TwGsNsdaGFV*ogEk>X|MISE{cz?}B=$JfjCrGGxp^7$x!FZ?oAL#>kINM@$+s?_w zRdKWsH+hy~SzjdjGb%8vIJ#JHR5sk8Xv%YUSAP<2xY+8C*GF;8AoDKO(t;a_F#ovA zAsx{Zne7;;)fh8RXr>an=#=;P1^ZYlwwUAyiQipRJxlSGcL$aJ@g?T-*Q<1uFU1b? zJa^c}B);&vU5icO?0hJ*p)0a!vMek$$1}6Tm@Cc)0R`EH72bfyBztZK+GWLNmF~c; z&Oqka!c+7^@jPmM;Y2xY??XeBxx*y`XXJX#GQ?wh7C4EU!jc0UvX>}yMSv(_tjfY$Uaci414EC}~ZC!IFK}x;Y%pH0`G08}0G(oq9 zOqgvO%B!2p@p>dXTE=}CYnKUlN#bnrUJJ)0$s~KguR32#KfjoiUaU`UK@->%LjRbZ z;tIf!e!Rk4P+4%pMPIF*yruVO<)Tgf@ymR$*AQ`$4Uqpz?|49jkdkdZ;Fr>r&ecuS z?6X`~;OQhP*EJFkvt9nwU^?w7VA8tW(5gbVIp6Tu!fQENwA7zbdow`e4##` zaQ?DS<%>1+E%$P^ty{&VnqEJ9G7DVX`T7_8WK+stn|gC7rqQr>iZ!N)I_;ae%h)0s z^yesdo8?~2k7W`$FIHXjluW`zNLa~6w~rN<7$JGhTDC(SPj%9+D!q1j#?3rbjWO$t zTa6k?tfotHNdHC2MPGr*af{PS9%n0WeJ5}}C&}rCs}fX*<_*RK&cFgf?UbE4ZK76> zYq%~!zFwyOHHZCnV6G*Oc&Y5}Pu~H&nV=crsXwEM&+?cPhso7TCUlLKp$&Df56$gc z)>G+e=smkg&BSs}ZmdFcA9BQp=rpi_VxVP0X6E4WD`;@)L;(gBPW*@sQ#==p7@{Da zgToD>^n%xvZXH@nlaLxK$PGdlBv6p7DlbFL9uTsCc-y`l*2@o#g@xtv!MEUo=OMPS zTZ-BLcC504fk*>Zx7s|&IP`Ve_U67`^mfs%v>%fI2XBK|7y#2{ch&^>_FeCI(D_$LVf z&;^QCY)8jQ#C--bkBQ3;ln26FfS!1M#LWVpJrHhb)gXJS2dQ<0q6Xs!@%^armIU*9+syad$~9tNfDoODUxE;{Qg9B=PlQYz+n=zuV|$^xZV-( zAw3I!1T>udOMJ3?hz6gC}weIv?gsK~Pl>{v-tPfHa7xf>#y#0d6_}g}C(*a?zXP%tBdW8ZX45m|`i?}50k{5@$|*%$ro;2A^U2au=W z_E{cC7l)`lxY0rYq=}gQjB=r&gb%!XU2w@_1Oz;7e^jS*DgN@AspI$!7RciW5gO_R zkbF7JLi&Jg^j+gVA~k|J9_fb%ws;cKQ{>dl3I1Pws7pYh;G5Hhs681{Oe{S>aAw{c?jbp)Oe+^~Ld>u0yG#Esb6vv!8g%;oL)z#8v zrh9sdgi~jj?0DxI^oaNCju@|9s#;oS?pN1PSUjna0N5fl(kq_;6A6K7z~dhTECg^t zNupZN#RoBrJ3;@QBOqf>eo&e0bT1Gfr_5l}~04U$@i%Ab+SCvR?P;=~Xb z0sMAIt_G6qO*j4=2P6S)upxYK#LIUx_{z_(o?upF^o9im+Fa@WHTuJ?--@A+K!!}} z>h>;H@aNi^WW+cg#Y*&E4`TaWTgN?U4jOKe%~or?~*(b$HhBetjHrea%3;kV-*uU)*fge=7f1%V#uaRq7kcVJvkulok|TEMsC zLGH3eupA>~IiQ*`0UQAw{tIwRc7tF3EQ~Ht&jBxiw0MY0NRS%$MZleb)K8SJ2igc7 ziuo_V1N@(n@+SoF0MVnJb%kaP&e_w`vlN4mzUD&+oHRHazGF-8mX^XRi#AIO6YI`N z(v?#c;b|l3a18%bn69{cp2(0nuRnR}EWh|{d0Q^S(?r`lZt*>*rDx#H(lI}r zJkRabIInPK>tL?V5ee@qZ6og4$Lyyu75~j^OZNd*K?JNPu>(&lf$7g+s)tecnzR4i zr)hFl2@o>**P#vTWCsEU-E4f@3!GRK3JTa-(^yg0pgPmOEv)|IGbf%{gR?)se}8b{ z#T`@xWLlPhX811~A7-zpX8aW3Hn;a;f(@ZO0OE7qKyRg+Ux0soOT!Fi9{`Q@vW7(G zUj>;y|9(!(MHYU6=Jr3n38xQz_-5 z4dsAOVY=O+6ZWn1d>TF;#oQfL*0D|bnRVwm%kp*1a=yRJaQGb8 zgb&XYSA0F8QZIhb&CC3p17&1WO;gE>r)|DLrK_M|bq#_@|GSY;Gg~dt&zE3aNsB_R zWyEETIKlnjosy80B!JHvC@td7FcbRU6CmITf#I2y5;$O zePEyqQ=G+vI4Wn=eUf)_p0rMtogEw;)o-`yNR2OBL5+RFI?v5xYgWJCD4PvfRemk2 zGg}SI&S)1DW*}!*l z6!!P`#kUa<2l5O9@G>d_qCBp!2}EEN2uKu2sQ(tLLgr`T$6Fsf{O|~12La=vlz~DE zBg-YIj-*NbwT*{Qh~eP41wYdgxa^UNB&6OAX;DH!U@GD8#esLQg+X{n2>!1STq7Z1 zbEnfK-xK?fkvZhMG7lKO6B=A^dC1+WoG^5WnU$8DivkPcR?u*qF>p%BG5j6# zxNTL&Q{GXlHj8s7FvzIN>a|Fhk@3(E>z0wc-H7fJUL*G(u2$=8`k8>DATQ~SJ<2*r zj%|9fY;bD0)7AWYe9nzP`ccK`e7}v#=1d%E?rlJ@(QvgR zK@Fs18W6Kzbof#K6~ZVsuk)F;RrX4RLi6^&|AZq9T|k#cL&Wx3@MlGSS`FA0!&TIqTh-FsGUe;<06Y-z_a>dOldLmyA7}l>5L|_H&uS zJ|1%E`_+21ZmsOZMRS>GLQZ=AT-d3jb2&|&#)488<>u|f8BeKVg%@{)h@0}B zS-AE3jnKM_k4eodIHu;isZ;~6&41X7mnM5Xu%?mz=Y>`Uu7aV{`+%>;ipcI@Xms<+ z3$CC7LVY2s!Jj%UwycxSR?toH52?$mqE|)cX?)<9CX=1hN7~bNpDC--$5>BW( z^Q56|mB~N+VVP&FgJ5`ZX~%FV?M2B+d~ka8vB|I)=bLZ#3KoWQUmP)AUc`5nALxCv z7=vrN`)Ex323s4x2~`T(!j92|Ta)?6MsXFMb}ZiAcq)D>_n9`vV#WK@qpC5~y(R4r zFVBV>x{e5wa559_pM{NEyBr-ej}V5y%{fpX%eS-n~72tJ$1jE5Otaul!-+TP^~lX1=^dnl&9TMi4J?Cd#ZEvhDy z=VsW#8GWjlU~W3q%G=TY(VQlHj6v!@lNNN_fWcZ@CHj zHafEZ*!<4dtx`MVCC&HGA>XK(qh;-Ph(JiTZGA&@y){A2b}XG!+s_mb7bxh}bZhZ5 zobk0~JIaDAH&q|u4GBI6&n4n&YXcir3%K+6%e-RS+(LwtYn0wCxwUL-&g}%6^q*>> zS+MW+9r&9HhMN@>w-V9)G1ruveRUI?YPOq~#r49y_}V*Jyviq?bbN9o3tUh26gyif zhLxS1b*O}s)6zu!BL;i3Hz}u>=cijeqGtZS)q6HpyHL%>8>!5<&BB$_1tJKeSDs#J zYt^Ld`g&E~R7O{N-?Z}i-!GDt3FW?Ct)0Yy!=x7SU|37{ys7HEnaTF!S{uidyWtXa z>aLC(A9{wF*=uv883Q|DNGNb+_C3YpC&#_W;B4KG4i7G+?O+5m3HI%>N&$E`Pse3V zisia#1|db-Ze)J$$psNHneYU&(6RB5_~8%!Rx2K!hJhEyPw>{(356GZMGw+0|Byt_ zo-*W23(n?HB*d4JtueDjzRi17N-w5f>6z?w1xH!whCFNZnSn>+mremPCfrW^qMMOS zR0)^~=pqL$gof(lqb)qJ-nvP)pT~vc9Ngn@%-a5d8cb`<-trjByK86An@F{5?%O8j zT<~ooNm{JzFj@T(ElBFJ79i?K%d_4+LyTHZ)QJ&Rm_T(|)VA@L(aTMj$@bYs4vw>3 zNIahLQ%XtsSYGFyFARJkWhr0{Om)xh57*;!uu^(m*0#Pzkxbu?TUYs=UOvlB+?WWF z8fu$#d^#^Q9ujC)a*s=jP;SbWc#zL=+kKY8<((WpFxI-q9qfQf*+UNmACcLJ^tS^E z+Jke;-z%bSX?R@Kenh-%GF)~=!1fnDy?M$~;XR{@@jL;H5tg2%trXkPxQUS1o~v_y zTQSCklU$Xn0k?|DP7mydwiCz zgJv{CqwIlDQqQ_s4@Pj(%~U#YH)h0d;)->HhT3$%;dW4rEKy+M4$c?El_MC6B@ZPX%re)(w_L5<#kU` z{Oj~r32qp&dF;I<;mmJwR+S1n4K(n+1o;t+K@&P~Z$(1YgST|e# zaUq6XQoZ(Jkhwj;M|ik|)YD~-KCXrZNHJj*?Y=~g{N&v)v=S&pg5qB84;mUKz) zEfO0N8t4kGXA>;>xYuJWY|3r*7Gr*r7&UZ&tqHs`$qDGlo2&4UMGhFmoS#G$gKt^Zi=OwemqTbe{yf+Gz+QziZ zi<+N|5{~^t7;GH>u+u8+5tLDM*jS!ul5SMLnTEaaYbyflYl_i3%q<}GP~~s@$DI^$ z8nxoC)!Nw5NsD{^MePNOaaGs4iu#pngnNfCObk0n83%{qGtR#>qqXIIG)lOqS+two zS3a>xd$v0(NbZ!{0eQiFtMxt1ktuAkr;i@O>doFgw0KNf+WL+0L;kWYIjpAP*VvCA zU)mb%qHT{DUdh*szbMvy_^j*nuxq_s<@dtdd3v$>KdOql=T6s})=`O%DpELe2Q&Yu zcUI7hRRnesH_@Z)8a5>5v}Z@v)E1ME%|C}8=>0wne=O0G-*+DkCh9m&^Vt_o8)KeM z9?4P?@7=`kqodS+(k)U2*+_L&$r?Ts%aS#itIoywz6MKjBy>KUKx)1BY@o_y%K z=N0TwI*H{8In6 zh}IX_=q_eD`gVdh5)#iG9<#{k%yrG8e){#VL+?UjZ*FP~DWvB2ofJiYS45-Ifl zyL0kyRBx|=Q_zIX_pXEgM6_T3MgOLbRwBkK_4NF+C&#y#XjLls3;gfgdpSTnV4M`B z7`*MDA22UV80RUUm3aNgmhYJD<{ge6%G=vq+TNAfSub0Y>Qfx^m|TUYgStY<$0dtq z?-0)t#Afm?kKmB51f)A`y}E@Blqtq%M#B%BSqg>vy1v=xhe(K&9^vbHqEB8OZhZMw zCFl)RN^ht9tc{xAJDSTk)xoI~a`ay7Rgt2*wHD-UwDV+V&atkir^#b_7efPHHOaoL z2!Cll%dJ-U(J)-6Za9tQ8Riy(3>p7FIQ#Bss{in!J>&hI*SSg@1^Jf9dQS$bWm2|G{~^vYD=XN^{KSv|sSrhkn)u+Bh^VN^wU zUuYipklKj?9S_4^ud@36(rxdGiauB?K~>dg7%U7bbAvkAz~FZaQX(fR{tJLo2?pi= z-v3E4umKcJavhkINk_j7&S(eK5-jt0NP8o5#$0rbw59(WU82xve_n*Ul|b^3jW$25 zLt6NxYi6!9u5aK-`34m?u^C&m(8G3w#!ukb?g+a)vu^x59}E>(gdUb!zb!8Q&t(d- zH?DXvUAV%mceUZwu|CM~{w%I7(HRwltTU@^j<<_Hv#1Ac@jkIJ1ui z+~q6Nzg^;4fKbMqfIf_$RlNdjO@HU(+$x%Ac+uDv@JIyiEP%#ydPh{*PxZcAv5(RV zli#Xt;65R-;E*zz0H<*g74>ZN7eN|DGE1a;tbLU!4b-3*ok}<@v`CR6RhA<4&|&>E zAzXU8yiC}nw$TPji(kE>#A^ZQ#go$VdQzyR2)t9?TV-`u@KExHqj(mYwiz%y_VA3i z7*m9M9^CPLOn&RCm)T5&^Yr}+o>mMwZH!^Vh=>Hq!NbyehgJScR>$0TXOSl@e@o8a z?B;ta)^ge_y57DUj%$Mg9T#Ibui!yeUHY)|y#NrJvj>dT#Q&RDMa9x}(54aNrUY>;jE>iD0!N)|1;K z6sTWELP}uhnP;#305Ffhmt$MV3oZzxLI3`SUDDRgKD;J_*^Y*;GCUkef{4EJT! ziu;6WM8I3(+AQk6+s*poCwQMbEFaB9f~3s1H8nTz^ersnf`5JP8mV{qHdM131;ves zh={b9wzC0j=<;MR%p0Ui@OnK+0SUn%)=$OXpB@ATAG}8iHr=-}qkA{w&MrW9bEYRw zENjH!OWFSR4?&YO=V@}0B>O3mfFIbp!Ozm%W<<(rh{u_SJEQ!DQGpDrd#)?PFD(ma z``iooZQ6KxJRdP+u3!#M*?T-jm%57OQ3Iml;^NUOYpjfQj}%4+3q+kdlhTWR$(dVN zJo8zyt(_i$x>`XS4gg}%$TAQ-^$FmO!oaoQcmfhAJR46|vrR!?5fW-VJO+z(?oE?N zfHW)q@ZqcM@5bbAQ6SM?URzrNNvs$nLA?8*ehakSNX~~{hWt7Lm)vCwxO`p!Lj=!t z$6o+!0tk95AUjf0H^gVH`+)%n2Z|4S2SJh2v-|a0ocDi@!Kl!s7BP2tvk7@$WD{>~ z=M||1-Kmw6^{*1(*fwX2--_*7eV#&EReGAyRZ101=qBHcB_~wEbEcf>)U&i? z5VZ~okq3N8(r&{h*=;cxC?a+&2Vvc>98Z9?Jsx1j^w+OnZ;&$$9@-SdOk$}!mK(fyBOmDOQucz5R|I33JU5uG{C~I4~p0z zsfa1_BOSE$_dMD^@$r^&E4zOzpHg6{4)nxQ=KIfXvffha+Z45{XUL9Vh>Q5_sl7$O z`Z|!Iu%jzRURiIAfe=FhH#16IqE@=3-9;Op)Mh7ea#MAp!zW?d zzq=RzEI-hIKw+*$eqJ`SXt_pYQg7)9%EJEq8`?pO#I_}qi(EO!{G%wBkvYS6xZq`x zVG$$QR!!sqw&1ULk|(iVUgsbs6? zNdrTI&tcbVw<#Ni3P{G+DLY*RzZ|}>?2X{bj_9k;59IAjBb?VLBwK0>%yNptxyEJ7 zsEuF)dnd##rZ@u*@^MYBr79Wi4jI$7YAMrN-Yy^u;d>P4^J}D}LjbvT9G)yGDRDHg z$j#43I{pL5Ha%w22KxLlTNlg8df;Swb=Gf0w@(7ZvCx6aKqWx+Lc}7Vs$XRa&f&yj zowJ@pA?Hk?$1LEV0!Z^iwq|Hb+cvZxw}=}IiRwWF3z$3@=Ob=;@mopUo9<*eel zdC)z{W@N@@zj;HqdevX4uc?|Pwxx%$tS@Lo(;WHBK1=j9sLTXt(aRi|){CLKr4qDz-K|8B~sVP?@!<}~$ zp|e5N9_cUj%h4DTUtvetXYu^43C!bLL%kwid1I^DGq#+~TzDUDC;hB*GsO8Owe*yl z!wFvHPin#A$Vttw{MS z_O1WQu>b{wj|V8tRw!7x8Q75UveXkHZW)SG5w`1m09v*(E~=3-VF4CQ1zr4WB_9+wsWjf1}tPfQEJgHhvc{!wZqLR+@4`Fg&R8 z5WvLSk2FbbxSv}GED$w<==@Kh;_Jeh0@yg)CG^>&cS!B>n8zo4aonvQcKp`}@4jWT!y;<(hrsHV6JDP5+cN1op9bE${2>vUW1!%b~$j4b9 zE2V|vuL=@nNbii8HiPtj)bj7~GCJso0B2@+A%Ao;HZE>&qWPb=@R1-M#L5Cdw!Z$bEq=bZ)bYU z|8jkKWn}?`!keJ;n1s4+Nqh$#cZ~-FvQi5XROhaSJ$IJK8rrr@?#%3Avqn^Zn@k45Y>sLj$H0ur;Our6 z#xaKvEjE@Vm(_FUoDB?4$0ut`&SP40fq#l#yXvDIy>e`j{*~wNb@JqHQOND$xw^SQ z?{UEMlNYmz%pyfGU({S0X-#pf4vIXLtPy{IdkI7&Y+xO#cEz$!kgc1n<|bku8eUbK z-zy)t49IzLCVV_7BabguM;m{%II?B#p}kIs5CO84r=WwkSMQ~1r+4U4_3H(&_oxHj z807FzIO;KiQo!%korojY_rVpS^5+)5Pr7NoYE`?H;$;;kw3TnToXS*1|H?mmiX9Rs z?{!ok$1qp*nIC3$hq^f=Ttj!kb|(_EwIHWJ}O2;k74>74CJTh`KOCN zVw^I(J3-0ktJVLmCa^;u_geo82Mtohqb2ry9lM|-9m+YpA9iv02ajPv7ATQVmRqRq zcDgi#n+gtU!3nqTLQ$oNG(c*y7eWsXrB4FBQx1gtM*{MSg(i+@vYrDx1#qP$ zK;2<$dBNpOJ1o(T0sPVUwL&7OQkwSDht)rCkm&N3wPmNV#|J6jpq5~z?8%4We5QGL z+&Qy6EZ}hxFFE5K2ys1{xa4Q5Y@5boNj;yoDS}9d5j0ky>ic|=wz-Ar@>l~p8bOIy z?CJNzV`F1me%QL7Tm#h>*D`x!TK1Nd;7ig`;vS89wJ=2l#6xB`S)1Z^l$BVl9$I_iu!2ubKtA`nJD{9^Iey%FqF3g z^&yu76%n2Vmre2~u+Hp3OHqbhq7o=@%aXtI7aV1S#-+lA7CQ+1QF85_E~OS*`CfJ* zNK-Wal1c!24a0ex8`dmzjhDA`V!sB!+}?B!Uh+X3+V+zs+5jXJMBWQ&m8t^EN;K%36*u3Xfkl;{DBk2d^);RYYOR z4uW&NjqOHs-xBn;!HFyY>yG5Fu-ofA8H?5je2ykI>mPa#k9z+%NOWJbwy);wO@i!x}Bhffbvfz+B+Rre1cRs9F z>BF*V<{rTixwv!se3$up)K8BHlSPY_uSi4mO*u`*v4!QZ`yF9rGwGgu_it)!jc*PV z1pgg>FvJ|R@!a~qH5AMP`X(mCc-{T|9e^@VR6Jjxz^}uStX3$8S%2gM`vm&?&2XHG zDPxK6ewm&H$T;6jb}9X=V8F=AW0i+s6OkE;;hgMA=d&ovB==k zNea9!QLM}DywFpZ8kZ6El9$h)Uwxl|gvlQ7*^*aNO!QRqE>Y9St2!CK7M?p7%8f5G z604vbrd!7gp0_MAl|Np6M<2on|EiwT?!d^3tZu)dI^)RR9<@nZqCBK_)_%rHd~0Py9RR8h8KR8!oiu$XV~ zs}~FCH&+J6)0+a47}UbY$n&^p`iYfaUWYwiB0v((lwCThE8W;yA}d9f993|A2N|S= z7f^4yI#Bcd_dvE8oi{l0qkn{(ru;(d#Hd$27%S3G~}l_$imCEBxKzG z+IBY1YT;E+FL&sN&psR5l2Hx3P>xhnHV#%fB3M?7`G!;~{t0k_E)Xv1v-zRuit|IN z|E9?=$H+Wz@OVJ?2u^WT0U6$!ob1%TYY4X>G3I6A3+A2EilEz}yyI)IO;eX|?)9Qi z$gN7**w}u|(`eFE((CojUdI*M{xgo~rp|JcE(&EtxQ5hpOUq4m)ZYWx+cYpM5(C8$ zAs%!-1COua;lV#2^4Buw(R?6&T{+2Z^L~|cM)T{tM_LM`b>H#4PFosx8i$EYM?@&} zV)l0#H*He~d1fBV4)J9Lb`$>H&YRdtl-*91PZsCT=HM|&5y+zDcf-i_((^S27In{h z{zT9qNTX+x3Jq+Uy=7~rs~mi4Tnc{4)jR235Bgj9b}X8MOGM`#eQ47M)D0F1l!cmb zAQ)KZSYqYqCRRxF3qH2SV^=FneYaI(n%Z3z0nA4OGpJu5c+ywZg7n8S^v-xUtbF=b zq4kqkDT~ww*<@DZoa7w{T(}{wButcTs#=RtPlT>nx0vVj#Ik43{KZOi2YB@>OGgvm zwO6gQu75i5JBUs-&(okj^)lO}jvXWa8PieV-X)9ZL~YrYEjgu_cYFmsa+-z$pMG8e z=ka)u>X|j10?y*QwK>kSe>tMz4-W5STP-Q66g0Ycr~?<@1IL5F^u2Uvs5Tx7Z`d6a1r+nEG-j2DBRon z`rBh;V^BxU{Nn@NoQFN!KvknO)K9=1O-6B32oE}zmpATft?ol3m{YDlO_TdG7{ApN z`=2U*fa`o8!Fr~~F=mbQ+O7BmZ85?Gl(#w2N=j42^Y$ayU-0N($jMlmnZ427v=8li z3u|oqJCbY>sc(Xu#e?L-!!qQj08Y>b`frlb)1$yPH*r(US^o~dETQD=E?7})L7>DZ zFe7I6($UfFfyFLp9A^}s*LR(~g7GvtfzslAWy;tTZ47o@j@@E*tJ9`ZE<2|rR zh6Ee`_S2i8`J@G```~z~^(qEr)EScHF{dF4<>Df!l=@1djMIx1m?x7M!y}4>15Vo# zVdHCMg*%1f&-{gsV|aYF>@5W&{ce&!9LLv$bKl{kX#=v2xX#YbH`&P0C%+&>^7C3= z90WkUfBznmrb6(^*;s8#gw@jxMJolJu9?^9G@|)3zbUUJ8ElZL|Aq_pF<(OjlgtzL zmL{x;z3fjj?SNi;cj~HwcO3PMQAGFZEe00Wc;n~?250VD4D+dpfzOOss_Z5$fAkD) ztKX2NPVj6mOjn-#B$q%~xk-n&eCvqfqTg2rz!H$y1qk?_y$0LJSFxUm(GR>dasMg5 z0C3_B;1eVW5s7DJ(??Z^{?X~*r~4|@O+L-h~ z9jC0>g`Ebc*@kuz()7k*`g4D^c1i;!^%yl9j4xvn7v|wgF;Wlyk~&$*3EKNc@;Q|#}@l46`rZhxZPJpUENf_6UD#mSiU)EKq~mvo+1 z9vlhM9uibT_YMGVY5WY2Z8O$>LpjMnb&?1!g4t4u_t#x$U9RJ6ZBwFd+*qEsC3=MYFf45qn;WvtS(|AiQe$sqU|sBRN=X1E_?Ax9ZfQ( zQaUzK${Xk13D*0h+*}4fQ9M}tZWL2!G{|rkO3w}21QDCIL=Ye}csos?n5O+{Q@uDI zz3aW-xA9FS+T~D{@tUcKvPR9yRGKQvDVw&k=hdYQsuwl@)?cDZi#(Av;g4?m_ms$G zLuj0ObsvT#`m`9!`)XBOw+-x*dnaqJm%g0+x>jub&E7d*;~ZuJ_z-5AI2J3*IrkwK z){=rYtJno0)hdTy`Q|KR8a$}(aP?bf_bPhMJyJPDy~Oz+MnsUHv$2o+d945T^$3zi zo9o7Xap=J(?5f;Gr5dElTbL`JvkbmUBrwHrY zdB_uCwiT^fX;sH?KExs-K~u<8yOb+zw{o&;`1k{Cp?Y^(QkSdaaaTJ(xNlwq4u%56 zKtPZyO7X()zV}xmB}s1l7#rjY%>PZqTSq@7clJ=VVJkaEJ8>D2t*nEyNCsV7npU*! z>pF!&1snGG9eNA2f^CvuPTghyP6|y2QmIcCW=f6wp2Nsj(q24r+V=2}won2dK@5^L zXlbn<3#aj!g#$1NiueR@aYqbiUNq3wMYR?x|6Ns4Hew8l(~@<7jb_=(>}_1|EQzM> zrN#CDSPjQPyWJh=~?qD z$VGC8AMQ*P8J>P7i{&}%gm8Dz=*b^ZXfgJYmo z@Q(N&KnX}oOGB7Bh+%bVu+kk70j*ytMUkwx>`RMuDVeiYcFS`-x82#Z+8C*6#P9iuMvPYd16~@d6occtMxJ!jAA-bnReXGedwP3)z_du<9D9Y9h6YOe`2+wH#EUK{ zqeSlV`~Z3r@g4wr1)@R2MkftL=e6QkuJarva+e{(~;2Eih%~V49<3#8?>?eQnxBw1sbC( zx{)?ko*&B*g&xXB%=!$r$x2o3oV07L{`Pg8%ZthS+W*5GJO!p6_V*P3SMEUM&=XuD z0EWLC`0(Mwp*pW0s(GLf`_0?8EZlnFwS%za4v%J@0maL6w#sJU+Ms_l>jR}jLwl^= zR$8QbGV{ILnMIcb!EQ`$ns|oK%Tlc_^G)@`Y8QPSdF*?;wbP z%I;1EaP;~4N%u~M1f(B5k9_#EZvBJDG z$vwi?Y?pZWeE7^ex$=SqFhK(py`L@78L_IBX7Gj&8Y$_IVCy?ol>LBb_*9-8r#Sx7 zW0p45^y|GNiM^f6sQl))UjyoNj02%~u=IC-fJ~bS$hB9?(}8wftir{-TCDVZ)h|=T zctw~sxr-m{-csa>=iYdCfCf7w?bRC=VR{iwXLCD+baNX?b56@*+7%zw%70z`L3X)$ zV;=UVV;mm@^sXk+P9^FSHBKlZmE6_+u)S8txWe3jUAS@4!n<+QQMo#o2@$R!p6=E1 zEl0IT{5Nmj;PC_Wkw&eoq{NjbX^fkP$98qFr>7Orz8rl8>D-21Kppa=aNP??mOlq> zZf$`XBKHPEc}a;f=sd{SG3g+nkYmpM3tVDuPe) z69HLSIk844lwD@P4V zm}4>BktmeEkXQAW#EA$gk<6gxqN3k2jGp~GLtNZ58{3y24icY zq6?f}o&hO2XOr_{?Tlv|cr%4Pro|wqBScL=0sblJ>Dm+7Nl8xuA_=+`i6HkJ=!hOv)+vMb8K(dY50M z5wQHTL0e@~2YsTI;7*+l{@nxyK=_yQeQl^Yx8<$RKIq|n2KH)3h)EF!)3Ey_4j-IJ zh=#;a^A=uBk;&tdLcj)l~@vL{-bpSGfVgjxw9EKMlNFD0Igmm{1wf)~~1WyLMuBf7r z_pLli1{A@B^VaAEGj->e)a*3!KiTU;Jj+|-Ew`RAu<#icmJBm&A4eOjJ()|f;}qGp ze@)jbG4V~sF?jZ0-Z@QiB9_r6ys`g_5XhB32QI~c-LJ%zA!nFBn`74?yPSar1JN7q z@2>P`b->32seU}0FEDaPlXhGJ0-az;Hi0BmF>=u60TTK5vVWXkZNAv?`ft@rHL+3x zVOH;@W+oIKdq!$=!0<|=)UX#zech{i1$Kn9|qnHp~uJGqvPYYEl=>l!i`dv zeJ}bnLA23#4du5vN&@*#zoxm z9@JH<%MZl23@U>S1bxeK;`2CT0;2#j?Dy*LP??g4`16@Q8yIZFY`x@{>PK;}#qH-^p8!kDk&hB>{1qr-tI&Fp_JiBfsdi^MW zoU>rMHUP$fcN|YYWCqBQzuEYvd}mH75Hcb2(P-C~$ee9gBjP$=#%9vwbyv3{+DU#D*%saMKMzh zxnw<$q2l~cmsercgjY<*Sy5F*2^=V{XeThayxPy$`ZhSIfx%$z<$+~HqEy2gxKHaG z{YS^f-j)Pic%-D?<)ul=lt{Qn(FTGuXIc?7n+dGx=zhEY(>|WXVn56_DX&mt5rB`>QjqjA`KlF z-xhlp=Wh_&wEivdJwM)qj%It{z_|$Ikecu4y1t3F(sAmgXoQW#BmqqT$BOWTA-KE& z25gg8Qo@7RUoas9=vQSqM!m;ie?zX5AortDswnDr(iDT%%)Id|U;=u|N4K{uZXppi zG@0NUxBrRyNW=qIqE{%7&Yvv5u0-w02lrGfo2k;=-h2Cnr8Ut@qqxxJrlcpmRoI39 zV{pUvyI<|}+4uY7v;SxBD1K>qV;%e-2<{7T`r89_4ea}%go4mj2uAJeZG6UL9MsIxG8!Tfdc>8_9;(QUL*NUV!7My0z;`2(v9f!_UBKY z_s5X|t!TedLP-*vYIp6-rji2sv(=v%of}z_9{$JOd{kp=gr!0DUU?Y@^&OsO<@xQH z%VOofU7gP(gb+lJ>2&{-cxnqaMM%yE5P(y-9>nSZW)&X~a*uDTDv0 z0r)WlF>vwmwL|pTIgpt^PI-am^ZoWA*S!FG@VH$>wD+Gt`0yoAGev=-ss(@-Br}@# z_d8R{cwTDW3sfb!^NWo=cmOA!718%lv9&;?0F|*uf!aDtd_*^=rJ8wwTP;ibrYhfb z^KN*Q&Z8>z)CXm}zOz%qqUe?0ct(~HbxBFN?M=}-gFrK*E%nlU`pe(bQ|r+&3*aoj zyw;WTf&(mG&Q2fzj$gdt5i6#ZL@bLCzom)t6yX^aC;4_{vrH6JJV zC7OhagH1j6riA-V$AO$o(|J&^+z578Xm#}l%0*@{2ZCL&9l-09fwq-5d3bmr_1|K= z=)fH?H9*`yxVcMy-ELL6f6b-|-u&zLjPc*q^Twz4hkUDOo)gFReyHTVO7G&>S^GhQ`K~@TT!1x_SVPhK5q05SPqK$tULMB zcee3JWK5OeRfG})-ZFQRYS`OfY-_?h|#jHvnD{QUVI!q%59gI0c(WkkNw zMUl1b$>T>o>d|H2=W3p&76#3uvid}tBXPGB|p`8 zRYDUr)gu?aM<=WcfzF&&B_+OCI9*X$tbeSISt#K~pn<9Zb0TewLu#)%2hSi+E;Wn9 z_yWeN)@thLVE^Fd+>es5gQ}#E_Xu0X-^ywUA!kq0_{Y*T;Kbl)`_QN{Yf8IyUg5_} z`IxB_g4!P5d&pHedKNz3=!DX&A_s5Z#KE5ZH5M6B^pzpGU$|5*@$`ZvBYpER2ZtEA zpz^Boael?UyoRW1XUF1*miUXV;nAv!o zM}vjc?s4_}gRX3+knE!V$)+*Jt60o4vv+ZrqRrys?YC_u)?$LmCN!M1cdDYAlV#@U zy-zJZ0@NVXve0iT&#N|@u)1G zSwf&X_=2@sM;))ahmypy)M52uE<83oQLS5PSO$jM4hL%jC*2FV4M`>P5 z%#W;@_Uu~M2ELM`(%4!lZtFs;4--;7;8I4 zkcI3fT(}J=mTAh(Yh=`%QoM(4Jx->cD@|&0sS9*UAW7Yz~>~bq*K*dC8A}?-fvTfjWFB1bpLFIYbrm8 zs07D+-wBF(R%?+Jbzih?hCSbsJ$!-~yCU}j7td*0bKgjl>TjGwL`^q`jZM1Hz|39Rl@;CI ztWfIDrKJP^r)-;{sjbXApF8g) zvGyq6S*kY>Lo(dvkM*<58moc%dUp#dZBu)yWu^`-zOU>-yq`jR6|o(4GlKaGCLy|Y zl(vst48xhTlq5*P;fOzGqq-N^;2QMbYNEjSBZBcA|4csyw3&MR3T{91ht^u1L#x&^ z)4-^}N5Q$Z#`f9|cCLlYH#Wy_S$ME+3EAxM%BGQwoy9)lD^X894FC8eL#6V40j#{# z&@K7R+c6lyja!K~-zGS#!}Lz|)l?^bomR1^8JOyKa#U8FwE1;G|7|}^K!;RY_rB$jURUW?K#(t>|*GW!qn_Ts!bNM6^zDs`UkLb~qep|jD z|Dngv#b5A#Cz8dGR)v1cj)LGw?h7iiO6NAOK8V^mD&cGBCUxM&=c>Od!pd5numZ;2 z6y9f`SL`#FcR1~pY(inBV}gsS=o;jA0~=X~X_B^YT&yZtny@pL@QWMm$mVLpz6pMm zqNBZ9<%mRFkNDaGiO*E_Ez~qya@Q~MceEZ=7K$Xc;k%5d#t6bV+?ETKKPl_TsVS8p4zr{o1~Vr3xdxCCpQDRXiHV3M!i| zzt0v*e1@-G?IT~#JQlfPh=ykqVLy{|9$Juu$Hcw1X5?ta}R)wFcEnPjp$ubJL&Du5v%B)sK2cFpD)~{@c7~kjJ z*fLGH?mpo3SXay~Ear%{^gg=&2Q7Wo*~k_`-H37=Lxi$q7|M^F-iIwRFWlpEQ3WNj z_)e~!C@bFVaOY{yIn=a`aXJgoPDG|7Y;G}C<_(t1EBnn@ue@cosNF6Lv&&-WCFB)x zH-5eS7JHkQBH+euPoWAtLi}C#mG&5B4g|x!Mg`C;YawNDFJ7#oj1qm~z#1wdSiaw@ zg0<`F;^9>f4D1g#rR@+2pVYchy>F@;{IutyD5&{hdbKv!Pk|XG{!$nD;NF}F;?``$ z(f0E`qmLRXFCH;jbL2W?KES%wv=!HC?G^?e1W~EEs4KZ2*4xYOq$wTh5+4LrHBdWy zX5*@V^j&Br=_rg!#!l5ybQ^K~Yx*L?iX@6zfHU((7u+C%C3~5E>v%pBJQg~^V)xU} zcHhXJ%yimC^9J#@o*oov{13jnBY+}&g=xo1X(L(r97g7D@;dlXi66aDNJW##GTHz~)0l_zoC%-Zd%RiV zojKbzZ!v)-hUe&7lKGlqD^8C;1cGIPN~xuC>+nAyG7^tjm>wAr=4umzD`XEuKpa`ueZ(D={-{00%d0u5wf zwonJ?J*1mh?4Y$a`Yve`X@u?`>OuldX^NWZ18P*V?qAj$G_A?$a}5-s@1Q%z%9BT7O(P99O159L4EOe;K`)>!2#SJIEC5FF z1PTejVs$+@(jE!=}AG@qC9wlQtltY5g~DfO`SVL8Jp*rB!27D zW~-wIzLhrE%YXlK4u`*(k!9Lk8$LGFduv&WPMjIV&b|&+cJI46vr}mc&?|^;fue)} zazTIxee?bMJqVOq2S2Fx7yJK*;AKmK0f;FDMj7GYBloutnwMW`>zkTJ1B9>BpD8lQ zyO=s0cBO$-)n9dTYdtFmT>Ji9ScV=SqR&kE(%=Pn-bYhTtTb^pAk3`KA2M(C^k@OiK37s&a`H0>RTwt| zgzW9xw_oi8GO56%!YW1%wfXPt$0byky#O$18c!2BMh$@d^3^JU+AR*4XjOiC`fB8z zqs4Z64Q|cxiXO@BPDU0UL$-`(t=eGe5*+0C8rwI+kZd}tAc)*X-UAg`EPRg^^VM~A zb-x!4tYmKhVLcUwfE8d1$_@_fj~MX4%%-Cy2>#$J#bQ-47>WIZgUG<`@e2q@1V|d7 zlAu z`OOj!{uu;S)Z}>G-QCW$UkY9N{8(34M7A;xCO-rNathMs2?zag_B>$<`GWwB&XGlV zL8P2{0r@z71CGT(6cu_%TVCpuG2dlrIiu9=np-U#Z)N0iA&)B#kB{hMe`a&lXrr01;EecyiZ z)+&g-0of7{Km<{L+Rp6fYO`gNA^d8|B7@!XWAa@vq5<{d3gw3vbV6?#ChJ0V?&+?NkrQ=%Hl(0+e zW*xyG@lT)P(Qh4ThWwtOC7~|V%yfbVyGB;#P09U{4qu|2HJ14R3#hZl+%D3Oi+?-%n=t>M6Rq=;|FzF|eW6uIH_48Wr>8~;3 z%8nt`V_*3k9ju2~P9^l>zQd4Oz^X(5*tV}A^#%vbqo9iW22^kfR6@z>zL4x2GB4oi zjz9nZ2cv5@uRZ}fbRy6W(d9p3IpI#{$07&3Vi2+l*dtYNSA?GLX;jqndv|jrU43b+ ze5Ik5sKM!B>A48cosJAW5tY&y??8&Fn8UBGRz?DXb7gSjgqhPhMupXXV)@}O4d2{!1uiZ+2qOX%B2^$`;4;GA!2xR7f&R)9d;%e-0s0!};a2n`LChBRQe}=1U+~(o=XpD%z*}p+q>6Z-d?>Lvp1~Z;w!VwhP_Y5uKCUYP0FgayJ zbJ!Unf^#g|69fenPY&x56#l z2r1B?fpMe2LwR+vtK303<(Ih95AJB0q~jl)FarBzW*7p4rSN2J$N0E*8h;R@0CFv< zCpxSAzUaf%nGMJXP)tAN-`JT**IDL-9>eUH`^KZMhU7T~4iO0t@~})_MawtJ*|7F` zXiINyj!v`PPvq2jM|0yAiZ#5JPxXq~-WG>4AL&JmkV56k@>7`xgsoa}J^!yiW_KFw zrO6QBiCU=!J1nT>m>mGEbHrrhEXrtdM=d<|u=Og5XZSA7Jq;Ii84_FWW*pTXubn@R zH&M+r#@de241q1ONZq(H#j^u@kjXI>;;DbN^xQKNXM)?NMq{oWh~#BByg%5_o><{u z>Oc72$YvbjNBORVB>e6v7c25BzI|aTSDLzdQ}n+n`?z)CzeSy9_Bvey{qq~C z%~UqEr%+nkw14M?UEai_y1khU6DCZ*X<9dNUp6{2TcpYP1%uoNS!cT@!=v9O2Y#iM za^X^%Fltf+VNi`!O1?3*CqDvXl=ws0)FH+6>n+nr-ZoUtq-P-70US#)+mxVR(h!U6 ztV*)6I|F+#YW!ms&3m(jk4Fdj=Pj(Qgh}e}aQiGdulDmzY3gc8?6Nd3cGJEUOHV~@ zYzM?R*wkeEM?GbCb>OFLd}zPAV{2u-sw86^70oqAf&nM^EdcxcSaq=*O88jrlbP!x z`Dr7rnE9evS1X(O6?2D*w*hywisY|%Bl;-}sjRW^gH}hmZ63u`E8AN)cj_oVgOh$) z*yK**ND}*Y{=HqZ)Q(ufUe&~eof|O@3bZs}H9=4$E(O5YPRv!m@uRDLVZOT<@HkI32c zgpJOSc8ft%j$U8)`;K`M6}{PYaWjWaY$-dWDp4Q)?WuAv>jjXjJtxsNQi~>_9z&_f zinx?S;6@akZZ$k(O0rcsbJ(Fo6_#bKWAaiRsaeQR8#l+^zOU$|JYE$;GX(jW+E>Cq z4)6*1GRG;We(s|AjTj}7It z;iiSU26y~C3VQ^;^6HI}Prc5Z+o^g+8$QWz10N+!@_hHQm8DTVl9{}0McMD_D`}Mj z0QiVzYo)T&@uRPE%50A+x^uqXBwi2Srl-qf$G&da*$k*P#apT#PX zl15Gw7b_XXckauIiqhnU@Z^i3tqc+Z&}Lxq4!~16j{Y2JpTo8e&1PLxCv3!Iw+cw7O=Jc=5@CWR+2?w1o z_WJ$ue;X;S97*x>k`3F0N0Tm~#ksGNEOIFSpvV{f7>^_0>=TH+(U3r6!2)j=!H}db zPA1f4q&srH$lgj|_9x-B<)vD2DC<>5!)FlPN-?PBu*IhuF?WTixKWyx-XG!w$XXdK zQ&~#d%JE++R(F%yC?daNu2*{+=UN=?Xr~O)dG^O`a51}j!Do=XatTp!3WHi}N!c^Y zP2gfVa~!iP7sLh(qXui|3Z4xdH$3Y967r<*1NSxNL7^noKh$Qbcd55jm(`lwO?$Li z_*y@_Ih3L7Yt3f@m($K-y7xoZ1$1R%PrX|A>63)s{^8Y&v*f7zOM%g5hlr!o_VLSV zYhr{_#LH;j%=Ki_d?}sq$y)1-NMI4Ab#fDY-MOz!NLTqu-1@M? z5ne3z5ZMsv6O!i9T0tkw1FO3JWlR@HqN!R7Y`@c202#HdEcmx1syNgtl+m88PpW!Q zkuY$40SzF@l6`BQ4dGIKGp&?$*ezA7+j{WqUPperkL=ihDG9xv@vtRQ!K?ztZIKritnfh*n!P>6BpcRZo*oD(+k3IA8y`FOtdN06Z*((t9MtJKVL? zGzI_{m-H{`Twfd88XYN{cK(B)n-EXa#wBgM?mic^Ffb_^7rk#?QO<|lSCz_1um5zi zM5z|u_9trH_{OYoRqG_rxr3D>ZP9{3X;naPQaABJ>Zz+sBb zbVMd7BIDy1W6P4=%}*r0%hQ6be!o~?pqfb~)+CJ4>XJLMM}Wo7?ZHZAL!LWb&LSI+ zyF>b}im*A%Hq&mn3`RbUVxhyDoHQ0NQEXSjFCGUl+Rh)cSGbo3GImrjr29m>_JLx&RBViCM%j+G2eGI98OhL~Re({->TlSOdFYaFW$g~dKa(qTkU z4b-hAMo|-AY?_4*qjHHi0jQwng4*v!(!G0R5oHWk`6jD+2P_|z%qq)7pM&(p-P1so zh$zD~V5lHel8S2g?vBZ~ROZMk`;K~RZ(&bVDQxN2JRyLzc*fNqBeOiVROIsgDKk2k z=AF>Jz%4#rc*!Dj3o%6?#mKw=7I(5p1<+pk(qkM^iMXeojQ;L@imBrxRjAv@#7nP zpNl>oaPV+?c@u@mfvpdY9Z?tY|!)&dnfKWrMh@x;RQzFRR z*!+eOqDH(mk$JqxA@Xf*)YiGOS_n_1kJh!tdYOL=(ws~|45Btq+P$-uQkjpI(sKM} zcGMrLEpRP8%&e{^E5VYZPv&@-m~Q0pG^pOdj)X2e8Z}45<3fXgsMbI!l8dHH4^0yO zK&3f8`X#Bs{Z!bQ3P-zrUb^&B5KHLJawT1-SmB3za-O~Selpd%rRxu;hAKv^U8P=} z*s1M?*@jG`?2X3s^r@|;w+(gIsZ=w7nDyn5gssB0Z_nSTCfOrA3tE*jjW2d@SQrgz zCtI%8oK&G>n0*$hYYBc2i1NNr@c6g7^RQuf!KiaX;+`K!JW>K(reBth1}BY;Olih5 zXV0_vn9XkO%&d88;*HmAKQyRMU-zHhcoY*_CHfC1+&{@z>d+`QUqj|Oo@&`O>yIK2 z^p(d<^DN1T)DC}QivQ7AWlwJBdkcGdj|ly`r#xNj;t61nI@SGG#Knqv07=(hduWU zcP9~jXf#QZ#oZeWj;U@%9tIuXj@}2ohDY#dk`=)WJ|C_W=H`)LhA+%5w_|@zn3LFY z=1*KREETT6`iz!$8#}+ooz*+~W?{YkrY~0O-hXKQ<{!g^oGQCny-zm7FPR&GOC0%f zuLIwnBLs#tep4W=9Kg_&pyihlL+hkc07o0Vp3%fv8f?~*9Rz`Jlio%io~~7ZoVyrg z&7J4F(3Dh|CImRw7=Sz!fGHbtWCEcu zRUlAbLJ=T+xw5p7k_R$K0s&C|@Xz<<6%}2Bp+}8s0*4Vo5?P9`|v!}Su|mV93-Lw5wyF&>r?1_C=HARQ0Q z!BZOH+8bF!Lw-bc@X3vue;A^9eTpf z_;^?89F%lwIC2F42mz7`U_1Tyw2Lvg4?ShTUa#SOn{q{wUJpl?D_*oW;EWX&|LxxE zN+3w~p%q*5-2{7^sh|T>PG|JL+B@@bs@t~TFHtQs%aAf;o+4yS$UKxGg-B>oh73^= zLM55UlsR+AJd=kPC#h+_V6f2mRY?q~kQZ`aU z`}&Dva^q7u;X-41nUh&#ffjtUHZf+(1_y3@B6Z@d%DrN;VB%p62ABMK95i)k4DoaH zMtc%lVcDkHn4!{Zgm)b*x-|idydg~UoPGUQbROeG_ znGYF0cF9jfpSM zXXVIMv>4hR7PsYpF*b*~^Ym|t4_;bvTPmu?zCz|uOFs2t_A97|oI524v8!O{X8`?m zBe1IzghyZAvMFmT()|xrDcv_iL&G3fsCb{Vu!sQhRpzWScmOunzF7_XJfl|lg#lXp z8z@4OrD|ytD}u`Y$LpWwa!U=wprWK+0wS^{fNg^04pOlw8W}Mrd#z}VfxD`AU2Q)o zc+c+(Asdw>JJNNa#bc^`SUUf!qz`jDz0N5HLTQxUA$`1Ilh8}XHb$oLGp)yZ3)m0L zlUw(!NApwb@vm0u@HyNmy*Ao3XO%}z%r~gx)@&}@_&t`mEp($eK|vpCYoPIL_ktTA zTqwT)ujV{pVnc)h#k{|}+Ks^_=E`pKk6=ziF~3h%pD29Gb-Y*smCcYpQhYq^mp@u~Kig#MYW41kfXt8TDd#bl zRy_RKwm+8v1|=y5W)3EZ;e>ypLeP@GMMg=td$p>U2;_9rkgIVRah)KbG!)=*DAE(- zJYUk94%Bv~w}tBogV~+5R;+wbX^?-Ad`Os4O}Z0$cIW24d3rdxOtP(% zDde?@=7|{VFKY%>-={ITcop_qGK+puV4a|)7sTMYav`^hT4KEGH*E$B zRrK+zRWIedN6r9C&NAL3?{?m`gQP3mU;CE@f+J<0#hAU{vVPrsZljwa=99bqG9`hKjU%U|fe%t9yQM7Gw|KTwkd%$%B zA8A()B)S`gU%feu6)R$4{WLMHD%yVhVvvJbEr0Pz%lFEaiyiIjaxY-;$_(qSdT>$f zF=&10e^DXDBv%6QR8U5&70(Xa$_Xg7mLi?>-g>-%^W^o8-z~wFD+OMG?uo9G?wcpi zqDur_I%K(32^UkOW~Qb~tfH=vTBiQyr)$~lTmTg!qYs(I@TT#I+9Gvc2pw1c&YOg< z72;;9#e&Lwexw8|FZoFrc2<`?zdZ-lt-8AUfnCr7^9m12P=Z=t9SjgFD=Xba7N@0`o^?7yVpK}zNA@7@)kjaXy73jMq4wcfJ;y|#x( zUm^IBLYF}AU76d$rL~38LmnO;s4uk)6PoX3o*&CR*9*umdXM-Lw>3W)Gm?oM&DEl* zxxn^Hw<3Mj zsxgySDR(rPS~+G|akUb8j%(y5?QeE>w%L>GIvhA?Sw&{9&3L7+2VPZejp$o`^G%nV z*42xl3GuK6vXgo{Gz-POH*d?qYeOuX7!iwbFo;pG$k2dqMfZyUkj#J@f|5AA07f@d zW<%{y#hM^N(FUOgC7$cog^Y_aNALyE&z8-YF*l739iN3_09PUGmejG8*wtUgj^S{aH6|>cFF9FL1uaOhvMg0;urIUO86^p5p(1Z zy^I#dH5(oE_KxAV4!S1(jsHo;Z5CR;6p{^$8GPc%%7je1iWdy3;iXJZPgjF!i%3H4 z0Xg{}h5VS;YA4M1vqL3ZV5j#$C^k&7Kp79qK0}Wb??M4j%`IWsO?oemI<|K#|QeV}Jd6GqZ3| ze`1w;=41{oX7ov-{b9~_IVM)dYd4Itw9V4J1ba_b%lG&x3AM>#rwJt zr^noPyQ5vzW6f?VL>5G#PO%+Qx$3;{C^3|j+v5)HG4VkQlA~<5-A7;CtFr5>)myJ^ zk@9fyQWL9Tc_T&V7we}^F&DRRFd@t260XC;__yJg9#)>(4Q;To0KDjaae;ori(dz} zX+LYZ8Vej8IE>Trm64V%GZ~o4W6N)UKim}5R-s>)%OAoV_2sHryw2KrdT}b^LU&72 zktmuYvnkEaE+a-S9wWFJY-B_LSud9KzX=$fI`+=8 zcd_z*QwM#a=nObn81$DuODqlKji7n>c$0`wy9FwZ*FcZ2;;!m${B&+#e%;`8mTpPuZ zG`TTQ(&xJHfqDO&U)#QktB1SCq$aM8&S#!d8VDG>j2*nC5U?`W8py^`xydwl+cKi~ zR+854WtFh+m8Sa@o{&w{$i952ykS)xa+W5Iw&_1MZ-4hiX<<)Fi~(Au5_C_aR~*Lc zSV1as_KSe9u$mlOD>&<8+RC77+B~(KDF^?8%+YinjK?nr@=&g(U@+3Rv{aQ0z`h2I zOYRk~?d4XjrUGGL?7$JJbDmBX?shm+nDz4666A9IO0g&OOqeF(s9b~I;xua0AD=Ms zR-Gd~C*bp7W*dM5?ysTPgP?m9e5(|d+{5||w*O3ULVf9WTjph1RW1*#NG0$YM99KzAI z>p!+|and)~z;b|O+i6f40GmEH2Hf3vXxLUyg`YwJVOEfof!IJUy;^(|1ac7)%)jsE z!fx>nrU95{-DNg!69wgx z6<6LS_Ah#}w)jZ0@y<+dp0KJhglhI{ub#Xlli!^I5_2?%cC^RRV@Kr#DI|i-jvc|2 zH*+W@QGV3uz`gRU5$pWL&T2pEu@IjAS&}ZxG0+kdsCi=_vyBXEcdJHzq0^DpZfIO= zeVxp7Iz49~6;t{&symQ>?dt(*Rp)NP;N0f5nlZtM?^a{Ao#`Gu6TD}pK5j~9#RpK) zd5_xVb(Cw5c2XAsxfbS;Qthipx1HkSZVaCgrxlhC7w;h(e<++);=L#lyK3^p?S_b0lbrlhfwE?U9Hm-u zT}L>1J{#-^&=YbUshk3R`JFvOSHo|`IG5J=;7m9>>}qe^O89+^-e@jXOAjKII`IJ zP9K`_2=r*rI1{F4pZLeUJ3 zs>QRdkskL-wh1#HF-M1F9Dk117XCOI(|N-o)+6DO=V{kk9!0JIs%#3~P@a zdEHd&eMSAl9rG)$ls~S%F3%{WD*nAxLvu3_cVPC!am6XU?q!F*Tdvsgs5fb6=>wW&BN(99-K# ztLRxQb03WN^k3axDosS~0pB{fE`yuKj$7tqT8=2K>nv7Rg>Zz`h^Ho=I(OM1#4sU1 zRUgZ&?|KUK%*n<)+;(U;9!e>)R7RRSV_EfjoF$U7}X2{F(q2Ft9R2z zc~ogFkLCI0+KNtaZT-yKqiI&sq&TQqqZR-{aWW}F; z-6-n7yE273k>!8bd)AtjP4aGN$F9r}3h!^dRvo9OCm zqj=rzNR%?EB@$ESQyz7D$n~v{Su9>v@c-?HC`!PdRB8Q-C1#awdgD@uAwPhU| zze~M*w;9g!%g*b_=X(lsy#aeNznI#ijIgJD`9q;#b`aJRmiz> zHUHrBT9>(cg4p@mLo>6YS9aK+ImmLfZ0~9BxvB~(MomcY=FB?Jwp@w{q6k@`OH=*r zVojBna78U>z5i-PbM1Ag$=*sh9;ilZ`>Mxs>V%kFqkXcpDPIS5uO!=cx#DWhl6lje z)!E{@XDxPoJ)X4RwpXdwoF?nMVGfu$d|T_#zH}HQ#6?_`G1Fz7O;Qvkr3-prqp#;U zmvYJAHS-S6U(Kj3O~xA?uEhf6KW@bKKXt*9FIAe=kEbWh9Gts-S5^M;qsrrciRPnY-I3s}c??cgB_S(GeA@T4Qv}wL-JNrG z4(!n+c)w<6vd>1^BMg(dZ|vjP8bmAAvh)lp<+am|r{7xiZ^$@CuPrYaEocQ>uKHM$ z>h@HWj`&RHTzJ7%JD$VG#%Isu4HF+BSFD zsPG3zIA0^R@0e=9!_dMkL8W!RMZdgD+*_`ev0-&5%`P4oClULsNk1Bf8x1mop2}-s zBkK70*u!?iC;B7?M9HTf-W1}f4T#cfWnp#lSn4bPvAgrK*XK%hx{MhIhju1({8iKq z=5gG0JA6+;kvJk{=z|HbDHWG037#!h=oB2!9X8?|lJR`R^vRe25fYIO@!i>FF0*Mh z1Kr+DCzdJ`RZGNYSrjwLAcp`ey-!k*Gl@OPa*pYuK;ZfcMcXAl_kG4)_Jj5gEOyEU zjP}VThaa0=4PTRrtLvO1O|aj#nf~?keoQOtwzd@`0hQ1Y^I%*1CNqu|AfhD)I?k2-}%1L=a!jQW|-=4Tqn^OG~dhU771a{w+ z7|kW+{bI=*xYq+FDU8pDcj8((D+Nc#j^8rr6pPqpC-7hYnQnI(zw?NB)23*mtTl4) zTu(Qb zRDE<~2Dg4BsAfSs`E)cH)dRp^sG+M%g_7T3S19v6f*+<8nyD%?f|j>ndQ<+gF)6`* zUjz+tNAaw?j>_2>A#qT*Nr$p0hh_P>IbB|V*wl_?GJgFwqy z3P$D%W!?Q>4S!ihFW?$DCi2iSO_NF7Kvevw!dxTz9HZLH#47zH>qpUhSBrMX4N{Kw zPJ2x;{G+LbB$!Bsh*|moLT%`7A*mv;3KI+drK?4XasTo1E7DP;mKI=5#6e?f-IW{$ zTW7XI=I$Jr&(PXZgci&a^uh3u*UWU{Di-RuIi(S?-m4M>AqQ2dgh&Sa>rK zq9W2{YZv$4TAP`xPTf@PCN;~YPe*ioCcH2URPU?QM=RrP$Jw+}^7FH9=u4lfP^WpJ z@<$w9Soq%XZ%a59kCFMy6J87jj2YR#3L88JD33hRZ2zmWK{uCgT(S?aW?CMAJw|0` zr|An*rBo`p&V9f-kS&S4bsc>H-!Je~u<5KyR|pLYQAy>xriG2r6wh_HFD>7(Xk zX$9rD*D57~NBrU6kMHf?0ld%T#^{Y!00M+TlcvGQME^mvv#PTokf-xRNf-Hpm0vAw zj(k&Cs;M7iW6oc1Dve-e-7@zGA}Zvcp=`>!-b^|rt4=GF?!9$Yi2`$XW7cqZtyhk!pG5mtpp-??e|8d}vXhW6SuWJ!ko~BL4QLpTi z5UMv}KqvwzpPlXa`sIu0s?J})=KIC@&_E`}Km$8LxbL6sGV^5Q=x>YU_%+<+^-k!y?NM^Qr>I^e=po!Vf0 zh=R^04FS`gp+SvlfHSog1zqFh#oI%q=5;&o^^}sRdThn8?BuaKALvf&w=*r%%_WY-hN8VER$ICYsQ2Q*3Wq$KD zzIWvZ7Ne1R>uV(`hu3^bK(nVl?W?dB$5MN)o>;Zzs>CylK{*r!1906@uq)EE17MdZ z)y}p8gbTcC26{3RB&bAp@v_T)7^mmV&BKu!A8IR2|8V9bLB_w9U7TT2f#*~GAs0c} zg-1OWIrGtai-@)2)*TIi@1|S-)??@8x|SoKm5-FR4j4y!n!=rO`|w1_gYCc_1bp>;lOKE7aqxkPX2Y0o z26(rh1Gy6FI-6dUa1Q0iI{2+O%G9Ur@m16U!9GqDuWb1x072AXY1Q(Oau~YrE|(lv z4_IInNMh>razC(3XFtA@hSe~R$%+Z{Zw2yS$}Fm#IqG&d?Y(x^2W0>y@%Ve6gs_-* zpN=#h8nHnh@<(3(MVx1dkB>(SJ8I`70V5abVo)y2DD|XT5Jl&Zir;w%AE1Gnj2Ua} z3isQ|)+R$G`G)DADjd1G`)W73wbWUa)G{wGs?<~D@m{l;7a2Hb*&@*+Ved0u$Ezo* zcl*fxQV-8Aw$!ut-}_UMS+PSB0~D%9UYW_W@G#Cqw*lu1dLj($ihd z$?}fW!IJ|r+`eI4dgU7JF)xF9ICN#wzV+o@jK&NcO`40`qKiyy_ezcA*;QMrkrGlK zBA=}fVTZei?K3hl%jvaevXt2u=FL{Vppj+Vi8a zAv;^Q5+z^jB&uYn++Ij<2$>yOPsJAIYtturbW7CUu&_RFG9#5Jf*~lxi1w&*ec1G3 zW{6Q!1<)=@Y^q=SxNlq_o1I7?QPz#PmzUG{rQS2Eff$}qE#k0_&Je@e>>{lO3$EGh z)xP+rqxavL1t@pIiB60oH>6@AeHVMdKxQ^}wELcLRBj|wIFnCEU+O&0hs-jVN+X)x zk*<(L?1~REUQpjLYds+T{P1w>8I=laFPkb3f{~*Lo;{H z!!Ub}qg-ZszrHl>dvY#bH}7U$uU6UG>^6!Xqo)~qOxY&m`6r+ab@=7GGmryC_wr>y zLPG6aB!e>g9IOn6-Z3YgF~`SGJ=?XxavlbShlCR+KG)AZZoDBo*NIgY|AON@03rEH zsLqC68iI42QC5&#M2WVzNvHT}790BJ8c2KWR}<@^!s|*qy)r$|BbdLhYE&s1PdE!B zx)R&;(Av#BW4_hBwRZiZGQn6lisp?EfN@XG+>Yjd-zhKQ5U)wU%Go$GvyxC4az2J; zAlu`p8A-^9b^b#JO5OGGgy@CUxdIOoT6%8(zEE}xgS6f(4*O$R!jVZe@2eT-0#fQM zHDoGuhD=&1+7<8|!3&l=;hmj$`N(V$E6V;BI)aIRS<+K^&Tl_?JhA$|=h#e1l)yKn z{VVvoiy&9Wvw_3@{MCn7-TVr?^_#}-m9_?n?EGkEo^R3Xc*qePR;1u&nIg*AiEFl| z?eN5Q&5}zU?-L8xPCFfGvmNfMH}u2B+I9QD@;#+JeN}omsGqN;w^XWc86sE8kIhRE zh4{9s&(EFZ-|7xxAlQ}1{k;FIPJ1bmb&=!b@Qv3L1I6}2Vjb5jT~@=CjkyC|tG5)? z(h2&92wx8K)HA(H2~i{ym87`_&qKyQsNvsYH6J)+)Mk~GUR|M- zvqU^Z)7&DFH=T~D_AoIrDrFzwYHaZ^;*R6-OLRFbyCDM#ZG90EbYc@n)Z z`v>2R=nw3qrke6!N=nZO-4JX5fP1gW2AR3StxS(`h00%&UCeKa6gscpO+UvaU>Skk zw^_uIegF*ea3ax9Qh@oeivS3G4|DwR$E(;t6vpLH7+Z&g=JHof$ywT?g7xqj4 zZ5&J6Y}6mL@@|MbuIGyWBPr6k8>0)0G7h6^DtWZ#%9b*mzfOK~tRc4)**rPxSW2uG z(uYZ&jrNEwX}^B$b;Artgog@y;(pO%I^T_{jIr6u264OMfjPjdxPmKpColCWIxZI~ zA{e+2HVrEDSabc`Lozo8*&0_VLeiT&@8SYmoXWHW$tQBQHE5B#Rs&l>O&1|>WE9DQ;N)jwH z&h_8Hd*V(TUfH=3I8SB7h-CzTu>rSn);=P91ld8cq=dnG6rBw3Ev}f`R%t$q(rNk9 zFEz0<`BQhwhZcP}qvokTl?ZeBUi(aT<<^AJu~F`MpmJfiV6&fzeQ103+NhtohQabm zI)}r~WUKv+jH_p9@vaW9T=<>0-elN{($rb$OTMV{CTWCE$`8AlIjb6)%NX@SFz~?# z+#AL3lndMs4>@kAc-;+qXEnMk^=j=v-lr;awMWl3^yu&1AW0*`H7P^}5f`dmHrDmz z4t)Ky{YZQG3hBESqTwr2TRI;&+h(LZkFPPvvm9dJn5VD0w&gM(WfQlAgXeJuhpSGg zX3;UiP0LK;Q^#)!nfa{b zU6Rk^F0P+HYh3dnNmH?mTcQ+sWYx_n7I-L~X^t0rOx1{iGd_oOqBv+?^n(VCTWUtM zv)a(E-$S{^gX=a$r&G0P++-qUZc=#%E@3AO9)t^Xl6BLbsrDyX=J4H~()&txJnaCk z?fddbJM)*lBEyg0Jh%VPZT>;iARZuq6u1ZSgHWUp1eY{|dMsjdb2IZM(z8H=4go;h zy1H7SCs_=D(@Z(gWF3F6u;l>B@r)?c5yi2B$hGEstY~zyhF}!Q90}7p9lpD#H+55F zc7gYNgu!pUVnWEm*=rp0(qS?ZwF$v`83B&0|8@H2k`g=ny3Oy$(DodK2G;$WBuA~r zU!&u@{y^5^({BN3i5R3~A=ogAR6=op<@SSANL8VtLX7zg=@yLu(DWxiUX6hxKnudt zBfdX4VxJ#;%|LYmxR<_8s=4PuhXYz!cUQ@g3j0I1Z^aG$wxZuz_FwnjkX1^?_~Nql z<-gJPa2Ou1C0q?Vx1KUz=}_gGIF}14fIdDzKN}nPeeQHb9d&9&wExW^@++7tuOPY3 zqMi+MB%6DmpX~u0Fs1?ipbr6BMRl8Gh!0#Do@Iw>h5!@(0V#bL9sSQB#y~p9f7Fx^ z6dKi(xYR>27$gfZtGV5{{d*O?XY0GWpd+>f*1<2(gJLj95%^wiRU6?r;bBCWd;oAl zRM!b~7(h}=cK`~wEL04p!+}3OUT13=mFm#Nfs-^CpU<1zd$eEHG)qjkh0IzlaBRDA zlV_+`5&%8skI8x_MPZotPdv#vO6O$!uW}auHz9|_2ZtfW5h^TVw%w_!m!Mh+Xof^% z8$_wJwbgug0R;IV26t)SpU~_BCV$*2Tmi(7Miqz6O;3bp1Yx@jE(AOZsyqB4x zKvlyog)JfAJ|Nm0sDQ1yQ3&zY9P>5tWJ>0NuYAn7)DNc_

z8>AdZK0_+b8@T>aPx~brjG=r{;yj@YN=A94{{e(9Dx88!|6=K(bdB=xOPtr1SE(h0 z(q*pmQ39Fhxs_}v^^(6gm~fT0?@75Y5#2v-R>RG9JLHXJoUE&0+3x>T@BE(%I08}T za5_Yw3pn#rA#B9n&iLLRhBwJ? zJFs>$Z~k120Jw$R?=R6>?I?rF0RoGGOsVzjfd%{xWl*AwY01IM51~X%fwWevty6e4#p z7^tn-0vZ8O0SF?BY4`^mfV*cC#zNY?y#3g0x5rdIa!&Kezva--AVZf=9B59a}x z;i&Rtg`%%olCz=lGk(hvVgB5w{A`C_8L;5G0{e|{6Ffp&d{2F--5?^|Y3=jWew0@c z$)O@@-NA%#0HCIO1I2ORj&^58aqB`M0fmJrM$4xIA>~4rb|YvJi=95oh8~e5E4Wla zfa*OF1{@10;sJqTpOs6LwJ_UsO3BG9h{4zgAVuM_Xa` zpNk%^>-dtK_kHr56Gpmu&?2g#V1ZK$642RT$M;l!_9b8HJu8ALX@EhNy;O1i5e!V! z_5exB_ftY7-7-yVxJNGju7qt3#DavFt$twK{bmc!kPc8UUL@o4TQ`flN6N^kx39t-!k}5Mmt}qFA z;O|KO4JwhJ#}=wSaL(@JOd5x!(@;HJSGyNh`lq4xo`&`z8QH^Y5it2Tg~dh z{`wwKd8RYULwhx(1QEnxQ!P?7a!secb(;yRpiFVDT9L_Z9Onp_ z{=^Jk_Xv?$a!}}7-d8O#)uf@r`}sM`Ag>7A;DwT*PxFGI8hh2o=9oxqARF`*nW{Ls z;0Z$dmR8J!Pd0cz5;0mvU$#k+*}c-#IqB%c#1Q11sjD;hfI{3b1bZ2pAE%XvQ;Q5f zDA`jdt}+_Bl<6Jps;VK{G`IHvc(i8FxF{fv*3w?JGamQ_%+lZ|-Ti5^9bHec-03 zf5DzXaH~r3Nm0#J(kS0wRJ%fkX!np#X$dMVnZ?>w=N`2~cu+GdNq0)=uNM#VudKbjwlD-6{Rl4=VK2r@>WG zxaOrvBba({mIUhFRZL<5f4s&W*=6=>`qJ9#NzzlxIUPBt< zo-qr#?V*SlA1wSN@w5a*XUn0kTMvBLGJi4Cs%uh^|AIzI4+xY&1e&=9dk=#XEpkb) z6tO`*ob@-eaM^cdQaDfqs2ZR+V9>C3cd`d^Yf_wz{3pX56DMJZ1L|j7+&FBV!ezhn z!ww|gXIlYjn_+#s0>Z)DXWwh&j6Zy^DbJKMKHVch2~uiMmb-N8K&D|N6C+f}?}IQ* zB4po1Lqo|BMq)+SKLCtB;W@BdH!~;#-4;gl#}8uG?~0zQKS;d(iiMt@lRy^#g#^Z4 z2G~k~d9L*hew*#f)>ACt#QL(sF9W40JUQZ#f=Mt5py^1D42Y;8h=s5MrLmH9765EI_NesC{v^#6Q~Ms);EVt@SbB4t-`O z9o|6-czC*X$S9#>CU*Qas8AtsgNut8Wza>(*eCeI)*u7)#4tAjwe=`$g+nssz^cV` z+D8tSw{8&GgTRggI?6il5G43teUVUA27x1Bap}SKs19o)ioiez0y%IRseyDE#Zp0P z5(|3&=^OLkK=|tdIlt-9G@6Ch8K7-%0+5_TfO`FvCu&o|g*>@z=?_!ppU{Zu4_|jh zUB4S#y?Qkje3wz`-g-177)35Q{ExAhmtY7~0JrGO7SN0;Mx9>i*nh04*Z>*efsf_q zMDOi-EkK{NALWlw-iOy&n>kG_zZQu$V6a~`?*ngOUKo>@@*EI|j4oV&xN5g~;{`y6 z4Z^Zq4lxqfceZ{GLS8PtBLw3939#saL(Owx^IBumTKAFxXjeLd<0fbtC^&=YU)C4L zElgkDd~T$#pT=b7={otjC`y?6s0 zPuD@`+6Nxa0<)WMc}Ai%*j_9Ezbh(W(@Y+60kbxsMQ9JL<8G+qr+$RZ;h(n;O&hxe zb?+Ysp#u~@P+@;@0fJZtoL((ds>-g*E72rm*>U^JPv)1s?`;WZO?(2ZUOroBrxp=k z*LN2SnSf56EvSe`Aj9d2=4jQ86vmJ@-6P}?{J?!ZE+WRDKEObuRyDO z1iClbh6V<1`Usngq##-dGA|q4UXbd!|)a%S72gb3G?7uL(5wI1hB65``|BCIktls*gg?q)?Xck4z48($e~wvM1WuoFZwg!;ohLwQ*x17QGsWh$?RBA zXRkMkpNZ-+5to1Wi5g@gD*Y zz&^#DA3W$zgQGc;c9dAPT0(?9;=ZlFY(>Ui2n=Y3doEEpqmB=xH0G`I9N>4W2A%7tlN=6(G!!20@30p|f3}+H|xMzU#FMS2I zd*HtO4tff57-&*LAiI9~^5vMYF}K1#%gEbcF+uLgNba}D8)7` z{<(t}?kGe3*y%+G77>VenGCEZ2?+`8DhS)*p@zZxAP1-w&e=gIG82r`s+`X@Kc0d! zl?#~H5EZ%sO(pLHvOkO5`%S+7G5`q);O8MtId~U=&R-0JX&aU_HTbLa_cJhad^-pe zB-&;`3^v^2k9&^^3U+7frQE;7zzWs_|Mc|q%-uZjKEtcW?OZ&6-WNtc@APn;_bCvS z#I~WFZFjkFbaafefwvEedMytmHv!Wj-wL`8pgV^bp!MZ9NNb|~l`g^l5$PJ>zFcSh zObc?Jv1%80=%6h(9z2=~v#M76i}4+mJ_+zU=%?Im10q#1_?W)Lb;$J32l<7c$50$ok6^ zCXMKB33QVuu#3%eKqhva8=T$kU}rZ1+n;16LU4CE42yHb-Sf9#MA{|{NX+-ZtyKg| zwH`agx0rPt{c(eaZn;-_^k{+YYt0%IB zQQ^RemN6%YA#dJO1h`!VRK&RbinH`nwt`G3E{xNW04*{m&2G(;`Oi)Q%PG&%C5l#g z8j`3=#3uan<^Pp+{vXeGgkHwq`vfSC|M_ZQ`J-m|rUDvp)53NNIY{S6D%uTAfCzc^ zNd~hn0tUg*Ac#@@x?qa5ntadBcb6@*WJ*X87zN)Zuc) z6dd)CFJmT`0)7f-Eqb+_PySR=r*H&G zdLT5U$M7(`T~&AV!c}cgf^ikC?}(uQ=lCY5Iy^v5Ht_bVxVcpplp;|Wyo4!~;EX1t ze?T2ufMB@{6_PZV{7}8|*YXtXH)neoY2lmWxsJ^qfU6RSb}`8EfU*)Hq*54GFoh%l z?1#UDr6pwvsia_OL#b&l(@!r>zB^W=3e^@d*f@YMO}hGfZk{s;vMeFQ{kpUtY`3sH z=o(`s;r*bbOSA(=hhMauvc~pzci)GNIVy`1VJ>^G_q*@@{t6Q^6`c1EK)Fs8_7EtB z;W7G{HR;-T;VR5}z+R|3*YKDFL`A`L;CfjXPSrSNCJfwHXx4z|@(Mtp&^yDs@Zko| zD#Ere@ElriQN0DM6C-v@F}P7|MMxIg#=lr z>WKr$afgHo%RpMN`n@vkJ{iR4>vRMSK+ZoOY5Df%V0{ae8AKt$2GaoBkf75$-}HXn z+gsd2!5xiK;cz81Nzty8_6+Q<{ZKPV9oeWCjXnhYgKGrByCel}K_PbH&_6vm=D zj75D=V*qfFXW9{JGaqYQn_yyMp`KHRPs)!j7`|Q9<1t7Qv+c{GoLsKXyNN^tN$~oD zFR7u2Q2u$yP2?$q${z-Ul1JM*Zu@-PLlqOyVkk!24F5=6gr6Je3{~~Nx5wy0|JfgB x3jfO;@_*&F`~TnczkVwF|JU^Y{WWdhJDB4%#G%pD>Vtv*wA6G}3ze_<{x@hp!|VV6 literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_40_1.png b/docs/images/specfem2d_example_files/specfem2d_example_40_1.png new file mode 100644 index 0000000000000000000000000000000000000000..fa76f88d1b0641a1fe6fcfc41740538a4112b736 GIT binary patch literal 69093 zcmeFZby!wi`z`t)NH@}5A`*f$5~8380v4roOCyL#cZVPnf`Hh9bcZxZgMxHRgMhTu zxu@UWXYX^J^E>eopK83-{L49N{;#XA_xsRr~1 z9~Zu|9!YWq{zuA1Nyp``gN4fz<45KgHDeb?TL%~0hbC;U=8v2oI@pT{iV0riXR~r~ zadeixaKY~X`~g9SN0t}Pi?b@hMF<>~b)7L7GGp`y>!bXKhZrmj=7yreJ-5`AS5Mu} zX#NcGskS6zr?{fy-$u%jRiA--MiJ+X9vwNwnVD09Y|-J7*qQv{9Fd*@oZmA2CBr9A zUAx5@ts+`*E;N7<|J(ah1YBIzV{0+$nx8-0tmYWR$*pZ}UA^--Ysr<{rN-;gZz-B) zI&1}U9P}?2+fN-0Up9Py^smY3R-ylVJvQ$dG1b2xASWRD-(Muh`QHojFEIZ984R&P z#H?~mt*xz+kC)=7lX~A=Z(_-h{z=!ZCW%hJ+Boc21{5!+(&{=3K%NiTvcaKGsC zqemCJ>2$$1RrJQk}pH;hJV89X=7uWMnl{QAW& zmzJzMQY6S;Nk6_~ZGE0W!ah)$wICfoRO6(2t2 zJwD#8nJJy{Zh&R}7IQFAa~$;N&!gV_7cX9vEq%`Ffl&E1H}_|Rh=?fPy8rymSJKpp zhTc-@sgi!>&hwcW8JKjRV=2Lk1rF~Oh@X(ISC?j9+T;+pf4%ZvBR$&t=&$k4%8=D? z5%13Lu?U_tw^I%^N8+w4gA`jQc^c_*Zga_&iX+pDC+8K&AD_8KPT)VVY!0!T?Xmm2 z;DGjmK?f!e)<&XDB(#gMk?03d06_2_ZX3!5CZ_n<>do@$cpoaVr7lTI&^AjP= zN@Ez+p?G?Ci;t|sxD2lE>PV@ED`|Z`^Cefa)2B~Y%-5K;QsVl0?M;Pbt`=H$TVMuv zR!8>jV2v#?gKIS>IqvG5yJii+B*d5p)$YYsE52CRIuP2M?$w7S`KB!eeSP;j=eJr| zee&ME<#L4&4K3+@DHfs2PqQ=jWa1M`jY$(BuCIW8Mf`-8re>3^IAi7hT#Aw@8LJ#T z%)#$UjUxR$ksE4i=B6#tFRFjSHT_FoBqUtKtc3BTk=u25cUuPFk!iiUq(H8C?$%43 zSfN2%@kr)NG$SQ;4LSOi{yP^8zcQ)46s^lp2-vfWpuNx>L~9UQR3!TL!v~aQZd<+A zN%RLy@+Z?ge%Jk(ZSO6yd%(rR^X7UC%Q;?NEK}mmxz2|2`Lqc59X;>;**yqY#g_JW zHyr0ZXJ2UdeD(5p`}XZ*J<)|mkF{z`EBmRq7cWkSG*A@1ilAhXb_tzmj-tAzi3OjJ zn|J?CD_=^-!y7`#X4)^* zh*^u>G5j&_RY87 znxsO*-REo+gBaoPPY6j^4<;G6TLV&n7wUt|l9bQcSFVcd@F!%*kNqAh#545Trf!aA zCQ9kV#po1Tket1lN$D*HhxDSTARuh!?cZ{IfFt5~bvWl0d!4~I~mE*>ywSp4xp z*lpeDX7a_;D6DA&?g!EudQy1otki7}7?L$7%}Ghv4*DuZ&=^B{>r}c5Fo@fRPBnzg zKvML|{9N8%a$iUeVPf?;6kc(?G+gws!GZCTD?fv%l`kqyHHUwQ)YIjncE>%)P9XDy zou(DvzJDL=^2L!(+?MWsk(D3s-S?C5qYcR-mjBAg@6mEPX_s@ur4Fnv9j9saFe#nE z%~6aq2@mY+AOl?VRez_gj8`*4oQI4FcIhmSmW$LFej6&Zj7>>_1qin2d^v@}AdHGf z(X`A|ux#>F@6K7Zmux&dJPWB;ybm|7AMVziG<}QZj7>;rc6cJmlq6()N-IY%Y{&);^LyCB-29AYwR?y9o-?B zm0OQm2>g|eOc;~ShA!N_b*mPtqM}b*+C_6h>{{==DLn5H+1=3wSQql0ZA{+isGjRw z2fg>m-|c03%unbbbGrxotI(K?FoRH?+W)O$dv`aPv?a7c-KS5bYF43VbXXS`NIB0f zynLS40%1-fKS3t9=d1fgOZ@4dUm0E#J}0s^139l27vKeczJoVAqiKu7JnR;)z@E{dsJ>V-}_#T z(G^nbeAnhw2rCqwpI;sX?Cc+T@5J~V2EZL3%N1Mo`mYY=U)?UxdUr#a_re8B*i*~S z6bV{co@Tlf*pmk(w)D{0h#u5<%QDKki(-?BLlRfy+yE?1v=AC-dbqby zHk_Ba zi!YDNz`uFd5^f%?8 zoj;D68T{&X=~^V6pFy>|aaXETrWXWFOV8`8y=6|ORZ#vU=Tn{6q0vpZ@}xJS*#541 zfxaSvK2_!^<$!^QzQ{dU>?ael;2t& zAglJ+ZT_Jl9~DGI+h%ZeH4Q_4blAV6mL{WHHBNAhWZxXen@s>3jiPyoPuQALzTPsY#tv`CIxB z9)AzOic;)D%wEmOfqd^Sy4!++f;_8U4g`oYmp!V-^X9IQE1D==yvfBRG3to@yL#7v zA4>Fqp^vP%{b(rE`KeDI(kP=CMJ$M`3@#+_>-sO}*06Zju*!PuG(Ojm3&X<3rK_-j zuA?;Jyq~W!lJ)tsXm|3fSIkA7vyY}A)?T)_E`C>XCdSB_E0SGuU4ci%?x}ceV>?<# zA(*IIbP{`=MFH}{_4jD2k5Ji4LHo1k&jUv6D@jU69}y7}61o_66Q{W^@ve-PQ`H>* z<$Edm@D!$O>$_?%AT-njbc(G}(adr?RHD@n6t^4Bc>7k-wdSX6YgZTP`6*mq4XF zncO!AR>*j1mjz!u7B@^&Q`2W>%{LVl4A2-_EYrP$QC)-6~T3Yc_?O~eK1Kq!hte$)!p5_hvO_;-ogSPn9I7l^y0RIm}a_QV){(J zzYN`yOr-iTFZi^Vq$i@8FZI;;`23omH-$7+Ao_wan(ulAMeFJoxP1p2q3D}0&iKM$>M9GJ02@w3|&IM8cZHJrGci>4;D>^Kk;iyM# z@Mn&G1oSBe>0`)#T+C1rDLimBLN(8}7J9K^xtsk@6V=i+>}|{hG@qfN;gFJ|_xih~ z0277d*23+MWD&gN40KX4H4fP$ypFdcuiE-|d!h_lreeTsX zq~u)Xj~9uF0m8u&6P{F;+3Hi$)5+M_)Jw-)83F7EKd>)9jS+&ToqfNU5F3}cmNQ1C zex6u<|JQREcZA^vI}PU%YU-4jhy+;4$;(TCu*h6zN(l5gnXR6y>|@W-hC=$50TjG# zU=XeK<^B|akE^$DQy6${Ys#t3LfvRmlNbv`rCBpeD^G_X-7yWnjxWUUG;HB~_e7rY z)x)DTpBB>?*Oi+aZ7Gmdu#R&HZ&)hd=Vq0WTfzPdGM^xSbsB3fm2f znps*#m|f!J3`k#I>d)E$>}I?^S@*5GyXDi}59`g04o00X#pqy&60BOk(z`7{gR0KG zlwxQ~>y3^ZEDDYBP_r*$vZ0$69BAk0wL-UVfvKw_Rh_53z1@`aS|quqdk;2799Fou z1m;j-j4k9t<|?@WCg_sIwnK5;JUk*Feze{%weMtcUtouV!8?@RSsz5C3lJgc$D$d`)J8CG zB--KD>twVkLK)M{a!-|h91aaAs@P#7?cLkAc~Ix_zj_@ML@`R>MhTodcgyn_mf=vc z_<-wB%3-YHg}zf0^}qXIB29>ktA{OaJ>Jgs31jed+@-=WNl@)0 zl(s!*B|Ucdp#)+_H2GVmJ-t@saB_SESy2!JJGhXxi&_WZ8wOonU1fFkYs){sY&247 ztRHyEvCeg;$7JPH5JG5P1+oHQbj)>@r;0mIR^ZZQ^JyNAu=(iIV4vyay=6$5B*{g0 zpjBN?m-Bj-ni|>Bag&%?`d+?5M+mETDAXQKZtl}kQc@_;qgmwzFS+ji9xK~uW_0S3 zny;OG^xC{V0r0cGRmb;ts=~H|LPfSil)&m(^?#=R{q?{e`WDxMCp=qxb@!98$BDyV zxbgi%@#A4786sKbSx|p~^a{YiU?5BL?8l@L?Eyg$T}QmkDwj@%Y7wAm$G!Ebj3W)% z?K6*@ol$zGJ{f;1>9)>h(VZ4$KUVP?YCK?`c-b{nA;QB6`)wv*mMdF)pQ1Pdq4~vT z95Dq+!lptdjrdiEf7+E*RU5kHPx#$QExXg2fcp`$?mIW?eXt5Ov<`~d#;@lZ(-8bk zP@bY-OEG?=cBq)Br^$rDG|U8brxw;n*z2#0=XxF99u(Txv@}wT+ret7FfFZ0b?@UOt3Bos651 zVD;7=M4h19g3gi$gjcUK?3Of?lMtAD-az{vtbB4I&25?hT??j^>pdq?a$bLNyx3l! z$m1w92I|mAoeiz<{V%zO8X%%##O#LS9U|}Czkhz%2SPT(6xKpw&QWp@T9tYCKJ>GT zkmloVGbBU7JStJQwjM!;O?dgT4efKklR>V;$5wpP$n*ie+^Twq5opiYwJ>d-XQ*`F zw#N0X-v0UEumnh*0w7Hy7%YK|ONW}`iddWIwV^_uWtgWn-DD0+U{_MHj80%K-m{~o zrp~_c{H!gM-p?dbbk9$c7KO%e^N5O?V9@!7$bh#usBT}H zYKowpfmWpm6ZiKYKM)9%`MdBYIL9Vm$FW;>*J%IGtkp<~K-}}^(C5kG+G;CKB5L6$doA+oxjsjT_bM=D5VJm0ByiyZ8C>0$7F51nhvlhKMj$*pu9XQkc{;ZFZ<~;z()ncB!jq4SC3Uzyc5Lb zK_S*DwP&tbh54`+%Hn!y&5@dmfz&VWvtyM{LOLy;A0``fgDN`cCH3;h8)Tjkh-JUx zR3|swFgRvQ@+bRbP?x$A{WlMe=wL{sGj&@n9@v|I7dWuozilM_bLnEUBc!D1w`c5S zb1!X($FdB)_fNw}kYyX*2yhFi5%#t*O%q@qfY<>NxsE$g&mXGG^?_~qqpiE5wu9s+ z2NNfV=p9^j6}9feheAf%*4{1_a{`Htby@TTk}U%UY^W}{KutQqY;Qa9l{rT4@41S{ z%fSFxvGKpjVQ#x)hqTXLF*oP-KHj&)_#GNz7GN=Y1|cCf56b6paK38^mj9xZe5Gz? zZf@N7@pi!?-<=ZMp;PJIJO?8C5Pqn_gf#d8wwoNXOn-4SX`Zjs1JTuKLxH0Zc=P7W zcbwZH=gyrof|A{_>bf}st6PuBWA)zin{b6N&%-5Q2=tQ0pho&i$~kzV#QVq{*Y`2Z zT3eROr-^8QQ3Po4LN;+?&5|W1`;*w6b0R?zrI` zt!M3*27GP)+OpIe%8#Q!;}Dlm+^GesfD>?(dEws8I$BQ zEF%&IQ6n&ERka0$g}RX5I!a1G)6VDr2Ww&ZK_i`J_5YE!sD1RWc{?SY)@3SH%9*Cm*SI+OaXsayLXoC0#50R1Bp(ohGS z;sLB@j!krbe}8sS(LF?O>22!)S7G_^;ls>B9odU3y9Yx8rK9yg+XBr}ZI#|KV+<9H z`bI+Rs8Q)iXNBu(8$7boe(@v324NXF&vj7P&C7iRq^i49CVz7H{PFM6WHIZ$&?A7@ z3Ik~3wHdFHdQf0SZ~zfI)b@f;7a)pmsr}d>Am_dO7}*^<>{^Si)K-A^&4`c_hc;+Y zI7Elhx^t(VF6)KyZx8k-qfU6v<$8y^Fn0he_Ug$vFGGvhxx0U#Iqt0J{)CALP#}i~ zv()eMc@|t>z_|JYZh+DX+33&WzXAcM0HBQbR5wI(CngW3Ih-hc;FFd?Mk*Y#?J&vD zix8|()_$vr{~!D<&K=7qC0s-kOTkP_%yQa?mYLq|p8LLH@E||4v@f_qfE{o6ob38|-qStj&E#E^J_Z#X z_`7hLG$+(-%`Genpcll-&jU7XxUeMs^bZ$M?w>bbUV0*kT?=vkMmjozL)AR`0JGV5 zSK~CZ^K>HtuxJtquU>URJf&nDjZWWO4Do~TPR244vFMmAeJaBOOrY7Ei}XI3EO6=; zz$IS7t|euW`9^07`4)<01Pl{?#W;z?Xe|&T^*-{CetpXba*sT12K4ziL7ME(pG~y& zA5)`zgQD?z^h;dO!PptWNlrj*xbY%4$)#_ot0TeX*1day5T-^$1?I{c8ZFQ`=tOs5 zNCIKb)32c5qU~TFR-`Zjb5Lq+?#)$r?Ajx$AW6c31rbIdh0#K(kJm3dje+h)2UHP2 z-T(kv2!mDR6#ATacb4>xnnIg-=`6_0tDvPta{@h)1CwD`;|+5dZIq?hep7qmg%*IG zPH^e=w8HFcV#N4$Kb;DqJ%t~y+uqg|r+q^W^s^0WimaBEw43q40m}>Y|z59bR?qNS9~zIo{{_dbIO^NzRiF@#lb;eUWkq z-5ML?veZX_F-zYCm16J6x;yOZ-_*}pSqKK7p`|qicClR(oUxo!$o$0JbTDJSEswx>+F(we^G{dj%+OIj z&tOn%Zb5At5kycZW=kDl#=`VK(0eoT)FZ}U++m!b;Q|*R8i4Qb-n}c^n~vCDl|Nj^ zK0e&kFmMcd`|jNoa7-8sYLcv8TNH>z_x1sn%Bfe0cB)_7unCc87oPF+^41}U{qQ@N z_saTI1H%1PC&veLz{%Ad9qmrwncm#`x8i`eJr6fp+?KzT3OP<*?myt3Mf?lfR}Glc zZnFp9e(3-4xeF93kgb}k+My`C8iVn`7Ix7V0&E534om$C7h|Aag1?iIUwauivT6Z1 zN)AYPOBft1l$4ZgryIkv0Vydwq*P7dH^vMCxZJk`K9~%;*$N0feXpS?}uVwxY2YK;45fM`O@WLA3T>fuTSr0GC7u)^BLK zDPjnQlMcY$ZNP@hAb1YK%gKgm`DqV$h80*e%NY4%N!1%SjG;o1s+{J9s^?nyk07uc zuS))Mzc^gXVLbKmQeT*+rsnA}o2>pe7Pm>P63CSuRMPnQ_#z&!4!_XU*4~@};t}u# zj3B3FKdgN{h-NJXTH6)o+d>!&^8o>ce$lT?&}f1AQLm?)2*U@H{oX^EvIEJ$;zAc_ zgVX!^D&Ei$pLUKJ#u0E4)C6Zu{od0<1r$bT2fl+=QFgOKBy)-93Q)|A z?%PXEU>eW?MiI4LjuFX*1FNY>NMtG_?|~V7!JmzT z?1dI*=(#tV;rt+>sfYl_0$=|Aj}q}`3k?kVpZ;o=6sr1PG9dhZQZTQhZv$i@`}FA( z%q@xoIr{k^Ep#gRK_3)>$c7uIELwxvpbWyPr|98bpiGd?54xMEr(F6a9E6&Fuq|EhiZ#=(s>y|H|+**@-qo#1`0@Dv_DZx;mGXed9f202C z{Hu^lzss(cyees#sRO4#G%%g@Kx9BMb35LjH}7tzYk7LHZ-=15jg|VE_=DKLL@; zxc{@}!uNMXIbZ);R{_x&ZmRK0I_UPBYp;PEMJOXp)?*#fGJpo_fR+qdS+VtA0b|QL z*gO7xEab*U9Uki>kTETwZf`8Si3#uW06c68v5*917?^SF+<^$#?AHYacSL``&^D-p zfgkO5-P$ggbk22YcFRfu0f+cy_~P2d9F_?_JJaX8v`o2$honQ!<0oz6r zAU&Xr*I~$=$&3)3ZlM9p06Yg0sWzZrgJO*b15+)aWW{+;2u-I6uU&LIEr9Z!fP0bI z88k&d42}v?7#KH9`Ocqr1cOEf3{WW45pe~hfiY-QKnmfds(+Z4J&T{2M%56^it{@3 zzhZ+p-$v32`wy+|WQc!_6h?IJPe?;?pJUI2^z?3AG8X>f6PVv&JX;+u&Rj)6z3~2* zOxFh3XcI{56+kYe57X*@TR`(KuuJGi0uOer0Z2yPBM{BWO(w>`h0;U`@bjAiRk#Av z|F2RgbkSHwkSrCi%K@ z2S`UarL!5SXuUh2u8Ck)poY$rYTmn-2ikug&?+J|6S?kPFcXNoEZpkdL4zNb5%i~z zOR3O<4Nv~kV%N(3UEu7@$5H4rJg4R#stPj^2!s)Ur;H)d6b=#rHo?`5dNLFaOa5M;N8EV@k@^3(0e3qCP5*bOn zwKl;D1ccbuC`S|0g|hkyQ#xsi9NOY}t-ik{fE|$=GKFEy8C-C^-4qz8vZrb$V&LK% zBghc~gsIHodINi>$mnn<=tHEKTKn9ifMMW_>gXE4%yOQ=1MX%Tlv%K2O_vJjm60RD zI+TL*W=ht$he_d(KSwcU&njE!%OqqnDiR2`LGjk#?D5Zf^(r};cQ`FJ7Avbi9DGFH zBQR$9K`H%LoA_xWrln9W!Q6mKd*&*r-q)Z<=DV)m?|j;NbQ9baGRjc4W=lrw1Hceh zVBW4cvb!=Ako)y7At)WQrxBDxMh?g*#3Cct+jAa`YcQryEq?{-NvFbvcdqMI1nAi$ z&^DVV>jH$$+s>f8LVCD?=Y|qI93JG1Y*GeWJMs@ev{6F&*8!0bM!=H{=pb~Gjv30K zU~P(o($n$k5-nh=e?mDhLwcSYO$BiWP;#c>DorqyY)nU7Kv2ny;=YbiR@b@%ED z7Wb(x@N3+tI{v$?lW%ewC>lzxGcawjqoN3G-#x8(tlCxA2J7PbDaX(fXUd(`(uqGK za{sSn)Z^|6e1lwC#AQRl5Q4QwT@#t*YJ7mQM}~xFDJgu?InMK4hu*(s9+cWEK~xJv zT7yK~U{Sd75TCy>Q*LVfIp9M&Ob^h=y;4|gva-zDhF)R-TAn2&1hZcao`lIEedQ^N zAQ+lJi<_=k&Y4M<2x*wAg;JdNXjTO+J|MWk8XtK=BBI#jaW#w=(IM1NQ(MF5;Va!{Tj9MQ%g_nu=bcVY$@HZq0({JYk@x z2X;0Hi~FL-h;+oREwLZ_{MWN=W?Kf-f)7u9fbjyfehBv&1XF^5RR=U6U1--sQ1kcg z9zCQSl|5YZIpG^V2Fs-|W(9iIuhL?>kpvL^^8we2d+gY1!Kb8o|9zN{n%ePqYw^ur zp2xiI-?_j9%TXbZa3!GK2}M(IZ`2N#*ztK(fxHF%kY+_)^TK86?6X$ZMqmsK6_%Cwr*uAIjSGW}XI0FT`rJ)(;!pOc@H; zJ3Uv)@*#?nszJBlzjP_3*t$O)YOzo=-2oVCll!gBfi|IKMm>LHp0?|Sa5F6C`M=2^ z2=`~h7`rh3-^sG^Oa5$2v|J5}dYe!*p{|3}Y!)dzx8bG(ZEXlVbmuSG|N0hd3&X<- z%%o(C?wCOoS|ebN16qSrdAh1tj8ZX>02`SS-81HTMmDhKh>HAh6*>Ab9CoSXlH_Ta8tSVb=mC z;grVX=}VDt_$lVoyw#cqBpme4mBMa0Q#5L#>jBqFLGTlqGr{9*7V|{<)d~!FuoMu) zH5>AVi+D*;pYoAM^Y7Nfq0Nu2jvse_L2ESw&w&NFm`tGj7g`y@_>Wx+^Uk^9uK*ix zFYh$OJOgx<57tQ6PO*W|5_uRs`MJ4+I#Z>dQ`6EG0*91BLMP-q`|DR8SRFQJQ1D^a zccTLiZdHJ})O!SI?# zK>B$RV_@0RtS<3SozfG=;ZMO^`> z26ExUK+g`{0Q{|{J%bM%s;LbtFq1YXZ4_OHQRB~HM>Bm+jt9YSig+uJs_#^v770DZ{cN_2N53##qdXw{W)Zz>36}dZ}4=M8VD!Wy}1+z5cq}BJO==*$?*6O zZD)`Z6k4$HQvVO&VhQsWct{ZlL>4*F*f_Ykm7F}`Qb>{k0tI-#8K}4sZ88U2i!i(~ z7{M?Ds(r{xK$f{Rm=kG^5vN*nw3G75d1<`5GBZh)6^2T7{WsvV!t{LBA0 zPfurDhvL`^oE*@QGr^4Z_|h8Ch2agAGYKF5tuzkQV_E&Wu?5sAx;3vq?a%BG^K0dTr zOIzC%zG(F`o4&>llzuQfC=9^qfZaN}=hfao{7OIh9SKt|%vqO^*8RKY#Jm6LDL=9Z z?;67`5pH~rjSTmTilaY3x&@Yx9?U}+Q)1{bWDIw8bV7kt20{T3S;%456SnMPGPAJ2 zReHmLlwBlRA@!0+J+&5iabM6{rl66u!2Sn-N9a{dC@GNGd|KI;q44&A1IBiwgamjY zsvCav$bb%y^gh)FnzbaTF@lvV7e(!c&wNmSh0+E&9|7o6fQX8RfrACOn%Wp&DA7p5 z{qj9s+>QbHlSLnX$3cT0R6FDuH38t8d5v7#;3;=7DRVfuN9)&i-)QF=AZGwNO7c(2 z1POF6AD*xU^py>$x}5Uz=@Z8gji)eRZluN3qUjHcI%e|p5p;+qFo8QYkVs6z5(e~J zHvuEE4$?OJrAv(9A!hUW3ZT&hVl)Yi1u*wO*oOg#nSvVq&##FrSEj6<>k7yT1{Hu4 zxeY{ZeiEbd1eOwJ8ANi;SAfL@p=b=UvOz`vJ!r7;NE_jU@{H%Fb;H^PD~Zj`%@LE6?=T@(1um(>LD$t`V<2z$&~Xm{TEq;Z z`2Xl=U`F474>0q)3;cKXB<_}`W{`&5J`NGBV59z%u^@>31XgGvYsMf%BJubc_~U>M zhbff-LhLdO^hjEc@aFlC`)eI$Ghen)95$_edK}}x|E2wFl23NwwDB)uXWOBIAQBdt zBt%I{F_He8w}H&*Eraq@08Yt52+I8U_%p5mhVzh<9-3EeU#hVPAh{-qP>--$D zwxV7!1RO;-aF58%1)s=L2|~nPsslR!WVLj;S3ac3frdWQeBK8dulS>1%7|74qZ{() zL!sC0DFZaj*X0a(61+yRdyu(BcgfYZhY2#IUi$G;Bl5&SGlgujz$0Th6O|0UMq~(4 z)zGj6b{g@)DGpzgS3$m8@PzF8XFW%Tab!P-7MSfY@zoXh(2LMk(u zM-U-l!K0COCJKfg=4Bw5RN*uVFb_yDUI7S6_&IX}i19*@Q~YM<=L;c26XN3=hl_1m zj(19H!WiBN(R>W_f7w(9hc|I)ny>IXBJVl*b|h3y6Cln0b%DCmw2ki4z{O&&t~xk3Xo zpm{!)*XB(6_qE3Vf^7ZH#SuEO)&lGqas|NowBmvcfw74^%&!(V-(M1xBf?N$0T+q}pj_dQ(-;_1NHf#~S%OM`0o};+A*|M<~ zfkUD3jQBdapcn_I>}h&>aDc#Pm|W!zP?Wh6cIn@60NE0K zEG11Gvi+eaGky&=A@tX2hMI;`=?ztTuUPwNUVcPuIJ*D;>uvu}&m#4o?>CCEgpfE6 zcU)raxI}w<_w~2`&!>0)+ud;FI909~sc*(NnX(_TTmP>vaO*qqzuR((>NXDQH#Ruz zYB@)v+;^ph zMJ=`=CY`33%oZw5SnUqJ5-!SXrzQI~w9O zq6g2*g$LjNV|Qaf95+uGVvv8pCmk?> zs0GYVna)6~B?~!UA#pe7fGfo`2H>btbcHo0eKbXGZ>THHaonniJPzN90`C(h5A@}J zXE^r7CLy8y_@=vi#T;F|9`JtP4wYlOsTz8nBH@nq+zoQEo2il%AeCK%GJ9371*{_I zqycoXX&{;#p{l`SZ1>#-(fC@TpuP~CsVN)#?Fi_{SMDWDZsafI@Uj#?nU`beq6 zbueyVFwltRT2KQ9SY9?2%(!PIOhLc!0$EuM!pyd`)%@+G#~D1wC!O8Krfotvnz$Mj z&mg@AMx4F1+01%$m=8J`I*jX`(mmhsA>BJ14wk)!;}GI08%t;4RB8Y)NWdC=YtM@Z z`wtcdoym=x!oQLWMU{NxTG=N&>nps}I`kXcBI$n@1;jU;#wyLq3XKT zW;dCsQ1Zqbg<*(h2U?2e>!R{?t-DN%ad31=jnAJJNa9>#1OL%N->2tR4*;`+C1!sW zAx4-A!J2A}K~_*K43w;Iot;fEbw>gRKed#VdkyF*7<~eOoyq`^vGC&q8O8{dVK|ql zP~&~{47f316>g@<(4#2~lopC6%T%|2xvBWl>PAK?KA)ohERIf9=NmWrl%~3vd9J}0 zIHdMKYH02b@0GAKciV8-YiEl5gL=6$p9=6oJg2{9l~<)agL%8ys{u-n`?;=nlF;- zhBi(>5#s*&gB_paej~@J&)oHt1T@!tk2-kb48Td||ULaR~J^3yvg605cH-O5t zdN(w%%;1)RL0HE%PH;rNPflQy6I_=Yo{23r(ohkzlN8E}hO*eWX}4!ai_V011A{2DB~-Gdl#2TZC{5sH3;5L)!gnn61L~^ z66D_>#(~C1PT^~yiO+F6jP|t%wv@v6!pnST%EJc^-uK*A*BCP*g@9&=Xx`ITyogO+3~ zVQsp(%`S#VG_(HEx%cOlHQ2*&RevxCemawCMpVknPW|Zju=gC1odUB0dEgBQenl^C z7H&bx1rpjt3X_cAV-l^IQl!Nn^KKc;{z|0MH0FUDsKcW5>>$F6o7~V2+vzvZHY8N~ zqC8?V@1PjUD}58L)5Axg&?m9yuf(&sQK&{ly&U!M&+(;S`h+lAH?Lb zZK6Ey+j!H6KVUE{9c+=g9L2P(P*JNsoUe`}@SYPzR~EiPAMMf`9PBm@J;U{it3J_$ z@A|gp2vsS<93PucK51LV-PGJPBigx3~Uo))=tUsHFROaNX1=_ZEo4-#qzSRm`!HgYmTYjwXKL z+et9El2`WK`0@K%2Xl`C`*qaXAJBwwexANJ?zuI5SK#bhzlNYn=6 z4XyaO5cvAoi}Pux4{}PErrjec|93E=*WbVkpJSYzfb@NiB39=!qgS0`k)e6Nb6osS zJJa~sz12#($|NdqgI8QVw10_)@4d<`mn62(bC+|Oa42G)VFtXm!t?Hj2i|cHB&A4D z$IN^!0C@_FY<ew{$9}4emOoFZ^q9@G`;(J zTC5mW_*+>v@n!1oOmc%?#3i$DIO3(Y}}^mK}Q2;G#x0 ztpX*^?KP+qp>Dq8quX~4Ied)6g=nK@zv5ae=`aY>ggajL7x=jIU~>Dxt<}Qm$QDA3 zqmHgox(3HL@nF#qR>2g;PdoReO77b_-hZy-OejWZdw*O=DTKgZ2*28dT#=uhAeuQg zTxcnbFomuDdu|ZLRPF9K8v$;%UOhrP6hm!%U-nQxlnxNhE_Hg`}K1IFK>jx^)c1=;reU@Iq6n69(?5PGgH(_ zdc&s{^^D5cShQ@^F5tu5#1EE?QL1N#F%$lG`~B9&`ls=8f6QJD#~dNIoFCC z((gz7fo$l8!P{XkW#=;E(&5RO5vfbo$Hkk@{c$F86-@S@|J5?-*V=^sp=Tc}_&0nC zQT=9G^g6g+cq-g6s3q7s{j{Zw-^X>{Czm}nDh1B%VrE~6-_w%3<#-(P)>z91`UK;r)z2j`p7eqPqh)^b;V!0b$hDz zll=3^-BZ!ltW5oKZhGSP8p7{>x?%N9KS*SjMbt_s>U=txA7Nw3OBW)dXTO4496q)3 z7qLTxICtgU1VZi!~CdOmBTvnM351of#p0pC7xfI1t;=L-C;h4yPo= zPM>F|z_ZOg0l(ZV>_u|>QWAq0YVQk1yMLz~4~#Z(PI!lIuLca528}Q)e>(SMzo*u` zj#mQPD5zcQM^@KVK!fFJHX0M&&k>7#e}Z9px>?VVMbr%^6@eH8CV#qAxLL@wnfTZ2 zEIL{Q)N>PP(=p8Ut9e|~T zK%9p+1aN@$0ZbdLqxSitfaZwcGyyv4ghX(7yNl3SYZVppy1nWR_IiUSW=fL71D`JF ztg?qeN?SLUmK3I@H9bnj$D`@&*NXi32RF09AXn@eryggMo^@d7Oi1ByyL?=C*_0#R zj;7||t*6a(tStf+S%3UA64(FQoYo81im;FsNYz~9xxMBn>FFrl=^@E9H_J-(I6di` zBb?zuVliN0-J&CO(D!hE6IqzxTndMT1TEN=YhftZ7lwtY2lqcZ5a9`LqLBpJ9ciZN zxjVE6?^EpSVY0am4jDMxy8=g)!A&-`3j!%IiwqrDHupgLLB9zn>uKO*-&6}s4W@92 z5{CM#a07_5M2uUKypK1|8u9H9H$(~Gv|s1fmfpkU)*BD-DU4s^x3g!nuS^BeWquUW z7QVtjJ@=h6wSV0AkdQ?@h83djZG7ea%y~YhbGvZh%;3GFj_~j!U7(hojU;H^=yLt0rWC1pu+Tpln6} z`DhIMH#*@32Xrx*Zn*<~cr`%?NSy3oOG4%+IE<~8t%H@=9;E(C8ZPTy3p=qq>pd0A&Yma6$*livoptU! zf79GX!#sYYT57++y?3~G7!D28-(w$quDV?DMqGL&@BU=LX#<{ji#Jy`kA zUARCi8|r>jM$vypR>?0VeUy`_qhhUhZ=Y8wfFx8XMC&ezpsatx-A%E?zkD6kIdKGy z?t0>GHj(|S1r0Mrb@O?+G~H5mj+OrD5kIIU%hywjDIR(`2!EgFb|0_b`QfhG$14j| zfLZ8g;#}QAT$ln|V2bwNVTJ?Xm>zh?LGKQ1#^wP$E8&M9VcFUI{le&NCDJ~i7b%*) z9cXQ9^Z&7UkGa9CJ1X`f5bkmsQX(Q$@OFnp=Iedf%Ki;JdcvghmgG@n7gbK3rIu#q z$i63ah1B>S-Q`>Nbi!LqgMQ2g6uuA6YB9fRUO^=nLT#VOOuZ;rrtey&zvD|+X}ex# zn>Sp?%Bkp1V*ERAfK|p|@hR{(iV+{Z?#V&eAdSFwxQO7!jT_-JZx`_*g*)SM7U{}2 zEF!09x_LV-K@)VF^uya*gTuHtLYEmg*y^@pZ>bj3AN_ce%~8k19-ikIDKxLedtUE> zY&}OfA-10j?r)nX#U!L5;9L0Oy43GGV8BQ+*Ov7()lXRO*We-{zv6Tkc1Z47%Ff9R zqPyIuq&i6XX6E??3eS4Vz5k$2zI`eL#?gkxYxEXr5g#`d1uj-WWH8BlGof=RjhUHQD2t*j`%hkqZFb7+kXvbQ($dxVIqNPv-p4Ug4&44lKt$W=Pa7zmjIXG^~y zGAcG+;HvB8PAwvMcb$ts$zSaAHJq=zp~th$3luj5&l7+9a1B$;ORAp8s{Vn@HH1|? zkxc8-t>mf3p?i2$u6!rC1NO5@uvd|ZX{z=t(^9-OvkP5}z}N~Uf2^)Yk`7pXGwqN; zwX18cRO6*60oc{hG232XMLN=C8G&;~2TL&+u#2NpwCD&M_<_(#F(jrSO~+fo00b?h zl)VP$AENBBFvuwfEx;d~VW%)TRew~#(1itszpm=(rX!s0kO8Ul96$fBH{}vzE>tW& zhfa}<5~S!9nKvAgK_84x4t|VN%p|uVP&Zpr5h3H`rSQ$h!Nynd`Ur2sp`wYt9Zu*> zN!%xxiXHzh>FT*6`@u=Ss2ECT$EWqFk^suY{0G(oew>xdwVol7iXRpMhAQxK$4mQf z8{pY6{{Hp`@=&>NE%;4%ACQ2F^NPE>wEP^rJE;L=UUYO832E^BZqS~MsjA9yKo6qT zbHqZAqxW?71srG-LE5NyO(%N22P1lw0tO4)(A6KQRKMh{~~nvfLwt>>vIjCTH>v%4%~Qb&teu`{wikjX-6uQ$qS8> zRgT4QF+MZHPN(Is{yK1hlnvj8R5d;3bugo1{iMsjnopn#S4uD(P^Uzsqua08>sQkF zUXu~MNwB6sula$!J9p`r)y(WIu=as0CcJfuLb0KwSz|WU?j)7*Hfc5UM%{ zVc{qRce`bK+8GR(jINQs?*vd~Xno0WNs@EEyzL+ZaR_f4k=uo-%U@GronXNaB7&-#tgZ!j}{H}Ea zehWgSq0uAS9t~V4@{1>GuU=PGQ6@)S%gD~|=y7NG?d7t!q&=xDyyn$+S2ygjM3k@$ zdMORKHBW&owlI*(3hzw7VBD5IeLyrMlB7YGsYCBuL1sgcr)RO<(c8twy>|7{cZY_C zlHe6Z=%~t_MgSg`Hf9oS9ysC>GyEa{_T7BXD{bw z-_(!p$DOe!F`Vwqm6a&>vJ>=c+<2@(&0PU!U) zE~~@T;PpEXQeF^vCU3dC0wE8*s*Q|t>f6B+nIfKDpzR zs_~xB#!cjy`l%fAi=*l?o5XXQe17g{Hj6VcP8FVhAM;w@`B5*EjI7jsqQs%V{jQ!5 zFR|%+nh;>apamLqk;a#Y$SB?x(`(Iuivjsr9vvKozKV|eBuPI$4;HhKcdCiOJ2(XT zK#**xd666Wa!LODsL6UOTyW{(90fatRya-jV@Im@%8uOqWuC?YakdyeIl1eDx|_w{ zr#U|1J5#2bjYD&5C^0 z1<&)_GBi)YD>(pGoAhQXAu#BBd8-sS+e5l{?~Ush)`3FaXTg7j-WrHm2b)4HNK+uU zO^4__c`8EHMi8x0c9!m%lFqUu+eep|6cjX>Jm<4{l&*x|Ie#^d5J$@76a>3_YP&C81YAIs!rn9g$8%Km($5=>j&y z0HGIYA}EC3i=cp@5~?(%DJmA4G{piItk1Rn=Y7tHGoJJ59b=C@+~IA2+PFxiV-nf;hX9+}ryEhq z;!o7y!$2O{Vi9fuOjL+>d<)@5$<)j35D-+^ljlhx5j6FEfIe{XXdS1SFg#mPLUmjr0 zY&f9kZaDNv$;B@2*G>QXy&o9c6m00)b$X}b!|*~jt)-Qd%yqu4y&5l01|Pc)cOtsv zaV_$jy+N5Y|Gj_yrCQMfyF#XadIwh)emB@?tnS|+-4(jYWp@~cWtc-$ENvlNq)cme z4(*G1D#GE6IiXbEer4d-&MJ$7N&MG$Y@;UeyB9SkNd_j=cRQB$^)6&FY$HLnh~H=u z#(>swuyi@Hcu76nR;?nJ3HIb!{vj4s*kY5h{e4yvb|u1;vTNBqSKAP9{L|`#_5_k^{BgbnmF#LB%#2+RFoc*=bTE1=OIY2md{w zbRiZxcUl@Nn^Yoh>?@<1$y|A3NUW;REH|lV9b+lG!dB;$9Zc*!SL!e#mdC0pp69s` zxu7a)T1Gov?z}dkR2dHM_2DqZC1lvHI9UYOM{+NAr60r9o5kfeo@qtx{pfNuBU5Db z!!`d0qMV`LGh{qF)98W3wpXnxA85lgo%|y`0rB?tn{j@VBt&WtH#}(FujQKUWlOo< zbrY4%`o#<63Zvrjf~hV^>w{P~-3?Ld9JBW2~=C>B0}gXB!}@qxV~ z?WgiATNdt&{~j<0vC1|PzO)lN$?3Kf@7FssOvK09*~=(28|En(G0n)c%T6Dn8dx!w zcBD>6RFkX|-aR|lUb6gUJCn2Q{TM3E?S62_aD@p|VA=daOvWgGR6%@}{3Qs(z>noL zofc{n#;v99tnrb0R>f5{uLPTD=lC?I``4z_fBV?of1D3 zirVC0yQ`4Yq#q|W7jBF!EJu(57rDxcdwB^j;R7C$NeV&rr=a}X?B1bF;uwc~pRs5j z^q7m7V26`8JhR`KQfMJ^mTs}S**=*-khc(wC&R>l5BS`Nc_wgL5?>s*O{?U4=Wp5f zttk)oy31^p&s7JTTA{fe$!Uc6ujS_Ct8JYLj+ETYN)vNr(^Wp+{JYT30$-pdYX4uN z+d<@J5pTDUwamIVsd?%~S@?Ou(6I}%Edqs62cP@)Vao`v{(`=j z-6>8DyU6Fisede^`|PoK#z)8%cBFODMQ-jz-K6Q-*J6{hsjlf51~}5Lt2-RlN62Z) zl`LwWqCD7i$9$#EZQ-m$qWY63YJ0`l-n9|5i}r-Zz(T{-Ym8y}ylhnFFBLZwNZ}N7 zJbZUt3J)lX)&cd&&Ib$fKNgk^VPDV6!o@{4es7S|LXoMASR7*ma!oaKStxn z`80V---mkE^X_rB%*Zs2*TKux3_fZoWb)U1qmnIe1V4ib&YTa;BHf-m_mP7iyH3=> z@LM*|i`*!ZoYlbEFkv{WZn#l!^#oa8%+GH%R)x<$<^|xPz zx%s`v1ETPy7-i2cSBk)(AB~pzxI@5~N_SgQ6{Bt+l%&mnvyIo@SN#zu8f3MiLLkal zEtogYU()}gq-9!oAV4~1N`maAvurOx_A!ZHy3@sE2*=05c~KL$xZg;t}w&%Bw zcmFm?1P=i{sMswgfp*3A>VoJL5GOvI>_mlhnpRYA^%>H~LA1TKi?9~iS}aIK&; zvsAoOVF{UEY-O}KeZM^O51L`^*%gXdC_FJzdt0;KXuC4G?5E_s-7r$H+~yZ>a#X`7H!q34RXF`z6Zx>+bq(~}kX z8N4B1g3KgE|DL=)E7eQ8IQ4-RXv$i9{_rOOQdSOKx8=Zi$)I?b}lq7377!3n}0BZZ|VrZO?=5{Po#@AHO}rm_2~B%Ltk z`V=39cjlFr{V7Z$7cYg#(qc9QpYfG5D7cu8%br$$X*>nCS+5bdTg76fDKQWo#_Y4Nv5T4hlrrFaC#9&6Nr9zV*e;!uF~Xcu zCPzCxe(a38po$r}??_7KM6db%U`gG_H7qUm@>gxiUmY`^T*HxEXA^z!u-3l{!=qL> z4FfX|q6LiF=M*F`k-azS)O8hk&3$uRSK6lN>Y8LZt-TOKHPRi~1Vwr{n~WU09M0KFzjdnB!BPooPff zRyyXRorhGMQkRSS&Wk<9iE?$){Jti96&(dzU44)2#8|hDQhCanb%U1TUY3xt z%sVKq8@fOCvf@Gu9)w@7{#Ssdy)I0AED{y`=AQnQ#AhzQo?H#DSFf#q+G4XcK3?@H zVQBoB_?U~5vY3GKLN_+C5Jx)q)Bu+>-YCS8eg?z&wL7aulH_LHP9RcT8=IYZUF+Nm z*Jlrn)ynd0asfiEfD_*Pyb7dfmRTpIc5|(+XC7CSN#zzvLo*Ii`(qchhz<_2R3U77 z0^R0Ab4kq?Im%#Psy}!u zL3PE|^X7o;q>#tVv zAH=J)^zlXZnCqq@A$wN1cnCdL;MfgjPFej(5I4`rOheTno`j@Wb{ia z>!feFi;{gkpOU7aDyM>d!19q}KS@%BYj6#XOrCrwiutCRv5pf>scwF~!`vgg!ctdZ z*3aGdeSRz`C*p&#kJun-Pm#32&K=2BVt14(Vta;kA1Hc=Hja=9cmIHiqZeSpNY)gY zwt#zR2vYwht82j6fgs%);y9cvfH!&Ov}i>1xPO*x0OrF2E*V|W=9k6Wu2!a}j zdyviGLt=xKM*x&VV}gOv0whUS9wR1gu#bIt0}1oJ?*3rtLL`U>N3B3mQInv{CgHhE zrzGO2^}=VlBaa7e#J#FfJmPWgWRZ2c$~IFg^m5)!KFLd<}HZmVO7^EYHP2EkFSl)V5pT+khAJrwly-NV>P%7C&XCt4E-s`~gs z;oc+_m&Vc4T)#IhdGzf4?(TJeDS#%O`*hXGF)muKJ>$01Vh&3McTlJtuO-`7`7a%7 zn=+Lm1I$r7c^-RQY!{Z+;-)Q=|E$g>ctymIyq_;!a?&rHdL!yj3VW$VbadyMoqNL{ z*Ujx+WI6;HZDd{0#Udu?kKNmx2(e9N&=$@##0lxaZOtoo4|ojV!b3h)6oi#Rz<^t_ zefWPG)XS)#C(z(2HR5luqakk9OR9`~hPuont zUZd18EkDk@cC_pXHZ1`+5QFQFDeEh(JV8FD%%O5X3GaVvGJ2MeOqEaLRmiuQ<|paf zk=l7#8ie~yvozn(g_m0vh>2B(Cs8~jr#YO%8o`~KatAzqVgRzq)ISZ$M5OQmP}NB4 z5VA0UbK<0nMNmAjG6=vs0yq&w@R1-ok}3TC8Ihq8#5-_D5k5FbxC4lTA0`glUdSjQ zeDf&>c-MY_Crc$_!}0ygy9kU-lL>MY_J1T!;TEXW4iUdT29TG2evOE0t) zP}t!C^+&anOr}*vur5REvL##gNuoc~bHBa6J&1HFHoOXTu_LvyC>Q71NyBjoXPCaWfqb@MRo5BZ%-18?f8%&IYU z@nH!`ge`c4Dvqn;EZqxmzyl?llVy7$=+zRufJf$ohT6TdeK8IV6ByE@=#Jui>qo^j!E|CN-c- z7E~#{;jS()9g?4VI~fy!m7)cCe`2*4TjrmPm+y};A@a8h6r~4$HMn^u^WQ83vk3s!?S$MJ4#=& zkE_UJp7gM+=O=!!dFU>5Azdx^}&X zz8;PHlE@OV@8XUfl4gKaj^GYjkXbWKXCb1EhuRGUE&w1u4sg07*ji++1Q|-NzrT0s zVu2bZgzyMpESm-_!IMq85N|%YZg-`2jiYW>}?&I~X~ANFE$qv2y`eWMFXn z38FSjur|#iA~e2iZ-eWYlDIEsxLd|%7@p|_jUT5R(lXU`b_KOjzFt;pYa|xs?7|!x zKWYOzeeb{XQUya?myc;2=qp-wWm?DJRqxFFu2o}V%QqL&p5!xE-i|sMVt!{djnBZW z^n$$8Eft*z94OE$Cec}FlA6?9YJ8ZfKRcUUomN2GpH>gdQ{Bc1{B9qa71D;;8-HPw z1K_$_$Yq$Qw|I~8&xRq}8wiTn@eC9f+%AQBrX&J;6io`!OYYJegGud3`A_Qx)Ga-Z zfBVlY{8~~x(7Scpna-K`>VBczd4I_{F01w?=`%#d0k?8uvTM0^qrJ>VDOx0JBnm^) zz^?}jSj`aNKkQ*?s1BYtMqUvS$w{aDEJKl@h2()Xj_K7szdf37%UqfEKIvU`#X$r2 z`@Gcr<(RkMkG+j}xvPOhjTf{8`LY_a=GYF&h z8wPKXtB<=E)bI%V@<5Rcp{kIi#Gd z?H2CXhgxsLn#ONhU21NlGMUNZ>t%Y3#yOkJVmmk4VwM@<%>i z@)y~=?|0;a_PXX|WN%N7|0Bg;y+&p2w;2*#wXG(%jbv1SuXAUdM9w#~Vc;crXWi00l<<5*ye7)oV z>vuaAC+yRo(Sx>>m3}GSN2zyEo7h(G+27Q}DNVUZ1+|=gc4zs=eGz$th5nHWN!jx9 z)ZUzbDj% zrNS$IXs1!YYl3#olH`Q@F$a7D&Q_mF<*uj7i&yVE{M&$S|DLC80%H6$78SZ^Y=X9T z+)y;CCX-coTS&N^!E6~o=G5mA>_4e?G#^-_Yk0pE~e7U+U!g3|aFE8%1 zdJ@?g6mDpksWk7$nsK<=Xz#Tem z8{7u(G%7k1L>F=hYT3$IJ<}%CXu7JMX&e9J0dL9Y?@_83Vy3HnRk=`RB?U7DNc!s-5OHiT-*+7vNE5w= zhF7<%$p5tB@b$2>ytKn_MtkPiOvXR3a1(q#oVYiALZVaSAM3uzGl7mo*}=%F6Q3eJ z-RO~(AtqZt(l8Y7w<_vIz>I} z(z{hE+&rCfz9h!4I*nqPbM7+!{6bk$O`I#AC)Ew`Pn!yvnshX_pJ2|J#w`gg6e-93+FuL3!f}B%6$M;C z-k2GcO6UL~ay~pWg&*AZlo;gNlt0bV0v|}~(Y`3{`ew=J3)bJBv9?_8z5ZUn0{LL4 zJ9kihS#NCZM)vb>@x0G}wJ+#ux{ucC6Se#4m6mHp@ENklHFp+U4?2LtTOF)-@dt|t zatgQMSv^1x5GuGl_dG%5dxWdFpe{RetNxdYl&2X;^?*2Xas)OsN?e(qZI z-VfJ~5oJu^HNSlB{kQQ2^%WILR`;~6M9$gL>@8zf3+_b%xn2(Ufkqe z)QYHKf(e$!_h;%0nG)4PiD(Ps^oKtR_e9YC#D1abt{WJ38y*QF6}^s+n19?iOzR33 z7?M+5P7&C^e?{fzmbz9vPr#6zYXwWCX)F(XlnbB4>0&JR&(n1F8wJDANrlTIoT!Oc z6cBrtad-CbX878@bs71>%Mx85H zkJP}+Dpxy6T6pGHF55paz}OO(`n&2c zU$PZssx27;PSYjr0m8`(UbR72*TQ} zWwM=C?yS5RI@2|dMT@zy?qwu%e3hga4)3W_TWh<-+T}-a1)r`n4W4*V{2csNE zszbbXs8x~87#5p0N{?JYmTuPDbud$~AmUb{J(;Ks+MyV~m;+o+5BXwh5G5)P<*G}8;cA|XJ1iwtq$)7b$-ov&L`(!)TyKF>0O^Yrh zoJe*KC)QvS!;5y@N=*}Uw_5BS(rsVYukcUKVgvZk&yYvFw?+IOiH_`kJ*h55RSsvK zp*_Cv`7^!TjClxyX=1VN;hFUTuSFy}1j1`r%ZsmOl)%XG5oYRIv-o8}!$7j&TW=?Y zbHuN%%;{OCi5yCm4!TutWa3dT&Wf-!Mi45Ia#lT*;vJTlJIIjv*Jv)TP}JRskT<)`X)Jw?sML;~5%qFj znKgK77%rHZgsw}=A2oXFFfwL7ditkBV~}U@v}lca@I|R0YMq8kYzM zqpYi_Wty$PZm5B0Hx!l1E7vf;HxtieoJ8EW|q7j;DBHPm!eId4Lf#p{0S39Ye!$lR1LSV90Q9nx z(2oQil_rqdLzrnDuNJkwBCJ3tend(wpw|&{r!0fj=66Xu?=oH#wJR0I&!B>B+Z;_O zv*mLE;kmBYjE8VK~N>XKJZ}Vkdjwec6DyBGxYl~tz1;nJj(Xcl`9;CX! zoiW{6a?To){#2jCo4)+k?xI8TS3(k!*dlq6RN2n~iwg~JwS9qiUnPL$(;D2D;P+CA zHROd7)Ir4C77PReDuA95Ox=GlEI?k}Lx(t|k@tA;C96X4_yTCSnBZD0TJg z9;U39oD|7ytE1=&MOl-x`pgoctOvzrCewLB6AdNFaFZ1E?0nHTB|J(S?)cOfyP+Ac zWl=H1J1O`zJg_~0uO|6_kky7qW+2*N4 zw7&0w(-*5%9lDpK4>o>#mZNKXjQZaeLU!;7GN-e3XI#4fF}mDa@`mOuwUslItMlhM z9w%1c>X$q-2Yp;X(W|bmHU#Jr5-%17zc<1mIXnn}RJaBZ;t$7R-3m4L|i68=yiHFlNSpW*>XYjVeB}IU%5FD?A8FI3+Z%qnB!XPe-6!CtJ27oXE zq~8%|8ZNgMOy&$5k|j_We=+4sFWbwIQ4)hBLPqYXcN- z{uu){?;SUzyuIQ;iR7kkm807V!Pz3&-`4v2+jJ-0yPka+E+r)oqXSC0h4iEas7wSl3;TiA^T!H?DgfR#%R z)c?e)R$k8*7n9I>ovP}lne^g9rA=`%&=dcLe0pm%+bJVSTWfaRQn_1TW0bnvMz4c) zPU2={h7D>5rCQR&SnL{347&GPw#Aj{*?W_-q?-rkAxDi4>{ZA0wxrV~%2zLxcg>in z4`>_3&v|=S9!@QBVuD!3umM7m$e46sDghdl(JJDqrQM4rOWWm=AO`>pP7p`YN_gqdU}*iq5>~kke=w~+p*ZFFRJPW6H;w!+i^=lt%V3K@`NrQqwa}R-n0VLRi7~8)?H4Cs>_FUc_ zJwZo@SoZrC&}llM%c#hYug5diVPt{S{eYlp=W!s z%%^Tvxz$DBs4(Z^MM#baWgqjANhgQ7EMCuB+{!y7Yj?N8_2Rz z|C{@^0o=EfodA8J{=LAHR{iJ`AP18Xmpj6IL_E3xv|0e;aW4R@NG(JJM~V2?VWa2+ z0<3D#yf#v}3o$4LIwS%Ho@2y_jO5gji6IPb)DROrLN%p(0`0sA=nR?rz`?>kZVPHG zfGCj$YPwhi(uq_t!Cf4wM!Eo9z{s2n6x(65(6e3Z(vXNiZ1hOYCS3X|09izOEV~pe z(7Kp%BU#f#$n;pUZFF2T%tY@UOe*VNuxz;*0*1u!DlMk{O~PXD(zAHHrR4ajW|4cm zXz84rIsWZy&9B3gY*A8YiB^Wja?#ELl5>iwj(f0_;4I~srpBj@70OBs;wx~)0?MCp z5KxO}ryZDL|A(n~&sQVyF&V$h`wajcg(Ttt6DJOGI}rO!;XVzZJ#cfcl_nxiO{7!@ z7&iStWJ-l_6p+}84-WxxaPPfW=|D<<3kp6`HqZ=h%yR+l2Yw^s{>AUFhW^pq!^Slb z#OZ@K(2WG1d}OQyQ^5aJEdVtdsigj)3eQ4Fp`x@+5d~Tv#T69Txb!~Jfi3@v`J2jq zqq)ZCTfA1;;~okYw2MXPFuaV9RX~U~gVGJS$)V3*yz+eJ zz5=C#d78>+i#<|Cr_qgtAhyQ*t@AuBkiM@I! z8n)?Cu514nXz{H8d0K;+XmxEZQm%Z0$#4V!S>Oap2V_zDo60H_9o;;T#So@9v_~SB zDhYx>NN@`{xWXF_QsL-n-M+74wQBWO4*z)kr8Oe4^N-sHl6c2N@c6R}9G-@kvaVO_ zUbUWaYV=L8IVCa9$#~Yoelpke-kz7IwkvWcBnW}^?%ZkluaplD+P)%*DRrjJh(6V| zk$o6?P;~3o3$LDs3j6lR6}k3p3_UA0m5;Ie^(TAc*p6Q3vtiwAkh6*xiuVfOUiItt zRgFHTT5bPAHucF1Zp!)9^|fdqal>8pEdW4}b}sz1ga!@}vc#X^EF7MNYSxn4G4fVE6;|f=ovp9i zn%~GAsa;qLDj14S4tPc4Y*%M*H;MGP+SzM5B{lO+XxR8Ex3H32?a^GR4NqP2Yi4=V zn!1#+w!=QN8AYp6rd@097G(Mr9338E8zNm)9Z*bW^71P$eI^1jgYna)pO4lYB-jy? zs918vQ_x-FU2qRt@$8g%A~s*pc0$Ivs0r++E+^B9jvm$bYS)~Y3N)>?La7pu;p^@d zWQi`Cvo*iim5{27I1-n}ofMuI#WNapgNr2Eh>Fe3_lRMEeRc?n!ew7HR-s}=p+lCA z4oGYL{nvTy7q>r}LR28{&=@J~sik24QRMyi-PqG*w!JH8#zj3(!<}~Z{~Sf$mWy!> zTXE?Qi@xm2UdEBmM}E75hHnkR_M0P$ombpD$wy+}&gUv5RTrDlBPtZW@V3I3fM(&L zfZKB#112AeiaH80J?tiNE2nxImCb=2v6#rEuhafH`)~k(yyQKRG=XfMfU7NqzA@xk z9)ZFj7&2fB|1N-f`flLfAUpBZbOC;PgfjydF#<|UPNqXjPycrx`8PKn%+LL%{Q?^J zfR;{%EYr?`a9Ut!r~)6XVv^W7_PhHx>;t4hH9tpIa%q){<%QXsDGY_BD&$g=AQ1V+**pyYi z0fF{6ZQGq3H?8X6QUhBBbE;~pu!iL~QCAZ>h;?~Di!0CIZ$~dxlm8V zTyXnltME_LXYYw1DORe@%k(}j_VM#=G962DH} z%Fn89Mpu|bg0}40{vqbL#%6;ucH4#Sx&JJ>5zUsNWh~gv|0(2IQeIKQ`34`Www4RW zcHcO(``o#1_t(7a+j(BDN&h%=-nGjjm|H$dmDejl8bj z&p#>o#osT7XqpWoKt=TmcjDEo)1su4&K^x@-}I)*_@D*ldNsymW`HqRHoZ&4FL*A; zn9CN6v`?6!Md4k4ac|EgsXd&fbGXS}upu`IJvu9q_sd|PEjoN0?v1vVXKk&{Ke?d{ z+Kcl;b21Umxs7yMxtw4U_YJwmEbSBZNhS?%qbQs=l4tkj@6wns9}%x|iZdUBZx`8- z5`UtOrRCIv0GST+lopm%&7#AKwFm04IKONWzYhzxjoz`g+le}<%bzx~JhxmIlF#T- z{Pj+n))L<8eLm3NTD%H@J`S+<-B%G7bLRFmRJ|lof}Y_c6T)fUi{iUW!X{ng>*%$mttmxCEw~UtNHQbo7v>a1PJFeO9SNrSo zG(wUWi%H26n|mw2=Q*=D@qRe75m#-er0^Keg-b!!+V=H%o*4Pk8R2y1(^ZxQWDI7O zdx?;_*hM~;vc|BQobkrR(1g6S{Ert9D#%$dIhs`BgK9Zd5G}-lusotr>I-v!(w;l+AG5Dl z*Ssn4m|oSro2NE7_=~S&>cFZk(6G*Pc191d&G1Two0D0nK`4DW??a-#J?<2 zvlOl69WuUmM$O?+04Ccjel56T5zFhPWTeS0r5VcEx!ccJ${N^#bIbQ`ReoG7&MlTr zq6U?;7ARMDkWB|P#&lH^cr=rv( zyO!BEM-F^@JRU&B(Ht$HoW=Cdc_$nRPasQ#uMX>3w zbK_^^tpzcj7B9$+Gc4D=oF)$`KaCy)IhIdTcybEM1By8 zFF9`l1?i7e?C#pt`iSSW1e3MrWm`TG*NwaM_f5(>oH^|{cOc7M=NKmzf4cnhm8`H4 z66`12DZHO0qbG~3)Nyxs`J^d7VUlI{T?OV}TFy=A(ZFXsQcrn$(lY7xj+?Pb@JW&P z8{`n?%o~Gce{@%}#YJlAUR>wC(lU5lr>^)h`=SwLiNr~GW%4-DwTvt7EqD+%_Qq_( zBS9K#i)oJbDLKu!!Cm&0;QB1n%U=nJIymux*uv$61O2YQaJ$lCRzeLKI8gz+1*T(q zX6P)qA5`C{cG?$f`nTEV20b?KWmT?juNcqc==*j>H@5g+;Jbq^+ADsiU|sQ|DY7Ao z-IE5TWErzN3nHzE8m19e1eGm|>gZR}gb-bElb z9J(2vy3gW!XKq>FyuRZx^Pvl~y)}v+cYj<($@EWg>El^!fBMIIgpWBTk9+0^`t(}V zxf*k{OY@&r-%yFO_rj=6_-dL;JdDr{wOYrt7P!CE<&J1g>S8m2q)M7;I1$qcPZcp_ zZF@V<&ZP*d9Bm;dP|aA~3D-R4A_iJ@N~D}gQs-w^uAZ>m-mzAHJibO7(-hrrDttv2 zV-;P&3n{5nC-xwPaD6fxpfA3UWL4);edy=HCq1y%-0Xe(CQ223L$)POc9WZ=vBTOS zR59gQ2;(wR)l`cIq2S}56)d&!V_2CNw9f09%2+}Z*ka$nZHlsrr%x*|!datLjX&pp1XOcB z6o!;VGYkp>hxOD(If}+xZs(4Ti5EoaTh`OLi#l1QO45T(b91dIfYC7c*C35oO<@rq(H0#eS|uY*DRxOw$C6a_!s?iF?Rmvv`@;rD~S$X($Cf{C_ zcXZ4>u>jt-&&VkhPH`ESSndqA0-lBjkZboS^X1{*VGSWbKB>CdqdZ$tW+qa+3?& zrpWf~EDwpRx-5RP(!Ae=YIsQmayzwR;i=Zw&XuxZZaGxV@nY^vO{&p(M)&fXTasC0 z25hZzR z97z{vFOzU*cv5{>F%`{NT6Lt_gyL;49gEU<`~+5A4zAo1A5iYfcrGJ;zu^qEm3c~- zH_NI?1ugcJCrQKpy3y7JOW4Z7YR%FrXhNgaA$p_HZicWVLav@Zg^*c>5H$t#Uyx0~ z{^zg*L)|NR1dFo!nrDKQJS$@Qr?%_b{5b298P6%-zBeqC#OjZ+Y&hYYLlkFejiB_U zS&v>MCL3xU==pkXrQEKLv*k6#R}nXO+Wof2D(f|r$e>?K@?Tc&zkPH22L%pzq=GRN zTBI0}7&~ZauP^_*chF3fI z8$7*>Ks-dujACiKzz~GXtNlwNy_cP5yC08VG%Yk`OS{87MDnGyLh*5V+UXgAceVW`@* zl`nwTXP~Qh>*R(i86_Y|UV$M2@Ep1}_hbKNh z{`Yr)GgsrwD-8^b?aW6}JSL8~Ee!gRv762&%IYg&q2 zeE09}=;D_f<@h|WO-q%Nas5}8`VUJ~NQ+ti+HsQ*#bJA0?G|)}G^8<&)Bn@T{^{WR z&`xN5sf)P@uJv(MAXpZ9p~5DAAL@nq*MC~cK{lE!;4&hJ9qY|z&CF_Jk$}0W=Ht*` zIfK<=UcA?IZ?EH0bC{m@HX5%RS@_ydZd5y^}YP@WKUG*UzQSNMNV{TF_lzY_c80kE{9)+_Qq0bi*gW~+-5 z@4Mr+54zLCVRlzAdRYEZ6`sS7*f)NG|sTKWFk^16qh4oIRH$_oWBohFEU&} zn%zOil|FPDem_E@{RG89;)f0$BA<~z4N4OcN`8?ZrQfiPLA?H!`5+J9xJxXDh$bi| z1`naz8_KoN+a6dqajSC$&S{2fi-oB=8)xnGkDB`LjS>%#}D=0 z>M=?E56)g}we5+*bxXXWaM`D@+^kdMjghW=((1a?V0fomnJ*J9)*%2_&8q%KKbuvxM21m-Os7F!VLx2n z$o!;0!=E3#=IpoX?w9%E5K`B^m^ExSbpQCkR?S;UkmM~YH#JVq&D5NzHd4)i&6QgO zY&qN4ChQbkMOjs{~tClDQe>4&mB_&mJQUdCtpk9>WWHMa(MP%DcxPzE1`Fh){5QxOJOJ*9OV@lvhubgpw9u>?h$~Z-Z6!AA z!lmZasYSg8OCGnIt@f*(=B9~dPP8LK40>5;w$+OEf{C|(lFE76ydifc!M0A562=AW z2xrNkue#x5ny^V>PrMh~SpVLATHuNIX-*BjTU~5z3?!?I(vawZazbgl@?0Zhn7@i8v!!}TVmf8WV!;ib3C(_Hjbxm1ObUp zL^sK8(kBkZ_TX88o`{Lnor)tGOiZ~O+{syOs)@m=`>sq0%e-om%nx;v$30)v@t8Dk zc{2O3&rpI>3O8AT%ah~&EKg%HlAVTu8-mD#i6jbfd_b&cdv_!$y`KGyxA&t+8#^k@ z(SATDi1iI#qfZ2Tuu9w-=k*LKvh|67lPHpvTPLG>^LXO=E=z^Wgx)l5 z+As6so|CDh^{I+3mwhpM5vM+L+MP?9VK}5F@RUVh)B-fH-c^*@rLU3q*!bcn&PL?f z*4YQkI_05Cw^Y%WW?6i}*ctuEFaX!~S@Km#G0q6hiWGSk=%3e&HLSV2+4Nu^+_`Cx zE>R6xBp_uXP{@|_L2`-dxyu%~T22CAu$XGc9-A za&zRy?spC(r@f=>=5LOiYMwO< zizil+HzIt-r>kN5aClOr=0@Gp3!`83A5dArMaMjAZ!L!Z-`&l8c%Gp0 zLDHTkpNs>o|0BA0*Z`sd03Nj^i)GQ8+SyS1b_<;vS=i^~Ezmp-=L%;%KL<5{#Fty#Co zMY))E`U~nGmBjVV_prGnZ#p^_T&4CAICgh;p-cQg+#RlcdfLpllg@%N`O`@9rOsxS z=XF`t!~lgeQaRLNdpYNrKDE#wCA|BZOt-V1Nm2x1+55Og*zovKtMvACtuMV;{LHL* z^S<9>0@0-v)c{V8Mt+pBB*0#d7TZ3W&8>4RnR{=f)DAng0yd}7_RYgI%erHot(G_u zo4*?33T5+;rPo#~tK#ptD&MnjBN|b1sePr~TztZws)@Go9X7yykOfmyLS|qWJsr~U z`8sA(X@Kz`4Bn6tJLWpCQNNP&y{_P};!Sn(q-R*tKBM7BWku+X?wjv-jrnG5U!Ure z3vJ?`5pR9Woy|Is$HvVPN4d=FEl9@?FKp0l;|WDg zj@Qyv63r`Bg9#24<7fl<>{_{g%`qKZ_tsr$3dyjGLg{uqK? zkafLPnMG5R)PqT0FRW!&r297IJJ$h#jV6h2plT0ZK(-}#qMo~bhAZa#R@#Y6yHc*( zI7%0z%m6JBBbhDCE9Go?9c7lBHa2Q5&n(k3Wmc|Is1{(F-r^yb2PU&4xSwBRa;4@_ zS?DF*;(uUC?FWMjozI*5`uBfsD5#%(Es9hI0WwrDEgD0J>etevy@Typj` z&-TQd{_#Bzm8{pD&Tkpq{ehk5XI)@bEs-6-?Xb46$UgE=4~>|$$M!G1rzY+j%k*41 z&tnSu4J9VNlAX~I!P`MKGTcs)GSeu;KcasiuKJB^Qi~*B5$CwznC+=Xo=Y8WnmoK( zh`Y^wJ@1mz_e}i^7QAS@)4!~2&-M#%U#NchB9aVW(-I{qxVy@H#*ED7JRSr1k>n-< zQuX!=%Ic_4DS!Y74Pc-~Ihqc3r>TmkV|drrBewi<)pcU%n5!HW()&y&0#A<^>n*Fx zv$VV*uJ2{D@Kt~AI$#&o7-QM8?t34zCF<8y@$uZi=@yY7X`D<$j7Xp@NE|4+xTszCVSL=RjQU{y(gpS6EX~`{n5pnsg$)NDCb$G?gNX(oqt6FH#bk zf=U$#y@`MzhzLqeD4~fUEi|brH8cegm5v1zX|vDwpLu33X69z*(g%n+XYaGm-s@fO zZ%OL0mU5&6Ylp!49eSnsO8DFcU>4Z;<#{B&%+p&Np=H?}v9F-EJFlpY(ltGck}=>P z$bz*=vwwKwp?lr`B5r@)>C&%=xZ#w>Q+jP8qfAl4>`dygYz`M;&!;Z`XyPBS%B--& zi}`ry8N_~jm|ysqhOrQDlc&%5QccQFjmrOLnSRnp8v9VT8RN;*zMJACZl_o@`9Hxw z2yIqf7dDj%u^xlv=OVqJsAJQExY+60kG$x@pU9cSJIv`U_k@d~=!4y7Gk~b^#q-xu z$Q-qQKVmHj5(I&mAY(_*g*Cl`UH40I$9xzd9E=g)vjK|=zD`dq!-e{f2Ip(VKqghR zX#@N{_wuz!;fIOnHEZ}OPyOVTp4kM}^$JOT*zcG2Z%4boZ*v2)v#3bX$u5mEoyS1o zjV$=XbWZ9zNM>sUl{}@J@Gsm)6$34^M>mH?CdGQ^)gO@MSuGwa7wxPjas%uABi3Iz zj}wSCXUP~g7V&BFLz?x01vH0C5(DVG!MWvL;~!3AiAUf_%U?d)O>$3Dwv0*MVI(>f zv&oI0(_f8v{Tn9tL`AeWgWY9yyLi6w{8#C0ZFP0@U^mLJ?Y%)vLQbq_+_*^dC&r6H z!8l#JY1-y?i>#efcf*+u!f4E?2NZSS;$!CKENxtpoPBX}JtCJ(#rEr3ZfJ<2F6#RI z!+Ff&(hknvWl}*NUTEw}rHGoDPi zY-tmXYkuT(?!Ap0PqH_a&3tNk1Nt4># zMJ`1?E7{`U+e5wF;^#CvaN$vhAD{xpo<{HApNHs0n7e4(C%GazL-@Sjg3htXDv4ej zFAgNvY6_pZb-TR$KRRW_Y!E1Y428tEqjrqF!uYkp*CSfvF+f@IHY(Z})4B zOo^^^tS+M0z}#gCKGF5IhTS)|l+D-lyZL8Ny@XVGDjM%^2+3YvT_*U$kE}d4c^{6| zW!WT_#OO)FQ=ayoz?k`cre1PveEdVXxfocem;mpRE7dv08Jq?oY<6Iv^1r>!WRTx( za=!Hc1DX6s@^^6df(XwbUJ%Os17|E6*Wow$x)b+Bcgvi$e*HLo1+(WQLe%Wlb!$AO zF#0GhQ6y=V*W>Fi>BKtLi&WzLVowX7NtM`KbUTwaDH51)DF60rO@fkZng01N<*%%$CsfR${^;^N|Hp|7hz7s3DY17v*cz8Kg~`qtS7YnW*N?PlkVgwog;s13=CXZ|>g?`@0km z1)8>>9EXC>EqeKq2FhoqfKD)w*a_l?lfj`1%Bh1kGSD#^*x4yML8fmq5bB(P$>;6c zx1AtP3Q8U1l0gH`cM*`mz{d(Hf>3VAqzKeJfE?Dlc)6O8oiTY-xyl*n#c2T06KgK5 z*F^X>Ig`@tEXV|Y^NU^_W9xa@h@t?$Ms5{l$40fPD{|@9RWAgd+Y@`Fc>hQf!oIX* zahvB<-jsT2!uAu2ZUmn8E5Id4L38*8KvQrDbHODIgLu1yn%ze=?9K zMp%Pb%mhHA1o~;J&`mQliku;FUdTXx7#aFUP!bjXDg8v{Pg^=8{ZQP>n0G}&`2+I_ zzX#>z=85SOr<8a_(|K+1!aNFWnRF$mqrWjg~s*}HmNHbu1n#~6SS<&<=I?( z8hbsnvKwOUwR6|M{psIOzdico-RsdO2kZOyhN*+Uf=8RFb=c?Auj8;w&}=JIphYp} z___GnoK+UBa@g=yb=Vl~YVgJo;6sQmkIB#Mibv#*+#r_%i`a$vvcbzy?y=;*iSd)S z%@Lgue*T|TTe-w4e|*C8z8f&9LMIP>2k6f(p7tHu!w*77Y{%czkLkhI?uxA~-@k){ zNhL_efwDw_iYd(g;bg3e^H=+yw(X@cLxo-ldUEU8eL5&q74SXF`Q|=;OslSz-z6#9 zg>b>Tb?Kp61vEE-N1TBI4hN=Ep#EP~4FV&H=zHe+a@Sg)@k?4LfWDUM4 zKLRu~HQ7?H%JoY*%DASmC(^{l#oghl)OAo@*m*lZcPjYLUEYVr-9&3ebXIu{x$X~_ z6q9Cf8!3X8SwUp>?_Y`VZilJB;M+n!%eVV}~rj)j0jyQMBfxup+%^(kg}LhANR zBJSv&i$tc5pPvG-ey0IG10_Y>j4UKswQjW-T1unUq`yi-b%7Lqb#|!Z1Bf!ViiL@X zmKl?0p7xS@s%o@@7*8-n?(2c1fumlS2CeDkq$*FE#X zpZDJIzs9O9zsAf$ff^3B&D;?-sb31cDlbyxZdSV~UpgUWA9N7Q%JlDoMFSu3Dg4j% z?K&{|hx1ezfn`?@j3O{x<3L{x#amjkzgh~&W3>-)l6oH=#;m-9|)ohf`5Se+_t3#T8Ub=_PXOwi)9KJehq07*V2;b-@kto>yHM`f+eYxZsE*14`KGi?|pzL%nGC)%YJACVq#(d za;Hq=D@3VG@6D)tvw`_Tkf~^yA|Q zS%)`psFOg#^cfQclxPj{?;$||1a?5505xd2fCeh>2W_A}!r}+1LiocP^NqO7PFJQ(6Y83kv&}}wH&~E9EPMy0*n@I` zzy>;^F5mYwI#p6rjd7N>i=LGu$)T#`+=4N#H&#SpAVa)OQ9=RE`&iE;s zO>AiuGk1p*nbxIV5p($LVPjVLE9(?FCH>6ZH+1N-qMBT7I~fu3+pWfmcr zvV?Sp2VGq{AQ*P=;CqJSr}VTv3CB@dinz3AJ<_*og2OIBJta_K4O$z(H9)~Ns_j3R zq2TzjA7EU2ey$7=!}bGrTR_z1XQ)vO?9}kwzXU@!l!AOefUcDQkZJl^>v&n~;kC06 zy$&jUH6LuXei$P$nHw;5i}xsEqMWUi+wbUD4asu0GWVdk;tCq{?!kJ{&Q>9>UTUPbQz`|!95%JZGyE?5Lr{$Q>);^MbvZDQ=|jdOGT zi%KiAE95#uLoH%Ihih=xwRU&;yRI!&db(%uulLGJ_u|D%$RPsP{4-gmp1$dqxFzym z#-tbivW%L+n_M20?~Uj58sirYs_8`z1OpC!mDmfl2qGr*z}Gc$E9pU9tbe|KE88km z7OOa#ko8L&L%J=@a)lA!oxNrHdrVWd&7M6W_0Qd*_04+TBFi{9_5j08zggKc7`}k{ z?8Jqu+Hy>C!d!?TUi`4a(6h^HcT-w;^=GC)>oOZN{%!EE9;!rFj=gWuhYNS)7^)_I z)S87EP}!VTgqhE-%o?R*f6Uq%qca1>sFqX|=c+U@+}dw&;gV0Qm)7eTu&=-5Pd{9_ zbKq7lY$rFTz%w^x&ipPa;UyRsC5sv5YbMdPnPxuyYw$X4LP}=!WhOG6%ex{gbLO_x z2)|!XuRoUO)C>vx<2-YoGatKQE{hkoGd`s6iI6w_ZqeA5riY4i&Ml`&k-6S%Z!+?3 zig8n^s&YJn#-+2EXHu3k)Jt5^o?)ac-Mo#)rM1%>R8V?F;W^^02Ld=Bk-sQWR-PBU z5!b~LB5}@@k>Uh~P*_zk7H0Aajcjeccnh!Sz?zUcPv_FvZa}#Bcn%E{=1Is-Hj=(u zdYe7L@Jv$nGM_@)wqJY9voy!3o7}h~&t$3Ht$QBxhc^~gSVLh0O!az?E7$8?iv#OJ zGNroz)%FP^{BHUG`C2AWLlD5c%;&$QCRA^~5qK(V!>p{p;?#GEDN2dSE6Znv6*5=d zI95{{qMGgI&S^f86%Va8h<(H9JhPEoSNUea`wYYKFG7?3%)E)suXBr<;Q~*M4)LW7 z0pj~@y&a>p>pacpKxy|{^E7O50G_OkapR#Hi7p;_Ewjnn zmn?>^NzIuaUJZZq`v%W1Kk4P^liQfa=NjlMgbugPkML_&yVbhQ)4wi0cfn-f?Xy>fSWZ2Q^I)tUxxPC#RJLnWG4KeEhj*Tv z3o=pHuh+)Rog)Y+*dBf|6rK{)pVK6?)%*Z03cZ12`WvTS9etVn`QsHz?bV#R=?h_2 znf|7^zL||MS;2nB%_Dy7b$efQ2b_!zV*cK7(pdBQ$1b6aqQL0jpuWIO0lA{Ybkh~_ z)413U<*XI_GLzQMRk*38kfRGgdJaEcaGP|-qhY5+=HPA%G$x;PYr7rkUS?xe=j9jB1aI4xwDPna$z)zr z*cA6(D+2RH1t;@oJkAcUjY0N3!YB(kX?YE9z#ZUIYVwQcIW_H{kYt@^Q&p8U9ak=F zj`ka;mv1~>pmUk|!O21*k^-5%J7x&^vYV0BL6{8Tz*y(pw;~FgYz}HO3Egt8lhd*r zc~$a7T3X$M>?ZfC`1!VPaXsA>yv&`HY@Ija^B||-g>3myb-jk8UY(fR$YL-m19e zCYUHDlU*l*dY5YNiS4!&)Mf7Ypt&B?IxA!yc**pB<-?K{UU_`E+em(7ePyuv6Zv`x zIc*_)Q#WP2iN1ajZ|B#T-C$oxBp6_(^a(4-=hlr@&6|zELmQ!8Uw>TKWt!II%1PjN zhD+2fS{Byk8zbjwmh>b}mP}-`R0MKHJ&dS{lWywuXxKX+mR9F!L=m56n0yIKuSe3w z((&UfszvaJr(9#9NIgx!qhVJ(UMCF zCdDr_x?y+p*c~K?t!bUl)hYGTILmm*@kC$_?ASeIxYh2zc$M#Tt8asBB2hV$8Za)o zk(HSk?D5S7Noo4T=oZt3CwGoTFY@G2RtTaWl%tvOdTB&uqtp>+tDo$+s=ik1#Nu4x zr*CQG@ZBmSUO|I~z@(eI@-8XdNOh=lhSo))tq(m^PkFq7=?{j9Rtg`V)=TZ`)sJ&% zx(J56W)h9vosy+5tD{_)&Un7_+e+o#NPlAl&PDDOmciFErXt4-(}$4tDU6qeYueY7 z8R=Z=GL0zNgtUgMAIr^FAZm@Hd2_yuOkWSh1c+L>Hf2r9w5W)IPnGGGA7Pp88M3Wn z0u8N8TRwg{e^4PQ)J+9X%%||kn>8NHiPuv>9WvavvUF>e-1WUr-GYP3x@ILYR zM-`+9m*qN4@Z1I4-P3%ptw)M)47L^PA??rg(iGct6-s#<$$zp~pmS~wW}FH1@jyAN za(!xHBKb}XJ~HjKh&8-ERfyS0MW#sy2~RE5oYy2L8WlH-PnG{3oB3?%pd^^?379)VPSv_ko=-_veyu9 zT!4;oYdw{zaxnp9!&Ku38rI4-H z@t63Bdhr7N5LGP_9?Cr6yRE?3(+A%1o5(1#j}Y<6Rpy=z0g0bnb7#u~5sh;7BL3D@ zU!aX&nh2govqHGF;C$JNezKmFndFK1gh4CLes>b4h1`6vyr-MrXyQ31G5jyV9n0*2 z<#_OC3MMosK~~n8xMy`nV(fh!Igr*_tC9q^arxYdl?$b>A5AW~ST~+|>s!OwZ%D8v zAeY=rV4b1sG&yc!#iEK#H!t6AX|KsV;IkFYLNegd43d19d#KxT?AgMM<`I@z?n`6N ztlSk@A<~+X;O`ra?=kmi2ORZWDt{83c=eGoM#y2Kcjes#P*at#v*+*Jx%2$R3u<6y zB`HMwNM5>WxWxDAFWsodx@<#JQ*mo6pX0&o^bSCduBR!1yhIu*%7qmGA)QWrq88xN zl^eSCx~zFR4Kq1#t5}c4I_&9M69UuJR+lM0l``p6FU${P7)QhK-nB~fniUK~HfIsa zM0w8Yc7wv{Y{7Z773KJ%ZM8Ok!nNZOtYwy>SN=}j81C_$JDIn{KH3nUy#UqHmX8wNW=|})&awniVkwG@!@lS;lc2ERBvIt#DSsBWKiVXLDji?6oTLV%# zkh5PzEC4R)jum9t1Y*Ht&D`v)!EeGfFjFfD2D{9fZalb6iT;^br%wATT5g0H@6Yz0aq?5cNFu{L>kefmWQ*aw0m9uS1?ygJ#5*Xp^YbzmI^NC2Qd{w5^c(2%jE zrA1Z<-`2Je%(S13Ww-bw`|vcx z$R~l%2Hf7y%_Rc`#}(X}F(n{E(bG_=tz_N2GwnyNrG!jSpjwg$6)k|NRjzp(m{Sun z#PmNuy*=7B+vt;FG}Y<0$lG6t5M{Ow#bpZ1wrVZDVVCuZ^>5L@S^L$F3u8*lxnWpT z6X#@P+2m4SZQkFnMDgN9xXI(-U$cYG!CKv}h;NnX_Eb0P2`b}J?cKNeC7h1G?0%Wb_t{}0ujFx#7b>-XG)x7 z>Yh+L@At+7wR9M?7v9kq;P5YcLAJo-%Xu2=DK2{~s#!MMv8;-{WJ6#Ne}y#C(nVLQ zV-QUxHgNkIKe#~_pY1w)PQMq-6_fL}5IFgRQRYaW{2kSme`Bw@vBcmPKn zki&a`>$nV^TydT(p>uv1u`x)hw`N89B$~afquh1rUE6bsuASRUs9Y$h9t(eIGAHu1 zNl(qwRw{3%PartoA3kb4t5KA4&cV{3U%b$0Xi<5W9BBBNA>K&~G)D^#xml|;VoA+oxWGusO?K_@ z2BWOCFnkqa{sBbn`cIPN>S`BA9R2_vBY+^HwQa)aXcY8;QHcl6`DMqGUB`?8H$_DN zdWHiJeDMdV<#r6Nzz^v6gNR@68+-qiA;2 zwf#TI&*ogi0iD~b*yV^1%Q2A#{#0S?m(&LML^Diy))p3DIy5%_oV zS8@S-9IU{f#`nzw$mfhEi;RS*xm%Cw_TUkxoK*>rjmHs4a!5-D>aYLK_C`x2`Ca0j zOQ;V?EF|B9umY)4Ub(rr8GpN7^|^xEI<|>lazs>ZRp+GtD43T#yQZ(#?g}rB`_hQO z@Zj7t!7V3U^^Nwgs3bk^aD!8qj<{)bin2~4Ug?mx`}gp2-Cn}TG}TLzl2PQee1{)K zv#-qTZfCB-M-wqbZbbTx@NTyXq4Y^)%EFu5gom)|INnvE*f1NDw~unuoCNr9CD|nVtHp zsN`&C?|V~*6$3G~n3?lcdPuXMNwsGrb;tup^XNpz%5Gn3eI>5X1~uw-RU6UO`GPLX zR^aqUuqT0z_UOIjm&Z9dfxa!Db!YJ15!;K`^fbVuEyVx3m{+E~t}3U|l@MJ^B6BaD zr75eY+`SXr?R)>*(9_&wOVwkE;sEAPw8g`>2YKKm* zhOMNnXpK4~#-CV(3m6MGF!Xp#F5PH&bC0QqYgNEQSONh9DurM~mDJL6M>0tA(-wNP z8C{D~A-_Y^3P|RAt69g8nP*rcVoxtBvxZ`G%Hz>6>l19_BU+b{>9I-ijV8SOZt#SM zfxY2h%85T2GH~(SFgff_cB4MUzA%QVOSy!;y-qH-s>xJdf<8aiwTxq{ zPINgU@L3Ej$Q?A~7|=E_Ji=aMO|Ux5=bh#hJhpjt=G4Ou=32*AD^1vlcbk(WpMO@u zW=r>^az?eqH}k$i^8jUPww-Mr%78~4-=)&Q;8}UhA$&SaZks5*gUh)iG`@r{fOAI6u5Lt)EVz_=&7I*g5!CAlXPvFZkq)=qR5Ge_QQ{5W zSQiPl{b;Ry3&*oU9Yg!3q{-E(?e)0vgU|*0(d+bkEjsaK$IhxL z`Tn@#V_LBnffkWR5hh7d(sq=Rcx`*3hQy;6{-*sI-F5aPLfLF(2`O!|qcGo;2Eq1V9sAj_?V^ykCwLA+FIeCNs^XIm z*Vv@5+v2LRE^3Fomuoj#4zXL2^I6<5d}S>-XG+59vzyww8B@Io6!zeap)-dL>O>d+Pyba1|`5t`jCb z`CQtwIpHM+6jSJwMwGKFE0WH389mJ4`q0>oDj^p4b^ZA=EWo7i2`ZLRb*Yx6D`Fs_ z;ZA{T=cj=?QD(!1oBn(&sSDkD8mfATWz0<$?Mq%J$SI6yK`?ciO+jvH*r&UdvD2emr@Ktlk6zv7y|dAm9hjr071Jb3 zF-QAZdE>#iN_WygkjE0)dt`}0YVBsyow~o@%+gTem5V_V2rjUAVdX1HW9_Jc-9BL^ z&OL@9bhhF;ThqFLJPJkj#fYn|2?W2*VOI0rboFjU)aEb*z?!hZ4TCt5?>6XonMN^t zb=0rh_^-Fce(G>V`0C;8t|;a=RWr@foSE_9vzbjrHlUW~r~8CuPuk31J5+q}4#nM^ zd9W;(P5BLErS4byH_|#wPI}uemG9@*Oky3WsVmD?U@Zz!;LvQ>%CNTHcZ}9(-o4)tSUzlBb-o7d=7ZsKI>XgfV zq@Vq1B0=BkcH6ZQ)&#h(>be3tB;F@z#979n@TS1t>Eui=`oGPiJJ*lLwC@v`ZenG+ zX!7iYM^7!ep(6rhgn}0uuYxtzS7L-q5a0e$n9;LCi106Nb4oSX7EG?)CI&nyScj~J z)^xBGY4XZZY%^&a`J9u_u*-Zfizt#R)s@Aw*KbCZQ-GzP`;^SJ+{SC3mtXE}6V132 zF-u8o2CT@Yt5VsY-OwKq8JeXJkL}w=ol)e~m+F$6Y}qWN5}OfH0A7!X>UNP2NpJaR-~pQzF;NgDUGxHIhOil%XZAqrCl*cEqu2;SJ?2j1yQ6KH&pq$g28sd zk~g98sZl94gXGxc?YA;32o61FuoYchsNfY|vEBww7dUVQuCV{j%ET zk^AzRG`-;&>gqXTwJQSB!IRW%AF$#%@7Xa8Z~!cRBa)1t(#gXYG}vP}!_2K59H}t|Ck2Yd(^9WxwgD zaV9j|m|7h)<_p`I0~z=8Im@V?Y7JSwWeL{M0wYVNdT7Xl;aMf?r&{fv4Z;&9cN0gb zh(ESH-Vv#~sw#DB&sa-U|6ouum!8ZJ?DoRe;mq7u*?dg;^O_rbVWz#RvpBrti~&Xa`lH zP{K%bRq*SE%F`VlDeGK((;~=^qYsRjLD`iz4as>mMsDqst(auSphrf6TgF=&3Yq}D zaMQQ1E_&ko43cRm>{-#c7*YT$GA=lFPFNPtFh{rKJu}txR&@!K+8x&?4Tb4`{|Vqo zkn=qU34KLm1ifYPMN#*$Q$imiCqzw3C$$L3)e=t#WN8cmRiiSGpqIlE2~?HF`cn&|UkL1W_6S<7b>f)SiJ<0rJvE6DCmgXi+!MUY-O zQh(ibkr|_Z@19zd*qQy%E^p^Mk_`kkS4al={#{#N{}f0XjCDNx%(J!$aiF1ocIb2+ zrA-0cHgalLMKe0bN(_~}C!~Oq=>k;2zYE(DWqjvAgWrEt%x9rn(!1k6_rM;?(rulY zr@_oqB3CM^S$ZO^)Qm5$y9$2B5Fd5V?IztO+hUgIaiBNHd%*$wSy5|y*0k6<&r~;~ z7)7Ux<|ZGJ=47Fbm-^(uV!KA1Q`xztk!uM1F{foW-2z$GR%s)v3V7;4kY%N=-Qt?6mUZSg993e~1WXV$$YBc!m_I-V{^wtXCl}iP_9}c< z?bv6gSOjDONHKsE(Of}S;GQBkcyU0683;82sGiOL*6{0jn?O)al9`zwmWi z@o?WBB&_o0thOvOZZKb)mp<+VJulTn?&5WRSScGLEgOt`k4fgKMGWOPEL-22-}PD1 z`M5>I$zO{pO}qEjl-C{m#uE zb!l-{{b=tYTmzt*HD=Po(ccxDjIA0CSnuB%QJMbU?f}@3Q#Fo|UF+%nuTLP&fnpJ; z1UVlg{ry=@FZ`g1_?cO_2n?jO6c>ICpZgBf7T_LD06Z8wf&X%lR*zj^dxY?DzXzP9 z&0q6;-Y+bqY72v)x^IzF3-Y*5Ko^bQ+VVZGstQq&*Zk}mB!$jF7;Z)$dA$pQ`WFQI zNwJIpU*57U0;Mbvf%y(=VRE6y;3j+FXSG{HQ&*@jpeG!V6y49ZixLg zR4+Zb=qY7W2dUr(H<*L#gS}qgD|b?_1l7$s2|{I$@0`RNbkb&)6#d-R1<4AAd~A<7 z>&y6U9|9}S#*JH+0(42<+0XmVpFjVy^(;GV?!Zm?%HS1t$Q{28(NZrv)|`Ue2@PEJnRMyCZ*433Ov%0hZht7`uE}>H>D8wQK0sa)X=!bxr1*63@ekx+Bmj0Q z(7qv{ugS9uiDl117>HI(z_Q;9JrbXR4&4V(vuyNlwUA}X0gC4?hz0tk&H6v#dNS|# zpv%7n{$K+rc6LO<5MXZd8XMd;L3QW^|Enfw{k@sUo)kFj-LYN*XOqxV&vukF<-z(2HyIS z0O7}My5E2HByq`1beQHNnF|UEnzvfkC%l!iuTC00*YsbcprfO^BP7z}q67qB+avm} zfqvlk-q5}vXc?nOVdvjPo6x`9q6BUS3i@}%{>rtp?BqtD91Ra(zibgo0RzY{6nRMW zGG)z9xFR)1r&Dj1%O>r1MM5h>o^uLp>y32VgbQdM6^iC^CB)ji=k&J3_YBgse)X3r zE-K$Dw(uA0Dvd_e2KokPJGrM^QjC|I6S-g+(`FG>@AWHr?uUuIgVmcQ&1!b)j}l}r zd{12yOfuVLbH8Qbbv3)@+?iZj=ZryayO)3Xp4r_}uNbY?u=A^8AN+$N@;thMjyID> zJFD@geg+k=ZqV5PP1UF2do%X{QCi@l2{0Q2pE0O?5n7J{KOS_)q^utOPaXbyz}x&v zSodH*O`jjbraryNB@f`V?*#a3#x$*v-<}Kb<>foU!J@pWHfiSVQxPwVvag+G_?P}x zTyj$Hw4eX1HeruN-}ZsO1<#`i?F)zSB5fAF&omz z1NDb?jyn}PC0Uw1+y|@1F&w&TYf5wv{>wJ~yr#yqZ41O8LI`gN-#&h@2~r^`6oL8k zv&myw)PiX=@u>4JTXf3*-eG@fER2(v0f&9%ik_9=>@rjPTd{gi^?Zgst9 zl_K`Z!_A0q->QSVF_Q13mzhw`^{ldOeu(5w|74oyGX*B~O7Ye9RJ9+&O{LxSG05oTx(ykVrpPY;Z z3Oz*jxH}(k>VNUW_CUtyrtmEQDnB|pf+CNBgZksWWoCjEk?PmCcm3dP5gxi_QSOcC z9#j_XtHke#(STRuouD8Hi7u^n3^FJ}p$P%KEGsMq1BU_Ff`SuW!v&SmfJHrIAFSS+ zg=$4ua$Lps&?59UF5~E;@8Xes<8e-JNuq4?rVp1CJdL zUAujyL8NJe03ymoGa{7;U-wE~igs;wv@d>cK-h0Z2`iMdJ|nH|D)aMWzhED`{{7xQ+Yp> z0Pr7^7^^i%qhJxWl6_hJH?zl=X82_Im)ka8oa>sDNo5E}j0-Ep%)aasZn2fW>}$ zm$QQ2y^2XlGZ^Y&M7@%}0G3~fuaHrPm^XD0ucGyNcdY+ zqJYKi6#Qi?`-VROD9R~xWWjHW)&kaVjSO}h?3l?~oNYx&k~_*}nMPAia-Dt1h7u$3 zkt;>6yGH|S#r0@m<&G=Iljvk+w5>RLyXN9EVkFsH(>sS_HED~lx^%6E4d12rc<|pi zv|o4Gnt#1E4H{QyDCQxCJroP`fAR1iT=@A`j6S~Gs@93pm@Wtzj9B$mw>IOu)q-6OP`jL^5|8S-NrnmOZb@|NuLb! z4^Dz*tW;BJUi2uz_eNMGRRt5r<(E8Og%%KW2~RVdG%(XK7>j5J7lq+jfvk0EqFIEO z%H>!qVaJPf4?{0?zccJ~?rpX(B%p57ONiQ1cF9c|czAl!17CYg{4tw=fL!*af>~GY zk0~czGJbkRwY*l7&z!zru6-PQ|6FG?U2TV-=rd~n5>ky&`u0^794z@8qKbF$crzuu zqR-WP`$gMGGZFVAWF)917^c~Am7r``h?c66V)##z8{vEGsXWBEV}O8t|u;4!US z^xEXrd>-MS*A&vcI2fjykD-V)tn{k6*)i2*qPA-MSgziq>1%Bv$0{6`xJDJ}Qr^Nf zBVS|`cym_NO~mT1RX2^g>gMUeaHE;sV-3_Amr$ihZVM1CK8;L`N^Ej8Y0jLHBo91x z9&a)xHyV|Ha|dqNDJo|bVl~qyJ8)#RI^nB0@tW@ojKuz+v;A_+%B$GW;o~JYs&sM_ z>_Ay_)}1{erW^cj6!|S7To=}7&^hu)wAGHen9OQdy)udrh;FMswO-2L!SAy>n}>7p z(jv||xTr>v2N*a!AZr+#%pli8ti;sn%1Hr%DnPi{G1HoY9v(vs$UZGMP{}TuS?iZw z{#AImQZd8lu%c+~7FvK#mYPVqE<6=@Lq}fiNsi64l7$JF2-Y-)1-LuAfH15lL&*%K}*w4tf$Dr)s7!q;JDg z&@!{~ElX*n^?h9%@u_euaTeF4OR(DxbY+>#mUudk7BwiDmZ$frnMNmOGZ1a;k?8nr z)LG8H8m_}LBBIowDj|oayuv5j*kx9qV%?4+g{Z1Y&Pf^GO+BX^x*Wt2%_qKrcAXr# zE`^k8!IJK^IYyCv%QQ|umB)K<;l>A^|9&(=^KgWQfl5hnUZV(Xl3pR}#v?qna;)&& zPcP_yfkg(E?~%i^}l?%lqM9@f2 zYbXv=rXguqGqVx+jR(&S(-y*|DpyeGvK4*gPVR^9!fnFIJBM0~ZvD0wexrzr{#cd{M$}AEZH`&*g zr8hYYg4C+^$9<{OLP%hu-vVOO93i;k9G$7P)MFY~ydkAR=8E@~3Tkh;SSLCB6l~zO z@cXl8iLW?ww)j?b9akPoKxB+Tdwo z6wS^5a_BX_Th-`EYWVuX>$&3l*>JnHAP!~)lry##A>kIvT+j$d5A{|D>DGP5)nGY- zWsKpr5>Fcpn=u7oiL}S|W01}!2N^*U*^Gll*QR#NgUzr{5~S8opVo>HW*^zK;<>(R zne9K0Fi(a@Cx&$uo~=CXORZ!EPvUZz5|is6^I|HU9M}kb2Rdo;99))1gJ!FqHnzQW z_?NIig^Yx~yEjsZ?f2CNXVHwXw(_W7}AFU&R?(1?zHG8h|pE>Hih=3Nbc(ZU0`GW#!=*ObVy(ZJ<|9|!_= zjwu;qD^!9zmwWP>|8uXuMDa?qCVHST5Rl5gSy&{4G)3Y z#M^xXLEtD`pBQ9fBjLue7Uy?!R-B6Xu>BvyFD`Ma45zMAK7)?h;IXH^;)!=C67`NR z4P?GfMHU-V_Qd(9uDVeaCDbYDYuj6shz-txE=rlpee9gHk*16yFgEr#xM#VSF z<=DF^)id6T-oGJy|Hk6DtM$uqs?|GN+xn-@JA%$6!WVNI}G zQAMz9lOuxGwSMNy2co*g&t6}8;2{NLI;^JpsHc8_mD#@b{`#vLMLs1Oxtho20|JY`JAZ4Q~j zrcEK0WJ*M_4cicf5Mqal287I^h)AS}bKTzGIq!PcI%l18*7^5XwOZ94p69uz>%Q*q z_j74yzQp+`@I>v}=hw9Q+0HrWR9xs`3#KO1KOOs_I~IEdt*Ugk`z^26>%G6XYNVH- zx7Oy&btz>~XIb;})RX+uLu*GwUg*jgcV>kX=ksHli^H1p0yJvJiG$TlF?pWNV6yu) z07pxeQ{JU2UkQ76bs_y)U<1B(mm_Mz9v0`LZ_Q-Ry$6Xd&-vgiwl@`Qn+@LXu=xH$^(^c z1$OMc_G966+9`1{3ZK-UCiUZV`wXU{2=gY4G%s@VJ)eA2=E5tNMhwxGpP4^;UbQR# zVEQZNqbtltt$8u0$1H^1)dgh7}^wqNaQ76b$i_hF5|co@jln07j2%I z=k3`qbL=F3)jTQ8;45{6F1;D6y{+)8cTv>Ez$Y3x+Vh`xw|897F)?RqiW_70k-n{3 zX>NoqH^;u2V$FTEo9-lS(~3mYoFU!7{hB2{0=?m&+E;UW$GPRI^{~J2w?XxVcWUj_ zls7AWtkHJ?n+4AI^RP#PX`>%Ti8}tViXuw{V?3LP`sobo+Hy9@uO4jg9VT_@dTj$Iz z$DDPIbTPuV-?YGIM3IQw+^*t_#S+ZjHTwkFJ+96~mziKz?CYFyWLef0Jbv<1HN~7e zzC`?kMTv6GBy|5Y>kCixxk-^@`LCsEedN+kD5uk7@e*05is`jO`S7RRG3DmGFv46s zI|XF3xEZf(b4j{_^?aQxb{9WL;&cFWbk;yr_lN3_!H*7!bf>!~zc_X+dWF$~Qs$B2 zPG;`c#iU)1xH;@J7;QA+z$=dPZK0$vel)%MhqZNp>7r%@vz!NX8iE;PUVfzVTbjJs zTk4rslDOU*Rx-jjcia=G5#GZ*EmSCWSJO|6PiFB@^TYr<{~O|&Kz`-?W43GrS6WNU z0Lqo$p(K*D9P2Lj8WY`4;zzL4!Z%;*-RfNC zyzqv@U~lhke2@o!laUqns|tN&kgD7aXPE6HpSO17??QV9bE4RkKFI1C|6DcF$A3y0 zne9<2;SRCL{=gfb1(VhE_*0#);#fGEr#snlx?|JZPugBFJ--EQP(TS{zk4;`~=?knuBS2*|<}%V&xnqOPcCz9f0G1 zH3Iw!=NP6h@w*0QbCW-QcYZ^veM|I7iL(pgYzoq~VZyy-KRYNqpqbarVQ@dpnAvk8 z%4I$-C)js8?!qhslOwX0wEk zno=9*KAJx!2!QYU=%dGv5o7iV05lij@1NU3k$Mzz2auM20~>y+(kHZlGb$wjVcZYP zNavplq`z}Y&Hx6YcLeI3pqDKFk>+fFT&}~fAw~O7c?r$#2IU&2k{6$q>hP0@!nfu! zdP*|hG2(NvdKRRct|V>jfYy#S$C~B1!TXE}ZtW(~1_Ctxi5N@$6T-ba4h0HJDg0Wa zv-~dQDpBPA#J=}r$z*^L7daRTRc;k*g}lMeFaCTZ>r+bdUc*P9f;ryB(=!H3i%{vf zWJXkk43g2KC|3^jR&t^tVhMm@z_5`(ARGvKiU329r-_>J z3DatShVLME&|!N?<0-*_)jltRJ8{p(FY|$Sc+I2g+t#P?T2kGDTKB?OyM37}nlK9e z!~?8aQS!gEvUIqVvxJJ=X_%&^KGlZXTU6Ps1u~4sR-EtT9_oWyTcVmtf(cMMZp<%x zjej`or_GO_KOG_Ap$tc3G#G^OMlZ3b@yGg$=E2*H|wQ79V$%^t3S!! zPlth%{*6s=N3+Wju|TGnWOi4lQw+P4H8k%$I+}O0cT=!q>4wd>WfeDG*eYW#gCie< z;fVYAkX=ttZ|2S!2_hgQ0L5SuI09%GyY~f#=z@KKzc3D&XL@SHzn)6T-1uwbyNOOQ z49Z{a-~I~F{}2}HRm@#i$XS~=nCwF>GITG9oske+E?e)2j|L!C=<~F5%B+iX-I5!Ahi}Z@({7+ zHNIj88de<;loYc-jaa9m(t}VWG)8E1l?olB6`-isfKmaT{4@365H}qNRXK1bhO$~f zMp~G)-Q)xL`^+7vHfj$w3sJrWN(Gd=_3TH=cwiSlN$Sdc1m;rGy6KFd!@+#U)(Wxy zOp+#6dk4j=_>qA`&-mCNjqr8pr{~z3WlCz6NY$TShplEtMXtwVo75$E5)ZlxXS~h| zaaP7kfqk6G&t7j*RkRShr|65ZPntg_EviZ zZZqvJiZ4G^^}$C%G1jhMv8%(fb-=DzHTHo6e}b}GA0vZC&645o=&Fc5hOq*17k4YM z*rMjhGrA3#={=1C`?`B#5)*gW@G9;lBK<(Q>pO9TLcVjz^~RSEK}UCB5P53rY@V_) zL(!#fOer;<03!#SzUxup%y>ISntH|uHN8%uC9V7!e+dTNYR8od+8B=u$^mSSugY&- zRt-&T@;=nJr})Jbfv0@}f?|&BsYEH3=8h!=t1EZr*qz3K?A(HwTs-H3Xy)eT5FY6| zOGC$7m(3prn?wM8aDj=3+7Pw|l5Pc5g&P4+Fr$s&HYl@iVF(>#v3*uxcz22~?Pvj}7=;bbfb3KyW-oKQhq2tJVV@}?JN>p`08Me>%N%Y7xyxicx? zSigSVP-V3x>nEwUj**1eENWAdBWqJ+0Du@jBas zjV&yG^)o#$KfnL`+t(Xy=fnI5uSs=tE7-C-hNE0Dg?mpMndZ=~kyB8}!t~~(|IHcENS+r4iAD$7^i-Yd zUb+tM1#`3IuRt8m3=I-;WQ7I3%E)quQzlR+RIpcAkqf+NmP3lhyuyw604MF4RAHSB$KO4}^K`>M%U{OO1EZ;unMUU%-2 zb45?xq|$9?D}rELs$x=CYk&R3Bg5z9jye1h3#@at9Q)R5dZOSp&gh!^YoEWpZmmqy zb%?PpY!0?sd}uddDD#HlktI``VkED+y~OP*1724vkw;Wh!FNFd?8$WK6(tI$2izrp zq1Nc zTr->)#$cZt3zQZ7d(zjaY(?wa3ZmSV8FiwOn9DERyj!%zE<1HMCMcZs z*ewoCZ(Q@o;Xo<*eYr^W{8PMEeyb0-{7w8t*dt_rr zYp?6DafY{TUnp4`o4r}4*`xB3!^-w`X0%SM9- zk2jG?dx7I$@OpSHZ?tsJEh>=o;peb4x)>bJ%^ZCl9{;`!T@Q&=VDCdK0RL}Nh1U?~ zT=2SojX3(?zk62!`TSX0S0UN7TXlEGkk<_a7binPR8e5%PO0bq_H-$c@Uq;ITISTw zfhsn`xeGeGDhvN}Y3L4^oAOVmIzWVj;s!XVS*#oRqrVmFg0Zr;6U>Pdb1{3h{&9iQ zAZlPkm?fa+z3J<_;;)hb)epwtV0PvXpcWDG2$elv_y%$iF#XY^D!Q-$oDir40uVY@ ztFNy|phq+(B8Kw|Cxu$76^N6-w^eYiVY$RBWv)gMhqeoNyc4o;)lv{l>YCs&KB&Xn zJbnD<5zI3nDtf=uQ?dtj6y~zpTBTY`QpCC=D(ST4t%YUx=;HHTtL+BiQDE`n#4Nl# z*mdvW!|hd%ormEf9-_Y>S#2Oogjfgi9~ zQBA^v5$itIP_P7ph+}Zh3Oa|GL?!2!ysWIO1-7zKtpRFuXaUp>0Y*)VOvj!@ZVQ65 z_N$k+ENal9$Y(+J0}2b%9qSPdLUko2Y~U=boi(MLO8_fd*Z1(#x22n))I-cxtovtY z_`)`{w4xFfuqL5^2GxN;NW4Lu6A`vTv~W0RT6|{nII><}yf|JvTWVC)`blkTaOw3w z`sI0|p}r^j!2@xKBkzfN(zaolpH=UF>i^}e$MDnLgO9zaV2FM{YXFCZV6)^wuoPd{6-UG{n}AhNg*<_pCwf9lQ7i{An5RcS^Rn=&w9 z6wPC7$yN}wySTZLKObQfDMQ}`9Sw0s!AF}{cPvE*T1|xay+JE;jK&M+O3XiX89RYc zioyI%wW9_$uGze!4#NpA2Ce4d$Hm^-p^0H;QVdhMU-x+3T=n1r7)i$g1E?MnQa3QM zCy9y_b`WlXc4trEPykPQMh2=ZgNDiG!p_ahAWAbA2mvwVRty8`AbE%9j30xivy^9x zE8i=|3#eX1iYbH)1z8^wnxSC?T2F9Shqm60sGo4-*l~2_gCm4*9O>!lh^e|$n;oLMDhB-NP`fiB6z&r4FqHQBG6eEt@cEKPFI>?uK{4qB% z_`g&aaME6Pe}~ZOa$uI%O;eyB*;sju&aBseJXDie^CO5tbdt1maJCC76kGu~-FP`w zu;mnw4H4}Lcuy9Hum_b&>yrQ zFaVs{{kIQK=CyQ`B_RDCa+)`6EK^{5di@Lti(wErae9<%Y zD6B2H1AtAN=(OEX*!UT-$%Ehlpy5E1*82Li8kNYj%j4S~KnPx1b{njJ-5wD-2VWd= zej$Lu+Axn_j?5rnVI?wbap?MQmMnSJ)NaS5W3gz939<{g+-H<J>GDbePfkaf= zrj`@T{2K1=Qd3>oNh5#e18e24>=bGPIR$$X6@Ha_k7Q5c+vyScsYZeHo zL3E&cqdkxC5;hldAuAprq@6gJ{fiZq|F+BssYUuT5F@#Gc~PN(e4r}Acvj%>n}o61 z`NqEm+B0pee-kBGmM=C;O(M-2Xs)3SoppU8kYBf?-3%w0f@BYAU)y%S@14!@N>fYH=c7vaQ_gC zF)gfcH9?R7YXy8~>u`NYE6m4YZAn71u*^P4L=Oc@v|Y{q^YsFHOzbF}cmh-KDNzn~ zNGI@UEF6}-lBF6LAGd2?Jov8TAf-^)w^X$cCqlI2J&+90#>(;AR)jY;KT)P)9QHkh z-MdX>9eH0nSLPNKoknu;nE((_axMm0gZ61X0jog*rYT8V6bFjjEl6)NBSSRO?rJcK z42Q3I(x}5KRpbZ)IuQ(Mb2VubtMN%ASdNzyc)rOhQxDbt6p~sU9K5~HFp4~fz9~Mw z_(VDQd!CB(P;CG(L9CoAEre|2zN-M{6(bCcQ*k1UJ$(>ojsqxU+Wi~@up_u0W{1~) zo}JwVMOaK*LWbx)rc zAT+e|&(_K#@Tp1wS;ZNQ=CEZ&$$%bt9&2wJxGcg;Xwf%AL(shI-#e4FMa$g#4g|b} z4+vnHg$f;$tH7*X1P}Y#Che_unB_5c&q?f<)!NjP|AO~jJS-bMNT_2ovkBlrd6J>! z(78D6COK=`%_X(XXkGDW5dMBH6$1D;2u}C=n^v6+PAERt_#cslW#aB*m;9R+;m%9; zIEH2dL=!@ePWg_$s^8xviO*o4>jSmZP-#8%?Qdalb@%qhf`-Y8P(zQ_@mrEctLdrc zfE)(&Yyw20Tp!!|?vgk^Ce{#XBQMXpi{P6AoL+a%Uf|!m=Npw*{%B#o>E^N2e}N5$ z4*gLI{_ga3sE$V~k-rIu;XWwTgGA`eTC}x(FT3H1;$~(J{to z&^NvkQt>YsRf^dEzNd%&UKw9**q?s}6P@xXm~2{%*jyW#ZQ~W1UKneE7P{@YLqLV@ zUK!b#1qH0o-6w$4-L@5|{HjgW2ULLT!>m|TTnPG)^4izR#n1PXz8{v&L77bmPoSzN z1B7hw3;I&5(E8|h&_q2jF>6@CCtR_Af*=Y|-7pdc_0Te;-B2_m1uftR7;p$f-`0n> zJ8{4r8re4fUrD>2!k+&m?QY7d$3a8{VgFI+a;uZF5pgg{e<4iIo;$9=2$O8Xl$d|J zSgPGfL)eG9K+2`GBYxt9r;D2C=|?PVk9Y>n=i8xVMk$v#U33g$>hZb9Bita9<0&aA z8Ha_F@}tls2G+}X;MpLi4I>80wYfu9z8a?94H=Ex4t@n5FtP4Ne5~^aiFocOy1}0f%hpcUtgItL=IW46bpg1;q||8DrV(@ZW_hv6Q+^Sh>X@lsy3T z5QR~(AfIpbKjZD>BtXo#pE&A%PJf_B6#g{8AAzv)M_VO=6n*w&oa=f@Y3A7ve!ONKZmj4PgV9ACz@9{#X+)?=t3ZHLr7f( z8-tzxj%Wck`v{q;-1>SOIDEJYah@S)RLzy99yk6ec``#T!u$DEqBo)sAO!CfAqD{y z_4(#n#HIl#!{7Auhyh2YA>C?Td*#wLEF{+Rwr*_$a%skYB1YdE8E~aq`^NDRW6%w? z$-RV@BVuvFbdMj4pkScw`Q86w$B8zyTkAZ8y70nSFxsIlDce;zA%Gt~ZnO>ld&^2z z1)wWl7^^OfeFjXOc$Ho_AbIaNH&oY`y0jM}ZtO9O^RAKmHbk!!aP@;hfz-P1vK$_#Au^1ji z3qqgx#^rra`Q1x1l9|38lB>|jX1aHe?v{~}L2`WW^;I8)X1b&7gF}2Bc)ycE8ppA{ zkTFmk)5*rLC#RrYGOXZRIli#9l`*&?MYQ2Fp#FxhU5pl5$H3+m@qdv?V(hf-Zw~z< zlbl<@R>bDdhzWy@PX^vFgQA$MqS1f|_soIrxeB~L5O!>Zyr6)N0ktl5sT|BO$Y!Lr z-l9f_v4*Y1)^-*eo(@iMP@M?GT7jiI4ISj103;iUJPdm4k^69fg1A86!hfoEQK2%f zA-D#RSp&74l~u-kEfiGc3TS{Vhbrvp3&?XIw?-spbcBS&z9!!{UA zl2_eQg>ksEbaW$nq=MJFnab=)q6u(p362A&*fIQ%n1^S>D{|7nWn|39F>{{NrB|NI#gZwjT;Rp^&yHk)AJ=dV-x K_)-nKsDA?*S9?|f literal 0 HcmV?d00001 diff --git a/docs/images/specfem2d_example_files/specfem2d_example_43_1.png b/docs/images/specfem2d_example_files/specfem2d_example_50_1.png similarity index 100% rename from docs/images/specfem2d_example_files/specfem2d_example_43_1.png rename to docs/images/specfem2d_example_files/specfem2d_example_50_1.png diff --git a/docs/images/specfem2d_example_files/specfem2d_example_55_0.png b/docs/images/specfem2d_example_files/specfem2d_example_62_0.png similarity index 100% rename from docs/images/specfem2d_example_files/specfem2d_example_55_0.png rename to docs/images/specfem2d_example_files/specfem2d_example_62_0.png diff --git a/docs/images/specfem2d_example_files/specfem2d_example_56_0.png b/docs/images/specfem2d_example_files/specfem2d_example_63_0.png similarity index 100% rename from docs/images/specfem2d_example_files/specfem2d_example_56_0.png rename to docs/images/specfem2d_example_files/specfem2d_example_63_0.png diff --git a/docs/notebooks/specfem2d_example.ipynb b/docs/notebooks/specfem2d_example.ipynb index f56bb226..6e72c9fd 100644 --- a/docs/notebooks/specfem2d_example.ipynb +++ b/docs/notebooks/specfem2d_example.ipynb @@ -4,11 +4,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Specfem2D Workstation Example\n", + "# Specfem2D Workstation Examples\n", "\n", - "SeisFlows comes with some __Specfem2D synthetic examples__ to showcase the package. These examples are meant to be run on a __local machine__ (tested on a Linux workstation running CentOS 7, and an Apple Laptop running macOS 10.14.6).\n", + "SeisFlows comes with some __Specfem2D synthetic examples__ to showcase the software in action. These examples are meant to be run on a __local machine__ (tested on a Linux workstation running CentOS 7, and an Apple Laptop running macOS 10.14.6).\n", "\n", - "The numerical solver we will use is: [SPECFEM2D](https://geodynamics.org/cig/software/specfem2d/). We'll also be working in our `seisflows` [Conda](https://docs.conda.io/en/latest/) environment, see the installation documentation page for instructions on how to install and activate the required Conda environment. \n", + "The numerical solver we will use is: [SPECFEM2D](https://geodynamics.org/cig/software/specfem2d/). We'll also be working in our `seisflows` [Conda](https://docs.conda.io/en/latest/) environment, see the installation section on the home page for instructions on how to install and activate the required Conda environment. \n", "\n", "-----------------------------------" ] @@ -34,12 +34,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Example \\#1: Simple, default inversion\n", - "Example \\#1 runs a 1-iteration synthetic inversion with 1 event and 1 station, used to illustrate misfit kernels in adjoint tomography.\n", + "## Example \\#1: Homogenous Halfspace Inversion\n", + "Example \\#1 runs a 1-iteration synthetic inversion with 1 event and 1 station, used to illustrate misfit kernels and updated models in adjoint tomography.\n", "\n", - "The starting model (MODEL_INIT) and target model (MODEL_TRUE) are used to generate synthetics and data, respectively. Both models are homogeneous halfspace models with slightly varying P- and S-wave velocity values. Only Vp and Vs are updated during the example.\n", + "The starting/initial model (*MODEL_INIT*) and target/true model (*MODEL_TRUE*) are used to generate synthetics and (synthetic) data, respectively. Both models are homogeneous halfspace models defined by velocity (Vp, Vs) and density ($\\rho$) with slightly varying P- and S-wave velocity values (**INIT**: $V_p$=5.8km/s, $V_s$=3.5km/s; **TRUE**: $V_p$=5.9km/s, $V_s$=3.55km/s). Only Vp and Vs are updated during the example.\n", "\n", - "Misfit during Example \\#1 is defined by a 'traveltime' misfit using the default preprocessing module. It also uses a gradient-descent optimization algorithm paired with a bracketing line search. No smoothing/regularization is applied to the gradient." + "Misfit during Example \\#1 is defined by a 'traveltime' misfit using the `Default` preprocessing module. It also uses a `gradient-descent` optimization algorithm paired with a bracketing line search. No smoothing/regularization is applied to the gradient." ] }, { @@ -220,11 +220,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Plotting results (only available w/ SPECFEM2D)\n", + "### Plotting results\n", "\n", - "We can plot the model and gradient files created during our workflow using the `seisflows plot2d` command. The `--savefig` flag allows us to save output .png files to disk. The following figure shows the starting/initial homogeneous halfspace model in Vs.\n", + "We can plot the model and gradient files created during our workflow using the `seisflows plot2d` command. The `--savefig` flag allows us to save output .png files to disk. The following figure shows the starting/initial homogeneous halfspace model in Vs." + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " Models and gradients can only be plotted when using `SPECFEM2D` as the chosen solver. Other solvers (e.g., SPECFEM3D and 3D_GLOBE) require external software (e.g., ParaView) to visualize volumetric quantities like models and gradients.\n", "\n", - ">__NOTE:__ Because this docs page was made in a Jupyter Notebook, we need to use the IPython Image class to open the resulting .png file from inside the notebook. Users following along will need to open the figure using the GUI or command line tool." + ".. note::\n", + " Because this docs page was made in a Jupyter Notebook, we need to use the IPython Image class to open the resulting .png file from inside the notebook. Users following along will need to open the figure using the GUI or command line tool." ] }, { @@ -361,11 +370,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Example \\#2: Checkerboard inversion using Pyaflowa \\& L-BFGS \n", + "## Example \\#2: Checkerboard Inversion (w/ Pyaflowa \\& L-BFGS)\n", "\n", - "Building on the foundation of the previous example, Example \\#2 runs a 2 iteration inversion with misfit quantification taken care of by the `Pyaflowa` preprocessing module, which uses the misfit quantification package [Pyatoa](https://github.com/adjtomo/pyatoa) under the hood. Model updates are performed using an [`L-BFGS` nonlinear optimization algorithm](https://en.wikipedia.org/wiki/Limited-memory_BFGS). Example \\#2 also includes smoothing/regularization of the gradient. This example more closely mimics a research-grade inversion problem.\n", + "Building on the foundation of the previous example, Example \\#2 runs a 2 iteration inversion with misfit quantification taken care of by the `Pyaflowa` preprocessing module, which uses the misfit quantification package [Pyatoa](https://github.com/adjtomo/pyatoa) under the hood. \n", "\n", - ">__NOTE:__ This example is computationally more intense than the default version of Example \\#1 as it uses multiple events and stations, and runs multiple iterations. " + "Model updates are performed using an [L-BFGS nonlinear optimization algorithm](https://en.wikipedia.org/wiki/Limited-memory_BFGS). Example \\#2 also includes smoothing/regularization of the gradient. This example more closely mimics a research-grade inversion problem." + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " This example is computationally more intense than the default version of Example \\#1 as it uses multiple events and stations, and runs multiple iterations. " ] }, { @@ -450,15 +467,6 @@ "\n", ".. code:: bash\n", "\n", - "\n", - " 2022-08-29 18:08:13 (I) | \n", - " FINALIZING LINE SEARCH\n", - " --------------------------------------------------------------------------------\n", - " 2022-08-29 18:08:13 (I) | writing optimization stats\n", - " 2022-08-29 18:08:13 (I) | renaming current (new) optimization vectors as previous model (old)\n", - " 2022-08-29 18:08:13 (I) | setting accepted trial model (try) as current model (new)\n", - " 2022-08-29 18:08:13 (I) | misfit of accepted trial model is f=4.727E-03\n", - " 2022-08-29 18:08:13 (I) | resetting line search step count to 0\n", " 2022-08-29 18:08:13 (I) | \n", " CLEANING WORKDIR FOR NEXT ITERATION\n", " --------------------------------------------------------------------------------\n", @@ -485,7 +493,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -512,7 +520,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -536,6 +544,41 @@ "! seisflows plot2d" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, running `plot2d` with 1 argument will help determine what quantities are available to plot" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Traceback (most recent call last):\r\n", + " File \"/home/bchow/miniconda3/envs/docs/bin/seisflows\", line 33, in \r\n", + " sys.exit(load_entry_point('seisflows', 'console_scripts', 'seisflows')())\r\n", + " File \"/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py\", line 1383, in main\r\n", + " sf()\r\n", + " File \"/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py\", line 438, in __call__\r\n", + " getattr(self, self._args.command)(**vars(self._args))\r\n", + " File \"/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py\", line 1106, in plot2d\r\n", + " save=savefig)\r\n", + " File \"/home/bchow/REPOSITORIES/seisflows/seisflows/tools/specfem.py\", line 428, in plot2d\r\n", + " f\"chosen `parameter` must be in {self._parameters}\"\r\n", + "AssertionError: chosen `parameter` must be in ['vp', 'vs']\r\n" + ] + } + ], + "source": [ + "! seisflows plot2d MODEL_TRUE" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -584,12 +627,12 @@ "\n", "We can look at the gradients created during the adjoint simulations to get an idea of how our inversion wanted to update the model. Gradients tell us how to perturb our starting model (the homogeneous halfspace) to best fit the data that was generated by our target model (the checkerboard).\n", "\n", - "We can see that our gradient (Vs kernel) is characterized by large red and blue blobs. The blue colors in the kernel tell us that the initial model is too fast, while red colors tell us that the initial model is too slow (that is, **red==too slow** and **blue==too fast**). This makes sense if we look at the checkerboard target model above, where the perturbation is slow (red color) the corresponding kernel tells us the initial model is too fast (blue color)." + "We can see that our gradient (Vs kernel) is characterized by large red and blue blobs. The blue colors in the kernel tell us that the initial model is too fast, while red colors tell us that the initial model is too slow (that is, **red==too slow** and **blue==too fast**). This makes sense if we look at the checkerboard target model above, where the perturbation is slow (red color) the corresponding kernel tells us the initial (homogeneous halfspace) model is too fast (blue color)." ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -601,12 +644,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1dfHv5se0kMkBelIk2poQar0KoKClNARkCKgohQV9YegIIICokiT6otIUSDSg0ioAgKiiIK0AIIkIZiQhJz3jzjLzu7M7MzubEvO53nm2d07Z+69c3fKd86ce6+BiAgMwzAMwzAMUwTxcnUFGIZhGIZhGMZVsBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmGIZhGIZhiiwshhmGYRiGYZgiC4thhmEYhmEYpsjCYphhGIZhGIYpsrAYZhiGYRiGYYosLIYZhmEYhmGYIguLYYZhGIZhGKbIwmKYYRiGYRiGKbKwGGYYhmEYhmGKLCyGGYZhGIZhmCILi2GGYRiGYRimyMJimGEYhmEYhimysBhmRDzzzDMIDAxEWlqarE2fPn3g6+uLGzdu6FZu2bJl0alTJ4v0L774At7e3ujSpQuys7N1K09P9u7dC4PBgL179zq13LJly2LAgAFOLVMvPvnkE1SpUgX+/v4oV64c3n77beTm5qraNjc3F2+//TbKli0Lf39/VKlSBZ988omk7Z9//olu3bohPDwcwcHBaN26NX766SeRTWpqKqZMmYKEhARERUUhNDQU8fHx+Pzzz/HgwQOLPA8fPoy2bdsiJCQEwcHBaNGiBX788UcLO4PBILtUqVLFpjb55ptv0KtXL1SsWBGBgYEoW7Ys+vTpg99//90iv+bNm0uW3a5dO8m2On36NJ577jk88sgj8Pf3R9myZfHiiy9a2K1fvx5PPvkkIiMjER4ejvr162PFihWSeQrcuHEDxYsXh8FgwNdffy1at3v3bgwaNAhVqlRBUFAQSpYsiaeffhrHjh2TzCs3NxezZ89GjRo1EBgYiPDwcDRq1AgHDhww2ixbtkyx/WfMmGFTm96/fx8zZ85E9erVERQUhOjoaLRv315UNgAcO3YMI0eORI0aNRASEoLo6Gi0atUKu3fvtshz6tSpknUMCAhQbFOGYXSEGMaEb7/9lgDQ/PnzJdenpaVRYGAgde3aVddyy5QpQx07dhSlffDBBwSAEhMTKTc3V9fy9GTPnj0EgPbs2ePUcn/66Sc6f/68U8vUg//9739kMBho4sSJtGfPHvrggw/Iz8+Phg4dqmr7IUOGkL+/P33wwQe0Z88eev3118lgMNC0adNEdjdv3qS4uDh6/PHHaf369bRlyxZq3LgxhYSE0K+//mq0+/bbb6lUqVI0efJk2rJlC23fvp3GjRtHXl5eNHDgQFGehw8fJn9/f2rSpAlt2LCBvvnmG2rYsCH5+/vTgQMHRLYpKSkWy5w5cwgAvf766za1Sf369alLly60ZMkS2rt3L61YsYKqVq1KwcHBdPr0aZFts2bNqHz58hZ1OHv2rEWb7t69mwIDA6lNmzb09ddf0969e+nLL7+kcePGiewWL15MAKh79+60detW2rZtGz3//PMEgGbPni37n3Xv3p3i4uIIAK1bt0607tlnn6UWLVrQggULaO/evbRu3Tpq2LAh+fj40K5du0S2eXl51LFjRwoLC6Np06bRnj176LvvvqO3336btm/fbrS7efOmZPu3bt2aAIj+fy1tmpiYSF5eXjR58mTatWsXrVu3juLj48nHx4cOHTpktHv55Zepbt26NHv2bNq1axdt3ryZOnToQABo+fLlojzfeustAkBJSUmiuprmxzCMY2ExzIjIy8ujuLg4io+Pl1z/6aefEgD69ttvdS3XXAxPnDiRANDo0aMpPz9flzLu3bunSz7muEoMeyK3bt2igIAAeuGFF0Tp06ZNI4PBQGfOnFHc/vTp02QwGOi9994TpQ8dOpQCAwPp9u3bxrRXX32VfH196eLFi8a09PR0ioqKoh49ehjT/vnnH8rJybEoa+TIkQSALl26ZExr27YtRUdHi46ljIwMioqKokaNGlnZe6IBAwaQwWCg33//3ZimpU1u3LhhkefVq1fJ19eXBg8eLEpv1qwZPf7441brdO/ePYqNjaWOHTtaPdeefPJJKlOmDD148MCYlp+fT1WqVKGaNWtKbvP1119TcHAwLV++XFIMS+3T3bt3KTo6mlq2bClK/+ijj8jLy4tSUlKs7pc5mZmZFBwcTI0bN7ZavlSbZmdnk7e3N/Xt21dke+3aNQJAY8aMUcwzLy+PatasSRUqVBClC2L477//1rxPDMPoA4dJMCK8vb3Rv39/HDt2DKdOnbJYv3TpUsTGxqJ9+/bGtE8//RS1atVCcHAwQkJCUKVKFUyaNMmm8vPz8zFixAhMnz4db775Jj7++GMYDAbjeiLCggULULt2bQQGBiIiIgLPPvss/vzzT1E+zZs3R/Xq1bFv3z40atQIxYoVw6BBg3Dx4kUYDAbMmjULs2fPRrly5RAcHIyEhAQcPHjQoj5Hjx5Fly5dEBkZiYCAANSpUwf/93//Z9O+mSKEVqxevRqvvfYaYmNjERwcjM6dO+PGjRu4e/cuXnjhBURFRSEqKgoDBw5EZmamKA/zMAkhzzVr1mDy5MmIi4tDaGgoWrVqhd9++83uOutBUlISsrOzMXDgQFH6wIEDQUTYuHGj4vYbN24EEUlun5WVhaSkJGPahg0b8NRTT6FMmTLGtNDQUHTr1g3ffvst8vLyAAARERHw9fW1KKt+/foAgCtXrhjTfvzxRzRv3hzFihUzpoWEhKBp06Y4cOAAUlNTZet+9+5drFu3Ds2aNUPFihWN6VrapESJEhb5xsXF4dFHH8Xly5dly1Zi3bp1SE1Nxauvvio616Tw9fVFcHAwvLwe3joMBgNCQ0MlX+v/888/GDlyJKZNm4bSpUtL5im1T8HBwahWrZrFPs2dOxdNmzZFw4YN1eyaiK+++gqZmZkYMmSI1fKl2tTLywteXl4ICwsT2YaGhsLLy0u0/1J5ent7Iz4+3ub/iWEYx8FimLFg0KBBMBgMWLJkiSj9l19+weHDh9G/f394e3sDANauXYsXX3wRzZo1w4YNG7Bx40aMGzcO9+7d01xubm4u+vTpg88++wxz587F22+/bWEzbNgwjB07Fq1atcLGjRuxYMECnDlzBo0aNbKIYU5NTUXfvn3Ru3dvbN26VRT/OH/+fOzYsQNz5szBqlWrcO/ePXTo0AHp6elGmz179uDJJ59EWloaFi5ciE2bNqF27dro2bMnli1bpnn/pJg0aRJu3ryJZcuW4cMPP8TevXvRq1cvdO/eHWFhYVizZg0mTJiAFStWqH7AmDRpEv766y988cUX+Pzzz/H777+jc+fOkvGvphAR8vLyVC22cvr0aQBAjRo1ROmxsbGIiooyrlfa/pFHHkFMTIwovWbNmqL8s7Ky8McffxjTzW2zsrIsHqDM2b17N3x8fFCpUiVjWk5ODvz9/S1shTSpB0iBtWvX4t69exZizN42+fPPP/HXX3/h8ccft1j3xx9/IDIyEj4+PqhQoQImT56MrKwskc2+ffsAAA8ePEDjxo3h5+eHiIgI9OrVC9euXRPZjh49GmfPnsW0adPw999/49atW5g1axaOHTuGV155xaL8MWPGoFy5chg1apTiPpiTnp6On376SbRPly9fxsWLF1GjRg1MmjQJ0dHR8PHxweOPP47ly5dbzXPx4sUIDQ3Fc889Z9VWqk19fX3x4osvYvny5di4cSMyMjJw8eJFDB06FGFhYRg6dKhinnl5efjhhx8k/yeg4P/39vZGdHQ0+vXrh0uXLlnYDBgwAAaDARcvXrS6DwzDaMClfmnGbWnWrBlFRUWJXh+//PLLBIDOnTtnTBs1ahSFh4fbXV6ZMmUIAAGgSZMmSdqkpKQQAPrwww9F6ZcvX6bAwECaMGGCqP4ALGIOL1y4QACoRo0alJeXZ0w/fPgwAaA1a9YY06pUqUJ16tSxiFfu1KkTxcbGGl8V2xImIWzTuXNnUfrYsWMtXrkSEXXt2pUiIyNFaWXKlKH+/ftb5NmhQweR3f/93/8RAKuvloXt1SwXLlxQva+mDB06lPz9/SXXVapUidq0aaO4fevWraly5cqS6/z8/IyhBlevXiUANH36dAu71atXEwCLGF9Tvv/+e/Ly8rKIma1duzZVqlRJFCaQm5tL5cuXJwC0evVq2TwbNGhA4eHhlJWVJUq3p01yc3OpefPmFBoaKgrnICKaPHkyLViwgHbv3k1btmyhUaNGkY+PDzVt2lRU/7Zt2xIACg8PpwkTJtDu3btp4cKFVLx4capYsaJFeNHGjRspLCzMeCwEBgbSypUrLer23Xffka+vL506dYqIHh5f5mESUvTp04d8fHzo6NGjxjTh/A8NDaVq1arR//3f/9H3339Pzz77LAGgzz//XDa/s2fPEgAaNmyY1bKV2jQ/P5/efPNN8vLyMu5/6dKl6fjx41bznTx5MgGgjRs3itK//PJLmjZtGm3dupV2795NM2bMoMjISIqOjqYrV66IbAcNGkTe3t6i0B+GYeyHxTAjyZdffkkA6OuvvyaightEdHQ0NWnSRNLu+eefp40bN9oc91amTBmqXbs2lS5dmkJDQyWF2+TJk8lgMNCNGzcoNzdXtDRs2JDq169vtG3WrBlFRERY5CGIYfMOTNnZ2QSAZsyYQUREv//+OwGgWbNmWZS1YMECAkC//PILEdknhj/77DNR+meffUYA6PvvvxelCzHUd+/eFbWZlBheuHChaNtff/2VANDatWsV65SRkUFHjhxRtdy/f18xL/M2E2JRhw4dSgEBAZLbVKpUidq2bauYb+vWralKlSqS6/z8/IxiRxDDwv9piiCG5R4Ojh07RmFhYdSoUSPKzs4WrRM6kI0YMYKuXLlCly5dosGDB5O3t7diG58+fZoA0MiRIy3W2dom+fn51K9fP/L29rYQWHLMmjWLANA333xjTBM6lZkLxY0bNxIAWrRokTFt27ZtFBwcTAMHDqRt27bRjh07aPTo0eTj40NLliwx2qWlpVHJkiVpypQpxjS1YnjKlCkEgD755BNR+o8//kgAyM/PTyQG8/Pz6YknnqBHH31UNs9XXnmFANCRI0cUy7bWpu+++y4VK1aM3nnnHdqzZw9t2rSJWrduTVFRUfTTTz/J5rto0SICQC+//LJi+QKHDh0iLy8vi4dihmEcA4thRpJ///2XwsLCjJ3aNm3aRABo2bJlFrZLliyhhIQE8vb2JoPBQPXr1xf17FaD0IHuzz//pDJlylBoaKiF527IkCGK3sry5csbbZs1a0bVqlWzKEcQwzNnzrRYB4DeeustIiLav3+/Ve/ovn37iMg+MWwuDJYuXSp505bqZCMnhs3zFPZ56dKlinXKz8+3ELFyizXM20oo+/XXXycAkp0Zo6KiqFevXor5Pv/88/TII49YpGdmZhIAmjhxIhEVHL8Gg4FeffVVC9t58+YRAPrtt98s1v30008UGRlJdevWpbS0NMk6zJgxg4KDg437lpCQQK+99hoBoB9++EFym3HjxhEASQ+iLW2Sn59PgwYNIi8vL1qxYoVkmVJcv36dAIjeogijQZgKZCKirKwsMhgMNGLECGOZsbGxFm8eiIj69etHQUFBlJmZSUQFnQ/Lli1L169fpzt37tCdO3eMI9UsX76c7ty5I9lZb+rUqQTAYmQQoocPdVId9YSHRamOazk5OVSiRAmqVauWYttYa9NffvmFDAaDxbUjJyeHKlasSM2bN5fMd8mSJeTl5UUvvPCCps7AVapUET3gMwzjODhmmJEkMDAQvXr1QlJSElJTU7FkyRKEhIRIxtsNHDgQBw4cQHp6OrZs2QIiQqdOnfDXX39pLrdcuXLYu3cvIiMj0bZtW9H4nVFRUTAYDNi/fz+OHDlisZh3vrLWGUiJqKgoAMDEiRMlyzpy5Ahq165tc/7uSHJyMnx9fVUt1mIWzduqc+fOAB7GxZrH1l6/fh23bt1C9erVFfOtUaMG/v77b1y/fl2ULuQnbB8YGIiKFStKxvCeOnUKgYGBKF++vCj9+PHjaNWqFcqUKYPt27dbdJQSeO2113Dr1i2cOnUKFy9exIEDB3Dnzh0EBQUhPj7ewj4nJwcrVqxAfHy85DGjtU2ICEOGDMHSpUvxxRdfoG/fvpL1VMK0A5xUXLWU7Y0bN5CammrsWGhKvXr1cO/ePeNxcfr0aVy8eBExMTGIiIhARESE8Rjo378/IiIiRPH5APD2229j6tSpmDp1qmR8fIUKFUQdF00hIov9Evjuu+9w8+ZNi1ht8+2ttenJkydBRKhXr54o3dfXF7Vq1ZKM7V66dCmGDBmC/v37Y+HChZquSUQkuT8MwzgAVypxxr05cuQIAaBx48aRr6+v6nFghderW7ZsUV2W+dBqFy9epHLlylFISAjt37+fiB56a7/66iur+ckNK6XWM0xE9Nhjj0l6wcwpLJ5hPcMk5Lh9+zYFBATQ8OHDRenTp0/XNLSaefjDsGHDLIZWmzBhAvn5+YniPjMyMuiRRx6hnj17irY/fvw4RUZGUs2aNenWrVua9umvv/6isLAwGjt2rOT6devWEQBasGCB5HotbZKfn0+DBw8mg8GgGCMrx/vvv28Rt3r27FkyGAwW5/c333xDAIxe0uzsbAoICKB27dpZ5Nu7d2/y8vIytv/x48dpz549ouWjjz4iADR16lTas2eP6A3DO++8QwBEYRVS9OrVi3x9fUUx6/n5+VS7dm2LIcsEOnbsSAEBAfTPP/9IrlfbpsnJyZKhN9nZ2VSuXDmqXbu2KH3p0qXk5eVF/fr1E8VoqyElJYW8vLxkjymGYfTFx+nqm/EY6tati5o1a2LOnDkgIgwePNjCZujQoQgMDMSTTz6J2NhYXL9+HdOnT0dYWJiFB0ULZcqUwd69e9GiRQu0a9cOW7duRZMmTfDCCy9g4MCBOHr0KJo2bYqgoCCkpqZi//79qFGjBkaMGGHPLov47LPP0L59e7Rt2xYDBgxAyZIl8c8//+Ds2bP46aefsG7dOt3KcgdCQkJQt25dh5YRGRmJKVOm4I033kBkZCTatGmDI0eOYOrUqRgyZAiqVatmtP3yyy8xaNAgLFmyBP369QMAPP744xg8eDDeeusteHt7o169eti+fTs+//xz/O9//0NkZKRx+1deeQUrVqxAx44d8c4778Df3x8zZsxAdnY2pk6darT77bff0KpVKwDAtGnT8Pvvv4tmH6tQoQIeeeQRAAUez/Xr16Nu3brw9/fHyZMnMWPGDDz22GN49913Jfd58eLFCAwMRO/eve1ukzFjxmDx4sUYNGgQatSoIRoO0N/fH3Xq1AEA/PDDD5g2bRqeeeYZlC9fHtnZ2di2bRs+//xzPPXUU0YvLQBUqVIFI0eOxIIFCxASEoL27dvj3LlzmDJlCurUqYMePXoY83/xxRcxe/Zs9OvXDz179oS3tzc2btyI1atXY/Dgwcb2V3pr8vjjj6N58+bG3x9++CHefPNNtGvXDh07drQY4tB0GLV3330X27ZtQ7t27TB16lSEhobiiy++wMmTJyWHPLx27RqSkpLQs2dPRERESNZHbZs2btwY9erVw9SpU/Hvv/+iadOmSE9PxyeffIILFy6IZuFbt24dBg8ejNq1a2PYsGE4fPiwqMw6deoYRyCpVasW+vbti6pVqyIgIACHDx/GzJkzERMTgwkTJoi2GzBgAJYvX44LFy6gbNmysm3MMIxGXK3GGfdm7ty5BEAy/paIaPny5dSiRQuKjo4mPz8/iouLox49etDPP/+sqRypGeiIiC5dukQVKlSgoKAgSk5OJqKCGLwGDRpQUFAQBQYGUoUKFahfv36inud6eIaJiE6ePEk9evSgEiVKkK+vL8XExNBTTz0l6qRWWDzDzmTu3LlUqVIl8vPzo9KlS9Nbb71lMfGF0Bbm9c7JyaG33nqLSpcuTX5+flSpUiX6+OOPJcs5f/48de3alUJDQ6lYsWLUsmVLOnbsmGQ5cotp+b/99hs1bdqUIiMjyc/PjypWrEhTpkwxxsqac+nSJaN3UI82MR11xXwpU6aM0e7333+nDh06UMmSJcnf358CAgKoRo0aNG3aNItOgUQFE0LMmDGDKlasSL6+vhQbG0sjRoygO3fuiOwePHhAixYtorp161J4eDiFhoZSnTp1aN68eZITl5gid3wKI7/ILeacOnWKOnbsSCEhIRQQEEANGzaUnQRo2rRpBIB2794tWy+1bUpU0DFw8uTJVLVqVSpWrBiVKFGCmjdvTlu3bhXZ9e/fX3GfTD3bzz//PFWsWJGCgoLI19eXypQpQ8OHD6dr165Z1LV79+4UGBho8b8wDGMfBqL/gq0YhmEYhnFbYmJikJiYiJkzZ7q6KgxTqGAxzDAMwzBuzpkzZ5CQkIA///zT2MGXYRh9YDHMOBRrs5UJU5wWFojI6kxv3t7edo10wTAMwzCMfhQeFcK4JdaG6Bo0aJCrq6graoYnUzN1LMMwDMMwzoE9w4xDOXr0qOL6qKioQtUr+u7du/jtt98UbcqVK4fixYs7qUYMwzAMwyjBYphhGIZhGIYpsnCYBGPBM888g8DAQKSlpcna9OnTB76+vrhx44Zu5ZYtWxadOnWySP/iiy/g7e2NLl26IDs7W7fy9GTv3r0wGAzYu3evq6vi9mRmZmLs2LGIi4tDQEAAateujbVr16re/ubNmxgwYACioqJQrFgxJCQkYNeuXZK2O3fuREJCAooVK4aoqCgMGDAAN2/eVMx/586dMBgMMBgMuHXrlsX6P//8E926dUN4eDiCg4PRunVr/PTTT4p53rhxA8WLF4fBYMDXX39tsf7w4cNo27YtQkJCEBwcjBYtWuDHH3+0sBPqJbVUqVLFwv6TTz5BlSpV4O/vj3LlyuHtt99Gbm6uhd3333+PJ598EoGBgQgLC0Pnzp1x5swZ2fZR26anT5/Gc889h0ceeQT+/v4oW7YsXnzxRQs7IsLSpUtRv359BAUFITQ0FE888QQ2bdpktBHOMbll+PDhknUACq4hBoMBwcHBkmUvWrQI8fHxCA0NRfHixdGsWTNs2bJFMq+//voLgwYNQlxcHPz9/VGyZEk888wzIpsrV65g7NixaNasGcLDw2EwGLBs2TLJ/HJycvDmm2+iXLly8PPzQ5kyZTBx4kRkZWXJ7g/DMDrjkgHdGLfm22+/JQA0f/58yfVpaWkUGBhIXbt21bVcqbGGP/jgAwJAiYmJohmr3A1bxhouqrRu3ZrCw8Np4cKFtHv3bhoyZAgBoFWrVlndNjs7m6pXr06PPvoorVy5krZv305PP/00+fj40N69e0W2e/fuJR8fH3r66adp+/bttHLlSipZsiRVr15dcqxdIqK7d+9S2bJlKS4uzmJcZyKimzdvUlxcHD3++OO0fv162rJlCzVu3JhCQkLo119/la139+7djXmaj7N7+PBh8vf3pyZNmtCGDRvom2++oYYNG5K/vz8dOHBAZJuSkmKxzJkzhwDQ66+/LrL93//+RwaDgSZOnEh79uyhDz74gPz8/Cxmmtu4cSMZDAbq2rUrbdmyhVavXk2VK1emiIgIOn/+vM1tunv3bgoMDKQ2bdrQ119/TXv37qUvv/ySxo0bZ9E+w4YNI39/f3r99ddp586dlJSURDNnzqTVq1cbbdLT0yX3v1+/fgSAkpKSJNv+ypUrFBYWRnFxcRQUFGSx/o033iAANHz4cNq+fTtt3ryZWrduTQBo/fr1IttTp05R8eLFqV69erRq1SpKTk6mtWvX0sCBA0V2e/bsoaioKGrVqhX16tVLcZzvbt26UUBAAL333nu0Y8cOeuedd8jPz486d+4sac8wjP6wGGYsyMvLo7i4OIqPj5dc/+mnnxIA2YHubcVcDE+cOJEA0OjRoyk/P1+XMu7du6dLPuawGFbHli1bCIBI5BAVCOS4uDjKy8tT3H7+/PkEQCQSc3NzqVq1alS/fn2Rbb169ahatWqih6gff/xRcWrkkSNHUp06dWjKlCmSYvjVV18lX19funjxojEtPT2doqKiqEePHpJ5fv311xQcHEzLly+XFMNt27al6Oho0bGZkZFBUVFR1KhRI8X2ICIaMGAAGQwG+v33341pt27dooCAAHrhhRdEttOmTbOY4rly5cpUs2ZN0Tl28eJF8vPzo969e4u2V9um9+7do9jYWOrYsaPVc3fDhg2qp1k3Jz8/n8qXL09lypSRnfK4U6dO1LlzZ+rfv7+kGC5ZsiQ1btxYlJaVlUVhYWHUpUsXUVm1a9em2rVryz5MCZjWRZjWXkoMp6SkEAD68MMPRenvvfceAaDt27crlsMwjD6wGGYkEYSo1Exy9evXp9jYWJFwWbBgAdWsWZOCgoIoODiYKleuTBMnTtRUpiCGHzx4QMOHDycA9Oabb1rY5efn0/z586lWrVoUEBBA4eHh1L17d/rjjz9EdsIsdMnJyZSQkECBgYHUs2dP0Sx0H374IZUtW5aCgoKoYcOGlJKSYlHekSNHqHPnzhQREUH+/v5Uu3Ztixu3PbPQrVq1iiZMmEAxMTEUFBREnTp1ouvXr1NGRgYNHTqUihcvTsWLF6cBAwbQ3bt3RXnMmzePmjRpQo888ggVK1aMqlevTu+//75oNrBz585RSEgIPfvss6Jtd+3aRV5eXjRlyhTVdbaXIUOGUHBwsIWXf/Xq1QSAfvzxR8XtW7VqRZUrV7ZIF8TDlStXiKjAGwiApk+fbmFbqVIlat26tUX6vn37yNfXl44dOyY54x8RUcWKFalt27YW277wwgsUGBhosV+3b9+m6Ohomjt3ruwMbMHBwdSzZ0+LPLt160YAJGciE8jIyKCgoCBq3ry5KH3lypUEwOJ4vnbtGgGgadOmEVGBaAZAr732mkXeTzzxBBUrVsx4nmtp02XLlhEAC2+9FM2bN6eyZctatZNi165dBICmTp0quX7FihUUEhJCly9flhXDZcuWlZz9Mjo6WvSAs3fvXgJAy5Yt01RHJTE8a9YsAkBnz54Vpf/8888EgIYNG6apLIZhbINjhhlJBg0aBIPBgCVLlojSf/nlFxw+fBj9+/eHt7c3AGDt2rV48cUX0axZM2zYsAEbN27EuHHjcO/ePc3l5ubmok+fPvjss88wd+5cvP322xY2w4YNw9ixY9GqVSts3LgRCxYswJkzZ9CoUSOLGObU1FT07dsXvXv3xtatW0XxivPnz8eOHTswZ84crFq1Cvfu3UOHDh2Qnp5utNmzZw+efPJJpKWlYeHChdi0aRNq166Nnj17ysYAamXSpEm4efMmli1bhg8//BB79+5Fr1690L17d4SFhWHNmjWYMGECVqxYgUmTJom2/eOPP9C7d2+sWLEC3333HQYPHoyZM2di2LBhRpvHHnsMixYtwtdff42PP/4YAHD9+nX07t0bTZo0wdSpUxXrR0TIy8tTtVjj9OnTqFq1Knx8fETpNWvWNK63tr1gK7W9EOcq5CNna15OVlYWBg8ejLFjx+KJJ56QLDsrKwt//PGHbJ5ZWVn4888/ReljxoxBuXLlMGrUKNl9ysnJgb+/v0W6kHbq1CnZbdeuXYt79+5hyJAhonRh/2rUqCFKj42NRVRUlHF9Tk6OqCzz8v/991/88ccfojzVtOm+ffsAAA8ePEDjxo3h5+eHiIgI9OrVC9euXTPa5eXlISUlBXXq1MHs2bNRpkwZeHt7o3z58pg1axbISv/uxYsXw8vLCwMHDrRYd/PmTYwdOxYzZszAo48+KpvHSy+9hKSkJCxevBh37txBamoqxo8fj/T0dIwZM8Zin0JCQtChQwcEBAQgODgYnTp1wq+//qpYTznk2l/4/fPPP4vSy5YtW6hG32EYt8HVapxxX5o1a0ZRUVEiL+PLL79MAOjcuXPGtFGjRlF4eLjd5ZUpU4YAEACaNGmSpI3ca8XLly9TYGAgTZgwQVR/ALRr1y6RreAZrlGjhsi7ffjwYQJAa9asMaZVqVKF6tSpY+Hx69SpE8XGxhpfh9rjGTaPDRw7diwBoDFjxojSu3btSpGRkbL5PXjwgHJzc+nLL78kb29v+ueff0TrR4wYQX5+fpSSkkJPPfUUlShRQtHrKLB06VLj/2JtscZjjz0m6VkVPJbvvfee4va+vr6S3rIDBw6Iwi9WrVol6RklKvDi+vn5idJefvllKl++PP37779ERJKe4atXr8p6RgXPtmn4xnfffUe+vr506tQpIiJZz3Dt2rWpUqVKolfrubm5VL58ecmQElMaNGhA4eHhlJWVJUofOnQo+fv7S25TqVIlatOmDREVHDORkZHUsmVLkc2dO3coJCREtE9a2rRt27YEgMLDw2nChAm0e/duWrhwIRUvXpwqVqxoDAlJTU0lABQaGkqPPvooLV++nHbt2mV8MyR3HRDqGBAQIHk8ERXEaTdq1MgYpiHnGSYiWrhwIfn7+xuP48jISNqxY4fIZtiwYca6Dh48mHbu3EkrVqygMmXKUFRUlOy5pOQZ3rhxIwGgFStWiNIXL15MAKhSpUqi9AoVKlCFChUky2EYxnbYM8zIMnjwYNy6dQubN28GUODFWblyJZo0aYLHHnvMaFe/fn2kpaWhV69e2LRpk2QPfLXUrl0bpUuXxrx583Dw4EGL9d999x0MBgP69u0r8kjGxMSgVq1aFqM5RERE4KmnnpIsq2PHjkbvNvDQ4/XXX38BAM6fP49ff/0Vffr0Me6/sHTo0AGpqalWxxRWg/kIGlWrVjXWzzz9n3/+QWZmpjHt+PHj6NKlC4oXLw5vb2/4+vqiX79+ePDgAc6dOyfa/qOPPsLjjz+OFi1aYO/evVi5ciViY2Ot1q9z5844cuSIqkUNSrPvqZmZT8v2cram6YcPH8acOXPw2WefITAwUJfy09PTMWzYMLz22muoXr26Yn6jR4/GuXPnMGrUKFy9ehWXL1/G8OHDjceh3AyNZ86cwaFDh9CnTx8EBATYVE8vLy+MHDkSu3btwrvvvoubN2/i/Pnz6Nu3L/7991/J8tW0aX5+PgCgZ8+eeP/999GiRQsMGzYMixcvxvnz57F69WqRXUZGBtatW4d+/frhqaeewqeffoquXbti9uzZouPdlFWrViE7O9vCKw4A69evx7fffotFixZZPaaWLl2Kl156CaNGjcLOnTuxdetWtGnTBk8//TS+//57i31KSEjAF198gZYtW6Jv377YuHEjbt26hfnz5yuWI0X79u1RsWJFvPbaa9ixYwfS0tKQlJSESZMmwdvb26Ltz58/j/Pnz2suh2EYZVgMM7I8++yzCAsLw9KlSwEAW7duxY0bNzB48GCRXWJiIpYsWYK//voL3bt3R4kSJdCgQQPs2LFDc5klS5bE3r17ERERgbZt2yIlJUW0/saNGyAiREdHW8zsdvDgQQshriT2zCe+EF5NCkMaCSEXr7zyikVZQriFPcJfIDIyUvTbz89PMV0YXu7SpUto0qQJrl69irlz5+KHH37AkSNHjDdl86GZ/P390bt3b2RnZ6N27dpo3bq16vrVrl1b1WKN4sWL4/bt2xbp//zzj+Q+27q98N/K2ZqWM2jQIHTr1g1169ZFWloa0tLSjG2ckZGBu3fvAih4sDIYDKrKnzx5Mnx9fTFq1ChjnoKo+/fff5GWlmYMARg0aBBmzJiBFStW4NFHH0Xp0qXxyy+/4JVXXgFQcE5IsXjxYgCQFIPFixdHdna2UdAq7f+bb76JcePG4X//+x+io6OND7pC6IFQvpY2FWzbtm0rsmvbti0MBoNxKDqhTUNDQ9GwYUORbfv27ZGdnY1ffvlFdv8feeQRPP3006L0zMxMjBw5EqNHj0ZcXJyx/YWQhLS0NGMI1507dzBy5EgMGTIEs2bNQsuWLdG+fXusWbMG9erVEw3XJrdPtWvXRmxsrNXh9aTw8/PDtm3bULp0abRp0wYRERF49tlnMWnSJERERMj+9wzD6AuLYUaWwMBA9OrVC0lJSUhNTcWSJUsQEhKC5557zsJ24MCBOHDgANLT07FlyxYQETp16mT0bmmhXLly2Lt3LyIjI9G2bVscOHDAuC4qKgoGgwH79++X9Exu3LhRlJcaT6McUVFRAICJEyfKekLVCEBHsXHjRty7dw/ffPMN+vbti8aNG6Nu3bpG0WzO6dOn8eabb6JevXr46aefMHv2bFXlLF++3OoU08JijRo1auDs2bMW8cVCXKw1L2qNGjUkY2jNtxc+5WxNyzlz5gzWrVuHiIgI4/L+++8DACpUqIAmTZoAKDgfKlasKJtnYGAgypcvD6CgrS9evIiYmBhjnp07dwYA9O/fHxEREaLY9Ndeew23bt3CqVOncPHiRRw4cAB37txBUFAQ4uPjLcrLycnBihUrEB8fL3kMCrHC5nW9fv06bt26Jdp/Hx8fzJ49G7dv38bPP/+Ma9eu4bvvvsOlS5dQrlw5Y7ytljaViis2RfB4BgYGit4ymSI8LEh5xo8fP47jx4+jX79+FsfdrVu3cOPGDXz44Yei/3TNmjW4d+8eIiIijG97fvvtN2RlZaFevXoWZdStWxcXL140PsQo7RMRyXrwrVGxYkWkpKTgypUr+Pnnn3Hz5k0899xzuHXrFpo2bWpTngzDaMSlQRqM2yPEu40bN458fX0txiiVQ4iF27Jli+qyzIdWu3jxIpUrV45CQkJo//79RES0f/9+1cMwCaNJmGM6moQ5AOitt94y/n7ssceoQ4cOVsuyJ2bYPIZUiNE9cuSIKN08jvXjjz8mAJSammq0yc/Pp/r161vUJTMzk6pUqUJVq1alzMxMGjVqFPn6+tLBgwet1vPWrVt05MgRVYs1tm7dSgBo7dq1ovR27dqpGlptwYIFBEBU79zcXHr88cepQYMGItv69etT9erVRXkKMeeffvqpMW3Pnj0WS//+/QkAbdy4UbRfEyZMID8/P7p06ZIxLSMjgx555BHRiBDHjx+3yPOjjz4yjnywZ88exXGz//rrLwoLC6OxY8dKrl+3bp3iEHG3b9+mgIAAGj58uCh9+vTpFkOrSXHs2DHy9vamOXPmiNLVtunZs2fJYDBYXC+++eYbixhZYeQa85FEunTpQsHBwcY4blNGjhxJAOiXX36xWJeVlSX5n7Zt25YCAgJoz549xjjuv/76yzjGsCn5+fn05JNPUkREhDHm+M6dO1SsWDGLkUiOHTtGAOjdd9+1bEhSjhmWY9y4cRQUFGQcHYVhGMfCYpixSs2aNclgMFiIEIEhQ4bQ6NGjae3atZScnExfffUV1a5dm8LCwujmzZuqy5GadOOvv/6i8uXLU3BwMO3bt4+ICjrrFCtWjF599VX69ttvaffu3bRq1SoaMWKESBzoIYZ3795N/v7+1KZNG1q9ejUlJyfThg0b6L333hMNVeYKMXz27Fny8/Oj5s2b09atW+mbb76h1q1b02OPPWZRl759+1KxYsXo9OnTRER0//59io+Pp7Jly9KdO3dU11kPWrduTREREfT555/T7t27aejQoQSAVq5cKbIbNGgQeXt7i8b0zc7Opscff5xKlSpFq1atoh07dtAzzzwjOenGnj17yMfHh5555hnasWMHrVq1ikqVKqU46YaA3NBqN2/epNjYWKpRowZt2LCBtm7dSk2bNqWQkBCL4bHMkfu/T506RVOnTqXvvvuOduzYQbNmzaKoqCiqW7euxVB6Au3ataPAwEBKS0uTLU+YdGPSpEm0d+9emjlzJvn7+1sIVGFCjqSkJNq2bRu9/fbbVKxYMerYsaPFw4mWNh01ahR5eXnR+PHjaceOHTR//nyKiIigOnXq0P379412t2/fptKlS1NcXBwtXryYvv/+e+MxMWvWLIv9ysrKooiICFVjMJsi14GuW7du5OXlRS+99BJ9//33tHnzZurevbukwBWGQuvfvz8lJSXRsmXLqFSpUlS6dGm6ffu2yHbdunW0bt06ev/99wkAjRw50phmyvvvv0/Lly+nPXv20Nq1a431kZqEpkyZMlSmTBlN+80wjHVYDDNWmTt3LgGgatWqSa5fvnw5tWjRgqKjo8nPz4/i4uKoR48ekmMUKyElhomILl26RBUqVKCgoCBKTk4mIqIlS5ZQgwYNKCgoiAIDA6lChQrUr18/Onr0qHE7PcQwEdHJkyepR48eVKJECfL19aWYmBh66qmnaOHChUYbV4hhooLZAoXxlkuWLEmvvvoqbdu2TVSXRYsWSXqmzp8/T6GhobrPJGiNu3fv0pgxYygmJob8/PyoZs2aohE8BATv7IULF0Tp169fp379+lFkZCQFBARQw4YNLXr+C2zfvp0aNmxIAQEBFBkZSf369aMbN25YraOcGCYqaLeuXbtSaGgoFStWjFq2bEnHjh2zmqfc//3bb79R06ZNKTIykvz8/KhixYo0ZcoUyszMlMzn0qVL5OXlRf369bNa5ty5c6lSpUrk5+dHpUuXprfeeks0OgxRwaQZDRo0oNDQUPL396fq1avTrFmzLOwE1LZpXl4ezZgxgypWrEi+vr4UGxtLI0aMkHz4unTpEj3//PMUERFhPCaWLFkiWb4wqoXcejnkxHBWVhbNnDmTatasSSEhIRQZGUkNGzaklStXSk4YsmjRIqpevTr5+flR8eLFqU+fPnT58mULO6gcdeXtt9+mChUqkL+/P4WHh1O7du2MD/7mREVFUcOGDTXtN8Mw1jEQWRnIkWEYhmEYl/LLL7/g8ccfx3fffWcx0gzDMPbBHegYhmEYxs3Zs2cPEhISWAgzjANgzzDjcKzNTObl5WVzT2x3hIjw4MEDRRtvb2+7RrpgGIZhGEYfCo8CYdwWa8NxDRo0yNVV1JXk5GSr+7x8+XJXV5NhGIZhGLBnmHECR48eVVwfFRWFsmXLOqcyTuDu3btWZ6YrV66cxaQfDMMwDMM4HxbDDMMwDMMwTJGFwyQYhmEYhmGYIguL4ULCM888g8DAQKSlpcna9OnTB76+vrhx44Zu5ZYtWxadOnWySP/iiy/g7e2NLl26IDs7W7fy9GTv3r0wGAzYu3evq6tSqLh58yYGDBiAqKgoFCtWDAkJCdi1a5fq7f/8809069YN4eHhCA4ORuvWrfHTTz9J2q5duxa1a9dGQEAA4uLiMHbsWOP0uaZkZmZi7NixiIuLQ0BAAGrXro21a9da2O3fvx9DhgxBfHw8/P39YTAYcPHiRdm6fvLJJ6hSpQr8/f1Rrlw5vP3228jNzbWw27NnD1q3bo0SJUogODgYNWvWxMcffyzqaHnx4kUYDAbZpV27dhb5nj59Gs899xweeeQR+Pv7o2zZsnjxxRdFNmfOnMGLL76IhIQEBAUFKR7zGRkZmDx5MipVqoRixYqhZMmSeO6553DmzBkL2+PHj6Nr166Ii4tDsWLFUKVKFbzzzjv4999/ZduLiNC0aVMYDAaMGjXKYv3169cxatQolC9fHoGBgShTpgwGDx6MS5cuieyuXLmCsWPHolmzZggPD4fBYMCyZcss8tPSppcvX8YzzzyD8uXLIygoCGFhYahTpw7mzZtn0Ql46tSpkvkFBARY1OHu3bsYM2YMSpYsCX9/f1SqVAkffPCBRSfbu3fvYsKECWjTpg0eeeQRGAwGTJ06VbYt1bYpwzDW8XF1BRh9GDx4MDZu3IjVq1db3AwBID09HRs2bECnTp0QHR3t0LrMnDkTEyZMQGJiIpYsWQIfHz7Migr3799Hy5YtkZaWhrlz56JEiRKYP38+2rVrh507d6JZs2aK2//9999o0qQJIiIisGTJEgQEBGD69Olo3rw5jhw5gsqVKxttV61ahb59+2LIkCH46KOPcO7cObz22mv45ZdfsH37dlG+3bp1w5EjRzBjxgxUqlQJq1evRq9evZCfn4/evXsb7Xbt2oWdO3eiTp06CA0NVXxQmjZtGt544w28/vrraNOmDY4cOYIpU6bg6tWr+Pzzz412O3fuRNu2bdG0aVMsWrQIQUFB2Lx5M1566SX88ccfmDt3LgAgNjYWKSkpFuVs3LgR77//Pp555hlR+p49e9CxY0c0adIECxcuRFRUFC5duoTjx4+L7I4ePYqNGzeiTp06aNmyJb799lvZfercuTOOHj2KqVOnom7durhy5QreeecdJCQk4NSpUyhTpgyAgjFvGzVqhMqVK2POnDmIiorCvn378M477+DYsWPYtGmTZP7z58/H+fPnJdfdv38fTZs2xZ07d/D222+jWrVq+O233/DWW2/h+++/x9mzZxESEgIAOH/+PFatWoXatWujQ4cOWLNmjWSeWtr03r17CA0NxRtvvIHSpUsjJycHW7duxejRo3HixAl88cUXFvkkJSUhLCzM+Nt8VJy8vDy0bt0a586dw7vvvotKlSohKSkJr7/+Oq5cuYKPP/7YaHv79m18/vnnqFWrFrp27SpZnhRKbcowjEpcNNkHozN5eXkUFxdH8fHxkus//fRTAkDffvutruWazxo3ceJEAkCjR4+WnL3JFu7du6dLPubYMmsco8z8+fMJAB04cMCYlpubS9WqVaP69etb3f7VV18lX19f0RTM6enpFBUVRT169DCm5eXlUWxsLLVp00a0vTA72datW41pW7ZsIQC0evVqkW3r1q0pLi5ONOXwgwcPjN9nzpwpOQMeEdGtW7coICCAXnjhBVH6tGnTyGAw0JkzZ4xpffr0IX9/f4sZ5dq0aUOhoaFKzUFERM2bN6dixYpRenq6Me3evXsUGxtLHTt2tHqeme7TunXrZI/533//nQDQlClTROkHDhwgADR79mxj2uTJkwkAnT9/XmT7wgsvEAD6559/LPK/cOECBQcH0zfffGOcntiUHTt2EAD64osvROmrV68mAPTNN99I7tORI0ckZ1hUQqpN5ejRowf5+PiIpptWmqHQlDVr1hAAWr9+vSj9hRdeIC8vL/r111+Nafn5+cb/8u+//5acDdMca23KMIw6OEyikODt7Y3+/fvj2LFjOHXqlMX6pUuXIjY2Fu3btzemffrpp6hVqxaCg4MREhKCKlWqYNKkSTaVn5+fjxEjRmD69Ol488038fHHH4vG0SUiLFiwALVr10ZgYCAiIiLw7LPP4s8//xTl07x5c1SvXh379u1Do0aNUKxYMQwaNMj4unPWrFmYPXs2ypUrh+DgYCQkJODgwYMW9Tl69Ci6dOmCyMhIBAQEoE6dOvi///s/m/bNFCG0YvXq1XjttdcQGxuL4OBgdO7cGTdu3MDdu3fxwgsvICoqClFRURg4cKDFa3u1bbFjxw48/fTTePTRRxEQEICKFSti2LBhuHXrlshOeGV75swZ9OrVC2FhYYiOjsagQYOQnp5u9z5rYcOGDahcuTISEhKMaT4+Pujbty8OHz6Mq1evWt3+qaeeMnogASA0NBTdunXDt99+a3xdffDgQaSmpmLgwIGi7Z977jkEBwdjw4YNojyDg4Px3HPPiWwHDhyIa9eu4dChQ8Y0teNdJyUlITs726L8gQMHgoiwceNGY5qvry/8/PwQGBgosg0PD5d8rW7KH3/8geTkZPTo0QOhoaHG9HXr1iE1NRWvvvqq1fGq1e6Tr68vAIg8nUI9AYjqqmTr5eUFPz8/i/xfeOEFtG7d2sLDbUv59oxLLtemcjzyyCPw8vKCt7e35rJ+/PFHGAwG0XUXADp16oT8/HzRcSqEWmjBWpsyDKMOFsOFiEGDBsFgMGDJkiWi9F9++QWHDx9G//79jRf0tWvX4sUXX0SzZs2wYcMGbNy4EePGjcO9e/c0l5ubm4s+ffrgs88+w9y5c/H2229b2AwbNgxjx45Fq1atsHHjRixYsABnzpxBo0aNLGKYU1NT0bdvX/Tu3Rtbt24VhX3Mnz8fO3bswJw5c7Bq1Srcu3cPHTp0EIm+PXv24Mknn0RaWhoWLlyITZs2oXbt2ujZs6dkXKEtTJo0CTdv3sSyZcvw4YcfYu/evejVqxe6d++OsLAwrFmzBhMmTMCKFSssHjDUtsUff/yBhIQEfPrpp9i+fTvefPNNHDp0CI0bN5aMS+3evTsqVaqE9evX4/XXX8fq1asxbtw4q/uSn5+PvLw8q4u1iUSAghjWmjVrWqQLaVKxpwJZWVn4448/ZLfPysoyPjCcPn1alK+Ar68vqlSpYlwv2FatWtUiXEfY1tRWLcI2NWrUEKXHxsYiKipKlOfw4cORk5ODMWPG4Nq1a0hLS8OKFSuwYcMGTJgwQbGcJUuWgIgwZMgQUfq+ffsAAA8ePEDjxo3h5+eHiIgI9OrVC9euXdO8PwBQpkwZPP300/joo4+wZ88eZGZm4tdff8WYMWNQunRpPP/880bb/v37Izw8HCNGjMCff/6Ju3fv4rvvvsNnn32GkSNHIigoSJT3F198gcOHD2PevHmy5T/55JOIj4/H1KlTceTIEWRmZuKnn37CpEmT8MQTT6BVq1Y27Zc5cm0qQETIy8vDnTt38NVXX2HZsmV4+eWXJcO9atSoAW9vb0RHR6Nfv34Wsc05OTnw8vIyCn0Bf39/AMDPP/9s836oaVOgwMHAE/wwjBVc6ZZm9KdZs2YUFRVFOTk5xrSXX36ZANC5c+eMaaNGjaLw8HC7yytTpgwBIAA0adIkSZuUlBQCQB9++KEo/fLlyxQYGEgTJkwQ1R8A7dq1S2R74cIFAkA1atQQvdY+fPgwAaA1a9YY06pUqUJ16tSh3NxcUR6dOnWi2NhY4ytWW8IkhG06d+4sSh87diwBoDFjxojSu3btSpGRkTa1hSn5+fmUm5tLf/31FwGgTZs2GdcJr2w/+OAD0TYvvvgiBQQEWH2NLmxvbSlTpoxiPkREvr6+NGzYMIt04VW7eaiCKVevXiUANH36dIt1wqtyIfxi2rRpBIBSU1MtbNu0aUOVKlUy/n7ssceobdu2FnbXrl0jAPTee+9J1kcpTGLo0KHk7+8vuV2lSpUswjd+/PFHiouLM7alt7e3xf9lTl5eHpUsWZKqVKlisa5t27YEgMLDw2nChAm0e/duWrhwIRUvXpwqVqwoG1qkFCZBRJSTk0NDhw4V/e81a9aUbIOzZ89SlSpVRLZjxoyxON6uXLlCYWFh9NlnnxnTIPNKPyMjgzp37izKs3nz5nT79m3ZdtISJqHUpgLTp083lm0wGGjy5MkWNl9++SVNmzaNtm7dSrt376YZM2ZQZGQkRUdH05UrV4x2c+bMIQD0ww8/iLZ/4403CIDFcSJgLUxCS5s+9dRT5O3tLbu/DMNwmEShY/Dgwbh16xY2b94MoKADx8qVK9GkSRM89thjRrv69esjLS0NvXr1wqZNmyxevWuhdu3aKF26NObNmycZsvDdd9/BYDCgb9++Ik9jTEwMatWqZdFJKSIiAk899ZRkWR07dhS9rhS8e3/99ReAgo41v/76K/r06WPcf2Hp0KEDUlNTrU6IoQbzETSqVq1qrJ95+j///GMMldDSFjdv3sTw4cNRqlQp+Pj4wNfX1xg+cPbsWYs6denSRfS7Zs2ayM7Oxs2bNxX35YUXXsCRI0esLkodr0xR8kKp8VBp2V7OVq2d2jpp3c503bFjx/DMM88gPj4e3377LXbv3o2JEydiypQpePfdd2XzSEpKwtWrVzF48GCLdfn5+QCAnj174v3330eLFi0wbNgwLF68GOfPn8fq1att2qcRI0Zg/fr1+Oijj5CcnIyvvvoKfn5+eOqpp4znGFAwSkPnzp1RvHhxfP3110hOTsYHH3yAZcuWWXhchw8fjlq1amHo0KGKZefm5qJnz544ceIEFi1ahH379mH58uW4evUqWrdurUvIj1KbCgwYMABHjhzB999/jwkTJmDmzJkYPXq0yCYxMRGTJk1C+/bt0aJFC7z22mvYtm0b/v77b3zwwQdGuz59+iAyMhIvvPACDh06hLS0NKxZs8bYcc7WcA+1bQoUdAo1Hw2DYRgx3M2/kPHss89i9OjRWLp0Kbp3746tW7fixo0beP/990V2iYmJyMvLw6JFi9C9e3fk5+ejXr16+N///ofWrVtrKrNkyZL45ptv0KJFC7Rt2xZJSUmimNEbN26AiGRHsShfvrzod2xsrGxZ5rO2Ca8bs7KyjGUBwCuvvIJXXnlFMg97hL9AZGSk6LcQIymXnp2djeDgYNVtkZ+fjzZt2uDatWt44403UKNGDQQFBSE/Px8NGzY07q8p1tpGjpiYGJQoUULRBlAnGosXL47bt29bpP/zzz8ALNvHlIiICBgMBlXbC/t6+/Zti7b8559/ROXYUyc5ihcvjuzsbPz7778oVqyYRb7x8fHG3yNHjkR0dDQ2bNhgfJBr0aIFvLy8MHXqVPTp08fiHACAxYsXw9fXF/369ZMsHwDatm0rSm/bti0MBoPsUHRKJCUlYfHixVi3bh2effZZY3qbNm1QtmxZTJ06FUuXLgUAvP7668jIyMCJEyeMIRFNmzZFVFQUBg0ahH79+qFZs2b4+uuvkZSUhP3791uI2ZycHKSlpSEoKAi+vr5YvHgxtm3bhiNHjqBu3boAgCZNmqBx48aoUKEC5syZg7feekvzfpmi1KYCMTExiImJMe57REQEXn/9dQwaNAh16tSR3a5+/fqoVKmSyCEQFRWFpKQk9O/fHw0bNgRQ8N/Nnj0bgwcPRsmSJTXvg5Y2ZRhGHewZLmQEBgaiV69eSEpKQmpqKpYsWYKQkBCLzkNAQWefAwcOID09HVu2bAERoVOnTiIPkFrKlSuHvXv3IjIyEm3btsWBAweM66KiomAwGLB//35Jj6NpZyPAdk+dUBYATJw4UdbDWbt2bZvztxe1bXH69GmcPHnS6JVq3rw56tWr55ApnN955x34+vpaXSpUqGA1rxo1akh24BTSqlevLrttYGAgKlasKLt9YGCgUTQKsbrmtnl5efj1119F5dSoUQNnz5618I6pqZMccuVfv34dt27dEuV54sQJxMfHW3TAqlevHvLz8yW9/Ddv3sR3332HLl26SD6oSMVVm2KLx/HEiRPGepkSHh6OihUriuKgT5w4gWrVqlnEBgvbCranT59GXl4eGjZsiIiICOMCAIsWLUJERAS2bNlizNPb2xtPPPGEKM/y5cujePHiNsV2m2KtTeWoX78+AODcuXNWbYnIou3r1auHX375BRcuXMDp06dx7do145ukpk2batiDArS0KcMw6mDPcCFk8ODBWLhwIWbOnImtW7diwIABFt4rU4KCgtC+fXvk5OSga9euOHPmjKg3v1rKli2LvXv3okWLFmjXrh22bduGJ598Ep06dcKMGTNw9epV9OjRw55ds0rlypXx2GOP4eTJk3jvvfccWpYtqG0L4YFA8O4KfPbZZ7rX6YUXXpCcOMUc87pI8cwzz+DFF1/EoUOH0KBBAwAPQ3UaNGiAuLg4q9vPmTMHly9fRqlSpQAUTEbwzTffoEuXLsZOTA0aNEBsbCyWLVuGnj17Grf/+uuvkZmZiW7duonyXLRoEdavXy+yXb58OeLi4oz11EK7du0QEBCAZcuWibZftmwZDAYDunbtakyLi4vD0aNH8eDBA5EgFsa/ffTRRy3y//LLL5Gbmyv7Ov+ZZ57B5MmTsW3bNtFIAtu2bQMRGb2QWhD+m4MHD4rO/9u3b+PcuXNo2bKlyPb06dPIzMxEcHCw7D4NGDAAzZs3tyirRYsW6Nq1K1566SXjg0NcXBwePHiAI0eOiNr03LlzuH37tmQ7acFam8qxZ88eAEDFihUV7Q4ePIjff/8dY8aMkVxftmxZAAWC+cMPP0RcXJykk8IaWtqUYRh1sBguhNStWxc1a9bEnDlzQESSF/+hQ4ciMDAQTz75JGJjY3H9+nVMnz4dYWFhFp4hLZQpU0YkiLdu3YomTZrghRdewMCBA3H06FE0bdoUQUFBSE1Nxf79+1GjRg2MGDHCnl0W8dlnn6F9+/Zo27YtBgwYgJIlS+Kff/7B2bNn8dNPP2HdunW6laWVJ598UlVbVKlSBRUqVMDrr78OIkJkZCS+/fZb7NixQ/c6xcXFWRWpahk0aBDmz5+P5557DjNmzECJEiWwYMEC/Pbbb9i5c6fItmXLlkhOThZ5bF955RWsWLECHTt2xDvvvAN/f3/MmDED2dnZotm4vL298cEHHyAxMRHDhg1Dr1698Pvvv2PChAlo3bq1aGax9u3bo3Xr1hgxYgQyMjJQsWJFrFmzBklJSVi5cqVIoP79999ITk4G8NDru23bNjzyyCN45JFHjJOGREZGYsqUKXjjjTcQGRlpnHRj6tSpGDJkCKpVq2bMc9y4cRgzZgw6d+6MYcOGoVixYti1axc+/PBDtGrVCrVq1bJox8WLF6NUqVIWYRACVapUwciRI7FgwQKEhISgffv2OHfuHKZMmYI6deqIHrT+/fdfbN26FQCMr/CTk5Nx69Yt44MwUDAxyZtvvokRI0bgypUreOKJJ5CamoqZM2fi33//xUsvvWTMc+zYsejatStat26NcePGISoqCgcPHsT06dNRrVo1Y55ly5Y1ikBzSpYsKRJ1AwcOxEcffYTu3btjypQpqFy5Mv7880+89957CAoKwvDhw0Xbf/311wBgHGHk6NGjRmFuGuahtk3feust3LhxA02bNkXJkiWRlpaGpKQkLFq0CM8995wo9KVWrVro27cvqlatioCAABw+fBgzZ85ETEyMxQghkydPRo0aNRAbG4tLly5hyZIlOHToELZs2WIx3N62bdtw79493L17F0DBSEDCfnbo0AHFihXT1KZAwWgSycnJICLJbRiGAY8mUViZO3cuAaBq1apJrl++fDm1aNGCoqOjyc/Pj+Li4qhHjx70888/ayrHfNINgUuXLlGFChUoKCiIkpOTiYhoyZIl1KBBAwoKCqLAwECqUKEC9evXj44ePWrcrlmzZvT4449b5CeMJjFz5kyLdZDodX3y5Enq0aMHlShRgnx9fSkmJoaeeuopWrhwodHGntEk1q1bJ0pfunQpAaAjR46I0uUG51fTFr/88gu1bt2aQkJCKCIigp577jm6dOmSxf7KlSHUSWokAEdy/fp16tevH0VGRlJAQAA1bNiQduzYYWEnjBxizvnz56lr164UGhpKxYoVo5YtW9KxY8cky1q9ejXVrFmT/Pz8KCYmhsaMGUN37961sLt79y6NGTOGYmJiyM/Pj2rWrCkagURA+H+llmbNmlnYz507lypVqkR+fn5UunRpeuutt0QjuQisX7+eGjduTFFRURQUFESPP/44vfvuuxYTcRAVjDwBgN58803JfRbIy8ujGTNmUMWKFcnX15diY2NpxIgRdOfOHZGdcO5ILeYjhKSmptKoUaOoYsWKFBAQQHFxcdSxY0dKSUmxKH/37t3Upk0biomJocDAQKpUqRK9/PLLdOvWLcV6E8mPfPD7779TYmIilS1blvz9/al06dLUs2dP0SQmpnnILeaoadPNmzdTq1atKDo6mnx8fCg4OJjq169PH3/8scXINM8//zxVrFiRgoKCyNfXl8qUKUPDhw+na9euWeQ7YsQIKl26NPn5+VFUVBR1795d9jprOjqP+WLtPJZr0/j4eIqJiVHclmGKOgYiflxkGIZhmMLG3bt3ERkZiTlz5mDkyJGurg7DuC3cgY5hGIZhCiH79u1DyZIlVQ3BxjBFGfYMM5JYG5fSy8vLrilR3Q0isjrDmre3N8/kxDAMwzCFjMKjZhhdsTbM1qBBg1xdRV1JTk62us/Lly93dTUZhmEYhtEZ9gwzkhw9elRxfVRUlGyPZk/k7t27VmemK1eunEPG+WUYhmEYxnWwGGYYhmEYhmGKLBwmwTAMwzAMwxRZeNINB5Kfn49r164hJCSEO14xDMMwRRYiwt27dxEXF1eoOl8zhQMWww7k2rVrxillGYZhGKaoc/nyZbun1mYYvWEx7EBCQkIAAJf/+guhoaEAgHw3jkzxQr7ueTpif/Wopzv/DwzjKhxxDQDc43zzlOubgFx91ZRpz77qsU9S5WdkZKBUmTLG+yLDuBMshh2IEBoRGhqK0NBQt7ghKKH3zcIdhLC7tznDuBOOEsOAe5yLniSI7RHDSturwd59UiqbQwYZd8T1V6cigjvcCJTwBCGstlzThWEY98D0zHQV7vCArhZ768rXP4ZRD58tjEtvTvbC4pdh9MNZ55ArRXFREsSuwlPrzRRd+Ih1AkXtwuDI/WXxyzCOxZnnlatEsSOuH84SxM5oL092kDCMLbCaKOLwRY9hGHOc/aDpSlGsJ+4miF3pMGBnBeNJcAe6IowndSZhGMa5COeyM0WqUJYzryN676cX8h1S/3x42VRHW7dz1H7YQnZ2NnJycnTP18/PDwEBAbrny3geLIaLKCyECz+e4D1i3B8WxdpxRv21iFVXCWJbyzUlOzsbgYHhAO7blY8UMTExuHDhAgtihsVwUYSFsHvh6lAVpfK1/K/W9oOPEc/G9P9z1jHrKlHsrl5i87o5QxC7mgKP8H0AraCvZMnD9es7kZOTw2KYYTFclOAez87HE28+puhZf/O8+LjxXJwtjE3LcMZx42leYrW4QhDrV6YPAF8d8mEYS1gMFxFYCDsOTxe8rkIvjzTjWlwljD1RFHvice2p9WYYLbAYLgKwENYPFr7OQU07F8Xjz91xpjB2tih2Vy+xVrHqKu+w/XhB3wGw+PrBPITFcCGHhbB9sPh1X+ydrpZxLM4Sxs4SxUXZS+xp9WUYrbAYLsSwENYGC9/CAYtk98MZwtiZothdvcRq8VzvMMM4BhbDhRQWwtZh8Vu0YJHsHjhaGDtDZLrziBOOwlPqyTC2wGK4EMJCWBoWv4wUHJ/sOhw5hrGjRbErwiaK9jXMD/qOJmHQMS/G0+ErfCGDhbA0TrmJZGc7vgzGJQjTBZsvjD6YtqreOPp/0qvOHLbAMK6DPcOFCBbCD3G6UGEhXCSROs488XxxJxwRRuHoV/x6xxE7Im894FAJprDCYriQUNSFsEP2v4gIXFv+Y3e5ObsjPLmIfugdmyvk6QgcFfLB55oAh0kwjoPFcCGgKE+vrMu+6yV6XTSlp6t6owN8o1YDi2P70PtY8xQvsZby7NmWz2GGYTHs8RRVIWzXfnuQ+HX3/8ITYzxdjbOnFi4seNIIDiwyGcazYDHswRRFIWzzPruxAHb3Nnc2zp7e15WwMNaGJ018UVgFMccNM4URFsMeSlESwjbtq57xvjoJYHdtX3fGvM0Ko7gQYGGsHk+Z+MIZgrjoiFMf6BszTDrmxXg6LIY9EL0vru56IdW8n24kgN21TT0dqXYtjALZlbOTeQqe4iUurB5ihilMsBj2MAq7EHaJF5iFr0dTmL3HLIqto6eX2NNGmtADFusMw2K4yOJuN1dPEcGuaDep3XTRwBUeQWH0HhedV+G24QmCGGDhyTDuCothD6IwXkQ17ZMeYRAuEsB6D1msNj8WzQXI/YeedE6xIFZGL+8rC2J3xe+/hWH0h8Wwh6DXxdNdbqaq98cFAtieNnK3eTqys1kQK+FpIpnDJqyjh9hkQawMP5gxhQ0Wwx6AHhdNd7hwOdULrEEB2to27iZ8pWAhbBvuHGrhDueyu8OCmGEYLbAYdmMK04VS1b44SQBrvcF5guiVgoWwvrizQGYsKUqCuGh4an3BQ6sxjoLFcBHAlRdJp4hgwKry09IGnip+TWEh7BycPUFI4Rc8+lKUBDHDMLbDYriQ46qbp8NFsAq1p3bfC4P4NYWFsGtwlDBmAWwfLIgZhrEGX2XdFE+OE7Za9+xshwnhfHgZF2vF21sNdyEgQLwwrsf0ONR6HtqzLSONHu3IYpUBgAULFqBcuXIICAhAfHw8fvjhB0X75ORkxMfHIyAgAOXLl8fChQstbNavX49q1arB398f1apVw4YNG0TrP/30U9SsWROhoaEIDQ1FQkICtm3bZpHP2bNn0aVLF4SFhSEkJAQNGzbEpUuXjOvv37+P0aNHIyoqCkFBQejSpQuuXLliY0sULvhK64Z4qhAWbt+y2KM+FdSeVgHs6bD49TzMBa7S4k6YPzhKLZ6Cuwtie+tX+MW6Lx4Or6bHoj3++KuvvsLYsWMxefJkHD9+HE2aNEH79u1FgtOUCxcuoEOHDmjSpAmOHz+OSZMmYcyYMVi/fr3RJiUlBT179kRiYiJOnjyJxMRE9OjRA4cOHTLaPProo5gxYwaOHj2Ko0eP4qmnnsLTTz+NM2fOGG3++OMPNG7cGFWqVMHevXtx8uRJvPHGGwgwuUmMHTsWGzZswNq1a7F//35kZmaiU6dOePDggea2KGwYiIijyB1ERkYGwsLCcOdOOkJDQ1VtY+8FzVUiWBEHeoEdUaQ7wWKXcQUuntTRobi7s8Ge+tlaL1vL1FJeRkYGIiLCkJ6u/n4obBcWFgbgRQD+2ispy30ACzTVp0GDBnjiiSfw6aefGtOqVq2Krl27Yvr06Rb2r732GjZv3oyzZ88a04YPH46TJ08iJSUFANCzZ09kZGSIPL3t2rVDREQE1qxZI1uXyMhIzJw5E4MHDwYAPP/88/D19cWKFSsk7dPT0/HII49gxYoV6NmzJwDg2rVrKFWqFLZu3Yq2bduqaoPCinu5IYo4niaEHeYJtsML7GneKgFzby97fRlXYu+x587nYGH3EHtKmZ5GTk4Ojh07hjZt2ojS27RpgwMHDkhuk5KSYmHftm1bHD16FLm5uYo2cnk+ePAAa9euxb1795CQkAAAyM/Px5YtW1CpUiW0bdsWJUqUQIMGDbBx40bjdseOHUNubq6orLi4OFSvXl22rKIEnwGFBFcIYVnsFcFmKAlgT3tly6KX8RTUHqdy6e58PhZWQVz4QyX0JyMjQ7Tcv39f0u7WrVt48OABoqOjRenR0dG4fv265DbXr1+XtM/Ly8OtW7cUbczzPHXqFIKDg+Hv74/hw4djw4YNqFatGgDg5s2byMzMxIwZM9CuXTts374dzzzzDLp164bk5GRjOX5+foiIiFBd/6IEjybhJrji1ZgtWBXBtiBzN1Xy/noCLHKZwobWY9r8XHWnc8LdR5ngESbM0Xs65oII0VKlSolS33rrLUydOlV2K4PBIM6FyCLNmr15upo8K1eujBMnTiAtLQ3r169H//79kZycjGrVqiE/v+A4efrppzFu3DgAQO3atXHgwAEsXLgQzZo1k62ftfoXFVgMuwEeL4R1jgnWSwQr2TvipuyqG70txw+/FmVcgbtND86CuICiLLovX74sihn295eOS46KioK3t7eFF/XmzZsWnl2BmJgYSXsfHx8UL15c0cY8Tz8/P1SsWBEAULduXRw5cgRz587FZ599hqioKPj4+Bg9xQJVq1bF/v37jeXk5OTgzp07Iu/wzZs30ahRI8n6FyX4juhiPEEIK8YG6xgTLBUKoSUEwtxO6qarZ1iCo0Md1I4/oEfe9taLKTzYcqypPRfcSQgLeELIhJY68vmoDWG4MmGRE8N+fn6Ij4/Hjh07ROk7duyQFZMJCQkW9tu3b0fdunXh6+uraGNNoBKRMaTDz88P9erVw2+//SayOXfuHMqUKQMAiI+Ph6+vr6is1NRUnD59msUw2DPsUpzRg9dedBfBEsjFAqtBys7U+6Sn8NUbd7ppuVNdGMej+v82O8G8VI7u4o6iVwl39xADHDah/3TM2tty/PjxSExMRN26dZGQkIDPP/8cly5dwvDhwwEAEydOxNWrV/Hll18CKBg5Yt68eRg/fjyGDh2KlJQULF68WDRKxEsvvYSmTZvi/fffx9NPP41NmzZh586dRo8uAEyaNAnt27dHqVKlcPfuXaxduxZ79+5FUlKS0ebVV19Fz5490bRpU7Ro0QJJSUn49ttvsXfvXgBAWFgYBg8ejJdffhnFixdHZGQkXnnlFdSoUQOtWrWypQELFSyGGUl0D4lQEQ6hlLUtIRL23JD1uJkXpRuXo4UAYz82ndNqTrz/ThYh/6J8HLAgLtz07NkTt2/fxjvvvIPU1FRUr14dW7duNXpfU1NTRWMOlytXDlu3bsW4ceMwf/58xMXF4eOPP0b37t2NNo0aNcLatWsxZcoUvPHGG6hQoQK++uorNGjQwGhz48YNJCYmIjU1FWFhYahZsyaSkpLQunVro80zzzyDhQsXYvr06RgzZgwqV66M9evXo3Hjxkabjz76CD4+PujRoweysrLQsmVLLFu2DN7e3o5sNo+Axxl2IErjDLtznKejvcFqRbCzxzq1VQDzzaloCyBPQPIYNT/B5F6zmCIXeyTx3ROPCb3OZUfvu5p6qq2Ds0L17B9n+FXoP87wTM31YQon7Bl2Ae4snlTdNNUiEROsJltniWBbxK87/3fOxhPFTlFC1UOtmu9y2wonkNRrmIAAUfmecqzo5XllDzHDeBYshp2Mu8YJO9Ib7E4iWIsA5ptNAZ4iZJiHWH2olfquVhhLiWCluKT/hLGnHEeFRRCrKd+zrnHe/y165scwBbAYdhLuPGqEbt5gG0SwHmMGWxO4agWwZ90YHIeniBZGGtVCWO2nXF4BAZbfheEkJL57UkxxYRHESvD1jmEewmLYCXhcfLDOQthVnmBr6/lmUIAniBNGHRbHtFoRrCSE5U5U0yFbCqmXWA+cIYjNy7MGX/sYRgyL4SKKbmERGr3BjvYEK63jG4CYoiRIigK6C2HT7fPyLAu0Nq6h1G/AY7zEesblOvMBQKkcvgYyjDQshosgjvAGO1oEu40ANn0t7IG4s/hgbEezEFaTBliKYNPjX1iXmQn4+KgTwqZ4gJfYUwWxXPmejS/0nY7Z09uD0RMWw26IIy+YughhDSERjvQEy6VrvujbUklrU925Ee4sNgSsvYln5FEthLV4hU1FsJYh10zzkfAIS61zdy9xYRLEDMNIw2LYzfAkIWwtLthR3mCpdFtn1LIJD1Bo7n7DtWWGQQ9odvdCKf5XTgibi1oACA62zFsqbEJIt/bnqoktLsS4ShDzcGwMIw+LYTfCURdIZ3qDnSmAARUiWA/xq1QBN8HdxS9g/1/h4REqDkHWK2xvhzhrglUqP0Eg5+UVhE3I2ZuWZ5K/O3tN9RaS7ryv7ove0zE/0DEvxtNhMewmOOLC6IhOco4MibA2uZWA0wSwXAVciCfeQPX8O4T83OxvcQmK4RGmv20VxMKneWMLf4C1/JTc+lJDsrk57FllmMILi+GihgOEsMtFsN5qS64CTsYTha8pjvhbTPN2g79IES37b/e+qBWmch5a0+9SglguLzkPseAdtia6TYU1d6jzOArDPjAMwGLY5bg8NELp3fN/aY4SwVLFFlURXFhuKI4UwO6MXiEggLpD0Oo5YS1e2BxT4RseLukZFglBQQhnZwNpaeLfcjtjTYib7Js7nw8siBmm8MFiuBBi9fWpebqCIrVFCKuJ7bQmgguzAC6MNz9XiGB7vMMqdZnmPPRA835ZO7/Vdmgz9woHBODfbC9ApG+9/jMphoDwYgXnqeDZTUsrWEzLN/P8ytbRg8IlAM8VxJ4d6uEHHlqNcRQshl2IU+KElW6EVuIThPppDQ3UOjOc6W/dxkC2hhNvuoVR/AKe6wXW+myoZlu9UdKFqr3CUmlqO8/9J4SlHL6m53h4uBeKhYdblmmtocwb22yHi5rH1JP315PrzjACLIZdhMuEsNL7WBvCIqT67KgdEaKwiuDCfGPwVAEsoKb+7ryPNo0eoRYTQWz6ICwV/WBafECAV4G1oJLVCGG589BDRpcAeIQJhilMsBh2AW4nhG0Mi1D7qllzSITeaoQFsN24s0DUghqt5g6oOmTVhkeYKlnzbaQaJDsbXgEBCAjwkj2fFeunFA4hJYQ9KDzCHE8UxI4IlWAhz3g6LIadjN4XDM0d5QCrQlhNbLCaDj+FVQQX5ou+JwjFoorofLHWMc6aEJa7RoSHG+N+vQICEB5ezBgGbBpJYRrlIKqX1qcNUyHsoaLYEwWxZ+IDfccZlpk4himSsBh2Ik65wDlICGsVSTLFAHCwCNb5ZlrYb0osfj0cNaNHSK0XJsgwPwDS0kwDguEFIDy8mOIgEfnwgpecoLXW01bOi+xhopgFsWfWmWEEWAw7CZeHRqgYMcLRQphFsHvBQthzkPUKmyLnDbYmhAMCgMxMcV4m7mCvcCAgoJjI6av52LEWGiEjgD1JYLEgZhjPhcWwE3C7USMUOspJdYhTykpFMQBU3sxtQScRXJRuOiyC3RvVh7Qa8Wv6PS9POZ7YZCQJBAQAV64UTJwRHl7g+Q0PR7H/1hUzrWhatmUvO3NXsspOc8bvHugdBjxHEDtqiDUW8IynwmLYA7HLw2qHEFaRrcV3h3iD7bxJFuWLNQth9+5EJ3VoSz5IqgmLMBWkghCWEqxSglhYL/wWJuIIDrYUzaZ5meKhgtZePEUQOwrH1VfvcYYf6JgX4+mwGPYwrIpL87AICZXqqLAIdxXBnnQjcRTuKv7sobDpLJuFsJzAFTAXwlJLZqalh9ZUDAtCWBDFwmdAQIH32LxXnXmdhe/mXl8VHeg8TQwCLIg9rb4Mw2LYg9AkMM1vLDJC2B4RbJKttpAILbEXatZLwBfihxRGIWwv7uwdFtAUJyx8N/+tJITT0grWm06nLMQKm+dlKoLDwx96iKXEsRB/7GNye7HlycXDPctFXRAzjCfBYthD0KOznD1CWCkeWPiu+eatswjmG4Ul7i74bMWDNZIFqj3Cpt+txedKCWFT0WvqDU5LA65fF29naitUUhC9UVEPRXFAgOVv0/AJwXOsxSssIYI9VQh69vTH9qH/f8ZhEozjYDHsAagOjZDCAR5hzd5gqQJ0EsKeeIN0BoVVBOuJO3iHbRbCcuvlhLBUWERamnj5L+1BVhbyAGQDyBHqlJUF/6wsBN65A+/r14GYmIciGHhYnhpBLNS1MD3RKKCnIPa0hwJPqy9TdGEx7OZoFsIOCI2Q8gKr8gbLZa5lSAoZ+AIrjavFnafhKkEsd5irFsJyccJahLCpxzgzE7h+HfeJkAsgCwViOO+/xee/5T5QIIovXIB3Whrw6KMP6yAIY8GDbL7DQtiEuRBWKZI9WVixh9gz/zem6MBi2I1xJyGsOSzCgXHBfGG1hEWw7ThTECsd5pqEsOk6pZAkJaEseIT/C4t4QGT0BmcDyMRDMQwAAf99D0bBC+bgO3fgLZRTtqx4B9PSpAWxkhA2r7sHD7EmhV6CWC9x6UyBXlQfBBjPwWWqYvr06TAYDBg7dqwxjYgwdepUxMXFITAwEM2bN8eZM2dE292/fx+jR49GVFQUgoKC0KVLF1y5ckVkc+fOHSQmJiIsLAxhYWFITExEmtAx5D8uXbqEzp07IygoCFFRURgzZgxycnJENqdOnUKzZs0QGBiIkiVL4p133gER6doONmOnELaG+VtO82IUb9zmcYbWPMEqbnb58DIuzEOUtBCjHkfqLWungXBkG1EjhNXECSutk4glFoSvqQA2T7OwMY8xFrzMpvnLoSXc6z88XVR5yvXL9Hqr17XX/v9OmI5Zr4V9gcxDXHJmHjlyBJ9//jlq1qwpSv/ggw8we/ZszJs3D0eOHEFMTAxat26Nu3fvGm3Gjh2LDRs2YO3atdi/fz8yMzPRqVMnPHjwMBi+d+/eOHHiBJKSkpCUlIQTJ04gMTHRuP7Bgwfo2LEj7t27h/3792Pt2rVYv349Xn75ZaNNRkYGWrdujbi4OBw5cgSffPIJZs2ahdmzZzuwZR6i6BXWwSOsIsxY9N30Zm6sm9RNV67O1gqSgQWwJWp0BuNa1DwHSopgrUJYS3iEgqf4wX/hEfmwFLxCDYXf2f+lZQN4kJUlFsLm+SvV0RQN1xEWxI7D2vXWnevOMPbg9EejzMxM9OnTB4sWLcL//vc/YzoRYc6cOZg8eTK6desGAFi+fDmio6OxevVqDBs2DOnp6Vi8eDFWrFiBVq1aAQBWrlyJUqVKYefOnWjbti3Onj2LpKQkHDx4EA0aNAAALFq0CAkJCfjtt99QuXJlbN++Hb/88gsuX76MuLg4AMCHH36IAQMGYNq0aQgNDcWqVauQnZ2NZcuWwd/fH9WrV8e5c+cwe/ZsjB8/HgaDwWFtZPPsclaEsJawCNPvqrzB1jJTk24CX3TFsPB1PKZhq/Zsbw1JMSd3PqkJkZCqsFJ4hMSSh4LQhzzLnABYiuRsFHhS8gB4Z2cXeIOFsAbTEAfTcAm5BrIWKsE4BE9/qGAYPXG64hg5ciQ6duxoFLMCFy5cwPXr19GmTRtjmr+/P5o1a4YDBw4AAI4dO4bc3FyRTVxcHKpXr260SUlJQVhYmFEIA0DDhg0RFhYmsqlevbpRCANA27Ztcf/+fRw7dsxo06xZM/j7+4tsrl27hosXL0ru2/3795GRkSFatKIpTtgBoRHm3zULYWsuMb65qYY9wPI4sk1URu6IDnU19haeYAGtQljqwFCaYU5uW9Ppmf/DR2IRBrSSWmf0psgJbfP9tPaKSu6PZe+ww1FbJ3esO8PYi1M9w2vXrsVPP/2EI0eOWKy7fv06ACA6OlqUHh0djb/++sto4+fnh4iICAsbYfvr16+jRIkSFvmXKFFCZGNeTkREBPz8/EQ2ZYVOISblCOvKlStnUcb06dPx9ttvS++8ClzlEZYbQ1gyLEJt/awVYgZfYAtg4es+6PXcJivc1IQKKIVICL/lvL5y61UgCN0APPQWS4pgNftk7uEV6mPewKZppt7lQji6BOBeI0x4RjvqPc6w3HsQpijitDPg8uXLeOmll7By5UoEKNxlzMMPiMhqSIK5jZS9HjZC5zm5+kycOBHp6enG5fLly4r1VkStKtIhNMI0K7uEsI3eYM+4EDsO9gDbhq3tpcaJqQeKnmC580nOmyu1ThC6cvkr5SOBNwpuCILQNRW+AWafgr0kUnXTo5EltncXMWkrrrj2yR6XGijq12ym8OG0I/rYsWO4efMm4uPj4ePjAx8fHyQnJ+Pjjz+Gj4+PyOtqys2bN43rYmJikJOTgzt37ija3Lhxw6L8v//+W2RjXs6dO3eQm5uraHPz5k0Alt5rAX9/f4SGhooWtShenMxvbmaKVQ8hbIqsEFZSDlKCV8X746J4UXW0CCtKqG0/Ne2t13+hKDaUQgfUeIbNtzH9Lec1lsvPxNZUAHtBLH7NhbCkf04pHlhqv6TsrNnI4OmC2JlwWzGMNE5TIi1btsSpU6dw4sQJ41K3bl306dMHJ06cQPny5RETE4MdO3YYt8nJyUFycjIaNWoEAIiPj4evr6/IJjU1FadPnzbaJCQkID09HYcPHzbaHDp0COnp6SKb06dPIzU11Wizfft2+Pv7Iz4+3mizb98+0XBr27dvR1xcnEX4hL3YPHKExCb2eoIVhbBSRmrS/qMoDpPG4tdxSDlCbX3gsPf/URTBasIiTL9bC5GwNnqEXH7m/Heu+v73U04QB+Bh7LD3f/beBoO6eBIpkW7tD1J6SDDDk0Wes66DereR86/feg6rJizaWbBgAcqVK4eAgADEx8fjhx9+ULRPTk5GfHw8AgICUL58eSxcuNDCZv369ahWrRr8/f1RrVo1bNiwQbR++vTpqFevHkJCQlCiRAl07doVv/32m8gmMzMTo0aNwqOPPorAwEBUrVoVn376qcjm+vXrSExMRExMDIKCgvDEE0/g66+/tqkdChtOO5pDQkJQvXp10RIUFITixYujevXqxjGH33vvPWzYsAGnT5/GgAEDUKxYMfTu3RsAEBYWhsGDB+Pll1/Grl27cPz4cfTt2xc1atQwdsirWrUq2rVrh6FDh+LgwYM4ePAghg4dik6dOqFy5coAgDZt2qBatWpITEzE8ePHsWvXLrzyyisYOnSo0Zvbu3dv+Pv7Y8CAATh9+jQ2bNiA9957z+EjSSjesBTihE03VSMA5DrLGb1ach4rpYyk6mlGURLAAAtgZ+OqttYcEmGPEDYVk3KY26j0vJqGPgghE8Ii/BaEsL8ghE1nl7MXO/7AoiKIbbmGenLbuBNfffUVxo4di8mTJ+P48eNo0qQJ2rdvj0uXLknaX7hwAR06dECTJk1w/PhxTJo0CWPGjMH69euNNikpKejZsycSExNx8uRJJCYmokePHjh06JDRJjk5GSNHjsTBgwexY8cO5OXloU2bNrh3757RZty4cUhKSsLKlStx9uxZjBs3DqNHj8amTZuMNomJifjtt9+wefNmnDp1Ct26dUPPnj1x/PhxB7SWZ2EgF84i0bx5c9SuXRtz5swBUBCT+/bbb+Ozzz7DnTt30KBBA8yfPx/Vq1c3bpOdnY1XX30Vq1evRlZWFlq2bIkFCxagVKlSRpt//vkHY8aMwebNmwEAXbp0wbx58xBuMiPSpUuX8OKLL2L37t0IDAxE7969MWvWLNHoEadOncLIkSNx+PBhREREYPjw4XjzzTdVi+GMjAyEhYXhzp102ZAJxVncTNOsdJjT6hmW8ghLxgdrFcIyFEURzHgmWjvOqQ6JME+T8xSrEcRqxhQWbMzH/xV+m06WkV0w1nAegNz/qiOM3C5Mxww8FMI+ALwDAwsaKzy8QAyHhxcsQpppuiCaTb/7+FgOxyH12/RToJCGX1kTrbbul6PyVZO3QEZGBsIiIpCeLn8/lN0uLAzAGgDFbKukJP8C6KWpPg0aNMATTzwh8rhWrVoVXbt2xfTp0y3sX3vtNWzevBlnz541pg0fPhwnT55ESkoKAKBnz57IyMjAtm3bjDbt2rVDREQE1qxZI1mPv//+GyVKlEBycjKaNm0KAKhevTp69uyJN954w2gXHx+PDh064N133wUABAcH49NPPxXNu1C8eHF88MEHGDx4sKo2KKy4dAqWvXv3in4bDAZMnToVU6dOld0mICAAn3zyCT755BNZm8jISKxcuVKx7NKlS+O7775TtKlRowb27dunaGMPVuOEBVSMHKEFFsKOhYVw0UD1+Wvtt1bPsNzEFVJ1sFYPk/PWOzsb+M83kouHXmJTb7FRCAsOASmxqscwHNnZ4tEkhE/z9TII/42nXXuURphwlBAu6pgPgerv7y9yignk5OTg2LFjeP3110Xpbdq0MQ7bak5KSopoKFigYIjWxYsXIzc3F76+vkhJScG4ceMsbAQnoRTp6ekACrSOQOPGjbF582YMGjQIcXFx2Lt3L86dO4e5c+eKbL766it07NgR4eHh+L//+z/cv38fzZs3ly2rqOBZV4rCjBoFpcMQas4WwkUJDokoOtgcG2z+W60QFjAfPULJK6wFk3NYbtLbQJgIYdOLiRAioTV2WE26nXiiEBSu76af7izqnVc3bwcsQKlSpRAWFmZcpDy8AHDr1i08ePBAcvhX8872AlLDuEZHRyMvLw+3bt1StJHLk4gwfvx4NG7cWPTW/OOPP0a1atXw6KOPws/PD+3atcOCBQvQuHFjo81XX32FvLw8FC9eHP7+/hg2bBg2bNiAChUqSJZVlODJuV2EYniElFdY5yHUhE+7hDB7g42wCC4aaPIGS6VZE8Jq8tb7qcvE8+ot5CsRPSfyBlsLZ3DGA7IV77CAJ3qJzQWxrXjiw4CzuXz5sihMQsorbIrW4V/VDNGqJc9Ro0bh559/xv79+0XpH3/8MQ4ePIjNmzejTJky2LdvH1588UXExsYa+1RNmTIFd+7cwc6dOxEVFYWNGzfiueeeww8//IAaNWoo7ndhh8WwC9AshCFtokUI6+4RlqmbJ91w9IKFcOFBSVs5RQirCY8wtVUSxlIeY3MEIWz221vqRiwV1yvE/ZqvN99GD1SKXzk8URR7Cu40gYhW1A6DGhUVBW9vb8XhX82RG6LVx8cHxYsXV7SRynP06NHYvHkz9u3bh0cffdSYnpWVhUmTJmHDhg3o2LEjAKBmzZo4ceIEZs2ahVatWuGPP/7AvHnzcPr0aTz++OMAgFq1auGHH37A/PnzJUe5KErwVcHJ6BEnbGpqqxCWLFMHj7AjsdZfyNp931H1YQo3VicpcKQQFjCfwEKqPNMQCTUHpvkIEOZi1zRdqYOb3AgyUiNMSNlZCyvRGT0mnWAsKewPGX5+foiPjxcN7QoAO3bsMA7bak5CQoKF/fbt21G3bl34+voq2pjmSUQYNWoUvvnmG+zevdtiBtzc3Fzk5ubCy0v8H3h7eyM/v+BY//fffwFA0aYow55hJ6JpumUBhQ5z9ghh4/BpajKzIoQddRG0956o0FfIblgEFz6kjg+rosnRQljJ3taDUNhRCY+w7EkiJZSlxLTSSab1BFTjCbbDW8ye4gL03H8hL8c8bPhC3+mYc62bmDF+/HgkJiaibt26SEhIwOeff45Lly5h+PDhAApmob169Sq+/PJLAAUjR8ybNw/jx4/H0KFDkZKSgsWLF4tGiXjppZfQtGlTvP/++3j66aexadMm7Ny5UxQGMXLkSKxevRqbNm1CSEiI0ZMcFhaGwMBAhIaGolmzZnj11VcRGBiIMmXKIDk5GV9++SVmz54NAKhSpQoqVqyIYcOGYdasWShevDg2btyIHTt2WB1MoCjAYthJWBXCNoRHWENRCCvVRSoTmXo54kbiKKGpook15cEUbpwuhOVQ8grr8XrCfNQG03RzO1MhLBU7rLStrdgZHmENFsX6Y96WhcUT37NnT9y+fRvvvPMOUlNTUb16dWzduhVlypQBUDAJmOmYw+XKlcPWrVsxbtw4zJ8/H3Fxcfj444/RvXt3o02jRo2wdu1aTJkyBW+88QYqVKiAr776Cg0aNDDaCEO5mY/6sHTpUgwYMAAAsHbtWkycOBF9+vTBP//8gzJlymDatGlGoe7r64utW7fi9ddfR+fOnZGZmYmKFSti+fLl6NChgyOay6Nw6TjDhR1hfMT0O3fEMUnWXgtKdJqzN07YQgiryUhBCHuSCFaLmje4TOHE/L/XHBYhla4keJU8v+af5pNnmH83D5GQWye1rZC/XF2krgHmccLCYjqGsGk8sXm6XLyxmg55UiepzkK5MIliNSLUWfubkZGBiIgwO8YZ3gAgSMca3QPwjOb6MIUT9gw7GxuEsLmpLeERgH5C2BG4g+h0hzowzke1ENZygCjZKnmUzdfJeYWVPML2hE9IiWDT36ahEUqeYfPt9MLBXmKgaHmKPWsfbZ9CWT4/hinAk84Ez0etEP4PNXHCUvdEVSNH2OER1vsCyiKUcRW6CWG14ldteITabbQKYjlPr2maXOc50/GErQlSU6+vo3HQBaSwd7TzLCHMMI6FPcPOIDsb8POzTJPD5CaipF2V3mQ6SgjrDQthxhWo1mlqDlB744SVwiPsqaOWk8vHR1yeeQNJTawhFfqgRih7GF7IL1TCsTDtC8PoBYthZ2PNYyMRHqG0qerO2yyEGUbxfLFptBe1nlq126uxU9NxzxpSnebMBbGQZrqN6ae74IT6eHrohKfWm2GcBYthZ6LxhmVNv8qF9Vl0mNMSZCyRMQthxpNRo5U0C2GtQtlWMatnXLD5aBFS6VJjAws25p+O8AI7ISbYHjxJFBc2j3bBsGquHVqNKbywGHYGUmESAhIiVKrTnDUUO8xZy8iDhLDSfZIFNmOO7kLY1nVq7ZVCJKx5oc23USN+rdkK66Q+Tde7sYB1BJ4kihmGsQ6LYTfDtNOcltEjACtxwnbUxR1Qc69Vup8zRQu12sxhQlgPr7Da7dXWyRzzE0bqt9Q2SutMh0wrAgLZnUWxO9aJYdwVFsPugkSnORs21S1O2J1mldPjnmrPaFOM56Dl/1I9UoDWkAlbYo1N06TG/bUXtV5iLUOkqRG8LIqdjiPDI8zPGXfYX4bRAxbDboTaTnOmWI0TtjE8wl2QG/pKbVvZqyesjH7HuBF2C2F7vbbW1jvitYUeHefUhEiYfpfrrGCtXCncPEZYK64WxUL5zooXdm5cst7TMefomBfj6bAYdgb376sbBw3aQyPMs3TXOGFr1ZFCdr/MfsvV19HaoxDdwz0arf+DQ4Wwq0aTkEJL3JDQiHLi1Nlxwx4uktVcnxxRlivKKXwd9ZiiCB/BzkTh4m7LTHOm95/CFCdsfl+15WLvjNhh07huxvnYor90EcJq/3hHjiahB0qiVylNKW5YbjQKNSi1iwefaMLkHY4QrUp5OnPCkMI8OQlTNGDPsKtQ8Apr2dz8uzvGCWtBLiwCgKRbVu0sfbaWrwYppz+jP/a2r25C2JZ1anFkvLDWEAlhvdR3rWkMAP1iboum+OTpmBnHwWLYlSgMpaZ1aGBZ0aj0utHNblr2CmF7RLD5NraKYjdrUo9Hr/Z0uhC2tROdnvZqMQ2RMP0tZSPlFbZVEOfl2eZJ1niiyQlOdxCUWmOM3aHOcnC4BOPJsBh2BRLeWK2hfaa/ReER1l7HyrzidPVFTJUQVmg3vd+mcmywa9Gzze0Wwu7eiU4KNR5ftb1D5YSwnh1wTQWujk+VStc103WuFplqRLEtddRToObDy2odWBAzngqLYWdhrQMKtHuFJcMjpMqU++1k1DigAJmLvhUhbKveUNMkWu7N7B22D73bzu7h09yhE50eZdgbIqHGxtzLq6dAlvptBS2izF2EsatFOcMUVVgMOwN/f8lkNfGupkjpaNWjR0hl5CKUilcjhOW8wVLtaG1XPdEDLFVPD+5fZMRpQlhNSIOt3mC14RJS6ebxwnr8qVoEr5qQKmteYUecRE5+whSuyyxMLXGtd1jv6Zj1zIvxdFgMOxM7hlJTdCxrCTCWuKl4wmstJW+wUhuqcZib2tqyzpGoLVPJzt2FsiPa1SVC2Bru8kfICWRrsb8q3m6pytMcW0IkHBRWYUphEcWuCF3gcAnG02Ax7CzMbiC2dpozxabJNUxwt4uV1E1Hrp2kxLD5dwHz3VfyGruLINazHHf1JDtVBAP2d2rTKpId0YlOCR+fh95lKbSESAg2Ut+lbExDJPSIPTIN6bAjVEIPCosodjYsiBlPgsWwC7El7E/4LAyjR5hjbfIMNWJYaXspUeyOTeKMOikJfleVbS+ahbAW8eoob7EjMI8PtuYJttaRTsk7rLSd1vX2PIlKrNdbjHmyKHZ2RzpHlMswjoTFsDOw0yss66DxgE5z1lC6WCrFBqsJkRCw5w2sM3GHv0pLHbRE5zgSqzdme4Swrd5dpfyV4oUdjZZRJMzXyYVJSA2PZs8f7+YnqieLYlegnyD2gb5jA7P8YR7CR4OzMBPCtnqFAfeectkcazcM83rIaQhzASwngqW8wErhhe7qHfYEXN1uqsSIOwhhLTjKw6w1REKwM/+utoOdHkh5t6VCJ8ztTXCkZ9JdRqBQi6u8w0LZDOPOsBh2BjJCWHevsJpM4HghrMeFz5o32FrbmYtiZwliW/NxtbD0JOwaLk0vIazl/LOlDL1EsZwIVhsiYS1NadIMNQJZmHjD1pPQTZ5mtYpDV+HKsAVPaB+m6MJi2EnY4hGWupdIdpqTcoe6oNOcloudkkdYrQCWE8RqvcLugjvWyR3RdDN1lRDWO7ZYy5OzKbZ4f62tlwuPsGWUCTkcECLhLAHoKZ5ivdrDUx4AGEYNLIZdhC33NpsMTNIddUOw94KoNiZYrS6QejaQstF6z7a3f5Be2xRFHD55hho7W4SumnL1iBcWxK/UiBL2hkiY/nbWAaslRMINn3jdPa7YMzu28TjDjONgMewE7Jk6WFWssAs7zdlysTfvQGiPCDa/70u9tXWT+yNjA3Z7g+XStQpXPTy+Uq8/7EWtuFW7jdowCWteYWeIZzeJHVbCvEx3Esd6tAl7h5nCAothJ2GPJ1gxVlhJ6TnIK2zPxc/a5BlqRLCSI00IQRTslZxIatLV4g5eYWfdlJwhKnQRwXLrtAhhrSJX67b22FtDySOs9uCTuhCZC2Gt+diLlhPbBHfwhrqbOGZBzDAFsBh2AtnZgJ+ffY4hm0aQ+A9X3wDM6yAleq0JYsBytlpzhF03FcSmZWq5f3qSN9nZNyK15Wk97mzaD61C1FVCWG+hawtavMhyb5uUhlFT4w3WclLZEyIhcwK7gyA2xR3ijIVy3aldpPH+b9EzP4YpgMWwk9AihGXvKVIbyrmQ3UjJqfEGy4lgUy+weRuqEbd6ilp3FM/u7JFxaN1sCWlwlhDWsp3Uaw57hbNp3LCUR1jjw7SkENZb+Jqi5mSyw8bdBLGAqz2s9rSLq+vOMPbCYtgJCJ5h4bsWbLqfOLDTnK0XPDnxKyWC5TzASr/NHUJS3mHT7TQ4kxyGJ3mf3QZbYnf18B5rsXEHL7AS5sOqqQizspquJI6dGSJhvp4FsSZYEDNFFfe7GhRitNwjVXWck9vgP9zhYi8VHiG1pKU9FMJqBLM5arSJHiGcnqyBPB5rje+uQtjWPG314ALSXlwpe7WCVypO2B4BrFUg2/PfetiJ6errthfyWdQyRQ72DDsJpWu5qkgHW2P9dETxAinhgTENjzAXveYi19QbrCakRE3IglLssGnby303Ld/c2WSepmadXF212JtT6L0x9ohTvYWwHqLKWoiEo7AnXlhJCCttp2YbU+x5VWJtW4n17uodBtzjvLalfRxbb1/oOx2znnkxng6LYSdw//7DMAlA2z1V1YXFCV5hq0JYpmxBAAPSQljwBJtmo7Z9pISreVNITXCl9btc3nqLYrcLmbD1VYazytbTQ6uHELbVK+wozMcc1hovLBdnZM077AYjR6g9ody585i7CGKhLmpxh3ozjFZYDDsZNfdGVR3nVG3oWpRCIkzDIQRb0+2kULN7pp5f89ElbBHEpuXKCVw1Xmo12Ool1vXmY6t4s+UYtUco6un1dZQQtgVHi2e18cLmQtgW0euM65GWJ1iFk9FdvcSeKiw9td5M0cX9zv5CilxIo6bBIKxl8B9OvagLN5j/6mEaGpGWJvYGC7+V4oJt0SxyIYLWwjDUfFfzWy7NfJ1Wj7cW7P7PtVRQj3LsEd3uJoTVbmtL/dSst8UrqxQvLCeE1ZSpJgZZa4c9AVseStT+B3DfkVncQaTbEkfsDvV2BAsWLEC5cuUQEBCA+Ph4/PDDD4r2ycnJiI+PR0BAAMqXL4+FCxda2Kxfvx7VqlWDv78/qlWrhg0bNojWT58+HfXq1UNISAhKlCiBrl274rfffhPZfPPNN2jbti2ioqJgMBhw4sQJyfqkpKTgqaeeQlBQEMLDw9G8eXNkZWVpa4RCSOE8Wt0MW++nVi8+jno1qbYeMuERct7g7OwCUWoqkCWysUC4b1sLCZQTrML3vLyHi6NFsTVhbA1b9KLNNx9niGB7saVR7f0jHPn04qx4YblQB7X2WuKEbbkeaa2fgPmJaOu2ZrizIHYHcelaQeyLh1My67Fojxn+6quvMHbsWEyePBnHjx9HkyZN0L59e1y6dEnS/sKFC+jQoQOaNGmC48ePY9KkSRgzZgzWr19vtElJSUHPnj2RmJiIkydPIjExET169MChQ4eMNsnJyRg5ciQOHjyIHTt2IC8vD23atMG9e/eMNvfu3cOTTz6JGTNmyNY/JSUF7dq1Q5s2bXD48GEcOXIEo0aNgpeX648tV2MgInJ1JQorGRkZCAsLw4kT6QgJCZW0Mb9/mL6NNF54NLiVHXHBtCqGTcqWEsGC+M3MlBaUcuih763dq+U63au9x1v7bS3d2jotNgKab+juKobtCU+wxxus1kZr+aZpSgNom3+3tl7pu1R5UihNpqHnd/Pf9pyA9p6YCieVOwhPJVwt2m2ZUCcjIwNhERFIT09HaKj0/VAK4T4K/AVA/XYqcgZQRlN9GjRogCeeeAKffvqpMa1q1aro2rUrpk+fbmH/2muvYfPmzTh79qwxbfjw4Th58iRSUlIAAD179kRGRga2bdtmtGnXrh0iIiKwZs0ayXr8/fffKFGiBJKTk9G0aVPRuosXL6JcuXI4fvw4ateuLVrXsGFDtG7dGu+++66q/S1KuPcZX0QRXaPV3JRdFStsFh4h5w0WvLJSHmOp7AICgPBw8W8577BUnlqWzExLb7HcYl6e6W/z+pijh5NSrT5z9xu5ItZc6+Z2cuu0bqPFxlo59traYm+K1PXAx0da8Mql6ylMrdXNGVh7ODHD3YcXc7Wn2BYPsbtelzIyMkTL/fv3Je1ycnJw7NgxtGnTRpTepk0bHDhwQHKblJQUC/u2bdvi6NGjyM3NVbSRyxMA0tPTAQCRkZHKO2fCzZs3cejQIZQoUQKNGjVCdHQ0mjVrhv3796vOozDDHejcBPN7hKYQif9w9cVGTkSahkZYw7yfjnl/HznhKSWsTdNNO9Kbd7Az/S58ZmYqT+kslZ9p2dbqY5pmmr/cOnMba5pCOBbc9oZuq9iz1eOrpzfY3rLUeIUdhZqwBE8Uv6Ynp9RvpTTA4zrWCbjyPHf+SBxCeIOe+QGlSpUSpb711luYOnWqhfWtW7fw4MEDREdHi9Kjo6Nx/fp1yRKuX78uaZ+Xl4dbt24hNjZW1kYuTyLC+PHj0bhxY1SvXl1xD035888/AQBTp07FrFmzULt2bXz55Zdo2bIlTp8+jccee0x1XoURFsNuhOx9Q05ZKW6kD2ousoJXGJD2vKpx9oWHF3wK3l/ze3ZwsHgYNqEsYdg24beA3FtScxFrmmYukqUErDWkhLFc3ewRxlpEsaoHKz2FmCNEnSNFsBY7d0XNE5maPJR+25KHErbGC9uDlCBWSof7C2KgqIlifbl8+bIoTMLf31/R3mAwiH4TkUWaNXvzdC15jho1Cj///LNmj25+fsH/NGzYMAwcOBAAUKdOHezatQtLliyRDPMoSrAYdgL37wO+vjaEsXnYDdpaiIEc4eEPxbCPz8MQCSFP4TMz8+E2prHI5o62gACxremwalLeYWufgr1pfdQgJbxN87CWZr5PUqgRxQ4f5siRx6masAZbt1VrY+82rjqPtQhiLTG3egfUW1snh9KJobTeRkEMuL/gc+WQZp7SRuaEhoaqihmOioqCt7e3hcf25s2bFp5dgZiYGEl7Hx8fFC9eXNFGKs/Ro0dj8+bN2LdvHx599FGrdTYlNjYWAFCtWjVRetWqVWU7ABYlPOuoLaTY7Nw12dBVFyDTWGEB0/AIa+JYEMI+PgXe35iYh4uwzlw0msYiZ2Y+FMZCuunvtLQCG9PFNA+5T6WQD6X4Z2vfpdrJFLmHB2sPFdbWWz0+bD0IHeUFtmeH1TyBqbGR286e9c7G2v8qFYhvixB2B7S0vdKxo4CtQtPWw80WXC1G3TY0y078/PwQHx+PHTt2iNJ37NiBRo0aSW6TkJBgYb99+3bUrVsXvr6+ijameRIRRo0ahW+++Qa7d+9GuXLlNNe/bNmyiIuLsxiS7dy5cyhTpozm/Aob7Bl2E0zvK4oXEze6AZlfdJWEoBSC2A0OfthpztRLLORx8SJw6xZw/bpY4JqLVzlvrul300/TsYeFNPM4Ynu9xUpvr9WEUNgSPiF3iFj1GukdLqEFteXqIUZt3Uc92kbPIdXUhkZYi6WVs5X6bet25r+VQiT0vMZZ21+5bRTqYWvYhDMv3W7fZ8AmXD8d8/jx45GYmIi6desiISEBn3/+OS5duoThw4cDACZOnIirV6/iyy+/BFAwcsS8efMwfvx4DB06FCkpKVi8eLFolIiXXnoJTZs2xfvvv4+nn34amzZtws6dO0VhECNHjsTq1auxadMmhISEGD3JYWFhCAwMBAD8888/uHTpEq5duwYARtEbExODmJgYGAwGvPrqq3jrrbdQq1Yt1K5dG8uXL8evv/6Kr7/+2ob2K1ywGHYxmi6QMl4ZV3oClDyownoB8+qHhwNRUQ+/C5/FAh7ebIT80tIKxLC5J1iqY56U8BU+lb4LAlv4rSSEpcqzppWkwjTk8tASV6w2HVBxk9QqiO0R0Hp48rTkZY+YtTV/a95tZ2OPEHaFV1iPcuROXGtCWWG9VkHsKh+Gq8ImPDVkwho9e/bE7du38c477yA1NRXVq1fH1q1bjZ7V1NRUUchBuXLlsHXrVowbNw7z589HXFwcPv74Y3Tv3t1o06hRI6xduxZTpkzBG2+8gQoVKuCrr75CgwYNjDbCUG7NmzcX1Wfp0qUYMGAAAGDz5s3GWGAAeP755wGIOwSOHTsW2dnZGDduHP755x/UqlULO3bsQIUKFXRrI0+Fxxl2IML4iIcOpSM4OFTy3iIlzryQb/k+XTAy3fg/HHXBsXYRNQ2RMA9RkJpcw5TwcODRRy3DIbyQX7BheDjy4YWLF4FffwWuXHn4KZRx65a4A52AaZsKDiiptlYSxz4+2sS06afU0Kl6hlnK3Vi1piv+v3oKVUfn7ejQBXu81uZpWsYX1rpOKc0a1g40LcJYq1dYz7y1ngTW1llZ7ylizx08xGkZmYiICLNjnOFb0H+c4SjN9WEKJ+wZdhFy13tFj50ErowVFtASGgGIxa/RG4x/gbRsUSbZAZFGL7MQGnH9uthDnJX1r1nuvjAYCl5/mQrezEyxyJUTw6Ye4Lw8cec7Yb/Mv5s7kExFsZTXWso7bM0zbJq/kkdYiwNM0Wtkj8dXCb3CIfS00WN7d4oV1vLfqRGPagWnO6PkBXaih9hVuLJjnYCry2cYJVgMeyIuvhmZhzAI3wWUwiIFwWkqSosF5APX0x5m9N/NJy2tIF744sWHnuHz5wvEMNG/ADIBmN70vQEARAXTdmZl+SErq0Acm4pdoQOclAA2FcjmIRNyolhAThSbt4+wzhGiWKtQtiqIpSpvK84UuM4SwVrycMQUzHLCV81/p4cX1VZPrdY62ZKXFqzECSut1yMkwFqotx64gyC2j4eODj0ouE8wTAEshl2AtVfnbuVl0oCamFnzJTwclrEUMTH4F8Vw/XpBKIQQKnH+PJCa+i+AOwCyANwDkGtSgjB3vfDpDSAIRAWiODtbWRQL+2Auik3rr0YUS+23qZdZKk+p70L+Sr/tTQN0iCNW44l0VriDO4hgPcuxtz72ilG9xam1EAktOEIcu5GX2BEC2fMFMcM4BhbDnoALQiS0XDCVQhoBS60keIWNw6almaz8L4bi4q9ib/BDIfwXCsRwDgqEcBYKRK8wM1EQHgriIAAPAAQA8NMkioV9kRLG1rSf3P3SGeETajzCDgmbsDeswlVC2BEeYGejR0iL0gGrZKNlvVZc9QbMBYJY7V9ozYGtBhbEDGMJi2EnoeaNpKoLlJuESAio8Qabi0rz0INipso4IADXrnvh+vWHQvjXX4ELF3IBXANwBQVC+AHEnmFB/ObgoSCGyfrc/9b5gSgI2dniV2SmNyMpYWyaLthLTdmsBkeKYod6ia29erdVlFl7srBnez23sSd/pRAJLXXRQ/hK5WktzZbwBxdfq+zCTkEMONZZYa8o9kRBHBAAKEz0phki1z/HMu4Di2HGJswjG5Q8wlKiTiAtDQiIKQavgADko0AEX7xYIIJNPcNAKoCbKOgBLHiFc/5bgIfiV27uerH4FbzEgK9I/ArhDFL7K6cZzEMn1GKvKFbyCtvjOQac2LnO2UJY77ufu9xNbflP1Dyh25uXs/PQEzWCGNDNS2zLX2jLdUfAEwUxwzgKFsNOxtSzaJ6mBU/owQxYeoaFNODhhT8tDQgI8DKOFCGIYGEoNaKrKBDCtwDcwENvryCKfSH2AKsnKwsWnTLMb0rWRKQ1h6kUpu0iOA2Vpo229t20fFtEsnkaoMJLrCYmxlq6PWjJz11EqzXsqafaNla64OgRLiGHLa9R7C3TGejoJWZBzDCugcWwE/D312BsLS7TzRHCB8zThN2S87oKQvjWrYci+Px54M6dNDwUwTcBpOFhmIRAFoBAk99KvYQtPccFr8ukBbGWG43SjUzKS26+3ryTnek2gPJ3wV7Nb/PtldIAhRumIwSuaWXsWW+rrRbk8tWz7lpR+6eq2VYuzZHbqcXWMrWitv1UeIkBxzkx7AmbYEHMMCyGXYrphaswXYxMJ6wwvUgrveIXhLAw5bLwWRAXfA9ANh6GRQhC2DReOAcPp+v0gzhm2M/MVr0glgphUMJ8G60CWe94Yj29xKoFsb0i2ZOFsBR6D6mmpX31FsLOeiB3pwd/LUrTinhWEzphz+ljq5fYEwQxxwwzjoTFsBORCpEoLMiFCsilm4chCJNoCKJYmGWuQPgKItg8BMJUvMrFCgNCx7kCcmVsczUJYvMblpI4NbexFklgT+iEUK5WL7FUmuqwCbWCWA9PsqcJYWfmZQtyFyNXCmFHoEfddfQSu6sgBgqXY4Zh1OIZgaeFGHe8v8hdDNW84jP1bJqnm6dlZz8UvYIQFmaZy8wUJtaQEsFqMQ2lyDH7/gCWnfDEdRMWQZiapgk3KvM003XCkG3W7ORshDxM15naW/sut05qvVobQOY4sPVAdtQJ4AnhG/Zgb7uZvqqxJ2+9/j93vBBKodPDmBrBaU+T2HMYekp/FIbRE/YMuxNKVzCTK6OrL1bWLrSCV8NU/AqiztRDaSr4TAWx8Fkww9w9SIlVMd7/fSp5hwF5r/DD/AXvsJTn11rIhBpnqBbvsKO9xObr1doAMq9VldzlWnB0mIUr89Szbra0kzWF5SiBbE/nOVvLVLPOFrSGTcjYOsNDLFO0VTwhbIJh9ITFsJORCpUojBcd84u43L1QEMLmHtiHmApYId5XShwL4Q3WBLEpgufYfNi1XKMgFhAEobAfSuEH5t+thVrIfZrburKDnZSNTYJYj1AJJfTO2978HDEFsylq2tOeuGFb0u0pS42tu3iRtcQjyNjqPWudhqKt4m6C2N8f8NKxqfLdZ9cYN4DFsJNwl+u3I5ETU3JiSwgjkAoPeIjQKS4IBcJYGErNHNNpmIVtvM1s1MxFL87fvO6ms9XJaTxrglitHnSkl9iW31Jpqm6YrhbItmBLfVy1D3qETDgqb1fj6Ppr9RLbIIjNr6O2UFgEMcM4Cg4OciGeep8xrbcQeqjkvFEKT5SKg32IHx7OJueNh6JYbgmG5WgR5qNLqEdtDK55PK/c97w8yzhirZ+moSVS9VDz3Z7f5vkBEmE7ehzYrjo5pJ/IXIej28FWIezIennihVHtcSNj4+gYYoWirZIPL5eH5jGMo2HPsBPQ8y2fu1+UlLyQ5ihdnAMCgKwsQcQK0ywLCF5iQDxShKln2BvWBbC559g0L3E9zffLPFzBdJ01D7G5d1ntp1Q+csO4qfESS9Vdap/V/LbwIGn1BruDd9he15s51kIkrD1lOBJrFyFbL1KeKGT1RI0LVsFDDChf4+09TbQ4ss1xtZc4IIDDJBjH4d7KqpCheAGypgzdEC3eYGveY/P0gnW+AALw0OsbBCAUlh5hX7PvghA29QpLjy8sRrv3WEDKwy3nIQbUe4jNw0ek8tHqJbZlnZrfVj3EWo9jKXtHnQt6C2G9y9ALpdc0pjb2rHcXXPl2wQ4ba4LTlc3v7s4YhrEVPrIZXRAu0NZEsDUBbLoEBgoCNhBAOB4K4kAUiGRBKJuK4EBIC2EBqTAKdZjev0ydftaEsFyaXMy0NQFsLWzCWsiGVL30EsiaQib0fGXCyCMXyyRnZ81GK64cSUJrPnKLVtxcENsTDcSCmCmM8FHtYgpD5wRTIWyaJvdbSRwLdsHBwjpB7ArhEsFmaYEmiyCKpeKEzUWxeYiEepQErpyIVfLsyuVj7VMuL7k6Sn1XY6dlHWDlZmlNAKsRyK6KZZVCTlHoOYqEPSELarbVYucIXP0QpNeDgi242EPMgphhCuAj2slICUJPRGk/rIVHyG0nOJCEbcLDTb3Dpl5gc1FsKo79/ltnOqqEqRCW8grbFh4hJ2Sl0vQSxPaETaj1Ektto2Qn9VuEu3uAbVUEzgx7UNtmWr2Zetq52/+qBj1Cd+RQ635VsFMjiPXwEtuCszvWeXsX3CP0Wrxt94cwhRAWw07CE+8TWjAXx3LhEaZp5uLXfPHxKfg0GIqhQOCaC2JzESx4j829w+ai1/Qq6Gf2qT5sQg45oaq0To0gtjdsQq4uSt9ttdM1XMLdvcPmSHmF9RDOSk+WWlWRIwSzlrJttXX1fyvUwYleYme8PbTn8GQvMVMY4KPY3XHBxV/rxU1KCJuus7be1M50CQ9/uIgFsRASYRo+ISWMBVEMWAph+0UvoN6rq8ZGKS9nh03YIqLNURTEjg6X0IKjYkIdhT3xrLaIZk/EGZ5sR4hiBUGsJIpdGTIBsCBmPB8+gj0Id7vgWHPOKXmGzUWyuTfYPHZY7CEOglgU+0os5sIYsBTCtnuFlW4ctghhJUGsdlu5/OztXGfrd0Bj/LA1tAhiR4o4PYSwVB6OrLMjPcdFHWsPJlqPFwV7dxfE7naPYhi18JHrBPz9XV0Dx6MUHqHkGTbvaG7qFTYVxMJvy/AH0xEkzMUv/lsvLFKeYst4YYNBXhRL3Sykp5G23MZWQaxlW7k0W7zEUt/lUG1vT7iEVlwh5hw9/bJWtIZD2CqCWTgXIBfzpRU7BLGrYogFHCWI5ZrWnoVhBFgMOxFzMVgYRpIwRc1bcGueYVPvsKkgFn4HBvr+5yE2D4XwllkAsQgGpIWwpQC2drGUumloEa1Kecp5c9XmrbcgVrteap3HhEs4CleEVNgigh2Bo4dVK8zYKIgBfQQxe4mZogQfre6AK+MP7URJq8iFSpjbm4dGmAvg8HBxuMTDkAlhVAnzjnPmC2DpNZYWwkpeYSW0OgTVCFmlsYydLYh1jx82xdqd2x5BrEUQ2os7eIVdIYL1FNLu/mDjbFwoiPWARTHjKfBRykgidQGTu/hqceapfX0lJZCFcAnBY1wgXE3DJpQWU6wLYXtuJFqFqzVBbOtYxFJ1EvKUSrfVK2xTeIWWcAm1NvYKYnfA1rq6iyeY0R8Xe4j1gEUx4+7w0cnogpQAtuYVNkXJO2waMmEeQmEwCGETakWxdo+wUt3lRKatyIlJeybnsFZXW73CWvdB18k45NLswREC0RY1oVXUulIEs6h2DoVAENuLrXHBSgvDCLAYdmfc8GzV2ptZShArXZSUPMGCCDYVxJZeYvPwCFOk15sLYT2aXW2ssJYwBGuCWGveagSx2jS1N0yRINYqgG31GKvd1p2Qe7q0VQA7Yv/duU21PrV5AiyIGcZhsBhmdEWtIJayURsuIZde4CX2NRG31sSxdSGs5iaixTtsLZTBdL3Udy2z3snVUYsg1iN+2OZwCTX2eodLuJPAs0fIsutLHZ6m8uwUxHqEfzFMYYS7+joJT7wv5cNL8gLrhXzFV97CvppePE3TpNoiO9tS4Arb5eU99ASnpT38lMurID/tHeHU/kdK5dqCeX6mv6W+5+UVtJXUOrlPpXwFQWwtT7k6q2kPUxu54wrAwwLlfqvZRu12WvLzFJxxoXHlxUzvk89ReWopG9BWvkJ9rV2bhaJsPbxtqa5e+PvrOziJO/R3ZdwH9gw7GU8UxbaixhOhxuPr4yM9zJq5/cOxiG17kyyV7kiUvKe2dGyzFi4h9V0pDMNaGXqFTugSLmFPmlbcJQ/z/PSql9QTqS1eainl4oiTSs2Bb2sejkTpZNSyrRlqhuzkFwcMI8ZpYvjTTz9FzZo1ERoaitDQUCQkJGDbtm3G9USEqVOnIi4uDoGBgWjevDnOnDkjyuP+/fsYPXo0oqKiEBQUhC5duuDKlSsimzt37iAxMRFhYWEICwtDYmIi0tLSRDaXLl1C586dERQUhKioKIwZMwY5OTkim1OnTqFZs2YIDAxEyZIl8c4774CI9G0UD0bLGMlSYRLmF2Ole6+p6DWPH1YKpZDLS8293ZE3CrX3biVhaYtwlQq7MLfTOwxD7rvi2MNS2CqI1eRlq41eZdmbv9YytJwMRUkxOVMQK10E1NbDTkEM2P73atXuDOPuOE0MP/roo5gxYwaOHj2Ko0eP4qmnnsLTTz9tFLwffPABZs+ejXnz5uHIkSOIiYlB69atcffuXWMeY8eOxYYNG7B27Vrs378fmZmZ6NSpEx48eGC06d27N06cOIGkpCQkJSXhxIkTSExMNK5/8OABOnbsiHv37mH//v1Yu3Yt1q9fj5dfftlok5GRgdatWyMuLg5HjhzBJ598glmzZmH27NlOaCn3QumVm72C2PS3knfY3Ctsvgid6qyNSKG2ns68/0sJYCURK7WNXD5K6UrflQSxUv52C2JTbBWsakSzPfnriT35az1QbfHsugKlA1aP/NTYO1rlqclfh3poEcQsitWzYMEClCtXDgEBAYiPj8cPP/ygaJ+cnIz4+HgEBASgfPnyWLhwoYXN+vXrUa1aNfj7+6NatWrYsGGDaP2+ffvQuXNnxMXFwWAwYOPGjYplDhs2DAaDAXPmzJFcT0Ro3769qryKCk4Tw507d0aHDh1QqVIlVKpUCdOmTUNwcDAOHjwIIsKcOXMwefJkdOvWDdWrV8fy5cvx77//YvXq1QCA9PR0LF68GB9++CFatWqFOnXqYOXKlTh16hR27twJADh79iySkpLwxRdfICEhAQkJCVi0aBG+++47/PbbbwCA7du345dffsHKlStRp04dtGrVCh9++CEWLVqEjIwMAMCqVauQnZ2NZcuWoXr16ujWrRsmTZqE2bNns3fYDK//RpBUg5wIlkqTWoSJN6S8w0peYjV5u1InSN1Q5Ly31sIa5ISrGi+xGkFsrU523RitCVm1nks9BbEcUtvaEtDoSEHr6gPbmeityByl8GwR53as1+qwsFcUO1IYq7l+a1208tVXX2Hs2LGYPHkyjh8/jiZNmqB9+/a4dOmSpP2FCxfQoUMHNGnSBMePH8ekSZMwZswYrF+/3miTkpKCnj17IjExESdPnkRiYiJ69OiBQ4cOGW3u3buHWrVqYd68eVbruHHjRhw6dAhxcXGyNnPmzIHBYNCw54Ufl8QMP3jwAGvXrsW9e/eQkJCACxcu4Pr162jTpo3Rxt/fH82aNcOBAwcAAMeOHUNubq7IJi4uDtWrVzfapKSkICwsDA0aNDDaNGzYEGFhYSKb6tWriw6Utm3b4v79+zh27JjRplmzZvD39xfZXLt2DRcvXpTdr/v37yMjI0O0FBW8jMOqK4tj4QJk+il1gdIyioSUjWBnXoYr0Spa5eyUtjf/VApL1Cq2tXim5fI3/655IH69BbEt5emdh5r1tohmpgBbFZreCs+eetixXosgBuw/dEybrbB5jWfPno3BgwdjyJAhqFq1KubMmYNSpUrh008/lbRfuHAhSpcujTlz5qBq1aoYMmQIBg0ahFmzZhlt5syZg9atW2PixImoUqUKJk6ciJYtW4q8uu3bt8f//vc/dOvWTbF+V69exahRo7Bq1Sr4+kp3Ij958iRmz56NJUuWaG+AQoxTxfCpU6cQHBwMf39/DB8+HBs2bEC1atVw/fp1AEB0dLTIPjo62rju+vXr8PPzQ0REhKJNiRIlLMotUaKEyMa8nIiICPj5+SnaCL8FGymmT59ujFUOCwtDqVKllBukEKMkjM0FsdR6JbEs1aFOjaA2z89W9NIZcjcLa15hWzy4WjzDaoW2VDlyaUrfNY09rCVNr+205Gdrd3c93FeeKIJtqa8tCkuPcAt7RbW95duBljd4gL6HUmERxjk5OTh27JjIIQcAbdq0MTrbzElJSbGwb9u2LY4ePYrc3FxFG7k85cjPz0diYiJeffVVPP7445I2//77L3r16oV58+YhJiZGU/6FHaeK4cqVK+PEiRM4ePAgRowYgf79++OXX34xrjd32xORVVe+uY2UvR42QniEUn0mTpyI9PR043L58mXFunsK9k6jqcZbrNULrMZDbOolNi3HWrlKNwFresqaFlISv2rie6XSlASxFlEs9ak0/JBaT7Hmm6BeglgvIe0M77C9eXuaCHYEzlBb5m5PNYueZduyzgRbvMSF/dAyf5t7//59Sbtbt27hwYMHik47c+Qca3l5ebh165aijZLjTYr3338fPj4+GDNmjKzNuHHj0KhRIzz99NOa8i4KOHWcYT8/P1SsWBEAULduXRw5cgRz587Fa6+9BqDgoIiNjTXa37x503iQxMTEICcnB3fu3BF5h2/evIlGjRoZbW7cuGFR7t9//y3KxzQWBygYgSI3N1dkY34g3rx5E4Cl99oUf39/UWgFI8Z0DMyAgILrt/ApYPrb/LvpJ6B+nMjs7AKRKtgLeSjdP+y9AShtL+y33DrT7eVsraWbrldqX6ltzD/NxzU2z1tqG/M6WltvMfaw0oFhmqa0g3LbORrTg80UvevizipFzwFh9ULpxPMUdNgHNWMRm+OK08gcf39A5s2/TfznmLV4g/vWW29h6tSpsttpddqpcazZ4gg05dixY5g7dy5++ukn2e02b96M3bt34/jx46rzLUq4dJxhIsL9+/dRrlw5xMTEYMeOHcZ1OTk5SE5ONgrd+Ph4+Pr6imxSU1Nx+vRpo01CQgLS09Nx+PBho82hQ4eQnp4usjl9+jRSU1ONNtu3b4e/vz/i4+ONNvv27RMNt7Z9+3bExcWhbNmy+jdEEUIubMJaaIQt3mHzvEy9xFLl2oKaba15g615VuXSTLfNy5P2ENsaIiHnIdYSSqFmP2TDJQB1nl45O/NXANbysdU7rPXg0cvL7OmiTkCNwlJ7gqjJz9WKzlFoPB60eoiFIgrLYWfK5cuXRW90J06cKGkXFRUFb29vSUeZnJNMzrHm4+OD4sWLK9ooOd7M+eGHH3Dz5k2ULl0aPj4+8PHxwV9//YWXX37ZqFl2796NP/74A+Hh4UYbAOjevTuaN2+uuqzCitPE8KRJk/DDDz/g4sWLOHXqFCZPnoy9e/eiT58+MBgMGDt2LN577z1s2LABp0+fxoABA1CsWDH07t0bABAWFobBgwfj5Zdfxq5du3D8+HH07dsXNWrUQKtWrQAAVatWRbt27TB06FAcPHgQBw8exNChQ9GpUydUrlwZQEF8T7Vq1ZCYmIjjx49j165deOWVVzB06FCEhoYCKBiezd/fHwMGDMDp06exYcMGvPfeexg/frzdPTAlr8WF8QqjgHAhltMk5hdduc5wWsIlTPM0F8Wm+WrB3N4eZ5hSmIRS+IT5b1PRKiWCbRHCasIxlOqsViQDKkJy5P4oqXStglhPlA4GW8surGqEcQm2CGKg8B2GwtwHwiL3dtfPzw/x8fEihxwA7Nixw+hsMychIcHCfvv27ahbt66xg5ucjVyeUiQmJuLnn3/GiRMnjEtcXBxeffVVfP/99wCA119/3cIGAD766CMsXbpUdVmFFae9y7px4wYSExORmpqKsLAw1KxZE0lJSWjdujUAYMKECcjKysKLL76IO3fuoEGDBti+fTtCQkKMeXz00Ufw8fFBjx49kJWVhZYtW2LZsmXw9vY22qxatQpjxowxBqR36dJFNByJt7c3tmzZghdffBFPPvkkAgMD0bt3b1HvzrCwMOzYsQMjR45E3bp1ERERgfHjx2P8+PGObqYih7VX+gJSbwethRKYYm4jhE4ImIdQmNpJ1dkcc4+ztfLV1tOanVT4gfn0yub1Mg9D0fIpFzJhLSRCav+U7ESVlvsT1KSb/rb3Xa/WusiFSwjbAOrqY6vyUPN05slz0mqNIVK73t3Rsf62hEwIODt0IiBA3zAJE9mgmvHjxyMxMRF169ZFQkICPv/8c1y6dAnDhw8HUNBv6OrVq/jyyy8BAMOHD8e8efMwfvx4DB06FCkpKVi8eDHWrFljzPOll15C06ZN8f777+Ppp5/Gpk2bsHPnTuzfv99ok5mZifPnzxt/X7hwASdOnEBkZCRKly6N4sWLGz3NAr6+voiJiTE6AmNiYiQ7zZUuXRrlypXT3hiFDAPxwLkOIyMjA2FhYbhwIR0lSoQa04XrmOjJXIXqsrcjm73Y6kmQw3R/pLyWpktaWsF92zzN9Lf5emueUPPvtuoCKS+zVuSEvpRzU2mdVF5K9ZPLU+rT1LOupU5q1pl/lzzWtLwal/uTldzTtr6yt7bOmYLTltcTjqifXD3UhKhoCWOxNXzFk8WwA95y2HNvUSuIMzIyEBsbhvT0dONbWLXbhYWFoWvXdPj6qt/OGrm5Gdi4UXt9FixYgA8++ACpqamoXr06PvroIzRt2hQAMGDAAFy8eBF79+412icnJ2PcuHE4c+YM4uLi8NprrxnFs8DXX3+NKVOm4M8//0SFChUwbdo00TBqe/fuRYsWLSzq0r9/fyxbtkyynmXLlsXYsWMxduxY2X0xGAzYsGEDunbtqnr/Cysshh0Ii2FlrIlhQF7wmqerFcRSn+bfAfX6QA8hLLWtFsEqV7ZaUaxFCGsRxGrFry6CWGqdNRHsLDEMOF4Q69FhTc862iOG7U1TStdq444oPfnagb33F2unT2ERw0zhxLXqqgjhzNdJnoK52JETX6aL+TBpUuvl1lkTeab3FSGuWOqerrTOHtTE1JquMxX6Sr9NY35N9Y6ahwQ5WyndpOZhQ20aIHNzNv+jlNZZEw16uPDVrnPU6AqOOBDtxZn10fK2oDDgICEM2O/s8NRnC4bB/7d37uFVVPf6fxMgF26bIJIQRcEbimitscVgFa9gK0WrViqa6lGpVkERPSraVvScgihqWy9UK4r1hqdFjlopglWx/giKXAp4oceKokKM2pAAhgTC/P4Is5m9sq4zay577+/nefazZ69Zs9aaNbNn3vnOO2sQ8dBqRCYdhpPKQ1zPmtc76rV48lAFsFReVV46W6f3XKp7bo/rZMCuG6//vHlc3683Xcf7y36z/mHT8kTr4J0W/kd4G8o7z9sJusJIN68sn2ye2+k2IrBhCE6ZxzkJZLvXNw8w+buZUlwMFBXZK6+QQoGEB9odkkIeH+TZ0SVkwT9A/5XMutFhXp2qNrD5oth8pnZXWeRY54JC55sdYUKWV1a+KB+A9LsMuYg6X5ZmY2P5jRAD/m4teJcJM/KalChzrkZ2g6ARFZb+VzSwEZyJ6nhIEDYhMZxUEng0CexZNjzBmYhd3rKy1zHzymfnq9qQtE3Eil9vOu+3aqg01ebyI4h1rLtuGpsu3f9U9okwUAlinXpZkSv6RElSBLEufoVzDgnuoCLYi627lUk7PhKEDBLDRDSIjK4MsuAdTxCL5rnIBLEoSuzNk2RkdkndZ8N4QlZUj0y8ysrxGynm/Vae9DWiZxnz2DymG12VPxt2pLgxEaVh5U06kv2a938IKoxtCmLa/YlsIMtCALkBWd86wntVszvtIrKHyti+PfOlHew8mb+VVz7bBlG5SYDnJfaun0mfqL4Bf69t1vF38/K4+4rQT8x6htlvGaqdTpRfllcnT5JIgn+YDpRK4h5hSJeSEqCpKXgZ5BkmwoLEcJLQOVHnCpwTHTsAvEgUK4rh5vEKYtUyPFHsbZMKG5tRVwPEqRd0BK3OPJl4ZpdhCfQQqugKiM3DInt4TjafLS/p/3U/gjjbLBbZQEx/cPd/ZUtw03UNkWTo2ihmsuXKPmp07nZ77RI63l5ePm/5rI3CO2377rmtZVTo2CV09Y6OzUFn6DbdsnWtHsIh2NhpmQdHls7Lp7Jg6F41BbmPrNrpg5YPZI+4zVXfcAIUZL6PeETkB1lypMsNcuGun+9InGa41CQ67C1OZIVg87v5VLfweU02tUREFei3tV/5sTLw+lFn6DZdm0RoEWKRbUK2k/HKkOUxsUaEfWCIwqYRRDib7MS5cCDVgbeOMUaJ4w7ckE2CCBPaHZJGPhzkXXhPenngRWq9v0WBL90IsU7eoEFAk2BjkOVliLrYz7NIsqiwd9rkpRyqyLHvCLEsOsymqW4/6ObxMz9K/LQhzuhwUPGe9MivCAv7im3xWph+fHUXRYuJnIPEcExIj9FJOGlGCdMZogOtSvjyosMiocsKYtE3TzTrtk0XXptt4qc8E2uDKJ/OSBV+6pXN1xbEInFsS/iKSIIoDkMQZ4udgkfSBHPc+4cmJIqJXCKLj2BE1uHDNyCyL7iwaTq31UW36E3tEqLnrWQP3akeyPMbZbZtlQiSx89Dc6Z2CVk7OlgmRBtTtBN4l+OtHDtf9uCdykIhyxMmPv6LwjfoZbMQDoMIxWwS7Au2H7QjiDigvTcB5NVBRPNEIYsOe6d50VvRCzl4+d3zOC9YqIoMi4J8OoHBJAQITdG1SHing9olVNFnbXgRYnfaJDosuz0hqle1oePaIfzWF+cLQWQE2UFsXJDE9KdOSoQ27HZ06qT/jhqdT6dOoTWVyELySIUlg6TdkUsyvNc0u98qkSobOUIliHl5vOhEc/2cE02ixLaRjShhIoJlZfuxS6jSA40woXtloyuAg4piWX1hkW1XZC42diZbJPjKNo5AS1LEOUGYQGI4Alpa4m5Bwghw4lAF+LxpfgWx6FtUN2++KC2b8KMhdEWyyUN0QfzDXA+x38hwlKKY1xbVhwhGlkcqRALU5quaTSBRTGQTJIZjJFuPvVYOrJoncDY67F2cV4woUmxDELP1iXQQb1Vl6JaTBPzus0GjwyqRLStXGSV2f8uErSqKLIsq8whjA/sVxhSFzg4C9l/mWBDRnfppBAoiG0iQ4YtQkYSHJaxTUqKtkNys7Lc7D+A/D+UKMTadt5ybn1cXu5zsATvVg3JJJuphXHUephMto0pz4b6+mbdDqNJVv9llePlU+W1gWrbB/zAr0d2pTXf+bPpjM4jOJUkVrSUlQHGxvfIKCuyVRWQ/OaasspecE7kmKE4o3oOzzL4gCuDJxhXmleE+YCGaz2u2TvBQl6iFaNSYDNsmiwiLIsSqKLHUPiGKDOv+dtNYoo4SR1E2kZPEZasg8pO2tjY8//zzGD16dKztoD2eyAlUeoUdg1gliIFMz7E3XSXA2XZFEWiyoXl0XstsWo+u2Nb1DOs+QOeKYh1h3AEdgWv6Wyc9LOGqW26cojxJoj2JEfIY+odEMREm69atw4033oh9990X55xzDpqbm2NtD9kkIkI1Zmq24fu1zBYQ2SVkVgkgUxCLxhj2sn17+zKsbcKbX2Sb8NYrSmPXSbXO2Y73Nc0usv+CaJuKtq+sHBdeHq6Fws1sapMIYptQzQtCrtsgcpmY//xxHuu9FBfH3hVEQLZt24b/+Z//waxZs7BkyRIMHDgQV155JS6++GL0798/1rbRZV/M0PlJD9EDGLr2BVm0VxX9NR2LmNcOXntEd+bDJgn7nCwCrPPgnB+LhCqP9ugT7HzZb1laHFFiFWHUSwrGPwZ9F2YUlyLERBCWLl2KcePGobKyEhMmTMCBBx6I1157Df/617/wy1/+MnYhDFBkOFEk5Qpclzja6z5EyIvK6kYRZRFibz5e9JH3cJ23Dbxp7/J+CKIldJb1c6dCJfpF6EaHdbanKCKsigSr8ij3a9MIsShNlu5tmK2rF93osM0ochxXejq3GoKUEwUJvIDItvMTkRyOO+449OrVC3feeScuuOACdO/ePe4mdYAu94hAxBkx0LFl8qLEvN+yae83b/g13ShxnAG/JGLiD1b5hoN4h3nzuBHiIL9FabJ07/yodxwb9dHObkaAg0RUx2GKEBN+GDlyJJqamvDrX/8ad9xxB/71r3/F3aQO0J4dE34DL0m8Mk+CIJbZJXjCVGR9MBXEsnrZaW8a75zHq1/nvBiV5tDRd37bYiqCeQJXJXxl83npSkGswsQeobOxoxaoQUQ4CWF9AvRzPj3k5j0m2voQ0TB//nysX78el19+OZ555hkccsghOPHEE/H444/H/uCcS378ixKC7CSd7UR5UBZdEIiEsDfNm64riHkfd/g1ti6dKDHbZp5YTzKm7WP3b++oFX5EMFu2TNyqhLGqrdJ9OoxocNIEsZtfR0GQyoiUuERwvohvwi777rsvbrnlFvzrX//CK6+8gv79++PnP/85KioqMG7cONTW1sbaPtqrE0a2H2iiEsW8sYfZ3zoiVUcQy75ZQayatq0TVNokzDpMosK2BbEfq4ROu0RpaVQrbRoN1qnDdH7Y2A6zxb0+QYgpkhH3eSLu+ons5qSTTsITTzyBTZs24Y477sCKFStw3HHHxdom2qOJUIj6YKkSrWyariDWEcY6tokwRHEUQtgmNgUx77ebZmKFEJXjxXhfNhG5pkJZd76KJO4ghBYkRIls49e//jVuvfXW9O8FCxbgzDPPxC233ILzzz8fy5cvx4oVK2JsIYnhrCSJvmEeYUeJVXYJHduE+60zfFoQ24TOb1uEGRE2if7q5LEhiE09wqI02e8MorJH6NgSgpAEQZyENsRNlvrk4gh42P4Q0fDMM8+gqqoKAPD111/jnHPOwd57743a2lpcddVVAICjjjoqxhaSGI6VLD0GGhPVQVOlM1Q2CJUg1vlW2S547fRzYPZ7h103j1+8AlTXtuBHEPt9eI5Nk/32Yjy6hJtmMxocBnEqgiSrkYS2jaLCRDby8ccf4/DDDwcAvPTSSzjkkEPwyCOP4JFHHsGiRYtibl079M9KCN4TMR3w9NGNDutEi3mC2I8w5kWJZdOyNNm6+Vlep16bOkBlW3DZuXOPKA5ikzCpU/Xb+GLVTzQ4SJTZFnGEyRIqNo2xtR75Ehkh8pLS0lJs372Pv/LKKxgxYgQAYK+99sLWrVvjbFoaUl1EJMQZHdaNDLuI7A4qgczO0xHEoiixjUCjaR72ZRg8gohFnkgVRYm96X5tEqL5RpYID1pDrZkIX9EycQnFsEVxFPens1lkkyAmcpTjjz8ekydPxsMPP4w///nPOOusswAAH374YSLePgcI3kC3evVq44IGDx6MzjpnU8IK7pvYsomo32BUUrLn/OJOy9K859Ht2/lvm+Pl9S7D5uvcObMctl2q9gfNE3S+Cu96mJTF62/3t+otdbz+V7XD2/eq+lV1ZcDbmN6Fefl589hydHeSMEiSoExSW4hYKS62uzs4jr2yCDn33nsvzj//fNxwww0YP348qqurAQDNzc24+eabY25dO1z1etRRR6GgoACO5t5SWFiIf/7znzjggAOsNi6foVdf6sNeGOgIT5nI1RHNJt9eQQzwy3fTTQhilzDJxyK7GDCpUyZQXUHsR6Sy5YrarhS6nGW4/0vZTuZtkGoZmQBW7chEbqC7UyYEOk8RPDZv3oyZM2di8uTJAID9998fS5Ys6ZDvjDPOiLppQoSh3Lfeegt77723sgDHcTBkyBCrjcon/Jycs5k4D55BxCwviuhHEPPawbZPZz1M0nVgI7GqsvzuqzyhqhP19RO1FUWLdcqTlW0kiGXzVBvcxi2EbBbKsvXK5QOlZOfLxjuCRP7x73//G1OnTk2L4WyA+68aPnw4DjroIOy///7Kz4ABA3DCCSegtLQ06rYTRBpWnHjPJbxp02/Rg3Xux6QM3jxeW1m8demky/AjqEV+XZ0PryzWC8x6hEWjTMjKMWm732lA4IGXbQjZxpP91p0nW8bPDkKooT6NFNGxN8jHDw8++CAGDhyIkpISVFVV4e9//7s0/+LFi1FVVYWSkhIccMAB+P3vf98hz9y5czF48GAUFxdj8ODBmDdvnnG9BQUF3M9dd90FoF2gTpgwAYMGDULXrl2x33774eqrr0ZjY6O/jsgxuGL4tddeQ69evbQLmT9/Pvr162erTcRuVBGAbL09FcfDdLYFMfutK5B5tnqeHtI5cPs9oLPLmFj9/QYaRcKYJ4q9315BLGuDSnzzlpOJXZ3lhfux6RVNVKIqm0RxnO1MQh9JdkiT477qPxGUbD0H+eXZZ5/FxIkTccstt2DlypU4/vjj8f3vfx8bNmzg5l+/fj1+8IMf4Pjjj8fKlStx88034+qrr8bcuXPTeWprazFmzBjU1NTgH//4B2pqanDeeefhrbfeMqp306ZNGZ9HH30UBQUFOOeccwAAGzduxMaNGzFjxgysWbMGs2fPxoIFC3DppZeG1FvZRYGjawwmjGlqakIqlcIHHzSiR4+eANTBIXa+6mCTrbfMwjiI8vpCJIBkAkz1zQ4BJvvWLUPUXh5+z9Wi5VQRaz9RZD/tMYmom9Sv0p6qdVYtL92XZRvUT7haVaYJSbVQ6GxYvztlkLL95vOLpHzd4z7Plm4Tk+N4U1MTUmVlaGxsRM+ePc2WS6Xw+983orRUfzkVzc1NuOKKlFF7hg4diqOPPhozZ85Mpx122GE466yzMG3atA75b7zxRrzwwgt4//3302lXXHEF/vGPf6C2thYAMGbMGDQ1NeGvf/1rOs/pp5+OsrIyPPPMM77qBYCzzjoLW7Zswd/+9jfh+vzpT3/ChRdeiG3btlkdAOGjjz7Ct771LWzZssVamWGjXHvHcfDnP/8Zr732Gurr67FrV+bO/9xzz4XWuHwkH3zDQDjeYZ6frqREbdd0p3W/2REiZN+AXhnedoWBiRDWxURL8coW7etsf3lHl2D7VafdbD5VvbJp3m93n+Puz2xj2Xki07ho2lumqFxdRH+OOLEpVsMkijaE4B3W/c+YwLYj26LFTU1NGb+Li4tRXFzcIV9rayuWL1+Om266KSN9xIgR3IfDgPaorzumrsvIkSMxa9Ys7NixA126dEFtbS2uvfbaDnl+85vf+K73iy++wEsvvYTHH3+cO9/FvRCgkcA0xPA111yDhx9+GCeddBLKy8tRUFAQRbtyEj8HIJVozOYHKqQiIiRUekMlbF1Ml1MJYm+ZOuugi42LK1tlAPx+VIlUgD/cGlu2F79i168gBhT/VdFGNhHEouV5mO5MYex8IsIOV+YSIQhim/DqD6tNtodWc+N67Di3t956K6ZMmdIh/1dffYW2tjaUl5dnpJeXl6Ouro5bR11dHTf/zp078dVXX6Ffv37CPG6Zfup9/PHH0aNHD5x99tnc+UD7a5H/67/+C5dffrkwTz6hFMNPPvkknnvuOfzgBz+Ioj1EHuI9eIYhjE0DcKaClieSvN+ystlRJsJYdxG69gOb7VIJa1n/e4dbU7VLpLdU251tox9BDEj2Y140VncH9a4IbyXZMnXyqfJHvVMGWTYPRbVKEIuC/3HcgYxbuIv49NNPM2wSvKiwFzYg6DiONEjIy8+m65RpUu+jjz6KCy64ACWCjdzU1IQzzjgDgwcPxq233ipsu19KS0txwgknWC83TJR7ZyqVovGDA6K6ok3anco42YXCjI8tZAKPN81+y+axI02weUTLeZf3vsJZhundLNN9Kw49IWoj67MGOo4wIfrwyvKm86ZV83ltFbVduv/yOlm1g3p3JF66TZGoUyYRHQFPELQZ5fTs2TPjIxLDffr0QadOnTpEY+vr6ztEbV0qKiq4+Tt37oy99tpLmsct07Tev//971i3bh0uu+wybpu2bNmC008/Hd27d8e8efPQpUsXbr4g9OvXDy+99JL1csNEqTamTJmC2267Dc3NzVG0h/BBtnm0TDAVxbK+0I142hbEsuVYzeEVxrwPL48I2TlUV1SrTqQ6QtSkXTrL7NzJH2VC1i5eOTYFsUwUc9EVxDIBzFteJZyzmWxvf0joHP95m5+CMGYUFRWhqqoKixYtykhftGgRhg0bxl2murq6Q/6FCxfimGOOSYtQUR63TNN6Z82ahaqqKnzrW9/qMK+pqQkjRoxAUVERXnjhBWHk2DadOnVCYWGh8hMnylPij3/8YzzzzDPo27cvBgwY0OEqYsWKFaE1Ll/hPaCTy4JXh7D9xaLb6DpWCZHlQWc57zwTvCcyb72ivH4ChzpCWJZusk66NgVvubJ15r3O2V1WVZcfy4QoDZD8f0WWCW+DvWm8leGlq8rPRhVEQliKrn+Yt3tlC7av53b5OJVMmjQJNTU1OOaYY1BdXY2HH34YGzZswBVXXAEAmDx5Mj7//HP88Y9/BNA+csT999+PSZMmYdy4caitrcWsWbPSo0QA7c9lnXDCCZg+fTrOPPNMPP/883jllVfw5ptvatfr0tTUhD/96U+4++67O7R9y5YtGDFiBL755hs8+eSTaGpqSj88uPfee6NTp07mHaIJO27yk08+iRdeeAG//e1vEzMsr1IMX3zxxVi+fDkuvPBCeoAuwSThYYooCOovltkz2d+seOWl8QSxyXLuPF3YZdzfKkGsg592qPL4PXmpvLpeeHWwfcGORqESx0EEMa9Nwos5kTrRWWG/4temIPZ7xWSrfNN8NohDmGv8mUzOAe4uEId3OJsZM2YMvv76a9x+++3YtGkThgwZgvnz52P//fcH0D7Wr3fs34EDB2L+/Pm49tpr8cADD6CyshK/+93v0mP/AsCwYcMwZ84c/OIXv8Avf/lLHHjggXj22WcxdOhQ7Xpd5syZA8dxcP7553do+/Lly9NjFx900EEZ89avX48BAwYE7h8Ro0ePTk8/+eSTmDdvHg455BDMnDkTixcvRiqVCq1uXZTjDHfr1g0vv/wyvve970XVppzBHR9x/Xr5OIY6d0x1hF8+iGEebN/o9IPM+ymaJ7ut7v3mjUMsyi9rk277WQsBm4+3fwV9G55OW02j0brOAV3YvKoHBnVsLbrtlLXV97jEovkqI3PQnY0lyBVOWHUE2TFszw8DgzpNzgN+Lsj90tTUhLIys3F93eVSqRSeeaYRXbvaG2f4m2+acP755u0h/PP000/joosuwl133YUrrrgCp512GhzHwaJFi2J/i7HyX9O/f3/aURJAvgpdHby+YpPIiOg3ezvOVCyxb6oT5ee1QfURtdcvfi0SYSDSbKzwl314y7rpXq+xyi8sm6erLUVeYuk+qroXLNtxvL/Z+bxyTODthKaoyvBbR66HNg3Xz+SOmfcmQ9KtE6rnKfx8iOiYM2cOLrroItxxxx2YOHEiSkpK8Je//AVbt27F2WefjZ1Bb20GRKkc7r77btxwww34+OOPI2hOfmLrIES+YrMLBpVmMBXE3mlZ5NV7vtcRwLz8vPbqrGMS8NMmmejVyceKYjbNNHJvEmw1FsSA+CqInc+m8aZldejkCWMnkl3pmZaTjZj+8Q1xx+PRbYpL0gUxkZ386U9/Qk1NDaZOnYrrrrsunZ5KpbBw4UJ8+OGHuPDCC2NsoYZn+MILL8Q333yDAw88EF27du3wAN2///3v0BqXz5CXKxpKSoJ5iHllud88/7A3EqO7fXk+YV65cdz5tl2ebr/I1pV3cmf7jvcSD1m/8rabiWeYl9fowVhvpWy6rmdFttPy6ko62dJOLxG32eTBOvZCMBu7l0gmF154If77v/8b//mf/9lhXt++fbFo0SIcd9xxMbRsD0ox7L4SkAgPmwedfHmQLkxMBLHqm10G6CiMVFqG1UEy/aPzIJ3q9mDcJ0GRZvOzvEzEel/ioSpflMckXSSIgZjv6sS9wU3Jtva6xNTuJL26mchPbrvtNtx4443YunUr3nvvPRQWFmLw4MHo2rUrAGDAgAF4+eWXY22j8gE6wj+u8X/TpnaDvulJnjePHqQLB5PnkmR+U95DczKfqp/2iW7ve/PoDDsmuquuIwxlqJYP6+QqKle1nmx/qL5FdQVJAzQFsYl/Q7QD20C0EmHdZ7e10wS1j2SxnUN1Xgj6v1YR9AG6F15oRLdu9p5f2ratCaNH0wN0UfHLX/4SM2bMQEtLCwCgpKQE1157LX7961/H3LJ2uP8Od+w5XbZs2WKlMbmOLZucinz3DvvBRLSYih7RCzlM7IJs+ao2sNFfk4dGZN7XJHsKVQ/SudPedMDfkHS6D8yJ0ngk/iJW58AVht8mSiEZRl0JEMJA8PNCkv/7RLK5//778dBDD+GRRx7BG2+8ge7du+O1117D//7v/+LOO++Mu3kABGK4rKwM9fX12oXss88++Oijj6w1iiDiQCUwedMikcp+e4WoSviy5elEKHnzZAJYFeVkH0QzOREm4aSpeshOlq77UJ2oX3QEsEwQJ04URy1I46ozD4hSEBem9+ZdRg/0EbnHgw8+iBkzZuCCCy5AZWUlHMfB0KFD8dvf/hYPPfRQ3M0DIPAMO46DRx55BN27d9cqZMeOHVYbRRBxIXqeiOfX9eMfdoUpLxrJ85iybZDVL1sHUR1x6A2Thwdt1qPr4zUp000D1GXzHubjLWdEmFcecewcSRbAftqWwPUReYhlxw0vUf1/idzho48+4r6r4qCDDsKmTZtiaFFHuGJ4v/32wx/+8AftQioqKjqMMkGEg+4T6PQgnX9UJwWZYJZ9Ax1FMQ/vK529y+i0wc2f9JNVXIJYlC56mE62DXVEsShNJdJjfQV7ropgVR1J/9NkEWHsu7ZvFrS12SuLkNOrVy+u/faNN97AoEGDYmhRR7inZBpTOBlkg6jJF0QC2UQYu/O88Mpko8eq8kRpsnUJG519N46n1XX/UzpRZDYaz6abCGAr//WgUWJbG0I3xGizzrDJkaiwC0WHiSg5+uijsWTJEhx11FEA2t0E48aNw1NPPYUnnngi3sbthkKHERDXQYM8Wv6x4R9m5/EiGzLvsO4QaGwdonKTasOM+8E89kE62Ugdqof02Af0TH97sX5nR7Txw9gxdKKwSdwZ84gg5wfadIQJN998M3r06AEAKC4uxtFHH43m5ma8/PLLOOecc2JuXTs0tFqIuEPCNDSIh1ZTwTvomBzEyCoRDJMHoXgPWuk+OCXLxxNpqnpl9cnsF7YxPWmGcZKV+aR5FzKiodZE5emmiS6mVPMy/u86O6DoN5se1S0ClyQoKFkbZBcLNutJEKLzg86xQbWK7HmqqakJqbIy30OrLV7ciO7d7Q2BtnVrE4YPp6HViHbo7dwRYnL30BbkHbYLuw1lNgl3GpD7SUX5dH3LrKdVVB+vDLYdLLoP4qmWN8kfh46Q2SJE21I3jeflVs0T9oGNg0jQKxST+v1uTNlyYRxEs0S82iaIXYKsEoQuixcvls4fPnx4RC0RQ2I4Ymycy2J9uCbPUIld728d0aOTxtbnvlVOx4usIz5V6yPKx84zORHG4Q8WIdtWJSWZr2oWbRdTEcyWoRLB3unY/u+6kdK4xHkSb234XSaBxBG8IXKTk08+GY7joKCgIJ3mNSXs2hW/nqGQYQzkyLEybwhyC1zlE5YtrxPV5ZWj8gfr3uYPA5HnNk54ToOdOzOHv2PbLfMIq+wsfqa10PFz6JZjsqxqhxPlNa2HV5YpSdrxEoLsQivI5qE7koRLQ0MDNm/ejIaGBjQ0NOCzzz7DCy+8gG9961tYsGBB3M0DIIkMn3LKKbjqqqtw9tlnc+d/9dVX+O53v0sv2/BJlMENskqEg8wyoYrUiiKEov2BjQ6r6vO2SVVvNmEalBSdzGWRbW8feQUxGy1284iiwzamXTKiw6KdgIdpeC/oVVEuXennUVRYdo4IEiF2y7RxZyPotROLnzdPEv5gPdk9e/bEqFGjUFpaiptuugkjRoyIqWV7ECqk1157Deeddx5uvfVW7vy2tjZ88sknoTUsX9CJ/hHxoxtllUVqVflk36I6ZVFnk3p5mEaXw0bUFzbawotWs5FeN1rMixjzfutOe5fltcuIIGH/MDcqb8eMKzpMcFFFiKmrCdsccMABWLNmTdzNAKCwScycORO//e1v8aMf/Qhbt26Nqk05h+pVlH4OMqaRXvIYB8fUdmBqj2DT2G/vUGsm1gjTemXrEtdJUVanytssmi8SnzrprDAOYolQpblk/OdVV0QsOjtIUIKI3SDiOCkqLSntCIDqPMFuHt2LtUS+ZpyInVQqhZdffhltCXgDivQBujPPPBPf+973cNZZZ6G6uhrPP/88DjjggKjalnOEdSvKRv2EHqLtpGNTkN1OV9kkXFy7hG6dvHplD9DJ2qCraYJgItJN/i8iW4TKxsLO46WzD9yprA+8aZVtQ9mv7IYLuiF18btT6Phb/Ng7/PhmgkTTcxCd84R382jtn0Re4z5AJ+K1116LsDV8lKNJHHbYYXj77bdx/vnn4zvf+Q6effZZnHrqqVG0Le9gRQmRTHR1hkik8jSL7jfAf0OdF5162fXQFcQ84thX/Vw46vqEVXWx/VlSsmdbuK90dtNNfME67RV6h3lEcYUtqtc0j8kVpm65OgdTOtBycfexJAVPiovtbq4dO+yVRchx3zznsmPHDqxevRqrV6/GT3/603gaxaA1tFoqlcJLL72EyZMn4wc/+AGmT5+OsWPHht22nER11R32sTmXo8OqCKlNdM7TOlFh97euIPYux4pinXpZYS2b5pXBq8MWugG6IPpOJUJ11pXtI2+ZvCixShzLtrURorC/aMWCwjZS1Gid++o6V5im6xCl0M1RUa17N1N0J4UgAOCee+7hpv/Xf/1XYiy4QlXkHQ/O/X3HHXfgiSeewC9/+UtcdtlloTcuV4nbvxt3/bZR+Ty9H9vo2hx5eUxOGt687HKdO+/5yJbz/haVJxKk7McmsjLZbWZjG5qWIdu/eNOqp9T9RrW58DZwkm77m+z0fv5EftsUxo6co5ieL+K4GUFkJ2PHjsUjjzwSdzMASCLDIn/HmDFjMGjQIJx11llhtSkvsBGhDTIYf65EiP0IGyD8yKZukMskGsyL3LL18KLFoqCbKiqs07dR6AlZO/y20c9+oBNV5kWRdawRJtHgDv97UUQ4aJTYpJNMRa+fCLFO2UEhgczF9E11YRxnbV+/kE0ifpYsWYKioqK4mwFAIoZfe+019O7dmzvvqKOOwvLly/HSSy+F1rCcYvt2gPPu87gFqfeEmgvC2ISwvdk6NgNdQczmEbXfWw/PV6xjjciW250mF0F+/MCystg+5y2jeqhOZInQLZ8riNkVEolfHcHJhr3DuB0QRBDbbAcRGmHsOkT28aMf/Sjjt+M42LRpE9555x386le/iqlVmQjFsOpd0XvttVdijM9EcOIW5n6wdcs87IO1iSbREcSiMnlp7OgTul7huO2ZovqD+oUBdXTXi0hAiwSryj9s0lZZlBkQ3BkyiRKbdLLJCpjksy16SXmFht9zBAlioqysLON3YWEhBg8ejKlTp+KUU06JqVWZaD1AR1hAcERIkghN4hPEuYRIwMqiwCKhpRLFpkG3pEWFee1U+XZlZfGW0VlH0Yk8rhM8TxAD8Bcl1t0ZvMtHheyqLO6dkzCGfMT5zaOPPhp3E5SQGI6SEARxEN+wiCQJ9CjwK2zYftftM57wVAlidjmeKBbpHG90mG0HW4aXICcw3f40ta+aLufN61cU27bUyCwxppFoFyNRbCqIeY3ypqlC2CL8XMnoYHvnI9IEOTcE7W7bQ6u1ttori9DjlVdewYoVK1BYWIijjz4aJ598ctxNSkNiOGqy5J5RvgliXWQXHqJ5Jg+eqHzCMhEsmyeyS6jaEjYiz7MMvydVmdjktcdv2UGtEqK7At72idosFMV+BTEP1UrEcXwLKppJGPsmSos3kZ1s27YNP/jBD1BbW4uKigps3LgRPXr0wOGHH4758+ejJ+eZqqghtZMQkjjcWRLb5BLHwTfIyB28ZUXBNT/TOvlEr3P2lsGWFQS2TFXZonnss1zsPNFHVJZs31EtK/vtB7cMUdmi9VWldbgA421w9reOyFWVw2s0DxudZ3OHDVJGFgQ3bJLk8wKRTG655RZs2bIFH374IRYvXozS0lLU19dj7733xvXXXx938wBQZDgessA/TNiH58nWsUHoTMvK8qLzOmfvvDCwZcdQLSe7y6+yPti2RvDKV1kiWJuMtz2yNPe3cgg2VZhZhJ8rGpto1ME7jpKII4h4mDt3LmbNmoX99tsPH330EQCgS5cu+NWvfoXTTz8dDz/8cMwtJDGcE4ThG3Yhgd6Ozf5lRbGu1cHvNKuBWA9x3HeLdUQ8II8QywgqilV+XRNEYpe3rWT7BS+Nd6HUwTbB62DdHcCWCPa7k/kUwew84X/Zz/3+PIsKi4jCKmHzrhVAnuEo+fLLLzFo0KAO6T179sT2hHhsSAzHRRZFh5PYplzA26+6XmDZdBBB7BLVuT2O459MyMqCo1HY/HW2Ids+3QsogLlgtnVLICFRYMBsBBxrwYM8FsK8cwJ5hwkRFRUV+Pzzz7H//vtnpD/00EP4zne+E1OrMiExnEBIfGY5BiKD3dZBosQ6873leT3EqlcI24Yn8KI4kerYH8IWv36tL6rfqjKFL+rwVsjDdmfobGyDOq0eK2UXCrx8UWJqZyGIhHDCCSfgr3/9K4YNGwYA2L59Ow4++GA0NjbilVdeibl17ZDiihO6jPZF1N2mHUXy+eQW+4AdezuQnXZ/s9OiNFkZLp07qz9svqDEeT7X9Rvzftve/7y7hjut+i1aVtVeoXB0dwreJwxk9RlEg4MMSRl2+6wi2yFjIl892A8++CAGDhyIkpISVFVV4e9//7s0/+LFi1FVVYWSkhIccMAB+P3vf98hz9y5czF48GAUFxdj8ODBmDdvnnG9juNgypQpqKysRGlpKU488US8++67GXlaWlowYcIE9OnTB926dcPo0aPx2Wef+egFM6ZNm5Z+C12vXr1w/fXX48Ybb8Q///lPHHnkkaHXrwOJ4YSStANN0tqTOHRPTqy68cD2sUzA8qZ1xLFKFMtgBbBMNGcDsmsXd74NeFF3Xt0iocsTwry8bJuNBTGHXelLNfUnKqKuL3Z0TPQJIczrBNX1iZ+PKc8++ywmTpyIW265BStXrsTxxx+P73//+9iwYQM3//r16/GDH/wAxx9/PFauXImbb74ZV199NebOnZvOU1tbizFjxqCmpgb/+Mc/UFNTg/POOw9vvfWWUb133nkn7rnnHtx///1YtmwZKioqcNppp2HLli3pPBMnTsS8efMwZ84cvPnmm9i6dStGjRqFtrY2884wYJ999sHRRx8NAOjduzemTZuGyy67DL169Qq1XhMKHMdx4m5ErtLU1IRUKoXGTZvk4+gJ/pUmB/woxGpSTkBhnANkB0Zl3wZpkOa214lUmogjnd82UNkvZG1WfcvK83Oi4y3Dpsmi7qKLFUB9kSBqr6h+VRtU+cIkrGOR7eNP1lzgJ9Gy4UF1rHJpampCv34pNDY2Go0r655HGxrMltMpt6zMrD1Dhw7F0UcfjZkzZ6bTDjvsMJx11lmYNm1ah/w33ngjXnjhBbz//vvptCuuuAL/+Mc/UFtbCwAYM2YMmpqa8Ne//jWd5/TTT0dZWRmeeeYZrXodx0FlZSUmTpyIG2+8EUB7FLi8vBzTp0/H5ZdfjsbGRuy999544oknMGbMGADAxo0b0b9/f8yfPx8jR47U7TpjbrvtNu28t956a2jtkJFFcZz8w8Q7HOaIEn7akzcEVZAC9cYbcYLNLvMEi9JEZbBNiNK/G1V9Knhe4SgennPrcRFtB5NtruNLDgvbx6KwjjlRHDMDo/PHiGon1UTHEp4kmpqaMn4XFxejuLi4Q77W1lYsX74cN910U0b6iBEjsGTJEm7ZtbW1GDFiREbayJEjMWvWLOzYsQNdunRBbW0trr322g55fvOb32jXu379etTV1WXUVVxcjOHDh2PJkiW4/PLLsXz5cuzYsSMjT2VlJYYMGYIlS5aEKoaff/55rXyO48QmhiNTNtOmTcN3vvMd9OjRA3379sVZZ52FdevWZeSx5XlpaGhATU0NUqkUUqkUampqsHnz5ow8GzZswA9/+EN069YNffr0wdVXX41WZqyVNWvWYPjw4SgtLcU+++yD22+/HaEE0rPpyBEzOdtVEuuEyE9s6h/WsU6w9QSxSMqiwmHf+fVbjonbJSy89giV7UEnsi6b9tsWFTYEbBR2iDhsHrlGVBcU+oYd/Q8A9O/fP60VUqkUN8ILAF999RXa2tpQXl6ekV5eXo66ujruMnV1ddz8O3fuxFdffSXN45apU6/7rcpTVFSEsrIy7fbbYsWKFVqflStXhtoOGZEdARYvXoyrrroKS5cuxaJFi7Bz506MGDEC27ZtS+ex5XkZO3YsVq1ahQULFmDBggVYtWoVampq0vPb2tpwxhlnYNu2bXjzzTcxZ84czJ07F9ddd106T1NTE0477TRUVlZi2bJluO+++zBjxgzcc889IfdUJkmLXCStPTZIUFBFqDx4olg2bSqEVaLXpI927jQTwjyRpWOJUGEq4JKKiSCWzRM9eMdbVjTfpE+DPNwWhzhNgh/aF4k6gLWTwCYJ+fTTT9HY2Jj+TJ48WZq/oKAg47fjOB3SVPnZdJ0ybeVh0cmTD0Rmk1iwYEHG78ceewx9+/bF8uXLccIJJ8BxHPzmN7/BLbfcgrPPPhsA8Pjjj6O8vBxPP/102vMya9YsPPHEEzj11FMBAE8++ST69++PV155BSNHjsT777+PBQsWYOnSpRg6dCgA4A9/+AOqq6uxbt06DBo0CAsXLsR7772HTz/9FJWVlQCAu+++GxdffDF+/etfo2fPnnjqqaewfft2zJ49G8XFxRgyZAj++c9/4p577sGkSZMi3XnInpADyBSE6MzBsVB47ROq2+BBp3nNVAkhE48w+9uW44SXbnJyZvPr2gxk83buDPZwoWqb8ewROu0PEkHX6VMTK4LpMU637TaEmaptsQUJEqI6s/kc1bNnTy3PcJ8+fdCpU6cOUdT6+voOEVmXiooKbv7OnTtjr732kuZxy9Spt6KiAkB79Ldfv37CPK2trWhoaMiIDtfX16eHPMtnYtt7GxsbAbQ/WQioPS8AlJ4XoN2jk0ql0kIYAI499likUqmMPEOGDEkLYaDdo9PS0oLly5en8wwfPjzDOzRy5Ehs3LgRH3/8sc2uIDTJ2iifquGq+9CKSDEvwit7eppnqZBN66ATDQ5iQQhLKNtAt71uH+l+ZGXq2CP8RIVNsFGGSfTVr2WDXS6MfSGWKHJChLCIhDfPmKKiIlRVVWHRokUZ6YsWLRKKyerq6g75Fy5ciGOOOQZdunSR5nHL1Kl34MCBqKioyMjT2tqKxYsXp/NUVVWhS5cuGXk2bdqEtWvXkhhGTA/QOY6DSZMm4Xvf+x6GDBkCQO55+eSTT9J5VJ6Xuro69O3bt0Odffv2zcjD1lNWVoaioqKMPAMGDOhQjztv4MCBHepoaWlBS0tL+jdrzA9Ckq68k9SWoKgO2JFHfERPUnnnKSLFblZZNFOWxlYTJBosW1YVFbYtWkwixDp5TaOwpvCiybrblRcplkWFwxQuQY4VYV3EsOXaXH+rD+bxbsckVGWGfl7Yvh0oKrJbniGTJk1CTU0NjjnmGFRXV+Phhx/Ghg0bcMUVVwAAJk+ejM8//xx//OMfAbSPHHH//fdj0qRJGDduHGprazFr1qz0KBEAcM011+CEE07A9OnTceaZZ+L555/HK6+8gjfffFO73oKCAkycOBFTp07FwQcfjIMPPhhTp05F165dMXbsWABAKpXCpZdeiuuuuw577bUXevfujeuvvx5HHHFE+k57PhOLGB4/fjxWr16dsbFdbHheePlt5OF5fbxMmzbNaAgRIl4Sek7Zg0itcNK9J18dC4W3KJ540j1PiISwTjA8DvwK1KiXc3H71yuKg1zccK6n0nl56SqCrp+s3Cjx42Ii1GTbyBIqxowZg6+//hq33347Nm3ahCFDhmD+/Pnp1wxv2rQpY+zfgQMHYv78+bj22mvxwAMPoLKyEr/73e9wzjnnpPMMGzYMc+bMwS9+8Qv88pe/xIEHHohnn3024+62ql4AuOGGG9Dc3Iwrr7wSDQ0NGDp0KBYuXIgePXqk89x7773o3LkzzjvvPDQ3N+OUU07B7Nmz0alTpzC7LSuIXAxPmDABL7zwAt544w3su+++6XRbnpeKigp88cUXHer98ssvM8rxDmgNtI9AsWPHjow8PI8O0DF67TJ58mRMmjQp/bupqQn9+/eXdcceNM4qSYrIRt0W2wfUrDvB+RTGJSUdt5FMAPMEsekJTTcazEsL4mE1yRtk+/vx5Qbd30SeY5l/WNYu26LYFqbbX5TfZvv9BGatRYezJCrskqRzVFhceeWVuPLKK7nzZs+e3SFt+PDhWLFihbTMc889F+eee67veoH2IN2UKVMwZcoUYZ6SkhLcd999uO+++6R15SOR7bWO42D8+PF47rnn8Oqrr3awGdjyvFRXV6OxsRFvv/12Os9bb72FxsbGjDxr167Fpk2b0nkWLlyI4uJiVFVVpfO88cYbGcOtLVy4EJWVlR3sEy7FxcVpM36GKZ81bfKwcJCL+iCUrSNLWD2fxHFyEhkgOWk8b7HMS8z79qJjHcgGdNoZJA+bbtuzqusf5k3r+IdN2mtjnVRl8Hy/JvltEus+ni1/MA8J1+8EASDCN9BdeeWVePrpp/H8889j0KBB6fRUKoXS0lIAwPTp0zFt2jQ89thjac/L66+/jnXr1qVD/T//+c/xl7/8BbNnz057Xr7++mssX748Her//ve/j40bN+Khhx4CAPzsZz/D/vvvjxdffBFA+9BqRx11FMrLy3HXXXfh3//+Ny6++GKcddZZ6SumxsZGDBo0CCeffDJuvvlm/N///R8uvvhi/OpXv8oYgk1G+g10DQ3yp1UNQkdJfKo5ChFu4xzg56Cs1Z82PAEmK2h6UeVJc7cVK5q837J5bFNZm4RpVJhNN53WqVeGap9g5/MeMpQ9eGi6z6nys9FhnQcgTdsnaoNpX+mie0FhA9vCLNRnDqIIe4cA73ywfXvwN9A1rl9v/Q10qYEDjdtD5CaR2STc1wieeOKJGemPPfYYLr74YgD2PC9PPfUUrr766vSoE6NHj8b999+fnt+pUye89NJLuPLKK3HcccehtLQUY8eOxYwZM9J5UqkUFi1ahKuuugrHHHMMysrKMGnSpAwbhDUMDm5JvA0VdpuCnhT9nju0T2RBjHF+lpPdOuXN89z73hMlLsxYRHR7nbVMsEXqrkoQwRNmMEx1HapznaqySABmD+6Z5texRIjsEbz6/FooTO0gUYpgUdlBtpW7jCy/b7tEFkaAXZJ4jiIIFZFFhvMR7ciwIbIDTZzWhbAOgGFF/VQY9WVYStAvGiFNXpRYZ9r77Y0M2+gC1S1/nd9+MAm2B4m6qurSycfzDpu0I+hvWdtU81zi+EsEIWhU3Pi4LOuIhEeGXdjzQX09RYaJ5BLLaBJEMGRX3laH9THEO8yXLUxPjrbOE1b70E/kOKhtQhTK9YR73f2IFxUWLaZqhuzObpCLGpU2sOFZdcvizRM9EOcnKiyLTsrqddEZcs1bru3fojRVu9llg6bzCEsnBo2KWz0uG9rqsvXZjg60tNi9WvIMg0oQdC+DsI6tg6/pSTDWgImtyr1hWNNlvB9RmUw+9wE7r/+VfahONA0Ee6uat5yk4EeQsdFsWfcHKduL6qUcvHpFv3l3AES/ddtnIz3IXyEsgpQdtXXArS8pr5RO2n+dILzE/w8hrJOEA593FIOwYIWbLSKJpJgoC7/ly9QMx4PA3mrniWBvPp4gDnr7PAnobAY/1g3RtYp3nqgu3jzem+pEm110PcSrQ7Xb+LWp6ArhsAVtUIJEsK0JU0llojpotCGCEBO/aiJ8kS0HGr/t1LklHwax9asqPKjzUS3Pm979LXu1s4vuhYdKEPv14EaJzrWKzm+blgCVKBYJY1mazvWSKp+o3TYuKvyiU06Q/SuIIAY0RHG2XDkSRI5AnuEICOuKPF+f2g3jPBGqCPZ7hvdzj9gLz6wqStu+HYUlJR3eXucthvfb9eu60WFXkLHLsJj6fFX+ZRu+YRZed/ktB9AfnUFVr2g5IFMQu9vE2y8621Y0zbbNVv/owNu2fuu26Wjy45n24h6/fY84kU+ieft2oEsXu+URxG7yT0nFRFx+sSRgeqCXHaOyTgjrEJZlQnZPmxchBvv2OnlkmLVLAO0CjLVNiCLKQSLCpiMc2CJoNNjEUqDKq7oxwIsYiywT3vk2pv0g+huo+tMkSiu7K+EHG9saEByvc0Doxn5sJQhNkqOY8oA4BHGSRHFQwvAGx3Kw1lE5snkmFgleeQr14H2gDpCLYpGlQjT8l65FQne+LL8NggT1dUWa6ebWzetFJox507y2+RG+qvbK8pn0fZxBPp1togP3eJ0DgpggsoHcUUpZQi6J0zAI+6RWmD7lJCRioWu+DKKEvPPZekTfUItgXmRYFiXm5eH9FqXp5kmSfjARxKZRY91NLhLGvLaoBLGoPbK8fv7TtpbRieTLyrN1PDK5qAkqiBNzbCOILII8wzFgc+xHHd9wIF9aQggqcEJf97BUfJDQJCA3pLrT7Dcy9ysdXymvSBfWT8yW4UXlB2bnm5QTF97+YdOBzHm6bZaVx8vDq8s7XjGvjao0nWlR22QE2W6iPvXTx7IyeXlMj1Gi/RbgHLOTtEMbYu3ZlpYWu55hGmeY8EBhypiwGSHWFXrZGpUOIoQjiQLr3gu2mVcXXhhKMxQos0uoIsM8SwQbJfZrkdD1fSYtQiyLEvsRaKpoIy+d/c2LEKsirDZsFCZ5/RD0r+Qnwh3G3zXjmC0y33PgHfOyORhCEGGTneooR7AlTk3KyVZBbEqirBAigkR9de+Vi+pS3b9X2CXYdJlwVT1gx+JHxGaDIAb0RLHJR1aGrF6RIGbn2xbBKmwKY7+C2ORvxJtvSxS7cG0TBsIYiF8Ix10/Qaggm0TM2LBMmN6GyqZXdPoRM5GuW5RRYZ2zLOshYOfJxoJivyG2S5haJXTu8ppYJFR5ddJ1sD36gIvsFnmQckR2ABM7g64dQDUtshfYEryyXZ3Nw1p9RMuE0TZTeLYkP1a3bDnGa7N9e/BXXrLlEcRuSAwngDjEaZQ+Yr/R6EQL4TAPpH6FsGgZkYHSQPmoRKlKHLPLde6cOSaxrggW5ZGlhYnNyLMNwS4Seyrh6vUP89olE5s64lhEkN1alabyTCdVC/EEvNdLnHMilyASQH7cM88C4rIvJM02EdQfHDq690F17qf6yesHWdSZvR/OuT/Ojj3MTutYJXjTqpEmdCwUujYLG9aLoMLXjw1C9JGVy6Z7f/Om/a4H77doWlSO7LfOMibtNF0+bkTbK2nHbILIBehfRSTu4GpohwMQwRvkdEWwm18nTWdZlZpQKSU2L69cjgDm5dMRwjrbzY9YNX2ALqgg9lsHD5NdRxcdcez9rZoW1SHLq3ONxWtrGP0hQ9U/SSaXBDFFtIkkQzaJBBHnLbCw6s7Gg3bgsJkqzXakVzZfZgoV3f920z3zWe+wNwuLzDrB4rVLsMvrTovKF6W5qygiCutD0F1A5MOVWSPc+exmd3+7VgnZbsGrw5sm2lYqdPvDrw2Gt06i9YwS0f+HzZMVlomwO7Slxa5nmIZWIzxkoVLJbfyKRxsHxawUrrawEbLye5YWLW8jpGUakTaIDrNpquipiQXCT4SZd0dBVI6bl/dR1aODKkgvW0YnkmoSFZbdBFC1UbQ7mEajVTc4okDnOjVKbFwo5fUxmyAsQv8kIoNsPLgGuhCwdc9U98xmKk5NlxOVZXqvnKOGeN5hkfg0EZCqYE9Qi4Qf242sfBGq6ykTUWtSvihN9ptNc6dlw6yJ2iNKEwlznd1PRpDgYxIEsc72lm2/OAU8QeQq2ad88oC4BWkc4x/Hgi0R7DfEY+MMpxNGVNWnEy7UjA7zMIn4mj6E5/626fHVza/T5arlebivS2Zfm8yrW1aeKiosSnfrVAlZ3bboLkP4I1HHWdqoRJZCnmEiPwl60DYN7ZjUaRrWk5XhxzPMy7sbHe+wylPM5vODjkdY5hkGxHWHYXvU2aQi4eum8yLo7CbibVLeJpdtL9Y/7ObhtV1Vd1gE2XeC1mujDFXb4/YyJ5Lt24FOneyWRxC7SdAlJeEl7qv9oPXH3X4pNi0HuuXbskuYLOunHs36gkSHeYjeShemRULXMxwEnd1FFgHWyWdqm+BFfL3p3gixN0psascI+9a+n22VFJFp+l9JSrsJIldJsGIh4ibRgtYvQe0IQfOo2iRTELbux+uoFJ441hTFqvlBTuxBLBK2BIXImeLHreIHXV+vbPfRFcS8+nj2C51dOCmCOClEcTFGEIQeZJNIMKZD55i+ljksktAGawSJ4IrmxXF7TucetiyPZx5vP+PdatdZTW8+0VvpdO0PvNv3fmwSIpJ0V5X3xjiRRQLg2xlE/cvi2iZc3Hp1LBpRQLaDhAyzFnYnt7TYtUnQ0GqEhxxSLUQYZIOwDaWNulFYVQjQxFKhigrzYJ+20rnfrluXou22H0gzWVY34mxqkxAR1/WLDNORH9jfomgw75uNFPMesvPTDluIoqy5EG3N9vYTRDaQfKWT52SDGPWS6PYGFbcm+WyqAd4yMuErG4IgKD6sEn6xacHQFUWm4snUucLmVW0qW7uLm6667pHZPXiimK1Px65B6ENCmCCiIcHKhfBDvr5FzkobbYngoELYT0jQTx5dNNstE6KyNO+0bMzhMKLBflH5ZoNg4qoxGXpNNI8ndmXRYZUgVpE0cZwrgjMbjtMEkVTo35MF0EFOj0D9pGNn8CuCReXrPF2kG0qMGNlFlysubA1DJfstq0dH8GbLbXQ/gthdTkcUmwphbxoriHmiOWkCOBvIhv0yUniWsKAfgtgNqSxCCx2hmbWi3cTXy5vnZ75uFNpL3AdvCxYJnfwmb6TTKVfXHmG6TBj4cd4A6l2DtTyIytUVwqo2qWweJI4JgkgSWape8o+sFZoMsZ0E/ZyVTe41m84XtSHMDkpYqEk2hrAon255vHmqKHDY3WPj2iaIIPaWwbNimAhhHf+wqu0kiO2TK+cJgoga+ucQ2sgOtDoH4ShOftZOBn5EsCz8plO2LI+pclKFV4PgI0JsKjTZ5utGbsN4SC4qbFjKTe4Ai0QxO08lhIPYJUgQ+4P6Ldk0NDSgpqYGqVQKqVQKNTU12Lx5s3QZx3EwZcoUVFZWorS0FCeeeCLefffdjDwtLS2YMGEC+vTpg27dumH06NH47LPPjOqePXs2CgoKuJ/6+noAwOuvv44zzzwT/fr1Q7du3XDUUUfhqaeestI3SYXEcA4S5niTPLGZtdEI02ix3yixLF8YUWGeEJapSYvKkPULhyk6gwhik3w6ywYdms100+vk17VI6uyS3us8mWD2K4hJ3OU+gc8T7E5o4xMSY8eOxapVq7BgwQIsWLAAq1atQk1NjXSZO++8E/fccw/uv/9+LFu2DBUVFTjttNOwZcuWdJ6JEydi3rx5mDNnDt58801s3boVo0aNQltbm3bdY8aMwaZNmzI+I0eOxPDhw9G3b18AwJIlS3DkkUdi7ty5WL16NS655BL89Kc/xYsvvmi5p5JDgeM4TtyNyFWampqQSqXQ0NCInj17WilTV+iGLVDddpjWs317+FE5bh/p+nZNhLCfCK9onkwtmESFRRFhXTEsUrOcb3fbyyKIvG/daYD/9jOWIL5U3WuToOdN2XrZOCf7+U/p7Cq8ixreLsGmuWXLLo6CXszYJIoLKFP83m2J/eUbHHahEE1NTSgrS6Gx0ex86J5HGx97DD27drXWpqZvvkHqP/7DuD0q3n//fQwePBhLly7F0KFDAQBLly5FdXU1PvjgAwwaNKjDMo7joLKyEhMnTsSNN94IoD0KXF5ejunTp+Pyyy9HY2Mj9t57bzzxxBMYM2YMAGDjxo3o378/5s+fj5EjR/qq+8svv8Q+++yDWbNmSQX7GWecgfLycjz66KOB+yiJZGlIL3/RFZ9hHxB3odBICGd19MdUgelEHsLoDD9COACm+1jUIiepdghdTP4zfoJdooixLDLMponmBRlhIoLAXU5A/ZNMamtrkUql0mIUAI499likUiksWbKEu8z69etRV1eHESNGpNOKi4sxfPjw9DLLly/Hjh07MvJUVlZiyJAh6Tx+6v7jH/+Irl274txzz5WuV2NjI3r37q1Y++yFXsccAUm8Uo8S70E7CnGi9WpSv5HiIGFInTr8nuH8CmELdomSEnmzefNFy7Dp3lc0m5Zliuk6+EUVFVbtcqrNpGonb3m3Td5XLbt52WnRN5vHfWW0aBm2Hp11Cev4EcUdq3wl6Ta6pqamjN/FxcUoLi72XV5dXV3abuClb9++qKurEy4DAOXl5Rnp5eXl+OSTT9J5ioqKUFZW1iGPu7yfuh999FGMHTsWpaWlwnX685//jGXLluGhhx4S5sl2kr2XElySfnDJSvwKYZ0IsCzUpVIuKotE5852hLAF/PqFbQzP5meUiKgC996yZEJYNxoaNHIq2yXZSLEqIsx++4kQ836r2h4XFI2NkZaWjjtvkE9LCwCgf//+6YfNUqkUpk2bxq1+ypQpwgfP3M8777wDACgoKOiwvOM43HQv7HydZdg8JnXX1tbivffew6WXXios//XXX8fFF1+MP/zhDzj88MOlbclmKDIcEYXYZVXEakU/EwIbDcoKVGfrsCPELmxo1E2ToaMWI3qgjtcMncilLDocpOyoCbI72FrOJJLs5uVFilWR4SARYm8dJuudVceUPCQbAjeffvpphmdYFBUeP348fvKTn0jLGjBgAFavXo0vvviiw7wvv/yyQ+TXpaKiAkB7ZLdfv37p9Pr6+vQyFRUVaG1tRUNDQ0Z0uL6+HsOGDUvnMan7kUcewVFHHYWqqipuuxYvXowf/vCHuOeee/DTn/5UtNo5QfL3VEKI6kCTJLFs66QVSWTIjxDWaZgoHKda1o3+yqLALqZh04hQNUul1VVDrQVFV1QGqVcUFQ57f1YFyER53TZ7o7uyMmQRYl6bePPjjvwS9sgGIQwAPXv2zPiIxHCfPn1w6KGHSj8lJSWorq5GY2Mj3n777fSyb731FhobG9OilWXgwIGoqKjAokWL0mmtra1YvHhxepmqqip06dIlI8+mTZuwdu3adB6Turdu3Yr/+Z//EUaFX3/9dZxxxhm444478LOf/UzWhTkBRYazHPeAkyThGwYiPepLnPi9R2uyrO79bhuYegRMR5bw2SQ2WsjOk02b1KFK81O2ab08vHlMhLCs7DCua3h96E13o7uAOMLr5vNGd9l83mV583lt0olq27zQTsB1IyFi+3ZAYRkwLi8EDjvsMJx++ukYN25c2mP7s5/9DKNGjcoYzeHQQw/FtGnT8KMf/QgFBQWYOHEipk6dioMPPhgHH3wwpk6diq5du2Ls2LEAgFQqhUsvvRTXXXcd9tprL/Tu3RvXX389jjjiCJx66qlGdQPAs88+i507d+KCCy7osA6uEL7mmmtwzjnnpP3GRUVFOfsQHYnhCLFtlfCSNFEsOsEGLYc33+oJTCZ2/VonTPKw96dlBBXBqjJk7O54d5+WiV9vVUHELs8uYeuBOpNldPZJL7aEsM58v7B2BW86K4p1BLF32mu9YAUxWycvPR8Fqs46i/Jkk4UuV3nqqadw9dVXp0d+GD16NO6///6MPOvWrUNjY2P69w033IDm5mZceeWVaGhowNChQ7Fw4UL06NEjnefee+9F586dcd5556G5uRmnnHIKZs+ejU6dOhnVDQCzZs3C2Wef3eGBPKD9xRzffPMNpk2bluGhHj58OF5//XV/nZJwaJzhEEmPj9jQgJ49e0Z628jvOMA2sCWEeWWJYOvocDLQFbU60zq/VeksJr5gP0+L2fIRc9JU4w2r0mTTvN88/7COsDT5LdtsJvN0hXDSrAGiXcGb3rkz/6FJ1bRoDGJR3aI0nXmmhPXQZ9RtiFsM88479fVN6NcvwDjDv/kNekpGPDClqbkZqYkTrY8zTGQnFBmOANMxeW3VGQdxCOFA6Cogk2V0o7+m2BLBvHSLD9QFtUiwy+lEiG3jJ7qcNCHsJzrOLstaJrx5d+6UR4jd5dhpUXTZW7dJhDiXrBL5GAUniCRAYpjIffyoDRshTC+m6s1VDCqCimCLhGmRUAliHbuELd8wr5wkCOGgZakuXNw8XgHLE8TesniimK3ThiDOBXJl3XiBGCv7eUuLXc/w7qHVCAKg0SQIS2zfHu+JXZrf9CxjSwiLXvHlB17kVnQ/2XaUWAHvlqzEVSEMOps2I+gIEzrBcZ0yoxDC7v+LLY+XrluOanlvOjvt/XYFMZvPWw47zeujpFhHdOq13bZcEcIEka1QZJgITNL8jr5QrURQU6uqLpOzoa1osKk5UwOdCC2bpmuR0InsqqLBfqLDJsvYEsKy+aYi2m9eXpRXtOt6I8RsWbKoMntBo4ooqyLM2Ui2tpsgcgmKDBP5hUyhyPKKlvf+lkWBVSG8IFcUNqPEJijarNLafiLE7DwdJ4mMgEHxDKIQwrrYuFPD7rKi6DAbIeatryj6y45hLGpH1MQRHbZJksb4TXI/EYQLRYbzFNnTxiYH0jAOdDbK9D28kEwAyxSOTASb1K1SY7rqzdbDdprGTe+wgTYenDOJEKv8w0F/i9KSiq2osuiBOjbCy0Zzecvw2uGmeyPEbNlxotOGJLQzb7D9B8yWPzQRCcm5fCQiQyUSC3ePf5E36ApgEaKxvmwdbE0tFDKxG/GDdbKorml+kwixDf+w3y6JMypsSwi7+dndmBcZ9s4ziQ6zN1Vk7TW5oRM1YW6zMOsNgyRFpAnCBNpz8xDdA1aYgjiRYlsmgEVnY/YsriOCVZYJXUzu8UcgkL3bVCWC/Ypev5YJna4yCcqHFQ0MUm4QIezdJUW7v0jMqpbRFdNey4Ruu8MmqvrDqIeEKUHoQ/8WQkoQ0So6sbtl2hbE1k8oKnsETwiryov67O5X7OqqMmZ9RIKYl+ZX9Iryqeb5EcS5cAtc5sU1EbLestj53t/e0SVEy/LKAviCWLUeuvPDxEbdfspQLZNTgpi9YrPxIYjd5NA/hcgGEhkR1kUkhFUHVtl8vwfkoKFOG0LYAJsPzsnyBX2gTlW+7bL95gmKyW4nEr6iadYuoYoqs21iBbEfYWwT3briEsQqckoQE0RI0L+EyE9UZ2ed+7lsOq8O1dkt6vvtKjOsn/ZoRod1p/0IZy9eQewnOiwjqO/ZTxlJQnSTROdvoBMZZgVxthGHINbJT4KYIOTQP4RQknfeYRk6QjjqW3C6ykklgkMyrIYVFbbl4fUrWIMQpyDWsU3I7ibrRIZFdgmdyLBu/igxjaRHWZ9ufhLEBCGGhlbLU3wPPRaArBG+ojOwSggnxYNm0zLhE+9Qa24VbvfoTPtZxjvtHW5NVq4szWQ+W6fOsjplJgVvH3vT2P7n5dddR7Ys1RvJ3fpVadmK6bro5I/juG8N269PptcxEx7oUpEIhaw8IckErkwIRxUJ9htO9GuZMEVil2CbYftBurAx3by6dgyTESxM6wwDEzuECzvcmol/WFVnlEQdHfZTjm6EmKLEBJEJ/SMILcKKJiT2oCy7l+ydDnLW0zW++i1DNj+ie/A2BDEPnWVNvMNBCOpSScKFo1+hJxKyPGHMS1cJYd41aFLEsYokC2LA/rFXVF4S9m+CUJFQJUJEQVhC1OTgZ1Nk+z7oqkJSUQ2AGvSsoTvChG2DLYtlQRyGTzgKTIP0JuXYyBsEkSAWiV/3TeUif7Foed60qB1JJN8EMUFkK+QZJiIha31qPOI+A9u2S/itw4CgHmKZt1g2X+YdDgORb9iLn3YEabuOZ9oPIo8q6yFmfcBerzHPc8z+VnmHddsVF3G1R7de938Z5jG6pARoagpYyPbtgONYaQ8A8gwTGdBlIREriYlMqO7Tyu7RsmEumx5iGyNF6M73foLCWX+bEWLd+TLCtE74KdOWf9jPegRdd5ldgp1mxyD2zufZ8VX1RInfem1dfPhZJilR4iRdoBAES0KUCBEXtg+AcR3wrNere49W9USRLiKzK2++LI2XrroHH5F/GLDnITaZL/MOR0HQIH2cy6lQ2SVEgtd7jckTvDrCWJWeNOISxCbL+T0fJCaoQRA+oT2YSBxBI3zaqM62stctBz2zRaVqohpJQoRlQWwiguPCxlvwZOgE8P1EmW33nUgQu9+8lziKbryYPkiXLQLZD0EEsc6yiRW2bW17zOc2Pm1tca8RkSASutcT2YLOCTQsL1ooek4n/GRyNgpyVtZVO0GGYogCzlnYjyAOkiaKDtt6ltCW+LR5IRiFDQQQR4fZb56I5b2Yw5tfNzqcLdh8oC7MvtAVxDRMG5Er0F5MBMam1dRbpqo+GYEEuEz4hnEG8mORUJUjWi7O0KlPQSybb8NHHOS6QkTY0WEvfv97NncPP4JY5CEW/cVk0eFsEsk22+pHFJtYJrwfURpB5AK0NxNZcVALQ3BL0bkvG9ZDc0DwUGLShLCLgSDmpcnmq/Il0Tscdvmq66OwdhNTQSwqI4y/VhKwvT5hCWIv2XCeIAi/0NBqRGKJRLD4NR7K7BRsw9k00YoFeXAuyFAEsnlhqBCmP9hh17zNcqv3TvPm66bpDH3Gg1euKo/fuoKg086wYHdz9zfv220rm88Lb7fkDc0mqj/p2G6vt/+yqR+02b4d2GXRctfaaq8sIuuhSz0iVOIYX9i4Th3RqxvO4hHkSSdZPt2ocJCH6CIKx3u3mZ+H6IJElHXympQbN6bRYNt2CR3LBC+vqCxedFjHwp8N0eSw2qjq2yTutwQRJySGCQC5cwvMt/j2nnFFo0jonrmCnuFMxbMfse3nSa2wwliC6njTOmk27RI2H2jLJ1SCmJ12/3Y6tgieg0n02zZhbN8w25ykC4KcevESkXPkhgIiQifJYtn7SIc1ZKEoWZpfZBaJoF5hP3lky9pSBAr/sKh6dtpPpFjlSLEZSTbFRnm6Nwf8omOX1xXEpvWJ5mczYfqiw/Anm3q5SQgTSYc8w0RohH0A1C4/yNlAFXoyNf75CXnqzNPNb0sVhWRO9fqHRZ5hU6+wn2VN5suw6Ru2ae1m18lkHXUEKesH9k6zabJ2seW5eL3DURFFXUn2PZs8JuHF2nmAPMNEiCQ33EckhiRGhUMR2qJ7tSqbhB+lpBumDMvsaoMI/MR+orW6aWFFh21FdtmPKr9OWlBMBLPIFqFTFi/yLIpGZntUmMU06qpbpoxCZtA02+UTRNJJnsohYiOJopdHaEJYlG56ZjJRSTwDqw1lky0hM06/+rVLqJok636/IjibiKPdIqsEzzMssuz7Kd82cW1z1UWAzsWCNz8P3v+NTdPpUxLERDZDNglCil+BHJZFIjLvmSg67MV7hjS5vxlEvYUYFWa3tVFfi+57W0DHLiGzRKjSePWo6jZpm9cqEZK7JPSyAXnZXgHLRtxFfw023dS2UVKyp66w7AVJu/AxtbKo2p9VXt6WFrs2iR077JVFZD3ZEQokiDBhw0u692F5Jkkvqvv1srBkkFCkYX7R26R8vW3K1DohyCs7SauuB1Rp7DxVcD5bIsVxROZ27uwYyXXTdN4YZ8MSoLJbmKJrTckGRH2r0y82hHJWiW0iryExTOQGumdVkzOc7H6uSfkqe4TusiFEhU0i/75EsVdVsArDYFuwWYN4iVX+YVPvsc58EWEKrrC9tTp2Bt1XKIvsEirvsGgURF1MvdnZiraFRJAhV/uFIFxIDBNCssVDrDTTqXCP9KIBTP2Gl7zf3mlbyktWrwZ+t6+RKHZh26/RTj9RJV2RrNossvJMhLgLr+x8wRslFkWGbWD6l41C4EUZrVd5h5WCOEzTdZ7R0NCAmpoapFIppFIp1NTUYPPmzdJlHMfBlClTUFlZidLSUpx44ol49913M/K0tLRgwoQJ6NOnD7p164bRo0fjs88+y8jz61//GsOGDUPXrl3Rq1cvaZ1ff/019t13XxQUFAjb9+GHH6JHjx7KsrKdLFE7BCEQR2EcuGVP+siwGYLUxWdU2MaFjrGFIiC60eEg1gnVA3V+rRiytKRE3Uza4We4OJEgdqeDRIf9RITDRHRTKey6TObp4B5zE6GPVTuCn09IjB07FqtWrcKCBQuwYMECrFq1CjU1NdJl7rzzTtxzzz24//77sWzZMlRUVOC0007Dli1b0nkmTpyIefPmYc6cOXjzzTexdetWjBo1Cm1tbek8ra2t+PGPf4yf//znynZeeumlOPLII4Xzd+zYgfPPPx/HH3+8xlpnNySGifyEdwufVUKq2/q8fLxvVgjz8ged5v2OkDCEMa8sW4JYNs+PINaZJyPpt+hNHtySaQ2eINaxSwRpayKEXAiY6DlR0Ff1f82au4MJ4v3338eCBQvwyCOPoLq6GtXV1fjDH/6Av/zlL1i3bh13Gcdx8Jvf/Aa33HILzj77bAwZMgSPP/44vvnmGzz99NMAgMbGRsyaNQt33303Tj31VHz729/Gk08+iTVr1uCVV15Jl3Xbbbfh2muvxRFHHCFt58yZM7F582Zcf/31wjy/+MUvcOihh+K8887z0RPZBe3pRCBiPdH4rZwVqrzfNlSXVwSrHpbTEeCm9ogQo8IyfD14Z4DNTSNK071uMZnH3hQQbTLVh4dKAIb9PxUJM166SBDL2qgK6nkjyN5l4kJ3O/nFTzm8iw7CPrW1tUilUhg6dGg67dhjj0UqlcKSJUu4y6xfvx51dXUYMWJEOq24uBjDhw9PL7N8+XLs2LEjI09lZSWGDBkiLFfEe++9h9tvvx1//OMfUVjIP0a/+uqr+NOf/oQHHnjAqOxshcQwkcbEo8neBkw8POHLzgPsP0klKk+nnCBR4JiEsKhOU4GsymNLEOsE8nnLispTtZf1DvuJBictgqzz/2fFFyuIvXl0rRAR3O0ORFjbyfSiQXVhlP6vJW3HioimpqaMT0tLS6Dy6urq0Ldv3w7pffv2RV1dnXAZACgvL89ILy8vT8+rq6tDUVERysrKhHl0aGlpwfnnn4+77roL++23HzfP119/jYsvvhizZ89Gz549tcvOZkgME7mFzDznIovIup9evTK/ZcpJNN+GLcLPbwuEbbvjCeSg0WSTgLru9Y3utYzq24sNQSwjbHEY5PXSIkEsE8Xs8rqR5CSQlG0rClxwy0uqKG5psesX3i16+/fvn37QLZVKYdq0adzqp0yZgoKCAunnnXfeAQAUFBR0pXBMMwAARYBJREFUWN5xHG66F3a+zjI6ebxMnjwZhx12GC688EJhnnHjxmHs2LE44YQTtMvNdvL4GWfCS9DxILdvT8Ax1HvE14mcuvl69QI2b27/9p4d3HQ2v/ub/eaJYG99JtM6v03SoBcVDnr7VaMZ1nA3iSiNN+1nvrs5d+6UL6P7DWS+iMMty8V0G6jyxyEMeXW66+jtv5072/uCd63KlsX+Bdl62G3DlsEuF9XxKqp6TLYz20+7UNh+DvA0Nl/8wp9++mlG9LO4uJibb/z48fjJT34iLWvAgAFYvXo1vvjiiw7zvvzyyw6RX5eKigoA7dHffv36pdPr6+vTy1RUVKC1tRUNDQ0Z0eH6+noMGzZM2i4vr776KtasWYM///nPANrFNAD06dMHt9xyC2677Ta8+uqreOGFFzBjxox0nl27dqFz5854+OGHcckll2jXly2QGCZCIX1w9cI5AxVil52DLi/kIRCabn2F3vmuEPaW4329Fa9Mt1zbIpiXllAhbFqebWHAE8Si+ayYEolfdr477QpY3vIm397ygI6RVpEY1CFq4asVafTM4wlSVxCrlgeA7t3lwllVp+5yuYioL9x07jEb+vsUW3a2vHCjZ8+eWlaAPn36oE+fPsp81dXVaGxsxNtvv43vfve7AIC33noLjY2NQtE6cOBAVFRUYNGiRfj2t78NoH1UiMWLF2P69OkAgKqqKnTp0gWLFi1KP9C2adMmrF27FnfeeafWugLA3Llz0dzcnP69bNkyXHLJJfj73/+OAw88EEC779k7QsXzzz+P6dOnY8mSJdhnn32068omSAwT0RH1GYhz9PeKwgxR7KoVrzLavHlPOs+0KBLButHeIALX8hk+KhFlImR0YQUxLwKpiga7+VVCmRcl9hMZ5olit1zV+mUzvEiuK4jZPvLi9pc3H688ti7RPpaIO1mW0d1PRPu5K4gTC/tnCUoQv4+Eww47DKeffjrGjRuHhx56CADws5/9DKNGjcKgQYPS+Q499FBMmzYNP/rRj1BQUICJEydi6tSpOPjgg3HwwQdj6tSp6Nq1K8aOHQsASKVSuPTSS3Hddddhr732Qu/evXH99dfjiCOOwKmnnpoud8OGDfj3v/+NDRs2oK2tDatWrQIAHHTQQejevXta8Lp89dVX6Xa7YwkfdthhGXneeecdFBYWYsiQIVb7KkmQGCaMr+BFB9ywTzCiyIUUSaP2CBPPLUL2LOv1mOm+lUE2rfNblCZLl6A6wcUltGwKYz8RYp1pnSix38gwr90iYZwNglgVFQb4kWGeIJaV7Y0Oi8rzzuP1f7YSZD/ws+5J3+eSylNPPYWrr746PfLD6NGjcf/992fkWbduHRobG9O/b7jhBjQ3N+PKK69EQ0MDhg4dioULF6JHjx7pPPfeey86d+6M8847D83NzTjllFMwe/ZsdOrUKZ3nV7/6FR5//PH0bzfS/Nprr+HEE08MY3VzggLHNYxEwBtvvIG77roLy5cvx6ZNmzBv3jycddZZ6fmO4+C2227Dww8/nN4ZHnjgARx++OHpPC0tLbj++uvxzDPPpHeGBx98EPvuu286T0NDA66++mq88MILANp3xPvuuy/jDSobNmzAVVddhVdffRWlpaUYO3YsZsyYgaKionSeNWvWYPz48Xj77bfRu3dvXH755fjlL3+pbVZvampCKpVCQ0Njop/IlAlMnpBSiQ6dclV1iMgo09sQnUbt/nbrE/kLC7FrjwDevDkzYqx7718VAdZZTneeZBmbQjjIiVH3RBxErPDaJ7uNL9t9VPm8abK3q8m+VfV6y9Ztu04fyObplCt7xbJuvUDHGyneGy3udSn7cZ9n7dw589lW7zS7PK8Otg3ZiKp/ZReb3v4QHapM/u+8fmSP/01NTUiVlaGx0ex86J5HG6ur0dNiZLhp506kamuN20PkJpHeE9m2bRu+9a1vdbhCcrH1BhbV21/a2tpwxhlnYNu2bXjzzTcxZ84czJ07F9ddd106T1NTE0477TRUVlZi2bJluO+++zBjxgzcc889IfRMbhLGLbeMMmX3QHkCVnB0Z3XvN9sLsauka/sZtqIi89v9uGdgdrQJ3sfbXlU6i2yerA9gTwh7u9Iv7CYJmo+HzrUFr9vZadk8XprIJSP71qnXW3YSMRHZojzsBxC/dc67jGiaFfCKv35WoxLyokMH+5vXZ7nYXwQhI9LIcEbFBQUZkWHHcVBZWYmJEyfixhtvBNAeBS4vL8f06dNx+eWXo7GxEXvvvTeeeOIJjBkzBgCwceNG9O/fH/Pnz8fIkSPx/vvvY/DgwVi6dGl60OulS5eiuroaH3zwAQYNGoS//vWvGDVqFD799FNUVlYCAObMmYOLL74Y9fX16NmzJ2bOnInJkyfjiy++SD9descdd+C+++7DZ599phUdzvfIsKpsVT0iuNFhWXiMUR+7UMg9cQqyZ0aKdc+ufiK8uvM18tgQwlGcEG10BYuo3bpRUNk8WZRYFSFWpcmmVa8yFq2HabqqXNNItSyNF5FkLzJ4kV/3t5/ocC5Fhr3o/ldVF4d+EC1nPTJ89NHo6bEDBKWprQ2pFSsoMkwASNA4w7bewKLz9pfa2loMGTIkLYQBYOTIkWhpacHy5cvTeYYPH54xzMrIkSOxceNGfPzxx/Y7IItI5AlE1SgDZSeMjKgiwDrRYFX0VzfcI8FGRD6qyJDJrV5ddIPosoisLDIsivS6LxqU7RI6ZbJ5TdYxDlQXFTIhzrtwEIlpNj/71jndOw+5iM7hI4wLAV0hTBBJJzE34WRvYPnkk0/SeVRvYNF5+0tdXV2HesrKylBUVJSRZ8CAAR3qcecNHDiwQx0tLS0Zb69pamqSr3QOsn175gHS10NvCjLKLCnhR4LZM7QnrbCkBCUlHX3DoihZSUlh5jBsfvFThuEycQyh5i3T24+6TVflNy2PbQebzitT5zc7LUqTPVzHrhdveW/7RWX6We+ohSCvPsfZkZ4uKOjSIR+vD7zI+kiUxqYHxeJ1dyj4vbFkq38IIhtJjBh2sfEGFp23v/jJ4zpKRO2ZNm0abrvtNmlbsw1r4wBHgexMqimIebQvyhmb2CYBy9XdRjbtEarb4apb47xlVfNVZbB1idaFJ5Z4dYhEvkwcs+KVt46q5VXtV62LriDWqUPX9iDa9l4B7IUVxjptZqfZkSVMBZ1pfj9C00Qcm15A2sakPygqTOQSiVE53jeweBG9gUWWR/X2l4qKig71NDQ0YMeOHdI89fX1ADpGr10mT56MxsbG9OfTTz9VrzgBwPwAqnyQTna23n0/tRC7lLcW2du46dcF+7E2yD4+MH19sS0hrHM72u+ytm91q24b824de9NM7AzsJnVtE7I87Dxem93fsuGsTdbbJipRLBLCQGa6m4+1PHjtEN50d5qdx+bhtcnvvuu3T3X+/qaHAb9l6OTRvQCLHO9OYetDELtJjBj2voHFxX0Di/vWFu8bWFzcN7C4ebxvf3Fh3/5SXV2NtWvXYtOmTek8CxcuRHFxMaqqqtJ53njjDbS2tmbkqays7GCfcCkuLk6/zUb3rTa5SKzHGJVSkAhik5NSBwFqWejy6mM/JtiMCNsgqOA1FcSyTRFUFMvSgI5eYl4e3W/ZOvpNs4HKEtHODs+H/b0DjtP+4WkW3ggT3nrZb6CjpzgIsYg/n4R8KCKInCRSMbx161asWrUq/UaU9evXY9WqVdiwYUPGG1jmzZuHtWvX4uKLLxa+geVvf/sbVq5ciQsvvDDjDSzet78sXboUS5cuxbhx4zLe/jJixAgMHjwYNTU1WLlyJf72t7/h+uuvx7hx49ICduzYsSguLsbFF1+MtWvXYt68eZg6dSomTZqkPc5wrhD0tldYNgutYda8CEJIrCB2iwvrBMITtqpPEGyK3CjL0plv2h4bopidVolcVWTXJFJs8rJDUZpfdF7Yxd8eXgHs0ur5ePNlimhRME8klMVtyJxnI1Kcy8j6RLZPkUWCyFYi9Qy/8847OOmkk9K/J02aBAC46KKLMHv2bGtvYFG9/aVTp0546aWXcOWVV+K4447LeOmGSyqVwqJFi3DVVVfhmGOOQVlZGSZNmpRuc75TUpKMkwj3YTr2G8j85swvdJcH4PqDZagO+knxWetuo7i2pcqjqONh9HpGdfHmZdfdnedN96bJpnnt9c5jxSybh1eWd/3cMngP6MnaLvttis6yYntEq1aa4wDbt3fJWEee6HXnu95htj+6d89ss5+LA4qo6kFCmMhmYhtnOB/IlnGGAX/iTnVS9J5EwhhvmFs2L+TDSxOF+Jh5bHtyTQSb5g9LNPuxAfjJI0O0brr+U9mux5snG5dYNK2zvI12m9THW2aPGHa/WcHLE8VFzHQXFBR06XCrv3v39m/2/Te89JIS/nB3gDqqrjMvSnQvCsOsL0hUOPA4wwccYH+c4Y8+onGGCQAJ8gwTySapVokOZauO4KowpPudjhhnGhaSiOhWci6hs05B11tkoeBZJWQWCe+0LJ+O5UFmnxA9nMeWERXBhLCb3uqZFnuIRR+3HbL/gYlVwvRug017lWl5Nus3XT6px0aC0CVxQ6sR2UNSrBKAwi7hTXOnRfDyq5bxtEGHpPRZktC1Q9jIo4JnNXDTRXYD1iLBs03w7A88y0OQ5UXt0p0Ol47+4I50ASuWXcuEi9tery0C2GOjYC0wrlXC/W37IkFUHi/d5G5aUJJ0fCaIpEORYSJn4EaIRaE7L7xQEu8ec8AzSy5EbeO+ZazTh7b6mBdhk0VfTSO7OhFeHTcPz4esMx0G4qhwqyfdndfG+XhHmHAjxR0jxLLRJdg0m6NKsJj2Jxu9tR1NDhNR+yKLCre1tW9MW5+2tmjaTWQFJIYJAHpRTdODHnvyicJPK7RMiO4ls7CCWGXE1CTpItj0dnAYJLWPRKKYN99UyOoKYpPlZfWL1iEo/G3HE8IubUw+98MK41YAWwFs07JMsO2xYZUQkXTxShCEPiSGiUAk/oQgC5H5Dc0YnjWTKvKCEHcky1Z02MQP7idKrBKy3vk6glhWXmeP6U12MyR8EazCFcLs0GreNFcYe6PEmRFiXnRY9BIOXnoQEn/cC0BY+0xSHi4mCB60dxKREnl0GBCH2Xjk8llOgR+BG6cotn2RoSOKTaPEbB6V0NWxTIiEsXd5UZ2y9VLlUdHRIgF0jAq3IVME75B8vJHiHWiPEO9Ac7PeQ3U8eOm5eLEKJGu9SAgTSYceoCMCU1KSrAMvsOfgmyFu3DM97ykbIo2f7cmKKD9d6keIhfFAlLvPyE7gbB95dy3vfHaXUz0Q5y2Xze/CK4tNd4dBE5XPq88E9TK8h+XaOGlsXhHusGutu+vvktF+kaNJtn/I+lZGLl8vm66bzh0Va0J4+3ag0KKo3kUjYBB7IDFMpMkYkUFAIXYZHdx4JxdZPablq+DWJVIyuuTy2XA3QS9wktBFQYWyd7/h7ZOsAHbTZCM26Ahh99sdH1ckflXl6LwxLly8ItdrjWAfrhONLOHmcYVwUXoZx+mSFsTeaLjoogMIf1SJJGHz+j6X+4kgXOjeBZHzcF9pbOoT9i4nqCPX8NtFuYjsItHENqHrH/b6gGVeYdk82eufdb51yRRerLAVRYBZIdzK+WT6hdu/t6d/i7zDoraxLw0Rr0Nw2G2TDf+hMNqYi8dFIjehyDCRgU50mEcSrRIsXOsEEPgskA8H/CS7SkxvhXsx2d9l9gmeTYL9rWt/4K2DO5YwL78q4sx7dbPO/zWolWIPrD2CFx0Wvaa5yJPfHWu4E4DWjOgw++ncWd4/LqZWiSAWiiT/h/ysL71og8glSAwTseBXdNuq2yXJb9ZLKiLBlq2Y7osqUSyzTQDmdglTIa0riNny7AhfQCxs2agx+yCdDt58RR3EMND+7VoidCwmtjApi2exyTWsHxtbWoCCAnvlOY69soisJ//O5ERgRMLB9MSSBCHpfdmyn2WJdpJ8W1hHcPjZlqLRJ9j15/1mp0XWB7Y/RbYJlRVD9mIOnj2Cl8YbqUIMT/x601kh7P5u9nxaAWzzfLbu/t4Bd1QKd6g19sUa3qHUXLy/edNxeOTD+K+YroffKDhB5BIUGSY6EGfUFrD/EJ0uJG7tkuTbwjz87vei/dU0Suwiig5753ttE6oIJy9CLKqH124V8vzuUGosrBB2h0/z4rVGuPm37v52X9u8JzrsWiNkbee9sjkJxGUz89sPZJEgcg0Sw4QvTASr7OQTt/AmoiFMYaxzQtcVQEEEsbs8r22mXmIT24QXkT9WRxCzbVC10wz2QThvWhsnnRXBRcgckWLb7rSitHeYHS2CtUrwMBHGYUdQoxbEuv5mP4QSWNi+nWwSRGiQGCasIjqgJzEaExVxRX1U2NgeftYrLr9k2IIY8CeKdSO8LG40lCdg/QhiNg+v3Z072xqyjSeE2ZEl2PxdPL+L0C6IO+2e3jPPa3vQ9Qz7PT7ZPqZFdazI12MxQYig+8IRkI2Rz7gtA9nYZzKScvKx7ekN4hNOmrfYS9D9X+arV/mHvdOyb5GPmLdN2Gmvh5iXh9ce3rbyt/1cocsK4Vbs8QWzH2968+7frphuzfANixB5hkV54iLIf0Kn/aryVfNVx+a4zx0E4QeKDBPWCX5LNTfJNl9g0Lp019WvhcLPeplEAINaeGRWIpV/WBbRZPO6v018xKJlZO1xccU3m64HO5SaVwhvAz8iDLRHfr2eYjci3A2uGNZl507+izpMSeqFnIxsbDNBRAGJYcI3qpM9oP8kP090xPUgXZjITkZxPM0eJn4EE+9WNi89CFELYm9ZXnT9w942q/yv3nLZeSKRy45hLPIMs/WYs0Pwzb5owxs5hidP5rBq3hdztI8q4bVR8OFdRNiwrNgmjAtnnfVJdFSYPMNEiJAYjoBsFXS2X88c9wkm6eRq3wTxCIfVJyYi29ZDnjp+Yp0osWy0CZGPmMVEELu/vXijw3vydPHoCzbCy0aEXaHrjQrvQLsFQvTWum7M9A6w9ZjsY0HEb7b9V7OtvQQRNSSGiUSTi9HhfCWJlpkoHqpjkYlikVXBz8N1pvm99arKUG/HIqhfpOGNBsMz7Q6f5k13I8FAu2ViG4Ce2DPmcPsDdjZEX65dtOuuSy6tM0GYQmKYkBJUBOgKIFk9JIhzhyBR4rAwEcSAvYc7eaJYZJ3QjRJ7MbWYeKPKOmXw6mxu9v7qgj0RYJU43vMiDf7oEjvQHg12R5DoBmA7vJFhd/QIF9FDf0Cmb1hn+4seLAwT04tHXl6bbaUH54hchsQwERiVWE1iRJCIl6SJ4ih9xCwqURzUx6q7nPs/VQ1Dxkt3t2NBAWuV6MQswRPFrF+Ynd6FjnaJjsLaFb+8UTF07CLZTq4fZ9sAtFn0+bapsxB5BIlhQomNk3/QW9EUHY4H2Xa3sT2SJIrjFMSAWBSrrBNhRYlVgpiNwu5J7wLH2YE9wtf9dt8aJ2MHOr6u2aUVmb5hl05wLRLuxzvcHNt2d5o3qgS7LizZJJxz2QNNELYhMUxYwZZYpTfSxU8c/W9ntILgxC2IgY7/JZV1wgR3OZ0oIpuXtSH06gVs3iyyS7BvkHN/e4Wu++IMVyxv353POypEK9qHwy/CnqHUXJtETwBlALqhtLT9DXS9eu35yCLConXNFXJpXQgiCijURmiRhKgsiWS7FGIX9xM3vFvdUcKKPhlur9mGty28fcLzsLL9xkt3o6bsizq84tH76d5d/lIPV3iyeQoKXFHbffe3+5Y4d7qISQcyRbBLkee7m+fb/fREQUEvVFTsaYtXFLN94m5X91v1oo5sI67/TRTnh50hfMKioaEBNTU1SKVSSKVSqKmpwebNm6XLOI6DKVOmoLKyEqWlpTjxxBPx7rvvZuRpaWnBhAkT0KdPH3Tr1g2jR4/GZ599lp7/8ccf49JLL8XAgQNRWlqKAw88ELfeeitaWzPvslxzzTWoqqpCcXExjjrqKGF7ZsyYgUMOOQTFxcXo378/pk6d6qs/sgGKDBNZBdkl9hCncI1qG8QZMU5KlNgt30UWGTZpsyxK7I0G65TrRondPO2/Xf8wa5fwRoe9QrgZe6LF3shykSdPF2SK4TJUVAB9+iBDENsUhbwLkKjIdR9wrjJ27Fh89tlnWLBgAQDgZz/7GWpqavDiiy8Kl7nzzjtxzz33YPbs2TjkkEPw3//93zjttNOwbt069OjRAwAwceJEvPjii5gzZw722msvXHfddRg1ahSWL1+OTp064YMPPsCuXbvw0EMP4aCDDsLatWsxbtw4bNu2DTNmzEjX5TgOLrnkErz11ltYvXo1tz3XXHMNFi5ciBkzZuCII45AY2MjvvrqK4u9lCwKHIdGng6LpqYmpFIpNDQ0omfPnnE3xwpRPVFMTy7zSULkFoi3/6MWB6YiKMxtxPa7ty9407xv3rQbIWXnsR9vPt5n8+Y9eVwLheN8gz1jCTcj8zXLTQAadk83oN0qsRWZYwi7I0mUAdgLwL4A+gE4AAUF+2HIEGDAgPaPK4pFYpj1BbP+YtHHu0yURLWv66xb0OcHmpqaUFaWQmOj2fnQPY/Wo90YY4smAH0B4/aoeP/99zF48GAsXboUQ4cOBQAsXboU1dXV+OCDDzBo0KAOyziOg8rKSkycOBE33ngjgPYocHl5OaZPn47LL78cjY2N2HvvvfHEE09gzJgxAICNGzeif//+mD9/PkaOHMltz1133YWZM2fio48+6jBvypQp+N///V+sWrWqwzoceeSRWLt2Lbe9uUh+KgrCN6qDni0hEFU9hDlxX4hELUpMBUmY/cPaJ1ixJrNMyD6uIBTZJbwWBJE3183XvXvmMgUFXbEnklsK1ubQLnL7ol3k7gWgD9rF7v67PwMBHARgPwCDABwM4GCUlu6HY44BjjqqXQB3744OdomkeNH9kg3e37iPB0FpamrK+LS0tAQqr7a2FqlUKi2EAeDYY49FKpXCkiVLuMusX78edXV1GDFiRDqtuLgYw4cPTy+zfPly7NixIyNPZWUlhgwZIiwXaBf7vXv3NlqHF198EQcccAD+8pe/YODAgRgwYAAuu+wy/Pvf/zYqJ5sgmwSRWFS3nskyET1J6e+obx+bjsYQ9oOgsofseNO83+5ybETZK6B5D86x+Xr16hgdBjLHLN6+vQuam3kjQbi4dogi7HnpRpFnfje0i+S+APZHv3690hHhgw7aI8YrKvaMEFFSAmzdmrmOqpeY8CLCRDtxP9zsGmxslgcA/fv3z0i/9dZbMWXKFN/l1tXVoW/fvh3S+/bti7q6OuEyAFBeXp6RXl5ejk8++SSdp6ioCGVlZR3yiMr917/+hfvuuw9333230Tp89NFH+OSTT/CnP/0Jf/zjH9HW1oZrr70W5557Ll599VWjsrIFEsOEMVGKVBLEe6BoeCZx+ClNfcSAj+2m+fYEb7luXSIhbFp99+7tdgdeM7zC1/vqZ1cEe8Xx5s17/MSAK4i9D895BXARgBLsGT6tC9pHjnAfmtsXQB8MHNg1Qwh7xbB3/VmLiHf9vPm6dxf3BQniTNjjcS4cez/99NMMm0RxcTE335QpU3DbbbdJy1q2bBkAoKCgoMM8x3G46V7Y+TrLiPJs3LgRp59+On784x/jsssuk5bBsmvXLrS0tOCPf/wjDjnkEADArFmzUFVVhXXr1uWkdYLEMOGLuKMEXvJFECepz5NCXILYrVsHK9tNNKjvbtgH7UxFsbcfvYLX+4CdaJQNNx8bIeb7lrvsHofYfaVy+xjBe94ux75cwxXOPVFQ0BdDhgCHHtougF0xPGDAnna7ba2r6xjxDrKfkCjeQ64da3v27KnlGR4/fjx+8pOfSPMMGDAAq1evxhdffNFh3pdfftkh8utSUVEBoD36269fv3R6fX19epmKigq0traioaEhIzpcX1+PYcOGZZS3ceNGnHTSSaiursbDDz+sXDeWfv36oXPnzmkhDACHHXYYAGDDhg0khgnCS1QvydARE/kiiImOxPXEfWijTahWSCKMg4piUXXeZVlxzIsS80aicEebaJ/XBZs394LjeEUwK0i6oaCgV9r+cNBBe4TwQQe1p1VUAJUV7f99t566OvG6yvqBBC8ho0+fPujTp48yX3V1NRobG/H222/ju9/9LgDgrbfeQmNjYwfR6jJw4EBUVFRg0aJF+Pa3vw0AaG1txeLFizF9+nQAQFVVFbp06YJFixbhvPPOAwBs2rQJa9euxZ133pku6/PPP8dJJ52EqqoqPPbYYygsND8vHnfccdi5cyf+9a9/4cADDwQA/POf/wQA7L///sblZQMkhnOQXBSGOrecc3G9k0ZS+zjnBLFJA1w8DbEhitk+9YpdNo9IFLsi2OvV9UadgXZRzFuVXr3aR4fo1as9+rvvvplR4cqKXe3K9+PtKCwpQdeSEuwq6Z0ui/fhraNOPxDx0wa7r1AO63XMhx12GE4//XSMGzcODz30EID2odVGjRqVEVE99NBDMW3aNPzoRz9CQUEBJk6ciKlTp+Lggw/GwQcfjKlTp6Jr164YO3YsACCVSuHSSy/Fddddh7322gu9e/fG9ddfjyOOOAKnnnoqgPaI8Iknnoj99tsPM2bMwJdffpmuz40+A8CHH36IrVu3oq6uDs3NzenRJAYPHoyioiKceuqpOProo3HJJZfgN7/5DXbt2oWrrroKp512Wka0OJcgMZyj8MYnDYOkvUI5qvWOC7JKiMkpQexnZTj+DZUo1mk7+wCaO0qDV2DKRLEokux+WM+ud2QKdwxhd+g0Vwh33f5v4OPNe4zKu8dT85bLDgPn7Sbeg4TeukUP0CX1YjDJuPtgPh23nnrqKVx99dXpkR9Gjx6N+++/PyPPunXr0NjYmP59ww03oLm5GVdeeSUaGhowdOhQLFy4MD3GMADce++96Ny5M8477zw0NzfjlFNOwezZs9GpUycAwMKFC/Hhhx/iww8/xL777ptRn3cU3csuuwyLFy9O/3aj0evXr8eAAQNQWFiIF198ERMmTMAJJ5yAbt264fvf/77xg3jZBI0zHCJJGGc4ioN30PEnbdYXdt1JIAknlaT2bZzDZ5lEELW3od8VEjTGu91Ygeid5vt9O4pL3rjDbD6RMGVFKmvF8L5Mo6KiPTI8YADQG57hnTxieFdJV9TVIf3ZunVPVNor2tmPdyg43nyXKC+0o9yPbUa+Zft1U1MTUmVlvscZ3gD74wzvB/vjDBPZCUWGicBEHa3UrS9Xo8RJiA4ntW/jig6bEmqEGNCyT+gMx6ZqlughO140uHv3TGHMa6Zbd+fOe0Qw+4plbPY0pFev9vXxCOHNm9uFsMwe4dbnHYaN6apQyIZ90w9RHI/aYPcVymHZJIjshMRwHhBFdFh0cvdTt84J2UQQ0q3N8Ehi32aDXQKIQBB7G+aWsxuVKNZtjlf0quwTbh1eYey1SLARWa9n2P0Ubv8ms6ElJdhV0hWbNyP94UWEeevATrNWCS9xX3yGhQ3xn6t9Q+QXJIZznCQIFRPBxD6BLsNUELvL5AJJiA675FrfRklkghgITRSzgjfzZRt8W4ToYTbWvuD6ht35u0q6orBX+w93f9u8OTMi7BXCqnXhCWF2ni2SFhWO7MFA2UYniIRAYpiwhg2BZnrON62ThFt4JGUw/mw75xoJYsCOKJYMyWZjODbv8rxIsmx4M/bjLusOmVZS0hVgLBibNwNffdVRCHvL9ZYPZD7g500XPTwH5M5xI/SIcLb9CYm8h8QwYRWbEUvdk7GfOpN4e9+UJEWHWeiiwwzjcYgB69YJIPN/YTryhOhClhXFJs1nPchsxNn7gJ5rkxBFhXlCW/bAnJck/9dMiCQaLNqwAQXyrt0fW2T/1iRsQmKYiAQT8ek9qQaNTqnaBGS3YPP9yt+IiPKiIwnBqCD7q7HgisA6wcxKL6IjitnmuR5h9zXPoua7D7axy7JtYB+SEz0wxxPFbFSYrd8lqf8rU2wfQ7n9EpIIJogoIDFMWMfGw3Rh2yX8tiupJDlyFXb/5tK51pcgBmIRxbrwxLH77RXHXnbu3COI2fk84SsbOYK1P/DsETxhzG6HbD1GxCaEc+mPSeQ8JIaJULDpHw7TLuGSK4IYSGY0K4z+TeK51obw8LUdbYliDjxRrOsB9iKyO3TuzBe8vN8y8csuo2uJ0Bk9IpuPDbburgn3RxLCRA5AYpgIDZ44NRVFpgfxIIIwFwQxkFxRbKt/k3qetR2B83Vx522En44SeIkBuZ/YOy365lXlzvcKYt7gAzwxzGu2Cyt63Rdq8F6w4V2GRy4cE4IKYm0hHOKfcyfsjjNssywi+8n+fzlBcPB7AivErsSJSL/s2r02SSJX+jYqAm1DnSfDDGG3H09Mmn6rEPmCdSPBMiHMdk8u/f9Z/OpUoS0iQiFMEGFDkWEiVGxEh23WrUuuRIkBS35imRnTkFzqW5ewn9K3Eu23KIi9209km9D59i7Ds0vw6hD9ZkW2V/TqCmEWW/tpNurEJESDCSIqSAwToRPnw11BBbFbRrbjux9kJzrJLXUVuSiIoyDJD0qymAhhXUHtIho2jf0tEsE65OL+qWOXCM0bHPYVI0EEgMQwkfMEFRC5IopDE1I+RTEJYn94+ywpwpgnZnnzVULYjQ7reo9lFgx31AheNNjNI4oK29wvsylwGspIEW4nt7b6a9RuyDNMhAmJYSISWCEWtcC0IQRzQbyFGlm09dg6oU0cwtj0AViRw0ZllxAJ4e3b2wUuW54rgL2/XTHMprm/ARLCLlpCmCLBRI5CYpiIjDj9w6L6TcmVKHFoGEaJ/Wx/kcCKkwCOEWtEIYz9jBOu4x/24gpid1le2ew0TwSLosHe7zCEcNL2TR2sCmFR+D5gZJggwoTEMBEpuSCIgeijxDbFVtJ8p7kiiIHkBMdl/Wm67f2+KCeIIHZxl+/eXVyn6FsmhnmY7oNJ3P9U8Na/w/5gKxrsmbYxsg3ZJIgwITFMRE4uCWK3PJvoPLPmErrw8qs6DVVhLlhQXJIiiEWE1c+q3cTEB8y7+GOFNjstigDrPDSn0ydJEb8WB3YJRwgzIpggsgESw0RiyEZBDNgVxaYnXL8RY6P1T6ggTmp0GEiGbSIJyDzDLKrdRRB0lEaH2bx+h09Lyn4maoeVCzDeW05E81UbA3v6VfSiFIJIEiSGiVgQibEoPbm27QJBxXyQk0Xo0UgSxL4Q6Yd8xfsQHPub1VQ6IlpHFIvIJhEMyNuis29JLwosCmFvv6qKJYikQGKYiA2ZGM2GF3PwyKbb/cbrToI4EJFbXBICK4C9aW666kE5WbmyadH+rdq/smF/MkHalzqKVfNJRjYaLCvSlDbY9fm2WSyLyH5IDBOxkouCOC78RIeTLIgBs4e33GqyhVwSxzr9bmKZ0EEkgF2y3RLBYqOfAKZfZKpV5vVhwu+8aDBbXEuLbosJInpIDBOJJpsirS7Z1mZfgtglZOWQq1FiHjoPoCUN075WrYOJrUQ0P9dEsF+UFwiq8K1hNNhbTK71JZH7kBgmYkclxqIQl0mIDgcVckHEku/1N2m0T2OzH0HsVpdL5Nr68DD1vsow2WdyrW+l0WAg2FWM5CE5XtG51rdEbkJimEgEOoLYmzesNrB1+cWvgI9TyPlef5NIcQBBDNh5+xmRXfi5yNPdT3Jt/7A+jrDgiUXdaLDN/qVxhokwITFMZB1hjziRlCgx4P+lT0EItP46DQ8w9AVFibMb0egRNslHIexLBIvSeIUKxg6OSggTRNiQGCYSg6kIC1MU24wSByEuMRd4/UP0Fft9Y10ITSE08DNSRNjkwn4g60MjW4RovDtmWjRkmqzYXOhnIj8gMUwkCj9RyXwSxVFjZf1DEMZ+tzmJ4vwm27e76jjA/Z/6iP6yFfG8waqi2WJaW+V5VZBNgggTEsMR0P5W9uwaYSAbiUIUs3XlC9YuCiyr+iDe7GwXRoQZ2bi9df8uxiJYs0J6gQaRL5AYjhASxHoE9exG8RY7Wdm5vJ2TEin3QlHi5BK3HcIlW7axSX8J/4MJFMElJcEjwwQRJiSGiZwlylc7e8lVIewlqaKYosQES5K3rZ+LBel/LuDAz2GIYILIBkgMR0wuRw1tYnNEB+rzPZi81ECHpInibIoSh1lXUkRImKNGZCvWBTBgtjNJBDCvKBsvVrERGSbPMBEmJIZjgMSZHiSI7aJzkvMrXJIwHJ2XJEeJoxDcNrdtthN35D9Iv2v9p3yOvygTwbYiwfm6zxHZB4lhItGQII6WIJG8JEaJkyaI4xRlvJGz8oWoBLGNvg37IdWoRbC7Pkk5LhAED1IGROLZtXs8DiIagoqGJG0rvyfgXBaMUQryJPVjSUn4nyC4ow4FXjEOu9Kl7xkizf14f/utmve7w/ok2bxtmYaGBtTU1CCVSiGVSqGmpgabN2+WLuM4DqZMmYLKykqUlpbixBNPxLvvvpuRp6WlBRMmTECfPn3QrVs3jB49Gp999ll6/scff4xLL70UAwcORGlpKQ488EDceuutaGU8KsuWLcMpp5yCXr16oaysDCNGjMCqVasy8rz88ss49thj0aNHD+y9994455xzsH79+kD9kmSSc9YiCAU2RHE+RydMTtbsydKUXLiAsS3k8kgLAEiWEE4yvkWwBK/4ZR+KYyPBNqLBShFsYeffGcInLMaOHYtVq1ZhwYIFWLBgAVatWoWamhrpMnfeeSfuuece3H///Vi2bBkqKipw2mmnYcuWLek8EydOxLx58zBnzhy8+eab2Lp1K0aNGoW2tjYAwAcffIBdu3bhoYcewrvvvot7770Xv//973HzzTeny9iyZQtGjhyJ/fbbD2+99RbefPNN9OzZEyNHjsSOHTsAAB999BHOPPNMnHzyyVi1ahVefvllfPXVVzj77LND6K1kUOA4jhN3I3KVpqYmpFIpNDQ0omfPnhkHiGwXCkkgyAkkX/s/yDkpdO9jiATZ3rZEbJLEcBRClcSwmLD+D7z93ORVybpWGnc+zw4hqqSpvh6pgQPR2Nh+PtTFPY++CqC79lJqtgI4GTBuj4r3338fgwcPxtKlSzF06FAAwNKlS1FdXY0PPvgAgwYN6rCM4ziorKzExIkTceONNwJojwKXl5dj+vTpuPzyy9HY2Ii9994bTzzxBMaMGQMA2LhxI/r374/58+dj5MiR3PbcddddmDlzJj766CMAwDvvvIPvfOc72LBhA/r37w8AWLNmDY488kh8+OGHOPDAA/HnP/8Z559/PlpaWlBY2L5PvfjiizjzzDPR0tKCLl26WOuvpJCfiiAmeFfqhH+oP6MliJjL5m2Ui6IubGGei30WFG+s1gZs9JcXAeZFgUXiWMc77I0AC4Uwz3+RpCtBhqampoxPS0tLoPJqa2uRSqXSQhgAjj32WKRSKSxZsoS7zPr161FXV4cRI0ak04qLizF8+PD0MsuXL8eOHTsy8lRWVmLIkCHCcoF2sd+7d+/070GDBqFPnz6YNWsWWltb0dzcjFmzZuHwww/H/vvvDwA45phj0KlTJzz22GNoa2tDY2MjnnjiCYwYMSInhTBAYjhxdDy87eowX5RPtlyuIzsxEHuw4W30C22X5BDmPkBCuCNB72Kpjm9ezakrgL15XETWY1YEcy0RuoraJw6AXRY/7i3x/v37p729qVQK06ZNC9TOuro69O3bt0N63759UVdXJ1wGAMrLyzPSy8vL0/Pq6upQVFSEsrIyYR6Wf/3rX7jvvvtwxRVXpNN69OiB119/HU8++SRKS0vRvXt3vPzyy5g/fz46d24fU2HAgAFYuHAhbr75ZhQXF6NXr1747LPPMGfOHM1eyD7ozJQFsAJX98Caj6LYCwlkMX4Fi43zW75uh6SIRBLCyUb3mCUSurrpbB7R+MDGIthNyxI+/fRTNDY2pj+TJ0/m5psyZQoKCgqkn3feeQcAUFBQ0GF5x3G46V7Y+TrLiPJs3LgRp59+On784x/jsssuS6c3NzfjkksuwXHHHYelS5fi//2//4fDDz8cP/jBD9Dc3AygXXhfdtlluOiii7Bs2TIsXrwYRUVFOPfcc5GrzloaWi0PsPUmNpmwzhaBky3tjAK/w03ZeJFC0oZhI4JDQtgc0+ORyuurk5c3TySEedMZIli3wgTTs2dPLc/w+PHj8ZOf/ESaZ8CAAVi9ejW++OKLDvO+/PLLDpFfl4qKCgDtIrRfv37p9Pr6+vQyFRUVaG1tRUNDQ0Z0uL6+HsOGDcsob+PGjTjppJNQXV2Nhx9+OGPe008/jY8//hi1tbVpP/DTTz+NsrIyPP/88/jJT36CBx54AD179sSdd96ZXu7JJ59E//798dZbb+HYY4+V9kM2QmI4ArZvB4qK2qfjPGGEOc5uXK8+Dkq+jz0c9wsJonhZRz5vXxYSrPHgdx80Eb+ydBmyMYKlvuAglWYhffr0QZ8+fZT5qqur0djYiLfffhvf/e53AQBvvfUWGhsbO4hWl4EDB6KiogKLFi3Ct7/9bQBAa2srFi9ejOnTpwMAqqqq0KVLFyxatAjnnXceAGDTpk1Yu3Zthmj9/PPPcdJJJ6GqqgqPPfZYWvC6fPPNNygsLMyIJru/d+3alc7TqVOnjOXc326eXIPOEhGj8m+FfeK24V2Tzc82vBHKfPVex+kjBrJzvyGIsDCxP4i8wrqIhkfTskRE/GDcjhA+YXDYYYfh9NNPx7hx47B06VIsXboU48aNw6hRozJGkjj00EMxb948AO32iIkTJ2Lq1KmYN28e1q5di4svvhhdu3bF2LFjAQCpVAqXXnoprrvuOvztb3/DypUrceGFF+KII47AqaeeCqA9InziiSeif//+mDFjBr788kvU1dVleIpPO+00NDQ04KqrrsL777+Pd999F//xH/+Bzp0746STTgIAnHHGGVi2bBluv/12/N///R9WrFiB//iP/8D++++fFuu5BkWGY0I2hE3Y0bKg0dBcEy+qvlbNz5X+8O6LUQd7kvY6Z4KIEhNLgyy/yWu4RRFgrwjmFixqEN12SPPUU0/h6quvTo/8MHr0aNx///0ZedatW4fGxsb07xtuuAHNzc248sor0dDQgKFDh2LhwoXo0aNHOs+9996Lzp0747zzzkNzczNOOeUUzJ49Ox21XbhwIT788EN8+OGH2HfffTPqc72+hx56KF588UXcdtttqK6uRmFhIb797W9jwYIFaYvGySefjKeffhp33nkn7rzzTnTt2hXV1dVYsGABSktL7XdYAqBxhkPEHR9x0yb5OIaiY0iY4iBXBJwNwhjwPpdQPWRjiyjHXjUlV8YaDluvkB7SQ7Uf6Apg3f1JxwphLIJ1jMee9KamJqT69fM9zvACAN20l1KzDcDpsD/OMJGdUGQ4AlSeYdFFdZgPGeW7V9aL7ahktvqnRZDAyR3CDuBRgDATk4sfWw/HsYiEsDQabCKCeZWo0n2wzVpJ4ZRHZDckhiNGZI/QffOPLXJFqCWZXBPFRDDijgq7hH2sifpYFhZRbS/bUWAZrBCWRoN1R4tQDUUhS9OgqKgIFRUVOEcwlm4QKioqUORGqoi8hsRwTIgiKLx08lNmNxSFjxfqfz5RRImBZIviuC5QwooCs8jsEMJocNCRIkSh6NZW87IAlJSUYP369Wj1ubyMoqIilCR5ByUig8RwjJAgJggiTqKwNcQtipMSkQfMHpQzFcYmvmClEPb7kJysEQEoKSkh0UqEConhmJHZJsISxBQlix6KTsZL3P2fJEHGEpXPV/d5KxtlJ4moH5YDLAphnkJXDUPBTu+Gjn9EkqG9U4MHH3wQAwcORElJCaqqqvD3v//deh1hecSI5ECRfSKpRDxkbEadNj5JwE/bRGMJq9J00RLCvAbbqHQ3qvHpCSIJ0B6q4Nlnn8XEiRNxyy23YOXKlTj++OPx/e9/Hxs2bLBel44gpoMKQfiDLkbUJElcJgnbglwkenn5/CJyLAhfoCFqmJ/KdkPnKyJboHGGFQwdOhRHH300Zs6cmU477LDDcNZZZ2HatGnSZd3xEdevNxvHUGW7CnpSpwMUn6jEEvV/R6IUqrZfjRv2snGRrxbNMLdVFMOniaLBJSUaQphtgGxUCNkYbej4P2tqakJZWYrG9SUSCXmGJbS2tmL58uW46aabMtJHjBiBJUuWdMjf0tKClpaW9G/37TJbtjQZ1dvUlHl8YX8DwV+rTHSExHB85LIYzkYhDPCPO7lKFNvIc2pQ1i3KK2LHjo7Tra3t28/93tnKEcJuRd5GeCvfuhUoLuZX5o7u4H67laHjf2z79j3nQYq/EUmExLCEr776Cm1tbSgvL89ILy8vz3jXt8u0adNw2223dUg/8sj+obWRIAiCILKFLVu2IJVKxd0MgsiAxLAGBQUFGb8dx+mQBgCTJ0/GpEmT0r83b96M/fffHxs2bKA/f8Q0NTWhf//++PTTT+mWXIRQv8cD9Xs8UL/r4zgOtmzZgsrKyribQhAdIDEsoU+fPujUqVOHKHB9fX2HaDEAFBcXo5i9pQQglUrRgTImevbsSX0fA9Tv8UD9Hg/U73pQUIhIKmRelFBUVISqqiosWrQoI33RokUYNmxYTK0iCIIgCIIgbEGRYQWTJk1CTU0NjjnmGFRXV+Phhx/Ghg0bcMUVV8TdNIIgCIIgCCIgJIYVjBkzBl9//TVuv/12bNq0CUOGDMH8+fOx//77K5ctLi7GrbfeyrVOEOFCfR8P1O/xQP0eD9TvBJEb0DjDBEEQBEEQRN5CnmGCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgOkQcffBADBw5ESUkJqqqq8Pe//z3uJiWGN954Az/84Q9RWVmJgoIC/O///m/GfMdxMGXKFFRWVqK0tBQnnngi3n333Yw8LS0tmDBhAvr06YNu3bph9OjR+OyzzzLyNDQ0oKamBqlUCqlUCjU1Ndi8eXNGng0bNuCHP/whunXrhj59+uDqq69Ga2trRp41a9Zg+PDhKC0txT777IPbb78d2fbs6bRp0/Cd73wHPXr0QN++fXHWWWdh3bp1GXmo3+0zc+ZMHHnkkekXM1RXV+Ovf/1rej71eTRMmzYNBQUFmDhxYjqN+p4gCACAQ4TCnDlznC5dujh/+MMfnPfee8+55pprnG7dujmffPJJ3E1LBPPnz3duueUWZ+7cuQ4AZ968eRnz77jjDqdHjx7O3LlznTVr1jhjxoxx+vXr5zQ1NaXzXHHFFc4+++zjLFq0yFmxYoVz0kknOd/61recnTt3pvOcfvrpzpAhQ5wlS5Y4S5YscYYMGeKMGjUqPX/nzp3OkCFDnJNOOslZsWKFs2jRIqeystIZP358Ok9jY6NTXl7u/OQnP3HWrFnjzJ071+nRo4czY8aM8DooBEaOHOk89thjztq1a51Vq1Y5Z5xxhrPffvs5W7duTeehfrfPCy+84Lz00kvOunXrnHXr1jk333yz06VLF2ft2rWO41CfR8Hbb7/tDBgwwDnyyCOda665Jp1OfU8QhOM4DonhkPjud7/rXHHFFRlphx56qHPTTTfF1KLkworhXbt2ORUVFc4dd9yRTtu+fbuTSqWc3//+947jOM7mzZudLl26OHPmzEnn+fzzz53CwkJnwYIFjuM4znvvvecAcJYuXZrOU1tb6wBwPvjgA8dx2kV5YWGh8/nnn6fzPPPMM05xcbHT2NjoOI7jPPjgg04qlXK2b9+ezjNt2jSnsrLS2bVrl8WeiJb6+noHgLN48WLHcajfo6SsrMx55JFHqM8jYMuWLc7BBx/sLFq0yBk+fHhaDFPfEwThQjaJEGhtbcXy5csxYsSIjPQRI0ZgyZIlMbUqe1i/fj3q6uoy+q+4uBjDhw9P99/y5cuxY8eOjDyVlZUYMmRIOk9tbS1SqRSGDh2aznPssccilUpl5BkyZAgqKyvTeUaOHImWlhYsX748nWf48OEZA+uPHDkSGzduxMcff2y/AyKisbERANC7d28A1O9R0NbWhjlz5mDbtm2orq6mPo+Aq666CmeccQZOPfXUjHTqe4IgXEgMh8BXX32FtrY2lJeXZ6SXl5ejrq4uplZlD24fyfqvrq4ORUVFKCsrk+bp27dvh/L79u2bkYetp6ysDEVFRdI87u9s3Z6O42DSpEn43ve+hyFDhgCgfg+TNWvWoHv37iguLsYVV1yBefPmYfDgwdTnITNnzhysWLEC06ZN6zCP+p4gCBd6HXOIFBQUZPx2HKdDGiHGT/+xeXj5beRxdj/Ukq3bc/z48Vi9ejXefPPNDvOo3+0zaNAgrFq1Cps3b8bcuXNx0UUXYfHixen51Of2+fTTT3HNNddg4cKFKCkpEeajvicIgiLDIdCnTx906tSpw9V8fX19hyt/oiMVFRUAOkZDvP1XUVGB1tZWNDQ0SPN88cUXHcr/8ssvM/Kw9TQ0NGDHjh3SPPX19QA6RpWygQkTJuCFF17Aa6+9hn333TedTv0eHkVFRTjooINwzDHHYNq0afjWt76F3/72t9TnIbJ8+XLU19ejqqoKnTt3RufOnbF48WL87ne/Q+fOnYVRV+p7gsg/SAyHQFFREaqqqrBo0aKM9EWLFmHYsGExtSp7GDhwICoqKjL6r7W1FYsXL073X1VVFbp06ZKRZ9OmTVi7dm06T3V1NRobG/H222+n87z11ltobGzMyLN27Vps2rQpnWfhwoUoLi5GVVVVOs8bb7yRMQzSwoULUVlZiQEDBtjvgJBwHAfjx4/Hc889h1dffRUDBw7MmE/9Hh2O46ClpYX6PEROOeUUrFmzBqtWrUp/jjnmGFxwwQVYtWoVDjjgAOp7giDaie5ZvfzCHVpt1qxZznvvvedMnDjR6datm/Pxxx/H3bREsGXLFmflypXOypUrHQDOPffc46xcuTI99Nwdd9zhpFIp57nnnnPWrFnjnH/++dwhj/bdd1/nlVdecVasWOGcfPLJ3CGPjjzySKe2ttapra11jjjiCO6QR6eccoqzYsUK55VXXnH23XffjCGPNm/e7JSXlzvnn3++s2bNGue5555zevbsmXVDHv385z93UqmU8/rrrzubNm1Kf7755pt0Hup3+0yePNl54403nPXr1zurV692br75ZqewsNBZuHCh4zjU51HiHU3CcajvCYJoh8RwiDzwwAPO/vvv7xQVFTlHH310eggrwnFee+01B0CHz0UXXeQ4TvuwR7feeqtTUVHhFBcXOyeccIKzZs2ajDKam5ud8ePHO71793ZKS0udUaNGORs2bMjI8/XXXzsXXHCB06NHD6dHjx7OBRdc4DQ0NGTk+eSTT5wzzjjDKS0tdXr37u2MHz8+Y3gjx3Gc1atXO8cff7xTXFzsVFRUOFOmTMm64Y54/Q3Aeeyxx9J5qN/tc8kll6SPA3vvvbdzyimnpIWw41CfRwkrhqnvCYJwHMcpcBx6vQ1BEARBEASRn5BnmCAIgiAIgshbSAwTBEEQBEEQeQuJYYIgCIIgCCJvITFMEARBEARB5C0khgmCIAiCIIi8hcQwQRAEQRAEkbeQGCYIgiAIgiDyFhLDBEEQBEEQRN5CYpggiJxjwIABKCgoQEFBATZv3hyorBNPPDFd1qpVq6y0jyAIgkgOJIYJgkgkbW1tGDZsGM4555yM9MbGRvTv3x+/+MUvpMvffvvt2LRpE1KpVKB2PPfcc3j77bcDlUEQBEEkFxLDBEEkkk6dOuHxxx/HggUL8NRTT6XTJ0yYgN69e+NXv/qVdPkePXqgoqICBQUFgdrRu3dv7L333oHKIAiCIJILiWGCIBLLwQcfjGnTpmHChAnYuHEjnn/+ecyZMwePP/44ioqKjMqaPXs2evXqhb/85S8YNGgQunbtinPPPRfbtm3D448/jgEDBqCsrAwTJkxAW1tbSGtEEARBJI3OcTeAIAhCxoQJEzBv3jz89Kc/xZo1a/CrX/0KRx11lK+yvvnmG/zud7/DnDlzsGXLFpx99tk4++yz0atXL8yfPx8fffQRzjnnHHzve9/DmDFj7K4IQRAEkUhIDBMEkWgKCgowc+ZMHHbYYTjiiCNw0003+S5rx44dmDlzJg488EAAwLnnnosnnngCX3zxBbp3747BgwfjpJNOwmuvvUZimCAIIk8gmwRBEInn0UcfRdeuXbF+/Xp89tlnvsvp2rVrWggDQHl5OQYMGIDu3btnpNXX1wdqL0EQBJE9kBgmCCLR1NbW4t5778Xzzz+P6upqXHrppXAcx1dZXbp0yfhdUFDATdu1a5fv9hIEQRDZBYlhgiASS3NzMy666CJcfvnlOPXUU/HII49g2bJleOihh+JuGkEQBJEjkBgmCCKx3HTTTdi1axemT58OANhvv/1w99134z//8z/x8ccfx9s4giAIIicgMUwQRCJZvHgxHnjgAcyePRvdunVLp48bNw7Dhg0LZJcgCIIgCJcCh84mBEHkGAMGDMDEiRMxceJEK+V9/PHHGDhwIFauXOl7WDeCIAgimVBkmCCInOTGG29E9+7d0djYGKic73//+zj88MMttYogCIJIGhQZJggi5/jkk0+wY8cOAMABBxyAwkL/1/2ff/45mpubAbR7lk3ffEcQBEEkGxLDBEEQBEEQRN5CNgmCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgmCIIgCIIg8hYSwwRBEARBEETeQmKYIAiCIAiCyFtIDBMEQRAEQRB5C4lhgiAIgiAIIm8hMUwQBEEQBEHkLSSGCYIgCIIgiLyFxDBBEARBEASRt5AYJgiCIAiCIPIWEsMEQRAEQRBE3kJimCAIgiAIgshbSAwTBEEQBEEQeQuJYYIgCIIgCCJvITFMEARBEARB5C0khgmCIAiCIIi8hcQwQRAEQRAEkbeQGCYIgiAIgiDyFhLDBEEQBEEQRN5CYpggCIIgCILIW0gMEwRBEARBEHkLiWGCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgmCIIgCIIg8hYSwwRBEARBEETeQmKYIAiCIAiCyFtIDBMEQRAEQRB5C4lhgiAIgiAIIm8hMUwQBEEQBEHkLSSGCYIgCIIgiLyFxDBBEARBEASRt5AYJgiCIAiCIPIWEsMEQRAEQRBE3kJimCAIgiAIgshbSAwTBEEQBEEQeQuJYYIgCIIgCCJvITFMEARBEARB5C0khgmCIAiCIIi8hcQwQRAEQRAEkbeQGCYIgiAIgiDyFhLDBEEQBEEQRN5CYpggCIIgCILIW0gMEwRBEARBEHkLiWGCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgmCIIgCIIg8hYSwwRBEARBEETeQmKYIAiCIAiCyFtIDBMEQRAEQRB5C4lhgiAIgiAIIm8hMUwQBEEQBEHkLSSGCYIgCIIgiLyFxDBBEARBEASRt5AYJgiCIAiCIPIWEsMEQRAEQRBE3kJimCAIgiAIgshbSAwTBEEQBEEQeQuJYYIgCIIgCCJvITFMEARBEARB5C0khgmCIAiCIIi8hcQwQRAEQRAEkbeQGCYIgiAIgiDyFhLDBEEQBEEQRN5CYpggCIIgCILIW0gMEwRBEARBEHkLiWGCIAiCIAgibyExTBAEQRAEQeQtJIYJgiAIgiCIvIXEMEEQBEEQBJG3kBgmCIIgCIIg8hYSwwRBEARBEETeQmKYIAiCIAiCyFv+Pw4MX/Uw3x3aAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVRfG303dkB4iCaGE0AldakCaEHoV6YTeEaQoUgULAlIEpIoUpaogRYQISNfQizRB/UAQEhCBBCIhCbnfH3GGndmZ2dma2d3ze555dvfOuWXuTnnnzJl7dYwxBoIgCIIgCIJwQzzyugEEQRAEQRAEkVeQGCYIgiAIgiDcFhLDBEEQBEEQhNtCYpggCIIgCIJwW0gMEwRBEARBEG4LiWGCIAiCIAjCbSExTBAEQRAEQbgtJIYJgiAIgiAIt4XEMEEQBEEQBOG2kBgmCIIgCIIg3BYSwwRBEARBEITbQmKYIAiCIAiCcFtIDBMEQRAEQRBuC4lhgiAIgiAIwm0hMUwQBEEQBEG4LSSGCYIgCIIgCLeFxDBBEARBEAThtpAYJgiCIAiCINwWEsMEQRAEQRCE20JimCAIgiAIgnBbSAwTBEEQBEEQbguJYYIgCIIgCMJtITFMEARBEARBuC0khgmCIAiCIAi3hcQwQRAEQRAE4baQGCYIgiAIgiDcFhLDBEEQBEEQhNtCYpggCIIgCIJwW0gMEwRBEARBEG4LiWGCIAiCIAjCbSExTBAEQRAEQbgtJIYJgiAIgiAIt4XEMEEQBEEQBOG2kBgmCIIgCIIg3BYSwwRBEARBEITbQmKYIAiCIAiCcFtIDBMEQRAEQRBuC4lhgiAIgiAIwm0hMUwQBEEQBEG4LSSGCYIgCIIgCLeFxDBBEARBEAThtpAYJgiCIAiCINwWEsMEQRAEQRCE20JimCAIgiAIgnBbSAwTBEEQBEEQbguJYYIgCIIgCMJtITFMEARBEARBuC0khgmCIAiCIAi3hcQwQRAEQRAE4baQGCYIgiAIgiDcFhLDBEEQBEEQhNtCYpggCIIgCIJwW0gMEwRBEARBEG4LiWGCIAiCIAjCbSExTBAEQRAEQbgtJIYJgiAIgiAIt4XEMEEQBEEQBOG2kBgmCIIgCIIg3BYSwwRBEARBEITbQmKYIAiCIAiCcFtIDBMEQRAEQRBuC4lhgiAIgiAIwm0hMUwQBEEQBEG4LSSGCYIgCIIgCLeFxDBBEARBEAThtpAYJgiCIAiCINwWEsMEQRAEQRCE20JimCAIgiAIgnBbSAwTBEEQBEEQbguJYYIgCIIgCMJtITFMEARBEARBuC0khgmCIAiCIAi3hcQwQRAEQRAE4baQGCYEdOjQAX5+fnj06JGsTY8ePeDt7Y27d+/arN5ixYqhdevWRumff/45PD090bZtW2RkZNisPlty8OBB6HQ6HDx40KH1FitWDH369HFonbbi008/RdmyZeHr64uYmBi89957yMrKUpU3KysL7733HooVKwZfX1+ULVsWn376qaTt//73P7z22msICQlBQEAA4uPjcebMGSO7AQMGoEKFCggJCYGfnx9Kly6Nt99+G/fv3zeyffLkCUaNGoWoqCjo9XpUqVIFmzZtkqz/zJkzaNKkCQICAhASEoLXXnsN//vf/4zsdDqd5DJz5kyB3V9//YVRo0ahQYMGCAkJgU6nw5o1a0z22dOnT1G6dGnodDrMmTNHsG7atGmy9et0OsG2ff7552jfvj2KFSsGPz8/lCxZEkOHDkVycrJRnV9++SW6du2KMmXKwMPDA8WKFZNs27lz59CqVSsULVoUfn5+CAsLQ1xcHNatW2dke/ToUQwYMADVqlWDr68vdDodbty4IVnu/Pnz8dprryEmJgY6nQ4NGzZU7KPt27ejQYMGCAoKgr+/P8qXL4/PPvuMX5+Wlobp06ejYcOGiIyMREBAACpWrIhZs2ZJnpt+//13JCQk8NtVokQJjBkzBv/884+R7ZYtW1C3bl2EhYUhJCQENWvWxNq1axXbSxCEDWEEYcB3333HALDFixdLrn/06BHz8/Nj7du3t2m90dHRrFWrVoK0jz/+mAFgCQkJLCsry6b12ZIDBw4wAOzAgQMOrffMmTPs999/d2idtuDDDz9kOp2OTZgwgR04cIB9/PHHzMfHhw0cOFBV/gEDBjBfX1/28ccfswMHDrDx48cznU7Hpk+fLrC7d+8ei4qKYuXLl2dbtmxh33//PXvllVdYYGAg+/XXXwW2Xbt2ZQsWLGDff/89+/HHH9msWbNYUFAQi42NZc+ePRPYxsfHs5CQELZs2TK2f/9+NmDAAAaArV+/XmB35coVFhgYyOrVq8e+//57tmXLFla+fHkWFRXF7t27J7AFwF5//XWWlJQkWG7fvi2wO3DgAAsPD2dNmjRh3bp1YwDY6tWrTfbZ2LFjWVRUFAPAZs+eLVh369Yto3qTkpJYhQoVmJ+fH3v48CFvGxUVxXr06MHWr1/PDh48yJYvX84KFy7MChYsyFJSUgTlNmnShFWoUIH17NmTlSxZkkVHR0u27cCBA2zw4MFs7dq1bP/+/ey7775jXbt2ZQDYBx98ILCdNm0ai46OZu3bt2cNGzZkANj169clyy1Tpgx7+eWXWb9+/dhLL73EGjRoINs/M2bMYB4eHmzYsGFs9+7dbN++fWzRokXs008/5W0uXLjAwsPD2ejRo9n27dvZjz/+yKZNm8b0ej1r3Lgxy8nJ4W3v3bvH8ufPz2JiYtiaNWvY/v372dy5c1lAQACrUqUKe/78OW+7cuVKBoB17NiR7dq1i+3evZvf/nnz5sm2mSAI20FimBCQnZ3NoqKiWLVq1STXL126lAFg3333nU3rFYvhCRMmMABsxIgRgouMNaSnp9ukHDF5JYadkfv37zO9Xs8GDRokSJ8+fTrT6XTs0qVLivkvXrzIdDod++ijjwTpAwcOZH5+fuyff/7h095++23m7e3Nbty4waelpqay8PBw1rlzZ5NtXbJkCQPAfvzxRz7t+++/ZwDYhg0bBLbx8fEsKiqKZWdn82mdOnVi4eHhLDU1lU+7ceMG8/b2ZuPGjRPkB8CGDx9usk2GIurkyZOqxPDx48eZj48P++abbyTFsBTXr19nOp2O9ezZU5B+9+5dI1uuHWLhatjWVq1ayYphOWrVqsWKFCkiW+bs2bMVxbChbfny5WXF8KlTp5iHhwebNWuWYnuePHnCnjx5YpTOtePIkSN82ooVKxgAtm/fPoHtRx99xACwM2fO8Gl169Zl0dHRgvbm5OSwsmXLskqVKim2iSAI20BhEoQAT09P9O7dG6dPn8aFCxeM1q9evRoFCxZEixYt+LSlS5eicuXKCAgIQGBgIMqWLYuJEydaVH9OTg6GDh2KGTNm4N1338XChQuh0+n49YwxLFmyBFWqVIGfnx9CQ0Px+uuvGz16btiwISpUqIDDhw+jTp06yJcvH/r164cbN27wj4rnzZuHmJgYBAQEIC4uDseOHTNqz6lTp9C2bVuEhYVBr9ejatWq+Prrry3aNkO40IoNGzbgnXfeQcGCBREQEIA2bdrg7t27ePz4MQYNGoTw8HCEh4ejb9++ePLkiaAMcZgEV+bGjRsxadIkREVFISgoCE2aNMHVq1etbrMtSExMREZGBvr27StI79u3Lxhj2LZtm2L+bdu2gTEmmf/p06dITEzk07Zu3YpXX30V0dHRfFpQUBBee+01fPfdd8jOzlas66WXXgIAeHl5CcoMCAhAp06djOq/c+cOjh8/DgDIzs7Gzp070bFjRwQFBfF20dHRaNSoEbZu3apYtxweHuadsjMzM9GvXz8MHz4c1atXV51v1apVYIxhwIABgvQCBQoY2VarVg2enp64deuWVW0VEx4eLuh7c8tUa7to0SL4+vpixIgRinb+/v7w9/c3Sq9ZsyYACLbf29sbABAcHCywDQkJAQDo9XqBbUBAgKC9Op0OQUFBAjuCIOwHiWHCiH79+kGn02HVqlWC9MuXL+PEiRPo3bs3PD09AQCbNm3CsGHD0KBBA2zduhXbtm3D6NGjkZ6ebna9WVlZ6NGjB5YvX44FCxbgvffeM7IZPHgwRo0ahSZNmmDbtm1YsmQJLl26hDp16hjFMCcnJ6Nnz57o3r07du3ahWHDhvHrFi9ejL1792L+/PlYv3490tPT0bJlS6SmpvI2Bw4cQN26dfHo0SMsW7YM27dvR5UqVdClSxdVcZpqmDhxIu7du4c1a9Zg7ty5OHjwILp164aOHTsiODgYGzduxLhx47B27VrVNxgTJ07En3/+ic8//xyfffYZfvvtN7Rp0wbPnz9XzMcYQ3Z2tqrFUi5evAgAqFixoiC9YMGCCA8P59cr5X/ppZcQGRkpSK9UqZKg/KdPn+KPP/7g08W2T58+lYzdzc7ORnp6On766SdMmTIFr7zyCurWrSuov1y5ckYiTVz/H3/8gadPn8rW//vvvxvFmW7YsAF+fn7w9fVFtWrVsHr1asW+UMP777+P9PR0fPDBB6rz5OTkYM2aNShZsiQaNGhg0v7QoUN4/vw5ypcvb01TkZOTg+zsbPz9999YsmQJfvjhB7zzzjtWlamGw4cPo1y5ctiyZQvKlCkDT09PFC5cGOPHj0dmZqbJ/Pv37wcAwfa3b98eRYsWxdixY3Hp0iU8efIEhw8fxsyZM9GmTRuUK1eOtx0xYgSuXLmC6dOn4++//8b9+/cxZ84cnD59Gm+99Zagrj59+ijGSRMEYSF56pcmNEuDBg1YeHg4y8zM5NPGjh3LALBr167xaW+88QYLCQmxur7o6GgGgAFgEydOlLRJSkpiANjcuXMF6bdu3WJ+fn6CR88NGjQwesTNWO7jXwCsYsWKgkfaJ06cYADYxo0b+bSyZcuyqlWrGsUrt27dmhUsWJB/rGlJmASXp02bNoL0UaNGMQBs5MiRgvT27duzsLAwQVp0dDTr3bu3UZktW7YU2H399dcMAEtKSlLVJjWL3KNpUwwcOJD5+vpKritdujRr2rSpYv74+HhWpkwZyXU+Pj58+MXt27cZADZjxgwjuw0bNjAA7Oeffxakc/sXt7Rs2ZKlpaUJbEqVKsWaNWtmVOadO3cYAD5846effjLanzi4R+V37tzh07p3787Wr1/PDh8+zDZv3sxatGjBALDJkyfL9oWpMImzZ88yb29vlpiYyBh7se+bCpPYvXu3bN+JSUtLY+XKlWNFihRhjx8/lrVTEyYxePBgvu99fHzYkiVLFO1NhUkYohQm4evrywIDA1loaChbtGgR279/P5s0aRLz9PRk3bt3Vyz3/PnzzM/Pj3Xo0MFo3Z07d1hcXJxgn+rUqRPLyMgwst22bRsLDg7m7fz8/Ni6deuM7Pr168c8PT0FoT8EQViP0L1BEP/Rv39/9OrVCzt27EDHjh2RnZ2NdevWoV69eihVqhRvV7NmTSxatAjdunVD165dUbduXYSHh1tUZ5UqVfDgwQMsWrQIbdq0Qe3atQXrd+7cCZ1Oh549ewq8k5GRkahcubLRaA6hoaF49dVXJetq1aoV790GXnj2/vzzTwC5b4L/+uuv/Jv3hvW1bNkSO3fuxNWrVwUeHksQj6DBldeqVSuj9G3btuHJkycICAhQLLNt27aC34bbJu5TQ6pVq4aTJ0+qandUVJTierH32NPTkw93MQx7EaO0To2NeJ05thUrVsTJkyfx77//4ty5c5g5cybi4+Oxf/9+5MuXz671r1+/XrCuY8eOaNOmDWbOnImRI0fyIRtqyc7ORr9+/dClSxc0a9bMrLwrV66El5eXyZFKMjIy8Nprr+HPP//E/v37Te6Xppg4cSIGDBiAe/fu4bvvvsMbb7yB9PR0I++orcnJycHjx4+xceNGdO3aFQDQqFEjpKenY/78+XjvvfdQsmRJo3w3btxA69atUaRIEXz++eeCdQ8fPkS7du3w77//Yv369ShSpAguXryIDz74AG3btsX333/PP11ITExEz5490alTJ3Tu3BleXl7YsWMH+vTpg8zMTEFI0MqVK7Fy5Uo79gZBuCckhglJXn/9dYwYMQKrV69Gx44dsWvXLty9exezZs0S2CUkJCA7OxsrVqxAx44dkZOTgxo1auDDDz9EfHy8WXUWKlQI3377LRo1aoRmzZohMTERcXFx/Pq7d++CMYaIiAjJ/MWLFxf8LliwoGxd+fPnF/z29fUFkPt4nasLAN566y3Zi7HUsFvmEhYWJvjt4+OjmJ6RkWFSdJjaNjkCAgJQpUoVk20GYBQmIIaLmeRYvXo1+vTpg/z58yMjIwP//vuvQGACwIMHD1CtWjXFcvPnz49z584ZpaenpyMzM5Pvt9DQUOh0OslhrB48eADAuI/9/f35uNr69eujVq1aqF27NpYvX47Ro0fz9aspk/sP5Gx1Oh0fPypHz549sXPnTpw6dUoQo6+G+fPn43//+x++/vprfpjEtLQ0ALn70KNHjxAYGCi4IQRy9+kdO3agVatWRqEohjx79gwdOnTA0aNHsXPnTtSqVcus9klRtGhRFC1aFEDuDScATJgwAb179zb7ZsAc8ufPj5SUFKObhhYtWmD+/Pk4c+aMkRj+888/0ahRI3h5eeHHH3802pdmzZqFc+fO4c8//+TPQ/Xq1UPZsmXx6quvYv369ejduzcYY+jXrx/q168vCEtr0qQJUlNTMWLECHTu3FkyVpkgCNtBMcOEJH5+fujWrRsSExORnJyMVatWITAw0OjFISD35aGff/4Zqamp+P7778EYQ+vWrXkvqznExMTg4MGDCAsLQ7NmzfDzzz/z68LDw6HT6XD06FGcPHnSaBG/fKXGyygH592eMGGCZF0nT55ULRydhUOHDsHb21vVYipmUdxXbdq0AfAiVlj8cmZKSgru37+PChUqKJZbsWJF/P3330hJSRGkc+Vx+bkxcKVeAr1w4QL8/PyMbp7EVK9eHR4eHrh27Zqg/itXrhh5vsX1lyhRAn5+frL1lyxZ0uTLUYwxAJa9iHbx4kWkpqaiVKlSCA0NRWhoKCpXrgwAmDJlCkJDQyXbtnbtWmRmZhq9OGfIs2fP0L59exw4cADbtm1D48aNzW6fGmrWrIns7GzJ2G5bIhXXDcj3/59//omGDRuCMYYDBw6gcOHCRnnPnTuHQoUKGd2Q16hRA8CL2PK7d+8iOTmZfwlPbJuenk7xwQThAEgME7L0798fz58/x+zZs7Fr1y507drVyJtniL+/P1q0aIFJkyYhMzMTly5dsqjeYsWK4eDBgwgPD0fz5s3x008/AcgNKWCM4fbt26hevbrRIn4pyxrKlCmDUqVK4fz585J1Va9eHYGBgTarTwtwYRJqFlNhEuK+4jylzZs3h16vN3oBcc2aNdDpdGjfvr1iue3atYNOp8MXX3xhlN/Pzw/Nmzfn0zp06ID9+/cL3vJ//Pgxvv32W7Rt29akd/vQoUPIyckReAU7dOiAJ0+eYMuWLQLbL774AlFRUbyH1MvLC23atMG3336Lx48f83Y3b97EgQMH8NprrynWDeQKU29vb5PecinGjx+PAwcOCJaNGzcCAIYMGYIDBw5IPvpfuXIloqKiZD3RnEd4//792LJli9khGOZw4MABeHh4mLxpsZaOHTsCAHbv3i1I37VrFzw8PHgBC+T+fw0bNsTz58+xf/9+wUglhkRFReGvv/7C7du3BelJSUkAwAvo0NBQ6PV6yZFskpKS4OHhofiEiyAI20BhEoQs1atXR6VKlTB//nwwxtC/f38jm4EDB8LPzw9169ZFwYIFkZKSghkzZiA4OFhwETGX6OhoHDx4EI0aNULz5s2xa9cu1KtXD4MGDULfvn1x6tQp1K9fH/7+/khOTsbRo0dRsWJFDB061JpNFrB8+XK0aNECzZo1Q58+fVCoUCE8ePAAV65cwZkzZ/DNN9/YrC4tEBgYaNbwW5YQFhaGyZMnY8qUKQgLC0PTpk1x8uRJTJs2DQMGDEBsbCxv++WXX6Jfv35YtWoVevXqBSD3jf3+/ftj6tSp8PT0RI0aNbBnzx589tln+PDDDwWPq9966y2sXbsWrVq1wvvvvw9fX1/MnDkTGRkZmDZtGm+3c+dOrFixAm3btkV0dDSysrJw6tQpzJ8/HyVLlhR4SVu0aIH4+HgMHToUaWlpKFmyJDZu3IjExESsW7dOEHbw3nvvoUaNGmjdujXGjx+PjIwMvPvuuwgPD8fYsWN5u9mzZ+Py5cto3LgxChcujHv37mHlypXYs2cPpk2bZhSDv3nzZgDgPaanTp3iQ2def/11AEDZsmVRtmxZQT7Ow1iiRAnJ2diOHz+OS5cuYeLEiUbhExyvv/46du/ejUmTJiF//vwCERcUFCT4/y5fvozLly8DyPX8//vvv3zbY2NjedtBgwYhKCgINWvWREREBO7fv49vvvkGX331Fd5++21BiMTff/+NQ4cOAXjhjd+9ezdeeuklvPTSS4LRL06dOsVvc1paGhhjfP01atTghWzfvn2xfPlyDBs2DPfv30dsbCz27duHxYsXY9iwYbzdvXv30KhRIyQnJ2PlypW4d+8e7t27x9dXuHBhXuQOHz4c69evR3x8PMaPH8/HDH/44YeIiIhAjx49AOSGMA0bNgzz5s1Dr1690KVLF3h6emLbtm3YsGED+vfvL9in+/Tpgy+++ALXr1+XndGPIAgLyLNX9winYMGCBQwAi42NlVz/xRdfsEaNGrGIiAjm4+PDoqKiWOfOndkvv/xiVj1SM9AxxtjNmzdZiRIlmL+/Pzt06BBjjLFVq1axWrVqMX9/f+bn58dKlCjBevXqxU6dOsXna9CgAStfvrxReUpv1ANgU6dOFaSdP3+ede7cmRUoUIB5e3uzyMhI9uqrr7Jly5bxNtaMJvHNN98I0levXs0AsJMnTwrSp06dygCwv//+m0+TG01CXCa3zWpmKnMUCxYsYKVLl2Y+Pj6saNGibOrUqYKRSxh70RfidmdmZrKpU6eyokWLMh8fH1a6dGm2cOFCyXp+//131r59exYUFMTy5cvHGjduzE6fPi2wuXLlCnv99ddZdHQ00+v1TK/Xs7Jly7K3335bMIkHx+PHj9nIkSNZZGQk8/HxYZUqVZIcNYKx3AkdGjduzPLly8eCgoJY+/btjWYN3LFjB3vllVfYSy+9xLy8vPhZ6+TKhMIoH0qYGk1i4MCBTKfTsT/++EO2DKW6xaM1cPus1GJ4nK1atYrVq1ePhYeHMy8vLxYSEsIaNGjA1q5da1S/0ogn4vp79+4tayvep/755x82ePBgFhERwby9vVnp0qXZ7NmzBRNhmBptRXzuOHPmDOvQoQMrXLgw8/X1ZcWLF2cDBgxgN2/eFNg9f/6crVixglWvXp2FhISwoKAgVrVqVbZo0SKjY6Jjx45GswISBGE9Osb+C4wiCIIgCEKzREZGIiEhAbNnz87rphCES0FimCAIgiA0zqVLlxAXF4f//e9/Fg9fSRCENCSGCbtiarYyDw8Pq6dt1RKMMZMzvRmOuUsQBEEQRN7iOiqE0CSmhujq169fXjfRpqgZnkw8EgJBEARBEHkHeYYJu3Lq1CnF9eHh4S71VvTjx49x9epVRZuYmBijiTEIgiAIgsgbSAwTBEEQBEEQbguFSRBGdOjQAX5+fvw0rlL06NED3t7e/LTFtqBYsWJo3bq1Ufrnn38OT09PtG3bFhkZGTarz5YcPHgQOp0OBw8ezOumaJ4nT55g1KhRiIqKgl6vR5UqVbBp0ybV+e/du4c+ffogPDwc+fLlQ1xcHH788UdJ23379iEuLg758uVDeHg4+vTpIxgbFgBu3bqFDh06oHjx4vD390dwcDCqVq2KRYsWSca8r1+/HlWrVoVer0d4eDi6d+8umNjDkPv37+PNN99EsWLF4Ovri4iICLRo0YKfvpnj7NmzaN++PaKiopAvXz6ULVsW77//Pv7991+BnU6nk10MxxVOT09H165dUaZMGQQGBsLf3x/ly5fHhx9+iPT0dMX+nTx5MnQ6ndFsgGlpaZg+fToaNmyIyMhIBAQEoGLFipg1a5bkcXnt2jV07NgRoaGhyJcvH2rVqoUdO3Yo1g3kTkOt0+kkzwVffvklv10eHh6yT5X69Omj2FfiSS6ysrIwb948VKxYEX5+fggJCUGdOnUEM2ACudNcv/baa4iJiYFOp5Mcr5lDzX5qbp8SBGEn8mhIN0LDfPfddwwAW7x4seT6R48eMT8/P9a+fXub1is11vDHH3/MALCEhASWlZVl0/psiSVjDbsr8fHxLCQkhC1btozt37+fDRgwgAFg69evN5k3IyODVahQgRUuXJitW7eO7dmzh7Vr1455eXmxgwcPCmwPHjzIvLy8WLt27diePXvYunXrWKFChViFChVYRkYGb3flyhXWq1cvtmrVKrZv3z62a9cu9sYbbzAArH///oIyFy5cyACwAQMGsMTERPb555+zggULsujoaPbgwQOB7e3bt1nx4sVZ6dKl2eeff84OHTrEtmzZwt544w2WnJzM2126dInp9XpWuXJl9tVXX7Eff/yRTZ06lXl6erK2bdsKykxKSjJa5s+fzwCw8ePH83YPHz5knTt3ZsuWLWM//PAD27t3L5syZQrz9vZmjRs3lu3fs2fPMl9fXxYREWE0TveFCxdYeHg4Gz16NNu+fTv78ccf2bRp05her2eNGzdmOTk5vO3169dZWFgYK1++PNu0aRPbuXMna9WqFdPpdGzz5s2y9e/cuZP5+/uzoKAgyXHHmzRpwipUqMB69uzJSpYsyaKjoyXL+f333yX7Kjw8nBUqVIhlZ2fzttnZ2axVq1YsODiYTZ8+nR04cIDt3LmTvffee2zPnj2CcsuUKcNefvll1q9fP/bSSy8ZjW3MoXY/NadPCYKwHySGCSOys7NZVFQUq1atmuT6pUuXMgDsu+++s2m9YjE8YcIEBoCNGDHCZheF9PR0m5QjhsSwOr7//nsGgG3YsEGQHh8fz6KiogQiRYrFixczAOznn3/m07KyslhsbCyrWbOmwLZGjRosNjZWcBP1008/MQBsyZIlJtvauXNn5uXlxQvnjIwMFhwczNq0aSOw+/nnnxkANnHiREF6u3btWKFChYxEsphJkyYxAEaTcQwaNIgBMJm/T58+TKfTsd9++83kNo0bN44BkJxYIysri1WpUoWNHDlSctKaJ0+esCdPnhjlmz17NgPAjhw5wqcNHjyY6fV69tdff/Fp2dnZrFy5cqxIkSKCySw4Hj16xAoVKsTmzZsnOwmPYb5WrVrJimEpDh48yACwyZMnC9I/+eQT5uHhwZKSkkyWYVh/+fLlZcWw2v3UnD4lCMJ+UJgEYYSnpyd69+6N06dP81OeGrJ69WoULFgQLVq04NOWLl2KypUrIyAgAIGBgShbtiwmTpxoUf05OTkYOnQoZsyYgXfffRcLFy4UDEXGGMOSJUtQpUoV+Pn5ITQ0FK+//jo/PS1Hw4YNUaFCBRw+fBh16tRBvnz50K9fP9y4cQM6nQ5z5szBvHnzEBMTg4CAAMTFxRk9PgVyXwJs27YtwsLCoNfrUbVqVXz99dcWbZshXGjFhg0b8M4776BgwYIICAhAmzZtcPfuXTx+/BiDBg1CeHg4wsPD0bdvXzx58kRQxuLFi1G/fn0UKFAA/v7+qFixIj7++GNkZWXxNr/99huCgoLQqVMnQd79+/fD09MTU6ZMsXpb1LJ161YEBAQYtaVv3764c+cOjh8/bjJ/mTJlEBcXx6d5eXmhZ8+eOHHiBG7fvg0AuH37Nk6ePImEhAR4eb2Ydb5OnTooXbo0tm7darKtL730Ejw8PPipiS9evIjU1FS0bNlSYBcXF4ewsDBs2bKFT7tx4wZ27NiBgQMHIjQ0VLEeb29vAEBwcLAgPSQkBB4eHvDx8ZHN+/jxY3zzzTdo0KABSpYsqWqbAAj6hGPmzJl48OABpk+fLpnX398f/v7+Ruk1a9YEAEGoyE8//YTKlSujUKFCfJqnpydatGiBW7du4cSJE0bljB07FgULFsTIkSNl22/NMIwrV66ETqczGsFmwYIFqF+/PmrXrm2yDLX1q91PzelTgiDsB4lhQpJ+/fpBp9Nh1apVgvTLly/jxIkT6N27Ny8SNm3ahGHDhqFBgwbYunUrtm3bhtGjR5uMTZQiKysLPXr0wPLly7FgwQK89957RjaDBw/GqFGj0KRJE2zbtg1LlizBpUuXUKdOHaMY5uTkZPTs2RPdu3fHrl27MGzYMH7d4sWLsXfvXsyfPx/r169Heno6WrZsidTUVN7mwIEDqFu3Lh49eoRly5Zh+/btqFKlCrp06YI1a9aYvX1STJw4Effu3cOaNWswd+5cHDx4EN26dUPHjh0RHByMjRs3Yty4cVi7dq3RDcYff/yB7t27Y+3atdi5cyf69++P2bNnY/DgwbxNqVKlsGLFCmzevBkLFy4EAKSkpKB79+6oV68epk2bptg+xhiys7NVLaa4ePEiypUrZyTGKlWqxK83lZ+zlcp/6dIlQTlytlL1cNv58OFDfPXVV1izZg3Gjh3LtzUzMxMA4Ovra5TX19cXv/32Gx/neeTIETDGEBUVhW7duiEgIAB6vR4NGzZEUlKSIG/v3r0REhKCoUOH4n//+x8eP36MnTt3Yvny5Rg+fLikWOLYtGkT0tPTMWDAAMn13DalpaUhMTERc+fORbdu3VC0aFGB3eXLl/Hhhx9i6dKlCAgIkK1Piv379wMAypcvz6dlZmbK9hMA/PLLL4L0ffv24csvv+TfD7A1qamp2Lx5Mxo3boyYmBg+/datW7hx4wYqVqyIiRMnIiIiAl5eXihfvrxVQyCq3U/lkOpTIPe9ClcafYcgNEOe+qUJTdOgQQMWHh7OMjMz+bSxY8cyAOzatWt82htvvMFCQkKsri86OpoBkHzkzJGUlMQAsLlz5wrSb926xfz8/Ni4ceME7QfAfvzxR4Ht9evXGQBWsWJFwWP5EydOMABs48aNfFrZsmVZ1apVjeKVW7duzQoWLMg/NrUkTILLI37sPmrUKAaAjRw5UpDevn17FhYWJlve8+fPWVZWFvvyyy+Zp6en0eP1oUOHMh8fH5aUlMReffVVVqBAAXbnzh2T7Vy9ejX/v5haTFGqVCnWrFkzo/Q7d+4wAOyjjz5SzO/t7c0GDx5slM6FKnDhF+vXr2cAJB99Dxo0iPn4+Bilz5gxg98OnU7HJk2aJFj/zz//MA8PD6M44t9//53Px/UnV1ZQUBBr164dS0xMZFu2bGGVKlVier2enT9/XlDGlStXWNmyZQV9OXLkSJPhQbVq1WIhISHs6dOnkus3btwoKLNv375G+/Lz589ZrVq1WLdu3fg0qTAJKc6fP8/8/PxYhw4dBOnt27dnISEh7PHjx4L0evXqGf3Pjx8/ZsWKFWMTJkzg0+TCJAwxJ0yCC+0yPLYZe3E+CQoKYrGxsezrr79mP/zwA3v99dcZAPbZZ5/JlqkUJqF2P5VCrk8ZY6xEiRKsRIkSsnkJgrAM42dlBPEf/fv3R69evbBjxw507NgR2dnZWLduHerVq4dSpUrxdjVr1sSiRYvQrVs3dO3aFXXr1rV4utAqVargwYMHWLRoEdq0aWP06HLnzp3Q6XTo2bOnwBMZGRmJypUrG43mEBoaildffVWyrlatWgm8UJzX5s8//wQA/P777/j1118xZ84cAMLZ9Fq2bImdO3fi6tWrKFeunEXbyiF+a54rr1WrVkbp27Ztw5MnT3jv3dmzZzF16lT89NNPRiMUXLt2DbVq1eJ/f/LJJzh27BgaNWqEzMxMJCYmomDBgibb16ZNG5w8edKibZNCafY9NTPzmZNfzlYqvU+fPmjSpAkePHiA/fv3Y/bs2UhNTcWnn34KAAgLC0OPHj3w5ZdfokaNGujUqRP++usvDBo0CJ6ennj+/Dn/GD0nJwcAULhwYWzZsoXfz+Li4lCyZEl8/PHHWLduHYDckIo2bdogIiICmzdvxksvvYTjx4/jww8/xJMnT7By5UrJbbh06RKOHz+O4cOHQ6/XS9o0a9YMJ0+exOPHj5GUlIRZs2bhn3/+wdatW/m2zps3D7/99puqkR4MuXHjBlq3bo0iRYrg888/F6x74403sH37dvTq1Qtz5syBv78/Fi1axI/OYBhuMH78eHh7e+Pdd981q35zWLlyJfLnz48OHToI0rn/KSMjA7t27UJ0dDQAID4+HtWrV8f777+PgQMHWlSnJfu5Up8CueckgiBsD4lhQpbXX38dI0aMwOrVq9GxY0fs2rULd+/exaxZswR2CQkJyM7OxooVK9CxY0fk5OSgRo0a+PDDDxEfH29WnYUKFcK3336LRo0aoVmzZkhMTBTE3d29exeMMUREREjmL168uOC3ktgTT3zBPcJ9+vQpXxcAvPXWW3jrrbcky7h//76JLTJNWFiY4DcXIyqXnpGRgYCAANy8eRP16tVDmTJlsGDBAhQrVgx6vR4nTpzA8OHD+e3g8PX1Rffu3fH222/j5ZdfVv3fhIWFGcWzWkr+/Pnxzz//GKVzQl68zZbm5/5bOVupeiIjIxEZGQkAaNq0KUJDQzF+/Hj069cPVatWBZAbG88Yw7BhwzBkyBB4eHggISEBERER+OGHH/h6uc8mTZoIbrgKFiyIypUr48yZM3za+PHjkZaWhnPnzvEhEfXr10d4eDj69euHXr16oUGDBkbt5USyXIgEkHszWL16dQBAo0aNUKJECXTt2hXbt29Hhw4dcPPmTbz77ruYOXMmfHx8+OEUs7OzkZOTg0ePHsHX1xd+fn6Ccv/88080atQIXl5e+PHHH436s3Hjxli9ejXGjh2LEiVKAABiY2PxwQcfYOLEiXws8YkTJ7BkyRJ8++23yMjI4MNMcnJykJ2djUePHsHPz08y5EItv/zyC06dOoU333zTqBzufypbtiwvhIFcsdqsWTPMmDED9+7dQ4ECBcyq05L93FSfEgRhPyhmmJDFz88P3bp1Q2JiIpKTk7Fq1SoEBgYavfwE5L4A9fPPPyM1NRXff/89GGNo3bo172U1h5iYGBw8eBBhYWFo1qyZYKzP8PBw6HQ6HD16FCdPnjRatm3bJihLjadRDs67PWHCBMm6Tp48iSpVqlhcvrVs27YN6enp+Pbbb9GzZ0+88sorqF69uuwLVxcvXsS7776LGjVq4MyZM5g3b56qer744guTU0xziykqVqyIK1euGMUXcy9qise2lcov9VKnOD/3KWdrqh7gxUtM165d49P8/f2xdu1a3L9/H+fPn8fdu3exZs0aXL16FXXq1OHji6XiRTkYYwLP6Llz5xAbG2sUG1yjRg0A0nHUmZmZWLt2LapVq2bWPijepv/97394+vQp3nzzTYSGhvLLTz/9hCtXriA0NBQTJkwQlPHnn3+iYcOGYIzhwIEDKFy4sGRdvXv3RkpKCi5fvozffvuNj5PV6XSoV68egNxYZcYYOnToIKj/1q1b+OGHHxAaGoqlS5eq3j4plG4aSpQogXz58knmY//NR2XJS3tq91MOtX1KEIR9IM8woUj//v2xbNkyzJ49G7t27UKfPn1kLx5Arlho0aIFMjMz0b59e1y6dEngcVFLsWLFcPDgQTRq1AjNmzfH7t27UbduXbRu3RozZ87E7du30blzZ2s2zSRlypRBqVKlcP78eXz00Ud2rcsSOKFv6O1ijGHFihVGtunp6ejUqROKFSuGAwcOYPz48Rg/fjzq1q0rCKWQwpZhEh06dMCKFSuwZcsWdOnShU//4osvEBUVZbItHTp0wLBhw3D8+HHelgvfqVWrFqKiogDkPmGoWbMm1q1bh7feeov3zh47dgxXr17FqFGjTLb1wIEDACA5SgMn2gBgx44duHr1quCJSa1atVC4cGHs2bMHz58/5+u/c+cOzp8/j+7du/O2UVFRuHjxoiD8BQD/op2UMNqxYwfu37+P999/3+R2KG1TlSpV+DRDRo0ahdTUVKxevVpQ/82bN9GwYUM8f/4cBw8eNHlse3l58WE/qamp+Oyzz9CuXTs+X/PmzSXr79q1K2JiYjBjxgxVo2TI8ezZM6xbtw41a9aUvAHy8vJCu3btsHnzZty4cYN/OY0xhsTERJQoUcKikC+1+ylgfp8SBGF7SAwTilSvXh2VKlXC/PnzwRhD//79jWwGDhwIPz8/1K1bFwULFkRKSgpmzJiB4OBg3rtlCdHR0QJBvGvXLtSrVw+DBg1C3759cerUKdSvXx/+/v5ITk7G0aNHUbFiRQwdOtSaTRawfPlytGjRAs2aNUOfPn1QqFAhPHjwAFeuXMGZM2fwzTff2Kwuc4mPj4ePjw+6deuGcePGISMjA0uXLsXDhw+NbIcMGYKbN2/ixIkT8Pf3x9y5c5GUlISuXbvi7NmzCAkJka0nf/78RiElltKiRQvEx8dj6NChSEtLQ8mSJbFx40YkJiZi3bp1gpCC/v3744svvsAff/zBC4R+/fph8eLF6NSpE2bOnIkCBQpgyZIluHr1Kvbt2yeoa9asWYiPj0enTp0wbNgw3Lt3D+PHj0eFChXQt29f3m7q1Km4e/cu6tevj0KFCuHRo0dITEzEihUr0KlTJ1SrVo233bJlC+7cuYNy5cohIyMDBw8exIIFCzBkyBC0a9eOt/Pw8MAnn3yCzp07o127dhg6dCjS09PxwQcfwMfHR+BtHTVqFNq3b4/4+HiMHj0a4eHhOHbsGGbMmIHY2FjBEIYcK1euhJ+fn0BUG7J8+XIcOXIETZs2RZEiRZCeno4jR47g008/RZ06dfi2hoSESM6iFhISguzsbMG6e/fuoVGjRkhOTsbKlStx7949wWx+hQsX5oXzvXv3MHfuXNStWxeBgYH49ddf8fHHH8PDwwOLFy/m8xiGphii1+uRP39+o7ZdvnwZly9fBpA7Isq///6LzZs3A8gNw4iNjRXYb9u2DQ8ePFAMJfnggw+we/duNG/eHNOmTUNQUBA+//xznD9/3mgIxVOnTuHGjRsAcmePY4zx9deoUcPs/dScPgXAi3WuDQRB2Ii8eW+PcCYWLFjAALDY2FjJ9V988QVr1KgRi4iIYD4+PiwqKop17tyZ/fLLL2bVI/cG+c2bN1mJEiWYv78/O3ToEGOMsVWrVrFatWoxf39/5ufnx0qUKMF69erFTp06xeeTeyOeG01i9uzZRusAsKlTpwrSzp8/zzp37swKFCjAvL29WWRkJHv11VfZsmXLeBtrRpP45ptvBOnc6A0nT54UpE+dOpUBYH///Tef9t1337HKlSszvV7PChUqxN5++222e/duQVtWrFjBALDVq1cLyvv9999ZUFCQzWcSNMXjx4/ZyJEjWWRkJPPx8WGVKlUyesufMcZ69+7NALDr168L0lNSUlivXr1YWFgY0+v1rHbt2mzv3r2Sde3Zs4fVrl2b6fV6FhYWxnr16sXu3r0rsNmxYwdr0qQJi4iIYF5eXiwgIIDVrFmTLVy40Gjkha1bt7IqVarw+1316tXZypUrZUd92LZtG6tRowbT6/UsODiYtW3bll26dMnIbv/+/axp06YsMjKS+fn5sdKlS7OxY8ey+/fvG9nevHmTeXh4sF69eknWyVju5CKtW7dmUVFRzMfHh+XLl49VrlyZffDBB6omnpE6drj9VW4xPG7++ecf1rRpU/bSSy8xb29vVrRoUTZixAjBvquE3LmAOwZM1c8RHx/P/P39WVpammJ9Fy5cYK1atWKBgYH8PiU1qRC3T0ot4uNLzX5qTp8yxlh4eDirXbu24rYQBGE+Osb+C4wiCIIgCEKTXL58GeXLl8fOnTuNRpohCMI66AU6giAIgtA4Bw4cQFxcHAlhgrAD5Bkm7I6pmck8PDysmmZVazDG8Pz5c0UbT09Pq0a6IAiCIAjCNriOAiE0i6nhuPr165fXTbQphw4dMrnN1kz1ShAEQRCE7SDPMGF3Tp06pbg+PDycf0vaFXj8+DGuXr2qaBMTE2OzERoIgiAIgrAcEsMEQRAEQRCE20JhEgRBEARBEITbQmLYTejQoQP8/Pzw6NEjWZsePXrA29sbd+/etVm9xYoVQ+vWrY3SP//8c3h6eqJt27bIyMiwWX225ODBg9DpdDh48GBeN8WlOHDgAOLj41GgQAEEBASgUqVKWLhwocmXDjm2bNmCunXrIiwsDCEhIahZsybWrl0rabtp0yZUqVIFer0eUVFRGDVqFJ48eSKw6dOnD3Q6nexy7NgxgX1WVhbmzZuHihUrws/PDyEhIahTp45g2nCOTz/9FGXLloWvry9iYmLw3nvvISsry8ju3r176NOnD8LDw5EvXz7ExcXhxx9/lNym9PR0vPvuuyhdujR8fX2RP39+NGrUCL/99ptsn+3bt4/fnvv378vaAUDPnj2h0+kkj9vHjx9j5MiRKFSoEHx9fVG6dGl8/PHHRv/d/v370a9fP5QtWxb+/v4oVKgQ2rVrh9OnTxuVKdf/ZcuWlWzfn3/+iX79+iEqKgq+vr4oVKgQOnToILD566+/MGrUKDRo0AAhISHQ6XRYs2aNZHmTJk1C1apVERYWBr1ej+LFi2PQoEEWTSWvhn379iEuLg758uVDeHg4+vTpI5hoA8idVENuf9y0aZNd2kUQ7gzNQOcm9O/fH9u2bcOGDRswbNgwo/WpqanYunUrWrdujYiICLu2Zfbs2Rg3bhwSEhKwatUqeHnRbugu7Nu3D82aNUP9+vWxYsUK+Pv7Y8eOHXjzzTfxxx9/YMGCBYr5V61ahf79+6Njx46YPHkydDodvvjiC/Tq1Qv379/H6NGjedv169ejZ8+eGDBgAD755BNcu3YN77zzDi5fvow9e/bwdlOmTMGQIUOM6mrTpg18fX0Fsyg+f/4cHTp0wNGjRzFu3DjUqVMH6enpOH36NNLT0wX5p0+fjilTpmD8+PFo2rQpTp48icmTJ+P27dv47LPPeLtnz56hcePGePToERYsWIACBQpg8eLFaN68Ofbt24cGDRrwtk+ePEGjRo1w584djB8/HpUqVUJqaip+/vln/Pvvv5J99uTJEwwcOBBRUVG4c+eOYv9+//332LZtG4KCgozWZWdnIz4+HteuXcMHH3yA0qVLIzExEePHj8dff/2FhQsX8rZLly7FP//8gzfffBOxsbH4+++/MXfuXNSuXRs//PADXn31VUHZfn5+2L9/v1GamIsXL6Jhw4YoXrw45syZg8KFCyM5ORk//PCDwO7333/H+vXrUaVKFbRs2RIbN26U3eZHjx6hW7duKFeuHAIDA3H58mV8+OGH2LFjBy5dumTT2P5Dhw6hRYsWaNWqFbZv34579+7hnXfeQePGjXHq1CnB1OoAMGLECKNZBkuVKmWz9hAE8R95Nt0H4VCys7NZVFQUq1atmuT6pUuXMgCSsy5Zg3gmqQkTJjAAbMSIEbKzdpmLmhm1LMGSWeUIZXr06MF8fX3ZkydPBOlNmzZlQUFBJvPXrVuXRUdHs+fPn/NpOTk5rGzZsqxSpUp8WnZ2NitYsCBr2rSpIP/69esZALZr1y7Feg4ePMgAsMmTJwvSP/nkE+bh4cGSkpIU89+/f5/p9Xo2aNAgQfr06dOZTqcTzEK3ePFiBoD9/PPPfFpWVhaLjY1lNWvWFOR/8803mb+/P/vjjz8U6zdk+PDhrGrVqmzy5MlGMxga8ujRI1aoUCE2b948yRngNm7cyACwLVu2CNIHDRrEPDw82K+//sqniWf5Yyx35sGIiAjWuHFjQXrv3r2Zv7+/ye3IyclhVapUYVWqVGEZGRmKtob7x8mTJyVniFNi165dDABbuXKl6jxqqFGjBouNjRXMbPjTTz8xAGzJkiV8mtIsmQRB2B4Kk3ATPD090bt3b5w+fRoXLlwwWr969WoULFgQLVq04NOWLl2KypUrIyAgAIGBgShbtiwmTpxoUf05OTkYOnQoZsyYgXfffRcLFy4UjLPLGMOSJUtQpUoV+Pn5ITQ0FK+//jr+97//Ccpp2LAhKlSogMOHD6NOnTrIly8f+vXrxz9WnDNnDubNm4eYmBgEBAQgLi7O6DE3kDvCRdu2bflHo1WrVsXXX39t0bYZwoVWbNiwAe+88w4KFiyIgIAAtGnTBnfv3sXjx48xaNAghIeHIzw8HH379jV6bK+2L/bu3Yt27dqhcOHC0Ov1KFmyJAYPHmz0GHzatGnQ6XS4dOkSunXrhuDgYERERKBfv35ITU21epvNwdvbGz4+PkZev5CQEOj1elX5AwICBONS63Q6BAUFCfIfO3YMycnJ6Nu3ryB/p06dEBAQgK1btyrWs3LlSuh0OqNh/xYsWID69eujdu3aivkTExORkZFhVH/fvn3BGMO2bdv4tK1bt6JMmTKIi4vj07y8vNCzZ0+cOHECt2/fBgD8+++/+Pzzz9GpUycUL15csX6OI0eO4LPPPuPDkpQYO3YsChYsiJEjR0qu/+mnn6DT6QTnCABo3bo1cnJyBH1aoEABo/wBAQGIjY3FrVu3VLVdzOHDh3Hu3DmMGjXKyIMqxtpxy1966SUAMHpqlZKSgsGDB6Nw4cLw8fHhQ19MjaUOALdv38bJkyeRkJAgKLdOnTooXbq0yX2SIAj7QWLYjejXrx90Oh1WrVolSL98+TJOnDiB3r178xfMTZs2YdiwYWjQoAG2bt2Kbdu2YfTo0UaPgtWQlZWFHj16YPny5ViwYAHee+89I5vBgwdj1KhRaNKkCbZt24YlS5bg0qVLqFOnjlEMc3JyMnr27Inu3btj165dgrCPxYsXY+/evZg/fz7Wr1+P9PR0tGzZUiD6Dhw4gLp16+LRo0dYtmwZtm/fjipVqqBLly6ycYXmMnHiRNy7dw9r1qzB3LlzcfDgQXTr1g0dO3ZEcHAwNm7ciHHjxmHt2rVGNxhq++KPP/5AXFwcli5dij179uDdd9/F8ePH8corr0jGpXbs2BGlS5fGli1bMH78eGzYsEEQViBHTk4OsrOzTS5qYn6HDBmCzMxMjBw5Enfu3MGjR4+wdu1abN26FePGjTOZf8SIEbhy5QqmT5+Ov//+G/fv38ecOXNw+vRpvPXWW7zdxYsXAQCVKlUS5Pf29kbZsmX59VKkpqZi8+bNaNy4MWJiYvj0W7du4caNG6hYsSImTpyIiIgIeHl5oXz58kbjRnPlV6xYUZBesGBBhIeHC+q/ePGiUTsN237p0iUA4EMxSpUqhaFDhyI0NBQ+Pj6oXr06vv/+e6P8T58+Rf/+/TFq1Ci8/PLLstsL5IavfPnll4qiOTMzEx4eHvD29hakc8L0l19+UawjNTUVZ86cQfny5SXbGhkZCU9PTxQuXBhvvPEGHjx4ILA5fPgwACAwMBAtW7aEXq9HQEAAWrdujV9//VWxbjVkZ2fj6dOnOHv2LEaNGoXSpUvjtdde49enpKSgZs2a+OGHH/Duu+9i9+7d6N+/P2bMmIGBAweaLF9un+TSpPbJmTNnwsfHB/ny5cMrr7yCHTt2GNlwN+DTpk0zY2sJghCQx55pwsE0aNCAhYeHs8zMTD5t7NixDAC7du0an/bGG2+wkJAQq+uLjo5mABgANnHiREmbpKQkBoDNnTtXkH7r1i3m5+fHxo0bJ2g/APbjjz8KbLnHihUrVmTZ2dl8+okTJxgAtnHjRj6tbNmyrGrVqoJHlYwx1rp1a1awYEH+EaslYRJcnjZt2gjSR40axQCwkSNHCtLbt2/PwsLCLOoLQ3JyclhWVhb7888/GQC2fft2ft3UqVMZAPbxxx8L8gwbNozp9XqT4SpcflNLdHS0YjkcP/30E4uKiuLzeXp6GrVNiW3btrHg4GA+v5+fH1u3bp3AZvr06QwAS05ONsrftGlTVrp0adnyuZAhw32GsRf/TVBQEIuNjWVff/01++GHH9jrr7/OALDPPvuMtx04cCDz9fWVLL906dKC8A1vb282ePBgI7uff/6ZAWAbNmxgjL0IUwgKCmJ169ZlO3bsYDt37mSNGjViOp2OJSYmCvKPHTuWFS9enP3777+MsRf/ozhM4vHjx6xYsWJswoQJfJpUmMT8+fMZAHbkyBFB+pQpUxgAo5AUMT169GBeXl7s1KlTgvR58+axefPmsT179rA9e/awSZMmsXz58rGyZcuyx48f83aDBw/mt79///5s3759bO3atSw6OpqFh4ezO3fuSNarJkwiOTlZsC/XqlWL3b59W2AzePBgFhAQwP78809B+pw5cxgAQeiLFFyIjlSIzaBBg5iPjw//+86dO2zgwIHs66+/ZkeOHGHr169ntWvXZgDYihUrBHkPHjzIPD092XvvvadYP0EQ8pAYdjO+/PJLBoBt3ryZMZYbmxgREcHq1asnade1a1e2bds22ThDU0RHR7MqVaqwokWLsqCgIMkLwaRJk5hOp2N3795lWVlZgqV27dqCuMkGDRqw0NBQozI4MTx+/HhBekZGBgPAZs6cyRhj7LfffmMA2Jw5c4zqWrJkCQPALl++zBizTgwvX75ckL58+XIGgP3www+CdC6Gmrvom9MXd+/eZYMHD2aFCxdmHh4egos5t72MvRBBhjGdjDG2bNkyBoClpKQobtPt27fZyZMnTS6//PKLyf45deoUK1CgAGvTpg377rvv2P79+9nkyZOZj48Pe//9903m3717NwsICGB9+/Zlu3fvZnv37mUjRoxgXl5ebNWqVbwdJ4altq1p06asTJkysnVUr16d5c+f3ygulYvt9PHxYTdu3ODTc3Jy2Msvv8wKFy7Mpw0cOJDp9XrJ8kuXLs2aNWvG//b29mZDhgwxsuPEMCfKOTEVHh7O0tLSeLv09HQWFRXF6taty6cdP36ceXp6sr179/JpcmJ4+PDhrFSpUuzp06d8mpQY/vvvv1lYWBgrV64cO3bsGHv48CHbsGEDf2PSvHlzye1ljPHxyp9++qmsjSGbN29mANi8efP4tIEDBzIAgr5jjLGzZ88yAGzSpEmSZakRw1lZWezkyZPs6NGjbMWKFaxUqVKsdOnSAoFdqFAh1qZNG6Pj8tKlS4KY3+zsbMF67uaa+/+OHTtmVP+gQYNkb544MjMzWdWqVVn+/PmNbuQJgrAOeo3fzXj99dcxYsQIrF69Gh07dsSuXbtw9+5dzJo1S2CXkJCA7OxsrFixAh07dkROTg5q1KiBDz/8EPHx8WbVWahQIXz77bdo1KgRmjVrhsTEREF85N27d8EYkx3FQhwfWbBgQdm6xG9+c49wnz59ytcFAG+99ZbgsbohpoaeUkNYWJjgt4+Pj2J6RkYGAgICVPdFTk4OmjZtijt37mDKlCmoWLEi/P39kZOTg9q1a/Pba4ipvpEjMjJSMgZUjGEMuBzDhw9HREQEtm7dyj+Ob9SoETw8PDBt2jT06NFDNh6WMYZ+/fqhfv36glCfJk2aIDU1FSNGjEDnzp3h7+/Pb+s///xj1JcPHjww+h84fvnlF5w6dQpvvvmmUVwqV2bZsmURHR0t2O5mzZphxowZuHfvHgoUKID8+fMjIyMD//77L/Lly2dUf7Vq1QTl/vPPP0Zt4cIEuLZy9depUweBgYG8Xb58+dCgQQNBHHK/fv3w2muvoXr16vxwitwQhmlpafD19UVgYCBOnDiBJUuW4Ntvv0VGRgZvw4XGPHr0CH5+fvD19UV4eDgSExPRu3dvPmY6f/78mDdvHvr3749ChQpJ9ul7772HDz/8ENOnT8cbb7whaSOmQ4cO8Pf3F8T7c9vfrFkzgW2VKlVQsGBBnDlzRlXZUnh5eaF69eoAgLp166J58+aIiYnBzJkz+RFO7t69i++++84oTISDO280btwYhw4d4tN79+6NNWvWCPZJMUr7JIe3tze6dOmC8ePH47fffkO5cuXM31CCICQhMexm+Pn5oVu3blixYgWSk5OxatUqBAYGolOnTka2ffv2Rd++fZGeno7Dhw9j6tSpaN26Na5duyYQA2qIiYnBwYMHBYK4Tp06AHKnY9bpdDhy5IjkizHiNDWiS47w8HAAwIQJEwTxgIaUKVPG4vKtRW1fXLx4EefPn8eaNWvQu3dvfv3vv/9u8za9//77knHeYqKjo3Hjxg1Fm3PnzqFbt25Gcak1atRATk4Orly5IiuG7969i+TkZAwePNhoXY0aNfDll1/ixo0bKF++PB+re+HCBcTGxvJ22dnZ+PXXX9GtWzfJOlauXAkAGDBggNG6EiVKGAlbDvbfRJ7ci1uG9deqVYu3S0lJwf3791GhQgU+rWLFipIvtXJpnK1UrKlh/YYvjV26dAmXLl3CN998I7kdlStXxrlz53D58mUwxozG6QVyY6RDQ0PxySefYNSoUQBy+/ny5cu4ceMGH7/MjR1cv359ozLee+89TJs2DdOmTTP75VvxNpmz/dZSuHBhREVF4dq1a3xaeHg4KlWqhOnTp0vmiYqKAgAsX74cjx8/FuQDXvyPFy5cQMuWLQV5L1y4INgn5BDvZwRB2AYSw25I//79sWzZMsyePRu7du1Cnz59ZC/yAODv748WLVogMzMT7du3x6VLl8wWw0DuBBycIG7evDl2796NunXronXr1pg5cyZu376Nzp07W7NpJilTpgxKlSqF8+fP46OPPrJrXZagti+4GwKxYF6+fLnN2zRo0CDJCRjEmHrDH8gVDKdOncLz588FgjgpKQlArgiRIzQ0FHq9XnJ0kKSkJHh4ePBPDWrVqoWCBQtizZo16NKlC2+3efNmPHnyRPJG6NmzZ1i3bh1q1qwpKUy8vLzQrl07bN68GTdu3ECxYsUA5AqUxMRElChRghc+zZs3h16vx5o1awRieM2aNdDpdGjfvj2f1qFDBwwbNgzHjx/nbbOzs7Fu3TrUqlWLF1kFCxZEXFwcfvrpJ6SlpfFjAf/77784dOiQYISLAwcOGLV/zZo1+OKLL7Bt2zbei9u8eXNJ265duyImJgYzZsxAyZIljdYbbvvcuXMRFRVldEP9wQcfYNq0aZg8eTKmTp1qVIYSmzdvxr///ivYphYtWiBfvnzYvXu34MXPM2fOICUlxeQIH+bw+++/46+//kLbtm35tNatW2PXrl0oUaIEQkNDZfPK3UwXKlQINWvWxLp16/DWW2/x+/+xY8dw9epV/oZDjqysLHz11VcIDw+X/E8IgrAcEsNuSPXq1VGpUiXMnz8fjDH079/fyGbgwIHw8/ND3bp1UbBgQaSkpGDGjBkIDg4WTEJgLtHR0QJBvGvXLtSrVw+DBg1C3759cerUKdSvXx/+/v5ITk7G0aNHUbFiRQwdOtSaTRawfPlytGjRAs2aNUOfPn1QqFAhPHjwAFeuXMGZM2ckvWmOom7duqr6omzZsihRogTGjx8PxhjCwsLw3XffYe/evTZvU1RUFC/IrGX06NEYOXIk2rRpg8GDByNfvnz48ccfMXfuXDRp0gSVK1fmbbnHzdywVb6+vhg2bBjmzZuHXr16oUuXLvD09OQnk+nfvz//qNnT0xMff/wxEhISMHjwYHTr1g2//fYbxo0bh/j4eDRv3tyobdu2bcODBw8kvcIcH3zwAXbv3o3mzZtj2rRpCAoKwueff47z588LhuYLCwvD5MmTMWXKFISFhfGTbkybNg0DBgwQeKv79euHxYsXo1OnTpg5cyYKFCiAJUuW4OrVq9i3b5+g/jlz5vBPV9555x3odDrMnTsX9+/fxwcffMDbNWzY0Kjt3EyKdevW5UV7ZGQkIiMjjWz1ej3y589vVM6kSZNQsWJFFCxYEDdv3sSqVatw/PhxfP/994Lh8ubOnYt3330XzZs3R6tWrYxuYDjh+ueff6J79+7o2rUrSpYsCZ1Oh0OHDmH+/PkoX7684L8ICQnB+++/j7feegt9+vRBt27dkJKSgilTpqBo0aJGkwlt3rwZAPghCU+dOoWAgAAAueFiQG5YzOjRo/H666+jePHi8PDwwIULF/DJJ58gf/78glCq999/H3v37kWdOnUwcuRIlClTBhkZGbhx4wZ27dqFZcuWKd7MAcCsWbMQHx+PTp06YdiwYbh37x7Gjx+PChUqCIbhGzNmDLKyslC3bl1ERkbi1q1b+PTTT3Hu3DmsXr1acCPJnU+nTp1KI0oQhKXkSaQykecsWLCAAWCxsbGS67/44gvWqFEjFhERwXx8fFhUVBTr3LmzqpekDJF6EYcxxm7evMlKlCjB/P392aFDhxhjjK1atYrVqlWL+fv7Mz8/P1aiRAnWq1cvwdvnDRo0YOXLlzcqT2mQegBs6tSpgrTz58+zzp07swIFCjBvb28WGRnJXn31VbZs2TLexpoX6L755htB+urVqxkAdvLkSUG63EtNavri8uXLLD4+ngUGBrLQ0FDWqVMndvPmTaPtlauDa9P169dVb58t2LJlC3vllVdYeHg48/f3Z+XLl2cffPCB0UQc3Mghhjx//pytWLGCVa9enYWEhLCgoCBWtWpVtmjRIsEIKRwbNmxglSpVYj4+PiwyMpKNHDlSMEKBIfHx8czf31/wcpoUFy5cYK1atWKBgYFMr9ez2rVry05Ws2DBAla6dGnm4+PDihYtyqZOnSrZzpSUFNarVy8WFhbGl2n48pshR44cYQ0aNGD58uVj+fLlY6+++ir76aefFNvMmPx+IIXccTt06FBWtGhR5uPjw8LDw1nHjh0lzwncfye3cDx48IB16NCBFStWjPn5+TEfHx9WqlQpNm7cOPbo0SPJtq1YsYJVqFCB+fj4sPz587MePXqwW7duGdmpqT8lJYX17NmTlShRguXLl4/5+Piw4sWLsyFDhrCbN28alfn333+zkSNHspiYGObt7c3CwsJYtWrV2KRJk4z2Xzn27NnDateuzfR6PQsLC2O9evUymqRk5cqVrGbNmiwsLIx5eXmx0NBQ1qxZM6MXcBlj7LvvvmMABOcugiDMQ8fYf0FIBEEQBEE4FePGjcPGjRvx22+/qZq4hiAIYygKnyAIgiCclAMHDmDKlCkkhAnCCsgzTFiEqelHPTw8XOqNZ8aYyRnWPD09rRrpgiAIgiAIx+M6aoVwKN7e3opLv3798rqJNuXQoUMmt1k8JS9BEARBENqHPMOERZw6dUpxfXh4OD/8kivw+PFjXL16VdEmJibGaGILgiAIgiC0DYlhgiAIgiAIwm2hMAmCIAiCIAjCbaFJN+xITk4O7ty5g8DAQHqxiiAIgnBbGGN4/PgxoqKiXOrlasI1IDFsR+7cuYMiRYrkdTMIgiAIQhPcunXL5Ex9BOFoSAzbkcDAQADAn3/eQlBQkMPr90COw+s0hxyK0iHykLw+Pmy9/+f19tgDR5wjHNlvWvrPldpiSbmmti0tLQ3R0UX46yJBaAkSw3aEC40ICgoiMWwAiWAir9HCsWGP40AL22Vr7H2+cHSf2XJ7tCSGTZXJQSGDhBYhVeKiaPWiSEKYIOx3HLji8WXvc5mj+0wr52YP5PALQbg7rnfmJDR5cuNOuwTh7tj7OHDF44wEsTS2aret2qPFaw9BqMH1zpqE5nDFizNBaBlXPOZcTWi52vZwuOp2Ea6N650x3RwtnYjIG0wQeYcrHnuu9lhfi9tiizZpcbsIQgl6gc6F0MIJyBUvwNbgiP+E+tx5cPR/ZVifFs4PtsIDOTbvyxx45Ekf2WNbLG2Hrcuz1XZlZGQgMzPTJmUZ4uPjA71eb/NyCeeDxLCLkNcXOi2czB1NXvc5h1Q73PH/IJQR7xNa2X8thWu/K+zr1gjHvBLxarDFf5SRkQE/vxAAz2zTKAMiIyNx/fp1EsQEiWFXIC9PhK5wIZJDqxcYNYjb7sr/E2EZavYJZzgGbOmBzEth6UriXow14S25HuFnAJrAtpIlGykp+5CZmUlimCAx7Mzk1UnblU7WznCxtwWG2+lK/x9hX9TuK3l9HGkl1MAWuNK22BYvAN553QjCRSEx7KTkxcXHmU/QeX2x1hKWeI2t7T8t7Tu0L9geuf/XkX3tSp5VV9oWgnAGSAw7Ic48fagjILFjHo7oLy1d3Lk25NXLUuJ2uDJ5EafsSp5VV9oW6/GAbQfAon4lXkBimJDEmU7AJH6dBy2KYmuxdP8zlU8LfWRrHDW6hZb2M2txpW0hCK1CYtjJcLWZmCyFBLBz40oeL3sJPFd/CdIRwtiV9jNX2haC0Bp0ZBEAnGeCDFcbdJ+wDR78Huy6QwxqYfvshT3PP67UZ660LQShJcgz7ETY40SodQHsSid/U31tybba4v/T+lBS5rZPzt5R+7q9h+dyZQ+hveK5XanP3Ddswge2HU1CZ8OyCGeHxLAbo9WTqbMKYGv7M6/+j7x8oSwv63VmXEncSZGXM+dpeRILQ5yhjQThLJAYdhJseeLT6kXUWU7uWu0/a7G3KHa1GdAIx2ArcWrODYSzCGKCIGwDiWE3Q2tCTssXHK31laOwpShW6kNHe6Rd3ZvqyuT10wtCC1CYBGE/SAy7CVoSAVq7oGmpb7SEuQLE0n50pNAhQezcOHJfIe8wQbgPJIbdAK1c/LVyYdFKfzgL1F+E1nCUKCZBTBDuAV3lXBwtCBktDAn1YuCtvO8PQhpH/Tf23hcd5bUkzO+HvBqxhSAIbUOeYSfAGU/geS1+gbzvA0K7OPPwVM7YZnviCC+xreuwl8fZtWOrvWDbmGFmw7IIZ4fOqi5IXl4steAFBkgwOCuO/t9svb/SDJF5hyP6xhZ1cGUYPq2yZbkEQZgPeYY1jjkX17w+GZIIJpwVW3iK3XFSHK3hiBhfa+swfInTWV/ozMtxoAnCHpAY1jDOIoS1cDJ0xgsKIU1ePuo1Z/Y6W7eP9mHHYAsBagtBLFWm0npzsKdYpf2UcEVIDGsUZxDCJIIJe6KlN/kdNRGJM6I176aj9htb1CPXb7bcBnv3h+OOU8//FluWRxC5aOcMRvBoXQhTXDDhKGwdV6kVXGl7tLgdjmqTPf9HW5Zr7/7Q4j5AEOZAnmGNYe8JDqxFCyIYoJOvLTH1n2qprx0RrmBvtNSf7oqtvdmWekcd6VV3HQ8xQdgeOitrCBLC6iAxYR1CX6vp/1QrTwLkcEXPMWE9pvYHZ4iltfW+7dweYh87LOazZMkSxMTEQK/Xo1q1ajhy5Iii/aFDh1CtWjXo9XoUL14cy5YtM7LZsmULYmNj4evri9jYWGzdulWwfunSpahUqRKCgoIQFBSEuLg47N6926icK1euoG3btggODkZgYCBq166Nmzdv8uufPXuGESNGIDw8HP7+/mjbti3++usvi/rB1aCrhwbQutjQevsIZcwVv0rlaB2tC2Ottstd0YIg1roTxFycpZ2W8NVXX2HUqFGYNGkSzp49i3r16qFFixYCwWnI9evX0bJlS9SrVw9nz57FxIkTMXLkSGzZsoW3SUpKQpcuXZCQkIDz588jISEBnTt3xvHjx3mbwoULY+bMmTh16hROnTqFV199Fe3atcOlS5d4mz/++AOvvPIKypYti4MHD+L8+fOYMmUK9Ho9bzNq1Chs3boVmzZtwtGjR/HkyRO0bt0az58/t0NvORc6xhiNPG0n0tLSEBwcjIcPUxEUFCRrp9UYYa2KH1c+2doKR0xA4CxoZT92tn5zFdT8/7b+b+w5UZI5I56YW4YprJnxLy0tDcGhoUhNVb4eiuGuo0B/WOrNlSYTwEqz2lOrVi28/PLLWLp0KZ9Wrlw5tG/fHjNmzDCyf+edd7Bjxw5cuXKFTxsyZAjOnz+PpKQkAECXLl2QlpYm8PQ2b94coaGh2Lhxo2xbwsLCMHv2bPTv3x8A0LVrV3h7e2Pt2rWS9qmpqXjppZewdu1adOnSBQBw584dFClSBLt27UKzZs1U9YGrQmfnPMQcT52jvV1aERCEOmzl/VVblzOhZU8xoQ2cyUNsCxwZp6x10tLSBMuzZ88k7TIzM3H69Gk0bdpUkN60aVP8/PPPknmSkpKM7Js1a4ZTp04hKytL0UauzOfPn2PTpk1IT09HXFwcACAnJwfff/89SpcujWbNmqFAgQKoVasWtm3bxuc7ffo0srKyBHVFRUWhQoUKsnW5E9rfU10ULQsKLbcN0H77HIWjxK9c3c5GXopiZxAFroq1Hld712tJueKytbx/2e6446ZjttWSO35AkSJFEBwczC9SHl4AuH//Pp4/f46IiAhBekREBFJSUiTzpKSkSNpnZ2fj/v37ijbiMi9cuICAgAD4+vpiyJAh2Lp1K2JjYwEA9+7dw5MnTzBz5kw0b94ce/bsQYcOHfDaa6/h0KFDfD0+Pj4IDQ1V3X53gkaTyAPMPek66kTnTAJHa2ObOgJn+n+0jKPfenfW/TQjQ72tQViiJsmrkQ7Mrdec85q120THQS63bt0ShEn4+voq2ut0OsFvxphRmil7cbqaMsuUKYNz587h0aNH2LJlC3r37o1Dhw4hNjYWOTm5/2O7du0wevRoAECVKlXw888/Y9myZWjQoIFs+0y1313Q5t7popjrxXOkJ8vZhJZWT6y2Qhz2oKX/xxXCDhy1Dc7cT3q9OpGrdSHMoea/sNeU2vaK53Xm/UsrcCM0cIucGA4PD4enp6eRF/XevXtGnl2OyMhISXsvLy/kz59f0UZcpo+PD0qWLInq1atjxowZqFy5MhYsWMC3zcvLi/cUc5QrV45/uS8yMhKZmZl4+PCh6va7E3QkOQCtiRkxWm6bFK54AdCq8BXjan1vz+1xlb7iRLHc4kzklSDm6rbX8GuOyqvlc5O98fHxQbVq1bB3715B+t69e1GnTh3JPHFxcUb2e/bsQfXq1eHt7a1oI1cmB2OMj2/28fFBjRo1cPXqVYHNtWvXEB0dDQCoVq0avL29BXUlJyfj4sWLJutyByhMQqM44kLqjCc2VxEYHM7yH7havxti68fFrtxXajAMr3A2scyR12FYeV2/NrF8bGBpzB9Ia8yYMUhISED16tURFxeHzz77DDdv3sSQIUMAABMmTMDt27fx5ZdfAsgdOWLRokUYM2YMBg4ciKSkJKxcuVIwSsSbb76J+vXrY9asWWjXrh22b9+Offv24ejRo7zNxIkT0aJFCxQpUgSPHz/Gpk2bcPDgQSQmJvI2b7/9Nrp06YL69eujUaNGSExMxHfffYeDBw8CAIKDg9G/f3+MHTsW+fPnR1hYGN566y1UrFgRTZo0saQDXQoSw26Ks4gwQ1zp4uBM/e9K/S6HrQSxO/SVEuI4Yy0KY7X/tb0EaV7XT1hOly5d8M8//+D9999HcnIyKlSogF27dvHe1+TkZMGYwzExMdi1axdGjx6NxYsXIyoqCgsXLkTHjh15mzp16mDTpk2YPHkypkyZghIlSuCrr75CrVq1eJu7d+8iISEBycnJCA4ORqVKlZCYmIj4+HjepkOHDli2bBlmzJiBkSNHokyZMtiyZQteeeUV3uaTTz6Bl5cXOnfujKdPn6Jx48ZYs2YNPD097dltTgGNM2xHuPERUx8+NGtcRXufAJ1JiHG4ykXBWfreVfrbXOw5PqyW0epLvfZEK5NdKLVDi++MWNqmtLQ0hIYGWzHO8AgAyi+3mcczAJ+a3R7CNSHPsMYgISzEFS66HM7Q967U35ag1mvn7P2kal9UGE7CQ8bN60z9klcjTGi1HWrJO481NySarXCePifsD4lhN8GZTrYcznRhVcIZ+t5V+toWcH0h9b85az8p7oNyolft2GoGwpirx1n6SY0QpXAFgnB9SAxrCHudcO01XJC9yjYs39nRuhB2lX62By7fN0oBvlK/OfR65XVwLlGsBUEsdT51hr4jCFeBxLBG0LoQpuk7zYNEMKEFJPdDQyGr5rtSfk4YS4VN6PVOI4q1Eqqg9X7iIG854WqQGNYAJIQdW4890cIFVQlX6GNCHUb7opTYVZsmhhO/nBAWf4psnUEUmxLEJADzmrwfWo1wXUgMuyiOGCbK2cS2PSERTGgJs4Sw4acpT7GhCOZ+Kwliw5CK/0SxM++Lzt5+W0J9QbgSJIbzGHucTOwthGmCghdoWQQ7e98SliErhNWIYLlPcVmAaSHM2XNT1f33Xcsiyt7vQmgVrYSJEEReQWI4DyEhrM0Lohq0fOFw5n4lrEOwX5ryBqtJE383RK0Qlmrnf+la3VeVxKGWxbyjob4gXAUSw3mErU8gJIIdg1ZFsDP3KWEbLBbClniFTaEghJ3FS0xoDW/YNmZYm+dyIm8gMZwHOJsQtiXOeuHTqggGnLdPCdshu3+aI4TVeoXF8cJcmvilOjGi+GFDQQxobz8m7zBBuA8khh2MFoWwo3DGi4cW+9cZ+5FwIGpjg6XEr2F8L/dbrnyluuUwJZg1hjvF0lq6rXRjQLgCJIYdiLOeMJzJ82wrtHYBdLb+swYlHUYYY/bUyqaGS+MEMWcr/iPE3mDxKBSm6uHqEP3RWhVVciJRq+11XWw9HfNzG5ZFODskhh2EFl+WU9MmR9ShFUgAOx5znIwkjlWgFPdrriDmPqXEsJJI5r4rrefKdhJBTChD/xvh7JAYdgDuKoSdBa1tp6tfVMx5D0ucz1UEsSktqhbZl+YMf5sSwYaVGopf8adUuaZeshOHYIjXSXigtSis3MU77E5hIQRhCIlhJ8QZhLDWLxBaPOFrvc+sxVIRLFWGs4litdtujuA3+dKc4XclQSwWwyEhRp5ho/F3OSGckQE8eiT8rTZkQm4WO8IpcbUbA8K9IDHsZJAQtgwtil9Am31la2whgp0Ze2y/6ok15NKkEHmFc/T5crXtoxfZ9XqP/1bngz4kX247OCH76FHuIlWv0ot4Euu0KKzcxTusXWw9HbM2rwlE3kBi2IlwBpHq6IsCdyFytguSM7XVUkgEm5/HIseomvAIOVvDirnlP8+w2OkrNgWAkBAP5AsJyTUMCXlRh5o2SE3QofFwCTmcqa32hPqBcFZIDDsJWvcIO/IEaNhOrl5T9WtlmlV3uFA4QgRr/Ym6PfvA5OQaht/VeoU5DGaGMxUa/EK7evAzygleijMozyijqTSN4g4xte6wjQQhhsQwAcA5hDDndbCmvrw60bu6CHZ3L7AhlvaFKT0oGxph+F2NIJYSq1zafx5eD70eISEeePTIuF0mdavY42v4XWqdwjBuzuRpdKa22hPqB8IZITHsBNjbK2xp+Y4+4TnrCdZZ220KEsDG2EsIK1ZkanINcZo4v2EaF/IAwCMkBCEhHoLsJoWxlGdYri6pMAmpdRqDPKd5hRdsO85wtg3LIpwdEsMaR6txwq4q8GyJK/QRCV51WNNPanSfydAIU55hU3ZcI7jYX5EglvIQC7ZZaqpl8ToNC1zCtpB3mHA2SAxrGC16hOkEpw5n7CcSvpahOSEsFr+m7MRiVSyI9XqEhOQzym7SKyyHGq+wxl+kc/WRJWzh/XaVviDcAxLDboq5Jzo6qanD2fqJBLDl2FsEA1YIYSVhLC7HUIxyo0lww0j899sjJAT5/htGIp94Mo5HGcKylUa3cOKX58RQuARBuA4khjWKlk6yzibw8gpn6ScSwOZjyz4z2xssboAaj7D4t1iscunZ2bnf799/0TjuOydUAwKEw65xQ6gZDseWkSEcY1jcZjUoeIy16mWUEsRabWteYNu+sPU4w89tWBbh7JAY1iD2HNnBnLJd8YRuj5sMZ+knEsHqsFc/WTyznKWhEUppnAjmFkNPsLhOsRA2FMdiQWyYx5TXV269E3uLOUgQv4D6gnAGSAxrDC14hOnEpR5n6CtXFMH20Ep5LYIBOwlhw5kzxCLYUAhzn+IygRdTNHOC2PC3l5fxFM7izjQ1UoQTC2AKlzAN9Q+hdUgMuxFqTkjOIO4swdYnY2foJ1cUwc6Gxd5gwHohrOQNNhTA3GIY6vDkCZCRAZaVBQDQeXu/CJmIjBQK4sjIXHuxx9jSzpDB2TyMztZeMbYW+daXRWEShP0gMawh7Hn3bKpsZz5pK0EimMgLrPIGA44Xwtzy5AmysrKQgdxRWLlWeGVlQZ+VBf3jx/C+fx8ID88Vw5GRuWUZCmTOyyt+0U4chmHqu9RvjeLqo0sQhKtDYlgj2EK0iU+67ugJtucNhdb7ikSwNrBZWIThb7VCWJxXrRC+fx/s8WNkAIIl+7/F679FDyAgKwv65GR4/+c9RmSksD7uBTsx5kyqIWPjjOLSGdtMEO4GiWE3xJVOzI6IRdN6f5EI1g42D4sw/C7+5L5L/ebS5ISwYdp/vw1F8BO8EMNcS33wYs6ubAABjx8bzwemZqxhJ515zhRKYQUkiAlC2+TZ0TljxgzodDqMGjWKT2OMYdq0aYiKioKfnx8aNmyIS5cuCfI9e/YMI0aMQHh4OPz9/dG2bVv89ddfApuHDx8iISEBwcHBCA4ORkJCAh6Jhv25efMm2rRpA39/f4SHh2PkyJHIzMwU2Fy4cAENGjSAn58fChUqhPfffx+MMZv2A2B7QeeBHNkynfmEzG2X4WJvtNxfUs5Ad0Fr2y0XJiuFTYSwkggWC2KpdMM44exsZGVl8V5gQ8GbY5AmXjLEZYvjjzkhLofaP1FkRy9juSvcdMy2WsgXSLwgT670J0+exGeffYZKlSoJ0j/++GPMmzcPixYtwsmTJxEZGYn4+Hg8fvyYtxk1ahS2bt2KTZs24ejRo3jy5Alat26N589fBMN3794d586dQ2JiIhITE3Hu3DkkJCTw658/f45WrVohPT0dR48exaZNm7BlyxaMHTuWt0lLS0N8fDyioqJw8uRJfPrpp5gzZw7mzZtn076w9QsKznyhkBK7jhS+YrQqhN1ZBGsNc0QwYAchrDZO2MQiJXbx32fWfwsnjA1DKLKysnJfnjP0NqsR43LhIFLbq7YfNYDSOUOrbSYIIg9ujZ48eYIePXpgxYoV+PDDD/l0xhjmz5+PSZMm4bXXXgMAfPHFF4iIiMCGDRswePBgpKamYuXKlVi7di2aNGkCAFi3bh2KFCmCffv2oVmzZrhy5QoSExNx7Ngx1KpVCwCwYsUKxMXF4erVqyhTpgz27NmDy5cv49atW4iKigIAzJ07F3369MH06dMRFBSE9evXIyMjA2vWrIGvry8qVKiAa9euYd68eRgzZgx0Op3VfeHIk2NeCztnuxDkdX/JQSL4BbZ8qm7vfjUpgsW/LRHChmlqhXB2NpjIK8wt4hZnI9d7YugZ1gPwNvQMG445LN4+uT/LycMjzIHbD7R6fiEId8XhR+Tw4cPRqlUrXsxyXL9+HSkpKWjatCmf5uvriwYNGuDnn38GAJw+fRpZWVkCm6ioKFSoUIG3SUpKQnBwMC+EAaB27doIDg4W2FSoUIEXwgDQrFkzPHv2DKdPn+ZtGjRoAF9fX4HNnTt3cOPGDclte/bsGdLS0gSLHK4uhPPaq2spXIu1BnmDpbGmT+SclEqI55lQg02FsKGNqTLEIlkmXzaEcC/LeUD4YFrsORH8Vqo7O1u+TUrbYCJdq+cVNecPrbadMM2SJUsQExMDvV6PatWq4ciRI4r2hw4dQrVq1aDX61G8eHEsW7bMyGbLli2IjY2Fr68vYmNjsXXrVsH6GTNmoEaNGggMDESBAgXQvn17XL16VWDz5MkTvPHGGyhcuDD8/PxQrlw5LF26VGCTkpKChIQEREZGwt/fHy+//DI2b95sYU+4Fg696m/atAlnzpzBjBkzjNalpKQAACIiIgTpERER/LqUlBT4+PggNDRU0aZAgQJG5RcoUEBgI64nNDQUPj4+ijbcb85GzIwZM/g45eDgYBQpUkTSzpWFsLOJX0NIBDsn5oSeWiKAOcx1XsoeC5aECMgJSLnwCKX14nQDvAw+DQWx+LsXJB4rKoldtaLXVD+4EM56nsw7fOywmMdXX32FUaNGYdKkSTh79izq1auHFi1a4ObNm5L2169fR8uWLVGvXj2cPXsWEydOxMiRI7FlyxbeJikpCV26dEFCQgLOnz+PhIQEdO7cGcePH+dtDh06hOHDh+PYsWPYu3cvsrOz0bRpU6Snp/M2o0ePRmJiItatW4crV65g9OjRGDFiBLZv387bJCQk4OrVq9ixYwcuXLiA1157DV26dMHZs2fN7gtXw2FX/1u3buHNN9/EunXroFe4qojDDxhjJkMSxDZS9raw4V6ek2vPhAkTkJqayi+3bt0ysnHUCdCRHk5n9ACL0ZIQtkawuStSfWYL8WuuF5hD9lgwVwjLCUqlDVPyCku14T+8JD698EI2cEOrSQphqTZIbZfSH6FWIBug1fOO2vOJFttOyDNv3jz0798fAwYMQLly5TB//nwUKVLEyAPLsWzZMhQtWhTz589HuXLlMGDAAPTr1w9z5szhbebPn4/4+HhMmDABZcuWxYQJE9C4cWPMnz+ft0lMTESfPn1Qvnx5VK5cGatXr8bNmzf5J9lArqju3bs3GjZsiGLFimHQoEGoXLkyTp06JbAZMWIEatasieLFi2Py5MkICQnBmTNnbN9ZTobDFMDp06dx7949VKtWDV5eXvDy8sKhQ4ewcOFCeHl5yXpd7927x6+LjIxEZmYmHj58qGhz9+5do/r//vtvgY24nocPHyIrK0vR5t69ewCMvdccvr6+CAoKEiyGOFIIOwpnP5lrKSyCBLBtyOt+lPUGqxHCptbLlaPkFRbn5z4NbMUC2FD0itP0UBDDckJe3C6lfG6Gs59DnR1xaOOzZ88k7TIzM3H69GlBmCYANG3alA/BFJOUlGRk36xZM5w6dSr35VMFG7kyASA1NRUAEBYWxqe98sor2LFjB27fvg3GGA4cOIBr166hWbNmApuvvvoKDx48QE5ODjZt2oRnz56hYcOGsnW5Cw5TAY0bN8aFCxdw7tw5fqlevTp69OiBc+fOoXjx4oiMjMTevXv5PJmZmTh06BDq1KkDAKhWrRq8vb0FNsnJybh48SJvExcXh9TUVJw4cYK3OX78OFJTUwU2Fy9eRHJyMm+zZ88e+Pr6olq1arzN4cOHBcOt7dmzB1FRUShWrJhZ2+5I74WjvcHOilZEMHmBXQvVYRFyQthUnLC4DCVhLFemCLFHmPuuFy1ikSwritXs0EpuewtCJLR4LjLn/KLV86kWzpEvsOWwatwCFClSRBDeKBXGCQD379/H8+fPFUM5xciFW2ZnZ+P+/fuKNnJlMsYwZswYvPLKK6hQoQKfvnDhQsTGxqJw4cLw8fFB8+bNsWTJErzyyiu8zVdffYXs7Gzkz58fvr6+GDx4MLZu3YoSJUpI1uVOOGw0icDAQMEfBwD+/v7Inz8/nz5q1Ch89NFHKFWqFEqVKoWPPvoI+fLlQ/fu3QEAwcHB6N+/P8aOHYv8+fMjLCwMb731FipWrMi/kFeuXDk0b94cAwcOxPLlywEAgwYNQuvWrVGmTBkAuXdysbGxSEhIwOzZs/HgwQO89dZbGDhwIO/N7d69O9577z306dMHEydOxG+//YaPPvoI7777rk1GkrA1jhTBWkdbJ3BpSPy6FhaFRYh/qwlrUBLA2dnS6XJt8jI+/XMp2TC+OIg9xXy4hNTUy+L6uBEmLJl5zjBNoQxXmNjCFbbB2bh165bgKa7hS/NSmBvKqSbc0pwy33jjDfzyyy84evSoIH3hwoU4duwYduzYgejoaBw+fBjDhg1DwYIFeX00efJkPHz4EPv27UN4eDi2bduGTp064ciRI6hYsaLidrs6mhp1ety4cXj69CmGDRuGhw8folatWtizZw8CAwN5m08++QReXl7o3Lkznj59isaNG2PNmjXw9PTkbdavX4+RI0fyjx7atm2LRYsW8es9PT3x/fffY9iwYahbty78/PzQvXt3QRxPcHAw9u7di+HDh6N69eoIDQ3FmDFjMGbMGAf0hDbRihB25osFiWDnwOqxgwHbCmGlgGipetW+sKbXA1lZksI3W/Sb+zSMGdZ5e78Q1Wo6TUkQqxHLJtCamFSalU4OGn7NsUiFNEoRHh4OT09PxVBOMXLhll5eXsifP7+ijVSZI0aMwI4dO3D48GEULlyYT3/69CkmTpyIrVu3olWrVgCASpUq4dy5c5gzZw6aNGmCP/74A4sWLcLFixdRvnx5AEDlypVx5MgRLF68WHKUC3ciT8XwwYMHBb91Oh2mTZuGadOmyebR6/X49NNP8emnn8rahIWFYd26dYp1Fy1aFDt37lS0qVixIg4fPqxoowUccdKkSS+sg0Swa2IXIaxUlpz4NRxX2FRbROi8veH1X/wiB+cZ9oLQSyw7moShiJWabjkjAwgIEKaJ2yg3TbP4twnR7AqCGNDOdljaflfDx8cH1apVw969e9GhQwc+fe/evWjXrp1knri4OHz33XeCtD179qB69erw9vbmbfbu3YvRo0cLbLiwTiDXUzxixAhs3boVBw8eRExMjKDMrKwsZGVlwcNDuL94enoiJyf3v/v3338BQNHGndGUZ5gwH1cUwlq4ANgKEsGuiWoRLJWm9sU5U/HCpjAjGJ0TxFLhEYC0GNZ5e5sOkVBqmyHmeovdSBBz+QlvWDIcmjxZpk1EjBkzBgkJCahevTri4uLw2Wef4ebNmxgyZAiA3BGlbt++jS+//BIAMGTIECxatAhjxozBwIEDkZSUhJUrV2Ljxo18mW+++Sbq16+PWbNmoV27dti+fTv27dsnCIMYPnw4NmzYgO3btyMwMJD3JAcHB8PPzw9BQUFo0KAB3n77bfj5+SE6OhqHDh3Cl19+yc+aW7ZsWZQsWRKDBw/GnDlzkD9/fmzbtg179+416Rh0B0gMOzH2PkGSN9hySAQ7L6Y0nVnHhVohrDZeWFyWGm+yGDnPLZSFMPddIITFIRKWCGMxNgiXAFxHEAMkirVCly5d8M8//+D9999HcnIyKlSogF27diE6OhpA7gv9hmMOx8TEYNeuXRg9ejQWL16MqKgoLFy4EB07duRt6tSpg02bNmHy5MmYMmUKSpQoga+++kowcRg3dJt41IfVq1ejT58+AHLncZgwYQJ69OiBBw8eIDo6GtOnT+eFure3N3bt2oXx48ejTZs2ePLkCUqWLIkvvvgCLVu2tEd3ORU6xkVzEzYnLS0NwcHBSH34UFVMkrnY88RI3mDLISHs3MjpMJPHhCWhEYbf5dKUvotDJCxZuPwA2H/hEuJZ6Th4IQzkdlRAwAvvcEiI8XfDNLG93MKVzX3KhWCYIZi1cn6x1Xk1r2YVtYa0tDQEh4YiNTXVrOshdx0FNgPwt6oNQtIBvG52ewjXRBtnCMIs7D0smKMnBtHKhcoWkBB2TewuhKVsrQ2TMIf/hCUndMUxwZKhEYajUVgoUo0wJ+bZjD7QSsyrrc51Wh2KjSCcFQqTIARo9QRrybXfBk9aVUMi2DUQ7zOqjgdbCGFLwySswfCFtOxsPlyCE8RMNMoEL4SBXCEsNT2fkiiWGMpNgI3CI+TQStiELV9IE5djz+3L+xfpPP9bbFkeQeRCYtjJcAWPMKBuO6y91hvmt6cwJiHsGpgthG3xspxSupoyDEIczMIgThhArlDlBPF/9fDhEIZ5OFspEWzLOGG1L86ZKaBdURAbQrHFBGEZJIadCHcRwvYQl/YQxiSCXQezhLBaUavGq6vGO2yqLC5N7Q4pFsLcb04Qc2lScELYMK+UrVSaeFIQNRi+4GejA9fVBTEg3H9tua157x0mCPtAYphweSEsV4cl11YSwK6HaiFszp+vZGuLuFhLvcxyQthQEAPGwlVq1AhTL8GJkQuTMNfba6V3GHAPQczhOt7iF1Mo2648gsiFxLCT4PwnMm0I4bysj9AeqjSUmh1Frfi15OU5OXs5T6tcW0wJYcP1UsJVboQHUyjZ28rja6EgBvL+3Ooob6tWtpcgtAgdFU6AK4RHKG2DPV6OJwgl5PSZ0fGgJp7Xmhfm1NYhZ2vpgSPeeCmPr9JvqXXi8iyJI1a7rTY8YWjhsb8jBaoWtpcgtAaJYY3jCkKYILSE6nGEzRGpavOoKU/JO2wpakZ8kBPI3HepcYCl1qsVwGq3z9Z2EmjhXOhoQWzpNpNnmXBFKExCw7iKEDblFSYIe6JGm5klhK19gc4SD6e9vMPi8AilzpKbEMORYxjaES2EETj6BTWtxE6rwwd5PR0z4bqQGHZDnFUIm7rmkrAmLNFlqoWwrV6gU7K3p3cYMI4bNkxXqk9KCIvX21IUqxlaTcrGBjHIeS0QuboddZ7O6+0lCC1AYlij2Ovk5KpCmLMhQex+WKp9JI8FS0MfbPUCndo6zBmmTOrAkPIKc+lK5Yg/bREuwWEncWsJWhCIjvQSa2F7CSIvITGsQVxBCNsSR40L7CJPe90Ga/4vmwlhU3nUeJktqcMSGyWvsNqDQ8ozrCR8beUxNkcU20hAa0EganVcX622iyAshcQwYRds5RWWGwNWqnxr32cy9YSY0AbW/h8OE8KWlmfO8GqWoBQrLOVBFn+X8wxbMsawJZgKlbAh7hRHrIVtVcYbto0ZzrRhWYSzQ2JYY5BX+AWG1zhx+9XMsGSrkAm1T5EJ+6MJIWzL0Q1sMfqENagNkzDlGZaylSvDlJ0tBK6NRXJee4nJE0sQ9kWrt4CEDXH0SdRar7DYwWRJ++0VO8wNK0uxyY7FFk/b7S6ELYkbVpNXzXo51AhTtWEO5gpiW9852uLFRiuwZjgyW+AoMU6im3BHyDOsIexxstOSEFaDXFgEj+ixLlefNVrD0mt2Hr3b43bYRQQD5u0o5opVS73C9hpNQi40wtyX55TS5V6oU4PSy3OWvlhnpwM0r73EjkCb20jTMRP2g8SwRnAFIWwtikJY4qItFsKWDr+qFCapNi+JYttjiz7VhBC2ZgQJKcwZScIWyMUNKw2zpqYsR+BigphGmCAI+0Bi2EXJCyGs5sRp8fBnoguanBC2hdawROCSl9i2aEII2yt0wV7lcJg6yNS8OGe4Tvxb6aU6qby2fHlOjjw4AEkQE4TrQGJYA9j6ZONMHmG565fSNkgJYUu8wnn0lJUwgeaFsDnrzBlj2NbiWyoMwtoQCUsFsS3HR7TF+MU2Iq9GYMhrQexM1xiCUAOJ4TzGHYWwqeuSKSEs5w02Vyuo8QBrRRBbcv13RlxWCJtTnjk7ttq7PjnPr6n8poZWU7JXU6Y1iA9OpYPVAUOwubIH1XD78u4aY+vpmG1ZFuHskBh2IVzlTWdDr4e4XClvsFoxrHSdNLVezXXUltdba8uRyq9lgWxXEQxYL4St9draOm7YUpS8xWI7qd/mhE4AtguR0MpdqQKOFsSOHm7NGRwtBGEpJIbzEFueOF3tRKUkgrlPKRGs9DKcqafCWrje2rN+ub7Ia1xSCFv6mMJe9kqY+gNMeYDVDLVmqh5HeHQdcIC7uiAmCFeFxHAeQUJYPXIC2JynyJaMzGSNvSU4UohL9YejsdX22k0IWxvmYKocW4hotSjFC5vKJ/5ubpiEJY9VLD3gNHBHS4KYIJwPEsNOjqueBKW8vUqhEXLXdsOX5dUI4ry6lmrVI20rbWav7cszIWxpx6jNJ7eDmzusmqXxwqbCIZSEMfddTYiEJQegoY0W72rh+jHEeYMXbDs2MMkf4gW0N+QBtjpJakkI2+LkL6dJ1IZIyJUpHj3KXtdCS8vNayGshFbbZnLft5cQNlckW+pdtgdyI0iYih9SuxOY8/JcXu5YLiiIyTtMENZBYtjBuKIQNsRUu9RuvykBrEYMq3Ee5fVTVa2KTS1jkRBWa2dLIWzueltiaSiE0jo1XmEOziusVvza8kDI64PaABLEBOEc0HMcB+LuQljJRix0TS2GeQzzSZWp9J1wHjyQY7kQVuOxVcpr65foHBkvbIg5Xl5zhLAjPL6WvuBoqzwWotXzNUEQLyDPsIOg+DFp5GKDuU818cJS5VkaUiiHPRxbGnFeOQWqBIW9hLCl9VqKNeVJeYTVDqfGrZNL09IOa4sD24EeZEd5iF3bO0zjDBP2g8SwA9DCyBFaOUka9oXSy3DWxAnLIXft09BTVUKE6n1Wa0JYbexwXj2msCYO2JRX2NwQCXugwYOaXqojCO1CYtiF0dqJV04IWxIfbMqxZeqFcy3HEbs7Zt+02eNlOVsKYUvKNsdODkuHU+PspX5bc2Bo8aBy8MHuCEGsFccHQTgTJIadCGc+wXEXAHOErzki2HC9rUMkbF2WPXHWWQgtarc5YtSWQthckWptqIWtvMdqBbGcEJZKk/MKm1O+KdQcfNYcoM5ycLs9FCZB2A8Swy6KlrzCUkJY6oU5qXWGn+Lvhqgdr99eoRKW5Lf1NTivb5YcWr9WhXBehj2oFbpKdkpC2BzvsBbEpUZFLnmHCUJ7kBh2Esw5sTmDEJb6rTY+WC7sATBPBJsrmu1xbbVVmW5z4TPXg5qXHmFTZdhLOJsKj5Abb1iqHCUbNV5hDYpRSVwwXIIgCPXQ0egEuKIQzsgAHj16sRimmSOYLdEvarWQOXlNrVMir5yJToWpP1sLQtjcHcbSemwBN3SauUJYjXfYmok7TGHPmwkHH4hucwPrYixZsgQxMTHQ6/WoVq0ajhw5omh/6NAhVKtWDXq9HsWLF8eyZcuMbLZs2YLY2Fj4+voiNjYWW7duFayfMWMGatSogcDAQBQoUADt27fH1atXBTbffvstmjVrhvDwcOh0Opw7d06yPUlJSXj11Vfh7++PkJAQNGzYEE+fPjWvE1wQ7Sgnwmq0KIQ55MSumsUclEIr5NKUrq9SbVBql7XtJgyw9R2Po4WwI7BHyIIpISxla4lX2BGeWDoQXQhvOyzm8dVXX2HUqFGYNGkSzp49i3r16qFFixa4efOmpP3169fRsmVL1KtXD2fPnsXEiRMxcuRIbNmyhbdJSkpCly5dkJCQgPPnzyMhIQGdO3fG8ePHeZtDhw5h+PDhOHbsGPbu3Yvs7Gw0bdoU6enpvE16ejrq1q2LmTNnyrY/KSkJzZs3R9OmTXHixAmcPHkSb7zxBjw8tKMd8godY4zldSNclbS0NAQHB+Phw1QEBQVZXI5aD4IpMewIT4ScCFYSwpyd4af4uznXVVOOLLXXejXvEZnbNjVYqhHs+v9KiQR7iBlzxIg54tbeoRFq6pT7LbfTi9dnZ6uzU1u/GDXxwnLfxcOpyX03p0xbHLRyaUo4OLTDnk4MLXmf09LSEBwaitRU866H3HUUuA4g0IYtegwgxqz21KpVCy+//DKWLl3Kp5UrVw7t27fHjBkzjOzfeecd7NixA1euXOHThgwZgvPnzyMpKQkA0KVLF6SlpWH37t28TfPmzREaGoqNGzdKtuPvv/9GgQIFcOjQIdSvX1+w7saNG4iJicHZs2dRpUoVwbratWsjPj4eH3zwgartdSfodkDj2EoI5wVqPb9KIlmqLLm6lL6bWm9Yh9Q6qfVyduaut9be5qh1z5vr4rfVYwC1O4JSmlK62vXm2tmjbkMsvSuTCpcwJ3zC1AgSzhI3zJHnByChRTIzM3H69Gk0bdpUkN60aVP8/PPPknmSkpKM7Js1a4ZTp04hKytL0UauTABITU0FAISFhalu/71793D8+HEUKFAAderUQUREBBo0aICjR4+qLsOV0Z6CIlwCTuSqiQu2RAuZSpcTxKa+y61TEs1yduasl7M3B6tuiMxtYF5gqn3OIoQdhZyXVLyYyqfW22oqpCKvsMfNig3RkvfWHUlLSxMsz549k7S7f/8+nj9/joiICEF6REQEUlJSJPOkpKRI2mdnZ+P+/fuKNnJlMsYwZswYvPLKK6hQoYKqbQSA//3vfwCAadOmYeDAgUhMTMTLL7+Mxo0b47ffflNdjqtCo0m4AGpEkCNDJOTEpFgIi20B60MOuLKsmW9AKr+4bKnfUm0w1UZTmGMLWDikkpYFHWC5cLW3EDanDK33MYfaUAkONeMKW0pGRt6KagfWT6NLqMEbth0bODdmuEiRIoLUqVOnYtq0abK5dDqd4DdjzCjNlL043Zwy33jjDfzyyy9me3RzcnKvC4MHD0bfvn0BAFWrVsWPP/6IVatWSYZ5uBMkhjWMGlGTpydQiYuFlKdXSQibQu21SCyordEeSvmlRqWSE/OmRL45NwHmiGKXGGNUzR9orpdYTbnm7Di2Frj2EMzmHAyWxAxbYmtLxOcgWwvYvBbkhN25deuWIGbY19dX0i48PByenp5GHtt79+4ZeXY5IiMjJe29vLyQP39+RRupMkeMGIEdO3bg8OHDKFy4sOmNM6BgwYIAgNjYWEF6uXLlZF8AdCfoVpSwHIOLhKnRI6RCI8RFiZeQEOUnunJlKXmj1SxK3ms5oW9Om6RQG6WgVtc4nZdJaeeQs1Vab0662vVqbc2px9YC2JIXyCyNGTbXK2yP4dXsmccWec3AHjew9jwPON05RoagoCDBIieGfXx8UK1aNezdu1eQvnfvXtSpU0cyT1xcnJH9nj17UL16dXh7eyvaGJbJGMMbb7yBb7/9Fvv370dMTIzZ21msWDFERUUZDcl27do1REdHm12eq0GeYY2iec+eCq+w1CKF3HVYSvyKHV3cd8MX7Q3hrtdK4ROGYQ9ydUq1WS4MQxxGId4WtR5ja8MsNOchtlZUWCNm89IjbG8xpcb7a2qnlLI1ZSe13l5e1Lz20OZ1/QQsHQ5NuTzzGDNmDBISElC9enXExcXhs88+w82bNzFkyBAAwIQJE3D79m18+eWXAHJHjli0aBHGjBmDgQMHIikpCStXrhSMEvHmm2+ifv36mDVrFtq1a4ft27dj3759gjCI4cOHY8OGDdi+fTsCAwN5T3JwcDD8/PwAAA8ePMDNmzdx584dAOBFb2RkJCIjI6HT6fD2229j6tSpqFy5MqpUqYIvvvgCv/76KzZv3mxB/7kWJIadmDy9M5fwClsqhrni5LzAhuKPe5rElffkidBGpon8b87ey0sorsWC2BxhLK5DyuttiTC2VjQDKgWxtXElUo2yJVoRwfYozxy8vOTv+gwxFedjKq/cb3O9wkp15YWwtFbQOkAQO1PssKZutB1Ely5d8M8//+D9999HcnIyKlSogF27dvGe1eTkZEHIQUxMDHbt2oXRo0dj8eLFiIqKwsKFC9GxY0fepk6dOti0aRMmT56MKVOmoESJEvjqq69Qq1Yt3oYbyq1hw4aC9qxevRp9+vQBAOzYsYOPBQaArl27AhDGQI8aNQoZGRkYPXo0Hjx4gMqVK2Pv3r0oUaKEzfrIWaFxhu2INeMM2zpe2J4nrhx4SIYYGI4i8eiRfH6lkAjDcATxqBRPnhiHLBiWKa5D/J37FA+RKvdpKk3pu5rfptKtWQeo2AcsFXJ5IYDV2DlaCMvZSMXMqP0uzmtqrGFTbVHCEiFszgt3lqyz5ECTS1NKNwc7C2J7iGEtCFfrxxm+C8Dy8folSgYQYXZ7CNeEPMNOipaEMIc4jlbsEZYSq5wQNhTD3Hc5r7KhEObEseE6Oe8s9ynl/eW8xlIeYyWHkFy4hPi74farDaOQ8wYrhU843OFmSyFsCwGsthytCWE1dSl5hdU8klDKqybNknKsKU8tLhbC4EzeYYJwFUgMaxAt3MWbgyVhEcAL0WsohrnvhuXeuJEbHvHoUa5gFXucTYVfiL8bep6lPpWEsdS2m9IAYtErJYLVpimlG66TahN3gZXdv2wZLqEWc+qzlci1hxC2FnvVYeo/VSOE1XqFTZVrC1trsYVwdkLxrbn3ByzCB7YdWs2WZRHODolhJyTPvAYipSXVDrEX2FAUi4UpJ3wNhbBeD+TT50jGId+/bzyRh1gMKz1JNSWGDUWo2JNsuH3meIvl0uW8xeakWZIOmLgwSilxe+AMIticPI4QzKZihpV2PLWoFcLW1OEI7C1Y7Vw+eYcJwrGQGCbMQ+ICIBcOYcohJSWIPZADPHoEj5AQ6PUegrIePXrhIZYTw4ZNVBK94t/ctU3827BMzltsCeaGUJiTxqWb47k26Sky5xG7rYWtObb2FKuO9pKbi609+UpC2JSt2nVawFZClgQxQbgMJIY1hqYfZckIYanfaoQwt0RGAh4Z/wKPhKo6Qx/Gi2AuRjglRRgy8fgx11+Z4B57eXt7CMSrlBCWE8eGoljuu1pRbCqMUymEwhJRbK6X2OFhE7YUrs4ggpXihe2Fpf+ZKSGs9qU5S8q2BLEQzavQBScKmXCNUAmCsA8khp0MrXoK1LwXBBh7g0NC/hNj4mBjvR6PHr2IF05JAX79NXe5fx/IysoAkP7fAryI//JGVpYPsrJeTN3JiWOx91dNGrc9UmLZlqLYsN+kRLJ4PYctvMcmwyZsIeIcHepgaZtdwYNszn8mtUMoCWFnQkmo2lLEOpEgdma8vDyg09nu+seYh6qRCgn3wEnPckReIzeKhBJi0ckLTs79yxEZiX+Rjw+D+P33F0I4OTkDwCMATwBk4YUY5gZQ9wHg/99nriDOysoVyN7euSc/sQDm2i5OM0xX2iZ7imKpNsgJYDXiV8lLbLEgtoVgNpVfiyI4L/KJket78c4kt95UunjHNuXltVYUOquotJMgplAJgnAMJIYJizGMEzZMEyPl6RQITy48gksICUHKjVyv8O+/536+EMJ/IVcMZyJXCD//r1RPcOL3RciEN4CA/z6zVIliw+2QE8uGv+W2UQlrPMVKothaL7Fi2IQ1gtdaoWtLj7Gt8tmyXHt6ls0RaOaKOTX2zipuLcEJPMQUKkEQ0pAY1hCmTlJa9hAoOaCkRKfgmqHX5wYO/2fw4JEHL4C55fr1HAD3kCuGswA8/e8z879COPHr99/vLAi9xS9+Z2X5APAw0ndqvcNy1zxTzji5vpFLkwvTMFwn1z4pG1P5OGQvmEqC2NJ1Sp2l9bhgLQlea8uX2hFMeYXVlGHKJi/FoxOIV4C8wxx6PaDT2a48xl7MSEoQJIYJu2EohA3FmKGwe/QICAt5oZA5IXzjBvDXXy8+XwjhNLwQwYZiOAu54RFi0iV+ZyEryx+cIOZezrPVdVEsYpU+OXu5NKnvXNlKvw3rN0SNcAZMCGLDjOJ1thJ99vIGOyK+1551yA2vZmnfy+305oZHaBVHC14KlyAIp4TEMGE25pyUxZ5hMRkZwL8ZHtDr8/EvynHhEZxX+PHjf5A7FWcaXsQLc6TjRWgE8MIbDJGNMYZhE3Jawpprmxp9Yq4QNlcUWxNfbFHYhC0FsRLm1mHrNmkhvEKMubE6UkgFv1saDuFowWzJwWoP8UqCmCCcDhLDGsHeUyZz5ds7ZszUo38pMjJejBjBiWFuefgwA7le4XsAHiJXFGcZ5OZihzmvcIBoPYe0IAZMh02I26o2ZEIqvMEUch5jwzJMhVKo/W2YXy4NsDBswhpsEUNsjb2ty1MTWG8r5HY4NeJMrRB2lMh1Fu+zFBoOwaC4YYIwhsSwk2ALj4CjvApS12OpWFwOsRg2nGnuxfBpz8GFOLzwAovh1nn/tzyH0GMsJZL/yykhiNUIe7Xe3+xs6emdzQ2dAIwFsqO8xKoFsSV3RGrRSpyuluqUwlwhZo0QVltXXolDU8LUXsJVw4LYGfHysn3MMEFwkBh2E/Li8ZqSV1TsgeXE75Mnwu8vBK6cAFZLFtTMRa8UssChJIiV8ur18oJYqXy1dSiJYCUPsFovsWzYhD3FryFqy7OnIM1rLzNgelpmc8uSwloRZ0n+vBSOTiKIKVSCIOwDiWHCJkh5G8WCSsoDyS2cADacYS53djlOCBt6dQ1jhLnfgHS8sCGGI08AYk8xFz8MgB96zbDd5nqEDTEVNmGOd9gcz7A5XmGrvMRqXeT29pxqTQhrxVMshblC2NZi0V28puQhJgjNQ7eYhM0xFL9y1wBDASzlFU5JAV6ESBiKVsPh0rgFkPf6SoVGyHmaM5GVlcPrF04Qq1m4bVL6bpjGOfYMbaTyGX4q2UnZmFon91tNiKukd0r8Z7uSAFAjam1lowZLZ4Xz8nqxSGGuEHa3/1gDZdsi3pe8ywQhhDzDGsDVX2YwFa4nJy5fwMUAy2G4znQohDSG4xIre02VwgyUvkuFTRjmN0yXC6Wwh5dYrddYbKPqRRxTQda29BbbS8xo1btrTriE2ikS7Znu7pCH2Cp8fQEPG2r4HNe+7BJmQreHToAt7+LtLbwNX5RTetdGLH4NwxKEcLPK+QAIRe6oEeLFx8DO0J6blc4UQi9xVtaLPjJsl5SXVa1XmPsu9WnKSyxVhpSdXBul2iteJ/fblI3RvmmLi70lZdhDsErfmdmufjUueFPIiVxDD7ApIaz0CMdW4i0vYpAtwUnCeFzdgUIQjobEsBvhCCEslaYkjgGl64OhsNXjxfTKUoKYS+cEsaW8EMZqRKWcwDQVJqFGECuJaCVxrNReNevUiGRDTApic39rAVuIFluIXTWIha85IRRKfW/pOlugxX3CVmj1SQNBuDEUJkFYjZpRCeSQW59bBieE/ZErUv3wYqY5ccyv4Ut0hl5hrgxDz7HlqAlLkLKRC3cw/BQLYjXhEuaOMmHOiBPm/DYKmbA2PMJRI1SIsYWH1xmwRujaQ6hqSfw6IpzBBnVYO7KEs403rNdTmARhP8gzTFiFnJNP/BKdOed9zj53ZAexBzgIxiESnMjlfksJYUPMiyuWCss05ZFV49mVWgzrU+MRVusZNvxuqZfYVJiF2R5itevUYAvxYktRq1WBbOpgdNT/oCXxm1dodR8hCDeExDBhM6SEsNR6NWl6PRAQALwQuYbxwnrkeon9IBTFnngRTmE40gRgLIrF60wjde2SE8JyaWo/rQmbMPVdqo1KIlfpt9mCWGmdpTuMLbBUmKjNl9fCR80dqZr1WhGxjvDcOgIr67HWs0ujShBELnQkuAmOihc25Rk2pY24JSSE8w7rIQyXMIwP9kau+OUWQxEsDpsQD8kGSIdMqJuYQy5NrXhV82koiNUKYak22spLLLW9UusUL7D2jBe2tKy8EKpq67Smf9Q+lrGFUNYCztBGKfJYEBMEQWI4z3HmE5mpF9CVQijE67h3fsQ2ud5hsQg2/C1eDEMjpISwGLUTdhhjSsyqsVEjiO0RNqHGzpp1AkFsTbiEvb3D1ggRubzO4AU2105tvdbkd2fycJ9xFu+wr6/w/s7axdc3r7eI0BLOcRQQmkZK/MoJXyUbsSOL8w4HBhrGDosFsbfEwoVNcOsB48k5rHuRTg3WCmHD66OcIJbLZ0mohNR3U+vk7IxwVLiEo4SXI8WLOWLUljG7eRUWYc+nB+bgaIFKgpgg8gw6AgiboiR8leKDxQsnhENCcr3GQkEsJYoNwyMMvcJSs9SJBbKS51gZWwleNWEQ5sQR2+K7tcJZMX5YK4LH1ijF0FiDXMiD2lAIsb0aO3PbR+QZzvyEkSC0AIlhwiqUvMLcd7XXby8vZUGcO7qE1OQahl5guZfn1Avf3HqUUeMhVePxVWtnbhyxVDvVCF9LRLBSX5gVP6y0TkveYa2EQZiznbYOnRDnscZey0KavMME4RbQ3q9xbHGCsrXXQK48JRGsFEestBgK4oAA7oU6qRnofGAcNywWwVJCWF4cq71Gy4lctfmUypISvYZDvVkriK0Ru2rtFeOHDcmLcAktCzFbYE8RrLZ+wjwsFMSu7h22ZbxwXkUAEdqFxDBhNaaefouFsKmTESeAxYKYW3I9t4beYbnYYcMFMPYYG8cNq/EKK2GL+GA1aaZerJPLL/5uap0YtTHDquOHzRXAWvIQi8lrj7EhjhLBpCjsQx7tS+QdJtwV2vMJmyMXGmH4KbblFnGohFgUBwTkLrkxxHLxwXILh6FABsyJFTbHe2orQWwqzMLcMqXKUCvGTZUjh8XhEmrtHSXK7ClSbLENjvQEu4sQzqubHAvqdXXvMEHYCxLDhEWIT7pq9ImUZ1hq8fISeoNDQoy9w9xLdS/GIZbzBhsiJYJfCGFDr7Bh273MnLTcmmunKdGpFDIhV5YlYRJq26P2uxHWhEuYym+unT1FnaOElKNFsLsIYQ4tef1NQBNxEIT50F5P2Aw5zaL0VFxsJ/YEK4VMcF7kF2ETch5gKXEs9AZbGh5hjphUym+OuJQTxGo8x1LrLRXBajC0t2oyDnPutkzZaRlLvOS2vDGwVV22qE9r5IUgpnAJHhpnmLAn2tvjCadG7nppKjxCnFcqXMLwZTopQfxC0JoTMmEshG1xDZcTnJYIVks8xJaGSVgSBqLGlsOsyTjUil1zbazJ5wiBZ6oO8YGjpjxr+sWWnmBnF8jixymOqtNMbBEukQMPwSK3jiBcAdqTCbsgdf00FL1S9ob55ISwnIc4IEAoitV4eqXsxG1TEyJhjedUKb84XthcQa2mfHPaY055NgmXUGOvNoQir8MlzEXJpWVuGdbUT0jjaFGsgfhhEsCEK0N7NWExak62SmEScp5hsddXTgSLPcVie0NhLLUotdMRWPJym1I5amapk/puyl5NG01hs3AJS23k0lwRS3ZmSwW3Unm2tNMq3AHkRDHFtsZR4tiWIRLW7OZLlixBTEwM9Ho9qlWrhiNHjijaHzp0CNWqVYNer0fx4sWxbNkyI5stW7YgNjYWvr6+iI2NxdatWwXrDx8+jDZt2iAqKgo6nQ7btm1TrHPw4MHQ6XSYP3++5HrGGFq0aKGqLHeBxDBhFWq9D1IiWPxbrVdYaZ2X1wtvrtqTntx6Oa+wva57al5uU+MdVipT6rtcedaKZLuFS6i1kcLSncFS5Mqzhwi01HPs7IJUK9hbGGvAO+zufPXVVxg1ahQmTZqEs2fPol69emjRogVu3rwpaX/9+nW0bNkS9erVw9mzZzFx4kSMHDkSW7Zs4W2SkpLQpUsXJCQk4Pz580hISEDnzp1x/Phx3iY9PR2VK1fGokWLTLZx27ZtOH78OKKiomRt5s+fD51OZ8aWuz4OE8NLly5FpUqVEBQUhKCgIMTFxWH37t38esYYpk2bhqioKPj5+aFhw4a4dOmSoIxnz55hxIgRCA8Ph7+/P9q2bYu//vpLYPPw4UMkJCQgODgYwcHBSEhIwKNHjwQ2N2/eRJs2beDv74/w8HCMHDkSmZmZApsLFy6gQYMG8PPzQ6FChfD++++DMWbbTnERLBHE4jQ5D7Ght1cqZlhuMRTF4jLVeAfMHUHCHMzxApsSp+J1Yu+wqe9qxa/DwyUsEbtq81griG0lHm1ZjiUi2J3Iizhf8WKrcs2EC24grGfevHno378/BgwYgHLlymH+/PkoUqQIli5dKmm/bNkyFC1aFPPnz0e5cuUwYMAA9OvXD3PmzOFt5s+fj/j4eEyYMAFly5bFhAkT0LhxY4FXt0WLFvjwww/x2muvKbbv9u3beOONN7B+/Xp4e0uNqAScP38e8+bNw6pVq8zvABfGYWK4cOHCmDlzJk6dOoVTp07h1VdfRbt27XjB+/HHH2PevHlYtGgRTp48icjISMTHx+Px48d8GaNGjcLWrVuxadMmHD16FE+ePEHr1q3x/Plz3qZ79+44d+4cEhMTkZiYiHPnziEhIYFf//z5c7Rq1Qrp6ek4evQoNm3ahC1btmDs2LG8TVpaGuLj4xEVFYWTJ0/i008/xZw5czBv3jyb94urxF8ZvmqhFkPxa5gmFsVKYw+rFcVqxa05trZCSgBb8jKd2jrUlK8kfi0SuxI2Zu/79vQYmypHi5AIFqL1UAVbiWML89pTEDvzdSwtLU2wPHv2TNIuMzMTp0+fRtOmTQXpTZs2xc8//yyZJykpyci+WbNmOHXqFLKyshRt5MqUIycnBwkJCXj77bdRvnx5SZt///0X3bp1w6JFixAZGWlW+a6Owy77bdq0EfyePn06li5dimPHjiE2Nhbz58/HpEmT+DufL774AhEREdiwYQMGDx6M1NRUrFy5EmvXrkWTJk0AAOvWrUORIkWwb98+NGvWDFeuXEFiYiKOHTuGWrVqAQBWrFiBuLg4XL16FWXKlMGePXtw+fJl3Lp1i3+MMHfuXPTp0wfTp09HUFAQ1q9fj4yMDKxZswa+vr6oUKECrl27hnnz5mHMmDH0eMEE3ElX6gSp1+eey6U+xXaGn5zHk/sdEgKIHP5GGJabkeF4kavUHql1gHC9uP1y68Rp2dm52youU+q30nep/0cpTW5blbY7Bx4vLtJcwRzi3/a0sQWWlGlpHnvY2gpXFty2RGqftDNK52at4+sLyDg7LeI/LYoiRYoI0qdOnYpp06YZ2d+/fx/Pnz9HRESEID0iIgIpKSmSdaSkpEjaZ2dn4/79+yhYsKCsjVyZcsyaNQteXl4YOXKkrM3o0aNRp04dtGvXzqyy3YE8OSKeP3+OTZs2IT09HXFxcbh+/TpSUlIEd0e+vr5o0KABf3d0+vRpZGVlCWyioqJQoUIF3iYpKQnBwcG8EAaA2rVrIzg4WGBToUIFQTxNs2bN8OzZM5w+fZq3adCgAXwNBiJs1qwZ7ty5gxs3bshu17Nnz4zuMq3BGU9Yhsh5i6U8wmKkPLxqvcHi/Ia/bYEtypHTP+Z6beU8uYZDrSl5nsXf5co1FSah1F6l70bYIjxCbTnWhEPYUpCq2TlNxfVYUqaj0Vp7tIY5XmMrb+QodOIFt27dQmpqKr9MmDBB0V7sDGOMKTrIpOzF6eaWKeb06dNYsGAB1qxZI5tvx44d2L9/v+xLde6OQ9XWhQsXEBAQAF9fXwwZMgRbt25FbGwsfwekdHeUkpICHx8fhIaGKtoUKFDAqN4CBQoIbMT1hIaGwsfHR9GG+610tzZjxgw+Vjk4ONjojjMv0MoJT0kQmxPyYG6YhGEdUvXlJUrXPjXi0VQ+sSCWEtpSoldOCKsV4+Z+N3nTZwtha2k+R+4kpnZkc8ogjNF6GIUhtowzVkAr14e8hHuPiVt8ZWbjCA8Ph6enp5EGuHfvnpFe4IiMjJS09/LyQv78+RVt5MqU4siRI7h37x6KFi0KLy8veHl54c8//8TYsWNRrFgxAMD+/fvxxx9/ICQkhLcBgI4dO6Jhw4aq63JVHCqGy5Qpg3PnzuHYsWMYOnQoevfujcuXL/PrLbk7EttI2dvCRupuTsyECRMEd5i3bt1SbLu7oXTiVePh1etfjCes16t7kc6Ud9gc/aGULvVdClMeYbVeYbXrsrNfLOK65PIrlWlLQWyI4ugSUmlyf6bSbzksFY/miGt7C1R3E8HOJGytQUkU26gPSBCrw8fHB9WqVcPevXsF6Xv37kWdOnUk88TFxRnZ79mzB9WrV+dfcJOzkStTioSEBPzyyy84d+4cv0RFReHtt9/GDz/8AAAYP368kQ0AfPLJJ1i9erXqulwVh0ZR+vj4oGTJkgCA6tWr4+TJk1iwYAHeeecdALle14IFC/L2hndHkZGRyMzMxMOHDwXe4Xv37vE7TWRkJO7evWtU799//y0ox3DIEiB3BIqsrCyBjdSdGmDsvTbE19dX9q6SyMUDObzw0euFMahi5ESmobAz9/ovjmVVwhptoZRXKj5YvN6wjabKEvejYX9K9RsXO21ooxS/rVSHuJ2WtF0SqZ1CTZr4z5Va74i4XnuWIy7T1TG1I5lja05ZWsLO7TY8L2sVvd62McOenubnGTNmDBISElC9enXExcXhs88+w82bNzFkyBAAuQ6x27dv48svvwQADBkyBIsWLcKYMWMwcOBAJCUlYeXKldi4cSNf5ptvvon69etj1qxZaNeuHbZv3459+/bh6NGjvM2TJ0/w+++/87+vX7+Oc+fOISwsDEWLFkX+/Pl5TzOHt7c3IiMjUaZMGQC5ukbqpbmiRYsiJibG/M5wMfJ072eM4dmzZ4iJiUFkZKTg7igzMxOHDh3ihW61atXg7e0tsElOTsbFixd5m7i4OKSmpuLEiRO8zfHjx5GamiqwuXjxIpKTk3mbPXv2wNfXF9WqVeNtDh8+LBhubc+ePYiKiuIfOdgSrZ+EbI2cJ0KtV1dNuIQ4j71CJtTkU+MNlorrFX8351P83TBNylOs9Km0TeZ6mJW+Gx0Haj2v5rrrHeGltWSduXVoUdRpsU1inNWr7KztdiG6dOmC+fPn4/3330eVKlVw+PBh7Nq1C9HR0QByNYnhmMMxMTHYtWsXDh48iCpVquCDDz7AwoUL0bFjR96mTp062LRpE1avXo1KlSphzZo1+OqrrwTvPp06dQpVq1ZF1apVAeSK8qpVq+Ldd9910Ja7PjrmoMFzJ06ciBYtWqBIkSJ4/PgxNm3ahJkzZyIxMRHx8fGYNWsWZsyYgdWrV6NUqVL46KOPcPDgQVy9ehWBgYEAgKFDh2Lnzp1Ys2YNwsLC8NZbb+Gff/7B6dOn4fnfbV6LFi1w584dLF++HAAwaNAgREdH47vvvgOQ+/JelSpVEBERgdmzZ+PBgwfo06cP2rdvj08//RQAkJqaijJlyuDVV1/FxIkT8dtvv6FPnz549913BUOwmSItLQ3BwcF4+DAVQUFBirZigWgrgazVR2CG2ycl3IDc0SLEYs4wLTtb2kZcjppH/IaoveYoaSxbPbGXEvNydUmtU9Mew0lKzPlUu86c9YDEPmvOn6TmrkLtb0vrtKYsJWwhNA3LsIe4suRGQM3BYk74iZp+cgbRLoWdb+ysue6YutakpaUhODQUqammr4dG+YKD0bp1Kry91eczRVZWGnbuDDa7PYRr4rAwibt37yIhIQHJyckIDg5GpUqVeCEMAOPGjcPTp08xbNgwPHz4ELVq1cKePXt4IQzkxrZ4eXmhc+fOePr0KRo3bow1a9bwQhgA1q9fj5EjR/KjTrRt21Ywa4unpye+//57DBs2DHXr1oWfnx+6d+8uGAQ7ODgYe/fuxfDhw1G9enWEhoZizJgxGDNmjL27yW2QC5fgUHpcr2Qjh6nH+FJP2sXpUuul0qTWK+kOqfrkwg/UhjOIy5aLFNDrhUOxKdVlTiiFYZqUndx6QDTcmrjBShsmZSveWHsJQDUhHeL1HGrtLGmXOeu17Hm0ZaiEueU5CrmTkNhGa+3+D6Pj1sZoIUyCcF0c5hl2R8gzbBpuO+Ue9ct5hbnlyRN1nmG1oQC2cNjZIuRCjffVHE+0Gi+2pR5itR5gczzFkvutmrgNU7/N8RSrqcfSdHthrVCytr3mCnB7pKlph1obe6Omv815BGUl1l53lK431nqGX3/d9p7hzZvJM0zk4l7BqhrG3eKGObiTp9Ijfg69XrgApuOHDfNJ1WO4Tuq3IzEVviFeZ0rXidebukEQT+Vs7qet0gCZ40Hpz1F7R2LOHYQ5KNVn7x1KvMNbW5YzYc1NSF57wu1w48GN7G4pWneeEIS9cE8FpnHcVRgboiRwxULWHEGsRjCL7U21TbzOXpgKTRULXqU08Xc5QWyqLdaIX6X2AArHgVrhaQ8Pmqm7NUvWWdoOewltrQpie4jXvBbE5qLw3xgeL3lxDSEhTTgzeTxBLWGIu4pgLn5YrzeOe5U695uKRVVCKf5V/J1DrTZQaycX/ipug9o0qb6Sar84dFa83WpigdXYmFum3DYCCnGIchtruIHi71LrLUEpv6l1Uu01p15HYW0fWYs5sbFytuaeFJwYqWuHvWN4HY2vL+DjY7vyPNzzckvIQLsD4VjEbsr/kAqXMOUAFC9qZ6gT12NYrrgONZhja099ofaJsZKXFjA/XEJtmiWeYkDFo19TLnqpP9tarPECm+PVtacHWE3djkAL3tm8aIPa/99EutKx4a4OFoIwF/IME5rDlGdYCWucRKa8rdZi6+utnNeVw5TH2TBd/MmNMGGqbmu8wWrKMoS7sMt6u8TeTDXeTUvyqLFVW46TeyQFOGJb7OnFzQsPsZonCXK/CYKwGXTb6MJo+hGZgneYQ+paoGaR8xAblmFYvikvcV5jaVvkPMJS60yVYY4nV87e3LJkHiIoe4pNedLUeInN6XBT5WhpR3Jl1D4WsbQce6L0CMsE5PklCNtARxKRd5gRLmGJprBUENuibrn22MLGELUvuinZqxGppuwsDYVQyqfUZkBBFJt7VyNlY0kog6XrbYkFgspkeXlFXoVPaCFsQ4xW79QdiFpniDkLQXBQmASRt5jxaNKck1dGxovYV7nH8mqaZG64hCVP5fMKU/0gnozDVBlqQicsDZNQaoPki0KGHS3VAMNPsb0YqQYr2akpx1aCy9QOZIs6lfomLzA3nMGS8AcXeKmOIAj1kGeYyHtEF1pTL9OpvevnwiWU8ojrMfyUqtsUauzVeCbMvdZbs94c1HhyTaWZEyZhqkwOix8XW/Jn28ITbI17ytK89hR3WhCO9gjKdzMo7IJwV8gzTGgS8XBrgLTjzdQ1WM4jqdZ7KeUZVvtelLnXUi3oCTFK3mFzvcJSaaa8wlZ5iNV4h8V23G/xhkqh1hOs5nGBo7DUy6s177A7ocUTQx7g65u72AqdznZlEc4P3QYSjkXpebuKbEoxX+Z6iA1/S9Uh/i5Xj7mbag/M0SnWxA2L16n17qopT+07UHIv1gESni2pP8HcRwCm/nBbeIodiaVtUeofazH3BThneDHOFpjoW1MvSTvqJWpNv6xNECogMUxoFlNTNavVKGoFsVz4hKGNFKbWqUFclxYxJxzDloLbXFSNNCF3t6P2LsfZRbE1gljpTtHVyEsRrbJvbSVEKUSCcGdo7ye0g8KFR0mYynmExetNxRAb1mNKK5lqo5p0Neu1oDW4FxENkRO+1o4moaZcpTRJ5O40TP2xlnqEnUUUW9MGS/I6Ypud1QMsxsy+slYQkxAm3B2KGXZRNP3YSq9XfvxpcCHgYoelsnJmpkZ8UBvHKrXeVF3izZDbNMO2KbVXCxqJw1ScsCVlKeU3N35YqT2q4oe571xBhr8N0wzLkFqntDNIpatdTxBmID5Xqr0GOIsQ1uspZpiwH85xFBDuhRmjSyh5guXWSXmIpb6L0wzTxXWJ05TQimMQsE6HmeMdlsqndlQJU+kWxQ+rcfmb8gqrSVNKV6rbUWhlR3QEznLTYcV/4sGPvu1aQpgg7A15hom8Qck7DMi6/Ew5+Lis4jRxsaa8kHJNkRppQmpzLHH6mSuqLcVUuVL9YGp6ZjVlqPEq/7+9M4+vorr7/ychZGG7BAMJURTcEMQ1KgYXQGRREdeCoqlUpFIFjOhPi7aKtgWhVNuKUhcU64ZPVapWROKG+rCILAUU6WMFASEENdwAhiSE+f0R5jJ3cs6ZMzNntnu/79frvu7MmTPnnDkz985nvvOZMyqj0QAnQqwXKpo3Vm5OF90ecBolls3jBVa/RcIdIbzgUCmCQ30XkiAkoctCwjbC1+F6BO9VzaKoMCvNuJ4oQsz6Zk2Losa8NBZ+ni+90j1Oormy0WE3/mHLt9Tp87wdaHWVojJKLGpLlEm17ZEhZPvxgCFuTBBEMhQZJqQx/4nq844jAzajw+axh3nWT5nIor6eLoitfMOiyDCvHcbNZNXNWiZKd3pelV3PTQRWFqfRYZk8ovWYx6rV7QRRxJd1K0A2GiwbAea1xQuCjg6HSDQqIUTbkyriNycnVN1KpBip8SshPEf0h+rqz1ZG9QhWM0d0nUSJZSLEMlFi2c1itSus+KGPnESHRfmtosTcSLFMtNhqp6uOEpvLlv04wasD0qtyw2rtCNEPO1WEMJG6NDY24o033sCwYcMCbQf9Uggl+PWny4tCW9kXWKLZShCz1jOXLyPG7RAVkWwXu9YGWYuEyJqhVBTz5mXy89J466vAabmq2xK2gzmsAjqikF+YcMqGDRtw991344gjjsBVV12F2traQNtDYphQhmNB7PCEKSNSefOsNLMglqmDtQmyAUPe9viNKn0g234ZD7EdrES1Y1Gscl5PUxEltgNdkflLiPot1aLCdm+OeHUDhXDO3r178eyzz+Lcc89Fjx498Oqrr+KWW27Bxo0bUVFREWjbyDNMWGLnT7XZ0/sq4HiHgaZkln9YdhhZ87xREBvzWHmKreo11x12/PAPW9Uj8mqb17Fqr2iEEcDCUyzrE7aal0k31qcSXp2q1zGvTxBE2rN06VLMnj0b//M//4PGxkZcddVV+MMf/oC+ffsG3bQEJIZTkEjeurI68QoEMasYnnCSmc/KahpKjHUud/JwnXHeKWHUFarbJNOnVhc3Vu2SEcXC348TQWysmJfPvIy1jlucCmId2XXDeLA6JaLbkmpRYSLanHPOOWjfvj2mT5+O6667Dm3atAm6Sc2gXwyhHMfD91ideCQepjMXw7JFsObNt8/0MXXd2CZE86pRVTZv4ANzfzip32p4NJm8dh6ik7FPsPIIX9bBmjfDs0iw0kRleXHQuCnPq3vPTtsUNqHqR3tCtM2RDLoQgTB48GDU1NTgD3/4Ax566CH897//DbpJzSAxTHiG19EJ45+xSAjzRC9vmT4tI4hFaeb2sOqXwYvzX5gi1XZEMiuPSPjKCmMztgSxHfHLQkZcq+xwr6/MCMIDsrLUfwh/mD9/PjZu3Iibb74ZL7/8Mo4//nj069cPzz33XOAPzumQGCY8xXaU2GZ0mCeIZUSqrCDWfcS8IJjdiLQ5XXWgTQV+iHUrEWxeLpPf6cN0rGWWgthqmZ1osMzO9kIUEykHWSSIMHLEEUfg3nvvxX//+1+899576NKlC371q1+hqKgIY8aMwZIlSwJtH/1qCF/wSxCzinEigs3rOrVNyIhit9jVaEFiN/IrskXwxK0xGmxXNFsKYiOiaLExzQtRrIqgD5Cg61dFmlkkCMIN/fv3x/PPP4/t27fjoYcewsqVK3HOOecE2iYSw4QlqrxhfkQs7IpUq2ljmhPbhHmaNe8GP4WwzLYZcSN87fiErawQTkQxF6udKRK5vPLs5LdazwlB3YIgcUcQacEf/vAH3H///Yn5BQsW4LLLLsO9996La6+9FitWrMDKlSsDbCGJYcJnpAWxzROlyD/MEm92osJGUWzXNuFllNiNEBZpMzNuvHUyIlSFIDaXbefBOqt5Rw/U2Y36pluUOApCOAptTCP01zGr+uTkBL1F6cPLL7+MkpISAMAPP/yAq666Ch07dsSSJUtw6623AgBOPfXUAFtIYpgIACWCmKF2WBFsnhBmpYmiwuZvWduEaNpcryrCdg4XiVO70zI2CfNyq7pl5i2xI2adpPuF+cD3qvyg8KJuP7YnZD9qGkmCsMOmTZtw4oknAgDefvttHH/88Xj66afx9NNPB/6yDR0Sw4QUqv/8vLZM8IJ3MhFgVhprmRvbhExw0c722SlH5XnVjmi0isoal6u0ScjUbTUv9TCdaKd4KX69Episg9/vMkImAgmCsE9eXh72HfxDfe+99zBo0CAAwGGHHYY9e/YE2bQEJIaJcGPzZChjlxBFi0XRYNatNpEgFqWxNk1GL4jyuNErbsqz6721ivA6EcTmsmQfkJMZpULHlSDWl8mu4+RqyWvhKLrnzPv4DYlnwmMef/xxdOvWDbm5uSgpKcEnn3wizL9o0SKUlJQgNzcXRx99NP72t781y/Paa6+hZ8+eyMnJQc+ePTFv3jzb9WZkZDA/f/zjHwEAP/74I8aPH4/u3bujVatWOPLIIzFhwgTE43EXvSHHeeedh0mTJuHJJ5/Eq6++issvvxwA8PXXX6NLly6e1y8D0w24Zs0a2wX17NkTWTRwH2ED6Vc35+aK73VLnAD1IozfehG8ZcZqWHmM36xmiPKxpo1tNW+iaDNV6ySnekIkJFllmvtatF+s8lu1h9WnMttpVYdwB/I6hLXcah1ZeI11W27YINGbdqi+vtI0++u88sorKC8vx+OPP45zzjkHTzzxBC666CJ8+eWXOPLII5vl37hxIy6++GKMGTMGL7zwAv73f/8Xt9xyCzp27IirrroKALBkyRKMGDECv/vd73DFFVdg3rx5GD58OD799FP07t1but7t27cn1f3OO+9g9OjRiXq2bduGbdu2YcaMGejZsye+/fZbjB07Ftu2bcOrr75qvzNs8Mgjj+Daa6/FXXfdhXHjxqG0tBQAUFtbi3vuucfTumXJ0LTmh0RmZiYyMjLAWMQkMzMT//nPf3D00Ucrb2CUqampQSwWQ3V1HO3atfOlTi+9XF5ZG6TbbCUuDBjbyos0mtNlvq3y7N8vV5Zo2g4ykWTZMnjfrLfPuTkpWQVCRRF8mfXt1C1Th3kd5vFq5dGQXabczGyjLWHDKspudx2Z5Xbz+iXKbdTjx6g9Ts4zNTU1iOXnIx63dz7Uz6MzZ8aRl6fuPFpbW4Nx42K22tO7d2+cfvrpmDVrViKtR48euPzyyzF16tRm+e+++268+eabWL9+fSJt7Nix+Pe//50YV3fEiBGoqanBO++8k8gzZMgQ5Ofn4+WXX3ZULwBcfvnl2L17N95//33u9vzjH//A9ddfj7179yoNZu7atQuzZs3CpEmTlJXpNdxfzbJly7Bx40bLzzfffINcukonXODVCBNWq1uJQCubBCuPmwfr7J6nRXpAtjw7dbIuJuxaJIzrisrmpZmn7bZHpl6r+pjHqxN7BGs9v6wOBEEAaBLbxk9dXR0zX319PVasWJHwu+oMGjQIixcvZq6zZMmSZvkHDx6Mzz//HA0NDcI8eplO6t2xYwfefvttjB49mrPVTegXAqrv6v/444+YMmWK0jK9htkDffv2xbHHHov27dtLFXL++ecjLy9PZbsIgg3PMmEiEwcSooVlS1DxbcS4LCurKUJsta7ZPiGzeW6sEqJ13OojGUHM6jNjuh2bhB2LhLluS+sDI595HabFx4k9Qk/nHQR2DxBZVJXjFUEL9qDrDzFBjSShD62migMHN8PsWb3//vsxefLkZvm///57NDY2orCwMCm9sLAQlZWVzDoqKyuZ+ffv34/vv/8enTt35ubRy3RS73PPPYe2bdviyiuvZC4HmoY4+93vfoebb76ZmyedYIrhDz/80FYh8+fPV9IYItwYBaZqpP3DLDjqxg9BzBPGVoLYCEvvyOL05GBHVO/ffyjiLSskWYg8vCKRy6vTTltk/MlWZUoJYsCZKA5CnFq1MyhUWh3SEC//p1ORLVu2JNkkciwGIM7IyEia1zStWZpVfnO6TJl26n3mmWdw3XXXce/a19TU4JJLLkHPnj2TXoaRztAvhggNtuwSvDCjCdboEsZpL771j13LhCqbhMy6onkrzJYE3kemDOO8eZpnh7Bqi5s6RdOsecvXNVvZJ3jzorC9aqtDmMRlmNpiRZTaSnBp165d0ocnhgsKCtCiRYtm0diqqqpmUVudoqIiZv6srCwcdthhwjx6mXbr/eSTT7BhwwbcdNNNzDbt3r0bQ4YMQZs2bTBv3jy0bNmSmS/dsDSKaJqGV199FR9++CGqqqpw4EByJOT111/3rHEEIURRNE024mvETuRY1jKht8VcDyvda1TUJ7IqGPPI2CRUWSRk6hRNs+Z1Qcy9syGKwMoew7xbCiyc/CacRIntHCRW5ao44EicEh6SnZ2NkpISVFRU4IorrkikV1RU4LLLLmOuU1pairfeeispbeHChTjjjDMSIrS0tBQVFRW4/fbbk/L06dPHUb2zZ89GSUkJTjnllGbLampqMHjwYOTk5ODNN9/kRo7TEUsxfNttt+HJJ59E//79UVhYKLwdQKQ2ftx6s22XkFCuVnYJczFmO4OMLcKNINbr0Msyb57V5pvbYie/KACpGpHgt2tTsHORwMqrWhADkqLYShCLDgpZwWr3oOCtq/JKjE66vuKVVSLIN8+pviFywMGmTJw4EWVlZTjjjDNQWlqKJ598Eps3b8bYsWMBAJMmTcJ3332Hv//97wCaRo6YOXMmJk6ciDFjxmDJkiWYPXt2YpQIoEljnX/++Zg2bRouu+wyvPHGG3jvvffw6aefSterU1NTg3/84x/405/+1Kztu3fvxqBBg/DTTz/hhRdeSDwwCAAdO3ZEixYt7HdICmEphl944QW8/vrruPjii/1oD0E4E8Q2UCWI7QpjniDW13OwKcJtYy0LA6J+Y6VZiVIRIm0nK3x5beTlE4pi0VUP66DkzZsbJsJJ1JdVTxgIY5uItGHEiBH44Ycf8OCDD2L79u3o1asX5s+fj6OOOgpA01i/mzdvTuTv1q0b5s+fj9tvvx2PPfYYiouL8de//jUx9i8A9OnTB3PnzsVvfvMb/Pa3v8UxxxyDV155JTHGsEy9OnPnzoWmabj22mubtX3FihVYtmwZAODYY49NWrZx40Z07drVdf/o5OXl4fzzz1dWnh8wxxk20q1bN7zzzjs44YQT/GpTykDjDLvD61dA2/GsmtNE36I08zjE5mnWvBN4AUjevChCbDXqjr5NsvndtMdNJNtOmXYi6KJ2CI9hmR0vmyazTGZ5mLF7m8RpHtVlqcBhXar/s938J7sdZ/j55+No1UrdefSnn2pQVmZvnGEidbH8pUyePBkPPPAAamtr/WgPQXiG+Y/cjiAyp4m+RWm8F1iw5mU/KrEjhPfvby6EjemsZbLwNJv5IsLqI1pXNG1Hb7Lq0rF8wM48byeNtfOtDoyoRlZVtVv2YiDKFw0EETJatGiBzMxMy0+QWMZwfvazn+Hll19Gp06d0LVr12ZPHq5cudKzxhH2CNLP5QWuhltzgMgWwUqza6sAmqaNw67pafo6sojuovuBrNA1DstmRtZ2ILLMWvWZyH5rZZOw6xl2bJvgGcVlrBEizwjvwAjigHFDVAV8CFDpHQ76/KL64t+JZ5hwxrx585LmX3jhBbz55pv4y1/+gs6dOwfUqmQsxfCoUaOwYsUKXH/99fQAHeE7qgWx+eTAE0nGabuCWC/PShADyaLYCpY24tlM7cCrnydi3UR8rXAiQHmwdCJr/+jpVgLXTnt4olhaEPM2wLxMdFBYle1WEDs5cL2qgwQzQYSWYcOGJaZfeOEFzJs3D8cffzxmzZqFRYsWIRaLBdi6JizF8Ntvv413330X5557rh/tIYhmeC2IAbYwMk6rFsT6crPgFAlNK63Dm5YljHpCFBU2IxLKogiwcdoqKmwnmm1bEIs2kCeMZQSwykiwk4NEJOpV1ZHKuOwPegkHERZeeukl/OIXv8Af//hHjB07FgMHDsQll1yCioqKwN9ibPkL6dKlC5nLicDx40EQ4zmHNW28TWf1LZOHddsvK0v8Ya0nc6405wmz3uA9Myby5przmPMa583TvPp5dYm8yDLprl7UwcvjZAfbibqqukdtLIv3cVImkfLor2NW9bF40RyhmLlz5+KGG27AQw89hPLycuTm5uJf//oX9uzZgyuvvBL7vbzlKIGlwvjTn/6Eu+66C5s2bfKhOQThH1bRZhlxzPqWyWMW1rIawSyKZdsfRkTtEwlflujliWWWKDZPuxHGrHJl0i0v7mREoh0BzFvGE9YqBbCXOGlflPzSigja70ukN//4xz9QVlaGKVOm4I477kikx2IxLFy4EF9//TWuv/76AFsoYZO4/vrr8dNPP+GYY45Bq1atmj1A9+OPP3rWOIIw4sUDdU48xMZpq1vrom9jfSJYVgHjQ3hW53YnGikIvzALKyut1Tq8/Sm7n8zlmtdj1SubbvmSDjOsnS1zAMiWHTWctjmK26oAN3YJEtOEG66//nr8/ve/x//7f/+v2bJOnTqhoqIC55xzTgAtO4SlGP7zn//sQzMIQg7bAkICJx5iVl5Zsez0QTC7bTCua4VX+kB2zGE72BH/rAsJ3j4Q1cfKqyrd1kWelfi1OlhTAT/EbFgEc1jaQRAueOCBB3D33Xdjz549+PLLL5GZmYmePXuiVatWAICuXbvi3XffDbSNli/dIJzj90s3vL56D9tDGF6/lAOwf4td9ts8bQWvHONLPGTLFtk5jBiFrNOIsEgMe32eF7kIZGwsrG+rcq3aIMovfTyL/Byiad66TuBthFfiW+XBIlNWGDxIHtXh5H9cxX+t25duLFwYR+vW6s6je/fWYNAgeumGX/z2t7/FjBkzUFdXBwDIzc3F7bffjj/84Q8Bt6wJ5q9Cf1+1LLt371bSGIKwQ1geqnPyrU9beYSt6pNpq7k+UR4jKl6eESQyOtCJJ9jKlyxbp5kDyHR2TPsR/ZX1EasWrVHwLavG420mywPhNzNnzsQTTzyBp59+Gh9//DHatGmDDz/8EP/85z8xffr0oJsHgCOG8/PzUVVVJV3I4Ycfjm+++UZZowhCFr9fN6pKEMvqCqsorvlhOpHY5m1HUPih4ew+2CbzUB0vXfYhPlG5QMjuwAQhRr2sU0VU2At8Fv52BDGJZ8Itjz/+OGbMmIHrrrsOxcXF0DQNvXv3xl/+8hc88cQTQTcPAMczrGkann76abRp00aqkIaGBqWNIgg7+PFiDrMP18qzK+MVFj1EZ1WfMd38MJ2MrVQ0rxLRG+gAe95dp1g9+OakHH0eEO8/K/8yb33Hx3SUH6YLwxWaDH5bNjyCxh8m/OKbb75hvqvi2GOPxfbt2wNoUXOYp6kjjzwSTz31lHQhRUVFzUaZIAg/CUoQs55XshLCdkSUbNmsdskQBv3hVqACztaXvXiRHUWC1Q6eKBbNB0KQDQh84wMiBNut/2dGQRTr4wyrIqr2ryjSvn17pv32448/Rvfu3QNoUXOYYpjGFCaiiN+CWJTuVkyJRrJg1adHh1llsAjBeTgJu6KWZTsQres2Omz3Ysa83EoAs9rkxVCC3IPV6zpEef1ChUVCVXtD9gPkRYnJIkGo4PTTT8fixYtx6qmnAmhyE4wZMwYvvvginn/++WAbdxAPBj4igsKTk2fE8FMQWwlVKyEseyvdSoQb7RJAc1HsFreiWm+PzDBrskJVVWTVblTYWDdvnxjLZuUXzfsmiL3GrlfHD0IRgkc42sDAGCVO9/MIoZZ77rkHGzduBADk5OTg9NNPR21tLd59912cd955AbeuCRpazUP8HloN8PZKPgq30gBv+sC87bzRBVjTMg9PifLwHupilc8q23w70CyaecgE9+ye1+2OO+yVPZM1LZsmKleULpoXLWt2PMscLLx5p8jcbuARFhEKiNuRplFhv3A7tNqyZXG0aaPuPLpnTw1696ah1YgmKDJMpBx+valOFCE2TltFMXnRRyvdIYo8G9flCVCjtcKMrOaxq3PsRIm9xGo/sNJEFghRuujOgMyywCJ1rB3L23C75bjJr0rgB0GaCmEivVm0aJFwed++fX1qCR8Sw0RK4oeAMAtfwFqcyoolmdv3rDbIeG/NQjmIB0lkRLFfuoHX73obRJ5uUbqV/5tXtyV2Pbl2xaNsxzsRxk7rYq3jZ5RaxcFIQphIUy644AJomoaMjIxEmtGUcOBA8LacaNz3JogQYPVSDvN8bm7y7XbjvHk5qyxjGu9bVI+5fF49QUZpg3yiW2RvMVpQePOsdXjlWNVnNS1tUZLZ4aJ1nQo20QHHyuOmLmN5fkBCmCBcUV1djV27dqG6uhrV1dXYunUr3nzzTZxyyilYsGBB0M0DIIgMDxgwALfeeiuuvPJK5vLvv/8eZ511Fr1sgwgtXtkl9LJ1ZB+Q0tOsbpWLHprTy2PlcXrrHgguQuwnVkFB2QfeZNOs7hCI7iLYihbb8dTwlqnET+HnJPLtNySElaB6aDV6PYJ/mD3Z7dq1w9ChQ5GXl4df//rXGDRoUEAtOwQ33PDhhx9i+PDhuP/++5nLGxsb8e2333rWsFSCnswNDq8e+pONElulmaO6Mt/mNFE9Mm1i4eROuUr8tEiw0nhRX17EWLQebxkrj6hdSceyVQSWl646OmsFr84g2mLVzjCXyzrgCCLiHH300Vi7dm3QzQBgYZOYNWsW/vKXv+CKK67Anj17/GpTSpKJAySKUwyeIJYRpjyLhBNBzKqHVZeoPiDYkR6ChKcxePrDjgjW562m7aY1g3Uw+IkqcetkXS+FdBgOctYBSBApQCwWw7vvvovGxsagmyJ+gO6yyy7Dueeei8svvxylpaV44403cPTRR/vVtpSEXoHpP14+TMfbn1aWBd6tdNlv4zqselh16WmsfCy7hB86gCXAvaxXZDvgWUt4y2RsFbLTss91JR3LVhYBPywEVo0WLXdj7RDVZdUnMmkqUFEub1ucPghIEAGgP0DH48MPP/SxNWwsY0E9evTAZ599hmuvvRZnnnkmXnnlFVx44YV+tC1lIUHsP14LYmM9ZliCVea8zcKoD8xawY4AF/mS3fiHgx4yTQYZHSEjjFWIYFH7bOsd3pWOeYNUIbJj2F3fys/sRhQ7FY1uxKaXQti4PI0EseobAOQZ9g/9zXM6DQ0NWLNmDdasWYOf//znwTTKhNSpKxaL4e2338akSZNw8cUXY9q0aRg5cqTXbUtpoiiIo9hmV/CEhQBZYcwTplbfxnXMTZJ5aI4XFTYvsyOIVQpgtyc7Wf1jRydZ6UunIlgU9ZeGdUXEElFBRolFYXZzHpEodnLlqCJPEJAVgkghHn74YWb67373u9BYcLmnMeN4cPr8Qw89hNNOOw2jR4/GBx984HnjCEIltqLDIvOm5AnUXJfVSzvsCmJzM0XCWCYqzBLEfuJEl4juIsuULYoAi+o097WqqLBMnc2OY94tAj+jxCxE4tiJ6JWJJLtplyrCKrAJImSMHDkSZ511FqZNmxZ0U/himOfvGDFiBLp3747LL7/cqzalDWkXaQ0BSuwSThQU5N5iJ/NtbIJI98h6ha1Etpc41Q122ydzHSMKWLLyykaVfdFGMlc3Vulu6xfNq25DKgtaO/2SRlYJ1UOr1derK4twxuLFi5GdnR10MwAIxPCHH36IDh06MJedeuqpWLFiBd5++23PGpYuqBbEgb26NQAcalLvGgFYNsQ8TrGMSJURrbxIsZUWshLZYcOthrOrHUT9YTfyK+MTloX5O1ctiL3+gQVp6TDWFebyCCIFuOKKK5LmNU3D9u3b8fnnn+O+++4LqFXJZGiiR/wIV9TU1CAWiyFeXd1s0GkjqqPDXorhMESyZe6iWiHVRypOyIJGGftSr8r8bZUmM281LXKEhAlWm6x8zSpf98zKLwqIWk2LvmXKAQTHsexOlfWZsCqXbaQI0YHm5CAMWoy6rT+K2yxJTU0NYvn5iMfjwvMhc71YDBs32ltPptxu3WK220PY58Ybb0yaz8zMRKdOnTBgwAAMGDAgoFYlE4Fnv1MfskuoIZR3DAXRNeN+t4oCy0SGrXzCrHysshhN9RUZzSb7cJ+ejyWK7UbB/Ty+ZOvSjx/HUWIvorCqOsrK+0w0Eco/PoI4xDPPPBN0EywhMUykFHZEhO92EkbjWBdCVoJYL8qYbp5mzZvhPXdlLD8IzO1yKoRZ64hEsV63HfzQITI2FqYotuOdMWPl+fBTfKkI4bPw2jdNKMV8x8Qt5Bn2n/feew8rV65EZmYmTj/9dFxwwQVBNykBiWEi5Qh1oIShZnRBbCV+RdFeYx5jNToy65rz+4UdTWIWwlZin7c+zz5hJYztHFtWPmKRL5y3/83tlBbFIkHMOwhYFbDSnB4sqsSo0/rDcvUXpjYQhAfs3bsXF198MZYsWYKioiJs27YNbdu2xYknnoj58+eHwqZC9+ZDQlQeeotKO2UI1JpiOvHp/SrjM5XxlorKYOVVHXWxg2zddoSwvpyXZ/9+6wizV9rETrnmCDnLG85Kb3ZsywhYmZ2g6iBR5ce3aI/0b9ztdoX26psggufee+/F7t278fXXX2PRokXIy8tDVVUVOnbsiDvvvDPo5gEgMUykKIEGWXgKhZXPgFEQmx+qsjstm5cniv34mLGjJ+wKSqei2OvjiPfgpLHN5sPJOC8Sy1KC2O4BwMrndKOdIimC9e3Xp1P6uQyKKvvG448/jm7duiE3NxclJSX45JNPhPkXLVqEkpIS5Obm4uijj8bf/va3Znlee+019OzZEzk5OejZsyfmzZtnu15N0zB58mQUFxcjLy8P/fr1wxdffJGUp66uDuPHj0dBQQFat26NYcOGYevWrQ56wR6vvfYaHnroIRx55JGJYXtbtmyJ++67D2+88Ybn9cuQwv8OBGGNshMkTwDzlItxuQFj5N0qGmwlmsMeFRbV60V7RHpBJIpZu1RlW2SEsDGvVXvMgjjpGOddhcgcBFb5ZMpx03k2RbDt5SrsFk4hMWuJHxfkVrzyyisoLy/Hvffei1WrVuG8887DRRddhM2bNzPzb9y4ERdffDHOO+88rFq1Cvfccw8mTJiA1157LZFnyZIlGDFiBMrKyvDvf/8bZWVlGD58OJYtW2ar3unTp+Phhx/GzJkzsXz5chQVFWHgwIHYvXt3Ik95eTnmzZuHuXPn4tNPP8WePXswdOhQNDY22u8MG+zcuRPdu3dvlt6uXTvsC8mxT0OreYjs0GpGVImzVB5ezc5vR+YPz9bwVG4bpGNx25o17JrMtGyaedoveHXKtF8Xq6rusItgeYrtRumt5p2U57RMgHGcqzwAZH5oTuuTKNvuf5Lw/1H1H4wMfhzUAeN2aLXqavVDq+Xn2xtarXfv3jj99NMxa9asRFqPHj1w+eWXY+rUqc3y33333XjzzTexfv36RNrYsWPx73//G0uWLAHQ9CKzmpoavPPOO4k8Q4YMQX5+Pl5++WWpejVNQ3FxMcrLy3H33XcDaIoCFxYWYtq0abj55psRj8fRsWNHPP/88xgxYgQAYNu2bejSpQvmz5+PwYMHy3adbbp27YqXXnoJffr0wTfffINTTjkFu3fvxl133YWVK1fivffe86xuWSgyTBA8rE4uMlYI0bqCsvQbu3oznESDzctY036fP3lRGVH77SC7S6zyOBmxwi68iK/IImFebrWuEaZtQvYgUB1ik0GybCcX58J1ZLcn5OKTUEt9fT1WrFiBQYMGJaUPGjQIixcvZq6zZMmSZvkHDx6Mzz//HA0NDcI8epky9W7cuBGVlZVJeXJyctC3b99EnhUrVqChoSEpT3FxMXr16sVtvyrOP//8JLG/b98+HHfccZgzZw4efvhhT+uWhUaTIFIamaf/A3trH2tIAFODWWMRG6f1rDIjEZir441IYG5eVDALRJlrGYCfb//+5Agxq09ZZdrRSKJ9Ytwe0TyrTazjABAc634IO/NGWuWzwNM7VKK2qu6rqP3QUoyampqk+ZycHOTk5DTL9/3336OxsRGFhYVJ6YWFhaisrGSWXVlZycy/f/9+fP/99+jcuTM3j16mTL36NyvPt99+m8iTnZ2N/Px86farYurUqdixYwcAoH379rjzzjtxzDHH4Oqrr0b79u09rVsWEsOEbeglIYoxKxaTyjELYuMqLHEsWsYonnsudnrOD8u5XVaYikSxWRC7qUeUl3cI6O2yEs1Wgti4rpOLP9aQbdwXfljBUvY28e3/h6K/ocF4t0xVeQDQpUuXpPT7778fkydP5q6XkZGRNK9pWrM0q/zmdJkyVeUxI5PHLYcffjgOP/xwAECHDh2YlpKgITEcMkhoWmM+l1phN1onXagX5XFEsf7HzXpjnZ7VbWRY1SapLk8GkRfZjlAFvNc/IkFsRnSsy174sKad/sew1jOmSYsVh51M/42EarZs2ZLkGWZFhQGgoKAALVq0aBZFraqqahaR1SkqKmLmz8rKwmGHHSbMo5cpU29RURGApuhv586duXnq6+tRXV2dFB2uqqpCnz59mO1XxQMPPCCd9/777/ewJXxIDBOEVzi5HWxhnTCKYqvIsHFVmciwuTluxaydixYvhbMT64IxvzE6rOrCSvbuu10rBM8eYSzPS7HvleXICxEcmD2KCBXt2rWTeoAuOzsbJSUlqKiowBVXXJFIr6iowGWXXcZcp7S0FG+99VZS2sKFC3HGGWegZcuWiTwVFRW4/fbbk/LoAlWm3m7duqGoqAgVFRU47bTTADR5jRctWoRp06YBAEpKStCyZUtUVFRg+PDhAIDt27dj3bp1mD59uuX2u0F2+DRN0wITw75dZk+dOhVnnnkm2rZti06dOuHyyy/Hhg0bkvKoGievuroaZWVliMViiMViKCsrw65du5LybN68GZdeeilat26NgoICTJgwAfWm9zOuXbsWffv2RV5eHg4//HA8+OCDoME3CClkn+LiPfFl8dSUaEximTSjIOI9p+T2+ShRF4giuaxvt/C62W2Zqsszf8zLWNPmtrCWsZZ7hUrh6vX4wCk//nAqwfqBuP3YZOLEiXj66afxzDPPYP369bj99tuxefNmjB07FgAwadIk/PznP0/kHzt2LL799ltMnDgR69evxzPPPIPZs2cnvWjitttuw8KFCzFt2jR89dVXmDZtGt577z2Ul5dL15uRkYHy8nJMmTIF8+bNw7p16zBq1Ci0atUKI0eOBADEYjGMHj0ad9xxB95//32sWrUK119/PU466SRceOGFTvaINCtXrpT6rFq1ytN2iPAtMrxo0SLceuutOPPMM7F//37ce++9GDRoEL788ku0bt0awKFx8ubMmYPjjz8ev//97zFw4EBs2LABbdu2BdA0Tt5bb72FuXPn4rDDDsMdd9yBoUOHYsWKFWjRogUAYOTIkdi6dSsWLFgAAPjlL3+JsrKyxBVaY2MjLrnkEnTs2BGffvopfvjhB9xwww3QNA2PPvoogCZT/cCBA9G/f38sX74c//nPfzBq1Ci0bt0ad9xxh6d9pcIqQVEPewTeX1bhWUZokBUlFj3gJbp9bq7CjF3rgx0hLFOmqtEd7PiIVUWA3ZRjJzLsZJ8byzbXyUNme9z+nvwWqI6sHmGCvM2+MGLECPzwww948MEHsX37dvTq1Qvz58/HUUcdBaAp0moc+7dbt26YP38+br/9djz22GMoLi7GX//6V1x11VWJPH369MHcuXPxm9/8Br/97W9xzDHH4JVXXkHv3r2l6wWAu+66C7W1tbjllltQXV2N3r17Y+HChQntBACPPPIIsrKyMHz4cNTW1mLAgAGYM2dOQjulM4GNM7xz50506tQJixYtwvnnn69snLz169ejZ8+eWLp0aeJgWrp0KUpLS/HVV1+he/fueOeddzB06FBs2bIFxcXFAIC5c+di1KhRqKqqQrt27TBr1ixMmjQJO3bsSHiIHnroITz66KPYunWrlOHcyTjDOipOBl7/qQcZUbF7US9zrrA13rBVA1R4DKzSDdN2xiW2Wm6eNuN0GWu5bFuNYtjJ7mBhdUyYlxsfpDNH3nlpMvXIwtn1zLsAMvlVtoeHnf8gu/8nsvtcxfZ6LpC9+r8IEW7HGY5v3658nOFY586220OkJoGpmXg8DqDpyUJA3Th5S5YsQSwWS7qqOvvssxGLxZLy9OrVKyGEgaZx/erq6rBixYpEnr59+yaZ6QcPHoxt27Zh06ZNKruCiCJ+PGXFupXHuXcuOy6x2frAslSYp+002WpzZPJ7fRtfth6n7XAS+bZbruiCQOaiR0WbZMqQEbiyVgWnd7hd3BVv1sZQvto5AkKYIMJOIA/QaZqGiRMn4txzz0WvXr0AqBsnr7KyEp06dWpWZ6dOnZLymOvJz89HdnZ2Up6uXbs2q0df1q1bt2Z11NXVoa6uLjFvHr+QUIfdESUiDc/HwJhPfp1z8xO26Fa68ZtVvEwTZZfJCEY/9q8dGwNrmDW3tgu7lgQrK4Q5TWSdEVklVOJGOKo+BlRus+Oh5Qhn7NsHZGerLY8gDhLI5e24ceOwZs2axKsGjagYJ4+VX0Ue1viARqZOnZp4aC8WizUbv9AO9AebBth9uMOcbs5rmmdFi3kP17G+daxEgyjCa1cIOzk/BXFOs9ou0e6zE6mUvcgQRYNZhwivbXbxqu9VRa9l6lAVNXaFU2UeoahwqKLpBGHC96Nz/PjxePPNN/Hhhx/iiCOOSKQbx8kzwhsnT5RHf9OJkZ07dyblMddTXV2NhoYGYZ6qqioAzaPXOpMmTUI8Hk98tmzZIugJIvKITkROFaQ5D89fICuMIRbFIoEsG/HkNVs2f9DYjWqL8rgV9jJtsKpPpj1WotiuDUEVbiwQbkWt27JI7PGhviHCjm9HqKZpGDduHF5//XV88MEHzWwGxnHydPRx8vTx9ozj5Ono4+TpeUpLSxGPx/HZZ58l8ixbtgzxeDwpz7p167B9+/ZEnoULFyInJwclJSWJPB9//HHScGsLFy5EcXFxM/uETk5OTmLMQtmxCwnvCV3wxGkITkYEG9NMy82i2PzNiwzz0njNVI2qkSREyLbb6kE+Vrle9IlMFJo3bXX4yCwT1ecEq3pkb56Y87rFblmuosR2/6hC98fGhoQwEQV8G03illtuwUsvvYQ33ngD3bt3T6THYjHk5eUBAKZNm4apU6fi2WefxXHHHYcpU6bgo48+Shpa7Ve/+hX+9a9/Yc6cOejQoQPuvPNO/PDDD0lDq1100UXYtm0bnnjiCQBNQ6sdddRRSUOrnXrqqSgsLMQf//hH/Pjjjxg1ahQuv/zyxNBq8Xgc3bt3xwUXXIB77rkH//d//4dRo0bhvvvukx5azc1oEjpu/0hSeUQJQO4kJXvOsDWahMxyP8KjMqNOmOcPTuv7jncb3UpEmfOw5q2WyUQ9vRhJgodMd7JGlWCtK3Pc2dEzVuXLjB4h00Y3Nzzs6jO3UXlZVOtGq/Ic/+/a2eiIieGamhrk58ecjybx1VdoZxgmzC01u3cjdsIJNJoEAcDHB+hmzZoFAOjXr19S+rPPPotRo0YBUDdO3osvvogJEyYkRp0YNmwYZs6cmVjeokULvP3227jllltwzjnnIC8vDyNHjsSMGTMSeWKxGCoqKnDrrbfijDPOQH5+PiZOnIiJEyeq7hrCQ1wLYb0Qv+7v21X35vy8gWT1ecNTVfp41lZj2LKKsdt0N3YDPzH2AQ/eG+nM68qUxdt9Mm0TzZun9bKN0+b6ec9nstrLa6fMNpvrtbPMKVbtdlKeqCxfxi2X7ewACTpYQhCyBDbOcDpAkWHvEZ047ZwnLPtJZXRYdXjTRXQYublSEWJzJJgXPeYh0z28aT8jw4B8d8pGiK3S3bSBlaZ63k6azDK/hbAZlfpReYTYbgdESAxTZJgIM4EMrUYQquBFK0N+jkhGheHSiI3oMPbtQ+ZBQSyKEBunrYp1ikxZfgTpeVFEUSCOF4lllctaJirPKp0VITbW4XZetl7Z9vPy85Dd36p/87KRfaURYj/vQkWNffuAli3VlkcQByExHHJUvJrZS8LePt+QPYnZ+QO2yitSIuY8HCEsK4iNq5qnZXBzjs/K8uchOjNWAtA87rCVKDWXo+NUUFrVZWWJEF3UiNa3s40iR4/TdB5urRBWdx2cWkMCf9V7QNB5gYgSdLQSkSc3t/nHDoGeqHhnYFlhbfyI8pjrY3yz3mDHm2d9m6fN2L3VHgasdoNZpIt2p+qoqOyhw6pfNC+TVxYnF0Cyh7+TOt0cb073IUDCkCDCDv1CI4AbsUZ/whHDrQrgKS+z2uF8J7/Bji+KnfpFrQSxE7Hit6A2d62MIDYus3v9I7NMRgCzyhIJXatl5nKdEJY71SoEvowglvo/tnNAh6UDCSLikE2CIKIA66QnY2jk5WNYJfR8mTiA3NxM4W1yluuCVaWo2TIuED2P0Srht63S6jY4bx3AmQXCjvtFZjkrXXbfmtvEm7Zquyyq9quKtjgpX6Zeqdc4k3e4OXV1aj3DdXXqyiIiD4UNCddE2Q+ntO1OFRNvXk+TCQvK3sO1skwcnG4SxOLIMMuWwpu3ExFOheiwMZ/dSKKMBrLa7bIRY9nor2yE2A12DnMnVgq/jhHZdil5jXNISdXtIlIXOmIjQpQFJyEBT9E4KYengkTTnOVmMcuzSvB8xUZYolhmHR3eUGaiNFXI7ArRQ34i0eq0Plb5Ti0T5mlWO1QLYqv1ZASvnYsN1YFWUXl26uKKYtkDmiLIBOEaEsNE2hLqCwwVJzgr9cPKZ1hu5R+WmZYRrSqFbdAP5FmNemEn+C+KiMrcDLASwLLttHMoOr2mc3u4R10QAxxRHPQBTRBpAnmGCcIK2bOaqjOtk3ChldFUduwrG/5h0bSxqTJDe4nS7XqHg7ZbmodcM8PbJaJdJYLXB6zlPI+wjCdYtFxmPbfbJLuOqM289nmFk33abCg2K5N9ugjmffvEPywn5RHEQSgyHCHCHMkMc9tCg5v7zLL3i2WEtMgmYWGXMM7bSRfl5U3L+IjtpjvFC73hNiKsIjJsdaOAlea1XUJFlNjOz8WrqLSoPqt1KEpMEP5CYphIS0Ir3p3eZzbnd6JoOMt5dgnRw3WsdGOa1bQIc3DIL0HsFW5FmZXQ4qWxyhGl2RHBMmLUa1QIdS+REchMQez2aVOCIJpBNgmCEBH0WdRN/ax7tFb3swV5jPYD1u11mXQdVllGjOWw8pnfSue3ZcJKg1h5h3l3e522VWRLYO0Lfd68v4zrW20j6zBh7Ss7lgnV+4p3LKpGlfWCtd+YQ7Glowiuq1Nrk6Ch1QgDFBmOGKGNaEYIT/pQRUTX7vqyIUVRWFDGJrGv+cN0xm8n0zzsPEzHihB7McqEF7pj/35nHx5WkWHRvOwyq7JE07Jtc4JVdJVlDQn6GlcGcxtpuDKC8A76dRHKSDmhrvKMqcp0aXUvXMYiIVMXQxzrYw8D9jy+ToWyTBorUOSFIPaqLLvICmUrASi6BjIjI66N5bCmnZQrg0j8urkocIIXApsEMUH4A/2yiLQi0lFhO2XaCcPJKCNDmkgI+yGC/RTEIr+zU8zXLU4/ZmRFsdM2i8o15+EJcdmbGU7aJJPH7jWkF22yWz8JYoLwHvpVEQSLsN1HValiZMtkLBfZJViC2A52RLAbQSzbPtVCWCZSKiN6WfmN8ESxeVr2m1UGb5tEkeGgflJ2IsJ+inQ317tpKYhVXUWqvPohUoY0/EX5Tzr9cYXZKhFYVFgUMhOVI7NMBpn2iJQQI82JoHQbHbbKk5WlZqQJqxEwnCASkipEsowodnIYiSKpovrtimAnbXOzT/wWxHY0mBuRTBCEM9JHpQVMOgniyCN75vHqDGWnftmIh4xakTwL240O23mIzq5FgpXfzoN1rI9qZISrMd3pLuWlsQSxnSgw73C0qp81zVvHa+wKTFWC2MsAJJ1TCEId9GvyEe476D0kzJHaUOJWCKs+08uqINk8sipHIq8TYet0uVtBLFOfamSFkNt8MgJTVhCbBay5Dif1Wwl/ojnULwThLzTOcAA0e91mipGJA6GLWijtb1kh7AV269i3T04F6vlY+Y1pjOXmMYFF4wbzsDseMGvcYr15OuaxiHn5ZLDoAukyVVwr6etYjQ1szmd8TTRrf4n2I6tcVrrfFxyy+9PrEUZUEtZ2BU5dHdCihdryCOIg4VIsaUTYxCIBZ2rGTl4rm4Jo2m7dTtphVZchzc3FhZcRYRkfsZ7Prj1CdNtf5aEjW7bsrX9jmh3LBCsybFWf7KGsGisPeBTwyqZDEIQ1pMgCxIkgJhEdUrw+26u2WzhRUow0r60SVvllI34yL67yy0OsY8fHKitGeXnNglgXxTKC2EoUs/JYTXuByv2ner/z2ua2nXQ+IAg1kE0iYFLdMhEZ3IT27IbMVLVHlI93H18mnWWZYKxrtMOotkrwpnnzehNFaUZBbPW6ZDvtlkH1TQfzerK7FWhum7Cz38z9SpFMPtQ3itm3D8hUKP69vjojIgWJ4RAgK4ijFAUIk29YycWG23vVftchY+B0YvJUZAxV4RGWEdu8euwIY6e7WIWIZtVr9zpHbwsrzSiIjfB8wyxRbOWlDiNetTNq5TIP0KjsRIJQSDjUCmEpHJ0IS4o4SyIjLGXT3RgrZXETNfagPpVWCTseYVmLhNVtaN1XLGOlANwH7d1i53A0LuMdhla2Cd60qF4nbfQDL60vQZWrPOgQ9E4iiAAgMRwieH9qYYmwpiV+RIRF5bi1W9itk6V2ZNqFQydt87eX2BklQMafKSuIw4rd6zqjwDUKYuPHvJ5smmyb/EL2eHRy3EYymBqWHZOCVFdXo6ysDLFYDLFYDGVlZdi1a5dwHU3TMHnyZBQXFyMvLw/9+vXDF198kZSnrq4O48ePR0FBAVq3bo1hw4Zh69attuqeM2cOMjIymJ+qqioAwEcffYTLLrsMnTt3RuvWrXHqqafixRdfVNI3YYVUVsjQxyI2ftyURVhgFU6TTfcjFBbCk5fduw9+PTBnJXqDfnLfSw+yjCAWRYnNaaLIsOinEKbosJf7OgxC2PZ/vdO7YUFivkpT8fGIkSNHYvXq1ViwYAEWLFiA1atXo6ysTLjO9OnT8fDDD2PmzJlYvnw5ioqKMHDgQOzevTuRp7y8HPPmzcPcuXPx6aefYs+ePRg6dCgaGxul6x4xYgS2b9+e9Bk8eDD69u2LTp06AQAWL16Mk08+Ga+99hrWrFmDG2+8ET//+c/x1ltvKe6p8JChaZoWdCNSlZqaGsRiMVRXx9GuXbtA2hCkVSIsYlzYB3bP2G6FME+F8KKubi0VdrwGvNCuUTky0g4gkyuSnG6eVUBc5fUIa7noNcYqzqGqypQRYk5tKnqUXPYQEX2Lpr3G7QWY6vx2kS1f+r9e9mBzsWGs//6amhrk58cQj9s7H+rn0fhTT6Fdq1aO29Ss3J9+QmzMGNvtsWL9+vXo2bMnli5dit69ewMAli5ditLSUnz11Vfo3r17s3U0TUNxcTHKy8tx9913A2iKAhcWFmLatGm4+eabEY/H0bFjRzz//PMYMWIEAGDbtm3o0qUL5s+fj8GDBzuqe+fOnTj88MMxe/ZsoWC/5JJLUFhYiGeeecZ1H4WRcKgVgggCuwpEdUTY6+iMnZOZyzO6W9+wivqs7BF2yooKsoeZKBBmvgjh2SaMee1+O2m3CqK8b3UCC9KGMTocAZYsWYJYLJYQowBw9tlnIxaLYfHixcx1Nm7ciMrKSgwaNCiRlpOTg759+ybWWbFiBRoaGpLyFBcXo1evXok8Tur++9//jlatWuHqq68Wblc8HkeHDh0stj66kBgmCDOyopeX5oVA9uLEZEcpSNavyjfsxh4hKlMkmIPCS8sEKy/PJsGKzNsdk1jUPi8i7CJSQQjbISx34qJGTU1N0qfO5ZvpKisrE3YDI506dUJlZSV3HQAoLCxMSi8sLEwsq6ysRHZ2NvLz84V57Nb9zDPPYOTIkcjLy+Nu06uvvorly5fjF7/4BTdP1KFfD+EZkRzNwq0QtlOuzDKn2FWKTnDYbqe3zlU9ABW0SJLtNjv2Ric2SJ4oZk07eUmHHZdQVPHrWFLWT1Hu8Lo6tX7hg6K3S5cuiYfNYrEYpk6dyqx+8uTJ3AfP9M/nn38OAMjIyGi2vqZpzHQj5uUy65jz2Kl7yZIl+PLLLzF69Ghu+R999BFGjRqFp556CieeeKKwLVEm4s9OE1bQSz04uDkpqLBLeGmRkBHCAYRI3Y4tbCePF2P8ypbttm6rQ8ZqF/H6wyq/cbxgfd44LXpJh/FbL8NqmbH+oC9QjIStPYS3bNmyJckznJOTw8w3btw4XHPNNcKyunbtijVr1mDHjh3Nlu3cubNZ5FenqKgIQFNkt3Pnzon0qqqqxDpFRUWor69HdXV1UnS4qqoKffr0SeSxU/fTTz+NU089FSUlJcx2LVq0CJdeeikefvhh/PznP+dtdkpAkWEipbF1IeAklMULx9kxaYrqtwPPB+BxqNTJxZZTLW7XK2y3fllY1xas5wytcBIptRsBNq4jiiDzrBLGaasIsWiZ6FB3sk1WRDkISvhHu3btkj48MVxQUIATTjhB+MnNzUVpaSni8Tg+++yzxLrLli1DPB5PiFYz3bp1Q1FRESoqKhJp9fX1WLRoUWKdkpIStGzZMinP9u3bsW7dukQeO3Xv2bMH//M//8ONCn/00Ue45JJL8NBDD+GXv/ylqAtTAhLDBMFDRgiz1vHCEqHSDGtnCAIbqlFmRAHRenaX+YXVg3l2ut5KENrBiTVCZn2z1cEsZmVf0CH6Nk+L0ggiSvTo0QNDhgzBmDFjsHTpUixduhRjxozB0KFDk0ZzOOGEEzBv3jwATdaG8vJyTJkyBfPmzcO6deswatQotGrVCiNHjgQAxGIxjB49GnfccQfef/99rFq1Ctdffz1OOukkXHjhhbbqBoBXXnkF+/fvx3XXXddsG3QhPGHCBFx11VWorKxEZWUlfvzxR6+6LXDIJpEGkFVCAru2Bbtncqv8MipAxZhPMkOriXB5D9mJ9cFqXlQuL92tEFWN2/rdHj7m/tXTeLYHkWVCL8OOncLcljBcBBEI187Ytw+w8M/aLs8jXnzxRUyYMCEx8sOwYcMwc+bMpDwbNmxAPB5PzN91112ora3FLbfcgurqavTu3RsLFy5E27ZtE3keeeQRZGVlYfjw4aitrcWAAQMwZ84ctGjRwlbdADB79mxceeWVzR7IA5pezPHTTz9h6tSpSR7qvn374qOPPnLWKSGHxhn2kDCMM6wTlBgO+gln5nY7tUPI5rWbrlqZyYYqZYQxL820XN/Pdm6fy06z5lWnmeeN4wzzyrBC9hCSOUy81iNW102iQyMri303wOpOgcx1mGo7i+r1/NSJMnVZ/s87OZAdbKQn4wzPmIF2ghEP7FJTW4vYnXcqH2eYiCZkk0gTghKlkYhIqxbConvXXgphkWfYiRAW5WcpW06TnCD7vJ+TsqwwC2EnuBHCIuuCW2sED1a5VnYJo21C5uLHrmVClO41Qd8piDqR+N8nCANkkyAIEXasD24jxHZxasZVqTQPkokDOIBM5i1zVvXm2+nmada8qBzZdbzGjhvGrWdW1XbyrnOMVgZ9nmd50AUxzyoh2gZWPbw8YSPMbUs56urU2iRcjidMpBYUGU4jgrYsRAJZ8esmQiwK/YkwPrHl5IE6uxFiRai6Le70WUC7ZDkMEbgRwl5Ee2XhRZxZ86JvY4TYvNxOVNjtRYKK9cIGCW6C8BZSR2lGOgliKb+wE/ErY3WwK45FWIlfYx5ZEaynW5XpAtkq7QhgmSbZfW5QBqv8boWwV7DsFVZ2C/MynphlpfPym9flLePN89K8JFWEdBKkqgmCSfooIyLBAWSmlSiWRka9iM7aTkSwjBAWLZOJEsumuzxR6hcfTkSwKGrsJJgd9DlfhRCWEa6ivLJiTrQeSxSLhLJx2DWREDanWy0TpQWN120K+lgOZacThGLIM5zGGAWxlw886H7S0OH2T150JreTZhc3EV0nPmKZsCgnj5Wvl+fxtev9desVllmfl0dW4MkKYdmbFW4wlsPadcb9Y57Xd7fx25hXH3bNWJbIB8ybVoWbMr1ojx08qTtoY71T9u9X83SrsTyCOEgIFQoRBHq0OJSiVRVuLRF2VI7fQlhllFjBGViFK8NOtNhueVZl8HzDduwSqoWwU6wixrKRYWP7rOwRTta1mhalWeG19vOi/MAjwgSRRqSw8iGckvKiWBa3tgljmkj98JbJqDnZh+nseIllYbSbdYeBJWplLRK8cmTm7WJeX+ZBOlWHiCjdCXatElbrm6fN3+ZpY9CNta5xmZ1pN7jpi6gg/b9NSpsgkiDFQ3BRKYhDN+6k01CUHZUjihDzwmY87Co/lV5iGRjttxK5MoLYrX/Y7bzTkSXsolLwWZXFigTLRI6N7RSJZR3z6BLmMu1Mq8LpBYLMOirb64tWJUFMEAnIM0wIieqrnF232Y4olpm3SreDGyHrRCDbxOgRt+MZlpnmlakSc/lZWfbshU6iwiqQEcFOyjL7ho3pxn3EW89YJstzbFxmnjavy5u3i9v1vSSU7QpDh6n+8UQp5E94DkWGCUtURYgDFdVOQzsyaaqEsNM/Zxm7gx+RYkP7Ze0STqatmuh2npVmFSEO+rzq1aGlr8sS+OY0Vh16dFhksRC10ctIsd3y/I4OO4UsbgRhH/rVEFKk1B+s7BnYiQIQ2SKc4uZJMllPsVW9PCS2y4nAtbuuF4JYpk1RQHRtpsouwStP1A7Zn5nd7bKDF4LYLWEQ1ASRbqSQwiG8RoUgDq3lQnQGkjlD8wSvnTObSpUlGy1WDSc67NQ/bCef6gfogvIP20Xm0LWzjjmfVWRYdK23b1+yd1g2ysxb5gVBR5y9KCMMD9Ip/6+vq5O7gpP90OuYCQMkhglbpGyE2JxmdSaWuX/r9VncaUTXTbTYJjxBzEpTYZEQLXNij5DtBtVC3K917SB7o8QqMmxezosyi75VY6dcvyK3bm8oEQQhTwopm/Cij+CbKoRdEDfraye2CF4emfKsypLBqcJxK3Kd1CtjFRFU46V/2GvsdmcY2u7GgmAlYo3zxo/xzXSi71RB5fY4LSsM0WGCiArhVjUpBgniJkLfD6IztYywDurMLooUu40WWyEQxDJ2CZXi2I23mJdmJ4+b640gdQkrYisT5WWty0JWENsRyEGJTr9/4oFHiUkwEylOSF1wqYsuDMIeXZUhqsOuAZA/s8gKYT8iwXYNs25VnVv27UuUzxtuzYvpKCBqbxDbIis8jYeLPs9K55Gb2+S9Nq/L+2bVY64vrHjRTs+23aODzvi7d82+fYCmqSkLIM8wkUT0FVlESRXrRORFvWxYykshLMKpoPU6EszCoh9URYjt4pdwcmrhVrGOyrpFyPqAjcvN0eb9+5OHXON5iFn1Efb6xNb/s18HEUGEkIgrmeiTCqI4TILYtl+YhR2bhBdnay+fxvJCBBuxuFBwI4jdrsdb5kV3qArcu6nTK6ys9SK7hXF9lm3CrxsxKgiyDb7VTUKYSBPCo2LSHK9EsV9iO0yC2DayJkWvQlZuwoCyyk6FCJYtQ7EgtpM3zOduu4I4zNvCEres60ReGk8Qm8tmLWO1Jax42TZPytZ/4wovmqMe7CHSA/IMhwxVHivzH5BS7xaHyHiIReJXxjYhc0aWPZGozOcm/Oi18jKZHWU8xMamOfEJB+0pttoWUZrMMjd1qsbo59Xr1NOt2mj0ERvXNZZLsJHpn8j8L1tRV6fWM1xfr64sIvJEOJyXurj54xJFgsP0h+hVFNwxssLYKvxlXmYXp+FRq7J4y72yTdgM4bE2S0XU2A+8rjvMdgreLmXZJFjTOnqEmLW+VV2q8Oq4CXPk2i/CdO4hCBYkhkOKV38eXv8phcouIWNrYOWxu55sG5ziJCpsZZfwQzFaCGKZY9GtCA7aTiEbrFf5vKMfD+yxEP18eB5i3vUlr2yrepwS5egziW2CcA/ZJEKMXWtDOl992952O/5g47yXXmGnUd8gntaSxeI+rt0h13TsLE8lRPYDcz6zFUE07wbjLmbZJURpxm3R7RLmsvVlqgjipxC03SMMVgnX9e/bBxxQuA1kkyAMhCiMR/hF0H+KgSIbdjJOuxXCqlSH175hvzD1h50H6uxEgkVpTvLIIhukd1uHVbTYbr1eumWsLBM65iHXzGU5/Un6eUOEh1PnlGzZBEE4h8RwyImiXUImmq3STqFkW2QFsTFddL/XLiJbgyjNiTrk1eOnadKBIFadFqQwUnnNIrvrvLyBIHMNKWOZkCnfTZ4wEFQ7Q2VhI4iQQb+OCJDWkVynODl78syLMqZGO/UC9kN6qo2gxlCZWSF6EUZzIYhZaaxIsd11VeL2WUav2uAkSu23IDaXwXohB6seFT+1oFBx/cwqkyAIZ5AYThGcCOZUENnKt8FKIPuJm6iw1QN0dtqgShhLCGJeE1jT5jSnD6bZmTZ6WlVaFFQRtDXCjiDWp2WFoZ2H6/xCRX0qhXFKC+K6Ov4dOScfeh0zYYDEcJrjlSD245acdNvtRnJF4SjjcpmzswyqrA5W+d0qHx8Uniq7RBSs037hd9RaVhCLfnqqo8NRQYUoFq1PVgmCYEO/jIiQClFclQj7QybEZJ6XOeN6IX7t5LEbxjSmqVI8bstS4B+2a5dQ0ZV+P4TnBhXi1+22yAhifdpOZFTVT1AVXtrsU03oE0SYITFMkNA2Yj4LyYagRJFkEW6jwkGZVf3wFFtUz0uTXea0+bJWiSBx4hW2A+/OMyuPPm3+5u1yu9HhVMbpNlJ0mCDsQeMME77j9s/YVVRYFtaZ3PyaLCBZGe3b525IANa07HJRupfoddrpd4l+sjP+sDHN2CyrZbw03rQMbtaVXcfcdU4OeXM9dtoq4zoyttG4H4zfvLJkDmNzGaz6UgVWn8qul0r9gH37gMZGdeU1NKgri4g8dIlIAIhOdNgzIcwLc+khKpYQBvjpPFSIXid18ZaLPnbrUnlvnVE8a9qcZjcqbKe7nTxIpwrRbvFT8NgRzFZWCZFbSRQdZpVrp21Rxcn2pXqfEIQqSAynCFG59eWmnZ4JdtH9Wl3siu7XWgliJ6LXC1OrMa+scdSuyFVon7D7umZzmqxwdNr95relqcLJdYkfItmtGLPyDNstN52EsI7TvlLFAWQmfQgiVaCjOUJ4Hb2NSnSYiRdnQ6MQVlGf20iwXVHqtgzzek5EMcu8KirH5sN0xmlRmt38omkWqq9XooSMd9g8zRKzvI+Vd5hVV6qLY7ui2JzXiZBlreOrIBYdJE4/HlFdXY2ysjLEYjHEYjGUlZVh165dwnU0TcPkyZNRXFyMvLw89OvXD1988UVSnrq6OowfPx4FBQVo3bo1hg0bhq1btybl+cMf/oA+ffqgVatWaN++vbDOH374AUcccQQyMjK47fv666/Rtm1by7KiDolhIvo4MWaKyjLbJGTu0dqpw2koUia/17ixUChop52AujlNttvt1OEmOpwK4lh0U0Xmp+JGk8hqmlQWxnZ0nQpBzIIixM0ZOXIkVq9ejQULFmDBggVYvXo1ysrKhOtMnz4dDz/8MGbOnInly5ejqKgIAwcOxO7duxN5ysvLMW/ePMydOxeffvop9uzZg6FDh6LR4KWur6/Hz372M/zqV7+ybOfo0aNx8sknc5c3NDTg2muvxXnnnSex1dGGjmIi2qgUwqyyeVFh2Xqdmlllp0V1yqY7QaHAtcKuXcJppNhJecAhQRy2KLDXItCuAGP5ho3L3EaH/Ra9YdjHRmSCnk77iASvPOvXr8eCBQvw9NNPo7S0FKWlpXjqqafwr3/9Cxs2bGCuo2ka/vznP+Pee+/FlVdeiV69euG5557DTz/9hJdeegkAEI/HMXv2bPzpT3/ChRdeiNNOOw0vvPAC1q5di/feey9R1gMPPIDbb78dJ510krCds2bNwq5du3DnnXdy8/zmN7/BCSecgOHDhzvoiWhBRziRhCqrhGrLhacWDv2sZjxTGH3AKm+t2Q1T8vLKLHOSzwk+iWJjdbLTdq9BnFgxeG2zaiMvfxgRWR9k1uUJYZ6tws4dbTf+YbvebOM6YccHN0CCKIvlmpqapE+dyzfTLVmyBLFYDL17906knX322YjFYli8eDFznY0bN6KyshKDBg1KpOXk5KBv376JdVasWIGGhoakPMXFxejVqxe3XB5ffvklHnzwQfz9739HZiZ7333wwQf4xz/+gccee8xW2VElukdwGhLlPxxPsBudNafxzmisMzXvbMtqAy8MqcKsqtJXrBofo8V2rhtU+4ZZaSy7RBQEkxFV7bWKSvIEsZVwsxpZwly3ExFoFsesTxSR7pcwe0o8eh1zly5dEt7eWCyGqVOnumpmZWUlOnXq1Cy9U6dOqKys5K4DAIWFhUnphYWFiWWVlZXIzs5Gfn4+N48MdXV1uPbaa/HHP/4RRx55JDPPDz/8gFGjRmHOnDlo166ddNlRhtRVChEWsRzog3i8M6VI4bA+WVn8s5+MDcEPISwrlG2ewZU8La5YPTg5ptyIXycRZ5ZdQlQGb94JbiK3qmBZ7Vl5WN/GdazsEqL67RBVYesUVv80+42nW6cA2LJlC+LxeOIzadIkZr7JkycjIyND+Pn8888BABkZGc3W1zSNmW7EvFxmHZk8RiZNmoQePXrg+uuv5+YZM2YMRo4cifPPP1+63KhDL90gookT06DRDmH809fnc3MPTZvLEglN3qCzfgphl/CELy/dljhltVW2fy2K1YuxM20nTW+qaB3jsqysJsEmOpTM7ZLZfLfiVqU4tvPTY20jr++My42Y+4ZXl6gPzT/5NNR8SZj7Q0RYgixe0a5dO6no57hx43DNNdcI83Tt2hVr1qzBjh07mi3buXNns8ivTlFREYCm6G/nzp0T6VVVVYl1ioqKUF9fj+rq6qTocFVVFfr06WPZfp0PPvgAa9euxauvvgqgSUwDQEFBAe6991488MAD+OCDD/Dmm29ixowZiTwHDhxAVlYWnnzySdx4443S9UUFEsOEUgKLCts1ChrPBsZ547TZN6znNX4byxRNOxXCspFpF1FhVcMsuRbIFhjfSscr0q0gBuwLZtH1kygPTyjztk0nbHeyZdvD62OrCwMn1012xF46weqXA8iM9rCaPlFQUICCggLLfKWlpYjH4/jss89w1llnAQCWLVuGeDzOFa3dunVDUVERKioqcNpppwFoGhVi0aJFmDZtGgCgpKQELVu2REVFReKBtu3bt2PdunWYPn269Ha89tprqK2tTcwvX74cN954Iz755BMcc8wxAJp8z8YRKt544w1MmzYNixcvxuGHHy5dV5QgMZxi0B+bCd5Z0SyAjQK1fXtg1y7xuvq3bqfQ53nTxm+rNN68nTRR+kFUR3yM5fl1DIoEphNBbLVcRhDr0WFWO90IYh5hsEjIIuo743IeTvLxbkykg1gWbWfk+kD/canC7ttDJenRoweGDBmCMWPG4IknngAA/PKXv8TQoUPRvXv3RL4TTjgBU6dOxRVXXIGMjAyUl5djypQpOO6443DcccdhypQpaNWqFUaOHAkAiMViGD16NO644w4cdthh6NChA+68806cdNJJuPDCCxPlbt68GT/++CM2b96MxsZGrF69GgBw7LHHok2bNgnBq/P9998n2q2PJdyjR4+kPJ9//jkyMzPRq1cvpX0VJkgMR4Qo3KqKTFSYlda+/aFydu1qmtenzRFjHSdCWGU02Em6T5iPVy+PDbeCGLAXLRZFN82C2EpQ6+l6eW5x4h7ysz6ryDCrL1hR8UiJuIAQWVdko8NROO+EkRdffBETJkxIjPwwbNgwzJw5MynPhg0bEI/HE/N33XUXamtrccstt6C6uhq9e/fGwoUL0bZt20SeRx55BFlZWRg+fDhqa2sxYMAAzJkzBy1atEjkue+++/Dcc88l5vVI84cffoh+/fp5sbkpQYamG0YI5dTU1CAWiyFeXe36iUw7f0puhYfTP0DZepWUb/ynlw0TiUIk+mfXrkNRYfO3uTx92kr4ygpimXmrdKtlBwnyJOfV8SmKkDqdll3O+2a9xFD20BWJGd68HXFqldfutKguI6xD3HwdKfq0b598U8aYxrrRw/v5p7KgtrKWsPrErRi2+l3X1NQglp+PeDxu63yYOI+eeSbaKYwM1+zfj9jy5bbbQ6QmFBlOQcgqIaZZ1JIlVvVXU4rO/G7Fr5NosNUZ3GdrhBP8ihrLRogBe5Fh83LZCDGvHB3e4eVEMMsuV4lsXbwosDlizkK278zL9TypLICNONlO83kjDP8VSdTVqbU2GDyxBEFimIgmvDOnjfuoh7JmNgniffuS7RJ6Jn2Z/rEStEGIYIk8Tk5uTsWUnZOxKnHMOiREwlefNubj5bFjkWAJYqD5KBPG+s3ts9ouFn4KX9n6WNpF7w+rixMjrP3Fmue1M11EsCpCJ4QJwmN8PeI//vhjXHrppSguLkZGRgb++c9/Ji3XNA2TJ09GcXEx8vLy0K9fP3zxxRdJeerq6jB+/HgUFBSgdevWGDZsGLZu3ZqUp7q6GmVlZYlBtMvKyrBLj/QdZPPmzbj00kvRunVrFBQUYMKECaivr0/Ks3btWvTt2xd5eXk4/PDD8eCDD4JcJe7xJWqtC1d92oIDyMSB3FY4kNuqSRC3bw8UFR2aNqaJ7s2yBDFr2pjHOC+TxlquWAgbu88JxmsHu+UYxzk2j3dstR0y1xF2r1FEt9xZu593SBjHIeYdErw0q230C1nLxf79/CCevsxsIREdL+Zl5nyi9YhkRMeP0/HF6U4kEXV8FcN79+7FKaec0sxIrjN9+nQ8/PDDmDlzJpYvX46ioiIMHDgQu3fvTuQpLy/HvHnzMHfuXHz66afYs2cPhg4dmjQMyMiRI7F69WosWLAACxYswOrVq1FWVpZY3tjYiEsuuQR79+7Fp59+irlz5+K1117DHXfckchTU1ODgQMHori4GMuXL8ejjz6KGTNm4OGHH/agZ9QTxJW913Vyy7cKC7GmTVmMnwPIbC6CWR+j2rESxmZ1xVJT5m2SEcESOBHCqnEjjgF7J2meIBaJXatrF5nrHJnvrCyxKLZzAyGs2LmTLRLEVh99fZYoZollM+kolKN0HBGEnwT2AF1GRgbmzZuHyy+/HEBTVLi4uBjl5eW4++67ATRFgQsLCzFt2jTcfPPNiMfj6NixI55//nmMGDECALBt2zZ06dIF8+fPx+DBg7F+/Xr07NkTS5cuTbwbfOnSpSgtLcVXX32F7t2745133sHQoUOxZcsWFBcXAwDmzp2LUaNGoaqqCu3atcOsWbMwadIk7NixAzk5OQCAhx56CI8++ii2bt0q9cYXVQ/Qef1Am6r67NTp2UN0IvPgQbVxAJmW2fVVMvf9xA5LWSEKR7LmeWl2lpsIgwi2wuuTs4wIEokmq0PMnMb75qWxhrJ2Ui+r7bw03jLevJ12mYWw1TFl3P+swVnMH/2a03jt2aaN/Zs1rPpTHSd/ObLI/O/vqtmD/PyY8wfojj8e7QyjJrilprERsf/8hx6gIwCE6HXMGzduRGVlZWIoEgDIyclB3759sXjxYgDAihUr0NDQkJSnuLgYvXr1SuRZsmQJYrFYQggDwNlnn41YLJaUp1evXgkhDACDBw9GXV0dVqxYkcjTt2/fhBDW82zbtg2bNm1S3wFphpLbarL/5IwzslUwObGK1b1vXh7zMt48L41VtgROX6UcVJTMrR3DCpnutgrim6etIsIyYkwmUsyq1y+s9okqDzMvysuLBFtFh2XtE+kE7+/DTyFMHmQi7ITmAbrKykoAaPa6wsLCQnz77beJPNnZ2UmvItTz6OtXVlaiU6dOzcrv1KlTUh5zPfn5+cjOzk7K07Vr12b16Mu6devWrI66ujrU1dUl5mtqasQbLYnVm7d4pOKoEpbblJtrGSLLPBgdFmVvVqZMXaJ8KtI5uD3RhEEsyDwI5QbWfmbtPnM79u0TTxvTdMzLRHn0aeOLOszrym6XzDaqRibKDQANDfzfbMuWmYntNdsedHjbqX+3adO8T/W8xjZ5cXxFMbocxTYThJeERgzrmO0HmqZZWhLMeVj5VeTRHSW89kydOhUPPPCAsK1RwKn4BvwR4El1WCkH1hkSTYI4NzezWdbmqx6sy87Zw4nItVG+qiiLG5HkZF2ZTfRSFDMOA654YgkvkRC2I4B564kEMe9bdrutBKYMorw8ISwSwc3zZCYEsXk4WZY9w9gXZu+x1cWH2+MrymLS77ZTVJiIAqE5SouKigAcihDrVFVVJSKyRUVFqK+vR3V1tTDPjh07mpW/c+fOpDzmeqqrq9HQ0CDMU1VVBaB59Fpn0qRJiMfjic+WLVusN5zwHpbK3bcvIahZt7iNWRO2A969b55FgleozDIDvJEVnOL21rHTde3UGwXrhMgC4WQZ0Nw24WTb7KQ7QdaH3FwI13M+h/Lrx4geIbb6GOt0Yo+wc5xJ/lxDjeq2WwU+lArhujq5g0L2Y7iLSxChEcPdunVDUVERKioqEmn19fVYtGgR+vTpAwAoKSlBy5Ytk/Js374d69atS+QpLS1FPB7HZ599lsizbNkyxOPxpDzr1q3D9u3bE3kWLlyIJQ3znwAAN3NJREFUnJwclJSUJPJ8/PHHScOtLVy4EMXFxc3sEzo5OTlo165d0idowjyqhLIIMk9ZGOGYDnWJyRJHvKKSMll9ROsJUCl+geYCwk05qtriRV16r8ngRhSLrof0NPO31TLRNZPxWzY9SJKFcLLobc6h5Q0NBxKimCWIAe5POSm/Du9Ys3tshaFPnRKUiKeIMBElfD1a9+zZg9WrV2P16tUAmh6aW716NTZv3oyMjAyUl5djypQpmDdvHtatW4dRo0ahVatWGDlyJAAgFoth9OjRuOOOO/D+++9j1apVuP7663HSSSfhwgsvBAD06NEDQ4YMwZgxY7B06VIsXboUY8aMwdChQ9G9e3cAwKBBg9CzZ0+UlZVh1apVeP/993HnnXdizJgxCQE7cuRI5OTkYNSoUVi3bh3mzZuHKVOmYOLEiVIjSRiJ4p9C2L3GlsOssZSC+YxqEsWtcps+rFVd94fEGcmL6K8KAWwsUyVeCWIApli6WCDLimLWMl7E2JjPSZRYFB2WSZNdzwqZKLC9l4I1CD7Jolg2QmxsCytKbGyvk+MpikLYDwEc9nMEQdjBV8/w559/jv79+yfmJ06cCAC44YYbMGfOHNx1112ora3FLbfcgurqavTu3RsLFy5E27ZtE+s88sgjyMrKwvDhw1FbW4sBAwZgzpw5aGEYcuXFF1/EhAkTEqNODBs2LGls4xYtWuDtt9/GLbfcgnPOOQd5eXkYOXIkZsyYkcgTi8VQUVGBW2+9FWeccQby8/MxceLERJujRBAP0snWqcyfnJvLP9OZl4lMl7m54nbbva9qgRvh66WVwC9k/JsqPJ5A8smb1e96HcZ+NR4m5uX6MmO6VZrMMr180aucWfnNhzTrEBf9TNyil9s8Kgw0iV0rGgC0xCFBnA3dR8wSu3q6Mc34IB1r23ntjqLgNROmbYhiAIhIbwIbZzgd0MdHrK5uGsfQjSB1++fipG4/61Q2lrKVkdCIKPTnBg9EcNDC1+v6ZbrcKo/qY9y8zaJ50eEmSuPd+jemmYcOE33baavMtEzbzQ+vHRLDPCEsskxkH/xumZhv2TIzES03jjPMm9bHHeaNOSyK5psJk8DkEVQbeb833m+qpqbG3TjDhYVol6lOZNccOIDYjh00zjABIESe4XTAj5dZqKw7iDpd1yGySZjPGiIl4FT9KRTCqm0OboiCKHB6jPOOc5Zwsrp+ElkizGm8b3Oa+WUUVuuZ28baLpl8RnjHoNki0VwIGzF6h1k2CWOeQ/OylglzW+34hcPwG7NDUD5gHbJIEKkGiWEi8kj7h83TZlhnVYVqVNYPHBYB7Cde+odlsBLFvHkZ/7AdISxbJutbdtoNspHoQxhFrjmNldfoHz40bRxpguUX5nmIecujSpACWAayRxBRJXTjDKc6Qb4II1W9w83qYRkpeeZKlmHQbBLlpZkRLJMVwUSw6MeQeX+x/MLmeZYf2Dht99u8ru4fls1vbJd5moV6P7FICFtZJZoL5oaGbOzfn9lM3Bq9w7x9YEbUd15gdQ3uZL20o64OsPnwuhByiBIG6DIuAJT5Y30gSrfDkvpVJkxndaZhhZIcqAUSwuqw6idVkSlepFhknbAT0WV5WK0ixOYRJmTqMk+L0twitkgAbCHMG3s4OTKsf/PsEoB1hNgJdtdn7VurvuatEzUhTFFhIsrQ0ZtmhHncYeV12bmf7RYX5URFCEfxBO0WkSjmzVtZJKzEsSi//lIOVn67ItlbzMLXPG8WvKwh1ox5mr55dgmRD9gqr4rfXzr+NggilSAxHBAUHfYJVijPmG51FnN5hrPaz1ERwka8OPGHXUiwRLFVlNiYzltuRywb04xRYplyWagSyNbHMEsIG9NZ+c2i+NB8Q8MBy4fpzCNcyLbbaSQ43aGoMBF16AhOQ8IaHVYlupkPqvFUi1Wah0RRCBtRdTvX7vqeWCUkdwZPFLPmZSO3spFic5qVbcKJQLYD+2UbZguEeZoVKZaxSejze6HbJUQRYiurhKpoMOEj+/er/xDEQUgMB0i6RYf9FMTM+kShPHMa70zHSufkTadoiROvYyiialamUw5mUcy7AcGbZolcq+WsNKeC2Izb/ZD8oo0GzrRRCItsEvpnL8xRYX0ZKzqswxO/vJEmeGkEQaQPNJpEmhLkqBZ+ogvSpG3Vz/y8ESJYZ8PAVVu0CLq7lBzfEsMLmEdByc1ljzhhnnYz6gFrmbFu3rcR3jKZde1jHk2C5yPmob+ZTqclgJbYty8XWVn8CDGr31SNGBH08U0QhFrSJ3QVUig67E09rHotI8XmdJkoMUWFo42VqpGIFDuJEsvaJkSRY3Oa6OUcVvWoxyxwzfOsB+X0z15GmjFSvBfm6DBg/SCdbDohxvz/TP91RCpAkeE0JqjocOjGWpaJDIvyE6FE+XFmDqGaYEWJ9dVko8S8anlRYXOaLohFEWi70WLjMjE8wWueN1snzA/SNR78tEDzqPBew3fz6LC+ncZpJ9F6Een88w/0buK+fTTOMOEZdEkXAqIUHfYDryMNluWzIsM2DLGy7U/nk2qocLIjOGFIqwfsZKO8sp5hVhm8CLFMtJjXbneIXs2sC+FGALUHP/oyXRTvQ5P43QPz2MNuvMMEQRA6JIYjjltBbFd4ejrig4P2qK5fRbl2IEFsHzt9Jr0/nO4IjrKSGYbNnO7UNsH6yIxFbFcwm6ezmt1XzGb2RRPJL89oLoRZD9PtxSFrRO3BtD1ItkuwR5YwIjO8Gu+bOESqBl8IAiCbRGhIlwfazOjbHZTvzFyv033gpv3G27VEBOE8iMl6tbPVLXvZ6kS2CeNtf/0Vzrw85vysNrKm1WEUwuYH63R7RD2ShbYuhJte29zQkI19+5J/fyxBLGM1YaHqoTvCHdr+/VBpbCCTBGGExHAK4FZM2hXiqsVrmB7AMLZFpk9Utj1MoljlyV/V9jhtk/Tx7VbtSYpi835mCU7Rt7lKK4FrRxBbtUvHeVcZo8JmIWz2GJv9xkbvcDYOCeKWAA51jNkvbEy32nYWvMh4OpGOgRoivSAxHCLcRIeDjK6mKkH1J++Eq1ok+3Vil42+OV1XBt8EMeBIFNuNEtuJVloJYr0tVg+ZmZcZadky0zTWMAvjg3IsIbyHkU/HHB1uefDTtO7+/bnSfmCnojhdISFMpAMkhkNGVOwSJL79J5VP1KHaNlV+AI66sjM2sYrosD7NKt+q2VYi2Dh6hRjeWMKiyDCQbJnQp7Nx6KG61tB9wzLwtptEsTPoHECkCiSGUwg3AjUqIpwgnGLrGFcpiPXyDMhaJ3gCWM9r12tsHGlCVBZrnrEZkl1kjvQ2mL7N4wmbX90M6P7gQ9NAkzWiKa2h4UAz37AVJHqtCdM5Yf/Bj8ryCEKHxHAIIbsEQXhDIIIYaG64PYiMdcJYhJvosFU5MgLYfXeYha4ufvfikFVC9Apn4JBFovm4xU4ixGSbYBMmIUwQXkNiOKREIVJLwpuIIoEJYh2GyrKyTsgKWNmq7ZTHiwo3XycTDQ1GX6/R4iAz1rDIMqFbIvTy2qDJd2wcqs2+chX1nzk9KsLYeGzT/zNByEG/lBQk7CKaIILGlkjwQgUxnvYSvdZZnxal2f2YxyK2KtvcLnNZzTGP/iDCKGr3omlcYf2FG/pnr+Gzx5D/UJcasXoQlTX8ml30fWb18QNWXW7uMBLOqa6uRllZGWKxGGKxGMrKyrBr1y7hOpqmYfLkySguLkZeXh769euHL774IilPXV0dxo8fj4KCArRu3RrDhg3D1q1bE8s3bdqE0aNHo1u3bsjLy8MxxxyD+++/H/X1yRejt912G0pKSpCTk4NTTz2V254ZM2bg+OOPR05ODrp06YIpU6Y46o8oQJHhEOO3XcJJfSqiw6zxWAnCawKPEAPMsCvLOuF06DUH1VtuqnjkD2N0WB8Bguf9NaO/bMMc8dXX07+NL+g4VC5LvLNFOnub7PZdkMNR2mmLV3X7/X8dJc/wyJEjsXXrVixYsAAA8Mtf/hJlZWV46623uOtMnz4dDz/8MObMmYPjjz8ev//97zFw4EBs2LABbdu2BQCUl5fjrbfewty5c3HYYYfhjjvuwNChQ7FixQq0aNECX331FQ4cOIAnnngCxx57LNatW4cxY8Zg7969mDFjRqIuTdNw4403YtmyZVizZg2zPbfddhsWLlyIGTNm4KSTTkI8Hsf333+vsJfCBYnhkBMFu4QqSBQTfmNbEAOBiGK7PlZePrPQ1edV+GOT7RLAIeGrf/PsEhCkA8ABsIW1XkeTUBZFuZu3UZxmhZP/ZK/+31SfH9LlfOMV69evx4IFC7B06VL07t0bAPDUU0+htLQUGzZsQPfu3Zuto2ka/vznP+Pee+/FlVdeCQB47rnnUFhYiJdeegk333wz4vE4Zs+ejeeffx4XXnghAOCFF15Aly5d8N5772Hw4MEYMmQIhgwZkij36KOPxoYNGzBr1qwkMfzXv/4VALBz506mGF6/fj1mzZqFdevWMdubipDqSGGi+qcW1XYT0cS2OPHSPMoQ2mbrhHma9e3UNtGmjVze9u3F1otDL8NoaZjOZkwbI75GW0VyDxxa3hpNfuF8AO0OzrdG27aZaN8eSZ+srKZvUTc7tUYQqUNNTU3Sp66uzlV5S5YsQSwWSwhhADj77LMRi8WwePFi5jobN25EZWUlBg0alEjLyclB3759E+usWLECDQ0NSXmKi4vRq1cvbrkAEI/H0aFDB1vb8NZbb+Hoo4/Gv/71L3Tr1g1du3bFTTfdhB9//NFWOVGCIsMRIOzRYS9uw6Xzw3lR3HbZ4zOs22X7NxahKDEPO1Fi4zL90779oWmjHXLfPv0lHLrQ1d8UBxwSwsY3yrU0TdcenDb6jLMBtDj43frgJx9APlq2bIuCArYQNm6jk/5iRZfDRDpFhb2ySXTp0iUp/f7778fkyZMdl1tZWYlOnTo1S+/UqRMqKyu56wBAYWFhUnphYSG+/fbbRJ7s7Gzk5+c3y8Mr97///S8effRR/OlPf7K1Dd988w2+/fZb/OMf/8Df//53NDY24vbbb8fVV1+NDz74wFZZUYHEcERwKojtCqswCe8oikK78Pra6T7wur/cHhus9cOyjx0d+155iQGuKOYNw6ZqxAnjOkYRLKJ9+2RBDAB79uiC2Ojt1b2+9WjyBuvieK/hu4Uhr26N0PO1Nn3ao6AAKCpq+rRv3xTd1oUwwLdF+GWPYJWh4pgP8gI0LL9ZFWzZsgXt2rVLzOfk5DDzTZ48GQ888ICwrOXLlwMAMjIymi3TNI2ZbsS8XGYdXp5t27ZhyJAh+NnPfoabbrpJWIaZAwcOoK6uDn//+99x/PHHAwBmz56NkpISrtUj6pAYJkKNl4I4KLHt5cWGk7L1PgjqIihMQ0E5FsSAb6KYNzYxazVZscfT9HbKMAvi/fubWtvQoEd9dRFsjA7zvuvRJIp1wdwCySK4HYB8tG2bmySE9W/zCBhe7ZpUIixBEL9p165dkhjmMW7cOFxzzTXCPF27dsWaNWuwY8eOZst27tzZLPKrU1RUBKAp+tu5c+dEelVVVWKdoqIi1NfXo7q6Oik6XFVVhT59+iSVt23bNvTv3x+lpaV48sknLbfNTOfOnZGVlZUQwgDQo0cPAMDmzZtJDBPB4ld02Alevv3OT0GcDtFoM2E6CYbhIUrHd0e8jBIDUqJYVryKmmqOBrOixMaPUQAbrRNAk11hz55c0/jDZnSbxF7DN5D8wJxui+gEoBhAN+TnH4ZTTwW6dm1qW1EREnYJ8/WJ2QLiJjrsFj+jwoQ6CgoKUFBQYJmvtLQU8Xgcn332Gc466ywAwLJlyxCPx5uJVp1u3bqhqKgIFRUVOO200wAA9fX1WLRoEaZNmwYAKCkpQcuWLVFRUYHhw4cDALZv345169Zh+vTpibK+++479O/fHyUlJXj22WeRmWn/eDvnnHOwf/9+/Pe//8UxxxwDAPjPf/4DADjqqKNslxcFSAwTkcBrQSyaV1kvncTkCFoUuxLEgPeiWNJPLCP6WEO3mZeJRpwwCmCjQNbTAWD//kzs3t0ayQ/VmT3BrQ9+7zGk6YJYf2DuCABHoHPntgkhfOyxh8R6URG7jcZtsmsj0ZdF8bebShaJqAyt1qNHDwwZMgRjxozBE088AaBpaLWhQ4cmRVRPOOEETJ06FVdccQUyMjJQXl6OKVOm4LjjjsNxxx2HKVOmoFWrVhg5ciQAIBaLYfTo0bjjjjtw2GGHoUOHDrjzzjtx0kknJUaX2LZtG/r164cjjzwSM2bMwM6dOxP16dFnAPj666+xZ88eVFZWora2FqtXrwYA9OzZE9nZ2bjwwgtx+umn48Ybb8Sf//xnHDhwALfeeisGDhyYFC1OJUgMRww/PL1BRKBl6lQtiGW3U4U4juKJNAwEKYpd/db8ihLrdYEtiu3AE8Jm9BEjZCLEyaI4E7t3syLEuuDVfcPGN83lHZzWo8Kd0K1bLk49FTjhBOCII5q+zcOpsSLYrJdshPXBOL+h/ye1vPjii5gwYUJi5Idhw4Zh5syZSXk2bNiAeDyemL/rrrtQW1uLW265BdXV1ejduzcWLlyYGGMYAB555BFkZWVh+PDhqK2txYABAzBnzhy0aNHks1+4cCG+/vprfP311zjiiCOS6tM0LTF90003YdGiRYl5PRq9ceNGdO3aFZmZmXjrrbcwfvx4nH/++WjdujUuuugi2w/iRYkMzdhDhFJqamoQi8VQXR2X8iTJ4sfDVUE9wOX3QyGqTgK89tBJRh1BRaRc70O/DKsmZWfsL9ZQYsY00TRrft++Jk8wT3QaBbJ5es8eoKHhAJrEry6CjdNA8hBs+vBph+HYY5GICOtCuGvXQ5ufm9tUj/FjbhNrCDqjz9g8bJyO1/8VsnjxH2ln25y2v6amBvn5McTj9s6H+nl0E5ruDaiiBkBXwHZ7iNSEIsMEkzD7k/2sRxYSvd4TVJTY9QOGTqPEIlOvKL9EpFhkn2DZJnjWCV6U2Cg8dUGqTzflz8SePW0PiuLWOCSCjSNPtEfLlrmJ0SFOOKHp06tXkwDWH5zrkPsTkJvLfKCQJf5F8Lo2LELYC+i/iyBIDBMe4LVdQkU9TuojwkFQF0K+2yZEQzzoy1nYEMWy1ZsFrzmPSBSbBXHy8kzs25eL/ftzmzW9TZtDo0N07Zpsi+ja9aAIrqxMFJx50DS8b19mUlnmNpsvAMI+ljDRRCPU+nwbFZZFRB8SwwSXoISi34KYiB5pL4gBpm+YuVyhKDbOG0WmlSgWRY8ZTU3YFfTo7xFHHBLEXbsCmZXbgMpdh0LNBz/6MSGqi7Xtov4IU1Q46Jfb0H8tkaqQGI4YfovToOwSfgpiig5HkyBtE64EMWBPFMuIaJEwViyKRdFimUix3iRWlFn/Noph/aUaujUis3JbU0b9XcsHMx9o30HoFTbWw/IEm9PTIVJM/3sE0QSJ4QgQ1T8sEsSEHwQhil0fL3ajxHZENG+YBEWiWC+CFy3meYr1JvDsC0YBmpt7SAQbX7PcKtfU5/rTbu3bY9euJteEUQyb34rH25YoeIXT6dXLLKIytBoRTUgMh5iw/FkFKRRTxTLBaldY9m+qEOb9z8TL4dc8jBTzvMSih+3atEnW6GZ7hJ43N/eQgDa+UU7/JJmP9ZXat8dP+zITIlgXxPv26W/BayrT3BXmCHA6RYQJgkiGxHBICZtQCnJ0CbuCWF8nLPDaYn7zHeEeP1/trOQi0UmE2K6A5gljU7pTUSwSxCxfsFEct2mTXJ55uDNdECeants+Sb0eQCb27WsSwEYRbBblom0wd4s+n8pRYSeE6T+VIFRDYjiNCCpypkoQ62V5VafrIbQ45QVRNxHOCyMmdn3ETnzHOrynyAzRVpWjTxinWd+sMswf/Rm5ykogNzcTubmtmpq865AVQv82imFjVNjKG5xKXmGZ453+ZwgiGRLDhDRuImGqhHiY38Cnqm4dOmGpIVKi2OsosQ5LjVrYJ3gCVqaJPI+xTDNZzTM/HGcUxLoQ1uvVRTHPDmFON267W1IlKqwCt9tBnmHCS0gME7YIw4Nmdl6j7Md4x7z13ULCWC2REMV+C2JjOeZ0kyjOzT00bJlIFPMiwebm8pqui1KWENaneR9dBIvaZqyDFQ1O9d+ak+3z6615BBEUJIbTjCBfVKHSpiFrKwjCGuJFfWSjUIefvmJHOLVN2FnHDMs+YSGK7WIljs3NYT2Qpy9jDdXGE8JZhrOclT0i6fcleghRglAeWwRBMCExTPiKanEqI8yd1hmGKLgZ83aErX1Rw9x/sseJL/3uxBvsxk/MgyGKja8+dmKfMBbNEsRmEcx6CM/oCzYu0zGOTKE/kGf8joJP2O5xZnX8BvF/Qf9RRBQgMRxSvBRiQb/G2AtBrJermjAKYiNkpVBLKPvQiRXCabSY94CdvkzwkB3vITnZb70M1rBrLDHMarZx841CWCSIdbj7PkWiwlEXwuQZJryExHCakmqC2Ko9kRuD1gEkjFMYNxFfFTYK4/qG8nhRYl60mOclFjWNJZD3M5SMsT5WRJg338weIWqMj4TlN5zq/5sEAZAYDjVeRyWDFoheCWJzHV7WF1bIY5yiuLVBqPAD2BDExjSr5aIAuHlZVlayINYjwcZ5ViSYJYSbbZu5YpsENYKEqN6oR4UJwmtIDKc5Qb/G2GuB6lYUBv2goFsoWpyiqIz2KsBKELPSWfYKXj5zpHnfPrb4Nc8bxa8+zWp7olAjKWKPCAL6ryGiBonhkOOHZzXVBTHg7CQV9m2yC0WLUxQvHpqzQvKpOSuvsDmPsWgrQayvy/sW2SL0PFwhHCCqf59BDxGpikao9fk2KiyLiD4khgkA6SGI7aDihBS2bdKhaHGKEnC0mBUdNk7LWiRkhDBLFLOEMO+jtxcAf7BjmwT5W+fVTfYIgpCDxHAE8GtEg6DFW9D1e0HYt4mixSmKWcypFsc2osLGaasosNNmyAhhY76wCuEgXohBEASJYcJEkG9tc1t/WInCNlG0OMVRJY4thKL5WJcRxFbVifLK2CSY0WBRhTYJ62/b7e84bNtFQ6sRXkJiOCL4Od5tugtiL/o56G2yA0WL0wCe6JN5l7HLamW9wOYhj3lDIJsFMCtN6lgOWAinQlSY/jOIqEJimGAStHgLsn6vLjyMLyqIAhQtTkMUCF5RdNg4b9cewfMMi6LDensSiMZus0kqC+Go/EcRhCpIDEcIv9+GFvRrjFNREAPBX2g4IUrC2G7fhn17UgGRIJZdR0/jzQtFsFXjCIJIa0gME0LCIIj18vzGa0Gs1xE1wmKjUNV3YXoSP1Vg/W+I7A5WFggWvEixVCRYpgIBYY8KBzGcmte/F/IME15CYpiwJGhB7KYNbvFa+EUxSqzjd7TY734ikewO3rEtI4Jl4Apgc+FWK9sk7EKYIAj7kBgmpAiDaEtl24ReR1Tx8qIhbP3ix2tvo2RLEWF1bLtxKHD7xaNoMBC+Y1E1qb59BMGDxHCECPqk6ESMqhaRqSqIgdQSxUDqDe0kgxdt9kN8e43KY9vxNrv0Bqvet15FhZ32TxR/bwShChLDPpCJA65FXFhOeiSIvffLGsuO8gnKqTCO8jb7TdQiyOY2ei70FT0cFxUh7BS3Zftx7JFnmPASEsM+IoqOROFEphMWQayXGwR+vhVQry/KmNufKoI/TERNGAOK2skbqFgRYRDCYSibIFIZEsMBkAp/WGHwEAfdDr9fhKLXmQqkynaElbCM+OELERLCTiF7BEF4C4lhwjEkiP0XHakmiglviWK0OCx48RtLNXsE4N9xdeDgR2V5BKFDYpjwDS+FY9AiMYgXohjrJggrRFYVIpmoCeGwieww1EcQdqCjk3BF2P6EgzzBB/Vnrz+gSRB2OJA4cg59iPAI4VSBji0iCtARSriGBPEhgvzjT+cTLqEGEsjq8drLG+T/r1Xd6Xr8VFdXo6ysDLFYDLFYDGVlZdi1a5dwHU3TMHnyZBQXFyMvLw/9+vXDF198kZSnrq4O48ePR0FBAVq3bo1hw4Zh69atieWbNm3C6NGj0a1bN+Tl5eGYY47B/fffj/r6+qRyli9fjgEDBqB9+/bIz8/HoEGDsHr16qQ87777Ls4++2y0bdsWHTt2xFVXXYWNGze66pcwk55HKpEE6wQY9RNh0NHSoPov6O0mUo9U+U+wwovtS2Uh7DeNODS8mopPo4dtHTlyJFavXo0FCxZgwYIFWL16NcrKyoTrTJ8+HQ8//DBmzpyJ5cuXo6ioCAMHDsTu3bsTecrLyzFv3jzMnTsXn376Kfbs2YOhQ4eisbFpa7766iscOHAATzzxBL744gs88sgj+Nvf/oZ77rknUcbu3bsxePBgHHnkkVi2bBk+/fRTtGvXDoMHD0ZDQwMA4JtvvsFll12GCy64AKtXr8a7776L77//HldeeaUHvRUOMjRN04JuRKpSU1ODWCyGeHU12rVrF3RzmNj5YxT98Yb1ffY6QZ4AghKnUT3pEdEhVS68wmSNUPWf7LZst3Wb66qpqUF+fgzxeNzW+VA/j74PoLWThnLYC2AAYLs9Vqxfvx49e/bE0qVL0bt3bwDA0qVLUVpaiq+++grdu3dvto6maSguLkZ5eTnuvvtuAE1R4MLCQkybNg0333wz4vE4OnbsiOeffx4jRowAAGzbtg1dunTB/PnzMXjwYGZ7/vjHP2LWrFn45ptvAACff/45zjzzTGzevBldunQBAKxduxYnn3wyvv76axxzzDF49dVXce2116Kurg6ZmU378a233sJll12Guro6tGzZUll/hQU6W6YxTsYKZkWI3PzB+iXY0jVKTBBekgrR4jAJ4bDV4ZSoHxNuWLJkCWKxWEIIA8DZZ5+NWCyGxYsXM9fZuHEjKisrMWjQoERaTk4O+vbtm1hnxYoVaGhoSMpTXFyMXr16ccsFmsR+hw4dEvPdu3dHQUEBZs+ejfr6etTW1mL27Nk48cQTcdRRRwEAzjjjDLRo0QLPPvssGhsbEY/H8fzzz2PQoEEpKYQBEsNpjYrX5ar40/NTEKejKCYIr4nicR3G32Mq2CPC1qdW1NTUJH3q6upclVdZWYlOnTo1S+/UqRMqKyu56wBAYWFhUnphYWFiWWVlJbKzs5Gfn8/NY+a///0vHn30UYwdOzaR1rZtW3z00Ud44YUXkJeXhzZt2uDdd9/F/PnzkZXVNMBY165dsXDhQtxzzz3IyclB+/btsXXrVsydO1eyF6JHtI5aImXx8w80LKI4aicNghARpWM6jA/whn08YSNB/H82ePABgC5duiQedIvFYpg6dSqz/smTJyMjI0P4+fzzzwEAGRkZzdbXNI2ZbsS8XGYdXp5t27ZhyJAh+NnPfoabbropkV5bW4sbb7wR55xzDpYuXYr//d//xYknnoiLL74YtbW1AJqE90033YQbbrgBy5cvx6JFi5CdnY2rr74aqeqspXGGidAQ1Fi9QZ7A6aUIRKoR5rffhVEEA9HxCYepLlVs2bIlyTOck5PDzDdu3Dhcc801wrK6du2KNWvWYMeOHc2W7dy5s1nkV6eoqAhAkwjt3LlzIr2qqiqxTlFREerr61FdXZ0UHa6qqkKfPn2Sytu2bRv69++P0tJSPPnkk0nLXnrpJWzatAlLlixJ+IFfeukl5Ofn44033sA111yDxx57DO3atcP06dMT673wwgvo0qULli1bhrPPPlvYD1GExDARKvwWxEB43qTHakMYo0wEETW8/j2kkxAO40WOG9q1ayf1AF1BQQEKCgos85WWliIej+Ozzz7DWWedBQBYtmwZ4vF4M9Gq061bNxQVFaGiogKnnXYaAKC+vh6LFi3CtGnTAAAlJSVo2bIlKioqMHz4cADA9u3bsW7duiTR+t1336F///4oKSnBs88+mxC8Oj/99BMyMzOTosn6/IEDBxJ5WrRokbSePq/nSTXojJnmhPGPjYYkO4Ro2LtUHBLPiNVWEuElLPsnlX4Pdkm17W704OMFPXr0wJAhQzBmzBgsXboUS5cuxZgxYzB06NCkkSROOOEEzJs3D0CTPaK8vBxTpkzBvHnzsG7dOowaNQqtWrXCyJEjAQCxWAyjR4/GHXfcgffffx+rVq3C9ddfj5NOOgkXXnghgKaIcL9+/dClSxfMmDEDO3fuRGVlZZKneODAgaiursatt96K9evX44svvsAvfvELZGVloX///gCASy65BMuXL8eDDz6I//u//8PKlSvxi1/8AkcddVRCrKcaFBkmQhMZNRLUrdYwWCfSGTv7m15JHU7CIISjMkqNV1Fhr7bfi+E1U5EXX3wREyZMSIz8MGzYMMycOTMpz4YNGxCPxxPzd911F2pra3HLLbeguroavXv3xsKFC9G2bdtEnkceeQRZWVkYPnw4amtrMWDAAMyZMycRtV24cCG+/vprfP311zjiiCOS6tO9vieccALeeustPPDAAygtLUVmZiZOO+00LFiwIGHRuOCCC/DSSy9h+vTpmD59Olq1aoXS0lIsWLAAeXl56jssBNA4wx4ShXGGdcL8Rxb0w26EP6jaz7TPgiVdxtX2UwjbqS8IISxTr9txht+G+nGGL4H6cYaJaEKRYQJAOKPDOkH4iHUoUuwPKvcvRYyDw8/faZRfpBM1IRzWeglCFSSGiQQkiPmQKPYOL/cr7bfUIuj9qOJYjaIQDoP1RX+NssryCEKHzhARgx4ICZYwnBRSCb/6kx668wfVv9EwPRhKQtj/ugnCLygyHCFEr0BWdaIPc3QYCD5CDFC0McrQvvMeJ/9NYd8fQQjhoMsF6OKfSB9IDEcIkVBVOfpCFAQxEPwfNQkr9wR1cRP2YzyViHI/BymCg76ICLp+Mz+FvDwi2pAYTjFUvdEsCmIhDFFigESxW0gQE2GEhHA4yM7ORlFREa41jJWriqKiImRnZysvl4geJIZTGLciIwpiISxRYmMbwt5nYYQEMREWgh7iL+j/sqDrN5Obm4uNGzeivr5eednZ2dnIzc1VXi4RPUgMpzhhiZ56TZi2k0SxM0gQE0ETFSEc1FjCfrSBRW5uLolWwlPoDBAxnPxZu/nTCovAlCFsgoZeHWyfMIwaQKQnQQvhoKH/KSKdieav1mcef/xxdOvWDbm5uSgpKcEnn3wSdJNsE9U/aLuEdTuTB4hy/0l1wrofidQkDL+pIKPCdreffp9EqkFHtAWvvPIKysvLce+992LVqlU477zzcNFFF2Hz5s1BN802UfWw2SUd/qjTQRz7uR9TtQ8Ja1Tu+yj+x9KxTxBAhqZpWtCNCDO9e/fG6aefjlmzZiXSevTogcsvvxxTp04Vrqu/Uz1eXa303edB2R6iJjLT9U8+avvJCr/2Y6r1G2FNGISw3XaoPk79st7V1NQgPz+GeDyu9HxIECqgB+gE1NfXY8WKFfj1r3+dlD5o0CAsXry4Wf66ujrU1dUl5uPxOICmPwHVBCGIoygW0lUQA9HcXzz82I+p1F+ENWERwkBwYtjPc4F+HqT4GxFGSAwL+P7779HY2IjCwsKk9MLCQlQyxjycOnUqHnjggWbpXY46yrM2EgRBEERU2L17N2KxWNDNIIgkSAxLkJGRkTSvaVqzNACYNGkSJk6cmJjftWsXjjrqKGzevJl+/D5TU1ODLl26YMuWLXRLzkeo34OB+j0YqN/l0TQNu3fvRnFxcdBNIYhmkBgWUFBQgBYtWjSLAldVVTWLFgNATk4OcnJymqXHYjH6owyIdu3aUd8HAPV7MFC/BwP1uxwUFCLCCpnkBGRnZ6OkpAQVFRVJ6RUVFejTp09ArSIIgiAIgiBUQZFhCyZOnIiysjKcccYZKC0txZNPPonNmzdj7NixQTeNIAiCIAiCcAmJYQtGjBiBH374AQ8++CC2b9+OXr16Yf78+ThK4qG4nJwc3H///UzrBOEt1PfBQP0eDNTvwUD9ThCpAY0zTBAEQRAEQaQt5BkmCIIgCIIg0hYSwwRBEARBEETaQmKYIAiCIAiCSFtIDBMEQRAEQRBpC4lhD3n88cfRrVs35ObmoqSkBJ988knQTQoNH3/8MS699FIUFxcjIyMD//znP5OWa5qGyZMno7i4GHl5eejXrx+++OKLpDx1dXUYP348CgoK0Lp1awwbNgxbt25NylNdXY2ysjLEYjHEYjGUlZVh165dSXk2b96MSy+9FK1bt0ZBQQEmTJiA+vr6pDxr165F3759kZeXh8MPPxwPPvggovbs6dSpU3HmmWeibdu26NSpEy6//HJs2LAhKQ/1u3pmzZqFk08+OfFihtLSUrzzzjuJ5dTn/jB16lRkZGSgvLw8kUZ9TxAEAEAjPGHu3Llay5Yttaeeekr78ssvtdtuu01r3bq19u233wbdtFAwf/587d5779Vee+01DYA2b968pOUPPfSQ1rZtW+21117T1q5dq40YMULr3LmzVlNTk8gzduxY7fDDD9cqKiq0lStXav3799dOOeUUbf/+/Yk8Q4YM0Xr16qUtXrxYW7x4sdarVy9t6NChieX79+/XevXqpfXv319buXKlVlFRoRUXF2vjxo1L5InH41phYaF2zTXXaGvXrtVee+01rW3bttqMGTO86yAPGDx4sPbss89q69at01avXq1dcskl2pFHHqnt2bMnkYf6XT1vvvmm9vbbb2sbNmzQNmzYoN1zzz1ay5YttXXr1mmaRn3uB5999pnWtWtX7eSTT9Zuu+22RDr1PUEQmqZpJIY94qyzztLGjh2blHbCCSdov/71rwNqUXgxi+EDBw5oRUVF2kMPPZRI27dvnxaLxbS//e1vmqZp2q5du7SWLVtqc+fOTeT57rvvtMzMTG3BggWapmnal19+qQHQli5dmsizZMkSDYD21VdfaZrWJMozMzO17777LpHn5Zdf1nJycrR4PK5pmqY9/vjjWiwW0/bt25fIM3XqVK24uFg7cOCAwp7wl6qqKg2AtmjRIk3TqN/9JD8/X3v66aepz31g9+7d2nHHHadVVFRoffv2TYhh6nuCIHTIJuEB9fX1WLFiBQYNGpSUPmjQICxevDigVkWHjRs3orKyMqn/cnJy0Ldv30T/rVixAg0NDUl5iouL0atXr0SeJUuWIBaLoXfv3ok8Z599NmKxWFKeXr16obi4OJFn8ODBqKurw4oVKxJ5+vbtmzSw/uDBg7Ft2zZs2rRJfQf4RDweBwB06NABAPW7HzQ2NmLu3LnYu3cvSktLqc994NZbb8Ull1yCCy+8MCmd+p4gCB0Swx7w/fffo7GxEYWFhUnphYWFqKysDKhV0UHvI1H/VVZWIjs7G/n5+cI8nTp1alZ+p06dkvKY68nPz0d2drYwjz4f1f2paRomTpyIc889F7169QJA/e4la9euRZs2bZCTk4OxY8di3rx56NmzJ/W5x8ydOxcrV67E1KlTmy2jvicIQodex+whGRkZSfOapjVLI/g46T9zHlZ+FXm0gw+1RHV/jhs3DmvWrMGnn37abBn1u3q6d++O1atXY9euXXjttddwww03YNGiRYnl1Ofq2bJlC2677TYsXLgQubm53HzU9wRBUGTYAwoKCtCiRYtmV/NVVVXNrvyJ5hQVFQFoHg0x9l9RURHq6+tRXV0tzLNjx45m5e/cuTMpj7me6upqNDQ0CPNUVVUBaB5VigLjx4/Hm2++iQ8//BBHHHFEIp363Tuys7Nx7LHH4owzzsDUqVNxyimn4C9/+Qv1uYesWLECVVVVKCkpQVZWFrKysrBo0SL89a9/RVZWFjfqSn1PEOkHiWEPyM7ORklJCSoqKpLSKyoq0KdPn4BaFR26deuGoqKipP6rr6/HokWLEv1XUlKCli1bJuXZvn071q1bl8hTWlqKeDyOzz77LJFn2bJliMfjSXnWrVuH7du3J/IsXLgQOTk5KCkpSeT5+OOPk4ZBWrhwIYqLi9G1a1f1HeARmqZh3LhxeP311/HBBx+gW7duScup3/1D0zTU1dVRn3vIgAEDsHbtWqxevTrxOeOMM3Dddddh9erVOProo6nvCYJowr9n9dILfWi12bNna19++aVWXl6utW7dWtu0aVPQTQsFu3fv1latWqWtWrVKA6A9/PDD2qpVqxJDzz300ENaLBbTXn/9dW3t2rXatddeyxzy6IgjjtDee+89beXKldoFF1zAHPLo5JNP1pYsWaItWbJEO+mkk5hDHg0YMEBbuXKl9t5772lHHHFE0pBHu3bt0goLC7Vrr71WW7t2rfb6669r7dq1i9yQR7/61a+0WCymffTRR9r27dsTn59++imRh/pdPZMmTdI+/vhjbePGjdqaNWu0e+65R8vMzNQWLlyoaRr1uZ8YR5PQNOp7giCaIDHsIY899ph21FFHadnZ2drpp5+eGMKK0LQPP/xQA9Dsc8MNN2ia1jTs0f33368VFRVpOTk52vnnn6+tXbs2qYza2lpt3LhxWocOHbS8vDxt6NCh2ubNm5Py/PDDD9p1112ntW3bVmvbtq123XXXadXV1Ul5vv32W+2SSy7R8vLytA4dOmjjxo1LGt5I0zRtzZo12nnnnafl5ORoRUVF2uTJkyM33BGrvwFozz77bCIP9bt6brzxxsT/QMeOHbUBAwYkhLCmUZ/7iVkMU98TBKFpmpahafR6G4IgCIIgCCI9Ic8wQRAEQRAEkbaQGCYIgiAIgiDSFhLDBEEQBEEQRNpCYpggCIIgCIJIW0gMEwRBEARBEGkLiWGCIAiCIAgibSExTBAEQRAEQaQtJIYJgiAIgiCItIXEMEEQKUfXrl2RkZGBjIwM7Nq1y1VZ/fr1S5S1evVqJe0jCIIgwgOJYYIgQkljYyP69OmDq666Kik9Ho+jS5cu+M1vfiNc/8EHH8T27dsRi8VcteP111/HZ5995qoMgiAIIryQGCYIIpS0aNECzz33HBYsWIAXX3wxkT5+/Hh06NAB9913n3D9tm3boqioCBkZGa7a0aFDB3Ts2NFVGQRBEER4ITFMEERoOe644zB16lSMHz8e27ZtwxtvvIG5c+fiueeeQ3Z2tq2y5syZg/bt2+Nf//oXunfvjlatWuHqq6/G3r178dxzz6Fr167Iz8/H+PHj0djY6NEWEQRBEGEjK+gGEARBiBg/fjzmzZuHn//851i7di3uu+8+nHrqqY7K+umnn/DXv/4Vc+fOxe7du3HllVfiyiuvRPv27TF//nx88803uOqqq3DuuedixIgRajeEIAiCCCUkhgmCCDUZGRmYNWsWevTogZNOOgm//vWvHZfV0NCAWbNm4ZhjjgEAXH311Xj++eexY8cOtGnTBj179kT//v3x4YcfkhgmCIJIE8gmQRBE6HnmmWfQqlUrbNy4EVu3bnVcTqtWrRJCGAAKCwvRtWtXtGnTJimtqqrKVXsJgiCI6EBimCCIULNkyRI88sgjeOONN1BaWorRo0dD0zRHZbVs2TJpPiMjg5l24MABx+0lCIIgogWJYYIgQkttbS1uuOEG3Hzzzbjwwgvx9NNPY/ny5XjiiSeCbhpBEASRIpAYJggitPz617/GgQMHMG3aNADAkUceiT/96U/4f//v/2HTpk3BNo4gCIJICUgMEwQRShYtWoTHHnsMc+bMQevWrRPpY8aMQZ8+fVzZJQiCIAhCJ0OjswlBEClG165dUV5ejvLyciXlbdq0Cd26dcOqVascD+tGEARBhBOKDBMEkZLcfffdaNOmDeLxuKtyLrroIpx44omKWkUQBEGEDYoMEwSRcnz77bdoaGgAABx99NHIzHR+3f/dd9+htrYWQJNn2e6b7wiCIIhwQ2KYIAiCIAiCSFvIJkEQBEEQBEGkLSSGCYIgCIIgiLSFxDBBEARBEASRtpAYJgiCIAiCINIWEsMEQRAEQRBE2kJimCAIgiAIgkhbSAwTBEEQBEEQaQuJYYIgCIIgCCJtITFMEARBEARBpC0khgmCIAiCIIi0hcQwQRAEQRAEkbaQGCYIgiAIgiDSFhLDBEEQBEEQRNpCYpggCIIgCIJIW0gMEwRBEARBEGkLiWGCIAiCIAgibSExTBAEQRAEQaQtJIYJgiAIgiCItIXEMEEQBEEQBJG2kBgmCIIgCIIg0hYSwwRBEARBEETaQmKYIAiCIAiCSFtIDBMEQRAEQRBpC4lhgiAIgiAIIm0hMUwQBEEQBEGkLSSGCYIgCIIgiLSFxDBBEARBEASRtpAYJgiCIAiCINIWEsMEQRAEQRBE2kJimCAIgiAIgkhbSAwTBEEQBEEQaQuJYYIgCIIgCCJtITFMEARBEARBpC0khgmCIAiCIIi0hcQwQRAEQRAEkbaQGCYIgiAIgiDSFhLDBEEQBEEQRNpCYpggCIIgCIJIW0gMEwRBEARBEGkLiWGCIAiCIAgibSExTBAEQRAEQaQtJIYJgiAIgiCItIXEMEEQBEEQBJG2kBgmCIIgCIIg0hYSwwRBEARBEETaQmKYIAiCIAiCSFtIDBMEQRAEQRBpC4lhgiAIgiAIIm0hMUwQBEEQBEGkLSSGCYIgCIIgiLSFxDBBEARBEASRtpAYJgiCIAiCINIWEsMEQRAEQRBE2kJimCAIgiAIgkhbSAwTBEEQBEEQaQuJYYIgCIIgCCJtITFMEARBEARBpC0khgmCIAiCIIi0hcQwQRAEQRAEkbaQGCYIgiAIgiDSFhLDBEEQBEEQRNpCYpggCIIgCIJIW0gMEwRBEARBEGkLiWGCIAiCIAgibSExTBAEQRAEQaQtJIYJgiAIgiCItIXEMEEQBEEQBJG2kBgmCIIgCIIg0hYSwwRBEARBEETaQmKYIAiCIAiCSFtIDBMEQRAEQRBpC4lhgiAIgiAIIm0hMUwQBEEQBEGkLSSGCYIgCIIgiLSFxDBBEARBEASRtpAYJgiCIAiCINIWEsMEQRAEQRBE2kJimCAIgiAIgkhbSAwTBEEQBEEQacv/B6hu2CFHw8d+AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, - "execution_count": 10, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -622,16 +665,16 @@ "source": [ "### Visualizing the updated model\n", "\n", - "After two iterations, the updated model starts to take form. We can clearly see tha the lack of data coverage on the outer edges of the model mean we do not see any appreciable update here, whereas the center of the domain shows the strongest model updates which are starting to resemble the checkerboard pattern shown in the target model.\n", + "After two iterations, the updated model starts to take form. We can clearly see that the lack of data coverage on the outer edges of the model mean we do not see any appreciable update here, whereas the center of the domain shows the strongest model updates which are starting to resemble the checkerboard pattern shown in the target model.\n", "\n", - "With only 4 events and 2 iterations, we do not have quite enough constraint to recover the sharp contrats between checkers shown in the Target model. We can see that smearing and regularization leads to more prominent slow (red) regions. \n", + "With only 4 events and 2 iterations, we do not have quite enough constraint to recover the sharp contrasts between checkers shown in the Target model. We can see that data coverage, smearing and regularization leads to more prominent slow (red) regions. \n", "\n", "If we were to increase the number of events and iterations, will it help our recovery of the target model? This task is left up to the reader!" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -643,12 +686,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwTZf7HP7nb0oNChVJOEZBLbhUWV0BFRA5FhEURuWRVwIPFnwoeIC6CcgjqiqucCoon6Hog4CKsK5WCsHLsCigIKiAqtFBo06TP7490pjOTuTNJJsn3/XrlBZ08M/PMJJl555vv830cjDEGgiAIgiAIgkhBnPHuAEEQBEEQBEHEC5JhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhgiAIgiAIImUhGSYIgiAIgiBSFpJhIikZNGgQ0tPTcfr0acU2w4cPh8fjwYkTJ2LXMQ1GjRqFJk2axLsbshw7dgyPPvoounXrhry8PGRnZ6Nz5854+eWXEQwGw9rv3LkTN954IwoKCpCRkYGWLVtixowZOHfunKjdF198gTvuuAOdO3eGz+eDw+HA4cOHNfuzb98+vv327dt1HUNFRQWeeOIJNGnSBD6fDy1btsTzzz8f1q5JkyZwOByyj7S0NFHbkpISPPLII2jRogUyMjJQv359DBkyBHv37hW127VrF/r164dGjRohPT0dtWrVQrdu3bBy5UrFvs6fPx+XXHIJ0tPTUbNmTfzhD3/Al19+KWp37NgxjBo1CnXq1EFaWhratWuHJUuWhG3vxx9/xP33348ePXqgZs2acDgcWL58ueY5O3/+PFq0aAGHw4G5c+fK9lPPOQUAxhiWLVuGyy67DDVq1EB2djY6deqE999/X3Q8et9nn3/+ueLrVFhYqHlsBEEQAOCOdwcIIhqMHTsWa9euxeuvv47x48eHPV9cXIw1a9agf//+qFu3bhx6KM9jjz2G++67L97dkGXHjh149dVXcfvtt+Oxxx6Dx+PBJ598grvvvhuFhYVYunQp33bfvn34wx/+gIsvvhgLFixAXl4etmzZghkzZmDHjh0i+fnss8+wceNGdOzYEdnZ2fj88881+xIMBjFmzBjk5eXh559/1n0M48ePx2uvvYYnn3wSl156KT799FPcd999OHPmDKZOncq3W7NmDcrLy0XrHjlyBH/6058waNAg0fIBAwZg+/btmD59Orp06YIff/wRM2bMQLdu3bB79240btwYAHD69Gk0bNgQt9xyC+rXr4/S0lKsWrUKI0aMwOHDh/Hoo4+Kjm/QoEH44osv8OCDD+IPf/gDSktLsWPHDpSWlvLtiouLccUVV8Dv9+OZZ55BvXr18MYbb+COO+5AcXEx/vKXv/BtDx48iFWrVqFDhw64/vrr8cYbb+g6Z4899phon2bPKQDcfffdWL58OSZNmoRZs2YhEAhg9+7doi9IRt5nHE899RR69eolWta2bVtdx0cQBAFGEElIIBBgBQUFrHPnzrLPL1q0iAFg//jHP2Lcs8Tl999/Z36/P2z5hAkTGAB25MgRftkjjzzCALCDBw+K2v75z39mANjvv//OLwsGg/z/58yZwwCwQ4cOqfZlzpw5rH79+mzhwoUMACsqKtLs/549e5jD4WBPPfWUaPm4ceNYeno6++2331TXnz59OgPANm7cyC87cOAAA8AeffRRUdsvv/ySAWDz58/X7Nfll1/OGjZsKFr27LPPMqfTybZu3aq67qxZsxgAtn37dtHya6+9ltWoUYOdOnWKXyY8z0VFRQwAW7Zsmer2v/rqK+b1etnbb7/NALA5c+aInjdyTtesWcMAsDfffFN1n0beZ5s2bWIA2Ntvv626TYIgCDUoTYJISlwuF0aOHIkdO3Zg9+7dYc8vW7YM9erVQ9++ffllixYtQvv27ZGZmYmsrCy0bNkyLLKlhcPhwMSJE7Fs2TJcfPHFSE9PR5cuXVBYWAjGGObMmYMLL7wQmZmZuOqqq3Dw4EHR+nJpEtw2X3vtNbRq1QoZGRlo3749PvzwQ0N9i5Tc3Fx4PJ6w5ZdddhmA0M/wHFy7nJwcUduaNWvC6XTC6/Xyy5xOY5ehAwcO4PHHH8eLL76I7Oxs3eutXbsWjDGMHj1atHz06NE4f/481q1bp7guq/p5v2nTprjqqqv45WrHCSAspUKOvLw8uN3iH+kWLlyIK6+8El27dlVd99///jfq1q2Lzp07i5b3798fpaWlomMyep79fj/GjBmDCRMmoEuXLrJtjJzThQsXokmTJhg6dKjqfo28zwiCIKyAZJhIWsaMGQOHwxH2s+q+ffuwbds2jBw5Ei6XCwCwevVqjB8/Hj169MCaNWuwdu1aTJo0SfXnYSU+/PBDLF68GLNnz8Ybb7yBM2fOoF+/fpg8eTL+/e9/44UXXsDLL7+Mffv2YfDgwWCMaW7zo48+wgsvvIAZM2bg3XffRa1atTBo0CB8//33musGAgFdDz39kOOf//wn3G43WrRowS8bOXIkatasibvvvhvff/89zpw5gw8//BB///vfMWHCBNSoUcPUvhhjuOOOO9C/f38MHDjQ0Lp79uzBBRdcgPz8fNHydu3a8c8rsXHjRvzwww/8e4qjcePGuOGGG/Dss89i06ZNOHv2LP73v//h3nvvRaNGjTBs2LCwbVVWViIQCODkyZN48cUX8emnn+Khhx7inz969CgOHz6MSy65BFOnTkXdunXhdrvRpk0brFixQrQtv98Pn88Xtg9u2TfffKPjzMgzY8YMlJaW4sknn1Rso/ecBgIBbN26FR07dsT8+fPRuHFjuFwuNG3aFHPnztX13pN7n3FMmDABbrcb2dnZ6NOnD7744ouwNsuXL9edJ00QRIoRv6A0QUSfHj16sLy8PNHPrpMnT2YA2P79+/llEydOZDVr1ox4fwBYfn4+O3v2LL9s7dq1DADr0KEDq6ys5JcvWLCAAWDffPMNv2zkyJGscePGYdusW7cuKykp4ZcdP36cOZ1ONmvWLF190vPQ+slcjk8//ZQ5nU42adKksOf++9//spYtW4r2ce+994rOgRStNInnn3+e5ebmsuPHjzPGGFu2bJnuNInevXuziy++WPY5r9fL/vznPyuu+6c//Ym5XC72448/hj3n9/vZuHHjRMfZrl07xWO48847+XZer5e9+OKLoue3bt3KALDs7GzWunVr9tZbb7FPP/2U3XzzzQwAe/nll/m2999/P3M6neyHH34QbWPEiBEMgOIxaaVJ7Ny5k3k8HrZu3TrGGGOHDh2STZPQe06PHTvGH1ODBg3YihUr2GeffcbuuusuBoBNnTpVdhscSu+zr7/+mt13331szZo1bMuWLWzp0qWsVatWzOVy8X3nWLFiBXO5XGzFihWq+yIIIvUgGSaSmldffZUBYO+88w5jjLGKigpWt25d9sc//lG23bBhw9jatWvZyZMnTe0PALvllltEy7799lsGgE2ZMkW0/NNPPw3LW1aS4WHDhoXtKz8/n911112afSoqKtL1+PXXXw0cKWM7duxgOTk57A9/+AMrKysTPXfo0CHWrFkz1r17d/bOO++wzZs3s2eeeYZlZ2ezMWPGKG5TTYYPHz7MMjMz2eLFi/llRmW4ZcuWss95vV525513yj7322+/MZ/Px/r16yf7/NixY1mtWrXYs88+yzZv3szefPNN1qVLF3bhhReyw4cPh7X/4YcfWFFREfvoo4/YXXfdxZxOp0gy//3vf/OiLFy/srKSderUiTVo0IBftm/fPubz+dgVV1zB9uzZw3799Vf2wgsvMK/XywAovj/UZLiiooJ17NiR3XbbbfwyNRnWc05/+ukn/guANA/6xhtvZGlpaezMmTOy21F7n8lx6tQp1qBBA9auXTvNtgRBEIwxRtUkiKTm5ptvxj333INly5Zh8ODB+Pjjj3HixAk8/fTTonYjRoxAIBDAK6+8gsGDB6OyshKXXnop/vrXv6J3796G9lmrVi3R31x+rNLysrIyzW3Wrl07bJnP58P58+c11+3QoYNmGwB8yogedu7cid69e6N58+b4+OOPw36qf/jhh1FSUoJdu3bxKRFXXnkl8vLyMGbMGNx+++3o0aOH7v0BoZ/C27Zti8GDB/Ml87gqBGfPnkVxcXFY7q6Q2rVrY9euXWHLS0tL4ff7w14fjpUrV6K8vBx33HFH2HPr1q3DkiVL8Pbbb+Pmm2/ml1977bVo0qQJpk+fjmXLlonWadSoERo1agQAuP766wEAU6ZMwciRI3HBBRfwr3XLli35ShRAKHe8T58+mDVrFn755RfUqVMHrVq1wpo1a3DnnXfy1RMaNmyIefPm4Z577kH9+vUVz4cSCxYswPfff4+33nqLP88lJSUAQu/V06dPIysrCy6XS/c5zc3NhcPhQFZWVlgedN++fbF27Vrs27ePzwvm0HqfyVGzZk30798fL730Es6fP4/09HTD54AgiNSCcoaJpCY9PR233HIL1q1bh2PHjmHp0qXIysrCkCFDwtqOHj0aX375JYqLi/HRRx+BMYb+/fvjhx9+iEPPrcPj8eh6SPNRldi5cyeuueYaNG7cGOvXr5cV0F27dqF169ZhucGXXnopAPX8XCX27NmDwsJC5Obm8o8JEyYAAHr16iUSRzkuueQSnDx5EsePHxct5wZYKpXiWrJkCerWrYv+/fuHPceJIHdcHDVr1kSzZs10Hedll12GQCDA539fdNFFyMjIkG3LqnJrhYPh+vbtix9++AH79+/Hvn37cOjQIV6or7zySs39S9mzZw+Ki4vRvHlz/jy3b98eQKjMWm5uLn/O9J7T9PR0NG/eXPcxAfreZ0pw2xTmdxMEQShBMkwkPWPHjkUwGMScOXPw8ccfY9iwYYqyAQA1atRA37598cgjj8Dv94dNnpBoFBUV6XoMGDBAc1u7du3CNddcgwYNGmDDhg3Izc2VbVdQUIC9e/fi7NmzouVbt24FADRo0MDwcaxevRqbNm0SPbiBZy+99JJmdY0bbrgBDocjTPqXL1+O9PR0XHfddWHrbN++Hd988w1GjhwZVvEBCB0ngLAJHn777Tfs379f13Fu2rQJTqcTTZs2BQC43W7ccMMN+O9//yuafIQxhnXr1uGiiy5CXl6eaBsOhwPNmzdHq1atEAwGsXDhQnTo0MGUDD/88MNh55mrSXzXXXdh06ZNaNasGQBj53Tw4MEoKSkJmzTk448/RmZmJtq0acMv0/s+k+PUqVP48MMP0aFDB13VPAiCIChNgkh6unTpgnbt2mHBggVgjGHs2LFhbcaNG4f09HR0794d9erVw/HjxzFr1izk5OSERf0SDaWyWEb59ttvcc011wAAZs6ciQMHDuDAgQP88xdddBEuuOACAMD999+PG2+8Eb1798akSZOQl5eHwsJCzJo1C61btxaVtDt58iQ2b94MoDqi+Mknn+CCCy7ABRdcwKdTyJUZ42Sxc+fOouN89dVXMWbMGCxduhS33347AKBNmzYYO3Yspk2bBpfLhUsvvRTr16/Hyy+/jL/+9a+yaRLcTG5y7xkAuOmmm/D444/j7rvvxo8//ohOnTrh2LFjmDNnDs6dOyeaQOXPf/4zsrOzcdlll6Fu3br49ddf8fbbb+PNN9/E//3f//HnDgCefPJJfPLJJ7juuuswffp0ZGdnY/HixfjPf/6Dt956S9SHe+65Bz179kTt2rXx/fff47nnnsOPP/7In1Mh77zzDgDwUejt27cjMzMTAPg0j5YtW6Jly5ay5/miiy5Cz549+eVGzukDDzyAVatWYciQIXjyySfRoEEDvPPOO/jggw8wd+5cPp3ByPvs1ltvRaNGjdClSxfk5eXhwIEDmDdvHk6cOBFWNWL58uUYPXo0li1bhlGjRsm8mgRBpCzxTFgmiFjBTc7QunVr2edXrFjBevXqxerWrcu8Xi8rKChgQ4cOFVV60AMANmHCBNEypcFHchMGKA2gk26TMcYaN27MRo4caah/kcANVlN6SAdj/fOf/2TXXnsty8/PZ+np6axFixZs8uTJYQP1uPMg9+jRo4euPkkH0HHLpX3y+/1s2rRprFGjRszr9bIWLVqw5557Tnbb586dYzk5OezKK69U7cOxY8fYxIkTWbNmzVhaWhorKChg/fr1CxsotnTpUvbHP/6R5eXlMbfbzWrWrMl69OjBXnvtNdnt7t69m/Xr149lZWWxtLQ01rVrV9lJYm644QZWr1495vF4WH5+Phs1apTswD3G1CuLqKH0HmbM2Dk9cuQIGzZsGMvNzWVer5e1a9eOLV26VNTGyPts1qxZrEOHDiwnJ4e5XC52wQUXsEGDBrFt27aF7fv5559nAMKqTBAEQTgYM1lclCAIgiAShKFDh+LQoUMoKiqKd1cIgrAZlCZBEARBJDWMMXz++edYuXJlvLtCEIQNocgwQeggEAioPu90Og1Pd0sQBEEQRPyhuzdB6ECrLNmYMWPi3UWCIAiCIExAaRIEoQOtPENpqSuCIAiCIBIDSpMgCIIgCIIgUhZKkyAIDQYNGoT09HR+alo5hg8fDo/HgxMnTsSuY0nOvn374PP54HA4sH37dtFz7733Hm655RY0a9YM6enpaNKkCYYPHy6qR8vxyCOPoGPHjqhVqxbS0tLQtGlT/PnPf9acWXDjxo1wOBxwOBz49ddfNft75swZPPjgg7j22mtxwQUXwOFwYPr06bJtn3vuOXTt2hV5eXnw+Xxo1KgRhg0bpjjByw8//IAxY8agoKAAPp8P9evXx6BBg0RtevbsyfdX7iGcJe7DDz/E7bffjksuuQQej0d1praDBw9ixIgRaNSoEdLT03HRRRfhL3/5C3777TdRuyZNmijuWzr5hVLbu+66S+0UEwRBRAVKkyAIDcaOHYu1a9fi9ddfx/jx48OeLy4uxpo1a9C/f3/UrVs3Dj1MPoLBIMaMGYO8vDz8/PPPYc8//fTTyM/PxyOPPIKmTZvi6NGjeOqpp9CpUycUFhaKZjM7ffo0brnlFrRq1QpZWVnYt28f/vrXv+KDDz7A3r17+amLhZw9exbjxo1DQUGB7P7l+O233/Dyyy+jffv2uPHGG7F48WLVtn379kX79u2Rm5uL77//HrNnz8bll1+OHTt24OKLL+bb7tmzBz179kTTpk0xd+5cNGjQAMeOHcOnn34q2uaLL76IkpIS0bJz587huuuuQ+fOnZGfn88vX7NmDQoLC9GxY0f4fD7s2LFDtp8nT55E165dkZ2djSeffBKNGjXCzp07MW3aNGzatAk7duzgB46uWbMG5eXlovWPHDmCP/3pT2HiDgDdu3fH3LlzRcvo80MQRFyIY41jgkgIAoEAKygoYJ07d5Z9ftGiRQyA7IQIhDnmzJnD6tevz0+WIp1U48SJE2Hr/PTTT8zj8bCxY8dqbv/jjz9mANiSJUtkn58wYQLr2LEje/TRRxkAdvLkSc1tVlZWssrKSsYYYydPnmQA2LRp0zTX49i3bx8DwB577DHRNjt06MA6dOjAysrKdG+LY/ny5QwAW7x4sWh5MBjk/z9hwgTFSTdeeeUVBoBt3LhRtPypp55iANjXX3+tuv/p06fLrt+4cWPWr18/I4dCEAQRNShNgiA0cLlcGDlyJHbs2MFPFyxk2bJlqFevnmiK4UWLFqF9+/bIzMxEVlYWWrZsialTpxrar8PhwMSJE7Fs2TJcfPHFSE9PR5cuXVBYWAjGGObMmYMLL7wQmZmZuOqqq3Dw4EHR+hs2bMANN9yABg0aIC0tDc2aNcOdd94p+sm/rKwMHTt2RLNmzVBcXMwvP378OPLz89GzZ08Eg0FD/Y6UAwcO4PHHH8eLL76I7Oxs2TZ16tQJW1ZQUIAGDRrg6NGjmvvgpvN1u8N/HPvXv/6Fl19+GYsXL4bL5dLdb+6nfrPI9WnLli3YtWsX7r//fvh8PsPbXLJkCTIzM/GnP/1JtFxvGUCPxwMAyMnJES2vWbMmAISlPwhhjGHZsmVo2rQprrrqKgO9JgiCiC0kwwShgzFjxsDhcGDp0qWi5fv27cO2bdswcuRIXpxWr16N8ePHo0ePHlizZg3Wrl2LSZMmobS01PB+P/zwQyxevBizZ8/GG2+8gTNnzqBfv36YPHky/v3vf+OFF17Ayy+/jH379mHw4MFggvGw3333Hbp164ZFixZh/fr1ePzxx/HVV1/hiiuuQEVFBYCQzLz11lv45Zdf+PJwlZWVGD58OBhjeOONNzSFMBAI6HowHWN1GWO444470L9/fwwcONDQufr+++/xww8/iFIkpP08f/48du7cifvvvx8tWrTATTfdJGpz/vx5jB07Fvfffz86depkaP9mCAaDKC8vx//+9z/ccccdqFOnDkaPHs0/v2XLFgBAVlYWrr/+eqSlpSEzMxP9+/fH//73P9VtHzhwAP/6178wbNgwZGZmmurfjTfeiEaNGmHy5MnYu3cvzp49iy1btmD27NkYMGAAWrVqpbjuxo0b+VxnuS8JW7ZsQVZWFjweD1q3bo158+bJfvFyOBzo2bOnqf4TBEHoIp5haYJIJHr06MHy8vKY3+/nl02ePJkBYPv37+eXTZw4kdWsWTPi/QFg+fn57OzZs/yytWvXMgCsQ4cO/E/yjDG2YMECBoB98803stuqrKxkFRUV7IcffmAA2Pvvvy96/s0332QA2IIFC9jjjz/OnE4nW79+vWYfDx06xADoemzatElze88//zzLzc1lx48fZ4wxtmzZMtk0CSkVFRWsZ8+eLDs7mx05ciTs+WPHjon6cvnll7OffvoprN3kyZNZ06ZN2blz5xhjjE2bNk13moQQvWkSPp+P71OLFi3Yvn37RM/feeedDADLzs5mY8eOZRs3bmSvvfYaa9y4McvLy2M///yz4rYfeughBoBt3bpVtQ9qaRKMMfbzzz+zbt26ic7fkCFDNNM2/vSnPzGXy8V+/PHHsOfGjx/Pli5dyjZv3szWrl3Lhg8fzgCw2267Layty+ViV111leq+CIIgIoFkmCB08uqrrzIA7J133mGMhQSsbt267I9//KNsu2HDhrG1a9caFikOAOyWW24RLfv2228ZADZlyhTR8k8//TQsb/nEiRPszjvvZA0aNGBOp1MkM7Nnzw7b39133808Hg9zOp3s0Ucf1dXH8vJyVlRUpOtRUlKiuq3Dhw+zzMxMUX6rHhmurKxkt99+O3O5XGzt2rWybSoqKlhRURH74osv2CuvvMKaN2/OWrRoIZLJr776irlcLrZhwwZ+WbRleMeOHWzr1q1s5cqVrHPnzqxu3bpsz549/PPjxo1jAFifPn1E6+3cuZMBYI888oji8ebn57M2bdpo9lVNhn///Xd26aWXsjZt2rBVq1axLVu2sBdffJHVq1ePXXvttayiokJ2vd9++435fD5DecETJ07UlYdMEARhNSTDBKGTc+fOsZycHP4G//777zMAbPny5WFtly5dyrp168ZcLhdzOBzssssu0xVpFQKATZgwQbSMi8TOmTNHtHzTpk0MAHv77bcZY6EBUu3bt2cXXHABe+6559imTZvYtm3bWGFhoaKkFRUVMQDM6/WyX375RXc/KyoqdD2EkWw5+vXrx7p27cpOnTrFP/72t7/xUeXTp0+HrVNZWcnGjBnDnE4ne+2113T3+ejRo8ztdrN7772XX9amTRs2ZMgQ0f656Op3332nKfNCzAygKykpYXXq1GEDBw7klz388MMMAJs/f35Y+3r16rG+ffvKbot7bz777LOa+1WT4Yceeoh5PJ6wCPQ///lPxfc+Y4wf+LhmzRrN/XNw780XX3xR9zoEQRBWQKXVCEIn6enpuOWWW/DKK6/g2LFjWLp0KbKysjBkyJCwtqNHj8bo0aNRWlqKLVu2YNq0aejfvz/279+Pxo0bR72ve/bswX/+8x8sX74cI0eO5JdLB9lxlJaWYsSIEWjRogVOnDiBO+64A++//77mfg4fPowLL7xQV582bdqkmvu5Z88e/PDDD8jNzQ17rlevXsjJyRHVemZV+cXLli3DkiVLcNttt+nqBwA0aNAABQUF2L9/P79s79692Lt3L95+++2w9hdddBHat2+PXbt26d6HUbiBlsI+tWvXTrE9Y0xxINySJUvg9XoxYsSIiPq0a9cu1K9fH/Xq1RMtv/TSSwGEXjOl/detWxf9+/fXvS9WlVOud3AfQRCEVZAME4QBxo4di5deeglz5szBxx9/jFGjRiEjI0OxfY0aNdC3b1/4/X7ceOON2Lt3b0xkmBuwJK1A8Pe//122/V133YUjR45g27Zt+N///oebb74Zzz77LCZNmqS6n4KCAs2pqjmEtXPlWL16NcrKykTL1q1bh6effhovvfSSaGAcYwzjxo3DsmXL8Pe//1006EwPBw8exI8//igapLdp06awdsuXL8eKFSuwdu1a1K9f39A+jPLrr79i9+7d6N69O7+sb9++yMjIwCeffCJ6Lb7++mscP34cXbt2DdvO8ePH8fHHH+Omm26SraFshIKCAnz22Wf46aefRMe/detWAKEvFVK2b9+Ob775Bg8++KBstQ4lXn31VQCQPSaCIIhoQjJMEAbo0qUL2rVrhwULFoAxhrFjx4a1GTduHNLT09G9e3fUq1cPx48fx6xZs5CTk8NH1KJNy5YtcdFFF+Hhhx8GYwy1atXCP/7xD2zYsCGs7eLFi7Fy5UosW7YMbdq0QZs2bTBx4kQ89NBD6N69Oy677DLF/Xi9XnTp0sWSPstJ0OHDhwEAnTt3Fu3n3nvvxZIlSzBmzBhccsklKCws5J/z+Xzo2LEjAOCbb77BpEmTcPPNN6Np06ZwOp3YvXs3nn32WdSuXRsPPPAAv55c1Przzz8HEJogIi8vj18+Y8YMzJgxA5999hl69OjBL//kk09QWlqKM2fOAAhVG3nnnXcAANdffz0yMjJQXFyM3r1749Zbb0Xz5s2Rnp6O/fv3Y+HChSgvL8e0adP47dWsWRMzZszAAw88gFGjRuGWW27B8ePH8dhjj6FRo0ayk8CsWLECgUAAd9xxh+K5/uGHH/gvMd999x0A8P1s0qQJf64nTJiAVatWoXfv3nj44YfRsGFD7NmzB3/9619Rt25dDB8+PGzbS5YsAQDZzwYAvP7663jvvffQr18/NG7cGKdPn8bbb7+N1atXY9SoUWjfvr2ovcPhQI8ePfjXgiAIwnLimaNBEIkIlw/ZunVr2edXrFjBevXqxerWrcu8Xi8rKChgQ4cOVaz0oAQiyBlmLDSJQ+/evVlWVhbLzc1lQ4YMYUeOHBHlsn7zzTcsPT2djRw5UrS9srIy1rlzZ9akSRN26tQpQ/22EqUBdI0bN1asWtG4cWO+3fHjx9ltt93GLrroIpaRkcG8Xi9r2rQpu+uuu2SrTkhRGkDHLZdWyFDr16FDhxhjoXN7xx13sFatWrHMzEzmdrtZgwYN2G233cb27t0r249XXnmFtW3blnm9Xla7dm02fPhwdvToUdm2LVq0YE2aNFHN0ebOq9xD+l74+uuv2aBBg1iDBg2Yz+djTZs2ZXfccYfs+ePy6q+88krFfW/dupVdffXVLD8/n3k8HpaRkcEuvfRS9uKLL4omA2GMsTNnzvCDUQmCIKKFgzEdxT8JgiAIIsZ8/PHH6N+/P/7zn//gkksuiXd3CIJIUmikAkEQBGFLNm3ahGHDhpEIEwQRVSgyTBAxJhAIqD7vdDppRD1BEARBxAi64xJEjPF4PKoPblpkgiAIgiCiD1WTIIgYo1WKTFi1gCAIgiCI6EJpEgRBEARBEETKQmkSBEEQBEEQRMpCMkwkDIMGDUJ6erpoSl4pw4cPh8fjwYkTJ2LXsRTm6NGjGDRoEJo2bYoaNWogJycHHTt2xAsvvKA5UPC2226Dw+GQnbL3zJkzuPfee1G/fn34fD60aNECzzzzDILBoKjdP//5T4wZMwYtW7ZEjRo1UL9+fdxwww3YsWOH7mPYtGkTevfujTp16iAzMxPt2rXDc889J9rX4cOH4XA4FB/XXXed4vY3btzIt/v111/Dnv/+++9x0003oWbNmsjMzETv3r3x9ddfh7Vr0qSJ7L7vuusuUbvPP/9csZ/CyUkA4LnnnkPXrl2Rl5cHn8+HRo0aYdiwYdi7d6/qOdu3bx98Ph8cDge2b98e9vwvv/yCUaNGIS8vDxkZGejWrRs+++yzsHY9e/bUdT6nT5+uev5Xr14tas8Yw7Jly3DZZZehRo0ayM7ORqdOnXRNMU4QROpBOcNEwjB27FisXbsWr7/+uuzMW8XFxVizZg369++PunXrxqGHqUdpaSmys7P5GdH8fj8+/vhj3HPPPdi1axcWL14su95HH32EtWvXIjs7O+y5QCCA3r17Y//+/XjyySfRokULrFu3Dg8//DB+/PFHPPfcc3zbRYsW4bfffsN9992H1q1b4+TJk5g3bx66du2KTz/9FFdddZVq/zdu3Ig+ffrgyiuvxCuvvIIaNWrggw8+wH333YfvvvsOCxcuBADUq1ePn4JYyNq1a/H0009j0KBBsts/e/Ysxo0bh4KCAvz8889hz588eRJ//OMfkZubi6VLlyItLQ2zZs1Cz549UVRUFDaFdffu3TF37lzRMqX3+lNPPYVevXqJlrVt21b092+//Ya+ffuiffv2yM3Nxffff4/Zs2fj8ssvx44dO2Sn0A4GgxgzZgzy8vJkj6m8vBxXX301Tp8+jYULF6JOnTr429/+huuuuw4bN24UzdgHAE2bNsWqVatEy2rWrCn6+4477pD9wjFu3Dh89913Yc/dfffdWL58OSZNmoRZs2YhEAhg9+7dOHfuXPiJIgiCiOOEHwRhiEAgwAoKCljnzp1ln1+0aBEDwP7xj3/EuGeElKFDhzK3283KysrCnjt9+jSrX78+mz9/PmvcuDHr16+f6Pk33niDAWDvvvuuaPmf//xn5nQ62f/+9z9+2YkTJ8K2f+bMGVa3bl129dVXa/Zz+PDhzOfzsbNnz4qWX3vttSw7O1tz/Z49e7KMjAxWXFws+/yECRNYx44d2aOPPio7k93//d//MY/Hww4fPswvKy4uZnl5eWzo0KGitnLnSg652QiNsG/fPgaAPfbYY7LPz5kzh9WvX5+fiVE6O+Df/vY3BoB9+eWX/LKKigrWunVrdtlll4na9ujRg7Vp08ZUPw8dOsQcDge77bbbRMvXrFnDALA333zT1HYJgkg9KE2CSBhcLhdGjhyJHTt2YPfu3WHPL1u2DPXq1UPfvn35ZYsWLUL79u2RmZmJrKwstGzZElOnTjW0X4fDgYkTJ2LZsmW4+OKLkZ6eji5duqCwsBCMMcyZMwcXXnghMjMzcdVVV+HgwYNh29i4cSOuvvpqZGdnIyMjA927dw/72fjgwYMYPXo0mjdvjoyMDNSvXx8DBgwIO1buZ/A33ngDjzzyCAoKCpCdnY1rrrkG3377raFjixYXXHABnE4nXC5X2HOTJ09GvXr1cO+998qu++9//xsOh0P0OgJA//79UVlZiTVr1vDL6tSpE7Z+ZmYmWrdujaNHj2r20+PxwOv1Ij09XbS8Zs2aSEtLU133u+++w+bNmzF06FDZCPe//vUvvPzyy1i8eLHseQCANWvW4KqrrkLjxo35ZdnZ2bjpppvwj3/8QzPVJBpccMEFAAC3O/yHwwMHDuDxxx/Hiy++KHvMQOiYLr74YnTr1o1f5na7cdttt2Hbtm346aefLOnn0qVLwRjDHXfcIVq+cOFCNGnSBEOHDrVkPwRBJD8kw0RCMWbMGDgcDixdulS0fN++fdi2bRtGjhzJi8fq1asxfvx49OjRA2vWrMHatWsxadIklJaWGt7vhx9+iMWLF2P27Nl44403cObMGfTr1w+TJ0/Gv//9b7zwwgt4+eWXsW/fPgwePBhMUKRl5cqVuPbaa5GdnY0VK1bgrbfeQq1atdCnTx+REP/888+oXbs2Zs+ejXXr1uFvf/sb3G43Lr/8clnJnTp1Kn744QcsXrwYL7/8Mg4cOIABAwaE5dVKYYwhEAjoeuiF2+apU6fw5ptvYvny5Zg8eXKYUG3cuBGvvvqqqiD6/X44nU54PB7Rcp/PBwD45ptvVPtSXFyMr7/+Gm3atNHs91133QW/3497770XP//8M06fPo3XXnsNa9aswYMPPqi6rpKMAcD58+cxduxY3H///ejUqZPs+ufPn8d3332Hdu3ahT3Xrl07nD9/Ht9//71o+ZYtW5CVlQWPx4PWrVtj3rx5iq/3hAkT4Ha7kZ2djT59+uCLL75QPJZgMIjy8nL873//wx133IE6depg9OjRojbcsfbv3x8DBw5U3NaePXsUjwlAWD7yd999h1q1asHtduOiiy7CI488gvPnzytuHwAqKyuxfPlyNGvWTJR2EQgEsHXrVnTs2BHz589H48aN4XK50LRpU8ydO1f0uQSAUaNGweFw4PDhw6r7IwgiyYlfUJogzNGjRw+Wl5fH/H4/v2zy5MkMANu/fz+/bOLEiaxmzZoR7w8Ay8/PF/2UvnbtWgaAdejQgVVWVvLLFyxYwACwb775hjHGWGlpKatVqxYbMGCAaJvBYJC1b98+7GdjIYFAgPn9fta8eXM2adIkfjn3M/j1118vav/WW28xAGzr1q2qx8Otr+dx6NAhzfPDGGOzZs3i13E4HOyRRx4Ja3PmzBnWpEkTNmXKFH6Z3E//3Dn817/+JVr+2GOPMQDs2muvVe3L8OHDmdvtZtu3b9fV93//+9+soKCA77/L5WLPPPOM6jqBQIDVr1+ftWzZUvb5yZMns6ZNm7Jz584xxhibNm1aWJrETz/9xACwWbNmha3/+uuvh6UajB8/ni1dupRt3ryZrV27lg0fPpwBCEsT+Prrr9l9993H1qxZw7Zs2cKWLl3KWrVqxVwuF1u3bp1sf30+H3/8LVq0YPv27Qtr8/zzz7Pc3Fx2/Phxxhhjy5Ytk02T8Hg87M477wxb/8svv2QA2Ouvv84ve+SRR9iLL77I/vnPf7KPPvqITZw4kbndbnbllVeyYDAo21fGGPvkk09kz92xY8cYAJadnc0aNGjAVqxYwT777DN21113MQBs6tSpovZjxoxhLpdLlKZCEETqQTJMJByvvvoqA8DeeecdxlgoH7Fu3brsj3/8o2y7YcOGsbVr14bla+oFALvllltEy7799lsGQCR2jDH26aefivKWN2zYwPe1oqJC9HjooYeYw+HgJbuiooLNnDmTtWrVink8HpGUXnfddfw+OJl96aWXRPv+3//+xwCw1atXqx5PSUkJKyoq0vUoLy/XdY6OHTvGioqK2Keffsoeeugh5vV62cSJE0VtJkyYwJo3b87Onz/PL5OT4ZMnT7JatWqxVq1ascLCQnbq1Cn2+uuvs5ycnLBzIYXLzX3++ed19Xv79u2sTp06bMCAAewf//gH++c//8keffRR5vV62YwZMxTX+/DDDxkANmfOnLDnvvrqK+ZyudiGDRv4ZWoyPHv27LBtcDKs9cVm4sSJDAD7+uuvVdudOnWKNWjQgLVr1072+R07drCtW7eylStXss6dO7O6deuyPXv28M8fPnyYZWZmssWLF/PL1GT4rrvuCtsHJ8NvvPGGal/nzp3LALD33ntPsc3NN9/M3G43O3bsmGg5d07lzt2NN97I0tLS2JkzZ1T3TxBE6kEyTCQc586dYzk5ObxEvf/++wwAW758eVjbpUuXsm7dujGXy8UcDge77LLL2Pr16w3tDwCbMGGCaNmhQ4dkZUg6eGnlypWa0dcjR44wxhi75557mNPpZFOmTGHr1q1jX331FSsqKmLt27dnPXr0UNyHtE/Lli1TPZ7KysowMVd6mGX27NkiSfvqq6+Yw+Fga9asYadOneIfDRs2ZH369GGnTp0SDbbbtm0ba9WqFX+OateuzZYsWcIAsLFjx8ruc/r06QwAmzlzpu5+Xn755eySSy5hgUBAtPzxxx9nTqeTfffdd7LrDRo0iHk8HtkBfG3atGFDhgwRHedDDz3EALDvvvuOlZSUMMZC72OHw8H+7//+L2wbL7zwAgPAvv32W9X+FxYWMgDsxRdf1DxWLjrKRauVKCkpYXXq1GEDBw7kl/Xr14917dpVdEzcQLlNmzax06dP823z8/PZkCFDwrbLfYH49NNPVfd//PhxBoA9+OCDss+fPHmSeb1edsMNN4Q9x51TucGPf//73xkA9tVXX6nunyCI1INKqxEJR3p6Om655Ra88sorOHbsGJYuXYqsrCwMGTIkrO3o0aMxevRolJaWYsuWLZg2bRr69++P/fv3iwYtRQtuauXnn38eXbt2lW3DlcZauXIlbr/9djz11FOi53/99dewUlORsHnz5rCSW0ocOnQITZo0MbyPyy67DACwf/9+dOzYEfv27QNjTLYE2dGjR5Gbm4tnn30W999/PwDg0ksvxb59+3D48GGUlpaiefPmfO3gK6+8MmwbTzzxBKZPn47p06cbGiC5a9cu3HLLLWH5y5deeikqKyvx3//+F02bNhU998svv+DDDz/EwIEDZQfw7d27F3v37sXbb78d9txFF12E9u3bY9euXUhPT0ezZs1kB4Pu3r0b6enpYfuWwqpyYJ1O7eEfXFuHw6Hajhtoun//fn7Znj178MMPPyA3Nzesfa9evZCTk8PX/77kkksUjwkIL++mhNIxvfbaa/D7/bK52unp6WjevDmOHz8e9pyRc0UQRGpBMkwkJGPHjsVLL72EOXPm4OOPP8aoUaOQkZGh2L5GjRro27cv/H4/brzxRuzduzcmMty9e3fUrFkT+/btw8SJE1XbOhwOfpAYx0cffYSffvoJzZo1s6xPnTt3RlFRka62BQUFpvaxadMmAOD7fd111/HLhAwbNgwXXnghZs2aJXuMnIgzxjBv3jwUFBSEfel58sknMX36dDz66KOYNm2aoX4WFBRg+/btCAaDIiHmago3aNAgbJ1XX30VFRUVGDt2rOw25Y5z+fLlWLFiBdauXYv69evzywcNGoQFCxbg6NGjaNiwIYDQhCPvvfceBg4cKFvRQdoXAIpftDhOnTqFDz/8EB06dNCskvHrr79i9+7d6N69O79s9erVKCsrE7Vbt24dnn76abz00kuiwYqDBg3C+PHj8dVXX+Hyyy8HEBrYtnLlSlx++eWa76kVK1aoHtOSJUtQUFAQVm2EY/DgwZg1axa+/PJL/OEPf+CXf/zxx8jMzNQ1sJIgiNSCZJhISLp06YJ27dphwYIFYIzJism4ceOQnp6O7t27o169ejh+/DhmzZqFnJwcXHrppTHpZ2ZmJp5//nmMHDkSv//+O26++WbUqVMHJ0+exH/+8x+cPHkSixYtAhAqHbZ8+XK0bNkS7dq1w44dOzBnzhxZIYuErKwsdOnSxZJtTZs2DSdOnMCVV16J+vXr4/Tp01i3bh1eeeUVDBkyBJ07dwYA5OfnIz8/P2z9tLQ01K5dGz179hQtf+SRR3DJJZegXr16OHLkCJYuXYqvvvoKH330kagM2rx58/D444/juuuuQ79+/cJmWBMK1dixY7FixQp89913/BehSZMm4d5778WAAQNw5513IiMjA5999hnmzZuHa665Bu3btw/r85IlS9CwYUP06dNH9pxIjwUIlcMDQl+OuF8LAOCBBx7Aa6+9hn79+mHGjBnw+XyYPXs2ysrKMH36dL7d66+/jvfeew/9+vVD48aNcfr0abz99ttYvXo1Ro0aJernrbfeikaNGqFLly7Iy8vDgQMHMG/ePJw4cQLLly/n2xUXF6N379649dZb0bx5c6Snp2P//v1YuHAhysvLRV8s5MSUq8DQuXNn0ftpzJgx+Nvf/oYhQ4Zg9uzZqFOnDl588UV8++232LhxI9/uX//6F2bOnMnPYFhWVoZPPvkEL7/8Mq666ioMGDAgbJ9fffUV9u7di6lTpypWI3nggQewatUqDBkyBE8++SQaNGiAd955Bx988AHmzp0rev+MGjUKK1asMP0LCEEQSUI8czQIIhK4ov+tW7eWfX7FihWsV69erG7duszr9bKCggI2dOhQvtKDXhBBzjDH5s2bWb9+/VitWrWYx+Nh9evXZ/369RO1O3XqFBs7diyrU6cOy8jIYFdccQX717/+xXr06GFpzrCVfPDBB+yaa65hdevWZW63m2VmZrLLLruMPffcc7pyjpUmkrj77rtZo0aNmNfrZXl5eWzw4MGyr1uPHj1U87GFjBw5UrZCxrvvvsuuuOIKlpeXx2rUqMHatGnDnnzyybCJOBgLVZ4AwB5//HHNYxMiN4CO4+DBg+zGG29k2dnZLCMjg1199dVsx44dojZbt25lV199NcvPz2cej4dlZGSwSy+9lL344othVRdmzZrFOnTowHJycpjL5WIXXHABGzRoENu2bZuoXVlZGbvjjjtYq1atWGZmJnO73axBgwbstttuY3v37tU8JqUBdIyF8n5vv/12VqtWLZaWlsa6du0qGlDIGGMHDhxg119/Patfvz7z+XwsLS2NXXLJJWzmzJmyk7Uwxti4ceOYw+FQzOXmOHLkCBs2bBjLzc1lXq+XtWvXji1dujSs3eDBg1l6ejo7deqU5vESBJG8OBiTFF4kCIIgiBQgPz8fI0aMwJw5c+LdFYIg4gjJMEEQBJFy7N27F926dcP3338vSl0hCCL1IBkmUhatGdacTieNPCcIgiCIJIfu9ETK4vF4VB9jxoyJdxcJgiAIgogyVE2CSFm0yovRT6cEQRAEkfxQmgRBEARBEASRslCaBEEQBEEQBJGyUJpEFKmsrMTPP/+MrKwszSlQCYIgCCJZYYzhzJkzKCgooIHJhO0gGY4iP//8Mz/FKkEQBEGkOkePHrV8Vk2CiBSS4SiSlZUFADh66DVkZ2fEuTeEKoEK/W3dnvjuP1rIHZcd+mVHovEeIAg9aH0mbfreLCk5h4YXjuDviwRhJ0iGowiXGpGdnYHs7Bpx7g0hS8Bf9R+dNxC3N2pd4eH7ZIJY9M8MkRyTXbHruSaSH7XPk83fl5QySNgRkmGC0EMsbzA2v5mZQu2YklGUCYIgiISBZJhITUjA7IOcKCfC6xPwJ+cXF8L+uL3KnxF6XxKEYUiGidTDiGjRTSU+KJ33RJBkgiAIIqEgGSZSC70yRRJsT+KRbkHvBcKOUHSYICyDZJgghNANJHGh145INdSEOIkoKyuD32/9cXq9XqSlpVm+XSLxIBkmUgelmwZJFEEQiYqSECdJdLisrAy5NfNRVl5s+bbz8/Nx6NAhEmKCZJhIAUiCCYJIRZJAiP1+P8rKizHouoXwuNMt225F4DzWrLsPfr+fZJggGSaSHKkIJ/iNgSAIIowUSJfwuNPh9VgnwwQhhGSYSG5IfgmCSGWSIDpMENGGZJggjOI0+LGpDESnHwRBEBxUXYIgTEMyTBB6MCrA0nVJiAmCIExT6XEg6HFatz3QtNBENda9swgi2XC6qx+RQCJMEEQsoGnPCcIUFBkmCI5IpVcKSTBBEARB2B6SYSK1sVqACYIg7ArlDhOELGQCRGoSbQmmqDBBEPEgScusVXhcgNdl3fZg3baIxIdkmEgdoinA8ZRfO9z4KNpEEIkBRYcJIgySYSK5iZYAx0J+7SC5etHTV7oBE0RsSNLoMEFEC5JhIvlItBSIVLlp0bTYBGEPKDpMECJIhonkIFEEOFXE1wg0ZTZBEAQRR0iGicQlEXKASX6NIzxnJMYEYQ6tVIkEiw77fW4wr3XX/AoH6Q9RDb0biMTC7gJM8mstJMYEQRBElCEZJhIDuw6EI/mNHSTGBEEQRBQgGSbsSzQEmOQ3OeBeB5JiglAmyVIlCCJakAwT9sFK+aWc39SApJggUoKgxwmnx2nd9ph12yISH5JhIr5YHf2lvN/UhKSYIOShmsMEoQnJMBF77Jb+QDeK5IGkmCAIgjAIyTARO+yUBkECnNxQLiRBVEPRYYJQhWSYiD52kGC6EaQeJMQEQRCEDiiDnIgOTnf1I1IqA9UPIwT81Q9CHbc38gdBEPZF6TOaINfHgMeFCq91j4DHZbovs2bNgsPhwP33388ve++999CnTx/k5eXB4XBg165dYev17NkTDodD9Bg2bJioTZMmTcLaPPzww6b7SuiDIsOE9cQzEpwgF/aoEG8h1dp/PF4big4bx8zrROeYSBGKiorw8ssvo127dqLlpaWl6N69O4YMGYJx48Yprj9u3DjMmDGD/zs9PT2szYwZM0TbyMzMtKDnhBokw4R1xEuCU0GAk0E2pMeQCq+b3bHqNVDaTjK8b5MJyh2OiLNnz2L48OF45ZVX8Ne//lX03IgRIwAAhw8fVt1GRkYG8vPzVdtkZWVptiGshdIkiMixKh0C0J8OkYwpEKmWgpAqx2k3YvnZSbbPaDIg/ayl+OeupKRE9CgvL1dsO2HCBPTr1w/XXHON6f2tWrUKeXl5aNOmDR544AGcOXMmrM3TTz+N2rVro0OHDpg5cyb8fvoMRRuKDBPmiXUkOBluqil+49FE7vwkw+seb+J9DmkqbfuRYK9Dhc8F5jOf5yslgNC2GjZsKFo+bdo0TJ8+Paz96tWr8fXXX6OoqMj0PocPH44LL7wQ+fn52LNnD6ZMmYL//Oc/2LBhA9/mvvvuQ6dOnZCbm4tt27ZhypQpOHToEBYvXmx6v4Q2JMOEOayMBKsR75u4WRLsRmNrSJDNY8fzRLWgCRtx9OhRZGdn83/7fD7ZNvfddx/Wr1+PtLQ00/sS5gG3bdsWzZs3R5cuXfD111+jU6dOAIBJkybxbdq1a4fc3FzcfPPNfLSYiA4kw4QxSIKroZt5/BCee633SqoNokuEzw5AUkzYguzsbJEMy7Fjxw788ssv6Ny5M78sGAxiy5YteOGFF1BeXg6Xy3jUulOnTvB4PDhw4AAvw1K6du0KADh48CDJcBQhGSb0Y1WZNCXsehOnm7W94V4ftfdPKgixXT8/WqTCa0MkNFdffTV2794tWjZ69Gi0bNkSDz30kCkRBoC9e/eioqIC9erVU2yzc+dOAFBtQ0QOyTChTbSjwUZv4tEeuU435sREa6R8sklXJPJr5XmwQsKT7bUhkoqsrCy0bdtWtKxGjRqoXbs2v/z333/HkSNH8PPPPwMAvv32WwBAfn4+8vPz8d1332HVqlW4/vrrkZeXh3379mHy5Mno2LEjunfvDgDYunUrCgsL0atXL+Tk5KCoqAiTJk3CwIED0ahRoxgecepBMpxKmBnEEs1osN6bqFw7K2+cdBNODvS8nxJdumJRA9jIZ74yYF1ON6VNECoE3E7AbV0BrEDQ2mJaH3zwAUaPHs3/zU2mwQ3I83q9+Oyzz7Bw4UKcPXsWDRs2RL9+/TBt2jQ+suzz+fDmm2/iiSeeQHl5ORo3boxx48bhwQcftLSvRDgOxhiLdyeSlZKSEuTk5KD4t3eRnV0j3t0xdrOJZjQ4EgkGIr9Z0s02OUm2ySKsiLhqHZ/C55w5HJqbdsjdOqSfd7PHYOfXhTBFSUkpcmoPRnFxsWaOrni90H2021/egduXYVl/AuXnsHX+zYb7QyQnFBlOBYxGhCMV4UjygqOV90g31+THzIQCej4biZqLq/ael3zG5eQ3yCoUV3c5PKJ1eDHmtstdA/Tkc8uR6BF8giASCpLhZMfoT49W1g6W64fe5XIYuTnSjZQwSqJKrxSl976GAAvlt5IFVXfBPe90VA8ccjk8/P8dwn0JUymS5RwTBJFUkAwnM0ZuPNFKi4ilBJMA25No53yr7SfV0CHCQgnmBFgov9KIcJCJP9Muh1vUlpPgShbk5Zhb5mAstG8zkWKKDhMCKrxOayfdYDQBL1ENyXAyEuu0CEB/bjBJcPJi5LW1Oh+cRFj+3OmUYO5vofgqRYeFy50OF4IsIBJkIbwUy0WKSYgJgrAJJMPJhlEpiIYIRyrBgPYNMJIbpNHR8kQ40ZJPklrrkBFhLQmWLhc+J4STXy4yzEWFlcTY5fCI84qNpE6QEBMEEWVIhpOJWOcH64kGWynBZm+I0cqDThVIUO2NzoiwnAgblWCh9ArbuRxuUcqEnBRbkjpBEAQRBcgSkoVYR4StjgZbKcHRnikv2SEpSWwiFGGtVAmtwXVCKZaDjxILhRhQl2KKDhMEEUVIhpOBWOYIW50bbJUER3uWvGSG5DcpkRNhrbQI6XIhSqXWuDQJOYSD6gAux7hCWYgB5XxiEuKUJuBzWTqALsis2xaR+JAMJzqxrBgRq2hwLCcFEZIqIkzym7xUfS6UIsKhZeEirBQNVqs1rKeNnChzcswcDmUhJgiCiCEkw4mMVGoMFNk3jJYIJ7IEA8l9Myb5TV50fGbk8oHVcDpc/DrCdAe961e3D6hug5u4QzFlgqLDBEHECJLhRCWZRNjklLERQwJMJBMKUWEhcoPiAMgMduOqRQT4v52Sn5WFKRDS6K/wObEAu0XtRUIsRSmHmISYIAiLIRlORGIlwvGMBkezAkQySjDJrz2J9HWJMKfeaFRYOvBN+Lc0wisVZjmElSbktisabGckXYKEmCAICyEZTjRiGRFW22+0osEkwfpJRgHWOqZEECArXxe95RJ1RIWFCCO5UgGunkVO/rMYZAFRKoXSdqWD58TbqBDty1T+MAlxSuF0W3t7YGQ/hAB6OyQS8UqNsFKESYLNk4zyCxifuU5PtDQe58qmr4+cGAtlViqsLoebF2Tp9MpBVgEPqitTSOsNK8kvR3V6RPiUzorpEmqQEBMEYQEkw4mCHVIjIp1AQ2NyAMtJBgm2qWBZRrQmZdE73a9VxPp1Eh6rjgoSoeXiz4NQXIVy6nGmiWeMqwwAgdLQbrn9On1gzjRUVJYhyCrgZC64ZEq3yUmv8G9pP/jjMfLZJSEmCCJCSIYTgUQT4XhKcDIIMJD8EgxEf3bCWEWJk+S1Eoqqg7EqCfaHHtznyn+O/+w60jLhFUixv/K87u1LZ6hTnahDzxcbEmKCICKAZNjuxKqOcKKLcDJIcJJIVcyJpwTF4zUzEBWWm1VODafDFZJSxngRZv5SIOgHggHAVfXZdXnhqAwA3gw4vBnwONP4/YlTJ7QH7glzi02lSnCQECc1Hm8Qbp/67IdGCFRaty0i8SEZtjNGZpazSoTN5gfrGSRHEhxOKguwkVSGSGpTxzplwmpM5tnrnV5ZWAItyCpQ6QjC40yDw5sBAHAAQKUPLFAuv6PKABxONz+7nBBhrrEhzE7EQUJMEIQJSIbtSjwiwlaJcCyiwSTByYHwvSJ3TqwSm2gIcbyjwlUYmW1O2E5IWOWHypAku70ZoX2WnUVYcQmZz7Q01UFu8g4hwvQI1VQJI5AQEwRhEJJhO2KRCHM3ScWfHZVE2Mq0CJJgMSTByhgVmFRIj9AZFVZKj5AiPxFHBf+vVEYDDsDtdANpmdX5w4Ds51AuCqxUgk0N2TJrRr/M6C1JRxAEAZJh+2EkOhaNiHA0yqZZAUkwESmJli6h4/PFfeEFxCIsjQgLUyakUeLyoAM+V/UXZpfDI4oSe53pcDpc8HrS4fRm8tLLfclmDkcovUJHDqZS6TW1msQRQVFigiB0QDJsdyIQ4ahFhGOZFkESTMiR7FFhtc+YzKA5LREWLuPEuDzowNkKN/yV1ULtdTL4XEGUB6uvHT5XMTxOBp+LweNMg9eZHuqGw8XXJBbuQ2myDm7/UZFeNShKnBR4fZWWDqBzVlZati0i8SEZthN6S6gpiKYwSpTwIkwSTEQDu0eHtQaiqsw0J/x/paTmL/d3edCBikonAKA86ERpwInyoLNquQMeJ0NFlRyXB6uvJ5meSvhcDD5XJWq4zyDTE4TPxeByeOBx+kTdrdSZ9ystr8YdgyhVI5JUCSkUJSYIQgGSYbtgpJawWfSKMNdOS2qjkR9MEkxokaxCY1KE5cSXI1yEHSgPOuGvDP2/xO+q+teJikrgfBAoCwIVlUCZQIbTXA54nECuF8j0MGR6KpHtDcLjZMjynIPHyZDhditGfY0OjIuoxJoaFCUmCEIGkmE7EIvKEUZFWA7pDF+R9kkKibA9STaBsGN02GIR5tIW5ESYiwafrXCixO9ESQVwpiIkv2UBwF8JnPYD50qrBdbrDW03M60S2R4HavocqJPmQqYnlD5ROy2AWr4AMj0VqAD4usNCOCGWpkoYqiJh1WtHUWKCIASQDMebCEVYmBqhiBkRlu6LRFgZu4mVWfTM8gUkh0TYRYj11E/WMd2yHhE+U+EKiwZzIvzLeQcvwP5yF0rPunkZ9pe74K3K1cyoUYHc2uXIqFGB0+VATR9QJ80BwI3yoBOZniCyPEF4nOXIcIf6LaxjrCa9Mc8nTqb3cwrg9lTC7bEwzzdAOcNENSTD8UTpZqwzD1dOhFV/WrSjCCeqBNtBpCLF7DEkS1TNrBBbIdJ6JxGxKCKsR4RP/56GQIUDp35Pw9kSL1ylQXjKg3AiiACACp8LZ2t4ca7Ug9xaZTiXGUCt7AoADEAo75jLM/Y6GYCApEqFmxdiNfHl2siWWIsGJMUEkfKQDMeLWIiwnoiw9CZDIqxOokuwVf1PFiE2SyQirec5wefLqohwedAZJsKny6tFmIsGl/zuRUaJH+mlFfD4g3BVVCLoCQ26O5flRUkgDf5yF2rWKqvqBSfEDgBO+FwuZHqC/EA8n6t6YJ9QiLn+q1WfUDxP0fgcpvp7miBSGJLheBAFEda9PzkRVhLbaIlwoklwIgtwNPue6vLAHbvaOdY7XbQQHSIsLGUm/FsuR5j792wFVzUiNEiuLOhASQUQqHAiUOGA3++Cv9wFT3kQ7kAlL8Le8gD8VbcKT3kQGSV+lLlDEWKfL1iVMhGqROFxOqrqFof2CYR+is5wc/2Ul1/Ds89FU4i57RMEkTI447XjWbNmweFw4P777+eXMcYwffp0FBQUID09HT179sTevXtF65WXl+Oee+5BXl4eatSogYEDB+LHH38UtTl16hRGjBiBnJwc5OTkYMSIETh9+rSozZEjRzBgwADUqFEDeXl5uPfee+H3iy+uu3fvRo8ePZCeno769etjxowZYJGMcBbO4CRF58VXSYQVo8JWTKiRqiKs9nrZGa7fseh7op4jK3F7lR961uNwug2LMCe/alUjuNJp3OM8Vy0iEJJiv9+F8nIXAhVOXoY95dUiDADe8gC85QF4/CFRrgyEconLy12haHJFaJslFaiS7uqBelyfpTPRyc1Mpzhbndx1J5rCmurvaYJIMeIiw0VFRXj55ZfRrl070fJnnnkG8+fPxwsvvICioiLk5+ejd+/eOHPmDN/m/vvvx5o1a7B69Wp88cUXOHv2LPr3749gsPoieuutt2LXrl1Yt24d1q1bh127dmHEiBH888FgEP369UNpaSm++OILrF69Gu+++y4mT57MtykpKUHv3r1RUFCAoqIiPP/885g7dy7mz59v7qDNXFx1imfURFjuZh0JiSbCiUQsBTje+7dyH/GKAGpEg60S4dD/q/8VpkdwUeFzZ918VNhVWh0V5uRX+HBVVFZHh0td/IC7smBom2VBbjIPZ1gfOCEOsoCkPnL4dYF73vCvYFaSaNeAJMfjCcLrte7h8Vg3gQeR+MQ8TeLs2bMYPnw4XnnlFfz1r3/llzPGsGDBAjzyyCO46aabAAArVqxA3bp18frrr+POO+9EcXExlixZgtdeew3XXHMNAGDlypVo2LAhNm7ciD59+uC///0v1q1bh8LCQlx++eUAgFdeeQXdunXDt99+i4svvhjr16/Hvn37cPToURQUFAAA5s2bh1GjRmHmzJnIzs7GqlWrUFZWhuXLl8Pn86Ft27bYv38/5s+fj7/85S9wGLlIByoAqPwEaGV6hJxwmskRTuX84ES5Cdq1n/RTszIan3XhZ1yvCEsRS6hTIMShSLAQvz80iI2LCrsQLgiuilCqQ9DjhLc8gKDHiQpf9eC3QIUjtL63EhWVoQhxedABj1OcLiEcTMcRcQWJaFcFSfVUIIJIEWIeGZ4wYQL69evHyyzHoUOHcPz4cVx77bX8Mp/Phx49euDLL78EAOzYsQMVFRWiNgUFBWjbti3fZuvWrcjJyeFFGAC6du2KnJwcUZu2bdvyIgwAffr0QXl5OXbs2MG36dGjB3w+n6jNzz//jMOHD8seW3l5OUpKSkQPVZR+SjUgn6KosNyAOTURluuP8F+DfVGERNg64h0BNoKwr1b3227b0ULus66QFgHoE2EOaVQYAC/C0vQIIJQr7BeIcXl5tYwKJdfvc6PC60LQ4wwJsNfFLwu45W8dZYL98NsRzGinFB0WHrMiesY2RINE+KwRBBERMZXh1atX4+uvv8asWbPCnjt+/DgAoG7duqLldevW5Z87fvw4vF4vcnNzVdvUqVMnbPt16tQRtZHuJzc3F16vV7UN9zfXRsqsWbP4POWcnBw0bNhQtp1RhD+bcjgYi1yEuZuL8EZNImw/EkmA9WCVHEe6bizOp84vvMK0CDkR5lCfZrk6PYKjWo7B/1sm+Ej6BSLM1RI+X8PDSzAnv6VZPvh9br6qBHcIodqv4RFfYX9Cf+u/1SjmDauhJ0ebIAhCgZjJ8NGjR3Hfffdh5cqVSEsLn52IQ5p+wBjTTEmQtpFrb0UbbvCcUn+mTJmC4uJi/nH06FHVfsuicJPUjVERFkIibB+STYDViOQ4ja4Xi3OqNoBOJhoszQ8GwkVYbZplIcL0CGFUGKiuIMH9P1BRffnnJjPguiYU4vOZXlF0+HwNjyiCzFEWFP8LQCZaLX890503bHSKeKtIhc+hzfH5gpY/zBLNAgBNmjSBw+EQPR5++GHTfSX0ETMZ3rFjB3755Rd07twZbrcbbrcbmzdvxnPPPQe3260Ydf3ll1/45/Lz8+H3+3Hq1CnVNidOnAjb/8mTJ0VtpPs5deoUKioqVNv88ssvAMKj1xw+nw/Z2dmihyIGokWaSAfMGRHhCNM0NPuUCNjlRpdKAixHJEKsdt5idV7VopMSCQbk0yIAdRGWyxOWRmGFy4BQNFiauiBEKgWc6Fb4XDiX5UWF14UKb+j/nAgHa1TPSicHlzcsh1TgTUWC1aAoMRFFol0AAABmzJiBY8eO8Y9HH300JseWysRMhq+++mrs3r0bu3bt4h9dunTB8OHDsWvXLjRt2hT5+fnYsGEDv47f78fmzZvxhz/8AQDQuXNneDweUZtjx45hz549fJtu3bqhuLgY27Zt49t89dVXKC4uFrXZs2cPjh07xrdZv349fD4fOnfuzLfZsmWLqNza+vXrUVBQgCZNmlh/ggyIsGx6RCQ5wsL/K4gwF8EyPYjPjthBPFNdgKVYkToRjRxlLdTkS2MwrJYIK7VTrh4hlmIOLlXCL5iFlhNarzcIry/0cLpDIhxwOxFwO3G+hgfna3gQcDtFIuz1hUblc6SpjIMTpm5U999E3rARSIrtQ5Jc34QFAITpmtICAG3btsWKFStw7tw5vP766wDAFwCYN28errnmGnTs2BErV67E7t27sXHjRtF+srKykJ+fzz8yMzNjepypSMxkOCsrC23bthU9atSogdq1a6Nt27b8Tw5PPfUU1qxZgz179mDUqFHIyMjArbfeCgDIycnB2LFjMXnyZHz22WfYuXMnbrvtNlxyySX8gLxWrVrhuuuuw7hx41BYWIjCwkKMGzcO/fv3x8UXXwwAuPbaa9G6dWuMGDECO3fuxGeffYYHHngA48aN46O5t956K3w+H0aNGoU9e/ZgzZo1eOqpp4xXkrAYVREWoiSkwjxhDg0RVty/HIkkwvHef7z7YGcS5dyYiAYbFWGlPGE1pCkJ0ioSsofiqeQlN1jDhXPZXpzL9qLC5wpFibO9IhF2eyrhE/xfCTN5w6oY/eVKb91nwnqE17mAhV904kS0CwBwPP3006hduzY6dOiAmTNnhs2BQFiPrWage/DBB3H+/HmMHz8ep06dwuWXX47169cjKyuLb/Pss8/C7XZj6NChOH/+PK6++mosX74cLld1WGLVqlW49957+TfdwIED8cILL/DPu1wufPTRRxg/fjy6d++O9PR03HrrrZg7dy7fJicnBxs2bMCECRPQpUsX5Obm4i9/+Qv+8pe/RH6gKjVGAQMTa0jhLjpaIizXl0hzldX2ayfiLVnx3n8iYfeyVhFEgwH9IlzdXjk9QporLESYIlEm8xF1exjKy8XLvL4g/AhdU4Pu0L/OquWc/Hq9Qbg9DF5vUDUqrBfh7HRcyTVuZjrmcGhf//SgZ9ZAtfUI/STItU5a9cnn84mqSHFwBQCKiorCnlMrAPDDDz/wbbQKAADAfffdh06dOiE3Nxfbtm3DlClTcOjQISxevNjcARK6iKsMf/7556K/HQ4Hpk+fjunTpyuuk5aWhueffx7PP/+8YptatWph5cqVqvtu1KgRPvzwQ9U2l1xyCbZs2aLaxjAmRTgMpfQIPSIsrRxhhYzbWYTjfVGO9/4TmWgIcaTTJ6u1MyjBgLYIy5VVU8rHFcLVFlY8BE8lX2dYmDfs9lSKBtcJEYowFxXmn3MCaTK1hIVUVDpk6w3HHOHrZ8X7gYg6bg+TrVxiFla1LWnVp2nTpoU5CFcAYP369VEvADBp0iT+/+3atUNubi5uvvlmPlpMRAdbRYZTDqvzhPUIqYYIa+5bjniKsJ1F0859S1WseE0sEmFx1Ff+J2Sl9gDCosKAMFqs70t1dc6vC6iacMPvd8mmPXDLOBHmxMTtqRRFhrWixOVBBzIkp8rw5BtOt3XXHRLelObo0aOiwe5yUWFhAQCOYDCILVu24IUXXsC3334LIBT9rVevHt9GqQCAMDr8yy+/8OOZ5OjatSsA4ODBgyTDUSQu0zGnLFZcdM2IsDRPWCUiHNfpT9WI5gQOVmPnviUidplgw2DeqRkR1kqPUIsKW5GT6/NVT1cbqiFc/eCWcyIcNoDOZGjF0kFzBGEQaQUoORmOVQEAOXbu3AkAIskmrIciw7EigvQIPjIrFV6LRdgw0Y4IJ6JQJmKfUwE9r4ua6GpJsMbnyYwI64kKG6FMRqLFEWAXAhUOxfqr3HKhCHNRYW9VVzySf5UQHhuXJyx8zuVQmb6eIGIMVwBAiLAAAAC+AEDz5s3RvHlzPPXUU4oFAGrXro1atWrhgQceEBUA2Lp1KwoLC9GrVy/k5OSgqKgIkyZNwsCBA9GoUaPYHnSKQTIcC9ySC7vZ9AgOvcKlQ4RtGQlORKFMxD4nEtEeTKe0bT37NCnC4jbyIqxUWo1DaeCctJIElzuc5gYg+A4rrDIRyv8NpSrISTGXFiEVYS4tQitfOFLCBtFZmSpBWEsUroceb1C1trVhAtbWt7aiAIDP58Obb76JJ554AuXl5WjcuDHGjRuHBx980NK+EuE4GLNiiC4hR0lJCXJyclD827vIzq4RWmgwIhsWFTY7YM6kCCvmC0fjJpSIQpmIfU5EIhVhpdfJQgkGjImwnPBqTbghnExDrooEly/MDZ47HxTLcFnQgbJAqNZwWVA8Ex03mA4QT9MsRCjCAHgZzvaGZNjjBHK9ochwtrcSHieDz8WQ6QnC62TwuaqXuRweOB0uuBxu/v8A+L8BVD1fHUwIux6RDNsTmc9bSck55NQdhuLiYvUJqcLWC91Hh76zHN4aGZZ10V96Dm/dPMpwf4jkhCLDNsa0CAtRuKnbRoQTVSYTtd+pitsrfs0slmDAnAgLMRIVNpoi4XFCsbIEVz3C6w3yQqwUgZMTYa+gK1aUWJNCaRMEQUQbkuFYYkWeroV5wqZI5UgMCXB8sCo9Qms7BusGC9Eqn6b0nNyAOaXl0oFzwioSZuDEtSwoFmJ++4JIMbdcKsJAKPWCiwpz2KJ8GkEQhE5IhmOBZCYqQ1FZuVnmBELKAqFq+Q63ZARshHnCslHhVIkI27lvhPXISbCBL4566whLn5NOoiG3rnSZnPyaqSLhdVZPy5zmqhZioDptQijGgFiEhduRIh0853OpFDsWYLi8GkEQhEWQDMeYiERYImmyIiw3uUbVMr2RaNuIsN4KACSvyUu0a8BqVHnRwgoR1jP7nHhwXLiBqtUV5mRX7TlhG7WplasHy1VNsuGuHjiX5gLSLXJZpdQIy2aiIxIOrrSfZVRYO4COSGxIhmNIRJUbzKRHCJfpxPYiLCdHJMTJSayrR+j4rBj5DOuZVEOpuoQW/kjSI9ziaZmFQgzIi7N0Ug1pRFiplJredAkl+dWMFlNFCYIgLIBkOEYYjsrKpUcItxcol48IS9MjzOxbSKxFWK6NHini2pAUJwfREmEDEmz0y6ueEmqhdsrpEWq1hrXyg/XkD6e5GF9vWC5Vgvu/8vrVIiyMCsvhcVoXwaVBdARBRBOagS4GmI4IK1SP4NIjwrB6wFw8IsLCYzA445dofSJxicZrqPReUiiPZuQzG2QVhgfMAeajwhx65FcpbYGbLU5aCUJJhKXPCWeb8zirUyQ8zlA02MgAOumXA7kvCwRBENGEIsM2QnamOT0SGY084XgOliOhTV2sfu0NVoiIJBrMYTQ9Qq6UmhCtfGG9KJVXE0aIAfXIsFie45O7S3nDqQk3LbhVVFq4LSLxociwXZEKpERO+RQJlTzhhBRhLcxEi4nEwMrXVet9YlKEuSiwUjTYaHqEHHIpElbCD3gTnAK5qhBCvE5xegQHFxU2i/R86fkiQUQRSjMjUhSKDMcAuRunNP9NNSosKaWmWkbNoAiHYdfBKFKxMTNozuyxWVGfmVDHahFWw4AIGxEytYk1lNIj9G5fKSVCb6RYqaKEcDCdlhBz7UPbE3+B5lIkogE3iE4xb5gG0VmDMC2PAg5EikF3eTthdtAcYPriFdWfG62IMqgdl5wQy+0z0hul3PokyNYQSwkGdIuw0aiknhnm1FCafEOuZJreShJyaRHcMuFAOml1CTmE0WBOhOWiwly+sJWD5+QIS5UgIY6MaPyCR1FmIoGgNAkbICukMoPmFKtH2DFP2AqsEKVoHVNloPpBmCMJRLiSBTVF2ExUWO45s/nCioPoBNHdNHf1Q3WZQIS1th8S40rdYqw1IQkRQ0hkiRSDwlt2QSMqHJYaAWjmCQtvLppliewmdVoj/7n+qkUgYnVMwv1QxFgfsZpimcNiEVbKDVYTYaV2sRI/LlVCGDEWRoj5dgpvYakIC6PCXBUJI+gpl8a1kUuVoIF0qYXPFXpYBU12SAihO3eciSgqDJiqJ6y4X7tgdlYwhSmrhciVpZP9omEWbr8kxcokqAhrlUKLdH3pwDkuRUIuX1hPWTW9cJIrlWLp80C4CEujwkpC7DWQNmF6WmajqRJGJvYhCCKpoTt2HAiLhgijwjKD5vSmRwgxlLNop6iwURGWm6paMuBQC2kbS+S4MkBCLCXWEgzofg0inSFObn096RHRigr7XEx1ima5fGKtUmlKIiwdOBftfOGoT8AhleRUleNIB9JR3jCRQFDOcBwxHJ3VUUbNUOUKwF4irAetPF2DIiwHC5SbXlepLymNleXwLBBhaVQ42iKsh0gn4FCCE1VOXKWpDUa3o7RcGhGWixD7XMp1XeVn5QtU/Rs6v3LnKCzCH40voFyQgsSOIJIWCl3FGKNRYUWsqB4RbVkzGhnQOiZpf43O0GcQbjsRRYrjHSHW+z6JxmjyeG4vAhGORIJDy8XvUyNRYaVtcoPn9FaSUENYZk0oucJIsZL8yqVHcOIrrSKhJr9RJZqVJbjPSapGi+NIGuUME1GEZDhOiKTUyCxzBibXiOpPiXrh+qt1jEo3F6WbmlCElSQ4qLJPl/6bmWxtZzsS6U+aeojHT8g2E2H1KhDKImwEtXxhK5CrO6wWKRZGlOXSI4SRYJ8oxzg6KROWDKSL5Gd8kmJ9UKoEkSCQDMcQxaiw1jIOA5NryIlwXNMjrLwoykTReRFWE2AhXDsDUmxLYn0zjuX+zOxLpwjLEekAOa3UCD2TcESTdBdwXrArpYk4pKiJsNKAOWFU2MjgufDqEQG4HNWvqdLgurjVHSYpJoikgHKG44BsVFhNFHVWj1C7WdsiT5jLHZWbTU4P0tw9NREOBkIPLfTKs91I5mmpzR6bARGWflbUp1GWn3pZ3Cb8vWZUcq2eftinoyZwmqv6IbdMKyIs3o+29ArbGPnlSj4vW+N86UlPsuozlKw5xdGeOIkgbAJFhmMEd+HXO+1yGDLpEUKsvpFGHSMXSOEFWU6EOaGVk1/hMpfC2z3o14wQ2ypVIplvLmaPLQoirPczpUeEjUSFI02R0KokoYR0NjkhWqkRnOQqpUjEIn84LukSUhJ1KmNKZyBSHJLhGKA6aE4Ljagw97Oiy+FRvHnbIiqshda50IoG64oCB5SFOFFIxButHiI5rjiJsJVl0dT2J515jpNkbjknvh4nUxRoYSk1abqEGmqzywn/FT8XXfEVpkpollnTmy5BQhxd3F4A5yLahNcBeC38LZtFJx2fSFAS3AwSCz0TbMiSbFFhoxgRYWHag1y0V0mIdUSHCYuxQhgsFmErJFhrema1/athRSUJDk5y5aRYToDlIsLS9Ai5qLBcvrDRmeo49NQXlo0OkxDrg6LDRApDMhwjwtIjLIoKyyG8YSR0VFhmIg2RCCtJsHRZskhuot1c5bDyGGIswnoiwVoirLUNM+kNaghTJuQm2lCK/ApRE+Hw5cpRYbOVJaSD6ACD0WEgdgPqhNDgOjFuG1Q3IggFSIZjgKIIq0WFVUqpmcKuIqyE3miwngFw0qiviXQJ0/nCqTwLXbQkQOWcmplmWU8bMyKsF7l9R6ukmpwQq7UVIhfRVRNcr1NbkNUwOy2zYu6wHiGORnQ0EaPEBJFipPCdOk6oVI9QHKRlRVTYrkjPg1Y0GAgXYZo+NfbE6xxbIMJ60xhCz+n7Eqkn0mymnJo0X9gM0gF1eoRYTYSV0iM46Y3mdMxKUWDpchJik1CqBJGikAzHCqULsGB5mAgbvHgmfHqEmWiw3IXbLj9PJnpUON7nT4jGubSbCJvBbIqEXPUIrYoSRqZiNiPCkUSFdaU9wHzkOK5CzG3bzgiP3UZ99bmBNCsvqQl+eSashd4OsaAyAMCnLz1CCncx0pABxZtHvERY64ajUi4NMBEN1oIGyOnDRjc/ALq+UFgtwlZIsN5cYb2DXyMdPGe23JqaCBtBbpCd1eiODgPxE2LAlqJJEKkOyXCs0BBhUYpEBLNoARrpEXZIKdCqGwzol+CAREjcgkiR2k+TyVBmzUrsdmPWGVVPBBE2si4QvXxhIygNkJNbphQVVsPoVPFyg+j0YIkQA9GTYrt97jjs2i+CiBI0A10sCFTdHFUiwqopEonwc7vTLe6n0k1GQYRZoLx6Ag2uUkQwUP23sH0gWP0I234EP1lbPRud1VH5aOXy2eXGx72HdEaD7SjCZrdrdRUJOfRGZdVE2EiENxYTbUScoqL32hqtz0iyzlxHEAlGAlhWkqA3NUKhnJoaunOFo3XRFfZZLdoiFWG1WeTkIsFC0fULhMarEmUSRl8iqCphqxnorCSeImzyS57SLyTRFmE94mUkKqzVVm7wnJGosZFcYiW5VZpRrvp57aiwmkCbyflVyymWe05zZrp41CGWYucosU1IczGkWZlmE8WUHSLxIBmOBQE/AOULrqpoVQmDUACEN1HducKxEGE1FNJEwkRYLgosxC8jENwyTooDQXG6hBGszi2uDFgb2bfyphmrm69Fx6+WJmRXEbZyljo9qM1Cx2EmQiyeWll7cFwsosJGSBgh5vZBEERMIRmOFTI5whyRVpHgt2OmlFokciUnOXI3FBkRlp08I+iXl2A5AZbDXyEvxEajwwpCbDo6bLUQ25UoHqORaDBgnQhbVSlCL1bnC1sxcE5OhIXoiQoL0coXNppPLEUpcpwQQgyQFBNEHKCc4VigN3fUYIpE3NMj9KAkwqLcYL+8CPsrwkWYWyZ8SJ/n9y0QGeE5kOYGB2VeH4X8YT632SiVAetyiO2SYyjM8Y2SCCvlBgPK0eB4iLCeqLDS9rRk1YpKEla0F1eWUK4pLBcVjmYVCUu/sMQ7h1iIXT7nBJECkAzHAVWZkhk4J5UBl8OjP3qi54Jq5qKrJyosFOEqGawWYcEAOW4QCTcoTii5auLLoRY5joIQAxqvoRpWSXGkN8pIbuZRlF8ONQkG9KVFKLULLY+uCEdjnUjQN+CNhbXTK7t6o8LxRldFHrsJMUkxQUQdkuEYwUUUpRJlxaAsW06wIRVhQCLCfqD8bLUEnyvTjvqqIWwrXU9NiIXCywm6EGkbAaajxIA9hNgoNpHgaIqwXGQ5HkQy85yShKpFfLWmWtY7FbPZXGEzZdPUUPuykXBCDJAQIzRRjNUPIyxatAjt2rVDdnY2srOz0a1bN3zyySf882fPnsXEiRPRoEEDpKeno1WrVli0aJFoGz179oTD4RA9hg0bJmrTpEmTsDYPP/yw6fNG6CMFEhnjDwv4AaSrNzJRRUITIxdQI7nDRnKFlURYmBIhjAJHgnAgndqgOumxyuURA+JcYpWBdZwQG/5iw52zSAQzVqPQ45APLEVvfrBS22jkB+sVbjsINqA/XUFJhOXSI7SiwsL1hb9omZo9ziI084eB6vd8PGsRC6GKE3GlQYMGmD17Npo1awYAWLFiBW644Qbs3LkTbdq0waRJk7Bp0yasXLkSTZo0wfr16zF+/HgUFBTghhtu4Lczbtw4zJgxg/87PT3cDWbMmIFx48bxf2dmZkbxyAiAZNj2aImCpVFhqy62kp/2ZEVYmBfM/atWIk0t2guIq0cItyWUYm4dtyt8kAoX/VUbXCeMECsMsAPiIMUJeJPUK8CAMQlWah9LETaLHSbbALRFWIjXqf58PNGa1lmXEAP2GVgHJORnPVkYMGCA6O+ZM2di0aJFKCwsRJs2bbB161aMHDkSPXv2BAD8+c9/xt///nds375dJMMZGRnIz89X3VdWVpZmG8JaKE0ijiTsRBvCG4M0B1Z4MwjLERaIsDQNQk6Ehcu8Ho16wpKJOKSpFsL/C9vx+cpceTeF1AkT6ROGUygiySc2ehOO08+uWmkQQpRSIgDrRNhsWkQkIixcN1qTbZidMlkrNUJp20IR1rMNqzEbedf9pcxOaROUMmEpJSUlokd5ufZ1OxgMYvXq1SgtLUW3bt0AAFdccQU++OAD/PTTT2CMYdOmTdi/fz/69OkjWnfVqlXIy8tDmzZt8MADD+DMmTNh23/66adRu3ZtdOjQATNnzoTfT695tLGxcaUQJlMkFKPC8bpYSvKEVUUYCE9l4P5VqhHMRXxl0ilYRWiZw+MRR43dLuX0CWk7YbRYLgqslD4hbCPtl5losdlIsY2jRkYiwYC6bFqZH2wGLRGOdW1hQL6Emp6aw8K26tvXN2hOjUhLpgnRivpGBbtFiLl9pQg+F5BmYWYNq9pWw4YNRcunTZuG6dOny66ze/dudOvWDWVlZcjMzMSaNWvQunVrAMBzzz2HcePGoUGDBnC73XA6nVi8eDGuuOIKfv3hw4fjwgsvRH5+Pvbs2YMpU6bgP//5DzZs2MC3ue+++9CpUyfk5uZi27ZtmDJlCg4dOoTFixdbd/BEGCTDsaDSDwRd1k7mEG/UZpkzKsJeT7UAu73i8+SWjKaWiDAnwdxz0tuzLhUwmkIRgRQDBsTYTH1iGwqxFSkRgLFocGh57EXYyn1ZgR4hlo/0yqc/WBUVjme+sBTd6RKAvYQYsOXnPdE4evQosrOz+b99PuXr88UXX4xdu3bh9OnTePfddzFy5Ehs3rwZrVu3xnPPPYfCwkJ88MEHaNy4MbZs2YLx48ejXr16uOaaawBAlAfctm1bNG/eHF26dMHXX3+NTp06AQAmTZrEt2nXrh1yc3Nx880389FiIjqQDMcStdnNDKZI2K6ChNyEGqLng+ERXaEIcxLscgukU3oz8Ye2ITchRyBQ/a+7+vwxYf5wRUUocqwbwf6F0WI9UixsJ8HQ5B1mosR6b5AxuJGmmgjHIyqsBSeoUinWU3VCSXTjGRU2gt4IsmEhBvQNrCMhtj1cdQg9eL1efgBdly5dUFRUhIULF2LBggWYOnUq1qxZg379+gEIieyuXbswd+5cXoaldOrUCR6PBwcOHOBlWErXrl0BAAcPHiQZjiIkw7FEIEe8DEWjikS8CCtbJqkcIcTrATLSwiRYJIluX1WE2Q34z4VtglVUVEuwtLSaQn4xd7uTVTSlNAqlFAqpFAO6o8WGI8VGo8Q2uEFGWiWCw8r8YLPEui6wHnyuSlEJNq3Z5vTkEevJ8VUaNGe2rrDVZdXMYkiIAX1RYhLipIYxhvLyclRUVKCiogJOp3gYlsvlQmWl8sDSvXv3oqKiAvXq1VNss3PnTgBQbUNEjj2uQoQhbDfbnNw+1dIjpCLszQBQJYVOt+gG4nADjJNKwXZYRQVw7rxyPWJpRQmJHAtveWH6YFaKueOWm95Z2k7YF72R4iSc1tnu0WC1/cV7W1YjFeFIRDdWA+esJmpCDFCliQRn6tSp6Nu3Lxo2bIgzZ85g9erV+Pzzz7Fu3TpkZ2ejR48e+L//+z+kp6ejcePG2Lx5M1599VXMnz8fAPDdd99h1apVuP7665GXl4d9+/Zh8uTJ6NixI7p37w4A2Lp1KwoLC9GrVy/k5OSgqKgIkyZNwsCBA9GoUaN4Hn7Sk1x31kTF7KA5KfEUYWmusBJ8akSVBHPRYE6CuXPh9gJlZ6vlL+AHzp4DAkGw0nOhiLC/AjhXBlYmFh0HN8pCWFtYOPjO6xGlU6hGi4X9NhopNiDFuiPFRtIm9Nwc9d5ADYq4nqiw3UXYqLjK9UFt39GoJKEVHVZaJ3yZdnqEWVlWyxeOVzqFkKgIMUCl1yIk3RV6WIbBbZ04cQIjRozAsWPHkJOTg3bt2mHdunXo3bs3AGD16tWYMmUKhg8fjt9//x2NGzfGzJkzcddddwEIpVh89tlnWLhwIc6ePYuGDRuiX79+mDZtGlyuUGd8Ph/efPNNPPHEEygvL0fjxo0xbtw4PPjggxYeOCEHyXA8kZMLI5E/O+QKKyEXFeZwVw0mdHnh8NaolmDB9NMOxmRvHqz0XHVEOBBE5elysArxz1COstBPVY40N4Bg1f+1r3xhUiysRMERZSkGdEaK9cppHIXYLPEW4XhEb62sMWxEiLVE2Oz+hcRbcM1UnjAlxIA90iaSWIjjyZIlS1Sfz8/Px7JlyxSfb9iwITZv3qy6jU6dOqGwsNBU/4jIIBmOFXL5wkJ0XLwMXZxjiWCmOT5XWAkuKuxyh84DFyFG6AYUZBUAC91AHdIbRyAYiuhWRYNZWQCVZ/2iyLAjzQVWDjh8brAKPxyiOTeDkUlxpDnFJiLFmlFiq4Q4xlhRPzi03DoRtksKg5GpmKV5w9XL1YVYeWpmsQhbHRVOJAwLMWCfPOJYfub1RsYJwsaQDMcbnRessIuyDXOFNSeZEJZQA/jUCNWf1CurJrw4VxbKE/ZX8NHgyuLQv6ys+lw4KkJvaUdZUEWMq6RYmEYhg2L6hJwUy031bESKzUaJrYrWxjA6bDz9ILoibIUEx6qKhJHawUbzds2IsNY+4x0VjhQSYg24a4HeyDhB2BSSYcIcWhdy4fPSiTJcXkX5k26DBcqB8rPAuTLg3Hmw30sR/PU8L8GVZ/2oLAecVb7oKA/C4XOBlYXE2OFxgpVxEeHwaLEjTaMPXg8YV5JNOgW0KAdZo06xdJAdYKjyRMR5xDaMDksxJrCRi3C0I8HSftgl8iyHmgirYTQqLM0XtrKSRCULRqV+MQmxPXA7AI+Fc+ZW2GP2c8ImkAzHAqdGSTW+XfiymKZGmLloylaSUCilxtcTFqRISOAiSY5gRaicmv9cKCpcXAKcPoPgr+eqZDiIynIgUOFAMOCAqyJ0ntyeIJwVQTg8oZsiK+Nyh0UHCkAQTZYTYm6QXRV8lNgjiAQrpU4Io8SA8coT0Uqb0LoxxjF3ONbl0+wspkZRSpUwsr4QqeCajQonEyTEBJHckAzbAaMXKjukSAgR9kctX1iKzEXawVhoe2VnwcrPAKXFYCd/D4nwyfMInjyP8lOVCAacCFY4EfCHvt67vQwuTyUvxlIpDn+rc39LpFhu0ByHmSix9DhjESW2gRA7GDM8BbMUo8IaLxG2w0QbZoVYa7Cc2uQaWlHhSFMk7DRLHRCBEAPqUpxM0zdT/jCRoJAMx5AwiUmib+uKJdXcLrE4VgkeC5TD4XUDAT8cwhtG1UWb+UuBc6eB02eA0yUhEf71PAK/+eE/70bA70BlwIFAhQNuD4M/4IDT7YDbywCEbvBuMDghFCTx2z2US1wJIABHmrsqnULQQFqKjTtWbn2jUWKlXGLAcJQ4qnnENo4kRSqedokIR6esmn4hVpJgNcGNtMpEMmBKiAFtSYzl5BzCfUZKEtY+J1ITehfHg0S/eGhdtDmB46MRMhGeoB/MLzM4LeAPifD508DpM2DFJaisSo0I/noO5eed8J9zIlCV8BXwO1Etv1ycV7hMLMSONLeoFJtQiKvbuOQjv1xt4irxFUWJhUIMRD2XOCIhtqrcmo1uhHqiwtEQYSU5j2SSDy3UBtEJhVUqxloyq5YeodVWT4qE3SK9ZomqEAOx+6VPbT9mRZmiwkSCYo87GaEfu19sXG7lVAmZCyzzl1YLcWUglBrhPweUlIAVn6nKEz6PyuJynD/tRHmpC2WlLlQKImv+8y44XaGIsBsAvOIbVWU5VIW4qnNVg+0CVW1cYskF9Asx11Yox1GIEmvmESewEBsR13iJsBHisX8jkVwtETYaFTaTIpFIlSeiJsRA7KLEahj5dShGX4p9Lmvz0oPJ8d2MsAgLx2YSaiimSHD/mr2YxPuiKUT6k77cxVRYhzhYnRLB/KVg506FUiN4EQ6lR1Se8aP8VCXKS13wn3fCf96J0jOMfwT8DlQGHVVRYiDgdyBY4USwKo2Cg1UEwcqDvPCGKlKERIqVB3hBZmWB6trFXGSXm/bZX1GdMiGcGpprK2wv/Fe4rVAnw8+L6G+ZG6bCzH6qJe3Ubrx63jsRvL+sHvxpNkUiWiJqVa6wlRNumMGoCJuJCsthZSWJeGA6J17Ptd6maUqKVAbsH6ghCBVIhmONTX5WjjouiewrXdyD/tDDf05QQq2qjNpZP1h5qHxaMFCVI+w3/pYNVDhQKfFFYW1i4aQdmkLM/askxErtpc8BVTP0CWRTToilUmxHIbbxTTDeEeFoYcVEFx4nM5QaQYST1EJsp0ALQUQZkuFEIprSEeGFVxT5lv7ELxshllSgCPp5EWal54Cz50J1hM+EZCZY4RRFeX0+J/9wexmcLga3N/yn3GAg/GbFysPlN7Q8EL5MSYgB40Lsl4kgA+FCrBUllmsD+0aIo0k0c3PVsHoKaDNEIsRy68qJsJmosFy6Q7LkC8uR1EJMECkCyXAMcESaCpGoKE2swYlcMFAdES47D/grQkJ57jwQCFZNtRwI1RP2W/NTMqsQiLBMdJgTYuHziikTgDEhlv4/CmkTcRNihW3LpUokUm6oHEbTI6TRaaOVJCIpbyZtKxcNVtqH2Yk4CAPYXYht9CXY52KWPwiCg2Q4HmilDujFLhcq4QWdE2AuOqw021zQH5LggD8khf4KsPOh9Ah+yuWyUI5voCJUMs2bXgm3txJuLxM9uKiw2yMjXm75C55cdFgpXUL0nFBgSYhtTSyrR3DEI1KtJalKAsyhR4TlIJmoJqKa2k63thS7vRQlJogoQjJsB/REB+ySl6kiQ2GDBF0ykhy2vaA40lq1TFrtweWpKpXmCcmv8CFMj3C6WVWtYfPIpUuEIc0HtlKItfKIpcRaiM1s1yB2jB7bYXINJYRRX+lDDb0irDcqrPd10xo8F81pm22LXaPECfQFmCDMQjIcK5IlRULPxVgovkpCzEWE+b/FUuyomoTe4XPB7WFwVUmu082QViPIP7iIsNvDRCLs8lTyUWG5iLHDx03XrC04qukSwn+tEmLA3kJs8Oaop6pEMueU2pVIRNhIVFjPa2vHLz9xwa5CTBBJDslwrEn0C5mGCPHRYT1CDIRHhWVw+kJC600P8kLMPbzplfz/hSLMwYmws6pb1dMzV/2dFuqbNAosjQ5bIsTCY5b7v5YQC4XXrkKsMzqcaPKjJyoslyJhVaqGlVUevE5mOjXCLiTa+8cQdhRiig4TSU6ShCuTHLukSADKBeEFxeQdbl9IwlxewaQSksk43F4AfkURdqS54UhzwVHhhqM8CCeCcIMBCAKQjzQJJViYK+xUmaiN319VJDo0JbNFUUqliTkEz4X9XzhjHRBe/F44+YYVk3NEOjFHDHE53GFS6nS4op6na2V6hHTwXCxrDKsJtZHpmZWiwkktqBpYXVM7YSbniCFuHWk/RrdHEBwUGY4FcrJhI8mICOFxyB2nUoSYw+upFkF+myERdPhCs8I5fC44PC5RhNjlqQx/uBn/AKryiwX+x0WFuRQJs+iODgvXEU7MwaEUIZa2UxtYZ0UtYrMRYgPRYTOyEKlcWSFnekU4FgPnzEaHlSLBHEZE2Aqilf8br1Qby0WYw24R4hQSbyL1IBlOVGx+YRLXHZZcsJUG0wnE2JHmColwmgvOLG+YEPvSxfIrFGDuIeqPJ/xGyaVIiJcp31D15BcrpUsAOoXYqkoTsRLiCJDKarLlDUejmoVeIeYEWKu9URE2WkEi2V5TIQ7GoifCHHqFOFmCKwQRJ0iGY4ncBSsZBtYpRIdlhVguOgxUpwW43QIhdoeiw2muqv9XC7HTB3gzmUh+hfnB3AMQi7BWVFhYXo1fplZVQm5gHP+cCSGW/m13IY7xlzK5qGK0hMtOUWEhQtFVemjhc1VaGhGOJAqv9aXIjpUkoi7BQvTeI2IhxDYPwhCEWex3lUkFjFy07JQvrBe5/GFAkkPMnYOqv/2hvFrG5c/6KwAEq3J53XCUBSH3dnVCXkRkI8ECERZGhbl8YSPI5hYL+y5N/RAs08whlv4tbKeWQwyE5xHL5BADISE2nENsBJntOBgzXI/V5fAkzZTKRifbiBZqA+XURJjqCscRPTnEQFLnEVs9UUaA3s+EAIoMJyJ2vNhJBV8pQgwo5w5z/1ZFh/mIMJ8u4YEzywtnji8UJa6KFMs9pCiJcFg7jcFzsqkS0ioQgHz+sGz0OIEixDGIDlsd5Y3XoK5IBD5aVR3UosGAeRFO5YFzMcVIhDiaUWI73n8IIkJIhmNFrHK64pk/pkeIlfKFAcDtCkVMgSopdvFC7Mz0VqdMeJxV1SbcvBRL4WVZ8rxUhM1EhTnkUipkB8XJCLFsDWLp+tK/jQixFCtTJizEjEjFIlXCrikSZtAjwbGKCFuR8pDS8m3kVxvKIyYI3ZAMJyt2FmIgFB12VYm72yVOERBEhzkhBlBVWaJaiIFquVWSX37fVfIsWiYR4YhKqqkJLaBeYUJrfTNCrLMOMaBRi1iKkaiQRUJth6oSiYiWBAPa+cGRiHAyD56LK3YQYr3XAW5GzYAfCCRHuhORnJAMJxPSC1+0LoRa21URYgDq1SSk0WHBYDoOUYRYGCVWeUgxGhEWDqITpkqIosNq6RKA+oA66fpmhVhIpEIcheiwVbPRxXIgnRJKUWErcpzNpkpwAqxHgq0Q4VT9omI0991y7CzEQgEmiASBBtDFmlgPntMzoCIaF0vpfqsGgIgm5BAhaBsIhg0mc6TxT4JVVMLhC3/rqlZ9ECAnwpFEhUWD6bjBbkqTanDIDagTri+3np5BdVoD6uTacMchN6hObkCd3GQcNpugQ0q8B+KZGTznc1WiPKjvS5teedZbKSJeg+WiVxmkwnLx5oQ4ppUlhOgdVAdEb2BdDIVXz5c8IwQSaMZFIvqQDKcC0bgQ6pVsM/t1u+AAwIBQNJWPDnMNuBuAG6w8AEeaKySkMpLLKio1o8ByIiwn26LtlgVUB+IBkJfgQCCUAqJGHIU4HugRVbk28ZqRLpZYdfOPhgTHIqprx7JqUpjDkdpCTBBJAKVJxAIrI2Z2+nZv9LiqIozh1SUUcoeB6txhyYA6QJBDzNcilpFaEyJsBkPpEjLLROkS0m1IJ+NQmMJaFZ0pE7FKl4gHifqTfKToEWGjZatS9VwqwRwO/mFrbPzrDUHEE5LheBLLCTfsMqBOiMurXGaNyx0WDqZTEGKgOpLLSbGW5Oppo4WhGemEKJRbUxVixW0p5A9rVZdQaadrQF2UI0yR/FxuxU/tsYpIRmvKY27bevKCo5ESYcfBc7FKk4m5GBu9j5AQE0QY9v8NirA33IVVTY6EP89Jc4cBiRCLt8OnS0ioTpkAhGkTAMDKqyb8MCm7SikScikXwnQJ2dxhIXJpE2H7EOQPK21Hui2lNnrSJeTayaFnMo4o5w3rTZUwug0rifcEIbHICaaosH6EQhzVVAoj6RJAQqZMuHV8uTO6PYLgoMhwKqEkKlYIjJEKE0KpMpO3Ki25JhMl5h5GMbOOEM3awxwqk3Fopkyobler3rDCDVMSITZUbk2NOKVY2DEyGU30RIGByCPBkU27HN3Yi55c8Xh+WYl6xNjptkeVCYJIQEiGCeswOOGHZt1hpXQJfn/yQiyM3grFWE109cqzXMUKxXQJvaXWpMsREmLdZdekz2ulS5gVYqnYmowsRRIhk5Mxo5KlV+gSIVUiVhIMUETYSoRinBC5xgSR5MRMhhctWoR27dohOzsb2dnZ6NatGz755BP+ecYYpk+fjoKCAqSnp6Nnz57Yu3evaBvl5eW45557kJeXhxo1amDgwIH48ccfRW1OnTqFESNGICcnBzk5ORgxYgROnz4tanPkyBEMGDAANWrUQF5eHu699174/eIb++7du9GjRw+kp6ejfv36mDFjBli8RgxbiZywRqPShNZyreiwlhBzUux2CfKE3YpSzCGVY7MRZMMoDXqTCrFalFhOiPUMplMSYiUpThISKTpsVIhjLcHxm9Y6/D0aaXQ33qksSlgmxUYixBQdJggAMZThBg0aYPbs2di+fTu2b9+Oq666CjfccAMvvM888wzmz5+PF154AUVFRcjPz0fv3r1x5swZfhv3338/1qxZg9WrV+OLL77A2bNn0b9/fwSD1ZJw6623YteuXVi3bh3WrVuHXbt2YcSIEfzzwWAQ/fr1Q2lpKb744gusXr0a7777LiZPnsy3KSkpQe/evVFQUICioiI8//zzmDt3LubPnx+DM6VCtHK8olVnWMdyxeiwEgpCDCAsSgxUS3Ek0y4bRTZVQohUYKWz0+kVYml7rdnp9ESJjUaHpZh8j8rJlhGZjVZ02CiRbFdNcLnnYpkOEU8JjjZ2FWIgDlJMQkwQsZPhAQMG4Prrr0eLFi3QokULzJw5E5mZmSgsLARjDAsWLMAjjzyCm266CW3btsWKFStw7tw5vP766wCA4uJiLFmyBPPmzcM111yDjh07YuXKldi9ezc2btwIAPjvf/+LdevWYfHixejWrRu6deuGV155BR9++CG+/fZbAMD69euxb98+rFy5Eh07dsQ111yDefPm4ZVXXkFJSQkAYNWqVSgrK8Py5cvRtm1b3HTTTZg6dSrmz5+fHNFhIDYXQCP7kEaHldIl+Oe1hVhu+mUrpDjiVAnAGiE2ki7BYUKIVYnDIBwjgmaX6LARMZWKr9GosVkJtkqA43nOjdSYDrKK1JFiLRJAiL0OBq/TwofD2OdE69dth8Mh+5gzZw7fRs+v202aNAnbxsMPPxzZySM0iUvOcDAYxOrVq1FaWopu3brh0KFDOH78OK699lq+jc/nQ48ePfDll18CAHbs2IGKigpRm4KCArRt25Zvs3XrVuTk5ODyyy/n23Tt2hU5OTmiNm3btkVBQQHfpk+fPigvL8eOHTv4Nj169IDP5xO1+fnnn3H48GHF4yovL0dJSYnoIcJuFxyDOb6m96G0TK7uMBcdliJNlwDEQlz1PCAum6YmxbGMFgPQTmmQE2K10mt6tq0kxFLhVRFiw9FhKTEaRBeN6HAiTPrAYaZWcLJHgPWQCFIcMZEKMXevkHukCFq/bh87dkz0WLp0KRwOBwYPHsxvQ8+v2wAwY8YM0bYeffTRmB5rKhLTK/3u3bvRrVs3lJWVITMzE2vWrEHr1q15Ua1bt66ofd26dfHDDz8AAI4fPw6v14vc3NywNsePH+fb1KlTJ2y/derUEbWR7ic3Nxder1fUpkmTJmH74Z678MILZY9v1qxZeOKJJzTPA6GAy1stYbwQV/3NyZ5wdjp/RfVsbtKyZYEgPzMdAEH5M7GYhZVK0zGls2USzR2TqN9V/RPOUic7k53MtM/S5/i/q86h9MalVXpN8LzsVM3C7Qu3HYOpmZVKpMVyVjq7zHaXipNlqE2vXMmCpqLTwveT3c6TJVM/6ym/Ji25lkKyq8WAAQNEf8+cOROLFi1CYWEh2rRpg/z8fNHz77//Pnr16oWmTZsCqP51+7XXXsM111wDAFi5ciUaNmyIjRs3ok+fPvy6WVlZYdsjoktMQ2MXX3wxdu3ahcLCQtx9990YOXIk9u3bxz/vkHwDZoyFLZMibSPX3oo2XHqEWn+mTJmC4uJi/nH06FHVvqcMchEEreiwqK1LnBIBiCPEQPX/ZdImhPWG5SLFQoRRY9kBeJGKsMZMdDzSKHEVstFhucF0gWB4ikbAr51LrHdQXYTRXr03dbukOViB1ZNbGIkEp3r01yhctFjPI+kwGvVNQWGW/rot5cSJE/joo48wduxYfpmeX7c5nn76adSuXRsdOnTAzJkzwwb4E9YT08iw1+tFs2bNAABdunRBUVERFi5ciIceeghAKOpar149vv0vv/zCR2Tz8/Ph9/tx6tQpUXT4l19+wR/+8Ae+zYkTJ8L2e/LkSdF2vvrqK9Hzp06dQkVFhagNFyUW7gcIj14L8fl8otSKmBODiFzUkYsOCwVOONGE6O9A6P9cpNRfERLiABcZDkmVVqRYil75VRPsMOSiuUpRYqXIN6BvYg/uPGlFioVRYmGE2KrosJ5JOwxih+iwkX4BIYEtD0b2s3cyR4LNRnWjtR09WC3Eaq8ZcziUv0hKv6DKfd6MTs6hlwScxINDms6odh9X+nVbyooVK5CVlYWbbrqJX6bn120AuO+++9CpUyfk5uZi27ZtmDJlCg4dOoTFixdHcpiEBnGtM8wYQ3l5OS688ELk5+djw4YN/HN+vx+bN2/mRbdz587weDyiNseOHcOePXv4Nt26dUNxcTG2bdvGt/nqq69QXFwsarNnzx4cO3aMb7N+/Xr4fD507tyZb7NlyxbRt7H169ejoKAgLH3CEAl6sbAMJVHXig4LB9MB4QPquAoT3P+F/7pdIhGUzkrHRYoNyayEsJxk6cx3ShUg9ESJZSLEqtFhuW1wfdCKFCtFiJXyhy2+qZoRN6V17JzrazZCnKqRYKUZBpMyKguYizrLfRbjNOFNtPC5Ki1/AEDDhg35Uqw5OTmYNWuWYh+0ft3mWLp0KYYPH460tDSZrYiR/io9adIk9OjRA+3atcMdd9yBl156CUuWLMFvv/1m4qwReonZHWPq1Kno27cvGjZsiDNnzmD16tX4/PPPsW7dOjgcDtx///146qmn0Lx5czRv3hxPPfUUMjIycOuttwIAcnJyMHbsWEyePBm1a9dGrVq18MADD+CSSy7h829atWqF6667DuPGjcPf//53AMCf//xn9O/fHxdffDEA4Nprr0Xr1q0xYsQIzJkzB7///jseeOABjBs3DtnZ2QBC5dmeeOIJjBo1ClOnTsWBAwfw1FNP4fHHH9dM2yAMoBRN4KLDwugkUC210vzhigrlCDHXXiVKzKE3Wiy3jmnkIsJK0zZrRYelxyzdLtceCI8Uc19U9EzNLEQY8TUYHXYwpmtwkFZUV+8Uy3Lb0bOu2pTPSn3T2i4ntVpRYqPibGcBDrJATL+kxDI6HC2495DwdQ2LDqtJbxR+kVEkQaPDR48e5e/9AFR/3VX6dZvzDQD417/+hW+//RZvvvmmaF09v27L0bVrVwDAwYMHUbt2bWMHR+gmZlemEydOYMSIETh27BhycnLQrl07rFu3Dr179wYAPPjggzh//jzGjx+PU6dO4fLLL8f69euRlZXFb+PZZ5+F2+3G0KFDcf78eVx99dVYvnw5XK7qC96qVatw77338nk5AwcOxAsvvMA/73K58NFHH2H8+PHo3r070tPTceutt2Lu3Ll8m5ycHGzYsAETJkxAly5dkJubi7/85S/4y1/+Eu3TlPwoXTCrfr5zuH2h6KNauoREchWFmGsjTJsAoiLFESMVXb/keNzijyqrqKiOjCsJMfc3oG+QXdgAOwvSJWKEnHyqSaxdsCqP2E4SbERC1QbCEdVEdJ6kQhytVIkEhSuVZgbu120hS5YsQefOndG+fXvRcuGv20OHDgVQ/ev2M888o7iPnTt3AoAohZSwHgdLmsK59qOkpAQ5OTkoPrEa2dkZoYVKs7DJYXb6W7vnDUuPg/u76nj5n+I5GQ4Gqv8f8IdETjhorEpu+fQBfhKKgPhv6QAzCWqTZQjFWHUAnjRFQg5pnq8QuUGBgFiGq5aL6y7LbFMuuiy3XLgu994RRoeFKStVy8Nk2ClJaxFt36vYVi4yrBRR1ZPzK7euVIil29ETVVaTarV+RfunfLuKpJIMy0WGpcdgZF259fX2JdEQHqfuyDCH9F4TTRlWuE+VlJxDTt1hKC4uNiSf3H306yMLkZmdblUvcbbkPDo1uk93f+R+3Z49e7YoqFdSUoJ69eph3rx5uOuuu8K2cffdd+PDDz/E8uXL+V+3f/vtN+zYsQMulwtbt25FYWEhevXqhZycHBQVFWHSpEno0qUL3n//fcuOnQjHvol1RPIiV74n4NeODsulSwgG1Dk8nuoIMVd2TS1tomo9DmEpNikRp0MIkRv4ZgLF6DCHUlRYKQ1DiEa6hFWl1vSmSgD6BsHpTZmwErV+RbM/dhXhSEmG9IaYoVdquXaxSpmIAm4TE9Bobc8IWr9uA8Dq1avBGMMtt9wiuw2tX7d9Ph/efPNNPPHEEygvL0fjxo0xbtw4PPjgg+YPlNAFRYajiGZkGFC/OCVrZJhDeDxmosOAuQix9P9AWKRYc0plGXRFhaVIBVYqqcIJRmTaiKLDctvTs23pejqjw4AkQix9LwvfhxZFhwFzEWJhZNfqyLCeflkpxIkgwZFEhpXWV8s3ToXosGxk2K7pDjL3qkgjw9/8uABZFkaGz5ScR7sG9xvuD5GcxLWaBEHwKNUd5sRLODMdV10CkBU6UZUJILzShPT/gnU5pPWJ1TDSVhOtWeokhFWWkKsaobRtjbQRPfWHdVeXUPkiZ3QiAafDpSk3UjkSipQZMYp04JcV1R3MboM7X9JHomH3/G+rqGRB2S9WCVU9I1ECMgRRBclwMpKAI3pFyJVa4xBGK4VCLJ1sQ02IheXXpDKtIMVqj4hQEtewdgIRkEitbKk1JSnWI8RK5dbUlnEIhVgpN1zaTgY90qcldXrF0apIqx7BNCO0ZtbRI712EWI5yTNaE1pLFO0wU2BMkJtYhyAITUiGifihN3ogjA5L1xXKq14hFi6T/p9b34Kc3lgiK8SAvBTriT7L3VD11B7Wsx0ZIplmNlaRTj3RYb394ARXz8MIRs9FrIU40uhuKkSHlV5DzfeC3SSYosNEAkEyTNgHmUobYekSwv8L2ytNx2xEiDVSJ6KCWs6w1iA3CYpCDKgLsZF0CaV9m0mXsCA6LERLINRSJfRHkd2aUhyPNIRI9mmXCHG0SerosN1EmMNCIeYmnbHyQRAcJMOxJlYXLbteHKUYvVhy0WG1/GE9QiyXNiFsw/fPZY9IsaTOsFJ017QQ60UhOhyGWrqEAnLRYSuEOBpYGSWOBKvE2+q+WiGeVqdKJAu6Bs8lyvWfIGwCyXAsoAuTfvREh10yImJUiAFjUWJuW3oeeomSYKsKsRKyUzjreN+aSZcwEB22AiPRYSPyHc8ocaIOglPCiMhGkiqRtNFhO6ck2LlvBFEFyTARf7QmaYDOdAkrhVjub73okWMjk2SYQDWHWAuTlSUAA+kSCsQ6OqyUWmFEjI1IcaQCG00JtnK78RL1ZI0O63ov2lk67dw3ggDJcPyxa51Iu6BUh1kuXQKwRojlosSRiGok0WM1NNIcTEWIpRiMDoehlC5hMDpsRVmy6v+L31NaFSn0irEeKeb2Z0SOE7kcWqQoRXIpOgz1GvV2lE+3NaUFrXwQBAfJcDKTSOkZZqLDVgixXB6xcB0hkUqxHVGbiESKmeiwCSKpLMGhXYdYvxBXr6PvJqpXioX7VnvEklQUbrtjSNrcXnuKMEHYHJLhRCJVL3JyERCVqYJVkQoxoD9KLF1upRhblaIhwZLosB5iEB2OFLWJOABjEdtoSDFhDXpSJRIlOix9j1nxRZEgiHBIhmOFkgQQyqgNpuMwGh0WPKdLiKXPSbFCimMdbTabNywlitFhOawutRb6W1lW9cgxSTEhxMqf5elnfIKIHSTDyU4iibfOyHfE6RKC5wwJcbSl2AxmyqMZRWtGOj3PGYz8RjMCJifEkVaGSCYpjnaqhFK+r1JENxp5w2rbNYu+vHJ1QaZ8VoKIDyTDdoAG0VWjljusli4RLSGOthQrpWEkAYrR4RimSqjJq/xyt6Ycp4oUE/qJRF7jKsAJFCzRyq038yAIDpJhwv7oSZcAoiPEQLgQc230SLFSm2QZjKeSKmF39EiImhiTFMtjdPBiPLEiOhzXKK5aRQk1Av5qERb+nyBSFJLheBHLi0+iXejMpkuobcuMEGtFieXaySEUYz0SbZRYpErEAStqDgPGK0VoRY2NbN/Kkmx6sGo7FDXTRyxF2JLUITXxTbT7BEFYCMlwLFG72FCqhDpm0yVE29AnxJpRYrNSrEW8IsVGyqtJkZsNUAkTUzRbhdGfRdXEOBpRYm67ZmRWGr2OZ8SZJNrGkOwShCIkw4Q9MRodBrTzh4WoCDGgkTYByAsx19aM1Kqto7SvZEElb9iq6DCHmbxB+YFOyvnEatvRgx6Z1TPoL1IhJrG1DxFHhfWKsI2F2elwheX0R/Kg9zchhGQ40TBba9jGFzlTCKLDpvKHAeNCrDdKrNReiUSKKJut72wxVv48rVeOYynE3PaVHka2ESsSVS7M5g3HKkWCagsTRPQhGbYTwqgYpU2EI/0ioHcyDquEmGtnRorl1kv0QXTSFAmrRFlHdBiInoxopTyI/46uEMcbPdFzGpkfPTRFmO4TBGEJJMOxRmvyjWhe3BItOiwXBVeIjKumS8itb1CIZaU4bNsqUixcz4gE2yFFIhYzH2q8N9WEOJpSrLRP8d/2FmIrosNWlaeyUyUJu2NZRDjRrvsEEQdIhmOBUcGlb/v6MZouARgTYqNRYkCfFOvBDiKshBVRYQsHlEZLivXKXrRqEhOph4MxSo0giBhj47stQSjg9opFyunm5cnh9oUme3B5q2dEc7lD9XCFy7htuF3VUw97PaFqCpzgcpUVBG04IWYVgqoL0vZ8P6s+XoEofrkxm2YRCIq/DOjBoPDKfjkxQmVA/GWnShCYw6G4ih655GY6czk8irOeCXE6XGF5pXLruhxuxVnR5Lahti0idtglxcOwAOv5wmg0KhyLX4FMYvWXR/oiSgihyHCqkWg/mUVycRbKm56Sa4BYLhXSJgADqRNAdaRYb6TXqshytIgkKqx2A9f53ow0aia8qeqpLwzIC5Pesmtq25DrUzSwQ3qCHfpgFVa/VlERYYIgdEMyHA+08oa1sPG395ihMphONn9YiFzJNb1CLCPFIrTygYVirPSwkLD+2Q3p+1/6t8JNP1o/JVshOWaF2Kr9K2/b3jKaqpG6qKVEJFFUmCCiDclwKpIs0WGjQiyMaBoVYo1cYsNSbAV2qEQRi1JrlQFNKbZSjpWkTG90OLTcnkIcL+wq4vFOkTD1no1GegRBpDj2vEIlI5L8RyJOcPnDQHUOsTAHWZpDDFTnAnM5xRzCtjCYTxwpOkTY0qiwldIr/SwE/OIvJdK/ldaTQUku1PKM5bAij5cTQLk8Yk7C1PKIQ+ta+75Ry2uOFnYVYbPE9ctKtNIjEiAqbHUJv3h/ESLsBUWGU5VkiRyYSZdQihALq0yYjBIDChJqtKRaBMhGqqUoDZ4Lq6Fs/ibJAuXKT0pv6nLpEkqlB00IQTQiyBxacqQVJY51CbZYyWm8poXWe87sIENGv6TpIl7Xdu4zq/TZJQgbQzJsByhvWBsjx2tWiKX7URJiub/1DLATrhuJFKusa1k02GilCQUiEmKlZdy6EUTJzEqx3trD4c+ri2GyCbHR7Zs5RjuLdtyIpwjrWUYQNoVkOF7Y4UJhhz5YgYYoWyrEJqLEqlJsFCtEWCq6kYh5UPs9xALlylIciRBz6wsfBlGTYqPio6d9sgtxvKLBRAREGlhR+3wmyz2GSHpIhlOdZL1YqeWWmhHiCKLEgIqoGokSR0OErUCHEAMqUiwnxFpVJpSQyrFOSTYSJY5UWtWE0chU0FZghbhyx2N2W1rHFY10BjPbpKgwQSQvslevb775xvCGWrduDbeda6MSyY10Ig5AfjIOOeQG1cltU2twnfBvTjq1BthxSAfnGUCXCOvNETYLP8GJdpSJBcrDJ+TghNXMwDo9yG1fB2YG0ukd/KY1wE5pcJ3VqPVDax0icpjDQTPO6cDqXx3oPUwIkX03dOjQAQ6HA0znB9TpdGL//v1o2rSppZ1LKSK50Sfyvq1ETogFiIRYKL2AuhAD8tUmgHCJ1ag4AYTkVVGIgXApjiQibCQSzO0nkuix6Jwqv6e410FWirWEGIiKFDsY0z2gSY+sCiOJamJspMJDNGerk8qBsE/REgfbR1urSJR+EgRhDsUr3FdffYULLrhAcwOMMbRt29bSTiUtVpdX05A/AqLoMGBSiIHw8mtAxFFiWSEWrq+BqgjrEVqlyUW0CAbCZ6GTbSd5b8rIsawUawkxtwyITIoj/Cwaid5qRYvlhFhp+7GavjmakbNEqvhgKyTXM9uTDEEWIiWQvdr16NEDzZo1Q82aNXVt5Morr0R6erqV/UoN7BSRtVNfIkHHFwRDQgxELUqsKsRq/Y9Ugrm+aSF8PwT9YpkNCm7IesSY2wa/jvi9FpY6oUeIueVy6HkvywixXHRYTT6NpjOoSbFRIVbajt2J9ix/BEEQRpG9omzatMnQRj7++GNLOpPyxFtI471/LcxGwrWiKWpCLPe80SixhUIcFRGWVsQwilkxtkqI5ZC+T5TW0xkhtlKI1bZndFKMWEWJrYBSDeSxLF84Xr8UKu3X4nuJy+Gx9D1E70dCCFWTSHSsltdkSLuQOyfSCKA0V1X6E75U6qTPS/ehVq5MR01iLVRLtMmUdFPEahGWEgyEPxTb+sNSKcIGOVr1k7CBiQCsrD+shlWpApwk2PHmHknf7FLxIZrn1ZQIWz2TaTSu+XYOqphk0aJFaNeuHbKzs5GdnY1u3brhk08+4Z8fNWoUHA6H6NG1a1fRNnr27BnWZtiwYaI2TZo0CWvz8MMPx+QYUxnNTxVjDO+88w42bdqEX375BZWVlaLn33vvvah1jiBERHrRVssfBuQjxIA1aRM6p3IGQtUmIqoQYQVW3sy0IseSKLFstQmOSHOF5aLLFqRLAGJ5M5JLLN2mUrqEnu1KxS1eUWM7ink8SJkqEUkov1IaNGiA2bNno1mzZgCAFStW4IYbbsDOnTvRpk0bAMB1112HZcuW8et4veHnZdy4cZgxYwb/t1yK6YwZMzBu3Dj+78zMTMuOg5BHU4bvu+8+vPzyy+jVqxfq1q0LRzSmjyTshd3TJfSg9NOdHiEGrE2b0CnEfJ+sSIWQI9pRYT3wXywklx41IZZLZYhEinUKsRx60xL0yqvSNpXSJYwKdyxzi60U4GQYOBdVEVZK/aJB1VFjwIABor9nzpyJRYsWobCwkJdhn8+H/Px81e1kZGRotsnKytJsQ1iL5tV/5cqVeO+993D99dfHoj+EGRGNxgXQbkIcxQu8bA1iM1FitZrEakIMyEpxWJtYIfe666gfbAi5ihRGhRjQfl8ovYd1vL+NlFpTwkhEV06IAeX6v0bEOJpSHOsocCIMnkuZiHASUFJSIvrb5/PB51P4ZaqKYDCIt99+G6WlpejWrRu//PPPP0edOnVQs2ZN9OjRAzNnzkSdOnVE665atQorV65E3bp10bdvX0ybNg1ZWVmiNk8//TSefPJJNGzYEEOGDMH//d//yUaZCevQvKrk5ORQ/WCrULqZ20k6hcS79nGk6IwOAzqFGFCPEpsVYq5tLFGKChsVYbnZ5/SKsw4hFmFm4oyAJIIvfU64zKJ0CTmMRIqlqNX/Nbp9KwfcRUuCEz0qHDMRtjI6bOf7UBVOh9PS94bTERoy1bBhQ9HyadOmYfr06bLr7N69G926dUNZWRkyMzOxZs0atG7dGgDQt29fDBkyBI0bN8ahQ4fw2GOP4aqrrsKOHTt4uR4+fDguvPBC5OfnY8+ePZgyZQr+85//YMOGDfw+7rvvPnTq1Am5ubnYtm0bpkyZgkOHDmHx4sWWHTsRjoNpzKyxYsUKrFu3DkuXLqXyaQYpKSlBTk4Oio8uRXZ2hvJNPGwwVgT5kNEgVhfJaPVfabsKg7NkZ6qTSp90YJjw+bCphAWCIpVgrVnnjNT/NbItvTKsJbZqUzHrkWK5HGKZ9RRziAFjciz3XpYuk2xPKTpsVir1CLGRbStFjtX2E4kQRzMSrEd21CLDRvqmV6yMHm9Mo8JqA0yNXk+jfJ0vKSlFTu3BKC4uRnZ2toH1QvfR3069i+zsGpb2p3buYBw9elTUH7XIsN/vx5EjR3D69Gm8++67WLx4MTZv3swLsZBjx46hcePGWL16NW666SbZ7e3YsQNdunTBjh070KlTJ9k27777Lm6++Wb8+uuvqF27tokjJfSgWU1iyJAhOHXqFOrUqYNLLrkEnTp1Ej2IKGC3nK9o98fASH9LUZAoWfGSqzYhFDnh82o3Fbm8XbWHESKdWtlKEY4Eme2yQLnydNqVAeWHFLn3mXSZ9FcDBbkxK4X6hM8T9lBua3yaWjN9j3bFikhF2A7EPD1C7YugUbm1230nRnDVIbiHWoqE1+tFs2bN0KVLF8yaNQvt27fHwoULZdvWq1cPjRs3xoEDBxS316lTJ3g8HtU2XEWKgwcP6jwifQSDQbz//vsYOHCgpdtNVDSvLKNGjcKOHTtw22230QC6VCbSUfxa240maj8bKvzUqJg2Aeifxlnv5BxqqAmu3DaMbJvrW7RQS3ng2yjMZqewruI0zkrIpVaY+ElYKX/YbNqB2drEQrQG3WntQ28ecbRzghM9LcLW0IC6qMIYQ3m5/Jf03377DUePHkW9evUU19+7dy8qKipU2+zcuRMAVNsY4dtvv8XSpUvx6quv4uTJk+jVq5cl2010NGX4o48+wqeffoorrrgiFv1JXqyuDSlHol34YtlXLSEGZPOIAZm0Cb3TOGsJMYe/wlxUV7oN4XIjQiyHrhQHmZxqK1GRaaUosaIky03gAYjL42nkDysRSyGW7hcQy6xRIZbbTiwHxBkRYaujwpUsmBoibuS+YOPc4XhPujF16lT07dsXDRs2xJkzZ7B69Wp8/vnnWLduHc6ePYvp06dj8ODBqFevHg4fPoypU6ciLy8PgwYNAgB89913WLVqFa6//nrk5eVh3759mDx5Mjp27Iju3bsDALZu3YrCwkL06tULOTk5KCoqwqRJkzBw4EA0atTI9LGWlpbirbfewpIlS/Dll1/iwgsvxPjx4zFq1KiwnOlURfPq0rBhQ0P5PYQMZkTYrhclu/ZLD1o3BaNRYjNCDIRXjlASYbWordw21AQ40hQKM5jNGRbCnUedg/Kkr1PYjHaAcpRYQ4jVqktEIsRCpOIqJ2vSNlYNiouGBMvJeLIKqK0rSAjf11piHK1fAROcEydOYMSIETh27BhycnLQrl07rFu3Dr1798b58+exe/duvPrqqzh9+jTq1auHXr164c033+QrRXi9Xnz22WdYuHAhzp49i4YNG6Jfv36YNm0aXK7QZ8Ln8+HNN9/EE088gfLycjRu3Bjjxo3Dgw8+aKrPhYWFWLJkCd566y0Eg0EMHjwYM2fORI8ePSw7L8mC5gC6jz76CM8//zxeeuklNGnSJEbdSg74AXQ/vRoaQKeE0kXHbgPphER6oYxnBFtr3yqDUsKkWG1gnd5BdRxmUhb0Ds5TqjHM7dNovjBHNAbQGUXHfsIixkIhVhvAqnMwnZBY1PSVi/YK9ysdVBdJBFov0ZRcvVFho0KvN39bD3GVYTMzNRq5BlsgxpEOoDt9+gPLB9DVrDnQcH8SCZfLhZo1a+Kpp57C8OHDafIOFTSvMLfddhvOnTuHiy66CBkZGfBIJgT4/fffo9a5lCERo62J2GcOPRFiQF+UWG+qgFzZNT3rSJH2W6l8W6yIJFXCChEGdJV3C5vVThj1VXsvG4gO87u2sHyZEpGUarOaaEd67T5oLmGRKzWoBEWLE5I+ffpgw4YNmDlzJo4ePYrRo0fjoosuine3bInmVWbBggUx6AYhi1nhTLTc4XggnUpZDr1pE0IhVEqX4PZpdpIII/3m4ORYbea5SFESYasn6TCKTHqFbiG24IteLGd+ixexSHcwIsI0BXQMSOQgSAry8ccf48cff8SKFSuwdOlSzJo1C3/84x8xevRoDB06lMrlCtBMkyDMoztNAkjMVAnA/v3Tg56+yEixasqEUrqE3D6tOIdq6RJS9NQYjjRNIhYpEkpTO2v0RSTESukSJmsPKxENKZZGhWOVJhHLnN9oy7BVaRJxzxc2kyYhh55roZnrldMdSpPIvcF0mkTxqfctT5Mw059EZtOmTVi6dCneffddeDweDB06FGPGjBHNopeqyNYZlk5PqMWZM2cs6QxhIXaeKMNOIgzoO1cygyDD8lCF0qVUg1i4T+4hh8sr/1Dqt1Bq1SK/eqPCelIfollJQnGfgeqH2jLROuJ+ir7ECCVC9OVC/diMyk+yRC2TSYQJkxi9fseikhKhi169euG1117DsWPHMHv2bHz99dd8JYtUR1aGc3Nz8csvv+jeSP369fH9999b1qmUI1riamchthtWCbEQqRBrRUuVpFfaRg9y0itdppW3HPSLH9JldkRJitWE2CRmhNgqaVOLCkeLVBThlJNsSoFIKmbOnIlp06bxf69btw433HADHnnkEdxyyy3YsWMHvv766zj20D7IXnEYY1i8eLHukYcVFcmbFxd3KEcrdpjMIxblEKuVXOOetxK9tYytwIgARzLhhhrS82kEpT7pyR1WqDssFWI96ROJlk+crKXQrCJpUiQ49IxtMHJfMlCzm7CWN954A0899RSA0CQggwcPxi233IKtW7diwoQJWLVqFTp06BDfTtoE2Xdoo0aN8Morr+jeSH5+fliVCUIn0RbdWA2mSyZpN1GPWFOIAfMSJ0VtYJ5UiJWI5sxzHPEUYjPb1UKuTrEEoRjpqToBGJdirfxfab5wJMRDhO0SFU4IrBZhIqk4fPgw2rRpAyBUJrdFixZYvHgxdu7ciT59+sS5d/ZC9qpz+PDhGHcjyZHmhiaTOApJpuOyQogBeSkGwmVOc/IJaXsNITZDvF6/WEeIqxBVl1CKXsmdE52RLk6MoyXFHNGKMCe7CGsdX0IMnNOD3HtVS6Ktjg5bQWXAWvlPgS8S6enpKCsrAwBs3LgR1157LQCgdu3aOHv2bDy7Zjvot4t4EGvhiGWpNa0LZCLlF2ulTWgJMaBchzca8mfF62x1PVE90WHAvBBz68otN9sf6XtYSYg5NMRYb7RYT33iRJ88Qw2qJ2wQPTKn9N5UKBsZNVJAPO3IH//4R0yZMgX9+/fHO++8g88++wwAcPDgQZqGWYLsADrCZiSSQAKh/sr1OdGOg0NNDPVWmVCrCqEXqeSZqVIhbKMG9xoqvZZG0Dvgzmyk1+UWP8yiVFmC+1vpXHARK+FDAQdjqtHEeP/sTyKsn4SICquh9euG1UEbEuKY8+yzz+LXX3/Fgw8+iIkTJ/Il1M6fP4+pU6fGuXf2IvGuQIQ54jERR6LKrxxq509mxjpOiBWrFmjm0uo8d2ozwFk5gUfYzHcmbpR6o8QxRHMiDkB9pi61mesAReFQm8kuGjPYOR0u1agySbAYrS8lCS/CHFoRYq37RjKlxiUhjRs3xpdffhm2vF+/fnHojb2x55WIiA40M11kmMwjlqKrrJdczjEgny4hFUyjZc/MvC/M3gRlZoYTPx+FgW9GkeYEq8mvlhirSLFaTnEspnTmsHtusPz6kUfQK1mQKmUAsU+ZMEugwtr7VyAxqrkQsYFkmCCMoCePmEPhBqNUm1hWkuUiv1r5w2aizrEUYq4PNokSh0WHAWWJVYuQq4mxhhQbndHODPEWv2hFgZW+NEQr5SRposJ6oSAKkQIo5gxfffXVeO+99xRX/PXXX9G0adOodIqIIvSTljXoybt1usMfKjjcPnlRlpPGSKKnSnnLsX5vKEWwrSpBZwAWKJf/MqKVD6yWH6+WXyxBTrDMypzdUg9cDrflfQqyCv6h1cYo8c7bjguR5A+TKBNJgKIMb9q0CUOHDhXNXiIkGAzihx9+iFrHkgq3J3LRsPKCQ0JsHXqkWIgOQZaVYiUh1vNQwiaR2ZijkkbCSbGiHAPGpVhpGxKSKeLICbCcBHMz8Sk9hO3kt23NTH7xjpTHBCPpDyTERAqjWk1i0aJFWLhwIQYNGkQ16azAqDhFE7v0I1kQVnEwem5VpFhEJFUolMRYuk0jfY/WeygWOcM686pV5VguWiwnxWpR4igRr+iwnAArya7yNqrbKcmykYivlbnXyfSFRZZIZoojISYSGFUZvuGGG7B161bs27cP3bp1w/fffx+rfiU3dhFRu/QjGZHKsdxDipEybWbRI5pWlGbT1Zc4v//0lnwToJpOIURvlNigEMtFM5UjqLERYqUosFURXPl96pNro31IyRQJI+gpyRgtpOUerXgQRBWadYZbtWqFbdu2oWHDhrj00kuxcePGWPQr+bFLlNgOfUhV5N4DMlFixTxis2Ksp16xsH+RRL0V+2Cj9x0nxXIPBRQjxUJM1Nq2OvIYjXxd6fbll4ul0ulwKT4i74N2yoUUI18qbEskUdxIthtPISaIKKFr0o2cnBx89NFHGDduHK6//no8++yz0e5X6mAHGbWLmKcqSlIsQKkCBQD5ST20ZFmvEJtBqz9q+4o0RSIYED8iRUOOTQmxAfQKmnaE1HopVssH5tAjvLHO3U0KEebQI8Rm0nEiFW0SYiLBUHzHOySlfhwOB2bPno2OHTti7Nix+Oc//xn1zqUMdildY5d+2A0rvyionV/p+ZfU/9ScyEMJtYk5zLSTrmMVZkVYTXq556zKQ5apk6w6cQegPb2ztL1J9NQmdjncCLLYVOswIrlak4JYRSQibNt8YZlJf6IWNebQc6+gCTmIBELxE8MUPvh/+tOfcPHFF+PGG2+MVp+IeGJkVrJkJxoXcqW6tMLnVYQYMCnFeusVK032IXzOasyIqtGor9VSHEfUxFGvEAOISIqVosKREC0hVpLyhI0GK2G1AEc6Ox2gPIujGTSmOje1PYKoQvHTs2nTJtSqVUv2uQ4dOmDHjh346KOPotaxpELPRcpuUVm79SfWxCKiofTFQ06IAc3Z7QxHjAHlCTwiFd9oSWekqQ9JJMVK6K24EM0ocTzLlqnt26wA2zYqnCik8r2ESAgU7wg9evRQXbF27dq4/fbbLe9Q0qIgNCLsJqB260+yInee5ZZpRGo0I8ZKaRBaM9opEUuh1Oqf0Ui2cHumItP+yFIlIkRPFNVMGTI9RCMqzGE0OqxXuuMaBbYoDcaWGLlH0PTHhI1J0k+ojYnkp6d45GClohDHI89NSYgB+SgxoDrds/G8YhtfCpREWCu/Wfi8XjHm29v4fFTBiaAeKVaesjh2OcRWYCTirCTAeqK8lk2Pbcef4qV9SlZRJwgD0KcgHliRi0XYG6UbjNbrDuiLEgv3ITebmZIQmxkkpwcr8on19stM/2UGvqm310iniGFpOK08YD1SrCeXWF9ftKPCkaZIRLJ+JAIsbc8cjtRIj4hUjul+RSQBJMPxwowQx2tkbqJd7IR9NXrOzJ5jvTcQHZFdzddeLn1CZnumIsRqRFsA5QbvSaO2ciKsNBBRDqNSrBPV0ncWoCflQSiRcmKstA09A+r01hOOB1YJsNXr85/HRIu82jGaDYAF/GAB63LRWSLd04iok2Cf0hTDThJqp76oITcVbjS+RFhxg1PLI1er6qH0nELliTAhVqsYIW0TAVqCGLGoq70ftb4Q6ZXiYMBcykQE7w9OwuR+qtebB6wWLVaKEhupQ5yQEhyP9IBEE2GzJMr9gSAUSJFPqk3Rig7bDbtf8GKVax2NEkaAOSk2K8RAxMIbaTRUuL4uMTab3qH2+uuRYrNCbKRPMoOs9Egx30UFOVYakGY2bUJLgmNVRcKQCCtdY5N5YJsaiXbfIYgYkIJXApuhN12CipdHhlXnMJo3TzNSrDTIzuKUiWinAYj6pyev2eiXMq16p1FKn1BFTogBRSnm0JJjqeQqRYmVhNpM1DfeEgwYFGHh8/Ga1jjZsHuwhCBUSLFPa4JiJxG26wUvFn2K1c3NrBRrCLFRoi3AUSEQBNwqYqZHiuMpxIDmz/lC6VMSY7mor1bZMrtEfZWIOC2CiD7RvD9U+oGghe/BShvex4i4QTJsB+hnK3sQhS8dcrKie2CO2mA7OSm2aDpnwxJs9EtCpO/1sLzwoPLfSmKslTohFeJopEro6QugKsdKqRRKucV6y7HFW3yFGI4GA3Q9JQjCECTDhHHsGh2OJgaET6tGqSlBVooWS6VY+rfMehFHfBPp51+1SLFalFgrQmx1BFnr8ySXTgHwr4WaFCtFiY2gFTW2emIPPfu1rOxZquUOR/uLQireH4iExxnvDhBVJNrF2E6pGza58DKHw3Sxfm5dzfWdbvn3ivT1kP5tVfULK6toWIE0KmymjdL7R5q3HOlU0JEQ8Fc/hEhzw2UE0eXwmMoD5tbTs67ZfZjdnqoIU1Q4ulh1HSAIG0HvaILQQseF37IZqyTbUrzpy0WK5aLEcrPXGZUFO9z4Ip0ohBNiM2kTRjFyvpQi+lLk6kxzyyQD74ymTgifU0KtsoXefehFb19kiacIp0KEWXh8aul9FB0mEgyKDNuJRLuQ2ik6rEUU+2qlCMttWzViLBelER6r21v9kK6jJ8KTaO9JLdSixHI3bytn65OrgS38v1bdZGkbE1FiQBzxVYvAOhjjH3LL1KTUSFRZuo4aURPhyoDx9bl1hOua2U6iIHctiOX1IRiw/mGARYsWoV27dsjOzkZ2dja6deuGTz75RLbtnXfeCYfDgQULFoiWl5eX45577kFeXh5q1KiBgQMH4scffxS1adKkCRwOh+jx8MMPG+orYZyYyfCsWbNw6aWXIisrC3Xq1MGNN96Ib7/9VtSGMYbp06ejoKAA6enp6NmzJ/bu3Stqo+fNdOrUKYwYMQI5OTnIycnBiBEjcPr0aVGbI0eOYMCAAahRowby8vJw7733wu8X31x2796NHj16ID09HfXr18eMGTPAUmF6TiMkkhBHgWiKsNy+FMVYKrZSAVZaJlxX7hENZGRBNKgvGtNFCzEqxEZRkyGldAe5bSiJlQVCrIaW6BrdvpJ46xFy3X2ySkClgqv2UCLZvkBqoXS8SXZvaNCgAWbPno3t27dj+/btuOqqq3DDDTeEOcratWvx1VdfoaCgIGwb999/P9asWYPVq1fjiy++wNmzZ9G/f38Eg+Jr0owZM3Ds2DH+8eijj0b12IgYyvDmzZsxYcIEFBYWYsOGDQgEArj22mtRWlrKt3nmmWcwf/58vPDCCygqKkJ+fj569+6NM2fO8G30vJluvfVW7Nq1C+vWrcO6deuwa9cujBgxgn8+GAyiX79+KC0txRdffIHVq1fj3XffxeTJk/k2JSUl6N27NwoKClBUVITnn38ec+fOxfz586N8phIQu1/09PQvhscQZBWyDyMoirGSFGtFi2OBgkQoVreQi9yIRFBHvrASZoVY2KdoSLvcOZJbZlCI9UirEQmWrmcEoxFjze3bLRJrt/7EghT4AjBgwABcf/31aNGiBVq0aIGZM2ciMzMThYWFfJuffvoJEydOxKpVq+DxiN/jxcXFWLJkCebNm4drrrkGHTt2xMqVK7F7925s3LhR1Pb/23v7MCnKO93/rum3eW8HEMYJCOyJx6gjcQFXUTfoqhBXJV6JmxhdIntcEo+CCr6s6G5U9ii6mxhNNno80aNuootnL2QluwkHNIjrT4jKywph1+geFI0geYHhRejp7nl+f/RUTVX1U1VPVVd1V3ffn+vqC6b66arq6uquu+++n++3q6sLvb29xq2zs7Mqz7GZqdoZvHr1asvfTz75JMaOHYtNmzbhc5/7HIQQeOihh3DnnXfii1/8IgDg6aefxrhx4/Dss8/iG9/4hnEy/fCHP8QFF1wAAPjRj36ECRMm4MUXX8Ts2bPx7//+71i9ejU2btyIM844AwDwgx/8ADNmzMDbb7+NE088EWvWrMGOHTvwwQcfGN/evv3tb2PevHm499570d3djWeeeQZHjx7FU089hUwmg/7+fvzyl7/Egw8+iMWLF0OLyhGs1zJrfjJiXvnIBkRF7LqNcRMP0oyxrCybW+40stqg7udymRCWCcyonGKvmsTm7XtUjhCFXOVVOvw2iDDnnH10tNMRmhZaRQZNiNB/JVHat3r8rKwl1T5edZAdPnDggOXvTCaDTMb9vVwsFvGP//iPOHz4MGbMmAEAGBoawty5c3HrrbfilFNOKXvMpk2bkM/nMWvWLGNZX18f+vv78dprr2H27NnG8gceeAB//dd/jQkTJuBP/uRPcOuttyKdjrnpVOfULDM8MDAAABg1ahQAYOfOndizZ4/lRMlkMpg5cyZee+01AN4nEwBs2LAB2WzWEMIAcOaZZyKbzVrG9Pf3W37GmD17NnK5HDZt2mSMmTlzpuVNMXv2bHz00Ud47733wjwUjYOT42heLnMoo96nBkDVSZY6xrLYQ1RusepPyfAQwtWq3FCJu1wLKnCI7SgLYcXXM7RSZyrrauRsbr0StTtczJc+I0K7lT5DJ0yYYEQqs9ksli1b5rgL27ZtQ2dnJzKZDK699lqsXLkSJ598MoCSgE0mk7jhhhukj92zZw/S6TR6enosy8eNG4c9e/YYf994441Yvnw51q1bhwULFuChhx7CddddV+nRIx7U5LcNIQQWL16Mc845B/39/QBgnAzjxo2zjB03bhzef/99Y4zXybRnzx6MHTu2bJtjx461jLFvp6enB+l02jJm0qRJZdvR75s8eXLZNnK5HHK5kQu8/RtnU+FHVFXqHsgeHyMRHFUNVq+qAHanThOi3DFWad4howIhIo1FOLm/RQex5yZiB/NAusIyX3an1ewOqzTg8FtZICxhp9jiWRmf+1WJQ0wnmNSCDz74AN3d3cbfbq7wiSeeiK1bt2L//v1YsWIFrr76aqxfvx5HjhzBww8/jM2bN/v+1VgIYXnMokWLjP9PmTIFPT09uPzyy/HAAw9g9OjRvtZN1KmJGF6wYAHeeustvPrqq2X32U8k+4kiwz5GNj6MMfrkOaf9WbZsGe655x7XfVWiXqMStaQS8ev22Bpn4fROYapNEtwEclmcwlxqzassm7FDIYtgINx6voN567+AtzBWjUvIMInksqhEVKW23OIS+t+AZ6MOpe14bVuCahk2+3jf++JEGD/Lx+jLdGjU6poS86iEXh1ChXQ6jU9/+tMAgOnTp+ONN97Aww8/jJNOOgl79+7F8ccfb4wtFou4+eab8dBDD+G9995Db28vBgcHsW/fPouht3fvXpx11lmO2zzzzDMBAO+++y7FcIRUPSaxcOFCrFq1CuvWrcP48eON5b29vQBg+bkAKJ0ouiNrPpncxnz88cdl2/31r39tGWPfzr59+5DP513H7N27F0C5e62zZMkSDAwMGLcPPvjA5UiQZkDVFR4SRenN637ZWNk+2KMVliiFPT4h+39ARCFn3OQ75yKEnVxhJwYdjrXTci+irizhZ4wXsn112v9KqyUo7q+9DJvTzRXVOIRqlQ5VzOsLst64mRmV7o/qF6gmmEhnRgiBXC6HuXPn4q233sLWrVuNW19fH2699Vb83//7fwEA06ZNQyqVwtq1a43H7969G9u3b3cVw1u2bAEAHHfccdE+mSanamJYCIEFCxbg+eefx89+9rOymMHkyZPR29trOVEGBwexfv1640RROZlmzJiBgYEBvP7668aYn//85xgYGLCM2b59O3bv3m2MWbNmDTKZDKZNm2aMeeWVVyzl1tasWYO+vr6y+IROJpMxvmX6+bZJmhcvIRtkXW5CWSaKAVgzxW65bo+LnVn8OgpgY2cCChdZRMJL8Hrdr5Iddso0m5ZLn7OTEKkk9+pVcs28LApXrhpiz48IrgbV3FaYxE2Y1yl33HEH/vVf/xXvvfcetm3bhjvvvBMvv/wyrrrqKowePRr9/f2WWyqVQm9vL0488UQAQDabxTXXXIObb74ZL730ErZs2YI//dM/xamnnmoUBNiwYQO+853vYOvWrdi5cyf+z//5P/jGN76BOXPmWFxnEj5V+xp3/fXX49lnn8ULL7yArq4uw3XNZrNoa2uDpmm46aabcN999+GEE07ACSecgPvuuw/t7e248sorjbH6yTR69GiMGjUKt9xyi+VkOumkk/D5z38e8+fPx2OPPQYA+PrXv45LLrnEOClnzZqFk08+GXPnzsXf/u3f4ne/+x1uueUWzJ8/3xCwV155Je655x7MmzcPd9xxB9555x3cd999+OY3vxldJQlSfWr4c6hfEezkMquUqTJvq0VLGOtKaClDEBvRCT024ePC7yl87UirRgS8aKs6v2FkiRWQVpaIQpDIIgtOnfTsmfCwtg+E7wZ6HataC9IwuxVGTSMJ4cIgUAjRv/N5Hn388ceYO3cudu/ejWw2iylTpmD16tW48MILldfxne98B8lkEl/+8pdx5MgRnH/++XjqqaeQSJRiWplMBs899xzuuece5HI5TJw4EfPnz8dtt93ma1+JfzRRpS4STgLyySefxLx58wCU3ON77rkHjz32GPbt24czzjgD3//+941JdgBw9OhR3HrrrXj22WeNk+mRRx7BhAkTjDG/+93vcMMNN2DVqlUAgDlz5uDv/u7vcMwxxxhjdu3aheuuuw4/+9nP0NbWhiuvvBLf+ta3LOH5bdu24frrr8frr7+Onp4eXHvttb7E8IEDB5DNZjHw2xXo7u7wf9FopA8yL2p1gfO6qHk5oR7ngpOA9Yo1hI1MMJtzyPr9xs/W+rknq1ZgOy99CWE3N1g1ImF3cf3GINwEsSw7bD9HzGXWzBPpbOXXKi61pkqYTQ+CirwwBHHcRbCMCj8/IiWs60dI160Dv9uP7LgrMDAw4OtXU/06un/bX6O7q9Xfvrit9+BRHHPqX/neH9KYVE0MNyNlYhiozQzzeqAWFzqVC3+VxXBUlSfM2IWxLoo9BbH5NTKdm8piWFUI28e6VZEIkgeOSgzb7xumKqJY5XOlGuI4iPirRxGsUwUxbPnlRpUwrx0hvaYUwyTONFfaPQ5ENcO8nonzxS4CZELYSwQXRWUXt4Q2cs6ZIxL6/ujRCT02IY1MOEQntGQmunxwFLjFJWSVJdx+FreXWZM06NCPTaSiWCWyIHufeYk5v/EKP59vcRPBQY+P25gKP+/NX7alzXWctkkI8QVVWS2gIK49IbjCYeEmhCsVwbL16MJYF79AAEHst/xfIh0vQVwJdsGrIIiBALnqYXyJaPtr4nUO+6nPLSvZ5rYPTttWnRinShg1xp22p/qc3Qj4ee/2q1OY3QNdCfMzMFlp7e9iuE1y6q3hDomUmnWga3r47b12hDj5xe8FSWXSXFEUjFsUmNdrri6h75v+d1npNftxM10olQSbR0vjquIWr5BdJO1iyUvYhyj8latzyPBTMg1QKyemWlXBvj0/269kH6NwlN3W6edYKH7uB25tHWZOmIYNaSJ4ttcSOsTV/SnUjwgO4XVRyf/ax3gJ4CBl2GQNO4qiYIlOmNcvdYjNmOMSJodYF8Suos3o4mZ73RPJYNUk0qngdYTDRNaVTn+OIX4JsB/bQNELmWByOt/dnFHVqgqqAq1SwRk1bs/XT4WJOH/ux3W/CIkYOsO1hg5xdYhhKaQgDTmC4PRYu0Psun92d9il9nAoLrH5fkvd44Cd4mT4dYe9cBLzxcHIIiL2us6BXWQv5zJqFzbuQlgnrH2ppMZ0VIQphCmqSZ1BMRwH4vah2EjYm0ao4OOD3M/PmV5i1u4Kh9mQw2l9MkFsH+MYl/AQxJ6i2C6I7c5qNfDjKvuNStipcmbaTSi7imUvUayyzA+VxjH8rDMMvPLFfnA41lXJA+swEkEIYxJVoaBwwbX/dNYMAjmqC1YMXWA7XvGIMEWwHT0KYd62fVJdoAoTkkl1StGJSokqKiGrLOGF7g47CfsIohNBMb8m0i8uThPhZJGAsBtRxMkN9kM9NeSoN/J5YDDEX4byMYhXkdhAMVwtVD4km0EAR0VYF6AaOCSqQjhIDWKn7nRugtg+xjE/7CSIAXVRbK8yYc4Om+8zbyOZKI8x6KXSgojiKDrTyTLElvsrEMVeDnOAdbqWf/PT6c4vUUcvohKmXvlhwN+2JcdYEyL4RDpV6AgTAoBimNQ7YV7sfF4Y3C5UduGq6vQGqUHshvmxdmFsF8Tmx7i2eDY7wE41iB1Kr0lrEgcpuyYTxEB8JtQB3oIYiCY6obJOB8EsbSUNqAliv+KzGpUgVIRpVC6037rFEide//IZSSm1qIWw3/KLhNQQZoarSb3+9BcFYRyLGgrhSjALVK/qEWF2pJOtyyy+3fLDjuXWzNjz2Q5ZxMDNJ1Rf73QqfKc3KEEqZFQDl0l9jpGWMOsDBxHCsjJxqhPR7OXYvMrHqRDksSrbDpohpvAkJDB0hqsNM2XhUONYRDVc4ShaM8tcX7ND7FRyzYxjflhHwSUuc4jN7rBTVMKOkzus48cljiIqoeOVI/Z6nF/8bMelQYjSl5Yg+WG/QlhF5JnH1NNP/04d/lQ6ClZCPR0jncFCuL/6DPLLAxmhDt8RpOmJsRD2wskVVhXCfhpxOIlazxiEbZw9OywlDEGsQtl2FAQx4H0RlQlh++S5Ss+7arnEsu145ZdVBbFMpDkJYjMOrbw9CeJ2Ri0kzYRpbsgiHaoi389xqkchTEjE8F1RC+gOByfmQjioK+y2jtIy/6JAf4xMFNuFbcXuMBBIECvhlSnWRWtQURzUEY66IoTbc/a7bbNAlgljB0HsiD1D7JXNDVKOrNKf/f22pg5KVJU07OtkDIKQyKAYJtWnltnpCi6IfoWw2/1urnD54yq7CDqJYhWHWMkddhPEdtwEsVNUwo7TNrxcYqBcFKsK4ai+vAadQFeJUFaZ2DeMa1zCySXWCTppLSrR57TeMERyFHMgVI+lH6rtCnMSHakTKIZrBd1h/1R6vKociwjDFVZtzyyrClG+7nJRbBa3gd1hNzzEsXJUwu4OuwliQF0UOxFmpzs7bkLWS1SpvAfKWl1LHhOWIAbc6xH7pULhJDuXPLPPftpTR4mb+A1Srs0O4xGEOMJ3B2kOAlwIVEWwykQ3FVdYRQg7CWyn5fLSaQUlQSzbRijusCpu7rDXdlRc4krxEy2oRAB7jfUSSE41je2C2OX5eDboACqPJUQghM3LA1cxqQVOZklQE6URhHChGO57OurPB1JXNMA7hLgShqMQB6roiPhxgp2EcKUd5PwIYTecnGMV51cf4xanCMMdVkaWHfYSxID/i54fV7iSOsHSqgou++q0X7LJajJUxLvCGLvoVBbHZhyaswRF5deFuhPFYQtiQogjrDNcS6LOzprXzxrHSkQhhP26wrKOdJWKa3kzj/K6wk5jyx9bQYkjty8nQSal2esbl90fYeQhKJb3ZlHN9VIe51LD1i7eZc67Sw1iGaKQk95cUa0PrLj9KMfXFKfX0s/neSO4woREDN8ljYrTB2itHYUgorwKrrDfXHAQIRwEN2Hqtm6ZkytziVUcYvs6HPPJUUQl7LjWHQ7BJXZzX6NoPyzbH3vFC1m+2fw4L8fYvt9299cpP1xJy2j4cJBrgHId5XqHQpgQJfhOqTXVFqhxEMQxIww3GPBXFULFFa6kNbM+zkkUq7ZhVolKRIosNxxUEAOVucSqcQSVxwJqQti8zGnSn74eP6LYLnTdGoP4iYK4COc4CdC47AchJB5QDDcjzSKIFVyRKIVw1K2U/TzOTcjK3GFXB9iGUm44bLwEMVDdGJLvx9rOF5XOWtUUxTq+u+a5u8lR5HYDNW+pJ5rhs1oBUchD5MNLdopC+B0+Sf3CzHCzUosMcbUjEh74qRbhFotQEcKVuMJhiGrVZiB+thVFu2gpToLM6+d7ryxxveIlnL2yxbIcqlNOuFgov6ngkTuupXhtGlc4LhGJuOwHIS7wLI0DUTi1KpnNuDvENRbCXmJPVVCqNM3wK4RzRef9zyTkLm3QrnP2qIQf1zhyvLrTAeE6xUGqPXitQ8UVtqPaNMQtWyyra2s+lk5fNvy4xx7l2sISpqrucN0J4Th/PhPSQFAMNztxF8QRUKkQ9uOqyipDqGzDCTcRbB8jE8V+sr81E70ygetWczghEXIyzOe5X2GsUp5NaVJbyLVN/XTSq0QYA97i2G+kAtUTxL63YW83XQsa5XOZHehIHUAxTKqDX/FRo25zYbnBpWX+LwJOYllFBNvJFTVHl9iNmk2WqxQVl1jHrfWtnSACVvUxTq6webmK0PU73r5/ZnHs1AnNyzV2q0oRsCKFX+rO+ZWh+tnnZWTEQdCHyWAeSIWY7AzyiwxpWBronVLn1CoqEdW2K6FG8Yiw3ODScvemGW51he33BxHC5se6CeLQ3V9zeTVF1Fsye3SkA/wJYjN+S8GplD8LCz/ur3m8DK/Jd4BcGMvKswHeXe0UiG0zDKc201ERp89gQpoMTqAjJZq8KUeQShFObnDQ7nH6mKpNTKtHVIRWIh28eYcKbuXPwsDNLa50O/o67Dczsgl4Ts0fnCbdqYyzodSsoxZU42d+CmFCagqdYRI9foR2DVxhvy2V/UYiVDrSOW1L5grnh8qXpVqqXNosaoI6vJWuo5JmIYN5fw5xUFHt1yn2uy/m9drLtTmVZ1NxiBXjEn4FcVUcZZkgDssxruQzL26/6hFSp9AZbnQqbQxQTdz2VXemqrSPft1gp3X47UjnFo/ID2lSIazf1zT4+Rk+qEscNWG4y07ObqU4ucWWvyWl2ewEdIj94qsNdJhU6hg3auk/QuoQOsNxohG/5YdSzsrewja84yQTp6oNNNxEsMq2vFxhMypiNz+kNZ5D7IRKftgyPgSnWSedkgvQSpzaMOIPlSDbd7sDLXOJI3SI64Igk9Qa7TPejTAjJoUiUAh5fYQMQ2e4GYj7h6+XI+xnuQ/CFsJODThk64hy0pwfYlMvWIaXYPJbyitMAWYXj5XGI2qNm8vs5hLbf62RNdtwcogjcImB2jb0qAm1/kWPkAaAzjCJjkqzwlX+kPfbSc7tcbLHytYhe6wsHlFN6qqsWq0dYr+oxiPCaO4RFFkmWeYS26tOuLnETrWIPdo3ByW2FSrccPq8i7uZQUgDQGe4WfBTuzIMVNdT6eQRReyT51QqNngJYbdWzCqVJlQacPgRwioRiboSuo2Gquvq9fOtudqDyvigyJxi899eFSdUc8T62IjyxLHC6fPOtc51nTq/bLZB6giK4WqQjIkAqSeHQfUCENKFwmuim1snOX28n3JrYTbXcMOtxrA5IiFrxRyLCIWKYxig85kjUQkPv/EDv8gEcpCbyr77mVynGpuwjw9RGEcqiCutKKE6KbheBXGYOJUFrOTmg0cffRRTpkxBd3c3uru7MWPGDPz0pz8FAOTzefzFX/wFTj31VHR0dKCvrw9f+9rX8NFHH1nWce6550LTNMvtiiuusIyZNGlS2Zjbb7+9smNHPGFMolrUSwOMMLZdqStc43iEmxBWrQ6hOrkuLCEcpSssE8pho9x4wwm/cYlqErUQDhP7JDkde0yi0sl1Ki2cQ4xQhNn2mSjQgK7w+PHjcf/99+PTn/40AODpp5/GF77wBWzZsgXjx4/H5s2b8Vd/9Vf47Gc/i3379uGmm27CnDlz8Oabb1rWM3/+fCxdutT4u62trWxbS5cuxfz5842/Ozs7I3pWRIdiuJpUUsM0zH0AotuPWj8/BdwiEpUIYT/VJeyPjWLCnKorbCayGEUl536YOV83ojh3Awphkfd2rbRUhL84OXWkUxHFTjWJVatN2AlJFNdUENdiTkQjtWKOAZdeeqnl73vvvRePPvooNm7ciGuuuQZr16613P+9730Pf/AHf4Bdu3bh+OOPN5a3t7ejt7fXdVtdXV2eY0i4MCZRbeISVZDtR6X7FpPmGmGhKoSdYhBOdYZVhLBbTWEzqRYhdYXtQthN5Ko6v76FsttrLLlQuwqVascldII6tkEqM6AkglWEsHlsmDcpsgiFV5bY8niFHLGKqx/CF6LYZYjDIG6fpQ3oCtspFotYvnw5Dh8+jBkzZkjHDAwMQNM0HHPMMZblzzzzDMaMGYNTTjkFt9xyCw4ePFj22AceeACjR4/GaaedhnvvvReDg/E3meodfnWsBXFwiPX9CIuwhHCQ41JBtMQpu6s60c0rSyx7jI5qdzkZbrEILyGskgWORV64XnFrp6wjEcFxwLwfZc6zPQohc4lVYhNOTm+VXOKaRyaCfMbFTfA2EAcOHLD8nclkkMnIz49t27ZhxowZOHr0KDo7O7Fy5UqcfPLJZeOOHj2K22+/HVdeeSW6u7uN5VdddRUmT56M3t5ebN++HUuWLMG//du/WVzlG2+8EVOnTkVPTw9ef/11LFmyBDt37sTjjz8e0jMmMjQhRJNU6a8+Bw4cQDabxcBvV6C7u6N8QCOV0gmjekQlXxDs67U5j+ZqEmZx6iWGVcSyfZxsvI5THCIKEQx4C2GzK2weK5tcp99vva+0TDN/jJidIfNran99HRwkV/fOyx0M6jA61rNWdIbdJuMouMFxRxrJMMcnzGXY7CXnzOPs71MnUeslikMuxRZIHFczhuD2uenzF5jIcXhfHzhwGNnRX8LAwIBFIHqhX0f3/cNcdLeH97of+GQQPV/9Ydnyu+66C3fffbf0MYODg9i1axf279+PFStW4PHHH8f69estgjifz+NP/uRPsGvXLrz88suuz3XTpk2YPn06Nm3ahKlTp0rHrFixApdffjl+85vfYPTo0f6eJFGGzjCpnDi43C4EFcJmVFxj+zidSgUw4D1BrlIh7DRONUIhNM0qiGXYfxFpSfr/SdUrP+w1kc7PT+2VCGHF2sGOQrjWjTlsglbfT4soNueDzS6x2SG2o9K1DlBziUMk1nWJ69EcqSM++OADi2B1coUBIJ1OGxPopk+fjjfeeAMPP/wwHnvsMQAlIfzlL38ZO3fuxM9+9jNP0T916lSkUim88847jmL4zDPPBAC8++67FMMRQjFcS+ISl6iEJsoJu92vKoKjaKARRAh7ja8Is8gNcI5XXFmiGvhxggF1N7jWIljHvB8mYVsmimXRCbsgtjfosBNEEEfU0jnWolhGHXymxh29VFoQhBDI5UrnjC6E33nnHaxbt05JuP7iF79APp/Hcccd5zhmy5YtAOA6hlQOxXCtkYmFWpdXU6XehfwwXm2Z9ftVhbBfEZwrtiCTGFLf4WGcqkWoCFuneETkKLrDroK4Enc4ysoUlbjB1RLBBQ8nPim5JEiEsVQUqwpi2edbTBxinZrninXq4Tpgxu2XnkJMvugF5I477sBFF12ECRMm4ODBg1i+fDlefvllrF69GoVCAZdffjk2b96Mf/7nf0axWMSePXsAAKNGjUI6ncZ//ud/4plnnsEf//EfY8yYMdixYwduvvlm/P7v/z7OPvtsAMCGDRuwceNGnHfeechms3jjjTewaNEizJkzx1KRgoQPxTCpDlF/qPv8AuHm+gYVwqptlHPF8iIu+jJVUaziBgNyR9gt+uAUkahIMHu5w1EI4jBIJoJHJeISifASv17j7eLYFoEQ+bxcEMvGhy2II3KHSUwJu9uiz3V9/PHHmDt3Lnbv3o1sNospU6Zg9erVuPDCC/Hee+9h1apVAIDTTjvN8rh169bh3HPPRTqdxksvvYSHH34Yhw4dwoQJE3DxxRfjrrvuQiJRel9kMhk899xzuOeee5DL5TBx4kTMnz8ft912WyhPmThDMRwHGiEuUaeo1ByWCWG/IlgmgGX4FcU6QYVwZK6wWx5Ydr4HEcS1wmdHtqqKYL/i18/6dGFsqyJhEcQ6brlhY90+BHENqLk7HIaBMFSIR73hBri+PfHEE473TZo0CV61CCZMmID169e7jpk6dSo2btwYaP9IZcTgXULqkjrMCrsLX6sr7BadcBLClYhg2eOcBLFKDeEgQjhIObWiyBvrcZ1EZxfAYXwBdHOH/XakC7o/QcqlBRHBYYtcr32QCVl9H8yi2C6I/bjDgLogrlFcghDSHPDTJS7QHY4lbiLZTQg7ieBBl+xwWqGlsp0wohGR4bdaRBzdYT9RCRMV54LDFr9+t28faxbHhYKaIHZyh4MK4rgRF9fVi3rZT0JqCDvQxYmYOKixpDA4cqsQu7B1ErxBhHCu2FImhAeHNOPmhtf9KqgK4aBl1wB53lrHXMauDPv5LTvfHS7ajj9Xx0UweQlmVSFaKETjAlcaybCvw7yPKuv2GiN7X9tdfz9OP7FSja5wTtugyUPqAH5dJNEShcCvQrUNFSFsF8F2whC3dpwqSADBhXCk2N1elbhErRzikH6dCdxEI85usHmMEXkod4hd3WG3DnVA/VTRMVNPrms97asEcbQI0RLeBDpxNMTJeKTuoTMcN+rtYlANInQWVLLCfoWwigvsxKCHwDYTRNSqxCr8Rirsx6zMHbZfgCtwiKUE7WJWLWpVO9hru7rb6+QcO91nXuZXwHtV3bC/1z07DkbrOsZu8malVMMhJqQOoRgmDY3rz/YOyEqsAeVC2CkS4UV+SDNuUaIiaoNMmguFgII4FrVf6wEVIex3fU5VNHRBPPy34YzrQtdn9Y26+1m9lgKz3o4VITGFYjiONIo7HMPnIXOAVZbJhLAZNzfYLH7tAjgsQazi7vptxuEH3+6wjEoEcVyywzK8SozVE04iOgxBbBbFZpFndn+rnBtW/vI1VKgf17Wa+0mxTuqEmPyOSEi0uJVVs44rmP7vLYRlAjhqxzcIqlUnVB87JIqejy8rteaVH3Za5rcqRbMTtivs9PiyLnPDGWK3/LD+OPt6KiHCyhO+aw3r52k1s7lBstZh54er8P4UuSJES3jbETlmhskIdIZJ0yITvoA1HuEkhO1OcLWiDyqoNNaIovya7AuH7/yw0zIbkcQl/LpYtcoCR43u0tpvdvTnr3IczI93c4md3OF6o9pOcZBjxS+YhBhQDJNoCDMioZIvDQG7OHYTwmYqFcCVPt5v7jfKOsRKDryKIPZ6jIwo3EG7CGxUAazjViJORRA7xSXsj7dnkF2alwDwjkpE3Zo7KNUUxfX85YGQGkMxTJoOJxdY/9t8v5MQdnOC9Yl1sgl2YeGU/w3SZc5NCIdRhk06iTFIhQkbobrDUQsJlShAsg5SawEFsSVD7OQSy75oNIrAq6Yg9nPM6A4TAoBimNQLyfTILWSKIm9xhQFrUw2ZELaOdRe/QUWxUztmVSoVsl6Pd2q+oRSXAPwL4mrXSA3oCmupOp0wp9ppzyk2ATgKYsDDJS57fIA8ZwTucKhfuOIam6AgJoRimMSIKlafsItfoFzc5Yc0VyHsV+Q6jU8FaMMswyvqUM02zcqC2IsYViQBEE1cIqymG9WqXuEpaAMKYidUqkrENS5RC6oliKskpkV+KPQbIToUwyR8aiFgzNt0cBDd2gjr6Flhs+i1C2GZqM0VNeMWNm5i2SkvHId4RGgT6lzGlzl3QXLDMtHgxxUO4mLGkWSFNae9BLFTbML+GLs77DcqURwMRRQ3RE3rkFrYE9LoUAyTpkXPB8tcYqAkemVCeOR+uQCuRBinXYSv3opZJlTNwtZLCCe0pKMQTmgpX0JY5QuGJyHkh+NE4HbMYVILdxhwF8S2+6WC2A9eNYfpEo+gIogZlyBNDMUwqX9CEEu6MLa7wkC5EPYjdOViOZy3nUoVCT+tlsNwg+0Ezg+74atVs22sikDyEmf1XlEibKEcpiB2Ktemi7kqCdzIXGE/gjNsRzcKQew1vs6+yJLmpQ6mL5O6IkYffrroUm24YUZ3hWVC2I5dPIeRAfYzec7JFVYVwlGIYDNFkS/bRllDDjuy5hsOaMkMRCFXyS66Uw3xG1Ze2IzeFMMPyUQwp1ZvrKFjbsah/19/jqbGHL7XC1ibbBQL5V94KqQh4hFOqDToUG3IoSqcje19ojbeATFYgGgJL4YmBumEkxHoDJP6JoKKA+V54HIh7FZaTV5uLdiHuC6s3SISKkQphEOJSgDur12MvmSRAFjqCCu2bnZyh+2E2KI5dkK4Vnlfs9C1/z9o7eRknVZZIU0BxTCpXwIIJJlLLItI6K6wXQirdpkL0o3OLS9sR3d9VVzhqB1hlbhGoOoSbq9v0C89YTfmiPvkOSf3NYpMsdekQ5lL7bd7nU7cy6iFSdiT4FTXZRa91e6oR0iVoRgm9YlMKAUQSE6T58zoInkkMqG53iolSH1ht3iEbGzU0QhVPKtLmFH98hNFJzqdOJdUC4tKqkrIBLFXhhgu7nDZ+s3l1RRKrSmgJTPxFcJmdFHMChGEhA7FMAmPav2UrbAdN9exKAplneaAkbrCZlfY7Baril17nCIoThEJmSvshFdHuqC0aAnjpkqQ7LbqOVU1MWN3VCstR1YNqlVZQkfWlEPaXc6ldbP9cSoOfABBXBci2Img4piRI0LK4AQ6Ei/cJk5F8bP5MLKKD3YhLBtnRhet+jjz307LwphspxqP8BLCfoRtLGhJ8qfbSggywc4PsslvgPfkOf1x+jhjAt7wcvMkMPNkOp/UtRCWoX9uNqjYFUeLECH6d+JozCNOpKrQGa5HmvGnsgiFsNmxHJRkfZ0iEPYGRpVEJNKGC1xaaRBXOKgQ9uvwhk0kUQkzIVcb8KJu2zFHgc8udcq1hyv87AtDCItCLtoqJkFppusCISFBMVzvNMMHn08h7Kftr14JwTpZbsQVNovg/JD1Zl6mE0UHOjdUYg9OY2otgpUJJIDrxB2LW17YB+JosewmRVUQy3DqSmfGaTKdwzkQlhCW/T82RH1dsEc0muE6RBoaiuF6xC4OGvmDKEIhbMfsCpuFsC54jxTLbzpube795obDdoVl1IUIVsF0DiiLHLtIqvRn5VrlhpNJ662KOAlfR1HsJIjNqJZaC9qmGdFEI2Ibt/BzfFqS1pvbOp3W28jXIdLwMDNM6hNFIRys4YZVCB9x+cX2SBFoG9ZC+SEg1TKSDbZnhPX/26MQ9oiEKl5tmZ3G1L0Q9tGQwyCRVJ9gZW88Yc/WRp219aLKwteMas5SH6e1ms41c4a4LA9csDTjEPl8KW7ilDuuMbEVwHZUmmzIxK8sj19jsSvyQxABKu24rY8QHTrDjUIjfit3+hAP2REuCd8WIyqhu8K6ED7qcgPcxTLgb5Jcpa6wmbgJ4aqXc3OLSoQdo7AJtshywzUUwkEoE8+ymINDflg6xikuoUclXL7wxEbAVnvSp9u1IYQmRYQ0AhTD9YpMKDaiIFagEiHshi6E7Vlhe07YCXvlCDPVcIXtNKwQDhKVsGN/P9ndSHv1g7DKlfkRtzUWwkFn3zsKYg93Xan2cL1+5tVDFRQKZdJEUAw3GtW4OMToAqQqhPWJcqWGE84f8uZ4hC6EAeBoUbPcABhjVLBHJKz3+asgodJgwy4+VRtx+Ll5oTpWEwrOedBcr9kBtleV8MoO+xXEXu5wJQI6CiHs2Ngi/JJTnoLYT3UJP7WH40xYXd3MLZKd1mf+zI7R5zchcYFf/eqZINnJesfkVvjJCOtiUBfFLVrCNU+sRx904XvUdI1pTZaWtzo4v2ZHWBaRsLvC5mVhTJrzI4QrcWxr2sXO5dzXkhnnGf5+ssMqhJEfTiadKyqEIYIjzjeLo/J911qTtnFFeYZYNT8MeNcorkfCdont69M/M1Xyw4Q0KRTDjUgTfugF6m4mQc8Ll/5fWuZwrbeMAUYm0tmRucJu8Qi7EJbdZ10W7G0ch5bMSq6wCm4NOBJp9/Jb5vvsIttrMp0d23gtlZJ3VvPCrwiOuESbc/UI5+3q95lFcZkg1vEQxADkE/CApvy888VQQSnyoJsLob0n7VQYuxC5AgTCi8SJXB1EVUjVYEyi3nG6CMTNMQ45f2Z2hf0KYV0EJrRUmeD02xEu5fAOyiSEZV3mKIRXg43y/Q03HqEac4iayC668MgOVzku4TrWeExEZdJqWfViGLtgtpRfM7dudopMwKFVM/GPy3VBEyLS9yQhcYZimFSPGk7IkMUOWrQEEloS7ckkMokhpFoEMgmB7vQQ2hIloduaEGiV7LY5ItGagDE+kxBl5dTsore0PJycsN94RC1FsH6xDe2iaxetbueXXfBWURCHmh2WEcQVDkEku7nCsrEyUWzgJIjt/y8Uy//Wsbv/tr9j2RyjWjiVSauHiXyEVAGK4UYmbu4w4E8QB9j/IVE0csF2zEJTn0inu8O6Y+tV1UEmjGXowtr8d9q2jTgKYbtgDfOmTEgX6DJ32KucWtiCuNbEwBW2YxfFroIYCOYOh5kJryP09tD2m4H+vorjdYGQGkMx3Ai45eXq7YPP5/6aIxJmEWwXxPo4PSKgC2LdHbY7uCVXeOTxMhGsj7G7wmYhrDvOOlEIYTtBhHBsfiKtVAjbvmz5iksAaoLYLIrTKasINv/fyx0OQzw7ucIxFMJmHAWxGSd3WP/bIprr7HMuZNxcb6kgBurOHRa5IYhcMcQbm26QESiGG4U4TyCpQjxC5gY7ucSaEBYhnNBSSLW0ojM1hI7kkCUq0ZUCulICrQmBYzKlf1sTwpcQljnC+nizOA8qhL2Ertv9sRLBQS7Kfs97WVxCJTLhxyVWFcT62KCiOKgQjrq6RH7I8WYZZ3KJLRli+z7an6efkmqMSgCQPG9dCLsJYr/vR6/3Yp2IbiceffRRTJkyBd3d3eju7saMGTPw05/+1Lj/+eefx+zZszFmzBhomoatW7eWrSOXy2HhwoUYM2YMOjo6MGfOHHz44YeWMZMmTYKmaZbb7bffHvXTa3oohpuBarkmYWwnYlGvCz9NCCSRRKqlFamWDNItbUi1tGJ0awGjMgV0poYwunUI3SmgJ10SxakWXRy7C+FMYsgihIERYWwWyzI3uFIhbHeFnYRwRSLYXtfUq8apymPDxMsdTqT9Z4iB0ASxqygOyzGOGKe8sFeLWydRXPpXIoht7rA0KiHLDbtEJZpeEDu936J8TzYA48ePx/33348333wTb775Jv7oj/4IX/jCF/CLX/wCAHD48GGcffbZuP/++x3XcdNNN2HlypVYvnw5Xn31VRw6dAiXXHIJikXrF7ylS5di9+7dxu0v//IvI31uhKXVSC1wK4Nlx2fZpKLIlwnAIVG0ikTTtpMtSSQSXZbKEp2p0kUjk2hBqiWBQ/kWpFo0dJtWO+L+OrvB+t8AXEVwaZk8/xtFRlhJBAe9GEZ1EfX7Rct2jklrD9vLqtlrEOuC2F56zbw/utDVBZm59Jr5/5KSa4BLDlYXxH5d3BrGI7yEsGysNlyORRwtQGtNjpRes5dRA8qrbJiPM+D8WVEcLPtyIwq5+LRnrhX68VL5jG3yGAoAXHrppZa/7733Xjz66KPYuHEjTjnlFMydOxcA8N5770kfPzAwgCeeeAI//OEPccEFFwAAfvSjH2HChAl48cUXMXv2bGNsV1cXent7o3kiRAqd4UaikbLDFVAUeePmSGGwdBv8BJoQSLW0ojXRidZEJ7LpDsMhHt1awOjWIka3FtGdHjL+35kaMm66G9yZKlom4gVxg833y8aY16ETqhCuR1dI8cuSVPyoxib8TK5zc4glXeqkTrHs8V7EOCfsVNPV7BSXOcSA9DmJfL48KuFWVaIJqFjYu10fVK4dcY7peXDgwAHLLZfz/uWgWCxi+fLlOHz4MGbMmKG0nU2bNiGfz2PWrFnGsr6+PvT39+O1116zjH3ggQcwevRonHbaabj33nsxONh853S1qaoYfuWVV3DppZeir68Pmqbhn/7pnyz3CyFw9913o6+vD21tbTj33HONnyB0VDI3+/btw9y5c5HNZpHNZjF37lzs37/fMmbXrl249NJL0dHRgTFjxuCGG24oO+G2bduGmTNnoq2tDZ/61KewdOlSiDjkK+uNMMWVz3WZBXFR5OXtm4cKRmxCF8QlUZzAqIxZFBfQnS5abp2p0q0jOYR0i0BXqmiIYF0otyeTZdlgFRFcus9fLEI2BlCIRcRVBOtfWryQXYwlWXUtmVGrMqEiiu1ZYqeJdfbog19RLBPEETfZ8IvMFRa5gnGz/21ebn68JX5hb8FcKHhPpDNjdvklArnR4hJegthyv6yyRFDDpEpCWOSLod8AYMKECYZWyGazWLZsmeM+bNu2DZ2dnchkMrj22muxcuVKnHzyyUr7v2fPHqTTafT09FiWjxs3Dnv27DH+vvHGG7F8+XKsW7cOCxYswEMPPYTrrrsuwBEjfqhqTOLw4cP47Gc/iz/7sz/Dl770pbL7/+Zv/gYPPvggnnrqKfzX//pf8T/+x//AhRdeiLfffhtdXV0ASpmbH//4x1i+fDlGjx6Nm2++GZdccgk2bdqERKJ0gbnyyivx4YcfYvXq1QCAr3/965g7dy5+/OMfAyh9q7v44otx7LHH4tVXX8Vvf/tbXH311RBC4Hvf+x6A0rfFCy+8EOeddx7eeOMN/PKXv8S8efPQ0dGBm2++uRqHKxjVaNEcxjb8RCUkaELIha0EXRAbwrElCcA0gSSZLu1LYRDJdDsSidK5VhKvR5BJHEWuqA13p7N+f7RXiygtc45DlJZ7N9FQmSTnRwg74uc1CPu8skcOokAXxLbnWRabkEUigBFBbI9POHWtU41NyMZCIT4RBmG0kPZAtbuXyBWgZextm/XOdQnrcTSPyedLvcjMXyoKRQDD72c9GlEsyKuG6OsJEpfwmhBcwy+V5udiPr+Vn2MT/YKo88EHH6C7u9v4O5NxPlYnnngitm7div3792PFihW4+uqrsX79emVBLEMIAc10LVu0aJHx/ylTpqCnpweXX3654RaTaKiqGL7oootw0UUXSe8TQuChhx7CnXfeiS9+8YsAgKeffhrjxo3Ds88+i2984xtKmZt///d/x+rVq7Fx40acccYZAIAf/OAHmDFjBt5++22ceOKJWLNmDXbs2IEPPvgAfX19AIBvf/vbmDdvHu699150d3fjmWeewdGjR/HUU08hk8mgv78fv/zlL/Hggw9i8eLFlpO3bqjXtqUu+53QUo5xiKIoDI9JmpblkUTSKmCOHir9O3wR05JptJpyxAktiVRLAUOiaGxLb9lsriXs5Nq6CdsoRTDgIoRVLthRXxijENdO65R8+dIFQiBRbB8nyxI7CWJASRRbBHEVBGxQyibEOUUiTPEHc0tmXRCL/JCRIdbHW1o3D9qOh325V6REkh32jUplnAq/6IeFqwA2P49Krgv1eD2xoVeHUCGdTuPTn/40AGD69Ol444038PDDD+Oxxx7zfGxvby8GBwexb98+izu8d+9enHXWWY6PO/PMMwEA7777LsVwhMQmM7xz507s2bPHkqfJZDKYOXOmkadRydxs2LAB2WzWEMJA6WTKZrOWMf39/YYQBoDZs2cjl8th06ZNxpiZM2daviXOnj0bH330kWNAPjbU8gMqhs5CURRQFHmjzJrQNOvFYDgiIAo5YPAT4OghaMU80lrGEpvQb6UybBl0pjLD1ShKNz3iUGrikTGiEHoMwh6VsGeC7bEJmbiWVYvwHYvwulCrRhPqDQch4xidcIpP2MeZUYlNyP62j4dDKTZjbIU+RgUVK9w6z8mEsKX9ssMyI0rhFJeQxCMcs8P6uatQWcIXfkpEtiRr2nGzKjSAEK4UIYRSxhgApk2bhlQqhbVr1xrLdu/eje3bt7uK4S1btgAAjjvuuMp2lrgSm3ernpkZN26cZfm4cePw/vvvG2O8Mjd79uzB2LFjy9Y/duxYyxj7dnp6epBOpy1jJk2aVLYd/b7JkyeXbSOXy1neGAcOHHB/0lHi5JLVgzvsFcMYKgAtSUtUokVLOHaeA0ZcYp2EloJmuHmldVoEUWEQSJeE7JA2st4WLYGEySG24+TQqjTMUHWB3bZTUSQiiAD2eky1zzWv6IVDbAJwqTgBlFedANxdYrfYBODsFNvGWxxiL3e4Bu6xZyk1p4Yatvu11kSZQ2yJSwA2N92jsoQTQd3hoMLWj0scdBt+XWjZdvxeF+J+DYmAO+64AxdddBEmTJiAgwcPYvny5Xj55ZeNOObvfvc77Nq1Cx999BEA4O233wZQcoR7e3uRzWZxzTXX4Oabb8bo0aMxatQo3HLLLTj11FONX7o3bNiAjRs34rzzzkM2m8Ubb7yBRYsWYc6cOTj++ONr88SbhNiIYR17/MCep5FhHyMbH8YYffKc0/4sW7YM99xzj+u+Ngx+c8PDAjYK3KISZsoEcSIF45UcFsTA8L8FAMk0tJZSLWIMWbeji1SzAHcSrqV9rFwAO43XCSyE/byOfgWz0/ioL6YBRbFT5lJZFLvFJgB3UWyPTsgEsZlksrKJdE7i2VYGThW7KywTwmbxLItEyCITpftQXmoNgABCyQ67Uunnlv1XqDDX7bQO2fs9rM/fGgnhoUEgzJ5xQz4/yj7++GPMnTsXu3fvRjabxZQpU7B69WpceOGFAIBVq1bhz/7sz4zxV1xxBQDgrrvuwt133w0A+M53voNkMokvf/nLOHLkCM4//3w89dRTxnynTCaD5557Dvfccw9yuRwmTpyI+fPn47bbbqv8CRNXYiOG9Zp6e/bssfwcsHfvXsORVcnc9Pb24uOPPy5b/69//WvLen7+859b7t+3bx/y+bxljHmGp74doNy91lmyZAkWL15s/H3gwAFMmDBB4dlHRDUm01ULRefCSxjbBXGyJWl6F9iOV2EQSMIQxEWRL3OG3doiy/bNiUgEMBCOGxzFOWRfZ1QXWK/3gIdTDCiK4iBZYsA9TywTpTF0h2WUxSJk1SbKag2XC2LAXH94+IHS6hq2Ywoo1x2uas3hakUnotpOEzrCOk888YTr/fPmzcO8efNcx7S2tuJ73/ueMVHfztSpU7Fx48agu0gqIDaZ4cmTJ6O3t9eSpxkcHMT69esNoauSuZkxYwYGBgbw+uuvG2N+/vOfY2BgwDJm+/bt2L17tzFmzZo1yGQymDZtmjHmlVdesZRbW7NmDfr6+sriEzqZTMYI4/sJ5TccUQlw83r1yW4mMegmKM2YM8QFFCASKSDdXvqgb+0s3cwf+sOl18yZ31RLa1kW2Otm3k/7zYzT48xUXCpNJRdczexwlNuStVO245LxVMoU20uxeWWJvfLE9n1wyg/LssN+utiF1O3OUiZNQQg73a8/1pwhluaHTaXWlLvSEUKIA1UVw4cOHcLWrVuNnt07d+7E1q1bsWvXLmiahptuugn33XcfVq5cie3bt2PevHlob2/HlVdeCQCWzM1LL72ELVu24E//9E8tmZuTTjoJn//85zF//nxs3LgRGzduxPz583HJJZfgxBNPBADMmjULJ598MubOnYstW7bgpZdewi233IL58+cbAvbKK69EJpPBvHnzsH37dqxcuRL33Xdf/VWSkImAenCLncSLw76bRaObk6rHGsyCuCjyI6JYF0W6OAYMkaSLT3tNYL83+377Eb+h1AuOkwiu5rZ1UewmjD1EcRlubZ391CUG5MLUPkY2zmkyXcStnVU6zkkd4aMF42YeNzJ5Ti6I3fLHxmQ61brDqjT6JDg/NLErTBqfqr7T33zzTZx33nnG33qk4Oqrr8ZTTz2F2267DUeOHMF1112Hffv24YwzzsCaNWuMGsOAd+YGAJ555hnccMMNRtWJOXPm4O/+7u+M+xOJBP7lX/4F1113Hc4++2y0tbXhyiuvxLe+9S1jTDabxdq1a3H99ddj+vTp6OnpweLFiy0xiLpB9lNxGBPpap0b9phIl9CSlliEvtzcntkeqTCLUc22r+a6xvo4layyfb1eKLVLNuOntXUYY4Js2+/rbsQKIoxPmLdjxyNT7BqdcMsS69v2qkssaeXsOpnOLT9cYXTCUvXBpZJE2Vh7yTXJY0cmySWNx5Qmz1kjE9axkg07if56mDBMlCjkNRRCNKIK+ToytUjkaIIt1SLjwIEDyGazGPjtCnR3d9R6d6LJafqdIGUXRUFdTPP6h9cpNM0Qp7rjKxPDQHl1B1mDDD8CNii+hS/gf/a4qsD1+8UmCEG+DFVLzHhVMJFQVn3C/pO83Y0031/2BXX4/DQLV/3/BbPIlNxvWY/Da+MmiO33mbfnIIYNJ9chImGNP6idL7oo1nPEeiUJLZM0LUuWlicTI+53Mgmkh7v4WZYnRs6fRNoxyuKYGW4mZ9jrfVbh+/DAgcPIjv4SBgYGfEUI9evoe187D93p8F6PA4MFTPr7db73hzQmsckMkypQTYfESVhEXIzeHpcw1+91iioAsIjokShF3liu6gC7YY86KAlhPfZgvqniJ3JQDSGsPzYqMV8pbhEKh/iEZ2tnt7rETrEJWX7YFJew5Iel0QqX2ESVUIpQ5IoQOXv94eEIxXBsQq9HLHIFpXVKMZ8/YdUcrhXmqI9KFj7M7RLSwFAMNxvmD7UwREatPiRdJtPpk9z0/5f+9XYUzOLXLorN/6riS/jKRG9Q0ek3d1stIVzJeqqZYfYSxTZCnVynU4eC2CnTK41HmESwLooty47am3CMCGIjP+w1mW5Q0pSjHvESvtUUxYQ0KBTDzUhcPjhVBJHbvipWl/ASxKXJdAXT33JRbL/PCeVJbpWKXh1d/AaZfFbLyZQxaFnrig+X2LHihOVvBUFsrzJRtk8ugtjPxLoKCerSytxgp/vNLnHpbwdBbEfWsa6ahCVO/a6n2m4xIQ1EEwWiiIVafmCGKYLME2RME+rMcYkhUTTqD9sn1ZkpioKjYDZPunOiou5vdqohUqOaLOd3naq5zFpMhnKbaCfpLlbWxc4+ec6tJrGxTVN9YZcJdYCkIYdsYh1QWXMOnzhlhcsiEXlv11bLJIbXMZIZFrkCtJTpPBi0PX8ngnafU0F2XlbyKxwFbRlDBQ3FlvAmvQ0VOIGOjEAxTOKPV9UKiSDWCWsSXGAhHEUL5Frhp7VsXAnaiMbpcZKqE1JBDFirTZizq7pgtleZCEsQA+XVJuxjAlacsHedU36chxCW3z88ua41YTTkKP09fPfwczC60unLzB3pAGk3usCNN1RFqx9hXAshTPFNmhyKYVIf+BQxujgVmma4wnrZNZWyaKGI6LBaIEdB0O1HIYijdoft44PW3vbhEjuWYFMRxPo2nAQxUPq/qSybHplwLL1WYyx5YJPQHcrJRpdoyZTGaqmE6fHm8ySJUoc6U5tmezTEfMzsROkUu+EmjKOs8BMUCmXSBFAMk8qJQ9tnc11ak7jSaxDbxa1ZFPvF/jipK+wkGGt9nMKgERxiO0GcO/s4v7EJt3rE+ntKJojt/3dyib1qEfsUzKrl0VTHm4WwveZrMiWM+1tgd4mH39tG/eHhVs3p1Mjzc+rYFzcoNAmJBRTDpH5QEd26c6iLkuEMMVDuEuuYJ8jJUG3zPLJCiQgIc2JbHC6gZie3UmEcZS3XIMdK9cudbJxqbMItR1xNQVxldFdYF7pOjQ/My5MQhkuso6XSwxENkztscoFFPg9N1r0vTDc4Du/DJqJYaEFRC2/Of7HA+gFkBJ4NJDqicEFVLkCSKhPASJUHe+tj1fbJsnbJZa5wJUJYtSJEJdUjdMKcda5XVwgiaoM8phruuurxcRrnVW1CVn7NfJ95/cBw8wiXOsT6GH17bqXXzFECp3WFiFEdwkUIFwua9KaP0x+jr8OoQay3bNbLupmFv73SRCPVGw4TinpC6AyTJsDkEgPleWInStUnnO9XEsIqVCruzI8PmqcNS2A2WseuarrEXg4xMOIAm7PDQRxiz+eTKBOTWmvSd1RChaJpVn8xb/dnRipTGA6xKT+sT6bTWjFyXAoF6/ExVuDuFPuaRBdXAcm8MCGBoDNM6g9Vd9h+YbDV9PVqiCETwo6PCZoRjkuGuFFrlIbVWEbVJZah4hIb/zc16DC7x7JOdcCI6DPXGVZxiJ3cYZ/ouV0vnFxhXQgX8y2GEC4MaigMWpcXC5rhEIu8uRbxSE1iACPiN0aTB2NNo73fCQkIxTCpT1Q/xGViSNLsQtYqWbl9ciWT5cK8GIW1rkYVxpVSaWxCIooNVGIT5nU7NecIKohl9+uPby13VPWav0GQCWFdAOsiGIBlmV0QAxhp22yPSgxjKTdnxl7XmRDS9DTYb5okdkTZKEH1J2xzpQk7tgiFL8KqqFBpNY4oRat93XFxsv0Q5jmoGitxq0scVmzCVFpNOrHOVnrNNTIhrU1ceVTCXFLNXD3CLoQB9yYIpS22QI9NtAw7zaX9KUJkhkbqDctKrMnQ6w37nVQX1y+JYTf2iNnzLAwCBRFeo4wCfzwgJiiGSX3jR0i6iaKwS4UFvTD5eVwcivPXizgO+0uZyuvlVoINGGkhbq9JbG7SYS6/Zl4eIEcsFcSy6hIh1yh2arAhE8JO1SVKNSMAXRAP5QQSqZI7rFeWEKmWkottdrfL2jW7nweBm2/UGzETuoTUGophEj1Rt9H1IyQrmWymSlxd3iioJ3EcxXmoKoqjcIlVGnS4CWJj/5Ijk84c3GGtNVEWQ9BSLaXJa5mkcie6Ql6zTJgDrEK4MOgUvxiyCOJCUhjusGgdKo9ymCfRyahVw42oCPtLdL19DhFSIcwMk3gQtDSXGb8f4JWWJ3NaXzNjzhvH8YIa1euj8pNz0BJsxv9tk+vs25aVX5OUXjMyxDKxKHucvm/DglNrlb9PZdliJ3RXWCaEh4pa2a0w2FLKCxeGM8SFkcl0ZQRxtVVzxJV2P4yCuP+aREgdQGeYVAcvV07vGicpR+WLoKXCZOP9XDiaXQQ7EYVzXOkF3S1DXgkqkR3Z+elVgs0cjwBGXGKV2ISshbPZIZbFJezOcgjZYbe2y7oQLone8phELjeETEa/X6C1o1gS00mBdEaUJtKlWiAypdrDWqepPbOsE535s0jPDUeB8SUlJr+eqJ7vMRXMQwUNQ1p4mWG3jDppPiiGSWPip72uExS44VPp6xLmhTrK2IS+frdxQbLEfmMTThPrvASxjv0xtriEHpVQwZ4HNlxhWzQilxtCIW+v3DIEoKV02PIaWgY1JFIahnICLZ1Km68cP+eK29gw29fzM4qQUGBMglQPrw9usxscZvOGmDodTY89UlGL2e1Rigmv5+QjOmFgLsGmEpsAXEuvlUUm9CoMbo+RxCXM9Ybdyq4VC5pl4pwukHVXWBfCgznr7ZNDQ6X7BoddZH09eQ0iV1QW5BaHu5Yl1sI4l6OIR/CzkjQpFMMkHKL4EA1bEMc1x0pGkAnkqF+3qN21IHliW4beM0usL7M36TALYnse2I8gdqGSmsOAXAjnjg4Zt8OHisgdHTIE8VBRc6w64chg3jlLbGvNbJnEGCX8LCIkNlAMk+riV3hE0d6XFyFipxqCOGxR7OUSq0ysUxXECu6webkq9oiELoQLBYFCQeDw4SHkcqX/64JYd4d1d9mpdJsFu7CXvd7DTrFxfM2fPUEm5xJC6gZmhkl4+GmC4efiYitBFQpBJ9pFjdtxqcW+Ou1P3I5bGERdAhAIXopNkid2zRKr5IhVMsQ6svGm/HDJHVYvsWbHnBMuFARyudL/B4/q8YeSaM4Mj023jTxWS5m67el1hpNJNWe71iXWwswPu22jASjkNRQQZtMNTqAjI1AMk3ihV5WoFtW4GLltO8rxYXekchrbSMK4GoIY8D7v3Bp2yCbY2Rt1OFWbcKo0MYwuD4zpa7JubrYKE/bKEiPu8MjjWlBEcnitRZfKZ7lh8auL4EJheE+ODiGTKa03k2lBMl1AMi2QTAlomQRaulJo6UqX9ms4EmJpQ21+roXiiFMeJarnUi0/gwghABiTIGGjKiTi9OFfbeekWtllt/xtmJncBnGeDKp1boYYnTDwE5sImiM2jTXHJbRUi2UinROJ1BCSaTG8SyXRm8kMO7+tpX/TrSOXpmRSQ7q1pfRvRkMyLZBuG0K6rYhEZwItXWlomWRpXzrbgfa20v6b4yEyHF7nUDPDUU/QJISEAp1hEj9k7nAUUQkz1YpNNOoFLK6xk6BUyyEGyrfjVvPaXp/YySV2qkls3oYfl9hces1Wt1hrRVlcwrTjI7s77A7rHehakgLIa2hJCAAakikNgzlrSbVksjQ2kyn9m0yVxifTAulOgZZspnTrSgPtrUAyOSKE/WCqN1zWjrnSMmlR1bUmhIQGxTAJnzCyw06CWL8vKviTZWU0UnyiViLG7RjaRbFTltgemwDKs8S6IDbjlCXW75MJYoxEI1QacSSSAsAQCoMJJFOi/CkmNeRywuIOA0BXNoGOLg2tHQWk24po6Uwb8QitM11yhDvayycLho39fAjj8y7o504TfV4V8y0oiPB+zC4W+MM4GYFimERDVIJYX9YILjGpD6rpEttxOhft7y+TKK7YJbZjFsTGsoJ17PCEuuE/4OUOl56CKI0cjkok0xoymSQOHyqiK1ta12BOIJ3R0NGZQLptCO3ZPLrH5JH6VDsSY9qQOK5zJCPc0V5yhwHrvplLquliP2huuNLzIIrPlCYSxIREBcUwqT0qglgXv80yua4RaKQvFbUUxID8WCpEJzxdYgvD63GITmjASLUJB7RW/X8qgrgIIAFgqOQQ5zW0JFqGl8HIFbckBFo78mjLFtB2zBCSx3UiMaYNLX1Z4JjukXxze+uIGDZ2o+gsjN3QP2fMr3m1usoFodbbJ6TOoRgm0eHnA9pLENuJ2h3WCfsiU2tRVQsaRRTH4bVTEcVuLjHgHp0AYIhiM3o+ePhPS2zCPkYiiLXWBMw94syCOJHSkDucQBJAMlU0nGIASKYEWpIC7dkCMj0tSI7PIjGmHVrvMdCy3cAxXcMT5Yb3Pd1eek5Gd7nBka5zqkI4KLUWpG7nBiHEFYphEi1hCWKgNhlioPYXuUahEURxHAQxID8nZdEJlTJsZpzKsJmRxSZsmAWxlkpD5IfQAkCkWiBahyCOFqClisChklDNdBRRzJcynC2DpYoRidQQEslS+bTk6DSS47tKsYhjuqFlu0pCuP0Yi8NtuOHF4UiI6rmWSJY75aqucNyop30lJCYwQU7ihdvFy0n0ViM6EeYFpp7FIInP6ycru2ZfppdhaxmplODawU5fZpTcs5VhS4+ULNNSw7V8zU0uTGO01gRajslYyq5prYnS/1uT0DIJJDoTyPS0oO2YIbR3F0q3bAGdxxbQMT6JtkltyHwmi/RJo5GY2APtU73QPjUOGHcc0DUWWtc4aN3joLX3QEt3AC3J0r9ujTRcHOKyShLNRlzObQlDRS30mx+WLVuG008/HV1dXRg7diwuu+wyvP3225YxH3/8MebNm4e+vj60t7fj85//PN555x3LmHPPPReaplluV1xxhWXMpEmTysbcfvvtwQ4cUYLOMIkev86q30l1QHViE2E6xHFxGEkwwnz9vL7MeZ3XfvLEw+tTbthhMOjtEus5Y53hv3WXWGsddoYzQxC5AkSqBegCRL7kFLd0Du86UKoQ0ZooVYwY0z7iBo8ZDbQdUxK87cdAaBqKIo9EpgNaur10rI4esh6HwhH342enmvMSSN2wfv16XH/99Tj99NNRKBRw5513YtasWdixYwc6OjoghMBll12GVCqFF154Ad3d3XjwwQdxwQUXGGN05s+fj6VLlxp/t7W1lW1v6dKlmD9/vvF3Z2dntE+wyeG7nlSHMIWkWRxU+8JFQeyO23OKsesUiDBeP5XzVzUO5BSdAPyJYp2yPLHk9dMF7/CfRnRCL8E2PEZL5k0d60ZEMYBSC+cu00S9TMlJbhnTPtJE49hRQEcWWntPSQQnUiiKPIaGSuscEkWkWlrLm/Xqz7uSvLDfzoz1fp434udSCKxevdry95NPPomxY8di06ZN+NznPod33nkHGzduxPbt23HKKacAAB555BGMHTsW//AP/4A///M/Nx7b3t6O3t5e1+11dXV5jiHhwZgEqR5+PmCDXFDq0dGp9wunHbP4st8akbg9L6eudrJOg17xiaDRiY72kehEe9vImPZWaJ1pIz7R0pUu3TpLt8SY9tLtWFOliOywI2wSZ6FOhQAAI6pJREFUwmhJloSwKKIo8igKD6FrL60mI5G2RiSMbn0UhY3OgQMHLLdcTq0D4cDAAABg1KhRAGA8rrV1pKJJIpFAOp3Gq6++annsM888gzFjxuCUU07BLbfcgoMHD5at/4EHHsDo0aNx2mmn4d5778XgYMw+axqMOlQPpK4Jc0Id0Bgl1xrRiWkEhyxu+IkC+W3c4dbJzj7JzsC0XnMpNt0pTqVKpdgAWJp16I06kqaGHfZGGXoDDb1cWsKafU5oI05yUeTRoiWgCVF6TkPD1SSKkkoSFvFuEv069fiFOgpi+JlUGNRQGPKX83Vd33AnxAkTJliW33XXXbj77rtdHyuEwOLFi3HOOeegv78fAPCZz3wGEydOxJIlS/DYY4+ho6MDDz74IPbs2YPdu3cbj73qqqswefJk9Pb2Yvv27ViyZAn+7d/+DWvXrjXG3HjjjZg6dSp6enrw+uuvY8mSJdi5cycef/zxkJ49scN3Pqk+YQtioDpl1sxQELvTTEI47q+dkzA2i2KzCDTHJ/RlqqJYRyaKjc52ki52+v+HJ+Jpba2Gm4xM54gzPYwmhCGIW7RE6f/FPFAYHK4mYaokETQiEefXtBqEfV7H9IvGBx98gO7ubuPvTMZ7EuWCBQvw1ltvWRzfVCqFFStW4JprrsGoUaOQSCRwwQUX4KKLLrI81pwD7u/vxwknnIDp06dj8+bNmDp1KgBg0aJFxpgpU6agp6cHl19+ueEWk/CJ59lJiJm4io0oBLG+XkJk2ESrb4LWKdbHBhXFepm24QYZhmOsi+N0aqR5RjJRygonEyUhnG4vTZgb3k+hadCEsAhirZgHjh6CGDwMDH4y4goP5t27zQ3HQLRkRt5oo9mp9LPXIoDV4gfVpru72yKGvVi4cCFWrVqFV155BePHj7fcN23aNGzduhUDAwMYHBzEscceizPOOAPTp093XN/UqVORSqXwzjvvGGLYzplnngkAePfddymGI4JimNSGMCtM1JIo4gBxfa5+YEwievR4Q5BKKgFEsWeNYmM9KK9TbIpQABiZ6JZK2R6bsMUY5NswC2Jjn83xiKNHgEOfjKxT9vxl5deYFS7H7+dRTB3gShFCYOHChVi5ciVefvllTJ482XFsNpsFALzzzjt488038dd//deOY3/xi18gn8/juOOOcxyzZcsWAHAdQyqjMc9aUh9QEDsT1+dKwqWSyijmMoNOjw1alk3SvMO18oQjDu8Lexk283Ids/AeypRKpiXT0Oz7PCyERe5gyRUuDI6sW3eF9fXqQhsod4UphCujQUWwzvXXX49nn30WL7zwArq6urBnzx4AJeGrl0b7x3/8Rxx77LE4/vjjsW3bNtx444247LLLMGvWLADAf/7nf+KZZ57BH//xH2PMmDHYsWMHbr75Zvz+7/8+zj77bADAhg0bsHHjRpx33nnIZrN44403sGjRIsyZMwfHH398bZ58E9DYZy+JP40kiAHmiM00izsc1mvkJlxl8Yiwy7IB8qiOOVNsEsWAD2Fsd4sBd0GcTJtaKqMkdBNpaEOFkuA1b18fp+eEPzk6Eo8oW2/C2RUmwXE5F4WmWf4NSm5wCKnikPdA1fX5XNejjz4KoNQ0w8yTTz6JefPmAQB2796NxYsX4+OPP8Zxxx2Hr33ta/irv/orY2w6ncZLL72Ehx9+GIcOHcKECRNw8cUX46677kIiUfqSlslk8Nxzz+Gee+5BLpfDxIkTMX/+fNx2223BnyzxRBNCuHXVJBVw4MABZLNZDPx2Bbq7O7wf0MwEEU1xFYpRCMC4PlcvKIajoVIXzkscy143+zLbOkTBlAk1CVkUC+XLDFfXJlh1dNGqY6/6oK+3aHKH9YzwsBAW+Xwph2wuA6evN90enSvcaOe81zFxOBft4vfAgcM45pg5GBgY8JXR1a+j66d9Hp2JlPcDFDlUzGPmptW+94c0JnSGSTwI4iLG1TmlSzxCo7vD9fiaAN45Y7dMsb7c5jq7drUzUzSfy2aBbBPGZpdazwLb79MFMGARwQCchfDwvlkmzdmfX1Aa7VwPIIQrdYAJqQUUwyQ+NJIgBsIXxVFWm7Bf1Kpdqo74w6ktuR9UIhRO57BCWTbAowqFWRTrEQrAWRTb7zOLYNt9hhAG5HWFzTGJuH5+1Bq346LoBhNSL1AMk3jRaIIYiEYUR13/s9ISXmYa1R2u9TkXhiBWRUUUA1K3WOoUm1s96+sxvuwlygWxPVtsE8BmN9jVEY5y0lyjnOMRucGenQI9KOQFCkPhpToLRSZEyQhsx0ziR5ALUz1ciMIUT9V8vnrnr0qEV62FY6MShoPv53X1avdsXqdTq2dgxCXWWz3r67CjZ4Blf9ucYEudYgrhYHi5wTUSwoREDcUwiSdBBXHcL0pOYiIItXiuFMTxoxaRFqfX0r7cdL44CmLZ4+3tmaXbSoz8q9/aW72FcNjE/TNHFafX1EUEq8YiElrK0kKbkLjBmASJL0HjBXGPTQDhRSdq8VyDNHnQiWJyYa2I03lWab3iIPiJTshiE16RCXPTDsDatll3h+01hPVl+j4khitHAPIuc5W8fo1wDuvIjgNzwaSJoBgm8acRc8Q69SoOVevXOtEoOeI4nmf218RNHIfhKju9lubllQpiwFqX2OwYm0Ww/liZG2yORujjglKrc9dtu0Gej5sbbIMimDQyFMOkPggqiPXHxp1KxGEtBVklorhevwjYCWP/o3z9qhGjcHOJVQWxGb3ShL3KhFkEm9ssm51goHGEsN+GRDoqz0/RDY6LCM7nBAYT4U16y3MCHTFBMUzqh6CCMY7unYxauaVhlelidCI49fTFrRLcBDFgdYntGF3sbPfJJuXBIRZRKdU6R6PejoIQDlsEa+zvRWIMxTCpLxo5RwwEe35xeV6VlmOjKG5M7F/ynAQxIHeJzchEskwE69vRt2/+NyiNIoTtVFAhwmtSHAUwqRcohkl90sg5YkBdGIb1fMKuWUunOBj1dI5WgkwQA1ZRDCgLY0uViHoVwWFuy+08spfAMyETwW5l0ZwEcZkIHiqwkQ+JNRTDpH5p9BwxUD/7KYNOMdGRvVdtgljH4hS7IBXA+rZk/w9CvbrBIQjhoLWBLUKYApjUCRTDpL5p9NhENYmyoxkn2qlTr+emyq8YMkEMWM4L5VrA9nO1HkVwFNuqohC2u8KOQrgwCBQqa7yRyw0h2TJU0Tos6xsKb12k/qEYJo1Bo8cmqkXULX4rFcXNIojrDdXXxek1DHrO2d+/9dRNLortOHUHNBOBEHYVwYTUARTDpHEI4iBSEJejX8ziKIprKYirld/Wt1Uv56Xf16MSp1+1811Qoj63olp/gI6AkbrB9udZD91BSVNDMUwaj2b7WT0qonaJgWAT7aISxGF0AzQTxk/1cRbElR6vMJ5bPYjgagtg2X0RvY89hTA/g0mdQDFMGhfzBYEfysGolktcK0Ec9/PCqbNbLdYVt2PVbEK4Ro00PKtFyGIR9ucdQjWJQgEotIRXqq3AyDAxQTFMmgO3DlnVQuXCGFcnsBpZ4moK4moIu6ic3TD3PW4C14mo3hdxFsJ+nnOVRDAQUAgTEnMohklzETfxG8Zj3Ajz+UbtEldSmziuxD3qEEeqdbyiEsJ1LoKBgG6w/f/2cYTEGIphQhqZMH9m16lGdEKVSmpNk3gR9y+qqkT9PJzWX+H70a2bnG8hTBFM6owYXM0IaVDimlk270slF+6wRTEvoM1LowjhqHA7Pi7vP7+OsBlpFzkdVTe4klKKhFQRimFCqkFcK1yEIYxlF79qEvf6w4xKOFPt4xLn88SO17GptQiW/e0keluSFX82DOYEkiFOoBscCm9dpP6hGCakmsTVLQbCFcZ+L3yN7hxRENeeuL3fnKiBCC4TwED5e9KrZFo1SjESEhE8cwmpFXF1i4GRfQrDLQbcL5LVFsK1cpIrPaakMVE9HzyEZhAhHIoI1h/jJYR53pMYQzFMSK1pZFGs0+jOrx+q8TpTeMQXv69NBG5r6CLYaR8tz5WfASS+UAwTEhfinH2Nu6vp99jF+QtIGNSynnZcqcX7q5Lj7lMEa0JI3WGp8DXjJoJlf5sfpySC9WXO1SpUGMwNIamF1yljULDrBhmBYpiQOBFnQQzEXxT7xf484nzsKyGsCiKknCiOZ0A32FP46sh+qVEVwTqyfbQfC8vfeaVdI6QWUAwTEjfqwbWM44SwML5IeD2nOL8mqsTpC021zyO/X35qdYyimIzmFFXyK4JluIrgYTi5jsQYnp2ExJV6cInjIKjMRH3MGslJjotbXMvzKG7nr5lKBLFXRl923kYugnP+109IlaAYJiTOUBD7p5rHLM6l8vxQa7e41tuPK16C2M/EVKfzMwoRTBeY1Bk8YwmJOxTE/qmHqEkcqbUorfX240jQSixu537Q90UFcYhKGoEAQKEgUNDCa5RRUM1Xk6aAYpiQeqBRHMhqI7tY8/h5U+svOHGJcNQTKue133Pf6dj7zARXKoQJiRqKYULqDbqeldFIud9mwO31aSahHPQ8DcsFdloWkRNMSDWhGCakXqGoCwe67nJq7Q6roPJ6xf056FR67oV17qqIYLrApMFoqfUOEEJCIpm23oh/eNwaj8Kg9RaX/Qi6X5U+Xobsc0O2zKXbnNC0SIXw4FGBXIi3waP+MsPLli3D6aefjq6uLowdOxaXXXYZ3n77bcuYQ4cOYcGCBRg/fjza2tpw0kkn4dFHH7WMyeVyWLhwIcaMGYOOjg7MmTMHH374oWXMpEmToGma5Xb77bcHO3BECTrDhDQqzMsGI+4TFkll1MtrW8l+qpZlowuszPr163H99dfj9NNPR6FQwJ133olZs2Zhx44d6OjoAAAsWrQI69atw49+9CNMmjQJa9aswXXXXYe+vj584QtfAADcdNNN+PGPf4zly5dj9OjRuPnmm3HJJZdg06ZNSCQSxvaWLl2K+fPnG393dnZW9wk3GRTDhDQTjASoQUFMl7xaBD3PvKpM+G6XHJ0I1oRQ744XU1avXm35+8knn8TYsWOxadMmfO5znwMAbNiwAVdffTXOPfdcAMDXv/51PPbYY3jzzTfxhS98AQMDA3jiiSfwwx/+EBdccAEA4Ec/+hEmTJiAF198EbNnzzbW39XVhd7e3uo8OcKYBCFNS5iRimYXjoR4ETTeMFSQ37xwapcsK4/mEYXQIxB+ohC6AK53EezEwMAAAGDUqFHGsnPOOQerVq3Cr371KwghsG7dOvzyl780RO6mTZuQz+cxa9Ys4zF9fX3o7+/Ha6+9Zln/Aw88gNGjR+O0007Dvffei8FBfsZGCZ1hQkg4Tmg9TLgiJGqicnr94CSEZf93eEwlEYgoBPARFIAQV3sEpeN94MABy/JMJoNMJuP6WCEEFi9ejHPOOQf9/f3G8u9+97uYP38+xo8fj2QyiZaWFjz++OM455xzAAB79uxBOp1GT0+PZX3jxo3Dnj17jL9vvPFGTJ06FT09PXj99dexZMkS7Ny5E48//nhFz5k4QzFMCAmPajdNsF/0wxQUhLhR6ZfHKM5VLxEs+ztEEQyEL4TT6TR6e3uxeM//F+p6gVIOd8KECZZld911F+6++27Xxy1YsABvvfUWXn31Vcvy7373u9i4cSNWrVqFiRMn4pVXXsF1112H4447zohFyBBCQDMd90WLFhn/nzJlCnp6enD55ZcbbjEJH4phQkiJMHOyUYlir0lBFMckbMJ4T1TjPPTrBpvGhzERzlMEBzwGra2t2LlzZyQxAbsIBeDpCi9cuBCrVq3CK6+8gvHjxxvLjxw5gjvuuAMrV67ExRdfDKAkZLdu3YpvfetbuOCCC9Db24vBwUHs27fP4g7v3bsXZ511luM2zzzzTADAu+++SzEcERTDhJDoCDM6oTI7XvYYCmLihxo6vqKQc7xPS7qLNAtubrCCE1wUeelqE1pKfR90Qnj/tba2orW1teL1VIIQAgsXLsTKlSvx8ssvY/LkyZb78/k88vk8WlqsU7ESiQSGhoYAANOmTUMqlcLatWvx5S9/GQCwe/dubN++HX/zN3/juO0tW7YAAI477rgwnxIxQTFMCCkR1SS4MARxECFMiAo1dH7dxK9srKMgNr8/FIWwHxHshdQVbrAvoddffz2effZZvPDCC+jq6jIyvtlsFm1tbeju7sbMmTNx6623oq2tDRMnTsT69evx93//93jwwQeNsddccw1uvvlmjB49GqNGjcItt9yCU0891YhRbNiwARs3bsR5552HbDaLN954A4sWLcKcOXNw/PHH1+z5NzqaEA061TNEHnnkEfzt3/4tdu/ejVNOOQUPPfQQ/vAP/9DzcQcOHEA2m8XAb1egu7ujCntKSECirgZRiRgOQwgHuTD7PSaNVlGjkSdD1kgA+xG/dnwLYR9usKoIljnDqkL4wIHDyI7+EgYGBtDd3a20vThhj1PoPPnkk5g3bx6A0gS5JUuWYM2aNfjd736HiRMn4utf/zoWLVpkPP7o0aO49dZb8eyzz+LIkSM4//zz8cgjjxjZ5c2bN+O6667Df/zHfyCXy2HixIm44oorcNttt6G9vb0qz7UZoRj24LnnnsPcuXPxyCOP4Oyzz8Zjjz2Gxx9/HDt27PD8lkYxTOqGagi5IOIqLEeYYtg/jSiGayCCKxHAZqRi2KcQDiqCdexi2I8jXO9imDQ2rDPswYMPPohrrrkGf/7nf46TTjoJDz30ECZMmFDWYpGQuqVaIq6WYrEaMYtGFI+NQqUti/3U90VJAOu3MIiDEFbC6fgUBoFCBNsjJCQYxHNhcHAQmzZtKusJPmvWrLIC2UCp53guN/LhpxflPnDgk2h3lJCgVPsClfSxvZYkgHDEBAD/7nCQY9NI7nCyQTKflYpgH4iIXn8tWbQuaEkCMG3L/Frp7zHT+8cshJ1E8JAoTfJq0Zw9MrMzXOYKOwrh0vYOHCxdB/ljNIkjFMMu/OY3v0GxWMS4ceMsy+0FsnWWLVuGe+65p2z5hMlzI9tHQgghpF44ePAgstlsrXeDEAsUwwrYg/Oy2oQAsGTJEixevNj4e//+/Zg4cSJ27drFN3+VOXDgACZMmIAPPviA+bQqwuNeG3jcawOPuzpCCBw8eBB9fX213hVCyqAYdmHMmDFIJBJlLvDevXvL3GLAuY1jNpvlB2WN6O7u5rGvATzutYHHvTbwuKtBU4jEFU6gcyGdTmPatGlYu3atZfnatWtdu8UQQgghhJD6gM6wB4sXL8bcuXMxffp0zJgxA//rf/0v7Nq1C9dee22td40QQgghhFQIxbAHX/nKV/Db3/4WS5cuxe7du9Hf34+f/OQnmDhxoudjM5kM7rrrLs9e5yR8eOxrA497beBxrw087oQ0Bmy6QQghhBBCmhZmhgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWI4Qh555BFMnjwZra2tmDZtGv71X/+11rsUG1555RVceuml6Ovrg6Zp+Kd/+ifL/UII3H333ejr60NbWxvOPfdc/OIXv7CMyeVyWLhwIcaMGYOOjg7MmTMHH374oWXMvn37MHfuXGSzWWSzWcydOxf79++3jNm1axcuvfRSdHR0YMyYMbjhhhswODhoGbNt2zbMnDkTbW1t+NSnPoWlS5ei3uaeLlu2DKeffjq6urowduxYXHbZZXj77bctY3jcw+fRRx/FlClTjMYMM2bMwE9/+lPjfh7z6rBs2TJomoabbrrJWMZjTwgBAAgSCcuXLxepVEr84Ac/EDt27BA33nij6OjoEO+//36tdy0W/OQnPxF33nmnWLFihQAgVq5cabn//vvvF11dXWLFihVi27Zt4itf+Yo47rjjxIEDB4wx1157rfjUpz4l1q5dKzZv3izOO+888dnPflYUCgVjzOc//3nR398vXnvtNfHaa6+J/v5+cckllxj3FwoF0d/fL8477zyxefNmsXbtWtHX1ycWLFhgjBkYGBDjxo0TV1xxhdi2bZtYsWKF6OrqEt/61reiO0ARMHv2bPHkk0+K7du3i61bt4qLL75YHH/88eLQoUPGGB738Fm1apX4l3/5F/H222+Lt99+W9xxxx0ilUqJ7du3CyF4zKvB66+/LiZNmiSmTJkibrzxRmM5jz0hRAghKIYj4g/+4A/Etddea1n2mc98Rtx+++012qP4YhfDQ0NDore3V9x///3GsqNHj4psNiv+5//8n0IIIfbv3y9SqZRYvny5MeZXv/qVaGlpEatXrxZCCLFjxw4BQGzcuNEYs2HDBgFA/Md//IcQoiTKW1paxK9+9StjzD/8wz+ITCYjBgYGhBBCPPLIIyKbzYqjR48aY5YtWyb6+vrE0NBQiEeiuuzdu1cAEOvXrxdC8LhXk56eHvH444/zmFeBgwcPihNOOEGsXbtWzJw50xDDPPaEEB3GJCJgcHAQmzZtwqxZsyzLZ82ahddee61Ge1U/7Ny5E3v27LEcv0wmg5kzZxrHb9OmTcjn85YxfX196O/vN8Zs2LAB2WwWZ5xxhjHmzDPPRDabtYzp7+9HX1+fMWb27NnI5XLYtGmTMWbmzJmWwvqzZ8/GRx99hPfeey/8A1AlBgYGAACjRo0CwONeDYrFIpYvX47Dhw9jxowZPOZV4Prrr8fFF1+MCy64wLKcx54QokMxHAG/+c1vUCwWMW7cOMvycePGYc+ePTXaq/pBP0Zux2/Pnj1Ip9Po6elxHTN27Niy9Y8dO9Yyxr6dnp4epNNp1zH63/X6egohsHjxYpxzzjno7+8HwOMeJdu2bUNnZycymQyuvfZarFy5EieffDKPecQsX74cmzdvxrJly8ru47EnhOiwHXOEaJpm+VsIUbaMOBPk+NnHyMaHMUYMT2qp19dzwYIFeOutt/Dqq6+W3cfjHj4nnngitm7div3792PFihW4+uqrsX79euN+HvPw+eCDD3DjjTdizZo1aG1tdRzHY08IoTMcAWPGjEEikSj7Nr93796yb/6knN7eXgDlboj5+PX29mJwcBD79u1zHfPxxx+Xrf/Xv/61ZYx9O/v27UM+n3cds3fvXgDlrlI9sHDhQqxatQrr1q3D+PHjjeU87tGRTqfx6U9/GtOnT8eyZcvw2c9+Fg8//DCPeYRs2rQJe/fuxbRp05BMJpFMJrF+/Xp897vfRTKZdHRdeewJaT4ohiMgnU5j2rRpWLt2rWX52rVrcdZZZ9Vor+qHyZMno7e313L8BgcHsX79euP4TZs2DalUyjJm9+7d2L59uzFmxowZGBgYwOuvv26M+fnPf46BgQHLmO3bt2P37t3GmDVr1iCTyWDatGnGmFdeecVSBmnNmjXo6+vDpEmTwj8AESGEwIIFC/D888/jZz/7GSZPnmy5n8e9egghkMvleMwj5Pzzz8e2bduwdetW4zZ9+nRcddVV2Lp1K37v936Px54QUqJ6c/WaC7202hNPPCF27NghbrrpJtHR0SHee++9Wu9aLDh48KDYsmWL2LJliwAgHnzwQbFlyxaj9Nz9998vstmseP7558W2bdvEV7/6VWnJo/Hjx4sXX3xRbN68WfzRH/2RtOTRlClTxIYNG8SGDRvEqaeeKi15dP7554vNmzeLF198UYwfP95S8mj//v1i3Lhx4qtf/arYtm2beP7550V3d3fdlTz67//9v4tsNitefvllsXv3buP2ySefGGN43MNnyZIl4pVXXhE7d+4Ub731lrjjjjtES0uLWLNmjRCCx7yamKtJCMFjTwgpQTEcId///vfFxIkTRTqdFlOnTjVKWBEh1q1bJwCU3a6++mohRKns0V133SV6e3tFJpMRn/vc58S2bdss6zhy5IhYsGCBGDVqlGhraxOXXHKJ2LVrl2XMb3/7W3HVVVeJrq4u0dXVJa666iqxb98+y5j3339fXHzxxaKtrU2MGjVKLFiwwFLeSAgh3nrrLfGHf/iHIpPJiN7eXnH33XfXXbkj2fEGIJ588kljDI97+Py3//bfjM+BY489Vpx//vmGEBaCx7ya2MUwjz0hRAghNCHY3oYQQgghhDQnzAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQhqOSZMmQdM0aJqG/fv3V7Suc88911jX1q1bQ9k/Qggh8YFimBASS4rFIs466yx86UtfsiwfGBjAhAkT8Jd/+Zeuj1+6dCl2796NbDZb0X48//zzeP311ytaByGEkPhCMUwIiSWJRAJPP/00Vq9ejWeeecZYvnDhQowaNQrf/OY3XR/f1dWF3t5eaJpW0X6MGjUKxx57bEXrIIQQEl8ohgkhseWEE07AsmXLsHDhQnz00Ud44YUXsHz5cjz99NNIp9O+1vXUU0/hmGOOwT//8z/jxBNPRHt7Oy6//HIcPnwYTz/9NCZNmoSenh4sXLgQxWIxomdECCEkbiRrvQOEEOLGwoULsXLlSnzta1/Dtm3b8M1vfhOnnXZaoHV98skn+O53v4vly5fj4MGD+OIXv4gvfvGLOOaYY/CTn/wE/+///T986UtfwjnnnIOvfOUr4T4RQgghsYRimBASazRNw6OPPoqTTjoJp556Km6//fbA68rn83j00UfxX/7LfwEAXH755fjhD3+Ijz/+GJ2dnTj55JNx3nnnYd26dRTDhBDSJDAmQQiJPf/7f/9vtLe3Y+fOnfjwww8Dr6e9vd0QwgAwbtw4TJo0CZ2dnZZle/furWh/CSGE1A8Uw4SQWLNhwwZ85zvfwQsvvIAZM2bgmmuugRAi0LpSqZTlb03TpMuGhoYC7y8hhJD6gmKYEBJbjhw5gquvvhrf+MY3cMEFF+Dxxx/HG2+8gccee6zWu0YIIaRBoBgmhMSW22+/HUNDQ3jggQcAAMcffzy+/e1v49Zbb8V7771X250jhBDSEFAME0Jiyfr16/H9738fTz31FDo6Oozl8+fPx1lnnVVRXIIQQgjR0QSvJoSQBmPSpEm46aabcNNNN4Wyvvfeew+TJ0/Gli1bApd1I4QQEk/oDBNCGpK/+Iu/QGdnJwYGBipaz0UXXYRTTjklpL0ihBASN+gME0Iajvfffx/5fB4A8Hu/93toaQn+vf9Xv/oVjhw5AqCUWfbb+Y4QQki8oRgmhBBCCCFNC2MShBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCmhWKYEEIIIYQ0LRTDhBBCCCGkaaEYJoQQQgghTQvFMCGEEEIIaVoohgkhhBBCSNNCMUwIIYQQQpoWimFCCCGEENK0UAwTQgghhJCm5f8HS36TVUQmqxUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALDCAYAAADwjA1CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXgUVdaHf71nDyERQliCyg4iq8KgBhREBBRcGBARFOMCLiCOiowDoiyKIox8gyPIooI4iuACRlAjjko0siiIgxsIyKYCCSQkvd3vj05Vqqpr7a5ekj7v8/RDUnWr6nYldL99cu45FsYYA0EQBEEQBEEkINZYT4AgCIIgCIIgYgXJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQvJMJEwDB8+HMnJyTh16pTimNGjR8PhcODYsWPRm5gG48aNQ8uWLWM9DVmOHDmCv//97+jduzdycnKQkZGB7t2748UXX4TP5wsav2PHDgwbNgx5eXlISUlBu3btMHPmTFRWVorGffbZZ7j99tvRvXt3uFwuWCwW7N+/X3YOCxYswHXXXYdzzz0XFosFffv2NfQcfvrpJ4wZMwYtWrRAcnIyzj//fDzwwAP4888/ReNmzJgBi8US9EhKSgrrnpw5cwaTJk1CXl4ekpKS0KVLF6xZsyZo3Lhx42Sv365dO9nn9fzzz6Ndu3ZwuVw499xz8fjjj8Pj8YjG9O3bV/ac3OPo0aP82OrqasybNw+dOnVCamoqGjdujEGDBuGLL74Iuvbf//53DBkyBE2bNoXFYsG4ceNk57h06VIMGzYMLVu2RHJyMlq1aoW7774bR44cCRrbsmVL2TneddddsucmCILQiz3WEyCIaDF+/HisX78eq1evxoQJE4L2l5WVYd26dRgyZAgaN24cgxnK89hjj+H++++P9TRk2bZtG15++WXccssteOyxx+BwOPD+++/j7rvvRklJCZYtW8aP3bNnD/7yl7+gbdu2WLBgAXJycvDpp59i5syZ2LZtG95++21+7EcffYQPP/wQXbt2RUZGBj755BPFObzwwgtITU3F5ZdfjnfffdfQ/H///Xf06tULGRkZeOKJJ9CiRQvs2LED06dPR3FxMbZt2warVRwzKCoqQmZmJv+9dL+RewIA1113HUpLSzF37ly0adMGq1evxqhRo+D3+3HTTTeJxiYnJ+Pjjz8O2iZl1qxZeOyxx/DII4/gyiuvRGlpKf7+97/jt99+w4svvsiP+9e//oXy8nLRsZWVlbjqqqvQvXt35Obm8tsLCwuxatUqTJ06FZdffjlOnDiBuXPnoqCgAJ9//jkuuugifuxzzz2Hzp0745prrgl6vkKmT5+Ofv36Yfbs2WjatCn27t2LJ554Am+//TZ27NgR9P+wT58+eOaZZ0Tb4un/KkEQdRRGEAmC1+tleXl5rHv37rL7Fy9ezACwd999N8ozq7ucOHGCud3uoO0TJ05kANiBAwf4bdOmTWMA2E8//SQae8cddzAA7MSJE/w2n8/Hfz1v3jwGgO3bt092DsKxHTt2ZAUFBbrnv2TJEgaAffjhh6Lts2fPZgDY9u3b+W3Tp09nANjvv/+uek4j92TDhg0MAFu9erVo7IABA1heXh7zer38trFjx7LU1FTN5/THH3+wpKQkdscdd4i2z5o1i1ksFvbdd9+pHr9ixQoGgC1dupTfVlVVxWw2G7v55ptFYw8fPswAsPvuu0+0XfgzSU1NZWPHjpW91rFjx4K2lZaWMgDsiSeeEG3Pz89ngwcPVp07QRBEKFCaBJEw2Gw2jB07Ftu2bcOuXbuC9i9fvhxNmjTBoEGD+G2LFy/GhRdeiLS0NKSnp6Ndu3Z49NFHDV3XYrHgnnvuwfLly9G2bVskJyejR48eKCkpAWMM8+bNw7nnnou0tDRcfvnl+Omnn0THy6VJcOd85ZVX0L59e6SkpODCCy/Ee++9Z2hu4ZKVlQWHwxG0nYsSHjp0iN/GjRNGVQGgQYMGsFqtcDqd/DZptFUNI2OlqM0JQFAKhB6M3JN169YhLS0NN954o2jsrbfeisOHD+PLL780fP2ioiJUVVXh1ltvDTonYwzr169XPf6ll15CWloa/vrXv/LbrFYrrFZr0H3KyMiA1WoNuk96fyaNGjUK2ta9e3fYbDYcPHhQ1zkIgiDChWSYSChuu+02WCyWoD/d7tmzB1999RXGjh0Lm80GAFizZg0mTJiAgoICrFu3DuvXr8fkyZNRUVFh+Lrvvfceli5dirlz5+K1117D6dOnMXjwYEyZMgWff/45Fi1ahBdffBF79uzB9ddfD8aY5jk3bNiARYsWYebMmVi7di0aNmyI4cOH45dfftE81uv16nromYccH3/8Mex2O9q0acNvGzt2LBo0aIC7774bv/zyC06fPo333nsP//73vzFx4kSkpqaGdK1wGDZsGFq0aIEpU6bgu+++w5kzZ/Dpp59i7ty5GDp0KNq3bx90zAUXXACbzYbGjRvjlltuwYEDB3RdS+6e7N69G+3bt4fdLs5Y69y5M79fyNmzZ5GbmwubzYZmzZrhnnvuwYkTJ0RjuGMuuOAC0fYmTZogJycn6JxCfvzxR/z3v//FyJEjkZaWxm93OByYMGECVq5cifXr16O8vBz79+9HYWEhMjMzUVhYqOse6GHLli3w+Xzo2LFj0L5PP/0U6enpcDgc6NChA5599lnZPOxQcscJgkhgYhuYJojoU1BQwHJyckR/yp4yZQoDwH744Qd+2z333MMaNGgQ9vUAsNzcXHbmzBl+2/r16xkA1qVLF+b3+/ntCxYsYADYt99+y28bO3Ysy8/PDzpn48aNWXl5Ob/t6NGjzGq1sjlz5uiak57H8uXLDT/fDz74gFmtVjZ58uSgfd9//z1r166d6Br33Xef6B5I0UqTEGI0TYKxwJ/6e/fuLZrTjTfeyKqqqkTjXn75ZTZr1iy2ceNG9vHHH7O5c+eyhg0bssaNG7NDhw6pXkPpnrRu3ZoNHDhQdk4A2OzZs/lt8+fPZ/Pnz2ebNm1imzZtYtOmTWMpKSmsXbt27PTp0/y4wsJC5nK5ZOfRpk0bduWVVyrO8+GHH2YA2NatW4P2+f1+9o9//INZrVb+PrVo0YLt2LFD9bmrpUlIKS8vZ+3bt2fNmzcXPSfGGJswYQJbtmwZ27JlC1u/fj0bPXo0AxCUusEYYzabjV1++eW6rkkQBEEL6IiEY/z48bjlllvwzjvv4Prrr4fX68Wrr76KSy+9FK1bt+bHXXTRRVi0aBFGjRqFkSNHok+fPsjJyQnpmv369RNFPrmI46BBg2CxWIK2//rrr0GRPblzpqen8983btwYjRo1wq+//qo5n9LSUl3zPvfcc3WN49i+fTtGjBiBXr16Yc6cOaJ9+/fvx9ChQ9G4cWO8+eabOOecc/Dll1/iySefxJkzZ/DSSy8ZupYZnDx5Etdeey0qKyuxatUqNG/eHLt378YTTzyBa665Bhs2bOCjtmPGjBEd269fP/Tr1w+9e/fG008/jYULF8peQ+2eABD9/NX2TZ48WbRvwIAB6Nq1K2644QYsWbJEtF/vOYV4vV6sXLkSHTt2RK9evYL2z5o1C8888wxmzJiBSy+9FOXl5Vi0aBEGDBiATZs2oWvXrorX1ENVVRWuu+46/Prrr/j4449FkWkA+L//+z/R99deey2ysrKwaNEiPPDAA6Lre73esOZCEERiQTJMJBw33HAD7r33XixfvhzXX389Nm7ciGPHjuGpp54SjRszZgy8Xi+WLFmC66+/Hn6/Hz179sSTTz6JAQMGGLpmw4YNRd9z+bFK26uqqjTPmZ2dHbTN5XLh7Nmzmsd26dJFcwwAPmVEDzt27MCAAQPQunVrbNy4ES6XS7T/kUceQXl5OXbu3Ml/MLjsssuQk5OD2267DbfccgsKCgp0X88MnnrqKezcuRO//vormjRpAgC49NJL0a5dO1x++eVYtWoVxo4dq3j8RRddhDZt2qCkpER2v9Y9yc7ODirhBoBPfZD+fkgZPnw4UlNTRdfPzs5GVVUVKisrkZKSEnTe7t27y55r48aNOHr0KB5++OGgfd9//z3+8Y9/4Omnn8aDDz7Ibx80aBA6dOiABx54AMXFxapzVaO6uhrDhw/HZ599hvfeew8XX3yxruNuvvlmLFq0CCUlJWHLOEEQiQvlDBMJR3JyMkaNGoWioiIcOXIEy5YtQ3p6etAiJiCw6OiLL75AWVkZNmzYAMYYhgwZoiv6Gs84HA5dj5UrV+o6344dO9C/f3/k5+dj06ZNQQutAGDnzp3o0KFDUG5wz549AQTnx0aDnTt3omnTprwIhzInxpjsgjE99+SCCy7A999/HxTJ5BZ4durUyfD1ub8oSBeJHj16FH/88YfiOV966SU4nc6gCDgAfPPNN2CM8feFw+Fw4MILLwzrZ1ddXY1hw4ahuLgY69evxxVXXKH7WFaT0x7OIkqCIAh6BSESkvHjx8Pn82HevHnYuHEjRo4cGRRFE5KamopBgwZh2rRpcLvd+O6776I4W/MpLS3V9Rg6dKjmuXbu3In+/fujWbNm2Lx5M7KysmTH5eXl8YvUhGzduhUA0KxZs/CfmEHy8vJw6NAh/PbbbyHNqaSkBD/++GNQWoHeezJ8+HCcOXMGa9euFW1fuXIl8vLyNCOkb775JiorK0XXv+qqq5CUlIQVK1aIxq5YsQIWiwXDhg0LOs/Ro0exceNGDBs2TPYvDnl5efzzFVJdXY3t27eH/LPjIsIff/wx1q5di4EDBxo6/uWXXwYA2bQOgiAIvVCaBJGQ9OjRA507d8aCBQvAGMP48eODxhQWFiI5ORl9+vRBkyZNcPToUcyZMweZmZlBEbK6Ro8ePUw5z969e9G/f38AgZzSH3/8ET/++CO///zzz8c555wDAJg0aRKGDRuGAQMGYPLkycjJyUFJSQnmzJmDDh06iEra/f7779iyZQuA2gjn+++/j3POOQfnnHOOKJ3i66+/5rvTlZeXgzGGN998E0Agwpufnw8gIE633XYbli1bhltuuQUAMHHiRKxatQoDBgzAI488wucMP/nkk2jcuDFGjx7NX+fCCy/EzTffjPbt2yMpKQlfffUV5s2bh9zcXDz00EMh3ZNBgwZhwIABuPvuu1FeXo5WrVrhtddeQ1FREV599VU+TeXXX3/FTTfdhJEjR6JVq1awWCzYsmULFixYgI4dO+L222/nz9+wYUP8/e9/x2OPPYaGDRvyTTdmzJiB22+/HR06dAj6Oa5cuRJer1d0HiGXXHIJevbsiRkzZqCyshKXXXYZysrK8Pzzz2Pfvn145ZVXROO3bNmC33//HQDg8/nw66+/8j+TgoIC/vnfcMMNeP/99zFt2jRkZ2eLZDsjI4Of6+rVq/HWW29h8ODByM/Px6lTp/DGG29gzZo1GDduHC688ELR9S0WCwoKClSbtRAEQfDEcPEeQcSUhQsXMgCsQ4cOsvtXrlzJ+vXrxxo3bsycTifLy8tjI0aMEFV60AMANnHiRNG2ffv2MQBs3rx5ou3FxcUMAHvjjTf4bUrVJKTnZCzQmEDvyn0zWL58uaFqFB9//DG78sorWW5uLktOTmZt2rRhU6ZMYX/88YdoHHcf5B7SahFjx47VdX1urtI5bd++nQ0fPpw1a9aMuVwudt5557Hbb79d1ByDMcZGjhzJWrVqxVJTU5nD4WD5+fnsrrvuYocPHw7rnpw+fZrdd999LDc3lzmdTta5c2f22muvicacOHGCDR8+nLVs2ZIlJyczp9PJWrduzR566CF26tQp2Z/NwoULWZs2bZjT6WQtWrRg06dPl20GwligykTLli1Vq3qcOnWKTZs2jbVv356lpKSwRo0asb59+7KNGzcGjS0oKFB8/sXFxfw4tfsk/Dlv3bqVXXHFFSw3N5c5HA6WkpLCevbsyf71r3+JGnxw9xMAGzlypOJzIQiCEGJhLMRCogRBEAQRZ2zcuBFDhgzBN998o1mRhSAIAqCcYYIgCKIeUVxcjJEjR5IIEwShG4oME0SIaNUy5VrYEgRBEAQRv9A7NUGEiFZZsttuuy3WUyQIgiAIQgOqJkEQIaLVxS3UbnUEQRAEQUQPSpMgCIIgCIIgEhZKkyAIDYYPH47k5GScOnVKcczo0aPhcDhw7Nix6E2snrNnzx64XC5YLBZ8/fXXon1vvfUWRo0ahVatWiE5ORktW7bE6NGjRfV85Th79izatGkDi8WCZ555RrRv//79sFgsso81a9bonvdnn32Gq6++GllZWUhOTkbr1q3xxBNP8Pt9Ph/mz5+Pq666Cs2aNUNKSgrat2+PRx55RPZ37OjRo7jnnntw3nnnITk5Gfn5+Rg/fjwOHDgQNPaDDz5Anz59kJycjMzMTAwdOlSxQcyHH36I3r17IyUlBTk5ORg3bhyOHz8uO3b37t248cYbcc4558DlcqFly5aYMGGCaMzSpUsxbNgwtGzZEsnJyWjVqhXuvvtuHDlyJOh8LVu2lL3Pd911l9qtJQiCiAiUJkEQGowfPx7r16/H6tWrgwQAAMrKyrBu3ToMGTIEjRs3jsEM6x8+nw+33XYbcnJycPjw4aD9Tz31FHJzczFt2jScd955OHjwIGbPno1u3bqhpKQEHTt2lD3vY489hoqKCtVr33vvvbjppptE21q3bq1r3qtXr8aYMWMwYsQIvPzyy0hLS8PPP/8seg5nz57FjBkzMGrUKNx+++3IycnB9u3b8eSTT+Ldd9/F119/jeTkZACBDm2XXXYZTp48iccffxwdOnTA3r17MX36dHzwwQf4/vvvkZ6eDgB4++23MXz4cFx77bVYu3YtysrK8Pjjj+PSSy9FaWkpzj//fH4OW7ZswaBBgzB48GC8/fbbOH78OB5++GFcccUV+Prrr+FyufixxcXFGDx4MC699FK88MILyMnJwYEDB7Bjxw7Rc58+fTr69euH2bNno2nTpti7dy+eeOIJvP3229ixY0fQ/40+ffoEfSCh/z8EQcSEWBY5Joi6gNfrZXl5eax79+6y+xcvXswAsHfffTfKM6u/zJs3jzVt2pRvjFJaWiraf+zYsaBjfvvtN+ZwONj48eNlz/nll18yp9PJ3njjDdmGJ0qNUPRy6NAhlpqayu6++27VcV6vN6jJCGOMn9crr7zCb9u8eTMDwJYuXSoau3r1agaAvfXWW/y2tm3bss6dO4saZ+zfv585nU520003iY7v2bMn69ChA/N4PPy2zz//nAFg//rXv/htFRUVrEmTJmzw4MGqDTkYk/+ZlJaWMgDsiSeeEG3Pz89ngwcPVj0fQRBEtKA0CYLQwGazYezYsdi2bRvfGljI8uXL0aRJE1E74cWLF+PCCy9EWloa0tPT0a5dOzz66KOGrmuxWHDPPfdg+fLlaNu2LZKTk9GjRw+UlJSAMYZ58+bh3HPPRVpaGi6//HL89NNPouM3b96Ma6+9Fs2aNUNSUhJatWqFO++8E3/88Qc/pqqqCl27dkWrVq1QVlbGbz969Chyc3PRt29f+Hw+Q/MOlx9//BH/+Mc/8K9//QsZGRmyYxo1ahS0LS8vD82aNcPBgweD9rndbtx2222YOHGiaa2opSxduhQVFRV4+OGHVcfZbDZkZ2cHbb/ooosAQDR/h8MBAMjMzBSNbdCgAQAgKSkJAPDnn39i7969GDRoECwWCz8uPz8fnTp1wvr16/mf42+//YbS0lKMGTMGdnvtHwf/8pe/oE2bNli3bh2/7Y033sCRI0fwt7/9TXReOeR+Jt27d4fNZpP9mRAEQcQLJMMEoYPbbrsNFosFy5YtE23fs2cPvvrqK4wdOxY2mw0AsGbNGkyYMAEFBQVYt24d1q9fj8mTJ2v+eV6O9957D0uXLsXcuXPx2muv4fTp0xg8eDCmTJmCzz//HIsWLcKLL76IPXv24PrrrwcTrIf9+eef0bt3byxevBibNm3CP/7xD3z55Ze45JJL4PF4AARk6j//+Q+OHz/Ol4Lz+/0YPXo0GGN47bXX+OelhNfr1fVgOtbqMsZw++23Y8iQIbjmmmsM3atffvkFv/76q2yKxMyZM1FRUSHK3VVi7ty5cDqdSElJwSWXXIJ33nlH1/U//fRTNGzYEP/73//QpUsX2O12NGrUCHfddRfKy8s1j//4448BQDT/Pn36oHv37pgxYwZKS0tx5swZbN++HY8++ii6deuG/v37AwjIPgBRegOHy+VCZWUlfv75ZwCB/F8A6Ny5c9DYzp078/u55wQE0lYuueQSOJ1OZGVlYdSoUbLpK1K2bNkCn88n+zP59NNPkZ6eDofDgQ4dOuDZZ5+V/eBlsVjQt29fzWsRBEGETEzj0gRRhygoKGA5OTnM7Xbz26ZMmcIAsB9++IHfds8997AGDRqEfT0ALDc3l505c4bftn79egaAdenSRfRn6wULFjAA7Ntvv5U9l9/vZx6Ph/36668MAHv77bdF+19//XUGgC1YsID94x//YFarlW3atElzjlxqgZ5HcXGx5vmef/55lpWVxY4ePcoYY2z58uWyaRJSPB4P69u3L8vIyGAHDhwQ7duxYwdzOBysqKhINGdpOsThw4dZYWEh+89//sP++9//slWrVrFevXoxAGzJkiWac2/bti1LSkpi6enpbPbs2ay4uJg9/fTTLDk5mfXp00c1zeDQoUOscePGrEePHszn84n2lZeXs6FDh4ruZd++fdmff/7Jj/H5fKxhw4bsiiuuEB178uRJlp6ezgCwL774gjHG2KpVqxgAtnXr1qB53HHHHczpdPLfDxw4kAFgDRo0YA899BD7+OOP2QsvvMCys7NZq1atWEVFheJzKi8vZ+3bt2fNmzdnp0+fFu2bMGECW7ZsGduyZQtbv349Gz16NAPAbr755qDz2Gw2dvnllytehyAIIlxIhglCJy+//DIDwN58803GWEDAGjduzC699FLZcSNHjmTr169nv//+e0jXA8BGjRol2rZ3714GgE2dOlW0/YMPPgjKWz527Bi78847WbNmzZjVahXJ1Ny5c4Oud/fddzOHw8GsViv7+9//rmuO1dXVrLS0VNejvLxc9Vz79+9naWlpovxYPTLs9/vZLbfcwmw2G1u/fr1on8fjYV27dhVJlpHcYLfbzbp27cqys7NF+bVytG7dmgFgc+bMEW3nPqhs3rxZ9rg///yTde7cmTVq1Ij9/PPPQdcfNGgQa968OVuyZAn79NNP2cqVK1nr1q1Zt27d2KlTp/ixjz32GAPAZs6cyY4dO8Z+/PFHNnjwYGaz2RgAVlJSwhirlWHueyF33HEHc7lc/PcDBgxgANidd94pGsd9KFP6kHD27FnWv39/lpKSInsdOe655x4GgG3fvl3XeIIgCLMgGSYInVRWVrLMzEx+4c/bb7/NALAVK1YEjV22bBnr3bs3s9lszGKxsIsuukhXpFUIADZx4kTRNiWRKy4uZgDYG2+8wRgLRAovvPBCds4557B//vOfrLi4mH311VespKSEAWDTp08Puh632MnpdLLjx4/rnqfH49H10FqANXjwYNarVy928uRJ/vF///d/fFRZKH4cfr+f3XbbbcxqtYoWnnHMmzePZWZmsh9//JE/5zfffMMv6jp58iTzer2q85o7dy4DwPbs2aM6josiS2WO+wDz1FNPBR1z4sQJ1q1bN5adnc2++eaboP3c4kzph4Gff/6ZAWAzZszgt3k8HjZ58mTmdDr5Dz2DBw9mt99+OwPADh48yBhjrKioiAFgGzZsCLreDTfcwJo0acJ/P3LkyKCFeowFZNdiscguFqyqqmJXXXUVS0pKYh9++KHcrZKF+90ULuAjCIKIBpQzTBA6SU5OxqhRo1BUVIQjR45g2bJlSE9Px4033hg09tZbb8UXX3yBsrIybNiwAYwxDBkyBL/++mtU5rp792588803mDdvHu6991707dsXPXv2lF24BQAVFRUYM2YM2rRpg+TkZNx+++26rrN//37NttTcY8uWLZpzLikpQVZWFv+YOHEiAKBfv37Iz88XjWc1+cXLly/H0qVLcfPNN8ues6ysDK1bt+bPeeGFFwIIlFnLysqSXRQpvQ4AWK3qL5dyObhqx588eRL9+/fHvn37sHnzZtnjd+7cCZvNhm7duom2n3feecjOzhbl99rtdsyfPx9//vknvv32Wxw+fBjvvfceDhw4gHPPPRfNmjUDAHTq1AkAZJ/3rl27+P1qz4lD+pyqq6sxbNgwFBcXY/369bjiiitUjxei9z4TBEGYDdUZJggDjB8/Hi+88ALmzZuHjRs3Yty4cUhJSVEcn5qaikGDBsHtdmPYsGH47rvvgqQuEnAr/6ULqv7973/Ljr/rrrtw4MABfPXVV/jf//6HG264Ac899xwmT56sep28vDzNttQcbdu2Vd2/Zs0aVFVVibYVFRXhqaeewgsvvCBahMUYQ2FhIZYvX45///vfuPXWW2XP+cgjj2DcuHGibUePHsWoUaNw11134a9//StatWqlOCePx4PXX38dOTk5quMA4Prrr8eLL76I999/H127duW3b9y4EQDQq1cvfhsnwr/88gs2b94sGi8kLy8PPp8PpaWluPjii/ntP/zwA/78809ecIWkpaXhggsuAABs374dH330EZ599ll+f9OmTXHRRRfh1VdfxYMPPsgvkCwpKcHevXsxadIkfuzw4cMxbdo0vP/++xg+fDi//f333wdjTPScqqurMXz4cHz88cd46623MHDgQNX7JeXll18GIL5PBEEQUSGGUWmCqJN07tyZWSwWxbzL22+/nd17771szZo1bMuWLez1119nXbp0YZmZmYbSDxBGmoTb7Wbnn38+y8/PZ6tXr2ZFRUVs4sSJrE2bNkFpEkuWLGEA2PLly/lt99xzD3M4HOzLL7/UPd9IoJQzzOWX3nbbbWzr1q2ih1bOqdI9nDx5MrvnnnvYa6+9xoqLi9nLL7/MevbsGXRvGGPs8ccfZzabjX3yySei7UOHDmUul4s98cQTbPPmzWzOnDksKSmJDRkyhB9TWVnJevbsySwWC1u4cGHQ/H/66Sd+7IEDB1iDBg1Y06ZN2eLFi9nHH3/Mli5dys477zyWmprK/ve///FjuQV7RUVF7P3332ePP/44S0lJYYMHDw5KBSkuLmZ2u50NHz6cbd68ma1atYo1b96cderUiVVVVQXda6vVyh544AG2efNm9n//938sKyuLde3alVVXV/PjhgwZwgCwadOmBT2n7777jh+3atUqdv3117Nly5axjz76iK1du5ZPxxg3blzQzwsAKygoUPhpEgRBhA/JMEEYhGsE0aFDB9n9K1euZP369WONGzdmTqeT5eXlsREjRihWelAiHBlmjLE9e/awAQMGsPT0dJaVlcVuvPFGduDAAZEMf/vttyw5OZmNHTtWdL6qqirWvXt31rJlS3by5ElD8zYTJRnOz89XrFqRn5+vek6le/jSSy+xiy66iDVs2JDZ7XaWlZXFBg4cyD744IOgc0yfPl22QkZlZSV7+OGHWfPmzZndbmctWrRgU6dOFQmmVgUO6c/ixx9/ZGPGjGEtW7ZkLpeLtWjRgv31r38VCSZjgaYZF198McvIyGAul4t16tSJPfPMM6LqJ0I2bdrEevXqxZKSkljDhg3ZLbfcIts4w+v1srlz57JWrVoxh8PBmjRpwu6+++6g3wu15ySU2a1bt7IrrriC5ebmMofDwVJSUljPnj3Zv/71r6BKGqdPn+YXoxIEQUQKC2M6in8SBEEQRJTZuHEjhgwZgm+++YZP/SAIgjAbWqlAEARBxCXFxcUYOXIkiTBBEBGFIsMEEWW8Xq/qfqvVSivqCYIgCCJK0DsuQUQZrRJkXFtkgiAIgiAiD5VWI4goo1WKLCcnJ0ozIQiCIAiC0iQIgiAIgiCIhIXSJAiCIAiCIIiEhWSYiEuGDx+O5ORknDp1SnHM6NGj4XA4cOzYsehNLIE5ePAghg8fjvPOOw+pqanIzMxE165dsWjRIs1FgTfffDMsFguGDBkStO/06dO477770LRpU7hcLrRp0wZPP/00fD6f7Lk+++wzXH311cjKykJycjJat26NJ554QnP+hw4dwqRJk1BQUIAGDRrAYrFgxYoVsmOnTZuGrl27omHDhkhKSsJ5552HO+64Q7adtsfjweOPP46WLVvC5XKhXbt2eP7552XPyxjD8uXLcdFFFyE1NRUZGRno1q0b3n77bdG4l19+GSNHjkTbtm1htVrRsmVL1eemdU98Ph/mz5+Pq666Cs2aNUNKSgrat2+PRx55RPH/2K+//orbbrsNeXl5cLlcaNq0qagLHQCsWLECFotF9nH06FHR2OrqasybNw+dOnVCamoqGjdujEGDBuGLL76Qvf7u3btx44034pxzzoHL5ULLli0xYcKEoHGrVq1C165dkZSUhJycHNx00004ePBg0Ljbb78dnTp1QoMGDZCcnIw2bdrgb3/7G/744w/Ve0sQRP2HcoaJuGT8+PFYv349Vq9eLfsGWFZWhnXr1mHIkCFo3LhxDGaYeFRUVCAjIwOPPfYYWrRoAbfbjY0bN+Lee+/Fzp07sXTpUtnjNmzYgPXr1yMjIyNon9frxYABA/DDDz/giSeeQJs2bVBUVIRHHnkEhw4dwj//+U/R+NWrV2PMmDEYMWIEXn75ZaSlpeHnn3/G4cOHNef/008/YdWqVejSpQuuvvpqvPbaa4pjT506hVGjRqF9+/ZIT0/Hnj178OSTT+Kdd97Bd999h+zsbH7shAkT8Morr+CJJ55Az5498cEHH+D+++/H6dOn8eijj4rOe/fdd2PFihWYPHky5syZA6/Xi127dqGyslI07pVXXsHRo0dx0UUXwe/3w+PxKM5Vzz05e/YsZsyYgVGjRuH2229HTk4Otm/fjieffBLvvvsuvv76ayQnJ/Pjd+/ejb59++K8887DM888g2bNmuHIkSP44IMPZOewfPlytGvXTrRNeI8AoLCwEKtWrcLUqVNx+eWX48SJE5g7dy4KCgrw+eef46KLLuLHFhcXY/Dgwbj00kvxwgsvICcnBwcOHMCOHTtE53z++edx33334fbbb8fcuXNx6NAhPPbYY7j00kuxY8cOZGVl8WMrKipwxx13oFWrVkhKSsLXX3+NWbNmYePGjdixYwecTqfiPSYIop4Tw4YfBKGI1+tleXl5rHv37rL7Fy9ezACwd999N8ozI6SMGDGC2e32oDa+jDF26tQp1rRpUzZ//nyWn5/PBg8eLNr/2muvMQBs7dq1ou133HEHs1qtonbDhw4dYqmpqezuu+8OaZ7C7malpaWybZbV2LhxIwPAXnrpJX7b7t27mcViYbNnzxaNLSwsZMnJyezPP//kt61bt44BYK+//rqhuQ4ePFixq57ee+L1etkff/wRtP2NN95gANgrr7zCb/P7/axLly6sS5cusj9TIUodAqVUVVUxm83Gbr75ZtH2w4cPMwDsvvvu47dVVFSwJk2asMGDBzO/3696zszMTDZ06FDR9i+++IIBYI8++qjqnBhj7F//+hcDwD766CPNsQRB1F8oTYKIS2w2G8aOHYtt27Zh165dQfuXL1+OJk2aYNCgQfy2xYsX48ILL0RaWhrS09PRrl27oMicFhaLBffccw+WL1+Otm3bIjk5GT169EBJSQkYY5g3bx7OPfdcpKWl4fLLL8dPP/0UdI4PP/wQV1xxBTIyMpCSkoI+ffrgo48+Eo356aefcOutt6J169ZISUlB06ZNMXTo0KDn+sknn8BiseC1117DtGnTkJeXh4yMDPTv3x979+419NwixTnnnAOr1QqbzRa0b8qUKWjSpAnuu+8+2WM///xzWCwW0c8RAIYMGQK/349169bx25YuXYqKigo8/PDDIc0z3NrN55xzDgDAbq/9g9r69evBGMOtt94qGnvrrbfi7NmzKCoq4rctXLgQLVu2xIgRI0ybq957YrPZgiK1APhorDCt4NNPP8XOnTsxadIkuFwuXfPQgqudnZmZKdqekZEBq9WKpKQkftsbb7yBI0eO4G9/+xssFoviOXfv3o2ysjJcffXVou29e/dGw4YNsXbtWs15yf1MCYJIPEiGibjltttug8ViwbJly0Tb9+zZg6+++gpjx47lBWzNmjWYMGECCgoKsG7dOqxfvx6TJ09GRUWF4eu+9957WLp0KebOnYvXXnsNp0+fxuDBgzFlyhR8/vnnWLRoEV588UXs2bMH119/PZigIMurr76KK6+8EhkZGVi5ciX+85//oGHDhhg4cKBIiA8fPozs7GzMnTsXRUVF+L//+z/Y7XZcfPHFspL76KOP4tdff8XSpUvx4osv4scff8TQoUMV82o5GGPwer26Hnrhznny5Em8/vrrWLFiBaZMmRIkFB9++CFefvllLF26VFaUAcDtdsNqtcLhcIi2cxL27bff8ts+/fRTNGzYEP/73//QpUsX2O12NGrUCHfddRfKy8t1z98IXq8XZ8+exY4dOzBp0iS0adMG1113Hb9/9+7dOOecc5Cbmys6rnPnzvx+7jxbt25F165dMX/+fOTn58Nms/FpCCzEoj7h3pOPP/4YANCxY0fROQEgPT0dV199NZKSkpCWloYhQ4bgf//7n+x5hgwZApvNhoYNG+K6667jnzeHw+HAhAkTsHLlSqxfvx7l5eXYv38/CgsLkZmZicLCwqDr+3w+XHLJJXA6ncjKysKoUaNEqR9utxsAZIXd5XLhxx9/RFVVVdA+r9eLiooKfP7553jsscdwySWXoE+fPqIxFosFffv2VbxvBEHUM2IZliYILQoKClhOTg5zu938tilTpjAA7IcffuC33XPPPaxBgwZhXw8Ay83NZWfOnOG3rV+/ngFgXbp0Ef3ZdsGCBQwA+/bbbxljgT/vNmzYMOjPtj6fj1144YXsoosuUryu1+tlbrebtW7dmk2ePJnfXlxczACwq6++WjT+P//5DwPAtm7dqvp8uOP1PPbt26d5fxhjbM6cOfwxFouFTZs2LWjM6dOnWcuWLdnUqVP5bXJpEtw9/O9//yva/thjjzEA7Morr+S3tW3bliUlJbH09HQ2e/ZsVlxczJ5++mmWnJzM+vTpo/ondSl60iSOHDkiuj8XX3wx++2330RjBgwYwNq2bSt7vNPpZHfccYfoXBkZGaxZs2Zs5cqV7KOPPmJ33XWX5p/01dIkwrknhw4dYo0bN2Y9evQQpWXceeed/FzHjx/PPvzwQ/bKK6+w/Px8lpOTww4fPsyPff/999m0adPYu+++y7Zs2cIWLVrEmjVrxlJTU9nOnTtF1/P7/ewf//gHs1qt/D1t0aIF27Fjh2jcwIEDGQDWoEED9tBDD7GPP/6YvfDCCyw7O5u1atWKVVRUMMYY+/PPP5nVamXjx48XHf/TTz/x5xfOlTHGtm7dKvqZXn311ay8vDzo3thsNnb55Zcr3juCIOoXJMNEXPPyyy8zAOzNN99kjDHm8XhY48aN2aWXXio7buTIkWz9+vXs999/D+l6ANioUaNE2/bu3csAiMSOMcY++OADUd7y5s2b+bl6PB7R4+GHH2YWi4WXbI/Hw2bNmsXat2/PHA6H6A36qquu4q/ByewLL7wguvb//vc/BoCtWbNG9fmUl5ez0tJSXY/q6mpd9+jIkSOstLSUffDBB+zhhx9mTqeT3XPPPaIxEydOZK1bt2Znz57lt8nJ8O+//84aNmzI2rdvz0pKStjJkyfZ6tWrWWZmZtC9aN26NQPA5syZIzoHJ9SbN2/WNX/G9Mmwx+NhpaWl7LPPPmNLlixhrVu3Zm3atBEJ1oABA1i7du1kj3c6nezOO+9kjDH222+/8T9f6QeYYcOGsaSkJHb69GnZ86jJcKj35M8//2SdO3dmjRo1Yj///LNoX2FhIQPABg4cKNq+Y8cOBkD2w4+Qffv2sbS0NHbNNdeItj/xxBMsJSWFzZw5kxUXF7O3336bDRgwgOXk5LDt27fz4wYMGMAA8PeOg/tQumTJEn7bmDFjmMPhYC+88AL7888/2TfffMMuvvhiZrPZGAB29OhR0TnOnDnDSktL2ZYtW9jChQtZkyZN2MUXX8wLNkEQiQnJMBHXVFZWsszMTF6i3n77bQaArVixImjssmXLWO/evZnNZmMWi4VddNFFbNOmTYauB4BNnDhRtG3fvn0MAJs3b55oOyeqb7zxBmOMsVdffVUz+nrgwAHGGGP33nsvs1qtbOrUqayoqIh9+eWXrLS0lF144YWsoKBA8RrSOWktAPP7/UFirvQIlblz5zIAvNB8+eWXzGKxsHXr1rGTJ0/yj+bNm7OBAweykydPihZmffXVV6x9+/b8PcrOzmYvvfQSAyCK+vXq1Ut0HQ7uw8pTTz2le86hLKA7ePAgs9vtosVeI0eOZOecc07Q2DNnzog+QFVWVjKLxcIyMjKCxv773/9mANiXX34pe101GQ7lnpw4cYJ169aNZWdns2+++SZo/yOPPMIAsPnz5wfta9KkCRs0aJDsXIRcddVVrFGjRvz3e/bsYRaLJej/kNvtZq1atWJ9+/blt40cOZIBYG+99ZZo7NmzZ5nFYhEtFjxz5gy7+eab+Wiz1WplY8eOZddccw1zuVyav9clJSWKz5UgiMSBcoaJuCY5ORmjRo1CUVERjhw5gmXLliE9PR033nhj0Nhbb70VX3zxBcrKyrBhwwYwxjBkyBDZ2rCRgGuj/Pzzz6O0tFT2wZWBe/XVV3HLLbdg9uzZGDhwIC666CL06NHD9JqnW7ZsgcPh0PXYv39/SNfgFmH98MMPAAI53YwxDB8+HFlZWfzj4MGD+OCDD5CVlYXFixfzx/fs2RN79uzBvn37sHv3bhw+fBjt27cHAFx22WX8OC4PVwqrybcNd4GcFs2aNUNeXh7/PAHgggsuwO+//x5UU5dbCNmpUycA4Gv/yhHO/I3ek5MnT6J///7Yt28fNm/eLHu80jm58+qZp3TcN998A8YYevbsKRrncDhw4YUXinKM1a4PiJ9TamoqXnnlFfzxxx/45ptvcOzYMaxYsQJ79+7FX/7yF82FcT169IDVahX9TAmCSDxIhom4Z/z48fD5fJg3bx42btyIkSNHIiUlRXF8amoqBg0ahGnTpsHtduO7776Lyjz79OmDBg0aYM+ePejRo4fsg6tlarFYghb+bNiwAb/99pupc+revbuimEsfeXl5IV2juLgYANCqVSsAwFVXXYXi4uKgR+PGjdGrVy8UFxfjhhtuCDpPy5Yt0bFjRzgcDjz77LPIy8sTfei5/vrrAQDvv/++6LiNGzcCAHr16hXS/PXy008/4dChQ/zzBIBrr70WFosFK1euFI1dsWIFkpOTcdVVV/Hbrr/+epSXlwc1mdi4cSPS0tJEi9j0YuSecCL8yy+/YNOmTejatavsOQcNGoSUlJSgc27fvh1Hjx7VvM/79u3D559/LhrH/W6VlJSIxlZXV2P79u1o1qwZv2348OGwWCxB13///ffBGJO9flZWFjp37oycnBy888472Lt3L+6//37VeQKBD4t+v1/0MyUIIvGgejJE3NOjRw907twZCxYsAGMM48ePDxpTWFiI5ORk9OnTB02aNMHRo0cxZ84cZGZmBkWjIkVaWhqef/55jB07FidOnMANN9yARo0a4ffff8c333yD33//nY+IDhkyBCtWrEC7du3QuXNnbNu2DfPmzRNJgRmkp6ejR48eppxr+vTpOHbsGC677DI0bdoUp06dQlFREZYsWYIbb7wR3bt3BwDk5uYGVVcAgKSkJGRnZwet0p82bRouuOACNGnSBAcOHMCyZcvw5ZdfYsOGDaJGEFdeeSWGDh2KmTNnwu/3o1evXvj666/x+OOPY8iQIbjkkkv4sePHj8fKlSvx888/Iz8/n9/+5ptvAgB++eUXAMDXX3+NtLQ0AOAF/dtvv8XkyZNxww034LzzzoPVasWuXbvw3HPPITs7Gw8++CB/vo4dO2L8+PGYPn06bDYbevbsiU2bNuHFF1/Ek08+iYYNG/JjH3zwQaxatQo33ngjnnjiCTRr1gxvvvkm3nnnHTzzzDOi57pnzx7s2bMHAHD06FFUVlbyc+/QoQM6dOhg6J6cPXsWAwcOxI4dO7BgwQJ4vV6RmJ5zzjk4//zzAQANGjTAzJkz8eCDD2LcuHEYNWoUjh49yjdbETbB6d+/Py677DJ07twZGRkZ2LVrF55++mlYLBZRB7xLLrkEPXv2xIwZM1BZWYnLLrsMZWVleP7557Fv3z688sor/Nh27dph4sSJ+Ne//oX09HQMGjQIP/zwA/7+97+ja9euotJ0a9eu5f+SUFVVhU8++QQLFy7EXXfdhWuvvZYf995772HJkiW45pprkJ+fD4/Hg6+//hoLFixAq1atcPvtt4t+Jy0WCwoKCvDJJ5+AIIgEIFb5GQRhhIULFzIArEOHDrL7V65cyfr168caN27MnE4ny8vLYyNGjOArPegFYeQMc2zZsoUNHjyYNWzYkDkcDta0aVM2ePBg0biTJ0+y8ePHs0aNGrGUlBR2ySWXsP/+97+soKDA1JxhM3nnnXdY//79WePGjZndbmdpaWnsoosuYv/85z915RzLLaBjjLG7776btWjRgjmdTpaTk8Ouv/56xZ9bZWUle/jhh1nz5s2Z3W5nLVq0YFOnTg1qDjF27FjZChlQyefmOHr0KLv55pvZ+eefz1JSUpjT6WTnnXceu+uuu/icbyFut5tNnz6dfw5t2rRh//znP2Xnf+DAATZy5EiWlZXFnE4n69y5M1u2bFnQuOnTpyvOc/r06YbvCff7ovQYO3Zs0ByWLFnCOnXqxJxOJ8vOzmajR49mBw8eFI2ZNGkS69ChA0tPT2d2u53l5eWxm2++me3duzfofKdOnWLTpk1j7du3ZykpKaxRo0asb9++bOPGjUFjvV4vmzt3LmvVqhVzOBysSZMm7O6772YnT54UjVu3bh3r0qULS01NZcnJyaxHjx7spZdeCqqi8f3337MbbriB5efns6SkJJaUlMTatWvH/va3v4kaozAWqISCmsW4BEEkBhbGQixwSRAEQRD1jI0bN2LIkCH45ptvcMEFF8R6OgRBRAHKGSYIgiCIGoqLizFy5EgSYYJIICgyTCQEWh3WuHaxBEEQBEEkFvTuTyQEWmXFbrvttlhPkSAIgiCIGEDVJIiEoLS0VHU/VyOYIAiCIIjEgtIkCIIgCIIgiISF0iQIgiAIgiCIhIXSJCKI3+/H4cOHkZ6eDovFEuvpEARBEERMYIzh9OnTyMvLo8XKRNxBMhxBDh8+jObNm8d6GgRBEAQRFxw8eND0TpsEES4kwxEkPT0dAHDw5xXISE+J8WwIgiAIIjaUn65E8/PH8e+LBBFPkAxHEC41IiM9BRkZJMMEQRBEYkMpg0Q8Qok7BEEQBEEQRMJCMkwQBEEQBEEkLCTDBEEQBEEQRMJCMkwQBEEQBEEkLLSAjiAIgiCIuKWqqgput9v08zqdTiQlJZl+XqLuQTJMEARBEERcUlVVhawGuaiqLjP93Lm5udi3bx8JMUEyTBAEQRBEfOJ2u1FVXYbhVy2Ew55s2nk93rNYV3Q/3G43yTBBMkwQBEEQRHzjsCfD6TBPhglCCC2gIwiCIAiCIBIWkmGCIAiCIAgiYaE0CYIgCIIg4hq/wwKfw7z4nR/UFpqohSLDBEEQBEEQRMJCMkwQBEEQBEEkLCTDBEEQBEEQRMJCOcMEQRAEQcQ1HocNcNrMOx/MOxdR96HIMEEQBEEQBJGwkAwTBEEQBEEQCQvJMEEQBEEQBJGwkAwTBEEQBEEQCQstoCMIgiAIIq5xu+xgTvOUxWMh/SFqocgwQRAEQRAEkbCQDBMEQRAEQRAJC8kwQRAEQRAEkbBQ0gxBEARBEHGNz2GF1WFe/M7HKBZI1EK/DQRBEARBEETCQjJMEARBEARBJCwkwwRBEARBEETCQjJMEARBEARBJCy0gI4gCIIgiLjG67ABTpt552PmnYuo+5AMEwRBELX4vcr7rPSWQRBE/YNe2QiCIBIVNfE1Op5EmSCIOgq9ehEEQSQSRgU41POSHBMEUUegBXQEQRCJgN8bORFWu140r0nUWzwum+mPUJkzZw4sFgsmTZrEb3vrrbcwcOBA5OTkwGKxYOfOnUHH9e3bFxaLRfQYOXKkaEzLli2DxjzyyCMhz5XQB310JwiCqM/Eg4xyc6BoMVHHKS0txYsvvojOnTuLtldUVKBPnz648cYbUVhYqHh8YWEhZs6cyX+fnJwcNGbmzJmic6SlpZkwc0INemUiCIKoj8SDBEsRzonEmKhjnDlzBqNHj8aSJUvw5JNPivaNGTMGALB//37Vc6SkpCA3N1d1THp6uuYYwlwoTYIgCKI+IExLiEcRllJX5kkQNUycOBGDBw9G//79Qz7HqlWrkJOTg44dO+LBBx/E6dOng8Y89dRTyM7ORpcuXTBr1iy43e5wpk3ogD6aEwRB1EXCEUkzo7LhCq3fS1FiImaUl5eLvne5XHC5XEHj1qxZg+3bt6O0tDTka40ePRrnnnsucnNzsXv3bkydOhXffPMNNm/ezI+5//770a1bN2RlZeGrr77C1KlTsW/fPixdujTk6xLa0CsQQRBEXcGoeOqRTLsztLkAgNctf41QS7aRFBMKeO1WwG7eH7O9vsC5mjdvLto+ffp0zJgxQ7Tt4MGDuP/++7Fp0yYkJSWFfE1hHnCnTp3QunVr9OjRA9u3b0e3bt0AAJMnT+bHdO7cGVlZWbjhhhv4aDERGeiVhyAIIl6JZPRXTYJtOt4afN7gc3jd4muHIsUkxEQUOXjwIDIyMvjv5aLC27Ztw/Hjx9G9e3d+m8/nw6effopFixahuroaNpvx6hTdunWDw+HAjz/+yMuwlF69egEAfvrpJ5LhCEKvOgRBEPFGuKkHakIpFVgZ8fUzn/rpLTbxcT6v+NzhSDFFiYkokpGRIZJhOa644grs2rVLtO3WW29Fu3bt8PDDD4ckwgDw3XffwePxoEmTJopjduzYAQCqY4jwoVcbgiCIeMCsxWRKEimUYIkAC+XXx7TnwY2xWWrOY7UEBFkOYSoFLZgj6iDp6eno1KmTaFtqaiqys7P57SdOnMCBAwdw+PBhAMDevXsBALm5ucjNzcXPP/+MVatW4eqrr0ZOTg727NmDKVOmoGvXrujTpw8AYOvWrSgpKUG/fv2QmZmJ0tJSTJ48Gddccw1atGgRxWeceJAMEwRBRJpoSaCcCCtEguUEWLzNo3gZm8XBj+ck2Me8vBxbOdnmUilCiRRTygQhwOO0goXRKEOKl5lbTOudd97Brbfeyn/PNdPgcpCdTic++ugjLFy4EGfOnEHz5s0xePBgTJ8+nY8su1wuvP7663j88cdRXV2N/Px8FBYW4qGHHjJ1rkQwFsYYi/Uk6ivl5eXIzMxE2fH/ICMjJdbTIQgiWsQiAqolwhIJFkaA/cwnkl81ERbCSTH3LxBIoeClmIsW+wT3gxNjvfeIhLheUF5eicxGI1BWVqaZliA+LvA+2uORt2BPSjVtPt6qCnw99zrD8yHqJ/QqQxBE+IQif9GSnGjloMZbCoCGCNd+7RH9qzdlwmax157D4qnZFhwxBmoixcK8YiOpExQhJggiwtArDEEQ+jBb9pTOF6kauJGS4niQYOlzClOEhRKsN0qsOUW11AkSYoIgYgi9uhAEIU+sJE/ruuFKkZliVU9E2IgEc1Ffrf3cOYQpFIAgSiyXSwzExz0lCCKhIBkmCKKWuiAiZkR4zRDieL9XAhGWLpDzMY9iNFgquXJl1qTbhIIslV85ZIVYC4oOJzRel83UBXQ+Zt65iLoPvbIQRKIT71KnhHTeUlGK5J/e4+WeKUWFZSpGSCPC4m3BIiwnwV5/8Da71caPF0aMhdUl+OkKy68pCbFa2gQJMUEQEYBeVQgiUYkXoTMDOUHSs0ArFLmK1/um0FFOT91gDpvFwcus1WILEmJOfLWQRojlUir4xh0kxARBxBh6RSGIRCNeZS5SaC3QMiJX8XTvlOYsExXmkC6YCzrUYuejuYHIrnzKg95FdZyICyPCwnlpCjEQX/ecIIh6CckwQSQKJBXKaAlxvN87SVRYmv6g1V5ZmM7AiatSRzk/84nG+5hXVo656LA0Ms0Jtpwo64aiwwmH1W7uj5zRrw8hgH4dCKK+E+8iFw30lu/ixsptjyc0osJyKKYqSE8hiQZL0x2EqRScZAu3KSEVcu7afuYLbUEdQRCESZAME0R9JR4lLhLoDRfpEWKg7t03yaI5DrWosFBe5eSXE1VhJzk/88EBF3zMCweS4PFXifbVXldfCkWtSNtr529EiCk6TBCESdArCUHUN+qazKnBSZHC4rCElCGN56yVEsEhlGC5dspWiy0gpzU/A2uNfFprfhY2Wxpft9jHPECNHOtBusBO2rFOBC2mIwgiwtCrCEHUF+qjBAPKIlxf8LpDf44KpdT05gpLEYlwdWXgd8rrBvNV82MsNhdgd8JaI8Z+qx3wA7BCVFZNieBKE17t6DAJMUEQEYReQQiiLlOfBFhIpARYb6pEpFD6879eIRZKn4F7JExdEH4tjQjz//q8tSLsrgB8bn6ODJWAzQnY7LC40mF1psBhdcHKbAEpNoAwIqwaHSYSHofTB7vL2Ic7NeRqZhOJC8kwQdRF6qsEGyHUaGCshFgtD1ZLbA22XBZ/r1xOTW6bx18Nh80FOFMAABYAzGcPCDB3PZ/4/gWabQSXYlOLTCt2q6PoMEEQUYZePQiirkACXHcxs0JCGCIsJ6dc1zihnHr81bBZ7bA6UwCrHRY3wIQH2eyBdAmAf242K1ef2CM6t55UDbludQRBENGCXn0IIt4hCQ6mrkQBzZBgnc01jIiw7q50ggVzFn9tpFaYQxw0LUkpNk6I1eoWK6ZKUHSYIIgoQK8cBBGPkADXffSKsFqKhFJ6hA4RlkqwXHMMt692jlyr5cAiulqhdVhdsNkccDiSYEtKhdVigwWoTZWw2WsqSngVo8BRywUmIa632B1+2B0Gk9LV8Jp4LqLOQ68aBBFPkARHh0jnDUdBhDmMiLCf+fiFQ9U+Kzx+G6r9FtH5XFYfAB+q/Ra4rAxAFdIcPtitNjisSXBYA+kRNosjUJPY74Of+eD2Vwq6y+mrNayITF4yT6wXQRIEUe8gGSaIeIDe3PVTXyJ/YYowF43lvgZqRVgaMRaKcECCLaj2W+D1W1Dts+KMxwoAcFhZYJ9PIsg2hjSHHy6bG6n2Wjm2WmxwWpNFcwo1Cmxa3jBFhwmCMAi9YhBELCEJjh2RijDqiQqbIMLSr4UR4cD33iAJBqw447WKJLjaZ6kRZKDKF3i4a77mSLIBTqsNDZyokeKAHKc6fHBZzyDN4YPT5qzpbCcvtUJJVqwkIUcoLZpJiAmCMAC9WhBELCAJrp9oSVuoJdRkRFiYoytNjZATYWE0uNxtg6fm39MeoNwTkF+P34JT1YHv3dXiCK/T5UOGA2jgsiHdwdAoyQaH1YEMpw/ZSV6k2n1Ic7hht9rg49s5O2r+tfNz1ZJiProcbqoECTFBEDqhVwqCiCZ1QYLDqYdLyGO0oYbCMeGKcIXHhmqfBWc8gajwKXdAfE+7LSj3AOWVNlRWOFBxxg632yYSYqfLh9RUD9IyPGiY4cHvZ4Fzkhk8/sCYaocf1X4L0uyBdApuQZ5atDgsSIgTCqfLb2rTDaufFtARtdCrBEFEg3iVYKN/fubG1xcpNjtVItT7EuGIcIXXimqfVVaEfz8bEOHKCgfOlDtQUeHAqT+T4PcCjmofHNU+eFw2VMOKU6lJaJBdhTPlHjRoWI0qnw+BCsS2mnQLC5DkhcdvqckrrnkaGkKsmWuslCpBi+kIgjABkmGCiDTx9GZtVvOH+ibFsUJHNBiInAhzEeHKCgdO/unCmdNOVJ5xIOmEG8kVHjjctZE4j9MGT4UNJ7xJcDewweOxAjgLwIcqH0OL1ID5umw2wOEDPDZZIQZqG31IUyQiEkGm6DBBEBrQKwRBRIp4kWAzu5/JnbuuC3Gsoos6WiwDwbWEA197RPvVUiM4EfbUfM0tkPP4LYGvqwPpEG63DV6PFX4vYPf64XD7YPME/ynZUe2D12OF2x1IqSh3+dDAZcEpNwNghctW06vO4YPDZwUgFmIpqovp1PKGCYIgTMIaqwvPmTMHFosFkyZN4rcxxjBjxgzk5eUhOTkZffv2xXfffSc6rrq6Gvfeey9ycnKQmpqKa665BocOHRKNOXnyJMaMGYPMzExkZmZizJgxOHXqlGjMgQMHMHToUKSmpiInJwf33Xcf3G6xNOzatQsFBQVITk5G06ZNMXPmTDAmakpKEMH4vfEhwl53ZEU42tepL1jtIYmwn/lqxLe2s5yexXKcCAcWzdVWjKjyBqLDXq81kCNcI8VcaoTN44ez2ss/ks+44XAH9lVV2FB5xsEfxy26q/KBT5fw+msFXIpWi2Y9LZxV7ydR73A4fHA6zXs4HOblHxN1n5jIcGlpKV588UV07txZtP3pp5/G/PnzsWjRIpSWliI3NxcDBgzA6dOn+TGTJk3CunXrsGbNGnz22Wc4c+YMhgwZAp+v9hf7pptuws6dO1FUVISioiLs3LkTY8aM4ff7fD4MHjwYFRUV+Oyzz7BmzRqsXbsWU6ZM4ceUl5djwIAByMvLQ2lpKZ5//nk888wzmD9/fgTvDFGnSTQJjtV1zb7H0fyZyUlbCBFhoQjLIawh7OGFGKKoMFcxQhoV5tIjnNXegPwKHjaPH8kVHqSUu/njKiscKPfUnvOMx8pLcHWNEHv9tSKvFuFWxWglDiHx8P+SIIi4Jeofp8+cOYPRo0djyZIlePLJJ/ntjDEsWLAA06ZNw3XXXQcAWLlyJRo3bozVq1fjzjvvRFlZGV566SW88sor6N+/PwDg1VdfRfPmzfHhhx9i4MCB+P7771FUVISSkhJcfPHFAIAlS5agd+/e2Lt3L9q2bYtNmzZhz549OHjwIPLy8gAAzz77LMaNG4dZs2YhIyMDq1atQlVVFVasWAGXy4VOnTrhhx9+wPz58/HAAw/AYrGAIADExxttPEVmhXOp6ykUZqEkajpFWC4izCEXFfYK0iO4OsJ8RLgmKgwEosLuaqsoKizF5vHD5wjETZzVXlSlBlIa/F5OpgP7qrxAuqM2OuywWuCyBV4npekS/G0xu02zWsoL5Q4TBKFA1CPDEydOxODBg3mZ5di3bx+OHj2KK6+8kt/mcrlQUFCAL774AgCwbds2eDwe0Zi8vDx06tSJH7N161ZkZmbyIgwAvXr1QmZmpmhMp06deBEGgIEDB6K6uhrbtm3jxxQUFMDlconGHD58GPv375d9btXV1SgvLxc9iHpMPESC4z1FgZuf3CMczLrv0fj5KUWDDYgwh1ZTDS49gsNT8zWX+ivMFa6SCcR6XDZ4a4zV7bLD47TB57AGFs85bXC7gp+L0xU4ufCctRFpfW8x0uclet7C9tN6S9QpPQiCIGSIqgyvWbMG27dvx5w5c4L2HT16FADQuHFj0fbGjRvz+44ePQqn04msrCzVMY0aNQo6f6NGjURjpNfJysqC0+lUHcN9z42RMmfOHD5POTMzE82bN5cdR9QDSILDJ1wxDudnEI0PMkoCJhU6HSKsVDlCDmFUGEBQVFiKx2OF0+WDs6aGq8dlQ2W6Ez6HFW6XHRXpLrhddrhd9oAYu2zwuGyw2sEfI0R6DWHusNcfPF7peRAEQUSLqH1UPnjwIO6//35s2rQJSUlJiuOk6QeMMc2UBOkYufFmjOEWzynNZ+rUqXjggQf478vLy0mI6xvxIMH1kVBLtRn903esIsEcIYqwcIww51YpKlxbPcIiigoDgXQG7mt3tQ0Ohx9ut6126tWA114bDebKq3mcgTFc5NjpCixE4s4Dh68mEs3g8QtTJQI5zA4r4+csLbMmfD6mp04Q9QKHww+Hw8RGGWaei6jzRC0yvG3bNhw/fhzdu3eH3W6H3W7Hli1b8M9//hN2u10x6nr8+HF+X25uLtxuN06ePKk65tixY0HX//3330VjpNc5efIkPB6P6pjjx48DCI5ec7hcLmRkZIgeRD0h1ikR9SESrIdQnqOen00sI8FAcFoEYEiE9eQJCxfNcXBfc9FajyCFwl1tk43selw2/l+PKyDElelOeFw2nE11wOOywZeqX1jlUiXCigZTHjpBECYTNRm+4oorsGvXLuzcuZN/9OjRA6NHj8bOnTtx3nnnITc3F5s3b+aPcbvd2LJlC/7yl78AALp37w6HwyEac+TIEezevZsf07t3b5SVleGrr77ix3z55ZcoKysTjdm9ezeOHDnCj9m0aRNcLhe6d+/Oj/n0009F5dY2bdqEvLw8tGzZ0vwbRMQvJMHRJZy0CaVHJAlFgjWqRgS+94j+5cboEUkuKgzIp0YAtSkOTpcfTqcPdocfTpcPVjtQmeHE2VQHvHYr/6/XbuVF2OkKjJeeS24e4jkpv+XozhsmCIIwmai9wqSnp6NTp06ibampqcjOzua3T5o0CbNnz0br1q3RunVrzJ49GykpKbjpppsAAJmZmRg/fjymTJmC7OxsNGzYEA8++CAuuOACfkFe+/btcdVVV6GwsBD//ve/AQB33HEHhgwZgrZt2wIArrzySnTo0AFjxozBvHnzcOLECTz44IMoLCzko7k33XQTHn/8cYwbNw6PPvoofvzxR8yePRv/+Mc/qJJEohBrCU5k6kozDyMpEYCsBAMISn2o3S7OExaOUYoKcxIM1C6cA5SlmEMotG7Y4IGNjxJzcHnCnDg7av41gtfvg9MmPq9q4w05lNozEwRBhEDMmm7I8dBDD2HSpEmYMGECevTogd9++w2bNm1Ceno6P+a5557DsGHDMGLECPTp0wcpKSl49913YRO8uK5atQoXXHABrrzySlx55ZXo3LkzXnnlFX6/zWbDhg0bkJSUhD59+mDEiBEYNmwYnnnmGX5MZmYmNm/ejEOHDqFHjx6YMGECHnjgAVFOMFFPiWVKRCJGgpWI9/sQQRFWqr8rTZdQQ28lByCQj+l0+kSiK1eMQbg/MN4Pu92PJBuQZAOfFyy9vtcvDiAIaw5Ln4+hhhtEwuB0+U1/hEokm4a1bNkSFotF9HjkkUdCniuhDwujlmoRo7y8HJmZmSg7/h9kZKTEejqEHmIpwUQwkYgOq91rvaW7jBwv+RO/XhGWiwpLc4UBBEWGz3isfG1hYcc5rjEG13mOa8UcqDVsQ8WZwDzd7kDNYQDwemqFlkuL4ETY4fAjLcODlFQPkmxAhgNIdzJkOIAGTsBhBTKcPqQ5/HDZ/Ei1++GwMrhsftitNlgtNtgsDtgsdsHXgegwt4iO21d7wyT/P+n/TZ2hvLwSmY1GoKyszNB6Gu59dPjqV+BIMe991FNZiXU3jTE8n9LSUowYMQIZGRno168fFixYAAB46qmnMGvWLKxYsQJt2rTBk08+iU8//RR79+7lA3p333033n33XaxYsQLZ2dmYMmUKTpw4gW3btvEBvZYtW2L8+PEoLCzkr5mWloa0tDTTnjsRTFxFhgkiJkQrt1QOigSrY/a9Ced8WrVqIyTCteODo8JqKRJqOGte+YUpDtxKfS5C7HT5kJLmgd3hR0qaB06XD2npbqSmepCa5uWjwtz5khRuDV/iza89N7l8aIoUE/GCsGmYsMSrtGlYp06dsHLlSlRWVmL16tUAwDcNe/bZZ9G/f3907doVr776Knbt2oUPP/xQdJ309HTk5ubyDxLhyEMyTNR/1BZWUTpE4qB1v9Wiwlrl20wQYSlKC+uEUeFwSKoJuNrtNWkPLr9YiGseaelu/utAjnBthFh4HunXLlvwn6E9KkIcUoWJupBXTtQbIt00jOOpp55CdnY2unTpglmzZokW8hORgZboEnWHWNf4NQMS4NgQbkRYDZNEWKl6BLdNKSqsBpci4dZIj+QivEAgN5NrsSwlkGvp449xunyBqLDJpYEV6w3b7MGpEgQRBtJOsS6XS9R5loNrGlZaWhq0T61p2K+//sqP0WoaBgD3338/unXrhqysLHz11VeYOnUq9u3bh6VLl4b2BAldkAwT8U19EGCAJDjWqFUfUIou6mnmESERVooWy3VwE6ZIcCXVuHxhLZJsAFw+PkfYWfO10uIiqQhzEpxkr108JxVjl017WYqS/PqYFzaLXb0ZB1WWSAgcTh+MVi5RxRs4l7Qx1vTp0zFjxgzRtmg2DZs8eTL/defOnZGVlYUbbriBjxYTkYFkmIg/6osAA/QmHS5m/hlcKk2hSrDanEyKCAvHS6PC4aRIOKwMsAsabwicVxgd5vcLJFk4jhNhaVTYqWNq1T4r7IJxnPDqhqLDhIkcPHhQtIBOLiosbBrG4fP58Omnn2LRokXYu3cvgED0t0mTJvwYpaZhwujw8ePH+R4IcvTq1QsA8NNPP5EMRxDKGSbih1h3eTMTygmOT7gmGEZFWOs4IKh0mhERFqInKqwnRUKKUipDkg38gjkgILv8wria7dw2aURY6fwOK/evfFTY6/fx5dWkUO4wEU2kXWPlZDhaTcPk2LFjBwCIJJswH4oME/FBfZJgwhyiKThyEqz3+irRYECfCEvTI4RRYTWk9XuVcFqD84Y5eXX7A19X+WojwO5qW1CkWLpgjosKC1MkhPvDRTU1Qg5KlyAiRLSahm3duhUlJSXo168fMjMzUVpaismTJ+Oaa65BixYtovukEwySYSL21HURpjdg84mWCIcjwYCpIqyEVoqEVtoEJ7qibXagqmZqnCgLxynlZiqJsFzKRCjIdaKTzRumVImEQ/gXCzPwm3guINA07OzZs5gwYQJOnjyJiy++WLZpmN1ux4gRI3D27FlcccUVWLFiBV9j2OVy4fXXX8fjjz+O6upq5Ofno7CwEA899JCpcyWCoaYbEYSabuigLoowyW/kiYYMS0VYzzVtyvEDvSIc2BecJ6wUFeaabADg2y8DkK0vLF1Ax8ktV1GC+55rvsHtA7QrTgC1OcHShXNCGU6yoabRBqtpssE12mBwWZlq4w0Ais03hN8HbpDCawf9/4xLwm26cdP6ZXCmmvc+6q6oxOphtxmeD1E/ocgwETuiIcLhdBujN9XYEGkR1hsNVhFfLaS1gcX79OcJK0WF9eYLy0WF+X010WE+RaLm9EpSrFeEHSGuRDGcFkHRYYIgTIJkmIgNkRRhvRJLsht/RFKE1RbHCTEowWoRYel+rfQIvbnCQHC+sFpDCw6pHEuFGFCvCCFXSi0SyKVLADqFmXKHCYIwCFWTIKJPXUyNICJPJESYa6EcARGWVowAQhNhpU5zHNIqEqEilFzRgreap8xFdpUqRQhFWLg9Ek03OLTujSJUXYIgCANQZJggiNhjtryE0jBDQ4SVUhk41ETYyDm1Gm+ECxcFdlgZL9fCBXXcGNlja24Rlx4hPa/DGmjDrJQvbDqUKpEwCMv/mYI3Mv+/iLoJyTARXcKNCgslhyLM9QMzRdikrnGAMRnVEmG96RFKKOULq1WScFjBd6FTyh2WCjEglmLhduExHEajwmakVujOLaZ0CYIgdEIyTESPUOVVSXCsdhLiuo5ZIqxHgpWuZ7IIB+9XT4+QG8vtk2u/HA5yZdSEQgwEyy+HtN2yMO3CyMI5l029bIVSvrAiatFhEmKCIHRAMkzEN1qSY1CIma9acZ/FFtx5iIggZoiwXglWIgwRVpJgrQ5zwWP0/f6Gky+shVSI5fbLIY0KC1Mk1LBbxQfKtWSWSrHhts38xUiICYJQh2SYiF/0io5QiGXe9NQEWM84kuQIEAsR1pEjrEeE1eRV7XitChFKUWG5VAivKFVCXZKVUiSk27UEVii+eqLCXL5wuMilRQRto9zheo/LFniYhZEqfkT9h2SYiA5G0xm0GiLojPToFWG95yAxNoFwRTiUaLCOa6qLrPbvr9484VCiwmYgrCfsFuQSA8q1iIXHcgjrDQu3K4mvPYIl2HRD0WGCIFQgGSbiD6OdwRRE2wwRVjsniXEIxIsIa7RR5ghFggPHadcJNjJe2HXODIRCDMjUH1aImkkbbwDiqLBSikREKkkYhYSYIAgFSIaJyBPOIjcj8lTzRqcqwdyfUsPoLsbBXSfupNiocEZLEBJUhI1EhfWkSISDtLmGVIiVkKZFSMdLo8IuW7D8mlFJQpg3HFKqBAkxQRAykAwT8YVR4ZHkCgeJsNKbo3R7GHLMfNWxF+JwRDPEFJSQzh0qERJhOUKV4MCxyiKsfD1jUWQONVF22fyi/Up5w1IhlkNNhKVRYekc4hIS4jqJ06reHdEojFqOEQJIhom6g/QNTE2EjS6mCTNiHBMhjlSXLbnzGpGHWDTQ0DMHHQvmtEQ4nAVyeqPCZiKsNcwhFWNOMNx+na2YJSIslF5p9FeaLywcq6tWsFFoIR1BECFAMkxEHr3lz+SkR0nClEQ43DdCE9MoIkq0283Gor1tqGXTdM7ViAhrd5+Ta6QRWlRYmiIhzRf2mpA3LBcp1iPCUji5FUaFpVUkzMgX1t1oQy8UHSYIQkCcv+MT9QYzG2QIRFhWgn0ab3K2yIhdVKLDsZDSWGC2CGvkCeupGayEHhGORVRYitwiOSNVJITfy5VSU8sJDjVfWKsBR1iSTEJMEEQNJMNE3UErGqwlwRw+t7YQ+7zxFx0mEVYnTkRY73lCzRU2E6HscmKsFAVWSo+QRoU5QimpxsmtmgRrNt8wkipBQkwQBEiGiWjCSY5ShNjvDRYh6Vg5ERZKsNwbm5wk1TUhTgQRDqebXIgirEQoaRH69qlLmtntlwFx3rBaNFhLgrlzAcEiLIz8aqVISLvPxRwS4jpBktXkphu0gI4QECfv9ERCoSa8SqIseLMyJMLc9lCFOB6o7yIcbkvlMERYKqfhSLDcfj3yLTdGmi9sJnrSI4RjOeRSI4RoRYXjtroEQEJMEAkOfTYi4h9BNJj5qmskWCDCXrf2G1kU3uhiXl6trmG1R02E5Yi0CKtdz2iKRCjNNsRVHsT71GoKc/uVG2voiwpHC9mfW7z8RYcgiDoBvWIQsUVtUZ1SNBgQizCHVu1guQhxvEeH61tUOFz55VC7LyGUUAunZJrSGKOL4vSkSJhRSYJDS4g59IiwXJMNLkVCz+I51RzgGoSL5TTzhkOBosMEkbCQDBPxh5wEA8HRYOF2OaKY80tRYRnMEl8pURJhvdFbPSJsZJGenq5zoXSmk6s5rOcYDq2oL7dfbeEcly/MSa1apYiwCaXmMAlx3OKyA0lmvqSQ/RAC6NeBiB1yUeFwosGykd84WgRXH4iU4OpBK0oeZREOtRqE3uNCzRd22RiqffLH6hViaVqFaFGcjqhw7Xm4MZFNnzC1DjEJMUEkHGQJRHygFg0GgkVYKsHCr9WkSWu/kHiQaCPzNZtYiq8QPc8/jkTYaFc7IDJVJIDgtsyAthCHIsLSqLAZjTZiCgkxQSQUcfJuRyQc/mCZ1SXBwn3S7cJtRgRSKW84EaPK8SLAQFgfWkIR0sA4c0VY7Vi9OcWhLJ7TQqsyBIecCEcbrcYbqoTTnpmEmCAShjh65yMSBjUR1iPBRt+gElFqjVJPJBjQJ8LyZdbCqxZhBqHkAmshFx3We5wceqPCkU6RiMgiOoIgEhJ6JSGih4wEAzpEWCkS7JbIidMhHqckVRFIPYhoK+ZIpkrEiwQbfX5xKMJ66hjXFaQCK1dGzShmNNtQyw1W3EfR4XqBw8rC+v2T4qvrqTyEqcTJOyGRUOiNBitFgqUSLNzuVPhzqlZ02IRUiTonxPG8GE4JlZ9FvImwXszKF3ZYGb/oTrqIzkh0WEmE5bbpqSBR5yEhJoh6D8kwER5SqVF60/CLxVa2i5yaBCsJsBpRjg4DdUiIoynCZs1ZZzQYMEeEw02LkM7BSL5wJDrPqQmxUiqDUIT1VI/QkyJhWtWHaEJCTBD1GpJhInTCEWFhNFhJguUE2CsjEXbBm6s0OiwUSGmUVyqXatFhwFCEGIhQ7eFYVpdQI5JzMhANBqIvwuFEhY1gRsMNI/m7ciIsdy49FSTMSJEIi3BSJThIiAmi3kIyTISGXvlREmGtaLBQhOUEWIjXZ64QA6ZUlxBWxzBVjONBiKNxfY17Hc8iHA+5wmr1hvUcyyFut6y9KM7MvE4tpIvoTK03LAcJccyQtggPmzr4Bwoicpi/dJmo/5ghwt6ah88beHDfuz2Bh9dX+9CDdKw0qqzWsU7uzc2n8IbHzdcgzFctLh0XLuG8IYeaImF31j4iic2uGQ2OZxEO9byRqSRhXEy1RFiIWq6wVhRaq1ya6dU7zKooE+sPogRBmA5FhgljmCXCSpFgJfmVS5mQWywnjBIbjRADxqLEgOE3WFNTKKIZIY6GAOvASCQ22jnCehHOy+xmG8JFdBx6I8RS2VWK8MpJrjRXWIk6mS9MEES9hyLDhDkoNL/gI6JaIqwVBZYTXy6KHBQF9gWPEc5TmJohFyWWPhefO2KR4rCjxdH4k22k84F1iLBaNDgWIqwWFY6HFAkpqovebExThOXSI/R2mzMjX9jI4kPV/RQdJghCBooME/oxGhXmkIqw3miwFE6I5aLE3DZuDHdOYZRYtF8QCRbKLPdmGWqkWHgOnYQdLY6HHGKjGLhH4UaDA2OjI8JmnF+Imd3nQu0gpzc9QpxSEZlGG3EF5Q8TRL2BIsOEPtRkS/iGIEiPkI0Iq1WKsNvUH3qQRoulucdB+yWRYGmkVy1SrBUtNhgxDitSbORNWfphJZrojAQDytFgwBwR9jGP6SIci6iw3vQGvSjlCaulR8QSw/fczG6Ude1DaB3GYQWcJj70tiTnWLx4MTp37oyMjAxkZGSgd+/eeP/99/n9Z86cwT333INmzZohOTkZ7du3x+LFi0Xn6Nu3LywWi+gxcuRI0ZiWLVsGjXnkkUdCvm+EPigyTJgPJ8KC73kRlosGC0XX6RC/wShJnlZU2W4TC7fTEXxNYbRYeB1htFgaKeb2c6hFi4GQIsYhR4rjOUJsQiQYUBafUETYKGaUUNNzjkjUGNaLHhE2EhWOVUm1iFeVEEIR4oSgWbNmmDt3Llq1agUAWLlyJa699lrs2LEDHTt2xOTJk1FcXIxXX30VLVu2xKZNmzBhwgTk5eXh2muv5c9TWFiImTNn8t8nJycHXWvmzJkoLCzkv09LS4vgMyMAkmFCD0bSI4KirBpvEnZbbeqC3aksTV53YJxMjjDzBIuNbp2QleYwUigAbTGOpBTrFWK/N3qNN2IgwrFMi9B7LeHiOaOVJLQ6ysktpFMjlGiy0ahwXC2eM6PuMJFQDB06VPT9rFmzsHjxYpSUlKBjx47YunUrxo4di759+wIA7rjjDvz73//G119/LZLhlJQU5Obmql4rPT1dcwxhLpQmQYSHTEREMT1CmhrBiTBXrstmD/zrShM8Umq3B13bFxBhd/CDVVSCeTy1j7NV4pQJpRJucikUSgvupPs5TE6jMJw+EU9RKhNSIoC6IcKxXDgnl9erV3DlG2qEHxWOJNFqdKKbeP2LDKFJeXm56FFdrf1a6/P5sGbNGlRUVKB3794AgEsuuQTvvPMOfvvtNzDGUFxcjB9++AEDBw4UHbtq1Srk5OSgY8eOePDBB3H69Omg8z/11FPIzs5Gly5dMGvWLLjdcfSaXk+hyDBhDsI8VLkKDdK0BqEIc7JrC3xtsbnk5U8oeUIRVkqVkDTjEL6N646ZqS240yrNBuhPo9AhjYYixXoixHqjw6GmX4RZLg0wLy1Ca5/RedUVhKIqjRQrl07TFmE9UWG1FAmtGsNGkTbfAHSkSpgdHaZ0iYhidtMNVnOu5s2bi7ZPnz4dM2bMkD1m165d6N27N6qqqpCWloZ169ahQ4cOAIB//vOfKCwsRLNmzWC322G1WrF06VJccskl/PGjR4/Gueeei9zcXOzevRtTp07FN998g82bN/Nj7r//fnTr1g1ZWVn46quvMHXqVOzbtw9Lly4178kTQZAME6EjfeEX5gpLy6gJsduAlFRZCeaki3vb5t9yqytrruELFmG5xXgacOeVlWJpfrFoewgpFIDpUmyaEEeKOizCoUhwPJZTk6InUqyn4oRQhPVGheMqRSKSkBDXOQ4ePIiMjAz+e5dL+bW1bdu22LlzJ06dOoW1a9di7Nix2LJlCzp06IB//vOfKCkpwTvvvIP8/Hx8+umnmDBhApo0aYL+/fsDgCgPuFOnTmjdujV69OiB7du3o1u3bgCAyZMn82M6d+6MrKws3HDDDXy0mIgMJMNE+KhVJ5BLj3A6ArLkSguSYFhrBNlqB/xeWAAwThQrq4DKqoAIV1bVpkR4guXF4pApqSZtwgGNaLFQipUW3AmbeABRk2LThDjS0WEV4k2EzY4ES68b6UhzOO2XuePF36unR6gRq4VzholE7jAJcZ2Cqw6hB6fTyS+g69GjB0pLS7Fw4UIsWLAAjz76KNatW4fBgwcDCIjszp078cwzz/AyLKVbt25wOBz48ccfeRmW0qtXLwDATz/9RDIcQUiGCXWUBEgmKgxAvrmG6HziN0mLzQU4U2qvJUo9AAB37flqcoG5aDCrqAKr9oFVia9jSbKDVQfEw+KquZ7HFxDkoK50takUqtFi4fyjJcU6hBgwoZtdNBfTcZeMs4oRdSElwm5l8ApSHeQW0YUqxHpFWCkqHA18zGM4vUJXVQlaTEeECGMM1dXV8Hg88Hg8sFrF/x9tNhv8fuW/mHz33XfweDxo0qSJ4pgdO3YAgOoYInxIhgnjyNUVBvQt8pJbMCeQYF5KrBZY7U7AXRl8jjOVYB4f/GXVgMcfJMPw1Lz4OKxgVV5YksS/5hZANkrMPw/hOKBWgKMdKTYrSmxWVDcKaRfRFmEzJDiUFAmz2zALMSLEcmkRoSyCC2fhnDTXN1Tk8ob1T4Lyhwl1Hn30UQwaNAjNmzfH6dOnsWbNGnzyyScoKipCRkYGCgoK8Le//Q3JycnIz8/Hli1b8PLLL2P+/PkAgJ9//hmrVq3C1VdfjZycHOzZswdTpkxB165d0adPHwDA1q1bUVJSgn79+iEzMxOlpaWYPHkyrrnmGrRo0SKWT7/eQzJMRAalNxZOfG3OgMBZ5ZswBKI53oBgc6kWXh9QWQX/GTdYlRfstBtMIsOWJDuYxw2LwwpU1X4vJ8ZauqAYKZaTYrmFdtx90LvQLozUibCFOIrRYSONNNTHx16E4xUtIVbKDZZKbShRYWmKhDQya9biOb21hKNac1gICbGpuKzmLqDzG6yldezYMYwZMwZHjhxBZmYmOnfujKKiIgwYMAAAsGbNGkydOhWjR4/GiRMnkJ+fj1mzZuGuu+4CEEix+Oijj7Bw4UKcOXMGzZs3x+DBgzF9+nTYbIEn5nK58Prrr+Pxxx9HdXU18vPzUVhYiIceesi8J07IQjJMGEPPizs3RjpWWk+4JiqsKCXuyoAIVlcGcoXLToNVVMH/eyWYxw9/WTUvw5zkWgTpEUIxttT8qjMEC5dIGTjRFUgu83hgcUi2y40VPkehfCpVnzA5dSIqQhzlRXmREGEzJdiMhXNGawwLUas3bLT9sl4R1jquzkL5w4QKL730kur+3NxcLF++XHF/8+bNsWXLFtVzdOvWDSUlJSHNjwgPkmFCGb3SI229LEWYjqC3AUN1ZeBNpPpMrQifPA3/H2fh++MsL8Hus1YAVljdvpope2sk2A9Lta8mZ1gsxVykWIpapDiuUifqoRAbkcp4EWE1QulwF0vURFiKWgUJrahw3ENCTBAJCckwETmkbwKcQEkkL+gN0+cF/F6wsyeB02VgZaeBUzUi/Hsl3H964PdZ4HXb4fME9NTmCLxB+31+WN0+2J0Mwb/edtSsygtIsSBKbHHZwDw+c6LEQHDqhKhbXZipExppE3VViIOmYbK4ml8tQr80RVLCtbrR6TleiFSEjXaaiyVKecOGUiVIiAki4SAZJpTRI01aKL0JcF3puJxh7s3H6w6IcOXJQHS4vAI4dRq+Pyrh+70Svj/Own02IME+rwU+jxU2hx8+rwU2OwNghd3pD0wdXsgJsYXLH4adzyUWwledkEMqxIB6lFhvLjE3xmgucaSEOFx0VMMI6bQhRoXrS36wtKIERyhCrCe9QSrCRqLCcmjlC8dNJJmEOO5wWGX/oBfW+QiCg34dCHXk2g2HgigyGjgf81UHhJpLiXBXAu7KgAhXngLKy8HKTsN/ogL+E1Xwn/GgsswO91kr3Gdt8Hms8LotqK4IfB2QYwu8bmtN5NgSWGhXU12CK8PGf1/l5StPcELMqn21dYs5IRZ2z+NrGwce/HbhOOk20XbBvZRrySz7wUGjtbMChlo4S9HzQSdO3thjIcJqUeFYpUjozd112fyKY/WmR+hBj9iaVUlCD4Z/DyLwYY7aNhNEfEIyTOjDiBRL6wUrvQH4vGDVpwPi5Q9Eipm7oiZPuKI2T7gmIlx90g/3WSuqK2yorrSiurJGgL0B8Q1LiAVVKTSFWPC9LiEO2i65j3JCrCTFCvdRCVUh1vp5xlCI5cQlFMmMtgjrIbJl1fyih9I2KXYrM5QeUW8WzWlBQkwQCQHJMGEuSn/SB5T/pF99OvA4WxMRPl3Gp0f4y6rh++MsPOW+gARX2Goiw7UPLmVCKMRCdAkxICvEzOMLTYilY4XHByYVepRYDrnja4i4ECsRhUYG0Y7ChiLCRoTcI5MCIcVINzg90ip3PrX0CPlzxEl6QyQgISaIeg/JMBE51N5EOKnjJM5dWVNCrSJQPaKiEqyiKiCoHj/8PgsfBdYLFx0WwgkwAHkhhjhlgseoEMuNFW6rnaT4+wilTURUiOMkXUJKLBbMmS3nkV68FooI6xFsuRQJs+oLx4RICDFBEHED/Q8nzEO46IRbLCL3JsIt3hIKndddK8JnqwL/VvvgP+2u2W2FzyNpdWkPvElzlSSE230eS9B2uW50QECQLdxqCo8/qEEHk7ZyFi6WU6s0AQSP5bYBka02IXPfVRfVhVthIsr1hxMdpYV0Ro6Xw2hEOHCuuhMVDqsBB3WpiykuGzM1PcdnsA43Ub+hyDARG7g0Aa87EBGurgS8Pl6E4fYEOsxVecGqvLUl1DgBtgcLsN3J+MoSwZeTRIhror5yEWEIo8fcuFBziKVjQ80jlhsDxFeE2MA86hI+5jWluYYc4ZREM5IuITxGrwjLjjFRRrQWz8VlJNnsCDF9gCSIuIBkmAgNiRiJIo5ctLKmw5wiXHc5rt1yjQTD7altuVztg9cdiPLaHP4a4ZU8ZMRYGhUWIkyVkG5TS5cwRYhVt0cgj1iGiAmxzihXNMpnmZUiEW4zEOk8zF48p1eI1SQYkBdhPekRclHhUH++WsfFjRyTEBNEvYNkmAgNpT+Zc28Uwj/fy73YC0XN7QkSRGntX7vTXyO5Nf8KHnZnbVRYKMZ2p1/wdfCbvSgnWIpMyTVAIMRKhCvEQOh5xHLEQ4S4jkaHIxUNNhtOdNUeaugR4XCJG5E1CxJigqhXUM4wETlsgrxgufw4LiJcU7+XeWql2JJkBzvthsVlg93pDqQf10R7Xak+Uf6wzREQV7kcYquOvDClXGJVlPKHhedVyyEGlLcD+vKI4zGH2KTcYavFFtNGGUZFuK61XwaU0yLkRFhvVDihoBziqOK0MbhMzPP1Us4wIYAiw0T41MgPL1ZC8dKKEOvAkmSvif76+bQIZ7IvEAkWRIqBWhG2O/28CHNRYU54ucVyFpdUXoNLrQm/N5ouISKOI8SKUWKt2tJhlF2T/kk8ms0XtDArImyWzEeiokS4IqxE3HSQixYUISaIegHJMGEqZgmxxWWDJckeeDissCTZ4Uz21wqxg8GZ7BdJsM0REGa59AjDkd9QUcofFu4T7JfdHm6Djmg359Azvo6mSuhBb1Q4ks029OKyMlNEONyocDx9+AkbEmKCqPOQDBORQ0mIuX1KL/pcuoDDGhBhl00kxM5kHy+9chJstTHF9AiLTEN6I6KsGR0WEqoQB+2TWVgnRU6I5aTY7PbN4TTlMIiRvNNQI5TRzBM2Ukki3OiwmgQDkRVhPT+34L8UGD8mppAQE0SdhmSYMAfBi7e4soSKEAMB8a3Jm7U4hF8LIsNJdpEQ252MF15OjLnvhakRalFhaYqEFtIFfbLINdngjg9XiAHjQgyYJ8RG0yV0RJO1UiX0yE6sF2YpRYUjke9sVIg5AdaS4HBTIzgiKaex/jnrghpzEESdhf73EqFjteuLDEoXmsgtFOEWoXH/ciJYEx0W/6ra4UiqFdTanhTiN3WpBMtFhTX31zThkCOoGYcQSUOOwPiaBXXC/YDyojrpPkC8QE1uYZzehXXcz8PIwrpwF8cpLOSLF+pC9QiXlaFapdmGEWFWqhihJsIJv2gumtCCOhFKH9zCOR9BcFBkmDAPSXRYNkIsFx3mj7fV/ut0yOYN8xFi7nt+cV3tCxu3XYhQdIVR4VByiWVLssmlS8gsqIurCLHS8QghQhxidNgo8RQhNBIVNjNfWBjxlT70oCYVoYpwXKUsxBJKlyCIOgnJMBFRFEt32Z21ecPSVAkgIMMOW0BcOfEVCrGMFEslmN9vkgjLpUrI1h1WyR8OHKOw4MpMIZYjhIV1kSaSqRJ1UdAiGa3SiqxFIiIs97OpV4vn5CAhJog6B8kwER7SWrMyL9xBFSaUosNOR9C/XO5wkBDLSbHkETQPlTxhrRQKKarRYeHXaqXTpPulY8IRYqNRWRkhDil/OITr1EXqWl1hLckOR4TD/dARyuK5uIeEmCDqFPX8IzoRE7gXboE0WWyugFwJ84elL/A1+bIWAMxeKxsWV00FB3hhgR2AF8zjDzTmqPLykisnqEoCbGapNT53GFDPHxYdo5A/LD0HJ8RKzTmEhNOYQwHVxhxS5BpxmNSEQ4jN4giSUbltQPSbd8SyUYgUPVFmrYVy8ZojXCei/tz/RbM+ACZ4DrGLmm4QEYQiw0TkUJMgOSGryRUGIEmdsPH5w6IIsSBKDKA2Uix4SNHKJzaCUL410yWM5A9Lj5XuN1qHWIoZ+cMRfFMOJVWiPhFuqoTehUZmiHA0fjZGIsVxmYIRx4tGCYIIQDJMhI9cW14OuZJr0jcHac1hu02UOyzMHxYJcY0UA5DNGRaitM9o3WFDJdakX8tsi4gQSzFBiCNJKEIln4saXu6wXpEymiIRyuK5UITYiARHIyIcr/nCMYne2+zmSDGlSxBERIj9KxNRP9BZZo1PlwBqo8OcrIlKiPmC0gGEBaUYvEBNqgRQ0y65pn1y1LrNIRAd5tM0QkiXCEKztJpSSTaNkmtyKKVMRLoEWgjnj3a6QzzgsDJ4VMqocWP0oqd2sBEJTrSIvSmYkTqR4OkSBBEJKDJMmIdShFgumiEXHRYdUxMdFqRLAMEpE9IosdLiOSl6x8mhFh02pbqEVoQ4FJTePJUixBJinSohP8b86HC8wUV7lR560BMJBmIjwmb/XOpCrWgA5kWKCYIwBfrfSEQHQTRDFB0W7pOTZk4UuQhojRjy0dgqb0CKBQvqgNDzgGWjyiqNNwBxdFiEVnRYqSGHdJz0XKFGh5XusVJTjlDerOUW0dUhbBZ71ITKZfMbaskcyvn1YDQloi50BtTCz3zx8QEp1EhxAkaHnTo/1OnFY+K5iLoPRYYJc7Ha9UeIbXbNygai6LAgfxhAbYQY4GVVK3dY9VoGjpFGhw0tplM6p1yEWE9jDqVz623IoRPFUmtahNCaWe+YWESH4130jESCIyHC4RDv9zZihPLBk/KHCcI06m4Ih4hvNHKIZXOHlcYCkP5B2IKaHF1BRJbV5A5DJndYLbUh1BxjVuXVPtZAdBiQiRCrjZfLQdZTysxIy2b6U65uYp3THKlIcH0lbqLDHGaXYiMIQjcUGSYih1yEWC46LDdGkisMQDVCDEAcJZakNUi71IUTQVYi5OiwZDvzeNTziDVykEUovbEaqTChRpTzhqMRHQ614kEoYmXGn30jGQnmsFps8SWOJhHrDzCyGMknpugwQZhC1GR48eLF6Ny5MzIyMpCRkYHevXvj/fff5/czxjBjxgzk5eUhOTkZffv2xXfffSc6R3V1Ne69917k5OQgNTUV11xzDQ4dOiQac/LkSYwZMwaZmZnIzMzEmDFjcOrUKdGYAwcOYOjQoUhNTUVOTg7uu+8+uN3iN/Vdu3ahoKAAycnJaNq0KWbOnAnGqEi3YfTmj9qctS2ahdQIcFC0VEWI1aTYbHSVWpNDxyI5zYV1its0ag8rjQOChVhybMipEkHXSZzol5aAhirE0ZBgoO4uPtRLXAoxQH+VkWC3MNitJj4s9H5O1BI1GW7WrBnmzp2Lr7/+Gl9//TUuv/xyXHvttbzwPv3005g/fz4WLVqE0tJS5ObmYsCAATh9+jR/jkmTJmHdunVYs2YNPvvsM5w5cwZDhgyBz1f7YnbTTTdh586dKCoqQlFREXbu3IkxY8bw+30+HwYPHoyKigp89tlnWLNmDdauXYspU6bwY8rLyzFgwADk5eWhtLQUzz//PJ555hnMnz8/CneqHqLQslmz7rAwEixXXUJYg9ghbrQhivhyUhxhMQYMtGkG5IVYJkosi1Z0OBwhDhcdJfbCIZ6jw6GiV4g5AY5WJNhMEY7WPQ1lAaSf+eJTivVEiSk6TBBhY2ExDHc2bNgQ8+bNw2233Ya8vDxMmjQJDz/8MIBAFLhx48Z46qmncOedd6KsrAznnHMOXnnlFfz1r38FABw+fBjNmzfHxo0bMXDgQHz//ffo0KEDSkpKcPHFFwMASkpK0Lt3b/zvf/9D27Zt8f7772PIkCE4ePAg8vLyAABr1qzBuHHjcPz4cWRkZGDx4sWYOnUqjh07BpcrIGxz587F888/j0OHDsFiUa/9yVFeXo7MzEyUHf8PMjJSzL59dQ+pJHndtZFGTtZ87oCg+byBf92egDRyouf1BQSR2w6IJJJLTxClLChFbz0GI3IKMh3U0Y4TcodAJIR5w9IcYrnaw9Iay8LIuPDDgOo2hTdJpdQU0Rj1dJagFs3S4xU+AKmdU0lG5ORGbqxcMwylBhl6xEdNqoyeN5TGG6ES6yiw0ocQPWkvZn2oMVO84yYyrvbXlDpQWaK8vBKZjUagrKwMGRkZBo4LvI9+vu95pGUkmzafM+Vn0efcew3Ph6ifxCRn2OfzYc2aNaioqEDv3r2xb98+HD16FFdeeSU/xuVyoaCgAF988QUAYNu2bfB4PKIxeXl56NSpEz9m69atyMzM5EUYAHr16oXMzEzRmE6dOvEiDAADBw5EdXU1tm3bxo8pKCjgRZgbc/jwYezfv1/xeVVXV6O8vFz0IATIpEwYig5zxyhEiAP7BJUm5FInhAgjxmFEj5VkWzZvGJDvLKcRJZbtVKcnOiybCuHVbtuskS5hGJMqSqgRzcoS8Vr1IJTqEJGIAtcnuKhxuI+wUYsQU3SYIMIiqjK8a9cupKWlweVy4a677sK6devQoUMHHD16FADQuHFj0fjGjRvz+44ePQqn04msrCzVMY0aNQq6bqNGjURjpNfJysqC0+lUHcN9z42RY86cOXyucmZmJpo3b65+Q4hguNxhIZJ0iaDt3NcCIZbmEgMqUizFoCTrOqdUXOVEVkmKa1BMmeCOVTq3YsMNg0IsICh3WHpsDFIlzMbM6GKkKzgYTYmIV/k12upa+Tzxl5NuijRTHjFBRISoynDbtm2xc+dOlJSU4O6778bYsWOxZ88efr80/YAxppmSIB0jN96MMVw2idp8pk6dirKyMv5x8OBB1bknJMLosFruMLeYTkGM+bQBOSFWiRIDBqTYbPQIMaCvA51adFhuu94osVoE1+xFb2GeL9zc4UgQbcE0IsGxjgCHKqjhpLrURTTFOEGF2GVlpj+MoFUEwGKxyD7mzZvHj9FTBKBly5ZB53jkkUfCu3mEJlGVYafTiVatWqFHjx6YM2cOLrzwQixcuBC5ubkAgqOux48f5yOyubm5cLvdOHnypOqYY8eOBV33999/F42RXufkyZPweDyqY44fPw4gOHotxOVy8f9RuAehD1EOqjRfVa7UmrTChDRnViLEAIK6xEWivJphZBbNAZCvEgGF6LAgn1p2u+i8KlIsHMNvNzE6HGJeo9EIbX1JYdA6l1EJTjTiMTpslLhd2JeAaBUBOHLkiOixbNkyWCwWXH/99fw59BQBAICZM2eKzvX3v/89qs81EYlpnWHGGKqrq3HuueciNzcXmzdv5ve53W5s2bIFf/nLXwAA3bt3h8PhEI05cuQIdu/ezY/p3bs3ysrK8NVXX/FjvvzyS5SVlYnG7N69G0eOHOHHbNq0CS6XC927d+fHfPrpp6Jya5s2bUJeXh5atmxp/o1INNTKrclFhzmk+cPCChM13/PjBP9K0ybkWieb1bVOti2zELVIrlwusdpxekqtcefVEynWI8QRLolmVNr0jpcT5FjkDYcrxHVBgo2kOoQrelrH1wchBmSep1yrdSKiDB06FFdffTXatGmDNm3aYNasWUhLS0NJSQmAQBBN+Hj77bfRr18/nHfeeQCAsrIyvPTSS3j22WfRv39/dO3aFa+++ip27dqFDz/8UHSt9PR00bnS0tKi/nwTjajJ8KOPPor//ve/2L9/P3bt2oVp06bhk08+wejRo2GxWDBp0iTMnj0b69atw+7duzFu3DikpKTgpptuAgBkZmZi/PjxmDJlCj766CPs2LEDN998My644AL0798fANC+fXtcddVVKCwsRElJCUpKSlBYWIghQ4agbdu2AIArr7wSHTp0wJgxY7Bjxw589NFHePDBB1FYWMhHcm+66Sa4XC6MGzcOu3fvxrp16zB79mw88MADuitJEDoRpEEoRoel6RJKC+q4fUCQEAfGiaPE4UqxnnGKzTd0pzcEH68aHeaOkRNlJSkWokd2BWPCjg7rlGu16LDedIlQCCVvWEtAQyl5Vhck2CyMVAUhiHCRLnqvrtaupS4tAiDl2LFj2LBhA8aPH89v01MEgOOpp55CdnY2unTpglmzZgX1QSDMJ2p/Hz527BjGjBmDI0eOIDMzE507d0ZRUREGDBgAAHjooYdw9uxZTJgwASdPnsTFF1+MTZs2IT09nT/Hc889B7vdjhEjRuDs2bO44oorsGLFCthstS/8q1atwn333cf/wl1zzTVYtGgRv99ms2HDhg2YMGEC+vTpg+TkZNx000145pln+DGZmZnYvHkzJk6ciB49eiArKwsPPPAAHnjggUjfpsRB2K7Z7hRLks1eK0nCfZwQc0InaEtscTgCLZvdnoAQe32B/cL2xW4PL8ScpHJCLK0PzImuUqUIORHWjApLkT4P4XbpNqXtKq2deSGWlm4Lun8KLZyF2+XaNdfAfNXiDzJ6WkKbjNViC4qe2SwOkURJv4/2fKRwcitXdi2UCHJdFuBI4mPeqNeNDgVpFFs657hrHx1l7FYGh8E8X63zAQha6D59+nTMmDFD9phdu3ahd+/eqKqqQlpaGl8EQMrKlSuRnp6O6667jt+mpwgAANx///3o1q0bsrKy8NVXX2Hq1KnYt28fli5dGupTJXQQ0zrD9R2qM6yBP/jP8rJ1h7n9XO1hILjOcM3XfA1iQH6Rmag6g0zUVa5phk5kI80OA29eUtGVRrsF22TzpZXOI0RtrF0SjZfdLj/GUN1hHS25jdQc1jpOKMByMhzun9pjvcArHgUpnFrD6sfXnUYqelH7/ZLOWfQ8udfIOpIiEW6d4Z0HFyLdxDrDp8vPokvz+3Hw4EHRfFwul6isqhC3240DBw7g1KlTWLt2LZYuXYotW7YECXG7du0wYMAAPP/88/y21atX49Zbbw2KPA8YMADnn38+XnjhBdlrrl27FjfccAP++OMPZGdnh/p0CQ1imjNMJDh6KktopUtIvlZMmVBIm5DKquHobpjHhYps3WEOtTQMtUV2XoO5wUbSJdT2GchD1hIaLSmqT5Ul6mI6hN4GKkapq4vMtD9o1Y+c53hGuuhdSYQB5SIAQv773/9i7969uP3220Xb9RQBkKNXr14AgJ9++snoUyMMQDJMxB2KpdaEXwuFVyK/skIMiIVYIZcYUM4nVpyvWSKsV2CNnE9PPWO1Ns7SbUaqSwgxWFlCq7uYkRziSAuw2vkjJat1TYKNEol0lngTy3ibD2EcrgiAkJdeegndu3fHhRdeKNqupwiAHDt27AAANGnSxMSZE1Li8+9GROKgljvMYXPWShiXTyzMHxbmzNbkCwflEAPiPGJA9LU0lxhQzieW7ldDqQudofQJPSjlBwPKuclq+cZA4D5zH0iU8oeFY4LmJMkd9nuVK4monUcBTojlpEKasyvMFzaaO2yz2DXFRe2cnLiaEb0MRYLlZL2uLkjzMY/ihw89ObXxkj9sRITjZc6JzqOPPopBgwahefPmOH36NNasWYNPPvkERUVF/Jjy8nK88cYbePbZZ4OOFxYByM7ORsOGDfHggw+KigBs3boVJSUl6NevHzIzM1FaWorJkyfjmmuuQYsWLaL2XBMR+h9GxBc1QmyxuQKRRrnFdMJtcnIrFWJAfmEddwy3H+pSbCbM4wtbiJnHI84dBsSCK0VJiqUYXQAnEFkzF9PpWYQGKEux3uP1jtOeh7pkh3MdoxKsFQ3n9kdKitWkNZrnkD9vPZJLpeotauUr6ygumx8um9+087kNnkurCAAArFmzBowxjBo1SvYcWkUAXC4XXn/9dTz++OOorq5Gfn4+CgsL8dBDD4X+RAld0AK6CEIL6AwQymI6wdigBXWAeFGdzHbRNunXUI7qmoWsDAtFVbS4zRa8DQiWYSlyYiyVYblUkjAW0wGSBXVhLKYzKo9aOamc/EklUO919ET0zKqza1YUWItICbGRRXSAOQvplM6jdw7RRG90WDhX/rkpLZ6LYxkOdwHd94efM30BXfu8yYbnQ9RPKGeYiD/0LqYTjA18LRFGYQ6xzHbRNunXkF9gp4dQj1NEKdILhZrDQpTqDWuNMbpCXW0RXBir3Y1HRPVJgFSm9Dfv0D6/ESEVtkiWPowSr5334pF4yNfV97tkQGqlefkEQeiGZJiIDxQiGaqL6aTd6QBzhFhBioUPI/tkn5eRqLAQpUV2augRYrXtels1660uIfNXANlr1RCuEAuPN0MYtRbwcdeJlpyGe61oS7SxfFn531O1aLaZUf5Io/Z7FA/Ra4JIFOh/GxGfaC2mkzbj8LqDcoZFucEICDHzeILHAUFjg76XYCTya2qUWEaSZXOHpajlEoeDkWYcYWBWXq8QaY6v0YVu4S6sMwOKBtd99Eqv5odC4WLkekgonRu1zkcQHBQZJuIHvdFhtXQJucivXRitlYkQy9Ujlvs+HlAQdM10iVBQSm9QS3vQmy6hFh1WwEiEWG90WE4mjaQpGIkSmymukThfrIlFreB4iA6bitUel/nCBBHvkAwT8YtWFQJpuoRUiIVfqwmxZL9sJ7hIi7EJ5zacPyyqL6whImqSG2rt4VCuZYBQ84c5jOTw6pFi7lrhimc8iGs8YEaqROA88S/Esp3nCIIwDZJhIr4wGh1WEmJAMX8Y0CnEcoIa52JsSoRYT16ygeiwSIijGB1WO1YqlHoEMxJSrFdsIxFdrivU1ZrIBEHUHUiGifhDofSWbiEGNBfUATqEmNunJKdmibHJYm1qyoTeFs0qi+lCQuX4SKRLcN/rEU4zpVh6XaUHEVniOTpc37sNEkQ8QMlFRPyjtJhOa7zSgjrBwrmgRXWAuGMdh8aCOmnzDt3EW05yAiBcjKe0wE0qoHJj9Cy407PIjiCUIBGuJdSSg2rnIwgOigwT8YlZ6RJGI8ShRomNjBGO1doWiQoQZmHgA0pIqRIRzI2URoi1IrBq+7XepI1EiWMJRaDjC12yFmJ3R4IgxJAME3WDUNIlQhFi4X5uTDhSrJZiESqh1BqOBmanSpiEERHVEuNEkOK6hFmL6ALnio/fV0BFhOPk/xRB1DdIhon4RU+JoGgIsWScaIweqRWKcaQEmTCMVqUINTHWkmI1SIqNU1cX0al1GJT+7oXTfZAgiPCgV2Si7iDIHbbYXPrLdoWSQwwE5wnL5RJz44D4jdjGCaImHF537QcVv7f2g49wu4lo5e4KBUQuosiJr1TKlHKO62o+sVlNQkJNufAzX72QQSPPIezna3RNRR3FavJiUqslvv7vEbGFIsNEfCONDsuJkp7qElKMRIj15vGGU1kiHqLCWrWGY4GJfxY20ulLKUJHUWJCi/og8wSRaJAME/GP1mI6wHi6BCAvxDXbLA6HdtqEWVKsNDaeF88BMV28E6pwcPJpVIzF51BOndB7Drl5xQvUFCR0SIQJom5CMkzUPeQW0wkJR4iF26AzShyqFMdDu2czUztsEZJjhehwuOIhFGMtQTYSJTZyDrn5xAOhCm24IlyXZbIuz50gEh2SYaJuoLKYLqi6hBCzhVg6TjheS4r1LKKTub6phJMKIby/0qiwmSJsIP/RbAFRE9JoCLHWHKKJUbHV300v9s/NbKIiwlRJgiAiRv17VSISA6VFIzZ74E3D5gwu9cXtky6oA4IX1Qm3oVaIRYvrgODIquCYhEctZ1uKcBGdHD6v4vmETTTMghM26QI3uWvJLTpTW4imd75SaZTORUsqzVicp7RwULrfLOrLArqokgCL5wDAZrGZ+kHKRr9nhACKDBN1B5XFdLryh+WONRAhBhSixEqpE6FEd0M9LppEMirMYfANPlIlqeTefKOxsE5pLkZyns0Vh+i0ia6LIkxRYYKo+5AME3ULPekSQtQqTBgRYknahK7UCZljVdE7LtZ5xnrQExU2GtHSIQRqdVxDRa9UqjXqkCMaNWXrY0pCpKB7RRCJC8kwUbdRqmgglLFwhDjcKLHwWOlDuj0e0SpTZ2ZU2C+RXTlZDiFCZqTxgZFzymFUiIXzixTxJHnRnEs0IrYUFSaI+gHJMFH3MJouITdWrxDLbdcTJdYTvY2QAAfNRwsjFSWEHz6URNhIrnAo+LymC4J2Nzp96RKBscZbOaudzwziQYjjYQ5E3UXPh1qjD4LgIBkm6gd684eFY40KsUaUOGQpNoLG+QyLcKyRRn/1RIc5IiDFgJrkhi/EWvsi+SYdSxmtjyIcF1HhBFk8RxCRhmSYqJuoVR6ARv6waJsBIZbbp5U6wR0Tz3m+UZyb7hbaQrxufVIs94ghWkIciyhxLKS0PopwVKD0CIKIGiTDRP0hlPxh6X6hEMt0pgvaJ7NfNkosPC5C8hnVqHAk6wpLo8NK4/QQoiSbER0OjFeXXq2KE9GqkBEpjFwrtAob5vzOG70n9Cd2gqhfkAwTdRe56LCe/GG9QgzojxLL7FeUYu5Yo1KsMl63CMfBQj3Z6HAkhVgOHVJsRHi0u8tpS7EZ89BLpIU4XhqH1Fn0RIUpRYIgTINerYh6jcXmqpUvrumGEGHzDuF+4XZpIw6gtrGGtPmGdD8Coso365Ci1LxDaZwMukRYrTuedIweSfe5laPD3D1UWUjHfNXBqSxet/iDCCfE0g89QglQ+muAXnTMVYrNYpdtaMFJq1pDDbUmFmY06jCCUmMRM85pNkYjwHU6ckvpEbKYXds6EnWyiboLRYaJuo1GdFgRuQV1gHqEOFJRYrnjdaIpwuGUbTNDNFUisMxXHRwllot2KUWJufFaD71zlcHMsmtCQqk4Ea95xEYagSgRS3mlFAmCIGRfBb799lvDJ+rQoQPsdgo0EzHAalcVJsXosLBls54IMRCbKLGCKOsSYTX0CrgZpdJUIrBBUWKv4GfCodWuWQ0zI8k1KEWHOSIZJY4ERqPEZkaASS4FUFSYIGKC7Ctaly5dYLFYwBjTdRKr1YoffvgB5513nqmTI4iQkUhs2EIMiNMmALH0CoRXJMwy+zmJ1ZRiFVRFWE8kWCOSrQu1VAnFY+SlWDZtQko4QswhJ9rCuZmQLiFErxTrFd9IpEuI50IBjZhBIkwQMUPxle/LL7/EOeeco3kCxhg6depk6qQIwhSkUV0heoUYCD1KrCLEgEaUWAVFEQ61nbNSgxE9+AT3w4gYy0gx92GFl2JpDjGgnEdsFLlzc/OSCLGagOoRYu4cgLIUywmxkiRHWoijRV2MCNfFOdcXKGeYiCSy7ygFBQVo1aoVGjRooOskl112GZKTk82cF0EYQyNVApBEhwF9QiwdJxclVpLecNMm5J6D2SKshFI6gZJEAmIxFqImyQpSLBJiufmYFSXWmTZhhhBz5wHkpdioECudpy5gRCoTQlooKkwQMUX23aS4uNjQSTZu3GjKZAgiLOSEWC1dAlAXYkA+bUJ6XqNpExL0CnFERDicqLBepJIsJ8eSiKxsHrFSlFgPSuIsd16D6RKAMSEGlOXaaK5wXYsSmxlZNUOS4yIthESYIGIOVZMg6j8S2VHNTZWKmrTShFK1CcBY5zoJatUmFPcZqRRhRIS1oqXh1jf1ueWjyBIpCKlbnRJ+rzF5lkG7lrCxigp6xVBL+rjmHPH8J/xQ5xfpqLCZZeVCmwCJMEHEA5qv3IwxvPnmmyguLsbx48fh9/tF+996662ITY4gDKMjXQLQqD8sjBADoadNqEWIZVImgAg1z9ASYTWUIqRKQmykWgN3j4UfQNSisgbSGhSRS68wEB3WE4k1UplB7nxK6RKBc6pHjaXCGcuocTzLeVxAIkwQcYNmZPj+++/HmDFjsG/fPqSlpSEzM1P0IIg6gZZESaO+NmdwLWKlesTS86u0ag6rigN3LrO7yBmJCmsRSq1faZRYIAmydYjDjUzLfViKQDcvvfV35aRRqw6x3ohpLCLGZl2zXucKkwgbxmqxiv4KEv7D2B/GFy9ejM6dOyMjIwMZGRno3bs33n//fX7/uHHjYLFYRI9evXqJztG3b9+gMSNHjhSNadmyZdCYRx55JPQbR+hCMzL86quv4q233sLVV18djfkQRPgoRYe18ocBY1FitWoTannCcovuOLhIcSTbJiudWyrCZtQX5lAraQYEl2kTRGYVu9WpoSX1ehbghREdlqKnLrFchBhQjgYLZVFvxDiSkWKKBOuAJLjO0qxZM8ydOxetWrUCAKxcuRLXXnstduzYgY4dOwIArrrqKixfvpw/xukMfh0qLCzEzJkz+e/lig/MnDkThYWF/PdpaWmmPQ9CHs13u8zMTKofTNQfzBZi6Xi1Ns56FtWpSbDWAjetls5GzmmmCAvRqkahIsSARr639DpC5K4pFWKT0yWkhCLEgePEPyOlJh1K+/RcIxwiIcFaUeE6GTUmEa7TDB06VPT9rFmzsHjxYpSUlPAy7HK5kJubq3qelJQUzTHp6emaYwhz0fw7wYwZM/D444/j7Nmz0ZgPQUQdWcGSCpCRtAkjKRPSNs9y+5TGqB1jFJM6s+kijJQE2RbOeq+pp9Wz3BgTWzXrSZnQXqjnUEyX0JNGYZa8RioFI9qiG/FFdCotyYnYU15eLnpUV2u/vvh8PqxZswYVFRXo3bs3v/2TTz5Bo0aN0KZNGxQWFuL48eNBx65atQo5OTno2LEjHnzwQZw+fTpozFNPPYXs7Gx06dIFs2bNgtttfhoXIUYz/HPjjTfitddeQ6NGjdCyZUs4JAt8tm/fHrHJEUTIqC2kk2nGwQmxYtk1fptG2oSelAmZBhy6BFYunUIJjXJuqkQqKqwHuegwINuxTg3FCLKeRXgm1R9WwkjnOiFqDTsA7aiw9PyhRogjmQ5RJyO+apAEm4bRai16zgcAzZs3F22fPn06ZsyYIXvMrl270Lt3b1RVVSEtLQ3r1q1Dhw4dAACDBg3CjTfeiPz8fOzbtw+PPfYYLr/8cmzbtg0uV+D1aPTo0Tj33HORm5uL3bt3Y+rUqfjmm2+wefNm/hr3338/unXrhqysLHz11VeYOnUq9u3bh6VLl5r23IGA0L/33nt46aWX8M4775h67rqIhWn0XB4xYgSKi4txww03oHHjxrBYLKL906dPj+gE6zLl5eXIzMxE2fH/ICMjJdbTSUzUKksoRChlRUv6piZd9CU8l3CscLucnMpJbSj5wnLn4a6np+Oc2uLASKC5oFFhfwhzkxVj6fWl+cNy81O5dihiGW5EUu6aUiFWE2Sjc450TrBeEdYzzuhc9UqW4XsQSRmOwKLPSFJeXonMRiNQVlaGjIwMA8cF3kdPnlqPjIxUE+dTgawGw3Dw4EHRfFwuFy+vUtxuNw4cOIBTp05h7dq1WLp0KbZs2cILsZAjR44gPz8fa9aswXXXXSd7vm3btqFHjx7Ytm0bunXrJjtm7dq1uOGGG/DHH38gOzs7hGcqZu/evVi2bBlefvll/P777+jXr59IxhMVzVeADRs24IMPPsAll1wSjfkQhLkYjBADJi2sU4oQA8qL59SQO1b0XBSizaFGh2ONNELMb5dG6rUlRjbfWBr91ZM/rEKkIsRa1wTEUisty6bWxEPvorp4keBI4mNe8xtwRDoqrNZuntANVx1CD06nk19A16NHD5SWlmLhwoX497//HTS2SZMmyM/Px48//qh4vm7dusHhcODHH39UlGGuIsVPP/0UsgxXVFTgP//5D1566SV88cUXOPfcczFhwgSMGzcuKDKeqGj+72/evLmhT3EEoYpUTMNtqauHSAoxIN/GWUmIAe1KE2oI90vPYTT9IlId57TQK5lKQiwao/BzlZFkza52WhUmNDrThSrEoktI5FhO0KRjwl0UJyfF0agMEYoEx4M4EwQHY0wxx/jPP//EwYMH0aRJE8Xjv/vuO3g8HtUxO3bsAADVMUqUlJTgpZdewn/+8x/4fD5cf/31mDVrFgoKCgyfq76jaSLPPvssHnroIbzwwgto2bJlFKZEJBScpEZDipWQNs6oQTGPGFCOEhsRYqPzk85RK1ocCrHMF5ZDjxDLHif8+Rhs86xnnwLhljDTE52UiygLhdhIdFh6DrOIhLTGWoQN3R/KFa53PProoxg0aBCaN2+O06dPY82aNfjkk09QVFSEM2fOYMaMGbj++uvRpEkT7N+/H48++ihycnIwfPhwAMDPP/+MVatW4eqrr0ZOTg727NmDKVOmoGvXrujTpw8AYOvWrSgpKUG/fv2QmZmJ0tJSTJ48Gddccw1atGhheM59+vRBgwYN8PTTT2P06NFUok0FzVfem2++GZWVlTj//PORkpIStIDuxIkTEZscUc9Qy9/VU/c1HPR0pjMrbUKvEKvNQ2uf3khzvBFK1Qq51s1KKKVW6BXiMKPDHJEoYSbESJe7aBBrUU1YEihVwuzqJUbPdezYMYwZMwZHjhxBZmYmOnfujKKiIgwYMABnz57Frl278PLLL+PUqVNo0qQJ+vXrh9dffx3p6ekAAikWH330ERYuXIgzZ86gefPmGDx4MKZPnw6bLTAXl8uF119/HY8//jiqq6uRn5+PwsJCPPTQQyE9x4EDB2Lz5s2YNWsWDh48iFtvvRXnn39+SOeq72guoFu5cqXqCcaOHWvqhOoTtIBOgo42yQAiHyXWmkeoC+uE0qa0oE7pGqFIotLiPK1KE1yeslLnuUhGh6NVwk3HAjyREAvnpbWYzuD9iaQUC2VYeB0jC+nCJRoibPQakSp7p5toRobriAyHu4CurOxd0xfQZWYONTyfusahQ4ewcuVKLFu2DPv378ell16KW2+9FSNGjJBt+JGoaMowETokwxL0yjAQt0IMyEhxqEKshpJwSc9jVIiVWkPXNxnmkJNio0JssLKEHJES4ljKcLSiwdEQ4cB1TJLhWKRI1AEhJhmOPcXFxVi2bBnWrl0Lh8OBESNG4LbbbhPVSk5UZJtulJeXGzqJXNFogggLv9eYPBtFS7alTTUEBJXqEoqRtDGHcIwegdIaJ92vJJdyVSoi2eI5XtFIsdDVwMNAIw4lItGgIpYpEvEqwgRBKNOvXz+88sorOHLkCObOnYvt27fz+cqJjqwMZ2VlyXZOUaJp06b45ZdfTJsUQfBEUor1RJ/NFGJunFBohd+HG5GVqycsfKiNFVLfFv9IhVjp+QmlV8/vXAj3KVJd26KFVne7WBOpqHDcE+2/uMQCrpOfmY96zqxZs0S9IIqKinDttddi2rRpGDVqFLZt20aN02qQfQVgjGHp0qW6Vx56PHVk8Q5Rd4nUAjszF9YJF8tJF9QBwecIR371drsLFYXOb3WWUKtScChVlgih7jEQftUJaVQ4knnJQGwitPEk3XGdIkEQCrz22muYPXs2gECpt+uvvx6jRo3C1q1bMXHiRKxatQpdunSJ7STjBNlX7hYtWmDJkiW6T5KbmxtUZYIgTCdSZdi486lJsUr5NV1CrHIO0T411PICtZp7cBitLaz15m5UlkMoVxYRBFUhgqpLcITSiEOhpJsSoUixVnqE2fnCRqRU7lpUTzhKJFBlCUIf+/fvR8eOHQEEGqi1adMGS5cuxY4dOzBw4MAYzy6+kH213r9/f5SnQRAGiGSUmDu/EjJvOJpCDMhLsVGk15aWdwunlnGoGJQ/APEjxHJozc0rifarYeDehBspVkNvnWG544ygdA0f80RFbmOefkJRYSLOSE5ORlVVFQDgww8/xJVXXgkAyM7OxpkzZ2I5tbijnvwNlKgT6ElJ0Eskm3VozdOoEAPiP9EbqZur49pB+wHtCJFwnFliqrMGr+nX1UsoqRJKH7y8Bj/cRDDtJFICHSuifW1TS6rFGooOEwIuvfRSTJ06FUOGDMGbb76Jjz76CECgtTO1YRZDMkzUbWKVS6xXiAGZvFID7Yi1ULqGXtE0W0jjXYiFKKVKyLVp5tASYw6l56UhxZGMEOvFTBk1cq5wrxvtdtIiKCocebwec0XfW//XOj333HMYNWoUHnroIdxzzz18CbWzZ8/i0UcfjfHs4guSYaLuE6u0CZkorGoLZw69b5zSnGPhdZUW45nxpmwkFUAOo0IczrVMJEiIgeB5SX8XlH7vtJ6XDimWE+JQy6npSZUIV0a5axg9TyQiwdy9C1eK61RUmIOiw0QN+fn5+OKLL4K2Dx48OAaziW9Ihon6QSTbOeuRYpkoMYdsK2cllKLIUilWesMzcm4tQl3oJ7xWPEWJdUTkZVs1c8jNT0uOtY438sEhQtTVSLAe/MwXeaGlqDBB1HlIhon6QySFGFBPnVDJ1ZWrVKDY7EEttUKvECshlK5Q38CNSqtZubJKIhtO/jUgK6Pczybo56anhbZaLrtStFhBiJWiw6ESDxUaYjGHUIW4TkaFOSg6TBCGkG26AQBXXHEF3nrrLcUD//jjD5x33nkRmRRBxC1Wu7pwc53rNITRYnOJHkHIyaOcEOq8nuz5QxXUUN5kwylyrxbRDad2MIfCvJivOughwuuufUhRaxYTRkc7Pc0h4kF6pcR7s46Qoahw9OD+T5n5IIgaFGW4uLgYI0aMEHUvEeLz+fDrr79GbGIEERLReoHT271O7iGDrBQblVWl66nJstw1tMQ6UukMkY5kqUWRdcq6phhLUXrTNaHFc7zDCbCcBHOd+KLVkS+WCxIJgoh/FGUYABYvXoyFCxdi+PDhVJOOMIdIpjFwRFOIQ3k+KpKqKcQ2Z+jRUCUpNiLEoYqwnkh0HCyiM9K+1bAUS9EhxHpEUW5MrEujSa+vJb/RFGMhSpF2XfOI9w8v8fD/iSDqCKoyfO2112Lr1q3Ys2cPevfujV9++SVa8yKIugMnxcKHESSSGhQlVkqZCEeKjczLSCoGJ73SR6QwmjNsRo6xXimWoleITSL69XqVJdgIkRDjOp3/SxBExFGVYQBo3749vvrqKzRv3hw9e/bEhx9+GI15EUR4xDofTE6QtWRZTTaVhJKTYrWHnmuFvcAtTOlVe+4+t/gh3BYK4QoxoCjFIvQKsQkoyV40cnXVUiHE4+yihx7MkGLlexNGVJggiHqFpgwDQGZmJjZs2IDCwkJcffXVeO655yI9L4Ko3yiJsSRCLCJU4VSSYjOE2IzIr9E/55oisxKZln4t95A9jwlCHIVV/5GSYrV84Nox8vIbihQbleOIiXC8p0jUR4QLVs16EEQNiq9EFosl6Pu5c+eia9euGD9+PD7++OOIT44gwiLSpdbMQlqyTVAWKairHRB6gw2lJh5Gzm1mykM85DQqCbHaWOkHC0lpNNlaxVF4rnpKselpvhHuHGqvpe93xWaxG24mIietehttUESYIAgpiq9WjDHZ7X/961/Rtm1bDBs2LFJzIgjzCEeIjQhMuFEGDSEGdDbvMCrIoTTv0DpfLFC6//Eg3CajJo962jlz0dxwpdjcZh3GhViKmsySABMEoYbiO15xcTEaNmwou69Lly7Ytm0bNmzYELGJEfUYteYV8UAoAmX0GDl5UxFiQCFKLEUzsmtC8w7hcbFEz5y1OsCFgs9tTn3jCGJ2ww6914wnSIBBzTcIQieKMlxQUKB6YHZ2Nm655RbTJ0QQphOP6RJKHet0CDGHqhjb7MaixFpvmmaJpJpE6s0FDvXNXakDXDQwOVVCTyRVK0ocyZQJvSkS0bxmQklwPYT53GA+836GzIy1B0S9Ic4MgSASDDkJlRNiIGicYvoEh5IQK+UOhyNrZkRKheeQm5+WBAufq1qaRxSkOChvOAJw8qdHis2OEsuVUAv/nMZTJcIWYIVW2ARBJBb0KkAQQmIRNdQjxErjoCHFRiPEWsQqPcBoxzY9YhyJFIoazBRhLZkVCqHRXOJQosOxbqscsgAr/b7o/RCldR6CIOosJMNEYhCPqRJC5KK/3HzlosTSsdARKRaiq7JEOJFiA/c6FLkwcgw3Vk+0GNAW40h/IJCJVupZGAdoR4vlxNqIEOupJxwJ9KRdyM7D6O8WRYoJIiGh//UEYQZmyZ9SlBiQjxQDslIsEmK1dIlQMVMY5Bb9qcm62v1Ty83VI8XcOYDYLhBUkDKh8OmJFstJsZIQ85eWiLFaJNhsEQ4l19iQBOvJ3VYTYooKE0S9hGSYSBzMjg6HKoTC4+TeXNUW1wG60id0C7FeohEt0zNH6X659AktmTUixZESYunvoty1NOYplUA5OVbKw1VLvdBKg4iXhWiG0yG43ws9H3aEQlzXBbi+VJTwB3d9DPt8BFEDyTBBGCXSUVEOvRUnFMaGLcQhPk8j+bK6UjoiVT1Cb/qEZtqEjvskdw45IZYbKxvVV44aB0d95aPEeqPMeuU3mhUkDImw0u+P1s+2rkswQRC6IRkmCCNEKkKqJqp684m5sWryqEeINZ6jmYvDwhJ2vZKsR4pN/Lkauj9yf62Qe15qgiyTX2wkSswdo4dYlEyTYooIEwRBCIj9KxtBRJNwUiUinSqg9WdZI4vs1LrXRSHiG3FCkRw1KVaLEksjiGY33dDzO6m2wE9m7kajxHLEg/gKCTktgqg/qRIEESHi69WOIOKVEAVSKCO6cy315BSH2KxDV1qChLiSYDPQWmQXi2oCWvmLcukUgETS5atQKEWJ6xKGRVgvkcwLJ8zF5wZMbLqhu8kPkRDUrVdEgohz1HIvlfapSrJStFhPlFghjxjQL8V1ToTdNZUQnBq1cONRiNUQyrLawjsDUWItjC6Ui1T755BEmKKgBEEYIM5e8QmibhKOCHDHmirFKlFiQF2KYyrAehtpyOH2BH+tJsVaaRM2FemMFEoSJ7w297PlpFjueYRQqzjcKhGhSrfW+WShxW3GoVQJglCEZJggtNCIEpr15q8rpUIphUIqxUpRYuEY1MHIrxJuhaYRbk/oUeJoRIiNLgIEaucqJ8UaQgwYkN4QF1qa0f45LBEm4SMIwiDWaF1ozpw56NmzJ9LT09GoUSMMGzYMe/fuFY1hjGHGjBnIy8tDcnIy+vbti++++040prq6Gvfeey9ycnKQmpqKa665BocOHRKNOXnyJMaMGYPMzExkZmZizJgxOHXqlGjMgQMHMHToUKSmpiInJwf33Xcf3G7xi+iuXbtQUFCA5ORkNG3aFDNnzgRjzLybQtR5IvWnYT/z8Q9FbPZgIbE7xUJktQcvzpKOiSGK6Rpm5vMpibIQPQIlHCOcn54opVo9ZBmYr5p/aB4n/CuAdJ8vxNqseo5RObfVYgsp0qx5XCRE2OuufdR34uT/PUHEG1GT4S1btmDixIkoKSnB5s2b4fV6ceWVV6KiooIf8/TTT2P+/PlYtGgRSktLkZubiwEDBuD06dP8mEmTJmHdunVYs2YNPvvsM5w5cwZDhgyBz1crDTfddBN27tyJoqIiFBUVYefOnRgzZgy/3+fzYfDgwaioqMBnn32GNWvWYO3atZgyZQo/pry8HAMGDEBeXh5KS0vx/PPP45lnnsH8+fMjfKeIiFPHiq0LxVhWjjkpFooxJ7zcmx8nxVaVMVEmSPT0lsaSbtMju26P9rhoyZCKeMkJsKwUGxFiQL8QhyLPKuP1SDE3RlOeoxERFopxKI+6QBx9GDZEuD+bMH9eixcvRufOnZGRkYGMjAz07t0b77//vuzYO++8ExaLBQsWLBBt1xPMa9myJSwWi+jxyCOPGJorYZyopUkUFRWJvl++fDkaNWqEbdu24bLLLgNjDAsWLMC0adNw3XXXAQBWrlyJxo0bY/Xq1bjzzjtRVlaGl156Ca+88gr69+8PAHj11VfRvHlzfPjhhxg4cCC+//57FBUVoaSkBBdffDEAYMmSJejduzf27t2Ltm3bYtOmTdizZw8OHjyIvLw8AMCzzz6LcePGYdasWcjIyMCqVatQVVWFFStWwOVyoVOnTvjhhx8wf/58PPDAA7BYLNG6dUQ9Q66slZHV/arpFHJpFEopFIDqYrtIIRvtFIqOXFTYrBxRPWkT0uualSqhcW+1FjUyX7U4rUUtj1mtox2gXbHEKBr3Kax85LqUFlGXqlMopE4R8jRr1gxz585Fq1atAAT85Nprr8WOHTvQsWNHftz69evx5Zdf8m4hZNKkSXj33XexZs0aZGdnY8qUKRgyZAi2bdsGm632/8jMmTNRWFjIf5+WlhbBZ0YAUYwMSykrKwMANGzYEACwb98+HD16FFdeeSU/xuVyoaCgAF988QUAYNu2bfB4PKIxeXl56NSpEz9m69atyMzM5EUYAHr16oXMzEzRmE6dOol+WQcOHIjq6mps27aNH1NQUACXyyUac/jwYfx/e/ceJ1V934//Nfe9jwsIy4bl0mqpiKiAUdRvgKioUYmP1AcxGiKPGlqrIBcvEZMGpQ+C5mE0Jqk0rVZtxKztA6m0SSirUYg/WVEuEWJrtcVolJW0hV1AmOvn98fsOXPOmc+5zpn76/l4zAN25jNnzgy7zGvf8/58Pu+//76fLwVVC5dvYm5aJDIirV7sbjde7M7BtGpsrBjLKsFm1eISMP3Yv5h1Yp1Uhd3cp8pDgWWF2PiJh9VzUSrAfm9w4je7FSOq8d+rGs/JTq1Wi8vommuuwRe+8AX80R/9Ef7oj/4Ia9euRVtbG/r7+9UxH330EZYsWYINGzYgEtH/0q0U8773ve/h0ksvxbnnnotnnnkG+/btw4svvqgb297ejq6uLvXCMFx6FQnDQgisXLkSF198MaZOnQoAGBgYAACMGTNGN3bMmDHqbQMDA4hGo+js7LQcM3r06ILHHD16tG6M8XE6OzsRjUYtxyhfK2OMEokEhoaGdBeqQl433fDIyQYHdvd3GpBNw7FZMFaUqK/YsvcVKAw7dr3CfgUNLyHa+PgmfcNe1nJ2cx/LsbJAXMxrpr2/3XH8XOHBKqhXawiuBw0YiI3v2YmE/c9iJpNBb28vjh8/jlmzZgEAstksFi5ciLvuuktXKVY4KeYpHnzwQYwcORLnnHMO1q5dWzCfifxXkdUklixZgrfeeguvvvpqwW3G9gMhhG1LgnGMbLwfY5TJc2bns27dOtx///2W50qNpdgg7OW42pYLaUuFdpk2bXuE2W52yu02XIVAWdDRhsu0PGjqeA20dhyuymCloKWhlIzna1xlQhmjcBp4zPq1re5vtZOfHa8TEe2YzREo8y/FNaOMLVOuZDI+/8KV+7+xp6dHd/Xq1atx3333Se+yb98+zJo1CydPnkRbWxs2bdqEKVOmAMgF2HA4jNtvv116XyfFPABYtmwZpk+fjs7OTuzcuROrVq3CgQMH8Pjjj3t9puRA2f83WLp0KTZv3ozt27dj3Lhx6vVdXV0Act8wY8eOVa8/dOiQWpHt6upCMpnE4cOHdd9Qhw4dwoUXXqiO+eSTTwoe9/e//73uOK+//rru9sOHDyOVSunGGCvAhw4dAlBYvVasWrUKK1euVL8eGhoq+EEjKjVjUFbCcUEwtgrFDicZuq6Cmr2ZuQ3CfnDbP6xwuBSb00DstZJs2z9sts1zsSHHSV+sm18g/AzBbibHOh3rJTTXUu9wg/vwww/R0dGhfq1tjTSaPHky9u7diyNHjmDjxo246aabsG3bNpw4cQKPPvoodu/e7Xo+kbEIt2LFCvXv06ZNQ2dnJ6677jq1WkylUbY2CSEElixZgueffx6//OUvMWnSJN3tkyZNQldXF/r6+tTrkskktm3bpgbdGTNmIBKJ6MYcPHgQ+/fvV8fMmjULg4OD2Llzpzrm9ddfx+DgoG7M/v37cfDgQXXM1q1bEYvFMGPGDHXM9u3bdR9PbN26Fd3d3Zg4caL0OcZiMXWmqXKhxuW0KmxsbfB6sToPY3uF7j7GVSgAeduEgetKsJMgbKUUlSqz6rJsiTIZm3N3MinON7LXJ5suzeopTv4ttH3JVhe7x7F7LOU5lmqVmFIfv1o1SJg3vmdbheFoNIrTTjsNM2fOxLp163D22Wfj0Ucfxa9+9SscOnQI48ePRzgcRjgcxm9/+1vccccdal7QFvO0tAU/mQsuuAAA8N577xX/ZMlU2cLwbbfdhmeeeQbPPvss2tvbMTAwgIGBAZw4cQJArvVg+fLl+M53voNNmzZh//79WLRoEVpaWnDDDTcAAOLxOG6++WbccccdeOmll7Bnzx589atfxVlnnaWuLnHGGWfgiiuuwOLFi9Hf34/+/n4sXrwYV199NSZPngwAmDdvHqZMmYKFCxdiz549eOmll3DnnXdi8eLFaoC94YYbEIvFsGjRIuzfvx+bNm3Cd77zHa4kQb6xXUfY4/GsgrIxGOsCsbafGJCvUeyGk8BjDJNOA6/lJLhM/lIONmsOG/umbfuoHXK0BrFCG+j8CnWl/BjdTQguJzePWW1tBuQ7IQQSiQQWLlyIt956C3v37lUv3d3duOuuu/Bv//ZvAJwV82T27NkDALpPzMl/ZWuTWL9+PQBgzpw5uuuffPJJLFq0CABw991348SJE7j11ltx+PBhnH/++di6dSva29vV8Y888gjC4TAWLFiAEydO4JJLLsFTTz2lW5Zkw4YNuP3229VG9fnz5+NHP/qRensoFMLPfvYz3HrrrbjooovQ3NyMG264AQ899JA6Jh6Po6+vD7fddhtmzpyJzs5OrFy5UtcGQY2tmJ22nN4vI9z1xYYC8o/9Zb3DGZFGKBDWbwcdCufbJoxv5k63c3W8pq2LCVmOd2rLFH4dtlnWy2m7hPajf6uPwS1aBHytBMOkFcNJf7BVoHPzC5DVltZeOAnA1cCsBaXecAtn1b333osrr7wSPT09OHr0KHp7e/HKK69gy5YtGDlyZEELQyQSQVdXl1qE0xbzRo4ciREjRuDOO+/UFfN27NiB/v5+zJ07F/F4HG+88QZWrFiB+fPnY/z48WV/zo0kILilWskMDQ0hHo9j8NA/oqOjpdKnU10q9aZm9QZm9oZu0fto157g/j4lmhSGwqCsXftV6StWr1OCqPJGmDV8DYebZpiRBWGr1gTtbaatDRa/YNgFYrMwbPyekLWUqLdZjC0xR5P1vAZWp6GvmEBcKyHYyO61qYdWA5/C8NDQp4iPXoDBwUFXLYTK++iRX9+PjvYmX84FAIaOnsQpZ692fD4333wzXnrpJRw8eBDxeBzTpk3DN77xDVx22WXS8RMnTsTy5cuxfPly9bqTJ0/irrvuwrPPPqsW8x577DF1btHu3btx66234j/+4z+QSCQwYcIEXH/99bj77rvR0sIMUUoMwyXEMGyBYVgyvnRBWMssFLsNxFUVhp20RHgJxFZhWHq75Huo2kKxkZvAVorwZxW2qjUEa5UyEBe7OYofE/kYhqkBNMDnPFR1qvENrkwVHFkQtgvBxYZkY/hVjqdcnxUZBAMhXduEtGVCWWVi+OtAKKYPxMr4auWkZaLgPjbLrBXcniwMxMbXpITh2PgLiqNwLAs7du0VZgHQTdtEtYfgSq4IIfsecfvzpV0fuh4q1EQlxDBMZKXEVT2zoOtnlVh7LG0wzoiU80BswnMgDkULq8OV7k/00jssvV0SiI33d8vj96FVj7JlULbrO7brmTULxU7+fb1MUCtVz7KTcO/ktfDr/Jz+fPn5c1Tpn0uiMmAYpsZRggkvxUyikyl1q4SxKuwoEAOm1WHAJBAD9m/askDsRDRS2CoRDvmzeoQsENuFGdntyvOyCsVulKC6LAvK0oBsFgjtqsTKfd1s4mAVhK3uX4pgbDx+sT3R5QrE9RpcUykg6fKTHbvjEQ2ryHbMRFWlQi0SxuBrFYT9X3s4Jf27lGzJNe3XMAlR2uXaTI9t8dpbTVaTcdIC4TUw2607bBZAvIR9J5yu4euyCm255JvXkOV0+2SzIFwt2y8X29ZRDc+BiKQYhqkxVNkySE6CsJNQa8fqGLJArIyTrkMM2AZiz6FYUQ29jX5v85xJli4UO3p892HZNBSbbexRLKsgXE38CMR+Lk/oVLW9jkRVhmGYqASMK0m4XU7Nz9YL7TGtqtN+BGLAohfVLBR7aSUwXQrNp49RvQRiu8BRyUBsxSIYlyUQ+x2EayH4VSIQF6MafkklKiGGYap/JawKewmtdm0JTrdWNru4PWerMF4QiI3cBmLAvkqsPZbbVgkgF4iVi0wpd6ZzEohLGYqV4xsvju9vvoOejl+BUxaE/WiLKPXueGbc/FLgNRB7CckMs0SWquuzY6Jys3qTKMP6sMYgKm9ncPfmpx2vrB1spJscZzgfs13scgeU7FCnnVQH6CbWASbVReMkIC+T6WQT6Yy0gbhc2zM7mSwle65KhbwUYdnsmLKqvN1qGQrj86y2XdncTlrzM+A7fR2cTPyrpgpxJfm9xXq5/j+gmsDKMFGJOa0e+xGEZfd3coyi2iWMJFVi015i3dea+zk8tqOl0NT72lSMK60SvcVmj+e1ZcJNZdSsKuwnp1Vmvx83m3bfOlItEwWJGhDDMNU3LzvOFckqfJqt4lDYuuAsxLo5J7s+Zk/Luhn7h43XazgKxDJ2Y9wE4nIpZbBRjm12cavYQGxkFwLNgqLNuSvtGsaLI1avjZfXzOl9vPRSF/NvKePX/3NstaA6VkWfaRFVEQchrRST3ADzMO0mrJq1OihrCCvs2iUcbcZhXINYIVmsv2BNYi9kmwAogdivlSCMAdtrEPBrRzYvjylj+lG8yUYhkpYJkUnof7GRPUdjCDR+b7g4Z7vvF8frJds8TsnInrefbRREVDSGYapfFehftKq+Oq0KFx7TfcAz23VOOUezQGzbM6wdL1v830sg1h5H2zusva/xscx2xXLSR+wHt/3k1fLxt1U4t9s5T6MgECvHttvG2ex8LB7HC+39HG1JXW5WvxjYbXUN6L//ta+58fWspwCdTPv7s51kLzblMQxTYyryTaJcVWE/dqSTBVxjILa6n7E6LCWbUCe7zU9WgRgoTyj2i5+TpLxMfrNiMqFOCZzSKrHC7DEcfD8U/QmC5DhVGYyNtD87ToKx2WtZT0GYqMQYhomMbMKEWRAutirsNgjLzkPW8qA9ljYUa8Otr9VhwDYQO26XsKoOS46r47VK7FeLhBUn4dfrR+Ql2LrZaoUJy7Dp4Zcgv0Kw3bHrJhiXU6l+sSWqsCr46SIqgRK9cZSqImzkdSMO4xhjODYGXbNAbBzvujpcDKtl1rwEYqB6qsRmIdjudSum+qe2oBj+3WTVYatWCQch2xhk3QRO30Kww18GpJVtN9wu3Vasalu6jqiO8CeLGk8J1hb2uyps5DWEK/fThlyrQGw2xpJsMh1gP2nK7BheGNY4LuA0FDtdmcIsYNqNNzI7X+U87c7HTY+o7JzdBmLZ8RQOwrHCcg1qv9msmyztf651bJEgcoVhmMghL+0RXjjZiMMtY9XXLOyarS6hPz/DyhJOea0cG+9nFZztHkMWiotZms1rgJedoyyoy66zOl8n4dgYDs0CMeBuq2zZa+GgtcJXZv8eNr+8eArElQicjVwd5qYbVEIN+lNFdc3rm4WHqrBdRdes79esKuwkCKez9v+Jh4OFIdUqEFtVh42tEn6x7Bu225HOLhADzkJxJRjPy20Lh5sgb7Z6hJNADNj8G7isHpd6R8d62Kmt3K0XXrBvmOoQN92gxuLxjcbp7nBWVVy3K0MYj5XOZhwFYauxTjba8FSJLnXQkf27hcLWjxuO+hMs/HzjdxKElQqY9mImmcpf3DwuUBge3W70oOyYZ7yYji9xWC3D9uklV+1BmKhO1cH/HkQ+sHgj9bqdspPwa1YVlgVhL5T7aSvF5htt2C+3ZuR3tdiSWUXKrt/YSaXYjt197UKM07YIs+CrXG+1lbRdn7GsSmzWR6zlNqBZtVi47bV2y+x7webxPPUM10IVl4gcYRgmsuBXn7CbTTbcBOFEJv/hTiyUNR2XzmZMA7HVZDmzVgnPaw67YdcqoRs7fC6lDsVmij2m0/5FN6EYkAdj2ZJtVu0MXleysAvFpQzE9apR+4UBiHQKIuXfh9kiXSUrzFBVaNyfLKqcYgJSMXyq4jgJwm5bIszGG4OwNvwa2QVjYyCWn4fHyXF+cLKihF2/otNjGJW7B7LYpd7SGetALHscq2AsqxYD1sHSaQXZxVbPRESVwP+JiEzekJ32CReOSZl+bbecmvZ2N0HYSBlrVS2uSOD1g5NADLjrUbXa0tbIKsg6mZjn15rHTqrEVo+rPVezYOtmA48abRsoalm1an3OpT4vTqKjOsMJdEQSXifMWQVhM7IxxQRhK2YtF35s+1wSZisWOHmjt5tgZ8bs2E4mqtmNcdMn7JSTiXZm52I2AU+ZTGcMPJl0/iI9F5cBqR5WgKhWDKtEjrEyTI3NYVjyEoStxrtZiaKYIJzIBC2rwzXNaXXKS6XYqJjlz4p9TDfLwNkFYi+9xlbLswH+7GzHdgkiqiD+D0SNwcVHhl62PZYFYa/VVm311iwIp7IB3deRoPD0WDXPzce1foRiLbdtCm5og6mXUGzGKixrn4csGDtds9gLBmKyk0wBER8/zK6WLdqpKrBNghqX5M3XSXuElyBsvipFyvJ2o1Q2UBCElevrlt3mDm57I520T5SrD1QWTs3epJ2uKVzMuTg5H7P2CeMYI7uVQazaL4iISohhmCqjRpYIchuEMyJlG4StJuFZVYXtAm9dB2I7XsKr155iv7gJwrJxpQrGsh5ks75iLT8CsXKcMgbjkm0NXQqVWIWHqAHURiIhcqqIkG0XWr1MlrM6pps2CqdBN5UN1GfLhJM1h8s9w70U7RFe+BmIja0YxiXckqnCfmLjsmx22zxb9Q8buVnNolLKvaJENl0zxQSiWsGfKGpMLt9U3QZhu3YL2XJrZlVhNxXfugzCbtTKkk/FVIVLSdafbOyNNo4pdSDW3a80O9iJTKK4Jdao9NLZ4ldeMR6PaBjbJIjgrpWh2CBsN9avZdRktJtuaNcYNtuBrib5UaUrZaB2E4S9LptWLGlbRKZwjHqboY/YacuE0x0GC+7rfxtFTbVLEJGvGIap/rkMR1btEdrga+wPzoqMNFQbj+dkXWG/1NyyalYVPy+VRL/4sZID4DwIywKwNhh7Dclu7y8LxMZeYt3tNoHYax+xmUYNxOwdJvIV2ySociq1LbMhcFmt5GAVhK2OIasEO6kgu500p+VHi0QoUCf/JdRKu4Rd9dUJPzbt0DL2Qpu1TmjbJsz6iGVtDWZtE4D31gkf2ybYMkHUeFgZJtLQhthyBWE/qsJOgrCbFomq3aa5ktXhYlm1GchurxTHS6xZrDbhZaUJwHvrBJdkI6IiMAxTQ3O6vq+T+xtbIpQ2CqtWCicbbHhVcy0SlSALUX5XlGXh0mEQFqmUeik7J0usWbVNeA3EQHH9xD6omXaJRpIybB9e7MXlz9T69esxbdo0dHR0oKOjA7NmzcIvfvGL4VNL4Rvf+AbOOusstLa2oru7G1/72tfw8ccf644xZ84cBAIB3eX666/XjZk4cWLBmHvuuae4145s1clnokQOWXyc6rYqbLa9spMl1ozVYLMgHAkK01YJq2qwMQg7qQrLWiQqMrEuFK6+Sp/XlR7cVlgB0+BbrkAciEj+zW1XlDBpm/Cy0oSW22XYGqVdgkurld24cePwwAMP4LTTTgMAPP300/jiF7+IPXv2YNy4cdi9ezf+8i//EmeffTYOHz6M5cuXY/78+XjzzTd1x1m8eDHWrFmjft3c3FzwWGvWrMHixYvVr9va2kr0rEjBnyiqrEr1DTtkF4TtJsfZhWDAXUXYSTuEVRB2QtYi4SgUOwmxhl7eQCjmvgrnZM1hyWMVKGVV2EMIBsoXeK1oz6EgGFutO1xMIAbMQ7HXZdjKqdxrDVPZXXPNNbqv165di/Xr16O/vx8333wz+vr6dLf/8Ic/xGc/+1l88MEHGD9+vHp9S0sLurq6LB+rvb3ddgz5i20SVN8s3qDMKrvypdGsg7CTdghjS4RysRMJCvViJRbK2gZhN1VhmbL1ElfT5gpuqsJe+m2B8rVCyD4utiBt07BsjfDYMiEboxvv8JeUavtEoRRYFfbV0NCQ7pJI2P9ynslk0Nvbi+PHj2PWrFnSMYODgwgEAjjllFN012/YsAGjRo3CmWeeiTvvvBNHjx4tuO+DDz6IkSNH4pxzzsHatWuRTNbAZOAax58qIg1Ze4STICy7P+C8EixrhXC6OoRZb7DTIGymqBYJbVW2FNV/p9XhcrCa+OaxJaLgGE6WdvPaymF2P8NjKueqVouNlWDlPl4rxLIxWhWoEFd1q0SjSaaAsI9bzg9/z/b09OiuXr16Ne677z7pXfbt24dZs2bh5MmTaGtrw6ZNmzBlypSCcSdPnsQ999yDG264AR0dHer1N954IyZNmoSuri7s378fq1atwq9//WtdVXnZsmWYPn06Ojs7sXPnTqxatQoHDhzA448/7sOTJjMMw9Q4NG+8ZlXh/HX2fb/GcV76gt0snWbkNAQD1hVdbVW4LJVfp60Spewd9qtFws26wQamQVh2/0rsTqd9TE0wFqmUPhADhcuxlSoQNzpWhX334Ycf6gJrLGb+y8/kyZOxd+9eHDlyBBs3bsRNN92Ebdu26QJxKpXC9ddfj2w2i8cee0x3f20f8NSpU3H66adj5syZ2L17N6ZPnw4AWLFihTpm2rRp6OzsxHXXXadWi6k02CZBNMwq7MrCs1kQNmuJUKSyAfVixer2YoKw2/aIqt2drtJ9pE7bIZy2RDhoWyia2cYddptwGM5N2jqhjDNeV3AORbRMOPk0oFIbcZR6XetqC8J18guLsjqEcrEKw9FoFKeddhpmzpyJdevW4eyzz8ajjz6q3p5KpbBgwQIcOHAAfX19upAtM336dEQiEbz77rumYy644AIAwHvvvefymZEbDMNUeRX8T96qKiyrDjsJwgqzEFwsWRAOB0Oug7DVWDcB2NHydMZ/Y8MbqelH0eXsHS7mzd3J9sVwWQ32g5fd6qzGG87TNNQ7uU6rXgIxNRQhhNpjrAThd999Fy+++KKjKu5vfvMbpFIpjB071nTMnj17AMByDBWvyn7VJCo9WXjL9wKbt0e4DcJashCcMFwX83GlCCcrQpRktzlta4PLXeA8tUtUqnfYckviCodgPzfv0B7LZFk1tW3CuNKEcn8n7RJAfbRMlOp8q60q3IDuvfdeXHnllejp6cHRo0fR29uLV155BVu2bEE6ncZ1112H3bt341//9V+RyWQwMDAAABgxYgSi0Sj+67/+Cxs2bMAXvvAFjBo1Cm+//TbuuOMOnHvuubjooosAADt27EB/fz/mzp2LeDyON954AytWrMD8+fN1K1KQ//gTRvXDqvrossJobI+wCsJWvcFOQrD2eqtAXMogXJZeYeNEOklY9rTUmhfF9CNbhU2nE+T8DsFeArDVOcgm7MnWGjYLxE4m/TkNxDJOJtM10rrDZmrtlwkLIpWBSPn3i57bY33yySdYuHAhDh48iHg8jmnTpmHLli247LLL8P7772Pz5s0AgHPOOUd3v5dffhlz5sxBNBrFSy+9hEcffRTHjh1DT08PrrrqKqxevRqhUO5nKhaL4bnnnsP999+PRCKBCRMmYPHixbj77rt9ec5kjmGYGpYScI1VYa9B2K4abBaCjWOcVIhlzAKt2yDsa4+wXXXYafW4khtxRCPmwdGiR9ZxC4EdPyu9Th/fOE4bbM2qvbJjWK0uATgLxMUEOgZi8skTTzxhetvEiRMhhPX/2z09Pdi2bZvlmOnTp6O/v9/T+VFx2DNM1aFMHwMWu/2y9hh+B2E3rJZN0yo22Hq6v1X4cPDv7Lp/2M+JdD5V0YoOwm77fJ0ophot24bZcFz1Odudc0FbieSXITdbN9sp9y9RpZ5IR0S+YximhuS1KmwXhGWT5PwOwkZugnCpqsKWv2QYA6bNZDrAIhDXKrdB2O/H9qstw2kgNo43PicngdiOm17xTNq3UFxzk+kYzolssU2C6lMR/cLFBGGjUgRhJ9srewnCbmVE2nwSnrGtwdgO4bV/2G27hMtJfBXndxB2wklQ1rY2mG2woWU3mU45jlXLhJ/tEtpjAqVfpaSOenWrhUhmIEI+9gwnK/CzRlWLlWFqeNZLqcmDsGzZNK1ENlDyirAZJ0HYyf3cVokLqsNuA0cxFeJKrzlcreyCrpseYuNYY9XXrF3Cau3hgvaLpP6Xl3JuuuJC2avDfu/gSEQ6DMNUHxz0ohorvrKtl7VjrIKwwtgW4SQEp7MB9VIsJ20OsiBc0klzZuzaJWRjZNyEbNO1ahkuPLVOmN1HFnzNrpf1Qntt4yhmWT0fWyek/P5EgoGYqGQYhqmhWW2sAdgHYS2nIdh4XSk5CcLy+/nUO2wMrk4CsYG0OlzOzTj8YLfMWClYBUy/JtOZVH0dTSC0CsRm1eFStLx4DMQV6R1mICYqCYZhqh5+rSjhoF/YauMNQB+S7YKwVTXYzyqwHSebajhZg9gN2Q5+hQ/gMhB7bZeoh1YJWf9ttZIFYs3X0tUl7LarLvV21GZKXSX2UzUFYvZFU52osfIKkYSHFgktbfCVtUcA+SBsDMEypQi+si2YrbZPLiYIm4VjpxPusiLjfnKegwl1ZSF7zEoFtAqSbUgQiFj8mxrXFB7+WrcZB5C/DbBfu1g7Cc1qvWAnG3CUiO26w9Uyka5U51HGn1FxMgMR8O8XAXGSE+goj5Vhalhm2yprv05nM46CcLkqwM5WkvA/CFuR/YLhul1CxjCmIHR4bZUwqwA6eWMvZrWHcrdK+Px40h27tL8o2E2o096m3G41uc5MLa0OUirVVB0mqgMMw9TQzKrCgH4JNbMgXGwADlvsNhdxuBOdXYD1uzXCMx/6h8vOad9tJZZEKxGrbWqLCcS6tgm71gj1OGUOvqVolSjVc2AgJvINwzDVNqsA5bBfWPa1tk9YCcLa3uBSVYGdbsVsvtGG/VrCZhVhv3uHpRtxFNk/XLLNONge4ZhIZQpDsey1kqwkYVklNl5nZDWRrphVJbRqbWImEfmCP/lUXyQfv8v6hY2rSBirwoB+wpyxGmw2TkbW7+uG0/t73V3OSQj2ukGHp/5hN4ybcISi/gUjo3JUf/1+jGhEHlTNrkeuN9iqOmxK6fXVbqZh6CEGkO8j1t6uZbxPtfTdmrDtGwaq/jnUhFQWCBf3f2nB8YiGsTJM1cXNR+VFfqwuW1ZNqQpr+4Rl1WBl0w27IKwdWyxZv7DTyW6VCMKmfFhdwldOqsJ+rYtbRywDs6yFRNMjXNA2YbxPOYXC+UutYasEkS8Yhqk22W3Y4KJFQqkKG28zBmHAPNgmMgEkMsW1TWhbJKz6heWtD2HT24tpi3AThM2WWfOlXULDVauE8bi1snyWnzxMpLNcOULDsl3CrKfaqqXCjtW/n5tPBCoRgOtt4l+9PR9qaAzDVHs8VIQdrYeL/OoRKUlbhK5tYjj8GkOw7Lr8be5/3JQWCauqsJcgbCcYCJW2vcEtq+qw34HG7RbGtTp5rlSrW7gIxAWbc5hMwJMGL69hrJIV4HoJkPXyPIiGMQxTXZNVJQv7hQurwkCuT9gYhN1UgL1Wip1UhZ0EWrdBWAnApQjBfleHy6pcYbfKQrXn6jDgLRCX4/lXQytEpbZp9utxGYSpDlXB/wxELpgFJJd9pUoA1laMtVVhYxA2BlvjVswKY5BNZAKIhYTm66DjCXFOxplVhQs34bAOwX7JiLR0nWPA38l0gVDMn+1wG+WN3cNEOjdEKuNsUw5APmlONtZsIp12A45anZimfN/V4rlXiEikIQL+reAjEg3YMkWmWBmm2hAMOw/CPlZ/tEE4lQ2oFzN2t5sFXKsl1ZQWCauqsJcgXBWtEG4243AaHIrZjaxSk7i8VkXDofylwqT9w3YVYr+rw1Z9w9VQFTaqtV/Gau18iRxiGKbqYwy9Zfi4XFYVVoKwNuAae4XNeoStArFCtuGGUll2WxU2HyMPzhUPwU45/bd3GnTsxpVylzg/g7YsANsF4jLsgOeqZcLJdWbh2GrN4Qoo6lOKdLL451COVSWq4HUmKhWGYaptLqrC0r5VyfXGIAwU9grLVpUw6xG26x0uVVXYbmwlOOoddsiXDThq7WNquyqwlwpxCbZtdrTKhCHoWlaHK7UjXTlV83Or5nMj8kEVfm5EhFxFMJu2rgzaBBnZZhta2o02tFXh3NfGICz/vVG5XqnkanuEU9mA4y2VAefbLwP5qnC1BWEn1Wpb4aj5m6/VbV6OV4/CoaqYjFfQR6ztGzbrC9Zy0ztcL4rpgbb7/7LGiVQWosgNjIzHI1KwMkzVy20QdvDGqIRfbYVS3XpZ0x6h0AbhVLbwkh+nv08xjMupGavCXgKnXRAOBcKmF6d8CcIyXt7gi+kbLjenwbUK+oLdcrRts268x95h7S87pdqBsFyK+cXNrl2ikX4pJHKBYZjqg8cKkRKKU4aVI1LZgBqEleB7UvL+rA3FbtYRVvqFrVok7DitClsFYSeB1yooewnNJeNX37Bb5QipNRCERUIeYE0Dscmawrq1h+3WHa6iTVR8Wd1EUU2htZrOhahEGIap9jj4GNGsP9hKOmvcPCOohmAlCCt/114HeAvEWsaJc26qwl6CcNUE2CKVpG/Y+HG9MYiWYSKa5eNXCZHI6C7a6wrGmm3dbDVRrtLbNFea1xDKLZqJXKv9d0MiF5W+UCBSsOmGscUhlZUHYStNhrxiXF9YRqkK2wVhGSf9v1ZBuFIc9y3XeN9wIBIp3F2tjphVgY23B2L5f29dD7GsR1hzvUilEIgYbjfrL1Z6h2t1zWErXp9THfYPi5NpCPi4zvBJ/tJAeawMU20rwQSaXCDOB+FkVn5xKx923bVGGKvCbibNFR6rvt4gC2i/H6z6hu3WN3ZbHS5V9bYKq8J2Qdg4VjteVyG2aZcwvU69zeKXmwr1DfvaKqEopkIsqxKz7YGoAMMw1RYHK0iYtUhoQ6T277FQFols4YoRShA2tkYoleJkVt4qkTumkP5dvc5hVdjppDkn7RGVDsKlWs3CcatEsVXDYgOxWXuF7H5VsJGGaWuDl2O5DcQwmUzXqK0Tfk+qYyAm0mEYptqlqe5ZhWArxoCmtEhog7B25zllop2T1gktq6qwXRA2O1+rneWMnARhZTMOs4tXvmzy4fUjXz+rwy4VfMzvVLEhuITLqrmpClvdVxqItZxMpgMKJ9LVc8gr5SoTRA2OYZjqnjEIGqutsklvSthVw286d9FdZ6gcG5mtG2ysCgPWQbjY9girIOwm7NqFZc8hWrYigN0bv1WV16p1xm6Tlkq1S5RjW+USVlPFybT0UjDOLBBrz8+qXUI2vor4MqHTih+71bl9PKIGwDBM1cesiqENKoaqsB1joNQGyFgoW7DEmTIhTgmsTZJ81RQCojY/QdoWCW1V2Om2y26DsDF82gXhivNpaSzLEGKsDpcxEBdUh0u9EkUVbLahJQvF0kDstF3CSXVYUea+4ZIHYS0lFBsvVoz/r9ZY0BXJTMEKJkVdktX1s0KVxTBMdSW3q1xauuucNliGAhH1z3AwhEhQIBbKqn/KKIHYWPFtCuUukeBwsA4J3ZhYKKtbV9htn7CT1gjjOO39ZePqKQhLGQOu2004fFxureyBWKbEVWEnY7TjHAdiq3YJ498VZQ55gVCsvEHYil04dhOIaywsExWDYZiqi/KftcMeN21V2GzbZS1lfd1gIIRosEX9eyyURWs4F2RjIeGo6msndyznQTgUiLhaT1j7tZsgXFGZdP7iM1eBxK46LBvjJhB7nUxXDLOqsF0QdhiUpesHu1yeyhiI1fWJzQKx8e9mz7ECwa2qQrAZWSiu8QoxUSnU+TpL1ChkQVi5ThsMg4EQsiJTUCUOBzNqVfhYKp+Cc+0SQu0T1l+fZ6wKK0FYYRaE/egRdhpwXQXhSu7s5fTN2W7t4FBY/zxCUf1H58b7G8fLxkQj+nAWDpkHNM1t0nWHjccqRpW1R1hRAnFg+KMWkcggEAvl1yHWriOsrC0M6NceVl43H3uszYKtdrm0qg+/ZozrFRvXITbezoBMDYZhmBqONhRGgy3q31sjJ5HKZpGIZJHIBAAEcUR9T8i3PWirxkqLBABdEFaEg8JxEDaGdoXbICyrCtsG4WrZ1rbIN+FAKKZf69VLIAb093ETiC1uMw3EQHGh2CoIV6I9ImXSBx/Rf9QiTqbVQKxeJ9uYQ/vaArqArBsH5DfgUGSS+RYZ420O1WwANrLbwKPKA7BICYighwXeLY5HpGCbBFUvnz/OCwZCuo/pg1mBSDCGaLAFkWAMkWAT2iIZtEYyGNmUQVski1OiQEdEf4kG8yFY6RXuiGZ0QVhpjzAG4XAw5DgIG1shnEyWcx2ES9Sy4Emp3ozt+ofDUWeT6rRjohHztgibCXXSJdeU4xkvdioUhE2ZBWHlNsPtSqAu6CE2aZco+GVCNpHO+HcH6ibw2tG+LlxuzZX169dj2rRp6OjoQEdHB2bNmoVf/OIX6u3PP/88Lr/8cowaNQqBQAB79+4tOEYikcDSpUsxatQotLa2Yv78+fjd736nGzNx4kQEAgHd5Z577in102t4DMNUV2TrDRe0UGgmmCiBuCnUjqZQG5rDrRgZS6uBeGRTBu0R4JRo/nJqE9AeyV3aIlldEI6FsmiNZEyDMGA9UU7eNlHYH+ykR9hyoly1hGCnM+HNSCpd0mDjZEKdLBC7WWnCGIgteohNQ7GR197iIoOwpw03rIKwcZxmrCwQA7DuFdauLGEcS84xEDs2btw4PPDAA3jzzTfx5ptv4vOf/zy++MUv4je/+Q0A4Pjx47jooovwwAMPmB5j+fLl2LRpE3p7e/Hqq6/i2LFjuPrqq5HJ6L+/16xZg4MHD6qXb33rWyV9bsQ2CapT2kAsDYTKm0AaCIajCBoC1JjgSRwJphELBREJFvYMK5xUgwHnbRHG6m9J2iLchuAq//hU1jtc0C4ByFsmAOu2Cdn9lECsjNO2RiihV9Y2YbwN+ZUmCiqeWma9xV4nzPnA7cQ5KSUQR4Jqy4S0fxjQtZMIGFboMLZNWLVKEHl0zTXX6L5eu3Yt1q9fj/7+fpx55plYuHAhAOD999+X3n9wcBBPPPEEfvKTn+DSSy8FADzzzDPo6enBiy++iMsvv1wd297ejq6urtI8EZIqa2V4+/btuOaaa9Dd3Y1AIIB//ud/1t0uhMB9992H7u5uNDc3Y86cOepvXQonHzMcPnwYCxcuRDweRzwex8KFC3HkyBHdmA8++ADXXHMNWltbMWrUKNx+++1IJvVvgvv27cPs2bPR3NyMz3zmM1izZg2EYJ9RLcqIdC4gGyt92XQu1GTSiIgQmkJt6uWUGHBKNIMRTWmMbEqjLZItuHREc20VrZEMWsNZtIXzy7Mp1eBoKFqyarAxCPtSDXazdmm5eKhgOaoQA87bJqyqxG7bJrxWiu2UKAjb7jwnqQqbbcRREKSH72usEBfsUmdXHQaKapWgxjQ0NKS7JBIJ2/tkMhn09vbi+PHjmDVrlqPH2bVrF1KpFObNm6de193djalTp+K1117TjX3wwQcxcuRInHPOOVi7dm1BNiH/lTUMHz9+HGeffTZ+9KMfSW//7ne/i4cffhg/+tGP8MYbb6CrqwuXXXYZjh49qo5x8jHDDTfcgL1792LLli3YsmUL9u7dq/7WBuS+ka+66iocP34cr776Knp7e7Fx40bccccd6pihoSFcdtll6O7uxhtvvIEf/vCHeOihh/Dwww+X4JUhUy76hs023yi4XjaJRNM20RRqQyTYhKZQG9qjYYyMpXOheLh9QncZDsBWIVgJtrlLfmk3WW+w1xCsjJVyEoKrLfxqOQnCJhODTAOxrG3Cr15i9TaLtgnldqehuFRrE5cqPNtUjgtCsVUgNrZLyHqHAWfPpRpagyrJagJdlRMJ81+uPF0Sue+Fnp4etXAWj8exbt0603PYt28f2traEIvFcMstt2DTpk2YMmWKo/MfGBhANBpFZ2en7voxY8ZgYGBA/XrZsmXo7e3Fyy+/jCVLluD73/8+br31Vg+vGLlR1jaJK6+8EldeeaX0NiEEvv/97+Ob3/wmvvSlLwEAnn76aYwZMwbPPvss/vzP/9zRxwz//u//ji1btqC/vx/nn38+AODv/u7vMGvWLLzzzjuYPHkytm7dirfffhsffvghuru7AQDf+973sGjRIqxduxYdHR3YsGEDTp48iaeeegqxWAxTp07Ff/7nf+Lhhx/GypUrEQjIPzanMnEwMzwjcm+O2nCZFZncb4DBcL4qDP2kkmC0BU2hNnVjjmgwg2joBLIig7RJMFP6gYHyrhJhNlblJAT7Qfa6BIv878VtNdhkqTUlENu2TQDmrRNA/th2K07YtU0AhStOaMfAZOUJO2XqmzWr7Jre7uBYgaZw7jhmLRPKHYy/FGirxWyVsFbDQbiUPvzwQ3R0dKhfx2LmkyknT56MvXv34siRI9i4cSNuuukmbNu2zXEglhFC6PLEihUr1L9PmzYNnZ2duO6669RqMZVG1UygO3DgAAYGBnQfIcRiMcyePVv9CMHJxww7duxAPB5XgzAAXHDBBYjH47oxU6dOVYMwAFx++eVIJBLYtWuXOmb27Nm6H4zLL78cH3/8sWlPEJWIRSjSBkGzUJgRKWRFJj+RLhTWvTGITEK9IJ0Ekp8imBWIhVrQFGpXq8TKBLvmcCuioajuolRwI8Gmgiqwcm52lWBljD4why3bITxXg71UgbNp84vb8U4uXli84TuuEgPeJthpq8SytgknlWLt+brdua4SO9sZmAVhkcoWXKT3G55cZzmpzq46XG+tEsr3VbEXklJWh1AuVmE4Go3itNNOw8yZM7Fu3TqcffbZePTRRx09TldXF5LJJA4fPqy7/tChQxgzZozp/S644AIAwHvvvefoccibqgnDyscExm8K7UcITj5mGBgYwOjRowuOP3r0aN0Y4+N0dnYiGo1ajlG+1n6koZVIJAr6j8glJ9VED29w2kCs9g5HW4BwVBeS1EA8/BihQFgNuLmwGxsOp5GCSzTYrAuv2sAqG28MwVpFBWC/QrAf4bQSLN78TXcN87t1QuE2FNsF4mpjs4KELPgabxOGFgnluNpAXNAuAeQDsdI7bOwpNvs5kFxf8KlBpZQ7xBb76U2DE0I46jEGgBkzZiASiaCvr0+97uDBg9i/fz8uvPBC0/vt2bMHADB27NjiTpYsVd1PgrH9wPgRgoxxjGy8H2OUyXNm57Nu3Trcf//9ludKPtJ8FBoKhG23Y1baJhTBUDj3ZhAGAsaP2LPDaxErQSfYhJCIICNSuWAs7D+SdrsyREnaIBRufoGopeBrxdjeoGHZOgE4W3VCe2zj/axWnAAKd66zaK0wbZmQ7X7n5652w2wnzynjDFVhsxAsvW8qi8BwiwSg2Z1OszGHrl0CsN59TrvBhN1mE+VULecB1FwQTicDSMO/9sR00t2x7r33Xlx55ZXo6enB0aNH0dvbi1deeQVbtmwBAPzf//0fPvjgA3z88ccAgHfeeQdAriLc1dWFeDyOm2++GXfccQdGjhyJESNG4M4778RZZ52ltn3u2LED/f39mDt3LuLxON544w2sWLEC8+fPx/jx43177lSoairDyjIixqqr9iMEJx8zdHV14ZNPPik4/u9//3vdGOPjHD58GKlUynLMoUOHABRWrxWrVq3C4OCgevnwww/tnzgVzUmrhKKgQhxryVWIg+HCaszwKhO5ym5Y1wYRDbaYVnvNLtrKbr5lwkMbhJMKsHL+XirB9camdcLXSnGxVWI7fo2xGOtpjeGCY7hfXaKgSqz5u1UgL6gOm/0ykClzy0S1tioEwzUXhKvBJ598goULF2Ly5Mm45JJL8Prrr2PLli247LLLAACbN2/Gueeei6uuugoAcP311+Pcc8/F3/zN36jHeOSRR3DttddiwYIFuOiii9DS0oJ/+Zd/QSiU+38gFovhueeew5w5czBlyhR8+9vfxuLFi/HTn/60/E+4wVTNT8SkSZPQ1dWFvr4+nHvuuQCAZDKJbdu24cEHHwSg/5hhwYIFAPIfM3z3u98FAMyaNQuDg4PYuXMnPvvZzwIAXn/9dQwODqofRcyaNQtr167FwYMH1Y8etm7dilgshhkzZqhj7r33XiSTSUSjUXVMd3c3Jk6cKH0OsVjMst+IHFImt2ll0/r/wJVqj8vqMGBSIQYA2V2Hg2QwlAvDxvWLzVaw0I4xqpoKMFBc+PXSj1mpQKB93FJVit1UiQF9JdhsXWIv1WHZY/hEtgKEq/tYjMlXgPNV4gDC6qQ6RUE9zyr8m0209bg1syPVEnplGII9e+KJJyxvX7RoERYtWmQ5pqmpCT/84Q/xwx/+UHr79OnT0d/f7/UUqQhlrQwfO3YMe/fuVbcpPHDgAPbu3YsPPvgAgUAAy5cvx3e+8x1s2rQJ+/fvx6JFi9DS0oIbbrgBAHQfM7z00kvYs2cPvvrVr+o+ZjjjjDNwxRVXYPHixejv70d/fz8WL16Mq6++GpMnTwYAzJs3D1OmTMHChQuxZ88evPTSS7jzzjuxePFidVbpDTfcgFgshkWLFmH//v3YtGkTvvOd73AliUoqciIdkA/C2gpxKptANhjIVYkdVHOMq0NYXbT3cVUB1lZ/nfQAu50Q57UKXOwSbNWwhFupeoplVWLjBDstJ+sSy1oBbCbeFYwtw8Q6bVgVkt3ldGMTmYKLMlZbJVbvrz2esX/YajtqlxPpiu4brqbqrxGrwUSWyvrT8eabb2Lu3Lnq1ytXrgQA3HTTTXjqqadw991348SJE7j11ltx+PBhnH/++di6dSva29vV+zzyyCMIh8NYsGABTpw4gUsuuQRPPfWU+jEDAGzYsAG33367uurE/PnzdWsbh0Ih/OxnP8Ott96Kiy66CM3Nzbjhhhvw0EMPqWPi8Tj6+vpw2223YebMmejs7MTKlSvVc6YSk1WHAX2F2KY6HApEdFVgbRA23pZ/3MDwH4UBQ1sFNoZabUXarPKbfwiLCXB2igmR5a4COz1mpavFflSKrXax0y7hZrd7naxCrJyTtjps14NsVIJeYi/M2h2U6wOxUH5pNUOFWCBfPQaQez7Dz0vAYcW4VEusVXMIJiJbAcEt1UpmaGgI8Xgcg4f+ER0dLZU+ndpjFt6M/8Erb0ShsBpY1Z5g6EOwlnZ5M8C4BrC/byKeA3Clwq8fj+9GNYQJi+cqrRrK/u2MfanGY2rvo73NuLGE8XrNdbp2CT+2aTZcb+wZ1gZYszYJY0XXONY0BA+PD0T0H1IGYrmfl0BTWL0t0JRrmQg0hRGIhXLbNSuV75am3Mob4eHr1D/z/zfk/27R4w2TJfisVMP3rkyVBeGhoU8RH70Ag4ODunV97e+Xex99/2tz0RH17zkNJdOY+A8vuz4fqk9VM4GOqIDZf+Yu2yWMode4y5t6WE3lNyPSjvqPrc7D0SQ4Ga8T3/xcCq3crQzVsB6s2/YJs9YJ4zGN95HdZtcyoblOt9yarPpp1jZRonYJN5tsAIVLqmmvU7/Wtk446U2WLbNmtuawnxPpGISJ6gJ/Yqi6FdkuoUxyU9oiZCFYd1jDBDk37Q/KfUzZ9f46VeoVH6ohmLrl9M3fzdbOJu0TtjvZGSfYyZZh07ZN2LVMqOdlMqFO1gJhNbGuDO0SZlVhu2CrrRSrO9CdTCP3VpVvl1CorRFWfdOlUq1BmIhcYxim2mUSiIPD7RJmgdjIrH1CCcZKwM33IrtcDaLYEFyu5c4qHYK9rgfrpgpmHGv12pqEYmk/sdteYjeB2MkKE2bbPFv1ESvKFZBtJtbp5f+drAJxIKJfk1kACBiDsXGVDy3JqhIik7BvlajmIMyqMJFr/Kmh6mdWHQYsA7HCSSDWclJBLjhFs1YIGbvQWc61fisdgCtN+d7xMxRXKhAb72sYazrGC9k6wrLrlHYHiyCsbH4QjgrdGGUSHSAJxJHo8HEzhdVh2fPNP9jw/xFFTKSr5iBcxzLJINI+dnZmkuwSpTx+N1BtcFrtMAQWZcMMZdMMIN8zbNZDXLEgXK5NL6phebNq42TpKYt+Yh1jL7FsCTbZWLseYpO+4oItm90svSahVls9sqr6am9LJwO6XcCUr5XrdJtxGCfgDW/XrLveasMNwPla3UTUcFgZptrhpH9YobzxaTbLMLY3KJVihSwE222Z7DgIl7Ma3Egh1++PhO0qxX5Vic36iJ1UiIHc9ZpKqBKIPS+9VgKyqrBCG4KzmcJ129VV99T+YO2/s0l1OJp/DbRf519Dk4qumw04WBUmqkusDFN90IYXbVAZDiPKqg7ajS/sVnyw29pZym0Q9lINNm604XXjDTJnVyk2WXlCWiXWfW2x2oS2Qqxc73JjDtuVJpzcViJKpdcuCGuv11aJlQqxWl02VoeVVSQUxq8V/BkhIgOGYaotVgFFGyy1wVCzjFm+VcJ6Nzgn2yhLd40zMnvjdROCGyXsVmPVzUkoNii6bcJ4vV+B2G6nOg+cLqtmFYTTyaD0ks0EkM0ECgIxMNw6odmdTrc2stN+aD+XWKsWnDxH5Al/cqj22H2ULZtUB6gfhyohVtY6YVxb2PHKEW6DsFP1HH5ridX3nKR1wlPbhNXEOmN7hGynOidLr9nscucXqxYJQB+EjTKpAEIRod4WjmaHf4yF7thAGIGm4cl2sZDuOYpUqnBVCcC8JcJJq0Q1/rLWQDLpADIB+ScJXo9HpGBlmGqXm0l1JlViYxVYqRjLKsfa++iUKgg3CovNLqpOKarEsvvbbc4RDrmbWGdW+Y3Kx7idRKdWbC0qxUqF1xiEM6mA7qK9ThmnVIi17RLq4yntE0p1OK35024DjnrCqjCRZwzDVNusdqkzBk9ZKJYEY6tLAS+T5WpFqQNqLYVgLavWCclzMt29Tv27pm1Ce3/jShNWbRNOV5ow3O6EsjWyV7KArA3Cikw6UHgZDsXGQKwc1zSEN1qrBIMwUVH4E0S1z+k6xIq05qNpoDDQ2n1c6nUTDS9VYW2wKiZkew2dtRhWy8WudUKy4oSvbRN2K00YWyactEu4bJ0INIVdbcdsNmFO+5F1JpULyqFI1vBRdlBtmYgo6w8PP34gEs3tWBdJ6VeVcNMqUYsYgol8wZ8kqg9uAzFQGIoVXtYjLcfSaQym1cnse88kEAOaXmLjznXarZy1vche+ojdBGKJQCSkn5gGTfiNBKUbb2hp+4W1E+cUaktEOqAGYGVsOCp01wHKsXKBWNmAQ/kzkMoCTdC/HoD+lwQ7ViG5mJ0RS9Ea1YAhOJOGzz3Dvh2K6gDbJKh+WH18bfWGVMxKDfW+wgM5Y/a958cSbGZtEwptH7HFdWrLhF2bhSQ82rVKBCLO30rSyaAuCOevz68cod2AI53MhWWlbSK32sTwChOa3uFc24Shbxiw7xv2s1VC+T7Qfi9or5PdXsyxicgX/Kmi+mO1OYd2jEwpgi0nzTUOqyoxYL3ihKxKbNU2oT2mpBrsuEKskFwnqw77RQnCmVQ+3FrP8A9CqRBnowFddVjZgANA7jkUuY6yyCQKf2Gx4jXcahm/bxh6icqGlWGqT3ZvJOXa+pgaT7ET7LQVYKvJddpjAtYrTVhViGUVZYvqcKBp+LEl1WD1NglZv7AsCBtXl8ikcpPptBVipTps7FfWbc9cjq2Z/azUFls5JiLPGIapflXLG0ulH58qw49l2NS/O2ybsGqB8BiI3S6z5oV25QjZqhLJE0EkTwSR+DSYC8SpAJIncueVW1Yta9vD7Ibu38KsX5g/10R1gz/N1BjMJrOYTa4j0pK0OThS7GYd2olzxsl1srYJs4l1TlomZBPqhm9T2iUCsZC++grzFSUCkWDBphtKv7B20pxuJYl0AIlE/j7Jk7mNNqJNAcSGazfpZAChiLIxR0BdWcKxtGFyYjGT46hsMqkgMj7W7/QTNKnR8buBGovsTUxpmTBe/MJ2jNqktCWEJVVZtzy0TqjMNuqQtU3I1iOWVYiHrzOtENv03MpaJdxMolOoLRLDATmRyCJ5UiB5UuDTY1mk0wLpdO7vRwczmvWHc6Faab1QJtB5ZphEp1sCj4jqHsMwNR6n7RN+BWOz2eTV0sbhhpPnUmvPyS1tSHYbju1CsYa0l1j9u8u2CW3INVxnG4gN7RIFvcMo7BX2slGHEoTTaYHjxzJInMwicTIXghMnc8H46GBmeEWJfDVZCcFW/coqbR+xrG94+DrLyXP1/L1N1KD4U02NTfvGZhV6ldtK9Ubo5rilrjT7OSHITC1Uy51+hO6lhcKsfcKkdUK64oTbtgmFpG3CtGVC+dqqXUKz5nCuOuxuIw6lKgzkgnDiZBbJRK49IpUWmpFZoCmIT48LhCIBdSJdtNmkTaLIFSWkGISJ6hJ/sokUtfJGVyvnacWPoFyO18FNT6lkkw1bDkOxbS+x2SYdVsuvFRmIAX2/sLF3OF8dDiOM9PBLmUUmJa8aK/3BQD4EJ0/mgm7uVQgByKKlbbjvOBVEOK5/3QKxUO48ZTvPpTOazTg89gpTxaSTAaSFf5tupFP+HYtqXx28qxJRXanlsF/MRDsHu9gVVImtJtdpq8jGbZxlYRGAEg+E7EZDIAZyKzkEmsIQSAOp7HCrgnZ3uEKhSO7oGcnKZ0pVWAnBieEKcSyWO7NYUxCxWBDR5gyizRkEQwLB9iiC7VEE2qO58xpuBVHbP+xYBWPt9bX8fUlEltgzTERkxctGLF56ih3uYqfrJfYyuU7SN+yoj1i5n6aHWNc/bJhAF2gKIxALIRAJItAURjiqj9ihSGF7Q6wpd4xok/5YytfhcAChsECsNYNYawaRjhCC8Zj6WGhrAVqacuevXW+ZiMgCwzARkZ1idib0a5KdJBSrrDbqMN5uN7luOERaTqyzCMSBprDpyhLBkEA4mlWrw+GoUP8ebSr82DoWC6hV4WgsgGhTbkm1UFgg2pxFsC2Srwq3NumDsOFcpZxuvsGqMFFd4084EZETSiD20muqvY/TYG3VT+xXL7GRoZdY1zZh7CMevk7bMgEgF4iRb5fQnDjCSCN5IjB8qkJtlQiFBTD8FKKxAFJpgWhTEMmTWUSbgoiEA2qLRKwljVhrRtceEWyL6oOwVQD2YbtmIqovDMNEROXktq9YFoqtJthZrTih5bSXWJlcZ7hOFoiB4aXOLAJxMJlBOJoFEEQonUWsBUh8GkRLawCxWBhHBzNobcsdL50WCIcDaI+HEG3OoiWeRNuIFGLdTQid2oLQ2LbcebQ0IdCaa5HIPYyD9ghZr7Bsm2uqCtlMAJmAf5PeZNuDU+NiGCYicsOvlQjcVov9DMXaCXZGsgowbCbXaW5XCKSlgTjSAaSGlECcWyki1pJbLSCTDqAduSAbCucfqSWeRnNHGi3xNMLj2hEc0YRQdxw4pT1fDW5pAlpada+H+nyIiCwwDBMRuVVMy4SMm2qxbOUJt6FY4aR1QjdeUiXWKCYQA8FcD3FYIJPOTZTL9RRn0RJPI9YZRHhsHMFTWxDsOgWBeDsw6hR9X7Rx0mDi03zV26GCDTfYL0xU9/hTTkTkld/r1TqtFntZn9gYip20Tqjn4rxK7CYQi5NpBEPDS60pITiSqwqHIrnJdsGQQHRkBOFx7bm2iFPah4PwSKDllPwDGVfVSBwrXPtZu9YwEdEwriZBRFSMYlaasOJkeTaz7a+dLMdmXHUiHM3fpr2/ZoUJ6YoT2uuikdzyZtGIutKEcZWJYHsUwXhMXQki0hFS2yDaRqTQEk+jfVQKbeOCaO6JoXlyByJnjETo9NEITOhGYEI3MGYM0D4KgbZT85dYe+4SiumrxDJ2lWLlvqwKV43cRiv+XtxYt24dzjvvPLS3t2P06NG49tpr8c477+jGfPLJJ1i0aBG6u7vR0tKCK664Au+++65uzJw5cxAIBHSX66+/Xjdm4sSJBWPuueceby8cOcKfdCKiYvndNmHkpI3Ca0+xQlYpdsCuShyIhCCU7ZvVrZvTCESiEE1ZiJNpiEgQ2kcOxmO59YnbowiNaslVg08dAXSOAFpOQSDWDjR3ICsy+fsEWvIraSira7hh1kOt5XVTFap527Ztw2233YbzzjsP6XQa3/zmNzFv3jy8/fbbaG1thRAC1157LSKRCF544QV0dHTg4YcfxqWXXqqOUSxevBhr1qxRv25ubi54vDVr1mDx4sXq121tbaV9gg2OYZiIqFY4aaOoZChWtnQG8pXiZEoNzAFtKAYQSGUhIkGgXXOcpnB+ubS2llxLREcr0B5HoH0M0HIKssEAMtmELgxHgjH5R51KFTidH6trAQnnK+S6fmFZtV37dwbihrJlyxbd108++SRGjx6NXbt24XOf+xzeffdd9Pf3Y//+/TjzzDMBAI899hhGjx6Nn/70p/j617+u3relpQVdXV2Wj9fe3m47hvzDNgkiIr+UMyDZtVHIWij8ap/Qtka0NKnLmymtE4HWloLWiUBrEwKREIJt0fyucco6wae25C+jmhEc0ZrvDR4Owmg5JXcJhZERaWRFBhmRQkaYtDykk9b/Hsrzkl3v9TpqGIODgwCAESNGAAASidynEU1NTeqYUCiEaDSKV199VXffDRs2YNSoUTjzzDNx55134ujRowXHf/DBBzFy5Eicc845WLt2LZJJ/vJVSqwMExH5ye9JdU7YfXxvrBa7qRS7pakGC83XukpxNIJAJBdiRSyUX6dYqdie0o5Ac1M+aIejudaIYaFA/hwzIoVgIIRgIASkP809J+3OckpF2GazjYJVJKghDA0N6b6OxWKIxay/F4QQWLlyJS6++GJMnToVAPDHf/zHmDBhAlatWoUf//jHaG1txcMPP4yBgQEcPHhQve+NN96ISZMmoaurC/v378eqVavw61//Gn19feqYZcuWYfr06ejs7MTOnTuxatUqHDhwAI8//riPz5y0GIaJiPxW6h5iM6UIxbIl2ZyIRhBIDq9XrLRPKNXi4dsBIJAsvF4Nwi2tufOItuTOfficgoH8ihDBQCgXjjNpIJvOnXtmOBArLRLGCXNhTeU7JKkQG6vpVHGZdACZgrVKijseAPT09OiuX716Ne677z7L+y5ZsgRvvfWWruIbiUSwceNG3HzzzRgxYgRCoRAuvfRSXHnllbr7avuAp06ditNPPx0zZ87E7t27MX36dADAihUr1DHTpk1DZ2cnrrvuOrVaTP5jGCYiqjfGAGcMx9qwlzWsMZxOeg/Fsl5apRoclgRjQN01LhAZ/lq7gUasBYi25KrCw+eYFZl8JVh5OlkBJD+FSBwFkp/m1hf+9Hju8cxWjnDaIkF17cMPP0RHR4f6tV1VeOnSpdi8eTO2b9+OcePG6W6bMWMG9u7di8HBQSSTSZx66qk4//zzMXPmTNPjTZ8+HZFIBO+++64aho0uuOACAMB7773HMFwiDMNERKVSiZYJGauKsUW12HEoNoZg2TbPylrF2mCsO4amYhyNOGrXCAZCufNR+oO1f9cG4agmaGtbJYarwoFQTL6cmtW/HSfQ1YWOjg5dGDYjhMDSpUuxadMmvPLKK5g0aZLp2Hg8DgB499138eabb+Kv/uqvTMf+5je/QSqVwtixY03H7NmzBwAsx1BxGIaJiEqpWgIxUHQoBky2Y/ayAoVsZzh1DWPNsZSAO3yOwXA01xusyOZuF8njuY02Ep/mjisLwsrzMluHmO0RZOK2227Ds88+ixdeeAHt7e0YGBgAkAu+ytJo//RP/4RTTz0V48ePx759+7Bs2TJce+21mDdvHgDgv/7rv7BhwwZ84QtfwKhRo/D222/jjjvuwLnnnouLLroIALBjxw709/dj7ty5iMfjeOONN7BixQrMnz8f48ePr8yTbwAMw0REpVZNgRiwXqLNLBQPj3U92U673bO2WgzkK8bK342Gz00kAWQSucdO5oNwrj84nQvj6WQ+CCvHVKrRhj5lba+wriqsqKZ/KwIAJJJZRDJZ/47n8ljr168HkNs0Q+vJJ5/EokWLAAAHDx7EypUr8cknn2Ds2LH42te+hr/8y79Ux0ajUbz00kt49NFHcezYMfT09OCqq67C6tWrEQrlvkdjsRiee+453H///UgkEpgwYQIWL16Mu+++2/uTJVsBIYTZNvNUpKGhIcTjcQwe+kd0dLRU+nSIqBpUc9Ay++jfuO2zYZzQbnKhbnyRLByvW+VBc7txpQflNQpJKrVKi4YSgJXjppO543x6cvj4mpCtWZVCrQpHW7y1R8jOn2wNDX2K+OgFGBwcdNSWkL9f7n1024wr0BYyXw3ErWOZFGbv2uL6fKg+sTJMRFRO1VYl1jLbTKKYpdlkLRSZtP4YxiXPlNdICc+hcP68tL3BQL4SbNxcQ1oNDus22Sh4ftrnZoVBmKiuMAwTEZVbtQdiRalbKDKFK1mYPraxkgzo1xDWfq3QbvyhDcLa9gj2CRM1PIZhIqJKqOZArDCbcGdcms0w1nIVCrNKsXIM42NpJ8MB9gFYWxFWgrC6k54PfcKsChPVHYZhIqJKqdTmHG7ZrUKh7Sm2CsXaZdmUUJxO5m9T7q9tgVBoQ2/BJhqayXfGZdRiLYVBWHvu2nOmqpU6KZAM+TfFKZXhdCnKC1b6BIiIGl6tVBvNQmMwrK8WG8aqATSU30VODcVWk+V0k+okgRfIT45TLsZNO2S7zGnbI9wE4Vr5dyIiVxiGiYiqgbJZRLVTWg5knARiwDoQhwwh1SoQq+sSKwFYsmqEpiIsbY9wqhb+bYjIE7ZJEBFVk1pqnSh2RztjH7FyPNnaxEB+Nzst7WoRyn21y7CZ7TBX7a8vEZUNwzARUTWqhVBsFogBeS+xZik2aR+xQttHbLUEm3JcQF9R1rRFSFeNcItV4YpLpwXSPm6LkGbPMGkwDBMRVbNqD8V+BGLAerUJQD/Jzrhsm3FDDu1EOVkQZp8wEWkwDBMR1YJqD8VmnARiwNm6xNKQXDgBzzQIu33tGISJGgLDMBFRLdEGtFoJxjaBGEBhKJa1TxhpWyG0x1Ye03gdEZEEwzARUa0yVi5rKfSZbOkMONvBTheAtccD/AnCrAoTNQyGYSKielGJqrHT0GisDiskG3oUBF0Z4/Mrpi/YiEG46iQSWYSDWf+Ol/XvWFT7GIaJiOpRNVaNjcuuaXk9Pz9DMMAgTNSAGIaJiBqB3+G4mNCoDbCyYOzkfkZ+hH0GYaKGxDBMRNSI7IKfNlyWMiQWs/6vgtVgIioCwzARERWqhYDIanDDSCWAZNC/jTJSbBkmDYZhIiKqLX71PzMIExEYhomIqNqVYvIfgzARDWMYJiKixsEQTEQGDMNERFT/GIKJyATDMBER1S+G4LqQSgukfJ1A59+xqPYxDBMRUfXy0i/MAExELjAMExFR9ZJtFsKwS0Q+Clb6BIiIiBxjECYin7EyTERERFUtmcgiHPBvp4yk4K4blMfKMBERERE1LIZhIiIiImpYDMNERERE1LAYhomIiIioYXECHREREVW1REIgFPBvo4yE4KYblMfKMBERERE1LIZhIiIiImpYDMNERERE1LAYhomIiKiqZVICaR8vmZS7nuF169bhvPPOQ3t7O0aPHo1rr70W77zzjm7MsWPHsGTJEowbNw7Nzc0444wzsH79et2YRCKBpUuXYtSoUWhtbcX8+fPxu9/9Tjdm4sSJCAQCuss999zj7YUjRxiGiYiIiCxs27YNt912G/r7+9HX14d0Oo158+bh+PHj6pgVK1Zgy5YteOaZZ/Dv//7vWLFiBZYuXYoXXnhBHbN8+XJs2rQJvb29ePXVV3Hs2DFcffXVyGQyusdbs2YNDh48qF6+9a1vle25NiKuJkFERERkYcuWLbqvn3zySYwePRq7du3C5z73OQDAjh07cNNNN2HOnDkAgD/7sz/Dj3/8Y7z55pv44he/iMHBQTzxxBP4yU9+gksvvRQA8Mwzz6CnpwcvvvgiLr/8cvX47e3t6OrqKs+TI1aGiYiIiNwYHBwEAIwYMUK97uKLL8bmzZvx0UcfQQiBl19+Gf/5n/+phtxdu3YhlUph3rx56n26u7sxdepUvPbaa7rjP/jggxg5ciTOOeccrF27FslksgzPqnGxMkxERERV7QTSgI9LA59AGgAwNDSkuz4WiyEWi1neVwiBlStX4uKLL8bUqVPV63/wgx9g8eLFGDduHMLhMILBIB5//HFcfPHFAICBgQFEo1F0dnbqjjdmzBgMDAyoXy9btgzTp09HZ2cndu7ciVWrVuHAgQN4/PHHi3rOZI5hmIiIiKpSNBpFV1cXVg78f74fu62tDT09PbrrVq9ejfvuu8/yfkuWLMFbb72FV199VXf9D37wA/T392Pz5s2YMGECtm/fjltvvRVjx45V2yJkhBAIBALq1ytWrFD/Pm3aNHR2duK6665Tq8XkP4ZhIiKqTdm0+W1Bvr3Vg6amJhw4cKAkbQLGEArAtiq8dOlSbN68Gdu3b8e4cePU60+cOIF7770XmzZtwlVXXQUgF2T37t2Lhx56CJdeeim6urqQTCZx+PBhXXX40KFDuPDCC00f84ILLgAAvPfeewzDJcL/LYiIqDZYhV+qW01NTWhqaqroOQghsHTpUmzatAmvvPIKJk2apLs9lUohlUohGNRPxQqFQshmswCAGTNmIBKJoK+vDwsWLAAAHDx4EPv378d3v/td08fes2cPAGDs2LF+PiXSYBgmIqLq5SUAsypMPrvtttvw7LPP4oUXXkB7e7va4xuPx9Hc3IyOjg7Mnj0bd911F5qbmzFhwgRs27YN//AP/4CHH35YHXvzzTfjjjvuwMiRIzFixAjceeedOOuss9Q2ih07dqC/vx9z585FPB7HG2+8gRUrVmD+/PkYP358xZ5/veNqEg489thjmDRpEpqamjBjxgz86le/qvQpERHVr2w6fyGqAuvXr8fg4CDmzJmDsWPHqpfnnntOHdPb24vzzjsPN954I6ZMmYIHHngAa9euxS233KKOeeSRR3DttddiwYIFuOiii9DS0oJ/+Zd/QSgUApBr03juuecwZ84cTJkyBd/+9rexePFi/PSnPy37c24kASGEj/Mz689zzz2HhQsX4rHHHsNFF12EH//4x3j88cfx9ttv2/6WNjQ0hHg8jsFD/4iOjpYynTERUQ3yM/iyMlx1hoY+RXz0AgwODqKjo6PSp0Okw8qwjYcffhg333wzvv71r+OMM87A97//ffT09BRssUhERC5oq78MwkRUQfxfw0IymcSuXbsK9gSfN29ewQLZQG7P8UQioX6tLMo9dPTT0p4oEVEtKEfbA8NwVVLeB/lhNFUj/q9h4X/+53+QyWQwZswY3fXGBbIV69atw/33319wfc8fLirVKRIREdWMo0ePIh6PV/o0iHQYhh0wrkMoW5sQAFatWoWVK1eqXx85cgQTJkzABx98wB/+MhsaGkJPTw8+/PBD9qeVEV/3yuDrXhl83Z0TQuDo0aPo7u6u9KkQFWAYtjBq1CiEQqGCKvChQ4cKqsWA+TaO8Xic/1FWSEdHB1/7CuDrXhl83SuDr7szLApRteIEOgvRaBQzZsxAX1+f7vq+vj7L3WKIiIiIqDawMmxj5cqVWLhwIWbOnIlZs2bhb//2b/HBBx/o1g0kIiIiotrEMGzjy1/+Mv73f/8Xa9aswcGDBzF16lT8/Oc/x4QJE2zvG4vFsHr1atu9zsl/fO0rg697ZfB1rwy+7kT1gZtuEBEREVHDYs8wERERETUshmEiIiIialgMw0RERETUsBiGiYiIiKhhMQyX0GOPPYZJkyahqakJM2bMwK9+BPsnXQAADUZJREFU9atKn1LV2L59O6655hp0d3cjEAjgn//5n3W3CyFw3333obu7G83NzZgzZw5+85vf6MYkEgksXboUo0aNQmtrK+bPn4/f/e53ujGHDx/GwoULEY/HEY/HsXDhQhw5ckQ35oMPPsA111yD1tZWjBo1CrfffjuSyaRuzL59+zB79mw0NzfjM5/5DNasWYNam3u6bt06nHfeeWhvb8fo0aNx7bXX4p133tGN4evuv/Xr12PatGnqxgyzZs3CL37xC/V2vublsW7dOgQCASxfvly9jq89EQEABJVEb2+viEQi4u/+7u/E22+/LZYtWyZaW1vFb3/720qfWlX4+c9/Lr75zW+KjRs3CgBi06ZNutsfeOAB0d7eLjZu3Cj27dsnvvzlL4uxY8eKoaEhdcwtt9wiPvOZz4i+vj6xe/duMXfuXHH22WeLdDqtjrniiivE1KlTxWuvvSZee+01MXXqVHH11Vert6fTaTF16lQxd+5csXv3btHX1ye6u7vFkiVL1DGDg4NizJgx4vrrrxf79u0TGzduFO3t7eKhhx4q3QtUApdffrl48sknxf79+8XevXvFVVddJcaPHy+OHTumjuHr7r/NmzeLn/3sZ+Kdd94R77zzjrj33ntFJBIR+/fvF0LwNS+HnTt3iokTJ4pp06aJZcuWqdfztSciIYRgGC6Rz372s+KWW27RXffHf/zH4p577qnQGVUvYxjOZrOiq6tLPPDAA+p1J0+eFPF4XPzN3/yNEEKII0eOiEgkInp7e9UxH330kQgGg2LLli1CCCHefvttAUD09/erY3bs2CEAiP/4j/8QQuRCeTAYFB999JE65qc//amIxWJicHBQCCHEY489JuLxuDh58qQ6Zt26daK7u1tks1kfX4nyOnTokAAgtm3bJoTg615OnZ2d4vHHH+drXgZHjx4Vp59+uujr6xOzZ89WwzBfeyJSsE2iBJLJJHbt2oV58+bprp83bx5ee+21Cp1V7Thw4AAGBgZ0r18sFsPs2bPV12/Xrl1IpVK6Md3d3Zg6dao6ZseOHYjH4zj//PPVMRdccAHi8bhuzNSpU9Hd3a2Oufzyy5FIJLBr1y51zOzZs3UL619++eX4+OOP8f777/v/ApTJ4OAgAGDEiBEA+LqXQyaTQW9vL44fP45Zs2bxNS+D2267DVdddRUuvfRS3fV87YlIwTBcAv/zP/+DTCaDMWPG6K4fM2YMBgYGKnRWtUN5jaxev4GBAUSjUXR2dlqOGT16dMHxR48erRtjfJzOzk5Eo1HLMcrXtfrvKYTAypUrcfHFF2Pq1KkA+LqX0r59+9DW1oZYLIZbbrkFmzZtwpQpU/ial1hvby92796NdevWFdzG156IFNyOuYQCgYDuayFEwXVkzsvrZxwjG+/HGDE8qaVW/z2XLFmCt956C6+++mrBbXzd/Td58mTs3bsXR44cwcaNG3HTTTdh27Zt6u18zf334YcfYtmyZdi6dSuamppMx/G1JyJWhktg1KhRCIVCBb/NHzp0qOA3fyrU1dUFoLAaon39urq6kEwmcfjwYcsxn3zyScHxf//73+vGGB/n8OHDSKVSlmMOHToEoLCqVAuWLl2KzZs34+WXX8a4cePU6/m6l040GsVpp52GmTNnYt26dTj77LPx6KOP8jUvoV27duHQoUOYMWMGwuEwwuEwtm3bhh/84AcIh8OmVVe+9kSNh2G4BKLRKGbMmIG+vj7d9X19fbjwwgsrdFa1Y9KkSejq6tK9fslkEtu2bVNfvxkzZiASiejGHDx4EPv371fHzJo1C4ODg9i5c6c65vXXX8fg4KBuzP79+3Hw4EF1zNatWxGLxTBjxgx1zPbt23XLIG3duhXd3d2YOHGi/y9AiQghsGTJEjz//PP45S9/iUmTJulu5+tePkIIJBIJvuYldMkll2Dfvn3Yu3evepk5cyZuvPFG7N27F3/wB3/A156Icso3V6+xKEurPfHEE+Ltt98Wy5cvF62treL999+v9KlVhaNHj4o9e/aIPXv2CADi4YcfFnv27FGXnnvggQdEPB4Xzz//vNi3b5/4yle+Il3yaNy4ceLFF18Uu3fvFp///OelSx5NmzZN7NixQ+zYsUOcddZZ0iWPLrnkErF7927x4osvinHjxumWPDpy5IgYM2aM+MpXviL27dsnnn/+edHR0VFzSx79xV/8hYjH4+KVV14RBw8eVC+ffvqpOoavu/9WrVoltm/fLg4cOCDeeustce+994pgMCi2bt0qhOBrXk7a1SSE4GtPRDkMwyX013/912LChAkiGo2K6dOnq0tYkRAvv/yyAFBwuemmm4QQuWWPVq9eLbq6ukQsFhOf+9znxL59+3THOHHihFiyZIkYMWKEaG5uFldffbX44IMPdGP+93//V9x4442ivb1dtLe3ixtvvFEcPnxYN+a3v/2tuOqqq0Rzc7MYMWKEWLJkiW55IyGEeOutt8T/+3//T8RiMdHV1SXuu+++mlvuSPZ6AxBPPvmkOoavu//+9E//VP1/4NRTTxWXXHKJGoSF4GteTsYwzNeeiIQQIiAEt7chIiIiosbEnmEiIiIialgMw0RERETUsBiGiYiIiKhhMQwTERERUcNiGCYiIiKihsUwTEREREQNi2GYiIiIiBoWwzARERERNSyGYSKqOxMnTkQgEEAgEMCRI0eKOtacOXPUY+3du9eX8yMiourBMExEVSmTyeDCCy/En/zJn+iuHxwcRE9PD771rW9Z3n/NmjU4ePAg4vF4Uefx/PPPY+fOnUUdg4iIqhfDMBFVpVAohKeffhpbtmzBhg0b1OuXLl2KESNG4Nvf/rbl/dvb29HV1YVAIFDUeYwYMQKnnnpqUccgIqLqxTBMRFXr9NNPx7p167B06VJ8/PHHeOGFF9Db24unn34a0WjU1bGeeuopnHLKKfjXf/1XTJ48GS0tLbjuuutw/PhxPP3005g4cSI6OzuxdOlSZDKZEj0jIiKqNuFKnwARkZWlS5di06ZN+NrXvoZ9+/bh29/+Ns455xxPx/r000/xgx/8AL29vTh69Ci+9KUv4Utf+hJOOeUU/PznP8d///d/40/+5E9w8cUX48tf/rK/T4SIiKoSwzARVbVAIID169fjjDPOwFlnnYV77rnH87FSqRTWr1+PP/zDPwQAXHfddfjJT36CTz75BG1tbZgyZQrmzp2Ll19+mWGYiKhBsE2CiKre3//936OlpQUHDhzA7373O8/HaWlpUYMwAIwZMwYTJ05EW1ub7rpDhw4Vdb5ERFQ7GIaJqKrt2LEDjzzyCF544QXMmjULN998M4QQno4ViUR0XwcCAel12WzW8/kSEVFtYRgmoqp14sQJ3HTTTfjzP/9zXHrppXj88cfxxhtv4Mc//nGlT42IiOoEwzARVa177rkH2WwWDz74IABg/Pjx+N73voe77roL77//fmVPjoiI6gLDMBFVpW3btuGv//qv8dRTT6G1tVW9fvHixbjwwguLapcgIiJSBATfTYiozkycOBHLly/H8uXLfTne+++/j0mTJmHPnj2el3UjIqLqxMowEdWlb3zjG2hra8Pg4GBRx7nyyitx5pln+nRWRERUbVgZJqK689vf/hapVAoA8Ad/8AcIBr3/3v/RRx/hxIkTAHI9y253viMiourGMExEREREDYttEkRERETUsBiGiYiIiKhhMQwTERERUcNiGCYiIiKihsUwTEREREQNi2GYiIiIiBoWwzARERERNSyGYSIiIiJqWAzDRERERNSwGIaJiIiIqGExDBMRERFRw2IYJiIiIqKGxTBMRERERA2LYZiIiIiIGhbDMBERERE1LIZhIiIiImpYDMNERERE1LAYhomIiIioYTEMExEREVHDYhgmIiIioobFMExEREREDYthmIiIiIgaFsMwERERETUshmEiIiIialgMw0RERETUsBiGiYiIiKhhMQwTERERUcNiGCYiIiKihsUwTEREREQNi2GYiIiIiBoWwzARERERNSyGYSIiIiJqWAzDRERERNSwGIaJiIiIqGExDBMRERFRw2IYJiIiIqKGxTBMRERERA2LYZiIiIiIGhbDMBERERE1LIZhIiIiImpYDMNERERE1LAYhomIiIioYTEMExEREVHDYhgmIiIioobFMExEREREDYthmIiIiIgaFsMwERERETUshmEiIiIialgMw0RERETUsBiGiYiIiKhhMQwTERERUcNiGCYiIiKihsUwTEREREQNi2GYiIiIiBoWwzARERERNSyGYSIiIiJqWAzDRERERNSwGIaJiIiIqGExDBMRERFRw2IYJiIiIqKGxTBMRERERA2LYZiIiIiIGhbDMBERERE1LIZhIiIiImpYDMNERERE1LAYhomIiIioYTEMExEREVHDYhgmIiIioobFMExEREREDYthmIiIiIgaFsMwERERETUshmEiIiIialgMw0RERETUsBiGiYiIiKhhMQwTERERUcNiGCYiIiKihsUwTEREREQNi2GYiIiIiBoWwzARERERNaz/H5oEsk6unMJVAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, - "execution_count": 11, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -659,21 +702,29 @@ ] }, { - "attachments": { - "tape_etal_2007_fig9.jpeg": { - "image/jpeg": "/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSj/2wBDAQcHBwoIChMKChMoGhYaKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCj/wAARCAcIBjYDASIAAhEBAxEB/8QAHQAAAQQDAQEAAAAAAAAAAAAAAAEFBgcCAwQICf/EAGMQAAEDAgQCBQQJDwgHBwMBCQEAAgMEEQUGEiExQQcTIlFxFDJh0QgVF0JSgZGhsRgjMzRTVFVyc3STlLKzwRYkNjc4YpLSNUOlwtPh8CVEY4KDoqQnZKPxJkWVKGV1hMPi/8QAHAEBAAIDAQEBAAAAAAAAAAAAAAEFAgMEBgcI/8QAQREAAgEDAwICBwUHBAIDAAIDAAECAwQREiExBUETUQYUIjJhcZEVgaHR8CMzUlOxweEWJDRCQ/FicpIlgqIHNf/aAAwDAQACEQMRAD8A9UoQhACEIQAhCEAIQhACEIQAsJHNaNTnABvHdZqOdINY7DMo4nXRDtxRh3G1+0AgOKixmXHsWdDSEijgedT23F3tdYi42+JSaesp6ckTTxNI4NLwCoR0Lx6MqTyHzpquWW/41itNXhkcea62fHMQc+CWXVTQyR7NbpAIBHp70BNq4yVdC91FKwyAGxDtr29Cacq495dNVYfUuaKylk6pwG1yBuRvcqHdBWNVuLYbVMrJXHq5ZdN7HYOAHJaZJ2Yd034fTUpGmqgqpp7bXeCOPyoC3Rs3dc2JNc6hmLHFrgxxBBtyK6A64HpWqvH8yn/Ju+goCjMhVeO5nzRmHD5Kx7IsM6nSWzPaXa2k8b78FMZ8FxvDMSpaiCsfM1z2Mex87n2bfc2/iq+6LRi56Qc4HDA/qwabXpI37Jtx+NWRl05k/ltKMUbKKA0h0hzmka9Xo34ICcPrIGSFjpozKDYRteNR+JZSSxtlaOtYHusNJcAfkVRdI4rcsZ8wbH2VD3YX9fdVR2AaCQGtuePE8lI8WldU4zJVwzlrKSlZWEAecAAbfOgJxPVU8H2WdjHDazngJXVMPViR08QiPB4eLendVbglfU5oixiZ1EKkxz6YXl9tILb2HBMdVFmPCuiDGZMZkmhqoaad8WrSSDvbh6EBdXl9JsJKynBPm2lbuPlXNj2M0eCUL6ytmDY2i/nDfgOZ9KpbFsKqoujXCcYZWvdiDxTO1aACGubchdHSRU+3nQ1BXVEtpXQyOva9/rgCAuvDqyKupI56Z4cyQBwueRF/4qDdN+L1+X8lV+KYc8B0DATcnm9o5H0qRZGpIqXLGFGN19VLDfbmY2qKeyFfEOi/GeteAxrGahb/AMRqAmWAVjjg1PLWyxtc9oNy6x3A705meOOASl4Me297qqci4vDneGnp4ajqvJA2RzGjVdosOdk45lxuopc2YZgOGxddDJDI6Rodp3YRbigLEjqqeZ31qeN5bvpa8E/IEr62na6z6iFoA3DngEFVdDg+YqTpAhqMOiljweR8YkDS3SGgdrjvxUfwqGvxrpOxLDanEZfJr1Dg3QCG2JsEBdwraRzG2q4dMmzT1rd/DdLTVtLUvLYKiN72ixaHgnxsFSOc8Kq8vZlyRh0eISGCpqJmPGgC4AB/is8d8sylnrDfIax5iqoomvaGgA6379/cgLsnqI6Ya6iVrQPNGoAlYGVs9PKKWaOQlh0lr72PxKuXY1UY1nfFsPkpRPTYZN1Vi/Y6m3/gl6P8NzHheZsRbiMUjMMdTl0V3NsHF4O1t+CA19GuM4lV5xzPRVMutlNXuiAc5x0gMBsLlWo0m13W+JU90WAN6RM6HrLudijzw/8ADCt/ezbb77oDhx7FIcIw6WrqHBsYFh+NY2Vc4M7Fcx5X/lGyeeOolZrhhY9zWkh2kgs+JOHTwJBkcmE/96iuP8V079Fjgch4W9gswNdpH/nKAXo5zQcyYRO6TSKmmnfTOFrbssDzvxUaOZ8V91qmwd/VilMr2mwduBHfvsmXoJMvt/mFu/UHEax3/m6xbqxwHTxhoDtzLLcf+kgLnbctF+K1Tytga4udYWJuTsFsudQaAoZ0r4i/DcqVBp5CKl8kegDu1AFAcfRTW1eMQ1GLVEkpim1Rta5xsC15GwPDgnvNs2ITgUGGWbLI3VrNwALkHcLpyZhTMHy/BRMbZrS5/wDiN/4p3e1pk1lulzRs70ICkH1OYuj3NmFNxCqNZQ4pKWSa5XzFjWC/ZuQG+cp7n7MjKDCKVsNTDT1NUWaXTSBgAcDbe64MyUP8rM24bGwdbRYfKXSd1nNHHgeSec3ZFwTM1JDFi9JFIYmtZG5wJ0kA2tYjhdARvJeDZhlxWKoxDFqSqoWHfySrdJtY8eXFWjFfQASDbbZUPgdDi3Rt0h0OF+XS1GC4m+TqonNaxrGxsJsLXJ3cr3h0mJpYLAi6AzQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgEINxZYauB9Nlmb6hbgtb9mvHIAlARjH8bklxWLCMNe01MrXOJJ2Gk7i4OyiPSBjeKYHm7KlPTTN8lqsQEUpe47t0X77LHo3l9s+kPNM1QbyUOIOgivyaWXK4emqE1WZ8kRRvMURxUh7gL7dUgLbpq2lleIo6mN8zhrLWyAkd+10x5hxKXA6wV8hcaOQ3kvc6AAB4DdVn0g0OIZFfR4/hVdI+KSaKB7QxrR9dfY778grF6RdNd0d4u+wAdTmx427Q9SAk9NViro4poTdsgB+IhbyerAAuR8qhHRBikmK5WfLIdqeodTgXvs1rN/nU6uCBbcFAVb054pX4LhmF1NBLIzrq1sR0ucNureeXgtmA4LjGK5eoMQFfKJKiBstjUOAFx3Lk9kaZBlnBuqvqOJNAt+SkWvCP5WtyFhhwzri7yeLRpcwbc+PoQEtyUa6hopIsWqYnUzdRZK+Ul19Rvdx5BSqKaJ0ZfHKx8fwg4EfKoO/B8Rr+jWrpKgvbiZinEZ2JDiTp9CYOjrHJG5YxWixAdZV0lb5JZx3No2i+23ElAWtFPHJB1olY5rh5zXAj5UkVZTzydXDUQveBu0PBPyKrMUrqrLcOWMDgldU1E0ssczTZpdYAi/yrTiWF5hZmihxDLtJJT0payOpbG9pBu4F5N/BAW1JUwMlDX1ELSOLS8ArCGsgnB8lqIZNJJcA8OIHPgqaxby+q6aKfD3VcjKGonkBZpBFhCSPTxC34C2bAOl6swNlW6WkkoIpNJaALyPIP0ICy6fNGH1OMvw6CZpnjJa8am7Eb96eJRIYSIi3XbmVSWQsMp5OlrNDrgmOve0bf3FeIaG3LRugKkyRj+JVXSXilBXS/WYZqprWhzrWa7bibK0/KoXl2iZjns3Ia4FeeY8zU+X+lfFm1ulpmqKprSSdtTyBwCtqKnhy1l2rxmWXyoxx9Y4uGm9nWQErkrII3ATTxsJHN4CydPEGtkfMwRkXD9Y0n41VGHy4jmXAsQmFKZal0kopzqF2jRdluHAnmo/mr+VODdDE3ttPPS4hTU4s86HG+rfht3IC9GV9OZjC+ohErRrIDx5vfxSTYhRRt6x9XCGjb7K3n8armXK9QzBKvG/baSSf2uAt1QHBgdxUVyThdVmDKWKT1ta/rI3x6CWA2HFAXwJo3ta5jg9rtg5puFpdXU0cnVyVELX8gXgfxVRZRzZWU3RDNVSSOlrwatkUhIB1Ne4N5WWeN0WNY1lSirMIoXHEpBE98jXjUbm7uOyAdOmPGsTweLCZKSVjQ98urS5wvZre4+KsHAp3z4PQyyXL5KaN7j6SwFU10sMxBuVMvsxQvbX6qjVqsTwbbhtwVxZauMuYWDufJIr/wCAIByYbtBVcZrzFVV+bo8tYa/SQyKaZ7bhwjeS02IPFWN5rNlSWSTNL084w6pBBGEx8e7rCgJBUYxU5OzZhuG1VQ6WgrI5JXSTPL3N0WA7RIA4rszVSY5mOomoqKY0tPGwPbJHI6JxJFiLhRD2SF+qoHU4+viF+gju1turklqYKHDnVLrNjjZqJ8AgKo6NcfxqgzhLlLHHiWwlfDNdznFkdmi7ieJ8FcTXaiL3BHFV7lHA31ubKrMdU4uu+VtMSP8AVSbi3o8QrBeQHXva3FAV/wBJGLVDcTw/B8PkkbO6WGqcWEg6OsIIuDw24KekljHSblxPD41W+XpGZi6R6jEg0OhpYH0d7++a8n/eVnFouCgKmzLheacwwS11BVClEJdpjEr4i7TfiBxBXf0QZpxDFaLFcLxhrRX4NK2lkfpIDnBtybk3PiprmCrZQYZO6M6Zntc2P8Yg2+hRvo9y++gpcRxKpHW1eLSNqZgQB2iLHcICJ41imKZix6WPBMYw2JrQ0RsdWaCX8LEA77qxcoUVdQ4aI8VnbNUvs8uZIXt4AGxPpVd506JaGloKrFcr2w3EqVjqiN0LNRe8C4HaJA3Un6I8WrsXy/LHihc6roZG0z5HEEuIYCTttzQE7FzIb8BwWaxFnBpbwWSAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEHhugOLFMRgwygmrat4bTxDUSCOFwOfimXK89Vibpa6oLmMLnNY3cAtFiDb4+Ki3TrWOhynLSMNoqqMtJ7rOaVKZ60YRkYVTOy6Og1t8RFcH5kA+T1lPEdMtREwnjeQCya8ySTxUBraN+sU95dLSTqsOFhx8FFcBwp2bclRV805bV10bJWS6QTHvvbhe9lJsrYXWUGXDSYnVPqpy5+qV7QDpPDYIDsy1jEeNYVDOxw67Q3rmDYseRcgjiPAp2AsLEqp+iWuc3Nec6EM0sjxeZoN/O033Vr2uDfmgGjNbJfaOrkp5HMkjjfICHEcGk8vBVH0TvxrOuXGV9TXTRvMbHENme3jq5b9yuLMhAwHEL72ppf2HKi/Y+uxz+SbXUUb+qkii02c3axd3oCx8AoMawzM72S1TZqLye5Mkrn2OpvftwupwyrhlfohmjfIOIa4G3ioRkqlx/yiuZj7pdEjJGsc/SbXcLcPRdRbL9RW5d6VqvDq+d5o6+eV9O5wHZYyInYD096AuJssZcY2ysLgLkBwJC1vraWN+l9TCHDaxkA/iq5q6+bDaDHMwMnLon0kkULNgBIwE3vxTRi9Li+PZHpq/CcPLcSmbFJ1rHjU65uTvsgLekqY6fT5TLHG55sNTgAflWsYhSulEZqoOsIuAJBv86prpLlx6LAMsNq6iWKufVTCUnSSRpFvQuXPVLU5fwvL2MQ1bxJK+jhkGkC5k3dv8SAuHFswUOF1lJT1swbNMSGtDhuQL8ynaGRk0IkYSWEXuqY6VKKKr6Ssj9ZLZlRUTAi3G0R9SuGgibBQxMYLtDQPisgKx6UcexXCM2YFDRyNEFRFUOLbu306bXsfSrObVQsLGyTMErmi7NQuLjjZU109YhDhWZ8rV0hHUxQVN2ngbmMKY5ObTZpDcwsqdTHAQ9UG7dgjmgJs+ZkLw50sbYiLkucB8iSnq4Z2uljmjfF3tcDZVocYrcYzjWYWKO+G0j5oHHXsXNvp24riwbDMy4fX5jY8SwYGaZnkpuwtDti+w48b8UBa8uIUkQ7dTCBe32QcflR5XSNuPKoiWcR1gv8e6pjo3wOtzXhONPxHFpQ6mxZ8TLxNNmtawgcu8rTh9JWzdK+LYSa6R1IyWIHsDYFpKAvCGrhqWaqWaKUA2JY8Ot38FjVVNPC09dOxgHe8BU5kGsqcJz5jGEsq3zUUNBPWaC0AahI0JywjEZ80DH3PoBMyOVggJfwBsduCAm2dKmoZlDFqmimj1w0k0mpr+FmE7Ec0zdEGKVeKZfkkqpOsexzRckk+bfmo/glJmKi6NszQ5lZLG/yOsLC8tPZLTpHZ9CcugptssT6XX7bP2AgLLNxdRLpDzGMsYKKth1SyTRwBp38+44X9Clt72VJ+yJMzabC2xX6s4hSF36QoB1xE4phGUHZm8oqH1MEZldC57nNJ1aANHgbqUQY3UY7lmCfDC0yTOEEhF+yS0arW4Ealsz2xrcj4qBvD1Q0j/zBRX2PpmOSMRDies9sqjR4aWWQDHikuYci5rournmr6WuEkj2Pe+ct0AAADl5yu6J5expIIJaCqK6QsSx/KmbKbMGK9ZU4HTiVzmPc1rWghoAuN+KvOmk62nifbz2h3yhANebMWbg2Bz1juDS1g8XG38U29GPlJyjTGuklfMZJSXSOJNusdbc78EydLFYaryXAId5Kotmt6I3gn6FPqKnZS0kUMTAGAcO5ARDN0eNY1McPwx4p4QNRl1OjdqBO2ocrWULydjWYMsZ4gyzjkjaiCqkEUEup8jjZpc67ifSFcT5RE2SR40Mbf41AcOwp+O50GO1O9LRvElK47gam2db5BxQG3pIx90bo8LoK2npK95a/VUTCJuggjjfjcha+j7CceirYqnFcSpaunZfT5NVOkDgWkb8juu/PPR7gebn9bWU8YxBrBonIJcAAbbXA4lQro2OKZRz3JlasnknoZ5HMpXuAbZjIy42A9PeUBdqEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhABRdBSIBboSBKgBCEIATZmPDm4rg1VRP82ZoaflB/gnNI4kWtw5oCvei5z6HDa3DJyGTtqZjHq2Gm4DVH8Ijx3BukHHnVVLJVxV9SJIZI4XOZEGxgEEnhc9ysubBIDiAq4QI32Fw1o33unUWa3UdieJQFP8AQzQ4ng9diEWJ0ksMbg54eYixu778SnDBsPlxjpSkxZ7frGHGemY4AgEO3BvwPBWRiFO+qp3RtldHcHdvPbgtWD0VPRQOZAxrX7da4NsXO7ygHC3Bc1fqNJO1gu4xuA8bFdN1i4XKAobo/gxfK+ccw1tVhddLFXmG3VQO940jn4qX4zmHHMQqKSLC8MqKcmZgldUUx+x33tbgVZDnOBsGg92/FLYncizvQeSAiXSBl5+PZLqcMj+yuDQHG99ng+PJcuRMuz0uUJ6LEnA1EwkhLtwdJ2HHfgpuLgttuDxKUsuBvwN0BReDDMWRsfxXDoMPnrKGtqTNFJDTueGNAsA53fspDnKlxjGsiYsyencamoppI+rZE4crDZWmb37x33WIPWAFpOnmgKkxPDK+XoooaCGknNVEadpb1ZJ2ZY7cVz4xl7EaroYp6COB3l0ULx1fVuvcyA8OPBXIbtFmhIxoF3NNw7kgIzkGprX4DSQV1NJFLDE2LtRlo7LWjmmXproq3FskV+HUVO+WaZjR2Yy4bPaeXgrBZq0nULG/ejc2A377oCksSyxieBzYXjWBQSeWvkjhqo+rc5vUtF9mgbG/Mrfn3C8dqMSwbNWBQltdS0zopIZYXOLjIRezR6ArmdcOHMHaySw6wAEjbh3oCA5cxjG8fmj1UMtDSsILhUwFjjyNio/lTC8RpOlCsrZ6WYU319od1ZGq52N1bgDurBd9bI5A3WwWsHc7WBQFU9ImHYjX58ynXU9NI+moqiR7vrZNgWtHhyXH0h4XieIZuweqpKSZ0EbYA+0RNrOJPBXAb6TqHm8FkbkCyApbHsPxvKefazHcJpn1VFiEzpamJkLpH7DS3TyHFTbLuIYti4fV1VM+ngYzU2J8RZIXD6Qpe431hvbd8E8EeYBqJGo2AG6Aqjo8w3EaPP8AmOtqqSZkFXXPmaTGRsWAc1bRubWsBzv3I4ggE3HNAI4n32yAa8zYRHjWESUsvA9ob8wDb6VAsAlxXL2UW4N5HPJPCwtgeyElty65vzPFWg8XcAHEbckr+IJaCBz7kBC+jPLLstYPVOnGqpq6mSqda+2uxI3HeotVYbiJ6X6TEhSy+TMlkId1RtYx248FbgHLUSeKNjuR2moBIwAwcQD38VAs5YRWYvnTB4HWOGiCXrLNN7ggt34KwBa9ibkbpNLXSB5aNTdge5ADAGNDRwAUL6ScUxmhpWR4LSyT6w3VohMnEkHh6FNXW4EcdkjyWtAaEBT2EZlzHSU8NFBhFSw7gvkpHb8+KlNbmbEqLFKaOfDauaGSBuoxQHZxPepubHcC7hwSlgcO0A48d+SAhb8HnxzM+G4nVMMcGHmTqGPaWus9tjfv4KaxkFgsCANkFpcBvZZC1tkAIQhACEIQAhCEAJCUXQgFG4QgIQAhCEAIQhACEIQAhCEAIQhACDshI7ggC6VYgLJACEIQAhCEAjr8rLW5p3FxpPDxWw8Qb7LBoLGEE3JJtdAVlglAcv8ASLWmUFkOJzSVLnnYXA0jcrDpYwSuq8byviVJE+oZR15me2JhcQOrtyU/xXCYMSY0zgMmYLNkAuQOa7aeF0ERAkdIeWrZAQDM2F1Gd6Kiw+SnlpqWN0U7+tYWnXGbix7vQnTpKk6vJeI0FNY1UsBZE2197g8OKl97AA9knc2TXW4OytxCGonAc1jr6SLg7WQHB0fYP7UZeijtZ8p65wPeWtv9CkzuF7LVHYW0bNaNNvBbTuLgoCqunDD6/F8Gw2nw6lnldBWic6Yy73jxy8V25cx7EMMythlFNhFc6ohpmMcWwGwIHpVjkkC4F/jWIva9uO53QEKyLVYxiNZVVWLQ9SxzQA0xFnA24H0KPVGRalnSbFWUriMLmgkmnF3bzF5tva1rW2Vr2bo0jYHZDSbWAG2yArLpky9iWJOwXF8DDTWYXJNM1pY52oua0DYceBWzLeYMw4v1FLJhs1HJE1plkqKYta8NsHafSb7Kyg3SeJt3LBziBd/Z3sLG6AqR2DYmemWjxNtPJ7Xtnkc5xjdsDCQN+HFbHYbiT+mWTFmU0gozRU8JJiPFryTvwVskkOtbiixBGkX790BT+E0OJ4J0m4rXOpJZKSuqXzt0REkDTYXPBW6XuaHPIu22zQN1sLQXB1ruHApH8b33HAICjqHKdRieesa9saGpbTTy1U0cvVloBuS0arelO2RqfGG4XVZTx6mndRaerhnbE4DtOL3XeePGytpwc9o7RbzuEOBIcCSAODuaAo7J9TmbJs2IYTJQyVME1XJNDJHTOcGtdZrQSe7SnLpSw3GsZ6PKyB0DpKqeIgsiidsbjkrf0tdZ1tThtcoLm69BJN+SAjD21M2R6qkMEgqTRFjRoO56sC1lC+jrDsTwrKGKQVlJN18jo9DRE4crHYq23GxG53NlkAdVyT4ICkso5SrqjohxDAqiJ8FbasdTmRrm2fI9xbfmRuujKWP5qw6hjwaowuYvpbQNl8kdoc1oAuDz8VcgB3JaNuG6ALnURY8BugKk6VsIxXE8Bw6Ckhc+oYZtREbncQ23DwVkZcEkWX8OjlY5ssdPFG8EW3DAD86dC0E3O5HD0I3OxAQCEBrmhVrmfA6vD88wZioIXymRsNPM2Nhd9ba4k7Dn6VZVtQs7isXNcbC5sDv6UBWWOYJV5wzZQVFVA+HDqeOWMtewtcdViN9xyWnPeM4+cbihosMqZMOgLX2bTOcXdncXGxVqOaSRpJA52WTu0bAkW7kBW2V8wZhxDE4aWfD30lEIz9lpix2w23U1zJLUUuA1b6JjpKhsZLAG6rm45Jzs3zjuRtdKSDYX4oCGdGWEyYThFa6pjc2aqrH1BuCCNTW9/gpm46G3AJ8EE2IFrhBva7N/QgKXxDH8yy47JNNhNXLTx/YxHSu4h21+/ZSfA8w5hrYJ5ajD5IWsI0MdTFptZT8XaANIAJ70trPvqNjyQEGocdxDHcFrKSXD6qmqXRyM6yaEtY69wAPSnnJ2BjBMNma65fUSCZ9j77SB/BP2i1xoGlu7T6VlqOm7xYIDIAA7JViBZ5PeskAIQhACChBQBdASJQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIARdCQoBboCRKEAIQhACEIQEK6WMDfjeT8QhgbqqerAhsCbHW2/D0ArbSdXmHJE+Hjsy+SvpLE27XV6b/KVLCOLSAQeATZQYPHQ1T3wdiNxLiGgAaid0BVGVMRzNlmH+Tk1BNNBSgRU00VM4tLWg3u48dzxVoGrqKPB5qqvLet0GzWi3D0FPT2i+vSC4cE34nhnl+gSTPMYddzLXBFkBDeirBZIK7MOL1LHNdiNe+qiuCOw8X/jyViloN/StdJCympooIgAyNoY0DuC2oBozU57cBrGwxSSvkhfG1rBc3LCAqg6FvbjKGWYqKuwmue8Rsb2Kd3LV3+KvVwuONlib6S5u55BAVrHjOPYxmKGmjoZqbDo9MxMtOWuLg6xGrwPBJ0x5Tq8ep6atww6K2mFmGx988XuB6LqynC5AbcO4myzIva/yICGZiyua/IVXhUTrVBpZAw3NtbmEb8+KhGUMdzRguHDBKnCqiR1IWwxTMpHaCxote54+Kudgu5x4EiyUhwcLbi2+6AqLpVwfFcQwrAY44XzVEdRKXdVG42BaLLT0mYNieJZVy5R0VNK+anfRSS/W3OADB2htwKuAC4u3tuHC+yyF7X+UICpek7D8RqMZypjdBTSStw6SaRzGxlzu00t4DxVm4RUzVOHQyvidE7SA5j22PAcl1xta5nZN4zyWR3dbUR6EBU/SnhVfi+bMAmgpXvpKaKdshMRIu4tt6OS58NwrFcnZ3MeDU88mCzRRscHRukLSSC832AVw6b3DxdqHahYNbqHpKApPH8MxnKudjmDA6WappK4yz1EIidK8PkNha2wtfgpY2sxnH8KrZ5aV9NA2ImKF8JZITwI9PDZT+4b2TxO9u5JxNmk3G9kBWXQ1QV2EUeNMrqaZnXYhJM0GMi4LGAcfBcmC4XiDOl3GMTfSzCkmliIcYzwDXDjw5q2hYGwFid0MA4jjzQFPZdwbEB0m4tVVNLMyiqcMmpmvMZHadK08eHAFNmF/yiyHmjE6enw+euwupmvGYKZ0ha1rbC7uHEq87Bz9WokcNPJZO4gcEBAsR9t6/KGNvq4bzVVDNCyJkRDgSwgXHxrT0NUNZheAzw10Ekb3PaRdhbto9KsC4uQTcAXJ71kLGxYTYckAOG/ioh0lZc/lRgApotpIamOYE34sJPLxUwcDuQLnkkaQNuDjubICsMWfiuKZGkwIUk7K+WIxuldEQy+vUPTwCcmOlyRgVHT0NBVVQfIx8whj1m7gA7w81Tt1tTgRpPIhLvcNAuO8lAQbMVFNnfDYqTyWSlo52Hrm1Mel/EEWO9uCm9MzqqZjGuB0tDQfAWW21uB+JY6QBZoA57ICvYcKr63pOjxKtDTBSieGHSwgaHA2vyJVhutpPd6FjoAGoNGtZGwbY8UBWnSRi+OxVsFJhdBPNSlge4sgLzqDiOI9FkmXcxZimxGkofayWnge7S6SSlLQ0ekqyzcWNvnS2Pa+ZAQaPMuIU2NuoajCq6WLQXCWKA6dWq3HuW3CsDkq82OxuqHVuhe4wtIIIDmFpuPjUzseNt+F7pA2wPvie9AbEIQgBCEIAQhCAEIQUAl0qxIWSAEIQgBCEIAvbihcuIVUdBQz1U5+txMLzz2AuqEx/wBkKyixqelw+iFRHE9zC7yeV3A+goD0IDcXCW/oXm13sj5Wmwwnb80m9aT6pCb8E/8AxJvWgPSRKh2V8+UOYcw1eEU1PLHNTsc9z3OaQdLtPAKnm+yPmc9rThOxO/8ANJvWoLk3pTlwDNNfivtY49fG9v2tLzcHckB7MHglv6F5rZ7JGYtucJ48P5rN60v1SE34J/8AiTetAek7+hF/QvNn1SE34J/+JN60fVITfgn/AOJN60B6Tv6EhuvNv1SE34J/+JN60fVITfgn/wCJN60B6Ra0AGwKTSA5q83/AFSE34J/+JN60fVITX/0T/8AEm9aA9G9WXNHWHU4G4I2USo880s+ehlnqJPKSJT1mpunscduKp8+yQmuB7U8Tb7Um9agtL0qy03SMMy+1ryWiYaTTS27fo4oD2ZugLzb9UhN+Cf/AIk3rR9UhN+Cf/iTetAekXNu4EjccEmntavfcF5v+qQm/BP/AMSb1o+qQm/BP/xJvWgPSIvvfhyQQbWC83fVITfgn/4k3rR9UhN+Cf8A4k3rQHpJotySEXBHIrzd9UhN+Cf/AIk3rR9UhN+Cf/iTetAektgN+6yiObs60uWMXwXDqiGSR2IyPja5rgA3S3VvdU072R8zhb2p/wDiTetQnPXS1NmbGsv14wshtDLJJtTSjzm25oD2JA8Swxys2D2h3xEXWzSNV7FeaoPZFyw00UTcKJDGhv2pNyFu9bPqkJvwT/8AEm9aA9IPaXWtyKUt3uOI4Lzd9UhN+Cf/AIk3rR9UhN+Cf/iTetAekLOt6UoC83fVITfgn/4k3rR9UhN+Cf8A4k3rQHpK3G/AoPDZebfqkJvwT/8AEm9aUeyQm/BP/wASb1oD0e4kAlvEKPZzzFTZVwvy+oifICS0hrgDwJ5+Co/6o+UBxGE//Em9ajPSB00y5pwTyT2rIu48KWUe9I5+KA9TZaxSPG8DoMTgaWR1UIla0kEgHwTk3huvLWVOniXA8u4XhYwsnyenbGSaWXl4J2k9kdKJA1mFHTz/AJpN60B6OeeQIB9KTZpG9r8jzXnE+yNl1drCd+R8km4fKtf1SLdfVsw9r5h711NLcfOgPSfaI223+ZD23BtsSvOA9khLb/RP/wASb1pfqkJvwSf1Sb1oD0hysgXAAXm/6pCb8En9Um9aPqkJvwSf1Sb1oD0fpJJJTLm3Ho8uYO+vnY58bXtZpBAJv4qivqj5j/8Auk/qk3rUfzr04zZkwCWh9qiD1jXbUso4eKA9L5SxyLMmAUmK08bo459VmuIJFnEcvBO+gDcXuvKWSOnWbLuV6HDPaokxax9qyni4nl4p/wDqkJvwSf1Sb1oD0gL234pRsvN31SE34JP6pN60fVITfgk/qk3rQHpFC83fVITfgk/qk3rR9UhN+CT+qTetAekULzd9UhN+CT+qTetIfZITW/0T/wDEm9aA9I32JtwWuafqoDIWk25BecG+yPm0m+E//Em9awm9kZM+mLfanu/7pN3+KAurIOdaPOdHPUUMEkIimkhLZHAm7CATt4qWBeOOjXpZlyfh9QwYY4maeWTemlPnEHl4KbfVITWF8J/+JN60B6SSX34Lzb9UhOL/APZP/wASb1pXeyPm2thP/wASb1oD0hq43B2Sg3F7Kh8q9PtNjGMsoq2l8n1ODW/WJG3ve/nFXnTyioghlZ5kjA8fGLoDbfcDvSpLjUBzSoAQhCAEhcbnsnZKk3vysgC+1zsgG6HWNrqrOlDpbo8k1rKTqhLUHUA3qnP3Fvgn0oC0w6/EEeKAbk7ELzY32SEzgdeE27rUs3rSj2SE9j/2T/8AEm9aA9JE72sVEM+Z3osnQRy1sEkwe5rQGOA85wbz8VTr/ZIS7acJJ/8A8Sb1qC9JXSvLnGlji9rHNLHMdtTSjzXh3PwQHsmJ4kjY8A2cAVnf0LzTD7I2aOJjPanzWgfak3d4rP6pCb8E/wDxJvWgPSd/Qi/oXmz6pCb8E/8AxJvWj6pCb8E//Em9aA9IuGoi6ADbfjyXm8eyQm/BP/xJvWl+qQm/BJ/VJvWgPR5bq87cpbd683/VITfgk/qk3rR9UhN+CT+qTetAejtJAOk2N1G8+Zsp8oYJJiVZG+WKNheWMIBcBbYX8VSv1SE34JP6pN61EOkrpjlzfl6eg9q3NvG5u1LKOJHf4ID1jg9czEcNpqyJpZFPG2QNO5GoA/xXaNuAXmHAvZAS4fhNJRe1RvBC1v2rNyaB/Bdo9khPbfCd/wA0m9aA9IEHUbcCEoabAHkvN31SE34J/wDiTetKPZITfgn/AOJN60B6QIPZ07AHdFiOC84fVITfgk/qk3rSH2SE34J/+JN60B6Qt2bEGywEYZ5m3ffdecfqkJvwT/8AEm9aPqkJj/8Aun/4k3rQHpK4034pvzDiceDYJX4jM0uipKeSoc0EAkMaXEC/gvPzfZHStdpOFHTy/mk3rTZmPp7mxrAcUwx2FECppJYQfJZr9thbz8UB6CyTmWlzXgseIUcT4Y5Wtfpe4E7i/JSDg7ccdl5J6O+miTK2XoaE4W49U1jN6WU8ARyUnHsj5XFv/ZJtf70m9aA9INaGk6eZuUu+3zrzefZHy3NsKP6pN60fVITfgk/qk3rQHpAXSOB0nTs7vXnD6pCb8En9Um9aPqkJvwSf1Sb1oD0dosBp2PNYmMOJ13PdZec/qkJvwSf1Sb1rH6pCb8E//Em9aA9IsDg2x3KxkeWRuceABK84fVITfgn/AOJN60knsjJpWujOFee0/wDdJu7xQFx5LzxR5qxTE6Kkp5Y5KFkT3vc5pDteq1rfiqYG9ttivGvR90sy5VxjGqo4WT5VHCwXppT5mru/GU4+qQmH/wC6f/iTetAeku6/FYuDr3HDuXm/6pCb8E//ABJvWkPskSCOvw7qxfY+TSi57tygPSNg5tyDc8kM02sDdecT7I6QXPtWC07gtppj/FYN9kbL+CbOG5tSTb/OgPSe90cRuvN/1SE34JP6pN60fVITfgk/qk3rQHo5o0g25lA4nUvODvZHTFu2Enj96TetA9kdK42OFEb/AHpN60Bb2AZ5o8ZzjWZfigkZNT03lJc5wII1hnLfmpkOyQBwXjTK/SrJhWesQzAcMdeajNPbyaX7o13jyU5Z7JCbTqdhO/L+aTetAek+Z70lrizt15vb7I2Udo4UdR/+0m9aX6pCb8En9Um9aA9IC990q83fVITfgk/qk3rR9UhN+CT+qTetAekULzd9UhN+CT+qTetH1SE34JP6pN60B6RWLjbkvOH1SE34JP6pN60n1R0rrk4Sdt/tSb1oC48yZ6osBzRQYJVU8rp6yB07XhzQGgG1iDupc03APevGubulWXMWc8Lxf2sc3yWmfFtTSjib81OGeyPmDQDhPD/7Sb1oD0mi9uK83fVITfgk/qk3rSH2SEvPCdvzSb1oD0kDcIvuvNsfsj3moYJsM6uIkXd5LMP4q7cj5qpM24JT11GSOsY15Gktte/f4ICSoQhACEIQAhCEAjjYXAJ8EFwBsSlUfzfmKlyxgkuIVvBjXFvZ1XIF0BILoXm6b2R8nlEgpcMbJC1xAd5NMbjlwKPqkJvwSf1Sb1oD0iuPFK5mHUUtVM0mOOxO9udl56+qQm/BJ/VJvWuDG/ZAy4nhs1EcKIEoAv5LN3goC+8i5tpc44TNX0UEkMcVRJTkPcCbsNidlJAV5B6NemSXKGAz0PtW5wkq5ZrmllPnG/JS76o6Zu3tSdv/ALSb1oD0ihebvqkJvwSf1Sb1o+qQm/BJ/VJvWgPSKCvN31SE34JP6pN60fVITfgk/qk3rQHo/T5voRoFrW53XnD6pCb8En9Um9aPqkJvwSf1Sb1oD0eGAHVzWmsnbS0k1Q8HTG0uI8F52PskJha+Enf/AO0m9a5q/wBkPNVUU9OcJI6xhbfySbn8aAu/JGc6XNc+LxUkEkftdVOpXlzgdRA4iylRNiBY7rx30fdL0uU6jGnDC3O9sKx1VvSyniPQpm72R82of9km35pN60B6RPcEljb+93rzf9UfNf8A0Sf1Sb1pfqkJvwSf1Sb1oD0fbe/NFjclecPqkJvwSf1Sb1o+qQm/BJ/VJvWgPSBHFYkO0kX8F5x+qQm/BJ/VJvWj6pCb8En9Um9aA9HuFy09yJL2u3Yrzh9UhN+CT+qTetI72R82m/tT6PtSb1oC3os90kue58stgkFRDIIzIXN0kmPXsOPBTIbg3BHJeNabpUlb0lVGYjhbrSTNk+1peUWjxU6Hsj5vwT6PtSb1oD0hpFrW2QW3AvyK84fVITfgk/qk3rR9UhN+CT+qTetAekEq83fVITfgk/qk3rR9UhN+CT+qTetAej97JTfey83/AFSE34JP6pN60fVITfgk/qk3rQHpDw4pGjmBa683j2R0uon2pPD70m9aT6o+YkD2p/8AiTetAXBmzPFJlzG8Kw6ohke7EKqKlY5rmgBzzYE3UwY8Oja9o2I4LxxnjpVkzBmHA604Y4eQVsNVtSyjzCDzU0h9kbLHpYcKOlot9qTetAelSRdYi4BvuSV5w+qOkJeThRAtt/NJvWsR7I2U7SYWWNtfUKWb1oD0gDYtBIF/nWQbYGy82ReyQ67UYsOa8xb/AGvKTv8AGs/qkJvwT/8AEm9aA9I8rIAsdl5u+qQm/BP/AMSb1o+qQm/BP/xJvWgPSA1auOyCDe4XnD6pCb8En9Um9aQ+yQm/BO/5pN60BcfSBnKlyhQQz1sMk3WzRxAMcAe06wO6lNLOKiASM4G4HxGy8gdJXS5Lm/DYGHCyHRTxP2ppR5rtXNS2h9kPLSUwh9qidBP/AHSbmUB6XIuN0WsLBeb/AKpCb8En9Um9aPqkJvwSf1Sb1oD0ihebvqkJvwSf1Sb1o+qQm/BJ/VJvWgPSKF5u+qQm/BJ/VJvWj6pCb8En9Um9aA9Iov6F5tPskJvwT/8AEm9aT6pCb8E//Em9aAvfOuYoMq5arMYq4nyw0wBcxhAJubcTtzW7LWMRY7hbK6BjmMcSNLiCdvBeYc/9N8uacp12DnCy3ykAXFLKOBB5+C35U6dpsAwZlGMLc6zid6WX+HggPVgduBzKCbciV5t+qOms0+1HL70m9aX6o+b8En9Um9aA9JXSarGx2Xm1nskJt74TsP8A7Sb1qZ9F/TJRZyxKSiqYuoqOwGMETm3cSR74+hAXAhYtcCBZCAjvSK0HI2Pci2imIPp0FUF7GLBcPxV+OuxCm62QVdgdRHvD3K/ukX+guPfmM37BVJ+xP87HPzv/AHCgLrbkrAWiwoRb8o71rL+RmBfeI/SO9akQQgI6Mm4GCP5j/wDkd60pybgZFjRbfju9akKEBHBkzAuHkAs3h9cd60v8jMC+8R+kd61IkICO/wAjMC+8R+kd60fyMwL7xH6R3rUiQgI7/IzAvvEfpHetH8jMC+8R+kd61IkICO/yMwL7xH6R3rR/I7Aw02of/wAjvWpEhAR1+TcCNiaG/wD6jvWk/kZgXHyEX/KO9akaEBHf5GYF94j9I71o/kZgX3iP0jvWpEhAR3+RmBfeI/SO9aP5GYF94j9I71qRIQEd/kZgX3iP0jvWj+RmBfeI/SO9akSEBHf5GYF94j9I71o/kZgX3iP0jvWpEhARz+RuBD/uH/5HetK3J+CaDGKGzBw+uO9akSEBHG5LwJrbeRDv+yO9aX+RmBfeI/SO9akSEBHf5GYF94j9I71o/kZgX3iP0jvWpEhAR3+RmBfeI/SO9aP5GYF94j9I71qRIQEd/kZgX3iP0jvWk/kbgX3h/wDkd61I0ICNjJeBN2FBt+Ud60v8jcDaezQ//kd61I0ICO/yMwLiaIX/ACjvWkZkvAmXtQ8f/Ed61I0ICOOyhgg3bQ6jbTYSO9ap7pP6MjgmJNzFlmkfKGuL5aeO5Ng0NG5PpPJegibOstU0bJGPilbqjdtYi4QFX9G1blLOOHhsdNGzEoLxzU/Xuc4OaAHE2tbcqanJ2BC/8yG3/iO9arfPmQq7CMSGYcnubC+Mh08JeWtc0EvfZrBuTYeKlvR9nujzNSshn102IxgCWGUBhLjc7Am/AIB8/kbgX3iP0jvWk/kdgX3kP0jvWpADfxSt9KAj/wDI7AvvIfpHetIMm4G121CN/wDxHetSJCAjn8jMCLzeh4cD1jvWsv5G4F94j/G71qQoQEe/kbgX3iP8bvWj+RuBfeI/xu9akKEBHv5G4F94j/G71o/kbgX3iP8AG71qQoQEe/kbgX3iP8bvWj+RuBfeI/SO9akKEBHf5GYF94j9I71o/kbgXDyEW/KO9akSEBHDkzA7b0V7f33etAybgbvOoLW/8R3rUjQgI5/I3AyD/MP/AMjvWlGTsCsP5iL2+6O9akRSHzviQHk/p9w2iw3pAy4yipupIqH37RN+w3vXqHL/APoHDdv+7R/shea/ZIf1kZd/OH/u2L0rl/8A0Dh35tH+yEB3ADbvSpAlQAhCEAJHX5JUcygMTw2F15O6VoG1PT1RQzbxOnku3v8ArTV6ybz8V5T6Tv7QOHfl5P3QQHoalybgT6SAuohfQ0/ZHd3itoybgdz/ADG1v/Ed60+Uf2nT/iN+hbggI6MmYE07UI/SO9aG5NwMO1CisfyjvWpEhAR3+RuBfeI/SO9aP5GYF94j9I71qRIQEd/kZgX3iP0jvWj+RmBfeI/SO9akSEBHRk3AvvEfpHetL/I3AvvEf43etSFCAj38jcC+8R/jd60fyNwL7xH+N3rUhQgI9/I3AvvEf43etIMmYEOFEP0jvWpEhARwZNwMnUaDtDh9cd60v8jsDdu6g3P/AIjvWpEhAR3+RmBfeI/SO9aBk3AvvEfpHetSJCAj38jcC+8R/jd60hybgX3iP0jvWpEhAR3+RmBfeI/SO9aP5GYF94j9I71qRIQEcGTMCsGmh2HD6471pTkzAvvIX/KO9akSEBHDkrAnCxov/wAjvWlGTcCbsKEW/KO9akSEBHRkzAhe1CN9/sjvWl/kbgX3iP8AG71qQoQEe/kbgX3iP8bvWj+RuBfeI/xu9akKEBHv5G4F94j/ABu9aT+RmBfeI/SO9akSEBHf5GYF94j9I71pHZMwLYihufyjvWpGhAR1+TsDcRehvfj9cd60HJmBfeI/SO9akSEBHf5GYF94j9I71qP536NsFxnApqeGmEU4a90TtTj29JDdr99lYSR4BbYjigPN+TavDMn4g7LmdaMRaz/N6iaUxhzGDcho9JV2tydgb2NLqMO5g63D+Kb+kLJGH5tw3yWdpjqbWbPGA1zRcE9qxIuq6yFm7FMl4j/JzOWp1O6wp6pup13udchz3kCwagLXGTsCJt5EP0jvWl/kbgX3iP8AG71p3p6mCppYqiCQPhe0Oa5jgbg7jgtz7lwF7A9yAYHZOwNrezQX34dY71pHZMwNzb+Q7/lHetSQIQEd/kZgf3kLd3WO9aQ5LwE2/mA2/wDEd61I0ICOjJuBElxodzt9kd60v8jcC+8R/jd61IUICPfyNwL7xH+N3rR/I3AvvEf43etSFCAj38jcC+8R/jd60fyNwL7xH+N3rUhQgI9/I3AvvEf43etI7JuBm38x5/dHetSJCAjjcnYHckUNrbD6471pW5OwMtBNDY93WO9akSEBHv5G4F94j/G71pP5G4Ef+4j9I71qRIQFSdM2WMIpMiVs0FKI5WtfpOtx/wBW70pp9imHOyRqc69mRWH/AJSpd07f1fVng/8AdvUT9ij/AEGP4kX7JQF3oQhACEIQAhCEAFU17KG/8hYSDYdZJfw6tyuVU17KD+gUf5ST925AaugPLWE13R9QTVFJre+CFxOt25MY9Ksn+RuBfeI/xu9ah3sc/wCrbC/zaD90FaSAj38jcC+8R/jd60hyZgZ/7iB3HrHetSJCAjgybgl9JobtG9+sdx+VL/I/AzsaHYcPrjvWpEhAR7+RuBfeI/xu9aP5G4F94j/G71qQoQEe/kbgX3iP8bvWj+RuBfeI/wAbvWpChAR7+RuBfeI/xu9aP5G4F94j/G71qQoQEdOTcCda9CNv/Ed60HJ2Bv40P/5HetSJCAj38jcD2vRA2/vu9aT+RuBfeI/SO9akSEBHv5G4F94j9I71o/kbgX3iP8bvWpChAR7+RuBfeI/xu9aP5G4F94j/ABu9akKEBHv5G4F94j/G71o/kbgX3iP8bvWpChAR7+RuBfeI/wAbvWkdkzAi23kN+f2R3rUiQgI4cn4Lo2od+7rHetKMm4EP+4j9I71qRIQEe/kbgX3iP8bvWj+RuBfeI/xu9akKEBHv5G4F94j/ABu9aP5G4F94j/G71qQoQEe/kbgX3iP8bvWj+RuBfeI/xu9akKEBHTk3AuPkI/SO9aBk3AjxoQP/AFHetSJCAjrsmYGdxRC/47vWsXZLwJ1mmh27+sd61JEICNvyVgL9jQ7D/wAR3rWFTkrA56d0T6MFttIGt221u9ScmwusBZwNrhAeacx5WHRnmo4yygfV4EXh8zWuLGtYGAbuJPvnK38sYblHM2Ex4hhUUVRC7svMcriGPsCWk94uFKsSw6mxOjko6+FksTxpOpodzvz8FSuL4DjHRpj4xbCXOnwKUhstOHOe5pLiXuDAAANIG6Atb+R2A7fzEb8PrjvWsm5OwLlQj9I71oynmbD8y0Daqhl88AljiA5l72BAJtwUgJsNxv6EAwfyNwL7xH+N3rSHJuBbO8huRuPrjvWn8glt77rJnm7oCPDJ2CHfyG3o6x3rSMybgZF3UFnHj9cd61I0ICPfyNwL7xH+N3rR/I3AvvEf43etSFCAj38jcC+8R/jd60fyNwL7xH+N3rUhQgI9/I3AvvEf43etH8jcC+8R/jd61IUICOnJuBfeI/SO9aP5GYF94j9I71qRIQEd/kZgX3iP0jvWj+ReA/eI/SO9akSEBHxk7A7W8iH+N3rWP8jsD1n+Y/H1jvWpEg8kBGZcnYE2GQih5H/WO7vFeasJpKel9kjFFSRdTGysp7C5N+yvW0v2GTwP0LyfRf2l2fnlP+ygPWTHEgdgjZCzb5o8EICOdIv9Bce/MZv2CqT9if52Ofnf+4VdnSL/AEFx78xm/YKpL2KPHHfzsfsFO2SUsnpAIWsDibrXLKImFxWMpKKzIx74OhCbY8SjA7R+cLL2zg7/AJwq/wC2LNbOojZ4cvIcEJv9s4O/5wtUmLwDgHfMo+2LL+YifCn5DqhMpxpnJr/kCx9uv/Dk/wAKfbFl/MRKozfYfEJjONf+HJ/hWh+LTlx0WDeQcN1qn12yj/3RPgT8iRoUZ9tKnvZ8iUYpU97PkWj/AFJZJ+8v19xPq8/IkqFGvbWp72fIkOJ1J5s+RQ/SSzxtJP8AXyI8CfkSZCi/tjVd7fkR7Y1Xe35FpfpRarn+v+DL1eZKEKMe2NV3t+RHtjU97fkWS9JrV/8Av/A9XmSdCjPtlUW3+hapa6aQWJt4bLGXpPbL/wB/4JjbSZK0KHNfIL3kfv8A3il6x/w3/wCIrU/Suj2j+P8Agy9UfmTBCh/WP+G//EUdY/4b/wDEU/1XR/g/H/A9VfmTBCh/WP8Ahv8A8RR1j/hv/wARReldDvH8f8Eq0b7kwQof1j/hv/xFHWP+G/8AxFQ/Syiv+n4/4I9UfmTBCh/WP+G//EUdY/4b/wDEVl/qqjjOj8f8D1V+ZMEKH9Y/4b/8RR1j/hv/AMRUf6qpfwfj/geqvzJghQ/rH/Df/iKOsf8ADf8A4in+q6X8H4/4Hqr8yYIUP6x/w3/4ijrH/Df/AIin+q6P8H4/4Hqr8yXkX4pGX5qI9Y/4b/8AEUdY/wCG/wDxFP8AVdH+D8f8D1V+ZLDazr8DcW71T3Sf0fVEda/NWUT5JjkRL3dU0apHGzb6nGws26mb5Xix6x1783FZOnka9vWFzmHjzR+lVFb6Px/wT6o8ZyNPRf0iU+aIH0lS0RYtAD1sJcXHSCBqvYDc32ViDtNBHNUJ0gZCf1jsZy3K6GvhHWaGyOAfpBIGlo335Lp6PukJ2JUrcIx+Q0WN04EZ660LXkDtEAm5HxKwj1qFSl4tOOfhn/BrdBruXmL80qiBfI4azI5jzwDnEX+JI98xaLyO+IlV/wDqujnDhj7/APBlG1b7kwQofrdp1NkfcctRR1knw3/4isf9WUc40fj/AIJ9UfmTBCh/WP8Ahv8A8RWTZZWnUHu+UrOPpVQfvRx9/wDgh2r8yXIUX9spmiwPzI9sqk8CPjC2f6otv0/8GPq8iUIUX9sarvb8iPbGq72/In+p7b9P/A9XmShCi/tjVd7fkS+2NV3t+RZf6ntf0/8AA9XmSdCjIxSo34bDuQMWqAL2/wDatq9IrRvGV9f8GLoTXKJMUh874lrpXmSFrjxK2HzviV5TmqkVOPDNLWDy57JD+sjLv5w/92xelcv/AOgcO/No/wBkLzT7I/8ArJy9+cP/AHbF6Wy//oHDvzaP9kLMHcEqQJUAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP8AiN+hbgtNH9p0/wCI36Fsf5pRvG7BkhcElfDG/SXb+IQcTgtx+cKvfVLVScXNbGfhyxnB3oTccUhHP5wkdikNuPzhY/a9n/MRPhT8hyQmWTGWtcQ1jyO8C6x9uv8Aw5P8Kx+2bLOPERPgT8h8QmP27bzY8fEFqkxh7vsY+ULCfXLOP/dE+BPyJChRj20qyfeW/FS+2dT3s+Rc79I7Nf8AZfr7ifV5+RJkKM+2dT3s+RL7Z1Pez5FH+pLP+JfX/A9Xn5ElQoycTqe9vyJPbKqPNvyLH/Ulr2f4/wCB6vMk6FF/bGq72/Ik9sar4TfkWH+p7Zc/1/wT6tMlKFFvbGq72/IlGI1HvyLegKH6T26WUvx/wR6vIlCFEJJ3yOvrePjKOteB57/8RWr/AFXR/g/H/Bs9VfmS9Ch/WP8Ahv8A8RR1j/hv/wART/VdH+D8f8D1V+ZMEKH9Y/4b/wDEUdY/4b/8RUf6ro/wfj/geqPzJghQ/rH/AA3/AOIo6x/w3/4in+q6P8H4/wCB6o/MmCFD+sf8N/8AiKOsf8N/+Iqf9VUf4fx/wT6o/MmCFD+sf8N/+Io6x/w3/wCIp/qqjnGn8f8ABHqj8yYIUP6x/wAN/wDiKOsf8N/+IqF6V0Ws6Px/wPVX5kwQof1j/hv/AMRR1j/hv/xFT/quj/B+P+B6q/MmCDwUP6x/w3/4ijrH/Df/AIio/wBV0f4Px/wPVH5kqG5e0dvfflZRjpAyZh+c8HdR17GOe3UYJXN1dW8ttqAuOSw6x/w3f4ijWbdt79POziofpZRX/T8f8EO1a7lUZXzNifRtj7cvZpc84OwuipZ3uFixtmR2a0Ei9viV+008VTGyeKTXHJ5m1lXWbMs0eaaI0mKebs6F7HaXADdt3cePFVZgOP410Z5jbg2OCebBi9rW1Olzg1pGtxMjyObrXVlZ9cpXa9hb+Wf8Gt0Wj1EhQfD8TixKmZU0dSJo3tDhok1WuL72PpW8yyW1F7tPdqK4qnpPSptxlDfyz/g2RtdXcmKFD+sf8N/+Io6x/wAN/wDiKw/1Zb8ad/n/AIMvVH5kwQof1sg9+/8AxFDpHu4Pf/iKx/1bQ7x/H/BDtH2ZMEKKxVskTdLXHVyvus/bGq72/It0fSi2l2/H/Bi7WaJOhRj2xqu9vyI9sar4TfkWb9J7Vf8Av/BHq0yToUY9sanvb8iQ4nVA8W/Ii9JrV/8Av/BHq8yUIUX9tKrvZ8iDitSObT4BbF6R2r7/AI/4Hq8/IlCE04VXPqHEPHzJyFtTuN1cWtzC5hrgapRcXhkA6dv6vqzwf+7eon7FH+gx/Ei/ZKlfTv8A1fVng/8AdvUS9ij/AEGP4kX7JXQ84zgxLxQhCAEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Cj/KSfu3IBz9jn/Vthf5tB+6CtJVb7HP+rXDPzaD90FZ7b6d+KhvAM0LkqalsNtRt8a1DEYQd3fOFyVL+hSn4dSWDNU5NZSHBC4fbKDv+cLF2KQDvPgQtL6vZr/yIlUpvsOCE0PxiIHZr/mWs423kx/yBY/bVl/MRPgz8h7QmT27/APDk/wAKQ41cG0cl/wAVPtqy/mIeDPyHxCjPtpU97PkR7aVPez5Fyf6is/4l+vuMvV5+RJkKM+2lT3s+RHtpU97PkT/UVn/Ev19w9Xn5EmQow7E6k8Cz5FiMRqvhN+Rapek1qnhb/f8A4Hq8yUoUXOI1R9835EDEKr4TfkUP0mt0+Px/wT6tMlCFF/bGq72/Il9sqgDf6EXpNbP/AN/4Hq8yToUTlqppR5xHhstYkkA3e+/4xWEvSm3j2/H/AAZK1fmTBCh/WP8Ahv8A8RR1j/hv/wARWr/VtDONP4/4J9VfmTBCh/WP+G//ABFHWP8Ahv8A8RU/6ro/wfj/AIHqj8yYIUP6x/w3/wCIo6x/w3/4in+q6P8AB+P+B6o/MmCFD+sf8N/+Io6x/wAN/wDiKy/1VQ/h/H/BKtG+5MEKH9Y/4b/8RR1j/hv/AMRUL0rotZ0fj/gO0a7kwQof1j/hv/xFHWP+G/8AxFQvSui/+n4/4MfVX5kwQof1j/hv/wARR1j/AIb/APEVP+q6P8H4/wCCfVX5kwPA80nK9lEOsf8ADf8A4ijrH/Df/iKj/VdH+D8f8D1R+ZLgdTLrTUwRT00tPVASRytLHtPNpFiPkUX6x/w3/wCIpeskEl+sPC3Ep/quj/B+P+B6o/MrDNGWcT6NMffmHKLHSYPMXSVOHxaYmEgBrAXEknznclbOSc20GasKZWYfMJWElhIB2cLAjcDmuJ7I6mOSGru6NxGxO23iqazTlbFskVzMdyq976YvAqILvk7Au4kNGwNwN11WnpHQuJ6GseW/Pw4MZ27j3PSxvcW4JR3Kp8lZ2pc0YdA6OZ0Ve1jRNBI8B4fa57IO1lK3OlDyetu7nZxstdX0kjRm4VKeGvj/AIJjbZ7ktQoeJZWG7nuN/SUgfK0nS92k8e0VqfpVS/g/H/Bl6m/MmKFD+sf8N/8AiKOsf8N/+IqH6WUF/wBfx/wR6q/MmCFEYqiaI31k+JJW4YlPy+hbIelNvLt+P+DF20lwShCjHtjU97fjCPbGp72/Is/9T2v6f+DH1eZJ0KMe2NT3t+RHtjU97fkT/U9r+n/gerzJOhRgYlUg3u35ErsTqeN2fIs16S2jWW19f8EOhJEmQeSjcOKVJcAS35FIWnUAVaWXUKN4s0nk1yi48mMv2GTwP0LyfRf2l2fnlP8Asr1hNtDJ4H6F5Oov7S7Pzyn/AGV3EYPWzfNHghYt80eCEII70if0Fx/8xm/YKpP2KPHHfzsfsFXZ0iG+Rcfvt/MZuP4hVJ+xPIBx0E3PlY/YKiXbBEXuejRfdcOK3FK4jvXe3iuTFQDSkLkv46qEseRnBZmiMM3YNSWzUMNhbkluvjmp92y5UcLAAA8OKxLbe9Cyuksmp+bJwA/ECXfvQNkllKl8WOAse9G3M7oslGyxbXfJORNu9G3elui6xxHkjfsHZ70dnvKLousk1HsYrOdxLjvKW47yuXFawUGHT1Tml4jaXWCqzK/S/BiebJ8LnhdoY97B2mjgbBd9Dp1S8i5QXAnOK5Lc1D4SNQ70utrvMQDvuuHS0TyAJPDglLDyQTyWFlDZklgXccSi6AEtkSROwl0XS2RZMLzGwiVCCBpuHAhQ/gQ8AhJY2vcH0BAOwuLEqcruGkKhDSDsNyg2PDlsVj32yYLGRLouiyLLLJs2C6LosiyZGwXRdLZFkwvMbCXRdLZFkwvMbGJ6s21HfwSvfwAFwEp3bbkgbNsOCjUuDHGWIXNB1E6fQOfoVddI+QIsZcMWwpxpMVbcsdCAC8ON3Ek8FYtu4XSk6LG1j6V2Wd3Vs6inF5j5GMoJlXdG/SGa2pdgmafrOLRDsntSFxLuzvw4Kz3amBr2uLo3cL+lQXpFyBBjTTiOHgsxSLtwPBJAeG2F2jj4JoyBno007svZmY6mrYHGNsspEbZNIAuAd7E3Vpd2dG9p+sW+z7rb+m+xri9Lwy0ntOoadrpESXDWGxfqvZzeA8UgvbzTdUDgn7PDRvUkzNADjwOyR19ILfjRcO3AIUPHJi+RSwjmsQTftbJbJbpqGRLjvKLjvKW6LpqRORAR3lFx3lLdF1i2skOW4C+/gi50I98WgG9rqAZu6TcOytX+S1+H1TrEjWJWtGxtzC7rO2dzVUImFSWxdVD9rNutx4qi6zp2ojhFWcJw+o66GIva/rGPF/BQKX2RuMspHgU7zVGQBn1tnDwX161h4dGEPJIqZ+8zs9kf/WTl784f+7YvS+X/APQOHfm0f7IXiLMOacbzZnXCarMETodMxMWqIR3OkA8OPAL23l8/9hYdcj7Wj/ZC3mI4BKsWk37wskAIQhACOZQsXO0uAI480ArefivKfSd/aBw78vJ+6C9WD0Lyn0nf2gcO/LyfumoD1PR/adP+I36FseLtK10f2nT/AIjfoW08FjPeLBE64A1JWggE2XViA01BsuYHtX5r5B1GtOFzOC82XUMOC2AtCxIbZZIsuFTk45yzN4QNG2x2RY96LBFljGTznLGQI7wD4pLgcgEqVZuafmQJqB2ujs96W6LrD2fiTuJ2e9Jt8IrK6yuU2+I3MLjvS3HelVU9JPStFlXGYcPjgfrHWB7tTbEjTa1/FdVpYzvZOnS5W5jKWneRatx3lJcd5XHhFeMUw+GqhaWtcBe+/IH+K7ea55wdKWiRkmmFx3lHZPO6LoPaFisWtyHHfIEADZA34oskAspwvMnYLoulsiyYXmTsCEnEG2xCVg1N84A+lNK8yMIEJAfTe2yVRpXmMAhISBxBN9tkrrs89jt+aaE/MxewIQQW2LjcHghRGS5JSBIlRZZLdbk4SEui6WyLJheZOwl0JbITSntkbAgAE2IuEIRpJYIeBI3M1Oa4aiDtf3qaM0Zeos04VLQ4lEx5e0tEzm6nNvbcfInh3atfklcS5wceI4Lbb1qlCWqkzU4plAwV2OdFuZGUNa+SowqYh7HSPFmtc/SAA3uDVeWF4jSYvAyoopdcLt7Wtbu4+C05gwekxzD5KCvZrhkBILTaziCBv8apSJuK9D+PdW5r6jAJTsGs3a1g+G7vL1fvwurU24rFRfcn/VmnDpsvppJHxpQuDA8Xo8boGVtBPHNC7skMcHaTYXuR4rvIPFp1egclQVYOlJwmtzqUlJCjgUjb3S2IG5BPoQtSafKC2WAe0ce5Y6h3lLbdKmUTkx1DvKNQ7ysroUpKXJDZjqHeVkC23FCEaSIyIdPekbax0m6yTJmvH48u4XJXT0s08MbS55jIAYBzJPiphCVWShDlkOWFlktwHaR1/T/BPg8496orB+nHBtD5IcOqXta4sNpmHtbKNY57IPEKHMDuro5fax7vrbdLCQABftc9yvq/RqUqFsoz5KutJOWS2unb+r6s8H/u3qJexR/oMfxIv2Sqfzb0wZlzVglRSOp3GjcXXIgbsLEcR6Crg9ir9byO4OFuxFv/AOUq2XBqLxQi6xeSG3aLlSQZIQDccLIQAhCEAKmvZQf0Cj/KSfu3K5HcNlTXsonBmQ49QJHWScPybkA6exz/AKtsL/NoP3QVoAqrvY6Ee5thhG/82g2HL62FaN+Ch8gYcwA622NuH0lNdgOJ3TvmADUzwH0lNR4r5f6TTnC/aTeMIs7b3RNu9AFxsLpUiom/izpWPIQix80JRw2aB6UWS8lGfixgN+8o37yksiyZ+LJDbvRt3pbouscr4jcTbvRt3pboumV8RuJt3o27ylcS2Mu5A2Uez7mZmVsuz4g+Nz3Mjc4WIHDxW2hSdaapx5Zi5YJBcDmUmod6gvRh0gR5zp5rQPY9kjm3Jbawa08vFT1bLu2qW1Twp8hSMNQ5EpRqPFZJDuuZ5zhEp5E0u5Eo8eKTSEqE7AlSJUwidmCELF5tbcC5tumleZGkyQlIsPOCxILbe+v3JpXmRhCoQ0gmx4hJcF1wOyOKj3tkRhIVCPBCybSWCdmIi6WyLIkiVgS6LpbIsmF5k7CJUWQmF5kYTBYgteeNiPQl1BKX6iCeKjSvMYAkW0kAlI9kckEkdQA+F7S0xkXBS7F1+aL6XEjiRZZRbpvVF7mMorBTOesnV2W6+TM+UXviZrLpqeMtjaS91j6TYFTTo6zzQZvoWCJ4jqgSHNDXfCLefgpg9jZY3NcL34hVHnnI1RhFU7MuV2vZWQ2lqGWMnWtY0aWtHAFego16PUaao1Xia4fn/wDZ/wBDRocHkt9zdL9Dje4uFiLguHIKGdH+eKLMUDKOokbT4rCND4pHjUdIFzpHpNlNXj67IAQC22pvMqmr287eTjI2xkpCIRcA3LTZFw5wLAdPctGUzZlCaXcyUWI4JC0JQLcE+Q2E1fCO6NQ7ysrouscIjIgIPMpbjvKLouowiMiXHeUEt08ShzrAk8ElQXQQyPc0v0t1BreKyS2Jyu5lDp1jtHipczzWqhcQ6YMKwfGJqCuoKhssb3N1GVjR2fRZc+cOnp8eGCTL9BPHIwOc5z9EgItt86+kei9pKhRbl3K25azsegJvsMn4p+heTqL+0uz88p/2UVHsisdqhHFh9LI6Qx6ZAImO7fPw5KPdGOI4hi3TXh9ZjETo619XD1oLNFrbDbkvTrK2ZzJntZvmjwQkY4ECxHBCkgj/AEhtD8i4/vwoZv2CqS9ii5oOOttv5WOX9wrbmmq6TxgmO+XGqFH5NLxgiA02PMehafYmyTupsXNWT13lLdV9t9Buox5E4PR7b81y4n9rFdQ33C5sRF6Zy57tZozMqbxNEWaskjR2Qe9Kvi6yti65BCEKdx94IQhRlgEJEqbgEIWJcARdSkyG8bmSVvHdFhbisSLi6yabXJGF5mBijmp5aeqAdHI3Sbi6rpvR7heHZgkxGlhYHvc51xG0cTfkFYwb8LdYvjueGy7bPqFW1TjCWzNNW31vk04cXae0uo+csWsDeCzXJKrk2Rj8QQkslWKy92Z6c9wQhChpNjGAQhCjSTsFwNzwCGsdJ24w0M7uCxkdoY53wQSqQzJ0sYlh2epMLhglNO2RzdnMsbNB7rrusun1rvPhLg1TkotF4gt1bfIhzd7laoZBNBFKRpLmhxJ8Fm5wcw9oO3XHV/Zyw1nBszsQ3pSzwMj0UUzaeOVz3Fu7SeDb8l19Hmav5XYGcQMLYiHBpDQR70Hn4pwzXlnDMy0whxSAS6LkXc4cRbkVsy7gVHgGHikwyDqobg6Q4m5sBzPoVlUq2srNaF7efjwaoqWrfgdUJHENG537kAg89+5VKkmbthUIQpbwNgQhCnSNgQhCaRsCEIsiaXYhvAb76d1iHa3aHDdZgOuCw2tufBBaS/XbbvWSj7OexCl5g1rwbBx9G6g3SRkWLMNIZ6JrabFoyHMliAaXAEuN3cdypxYG5LgAsWENBGoEk3HoW6zu5209dPgiUdXBUvR5n2ooq1mXM13ZWRkNEgLn6i67t3H0WVuai+Nskel0bhcG/JQbpKyDSZspRO/SzFWBxiqjqIY42F9INjsFFMh54qsv4gcv5qa6CUXEL5S1uttw1pAA52Kubm0o9Qp+sWvPdeX1waU2nuXHqs3UOCB4WSHq3wAxSBwPCyPNaLnfuXn8KKw+ToUljYyQgbtuN/QkHpFljlE5FQhCnkZESoQojHL3ZD8xGF2u3vhv8ShvSZlWgx/BpZ5KeLymMgatDbm5udz4KZm5fqv2gFhPEydhje27XecL8V29OuJULqLTNc90UTk2TAm9CmKPmpaX21EVSNb4mh5tIdO/HgmLoK6OGZuxKoxLED/NYZnMDBpcPNDhsR6VKen7o0wbC8Lo6/C6MRGolcyZwe46WhhNzc96tfoOy3Bl3IdJ5JK2bypkc5LQRa7Gi2/gvsFGWqnF/AqZbyZTHT5QUmG59y3S0kEcLG1D7dWwNv2G8bL07l4AYFh17fa0f7IXmb2TnlDc6YO6jJ8oMz+rAFzfQxTjJNT0kunoG1oqhh/UMteGMC21txvwWwxLxFiRa6yWuAu6pnW+fzWxACEIQAkdzLgLBKk5m/BAY37Y7rLyn0muB9kFh4F7ieS+3/hNVv8ASLU53ixWMZX68waW6tETHczfzvRZef8AFpsem6acLOZDJ14mk062Nb/q9+HxID2VR/adP+I36Ft71qo/tOn/ABG/Qtp2BUPgEXxL7YK5QurFBaq0+gLlA7RHcvkPVN76pnzZc0XmCC6VCFWrKiZzYIQhSs4CBCEiYJFQhoubIYCQS4Fvim62RGQSpNuRul5kKHJrkZBQvN2QcJzJXR1FRDG6ZurUTG03JtzPgpm0gki6Qgb22J5rotruvay10XhmE46lhnPRQMoqSOkp2gMbbgLcrLptYDv5obs0jn3rFoIvc3utNScpPVLkyisGSEIUKTktzJsEIQmkbAhCE0jYW22ocuKwN5AHNAAHxIcXNa7kDzVedMedqnKdDTvo2Pm1yOaQwgWGi/MLotrSd1Pw6SyzBy0li7WFgB3oUS6MsyS5py3HWzRuY8BgIJB4sB5KWE2NjssK9CVvUdOosMyTzwcWM17cMw2eqc3UI2Oda1+DSf4KuOjzpYbmnHX4fLAG9poadDubSeZ9Cs6rghqoZKeoj1xvYWne3EEKN5dyHguA4g6toqZrJnEEkPceAI5n0qxsqtpG3mqvvduTVNSctiVkFshD9xpuELHUS+7zcWt4Jbi/EW71UTksNJYM45XIqElxYm+yBuFljMVlmfIqEIUaRsCEITBGwIQkWXiNLGkLDFQsA7U6zRdZOLWu0lw1/BUJZ3QliPIo0k6ATvvfuKb8YwijxqhfQYlDHO3g18jA8jcE8fAJwcG6NLW2vxSR3jaGtOyzhWnCanTeGjFx1IoLqMX6KcwNb1slRgczxs6Qu0lztRs1u2warswHGabHsNhr8KdqEjQ9zXDTa/oWzGMNpMVw6ShrYesgeCbXI0kgjVt4lU5Ph+L9GGNyV+Gh9Tl973FzY2gCMHsMBc654leh1U+q08Paovx/ojS04MvEix2OyE05ax+gzHh/lmGzMeyxu1pJsQbHe3enYXLdVl5+tSqUpuFVYaN8Z5QIQeAQtWrbJlkEJEqlSbWUMghCFDyMgtFZRUuIQupa6NskEo0uY5oc1w7iDyW9F7c9uamE5UZKpF7oxl7SwefKWgw7LXS0+gnoaZ+GzU7piySMaA4yFt7cL2CjGfcIgzN0u1OC4G2KKjMzmNDbMDRoB7I4civRuYci4JmWiqqmvpBJWxxPEbtbgRZpLdgbcSqf6B8jQVWfMQqcQe2Oqwp8WmNwN3l7H3tY7cF9g6bUda2jOT3KqtGKlhE1zlkfCsndF0wigjkne1wMjom6gTETxHpC6PYqtcMjyOedTHNhO5vbslSzpttD0f1bIzsGuGn/ANN6onoWqM8xZb//AGY6/wAiLY7hkUbgBbbdy7s7Ywaj1y51rEAELJvC/eot0fvxd2BNOOh/lGp99TQD523BSjbSCVJBkhCEAIQhAI7huqc9lA4NyGzWLgvk5X/1blZWcH4ozAKh2BBxrwW9XpaCeO+x24LzL0v1PSA/LDBmEz+T9Y/zoY2+8Pd6EBcPscgPc3w63A08B/8AxBWgRwVY+x4d/wDTnDdR38mgv+jCs4ecR3J3GcDLj/nN8B9JTUeKdcxbaD4D5ymo8V8x9KZf73LXZFlayzEEIQvPKWVwdK4BCEJlj7wQhCZH3ghCEUsrKJ3BCQm1r80XF7AqU8jcW9+yeB3Tfj+EUeP0D6Gvja6FzS0gtDtj4pw2sRbe/FG2mxF1NKrOlU1x2a4IYx5ZyrhmW43sw2FjC9xcS2NreIA5eCfUgsOAS3WdxXqXMvFqS9oLYEiLoWlt85JQIQhRhvuTsCEIUqL7sfIEhLffC99htzRdcOOV7sNwetqmNLnxQSPAHe1hI+hZ0qfizUIbtkSeFud4Y9m7wNPoN0NIINt7qmOi/pQr8yZqOG1sEjY3OsC4tsOyTyCuXYWcDoB2sui6sqlpPRWWGYxmmZxMHWW4mxO6qnOnSx/J7NTcIbRxPBcxpcWu98wO5eKtUdp4sb2BuVE8byJgON4ozEaujDqgOBuXu5Cw4H0Lo6ZUtvEl43GPiRLU+CRYXVeW4bS1Vg3r4myWHK4uupaqWBlNTRQQi0cTQxo7gFsuFX1KkNcmlsIpioQ2zm3a4FIduS1LD3M1hioQAeeyTnZSknwTgVFkvBa5nlrC4NJsbWU7GKknwbNIRpamWrxLqAC5p39K5hj0DXdtwA7yV0wtKlRZijnle0YvDl/UkVkBwvYjdNlJi0E3MAcjfinBrxIA5rbg7LVUpSpPElubIV6dRZT2MpO9qU/XIzG5rXtdsWu4H0FKWkAXFkh1W7lp4lsbXiSKl6Q8hTxVwx3KbzTVsY+usjcImu7Rc43AudrBPXRr0gUuaYXU1XeDFYg0vGkgPLi625O+wU/4NIbsHed6e9VP0j9HbjU+3+VvrGIU13iFrS90pIDQBc2Ft/lXore6p3sPV7h4n/1f0wtkaHFxeUWzr09mQCx4EbpQNBs3e6rfo26QafG2nC8V/m+IwXaWyOF3FpDeAHeSrG7TXB1rHk3vVTd2k7aeiezNsZKW6FQkuL8UXXLhx95mewqEIR/MZBCEKFvwxkRwuN1m9pAMhOppFiCsCL7IG3HcHaylSen2WQ1kpvp6yrh0OCnHY4GCodLEXaYxvrlAPp5pl6Vp8FHRpQOwmlpIqyQzNkMbGtNgNuG6vPFcIoMbpvIcTp+ugfY21EcDccF576S+jXCsP6SMJwuigFFh9VUxRCVxc5o1MBcdzfivpvozdTq2vt9isuVh4Jd0DdFlE7CvbrEmNmMgLgx7WuG7GnmFHMPEcfslImwRtjjdWwdhos0dnuXpbK2EQ4Llqlo4JGyRMp2jU0EB1m2vv4Lynjz8Tb08ze0Yf5aKmHTpaHEHSLbFeiTbWWcyPZLB/dbb0IVR5Kqekd+MzNx5tT5CIXdWXQxtGvU22434akKSSd9Ibg3IuP6hv5DNaw/uFUp7FE3djtwT/Oxx/EKuzpEb/wDsPjxJ4UM23/kKpT2KbyXY6NO3lY/YKkLg9GjgForhemet4PBaaz7Xf4Fc9ws0pIL3kRRvmgJVi1ZL4zNYk0XSBCELEAhCEAIQhACxkdpjdsCeWyySabnd1lDGMmtjzbtkC6zJsQBc3F1TPS7n7EstYrTxQQnqy5tzrA4g+gqW5Jz3FjWDwOna1kxY0k6r8rnkrafRK3gqtDdP5nPVu6MJaZPH3k6F1i4uuLLihxBsm7TcLeKuP3zgqzwZR2kjONennZnShYtcHM1NN296UkBY1E4Sxg3IVCACRcJAQTYKNTTJSFQhCybyyGCEIUEALEjVuOaYa/KOCVeJyV81I3ry69+rZ3W7k/IO5sTf0rKFadF6oshw1MQlocGhtow0Dglc0PbaIW8RZLew7wqr6ZukCtye6lFBDcPYSbSBvvgOYK3WdpK8raI8siT0lpt1b6xuViHaTvfuFlH+j/HJ8xZdhrKlmiQ6ie1fg6ykLXEvvyGy1XFOdGTpvszJPKGfNuY8Pyxh7qyvMlg0uAAB4W9a05RzVh+aKN09Br7Li03aBwA9PpWjPmUafOOGupqubquyQOxq429I7lpyBk2myjh76enkD9Ty7zdPED0nuVrGnb+qas+19xHcliEIVHD4kghCFsAIQhAKEJAlWEk2ngYIt0j4vXYLlqepwyLrJ9LxbQXcGkjh6VDuhDN2O482pbjNM6MNcAC6J7fek++VrTwxzxOjlaHNIsQVqoaKnomltNEI78wSrqheW0LOVKcfa7PYhp5OggGyDHfglAB85yxbdr9uCpNLaeknOBSbt0uF1C+kPI9HmulMrQYMRhbeOSMhnmgkC9r8Spo43de2yQjU7tdkD512211K3kp0u3KMZQyUdkPOldlmuOXc2CQNZaNlSWuN7AknW4+kK8I5Y5Y2ywlssTmAhzTq5d4US6RslUebMJd1sQbVRj626xJ3IvzHcq+yVnLE8m4uzLmag6OAuHVyyOG4c4aRpaPgq6uaFLqlPxqO0lyv8I1ZcWXew6gS3khr9TRtZYxyxPpWVVM7VTzDW11uIKyabjTpsRuvNyg6UtMkb4PIqEbjikuiTfvGTQqEITzD4F98fBIOISnzj4JAdwttus14/NGEvdO/NeDQ4/l2soaiMOD4nBhsLtJHEEjYqoOifOhy1mKvynjQqRoqJBSlzCfrTAGjcnvHIWV9scGQC50jvXn/AACkgzp0vYlW1bhH7VTz0TNtWoNOoHlbivstusUo/JFNLkYvZHke6Jlsgn7Yfa35Ni9JZeucDw4kC3k0f7IXm72RrgOkTLzQyxFQ/e/H62xeksvE+0OHXH/do/2QtxB3tcCQLH4wslg0OuN9u5ZoAQhCAFi47kG9vQslidWoWO3NAYg3kA0i1uJC8qdJgt7ILD97/X5Nr8PrQXq8bryj0mi3sgsPsLfX5P3QQHqij+06f8Rv0Lb3rVR/adP+I36FuUPgEZxdv8++ILiHnu8U4YztW79wTfbtE+lfI+sRxfVPmy3ofu0KhCFWdjY+QQhCkkEIQhAjr27PFbO05xBtYBazw3Nkuo6nb3BHFRhp5AgBN9I2BtulJsXAC9u4KOdIWPTZby3JVU8ep+plu1bjf1KGdC/SJV5qnmbiEWm+kXMl+ZHIDuVhS6ZKpQlc9ka3WingtYgFoI43QdikFyHOAs3VslVbCLmss25ysghCLLLGNiAQgbgnuSAg3tyU6QKhCEAIQhAJYSNIudim/GcGwzHKdsVdTtk0kkXjaeItzBThs25aLk8Uo7LbtNnJCTpz10w45OXCqGjwukbTYfC2KJoAIDA3cC3JdJPWOFhsENPa3Nyd0yZ1xeTA8s1tZTs1SxxFw7Vt7j1rfGE7mqsvdjGlD44G4sBa3FY3N1U3Q/0i1+a8Wq6CtiLWxmRwd1gd5unlYd6tuwU3dpKzrOlPyMYPUsmuomjpqWWeb7HGwvdbuChmCdJWDYtmGTCKfrOsa57QSwDzW3439Cl2IU/llDUUzjZszDGT3Aiyr3LnRPQYNmZ2LsqA6Que63V285pHG/pXdYQoSpS8V79iWWaRYEDTptfdY/J8SJLPOkt7NrXSABosOAVU+SUKhCFABCEbc1KJXIl7JC8NFzvZa5Xgc1zOc48BdR4WXuzJU8sSsxSOmgkcwdsA8vQvPv8ALPMlZ0lR0sLJPJjMwebJa3V+NuKvGrgL3EubxXBhmB0dPiLaxkDeua4OB34gW71fdNure2z4izt8BXsta5JTQl7qKndJ55jaXeNlvWLN2ja2yyVDJ5k2iFssCOOlt7XvsfBc9fQwYnROoayJjqN4Gq7QXCxuOO3EBdI2JPG4tZYtLmkgi7D71KFeVKWUa5rJRONYVivRrmCLEMJdLNgJewvjJc8gDtP7LbDireylmKjzRhsdXRytbIxoa+IkNN7XPZv6U44jSQYhRy0dZGH0kzSxzSdmg8SqTzDgWK9G2NOxbA9cuGSkuexuljWlxsNzc8AvRaqXVqXhzeJr7smlJwZeTX6+0RpvytZZXTJlHMdDmrDTW0EzXlo1Pa2/ZFyBuR6E9ekcF5+rQnQnoqLg6otSRkhIPNvySqCGCEIUEAgEhw823O6EjhqFi24PE9yxlwB0wJhe2V8gFruZYcxYKoOlFr+jnOFBmjD2vFFO6WWsaAS2zGtDbgWHvjxKuPLx1MfYWaHEfMFWHsmK2N2B0WDyW0YjHOCb8NPVnh8a+u9HX+0gVFX32OHSbjFPj3RVPWQag17HXuLb9S4/xTP7FRjm5FfYtIcyE7n+6U4Z+wqDBehw00NnMdFqJtbjAfUm72KJByRI22wbDY9/ZKtEYF4tbYWs0D0IO+wCVwPJI4G3Z2QgyQhoIG5uUIAQhCADwVOeyeNsix2uPrkn7tyuJ17bcVTnsoSf5Bx2P+sk/duQDj7HcgdG+Gkgk+TwX/RhWidnEqrvY5gjo2w08SaaD92FaLxsUIY05gZqha70hMp3KkOMi9JbncKOtN2ghfNPSuOLvPwLKz90VCELzS4OsEIQpIBCEISCEIUSeXlEvYR+4AtdZaSW2aBdZxu0NLtOo3Gyof3V8VOfWYW2A9S4xg/XRzNu5ddnYTu1KUexrc8F57jY8QlWunkM1LDK7Z0jA5w7iVsXLjGxknlZBCEIAQhA3tbnwUgEJAbi48EqxcGwCRKhNOO5KECSWOOaGSGdgfHI0sIIvsRYrJJYng7SpjJxSlHlEy3GTCMrYJgtW+rpKVrZ73uI291uQT20guOsbAXGyW4u0OF78SkLrMLiLkb2WUpVK8lKb+Bio4DtX1R2t6UEFrNvOVGZm6VsUw3P02EQwHqWzSMH10DZrrdyvKCUz0kdTbzhc/Euu8sKlooSePa3MY1E9kK0kG3G4ubKH5v6RMGytWR0lZ1vWPLh2WA8AD3+lTBn1sFzRcuVddIXRjh+aa1ldU1IjkaXHT1RdxAHeO5bOnU6E62itxgipLCyTnDK2mxCkjqaQydVI0O7Wx3AP8V26R3n5VH8Oko8BwyKlY8SMja0arEcGgfwTbiWc4Ig7qtJt6T6lnKwq1arVCLaz5P+xw1+o21FLXJZ+a/MmAI3u75Shj2C93t+VVZVZ2nluImW9Id/yXG7NWI6SQ13+IepWNL0SvZx1xjt8pfkVlX0ns86d/w/Mt9v1x92OFh6U3YtjNNhkbjUuFgeVionk7MklVMI6l+kG17m9t/BRbpZxWJjz1U92agCbW5lcVPpE/WVSa+fP5HoOlXFK/8AbeyQ/V/SHgbpdEjZzbujHrUCp84wVOYpGzMnZQOZpY8xlo16u+9uFlBayqgbRufG5r5HDsjhc3VuZmyO2l6KqOcU/wDOevFW53MR9WHd/oK9tbdHjTjhHd1KytI1IqL5+KH/AAWOGqhvT1jdW2gOmA71HOl/M+YMu+RtwuEyAytDjGx7hbQT73wVZ4djr6V0c1PV6XMH1toA7QPxK6MmZqwvHII6bGNEsl+wXF25uABsFWVrT1Wr41WOY/I03HSKVulUozTz2zkkvRri1ZjWU6OrxFhZUOhjLgQW7ltzx3Uo3I1HmtNLTwQQhlO0RQ27NrnbktrdmgXuvG3dSFWu3FYRqisLDFRz2DT48EIABNibBc7zF5RL2Kq6T+j9tQ1uNZaL6XEYHhzmMd1YeAHOOzRc3NvFbujLpC9sjT4JmFppsYhHV3e0xtc4AudcuNzsrPL7jdna4XvyVZdJ/R+cWkGL4GwsxoXfrYLu1EgHibebfkr6yvKd5T9Uutn2lx+LOdxcXlFlyWaA9o1DvG6HnVGHN2NlV/Rl0iPrKhuB48BDiYd1bYnO1F13BreAturUex2rq2s7Xcqu9sqljLRNZX67m+M00YC9t+KVBe1+7TsUtja641hokRCEKIvSAHFJyHilHFINwPFTlNbGSNkP23H4FMvTXlpuMZPq66FpbiOHwyVELotnF4bYbgX+RPUJHlcfgU4ZzxBuGZSxWucB9ZpnyWvbgF9G9Fo/7RlZc++QDoWz1Dj2Evwap68YhRtMR6xhFwxjb7k34lVPREfVLsNzqdWU9wOHmqwugfBYaqXHMyWAndVyxtba/ZdG117/AB9ygFHpHsl2gDYVlPb/AAr1S4OXuer2av7trIWTBsO+yEBHukX+g2PfmM37BVJ+xQ447+dj9gq7OkX+g2PfmM37BVJ+xQ87HfzsfsFGFwejQN1qqRenf4H6FuWub7C/wP0LVUWYSJXvIiPNKkPnFKvjVZYqMukCEIWoAhCEAIQhAC1y3A1dy2JHbgg81jJZWDKPJA+kjAaXFnxSSMu4Ed3IH0JiwXDva9gbAw2AtwViYvBHK8AgcuS4oqaGNrgGjVfuXpbbqVSFJQ7Hm72wlVrasjPE+oiAcWm3gU40leyTsv2K7Sxjm2e0aVyyUELnXisHcdmrTKrSrbPk3eE6eMMcBNI1ga21guny0CMA2uotU11RTTFjr/4luwyaaplN+HitE7GcV7Rvhe5JTSSicO2dcLcCAwi1j6VXmfOkKkyU2nZKwGSQOv53Igch6VIMsZsoswULJ4jYu9B/itNTpdaNPxmtjup3CZJGtLQCSDfdKsI3te3suuB3rJV6N+c7ioQhACRKhSo6njBkngQJuxbCMPxksGIQ6hGNINh48wnBFwdnNC2Uq1ShLxKTwxOOUaqWlgpKcQUTdEYv/wBbLc0WFkAW+x7BKtVWU5S1TfJilhAhCFjGM1HOdgCEIU6dS2AIQhSAQhCAEIQoZkCEIUYj3AIQhPajvEhoEl7pViFKSi9UOSM9hS7V2VGM8ZMos0YW+Gb63UsBfFIHae3pIAJtcjfgpMBZ10rntNus83g3nY963UbmrQmqlN4ZEoZRReV814pkHGfaHMsT34eHFsM7WEN0tFhdziOavCnnZVQNmhkZLE7zXxm4PxphzxlKjzdhZo6iGN04A6udzQXNAN9rqscp5hxXo+xmPAsySSTUEjmtp5Hv1Xc43PZbe21l6GtSodWo+Jbr21zt+ZqctGxeERa4lpO6Tg4hYUs9NWQxVNORpe0O2HfutgcC53evMzTUvDnyjbGWUKhCFjLuZvgHHtHwQ3iFjftHwWcfJddms14/NGE/dJbCD1bb2sqT6PJG+65jrGAMHlVTcEW1HvV2RmzGi9iVR2bwzKXTHh1VTuLIaylkklsLAyPeRc24r7FS9xFM+SHeyM1e6Nl0vt9sP4fk2L0vl/8A0Dh35tH+yF5o9kdv0j5dcDcGof8Au2L0vl//AEDh35tH+yFsIO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0LctNH9p0/4jfoW7vQEcxz7cHgFw8iu7HPtweAXDyK+T9dWL+p82W9D92hEIQqePBsfIIQhSSCEIQgR3BLxaRzRa+yxLw5gc3io1YeGTzsN2O0sNdQmmq26mEj5kw5fy9RYFNMaRtuHMer0qWTxsmaNY3t3LgdTFgJvclWVC7qQpul/wBWcNak1LJ20UhdTOv8I/QtzTdoK00cfVxnVwvdb7g7jgq6piLwuDrpv2QS6XEHSR8aRYuJG4cQFLaS2Mga52rRa9+4JSdLtOk773TVmjHIcv4FU4hKNXVRvfz96L8lFOjzpJps4V01JEwCRjnWPa4AA8x6V1U+n150pV/+qGSwUIQuQAhCEAiVIlUNyTwkTJ4AENdcrRVww1lNJS1LNUcg0nZbnW0+m6R29rBZpzg008Mle0hswfAcOwh73UcJZK8kk7cD8XoTqkuCbW3slWypVndT1TeWYqOnYEIQtOib3i+ACEIUJ5WQCEIUgFhI7S1ZrCRmsWUrklcnLI65SXGkrc6FaXssCpym9zZkQNa4bojjAOyxsSNlvpmHmplFrgy1Z7nS3zR4JUg2SrVwamCEJCmxC3FJIBcNw0XI5kehaZ4oqiBzZI+sjfxa4XIK2C5cNJPHh8L0LIg69uwfgjgVKc09VJ4aIksvBSuactYl0f4mzG8uOdNRsOqaHtSnS0C2wsOJKsfJubKLM9DG+ne1laGgyxOc24IA1dkG43Kf54WTRviqY2vgeLPYdwQqUzllXEMi4x/KHLDnNo3vtNGwiMDW4vdw3OzV6SjVpdVp+FPaqvx+80b02Xdpb13Wb3ad2pSozkLNtFm7C46ykIEobqlbYjckgcePBSY8VQ1qE7ebhU95cm6MtW4IQhaiQQBffuQi5sbc0JHvAADTSW+GfoCrL2RTIjhuHSyA/WY5+13X0KzcB+t0j/TIfoCh3T1h0VZ0dYrOQOthiOg233c31L6/0lYtYfIp6vvs5elxzT0Tgg3BgH7hyj3sUiRkOQgbhsP7JWOYMVbjnQpM8Ou6EPZ/hhIWz2KF/wCQz9ttEP7JXeYMvFCEKSAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8AKSfu3IBz9jn/AFbYX+bQfugrRVXexz/q2wv82g/dBWio7oM4sVF4D4KMxizApRiQvTlRgcAvnfpav9yn8Cxs/dFQhC8rHg6wQhCEAhCEJBCEKHiTyuCeRWnQ8O4jmEznLeFDEhWiD68Lb2HL4k7hzG3HMosQ3cBbqNetQTVN4TMHBMCRsALNGwQjewuhat+5OMbAhCEAJLva9pDdh6Ej39WxzzwaLqr8V6XaTD82y4O9oJZI5hPa5C/cuq3sat0nKms4DZaJ7TQBsb3S8FrjkE7I54/NcAfmWw7rmqRlSeJAEIQsViXBKBCEWunGYkrkxIuUoBbv3JHvDQuOevDGm52sphGbjj4murU0mipwDC56s1s9O0zuJcXWbxPHku+SZsMd2vZpHK6YK7GQ1lg42+NRfFsfcyN2iZ3DhurilZ3V24xqSb0/ErLjqNG2jkmFfjkULSdQv4hQ7GM1OeC2I3/68VFa7FJqk21O39K5DeJmt269n0f0WjVeuS/oeJ6l6SVaj00n/U6a3E5ZyXTPLR42TPWVbIRqa4v8DdaamV9dJojFrelbqPC3yObC5gc/huvoFr0uz6bT11Irb4FFrq1pKVWTbZzRTTVJu0aW95FrqRYPhFfVtGlto+bnNNuHepBg2U2U8HX4oBHTs7Tdg65G9rLizLnOOgh9r8Hjay2xe0lp2Ph3LzvUvSiFWXgdPj/Vf1R67o3onW6hJTqxxH7n/c7MUmwrLmGy07petmnaWXikBtzv6FVuDVtNRZkknxRlTPQyPfYNNyNTtuO3BYVE0tTLqq3mbvL97LU57Xtc0tD423ABVPa0pUZeJNZbPrdv0G2t6HgUefkehMo5VyNmAsr8PM5mb2updOwkcRYtA9F1Z9Zh9NVYZ5DNGTTlnVWFrgFun6FQHsbcNlOJYhXFxjpozG4NFrW7Q+lXBSZ+wGtxp+F01W41DRY/W3DtatPHxV6sNajxl3GcKrjN8ECzdgORMnM1T+USTnfq2zsJFiAdiPSqUwYw1ebYqulbPBT6mgMkNjs70KWdOeGS0+fYZq2Vz6aodK5jXWIsNIUPw+WSKrjkdGBYjn6VX301KDgvI9J0axlXp+NKWVwencFkjdhtOQ4n623nfku+9wovkapFTgtOSBfq2/QpPzsvk1ys1mcVxDw6jiKhCFqmmkYNZBIhKoi8bS28mQ8YwVz0k9HrMaiOL4K/yfEaYdaGlxGosaSBZoud02dHefHvkdl/NV6Sppz1bJX/AFoODW7m7jc7q2SR1oLCWvFiWjmFXvSd0dU+Z2CvoGtpsRiGnVGwXdd1ybkr0VlexuY+r3vPZ8nNJOG5YgcXONwPiGywIJdYKoejnpCr21rcCzJf20YQXl0hebOO29rcFcDnXYyRvBwB+VVHUOn1LSbUjdGWpJiWtshB3370LkWGtzIVnnBa27W8VmDYpANvjRGSOmgj11zPA/QurPDNeT8aa4BzTSPFrehc+Fu/nzPA/Qnytpo62imppTeOZhYbi+xX0v0XX+0Ky598rLoDla7LePsBALcRe0N5/YmKpKMEeyXYDa/llPw/FU76Lp3YL0hY3gnWEQTS1FQ1vAbANG3xKB0YI9kuwONz5ZT7/wDlXpjl7nrRvAeCEN4DwQoBHekT+guPfmM37BVJexQ87HPzsfsFXb0if0Fx78xm/YKpP2KHnY5+dj9gqO5D4PRvcsJvsT/ArPuWE32KTwP0LCrvCRPdESPnlCD5xQvjVwsVJIuo8IEIQtJIIQhACEIQAgcULFxtugfBor2Xam1oLTsu2pmuLLiLrG4XXTUktmcVzp1IUvd3JDcrNrHP4BKYZByWyS7yZrmqj4Gmsw/yiUvXRRU4pIXO7rrtLHMJaeK1zgmne3x+hblWnUSjnY53Rw/ESK46RMEpMzOiM5HY1e+I4kd3gufK1E3C3thpnXaPSTzT9iNMXDSCQ4cVy4fR+Tyay4k+kr1FGrFWypt7Hn7mpVqVudh/ZiUzXdWb6eeykVFPFHTvqqqVrIYxqJcbcFDwbSAu4O3Tni7xUZeqqOMgOkjc0HhxVJXtVKpFR4Zb2tzo94dsHzdgeKVUtNQ1kElQxxBY2UE7cdk9taGjsm915zyJlavwLNVTXulc6NxkFusB4kch4K9cLrjNG0vPBaeqdJp28k6e5aUL6E3jI7nYW4c1kwNcwgva6/ctbZWv35IFzcxtAA+JUc3h5l2O/KluhSWvIbw0m6zIZe9x8qZc2ZlwzK1MyfEXuAedOzC7lfktmWccoczYaarDnEx9ki7dJsRfgVvnZ1dHipeyRqHQ3D7Hgsm3JIBAbzJQTra0jvUW6SK+tw3K08uFgmoDxwJB534LChR8aoqa7kyexKgHOO7mub6EE8m8FUXQXmLHMZ65mMh+kaLF7nE7l1+PgFbY2JA4XWy9spWtTwWzFMVCELlxv4ZmCQpUKU3wwhEqEKW2tkSwQhCL4mAIQhCRDcg24oadIs4XKXflxQAb8i5YyelZGQ346HWSEnuSvdoH157WN/GAWIkbL5hv6UnCUIqeOTHUZ6dkg2FyRbuSXI2WE8rIaaaR4uI2F9rX4LOnHVj4mecozu8m5BDO9MWccsUOaMKdS1YHWWd1Dw4t0vItc23Kg9J0w08+bpMD6hvYe5l+qffsi/fZWr2di0dniTbh6Qu2vb3HTpxqy97lbGtvKwUdl3H8T6OMbkwnHg5uFSOcYpnMDW2B0t7Tt+Su2CaKrp2TwSNmgffqpGHb0780zZyyphua8O6jFGgFtjHK1oc4Wvbj6SqswjF8b6OMepcGxt7qjCZn9XHLJIZCywLnHbYblWlWnS6rR103iqlx/g1JaGXg0kFAcHOs4Fc+G1tPiVG2ppX6mkX+a63NkAFyPmXnZRdJ+HLaRujLUzPl8ayj+zMWF9h4rKL7MxdNssXMNPmiai9hktaOw0EE3Xm72U9ZUtxPCaRoLYXGE6tO/wBmPPivSTd2N3I8F5K9kbU1Fd0kYXQTSvZThrTfV3TG3HZfY6fuIpWYdMFOIMwZQDX62Golsbk+9bzK9WZf/wBA4d+bR/sheWOmuiFFmfKTGVD5o/KJbanA27De5ep8v/6Bw782j/ZCzIO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0LaeBWqj+06f8Rv0LaeBUMEfx37YHxJtd5p8U5Y99st+JNp80+K+TekC/30i3tvcQqEIVTHhm1cAhCFKAIQhCBCbBAQRdFrKHnsSmZhYOJPJJrssmyNcp0SxnIyI1KUp9CRQviM9gQG6tiRp5oSFpdsHEfGol7XJLWw34/hUGM4VPh1U0mGRjmE3I84b7hMGS8h4VlWommoGOEsji65kc7iAOfgpfdxOiw8Uti3aw8V107yrCk7ePuy5NThvkEfMhFr7DnsuZSXum1cDFi2bcDwmrNJXVsDKhp06TKAb8eHxp7jkZJE18MjXROGoEb8VTXSD0XYjj2bpcQhqJGwukLgBK0DzQOB8FbuHU76OggpnAO0sa0km/IBWl9bWtKjCpTknJ9smuO7OnY7g3CAi1tkqp9RtyI64bqHegkloJkYFjUzx0tK+ec2jbxUWwDPmC47ibqGme4yggfYyOK6qdvUnHVTWxg2Sw6j5xGkb3SFwduzc+hIXuYLgBzD3rU6pEWuzG3uOAWuFPVJLz2C4N5GkXjNyeI47LEbrzth2d8zO6QoaM9caOSVrHDU+waZLH0cF6KZxPiu3qHT52cY7+8QluKhDtghcHurQZsEIQtbTj7piCEIWcZSS3JQJCLhKhMk5MNPoS6VndF1AMQBwSrEAg3KXWAN1klHGUYSWHiJkCLWcNkgc1o0tBISMIkLruDWAXJvZaRLDKXtp5Q57TYi4WyFKUlqSJclF4ZuFg22lwI3Rva7uCbPbFwc5j2gEdy3x1rXts47LDfCcTPwnydrHBouGOctThHIySOVmuF4Ic3uuq36TukuPK2ingjaZZC5rSWu4gA8R4p96Oc2/yqw7UIQyQC7joc0GwF9z4qyqdMrUaSuGck60VU04K9zxlTE8nY+7M2VGvfGHmUwMaZD5oYBY7cyVZGQs6UGa8NEkUjY6thLHwucNWptgdh6SpM+KKohdHKxr2jYscLtKpTO2UK7JNd/KLKz5PJmvEktO1wa06SXv7LdzewHpXfSuKXVqKoVHiceH27CUXCWpdy7ndY1gdbS7uI3WTjc3UM6OM7QZvw5s9QRDWMDQ6IAjcgk7O35KYC9t1SV7edpN05rH9zfBqaMljJfQ4DmEoSPNmkd65N+//AKMuNh/wIBtMeZv/AACZOlWpmpch4pLAzXKGNLW6Qb9ock95fB8mcT8I/QFAPZFYtUYV0f10lODfqydr8nN7vFfZen/8aHyKer77KE6P2ibo8zA+Qv60mrOkuP0K3fYpn/8AYSQM2cGw3v8AilVVkHDIR0V4zXCslMzxUXYXC27b+KtT2J5vkaWw3DYf2Su3szBl5oQhSQCEIQAhCEAKmvZQf0Cj/KSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv8ANoP3QVpFVb7HP+rbC/zaD90FaRQh8HJiP2s5RdvmhSjEvtYqLs80eC+eely/bRLKz91ioQheRidYIQhZEAhCEJBCELD2k92SCEIWbep5JyIlQhGk9zFyBCEKMDIhAIIcLjmFDMR6NsAxHMDsaljcKtz3P3mcN3Cx24KaLEgh2otHguq2u6ltnw3zsYThr5Fa1jYmMAIazh8SVpuSW7eKCSBqIFu5Y6gXDSLX3sudydR6s7mUcRRx4ti1DgtE6oxGpiiaQfPdp4LDBcYw3GacTYXVRTxDZxY/UA617KJ9L2XKjM2DCmoZNDhrvpeG8QBz8FwdFWVavKGCSU1ZO57pJOs3kDvegcvBW0LKi7Txc/tM8f4Od10p7ljzTNidpvdcste1t2sNja6baquYHkl10xV2Jh0jtBtt4LXQ6fKT4OSp1CNNNNjxW4oGE3cFGsQxljja539ITbX4gd7uJCg2LZohgqWROO7nBvAr0vT+kvlnlrzqk68nGl2JTX4sbujYb7ppc10rHB54hcsUgnhbM3e4B+VdsbhYEr2PTOm09XtbHj7y7q1JZkwjZ1NtPBLO6K1nAlx7iornfFK2m6puHtcb6b2v3nuVhdFuXpsVwplXjDCHWB335uHPwCtOp9co9KpYpvP0LDp/Qa16vETNWCZfqcQe20ZEBPHSfRz+NTMU2FZVpese9hnA4F99+HA+K6cexihwGgMVKGhwHJtuR7vBUzmHH6jGaqQvkcGX7z6O/wAF89q3V11qq5Vfdfw/I+o+jXojGjirU5+87c1ZsqMTlcwE9SOFgB6OSimp0khc6/xpb2JadwN7pCQdgrijRp28dET6BClo9iPCFeRqBB3WqrPV05LmudffZbQxp4lJoe9jmuALQbC5W1vS9jKdLXBxOzDM2YmcqxYNT3hjews1FgHvy7iN02MpNhPG97ayN+sHWdyNxt4rcyNrRHH5hF7FqC8xu3G57IKydQ4rbp9OEJQfc6c05uxPFMGo6PFBrbBG5oIja07kHjx5Lna4FrS0EC3NY2jeJI6hgeb7XF1kBpFjb4lLq+zgmysvVXJLhltdFGKtZG2Eu3AtYnuaraDjIC5vIXXm7JdcaLEmbkA3+hX7gtb5TDseS8D12xdOr4iKzqlB6/EQ6RnVfU0myxBJPZa6yzBcBZoHisXOZB9kkbqPAahuqNRc90imb3yA3NisnNAGyxB17tRcnYqGmt5My1AAdN3G7uVkru00atj6U05px2LAMBqMQkZqMTHu3aT5rSeXgon0a9JEGcqueERBpjfpFo3D3t+a7KVjWrUnXS9lEajd0n5ChzRRGppezisN3xvaXCzrAC4bxUZ6OM8VGE1Ry1mt3USwXjjllAja4R2YLczchXCxzrnRsffngbKEdIeQqHM9MaimvT4lGQ5ssbWtcbEk3cRzKsrLqMasVa3Xu9nxj5s0OnpepE216mNe0Xp+TuVvFGrmSDGqb6P884lhGKHLGbGi8ThG2Ylzy64Lz2r25gK5Y+rfGx8R1wuaHAqvvrGVpPP/AFffsZwnnYBwu3zSh/FvigdskjZreCH8W+K4Gm3k29zpwv8A0nH4O+hSa2oAkEEG4UZwv/Skfg76FIa4uFM98bnBzRcWX0z0YWmz3Kq4988p5rqZqzp2jjqnGNjKaVjSOxf6663DisqSIweyYEZNy2ug+hMdE1+P9NtcaypkiMDp422dbYPvz8U/QxmL2TmgvMhFdB2ib32XpcLGUaT1e3zR4IQ3zR4IUEEe6RP6C49+YzfsFUl7FDzsc/Ox+wVdvSL/AEFx78xm/YKpP2KHnY7+dj9goQ+D0cFjKLxu8CsgsZPsbvArF7xZPdERlGmokaOAskWU/wBtS/F9CxXxy9WK818S5h7qBCELlMgQhCAEIQgBc9WX6Q2PzjzXQsXtJ80C6yjjO4cdWxyCkY+fq3zNDrCwskqKaKlFpSCeR4Lz70n5gzFhOcoxSlwh+t3s5/p7k/0GbK+qpIHVJOrQL7u/iV6WHo9Wq01Ui9n8Sl6l1GjaNKXJclNVQjYEfKt7J2vdudlWWH4xJsXEqQU2KEgEErkr9KqQWM/iarbq8a/yJeWMc/U4XK466MAdkWatFLiDXs3O65cSxFoiIad1wUqMvE09iyq3FKVNtEexiRsU0oBA32Ufp56h9VpLrs8E9nDZMaltr6treLr6f+uC7ocFw6lNm1rXyDl1rSvSUq0KcNKWTzDtKtWbnnb5nAO3GGjhz8Vk8BzdJW2oYyOQhjgQfStekd/zpTlr9rHyNiUVmOTVDF1LiW7Ap2wWV5k0X7J5JscD8S7cHdpqgFruFKcG5GVqvb5JJTyujltfsjeyc2vEoJ94eKZ37PuOYWyCqfCdJFwvN1qWtOJ6KnU0rAxdJeSo86UDads7WOaSW9kusdJHIjvXR0Z5OZk3CW0usF9mh7rEaiG2vYk2Umimjfw1By3FhfxcbeKzqdSqQt1apbHRFZ3Ei7LTtcLF8TXscx7ey43ssg46uraFkb37VlxRcoYlF7mxnPS0sNJq6hmnVx3utwFuHilQtladSq9c3lhAhCTitMtnnuZCHUI3E7G4slN3PAjBNuNkruw0DiPlXLiVdSYXT9bWTdUH3A7QHDxWajJy0R5MG8HVqF7EWISjd1lyUVfTYlTCWjeHgEAkEH6F2O7JYRzKSjKD0yCeTFCDxQmMbGQIQhCAGxCWMbud766S9tyiwduDb41hNZROCpunmTMIp6YYBHLZ3WCTTGHX2bbj8alPRYcWGXWvx/U+pvZpLAyw0tsLD41LnxMl1NniikDeGpt0rWgNDI2sY0G9gLK0q9Qpzt1R0LK743NencCb6NbgCUhjEkckZeHNe0tPgUsgaZWg8B3Is0s7Nwbqv14aaNnBC4OjTAYswPxZtIRVuc5xf1juJFjteym7jbbVcWsgtPVDtfOsQAGjc3Wyvc1qzSrPL7b5MUt8iaQmjNWXqPM2F1FDXx9Y2ZuniRzHd4J4SEatr6b8wbWShUnbzU6bw0JR1IorDcYxTowxwYfixdPgsjtMb9IjbHqdpaLm5NgPjV2YXX0+J4ayro3iSCUXY9puCL2/guTMeB0GYsKmoq2FheQQx+gag6xANyDzKpvCMTxboqxt2H4sH1ODSO7DxqlcxrR6bAbuXoJ0aPVqLqQWKi5xsal7D3L3edLAWjUL8uS2wMLpGPadQt5oXJh9fS4pSMqqCQOhcNwSLjbfYeK66b61O2RhJDt7FU1nGSvIQltho2SlqgyWMIDB3WXlb2W1CYMaw6thicGiFhL77A9a4r1Pdoa0H32yjWesp0GasHmp8QYLtb2HAC+1yNyDzX2GHuopmeJ4swVWOYzgDKyUSmCZxa4ADiPR4L3lgH+gcO/No/2QvBU+DvwDpEpsMdu2CVtjxO7b/wAV71wD/QOHfm0f7IWQO/mEqOYQgBCEIARzKEcygEbz8V5T6Tv7QOHfl5P3QXqxvPxXlPpO/tA4d+Xk/dBAep6P7Tp/xG/Qt3etNH9p0/4jfoW4IBix5o61p57fQmnnbvTvj/nt8R9CaOYXyv0hj/vpFta/uxUIQqPszcuAQhCLgAhCFJAWJ83ikcQ4GyCSB2eKA3SSDxUt+zgyRplilc27LtF7XtdEUBhDi68gHcLKD9M2MYlhOW+swlup+uMbauZN+Caug7MOK4thpGMMs4jiQ74bu/4lavps1a+Nnb5nL468TSWi0lzQW9ndZnisC08RwuslUreODqaBGlpcHE2ISpHeYTzWLJ7ATvbjdKG6eI270OGoNA2ddc1ViFHSPbFUzsa8i4God9u9ZxVR+6jByR0A6fO3WQbcXPBJI0FzXNN2koNy6w4WWMVpT1LfJK4Fa4taAOAWIFhYcEqFDjlKTZEeQQEO2AQfNKYzsZYG7HaZmI0UlA4W6xt9V+Fr+tVlkLowblbMbsQdUtcA5rgNBHAHvPpVpTHU7biOYWBexg4Pc70i6s7a/dtSlSjwyVA2PqDIAANhtdYA2cXDisG3JvYALJcaelZXJmonPDQ08Uxljjs88Tf0p1gNwuJdNO7ZTcTrVktcuPiYuODcdyhA4oIWiT2Xmak9wsUDbiLo1AcVi6ZjGOfIQGNBJKyxl6VySZC/ZJabDikvc+hNFFmDC8QrH0lPU3lcbABze6/f6E6OvEADw71lOjOltPuEZ7pfFa+sFlpknABWCibFE6HPAWPWtTbLVdxXOag962qmbFTyO0lUBwITdW1ulp0uF1yvmJB3TdUvLza63wpROilbpSTYx50x2vp8LqRRE9YY3AEAHkVEOg6bMVVmV82KF5pXucSDGB/qzbcemym9XSCU2cGuaeRTtlunbSMLYI42EbXAtyV7GtRpW7hpWX8DK7s4P20O2Ix2qHEDS0gW+RcZBPvt06vha9oD3Eu8Vplom8Wk/KvOwkjTTljnggeZsj0OZK2GXFYDUBjiRZzm8QByPoVg5cwmkwbC46eji6tjWgAaieDQOfgkpqbSQSb2Tk3cALpuOoVqlPwm9vmznrqlKeUt/kKLEX5hI0NMckTmdmQFrvSDsVnpAYbJAC917AC1lXrNLDg8M1TSZSPSFkbEcAxk5hyg50Eji50oEfWXc4gDzjYbXU86Pc/0OcaNtg2CubfXCZA51r6QdgOKmbGMLHsnaJI3EGzhqVI9IeSq7LmItzJlclgYQZYA4tbpYL+a0cyvR29xT6lT9XuP3i4fd/Ns0LMGXf74gjS4baTzWDydBdYtPceShXRvnqmzZh0ME94MTgY1krXjQC4NBdxJJ3U1mJ7eq17cuCo7q3nQm4SXBvhLUSHBB/NT43+YKNdMuGe2fR/ikUcZfPoAjt3lzVJsD+1fj/gF3TRsmjLJWtew2uHC4K+tdP8A+ND5FTV99nzuw3GqzCoK/DI39S13W6mkA3ubFepvYqH/APYiQHiGw3/wlVZ7I7IEWXZYsVowGxzztjIFhxa9x4AdytT2KhDslTH0RfsldvZmDLuQhCkgEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Cj/ACkn7tyAc/Y5/wBW2F/m0H7oK0Squ9jn/Vthf5tB+6CtFR3IZz1wvA6/coqNgFKqz7A7wKiy8H6Wr9rEsbPhghCF4xcs7AQhCkgEIQhIIQhRmMsksNLnAhgJceFktjo806jsNlrmOiIviLi8EbcuK86ZZzRmupztFS1ETxTCRtzaTgXW57KzsOnO4hKSfBqcsHo0Bw2dsRxWV29y0UurqwZL6nb7rfYcVXSg6cnDyM1jAhsRsN0WKRz2tHFaJakDgpUGzFzSOnTcela5HtjbZw7Sb5Kt24C5aiQQxdfVTBreO77ejmtkKD1ZNU63kOBq3A2aN1olqJgS5ztN+8LibV000Blgma+1+DgeCaKvEZJXFnADa4XdRtVUfGGcVS70jnPURxAua4F3imqpxF8oJ1WYNrJvqKkRMJLyfjumeeudI422are1sFFblFc9Q53O6rr27hhsfFM1dXEMOoh3oXJXVoYCG7lNTnySG97r0FCyUVweYu+pym2kzodUPmJA4KL4rlbyqtjnJ81wdwPL41Jo+yOAus9OoatXxXV3Qpqmtypo3lSjNyj3OajgbS0bIgdgAF1UkUlZO2KJpdc22WdFQyVkwawEhWdlXLcVFC2omDdQ33tyPgq7qvV1aLFN7ln0vpU+oVMy4OHLeUIWRtlr2EtPaANxyHpTjmXHKfCqI09I5rWAGwvfu7/FZZmxptJCWMIAA5fH6VS2YMYlqprF5I8T6F5e3hX6jU1Vm3H5/mfZ+g9BhbwTfH3GrMGLTYjVuc592cLWHpTP723JKePzpF6a3pqivDitketTUfZgBNmgckW2ulAv8SL32W1YzuZLJiQ13EJb62aOQOwWt9THEbOIuVmCA0PHAqVDuzFSi9osyA+t3d544FJyA7jf40hcXH0JVCSDfkKXEuLr7lJpJG3BCUHksXJRZOGvaZto5DHUsN9wrqyXiTnRsGsXPrVH8Hgqwcm1/VyMBJ3P8VVdWt/Ghlmm5oqpSaLwa/XThzRqNuSoLPcucx0iBmFiaOjZIerPUtcG9gczx3V14NKZaUFrt78CfQE4SxRSSCV8EJeeLi0XXjbO+hZ1JRqQT+ayeNq09MtJpwoyswylE7T5QWML3Ha50i+3iurYucDIAQUMuXajawFrBIA273G+5XFVbnJzwsGGDkxvDIMawuWirGdZDI1zS25FwRY8PFMmTsi4PlaeWbC6QwSPdqJL3OubW5lSe56waeGyWXUCN1thd1VRdOMmovybGkxeBI5rnblpuEoNuCU8dki5oZS34/Elb7EN6RMj0ua8NaG2ir4ATTTm5Ebja50gi+11CMgZ5rsu4mctZsaWds9TNJpjDgSGMAAF+R5q6NQGzr2PGyiPSBkilzVQOcNNPXQjXFLHZhJaCWgusTxKvbPqMK0PVrpZj2fL/E1Tjp3RLgGv0OEg0HzTZDQ4izgTvs5Ux0fZ0rMuYi7LWbGvJjIZFUAOdqDQS4lziL7kK44JNUTXNc10TzsQblcfUenztXtx2+QpS1I7sIF8SaDubO7XxKSP0v7J49yjeE7YmxnIh2/xKSFt7HYOHcvf+je9ijguPfPDPTBHPgHSbUVlOw05eXu1O3veV2+/gnHopxWbG+mXDq+qfrmlq4i51gL8RyXoTpq6PaPNGEvqmsayqhZxaALganHkTzXmfoFDm9J2Ctdx8phJ+VegSwaT3Y3zR4IQzzR4IUkEe6Rf6C49+YzfsFUn7FDzsd/Ox+wVdnSL/QXHvzGb9gqk/Yoedjn52P2CobHKPRwWMnmkehZBYycPiUSWzwFyROpGmslHh9CwWys+3pvi+ha18f6isXM/mW9J5gsghCFxGwFiHCxvsRyWS56y4gc5vnkEWUYbaSIlLCElqgywaNRva110DzQTse5RnMGNU2XMNFVXGxJFtxzv3+C0ZZz/AIRjVG17Z2CQi9tbBzPp9CsI9PrVI6qcW0apydJa6ktiXEG2wukYXatjpTbTYtBK8hkjSPELpqa2GCAvL27+kLjqW9T3WsERuaU4687EE6RcPiqqrrnNu6wHyAqFRUQAH1zsjlZSLNmPslJZH2j6ADy8UxULzNGXOBHDjsvollVr0LdQk8nzjq9ShcXO0c/edDQSA2Mbp7w1kjYxqaVhh9KwNDyR8qcNdxZgC5K1RZw9jvtbdRSfKMopXxnisHuc+S5dt3LpipHSNutr8MkbHqt9KrXUivYkW2mbjhrY1VtaKbA6htO368/TYg8N1RGXqbHYcemqKqeQwlxsCG/Curcx3rI4NLPO5j41D3a7u80eAXoeiwp04vUuSk6n1apQj4EeH+vIdaPFpdTmPJcQeN+CcRXyMsdJcPFRVj+rdqHHmnOjrBKNK2XNrGUtaWxTW13U92LJNSV4lADm6fjThBJ1NQ2QdoXUVu5pDmlPWG1QmZpPFVdzQco7F9aXWXjuTSOdssbXDuGy2NceIN1HqKpMUga89klP8Usbx9bIPxrzVehKMj0lvUU/mbad7my6iU7Ndqa1wPEcEy2dfdOFFLfsnkuGptyywpVnF6Wjta4B1wLFISSbuN0jz2tkq5Wk9jtaQIQhZNZ3ZiCQ8DfglQjJyJsI7N2VfdNOT8SzVg8UeGE64y91gAdV2gW3IVgEtd2TdZHWwWic0+Jut9nWdtVVWPJjJZIF0O5axDLWDPp8SmdK5xBsWhujsgW2Jup43cAk+alBktazRfc2CUERjSdysry4ndT11NwlgTVq3Qg78rIXMZAg+b2dz3IAv8SVtm6njvQgTY2HPmFgWA3DhpF7gpuzFjlJl/DJq6tv1bGlxta9h4lNuTs5YVnGJ/kHW3YSNy3kAeRPet0LarODqxWUhnBJ3W1E2tdJ4bJdPZHIDvSLSm3vnBKEA3ulsO5CFCSe+SXug+hFhyFkICNJvLICyQtDhYjUO7vWSxkc1jC57g1o4uJsAsnmo0mRnAjeBufrg2ae4dyb8dwShzDQGixmBtTE4WdrvY735eC10+P4PU1TqWnrYX1IuC0TNPA24X707DssOo3K24rWlRTxiXKZikpooSircU6MMejp6xz58CnlDWzEhjWlzrkaRc7NCvTBcQpsUjp6ygeH0srNbSL2IPDiuXHsIpMew2WjroWmJ7XNDg0AtJFr3ttx4qpsOdifRPmBzHCWry/M5xa4B0xYB2WjU6wHFemt40epTpVc4qRaz8cfgaJS0RZ6YOkhmrjy8UkrQ9rmONyQU34BjFFjWHx1eHzxzwOvYseHEEbHge9OL3xxML5HtY3mXGy+hLgrTxn0wYbLQdNrXuJMUszAwd1om3XsDL++BYcP/to/2QvLvT5idNWdKmEU9MWvME5LntsQbxt5jivUWXv9BYd+bR/shSBwQhCAEIQgBHMoRzKARvPxXlPpO/tA4d+Xk/dBerG8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C3d600f2nT/iN+hbu9AMmPttodfi4D5img7fEnnMHmRfj/AMCmY8/FfMvSaKjdtruWlo3pwCEIXne7R0LnAIQhYPKWUANg0m6W1x2dyhuni82HeozT50wSTFRh0dZF5S5waG9a3iTYbXvxXRQt6leLlBcEElJc1tyLHuWLn6GPc4aiRZZA6QdRBvuCO5aas/WlrjGTel9uxjUliORoxCJtdC+CftsL9VjystFDSQ4cwtpWhoPcugHtlDrBWLquUdGcIrsLOvG44UtTqj0vPPiuttiBY3CZGkcl2081gATwXHVhjaPB1Uq2eTuvYoDnAgtO3d3pW2cOIWue0cZfqG3K606HJe0dTksGySVrJA53HawXnzpZwPM2IZtgqcMdK2AN4N0fdCeZ7lddXM6oc0tNiCsSXamlzI3WFt23Vz0279V9prKXY4pyy9jflt04wWIVl+uGq9/EpzJu0ECy000ZYzU+1u4LaPrnoAVbVqa5ufmdkHmO4qEIXNhtakHtwId9kSbNSjih+4WS43ZMW+5wnsvJ4juQ0m5INlukYtLdiphPGyN64E7V9zdCU8Ui2yx2CYFbqY8AtKVhs5Yy9rkhneRYXBui9xdYMN2rM+aVgatKRySSHuUfzM6qq8NqaemDgXxuGxHcQn07k3TfWNAfcEXtwut1BxhUU+50whB9imOifImKYdnaPEK9znRRSXILW9q8bhyPpV+1N3gaXdke97kx07+rNhpBPcLLsdUNZHZpu7nvdd/UruV3NORg6OHsbZJmsFid1xSzOcDZu3etFRIHG7jv4rR5Vp2HBc0KDxudMKOxuNzzSjZc3lAR5QFKpyJVNnQ5vZNzYpqqj1br3uu1tZGCZJHARsG+/dumeHP+AVeN+1gN5i6w3Z3X711ULarL2orZGTqeFyjrhcycNINwDxT5hsQAIHvt00OpfJ5bNBDXdoX9KesL4C61XDUlhck1JKccodXQMtqAAK0OFl0vd2FzO3uq9+1ycKzg6KZoeL8LLcW24FaaTaN3gtzbkKHwa++RACOayN9WkPsLcEjjZBLXuFiA7hxWKwuSJLuAvqIO3pWJ0yteyU3DhZ7PhN7lwYzmHCsFLWYhVwxyOBIDpGt4ceJXTR1VPUwNnpHtlDja7SHD5ludCrSh4zjsapTi9mVD0kZFq8IxA5kyiTBNqJkgiaLu1uu46nHuUu6Oc902asPEFRaDFYweuhLi4i7iG72A3ABU4fZzC17GvjcNwRdU/wBIWQ6jDJn5jymXirp/rz4dTna9LQ0AMaN/BXlvc0+o0FQuH7XZ/TbCwYqOl5XB6AwUgUptuL8fiC7y9psPhcPSqy6JukCjzJhzaSreKXFad3VPim0xl2lrbkNve1yRf0KzDYE6d3H5l9EtaTo0owznBVzeZMqD2T2GvrsgRlvCCp64+m0Um3zrk9ioR/IQ6eJZET6Nin7p8xGmZkWphM8JlOoaNQv9jfyUf9iiT/IV9xazYf2Sulbohl4oQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0VV3sc/wCrbC/zaD90FaIQhmmqbqhePQVFCLKW1H2F3gVE3cV4T0wynTa8zvs284EQhC8Unu8nc+QSE2CVIUSzvkgG6ncG7JTtx2SEve1oZtdMuZM14VlzQ3Ep2Mc6w3e0bnxPoW+lRnWemmssZwPQcDqF9wlt2bnbeyjtHjNLi9KKqgma5rhfZwPO3I+hPtLJ1lOL8QVlWozpezURphXVTg3Akeb2e896520lJHOZo6cNkI87UVtvcBLyutFOTp5jF4yb9K7iucSC9zr2K45qzi23zrOepDGlo+ZNrnl7r6T8i3QppI5qs8bRNjpNbt32+JYEm/G4SbHZ23O/BcVXXMhFmm5XbSpZ4OKdXC3OuR8bAS4jZV50sRYliuCGHA3O60gWDbfDaefoun+eeWVxN+yuSSeOO7tY1dxP8FcWFPw6im+xX1r1R4Id0ZYbi+FYe9uOve03fs4N7/R6FJ6vEGsuGM1Dkbpvq6ySaaxI09zRZaHgnirmpDxZ62Udx1BzeImUkjpe0dh3Liq6psTdFtzzXROdERsmWR4e86+N100o6paXwUl5WklkwJEjrndK06T3BIS0cErGl7rWPyKxi0kU+HMyc4EXvcrrwnD562oYA0htxttvuujDMHlqH7NNvjVo5cwWKihD5WgEb7+KqepdZdCLhTlv+vgei6T0ad1jUtjnytl9lEOumaPC3o8VnmXG46SJ7WP0i3D4vBbMw43FSRObG9osbcR3qoczY6al7xqJ8PDxXmLW2q309VXf9fA+v9F6NCilhbff+ZozNjktVI8Bxte3H0lRoXkGp3FD3GRxJQHadl7ClTVCnojweuXsrSuDG9+VkIJuhbI7cGKeOAvYFEdt0bc0OAAuFlqZOp4wMOJ4dPPVRlsxY2++3oT1TNLKZkTjqLQBq8AtjHBwsR8yW2lS5uXJy0rWlSblBYbFsNNlikLilWJ1amgSiwASItc2UY3yQsN7iyWIBCf8u1IhmYHi9yAPlUfLSAsW4vFQSRumNt9uC11acqkXkipVjRXtnoTK9azq2bC1v4BTBoba/I8lVmR69lfQNmjdsLDj6AVY2GzCaMb7r591OlKFR4PM31NOWuJ22I4HZKNhZCFV4K5ZE35GyO1zddKhS9yQQhCmT7sgACXADYn33ck0i4ubgH51rqqmno6eSerlZFFGLuc5wbt8a48KxfDcT1DDqqKYtJuGStdw48CtroVKkfE07GLWRl6QMmUebqF7XBsdZH2YKgtLjEHEarC442UCyFnWry9jBy9m4OiLrCGSRwN3OcA0WaDyB5q5+LX3uAeKi2eMnUmaKHTUMEWIRHrIZYzoGrSQ25AueKt+nXsKsXbXLyu3bH0NbTi9iZYKS+rY9o1QvBdG/vbZSUFpfwGpeeMgZsr8mY8cvZru2hjLo4qotIbZjbN+uPI4m3ivQdPNHUU4lY9r2kXDmG4K970ah4NuknlFdXy5GvE4+sw2rYDu6J4+VpC8WdElDNhvTNhlHUXMkVTAHE+C9pV9XBTU8jppY426Ce24C+x715KyvXw4j7ImGqp2gRyVdOQAAOXoVt3NZ7BZ5o8EJWcB4IUkEd6Rj/8AsLj35jN+wVSXsUCNWO/nY/YKlOd+ljA6rLGNUVNIwyPppY79cw7lpCi/sUXh7cXkY5rmSVIdt+IUJR6NQ/cfEkBu3gR6Cldw+JRzkhckVrWkV01/R9C0roxL7fm8R9C5wvkXVVi7qL4lvR9xCXSpbIsq42CLEt1vJdyGwWVkrNy4+hStlkh4exDekrLjMyYE+Jzi1zCLAAHgD3+KojLOX5MBlLJZ3tcLWFh6e7xXqKoj6ynkaed1WWJ4JEKrU7Y37/QvZejfV40oShVjn7v8nnPSFVpQUKX9zhy5LUNB1SO5238F24xiMwgMZkcT/wA1101M2AAM32Ww0Ek81zG5w9AW2dWi6rqaV9EVFG1ruh4Wrd/FkcwnC4vJZMSxg6KJlyX21W07nYb8FzVmNZenbpwSrMv/AKTmfSFIs9sjGV5sPjBa57XixPwm2VA0ODzYZNI65vq24q96H0/7Vlqk2kvL9MyrUbalRcX7/wB3/stVmKVMZFvsf4ycabGg0C7t/jUFwutlBa2Th4KRdUyeEO1C/HivRX3owpQzT7ef/o8p67XtXu8r7ybUGMamgMNyn2LFGOpy157Xx9yqmGqkp3f8k+UeLAtGoheFv+jSU9Uf1+B6Gw66pR0TW/6+I45gexoc55tq3ChbjpkOpxsU74viDpXWEjNPIc1wUgipnuqqjtMYNRANuG6sLOm6MMS5Ke/mru5VNdzl0NeSI7nv2snChpOr3IsuT3QMMr6l9FSwPY6M6CXPabkbrecQkjdoDSQedl1VKdapHZbE17RdPqaZPI5EnhyXTh7hFKN0yeXSsdZo3O/Bb6WtbK7tuAd4rjnbTUdyaV5FVFpJi4B0Yct9FO+IdkkqPUuISt2aQWj0LcK+SWS1uz6AqidrvueipXmHmPJLocTDnaZDYpypZmk6mnZRqCmqpYrinlMfeGp4wqB8bCHAgcgQqu6t6SRb21epJ6pIkUErZLb3K3FNNA4slOpOjL2JPxKhnHEti9hU1rJkhCFiZgkSoQBtp80EpW6Wi9hdIhRnAFD3arnggW6wudukQmcgC4uJJFu5CEKQA4+jmlbZoeL7E7JEIBhzllyHM2By0E8hjEjXNJDQbXHpTN0Z5Bpslsn6moe8ve4i7AOLQOXgpuhddK/qUqLt48PchoASY7O480IQuLCXJkgQhCxjLfCRLBAQhbDEW64cbgdVYVUwseWOe2wcOI3C7UhAcLHgVlGWmSfkRJZTRQeTej/HMNzzLiFXPMaRz3kEuYeLwRsN+Cv14ALXA3C0+TMDrhbibiy7+o9Qd+47JOK8sGujCUdmKe0L6y0fBHP0LmrMIosbpzR4hCySJ3+rcLjZb/eN8V0Yf9vM+Na+lpq7ptPGWl+IrJKDZU7YMS6IMywNfVzSZVqJGsjLrANJ7b7Mbc96nXSRV1mPdHbqzK9VI18vVytewhh08T53oU5xnD4cVw2eiqWa4p2GM+gH08l5h6UMHzL0eR1EeDv14JVzhz7wufp1O021HhsvsK2RUlO4fW1NZm3CziNXLU1rZj1jpOPDbfwX0Ay/tgWHX+9o/wBkLxfmuHD8Hp8pTUL2mJk0xkdr1ahtzXo/KnSnglXFh2HROb13URt+zNPIDgpBaIIJIHJCQOBsRuDzCVACEIQAjmhYPBAcWecgFBANl5U6Tx//ADAYb+Xk/dNV8Zw6QMLyrXRU+IbyPY11xI1vEkc/Beb80Y9R5h6cMLrKF7Sx00hIDw631sDl4ID1/R/adP8AiN+hbu9aaP7Tp/xG/Qt3egGfH2kxxnkHXPyFMp3G3PcJ+x37XHj/AAKYG+azwXzT0n/5RZWnui2QlQV5vuzpXIiEIUN4WCWBYJGljzZp4lU1QdEMkOdYsZdWzBjJmSW0st2X6lcwQu6y6lUsoyjBLcxayYMjsA25IbsCeYXDXTe9ad04E2CZ6r7ICuelLxJucuTCq0om2jp3PBc4bcUyTZqy7FjYwmWtIry4MEfVO4luob2twT0ya0Lo721NLflFlT+IdFVRNnRuLR1LS1sjX++5MDVbdOt6dbV4zwcbmsFxVFOyNjHNOzwC30grn3abLCla6Okip3Ou5jQL+AsstJbseIXJOKUtK4MFLyNraiQf/qsZpXyW1E6Vgg+asdCMnUeBNgOyuqlpjLuXmy0RN1EBOkEZZDsbFa6jcFhGdKLkzNtgGtc4kHgle0AA3sL2VcZ16VqPLWZPayallkOrTdrmj3oPPxVgUVVHWUdNVRgtZPEx9nG/nNB/isa9lWo041pcM64y3wdLgW8UnEJGtDX6WgkJHWbILuC55vOMGbMhve3JDO1e3JDnafNGxSEdg24lFh7ktZNUsjDcA7g2XPbnyWQiLHuL2OcCSbjgtZuzUS0hveVs2xnBug9sGRNxcJFhG9rrgOB9CzU6dOxOMAljF3JFup2X3WLMWdDRZqQvAadRSyODW2XDPOG3use5CWphLI1tzdM9VMzrS6+9lnV1zLEX+dNM84JJXbSt22mdtKkzcKg6yXDwWw1QLfNAKahOC5dQILQuuduo4Z0umkjOV5eeKwCELNbILZBbdI7sjdZBYTOFrKYYbJhuxlxWSXyaWKMmzyefeLKE5TyLBHmxmKTzOJDr2LR8EhT6eLXe6zw+ERyXCso3UqFNxiuUdNanTqLclEx64Nc5oBa0NHgAuqh0tC4qe7mgJypo9I3XnKsmpNsqajUPZRvLjvdINhulcEsTdR3XKuDnfBuptmm66G2ssAzSFmOCM1GiYndcrnEO13IsuyRt1yO42KRUe5sikynOlnJGM5sxaGXDZJCxrXggOYOJBHHwVq5JwiTAcFjpJ3GWQEkl1uZvyTlFC0HUOK6gSeKsLnqs61uraUVhfD/JolRWchuNThvc3ssb/W3XaBcbjvWaQnTZ1r23VdSeEsPGCeFgrzPXR1JTubmbJznU9fFYzRwhrA9oJe8lx79gpf0XZ+pc24cyGSXqsWjDeviAcbFxcQLkWOwU1w+Immu4gscLEW7wqp6Tuj2rjrosz5Td1eLUhc9kel0msu0tFmDY7Ar7JauUaMO/BTS95lHdN0mYaHNFTS45Vzsp3R642a2vBuXW4ei6ur2KwJyM8HzdMOk94sVSOHzVOPx45PmZjjXwUk1rN6vzXADb5VOugHP2D5Yyk5te9rZNMVmmVrTwI5+K622yHweo0jXBxIB3CZcr47S5jwtlfRmzXOc0AuDj2Tbkng2JDSOIvdQQZoSMaGtAHBKgBCEIAKpr2UH9A4x/4kn7tytXHcVp8GwyWtq3BsMdrkuA4m3Erzp069I+EZkyi2lpSGv1v3MrT7wjkgLJ9jqdPRrhl/vaD90FaKq32ObdHRzhwBuDTwWP/phWkeSEMwn3hd4H6FEn7OUtl+xP8ConL55XiPTCO1P5nbZ8mKEJCvDpbtFhLkysUnBIA5ZEbJTUd0yBLljWBnEHdVr0q9Hbs4TQviqJG6SwkAN5Enn4qykLosr2dnV1wWQ1nYh2S8nty9gcNL173yNbYgtA98Ty8VLKaIRMte5W1Ci7u6lxU1SRhToxp8Gl0jQ/STYpszVmLDMt0zX4tUGAOOkWYXb2vy9C7a+MjTKOQKg3Shk453pIhFM1hjfqNyfglvLxXTY0KVSqlVeEa60njYcsPzJQ4pT+U0M3WwOsQ4tI47jiu0YpCGXFvkKiOVspOyzgraMPEhAbci/EC3Ndl3AlpVxO1pa2ocFJVrSjNodKrEjICI9vSmuRzi7VKbBBe2IEuTTW1pc6zV1ULRIrLm9eMHRWYk2MFsRv8oTU+XrTrO7u5YPBduUlwGDvVjCkkU9StNvAvWNv5gDvQkkcSAeabMextuDUjpXNJsCeXddY5YxmPMNJK+MWcHAcR3X5LolQklnJEbeTWpDtK2zQ2TYnYLikw8PkuE5RxyloBab+CXySdzrEEAm9yFjCuoGupayn7yGttAGvAcnvDsIbK5g08xyTrhWCPm0hz2/IVNcJw1lK2zxwF7qqv+rOmmo/r8S36f0RSabX6+hy4JhEVPC1zmDlyWGP4symp3tY6wAPf3LpxrFG00eltrDw71Tea8fMshaw3v4dyqLS1q31TXPg+j9J6VCCWFj9fI1ZnxozSuDZXEE/xUTle579ThcLGolfM65SNJIsV7OjQjRjiJ66KjBYSFJ22RseKRC6MYWWY7yYeCEIWKeSRC0O4pbbWQhSQDRYocSeCEIBGjvSoQgBA2N0IUN4JQMJ1HVwXLWYPHib2NLi3Sbiw4rqW6lcWzNtzKzcsRMZ0fWXhk8yW1uGYe2nicS642tbkB/BWhgMzdLAXb8x8qqHAZT1gVkYHPY3J/63Xi+r0syyVvUqGiOlE2BB4JQLrmo5NbQukmy85OODz0lgEIQta3MFuCEIUzWYBka6QcGqsdyxW0NC9zJ5Y9LdJA31A8/BRHofyPimVKiokxKSRweXkBzmnjptw8FaaFYUupVIWnq+lYfw3IxvkVz+yXaAT8HkVg4ODQ3WZCffHi1KUe+Va/Z93klRyM+Y8l4dm+hNJWgOnABbMWXcC06vDchRPIuZ8SyVjsmXM41MrmdlsEsjtZJedVuyLCwIVqYH9tn4/oXLn/KFHnDBX0VX2ZdLhHIHFtnEWubblfVPR6Uvs+Dlv/7Ku598rD2R/t9Lg9JieAVs0OHmKMPdG9rbkuceB382ypXoPlZVdKeEzskdIHVURDnCxO5Tzn6lx/BsZpcAzDK32lYWmF3VGO4bIWs7R48PjQKqgyz06uqA5ooqarieBqAuAN91fGk9lt4DwQoLlzpMwTHa11LSSMMrYjIR1zTsCBy8QhDE4895Iy3T5Qx2eHBqCOZtJM8PbTNBvpJ42Vb+xRAb7dNa1rWtqgAB3aCrt6Rf6C49+YzfsFUn7FDzsd/Ox+wUW4PRh4IdwWR81IeCxe2WERjEd8Qm8R9C5HGy6sU2r5fEfQufiF8l6zlX1Xb9YLWg26aZp63fc2SiZjvNe0+BUfz62t/kxWnDA51X2dAaAT5wvx9CoDJWP5loMWmjxFkzYzcdpjB75dPTejO+pupqxj4Z/uYX11G0hre56h6wHmPlWV7NVb4RjkkzL73JueClWHYiZd1zXPTZ2+dT/X1OS26pC4w0v19B8kcGxknmoXjwb19xxupFUTdYFE8ak6ieV3etnTIaqiS3NfVK8Y03N9jU9/V6SCOXNdtDiT2HZjHD0lQCvxB8lYGNubkDl3qZ5dZQ0FGajFp44C6xZruLjgeC9BfWsYQ2W/kef6beTuq2iKOHNIlq4TOWgAA7X7goRJSRVDLuaA4+hWRnPEqA0oNDOyRrhbsk93pVZ1NW2BkkjHDW5y9T6GTr6npWEij69TlTuMRluN0tG4ThsRtvyT3RMdBCBKb/AB3XHQhkMDquaZrQBfcdxSxYrRzFx65jtyOK9tddS1TdKG8iqrUa1WPGcHVOQ4XAXO17gbAlbIqiKVnnhK5gIOhwXm7qwryWvH9DjhqgzSTeW7t1sdC+djo3OIY4WIBWtzHNAPErqpwS3fZctGzlVqxi0ZzqShJTT3I5FlmClxF0sI7chLidICk/V7BpALu9aZquOneGOI7W/Fb4pGvF417eNpQjT0Y4JurmtXSnUeTRK0sIDvlXbAzDqUB9RJZx5aQVyzAnzioXmjLdXieItmhvpDifNvyXjq9rK6runDZeZ29KVFybqPBYnl1OXAwE6L79m2yd8vOhlr3PdYwh2wI9HcobhdHJT0Eccp7TQBw9C3RPmhfqaTbwVdd9JlRnplLP3f5N0OoxpV20spP9djPGOlbEMOzTHQU1LGaS7AbueOJsdhsrIoMxitp4pQ0NL2hxAvsqtmooJpRO4DWPSeSdMGqRDIRwAVbedJpOGe/6+Jdw9IlUajGOPv8A8FuUVQJrOHFPNNKJGeGyrvCa4F4N1LaCqBaHA7rxV5Z+E3vsetsbvxYp4H1C1sfqZq5rIXI1Eb3VS8Zwi2XGTJISBxNkA6pG3Nr8VSPSpnDMmGZ0paPC+sdTF0V9LGEG434rt6fYzvZuC2wYTmoF3oTbluqnq8AoqmuBFS6JpcDYG548E5OA60v9+bLirwlCegzTBCUkgj08UjgT5nDmVCjh4QBCGvicSGPDnDcgJbvkALNkq5ptalyMoRCjeas6YNlmSKPEZ42vc4AAvtufi9Cd8IxKlxnDoq+gcHMe0OFjfiuqpa1adNVZLYZR2oQQdR18ULmymgCEIUYWMEghCE1KMcMcghCFl5kAhCFjF6llGSQgvwWWmyRCbrdEJ5YnvR4rfh/28z41od566sMH/aEXgfoVh0yCne0l/wDJf1NdbCpsk4B5Hkq/6aqaCqyZPFVGwEjHCwvwN1P2kC4UY6RcB/lHlmoo2Dt3Dhx5XK+vrgpzx5ibY6iDKIeOsgknmBa4XB4cl66yzkvLsWHYdVw4PQMqPJ4zrFO0O80HjbvXjytp8VwnNGCYLicb2Q0czjFqaB5wufT8q9zZf/0Jh35tH+yFIO5oA2bsByCyQhACEIQAkdflzSo5lAMmLZYwbF6ls2KYZR1bw0NBmha/6V5hz5hlHhfT1hsOH0dPSwiaSwhYG3+tDiB4r1w3n4ryn0nf2gcO/LyfuggPU9H9p0/4jfoW7vWmj+06f8Rv0LaUA2Y79rjx/gUwN81ngn/Gx/NR4/wKYB5rPBfNfSqOm7S80WVp7pksXPYDYuaD3ErJoJY7vA2XnbP1VnI57ibQw1BoxtdsbCPsh5+Cq+m2Dv5NKWGbpz0PJ6IQtNIZXQA1F+sub3Fua3Kvq01GbinwZp53FCEiFAB24TXVjtJ1Y0ONncEy1kgYJnOcGRhtyTwW+3WZbLLNdXGnDMdPBZdpvmvd8q5KSvo6siKmqo5ZGjdrb324rqvHqabecutqdN+0ivwuBLaTcece9G/vuPNAd55lNo2NLrn0Jmp80YHU4kKGKtg8ovZzNRuDa/ckKFSplxWy3MljhjylA2S6XBxs8OaBfYLFxBbssYtsxljsbKY/XwPSE7arNAtfZNtAO0nL0LmuNUpYwd1vwQnNPRvhOYsXbiNU5wlJJ2jaeQHPwUxpKeKhooaeMl7ImNjGodwAH0LchRcXtWvSjRlL3eEbPDxLIhkLBwF1y4nXUuGUxqa19mi54X4C66dgSHbXUG6XMr1WbcvilpJgC1xPmX96R/FZW0ITrQhWlpT78kyb5RLsIxSmxWIS0zmujNiLdy2OkOuwOyrrocyfV5MwypZO7tyPY4nSRezSOansg0Rgg3JWd5Ro0J6KctSzzjBspb8lfdL2e63KlNEKOFsgeWEklwIu4jknjo5zHPmjLEVTURhjntdfj8Nw5+C3YvhdHirHx18WuzwQS4jgfQu3C4YcMp4qSjjtELjY35k8/FWM61t6qqaj7XnubfB0vVk74ImxzmznE2XSiwAGnmLpdPeqhvfYybywHFdMRDWLn1NaN1zy1LG8CsUm2YaW9jqlkubJtqjq1C65K3EHNB0lV/0lZor8Lw5rsIDzKdJdpDTvc34qxtOnyrzUUzojQlCLmSmuDmOvc2XG5xcOKjfRrmatxzDpY8YDtbWixcAOJPd4BPc0/VyuYDdtzZWkreVCfhvsd9rJzjlrB0Rx3cu9jS1qbqeVpIN12tq2Ws5wFuHitVXd4NlTV2RuO3FB4JDC6shuRw4JrrJ5KTSJzosdiVgqbfYwglU9lcjqdmJvqJiHFc/t9SU7NVXUxtZa++38ElFi+E5jppjh1VE+SNt7NJPE2/gt0LWrFatOxjGUac9E9jayTWbBOFBF2900UcRhkIPepNh0RebrC4quEcPczuWorYdKWIaQV2+aNkU8J6sLobGqGpU1PcqJTyaW7rpiYG7rJrdKyWlSSWDW5bC3uEiELKTwss15Cy0Oh1OW9ChYayTqMY49IWVrIQpbbWGRlgkde4tw5pUjvMd4KNOdkHwSTDPtYbk+g+AXTbgHADcWWjCxalb/ANcguoi/HvX2i3WKMF8EUsveZ49zXTMgzLmFlG91vIZnuHAefup17GrK+B4xk/yjEsMo6uRjIr9dA1+5ae9RTpuy1jGV8XrMToGvdRVcJgeWsFu1qcdz4Kx/YrtAyNqZxcyIu8dJXRlybIfBb+EYZR4TTCmw+nihiBLtLGBoFzfku6136rnbayyQoIEadQuEqEIAQhCA58Qo6avpX09bBFUQOtqjlaHNNvQVQvsjMq4HhGS45qDCqKGTrJN44Gt/1ZPIL0Eqa9lB/QKP8pJ+7cgHP2O31zo2wy3Z/m0HD8mFaJ5KrvY5/wBW2F/m0H7oK0ffFAYS/Yn+BUTl88qWTi8bvAqJzi0zgvF+mC/Zwl8Tss/eMUdkNLnEADvKQKtOnGfHYsDazAWSPLgNehrTv1je/wBC8bZW3rleNLOnUdtWWlakWMapt7NII9BWxr9Yuqm6Hocfnwe+NxysIc89tjR770ehWvTt0Q6RwC23llG0m4Zy0ao1XLsbEIQq9Nrg3p5BC56qcxMOhY0dSZQWvWySmoqTIlPDwLXEsjGrdpTczYHqXuaOfJJjuNYZQAxS1MbZz70k32TFLiUjora9jw2CsaNnOcFLHJXXdfwx6mLOqcC67r73UZlt5QbIdJ1hBJuU14vjmHYS4NqpWMe7bdxHK6uLa0nHCzkp6lx4mfZMsXcRHZveE0lvMrN9a2uIkgkDoSL3CwIbzN1cUopPS3uecuJSc8YEDr/EkNnm44LINaSGhu52XdSYcbhz1lUapv23gRpyqbcDFjGFRYxAYZG8dt2+iy7Mn5bgwSKXSPOcDaw7rKTRxtA0jiu2loZJBcg6eWy5ql81HS3hFrQt501jOTmYyMyNaxgvfuWUtO4GzgAON/QnrD8Nax9xa6carDTV0U0DdnOY4A/FZUv2hCM8NltSsNccsa8vYthAeKXrianhbSOO5+hOmL4k2mgcL2Gm4PPgVTuXeirEcIzrDizqgCNsuu3Vn4Bb3+lSfOWJ9VHo1anNaAT8RU3NlTqVYuFTOfgep6TZupLQ0NmaswaaaRzXEkEd/eFTGHY7JiFfIyRnLnfvUnrqo1Erw7vTbFTMa8u2uvW2VGnb01FHpZWc1JKEsY+BuJA5JD3oQt2N8nc8MEIQkk2E0gQhwOm/JYvFoS5vnKY+RD4bMkKP0tbV+2BDw7q9rbDvT/Jd7GuPGyzccHLQuHVlpawKhKSHAd44LEtA3dxWC3OrvgVCDfT6Edl3auDZTgjUuM7ghBGsajwC4pMTpRU9RqGuw5qVHJhUrRorMztW2m+yt8VoB1N1M4LdRuJmZfvWNRbG6L4ceCUYM/TIFPcGnJNv+uarijP19vgpzgz/APr5V57qEFJM19QgnDnJYeGSdkbp0HaCjWEvFx/13KRROu0LyFxDSeRrx0mxCELmSwcyeAQhCjLzuTyCEIU5faROAKTmlbxCQc1KSzwSthwwP7cPx/Qn8tA3ve24TBgP2wfj+hP7CCwFvBfU/RxNdPhnfn+pUXPvlCeydp6V0dBPUE9YOpa3sg/61yrLAqGLEOm+mpcQhjqYnVkTZBKA7UD334q8On7JU+aMEZPQguqKcsIABJs1znd6oDoqrK2s6Y8KmxRrm1j6uIyBwAN/i2V6aFyeucLyfl7DZjPQ4RQwSuZoL46drSQSDa4HoCFIGjYIQEe6Rf6C49+YzfsFUn7FDzsd/Ox+wVdnSL/QXHvzGb9gqk/Yoedjv52P2CiB6NPApfepDwKUcFDWUCL4vtXyeP8ABcwOy6cYB8vk8R9C5W8F8m6+kr+ovl/RFrbpukheyDeRoc3mCLhVpmzCIDW3hhYzUR5rQP4KyncEyYxQdc/UG7j1LX066dvPTnZnJ1O18elghlBSMpI2i25Uow6nEUN1wQ4e7yq0gJaLp6bYENHm9y7765UmknnJW2FmqMGu5lG3U0lRTNEEjg9zRt/+inlPDH1WzU04zRdYwhvm9y47G4jQrJo6b6zdag4sqSlpia9rnjg4H51q6YqSpxXB8ObhtRJC6CJzXCOQsuS8HlxUvqcPZDK7s7qL4y54qAHG7RewXtbWcLi4hKT2PJRnLpMZSit/18iE5ZlxGKnENc6SUgk3cXO+ldtSHTzEaXAA9yfo3NBuzYrK7DcW7RO6+n2txZ0IqFLl/I89WvvHqOpJbkTzAHPwt0DJHscQRs6yjWGUz6WNwfLI4k33ddSvNcAY8OaLC/8ABR1rtVg1bfVqKq+JDlnqejzjO31TRujqJ43WEh/xFOeH1s8koa55I8SmttNI57XOaY2nlxThJimH4Ro62Nj3m3FxH/XBb61WNBZluY31OjVjinHcmMGnqGGTjZcWI4jHEwtYbH0KPvzDJOA6E6YnbtAN7D5FwTVDp5hqftdY01TeKiXJSUeiVc66nH3/AJDh18lTKbEnfa91JMJa9rPrlwojUYzSYOyNhja+WQag4uItyW6DMcs0WprrDx/5LNV4ylOn3Nlx0yrUS8Nbff8AkTGRhMt73HitrAerJuFF6TMF22f53ff/AJLuixqMiziCDyuuG36e03JFZU6bcQey/Bjk8uINz86wbcHSTcJaeoiqIiWNHyojMZJa4hpVLe05UaqVTucjUt8rgQ9l21yEjjocHN2us2jSDZ2r4lpLutJaeIVZdaGsILZ5Q+4VVEFu6mOE1tgLnZVxRzdRIBJw7yn+gxJrNmkSDjfhZeavbJyTwj1PTOqeGlGTLToqkOtv2U5amuAtwUDwrGAW6b39F1LMNqw+G7xz4Lxd9azhLg95Z3sKkVudtyNZAF77XWiqwygq5GTVNHTSTtIOoxtJsOHELeSJbFmwWwtbq1AdsixPoXFCpKhumWMsTWTEMY0MDGhsYFgALBZPFnE8zwSOAda+9kp3cCeI4LU229wF9rHiuPFXSx4JVeTb1AZ2fG47l2cXX5ob2SSNiVlSkoT1SBQHR1W5tfnyqZXiXyIukA1GS1usHftwXoFzzHK0MFwONlqbGxjy5os48Vm0lpJabE8V3dTuqV5jQsYIUGVx0n9G7M4VUEzJpGFjmmwkDeAPoPepXk3Av5N4DBQB5eWMa3d2rgLJ8adPDbmgkl2ontd6xqdQq1bdW8vdQ0b5Ec4ufc7JUHc3PFC4U0+CcYBCEKQCEIHFQ0nyBEJHcdllpIYXe9bu49wURbk/ZM20luCFrhkhqHlkM2p/G2lbG3fchukBbJU5Q2ksGtSyCEIWL4MlyIfPXdhQ/wC0IvA/QuE967cHN6+O/cfoVl0f/nU/mjXW/dskjiGtJtwCBuAbbEcEpFxY8EcCAOFl9dRTnlr2RUUMXSLl4wxtY51Q/UWtAv8AW2r0tl7/AEFh35tH+yF5r9kh/WPl384f+7YvSuX/APQOHfm0f7IQHehIEqAEIQgBHMoRzKARvPxXlPpO/tA4d+Xk/dBerG8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C2nmtVH9p0/4jfoW13AoQxtxz7UHj/AqPjzWeCkGNb0fxn6Co8y/VtJ7l869LP+VF/AsLN7C3cRtstboaWR130sTpB74xgn5VtubWSgkcF5WjVlSzpO2UciHihCEzncgEIQgAbFRPNsE+IYFW01I4xzOicAQdJufSpYmmobokJG1+K6rSfh1FM0V02inuizKWPYNmSoqsUqZH07ut0h0zncbW2Kt5xaYo9rObfkle8vYGk3AWB3NyrC8vPWZZaOCKwzXUQmooZ4w7S5zHNG9uLSFUOAdGuKUedZcUknvA5+oAzf3SOFlcSJ6hsUV5TqB4Aqba9q0NUKa95Y4MpNLky7TBbsnshuxWBADQB8aa48SJl0iKzfFJmHHKXAsFlxCsLWsYWjtEjiQP4rS7Sq5JRW7+ZEZRk9iRYe1dx85Q3o8zlQZsjlOH6LtBPZcT763MBTPzfOFzwsq+5oSpVHGsmmWNJ+zhCFILhNGb8bblvAKjEJoxII2F27tPC3rUZ6NOkenzrVzU0NK2KSNr3XEhds0tHcPhLbStK1Sk68VsjZ4iWxPmvbpkLwez6FwkkPeAXAEcF1ytcGuBPncfSuS7i/crnpPHtd2bYLuxHX0BrnWHitcr2cnXHiiojMt9lxmnlAu2M+K2xXiS3Nvsx3ZqeDI9/mhuo8dlnTuLZACGloPFa3c2yBK3sts3YLJpNM3pqSHPrm3BB5LXJUgcE3agy5LrLQakG99h3rJQy9iI0m3sdss5cDuuGea3MrmfXB1w11lw1FUGi9120rfLOmnRlngWuqLBRLHXMn7MjA4ekX5p0r6xwYXN7XoUarqsvJJNj9CvrOi4tNF3b2+dpI7cNqIaCPRDGGX2uG2XbLVNDdRdcndRqGV0jrF1wu3awbbiumpBOepnRUto01hDlFiG9rokxEi5B4b7rhjpHnduyWSjc1pJF1qapasshKCwiD5tx7HvbdjcPmqWxAO2Y54HHbgVac8j6jA43TXMt3X1ceHpTFRxMZLuz50+SSGVga7gs7lwlGKguCtVl4NfxovYhmO00lbB1IcW8BsbJ36Kst+0XXyyPc7rALBzr8CU5SUcb3XLbp7weItDQRsFheXbVtoiZXtOnPFTuObaUPkuBxN1I8JgDWi4XJSQtOm7U+U0bWjYLydzW1LBS3NXKwdLGhossrgJEKve5Xtik34JEAX4LFx08VjysLkmO6MkLQ6cN48EhqQAAG3JPG6y3xhkuJ0IWiesgpjG2d2lzr8itzSHxa2G4W105winJYTMEKhJqu3YWKU8dlgASHgUqR3ArKPIZKcPFqVngPoXR33XPh/wBqs8B9C6O9fZ7f91H5Ippe8yuunmGOTIFWXsY4t1EEi9vrb1FPYpdrIkgJIGmHf/ylS3p126P60jjpeP8A8b1E/YpjVkRzTuNEP7JW6PcxfBeKEIQAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaPNVd7HP+rbC/zaD90FaPNAYv8w+CilWLVLwpWd2O+NRasH85evH+l8c0IfP+x12XvGgLCpiiljLJomSNPwmgrYg7iy8DGo6TUo8lk8dzXG2ONgjhiZHH/dbZbHdktDeFt0XNrckDYW5LGc5VHlmO3YEDihCyigaaqHWDp3XHAOqms7bdOLSWjZaayIGMuA7fetiq4Sxua5wfJQ3SXkPMeLZxmrqCqkFG90jmtE7gADa2wGynhw+SjpYhM4uI4735KaQ1T2Q6NW+11wPp21LHB7b7K+p9VlUpxpTWEvhgqrujq3IwCzrABcAjmFAukPKFRjtYx9PK9oB97Jb3oHcrCrqU00rg7hfs7cAtTHFrbtNiu+3reHLXD8eCp2g9JGcv5ekw/CmQSyFzxbi+/ID+CcG4YQ7c3+NPEcb5CXEaisS7Q254Diumd3Ob7fcc8rdSeTnhpomN3aNQ9AXbTwvlYA0KI0Oe8JnzC3DXCMyE6R2jx1ae5WlTQMiAbGyx71wXdSVDCnzI7rey1bjVRYaQ8GRP1HBdukNFhtwW19M6OLXJv6FWVb0wUlFmaTBm0bA6Fzo3O647lp7rKtSr36ejsXFK3UeS06elDHXW6V4ijLhtyWYfqYHhtgSRxUdx/FOpjeBtY24+Kq9EqkvDa3La3oa2oxRwZmxcQxkMkeHD0+CqHMeKOlkc0uJJ/wCadM040+Vz9L/+tlCZpDO/U4and/oXt+k2SpwUpnrrO1VCOpmLiS4uWI3N7rKxd6AgNsfQrrK7G7eT1AhDhc9nZLp/vITpEQlZc3BCNQBsW7+KDSAcQLckhGodlHaAs7xQ3s+bsoWzIa2waxFHe+gB3gtjb334IO5ugm4ss3LJhGmoPKFkDbgt5LF7Ts53BAAHBZOJcAHG4WMTNbSyN+NyTNpT5ODe3K65svPnc13lN+J439Henj3tuSxDGjgFkckqMnV19hTfdo4JmfggfXeU6zwA87uT2CQLDgkGwsFKeDbc26ucRfYxivHGG8bCy30tjMy3etS2UotOy3esJHRH2cQH6kb9dapjhLrf9eKh1IT1zfBS/CnADdUd6uTK8ppQ2JdhUvaClFK+7Qobhz+2NKlFHJZg3Xk7uB5O7gOyFjEbjdZHiuBor2gQsXuZGC6WTQwc7XRDJFOwvp5OsaDY7WWajN03LGxjkyQgC7Q4G4PJC1JLYzTFbxWI5pRxQPPcOVkjyDvwD7ZPx/Qn8uDSABt4JjwADr3nuJ+hPxHLkvq3o9//AM+H3/1Ki5980zhphkDgHNLTcEX5Lyhh0UUXsk4mwMayMVlPZrRYDs9y9ZS/YZPxT9C8n0X9paP88p/2Vdmo9ZtvYISt4BCEEd6Rf6C49+YzfsFUn7E/zsc/Ox+wVdvSICciY/6KGb9gqkvYnkXx3ffysbf+QoD0b3o5obck3FkA7m6IEcxttqxx7z/ALibwThjjXGpabDtHvTa1zeF+1e1l8r9IYpdRqZXl/RFrbfuluZFaKt1oSbLe+wJF91ql0vHV8jzVJhaja4uUWhoady6yzAHWBdM1OI4zo3HeuGoe2FrXPdY9y71FSWxXOGHnyHync0RjdcmIEFvZtdcMWIN6s2OwC5KStfWVjWFumMnje/Ja4WtSD8RmU7mFRqmnuN9Xh0s05dY6fjUVzFRsiJuRcelSbMXSDgWC1Jop5vrxFvsbuJuO5QPGcYOKTl9O28T92m/Jeo6VQuHipJYj8zznpJSp0KPtcsaWuIJSBxuSO9ZiJ1i21ylihcLgC69lCnVbTifP3py2ceNQGppC6xuAVFoYOp1ucPNuVO57MpHNdzCh2IPDXPaOZK97aQborPJb9Ku548PtkYBjU1ZX9WY9LAeOm3JLV0bKqUPe47DvXSyKKM6urbq70p03uB8S1UraVWGKh7CNOEHsjXELRNY0bAWCyaL81kNnEjYHl3JGixvxW9NRWnHBMst/A01FKycgv3LdhutkUPVss3gsncbjZAJAu5xAWEYRUnV8zJNraIWIbb0rYZLNA3XIK2N0/VNdqdYmxC2g6jdbKc/EfsvYxdNP3iU4LiUdJSSyP3MbHPt32F1xYdnNmJV5D4HsBPwAOXimhrjbTfY7ELUynjgm1xxtB9Cr7uy8atGT4RWR6XT01NS54LFjkjnGqMj4ysXtJcNrW52USo8RfF74/KpHhtealrWuF9uN1z3XSqTWYf0PLXtjUtt8bHS5rnEBguVtFPNHplN7iw0i648XnqKOilmpW2ka0kWdZR7KuZsSqMTezEHPc0F2kOfew5LzFe2quemCOmysVVo+M2WrhGG1U0bZm9nnZwIU0wxnUsHWOOu1rXVBZgzvj9Lj3k+H1M8dMw+a2WwPZHLxVi4TmmeWCE1Qu8tBLi4k8AvL9Q6TdqLlKP4o9Xb1qFrFa5fgWrQSgNtddQNySophGKsqGt5KTwydYwW4LxV1RlT99HqLO6hWhmG5tQkBSrklFbPJ1ghJcDiUjXA371kmnsycGVkiN+YslWLjlk5wCEISWeENQiVCFK22IbBCELLvp7kAi+yEnEonjJOBDsLpizfJUTZer4aL7O6FwbYHjbbgnyU2ZYJqeZGvcWk7jcXW+zxRkpvc568+yKY6JcJzJR52mnxJ7zSkS7EP52tx2V/nTsGhwPpTXSBxeSLtN+IKdHcRuujql563UUlHGCLeLxuCEIVf2OlbCFduDfb8fgfoXGu3Bh/P2egEfMrPoycr6njzRrr7U2SVIfO+JKkPnfEvrhTnlz2SH9ZGXfzh/wC7YvSuX/8AQOHfm0f7IXmr2SH9ZGXfzh/7ti9K5f8A9A4d+bR/shAdwSpAlQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nX+qBw3u6+T901Aep6P7Tp/xG/Qtp4FaaQ2o6f8AEb9C2OeGgk8EIZxYuP5mfj+hRy1o2+CkmLEeRuJPI2+RRyzvJ2ucANhbdfP/AEuhprwl8Cws2sAhYl7L2v8AMsgCeA2Xj0lnJ2vL4BCxBJtYePoS3bfjt3qW0hgVCxLhc6dxy9KVp1MuPO7lOAKOK5qmHWNlxZkx+gy9h5q8SlMbBa9ml3E25LiyZmygzPSmaidcAX80jnbmF0wt6qp+Pj2c4+81zlFLDOqRhjO6xXRXuvNptYcbrQLczZbYKPMjhkkhEy4m90tW2Jt9rj6E9Dc7LTNSsfK2RoAeL3IHFbqNRQqZxwc9WGvYo7P+asYwzMFLSUlM4xuey7upJ2N+d1ZTcGbmvI1LT4kXRvqIonkA6SCDf09yfq7BcNr5mTVdFC6RliHFtzsnOgpmAMjaxoijGlo7h3KzuuqRdJOjHEl5GdC30vLGTo6yJSZNpZhRyOe5zT5z9XvtXcFMA8Bp6wG5PJLdgALOzq2NuSHAEd9trrztxWqXMvEm8v4lrBLscOMYXTYth09JVh5je2xsf+u5NGVMlYZleoknw8Sa5GuBu4HziCeQ7lI2tO9yTfvSB2hxubi1rLKFxVhTdCEmk+wcYuWO5qlkLlzvfo3KYM155wXLlQyCtnImdcaercbWtzA9KdfKI6+giqqR2qJ/O1rbf81n6rUo041JrC7M20ZxlLQbW1QfJp4W2VS5k6V6jDM0RYbHSuLHOaCeqvxF+N1ZbxYtLTawttzUVxTK+D1eItraiigfM0ggllzsO9d/THQUpOv5G+dCU3iBK4Khlbh9FV20maBkhHCxIBWmadrRa64BUiKnjiiaGxxtDGgcgOCbamtOo+ta1bym5KCOyjb6NpjrJOHbLmqdbm3D4wO7mmCrxxlOx9+IabHfiqqxXOmM/wAoBHDPL5OCdhIbcAre16XOrwuDpqU3bJOS2Zb88jnbAhlubtky4jVzROIdYs7wFEs85orm0FOaDUyQubcteRfsn+KXLGLVWJYU1uI316W3cXajwViunypx1SRvo16fiKD5Y5VVa51y1wsuCRxfvfikc0BxZxB5ojYS6w4BdMYKCyemjTUUsm+jjJcn2lptTQ53FcuH04BTzGwiwaNlzVakfMr7mr7XwCPsC1kriCNws3WaN0DtHgLc1xN54OJZllvg0tjZe9lsPas1o4pdIL9vN7110sJJvoFhve6Sm8bBzcdovJrgp3Ai6f8AC4rW2XLBFqICkOG0waAbXVZeV/ZwnuV13V0rI40sOzfBOLG2CwiiAaDfkt3JUU5amUs5qfAgSpBslUxjsYdjFztIXNLISV0uFwuSZpvsFjHS1lCBhp1JJhqZZt7gclmwO7lm2MkWB073uFksJ6ja5LBQXSlgGZcWzOPa0zNh1utYSfBHd4K98t08tLg1OyoN3tjAdx46R3rviZpDTqOoe+WRJIsTdd95f+s0qdLTjTn78nPjDMmyN0cFjayDbTYCyCbquJBI7gUqxd3d6ygsySQfBKsP+1GeA+hdHetFF2aWPwH0LdzK+z0NqUfkiml7zK+6df6vq3wf+7eon7FH+gx/Eh/ZKlnTt/V9WeD/AN29RP2KP9BnfiQ/slbo7ZMXui8EIQgBCEIAQhCAFTXsoP6BR/lJP3blcqpj2T7rZCj6zs/XJPT/AKtyAdfY5/1bYX+bQfugrQ5lVd7HNw9zfDPzaD90FZ5dZw9KBCjdrvjUXrxaqkClA2uPRdRjEAfLpB6d15P0uX+2jL4/2OuzftHOhICC+3LvSuFg4jex29K+bymnwWOU3gEJDs6xWt87GEh5t3LZh4J0o2oSRfXGkjgEE2YXdxsphlsjKQvOy56uYMGkra6aNjXSE/WxxNlWtf0j4NPjPkEExdMHBpGhw99buXZa2VS4m/DXBouaqpw1MmjnMjLpCRZ2/FNdRioaSGBcFTXuew3Nm8t+KbY6mKQ7Htd1ld0bFf8Absefr38cYzudtTOZzqdxWjgN1sDNQaR3brCQ+9C6ZRUVpXBx4cnljbnDFqrBctyVdBH1k+sMto1bEHkmXocxavzFBOMWhMe0duwWfCvx8Ap7RUUFVEYqyJs0R964bcOKccMwqiwxujD6WJrTa5aLcOH0lYTvqdKm4Rj7RZ0aKmlggtF0U4dFmX2z62brGnWB1u19erhpVsUcTWRAvHaWuGCNhDnOuTtay6nbDTb415+7vqlxJOb93YtqNHw+RT9cbZ3BQqt6NcCrcZfijhOKhxJdZ4AJO/cpoAQOK5aurENg3a4ufFa7a7q2+VTk8s6XT1PCMK6qbBDdlwBc9pVpm/GBZ4JFyeXxp9zhj0NDhMs8zywBpOwJvwVMV+Y4cWe50LrgG3NXvR7CVV+NUWxedOpwhNRlyaK2qMr3HdMuK15oqfrGtLiXaeF052Ft1plpo52OZLG1zbG1+RXsIKKaXYt7pT0aYHJg9Y6tpy5wtw5WTgBZo9JWijpmQRGOMBo23C2tNuze9t1snhP2eCaKcYYlyKeNggs0i7nAfGkIs4Em101ZimnhZaG5+O3JYxi5cCrUdKLnPhDuA4i7SCErbScHNuPSmnBqmofQvMt2kXt2r8lwYVV1Tq5zZCWs299fvWTg1ycyv6bxvzsSMknzuKEcuN/Sha2jvSfDBCEKCE33BCEOBDbgXUqSWzI5WQQgAltwN+5CzySprGAQhCjngJZ2BbqUfXR4rSt9J9mHisGyYtNofKIXcCpJhclw4eCjVA7tltk/YUezKTxAH8VU3e5tuGmsEywq2xUnoQHAKIYY82ClGGPIAXl7yJ5m8iP0PBZnitMD78ltJ3VVLYqZLBCelvDMUxLLTo8HdpmIfw1dwtwTJ0F4Pj2E0lQ3HH6gXOIuH/BFvOVpBzgfOOnuSuc48HEDuXfDqGLOVvoWc8mlxecmLbW2SosBwFkKs3eMmaDmgee7wRzSji4+hTFYZI45f+zSfjH6E/lMWXmkvkce/wDgn1fV+gRcbCmn+typuXmexrl+wy+B+heT6L+0uz88p/2V6wl+wyeB+heT6L+0uz88p/2Vcmo9aN4DwQhvAeCEII70gMacjY8wnY0U29/7hXlrofxzMeExY1DluklqHOqh2mU4kHmkc/QvUvSJtkXHx/8AYzb/APkKpL2KLQ446HNDv52O0eI7BQG13uu1c0czJ6ena4+bJh+48dk9OwPpTlphNJjeFhwbfR5EQeF/gq7mtLRuS7xSlt+Zt3IDyjNjPSjDjskckXlIpnCxioRY3HgnTL/SrjVFVPjzjhdXFGLgOMDIhxHP5VfGOU8NPUwyQxMY+QnWWixNrWTBiWCYXiMRZXYbST6vfSRhxH/V14nrV9bxup0a8G+N+Ox30E9CwMmX+kHLuKde6Cugg3G0szT3rdjmccFwvB6irhxOjmma1xDGSAkkC/AqEZj6GqWaolnwKrqKR7jcQw6I2fR4rixvoTdJhzRQ4vXzVPvo5HsDeHfbvVfC16dOSnGolntncz1TWUYYF00w4nWzUlTG5jA4gOcGAEAegp4fmbCqgNaK+DUf/ECg2HdC1fS1gdXvMMe93RSscTsuvG+jBsdE52H19X5SAdIu1ovy3srRUunyeilJfHcpq9Oc6ntE6MmqFsscrZIyB5hTjgFUykrWSOB6tx4E781ScdfmnK0eivjEtM0gAulLjbgNh4Kwcr5jpMfw+GpgcGyEXLCNIG5G1/BYVrBqGKW6+pzb0pOS7EZ6Ust0WM5hFXE4teNJ+yHkSeS5H4u3KeASWjdM6wsWgG2/p8U7V731OIuaAeOkW8UmJ5fdJR6a5sRheL9pwJG/cr+2dJ20bN8vH4Hn59Rua1zrnFuKz2Ibhuap8QYZjG5oJIsWhPMeLOawFwIDhfgE011BTUZEVN2W3vsAN1yOkcW6dRJbsvpHT7aFKko4OS4o0rqXiQiPU+JdaCN0y1rmlxJ5rogje5mq2y4ayxfYk3XTUa7GfTqUI10onPcF2655auKGSzj863tHbueC4Kqg66YOv2VzVXU0aYnqsHc14kAe3zXbhKsI4xFGxgOwGy2WN7LZBewn3GBNrb8Vg5pkaW8llYFxve4Sl2kKZtTjhhbM4IsObDVdeDvYjiea7mCyOWok2WPXxh+jV2lojShRWzMpbmZ9CLu5oJ7Q+VDnXduNlvi28NGLlhYFGn3xsnPC6hkMgdrBFuRTBiXWdX9Z4+Nlrwps7Y3GZxubEb3WqndVFPS0ctxZxuY6ZE+ONQuBicLgi3JN0XVvqHPhjOq54JjDjqBaSSON1302JR0VJJLKBcO7r8ltlKnTTqNblLU6TK2i/D3JDTYYJJOuqGdo9+y7pIraS02A2UawXNsNZJGyQuDAdyGlSWKaOoH1lxI477Kkvou8pvQiku6NxSeZ8fIe8FrXQlo1Kx8DxHWGAu4myp9kpifsVJ8HxfqywFxBv6V806r01pOLRfdE6q6SUZMt5pa4XBCBxUfwTEevYLuJ/wD0T/GdW68FWoSoVFHB9EoVo145QpDXeftZLsRbq3W70uzmlzuDdlUud+loZfzOcJdA3sP0uIY8+9B5bc10WlpVunJQj2M5z0YLYaAB2Uq5cMq212HU1SxoaJYmPsBbi0H+K6lzShKm9MuUZ5zuCEIWIBCEgN3WHFQ+NjJIVCS/D0pVi4vOonAJClSJhRIQhF1j1DTdZouVtjPCIcEzWyEMdcLYfOCN0oHyrCUsslJRBCQlKE8yHwHrXbg32+Pj+hcXrXdgovXAj0/QrfoX/Op/NGq5/dskiQ+d8SVIfO+JfWSoPLnskP6yMu/nD/3bF6Vy/wD6Bw782j/ZC81eyQ/rIy7+cP8A3bF6Vy//AKBw782j/ZCA7glSBKgBCEIARzKEcygEbz8V5H6aKippOmmnqaKJ0s8czy1rW6ifrbeS9cN5+K8p9J5I6f8ADrbjr5OyeB+tN4oCUe3PStirI/IYRSQhot1+Hg3+MBduH4V0rVrXmoxfDYTcbPoSP91XdRx/zKnsdHYabN8Fvc3skXI9Kh8A835191PA4ItNZSVrHv0nqKG/InmPQmKDOefcENJU1+F1c8Rju4R0bRx25r1FicMUtI/rI2SaQSNQvY2UUmp4KmEMngjcALBpFxZeZ6/e0aMqcakNSx2Ou3TxhEEwfpby/Xuihq70j3HSTNKxtj8qlTcyYC5rZYcZoHMLb2EwKjmaOi7AMZpXGnpYqCpsbGmia3e1huQong3Qw+nkmFVi9eIjq0APYdrbcl5tUOnXNNz1KL8mzok5pnTmDpoo6HNJw2ljdJSB1vKW6DG4ab7G6sSmzVgNTRwS+3FCwva1xa6UXBIuqLqegjFH4jGWVUr6YHd7po9XDuVgUnQ5hwoGxy4tiDJQweaGHe3h3roubTpkIRjRqr4+1kwzULGocQpq5zva6tpp42cerOpb2NaQ4gFr9+KoWsydnbJ1dUVWAVctXQB19M1UGki1h2W25kqT9HnSYcTrfanH4m0tcTpBa19jdwaO0dlWXHRmourbTUl8NzbGeOSV9IOUos34I/DppAx7y0hxc5o2N+SaMlZSHR7lmsfG8SPETrAEu4Ov75T5zW27D2vHw2kEj5FjUMjmgdFVFhicLEPI4fGuehe16cFbzXsZy1jv8zKUFNaikMo9JeJYxnapw2Sml6pj5mg9U0DsmytueLq37rRheUcFw7EX19BSUzp36iXBjffcdwnmoiZK1xdxC3dQu6NWUYUVheRp8LYZqokRfWtymuOukhktIDfwT1KzqwSLab23XHNTQzODttR42CUp5i4tbFbPKlg6mu65gcFxY5jEOAYa+vqnBsMZaHXIHE2HHxXdG0AtZHdc2cMsR5ky+/DpnuYZNBOm3vXA8/BY0pUPGip7LvudlOlJrImTM34bm2mcaCRpLLkjWD763JSNnZDm+lQfo3yFT5JinEU8j9TTu/SPfauSm52be4JdvcG65+pxpRrydHePZnbTWI4ZmXBcVQ7tXBSuluditZ3NzwXHttpOiKcdyrekbo5izXiba18mk6i62tw42HLwU0wamGFYLFQMcCG33vfiAOfgnKvLGu85zR3NTPiOIUWHForJ9BcQBz48FcO4ubilCglnT8DaqVJZqT2N08wjbpJGyaaqqbpJ1BYVdS2dhkp36mHcG/FRPEMUtqYHHV8a7bS0fEluXNraeI01wPE9e0S6S4BtiSUx1tbBM57IaiMv7g66ZKvEJDHJcnmAd1CMHbiTcc62SVxgLhxk5W7lfW9iksndVU7aaVJZRNJHPMjg5w5rldHEX3LQXd62yOJAN7my09eyEG7Q5/pC3qLgsR7lnUlTmsy7bmT2NkFpW3Cyia1jbRbBMVLmuOWuFK+BgLjpvpdtvZSB4ax127tSdOSWJGqxuKNxVbS4EaC425rvp4rBt1ywOY2UF1+PcnFpGptuYuFoqS0vB11avtNjvRxANunGCZrGFtr7rkpWu6s2tstHlbWucBxBPELgeZMqqmuc8I7p5ATwKQO1sLQ0m4I2TW+ucXWACbcfzUMDouu6tr3OJbYgnlfkso0W5JI11828HOXYkTW9Wws0uuU70cbnCMNO190y5GxmPM2EyTiFgkaWg9kjiCefgpVhtPpc0O2dfgFw3c/Bk0zg9dVWOTvoaO7hspFSU4a0bLRQQWANk5tI4DivPVqjnPYqbipqYcEIQ7YXPBcvbc5FsCEHa1+aQmxA71Ci1uiXuKDZYkAlZW3sUuyySwghA1oCXZIUKSQ0oRcpLoQxUIQhiCQ8WpUnvmrbR/eIiXBK6YWpo/ALd3rVT/a0X4oW5fZKP7uPyRTPlledO/8AV9WeD/3b1E/Yo/0Gd+JD+yVLOnf+r6s8H/u3qJ+xR/oM78SH9krcEXghCEIBCEIAQhCAFTXsnw3+Qsb3cWySEDvPVuVym9tlTPsoADkOInYiSQ7fk3ICvOjnM2eGZLw+my7h07oG08TWvFGHi2gAG/gpJRUvS5NUMjfX0MTb8X0BsP8A2qZ+x136N8LIY0HyaDcfkgrPtsOZUS4wSmUdieEdKFJRPqfbfDZntYTojojfYE/BVeYbmXpOYJat9FNLI8NJLaEWPzL1mW3BDhqaRYgqMYjTxQzvihiZHENrMFlS9cuKdtbpzjlZN1qm5bFN5e6XDDGYc10FTBPcjU5rIh9Pip3hmdMvYrRB8eKUkNgOy+YX+ZbsZyngeLwPjqcMpC5wP13qgXA2PrVZ1nQnG3Ew/DcUrYqV5Je1rmNDNtgBZeQh9nXje+h/FnY9UHklHSD0m4blvCj5BVQ1U9nWETmu97ccUzZI6Q6TH4DU19VDSOBteYtaNxfkmHNvQjUzyNdhddUVYsLiokY3e2/LvXbkvoWFHTTHGqyoieXjTFG5j2kaePDvXZCl0ylQaU05f/Y0TVSTyi0aDHcGqXCOHFaOV7trMlBTrPGRDeI3a7e432VO5q6Jq2hayqynila+dpJ0SSMibwFuQ53TbQ5/zPlCeCkzZSRPgJbF1gkfMd7NB2PoKrZdKp11m0qpy8uWbacpQXtFxseCHUz/ADJNr/Oqypeh+kpczDE+vadUofbrH/D1KycNqaLGqZlXh0wfFa4JsHcbcPiK3eTzWIdI7U3tDfay56V1VsfZprEpe9nv5Y8jDw9S0SKT6X83zZfxaLDaSlme1gkbqa0EGxHf4p9y/C+pYyokikbfv2UxxbLuEY3UNkxCmpZZo7guLWucb8foTrT4fEGMbDTRNivYWFlb1erUo0VCMGny8+ZWVeneNLbsRqGjfI55jvpDuadKHDhcF4uU+sw9jNmNAvubLoZTRxAEqnqdSc4txN9Cw08jdBSkuDGsIHenKClZGx1yLC191uN47FrW7/QsgxrtYc4gOI4ehVs6jlJRkWcaKgtiF0/STgMuM+1RnYKi+kDrG7nVp7+9S/WAd1VkHQ/RR5tbjBqp9TX9YG2Za+vV3XVm1L2te8BzdQO4BCsuo0qMVCNtvtv33M6PtPEjKoqGtbxUZxasDXHtDddNdVt0FwdtwUOx2t06jqN+XyqLK2cpZwXNpZuc1sRvPEkWMYZJRmQA6Xe+txA7lW1Bg0eHamxv1C9z2id/jUjxWcvlOh7tR4psuGAl7iRxJPevcWMJU6enBdy6dQjNSzhr4g7tCzUoLw21vmWtk8cl+ode3xLc1xLb2HGy6m33NtOaqQ2eUjBt77rCSeGI2e4AnbcrbcB3aUfx+nqpZWGn824v2rclKgmarytOlTTpRbHx4D4mPY4HYcESlrgNbCVzYZFJHQxiYkmw53XW5w6u4aCB3qJRcXsbaTnVp6ZrkxBFrNYQPBII4wdTW7pvxrFBRdWC22oA7A966cLqxVU+to5cxZb9D05ZqVelUl4WN1udVw7h4ISA3bfgL2Su2tdc7eDqxnDBCUC5I5pDsd1ktzBallBa+3el1WGlG9rrXM7q4y/uUKOWRLMI6pGel7fNR4pmosZ6ytEW/G3A9yeb3F+9ZzWEa6V0qrwCEIttfktaZ0qSWyBb6T7IFoBvwW+j3mt6UktjHXuooeaA6ZLnuT3QutKQPfKPtdZwDeKfMOP1xl+Sq66zk6q8dsktwx1rKUUDrNCimGntBSajPZFl5i9R5m7Q/wAL7WXU03F03tPCy7oDdoVNNFPVRsSo4cULE0ghB2BPckuLXQCjihv2Q+CCDYelB7wpJ7D9gbAIHEcyPoTmU24JfyU352+hORX1ron/AAafy/uU1b32a5fsMn4p+heT6L+0uz88p/2V6wl+wyfin6F5Pov7S7Pzyn/ZVqzHuetG8B4IQ3gPBCggjvSL/QXHvzGb9gqk/Yn+djn53/uFXZ0i/wBBce/MZv2CqT9ieO1jp5eVj9goD0ceCUcEh4JRwQDBmP7JTeLv4JtdyTlmP7JTeLv4JsdxHevmPpNJO/mlzt/RFpae4LxIWOohyyvYg9yR1nbrzixGW50JrJrqIxK3dNc1OGG7m3KeA30rU+IOdZwuVvhWnGe2xpqUoS3ZGMaweHFqYxTxEN77lUxnbIFbl4zYpgkupje0I2xknkOJPpK9A1UEoO2nT6CuKphjlayN8bZGe+DxcFXdj1atQ2lvH7ytr2yitu5SuQc20NTW09PjOmCq1NYOskAubgDYelMfS1Ljb85VDaZznUMcjhFaMW02HPxUv6ZMuUdDR0eM0EIifFVR6hEwN827jwHoXI3EIMawqiq9DXPcwl5Ld735/IvX2NSlVrU7he73Ke+02FF1FFMhLpJnxtEwId6QtuGUuuoIcCQblSHE6BkunqwBvyXGyilpmukba423K+s58SGKJ5ON/GVPEElkj2IZsaZvIY4y1w2vqB4/EtBfNINROx34LZUYdFUVTptLWPFiTYBan21dW14NuYK4raM46vGfc9DaxoJR0L2seX9zEgngixHFYyydUL8u9YRVDZTYEFdGt08plpgaK2tlZiBjAOkEhPTAZGNf8q0VNJG6VrrDUb3W2qf5PFa4FxZctOnVpZqSe3zGBXVMJd1YcNXPdZNFjumajpXyVjpddwST5yenbPAK2UKqqPfgxYX1OLbbWKZ2YdKa7rtXZBvw9CccSqBDBdgJd6AuTCaiWdp1AjbndYVZwlUUUZLgci8EBo4gWStG2/FYNFuW6CTruu6OU0kaWsvJhJKyE3l4JYamKe4iI+IrXXUxqo9INvmWvDqM0nF1/juuNOp4vBvbjpyjsZ2bgrVLGJInMfzN1stqddLqbYlwNxst0lqeJGmXGpmilpmwNtHxUmwVskfbe/Y7cEwntRks2PpTX7Y1zaoRNvpG/E961zqwtVpxycd9Zu8hiKLWLmmEC4JWVBCHVMQc6wc8A/KoXQ4nMwM1ku8LlTCjqBPC17dnDdVHVulKvS8WK5PIV7apY1Fl7ZJ9huZMuYRPHR1dXA2o4WMtjt6FYsc8Uscb6ZwdG48QbrytjOV5a3FRXmpmBuTbrO8+Ct/KWOSx0zIXOLg08SSefivlfWOgOliepnv7DrVvJKMf6FmhpDiGi4O5URzF0f4NjuKDEKprevc657bu63I+hSCjxDrY2lliSBe679Gm5NiW9y8nTrVbKbUJP6no1KNVJmmkpoqSmiggFo42Bg3vwFv4Lcjc8QPiQtMpuo9UuWbAQhCgBtzFx3ILXagWMcBZIXaRcWJHevPedukPH6DPfkNPD/NxIW3Afa3WW5G3Bd1jYTvJ+z2Nc6ml4PQrrxlrS06kLnw2oNVh8UsmnrDf6V0LicJQnKEuxlGWQQkRdQ0nwbcCoQhY4MeASG3PglSAajbvU4GBNbQLAbeKVrWON7hNc2YcNgqvJZJ4RLe2kube97d6c7MMfWMJIO+ylxaWWGxeXxpxwL7c+X6E3e9HinHAvtz5foVt0P8A51P5o1XP7tkiKQ+d8SUpD53xL6yVB5c9kh/WRl384f8Au2L0rl//AEDh35tH+yF5q9kh/WRl384f+7YvSuX/APQOHfm0f7IQHcEqQJUAIQhACOZQjmgEbz8V5T6Tv7QOHfl5P3QXqxvPxXlPpO/tA4b+Xk/dBAep6P7Tp/xG/Qtp4FaqT7Tp/wARv0LaUBy132tJ+KVFh5ylNef5tJ+KVF28V4X0uUlKnjjDO+0M7ousULw8Ipr2XuduwajdGooRZMJbMZQB4DgbXf71QHpE6OKTM8jqune2DEmMBYTqdu0HTsCBxU/GkA3494SC2rsk37+a67e7r2UtVOTa+LNcoajz5lrN2NdHeMyYXmNr3UGo2qHNbE0BosOIJ3JT90tYpX5jwGkrMlh1UHyPD+oAksA230q0sYy9huNQPp66lhkLzfrHRtLhbfiQql6DKxmFYriOAYiWu6uFjow/fdzz3+pekpXFC4p+uQgtUeVjb5/iaWnF6SYdDUGNQZV042ySKclhs+MNNtAv86nMjbxFrPOKUFsd2sbpbe9gLBZNdqeXgbDey83cVY167q4x8FwblB4Kd6W88TZWngiEZOrQeIHEuHMehSLIeIS43hFLifmtmaH22PeP4KQZoyjhWZHxzYhGD1Zb7xp80k8x6SuD24wLB3w4LQPYwxAsDbNFrb8j6Vcxu6Fe1UaUfbT327FfWt2pZH6lZN1vWSHseCcXbsLmvAB3suSkcGXEpOjTquEzPzxgnt4cGMjhUNLmjZthp3NzdU6ozrOWEdlLZYIj0/5jxHAcvQnDJRG95e0nSD7y/NbOgjMVfjmWKh+IVLXzNnDR2QNuraeXpKk+cMBo8eoTBX7tYC5tgDxHpTXl7DaXLVDJTU3Zje7rSbAHYAcrdyt4VbX1P1eUfb37f3OmFvKTySLF8YwjDJ2x4jWQxSPJADnW4D/mkqKljads0Dw+F9rOHDcXHzKiukiN2ecyU8WD1zo3te4n69o85otwv3FWnglPNhOBU9HWyiVzWM7WvVwaBx+JY3PTY29vCrHl9jZbap1HF9jdVV7oC57e0PQqh6U8IqscqWVDHlrW6dtN+AKnWYal0cNQ+GRhAtYF3pCpj+VeIy42IJowYtYHB3wrd6vOjWk96uOC2qxt8KM/6E1y/WzUOEU1LI65iYG8LLkqasOeSTuuKet1OcQLXPABcTnucb3KsKdulJs9DT8OlGKhxg65au2pp807rhp6qjlqurZI3rLgW1LJ4L2FvfzTJTYLLBiQqRIbAg21ehWNOC0nDdSrRnmnwSWSWSGQNFyCL8FqnkLpu1wK1udI+QHbZtkg1SG54rSlsdKWYtvujCiwulbVdaSNXEbnjdPgv2bFMzNn7E3Casx11XA1pprk+i/f6FPhSqyNfj0un0tSW7+BMZHOZI0kbXC7KacOHa2sbBMeASzT0DZKjd2+29+PpXeSR3gLinS1Is6LVxTUh+kxuhwuEOqpGN1X4utw/wD1WySSlxKnFXQPa6PYEtN97XUHzHhL8XijZHKW2v763G3qUqynhEmG4IaZ0uol2u5dfktVWhGnHPcpqirwu8Lj5mQ257omwWmxWNsda27L7bkb/EuyChJmsTsn+ioxcANB09rdcjr6Fr8jou5JxcahuyfglFg1K6GnbYPIPnHkLc1M6WkaHAgLjwikEgjcQBspBTxEMabc15i9unWqNnmq9SMdoG6miDWLLg5KHWQd1XSnoeTgeeWKHWB1DmladTfMK56qUxsbax3CrbpszTiuAYVA/CotbnNkvpDjwLbcD6Sumzs3d1dCIlsWbUNe1gLgQb9yya4GNpPEBQPogx7EMfy11+LRlk/WObuHcBa3HxU7aztOHK6wubeVvWdN9jGLyLe+6VINtkq54vKNgIQhSAQSHCx2QkaA49yEMQtY3mErSCLt4LlxDEKTDmaquRsbe95AHzpcPxCmxGATUkjHsJI7JB4eCnS8ZwYnUgecEIHnNWyj+8REuCV032tH4BbRzWqm+1o/ALb3r7JR/dx+4p3yyvenf+r6s8H/ALt6ifsUf6DO/Eh/ZKlnTv8A1fVng/8AdvUT9ij/AEGd+JD+yVuIReCEIQgEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Dj/KSfu3IBz9jn/Vthf5tB+6CtFVd7HP+rbC/wA2g/dBWhdQ2lyBTzUZxa/lcnipMo1i323J4rzPpTlWicVnc67N4mcTb2QCRdK3giy+bxerthlk5LuGorIG53WNli7hsiaxmCyRldjOMkHvCa8w4LQ41SSQ1MO7hpvqO2x7vFOj7teALWJSXLHgkBZ0a06D8WEmn8DFxT5PO+N5dx/oyxKmr8De6rwkOLnRRxe9AtbU4nm4qyMG6Q8OzTglbTYc9kGLCkkAjMge4u0WG1vhFT6WCKV7n1kEM8PKNzQ4fIVRGfaOnyZ0kYfiVLGIqed1OxzY2gM3lJNwLfGvT2tej1RLxY4nHulu/mczi4vLOLo0w3N38uZn4rHMKdsh1F0IaD2CvQkXYZYja23itVBU09ZHDVUsUI8rHWamNH0hbgCIgHWu032VN1O7lc1cKCiltttwbKUcDZmbFm4Jgstc5hd1ZA424qC9FnSdFnKtlo5IC1zbAXkaeLiOQHcrExGgp8Uw99LVX6t5BIAHLxUXwnActZFvOxwilfzeGN4G/o71stJWjtaia9vbGwaakTJ7Ax3YaeC0yF0DC4SD5EUlXDWwCopZBIw7XBBG/h4pkzRmTDct04OIyP1OBsBY8LX4kd4VbQhKo9GN8m+LS5O3F6yamwSvqIj9cZA9zTbgQ0kLzfkvPGOVnSEY6ibrWySSEtDGj/Vn0L0Lh+I0uO4U51OS6CW7HbDgRv8ASmGkyhgWCYucQp4nulLi4ao27XGnkPSruwr29rCrTuFmT42yHFyqxcDTjszKOjkqqlwYQwu324C6rPE8fhr5HiGRrrG2xupF0uYvSDCZKF8r2TztdG3SQLamkDmqnwHCZqWJ0j5S9pNxd97iy9D0m2g6HjYL6xuKkamnCHV0hdKbrmr6czU72NNiTfgtrXteDuAfSmTMFdNSyRtiDnAgbgEq6p5bTRZXtWEaeub+gmC4VUUk5dI4lpPwbJ7ILXWXLhdRJLSMfILEj+JXYTff4lE853MbSmqdHMXyYuBedlpqq+nptLZiLk23NlvD9Lk1YthTq6Vj2vtZwPG3JZwUSbmVVU1oSe45wyNnYHR+YswQduS1UMBpqYRE3IACzaCNuawlFp5Om31pamaKujgnIMljb0rZCwRM0RCzVsDWkb3WmuLmU5MQ3WxNzWDRKNOkpV8bm7SD2b78Vk0doA8lHsDnqZKt7Zg4Dfc37wpHs1xvuoqQ0pGNpc+NDJrkeztukIDWtvclctPX0skpZG9rnA8nLpmayaGRhuC5paCFqwLLbYJ3VD5CQTexcOY8FrTwjXWlV8VKJvfHI4jYgJWtBBY9PTurlPZbYDfhZNlbHpcSFphU3LGtQmsaxrjw2OKp6wDnf5l2cNkBxIQuiTyjRGlCPugsXXO3JZIvbksYrJs2juxG9lZRvc2QFvI7rEdp1l0y0zhSyPZxDSVgnl4JliGZ+R2slL2t0+cpBhIfqZqVc5UnrKnHJIZGPEYLtyDbaysiNroazTdukHkVx3cdJrtb5XMJJrglmHAbKQ0btgovhr723UkoTcBeVvUVN2iQxi4C6InW2XJTOu1dEW71TTKeojsBulQRYoWo5zF9rbrIua5uki3xrF5ZGwyyGzWbm6bKLMOHV1W6mhnhdILiwc2/G3epUW+EQOoay4LSCQj3qAwMeRvdHvUJ7EhwX7Vb4D6E4FN+C/ao8B9CcCvrXRP+DT+X9ynre+zXL9hk/FP0LyfRf2l2fnlP+yvWEv2GT8U/QvJ9F/aXj/PKf9lWrMO560bwHghDeAQoII70h/0HzAXbt8gm2/8AIVSnsUnEtx5kb9ANWDp/8hVsdIGYMHkyfjUMWLYc+V1JK3QKlhPmnldeLMDzPiuVsXqpsNnaY3yl1mEm/LkQgPoO25b2hueSUkDibKsOi3pQw7MWXoZMVqYaOtGoyde5sQA1EDYnuT5mbpHy5gULZJMRpqnUWi1PPG87n8ZAPGYma2wljNR33+RNBFjrPnAWUBzX034CGRspoavUA65LWW5f3lLXVD8Sy4+agezrJYS5ocd9235eK+dek1rUV4qnaWN/kkWNtUxDB29bFZjOsHWSC9rdy3vjcGgNj0D4V15AxV+apc91FBDUTitZI5sUYdJY2FztzU/w/GOkqkgGqjbIyMX3pZXErRV9HVTSmqybks8Y5+8eLiRfpGkb9s96ATpa6N2tp2KqDKfS7McRdh+baY0TmahqfAIQdLb8XEc9lGczdNWIy18gwiGM00IDj9YB2t6CtFL0eu5zcZLZd8G3xkuT0M8MaQGmxO5Cb69nVTsDB2iTdRbo7zwMw5ffWYhEYuqcGOfoDB5oPG6WfPeX55mCKvhc93m/XmG/zrlj0+4o1JRinj5Guc9S2O/HsPpsWwaro54gZHMfpJPMtIH0rznilHjWSJJohHIKGQ3Fi0AAbek8SvTbQ50DJ2gFjwLG3eLpox7BY8Vi6uoZC5hG+wvx8FbdJv3aNwl7pWXNBzg1JZRSuGZiwiooetkrWRyi926XHh8SzfjVNVwFlPIJBcdoXH8F0556P6OGLTSCVl+YfYcPQFAo8v4phILqYGWLuGp5+hfSOiXcNSqxZ5K66dYx9mOFL7/zHnGWNfQVEbG2c9hCjOG0T6QnrHbG5tZONVi1W2N7ailkaANyYSFxOxSGzSQSbcLBennO2lPxp7v5ll0ylUpxcG8o31LPKIDE11m2sueioPJCS197+iy1T4oHxFjGOD/xVy01bUROJfG8j8Ulap1qMqyfJYx1YwPM0kccZe8C/MrimfDiUBY0i4//AEWqavZPC5sjS08wRZYYUYI79vc3996VNS7VWr4cuDaqbUcxO3DqI0sLgO9cuMPqQ5pjB+ZdddVimiGk3DhfvWyjlFTEHEA/Es3GmoOhDYwjnGZcjTRzVjqhoeHadPeF3VVXHQEX2JWNbiDaaYNawX4eaFsqYYaljZKjs/HZYQ1QhinLghyyddO8zQiRh4rIBx85YQRsETRC4EAjndbJHHVaysKeXTUm8tmDjuIXW2TdJiccdV1R47804SuZE3U8rglho5HdfqGrn2hzWi4racIy07HeXtuLc0rbOJDliHxSQh8Zv8aARGNb9hZbYSUo5kYadzU6sp45erda/wAa3399FwI5Jrmpo6upEkbufwk5MHVMDRuVoo1ZVqmGZtxxhmMWKU1A+0rRqPpKecOxu5D4dm87FMVTSRVLgXA3W6NggZoYCAtsJVFUafBX17CjW/TJ7RV7ayOxO6csLqPJpQ08Lqv8LqHwTA3OlTGGUTxhzOKp+udMVxS8SLzI8ld20+nVsx4LPwHEG2bvyUyoqgOaqXwzEjC5rS7gLKwMDxTXpBPFfH+s9MlSepI9x0Pqsa0VF8kvJIuW7E7LnrK2kw0RurqlrNQJ3B/gt0TxI1vdsqe6fctY1i7qV2DzPDQ1+zXv72/BVP0+3p3NXw5PB6irU0LKLip5I54OtgkD4iSBYc0rBuVE+jSnqsOyvFT17y6cSOJuSdrDvUtHC4XPXoeFVaT2QpzVVZOasm09kcTwUGxyhoJK0zyxNdODzJ71M6mF7nh7eW6a8QpsLpXtlxGriie/ezpg3ie4+ld1hJReFvkrrqhUqS1J8GjBq/UxrD9baPjUkp5hIy17qOigiEzJ6WRskBPFjtX0Jxp3mN4HJY3cVOWfIm2lODwx2aNJKUCwSA3YClVY9y15QqAL3CFqqJOrZdZKOxrc8GzW1h0rYOwLg29Ka2a55dQ4JwJu2xUNYeSV7SKAx/osxbEM+sxaN56jrw+/VtO3W6u/uV+U1P5NSthEn1xosTZZngALbbpS1vndq59K7L6/qXdGFGXYw8PCDmfBOeA/Zj/1yTZzPgnPAvsx/wCuS7PR7NS+jq7GNxtTH9IfO+JKkPnfEvqxVHlz2R+3SPl42v8Azh/7ti9KZfJ9oMONv+7R/shea/ZIkN6RMAc57GRiofqc82A+ts5r0BlvHsHdhOH08WK0D5vJo+wKlhPmgcLoCRMJIufkWSxYSRclp8FkgBCEIAWD9WoEbjuWaQ87cUAbX9K8p9J39oLDTaxE8na7vrTV6crMYw2hnDK3EKSnkLeEszWfSV499kPXNd0hy1mG1cEz2SOMboJA612tG9kB7LpNqOnLjfsN+hbZC0tvfhzXmXoM6XppJRh2YHOYODXyNDQLloG7neKv2qzXl+mp3SuxegIJHZFSy/0qGQx3rBekkAPFpUVPYBbfhsozivTblikhma3yioc0HeHQ8ftLkyDn3D841FX5K2WJokNuuDW+9vyJXkPSy2qOlGrFcHZaSwTB7hDDLJK/zW3IssWOFRG2WlfYDY2Cob2Q7caoKvyvD55W0MoDbte8DaMX4bcVHsp1GfsOo4ajC2OqYZmh95IpZeIH8FRUehKrbQrKoln4HQ6uJHp5mkk+/YOCGAvDnHcDkqKb0l5ty3UB+YsLeKZ3F8dE4N247usOYTnnHpjpKfD6Z+CAuqper1Mc1rramknYO77LnfQbmUsUns/gZeOi4mvaWBx2BQDxLVR+QulnFMSzHHhWJ0zHGZxDeqp7abMLjff0Kzq7OuX6GqMNbXQwytYHlrpmNO/oJWqv0i5pT0YyzJVUyRh5a03d2uSo7pNybimH5nbmXK0bpHsLXOEdgbMbtu49/oVvYDjeG4/HLPh07ZWQuDCWva4bi/IlOABa0RtYxzT5we2+yws7yfTq7U12w0JJS3RUWSOl6lqHPoM1SeRVcNw50ji8ktG/mt77qbYBn3A8exI02G1rHvcQAAHd3pHoWrMPR3l/GZZJqinljqHhx1QEMFzc8h3lVLWdDOPYHVS4ngVdAZIrPazr3uJ2twA9JVsqHTbtOpL9nN+bbNOZxZ6FlicaaSK+nrAbO8RZUPiHRJisvSHLiwlL4HyOc09W3hpt8JbcMz3m/BKfqcYwesqBG6wfDQvdcCw4nwKkeD9MmHSzxR4xS1lE4bfXomxfS7wWuha3/T3J22ZKSxlJf3JlJTWCy9MTaRtNKR1hYGb+FlT9d0PSSZ9qccbUANlmkl0dVx1enUu3E+mrCo+tZSUNfPdpDXsha8A+OpVcOkLML83yYnDTV7qEPkIZ1Lzs4bbXsunplj1GClJPS38EJzg8LB6RxGSOOIh9mtiYCT8SrTFM/YNU4pJhWpnWBrml13cRccLJtd0smpJhxfD6ymhmAj1vphH47kqsJKnCZ84Pli68RyFz+sc4WHa4XW7pfSKsZzqV4Ny7MsPHjHTF7IkeX8puwDMsVb1wMLXNNtFuAPp9Kk2b80z+1b24c8seDpu0+g948E1ZgxCnbFPUUs/WBgvYP1fNdQ2hx44nUPpnRuba7t224G38VcK3qVpKUy9VG0oQ0Un7Ut+41ux/MD2NZPUyvbbe+lPJmbFQ+VVDNUgudz3C6xxSqioaYvMQNhyaDzWjD6qPGKKQPY9rLOHCystOcNdjjoU/V6k6UZZbwbsMxSPEXuDRY34Xuu9xIdbmuDDaWkpHHyd13X4FwKcWdm5fxWucUty3s5TqU9LfDMHElpJ5Gy48WxSPD4RfnfmuxpOp2rzb3XBXihxAGN7xqb/eA4rKDi0RfznTpvTPD+R1YfVsq6cSMG9/4Lps8dtpsuLDpKSGIwwOBcPSD6F1N1cHGwWMl2RttJOdPVOWWappmU31yZ9r7LbTujqmNljdcHdNWLRQ15ELJhrJ2Af8S7sIoX4fStikdcgAcVlKmoRycdK6qVbrRTfsjvUV0GGURmcBdoJ+Rb8Cxmjx1rmtaNbTbiTyv3LnlpIq+kMUnMEce9bcv4XBhD39UCS8k8b8rLkljS2uTtqxuVcpQfs7djuiZGyp0gAcFIMPb2bpr6tvW6nCxKfcKhIAaeZuq26l7J23WXHLZ2wxF5CkOGw2LWuF91z0VMBZSSgpQLO03Xnru7zHCZ5+6uMwSOujibG0aRYlOcj2QQl80mhoFySOC5RERYkWCYM9UdXieXcRp6GQtmkhc1hDiLEj0KnowVeacpdyjqyzwSGlrqOtcW0lS2R7eNmkcPFZSSEat9wqe6EcpY9gOLTTYxM98Tustqe88Wi3nK25m3nlF9nW+hdV/awt62ilPMZcmEG3yI49q7+660VFHT4jTlkzA8Ad5/65LcHHi5pIAtsFsa+KKkdPK9sLLDd50rni3r0w5NspYRspaWClibDTsEbRvpBJ3XRfS8a92rkosRw/EHFtHUxTOA4xyBw7uRXWOJY/iFqqRqwn+2NGrIP0l5LBxSJAeVuCVY4wSCEIQgEcSezyQsYwRcucPlU9mSivumjKNdm3A2QUbiC1tvNB98DzI7lv6Ico1OU8C8jrt5wXEktA2LrjgSp4blhFxZKXG9ja5XbLqVWVqrbtn4GqUNzG9muI70rDeSI+lYg9otKyYRriA5FaLHKrxz5mbWIsl0H2CP8AFCy71jB9gj/FCyPA3X2On7kSlfLK86dr+57W222f+7eop7FQFuQnOA1HRDt8RUq6dLO6P6xtncH7/wDpvUG9i/jGGYfkp0dbiNHA4si2lna23ZPeVtZCL+3SOGttgbFclFW0+I04nopmSsuRdjw4beC6wdhfihJkLgbm6EIQAhCEAEXCpb2UOpuQYrnUesk/duVyVM8VNC6WeWOGMcXyODWj4yqR9kjjGG12SIo8PxKhqHmSQWjna/8A1bu4oCQexzkDujbDADcimgH/AOIKz/N3O68H9H3SJjWU56aGF4kpwA0sDS7awHC/cvY2W894FjWEw1bsRpaYSX7M87GHYkcL+hYvZ5JRKXOHEH0JgxmN/lWvVZoJ/gmTHelTLOEVgpn1LalxZrvTyRvHEj4XoULm6YsGxLMkNFSRVY65xAL2ttsL/CVL6Q0KlSyajHO5ut5YmWCA03c19hbc2Wtk0T3FjXCRzdgOCjvSNFV1eU5n4RIBIIzIdJN7aHd3pIXmbKs2c58SqX4ZLNLLSv0Stf1rwCW9y8P0/pCuqc6jmo6fgd06uGmevy1zN3/WgeXFYuLGN38w81Q7M1dI1BB5TW4c2WKIanBlFITYb81IsE6YaN+EzT4sww10LhH1LmNYTtudJPelToNfV/t3q+SIVwmWy9hMY1t+NYAtfZnWXI3tbuXnGbpoxkVkNSIA6jJ5U9+A352V20WbKJ2XKTF8SeylZKyMXkLYxd7A7mfFa73o1xbpPTuzNVUyQh7WPux1381D+lDKYzTgLqengBqmEyM57hptzHMpxwzOGA4nVx01FX00lTMbNY2ZhJNieAN+AUg7TrOJAcPi2XPTVz0+oqk1pfxMpRU0eecv52x3o7fTYTmKnlFFA0saXyNAs0dzQeZCtB3SflbrITHXxESkN02fx/wqQY/l/C8f0R4lTteLG7mNbfjfjb0Kpc39CLKuoEmCVD2htnDXO617egK5Vfp3U2ncezLzyzRplT4Lqo6inrKeCqppA+GdglbYHgdwq26ach12dIKfyB5boLjYMDvegcyO5QrCpM+ZDqY6Q0pr6JjS1php5JiABpAuVJKfpkdCSMZwfFKcDi40nVtHylYw6fXtKyrWT1LzX+ROomlq5Jp0aYDNljLLcPrJNUokD/NttoaOV+5MnS50cuztBBUsqRD1QkP2PV52n0j4K04l0zYBHTRS00dTNMWtvGxrHO+TUq46Rek3EszNgpsCocTivrG0Dm3vpt5p9BWVpZ9Qd74+lxfnsJzjgubImXP5L4E2hc4SO1atWnTxA5X9CaukTNuH5Ygb5XK0Syi5BuNw4DuKgGWOlLGcNoYmYhguKSMY4Ne/yJxsABc3J9CaemDNmXc1YdTVUcda2pjb2mHSLEvHIHuW+j0mvU6hrrptNv4G5XKpx9nk5c34ZBnF0eLUlW1sbSLgMv5gsd9lyG1LRxQN7RY0N1cLpwwbEqD2pgpqN4YS43bI4X3UWxzG3U+JuhDLgEgEN2O69JClJYpJbI9Rb+rW1Px2/aksDPidRWtntE13xEJxwWSpljPlQdYb7kJ1e5r2dY6Mf4U102LNfiDqZrBbtcGjvsu6DTjpS2RxKjCjWVWUs6t8fM2e29PHWimFgb24nuunUhxAcDdpCbJsNoW1wlkks8m9tYHJOjQ0W0m7QNt7rTNZLO1c5VHqewN0jzljPJHHE6Q2swXWbWh5XLWz07WGGRwAeNPELGMVU57HbWqeDTbbOXDsYiqqt0beAJ5p0eeJYmemioaF4e14u7+8OakNDSunc1zBdrisqummtZydOquovblmRzaiYy5x2HFclPXwyvMbHgn404YxGyhhdHUODC/cXNuOyj2F4QyKQTtl1cPf3UQiqi1kVq81VUKbHpnEtcLi2pNkuMwsrTTBouCRx9F070moz9pvY06b2SuwOmfW+U23JJ4+hYeIjK6VaSSpCQxOlLSBYbFPNPTvbGFqvoIDW2A9C6BUENt/BckpOTLelSlDOOTU4OBseC5K9mpmy7t3gmy1yMBAuojiMsmUqer3hobG5rFiXFrgG8061AYyG6aiLh1+JvZdUaniPc4nH2E5rgwllZG62uzvBbXF3B5uVHqrCauau6xryI9/fFSAt0Ab3243ut0ljg46FxWrtxccYCM6Xp2geSAOR4rgpousKcY2Fth3rirtReFyWEE2jpiqhBcRk38Vuw+WSeYh17GyaBVwR1XVFw1nlcKT4VSOi7ThsVy1loWZGUKlLS1F7kgwpmkBSahdayjdE6xAT5Sv7IsvPXi2KS6WxJMPdZhHfddkHZeU2UTrOATiTYhUMluUk1ud4OyFjGbtCyWuO8nqNDWDlxWl8uwmrpGus+Zoa3a/MH+CpTIfRRi2DZ3nxKaQiFzi4fW2j34d3+hXqPOBsdu5KdQNwQb9y7bLqNW1pypQ4Zoa3B1jI7tXIPcseSVukX2dqPek5fGuGOXLL7s29iRYN9qjwH0JwXBg32qPAfQu9fX+mf8AFiU1X32a5fsMn4p+heTqNpPsl2HVe1ZT9n/yr1jL9hk/FP0LyXFNFB7JES1E0cMUdXA5zpHBotp7yrAx7nrWMmwu22yE30eOYRVyFlLitDNIG6iyOoY4gd9gfSEICnM5dD9DQYDjmJMxGV2mllk09S0WsCe9QL2OuSMDzM3FXYnBHV+T1AjaZGHYaCe8L0h0h2GRMftuPIZv2CqV9ig4/wDbrQLDysfsFCCW9IPRPhFZluo/k5SxYdUtY4h8DN5OFgdRVQ9E+UMIx3HqjCcwT9bV0kz29XJFq1CO3Mbcbr1ySDwFw3fxVN9JHRNNiuL+3mWqqOkxG2/W6ng3cXHsjxQGfSh0YZXGWquamw+moJmxnS+JhJ4jvKo/o9ztjtHm2HDHYjUVVGHtjGsgAN1htrAdyn9d0V5wx2OMZjxijdG2/Zjhkitfv39AU8ylkvDMsYeIWROlmLrl4dfcgd/gvM9bvqFvmFZZbW22cHVQi3wVz0s4NjGCZvbm7BqcubG+RxcHhvnWaPTzW3A+ljM2I0QFPgcT3tvqPlJFwNldRa10Ijk0PjeN2kXK00tPT0cTmU0bATfiAeK80utpUNM4pyXG3b6nQqL1HmzMuWsy9IWOMfJg7KMWdqdHO11zfVzKfcD6DqmGR7qnEJ42uADowxhDh3HdX61zQ0BzAHd4Fkri7WLtLge4KX6TV3BQppfj+Zl4KfIwYXlKgoMunCooWRxvAL3BvnO02uRdQ3D+hbAqSpjnu1wZu1piG21u9WdJZx8NrJC1gebtdfxVTHqV1FyTfPz/ADNippGFLBFT0UdKDrjYAGgjhYWCwfSt0usBYroJA4NKA69wuNSmm22RKKexDszYZ19M7s3sD9CrWqp5qWRw1Oa0Hgr1qImyMLSOShOP4KJHuOk2J/ivTdE6s6Psyf6+p5LrnR/EfiU85+H/AKKympKavp3slja8kW3ChldlhkNUXNjAZe9vjVj4hhrqN5LQbfGuAFspIkG6+pdK6lQrRSqf2PIQubqyniT2+OSv56CnjdfqGB3etZjZbdoUuxbDgW6mAqMVFO9jiCD8i9T4NJ5cUvoXvTupKqsSf6+oy4rRsDOta0DVuU1UkBmBEWzhfgpQ6HrGaH/EmakHkOIlhGxt85VPdWajNVctHoqck45TNs8YbQNEzA97QButeH1DzSSNiGh1jaxXTNiMYqnQvaSHE8wufEZTT2FOxxB9F1nKUU3KOSNWTVh8D56lxrBqAJs47rvxSB0sNoiSByRSV0Ypw2o7JNjvYLsbpAu0ixXRbwpuk992a3HAx0NRNTytjdfd1uPpT86+q9yVg+Bh7ThvySjS0Wc4X8VttrfwYPVLn4kOW5oroHVMeljiFwPwiURNAe7hvwTsAWm7TcI7ZJJ4eCzq2qqYeTLVsc1BTmCPS4kjuWdax0sJa0kLfukJsFslbpQ0JkRmovLI9C6WiqWi5tfgpAx3WBrgLbJJIGSva5wWioxBsErY7dy5aFNW7zNiTU+DradRsNisJ5BACZDfxQH6gHN5rXWQdfEQ9wFxZdTlmLqI1pYZtpqhszQ5h2UkwPEQCGOO3/NRGgphTNDWuDh4pwiux2oGxUW0nVp6ppHD1KxVeDfcnpG7ZW8CppglfhuD4YcQxSqPVgarFhI2NuXiq5wKu6yExPIvyv4Lbj2H1GK4O6lMrRHpI4EcwvFde6M61VOPuv8AXked6XXdhdLxOC8MtZswjHqQyYbMHsa8s2Y4bi3eE5VkzJwA11g3bZef8gYHJgzgxtSxsZcSdRPE2V2YHQzujEzZWSxncloJC+cdU6Yun1XOnnb9eSPe23Undzaitux1tkFgYxbey2dfKLDW4LoFMx/mTRn0A73XHVsfA5wd9CqElrxU7ncoSprKNk1WYWlxlcSN9PeqP6YKbGcYxWB1HLIyINB0tc22zyeasOWV0skwcbEN2SENLWl+kkCyv+m06VrPU1kp6t3Ucnhmjo8rKyjy/S01deSTcEuO57R7lM2duRrrdyidtLGuYQNKk1E+9O1x9C4uoQWtzitjdaVJSe4+sH1sdyyOxstdO69M0+hbH2tded75PQQzgRtxcngm6dzpZdNzpHJOYI07rX1Tb6hzWxMwlDLMaRgY3YWWx3nhKLAJDubrGUjOCwJbdZcrJEqat0zY2JzPgnTAvsx/65Js5nwTngX2Y/8AXJXXo4nK/i0c11+7Y/pD53xJUh874l9UKo8reydgZV56wSledImme3Va9vrbFZOTuiCiofIMSGIyvcadh0GFoG9jxVeeyPBPSPl61h/OH/u2L0ll1oGBYcQd/Jo/2QgO6JmhjGjcDmtiwaTcXcPBZoAQhCAEh2uUqwPnbEXKAgGeejinzXiEdTLWSQaWtFmxh3Ak8/Feb825TosK6YqPCHSmpjlle14ey3CMHkvZ4YdeokcLLyn0mdv2QmGsDSLzyb/+kEBc8HRTlNmGANwmkFTJFZs2g6mkjYjfkV55z9kqoytnNkGJVsxwqpEsjC5rSGBvAAD0lew6Nl6GAO4hjSPkUX6SMj0eecENFXXa7YBwcW2GoE8PBARzLvRPk6LA7nDKSodKw/XXRkEXAPevP3STBUdHma525YrpqeGSV56mIBrR2tNufAKxXdGmfqYOoIMaoBhx2saeQusdvOv3Ltyp0Q0mD4oa3F5HVlU4uLiyR1rkWOxVR1SvRopSrbx8jotluYtpa3PHQ4OtBqazTU6XPIuDqIHGyhOW+kLMeUT7QyYa2pcw9gvntZoAbbbbkvQtJA2kgEdG0RRM3DXC91g+kgkk8ofA3rRtctC8XQ6zTipRa9jfH6ydMqTbyikM45gzZmzD34dUZcgLACA81QJ3tfa/oUZwfoVxiraKmsllpXargN6t2nmBxXp4ta4guEZdzIC5qppPC2n0JH0ir0mo04xx9/5m2Fsmyvej/o+pcvVXltY41lc46hPKwBzDYg2seYKXMPRbgWYsTdV1ekSloaT1V7gX24+lTsuIjOiwt37ofZzQZO/wXDW6lcqs62rnyb/M6PV4pDZk3KlBlSilpcOja1kjmucQ21yBZSO5ve60xG7WhrgW2W1VtSpKvPVPn8TXpUQue9K3sX07X4pEq1532ZljPJhMxkzNEwD28bFQrOHRvgOZCxz4Io5wHanBlzc27z6FNytFTptbS7xXXSvLilNSU3j5sx8OLIZh+Rcv4PRdQMMppjc9pzSP4pH4PhVLE5sNBAxpIOkX9akVVIYYjpF7qM4rUO0ucDa/FddKvXqz9+S+9ljbW0JNZREc+UGHV2ETNkpo3PYxxYSDsbKgJ4DDXSwxn3x0t7grizLWEuczUCHC3zKtsw4fo/nMR7eofSvddIk6cNMm2357m/qvTYxiqnZGeC01TD1oqXOdG4AFptY7lN9DViLFpBFGGntNuDy1J1nxyOCmjNr3ve1kssrTSmop4nF5HjuRdWcZpNpoxdKMlGpSfCG3EvK58RMMgJg1EaSRbgn6GlEOHuZStERINw30hNeD4hM1nXV7C08TdulPNDWx1jXOYQGi/Na5ZjF4N3TlRnJ1Zt63+vmRCr8sw6pMge4h1zxCltBUmtpg5zAHd91nPBHMdyHeCyaBG3S3sj0rGpNNLY7LO1lSqym5bP4iva5zC0Eg2UehweYzSvDnAm3cpEy2oEOB25LIOLL25rCMtK4N1e2hXkm28Mj+EYVNT1r5JHOIsRvZPxN2dW7d3eluS303ujWJDw3ChS1yyZ29p4MHBPkiOI0k+HVbagOJIcCOHipbgVU7EqPXK28hANyVhPE2oGmQJWVsWDU5uOyLc/iU1G6i0o5KVo7Wrrzsxyog9jXatyL2uu6nlaDqeeCbcIxGPEadz4eNjzB5pzhjfIDHdu47lwYcJaZF9B5g5xeUdmGY3hlVWw073NdITaxaVNqCmGxA48PBV9k/o/idmGGqNdBqa5p0ajfmFcEFM4lrbfYxouBxtsqjqtaNJ6UeZV3OcpKTOjD6e7RcXT017KaF0r3aGRgvdtyG5WmkhLWjZbKun8opJ4CQ0SxujJPpBH8V5Sc1KWJcFZXquawhnw/P+CYjjDsNiqQZmEtLdDuQv3J+kbokeAbCyqfBeiXyHOcmMeVsEZc87udzFlajK6mrZ3tpaqCR0bQdLHAk8l331tQhpdvnhZ/SOeD0+8bWyPLQATYLGR4Dg697LYGAAdZLHGTvpdsVuZH1TgCC6/MKtk1FrXnc2649jCFjid26WEckxdIWGVuI5TlpsLe8TltgWkA+cO/41JQLDiD6EDVqBDmhvpUUKqpVVU8jTP2ipOhbJ+N4FXVMmL1E3VljyI3FhFy9pvt6AVbriNUj/TsUjw8jdzSTzAWO4jDFuvL131TVJJfJYMIQwKQdV77HkhK4WckXIZsEIQhAJNI7kqFjLK3JQltkc780qETedl2JEsL35oj2qIvS5KliF6iH8ZdNjLNaDfmYzfsslkH2FngFmRssYRaJngFkQHCxX2On7kSkfLK86dXWyBWAmwLXi/8A6b1SvQR0Z0eaMpuqJq+WO7YjYRA8QTz8FdXTk1rOj2u2J7L/AN29RT2KLf8A9hHX+BD+yVtfARZ+Tcuty3hAo2Suk0lxuWgcTfkn8khg70WDUh33cbBAZoQLEbboQAhCEA15kwmPG8ImoZpTEyQi7gL2sb8F5t6aOjOhynlFlUzEJZHGR/GID3hPLwXqZ24VM+yg0/yCi1g/ZJP3bkAzdCHR5ljF8mYfiOIYdTVVQ+niLnyMNyXRgnmuXpr6KoqbAZsTyufIaeiY6Z1PA0BtrDvN9zcqb+x2JPRthenYeTQcfyQVi1lJDWU8sMoLopm6XgHkibTJR566EchZbzDSPxDERHXVMLnUz4ZYtrhrSTe45uKy6bsh4LgVJTYlghZg9VEJC11NHc+8HMnvPyrsx7ogxnCsbnxLJeJU9O2dzi9kzXy9pzjc7bDbSmyToaxfFqyKqzbi1NM8kkti1xA3Fjt8QVff1YUqfjVW8Lt/g2Q94aOgzOOLY7iWIYXis8lRF5JI1r5HXudbGja3cSm/HJse6Ns34rV0lOXUNZUGQN6wNDhYNHC55q98DwOgwaJsNNA5ulgbrJvfhz+JOFTSsrYeoqGNkjNrEN4W34rw8+s0I3EnTj+zfKxv/U75UtaKh90rNGIYc91PgEMkErCwtNVYHbdV6zo1zDm3F6ivqcOGHxPe43jlY/jvzK9RNjZA1sNPGzQ0380FbBK5jTpYNtrALBekMrf9xFffn8yI0Eik8t9C0tJ1QxGumqKVhv1EjGafTwPNWPmTJeGY7gFPhMjGtp4RHZmi4BY2wPH0qRP1A6rG6XSC27gVX3XWLq5mqs3jHln8zYqUUV/lfoowTLuKw19OWmohdqZJ1ViDYjv7irBfYlobvYAXWALdHZjff0rJpGg6tvFcN1Wq3M/Eqy/EzjHyAANuALJYyYxZh0+CxbbSLFZLU991sZ48zISnVpduDuQmXG8uYPjtFPT11HC9z2Ft3Anj8aePekjikZfzi0rZSuqieITksfF4MXCLK/wHoky5hlc+tmpIagm7WsfHYAH0gqVUuWMCpJGyU+F00b28C0Hb507Wa5+qxB4blZaQt0+o3VV4c2vva/uY6Is4JsKw6WnkgdSxiKQEOFjz4ry905ZWo8tY+yWiaG0tS579AbYCxAC9XSN7Drbmyg3SNlulx/BHRzMcKjSNO9rdoE7fErbo3VZ29wlOTa75efpuY1rfxI+zyebcsZcr6llPVs1CMSXJuNwDwXRnuKKhfSltKwymPtOvvfUnzKGKvw2gxTDaqzTSRSzi4te5NuPguSgxqDHKx0csZuy7QbjxXuY1Zqq3tjBbWlODt1CbbkMWKVVZJh7PJ29WSXX0uWWXqJgaaioYBNuL8b35rGpqK5+OdQ2B/UNLbnq+8d6coq6B9WKf/WBpBFxy2W1Sai0u5utY06lbXWytO2P/AGNGP0NU5zqqFztI3AuPQFty5Wz1BdFKy5aDxPgpDAWxyFkhFjy5pwpaNoJfBGdR2PPZaJVVBYZYUrGU6zqKW3zG2NhI7iuPE8uvrpoTHK5g1i9gOFlIpIImP0ue0P7rrdDTSWNgbW22XN4/h7osattG7hobxgZZOjuepdTGKqksGi4DW7qf0ODw4ayKItDnN4kj41y4O+SNzGE7htvmT75PI9kknFwFxsq67vJShoK6NirKpqjJvPxyRrP+Tjj9EyqopXRmGMBzWgbkXdz8VV+U31VVXNoJI9OmwJve9wSrzb1sHmea4doWvx4rODCqHU2pijIkBud1steoaKbhI4Z2lWFwq8ZbfMgxoerY0AW3sQtopHWdp5ck2OzVFPjz6JkbtQcRxHwrKZUdC+MunkB0u3tb4lNeo6SUn3PQU7yloejdkEx+ujoS1r5nMJtYAc7LqwuUVdK17XF1wN1nnrBKOvmZI6VrC0g2L7cAurBIqakw6OKE6iANw6/JdUsKlrOa2uqkrmSY50lK1xLHC99ltlwtr2OazzgeK6KGN2suANx6E/U7Q2MOe072uqmVw4y3OmtXcJ7lVZkqWYY8RTu33G/xHktMTeuiD2uJFrhS7pAyfDjb2TRv0k3PnHuA5eCZ6iGjwmBlO6RuvSB53ot/BWtCtGpDMeTgoXFSpVkp8IaWGU3AcdPckJ1NDWi2/JZyamdsbMO91lRx65LtIcO8LpcnFZO9VP8ArHB3YfGWtBKkeGU0Mzw17BqdsEyRRv1AAFOsOpgBabFu64Lh76kdTp4p4j3IvU5PxJ2PuqWSSdUJNhdtrarqxqyojgf1QaG2J2CZGSyu1AyMFzfcLfS075JHOedV7bhaK9bxUk+xV0bN0pOTl+I7U8ty0t2UgpHXiFuNkxUUYaQE90exAVTcrKNN0th/oSWkajdO7CHgJliNwCF300vIqhqxwykmtxxicdVr7dy6DyXND566TyXNNbZOWpsLc29BQNuCOSFEm44SRrSyKNyLpGpW8UNSLy18wSLCRambbuC7lxYV9rN8Au1fXum/8WJTVffZrl+wyfin6F47xbCY8d9kDNQSzOibJUwMJDb8WhexJfsMn4p+heT6PUfZLRgcBW0/7KsDHuXNlPoko8v4pLXRYlNK+WIxlhhaALuaeP8A5UKy2NA3APBCEDB0ibZFx633jN+wVSfsUPPx3f8A73/uFXZ0i/0Fx78xm/YKpP2J/nY5+d/7hQHo0sBG23ggMANwsghAM+YdTIG6Sdwb/MmM9kAcb96f8wNvS37gf4Jh4gL5t6WLF2pIsbTgHAXtb40WFthY96D5xSrzOMPKOtPcQDbffxSguFrOOyEKcvYMTke8m90p347nvQhQ9+SBAO83S3G1gAhIVC0w3wNOQ53WiqpmTt3HzLoRe26hNrdBx2wQ3GsIY9ruyD8QUFxTCuqkcWC1u5XQ+JkwII4pkxTBmSaiG8vSvRdN6u6CSk/19DzXU+hxuctL9fUpl2s3a9osm2uwyOQa2uN+6wU+xnBHMaS1qikrHwSEPBX1DovpMnJQk9n+vI+f3VnVsZ5WyIJiELo5tIJuLqO1surEmXaA67Vaz6GCpk1uAud+JVZ5pwqaHFethadAtwC9HfVY1FGVPdHo+jdRjV/ZT5MpKSnY9s0u7nb8AbJKyvp26Q2Jjj6WpnqJ5nu0SAi2wXVHhAna1+oA39K5fHlUzCisPuehdNQe72Ns1CKtzJQ8tG3ZbwSYmaiEMZD5u/OySamqKLS5jtQG1gF20dbE6P8AnGxHebLbTUcYezIk9PxN1HqdTNLyS70puxY1DJR1QuDfnZOUFQyZxEXALaQHbOCsKlPxKaUXuasLlo00mvqRq3JXPW4gYHhgaD3ruuD5p4LnqqOOVweSNR3KiUJqCUJbkrBuhIki1XN0pbslYxrIwAhblFySb5Nbw5YFBtbYLhqsPjqJA9znNI7gu1CivSjVSU1kzTxwYxMDGBvGy58QEkkbmxktNtrFdSTrmMPaKipFRp6FwOXucGDxzAkTOJtzJvyTg52okXt4JQ4HtN4FFmt3PNRRpunHBjUks7G+nmfA9rmPI271K8LxB08Qje47+lQwOvwW+mqHQvuCt79qOCn6l02NaOYrckObo8RlpmMwqeSJ1xux+nvUmyDmXF8Fy1UUtfUSzTAMAc+VzjxN9/jUXw7GHEtiDhcn0KQDXfsnUXdwXk+s9Gounrmtn+vMqafU7jp8I0YLdd8/4Y09G2acxSZwlNZUTS0rrDRJO4hvb4gd9lflRXw1NgDdwG9wqZpGyxStLWFrg658FIaSeaRx6lpc88bLwHVLClUqRlDsegtOu1LmLcv1+A+1AHXF+wvyCwG5sQLJI4JGQNE8Trkm54WWyKB7zaF4aB6Lrjfs7G9LUs45MS5gfpF9/QnzCZhIzq3bW32TVLTPaOsEgeRvsElLI6OYHvWmvF1KWhm6lJ0antLCJtRPBYYidm7AreXDSBve6baJ+zXDmnQEgj4K8xVholpPSW0/Egaa2dsMY43suWmrQXFu/wAYXY+nbVzEAWtzXK6Jl2xsmY599mgLdTprTxkVHJPZncO0wOCyDTpuVz0jZW6mSA2B7ludpcGHmFyS2kblxuKhCFkm8ol8gBcnwTrgDbvkd8E2+ZNbeJ8E7Ze/1/4w+hei9F0ldrBz3b9ge0h874kpSHzviX00qzy57I8//UfLw76h/wC7YvSeXm2wHDt/+7R/shebPZIf1kZd/OH/ALti9K5f/wBA4d+bR/shAdrWgG9t+9ZJAlQAhCEAJC0FwPMJUcygEHNeUelEH6oDD7OIJnk3HL601erm8/FeUulD+0Dhv5eT901AepqP7Tp+/q27/Et/EndaaT7Tp/xG/Qtw4lAapRZjxcna6ikwca2Ul7tnHZS6Udl/gopOLVk34xXj/S5fsUdVr7xpcCWhuoix496VwJI7RsBayVC+fcRWOxZPkAB3cVhI3s2WfJId1kl3Mk8HE5ltu9YnYaT2vFdb2bLn09rdSZ5zyb6cAR7ABblrjGwWxQ2a5RXIiLpUlkhJLlExeRbrRUu7O/Jb1xYi7RGSkItsRinLYYMUqHtB7Rt4qF5jxAsgIDiCe7xT7jlWGROJP/ViqyzHXGZzgDwNvnXq+l2uppyR6Tp1u1DVIZ8RmdLJcknfmmHMFQ2Ok3AO4CdNV7XTPmKjlqIAIQS64Ow9K9dRj4Ulp2OjqeutbyjHnBow7DoarDT1wGw42B5rtNRTUlHoZZxbyI9Cj7562hb1UjXBp24Ba8Oon19Q6/Agn5/+a65w1PLZ5yhdeHTVOlDM/PP6Q7MmixWAw7RPIt2B8f8ABbGUMmH4fK2F7i8h1t+8LnOBSU31ynd2/QCtmHVj4agR1xsbgb7c1k47YRvow2/3C0y8+f6C4A+rLnmpJIBt51+SccadKKTXT+dvztyW1mIUz5XwxkXv3roJ20ELlqS0vBc0KSlRcYPL8xly+at7X9fwLr31XsnLEqjyOFz7B1hfdbyWNbpa4A9y1VMTJ4jE+x1bLFpvfsHRkqKhGeZL4HLhOItri4AaXC+wCcNIB22XLR0MVGT1YAcd+JXVYkqJ4TzE3W+vw/2j3Ec0kGxN1hLh4r6bqp9r23G5713U8Di5ptzTvS0rpHizStEqqp+1nc6fAVSGmpuhuy1gDaGMxwyvcDfcgDiVLqHCDu031FpIPxJxwjDrNF2qUUdG2INmnkbEwCwLgqO56jJSzyzjq3ELak6dLZFQZPy9mlmdoJDPJ5JrbcGo2tY8l6LjoxHHECAHaBqt323WOEtZK3rKadkjW7ktCcQxovY3ud/Fee6t1CV3NezhpHk3N6m0zTFEAFm+IOZYLZaw2SgtuNfBVKk5SyYptDRjdLVSYRLHROImJbY6tJ4qnOiPL2bMPzS6XFJXPpuxqDqjVtr32V9As67VGQhzi5zurGk2VrZ9TVvRnTcMuXx/wapRlJ5bKC6W6jNrM5MGETTNo9btmzuaLdZtsPQrqy+6omwOk8pc41B1aiTc+cbbpyddrASzU9Du3HeSVrT3ELG6vFc0qdKMMOOc7kKDi8tigWFhu7husHMOjQXO1FKGP6vUwG4NvFLqLpGNds/0qsUU5PHkbUzItdYDghwLbWAJWsSaZAx8rSTtayy3iqCHbXJsVk6ck05IxU9zAOu8jdZo7RF3PDhyACFDazlcGeUCT31jwsgmwuUk0jWBoMzWEkGxCjEuVuG0ZWOlp7+KEri7zi8PjdwICRS08YfcjOQQhClNrgkFspd6uEd7lrWyk+3IPxl19OipXVNPzNdV4i2SuLzGj0JUkfAeCyPNfYYrCSKd8ledO2/R9WeD/wB29RP2KRJyKR/ci/ZKlnTt/V9WeD/3b1E/Yof0GP4kX7JWQLwIukLbixSoQAAANkIQgBCEIAVNeyg/oHHff65J+7crlVNeyg/oFH+Uk/duQDp7HQ36NsL2/wC7QfugrOMYu2xIseA5qsPY5/1bYX+bQfugrSKjHcGAYGk2Frphx8WnjJ3G+x+JSHmmLMDbvi/838FRekEc2UjdR99DUe0dztbgkZdti1xA7kvM+CPehfLEkW74wDdnE8yi/H0oQpwjHAXKL9+6EKXvyMILpHAO4hKhNSROGgDQALICQcUp2G6xTbZDbD03SDUCe0bLTLNpcAFsY8OCzTw+DJLKNgAtxN1hc3Shu90oG6xqLXyRgRx0i5JsNymDHp2RUs9ZIT1LOdrkXIHBPk7rNKY8X012F1lERu8t0/EQf4LqtdOtKSyjOLa3XJ5owurp8XzbXOaxohlYInXFrjVY8U8+1+CYRX6+sdG5wJsyIW7lHavJeZsJlrq1tPN5JE10hd1YtYEk7qMukq8XrY4oQesaC12wNivpyhGpBOM9vkbKHUYUEmoe355Je/MtKzGHQMpYXCTS3WWm4Uhy50fQVWKOxLyuRwlifIGdmwLrOstVJ0Ozy04ndWxdab2+tu5fGtE2HY/0fVUUsspqMNeQ1zmRhoaXHYXO/AFclS5pzfhW88S+Rk686rc68eXzkaMSwXGP5Z9QyMeT9ZYWftbRf6VbWH5d8npTrA60w3HA72WTs24bDhVPWuqYjFMCTv5tjbjZPeF1LaunbLRStmhJ1As4X2NvoVVfXlVpOS04785Oy3qzhTft5fyKLxHDcaOb5Y3MtTNc4AiQ8LdyuGkwaJsBcQC1jNTjYXThjEklPH10rSwHe5CbsLxMyOuXh7Hdkgd11rnezuKUZwjhLvnk6KLqqDanl/Ir3+VkJztNhUMI0xySs1aSD2VcFBhbjGHHcuHA8E14Xk7A344/FzE0VD3Pfu93F3HnZT8MEoBi2twXF1S9glHwFv3OGN1cRyqjIlU4Y1pt8oSU8EcRDTG23gpJVQ7bjfmmqojDhsq2ndTlzybVXVRaWQaPo0winxx2LNqJXPIJ0GNum5dqTxUGMSPYGjQDYC2ycZQ7Zl+aZ8YppCXBtx6bKzjcVaqiq0s+R0WVGFNtR2yVx0k4HiNXVxnDH2aC0uHWadrJ5yxgMtNhURrDeUtbfcHklZiTTUtiZOwyOcGkW9KktEyacNa/cAdyuLivKnQUJHYrWVGbqqefuEgo3tkdYANA4gruYwiLSe1vfdb46dxJN9rdy64o2hm6pKlXK8zGrW1rcbCwOaGuaLBVTnTKeNz5igfThjqYmMkmWx84328Fb87O1smupdLGTY6vALusLxUnwYVIOvhQeCD5wy9VUeWoZKWzp9HaBcBvqHNNeQcOqpaFzq/bSXG+q5O4U1mmqpJurN3MPKwXcaRz2WjYWNI4Lu9ckoaJvfOfuNtK1qUayqa8rGOCP6GskkAAIabXWMcgkLdJIJO4XfWUZpbk8CU2MhvMC3hfio1KWZLguqSytjtjYHStBa3hxT0xvV6QxrdPMqOyStpnapXhviu7C6h05Ja7UzbgtVSnJRU+2TmqxUns90PNI0l5NynyjZdmo8U20MdjvzTvG3S2wVZXnv8AArLiTfLHCikBJae7ZbxIYyXbeCaozpNw03Buujyi/aedLBtuqmS1SwkVk4dyS08oc1rx5xPBdt+yLpgwqoiqb9RI15bubJ/cPrTCeOwXFWhKDxI4J8i3HAIQSCdkLCUnjYw4AGyGna6EjfNU00nNEElwvakjPe0Fdq48L+0ofxB9C7F9g6ekraOPIpavvGuX7DJ+KfoXlChNvZLMHfWU/wCyvV8v2GT8U/QvJ9F/aXZ+eU/7K7e5Hc9aM80eCEN4DwQhBHekX+guPfmM37BVJ+xP87HPzv8A3Crs6Rf6C49+YzfsFUn7E/zsc/O/9woD0eEICEA342L0L/BRxosN1I8b+0n+CjjOAXzz0uj+2iyxtOA5uSpObkq8otzqXIIQhR2JfIIQhCARba6EhtxKP4koL+KybY7ngkHWWuGmyNMhGqxDeaKE2tSWxJiRY7IcNQ3SpVGz3RDyhrxHD2yRE6QQVBMewXi5rAPi8VZzgQ3tHZN+I0kc7SOem6tLLqM7fEMZKm/6ZTuae5SNTSSQPdYFNOJ0cdVA4BoMoB4j0KzMZws7WNxzFuCjWJYFJG3rYCSOYAX0To/W1Twp8fH/ANnz676XWs6uukv6/kVFV4exszmyMs5ptsFn1bGtAY47KYYzhYmtpFpLb+KiU9M6ml0PX0i0rUa0fEocv5f2Lyy6hG4iqc9pI1vDXDtXcLc90y4nRyBpdHsPQn3To3HFY6tZtINlFxaxrxzwyxjNp6RmwKZkBIlJ1G43TvMXGIuaWm/CxXHWYdHJcxmx8FxdbNh5DZLlnp2XJHNGGmRukuMm3DX1XlB622nxPenbYk3uuZ9RG2k6+EAuF9vBasOxF1U4hzbfGtlOsoYxuHFJHaN+CLpdOkkoDgWknvXe3umasb5AC4vcAelGx4EHwK58T1uprw8bHgubChMdXWXWipWalwBwa0jimiuiqJKlnVEadQvc2TvuEuhp3U1aTqpNAwhDmwta+2oBZvAdbihC2wXYwcsg4AAabpW2I3IHxoJA4pmrhOyqbovpv/BYVqjhsiae73JDRPbHKx3MPHyXXdmTM0+HGF9Cxr9jfU0/wKZ42nq2G+9gVviZHVyNZNY22Wi4oK7o4kcVzawVZVnwie5fxg19C2SojYyQkjZtu7vT/U4tHg+CvqIGsfP2bAi/0KNUkEUdI1jbAXWErSbscdTO5eB6j09W9ZJ8HmqPU/Cr61HZPyOzo46Qq7FKmaDGaaJrHCzS2N23a9J7k/5uxF0WGzOw98rZT5ui47+5ROmgjp3h1Oyx52K635go6OJzaqVoeDwJKr69lGVT2O5bLrDuZ/s1j7v8nH0T1+O1VXJHiz5XMJaBrc88zfirKc4teAeOqyozGs9YkzFY4cCqzEHG12Bp5ekeKuXAqmStw6nkmJdKWtLz3mwuubqFr4b1pbFyqjqJOoTTDpC2BjXcbck6MqmBoJLrjkmul0ijY4cQFtcbM1FvHZeKrRzUbZdUamiKceDfVVzxBO6EWJ4W2KoPL9Zmz3RIGvkndSiWLWHvkta+9uSvQN7OpqIIo4pmytgvJfjddlhcQtoSVRZyZuo5yQ9xl/VxE21FgJ8UNN7iwuOKxic9w6yQW7gsmON3G2xVLNp1HLzLBcIVCEKFyiXyDTufBO2Xj9n/ABh9CaeDj4J2y8Npvxh9C9F6Mf8ALRzXfuj2TayD5w8Eh3uFiXWc1h4kXX00rDy/7JD+sfLv5w/92xelMvm+A4d+bR/sheZ/ZFTRy9JuBRMN5I6hxcO68bV6Yy8LYFh35tH+yEB3hKhCAEIQgBHMoRzKARvPxXlLpQ/tA4b+Xk/dNXq1vPxXlLpQ/tA4b+Xk/dNQHqek+06f8Rv0LcOJWmk+06f8Rv0LcOaASTzHeCidUbVk/oeVLJPMPgolV/blT+OV5L0sWaCOq094wQhC+drdFk+Rb7LEcUqFOcDIOsbWWmSMk9lbkJkyTMIwWt34rNCUALJYewYiDtyKDtwSt6592aHBTFN+6smpywwLTa+yasWkAjN06AaA4OHaUWzJVmJj9R3/AP0W22i51EdlrBzmkQLNWIsa1zQXf9AqtqyV0sriDtdPWZK4yzkA8/WmBrXk3HDmvoNjR8OCZ6+KdOKSB1nAaeI70Pu4C1rhJI3RI2/AlZO0h7Q3iRdWNTPYSeV7O5praaKptqaOfJLT08VM36w0ajsbhbUIpywa1b037cVhhcixBued03YzhrawB8PZlHpsE4oWKckyK9FV46an4EKia+hr/r5fdtw48QSpg2oilbrjcD8YusKmip6waZwG25m6Y6rDarDniSkLnRjjYALqUo1OSkhSrWGVDdP5sTETW+2AMd+rN7ce9SOCMmBhcfrg9Ka8NxdlQwioaBIzs7nuWiTGHnGWwMHZLgOPoUThtsdFvXhQlrTy2Pl7m55bLppoi/cJKandIA5w7JCe8Lw0vPBV1WoqUctl7TSktb2NuGUvWPaLDipfhmGRcA+HUPe6hf5FopcJdFTPMYPWaTp8VBsGoM0u6Q3lzZvIusl5MtbSbelVVVqvFtSSx8Sq6h1FUvZiXFhtHv5lgPQm/pRwbFa7LbW4JI5kwLL6XlvM34KesoyyOI6e667YdMMZaW3DjdeVV86Vwnykzz9xcyqxKr6CcLxzDcOn9vpppNTGadUjn++dfj8StTcE8LLJpe2Pq23DVjay0Xd561Wc0sHLSXmKN0OLGtJkcxrQLkuICLE8FX3TUzHDlRoy6JDU9Y7VoDSdOg9/pWNpSVxVjTzj5iT2ZPhIzq+tgdG9nPSQfoTNnjE6jCcs11bRxh80cT3MaGk3IHo3US6B4scZgc/8oRJr1R21ho96b8PSrElijnp9FSzXC64IJ4hdEqULS6UZyTS8jDVlFT9DGecZzLis8OK0/VtBkt9beBs2/virPqnPZUSN4jayXD8Lw/DJHS0NO2NzyTs4nj4rpdCH6nOdYlbL2vb1a0p0YtIxlTlKOMlB4x0l5ips7R0MVN/NBI1h+tyb/XLd9uCvFsz5xHO+7HOJIA25rTLl/CZqttVLSsMrAN9TtyDfv710YlPDBEKyqmFPTx77i43XRc3NG70Qt4NSj8OfoY6JR5PP2ISZyPSLC0TTCl1sJDZZNGnX8nBeiaNz/IaYTlrpQyznXvv4qm+krpHw+hwZzcu4nG3Ei8tc5m50aXciLcbJ16AMbxjHsDnkx+R9TEdBbK8NAtpJ5Ac11dUtZ17SNxJaXHCxw9zCnPEty0gA0ltzfj6FksWBwbaRhD78TzHJZLzLeNjqbzuKy2oauCpbpwdmSLFaV2CGXqSGAiNzxuS74PxK50ly54Lo9VuG66+m3MbWprqrKIaZHejkVxyfh/tsXmrER6zWSd9bu/fhZSRLIZHuDngiMcki116qq1HNcMmIIQhaSQWyk+3acf31rW2j+3qf8dd3TP8AlQ+Zrre4yVR8B4JUkfBLyC+vrhFRLkrzp3Nuj2svzDx/+N6insUhbI2/NkX7JUn6eJWM6Paoy9m5e0X7+reot7FAF2RZQeGmG3+ErIll5IQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0iqt9jn/AFbYX+bQfugrSKAEyZgNjF8f8E9JkzDxi/8AN/BU3Xl/spm2h76GjiT4Jb3aEg5+CG8AvlHcuXwKhCFJgCEIQAhCES7sJsLgFYSus1ZBu9+JK5ql3VfZGkBZRk5bRRsWDU8ajdZxOsVo61moAbX3Wwgggjgtj1Y0tGzbB2sffvWbSOK1xkujAAsVlMPrYs7daG9LNMmaqkam7c1Hq4SMlc1nfsVJ3hr4QGntJsrImhpbId+8rfTe+WsG2hWUHwMDpNcLqOaJkkEt2Sam37LuK1YZlPAaeSSSmoIOse7US6Fnd4JwbBd+lrrjwXdTxGOy7JXNSKxGWx0VYRzlIx8jZG5ui9u7kkr8KpMUopqSughkic0lpe0Eh9iBx8V2kg8eKNIeyw2N1zKpOEtSe5pqaprSzyl0kZHxrL80pdJM/DvesikL7CwvsBYblXH0RY9ghy7DSCfRUiQ3FRpaeDRzPerCrKNldTup66DrYnCxJNvTyVXZr6HqWYPrMAlFPWMPWAMjLibXNt3W42XpqXVKPUKMaFx7L89kv6nDKMqEvYeR06b8PxGqy9E/AnaiGG5jcfhNt5vxpm6JMvYmzBjJjFw9pce24/CHem7JPSDiWU8VfgecGuNODpY+VzW7NBvs0d5ClHTJnuTLdFSS0cd6eaQNaddgSWE8wtzpVYQVpCOU+GvzM6FeVKblkmFDStEvO3cFIYIwwBwOw5c1DOijFpcw4DDXys0l7GOte/Ft1Nrta7U3c9y8neU5UazhJ8G6pU1dzXJGHxvdbmovic7KYapHNYDw1Gylw7TgRwPHxVK+yEpMekkpjgbJNH12+gN7mW4/Gunp9GFxWSlJL7xSuPC5WSWRv60B7Tfe+3Cy7JYY6qB4bbXZM+R8NxGLL0JxXW2Y2uHAcNI7k7Twuh7cOx9C6qslCu4x4iWUKmuOpdylcEyRmD+WolncwUscjJXXlO7ddzbvNuSummoYodGnkLG9uKwfUzOjHWX4pI5nE7rpu72VdJPhE04Sp7tnXJTMEfYvq5rgqbxtJNrJ0hu/xWmvoeuoajq95rOtt6Cq6hVXi6XwIVlBtyGKnq4ZZdAeC/uBBKdaOhbUQykxtJDXEXHoVQ5LwfNHuhN8pjmFH1zbkhtiOrP8V6BghETWkDtBtj/FdnU0rZw0PPfY0u78TOnY86Y/jeKUWezSQ0shpw54uInkbAW4bK9jhkbaeJ7mhpcBtYDkumpo8PdP176Zpn331Fa6uqkmF3gtI2Aupveo066gqezS3NVF1m/aZVPTHJV4XQB9HE51y3zGknz7clj0dU02J4HFU1sbmG7vOaQdnEc1YtUyKpj0VkQe0cLm30LFmhlMIKeHTE25JBva666d5GNoqa99nUp14VU1LYqfpTwqtZDEcNDuDSbE/CPcuno+ZJHg7TWuHXOaLC+/E96kWN5hwyHropcQjErGuGgg7EX9CqzJ+K4piub4Y4pHvpQ5t7AW3B9HoVvRp1Ktq0+25nK6p06izLd/EumhcJXjTtb4Wyd4hrmDR8vJNmlsfVteLP2TkHlmlvLvXnK7Ulg6Ky1RyhzDGXfdjLFthYc0y5zoKs5blOHB3lBLSNJPfvwTxEQ5oF7FONHPLCNIu9p5cFwwreDUUmV1XVp2Kn6Ao8witqzjLXdQY2BusvvfWb8Vd9/ODuAcuSN7muPVRFhcLcbroYNLe0LuO6jqdeNxUc4rGThSaW5mLHtNvYpUDZoGm1kKueyAIAsEh4Je5ZUvfRBJcMH8zhH9wfQusuAIXLhv2rD+IPoXSdgGk7nZfYbD/jx+RS1PeMJT9akH90/QvKNGLeyYYO6sp/2V6tn2p5LmwDTv8S8mYXUR1HslGSQuDmOrKexH4q6+5Hc9cs4DwQkZ5o8EKSCPdIv9Bce/MZv2CqT9if52Ofnf+4VdnSL/AEFx78xm/YKpP2J/nY5+d/7hQHo8IQEIDkxRuqjkHoUZdsbDvUqrvtZ/goqPPd4leA9MNpw+JYWfDAcHJEDgULyETsS7ghCQi3aB27lipLGWOQulSlge3U0WKxBNtxYpHLfwGBVi8AtPelug2ItzKykk+CcNEN6Xa3FcMyy+XCI+tls/ZjHOPmE8lDug/EMy4m98+Ns6qAbaXse127duKuGTRJGYphdpWFPDBTgsgaBfdWNK/jTt3Q8NNvuadDznJuSJUKsSwmjbnIkfas0X8XKnul/P+L5WxuKOjpmSQOibd/UlwuS7ncdyuBzi21uCZsy5Ww3MUAZWxRu/GZfv9a7umV6NGrF11lGqsm1sUpkXpVp6jGZ340whsrgbtaA0bHhc+CtfyvB8ToXzUNXTv1NPZ61pPyBefumLo8/kpiNPLRW8jn1mOMNDRYFo7/SuTA8tZtwfDDitOJIaNoJIZK0Cw3PO69vcdNoV4qtb1HH4JFbVhFxcZRyWhjlCYqgyMBINztuoVjeH9cDKNiOSsXo+xXD80YMyOWcuroWiOQOaTZ1rndY45loxRuLWA2BPJW3R+uSsKzpVNkePvOl1beo7ijw/kUtJE9r7O7J9OyQO5EfGpji+EslFjG1so2vZROto5aaQhxJaF9Et7iNzHXT3Oyy6jTrrRLaRoe0cisJ42zQ9U9tzwuAs9nCzWi6UamcVulGMlhrJZNvO7GMF9C8te1z2HuF040MkL+0wWcd7bbLpfEyXzk0VcUlHU9ZB5u97bKsjTdvU1yWUbUlJYk8D23ib/IsPOJbwC009VFVWLfPW9wLeCs4yVVao8GiWqLwK2zTpIuElw1+wsPBDdwm7FKmWKNvVXvqA42WNacY9iU8jid0A2XPQSPljBkv8q6Tp1WHNZwnqj5BsRCQmzyOQWsVcHW9Xz8FgpKLy2QsI2kXsUO0v4t3HoRty4IWTanvgfIVm7+NrCyGgxuLxxQAPO5osXFS8JcGMo6k0+5L8Cq21MPVvNiN12TNLH7XIURwyp8nqAe+30qYxyddSNkA5BUnXLVVIKrFcHiupW/qtd44Ziy7bdxUIqo2VOZXRVJe1hLiN7X3U2DyR/FRXNWF1D6iLEKR7gIgGkCwvvdeThiO7J6XNKq4PvwbMayxG6KSWi1CVgu0E73+IKQdHOa3PmNDVjqnxgtGsab2sOZTbgePR4gGuc8smHvRc3+NZZvwUkw4jg8QjnYGl5ZYE2uTufiWFzBVIeG/qXdlXmqng1+PMvjCHGSnI4gWXeS59rFob3Hiq56M860VTgoixWodFWsa3UdJcb733sp5Q4lhuJ3OHVJlezexYW8PFeCv7WdGo8LZHq6GNO3B1OBcNI5LOmY5zm6CCL8eKwaXG5tZ/MLvw+IRAtaLN7gquc0o+Z2Uo6mdQBsA63DksgdQ22ASFC4/d3ZY4FQhCy4wzF8iu85PGXvNl8QmZ3BPeA/YZPEL0notHN4/gjmu/dHa4AuU143ilLQYbUVU00bAxpFy4DexsE3dI1VX0eS8anwt7o6xlK90L2O0kP5EFUDkHBcydJOGVjcTzNX9XBVCOaFwa9upoDjxI719LKwrDH8Vqsb6TaXEakOEU0w6skEA2YAbfIvcmAf6Dw782j/ZC8pdMuA0uW82ZVwyiY0RQ1ElnBum92NPD416ty/8A6Bw782j/AGQgO9CQJUAIQhACOZQjmUAjefivKXSh/aBw38vJ+6avVrefivKXSh/aBw38vJ+6agPU9J9p0/4jfoW4c1ppPtOn/Eb9C3DmgEf5p8FE6z7dqPxypYVFcQ+3Z/xyvLelS/2mr5HVa+8aEqQJV84WyLJ8ghIXEEAc0rh2hcqXgYBCx1gSFrhfuWZ2Fw0FY5UniO5JrmOlhKInEjdZPGthu0BYtI4BbNOlE4yY1ZcKaYx7vDHEeNjZecaDHM7T5/ip307mUpmaC4wyAW0d97cV6SPZ35LUYabrTO1o1Df+C7+n30LWElKmpZ8zTKGXkSnL4sPhNQQZSwE28FXWfK3qxINQ4/xCsTEJmmke4C1gfoVEZ+xIyVT2XvYn+C39JoePcOfC8i86RSzJyfYh9TKZZnErhxSSSOikfHxBG3xrquXO3Q5rZCY3cCvfx9lJYL6onUjhPBEW43JrYJAb6u7/AJqQUtfBM1l3tDtPMhceJ4JB1cksYGpovwTBRYfUVE7xCSHNJ5jku904OK3PLRvLmxr6feT82TgEEXBBCVR/Dq+Snk6qrF/E3T81zZGgxgAcVxzptS24PSWt3Cvu9mZIQha5S7HS03uxNIfcOuLdyVpJYWWBaRzSEHismNLzYIk8ZRgvaWlrJHcYojBOKiEG3AtHO5W/AamlnxGMTxmOTULagByUsw7C3VUoY+MOuL7rvxno6fWYXLX4Y0NrIWl7dIAN72G5KK9hjw29ykvbWNnJVlv8DuwzCXzlrg06Da2ymuF4JoaOyf8Ar4lBejbOcNPMcGzF2Ktsha2R13nT2WgbC3EFX1RUdOGRmGTrGO4P02XlusXFS3bUuDGr1lTjhbDVSYRs08N+aeqSlihJ+sx9Z8INC3nQCWA+aL3TXmDEHUOBVNRTEmoZptvY7nfdebjVrVpKMXyU1S4U928js0O0OBIvZI0ix6wHbbZUH0Y9IuYcWzJJBi3W+Ttc3zptW2q3C3crqOJa26tOx9K6L3pVa0m4y3b+RzRuqbymOQDHDU3WD6UrSL2JF+5McuMtZsXEfKmDMGdsOwdrX1E5bM4ho7LuBv3D0LXRsKtbCisGp3sI7InD5g02uLrRJUhzSC2Nw5hwuoXR5hbiFKyqgkLg8auY52/gtvtq9pIdttfiuldMq0ZZX9jln1GMdiUiqswxxsYwf3W2WRrHEBunzTfgoo3EZXi7Xn5V00mKucfrjiWjjcqZ2OHqkss1wvoOXJITXEkCwt6AuhlVG8guDgPQo4cUgY48gfQVtgr4ZHaQ+zT6Fp9UailFHQr1RljJJg67rt02sqr9kRLPFlFjohOYurkLzDfbdlr2U+bK+OxbISDt8S4s0Yb/ACgy1WYYDbrA1vz3/gps36vcwlJb5W/wOt1VOGSI5Z6PMt4xlVkkZq3ue3dzpGmztIvvbvKgzMSxPopzXJTyRdZl+WR+hzWFzg0DSy7jYcSF3dH2cqrJNV/J/MAcInzOc15eXWDnADZoPIFWxmPAcIztgD4zonimDXwvczgAQ7YHwXoK9xOhXcLr2qUn37fJGmnFNau484XX02KUcdVSSB7Hjk4Hh4Lq525qgOj7MVd0f47/ACfzPI9tK94EL3O1aTI7VcBt+SuikzRgdU8MgrDJK4XuY3BUl/0qdtPMPaj58HTTqJrceAbbpSWx7kE37liAGxsL3aXOJAtvqSqn2csTNuU+DGx16gTpPIrJCFLaTwg1gEIQoyQC20f29TfjrUttFcV9OQLgP3Vj0larymvia63uMlMZFuKxdLG06TIwO7iUlg5pLTy4eleZukDHc2DpfdgsGM1mH0NTM5sL4ng6A1gJs3xX16O6RUs2eyhze6phiwPDvrrQ9sr3RjVYFj2m5B9Kl3sVv6Dyxc4xE0nv2KY82dHEWAZLxHFcRr31+IywyNEksQDrFhcNwTzCevYqtcMiPeeLmwm/fsVPccl4IQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0iqt9jn/Vthf5tB+6CtFACZcwcIv/ADfwTyU0Zg+xM+P+CqOtLVZVPgmbaL9tDKOfggcAl7kL5Nu90XDYIQgXv2eKnKMdwRY9yTrGvNmMAIRrJ2bsUyn7u5HteQqEIUZ2wZCD7NGLgbHiqV6d8WzDR1lNFhED5WukAJZE9wHYPcrolYXAFvELXJDT1NvKGi4NxcLssbiNrPW4KXzMHH4lf9FlLis2Xop8Y7M72scG2cCAW8wVYMUdhYra0MaxrYxZrRYJVjcV/HrSqJYz2NsXiOAGm1iDb0JWRu1PLHN2ItqWO/JK1wY+7hcLlpyUaiclk1yWTzxm3pZxzBccrKN1MxsJY5ocYDv2iNjq7gnzIHStRVOExwYqdE+loLnaW77nm5TvNfR7g2ZGyOnij64tOlxjuQd7Hj6V5gzflCXCs2VWC0f85nbK5jNQDfNAJ524L3dlb2N/RVPCUvkc0pShNNHp/CsSo6lpkp5myg32Y8OT9C4OY11iLjmvONJhmaej6lw7FcRdLDhzpx1rBK0jQLOdsLngr+yji9BmXCKaqo5y4uY0lugi1xfmqTqnS5WsNdPePmd3rPiNt7DkGlzxsutkQAAPPdZNiAj7j3rJosPOLlQub2IlJvGAadJ0gX8QgtLjZ2m3oSpDfksIyfcxIX0jZHo844RJAxvU1rLNbKLMG5BJuATyVO5YzEMDLsGznh9VURxkujmbDdoJNt3P5abr0w3VELkXCYMw5XwbMFHPBV0kJfKwtDyzURcWuvTdM6vKlFUqzyuz8vkaJ0+6NmUavDK3AIJMELBDoZsC3bb+76E8amtDTYn0rznR4piHRHm6opaxz5sAfLJ1TXOs0N8xnZbcq/Mu4zQZhwxtZhsmuIgkM0kAWNjx9IXH1fp06UncJ6oS7kUpp8ocQ6zSBz3XBXN1RgTRsfbhqbdd+nazmAm97LF8bpiQ5o24C6qqdSNLHY6k0RSurSZRezLDSANgsWOdOyx4KnukTM2N0eeaegpGvZTuLLhsthu4jhZXFgVPO7CqKWVzi+SO7r+JV5c2joUY1n/23Oqjc04+yJ5KxvAm/pKzbSi6eTRxgW0i434JsxV7cPgdUzPLYx6L8VXRqKfsJm1VcihulpAO6NZYNtyo1ljM1DmGpeyjqnOc0A6dJF7m3NTGKl23CzrUnQeiSxIiTiudznjkcwdZHHEJONw3dOEDjJCXEWPNYsp2s4LcXNb2Vz1KjqRU3uaJNcRWAY1skXmm/gtM1KJABa2/FdMUuh1gNl0XZKy7eC5tcVsjW5SisDJU0Y2YBf0prxelIw2sA1XZES3TxJUrdALXTfVxgAF3mDdw7wuuhWcakJPg3Ko3HGTz9kXBqDFsaxf2yNV1jamVobrANrDexHeStGc8sjLbqfFsDEz3RanOZcuOwAFwAO8rrzZBiWTs2OxinaX0U1y5usNHaee654BTnBcYwvM8HWUbWaH/AGWMNIFrm3HwK9rUr1abjVhvBrcinRpPOtb9hqyRmmHH4GwTNIqmNuW2AItYcL34lTUNsNJINtlTuZcDrcn5gZjWEkspnkRyNYQ0WLi53p96rAwjN2EYjh9LVGo6p72apQGOO+9uW64b61jNKtQWU/uOijXeHTq7YJpAG9Xc3+JddJGC+/asmfCaiOtbqppTJEN9xbxT3QSWkIcbgFeeuIOnLRU2NcnhezuOkAD7uB2W5vZJNrrRSt0WaTey6XKvktzklyISXbm1j3ISJVjLcwyIeCXu8UIbxj/GWdJ+2iG8RySbDdqWG/wR9C3u0tF3Gwbvcla6L7Vi/FCrD2Q2LY9hGTvKcuzSwua2UzSxyBhDQ3j6d19jtI6aEV8CnnvLJI+k7NVPl7Lk0omj66QaGjUN9QI7+9eT+hbymTpWweSua9tQaqHWHgggjxVs5T6PsRzzhNFimZ8w1dZTiJjuonja9odYPG9+RKi2HRR0/sko4omBjBWwENHK4XSYnrNh7I8EIbwCFJBHukX+guPfmM37BVJ+xP8AOxz87/3Crs6Rf6C49+YzfsFUn7E/zsc/O/8AcKA9HhCAhAaK77Wf4KKjzneJUsq94H+Cicm0jrbbrwvpjHem/n/Y77LuIOBQkCVeKT3+47kCYswZpwfLkZOJVMccwBOl0gaeF+BT6FUfTxkmqx+FlXh93SDUS3U0Xs0AcV29Mo0a1aMK7wmaajaWxMsDzxl3HHlrMRp2Scmmdv8AA+lShha5oLHNe3k4G4K8TtwbHcKqA2OKSCdrrAxnj8a9TdEcmISZOoXYu976nQdet2o31FW3W+lUbSCqUJJr55MKMpZ3JmkcNr8ws47OY6/HdJazRvdeZi2zc29QjXam9obpQ7bTpPihCzJBCEISIx2l5BQHXubFHO/NKFFWKlhoNZID0rZOlzVhcc1FIxtZACI2vLje7hfYcdgoYyTpGpcEdROp4Z4QHNMceH3cRa3crwAAII4jgsg5wJIJBOyuLXrUqEI02tl8jTKjk8x5HwDMkWfmVctBVU8TzI6ZroS0ai3u4BelamKOdoa5nLe4WXVxiQyaBrPvrbrYd+Kw6p1L1xpwWAqWFiXBEMeypFVXMVg478Sq1zJlWWDXqbt4H0K93bC4G64azD6fEIzHLG3UedlY9G9I6/T5KLe33FH1DoFO4/aUtn955WxGilppCGMNhx2XAC73yuzN2UHQPkdDE0tI9HpVVYzhE1NL2QQ0elfZ+k9etupU0lJavmikpXE7aXg3Cx8eBncL8EOYHMs4bLJ9gdI4pQeyQQFdT3XhyLFTXNPdfAaK6jNMBNTbjnbdddDViaEB3nDYrpLOsiLDwI4JmmacPqg4eY7l6SVXuErWer/qdCakh6PZ8EOYxzbuCxY8PhEgN78llxZpsL3uu1qFRKWTTJYAtDW9ngsW2se9ZjYboMY4jZTpWAgbbSdXFNkdARV9a47XHMpyRytyWM6Sm8kBw4cEJBvslsQtsdlhAQXL7crLnq65tM7SV1C1r8DwXBX0HlB1c1zV4zxsZU/aZ2RS64xIO9S7LlaJafqTyt9Ch9NF1ULWk33Tlg0/k9aCCWt32CKLq0XFlX1W3VxbtrlE6o42PedQ7I3K31Tqajp3zVLCIR3m11hQPaWOIA7QsjGqLy/DjC5zgDZfM7mMoVnGW255+zSjFPG6K9xmOkxasGIZdDjPGdXVNdqJNrDYbcipbkrH/bWc0lY20jGFjmEAHawXFlPL8eB1JmZdwuDY25X7lwVpOBZ1gkjiZHHO1riW8y5/o8F0VpKSxF7nolUp3UnGPKLSpOj/AAPEJZXzMnjkJ4CdzfmCieb8u1PR/WU2L4E6V1J1rWvY5zpSAO0477W2VsYI4Txul7NnbgtN+9aOkatwzD8mVhxRkcrpI5GRte3VpcWGxHpXlle1oXLoSjlfIv6FNRprzN+U8abj2AUmJxfZnRtL27XufQFLY94w4izjyVTdAfXTYDWyRWkp+sZoa42DRp4AK2dmuLdRLxxHcqHq8FTuPCSwWlCPcyQhCqnTwsM6cghCFk+EQ+QdwT3gH2GTxCZD77wT3gH2u702XpvRX/mS+RzXnujN0tTVEHR/jklELzikkLRp1b222UH9joMLhwCoEdVFJidRL11RGyW5a8sbqGnlbuVv19LDWUssFTEyWKRulzHi4I7ivPWCUwyd06eS0zGxUdZFUT9SzZu5IGw8F9JKwZ/ZGj/6j5eI83yh9v0bF6Xy/wD6Bw782j/ZC80+yPP/ANR8utHAVD9v/TYvS2X/APQOHfm0f7IQHcEqQJUAIQhACOZQjmUAjefivKXSh/aBw38vJ+6avVrefivKXSh/aBw38vJ+6agPU9J9p0/4jfoW4c1ppPtOn/Eb9C3DmgEcotiP27P+OVKncCorie1e/wBJN15n0q/4T+a/qdNr7xzhKhC+bY2LN8iWJue5aqyop6KldVVUgaxvG7rcr/wW+KznubqPgmvMWHHFsArKZhtJZ5bw+CRz8VnSanVUJbI11JSI47pTy15Z5M6rhDibG8zO6/epZQYhSYhAJcOnjlB+C7UvH+MZJxnDsYmfNShzNXZfqBJ2Hcp70EVGY4sf6mrdMaS47Lnmw7Yvt4L1V70W1hbeLbzTfzyaoynnc9Eza2xkyOAd3LQxxBuV11ADi7YOuefJcb2Ed68lTbbaZ108vk62PDglB2PZNvBcjH6F09aOqKSTeyEvgNeYpOqw+Rw2Gk/QV51zFUCoxOU34n+AV6Z3rNGGSAOt2Tw8CvPtSevqyRyO5XrvR+hpTk/I9D0taKeWY7a1iCA91+N1rjlbK0aD2muufBZuAcdVuO69U+C1bWNSMZGXp5G83NIUfipa2kqHyQsJuT726kSCXEbEqYSfc57m1jWamiKYlFWPma4ROvc+8Uiw7rBStD2kGw5ehdJtbtNDj6UB5G1hZbJzzHCOa1sPDrOYIWTbOdYC6c8MweeslGlptfv9K5ZThSWZstHzmXBw0tLJUOs0bKVYHlaaWUFzT8h71K8s5Ss1pkjbe3O3crCosMgoG3exgt4Lzt71vQ9NHf6Mq7zqUKCxkjOA5V6hrXEDV6b8LKX0tHBRt1DS63nNvdN+JY5T0gIjIBG1wCofW5qdreGyuF+66qY2dzey8RbfceL6h6QUt1KS+qOnPeTsAzBSzTRjqKxjS5rutLbuAcQNvSVXPR3nqsy1Wy5fxku6q7Wslc0AbAk7nfmFIKvH3OvZ7rE78VA8+UIr4RW0o0zsDrvbsd7D+C9TZWM/CdCusnmvt2lVqaU/6Fz1ONh0Ya2Vob54N+N+S5G42Ghwf22HiNiqtynmV1fSeS1Futiu65vcgWCeXYg7WQNgViukxT1LlFZd9YqW9XCWxJDU00crpKWDRfiQAtxxgNaPO+VQ81cxfo1ODT3FYullN+24/Gut2KqPM+SvrdYk5Nok02Kucbhw+NQ7N+DfyiqY5n1DGlgDdOojhfu8V1a5PhH5VjqcDe5uttG2VN7HNHq1RPI4YBA3DcKiputDixttnHvJ/inLrQ5ocCRfbcqOhzhwcVuiqZI/OcXNG9iVNS2b3MX1KUnuPnXyxmzTsVhV4yzCoXzzO2YNRFx/FcD69xhBDG371xV9C/GqZ0Ljpa8EEg7gcOa0woQz7Z0U7vFWLZJMsZto8xOdFC12oX5t5C/JP4swOs1wICg2RsuwZelkeJHEnVuQOYtyUmo6x0k77u1A24rhr0oqXsHop14bbj1HUyseAHXGm66YsTkaxuk9vnsm+Mi2q+6Q20OtsTaxC4J0IN+Gb415JEcz3m3LeY4/aV8ZFc7zJWvY0aiC0DbfiUx5LzNi3R7iEWD4vDL7WTX6md0YDdLQQO07vKcsO6MKWqzLFissz2iNwfoAZa4de/en/pkwaPFMrl1G1r56LQxhNgQOsaT8y7J1beOizm8xa+j7FtSqOUFImePZdwbNVK018TnutqY+N+mxtbiFEce6I8Kfhrvah9THWNs4F1TIRtudguzoszA/HcqRSvLWTxPkDmh3ENdYcfBTKKvZBeWR/YaCHX77KklcXdhVVFLKz5HZ4kJLLK56Fs1VtU6swPG3gT0jI3R6mhpcXucT6TsArZXn7CcTpK3puDsHtHS9bDrDG6Q4aTYH516B47haOuUUq0ZYxlZOmk01sCEjvQlVJLClhGxghCFBALbRAnEKYggAP39K1LdQgmvpyOT1Z9G/5tP5/wBjXW9xkllNo3WI8028V5vlZS1HTzPNmeeOlZBP/Netf1WoGPt+NrN8Lr0lpuQTwtwVHeyWwOmiwA4/TwRsrKaOV/XNADrnQL34r67D3UVLJh03OYOjmqEQMjTG7Tp326p1iop7FFrRkZ2k76ItQvwOkpxz9Wuruh0y3IeKfc99oCm32J9nZGktx0w3Pf2SpfJBeSEIQAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/wCrbC/zaD90FaKq72Of9W2F/m0H7oK0U7gE0Zg+ws+P+Cd005g+wN8D/BVnVl/sqvyf9DZR99DJ3IWI81ZcgvkWHjCLkEha5+zCAeO6VZRvEbiT3WTiSRhKTXBEMxdIGBYNJ1MtXCJeY61vdfmVuwPNmD4yGupayFzzyEgPd3eKpbpn6O8SfjorMNZ18WrdjntAsGjkq/w2lzFhmJU7aXroCJGhzY3EDzhf6F7Kn0ezrW6lCa1Y8zT400z2ghNmWpKqXAKbywfXy06nk3JOo/wTm82eABfZeQksPBvTF1BoFuPNJIQbEA3Sc72slWtgNWoDYiyEIRaluTkAhpOi5FwhICeHLuRrUOTGVt47gFU50k5MxOfMFPj2XTGaphe6RrmGTd3Z4WtwJVySuIaRfZce7dWk21cbc13WF3KynqQ8PUUnmWfPtdgxpcSpWzwaSA2Ohsd227lu6BcMxzC8TrjiNJUxRSTFzQ+MtAGgDmrqazrBaQ6h3Fb4GRxm7Ghp7wFaVuuKdvK3cd38jV4DTyZyAaiHOHgka0NFghwBfc7lKeS88nq3fY28IEAXQhMEC2PvnAIuQOyQR4JDvx3ScBspUsbAbsbwTD8bpnQ4pDrjPvm7W7t/FUdmGhxHoozNDXYdHPNghkaXaQZAGhup27tuJK9BMBcCHDs9yZ82YHDmTAajD6hodqjc1twNr+KtumX/AIE/Bq705frk01aed0bcs41BmDBYK6jkaXPa0vbcEtJaCQbeK7Kh8semXU0cTayoDImNYj0fZynwXE7voZ3vfFrcXAAkMaABsPNXoSrjBiOnS8G4bv3LX1Wx9UrKUN4y4wZUZ52Y1VkNE97JqiGMy3FiWhJJVnWANIYOAAC3Txse0MeGn08bLQKRreLi4HvXNrbxGotkd8ILkyp5zLtY3OywzHhjcXwV9FrayR2k7kjh4LpihbFw35rI7u1c+9TGp4U80zXVhGXcrXor6M5MoVlRUVdTGXOYwNbqfckOJ5+Ks15ueysX6pCDISbcCeSGguB08ua23l7Vu6niVd5GFOjoWMg5rgN1tbC0Fz3e9ZqWoF2mz/pXUNDgWXuHN0k+K5ppQk2nsZTylsVziXSRh9BmY4ZI9uoOcD2m8hfvVkRhpia6M3aQD8oVY4x0O0WJ5uOLmsnbdzyWAMtuAO66s6FrY4msjJLWgN39CsOowt1Tpuk8trfc5oznKWHwZbkJvroS4AjlvbvTitcwGhxtwCqd22b4PS8lX9ImP0eBQNGJxh8cjQAOzcXJHNVFBFiOB1JzDlyOSag897WtMlg3YejiSr06RMlUebqONtRK+It07tDeRJ5+KwwXLNDgWXxhDSalkg0EStFjZ1+W3NeysuoUqVpCM3y8NfAVYSqe1DsMmXsYo82YEDNGZO1pkaLXBtvw4cSuCs6O8DnnDY2VDI33NvKHC3yKOdHtS7Bc6V+CyNayKVs0zN7AF0oA9HBWk9skckkdgTCdIN76lF5WqWU1Kl7r4OyhCNWKVXkqGOXEej7N1JRB5kwyoliYX2LgA913dp3cFeuGSsmEE8BDo5ma9jdVD0y4lRMpIKaUN8ta4Oa5rbkEtOndWL0biWbKeFSG5Pk7Lkncmy19Yh4lpCtNYkzmhUUZyprgmdOC0gHiuvkuKOQN9PpW5s4XlcGLRvdwCRYskDlksWjBoEN4x/jISj3n4ymn78fmjCfuslFF9qxfihVF7Jd8zsr0dOGPNJM+RlS8DZsZZuSeXirdo/tWL8UJszdg1PjuXq2jq6eKXrInMaHgEAkW5r7LbfuYfIqJcjL0Y+1UWRqGLCaqKZjadgk0y69L+rGx+K2y8/0JcfZLR6/O8sp/2VOugGofQ4hmXBZAHNjxCcxgm+lrY2gAcrbKEUtj7JlhH35T/sreQesW+aPBCVvAIUmJHekX+guPfmM37BVJ+xP87HPzv/cKurpDljdkjHh1jPtGbbUPgFUr7FAt/wC37X1CsAHd5hQHo8IQhAaqr7A7wUTm+yu8VLagXjI5FRKX7O8d114n0waUaf3/ANjvsnyjEJUW2CF4WLzLbyO1MFiWsuXlwEjd7FZIFu1cAlwtcqVwt8EdjXLDHUFrpo7EcHFbLhpcBvfmEhF7blKNitjrVWtMptr4sJJAwbEI06Uh3PclWrfOxOcghCFJAIQhCREqNJ1gbWPBMGOZuwjA6lsGISSte6xGloPG/efQs6MZVpaIoyckh/QuahrqfEaCGsonF0MrdTdXG3xLe0lw7NvjWuUcVHDG6IW6yKUXRe/xcUAJs1hkbPkxJdvZYF7Gm52PitrtwuWZvoU8mSjq24MpS2Zpa4XaRYqGZqye2sY59KNvQCeYUsEhYClZWxmMar78rbKxsr+vZy8SjJ7fFnDe9Lo3cdMlv54WTzjmPLk1IXBkTtXgVFnskhOmRpBGx2XqfGMBpcVpnENa19juAByVQ5uyVJSukewEjVt8vgvrfo96XUr2Kp137f3/ANWeWqW1fpj08x/ErXldaqqFs8ZY7ja4XTUwyQuLZGuFvQtIF+0Dw23Xtpw8aG/B0UqsGtUXsNOGTOhqHQy8Ba3JK7EZfLur0nTb+KTFmGGaOZtr3JNk5dVDIyN4aNdhyC4YqepxjwjpmlFZZtLi5gJFkr2kAG6HnU0CwFu5IdwArJxwlg5pPG4ISG97XB+NKSOAvdYp5M8CgdyxfK2PzjZZxkDjdctfAZmEMJCxquUI6oDBuY9k4JYQbJWXabFceGUzqeN2pzidRO5Xa7c3U0ajlFOZLwl7PIhBD/Qi5EgtySnl6EgJ1X2WyOYt+Rg4rh8E0y5V9eY234H+Kn8dFFJSAkbkDmqiwKqdTVLGMsQ82JPJXbltvlODh5AJFh8y+c+llF29VVo7JlNbWqhcSg1s8tEZmpmQyWHBRbPsuG+1obWysZVNIcwufbaxtt4qbYxE9kocAPBQvMWWGY9JH5Q+RoaR5hHK/ePSqm1nHOubNNGUbW53+84+i7pDp8DoalmKPbI1gYGHWGd9+XpTdmKXHukueWrw6GXyRgIa1sYfu244i3erMy70eYI/AXU9RG64a0a+rbqO/fZTvBcHocJpvJ8PgYyMi2zA078eCrrrqNrbzdakszzjdHsaHtpOPBEOgPB8bwbCKqlxSKSGMyNLdcWm4DfWrXIGom255rVSANgYwNDdItcc/FZ79Z4ryN/cu6uHWmsPsW9LCRmhI+7G6nW422XFjOK0WC0YqMQkLGb8LcvErjpU51fZ75Mm8bnchcOFYrR4xSifDZC9mqx1W+PgfSu52zttwsqkHCXhy5Cep5QH33gnvL/2ufiTFfd3gn7AB/NifBen9FYNXcn8DnvNojjO4RsfI7zWi6oDBYv5X9Ns9a1pEGHCopC7iLglw3Hir9nYZYpG3FnCw3Xmyoxqu6Lc+Ym+eidPh+IVMtU6VkbpHtLnaQBawtsvoxWHJ7I/T7pGXrDteUPub/8AhsXpbL/+gcO/No/2QvJvTBmjD8051y7V4eJ2jr3kiVmg+Y0d57l6twCaP2iw0a2E+TxiwP8AdCAcwlSN4kdyVACEIQAjmULFztO7uCAVvPxXlLpQ/tA4b+Xk/dNXqkysYe09jQd9zYryr0muD/ZAYcWkEdfJuD/4QQHqik+06f8AEb9C3DmtNIP5nT/iN+hbu9AD+BUWxP7fd4lSi+ppUXxMf9plvI6l5z0oi5WTa7Nf1Om2eJnMlSJV8z1LBaNbmJDy5vVg7cTZKy+o32cl3F7EhF9rfOsZZfGxHzBx1M0vaCwcduKxhjbFd0LQG81k3YjnbkeaD51xsO4cFvjXqwjpU218yMIw7BcS0i/PdKQCsjYnYAeCxtusNs7GaZzTRkk2XBWVoponaiBZPJFwq+6Sa44RhstQQ9zWtJOkX7l0WdJ1qnhrk6LaKlLDGXOuKtnpXsa4HY8/QVUtS809LNJ76wPyJ6pcSq8wRyyUEL3sYXBwe0323Nhv3rRheXcSxzF6eiNLNFTTBwe5zHNI22tcWX0Pp9lKglGS3Lmte29vbuCftY8hufgtVgMw8tY5rZ2gN1Ntu7dLaxLeQ2V5dPeU3zZdwiqw2ImphnjD2tGxa2J3cL8bKk2Yfir5AHUUjTYlxMbgL+NlaVqLylE5em9ThKm/FZpSE24Lj8vZ5caQtd1otfs7brttfY3utE4OLUWXNtcQqr2QvpF1kwPlIDGErfR00lY8RsjcT4Kx8pZJkk0SVLQ1vH6O8KvvLuNqstmU68KOZTeCN5Zy5LVvYXRuF/Qe4q2cAy3HSRNdI23jf0LvbT0GDQ6jouO4D/rmovj+crao6UbWtsCO/uK85Krc9Qlijx96PIdX9JadBNatiW12JUeHMDWubqbt5yguPZrklBbG4fN3KM1mKVNY8mRxAPcSuF7b8SSr7p/o9GHtV1l/cz5f1T0lq3EsUnt95vqMQnqHkuPH0LmczUbkrIeA2SuF+a9BCxhT91YR5irc1KksykzUY2tN3cEoAG1rxlZ30g7A8t0da1sHVlvx23WTpx4yYxm4tSi9yDY7SyYPicNRT/YnvaHbctyfoXXjmPPhoYJadpOpoNxY8065gphWYfKCN2NLmn02KacrCCuovJKxjS6HSwdkG9hfmsYwTTa7HooVaVan4tVZ08j9g1Y+uoGPkaQ4k/SuvgbLY2NkUYjiY1rW77CyweA0XPEqK6Upao7FDXnCdRuHAt9liUDs+eWgeKGgOO3zrSodzVpxyIErtOh5e4AAE7pdBB0utq5WKSeAyQyRG+tzSBb0hTrM4Q1TSMsFr6CondTumj1A2870J7ZA2ncWscDqFlA8HyjWQYyaozO6txJt1no8FYbyA4BoG3euG5lF+6ehnb0cLTyjCwtpPFBY1ouxwBQBZxdxulGy44xyYyb1p52NkNW+Jha473Trh0zaiKzyA70pkc0OcHFZse5j9TSR6AVrdJafZ5zv8jfC6mmtXBJ+sfFFcSta0crJsxfG6Sipw6pe0xOb2+1bfgE3yVUj7NcTa/euSuw9mKwPppTZriNxxFjdaqVnRU9VV7HZLqMotRjwVhguaYMv5wpp8OmYKF07OsGoHbVd25UkzN0iT4q+ShwNpldMdR0Fr9727u5TjJPRfgOHRyVNWZqlzwQ1srGPAIN+5OmF5HwqjxiSrp4GW1GwMbbC/wAS2172x1t4zJLuj0kcNIrDopydmTB870b5qCpFMyVnXymKwDRfj3L0/GNLbFKxjGSve2KNpfx0iyR53Xkeq9RleV05rCSxsWtvTdOO4hG6yQAXCxWuSVjGueTaNjSST6OKrIxlhJ8s3Skk9zYhM1DmjB6yvfSRVDjM02I7PdfvTzYjzuKyq0pUveIUkwXRh7HOrYS3gHbrnOwXXhO9W0cNwrHosW76kvj/AGNdf922SJt2jdUz7JatL8vU+CRC8uIRzNaBx7Og8PjV0aQG7kqm/ZD4fVNpcNxymg684Y2Zwja0u169A3A48F9bjtFFUzp6RqI4f0QdVzMAB2/8A+pNvsUg1uRHHvZDf/CVF819LOH5gyNUYZV0tXT1TYXADyctbfqy3iT3lST2Kj2x5HkErmAaYdO+/mlTzuQXohYNeHC4Ic3kWm6yaTzt6EAqEIQAhCEAKmvZQf0Cj/KSfu3K5HODW3cbBUx7J2VhyJHd7SOsk8w3P2MoB29jn/Vthf5tB+6CtFVb7HMg9G+G6b2FPBx/JBWko7gVNOYPtdvgf4J1KacwfaoPcD/BcPU1qtKiXk/6GdH30MQ81ZcgsXdktaOBsVke7uXx7OHhFz2BFr8roSg2KbgVjmhuqNzbHjzWkQxMlMsbA6Q3vb08VmwBkegcEAWOy2wrVKfuzf1IwhQZHloI0tHoStdu63GyS57ygbAhatwIL2F+KVIEqkAhCE3XyGASNQbngl2DiNyBxWD2WSeOTnqHWK0n0KM4nnrBYMRFE6SYTl2kDSLXvbvTxR17ajZvHv5LsdvOmlKa2ZspPWm49jt1uC6IHXHpWlmo7EC/JdMcegX5rQ/42tw5Z2NjkJCbpVi1JrKMGCEIUL4mII35cUIRxySBDtJdfcLFpBcCNiShgs5x1E3N7FZHgNhsstLWy4RHfBX/AEu5RhzDgxq6ZhbW0xBB3Nw27uA9KjHRtn+d+QsSNY8e2VDFG4MNgSXudyt3BXI5rZC+Jw2ewgjluLKgoIqfKvTFNR1UTfaytlY0sLQW2Ywnhw98vT9MuoXdGVKtu4LO+/zNNSOh5Q49EueMSzJmKroq2J/VNbI8Os0DaRo5D0q5RCxrpGEbNNrrjwXAMLwmR0+H0kDDM0u1CJoNnEHkPBOrrCNzbA35niqnqdajUqOVusI20Z1O5xPa1p7KwRUOEbSX7DkVhDLGWanPDh/cN1yxjrjqSOhrudMbQ4gHgs3Uw0nQbXckp7ubqHD0ros1ljdxJ5clqm2ntyYTk1siOZizBg2AvjixGphjeb7Ok0+n+KeKCWGoo2T0jhJG/cFpvtYFVj0x9HGIZsxGOooKkxm5Ib1ukeaB3HuVgZLw1+CYNDRSPdKWtAc55uQdIBt8isq9tRdpCaftPOTV4k2PJY27XsBJQL8xb0FLsw9kk+KQC21yfFVT505MoipHM1jwSpCL23ISTeEkTuN9VA15IeNk0uppHahDE4ja1t1JngabEA+K4h2JBbYLapLKWdjfTq6DzN0uV9D7cxuo3NhxGEtLrvuSAXX28bJ7wLpVpaLKEYqi04lFG1p+uNBcS7fa3cVL8x9FeFYxmJmK1FRUtc0i7GFuk9q+4ITnXZGy9OYXNpYwIgRZsLO1fv2XspdTsJ0adOtyl5HPONxKo5LZfMovE8sZozDLFjjKWeRpkFg2G+zd+I8V6UyLQ1NHkzD/AC4GOcQsuxzbEbbpxooIoqVkEUETIm8A1oAXVocXs3OlosGX2+RU3Uuqyu4KjhJRIjTlCSlLkx0gcEvBbOrDQbk+hYaS42be/HdUy3WTe3ncyY/SV1Rm4UWx3MlBg1S2Grl0vJtbbuv3+lSOjlbUUsVRTODon23J9F1NSlKEVNrZmttHSsh7z8ZY3aXEb+hLEdTmA/CWFL2pxx5ownvFkpo/tWL8UJtzZiLcGy1iVc8dmmgfLxtw3TnSi1NH+KEz51ws41lHF8Ma4h1VTPhDr7jUF9moRcaUU/IppclWdBOFGpqcw489pAnrZi0HmHRtP8VXdAQ72SsZaLDyyn2/8qfck9Ic2Qqiuy/jdBKKfr3mOWGBzyQAGAk3A96VGcCr6fEfZEw1lKSKd1ZAQXjTsBZbsEJ5PXzeA8ELXHKxwGl7DtyKEIPPucMjZ3gwPGKmqzXLVUop5XGPyRjbNsTa9+5cvsTCWxYzC7tvbUgOf3nQeSu7pD2yPj9/N8hm4fiFUp7FA6W5gazi6sBufxCgPRrRYcbpUDghAYyC4URlFqiTxKl7uCiU/wBsSfH9K8T6Yr2Kb+f9jts+WauQSpLcEq8JBYl9x3AhCFK4J7AhCFJAIQhACEIQAjihCEmOgts7V9j3VF+ySyvNUQ02LQDZpY07dwee9Xs3Ygb2PFM2cqFmJ5arIJWa7MeWgC5vpNlYdKu5W13GcuGaqybWxTPQFn2JrWYNiUmiNoa2HUeQDidgPBX2Y3sbYu7D92nxXjHC8FrGZkNG13kVVE4thfMTE13Z335q8+j7pNidPFguZWzQ1l9EcpbojNyA3tOO+y9J1zpKrf7igsvBoo1mnhlut4afg7X71ksIniRuphDmHzXDcOHeDzWa8TpcfZZ2c7oQrFzbhZIWSM0zgqWGzrdyaTdr+0LBSJ7Lg8E3VcBcDcD4ltpvDydFOpjYbGYk6KUNa6wXf5XTVrerqQD4kplqqbS+4vdN0sr438VYQoeLvF4ZulZ07iOJHHnTJEc8L5qKIHa+w9HpKpzHcFnoJyyVhYeIBtwuvQFFjMjLMmLHM7iLrPEsHwrMEWt7Q2cDSLaWj/rdey6J6UVunSVG53h9y/seT6h0GpQbrUV+vqeW8VY11KRe7mgowuQPpvSDZWJn7Jb8HZUyluqFgvqbcjl6FWmCHV1oaDpD3cV9FsuoUbqUatq+ee5wUqjlBxrLDHNYSgmJ4b5xGyyFybaXeNkp2vbfwVw905534Ig9K9kYYqqWnrNErja5T2Hl7g6MXXBWUBmfraQHekrTSVz6eoEBaS4kC9tlXUKs6D0SRteB31AnfjzWQNliACNR4ncpbqzjLuzU0xXHUbpEIWUnHlBbCt4pSO5YrNvK5AuL7rFbh7iRyGORrhxBurj6PsXLsN6tzt//APkKmiOyHDnsFLMmYgYSWEkWJ+gKh9IbL1uzaS3RX3KdGSr+RZGPPJ0kelMk2L0mCw+U1zgGX53Hp5eC6KjEY6tjWtuCObloly5BmKk6ioLg0u9663L/AJr51ThGjHFbbByUZwu6ql3JfkTMmHZsophhhaS0NuASeN+8DuUxpoCCNQtbZRbo2yTSZOppG0rpHOkDban6uF/QO9TbVtctN/QF47qtSg7h+rvJ7yjSWE/gFtI2Sgi7fFAPZ7W3isG6iHdl1rbbKrllSOlLBmW6muF79pQHpkydVZxwaOKjk0ubq20B3G3pHcp4NrBoIda51Jb2IcA7fh3LptbmVvVU4coiSyiC9EeUqnKmAOp6x93mR3vQOIA7z3KdluhoHG/FDiHgXNueyCbskHM+alzcyuarnMiKwkYni7wT/gH2qfiTCRsedxZP+BAilPxL0Poj/wAqbXl/c5717IcLA21DZu4K4sSwukxNvV18QnjI4EkfQu5oBN97oPnAjgBbZfRyuPI3sgcv0GF5xwiDA6dtLLPM5utpJ0WY2x348SrPyhknOdNJh1XPm2SejMMZ6jyRosNjxv3bKDeyPbfpIy9pNj5Q/n/4bF6VwAf9g4b3+TR/shAdzLAgON3d6zSAG5JtbklQAhCEALXI0kPv2xyatiQgHbdAVl0iZSzNjmKxSYHmF+GQtibdgp2ybgm+5PgvPmK4TieEdNGFQ4xiRxCbrZO2Ywy31vuHiF7Oa0ar/EvKfSaCPZBYffgZ5LfomoD1TR/adP8AiN+hbe9aaQ/zOn/Eb9C3cboBG8FGsYbpxAO/GUlA2Uex3aqb4FUPpGv9hP7v6nRb++cCEgSr5ZjZFswQhCyMWCEIQgEISHZO5KWWKotnih8rwaoYTquw3FvSFKAbrCogEsDmPDe2Lbrdb1vBqqRtozdOeWeZsv4/i+UMamkw6eTyYPcXxtsL777m/IL0p0aZ4ps54U+aP63UQhutuouILtVuQ+CqQ6R8n1GHyS1lIxxZJe/EjfUTyUv6M8ZwnIeQ4sRxGWPrq2NjzFG5peNJIPZJHwl9W6ZXVelqT3wY9VoUnGM6W8m8F5VErYqd8kuzWguvdee+lLpYrX1tZg+XHyNkp5HQyPY8Hdp7iO5O+TumqDFMUkoccgfBDIC2N5hEbblwAuS7uum2LBsLk6RcTfIYpmYhPNUQmEtcNOkrou67oU9bRW0qKpyxWWEeb4sSq4sZMtfM6Sdzm6ibA+hXPkrKLswUrK2WW1KLBxLbjVYHv9KgXSrQRQZhmbQQFkNmX1s3HZF+C4sv5mxDLzGxddI+jkGstjc5xDrWHPbgtFW3r39FSpPGfhkypdblaRqRt98L9dj0WykwXLcQc3q3vHdqHD/9U1YnnuR4MdIXMbw2df8AgqrZmSSvYXda5/oJufpXKa2V7iBffuXbYehVGqlOvNSfya/ozx/U+tX93s/Z+5fkTeuxWasB6+ouD3hc1P1QPZs4/IovTl77NPW3+NP2GQyRkOJ29K9bb9ItrWGhQ/F/meRutWM1Hk73NF72stL1tlddxXO51uKr7+tRgsRK1LIvBYOKxc6/Ba9dzZUFSvlG1QbNmrdY62XsRutzKaR4BaCuyLDQG3kIB8VXKtpnqfB0U7eUssbHgPBYBs4WKidEzyTNssVrMe+Qj4gVYsdLEPNBVe5okjjznSim1F7esDgNzf4llRq+JKRfdNtHOGh9yWhkhle2x3aECFznWcLEbJ7dDpEbtBBNr3HoRJEx21rO43XNO6bbSK92DhJ5K1zx7a4fKyWPX1F3d1uAT/leqhxejjYXgzhoJ+IC/wA5T3mPC2YzhjYB2Xu1AFxtxt6lXtTHLkmdjWa5XPcD2bv2J+LuXVCcalPRncvKdvC4oKGN0WMzDWNmAktqb6F0sihZKXNAL7WXNl6vkxTC4qssLXObqIc2x4kfwXdYkuOmxItuFwSlh4zwcMrTw2klwZNc5va17dywcA5wcDZBY0MsS6/ijUzSBZ1woaUjJ6kjJCx1bX3W6midObMFvFamlEiCk3wa0LrfQSsFyWnwWs0svwHHwBSE442M3RqNbI5xu8A8Epe2kc+ZzLtBXRFRyvPm28QQs/agzh7Z3HQ48nWKxdSm9psy8Go5LY25M6SsHrMSiwd8bWyyvEbTrPFzrDkrBdGIXmw7DzqHgq8yh0YYVQY1Di5fMZI5GyAdbfdrr8LKx5XBz9vMb2R32Xneqer062KT5R7a3xKjHPI5UsuoOa88OC2GyaGyuY5ridieS66apD5dABJte/JUc6Wh6luWNOuksM7Gu0rgxWidiOHVVKw6HSRPaDa/FpH8V3gi9nAj0kWCXjub3/urVRqunV1R5NjxPdFH5S6I8RwvOk+JS1F4XPcR9aA4tt3q8nkFwtvssdRA2JukaCGrrvr+peNKr2MowwKeC68H+3G+IXGT6V2YQbVQsRckWXV0Jxjf0oxXn/RmFz+6ZJL2NikO4DSDbvulbuBexPoSuPCxHxr6wvdKcqLpyyxgseT6yvbQMNVZ416nXHYee/vVTdCWU81YvlXyjAMyPw2PTGQxtM2SwIO1ye66vTp026Pq3hbS/wDdvUS9ii0HIr9z5kP7JWa4BZWQ8OxPCMBZBjFc6tqQ951GMMvd1xwUj1DU3ULEhZ6d+VuSQNJdd1r8lAFaCG2Jue9KkbfSNVr+hKgBCEIBozZQ12I4HPTYXWGiq3luiYMD9NjvsV5k6Y8p5rwbK7JsazHJWwGR/YNO1nvCeR7l6yVM+yiv/IOO1vsknH8m5AOnseC33N8NLTq/m8F/0YVoqrfY5g+5rhvC5poP3QVpISBTdjjdVE/0D1JxK4sXH8xl8FyXy/29T5P+hNN+2iNO3cPAJb3SDigL4217TLrsKhCEIBCEIAQhCAEIQgBCELGeGsEhwuUtO7S6MuF9Z3+JJa6Rri0Sk2LRbR6Fk3pitJL3R5P6aMEnwLOwrmstG4Nc02HnFznfwVt9DOY6XMGC09E+QDEGMa117k3sSeVuATh064M3FMqNligL6uOUPJay92iN+3C97kLz7koYnQVT63Cn9TUwG00EpcHFxBGzRvwK99QVLqnT9P8A2jscbqSpSwj2KY+rLRxLdys73371AujzpEwzMcbaOQywV7TZzZw1mrewsCb7qe7cuHJeJuLKrZvTUidUaimtgQhC5vuMuwIQhSYghCEJECClQok3tgnvkGWDtR84cFTHsicPZFS4VjLWgTRid7j8TArmfs4E8LKuenmWiZkGpbWO+uPieIbEbG7b3v8AErXo9VxvIqPD2NNdZRNst1bazAaCVhv/ADeIHx0NTh4qvug2tlrclB0zXjRMWNLgfNDRZWCbAjcG65+oU4xu50+yZnSfskR6UvbRmVKn2kDzUmOQEstcdg24+lVX0K5yko6+uoM1VX85E3ZbILGwZv5o71f9VEJoZ4HgEPjIvy3CoPOfRVJhuI1ePsmNnyFwbHKb9o91ld9FrUK1CdnW5fBz1HPVlHoARmNxBFmu2b4pCWDsyDdVJ0QdItXmipqaeqhkboY0sJitYlxG5urdvctLgLgWOyobyynZVXSn2N8J61kLji19rJHEHglB7RuBY+hIbclz+L2MhQza5WKW5Qse+SUCEIUmQhFwueaEvaQ3iV0pQQgzjcrDPucaXKtZFTVcgBk07Ekedf0HuUmyxJTYrgNNX0jhIyaMPFr95H8E3576O8MzfWRz1r5mmMNtpk07tv6PSn7LuF02XcDpsOo3OcIWBnbdq4En+KuK7s3Zxaft/MyVaecHdEwCwXUxgtdckbXPGobb8Ctxl6tvavf0KoWeXwS3KRva0Ocf7u6QWEuoiwsW3XP1/nhnn23ut4JkgANgdlFRNL2Ga5J8Mprpe6MMQzRjUNZRSkMDiTaMH3gHeO5Wbk7C58Hy5BQzv1PYQeFvetH8E8Xdps34tSUXtud1Y3HUq1ehGjLhfI1qkk8oGu7QBHDmlp/PZ+MkaTqF9NuayhGmZjeepcENqsPmv6kyzjcldL9rx/ihGkEODew8hY050wRix4BbiNjbiV9opP2EUz5Yy45l3C8YgcMWpW1GlvvnEcLnkV5HxLA5fdtfhmXajyC9RCyNzW6rEtHIr2fL9heP7p+heTqID6peOx2FZT23/urcREt7JmS844Xick+K5qkrKZ0BY2E0rW6XFzSDcHkAR8aFa7eAQoJI70i/0Fx78xm/YKpP2J/nY5+d/wC4VdnSL/QXHvzGb9gqk/Yn+djn53/uFCD0eEICEAjuCiVR9sSfH9KlruCiVRtUyX9P0rxvpgv2VP5v+x22fLNfIIRyCF4KPvfcdwIQhRHgnsCEIUkAhCEAIQhACEIQkNdnehLZrWuDxqa4WIPpWLdy9p4cigGwsd91O2Eu5EucFX9KPR2McazEcFkdDW019LY2jfURfcnuBVK12D5hzFiUdF5EYcRpnB7ZWytLjbsjibL11qNyGCxPAkbI0tBLhHH1xFtYaLL0Vl6Q1LeHhVFnC25f9zROim8oiHRhR47QZcjpcyOkdPEGsjL3NJ0gb+b6VMEg4WPHmeRSqgr1vHqSqYxk3xWFgEIQtaJyIsDFrG4WxAcQpWzyZRb7DTW0d+ATBX0O5Kmj2h3FcVVQte0m/FdNOvKDzk6KNy6b9oruqY9m4J2XLHjElFODqPDvUqrsOIa7YqKYlh5s67HX1bK9t61K4Xtl1Rq0620jozNizcaybiVO5oNQYrA3N7kqsOjXLEeL4dil2/XYHTP4cmgKVyNfSmZ/I2u1VpgGcpst1eI9Uw2mdKxw0g7OO/0L0/SfGo05eA+Pj+RRdd6XRhNKG2fl+Q3T4kyDGJqN0pOl1rW9F12tYb6hsCpz0eUGWM0F8lU4wV8liA+cNubG+3xLozT0b1MEcs1C8TtYC5rYw5xNgV6zpvpDRivBuMqXO/8AlnlLi3lbY0LKf3lfFhLuK0OpYTMHkDUPQuTqsSpMRkjq6WaJrXEEvjIt8qc9QaL2JPoXobetTulrNbWNhPDghHnb2KOK6mkkY5BCEl7qGsocgeLTyB3Q4dYHFp57Ide4FvONljN9ZB3AHAXWM5aI5Ed2a4qljpXQDjGNXyrsoap9NNqGwKkuLZIkw7ImGY7oeJpppWytIN2tbexI5BRNj+taLA271z2daNbUpcCvSVSOh8Mm2HVwqIrB3aKs/JdP18DTzDvUqHwyZ9PVtAPZJXo3o1g/7K60jtk8D3WG68B6bUqVlR1RXJUdMsHTvv8A4jpjmZsGwB0MOI1YikNwBoceHgPSnWmq4qyBs9G/rICLh1rbqsOlnovq844jT1lPVxxaS8lpLr727vBWFlfCJcHwOGge9sjmcXNvbgO9fOry1oRt4VaTzKXy2Pdxk9eOw5W697A7YWVTdKvSlU5Wx2KgpKdr2OLQT1hba7b9ytstJAFjduyZcby1hOLzMmroXmUHbtW5eC19LdKjU/3MW18skzfkbsqYocbwGkrXsDHyRMcbG/FoKcw6xILiQOS0QChwymjgjlZExjQBreOWy0PxbD4ozJNiVFG0buLpALLmq0pqq5Qi8PjYlS8zs1NLvNAWbtGnjb4kyz5ry/CzU/GsO/WG+tNr+kHLTHHVitCR3ipZ61qVtXlzF/RmcmsEsPZAF+KfsFjcILl5ttsqr903LV9RqonAd1Qz1pwp+l/CIowKeiqp2W2dG9jgV7D0Ss506s5SWNv7nFdvKRa42Hf6VgLAOLBc33VP45020tHQyPp8GxHWGmzyGlrfSUyYLjnSVjtPJimFy0cFHK/XHFNQuc9zCLggg2Oy92cJGfZF6D0k5fc11yah1xbh9bavS2X/APQWHfm0f7IXkHpQxfGcRzzgDMfpJIKiKdx1Oh6sOuxvAeFl6+y//oLDvzaP9kIDvQhCAEIQgBHMoRzKARvPxXlLpQ/tA4b+Xk/dNXq1vPxXlLpQ/tA4b+Xk/dNQHqek+06f8Rv0Ld3rTSfadP8AiN+hbe9AK3go9j320zwP0qQt4KO499tM8D9KpPSJf7Cf3f1N9v75wIQhfK+yLdghCEMWCEIQgEnFKhAIB3IFy4h4uAlSFp7DQRudyVCWVklPzIj0kQ1+JYXHSYcHMLpGgua4c7jn4qBYn0ZVTsNo2VFTJW1DGkPgka0CM3G1wd7/AMFdOlsjDHI0mxuCOC4ZaN3Wa2ncq5surVaNPw4vH1/M1xlKjNVI747M8+zZHxh7i2ancS3dl3N7J5EbqRZSytjuGYzh9fJUTTMhiewscWAR6mkWFvFXLAwzP1VDLaRtta67GNa0HSAGnexG66q3pFXmvCwn9fzOy6uY3cMOKT+CKZ6RsqeU9bOI/rkjNPLk3xVI4vhNdhkj2dR1jSdgXAc7L2XNTMqQ7rm322TFW5Xp6jXZrQ4m4JVl070olQj4c/1+J5Kt0utQnqovOfNnlvLGA17H9ZKXsabbXHpU1psJhp7PkOpx7wrTqskht+B/FuuQZMsCd7em69Zb+mMKUML9fiecvunX9abykvlkgXVwRbtaFs68EWaLKZnKpY3zXH5Vq/k0S7zHD4iorelquFiTx8v/AGVkug3be+/1/IiBc6yRsT3lTQZe07aHbeK2swQs/wBW75CqyfV4z3z+vqZw6FNc/r8CGNonlwJGy646SBtrgavBS9mFuB3ifbwWbsOaLfWJbrjn1NPZP9fU7qfR9PK/X0I1FC8tAib8i6Rhs0o7RI+RSBlC8i0cTgfSF0xYVK/ziB8RXLVvsbZO2n0zC45/XkMdHh0bPPAce481VGNU8VF0qB9VG2OGSSctHEWsVfTMHcHDtAn41TPTbI7BMwUFV2S5rX8uN3ALq6ZdePW0Isrez8JZXYdekDN9Nl+uZD1TJAWstckcWg8k/ZWfBiuHMq5mgCQBzRxsCLqvDmrDs4Y/TRYvE6FjTGC5xawWsB9Cu7BMIpKeipvJjqpzGCwh17jlul9U9UpRbW7YnYxc0xrbh0T6drnNADd024nl7C8Rew1UEZc21iQTw+NRfpkrswUeNwxYRRzvp3PcAWwFwPZbzCnGXWVs+D0r6uF7JjEy4cwg30i/zrUpSjRVwpc/Eh2yoSzEKegoaSmjp6aNjWgW2B8Vsko4SdJAG1+C65aOVnaLHX8FrbTyl13Mdfhay5FcPGW+TQ6O7bXJyGgg9HyLA4bAdha/gnHyWTnG/wCRK6kkH+rePELNXGO5Kt4tcDUcNYDb+C6YaZkAuAunyOe99Dj8RRJFK0dtjgPSEdfPcxVuk+DUTqcA0LoMMzWAtj+dYU72Nla55AaNiTwUniLKiAOpnNlA4lm65K1eVPeJ1W1upckchppnk3ZY270T0czGF1iPkUiFgSdu5YTsM0JAI5Lkd1qeZHT6oluR726hwqlbJXzmKIE3NifSeCesCxnDMepnnDKrrXNdY2YRva/NRvN+TZMxYHJRxTsje9r2gm/MW5JeiLo8qcksqHVFQyXrHlwA1c2Ac/BddSNtK28Zv2vuOm2g8bkuaewxpFyOKi+f8zz5XwR1bTQBzxIGedbYhx/gpjHSu1F72OsVuxLCKPEKUQVcMhiNnXvYXt/zVZaVIU6uqrHK+WTeqLkyBdDmfajO1HWNrIGsLAyx1l3G/o9Csq4G3cmjBMEwvBYpGULSwSWuS+/BdpxHD2g3racW43kGy09QVOtXlO3g0vkdlJaVhnXcI3tsLhNMuZMCidplxjD2HudUNH8Vw1Od8t00pY7F6BzgL7VLPWuSNtVkt4v6M2OaJC4d7V2YOD5W3S0WuLqDSdI+WmGzcQpXn+7UM9axh6WMCpJm9U19U8nZsMrCVedCtqkbyEnHz7fA03Ek6bLfLbN7Li0ehFgdJA1DvVVydMuHCF0rcHxJ9ttLdN1D5uk/MmdceioMn0clEYnFsxq6frBFqF26tJ281y+mr3SqLD6dgHdH9b2rAB5P6N6insUng5Dfo3cGQg/4Son0jYtnyly5V02NQMmpnMcDLFROa0XaeZPddSz2Kdm5GNhcuZCdvxSslwC8EIQgBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/ykn7tyAc/Y5/1bYZ+bQfugrQKq/2Of8AVthn5tB+6CtAhCRSuPF/tCTwXYuPF96CS3cua9/49T5P+gp++iMjilSDilXxuXLLvsCEIWJAIQhACEIQAhCEAISJVDlHgl8COJaLhDdmkO5pb234rBwLmB3A9yleyTER7IqiIw1MYew8j8ipDpM6O8RwvEavMWWHP+uyGR9OzS1vaIba5N+BKvMPvbbfvSFrBIC9pc527u66sbHqVWwlmG6fbf8AM01IKR5PwTLmaMXx6DE8FoTSyxvYZDFK33h34nvXqLAWVUeC0LK8k1bYmiW5BOrnwXZazAyFjI43GzhpF7His7Buw4BbuqdYd60lFfT/ACRCHh7ghCFUS1ZWeDfnKBCEIYghCEAISJVCWJsz7GL3bWtfdVP7JHDJazJzJadtxEyUutbmWW+hWzexsAot0p62ZBxO+lx6rYW/vBd/Sp+Fc02udS/qaau8SKZOzTQ4B0YtroWs+tu6t0XaALhHcm//AJU4dF/SLBndssXUMpnsIF2Oc7kTzHoVFYB0gMw/L8uXq2B01PJVPlcYw0WvdvE+glXp0NUOXxgrKnAngVT2tL2OmDy07ixA9F16Pq9nTt6VatOOXJ7M56dR8FjDzXMDiSBfUtNVSxVlG6CqjEsRt5yjHSjWYlQ5Tqp8Gb1tZ1cgIazXwYbbD0qIdBGLZlxBlX7f08kLOtGkvpzHcaPT6V5+16bUlbetKeGvjubtafsk9y5lLB8tue7D6SJr5AG6mgi1jfvT+sG3a433Hes7G1+S4q1arWlqqvLNqgobIEIIIF+SCCOOy1aQCEiUi3FESgQixJtbdajUQiYRGVglOwZff5FmouXCJNqEHYgHYndF9J9KxfkwYzM7BdyAuVFv5V4MzGTQOnb5QHFpbodxAv3KUSAvjlhB+yMLb911TE/RBVO6RH4u2sYYZJXvtd+12W8FadLtretGaqvGOODVKbRdBYQyN7RsSFhKG6XPcB2dlsbDIyGME36sAWt3BZPbrbctd6Qq+MmnutjONRlB4f0p1UufYcMfA3q3PjBOs8/RZXvE5k7YXg6A+MO29ITC3JeCMxU4gYnipbY/ZO7htZPT6yiiAaaiKItGkB7wFZdQnRreGqEGtt9jXqbk9TOlpYG2vr8eSRpaTuAE2zY3hdNp8oxShj1cNUoF1x1Wccv0w7eMYf4eUN9arfBqTljS/ozZt2Y+SBp2a7fwW6w66MNdvcKGzdImWmxm+J0bnfBbUMufnWiPpOy1FK13lDJHAiwbOy5+ddlG0m6kMRfK7GEpbPJcFOC2Bmp19gszxuTYDdVcOmPCw5rGYZXPbbZzSwgqP5r6a5PJBT4PhFfDV1N4oHzMa5rn22AHNfXoLEUiofLLwmAMMh72n6F5OoAB7JWMDh5ZT/sqfU1f0oCijxEyUb4JI9Qgbh7+sAIv3qr8nYhWYp0+0dZicD6erlrIC+N7NBbtttyUkRPY7eA8EIbwHghAR3pF/oLj35jN+wVSfsT/ADsc/O/9wq7OkX+guPfmM37BVJ+xP87HPzv/AHCgPR4QgIQAeSiVZ9tP+P6VLTyUSrPtp/x/SvIel6zQh83/AGOu09808wlSHi1KV89iiyfIIQhZLghghCEIBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCGSBJx2SpL2KEnPUUokG6ZMSwxpeBbkpHuUjmXtq4LZTm4S1IyhUVN6mVpiuBdY+UN2vbuVQYp0fStkqahziRdx5ekr09W0kL+BFz6So9iWAtlhey2oOvsL81fdO65K3e/f9eR3+NTuYxVffH67HkvC6qowPHHOhcWuhcQCDbl6PFXdgebqttO0TSPeCObyVXudsDpcJzgYayMsZK9+5cRwAWdbi9I28VAwuaGAEtde2y9bd0aV6oSb7Ix6bKhTVSE1lZeDbmDGm1WajDKxpjlc4niU95lyNWUsgqaMB0JAIGoDgO5VfUtqpsQdLFE+4ddptdWFTdJOYacRwQwyyMi7RtGzgfEKzpXVzYU1C3eV9yPP3PTI1KrnB6fhz/cjs8MtO9zXghwNiPStTQ4ch8qf8SzFimONOqhnjeTcuc1vH4vFcuH5Kx7EGGWBxPOwiuvSUuv0VSTrLEv18DifTa9NOUo4XnsNel9uAt4rFxDW7WussVyxj1HOWVYc0gc47bJtGHztNppQD6QrGnfSrQ104bS4eTjctOyf3j3lXC349ixonzuiLmgMIcOJNuas2n6CcYqXRiSpLqfjr61hPo2VLswy8jZOuaHRkOad9iF6H9jnmTGK6afDamUy0cLgwODGgWDDbfiq29ldUo5qPCfyN8HTxtyWXmjJ0WKZIqsBgeRL1LmsfYAhzlR8vQfjNFEXS1JbAxty7rmXNh3L1G6UatPC/wA68tdPmZcZmzGcInkdBR2LmamNsQ15tuN1yWSrTqKNOWM7mcopLVLgqzGZnYRjjoQTK2MizeIO3oVuYF0qT0OHxRU+FQlwYG3IeL7D0KN9FuW48RxnyiRloqdzXOc4mxBuFe8NXqLIWBulgDR2Ry2XlPTLqEY1FRuI6388f0N9jaeLLxI8Fcx9IubazU6iwWjIPC9Q9v8ABLT4n0jYk0zxUNNA0kt0sriBt8SuCE9VGCQPkC2B123aQBfuXio9Rs4cW6X/APZlpOm2yoG0HSTUOvdrL91eUr8n9IFe8eWYvV0bWm4dBW6i49xVvE2bfisb3AIFt0fWIJfsoYfz/wAGHglRHo3zJUyAVmaMXt+WDv4rok6IpHuYyqzLiskbjZzXaSCPTurWdYjY7oIBbZ2655dYvH7sv6fkZeEitmdD2DMY3rqyaYDk+FhTlT9F+VYYLSUFNKe99MwqbWbbzT8qLgCwaVK6tfRWdb/D8iHQWSLDo9yqyLR7SYf3/azVLMEyflymw2MNwag0ho/1De5IG3aXFwT/AEO2HNLiNOj+C9N6MXtxd1pqrLKS+Hmc11FKODztn/E6LNObqLKWWcMpoC2ZnlMsbOrJY9tvA7ngvQWWsLODZcw+hAGungZEfiACqToGY2px/GauNnnxaWy8QSJFeAJc22oEjYn0r2zOBcHmD2SDgekbLreYqH/u2L0pl/8A0Dh35tH+yF5p9kcWnpHy7b74f+7YvS2X/wDQOHfm0f7IQk7glSBKgBCEIARzKEcygEbz8V5S6UP7QOG/l5P3TV6tbz8V5S6UP7QOG/l5P3TUB6npPtOn/Eb9C3DiVppPtOn/ABG/Qtw4lACjuYPtuLwKkSjuYPtqLwP0qm6/vYzNtv75wIQhfKVtktwQhCAEIQhAIQhACEIQAhCEAIQhACBshCEgRdazFvutg2S6lOoOJpMcR96PkWBp4j70fIt+45FFyORTUYOBzeRxnew+RHkUfcPkXTsjZZeNIjwoHKaJh4AfIjyFvoXV4JbFPGkPCpnGaH4OxWJoXj3x+Vd1j3pDtxKOs1uyHRi+BuFHKD5x+VQPpG6Ojm6eGSR5HVAj3p4uB5qzdQB4hZM0AP1OHaN11Wt9UoVVVpPBj4CSPIfSrkd+UKuCWOaSzy0bWHvb8lbvQfjzsbyxJTykvlppGwsLiT2RG08/FOXTxgkVflOordBcaeOSS4J5MUU6Pc2ZPyjl+F1FD12IyBr52sqDcPLQDsdhwXrPHqdT6WpY1STePr9xzqlpkSbpl67CMtPrBK4VEbZHRjVz7PNdXRdjr8w5ZZLOwddGRHe5N7NHMquOl3NRzth+HQUOF1ImjdKZG62k9oNA4eBWzo3xrMmU8FdQQ5cxKV8khla5oZaxAHMrVHptSdhoccTz+u5hKn7WS8fJ3kEyC4CxDY7XEbSTtuOCrubNXSFUD61geIwtdw1QRlan1fSVWMbExs1ICd3yUjCN+SrY9NqQX7WWF3M5088FlMboHaa13dcoYBch5Y6+wuRsqzky70iyt7WLR2duf5mPUsmdGeZ3xuFRmClIkGlw8mI2UO3tV/5/wZj4EixnSwh5jMjGkdzhyXDV4rhsbuplkaXcOF1CIehcvANVikEjzxsHjx5pypuhXLYbeqZ10392eUfx7lMaVl/2r/8A+LHgyGvPuM0EWA1HtfUyMnu62ltvenmoZ0K5/fhrpm5hrKt8X1uwOqTk6/0hWxF0SZUjYP5hJcH74k9ad6XIWWqeANZQubt92d6131epWMLfwU9X1X9hCzxuQ2q6Wstx1Zji697LX3pncVx1fS3Svdpw6hEg/vRvarPpMt4PSR6YKMht7+eSnCnoqals6CC3zqqlf2cY4jSz97/I6Fb7FP8Aum4xUdWzDMDpHytdd2t72bfIt0uac+4iG+T4RRRi3KscP4K4nWdYuDR3bBG43FreC1+v2cX/AMdf/pmcaeFgqB8fSXVNEbaaCPVtduIG4+ZYy4D0lTMDJauWJu3mV91cDjr4OGrksg46bOcLrL7Xpx/d0cff/gaGVB/ILOktPeXMGIxuI4Nqgea3M6KMQABkzNirtW7gXNPjzVr9t219kpIbwC1S6xctYj7P0/Inwk+SsY+h/DnjVV4pVyv73xtK76Hopy7ET5RGyod8KSnaSVP7A73AKQGTkbjwWEOr33Cm/wAPyDoRIjB0b5Tjff2ro3H00zU8YBkTLUGI9YzBqAkEEfzdqdywjci5XZg4JqwTtpIIB5q26H1O7uL+nCcsrfPHkzTWpxjTeCHdK1blzJmCa24NQmpnIZGBBzfcA3HpC4PY85brKKlxHHcQgjjkxUQvAa4GxZrB9PPmuPp7bDWZgwOkJDp+tpZCwHfSJjursiYyMNZFZrWk9lfRyuIF07f1fVvg/wDdvUT9ij/QY/iRfslSzp2/q+rPB/7t6ifsUf6DH8SL9koC70IQgBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/wApJ+7cgHP2Of8AVthf5tB+6CtIqrfY5/1bYX+bQfugrSKiXAE5LkxT7Sk8F18lyYp9pSeC03X7mfyf9CYe8iMjzfjQeKB5vxoPFfGJe/IulwCEIUAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCELFym1jsZJ5A31CwHBN+Y8Njx3AamjJ0ue22w9I7/BODQGybOBu3ghui7QOLllCo6VRVKezRhJZPPeZuhdmF5aq65shNQ2R7zszzbOPH4lE+g3NMmW8zxUs7nGCdxNrk8I3cgvUONUba/CK2F41OdE9th3WIXnHJ1LljAc54mzMUNjSz6I9Uzme83+cr2vTb+fULOtTuN+MfpLzOOccTyekMWiE2C1QFgeodJfhxaqf6Os51Tc+VeC1W8DZJA3tl2zW93Bd2O9KeH1+BV9HTYbUPkkgkhiLZW8S0hvjyVR5Go8bwjNb8bbgtbMHl7gGgX7Q9JWnpfSKkber6xHdp4/SZlObTyeuhG4usDcDiFnqcTpDQqgdnbO2JTvmpMu4nDHYWLo43LF2NdJE32Kgq4r83U0ZVR9hVovE5Y/XzNqq6ty3zdx0EgfGlsGnS57XHlqKp8UHSTWnrJMRbT33s+jbt8gWMWQ86Voc+qx+mabnjS2+gJ9l0I+/WX0ZlqZcEsjIrda6Mf+YLkrMToqIAT1ALuPIqqI+iSurHk4rjNPIR3Rvb9C66XoXwd1QXYg7rtvObLI0fSs6djYZ3r/8A+LGpk+kzNhDInvdVva6xtZq8347nTEqfpJp5hiVZ5B10Vw17jsGi+yuSPodytHKHGmc5n5xJ6050PRplSkle+LDngkABxnef4qwtK1hYRklNSz8GvzNb1sbH9LmXKegphJLUS1AjaHE0zjvz3TfN01YRod5PBJJUe8a6B4BPipvS5QwKlfqjpDfl9ccf4pzjw6jjcHRwhpHC+6rp3NhqcvBz97/Izjr4Kpf0vV7/ALUwenc4/CL2/wAEgz5nOrHWUmCUIaeF6pzf4K4QARYNabf3QsuxbS7SPiWEeoWSeVbr/wDTJdN+ZTbKnpJqTtTQM1d1edvmW32q6TJxcSaPxcQVwBxHG1vBI8tdxWf2vQXuUMfe/wAiPCl5lQR5Lz3UOdNV47X08jhYsirNQFllB0XY5WSl1dmfFmnfhK138VbbRbh5qy0N42+da5dar59h4X3fkT4Me5VTOh9kk48vzFidQGnsiRrXW+ddzeiPA2SN6+eSe1vskDCrGAZclgsee6ASStT6xev3Z/0/InwYkKi6NMqxPaRhtJI8cNVM1OMGQMrNqIv+w8O1ahv5M1SN7nHYmwXRAD18Wg3OoLotut3jqRhOWd/h+RhOmlEKvAMs4ThgmlwehayJnKnCojL0h6QekugqsKoYafAqCpima1g0Dbsv7JHeCrx6TJY6fJdVJO4NAdGLnbi4BMvQNSxxdGtEY49D5JqgEn8s5fU4Z0xkVbW5YQjEFIImeYyLSPiC8p0F/qlY78fLKf8AZXrBwtA8A3s0g/IvKNJceyYZfj5ZT/srMI9Zt4DwQhvAeCEII70i/wBBce/MZv2CqT9if52Ofnf+4VdnSL/QXHvzGb9gqk/Yn+djn53/ALhQHo8IQEIAKiuI2FUbf9bqVFRbEftoryfpas28PmzrtPfOXmUqTvSr55gsnyCEIUR4IYIQhSQCEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEMkCEIQkEhLnHTsG8b33SrFwadtN3KV8SGso0VlVBRRxyTviaw33kcB9Kyhmp54/rMsMrTvdjw4g/EmLOuVBmrCjSPm8mNi0OLNXG3pHcq06HaPFcBzpW4RWSOmpmwyStcWho89oG3HgFZUbKlUtJ1tW8e2TTKTi0jn6WoaOmz3g01bHrhaZ9epgcDsOKnUmS8INNGafD6UF8bXahC0XuL9ybOnvAhiWVZa6nj/nMAG43Pae30qT9HGOQZgy1TyMs6WH626xv5gDVaVq05WFOtTfGxNGv4NXfvuQfFckRRkmKmib+K0D+Ci9dlh8JcWRhpIsSBx+ZegpoWScWptq8Iil96tNp1upTWnP1/8AZf2/VMLDivoedZKGpgJALxY22JS0eK4lQPHV1FQ1vcHusrsrsqRvJIj4m/P1pomyZG/jH9PrVvHq1KazUf0x+ZZU+oUHHEkvwIRRZqcZGvrKaKpFw0maMvPzp+GHYRmpzGspWUsjvuMQZ/D0Jw/kMy4s3e97WPrUny3l6GimY6SGxbzufT6Vor9XhSxUoSefLO30yVV7Qsq0JSS3+4pbPOS35cjdK1+pkg0tu8GxsTyCeMi56w/IuTagUcYmxuoMT7Oj1NGxDtwQean3Sdlmqxuh6ukDntItZrfN7JF+KqEdGuNU0kIioZn2aQZQB9F17npHW6HUrfF3UjFrzaX9WfPmqlGq4xg2vlkTDukTMtDjDMVlrppmag6Snkme5gaO5t+KdekzMeH539q6+KMxVbY4oZAI9DdRfc8fFdWB9G8xma7G3OjH99nHfhse5PFRknCnUz6eJjWObKHtf2jfT6L+hZX/AFiztceFLU0uU01/UsbOzr3TanHC+TQ74BhMWCUJp6d7jUkWNiCHbki5Hipng9M4FrngEkXPzJoy7hkjYYHzAusTqfw5qZQwtY0W7l8o6pdq5rSqye56JQhaw8KBsfYiyGiwsk5rJVKU/fbRye1nAIQhTqJwwQhCbDcEIQoW8XF8snlEJ6UM4/yVwmNlIGSVsr9LWPBPFptwN+IUOps69IeIZaEUOG0TGTtY5kgEocB432XJ0iUoxbpgw+CQXhjbTSW/85BXpXCII4cLpoYhaNjAAPQvpno9bU7anp/7NFbdZZ56yflfPeRcMNXRx0c8ZLnObJO5zj2tRFhbmphgfS/5M4wZow+pp5b2Jp6OQtvw4n0q4ATfz7eiyb8ZwOgxmLq8RpxM23NxH0FekRxrg8udN2N0GOZ9y7Phz3Ob5Q+4cACOw0cPiXqjL/8AoLDvzaP9kLyd00ZYw3LvSVg3tZAIRLOQ6xJvaNveT3r1jl//AEFh35tH+yEJO9CEIAQhCAEcyhHMoBG8/FeUulD+0Dhv5eT901erW8/FeUulD+0Dhv5eT901Aep6T7Tp/wARv0LcOa00n2nT/iN+hbhzUPgCHkmTMIGuM2F7fxT27iEy5h85nh/FVHXN7GZtt/3g0oQhfKJbZLcEIQoXABCEKSAQhCAEIQgBCEIAQhCAEIQgBCELHBKkF0FCEwZiWRZKhTuY5QIuhCbjKC6EIUZxyQnliWA3NgO8rlGIUUsksEdTT+UMdp09Y34+a3VMQnp5YibB7S0nuuqE6SclYplrFRjmDVbpGyv1ua2IC2pwbxJPIqz6ZawuqjjOWPIxqNotfpVY7+QGYHOaCBQTENbuL6Coj0N4NgOKZWfLJhtFLUska1xfAwuvoBPEXVhGD22yt5NVSXNTE6J4I5EW5KpuiqqblbOuMYNWPDY56qWaIHa7QA0d/crC0hGpYVKMG8wy1hnPJ4aLgjwXCI3NkjwqhDjzEDR/BdPktMHAimhaRsLMAst80el/YOwQb7XVDCrUSacnn5s3OKEA2tyQd+KEhWCrycU23kzxwxdTrW1H5Ul0ITVJk5BJYXvz70qE0t9xkN+ZSEC1rJUKXqa5RLYckcrckIWG7ITyB3QhCZctyeBLDuQlQmkBcoKEKGtJDBGo9kM5G7vBIUgvdxj863a8Fkm4rjkl4wacQrWUtHNV6gI4rtOvbdUxhfSbm7EcwVLsAw+jno4CxwdI2TcW34G3G6mnTVO6HIU/USdUXzwh21+Lt04+xywimw3JFNLC5rpphIHkX5Svsvcei9pCnirL3nwcNxL2Witm5Sz1nLMjcaqepikhbpax07mNGl2sWDt+LlNnZ+zXlaokhzFhsM0MZ7UlLFLO4/GDvxCuywB7ZuUj42PjLJB2XcQvcHAUZ0k9IWDZkyDVRwOqYp9LzoliMf8Aq3DgfSVu9igf/wBhpPQ2H9krp6bsi4AzKFXW0uHtbVds6w9x9488L965vYqH/wDYWVhOrS2Eae7slAXihCEAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWkVVvsc/6tsL/ADaD90FaRUS4AnJc2IfakngunkufEPtSTwWm6/cz+T/oTH3kRXmfFKfOKTmfxkp84r4xL35F0uAQhCgAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhRysmUVgxBLSS8Nvyt3LmqsQpqMt8qmp4yb21PaD85XULE3bHqI24qu+lLIDsy0jq6mrOpmiDiGdXqvq0jjf0LssqVOtVVKq8J9zGUsFhdiSB0sMjX3b7xwIIt6FRWDw4XVdNGPUWMU0Lm1Na8xiSMEWbFfa/gph0I1VeMu1EGJ6jLFUyQgmwu1tgOHgop00YWzBM4YTmOEaQOtfKfS7sD6e5XPTKcKVzUsm9nnGPhuc9RZ3Lehy7gkQBZhGH6RwPk7PUu2OhoYxaOjp2gcmxgLDCqqKuwynqaZ4dE5oG3eALrrAFl5+Vausptprjk3KKcciMbHG3TFG1g7miyUEjmUhG6VR4tWSzKW/wAzJRWBdRta5sgOI4EpELB5fLJwhLDuS8rckIWtocCfQiyVCz0xMluJYdyVCFk5JbIhsBtwSEAm54o3RuscjAqSwRujdRn4DHxF5IQhNvIbCDbglQhTsNhLX4AE+lVZ0i9IlZhGN0uFZdjiqKtz2X1hx84Hm099la9OLzsHpCojokw+nxPpRrKupaHyRRgtJvsRMLL0Po9bQqVvEn2OavPSsHRmat6Q864QMFqqGjpmOcw9ZE6RjjocHbk7ck/YYzPnR5hkMLaSgqaJhLi3W+Qi51Gwbz3V97hxvuOSQlzmtJOnfcL6fHZ47FXqyyrMH6YMMngdBjFNXUtZY6tFI9rOG+59N1TuCVkGIeyOjqaV+uF9ZBpd37L0vmHKeD43BJ5fSNkfY9oucO88j6V5gyrhVNgnsg6fD6EAU8NXAGAX5i/NMmR7BZ5o8EIZ5o8EIYke6Rf6C49+YzfsFUn7E/zsc/O/9wq7OkX+guPfmM37BVJ+xP8AOxz87/3CgPR4QgIQCO4bKL4iP50f+ualJUZxMWqT4Ly/pUs2yOq1eJHFzKFkODikXzfOOSzTyCEIRP4GOcPcEIQpy/InUgQhCZfkMghCFABCEKQCEIUZMgQhCZAIQksmSMIVCSyLJkjCFQkslQAhCE3AIQhQ+NyTF7dTWtJcNPCxWvyeETCYRMbJbTqa0AkeK3JNjYHgVlTqKMHBS2ZODTiWHxV+HT003ajntt4G6o7ojqP5LZ0xHBq2oZHSOY58fWPsdT5AedhayvglsUrd7tZcKvM5dFtHmTEDidLU+SzkBocyEOIIHHchXfSLuj4creq/ZfwfJyzj7WruWAyeCW7oZopmj7m4O+hKXNazUQXehvFUVh0mOdHGbKejr66atoJw9zTIQ0EAaRsL81fFrXcyMMuBpIPNcfULGNoo1FPMWbYzyYtNwDbjyISm3wW/Ijf33HmhV0ZLOcmTyJpbe+kfIlbZt7AfIhCnLyFkwkk0RgWBF+YXDPJIWuDGM3/urvcAR2ljobfZbYz0myCit8EWlw6WV51F1jx3Oy7aHB42gatZ8U+CMBwWw2HALOVxNbJm51pLaLwaoIGQNIYNjyK23ScUq523J5Zoe7yxLJbIQmRkEIQgyCRx0tJN9kqBa+4uE52DYh4A8imbOGYaXLODPrarV2RqFrd4HMjvTyHCxD+F9lWHsiKOWqyRK6JmprYjff8AvtXf0u3p3F1ClNmmc2o7DJ0T4JXYzmCpzJjd+ssWxBtw2zXhzdj4969HYdITRskd74A2Crfo8qYpsnUz6cAN1lht3hourGwraiiLj2dIsvbdFuHcX1V4wlHZfejhrPMcnfpDgEEb29CGX0i/FKfO+JerOU8ueyPNukfLv5w/92xelcv/AOgcO/No/wBkLzV7JD+sjLv5w/8AdsXpXL/+gcO/No/2QgO8FCQJUAIQhACOZQjmUAjefivKXSh/aBw38vJ+6avVrefivKXSh/aBw38vJ+6agPU9J9p0/wCI36Ft71qpPtOn/Eb9C3DmgEO6ZswjsNdzHrT0mbMX2IfF9Kq+sw1Wc0jZQ98Z0hSoXySKwvaLhSECVCFGV5jKBCEKMrzGpAhCEz5DUgQhCDKBCEKUSmmCEIQkEIQoI2BCSyLKckYQqElkWTJP3ioSIsoyyMIVCEiyWRhCoSJVDW+RhCLXLBFNG+OZjZGvINngG1u5bULOM5QeYvDDSfIkYEd9IFiLWtsFRnTlQSYNmfDMfpNg2ERPtwu6U3vbnb0q9EyZuy5Q5nwl1BXRsBLmua4t1cF39KuY21fNR4i9maqkE1sdWF4xh+K0zZKWtg7ZPZdK3Vx8U4NdcWAcLG2/Md6obMnRrjOVKN+JYFis8kdMC8xtY2Mcrb37yVaPRrmCbM2W2VFSzRUUzhTuGrVctaLm/iujqVhDS7qhLbPkYwk84ZKL2JDkMdqjufOugi/aPEIDgdgqXEZbo6AsiyVCYH3iWRZKhMD7wQksiyj7iMLzFQksiyLbsMJdwSpLIspW3YnbzFQksiyZIwhUiLJUzvljCBYyPayNz33DWC5t3LJc2JROlw2qij+ySxljfFbIb1owlwyP+pSmfsRqc+Zqjy/hAd5FTud5QbG+uJ99iLjh3heg8kUEOGYTHRUzbRRA2vx3cSfnKoToZe3COkDMVBURA10tbVPaSd7C4PDZehcvAt61ruIAXubefh39ChDZLP37FfU3i2PAACWyEL2ZyFd9O7f/AKf1liRs/h+Teol7FAAZGf6WQk/4Spd07f1fVng/929RP2KP9Bj+JF+yUBd6EIQAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaKq72Of8AVthf5tB+6CtFQwBXPX70rh3hbytVUL07lpr70ZfJiL9pETA3dfkSi9yUp2e7xKQcAvjddaa0l2yXUJZQqEIWvMfMy2BCEKMrzGwIQhTt5jUgQhCjbzGpAhCFGH5koEIQpUX5kghCSyl7ENIVCSyLKMkYQqElkqZYwgQhCbjCBCEJuMIEIQmCfvA7uB4WFtliWguJO9+XJZIU5ecmOEzVDDBAXdTE1hNydLQAoz0n4BFmLJ9bTyE9YAzSWmxH1xp7j3KVagCNQ271g8RFxieA6OXiuihXnRrKs3h+ZjKKawiq+grHWyZekw7EauCOop5pnWfIBdusAcT6Facc8ToyWO177OYbi3iqoxXoabJPPWYNiT6OoeDYRwN7R3IFy7vWHRhjuLYZmSoyvjLn1Jje4MfI8cGN7htx9KvOoW9ve6ri3n7qzjH5mpScfZLeeQ1+ncnvCVI67ZC3TpPMBKvNb90dCBCEIMIEIQgwgSWQhCfvFQhIsSBUJLIsshhCoSWRZTqYwgQlQok+5GUJcA73Shrjci1gkcdrAblJC57HEHgeSnaWCJNFf9LWb3YJgxpcMBGKTNLo9Yu27SL8DfgVs6EsrS4FSOra4XrKouY7jYNLg4WuLqF9OUTqXNOD4jJGPJYmVBeb9+gD0q9MNnL301/sTo2ad+dgvVQl6lQpeEveay/vxg5pJSzklUbbRtG/DmtgaGgWWABDGgedZbF9ETykyt4bNM4tDIR3H6F5RotvZLs9NZT/ALK9XzfYpPA/QvKFF/aXj/PKf9lQvIzTyj1ozgPBCG8B4IWRiR3pF3yNj+x2oZv2CqT9igRfHT/92P2Cro6Q3B+SMeLZBbyKa4v/AHCqX9ig5r/b/Q0dmsAP+AoD0eOCEjeHCyVAIVHMW2nUjcLhR3FY5DNcBed9I6UqlulBZZ022FI4b6ezY7pLJXtk21Agd6xIPe75F859SuE94v6HdGrFMUISb/3vkWWh/cUVncyb/Zt/czLxYiIS6H9xRof3FZeoXP8ALl9GT4kBEW9KXQ/uKybFIb2ZfxUxsLpvalL6MjxYmNh3hFh3hbOpl+5hHUy/cwtn2defypfRjxYmuw7wkt6QtvUy/cwk6iX7mPlT7OvP5UvoyPFiar+gov6Ct3k9R9zb8qPJ6j7m35Vn9kX38qX0Y8eJpui63eTVP3Fh+NHk1T9xZ/iT7Ivv5Uvox48TTdF1v8mqfuLPlR5NU/cWfKn2RffypfRmLrQNF0XW/wAmqfuLPlR5NU/cWfKn2RffypfRjxoGi6BvyK3+S1P3Fg+NAoqgutbbxWUejXr/APFL6MeNA0A3NkqcG4VKW3P0hZe1Mvf84U/Yt7/Ll9GPGgNqE5e1Mvf84R7Uy9/zhZR6Le5/dv6MKvBdxsslsLbpy9qZe8/KEe1Evp+UKI9Dvc+4/oyXcQ8xsbdoNrXPG6TQHANdfjtY2Tp7Uyd/zhJ7VS8ib+IU/Yd9HdQf0ZDrwfcpX2QeBS1eBwYnTnS+jDI9Nzc3kHCym3R9iMmLZRoaioa5rjI9pDhY7Gy5umrA66XJdS+CV92uju3WAD2wmzoBjxWsylGa2Nhia5+n64Dvr32VzU6TdVOmwpuD1L4PzNMasSfkWBtuAgAlt7FOLsNe0Xva55EJThc2sAONvEKll0S+eEoP6M3+sR8xtIQnE4VJfYk/GEe1Uvf84R9Fvf5b+jJ9Yh5jdYHikBF9gU5HCpO/5wtcuGTMF2/SFg+iX38uX0ZHrEfM4i4jaxRcLb5HUD3t7ciUeTVP3Fn+JYro18v/ABS+jCrxNJ9CLrd5NU/cWf4keTVP3Fn+JT9kX38qX0ZPjxNN0XW7yap+4s/xI8mqfuLP8SfZF9/Kl9GPHiabout3k1T9xZ/iR5PUjjE0eBT7Ivv5Uvox48TTf0FKOPctvk9R9zb8qQwTgXdG23iofSb5LPhS+jHjRNJLXSdo7Wt8abcy0ftjl+ro5XRkODQCRw7QKeRSvDvsY3F0y50qXYNlmurXsAawNd/7gOSzo9PvnJTjBpr4MxqTjggXQLUyuy3V0sh1iOqnIt4tCvPCwTQRB+wLRpHMKk+gLDakZZmqg3SJauYceRLSrxo26IImniG2XuumUKkLyo2sLBw1WnA6xwSHjcbpGE2NwLIdcEFvBeiOZcHlz2SDrdI2XSQR/OH/ALti9LZfIOA4bb72j/ZC81eyP1e6Pl4FrXA1D7XPD62xekcAewYFht3NB8njFgf7oQkc28eBSrEE6vQskAIQhACQ7XKVYyEBpuSAgAEA2PNeUuk+59kDh2xFp5Nzz+tNXqkyNMgYSANN7k7ryt0mf2gcO7ZcOvk+L60EB6opB/M6f8Rv0LadgSVro/tOn/Eb9C2uFwboATNmH7Dfw+lPCacfDnQ2A7vpVd1RSlbTUTbReJjLZCSx73fIix73fIvk8rK4z7r+haeLFCF1jZLcJRbm0k+CQtB4NPyLYrK5/gf0J8WHmLx4IQ1jvegpdD+4qfUrn+B/QjxIiIuO9ZCOQnzb+KXqpfubU9QunxTk/uZPiQMNu9Cz6qX7m1ZdVJ9zap+zrz+VL6MeJA1It6QtvVSfc2pOpl+5hPs28f8A4pfRkOrFGu3pCDstnUy/cwlFPUHzYmnxKyXSrz+VL6Mjx4mm6Lrf5NU/cWfKjyap+4s+VZ/ZF5/Kl9GPHiaLout/k1T9xZ8qPJqn7iz5U+yL7+VL6Mx8aBoui63+TVP3Fnyo8mqfuLPlT7Ivv5Uvox40DRdF1v8AJqn7iz5UeTVX3FnyrJdFvf5Uvox40DShdtPh08zSXNDCDawK2+1Mvf8AOFkui3v8uX0Y8aA2oTkcJlPP5wk9qJe/5wj6Lefy5fRjxqfmNyE4+1Evf84R7US9/wA4UfYt7/Ll9GPGp+Y3IGlhuCC7xTj7US9/zhYjCHWO+9/QpXRLx7Om/ox40PMYsaonYhg9fRAHVOwMDt7DdVH0FTT4bmPF8GlDi0TVMuu3Z2kDbbq+jhc/VEtkcCfSF53ybS4th3TJXUws+KWOokOqQDjM1XnTemXcbWpRqRfPkzT4i1F7uP1yWxDgCNggWHvSPFOJwqV5f2RGT8EhEeFTObu4ne25Co/sS+cn7Dwvgzd48cYyN6E5e1Mvf84R7Uy9/wA4UfYt7/Ll9GPGh5jahOXtTL3/ADhHtRL3/OE+xb3+XL6MeNDzG2470XHet7qKoDiOqabHvSeR1P3FnyrD7Ivf5Uvox40DRdF1v8lqR/qWfKjyap+4s+VPsi+/lS+jHjQNF0XW/wAmqfuLPlR5NU/cWfKn2RffypfRjxoGi6Lrf5NU/cWfKjyap+4s+VPsi+/lS+jHjQNF0tvSFu8mqfuLPlWPUy/cwol0u8inmlL6MeNDGxr27wgggNc3ctNwtnUy/cws4qeYyDsgNvwutf2feJKXhSyn5MlVYtFIZtjkwPpiwysp7B9XSzyPAHN7t9l6DwQ2dJq87SLnkV57zCZ8c6bqWkYL+TQ1MfH4LvSvRGEwvhDuuG9h6V7Szt6/rFvUnBrZ52455OSpNOLSHO/ci+3ArEEA2HcgOu5wHJevOMr7p2P/ANPq3bk/929RL2KN/wCQx2PmRfslSzp2sMgVlyeD/wB29RH2Kcv/AOw5adIAZFxP90oC8Q4EkBFxe3Na2u7INgCTbbdKLNeAdyRxQGxpuL2shI0WFibpUAIQhACpr2UNhkOO7gPrknH8m5XI7hvsqZ9lE5hyHGey765J+7cgHT2OZ/8ApthlwR/NoNzz+tBWiFVvscr+5rhuo3Hk0Fv0QVpBCO4q1VJ+tOW1aalpMTrLVWf7OSXkZx95EVeLyOt3lJYgAWWbopA9xA5lYuDwBqBHgvkd3a13Xk4xfPkW6lHHIlkJN+93yJQ1xO1yfBaVaXL/AOj+g1R8wQl0P7kaH9y2epXP8D+g1R8xEJdD+5Gh/cVgrC6/lS+jJ8SAm3ejbvCzEMpAIYCl6iX7mFsXTrr+VL6MjxI+Zr27wlsO8LPqZfuYR1Mv3MJ9l3je1KX0ZHjRRrt6QhbOom5Ri/ik6io+5j5VK6XefypfRjx4mCS62iCo+5j5Vl5NU/cWfKsvsm9fFKX0ZDrQ7mi6Lrf5NU/cWfKjyap+4s+VT9kX38qX0ZHjQNF0XW/yap+4s+VHk1T9xZ8qfZF7/Kl9GPGgaLov6Ct/k1T9xZ8qPJak8Y2t9IKn7Jvf5Uvox40DTySNN10xUE73bj510+1Mv/RCfZN7/Kl9GPGgNyE5e1Mvf84R7Uy9/wA4WX2Le/y5fRjxoeY2oTl7Uy9/zhHtTL3/ADhPsW9/ly+jHjQ8xsNzsbaUly3SBbbvTp7Uy+n5Qk9qpf8AohSuiX2l+w/oyVXh5jazsFrt9QN1QfS9h8+A52o8epdbnSRyFzGXJJc+17cF6Ndhcukgc9uI2VIeySwqvpKKhxCnke5kMYjcC8AXMituj9LvKFZxlB6WsPZmirUi3lFvlzZAHlwDr9/FB2tbfwXNlGkrazBIpKyJnWuLgXB4JG6e24VIBbUb+IVbX6NeeLJKm2s+TNqrQ7sbN7gEEJU4jCJie051vEJfaiXvPyhavsW9/ly+jJ8aHmNqLJy9qZe/5wj2pl/6IT7GvVv4Uvox40PMbPiKU7Lulw2do2+kLm8lqQTZgd4lYvpN7/Kl9GPGgabout/k1T9xZ/iR5NU/cWf4lj9k3v8AKl9GPGgaLout/k1T9xZ8qPJqn7iz5VP2RffypfRjxoGi6Lrf5NU/cWfKjyap+4s+VPsi+/lS+jHjQNF/Qi/oK3GnqecTR8aPJ6j7mPlWuXR7xLPhS+jCqw8zQ5xb2uQWTDa5JHC6zdBNazoxv6Ughm6y3Vi1u9YPpt40sUpfRmbqRfcrbp7oDXZAq5rsa6KO2+xN3Dh8ilnRrUyV2XaGSY6nNl07egAKJ+yBqZKfI1XA1ob1kd7j0Oapt0e4XPhuCUkUjbAkPvccwCvTWNpcq0jGpFpqXdfI5qk452J/sACSsr3F1gB2QPOv3pbjYL3m+E2V/JjL9hk296foXlCi/tLs/PKf9lerpiRG8Ae9P0LyjQgt9ko3UdxWU97n+6suRBbHrRvAIWMb2los4HbvQpB57zfk3PkGB4xUVmZKKWkEErjG2g0nTYnjfuXN7E5hFPjbHuDpBVi7hz7B3srs6RHAZGx7b/uM37BVKexPIJx387H7BQHo4WA2S3SeFkb9wQCkrS+Nrjci6279wRv3BYTpxntJZJTwaWxM5tSmJnwVt37gjfuC1u1ov/ovoNTNPVM+Cs+rb6Fnv3BG/cFKtqUeIr6Btsx6tvoR1bfQst+4I37gp8Gn/CiMsx6tvoRpAWW/cEb9wUqlBbpIZZjYdyLDuWW/cEb9wWWiPkTkxsO5Fh3LLfuCN+4Joj5DImkd6NI70u/cEb9wWRAmlqNLUu/cEb9wQAAAjZG/cEb9wQBsjZG/cEb9wQBskACXfuCN+4IBLekIt6Ql37gjfuCgCW9IQR6Uu/cEb9wUgx3Rust+4I37ghjj4mNkW7just+4I39CEoZsy4UMZwiehcdAkIOo8Lg3Xn+Cj6ROjuealwmmqMRw4C94KPbfc7m69MHgduawniZNGWuAIdtuE+BO5X3RHnWozdh9WK+klgqqWbqZA+1w4NBIIA23VgA3HYBI5FecMSoM4dHGYcVxPCKelqcPq6uSdzHyvJGpx960dwVp5F6ScLzRQUxDzT1zr3hcNAvc22JvwCMbk9YDZZWSsOpoIsbi+yXfuChLCwQY2QB3rLfuCN+4KSTHSEulqXfuCN+4IBNLUaWpd+4I37ggE0tRpal37gjfuCATS1GkJd+4I37ggE0jvSFgIKy37gjfuCYyDVo+uDbayivSrhlTi2QsWoqGF81TKxoZGwXLu0DsFL9+4I37gsFTinlInLIn0f4ZLguVWwTwPZI1znlhFjwHqVTZ76dX4DjOIYbFQzCWnmdG0l7OR7iFL+k7pOmyPWwQS0Rnhe5upzYnPsDe/A+hVR0mZjyXnLLktfQ08tPjBcwvvStjuS67t735LJJJtpEPdYLM6G+linzZB5Ni9RFBiO9oXuaHG77N2A7lbzXgt7BuF44wifL+PYZB7Uz1eG5igcX3hY2GN3JgL73tzVo9H3SZW4XidLl7M7IpHGM9XNTl0znADSC4k8SRupC2Ib7J6OWfPODQwSCOZ8zgx5Fw09WzlzU7ydkzPFM7D6qozBSS0ZijPVNobG2x437lC/ZGxOb0hZbluCx9Q+2++0bOIXpbL/8AoHDvzaP9kIDtZe1nG571kkCVACEIQAkJIPC6VHMoCsukXLebsXxSOXAMYp6OAMaC19J1m4JvvfwXnrFMOxbC+mjCosdroqqo62TdkXV2+t93yL2i3n4ryl0oH/8AmBw3YfZ5OP5JqA9UUf2nT/iN+hbHbghaqS/kdPa3mN+hbRe52CAQAhYuYJB2wtvyI+RQ4qSwx3yaREz4KOqb8FbvkR8i0K0or/ovoS2/M1iJluCDEzuWz5EfIsvV6X8K+gyzX1Te6yOqatnyI+RPV6X8K+gyzWI2hLoHcs/kR8iyVKC4RGWYaR3JdI7ll8iPkU6I+QyY6R3JC0dyz+RHyI6cfInJhb0JbDuWXyI+RFBIjImkI0hL8iPkWWEAsEWCPkR8ikBYIsEfIj5EAiEvyI+RRgCWSW9Ky+RHyKQY29KW3pS/Ij5EAlvSi3pS/Ij5FAEt6VjoAv6Vn8iPkTAyagLACxsqQ6Vcl5gpsyw5lynqkmawQugZAZHEFxcT3W2Hyq9PkWDrF1j3cOSnjKQTaKDy50n5ppM00OG5swesgFS5wa6SNsYdZhJtt4K96d5kjY8jSHNDgD6VVnTZlTF8YkwzEMvxUvllEHkCR5YCXWHIX4XTLkTpZq6OvODZ1pGUs8bAWyQsc5puQG9pxHcVDW4LzAvwIQNxcEWXDhOK0mJ0vlNE/XGbHlzXbcNAFuJQC29IRb0hLv3BG/cEAWHeiw70b9wRv3BSAsEbI37gjfuCANkbI37gjfuCANkbI37gjfuCANlgR6Fnv3BG/cFjKKlyDCw7khY0+JWzfuCQkBwvxKjw4+RKbRU2Xcr1tN0sVuLz0czKZz6rTK5pDSHnbf0p56Xc+HImGUlSKd83Xl47LgNOkA8x6VJs34w7AsFmrmRda5hA06S7j6AqTZ0t5WzjQeR5roaiM7taRR3Dbnc3cdtgFlggbssdP1XX44zy+ilpsOc4RdfKWBmouG17dxXo3Dq6kxKDr6Gojnhd75huD/1ZeN8FxTLUGJ1+H4vFI3CpZ5JKeWnga+QEkBl77Dhf0KYYHmDEchCsxKhrRXZZj0uPlM5dOGi4FowbXJJv4KQXD05vDchVg4EteAfT1b1Q/QtlfN2LZVc/A8bpqSItjI10nWWFvFW/0k4zDmPomnroQWtcHcW2/wBU4/xTX7FE2yK8k37EP7JQFkZCwzFsIwBlPjVWysqQ95Lo4ur4uuNvBSVgdxcfiWaEAjb23SoQgBCEIBozXR11fgk9PhdQynq3FumR7NYFjvsvMPTBlbOGD5ZZNjeO0tVTGR/YZR9WfMJ437l61VNeyfIGQ4r/AHST925AOnsd9J6OsMcOdNB+7CtBVh7HYj3NsLsP+7QfugrP37ggEPoSHe4PBZb9wRv3BQkgaepZ3IMTABZq3b9wRv3Bc/qlHOdK+hk5M09Uz4KURt7lt37gjfuCyVrRX/VfQxy/M19W1HVhbN+4I37gsvApfwr6DfzMNARoHoWe/cEb9wRUYLsTkxDW9yNLe5Zb9wRv3BZeHHyIyzGw7kWHcst+4I37gp0LyGRAB3I0hLv3BG/cFOlATSPQl2Rv3BG/cEwgGyNkb9wRv3BSA2RsjfuCN+4KMANkEBG/cEb9wTACw5JN+8Jd+4I37gmAJb0hFvSEu/cEb9wQCW9IRb0hLv3BG/cEAhHpWNis9+4I37gpBhpO1j4qFdKOTf5YZdmoY5GwSl7XB7wXDY34AqcEHwSC5vcCyhp9mMnmenzX0kZLw8jEcIrp8PpwZHytpGsaBxO5CvfJGPfyly5SYh1To3yRxuc0kEglgceHitmdcJ9vsrYphkYaJKmB0bSdrE+lUNg+Yc4dGE/kOJUNFNg4k0Nla6SR4F9LdthwamAelQRsDsTyS29IUYyznPCMwCIUEznSP4BwAI4+n0KUb+hAJb0hLb0o37gjfuCkBt3osEb9wRv3BRgBshG/cEb9wTSgGyNkb9wRv3BSA2RsjfuCN+4IDE3vtwRbvWW/cEb9wUYRGDHSEBotwWW/cEb9wUaI+RlllY9OGXq7H8CFNh1JLUuMbwRG0uN7tt9CmlfUuwjLctWY3SGmptZY3Y3a3h8yeXarbWVH5n6Z4MHx32txagkNE8hkmmnc64N78TbgFEoJrAyyIY97IqqFU+lwygmZNE7Q4FzHcDvtbuVz9G2esOzdg0E0dXC6rcXB0YeCRZxA4eC859J+I5QqsRgxnLcBb1l3SxPp2M3c7fYei67MPNFWVtLi3R5W1EFbC5r30lU4U1OdOwFm7m7rkrJrJCPWk32GQ/3T9C8cZho8Qr+nqSDCqllPVmphDXvj1i5aLbK8+i3pJfmWapwbEIWtxSnD2vMTSYzoaL2cTvuSqkoiD7JdhHDyyn/ZUrZYJyW3kzKOeMPxWWfGMxUdTSuhLWRModBa4uaQSb9wI+NCtpvmjwQhBHOkMn+QuP3H/cZv2CqQ9ipNCx2O6iAfKx+wV6BxugZimF1dC8uAmicw724iy814j0H5moMZq5sAxBtPBNI59m1UjOJ22aO5AenG1tPb7IB8qXyyn+6j515fHQ70gAf6c/2hN6kvuPdIH4c/2hN6kB6f8sp/uo+dHllP91HzrzCOhvP7zpdjpAO22ITepRLLmVM45gx+qwuLG5Q+nY4kiulHmu08QgPZfllP91Hzo8sp/uo+deX2dD2fu0G447bhfEJvUl9x7pA/Dn+0JvUgPT/llP8AdR86PLKf7qPnXmD3HukD8Of7Qm9SPce6QPw5/tCb1ID0/wCWU/3UfOjyyn+6j515g9x7pA/Dn+0JvUj3HukD8Of7Qm9SA9P+WU/3UfOjyyn+6j515g9x7pA/Dn+0JvUkPQ9n8EE44dv/AOoTepAeoPLKf7oPkKPLKf7qPnXl/wBxrP2kE48TY3sMQm9Si1PlTOM+cm5cjxmYVThIQXVstuxx3QHsnyyn+6j50eWU/wB1HzrzB7j3SB+HP9oTepHuPdIH4c/2hN6kB6f8sp/uo+dHllP91HzrzB7j3SB+HP8AaE3qR7j3SB+HP9oTepAen/LKf7qPnR5ZT/dR868we490gfhz/aE3qR7j3SB+HP8AaE3qQHp/yyn+6j50eWU/3UfOvMHuPdIH4c/2hN6ke490gfhz/aE3qQHp/wAsp/uo+dHllP8AdR868we430gP2OOkc/8ASE3qUXzRk/OeAYxh1DVY1LqrnuYy1dL71t+aA9j+WU/3UfOjyyn+6D5CvLkXRFnySGOWPHH6XtBGqvm5i6z9x7pB/Dh//iE3qQHqDyyn+6D5Cjyyn+6j515f9x7pB/Dh/wD4hN6kvuPdIH4c/wBoTepAen/LKf7qPnR5ZT/dR868we490gfhz/aE3qR7j3SB+HP9oTepAen/ACyn+6j50eWU/wB1HzrzB7j3SB+HP9oTepA6HekA8cc/2hN6kB6f8sp/uo+dHllP91Hzry87og6QSSPbzYf/AH83qTRm7o9zxlnDvK6jHrt4fb8p5E8/BAetnVcAHamFvAqD9K+barLGBMq8Kpn1D+3sxwbwbfmFRWBdF+esXwWjxKHHHllTEJWg183Arqm6F89VMGifF45Q250y1srh8hCA9D5Sxg4zlmjq68GN9RAx0kbjcguaCRceKofpMytljBekPAqzBxBTVk1Q/UwB5JtHtx2XFF0M5+jja2PGmsYBs1tfMAPistM/QbnWolZLPiVNLKw3a99XI5zT6CRsgPT2EVdO3CqMGQA9Sy+x+CF1+WU/3QfIV5eHQ50gNADcbsBwAr5vUl9x7pB/Dh//AIhN6kB6g8sp/ug+Qo8sp/ug+Qry/wC490g/hw//AMQm9SPce6Qfw4f/AOITepAeoPLKf7oPkKPLKf7qPnXl/wBx7pA544f/AOITepNOZ+jnO2X8OOIVWNydW0hm1fMdygPW3llP90HyFHllP90HyFeS8sdGud8fwWnxOmxyQRzXtevmHAkfwTp7j3SD+HD/APxCb1ID1B5ZT/dB8hR5ZT/dB8hXl/3HukH8OH/+ITepHuPdIP4cP/8AEJvUgPUHllP90HyFHllP90HyFeX/AHHukH8OH/8AiE3qR7j3SD+HD/8AxCb1ID1B5ZT/AHQfIUeWU/3QfIV5f9x7pB/Dh/8A4hN6ke490gDjjn/z5vUgPUHllP8AdR86PLKf7qPnXl8dD3SAAT7ef7Qm9Swd0RdIEURccc/+fMgPSGM4fhOMwiLE42zxg3Fy4crcl5T6Z+jqrpcwT1uB4e+DDdbzrbYjdw08TdaMl5Qzhmynnlo8anBhkfGdVdKBdpA5X71IpehfPVVARUYw17duy+ulPzEICmcs4pRUlYXYlRCqZJ2OsL9PV2PH0q48u4Pl+gxHD8yNzRSsjMbW+TdQ+7NZ83V6LptZ7HXMun7PQD/1nf5Vv+p9zYGBnl1JoHBvlL7D4tKA6+n2to8Rz7luroJWzRSVD+22+9o2jmvUGX/9A4d+bR/sheccp9BGMwY9R1WPVjJ46eQOjDal77d+xb4L0rQwCkpIadpJEbGt3N+AsgN4SpANzdKgBCEIARzKEhBv6EAN5+K8o9KRjHsgMNMjg208n7pq9WnjblZUp0vdEdXmrGIsSwmojhqGlxLnzFhuQ0bEC/AIC36Wtp2UlODKPMb39y2isp9yJB8hXl2Pod6QQdLcb7I2F6+b1LL3HOkEE6sd29GITX+hAeofLaf7oPnSeW0/3UfOvL7+hvP+oWx0/HiE3qUZzrlHOGUoGPrcanOotbdtbKeLg3nbvQHsfy2n+6D50nltP91Hzry3H0PdID2NeMdNnAO/0hNz+JbPcc6Qfw6f/wCITepAeoPLab7qPnR5bTfdR868we450gfh3/aE3qR7jnSB+Hf9oTepAen/AC2m+6j50eW033UfOvMHuOdIH4d/2hN6ke450gfh3/aE3qQHp/y2m+6j50eW033UfOvMHuOdIH4d/wBoTepHuOdIH4d/2hN6kB6f8tpvuo+dHltP91HzrzB7jnSB+Hf9oTepMGc8hZ1ypgrsSq8ceQxrnkCvlPAgcDbvQHr7y2n+6j50eW033UfOvKuFdFmecRw2CrhxuUCZoeNVfNzAP8V1e450gfh3/aE3qQHqDy2m+6j50eW033UfOvMHuOdIH4d/2hN6ke450gfh3/aE3qQHp/y2m+6j50eW033UfOvMHuOdIH4d/wBoTepHuOdIH4d/2hN6kB6f8tpvuo+dHltN91HzrzB7jnSB+Hf9oTepHuOdIP4d/wBoTepAen/Laf7qPnR5bT/dR868v+430hG59vQCe/EJvUuLGejDPOD4PXYjU428sp4JJSGV8x2Y0u4fEgPVvltP91Hzo8tp/uo+deRMn9H2eMzYTDiFNjrhHI1rgDXyg7i/JPh6G+kAkf8AbvH/APqE3qQHp/y2n+6j50eW033UfOvMB6Hc/nYY7w2/0hN6ke450gfh3/aE3qQHp/y2m+6j50eW033UfOvMHuOdIH4d/wBoTepHuOdIH4d/2hN6kB6f8tpvuo+dHltN91HzrzB7jnSB+Hf9oTepHuOdIH4d/wBoTepAen/Lab7qPnR5bT/dR868we450gfh3/aE3qWM3Q9n5sLnSY64hov2MQmvt8SA9Q+W0/3UfOueuroRSzOjeC9kbngDmQF4/wAo5QzfmnEa6ko8anD6Nsb3aq6UDt3twv3KUnoc6QDe+OAjh/pCb1IC0+jnPtXmDMmO0GIQvpxRSsYx7nB17sudgFt6ZMvZbx3LdXVYx1XlNNC+WN79XFrHFuwVQQ9CGd4JHyQYpBHI83e5lZK0u8SBus5uhXPk7CyfGGSsIsWvrpXAjwIQFiexwmp4cs4h1T2uhjkiDSBtbQVbra2EG75QL7AWXluk6Ec8UcZjpMVhgjNiWxVkrAfiAW/3HOkC++O/7Qm9SA9QeWU/3UfOjyyn+6j515g9x7pA/Dn+0JvUj3HukD8Of7Qm9SA9P+WU/wB1Hzo8sp/uo+deYH9Duf4yLY7e/wD/AFCb1LI9DWf3bHHrctsQm9SA9O+WU/3UfOjyyn+6D5CvGuC5TzlimaqrAW448zQU/lBLa6XhrDePxqUs6Hs/h3+nDYbdrEJvUgPUPllP91Hzo8sp/uo+deX29DfSEwWOOgj0YhN6kvuPdIH4c/2hN6kB6f8ALKf7qPnR5ZT/AHUfOvMHuPdIH4c/2hN6ke490gfhz/aE3qQHp/yyn+6j50eWU/3UfOvMHuPdIH4c/wBoTepHuPdIH4c/2hN6kB6f8sp/uo+dYvrYWhpEgsTuV5i9x7pA/Dn+0JvUsXdD2fwO1jjiD3YhN6kB6cmqaZ8bmOeHtdy3Gypvpm6OqLEsvTjLdCG1r43B2glxPC3E2VQZjyhnHBcdosHkxubrqqIzAmul4A24qUHodz+RduOktd34hMf4ICkaqlq8CxA0Ncx0bmdt0Rt2wDY8O+xCsHKOHZaznQzwipgy9IA0Ojka6Yzar93DTb/3J7qOgHNlVKZJ6uhkkO2p87yflLVhF7HrNcLtUNbRRn+5Uvb9DUBOsXxXBvcqr8LpMXhrHRCXzWObwjLeYTj7E8f/ALDShvwYd/8AylVvD0A5rje2Oevh6lzu0I6qTcHjfsr0N0XZRZkzLUNACDII2NeQ69yLjuCAmiEIQAhCEAIQhACpn2UNv5BRE/dJP3blcxFxZRHpJyozN+XpKAmzrO03dbctt3FARX2PVVFF0b4WHG382gH/AOMK0PLKf7qPnXluLoUzth4kp8KxZsVOHdhprZQA0bDgLcFt9x7pA/Dn+0JvUgPT/llP91Hzo8sp/uo+deYPce6QPw5/tCb1LlxHopz3h9FPVT447Syx2r5u+yA9U+WU/wB1Hzo8sp/uo+deP8lZFznmnDpq6mxqbTHM+D7elAu025XUgb0O9IFtQxw9rexxCbb5kB6g8sp/uo+dHllP91HzrzB7j3SB+HP9oTepHuPdIH4c/wBoTepAen/LKf7qPnR5ZT/dR868we490gfhz/aE3qR7j3SB+HP9oTepAen/ACyn+6D5Cjyyn+6D5CvL/uPdIP4cP/8AEJvUj3HukH8OH/8AiE3qQHqDyyn+6D5Cjyyn+6j515gZ0N9IMhIOO28cQmH8Fpq+iPPtNSyzy46S2NpcdOITckB6l8sp/uo+dHllP91HzrxzlLJudszz4kyjxt7fa+oNM/VXSi5HgpMeh7pADr+3m3/9wm9SA9QeWU/3UfOjyyn+6j515fPQ90gav9Of7Qm9SX3HukD8Of7Qm9SA9P8AllP91Hzo8sp/uo+deYPce6QPw5/tCb1I9x7pA/Dn+0JvUgPT/llP91Hzo8sp/uo+deYPce6QPw5/tCb1I9x7pA/Dn+0JvUgPT/llP91Hzo8sp/uo+deYPce6QPw5/tCb1I9x7pAsb45t6MQmv9CA9P8AllP91Hzo8sp/uo+deNIspZvkze/Lft1UeUxSCMny6XiWa+PHh6FLPcd6QBsMd29OITX+hAen/LKf7qPnR5ZT/dR868we490gfhz/AGhN6ke490gfhz/aE3qQHp/yyn+6j50eWU/3UfOvMHuPdIH4c/2hN6ke490gfhz/AGhN6kB6f8sp/uo+dHllP91HzrzB7j3SB+HP9oTepHuPdIH4c/2hN6kB6f8ALKf7qPnR5ZT/AHUfOvL56HukG5Ht5y+/5vUhvQ50gaA047v/AP3Cb1ID0+ayntfrBt4oNdTADVKBf0FeN8zZSzpl/F8MoanGnuNdUx0zNNdKTd5Umb0QZ+fHqjxw2fuNdfNcfMgLS6RM/Yll3NeDUVLSSS0tVU9U8te0C2gHmFOa6PDsdwBkWLsa6GaNshjcT2SW947rlecKroTzzUSRPnxWCZ7XXa59ZK4tPeCRst3uN9IGkN9vOyBa3l81rfIgO7JGD4Jl7pudS4E6JlMKhg0sDth1BPP0kr0mKynt9lHzryqzoMzoyoNQzEaZs5N+tbVSB97W86111+490gfhz/aE3qQHp/yyn+6j50eWU/3UfOvMHuPdIH4c/wBoTepHuPdIH4c/2hN6kB6f8sp/uo+dHllP91HzrzB7j3SB+HP9oTepHuO5/PHHT/8AxCb1ID0/5ZT/AHUfOjyyn+6j5145ztkzOWUKaGoqcbmIlkZF9vSkXc63OykNP0SZ9mp4ZYccdZ5IOqvm2sgPUvllP91Hzo8sp/uo+deYPce6QPw5/tCb1I9x7pA/Dn+0JvUgPT/llP8AdR86PLKf7qPnXmD3HukD8Of7Qm9SPce6QPw5/tCb1ID0/wCWU/3UfOjyyn+6j515g9x7pA/Dn+0JvUj3HukD8Of7Qm9SA9P+WU/3UfOjyyn+6j515g9x7pA/Dn+0JvUj3HukD8Of7Qm9SA9OvrINJ0SjV4KM5sy3l/G4J3VtIyoq3RkMu5wN7bcCvOGbujvPGWsv1eLVmNvMFOAXaK+Ync2W3AOjXPGNYayrpsakDSTu+umH/XFAQTpEyRiWWccxStdTvpKE1LuqBAI0l1hvcla8lYjhAlgpMUpmRzyv0ire49m52OkdwVk13QdnPEI2itxOGoaRuJKyR4+cFN/1O+ZAQRUUQI3B6523/tQEy6NI8CydjxqH5ip6oVcb5GxiF7NOoAAXtvwUYoix3sl2GJwczy2CxH4q1e4Bmy7T5fBdosD5VJsP8KnfRV0NVmAZjGM49UmephcyRjmzueS4E8dQueSAv9vmjwQsWarDushAI9wa4XHE2ulAIJN9u5K1oaLBAaAboABuOKW6BshAI69xYXVbZFyLLl/NmIYm6d9qhsg0lo988O7/AEKyiLggoACARvAFLdFkIAui6EIAui6EjiRvy5oBbrF9j2b2JRqOq1ja10jXAnfYjvQC7gizdu9V7R5Ilg6UWZlM7zG1s46vSLdv03urDIAHPbdI033tbxQGSLoui6ALousdRDu1wPBKL80At0XWAcQd/iWTb6d7XQC3RdA4elICeB4oAJNthdV90h5KlzPmHLVcyd8TaCaWRwa0HzmW5lWA+5GyLB2wI9KA1UsPU0sMJOvq2tbc7cBZb1he502Isl1b2HFAZISXtxRci5NvQgFui6S9m3KDci4sgFujisXP032uEvEIBHeabKI9JmWnZowDyNji06ibgA27JHPxUuaCG7EXSENZueeyAZcm4WcEyvhWGulJdTU7YrkWvZPQHbLr7HZBOkattKW1rW4IDJF1iX2eByIuh+rT2LauRQGSFg1xdtcXt86XURYEXPOyAyQsRqsLkcUA7m6AyPBRjP2ASZly3LhzXuiJla8OAB2B9KkRedW/mO2AHFZHa1r3QEe6PsEfl7KVBhb3mQw6wXEAcXE8vFSRYO7uDeaNVxsQD6e5AZoSA+kWPBKDdACEIQAg7oQgE2stNSzXTlo9H0rfZCAr/ooyTLk6hq45J3ymaeWUBzQLanA8j6FPXAuj+CVkQClAsgEuEXCVCATjwScDclZJCASgC+6VCEAIQhACxIJPGyySOaHEE8kAgPIoDQdzuskW4ehAJufQsHjlrIJ52WZAKVAYPuLFrdRUA6WMkS5xoIYo6h8JY6M9lod5sgdzPoVg23ulQGmBpjhjZfzWgfIFtBSoQBdF0IQBdF0G9tuKTcjZALdF0ckX2QBdQvpTyo/N2WaigbI6Nz43NGkA8SO/wUyLtIudwkJ0W2uOaAbsvYe/DMHo6R0jpOpgYzcAcGgfwTm0kgXFj3JALDY8UXLWXdYn0IDK6LpAdtyFj2rHtNvyQGd0XWDXlziNJFuZSl1vSUBldBIARfikBuOFvFAI2z7OBuEz5uwx2M5axXDmSGJ1TSzQgtF/OYW/xTxxuD8yTcE/COwQER6MMsPytluCgke6RzGMGpwAJsLclMAb2WJbcC5GpZE7IBGt039JusrrE3DduKUkh25FkAt0XSF3d3JG6rbkXQGV0XWIJ7xdBdYEnccrIDK61TNL2vYNg5pF1mSQAi3Lv3QFd9GmSJsqY9jtXJK+VlZFAxupoHmau4/3lYrbAcLX3SbgA93FAIBtY8LoDK6LrEO1cNkodd2n0XugFui6S+9rjwQXWvzsgFui6xudibAHvSuvyQARfikFy51+ASi6QkG+424oCt8qZFlwjpHxDHjK8MqKI09tIt9ka7v9CsaSzmadW55pQ2/neOyxcdLrkF1uFkBsDgdgUt1gSQRtsUoJva48EBldF0hO4CVAF0XQhAF1iS4lwtZttnLJBFxZAVznPI0uPZ5wrGBUPDKWlfEQGgjd1+9WHG0taGnkOKyDQAlQCEJNNtydlkiyAxYSQbhHK+ndLpF7pSLoAQhCAEIQgBCEIAPBYEaraTZZoIBFkBi69raiD3rJJYWASoAum3HqA4nhs1JqLBJYXG/MFOSEBCOinKkuUsBqKKSd7+srJZxdoHnG/JTYE3NxbuRpF7pUAXRdCEAXQhCAEIvtdYdYdVtJHpQASC+2r4loxCl8pw+op2nR1jC245XW+5DgHC9+YWLZDpaXNNybICD9G+Tn5Wq8dc+d83thWuqhqaBa44bFT0rEG5NhaxtvzWSAEXWN9+7xSFxAIJF+9AZ3RdYFxa0baiTbZGo8OfegM7oukB1NuCEC/eEAt1i+9rt4pS7a6xBu4XB3F0BXVPkWdnSnV5lMz+qkmZIGaRbaEM43urGbYm5G/BILE2HJZEgboBboukBvyKTUdZ4abIDK6LrEOueBSm4JPJALdF0JBfmgDV2iPRdY3u4Hks1iRqFrhAV30gZLkzBmbL9dHM+JtDXwVJ0tBuGEbblWFEwNY1l9WkWJSh13W0nbmQgt42I3N0AjXNaQ3V8S2XSHYjZYgnUQSL8R4IDO6LrF7iBYce/kku4NJcR4oDO6LrT1uzQCDcecOAWzV2i0cbXQGV0jr3bYX3+RY6rOa3vCUkFtzsAgID0s5LlzdhlNDHUPZ1dRDJYNB2a+/Mqb0UHklO2EEua0ntHbibrcSdQsCW2Q13YuGkegoDO6LrAP7yPBKLk32t3IDK6LoQgC6LoQgC6LoQgIx0lZefmvJmI4PHI6J9S1oDmgEizgefgunJ+DvwPA46NzzKWuJuQB3J+QBbggMLEgAHSe5ZpNI1X5pUALAk3Njcjks0EXIKARoPEn4kJUIAQhCAEIQgBCEIAQhCAEIQgBYvvcd3NZKMdJWKnBck4rXMNnwxBw4fCaOfigO2nxttRiDqaFodpuCdxuDZOkzzHF1hYNQUR6P4/JMseX1L2yPlvO542DWuaHb+C04fj2IZkr6+PBZ2w01JIGGRzA9stxcFqAyyjnuPMElbHHE0OpmOeePI25qSYNikeJiXQbOidpI9KqHoD6yTFcWFQLPLHhzSLE/XE/4zWMyz0nYWNY8nq6eeV8V9ybgDc+KAtJYyu0Rud3AlGrzbAkO5pTex25ICsG9JxmzNXYJBRxSVVKWN7RcLlzb8bLvq864nSuphV4fBEySZsd2SOdsfiVc0uIig6fsxyvhdO4y0/ZZYEfWlYb84MxDGYMMmw6ePdswkcW242sgLAglE8TZGjY+asxc+cAFWedc14llvN2GQTBww2p609doaGRBoFtRO+5KkGL4rXNxeiipLvikMZeWtB0tI3cfQgJaR8SQSNJtzUFmzZJX4jW0GH18FNPRvdE8yNDtZAvcC2yYMB6Qqypy3jzpYJBV4ZSuqOsIbaS5NgB37c0BbNwDa977rWZWND3WA08Sqfos4ZnxfKsuKUofEYZ2tLHQsJc3TqJThmDNdbjfQ3NmDCj1Mj4C8hzWuP2QNHoQFpsc1/ab3Jjzjj8eXsGmrntDurAPPvA5eKY+iaTEp8vxVGKTtkc7fZmm12tK29L1j0fYu5zS4BrLW59tqAeso463MWDtrmMDQXuZbflbv8AFPTibgWBuqkyHis/8kqalwN4mqPKXmQxgO0NNtyD6VK8ZzOcApaaHEp2GsmYHNFg0m2xNkBMjuN1juDYAWVWVuc8QwXM2F0VTO2vixGdsGuBjWiG4vqdccOSTFM7Yyc9R5foIJby0clSyTQ0ghpIHp5IC03EAtba90Am17c7WVO4vnLM2W8Lw/2zildNU6wD1LG20n/mt2K5zx/Aa7C6rFA6WgrnRQNa2JrbPkOxv4IC3b8dI3WEjnNjc57RYC6imP5qihxeHCKWrihrJC9pe6xDC3fceCYct55qX51ny/WvFYGwtlbVxBrYyXOA0243F0A7YPniHEc4T4EYwHRvey9j71t/BTYG43GwVL5d/rwqwNnGaf8AYKuk7WBF7oDB5Yxjnv4AE/EoWzOfl1VWNwuMSxU4adTrtvdOufK9+HZbqZowXbaLC3MFRP2PMMZ6M8Iqh2p5o3dbJfZ9nutsgJhlXMFLj1HJPTbOildC9tiLObx4rjz5m2lyphklTUG7tOoCxPMDl4qtsgYiMJ6RsbpGG1MY6mp034ydZwBPNbulejOK5GxLFKtpcZWNdHANnM7QBBtseCAualm8ppoZRsHtDh8YutzyGNLiuHBdD8LpCxwLREzhy7ISYvWw4fQT1FQ4CMG1723PBANOD5jjxHM2IYdGwGKliZIHb8Tb1pxx/FG4RQuqCNbrgBpvzUS6HMPczAPbKoOqpqHSMceGwkNlM6vDqapma+oYXvG4AcRzugK1p+lY0+NQUWMUjIIZ3aQ9up3K55KxMSxWChwkV7t2PZeMW43FwoL000EWN0dLhUERfWyiRkZb7wkDcgcV25uyzi+KZQw2jwGvho6ymZEXPliMgOlhBFu+9kBx4L0iVeIYjHTPw6GOPhqa53dfuVmQvL4muIsSLqkcrZyzDlnMdHgWdIzLHUFzY6wQshjGlpJPC+5ICu+J4kja9puHAEH0FAZIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQATuAsQCAbLJY3ItsTcoBuxrFosJp+smNzyFr8104fO6ogEhaACq0qMRONdLFLQuN6WlZPFLHzc7iDccFLM15lgwSaipNbWS1UvUtcSLNNr3KAkzz2OAJ7k0NxhkeKmhqNnEhrTub3F1BKnO1Xg2a6WiqZRXUtTG6TrYWta2MlwAab73Tn0wsdRZaqMchdaTDo3TFg4ycBYcuaAn7b2PPmEMB0nXvfkmvLFd5fgVBODfXCwk9x0g28d06ucQL2O3zoCA56z8crVlJE+mjeKmVsLbk8SCeXgsv5X4o6mE7MNpzG4Ag9YeHyKF+yLlbFPlObzy3GYSWjiR1b9lKa7PkWG5binGGVD2tEbNIc3m4Dn4oCV5Vxz2/w5s+nqn3cC1t7bG3NPbSC7YXtsSoJm3FsRwPI0mKYPG61NHLUSsawOJaBe2/BbaPM9TXZIpcTpJmuqX9WJAGgljnAEtI4X3QE3BF9uKUkAbqD1Gan0RoqCeVrK6pc5l3AfWiN7kfGmWhzvWUmd/aWqkGIRy0rp21MLWtYxxeAGHncXQFoi1/SVg+RrXBruJ2BVVtzljtbnjGMAoWPY6jnEQlMbXNd2A64HFb8lZxxTEpsXwjEQW4jT00s7JCxoHc3YICzY5GSPcGuuWHSfFY1M7YI3vIuWi/BVJ0QVOMYjmDNnl9Wx7YMQay3VgWvGTyVvm4cb7i3BAQ7KWeIcwY1iOHxxhr6SeWE7HfQbc1Mm3cBrABVFZExGDD8/wCbHyvayU4lWBjSdzdxt86sakxjEcMwarxXH3dVTwM6xzHsDCADbj8iAmHPYCyQuFyGjtKrsczfXjCxieG1kYYJR/N9DXPczziQe4jZc2Y+kusocr4XjNNRzvFZE+UwtDC6PSQLG+3NAWy1p3LjuUgDr6SBpHO6rOfG814dR19dWh81NHQmoY9sDWjVYO037wLplZnXMtTkWlzIzUymdHE8xGFmp2twA34bXQFzgdrzjshxda4aCeW/JQiLPVO/KVLi0jSw1D5Imtc4XLmkjw5KPZqz1X5eZRYkZm1tPO1gFLC1oeNbrXue7mgJRmvOkWBZhwjDZWA+XTOiB35NB/ipbBM2aJj2Dzmg/KFUHTI5k+acgzRjUPLqjtDh5jQrdoPtGn/JN+gIDaQLaRsTzCjOO5pjoMSZh9Ixs1YQ1xa64FnbDfxUmubOvsRzVK5An9tOl/GJpGkGPDw1urkWyGxQFhYTmqKqxpmGVcbYa1+ota0Egho33WjOWbxl5zIKaJtTVX7bX3AAtcbhQLpmqThOcsuYhG4CZlLUDUOd3N5Jwz9gGdIcfmx7LuIwOjMbA6mFKJHuDRwBItuUBLcmZsqcwyuZU0ccAF/NcTwHpCmA1azfzeSr3otztNmGKehxSnfTYrSPMMrZA1pc5o7RsOG91YIcbC537kBGMx5nbheO0uGtbeSVjJOfAvLf4KRyujhbJJJ5p47Ktsvh+YukeoxV3apKSF9Fptwe15dxH4wVj1MRqYZYjsDaxQFb4/0mz4dMH01BFLRh+h8ji4EWvfa3oUyylmSkzJhEddSONtAc9ukixIvzWrMUFFhmVsQhIaxksMjWgnd7y07C/MqH9E+XqqkynXviBpjiBjmj6wE6RZAdWM9I8lPXugoaOOeLYB7i4G/Pl3qbZfxA4nh8dTJGI3kC4HK4uqOlfnXo40z1kzcWwlsrpJBT0rW6W31Ou5w+JXblnGIscwGkr4WEddG17o7i7SRexsgHYbOuefBZJOJHeEqAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBB4FCCgNW46scuaZ/b1k2I+SQNDrWudxzssM9YkcIyliFaHAGFgdf/zNH8UxdFcMj8uT1U72mqlqJSx9uAIaRsgHbG8yimxGHDaRrZK2UOs0kgAi19/jTblzO/ti1oxCnbTue8sZo1Ou6/pVd0seKnprkZHVxiXrZbOMdx5vcrPz/SF+UaucWEtLG+ZrgLWIad0BK2EPia4HYgG6yaLBRLoxxYYtlHD3O7UsNPEyR3e7QLlS0eFkBFc+5sZlPCBXzxh8ZlbEAbnc3twTPhmdsSxPDKaugw2ndDICbmQjnbhZc3sg7fyCaSQLVkR3+NcGRs6R4d0f4e8YbUSdXGS4Nc34RQEwyhml+OPlZNTthczULNJPAgc/FSi5FhYXKhWGYzNX5TrsUwxhbJH1hEYAc64F7dy4+jnN9Vj+AVsla7qK2j6tkzZGtBY48iBzQFgghvZHNLYN3vsoBFm2TD8DhqMUeGzVdRJTQtcA0h1+yfSmPMOf6/L1dRPfM3EKaeMvMUDWgtJdYAkoC2g5rmam8EhL9Nw0Xv38lWmbc64rh2eqLA6KGTRVzNha8MaQ27b3N91rwbNmL0efjgOYLukmppaiGXq2sa1ocA0W4nigLP62Nsui41lI49XG5xF7XKpagrMYqem3EqN1YzyalqIxp6sdoGAHb4yrpaHBrRqGra6Ah2F56hrs3z4GyMdZHIWXseQupobAXI8VRlNV0eH9NddLPURw3qHk6z/cVj4FVYu909diRMNM1hOh8YBsDxuPQgJYCHAEbBK0W98Sq9qs1zYoK84diEFLFSSmN3WNDtdt9tviTJT9JVXUdHWIY7HRztkpIJpXMIYSdDy3w5IC23FwHAXv38kriQ5tuHNVZh+PZqr6elxSCKQUj6PrSwwtJBsXcfCyb8uZ0zJmjDsT8k1QSUzIzd8LHeeT3eCAuME8whxs4AAbqvsmZ8bieUqrE8S/m76aokpbyFo1vYOAt32Kacy55raLL0WYKSrjmhLWvbQsY0ykOcG2uRba9/iQEtz1m1mVqaGWaNrhK/qxxPK/JPeBV7MVwijrGiwniEg271WHSriXttkbD6wxuYXTO7JtcEM9CsDIZJybgp5eSs+hAP4PZuVGM15ngwAxRW6yqmc0NYQfNcbXuFJhqBA4+lUpJWOxf2QFPSVALoYcNqbM4dpsgsUBO25r8lxylwnEmBktU8sYRd1yG6uKkWKYhT4dQGoqn2itfhe4tdVd0/vdR4Zh2JcZqMSPDxtubD+Kj2csWrMfzVgOC0UUlTBHQUlc9sQHHUdQvx5IC2cv5g9u3TGigaKGMga92mxBtsfBSa42IG52VfYfnWLB8bosCxPD56Bkwf1Mszmhtm7n0niFYII0arixFwUBHc8Y/Hl7CfKOMxkja0b8HPAPDxT8yZrqZshHYIu7wVa5qYzMXSJhdA14fTwwzNnA5PbuOHDgrJlha6mfG7Zjm6T6EBAMz9IU+GyvjoaKOZkbrOc4ubaxN+XcnzIOb6bNtA6aDszRBpkZYgDUTbj+Knd8FLQ4fUANDWOa4m5846VXfQxg5hxTMGJtjdHR1zacwtN9tOu+/PiEA8Ztz57SV4paSjjqH7E6tQ5nuHoT5kzHJ8epH1FRC2Bwt2Wkkb371V2YMGz5lbE6jGKCvhrqLU8upoqMF4YXF3nOHIAD41YvRrmuPN2BRVRidDVsY3r4nEamON9iBtwCAmCEIQAhCEAIQhACEIQAhCEAIQhACEIQAhF90IAQgEHghACEXCLoAQi4234oQAhCEAKGdMGHyYl0d41TQgmR8IDQPx2+pTNa5WNkY5j26mniEBCcr/zzo7mp6ckSCkdTEcLOEQb9KiPQzjEWCy4zhGKa2VFPLHGHOae32SSbnjxVg4Lhc+CV80NNE59JKXTEjYBzjuFvrspYJiNb5ZWUIdVEk6i9w3+IoCqugaobJmDFQ5s7ZNDiNTCBbrNt09dIdJ7b9JmAQQWLmUk4c4ciHA2urBpcHo8Kinkwyk6qd7C0WcTfu4riwHLzIcRkxOsZeueSWk3BaHDccbICSMGljBxslc7sOJ4AFKduCSQamEd+xQHn7BZqZnT3mSapjvDJLTaHPZttFvxVm49jWA4W+Oc00Tqp1msLYQ487bj0p0nybgU9S6omoGvmf5z+scL/ADpJcm4G98cnkIEkbg5p1u5cOaAjPSNhzszdG76tkf8APyxjo9rFl3i9r7jYI6K5q3HMLkxLEGaXljqVrTcWLCGg2O/LirCbG1sWlsWx4i6wpaSGkiMNPHoZcvG99zxQFJZYxely5nzMtFmGlBbWV75oJjCXEMDALajsLkKUZlrMJqMn5kbhFBHAH0LgJGU+gu2O1xxUyx/KuD4+GHFqMVBaNiXubbe/I966W4Fh7MMfh0dOG0jmlpZqPA8ed0BVmTagjoyrg6Msc14Z5pBP1vimzLbHS+xmdQwteKllIQbgg3MyuRmBYdFReSsph1Jtduo91u9JS4Jh1Hh4w+CnApZBpLdR4Xv3oCM9EWIxT5XhgaXmWM6Hah3NaCujpclEGQMWle0uaxrLNaLk9tvJSDBcCw/BhJ7X04j1Oc42cTuePErfiOH0+J05irYusiPFhJF/kQHnfK0ddkekoMaiknloqur6iWNxLtLbhxIaP4qSdLmKh82A5ipKbymgFMQ5roy4jW4Wu0K2pcv4a+iFI6kDqYk/W9R2vxN7pWZfw2PDzh7KUeRutdmo8uG97oCJ02OZarJqU0tEypqS4aDJTA6HW435eKizpi3p7wuYNIj9qZmkAHS0lztlZuD5TwTA5jNhdAIZXcSJHHnfmVubl3DBiJxDyUeVm9363c+O17ICuOn0guwFrA4gOmvpF+TU3dMsv/YuUQ1r3N8tor6WkkbHdW7imA4dibonVtOJeruW9oi1/ArXV5ew2s6vyimD2xW0N1EWI4c0BUeZa6HLvSpQ1eJ07psOq5J3mXqjIWgNsPQNyFO8KxDAanEo34Xh0HWOLSZzTAOAv8IdykGKYDhmKUDKXEaUTQNFgwuItvfkfQkwXL+H4JAYaCnDIiTsHE8TfmUBVuW3Nb021r3B/wBmnsbbeYrqbcXubhM8GXMNgxU18dOBVOJcXajzFjzTxtew4jkgGrM1CzEcHqITvdpIb6bFV/0LVIwfKNPhNeHQSULNwBa+pxPPjxVqlrdYdbtAWTVU4Bh1ZVSVNVTh8slr9oj0d6ApzK2U58x4ximKCappXipniaY3aNTQ+44jndaulXKGKUORq97MTrnhrBZnX3HnDkFe1NSQ0cQjpY9DL8L3WGI4dTYjSyU9VGHxPFiLkfQgGTImGVGG4PA2pqJpi5g+yP1WuAmPpgrXjB24ZTh3XVJa8FoPBrhfcKwGsDWMa3YNsAuGtwqmrqyKoqYtT4gWtNzwKAXBaGLDcNhpoRpYwarAczuVxZnxulwCgfV1JkI2aA1uo3PDgnsbC4G/cm3EsIosThdHXwCdhde2oi3yICvsHzdgk0rcSxF1Q6cHUwdVfSRtz3CmDs0YaDFHK+WEy2cwhmm4PDitH8gctl2l+GtIHm/XH+td2LZVwfFG04rKMSdQGiPtuFg3hwKAhfSLh7MwYzhcFLGHyRdYOttuL2998SsyjYY6SFh4tY1vyBc1HhtLQ70sOm3AAk/Su5osEAqEIQAhCEAIRe6EAISNc1wuDcJbi1+SAEIuEXHegBCLhBIAuUAIRcbelCAEIQgBCEIAQhCAEIugEFACEIJtxQAhCEAIQhABWNiJLk7EIkuW9k7o57i9hdAVHhVE/DemWSSbZtY6eZrjwAAstPTCZMNzRl3FZojNQR1uqZukvs0R77BWDmnADiroqmnf1VZC0sY/TqsCbna67n0MWMYb1GLUh0uuHMc7l8SAiFPjuXMRZDNQ4dDUTPLXASUoJbff4rLZ01PD+jjGaX/vFRTOZG0czqaVIcFyng+BTunwujEMhvwe48ePErjxbBX43i0Ulawx01O7U0HfVdtjwQHTkWhfQ5VoI5HHU6Jj9z/cbt8ykJubD5VqbEGwxxMHZYBb4lsF9yfk7kBSHsgXMFflYaOsa3F4XO7N9tD1PW1mX5sCiZVU8RZpaXN6kHcG42T1iuWcKxZ8Tq+lEpjeHtu5wsR4H0rRJlDBCx38xDrnhrd60A3YJidHm/DK6kjic3D5onQ2MRbcX0nY7KusjwYlFmjFcrvjc3D31clTHJvcNZYAA8ANuCujC8MpsKpBSYdF1EDSXAXLtybnj6VsjpYmTmfqvr241X4goCnekGd2AdJOFYlXQGXDZqhxdZhfpDWC+3xqYUeMZfrZ45cKw2B9S6xMj6UAtadzv8ilOK4NRYxT+T4lTiaJoNruI48eB9C04JlrC8Fa8UFMI9QINnOOx5bn0ICssoOI6a80PcHaHVjdLiNj9YXJktz5OlHMLS1zS7C7MOkgX1G26t2LAMNirJKuOmDaiQ6nP1Hc2t39yKbBMOpq19ZBThs726HP1HgD4oCruhysjoMz51pKrrBPLiTS27TY2j3sVcTpA1he8WDRfZNEWW8LjxN9fFTBtRIS579Tu0Tz4p3c1srXMJu0ixCA8ynAarGM35mrsMmqI6uDE6h7Iy7RG6MPLiT3lT2ozI7PPRLjVKyN7MU8lc2RjmOYLmSzbX3OwCsuky/h1HUyz09OGTSlxe7UTfVx5rGjy7hlHVSTwUwa+S1zqPL40BWnR9mzL9Tl11NiVDaqppDTFr6Q9rS1ovvxF77pq6ZKinOB4I2gpTDSuhn7DIS2wuy23yq03ZNwSXEfLnUIbUDbVrdvvfv7134jl/DsSaxtdAJo2AhjdRFgePA+hAMWdSPc7rtZc1nte7Tp4uPV8LKB4K6P6n7D3SCSwpKS7NO4OoclbtThVPU0nk1VGJoOAZci21voXOzLmFsw3yIUg8ls0dXrdy4b3ugKPcydvRHguIRQvkjw+tqqmWNzCS5rXO208T4KdYRj+Wq/AsP6+giqKl0LCY5KUO0HutxFip9TYPRUtC+ighDaN4LTHc8+O/FNVDkrAMNr31dFhwZPIS5zhI43J48SgK56VnudmDo+e5uhkVbUGVrBsBoYrjw9wfQ09uBjaR4WC4MVy9heKztfW0olkjJLXanDSSPQfQnWCNsMUcUYsxjQ0egAWQGR4aTzVO4NQy5a6Xa6eVtqOpoY4w7j2nPJPoVwuJIcALW4FcOJYVRYkQK2n60NsQdRG/xICq8/0jc1Z9wSlp2OfTQwTslcW7A3BG/DkrIw/MmHVr5oYZCTDGHODhbbguzD8JosNDnUVP1bnG5AcTv8ababJuBU1W+ogoAyVwAc7rHG9vjQESyTgjo874tiTWlkM1TUPBG19RuFMs7YkcIyviNczVqghLwWgk7Edyd4oI6WHRBH2duyCteIUFPX0UtHVxiWmmboey5Fx4hARXotww0OB1Er7l9bUuqtR42e1vqUueWxNa4uOlmx+NEMDKaGOGBuljGhrW9wCWeFk0TonNu13EICrqvO2EY1iL2VjqltHTOLtIiPae02IseIsSpPhub8Hkwx89I2eOjptLA3qS3Y8Nlv/kPlt5d/2c3USXH64/j8q7YstYRFQPo20YFLJbUzW7lw3vdANGbq6ixvJdfFTNbKKuCWCPs3IcWkX9Hiujo5wqTB8uxQzEkuDSATew0gLvwnK+FYTEI6KmEbQ4u85x4m/Mp6Y0ABoFmjYBADW2cT3rJIPOKVACEIQAhCLi/FACEXCAQRcIAQhF0AIQCDwQSBxQAhCEAIQhACEIQAhCL7oAQi4vbmhACEJCQCATueCAVCTULXv6EtwgBCEIAQhCAiXSnhsuKZAxiigv1ssTWtsbe/af4Lm6K5Wy5VDD2XQzOYRw3aG3UylYH9ki7XcVF8OwmowbEZIaKJzqSVxkc4cAXHfj6AgK9wyUHpzmBD7OmlIdpNh2O9WVn6RkOTMWDj51NIAOZNl0nLuHtrnVTaceUvJJl1HY+F1yZgwubGaqCCSMtpI3Bzidw4WsR6EAzdDVDJRZRp5XghtVHHM0HkCwcuSn2zhstFFTxUVHDSwDTFCwRtHcALBb2iwQFYeyClaMisbpc8+WQmwbfa5XR0d1WC/wAh8NFVTw3cw6muiHwjyKmuK4NR4pH1VdEJYr6tNyN/iTeMmYFZv8xGkcB1jvWgGvLmN0NTik+EYPSxtpurdK/61pB7QB9HNQGvo8Qy90n1GH0cZ8jzDPJUHTfSzq2XAFthuOat/Ccv4bhDnOw2mEDnAgnUTcE3PE+gLskpIX1UNQ+PVPCCGPvwuLFAVV0ywOw6jy5Wtp9dLRV7KmZjGF12tF3bDjwTlSY7ljFMKppY8OinqZGNcGvpAdPeO8KwayjiraR9NWM66KQFrhw2O3JNOE5NwPCas1GH0QhkNy4h7jcna+5QFa5pnbJ0w4K9rZTpq2cWGw7C25re09OmFOeHFpwl+7RcA9Y3a6tGfA6GrxCHEJqcCrjdqDi48QLDnZYTZewuSuFc6mAqhsH6ncL34XsgKphqW4f064q+oY5sc9RHpcGmxtTjmrrje2RjXt4EXBTTX5bwzEK+OtqaYOnadV9R7rd/cnVjWtjaxrewOyBfggPO+aMAOZelHEaSkkngqBO5vWM7HFoPnW9CmeSc0z45lzEsGrg9mJMhksdLhcE6W7lWGMAw+PEJK2KnDaqV2p0uonfwvZYU2XMMgxF1fHSBlU5oaXa3cAbjnZAVH0b47h2GV2O4NmCm/nDKxzWvdBq1hgsSXHjunPpFq6F/RnmJuFUMdNAaGXq2QwaNR5iw9N1YGK5OwLFqvyrEMPE1QCbOMjhxNzwK7J8Bw6eh8hkpR5MAQG6jz480Aw5JmD+jilIBDhRAEEWIPVKDdB72jD8ec8PF2U17i3N6t+jwukpaU00MOmEi1tR4Wt9C5sPy7heGxyto6QMEgAcA5xvbhxPpQFE5UhlrOjXGmwtcXwYzVVBY4EXa0v5c+KleRszZbq8lYZHiOHsfVxwNEkL6S41XPI7qysPy/huGdcKGlEbZw4SNDib6jc8SuKLJGAxYmK6Kha2cEknW7ckW70BB+l2eN+TKIxUwiY6d4ayOMi3Z7lOshnrMlYO1pcCKZgN9jwTnimD0WJxCOthErG+aLkWNrclvoaaGkgZTwR6I2DSBe+wQG9xIce5VDmijOAdLlBjkURMElDJTvdpv2pHju8Fb+oEFvFw4hclfRU9fGKeqg1w7P84ixHDggKv6W4xj+IYPg1LqljnfJHLcXAGnUPRyXNVUhyz0nYfiHUA0UmFU9BfTez9brnbhtbdWjRYFQUdQJoYA2UG4dqO3zroxLDqbEohHWR9YwG4bcjfv2QFV9KtD7f5kwKDDAXVDY6hvWDbSTp99y4FWnUTCiwx80ly2KK52vwC0UeDUdA8Gip+qe7cv1E2+Vd9RCyoppIZW3ZI0tI9BQFd9GVOMQxzMWLyNdd1c8wFw4McPSrFk2aC7zRxWjDcPp8NgENJHobYX3J4eK6XN1NAduDxQFaZhzxh1ZirsJDqiNkdy97YiN2k3F+Fk+4BmXCZYhDhMT2QQ260dTosDe1vnXRPk3L808tQ7D2uke8l56x27jz4ruw7LOFYdFOylpQ0VAAl7Tu1a9ufpKA5/b+hxXCq00ztelsjHMeONhY7KP9FWES0D8TrWRtjpsQeyVjBtpAbawHJSKhynhGHVL56KjDDICHAPceJuTuU9wQtgYyKIaImCwbx2QG5CEIAQhCAEIQgBCEIAQgm3FFx3oAQi470hIAJJ2CAVCAbi4QgMXGw23Sjv5rAuDS4k2YBdRbEukPLGG1j6atxMRTsJBb1TzYjjwCAll0XUJb0o5QIv7bj9DJ6kvuo5Q/C7f0Mn+VATW654K6mqJnRQzRvkaLlrXAkKJe6flA//AL2ad/uMn+VVF0Y51wuhz9itRiOLuNG+KXQHROtcyAjgO5AekRsSdvQluoSOlDKOlpOKtAI2+sv9SX3Ucofhdv6GT/KgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJrdJYEg9yhfuo5Q/C7f0Mn+VL7p+US0kYsLD/wAGT1ICZuHDx5rQ2tpnVPk4niM+9mB41bcdlEX9KGUD2TioJPD6y/1KpcNzvhEfTZFXyYqW4a1lSD9ada5tp5XQHpC6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNHEW3v8AEuaergppmRzzwxukNow94BJHHiop7qOUPwu39DJ/lVU9LOd8GxHNeUajDcTvDDUTOltE4XBjsOI70B6IYNTeN97ghZ3UCoukzKjaOnjOLBsjY2lw6l/cL8l0e6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6QuUL91HKH4Xb+hk/yoPSjlD8Lt/Qyf5UBNbWuTay0VVVDSMD6mRkbCbAuIA+dQ93SflB0bv8AtcWHE9TJ6lBOmPP+AYllQR4XjJEut1tML9+w4cwgLuglZNG2SN7HscLtc03BCzO4seJ7lVPR/wBIuWaHJeA0+IYoPKm0jA8mJ5Nxx4BSI9J2UGPH/azQXbD6y/1ICag2AHci6hR6UMoA2OLt/Qyf5Ue6hlD8Lt/Qyf5UBNbouoV7qGUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuoZQ/C7f0Mn+VHuo5Q/C7f0Mn+VATUu2WqaaKnZ1k0jI4+Ze4DdQ/3UMofhdv6GT/Kod0qdIGXsVyjNBheKapxKw3EThsDvxCAuGCaOoiE0L2yRHzXMNwVtuqd6KOkTLlDkLCoMRxXTUjrNV4nn37u4KW+6hlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6L3UK91HKH4Xb+hk/ypD0o5Qt/pdv6GT1ICakHlZLfSLuULPShlENF8Xb+hk/yrnruk3KXUg+3AH/ov7/BATOjraetjL6SaKRocQdDgeHHgujYledugnO2DYRhlezF8VJ11U7ml0TuBcLcB3K1W9J+TxYNxZo/9GT1ICaMtp4H41lsoSelLJ4//AHu39DJ/lR7qWT/wu39DJ/lQE12QQCFGMIz3l/GaoU+GVwnfcAjq3NtfhxCkze8HY7oA1doABZJN78EqAEIQgBCEIAQeIQmfMWYsLwBkbsVq/JxICWnQ517WvwHpQDsbh/oSk2UKb0n5S03OLjj9xk9SR/SflC1/bZp9HUyf5UBNTa/P4loqaunpBeqqIYmnh1jw36VEndJuUmkE4uAO7qX+pVL07Z3wfFqGnbhGJ3c18dyI3DhK0niO5Aejw64uOCLqDU3SflFtPEHYu24Y0H6zJ3firZ7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1uuapqIaWESzysiibckyODdvjUT91DKH4Xb+hk/yquenXPuC4nkqsgwfFiZzC8dmJw3u23EIC92PbNE18b2uadwWm9wtgdcKs8pdJGVafL2GwzYk1szaWPX9afx0i/JO/uoZQ/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuoZQOwxdt/yMn+VATUbABa5pWQRvklcxsTGlziTawHFQ/3T8o30HFgXd3UyepMGeOkXLFblHHqWixQeVOw+o0WifsTE4A7jvQFl01VDWQiSlkY9h4FpBHzLeTa1uao3oWz9gNBk+mjxPGSZo442vDoXcdJ7gp6OlDJ5sfbdu52+syf5UBNrkcUXUK91DKAJvi4/QyepHuo5Q/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1usH3LTpNiDzUN91HKH4Xb+hk/yrCfpOyk6J7WYs0vLDb6y/u8EBMIa2lqHyR088Uj2AFwY8Ei/DgugGwXm/oZzphOHZlzJLi2JkRGGm0XicbEF9+A8FbY6UcoH/8Ae7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qGUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuoZQ/C7f0Mn+VATN7i1t+d1luQCLXUKPSflAN1Oxdum9vsMn+VHun5Rfs3GG3JH+pk/yoCVxV1NNUup4pojO1upzA4XAva9l1bX5WXm3I2dcIg6XsXr6rFjJh7sLLG3idYP65h7r8AVbjOk/J7mAjFW6T/wCC/wBSAmotfVvuluoUOk/KJGv23Gg7D6zJ6ke6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6R1za1uO6hfuo5Q/C7f0Mn+VI/pOykSwtxVpBO/1mT1ICWT1lPFMIZZ4mSu3a0vAJHguq/day839JOd8KrOk3A6nDcXIoo6ORsobE6xdq9IvwVtM6T8oNaGnFmggcOpk9SAm10XvsoV7qOUPwu39DJ/lQelDKFtsYaP/AEZP8qAmu1rXRbbbdQuLpMyhJK2OPFWukcQAOpfvf4lLKKqgrKZlRSOEkTwHNNrXCA6UIQgBCEIAQhCADe23FIRvdKVy1NRHSU75qqTRG0Ek2vYIDoO7gQluoW/pMypDUSQS4sGyMcWkdS/l8ST3Ucofhdv6GT/KgJrdYuc1oLpHNa0cybKGe6jlD8Lt/Qyf5U0Zr6Ssr1GA1cdHio68gaSIX947wgLEo6uCrY51NJHIwEtu1wO48F0A28eaoXoKz7geGZPq4sYxYuqTiE7wXROJ0l23AKxR0n5RABOKtaTx+syepATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATXj3pHOAbqu0AcSSoX7qOUAQPbZu//AIMn+VceL9JWU34XVxwYq3rHRODQIX8beCAnVLWU1U6UU80chidofpcDY9xstxvysvPPQ3nnBcMqs1e2mMFonxR0kIMTj2LegK0ndJ+UQN8YH6GT1ICa3Nt0XUKb0n5Rtf24BH5GT1I91HKH4Xb+hk/yoCa3RdQr3Ucofhdv6GT/ACo91HKH4Xb+hk/yoCa3RdQr3Ucofhdv6GT/ACo91HKH4Xb+hk/yoCa3SEgmxUL91HKH4Xb+hk/ypHdKWUA3/S7d9vsMn+VAS0VtOZ3UzaiHyhpt1esar2vw48F0CzT6V5tps5YX7uFZX+2ZGHCpY77G61uoA7r8Vbw6UMokavbcW4fYZPUgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJrdF1CvdRyh+F2/oZP8AKj3Ucofhdv6GT/KgJr6UcW7cVCx0nZRNyMXFrfcZPUsW9KGTxYe27d+H1mT/ACoCXVFdTU8scU80cb3uDWhzgLk8AFuO4JBG/Cy86dK2dsJrc4ZYdh+MExRYlTSTNETgNAIvxCtKj6TcpCJkbsUGtgs76y/Y/IgJyC3W4i97brK6hLelHJx3bizf0Mn+VL7qGUPwu39DJ/lQE1ui6hXuoZQ/C7f0Mn+VHuoZQ/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbpDY2JvtvsoX7qOUPwu39DJ/lQelDKGkn23bYbn6zJ/lQErqqyno2h9RNDFG4gXe4N3PDiuhtnWeHX8DsvPHTvnfBcUwaiZhGJ7iqp3uLYnDYSXPEdysnDekvKsNHGyTFg1zS7UOpf3n0ICwLouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQE1ui6hXuo5Q/C7f0Mn+VHuo5Q/C7f0Mn+VATW6LqFe6jlD8Lt/Qyf5Ue6jlD8Lt/Qyf5UBNbouoV7qOUPwu39DJ/lR7qOUPwu39DJ/lQEwqaiKmhdLUSMiibxe9waB8ZSxSxzRa45Gvb3sNwqY6ZekLLuJ9HOL0uF4qHVkjWhgETwfOHeLLu6OekXLdDleKOvxQNlDncYnnu7ggLcbbY7/GstlCD0nZSOg+2oNxe/Uv9SX3Usn/hdv6GT/KgJtsk58rKFe6lk/8AC7f0Mn+VPOAZpwjMBl9p6oTuY0EkMc3jsOI9CAfAQhA4b8UICO5/nlpsk43NGbPZRzOBHoYV5X6Juj2HpFnxeoxOpnDmVNh/OHs4tJ5XXqjpCAdkbH9+FDN+wVSfsU7vOOW2AqwNvxCgHH6nDBuVVVW/PZPUj6nDB/vqq/XZPUr9AAS7ICgfqcMH++qr9dk9SxHsbcFaSRUVAJ5isk9S9AbI2QFA/U4YP99VX67J6kfU4YP99VX67J6lf2yNkBQP1OGD/fVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsnqR9Thg/31VfrsnqV/bI2QFA/U4YP99VX67J6kfU4YP99VX67Ir+2RsgKB+pwwf76qv12T1LH6m3BdWryio1d/lkl/oXoDZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1LF3sbsFcQXVFSSOF6yTb5l6A2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SR3sbsFcLOqakjuNZJ6lf+yNkBQA9jfgwAAqakAbD+eSbfMl+pwwf76qv12T1K/tkbIDz+PY5YMHnraqqtY2IrJOPLkqyzT0V/yUzFHHi3lk2DvfYSQTSDSA25JcbcyvZT9yAWgs7/SmvMGB0eP0ElJiEEcsZFml7bkcL/QgKKwnoEy3i+HxVlDiE0sTwCS2ve7TcAkG3MXXa32OeBBzSamrMZ5itksuZ1TjfRFjwZO6Sry5VTW+uPuI3SP5MZ3NCvLA8UpcZoKerw5wlpJm6gSNNhcjgfBAUt9TjhGq3lNVbj9uSepL9Thg/wB9VX67J6lfouDY8O9LsgKB+pwwf76qv12T1JD7HDBSLGpqSPz2T1K/9kWCAoBvscMFa0BtTUgDgBWyepL9Thg/31VfrsnqV/WCNkBQP1OGD/fVV+uyepH1OGD/AH1VfrsnqV/bI2QFA/U4YP8AfVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsnqR9Thg/wB9VX67J6lf2yNkBQP1OGD/AH1VfrsnqQfY4YORvVVX67J6lf2yNkB5/b7G/BGizamoA9FZIP4LL6nHBvvqq/XZFf1giwQFA/U4YNufKqr9dk9ST6nHByPtmpuD9+SK/thskJsbWQHjPP2Uo+j3PmDRYZUVB8onLXjr3v4MBHHxXr7AHufgmHude5p4yb/ihebPZGkDpHy/sD/OH/u2L0ll518Dw782j/ZCAcb72QjmEIAQhCAElhe6VI4X4IA4bheTem9j8a6XKXCJJZhFJLI0Bsjmgdhp5eC9Yt2abryn0mkj2QWGFo/18v7oICWU/sdcHkgje+qqdTmh327JzCz+pwwe+9VU2/PZPUr3om3poHHj1bfoW1m7nX4XQFCfU44N99VX67IsXexuwR3nVFQfGskP8F6AsEWCAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1JHexvwVws6pqXDuNZIf4K/9kWCAoEexxwYcKqpH/wDmyepH1OGD/fVV+uyepX9YI2QFA/U4YP8AfVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsnqR9Thg/wB9VX67J6lf2yNkBQP1OGD/AH1VfrsnqR9Thg/31VfrsnqV/bI2QFA/U4YPe/lVV+uyJD7G/Bje9VU7ix/nkm4+RX/sjZAUA32N2CsFm1NS0dwrJB/BL9Thg/31VfrsnqV/bI2QFA/U4YP99VX67J6kfU4YP99VX67J6lf2yNkBQP1OGD/fVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsnqR9Thg/31VfrsnqV/bI2QFA/U4YP99VX67J6kfU44N99VX67Ir+2RYICgG+xvwRpJbU1AJ42rJN/mR9Thg/Kqqf12T1K/7BFggKA+pvwf76qf1yT1KNZ+6AWYTgb6zBZamWaHVI9nlEkhcxrSbAW4my9SWWEzGvjc17Q5jgQ4HmOaA8l9G3RhlzN1E6Oqq6mmxOAtZJTy1rmPDiCSNI32U3b7HLBi8ubVVOgiw/nsl/oTv0kZCqsPrv5RZLc6krBqMsUBbGJXOIGpxO9wLqT9GHSBT5vpXsniZTV8Ldb4Wh1gNVgQTxugIF9Thg9/tqp/XZPUlPscMGI+2qr9dk9Sv1pDhcIsgKC+pwwe1vKqr9dk9SPqcMH++qr9dk9Sv7ZGyA8/t9jbgrXFzaioBIsSKyT1LL6nDB/vqq/XZPUr+2RsgKB+pwwe1vKqr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqccG++qr9dkV/bIsEB5/PsbsEc4ONRUFw5msk9Sy+pwwY/wDeqr9dk9Sv6wRYBAUD9Thg/wB9VX67J6kh9jhg/Kqqr/nsnqV/7JD6OKA8u5/6E8LyzlmoxKmqqnrow4i9XIeDXHh8Sm/sWq2esyKRUyOc2NkLQXEk+aeZUn6dSwZArBYXs/8AdvUS9ilpdkSUctMP7JQF5IQhACEIQAhCEAG9tlUPslqyaiyKOoe9vWOkaS0kG3VlW8TYXKpr2UAtkOO5v9ck4/k3ICuOjDoYw7NmVqPFqypqetnhjkNquRu7mAnh4qXfU4YP99VX67J6lK/Y7bdGuGXHGmg/dtVp7ICgfqcMH++qr9dk9SQ+xwwa1jVVP67J6lf+yLBAUA32N+CsFm1NS0cbCskH8Ev1OODn/vVV+uyepX9YIsAgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pxwb76qv12T1I+pxwb76qv12T1K/rBFggPP7fY3YK2+moqBfc2rJN/mWX1OGD/fVV+uyepX9YBGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDBvvqq/XZPUr+2RYFAUB9Tfgmsu8pqNR5+WSX+hL9Tjg331VfrsnqV/WCLBAUD9Thg/wB9VX67J6kfU4YP99VX67J6lf2yNkBQP1OGD/fVV+uyepH1OGD/AH1VfrsnqV/bI2QFA/U4YP8AfVV+uyepH1OGD/fVV+uyepX9sjZAUD9Thg/31VfrsiPqcMH++qr9dk9Sv7ZGyA8/u9jdgrnBzqipJHAmsk2+ZZfU4YP99VX67Ir+2RsgKBHscMFBu6qqrc/57ItNV7HPC/JZTS1NSJhct1VkhHDwXoM2I3CxIJb8HfayA8Y4V0c0tFm32lzVJVU0JkDBUuqHxReZqJ1G23AeKtCD2POBSxtlirKh8bh2XCtkIIKtDpAyRRZtw2aCVogqnts2oY0F7Dcbi/oFlWeTc5YpkzMLcr5wLnMc4Gmnc4yktc4MjHZ2HmnwQGP1OuCA6fKKux4nyySyB7HDBuVTVD//ADJPUr4ieKhhLdJjPmuBvdbWm43CAoP6nDB/vqq/XZPUj6nDBvvqq/XZPUr+2RYFAef3exvwR4s6pqHDuNZIf4LL6nHBvvqq/XZPUr+sEWCAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKB+pwwf76qv12T1I+pwwf76qv12T1K/tkbICgfqcMH++qr9dk9SPqcMH++qr9dk9Sv7ZGyAoH6nDB/vqq/XZPUj6nDB/vqq/XZPUr+2RsgKAd7G/BXCzqmpI7jWSepA9jhgoFhU1IHd5bJ6lf+yLBAUD9Tjg331VfrsiT6nDBtY/nVTb89k9Sv+wSEXIKAoE+xywaMPd5VU2sf++SepV3kChflPpyhwOknmdSsqoGC8rnXB358eK9fzbwyX7j9C8nUgLvZMstwFZT/soD1kzVYE24ISM1c+CEBH+kT+g2P/mM37BVKexP446ORqx+wVdfSJ/QXH/zGb9gqlPYn+djn52P2CoS0kno7mkvvZKsHENFyj8wjIHcpVpZMx17OHxrPW34TflWKlFrKYaZnsgkLWXst54+VYGWNvF/zpqXmRhm3V6Csr+hc3lcI4uSeWRfCUOrFcslJs6r+hKuTyyL4SwdiULTYk7ehYO5prljSzusiyb/AG0h9PyI9tIe8/ItfrtLzGlnfZLZN3trD6fkWubGI2sJaCT4LCXUaEeWSoNjqkKZPbwfA+YoONj4HzFavte18/wM/BkPV0XTJ7dj4HzFHt2PgfMVH2xbef4EeFIe7oumT27HwPmKPbsfA+Yp9sW3n+A8KQ9pd+9Mfty4+YxtvTdHtxL8BnzrB9ctE8N/gZKhNj5v3o370x+3EvwGfOj24l+Az51H27aef4DwJj3v3o+NMntxL8BnzpPbeT4DPnT7dtPP8B6vMfPjR8aY/beT4DPnR7byfAZ86fbtn5/gPV5j58aPjTH7byfAZ86BjEg94z50+3bTz/AerzH3fvRv3pj9uJfgM+dHtxL8Bnzp9u2nn+A8CY+b96N+9MftxL8Bnzo9uJfgM+dPt208/wAB4Ex8370b96Y/biX4DPnR7cS/AZ86fbtp5/gPAmPm/ekLbkFMntxL8Bnzo9uJfgM+dPt208/wHgTOzGsOp8VoZqOrZrjkYWkcDuCP4qhcQixroexh9dQRS1mWpHa308cd3MaBpAMjr++ddXU/FnyP0aQ1wGq4vwC5cTmpcWo5KeupopoH21NkZqHG/A+Cfbtou/4D1eXI45czDRZgw2Ksw6VksbtjoeHaTtcG3ddO+ob238F5krG4/wBFuNCuw9xqcDmcGuikkcdFzqcQxu3AK5sqZ3pszYMysw0M67S3rI5BpsSL9911Sv6GnWnsR4bJqXWS6kxyYtKGMcI2XJs7jsEDGXj3jFyfb9m093t8B6vIfNRSakye3L/ubEe3L/ubEh16zl3/AAHq8x7uUo3CY/bp9vsbPnSjG7DtMF/QCsl1y0lLSn+BHgSW4+ITJ7eD4HzFHt4PgfMVn9sW/n+BPhyHtCZPbwfA+Yo9vB8D5in2xb+f4DwpD2kTL7eD4HzFJ7dj4HzI+r2+OTF05ZHu5SgpsGKxG3H5FkMUhJtv8i3LqNCXDGhjhYOAvul4G3KywhkEkYc3gVmfO+JdqaayjA8u+yPcR0j5dH/3D/3bF6Uy/wD6Cw782j/ZC81eyQ/rIy7+cP8A3bF6Vy//AKBw782j/ZCkHcEqQJUAIQhACOaEcygEG915T6T9/ZAYbf7vJ+6avVjefivKfSd/aBw78vJ+6CA9T0f2nT/iN+hbQLXstVH9p0/4jfoWx3AoAuUElazI0CxdY+KTrIxuX/OsHNZ5DTwbggrAPaPfN+VGth9835UU445GHgyv6Et/QtD6mNji0uFwsfK4vhLHxYeZOGdF0oIXKayEcTdYHEYR3/IsZXFNcsYZ3ITccUhHM/Ik9tYfT8i0u/ox2bJ0McUmsfCCb/bWH0/IsfbWAe9P+FR9o2/mNDHPV6UJmlxuNvmsv/5VgMcB30fMVrfVbaPMjJUpMezdG6ZfbwfA+ZHt2PgfMVh9sWq7/gQ6Ex7SE2TL7eD4HzFI7G7jZm/gU+2bXGc/gZKjIetXoRq9CY/bk/B+lHtyfgj51h9u2fm/oT6vMfboumL25f8AAZ86Pbl/wGfOn27Z/wAT+g9XkPt0XTGMZf8Ac2fOl9un/c2fOn27afxP6DwJj3dF0ye3T/ubPnR7dP8AubPnT7dtP4n9B4Ex7ui6ZPbp/wBzZ86Pbp/3Nnzp9u2n8T+g8CY93RdMnt0/7mz50e3T/ubPnT7dtP4n9B4Ex7ulumP26f8Ac2fOj26f9zZ86fbtp/E/oPAmPl0XTH7dP+5s+dHt0/7mz50+3bT+J/QeBMfLpCb8Uye3T/ubPnR7cvPFjPnT7dtP4vwHgTHp1iLkjZVV0k5FndUjMOWT1eK056wDSZNelvZAbw4qdvxd7QLxsIKxGME3BjaRbhZQuv2ie7/AjwJER6NOkF2MPbhGNROpcagaWS9aWtMjmNGtwYOAvfbkrJdJxaCNXM9ypbpLyfNisoxfLUrqLE4yHOMT+pDxq1PuQLm/zro6N+k32ye3CsZZ1GKwkBw0nS8uJIGpx37Nl10+pUKyzTZDpMuDW4DgSsmuLhwt4pkfjEjWhwYwsPdcpTjJ0B4YLH0Fcj65ax2z+Bl4EmPdzdLdMXt07kxvx3R7dP8AgM+dR9vWj4l+A9Xmh8J9CLnuKY/bp3Njfiuj26PwR8izXXLR8P8AAh0ZD4D6ClTEMbI4tHyFZe3g+B8xWa6xavv+BHgyHtCZPbwfA+Yo9vB8D5lP2tbPhjwpIfLJCbFMvt4PgfMVj7et1WLPmKyXVLfzHhSHvUO8JC8ct/BNjMXhc25af8KyGKQngPmWX2nb42ZHhscb+hZArmp6pk+zfoXRwK7Kc41I6omDWCvunM6ej6tt3P8A3b1EfYoi2RnW5shv/hKl3Tt/V9WeD/3b1EvYo/0GP4kP7JWSYZeCEIUgEIQgBCEIAVNeyh/oHEe6ST925XKqa9lB/QKP8pJ+7cgHT2OhJ6NsMv8Ae0H7oKzrnmqw9jn/AFbYX+bQfugrPduolnGxDeAueSUE33WBkDeKQStdvqFvFRlJ7syW6Nt0LXrZ8JvypDKzm4fEU1JdyEmbCfQkDjfgVpNRG3i9J5ZDw1KPEXmTg6L+hF/QtHlcXwkhq4gCdSeJHzGGdVkWTf7aw+n5Ee2sPp+Rc3r9HzJ0McEJv9tYfT8iPbWH0/Inr9HzGhjgkKaZ8ZYxwDG3v6Fq9vB8D5itE+r20Hhv8DJU5D0lTJ7eD4HzFHt4PgfMVH2vavdS/AeHIe0X9KZPbwfA+YpPbofA+ZR9s2n8X4EqjJj5f0pLpk9uh8D5knty7kxtvjUPrdmv+z+hPq8x8ulumL24f8BnzoGMvH+rZ86x+3rP+J/QerzH26Lpj9un/c2fOj26f9zZ86fbtp/E/oPAmPd0XTJ7dP8AubPnR7dP+5s+dPt20/if0HgTHu6Lpk9un/c2fOj26f8Ac2fOn27afxP6DwJj3dF0ye3T/ubPnR7dP+5s+dPt20/if0HgTHu6Lpk9un/c2fOj26f9zZ86fbtp/E/oPAmPd0XTJ7dP+5s+dHt0/wC5s+dPt20/if0HgTHu6LpjOMv+5s+dJ7cv+Az50+3bP+J/QerzHwAAWHBRnPGVKPNeFS0tWz66Gl0MgJGl+khpNuNib2XV7cv+Az50jcXc5hc5oBvawun27Z/xfgPV5FNZUzJjHRpjBwDNzteEE2pqsxiGNrGA3uTublwV9U1WypiZLA8SRuAIc3cKE5xwXDs34Y6jxKNreTJgwF7RcE2J4cFVOXc14/0Z4qzCcxXqqCRwDJjI+Zw1Ov6ALNC3Uuq29fKg+PgRKi0j0pdJqPJR6gzHHiOH01ZQ6HwzMa8X2Ivw2W92LuY8t0N2Wh9btovEnv8AIKhKXA9hxRq39CZPbh/wGfOk9uHfAYkeu2v/AGf4GXq81yPt0XTF7cP+5s+dL7cv+AxSuu2b/wC34EeryH2/pRf0pj9uh8D5ke3Q+D8yz+2rT+J/QerzHxCZPbwfA+Yo9vB8D5ip+2Lbz/AjwpIe0Jk9vB8D5ij28HwPmKfbFv5/gPDkPaAe8pmixpr3gObYeC6DicPp+RbafU7eaymYum8jjf0pLkcE3txKEm2/yJwvey6aVeFdZgzGUcGE28MngfoXk6hFvZLM9NZT/sr1jL9hk8D9C8n0X9peP88p/wBlbU8kJHrRnmgehCG8B4IUgjvSL/QXHvzGb9gqk/Yoedjn52P2Crs6Rf6C49+YzfsFUn7FDzsd/Ox+wVC5Mlwejlw4q4tpyQV2k2XHiovSlcfUM+rycRS3kRouc8Aud8ySx70rfMCVfJHcyb9p7lvGCSMbHvRbvN1khapVpPuTpiY6Gc2os3uWSFgqj7slKKE0t7kaW/BSoT3idhNLPgo0s+ClQsfD7pjYTSz4KBpBuBb0pUhWTjtyMpCBxKGu1GwO6HOjbG+V7mtjYLuJNtkyUOacErsSfRU1bTmoYXAtFQwm447A3W6hb1KmXFZIdSI/b96N+9F0XWn7zMTfvRc96EJ94E48UWCEXUbEYYWCLBF0XT2fIjDCwRYISp7PkN+4lgiwSoT2fICWCLBKhPZ8h8hLBFgi6Lp7PkMMLBFgi6Lp7PkMMLBFgi6Lp7PkMMLBFgi6Lp7PkMMN9gT2eNvSlcSXA9yEI5QxjBHzNVdDDW0ktLWM6yCVpYW3txFjwVGZly/i/R5j7sVyyx8uHSOc59NE0C1zYdpxPAEq+LAm55brCeCKpjcyqiZJC7kWg/SrPp3UnaPw6qzF8mudNdhmyfmmgzVhoqKGVrZmgmaEEksANrk27092APaZYcj3qlcy5VxPIuLHG8rmaSiYQ+eAa5dTALkaWgDirJydmqjzPhUbo5oo68AdbC97Q5psC4aL3Fr/ABLdfWEI/wC4tVmL/qYweOSQltjYsOo8BfiizebUvaY0AG7R5xO5HxoVLiT9po3ReRLN7koNhYbBCFlly3awZ7BqPejUe9CE28yNg1HvRqPehCj7xsGo96XUe9IhT8yNsmFmh27bJQ1olGpmkd6Dcm1u0N7rmmxPD4pRHXYjRQPbtaSoYz6St1vGdSqoxMakkkTPDrCkYALbnZdFwXcd1F67OGCYTgs1ZPidDI2JjnubHUx3sPjUSm6ccqxUnXibVuBYTRE7/wDmX2K0i40IRfkinm8yZWXsjRq6SMvcrVD/AN2xelMv/wCgsO/No/2QvIfShnfDM559wObC2St6qdxcXlpBuxoFrH0L15l7/QWHfm0f7IXQYjgAhCEAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP8AiN+hbH7tN1ro/tOn/Eb9C2ngsZrMWgiLYk76/ZosuZ1yLXW/EftlaSvkN9XqRuJw8my4pxjKBjZFvSskLj8Sq4rclRjgxsOYuUWb3JUqhVXwzNKIlh3JLNPELJCS9oYiYhrPgpdLfg/OlQsEmuB7ImlvwUqEqh58yNhNkEu5iw5JUy4vmvBsIqGU+IVkEchv2XTsaRa19ifStlGhUrPENw5JDzd/cSEt+4rXBK2VrZYHtfC4bEG/zrL3zu66STi9LJW5lqPekJvxSXQtbyicBYdyLDuSoT2fIgSze5Fm9yVCez5ASze5Fm9yEXT2fIYYWb3Is3uRdF09nyGGLpb3I0t7kApbp7PkMMTS3uSWb3LK6xuns+Qwws3uRZvci6Lp7PkMMLN7kWb3Iui6ez5DDCze5Dg3Seyi6DumE+xKT7iAkMDb8FkDe+3HZJZHBTJwxholpC7vFiOy3a3eq+6Scix42x2NYS0QY3CDJDOAXFrwA0GxNuAVgNJbx3BQ1r23DC0tPI7rqsLqpaS1U/19TVKCZVfRz0huZUOwHMgNPXscWNMjheQCzQ4Bo2ubq1Sx4Iid4A96gXSF0f0+ZmeW0DTSYtA0Fj4z1YcG3cNmi5uT8aYOjjPddQV5y5m+8NVGWsbUTMMTXGznOOp5ueStrq1pX9L1q17crk1xk0y2zpIv8SXS210kb2O3Y5sjCLhzDcfKlBsCW8uRXntKg8pbm/LaCzLdkgnuSWHclDg5gNrG/chS4qOyC22YlhyS3PehCnLROQue9Go96EKHl8jKDUe9GrvQhFH4jYS6R2m1ibE8FktVRU0tM3VWVNPTsPB00jWD5Ss1GT2hyQ2sDvgZbrIa4ON/Un0kF2xuRxCiODY5g7JHkYrhxaATcVMfrTHifTFlqgxd9BJLreHaTIyWPSdu+6+qdDhOFstZU3GNWx1dO1/c+rLC+z/3b1EfYon/APYZ47mQ/slMfSv0wZexzKlTh+Hve+Z2rhIx3vHDke8p89iiwtyK8ji5sJ3/ABSrhSNKLxQhCkAhCEAIQhACpr2UH9Ao/wApJ+7crlVNeyg/oFH+Uk/duQDn7HP+rbC/zaD90FZ99SrD2Of9W2F/m0H7oK0bKJLKwShkxuZ0RAB4gfSUz7k7m57055g+yN8B9JTcvmvpFUqQu3GO2yLO3inAx0+lG/IrJC88q02sNm6MYmNgeO6NLPgrJCjxH5mWiJjZvcize5ZITxH5jRExsz4KLM+CskLH7hsY2Z8FFmfBWSE+4bCCwHZFkpc7uKS9nDbZcWK4nTYLTvqsRlZHA0FxLnhuw47krKFOVWWiKIk0kd9yBdJqKa8Fx7DccY6bDqqGUNJaWsla/ewPI+lOoAPBKlOpby0SRMWmgBPejUe9IdkLFrzMU0xdR70lmniN0IWOmLMhLN7kWb3JUKNMVuPkJZvcize5F0XU+z5DDCze5Glvci6E9nyGGGlvcizfgpbouE9nyGGJZvcize5F0XT2fIYYWb3Is3uRdF09nyGGFm9yLN7kXRdPZ8hhhZvcize5CVPZ8h8xLN7kg1abudeW9tVve9yyQns+RGEI8NeAHNv8L0pszPgdHmbCJKDEWtc4Auie6/ZcQQDYcdinRJpB52K2UarpTU6fKIcVJYKCo6/Gui7MElNXRSVeBl7mxyDTG1jfNYOZKvHBsRpMaoI6zDntnjffdt9rGx4+laccwahzBh0uH4nC1zXEFr2gAixuO0QeaphsWO9FOPMe101Tl+d7Wv7L5eraO086jZrdzxXoXGh1enttVX4/dwc2XBl86d7BtzzCGhrr6W3tx9CbsvYzRY5QR11DURSNLQHsbI1zg4gHgDtxCcmkkF7hpDvNFrH4156pTnSk6dRbo6VNSQlm9yLN7kqFq0RMhbnvRqPekQp0ryAaj3o1HvQhTsTsGo96NR70ITbzGwF22+/oSOMbSNQt8aXh6ViXNY0mW1hzPJSnjhhpGcYYXt27PepXG4FvcQNwoMzGMJZPofiuHseDux1SwEfFdb81dImX8s08E1RW09QJCWkQTxuIsL77r6F6LUpwpNy7lZctZJjO5ogkJItY/QvKVHt7Jho7qyn/AGVauIdOWU44LGRx1s1ANmiv+0qVyZjUOYenykxSma5sU9XAQHWuLC3Jesi9jn7Hshm7R4ISR+a3wQpMSO9IhvkbHx3UM37BVJ+xRIBx08vKx+wU/Zw6XcKq8t45Qsw2sa51LLHqMjLbgjvTD7E18ckWMSRggSVIdYm/vCoWxKex6NIuubEQTTFdXNc9f9rOXNeLNCa+BMHiSIsOACVIlXxlLPJdJghCFOEMghCFDSYyCEITABCEKc4JQIv6LoQFHPIaTOTE6Q1WE1VMx5a6RhaLBU/lDonrsMzpUYrVVkwge+RwGlh4m45q7EKxs+pVLWMoQSaksbo1ukmGyNkiFWmwEIQg3BCEKSBDYJRvwQPSkPoU7E4A7I5E8gjWxoJebAcVDcU6R8Bw/Gn4XLK3rg4t+ytHAXW+jb1Kz9hZMJSSeCZ87JGkOJA5JXPbJC2WHdjm+PJaBKzqyTsRsd1pjGUnhIhTSW5x49jdBgMIlxOUxMOwIaXcr8lswfFaTGKQVNBIZIe8tI5X5+KrvpXyXPnWGJtJPHHpcT2g4+9tyUh6LsqS5Qy6aCeVkr3vEl2hwHmgc/BWte0toWarRlmflsa6VSVSTXYmSEIVVpec7YN+GCEIUZ32AIQhCAQhCAEIQj3Mguk4C7j2e5BtaxHFI1wZ2XgqM7bojYxla2WF0crQ+Fws5h4OHcqbz9lOvypiX8osrSOZE92qeJpbG0Fzjq34nZXMbsB0i/cibQIbFhkDxZzRyvxVhYX87Z6HvB85/wDZhUimRbIWcqHNuFtkpJSZ2j67EAbbkgbnwUquPBUx0g5IxHA8YOZsrEPc09YYGsdI46WgAd3epvkLOlNmWlDHOFPXQjq5IpXN1EtAvYD0ldd909VI+s2zzHy7/RGEZNPcmNja6Fi3ZzizsTcw7f5krQ0Dsi3rVHlz3XHxN0ZZFQhCywnwZAhCFGyIyCRKhJbjhZDtht7Xvsd+SqjphyHWYvTnEcHrJmyN3exrWgAlw5kq1iyzLlpG/NcmLUIxHDn0zZGML7edf+CsOm3Mre4i4pP5muosxyUFgOTW4t0V4rmKrxiqlibTzAwOhaWDQ7Sd733sq86P8g1edcbFJQxBtExxu4Fu+mx4H0Kf9IWWMx9HuXW0FNWU78LxB74NLYXEt1AvcSXK2vY15arsDyZNNXFnWVczaiJ2gjsGNvevrtN5gminlyUx0mZJoMl5xy9BQbufO8Pd1YbezGkcD6V68y+f+w8O/No/2QvMvsl+rgz9gdZIC5jJ3EgGxd9bZwVnZQ6WsNrY6DDo8NrGObFHHrc9ltgB3rMgtwG4QkAHJKgBCEIASXsfFKsb7utse9AKNuK8p9J39oDDfy8n7pqvDPPSNQ5SxKOmqqKpqHPY12qJ7ABckcz6F50zFj9JmLpuwuto4ZYQ+aQubI4E/YwOXggPYVH9p0/4jfoW5aaP7Tp/xG/Qt3eofAIriLT5UVz/AMF14l9tnwC5Bwf4r491X/m1fmy4o7U0CEIXDl6UZoEIQmA0CEIWWQCEIWDk1siUgS3SIWeU18TLCFVMdLHRfX5oxuKuw+qlF+sLmhrbNvptxPoKuZC7LC+nY1PEppN4xua6lNTWGNmWqKXDsKhpZ3lxYBcm3cAnM+cbcOSELkqydWWtkRjp7iISoWJmCEIQAhCEAWRpSXsDfgmLNebMNypAyWveAJCWjthvAX5rZRozrz0QMZPSPoIN7cktk15cxyizBh4rcPcHROsTZwduRfknQlY1oujU8OS3Mo7mEsjYYnySGzGNLifQBcpowfM+E4xVmmoKh0kwIBBjI4i/PwXZjVB7aYZU0geGGSN7QTfm0jl4qq+jXorq8q5ldiE1VDIzU0gNa8HZpHPxVna2ttUtp1akmpLtsa5OalguK4uRzSJXO1O7W21kiqFlps2pCoQhZJrGO5DyCEIQgEIQgBHHYoRe26YMkINRGm1wOaRnAtLyClfYAOPNZnS0BzgVCfkQ2kYgOd2zI6N7drjmByUJ6R8jUmbqXymF5o8RiBtNEwOc4uLbm5PIN+dTYFrXX5FILxu1NF2nuXVa3VS1qKVN/d2+hrlBFK9G2fKvAsSOXc1G9Vc9W5zy8lpcGt4Cw2V0tcHEPZtHJ2m+Ch3SJkigzVhbnN+t1jDqYS48Q0gbDxUByJm6rydiH8lc3RSeQxkxQVVhFHpY02Nzubusruta0uow8W22muVwvjjlmCk4l4Bu2xuEHYX5LCJ7ZWMkY9srX+/ZwstgawHj868xUTjLS+TdGeTFjg4dk3S7pNQc7s8uKyUxUlyZZE3SoQsspjIIQhCMgmTN2Xo8x4RNSPkdHIWERua0Egm3entKy/WMPIG5WynVdKSnHlES3WDy/geVa9vSK/Lldi9XSh0LqhmhjXam6y0bcN7FRnpRwAYXneuwjD5nVNRSvLXve0MPmgj0d6vbOXR1i9djc2Y8GxKjilggczS+J7zYFz+W3MKuOinBsYzd0rDFq3TJJRSh1RIIiGjWx1r24eavr/TaviW0ZY5RUVfewdMnQ1BgWQKjGMUcW1bmOcxvVtN7s1jcH0KzfYozF+SJGuAGlsIb/hKlPTe3R0dVMcnas1wuNv8AVPVO9A3SRRZUykaaow+qqHaYxqicwDYHvPpXYjWeq0JgyfmCDM+EMxKCnlga5zm6JHAnsm3LZPYuH3uNJ5IDYhAFhZCAEIQgBU17KAf/ALBx/lJP3blaWY8ViwXCZq6eN8kcdrtaQCbm3Neb+nDpJwzM+VGUkVBVxOEj7Oe9lt2EcigLR9jkb9G2Gfm0H7oK0VV3sd47dHGGgkFvk8FrfkwrQUPzAw5gadbfAfSU2c075h85ngPpKaDxXzL0oWL75pFravMcCoQhecXLRvxgEIQssE5BCEJgZBCEJvjJOECEIUb8ogxcTwA2UV6TstS5qy1PRQSvZI6N7RYA8bd6lnJA4WW61rSt6qrQ5XmQ4qSwyp+ibJFbk7r21lRJJre5wa4N5taOR9CtSBxKR0AJutjGaQtt7dzvavi1Ek/gIpRWEZEJEpKRc2RjAIQhQ9wCEIWOnyAIshc9fVQUVHNUVTgI4mOfxtwBP8FsjF1J6IciWyN+17JSLcVDMr9IuEZgxKShp3We1wbvI032J5eCmXmO232vstte2qW7XioiLbFIuLhRnFc4YPhmJigrKlzKokAMEZO5Fxv4FSZjiHXcLB11SPSV0Y1ONZwGJwVEbWFzDYh54MA5bcl19MtqFzUlGs8LtwRLUnsXVTSNnp45ozdj2hwPoKzG6YcutfR4XS0sjgTDE2O/gAE9MqQDZcNWKhUcVwbHCSWTYCDwSouHbhC05ZgsghCFOSQQhCkAhCEAI03+PZCAxr7jmN1KIbMHAxkNI1A8zyXNjOF0mL4dPQYiBNTSsLDrbcNB4my6G9h5DlkdnB597uB3rKFSVF6ovD+AcNS3KDxKDFeifMXlNO91RgNQ7V1b3iNrS52kWDbnYNCu3AcapcxUDK/D3mSB+4BaQGC5G1++y6K6ngqaWSOpjL2yAjblcWVG1eC4t0VY+MQwwGswqY/XmwsLixrBtdzthcvPyL0f7LqlD2sKovuz5HPhwexfQN725IadQuE1ZezBSZhw6OehlY+SwL4g4Fw2F729JsnO92gt+xjzmc15mrSnRn4cufwOiMkzNCQFKizyjLHmIlQhORkEIQowRkRzi0EgcEkrWSxuicAWvGknuusg7QdVr2WTjeTgpWzyOTzv0yZLrcCrJswU1fOKF0wDgGtAb1jw0c781w9J2T6bAsiUGITYlPiD6p0rY+vha3tAcNj8Su7pCyw7NuAy4ex7WudJG4XufNeHcvBUH0kYTmenxelyhV1MFUHPaynMUDgC6RgNt9zxX1H0bunXtVqSyiruI+1g09EfRJNnJz67EYxBh8ZLQ9oa/fSHAWJHenbKuDwYF7IOnw6j3ghrINPZ08RfgvSPRrhMmC5HpKSpbplEDde1t9AB+heacUxWHBOn1+IzAyxwVMMmhhAJs0d+yvm9zQvI9jsPZHghV1lbpUw/MGIPpIMPqonsiMpc97CLAgcj/eQhB0Z+ynl2LJ+PTRYHhkczaKZ+tlIwG+k73squ9iiWNbjgY0Na2rDQALWGgq7ekX+guPfmM37BVJ+xQ87HfzsfsFQwuD0aFor/ALWct55LTWfa7/ArTcrNKSJj7yIolWLOCyXxhrDwXSBCEKACEIQAhCEAIQjgb9yhvSskggKI5xz7hGVa2OmrZYmPdpNnSW4/F6FIMGxSnxnDoK6jc10UzA+7Tcbi4XXO0q0KfizWzMFLLwd6FjzSrk1f9sbG1ghCFJAJClJ7ljueKjSTlChKlAIFwtUlQGcSssPGDFySeTO1ytM0oYLXXPNVl/ZbxXDUTRQguc4avFb6Nu5M5q9yoo21k5dDKLkXaRx9CqaTouixjNL8Ynndu8uI1NPFtue/JTmtrjOSGHb0LRS1T6ZwcLq/tFUtqclTeGyone5qJk2cPJ6aOGI9hrRztyTcXOc9zbm10zTYvJp1X4eCYsU6RMMwSVjMRljaXi/afp9HcuKh0+tXk3FZZvlf05vSTaI9W+0bnDv5J0p5OsZu4kjbcplw7EKPGcKixCgLXRyEi7XXGxst4cAWmPzgN1wTo4bhpOqNTwkO0kjIheR7GDvc4D6URyMkF43seO9rgfoVX9L1BjON4I+DCWSvk0OFmMBO9vUuzoWwPGsGwKRmNNlYTK4hsjA08G2+grsfSoxt/G17+WDohW1FjoQhU8Z7YZsBCEKTIEIQgESovZI7cKXnS8Ey4GjNOPU+XcJlrqoXa1riLNLtwL8kxdHefqHOolbA0hzCBvEW8r8085ly9S5hw19FXAGNwIALnDci3IhNmQshYXksSGiYGvkIPnvPK3vie9XNBWnqUnN+325NCzkl52HeRukaLAlouTxBQRbc8SgKkT7HTjuYtuQ5gaJL+8f5qqXpAyTVYZWDHcpvdSuYQZooHiEONy5xs3c3sPFW6sSNjqN5HC3/AJV32l5Us3mO8e6NM46iD9HOe6TNFO2mq7wYrGAHgsLbuNz5zuOwU6B1bgAeCqTpLyJMyr9vspxvOJsLnS9UC8kmwGzjYbX5J86NM+0+YIjh9e9keKRAtdE5w1GxDRsBbiu68sYXNNXNpx3X/swjLDwT9CNjqZwcDYN5lF9W7uy7mw8QqBby090blIEIQs44eyMgQhCh9w+DFwceL3W7rrIaC1paO0PQg+cfBA4hb7X9/H5owl7pxdKuWTmfJ80TQHVMDHyQg22dpsNzwTX0N5xhrsJGA1ZEVZhVqIixGrq2C5uePiFZWwhZcdk+d4LzacGNf03TVOANN4zO2ZzLuGrWSb3PcvslH93H5FNLk4vZIjV0iZeikY18PlD7tduHfW2cQr+y5lTAI8Jw6eLBcNjnMEbzIymYHX0g8bKg/ZFk+6HlwOHbFQ+57/rbF6Xy/wD6Bw782j/ZC2kHcLckqQJUAIQhACxO5I4X5hZI5lAM+KZcwbFKhsuJ4ZRVcgbpBnp2vI+ULy/n3DqPDenrDYaClgpohNINMMYYPsQ5Bet28/FeU+k7+0Dh35eT90EB6no/tOn/ABG/Qt3etNH9p0/4jfoW4IwRjE/ts+AXIOD/ABThjf28fxQm/uXyHrMdN7V+bLej+7QIQhVi3ijZ3BCELIlghCEIBCQ299wQQ0A34gXCjKXzMkKhN2O4vS4FhT6/EXtbG0hoLnaePD6Ez5Jzxg+a2O8lmic9ttg+/Ekd3oXXSs68qbq6djXOooslBQEAlzSfe3sgCwC5FvuZqSkhUJRvxSEAcFJAIQhACEIQAhCEAjhcWKhXSfkWPO9HBDG8sMby4m7W8W25qbIW2hcTt6iq0eUJR1EbyDlZuUsDZh7XlxAbckg7hoHLwUkIukuL7rjxfFKfCMNmra1zWwxN1EuNha9v4qZ1p3NXW17TJS0I6zZvMjwQCW69TnHuuVFMp59wbNNbLS4bNE+ePVcNk1Gwtfl6VLApr2tS2m6dTZ4yIyU1qFkADruIAtdam1ELn6WzROd8EPBPyLRjEUs+E1kVPfrnwuaywv2iNlRmSMn5ro+kWWsroqltMZJSXOiABuwgfOuqxsad1TlJyxpNbqNF/oSvIB7W4sLrHY8OCrdSb2M9WRUIQpAIQhCQQNyhA3KPOCRJC2NjpJPMYD6VWR6W8OfnSPBSx1jI1n2F3Nl/BWNVNL43xPB0OuFXdB0WYRFmxmLvjGsSNffXJybb4VlcdKVq9XrD7bfM56mexZcTopqZsjb2eA4bd4SsJbHvuFjGxsUbY2ea0aR4BZKom025wNsfiINIlJABu21iNh6VGc85Noc04XLDJTQCr2MU+huttnAntEbXspPeyVztQsttvXqUJKtTeGJRyUXkrN+LZLxxuX81ulmjLmiKZ73T+e64GrgLD5Fd9JU09ZDHUwEOY9oOw71Hs75RpM14LPS1LR5Q1jjTPu4aJCLA2BF/AqrcqZnxXo4xWTA80tkbhj3l0M8rWxs0izG8iTuFeyo0urU3WoLE+6/WDRvFl7WDXO08CgLXTTsqoWS00gmpiT1b28D3rY2+qxcvOTjKE/CqbM6YyWBUJHnQ6xSpjD0hghCEIBAJ5AH0FCBbU2/G+yiXBI5YTH5RR1LHNa1rw6MgekW/iqaw6Z/Rd0lVEE7GtwrHJBqlbuWCFh5N2G8nNXTl0DRKffajt8QVXeycgo6jJ4hIHto+KXyZuo6ibs1WHA7WX17pH/EiU9X32STppnjqOjaqmgIka5jiD4xOKgfsYMAwfE8lSSYhhdDVyBsXanga8+aeZCdMzUdZhvQk+Gp1B5jJs5oBsYCl9ikSMikd7Iv2SrEwLkw+gpsNgFPh9LBT04JOiJgYBfjsF0hp16rm3cs0KSAF7b8UIQgBCEIDRW0tPW07oKyCOeF3nMkYHNPxFUZ7JDLmC4ZkiOXD8Hw6nk6yTtxU7GH7GTxAV9KmvZQf0Cj/ACkn7tyAcfY6XPRvhpBJPk8Gx5fWwrSsqv8AY5/1bYX+bQfugrQPAoBlzAO0zbkPpKaSpDjP2qPEKPHivm/pXHF4n8EWdn7oIQheXXLOpghCFJiCEIQkEIQoeG9SexLYIQdx54twsoQOk3Avb5uEy1UHXOLQB1nMm3ct1C1q3CcqaykYNk3B3Sv24LFjmvjZJG4OjeNTSO5KtWGtmZrgVrroJSDZFroSJzSosiyEMEI4IQxBCEJq07koFxYxQRYlhtRSTEhssb4xYX3c0j+K7UjjYFIzdGopxIe+xUmVui1uV8dkr2SuIe7UBqbt2SOXirSa5zbEm9xbcrW/Z6zLA4ancBuV23N5UvGnU3ZsjHSgfOQ4B3Cya5p5Hva4udov3phr+kbL9FjcmETywtnY5zCDKbgtNuFk+z1MMzW9QQWu4WN1LtqtvipUhhM2UXGfBsha4v2vY7rtf1MJHWzRsPc54H0rTSPBsSbWFlS3TZgOYMXxmnmwhsz4mGQksjBG7W2+grZ0+1jeVnCcsN8CtKWNi/GlpaCwgi3ELJRPJs9ZS4JTQYgT1zWNB1NAOzQFKYnh7brkr0FSqOGc4NSi8bmaEgO9kq52jDIIQhESwQhANlJAKB9JWfqbJ7Kdsgd1skgabRuOxaTxHgp27bdQHpGyRSZwdA+cBz43h3F3JpHIjvXf031bx/8Ade7j9cGM4yksRJLk7HYMyZfpq+MEGSNj92kcRfmni2qxPBu5THk/BoMvYJT4fBYCONjLXPIW5p+96AtF6oOs/B90yipLkTc72BZ6fUueop6OuppIKmBlTSvAD2zRh23geK6Uh4bLRCp4U8rkNZ2KNx7BsY6NsdGLYPLLJhUz9L4etIa0OcXnsN7g2ytTJ+ZKPM+HxV1G60jmh0kJbp3N+R35J6q4IKulkgqQDTPaWuBPO1jvx71SWasuYlkHGn5kylFKaHUZHCNvWCxAYN3k/CK9BRnR6tDwZ7VF38/6I0PNNl4FKOCYMk5roc2Yc2egkYZG3D2tdqIcLA8u9P7NRlOvtW27rKjuKM7WXh1FhnQpqSFQk/8AMHelKtWckAhCEAjuBSu1B9zwt3oSWuAfSoZKM4SRWQmMkBwJPJQzpty7JDLRZvomjrcHk8umNwCWxsAHpPgFM4HWq4x6CnbNgpDlrE/bPT5D5O7rdRLRptvuN19H9E/+MytuffGfIeZqbMuXI5Y5LzCMB7TxB0Akb+K87mmpcQ9keIamkglgfVwB8UjAWkaeFiph0E4FLBmvG8Rwy4wfr523HabqLWkbk34WUVoyHeyXYRwNZT/sr1Hc5u56bw/LGA0MnW0OC4bTylukvipmNJGxtcD0D5EJ4bwHghSQRzpF/oLj/wCYzfsFUp7FDzsd/Ox+wVdnSL/QbH/zGb9gqk/Yn+djv52P2Co5HCPRx5LRWfaz/AretdSAYHg/BP0LVW3pyJXKIgzgsli3iVkvjVVYm0XS4BCELWAQhCAEIQgBHIjvQhGs7B8FZdJvRvHm/F4qkzys06BZkjW8Ae9p71NsqYM3AMBpMPY9zxFE1l3EE7C3IBOoY0cAsrXO3Ervr9RqVqCoT4RrjTaeox5rJGm3FIfQq7U2tKN+dQJUWWLnAc1OhoxlJYyZcNytM1U1osLXXDi+YMNwmNgr5wzWNrg8vAelap3Qy0oq6YiSI87W5Ls8CcUm4vc55PKymdTq0hpAXL1heSXLjZVwOIBeGE8rXXHiNe4HRA6wPMLpp27bK+vc6Fnk7amrZFfSbuTFVTvmk3JAWDiXOu5+p59CxY4G+pt1aUqOkrKtfWsgRptp3ug3PZIQ3ckh1rcrIJJ3vuuz3VlHNu3kSftR6BxUBzRkY5lr4+skkYGXHZcG878wVPLkOuU84VTa263b33U07yVtmUUTTo66qcTtypgzcBytT0MZc8xl5JcdR3N+QC6WENfw4p1pTanIPEhaTTapNQGy8s67lOWe7yeolS1RRqpI3Ml1lrXg8nC677uJ4Na34LdkjAWDbYotd1z53euadRt5zsb6VLSjJCELXN53RsbBCEKSAQhCALXF0gS3NkKNyciOta/ckYA7tPJWSQ7ix4JhDYQAvNzwCyRfa3JCLkbtiXQ0XB+Fw+JFko24KdWHiJljyMdPVxua0Ndr84O3VUdIeQJaepGP5Vc+GtjIdJEHaWua0EnstFzc25q2ed+ayY8h5LTpdbcjmO5dtpfStZ+zx3NU47Ff9G+eY8WjZheMAU+KwDqzdvVhxAuTdxuVPnElxLxZ/O3CyrTpNyD7YynHcD/m2KR7lzWay4udubk7bI6NOkQYxKcHxz6zikViHF+syajZosGgDh3ruubKnd0vWLb713+iNcZYeGWWk5pXNIe1pOkkXAtxCQOLnOBboLfTe6o45ht3OhNCoQhRLYYysAfOPggcQgLJo+utB4LrtY/t4790YT90k4DX04jcXAPFrhUn0YQtg6VMwMaXuPllTu7dXgLCNultyOSo6mklyn02GmqAXx4pHPWi/Z06nEAc78OOy+xUViEV8CmfJEPZHEe6Nl1u9xUPuT+TYvS2X/8AQOHfm0f7IXmn2R1/dHy7c/8AeH7d31ti9LZf/wBA4d+bR/shbCDuCVIEqAEIQgBHMoRzKARvPxXlPpO/tA4d+Xk/dBerG8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C3d600f2nT/iN+hbkBHMb+3j+KFwDknHHBarB52CbQdz4r5N12OL6p82W9DemkKhCFTrZJG1AhCFkAQhCECEAixQQCHHnZB3RpFxtwTZPJkhkzlgLcz5dkw+V7o+01wLXBp7N+8HvVd9HWQXZSrXujnlewkedIDwv3Ad6t9wuN+6y430biOyfmVna9UqwpOg8YfwOKvTcnlGhtU9rAzle/Nd8U4e0JsmjfGd90RPLbEGy5ZwTjtyRTqeH7w8EbXCQE81rp6lrhY8VtIdfYXB5rnktPJ1wkpcAhaquphoqZ9RVP0RsBcSRyC48LxvDsWc7yCpEjmHSWhpHp5rNUakouai8L4EtpPA4oSEFKFqTyTgEJNQDi0dr0pGnsm/FMrOBgyQkbewvxSqI5g9uA2IBd2/BNuZMHjx7A6nD5XuY2VhZdpAO5B5g9yc0hF+K206k4TU49hLdYK96O+jGnyXilRXQ1E0jpdYs+Rrh2rdzR3Kw0gAve26yWy8u6lzU8arzxsRBaVgTw4rJpsSC2MOPvgN0llgWjuWiMtGWs4YaTMmfWgWu7V/jRty4IQsIbLSAQhCzAIQhCQRwQhRlmSMWnWSHBDQBc7rIEjggGwsFGEQ1kEIQsmtLzFDAhWLRYrJKoxqeWQlgUu2A4A7E8wmDN+U8OzNhroMQZZwtoljDde243IPNPpFwQeB2QAALDgttvWqW9TxKTwyGtRROUcdxro6xdmEZgJnw6ctjjmdreWEXc4lxIaPOG6vCkqKbEqSKqo5dTXBp2cOYvy8U15wy1R5swuWixBoc6RpayRwLtBNrm1xfgqewXF8V6MsyDDMdc6XCZCWwOeRGAC4NZYC581pXoZ06PV6euDxU8uPot2aGnB7l+OaHPaCULRSVUNdSxVNJ24Zhdsm4sL25+C3tP1yxXmpRlTk4T5RvTygQkJtIQeCX47qMkgkJIc0gcClRcgEhRLjYDvgDLNfJf3xFviCrH2RlO19Pg1UCQ6JlQQORv1fFWngLgad5Dd9R3+IKvvZDUEs2S58RiJIoonm1vhFo4/Evr/SlptIfIp6vvs39Lwv0Uch/Nwf/wADlH/Ypj/9hr/3Iv2Su7pDxE4p0PGZkPZbDoPavwgN+Sb/AGKLj/IZ/ZsAyHe/90qyMC8kIQhAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWgeaq/wBjn/Vthf5tB+6CtFAN+Mfa3xhR4+cpLibQ6nNxdRlu4BPFfOvSx4uYy+BZWb9kVCELyi7nWCEIUmIIQhACEIWMoxz7PAFj0B3a1bm6qt/Q9RyZtZjJqqkFpYdPWst2Tfhp/irTJJFuSDuLHguyyvqtmpKHfYxccmMUbYYIoWElsTQwE+hZJOCVcuW92bFwIVkOCRYvJtshJjJLYpY5NS5ZGuLxd1hzK4ZMw4PR1xoZatvlIJbbSeIFytlOlOp7ibMWx8ckWhtTG9upjrtKyMwEZNuPArFxalpfJOlm1C1tmYLAm5WYcCsXHOzGMCpHC7Si1+aVx0jvSby8oxjzk43tu9bgQxhvwWTWtLr2WFRYNNkc2mmjc32KTzp0dw1+a58Yjmma98r36RI0DtOvw03+dTOgc6KCNjiSWd6ea6IPkJtuuKaCwvbdegne+tUYQqdjttaUIozNY7TpabLVJUP2ZpY/0uF1qLmtaRaxWmGYNdYrTCjhuok0b9C1bjzSEAC5BPoTzSybBRyjs02O990700tnWXBVi222c9anzgeWuBWS5oHWcTyIXQ3ffkuSRXuDTFQsnW5LFQiGCLXQjgpIEfuLLmdAQSQdzta66khF3ajxWUSU2uDngiLHXedz6V0b3PchwDiC7chLda9TawyXJsEDihClylBJLBGRCRI0gizR3LXPBBV0pp6iNr6W1i1wBNuPA+lbUmkXvbdZQeiXiR2aIayikcz5axPIuPsxnLLpH4W1zJJYHku2adb+ywDjZWdkvNlHmvDmzxPbDWMAbJE6zO0Rc9km6kLi2aGSOZv1uVpjdHfiDsVSOfMoV+U8YdmDK5MTZC58kbGgXc4284k8vQr+nVp9Uhpq7VFw+F95ow4su1trbAjxSqKZCzzRZ2oBPTNbDVi5kga8yaRewOqw4qVt7WoDzmmxCpbmjO3m4VFubovKBCRpu0Ei10q1NY3Jewh4JTsweKRB96PSsXxkySN1FHrrI/A/QurpBhFRkbHInEgPo5Gkg7jZacMJ9smN5Wd9Cd8coPbPB62h16TPEYy61+PoX0n0Vi42uSruX7ZW/QLGGZXxqNhOhtc8E8yeqYqkojf2S0ZG388p/wBlWT0K15w7FMx5dkPWSGunla7h2Wsa21vi71W9GCPZLsBFj5ZT7f8AlXp2tzn7nrNvAeCEN4DwQhBHekX+g2P/AJjN+wVSfsT/ADsd/Ox+wVdnSL/QXHvzGb9gqk/Yn+djv52P2CoRL4PRywn+wv8AxT9CzKwl3if4H6FrmsxkguSHjiVkhw0yOb3IXxu4WKskXMeAQhC0kghCEAIQhACQlKkIJIsNuZQlCovbdBBuNIuOZSPBBAAuOax1BrLFBJSFzRxKwlnbEO0mjEsSZGCWnj4rohbyqcGmrWjSW52VdU1l7OHypkrsU0A9r50x4jijgfPPypgr8Sc5p7RV/Z9Ly05I83fdZUIYTIt0qYPX5jqoXUlRoDdXF7hxI7r9ysbKUz8Iys2jnkEj7O3vq4j0qFDEXh1uIHDdbvbWXTYk27rr0VxQU4Rp44KSPXnh7/1JPJWwtks5zu1ve/BZw1sEkgja8XPMkKF1VY+Ztm3a7vBXJWSVEeHSPppHsqGtJDmmxvyU0+kprY5V1puqovhlh4hHNFT9Yx0bm3HDdNVLiWmTTL9Cr7JmPZlqMYkp8TqqiaiDX2ZJMCLi1jZSaomDKwMJvc/wWCsvDk4s7uo3CouMoEuhmhl3DrHxW7SLXBB+NRiKQsd2SeF12Q18rAA9t/jXHVtpJtoyo3sZR3Hi5ebNFyn7CpTHEGuFtgmjBJoHyAzlrfHxUgrKZzKU1EDWui2sQRzVXd68aWXFmkvbQ8wys6kG66OsGgad9lGsPqnVUTmt20i/zrhzPm+HLGGmonaJC0gaXB38B6FTqyqTlppcsuoXSfJMm35hHNQbo46RKXOragRQthdEG2DQ/e5PePQp1pI4rRXt6ltU0VVudcamtZQJOaVItD9p4iZRFQhCkgEIQgBCEIAQhCAEIQQ7UNIuLXKiTxuSgQkbcxl1kXaRsd/BRKcUskahUrQHuAOxbusXENAB2ceSUWDS53ZsLk9wUqOtZxkS3QuzZusO5Fxp5H4lWnShkI4wxuMYIW0+JU15Q0EsDi0dkWYN91Mo8zYM/EnUPlf86aSPsbr7cd7WTxqIc3T5xOzvhehd9vcXFhJTS9nyyapJMq7oxz8J3uwLMbXwYjASxr3NDGkMAB3Jud/QrQe1123c0lvEt4FVn0ndHRxV4xXAv5pisZu58Ia1zty513E89lh0a9IElXPFgWZ70+KtIawkukMrjc2LgLCw9Ksb2yp3lJXNn964/qYwk4vDLQQkYbk6thyI5rKxtsqDjLfJvjIQcPjWTPszFjewSxu+vsW+yi3cxc/NGMvcZLW7MBHduvO3sma/2qzFgtXSn+faImt/EMxv6V6JaTobYX715W9k5iHl+dcKo6SBjquNjAN7GzZjfc7L7LT9xFOzm6bametzhlaqqG6XSVEnK3BjQvU+X/8AQOHfm0f7IXlHpedVe3uTm1zdE7aiXUzUHAdlvML1bl43wHDvzaP9kLMg7wlQhACEIQAjmUI5lAI3n4ryn0nf2gcO/LyfugvVjefivKfSd/aBw78vJ+6CA9T0f2nT/iN+hbgtNH9p0/4jfoW4ICPY79tjwCbR5zvFOePC1Q13gE1nY37918o6/wD86fzLa19xGSEIVN5G5cAhCFIBCEIQCEhvbZDw5jgHDY87oTkVDbtG6Bu6w7koDiLkfOoWxDjkwkDX8Qm6ohLXuIFgnPfm0AeKwma2SMAfKtsJOTwaalNYGunBEoTs1wcGNcHXtxC5IqYNdfUStlRKYGjTxU1GqmyIjGVPdjJn3DH41leuoKWTRNJDIxpLiNyLDhuq76IMlYplXFKqoxGpZJG6R+lrZHni0AecB3K0DK5xLgSD6Fj2pXWLirW2vZ0beVu1tI56k3KawPMbg5l1iDusYG6IuN0rSNzexVIt8r4ndFPGTIyNFgZI2PPvXGxSuvwNrnmOCoLpOxTOMGeXtwmepFC2VwAbO1oI0DkfSrwwp8zsJphVPcagsBLibngFaXvTVbUKdVP3jCnPMsHba2xQkbewuST3pVUYZtBCAHHcDbmbrCKWOZzmRPDnjktihUS9kgzCVI02JD9j3IY4HW5+zGkC/ioS1JR7sCpFVUHTBRTZqjwZsLLySCMPs+9y7T3K1W7rqubOtaxWtcgEIf2Ug4LlT30gVCEKQCEIQAhCS+6jAFQjZGyYAISD0pC6xTEprMWTvkyQk3PmC5WL3GMXeLKaclw+Q3h4Mkq0MnabkcFsc7sgs3Pck1q47dyWmmZ6dWxvv3JqzNgVJmLC5KCtjaXEamStABaQCBd1r80Y9mLCsCa019UY3knbq3Hh4D0rqwjEaXEqTraGUyNd2vNLeIvz8V0QjXoNXFNYS7mipJPYpXBK/GOizHHYbibX1WAF2nr4w6TS0NvfW+wHacAruw+tpcUpmVFHKx4c0OsHAnhfl4rizDgdFmHBn4diUMb4nN0nU3V74Hh8QVQ4bXYx0XYq2HGDJPgcsoDah8gcWBztwGMubBoV04Uur0vGprFRfjxvkw3iXldp8690WAO3BcOG4vh+L4fFiNDL1lFI0OEmgg2PDskXXaQ5oALQHd1156cZ05uE1iR0QeRUDnfgkcDp7Au7uSXBYWuNnHj6FhjTsvvMh/wNw6hzQOLifmCZulFkLsh4qyq+wFjQ7w1BPOCAClJaLnVa/wAQUO6dMWiwvo+xHro2zMkj3a69tnN7vFfYem/8SHyKer77KLyvj9biPRTjNLKWmCKaqI2N7AEDfwKsr2KjXDI5ItoLIvHzSqg6PY65nRzj08lGwUEjakB3WA2cd+F78Fb/ALFQOGRSbkt0RW/wlWHka2XghCEIBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/ykn7tyAc/Y5/1bYX+bQfugrRVXexz/q2wv8ANoP3QVolCHwcuI/a7lF2+aPBSjEvtZyi7fNC+eelkf20Sys/dYqEIXkkdYIQhSQCEIQAhCFGACEjuza/ApS1wPDbvumACEEEcQhSZIEhShIRdCTF8etjm8yLKisz9GWM1nSFU4tBWRClfO9+kyyXsW2Gwbb51fA2XNO12suD3AfB5KxseoSslLSs5WDFw1MbMJZJDTMheWlzRuuqSQs87fwWRa3VdrQCtM0Lj2tRI7lyy/aydTO50pYRupy5zesfpY3vdsu1mnQCZI3X3GkqvemStxfD8ts9oZJWyu6wExvDLbC3FR/ohxfMFZhUrcemnlmEh0ullDiGgDbbku/7Mc7V3Tl3waY5qT0lw89iPlWfZtuR8qa6Od0ri0uIstkj9LdTpDa9lWums6SXDfB3ve1o4rjnfqabdy4pKvU4tjJcR8S7C1kNmyvAc7ldZU6Uk2o7kt+HjI1zEh265at1mLsryI5he2g++XK9jZtQDtgONluglF5kdlOSa1DNUslkd9babeCwbSuuC7YrmzxnSiyayBr4I6gyNaSXhwtckch6EmCZjpcwUQqqazCRfQA4Du5j0K4VOs6evHsmyF0qstCQ8REscPkThE47OTax2w3ThTuBYAdlXVYZ3RnUjhYHmnk1MbbiCnBjwWgJlon6XkHgRsnCJxDvQq6pHDK2ojsHBCDe4sLhBCwRpBCEKSAQhCPHcAhCBuVCy3gAhIXANJJ4GyDwvy5LBVIpuPcCoQ0hw2O/ckuBxNu9ZpZjyTExBNyx9usI2tw9CVgaGPhkYJdRuQ4Bw+daaipgooJaiulLWsaXGWxJsBfl3LhwPMOF41LKzDaovkY7ST1bmkm1+YW+MK2nxaa2RhKS7lVdIOS6/LeIjMuVHDTe80F3HssbtZrRbip10f50o804XDA4ugxGFjWzNl0su5rRrsASePepZJGx8Lo5x9akGl8drhw7iqaz3kjEMs4kcw5Qe+MOfqlp4nNia7W4ucSSb8Ar2hXpdUgqNfar2fLf3mveO/Yum5G21ggKGdHmeaLNNG2GR4hxaMfX6cNcQwkm1nEWNwAdu9TQDtaRxtf4lSXFtO3m6VVf5OhSUkIUHi3xStLXag03LeOyQ8W+K5pcbCJ04Z/pRng76FJntvpsdgd91G8LH/abPB30KQzyCOIufsxu/ivpnox/xCquffPMON49Jg/TkIsIbcyU03WXF+0ZHA8D3WTfRB49kw0S21itgBt4JqrqupxTpwqJcHpI3SQiaJwD9F/rhJO9uRTzTh59k3eW+vy6C+9+S9KzQesG8B4IQzzR4IUEEd6Rf6C49+YzfsFUn7E/zsd/Ox+wVdnSL/QXHvzGb9gqk/Yoedjv52P2CoJfB6NPELGX7E/wKyPesZN43eBWD2TyERKT7M/4kiymBE8gPFYr47eLFeXzLiDzFAhCFzGQIQgIAQsXOA4o1CwPJO2ScMySXI394OKUbpNi4MJNinJDEs1+7Gut33XNV1LaeM9oA9xVd536WKXLeYIcKMDC5xZc6H8HX7j6E44tj8NdhlNWwPcBJGHabEDdWtDpVZ4lOLwyvvLyNCDbZvxXGASe2PmUWxPGASRrHyhMtbiMskhsdvErgc50jiXkr2fT+k+yng+f3/WpTk1F/wBDrq698h2K43Oe8bpQy3nJTw2V7Ss4p5PP1a8pvDMQ2wWNis3hzWgngkAda54KZ6dWlrBqUW90DGkSAkbLN723I5JHOIAA5pIYXSSDuWVSqqMfZM6cHJrHJ14cAxxc1lr87Lrkp2PnEp43vxXRRUpdZrWi1k4UmGuJ+vbD0WKoa90m85PQUbebSckN0cJldaMHhbvW+Shnaxhc1zhbkCnllLHACWbnwXVTRyVDAAxtvSq+pfaNyxhYOUW0VhnvDMYqY2NwiCoc+/vI3O5HuVjdE1JjNFlQsxxrwbR2a+IsI7J70/4fhlnhzgCR32T++F4pOra1oBsbXVb1LqkKkFCP9j03Trd0qW41RUzKaTXGbNdxBN1xYxlulzDCaarY4scdVw4t+hPTKV0lw827rJxgjELGgNBNuPNU6vJUpKUHudkLfVzsRzJ2SsKyl1ww5rtT7cZS/hfv8VJyDe7jv3Idt2mAF3pQbHtEnVwtyXJcXNS6k6lTk7IQUFhAhCRaMYWUbEKhCGdo2G3jsslvwQ9uQQh40uDTa5323SPIYbOR7PDCeeBUIQgBCEIAQLtvuNyhIRuDfgsKjxEnsV70u57qMlUlOIIXv167kMaeAB5+Kfej/MTs14AKx0To3h1jqAHvQeXiuzNGW8PzNBEzE4muLNXvA7jbv8F24RhdJg1EKXD2BkXE2aG72ty8FbVq1s7SMUva+ZpxLJ2OcNUbiL8d1rqIzNTTxA2MkZaD6StrvsTWtANuZSOGrSLkAG9xxVZGbWJQeMG1vYo+j6J8UZ0hTYsag+TukkdwfbdtvBXiBojDBuR77kEAaXbSPIWAMgGgAFrtnOJ3A9C7bu/rXzWt4S+BCilubB1jfMc3fiSLhVv0odHsWPQS4jg2qLFYQXxEOcQXbDzRx2urGcDpDGuOn4XNHAgX0tHMcSsbS8nZ1NVPgiUFIqno1z4Q7+T2bHCjqYLtY+fTCH6bNFr7m5urVbfqS+JwfGPMcNwfj5qvuk3o/p8epXYlhjnUuIwdsGENbr03duSL7m10x9FXSBJ14y3mAlmIRERsPacHGxcbuO3crS+s6d/S9Ztue65aNUW4vDLe4gLZCPrzFg0dkOuLcVspyDO2yq7KLd3TUvNf1NuVoZKwCWWabGy8meyipDg+d8LxWJwEggBJO43ldyOy9aAdlu6qvp16PTnLCeup/tuFjdI7IGlpLjuQvsUeEUx51zRnEZuxzLBfbr4J5C8gNHEADYeC9oZeFsCw782j/ZC+fmD0slBnSgoqgWmilGrnxF+K+gmAf6Dw782j/ZCyB3oQhACEIQAjmUI5lAI3n4ryn0nf2gcO/LyfugvVjefivKfSd/aBw78vJ+6CA9T0f2nT/iN+hbgtNH9p0/4jfoW7hdAMWPjttPpH0Jp5hPGPEXb4/wAE0ebYlfKfSBNX02/MtrV/swQhCpTcuAQhCnOBgEIQhGUI4FwsDZF3OF3nYJbX52Q7hpBO3FQmRlA0ufswHb0Is3zXBw8Sop0j5thyfgja2QHTqY3ZpO7ie7wTb0edI1NmqiL+ra2QDezXfCI5n0KwhYV50vFjBuPma51oQ954J5bQbDcJduS4m17S0lwFibBZsqW3sTvzXG6U+EjJVIy7nTbdcmIi7RZdbTrHZWissyM6+J4LGnnPBNWWVga2eabrJh0i/pSXGgkcFsiidJGSLWvzXanJI4N4vY74KhmiziPlWzroR74X8U0OJY/S64KU2HFzrrX4Slwbo12tpDpJHBPCS6EOlPOwW06y8HTYAAcFzYdctDi4lddzxJOy55VJ5UG9kdMEn7QhvffihF77oWDk8acGRwY/HPLgtRHRhxnPm2F+R5KlOirAc10mcXVGKx1DKbrGFxfA5oIseZV9XsLtPa7uSTS21wAxx4lqtLS+VtQlTazkYAlp0nS6/AnksiASY/eOO/xJBttxbxue9BJA7IBPpVTFtPUMZILB0X4DT483FGteahrg9p691rh1+CnTdkm44AE+lC67m8q3aWt8BLAO3QOCEq5kl73ckEJLpVK3eCASFKRZpdcWHGxWt0rQ25O17LJxceUTHdmd0heAN7LS6QHgVrc4nbkmDbpN/Ws7x8qOtZ3j5VyWHeUWb3n5EwRpOiSaw2XJPU2b6VtFiN1w1re7gs1TjPjY30oJyGrMOZJMEwuesaNWhrtgAeAJ5+Ci3Rj0pT5txeaimppA0OIvoaLWYXcvBSeuoIMQgfBVC8TgQRYH0LpyXlHCMvudU0MDOtcb3MbRyty9Ct6dS0hQcZR9r5mm7hplmI/Pa1jy35rrWWva699luqGXtIdnE8AtQDpDYmwVJlyST4RKepFS9LfR/iOa8Rp30krtAe4nSHni0Dl4KwOjnK8mWsEjhqJLvDQNyfggc/BSSOIM4EnxWwgu857lZVeq1alFW8vdRySprVkNg25Kb8w4RQ49hklDijdcb2uDC12ghxaQNx4pwA5E7JQ0e+FyOHoVdTqzoTjKm/kjY0msFCslxbonx97J4Zp8vzOc9loidLWjS0F7vSVd+D4jh+KUbanCquGpY77lIH8PBa8bweixuhfT4lE2YXGnW0OsL32uqUbJiHRTmCOKaaWfApXNbG97i52rznXa3YC3Nehqqn1enmO1RdvP7kaG3Fl9XOqxOl3cUPIsQeK4sKxSlxvDKbEad50yxteAB8IX3HHmuuQ9lxPIcl52rCUZaJLDXn3N0ZZRIcDaW0pvwLr/ADBQb2QWGMxDo1xVxvdkYtYnm5vqU7wYnyPe1r/wCxzBhMGNYTPh1USIZwA6wB4EHmvr3Tk1awz5FTV3mzxJlXPDsKyliWAyljoJWzWsG31O248Vf3sVmmPJMm+xbFoHo0leeelbI9TknG5I5RemlN2G4Ju4uI4egL0L7FcF+TXvJsGtiDRytpKseVkwZeKEIUEAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaDlV/sc/6tsL/ADaD90FaB5IQznxH7WKizdgFKa7tQOA7lFhuF4H0sWKsWyxs/dYqEIXje52AhCFK34IBCEJ8ACEIUvZ6XyAOi3107cheyA2481w8Vj2d3HtFpAseG6qvAumSkxbNLMLEIaHuawEMfxLrd66aNpWrxcqcW0uTFySZaovuHHhwSpLblwJs7cXSrmZsT2BCEKAC1Ti42W1ayCXWKmLSkkyVg5QLHdLsLgMcSd1snjLdwtO4IOorPTDOTOLZpqg+WMxzNBbyu1N0cbGSEhrW2uNhZOlQ4lpN02Wu4773W+MpOPO3kdFPC3OvD2/XHO71nVh+m0Y3v3XWFK+xDRxXUT2gOa1SjmeSHs8nLTQt1tMjXX58lR/SvSZhkzdBJhrKjydhjcSInOA2N7q+JhZjrEh3JRnFYTNK5zwC4i26s+l3St6j1LOSPDVaSyR/BKqs9paVtc683Vsv2dPLdPNPVljS1xAFua4nwBmgEnsi1lhIdQcCbbbWXbOMKj4LhU4S2RH87YHSZhDTVEnRYCzyOBJ5eK1Zaw6LCKUQ099NhxcT39/inGZ9w4POwNlrjcHMHV8F3xqS8Lwux0QtoQ9pIfqeSwG4KcIJdxumWAiwDXE99040jrm3NV1WjpRz1optj4x4LWkHcG6c6edrmgXGyjbZix1ieK7YJiWHRe42VVWpNcoralPuSSOcEWvxW1pum/D4JXMJfpBA+Eu6IEO0niuSUGt8HBPGdjM7ISv8xzuQ4rEcFryjEVCRLwCYyOARbcHu3QBfgsXyBnnc0b1S2BkbB2gi9xrVM566Vp8FzmMJhhe5kbyDZjT70HmrcM5uSAC7gL9yimJZHwTE8a9s62O9STc/WmkcLcSLqx6ZVoUpS8aOdiGiW0dT5RQUlVpLetjYTf0tBW+7WPfq3uVriAFNHCxrWxxgBtu4CwWwtBA71wVHFzbigkMOeMKkx3LdZRQu0yyQyNFr33YQOHioJ0NdH9dlWtq562Rxa6XU24eNtFuatjTck3INrWCXfqyL7rvo9SqU7eVvHhmMqaYt+sf2gbJHEnVE9uqFwIIsl1EAAAelB47fGq7eK3MtOVgpbpFyLU4JiBzLlNkpniPWyxtDpdVmhgAbwHFS/o6z7R5koRTV0sdPisLjGYpHNY4hoaPNHeSQpxI0SMcwsa8O20O813iqb6SsjzYNVtzDlhzo54y180LSI2ENJe7hueC9BRuodRo+BcPE1w+EaGnB7FzuDuzdpb8K44rF3FvioL0Y9IVNmyibTS/W8RiDWytLXAajc8Xcdgp07YNdyuqa6s52kvDmsf3+JuhNPlnZhf8ApKPwd9Cf5WGYSNeLsI2TBhW9fG4cLH6FJSL6bcl9F9GE/U0ytuXmZ4dzZXy5N6X62spHBr3ulJa4atjIQdj4J9yXjbcx9PdNisdtNRWQkWty25bKY+yH6MZKmt9v8Nu54j0yNJa0XL3OPK/AqqOgNwd0kYIW3t5VEd/Er0bafBoPdbPNHghDPNHghCCPdIv9Bsf/ADGb9gqk/Yoedjn52P2Crs6Rf6C4/wDmM37BVJexQ87HfzsfsFYko9Hcli/7GfBZHgsZPsbvBRU3iyFyRSp+2pPiWCzqftqT4lgvkHUFi5mviW9H3ECEIXEbAQLoQ096h5SyuBnsJpB4rFxYw2uFjUytiYXOcGt7ybBNE2IRzOcyF4ee9puPlCmKkllLYzhBvljjNUxQuBZZzj3Fb4pHiPr5Lhg43CiWM5josvUr5K0l8pBIGkO4gkcT6FTOa+krEsRrQ2gdURUgvqLdbAOFr2Nl6Pp3o7c32GliL+44a99GnmMd2SzpNwnBMTxg1hDTM1rffnkCmSOqJpoaaI/WWNDfkUIkxKrleTPNI4u73uP8Vsoa+SGfW6RxaNrElfW7P0YhSoR8STePk/7Hhup07q5zLVt8yZv7DgDxKUtc/g0lFG9lVURbixKn+D4ZSvYzUIydPcO5ef6tduxehLC+BRWXTFcS0yeGQE003wSsOplB3aVbDMEp3e8Z8g9SV+XIHDaNvyD1Kgj6QKO6b/Euf9Lyknpe/wA0VBVzPp6d7g7tC2yZMh5hrMTxuSjnY4MtYEkfCAV2VGU4ZD9iYQeN2j1LtwTJOG4bIZ2U0AkPMRsvxv3LOp1+jKGZ8nZ03oVSkpQqwTK3qsJkbWyhrtTS48BwTvhuEOFiR8ysCXL0ckxk0sAJvyH8F2QYPHGODfmVTV69rjiL2+86aHo6oVMtf0IhDQvYBoabrMUMzjuCPiU0FDGPNa2/xINGByb8SrJdRcty2XTVEjNNhLbtc8jY34J2ZGxpswfOnAUYuCtzYGA30/MuaV458nXSs1E1U0HOy6iLi3cl1ACwFviSelcFSWpljTpqKEEYG6yKNV0LFGTQIQhSQCL23QjihJg4tLS8kN35quunDGsZwrCYn4IXOe4vHZaD70d6sZ2nToAPyJKuGnrI2sqaWnma03tJGHfSFvsq0KNXXUWUYTWSCdCuLYvi2XZn49G9kjZAGlwAuNA7vSp7GSyFjAL37lrhhhgiMVNDFCwm9o2Bo+ZZgnULcAou69OvW1UlhCCwZcUJAlWqXJmwQhCggELCWRkLC+Z7Y2fCebD51jT1EFQCaeaKUDj1bw76FOmTWcZRDeDahA34IUNJrYyW4ISXQsYktYFQhCyMQQhG43CDgxvYlwFxwIUC6S+j6lzfR66R7KeqsRqeHSbkjlccgp6wtsQ1zSeYukaWMaQdQPoC67S6q2dSM4vbujFwU9ynejjPk1JVfyezQ0wzh2mJ8jmtBuQ1tmgeg81dNIxhMbHuDoiOy/gLKA9IuQ6fMVMajD2MpsThHWNkZaK9gbDUBfio70V53qMIxY5azT1vXwkxtmeC9p0N3Ot5HO3JehhaU7yrTu7XbDWVxwc8m1Bo9GM3YPBa5xqY9newj5ksTg+MFjgQRsQVk6ze07kLL6FHhFceIukil8g6bBAGlrRKy1+f1sL2jl83wPDvzaP9kLy77IWmgi6VcHnhDRLLOQ8AC+0bbXXqDLv+gcO/No/2QpA4oQhACEIQAjmUI5oBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8AEb9C2ngVqo/tOn/Eb9C2u4FCHwMuOjZh9P8AApocLtCesdt1Tfxv4FMrdwF8v9Jl/uWWlr7gIQhefOlAhCEaT3IywQhaRUQOfobPEX/BDxf5FlGMpr2UTt3Nrjtxss3uN3NBvstTtJG5NvQs3MDXgtJKjR2exj7LewwZty5Q5kwl9JWab6g7cnlfu8VB8sZLjy814pXNI9DT3k8z6VaVSWRtLnX39CZusiLi1m57irW1vq1Og6OdvvK+8pqpJGNKwtpAJOOr+C3A23CTfTuNvQk207cFgmveMI5jsbhUOHBYPlke4XGywbxWZNhsNlqcU94m5VG9jKBoFQ08rjZVD0l9JeLYBmWGko6eUwlu5Bb8MjmPQracSBrBtbdQzMGGUOI1wlqaeGR7RbUY2u534kK26ZTpN/tllHHXruC2JFg2O+22HRzVDSyQ32JHf6PBOOsgXAuCopTtEDmiOzWDkNvmUgw2tFT9b4aRz24LC7ttMn4XBpo3Piywx4oX2aGruPmpopnWl7gnW9wLbhUdaGJfEvKTTWEKOASpBwSrWbQQhCEAhCFDJzgEIQowMggIWDnW5rKKXclCyENCacw4lNR4PUyUzSZWscQRb4JXZPKmuqdeTtAPYRpLTuPkW+3ShUUpIzVPJUfRZnLMuJZ5jpsQL20kkhBuxo26tx4j0hXhOA6pLh8Ebplo6akpKhklNRUcb2e/bC1p4d4C75qlrTYHtWubcF39RuKVaS8OKX3GUaelnQdkb8Vw+Uknmuhk40m6r8GUkzdq9CXUuZ1S0DYfMtTqwN4/QslDIjFna5pAJTZUudqstja/UbX2SPnpZHaG1EBl+AJBq+RZxjN7pbGyP7PkxpWh0lj4p4gcGWbyTLH2HX58E5w7sDr7rXP2jGeZnTUuBAAWmHzliT3lZQDtLUzWlhYOwJUgSrBmh7glSI1DmQob2aXLJwKuHG8KpsXwyejqW3E7DGXXNhccTZdjntb5zmjxNkrj2diLc++y2UqlSjiVJvPmYvEtmUEIcU6I8wyzRtNTgdRI9xMbBGG6jpaC51+SurBcXpMdwhmIYVI2SnkBu1p1WsSDv4grZi2F0eNUL6OthZLAd7vYHOBHC1wVTU1JivRfjrKmN8s+X53gNja90nVhou67BZrbuJ8V6GTpdVp7bVV+PHc0+7LB6SwQNFJdgv2t/kCcb9wTBk3GqTHMFirKJwsQA5tgCDpBOwJ70/MIPaBNj38l9CtIOFCMZeRWy95lH+ytoRJkmlq2RkzCsa078hFItnsVXF+Rwe5kV/8ACVJenyGOo6PqnrQ3sOc5twOIjeox7FJjm5He42s5sJG/90rpy8YRD4LyQhCkgEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Cj/KSfu3IBz9jn/Vthf5tB+6CtDuVX+xz/AKtsL/NoP3QVodyPgdjTVD60/wACoryCllT9id4FRR3FeF9MF7h32nDEQhIF4uKO7sKhCFioZeUzEEIWEsscX2WRjL/CcAi1N4isgzQka4OYHNILTwINwUqhvG8uWORLte0snHYuLXKg+C9GeC4Xjvl8Ib1rLPFi7iDfvU586wsFjqLgHWaCdl1UbqtbRcYPaXxMXAyc8vcQRZrTZvghIDxB5JVz79zJLAIQhAHxX9ChnStmbEMs5adWYdC/rA1psCOb2jn4qZEXFlz1dJTVlOaevhjqIuFpWB42N+a6LSpTp14yqrMe5EkVv0SZ0xTNVDJJiMUhIL+JbydbkFYXPhb0dyxo8Go8PaRh9PDTsN9oo2s/ZCzcwtPM+lbuoVKM6uqgsI3U3hGqpH1s2TY02c6/enhzdTN1wVUGjtALRFprKOiD7Ghri2QFOETw4X5puDrt34rppOPFZSWUZTWx1yC7UyVrOJT6d2psqmAm3eppbMwpvDGN8eoXK4J2aSnioboda2y4K5nYJCt6E9y2oyyyPVe8UlvhFNdJMWbHgnWraWxP24m6Y+DO4q2pR1It6a1If4pe01w4WATk2Q6A5qjFHU7iM+O6eaae1mncLVWo77nLcUe4/U8uqO4FyOKdKN7Imh5cG3F90xUz9BJ5OFl2GotAQLEggKquKUtS8jgnTysFd9KGd8doc0wwYaXOgDxcBrTcafSFbeVMdmxDAaN9UxzZTFGXXI46RfgonVw01TO+Sekp3vIFnGJpI+MhPFCeqZG1ga1mkWDdrbLpu1RnSioRxjkrfVMZZNYTdpLTcLYmjDpnFrmX+MlOzeAXnJQUZHNNaWCCdkqxtdy1t4Zit+TFz9IXLLMBxW+cW25riqDAwfzieKLu6x4bf5VvpJynpijJOKMmTNJW0kFcscQPbjc1zD75puFvAUyWJOLM/ZaO2DzQsxxWEPmrMcVoNQIQhACEIRJ4bkQhHOsxyCA2Itc0vY/YgG3Hig20m/DvWMbXEEtc1zfxrqY6vfguBJJlQ9J/R5UsrRj+WnAVceoiMRl7iXaRxJtwupD0YdIlPmaHySr+sYrDfUx7wXEAho2A71Pmgl3AO/uu3aqm6QsiPimbjuU/5rUwOEk0bHdSHMaCSAGC5JdbZehtrql1Kl6vce/2f+Wc0oYlsXLhTAzFmkcXBxf42Umtv6FTfQ9nqHHZ4qCt1Q4hTNMU3XN0lzwy5IJNz4q4xYnbgF7XodpO0tY05bnBW94bcep2VWDVkczbt6t5Avb3pXi7oWYYelrCI3AtIqYLgr2/VBrqaVruBY4G/gvIuWqWGl9kXFDTaeqZV0+nTa3D0K3WFsjWewGeaPBCGcB4IUkEa6RCf5D46GD/ALlN+wVS/sU2OacdNv8AvY/YKtzP2M4W/JWPxR4jRukNFMNIqGE30nldVF7FNmn28cHawasEFpuPMKhEo9GpJPNPghvAcfjQ/h8SjzIXJE6sWrp/EfQsFvxAWrZfi+haF8i6qsXc18S3o+4gQhCrzYCS5cO020nNKsHPDYS5pBk7uKYclpT5JXJA+l2XEm5bczCHvEutpIZp7nX4qqOj/M2MZfwiqqscZJLHIxpiLy0aLE380elX5iFO2qvHI24LS4iy87ZrbQ4VnedszaqWhEg6yOJ2qw0jgOA3XvfRSHrqdBwyl3OO/k6ccpjPmTM0+O1EtXW1ZkiF2M1AbWvYbAd6sbI+SfbjonxiokprSVYhfBNxuA7cgX9HNSvJmTej7NNCyakmq2yjzoXVceq4Av2QL8SriwrBaTDcEpsMpGObRxM0APtqte++y9/Vu9EfAhslyVVKH/ZnhimmbIJGPns+NzgTbkDZbI5I5Gu02c0Gzn+lemMzdG2RMHgnrMRqZ4XMDpOrNZGwu2vYAgXXnfN1RhFfizosvwVsVNGXN1zEEO32NwLHZWVHqMqmIRiY+FFJ5YtHilRTWELzpHdZP1DnOrowPrjvlHqUSib1bNNwT4o0i93m3xrsu7OhcJeLHP3sq3ZU86uC2cI6RZHNvUSEeJ9QUpwjP0NS8NMo+f1Lz8XHkSAt9LVvp3XY838V5289ELG5WaSx9X/cP1qi9VOeX8keqcPxmjqyGsmaJOex9SduDRbt/MvMuD5rlpnNEhc0jmdv4qe4L0h6HM65zOr5kgfTdfPusehNzbvXRTkvl/ksLTrdSL0Xa/X3It/ZzO0N+SwcC19ybNTJl7NeEY24RQ1cBltuBMzja/AFPbDG4uYXg2HJy8bXtp0ZOFRYa7HoaNeE4pw4EBY24Dr3N7WWbdJXLLGQTpDvjWAe5nFa0tjpUcnaTbghritDH6iLrc5wCwxghxFcSUDgtfXBbA64BTBGGKhJdCyI09xUIQhAIQhCQQhCxw8ZXBOMghCEUXyuBjAIQhZc8EBY3GnklaNQeX96Bz3shhNiHbAoQQ7pRw7FcWypVwYWZHSmN4Y1obxt6VFOgvAsw4NDUNxfrmgvcbODPgAcirbY0BoGppA5E3SMHV6tAYNRvsFY0L/wraVvjeTyYuOQbtH2D2kvjxSBugC5SqrjF4wzNbCJUIWUXhaSW8ggIQFJiKuTFZZoMOnkpr9c1t22te9x3rrSOtY3Fx3LOnLTJS8g1nYoDJmZc4z5+np64VIojI8AOMVrdZbkL8FfsgIkA5HitEFHRsmMraZrZD77QB/BdJJc6yseo3tK7knRhjbginFw2ZiA/sgC9jeyiWe8j0ebWh8ETY8TjuGvFy7cgniQOSlztRs8ENfe1jt8y6MOLjXMLxZ1jwFgtfRqsqV1TVOWPaX9dzXV9xsrnoyz1ieCYrHlLPLnsxMOAiqJi3VMXuu1ulgIFm/QrB6TMyvyxlWXE4IfKHBzWtYHafO2vf0Ll6SsiU+a8N6yH6xikN308zHaO3psNRAuQqaxTpExXKOB1GXc10LpZ2SiCCU0rtD2DsB13ntb33C+vLgqSqcVzFX5pzpheJ4oX+USTHZ1iRZoHIAcl7jy7q9osP1fe0f7IXiXGMAGDYrlmtmlbarnkDgH+ZpA4jlxXsvLuK4YcJw+KPEKV0vk0fZFQwnzRyupBIGm6VYtIsN737lkgBCEIASObcj0JVrlcWglm57kBmLA2HivKXSbq+qCw+4sOvkse/601en6rEaGllaKusp4JC3hJM1nzEry50izwVHT5hslPPHMwzybseHf6odyA9WUf2nT/iN+hbe9aqP7Tp/xG/QtrtgUIfAy5iF4Yvx/4FM/cnvHxeGP8f8AgUyjzgvmnpQv9yy0tP3YIQheZZ0xEuhKhZKOxkmjCo6w0kohv1u2m3ivNWrOtDn0yBtSKUuZc3itbXv6eC9MBzmEOaL29C4qylgma6R0LA+3HSArbpN/C0Uo1I5ycdxGT4GbA8QqpKQPqtXWbXvb+CkMbyIy8ppiYyJrmkAXOyc2va6LSFounGo9Zqt1LDycdTK+dxay9zsFxQYWaSWR9TLafbYjf5vQnmOACOQ++0m3jZeas4z5pps/Sm83k3WM/wBXJa3Vj4uK7uk2sbuTp54NV3J0YOoy956+OAaXyCxKzZVwSABpFu/dVnhOJ1b6dvlFtQ72nuHeneDE3k6X2HxWXfPpKjHCKKn1iMmTtkjeDXXWbmvLezexUXpaojtNfc+N13sxiTTYgC23mrgnZSW0Szp3iksjlXuMdI4E8iozuXuPpXVVVsk4ty8FznaPYXcSF12lDRF6zjrVPEYjwANUbLlLTyyRSBxuEstThdNO2CoroI5HG1n1DGn5CVlPGyMh0UjZWOFwWO1cfBb8N7I1KDp+0iQ0k4mhG/JO9FKHR6LqKYJKQ4MP/XFP9M4xzt7tlR3dFxnkuLKv3Y7WtshF7796FWvkts53BCEKAF7JbXWKyHBYvkYELVibN4LXJLbgtJeSFnFGyMTeZVyyyBpJ5rVNPo4rikmJub7FbVBSN0aeWbZp9WxXK+VrdrrmmnvwXJI9xeuynSa3kdkKeEOcZDllpAcVz0gNlvF9RutdTeWyMGkmZIQha2hsYvdpF1wzzdYbLdVP5LhDSHXXVShk3QijjrKiWKlmZGTrIdb5FWGWMBzRN0hNq3icU2u9/rdvNPpurYMAc6/HdO2FUhimErQwc+CsqV/GhSlCUd2jTd09eGjvnpiJGHjZjQfG263RDSN1ta13Dit0cXwlQKW7bOZS0xwaBGHnZdcLNIWbWMHmrK60o0Z2EWQWKyCxZiYOXETd2l2wvsu13ErlkjcG399fa6mLxsbY4SKT6Z8zZnwzE4KfBnz9Tpf5hjts4W4hWrkaprqzLsE2Kl7qoucHF1r2vtw2Tu6hpqhjXVkET3gbFzB/FddrbBjWehosFbXHUqNS1jbwhpa755OWcWpZFaubFaGlxOgno69jZKWZuiRjr2c3u23XQjiLHgeJPAKqo1XCSkluu5mt1kqYUWYOivFvLKWSafLVRJqLAGNZG57rc7uNmtCvXLuM0WYMLjrsPkbLDKL3bexFyOYHctYoIKzCn09TGJoZAWkEBxBLbXF+HFU5jFDjPRVjcVdhrZazL0jiXxhj53xtaABcizW3Lz429C+yWk5SoQlLyKeXvMhvS3nnGscdX4TplhpoWvfp1MIIGpvdfgVYHsVwP5C21X0siBH/AJSqWzLV/wAvq7EsYoLU0cFK/Wx3YJLDvsPFW97F/EqGlyS4VNbSwSFsW0srW37J5Erpw8Noh8F8gO+EhjrkjmFz01RBVs66mmZI3hdjw4beC6QRa52UkA2+kX4pUBCAEIQgAqmfZPdrIUeptj1kn7tyuOeWKGIvnkZHGOLnuAA+MqkPZMYjQVuRYmU9dTSO6yTZk7Sfsbu4oB+9jrcdHGGXdt5NB+6CtJVf7HUaejfDBx/m0G4/JBWiUYNNTvG/wKilrbKWT/Y3eBUVlFnkLxXpctoHfadzFIlQvDZwd3YEoAJseCRIb22WCUYcsxFY0FsYJtYqnOnRmaXz04wHr3MBZ5nV97vhfErkcwOYBqsR6Vg+NklhJGx9ha5bdWHS7lWdXxJrKIayRDovGNHKFG3HjL1ojNw/R8N3wfiUudqdIL3DQFk0fW2saGtY3kBZDiXG3AW4rVdVo16zm44TEOBWEBxudkhc2N2qfstOwv3rJoaGEOIty3VU9O0OOzUFKMBZO4iUl3VxvdtoPwfSps7SNzVUHLGSKk9KLVNz2veO3ae8IUG6IfbQZUhbjTJWVDWRgCRjmnzBfzt+KnKwuqKoVZUovOCYPKyCEIWgkEnZcLFtylWLiQwFo39IUSbS+BK5Mxe2nRssXtNwOVly1lZTUEDpsQqYYWAE9qQM4b8ykw3EKDFqd0lBVRS6SB2JWu5X5FbfV56dcVsNWGZyRao3NJsbLS1jizS92q2w8F2jeMagbrllGmQWva3NY7JrBsU8Ma6uPq3FLTOF7roq4TINlyGMxhdK4OpPUh0Y5pauGqa3VdaBK7gFn1L5N1gtiFHByVUfWN2TXUsIjLU9lha4tK46tgDt110Z4Z1UZEXq2HSbqN1cZD+CmNbGLuUdr4rbr0FrU2Lm2q9hquQQU6UUwLAL7psG9281lTSdVLvwXRVp69ztqLUiUwVHYDXHYLeJGngUzR1THbX+dbWyG92lcc4S4OCcMDqC6+3BdlPKT2UzxVRBDTz9C7oJA06loqUHp2NE4rBI6Ca1mKRUrwWhQ+hlFw9SWhkvZUFxTcWU9xTHF3FF9ILhxQkLiA4jfZcuMnB3OSqqGamkgB4CpTprosw4rUUwwvrnMjfqdp0bDQO9W5iLjI69iD4JsqIC+fcNIdYbj0K36ZX9Tn4klk6oUFJGro1hr4crwxYm9/WN07OA+A3u+NSeDeR4HoTXRs0kMD2hoHAFPlM1m+nf41yXc/Fquou5jOCgZMFlkUrhZIFyGkVCEIBEqTmlRrCyHwRfpGrMTosq182Dh5qGxXGgtvfU3v8AjUJ6EcezLilVUx42ZzEHSW1ln934I8Vbjw17THIwPjfs4EX2WqCmp6R58kgawHiQ0Djx4K3odQo07V0pR3fc0OLbOkgB0oZtukeWka2Muwizt+XNI/STsePHdYnXbTGW6ed1Tx80ZqOEVrnno/qqqvOPZKJp8VaS97ogC46j2/PNvNvyUt6KOkWPMsZw/Ej5PisO0kLjqcbuIbuBbcb8VLMD+2DGGkcb3Gx2UD6Uuj2eWofmXKpMGLUw64xAnRIWNs0CNgueHC+6+rej9WVSxhqeSquNph06dIGIZNo2U+H075JZ2td1jXtGkOc5trEHuuqB6I55qnpiwueqkMkz6uEOcQBe3gpB0i9JlXi+Bw5ZxShbHijCzVM+m0Dskgi5N+N1G+iiBuF9LWFx1E8TY4auK7nvA+cq4hssGB7hbew2QuGlxbDqh2iCvpJXhty1k7XEDwBQsjEpPOHRA+iy/jleczVsjRSyvMZpmAbAm17pp9iWYo4cXgjkLzHUhpJFr2YVd/SEdWRcfLSLChm/YKpP2KNnOx11iLVY/YKdyVwejUO4I4oPBYT4eCFyRjE/t+XxH0LlXTiptXy+I+hczV8l6zFu9qY7fkW9H3EBBO17elZFt+dh3pvzBiTcGwievexz2xW2ba+5tzVedHPSmM1YxNQupZ4w2+7tFvP08itFKxq3FN1lxHk2ZLTeQxtwA7xWrQ1ti1oDid1tJAu0cFieS4lDfJMVvk5qgCKnnkt2tLgD8S8r5pdLPmGqLidMhF33380L1Pi2+HSgcx/Ary/m+inp6+skAuDawA34BfTf/wDXVSLqVHLbCKDq906VRRfDHzoIo6mtz9bDJXNpooi+QNsLkPbq2K9PYpnDBsPxOPDaupc2rlvpZ1bje253XkPKOdKnLlBVU2GU8gqJ2yMc8ta4AOFj6Uw1AnrpnzVMt615vrBIa087he5lZSua85vaOTCEopLS+S7PZR0lRDJhuIOld5HUTMh6s2tswk+lUvEA2MNYA2N27bcgn+bPFe/KsmCYtE6oZFrkjkYwAXcLcTuo1SvMlLEW8C0EjuXb06k6OYNJmubN5DRw4rHQHedul6sNF3ELAEO80hWqxHZmrkySAAG4CVCiKSkJfAJBqAvuiZ0hp3MY8gEHZIDvusr9ympCNRNMw0Rk/aWQyfNU4Vi5njqHx3JPZ8LK2cIzvUNqdclTI9u1wSfUqlaA93a2ssonPikIadiqK59GrW8j7SWfu/I0XNGs/aozx8M/2PTGDZyp6qK0rR43J5eCkkMkNdAXQ3BI5NXlOlxaWmOkk6eOy0VWZsdZisIoD9Z1G/1u+1l4XrHoH4KdSk/x/KJ3dO6jcr2K2ML5/meuOo6mQB24081nYOdYtFhxKhOC5ujjwijFY68xYwOsQPehSvDcVp69hbG4WPpC+fXHTri3nicfZ+8u6d/RrezGW6+KIRj3SNg9FmCLDWyASuLARpdzNu5TXDqxtTEyRhuxwuPBVfjXQ7SVeZo8V69pLXMdbW/kb91lZOH0PkVJDCzzY2hoXVe0rRUk6Ler7jshJ4wx0c4ArK4d5q4tRvutjJQ2wVU08IylDCybzfklbcmxQ1wISOaTax53WKaaw+SNQpu1xuNli03bx3BusnXN9XBQDOXShQ5azBFh0kErnSaG9lzPfD0lbbW3qXjdOmuDW56SwdIDQ7Ud97WQBpYXuPDkuLDa6LF8Lpq6IFrZGBwDiOfguyQXfd3mhaqsXSloZkmAN9xwKEbcuCFD8iQa3U7dxG3BDQSXBYkNB1Hih5LrCPiVjNRxoewyABJ0nj3rLSQHBxJWuV0UDR11RFG7+8bLNrh1QlD2vYd7tWcozitWNmRkNF2Cw8fSiwHJBa0kOa4JVjEAd+KEIUgEIQpQBCELW4vIC6LoQs+xKC5RzvzQhYvZZQ7iP30k7m/FdVCb1rL77FcrvNb4rpw/7cZ4Fd3SV/vqfzRqq/u2Sgjs8bKsOnbK1FjmWvK56dklTAWBkhFyAHE96s/lYnZQ/pQpKifKVU2kGp9wbAXPNfYlwVB5DzJK/EqfKtLU1L+tfNM3rbXI4L0VlHonfRHD8SOY6yQGGM9UadgG9ja915pOJ9dW5cw10MkdVRzSGXVb32424he6MvADA8N7/Joz/wC0KQd8QaBpBuWrNYsJJN1kgBCEIAWNiHOI3vyWSQk3tZAV1nzo4kzXiUdS3Hqqg0taNEULXg2JPEn0rzzjuXRlzpuwyl9sJq13XSBz5Iwwj62O4+leyTYO1AEnhsvKvScLeyBw43G88n7pqA9T0f2nT/iN+hbe+61Uf2nT/iN+hbu9ANeOgeTj0H+BTA29mnmQn/HftYeP8CmBvms8F839K3pu458iztXiGDLTqZqBsRyWtj3G4LB43WbTaN8p96L2VO5r6Y3YPmT2t8knLNxqAZbZxHM+hUdjY1LzKp8mydTQssuFoPEnZKbclHMKxwYpAZ42lrXcAbd5HJOUNSdO/etc7aVJuL7GMa6kOBJA2PFa6o2hPgs2nVCx3eFrqmF0Jt3LTDaW5tnvEavOu6wcfSsmS2Ozy30BaKqR1PA8s84EJkpJaisqgGAjhuQranR1R8R8FRVqOEtCJaytBZpvY24qK5lpW1TnyyNDpDxcePABSAskhiaCWuNhcAKP4/Xsa1wafn8Fs6fqp1vYyjXe1F4GJshs8QhcRyWu+sbC3pW2WTrXkngtch0DZ7bdy9bBdnyeJkt24rZHfhUrg/SST/8AqnhwIGp/xKMMkYzcuAPitj64gAF4I5WXJK2blk6Le+jBZyPL61kZss4q1jjtsbKNOe15uXD5VlrbpsHi/ititTOPUstt4IjnfL9ZiWYfKYKmRrWuuAAPggKw8vymKjhp5HFz2xtBJ9AATbG5uodpp1LKmd1M+u9wTb510V9PhaUuDbC/8WaJPBMYJOsbwUnhL5oY5hcC+9vQolHI2Wk7JF7fxTF0iYvidHl9zcOY5z7OtZmr3pVDOylXmoou7OsssuKnEnUF1i4G1iVmLhzQd7lVZ0C4rjNdhlQMYjczS9gbqj07aD/FWlGbsDj5y871C2la1HHnc9JQnqiMGc84YdlKlEmIkBznNDQQTsTbkF3ZZxulzJg8eIULrRuBNgDbZxbz8FHukvIUWdqSITTMjcwstqc4bA35J0yTlmDK2AQ4ex4foDhdrjzcXc/Fdjp2krVSTev7iE5ORIGkkXLbDhdapZdPNYTzMjNmggW4kpuqapveq2EJPk6oU3Lc6ZJxYk7rkkq9uzt8a4ZKob7rmkq2kbLphQbOynQZ2ySdYe0brjq6jS9rWnYCxXDLU7mxTFmTM8OXqTr52ufqIPZI5m3PwXdb2U5ywjpdNU1qZIi0vku15t3LIX6wBzQFGMq5rgzHRmWnY5jgAe0QeJI5eCfoah47MvnX28F0yt5024yJpftVlD1ALC91k46jYbelNrJLC9wlNYHDT3Ku8F6nk1unKbyOD3hoWAqGns8L81wGQuHFc0lQWPA33WaoZe5MKKk+RyqtGkWeS7wXIQQQHG3pWdHVQvJ606bbXJ2XeyFk8JnglZK0C9mG/oWeJw2a2JlUjSelmFJThxGyfqSnAG4XBRMII2T1Hs1cFSWThqzbFDQOSWwQ3cIK5m8nKuRGgDglQEqaXySwQhCxe4Eshw1WvvZKhZYSIbEcA61xeyUknihCYRiCxf5pbyOxHesli/kgRJsK2oxbv/gFsr6Onr6R9NWQsmgksHsdwduteF/aY8f4BdbvNGxO44L7LaL9jD5Ipqnvs8cYlhjcv43mOghjEEDqGeQNbw7T08dB3Rw/NOV3VTcdqqINEdmRwNcLEX5lM/SdUy4HmnFoMUp5QamjeyOS2lt3OJA39AVt+xUdbI72ni1sQ8eyV0p8kLgszJuAHLWEspJa2WrcHOPWSMDSbm/AFSAlpAB57ovp7IaSEpcALnZSQZAWFkJGggb8UqAEIQgGrNGEnG8GnoRVPpTJb66xocRY34Feaem3o1/k1lSOqqMwVdY3rH2ZJA1o8wnkfQvVTr224qmvZROa3IkZIJPWSWt+TcgHT2Ozh7m+GkHsingH/wCMK0DyVXex136NsM1Cw8mgt+jCtE8Qg7mE3mu8ConOfrrlLJvNd+KVE5/srl4n0wX7KD+P9jtsveZiFlouLg2tyWLVCulHOoybhQqOpllc4AjRp+GBz8V4u1oSuJxpQ5Z2zlp3Jr47JW3CgnR1npubcKFQ+CWJwc8WfpHA25KcscXsDrbBTdWcqEnGpyjBVdQpF+KUG3AoQtEW+xmtwCOVkIRNNZkZYA6LAE/EgkW7bi5vcUOvHbU5o1bi6xkcIjaX1LZ7ccOOxi9L5FLwG6r9kbAdwQTcDSL3TfVVTHv0x8Bsd1jCydp1OljjbyDgspUpVFjlml1lCWlDi4WcG6jqIvZZaCG8VxPrnBuh7SXfCA2stkFQZNisXCSWPI2xqqR1NtY6li57QzY3KCbJWuvxabFa5SUtieGQnpYyxWZkwYw0Ej43uDgdIHNpHMrg6Gsm12WKKobiFRJLqkBAeG7DRbkVYbXEvOkjbdZvc6Sw2tZWcepypWqt9K3fluYuHtGLTawK1ywuedIJ1Hf4lmCHfEtOICRlFNJDvKI3aRa/IqvhSc/YT3b7m1vDMn0zwzSAS4cU1VrXCwA3BuQqPy5jOb5OkcxT08go+uALjBYW6vv8VdtRDJIWueCSYxcDvVneWTtYpuSefJ5M7ao29zVrjgjdUz7RNtcWvxTBgXSJg+NVs1JSSBsrW7ANdxvbmFIpsPjrcMkpX3Zq07k9xuqty30YQZbxeStbURucRsA5/HVfmFvsqNpUpylVck18jNuTqYLJlqCDdxJK45pDKeKwDHybkJHROZyWmlBR5LKOEcdW3tW9CjmIA9W+/JSSoa4v4e9UexJh6p+3JW1q8lhatNjBIQw3vYrnNUOssQL96TEHljmgjckLna5kUhe/cBXEaeUXtOKcHJ9hzjkBaHNO52W5tTLHzJHioxDmyjfMKdjXB4PHU3vTqa0lrXtGxCxlQZxUKlO4bSJFTziRt3GzuScKeY2AJuFF2VLXOa69iCnKmrGm260SotLLMato3uiW0MlwBfZSOgq9DADuVBqOoJtp3T7RVDiRcWsqO7oxbyU9zReCaNqD1QOkE+KXrjIHBo0G3IpjoqiSV1gQGj0JxbPEXNb5REHuNtJO6qHbTlLMEU06eh5ZqrWaWglxJ5rkcCZb2sNrLurILEayDfdcAsH6QQbLKDbjh8m+m8rY20rR13BO9KNLjp2TTSfZ070/nFaZZxuaqrZ0E34oQhaznBCEIAQhCjSABIBHegG3BCFMksEGNh3JQADtsgpeaxj5GSO/AyfLD8f0KQcxyKj+B/bny/QpBwtfivqfo8sdPh9/9Spuf3h5w9k1lWhp2w4rRUscFQSwPlYN3EyOJ+VVFk3C/wCUXSNS0/lclO+aoja2VjA4gnnYq/8A2TtFXVGXI5KWJ0kbHR6tLb8HOP0KjOhaobWdKuEzt7LTVREMPHiVfGlcnpLKHRVJgGJyVrsxVdV1kJj6t8DGgXc03uD/AHfnQrOj4A2I2QhBH+kMBuRcfttehm4fiFUn7FA/6dHfVj9gq7OkX+guPfmM37BVJ+xQ87HPzsfsFQSuD0aeCOSDwKOScohckYxgfz+TxH0LlaF14x9vSeP8AuVvBfJuuZXUKqXw/oi2oe4jTXUsNdSvpqqJksL7amvaHA29BTBlzJOC5fqpKigoqZkr79psLWkb34gKS80q4qd3cUabpRfsvk24CwsduKx4iyySWXOnh6vIleZpq4w6nLOIKrjH8oR1U7nW1A8iBvwVm2B2K16Wtf2hsu/p3UKti3Ok8HBd2ML2L1cnmLNmBjCJXaIWx3980AHn3KD4rPNE1nk5JLh2nXsSvTHSxgbKzCXSwsu4C+1+TXLzvJCGl8Ug7TNt19w9HuovqljmL32/XY89SpSt5unM56J8lRTAT72JJub39BW9oDb6AGNv5rdglZZjCAlaLtK9DCEovBtkzjxGWVsZ6sfOteEukeT1u3Hmu42ds5K1gZu1Q7efiaskxFPnW5IIN7BZay5ti0grV1rGus9wB9K2SxFbkLczcOSBt6UXB3abjvQpxtlEtYAkeHgi47ysJJ4ohaQgE8LlZMLJGam2+VFOLenuYOKj7aW7FFi7ftbc1nTTOgdcb+J4LADS0u9NkcVslHKxIlxUo7okVHjcznsEh1DZouSbKdZbx+SitZ5cPSSqj3B2K7aLE5aawJu34lSdQ6JbX8HBrH6+ZUVumujNVrZ4f68z0jhWaqWps2ZxB/FKkdPURVEYMZBbyXm2gxmGS31xrXekqYYJmWekDNMocwDawHqXzLq3oTWtm5W6yvu/M7bX0jqU5aLxYXz/ACRcDxqOkCy1GnkBufi3TRguaqarDWSOaHnbdwUjY4SNDmuDgd9l4evSqW89FRbnsLe9pXEE6TyjXAHjiB8q2u7gSCstwFhp3utClFyyzeknuBuRYkqEZq6NsIzJjUeJVjiyZmizWxNIOnhxU4shb7e6qWk3Oj3InBSObDqKLD8MgoqcBscTAwEAC9l1HfjuO5CFyyc6k9UiAa0jzgAOVlzYlVNocOnqpQbRtuABe+9l0AOee2bAcFhPGyohkp6huqFwsd7LbRcfEWoFTZT6Wn4/m2bCDRRtYwuAeGPvs/TzVvAshla517H0KL4RkjAcIxSTEKSnDZn6rnrXncm/M24qTSvu0XaTfgu3qsrWpKLo9vmYpNlOdN9DmuaopDgNTNFCJGucY6oxkixuCO5Tro3ZiLcpUzcZkfJP1cdy+TXvbfdSuU8pG62kWtbgsJbhrGNaWsA4Ka1/Ctawt1HDj3CizLsnYAC3cEJHgdZcJVWpYMkCEIUgEIQofwAIAJO1rc0JCAXNB5lYxbm8AVxA825KOSUAB+nq3W71iOLtPDmspQlAlCoQhY9iO4h3Fu7ddeFN11zAdtj9C5O9duDf6Qj8D9CtOjxzfU/mjCr+7ZJS29vQtc0DJmlsgDmEEFpFwVt5I5L68U55D6ccu0GBdJuES4dFHD5VOWvbGwNHZjbbh4r1Zl8f9h4aefksY/8AaF5r9kf/AFi5c/OH/u2L0rl//QOHfm0f7IQHda5BSpAlQAhCEAJLXdxSo5lAI3n4ryn0nf2gcO/LyfugvVjefivKfSd/aBw78vJ+6CA9T0f2nT/iN+hbSbArVR/adP8AiN+hbHcChDG3HN6UH0/wKYGcGeCkGNfaY8f4FR5nvPBfOvSyK9Yhq8ixtN4g7Z55tPFvJRDMPR5gWLVYrZ6WAT94gYTxvxspeRdAF9ivN213XtZZovB11KanHBGcOw6LDg6OEWZ8GwAC7WDU4NGwvdOFVSg3LRxWunpSHXIXTO48RZlycMaLiztiaG07GA3sOJWwAGMgrC1hZG4XA3iR3JZiM+J0fWNcGucCTyTHiDZsKy/XVdM29RFE57bHiR6QplJEJGLQadkUM0co6xj2aSOC76F04YjL3TiqWycvEPOuV+kXH6zMVRBX9aIgZQAZHkbHbipfU1bqp13E2KkOK4LSMrTLT0pYTe51E8T4rkFBCxpAtfxK9VSubaUVOlHH1PK9SVWrLShgeb08pYO00Ej4gq1jxPGZcyTxve9tOX9lolNgLcgrgkoGwwSP5G/0KH1MbYqoOazc81d9PnTqzbl5FRWrO0pSWMtrBmTI9jQSQe+6wc2UDdx24dpZSuJeCVrnfExhfI9rWjjdW9ShSa2PNRc5PHmFpXDsyOv4pA2YHz3avxklJLFVfa0jX/i7rqMLmjtGx8FNHprrbQRlVlKlPSznZJNHpLnu7P8AeXdRVWsaXnne656wRU0PWTvaG+nZcNNVU9W4ilkaXN32N+C1XvTpUcRktzdSnVx4i4JdTVLohoB7J53Tu0w1UTWyRtmsb6ZBcKH0dSQLSnf0p5w+pDHBzXXXnbq3dJ5jsy/suoZSXcnuBdTDT6KeGOnO1xE2ykQ7UYI2t3KE4RO5zwfhbqa05+tWK8b1Km4zznOT3PT67nHBt1aQCTyXFU1GkO3SVtU2NhGobKOVWIC57QXLQoKo8NYL23oub4O2pqzoI1E733Kap6okkX+dNtTWkvOly4H1Dy7irWlZpLYt6NriO47Sz8dyuV9QBwKbpHyO/wD0Wuzu9dkKCidUaKR0y1DidimjHsKgxqmENXu3Y7gO4H0rvSsaXOXTByptOBlOEZRxI1ZWwGlwOldHSC1wBfSAeJ7vFPLSbnUST6UkLdLEvNaK0p1KjbNFKMae0TZ1rgOK0SzFovw34hZngueaPrAByBuVqjGMpYZmoY2IbmPpHfgeJtpWU7JW2dcua6+3gp02ZtZQx1EVw5xIta1kwVOTsLxasE9TGC8X9+4cfAqXOpIoqdkVKLNab7Eldd16voShyjgjF06rzwRLMUeIvwmdtC9zJ9Qs5smk8+aToLpMzRTSNxuommp9tpKkv21Ovsp1h9BwLhe6lVFE2Cn6uNum4t864Lrq1J27t1Hfz/SOTqMVKWqLMI4QJHbc12NFm8EjWALIrz0pHI5ZQiRAWMvDZYIgUva0cUB7TwK4rm51JAXatlnolJ7GWDvN+Vktjt3rVCXXF9h3rcR1e4NyVjL2NjB7GN+2G7pdtVrpQJeIY6/gkMfPmp0tbtGOcg/skJSLHZJ52yFABYu4XWSxdwUx3ZJKMObppG+mx+ZdY4eC5qD7TZ4D6F0DmvtFsv2Mfkikqe+yo/ZE5awzEcoS189LB5ZCS5s/VNL7NjfYauNk3exTscjE2F9EO/PzSpX07f1f1ng/929RP2KP9BT+JD+yVmu4XBd9tjuUOaHCx3SoWZAIQhACEIQAqa9k9YZEjJAd9ck4/k3K5VTXsoP6BR/lJP3bkA6ex036N8Mvw8mg27vrQVn8T4Kr/Y5/1bYX+bQfugrQHEoDGQXY7wsonVDTUPHcpc/7G7wKidZ9tPXjvS+P7CHz/sdtl7zNQTTmXLuHZiojTYnTQzN2sZI2vtYg7X8E7BKV4SjVqUJqdJ4kjulHVsxhwLK2GYJTCDDoIoWAk/W42t4m/JPrRpY1o4AWSoWVe4q1m5VXlsxVJIEIQtUfgbEsAhCFilFJORD3PP8A0i59zFh2d56GibKaWJ8jW2keBYW7tlcVFUTV9HDLK5/WE7g37vSnGqwihrJmyTUpfI293aiL3XWRGbNDNLR6Vb3PULerRjTpxw18zS6Oe5wxUQLhq2vubKoum3F8zUWIwQ4DJNHCHblk7o79gHl6bq6mtDblnetOIRxVEB8pj1EA78Fr6feRtqqnVWUjXOkksESyRUVlXlmCTFC41PZBLnFx80cz6bqUUehkT3vJBaBYLha1rWkNbZgNgFlGzW4hx0sPeleqq0nKmtmcylpex3z1YAGjfxWVPUdY0AphZi+GTVXk0dZCZeGnUb3vZPtLAImglc86SpxWpYZ00qmtm+BmhzueoW3Wxuz7NI+VaqmYRRF3oUSOccJbi5pXV0AnFw5pfuCPiUULapcqTiuDZUqpMl9iI23ABdsbLO/C+4AsQUSRjU3Q4OaDyWIvvdcial73Y2N5WTR5DRtlMsdHTslO+trAD8qxkhtuCSV1JD6Vsc5t7sypy0nFIwluwAPeE11FNqdd29u9SEgELlmjDuSzhX9rBvhU3yMQAYbaQiRoI80LtqKe24C5eBsV0KpI61U1HFUQW7VuSYMSprxuHepWSH7FNuIU4tsF3Wtxpe5129XSytcXpzw0i4N7/Kmgt1F2sXB5FTrE6PXc6SoliFO6J5sDa69Nb3Kkkehtq6lTcX3IbLgsFPVCZg7WoHzR4p7p5mmJrHOIsLbLKqYHx8NwmtzXNeQFar21k5qdOFBeytx8a8baSV0U0jydjwPemETujHeQu2CsvFudLlz1aeVg7adXUsMkGIZh9osKdVdW2R7W30uBI425eK7sjZ2ZmCGQzQsgeHOaAxp3tbv8VE6iKGuoXRVTgQRbjbn6FsweKmwl48jbtxNnE93f4Lnna0ZQw1uVFWxq1K2U9i3aSsLYn6XuDri1lVNc7NsmfYZoKupZRXj+ttqiG8d9lL8JxLryLndS7D3Me+4ZewvdU0akbGcpNZTWCu6hZtPBIKEvkw2kNT2puqbqub781y1DNFS4hoA24eC30cxe+ztgOC01T9UzvQAvOp5k5nDSjoeDKi7UxPinem4uTdRMsNSc6cbErXU3MK8jchCFpOUEIQgDaxJKRvaB0/OlYLvNmlx9CGgteS9pa30qHCXIDlvxQk7JcXM4FKsVnuAR74juCAgfZHeCyXJKHHAW3qHu7iR8yfg2wAJJ9JTFl/7LJ+N/BP8A3L6r6Pr/APj4ff8A1Kq598bsWw6mxHD56etjZPE4E6ZGhwGx5FeTMp4TTYH7IKloKJrWwRVcAaA0N5X4BewJfsMvgfoXk+i/tLR/nlP+yrs0nrNo9KEreA8EIQR3pF/oLj35jN+wVSnsUGm+On/7sfsFXV0huY7I2PgOA/mM37BVKexPBD8d7Vx5WP2CowD0adx4osg7kG6UkXU8AjONAtrXEg2cdvkC472Nje6cMcdefsvt3/Mm4SNNtLtRXyr0jhp6jUw+cf0RbW29NGTTcm3JL8YWOoB2rT2j6UNYAdTiqVRS2ybsC3HelYRbchapHxMN32AXDPUH3qzjTk3gwnOMVkcbG+xCyIvYHn3JspZ3X7ScdRPVmMXJuoq0m3iLIhJVNzlxOlZWUE0cm4LXAfIV5lz1hRw7HZwGEMLjy9A9C9QSywRShtRLpc7lpJ4qtul7ABUURrKc2sCRtxu4elez9B+puwu/V6qajLv2+G7Kbq9D/wA0OUUJbU0kHh3pWOGk8Ujozp7T+0HHayVwvoPcN19wjKLipLuVyaqLVDgQgXQTYE926VIRqaR3iyht8GxPY5qevZNUaRa11y4lSzSVDTG6zdua3U+GNgmDg4ce7/mu5wcHCy5IUalVftfwMnFR4NVMwxwMa7iButqVxJcSeKRdVOG2F2MM5G/E6SWpkjMZAAFjc25rso4jFBpce14rYCLJGtvuSsXRjF+J3Zs1PGkyaeyWnvSc9khcwbA9pDeN1sjNVDEHuDGku4c7LTBUwyv0R3PitszOsY5veLLho8PdBNcn5lqqTnGaUDJKLW44loY7sucD6Cu+ixOWBwa8ktG3MrgcLvCVrgXEOW/H8RyV7WNwsSRM8Nx0dax0T3Ag+H8VYWAZtcxjY53knv3O3yqh5pH0n11h2G6fMpY5FiEkkMzg1zdVrm/AeC8j1volvfJqCxJ/ryKmdK56b+2ob4+bPTmFYpFXM7DgSnDWCNrrzThXSG/A8ejo29qMuAJ16eV+Gk96vmDMVNNFTuFu3G1x3PEjwXyXq3Q61nUcYrb7/wAj2Vl1CLop12k39w+38Ub3WFNMyojDmLYJHDYjj6VQZ8N6WizhU1rVDgEIQsNfOxk0+wN56/iskLjewAI9KVCyTWE2Ssdwb3EDTx+NFzc7Cw4JEqOK7ALmxPF3ceCxu5w7QF/QskLKT1bgU2t6UiEKACEIQgEIQmUuQCb8wVz8MwOvrImB74YXSAEE7gdwTgsJmRyxPinaHRyDS4X5LO00xqaqnAZTXRv0kYxj2bKiiq6SNkIMmk9VINha3F1ldTyQ92i2l3FNFDgWFYdVGekga2R17kE8/jTqA0Dzd139Sr0Ksl6usIhfEEIQqvGzRkw7/BdeDf6Qj8D9C4+/wXbgv+kI/A/QrTojbvqfzRquNqbwSbki/JCQ+d8S+ulQeXPZH/1jZcH/ANw/92xelcv/AOgcO/No/wBkLzV7JD+sjLv5w/8AdsXpXL/+gcO/No/2QgO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Bh35eT90F6sbz8V5T6T2h3sgMNJ4ieT901AepqQ/wA0p/xG/QtxFwVppNqSn3t9bb9C2ahq4oBvxca6TbvP0FR9oLQ2/IKSYoL0jrHgCfmUc7WllncRdfPvS5Lx4P4Fhae7gUoPDZCF4/Go68NcGO9t0uw4BLpPHXb0WWJJ+FdRvEySzyICQbu4IlkYxtyfkWqreWQOHf602vD+rve+/cumEIyWWjnqVJQ2Q6CZhAF+KSUsbHfU4n0puhjadL5XWAHddcUuKNjaWkkttz2/gt1KzqTlmK2NE7nRHVIMYY0wl79t9tCjgAcHG5HiV3VteZmWi4XHAppxB5Yw22V/Z0pKGllFeXKXtswxCqY2Dq9yfQojijWmWMtLt7/wTo+QmQ33TTiT7VAPIXV/a0VCWlHkeo13UW/cj2LZhpcPq44J9epxAFm3G624zBJiuC6qN4a54aW9q2177rDEMsU2L1jJpXgFtj5l+HxrrnpvayFkFOdTbW2FuC9v0uwhXXtnK/ApRg6XvrnPBHMoxVuF6m1T9Tt7WcTzunyoxGQk3NvC64ZJZGEk3XDUTSE3N7L0tK3jbrETqdN3dXVPH3HRjVXLWUjoQ8gkG29k2ZTZLhtU99VI5zXagLOvxISSvcVg1xvuuerb06lRTmXNOxaounFbE+ilZUtvGbHxXTQVBjmDHE8f4qC0WIOp5gA7sqWUk4njDgd1S9W6VSqwdSnyedrWlWynq7FpZVYaqSNrOQsSfBOGOZ6wTCcRGHTyvFSbAabW3G3NaujYA0WqUbDTufBVj0jdHTK3NQxSOqAa0sNuovew79S+Rer0ru9lQr5WE+Nj6d0WnOrQhOCy2WBiOKtmAljf9beNQ35HhzUbqsSBcbOUfnq/JoIaaN9+qYGEgW3Gybn1LnO4rvoWEaSelH0e1sVCKbaTZIpcQv5pu5aRWvBu4G3gUyMlLbuvewumSqzk2nrxTSM23F+s9Hgu2NnnZG640W+nX3ZPW14dZdUczZOBHxqE49j9Ph9LHKAO0R763K/cunLeMx4pTtkFgSAeN+XgsJWkkm2aPFozqaIkzcQ3jv4LppgDuuGme10JtuV2U0gbxVbUTwYTTSwjvuLWF0mkrAStdwWRJuLLTvHc51DHIp4IjjLnEd62wxl6cqSku7daHUUM4NFSpo4NFFS2O109Q0bTa19+K2UdKAneKEAKsnc+1ycFau5HPS0jW247Lv0cEjW6UtyuNyblmSOKTcuRd0IQsWawKS1+KVCJYJyYOjaUCNoWaETerYamYkXFuXoWMri03G9m33WwJDpkduL8kUtM8yIe5RXSj0k43guYnUuH07XMa8j7HIfeg8nelXJlqrlrMKgnmBBfGHEWI3IBPFaq3LmEVtV19VTMc+9zdx7rd6doxHAxsMQs0Cw3VrfXNvWo040lhrOeDFLADclw4JUjm8Fk4WNgqokRI7glSHgs4e8g3glND9qM8B9C6BzWih+1WeA+hb+9fZbZvwYfJFLLeTK96dv6vqzwf+7eon7FH+gx/Eh/ZKlnTt/V7WeD/wB29RP2KH9Bj+JF+yVuwT2LwQhCkxBCEIAQhCACbBU17J8XyFHb7pJ+7crlJAFzwVM+yfI/kHEWu26yT925AOnsc/6tsL/NoP3QVo81V/sdnA9G2F73/m0H7oKzj6GoAfsxyita0+VSDuKlTzZvC6jGIBxrZb7MvwXkvS7a2i/j/Y67N+0c3AJbg6bc0NJJs1moeKQEBzg1mnffdfPo4ayWOzYp42QdjZY2aHauKNUbnbW1KHlrMRgyQi6Fi8uWEmPaE1ceOyV/ZNjxtfZA1ue5jQdJ5rQ6opo5j9evJa1tJC2U6csbJsxlsb2mzXWJuUMGlhvYlaG1LJnHQ8am7OHcVlIWMYZGvB+JYQhmWQ2kuTTWzlrQ1lgeabyDKe1JJ4ArOVxkeXHnuFg1tua7NGmOxxTnmTQ2Zlxyly5hprKu5gBDdhc3P/6Juybm+gzhRVDsO6xvUhhdqbpPaJ4b/wB0rqzflynzPhJw+qkDI9Yfcs1bi/K47029H+SKPJsFX1FQ13WBnCMt83V6T8JW0Y2vga/+6+WDW4orXCsl5ohz2Kx9T/MxLrt1zuHWX4W7l6AdUkiwXMHOLy5rzYiyLDvWi8uJXWmU8ez5Ewk48G6ql62nLB526pCt6L8cqs7zYlT1bRBK979JqLWue6yumw71nBpbUNc217G6xt72VpGXg43WNyYp1Je0O5Y2Flg5xIue0VoNSzUGm9z3LRiMpZA6SRxa2x5XWrC44qkdbFLrA49kjdcPhOSc5LY6PEakoIcy03I7kz5nzBQZbpW1GJyFsZcANNiefefQnaO5LpG81Cek/Ijc74dHT9cI3MeH/YtfAH0jvU2lKjWuVGu/Yflsb5yaWxJMsY9Q5jozU4a8ujGnzrA73t9CcJG3YS3fkol0Z5MZkjCXwPmEjnaDfq9HmgjvPepgxnVMBA1Am1uCi7p0qdeUaPuoRlLGTic0uFja64xAXuNhwTrNEHwud9jOoelQ7pCzpDkvDmTOpRUX1f63RwF+496WyncVfCp75Nyq6FlDzNAW2ta656iEhnbB39CY8n54osz4RPiHUNYYi4aet1WswO42Heo3hHSxT45jBw1tMGgFoaev1XuCeGkdysI9NuW5be7ybI3Ocae5KK2kG424XUTxijbd226mEh1nUBYEXTJicQcXLqtajg0i9s60oNFe1EWh7we7ZM9SxzHk7WUkxSAxzE8jsmasYLXK9PbVcrcvKjTjkbuJuOXei1ze5HglGyF2PHY5/wDqzJr3DYk2W6Cd0ZsbG650t7lGsBSUVsSjBKkiUEkAejwVkYLPqa3RYj0qm8Pnc2cBWhlqYuY2/wD1uqDqtFYyjVd09VLUyXh7g4FtgleTdxPMLGI3sVs2e6wXlXFZwzzsoJPJ30otCCnGEWYLrjpmfWwF3MHZHoXJVe+DjqSy8GSEIWBoBCEICHdKWZavK+XBV0MLZZXaxYsc7gAfekJp6G861+bKWb2yp2xFpdb629vBoPvie9T6voKTE6cwVsYewA8SefgtOFYVQYVG5tFE1tzyJ/ireNe1Vppcfb8zHDO4Ejs2Fm9yVI1wcwANsRxSqm1allcmQBDT9ccPQkJsEcHE+hN44ZPYdMAH12T8b+CfuYUfy9frXk9/8FICvrPQlpsaaXl/cqa7zM1S/YZPA/QvKFF/aWj/ADyn/ZXq+X7FJ4H6F5Qov7S0f55T/sq47mo9aN4DwQhvAeCEII70hN1ZHx7gB5DN+wV5x9j7nDDMsMx01sdS4+VjaMNN+wRzcF6N6QwRkTHrnUfIpiL/AIhVAexty5hOPDGvbfC6WpLaoAGVur3hPegJ1N09YY2bRHgmPPF9i2ljN/8A8i6GdNdM5uoZbzJote/kTLftqex5Ky3EWCLB6Nuk3FmcPnTk3B6BsfUto4hFptYcO5AUhV9OGE1eKMj9rcVi6t3bEkEYO4/HUgy70i4FjcromS+TPsbdeWM7u5x7064v0e5WhxU1E2DUMpqD29UZ5AelQ3MnRFgmIP67Lwjw2obuPJ4QNxfm499vkXh+swsal3ONV4nt2z2R3UJNRWCyKSaKXV1csUo72OukqahlLTSVFQ4MjjBcS42AsqFnwzpIyk+oFFUVdVTtcAHGqiZtw4X9KTNcvSX7RTe2MdQaOWMtcDWROBBbvsDfgqxej6nNThLZm6dR42LUos2Yfi9e+kpZmSuaSPrZaeAvyKdC13wSfiXl3o3wfNzcdfJgNNIyYlxcWTxs3095PcrMxyq6SsFw8VlTFUaY9TnM8tiIsPArtuei+G1CEs5OaOZP2i1m6gfNI+JOdA+8YNxf6FVOU+mDCaiFtPj9qavFmEGOSS5sAdw23G6smGojfSirorPpZRe422G3DjxVBfWVe3Xtwwl3N1FaWUl0tYJmifOVNPhr3upbxkljpbecb8BbgrBxPE6fBOjun9vnfX+qG1xfz9/OI9CnbJGy07XxjUwcRw3UL6SsltzphrYeuMOlukANBvdwPPwXdQ6oqk6UJQUVHlmdSjri8nn7EIoKxvltGHmIuI29HguB5u5lthbcFXIzoyZl/LLoDO6QgvdYsaOI9B9CqXE6Q01bK3TZrXEL7P0Dq1HqVHRTeWvn/c8moytKjoS4/M5BvwQEl3NO3BKDp3HNX0ovudCXcXisXWB3e0HuJWRHANTTiMU752lt9rcwtNxVlSgpRM85HX4wULVC14hZr862623LVuptumpeYwIUjmkxmxWVvnQjjtpAzwRzNxK7g4sse/vTw0HTwSb8lmb6dibrXSh4b3Ag53WOlztylYd/rnFK55DrclntqyYSbykAGn0pCdfoK5sTmdBHqivf0bLThNRJUfZb795WuVwtWDa4tLKO6RvWMLDuCtdHA2ic4svqdc3B71mSWOs3gle9scZLjbdS4086mYN+ItM1sd2F0FPPUdbO4B45kqc01dIGR6JLhlhseQVb08/WD604p3w7EpaZw1EkHbiq276PRvk3/Youp21f36T2Rc+Wsy9UGskdy5/H6VPKLFYKhg7bbnwVDUk7Jog+N1n+hPFBjdRRuaJHOIHpXzfrPoq6MnKmv6fmZdN9JJUMUq/b5l3tcHC4II9CUWPBQzLuZ46iNrJHfT3eClsE0b2XjI3XgbqzqUZNSR7m1voXSzTN6CLcUhdqb2RuOKZsVzXhFBWOpqqq0zE2Dercd7X5Bc1GjKrlRWTqlLHI9IWEUjJoo5I3amPaHA+ghZphx2ZKBCEIAQhCAEIQgBCEJlLkAjextb40ITGoGO4iJsL6u5ZPDr3Jbb0IQmEuACEIUeZL4E7124KL18fgfoXF70eKcMC+3Pl+hW/Q1/vqfzRquf3bJGUh874kqQ+d8S+slQeXPZIf1kZd/OH/ALti9K5f/wBA4d+bR/sheavZIf1kZd/OH/u2L0rl/wD0Dh35tH+yEB3BKkCVACEIQAjmUI5lAI3n4ryX0u1ENH07UNTUatEc0hOn8k1etG8/FeTulmmhrOneipqqFksMk0gcHbj7E1AWrWdNWCUUcMLcMxmctY3tQwRuHD8daoem+hnJ6jL2Y5B3to2H/fU1w/I2WIqSHRgtEC5gJtH6PFOlFlzCaAO8joIIgeTGkfxQMqjGunHDoYHR1GC47TlwsOtpWNubfjrmwvpbwKaKndUxVsALACZGsaAT/wCdWVmfJWA47Ax+IYZSzGJ2u72E8AR3+lQzE+jbKlfSvgZg9ELbAiI7fOvJ+kMbN1YK52ePLJ12zaWxJaTFKCsDTS1tPLq4aJA6/wAi7Dtx8VROIdGmacvNjqMp4tWSsicXiNr4ohtvbc96yoK7pSlc+OWGoJjaW6jXRb2HivPvo1OvT8S2llfLH9TqdZp4LVrM2YNR4k+hqayNlQ0gaTI0cr8zdPNPUQ1EbXw6iHC4O268bY7hmZq7Nhlr6NxxIuFy6ZjjfT8K9uCuDCaHpPhw2J0AqRGyNpaBWwjYNFua6rr0djClFOWZYNcbiTbRdkrNbHNI3TVKxzJWtIJFwqfwrpRx7L2MS0ucaV3V67GR83WkWb3MB5kK2ctZowbNMPW4TUCZwBuwxvZw4+cBzKqK/TrixjmosrzJb1sjfSvh+JVeUKhmDl3lJcy2guv52/m7qtOjDD8VppZpsekk6qNocbvf8L+96F6Jma5lO/q2dW642aVGqrA4qrD6qF3ZdNGWXtddXTeqwo0nRmuWcd3Qc8JEJmzjgc1a6ipnSGVhI2LPem3Jy111Wai9rgFRyToyiwfGpcRbObuc87Mb74+KeGNLyADZoXpY06WnXSeTyvVZaZKmK1ujclcVdBqJkAvfewXbJpLgL8PQgbatPBZ05v3mVFeMZ7eW4wsJa7mFtqo2PpzI97WgWuXGy11BIn3TbmOOonwuSKlvqJbwIHP0r1fTOoOnsU8KbnWUXtka683c7q5GOA+CbprklcTpNrLHDKCvpIpTWBzgQRYuB5+hK8XlBtYW4L2VGo6sNTPYWNvShLQnloxvdY33WTh3JBa/AE93espLTu+C0SlqwhoxVk7pbwB1u/dSHBK6ShpA+Yl3Hhv9K5ZJDCWul7LT/q+IXRQ0b6zMeF4fH2m1NRDH1e1jreB891wSpwhGVRy2Mbi2jcrRJF29C+PNxOironscCyVjWiwBI0E96bs+13US6Y3k39PoThWYdB0c41hRextFTzQPfP1YuC4HSL6b34qv82YrFiFc7qpS3YaCAdzZfJq1hJdUlWitmj2/otauFLC4Qzz1BdMSCdySd1gZn8rla3vY2M3aBIBuebj3qPUGLVLsTMB1dWSB53oV14OY7I9Nd3kKc4wfJKG1Lg35lxT4fTVVSJn7HfuW+4bazQ4lIADJZzQ0LGMJROmVP1jEprKW52YnRU2IQRxkO7JB5d1l3YJBT4fCI2A3AA5dyaKHEqR1QYXS9oDYaTxv4J5jaHG60VoTSw+DO1pUK1RyjFbD5RT6XDuTqx2oXBTBS8gn6k0mMDSL2VPVikxVgorVjB1UzTr43TpE3Xa2656GBvgnekptJuFXV6iSKmrNJmykhsRcFPdHAL7jkuSNumy3V2MUGEUgnxOfqYr7O0Odc2vbYFU85TnLTDkqq8+46xQ24BdTO5NeC43h2L0hnw2pMgFt9Dm8fELpZI4WeDx2K5ZU3GWJrDOFy1cHY5KwXXI6YlZRzELW4Ti9iHGR0HihAFxfvQoMAQhCAEIQm33gAbG6xuWPu0cVkhMZ5Ari4Ov2CD6ElgZbnuQhNuwAjXIRwCLEcTdCEAJDwSoHnBbaKzUSIfBKaLakZfuH0Lf3rVT/AGtH4BbQvslFYpR+4pn7zK96dv6vazwf+7eon7FD+gx/Ei/ZKlnTt/V9WeD/AN29RP2KH9Bj+JF+yVuJ7F4IQhDEEIQgBCEIAVNeygaP5BRl/ASSHs/k3K5H+ad7elUz7KB1siQkdtplkBB/JOQEe6I+kjBstdHeHQz09fNK2ngBbCxjjcMA5uCfY+nnDpHhrMAzE4k2AFIz/iLV0E5Qy7iWQsMq67B6OWZ1PCS57CTcxg96s+PKWAQSsfFhVKx4NwQ0+tTnHbJKK+m6bKRkJe/LmZGMAuXOo2AftqP0fTbg1XWVMzqLEmwuLS0uijHf/fV2VeBYdV0klPNSROjc0t0kXG4sq9d0b5ToafySXBKB2kAajEd/nVH1+VF0Iq4WFk3W2dWxuy/nDBcchc6nrYYX7nRLI1ruXIE96fY3tljb1Tg9pHnNNx8qqXGuh2APkq8s1Jo5g02ZDG1vp4uPfZR6nb0n4BJHQMkq6hjx9bLqyIbD414/7Jt7pN209/lg7HJx3LuxjFqPBIddfPHE083uA5X5lZ4RilFi9M6eglZM1pALmODgCRfkV5r6VIM9VNHAzMFLI+HVft1Ucnve4HuXZ0VUmfKXCqlmAQTMp3yhxYyqjjF9A7z3Lf8A6e0W2VPcKsz0ra4vy70no5qisczD0gZTfBNjEc7qQOOprqtjhYC52bc81MsqdLOW8cdBBVVho6wsDSGwSuu7YWvptxKranQ7qC10919xn45P6lkk1JLFCQx5AAc7bmvOmF5dzbHn8SVDpTSmZu+qXTbrfSLcF6RII03PYdwPFFpGPtJd212knh3LRZdR9T1JQ1avMyks8EMzBnjBsoSMpa1zjVSBxfYsIu0+lwPNOkVRHUUrZ4S4sf3lQrpH6JWZtxRte6ocHkPJGhpsSR3n0KdYfhAw6hhpQ4ygG24tyXRdOzjTU6L9t8rH9znlCbYQROlAI4BbX0rwOBXfDEIWhrGBvfZbbkCx3v3qtnX0vBshb7b8jSaV5aC3vC6aihc2xuCOdl2i7dtNgd+Kxl6x8MrWuIkNrfKsYz1yWXsJ0cDJT1FNUVBhjq6brG8WdYL8bcE4+Q2F7i3iqBw3LOc6bpBFT1lQKIy9o9fH5vW34XvwXojsiOznk27wrDqdtC0cIqWdSyYUqSfJyeQ7+cPlXQyGOIDYly2jTI28YBcEb8+KrZzysI3RgkyCdLeG4lXZaeMKcet0vsGl1+AtwUV6BMGzBh8lScbc8Rl0hAeZL8Bbzh4q5AVkLu7IO/G913R6nGNq7Vx57kOj7eswJLyNALR6dkoA1cwVmyN9jqdqt6Qtelxde5Ivayq3lJZ5RuWGDmtGz7m/pSkWFjfSlsTM0OYCPFU70wZ/xjLOJUsOHMeI3ytaQ2S1wWk9y77SxqXlTTB74MZSwW/cMYQCN991Gc75fw/NGGPgrWyDS13AgcRZacpY9LjOWaKtqY9E8kMbnXNzci53XZVVY0lpebHYqadKtaTelaZR8mdFOjqRG8Gy/h+XsPfSU7ZSyS5O4PFun+Cj9HkzDcMxE10BOs2PnDkLd3pUnzBjlBhDGCulA1gEXa48bjkPQo7LjUFTHrpH3Ye4EfSry2d3OPiqTednud9rRo1JaUtx7FU0DS07AW3XDVzNJJ1D5VHp8U0EtB9K4p8V2O6307N6ssvIWmlpmeMSNe6wI23Ucrn22C31tbe5aeKapJC99yrqhRcUdtTaJg1Kg7uAvZLa19TjYLrS7HOmk9T4Eujg7buuudlXTyT9Vq3vbgVvbsLDzibE/wB1bJR3QpVKdaLcexsjfpe0gXup3lKuLtIJ3v8AxVbR1oNfJSs86M6WH4lKMr1JjrGtce76Vx9QoaoGEJqrBxT4Lno362NPoXdSt+vd/BMuFTa42b8lI6KPiQvBXK0TZQ3HsyZ30ze16LLpb75aoRYLYeKr28srG8sVCEKDAEIQgEN7bW3S7tbtp3QhQ5LKTAgB4m3xJUIWWmKlgCHcFIb9Z6LLIcUe9WLRPYe8Ejswu7/UnYpvwX7Wb4D6E4FfW+iL/Y0/l/cqK3vmqX7FJ4H6F5Qov7S0f55T/sr1fL9ik/FP0LyhRf2lo/zyn/ZVqzX3PWjeA8EIbwHghCCOdIjQ7I2PuNwRQzfsFUt7FEXGOk3v5WLf4Crq6Rf6C49+YzfsFUp7FAnVjgvt5WP2CgPRjCS0Fwt4pTbig8EAbICP5hEYqKRwPaJdz8E2Fzi0F3DVyFk55jYDPSHhYu/gm15sbEXC+Yeku1/N/L+iLW1SdNCvAI4BzDxBFysLtkjAe1vHYOAWQOxRsVQa5vfsbkkzBrI2tcNETDfYtaG/Qsn9thjdoLXbdsXCCB4pdg6xAKh4bUmw4Iieb8hYNj1A5hiLavzg9khaOfIekqoYsUzT0XPNNPDLV4TDt1rKYubbjfW70uXorbS42so5jWGUuMUUtDXsbJHONI1NBtuDz8FfWHU3odO5WqH67nHW24N2VcyYZmLCoqqhqIhMWgvj6xpN7AnYekqs84dLtbgmcpMIip3dXE9zCTC08Gg8T4pizhlyr6P8YoKvDcSq2UT54tcbXNa2znXIs30BWtSZVwHMtNSY5LRwSS1DTIXmIEm5tz35Lqdva2b8ea1Qfk+PmZwk5x0j/SVbMTpGmYXMjeHDiFTnSdlowVcs8cbmtc4nn3q5IaVtM5vVDsttbay04/hkOMUDopI2l599YX+daeh9X+ybvxIe6+3/ALObq/T/AFiClTeGjyQaxhqDCSNQW0HtWKcsxZMmwjFZJHSyOFxxI7vQmwgg6SBtzX3Tpt8r+mqsXn4FND2o6e65FYCJCsmuuSSOHoSC5brvZIwgg6SrFOOXEmKfKWxw1mItjm0EgEeC7mOEsIcE2VWG9bVGW5sTe2ycGRujhIHId64KUqinJT4WTa/gbOQQmWCoqXV7mk9gEi108sDje4AXTb1fFjxjHn3MWsbGQ527kyiapFZax03+D6E6SztgjLn99lqo6iKdxLWNJ8FpuE5SUU8MYOskGNpdsdkAgj0rEElxBaLIYO0uyMcYizFoRzGuNpOCGRxsv1X0rnxQPdH9bcWn0LThDZQ13Wvc7xK5NSdTS4sy3HCPe9+K5qyHr4XNBsb7brovt6VkQNTdhwXRUpwnHDMW2hvwyidSDU87em6cGktdrG44bIc6wu43HcU3DFWtquqDG2t6e9aW4W/sE4yth7pqt8LwQ63oT9S42xzQ2TwJ2UXYBoDnc0mss4c1uajOOJblXd9Kp3Dy+Sf4firGyjqXj5bqbYTmgxWa94+ZeexJX+2TOpmeyPfZrlZsLXCKOzjqv3rwvV+jQu6n7OD/ABKupOr0ia0Syi88HxhlVGNBB1N3tbuVZ5+6K6rHc0+2NLUER69TgHP+CBy8EuXMadTyBjnFoG211ZeF4s2oaNLrkr55cULjpFWWhefb8z2PSup0r6n7b3OvCKM0GGUtMTcxxMYTfmGgfwXYkbIHbnuSsIN7b+K83UnKcnKfLL9LC2BCxsLbOJN+CADda8oywZIQNzuq4zD0r4ZhGYBhEjAZdem+h3J2nkt9C3q13inFswbxyWOha4JhUU7Z2ABruC2LS8p4a3JyCEIUNJ7MAhCFPwAIQi9twLqEsAEJS1zSD2bnldFyHhr2gX7lOmUVloNmPvR4pwwL7c+X6E3jzfjXbgd/Lvl+hXHQs+vQ27mq5f7NkmSHzviS8gkPnfEvq5Unlz2SH9ZGXfzh/wC7YvSuX/8AQOHfm0f7IXmr2SH9ZGXfzh/7ti9K5f8A9A4d+bR/shAdwSpAlQAhCEAI5lCOZQCN5+K8p9J9/d/w/YlvXyXI/JNXqxvPxXlTpNJ+qCw0X2M8lx/6QQHqSkv5JT24aG/Qt1gLla6L7Tg/Jt+hbXDZAzlqzopJbC/ZKjDT2TYG53UorftSS3wSosDYheF9LUlUg0+zO2zWTJwHXF9xYW7PNYsLGuc8NDCTbtDikYC4Fx4oc27bndeLy3tk7XFZwa3xRvlDpYotY4HQLrbq7Q3aHAW0+jwSN7QDnDdKQNV7C/eo8SUVhMnTFHFiOE4diEcgq6drtX2QCwJ8O7kqXzP0eYxlLHPbjJrnvYwNkNPofO42JcduG5ACvdrWkku2J4+lJK5moh++oab25Kwsup1LTbPsvlGqcM8FW9HvSZ7d1c2HZoLcOxGF+jTUBsBNm3JDePFOXS3nWbKGE0k1LH1rJZHs1MY1w2bfiVpzn0WUeMSy4hh9TNS1zjfXE1jSbnfcqN9EIZm/BZsLzQfLZaVhlaZ/rhu51ufoV2qFrUxd0o+z3jnfPmaXlLT3MsnZjkzZhUtVUNLQX82hvEX5eK31OHyu0iEGx9BKn9Dlahw+Ax4bSwxRM7LmNaGgkbXXNWYbZrHxgN47BTDqdGMs01p+D5KO76e6ktTK8xeqw7Bo2NrZ2MkdY9qUN4+PguaHEYJog+B7XRu80hwN/jW/pL6P6vHXwzQzPYAGCzXN5Enn4rmwjLkmC4dDDUO61zRbtkH6PFXdtVpVqalqTfkUvUrKVOjqjzkb5h1ji4ELXG47tI7J47Lvkoi6TYlvoHBa6imdGzbT8qs6NWKfsnl5UKjzJrIyZmxWDDKJr3aSDfu7lFYqtuKNM0Q7INv48lJMy4E7GKTRu21+Fu63NZZYwKHD6N8czQ7tcSB3AL0lj1WLap1JJL44Lm2lStbfWt5kcLdI3XNMx7mu08bbLbnNk9LiAjpANLyQN7cgsYA6OjY2YuEhIJPHayvKV4rh6Ibov7e5WiLk8NolHRvhGWcXf5JmqqbSzSWDXy1fUDYEn6Arzyh0N4DheLU2K08j5zE9ksTm1T3C7XBw9B4Bea6ajE1QZJSWQxnsSt3eQRxsvUHQNNiH8iDLitVLM2OomIkkfd2kabDwAVN1Gj4MnFSTT8jsoXEak3FdiR9IOSMNzlSMgxFst2tsHMldHYXvyVN5p6PcqZbgjgFUZcQLiI4hXEu1WuOydyvQlNiEFf1nkkge6NwaWnYXXi6rr6+HNP8A2xWVFRVQFr/rrtXhv4KthbSq5S2eDrndyt4ZXA5MyVicUs07qedsMjy9mqN3mngtceXXsc4iJ/WD+6VbeCZqgrcDbHUU8JlbBZpIJ4MVTZKZjdX0i0zKqVzqHr2a2GS4I0Hl4rza9ZpznCe2nzXPyL6x9J7PQlU5+aNseA1Tm3fFIRfk0rqGASP948H0gq8hl6jLWgGxIBsAFjLlqAPDW8fAKkq9baeWsfQvodYoVM6Vseco8hVrMUjqBfQHAnsu4XupnT4M9psQfnVsnLrGnSeB9AUC6ScwUmSpKfVC2UuadntPwrcvFTT6rK8moU92aqfUKFs3Jd/iaKfCSwXIPzpzpKRwIBabeCcMoVEeYcBhxHQI2Fz9mj4JtzTy7D4mNu17997WC4rm9jCo4S5M3eqTeHlDYyKKNw1G3xp1gawMGggjxuq36ZW4tHhdL7SyPhkvJqdG/STs238U8dFJxKTLN8Xke+o6ywLn6iRpHNa7i3zR8dTWPI4JXWqenBNrqLdIuVpc34GyhgmET43mUEki/ZItspPb0lbqUhshJJ4Kto15UKiqQ5RjWWU0RvonyrPlHC5oa2Zri5zCL35NI5+Kmbd2An4kpAkYLkkelYjstseCi6uJ3FTXPk5oQ07GQsshYLWXN7O5B8FsfsQW7j0rQo5a+JnJ4OhsmwC2A3XBct7VzYm1lH89Z0psm0kdTVt1teHGxaTwIHL8ZTSt5VZaIbs52sEwPFCj+TM2UuasIFfSNAjLyzzSNxbv8VIiNrrCtSnRk4TWGiEzFCQFKtThHVkkEIQpe/BAIQg6TwJ2UcLLJBCUsc9txZoHpSEkkuAbtyBUtS06sbGOQRzCLhzL8LdyGkHQQeJW62adSLD4ySqn+1o/ALctUH2tH4BbSvslJ5pxKZ+8yvenb+r6s8H/ALt6iXsUf6DH8SL9kqWdO39X1Z4P/dvUU9ij/QY/iRfslbOBnKLwQhCkgEIQgBCEIAVM+yfBbkOIXH2ST925XMqa9lD/AEDi/KSfu3IBz9jpq9zfDA772g5f+EFZ9hcXIuqy9jr/AFbYX+bQfugrPIBN7KGtwYloJv6FGsYP8/aGOaCSeO/cpM7YKNYm0OrH7bg7eheY9LI5s1J9mdVptI42jSCXkOJNuzskfc2aGt0cyW3PyrK1tkl+K+cw0JZzgsnFPkwMcZIa6JsgG+7Q76VsiIieWRxNja7fZoAQ0dxskJ7ViobeMNmLgjVUU8U0PV1UPlDe5ouq86QOjGgxmnFRhLTTVkZEgaXu3IubWHpsrKBI4GyQne/NddreV7WopxeyMHTTKGwDP2YMn4lRYVm6mljpNRYZn0whbaxdfU70kBXEccpZ8BqsWw6eKdkdPI+0bw/drC7lt3LnzXlLDM1QxNxJvaN7PDGuI4d/gqgp6efIfSBFgs2IVVThVayOPqpiNI62TSdm7cBZXyha9SxUisTjys8/JGpaobNj50ddK9dmHOXtXPFoic4ht4mjYNJ4hXE3U09/O9kxYdk3A8JxGSuo6KCOYuuyRkQBG1tiE+6yWbcFT9TnTq1EqEdOFvnubYp8nNXVMFDTyVNXNHHDfcucGgX9Ka8v5nwbHZHx4ZXU00reTJ2vPG3AFbs14T7d4BNRNkfG95aQW25H0qB9FHRpU5Qr6ipqKmWQOtpD3NNrOJ5eKztba2nbzk5aZLhN7sOcky0W6tLi5wLgeA7krNL3anOAd4rKS7SBpbYi+ocUjmNY6N8mkNN+aq6a1pp8mblsc9bVNoKKqq3taRDE6TzRvYXVZ5T6X6bHczuw10D23e4b6BwYXcvBWXilKKzDKqAOuJo3RjhzFlUWTeiCXBM4e3Ek0jmB7naCWW3YW8t+au+m07SVvU9aeJLjLwa5J6k0XKIxq1NcGggcSlIt6fSop0pVtfhmUKqXDtLahsMha4P0kEMJHBQPoPzLj2J+VtxomQNls0ukc6w0en0rRT6bKrbu51JR+Jl4ntY5LmsmXOtRWU2W6iXDWOfUg7AM17aTy+ROJndsCAAOaiGfekfDcpPhpq+Nsjpg0hrmOcCCSOS5LOjOdZQgsvnCM6uqKzggXQvmPNmIY5NHjVNMyAObu6lLNrHn8iueWpB4Pa033uVGcBxGjr8KjxPDKeKBszdX1tpbwcW/wW2eptzJcTchWXUJK6um1DSvJnTbW0u4+OrNLhaRhK4sYpMJryx+IBjpGm7e2BvZM5qx1gNz4KpelOtx6SvpvauoliYJG3DJS240lTY9OnKu3GSjt3Ntaj4aTxkuCWaKnDYqYBsDRZvgOC4ZK0ASGxcQOSimV6mv/k/T+2Ly6Xq2XcX3N7broqqwRtuHE967PUNEsJ7lvbW+YptfcMXSXl+TMTqeSneexG0ENJ2s4nl4pow2kkwqgbTucS4C29/4+KkEuJva11jYE95TFiNQWU7qgnVYXsVd28amlUex3W1jC2brS2WDTPMWgl/FN0k5kJsU00WYPbKoewxtaGkt2vyNuacCA2TZWLo+EjbC5jW3hwKHbnUsQ4XWqte5sEvVgatBse7ZMOFOrDWPMr3Obc2Bd6FujDUspnNc3bhNU1BvPkSN4uQsJotcJaHbn0rMkuI2ACxka6RhEdgRzCxgm2dEo+xusjJR4K+Gt657jpvfcnuTzUao4rD7I4aB8fBbcqUFLiuJilxbEauljLgC6FocRsTz8ArfouguKpmo6tuNV8kLXxyaT1Vi0EHfbuXX4WrfJ52p1KlawlT0PLIPmDJZwzo1wzMbWu8oNPrlO/EuA4cAmTC5SyrjcdibL1bjeUKPEcnnL7ifJ9Ia12ltwA6/DgqeqOhCDCoqiqqsw4mIY2F9z1RO2/Cyzr0HVhpRxdL6tG2ctcW8+Q6ZVvPTRHfzR9CnVDFpYqNybT4nX5iqKHBcQqpcOpZXxOmkeGPOkXG3DcK8qmoiw/Cpqt7nGCBhfqI3dbjcL5r1u39XuPDUlJvyNt1cqcntg6wLI5qvcr9KuFY7mCbDIW/XIy5v2Nw4W7/FWGWgSP3PoCqa1tUtpaaixlHDCalloEIQtJIIQhACEIUbTeOACEWcXANA3WQYSbDTfxUaJT3is4BiEe9Sgcb7ELHkpTXCJ7EhwX7Wb4D6E4lN+Dfao8B9C719d6MtNlTXwKet77Ncv2KT8U/QvKFF/aWj/PKf9lesJfsUngfoXk+i/tLR/nlP+yrPOTDuetG8B4IQ3gPBCEEd6Rf6C49+YzfsFUn7E/zsc/O/9wq7OkMg5Hx5pvc0M1rfiFeSuijpLjyHiOIQyxF8c0+txEReQbW7wgPa54JRwTJlbMdDmXBYcRw2QuilvYPAa4WJG4ubbhOk1RHFGC+WJvfqcAEA05ijLjA4e9v/AATO6Q3Ase5duZcXw+CON0tZAG77CRt+XK6baqrbDh09S1moMidIyzb3IFwvm3pNTzeyWOcf0RZ2ssUze7S1zbnc8khBPBeeMU6bcVjxqSBtBETA4tLRC4k7d11KsL6bcOdTtdVUde13vtNGbD/3Ljl6PXkIqXZ/E2qqky3ht52yGSsc47qMZdzrg+ZoNWHzuZKBu2cCPlc7XKiWYelPBcErBSudVyS37Zjh1tAtfjqXLR6XWrVpUYx4NVSusotMvDmODVwU9G2Q3ntY8LrmypitLjuGtrqCXVGbahIQ0gkA8LlO7Jaci7ZodLuALwudUq0HKCXBnpjNEVz7lqLG8p1lM0gyxh8jNieDHWVWdFOfG5Tjfl7MUZYIyGQvc9rAQASdrX4lX+7Tc2DSHCxHIhQrPWQMJzPS3bBHTVsYsyWGNjCbkE3da/JWVhfU6lKVrd+6+O+DGVJpZhyTGCrpqunbNRVEZiPdukE1jdrg5vMhedMyZDzzluhPkOK1ElPc7NxGUu4X4ALDKPSNi+WIPJsegrJojbVJJHJK4EC2xcV2VPR1Th4lvPL8m0ZxqJPTIs7pdwN9TlqoqqBpfOGOIDQSeFl53wnDsUkE3lkT4y1585vcvUOC50y7icGlk5dE4bsqWtHPuJTHnjBqKooX1WGuw+OJ250PY073PL0K89HOu3FhU8GssLONslH1S2dGm6lA881+ttKWsFzZceFdaHO6wW+JPuPCGhaXMkjkA/vByZaHEI59Re1rAL8BZfVnOnUqRqRkzkpVnOnmPB3vO/GwC4cTMxivTO1eAvyWytd1lK4xPG/PUuTAw4B2t5fx851+azr1lOehbZNqX/ZG/CWTdW50wIdfuS1+IupnC7T8oXTPKyAEvNu4BapYoK9rS25I9AWElil4NOT1InOp5OAVrMQkELmkXGrcrtpmQ0NrkC/pWoiipJ2ghwktbZoSYpTSVWl0btLd+BstEU4w/abzMmthyu5/bYeyUrdlppAYKdrHkk8ON1t48fmVlTlJxTlyamKQDxWs1EUcmi+/itjmm2xHypokoZXVhk19kk++XPcSlCSaMh3cATshr97WQGltrEEeKGEdod9+K686opmOMsQdWX2c4BaPIYhUdZtwTdVMnbWbOOi/Jx7k7x/Ymgk324rj1xrv2lwTwa5ZGMIa8gBbQ4OZZu6bcYpJZ3tLHFo34Osu2kjdFTgO3PeTdZUqkpycUtkYtnXDM6IAWNwnOkr5hIHOdsPQmZpWYcW++Pyrpi4QeGivu7BXO7JzSVMVU1tnDUBunzBsXfQ1DW3u2/oVaUlW+F12uPyqQ4diImIElge9UPWeg0rqOpLf7jzs7a46dLXB7fMvTB8fZLA08bm3EehSGKYStaWPDb/GqJo8RdSPYWSSFlxtc2TTnrPmM4W+J2FiR4Idtd/o7ivlN96NTjUcY7P7j13SOvq4ShPn7z0kWhvj3pFGuj/F6rGMsw1VewMmL3Aix5Ad/ipICOa8lXoK3lpZ6xbrKFb541ebzVc490VYPi+YfbaUs63Xq3LuOrV3qxQRcX4LMaWsd1gABNxZb7S6q208wfIliRhHE2CFsMP2NiVYxkdsDVpPAlZLik3qc292FsCEIWRlnIIQhCAQASbN4oSHhxI8FKeHkHnrM+O5th6RIoKaGU0nWtFxE3h1tuPgvQNL1r6GmkqPspabgi3NYvoqN8gkfR0rpR78xNLvlstpF3h1zYcG32XffXkK1KNOEUmvgY4MnbNHinDAx/O7+P0Jvdvt3bpywIfXyf8Argur0eeu8h8Ga7n92x/HAIPnfEl5JD53xL6qVR5c9kh/WRl384f+7YvSuX/9A4d+bR/sheafZIkDpHy7e9/KH2sP/DYvSmAO/wCwsN7vJo/2QgHAJUjTw70qAEIQgBHMoSX3+lADefivKfSb/aDwz8vL+6C9V6rOt8a8fdOmLe0/TJFXRsc6SCZ5Ac27TeNo/igPXtF9pwfk2/Qtp4KruijpVw7N9OKZzuqrI27tLA1thYDi7vKsyaQtZdpYPS42CAwrR/NZPxSoqR2lIKzEqLyWUuq6cWab3lb61GaWspq10go5mSFhsbOB+heJ9LqMmoVYLg7rOWNjcDq3OzUEA+ZuPQqp6WekqvyfWvpKekifCQAHvjcTuwOO4PpUeyz04ujB9t6GfQ/tAwUrn8hbiV52j0O7q0414Jb/ABOmVZJl7g3F+CVV3l3pYy/itUKWTy2nmdYN66nEYvvxJd6FI8yZuwnLtA2qxCfW19tAgtIdwSNrjuXNPpt1CrocVlmfiRZICwOab8eSzDi2MgtJ8FCMn9I+B5mqHQUr6iOYGwbLEGX2J27RvwUwfJGyQNfOwbA2MgWqvaTtqmmtEaos2xaRdz22HpXnXMPl3Rv0hNxMwvlw6UxtdpAbs0ajubr0Q2z7ujkZI0bGzrhcWK4TQYzQyUuJUsE+oEB8sTXuF+YLgV19M6h6rN+MvYexhOOfaQ25VzZh2aaJtVRTsie4BxjLtZuQCeHinOu0SBwc4F45Kmcd6J8Xwysnq8rYlUxMcXOEXljomAEnYNaOQtZQfCcWzllnGnVeJmuq4Y3Bxa+SaYEAdx8Va0+kULjVcUJt57PCOWVRt4wek29ZNSydVE4ube1vQF55zLWZnqukKelZSzCmZI4AmNp96CrZyj0p4FiNO1taKilqr6C0wCNvAd7u8lTCnqMBrqhktOMOfKfOkcI9Z+PitFvXqdMqS8SOcr5kToU60XGa5IXBgUjojrH13qgRseNgqmxDBsy/y4nYIpPI+tk0nqha3Le69HVOJYRTSSyS1dM0xs1Aa2b25Wuqqq+mDDxnCbDpKKk8kZJIwzinGs24G9+asOn391WcpKC/ErpdOoUo6cc/BDpBgsrXta8EWAvsm6voaV7Z4Y5mdeL2bvfgrApsTwbEGyRQ1cImlYGs1PYNzw5qhxhGKzdJs8TcQZ1WuQhoqzpLdfct9ldVa8pTntpWTml0WlHH+BmwLB8xT5gLaqmm6tpbv1YHEG6leZ6c4XQddUU0mzQ0m9rbH1K+6ygw+jp56h8ULWxdpz2Mbfj3qN0tdlfN/X4XCOse0Oc/rImX7PZNtz8JbKHpPXi3KG0VzjJlcdE8SUdLwkjzPDmmjbGexpB4uMgs75lZeZM24nWZQjosPY6hwt4IkMobIHgss/fiLhSzGejjJuB4c6rr2PbDEAQOpiOxIHAgcyo/nGjoMfy71eV3nqY9Vw60fBtjs2/oV5Q9IKd/WhKmsrO+UxWtPUk5RK9yfmWvyrWGqweZsrGmzhGwcbWG59C6c95np80ZllxKOF0cj2sb2nh3AW5BMFJhFXhckgqSzSTwa+91l1LXvjc1rWhjtWwtfxXuaVumlWijJSUo6Zb5HnD8XfCxouOzYE7KQ02YoYWuPXMa9/AkqFOGu4aACTfuXHi9JLUU7Gxv0Fl92usStl9a21Wi5OCy/gion0uFSTcZOPyLgwzMVQy0rHiVv90BS3Cs5uuDI0g+I9SpHKlXLRU3Vyv6y7vfu1cgFLW/X42uheQ62+9l5DqPoxQnSdWMVj5L8irl1K66bWdPU5L4tl00ePsdZ87wwO2FzzXHmbLuB5vji9sGCZzBa4eRzvy8FR+cavFJaSOLD6lzHBwJtM5p809yknRXieI01F1WKTySEADU6Rzz5p7yvG1Oiysk6tB4f0PV2vWIVrdSq9y4sPpsPy1hDIoZG01HGXOJc4kAcTukw7FcLxqWQUNTFK9hLTpde/NQ3Ojp8cyrVUdHMWSPikaHay07i3FMvQrlTE8uy1M+JVIla+RxaDUF+xYBuCFV/ZmulO4qS9ouad5GOFFlsdU57Y2G+3cuaqp3TOub9kad06McHsDxoFviWtzePp3VH401B02zuhUzLIyGkN/+SXyIuHHh6E7GC+4utUrHNbtw8VEKhulVbkccMLoza/zLqaRcC+54LFpB2GrV/e2Cjuf62rwrL1bU0bdUrInObpuSCB6FthbyqVFGL5JlJYJKWPBJIJsjrC9uwIVR9C2b8bzDiUtPi0LmwN12cQ++zRbircePrsjGcBa3et95aztqro5NUJamKxgewt53uo/nbJdFm+jjp60tAYHDe/MjuP8AdUogj0tu7ZbGHV2gAG965qdxO3qxqQ5IkMGTcrUeVsLFBQ26kPL9r8Ta/HwT/Ib7BK4X4cfQkIaAOJWu5rTuKkqk3ua1yLazQkQTy5oWCMgQhCEAgMYTtxQgnjyuLbKG9miStOnDEcaw3BY3YIx73aN9LA7fUO/0Ld0J12MV+X2y4yx7JnOcCHNA996FYE1PDPCY6mGKdvdKwP8ApWUMMMEeinhihb3RsDR8ysfX6fqvgaFq88GHcz2a94PAkrFgaHNDe9Kd+KUbyMFgN1yWrzVgsdyZe6yVw/a0XgFtcsIQPJ4x6AszvdfZqSxTiilfLK86dv6vqzwf+7eop7FD+gx/Ei/ZKlfTr/V/WeD/AN29RP2KRH8hyBe+iL9krPuQi8ULHWL23v6EocL25qSRUIBuEIAQhCAFTXsof6BxflJP3blcj3BjS4gkDuVN+yf/AKCQ3BI6yS9vybkA6ex0/q2wv82g/dBWgCvKHQr0y0eX8MosHxSJ7aZkbImvjh1O2aGi/aHxr1RTVMVTA2aCRj43C4cHAj5UBuPBRzFwW1ZI5n1J7mrKeE2lniYSL9p4CjOL4rQeXsgdVQumeSGNY9p5DjuvOelFNzstuzOi1eJGsAmYX4WWb3N1uaOIKY874zNgGBSV8ETZJGAnTpJFtJPLwVHUHTniUlYJJ6BhgNy/q4HFw22sLrwdp0mrewdSC93Y75VEmeiwC3fkjYm/NVTR9N2CzOjZU02JRhxALvIiAPjLlYGE5hwrE8P8tpatghsLiRzWuFxfhdYXHTLq2aUo8kqrFjujx4Ktfdgy8cUgom+Wh73AF7qcBm4v52pWHT1dNUU8VQyVvUyMDg4uHMXCwubGtbxUquVklVIs2PaxwLi3UwcBdVh08ZenxTDabFaFh66lex2kDUbRhzvBWcyRj5GhksJt73WPoSyQMeSJmtljI3jeNTT8R2U2FzO0uNaW3xMZwUuCqui7pMw+toKTCsVb1FbAwMeXyjc2JOwGytZ1QGuH19nVnhsq1z70U0WOVArcHd7XVZuSKUtgBuR8EX4BVXmfA8/YFNDJ5dUzRRODrNrZn3AHcvQOwtepTc6E2n5cI16pQ5PUNmlzTfc7tPoVSdPuKZjoqWmOCMe8EuuWxh3vR3+lN2Sul9sDKXDszUtVDLHEGdY2ncSSBa5c4jmrMgzFl3FGRMfLTTAnsCoDDv6bkrhja1enVtVaCkvqZPElnI39F1ZiWIZTifizXMqA9os5oHvG93pJUP6fYcyllIcBa97Prtw2IO+Bbj8atN9Xh9HG3q6ijhaQCA17Wtt61X3ST0n4dluOJtIyGvfZ9+tjEoFtNuB9PzLGx8WpeeLCkmvLBE8Y5H7otZiLcsR+3AInDuBbp5D/AJqT1dVTU7m+XStia/catlD8r9ImC4thkT5ZW00rnDsNa1jeA9PpUE6f2YhW0lLV4NirI4NJIDK0sdYvbyBWUOnVLy+cJx0pt8DVpjnJr6aqbM1RmKKTL7JJ6BwibeOIO972tyrQyVHUU2VcPNYSyobAzrGuFiHW3TX0ZRztypTDEZI6qUyPs6STrDe4tuUuY854PhdY2jqJXslIN2saLbG3ett1XdWKsaMdovftk20Kfd9yB5v6aGYZi89DHRyv0BvaEzOYv3JigqsO6T5WyYhTuikh2BfJfZu/vbd6mmI5MwPFamaukhb2wAXdUy+23cmDBqjLmB11RRYa6QzEvadcbBY3sbEFXFCNr4aVusVI4WcY+e5006E4TxV4H7D67CcCgjwelqYtUXYDQ7vOrn4rvkry5t+RGxVS4rljFP5XnEGz/wA3dIHWMx4aAOFu9S3rpWRND5OAA2fdTW6dTWKmW2y8sacqra0oepqwNcTcXSMrw6NzpbhjRcm/AKOS1N79o38VjLI+fDqqEv0Okjc1pDrblKdvJNPBZ1beNOg5Yy15nVVY1SVUzoI52ENJHHuXHJUMDXBhBsOShmC4JWUeKSSTSh0ZLrapSeSk4IaHAgXsu6dtCMs5JsKsqtJTlFJmRe+RpubBaTDHJGWda035ImDnU8jY3AOsTubclCqBuJxYkOvkcYyRwkceS306GfaizZfXyptUXFNS2JA3B4qZ7nR2vuea1SVMLZerLhr7rrqiqDYgkkkW7SjVfhtR7b9fG92kuJtqNuC3xbk9MivrydDCoxwP/W7WA4pALXIG6QcGNFtW17rLS/XYWt4qZLTwdcWp4kluIwSboc+xsDZyBrLiAdxw3WyOGWV4DWNLu+yYaWcmcvZ3yc8sUVSNMkRLjzurf9jlW4k/EKim1dbQta+zmsAAddot42VX1GGVcVFJO5gbpFxYnvt3Kb9GWPT0OVKnC8vwEV81RK589Swx6Q5rWnS8b7HcLOhcQg8SeTzPX/CppYSyz0v5ZAajyZsrTMDbTzXlvpznxKszt7XYntRMZHJExzAO2QRx8LqGYjmPNuAZ5nihxCpqK1j3AiWrlfESG8jffip1mvMdJjuM4NPjELmYg6ojZIGRdjQGm25N111azVNyiebs5U6VZTqPYl3RNhbqPCGPc0saGt0k92lWHiNLHiNHPS1AvHOzqy7lZM+HVdHBT08VKPrRYNg0cuHBO8Be6LUD53AXXye9q1KlaVWfKLStXhczegguW+irCcCzBNidNp6yQudsXc/E+hWCA8vkc4G3JI62gBziD/dKRocAAHOPwtRWm6rVbialUb2RrilFYRkhCFzkghCEAIQhYN+1jAOLHHzxYLWyUgJmawFoAvvcKiej3H82VWep4a2GVtKHkXMbQLdYB9C9BEA7OF282ngfFaIaGjhmMsNHTRyHi5kTQflAVnY39O3oyhKKbfwIwdUjS15J4lYDgsgTc3JN+9Y3VenqlnzJ7Eiwb7VHgPoXfzXDg+1K3wC7ua+v9LWLSn8inq++zCX7DJ+KfoXk+i/tLx/nlP8Asr1hL9hk8D9C8n0ZA9kvHe9zWU9v8KsEY9z1o3gPBCRvAeCEIPO2aqvpRGB40a+mrmUAp5dRPk9tFjfhvwVV9F/RpNn0VkvlRjLJQJPreqxIv3hevOkQD+QuP6h/3Gb9gqkvYpjX7egkj+di1tveFAbsaydmjouyxNUZUxGapgaxxliihjboaDe9334k8lD8uVnSH0gzNh9tKuOBr7PHVQuDSLE8hwuvWNZSx1cT4pmh8Ug0va4X2XnDH8HxzowztUY1gNPLV4bUOe+SHqXzuBe830hoAAAA8EBq6ReiLGaTB5MRZjEmIT07C5zBA1hF7Ab3W3IPSx5fVRYDidGWFrBDd0nHcM5DxWrN/SbmTNVE2jwPBK2m1ghxrMOlaOVtwfQUZI6JJo5ocWxyXTW9YJAKeQsba4cLgtvxvzXmuuO0llXDSa4Oug5acIjme6Wgyl0rsr62kacKllmc8OcQ07ADcEniVPIcf6LqrCS/VQtY4EPGufbvU5zPl2hzDhktJXQtde2l4ADxuDxIPcovgPRTl/C4Hs/nkhde4fM1w3N/gqi+0rWvRTl7Mo4XPK+htVKTe5RGZ5cJgzG6fo/ljkD9d2wauJ2/1noXBhmU8yYiZmPwmd3lDdHWambfFqXqjCcoYJhMoko6QOfz61rXejuT22GFkvYp4GxjhaMAro/1TGkmoQ/H/BErbU8lc5IyZW5fyVLSQzOixGYiQAMFxdlu8jioXg+S+kgYnTDEKus8mYd9UUFjse7dX4C8vJcGaRsLBLa9i4uuOFiqSHW6iU9Sy5fL8jcqWFsaKaMw0NPT1J+vNa25PM2tyXQ7UGhoYS0e+ui5f9lsbcLcVjd+q1xo5d6qJzcnlm2KwZnrHluhxe0HcBNWOYFheNMMGJ4eydh3LXPcLn4iE6DY8bD0JHMaTuXfKlKo6EtdPZhRSbZV2L9D2XpjMcOpoqaQt7OnrHb/ABuUGi6Ls3eXSUkdVUDCy8/6qPTpvbvvwXokag0t20nnzQxoYCBdXNP0guoLMnl/d+RgqSaeSg8Y6E6ahp+ubVtlYASR1ZH+8oDjuVKakFo4gWt48fT6V64miZUxOhnH1s7dniqrzrlsU5c+MXjO9uJ5+hel9GvSGEqsad/7Xx4/ojzPWberQfi0FsuUecK6jfTMd1Li2E+aAOAXNTyTU4BY4m59CnuY8FJppHxtdp5DnxHoUNw9jWz9VM15N9tvSvodSjHxlWo7Q+pNndwvqeY8rsbqphqaJsspsQAN1tw2oigonOjILgDwXTOIHjqC61trBwCby2HDrsk1Oa7YWN10TcYy1557nR7yz3OYMdiVUXEWIP8AFOeIvmpqdoiB2v3LbQCFv1wENDuFyAd11ObrYRINQPcF00KGYN6svzNTel+0NVFibZQ1kx7d7C/enYNs7tJtbhjWz9ZuLG439KcAXHzvmW+0VRJxq/cTNcNHLibpgz6xe/osm1k9cIiHB1/iT9e/FvyhYvYCRYNtzWNW2nN5yRk5MLkmfEeuvf0271trS5kJdH53oXSWt95YBI2xdZw2stipy8PQ9mRHkZKHET1ump4+n/knkfXAHR8FwVGHtfU628L8iuwvbCxrQ4DccStFrGUG/E2E9+DMPI2cjUeewSvIdYhcuI9a6F3U2vbn4LulNuOYGEU87nWNNrtWDdzYriwsTNaBN9BTg8aTcELClUnUpanHcmpFReExLdqy2MmNPKCTYLULucCCFzYs2V7PrRF0q1pQjlLcwmlVWiXBPcEqRU0um9xfj6U7UQgZUAVsAliHMuIHzKtcu1E8FORM6x1nhdS/DMT1t0P4d5VRf9M+0aWVtJnkLm1nZV5VKa2yXLgmOQdWyCnAZCDsASd/jUsp5mysBvxCpDCKswzNN3abj6VYmEYmJGsaHgG3M/8ANfHus9EnbTeVk9f0brHjLw5vcmT2C7QdwdlT/TZnLHcv4nRQ4Q6VkRjbfTo+GRzB5K3aeZs0e19t1prMLo8QLXVdOyQttYuYD6eYVHYV6dnX1VY6vwPT4UllMasiYrVYtlSiqcQ1OncHatVr+cRyUgCwa1kbRDFGxkA4BjbLNc1dwlOVSK5M47AhCFoSaNmcghCFkYghCEbwAQhCZcVqzuww5nwTngX2Y/8AXJNY33+JOmA7zPPwTb5leejUU7uLwabn92P/ACCQ+d8SXkkPnfEvqZVHlf2TRlGe8E8lBNV17uqtxv1bO/ZTXJs/Sb1lB5fHW+1+hli4U9tO3dvwUO9kgP8A6kZdPMVD7fo2L0rl8D2hw3Yfa0f7IQHeDfiN0qQX2SoAQhCAFi6/avwWSS3a+lAVd0lzZ6Zi8IyjHVOpurbq6oQ2vc38/wBFl5xzvRY/jvSHBh+YpZaeslkcPrjWEkhgPvduQXt61zew7uC8p9JzW/VBYZqvp6+TYfkmoB/yx0EVOARvxXC8WMNYI9bQ2C5cRZwG5I4qIYznnpHbmSXLsuIVjJS5/VXjgu4M3J83+K9aU0YdRU4N9mNO3gql6eciVOMUDMXy9G1uLUwMbAAe1rcNRIaLnb0oCNYb0RZkxHAnvxbMEsVQ/UdD6ZhJvw4bKDYFjmKdFOYcRoMQo5MQpxO5rZS5sYIA0g2FyplSdMGP4fQHDpsv4nJWNbpa9uGyll7WF9+CijMo5k6SMbfV5hibSUkjnPtHE+nfv2hfUDzVR1V0cKNy0o/E3UMuWxKOlCODO3RmzMFFRh87RO4lrjtoBaONu7uTN0e5jyDHhENFmJtJFXxtDSJHzX2aL+btxurdyrlulwDLzMHj1y0o1hwlcHmznEnkO/uUXxDoowSszC3EHidkeggtjka3cuJ4aV5O36jaqMraT9lZw88/gdjotvJXvSjUdHtdSPkweSjjxSMOOphmLiTptx25FVj5LmDFpIA6kmraVrmtZuxosOHMHgvVTOj7Lscwf1EzhffWWm//ALU/xYfSwBkUFHStgaABeJuq424rbD0jpW0VGENWF5/4I8B5KO6K+jasdmOLG8VpX4dFTOLoGPs7rA5jmmxDja1+adc+ZQz5VY6ZsBraryV0bGWZFEQLXv52/crn8xpbG1gA8wW+lDbje5vzVfPr9SVbxMbeW35GcaG3JDejHBMdwLC54sfqZZp5ntf22MaRZtj5vpUyc+MmzgLocXe9O/pWQItuBdUl3Vd1U1zN0VpWDEO0DsSW+JYTNZPDJHUxdfG8WNza/wAi2XPMBY76bCy0pPlPGCUk+SE430X5TxRxknoII5HG5JdIe/8AvelV/mrojxTDJGz5GmeC65LIY2nTa1t3n0uV72G3M+lB7LnPjJ1O3IPD4lc23XbqlhSeUu2F+RqlSWdii8N6FKvFKcVGP4kWVV7FskIvt+Kbd6eqLoMwCKJwrmRVBJB6wh7bfI5W03sjY7+lAaS6wPHc34I/SC+15jPC+S/Inwo9yls19DsNLhbqzLjgyupw6RojaSbgdnznW4qjIqzEcNzBNLJO+PEKdzoi4tbfjuOFuK9tvYZmSteQNTbG2wXmLpQybU5UzKcdOialqJtRaLv8+Q8rW5K+6D1iVdSp3D3eyW2/w4OatTaeexLujLMWPZ1w7E8Oxd0sULmRjW/QQdTnX4AdwUd6MhgmWs/V7J66J8952gFrwSetbt8yuyDGMAocDgq5XUlFDUF+2qOJ9mn0kd6rjEciYBhE02bpKqomgL3PaI6prrlxMg2ta23es7evGaqwUPDWePMZ22ZHumrOjsxYzPleNhY0vMR7V+Gl/C3o71Msn5BlynkOula4vlkgne0abG5Zccz3LkyLWZSz5jU2KOgqYKoP1l0hYxoJaRvseQ71cTHw1FMYoZYZKXTo2cHX2sRtsua/6g7OlG3jTa7vcl0lVXtHjPEsZqW4nPFiV2Na8garfwXQZGStBp92+hW10pdH1PXVTqiljfHe5dc2Fy4cOyoNUYLHTUfV0wdrFyS43/gvpPov1iF7RVKL3S4PMXde3sKuEt/mR/cC7eOlMkU9eaiRp16du5SCRrojY2uNitRs0amtbfwXpbm2dZxjqxjJ0wqqolUQ2YVUVLaxwmDtFid7KaYRiT2ksuQLhR9mkXdp34cFtp5HtHIFTSpzhT8ObycV/awuPbS3XY5KrGqyjxdr5S4Q3F727/BT/A8aZV07JIXCxAO3/wCiitVQQ4i1jDsS4ajcDZP+FYXTYTRC0tmgADXIPBeZ6r0uazKK2KS8lT8JQW012JrS1pZp0Ptvun7DsScTYOv3qu6er1DVDLG4DuddOcGIhsTmguDyCfmXi7npyntHgysuozhNRqbFo0uLRyvEYmFx723/ACT5BVsmYC3a3ZXlTBxjsebhIXymn1Nvs8jgfiV44di5ZFG0uF9IvfvsPSqS+6JCm0477fruewo9UhlZZYbXXGxQW6iNXC6j1BirXAant+X/AJpxrat0mF1gpyHSmB4bbffSbcPSvNzs5xxFrBbU7yM08M6nNgmm6vygahy0lYy0YmZJBK3rIS2zhwuCvP8AlfD83npElkmMnkhe/iyW3m7ehei5GjrbEkEAXsV0X1r6jOEqU85SNkajZwYbhVDhhc6ip2xOdfcEnj4ldEcOhzpHnitnVgkk6rcrJRotY6rdy4qkpzWqUt2b+OAaXXOp2ttthwUU6RsVrsHytNNhgfFMG7Fuk8x3371LASRvb0LXNDHURGKoY2SM8iAfpWy3qxpVo1prIfBU/QbnDHsx1dXDjHWytYx5EjiwcHtFrNA5Eq27aDLbtFrrLloMPpcNafa+COJzr6joA2PgAuuPsajxLjc3W++rUrms504ac/EwSaEJD3F44nayVIBY3Srh2XczBCEKSAQhCYa3RKBCEKMNe2nuYsEM+zR+KEM+zxDvcuix1zuIZ8xJ4i8kth+wR/ihZ2vda4T9ZZ4BbOF19lh7qKV8le9OQH8ga34Wl9v0b1QvQxLn9uVXDLDKsw6Y7dWIbWt/f9F1fPTr/V/WH0P/AHb1E/Yp75GNuOiHj+KVl3CLK6Pzjpy9H/KYSjENcmrrAwG2rs+btwUj7PWC3nWWWgXvuPQOCUNF781IFCEAWCEAIQhAM+bXYmzAp3YGx76+7dAZpvx387bgvMXSzUdILssRjNDKuOmMj7GQQW80/A34XXrR7Q9pBv8AEqa9lE0HIUfI9ZJb9G5AVP0cdCf8rsGosRnrRHG+JjwTFfctDhwIUi6QJc+dGWFUtJhFfVVODwl5dMyOFrdJ7R2IJ4uIVlex27fRphYP3tBw/JBTfNeCRY/gFfhs7WEVERjBNri/cbGyIg885LwPO+fJRiGO43Uw4cYzGx0kERAdYOb5oB98m3PeSMa6PsUw3GhXSYsWGR0jhE2O9g0D9r5k5YHjGY+ijFK3D6vDavEMNlmfNGaekkmc29mtF9hwZ86484Zjzb0iTxUmG4XJSUbtQvWUMsZ3tbfhxauO/wDDVL9o8R7m+GU8ImOT890uf6GuwyoohFMyked5C7cWZyA+Eqty9NgWUs44zQZqhiNJ5SWxulc8BjQ3+7c8SFafRp0YUuU6x+ISTVLqySEtc3rrsuS1x7OkcwnnPeRsNzdTEVURjnNi58RDCTqBO+k9y8XC9s7avK3hLNOWN88HV4cpRwyL45inRVU4PURzS0AD4nCMl1R5xCoioFS6qraXKV5qJ8xczqrWsOHn78F6XoOi/LlPRRwPbWP0kkl0rXcf/KpHhOXsKwiIx0VHER3yRtceFuNgtlLrlCyyqa1ff/giNu+WeXMv5CzBj0FLRuwyeABx1T6mGwPo1ehXjj+U8YgyLR4Rl2qkGIRGBzjHG2/YYWuFnbcbKw4oY6fSKeKNjefZAKzZ2XOPfc35quvfSGrcVFOKwl22f9jaqHxKZyBlHPdNmBlTmGpqhTB93CSOIC2kj3vpsrm17BkYvpABPpWV7izifiWOp7do9Ok8bjdVfUb2d/PXI2QjoQRtJc5zW2I5pRqF3T3kB2sdkoNht8axAue0Tp9C4VstjN7vcj2Y8nYFj7hJieExzbbSOkeLb35OCgeOdC+DuppJcB6unrGAmMMa9x1cvOdZW64AggE7HbdZOOtwLgBb4Oysrfq11bx0U5Yiu2F+RqnSi3nB57wzopzJidU6mzFXzQ0DL6HyQsI280dk3T/H0F4UJh5XXR1DO4xOH0OVyWBHavx2QVvq+kF5Lek9P3J/2DoRZVj+hLLRgeyKnh67SereOs7LuRtqVF9JuX8Ty1i3tdUyvmpGOc1kha1osLcuPFextxcqqem7JU2ZcObW0bmiWAdoXNyS9vIBWnRuv1fWY+tSyt99lj8DVWtsx9gp3JOd8wUdfhdFHPLPSmqYOrAYBu4X5XTl0t4LSw4vRYtiNY2KSpiMpjcw9m7+Fwpf0JyYZPgcjKyCOOsonyzF8rWtFg7bjvyXfnLAsDz7VMYytHW07TGWx1LBvfVsBfZXPrSjeOGjSu7+BuhHMEk90NeZc5swXKMM1IBLHOZG3abcLHmPSoLkzLvtzXvxrzBI9z7Wvu4h3f6U81WI4FHUUeV6xlTIWyEdY1zS0axfiVM6LDaHDqZkOHS2YQHaXSAnh6FlGat4SajjVvnzRZW9NVqqdSXBAukPMeKYZXthi6wUzCbkabWsD3X4lasExqHFYwGTB0o84W8PQrDr8CpsWp5YauJ2siwcBbu5kehMGX8hU+EVE1Q2RztWoaesB+ayxp3dvOGKm0vmWtKdxbXHsvMPkcXVnWLbqNZonxWCeIUjJLFw4ae70qxqnDgwamMeLd4/5LmlpHSaS6Njt/gqLe4gpNSRc3idxBeHLT+JVlbiGPNbBdstiBfzO9TOlcTSwul+yEm90/SYc2TaSJlhw7K5JsPeJBZp0jkAts7qlOPBz2FCdCbdSplfLBD82zYjBJG6iLwzQCbae8965MCxfyjq4p3Xm9PH6FNn4W6oY4SscRuBt/yTRhuS2U1aJndYCCPfbfQuiFxRjDHc4rihV9ZUoS2yuxzyU0jQCQdRNx4JJOtGkFpTyRE6bqWzQukHIPBPctoo5BIQ+N1htfSbLCVTTjO2S6hpqy97gj0kYYS5ztJssoYnvBc0khc+acHxWSeHyOF5a57RtG4/QFOsk5Xqn0LRWRvDzbi0jl6Qle4pUaeuUkVULzNSUaiwkMmFYPJVSt2O5/65qf5bya9zg98Zt3/J6VK8CyzFTRgyDQRzcbDj6QunGMdpMIpjFG5jpRt2SD6O9eYr9RrXlTwqG6+4q+q9ehb03GEsDbj2DYTRYW6GvmjYXNtZwd3g8lAMXzBDh9KYsJhEEQJ+uNdcE232N+4KH9J9ZjeMYiJYHuFNcmzA+9tIHI94XA2Spkpo4qqxcAPNB4W5+le79GugOKVW43X0/ufNOs9WlfqLjUyjqmxUVNbFUTt1PIJMhPG6eqktxdsVTVRWq43XDid7AWHDZRZsRBd1YueV91LsOiMdIGkEh22/Fez6ja0YW79nY83fSVJwlTe5PcnveKSEvOrsi3yKyaVzuqaQDtuPQq6yWwmOINIs1tjfwViUhLoWkcRfwXwXrenxZd15HuOiSlKGWUNi3SDmmlz9Jh8bpxS9aQB9btbrLd1+C9Ahznlzn7kk7rkGFYe6p8okpIXT284xtO/Hu712Nc9wJm06uWgWC5L29oXEYRpQ04XmXVKGhsEIQq3JtBCEKQCEIUPU3yAQhCiMW08sCt4rBZXtuktsCs4ZclqJ7Ejwj7Vb4D6F3c1w4RvSN8B9C7l9g6bta0/kU9b3zCX7DJ4H6F43zE7E29O1QcCie7EPKIeqLNN9WkW87b5V7Il+wyeB+heT6Lf2S0d+VZT2/wAK7+xh3LYyTN0juxWUZghrG0fUHQZOotr1Nt5u/DUhW43gPBCggjvSL/QXHvzGb9gqk/Yn+djn53/uFXZ0i/0Fx78xm/YKpP2J/nY5+d/7hQHo6y0zwR1LdE8Qe3uJW4G5IsfFF97WKAj+L0VPSRDqKZjb34Epvma46C5xA22T1mFuqm807A7/ACJiDWgAkE/GvnXpd+/RYWnBseWnhxWKNiSQCELyZ1rkEIQpXBL5BCEKSAQhCAEIQgBCEIDF50tBXBjdAysoXFw38PQU4OGoWKxkHY08lNKo6OJLkwq01Whol3KOzFhToZnxkkRuPd4KosepPJMaDYHE308rL1PmbAW4hTuDGnUOe/eF5ax2kq8FzW51RBLILtsGN9N+a+u+j3XoXFKNKq+P15niodNq2dzPw/deTidhkxq+vLjY3JGy6q2lhlcwyO4H4Kzx3MEU7GNiY6N7RZzXWuDdMzcPxDEC1zYZA2/HSV6qd3RhlQ3OylV0xXjPBvrKaXUwQOOgW9C6KvEXUkbWEXO/Na3SVGHOZDPC9ot5xbt3c12mOKriElwbb7Fb6VKc1rpvHzZ0RnDGV7S+psppDPC1552XJX1xppdIAPxruj2YGgWA5rVPTMkddxF13141PA9lrJhjumZ00/lEV7WPikfNHC6zzv4LKKzBZoNk3YjQPnkD2m999ro5VadJLuQxzFngObwQ43sBxWEDOpgDSblZDZ4J7lti5SinIhCxbO7SZ8RhmkqG6CbXB+dO7zd1+AS3udhcd6xrU9fBJhTt0wNDuNlprKgwQvcRwBPFdMjdNiN0kjBKAHNKaPDhjJKOPC63ypgJaB8d12kWO5SRxNiFmNIWWm/FRRhOEMMwqbyyGkDcHikuPfBJpseIQSOBK25XchnFitUaaMPiG1wONl24dXSPw7rhsbDn6VjJE2QaHDbisow2NnVN81c86U/E1RexruIwnDEkOWXMzy1dX5Nbdnavq9Nu5WBQ4hPFIx5JAt3qv8JEFDKZmC7iLbFSOkxFtSbOc1o9Ko7/AKHKupSlvn9eR5a/U6FXXbrb9eRdGXMYEsW++38VJYKsSDZUrgeJupZNJ807X5cVMMMx5jZAHPHyhfJep9DnSm4x5/XwPVdM69B04xqc/r4lgkkblC5aGrbUw6m7jvC6brzM6cqctD5PWKanBSQqRHE25pQO5YPKZsjwCEHbiixsTbgsXJx7ZMGCEDfghSs4yzJcAhCFl3QlwA2A8U6YAO1Mf738E2O5W707YBwm/GH0L0Ho1/y0c91+7HocAg+d8SBwQfO+JfUCrR5c9kh/WRl384f+7YvSuX/9A4d+bR/sheavZIf1kZd/OH/u2L0rl/8A0Dh35tH+yEB3BKkCVACEIQAjmUI5lAI3n4ryl0of2gcN/Lyfumr1a3n4ryl0of2gcN/LyfumoD1PSfadP+I36Fu71ppPtOn/ABG/Qt2+6AbZcLo+3MYGmS3HdMdQHte7S4xtB5bqUSuJheNJvYqLSgiokEm9nHYcl5L0t/cI67X3jEJUgSr532LJiFCChZEMEIQhAIQhACEIQAhCEAJHbRkjjdKkd5qxYFde7gONlAOm2GmnyW4TD662WMg2vwJKn7b6g6ypj2SzKh+BweTRvfGHRFxYL2Os7K16Qs3lJZ7owq+68kNoMp4t0hZFw58FTJKYmyOtZp8425kfBVw4Pk9lDkEYdmImaFtidbAdFo7XsDy3VYZS6WWYbll2EVFLLTuY20cj2sa0kuJPO6gtVmrNebpKqig/nUPWPLY4ITq0gkA7eh3zr1tzYXl25U5OMaals02n9eDjjOJY2LZWo6HKNdJ0fVb5ahzWFxbF1O+sW4nuuuvImK49lHINXX5kjM0jHVDo2ySjdwaHDdoNuCr3JlLm/Jb3YhDhtWaZhBfE+nLnO2LRa+3Eq68rZ1wjpBww4fiUT6apu5ghkcxjr7NBsDwJK13sZ0W01GdPbfmRnGWBr6Pc+HpCiqI56SON0b2tsJS/i0u5gdyjWeY3YBTvmMTSwgjc24C6uTL2WsLwAyRUQ+uvIcQH33Aso/nPA4sQonU8rHHY8+8LnteqRtrz/brTH6f3KbqnToVpKozzzhlSzGRLI1jWkPOwN/SieMUxPW7AKcQ4HBg0z2xsdpub7334JrzHg4xakkLCGkja5Po7vBfWOm9Wp16O/vfr4nl11LwLnwv+pFGStkuWeal1WKMOwObD2Sdbw1G3H+K2yREHYK2oKc46p8l9TuqVWroRtgleCNJsV24mJq3DWxRPcH2G48bptYS0gELupZOqkD9Qv3LfKCrQcJFNf0o0q2uKyduVcNqKSFwqHude/G3en14ayNz/AHzdgtlA8VMOq4B7lk8abtLSfBeSv+nxoYwebr3PiV3J7fIheHZvrGY31AiBYS0X6093grApa4WY55s5wDvlTLJQxMlEjWjV863kA2J2IFl5+4oxmsnbdX0JKPhZWCWUleBbtFP+HYpI0/WSSRx3tsq5hqC0gWNk70dUbt6twvfcehUtxYRnwWVr1eSwl+vxLFqMe8hw19YyMdcC33xHH0quui/pXrsx5ldQ1lMwtk0tDuvLiLutw0p7p6qKRvVzghp43Nl04TT0uGVQlpWt5XtYnjdVyt6SoTVaOZdj1Nv1NSxqGzpH6XJMs5ljwuKmjc3UWEmZzeD9PDSVauF1XthhVNXRxtBk1GwPcSOPxKDV2A4Rjda2rq43daDfz7b3upnRdTDBHDHdjG30hxVVfU6Ko0lBYks5LmhcKctmOG/MWKEjbEbboO3HZUmmO7mdqaYqEJLi1+S1Z2ys5IewqEcroWTWnkAhCAL8FGpw35IBCOZHNCmLb3YBCELIAtlK3VVwD+8ta2UZ/n1P+Ou3p/8AyYfM11fcZKox2GjuCyPBYsPDwS83L6/DhFQ+SvenX+r6s8H/ALt6ifsUf6DO/Eh/ZKlnTr/V9WeD/wB29RP2KP8AQZ34kP7JWTJZeKEIUkAhCEAIQhACpr2UH9Ao/wApJ+7crlVNeyg/oFH+Uk/duQDn7HP+rbC/zaD90FaAF9zsVV/sc/6tsL/NoP3QVoFoO5QdznqaOnqj/OIWvt3lNGIwtpHRtpqdrWi9rOPoT/ZMWPuLXwnSfffwVL17/hTN9D30NYD3SFzyeHBLcniksCb7g2S3u1vgvlPctWCEIUkAhCEAIQhACEIQAhCEAIQhAIdwuaeENZI6c/WT5wt8i6gm3M0T35frRHuX6SLcu0FspbzUXwxKWEeesv0clZnLHsKwyZzIaik0AtHAvJB2PipV0cdGmKYFjlXWVRfPGXutqDRcFtr7FVj0f5rflHHp5p6Crm+uHW9jW2a3Xe5ueCfM7dKuJV2JU8uBvY1ro3XjcxrnXLvQe5fQLqhd1ZThS06ZLl5yckKmJZJliOU8sSY4+R0ojxB2kMaKcne2291DcHwrMzc6TtnMnkEXW9VeRtiwO7Jty2UTblzNtTibMRkoarrwQQepcALbcFaOS+kWoo6qLC810kkErWdUyR0bIm6RZo4m9+KVaVS0pR0SU/Z3Wcv7kb41nq22G2r6QHw50GDCBhAk0E9YfgauFlYLKf6x1zmgNEfWfNddk+UMBqMRbjUJ1B7tYeJbg2Gn+CcxSsYLBp0EafiVPd3tFQh4ccPvldy0tq09L1Mper6QWuzW7CxBHoa5zSesPIX4WVieQDZ7R2bArt/kbhhxM1/Uv1kkk6u8WTrU0Tp43xt7Ae3SC5Y3HUqDnCNPOcLPkbKFxVi5ansQ11Xh5q3Uxf8AXwSCNB5cV3x0DdOpwB7lDYeirEf5a1GJeUxGB0srgB1nvuHKyt2moOrYGlurT3LK/q06CWiWTKh1GcveIoMOIGtrRa6HYe6Zj7NsTaymPkWlhHebofRWkZawAvxVb9ozzlfr8TfO8z3PPWG5JxuPNjpzqdTlxPFvw79/crbjwbrHCKRgaRsTx9Kmopw4NBbZw9C2tpbPNh2idvStlz1urWayuPL/ANnJTuZ05Sern4lE9JGa5crVMMMFOyW5aN5SziL9xVrdHVeMXypT188LWPLGHZ2riL8U/wCJ4NQ4jGDWU7jo7WrYcAo7jddHRUgpaMaYmADlyK3VrqF7QhSinqzuVF7fTppzbEzZmbqopGRtDQByJ7vBVjWVUldUa3O7N7/Ot2LVjqyYEusBub+C5Gm/ZaQvWdG6ZTtlF1Fvj4fkfK+r9UqXVTCe33/mdTtD4w0b2VcZixGShxQRNaNLre+txJCn7NLDubnuCSejpas9thJtxuve2tWLpKnDYr7C6hbyxVy4kGq64UGHCpDQbi53tzsnzKWPe20LDYAaiPOvzsniXC6Z9G6F7SQbbXWGA4XDQz9TFw4jfvK5uuXE6VJLPY7/AFmhdU9OPaz+BaGSqYaQ7vHd6FOYGaGABRPLFOY6SM3AcQNviUvj8wA8V8L6tUcqzTPovRoKNBGSEDfglseYVdlYUUi1SWREI5JBuLjgjazgCoRa4uEc7c0UtDAIQdhvsjlfksXJ5y0AQkG4uEqyxlbAQ7hL70D0oHFHd4qaedSyT2JHhAtSN8Au5ceGfajPxQuxfYun/wDFh8imq++zXL9hk/FP0LyfRf2l2fnlP+yvWEv2GT8U/QvJ9F/aXZ+eU/7K7THuetG8B4IQ3gPBCEEd6Rf6C49+YzfsFUn7E/zsc/O/9wq7OkX+guPfmM37BVJ+xP8AOxz87/3CgPR4QgIQDfjf2jJ4KON81SPG/tGTwUcb5q+del379FjZ8AOLkqQcXJV5M6lyCEIUrgl8ghCFJAIQsXGzgO9AKblAuNuSxmkEQukinbILDigNiEIQAseJQXWQ42CjnciK0y37gTZjtIBtxBTHi2WcvYm4yVeGUZqCLB5p2k38U+RuadTb6SeZWqeLrRp1g+C3W9zVoS1U3gicVL2WURmDofo58aqKiKV0UT5C4MY1gFvBZ1GCNwuJsVNGH6eZACut2Htsb9rvIumuqwVmonQXX7rr1Fh6Q1c+1LGP15Hneo9LleQ08Lt+slF4vgkOJNLZmNY8NvcAKtq6CqwnrIru0cAb+pekscwanBIMLmO46i4qCY3hFLOx0VQzTyBLiF7az647qKjx+vkeco1KnSpaKu8f18ytcGM0lO50jtQ3IBdddT5mwxOfIwE+F10VuVq+mL5KEl0Qu6zWE/SmimxBzJnU2INLXXtZ1mr1ttcSVNRez/qXNtcUrhOdIMPxBtVI5oFviKcQXDwXK2GnoyZRYA+krbT1kdQ6zCCOW67qEnDas+TczaRdDRqG6HdlyWQWAIXSkl7MmQhC2+yS+nsha6yXqKfrPQuWgqxUOdutEq8FLSSd+q4TVV1s0VQxrSbEgcSnRpsVhLBHI8OI4G/FLik5pOICle6Rt3XWwu3sEvZY2zVg3Z1ytycuGQ+MijcoLQ43PJZcPj3TTVV3VVbY7jc2+Za7irCm1kS90dL6rejZc9bXRUY7Y38LrrdE4NYW++aCsJMKjrQDLxHpIWFZynBSpmmVaNOKU+50wvD6ITt4OJatbal0LS65AHpW8w9TSthYNmm6xjo2zRkPNgVvxV0YZw0atDRmf9x6y1jbMQjdHrdrA7Ox43TtW1s1BTOnuXOb6SmbLuEUGGnXraJOXbPG6klRDFLGA9pexzb2BXk7npc9cq9VcfrzPMXcqdK5zS4JF0JZ5nx501JNEDp0jfUeJd3+CuAHt3Oy805fzjh2Q8UkbBQSazb/AFvcCffeK9CU2ICtw+mqmi3XRtkt3XF18m6/ZOjXdSK2Z9S6ddQnbxwOm2okLG5Aabm5dZaqckwhxW8AFwuRpG687vF4kWYSl0UMjy1rtPeVTOG9LtRVZ2p8Ikpg2KWWOMkB584/IrlsDK7sFzHX4FRylyTgVNircQjpCyqYQ7UZnnhw2vZWXT6lvCMvWF8jCRIm/XHsdGNLHM1WGyGOuTcceCAXl3ZBDRsPBKXbMa3lxVfUac21wZoVCELHuhLgG8T4J2wDhN+MPoTS3ifBO2AcJvxh9C9B6M/8tHNdfux7alHNI1KOa+oFYjy37JD+sfLv5w/92xelcv8A+gcO/No/2QvNXskP6x8u/nD/AN2xelcv/wCgcO/No/2QgO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0Ld3rTR/adP+I36Fu70Bi/zT4KJ1P25U/lCpY/zT4KJ1P25U/lCvJeln7hHXae8aglSBKvna4LN8ghCFkYsEIQhAIQhACEIQAhCEAI5IQNjdYsACW7LixDCKPEoTHX0sFTCSCY5mBzb99iu95DhssBe1r2W+lUdOSmuUGk1hlX5/6I8Nx+On9qKeGjIL79TGyPiBbj4FOfR50b0GS6jr3uMkzoiwksaTc6eY/FU+iDWtLQdwladLSb6iTZds+s3UqTpTn7L7bfkaXRgnsaZ4qd8FqiNr4XDtNLbj5FS/SRk9+XKoZkypCyFsVnvbFaK+i7zsNzwCuthtI4EXBO4SSRwSxPgc0PicCHNv37FY2PUKlnJZeqL7GUqSPLWS8/ZjxXPMfXYhVtZJ1jjE+ocGt24C69N41TsfEHPOkjc6N77KsM/wDRJFitezEMvvbR1LQ4G+uS5J7r24KMxZ4zbkjEKenzZBOaGR4Z1r4I4m953tfgvRVqdv1Ocatm1mKWVv8A3wcso+w4yGvPWc46HMb8OjpmkdY5pcWOuSHkJ1dE8QxS7tjdfYKYQ4VlTOrRi1L1U8h+uPdHO46XHtEGxtfdMGKZjwL22GERzQtla4NDetudxdXFneOC0U1iS5/WDyPVukQrQ1U+f18RlqIYqlhHEjbcJhxDDjG67Bt6FKayjkpj2TeJ/bFh3+lc50SN0u4r3XSusKqlCo9/18DyWupa1MSZC+rsbuFyErQHO1aBfwT5iGGua18rGk6RqUNixqQ406lLT5zhy5BehqVoU2mi9tZzuabcdybYHI7UB/H0ozhXz4bRNmpwS42vYkcz3LnopHR1UYIIuQpDURRz0miZmoGx42Wq/oQq0HMoJYo3KlUjtkjGUcWmxWnMlSztAA73PM96fZNyloqZlJBoijLRZZOK8ZUpxUGzG6q051W6SwjW1ZQSGOQFpI35LVId005hxQ4VQicAkkkcu70quVNVPZjyxbUqlSoo0+WTSNxkaHa3cFnXYkMNpnVEkr9EYLncTsFHcjYu7F6Nziw7Fvd3HuTzilBDiVFLTSizZWlpJJ5+CrqlKm5+322L+nqoTUa51ZPzlSY/NJDSk9Y0nfQ5vAX4lTqjxEtcxs5JcDzuVW2TMr4ZlyV80EjOtcT79x4i3Mqaxua5zC49px2VV1C2pSm9BfxuIww6TNEvSzhdJjseGuB6wuDPsT+JdpVnNLZo2zN3jceB8bcFRjujrC6zMkeJTOaHNcHbyPG4fq71ctDUsjfHHAQ6BpPDdU/Vre2pKEqG/mX9pXcluVPivTDLS5zhwmGjY+F72sLi14O7rFXFSyunpIKnqmCN7NWnuv6FXvSNheW8qU8WYpsLlqKwyhgLah7eTnjYm3vU49G2eKfO2HSeTQOpnQ6W6HPDiLi/LwS+tlXoRr28MJLfc69WWTRtiL3IPweQSpXHU7WOB2+RIqPUm2zaAIBueCrLpS6RpsnYhTwQU7ZRIGE31cye7wVmHccbelMmYsrYNmGeKXFKYzGNoaCJXM3HDgR3rp6fOjCrm590h5Fybjn8oMvUeJSQtidUM1nSD8IjnvyT2uXDaGnwymp6WjhdDSwgtF3F1hueJ34ldR4rXcyhKo3T93sSCEIWgAtlJ9uQfjLWtlJ9uQfjLt6f/wAmHzNdX3GSqPzR4LI81jH5o8Fkea+vw4RUPkrzp1/q+rPB/wC7eon7FH+gzvxIf2SpZ06/1fVng/8AdvUT9ij/AEGd+JD+yVkyWXihCFJAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWkFVvsc/6tsL/ADaD90FaQQdxEyZg86H/AM38E9pkx/zof/N/BUvXv+FM3UPfQ0c0o81vgk5pR5rfBfKVyW7BCEKTEEIQgBCEIAQhCAALpbLVI/S4BbGm4QAShHNCAOCwc0Ov1vahduYzu0/EsiL7d6TQ0OaHPGobKG8E7Y3Ipi2QsAxLDK+CnwuipqieF7Osjp2tdcgjj8arzB+hGDDa11TNK6Vods1wYQArydrLrl4cz0BIx+lxaNwdwFa0+s3qi1qePu/I06YjeWRRyMbFEwsvwIsof0g5Fw/NGHyGGnhpsQjIlbNExofZtzp1HkSQpzJE2TQeBuud7RG46+0Pg8CVz0butSmqtPlG7wotHkrHc2ZowaNmAvrKymbTXY10dQ4B9+1vbbmvR/RzVT4plSCorxG+fXo1F+skBrd7/GVqzxkvCs20D4qymMU5FmSukcADccmnuCq1+C566P2vkwps9bhrSXEw0jSGt4m5dfgGr1FWdt1SgqdPEan3nPBToPM+CyulHNv8kMHbLFTtkLmk20uts4Dl4pejXNJzhhRqX07IgzUeBHAgc/FM2Uc34F0gYeMLx6NprmgNLDNodfdx2bbuCkWLV2WOjyljhkMdM2R2kB87uY1c79yr52qhSVtKH7XP4GyFWWc52JRF5x0E6VsiiNzyuuXLmK4djmGR1WFyxyNc1ruw/VxF06XB2OxVBVjKlVcJnQqmeDS6AEbrNsMZYC8fMtjjpaCBffkqy6YukWbJYp2shdeTrNuzvpDe8f3lnbW1W8qeHSNVSqo8llNDXO1HawsNljUTCCmllA1PZwTJknGzmjAIsQe0xnYEG3wQeXin0Bg0G4c0jey11qM7Wtonvp5GYyjnJQWCdK2M1mbXYZPE/wAme9sZu55Fi+x24cFJ8w1d5QQdiCSPjUgxjDsNw+d89PSkTHfUHk+nmoVi7i90jz5xNwF7OzhbV56qUcYXxPH9fvHTi4pjG5zZO2AAD6Fgwlp2CRuoxhrgQRvukkl6iB7rXtf6F6aGYpYeT57iUnjuzcSb3DQStjXEXcBsBcqF4TmmWoxvyRrSTqA20/BupfrdIwhvMbrvhcSo4Z0XdnUtJKFVDRW5rpocQFKW3k394eSk+FtbLVskA3NlEKnLFNPiPlDt5Ln3zvWp9l+l0Ss1DbYD5VxdWvXVp5bLOnQt5Tg6PONyRYnmqjyrhUdTXE2s0eYXcTbkpZlHMVLmbBWV9Ebg6rgtLeDi3n4KJZjyRS5rw+OmqiNNmnznDgb8ipNkzKtHlPBDQ0hBIDrAOceLi7mfSvA9QVpUtsqX7TPx4PovT4OFFIjnSrn+oydTwvgpY3l2nftc3EcvBP8A0bZnfmzAmVskYY4tBtv3kc/Ba8y4HQ43Qye2lK+VsW47bm+bc8lAsh9I+EUuPQZbw7D5Iw9wZ1nXBwbsXc91lC3hcWT8GPtR3b+BvhV9rBdMPFzT6UNAF2hF9UbZG87JACHhxXm1jOGdYWBL2tc7YXTNm7GTgGBSVwjEjmlo3BPE25J61aS8Oe27hYBctdRQ11E+krIy+NxB4kcPBbrWUIVl4vAK46Jekx+cKyqp6qnDDGxrvNeRu4jmrROwcR5urgmTL2VcFy2+V+GwdVJK0NsZXO4G/Mp53DSHczddfUalBzborYhGW1gALWQg3ubjZCrYZxlEgkb5qVI3zVlTeZInsSbDPtKH8UfQuxceGfaUP4o+hdi+xWH/ABofIpanvGuX7DJ+KfoXk+i/tLs/PKf9lesJfsUngfoXk+i/tLs/PKf9ldpHc9aN4DwQhvAeCEII70i/0Fx78xm/YKpP2J/nY5+d/wC4VdnSL/QXHvzGb9gqk/Yn+djn53/uFAejwhAQgOHGGF9I/wAFG2CzTfvUqr/tV/gos/gfFfPfTFftIMsLPuHK6RAPZQvJPsdqBIlQsVsY5wYkFABWSFLco/IyUsgsXAceYWSTj2eZ4KPal7vBGXkjHSLjseXMDfVyhziA6wDS7g0nko30T58izV1sbYntcDxMbh72/EkqcZgwClzDQPo8SYHMIPnA8xbkU35RylhmV4pIcPha1ziDqFxwFuBJVzQrWqs3Cfv/AHHM4vWSMoCCjkqiMVyzsS2ABznBrQC1+1zxCiGas+4PlnEG0uIGe5YHXay/Ekd/oUvafrcjmnSGi45qselvo2Ga4o6mklHlA0t2i1cA7+8O9d/TqdvOuoVnhGipJx3HzJ2fcKzHXVsMUjY443gROfZhcCCd7n0KYu7LQ5pa4E7Fpv8AQvFWYMuYtkqtLKq8OgkNkcwdq217XNuKmuRelzH8MijdXB9TRA6fsrWDj+KeS9FfejdNLxrWWc/E0xuPM9QN3a4k8+CJO1ERYXTblnFqXH8GpcRgAYamMSubcmxPpsLpzIsdPevI1KVShPTUW6OnKmiN4xRiWJ3wrqE4ph4l1XaLhWfW0n1svBuT6FFMXpSx3ZV7069aaR5zqVlrTeCtZaSSNzwXO0i5tdR3H8Dp6+DrqeMNqPQAN7+F1YmKQaSLDiRdR6vY+nna6FpDjde6suoTSwzwtWFS0q64lXYTG2Z8tDiRLCQQHDbibcSuwYRDhgJgldKL++cHfQpHimAUuJlzpHNbPbYlpPhzUQ6qowWufDUO1QhxDTbTsNl6myuo1MamXttfQuVlPc6diy/F3pQb2AK6nU7HjrYTfwC5nA6rHkvQxWY5RYwrKo9D5MZ2B8OlwBHcVqgiZG3ssaD6At4O9ly11SKZrT3myVJKPKN+6l8Dot3pbCxN+CwgmE0YIWQbvuVOrUjB4UsoU7x3SMdqba26W41W5JSWE6WcUk1nkzWp7yE9HcgQwlwc+JjnDmQgAg78UE3USba3RqnFT2Nj5LvaBwAtZdtKbkBNrBZ+67aeQNcCFMPgcF9QlKliPYe2YaZWg8VrmpvJzpITnhVc0DtHl3rlxiYTSXYt6qS4PJRqVJT0M5GN+uM1GwumnEKzEK3EhQ08gjYL2cHlpsD4pze4OaBa6YcTl8hxmnneLRaLH4yq3qlKTouUOS1sI+221nB0YjlmtopfbSdzamOG73Ne7Xfa24XoPI2ZaHH8BgNO5rKmENhMQs0Wa0b2vfmq4oK2mqKeRjSJaeUWsLgWUcrKSbIOOQ4zhkeummLWvY0Bli52o7m/Idy+Y9UsvW4uM9mei6T1FzpqFVYa+49Q0o+sxtds4jcdy3PcBsAo1lTM0OP4PFiMEf12Zoe5ode1yedgpBFK1x0uFncbFfPrm1q0pOLR6ynVUuTcd2bbIJ7AvxScDbkldbkuKCynk3NdxLlJZKhQlhZMkCEIUvhEPkSPgU84CPrcv4w+hM42Ce8BH1mTxH0L03or/wAyXyOa790dr2vwWmaRsEMkznbNaXG524XTVnLGxl3Llfihh67yaF0ujXpvb02NlSfuhZrzvhFQMv4DUCB0gifI2oa8C/Hi0civpZWFYdKeZXZh6YabSWmmimaY7X5xi/MjkvY+Xv8AQWHfm0f7IXjPOOTm5RzJluGWQOrZJ3iYaNJHZBHM8ivZmXv9BYd+bR/shAOCEIQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nf2gcO/LyfuggPU9H9p0/4jfoW3vWqj+06f8Rv0Ld3oDF/mnwUUqhasqfyhUsPAqK4gLVVR+OV5T0sX+zz8V/U6rX3jQhCF85fBZPkRKhClNvZBtiG/JIAeayQobkuCVLYEIQsk4y+Zjv3MJpBFDJIeDGl3yC6qWn6aaebMzcJjpL6nhmowPvu2/HUrbkaJGOY7zXAtPgVDaLo3wGjx0YmyGPWHB42dyFu9WnTZ2kYS9Yzntx/cwaeSX0UzKimZN2hraDa1uIW1I0bNbEyzGgNG6U3vvxVbKa1vStjYmCa8x43DgGFS11ULwMLQ6wudyANvjTomvMmBwZiwibDalg0S2Osi9tJvwuO5ZUFFVkqvukS4IT7rmCT1eH0lCXETziNz5mWIB9N1YlJPHVU8ckE0L43tDjpeC4Hu2K8oZ06JsUy5FNVwMdU00QMlxEGAWFzxcU1ZOzxjeA1gjw6UyFoIdTtLWnkCbkHgvY1ug21xS8S0lnHxOZ1sPB7KZZ0jrAgd5FliACCwF3G91X/Rp0gPzdPVYfVsNPUxBmxk6y+ou7mjuVgSAWETB2mm5PgvJ3lrVtJaZI3Qnky535pAAOASoXLlp4Zte4Hzm722TXj2XcOx6lkgroI5XWOkva0lpItcXCc3NOpp9CR4brDtrrbSqSoy1weDBwyeccaosQ6MM1F9K+STCKnWXNc4uDS92kABtgAAnSgyJhWNZjix6ixCR00j2u6p00YF2t08LX5d6uXM2A4dmLDHUWJta6Jzmuu69rjhsCO9UNm/I9bkDFGY1gLw+kgd1pYyIM2DQPOJPMnkvbdO6rC8g47KeMdl/crrmjsWDV0IZCYpWgvaNI8FFK2gdE8l12j0KUZSzLQZvwYTi0VfEeqcNReTpaCeQHFyzxKhkmi0TAg8iQpoXFa2noqnl+p9P8VNpEHa90l4yG6ed+a4qnAaOSR07ImiW97gC+/xJ6xGiMQGg2LTc7clwSVXksT5pD2Qve9K6vFYhLdfr4njp069tPEP7jbQ0kj6gCQEAEb80+FmlgbckAW3TJhOaIMSldAxtncL6787dyeXSdm116Wd/TlFwT/oa7yFSM9MjW4nvWt172A5LO91hK8xxagSN7LyVylKTaNEIOT0o1WdZwNrrRUUcVdB1VQ1rmtJduB/FdMYLmh7nbH0I6tmq+oKtUW3hG1SlTl5NGnD42YbHopmhg280W+hP1POZmt2aN0yvNn6QFupppGSDfsjcrRWpvGMHTRuGpe33HsAtkvyTtFXNZGLgEjgUzwSiRt1kRqNlWVKedmXMKypfu919SQU9ax7iL2JHJM2e80VuWsB1UnVOdI0kOeXXGkjuI71oZrY4lnaIB2TVnSl9ucrvjnjtJGywvvxI9S1RtYakp8FtZXzlL2ngwq8i5rzLl3yioxEzAkyCN1US0DTyBB33su3oZzBTZSxKXLeMwxwVQcWda1nnFjDclxICdOhfOUddhpw2onENXG5wt5xLAWtHAJy6VujqkzNQPxDD2j22pyO3oLi4l4LjYkAbXWirX1ylZXS0029mtuON+D09OSl7UWWgHAxMc0ggm/ZNxZA7Lr7qrOhfPEuLRyYJicZixGnvcl4cSC+zdgNtvSrWex7HBr3HtC47K8nc2FS3reHNbLyO+Mk1liab3KQAIN2O0lKuKUVuo+ZsT8gNyLIQhTLGRkEIQsSAWyk3rqcG9i+xI5LWt1EXCtgAF2F3a8FZdH/AObT+f8AY11vcZKGcAL9m3HmgOGogXu3jfmsH26kuG+kX+RU1mnperqXOBwDCcFkqqoPLGtZVAF5sDwLNufNfXYe6iofJq9k9mmLC8pMw+Ih9RNMGltr9l0cncUvsVW9Xka/w2RG3d2Sq8zplrMOY6SvzFmailoGxQPDGSaX7tBI3FuV+SsH2Kur+RVQ7rNZeISBa1uyVn3JZeSEIUEAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaRVW+xz/q2wv82g/dBWkUAnNMuYvscZHp/gnpNGYBeJnx/wAFU9ZX+xqfJmyj76GRvJK70Je5IeK+S8JFyCEIRN9jF7gkSpEqNv3TKKBKkSqJZfuksS5c4Maq96TOkimydJFC+Jz3vcG/Yy7i0nkR3Kw9RveMdpvFRjN+SMJzQ+KbEIWOkjdqF7ngLciF3WM7eE07lNr4f5NUs9jmyXmYZpwmKuZGWAtbsWFvEX5lS2HcbrhwbBqPCMOp6WhjDI442tsL72FuacALcFru50qlV+DtHtk2x90yLW++JA9Cx3klLD2Wg2uOO6HXNuzq3WbX6ZryO0tJvYrUsNpS4Nciv8Q6U8Boq2popnTtmgjc8Wj4kG1uKf8AKeZKLM+Bw1cE0THvY12kuDXb+gm/JVP0odD09fXyYng8up7hctbDe/nE7l3fZUrPJi+UMZMfWmhrIXFpJa0m9rH5ivYW3Q7O7oYpT9r5o0TqOLR7bfUE6xGBcNv2ha60CeXU06WXt6VRmTuljFZKiipcwU75I55WxeVOmaAASBfSG8h6Vd9O/wAopYp6V+tj2hwIHG68/edPq2i9pbfU6Kc4yR0R1BfINbWtt3BbSA83sCtZhMjQ47Fb2NDWgBV7049nOTOWy2MCwHiAklhjmidFO0PjcCC0i4PJbljcgi3esYzbeqLw0MZRTXSp0evoYH4/lUmnrGgkxREMaS4gcGi/C/NMDHU3SphEEOM1Jo6+lkMhEb2x6gBoA7dyeK9CNiaHvNrlxBIG26qTO/RFhteyfEMvujhxFjS5obEXkkA24u716zpXV4TxTqbSXD2/Hc46tNk4yFl+HLWW4aaGV8rWtjaHFwdcAW4gKSPaNRfc35DkqU6Ks8VVBiX8k8yAsmptUXWPcOMbbeaB3jvV1tcHxgwO6xvI2sqXq1rcULh1GsxfdGdGWNgBNtW3gmTMmVsPzLAx2JwRyFgdbU1p42vxB7gnghxdfhZZPDZT9ctZqr6daVN5om2UcnNh9DS4bTspqJgjiDRs0ADgBy8FvnOmAAaRYKAZk6U8GwXHIMKkYzrnuaPspHE24aVL56uGtoIqmFwDJW6hz5rfUs6ycak+Jb9zXKacXHyI3mWQSslsQCG328FAcQe4wuva4PFSjF3tDXEOBJJBUZrgZIzvZvevZ9MpaIpI+f8AWJ+JJxQyNc5wbcC3M80jg2S7DfSUsbdbg2J+oDjsnenpYXRWcAHK+nVdJe0eZjQnq3RHYcJoqWp6+ONokve9hfgu7zRYc101NAIiXggjwWump3vkBPC6h1U/aJrwqTl7W5voINTru3v3qX4DSlj2hwvz38U14fT6nDSprg9GSQ4hUXVLyOGen6NZ7p9x6w6O2nwXRjkxpsKqp2W1Rxly208WgLlxJoqmGmkj1xSdl+/AFeLi1UqZfB7qC0U8FDYac1Z5xjEY6WsbTU0EskNoqhzCbb7gk8nJnpMGqejbNlLjGMRRT00j9WofXCAxvot8IJ5y/irchdI9bS1oDKGsdLM27tIu52gd596rexfL2HZtw4UFZaWllu2N5abN3F9ri/AL2dW6lQkk1+zkktl/fg4otuWR8wPF6HF8PiqaGUva9oJbcbXAPAeK7SQ0lgLiw8SeIXnTLlXX9FWcHUFS0yYZUOcxh2jA1yC3wiey1eiaCVtZSRVlK8uppxrFhsBwH0Ly/VOnerT8WjvB/eWMKmeTN1jINu5ZvbexBWOoSAlvJDXHgVVuK1OPDRuisboCLkE8Up34pBwSpzyAQhCEAkHvPxkqQcWfjKYfvI/NES90lNCLUkVvghbnF4LLAbnf0BaqL7Vi/FChfS3n1uQ8EFZ5D5W+UPDQJursQ2/wSvs1r+5h8inlySfM2JxYTg1TVTODWtY4C556TZeOuivF5Mf6aMNxOXZ09VASN+QtzVk4/iOcukjCaaCDCKilw6YMmL+sZKLXv3A8CoXlDBYMudPtNhdKQ6GCshDSBbY78LldBB7Eb5o8EIj8xvghCCPdIv8AQXHvzGb9gqk/Yn+djn53/uFXZ0i/0Fx78xm/YKpP2J/nY5+d/wC4UB6PCEBCA0VovTvB7lFXee5vK5Urq/sD/BRR/wBld4leE9MI7wZ32fcxtYpUHiheKlyjuXALXLNFAwmoljj9LnWC2Kj/AGRFdjuHuhlw+rqIqAk6tDm2sGi+3Fd3T7FX1VUs4NcpaUXVBV0tT9qzxy22docHb/EtziALkG3JeNcp9IGO4DqqIMTqp4nSdqMkNG9vR6F6myDmT+VeA0mIujEfXtLtAJNtyOfgrDqvRJdOSlnMTXTrZeCSNBO/JBBa4H5EpcdehqQ3vZ3JUOJP3ODfq3EAs7Vc38Up43QhE4Reh8jG4iLJUKUkomWRANrckrTY3HdZCFg1Jy1SIaUuSoPZB4LU1tHh1VT0wnjhY/W2Nhc83c23AKOUuastfyOmwqbL+MRPcx7TK6hibYkWvq1XV/SBrx1csYfG7iCm6py9g87XR1OF00kLhvquePHmvS2fXVTpxoz7fM5Z0PI87dE+aqrCMzuwinE8mGVD3PZ1gLnsa1uw42HDgF6fu0uBAdp9PFRbD+j/AC5h2I+W0mH00T7kjSw8xbvUpLiTs2zfFc3W723uZa6JlSUlszEDU4n3vDdNeI0nWAkBOzeyCPjSOIIsQqWnWlFrQTOnrTRXOL0JGsEHgVGamA9WI3C4G1+atTEqJsocQ0cFDcUw8tJIavY2HUFpUZHkeqdPbeUiAyMMUpHIjiU2Y5hMGKxMZIHAtFrt2+dSXFKQtBcGpsiffsAWcF6u1rvZpniqsalpU1RZAuoqcv1AbN26Zxtc3ce/nZOL6aKpiFRSklrhdwJ4E78lJcUoI8TpJIaloMgadJO+5UGpambA62TD579W95cy55cBw8F7Dp968pS4Lu3ru5hrjtJG2WEtddvHndcVdSR1LWtcXXBB2KequO1nt80rgkADtuKvKqVSOUW1ncSnH2zngjEEYa2/xrYGl3C67I6bW29lvipQ1wuEhDCFbqFKlscENPJJdoaSVy01BiEFc10jPrdxyPqU5wvDxpEgATjiNO+WnIhFnWO4K561LVLOcFNU6+9ekgEwu5wHG+6waQOPFOlbhc8Li8g3JudwuAw23cF0xi9OC6tLqnWjlvc0uOpGoRWJdbxKzDC53ZGy48Uw6snIMOoD0ELTVbprMTe61JZjkktMdNOJCdibXC1vqDqIG/itUchjwiKJ5+uCQk/ItcQLjwW2jUclujzroRjUcmbHyGxTdOY6hj4pWvIvfURw+NOEkbndm1r81x1NLPJC+OAHXfiCAsamVB5O+x8Km3JjdRVFVhNQHQPMkLTe1y4qz8GxejxigNNKA7W2x6wNNja21724qAZew2enD/bQl7dtnEHn6FjgkvkOOujY6zHXIt6XBeNvenupmqhc5k5Tp7aScYblzMGCVMrcuVUHkkhG1TLIbAcLWFhxK78NzpmDKmNwU2ZhTy0kjmjrKdrnbuN+LrcrqQ4RiOmkLHSEbCxTBn40eJ4NK2YNe+AGVj3A31BpsvKSpU7iThOKz5lja9UdSmm3uti8sOr4MUoKespHXhlYHC9r7+C6rEbO870KsegTE312VpqeZxc2mcyNl+7TdWcDqGo+dzXgr6h4NeVJHroT1U0xUIQuKPuYfmZZ4BCEI+DJ8gTsnvAfsMniExngnvAfsMniF6b0U/5kvkc157o19KNRFTZCx6SZpc0UchtYHl6VXfsacNqKfAsSq3uhNLU1ZmY25LgDG2wtawVsZpwaPMGB1uGz2EdRE6Mm1+PoVGdF1bX5X6T5cqVVfM7DNM74ojbTZg0tsAD3d6+llYMvsjDbpFy7w1eUPv8Ao2r0rl//AEFh35tH+yF5p9kcHe6Rl52nsmofY9/1ti9L5f8A9A4d+bR/shAd4KEgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0Ld3rTR/adP+I36Fu70Bi42Ci+I/bsreRcVKH8AotiX+kJPxivM+lSzZP5r+p02vvnOEqQJV81W5Zvkxc4AgWNzwWVr8HNbbclxsEaXXaTwPmlMmdHVDMs1fkE72VYDiC3Y20u5n02WdGm61VUo7ZMJTwOhraMSiM1lNq4FvWC58FvLHHttLSz514ndmTMseOMbU4nVtqonEC7mk30772srs6Hek6rxnEW4Xi8sk8twGukcSd3Bo4Cy9NfejcrOh40ZZNSqvOC6wb32I8UqykaWvOviT2fBYry0X3SOjOQQd225JLoUpL/sicCk3AHC3chCFG6WHwYsRADibg2CVI7V1ZDCb3URi5rEjPsN+ZKV1XlrFKVjI3yPp3taHC+5C88ZIxGjynmDExjWB19RKaiTQYqNr26bAe+tzBXpdh7d2+cOI71xSYXh9TK+Wqw2B77kanEkn51ddL6p6hTlTbymc1SinueYc75loYs0PxzAIMQo6x7tTo5GCOPstAHZa7xXpHJeLOxTLVHPOAZnRxlxYO9gJ+cpvxHo9yvicjzUYLRF9trtcf4qQYZQUeE0jKbD4WQxtAbpYCBsLfwXZ1W+oXNvDT7wpxZ1oQhecbTSZ0ANikJvxQkWDTe6MkK0kvDSAW8eC4MXpIqxs0NQxropBpIc0EW2713dq3ZJBSFokbpm49/FbaEnGalTeGaqsclAZm6M63BqqXEstVLmkPM743zP08S49lotyCe8m5rbmGA0lWWxYpBZrgQGsJdc99+A7laVRGYzJHqJje0tI9B2KojpRyvU5VrW5gy8DHGdb5jHZu/Za29zc8SvYdPu1erwa3vdmVN1TWl4J/U0rJ2F1hqG1lF8XwttSyWCUaWE+92T1lPFqbHcKZWUkmq3YeLEbgC/Ed6MaYRZ7Bx9a7KdSVvU0Hlr2121orTC8uw4RVPkZ1hPHc353T4XC1zdO80bZS0PaNyuaegB80bK5pXsox5PO3dKtWqamcYeC3scVFc10+KS1MTqQfWuyD53HfuUzgoNDrkJxZDqaIhGHC+risneezlm3p1v4dRykskYwemnjwmE1G0mne5Pee9doJsANBtvsn2poXSNDNNmpqqKI07yWbmywoXkXLJov6TVRzSOc2vew1LAs2LnOa0W4k2WLS/rSCFrxagrKignZTag9zCBYjj8a7fEhLdnNRoSqVFF9xxwqZsrzHHLG+172dfgnM2DuwdxxUDyFh9fh9dOcQe+wLxuQeXoUuopjJJKW78LKsuIrVqRdyhC1mqWcna3UTyWuWoibdr7nvB4La0nX6LbrmmpmTueB51xbZaUkp+1waqmte6QzMODwSTmswWpMFbGNWkS6AQLm1m8d7Kw+ijpAjlpYsLx0vjroWiMuIAa4hpJN3OufkVYRYFjgzNTywxvdSCRvWHrGAFmrcWvdPXSZhdNTRxYphcLKeWIjrXRjclzwN7+g8lld29K7gqNTvwz1VjcqlTSm9yz869HjsVr24zgM8dLiMOmVwbIYo3ho7Iswb+lMOI0XSNhNKyufPhU0EQDdDHTPfbwLf4qe5BxyPGcAhrYpS6M3YdjvpNjxCk76iFzdLn9ZCWkOjINgV5RdRdGfgXcdTW256H/rlMjPR9nWlzfQO6lr2VcID5mva1tg4kNsASeSliorLFOzKvS5PRYW/RSYg6GF0bBpADQT9JV7Lh6tbQpVk6PDWToovKCyRKkVXJYeDPVlghCFiSC2UgJrqbfbXuta20dzWQNA4ut4Kz6P/wA2n8/7Gut7jJO4gRHuAubLzPidLJmL2QA9r+rgFJO7WZOwTqjFuF7+aV6Y0gM34EWIXnvprwWqybjRzfgNTJFJL1kszI7N3aGtbcm598eS+uQ91FQ+SwOm1vUdHFTG3SCGODrc/rTrqM+xVeDkI7WDWQg28CnnpXqxiHRQKq+pz4QXn0mBxP0pl9ilZ2RpBbs6Yf2SsiWXihCEIBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/wApJ+7cgHP2Of8AVthf5tB+6CtFVd7HP+rbC/zaD90FaKgAmnMG0TPj/gncpnzD9ij+P+Crurr/AGVX5M2UffQyk8EcyjuQvkMnpSLh8AkPDl8aVBMYB642bbuvvyUtPUlHuRnBplqqeEP6+eKIge/cAiKoilAdHKyRhHFjgd15f6asYzRhmaJYKrEKuGjcQG2c1w80E7C6bsndJ2OYHNBDU1U9ZTSPa0CR9gL2A2A7l6mPow3Q8aEt8cGt1sHrZpBu3fWgHiD5y4sErBiWDQV7BZz2l3/uI/gu4FoO/nELy8oSjszbnIN83xSAWFt0qEXyyRgO5AQhYyalslhk5A7iyQAD0+KVCN4W45Acd9x3HgvO/S7hElFn720rMPmqcNllkeRTQ63WIAHEAcbc16IWmelhrGOZWwtkgHmh24t/+qs+mdQlZ1Na3RqnTUjz/wBIOaMu45l2OlgwjFaKWnaZInmljh7eiwuWuva6ePY/5rrMQ63D6pjzDTv6uNxabloZzJKtSuyrl3EqZ0VVhFI8kEAuaTyt3rVl3KWDZdme/DqOCFzjchjSOVu9XFz1a3uLKUJbSfzNShJMfj2HEEO+JIwk3uFlqc9xuLJN97m68lKSispnX2FSFKhZ6FFakSngxt2r73WQaDYCw38EJCLiyQznMeSHhledIfRfTZmmdWUkxpq/c645TGDc3Ny0XUNyRmjE8kYzHlzNj9ULntYydhLvPOs3e8jgCr1LSWBsUhZJ3hQPpaybSZqwComhgYcYhjc5ktu1qsA3ckDgvQ9P6h4/+zu90+73OacMPKJvBJDUQRzwvL4XtDmlpvx4LcNW4bYuPDuVNdCudJGTTZaxuRwnp3uYwvJcdLWtaOAtxvzVyljoJCwkkjgVW39nKwq6YrZmyFTOxXOaOivBsdzBT4rO6qE0bmmzJLC4N+FlNJ6eOjw2GlZ9jibpbfja6cnamtIH4yZcXlf1biSdvWsXc160oU9TwjVWcacWyBY7IQSwAab34KN46yWTCX+Tn65cf9bJ/wAafdwHebJstbs8Wle3tpKCUsZPn1zWSrNtEAyFR4pFWSOri0sAb8LvPeFYTu0OFvDZJ1bIiBE0NB2Nkq31arqtNrBqrThOWqKwJpBbY7j0rFuzSI2G/pCzXXh0TpZHAcC0geKxbw9+DCEFUmlg2YLUwMmEb5omyn3rnDuVmYbSiNov3XXn+tyVmmrzcamhdMKS77ESRgC422JuvRtNGYoY2vJLgwA38F5zr+mKjofJ7npllGnHWbWAEkck0VQPXvbe2wtunVhs4rir4rva8NDrFedo4k/gWdWPskKzvlrCcbgacVljgkbHZj2uax21yN7X4lVhknMdXknMnkOKyy1GFPLQ2VrjIWgAlx1OIA3cFMumPBMdxqgi9omvEjCwEMkY3g4k+cfSFjlvI3tpkTyHMdKx+KPZpbLIQ9wJdvuDbhZextpxVqvWJZjJ6UvI4IrS8k2zRgeG58wJroHxGOwex7CA8ODTa5APwlAsNyXnzB6Z9HhlfhzqFlmxionmc/SN/g991s6AsTMVTiGB1EznPglnc1pHANe1g9CuiTWJr9c4AHzVV17mXTZSo1lqp9snVFeIsop7JHSFX0mYW4Dm+ARVjy1sboY9LDrcA3dxB+ZW654vZoJL92EcLKo+nrBYYmUWZGtbDicMzSC3dxEbSW7qxOj+umxLKmEVlRd0r6ZpLibk3C1dVo0qtOneUVhPkzjNrYebWQsWX077rJUjeTeCEIUAEDiz8ZCBxZ+Mph+8j80RP3SU0X2rF+KFUfsmahjcnR0vVh8tUJYo3FoIa4s435fErcovtWL8UKG9LuWI8x5Tqd9FVSRSSwEAEh+mwIvwX2a2/cw+RUS5Mui3D5qHINA2cwukfTscCzew6sbcOKoKh0n2SseguLfLKe1zv5qs7oCzDV4jhWK4didbLPNQVL6VjZN7MbG3uFuJKrKiAHslow0ADyyn2H4q6CD1ozZoHoQhvAeCEMSOdIrv/wBh8fAaTahmP/sKpT2KNwcbNjvVA/8AsKurpD/oNj9nHehmH/sKpf2KIt7eDj/Oxx/EKA9GhCBwQgNVULwuCib9pHH0lS2o+xOUSk89/iV4b0xz+z+/+x32XLRjxAPelSDzW+CVeJS1PfyO7gFzV1BS4hTOgrYhJGQRba+66UKKcmmpIhrKK+xLokytW1QmdTVbTxIbUkC978AFMcDwijwSgio8PY9kMYs0OdqPG/H404IXfX6hXr01TqPKRrjTjF5QN2N+aCSSSUIXBpWMGwEIQss75GQQhCx0ogQG4249yGkEG5APcUjXG7nNaLjksyG6u3YOIvZHBySwssS+BjsR2/N9GyU207XLe4cUe8OsDbuSP1MLdPAlZwbhJ+YXAFvY2uL8L8lkXOLQNvkSdq51fEha4+ZIpINvCyxA3uUqFktuAngxkaHiyacTomvYQBunhYvjDxcrZTqShLKNVSkpxaZXWLYWQwi1/AKIV+HOZqdG0h9+Jurdr6VjuI+ZRjGMPaNw0WXqLDqUo4TZ43qXSFLLiiuGkh2mQEO7+ATTmzBGYjRiWEgVEYG99rDciwUxxXDQGlzNj6LJkla6AWebtOxuvedP6jGa0zex450q1lV1xK5w2ufUQOpngsljG4cLE3WVJWwOxFtO4EPNhckW42XVjVLHh2aoZmjTBK/cAcg0J1/kxDDVMrHONiA8bDxXoKF/UnTSpHpfWaUKblHiXB0VdN5CWtc5r733atIOvzRfw5JMSrRUVAjZwBKxiDoQbnay9FTc3FZ8ijlBvfuSLDfrdILkHhwWwkNYXHUR3BacPljNEOZsOSc8PgEsRLxsvIekN66U9mV8aE61RxS4OEvjlAa5p3G11G8WjZFU6O8/wUyqsPdGOsa0WUNzhRVU0PXUYIeLnY27ln0rrdJUv2k1n5o77Kzq+MoYwmOmD0cPUa5Gm11niTGNH1lu3yrDIgqX5dkdiLB1zZ3NG9+yALJ2LYnA3a0/Euuz60q9WSk9vuMOo0ZWldqUskVhw6aaW7mnSfQU+UWFtiaDILrt6xgbZsbQQb3Cx8pJNlYPqtKLwjiq3U6my4MZaGCWJ7WtIcRYbqP4jCaE2aDf0qRteWuDuQWqupmVrSTx8Fso9SozliTIt7hwnifBB5pnPadR+TZNWJtdDIyoi2c2x339Kk9ZhD2uOj+CaMVy/XTaWxOdpNr9oLC8lFUm+fke1tr21cfbksP4ktyXmSnr8OPlEjIXsAvrcG3vdRTN2NPqnT09Fd7GtJOntX49y7cPyNVR0AMdTKxzwLgFqmeSsmUdLSuGJsE0xLiXPaHG1188q1KVBupNdyYUbSVVVabyvJMfPY21jW5frY5oJopOsZ2pBYHsK2aarL5tLnNcDsNKgGHy0eE08tNh0LIy4g9lungpNlxznGN0hudX8V4rqlJTrSuI8M9Db38JNUokoAN7WKG9pxA5LGaXSCW+CbG1b4ZWa3eebC5VDTpTqJ6VllpOrGnhMdRYgm4FjayBaw7Q39Kxa46Q/S0gjvSkNcC4CwC1d9Mk0zYB3v6E+YAPrDz3kJjHvvBPuA/ax+Jem9FFi7k/gc149sDo9wa27jYcyeS88VLDi/sg6b2vkjlihpahkr4+0GuDnGxI4H0L0BVgvp5mNJLi3gvPXRpjGGYF0k5jjxgltZLiFQYX6C4hhsLX5b3X0pFcM/sjNZ6ScvA26vyh+nb/AMNi9LYAf+wsOH/20f7IXmj2RBLukHLbmu1RuqH6Tf8A8Ni9KZeIOA4cbn7XjH/tCAcgeCVIB8aVACEIQAkcbAmxPoCVYuJ1NAQA072sd915T6TTf2QOHCx2nk/dNXqtzjbuN15V6Tv7QOHb/wCvk/dNQHqej+06f8Rv0Ld3rTR/adP+I36Fu70YMXC4UXxMWxB/pcVKTwUYxT7fd4lec9Jlmxln4f1Oi2eJnIEqRKvmEWy2aEsD519uCNLSCHNuCLEFKhZNZeTFoimOdH+XcZe+WrpZxMTcOjm0d3cPQteUuj7A8s1LqighnEp3BfMX878x6FL0Kwj1K4jS8FP2TX4cc5ENy4klKhCr2kzYJZFkqESwTqYJEqEwmQgR5p1XAI70IIu2xA08ypgsPSuSPmDXXJJt4hYPF/NI43Wbmljw1tnNPpWLWnUSOANlEouDw9hqT2Rm4gyahsFiNiUqE043Jw0CEIULDJ+YJClQsmskZwY6Rqub3WR3O6EJgN5MJomSRkaXard6YMQw2PEaWSgqmE08tgb7GwN+KkQdp+PZctc36yXMADmrfb1XQepHNWppp4PNMQn6PM2GkfHK/DqkhjbAnS57r3LjysFMM25mocKo6aedwMc7A9vbA2vbmnnpmwWGuwAV0DAJ6d3WFwAvZrHc1EcEyvR5+yJh5nqZm1FNBEx2lrTvfUdyvd21ald041avbZ/Mpbi2Uo6ZcEiwR1PjGFR1lOQQ8uGkOuRY25Lnna6OVzbHY24J0wXB4MvYa+lhlkeGtJGpoG535Jse57p5HP4aisKb1TengobyEKMVGKNd3XA0n5E64fAQzW4Enutum2F5dUDYWupdhULZXMcGjSABb07LC7raImHTKSlUzjY5updp1GGS34qZ8UgaxnWOIAJtY8VYTomOboDG/Io7mPBnyUNQYxdwjc5o246Sq20v4a9Mi5vLCVSD0oh1NTRVEn1ohzu4G66aiGSnsDYE8iFBMoOx6LPclPKwGm1v2Mh2s3bZW7jtPFLM9oaA4NFrD0K4uLpQqxhB7YRVvpbpQ1Pkh09N1m4IBPFZ08DYI7MB1d/FOowt5bsT8y1tw+ZrvR4rarnOVkrfUJa9b5OanhklJsLeISSwmJ9+Dk+UkIjABAuito2yi42K5lcYm15nXOzxDJGK6YxNGgXcdiQNrJnxFjaiilgne3qZLF1zzBuN1IquhDXOD3O4bJkxXCpqnD5WUriZDa1yBzVnQlSksSZVVaFbxYtbIaejDOkuWcahwRzmvopZWtY/SCGl77klx5Kys75+w7CsIl8nmY+tkILQ2RrtjsezdVVlDosxfFKt0lXUy07ojrY+N7CSb+lTDAuiOerxZ0mK1lRPFA4sAk0OB5rgvaVi63j1JLK+PkfQaTehJPYgnRTidRP0k0NRikU76mWWMAAadBAPEL1kx2todYj0FMNBlLL9FiTsQgoKdk5IMbhEAWkd3yqQPI0jTwXleuX1K/qRlSW0VgtLdNIS+10AX4EIGzEsbt7BovxVRN54RuexiLkuBaRpNrkcUo34LLRI5zrEbnhdYNIPAWUaWveTXzGUKdltoXXxCnAB3fx7lqdwXVg4BrGX4giytOipevU18f7Gqu8U3gkbRpNuVlUnslaiOPIFRTAtNTNC/qmbFzrFl7DiVbh1afj+ZUd7JQBlXlmrmc4UMDaozgC9wRHbbmvrS2SKnGTuztTSU3QuWTBwf1OrcEbdQVzexS/oIdJHmRbf+Up06R8VosV6LJfa+TWG052I08ISP4hNHsUu1kaQeaQ2EbfilSyS87pNQ57LE22vxulLbm5QxMgbhCRjg5oI4JUAIQhACpr2UP8AQOP8pJ+7crkcQG3PBU57J4NORI9TjbrJP3bkA5exzP8A9NsM9FNB+6CtFVZ7HUn3OMN0AEeTwfuwrTUAVNOPtLoWnuv/AATqm3HPtcfH/BcPVFmzq/8A1f8AQ2UffRHxuL9yVIzzSlXx9vDLhggW98LhCEayRgbcbwPDscie3E4OsJGxb2T8qhrOiLK7a5tSYKu4OoDyk2ve/CysRC7bfqFe2i403szU6MHuzVS08VHDFBSgtgZcWcbnv/itxsXk+iwSIXE93k2iDhulQhHuTkRKhCx2QYJCQBxSgkXssQHHi0FZJd0SgJGnfgi1wwWOkBZG0rNLbBw3SdoBrXcws3GSXtLZkZTCS1+8ctKASLaeQ5pQNLXcyBdI3cArCeZb9ic+YjQ7XdxFvQla0C9uZulQoxq3McvIIQhSlgkEIQjIEF972vyslDi21rem44oSFY49n49iedmUr0y5Ulw6rhzJgTHtewsbKwAvJOtznEAbWtZTnJmeaHG8ltxqaRrZImdZLEXtDxdxA2vtwUnxGmp6+mmpKpodG+J3EXsbEBUDkjC2YbnTGMo1FTK2CoMMUYsDawc47cOYXrbSpT6ha+HU5j/Q5prRL2S1sp9ImE5pxOoosPcGzRRvcQ6RpvpcG8Ae8hOeKahTza+yWkDcWvuFHch9FtHlDFqivZUzSSyteLPYwCznB3LwUxxaNkkMj37X3t8arLn1e2uFC23Xzya60XOGWVpjAtuQb3TYCQLuTpmOUNlLmgaR6lFpq6R0hAADR6V6+hTdSCwfPOpXCpVsPgeBqsL7g87cEhNnADe/ctFHM+UWABHpKecKgbLcvY24NlFX9nHBhSxWa0ja9zY3aZHBh/vGyf8ABKETNa6O57XEG/cq36Wm4rTVkXtY2zSTwfbkFc3RxRPjy9BLVi8hAJ576Wrj6pcQp0FKL3Z6Cx6VOUk3wSLCYnQwBnZHfcLrGki7L29JusmhpALdkBoaLBeGqy8SepnsKVJU46UFly19w1lgTvyXWkeAWkEX7lnTaTyTUWUM4e6MkgDwIulilk6wPuwOabt2tZFU3RJc8Fvoo43yMe/zAbnZdEMKOntnJwThLOxQ2fZZMk53jxvDJouolY2OWPz3anP1uPcPNVsZe6QsIrsrsxirniidoa9zHysabl1uF1UfSN0fZjxrNzWiV/kDyCPrrdruNtvApyf0NYrFRsoRiFU2lcLEBzOANxsvV1KVld29Pxqi1JeZnBTWxBOlTOVVmnHopomyOw7UyMNa3mLg7jZej+jKcS5Hwvq2PhbFTsYRJz24hcOEdHGXaPC4KGemjmmY/rC98LSd7KYUlBTU1LFSUn1uGJoZpa2w24Kp6v1O3r0Y2tGL9l7G6FPS8m5trkXAskvvYb+CRhD2PJAa63AJY9m2HEled0yydG/cU7cUXFuIQ4FpIdbbvKR31t4JaLELZpa3lF4GwMOq9ksfacwD4SGOaZHBotulg89n4yxp71I/Nf1MZe68kpoxamiH90LVik0MFBVS1L2RQsjLnySEBoHMknZbqX7Xj/FCjXShHJJ0eZiigceudQyhnjbZfaKKxTSRTvllWdCNNNNmzNNZGWuozX1Aa9o7LrsbYg8FCqMtPsl26PNFZT8T/dVi9A2P4U3A8Qw7aLEG1DtdmEaiI2gklVxShw9kwxrmht6ynHZP91biE8nrVm7R4IWuORos0E3AQhBQWb+k/H6vAcao35NxiGA08rHTvkjLQLEX4cFw+xMPWQY1K3sufVAlp4g6Crm6Q6SmZkjHnMpoQfIptxGPgFU57FL/APfmlrWjyscBb3hQHo0XtuhAvbdCAwnBMZAURl2keOdypg/gofP9syfGvF+mEfYpv5/2O6y5ZiPNb4JUg4NSrwkefuO8EJClWMeA+AQhCyMQQhCAEIQgBCEISFzd7h2e+6oj2QtbjOCYjSVlHO1sBbG3V1QIvdxtc+CvVoLrj4SifSjgMGPZVqOvY18kAdI24B81jrcR6Va9IrUqVxGNZZz95qq5Qy9CudW5jy8yjq5WurIWMa7cC53PAeCsgktYO4G5Xi7J2L12XscgnoDKAy/XRtLhc6SBsOPFeqMk5xw7NWHsnhkcyoF2OikAZe23Am+5Vj6Q9JdCauKK2a3MKVTLwyU3JAde4O4KEgbpJ9PLkPBKvMp53OgEIQhAJLm/oSoUMnJpqYQ5vZ3KaaqLrGuaWm4Nk+LlrINtTeJ3W6jUcZHPWpqUSCV1NYuEg0911GcRpd3RuabHtAqw8Uo+sjLiBdRmspC++riOyF63p929kmeQ6jZqSexUGeqB09A14G0Qcb8t7Luwl5xHAWgODiw6NvQ1STMWHNOH1MT7ebb6FCsjzua6pp2+a2R5+gL3nSeoRovdFDVo6bZx7w3+p0jDJWC7YnalzV9PUsie9sbiGN1Gw5BS8v0jUACfSkux7S2SNlnjSbN5L08+rJRxHkqaV81JOS2IPk3GzPjfkkrC1t3DcjkFc1KIHVDYoe2Nr2PeqLzXh8+HYr5VhjCwXO7ezxNuSn3Rhj9PPilPT1k8nlEr2ssTfiduJXiOu0q1Sm68z11OFGpKNSgve+BcdPhjGxNuw2IvxXHVyMoNQiPxXUolayOmZp4aRZMVXQipJIAXzu2vZObbeEj0FxaU4U1GC9orzMdZVV1R5rhtbcD0pqiopWx3LgD3WVjy4C1xu4C/xepN1dg/VNNgF6S06qkloPK3nRalSTqVHkgL3vjJDgSFiH33snrEqCzSQN0yaSxxaeS9Ba3qmvaPN3du6LFMlzYFJ1hG17LEWuQOK72UZkpg626yq1nB6snPGnq2ijTC625BITfW45FSnS3cXsTcLrayVpIcLBMuZMEdiVLooTolvcm+jv5r0dh1Km7Zqtu/qdVlRjUq+HUeESXLlPJjDuvhN4mecbXte9lM6SPq4XR6xcAqFdFdPUZcwWujxSXW5wjtaTXwv61MMHLqpz3C5ab8fFfPupVZVaksrCPV0bSjQlppNtmdPTNFR1moHjeykWAOtFqPnd3xpmkj6kuHpT3gGgtDdr3/AIqhvJaqKiWdpTjCspMepYHS099QBJHJVh020mN02HU8uCRPnewvLiyPVp2Fr3VuRMNgHWWMscc4LKiJj4+YLQ6/xFVFpexta2Wso9HVoRrYl5Fd9CVTjlRgjxjkb4pA51g+MNuLNtw+NWQXFxYwggcysIo4YhopomRt/usDfoWRbp3JJK13FzG5uHJLCNyDhq8E/YD9qu+L6EwH33gpBl/7VPxK/wDRDa7mn5f3Oa94Q473NhY96rjpI6LMOzlK2dxbDVttZ7y4jzi7gD6VZI4BB874l9HK48UdKeWa3JOasGbNWRV3VTOMccMRYb6Wk8Se9XXlDpJx6udQUMuUcWigEbB17nx6SBYX4X9Kg/skd+kbLwsC01D7g/k2L0Zlykpm4Lhzm08Qf5NHvoHwQgHdh1AOG11ksW6hxAA9CyQAhCEALA9pxFrW5rNI7V70D40BW/SFnnGcu4lHBhuXMRxKEsaTJTuYACSRzHoXnnF8drMe6acKqMQwypw6brZCY5y0n7H6PBeyJqWGYfXoY3HjctBXlbpJYxnT9hrWRtYBPL5rbf6oID1VR/adP+I36Fu71po/tOn/ABG/Qt3egE5KM4q0ivJIsCSpNyUdxv7bb8a8/wCkq/2Mvu/qb7f3zgQkSr5dBFuwQhCyMWCEIQgEIQgBCEIAQhChgRRvpDpa6pytVe1sgbMCwhujUT2gT8ykqCxj2ubJu0gi3Hkt1FqlWjUlwKm8djzL0RdIddRZnZQ4vUsML5Ws1aWtG7916ZjkbNHHMwjTK0Pb6Qea8g9K+Xf5K52kFKXNv1bo9JsA4sDuVrcVavQ70ihlOzCMyvmbM4aoJSHOAjDQANTjtvfZet610mFxSjc26x8tjjjLTJZLpddpsdijdJGA1gex4mYeDtWrglLCztXJv6V4vEoy0yO6MtQqEgSqFHEhIEIQszEEIQgAc0XvHYjc8QgGyxBu5I+1LHluMZGTFqET0tVTO82aJzPjKpLItLNgvSViWDCRrY31E2kaeIYwr0BVR6txxVD5mkOA9MNJWOLXeUGofsb8WkfxXpuiVPEVSg++/wBDguIlhVUT6acg7jaxsmjEaN0szdBuXN1EW9Km1TDFPFGX21PA7u5NjsJnEpkb1ZAuB2t7LbQvXDdFHdWSrLYpfNuapsBxeKAQvLC4gm4HIHn4q6cqVUdbglPUjYuYwkX72gquulDAIa/BnyxQMNY1riCGC99udrqI5BzNXZeqWw45NOyADQ1mtzhyA2JHIFW1xbq/ttVPkytIQorGD03RFrog+3EbFdQFu1bgm7LVfT4pg9PV0tzC5moXbba5HD4k5EkgkABvBeCrRlTno8j0kMTisDbWTNMpMcbg/vJumKXCS6YyPmYS7a1ipUKZr3XK56mlGoaQu2N1KMk284OatbubwRGroZoN2i7e8BcZJtx3UsmiLiWPHZTJiFEWPJYNlaW1wqjeplTc2/h9huLidtJRG173WaCUOOh1nLuwmFz5S4+bsuitW0rJzRxJqCOOUCxY82Hp70xYi7yVzpGG9ipriOHgi7GgjiozimDz1scjIuyeW9lus7inN+0znvrWeyijDKePx4hXClbK10ziGhgIvcmwU8kbI3Qz7G4DcOHFUPkzJuOYfnymq5Jy2nimie61QdwHXO1lfs0zJ5Iww6nhtnH0+K5es0oxq5g8rBcWMHGkoN7mcYlns8HsDe1k4MAEY3F0U8YjhjtyJuEOc0us3TdeYlKLeywXdKOFuKN277Bc+KyzNwyt6i5mFO8sAF7nSbfOulsljo0t+RK4uDySxhaRbvUQqaKik+Bh53PPeTKzN8nSHMysppmUYkfZzoQB5u269Cu84eC0U9NSxTumEEYkcb3EYW0EnzrX9C7uoXkLrCjFR+QSB3BdWEfbbTzBFguU8F1YR9us8Qs+hexf0o/F/wBDVX/dskliXC52twTTmnL2H5kwmTD8UjMlM8WIDi3a4PLwTwjkF9c7IrDy90i9DgyzgFbiGH4hTR0+l/1sxOJtpc7iT6E19COfcWwDKwpcPyrimKRBsYMtNIwNNgbHcK8+nY26P6zbk/8AdvUN9ixT08uRj1kLHHRDxYD70qWSWhkjGa3HsBjq8Twypw+q1v8ArE5BcADYHbbcKSNvsT3bhYwxMhbZgAHoCzANyUMRUIQgBCEIBqzPicuEYNNWU9FNWyRltoYSA51zba+y8x9MmfMZzFlhlPiWV8Tw2DrH2lqHsLT2COQ7t16vkYx7C2Roc3uIuqW9k1BDBkOIsgiaesk4MA/1bkA9ex6bbo4wwROFvJoN/wD0wrQVX+x236N8LNgL00HD8mFaB2QAm3GwTTXA2F7/ADJyXDi/2lL4Li6kv9pV/wDq/wChnS99EbZwISpBxSlfHpLcuWCEIUEAhCEAIQhACEIQAhCFCaWckmLlsiJeS0uDQSLE81gbc1iblzdPAcFlHhCXB5g6RMxY9l/PsTJJ2xQte2QtdEN26zz8AvQmR8xQ5ky3TVkT2uf1bS8Ag6SSeNlW/sjMtwz4PBjMcYM4mZC4hovpDHnuvyVX9F2c63K1Sx95pcMdu5naeANJA7INuJXtZ2FHqFip0VvE4dbhPB63B7RdxBFkibsFxmhx2jbWYbKHRW7TDYEEceyCnAG+45rxajKi3CojtTUkKhCFjnsiF5AhCEJBCEISCEIUSeGvgRwIx2pxYT6bqjumyhkwfNOFZkiNrPmkkdbzbNYBe+3NXhqHWizeA32Vd9PWHtrsjSzEgGOKTibcS0fwVr0Wp4NxpfEtvqaq6zHJOcKkFThtHUFwkL4I3XHpYCuStfeaTX5gKZ+ibFxi2T4n8oiIbkb9lrQt+YZDFJJpc4gnv8FEqCp3U6T7M5rirooZZBc/VftfhE9Wxpc3S8Cx5hpKr3K2NuxlkzAw3a8DiDba6sjEpqaqw6ppapnWAseQHMDhcj0qkqmjxHC8YqZaBhhpDISdBLPDYbL3nSv3fhS5PI3FrRu4t9y1qGmdDHa9zzACf8LorNDw4MJ3AIUOyvjMONzdXSSPc9ti64tsTYc1Z2D0LnNYHjgAuDq1RUcw7mjptnJTw1wO+D9cY2GW5LeFtr8U/M+xBmki5uVqpaZsbW8Nl0LxN3czq+znY93bU3BJGGmzmgcFk0WFkqFxtbHQ28ggHdCEizNbnPVxdcLWWuCAwDgXDuC7EXA3PBbVPG5g4IaqvG4qCpEdfUxwhw7Idtx4LvpZmz0/WtcJYZLFrm8CFUnTVlHH8dxCmlwWodG1vV3tUuj2Gq/AekKe9HeG1uE5Nw+lxSUy1TIQ1xMhfvqPM+Kt7izpuzjcxm032NUX7RIw61iwhribEHuSOa2R+kjfm7kla9pabt7XDghoDbuceKpN008G3O4mt2kuLS487LIdotdwGnn3rENJLiCbEWAui7wy2lp3Ry1v2exMijumuuzRFmGBuC0kz6dzzZzYg4O7DeHx3VsZLlrX5ap3YgCKjbU0tsR2W/8ANO8kNPNpNRTxSOb5uqMOt8qzaDp0xsYxvcBZWFz1CNWhGlGKTXcwS3FYbuvZLB57PxkgBabWRT+ez8ZcdN5qQ+a/qZT4JXS/a8f4oWy12lr91hS/a8f4oW1fZ6XuIpXyyms59ClBjGJz4nRzRQVTy5xc8PfxJJ2BVDQyYhlDpdaxkbsXrqeoicG0rQwyG1wAHeK9tS/YZPA/QvJtG1r/AGSrWvY1zfLKfiL+9W4iJceTukXGsZxJ9LW5TxahayEydbM+MtcQWi2w47k/EhWXDS08dnRwRNcRxDAChQSM3SFcZFx/tW/mM37BVK+xQcS3Hd7/AM7H7BV09Iv9Bce/MZv2CqT9if52O/nY/YKEHo1ly3fiskBCAxf5qiE/2zJ8f0qYFROq+zyfGvH+l/7mm/i/7HZZP2mjSOASrFvALJfP0/aLEQpUIRbB8AhCFJiCEIQAhCEAIQhAYO1awW8GblYyxR1EEjJbaJGlhB9K2pFKSypPlDGeTz90jZMr8pY4zHcAoJKiiJe6cRkAC9mtuXG/M8FXNXj0GHY3S4vlmZsMzJGGaCPtHs7uuXA817DmgjqYpIapgkifyIv9KjlNkHLtJVGeOm1Ocd2uDCON+GlevtPSKnGj4denqaXnjP4HO6LzszV0a5nfmnL7Kyb7M0ND7kHci/IBS1aKShpaGMso4mRMduWsAA+Zb15W4nGpUcoLCfY3xWFgEIQtJIIQhCQSBw3DuCVCh/AbGielErCQNrKM4nQOMhdGNhxUtWmojY+LSWm5I3AXXb3MqMsnLXto1E0Uvn2GWDBKupbcWYTfb0Kt8hRnRUzyGw1vufkXpLMeBw1NHNGWEttax4cvQqByBPhNNVYzR4hOImuknY0ula2xJAHFe76FfRnF6lnT/c81d9Kbg6SfPcdKCspa/EPJaWVrpr2sL91+a7JIJaOoLKslu1xqHqXFkzJMVPmI4vT4nDJR07vN8qa5zg5pA4cU5ZinfJU1MsY1RRxauFybK8jdqvdRUXjY811HpcbWkoR3bZnRUjcUqG073AscDvZOWFdDMeH5pp8XNSGxRPZIRoPvfjUd6M810U+ao6SWOXWNY3aLbNXoOqa5zQy56s93FUPpT1a7o3Doqfs48l+R6j0Z6e7ak5TW5xyODo2QsdqawBoI52XRS0uhtyFlTU4j9I9K6nHVsNl4GdZP2c4PSQp5y5cnHUwXGscBsmuohEoIIT7LFeMi/wA6apoyx542WyhOUHiLNFWi5ppkSxKhADtuKieI4fpJcBzVmYlA19I47XaCfmUMxZpLGEACwsvU9OunPZnleq2cHFpkWpaQl+ojYbqU4dRB9ODbb/kmOnnifOyN4de/vVZeCYU0YeyUA2cAe16R4Lq6pcujBa+5w9IsvFUvDILidLGxp0gXTDM7TUaYx1Z08eKsfGcH607Nfv3f/oo8/KdRNLdjXgHa5B9S2WHUqDUXOSwR1TpVdySpwfzIoGPkaWvm1udysrSwLDzS4W2SVhY63A91lR/SLlzMGEYzA/C45pWkv95I8cu4elXrlltY/KUDMRAZVcwAW7adtjus/SW7ozo06lvLbPzLPpHR6tsvGqbtrAxYtVgSv34FRajz3S4TjEcdbO1jHuaG6jz+IKy6HL8c8nWT6reP/JRDPPRBFjdfFVUczoyxwcQZQ0bC21mqvt72yl+yq7Z75LCHTqrq+I5beWCysJr6bFaCKppZmuBaDcX5i67QLt7L7kppynghy9gcVK9xkc1rRfVq4Nt3J2GwvYi/oXkrqMFVcae56JRWBb2FjxSsLgfMJCR7SQCdh3lI9zGR9mWO/peFq0ybXxIUuwO4u8E/YB9qn4voUcFXSNc5hraQO0++mb607UWM4TBTMjqMVw9jgBwqmD+K9d6JUsV5z+BzXbUkiQt4BB874kxVebMEpaeSWXFsOc1jdWltVHc/+5V4OmygNdUsZhWLT08MpjE0FIXsI5HUDY+K+gHAV37JH+sjLt3W/nD/AN2xelMv7YDh1t/5tH+yF5S6YsyUWZs8ZcqqHUB5Q8lj7am9ho3AO3Ber8v/AOgsO/No/wBkIDubcgElKhCAEIQgBJe5sClRzKARt97leU+k5xPsgMOB4CeS36IL1Y3mvKfSd/aBw78vJ+6CA9T0f2nT/iN+hbu9aaP7Tp/xG/Qt3egEHBR7G/ttvxqQHio9j/23F4FUXpHHVYzflj+put37Y3pUIXyyEi3yCEIUkAhCEIBCEIAQhCAEIQj4AIaGda0uO9jYISt432+NF7umRJXfSpkVmZ8MnqaSHrMYYxxiDb6i4Ns224CoXF6mGOmOF5mjFHiVIdET5Xb6WcrN286/Fevh2X6ncFH8cyZguOS9ZWQNve5czSHXvfiQV6XpXXVawVKrHK+n9jmqUtTzkqLoGz7itXUHCcQe+SM6AwnQNyXE8Ar+sG2be7yNVvQmjDsv4ThYAoKZjXjg7Q2/ygJ2JuB3qq6ld07us6lOOlGynBx5EQhCrsb5NreQQhCkgEIQgEPBY+as0I3hZMl5mBAkaQ7gQvOObIW1/TWyll2ihkqWNvyAaSvSIAJsdhzsvP3TO2HDukXCK3V1UYZNqeCGl1za5PNeg9GmpXGlctP+hzXUcom+P5iw/BqwUtbXxxP0t0hwPEtvyCk+Gyx1NHBURyB8T4wQ4cDfmqez9g9Bn/MVM/BsShZLKIogHVTAAQwN4C/NW/guFvwXAKDDJXiR8UDWue12oEgW2K6uo0o0KcFDlvdHBTpOOZZyc89HTSzEh7bHluornnoqjzW6GpZVNhdHps3QXXAub8fSmHPGdmZYzCyKVkpaXW82/BoPeO9XJlyuixHB6WqgDw2SJjyHd5aD/Faqk7vp0Yzi8Re/CMbaEZ1N0cWSMG/k5lekw7rw8xR6D2be+J/iny5PLsrLbuS8dl56pUlWm6ku5cRgo8GG4S371lb0pCO7itD2ewi3k0VFP1zOwN02TsABjd5yemlw2On4lw1zOJ+hdVF+Zz3ME92R2qwwvdqaOacKWEQU7RbeyyqJ2UrAZL7rrw9rJ4hMQ7Ta67KlSbp78FdSpQc8RWGa5I5WNuWksIXPUubDSda0WO30p5qGh0dm/Im6oo3zN0EWC006lKOHJnTcUJpeZDcTxORhLr6RzOylOWIm1FEJ4zqcbXI9IUQ6UsvVZyrO/Cw91Q1khs27j5u2wF009ABx+JtVFjUUrIxKdOuORu2gW85XlenCtY+NSlhrk4be3rQr6nx5Fv1Moiba9nKN41jlLgMDqyuqGNZe3auONzyHoUjdE2WU6tWn51H88ZVgzRgb6OMyMcHg31aeAcO496pLOdvKaVd7FncQqSxh4NmUc34Zmql63D543usD2STxv3gdykTy8ODWuv8AEq+6LsgHJ0Eokme8dmw6zVwv6B3qwNEt7t0kJ1Cnbwqy9XlmKOmnnStQrjc2c6xS8+N0liPOG/ggmwu5zWnuJsuB5ksmTlFdxTwXVhH26zxC4X1MEQu+ppwf70jR/FbsNxGghqBJNiFCwXHnVDB/FXXQKDd9Tz8f6M015J02S5HIJodmPBWNIGL4dcngauP/ADKFZw6VsKwCsipqFs2JzyagW0bRUWtbk0+n5l9WKvJ09O2r3P6zSL7P/dvUV9imXfyFILTbRD+yU2dIfShhWYMk1lM+jxGmnLH2E0PVjzHDn4px9ipqGRXavNLIbW4+aUGS8NO91i8kbBZoQgBw3QhCAEIQgBUz7KMashR2P+sk/duVzKmvZQf0Dj/KSfu3IBz9jpf3NcL/ADaD90FaLlV3sc/6tsL/ADaD90FaKAU8FwYv9pS+C7iuPFftKTwXLfR12tSP/wAX/QypvEkRlvFKViPN/wDMsl8cn72C6zlAhCFiQCEIQAhCEAIQhAIlQhMLuT2EJA4+CT7Ht8HiskHfipJTwN+PYTS41QSUNa0Ohe0mxvxII5eJXm/NWC1mQcUron4fJJlueS7JdQawMFg3mXecQvUFr+K4sXwqhxijNLiEIkbsPNHI35g9yuOk9VdjJqSzF9jRVpa90eU8sZqnynmWA5eqeuwyR8ZmZGBYAuu+5cCfkXqvBK72zwejrrW8oibJbxTVhWR8Bw5jjDTNe43+yBjvT8FSCGNkMTI42hrGCwaBYALZ1rqNC+lmnDD888kU6bj3MrpUIVFjB0NghCEMQQhCEghIEqiW8ciS7CPJdYtGw2KqT2SVbNSZOEcLi1krJQeHIs9atppDQbXO6hXTDSQ1nR9irpY9RbF2bi9ruHBd3Sp6bymms7o119oNHH0XNo8A6O2VM8jWQOd1jib21GMOPf3FYR5jw7MJkGFSMlcD7wnx5gdyrrLuK4diHRlLgtRiHUVXlb3NDqhrDbQWgbm9t1LehTIxy9RPxGWrZVCUNewNmEm1i3hb0r1F3QpWs61zWe+djgqUpXEVB8GGJUboZWveCxxIBvzSthpsQoZaKV7Q5zhub8lJ+lA0+F5eqMQkaQ9sbyALcmE8FWPR3ijsxmZ0DZBofpvpPwbrfZ1HcWjrp6Mee55mvZVba49mOUSPo56NqbK+ITzmdri9rQBpcL2JPf6VZ9AxvWuDRwum3DqGWK2t2ou243T7SRdXxC811O8nXnmUss9RawylNxwdLQdJ9CVDnXCLelUyWHksNTYh2QN0ulFtJ1X47KG3nJk9wQkc6w1P4ehaBPG6VrQSN9rrKKb4MXPTydCLXSOJ1b2tZJHoDjfWobSJ53NjHX5+hYGxfxuQsJ96WoMYOsMdpv32Xnd9RnEdKEvVxzmi699rxSltur+TirPp/TvXoycppJGDeHwejG7ykEcljZt3vlNmNNt0Q3EcZee2WNv42WQbG5kkb9Vnm+xXCsSk4SeyJfngiEfSJl+bGxhYq4RU3b2buvvw96pdu5rZIX3jcLggciqjg6H/ACfN8WLsqJSwPYbOmueyPxVbkcbWRRRDX9bYG/IF39Qp2lGEPVprjf5kRl5mF3G2l/jstl7iwk38EoGmIOAJv3C6NA0FxOnx2VbD+JGTkgaXcDv6UlP57PxlgyaPSXGaFlub3gBJS1uHirbetpuIJvOy30rfRpyqVYuK7r+phOSUWTCl+14/xQtqZzj+DxWYcWw9rhydVRj+KaszZ5wTBsKqq12I0k5gjdI2OCoje95A4Buq5PoX2SmmopMqG9yUy/YZPA/QvJ9CR9Uu3tC/llPt/wCVWpRdNmG1LXeUYTjMUTgbSupCxh2+EdlUOXq6mxP2RNPV0TtUElZBpdcG9hbiFsyRE9esvpG/JCVvAeCEBHekX+guPfmM37BVJ+xP87HPzv8A3Crs6Rf6C49+YzfsFUn7E/zsc/O/9woD0eEICEAFRKq+zyfGpY7gonV7Vbhy/wCa8h6X/uIfN/2Ouz99mhvALJIdnWHBKvn2NyyBCEKSOwIQhCAQhCAEIQgBCEIAQhCZAdYWiwbqv6UO+tjU6Mb+lKDZYjjdMgAWndnA7pUpN0iAEIQgBCEIAQhCAEjm6m3Dy2x4WSovc6eZ5o3jckwlD5I3AN1l9uJ9K8k490b43Li2Jzx014eslm85vwie9ety0DSAbubwWL7GCWBnVNc9puXN7xZWvSep1LGUmsYf68zTVoqSyeOci4zPg+LQUdYbU5uJY77bNNuA9KvhuH0YgdNJCw08sekNI2JIuqlzjk6ebpNq6UVNPB18z9Dn6gNm+gK6pMPoYMKjpp8aw4zBgG0p+DZexvbiD8KtTynJLj4lBeWfj9uCs8KrcvYHnok4bTsmc99jd1+Fl6Jp3PeDLINMRaLC9wvG+cZBTZ3fqqIpmQyua18R2tdelmdIeAQUlP11Sx8gO4ZKz1qp9IrGU5QqU25PfnfyLLp0pKniZNi6424HgkAdxUAq+lrA2utBRV01tj1bozf/ANybazpeY42w7LeOyekRxu/3lRQ6VcVJbqKWPkd6rJFotLyfQsZoOsHBVO7pTxiUhtNlbHG7XJdTMP8AvLVL0g5tn+t0OBV8Uh5y0gI+YrZHpFeHMo/Ux8dPZIsyppHuicNNxY7KL4rgVVVx6YGFtu6xUWlxXpJxUMhbFT0xadWqaicAR3bJZcu9Ite0NmxPCWMPH+byN/grK0sa1Canrj9ThurOFdbkLz1itTkzGImzUwlAcDZz9N+zfkCrs6Pcysx/LUEzoOpGluzSX+9B7lXmJdDGL4xURS4xiuHPFxqDOtaSLW27K6IehhlOBD5eOqHJk0g/grPqlxZ3tKMa7xJfw4NdjaKyTUFyWo/FsOMgjkkII/uFchzdgjdTfLCzQSD9bdyUMi6FsDEP16oqnO9FW9djOiTLWkNLa42/+6cvNaOnRSipz/AsXqlu0hwr+knKMMhbV1zHObsC5jx/BMFb0xZYbUDRUwy2IG5cNvkUmw/o8y/QxaIopyOHbl1H5080OX8No4Oqgp26Lk9oAm/yLfCr05YjOU3j5Bxn8CupemagfI1lBRU8rR/47m/7q1ydK+L1z+rwrAYJC3d1q0jb/CrbpaaCmBEUEO/fG0/wWYZG0DTFELG+zAsZ39jB6oQbfxX5BQkynnZ4zzUG0GWo7ejEB/lWM+OdI1eGQwYMad7zYPbWtJb/AO1XHsL2Yzf+6EWGnTpAHgtf2tH3oUY/R/mZeFLzKcdQ9J07BHNUVcIPMSsctseSc7yM1z5lxCI9wijP8Vb/ACskO4tyRdZlnLpQ+n+R4bKph6KMQLC6fOVdJI7iHUTP86kOFdDFJLBG/EcTfVSW4yUrR9DlNSbh1t9trd6kGGt/7MYCe0WC/wAi9H6N9Sld1ZZgl8lg5LmGlHmbpcyngeBNo8Ow2dk+KVEvVGMwdXxaSN72V4dHmVcOw3I+Gw1VNHqmp43ygj35YAeBVadE+WKTGekTEMXxEyS1FO1kkVnnSHNdYXHgvQUbGt1BvfwXtXycZ5O6ccv4bgXSDl9uGUcVOH1Dg4sFtVmN9a9T5f8A9BYd+bR/shea/ZHf1jZdI51D/wB2xek8vn/sLDvzaP8AZCgDghA4IQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nf2gcO/LyfuggPU9H9p0/wCI36Fu71po/tOn/Eb9C3d6AxPFR7MH21F4H6VIT5yj2Pg+WwjlpKpevrNhU+7+put/fOBCEL5TFYRbAhCFIBCEIQCEIQAhCEAIQhACHMc5hLSQQhJbe6AIzeMtfxRpaxpNg70IO6UGyASNpAJawA+KSJry4l/pSkXKCLoBUIQgBCEIAQhCAEIQoyuHwZIQ2t2thzVJdPOUsTzDiGHyYXT9fE2NwPaA4uBHEq7hxQXhzXNe0Gx2Nl3WF3KyrKtBcZNdValg8TYlhuMZDxKCZ8ZppWPa9pa4cbahwuvUnRfjH8pMqwVc0hlnjaxj79+gE7/Gol7IvL89ZhTcSa+HTCHPcADezWeCx6CsIjy9gj6utxjD2xVbxMGGQgtuxosbi3JepvqkOo9MjcYamm+P1k5Y4jlB0zUGEOdBX1lBDJpL3Euv8FoU/wCjzFqLF8tU8mHU7IIYWsh0sJIJawb7hVf7IbFYJcCgp8JrqSWOTrWvDXajazLW+dbOgzN+E4RkuWDEZ2xTCoJs6RrSRpAvufQuataSq9LUptt5RFPEJZLxRYqDTdKWXoWmwlndyEUjDf5021HS/QNjPk2A4zK8mwLBGR+0qGj0yvPZbfPY6nXSLLsUjrgEngqmHSxXuJ0ZYxwg8PrDP8y1u6ScxvB6rLmLNJ4aqVvrW19Er95R/wD0FWXkW4wF+4K1zUz5RYOPyKoHZt6Q6v7Xw10EZ4dbRcPkQ2k6Tav68K3C4WHfTJSyA/QttLotV/8AeP1Nc6ql2JX0lmswjAn1TGue5m4ubcAT/BRnoQ6QqjMbJKOtg0aOrAPWF/EOPd6Fyy9GebcYpnnFMYwtweSSGtlbxH4vpK04L0E+RAyPxCAPNvMlkb3+hXSpWlG2dCq8y81hnLCk1PUi5KjEKOml0zyOabX8wrjmzTg0RLZKstI/8NygFN0MYaRqrKueSW/GOqkAt8i7Yeh3LzDd76w//wCU5UcqPTfdcpfgdsnNj9X5+y1QhvlOKaWvOmxidumev6Xcq0dm09dG4Hc3Dh/BdVF0WZappC9jKtzv71QT9Ke6TJuC0rgYoHEj4Tgf4LZGt06OylPHltgw9tTIRUdN2B2AoRBNOfNZ1jm6j3X0rQ7pknI002B0zpXC/wBuEf7qtQYbRNsW08VxuOw31LptGLWhg2FvsbfUsvWOmx9yDfzSMpRnIp1vSJm6UCSLK8MzHbi+IW/3Uv8AKzpCf2WZbbEHcCMQBtf/AMquE6ez9bj7PCzAgkH3rfkWv7Wg21CjH71/klUpd2U7/wDU2t+uRxVFPfk2oY7+CIsudIdfK6StxyvpiRbQAx9vjurj1EDa3yLEONwB8aj7VlHilD6DwclQRdG+ZayciszXXsG//d2O/wB5O2FdEEk1e0V2ZqqqY0jsSUbAP2lZIuNR1NG9t124M0eXE3GxHxqz6L1SrXvqdPw4pPO6W/DNVelpptlcZj6K8vYJh8tdX1TdLYyBelvd1iRwPoUd9jvl6jxDGMbxV1LFLHE6ndSv4cRJq8OAT17IqmOIVGE0EjniOSopi7Q4jsmUg8PQrey1g9Hl/CafDMOYRTQAtbc3Nrk7nnxX0QrSuOnHKuDMyZV1bKCFtQGu7Vjf7G896bfYo6/5DOLiQ0MhsP8AylSzp026P62/c/8AdvUR9igb5FlAvs2H9koC8kIQgBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/wApJ+7cgHP2Of8AVthf5tB+6CtFVd7HP+rbC/zaD90FaKAUrjxX7Sf4LsK5MTF6N9+5c91/x5/J/wBCYe8iLDzf/MskhFht8JKV8an7zLpcAhCFiAQhCAEIQgBCEIAQhCAEIQgBKXWaLMDifSkQdyCeSZAj9MZDnsAS3DtxwKUuJIJ5JCbm6ZAIQhMgEIQgBCEISCEIWOG3gjuYktaOyASUx59oJ8UydXU1O3tvZbY+kJ9YQL8vFIAN7c+N1up1lRrRn5YJmsrB43xTo7x3D6GoxSel1Rtlc0PLm7WuRz9Csf2O+dZTIzBsSGrYNju4mwDHO4AK782Uj6/LtZBH1QPVvNi3+6R/FeZuj7Jk9TnqqlGI0dK2kmLXNmc8HeM9wXvKF5T6rZ1fGS242/PJxODpyzk9D54oIq/LtfBXxNqB1EhDX8gWlVj0S43gWF4hW4TT0UEc/Wndpd71ljyVn5hzBhlJlfEhBiFI+eKjk0fXA67gw2+deaMg4jC7pHmrsTlYxj3SuLgdLTcKs6NSdSynrysZ2NVaKnNM9VYaO0RI7ccAnF3oUOm6Rct0sr7TiW4/1crD/FNc3S1g0chDMOxGdu9uqMZ/3lRKwuareF9TspzSW5YgF1lYqqZ+lqR0t6LLWOSRctMUZP7S5/dQx2Ul0GWMZawfCpmetbV0a5a3cV95k6y8i3rFKGPeANN7cCqZkz3nevfbC8GqoAOPX0YPhwKH1XSVikmprqOnZybJSPBB+ILNdFr95w//AEYut5Iud8Uhif1rDpaDbmqGrekuso+kSLCTSh0JliaCZSLamgnbSnI5W6QMVdorcWwpkfohlafoTZ7hVVPiLamvxOjfJcG8b5QRb/yq1sbK3tIP1pp/Jpmmopyexd3lET8PpquQvYHxtJGgnjvxXJPmHC2xmR8xYG7nsOVbN6F6clgnxBzmgAWbUyj+CcR0L5eiLXOlrHd4FW/dVlal03W5OUt/JI2KUksErmzrl+Fhe+v0gcfrbkzy9KWT4ZC81zBIOJ0v9S54OibLUZ8yuPjUuKeabIOAQQCJsMxb6ZLn6EpVOnUPclPD+QcZsjHu1ZacZHxPgkLQbDU4XI+JcbemiCSRzqbC6aVgOx8qI/3VZjMFoGRCNtPHpG3mj1LuihhigELIIdAt/q23+hZyuemU/djJ/NIYqFRSdJ+Y8QlY/Dcvwugvtaut/upHZzz3JMOoyzHpI5YgP8quFmll9McQv/cCQWF+yzf+6Frl1Kj/ANaUWviv8kqk+5Tb8T6TMSla2jwuSjaw9ox1jXX+UJJsL6TKtwbNXVlO02vaRjlcu1gLAW7ggFYfbHaNKH/5/wAmXhFPjIWc6lnV1WZsQax/nDqYz/vJwpeimtfMwSZnq9RtceSM3/8AcrPLWu87h4rdDrfPE1+7w4G44WXRQ6w3OMfDinlcL/JrqU8RIbH0MYaIxJXV5qJALue+lFz38HKpcayvhFZ0mYLg+ESsnpfLImznqtHYc0X2J33XpDP0j4cp1L4zaRuht/E2Kr/2O+UqDD8rtxwapa6pkmY9xeXCzJnWsDwX05zbgpFY+SwnZSwiXAYaCoo4pYYog2zgbbDuuvM+X8PpMK9kTT0eHQMp6WKsgDI2cG3F163kbeF/JpaT8dl5Sov7S8d+PllP+ysycnrRvAeCEN4DwQhBHekX+guPfmM37BVJ+xP87HPzv/cKuzpF/oLj35jN+wVSfsT/ADsc/O/9woD0eEICEAjuCi1eLVbv+ualRUXxE/zo/wDXNeS9LlmhB/F/2Ouz99nMeJKRLfYpF8+W7yWQIQhGQCEIUEAhCEAIQhACEIQAhCFjgAhCEwAQhCnIBCEJlAEIQpJBCEIMAkv2rfOlRcAb96hy07gTfXZgBPeTZZaAX9qNhd8qiHSU/HmYYX5Z1GYNds2ESm+1uPxqMdEOecTxvEKnCccieysha+SzmNYSGlo4Ad5KsKXS3VtpV6e+OTBSfDGHpWw4VXSZgjI6mSkfIajU+KwN9I5qQR9EcTmMfWZgxJ0r7EXDXceG6a/ZA4WYoqPHqY/XacPJAuSC4tHgrTyxWjEMAo54ZmSgta1xbvwaLhXF5c1YWlKrQnhJKL2744OeCSk8kKouiDLrOtFZprKguvrnp2uPyp6o+jPLUPbnwmgqCOAkp2FS4nSToIZ6TvdYbkGwN/hclVvrF7hN1Hjtx+RuVFPkZKfJ+WabzcvYUPCnanGlwnCqfaDDKOL8SIBdrAQO0blKLc1y1b64q7VJZNjjFLBqFNHE361TxEk8eGy2RsjaNTYmNl7wgCyAADccVzam1ghJY2QrXSF31xzvlSvdIT2SSPFIe1526ASOBWMMv3ycfAJXkgami6waAdyLrIlx5/MgF4FtQ+RZbR93YlpCWv70JQbBKCeaFjF92G8oS1wlaLBIlCLnUjFJ43YqQoukO6yb3MsfEVCxslAUZl57E/eKhYkkGwBJ9CysbeafBYYb2TIcsbjRmXH6DLmEursReYY7uADGF1yBfgN+SiJ6eMutwJzqN1TJUgNDQaOYA3472UT6ZH1OO57wvAGEtgbJBNILecHEtIuN1dWXchYFSYTSQmiOpkYBvK7e3xr6T6NWMLam9T9vnHwOC5k2timuh/O8eW3zS4/DLGZ7gythfIba7jgO5X7gGbcHxxgdh1RcOF/rjDGeF+Dl21GC0NVRmknp2mnII0jY7+kbqvsw9DWCVchqMJElHVcdbqiVw434arL1WcnEVd7IotPSLl3RJqHlD9r7D621elsv/wCgcO/No/2QvHXSVgWLZfz5gdJi2IRVrGzu6ssi0aewCfHiF7Fy+P8AsHDvzaP9kIDvbwSpAlQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nf2gcO/LyfuggPU9H9p0/4jfoW4LTR/adP+I36FuQGJ4pizAPrsbvQfpT7xTLmEWa3w/iqjrqzYzRtoe+NKEgSr5PqTWxbghCEAIQhCAQhCAEIQgBCEIAQhCAEIQgBCEKMoAhCEygCEIU5AIQhACRKk5qXHONjJNAUukhoIsTzuVqqzKKWU0/2bQdG1+1y2VF4vnfN+VM11MmNQTSYY+Z2j+bMjFj2R2rd5C77Lp1S8ctMsNdjDO+5ZnS3T9bkHGiQHaKOZ1j+Iq06PejuTMWXhNJj2IRxgtAjaWlreyDYX8VbWZKVmYMl4jFGdT6qkfG0A3sS23JVz0C4pJT1OM4DWStbLDWPaxrgAdLWNHjxVvaVK9OwlGnLEoZb+RztLXvwOzOhzCtcQrK6eqYw3tNE1yc4eizK8dg2ippGg7h1M1ThzTEyxu1x7+SzDiCOeyrvta+2XiPHyX5G+VGMuCMRZCypTaBHl/C3Ee+NK0FOceXsDgcOpwihbp3s2EBOTQQ4lxvdK0uaTpPHY7LlrdSurhKcpbfcHSikaBSURFoaKnYBts2y2lkFgOra0jmAstLeJG6yabC3Iri8VsnCxwEZcNtbizlusTLI19nEmPxS6jwB2Q4lzbX2WLk/MRS7oUyDgHOsd7JC5hOm5+RDQAb+hK0gOJtxRpN6icIxsw8HEDusi7QOZ+JAHelusvZW6J+8xuPehLusib8UijOGsEp7biBKhCylLPcZBCEKISelIjcRAG90qQuGprS4NN+fNGnw3gnOxjdji7VsxoJO3coF7smXcLzHJR1Zla1jmgOjpZHk3F+Q9KdulHGZsDydVVUEbg7rY4gbA31Ei+6jHse8i0lbgZxfGmeUz1INiC5ltMjhwBtwAXsfRWyUZKvN/I4ribcWiHZxz3Nm/OtLWYfFM/CqRrNQcx7blkhffSR8EhXhlrpRy7jLCGTzQSjzmmmkYN78yPQpfh+AUGGwujoYGxtcSXX7V7ix4+CjuZejHLOYHOkrqKQzH3zKmSMb2vs1w7l78rxr6bKmOs6Oqp9JIyQWcfOA26p6jHsUt8izNaNLg2G9vxSo10l9GuJ5byvVz0OLwihAf9Ycxz3W0uPnOvyFlKPYpG+Rnd5ZFc/8AlKAu9CEIAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0VV3sc/6tsL/NoP3QVoqAKVy4l9pv8F1Fc2IC9I8ehaLr9xP5P+hMPeRFXcP/ADJSk8647ilXxqosTaZdLgEIQsQCEIQAhCEAIQhACEIQAhCEAIQhQwCEIUAEIQpQBCEKQCEIUkghIlU8SRLwY9k7u2sgapD2GtDfSbLNwHWNLjZun51VvSxiGbsOqGVWAa/I2lxcG0zZNrNtuR3krosrRXdXS+5i5YLQqBeGQaG6S0h3hzXn2iy6MZ6V8fpMPxOqoWOrHAiGzBtHfn4K0ujDNBzZgBqKppZURyOgkBsL6QAdhw3VaZ1pXZU6XqbFYCWUdbLNK8ncD63pG59JV50enKhUq27eJdl8tznqx1NbEt9x6kdDJ12O4hI1wILXNaQe9dlF0R5bhijBijkkAsXup23Kn8RjdBC+M3Y5rSLG+5C2F7x5/m8tlWvq16k9NTb7vyM1Ri90iIUnR1lalYWPwXDp3EW1vpmkhOkOVMswMDYsBw0EcxTNCeWmxIJAa7a3esiSBZmw9O60z6tdzWJT/p+RnoUeEcVPheG07dNPRU7PQ2MBdcUUUbSG08Wnms7gN7Is7vWJa2/ZBHfuuKVaU/eZlt5A0tjJ6iNsffp2StlAvd7rpD/d2S7AdkWWCim+Q0jXrOu5e6yyuwuJBN/BZXPf8yQjhbbvWUt+xLeOEY9kpR3kDZBBJ4pSASCFLy1jgN5QXuiyVIsVt3CbwZIKS6LrHLfJim8gUIPFJZZqCSyZ7MVCSx5BB9G6QJwgPDgD6FF83Z7wfJ08TsUq5xI5wbpZC+TkT73wUqhc4PDg03BGyoLL2HSZ36V5nYiddLTRskDLablsgbxHoKu+h2qqV1Uq8I568sLBIukXplwzGcnvo8vGpkrZnRO7VNLHsHgu3I7k69FnSFhOAZapcJxlktHKHyECOmkcLveXcQLcCrRp8oYJTPjkhorOaNml7jb51vx3KuE47B1OKU3WttbsPdHyt70hfVJNKOCpe7OjD8boMVoTNRVDXxlp87snhfgd15hoiD7JaMg3HllP+yrTxvodp4C+fLFV7XvsSetkkmHPkSeVlSuSKWsounmhp8TqGVNWysg6yVjNAdcd3JQshYPZbeA8EIbwHghSCO9Iv9Bce/MZv2CqT9if52Ofnf8AuFXZ0i/0Fx78xm/YKpP2J/nY5+d/7hQHo8IQEIAKi2I/bR/65qUqLYkCKo3/AOt15X0rX+2R12fvnKOaVJzKVfOo7IsnyCEITOSGCEIQgEIQgBCEIAQhCAEIQscgEIRZMgEIQpAIQhNgCEITPkSgQhFkyycgkLmtHaHE9yWxSOG1i2+6c7MBIXRSizGPYeTt0xUGVaKgx6TF6VgZPJGY3NAaBYm54C6fnAkucHW7hZK8tf57L7d63K4qQi6cHszBxGbOWCRY7lytpJGNJk06dhtZwPPwVY9AeN1baiuwCuI1wGWVpcTexkAHE93oVzMuGjQNBZw53VKZxynmTCM4z47ltstU10LGuZGwC9u0Rck8x3K56U6dWhO1qvndfPg1uG+S6nO0v0OaCO8C6DdhvsWKpsj9J1ccYGFZpo30M7ydIlmBuA3uDe9W00adYvqba/cq69s52eNfH1M4zyF77jghA4bIXBiTersZtZBCLIsUTYWwIQhTlk5BCEJnzIYIQhNiAQhCZAIRZCjIBF7boSE23TkkVu13cysXzx0cZnq3hsY34jw5pXDUBvY34KrvZC1M1Pk2Z0EwYWxm+wPvmrqsLb1u5hRWxhUfssjOWqifOvSfLi0cemCnjYwGxAOiT03716eobup4Hbebuqv6OcPpMNypA6ib9clJ1kE8wCeKtDCwW4fBzOgL3/R7lV7qajwkcNb3Eddjbfiksb7pdwBzRfe1l6g5Dy37I8D3ScvW4+UPv+jYvS2X/wDQOHfm0f7IXmj2R4/+pOXj31D/AN2xel8v/wCgcO/No/2QgO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0Ld3rTR/adP+I36Fu70AgTLmLzW/8AXNPSZcxeY0/9cVV9ZWbSZtoe+NCEIXyCKwW6BCELYGCEIQgEIQgBCEIAQhCAEIQgBCLIQAhCFGwBCEJsAQhCnSAQhFlGkAhCEjFtk4yIbkdnjyTHmjLNFmagMFc0NkYW9pgbc2cDxIPcn03twWFmvADorHvut9GvOhU1QZDiY0NPFSR+TMJcxjR53NUNnrXknpOpK6naWwVkL5X6RtqdIW8rchzV/Ms6x0aCPTdQzpUypJmfBQKMkV0bm6AG6iWgk94Xd0q5VOvKNX3ZrDNNWLaWCZiSN463U57ZCQ3nayCLKgsOzlnTJ7oo8fpKiXD4zd0jnsjDRxJsAe8K7Mv4xSY7hkVbQPa+N7Wl+k3s4tBI+dL/AKfK2bqU3mH1M6U3wOKEDfggb8FU6NPuvKNjbyCEWRZDLAIRZFkGAQhCnYwBCEJsAQhCbAEIQmwBCEKVJRal5E9gSHTdrXAbmwPclXHjEj4sJrHsPa6o29HpSkvbSl3f9SP+pVvTjmVlS2DK9M0SSSvY8uaCSND7HcG3zK3uizCDgOV6bDXm8kIcXG4PnPc7+KoroeoKXF8947PicjZ6qKsqGxi1iG8eXpXo/AjqlmeRuQN172xatrqjaR7Zz9GcFT3WPCDwQg8F7I4yu+nb+r6s8H/u3qJ+xQ/oMfxIv2SpZ07f1fVng/8AdvUT9ij/AEGP4kX7JQF4IQhACEIQAhCEAKmvZQf0Cj/KSfu3K5VTXsoP6BR/lJP3bkA5+xz/AKtsL/NoP3QVoqrvY5/1bYX+bQfugrSKACuav+1nLoWitBdTuAFytNdZoy+TJj7yImzzneJ+lZLFuznX7yPnSr43cLFaXzLpcCoQhagCEIQAhCEAIQhACEIQAhIhAKhFkKGAQhCbAEIQi3AIQhTpJBCLoumkAhCLIlp5MsGWxYQ/jyWioiZUUxpqmKN8btiSLlbgbixCQOduDuFlCUqctUGYOGRny5l6jy7HNHR36uZ732IHnON+QCiHTlgEmKZOlqqRo8rpGsDXcDvK2+9r8LqxbWZpA4HUFjVU5q6OSF8mgTC7ha9rf/ouq3vKtK7jXyvia5p4IX0O5glzBlBhkEZnhkla65N7NIHMqa7WLpC6/dyXnqHBc59H9VVTYLR1FVSPLnHQGs2JLjubqyejTpBZmbXh+JUxpsSiOlzHyhxuG3PBoVn1HpsdTubWScVu1nP4Iwpya2J7fWGlwDSDtZZIJcbNd2i3e/ciy8+222zpSBCLIsoJwCEWQhDQIQhSkYghCFnp2AIQhYbAEIQmwBCEihtpGSQtyOFkjtmC3EmyUXJsOaSxaNJG97qXHOEiJPA05tx+DKuDOxKocHdVZ2jjfcDgDfmq69jvhlVNXVWM1bdPXa4wDcf60Ecd0z9NpMubsHoqqZvkUzKjW0t420W9KvLCaaOlbQ09KNETdD+N73AXq7XFjQpwe7k0/wAcHJUeSYOvYFtrrK17rFw7bXE2AWQ57L6KVq5MJfsTwfgn6F5PpAB7Jlgbw8tp/wBler5d4pPxT9C8n0Y//mYZ+e0/7KZyTE9aN80eCEN4DwQgI90i/wBBce/MZv2CqT9if52Ofnf+4VdnSL/QXHvzGb9gqk/Yn+djn53/ALhQHo8IQEIAKjOLfbXxfxUmKjOLfbXxLy/pV/xUdVp75xnihB4oXzfsWb5BCEKIkMEIQsiAQEJCbIDKyLLDUjUgM7IWGpGpAZIQj4llpAXRdZBtxwKXR6CmkGF0XWehGhR4bYMLous9CNCeGwYXS7LLQk6srKNKT4DE2RpS9WUdU/ldZeDUIyJpRp9KXqn+lJ1UnpTwJvYZDT6UafSjqn+lL1T/AEqfVKkVpJ1CafSjT32I9KOrf6UGN9jsT6O9Y+rV4LXF7hvYpbp+oZaCqw/GaGGICJmmRzWb3dJbkP4q1cr4rHjuAU1cy4Dy5p2A4bd6jHTMx7sjVMbqRpBdGb6u54XP0G4rR4lkyKlpCBLC6RzgGngXekL0Nxb1bnp0NfvI0Q2ZYenuKNPpR1Txtujqn+lUPgVfdN+Q0+lGlL1T/Sjqn+lYuhUWxGRLW4o2S9W7ndHVlR4NQZEJFkl1l1ZS6FjKlJckowui6z0I0KPDYMLous9CNCeG0DC6Fno9BSObbkVOkGKB6UJHAlpATTgkG7XJ+JRrpFwePHsnV9OWgyFrQLj+8PQVJdYBAPcuHGauKhwuqqH20DSTx7wt1rUlRrxqU+TCfushHQhibsQylJHKTriqZWC/o0hXXhl/a6Ac9AVA9AQDsDq5meYayf8AaC9AYc4eRQu5FoXvul0407+ejyOGt+7R1pD53xJUh874l6k5Dy57JD+sjLv5w/8AdsXpXL/+gcO/No/2QvNXskP6yMu/nD/3bF6Vy/8A6Bw782j/AGQgO4JUgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8AEb9C3d600f2nT/iN+hbu9AImbMX2L5PpTymbMX2IfF9KrurLNpM20PfGdIlSFfIWsIt1yASpAlRBghCEIAJbLEmwSakBnZFlhqRqQGdkWWGpGpAZ2SHZY6lmwagUAl0XWehGhMZ2BhdF1noRoU+GwYXRdZ6EaE8Ngwui6z0I0KFCQMALpdKUscfNuk6t/pW6NCTAafSjT6UdW/0peqf6VPq88tIZE0+lGn0o6qT0o6p/pWLtpxWWNQafSg7ODiRsLbFHVP8ASlMTtrRB/fupnb1G8RIchmzhQsxTLdfTmngc4x2F4wTuR6FXHQDjOpuK4NM1zZYqudzQRYaWuDe/+CuB7C2N7w2+q3Y+Nef8iYxT4P0sV8VVC2B0wqLNF3X1TDfa69BYUalaynby3fJolLQy/SNWsM4t4pGg6rcrLYGESSSRebKbjksWxykHVfivPRtJ6Fo+83xnqWRdPpRp9KXqn+lHVP8ASnq1QahNPpRp9KXqn+lHVP8ASnq1QajFF1no70aFr8JkmF0XWehGhPDYMLous9CNCeGwYXRdZ6EaE8NgwulsstC1Fyjw8NN8E9jOyRwY9vVyC7X9k7cljqSgtNg7idgocsNLvnKI/wCpSjozlXpm0xDTBXNqZ9vS6w7l6HwI9qQDuC8/58kZiHSxhFND9khpZWm3912/FegMB21tPnBouvcWMnUurarLlp5+jOCp7rHdCEL3BxledO39X1Z4P/dvUT9ij/QY/iRfslSzp2/q+rPB/wC7eon7FH+gx/Ei/ZKAu9CEIAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0VV3sc/6tsL/ADaD90FaKAFrn+xlbFrn+xlaqv7uXyZMfeIgfOd+OfpS8ykPnO/HP0peZXxy62ry+ZdLgVCELQAQhCAEIQgFRZYF26NSAzsiyw1I1IDO11jayQOS3ugE1LK6A25WehNOoGF0XWehGhT4bBhdF1noRoRUmDC6B6VnoSFinwpATZGyXqyjqzyTwpATT6UafSjqn+lHVSelbY2s5RyyFITT6UafSl6t/pR1b/SnqlTGxmmJpPel0+lHVP8ASjqn+lYq3qLbHzMNabwAZG4FsrWvadrEA/SqDzBO/JfS7T15iayiqI55DpZzLtI7gr8EUhIs3VvwuqR9kbMyEUL6unaAyOwcTfbrPQrvolGcakqUlmMlg1Tengu0dpoeHNu42Iul0+lcGA10GL0XltEB1D7htgRwO/HdOHVP9KqK1nOFWUEuG0ZxnlCafSjT6UvVP9KOqf6Vr9WqGWoTT6UWA4peqf6UdW7ne6erT7hSyJsg+hL1ZQGFYujJEmN0XWehGhYOMgYXRdZ6EaFPhsGF0XWehGhPDYMEiyIsUihweNyVINri6QtIk1XuAEjtFrv5cEpkAcANwQsXlpOIkslV+yDoRJlZ2LQsHXUsbrOtuNTm+pWLkqs9sMLoai9yHNafiAUO6dKyODo6xGFwF3MHfycFIei6F8GXKPXftSkD5l6e2qeLZU3U5U0l+By1Fgs4u7bRbYi6yO1ljs1rb8gsjvZfSvIrVya5fsUn4p+heUKL+0tH+eU/7K9Xy/YpPxT9C8oUX9paP88p/wBlQuCInrRvAeCEN4DwQpJPPWcOkXNFTgmN0cuWsXhgNNKwySYc5rbEEXuuT2JhJgxaR40OfUAua7Yg6Crr6RIYTkjH3FoDhQzG9t/MKpf2KLdQx27i+1WLX/EKA9GttbY3CVI3YbgBKgMJDay4p6COc3df5V3PttdICOS0VqNOqsTRkpY4Gz2nhHN3+JHtRD3u/wASddkmy410m25aJ8RjX7UQ/wB7/Es/amn7nf4k5bJN+5bYdPoQ91DxGN/tTT9zv8SPamn7nf4k4b9yN+5Z+pUvIeI/Mb/amn7nf4krcKpxyd/iXfv3I37lKtKcXlIhzbOH2rp+53+JHtXT9zv8S77HuRY9yz8CHkRlnB7V0/c7/Ej2rp+53+Jd9j3JLHuTwIeQyzjiw+mYbtufF111NijaOy1vyJewOQ+RZC3JbdEfIZZhob8FvyI0N+C35FssiyaI+QyzXob8FvyI0N+C35FssiyaI+Qya9Dfgt+RGhvwW/ItlkWTRHyGTWGNv5rfkWehvwW/IlshNEfIZE0N+C35EaG/BHyJUJoj5DImhvwR8iNDfgj5EqE0R8hkTQ34LfkRob8FvyJUJoj5DLE0N+C35EhY34LfkWSHbgpoj5DLI5nzCji2WKqkhYHPfpIs2/A35KjOijpBoskYa7BMy0clJIxziJJWNhB1OJ4usTsvSBcD2LkEbKL5hyFl3HAJcQweiln+E6IOJ5KdKIyd+WsxYTmKi8owuqppWXF9ErH2Nr22KeNILyNALXcCBwXmro5zdhWQcy4/hGIN0QPxCUw2YToaDpDQBtbZejsJrqfEKGKpo3l8D72JFuduCjRHyGTsDGgea35EuhvwR8iSNwcDY33WSaI+RORNDfgj5EaG/Bb8iVCaI+QyYljbea35Fjob8FvyLYiyaI+Qya9Dfgt+RGhvwW/ItlkWTRHyGTXob8FvyI0N+C35FssiyaI+Qya9Dfgt+RGhvwG/ItlkWTRHyGWaZIInjtNC5XYbSuPvr+h67zbmsCG27IGrko0R8hlnGcNp3CzmuAH95QrphoI4ejjGnUkcsk3VtLQwlx89qsLfYEDhutFdSU9bSyUtTEx8Mmxa4XB5rDwY+QyV70MYFFh2T42zsdHL5Q+QhxtsdPEFO2N9IeW8FqJ6epxOiZPG4tdGamMEEcdiU54jjOEYIyOnlIiEjtADWHmvPHTn0dQTPqczUFdO9k8hkMZYxrRrcPjWSpIg9DZQzXhmaaE1GF1UE8e/Yjla9wsbXOklSAOsQACQB8i8j5Ko8x5KwpmZMBd12EPu2WB8wjaGsN3EAbm5C9AdHfSBhmbqKJkEhZXBv16MMcAHBoLhc8VsSwCkPZO1ElPnnBJomGR0czy1rW3JPVs5c1PMpdIOZKp+HUUmXsVjp+qjHWuoHBtthx8FCvZHaPdEwAPNrVD7ADj9bZxXo3LsDPaPDndUwHyaPcfihAOrDzNwTyKyWLR2yTvbgskAIQhAC1vcTra0aSODiNlsWLrAm5vfkgK26Q8545l/EYYMKwPEsQa5jSXUtG6YAkkHceC894xjNfjXTVhc+J0FTRS9dJ2J4DEfsY5HwXsl0UbpQ9wBdptwXljpOBHT/hvd18lv0QQHqej+06f8Rv0LaeBWqj+06f8AEb9C2ngbIDEA3XNWUbaltnH511oWE6amsMlSwNZwiH+9/iSe1EPe7/EnXZJZcM+mUJ8ozVR+Y1jB4P71/wAZZDCIB8L/ABJy37gi57lMenUY9iPEY3e1MH97/Ej2pp/7/wDiTjv3JLnuC2qzorsNbOAYVT34P/xLL2qp+53+Jdwvfgl3Wfq1PsiHJs4Paqn7nf4ke1dP3O/xLv3RY9yerQ8iMnB7V0/c7/ElGF01uDv8S7rHuRv3LKNCEeEMnF7V03c7/Et0FLFACI28d991vue5HisvDj5DLMNDfgt+RGhvwW/ItmyE8OPkMs16G/Bb8iNDfgt+RbLIsstEfIZNehvwW/IjQ34LfkWyyLJoj5DJr6pvwR8iOqb8EfItiE0R8hlmDY2j3o+RZaG/Bb8iVCaI+QyxNDfgt+RGhvwR8iVCaI+QyxNDfgj5EaG/BHyJUJoj5DImhvwW/IsC1rgeyBY9y2JHDbZNEfIjJiY2G4LW28F5qzkyXIvS2zHJaGWagmp3ROcItQBfLq4kWGzSvS45d6a8XwTDsbZ1eKUNPUxjh1rdViOH0lSopcIEUy10n5Yx2rFLBV00NRezYpKiMOJsTsL34BTxoY4XDQQRe4GxXnHphy/guQsyYFjWG0MEDLyvlbHHpB7OkcN/fK3sgZ6wnNdIxuHzOMrGdphYWgWsOfio0R8hkmDWNF+x8yUNB4NFvBZXdfYC3ig3FrJoj5DIaG/BHyI0N+CPkSoTRHyJya9Dfgt+RGhvwW/ItlkWTRHyGTXob8FvyI0N+C35FssiyaI+Qya9Dfgt+RGhvwW/ItlkWTRHyGTXob8FvyI0N+C35FssiyaI+Qya9Dfgt+Rc8lBA+9wd+4rsssfiWMqUX2GTgGFUwN7P/wASU4bASAQ6w3G670fEsfBj5DJQGX8H8q6d6qWenn6iM1jA8ghvnbbq5MaxjDMvU3XV9ZTUjXgiMzzNZqI42uRdbqilw3Dp5MSdBGyW51SNZuS7iq86SsEouk7BGUmG1ksVRTaizQwC5dYcXeCyVNJ5IHrC+lPLOJYy3D6fEKV85b5zaqMgm9rbHipw5xa4lt/SDxPgvFuVslyOqqvDsPldHjtJVue2VulrnMZbYu4bkK4si9KVXh2NSYDnONsdUxwbHK17pXPNnF1zwHvVsBM+nIBvR9W25tfcH8m9UV0I51xzAsrOgwrAcUrotMY109E6UcDzCu7prqGVHRvVSwnW14fYnbjE8qM+xVjYci9poJLIv2SgLLyNjFXjmBx1WI0dTS1Ae+7JYjGdnWGykgGpwduNuC1xxta3TEAxgN7NWbXXfYEmyAybw5/GlQL232KEAIQhANGa8QqcLwOeroqaaqnYW6YoYzI43NtgF5j6Zc64/jmVmU+JYJiNLD1j+1LRujHmEcSvWTgHCx4KmPZNwxx5Gj6pjWHrJNwP/DKAdvY6i3RxhgG383g2P5MK0VVvsduz0b4aXG58ng/dhWkgBYSsEg0m62JCQPFYySawwNcuERPN9/8AEsRhEPef8SdQbpbAKvn0yjOWWjJSaGr2oh73f4kvtRAPhf4k6bdyD6Apj0uguxPiMbPamD+9/iR7U0/97/EnLfuCN+4LcrGguw8Rjf7U0/8Ae/xI9qaf+/8A4k479yTfuRWlNdiNTOH2rpxyd/iR7WU/c7/Eu6x7kW9C2qhTXYamcXtZTdzv8SPaym7nf4l2jwCX4gngx7IjJwOwumtuHf4lnHQU7PNB+M3XW61u0BZALeQTwI+QyYNiY0bNHyJdDfgt+RZpbLKNKK7DJr0N+C35EaG/Bb8i2WRZZaI+Qya9Dfgt+RGhvwW/ItlkWTRHyGTXob8FvyJQxt/Nb8izshNEfIZMdDPgt+RGhnwW/IskJoj5DLE0N+CPkRob8EfIlQmiPkRkTQ34LfkRob8FvyJUJoj5E5YmhvwR8iNDfgt+RKhNEfIjJg5g20ho332VUeyFy5U47lF5w+ndNURujAayMvNtdzsArYeSGkgA2Wp8YlALwCwjdp4FSopcIZKayZ0xYC3C6anxNjaOpLnXEro4gLnbYlW3hddSYpQx1dBLBLE9ocHMcHDcX4jxVddJXRxl12UcXq6PCaOOrZTuMb2xAEHa26jHQ30kYNRUDcBr5XRVUThEA2Nxvoa1nHhxCjTHyGS+LDs9lru+wWzQ34I+RaWkvZZhsx3Bw4reNgE0R8iciaG/BHyJNDfgt+RZITRHyGTHQz4LfkSOY34LfkWaE0R8hlmvQ34LfkRob8FvyLZZFk0R8hlmvQ34LfkRob8FvyLZZFk0R8hk16G/Bb8iNDfgt+RbLIsmiPkMmvq2/Bb8i1S00MnnWHgbLp2WBDeYCwdGL7DJwe1dKT74/wDmWUmG0+loDXbG/FdoA96BdBLtOzRdR4MfIZKX9kbhrpcsCOmgmkJifswFxPab3KzsLpKPCsGik1Njp2Qhz3PeAG9kXNzwXbidHR1cIdiMEcsbRYtc3UN0x4vi2EVdNU4G+d8b6iExjTHw1CwtyWcYRSxgjI04v0rZXwy7fbSil6twYQyqiJBvb4SmOD4jTYph7a2knjlife0jHhzdjbiNl496TOjZmVsdMzquaqo6p7ngStZsS6zdh6Spnl/GMx9FjaKmxRxrMCe+5klmuWtPbcQxviswemZbCnkLe1cE7b8l45zDiNRhPTvPVUFLPUVMdRC6OGOMyPJDRtp5r1VlrMVDmTCW1WHSu0mPduktsdN+fivNlEOs9kozrAOzWU5J437KEot7Jefcx4viclPiGXMXpImwF4kmoHRtLg5osCee5NvQhWnG1gaNIA2QhBH+kLsZIzD8HyCb9gqk/YoeZj/ZJPlg/YKvXOVFLXZTxakg7Uk1NKwXPMtIXk3KWZsx9F2JYpTMwpszZaguBEcj+A08gEB7OGyF5a93nNvLA2W9MEyPd5zb+Ao/0EyA9RuvcLEOcfeleXx08ZtN2+0Udz/4Ey54fZA5iqpnRU+FRmVgu5vVSjh8aEnqocTfklXls9PObANsCjN//AmR7vGbfwHH+gmUNsjB6jSry37vObfwFH+gmR7vObfwFH+gmUtYGD1IheW/d5zb+Ao/0EyPd5zb+Ao/0EyjIwepEhJHAXXlz3ec2/gKP9BMh3TvmwxuJwRoI7oZk52GD1HvfuS734Ly4OnnNgkDfaKPxMEy0/VB5k8pdTjCITPc2Z1UvLip0g9U/Ej4l5b93nN34Cj/AEEyPd5zd+Ao/wBBMmkHqVC8te7zm38BR/oJke7zm38BR/oJkB6lQvLXu85t/AUf6CZHu85t/AUf6CZAepULy17vObfwFH+gmR7vObfwFH+gmQHqVY3IsCCT3heXPd6zaOOBR/oJlpk9kFmOGSJtRhMcb5yQxvVSjcfGgPVLSbdrvWS8uHp3zYGC2CRu7j1Myx93nNv4Cj/QTID1KheWvd5zb+Ao/wBBMj3ec2/gKP8AQTID1KheWvd5zb+Ao/0EyPd5zb+Ao/0EyA9SpDflsvLfu85t/AUf6CZB6eM2m18Dj4/cJkB6k4cSg8LHmvL3u8ZqcXO9o2C3/gTLRUeyCzJTQNkqsGYxhda/US7ID1PazbHcKO52zZQ5Sw9tZiLgIzq9+G8BfmvP8PT1meSJslPg8ckbxqaTDKdlH849KGOZxwkUWJYBGANX/dZD5wtzQHpCvwHAc/ZfiqJ4zLFURNlYWyna4uOHiqNp8GzD0YZtw2gosVpfauolLGwinOogNLj2nekrgwXpjzJgeFU2G0mBs6uKNrGnyeUbNFuSjObM5ZmzFmGgxKagkb5LI6QMDJLbt08CgPaOGTPnw+nlkBD3RtJvzJAXUvK9P065rgp4oY8DYWxMEdzBNvYWWfu85t/AUf6CZAepULy17vObfwFH+gmR7vObfwFH+gmQHqUnZYlxABAJ8F5dHTzm2++BR/oJlg7p9zPFC+aowaOONrtP2GUID1Nubcu9KvK8HT7micRywYNG+J52PUylbD085tuf+wo/0EyA9SIXlr3ec2/gKP8AQTI93nNv4Cj/AEEyA9SoXlr3ec2/gKP9BMj3ec2/gKP9BMgPUqF5a93nNv4Cj/QTJfd5zbzwOP8AQTID1EAbm52RYjgdl5dPTxmv8CM/QTIPTzmtgu7A2foJlALc6S+i7DM8aJ6pvVVLCO09zrWANth4ryv0iYNU5IxqTCqZwlo3udqLGn3psNz4qyKb2QeY60ukpsHhka3YjqZbXHHZRzNvSJW5pge2tynRNqCfsraBxdxue0QmWCCZKr6ykx6J2H1kNJUam3llZqDt9gArbwHLuYcXzxQ4ni9JNNTtiNqpsWiM73Hyqjm4RizHFzqSqicw62Ohjfe/yKY0+cc80+FwUtN7YCGINaCZJw6wUgsX2SBc7pAy45jSR5Q/tDgfrbF6Uy+2+A4Yefk0X7IXjTDjmfPeZ8IbV08mmimLi+ZzwTqFuLgb8F7QweN1PhFFFJ5zIWNNt+DQgOvSNV7LJJfcW4JUAIQhACTe5SoQGDAbku4ryr0nN/8A5gcOGtrS6eS1/wAk1eqybkt52Xlrp4wfFcJ6QKXMNHS+UBr5HjYut2Wt5BAen6Q2pYBa56tv0LcSQDsvLcXTpmaOBgZguotAbvBNyCV/Tvmott7SgE7/AGCZAeowb8rIuvLY6d81s2GBtdfvgmWqp9kDmWkAfVYRDGD3xSj0c0J0nqpC8t+7zm0i4wKP9BMj3eM2/gKP9BMsXJEHqNC8ue7xm38BR/oJknu8Zt/Acf6CZZLAPUosjZeWvd4zb+Ao/wBBMl93nNv4Cj/QTJgnB6kRsvLfu85t/AUf6CZHu8Zt/AUf6CZMEHqTZI42aSBdeXPd4zb+Ao/0Ey11Hsgsy0jHS1WDRRxt3uYZR9KYB6nvw2RZeWx075qdpfFg0b2ObqH1qU8Uvu85tP8A+4o/0EyYB6jsgbLy57vObfwFH+gmR7vObfwFH+gmQHqRAXlv3ec2/gKP9BMj3ec2/gKP9BMgPUqF5a93nNv4Cj/QTI93jNx29o4/0EyA9SXNzfggXsb7ry57vGbWDScCjcT/AOBMVi7p5zSInyy4NHHHGC9x6mUbDcoD1KN+PFJuG7ndeWaf2QGZayMS0uDRvYOB6mXe62+7tmt4v7SM/QTID1EOASry17vGbRsMDj/QTI93nNv4Cj/QTID1KheWvd5zb+Ao/wBBMj3ec2/gKP8AQTID1KheWvd5zb+Ao/0EyPd5zb+Ao/0EyA9SpN77cF5b93nNv4Cj/QTJXdO+bXuDfaONotcnqZggPUTd3E6SCtVTMIYJZXnaNpefAC68uM9kHmKoNQ2lwmJ7ogCR1UvPhwK2VHTrmiWmMb8BjPWt0H+bynYhAXjl3NOC5xqq6ghsZKNzWPb1oJ3F+SrjpK6MJcHlqMx5MqYqKojj1SiVjprtYHPPOw3VU5Xz9jmWMYxevocDZ1tU9j9Pk8gGzbcgnvMvS9mjG8IqKN2FyQCaJ7D1UUrb6mkfxQF1dBuPYnjOXJzi07KieAxs1MYGDdpJ2Vl3ANrheNcg9JGZMm4VPBHhLpXTOY674ZTwBHLxUob08ZtF74DDe33CVAepELy17vObfwFH+gmR7vObfwFH+gmQHqTgdzsje/HZeW/d3zW5n+hGX1fcJkp6d81mVrfaNnp+sTID1GDvudliNR1eOy8rw+yDzBVTugiwlnXxjWW9TKNr27/StzenvNrXXOAxkfkJkB6kaeRIJSry2enjNd9TcCjuf/AmSe7zm38BR/oJkB6lQvLXu85t/AUf6CZHu85t/AUf6CZAepUhF+S8t+7zm38BR/oJke7zm38BR/oJlDB6j0juQ4cLbLy57vObfwFH+gmSs6e82Nc4uwGMgC/2vMUB6Rx7CKfG8NkoaxpdC/jYkbjhwXmDpR6JafIuDTYphFnua1z42t1EtItxud+JXU/2QGZfKGQPwiCOWRpe1pilGy0Yr004/iNNJSYplmlqIiLWfSSSA38UywUhNiEkhZNUi9QHhg5ad+Y8VaFPS5pzRkiXDKWUYjCY9McVPB2m3JO553t8ygWPUtdieIOq48JNNG7/AFUVO5gBuTfTb0rsyximaMvTvdhpxSJji06bysAtfgB4lSD0Vi9FPT9B9TDUMNPNH1gc2Qb7QkLP2KTtOQ5Da9mw/slUIzNedKrDZcKq462eOpe4fXnTOHa257c16U9jtl6uwDJsTK+ONnXxxusHXtYEdyAtnikLQRYpUIAQhCAEIQgEdYjfgqb9lC3VkOMc+sk/duVyuFxZVf0/YFV49kx0dC0OkiL32LrX7BHcgMfY5t09G2GAi382g/dBWivH+Tuk/M2SMKiwZuDiXqGNjv1MrvMbp4jwT57vGbfwFH+gmUOLfAPUl0nC5K8ue7zm38BR/oJkh6es1AfXMEjawcT1EqnR5g9RtJcNxbfmsivK1H0/ZlrGmWmwmJ7A4sNopeI8Fud08ZtDiBgUex+4TKPkD1GheW/d5zb+Ao/0EyPd5zb+Ao/0EynEhg9SIXlv3ec2/gKP9BMj3eM2/gKP9BMp0sYPUlyi5Xlv3ec2/gKP9BMj3ec2/gKP9BMsconB6jub8Cl2K8tv6ds1gA+0jbnl1EyyPTxmwtP/AGHE0DckwyhNhg9Q2vw2Sgd68rweyCzJMXtgwiKQxnS+0Mpse5bvd3zZ+BGfoZkIPUVt/Ql+JeWz08ZsttgbP0EyT3ec2/gKP9BMgPUvxIXlr3ec2/gKP9BMj3ec2/gKP9BMiB6lQvLXu85t/AUf6CZHu85t/AUf6CZSD1Ki68te7zm38BR/oJkknTzm3QLYFHfUN+omQHqQON7aSlF+a8sD2QGYnVUtIMKj8oaQNPVS8bX7+5bB085s6v8A0FHcG1+omQHqRC8te7zm38BR/oJke7zm38BR/oJkB6lQvLXu85t/AUf6CZHu85t/AUf6CZAepULy17vObfwFH+gmR7vObfwFH+gmQHqVA4bleWndO+bCBfA2cfuEyyd075rc5rBgbL/kJkB6hN77EWSaQJAbHfmvLFT7ILMEFRHBPhLI3vIaz6zKLk8BxW9vTxmsF1sDjcOR6mYoC8syZ9wnA8eosKrXtE1XL1TCZALG1+Cbc69HWC5tw0yuZ/OHkTxya3WB3cDYekrzZmfPmK5lxbDsVnwJoqKSbrW/zV+5025i6l9P055ligjpfaMNa2IMDhTy8hZAPnRjVZky90gRZbxTE6eqpBKIwyODQQDGXnc78SvRQ4DZeIqHO2Y6PO0mYpMNklkbI2RrXRSu4M0eKnPu85t5YFHb8hMgPUqF5a93nNv4Cj/QTI93nNv4Cj/QTID1KkcSCLfGvLfu85t/AUf6CZK3p5zadjgUe/8A4EyA9RPcQBpBKUXub8OS8qzeyCzJRNL6vCYmAu0i8UvPhxK3t6ec19oNwON1ufUzFAepELy17vObfwFH+gmR7vObfwFH+gmQHqVC8te7zm38BR/oJke7zm38BR/oJkB6lR8S8te7zm38BR/oJke7zm38BR/oJlAPUhF7bcEW34Ly37vObfwFH+gmR7vObfwFH+gmQHqN2wva9lSvSL0JYVjVZUYtA5sM7Y7nW55vYHuPeoJL0/5op2GSowWFkTeLnQygD5UM6eczzRa34JDJC7s2bBK4H4kQKbzO2sw3Fq7B6p4bSU0zomPLbAhp29KfujXE8Wgr+pweriiMpawQOj1vd2uA8St2esxVub4py3LVPTTPeHmRlE5jj2rneyh9FTYzQ10FTS09dBVRvDgYmPaLjhuApB6M6EsuYvhWbcQxHHaaWE1HXOa98ekODmjcfHdRWAFvsmWhzSHNraf4+yoY/POeoXwl/l72sYGj67OdrqXdEmF49mbpTizDiFP1QjnimeXFwJAJHvhc8EJR64YbtBtyQkYLc+XehCBdFvM2K5pcOpp3654g93fchdaEBx+1tJzhafjKX2tpPuLflK60IDjOH0jSLQtvfvKprozy1X0+fsUnxPDpW0jmShjnEAbyAjgb8Fd7xexHnDgsGRhh1CNgJ4lrbFAcsWG0bdYbC23iVn7W0n3FvyldTbXNlkj35Bx+1tJ9xb8pS+1tJ9xb8pXWhAcntbSfcW/KUe1tJ9xb8pXWhAcntbSfcW/KVhJhlIW/YB8p9a7khvbZAccmH0rg4dS0nTwuVUGF5YrIum6CsfhsrcN6uqvKSNNzbTzurq2Pa4LEMb1mvQzV8K2/yoDn9raT7i35Sl9raT7i35SutCA5Pa2k+4t+Uo9raT7i35SutCA5Pa2k+4t+Uo9raT7i35SutCA5Pa2k+4t+Uo9raT7i35SutCA4nYbS22hb8pVRdLuXayqzjlKXDcPkkp46iYzFhFiOr2vc96uo8FzujaR242vfH5pc29kBxUGGUsdFTtNOGv6tuoXOxsL811e1tJ9xb8pXRuA0234bLNAcntbSfcW/KUe1tJ9xb8pXWhAcntbSfcW/KUe1tJ9xb8pXWhAcntbSfcW/KUhw2j5wt+UrsQTYboDgOF0Ya60LbH0lQLpkwOarywYsKpHPl1HZm5PYPeVZVw64N7JHRte3TI1rh3EXQEO6O8Fjpcj4LHWUhiq2UrGyBx3DufAqTuw2jcSXQDh3ldTWWGkBrWDgBslduCO9AcbMLpAD9ab6Nyj2podWrydt/E+tdzRYAdyEBx+1tJzhb8pS+1tJ9xb8pXWhAcntbSfcW/KUe1tJ9xb8pXWhAcZw2k5Qt+UqEdL2BmpydJHhlG6WpM8Zsw72vvxKsM8CsHta8We1rm8wRfdAQnorwMUeSMOjr6Ux1bdesOO/nm3A24KXe1tJ9xb8pXQ0BjbNa1reQAss0Bye1tJ9xb8pR7W0n3FvyldaEBye1tJ9xb8pR7W0n3FvyldaEBye1tJ9xb8pSe1lJ9xb8pXYhAcJwyiuLwN+U+taa3DaXqtqcH4z3+Kc3NuggEWKApvoJy7VUlDX+3WGyQuNTOWOkI3BcLcCrWdhtIG/YAR4ldTYgzsxMYxvOwstluzZAcYwujBBEDR8ZQcLoyd4G/KfWu0IQHLBh9LA8OihDXDncrpANjqN0qEAIQhACEIQAktuUqEAW+Vap4I52aJmhzTxC2oQHEzC6JnmwAfGUsmG0jhvAD8ZXYhAcftfSgj600ei5VR9O+WKzEaOA4Rhsk7xJGXGMj7q0nie5XPz3ssZGNf57GOHpF0BxU2GUopog6ABwY0Hc9y2e1tJ9xHyldiEyRg4/a2k+4j5Sj2tpPuI+UrsQhJx+1tJ9xb8pS+1tJ9xb8pXWhAcntbSfcW/KUe1tJ9xb8pXWhAcftbSfcW/KVWvTpgU9bkypjwqjfLP1LxdltjdtuJVrLTMGvIjkY17HbWLbhRgEdydg0EOXcObU0fVztp4w7U43vpF+afPa6kO/Ut+UrfpIItYNGwAW1SDk9raT7i35Sj2tpPuLflK60IDk9raT7i35Sj2tpPuLflK60IDk9raT7i35Sk9raT7i35SuxB4IDibhlK17S2EAN9JUcz/AIPHU5LxuOjozNUPoqhsYad9RjcBxPfZS5t7AHisSy5IIBYRYgoCtuhTA5aLKFLDidI6OcRxgtfxadJvwKn4w2i07Qtt4ldbWMjbaNjWjuAsla0BlroDlGG0dvsLflKX2tpPuLflK62iwQgOT2tpPuLflKPa2k+4t+UrrQgOT2tpPuLflKPa2k+4t+UrrQgOT2tpPuLflK0VmG0rqeS1OHP0EAAnu8U5LBx4kcRsgKW6GMt1dHmLHzi1BJHG+KnEZeQNwX34HwVv+1lMRbqm/KVvbAxjpDGxrS4AEtFiVtbw8EBxswyjY/WIRq77lHtXSXJMILjzuV2oQHGcNpXBodE02FuJSHCqIu1GBt/E+tdqEBye1tJ9xb8pR7W0n3FvyldaEBwOwujLtIgaOfE+tBw2k1EinBII5n1rtAu6/dsh224+NAUnkbL9ZF0u4pU1lBJ5A7DixjiQBr65h5G/C6uB2HUoYQ2Ace8robGwO6yKNjXnYu02NluHBAcntdSHjC35Sj2tpPuLflK6QO0Xd6yQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylJ7X0jT9hG/pK7EjheyApLpKy5XVfSdgk+HYdK+jjo5GyFpFidfpN+Ct+nw6ka1umAMeBwuTZdDmNcdXVsL2nSHObc2W1vE9/NAcbsJojL1hgb1luNz61lJhtLL9lia499yF2IQHF7V0hsHQtIBuNzsupsTWtaxosxosAs0IAQhCAEIQgBCEIAWLo2lhbbYixWSEBxjDKQP1iEB/M3KPa2k+4t+UrsQgOT2tpPuLflKZs34VHLl+qZS02uew0tadzuPSpIsHkEOBFwOVkBVXQXl+WkytVx4xQPjqDXTvaXm3ZLttgVZTMOpC0AwtuOO5XQ1gY20TGMHGwFt1sj8254nigOX2tpPuI+Uo9raT7iPlK7EJgHH7W0n3EfKUe1tJ9xb8pXYhRgHH7WUn3EfKUe1lL9xb8pXYhTgnLOL2tpGm4hbfxK4sYwuCXC6sMpuskMTg1oJuTbxT19CxIv5tvBBllP9DeXqmhq82e22HSU4mxR74BIRuy3EWKtUYZR2+wD5SulsTGklrGtJNzYWuVsQg4hhlHygHyn1rL2tpPuLflK60IDk9raT7i35Sj2tpPuLflK60IDk9raT7i35Sj2tpPuLflK60IDk9raT7i35SsXYZSEG8II7rldqxJOu3KyApKly3WDpurao4fJ7WOqGEPuNIHUAd9+KuKPDqTTpEAA7rlbxE0PL+rZ1p99p3PxrYzggOb2tpPuLflKPa2k+4t+UrrQgOT2tpPuLflKPa2k+4t+UrrQgOT2tpPuLflKPa2k+4t+UrrQgOM4ZRnjA35Ssfa2j6wEQt1D0ldySwJuDugKW6Vcv1dVmvK76CgkmhZilO6bSRswEXJuVatJhtLFHC0wBh0btJPrTi+ON7g50bHOabgubexQ1h1EvO/JAcjcLouVOABw7R9az9rKQizoQfjK6tzpt8ayQHG3DKNvmwAfGUvtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylIcNpPuLbeJXYkeLtIQFOdPGXKmrwmjODYfJK4VUBc5hBsOsN+J7lZmEYXBHQsbJTaHknUCT3n0pykax5bHJG2Rlr9pt91mwEPcTwdwQHP7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQHJ7W0n3FvylHtbSfcW/KV1oQFd9NWAvr+jXGabCqN01Y9jdDGHc9od5su7o7wTyXLkMVdRGGZriTrPh3FTSVoewtc1rgeThcJGgabWDR3DZAcr8PpZY9L4muaPSUe1dHpI6gWPpPrXWDyCyQHD7U0QFhA0fGfWtsNHDTuLqdgjLvO53XShAYhjQb23QskIAQhCAEIQgEIuQe5JY2O91khAYsFgNrE8VkhCAEIQgBI9wY0ucbAJU343iEGEYZU4hU36qFoc7cd4HPbmgOt1RG14YXdoi4FlsIJIINgOShGR2y4zHNilSXNb172xtNx2QbtPdwT5iGY6Glmkg1GWRhs8RuB0n07oB3e9rGEyGze9ZRvDmtLN2kXBTBh2YcKzDBJHRVUbnEFthICQeHIphwrFHYLnIYLV6/wCdiSaJ583Szbnvz5ICwEmsWJvsOKxNw4W4FJOzXE4ciLFAcrsVo2tJdKQBz0lYtxmhcWhs1y46R2TxVEYVhlLVdOmYaapnmbTRy0/VsMxHGLdWLiuV8Dmlpm01Y9tSyVr9JqTcgHuCAsFz2t842QHAutffio7JmPDMOxOmweadrKqTUGa3jfTueJuu2sxmko6mnp5HXkne1jCCOJ4c0A7EgC5SNcHC4NwmjE8bp6KTQGPnkA3EVjp777rRSZnwyqw6proKhmiBhfK0vbdrRzO+yAfnWOyQnTudu9RGXPWDCnFSJesjDgwuY9pAJ791vzBm2mw3Kc2OxXnpWsL2mMtNwHAd9uaAk9yB33WM88cERklNmDibXUbyJmZmZcLNU2CaO7iO2ANrA8ie9NnTDAx+QMVk1vjcGs3Dy23bb3ICcQysmbqjNx4WWdxcDmVW3RriUOG5IhdXSku6+TQS/ibCw3Km8GJ0r6JlRNIIWPAdeRwHFAORIAuUA3Fwo9DmrDnYgyimkEM7yGsEjmjWTyG+6KzNGEUdeaSaqjFToL+r6xtyBxNr+hASG+6DwKigz1gvUwSyzthbJfT1kjRw+NZDOmEnFI6F0wa6Rgex5e3SbmwHHigJMHamC+zjySkkcTx5rhr8Shomhsjg6U+axpFz37LhwzMFBis8tEyUMqA3U6Nzhq03twBQDnFWQvqTA2QukbcEaTyXQXXa48ABsVSeVmyN6bK2HrXGBs04DS4n3myuze/Z4IBWuGwvuRdclRilJTymKaXS8crFacwV7MNwmoqJTYBpA4cbFVt0UULsyZa9tK17iaxg0EOItZxB+hAWz1rOq6y/Y06r25LhbjVCTYSk/wDkPqVTZFnmxCqxfKtRMSOvqJg4OIOi+m1+K6M09GeXcHyzPVzy4j1sTQS4VjgPOA5+KAtyCqhnYHxuu0mwuCN1tc4NFybBQrooww4VlQQHrSTM97TI4uNja3FS+aVsVOXykNFtyeCARlZA+slpWPvPG0Oc23AHgthcGONzbbUVWvReyoxLEq/Gp3ExTs6toF+LHW8OSluZ6CpxWFtFC8Mp3WLzuDsdxcehAOFHitHW1UkVNKXyRW1N0EWvwTg94Yxz3bNaLlUL0n5GpMqx0eM5cqaiOtptcmieoe8PIAsNPPieKmOe8wTYXkbDJn0NbVdeIWzCmaCQHMOo7kWQE7bjFE4RkSm0gu06Tuu5pDgCOBVJ9G+HZIxPFRU4a/E6fEibinq60E3sdgwE8ldcQDYw0XsBbdAZIQhACEIQCC+rhsgi5ulQgEdfayNwNhulQgBCEIAQhCAEIQgBCEIAQhCAEIQgBI4EjY2PelQgEIuLFKBYWQhACEIQCBwLi0HccVjJI2Nhe42aOJQbl+w4cfSoJmLFn4nnCHLlG4a2witeeWkO0kbb++8EBL58XooIY5ZJrMkF2nSTddjZWO4O97q+JUx080raXD8MJmMcUTHB1nlt+0LfSpdRZ9w2nOHUUkNRGZRFG2SQtDSXADjdATZtVC6bqmvu/ustxIA3UMz/ABPOEjE8P1GoiAazSSQQ52+w4p4yvjEeOYVDWQm7S4jlyNuSAe7i1+S4sRxKkoIzJVy9W1u97E/QutpBvvzUB6acLdi2Sq6mik0VL4XNjIcRvqb3boCdU8rKiFskbi5jtwSLbIqKmKmgfLM6zGcTYmypv2PeNyQUNVl3E3O9sGTSTt1HjFpY0cTfiCtvshKiauypV4fQPc17WFsr2k2adTSLkbjmgLWpcXoqqCSaGbVHGCXGxFgOK2UGI0tfE6Slk1sbYE2I4qu+iNtNTdG0hqJHPgDpRI8PvtYX3KfMi1WBeTYnLgssjo2TATF8ofZ1trb7ICZahqLb7hYySsYwucdhx2UbObaQua1tPUSQPdp6+PSWDvub8lBOnTM8tBgtDDRskvPJBIHAA9nrCO9AWK7NmDNkdGawam8RpPqT1HIyWJkjDdjwC094KrHNVBlZhOL4q2sgmBc5revDL22O17cLJyztnGHKeWcNraenqJoqh0EEegNds9hI4kcmoCekgWHviuaurYKFjXVMmhrjYbE7pvylihxbBKSqdFIxz2arPAHMj+CivTfA2TKbn6ntc0vIIcR7woCwIqiKWBsrHXjcLg2WYHa4qBZOxunwjo/wB1UJJZDRsIa0gudy5lSarxOnp4YX1DZGvLj1bLgFzrcAL7oB4B432QXAWvzUZoM30VTihw+W9LVEOc2Octa5zW8SBfgubEc94XRV1bRlzpKqmDS5jHNJNwCLC/cUBMAb8EhcACSeChcnSFhFPFFJVdZE6R7WNa5zATfhzXTRZ1oKjHvauQPimldph1lo12Fzbe5QErc4NAueKC4BtzwTRiOKw0LjqPW1AFzFGQXBvfYriwbMuHYzNVUsBeypYS2SJ7m6g4C5FgUA8UeKUlZO+Gnl1yMF3DSRZdTttzsFTXRK3qOkvMdPeRwZSQuF3EgXddXFNMI4ZJHAgMBO/oF0AlRUxQSRtlfpLzZotxXHi+O4fhEbX4hUCFrrWJaTx4cPBQ7JVa/NWJ1OKav5mWxui+cHhtyXdU5Ko8UmnmxV07nkua0RyloDb7bICV4diFNiNDHWUknWU8g1NfYi4vbn4LViWMUOGlorJur1WA7JPHwVQ9HNBJl7pTx/CsPMz8NNQ1p6xxfoAhuNzw3Kbc55ioajN0keZcFx0UIjY1s8OmNgNyLkl3ADdAXjh+L0WIFwpJhIWmx2IXcHAvLb9ob2US6OabAosHM2XJ3yQz6XvEkwkc022B7tlJpZo4opHOIDGDU51+SA3ue1ou42HBKSALngorieb6PDg2adknkVwwy9nTqJsNyUmIZzwrDPIA9zpIa17mQyMc0tuOO5KAlWoF1vRdA7rbJjxTHocNpKaaZr3sqXsawstwebDiVurcZhpJeojjlllvbSyxN/lQDmezuTpvsAsvNHpUbwTNuGYrS1U1O8tlp2vdJC9zdYDTYmwPC6bT0iYX5LPNTw1E5icGyCMsdpJ7+1sgJt5rtzseAWVxe3NRGtznRjJVdmGibJJFBDK8NaWuN4wb87cR3rnyFmwZiwmWskhljaXg3eAAOyDyKAm1xcjmFojq4ZJzCx95ACSLdyjxzXS9bG5tPUy0zz9bmj0lh797pszy2Wno6bFsPPCSMvG5OndxQE61C5F+CVNeXMUZjeC0mIQH63O0uHDvI5eCdEAI9KEIBLG9+Xcho5kWJ4pUIAQhCAEIQgBCEIAQhCAEIQgBCEIAQSBb0oWGrgbG5QGRe0NJvsOK5Zq6njhZO6S0RBN7EqF5mxiWvzZT4BRHcwCpefB5BG2/JdOcqLL7aCkhx6qfAyESCLTUdWXA21eNtkBLnVEYey7rOdawtxBW/YXKjuNUnlWXxJSkhsEYkjuTcgM24cVp6P8bbi2E9S8EVNIGxzA284i/f9KAlDnBtrm11z1ldT0bA6ofpB52JW+4tsLhRPNeUIsx10DquV7aZjCHNZI5jidVxwQD+cXowLmU279JWdJidLVTdVBLqfYm2k8FQGeMHgp+l3LlM19SKOetDHN61240AlWbLlrDMAxSPGH1L4qcR9UGyTm5c43HHbkgJ657WsLieyOaTrG2BvsTZR6jzXQVFVFFK4wGY2i60tGqw3tvvwWWKZqwjDal1PUVURn6sSdW2Rt9JvY2J9CAfi4N1Eu2HzJeAs3cqO0uZ8LqKU1nXCOGGwPWPaL3+Nc7M6Ya2oZT1b+qmcQGhzmt1E8AN0BK7nTcjdYxPD2BzTcFNtTi1JCyOW5e97dTY2OGog+i65aDM+H1080ETrVMIDjCXN178NroB+BuduWyW6r7J+f25ixuvoo6eeNtLPJCS9rRu23cfSp9I5obd5DW8yTZAZ3F0hcAL8lFH55wgsl6idshic5rw17TbTsea2UuMYdmPCaiSgnD5Gga2NkBc0nexsdkBIqaqiqYusiddly29iNwt1xdUV0J5joMEyfUvrJJpJG1dWXnrAbNEhPMq3cNzBhtdhnl8FTEYDbUS8dkkbA+lAPCQqMDN2Gxup26yIJXaWylzdPp3unOvxmloqeOR8jZOss5jY3C5aeB8EA5gO7N/jQ0abjlxumnDccpcSNQxmqJ0NtYkIFr+BXJVZqw+iAfMJGxa+r6wubpv43QEjuNvSkuL25rkoqyGsgZPTSNlhmGpjmG4I8VqxTEqfDg19Q8do6WMBGpzrXsLoBwJAISk2t6UzUOP0lXI6MaopACS2QgEWFzzTU7PODMimdFMKjqG639U9psPlQEt1DVpvva6AQSRzCY8GxzDcZpHy4fUse0O7fbBLTYEg2O2xXPiOaMNo4muqHltIQSagvaGW79V0BI7/AFy3KyGANJAPxLkfiNLDRRVL5o+qktoOodq4uAPSQmylzTQS4oaKZ4p5i4hjZXNaX2FzbfdAPrjyvYrmbWwmrFN1hM5BIbpPLjuuPEsao6ORsUrtc0hDTGxw1NB4Ei/BVHl6ZlT00hjJX6HNqCGl5QF524WSk24rCR7WNLnbBu6jbc6YQ6oqIIphJNC57Xta9pILePNASZpDhcIBB4KLU+csLnwuaqhna+WNup0TXtLhvbhdOGA47QY1SyVdFMw6C6Nw1g6SACb2PpQD0SALnghR2pzPRRvlEbZKp9OdL+oLXWJ+Nd9Bi9FiNIaqjqoXwtvrIeCABx4IBxke2MXcVhHLHURXjd2TcbiygmdceoKvA6+nBlLNY+useA3Y7bgrh6B5W0/RTRvnmL2Ry1TnSF19uvfzKAswCzeN1pqKuGmLBM4guvbYlMVXmzD6FzPKHOiheQ0SPc0NJJsN7qvOnNp8syxLTTnrHPqbFrzpJ0s7uKAudrg5oc03B3QXC4HeuDBTfC6N7jd3URg+OkKNdIGYHUUlJhNLc1tcHGO1j5hBPO/AHggJlFMyW+g3ssJaqKJj3vdZrDZ1gTYpto46bCMJvNLpbpLyXv4ki54qs+m7FqaryTMYXyx6XxgSa7A9rvBQFxNka5moHZAe0i4OyhuA19LhmWqOXEKht9b+qbrs6R1+AvxTnQZnoKuuZTnVDUPjMjGSFoJb32ugJCSAQO9YdczTfVtfT8ar+r6Qooc9fydME+qOVrJHWbbeMPFt781JcSzBh9DMxuozVTmB3URuBeGm/aIvw9KAe5ZWxRl7j2Qk1te0ObzTXRYpRY1A+KCZrntsJYw4aozxANuHBRXCMWkwfOM2DVjrsdC18buRc5w2ufQgJ9fUDZ1iNiti1A6pL8A3Y+lbUAIQhACEIQAhCEAIQhACEFIgFQkCVACEIQAoH04mZvRdmDyb7J1A3Bt79qnibMx4VBjWDVWHVQ+s1LdLu0RzB4jwQDVkW5yjQCJjW/zePVpPF3VtuoHgerCekHMceYYm1FPiVU2SjD/roYxsYBAAvp35FSnJ9Q7BMNrMPxLsOgMsjHO7I6obN+YcVEKWPG8axbFKrLmYsMp4XSgiOSmbM49nkbegoB46HsqNwmGoqpqaIa5H6DYXHauOC4OlV0zekXL0tO5zZGUkzbNNuLgpBlOvzBSV00GNzMqKZkYcJI6dsbb334DuSU2Fz45n2HGZ2kU9EyWCK7bAtfuDtseHNAT1hIZHq4lZuB0u8CkYNDQ3uQ8OLHBps4ggE8kB57oMOOKdPmZNNXLSup5acuEXO8X/ACViuyU6kx6PFH4vVyRNjDdD9Nrg3TSzo3xqmztiOZaTGKRtVWOjc68JPmN0jbgnTGMs5pxWOGCtxqkfAyRshDabTw9IQDD00YRH5JS5rw+JjZ6JriJGABztbmtuTx4J8wWakzNWx10LWyU9LAyWNzm2IlaADseG991KvaOKbLLMJlcHsDA3Vc2NjfxXHkXLMGVcF8iga4h00jyS5x851+aAg+R5qzGsz5qMkznimr3whr3+aCwbAHlutVRkz+S+Ts1yvrJZBLQOGg6SBa55eK78c6OMUhzTPjmWMSgopp3vklbLG6XU52xNjsNk9PydXz5exKlr6+KWtrIHQmRrC1vo7KAg+T8Hwyo6Oa189HTuHWB/WGME6urutOGPNT7GHrJB1h8jce1+WU7wXJNVhmVJ8JFXEXzPD9ek2HZ02WrBcgzUnRvLlKprIZY+p6oOa0gDt6vFAdnRNA2PKlNojZECATo59lq29LcYfkHFmvALHNZe/wCO1LkDLmKZfpHUlbXwVFK1ztDGRaSOAG/E7BOGesDnzDlmrwqnnZC6cAa3NJGzgeXggKW6LscZUTw4TmOBnUNl1wagZAXlwAHcNlLulOofFjmDYTTSGlopoHv+tGzey4W9C763o1kqMtUuGsrIGVlPO6ds2l1txYbJce6P58bynBhmI1cb6ymbHHHO0OYCGm52HG6AyxXJHtpjuGYtJMaUUcrZh1Zaddm2sVF6nDaObp4w6KojjqIXYTMXNkYCCdTt1LMuZUzGx1MzMmMUtXSU79bGRU/Un07jjsldkWrfn2DMMVXExsFO+mYxzCTpJJ8DxQEU6bsDw2iiy/T0dDTU3WOmB6uMDk1aeligpMMw3KVRQUkEFS+so43TRtDXOBvcE9ynfSHkytzWcPArYYxTl57TD74Du8Fy5zyHW5ipsHhFdBGMPlhlu5h7XV32FkAyVmJVVZ0qNohI4shmlaGOdZpGm/NPOG5HfRZyON+XTQiSNkZhYW6XWINu/eyXO2QJscrKLFMOqo6XFKfWeteHOBLrX7PDgnDLWW8YjcKjMGIw1lQwWjMUXVBpB7JIHHZAQvLX9d9dZo09fP8AsK6TcAhoCrzCsj1dDnmox51XE7rpJJLBp9823grCIAJNrkiyAjmfaGXEcs1MDNnDtcRyBUY9j09vuYYLA6wkhjdq795HKxpmCZroi0ljmkFQjDsn1eBS1LcEqWQwzgNLXNMlgPFAQrozp5Zel3Fq5pIpmxVENgdtQl7lLOleWTEJcPy9C4j2ya8Gx+CQfDlzT/kvLEWXaaoDSJJ55nzPeCeLtzx9K5hlh786MxiR92seXAG/NtvBASmhgbT0kMbQAGsAsO+yivSpjDcGynPNrLZC+NoAvfd1uSl9+1p0mw3uopnXLIx6qpJDciJpFt7cQeSA7MkYOMGy5T0rRZzXOftbfUSeXinxzhE1znEBvnErNrQ1jW8gAFHc6YNiWN4W6lw6uhpiXB2p8ergUA011HFmrGoHv0y4dTuu5j7aXAixBB8FLZaOiqaVtLNDFLAxoaI3AFuwtwVX0uQM509FHTx5mw5obf8A7n3qQYvgGYGCj9qsRgY9gYJSYNYcR5xF+F0BDOkLK9Jl3NWEYvlyNtBPeV0jKZgj1GwAuRxtcq6qFzn0UDn7uMbSfGwUfjwCaqrqSqxeRtRLDq3a0sG47gpLGLNAtYDYIDJCEIAQhCAEIQgBCFiUBkhI3glQAhCEAIQhACEIQAhCEAIQhACEIPBACFiCskAIQhAYP1a26eF91UOUo5G9ONa6oJMpwybTc37PXMsrfc4BwB4ngoFmnB5KLNcGYqFjnSmNtG8NBPYLtRNuHvRugI17IaNk2G0cUgDmvabgi/v2la+lnDqKly/lWopaeKCUVsF3xsAJs0KVZ5yo7OtFRywzsi0NOzrm93Du8Fszhk6bMeHYZSPqogKOZknAjzRbkgHWiex2TqKScB4MTLl3NRH2PHlB6PKXypzi4yS7k39+njMtPLDlaLBKB4lqmMa0Bg1HsnfbipBlTBI8BwaKhiHZa5xNieZvzQDuCyxA4jbgopn1xZhYk2c+EOcQefBSyzeIPDZRnOeAVmOUZhiqGMFiN2E8bdyAqTPgfkrOmFZppY+qpKiigo3iPm9z3Emw34WUhzd/OujrMePBgfHXiKWHVtYB1jbmPjU7xjK0WM4DRYfibmyCnfG+4u3zR6PjWnMmUxieWDg1HK2Kl06Wtdd1he/HigIt0ZQtHRNWsexroS6cuvvy32XF0KUtPLQZthhYyGF1a3SWC1xp22UvytlKfBcq1GDCqjLZes30n33jutOTcky5dhxOFtQxwrZhKSAdiBbmgK7pMTxbIWIRYXmWjiqcBqperjqHy9c4Fx1P7Db2tf412dOclLUZdweogY1sL3UxjeG2IaZNhbkFOP5G1MuHjDqypilptTj5hB7R37XFc+c8gHMlBQUUdVFHS0jY26TqJLmOuNxugGPp+pYP5IdZLGxsjWzEEC/wVzdKojHRblN7wHA1NA2xH/hOUuz3k6fNGEeRy1UZLA/3pF9Vu7wW3MWTG43lGhwaaZgfSmF7HEkAOjYWjhvzQDzlFgGXaARAMZ1Z2b+MVGem5r3ZOlEW7rP52/1bk/5OwWtwXB4aSuqo6gsaG3YzTzJ/iteectPzLhbqRk7IdQIu4Hm0jl4oCp+iTGgThuF5sgjJdD/Mes+ugxNHa34N3tsU/Z3r6j3RcKoJqqWGBtRGYQ13ZLi3cdwTnjXRizFMsYdhktSwVdFAIIZgXtAbe52B3XVm7IsuZsIomYhWQjFaWV0sdQAWNDi2w7I42CAxq8lQOzPBmCrrZDPFE+BrLNddrzfjxUTwbDaCfpyzPDVU8MzL0oDXsBH2FqmeV8mYjh74ZMWxKGrkii6qMxsLAG2A4c/FJhuRXUueK7HmTsvM6N1u0fNYG+HJAQjplwyhgzLgcFNR07GGalcWhgAt1xBTj0l0dLSdJWSXUEMdPM41dzG0N1G0fE/KpVnPI0mZMZoa81UbDSmI2IO+h5dy8UZxyXUZix7CsRbUxwmg62wc0769Pd+KgIpl6epxPpQr4aqrla9uGNIiLuzbrGi9zz3UmwXJdNhGbKvFWYhMaisfJM6HS3SCWkHcdy5M49HZxjF6fF8LqmQV0bY4y+7nAhg+CDbjZPeV8sz4bKavFatk9YQe00FguQQduHNAQrotJPSfmN7O0DRwguPG11amOl/tdOY+HVu5/wB0qJZTyNNgWZKzFTVxOFSxrCwA3s035qcTxNljdE5pLXtNz8SArT2OzHR9HWGtkN5Aw6iTv5xU4zFikdFAY2PAqpOwzvF72N/FRfJ9B/JXFZ6SVrm08wYxjjcN2uTx8Vw5g6P8TxbHnYnS4rTxEsLWh0bnbF1x6O5ASTKGBjDDNW1bmyYpWkPnc5zXHUBbzhx2snPHcCwvHMPnp6+kpp2PY5hL2B2m4IJF/FRTLeScUw/EPKcSxSGode40MLeRC7MGy7j9K6qjmxWmloZtYETYLOBcdzq48EBHuhnD/afGs2YdRuc+gp65kcQI0hjRGbBo7lJulOpkosm4nJSyPhe2B5L49iBZPuB4RDhEDxE3VI8gvIJ3IFua6Maw+DFcLqaGrbeCojMbxcjY+kcEBWmC5agzX0e4VT1eJzmKop6eqleQCdYYHcD4rTnjKFOOjInDZHT1mFRSy0sjmhrtbnd/LiVuwfozxTCaydlBi1OzCHyOcynMbnOa33o1HfYKyKHCYKXCm0FtUViCC4m9zfj8aArzKmJwZyo6KDSJIaCFjJS5p2njAJ2PHiNwuHLNZUYn0k5sp3107H0k8IgjLtu01xNr8OAU4yXlCiysyv8AJWkvqqqSoPbcbagO8/3VG829Hb8SzE3HcBrYqTEWOc95fqeCSAB2eHAFALQ5Ko8uyY5XxVb5JaigljdEWiwuQ4m49ITB0MYZR1NDmoVFNBMPKWnttB94pxg+Vp6WiqvLqyOoqqmF1O6RoLW6Tba3xLnyfkd+XIMWhp6hlq+USHzjawtzQFcZHkEvQhmlvnMbTYhpaeAOpym3RLTxPyFouI9Qbct7+rC6MtdH3tNljE8FfUxuhrY5o9tWxkJJ3O/NbcqZIqMEw+rom1cZgkl6wCzuTQBufBAQHCcYxLIU1FguaqOOqwpx0R1MknXOG2px0tvbiFaWaKimlyVNPTAdRLT3jGm3nRkt25bWTa7JtTXYfT0VdVwy0cerU3QQ5wPGzuPJZZypX1OF0WB4Yxz9Dog7T2rRtBafTwtugNXQZ1zejLAGTElwpzck3/1j1YKasv4TDg2C0uGxfY4Wlg3PeTz35p1GwQAhCCgBCRKEAIQhACEIQAhCEAIQhACEIQAhCEALSSWy9v31g0LcsLuEd3bkICncovmk6ZKs1NyW0swbc37OsrP2RFPTPwCkqHsa6SKOYs1N430KQZhwqXDs602P0kbi3yYUzyBcbvcT6OBWzpFyrLnjC4o6SshiY1rx2mk+dbu/FQEnw9pdlqnPI0jOzy8wKveiF05znnpj9oWYi0NaHXAGjkpriMr8Ky0KOU9fUGEQNDBY30WG3xLj6NsAOD4dPVTNcypry2aZrr3DgLbg8EBL2lukkcEltRDgTYC1lkkde2yAojpFd/8AWnKLOMbcQ3aeH2MKx+kT2sOX4PbuQw0/lMXVhsfWXfvpFuV+9MOZuj6vxbOuGY75fABSziXR1Zv5tvBO/SHk+TNmXqej69sc8E8M7XnVbVHe2w9JQFe5966PMGSZI4I6aJ0k+0buPZdxCyxzDqWfpnpI5aeKaN+E0uuORo0kGRwJ9KfcbyFmHGIMIqMQxSmfVUOsjTT6N3XHAehd4yFismb6bHKnE6Z3VU0MGkREGzHX8OaAa+mLL01JgbH5cpIaejjjImZEWxgnUNO3Pmkx3CKLM2MYBPhdLEySkq45qg9Xo1MDbWN+O54BO/SZVyVdXQ4RR4nS0dXUMkIkmaHN7JF+ymyOnzlhUjJpMxYZWwR2c+OChYHFo9NtkBywV1XU9KpoBZkMDamKKHXZpaL2Posn7B8ke1+c58cqK2Vj6gxAU40lvYAHLfe11w5pyLUZhfheY8HnbR4t1AJfIHPHbN3dngpHlvL2Jw1DavMVdFW1TiO1DGYgLcNhtwsgIT0LQxfyjzOZY2NkOKVJaAL3bZm6uSSMSR6JGgtuOPiq8y/kPEsDzRWVtHiNO2iqZHzOhMRc7U4/CPoAViea0GU7g+dwHFAUb0K4PhuI1OOispYJ/wCc1bPrkYNh1oC7MgU3tV0h5toMPhaylNYQ1jey1gEV7AJq6HG4g7E8djoZ2Br6irP2MO4zKz8GyucOpsSmjnY3E8Re2WSUgkFw2PZPDbuQFZ9DuDYbW9H2NTVNLBOXSVzPrkYPB5XX0XCiZgGa4MRkLKGHE2sY0M1Bg6sWAHcpdknItZl3LVdhprYXvqTP2ww2HWOJ5+Kb8M6MqilwXGqCavhcMQrG1RLWuFiGgfwQEQz41rcjYNNg0bBTiWYmUfW3WsOR9KkuacJxmpyll/FMBPX1kNHSiSB8zY2ujDA55uTvy253Wqp6NsYxLKNNhlbiEGql6x0doS3d3hxUnp8uY7R02GiDEqfXS00dNYwX7IaAdj4ICEyZ6oa3JWYqimpI8Px6CFhnbBG8HUXgDt237NvlTthGAyZoyWY55dpHvIdqBLXFg3357qSUuSYJK/FK7FS2SasLC4tuwdkAcBtwAUZwPo8zJgMk9JhmNUrcKmnfUGJ1OXuu8jUNR34AD0ICdZGwn2iy7SYYJ31MlJGI3Ofa99+7ZR/pTwfE6ykoKvAyZqqhqPKXQulEbXgMIsSeV7KY4LhowyhEYJdKQNbrk3I8U2ZmwfEK6SmnwqsipnQyiR4kj16gAdvlQEMyLmvDcfnqqHEMPgo8wQtkjnZHE5w1hh1/XCLHe+/NMPQhguH1dTjDKylhqo3sAPWxg3Gs7KeUmVDT4u/Gq6RjqkxS3c0Fgu9pvccFXfQ23E5MRxryGtga0xt0t6oOPnFAN1BVSZYxXHIMOLo6KSrm2j7IaSNNrD0AKW4flefNnRpFh9VJoikhLGzh7XO3dubHwUxwzJ1HTYdX0lS3rJa2R9Q9+pwAe5unv24cAoll7o+zPgsRw2kx2j9qNIZ1Zpi51hf3534lAN+bnVWG1+CYEa6d9PE+ne15d5zgNOk8rKRYvkl+K5locXqal1F5J1mhsJa4SamkbrszrkCHG8EpYKOQRV1PMyYSuc5wLmtcOF+83WjLeVcwtNOMexSnngpmlrWsg6s2IPMcdyEAyZBrmY70mYsMR+umKiia2KQXDS11g4X5lcuEUsFP08QdVGxgMVSeyLKQ47kKtbm9mYMuVkNHVSMigmdIwyh0bOVjsPFY4V0eYhDnGLH6/EqeeVrJAQyMtvq9HBAWY9rHtLXtDg7YgjiqI6O8Pop8/ZnbNTxPIqq4AOYCANavOQOfE4xOAeRs7iAoBlbItXg+P4riL6yJ3lks77Bh/wBY66Ai/RXhVHNnvOVDVUsMkNK6nDY3NBaLsB/im7o+mdRwZvbSOMTIWV0jIWbNuBsfHYfIp5lHJFbgOY8axJlbE415jPmH3rQOa15QyFPgWI4o+sqop4K0TXDWlv2Q7i6A5uhLybFcqR1tTTwurKhkT6gltyXdq1zzVeMra3Lk2YMOpJHtoPInvbodYNc525AHNWbgmTq/LNdXy4DVRspqx7XuYWGS2kEDc8OJ4LvpMkUUWA1tFJZ01Ux7DKXut2t+9AMGF4dSVnRBh1R1MU1RUUcE0j3gXLi0EknvUMwPE5cP6C8L8he6ITTVrHaDa9pn8VLcP6P8wUGHzYRFjFKMKkIswwEkBos0auKcsH6NI6Do6nytJPHJG5kzY3gusx0jy4m9780A3V+Tps3ZSwyKpqHUzQIZ+tjc1xOnfmmrpfhZR02VmRTPqO1UlkjxYjZid8EyPmbCoxh8mMU0+Fhwe2NlOQ5trADVx4BOmeciSZgGFsp6uKFlE6UhjwSXaw3h8iAmeDD/ALLotrDyeM/HpCrDNBkk6csoMfcxjyuwJ2+wuVp4bTyUtBBBK9r3RxtaCBbgAFEekDBZ6iagxmjjc+toGu0BrSSdZDTtw4EoBq6acQmoaXAYIXuihq8QZTvLDa7XCxB9CbOl3DKNvQ5tDCXXg+uaRc9pS7MmDU2d8sGlMrBM1rtJ1Hsv06b7ekqKVvRzmDF8qtwCtxemFDDoYxpgIJDdx2huUB21/tX7QYAcQDHTCpk8mY6PUHPtwvy25qNZidUR9JmCODRSudh/ZZE7YtLhv/yUrzL0e1NdhODspKyNlThdRJUxktc67nC3Dn8a48V6Psar8WwrGH4lTmqpqdlOQISNrgnYbckAzvghk6fKrXDHIXVEWsuH/wBuPlUrxQYT/LlxoY2T4uaARGB8WlrY9Tu1r4XvfZY41karlzrS5hoK2GKUSiSpDmF2sCPQ23ILmqch4zT5ubjeGYnTxCSnbTyMfCXkguJcd9hxQDR0StqIekPPMEzjvWQAs1XEVo37NW3pOc6LpCy66lJEzq2BspbsSyx2PounjLGSK7LucsTxqSvgdBXzNlnZoN3ENLRYnhx5LOlwebHc7HFKljmxQsYWEggEtd6PQgLFLb3AHE7lZpB9CVACEIQAhCEAIWNzfbdLffn8iAVCxaSRvsUvx/MgFKRB5KqOjjNuM4znvE8OxCR7qSGKRzGlo2IkAHAdyAtcJUg/62R8fzIBUJPj+ZHx/MgFWDyGhzncAsvj+ZFt780Bxy0UNQyTrIIi6RpYXFu+kqIHo6pGYg6ppcRr6Nt79XTuY1p2tuNKnVt7/EktuBbZAN9BhMNJA6AvkmuDd8ti7f4l2U0MUDQyIBttjYWutxVU4dmvF5umVmBySvOG6ak6NIt2PN5XQFrDjulPBJa6LIBHbN9SxcC1osSbm26ztvf+CLbWQGIIbZo4JHnS8X4HZZgWFhwRZAIRY3JPgsbnYgAtHM8Vnbe/NIGgEnmUBi2wda5JO+6Bs+4tY8brMm2+5+JVf0q5nxXA8z5WpMOe9tNWTysqGgDtAMuOI70BZg7BLGkkk33Sm4bvw7xxWuieZaKB773fG0n4wFuAsLBAYPD9XZDdJ4nmlbY7WuBtcrP4/mSOGoWPBAJztx8UahqtzssiL29CQtBFjw4oDG7rO17D0JSXC1gNNuaytYk8yj4/mQGOtttQvYLLwtZYvBc1w3HxKEdLeO4hl/LXlWFucyfURqAHAMJ5+CAnI342si6j+QcQqMWyZg9dXEmoqKZkkhI4uPgn9uw/ggMSHDzLG++6UnfbiEE/XB2Tw87uWIc4EcX352tZAbG7cgAkcQQ4AkEIb3k7+CWw39KABe/K1kguCbpUqAxaDp34oLQd9RHglUS6TsVq8FyrLV4eXNnErACByJ9KAlbW6bkOJv3oLe1fh4KLdGOJ1eNZJwyvxJxfVSa9ZI42eQOHoClYFkAAWHEnxShIjggFQhCAEIQgBCxBNjxv4LTUukFKTGSJNuXpQG66UKsehHNOLZlwytfjL3ySxVU0bXEAdlrgANh6VZ3cgFQhJvf/AJIBULE3F9734bIuQNzugMkJCTcBKgBCEIAQhIQ657XhsgFQsSS0b7lKCeaAVBFwsRcDc3+JKL73PzIAtZJqAQb347eCq7pszXi2WaKCTCHvY5z4wSAOcgaeI7igLTQtVM5z6eNzjuWgnb0LZ8fzIDXKSA5wAJbuLrF8bJWaJWhzSL7i9itpFyCeSA0C9uaA1QwMp2MDCQxgtZbrC2wG6TSNNuSC0G1+XBAaXQQCUSOiYZPhad1seCLWN78brNJpFyeZ4oDEEBzW24i6yubDVYJbW4KvumrMWJZbyjU1mEOcyqETnNc0A2ILe8ekoCfhpDrg3HpS7gcAmrK9TNWZew+pqbmaaCN7yRxJaCSna3egC3MgXQTYXPxo+P5kBAYNFzraTvyKC0NuQSO8BZoAAvbmgEaBckc0G2u9t7Jfj+ZBQCN4aieKW4tcpD2mcCCmPPNbUYdk/Gq2j1eUU1FPNGQODmxuIPygIB71tdcjlzWLhcm4Bb381Ceh/HMQx/KVJWYq5z6h8bHEkAcQb8ApzYgi3x7IDFlrgejbwWQsLALJCA1lum4BO+/xpCSGh0mxHENW1JYXvzQGBswCws09wS21W2Bbzus1iRcWKARwtqJ3Ftgsd7WaTqO/gsy0G3o4LCdxZDI5vENJ4c7IDB8EEhYZo2PeDsSL2W1rQG6eHdbkFVnRDmfFsfzDmGnxORzoKaKndC0gdku16uA9AVq/H8yAxa3TGBfURzKTSAdiR6FkBYk34+hKTYcfmQAbgbfOsZHENta7jsByS2OmxN/iSMcTsWkBAa2ntAkuDgLFo4XWwF1hrsCe5ZIIBIJ5cEBi0AE7kn0pG21nQAPhFZE7c1i4dkgi7dhZADHMfwHA8LJQ7tkH4lVWSs14xiHSvieEVj3uoYcOMzGkCwd1rW91+BKtck6ha9vBAINOwO9t90XDQSeF0bEkWNu9GkWtyQGLdLn6W3GniLbFaXQQxz9eGDX5l7d66ed0WF0BgbtaeduBWwcAsQ0AADgOCyQAgoWLr8ufo4IBUoVVdIebcYwXpGwTDKKR/kNTRvklaALF4dYHcXVqNN2jwQCoQkJsO9AKhIDtvf5EXtx4IBUIQgBCEIAQhCAEJHXI2Nj3pNRvsLjvQGSxde49PFLdAAHBAc9VFHJH1crdQJvuL2RBA2mbFFDbQL3PNdKaMyzvw/BKuppwesaAdvEIDsmpoqpwfI0O0G4uOYXRE0BvZvpPAdyr/oUx/EsyZWqqzF3ufOyunhaXAeY11gNgrCHC/C6AVI/UG9i1/SlSHfigMHAaj2j4JW+dccAEoaASRzSgAXtzQGAuTcWLD3oIPWHu08OSyLQRbklsgItmzKNFmV0T5ZZ6WpgaWtlpw0OFyCdyD3JMHynTYe8l1fX1QA3bOWkEX9AUq2uDzXJisz6fDKqaO/WMjc5thzAQG2JoaxojAbG0aWtbsAPBbWjYXsq06HsxYpmCrzSMUe9zKTEnwQggbMA24BWUW7ju57IBANIJcTudljPH1kT2OJDTbccVtt8iLICJZVyRQ5bqp6ijqapzp3Pc5r9Nu07UeAHcpUezqdI1ukebZZosgMd7EcvnSaQRpLnb7rLSNRdzIslAtwQGLuANztyCRoAbe5Nzz5LO29+ax0hoOkWJ3QAA0HSSTfkUBp07m26qqmzVjD+mWrwSSR5wxk7GMZYWAMAceV+KtYA2sTf4kAj/AITiRbkEXta4sCsgABYIO4QHPWU7aqB8b3vY0i12qNZTyPQZYq5pqKpqXmWwIk02435AKWFoc3SRslIBt6EBgWFtyLOJPvuSU7A24rJwDhYosN/SgMWntEWA2vslFyBsLFF+IseHFAFgL8R6EBiSdBta52Sg6WC6qzpNzVi+C5ry1R4c97aWtxKnp5mgDdjiNQ3CtCEl1Oy9wSByQGbS0dkfQgdu99gDZKSQeB+RITtvcelAAHaAB2HFJY223F/fIuQ5tgXB3E24LM7oDEatQsBpCRul7QbbA9yzGwshAYki4BGxQSdfoOyyRwCAQuaNuCGtAO+5HMqs+mzMmK5cwqkkwd72SSVMDXOaAdnPsRuO5WHhkzqiiZJKDqcTx8SgOhwNrnkb7LFwZI0F1y08iFstvdHNAc0FNHTtApo2NBdc2FludZzh2nAjuWxYloIsUBgS4uJ4Bu+3NI1zb3u7wsttt780qA1lu54WHzoseLrA8AOSyc0OFihzQ4AHgEBqqIxNEY5NtXMIhhjhaBCxoB2JAUT6XMYrcv8AR/iuJYU8srIGtMbgBtdwHNdnR3iVTimWYqmscTM5zgSR4ICS76gBw5rJYAbgEceJWRvyPzIBUJOX/JYkkOPEju7kBmhAQgGnNGI+1OX6+ua0kwQPk4X4NJXk+HMmec747XzYBMGU8EzmWMszOO42bccF6j6RLfyFx+4v/MZv2CqT9icSPb5t9jWA/wDsKDJGDhnSu86mVEIHpqaj1JParpY++IP1mp9S9bJEB5LZhPSx1rCamCwO48pqfUm3Dsl9JGGV09bTSUzZpWuaSJ5xxN+TV7G3vxSoDyQzCulkMF6mA6v/ALmp9SX2q6WPviD9ZqfUvWovc7pfjQHkn2q6WPviD9ZqfUj2q6WPviD9ZqfUvWyW3pQHkj2q6WPviD9ZqfUj2q6WPviD9ZqfUvW9vSi3pQHkj2q6WPviD9ZqfUlGE9LJ38pg2/8Auqn1L1tb0pCLhAeSn4T0sh7f5zARflU1PqTW3JvSRHjXtnG+nFX2rP66e/a476br2SdxsbI5IRk8k+1XSx98QfrNT6ke1XSx98QfrNT6l62QgyeSfarpY++IP1mp9SParpY++IP1mp9S9bIQk8k+1XSx98QfrNT6ke1XSx98QfrNT6l62QgPJPtV0sffEH6zU+pHtV0sffEH6zU+petrelIgPJXtT0sHjUQfrNT6k3YpkvpKxWWgrKyWmdJSuc9t55ybkW5tXsbc80WN3XNweXcgPJLcJ6V+raGVEAa3sgeU1HAfEl9qulj74g/Wan1L1twQgPJPtV0sffEH6zU+pHtV0sffEH6zU+pet7elJ8aDJ5J9qulj74g/Wan1I9qulj74g/Wan1L1shBk8k+1XSx98QfrNT6kowrpY3/nEHD75qfUvWqD4oDyQML6WHMd/OIAT/8Ac1PqXJi2Vuk7F6Pyetmp3NvfeonPK3Nq9gm9xYkIIueKA8jUOAdKNBS0tLTTQNggj0ACoqBsPBq3OwzpXml1CogAbvbymoH8F60GwQgPJjcK6Vi4htTT8CTepqPUo2Me6Q48aOFVVSyCbUGhz552NJtfifUvaj2k+aS30qAdJ2QoMyUrqyhIp8Viu5kzG3cSbDmbcEBRjcL6V3NDm1VMWncEVVRuPkWXtV0sffEH6zU+pWX0adIVZQYgctZza6nrIyRBLI7WZGAhjNmAgXseKuRsocARvfh6UIyjyh7VdLH3xB+s1PqR7VdLH3xB+s1PqXrO9kX7lGd8EnkwYV0sX+2IP1mp9S5MQyz0oYpRyU1XNTujLtVjUVB4eLV69Dt0tt73UjJ4/wAMy30o4XQU9FSzwNijvsKioHE35NXb7VdLH3xB+s1PqXrMDtE34pUB5L9qulj74g/Wan1I9qulj74g/Wan1L1okQHkz2q6WPviD9ZqfUj2q6WPviD9ZqfUvWaEB5M9qulj74g/Wan1JDhXSxb7Yg/Wan1L1ohAeSW4T0sAH+cwfrNT6kj8H6V3Q6fKIP1mp9S9boQjJ44wbJ/STgtK6KgkpmF73PdaecbnjwanI4T0sgN/nMB2++an1L1pwG2yRtxe5ugyjyWcJ6WBe1TBw++an1LJ2E9LBDf5zBw++an1L1mAbcSjhtflxQk8i0Gcs6ZOzZRUuZJGSMq5AxgY+V9rC584jvC9Y4ZL5Vh1JUO4yQsefjAK8zeyPc/3RMusLyQKh9vR9bYvSmXx/wBg4b+bR/shAd1zqHcskg5JUAIQhACQje9ylSEXQAV5v6c8+Y5TZviwHAXiOVznsu5zm7hrXcWnx5L0hxGxtZeUuk1rfqgcPJFyZ5P3TUByRYV0riMOFTAQ8XH85qTx+JZDCOlixvUwX/Oqn1L1jR/acH4jfoW0Dc7oDyUcL6WZLDyiAW/+5qfUmzGMmdJONtEVfJTPDSCLzzngb8294XshFkB5JbhHSw1oaKiCwFvtmp9SParpY++IP1mp9S9bfGj40B5J9qulj74g/Wan1I9qulj74g/Wan1L1t8aFGQeS24V0sffEH6zU+pL7VdLH3xB+s1PqXrNF0ygeTParpY++IP1mp9SParpY++IP1mp9S9Z3QieeAeTParpY++IP1mp9Sbsayn0m43Qy01dLTujc3SAZ5zx8Wr2IhSRk8jUmB9KlLFHTxTwCNkYa21RUbWFvgrZ7UdLLdvKYDb/AO6qfUvWgBAIuSgAgC5JPegyeSvarpY++IP1mp9SybhXSx98QfrNT6l60QgyeTParpY++IP1mp9SQ4V0sW+2IP1mp9S9aIQZPJPtV0sffEH6zU+pHtV0sDjUQfrNT6l62QhJ5L9rOlcOD21EFjvbymo9S01WAdKVXT1NNUzwOhnidG4GoqCLOBB4t9K9dDZCA8e4PlnpNwag8mo5adsbbBoE842Hg1d0eFdLBsTUQbf/AHNT6l60Rz4oDyX7WdLDif5xBsfvmp9SX2q6WPviD9ZqfUvWaEB5M9qulj74g/Wan1I9qulj74g/Wan1L1mhAeSzhXSx98QfrNT6lj7VdLH3xB+s1PqXrZCA8k+1XSx98QfrNT6kvtT0rl4DqiAtLSD/ADmo9S9aoO42NkB43wrJfSVg1VWz0UtO19Q1jXWnnHm3twb6U5nC+lkWtUQfrNT6l60IuRvayVAeSfazpZ++IP1mp9SbMfrukzLlIypxGVjoJXdUTHNO4t247gW25r2SmvMmDUeO4VNRYhE2SKRjmjVc6SWkX+dAeUcEPSXitCa3C66nmgNiQ+qnLhfhsAbLuGF9LDWhz6incHGwtU1Gx9OykmJHHuhvFnVNP1tTliUue8amMZHbssFhdx4q+ctY7QY/hceIYXOJqSQlrXBrhuOOxAKZJweY/arpY++IP1mp9SParpY++IP1mp9S9Yhzr8NvFBfp3dsFGTHJ5NOE9K7mfbEHH75qPUkGGdK7HdqogI/Oaj1L1m67mjS63pSkXbYn41JJ44w/JnSRQ4pUYjFJTCqliMRcJ572uDx034hOLcL6WWMt5RASeflNT6l63FuKFGcA8ljCulcdnyiC43v5TUepL7VdLH3xB+s1PqXrIbJbqQeTParpY++IP1mp9SParpY++IP1mp9S9Z3RdAeTParpY++IP1mp9SParpY++IP1mp9S9ZoQHkz2q6WPviD9ZqfUj2q6VwDeog3Fh/Oaj1L1ndId7ehRlA8c1mTOkjEcVp66skpnTQxGNpM85sDvzanJmE9LAFvKYP1mp9S9Zi+9yTf5kNuGgE3PeiaZGTyd7VdLH3xB+s1PqSHC+lgDaog/Wan1L1pdKpGcnj3FT0nYBD7Y4hUwmCPdwbUVB4C/AgDgCr56D83VObMqU09ZpMrYmaiBxJBPMlb+nM6ej2uvvdrx/wDjeoh7FFo/kMSBvoi3/wDKUJLxQhCAEIQgBCEIAKgHTJmiXKWUZKmnH12TWxptexDCe8dyn6pr2UIvkSEnlJIf/wAbkBT+Cz9JOZqY4nh1SxtPKQ9oNRO3ZwuNhccCnH2q6WPviD9ZqfUrj9jqSejfDSSd6aD92FaF0B5M9qulj74g/Wan1LTU4H0qVEfVTzwOid5w8oqD/ur1yk778EIzg8e4LlPpNwWidBQS0zI3SukIE843PHg1OLsJ6Vwbipgsf/uan1L1iGkOvc2tayNwTc3umSTyb7VdLH3xB+s1PqR7VdLH3xB+s1PqXrPkhAeTParpY++IP1mp9SParpY++IP1mp9S9ZpUyDyX7VdLH3xB+s1PqR7VdLH3xB+s1PqXrRCjIPJT8K6WBa1RBv8A/c1PqWM2C9Kz2OjkqICx4sR5TUH/AHV63WI9JupB46wrJ/SXhMlQ+hlpmeUyGWS084u4+DU4uwrpYLr+UQfrNT6l61CFGQeS/arpYv8AbEH6zU+pL7VdLH3xB+s1PqXrNCZQPJntV0sffEH6zU+pHtV0sffEH6zU+pes0qZQPJftV0sffEH6zU+pHtV0sffEH6zU+pes0hdZStxg8m+1XSx98QfrNT6kj8K6WAy/lMF7/fNR6l6z1IvcJnfAex46iyX0kMx6TF+tpvKXuD9XXz3uG6eOm/BOQwrpY3/nMHH75qfUvWViW2ub96y4IFueTParpY++IP1mp9SParpY++IP1mp9S9Z3SXQnB5N9qulj74g/Wan1I9qulj74g/Wan1L1mChDHJ5M9qulj74g/Wan1I9qulj74g/Wan1L1mhBk8mDCulcEnyiC9vvmo9SxGFdLFxeogt+c1PqXrbiEgFuJuhJ45xbJvSRiWIUtTUyUzn00jJoyZ5zZzeHFq7/AGq6V4nahUQEch5TUepetyAeKQjcbm3cgPJbsN6V2a3OngJcLACoqPUsZcN6VaaLrn1ED26dRaKmoJG1+Fl62tve6xc1pa4OGx2PpQHi/Asb6QsZxGbD4quKKtaQ1rZaiZouRfhx4J+OF9LINvKIPiqan1K0Ok7IlbSVTszZNLoMTh+u6IdIMhsGAXebcLqQdGnSLT5jg9r8TtSY5Bdr6clzy5rdI16gNO7r7X5ICjvavpZ++IP1mp9SyGFdLFvtiD9ZqfUvWIfd1hy4+hZXI4oDyb7VdLH3xB+s1PqWLsK6WLgCog3Nvtmp9S9ZdYL7rJx7O3NCNSPHeN5O6S8apGw18tM8ska8XnnPmm44tThFg/SrECyOogDBw/nNR6l6z4N3JJQwEMAuTbmhJ5O9qulj74g/Wan1I9qulj74g/Wan1L1ndCA8me1XSx98QfrNT6ke1XSx98QfrNT6l6zQhGTyZ7VdLH3xB+s1PqR7VdLH3xB+s1PqXrO6LoSeS3YV0sffEH6zU+pY+1XSx98QfrNT6l62QgPH2K5Z6UMVoJaOtmp308tg5pqKg3+Itss6LLvSjQ0rYKSaBjAb2FRUD6Gr19wRfmozvgHks4P0saW2qae4H3zU+pHtT0sXI8pg/Wan1L1mHJCSDe/xKXsHtyeTG4V0sNDyamDa/8A3mp9Sdeh7P8AmGhz5/JzMjutnmfFDcF7wCSTxcbjYjkvTcxJgksbbH6F5RpHF/sl2GQl388p7X5dlAesmarC9uCEjGu5uJ2QgI/0i/0Fx78xm/YKpP2KHnY7+dj9gq6+kS/8hsf/ADGb9gqk/Yoccd/Ox+wVCWGZaT0eEISX7kayY5MiElliHd5S6gpTXYbi2Qk1IuobG4qVY3RcKMpgySJNSxMrQbErFyguWFkzQtfXM70GZnesPGpL/svqTh+RsQtQmZ3oNRGBcn5kdzR/iX1J0vyNyLrn8qi+EfkR5VF8I/IsHd0v419RofkdCFz+VR/CPyI8qj+EfkU+uW/8a+o0S8joQufymP4R+RYuroW8Xn5E9ct/419Rol5HSUFcgxCn+GfkS+2FP8M/IsX1C2Tw6i+qDpyfY6hshcnthT/DP+FHtjTEX1m3gn2ha/zF9UPDn5HVzSrjGI03wz8iHYlTC13n5Fi7+071F9UFSmux2IsuQ4jTi13n5EntlTfDPyKPX7T+bH6onw5+R2IuuP2xpvhn5EoxCmPvz8ifaFp/Mj9UHSn5HXdF1ye2FN8M/Ij2wpvhn5E+0bT+ZH6ojw5+R13RdcnthTfDPyI9sKb4Z+RPtG0/mR+qHhz8jrui65PbCm+GfkR7YU3wz8ifaNp/Mj9UPDn5HVfdYDdxItYrR7YU3wz8iQV9MODj8ifaNp/MX1Q8OfkRLP2Q6DNNOZiHxYhDZ8L45Or7Tblt7C5FzuOah+TM8V2W8UGWs5gQvYerhrXx9TCQAXOOt53G4F1bT8QpwQdZudr2UR6QcrYXm3DZIZwGVdrRTiMOe25BNr+Cl9RtOHUjh/FE+FNb4JxE9ksbXxva9rhcFpuFnZUJkLpBq8s4l/J7N8jrav5vUFxke8ucA1pA2AsFdzMUpXQwv1m0rdTezxCznXt4x3mtPnkjTLyO4C1kt1xe2FO2TQXnUPQsnV9O3i8/ItceoWnHiL6ol05vsdd0XXGMRpi6web+CXy+m+GfkWX2jafzI/VEeFPyOu6XiuP2wpvhn5EoroDwefkUq/tZbKovqh4c+6OtC5hVxHg4/Il8qj+EfkWXrlv/ABr6jRLyOhC5/Ko/hH5EeVR/CPyJ65b/AMa+o0S8jelWjymLvPyI8qi+F8yn1qj2mvqNL8jeseaw65h5/MkMzLXv8yesUm/eX1I0s3JD53xIG4QfO+JdGckHlz2SH9ZGXfzh/wC7YvSuX/8AQOHfm0f7IXmn2R5/+pGXvzh/7ti9LZf/ANA4d+bR/shAdwSpAlQAhCEAI5lCOZQCN5+K8p9J39oHDvy8n7oL1Y3n4ryn0nf2gcO/LyfuggPU9H9p0/4jfoW7vWmj+06f8Rv0LaTYFAFkALEH5EuoKE98E7ioskvskDh3qURuZISagi4WOfiDKyRJqSOeGi5Rziu43MkLX1zLXuk65neVh49NcyRkos3XRdaeuZ3pPKI+/wCZYu5o/wAa+o0vyN90XWnyiPv+ZIamLvPyLH1uiuZr6jS/I33RdaPKYu8/IjymLvPyJ65b/wAa+o0vyN90hK0+Uxd5+RI6rhaLucbeCO9t1u5r6oaJeRvui65vLqf4R+RJ5dT/AAj8iw+0bT+ZH6oeHPyOq6Lrl9sKb4R+RHthTfCPyJ9o2n8yP1Q8OfkdV0XXJ7YU3wj8iPbCm+GfkWP2jafzI/VDw5+R13RdcnthTfDPyI9sKb4Z+RPtG0/mR+qHhz8jrui65PbCm+GfkR7YU3wz8ifaNp/Mj9UPDn5HXdF1ye2FN8M/Ij2wpvhn5E+0bT+ZH6oeHPyOu6Lrk9sKb4Z+RHthTfDPyJ9o2n8yP1Q8Ofkdd0XXJ7YU3wz8iPbCm+GfkT7RtP5kfqh4c/I67rFxFhdc3thTfDPyLF9fTkCxvv3J9oWj28SP1Q8OfkYYth1NiVI6CsibNAbXbYE8VReJYTi3RHjLcTwls9XgM5Ec0QY+d0TW9tzr7BtztdXs2vhubuIA4bcVyYi/D8QoZYMRjbLBI0tfG9twQo+0bRbKovqifDl5HJlXNOHZlwqnrMNqYnSyRtc6EStc9lwCQWg7EX3UgNi8W3PMdy85Zpoq7osx449l76/g9Q8udTvcImR9Y6wADdzYcFcmTM54dmnCo66gd5wJk7JFrOLefguiFzRksxmvqR4bJahcja+nPvzt6Ee2FOdtZ+RaH1G071F9UT4c/I60LkGIU/wz8iPbCn+GfkRdStOPEj9UPCn5HVdC5PL6c8Hn5Evl0Hwj8ihX9t/GvqiHTn5HUhcza2Am2o/Is/KYu/5lkr22f/dfVEeHLyNyVaPKYu/5kvlUXwvmWXrluuJr6kqEu6NyFp8pi+EfkQKmM8/mWSvKD/7r6jS/I3JOK1eUR9/zI69h4H5ll61R/jX1Gh+RuS8lrY8P80rO/wAy3KSayjFrBXvTt/V9W+D/AN29RL2KP9BT+JD+yVLOnb+r6s8H/u3qJ+xR/oKfxIv2SoWWHsXghCFkAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2Gfm0H7oKz7qsPY5/1bYZ+bQfugrOJA4qG8diGm+DNF1iL2WSjYlAksglI434FRFJjZvBkAlWINhujUFmRsjK6RYl4RqFrqNxlGd0XWk1EQNr7+CUzx9/zKdMjHxIvubULT18ff8yOvYeBU6WZJpm0oXJUYhT05AleQSLja60+3VDf7If8JWSpTe6RDaXccUt02+3NHb7If8JSe3NH90P+EqfBqeRi6sFyxzJWF1we29Jf7If8JS+21GD55/wlQqNRdjB3NFe9JfU77oTTU4/h9OLySuA/EK4/5W4TcDyh+/8A4ZUSTj7xrd7br/uvqiREobumOPNGFOdpE7ifxCtseYcOfJoZK7Va/mFc86lKO8pJfebY3NKfuyT+8eEhK4WYvSPdpbIb/ilbPbCm+GfkWn1+1js6i+qNyi5bxOq6VcnthTfDP+FYnEqYbl5t4KH1G0/mL6oyVOfkdlkWXCcXow25kNvxStZxyhAv1rrfilZK9t3/AORfVGaoVXxF/QckJofmHDm8Znf4CtT8y4azzp3f4CtiuqL4mvqZK0rviL+g+jgluo+c2YSzzqh36MrH+V+D/fD/ANGVPjU33M1ZXH8D+jJFdF1HP5Y4N98v/RlKM4YMeFQ/9GVl4sPMn1G5/lv6MkJvbbisRfg5R1+dMFbsal4P5MpP5a4JaxqX/oyp8SHmR6lcfy39GSHRtpNizuO6q/pD6Pm1FQcfy250OL04DiNRLHtZd+kMaN3E7engpd/LXBNNvKX/AKMo/ljgrdhM4N4/YyniQ8yPUrj+W/oyMdGvSK3GNWFY83yHHIdLHQ1DRA6V1iToYTqIFhfuurKFnNBYQR43VI9J2G4JjD245gVZLQY1CHWmghAc8vIBJcedgunoz6XKPE6YUeMkU2IscQ6Nmp403ABv3lHUg+GYVLWvBZlB/QuXYt3Q3go8/N2DtdY1D793VlZR5uwh79LZ3X/JlHUhFZbM/UrhbqDx8mSFCZBmjCy7SJ3X/EKzZmPDXkhszrj+4Vr9apeaI9UrLfQ/oPFkqaY8eoJHaWyuJ/FK2txijc7SJDf8UrB3tBf9l9TF0Kq/6scULjjxCnk815PxLZ5VFfzj8ix9dtn/AN19Ua3Tmux0IWnymLhqPyIdVRMF3ONvBZK7oPiS+pGmS5NyFzOroA3UXG3gtT8SpmtuXm3gtsatOXDNUqsIe8zuui64I8TpnkaXnf0LoNTEBfUfkWxLU/ZMFc0msqSN6QrTHUxucAHbn0LcpaceTbGcaizFmEv2GTwP0LyfRf2l4/zyn/ZXq+X7FJ+KfoXlCiP/APMvH+eU/wCymcmUT1o3gPBCG8B4IQEd6RbfyFx78xm/YKpL2KHnY7+dj9gq7OkT+guP/mM37BVKexQ87HfzsfsFRHncyi9j0bzXNXSGKAkLoPFcmKfapXNeTlCjKcexFNZkMjcRnb9jIHiLrL2zqvht/wAK42WLRslsO4L5e+tXkt1N/VlrGjDG6Ov2yqjt1jf8KPL6r7o3/CuQjusks70fKsH1m9/mP6sy8CHkdfl9V90b/hWvyuo+6t/wrRZ3o+VG3csH1e+f/kf1Y8GHkb/K6j7qz/CtLy6R5c9wLjxKTZG/ICyxfUruXNSX1ZPhQ8hNI70aB3pd+4I37gsHfXH8x/Vjw4eQmgd6AwDn86XfuCUXvuAod7cP/u/qToh5GNm/9FFm/wDRWfxBIHNcbAsJ7gVj6zcP/u/qNEPISzf+iizf+ilv6Ai/oCj1ir/G/qPDiYkNRojPFZf+UJCPQE9Yq/xv6jw0AYB9j4c0Wd3oAI7h4IIPeo8aq3ySlFdhCDz4JdFwTyCxllbCzVIeymGuzLBTuexrrk9wutkYV5cP8TTUr04PBIALsvfa9kWbqAJCiGeM0swTAKWoZq1Szxg2ab2cPQiizPHUYRTVXa7TL30nvstjtbnTqbePmbqLjWT0ktI+uG52AuswTy4JjoMehqJCze9vgp6jka5oLeFlolGrHl/iZyp6exlcos4pdQSb8lr8Wfma8b8BpcjS5HaRc96jxJ+ZOn4BpcjS5G6LnvTxJ+Y0/ANLkaXI3RuniT8xp+AaXI0uRujdPEn5jT8DFxIs0gnndZjUHtew7jkkJc0atLSOG6QhxsWmwPK6eLN7NhrOwy5zy5RZrwuWmqh1cpY4Me5xADi0gcPFVVl7Hq7o2xB2AY0xz8KJLWVDWhjLMFhu7fclXh6CN/oTLm3K+GZkoPJMRgjMhALZRG1zhY34kK4sepaF4FzvB/eaZU8bjnRzUk9FFJh72z0zybPY64Hfv4rcWNIs0i4VDZbx7GOjjMgwXGy+fDJXNZG9z3S6S46ie4bK8aOrgxGiiq6J4LHgHbbjutXULWrazynmMt18iab8zpdcs0u2KQNdbispLF7L8yk3Vd4k/M2/cGlyxdGCbu4rK570uq2xAUqtUW6k0RjPY16WhKA3/opSb+9CB+KFl6xV/jf1HhoLN/6KLN/6KW/oCL+gKHcVf439R4cQsz/opLN/6KX4gi/oCiN1cZ99/UaIeRhp478kmnscVmL77Dgku7T5oXVTvLjxEtb+rMXCHkSvDRakZ8a6Dx+Jc1E5sdGHPcGtFySTYBZGtpQNRqIdPf1g9a+s2jboQb5wipn7zPMXsj/6ycvfnD/3bF6Wy/8A6Bw782j/AGQvMvsiZopukjL5hkjktUOvocDb623uXprL/wDoHDvzaP8AZC6DE7glSBKgBCEIARzKEc0AjefivKfSd/aBw78vJ+6C9WN5ryn0nf2gcO/LyfuggPU9H9p0/wCI36Fsf5pstdH9p0/4jfoW1wuFjL3XgIjtdX1DJtLeHgtJxKpA/wCS1VptVEEuWi4Lt3ED0r5jfdXu6V06cZv6stadODjlo7hidW0ecP8ACg4lVO98B/5U0VOIUlMO3UfOPWtUOK0kzrMmddc66n1Dd65fVmvTTyPXllQeMrb/AIqPK6j7qz/CuVmlzbgkjvKWwXN9r3je9WX1ZvVKn5HQaqouLyNPxLXO98g7Th8i1Obfg4jwKAO9xPiol1G8f/ll9WPBh5CCJoaTqF0mgd6z2tsN0m/cFrV/c96jf3sy8OHkY6B3rLq294Rv3BLZ3cPlUO9uH/3f1GiHkJ1be8Is0f8A6pbO7h8qxe9kduscxt+8gKPWa8uZv6jRDyMrN/6KLN/6KQEHgAUvxBR6xV/jf1GiHkFm/wDRRpaeB+dHxBG3cAjr1X/3f1J0R8g0D4QRo/vBJt3lLt3lYeJPzGkNLkaXIue/50XPeniVPMafgGlyNLkXPekDtXBwPgVHiT8xpQulyNLkXPei571Hiz8xp+AaXI0uRujdPEn5jSGlyNLkbo3TxJ+Y0/ANLkaXI3RuniT8xp+AaXI0uRujdPEn5jT8A0uRpcjdG6eJPzGleQlnd4SjWw6m8RuEbo4bkmy2OtJRxncOKNZghcyTsFwmuZQD748fBUnm3KtfkLHXZly04TYe1wlkgYwvdpa0C2o7ecSrvJ0NvazXb7c1qnp4JYDT1UbZoXjSY3tDmkdxB2Xd07qla2l7e8fvNUqSZHck5soc24c2WmkbHVxjTJE54c7UACdh6SpNGC9pDuzKORVL53yliGU8TbjuU3vioNQM8McnVXdqLn9hnEaQBfnwVh5IzfS5vwptRTnqqpoBexzerN3E22JudgurqdnJLx6L9lmMZdiUEOKTS5KdSTdUirSfc3r5CaCeJsjQPhBL4lG3eVKrVXxJ/UlxXcTQBxIRZv8A0UuyW/8AdCyVesv+z+pGmPkY2b/0UWb/ANFZX/uhJ8QR3NZ/939SNEfISzf+ijQ073S/EEWPIBSrquv+7+o0Q8hOrHeEhjG3aAWVndw+VI5tx2tvBS7y4Xuzf1DhHyHbAwNR7QPHh8Se+9MWANAkduefH4k8OqYBKWGaIP8Agl4v8i+pdFlOVsnUKqssSwQLp2/q+rPB/wC7eol7FL+gx/Ei/ZKkvTnV0z8g1jWVELnWfsJAT9jf6VGvYpf0GP4kP7JVuuNjVLgvFCEKACEIQAhCEAKmvZQf0Cj/ACkn7tyuVU17KD+gcf5ST925AOfsc/6tsL/NoP3QVnlosqw9jn/Vthn5tB+6Cs88FHcIbMWqnQtAb6E0yYnWtAMcjQ3kC1duPbOZ4D6SmiobdzbEgFfPes9Wube6dOEnj5ssKNKMo5Y31mZ8ThkNng2HwAmGrz5jETpQ17W2NheNqccch6qxHOw+lRDF4O202865K6rDqleTxKT+rPP9T8SCeh4NVX0j4+XkCdn6Jq5/dDzADfr2fomplxKlDLuaBf0JrOom1l6m3usrLPE3V5dwnjxH9WTdnSBj72fbEf6IJsr89ZjeyRhnYWOBabQjgVHWSujP/NdMcrXizmjf0L0/T6tvVXtJfQ511K7X/kf1ZG6moqnvNnW+JckstY1wtIPkUkqKASvPV2HzLhqcOfEbnceN1e+DbP8A6r6HZT6pU8xkfUVXOQX8Fr8pqr/ZB8idn0WoXIPyLQaIA8D8iy9Ut3/1X0O6n1afmNsxmnsZJQCNuC0iF9/PB8E6uoxffV8i2x0Trdlo+NT6rTjwtjOXVJtcjY2OVvmhxPoW6OnLz2w4fGneKgmf5rWAd4K76fDLbyetY+HTXZHBW6jUXLGaCgJc0NDtzxuU90eHGEhxkB+VdbYoohsOHoWMs402bdcl1VpUo5witnfVKndmNQWuGm9/jWljWDex29KxBu65WyOJ8hOkbeK8jdXsajZrVSpJ8s3YXAZKjUWutspjglK0zar6bAjdNFDAYWtAaLlSqipjBAxxAu+x+VeUv6+U0mer6ZRls8j7gcI1PcTe1k+U/aBsLbpvw+IxUwcGtu4fxTlGC2PfSLnvXirurJz2Z7uzgow3Mi13eFrkaSxwJFrLaQ5YEG265/Fmu52xUc8DNUsaSWplq4Dr0gqR1jCDqDQmqrhdoLwGrupXE88nfSazwRuojEgc0uAINk0zQlt2lwUmqqcPAcwAHnyTbUQNe3zRq8FcUbiWC1ouOOERSromi4f2nHe42TTLh7QSd/lKmE0GoHU0auCb5aQi+wsrOFd4W5Y0nTe2CKugaLiztvStYibq5/Kn+anabgM38FyOoiXbABdUKz8zs8Om1wNT6OM7k7eK1+SQ9x/xJ0ko5Gi+xt6Vq6iT4DVs8X4mKo032ODySHuP+JKyliY+4Bt4ru6iT4DVsgppDGdTW3ueaeL8SfV6fkcsY6s7AlhTPj2C09ZCHUrSyeM6wSSb7cLKTCikDLuIt4rpZRMjaHEX+K6esaN8muraUakXGRB8GxQGRmHYm10ckY0Nc46QdIU3pcPZC0SR9pztjYlcePZYixWhM1JG2KtbYhzQGX3ud7XTfk7MDqSqGF4vr68EDW4FwOo3HaPoWytJ1IZiyljX9Vn4NVZRNaKis3WePcnaihcGOfYgiyKaAODXxuvG4X4pxpIXOfYeb3EqhqXEoZWTOt4bXsm6liLQHHmnakiBAcVzQtJcG6AnaKIiMAAXVLXupdpM4KujyOujYGrtAbdYRNAA2C3i1uAVe7iq+JP6lXUUW84NchbeybMUhD49nBOj+Z0hc0uhzHBzR8i20LyupYcn9TmrUk47EExWEujPa1ae5RLEmPe06SbBT+uja6SWNrbarDhZRSspi18jLDcFeusLmTS1M8R1aFVZ0sikb5A64PmropauTrHargWWFRBJTzuaRsStRcS42AXqrG5UXlnkZ17im9Op/UkmWXunx2BpvpOo/MvSkP2NngF5jybI447Tj0O5+hemDLHDCwyyMYLcXOAVpcVYVEtKPW+jtSpUpSc2LPtFJ+KfoXlCi/tLx/nlP+yvU9RWUwifqqIRdpIvIN9vFeVsOe2T2Ssbo3Ne01lPYtNwez3rRtg9FHg9bN80eCEN80IUAjvSMbZFx6+/8xm/YKpT2J9x7e2B0+Vj9gq38+4xhk2S8eiZiNE6Q0Uw0+UMvfSfSqh9ioHsdjnajcw1YILTf3hUEvg9GDmuXEvtVy6gLXXLiX2q5c92s0Z/IQ95EXasli1ZL4wlguwQhCkgEIQgBCEIAQhCxmtSwTyCLd6EXtupclJ4Zlg5MUfUNwWrlpr+UNjJYAATe/p2VFZGxrPEvSDVRVjKkUOuUAmKIC19uAvwV/XN9wCw8QtbKalilMsNPG2Q8XBgHFW1j1GlaU5wlDLfHwNM4Ns3oQksqjh4M478hdGpI7YLAG5Wbi2ZYRk4t0m7gHckryNIublISRbZtu8rRWVMVOR1zwGnncKIwepJI11JaFlywNWLwy1b+pZLxF9Ib86gOKOwjL9fasniqqhp7TNTmHh/zTnn3BZcQh8rwfFTFM0glpqw0adydhzTFlHK+Vc2wtixbE8Uixa3bBqo2Ak3tbU0ngF7npHS516LTlt8ip1WNSvmutT+bRvy3Ux9JOYaihdSuZQQUrnMu641sNhuLHmmeozJTZXxiuy/iFNqhpHiJrC/TtbV48+9XrkPI+F5TjcMNfNIXXJfI9riQbcw0dyZc6dFOXsxYq/E8QqKune8l0jo5o4xc2HNp7u9eqt7C2UFSqxyl8WbaleSqZovCXBEcmYlhGPtfLSTR00+7Qwuc8mx2U/oInQRaS7WW7ONrbqiM34Zl/Cq+OgytiGI9bqF5HVDCwXv75gHNTjJWK0+C0EbK2vdUT2brLpw8XtY23Xjuu9HVOWqz2Xlz/Us7b12rDNX2vuLIa5rhcPAHcsiHncNLRy9KqTpqzBiXtNA/Lou4udfq2uJ83+6e9PPRFiGL1WVRJizJBOHNH1xjwbaB8LfvVBPpU4W3jt4347mqpKVOWGsFgXfwKUNtuuVlWdVnD5l1B2puyrnFrlmyE9QqEIWHBlLYEIQpIBCEIAQhCyisgLho7SxfuA5vJDjYt24myyIDXgN3HcsJcgZc05ew7NWFz0Vc1uqZhZclwtfbkQqgwvF8Z6LMcdhuNRyyYA55EDnBrGht9DN93HhzV8Oc1xLbEekC1k0ZkwCizFhctDiEbSTuyUAahbh2iDzVvYX/hxdvXWacvu+/JqnTy9R24fX0uJUkVVh8rZI330ubcgWNua6tLubr/EvP1DW410U44ygrddVg73ACZwfLpAGonVs0buV6YNiNLjNBHVUcwddoJAeDbYHl4rVf9Nds1Kk8wfD8yYVM7M7S0OFuYQC4+fxSXPVauBWXJVjNuAQhClMgEIQoccsAhCFPGSewG+u1+yRsfSqh6VcwZ1y5VmbCZJ/IrusWwxEW1ADdwJVuBumQsJ2tcH0przTQx4jgdRBNGHuBGjs3Nrq16bcRp3MXJZRrq+6U6zN3SJmXKVbUtNV7VdS8PmEEOmwNnb2vsqnjzHmatqnYLHVSTB0lwBHGNwbdyn1NnGfKnRpieWMUoKyOeaOdjZRTPA7bi4WcbclMPYxZSoqzCqrF66B0konOgyNB2LGnmP4r6xTeYplRLkqLGMuYvl7NeCzY/1hnqpiAHsDSNLR3eghe4MvH/sHDrN/7tH+yF5q9kUQ3pAy6+7GR+UPuHG2n62z5F6Gy5i+GuwjD4mYhSOk8mj7InYT5o5XWZA+t493oWaxab2OxHeFkgBCEIAWD9QcCNx3LNIeduKANr+leU+k7+0Dh23+vk/dNXp+qxKipJg2qrKaF1uEkzW/MSvLnSPNHP0+YZJDPBNG6aQtMTw7/VDjYoD1XR/adP8AiN+hbXAkGxsVqo/tOn/Eb9C2OBIIGyh8Ai+KOYyd7nEANbcqrM/Z8joIpqagcBMHaSQQeDt+IUi6WsdNDE+OmIEpHy9k9xXmyvqcRxHEJfKonMY55IeWOA7+JXm+l9AoVr6pd3SxFPbOV/c4bq+dw/VqXK2OzGc0VtTPA2Muu1+ojs93grTyLhOJV3ks8sMohdEHF5AtewKqyNr+tqGllMXvjDWG3NTHD+kfEstYUyIsw95bYABpc61rfC9Cs+sTqXmqnZx2+pm+gQt4QqVHvn4/mXzCDDH2nXatT6lrT9bbufSqryn0sVOKVF6qCmjidawMRaRx73Kx6LHqGst24ASL7Ob6186u+g39p7dWLf3FxQ6jb50Se/zN004YQTsXLFtY3vC3S00c3aY8OB4WcCuKaiey5bdVrWrZrDLWnOMlzk7mVVxsVsbOTxKZAZWOst0dSR5yxlS0vJn4WOR8Y9h4lZOfdNsUmsXBXRE+61yiuWa5UzoCobpqxDOLMwwQ4LHUOpI+tDdEcZFrNtxF+9X03gtNVSU1QWOkgje5t9ywHirHpN/TtKznOOVjGDmqptYG/LPlBwSnkrrio2BDgAeA7tk78Rq5ndI6NpaNNgByGyAb/EuKvNVZ6kZwQqS10qxe7S26wabZk3gyDUEJI36kp4qMPOxHG5iNHmyDfxSkNaLDcdyyNuIt4lRPPlbjOHUD58JjglIaSAWOfwaTwaVtoxVefhyIbXMh/lr4oS4utpabHfgq66Ks0VOJ4niNPXPLg2FpYCANy+3IKIV+bsarMLeypdQwVG2tnaY6/gXXWzF8Zp8OxandgoZBIHgyGazWlttuBHNent+jyhRlt8jSpxr7UHwXxCWWJtqde1+70JQ3e7yqawnO+P12NxU1PHQvgIOp7GPIuD3h1lcVO6VlMw1BiLzxDD6V5+9svVfalyzZHWvfXJ0AbF2safBYQu1k9RKHd4ATVmZ0zMEqnUZcZxG8gb/APd6VRvRZj+Zm5rljxBj+oLm31Mkt5ru82W+16Y7i3daMsY7GOJa8HogkA298kC1Qzxym9+0Wrcq7Roymje/ZBCEKNOFkx5BCEKCAQhCEghCE7DGQQkulUKWN0NODEgSNdcdZEWljh48fmVR54yfW5cxUZkyW17XEufKyJuvewa3zyRzcrb7WrVFYNGxDuayvHI17JWXjda7S3b5F3WV7K0lhe4+TXUjndEO6P890Ob6HTG9lPiMZLZIi7U4hpDSeFhclTFrCCWk6HDY35qns/ZIqMGr/AOUeV3SRujt1lOHHSWi7idDADuQOalPRtnaHNmHtpsQc2nxOBoY9n2Ml1iTs4kqwvenwqw8eze31NcKmNmTm7T5qEjd27ixSrzyaisrk6sghCFLntp7kZBCELJRcVhkMEIQpIBR/O7sZjwOeXL0j21rGEtYyNri87WA1bd6kCTU5pBswx37YIubehbaE1TqRm+zD4KDy7n7pErq6eggdVSYlG5w6psEGoMFgTbTa17qDZ9zNm/Bs0S1dbiEkWIh5dMx0EYMZAFrjTbgVYGaIK3LPSc3HKOkqX0BpLSdXC93aMjifNFuAChrqqk6Rumd0j4KkUdTMSGtj07FnO4I96vsFjUjUt4uPcqavvDM3L2bMay9UYtWSTmkbrc5xiZY2FzuPQV6B9iu5v8iJREdYa2EED8Up96V8Ogw3ovmgw2KOJrWHUC0NJHVO7rdwUY9i/iFBR5IcJ6ymhlLIrtlma3fSeRK6uDUuS+xdI8am2BsVzUtVDXQiallZIy5F2vDht4LpHAX4oDIXtublCEIAQhCAR1tO6pv2UIf/ACDjMXKSS/6NyuGomjp4jJPIyOMcXPcGgfGVSnslMRoqvI7G0VfRyv6yTstna7/VnuKAe/Y5uLujbDbCxFPAD+jCtKyrD2OoI6OMOva/k8HD8mFZ6xkBjzB57PAfSU0VDXOaSZOqYPfEXBTvmDz2eA+kqsOkPNGPZec19DRU9RSu1WJgfIQBbjY2HFfO+v0PH6ioQ2eF/csrf3B7zfMymwGpncQOqY57Hd7g02VfZBxh+YsMmfWv0ydktvbfa54Bds2J4/nCmpIi3DW0xlaZWxBweG2s641Hv5rRi2XcRy7WulwXyUUVzr64nbkLWsOaytoQpRdGT3ZxXNPWmhcQoxTSFroSWn310w1tAQ/rY2kt9Czpc1Y3iuJsoZKKjdTlzWuljgfsCbHtXIUhq8OfB1Zbd+pt3DjYqyp11QwkeT6h05z4IS9uk9ptli7VtpKkk9A157Yt8ybqnDbHsO+dW9C91L2jzk7CcOxwskeOK3CpA47rCSglZzK1GCVvvSfiKtqPVpRjpycbtX5HV5RGRuB8qTVTni0fKVxkPBsWn5EaTzuu6PW5pJav6GvwHE7CabkBbxKacxz1EOGyDDQS4tPmgH6V1tbtaxQ1jhdr23ae8JX6xOccZ/odFv7E1JrOBkyhXYkI5RiDXiMuJ7QaN7DuUgdVPPmgrWyB1y1kYDTvs1bPJ5eGg/IVwvqslHDZsuk69TxIw2NT3F/nFJZwHZBK74MMMou5xHx2XdT4f1Q2Gr51WVb7fMmZ0bGdXfA0U9LLKfNITzSUvUgaBdx4pwpaB8hFmafisnmjw5kNus3cfSqu6votclxZ9LknnBz4VQHz3ixT7RQGeUMd2g3fT4c1hDSymQaG9jwKepYpqaiLqFsRqbbdYOzw34LzNxcubxFnrbS2ccHdD1bnQtbsRe7OarnPuZ6mizlh1DQOIhc+nMgAB2MhDuIvwC4X5vzZBjUtBV0uFwse4NbK6GRo82/nF1k94Tk6pqqOrrsSlp5KyRknVPjk1NabXbub2sT3rOla0rd6qrTyXEXpRYUckT4g8EMjfvc80r2At4hrRvdVDiGYcyZXwyHD4HYVXVJZs1uqZw08bhrr81PcoVOMV9F1+NR00RN7Nja5m9+5x7lw3FhKkvFlLZ9jdTnkeJoxLGWlwcOSbTFcFsjT6Anq51AWbax4Befuk7GMz0+eGQ4dBMaXXHYtilI+xi/DbiljaSvZaYPGDpjW0Fr1FMYySBsU3zU7XbjinTBBLNg9E+sBEroWl1wRvb0paikGq7FHi+FNxW7O+lcEekgue23dcc1Nc9kWUjfByLd/Bc8lLfgLLuhc4Sydka6Iy+lI89pcO7gtElI0+8t8akrqMjcb+KwdTW4t+ZdMLpHTG4RFXUAvcGyTyH+98ykr6dhBGh1/BavIx3P+RbfWdW6NvrKI95D/AHx8iyFC3mQVIPIx3O+RAp28mO+RJXCbTIdyhjbRM+Bf410R0btNo2lo7uKeW0x5NHxhZtpn67EAeCxld5lua5XQ2w0jgLScEzZqyhBjFATTx/z2IF0BBJOu1htex+NTNtGdje/xrpZE4FgY3cHiQtUOoeA/Eicl1LxYlT5PzRLg9a7BMz3iIceqdLZvZFmjZo7wVbMMAGgRHWw3DXjgmDN2SKXM1M59nQVkQ7L4yGXtc8bE8SohkLNtflzEBguZmaWHS1kz2OB5l3acbcwuq4hG+p+NRe65XJVQrSoPDLhhiLQCTcrvpI3OcHt2K00kbZ446infrifY7OB478k56QwtDbXK8vVTziXJNStqMgsgsQsguXVmWk5gudRC55G9o3XVcAArVM27dQWUdmRLdDFi1KQWytGzdyo9iNO2oYXN85o+hTSYdZHoI4pirKAxOJbcgq7sq6gUd7buZBKiEyNcyUbelMVXh74Y3mE22J4Kw6qijeDfZyYqigexxDmkjjwXpLa/imjyl906TerBUjswY5gmOiSF72RBzgDoYeOw4hTDP+M9IVXlcVmNT1NNShrzEZKeEAkCx3aFz5+wh9bhobh1NI6pa5hOmMk7PBPAX4Ju6Ts+txrKGG4A+jr6aqifICH07oydQ248fkXqbauq0cou+lrTTxgi+BV+bs5VbKWlqZpnwMMV2xR+aN+4d6kfRjg9XgXTXQYfXyF1TBVwhwLdJ33V+dB+WKDDMmQVnkv85ljDi50YvvG2/K6qKGVkXskWSzSxxsbWQFznuDRbT3ldBY5PWkZNhdpBshcVLiuG1EhZBiFLK8C5aydjiB4AoUEFJZv6GKXD8vY9XjFNZ8llfp8kA5E8daavYlRNp6bGIY3awypDb2twYVd3SIS3I2PBtt6Gbj+IVSvsUWOBx0kjerHD8QqGS+D0by7lz14vSuuugcForBemetVdZpSQh7yIq3zQlSN4BKvjE1iTRdghCFiQCEIQAhCEAIIu0gceSEb8RxUN43JEuQLFu/elNiLLXUVFPT2FVURRuOwDnWWbAx0YfE9r2u3BBuFMqThFTwRqF5WRc8kJFLSkkzNbioQhYyftGvGHgRlnEhxQ1oDihwBBubfGmLHMchoaeRocC6x4Ed3ittC3q3NTTA1XNxC2jqkdmNYnT0FO4SntHcce9U/mzOLpdTBKXNtwv6PBcWa8wGoe/W8jfbe21/FVzNMZXkkkr616M+iUacPHuUnns8P+qPH3F7U6lWdOLaiuGth7nzNMWua12m52N/8Akmijkrp8boZYHmHEZHmzxYknSe/0LSx3c2/xLvyrjkOX8001fURmcRv1AMAdbskcD4r29a2o0aWmjTin8kjroUVS25+Z7CocTgwXLeGyYtN1RfFE0uLSdTiwd3fuo30vvq8Q6PKyrwKqewFjS1zW8e2O/wCNUhg2I4hnzNE7sSlMdE2J3VsaSwizuzwuOBXRDmWtyfjVZh0hdUYWZAAANZsB3uIHErytap4VVQlyXFtbyu4ScOxBKKFjYRJTkF3WEPAFr966u0HXYA0nuHBcdBUMnkmfC1zGvc7Z3iuknQe09oA4bqurQzUy/wDB9DtJUo0k4r6kowPNNRQzRRVTzJGDsC630BXJlXM0OJQMicbbbdona3gvOxd1liLGyc8Jxaahka5rjsbfEqfqPTHXpvS8Py7Gq46dCunJcvdHpcUzJnERtue9ETJoZSyRp02uCVTOPdItRheWjLSgun0OPmh1t/FS/ogzdV5owSSSuiLHtlcASwN4BvpPevJ3HSKtGk6j4+Z5a4t5UZ4J9dHxpXW5LDe6qEvZ3IXG5mhCFJAIQhAASoCFGl4bTBjK5kcb5JCWtYNRNrrTQVMFc10lLIX22PZIUd6SsIrcay1PS4dK2KYtfuS4cWke93UO6EMm4zloVDsWqWSBzgQA6Q+9I98ArmjYUp2kq7luu2xDe+C2rkXBFy7Za32DdLowWk3tdbSdhbc8kms8HD5lTJt+yzIbsw4HR5gwo0OIRNlpSC0xOvax48/QqQmkxnolx4B7nVGCVDtg4iJsep3Cw1E2a1X8bONuC4sYwynxijlgrWtc1zS0CwuNiL8PSrWxv/C/YVvag/PfHy32NM6feJhg2NU2N4PDiFBaSjmbq6wXAaL7cRunJjXabluyoKWlxfoox7yin1VWXpXEljA6R7GtFm3LrNG7ldmB4vSY7Rx1WHzxuY4C7S4Eg2F+F1lfWKpYnDeL4f5/EmFTPsschZwItYpLFrQDx70pF7j3wSWOkOPNVUlpNgIQhYpgEIQj3yT2AgarehF7lvoR74+CBxC20MqvH5oxqe6Q72Q2XXYplSmrIWXFG9804v57AwixudlJ+h6TCXZIw+PB42QuEMfXtZf7IGC+5UvqqWOtw6SnlaCyVpYb9xXnDA67F8idKdbhNK6Koo66eWpa2NpfoaXaQDe1rActl9lt/wB1H5IpnyN/sm6ZtZnfBKd/Y8ome3Va/vGclYuTOh2noHUGJjFNZMDDo8kA42PHUoF7I5rvdHy8RwNQ7j+TYvSWXW2wLDjffyaP9kLcQd0LOrjYxu4HNbFg0m4uW+CzQAhCEAJD2blKsTfVsRv3oCu8+9GsWbcRjqX1vk+lrRbycP4En4Q7153xvLcOWem/DaSGo689dIHHq9FvrYPee9eyw09ZqJ5WXlPpMN/ZBYfsR9fk/dBAeqaP7Tp/xG/Qtp2Wqj+06f8AEb9C2k2BKA89dKgldmMh24DWkDuNitFNR4e/J9VPikDZJGmMMc65sD4elWFnbCmVWOl9uDGlVr0s0crMs+TUZ0ud1Z58njuXmrm6nWru0pvGWUtOzlbXM7uT2b/qUtHiYiY021PD3WN7c9lxNe2sxHVJYmx+ldMNI2ANEm9itL6M+VCWM7WX0WNirZQhTingtp3Eqy9tnfqkids43HNPWD4xPTyNPWkEf8kxgki5SG44Kynb0K0dNaKf3L+5W1LSNRey8MuLLedaiK4kmc9g5E27/QrMwXMNNisIaCGvO2xJ9HcvLuHVj6eTe+k8VN8JxkAsMLyHAjn/AM14Pr3obSqJ1rfb6L+iOGn1K66ZU0z9qP3v+5fzqZt76NQPvuC4KjD3NNyb/EongGby1raee9iPOsOQ8VNqKvgrC4h4NhwuF8su7K4tG/EX9T2dl1aldRTT/X1NUFPpjFtiuuOJzS06dklVPFSUzpZnBrAbXJsuXCsVixEltNKx9vgkH6Fx+HKUdeNixbysocmvBcW6QNu9Eepg478yk1Hu3CyvcXWhNPfBrcRLAG4QsXPssOtCxeXwZJG5I4Bws4XCxa+6ztss4xa7mL5EaAOAsgpUh2BWMXJSwSxHutBv5vco/mHH2UNE9sLtDrHgSOR9Cyx/FG08Dmg7/F3hVzikrq1zgTsVe9L6c5z1yPNdY6l4UdMOStc21FLV5ldUylsc0he4k7mT03SdJ0rqiCFwomUN3EGRsmvUNPC3zqyMkZDpH4xNX17utD3lzGsedgW8wQrLzfgtFi+EugqYAAA7SWtAsSLdy9Tc9co0KsaSWy52/wAnR0ejNQVVP3jzz0aYnU4XRNkY4siFhsbB/ZHaVu4bmp9QGyHj+N/yUIjyjJhLqiFrmuikkMjLEmzeQOyzw+iqRNa4ZE07k3C5ryNC6eWv6H0S3tqMrZOpyvkWhFjxewm3EaT2uXyLlbNEH64Yg1x4kOKjdK9kIv18bxws11906UkoI4hVDoSoaoJvGDkVrBe1HckFFK5zwWMsfFP1O2d41WJA5KOR1XkWG1dQLF8UTntHG5G6rPKnStilTniWgqadwpjJIL9SBwaSN7rhp9OrXEJSj2Ku6e+Ei92h0jNTW2tySeK0snjmbrF7OHIraLWFuCq9LgtLObfuKkSoCxIEQSBxWThsuSpqGwMLn3twUpZ2RlFZZ1XHEbrHz9wbehRTEs30mGMkfLewPe3+JXNhme6DEYWvjfbc8S3+BXSrKvKm5JG9UJPgmh2uTwHFRyfOeGsxYUILes1Ac+Yv3LZLjsc9FK2Nwu5psdu7xVAYdlXFZ+khlY+T+bmaM8X8Ay3dZWvSulU69Nuu8Y/Xc4rujWSzFHp5h6yNkg4OAIWV9XFc9CdFFTxk7tja35At4G91RTwpOK4N0VhbhIwPa/fct0uHwm9yqjPWQjQyTZoyz/NK5rtb442A9YXkNJLidrAnkrXdZ7w0cRulLAXiXZxbcaDuDf0LrsrupbT9l+z5f4NM6ed0V/0Z5+jzRC6lrgKfEYr6mB5kJGrSN7AbqwTGWgEOLid7Wsqo6S8g1E04zJl9zYq6mtK+G7hrEbdgGNFrkjnxTh0a55ixuJ2F43qpMRpz1Y63TGHBrRcje53VhfWNO5h6za/TyMYya2ZYoIcewdVvO9CVICXktcLOZvfgHeCVULaWzW5ui8ghIlWTzyzJghCFBiCxdcWIbdw4ehZIu1o1Oa4232WMuAdcNOKzC6ylkBcZI5AN+9tv4qmOhrBsPy70jYvh2IwMNaZIW0Tze7bMfrsBfvHFXjlxgbDKd9Tnk791gqo9kZhctBR0WacMkZHVYcyaRzd7yF2gCwA3tY8SvrnRs+qwKmr77Jd052GQaxxbazX7/wDpvVIdBnRrBm3LJrH4h1D2tjJb5MH3JB56grKzfilVi3Q1JU1cZbJocCC21/rJXP7FYN/kKSGu3ZDf/CVbNZRqXJaGSsuDLWDijbN1ukvN9AbxN+FypCSQwd6AA3fdB33dsFAMkIHDZCAEIQgGjNWCtzBgk+HPm6lsunt6NdrG/C4Xmvpo6K6bLGVWVTMQEp6x+3kwZ7wn4RXqs8FTnsn7/wAhI7kfZJP3bkA4+x3P/wBOMNDRcCmgF/8A0wrPB7RBVX+x2Jd0bYbpttTwfuwrQ77qG2lsBlzENmOHoHzlNUsbZ2GCQdZG/Z0d7Ap9x1mqmB9IUfkdI1psW3JBZ/G6+c+kScOoxnnGyLG23gVVhdbQZazdiE8dSKakNK9vkoYQ0v1gk6vTZYZszfS5gy5NHQ1gpSwxtexnb1HWDvsE55R6N46KvnxPFptc75n6WCR1rF+obOCfc6ZMo8x0TmRaYJ47CMA6Ae0Cbho34LGV3bxrJN5a7kOGTdgWDUUWCxvw2FsLZAQXNvueex9K1nDZo3uDLvBNyeCzyThVZhGCx0da5rg2R5uNXAn0qQiNzHWZbS7e5VZcXc41Xh5MHbRmt0Q2ooW3+vQNJ9JXFNg8TxdlmeAv/FTp0bS7ti/gFrkp43cGFdC6m0tjiqdMhLt+voV1LhMn3Q/J/wA1izB333efk/5qwThsZ/8A1QMNjH/6rp+2I8r9ficsuhwfb+n5FdvwI9YXObqv6P8AmtBwQh9zCNKsd+Ese7sg3PpXIaWiMvUGoi634OvdbKXVpVE2v1+Jol0CD7f0/IgjcG3P1oAXW5uCahYtsPD/AJqdtwcDYgkcitrcJi98HfKoXWXjd/r6kx6BFR2X9PyILHgoj31WHh/zW4YW08X/ADf81Om4ZTt3aHk+KzFDEPeFaZ9VlLh/r6m+n0WMY4wv19xBmYTGCNwfRbj86cYMNDWjRCG+BUqFHECCGlbdFhs0fIuefUpS7nTS6ZGK4I1TYfOXbXAXdHhY1apTc+kJ4Yx4dcAfIs+rBO/FclS8lI7adpGPY547Rs0sb86zjaZHXI4clvDA3hZLqN724ehcbqPOTqVNRIb0sRUhypO+uAiqRGeqlILi06m3PyKL1ue3YdlmSjwqBk0hpnfXRLoLSYyL2I5WBUtzzlJ2apqFs8wZTgu1APc02I9A7wnzCsIoMKoBQw05kY5uhzy0O2Isdz4K4p3dGjQpqru9/iYThk88dB8uIYh0htqcQe6okc8kg2FuweYXplwL9ph2huAd1BnZCjoM2Q4phMsbAS9zmlx5iw2Aspu0O2JIL/QtfWrqF1OE6WywtjOlDCM42kvG1rA7LT1IlIfJcyA+ddYSVlK2XqpaqFswNi0vsfkXRJsNA581WwdW3aqJtavI2LDNEsbZBuOG3itXkgLbt7I9AXUGhzxbaw5qnOl/pCxbLeNQUuH07nxkyAkQh17Nae/0rosLad5VcIc4zuZ+JoRZ5gLibeC1vo7jcLdluukxPB6aqnbpkfGwkWtxaD/FORAK1VHKlNwk90bVWfIw+Q7nZYuoj3J/0AckhYDyUKszNV2R3yJ10jqE/C+ZSLqmnayxNKz/AKKz9alFYRmrnHJHhRO+GfkWbaIW1F9x4KQNpGf9FNVNiWHzYtJh0cgMrY9ZGod9llRqVJpsO6OZlINza9+C1Vfk1Gxrqt+gOOkDSTv8SkRiZGGgDgFVXTXkzF8yy0jsJnbE1srSQXPHvCPeg966rCKuq3hVJYXmaql08bE7pqVksTZYO2xwuDa3Fb+oew2LPnTb0b4HV4LlmjpMQla+ZkUbSQXHcNseIupY+OzjpIK5b1qlVcIPKMVcy7jfHTF4F9rKPZ2yJQ5qonsrQDVAHqp3M1GMm1yBccgFMNJ5rExNJ7RNuditdC6rWs1Om9vmzXOeso3J+cMRyTmD+T2aCTTPuIJHvA4uDWWa0HkDzV3xFkzWTRuLonC7XkW28ExZ4yrT5nwl1PUNa2dvajkb2bENIFyBfmqnytj2LdG+YRgOPtfPg5cWCojaSA1rSR23kcXEK9r29LqdDxqO00uODn1OPJfG+q2lZO7PELTTVEOIUjaiimje0i+zr/Qtr7ujAdxXmknHNOosM2xeoDv6UvvbckgbpFkqLbYywaZQGgWC12a4EPbddQIvuEk0YI2WyNRxNUqakMtThbZZLsFviXDU0L2kXJcOCkbYnEWQ2MCPtC+66ad1JHNWs4zjjBHsu0jY8ZaQ3TfUTY8dlCum7L8NFn/A8dxOES4QaqIzMebNLGRgO3vf5la1HC3y9j2i3Fd3SJg0eP5OxagdobJJSvZHI/g0kWvexPyL6F6OVnVots4FQ8HYcMvTUc2WqWTDGBlK6BpYxt7AadhuvJ+M4OzHfZAS4dNN1OupgYTo18WjlcKyOgTMGLNxXFMuVmmWlpZJWtlYw27DGgDUfUoXQFx9kpFcW/nlPfbfzV6FPYlLuXDlDogp8vYtNXx4n1xlhdFo8lDLXc13HUfgoVosaBvvwQhAwdIoAyNjxtv5DN+wVSXsUbl+O3cftsfsFXb0jf0Fx78xm/YKpP2KPnY5+dj9gqJdjLsejB3LVVfa7x4rctU4vC/wP0LXU3jJGK2kiJhKk5lKvjNX32Xa4BCELWAQhCAEIQgBKwtEg1GyRYuO4FuKZ07jGSmOmjC811WMUjsEnnbAHsJDahrBwN9iVZOQoK+nyxSsxVznVIjZcueHG9t9wpC7tNs9oJHDZYgu4GwA5WVrc38K1tGio7o1xjvuKkKVCp2vM2J4YngkkeGDcoe9kQu5wHxqM4/jLIWkNe35R6V00reVaa0nNWuoUYuczbj2MtpIZLOsRwtfvVTY9jEk7ZJJZHAC9he66ccxB9bNJeQBt1BMdq+svC1w+JfVvRf0eUWq01+vqeBvr+r1O48OD9j9fI4MTrHVkxvsG7D0riDbCyUAAADiOKVfSlFQwlwXFGiqEFThsgZqbwcR4LWyCLWdUbXE8yFmUvB7VFTTUlujbDZlh9DzWvxmYuALRC9unlxC5+kGEMx+cWvG5x7B4DYLZ0Qv0404d7HD5wuvpRh6vGnu/vH+C+add9nqUIvvk9T6IT1TqxfwILDDGwu6tjWC3ABNGYWVh6vyZ7gCOTrc0+AWBKQX4vbcctkjPDPaVrRTpaEc2GtljpG9cSXb8TddLfO3PJLq18rBYnc37tlhKXtZNlKDowjDukbopGEGGpibURO20ybhWz0e4pSYbT+T01PFE13aIYCONlUI3KccMxGWkqAQduHBct9b+NScUaq9pSrZytz01RVLKiIPDtyunVvwCq/KeYg+NrXyN4ej0qxKCrjmjBDgb+lfO7q0qUJNdjzNzayovc677pXCw2Ra+4QHW2XKcjaQgSoQskmyXxsCLoQoxghLYDuEg22vt3JUKc7Y7E4Bp08Agedc7oQo7YIYGxN7AJHtGsOHG1kqQbp8AcuM4ZRYrhclHX00U8LwBpkbcDe/D4lSFZT4t0XY1FNQyzVOBSygPDnhoj1HU6zG77AW9KvgG7rLVitDT4hQvpauLrIHghwGxAIsd+S77S/9XXh1VmD7fHz8zTOn3jycmXcapMewyCtoZA9srA59wWlpPKx3TiLs7Mjj9KonHcFxXo1zA/G8AbLPg0jnPkiawylmrsNBc7YcVbmUcyYbmTC4qihqYZHkkOjbIHObY23sunqPTnFKvbvVB/ruTGfZj05wHDdBO4sgSaZtL2kJX217cFTRjvnsbM45BCEJvuT2C/aPggbuCQecfBDfOC6bVariK+KManukt7Xk4DBc+Kono+pH1/StjsuMRNnnhq6mOn6wh+mPlY8t77K+I7aAfQqQyZKaHpkxWKv+tPnlqZIdXZ1M5Ed/ivsdFYpxXwKZ8kN9kcXDpGy80uJHlD7ej62xelMvNtgOHb/92j/ZC80+yMa1vSPl0NO4qH33/wDDYvTGX/8AQOHfm0f7IWwg7WtAN7b96ySBKgBCEIAWJaC4HmFkjmUAg5ryl0nD/wDmBw7f/Xyfumr1a3n4ryn0nf2gcO/LyfuggPU9H9p0/wCI36FttdaqP7Tp/wARv0LcEBFcaia/EXOPEsAsqw6TISKckXs3a3/mVrYyzTWX9AUB6QqbrqF5aCdx+0vnjn4PWnL/AOTI6lS12Lb52PNlXG6KYxvF9+JWpl7FvAJ4zRAWVmtoNtvoTM87C3cvu1CeulGou/JSWNTx6Sl3XIjRZoCLJbWQtj+B2NLkQ8hyXdQVPk7wWgcVw8ws+J2Rb7Gq4oqrTaZOsOrfKIw0HS/vHFSTL2PTUdUOvkdoNhxJ5qsqCeSFwI5ehSynqIKlga54DvxlQde6HTvqHsx3/XxPI5qWFRum8Im/SZmR9VlVsOGuIlcYzqaS0878VB+hbF8XwzExHiMskzXOAJkkv8I8luZETJpLg6MXsEMLqeqbI0WF78PQvHS6Ara1lCcf19Szp+lFZ4i3+voX7S1Mc7NTXXLt7WW8Dax2Ve5axbSxt3i/xehTikrGTMB1C5Xza8s5W821we66dfRuKay9zdLDcbOK0Np3E8Susm26Lsda/HxXE88osXJo1siLG3JWxjtTTfaxSb6rk2YOJKV24vG9rm87d6JuTzgnPYQG5XNXVHUxvsAdiuobC5THjE12vA7j/Fb6K1VFg0V6uiDwQrMNW6R25O//ACTGAXPDRzPFd+MNK5qQXmYPSF7m2UadJPB8+um61d6mT3JlOGwtuNR23PgpBiDXOiLC4kJsys3TE0+gfQnuoAcCvF3s9VZyXme76ZFQpRilsiEYlTXkPaJtdRTMjZYcAq/Jnujm6s2LTY3uFP8AEow0vd6bKEZg1GJ4Au0jf5lbWNZVZLPY9Xbr1iLpvuVDleuxlmIT+W1dRJFrdYOkuOIsrJwfFJHW1OPyqOTQtje52mwJW2kks7slemuHCstkXdpYKhR8Lkn0mJOkiMbjdjhZwJ4hN1Dg+GMrTVQ0cDJySdYZvuO9NEUz9Tbna+6fqCRriLEfKqzwnQi/D2ycdeygnnBNsGkk0ButxHDipGy+hvPZRDC5i0CxUmpp9TGgnkvJ3McSZ5y5g1J7HUL8wguDSL8VkNxxWuaaOFl3kce9c/K2ORZbwbXanDsgW8VHsYr6LrDTSz6X2vw70mK41BTNLnAlvocqY6QRQYnK2oiMjZInB5tMd7XPIq26b06Vea1HfSs6slqgtxz6UYKWLDi6Cpe9z+1bTw7QUGytSSMp5Ww1UgETS/kOaSmxiGqp300tLO5sZDb6vjXRRPweifI1scgnnb1bLznzr34c17u2tXQt3GUjDXeUKyeMry2JVgOPxOlFI+d7pW7G4PLirBwuNri2QMAPHUOKrrLmUo4Zhicru1J2ranDzt/BWXgwIYGnzCvLdV8KGFF/Mt6tZ1KeXHDJTRi7G7ngu07BclHs0LrcvMNY4PP1s6jEADcDtd6LEG4JDu9KhYJvgxbwJZxJNy6/nA++HcVV3SN0fOr5Ti2WD5LibPP6nTGXXcXOJcfQrRNrHcCT3nj/ABWJLuD3BsnpHEeC7bS7nZNSg9nyYuCbK96M8/NxhvtZjt4cWYBpvqfrLidi61uACsQkB1uar7pLyJFjEJxHBWugxan1Pjs5ztTiAB2RseBTd0dZ+66p9oMzkUdZAC1rp9MWssswWHHc3VncWVO7j61a/ejVCThtItHWzrOruesPKyXmkLgXDbcea7k7wWSo8bZlydCeUCEIWttcDYErSAbHny70iA0E3PJE8LDIHbLzSGSFziQXm1/AKsPZIvqRTYNTxi9HMyoFQzVYOA6u1xz5q1sBsaZ5Pwz9AVZ+yL61mBQVPVuMEEcxe62wvo5r6/0uKVrAp6vvs7elOCOl6JtNMxsbOouWtFgfrDkw+xRJdkmQg7aYdu7slPfSrVMm6I2yQkOaYQCQb/6hyZPYpNP8hJNBAJbD+yVYmsvIi6RzQRYpUIAAAFhsEIQgBCEIAIuLKmvZQ75Dj/KSfu3K5VTXsoP6BR/lJP3bkA5exzH/ANNcMtt/NoP3QVouGyq/2Of9W2F/m0H7oK0SoYZwYuL01vjUaYLsJJ3Pmn4PgpPig/m5UZZs0L5x6XRzcxz5Fjae6AF7daTJbhq5LKw1BwADhwPNCF5ZrZHUooO0QQ97ng8jyRuG2HBJdHHgpUmSl5CtaOJYCkf6GAIuQguTJOkQN9CUtB5LAzN7wkM7e8LZFYixoZtaHvaWxbOBG4Nl57ODZ3PSDFL5TU+RB0dx5Uy1r77XV/GaJvaDgHHjusfKImdoBpd37Kw6bfRt1PVHOUYuk3wbKbrWUVM2ckyiMB5JvvzWfHjuuV1Uy93Hc78Vl5VD/wBOVbOPiNyNnhNYN+w4AIJI5LQ2pjJ7J38VkZ224hRGGENLybA6+6XUCQLkXWlswOwIuVne3GRocOSyjHOyQawbGPuBZxuTZI49o7bpQXMbtxG/BJrvx481rlCUZGDjvsFysozZ1yNQtaxWPFKFLl3SJxthg0WcCd2jg3kEoJFw02B5BCES7sYQNs1lmgA944rEMdazCdXIrJG/vePJRTaUs9hjY8/ZswfOc/SPUTUk9Q2g6+WwFS0C2rba6v2mDvJI2zE9cBueKyLnNG7AXHnpCQuF9ZPaPJWt9fwuY04xjjSsGuMHEyLSbaSR4JsxjLeD4u9kmI4XRzytvZ8keo729S73TE+bxWHWvHnnbwXFRqVaNRzpPDwQ3F7SNsEUFNE2KmiZDG0ABrBYbCyzFuRXO6dtrh7bLnlrGMvdw+VQqUpbvkOrGOw4OO2yxF+5NLsTjHP51icVjHP5wslbTfY1etwXI8gkkCy01NZS0rdVRKWWNj2SU1HFou+/xhNWOx02PUL6TEIpY4ibtfrLL2vbceK30bJzmlLYxndw7D7PmTCaemmmdUktjAO0bjff0BVBhE89Dmn+UEr3up55xSaDwDS++rvvY8FzR4LTZXxcUlVS1dThsztN2SuFwBc9o+kqya0YScAdC+lkNHHGagNEliHBvwvAK79WVq9EFlM1esJkkkxvCi2RwqOyT2SWELrgqWVEYfCdTOAPBUXhGWaPNda6skZUQ4bFsGumeNnD4QPoVu0ElHh9K2npbtibw1P1H5SuC+6fGMVOD3fY2QuI53Hognc7/GgXHo8Cm9tZC/37R/5ltEkPvZW/4lUxoThsjd4yZ19s+keKU8DfitDHOPmkEehbOsPAgqJU2tkZKaxsZtLr31m3co9nPK2H5qw19LWxRhzgLS6A5w7QPPwT+HALIWIShVqWs1UpvDRksNblC5dx/F+jvMkWCY/LNJh8sjA2d7y8gPd3NvwAV50tZS11PHUU85fTyN1B+k334bJtzbl3Dsz4TLRYpGdTmuEUoeWAPLSBuNza6pvDcXxXopx19DjUUs2AyOc6GTqw0Bo7Le27c7r0NalR6xDxKe1Rduc/0RpUnFl+2cD2hY+KXsgblaKCrpsTpm1GH1UNRE69nxO1A29K3Pb71x3XnHBxbjNYaOjUmgFkqQkAADkkuoeEs/gSkxd+R3QBpjAIvvzSB2+yxJLgPFRwycM3UwPlUbWtHAruz3JNBkvGZKUnr2UkjmkGxvbbdcuF3NewHuP0JxzfC+bLGKRwtLpH0z2gAXubdy+keiqxbNlVdZ17lcdANDB7R47WyRtNa6vk1SkdoXiZcXVWUTr+yWaQbg1lPv8A+VWr0DVUbcMzHRSua2oGJSHQTY2ETAdlVVIGj2TDAzdvllPb/CvUYwaD1mzzR4IQ3gPBCGJHekb+guPfmM37BVJ+xQ87HPzsfsFXZ0jf0Fx78xm/YKpP2KHnY5+dj9gqHwjLsejeSwm+wv8AA/Qs+S1zfYX+B+hRNeyzH/siJnzihB84oXxeusVGXUeAQhC1EghCEAIQhACxeXAdgAn0rJCklCcW7k6kW9JugosSkUo7meAWMkgY03PJYyHQ0kqN4xiXVFwuui1oyrzxg4rq6hRWWzHG8Tcxhs751XOM4m+aQt1G/wAazx7FnzTaWcP/ANEy1LxEzW87r6J0LoTlJJr9fQ+dda6s68/Cp8fr4kRzpiVXRW6k999z3hNFJJJURCWQ7+Kd8aqY6yeRrhsD3psvbssGy+m29m7NYRadKpRhRTa3FsAfFJfeyzI+t37tljLKIqcvtuAea6nUxuWOBCCUrvOaU30uI+UTGK1uJ4pwbuG3SlXU87EtYJx0UPAx5vp2/wDc1SDpcjtiLnDvP8FE+jWXqswwDvcB/wC4KddMUVnGQc7/AEhfM/SbMeqUPimX3obPNxVRV7h2Qh5OlrSBwWJaXBvilc0i3oUYPosnjhiPe1oAHFHdbnulOlySR7WR3dsAscZZi5bamZeaFiHXcsaaaKQdhwPgsz5ymLaeGYqeqGtDphOIyU0ou4hviVa+WMdY+NgL3fOqUJINwn3BsVfTyRi/NVfULJV02kRWoRr09+T0VQ1bZWA3XYQLX5Ku8s4yJI2gnfx9Cm1FUiYWuvEXdrKkeVubWVNnaCDwS2S2Ftki44yaRyrgEIKFOc7kgduKALpA65stgtZAYWRZB3NjwKQ6m7MOyGLAboI0pdJG5kHyIkBIQgS1t0EuLdTN3dx4FI022KysALtbdx7lKx3GcGmroqeuo3Q10Mb43jtRkXbfwKo/MGBV/Rli0GK4PNNNhUzwJYpHbMa3tOLWstvvzV7dU4DXffustNVDBWUstPVRl0MrSyQardkqy6dfztm4TWab8/1g1yjtlDTk/MVJmjC46qmI1Na1rwRY3tc7HdPew33seCozNGBYh0bYycdwA+UYfM4l8MbNJbrdzc4ngB3K1soZloc04Y2rw6RpfILyxB2osFyBc2Hctl909x/b0HmD/XYxg87MfgLo5rFvZdYrIB4ddu4VLGT1NM39hANyfiSsB6xo70Dh8ayZ9mZ4LptotXMMeaManukraSI27C3NUZ02VLMt58wbMDQ2OBtO2B+jzi58pF7Dc8VejdmN3sF5h9lRNAcxYQPKGEgREstv9nPNfZqXuIpnycPT1XQYnnjLNZS6uqkqJLam2OzGjgvUOX/9A4d+bR/sheUumCannzDlB8BFzUS6he9uy1ercv8A+gcO/No/2QsyDuCVIEqAEIQgBHMoRzKARvPxXlPpO/tA4d+Xk/dBerG8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C2m4BstVH9p0/4jfoW080YGDHbmoHxKOY9SipoXssC7b6VIcdNqkfEmuVuuNw718r6vUlT6jKS7Ms4U1Wo6H3R54zFQBwexw+ui/8AyUFnYWzOj98Crmzrhxgkc8Dj6lV+N0hid1g5+tfafRjqMbuyjHO+D59azlZXU6E+Bm47osl4IXomsF+t1sA4FLG1xdsk5LbT8Uia5zcYs3s1NG1rroin6t19bgfQucmxS2BW1ywsFBVSqtpjzS4m4EXcSnpswqYLx8fSoZ1mhO+EV7YyGuIC0VrWFzBplTd2Oha4ok+GVz4JmtcTYH1Kf4NioJaS42KrcASt1sO66qGvmpnhpBs1fMutdFlCTxHOf15HT0zqrtppT4/XxLsgrY5A0Enf0LuI2aW2NxfdVIc2Pp4wd9vSPUtR6THRubEQS4jbtj1Lx1X0Yvmsxj+D/I9xR6/Tl2/X1Jt0jYpU4dlGuqKK3XNhkI3PEDbgq66D824zjOL1MGLX6kPfa7nng0W4ldj81zVkTmyNcYyDcahw+RduDYrHq+tMLBzu++6sY9LdpZyp1oe01zj80YLr1OdVRX9vzLQqZ2tbYEphrw57XHa1jzXC3F5Q3sgkeIXLX4q0xOMnG3C/FUVr0+aqbHTc3cJxbyMmLsJDdr37lyYWBJK1wBsHW3FuajuIdI1Ph+MeQupHnS4tv1wHK/wVaFLhUFXDDVR2Y1wa6xueV16K4qerU0plFTsHVnrQ+5eFohb0fQnZ24K4cLg6lgtuOS7Jn6Iyb72Xi68k5to9laQcIpDFipAeWu4FQ3GG21Ndax4KU4hK6WRzGi97lRmugAJdJCdud1adP9ndI9LaLS02yH1UAc9zHgAW1bJpddshER4d+ykeLRBsmsbC1rfKmunoHVs9hs3vtdekpT1RPTUKsYxyzRHPIC1rrbm3FPuGzGMi7lyS02DwXZJUxdcBsN+K52TxQnsuBWU4SksGuNSNfKiTugrCALFPNPiem1yq8pcSZaxIHxrujxNvJwVPW6fqeSrq2Lk8ssB2MkN2d9KasQxl5aRcW48SohU4pZuxTVU4m51wClHpae7/AF+Ap9Linn9f0O/MWNzPDmNDdPifQq/xOpe573A3bp3B7k518z5CSeCaJG67hegsqEaMeDv8JQg4x5GGjbUTVNR1R0RufcEG3JbKhlTSSxSShr9Dr3JuQnmMsYwtaO14ocwSN6t43dsrGVVSeMdivpWKim85kTvJ2JyV+HxMkcQA1trX5AKxcKcera02t3qrcqAUzGMHIW+ZWThUnYavH9ThHMtjRd0sRSknkmVHs1vgutxTbR1I0NHoXX5QD/8AqvLygyhqQeTcdgCi+4HeueSYNs/msJKl5aHGSw7lr0sxcdzq2LgDx7+5K5ljd247zxXPT1N9TuNxZbutbpvfdS4vvwiHFpitsTqaSbd6r/pL6P4MXg9tcIJpsThIfaLSwOA1ONza+5srDNmx65JAxveRey1U7zI9z2HhcB3eF2W1xVtMV6a9k01HGT09yrOi3P7qqrjy9mMdVi0R6tpAcWudZzzdzj3WVrFwDgL8eFlXnSd0fszLE+vw4iHFh2muc0yHUS0cLgeaCmrox6Q3vk9oMzNMOJMeYo3SPAuCQxlmgePNWl1aU72krq257ry+5djFScXpZbRBCRI8NjtE92pxGxtb5lk43N15/Sk9M+TankRIdhfkNylWLxdpRbLBmP2CdqlIbx13+YJg6Y8O9tOj3F6djY3SujDWF5AAu4c1IcDINKQ3v/gFG+mIxt6P8UZLK2LWxvacLjzgvr/S/wDiw+RS1ffZTsOcaXHuiLEqAl5qKYzg9k2s1hZxKlHsUmj+Qry1zr6Ib3/FKp3o8q6ZvR7j9ObF386Idq/grh9ind+RZGOadOmHf/ylWHcwZeaEBCEAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/ADaD90FaJVXexz/q2wv82g/dBWiVHchnJiVhTm6jDSC0EcFJ8TF6YqMMFmBfPvS2P+4XyLKz90WyxdsVkSsHvDRcryTWWkdiWReS0S1LY++/gueoqC++lcUlUIgb8fFbI0sm+FPJ2Oqy7zfnWt1W9vEj5U1SVHWHY2XLPOW87hb42zZ1Rtx3dWN71qdWjvKYzUjkLfGtTqpw4OsuqNrmJvVux/NYCRfgtb67tdmxHpTC6rNtzdaDVm/Fb42aiuDNWr8iRmuJO7W+hZeXf3WqMurAPOF/jQKxnwfnUxs+yRMrVpEnZWb7hoHoWRrgGk3OyjLatjtrW270OxKKlg66ZwDIRd26wjZNywRO2UY6iSyVpbEXNJvbZUtmHOeYafP0lHDq8n654HafwDb99lZlPiB6lr2dprjcEHvWxskRmMzmOLyb31LrtI07aUlUjnPBz1bVzSlEk1FVySUcT3uOtzRtf0Lp8o0kBxNyLqPskc9wkZILjlbuXVDVEkiTcqoq0szbMPAwh/jeNN77LcXgMDt7KA59zOzKGDCrbCZSdWzXhvAA8we9dHRlnqPOeGmobC6Hq3dWQZA+5AB5Ad6lWFaFB137uThn72knDe0ARzQdnEc7XWBuZCBwWQjFyXN132sNlXtuTMXsLzaPhbhIQSSBxASDQ1wNtOlK4/W9QaSRusoSjnCRGo1NlJl0jfSCDdaxwBvuDc3Suu4hx2NrlMuJV5fI6OHkN/kXTTpa3hI461bRsdlVXRwuIBJd4JvnxGRw5AeJTJiOLUeEt1V0rWufuLm3H/8ARNE+Lx1cXW07gWHmDdXdv0ySWpr9fQpLq9dPfJIpsQaPOleD3BN8+LgE6XOd43UbqK1jTdzheyb5sTJ2YPnVvT6Wmk8fr6FFW6y99/19SVnGH82st8a1SY1b3rPnUOmqJJQNRsPStNz3j5F2Q6X8P19CrqdYnnb9fiTE42HHTYC+1xdahi8j5C18hLW3tueSiXHYlKbN8wglb10tPdr9fQ0/bFRPb9fias24/Uz43SNpProiedTZCQ3dqWR+M08UlSaqSUPiLTA+UmMAju4+hKyFvW9aRvxWZ1iWzvNIXW7JQxiOToXW54/X5nT0eZhqInT08kbGl7m/WxfQLA+lTMYtIDpbpcO8kqBRNbDUF8Xet0dVIHXuuOt0yNSee4l1uf6/9k8ixYh31yw8Lp0irBK0FshBHpsq2bXua4XTgzEI5Q0TEDSbi55qtq9Kw+P19CwodaeN3+vqWNT4hPHsC1w9JKcKfE9bmteACe66r2kxGRoAi830J7oqxryNTh1nIKquOnYLu16oqmN/19SbMdr3aQtzX6eKjVHVPieC7gU+xv6yMScjuqarQdLaRfUK6nwdkjhqGoAjl6CmjMuA4dj9CYcThbKTbQXMDi0XvYX9Kc4TqbZjTbvW43DbWLvmXLTlVtaiqx5OxpNFC4dXYl0WY7DhmKzTT4O5zWxTFxkeSe064bYAbq8aCshxShp62leHRSxteN9+0ARcfGuXMOD0eP4TPQVYDY5WltyTY39AVMUNbiPRVmF1JXROmwKd7jG4Wia3U7Szc3J2Hxq/nSp9XpeItqq5XC+m7NMcxe5e79nLW59jYlaaKvpq+hZWUU7ZoJBdhbw2Nj84K5ZZ3SEhwICoIUpwm4zW6O2mtR1yVLI9ySud1S8GwsuCWYRgniuWpqesf3bLdGhqkdUaGSS4FUPdisbTa5Djx9CmcmlzQxwDmv2IPBVxlOQuxyEX96/9lWO5wa273ABfRPRynotih6hHTUPPuG4vS5M6XayjrXvbFXMnqWtiGodpxaLgfiqI0AH1SrNJJArYBv8AirjzHWU8XTxrdK2RvUytNtrXldsnCnEY9k0BCQY/LoLEeC9EzhTyesW8B4ISN80eCFAI90i/0Fx/8xm/YKpL2KHHHfzsfsFXb0i/0Fx/8xm/YKpL2KHHHfzsfsFQllIZ7Ho7ktc32F/gVtbwWMn2N3goqPEWP+xEHbPKFlP9tS/F9CxXxq6WmtJfEuYPMUwQhC5zIEISWUZSJQqElkqnMfMbAhCxffTZo3WOtLkjK4F2usZZOrYXJtxHHsKw6fqaurYyZwAALXHjw4BcFfi0ZbG6KTVG9uoG3/JddK2nPDawjTXuY00JjGKGNrgCVX2OYs58jgCf+vjXVjeMAlzQ7/r5FFi41Exd6V7bonTFLGEfPut9VcnpiKztO1v+dMuPVmoaGkW9HxpzxWcQwlg22UOqpdTiDzX1zplkrenxuUXTbb1mprkcsjwXEcT3pCQ0bBIG6Dsl3C7HlvdnuVFRikkHvbd+6wkAewsI2Kytb40LBpPYzW73OaGjZFJrba66tg5tkgSN81qQUaSeEM6ngkWSHaMw0pvb6439oK1eliDrcNDwLnSf2gqiymdOOUx7ntP/ALgrxzvC6oy9HMwkjRf/ANwXzX0xfh31vV+D/sWnolPw7ya8zzxjVa6jY2wdx5BbMJq3VUbXPaRcX3Fl311NBUPeJ2g277rVFC2JjWRizGiw8ETys+Z9BdGarZ1bGwss7ZcuJwumo3MYbOJHOy7NVgsb3WKe+Trqx8SOngZ8CoJqW75n34baiU8Ehx4IQplJS7GFCl4UNGchf0JWyFrgR3pELFbG0lGXMUfFIG6j8voVn4Dimpzbu+dUbTVBhkupplvFbvFz3fSqPqVgqkdSNN1a+Om0XfTT9Y0EG67NrXUQwfEh1LRyNipRTzMlLQvE16cqcnHB5OtRnTk1JG0G5Su81ILb270q1JGlHM5xaea2MkvzSzN1NXG7sOWWkywOA7RCNi7Tv4rRBJchbgQJCDtfdYvYxksDVj+YMNy9GH4hK5oN7XI3t3XI712YZiEGJQNmpJGSxOF7sINudjZQPpfyBUZ2paJtPM68Rk4NBtcNHMjuT90e5ZdlLABRh9nF9zsBc6QO89ysJ0LZWsayqe087YNUZNkoLATxWupc9lHVmLSXiJxb42SuIYWDTcrJpYBu0AFV8NWVJrYzaPPFBmXNz+kuakkhn8hEsgBtLpsG7eheiDq06iG3AvbvWsU1M2TrdIv8a2Eg+aNlYX17C6SjCmoJeXchLBzyw01TC6OohbM1/FsrA5o8AVTmbcu1+RMXGO5cdK/DYna6mnD3ElgAADY2gA7ngrrWueGOohdFOAYnizge5ZWHUJWr0z9qD7f3MZQzwR/JGaKXM+FtkY9rai3ajNmuFgL3FyeakLOsa0+hUrm7KuKZExg5gyox7KN5vOIi1oIc4uffUSeA5BWNkHNtLnDCW1FLKBUADroQDuSTbcgcgt/UOnJw9Ztt4v7iFU7Mk44BZR/Z2LB4cWgN7DhyC2UgbNM1rdpW7EqvsP2txBrzRlN5gSxvmC9l5F9kcw0nSXhlVWhxpNANuI+zG2x2XrgbNBdwOxC87+ypytX4r5JiVIx0lPBC1jgC0AHW48zdfZILEUU7If0wYph2K5kylNhenR5RLcBrRbstHIr1dgH+gcO/No/2Qvnvl2qkqMcwcPBDGynS3u2X0HwD/QOHfm0f7IWRB3hKjmEIAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0LaeBWqj+06f8AEb9C2ngUIYw4628oPh9Car+cE7475zfEfQmgcQvlnpAtN7N+bLa1X7NMiuc8PE9BI8NuQ08vQqgxaiEjXsI3BtYr0HX04mpJB6CqgzRQGmrnSae/6SvSeh/VnbVVTe6PHelNlpfrMHhoqWqidFM5rmkW7wtJUox6lM7euYN3Xv8AMo3NEWt3G919kjLVHUaOmdQVaCUtma+S2QHdamm7bHkkBsVMc4yWFTE4Jrudx34LW6S210jJtrA2WjZzS/3y2Np8HDStM5yD5N91sikIcHAruw3CvKYutnfpZx3F+V1y4hHCx5bSvBb6B61pVWPieGmbM0qj8JoecPxR0bQCdl1VOOxsj4DV32/5qKMkczsuNwVqq2skbpbJY91kq0o1I7rLRwrocHV34HSbFJaq4a63iSE1+Q109QaiORhbGdJBkN90YT1MOIBmJTXiIFtQPG/o9CksFTg8TqsMmY1hf2QGu3HyKkvbyssRhD8S9s+n2+JJ7Y+B34JBM1gfPNFp5jrPSnmkqmwzENddpN7t3VaVlfNLO6PD6h3V/wB0esKQ4DiDYaYxzu1Sk338AtV3ZT6jDEo4weSvOnzoSdeD+4sqHFgG2G/xLRXT+UM4kX7lH4pXSNvEfkXTBVujcGzH5V5G46TVtJasf0Nf2n4iUW8GumyfQV+JsqZS5z3Ek3sTw8FbWDvZ5FHHHq0tOnf0WCgeE1ETJzI0i4O3yKYYDiFHrNOyRvWDtkWPAleb6pN1Yb9j1PSq3s4b28yX0u0TBbktdU3ULLZFI0ws6s3NlhO46CSvH5cW0eypPZaSP49K3DKCWr06nN4AC/G6pGk6TZ8SrZKV1NpFwLmG3H41dWMSMnjkhntoN9iqexHAsOpK+aaCJmvY3APcPSvW9CjT0NVFuW9hbVKtROUtjpqsSE0jS7gWjgtPl5ZqbEQ0kjc7JuDQQ4AcCuOrkFtKuKdJKW3B6urSjFaEiLPo6+bGDK+ofoadX2V3epLT1JYfrhcfnXMDZCs0k1wcNvQ9Wbaecjr5cwjs6h8S2NndYEP2/GTMshIQFzzpKR0Ko3yPPXudxf8AOsHy6R5wJ8U1dYsdZvccVjCgo9zPxm+EdE9Tc2sVzF3aae8i6CHE6nJWjcn0LfCOk0ttmUmnWNI+ZZQ2MzbjmsAdittEy70ktK1GyONSklhknwEfXBfZTnD59FhyUGwkWcFKqWXS0Lz97ictznu055bJXTVwA5rp9sQCo3FKbbFZSzOtuqOdvvhFRK3TZJW43S04e+rcBG1pPL+JXLhea8Ix6ufRUcrnSAkWGnkL8ie5V7munqK+jlp4Ce20ja3MEc1y9DeTJcAxj2xqQQe0bkDmwjkfSutdMpeBKq5brtgrry2qUmnBZRacz5aOodGXXYQLbk8Vk6vMbRck7LGtcKmUPAWsws02dZVEcSWGjdCmsZkVN0y5nx2nngp8LbUPje54d1Osm2lvwT4qxOiFuMPwWObGidL2AtGpxdu1pF9Xx3TnT4TC+djwBcFSmBvU07Wj0fQu66v6bt1bwppfHJUV7TFXxFL7jMFwa5ptY8DzUB6Rsiw4/RPr8Ha2lxWnBe17bRB2gEjdouTdT65Me6GgtbYna9yq2zvZ2ctUOO6Mpw1blPdGWfJMPqX4BmnrGV0RDGzygljtLSXEPeQTvbkritsCLEHgQoB0m9H1FmulFVTRMNdENIIBv2nAniQOSjXRx0g4hSYg3L+dJXtrmkFskxDidTth2Bbgrm6tKXUKPrNsvaXK/wAs0qel4ZcixcCQRwWZcNLHatUcg1Mf6DwWEjS1jg46nW3K85J76XszoUsof8BGmldf4X8Aq79klT1M3R5XGmc4WjNyHEW7TLcFY2Ci9L8f8Am/pAwd+PZQxDDIhqfUNa0Db4QPNfYOmpq2gn5FNUeZs8r5GxzBG9F2LULojHXEVHadEwX7NuN78VbPsUWEZGlBJ82Hn/dK8r41QVuX8SqaKuY5jS52m5HNxtwv3L1X7FYEZKnHcIrf4Su9bmLLvQhCEAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/wCrbC/zaD90FaKq72Of9W2F/m0H7oK0AofmDnxAXpyov70KVVn2B3gfoUUv2QvBela/axkWNnw0YvK4qx9y1oPFdUzrNKaal+kly8lGOqSZY04dzVUSdQDvc/KmyeoBdrfw7lnUS3u5NdRJ1jjcq0oUE9yzo0stJmU0xJu02C5Jqpw2vdc1RUndt9k3VFWY/N5qyp0UyxhR3wd0lWRxLQuV9WD74/EU11FS0/ZCuKerDR9aPyLsp2y0ndTt1JZHp9cQbAlaTXm/FR91ZKXAkkDmuUYnE+fQyW7+6x9S6lbqS4Njpwg9OSUmuJOxHxobWuPNijPWyFzrk8UNe+5DHlpSNus5NtS3TWIkpZiLQ+0j2Da9gd1Hc7YmamhFJSPOuqDmnSbWtbjY7KOYtS4jHJ5RDPI4cCLNFhfcrqwBtO6d0xlFW+MgkFpbbit0LRRlrKipGrVl4OnC88kwyfimrC2sqJW62u0WLt9gBzUjiq4tWlsjXegOuVVuJRU9NJ/M5xHPIbNa1p2J8fSnfK1BXU8gnr6l738TqA7iOS0XFnDDm3uaVTqxl4UVleZZEUzb9l7ge6674qkEtaeJHFRmnqGuvp3dZOVPKXNFzuFSzpKS8jKpbuGw4YvhNHjNEabENb22NuDuPiuvKuX6LLdN1eHAiN51G4A3IHcFppH9YO07ddsFaynFqt9oy7S2/eeHBcVWtVVN0c+z5FXWoKMs9yTRyarEc1uaCSd+XeuCifZ7mniPNXeG9uwO1r/GqvTyjhqYWwsXVl41B5J9GypvpE6UK/L+bIsPp6XXTvLGkiEniDe2/FXIS6I9kXCjmMZUwPFKyKpraKF1RG4PY52q4I4HYrr6TUoUqklWWc5OWeewlPi5rct0NaGuY+aGN5aRpI1ehM9XUCk1vfu5w8U4V/Uw6aeEACIadr8lF8UqHVEztbuy230K4s6EaktSWDzvUrhweSAdJ2F1+MvikppyxoDdutc33xPLxRggnw7BmQTOL32tfUXc/wDmnnFKnW7SDcN2Ta55cLL2FtBOmo44PGX/AFOdT9ngWS7iC5xJt3oa25sAfkWUMBcb810vLIG9vir6y6XKt7T2RSSqN7I1CmcRdxFvFZNiY3i4fKuWXEtIItdvJN01YXOJBsvQUOl0487kwozn8B/HUNHaI+ZaxLTNJN/lsoy+t7Q1brDyxpcbgLu+z6DWHE6I2c/MlTZoXMJDm37tlkwxvB7TflURFQxr7gBboaq17KHYUMe6TKwkt8kn6pgOzmk+K0up3NO26ZY6t+rZxTjFiDmgXJPpXJW6VSnvFYZzzozh8TcWaeIKxJ1d407rrgmjqGdq2pYTwODXb9khUV70vw+DBVN9L2M6Srkj2uNIXS3MlFBUsY+XTLfa5AH0psOzdPosolieVZq/FWVBJ6sEk7Du8V56raRllSLvpleLbjUljHBeeF1wrImkm3MHhdSXCqkueIHH0bqucNldT0tK1p2Zob8gA/gppSVDSYZiLkgleS6napLGT1/TrnOx05+rK7D8o1kuGtDqhsUpaG3vfQSOG/FQHoLzDmHFcRq48ahlYxstgZGvG2i/vvSrbiMUws8DcLdSw09O5xY0bm/NVCvI0qEqMoJt/wDbuj0lNN7mUgBLGm+q/YLeF/T6Fw47hNJjVE+ixKCGQkXa/q2utYG25G3FODBseS1yu0xuHpVdRr1aFRTpvDOhR1soWR2KdG+PinfLNU4NUPDYXa3y9WA27tV7BvaJVo0mOU+K4fHLSva4kC+m2xt6D6Vsx6gosVwyeixFjXxTN0kOvbiDy8FSbji3RzjJAa/2lmfcC7Q0Fzu7c+a0L1NOlS6nHUvZmvvybYqVGXGxcMsxibd+/wA64pqgvebbbeC4qHEocWpWVlJKHwOF9IBAF+HEX5LRLU9bGS06S3dc0LaUG00X1Cn4i1RJXkeZxzFECb9l/wCyValWwy0UjRYOLSB6FUnRhJHNj4vYyjX+yVb+rcNcNuRXtekQ0UNJ5XrCUbjQeLqCtpcI6Z8TONsc4GWfQ5zA4AF9h53pupFQTwVXslWy0jg6F1bBpItbh6ExeyJyviOF5vdij4XuglBc1127apHW53TT0GzuqelLCJXm7nVUVz8ZVqVcVg9zN80eCEN80eCFII90i/0Fx78xm/YKpL2KHnY7+dj9gq7ekX+guPfmM37BVJexR87HfzsfsFFwR3PR44LGT7G7wWQWL/NPgsZ7xZl3IlP9tS/F9CxWyrFq2YDht9C1r49frFxNfEt6fuoEIQuMzBIlQGl+4Nh6FDeCVjuCEobbgSfFc1XU9S5oLQO9ZKk5bpGDlFHQljk6uZlx2DxNuCxjeHtDm7haaubq2OFtisop5WFuG44KV6Uuj7FMZzVFX0NQ8QM6suAe+1he/AWToWOw3CqWCSTU+KMMPavuFMsWxZ0NPIA4i4IO/oVaYtXuqJ3NDjuSva9LqVriMadSOy+B47rl7GmmkzgqXmac7rOMiNp8CsYWEuuVz4pOGstH2TzsvpvROnqmstbHz6cnXmMuKVJkeSSmGoOp9wnCsdcFNpO69LKbjsj13SaOiORHOs0uPJclNXNnlLARcLpe3W1zb2uuGjw4085k1H5B3rgqObnsegUk0ODuKRHMoXStluYp5YBI3zWpQkb5rVPJEeWO2WtsVi8R9IXoWeNs+Tom6gT1Y5/3l54y+bYg093rC9D5aLarKrWkAkMFr+JXzn09p6VSq+WV/Qy6FX8LqKT7sobF4xDXva4Fcptbbgn7OVOIq9xsAdv4qP8AJcFpU10Ys+w6k5ZMeJWQFkIXS+DJx7ghCFiQCEI4oAsCLpJcYGGRl1wLd6TtNO42Witw6KuZZ23xXWUdM1hmq4c/C9gtHIOYYsUw/VqF2kA2I7h6VZWD1jZA11x8qofKbI8LaI4AGNPnWFrmwF1aOBV7SGhuwXlOsWaWXErK9pN09UixY3BzbhZpqoKkuYO0bJza4ELyUotMoJ03FmXIrmnjubrpb6Ugb1mtvAg8UizBPBwNJY4W4rujeLAvBva2y4t7Wtu3e66wdMIJ3JsspLT7bRm8GxtmkjtAcrpLAntXSauyL7uPMrLjxWta57dkY4wF7ygi1gkc4kWI58glQmU2YmRLdFuawB2tayLJQpAIBsbkXSpCNuNvSofBJjO1kkEkEzBJTSgtcLXIuLHwVKZ0yjieTMVdj+ThLNGSZHQBr5+QaBpaAOZV1l1m6fe96UaOq0kBzO4qwseoSs5RzvB8mt0+5F8kZzo81UIcZI2VzLtdHqa03Fh5t78SpZCCZWbaZPkVJZ1yfiGU8RbmXLN4qdjg6elYRGzS273OvxJNuCsXo0zjS5zo4qint5XG0CZgBs1xF7XPHgrWXT4zuKV1bPMcrPc1OemLRaYIaG7E322XNitFDXUE0NUxrmOadiB3LpBsGkC45pCOsJ3u2xBC+lR4RWHhPN2FRYN0v+RUwtBHKzSL34xgn6V7hwD/AEDh35tH+yF5Q6csINB0w0VUIwyOpnAFuemNq9X5e/0Fh35tH+yFIHDmEIQgBCEIARzKEcygEbz8V5T6Tv7QOHfl5P3QXqxvPxXlPpO/tA4d+Xk/dBAep6P7Tp/xG/QtvetVH9p0/wCI36Ft70Ax4957fH+CabbhPWPgWjNuLrfMUzO5r5d6Sr/eMtbV+wgvsWnmoZnHDBLGXAH/AKJUzJGm9t1yYjTtnpjcAqqs60qFVSRrv7VXNLSyh5YWxSGKQbDvUcxqg6s9YAdJPrVhZnwvqXukDQP/ANAopiI6ylc1+9u/wK+4+jHVfHgoSeT5RWo1LG5cXxkhczQ2xHNarXWyoJ65zRvpOwKHRvLdTgIwO43XrKlSKljJ6+lNRpRNRbtxSsBaAOSLXGxuB3peW52UtrTlHQk2sozxWR8+HthpZA13ZvY93gm/D6R0DLSy3d6XLsDQDqaAEhAJuRuueNvBvxc7mKhBbgQB5yA8BjtvDZB34o4hbG2sGT1Lc4sVl1dWHCz9QtYW5LFrp3Mbpbaw5tO67ZI2SuDpGhxHAlZjYi3Jc8reU5Nmc/ZSfmN9BK50zmOADvCy6DWxU02l5IceZOy2iFnW6mtAd3rkqqATTgvF/wD9VEFVhFYMpwi8p8Ejw7GXxC43b4XUjoMRgq29sgOt3gKCsHUsDQBZD3TtF6eR0Z/ulbalNVqTU1uUd70WlUWqHJYPlZpi517BvFR7BsQxGnzCawl3UzaYG9k2vqTDHXVEsL4ausmZJsCRvfmrN6mjxPLFK6liZTCmlMz5ox2uyBc2Pyrwl/bytstx2J6T0erOXgyljPzLOyVXvliYJjuAL/IpJiErdBLeCo/B6XG8Yq42YLilVFAwFpewgF3MEgq3ainnwyjZDJM+rlcSC6WwPfyXzXqlCmqniU2t+x7mxpunim+2wxYvK1xdvw24qA41Zpe5rSb/ABqZ4wdNydidyPSoJjE5JcAdlbdMprGWe36dF4yMU7wxhdwJNk1TOLnXXXWyam253XEr+ktSyWE5vO4hCVCF1I1Ngl2SIWDMeBdlhJIIu2fNAWSxla2WPq3AG5RCSehuPJxRYzFVVHUsIve21u66cPNJb6Lptp8Iip63rWNDSDfYehOINyb7nhdZPg5LVVHlzBpThh7OJXAALJxw0jSb938Vqm3pO+nySDC27hPguAo9RylltK7zWyAcL/GqarByZnVp6kPMcz2ceHglkqnOFh9CZRVyvs0E3v3px8kqnwhzBY+K5/B0t5OKcI0o4kzrpWl/aeRf0p6oWlsTu0AARwKjtDK5zwHbEG1rqT0DA5guBYriupPw2l3OS5emA6tvbRY2Aveyyjj6x1kE9kW4ropG73VLN4ZUuWEdVPC2NwAO/inBvDdcYt1jTzXXHdw3K55y1HHN5NmoEWCx09klzt+66Wwah4udwPFa0u5rFYNDbja/eoJ0l5Cpcx0bqijJixKG8kbmP0hxDbAWAufBTl2prfhD0pIzfkARuD3FddpcztZeJTMJQyU50dZ2rcDrv5N5vAgEN4opJGdVqawaQdTzvcjjzVxktdGXxOD4yOy4G4PxqGdI2Q6XNdC6aMdXiURBbO1gLgAdR3J5qGdG+earCMTblfMrzLI1wZFO95e95cS/cAWFgQFb3VtS6lS9Zoe+uV3+eEaFJxlpPRGCfanx/wAAnEmwva6bsII8kY4cHjW0d4IFl3MLnWuLHmO5fQrCMoUIRl5FdL3mecPZW5YpYMFpMUgZpldVMYbd3VyHu9CkvsVCTkd7jwLYj/7Snr2ReGsr+j+QvFzFIZBtwIik3+dMvsVCXZEsRYBkX0FdaWMsh8F3oQhSQCEIQAhCEAKmvZQf0Cj/ACkn7tyuVU17KD+gUf5ST925AOfsc/6tsL/NoP3QVoBVf7HP+rbDPzaD90FaAQGmsH1h3gfoUTbvspdVbwO8Coo6zS2w4rwnpcsSgd9mzjq3WCZq2Swseadq5wvZR+vdeTY8F5S3jll5Qjnc4Z5gAWppq5CAQOJ3XRWu3JB3TNVzlgLiSeSvransXFOGcYOaqqANr7ppqqoMJ1FbKiUNBc7cpmdIZZXFwDgL2urajRLujRUI6pGU0rnntGyw4DbdYyEuGo7DuC4pquxLW7eldtOHY2SrtbHW94cxzXHTuLX2UOw/DZ4MV610hLRY8T3p9dI9x7TifFIHC/cV2xSSwVdxSVWerJ2uqmkbkAt2S+Wt0+afiXCWDnvfdLwFuS1Ol7WTqhNxSwd0lYyOmkfcX0kdrwUdweepdFIcNjLTKG3MjC4G17W+dOM0XXR6OXFZUThRhrYwGhvADktuMHNKnUlPORvq6uWOqpnVUb9fWNBIbYKUVONRUFOKiQnqzvxHfZcUjIatv16NriNxfexWvEcNZXYYKa52AHD03WqTi2kzCNGpRjNrdskuA49DiOl9PuL+g8D6FJ4ZGEhxcBffiq9yphrcIhLS88+XpUtoXiRxbK4tDt2kbqtuqUNWIkxp1FTcprclNPIy4c14sOPaUS6SsQqKqooqPDHEuY6Od+katmk34KPVkOLYXWtMuKVRpr9q5HC2+ymeV8JpzEa+SqkqxM0xGSVgBZrA7I9AXH4EbWXjvf8Ayefr1ZVMqSwywcqYrDiOHUNXqG4JdYjvI/gpCx1yW334jwVIY/Sy5fvh2B41WPn81sBYI2tOzrA/GSrCyDhOL0VN5RjeKVVVNI02il0kNaQCLEfGqG/sIpOspIrnLfcmDAbXDm/GuaVx0uc/T2Rfguhu3BcGIOLYZLH3qq6OJ4NNXhkbxaZrTLIOJd9JUIxSYNicC4BzrjipLjslodjbcfSoVjTw6WL8b+C9x0yjk8D1m5wsHBe5NzfdbadgcVqbYusF12EEJPNe76VZeJI8XOTkzVUVDKdht5yZaurdKTquPmRWz6pC4m44JqnlOom5svaU0qa0+RY2lm54fc2PqSdTeNhdchfqcbuA+NaZZC25btfZc4JJJJRyytj0VtY495GurxZlPM1hINz6F1R1fXRhzR8ybp6GOWZj3tDrG+4XVGBG3SwaR3BctGc99RaO1hHg3tqDbcH5FmJ/iXNdC6FIxlbRZ1scHH7IB8a6YpizbVdvfdNa2Ry27J4LNT07nDXsE17KH+kqbOBa4/Kn+jq2T2Y82t8ShcTzcaCR4J1pJiCDc3HFJqNSOZHnryy7pbkjqYwWktWhg+s31C/it1FIJobX/wCrLS6PRIAeC8l1izUcSiVOWnh8odcHkHVlj3AkEu4qYYNMX0wFidAA4KvKR7mytLSR2rfFdTbBJiycNBIY7iPiK8J1OllZPV9FuN0mT7DZOshD3Ai3o7k4BzXNBaE0YRJelI9JTtBbqtl4a5WJH0K2nlGZN3Dldcle7Tsut3I8034g5c8G21g76Mfayhnrj22tIOknc9yj2OQRYlTSUdVH1kbmmzgNwSCOKeq6S+u7iDyTHWPc1hAcQTzV7aZpNSRc06KqLDKmmixDJWKu8mc6XDCSXkhzwwAWHa4DiVLo8UhxGkbLSvbf31nA/QunGoopqKSmqImSxyW1audiq1qW1OVK+8Ur5qSSzSx50ht9zw8F6qmlXgpPk3UKc7apsvZL06IZGHMTSDqdZ97G/vCrwad9Nj4rz30CVUddj3XxHZ+t1rbC7CvQxIaLk2A3ury0hopnmOuyjO71R8iN59wGkx3AKmKqi1FkbnB219mk8bLx10EsEXShgrAbgVMO97r3FWs66inYNw+Nw8bgrxz0f4Q7BenmjoS0M6mqpxpFttl1lQtz2ezzR4IQzzR4IQgj3SL/AEFx78xm/YKpL2KHHHfzsfsFXb0h9rIuPW+8ZuP4hVJ+xRa4Ox29vtsc/wC4UIS3yejgsX8D4LLksXjsrGTwnkyXJFKz7em8R9C1rfXt0181vR9C518h6msXc4lvS3gsCoQjxVfk2Ak4628rJCTyS20Bw43FrlZOL05JwMGeMwDLOBOq443yO1AWbbmD3+CgPRx0g1GcaifraaZjbNILg3nfu8FaOLYbR4tQGlr4o5IyQe0wO4ePiuDLWVcIy7HIMMpKcawBcQtaRbwHpV3a3FrC1aqL2u2xx1KUnLCN1pYmAt4X7loq6h0bXdZz4J4kjD4SDtY32UWxufqiQ89lcVrFVp4RzXMnQg3Mi+Y6rWxwb3fwUQjbqkJITrmTEmwUE9QwaixrjYjuChmU8ze3NTLDJC2MtdYaWkcr819M9H7SLaVRnz7q1GtcxdeHur4kjleIInX7lHKqYySPN9t09Ytd0DiNrDko29xawm2919OoRhCOmJTWVNPdnDVO2XDfddVSuW1li5ZR7iyglSCQE2ASyMOkbhFrhAY74RPiVjlJZZ1rZbh70eCEEEbbX8UbDztiiepZRK9lZYBI3zWpbjlxQeyQApgssR5bHLAft4eH8Qr86PJw+gMB9A+lUFgN/LGnnw+cK7OjV7fK3se5ws4cN+RXh/T2nrs1p5T/ALlPa1nHqtPHGSJdI9KWVRc0f9bqCDgL8VbvSVQaWmQAkW/gVUklg53ivK9Nmp20Uux91t5KdNTMUJATdZEKy3yjemxEIQpD25BIb2NuKVCDIrdQb21r0ancbLMX5knxQR8Sxaaexi1mWOx00kpa8Du2U3y9WtaW3P8A1uoAxxYbp5weqLZRdxXNd0fFjubMKS0FxYVWgtFipNST6mhVvglaHMbvz9SmeG1V2tuvE3tv4UnlHnby30yexJmkab9yHO+tuI43WineHjw3W9w1egehVXG5TSW5DukjGqnL2Xqisoo3PljY5wsAeA9KY+hfPGJZqhqPbGNzA17gNTGt4NB5eKsXEKKlxCldT1tPDNE4EFsjA4G/oK5sFwXDsGjkZh1DTQB7i4mOJrOVuQVjC4oK0lTazNvb5Guak2dDHF0mo7gdy6VqiiEY2JPitqrcvfDM28oEIQi2WMEAgIQoyBVorqplFSS1MoJZGNRANluutVVCypp3wytDmPFiCLgrOm461q4zuHxsV3gHS1Q41mOXCI4JQ5rnNuXs5O08t1ZFg3sDmoJgvRjguEY/Ji1NczvLnFpiYALu1chdTx/adq4eC7upytZNeqbpc5WDGnqSxISwDXNkLTqFi34Q7gqnztk+swbGv5TZUaW1V3Okpy0yOcXmxsOAsLq2bgtBLQTewJ5LdRBsk4ika14N7lwutvRb2rQuKdNPKbW3zNVWC0tnB0aZ9os14cwyfzbEBdr6eV7dYs7SDYd6kuYsdocCw2SsxGVkULHBpLnBu58VWGf8lVeA4q3NOTIoonxFr6qkY4QRdWxvINHaJPELlx/NWCZ66PaqmxKR9NVwua2dnVW+utbcgauIvzX1lblWU/0qZsps19J+GVGHzMlomz3jLSHf6toO49IXr/L3+gsO/No/2QvAmE4ZU0mMYFMYY46KSZ3UuvZzrcbjkvfWAbYFh1vveP8AZCkDihIL3N+HJKgBCEIARzKEgcNRHcgBvPxXlPpO/tA4d+Xk/dBeqwSHW+NeVOk4j6oHDrcevk/dNQHqej+06f8AEb9C2ngVqo/tOn/Eb9C2ngUDGfH/ADIvx/4FMzuDvFPmPMBgY6+4df5imO92g/CF18y9J6cvW3gsrXeAaeygeaWlALmsvxKxJIsbBeblNp7djr7EVzXQdbE8AcL/AMFU+LQFhkZ6T/FXvi8YfA7a5PoVRZloxFUOfvx4W9JXvPRDqXg1U5PY8J6T2UsKrBEHwvC9GI+VSjsxm9t7m4suXMWfI6qp9rYaOYbBuolpG+ylLNLyNIAtxFtiq/xqigZibpWxsa+w3DR6V9Qkqt3UVWk/ZKvol3485U6hp0nWTw1b2WFRII4C7xWp9X1TyHi47yurCsPlxh9PDL9bjlfpc4G1h8a7bq9pUYb88HqYU3J7cGqCTrKYO9IWxY4nSPwSrkpZSHUzXENe12pxsbC4CbPbNxqBG1gsTa+6ULql4abbyyJQeeB1QsWm4B71keOysGlNZXJg2wQEJCoy4pYMX7XIpJAuENJkHpSk3bpsEMOgFNbTMtXmDXciEly47bALJrbch8aLFhuQN0eJLOdyFjuNlfKPKIew54N7lqf8uY/U4TFU0743yUssbmkNAv2uO59CahTg1LnO4E7N5DZOOFiMVLWSNa9lxs4XHFVdewV1FxmYV5uhHxabaZfPQpmOmxDCKmkpvrUkb2MDXkE+aTyU2rICymvYueL3sqTyE2LCcWfPSuMQlcXlrBpF7W5K9esE8Je3mLL4h6R2ErK7xF7ZLXovUVdLMXlrkrvHGBolIaWkuJN++6rrE3ESOurTzJBbrTz1Hb4yqvxeMtmeHbf/AKBd/TZZwkfSumSfh5I3ObzFYLKQgvcN7g9yxXpY4S2N7bbywQhCkjAIQlILdzZQ1kyESEhu5S224j5Vy4lKIqQuvvewt4FEmaXWUIto6LdazW1wWwCzSOdrpswaR8lIC9xDiOF/SnLUA8knYiyywKVXxI6o8CNPFdNE+zrLl4bt3CyicWOBC1zw1g3xeN2PkchHBZumm5fQuKCXWN9vBb7n4TvlXFKGHlnXqi1k3RVUlNC+Z25BPL0XWrKfSFVTZlbQyQv6tzrXs3uJWqQF0RYSSCbrdgGF00OJNqmQRda03voHcUqKmoy1ctFT1G1qVWnFljVVOG1bXt4OaHfLunnDR2Wpop5XStaXgX4J3oOyAvMXLaWCvrqSp6ZDmBuAnCmZZq4Yhqc3xTmzssFlTy4wVsmsYQHitjJC0brW033WxrNZ3FvBaUscmjC7iulJ4LQ99joLXHmuowho2JPitLYzq338VCxnJitK5IBnfpPpMoVbKaammeXBxu17BwIHPxUxyzjsWY8OjqqaN0bCTs4g8NuSYc19HWE5oqmT4gLPaHDaNruJB5j0KT4Fg9NgtE2lo2hkbSTs0N4+Ct7mpZO2XhfvO+xzy1t7cDkGMvdpAeNjcqI9IeTKXN2DzRAiGsYw9VI4mwcbC9hx2ClxAtsLHv5rEg6Q1p3O11X2VzUtpqcXgnQsZfJWPRjnqsyrWHLGbIZGNDyaepcGxxlnZYwb7k3aVfjZYpWBweCw7BwOxUEzjkrD824HZ8EMOIw2fFURsaJLtBLRqIuBqKhnR9nfEMuYpSZTzo28xIjp6jU6bWQC55e87Di3xX1+2m6lKMpdyml7zNPTz0gYPLl+owenmY+p7ROmRp949vDjxXV7FMaMiPJN7th4filUX0z0mGw5tqJMEmlrGvi1P65oAbckm1u42V7exWsMlODidTmxHTyHZPBb8vgdi70LEvAICNRF9QFuVkIMkJGuDm3HBKgBCEIAVNeyg/oFH+Uk/duVylU17KH+gcfcHyfu3IBz9jn/AFbYZ+bQfugrQCq32Obr9GuG6N7U0A3/ACQVpcLIPga6n7C7wKiUvnNUumF4nD0FROUdo+heG9MNlCR2WXOBpxA2cmCtdu4p+rzquVHa07v8V5izjlnprZLG4yVb73TFWuDiWp4xA9W4gb7KN18xbqcBuDZektY7F5a08jXVfXJQL7BR7MONHDdLWNJ3A5J6kcRJe5TVjNFDUgGVrSbg7gFXVFJcnXfeI6aVLk56XEn19Pq0ltxzt3oBDQS5aJ5IsOpBpbbbg1vp9C434rHNCRC1xedt2kLshRy8orfW1Sjpqt6jdT1wfWyxDg11vmXfIwXG6Y4oJae1SWguk7RB5LLE8YMDGOa0E33G/cs5U3nY007+FHPjdx8AsAhcWFVgraVsliDYXuLcl2rVLMZYLGlJVYKcOGIb8kocBsQhBt3KG8mU3jbJib6tQ4DdOVFIx7NV7HxTdZZU72tm3JA7gtU13RlFqLTzkdWOBk34J4o5Q9gEnAbN8E0RgvIIa3T3ldtA4xyu1WLb7b3XPVpKUcnXqVRDvmOvbTYBOKiNz2yMc0WsFwZWxnFaaka3L1NKIyA6QlgkHAXHoXXPh4xaOGKWR5ijJOknY37wVLMDp4KCNkNLFHE0MAOhobq2AubKuq1YKGl7nmLy3lKrnGERbLuNxt6Q6CWohkp6upmPXGUixIjNrDlsArxieTGLbNI1WPP0qBz5ewzEaqKrfCyGrYS5skcTdQNrcePBTylbaJjb30sABPE2C871WpSrtKnJ7coppx0yNgTfif2CT8UrvDh2hvqHoTfiRLaVxkFibgW3XBQTTSiclz7rZAsfd2AP+uKg9Y/XMf7u6mmOuDjbuUGfvPJ4BfQemRxBeZ8t63J+L8DdTsLjcLRi1QQNI9K66PsMcePHj4JlxKUueb2X07o9Hw6WqRR0oqdQbK2S+wTdM+7NPNdEzrXd8Sb3PJeSrRS1ZyewsbfThi67NAPelcbt2WB88WAN9jdZEizr7Ady1N6dy5+QjSNJFxdCbI6nVUMB1C5+JOr2ENaQWkm3NaqNWNRN+Rm4mKEPBZa6FtyuxqbwCCNroS8llFeZkm12NkMmkWXLiWKy0DWFjSesNtgFtaLFbRDFU7TRsdp3FxdaaqnjETiqUo5cpLYfsrVz54Q54Iv3+AUmrGdlrh6VFcN0xxgRtDQDbYWUoDi+ha47mxWm9oa7d55PE9Qio1sx4ZysOl4v33UqwhxdJA4cwfoKihF3AnZSbAJL9Tt5gt9K+bdRh7DOvplRxqJFhYHckN/64qQw7bFMOBgdZf0Ap/5Fw4r5ze7TwfVrBJ00xXbtJTPXnZ3ineQljSBv4pmrj2XX71zQX8Ja0PeIhmrGIsHwmoq5ml2lmoWIHMDn4qH5ezhFmNkrI2OaWucNy08Ld3ipfmTD4MVw2ekqWgxvbpvpBI3B5+CiGFZbosvNkNFcl5JN2gcfDwXr7KNu6OJ+98izhGvKa0LY31c8kVxxI7go5WRMmb1bt2ONj8accUkfpdZ7ru534JsN7i5NlYUda27HqIQi6emaMsj1OLZJxybFMPpZqqg6xwLYmXIDhpG7tud16qyrmGhzDhrarD545GkG7WuDiLGxvb0qo+hKmgr319LWxR1EDpD2JWh4FmG2xWnF6LE+ibG34lhuufLkpbqjLydAA1PIjb6SfFemtv3Z8z63DTetQ4RaGec54PlWAvxSpiikfH2A6QNJvcDj6QvL3R9irsa6d6OvcQ4zVcFyLchbkpx08Yhl3NuVaDEevmFe5sLWwthFt3E733G5Vc9DtLU0HS3hdPiEMcNS2riDmRm4BuVv7Fake3mcB4ISNOwQhB55zlmbpCqcAxiOsy9iUNH1EoLnRw202O9xvwXN7E8udHij3xmOQ1A1g8b6Crs6Q2NGR8eOhn2jNy/uFUr7FHd2O7/97H7BRckrg9GNuG7m570rvNQeCDwWNRZiyFyRfEv9ITeI+hc66MT2r5vEfQuYL5J1pNXlT4fkXNv+7Qt7bo2PFYTSxwRmSZwbGOJJAHzqO4bm3DMWqnwUMwfIziNTTztyK5aFvXqQ1wWxE5YZJTtwSHcpIO1HqdwWueQRDe/xLSoqWTJTwLV7RbHdctJUaW6XHgtb6gyGwB+RanNc2/G66PDWnBodR6jtnqgI3WKgebKrcEns73+ZSl7j1br34FQLN0rbFpJ39YVx0WivGWSj65c6aEmyI1J8obJG4XicCCuTDsMpKN5fSxhrzxOon6Su0Nfos0Atvz4rpijAaLDe26+qdO6c3JTifNKl3NxcIvY48Se0QlpO6jlQ4AkJ0x2XTIGi43/go/PL27X5L2kfYWEd/TbeVRJ4OaodcrTySyPDzskBsFhLGT2NKGiCAnYALCodIyElt7rMWQ8lwsQLLXNNo6FjTkaKWpqH1dng2BPIJ2e3VIL8FiyKNtzbtLIkkrCnTaI97YJGtDwAsi4arJABx3um+trmU9SGPDySeQvyWdSfhYJp98kowCPVUi3f/EK2+jl5bjBiG93cf/KVVOV+1aTexHqVm9H0lsbIGx1cT+KV5L0y01rRRPMUameqQa7MlWe/J3xuiFQwyafNsb8CqLxeAw1coPwinbOOCZplzk2VsjjSHRwc+3E39C1Y9SvhaGy7yDZx9N14bplvChBYkmfcujVvFp6GMTtgl5JHNLmi1kvIDuCu5YeGi15yvIEIQoJk87AhC1vmjY4Bzmgn0hCJ1o0UlI2IR7zUCCPQkBu3UpYU8sy4hbaVxY8brTewB70gLgbjgsJbkrZ5JjgdYWPaC7n6lP8AD60FjbOVQ4ZUkSAX3CmeF1pDGku2VJe2uctmu4oa46kWlh1WNu0nyJ4cwFV7hlcOua0k72U2w+TVEBflzXkbmjKk90eYvKOh5Oy1zdKhp4oXEkcLfmCEIUkAhCRGShUIshRgnAIQhMDAIQhF7rI7ie8b4rfQfbzfArQeAHO910YcCa9g7wV29Mjm8pf/AGX9TXV/dsk0jGysLHW0kWcO8Lzp7Ifo2po6X2+wu0Ugmj6yMFzi4mS5O5sNl6OFiFAumeYU+Tpy+IyM1N206rG5X2JcFOeXs74kaykynJRwOM8U0xjjaQTfZXjk/Mmf5pcOp6vAMRZh4hjtI6OINtsOI34KgZ5RPDkyRrozI6on1MBFx4jkvbWX42+0eHXY0HyaPgP7oUgcWkkAkaSeRWSQcTf4kqAEIQgBYyAOa4HgVkkIuUBWvSLjWcsOxOGLK2FVtXT9W3UYWRuF7m/neiy894vW4zXdNGFSZgoKijqutkuJg0Fx6v8Au7dy9maGl2qwJG24XlTpNaG+yBw4gneeTbkPrTeCA9UUf2nT/iN+hblpo/tOn/Eb9C3d6Aa8d+1h4/wKj7fNZ4KQY7vTC3f/AAKYG7Nb4L5p6VJK7T+BZ2m0MhZ3BYkE7LnbUOM7xcdkA35KNTZ8winxCWklmAlYSCC5vL41TULOvcTaorJtjPTBzfBLZHtbEesVd5pfA4v2HE8/FGJZ0hne5tMSW8iRt9KiuK4r5RexuSfX6V6LpvSa9o1Ka3+R4/q/WaNSDgv6jWXDyh4jG11DMaafLTq7gphFq16tlFsfYW1Jc4bWC+u9Ay6e55HpMsXGpDFPSxz3aea7sKxtseHPjqCGaAS0nvuuSV4Y0uGq/guGlonWaJz2b7hpXddW0atTbk97RniJtrqgzyNfHKJA7jYd5WbaCFkweLbekrnraAnSYnFrARbexXdCLt7RN1NKnKfszXBi5mb7bBqOCLdrZITudj8i69X/AFNSYqEl0qzxgkEIQFClnYh8DTiFRUMmaIgbX5AJ0he58DC/jt9CCxjjdwBPgsrcuS0UoOM3ng2Y9kUOBeso+xKHeC12s5aq2obTxkuB+ILZUqeGtRg4+JHBP8Gm/mscrTuALlXllap8pw5pDrnf6V55yZXw1uGSxM1iUFttQsOCt/o5xBzmCFx3G+/4y+Y+nNnGrGNZFP0Gu7S+lRl3ZIMzUrG0jqiWZsYDg3cd5VS5ksaoOieHtJ5D0BSXp4ocbraGI4M8tYNGoAuG+o9yrXBKWvgw2L2yMjpRe99R5nvXm+kW0I0VU1bn1/oleU67h2OSsNqgt022v861LfXauvuQNNvjWhejg01sX8uQQhCzIBGjWe07ZCxcWsaTI/T3XNlKjkxnJQTk3gbMUiqmuBgJLPQ0LZg9PHVVkPl0rRHcBzTtzHd8a7o3skgcS5rhbkQUzU9V1dTJ1QcXdoC42vdbJJyWCquKcNSknsyR5yw3DMNrmVGGVMRFydLS49w5qP0Ta2aTrp3ExE2A0gfOsayukdABUtvPbuOninaB4lhY5gAGwtw3WKi4oW1KHitLsbGnTGO9JGbpXDTYO+ZZFoZbuWuS7lxFyfvcCslLXehOUUmtnFNUluIB+Jd1A19gSDbwWmrDbIg5OWHwOEbdRCkGEUtje3/W6YqXeUD0qYYZHpjBKrbqWEbbx6YjvRs2Ce6VnZCbKNhDATwunqmH1sFecup5POVp6jrpG3cfQnD3tlx0A7b/AAXbpJVWVk9mJGN7LtjaA1csI+ut8V12N9uC1yNMmKBc7pCAEpNgkssDBPIXsgG6WwR4ISCxfe2xseSyWLgNib7bqVyQSPDGx+Ttcy2vnv6FHOkHI2H5xwt0M8YZWWtHOXO7FyL7Ai/BSbDPtYbC3/ILqA0na5uRe6+yWf7iHyRR1PfZ4GrMPly/iOK0M0t3NhkDSW8e1YfQrD6F8wZww/LjY8v4LXVrNLO3C2MjgfhehRrpYeybOGIEN6kCBw7Q0knUe9Xd7FUNfkmTWxt2NiANt/NK6u4XBZeQq3Fa/AY5MepZoKwvfqEgaDbVts3bgpHe0jW32twQ1gabNAa0bgDZZW33A9CEChCRt7dq1/QlQAhCEA0ZsqsQo8DnmwemlqqxpboijALjvvx24LzD0w49netyyyPH8Gr4KfrH7yxxNHmH4O/BetXC4VMeyhYBkSMsa0fXJOAt/q3IB19juAzo5w0kaAaeDY/kwrQPEKr/AGOe/Rthmrf+bQfugrQPJB3MZfsT/AqJSntuUtl+xu8ColMPrrx4LxPpiv2UPn/Y7LP3xmrT5yjWIHtkBSSuHFRHMOIU2GROqKyRrWD+8AdyBz8V5mwhKbUY8npaEowWZcDPiLiQ4+hRzED9bd6TdPT6uCvojPTPa5h1AWIPDwTFiPZAB5heloQlD3j0dlKM17I1v3TfVv1Gy7idimuYnrT8atqajJHTVlKJrkjbKAx7dQ8U1zs8krGdWwgXH0p116W3HFNFTSz1dW1wcA0W525rshPBV3ial7KO2esjlY9sRHWg2cB3rgpMPp6y5q7Fw3FyR9C65sOaYi2JzxKeJJWrB45qZzo5wHEjiN+aycu5pfiVmlVWw4U0LKdgjiFmjYLasQA3UbnjzWR25HdapbvJ3qCjFKHAIQdihRgzU9KA7BYgB1nFKeCxPmCyY2JWz1MMbqqmDD3eS31WNrAHl6VlkzEKyoJbWtdttcgDl6F10rBLFplALd1200bIXARMaPiWmcoqODTG1qSq+KuCVYc4iTSw2CkFCDGdV7kqM4bsQSpHBIIqd0puQ0aj8QuqC5i3tFZZru2k8knoS8lpDCpJTgujab2N1TGWukimrM1sw6ON4vIG3dGQPMJ71c9O4PjY7exAOy891C1nQ9qSxk8xXqJ5wb3G5cSdDRzKZsSroKmmcyCpZIW3JDV1ZiinqcGnjojpnu225HP0KgOjnCM1UmO1D8WkcaYC9i559+O/0Lo6bY0rmOuU0mirupvQyY448iST0Ej51EP9Y496l2PWMk5Hwz9KiVxqHivb9Njsj5b1mWah0s7NM53p/go5WvuCVJJAfInDmTf5lFK02jIPGy+p2Mf2CK6zjmY21DuK5BuVvqe9aYxcXuB4rbOSxhnurWHso1Tte6N3Vv0kC/C64g6dgIfLe/8AdC7w8GTS1zb87lceITtjma3Tc2PAXXDVjBv2GdmDe6laYg7UNQ3XC5lQ6S0byQO5q6HVMhD9TQIyOQN1lhmhz3Fpdz85Y4i5pGUmdETJDGOs4+C2JQXG42SDjZWDi47I0tAlCR/YO+/ggnSbFQ9t2ShVtp3WlaO8rVdZwNJnjt8JS13NNVZgx3o3WuPSpRQu10YHoUSpnWmLealGFEmmcOYAWNzL9k/keK6nD2hJtnbJ8wF2kN/670xvBL09YT5gIXzTqS2Zj0796izcBd2viUiB+tlRjAHdoekAKTMH1vxXzO/X7U+t9P8A3SM5/MTDiJsCnuoN2E8gmHEXdkn0rnoL2i3t1uRqtedL1H8Rf2Cn6v2Dwo9iXm258V6O0Rf2i3I7XnU8BN8hsy/cu2teBLvfs8U3zn6w4eKvqfBdvZFrex9frrK0/wDin9gq66+ipsQpH0lZF1sEoLHMuRseO43VIex0v19cT91P7BV9ixZe1iV6G39w+adaf+8n+ux5E6YskwZJzhTYjQMMlPPpeY2l3ZLpSOLieACa8SxCtHTXNX4FSyVFU6qjMLIrElwG1r7K0/ZQ1Xk1LQfWQ67oRqLL2+uO5qucoNjd08UgikbIxtbFYtcHNPxhdHYq0XZkvMme6zE5IcawDEaalbAXNklZEAXamgDbfgT8iFasbAACGtG3IIUEDB0i/wBBce/MZv2CqT9ih52OfnY/YKuzpF/oLj35jN+wVSfsUPOx387H7BQlcHo13ApDwSu4FJyHgj4IXJGMV+35fEfQuYLqxf7el+L6FyhfJeurTf1F54/oi5t3+zQ15pw5+LYFU0UTtL5NNjpvwIPBVh0X9FVXljHJsQqagyMdfYwhvvw7jqKuS9gkBc3Y2I9C1W3VKltRlbRSxIThlihwIOngFhJGH8Ut99gQPSslX8PYz0pI1MgY0rVWgaSGrptda6khkW6mLlJ4MJKKWRlklY1jmu4m6q3pSxajwKnY+qLdUzS5l7jgQCplmaoMRLmutv61XebaSnzJTxsqnG8QLW9q3E3XtOiW/hzjVkspHkeoXdJz0VeDjwHE2YjQiWLhc8CnS7tTS022TXg9CzDoOoi829737104o50dKdBF9t19e6VcRqx0xWPuPnl1CPjuNPhjJnObyaidMXXIBPdyURw6pNdEXh24Nu9TB4grqUw1WrcHmuMUFHRROEIcb77EFdmmq6uOx6Dp15TtaXhyWXnyGNzLLBddQAFynit1RYZ6O3qeJTFQhCzi9je+MAhHJHK/JQnuTjSAC0uo2VMwe7iN1vbzK20bDbfmsHDxHuaa8/Di2SXLsGmE6RwBt8ym2SjbERvZ9/4FRjB4+ro78L+pSrJbWurw1wN78Rw4FeN9MJKNBRR5Hp83O+1fEtXENTqA6mm+k739CpfOlKetldxJcTf41dcwBoywhzgRy8FWecKUEPDWk2P8V8s6Vcz8TEnsfdOiPQ0ipXXabIK6q+EsediuUjZe31J4weiTw2xEoF7pEobfnZSJLDyIzsk3TBiuHz1FXHJG4hocDwCfxubJXN0cLFSmc91buuk12NNEwspg2Q77LaLsadtkltW/BZdbcadJ+RT2NsIYRjbSNXelbbQXO2AStF2m5WqRhmhdGDpuOeyxhuxVnpjlG7C6iCesdGxw1Bp5KRUcz2P6vuUJwPBpaXEHVDpmW3FtRvx8FNaI3la+y5bvCe5n0/XNNy4ODMecarAaqE6LguaPslv4FXbkTHY8cyrTVbwGyGNhPa1cRfuChTsLw/EjGamO+mx5KRYcYYIWUtI1zI2ANF7AbeCpeq+DVo4ivaPO3lvUq1m+xPaabrSQOAC6E1YXKHAcvFOlwV4+aw8FXUi08CoQhYGsEjthdKtUxsEMo8mPW72W5rgQm919Wy2NltspwZ4O6wSFYRO1DbdZHiEZiKhCFjH3WY9wPnrqwwXxCLwP0Lk98u/CrHEIvA/QrPpSzeUv/sv6mur+7ZIm3Fwm7H8LixnC5qKpALXjmL8tk4vvpNu7ZDR2QTxsvrpTniHO+TZcm9IeFwOeXU8k1oxoDbWYCeZ717Qy/wD6Dw782j/ZC82+yPJ90TLgNvth/wC7YvSWXv8AQOHfm0f7IQDghCEAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP8AiN+hbTwK1Uf2nT/iN+hbXcCgG3G/tUeP8Co971vgpBjf2oPH+BUdJOllu5fOvSyK8aPyLGz9pOJyMpi6KRpNi8Ft7Lz/AJ36JsRlx+fE4qhwje9xt1LebieOpejw0BjQeN1oq4+upZI3NB37lWdK6pOyrtxS+8zrwzQlBHnmjoJKemZT3u5vO1uK7m0Bay7jv4Kd4hgjYnl2m3j/APom5+GggnU2/ddex+1FXSeD5xU6NNapTff9diGaXQygu4Jtx+k8pYZGch9AUtr6MuJYWkW5pnkj6txjcOydr+K9L0PqyjJQZSzhO0qJor97Q15Y4cFoe7Q0u5AXT9j9AY5usYCWm+48UxuZ1jHM7wvc1MNa484Pa2lyriipo5aWtbUzGPuvz7l2Eb2C4qegFPO54cN78+9dw23Wij4ib1nVJcGL+wLrijxMGpfFbzTbiux5LzYjZc7aJjJnScyoqxksYIawzpLi6xAS2sAlLhbgViCSulbR3GBUIQoi01sAQhA34bpzsZJ7YEa03uVhURCZtitj3dyAocFOm4shPSdeXH+Q1BYNg43+ZWtkmpMFe0A7EgfOqhjdpmY64FgVYWX6rRLC8H3y856T2ELmxenlHn79eBewqrbj+pe8oM2HhjrljgHcfQq0zXS2ZJoGzR6lYuEStqsKg1XuY28PBRTNEDGdayx3H8AvilhWnSquk3sfWOiVlGSn5lOYlGNJdzDrJsOyfMbj6uZzRwJv85THLsV7ui04Jnrp8ghI30pbLaYgm/HKSSsha2E2IAHC/NOCCSdgpTaNValGtTcH3GbAqCanicyVxNwOXpKcKWjjpi57tyXE9y37t7viQAT5y2SqprY007OMUoN5NdTSxVu4AHzpYYTD2OXFbNHwTZZAkWB3KwU/ZaZuhTjCo5JbHPPWQwODZSLreCHgOHBMeNYTJV1DXseAN+ZTxTxmKFsZN9+KT4Ry0K1R1mp+6Y1tQaSmdKBexHOy6spY6MUidE9gaR/evzPoWvQ14MbxcLTTRxUMv1mwLuFkqRzTNjhVVfOfZJRS7VIHp/ipvh7frYUAw+QOkYb9yn2GPDom6SD4KivYtI7Lx5iPlOLRAelO1N9iHgmqD7GPFOtN9hHgvM19zzlU7KR+hxvzXcw6gmoLoiqNOy4GsHE1q3HBhAeF1tcCm1r2u3DhfxXRDIDzCwkjVKJ1kXQsWOu243HeslrNWMAhCEJBI7zHeCVIeBUrkgk+Gi1Iz4voC6gueg+1GeA+hdIX2S0/cQ+SKOfvs85eyN6N2VNO/HaR2gxgamiO9w1ryd9X8E++xUIfklzr20siuP8AylSrp4Dz0f1ektA7d/0b1FfYn/0Gf+JD+yV1BcF4oQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0VV3sc/6tsL/NoP3QVoc0Akm8bvjUSqNqiT4lLT5jvjUUq/tqXxC8d6Xr9jD5/wBmdll74x13NVf0p5ZkzHhpZFLoeywHYDvfg947laFcON1Ha9t3Xvw5d68z0ut4NWM12PRU6aqx0MrfKmBPwDBTBUSa33ed2aeJv3lasSF3alKsQHW3J2tyUYxFhIc4cGm1l6SNV1pZZ6Tp9JUkkhoPAprn+ylOh2BTXOCJDcc1Y0klydNw5Nmtw5IEYZuEpNzsluSLWXTjc0+eVuNVZjcMNV1JtqbcHf8A5Jya7VZ8Y+dNlXg0ctV197l1yd07N+tgNatrWxwUVWlV/acAWue0l2xumzFMZ8ie1lufwrcvBORLnXJ5Fc1dh0dYWudYHxWETddwlpXhvY20lT5XA2W3z3W5a4IhBGImja17rYBfhuhlTjNQWoQ8CsT5gWR4FY+8COOToUXjdnfRfY12s85vguOjB6vguxm72gcbcFw1IvOxvp1GljsSKg5KTUbOtgdG/eNzSD8ijWHtNwLG/cpJRFwDQPQqi5zB5iV93HLbOXL2Q8IpcZbiIZH1rXB3mHuI71aVJdsLGs8wEKN0Dnlz2kAcOSktM06W2I23Xmb2tUrPFRnma8UjoJIlLozv6E04w49QTYtve+977J1Ia8OIDmkd6acb0vpW3Drhx35cFqtZSjJKBWXLXhsrfG/On/HP0qI+/wDjUuxoEvmFty47fGoiQQ+1twvpPTXsj5R1hftTref5qR/1wUVxAbFSfjTu8f4KN4gNjsvqNhL9gjgsn7Yy1AN1zuiLoyGnfwXZMNuC5RcHis6iUtme8tpeyhoipJmVuouNjYcF3+Sh0wL9zZb7dsHbisx9kutEKMabOiUjF0bHHq7bFaoaXQ92n08luBBc7w2SC7b7rareOrUxnJi97YIy5xSxSsqWExncLnq4HT07hfcjvWvCqV1K11ze5J4krmnOo6mFwSztjPZOrchNjsTc2uMFtrD3ydA7c3C0GCIv6wizlurxlhGEN2bfOjDu8LZSuPWtvyK1AgAWIst8JueBFt1uisJGFbaDO+nF5wVKsLFoXemyjdI0GxClVC0Np1FxNeFL5Hh+pz9rBoJ7R8U+YMLwj4kwv84+KkOBC8QHPuXzLqUvZZHTl+1RYeBN3Z8Sk7fNCjuBt83ZSMeaF80v5ftD650/90jXN9id4JixLzPjT7LvE7wTDiJuzbvWq397JcW/JG8S4vUcxPj8SkeJec8c1HcTBv8AEvSWi4PQWiItW/ZX+K4ZzeJ3gnCrbed2rYE7LhnbaB3gVeQLefBbPsdITpxB/wD4v+4r0ZcsGoWKpf2Oe2H19xv1rf2Fc7wSQRawXoLb3D5n1l/7uf67EQ6Scn02cMClpp7NkZYtdp1ebcja45leW+i7CZ8B6Z8NwyrcXzQVUIcS0NvffgLr2jN9heRx0n6F5PoTq9kw1x2JrKf9ldHYrInrRnmjwQhnmjwQoBHukX+guPfmM37BVJ+xP87HPzv/AHCrs6Rf6C49+YzfsFUn7E/zsd/Ox+wVAPRp4FB4BHNKVjUWUCMYwLV8h7z/AAXK3gu7GxaqJ9P8FwtOy+V9ejnqU/hj+iLW2T8NYFAubJSABssCd0tja6p22pZxk6N+4cVjK7QNytU04jJTe+WWQb8PBbY0+JM01KiS2OiSssditE1UXsIfwXM+ZkJ+uG3xrTVzslptcR2I77rrhTTmmlg4ZXD0t8kUzPM1weD/ANcVBwNUr+66fsyTOklLWnn60zRxbelfS+h2dRqKXDPmPWrjXWaZnHEubE9qVw9IXY02XPXwumgc1gJJK+j29H1dLJS05e2skdLS6UNHMrrlw54h18Nr8ktHSS+UC4Ox7k81BLqSSMDtaCB42W+rW0+0juncaJJRK+lc3rixzrlMtfWSR1Aay9vFOGHZfxLy4yVDHhoI4xkLfPTQdaWu84DvVbGpUuoa+D3VCtRT0wNFM8vgY53EhbUgAaLN4BKuympKO7ydMknwNuKzTxvjbCTpIubG3NddC6R1P9cJ+VbXNDuIushcCwC1qk9cp8ZM37qMo2jTb0p0oYBIWiyamg3UiwSImUXXVBbZyUfWZ+FTH5rRDRtb/wBcFKchRdbUAh29/wCBUPxUSOpZWxAl/VnSAL72Nlo6HYcwNzCRVQyti184CPelfOfSioqsajfCK/0dtVWqur5Ho2x8lcASHWKg2ZIi5r7C7r7n41PRodDYuAdp4XUVxphBeA0nfjZfKLao41Mrg+wdPqeHNFN4zSvBcTsVHgHiQhxOlT3MVN1bXSS9lo3325KETS09XM5kD2nTcGzr7hfQLScp00+x6udSG0cml7Wh3ZOyUtsL3JC0Sz08EvUvkbr4ectrQOINwd12tbGtTU3hMVCELGOxtcnwCEIQxBCEIDJjrEeKeqB5DAmNrgHAJ4pHgRhc1xHKOii8Etw2W7QpDQP4KH4bOGqR0NSLDdUdzT9k4runncm+GSeaE/QEFuyhlBVW07qUYbNraF5a5puMzzVxBxZ3jYpUOQuXUcKe4LTUNJGy3I2tYouTKO0sjfYtTZi1c2hpZamUkRxtLnc9gpA6MFN2MYLDiuGVNLM7SJYywdojiPQumy0upipwbJzWCPZP6QsHxzEnUNO8dewOB+tvHC19yLKZhpa4iTcjgq0yZ0VU2XcwSYjHISXaz9keeNu/wVnF3WbldPVYW8JpW7yjRBt8iIQhV0+DPuHeuzBvt+PwP0Li7124L9vx+B+hWPRV/vqfzRpr/u2SbkEh874kqQ+d8S+vFQeXPZIf1kZd/OH/ALti9K5f/wBA4d+bR/sheavZIf1kZd/OH/u2L0rl/wD0Dh35tH+yEB3BKkCVACEIQAjmUI5lAI3n4ryn0nf2gcO/LyfugvVjefivKfSd/aBw78vJ+6CA9T0f2nT/AIjfoW7vWmj+06f8Rv0Lb3oBuxoXoz8f0FR1gtG3wUlxbejPx/Qo3a0bfBfPPS7MbiGPI77TgVCELybi3ujvwN2J07JvOA+RRHEYOonu0bKb1TQY780w4s2IU5LuN+/xVpYVpxaimU/UqSeGyM1cTZYyRz4qKYxCGmw5KWzvEcQI4OChuI1PWzuHcF7Hp6lOa0Hiur+HGOBtxCLrqItA7lC54+qlIU8iIddpULxVtqnZfU+l1ozoqLe5xdCnOE3HGzOEi7kJeBSLuTxLc9c008giQXa23FCVvFTnD1ZIUkI8ssATuuavkfDAHMvfa264sQgqjM0xh1rj3qcKeNzqdoqAdhbcWXJ4rnqi1g3I5cMq3VIIlvf0n0pwa6xsU0nTFVDq/NuE6x9oB3oS0qYjpe5g0a61zmQkxXv6Fw4XLUySu1l1t/fJzjaXXDuCxA0OOgcVlOi5VFIGSEIXQ1lNJkA9t4+zxUpy3WA9XG91natvlUVabOTc51e3F4DTh2kPHBl1wdTUnbunDucV5aK5hmfY9c5Ne44ZE2RxN2N078tIXLm2mvrNuX8AolkPHpRHRQTmzxC0WIA4NCsPGoxUUznd4XwPqFvOwvNU1yz03o7dqcVGP/UorMFKeucW7EC/0qMXa6QtJ3VhZpoiHvI+P51XldLSwVGjrG6zy1r19jJ16aR9JdaCpxk3zsBab8TZAcOC1zvZA0Pe4WPpRDMydt2EfKu+Wrgx8SGrw0+TJxcN2pRcjfisWE6rfwWR4qN3uyYvbSCEIUGQIQhPkQwRcDci4QsJg4xP0EB1tiVlo2yyJS0rYzaT1oIA0EHmmXEJ5WV8TmC8THXO/KywlNbTzjr5G9W4Eg6LeCmXR1lukxmqqYq11xZouHlvEnuSpJUYaiqu7mWMIbqSWRuh8e7SATvZT7LFWJ26WAA7XA+NV7nnDosJxMU+DVUUoAAc1rusIOogj5gnvIb5oKgdc7tm1xa3euO8hrp5Oi0uncU2scFsU7g6IaRbdO1MbRBNVIesY02snaNtom+C8TX9ltFZNYk1kyJOkWShjnLqo4g4G67A1jVX57M5XLRsNel7dxsUhkew2EjgeJsnV7WlhsLnuC0up2ynsDS61jdHPDw+DFTXciGL9J2DZeqTQ18xEt9JvFIfTyFuam2D4lFi1E2op/NcLg2I2sO/xVa5x6IYczYsat9TG17nF1tbxyA5eCsjAsLZg2Hx00Rvobp4k8gOfgrC+jaKhTdu/a3zycDbc2ODnBjLu4pUjmh7O1xSqoZkgSO80pUjuBU01mSJlwSig+1GeA+hdPeueg+1GeA+hdHevtFusU4/JFI/eZXnTt/V9W+D/wB29RT2KP8AQc/iRfslSvp2/q+rfB/7t6insUf6Dn8SL9krcuGT2LwQhCGIIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWjzKq72Of9W2Gfm0H7oKzxxKZAO3Y741Fa37ZkClQ3a5RbEPtyXxXkvS2K9Xi35/2Z12XvjNiAuwqNVrfrgPcpPWjsFR+vb2HFeNtcrDxsekt0iL17d3+CjWIDRG/xUrrm7FR7EYtTtPfuvS20t0y/taijhpEadu5cFcxOs7ND7LkqWagraLbaZaVY646xqYLLIrJ4ssQuvLZxpNJY3AcEqEJuRsp5YIQhY5aZhJqSxjGRHEAXJsFg2Szj1TrjZceNxSy0JbBfXqHK658uUtTTROFSDcgcWkd63Rp6tzmrXE4zVJR28zgixmcYp1MgOgm3H0qSjtkaOCasXjiYA5jfrl+/wAU7ZevJTN18bBY1ZJLBz2bqKtOE3qTf0HSJumn247qKPrsXjxtzWOk6kFwaOsFrKYRN0ntcF2UtNG6TW9ngVyQrKKaaLO5tZ1aUZQfDJDh22l7vOJUhoGhrxq4ndMdHE5zwRwCf6VnaYXbWACoLmerPkcNWWGoyll4JBRtvI6ykVOyzR2gNuZso/RG7nhvHZRjphhxyXLEYwGKaSoEt3COIvOnSeQVHC2dzcqnKWzPP3UnuWY0Oc13BzPEJtxMWpiH8Bcj5FC+hCPGIsvS/wAoIZ45frekSRmM8HX4/EppiYcymPWbDfj4LCpQVrcuk3lIrau8G2V9jMINQXDa91C52ltVLdx4BTjMLblpYeI/ioHi0lPSzPM8jRtzdbkvc9InLRmR8y6vTjKq1BcnVTNe5jhbv5+hMWJsLHFrmC59KdqGqikj1xys0gd9+SbcTraSpl0MmjMg5awvpXSLiEoYlyU1tSqRqN44GCdrm3DuPim+QWcU81cZDtzfZNkzNyrmSzuj1djcKWDSDslSWsUq08Fy3lAhCFk5ZMV8QWLjbzVkkHZBvxKRWCE0ZCxG53XJiLpGQNEe7nG3H0LVVR1AcXMB0/ipaSN9QNUjgC3exFlzVZ6vZRvSxujbQkuhDJANQA5p1p4yIw5/CTshM1REYna+tYL8F1YRS1XXAym8YILTpsotakn7Bw31TTBskNJHpc0NHHdShlmQtvxTThNPrcL8k6VOxLRyUdSrKnRlF90eEu6muZztNz4uUmwGP65F/wBcio2xvbZ+MFLsEFqqAeP0FfM+pP2GdvSk3WTJ9gXmBPrOCY8D834z9KfGcF85vFmbPq9oswQ1Zkxyjy7hb63EH2iIPvS7hueCi+EZnw3M9DLLhTgSJN7Mc3lfmB3p4z3leDNeCmilk0locbayOItyUWyRkmDJ9JMyF+oukPv3Hlbn4KytaVs7Nyb9vPB327kpnXVtdru7zjxUexFt2OUorbum371H6luoS/Gu2wk3BM9JazxyRLEm36s9wKbZhdhCea1t2H0JqeLgq8oy2L6m1OOUXH7HptqKu/Kj9hXKOKp/oAFqKu/Kj9hXCvR2/wC7Pl/Wo4vZ/P8AsapfsUngfoXk+i/tMM/Paf8AZXrGX7FJ4H6F5Oov7TDPz2n/AGVv7FeetG+aPBCG+aPBCGJHekNwOQ8wG5+0Zv2CqT9ik7q48de9zGsNWN3OAPmFXd0gENyPjxI7Iopr/wCAryx0OZLqs3DGm0ldFTQirF9cJk96T3hYsHrR2OYfFJ1bqlmr8YetEmPYcy2qobuORHrVNRex3wWUtkq5qaeS/acIXNv/AO5P0fQTlCOjMZoIzNp2eHO7u66yxlAlmK4ph9RVR9XUjU4nbUPWkiPWg6XRkAX7LgSqOq+gbyfGpjT1kFJC8jQXU7nX2398uSmylnfIdXJUYJO7EIS03bBShm17ndxPwQvDdb6bQuLicnUSlts2l2LCjOUYIvhpMgfo96bG+yV22pwcbAXIPBUnhfTVU4bPLBmbDZ46m9tL52NN+fBvgtuZ+mqjGDTMoqJ8ckjHNDvKGu4ju0qkj0GtTqJR3T+Of7GydVuOxYWI4zTsqHsc7tA2sBdLDiMTmuEZc4298F5ryTnWpZmWWrrwZIpHPcG3a3i3vsrMb0nYVQtYJ8NkjDjbUakf5VaV+jeFhcv9fAqIyquTXYmFVLM6Z3Weab23XTgjmPqI4Huc4XtY8OaTC63CsfoY6milYHOAOi5cdxf+Kzno56apbLAw6wb8FyVWpYpzWn8DCNOdKpl7oqbpdzI7Cc0w0lPTMDHNjuWtdzJHJbaSpe/DmTuYAHi9yCOaszFIsLqwyoxSAmZhAuZCOHgoP0tVD6jLrI8AjcHMZYgHX78d69j0PrPqyhbxWfN4z+OSo6r062uZapvD+aQ0UNZ5S4hoBtzXeAdJOwUTybBW0+GOdW3bIXO4tt3KRslHVjtAu7l7ddbjUwn+vxPD31sqFXTTeUbbBhuAB6Vi6Ud260l5JSW3usLrqTltFHLpy9zN4+tP5O9CgtbEG1MjnbcfpU8iIfNd/m3VfZ2xB0Fc1scTi02F9Q7yt1lfxp09Ei+6JUbr6ZM1C3LglWunf1kDH2tccFsVwp6oZgj2MX7QoNhayxcdDC690uqwI70RM1OseCxacljO5NSWlahupK+SbERDpAbY7796sjBqXqomvdxUaoaKLrmuA7Xipo0EQtsNguWUZQpSbfmeQ67eKriKMWkOqW3H/V1YuS4R1rHRxsaebgN+BVe0bOtqGgcb/wAVa+To3RRxjv8A+a+S+kN04xab2ZYejNOTbSJRojIc65HZ5BR7Eg4Od2Wua7cE8V0Zox6kyvhXlVdbSS4bu08r9xUewDNFBmymfNhz2ktIBAdqtcX7gvF0bOrp8WK9k+m0HFTSbI9mrDHVuCVMUb3CcscGm4G6rPL2Uq3DqqaeteS0l1hrBBuOKu6qpiO07Ynmo1jTJHNcHPuwc7L1HT756fDXBfwpqpUT1bfMpzHMCmkxZ9RG9wZcEC4twC7oYnMhGo7jZSGoieXOETtTR3BM9TBIxxkd5vDhzV/Tq6kWdKzjS9pP8TQhCFsRk8pghCFAFjGsHkkYLOIJJQ46baUh0HZzgCgAtsb3v4rtopORXIW6Ba977oidpesZxyjOLwyR0cml177J/oKoEAKKQyXDfFO1PIAwaTuqy4pnTVp5jkmtFUaS3xUrweruQq7w6pFgHndSfCKlocLFUF5bZWTz97b9ywGPD2rJcNDLqYF3Lzko4keflDSwQhChPcwkCDugoTklrKC570nJKk5qMY7mMUKhCFk+DJByHiu3Bvt4fH9C4uQ8V24P9vD4/oVt0Vf76n80aa/7tkl5BIfO+JKOASHzviX1kqDy57JD+sjLv5w/92xelcv/AOgcO/No/wBkLzV7JD+sjLv5w/8AdsXpXL/+gcO/No/2QgO4JUgSoAQhCAEcyhHMoBG8/FeU+k0X9kDhu9vr8nE/+EF6sbz8V5H6aKN+I9NNPSQTNimlmeGEt1f6tp4ID1THX00FJT9ZPEDob78d3itL8coQSBUMJ7tQ9apeDoFp62OObGcQpZ3OaLDyZzbf+5PWF9AmVaRjvKaWGbcWI1N/iofGwLCxHHaB1GXdeze4tqHd4pnpqqlqmgQVAc872LgAq06QOgLCqiGmOXoo6W0oL+w6TbSb++77KNVXQ/jWFwUz8IxaBs0bBdooyTf43Ly/X7Glczp+JNJ488HZbNpF8PaQ8G40+hYl7WusLm/eFRjukDN+WTFHmDC6t0LT2nEsjFuPceSeIOm/CqmnLI8Of14bv/Om8bb+9XkpdEqpaqTTXzz/AEOp1sMtarfHBAZJXtsOVxuq+xrG2l7urDXWNg03tzVDZr6RsSxTG3SRP6qkvdsZ0utsOdvQnOjzbE1kcs0JcQBf64B/Bel6d0CNvT8Sq/afx/web61c1ZSSgtixayslliDnWZqGwadgmA3c9wdxPPmtWCZlw/GZXx7Qm/vn6uV+Q9C6qqnMch6t4kYRxAsrWyxatto8f1KjWk1Nrb7xMWrRgeWamvbBFO9j2AawTx25KssNxCTFnyPcNJtwF++3NWYZHOpn00oJgcQSOHDgoUaRsRl6hha4t23uvU9BoVZxlWb7lnYXtCNNRS3+44ix8YOux370ibIWVwxGQTkmO7rdm3NOa9PQrubcZIu9OrEsgsXOsskEAhSkuRLZ4MZg58WxIKbAJmSkSSvLTwF07B2kWTfi8zWQ2Au82I39K57uPhp1Oxtgza2kb1Ju4l2+643mVz+qjkeLdxWFPWvdGSWn5V04dKx0jwRZ5JI35Lmc04R8PuzJo7KeN7I+08nxKzZe/FDnkiyGKyjHCSbNY2YniD6WcMa0EXPG6cIHdcxj+HoCHMje49YLnxWRAZEXN2AXNCEoTbbBkbXd4rKJ2h7X8weK5qaUSh4B5rNzgyPtLoUoyWpkOLlFxfcneXa5z+q0PLXtt2gbGwtcK38FzRTYhK/DdjM2wvY8915spcTZSkSAjYWtdOeVM1UNBmeKu66PU+RpI1dwt3LwXpf0qldQVWHKNPQaNW0unCXDLezPEHmUcDuPpVHY9glR7bunbK/Rcm2oW4BXLWY7hNZTiWeuha542aT38PpUWxSiilZqge17XcwvK9PqStlhn1WjGndU4x1bp55IJjNFNUUUYY9zSHcj6CjBKaSniAkcXbcz6E6zxlj9AYez2lr1XKvFNtZOpWqjWU0+BBfXssjxQ7YbJFG/DOsEIQoAI35IR8dkGUt2KGX4lB08Lk+Kx0+m6XsgbedySTlIxzGXA341M2OJutocRa1xwWzAsxVeDVcVRTsbp1AkXdY277LOpoxUvaJPFdLSI29UxpIb3FbKijOGlnBO3c5YOBuJMrMZfJK0F0gLrWOxJUuyyxzaqR533Fr8tio9FhUfljZgNyN/lUxwZul3Y/64riuaiVNo32Nq6EJZLBw9zjGy+3BPkW8bVHqF5DWA8dk/U7/rbfBeKu1u2VNyvabHeEARNtzK3sj1LTDvC3xXbALBVUnmOSpnPO4jYNJB7lsDGg3DRdKXG9kq1uq0sYMG3gBsbjihCFKSxlGGO4IQhQyUCQ8kqQ+cFnQWakUTLglVHtSx+A+hb1qptqaPwC2ngvtFPaEfuKR+8yvenX+r6t8H/u3qJ+xR/oOfxIv2SpZ06/1fVvg/929RP2KP9Bz+JF+yVsj3J7F4IQhDEEIQgBCEIAVMeygJZkSFrRqLpZB2vyblczr224qmvZPvLchRgjtOkkAPd9bcgHL2Pr2UvRthjp5I23poDbWPuQU89vcPc5pbUs3Pwh615v6MOiqrzVkzD6mXFKeKF8ELtD6YuNiwHiHBTWj9jxlyKoY+dkErAQSAxwv/AO5Q3glFuOx3Dg7T5Q3cd49aYJ8QoqutnZT1LXPYRe7gBuorifQZlZ+HSsoaOOKfSbOu529jyuqypegesp6MsZidPTTWA0upHH/eVL161pXFCMastO5vtpaZl21xtGHHQRe3ZN0xVjLuudmP3CqukGfMj08kbIZ66jbe7ooWxi3x35NS0nTDTkdTi9BIKhuzg6oaCD/hXjvsWcZaqM1JLyeS8trhRftE0rYh1bg0gjfd21kwV0bW2NyTbiN1Bs+9I3lkPVYVE6DULXMjX8W+C5Mq566nD3wYg0yyFwNw8N4DusrilY1YUlJljb9VhGWj9f1JJXsBjJtv32TfpD4rajcFaH5ypZagRPhLGuNrmQH+C7JDDO1slM8EOsbDfiu2EZxhlnpKF9QrR0N4+9DfVR2pnTNA2F7fGojBjskmJdQYmgagLi/fZTlx09hw7K4jh1N1weB2r34lddKpF8nNd2taWJ0nhfHJxvJ1N4BI9x6wDayZ8z0teK29MCYzqtZt+5O8EMzIGGQHV4LfJpLJhQrScvDlHf5GQO58UXWwxOdYgJOoctTkmjqUXFYZi0g3Du5M2IRVMU4LJ5A0XuAU+MpXvNu7fgujRFHSSyT8wLb2SFXsct1Sm6LqrGwz4XQivk1vkcQ0cDblZZ10PkUzmwTzNe83awbNFu5MNBjMsFa+KGNx1OIFiO9PE9ePbKi8oiIlaHBxLudlsfsyWSspVKc6XibprkccvUtbPVOlmmkLQBZhdcbFTShYHuDHCxG2y0UVO2KNpJGp3BPdHEdTRrFyO5VF5WSk0i7jDwYaVL8TgzNicuD4O6eBjXOaHHe/LwSdF2bZ8zSSx1EEcfV6hdurfTbv8VIfIoZ4HRVTC9pFuNk5YPgtFh0TRQx6HvcHHtE8ePFV9e6pK2lFr2jz9z4irKTxjBIqIENYQB6T3p6YzU3S5rXgjcOURkzDBSZqpMGJF3yFh7X9zVwspkNEUZe8gMDdZJ7uK8xcU6kVGe6bK2rNNGTBHCwNjaA3mANkw5txKLDMOiMjy90shYNf4pK6HZuy+yR0L8VpYZQbFrnElU9035uwqslpaWmqYnGKUSFwdfYsI7l09PsqtxXXiJ8Z7lfcSWh4JfixZPhMNS0kFzWGwG25VaZ/wWoxBkclC6ziTtqDQdrKV5WzRhEuU6amkrIY5BHHdxd3DuXDUVWH18boqapinkHAtPevX2cZ0p6XweL6jB0/2sY8fAiuC4dUUmGPjleXSE83Xt2QNk14VlmsZinXySvewkbF47lK5mMjZpcLEFdVM5zS3UCWr2HTa8YVFl7HmftGpBSbjz8CP1cBa7S4C4TVUN0EgtBUyq6VkrDIzY3tZMNXAS4ghe2hNSWUY2l408jC+Kw1DnyWlwIKdJISzwK5pIiTwUyielo36a3OJ2zSRuVkLmMGwW/ybuKw6mUusOHgteMHcrmD5NJJcywAB70rSSw3A8VtFKXOs1wv4LJsL23DvoUxedjLx4Lc0dYBEQ5NtLK9t3RjVfaxT55K1zbOWVHQiIgRjmud0m5bGmr1CEUM882p0YmjaPAKV0bWvjYYxs7YLVLh7KoBsjdwn/CcObBBG73oJ+lZUkqM8yKDqHUVOOEdNBD1MdzsT6ljKSX7k7rfWSDSAzkFyXJaTzCoOs3cZtxR5xZk8nTQx66kX3AHD41MsCg1T6zy4fIVG8IiLW6nDiVMsLYWQNtxIXz/AKlV9k9T0a34ZLMIi6uC57ynUO7AsuLD2kU41Lv0jqgvC1pZmz6NarEDAiznkbGyZ6sX1333TyfpTXWN+uELVTWKiw9iyoPcjdcLW7+9MdXF51trqTVkYLnDuTFWMNyAr+1q+XBc0JIi1VG0SWIFkwSsML36t7iw9Cl9ZT6mm3FMddT6w48wLq5oTzgu6NVKOEWz0CUb4cJq53uJa97XAeLVbSrvoVbbLIBHKP8AZViL1tt+7R846zLVezfx/sa5fsMn4p+heTqP+0wz88p/2V6xl+wyfin6F5Oov7TDPzyn/ZW9Fd3PWjfNHghDfNHghCCPdIotkbHvzGb9gqk/Ynjt47uQPK+HLzCrs6Rf6C49+YzfsFUn7E/zsc/O/wDcKYB6NsABYW8Eo70HglHBAMGZN5Kbxd/BNp247g8juE5Zj+yU3i7+CbXcl8u9JtuoTfy/oi0t8Okkxgx3KWDYzq8qoKXW431tp49XykLnxfI2BYnhwo5aCmiaPfxU8bX8LcdKk54hCrodSuopKNV7G5Rj5EGyx0YZfy/WGphhNU7fsVMbHt3FuBCfMcypgmMYa6knw2jiuHDXDTRtcL9xsn1c1XP1LdduyeayfUrycs+I8mOiK3KVzR0XVuXoDW5YxKvdY36qSqeGjifNaPQF05C6RmGnjw3NLZIa+EWL2s7Libndzjc7WVr+XStYSSXxO97wUAz7kXCcy0lRJTUccWIkXjkBcSTt3m3AK4tL2F0vAvN5dpcs5JKOcolVVh0eJ4eJIC1zHm4cLcCP+apzM2JU+D4/UUNRK5zw8gNB1N2A47rdgeccx5DxCmwbMcMz6GSRscbpHsAAcQ1uzQTwCdM29GBzJmJuP0slqaoLpAAy4sQBzIPJXPTNHS6+bl6oPjP+MlVe9Pp3KeORqkY17A9rgGnkDb5lqZvdunhzAT5ieCQYdJHC5wJFuRCccFw6mncYi1oBBN9+5W76jTlLxKcdjwUemVJ1fDb3ItG1h21DX3XWb49Au8j0WKiMtHmWDNAa6nmFFqb2tTLWtvzupkyhkfpMpPm7g96tKt/TVFTS8iLzpU7ZrLOdp0u34ehc2K4fS1cGt8LS5vMsHqXRp6mYx2ut4bL1bgWHQfSu/pdSnUTloycEZzt6mYvDK4qnxQ1ckZs0A2AFgk4nskLlzNhdZJj8z4Y3dTrNrEetOLqPyeAOkbYgfwV9a3jm3FrZHu4Vqfgwknu0jTpdqF7HwXRTsa69r3TTDXtNeYW7gkqQ09PZwtzXVQqRqSaRh1Gt4dNYY44RSulJLtgBfZK/NlLFiIw8tkJvpuGA8r8bp5w6FsFJ1kr9LSLXt3hMceBYZUYj5VEGPlBvezu63euDq9z4ENMe55a38CvOcq3lt8yX4BG107ZAJNL+Fx32VtYBCWU0LhfYc/jUAy5AXMjaG2tYD5laGFRSMomh4JsF8U9IrjOU19x7L0coRitS7jVn7Kkeb8G8jllMYbqcC1+nctt3FR7IGRqbJlBURRSyyOe5pJe7VwBG2wTv0j5ndlPApKqKn1Os7g63BpPpUf6LM9fyzopHVEeh7S0EF17dm/cFx0oXkbLXFvQ+2x62EY+JlkiliJaGHffmoZ0kQVMGASS0DLzBzRbf034Kf1Ubg4PbsAVyTRiVhbK3XGRcg961Wlz4LUmuOV5lspNrSngoTo8biVZHUjEYtIAbYnV3nvXZX0w7cdzcOLuKsqvpmsjkjpoRDqFtjf6VXNbV0bq80xmaZr8LHvsvU0Lzx/bprCLvpr0U8XE8sYXsdGSXjsjuSdlzdUd7DjdPtTROYXMLbgnZNFRTujaNAs3Vv4KzpVVNnbKOmOpPY02uLt4elId23bxTJU40YcRNKPNBI49yewQGgjmt0o4OOld0605Qj2FaL+NlG8WlrI69rYQNF+89ykjez2u9azEyV2pzRdItLlE3UJTinSljcxpy4xx6+JaL/ItjtnbLIWB25bLF+5UNm6nylJjnRkOabrthk6t3ePSmqhedRHoTg0XC4qqyywoS1Jp7jtDUAuBBIdyspLgtQCRdxv4qC9prgQbW5rvwHFGsrBE+ftF1rW/5LjuLfXBtHHfQgoZLuweUGAON08NdcBMWDRTNi03NviT5Cb7HkvDVlpm0zx1b3mbEIdsULThcnNjzBCEDmowjIEGwBJvt3IbuVqnfovYXRJBGwOBF90oLTwv8a0UsjnuOoWC2yG7rN2KyacMOXBGlqRlfsjxXdggvWX8foXB70eKcMD+2/l+hW3Q5L7Qp/NGm49xkj5JD53xJeCQ+d8S+sFQeXPZIf1kZd/OH/u2L0rl//QOHfm0f7IXmr2SH9ZGXfzh/7ti9K5f/ANA4d+bR/shAdwSpAlQAhCEAI5lCOZQCN5+K8pdJ4v7IDDuR6+TccR9aavVrefivKfSd/aBw78vJ+6CA9S0bR5HT337DeO/Jb7cVqo/tOn/Eb9C3d6A5a3aklH90qLNJDXN43N7nipTXj+bSfilRUcV4P0xxGpTfwZ3WiTZoxDDqPEaZ0NZS08wII1SRNed/EJloMk4FRSSvjw6kcZLk66aM2uLbdlSMFKTsvKUepV6UHGE2kdbpRb4K3r+iLLtTX+VFsrHXv1bGsDOFuFl1VeVMLp6fqY8OoyANN3U7L8LfBU9bud+C5K6IEXsuul1u6k0pVGzkuraNWOy4KLxzo3o6meSWkmqKWokN2theI2cu4dyiNPV4llPEjSYy109KbfXG6pXAE95tyC9E1dIyaMlu0jfNPcojjWFUeJdZT4jA2Rzm2D3E7XBA4Feotupp4jUeSkrW6lFwnuQKlxKlrnPmpHExg7tfYHf0XWnMDIKGibNVjqy4kAsAHAJhx3LmJ5bxOafC43y0ZcTobpaO4cTdPdc+HPmV2x6RFUwl77buO/ZHcF6uh1OrbKKpS9lnn10iEaniqWI/IhwlY7XM0lwLuzz2KL325ro9o34NEyOaYkAAbt+JaDYz7d69zb1fEoqpguqdSFWOmk84Cx5kD40ui25Pzpoxd1U2UdTqttwt3ld1EZXUkRlvrI34JSrqdRwijfLCinI3Edy1vpWTStdJxaCAOS2ucI2aiuby+NxNwLg2SbUHipuhGLfAj309KdDmtt+KFlDFC+ZtRFfZumwtZNWLMNS27W7/APJdGFVDaWm0yCxv/BV0aqjUw47dvgbdG247EA+YPlSG9uzxXBPibIXANI3XbDJrjD/hfxVlCvCpNaTTNNGEk8cQu8HUfQuOvr42RlrdVnDu713S08ctw+1wml9PC6o0vILdu9abzxFLRxkyhjubMMl6t2oBxa/ftBdc88Ez+rvIPAIkMLYWshaOyLbXSU1MwfXXNuVppal7GSXJN8ml0XkrtYHWRnbS7c7+hSnIWBYPLVPq6/XaGz2sDWkniNwVF6+WR07OoadYbYWPJaKHFKulr5AHOMrrDTt3LhvqcKydFbMmU6kPbjuy6csYDRZwr3yVL2UtJTPMTGxFsbnFhBFx8asDEstw09CIqSJj2t2Di0Enf0BUTkPGpYKh7JXmOYvMmnjcbb8PQr1y/nCB8DYqgjhxJPp9C+bda6bd2cvWKbbgu2y/ubundddOu6FXaWOef7HnWvpMaOZdEkLxEXBvZD7ed4J4rKOSmcWvYbg9y9IzYRh9bF11NEx7z74X2+UqtOkWko8Is+qc1hdvuD8IDksbPrHrU400sPB7vpl7u/FllFYPcGusbpbW3PBdD6d0sbKin7UZcRcejxXPJGS7tGxV1CUp5T5L2Li1qT2EPoWuSVscRe+9gbcE34nigouyB865/bOOuoTGSA8uv83/ADW6FKclho4Z31OMnDO4700oqIOsZ3c1wZgfMykaae+sG+1+70LXhU8dG3qppLDhuE4NrKOVzmxyNc624sVk1jG3BHjesUXDOmTOPL8k81MX1Wzha257vSnKZ4ZC6Q22F9lodWUcTdDpWt9FiuTEqyne1kEEgPWHTcA9yjGt+zsjGNaNvHEnn4/HyHCjmbUgOZquAs2ee4b3Ka8LqI6QujdLYi4vZdcdbBI8xNnHWHbgfUsalNwerlG22u4yinJ4ff4Eip2tDG3twTthQIk4i3imKn0yRt33G11tkrfI3tBl0g35KtqQdbOCycoKnllmYe46W3N0/wBI8kAKKYJIJaNkjXaxfipJQvvYLzF7ScJOJQXOEm0SSlddgHdunKnddvBNFASS7wTtTeaVRTjjYpJo2cboQ3mhasvg1PyESX7diDZZLGVz4xqdchT2yGsmTSC8jeyQcFqjqA4+b863cOVlD2WpjSwSe+CVHMLdbNSqRaIkmkSum3p4/ALaeYWqm+14/ALaeJX2Shl045KV8sr3p2/q+rPB/wC7eon7FH+gx/Ei/ZKlnTt/V7WeD/3b1EvYo/0GP4kX7JW4IvFCEIQCEIQAhCEAEXFlTXsn9shR8/rknH8m5XKqa9lB/QKP8pJ+7cgHP2OhJ6NsMuT9rQfugrOAv37KsfY5/wBW2Gfm0H7oKz280ZKFsFGcXOmuJHIqTqMYvvXP8V5f0rS9UTfOf7M3WqzM4ZmskY5ksbJGuFiHtBHzqF4nk3BKisdUPoKUSNJ2FPHY379lNHntWTfWNIlvyN14S3vK1v7kmsl1TpRbWUVzmXI2DYvHpfA2neBt5PGxnK3ILhwzJ+G4VTOghpoZnkgh08THGwFuNlP6uDS/rBwTZWQuk7bNnDZXVHqleUcObLClQoJ507kAzLlnDcUIYYRTyAmxgjaziO8BQLHMv4hgLmyUM00sQINnyudt4D0BXXVQNd70au9N1ZTB8ZbKzrG8CDtsrOj1GS2lujqnaQ96CwytMMxqkxFjWv1x1bveuaGtv8vcnGoY6C7pm2aG6rtGyXMmSWTgVuCMENQ27g1gub7Di49100Ydi9ZPUy4LjUbhK+IsY57gfO7I8341bqMant09kdNLq1Sk/BrLL88m+lxKjq5jG06nN23At9K7HNBeNQC4cHyVJQYhI999IdtsO7xUikw0OOx4eha6taCeEyysKviNyqobdLO7fltssdHPskDu3W7GKeSDDpHU4JlBAFtlHcknFaupkbXMfo24lvf6FlBOcdXY11b6FGqqeM5H5gDierHAb3C0y0pr6fq2dlgG5cbFPcVIGhzSNO5N021mKYfRSCGXQx3D3y0xnn3TqrVaNJaZ8Mb24XSYbE+eSFpLWk3LAfT3ehb6E4Xj1HGyzW1DgDdrWh1+J9PJY5lq5MVw8QUEZsbbtPHskc/FQ/KdFV4XmeN8kDmdUXB5uOOgj+K7KcZVab1S9rseZuL6kqypQprR3+JceG0PVxnWblguA43Jsnanp3PcyQAAW4cFGJ87YE2OepM8XlEUV7Wfe7RtyTpkTNVNmgysp2AlrrbE/BvzAVFXo3MYubjleeUdEr+FWeESKpqIaaEySB5Y3c6W3K4GZ+wOnhllayue6EOjIEAPaA/G4bKRCkhmhdTzUwc0ixuT61BM8ZYoMBp219FI2Js8jYX0rWntGQm77kn5FwWaoV56Kr3Ky+ryXBFsLzLDmDMVVjsLak1FM5skTAzYkt07i5V0s6QsEgw9jq2KuZqjDHNfABc23tdyZejrJ2A4HHDN1MTpp+Is8E2J9K5MLwJmdsWmmxVoZSU8xjjp3doXY7Z1wQdwVvu6ltd1fZ2jAqMykJimWsPzGwY5gInY9u5ZUgRtJdw2F+4plkyRQ9IdJBiTuropmSlkjRphaWsGnbY3KsbOU0OV8pyxYVEGPjDQ1rCd7O9N+9efcz5px/AWwUEvXUcYl6wDUx2rUCbcCp6Y69ypOlLGHz8PIwqJJYJljuX4aCooct4TDAXmLtzytAvo4kPA3uPlXdBlmmy+x0UGuRzhu99nHv2NvSo2zFca/wCwsYr4ZJKM0rWtkc5oFn2A4b8+5WpVwCphDWHU+3Z8SF21atWglGTy/MpL6DcXHBSnSE2upJYjRNcWuDXHjx1HuXTlyWono4H1BcHHjue9Tyvpg8ujrYr6dhqPqTBX03kbC+MaYmdyt7O61RW255HqUVoVOnDDya4ZO2Wg9n0rZLTNnNuyB6E2UtdSVUrmxyt1gHkV2M6xrjpcbBeosurSp4jPgoJ05Upe1szlnw0teQ2xHpK4KnD36wwAaiL7J1q8Ujo6WWWot2Wki/eAo7g2daaqxCUSRt7Di0do8LeCvYdVptblhZ0bistUFsjntEat0Ac7W2xO/et81M5sDiw37t91zRxxiqgxKUBsUrrOJ7mqR+WYIyIOdVR3dbs6X8/iWVK7hNPLO2rKpFx07+ZX1A+ufi2h7XCPUN9+5SsUgsLl2rjxT2I8KZB5T1rGtte9neC0y4hgrKdz/Ko5JNwOy8cvBKdZU03J5Jq3c7hpUo4S5GegEc9dJTDVrabbj0J4bhzustsPBMELmUtf7YNmtHJd1reiylUuP4aGAwyMJItsHepao9ThnJzXkZtZpbnRR0kcF+Dnf3t0T1GlvVxjcehcsNT5QOtidse5ZAtB1uNrcSqm+6ypvTAqHCWfaFDiAS8LbSR9bIG2O/oWqleysqOrjkuR6FIqKlMbizT2uS8xe3DXtM7Le0dRrOx0UtNd0bGg2FibKX4ZT6nRRt4AW3+NNmGQCFhdIN1J8Eh7HXAeleRv7hyXJ7rpdqoPGB3iFowywstw82y1M4raF5eo1qPWxiorYQ8lxVsYA1Diu3mtNQ3ULKKWG3pN9OXkR+tZ2dXM8Uz1sJa3VsQpLPDrBYOJ4JqqKZwJY/gu+2qqL05LCjUSeGRqohOz2AFvO6aqul7Lj3iyk1RA5jtDR2Oab6qHsHZXdKuttJa0amCyuiRnV4A1gG2ln7KnXNQ3oybowRvg39lTIL3Vo80UzwvUnquZMwl+wyeB+heTqL+0wz88p/2V6xl+wyeB+heTqL+0wz89p/2V0nIetG+aPBCG+aPBCEEe6RO1kXH7bkUM23PzCqT9iff/ALdJBFqsCx4+YVdfSELZKx4tcQTQzAf4CvP/ALGrMFBhNdjEFfO5sstVqA0E8GEckB6j96gcFhE4Pja5riQeZCzN+QugGLMYJfAbGzb7/Imsntht+V78k85gYXxRanFg3uBv3JimIip5JXHsMaST6AF8z9JYtX8sLnH9EWlrJeHg2XFzvwSuOk77ekqDT9JmXIcRgoJakiazg7627iB4KVU2IUdbC2SGeSVp4AxkKonY3dJpzg8P4M2xms4O/jw3HeE110l5eqbZ8Xe3f513ziSOm1sbpZZRSsxgQSiAMEb7+9usqFpVqTlGK3+Ry3Vwqe3mOrAGbN3Hcd0Elo4s1crclw0NeJH6SwXI87mu1o0Gz2NeebjxWytCpT9mS3OalJTRAemPBJMRwEVlJH1lTTvEhIaXbNa48gmfoyzB7a5cEMtUyKppmtY+N8mk3JJ2be6tQxa4KmmmaDDNG9u54ahZU3m/oyxLCBJjGV6qWx7csTQ2NpJs0b3vwV5028hVoO3qSSl8TXUoyw8EkxuORj9cvZ7i8Wv8qaKKtlZVHSRe5sAOKiWLdJtTNhHk+LYbTxVUWqzxO55O1hyTp0a4nBmFpMjiyobYMDQXbWud1extn6s1N554PL3vTrinXU6S/Bk2x7GDBleoq5YIgI43OJ6oB2xUDyRjbsyVssdPHJs9w83ut3eKt05cZV4XUUWJstTvYWlxbq4nuS5TyVg2VC+ow1rZXSE3vEGW1C3IlU9LqlO2pShpeS5l013NNSqkHznhcuEYTUVwGrqm6jYE9yhOUsxVGJula+FzWNLhcxkcLK882eSR4JV+2sLDSFm9wXbXF9lV2GPwWZ0kWCxRhpJ1FrC3x4/ErvoPWakIZ0/gVnUum0Y0morc4cRL2tMgYxzOR0X+dRHMVa+KEueGFp27I9Clea5ZcKw+UaQ6N1tNzbYEKIZXczGS6Cuja6Mk2J352X0Cz6pSuqTgtpfcUdlbyoQdepwmceWaIV8j6hsUhseIG24UjxB8eHStbUPY2/eQPpUho6GjweHRCAyM/Bba/JRvOmX6jGJGS0sjy2/cO70rolVdpbr+IyV5C+uk6j0w83shcRq24lhDqSjqYxKXBwtIL2A9BWzo+wWppw41r3B1hYOJF+PemrAMp1dFXxyzSyABvCw9CcM7YtX4dUQnDtiHO2D9N9gvKdRu53HvHcqblNW9BppvOeS6Ms0RIbcOFnX+hWBStIhIuoV0bOmrcApqmr7Mh0gi+r3rTxU5cLPszzV8o6tLXXabPZ9OtlQhhHBjeC0OOUfk+INe6Pe+lwHEW5grgwbL2GZegdDhUMjC4jd5BvYW5AJ9mcGt7IBK8+ZjzzmKn6SJ8Oie4UrJZWsb19hpB22sljRq3MZUoyWlLJYTai0y9HxtkZ1cvZPp2TdUsZFdseq9+JNwnQMMlOx0o+uEeK5amAvbw0uaPNHNcmtwliJ2wlqGaeKJxcZr2HJpsVTc/RvXnM5xBtQwQa9elz3Xtqv3dyds6dIlRhWbW4WKSLSXaSetcPeg8LelWdDTSVVFTVA4Sxt7N9txdeghKr0qinL/ALG5VKdzNJvggePMihLeqHC977qMTwPAu8DS48gtnTHUYlgtdC2lYNDi+56zTwLfWn3DaJ9XluOpqIwJDfnfkrWlUXq8aud2egs+qUpPwCAV2E0hnMpY/X33/wCSH6Qy3BP1dS2JuFwOoWv52+JWEKuTtVtGk3UiuRuBvbuSvt71bZoeqJHctPFdEZmuTlHbAHfcJAfFF/erkxHFIKBgEgBd8ankitUjBZmO+HtBlduDt3pxAI4JtwV8U8HXxnc7cE5XXJV5O22qxUfZ4M42dbI1jj2XGxtsmJ+U8TfmKKaknaIdevtF3DVf6E9tcQQW8RwXVTYlO2VoDi0jbYrBTlFYRov7ZXC1RfBcFFWNaI4mkh44knZSKjfcC/cq9yy504D5pHOPp+NWBQkaR4Lw99DFVnlLmj4SwdhFylSmyQqrWdWCuUsgjvQhZmQN2K0VDXHtsttyK3pC4M7RFwOSmOMrPAKdrulWnw7NwwqaGXWX6bhgt5+nvVt01Q2ppYp2baxcXUOxDouwXEscbi0gaJtQdbqQd9WrjdTWKKGnjjp2MGhgsCrG/nayoxVJPPzNUZtyeTPkB8accDafKS7l/wAk38z4JzwL7Mf+uS39CzK9hpfcwuH7DH4cEHzviQOCD53xL6sVJ5c9kh/WPl48hUP/AHbF6Uy84HAcOsb/AM2j4fihea/ZIH/6jZfB4Gof+7YvR+W9IwPDg13/AHaP9kIBzabjgR4rJJvf0JUAIQhACRxsRtxSpNifBADTt8a8p9J39f8Ah55CeS/6Jq9VF4D9J7rryZ0t1kGH9O1HU1MhELZpC7a/+qaEB6vpD/M6f8Rv0La5wBA7+aZ8s4xR41hcUtBIXMDQPNI3AHf4p3O7bHe3EIwaa83pZbb9kqKN7zt4qWVX2vIANtJUUkGvrAB5rrLw/pZFylCaWyR22jwxRz3Bt3INr2cQ3n2tlF8z51wXLnXw11QWTtZcDq3HiLjgs8uZwwfMlPemmL5Gm1urdyAPPxXlY2Vy6fiRi8P4M7HUwySjduyxlDTEd9R7husoJRIx7o2kutu22wWuZ2iM3YIyebd1zqjUhLTpefkQ5qSY1SBwLxazTxuEwYu5nW2aWkbcOKdaqujDZ2skdI9pAN22twUcdI0lz5QL8ld2ltKm1KSPP3dSCyhmr4wJyLsLHXJ17qoMJqjg+YJKaYuhZIGtBf2W8b87K2MTlaZzzab7KL5qyxBjo62I9VM3cFrQd7W5levsp6UlI885QnJ0Zv2WbKiOHEIwGuY/bzmkEKK4nQGmk08HelcVHXYplipkgqYWzwtLg0vltsNhsPBcwzL7bYo1lQ0REuHmku5L3HTOrU54pN7fcarXp9e1k5QeYmXVu1HrGXsL3suCXEWNqOpDTfwU4o8JFQ0PEjnNI5tTFjuXmUlV17Wgg3NiAO5WtfTOa8FrJ2W/UoKThURxuAdEQ7fa+yYJqhsddoiGwJDr77qQXsdmjTaxTPicEIm104Be43dtbdc3UIvC3LenVVT3Bwa9ugbxX7jZcjoxUSlpLA0XNhsVubQudF1p84C9k2QVBZWuY5oG5HFTUqPEILzNr2W5lGYaqoEYZKCOZ4bp6s2CIAnYC61RUscZEjQAfBbK2F00P1sm9rLbSpOnGTysmrdmjyyE6nk8eQITbBTSzVRkv9b/AOaG4TOLOc51viTlMx9NQkxi7gD6OS5Vrq71lx9xtjFGFRTyNiHVEX9O66MPcTAWyW1fIuPCqmaUkTDbxunLqwDdi7remox1mqpJvZoxLdRLbC3fbdaY6KGKpEjQ7Ve93G66Gu3ueIXBitVNELxj51lVxFa0tzFReNmOYlfFMHxaQQONk9Yfj0kZAnLdP9wWP0qL0Er5KfXL3243XQSy9r7lSqca8dMlscdxaxr/ALzZ+fBbGW81zxTR9XKDFcXDtza49K3dJuBzZ6gpDh9XDA5re11smnfUDy8FUDsZkwqxB2Ppt/1wUry3m901MHOedwOZ7vBeI6p0CKulUsl7X3s56Va76Zx7Ufgslo5fyHHhmWYIKl/XSsc9xfG/U3c342UOzJgIhnd1DHkX5b8/Bd+I59rqbKdQylGqbq5NJ6wjflyXD0Q47U5hq6qPHG3PWODbu17aR/FeVfTr+31V664+DR7zo3pPRUUp/wBvzIPjGDOmG7HNI+ECP4LRlrCzU13kbNDHi7tcmzbAgcVe2Z8oxUtJPO5gIt2bgcrKm8IwHGKmuqpKcuijbJI0Oa8cNS66XVY3VLEnhr5F+61rWqeNB7v4mvOmEnB3N6ySCcuv9gOruTbRUApw153c7j4Fd2Z8IxWlp+snkfUaR79wHMIoI5Z6Vkrtn30Ft+AHpXZTqQdP3kdFCEqtXNTbH3HLiGHNqNPVXDrd6yyxStra/wAmeGNLbHU/YbnvXXK2SBj3cSD3qP4fNVQmSdjjGSPOadxYrZH24aU9zG+hOlmUVnb9Mn+fcKwvDMChMIe6qPVhzmvBbcmx5KH4fhzKd0T5CXyuO2k3C4JMXrcUa+CWd8wY+3bPcpFhDDLAyR7QC3fv5rBJ28cSZo6QncJKa/yOUDToaBpCb8xYFV4sxgodTXgHc3tvbu8E5sLXHs7WTvhtYYSACbrhdRxlmJ6G6tHOg1Edcg0FTheWmQYg685mcefA8OKluHm0ob/1wTDRVL6lzQ4nbfipDQx6ZGuKoL56pNsoKtB04YZJKD33gnal3aU0UThcj0J2piAF5uq9yprvMja3mhZWsCsVznN3BYvZqZpJuVkkLgHG3csv+rDZCekTNseTMPZUzsdI1zb2jaCeIHf6V2dHuboc3YUKqKN7HXN9QAGxt3rrzllKgzZhwhrDYAW+xh3O/M+hbMpZWosrUZpKI3jFyDoDeJvwBVrrtXaaX73zMdTHsbkjuNkN3ka2x4pQCA4t70rNWuIu5lcFol40FHzEm8ErphanjHoC2HiVhB9gj/FCzO919lprEIopnyyvOnY36Pa2wPB/7t6insUhbIhJ4aIf2SpZ063HR7W2O9n/ALt6iHsUzfIrmlx8yHb/AMpWxchF5ah3hKsBoDtPNKy4JBQgyG/BCRos0AJUAIQhAB2VNeyhv/IKOwLvrknAX/1blcqpj2TRcMhRCN53kk3/APTcgHX2Om3Rthd+Pk0H7oKz72VMex2zDh78lYfh5md5WyCJpGg+9jF91c5sBcKGm1sALgNvQo3iv264nmVITqPvR8qYcYAdUOAPbC896TQU7LPkzotHiQ3OHbutcsXWXHA8rrVi+IQYRROq8Qd1cbedr8ieXgophPSXl3E6x0MVW7WDZtond1+5fO7ayrVk6kFsvgWvipMfZWWcWPBPgm+amdrNiA3uPFPhMFXpNNI9zncOxZc1TSTtkDerD3kXFzbZbIqtTliUX9Dro14vuR50XW6hpLbDiRZcb6ZzAXMs/e1gLqQTCEztaHOuTu3TssJqORkoEMQAI1cbLsdVpHXGunwyLT07gTqFn+gWCrbpMop8PxKkxaKMdWx0QdZh96S4q6ZqcvN5Ymgu4b3TRjWBRYzhrqSrADS42NtXEW/irGyv4wn7bJuazrUtMeURjAK2DGMLgqY5Y3PlaHFjXDUPiC7RRNAJc19/g81X+OZWxzJlWarBqiWakF9MbnNjAHAcL9601XSw4SwiSigZLqAcRK47fIrStZesyVShJMwodUcIKnUXBY0dAHkgxu0niCFGs3YtR5W0OfCe2SOyBfYXUvyvjFJj9BTTU0rmzOjaXta021EXO5WWZMk0mOwN9sWjs3NywO5W71z+K6FTRWTwb6954kP2TWRly5VR41hoq4I3huq3aHOwP8VFOlOqiw6CFr4LVD9ekhgtcafWrQwTAYMFohS0jyWE6gNIG9gP4Jq6Q8PwluEQzY3BG6oaHFmphdzbff5FNreUnc6IxeDTd16krfEpLURHouxb2yw976+OGFkZdZ0jAy9rcynnNNSHtghw9lKW1ALjMGBwbY83DhdNfR/kysxWgfJNPLTUPXO0hjQ4EXFhYnuKa+lKCsynPDSUMrpqeW5ZqIZYNI5BdclB3OmLxk4ldtUkp8o5s5S0GWp24a6mkklla0yPDQ5pa8X2Ksfoxy3RUmHRV1FHUMdVtExMh7Iu23dssMq4Nhed8EpMTxalh8rbIWObp13aywG5srHw/Dm0VEykpm6Imt0xtaNg0BVvUb2HhO1jnPc00cJ68kdfmXBqCokp6rEKRkrQL6qhg4+JVX9KMNRnTGqWPLEzqhjI2h/VOMjQQ438y++4Wea+hrH8Ux+aeEvLXBvNnd4qbdD/AEf4lk4Vc1a+QS2kLWHTY3A3uD6Ftto21jSVejNOeMYznnnY1V68qktPY15X6MHU+WIH1FZXDG2MNg6pcIw7WfeEX81JkODGsCzfU0+LwvNO+A6JI4XtZqLrDc7X2UVrM+5lj6UzRF7hRmcN09ftbqr8Ld6v2MtqqankqAHXY12++9lXdRq1aNNuu1ia2waYPfYSajp6mJonbr1DcGxTLmHKGD5gljlxOnkM0ZBb1JDRsLDkVIDYOHJoTZmqslocv4jU0h+vxQPeze3aA23VHbVZQrRjSfJsnFNZYlNhFBTYfHQQ0+qCJrWgStDiNPDkm2tw9sAEsDu0N3NJvt6Aqt6KM6ZhxzN01LiD3GIOluDNq4Nv3K7nwMc6Y6Q4taDYqyu6MrWvpqSRxySqR2IXWUcdRtIDqIvtsopj+DTTUM8EYdeQWad9uCsjFaVtPRTVMI1ua1xLTtawJVO5R6RpMYzIMMqKOJo1NAd1rjxBPd6FcdOrSqQdZcRKarYyk28Eeyxk2sw+rllq5LgudYAn4QPMKSy0MsTnObu0nYbkqf1VFHJDIWMaHhpeLKl8Sx7GI86uw5rfrAke0fXeIDb8FcWl46+ZZKe56S7iWqa3HmrpBUQvimjfZwI2FuKi0+DR4TiMU7Yy6JzSXNAub8O5W8MKkIaXRgnQHOBPoUEzhHVS41TUtFTst1brkPtuHLpp3sc4cjis+n3FLVFcfeLIadlJNG9oIibqa0WuSe5MNBQ+2Mz5ndmJjy3QdncVIazKVe2J9V5RIZgLtj7NnEcrrkyXTVHlVVBXRtDusefOvwXTG+p6W9X4iPTp0qcpReWdkkMc0TYHtIgG22xtx4qOy0PtXiberbrhfbZw1EXKsOPCSHanMGhQ7MzKibMUcFC0GNsTC46rW7Ruta6h4jxqNFlZV8OL7ndUeTvhja9rDts1trjfuUfwrCziknlc0crWg6dDQW8D3WWuuqWUeIuifVSGoDj2NO3p3Uo6P2VUj5KWujDJA0vsHati4WWy5rRpQzqR2x6XUt6bxy2dFPhpjhaKdrw2w8/ddFXgxmw+oj1fXiwhmk81MG4O8RmzjbwC7KfCWRASvOo9xCpqvU6dKWcmq36PPxNb/uU1kzKmNQ4/NLK49Rqda4f6FcdLhzYHdY+7ncgCnGCnBFoWhh9CdKPDCdLnkuDeNwqy+6qqsdj01Owk8aonHRUZlILhZqf4GCGIMjFtuaWKFkewAW0MXna9dyLuhQUDJrCOK2IQq57naxALElYuG6zSFZLKXsEQ2GrF3eRUc9Y8jRE3UQOPED+Kq/AukjD8dzBLhsMM7Zmkt1OA0+dbv9Kt6up4qymfSzgGOUaTcX9P8FCMM6L8HwfF5MSpbGVxLvsIHO/G6ubCtbQpyVb3vmZqb1DhPTujc5shabnkuCpptgBbc2UllYyTV1jADyPFcstKx2nSOa00q614XmWUK+CWZDgMOEMB5tb9ClCZcrt0YdGLe9H0J5uvqPT3mhE8tdPVVkzCX7DJ4H6F5Ood/ZMN9FZT/sr1jL9hk8D9C8n0bf8A+ZeMgca2n/ZXYaEes2btHghIwWA3PBCEFL5y6WcGrsu41h8dPOJTTSsuZGcSCO9eVMNwbFMYxConwOiqZj1hJMbS4C+/Je1M/wCTMtw5RxyqpsAwmOpbRyuEjaSNrrhpPG3equ9ivTRTHGutgiGiqAaAAQBoKA3ZE6QcayJldlPnDBsQEEIcWydW2MOu4k7uPcVvxzp5kxKKJmVsIr3zOc3lHJz32B8Fcec8s0OZcDnoK2nimEjC1nWRtdpJ5i/Bec8iSUGQM/VeFZjw6nFMZJXwTCDrC1urSzgLDh8SA2Z66QOkGGmbLX4ZU09MwOJc+ka0cuasrAs04LmXBGUXl9O+qkh0uDZRs4tAIsPSVp6U+kDKbsuzUlRqq5JWEMBpTIBuCfBUb0aZYxyqzMzFsNiEGGibdol6vYPBPZ8LLzXWrGnct1Jey4b58/mdFGUlwc+LZGhb0pT4LWVMcENTNJaaRzg0aW348VP6boLc2Iy02L0pFrtdqlIupR0n9HUmZScXwid8OKMLnN0vbH5xF+1x4BRbAcodIxoXwz41WsYNQGnFD3+K41d+NQjOM3thM2aWnkjBzBjHRXmB8NbMyvpDrDRTsty0jd6r/FcaqcexSqqA/RIGtLAeZtbkrww7oercSr+vzZitXUt32knbP9PpU1w3o2yzROJGF0MjuTnUsd/oWxdUsLdOTS1fISt/FeZEG6MmYvhmUp6+sp5Xlruw0R2JGgG4v4LmwnperamthgGBYk5zzZ1mx7bc91d0VPSU9M2lbBH1AaB1egaeFuC4qfAMEp5+sgwihZL8JtO0H5bKh+1req5ynFN9uTKNqoPKO+jmM9LBUBjm9ZG0lp4i4BN1m5zrvEZaAe8XWVi1oaxrWMHJuyAYwLc+ey83KTVVyjsdWlPZoYccw7Dcdh6jE6Z5t75pDeVuSr3MHQvhFeWyYTO2llHOWV7hx9Ctiema+5auVtLKZNLSWjvBVvR6pcUkvbb+GWadOXhopmryVnrA4530OKUNRAxtxHHTSOcfQCUwe6JmuFpwx2H1HlTX6L9Q21xte3HivSolcCGgam87rg9pMGNYal+GUbqg3OswNJud73t3rvpdXo1M+LRj9CJUWo6Uzz5iVD0g45Qvw+sa1sLxpLjSEDffiPBaaLopzThjNdJiNEC8XIMEh4/EvSE8LyPrZPy2XG5s0Z7ZPyrKn6QujHSqUUclS3T96OTy7mTGsby9FPhONR9ZoOhsrYg1rrEXIvvzCbcqZjjwrU2sjcQ8k3Fha5vzV2dM2W4cVy7NVRU0clWwCxLBfdzb78VTfRxleDMtVPBiEjmSxNcdNgeDgBxXsemdRjKh4yWH8CvuLOm6TpNbMcs41ddWYZBU4bTyincxp1luoG7tt12ZYrJY8GMlXIwAAkki1t1Lc0YbHTZQOD4XYzw6I7mzSNJ71A8GwSrp8Hq6XF6hzJHxkNHWh25K7KXVJXSy5NooqvTKM6KoRXHcasar6yvxeKPCgZxz6tur3ytebEKPLGXqeuxWml64hx0EhpNj6fFMvRrk1+GVTq+YtljJIaHOa4b2sbKzswZOos6YM2CocY3sB0gNbbcjv8FRX9/BVFGTwslrY2iXs01ho7ci5rwrMuGMdSyNZKD9iL2l2wHd4qXEkN0kafFeZspZDzXgWcYxhsz2UEc412q9F2CQX2HHYcF6ZsX31G/ivJdbs4W1VVISzGR6W3UlHS1wR3PmaWZRwp1U6J8psfMtybfn4KuG9NOEvwZ+Jy4fUGoaWjzor9rirVzRgNHmag8krWN07+8B4i3NRV/RTl1uDuom0dO43bcmnjubfEt/Sbmxo0v2rabfl2MqkZS4HnIebKfO+CsrxDJEe1s8tvs7TyS51xePLeESYi+N7msIZYEXN7967crZeo8tYUyioYmRi58xgbxN+S6scwilxygfQ10bJInDVZzQ4XHDiq2UqKvHNe5n8Mm2LlGJTWScYy1n3FZauuglgqQWlvWTNFybjgPQFcLI2wwNjgsGNb2Qd9gNl54xro2xrBM5iTLzjDRB4OmOYRi2nuHpJXoXDmTsw6mjqWtM4jbqcXXPAc1c9fhD2JU5txfbyIoT9p7DbV9VVNIqmanDhwCZMRhdIwsBaxjd9JG6lzoYpC5vVtEg56f4qGdJuJ/yfwR1XHCHvFx5pPBpPLwVbaV5Vpxowk/kWNGcactSW5G8Sw8SAkcFHq2gfCdxYnvBUh6Lcbfm+jqHVFNG3Q8Ddp+DfmnrGcJDi4uYAQLi1lfOu7eq6dQvrXqSqLkq2vYQ2w4jim5hHBSfFqB0L3bbEqI43U+QNLhGD8SvLaXjJaTuuaip0/FbN7W9u656rCIMQeHSvDbd5IXPg2Imua52mxBI4EJyj852rgumUdDw+Tljpu6OpbjhQxw09OIIdwDe97rpAJ4BctA0EmwT1T04LRdV1aWGWNOMKax5Dc4OA22KYcVxaPDauJtQ113EHiBzspm6mZbkuDE8v4filRC6qsCxg94DwN+amhNSeJcHNfOq6eq35+hYeUJoJMKp6qAEtdc3vfgSpnQVLTbtBVrg08VBRQUFG5xY24ta3E3U0wolxbfuXlOqUUpOaKOvSlp/a7Ml0b7i91s1t+EFxRmzAg8bqiktynjDlHcCDwS2XLFJvZdV9QWDaRDWAQgpFOU+CBGnUdxZZHVfiEIUS32MeNw5nwTngX2Y/wDXJNnM+CcsD+yn/rkrv0bSd3FnPc+4x/HAIPnfEgcAg+d8S+qlWeWPZMztpc/YFUP82Kd7iOZ+tsVqZS6VcIq4sPw9sEwkEDG3MjLXsB3qr/ZIxtl6RsvskjZJEah2prxcEdWzkrzy5lPLkeF4fU0+A4Wyo6mMmQUjA6+kHjbvQEvjeHMaRtfkslgGkOFgA0cLLNACEIQAtcg6y7RsQtiQgb8ieYQEIzf0iYZlWtjpa2N73ua03a9o4kjmfQvKHTVjUWa88SOwuGQvkebNuHE9lvd4L2bimWcCxapbJimDYdWygCz6imZIRb0kLzBn/DqHD+nrDaaiw+kpqXr5A5kMQaD9aHEBAc3RFJnLJ2IGafB6+XDS3U9zYNgNQJ3PoCtLE/ZA4PDLLTQ4dW+Uxu0kdZFtY77XVwU9LTPwuOHqI+pkjDXN0ixuN9l5q6cMl0mUseizJSYbTvoC2UzRNhaQXPIDeyBvx48lD4B3jpOz9iuH1UuE4FXsgDHEOfSNcPlBWrox6Rqh9VXQ5zqYaSp637HKBE64bvt4qy8Dz/lIZcD4NNPEGHXFHTab7C/Z5rzl0hy0edc6SNylSESGSQl5gMN978SO5VPVrWF3TVGe3xXJvoSaJr7ITAYMZwiPMdBK2WI6i4scTsxluW3JNGUOiOnzHgdLW0eKUzH6Gh7S+QkGwJBt4q0MsZSnq+jcYHjx0TObM3suEnnuNt/BVzDkDOeDY7JTZcxeujoHFztAr+qbe9hsNuACorOvGNH1WM94Z+83yTe5ozXkfG8gxRYlQYlTVEHaPVsY9ztrfC298ornHpOxDMlLT0Ia6ndHoDnyNbY6QWnh4qzK7o2zpi0nV4tjdaaT4HthrAB47E+gJ/wjoey9h7GOrWNq5tr9dAx++3O3etkb2yptOsk5Y5xkaZSWxSvRvSYxV5mY2lDpKVjiJ5gwlvmOtvy3UwzVnqrwTEDRyYbVvZ1bbPa1tiTfv8FduG5ewzCYrYZQUlK0+d1MTWa+69huo9mbBsOqn9ZVYdSSEW3dE1x2XJHrNGvcOCgtPng47i00Q1SRXOWMUlxqCapko54SHAN6wDcEX5J0ZTyPA+tv1eCfYKemghMdNBHEwW2Y0NXZQ0ZkfYBdUr1JZitjzdSx8afsjdhdJoP84aJGlpBDRYi4Uax/IOGV7pXU8b2SHgS88du5WrQ4OBYuA38F2vwaAO2a35Aqn7alRnmLx9S6pWFWNPTnY85u6OMdpmufQVlOG3NmmN7imLEpMwYA50ddC6W3vmQ2Bt4+K9XNw2JjfNHyBcmI5ZwvFIw2so6eQja74muJv4+Csrb0xnTmk3/Uyl0ZOOrSm/uPJTY8arQZI4XBp23iXNLlzEgHVLyAQdxoPNen6nKFLHC5lHTxMG/msa1QjHMAmptbS06SeR9K9N070kpXtVQrSa+pUXdW5sH7MFj5lHzNq6Z/WlzS1u5GnuXHT1pfVOlkadri2ytCrwGmlpZWlvb0n3oVaYnSeR4k6HTpjN97emy9LctNxlQllHRZdTp3aw+Rypq8VcEjWA6mgXHiuTDHzPq3tkIaBqtceldtHQNpWTPba7wO7km6KGobWOe5xDDf33pXTN1MxmvI7k45wdmMTlsJYyRhf8HnxWOFmVtM504sN+IstZojNWOffVvzPoTk1uuExEW2K306dWtJyInOK2yctNXxPlfHsLG17hdrDoN73CYq3DJGSaqc2POxsnegY/qbTuJd6TdZWdap4jpzRjUw+5ue7smQ7WTbJijXSFjmG3fsnE2LHMduCVyjD4S65aPkC23aq5SjwyIKKXIlLiDHy9VpNrX5LsIGnrC0i3euaGhijl1gDh3BdYOoaDwWVCNWNLFTkiSTe+6GmbEI6qURSsc0XtckD0Jwp4o2R6YjcDhYpuxChs7VGBddOFxytjBkJ4d65LepNVk3FfMynFSjpfA6U1ZM1uk7AciE9YZjZpnCw0O7zZR4nmEr3bAuF7Bdta3pVoOM4pr4nDOzjJYp+z8i8MtZ4JhEVWx07T9z0i2571M4MTwithDRLHG1w3a54vf4l5Vw/Ms1NWdUwuA24XCktDmCdsoOtwB34leBvvRGjdybs5uL8lhIxo3t/YNbakvNnoKXAaKqp3Ckc1wI+ESoxiGUWRNOiNwcTud7KNYHnOop3MDZpNPdqd6VP4c4UM+GVDqjeVkT3DsE3IbsvIXXSuo9NqaHuvmeksfSyLklXeJP5kCrcs6H8Qb7niueTKMVXTzU0g0xvbpJNxxXHgvSCMUzjNh0sIEWtwB0O4AXVzT4IwAGDtDucAFrubutZyjrbWcHr31enXhiLzlclOYPkahwTrOq3JvbtE8rc1rdhpYxrA3c3FlatVg976mtB9FkyVGFBsuotAt6Ej1SVSp7TN1lXhFaYdiCupRGA10bgmzFnsoIDOWO0jndT+romtNwxr9uYTZimE0+JUBgmjYy4ts0d67be5Wr9p3LN3snTfhbv4jJ0d41Hij5OqN3NB7NxewcBdWRSS8jxHFQbK+XaPLXWvprFzwRq0gHcg8vBSTD5pHlxue0b8Vy30IVHJwZWJ1alNzrLBMaSQagbixTvA/hZRmhk7DWniDdP1I8aQvL16ellVVpp7jq43tZCwiN2rNcjwcTWGCGm7TcEckIWW2NgzCzW8Wk+CyLxdrWscBdKhFjyIFPGwSRXEkQJB3QhgvUQ/jLps968MeZjN4iyWwfYGeAWZ2uVhB9hZ4BZuNm3K+w0nqgimfJXvToy+QK1x3Aa82H5N6p7oA6Q8Ny3lB0FVFKSGxA2e0ciOfirg6dAfc/rXBxHZftf/w3qvfYy5awXFclulxPBsOq3aIjqnp2PPmnvCzT3BdeVsfgzHhoq6Zrg0lwFyDwNuSerlrRsSuLC8No8LpRBhdJBTwgk6IowwC532C7Tq22HpUkGQNxdCBw2QgBCEIBvx/FYcFwuWuqQTFHa4BA4m3NedenLpHwvMeUIoKSGUHrH3Jew+8I5H0r0nXUdNXUzqesp4aiB1rxysDmnxBVE+yNyzgmD5HjlwrBsNppOsku6GnYw/YyeIHegPOuVMsZkklpsQwPD6ySMtDw5kZcCCAfoXpGi6aXZcwmlhzdg+IQ1zi5pa7q4zxJGxPwbKQex4ihd0c4ZIYmB/k0G4b/AOGF2dMWRaDNOV6+UUNM7FYoXOhkMbdWuwA7RFxsFD8wQCq6acbxnFmw5UwXEHsMWq3VRy73Pce6yjeI9I2bKTNVAczUsmH0b3P1vqKdsYAAHP5FIOhHNmX8ENVhWL0MFJisEr2CZtLuWBrR5/iDsufp5znljFqdtBT04ra0B4BfSFwB7B2d4BcV/CNWh4U47M2UvZexMscqMIzvlmrp6OpjmlZTOl7El+DLcvS5eecj5BpsbxzE6CorYaSoopuqY2Z7gXdm5tZT7oIyvmDCcUqavEdsOqKd0bWdfqA1PY4dnlsF39IXRlibMVqccypVSQy1EhleGTthsSQOW/C683bqlYynaQnvLGGde8tzkruhOrpKOWakxalE0bC9oJlN7C42UUg6SsYyfDVYHV/XntksJGRtAAaNPvt1OIMm9IFZQtM+PYgxzrtOnEzw+VdWXuhiDymSqzJUPralziSJyyYG433PpWUbu2htcvOPhkxSmnsUbRz4jWGnqqOsilq3EgwtBLhbhsvQGJY5X5YyNQVlRST1FQ5kAcyJoBF47nj3WUnwrIGWsIlbLDhtG2YbhwpWA/KAn+spKKsgbDXUsM0DQAGvjDhYbDYqqv8Aq1pVqxhCKcV8DfSVRZeSo8ndJFTmTGaWlOD18cBcQZXtZpA0k8R4K1H0T3kFrmhpbfcLOhwbBqAf9nYZRwEcOrp2s+gLtFwe1s3uCp+o3NKdb9jFJHTTqSS5GxtJITY6bDvbxUdxrImG4tqdPEbkWsHEfQpvYHccEaQtNK/r037E2vkzOU4y3aKNxHoXkjqjUYBWw0pdcls3WPNz4ehNmIYTnzKVLJOypp66KNpcRBSuJ23994r0K0AO4lJI2KWB8M8TJI3ixDm3BVpT67LCjVgpfF8miUW3mLwecIc7Zzx2aOhw2jkbUMZdznUwcBbiLBcWK5KzvmypYzF9MbWk2caZ7Bva/DwC9H0OG4XQSudRYfSwVDiSZI4Q11jxFwF3aj6Vul12FGeqjSj8yFGbXtSbPPFJ0f55wbD7U2KUDooT1ojFNIXGw4cFD85Z1x2tjbhGJx9RWUv1vrJIQ1pIIcduK9bk3FjuOYK89+yMy9M2eHE8NoKfSQ500jQA4kuaBwG6s+jdYpXt2o1qUU98PBz1KUop7jt0d9LeGiOhwuup5RVVEwgEmpjWjU4AG3FRvpVr8yxZphkpOxQPDiyQxXaW69t11dEPR3hGPUdBjj6iR0sNSSWFjbDq3jv3Uj6dct43iEOHjL7rQ08IjIbPouddxceCzzaRv/CgsyfOVwIzejDLDxHGqfCMuPfilbTwSPDgwvOm5B5fEqNyPi2Y6/pAqJ4IpJsL6yZokZFdpBkFt/BSHHcp4hmbJ+FYXX4m92NsllL2uqmkdq2ntE9wVh9GuUzlDL7aSrDZaglri64f70A7j0hV9SVt02lOTWqTfDXBMcyeGcWc+kTAsr4/DSVVO91Q55DnB7Bp7IO9/QVLsIxajxilZU0FRFIxwvpa4Eg2B5eKrrpe6M4syNqMXpCDV21gHSN+y3id+ATF0GZezLg+K1IxSaTyAMe1jPKdQ1XFjp8AtFa0oXdgq6m3KC4fBlBuMsF4vBkIaSAq76RukymynVU1LJTTSCSQNdpLOBaTz8FYlzEGvO5A5qJ5tyJhGaKuKprY2ExuDrGJrr2Fufiqjpc6FK4zcbLBtq5a2IHW9NWE4bUUL6XDqnrKhgcSHRczZW7QzRYlRsrY2uHXCxBPC2yhNd0UZeqZKQx0kAMLAPtdg4G/cp1BBFSQNpqYlrGcgLcV3dYuLSvTh4LzLu2jVTi4vggvSdn2kySIqeppZ5xURh1o3NBs4ub77wXP0cUWVsUgixjDIZWV7gHGJ04c4EXA2G3envP+SaLOFGZahjHVEMehhc1pO2ojc+kqo+iPKeaMGzi1j5pGUIczsip2tZ3LxKs7SFKp0+SpycZJPOO/wMWsS1HoB8TJB2xvwv3DuTbLgNJLUdeGXkve909HU4ABjBbZ3pPNK1hcQGbW48l5qjd16eYqTX3mfgRklIaHYYJHi+4PZNuQWmPBoqeZ72Fplv2RxuFDOlXpLkyhUxU1NStkc8tDiWO4EX4hTPJOOxZgy/S18sQjmdG07MPMX5rsnC8p0Y3Ens/ialQpLKSFfg4ZJrc9jpG7i19lrOX4hIZrt1uBJIvxKf2gdpzgDqFiTxRI3zdHm7cVy/aFWWyZHqME9kMUeDnqWnU0jmACkhwMRPe4Bt3tLSLb2KhXS50kT5MxGGnpaVj2vJB2dyaDy8VPsp4wcewGGtMeiRw32I96Dz8V3VneW1KFeW2r4mKs6bllbEAxLoewvEcdfib3fXXFxcOsfzFuCm8eB0jHl7WnrNAZcHbZP7LhgsBqPErB7GNa23G/Jc9bqFxUxqk8Y8zc7WDXAzjC2xtFze+9t12R0kUR16HHRuRfiu17Nmu4pdTXi1rX2JAXJ6y5yWWRG1jHdIrmq6U8Hpsye1T4pA8XYT1jOOrT4qwhEetc9vYZfzXcVXVb0SYZVZidikjyJHPMnmM+Fq8VZRLPeOc4Ek7hWHUJW8YR8F5fcmnGWcM1lnaW2wA4pEKoTcmdWMAhCFi2k8ARKkslUxfkZCOvocAsC3qwC3crZeyOKnUs7ohbGt416bjxWrqAeS6tPNIBstqlpkmjLW0th+wNmikaPQPoTieS4sG+1m+A+hd5X1vpj/20WUtV+2zXL9hk8D9C8fYhi1NgnshJK2qY9zI6qBx0uA4NHevYEv2GT8U/QvJBpKWv9kd5NXU8NRDJVwNcyVgcCNPcV34NZfeWulHCsdxCSjpaeZr44jIS57CCAQOR9KFJMNytl3D5jJQYHhtNMW6HSRUjGOIuLi4HeB8iEINXSIP/ANh8fI4ihm/YKpL2KALvb5zzwqx+wVdvSL/QXHvzGb9gqk/Yn+djv52P2CgPRjhd3H8XxUWzjkXBM3w6MYojK8WAd1r2cLn3pHepYEICoIehrJ+CNa8UBLu81Uxv8r/SpNR00dDSCnw9nVQA30+d6OJUhzILwMPdf+CZHe9t6F889Kqk/WNGdmWFsk4oS7Rp7JG27r7LJ7nFg0uAZffZI7d1kvK3JeSU3B6FwdrSEJDnNFtQtyQ0Oa1oadJJ4HdHDglT2cIYMWOeA4vab3tdZ6pCNnj5EnJCjSo8DSIXvGzjq+JL2TxbpPpQlHmlH5DGA4cFi95DeyCSsZJBG03WEc4cCs1BkZRtc5zABECCePNKzXzkAceVkjTfdBWLTXBGMijU3gsZGGTzgskIpOTTZGM8nBUU4jc06OsiPnNHzLz3mXDTlnpUiMEbo21XUxhveXG/NekwAA5ze074J3C8q5rx5+IdLFPPiBEcdPJC4Ddo7JtzPcvT+jTm6lTywzkuoJo24hVZhbn2WKOnnZTOkfxjaQfSpX0ndHmM5gmpZsNbLqa67g2LV70DvUgzPnbAsDw6lrvJqaokfGHFwja9wJNuRVW566VsQxh1M7Ci+AMcSRG17CdgOAcr+j61XnTjTXhxWctrOSvjSjjbkcsSzPX5JNBhVXG90ulgLSGtOx08x6FdNNmzBsNw6gqcVq4KSSbVZsr7HY+gKEZFxXLmcKGldjscTcRgY2O8rWNLrAEnt3JNynDpK6Mn5vmpZsLrJIaaNznBrZms4gDYaTzCr7yFvVn4V2tH/wAm9mddKn4e8OS0KSpgxGFk9I9j4nAEPbuDcX/imnHs2YJl+WOLFMSpYJXX2kcWnb4luyhhRwTBIKCSSR7owLuc652aBxt6FAOlnozqs3YlT1VLUvja0PuBMG8beg9y8/aW9pO80VJLQs752Z3JtItKmqIa6BtRRVDJYjzZuFtEZtcNKacq4S/BcHp6OSTW8P3Jffjb1KounDMGZqDHqaDCGPEADheNsm9ni19JstVt0yN7cSpxey4I1uG5eTb69T0jydRtzNwmzK81TNl2nlrGjrjqvcHv9KdTYhpHcuKtGFObgbYyzuzJhGk6mXeqO6U8+Y/g+aaWjo45REQwmzIztqI5j0K7031+D4dXyMfWUcEj2kWe6MF23pIXb026pW8nKuso1y52NeV6h9fgFHXztIllZqN/E92yas+1GF02XZHY41phu64c8s20nmPQpPHHHCxsEDQyJuwaBYBR7POW4s2ZddQukkjcXO3Y4NPmkcwe9YW86c7tTTwsmbeERjorqsBq6OrOX4WhgkHmyuf730+hSnEKQPYC4W8Uy9F2QWZIpKgdfLLreHWfI13vbcgFMapjXHtA2O2wW/qTo+tyqUpZRnQraVp4K6xzC2PBIF7eKrzMOHRyXaWX+Mq6sSo22dxsoZiuFMfqNh8yubC9UorUentK8alPw6nBT1RJTYUw3Aa4ngStlHMKuldM3hspPmfKUWI099bmODh5rgOF/QuSmweLDcGNM1xc6wFyQTx8F6aFeE4ppmVLxac3CivZRxYDiEVTK6BhBeztGx5XUnvphuFC8AwJ2H176t8ryHdm2q/O/cpLNL1kgsSGhc9zok1g7unqrOK8VdwkqHEkArWxssj76HPttsiJh64HiE5XDGggAeC1zSikkWU8weiK5OzBg1koLmFpB5lT3CZgLb8lX+GvElU3fa4Uzww2I3VJfw20soepQlNZlyS2GpBsLrrB1NTNGdhZb2TFgBuTuvOVFhlB4bHINsV0wOuSE2Nqtru+ZdNLURyOboLtzutUoJLJz1ISQ4IQbN3G/igADe/FaY4XBp3BCEKRLgOZ8E5YH9lP/XJNreJ8E7ZfG83ocPoV/wCjUf8AdI57r92PY4BB874kDgEHzviX1Eq0eXPZIf1kZd7Vv5w/4/rbF6Ty9f2iw4f/AG0e/wD5QvNfskP6yMu/nD/3bF6Wy/8A6Bw782j/AGQgO2wDh3rJIEqAEIQgBYnzuPxLJHNAYkE+abLyn0n3+qBw22zevk1n/wBJq9Wt5+K8p9J39oDDvy8n7pqA9SUQaKGFtxYsb9C14jh9LiNGaari66K4u25HA3HBbqQDyOn29436Fu2AKAqSp6DcmurnVjcOdqPH+dT99/hp2wXLWF5fn0YTTdVpuPPc/lb3xPJWBLux9u5RaXasl/GK8l6WVqkKcZQOu2eTW4Bzy+TsF2zb96yD5GtLQLk7g2HBId7X3shfPY5g3g72sIRuosALTfvSEX8526yJPekCh4mZQWFsJpNiCCe5MGPNAicHEcOHxKQOHZ1EnbkmjMzR5K54AAa0u324BdVnJxqJJHLfb0tyIxAnUxsbrE+cpfhNEI4w4hVdk/HTW55lw6W3V63gXvbYek2V0BojDQwE/FsrXq6dFxjjlZK/p9CLzIQABoDUpG6Qa9d7N4LU+Sw4qgUcrJcxznCN7gA3itTXAu3kaB3LilqeO65X1rQSL7raoZW6N8aM2x6a+PgxwPguSvo4KltpI9V+JuU3x1YvxXbDWC9tjfvTDhLVE11LbUmpLKIljeU4hFJLTQk7X2JPLxVM9IuEFtDIHQOY4SA6j4lem2SskAjfps42VM+yNlioMHiEEbQXlly1ve9w5L1/o712uqsaMu+3Y8xedDjGsq1DbG/dlHzPrH4dFJAHFu5JDQVvaJKrDbm4kBtw9ClGAQUEGW2gyMkeGnZ7mk8VEMQxWJjpRTtOzy2wbtxO+y+o29zCabqnLb1qk6jhJYXmaoTVYbCXyh2w+CAu3D69tRTvkkIFtXH0Juoq1s7AyfUfxh605yQQzUpjgs0kHzbDiF1W8858NndOLk8R4N1LNHNfQ4E+KVxjYbyOA8Vx4ZRPpi4OJNjzK6K+AzQ6QSDvwKsU6jhl8mjQu5sjmiluWEEA22K2AB3BcWH0XkzDrc43N9zdbK+ZzaZ/VDe3GymNRqGanKNehZOg9w4pSNtuKbMImmeXNlG1yb7pzU06sq0cm2SSewjR8LitGITOgpttuH0roSPaHizwHD0qascxwiNRwYVUGYdo3/8A1TkHNBOvgtbI2M8xrW+AWbw0ttveyxjTfhtSMWov3hujfR+WG2nVt74ruJvs3guGnwweVmXU623Nd92ebvssKEp01usI2yktOELFJLA7UxxNvQnzDMYcHFs4JYRY8BsmF5aGukubDktVFN18TnXINyNltm6bWiW+SurWUK0Wsblh5cGCUmKDEpDHqF7/AFxw4hWrlvpMwLMFS6np6mCOUAaW9ZqJN7dy84h56gsEjxw4Fc2XmHCq9lRFI9rmkHY8bG68d1n0Up9RkpR7fM32E6ljTk3ueosazfl2gqWU9ZiNK2oO2kyEG97Hl3p18jgrqeOanc10L72cCSO5eXsSw6TG8QbXSVMocXarCSw3N+avPImZI6XDoaSofq03FzvxcT3rw/WvRatYxUqSb+4tLf0gptpTePmOldhroibbC6j9bSfXw1xuLqyGGDEItbCy1u8f9c0w4thdnXA+Recp3miWmt2PW2l+ppNMgLmNaBYWGq1rroge6OUafNXXV0YGze/muINkZJbskBXEakJRzHuXUnGcNh8oJ9R1XT9STGw3UWpn8CNvBPNHLsN1W3NLlnDXhnclVK/UAutNVI/U21yu+nkdqt2bWt2lSzioMpqqwzchJY6w0kbcbJVri03lGrOQQhCyIBZQC9TF+MsVspPtyD8ZdnT1m5gviYVPdZKovsTPALM8AsWea3wS96+w01iKKfuV507Ae57W3F9n/u3qJ+xUdfIZDBY6IfoKlnTr/V9W+D/3b1E/Yo/0GP4kX7JUrlk9y7jc7hwA8EOcWt4XWaFJAAACw4IQhACEIQAeGypr2UNhkKOxt9ck/duVyqmvZQ/0Dj/KSfu3IB09jqLdGuFnvpYP3QVmOPbb2gGk8O9Vl7HP+rbC/wA2g/dBWg4A224KGCAZu6K8r5nqTU4hQHyk7a/KJW3FyeDXAcSUz0HRhlbLboPJMNc6Rt9/KJTa34zj3q17bJhxzaaI+P8ABUnpBVlC1cl2N9vvLA2stF2WOGjTbQBuPjWLWx6gGt2du4XQ4b/Esow0suTYr5ZmU2553LTThCay+SxdoA4XWLgHuOpw25rFz99gtMjn27Gm/p4KNHd7mLlp5Ol+ki0jgPSUgeGDdwLeS5auVsDQXPa4+g3XLNiUMcYLgSduS3QtXLeKNbuEh1bIXbtkHyJTIeBBcqv6Qs5VODClFIIe3q1XBuLW7iE/UmNSS0NPN1kZc8NvZ3eB6V3y6TUVNPBzevRjLDJdr34W9CXrFFJ8WcLantHgf+a5pswAWAcfi/8A1UR6bNxxg11Or0oPDJn1p8wNJJ3uljk3sXBpHeoM7MDRbtyXtyusP5QNvfVJ8hWxdKn5Gl9Ypt7Mnr5dt3g+AWPWhQZmOh7rB7wfStrcWJ/1nz/81Mulz8iV1Wn5kzMosufEIG4nQSUUsJdC8doeG4348lFhi1yGmQ7+n/mkxHG56DCqienc1xZbzyTxNuR9K1w6dUhNYRmuowmsJlUZJr8QynXZlwahp5esZRyTQAAHtvJI869+SkXQvmXNFfmKtpcdZK7D3SPMj3QxtbG4M2aSBe6hXRZjsEmd6iuxqQdvSxwuLECT+8e5WJmjpTwbLNYW4dQ05Et3ktguSb2udLgvXXrrSnOnTpuTaW/kboNOOUyNYn0a5lZn2LGA6Z1LE9j3SiHs2AseadMvdLlVNnE4IYX9XTB8L3XZuWODb8LqvZOlfFps0MrI3SGgLm64XCTTYD4OpXNk1uT8YlbiVG2NlfNCesDxG2z3AF1hx4larqhKlRhG7jqWlbrbHzEZtcEqdnPAI8xNwwVdP5bI/R1XWHVfTq4W7lIGm7dQe1jR2zt73vVL1PRRiNRn1uNiscIBLrNpxe3V6dhbvVxiL+Z+TanaTD1Wo+dqtbj3Ly3UaFpRUJW8ve53OuLbWRlfnTABjBw44rSeUAkFms32F+5SEBukHUHtPC3NUpL0R4g7PM2LMrHdS57nBpnHNtuGlXNU6oaSYR2dJHFdo4i9lj1C0toOmqUstpZ+BMZPubbOB7MTlhG0M1BzDqdtxXnmmzPms9KVTSyRyCiE04aAyXTYXtzsvQrnnTGT5x4rX1DpkrNxWpPO4hPULZpku46SBwKHvABkibplaRb41i5zW7k3K5n1duAHyLlp6Y1MtZNrpuRSOFdJuYqnPTsOfFKKcyuj+xx/ddPdfgr4c5wuxu0x4jmo8+hw6Kp8qZQUjZvhiIA3ve9/FdT67UwvcbO7xxVj1CrRu9EacdKS8zKnbTjlkV6UcRyfC+BmZoYnzhzS3VUPjINtuClGU6jDZsApX4FpbTdW2wa8v5bbn0KvekrI0Gba2KTyidvV6HbSNHAW5gqUZUoosAwaCghlke5jGi73A8BblZdNejRlY0qcZbpsiFtLVwTMPY7tPFyOd1iXxuBbcHe/FR1tbK7sOLQRwseKjlRnFlLm6LC3EHXTveTa9iCBa91WUrCVebp4N0qHhrLZKceyrgWYJGPxOk617Cf9a9vEegjuTVieecvZVrafButhhuGaWulPvjpHG/cu91dIzSGuFx3niq3zd0fRZhzJDiktTUMMTY+y2RoHZcXcC096tOn0VVfgXksRXHY1ztJR3j3LarMewuhwZuJT1cLKdzdQcXG3G3FY4Bj+E43AZcNqoZ4rkB0byRcGxCgOcMunGspU+F09RLG6OPTtIG37QPd6Fh0XZVkyrh5ZU1Mj5CXHSZA4buB7h3LVKwoK3nOMvaUuPgY+DVUtOC1g4kkN3Cza4kBoOnvTMKnYuDrei63trnkEODR3EKocEvdM50pIcXPa47727KQNt2WOFm8QuOOcaTrt37Lpika5h0uHpud1rjFZyYyg0jYhYXsbhZX1DuU5xsjHAqEnaGkG3HksnDtixHDmnsr3gIhI8OAA7PiEPcGtAdz5hRw8kAUmqy1P03OlzrjvKwJB891vjWag5cGuc1E6Nd9kgd2VwTVsUIILiR3jcrndicdjov8AGFup205yTwaHdxisZJ3gxvTN8B9CcCm3AXiTC6V/N0TT8ycivrNhHRbxTOCctTyjXL9hk8D9C8m0Fm+yZbdhu6sp7Ov/AHV6ym+wyeB+heTqL+0xH+e0/wCyu4g9ZMDubgdu5CybwCEII90i/wBBce/MZv2CqT9if52Ofnf+4VdnSL/QXHvzGb9gqk/Yn+djn53/ALhQHo8IQEIBsx9t6QnuBUfG4CkmNAGiffuUbbsNl879LUlXTZYWm6wB84pUDi5C8ljDR28iJUiVTh5yg2CELG5UKWXuFlmSAbFIEhvcWUT2eSHng4MQeS6wWiAljgtlU5vlDwA7Ztx4rRrJt2SD4KwjH2StlUkp4HmLdl0A3JWNMbxLIA6lyP3tLLGm8oVKgg2FiLpHAtAvZa23GWlGT3FYRFM1+jSDe778VUOdehqmzJjsldDXAEtadPk+rh6dYVvNbe5ab370NaS7YhvjsrCyvatnNyo/fk1TgpLc8g410dZgjxybCKWmfPTtkIaQGtuGnuv/ABV2ZV6JcEhw2GfEqOPy9pJMZBvsdtw5Wg6KPXqMcRcPfBov8qyd2nBx4juXfd+kNe5pxjH2ceWU/wCprjbxW6Kmzr0PYRW0flWDtjoMRYQ4FsRkLgLkjdwG5so9l3pSqssYXPheZaQjE6dgEeucAucTc7BpA2KvqwJu4XVZ9KnRlSZmpZ62j1MrnC+7iBfYcgeQW7pvUYXOLe/WV2fL/ETpuKzAcujDpAiztBNeAQTRuf8A63WS1tv7o71NZamGCnknlmEcMdr7X4rzlkTMWIdFz5KHF8LqJ6cyOPWU1NqO5A3c4t2s0q46THsJz3l2aGgqWRSzhv1p8jWyDe9iGk9yjqPSY067nT/d52x2EKjW0uTuwLN2B45WSU1DUMfMwX2v327k/wA1LHO5vlMZfoFgdRCqXo06LKrKOOVOIV9bC9jm7aJnkDtat9TQrajnilLjBNHKL+8dqXB1Cl6nWzaylj9eRmt+TIkgaQLMHAJBzsk4nw5JWuubWIsq5vU1I2YeNhUfFdcuLYhS4RQPrK5+mFg1EggbfGuDLuZsMzCx5wuXXoJaQXNPC1+BPeslbzqRdVLZEZXA7ODzYgWuodmnpFwXLmL0+HTdWJpXMbu8i2r/AMpU1jtHJclVfn7osgzHmGDFBMQWuZrAlcOy3uAB3XZ0yNBzfj7LHYxq6n7pY1HUxYnRwVMLwY5Ghw5re5/AFt+7dcmBYeMNwanomE9VAwMaXG7rDvK6QBcHe4XBOMXUel7MzprKzLkbsSh1A22UYrqY2IUxqInPvpHpN1A8dzRhOHYuaCqlImLtI7TeNr8yrKy18QWcFhQrqHI012HyPDtPHwUOxeMUkpFQ+3xK5Y6Bj4Ypmua6ORocLG+xF1VPS3kzEsVqo3YO9jQQ6+ou9HwQVf8ATbmNap4ecFlHqzowzFZNFNhcktOJiS6Imw25rlq4OpB1bAKc5XwebD8uR01aWuna9zja55DvC4cy4DJiGGSCls2e4te4HH0Bbo3VPxtEmdsOrSlFtLBD8OcKtx8ndfRudluxOR9LAXyCwC0dH2VcTwapqZcSfGWaeALvhX5gJ+zHRx4nRSQAhndc2XbWnGNZLOxnR6jOtHxEt1sNmTKyPFJtMR7Vx6e9WRRxlhaDyVP5Eo4crYo41VZBcltgZb8LnnbvVyUzutZHJGQQ+xv6Cq3rCxVjhbM4XWqVYvxGsjtE27AlDtw2291lCN2NFiDxThFTMDbuBXmK3szaZXznh7jbI4sjkc4dlpTHlnOmF1uJsoGlrZg4cyb3PgpkyibPDLHcN1n3xVTYb0PVdHnOHE3VjOoZJG9oZM+9wd79m1lY9Phb1KcvG5RxVa3Yuq1gLcDuFkW3YwnksIvrTYoQdWhliePBK46nWPveCo5RSqPHBpWpioQhYLbkPyBvE+Cdsv8A+u/GH0JoaTc+Cd8vf6/8YfQvSejG92kc137mB7HAIPnfEjgd7W5JDfivppWHl32SH9ZGXfzh/wC7YvSuX/8AQOHfm0f7IXmn2R9z0jZdcOBqH/u2L0rl43wHDvzaP9kIDvCVCEAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP+I36FtdwK1Uf2nT/iN+hbe9CGa3j627wUWqNqyb8cqWPHYPgonV/blR6HleT9LW1ar5o67PnBqulSWulXzqX8RZyxwIgIshFlLKMeFhDDnDEa/CcOdW0FC6rEQu8CQMtcgcbHvVe1Gb8ZzPg1S2LDn08zGyDSJg/gLDfSFb5AJGpusdxFwfEKs8+0tFS5lw+popBS1D5oWTMkcGMMd+TRzKvumzptKOn2vM57ik5x0siOX8s40GuxWmp5DiEZA0AC51Dfe9vmUkxXpIxmgqIKFuEPMjn2LjUgcR3aU3YxUQ1uLupKaWogcS768ZNEO3pB+TZdPRVhjJaAV0rm1NXvqJOtoAdtxVveTjOHi1op42Fra+FDTksjB8SnqcJhqamIxyyMa4tLr8Rc72WM1TsufRIJDI4bbgNaNhf0LCWNw4grysknLK4LWnRSRoqKg3K4nPLnErfPTvO7SLLSWOawbLtpxgnsdcFhYBshC3R1Tmjbiua4I3WDpRGOIv6Vs8JN5wZunjZDq6tIDHN4g3UT6QsBZm2ljgkn6iwHb0a+BJ4XHenGSrHBrJC7vtstDp7G5J1LdQpOhUVWHKMPVI1MxfcpnOHRvWZfo6V2DP8ukkLwQ2MR8LW4uPeVry/wBHWIMYanF6d0LXNJs4A3JseR8VfmDV7GuAlbG8DhraHfSpSzyWupzE9rNJHIAcv+atX6Q17bHiJY+/8yg6h0nSnGnseUcay5FC9xiYB8Xh6VG2sloagO96CF6VznlIBj5aRrTEN97k8R6FUOYMADmPsLOF+/0+hfRuk9Ut+p0oxobS+h4uncVbKo6Ny3jz5IhFipknLe896ctzumOegmoajUAHDfYXJXfTYiyd+hwLXemwV1Qr6PYnnOS3cVJZi9jdLWRxu0P87xW86Hxi3NNtRQukqQ9pu3xPenBjToDdTLj0ropOTlLxMYfBjhLky0BgsB6UIN79rj6ELqxpj7KMJS7AhHAXK0eVxdd1e9/iWGvEdTI0M3rCaaOGMufZbCLeC0VsAqYwx17ehYzlOUWo4MsJ8mNJXNlYS0beKwqauOncLtBvvxsihpzTM0NA0+nddErI3gte0nbiAsG6ip4fJLUXwcdRVNniaI2izhvusIWuo5yeMZbfu3WUX1uTqhp6vhuN1uxCqZHEGs0knY3sdlzak465coadsIBVxyOs0C/iunVGW3OxXHh0MTg6QHe/eucyyziVjtIOns223WSryhT35Zm4cYHqkq5GeY82HJPGGY2L2kIBHpv/AAUPwqmmikLnuBBvxJTm6xOkc+5bNEa8EqqyV1zYUq2c7fIunJ+Y2wFkcs/nG4FuW3oVjUmM0lRViGRwIvbn6l46Laxte2WKWQNaR793I3VjYNjl2hzpZBPx87a/yr571D0O9aqOpTWF935GTva3TYRw8r72WNmXMmB02LMoRKzrnkd/O/oXZFRxvY2VjgWvFxsqepMqxTZmhxOvr2R0wc0/XJyDcOvzFuF1fmEx0VdQRNw2phqGxtDbxyB30LyvV7RdOUYLOx7fpHWVd01J7EbaNI0gcCuymfYhdeM0XUEBgt4+CbqY6ZLSfMuGM41abZfRcalNuLJZQFxj7PHkuHMma8Ly++KOvkYx7tJ3J5/Ee5d2FkhoItYKG9KfRxU5vrKWoo6mKJzQwO1yOaLAkng0964bKlSlX0V+5R3NRLcsLB8SpcWw+KuoXBzJhqFvEj+C7UyZNwY5ay5R4W+WOWWBmi7XF3vieYB5p7XDcQhGtLw+DStwQhC0k4BbKT7cg/GWtbKP7epx3vXd0ze6h8zXV2gyVs80eCXvSR+aPBF+9fXoyTimU72ZXvTt/V9WeD/3b1E/Yo/0GP4kX7JUs6dtuj6s8H/u3qJexScBkV55BkP7JWXG5JeSEIUkAhCEAIQhACpr2UH9Ao/ykn7tyuVU17KD+gUf5ST925AOfsc/6tsL/NoP3QVoqrvY5/1bYX+bQfugrQCNZQAJjx8WfEfH+CfUyY+BeH/zfwVN15Zsai+ButniaGg8CfQud1zpA4Le42BA7loLgxmp3BfLKNPKSZZ1JaVkwmlZAwk8bJmqcSJcQBt4rTXVTppHC/YATJW1wjY5sdtV+aubazb3aKS9vHTOquqnQ075i3W8C4HBVzVZ8xGPEHQOoXFuotaeuHfYe9T3XVTWHrJnuPoDtlGMxyxVlO4vDYwBs4ANN97br0dlZR/7RPP1esKDw3+vqZVlFXYzWVbsYgcxrSOr1WPIX4WXA3GsQwemdHJTuexrjp7Qbty5ehceG4uynwmkgqHySkNILo3XvuTxJWgujrMXjc956sBtm33Jv3K7hZpv2lsclW8q63kf8HzPVYg767RFrTwPWg/wTpNiEjT2Irf+b/kuIxEkhrGtbysLFLDE8Eg77c1vh0vVLKj+voUN1fTqTeGdAxCY8Lj40eXzd5WpsBu7xQYXLoj0acuIr9fcc3rlTzNnthJ78ah3XW5mKNA+xD/F/wAlydSRxCxML+4LCfS3HmJmr2ou52nFBqBEY4/C/wCS7pK1tZRthdJoEg7Q4pgDZGu3aPkQ1jhI5zja54ArhnYLOMY/qdFPqNWG+SO1nR/GyOtrKaoBcI3OaOp5i546lHsJypiuJ4gPKInPhiuwbDhx71ZFPUSQu0tNweTt07UlVHcFwa1390AKJVq0aWGl8+5d2vXG8QfP6+J3UnR5l6BjHugjeHkhzdLhsPjUdzZ0djBmDHMplsM0cjQ6njiHaaSXOdqJ9A5KX4VWvgJZfUx23a3Ugpp22L+y5jmmNwdvxXnK1zXovU3qXk22sfI9DaXfiPDK7k6dI6LBqSOopB5dG13Wt8o3Jube87iFb2U8wwZiwSPEImBmo6OrD9ViADe9h3ql+kforFdG/Esv6XSkaix5LhyaNmtPpXXkjpOkyzSRYRj+F1UQa/T1rKZrWb2bxc4dxPBY9Q6bb3dBTtFus7PC/AvadV43LlxvHMOwSiFRilW2NhFwHNPfbl4rLL2M0GOUnlGEyNkbc3Lb8j6VCc9YJTdJeWoxg2IU+sMtbrrWu4HfSD8Eru6NMqnJOB+TV9XFqe5wuZSQbm/vgO5Uc7GnStNbb8TOPu/qblJyexMzT0/XukdF9eJJLtRWFRL1Vy43KOsaYi+Nwe3k4G6a6h9iHXJ3XDOVSbSqNvHmdlGkm9jbJLe5J4rkkqWtK0Sza7gGx9KjmYMxYfgYaK6Qh7r2s5ttrd5Heui1t5SljGcnbpjHZkgnqdRtw2XFJVNY1xk3YO9NUOJxV9MJ4HgxnhYju9C0zzsdA6NpIce8qxhaqPsyW51xovTlDbQ9IGGVWKCgaWNlLg0dsm5Jt3J3xPGI8OYaiVoLOV3W/gq4oclwYdjYxF0rnWc1zQJCe0DffbgpgayPQQ4B3ocAQrK4taDkvDWwt6NV51JHJT9INDUvkNNo1sAdYSf8lG5oJaoTY80XqW1eho/uOJcd/wDkjMVJFhlZDWYeIxM91i1wBabDbYJ5p8cgbSMdM6n6/qt2NDQ29t9vFdyoxpr9lHn4bmKs5Tm1Uf4nXPn2ipiDXhjXnkX/APJPmEZhjxKESRygAmwA3229HpVXYfV0+L4xKcQMTixw0MisCbjfZd2bcdfTVNHDRxkNBi1aGgdm9jwWNTp0Jxj/ABGuEsQdTlItCOviFUYpn2eDYbFdDawvs5/fZUNi1DitbjorqaWTqLuIAe/mPRsrbo6t7o2atLQ0DZ3HguO76dGlFSg+TZa67hNtJElFZDG3XPJoaPRddFNWCdjZIpNUZNm7WVVdI9BiGLUFsOlDHXbeznD31+SdejSlrcMwCOOulDpAX8XOPvyea01umU4W7qJ7miWVU0NE8xfMVBgkTX4k9oDrW1X57ch6F3YPitBitOKvDpGlgF7AHw5+BVc9IOWZ81UcbYJ2Rlmm+p7mjYkngD3pw6NjRYFh7cKNfTyVJAaWibUeJPPfmuOtY0laqcM5z5HPVg4z0yLSp5w8WK6AbbhNEDgWh0ZunGCYdWC8E/iqjcNMsmqccbnTHI119G5C58SraXD6U1Ne4MYLcfSulhLt22DbfGmjNmE/ygweSiieI33G7nEcDfldLaEJV0qvBzSNWW804RmQSjDJmPDGh3ZvzNuYCdJnamaW7kEBVp0SdGtXkyoqJquqZK97Gtdole5uzidgWjvVjSSNHWl2w1Fd97RpU6zp03lI53NpbiVMggaXHiUw1Vc6Z5ANgtdTUOfI90juxysUxV1edZbERZdlpZ6luinvb1Q7ndVVbIAS8h3o4JvqcUdpZ1TbXdbY/wDJMtdWMZdznEv7rppqax8rmNBsAbiyvbfp6ysI8zX6tGM0ss9KZPe9+XsNe/i6nYfmT2VHOj5l8oYQ8k6zSx33/uqRONhfkF66MMRUUelt8ypp+ZhJ9hk8D9C8n0X9phn57T/sr1hKR1Eh/un6F5PoBf2TAvyrKf8AZWz4G9HrRvmjwQhvAeCEII90i/0Fx78xm/YKpP2J/nY5+d/7hV2dIv8AQXHvzGb9gqk/Yn+djn53/uFAejwhAQgODG2k0T7dyjY2G6lWIt1Ukg7wou7tONtrFfP/AEvj+1gyws+5iOLkqUcHJF4/mSO1cAhCAL+g93NZLGdzEEIvY2d2fFChxUnmJPHAIBs4ISE2CSz2ISecsacwTw4XTOq536W2O9u4X5Jly5j1Njkzm08uvSbWsRyvzW3pQy7VZhy06loJQybt7kE8WkclF+hjIdZlVk0uJS9bKXCxAcB5tjsVe26tvU3Kcvb323OOdPMi0YRpbZbBYbpD6EKgjunk7ILCEcdTNTOKQyMZNomc0EsuLlK47tDt2nuVGdPmGY+3EYavBmTvi6tjS2ONzzftE8PiVh0+3V7VVHVpInLBddNWQ1Ms1PSuDpoSGvA238VvLuzaRul3yryDlDPuPZSxCd9THIJC4aoZIRr4EcHeKvPKHTDg+PFlNXPZSVJ4maRjBxA4Kyv/AEdr0Pbi8r5f5Ncaq7lmNLSBp+NKtcM0U1KyaCRksRALXsNw4d4K2EjTcEHwXnZZhLD2ZvTTDfkhz3XDY9vBYm+1vlSuJLgW2CSj7SZLWTjxbBcOxWCSLEMPgnL2lup4va4tfj6VR2cuj3Fsl13t5kqaWMNu+SGFzIgCbNAuTc8Sr+HnXKQsZJeOUB8b+IVtYdVqWklDGYPn9YNMqaaZUtLnapznkesZgtTIMXijlD2AlhIDbDtOAHFc/QXT5upKuodmYzOgc67A+dkgA0n4J70y5p6P8dy3jcuL5PDg0tBdGYXTXsS47cONlKui3pHlxGrkwrM/VUFew6SJ42QayG7kN48V6OvKm7Obs46s/h9TTFuL9otINHWGQeal96TbiUAOaSxwIFtiRxRqcBYtJHCwC8KlyorPn8zqTyR3P2Xn5lyxUUEUjmvkjc3a3Mjv8FGuiHo8myUKl9VM5/WF9gQ3np7ie5WO4BvDifSuerq6Ogj14jVwU4JsDLIGA/KrSldXCoO2g9n22NbW+ToaGvJ1gEIYWtuGuPhZaaarhqIGzUU8U8The8bg4fKuh3H4rqu0yXsNboz5MNTibJey3ikLgzc735JDbUC8ED07Inj9pJ7mSM2uFyDtcWVNZ56JqjHc4e2cUzmxh+o20fBA5m6uR9nWtwSSAuLrGwK67G9r2bco8P5GMoqXIyNpPa+gpaUSF4iiYwkjmG2/gm+rfK1wdFcjxsn6albpIud9+K5PJTYhvD0pCv7Tm+TtoTjCKQwu61zy999xa11r6zqzdqdZYS02LT8i0SU7CL6SuiFxH3sbnZGpFjFWh89w29jxF+KrvMWZ6fDsU8hFHHJLpJ3vyJHcrUfDHexBAPO6qHGHHBOkuGSodEYZYnluoD3ziBxXoOm6ajxNZ7mU686cf2exAcxGoxDG4pnxeTwB3a0m+2kL0bl+aJ+E0jYX6i2Fg4W96EyZmwlmN0UtO+INfI3S2VrdLd7dyr7KmK1uVMwuoMdd1cD79XK9uhti4AC548CrK5f2nb6Ftp7c/kcHhu2l4k92+5fVA821O30p4ppuui2HNMGHzRzQdbDKySN27XNNw7wKd6STqyGjzu5eHlTcJODNlXD3R3CWMdk9l3fZZtMzyWtmfZYcbFxF+5dUbdgXCx7ua5dbTaRyyS7mMTDHu4lzj3rYQAQSdyi4Dr2S6QSXO48lgt3lmlt52BCEKH3JfIcHHwTxl4dmb8YfQmd3G6esv7RynvI+hek9Fv8Am/cc137o7Gx48t0jiQ658y261V1VBQ0slTVzRwU8TS98kjg1rQOZJ4Kv809KmW6LCql1Hi1BWS7xNjgqY3OubgbX8F9MKwpHp5xeDEelfC6Ondq8lnudiPOjb3r1Nl/bAsO/No/2QvDWJUmINzfg2L4pHJG+vmIDHsLXN0NtuCvc2Af6Cw4//bR/shAd6EXQgBCEIARzKEcygEbz8V5T6Tv7QOHfl5P3QXqxvPxXlPpO/tA4d+Xk/dBAep6P7Tp/xG/Qt3etNH9p0/4jfoW7vQCP8w+CiVX9uVP5QqWPN2kKKVrdNZUel5XlPS1ZtF80dVr7xpCVIEq+dPhlk+QQjxNkGwKQylhBoxeRoI1lhPAgKvcx5Jrsx5yFTWTPbQwxRPG7XAlpN9r34Kw3WI0u3YfOA4pTd5A1N0jkOK6rW4la5zyYv2iO1GUMFmw5tG6nhicAAagR3dcehMfR9lLEsr1dXA+R76J0bQ27m2vqudgVPJAHuDXg6BwA2KyudPb3PoW1X83CUHwyGmmanQsHDhbU5MMmPYI/EPI21d5SQ0Dqnd1+5P8AKzraeaMA3exzR8YsqFw7okxaDPLK6SrvTtla4t+uXtost3Tra3rU5yrSw+3JLrSTLkkpWjtMcSwi42XFPELWsniCiEUMUYDuwwAkk8ly1sIu4tIsVxwmo+ymdtGrn3iPVEegEptmeHNc51uybXTpXGzTdQvOkE1XglRHREipLmlpFzsHAnYehX1lFV8RZZQmnDXgd6mujhYGCWz3bCyba6rMTQTIS9wuPBULU1eNUEzHVTJ2ujdqu6MgfOpXhufI3NhZXea1gafNbur+PSNKyt/18zTa9SpueKqwWTRV7i/zipfgmIu2DnH/AKsqywrEaaqJdTTRyW961wJUwwycN0gbki5A48lV39rtjBbXFKFaGqmWVTSMq6cxSHUx3eq9zrlZ0JfPAPrdrm1hyJUpwWqBsNw3/wDVPtXAyug6s+aRb5lTWV7X6bcak9vu/wAnhet9KjdRx3/XxPL2OYd5O8yluvVvY8lFqnDmyPMsQDHDkFeuc8vGjqJHtY50ZJIsCbC6qzF6F8U3WAdnuAX3PpfUqHVqKcOcfryPFWt1Ozq+q1iK0dbNTvkgnJ1XOkk32WOisdWh7XO6u/wh3LvxClE9pGECQCyb4amopH2mF2/i2WTjUo1NMuD0CjGSwPQvoGrzrIWMMrZ4tbSL8LJWm57lbU9Uo+zwc+G3lg4XaR3ptZh7vLesPC57k6AbG+3ikc4mO9wPFRVoRqxzngyyKTdwbyQTpJWtsrHDS1wLvQVmOG/FTFxayjFhrBQ94bGeyC5GyN+42SSk1hEobooZZJyTcC/escToCYrxklydB4EJCANwCe9aHZRnBqT5Mk8DPQdbDGWOJvtzXW6ncxokHI3WFQ9oqdiOeyzlq3PjewMcNuJGy54U4RWnyM9Rr8om12F7eK7ortZrctOHaZI9LvOHNb/Ou3gF127zHJqmZFwbGSBxK1yTCjhEwNnEXWduzpvZcGMxOliaGGwAPH4lnWlKnTejYNQm9EkLiWN1mIUHk72kxg316r8iOHxq2PY84vT4ZTSwTTkvJaLFp5MPcFV2GytfTANA0A2NwtFU+fDqnyujJIvctbud9l5bq3SJ9Rt5Nvf9fEinOVtLEOD2LW08NfTGWOxfueChtbTOjqTfYAqP9G2foauGniqXtaS7SWktBHatcpy6SMyUdBX0MUUjJDURCS7HA6e2RYr5Sum17So6Ulsen6R1WEn4c3uSfDJnjS0E/Kn6GVwZtI4FMmCRai3tscGndw4HwT0CQTpBAHMhU9w4am1yngsLnE37JlTaXTay8ukvzC7FxQFpl19y7GnUueSaZzSjpYqEhO6VYMxBbaP7fpvx1qW2jF62A9zuHeu/pKzeU18TVW9xkqj8z4kWva6xjf2O0CLd6j2LZ3y3hNZ5NX43hsEzTZ7ZKpjSzhxBO3FfXIrEEU0uSJeyHxKGgyBK2V3alkcwCx5xP7vBMXsU2AZEcTwcyE/+0qtem7HqjP1U9uDO1YZSNEzpmgPY7QHNIDm+hysz2KxvkuZo8xoiDfDSVm+CWXchCFJAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wz82g/dBWiqu9jn/Vthf5tB+6CtFAKmTHxvF/5v4J7TPj2zY3d1/4Ko60s2dT5M20PfQxO4nwTZi02inDQdyP4pyk3BPoUexeYdaxljsCCV80tYamkdN5UUYbjHWVPUQPBPaIKi9VMQHvc43JTjjE2ufbzW2Ki2IzmWpAYdLACDfxXsun0Vjc8N1a8VPKRzzyvqWfXCbelNuNUz6ykbDT7XLQbbePFd9g7sggrppohHu7h6V6yysnPhHlVWdOWt7jThWXqakpOpna2VzRYOc30rnxHAPI6yCqgkOgOYS0ADgbp5q8Qjia5ke9+dwUzVNU1zSZHF3MAFest+l0ofr/ACdVKvc1Jtyf9B4kxFgAOkX58U31eOsgcN7XPpTS+sJAtsByKYMZo5a6RrmStaAb7+C66kXSXsI67TpkKsm5k2bi8kzWuicbEd6X2yn7z/iUSw1hpacRueCbDe/oXX14+EPlW2i8wUpLc3PpHttR4/XxJG3E5g4aiSPFdUeJh0oBG3xqJiY37Lxf0rdDOQ8ucdXgtjUGm8HNU6Yk9LJi3EKNxIc4XAvwKRjPK266c3HyKo8WNbFVPewu0O22adt114DmqfCWtZIDIwbXaB/FedruHiYaOiXo9J03Ok8v5f5LJkBa6zxYrG7r3BO2y58Nx+gxWNgD2tlcbWLxfu4Lse0xO728iFUXdgktUeClqRqUZ+2sMdcOq+s2J3CkuDVTXOMMrQ5pud1Bus6qVrmHa6fqGVjurls7Vs3Yryt5QjLnhF10u7epKT3LHwOYwzmNjj1ZNtI4LHMmUMGzHSy09dRU+otLhIWaiDYjv9K4cLewOidfj6fFSyJzCQHcC3vXjLmrWtq3jRe67H0Sxlrp7nnfEMOx7oixN2IUFRPJgDyXlge1rbDst7Iu7i4p+6S8Yx3NuB4dXZOqJpGGfS5rJRFpswgnt2PFXDjOEUuMUElHXM62NxFg02sAbqgJcAzj0c1U8+Exmow3STIzyR0pDb6ju4bcOK9D0+9oX2mrWX7Rdn3/AAwb3Fp7cFo9HRxemyrTxY9rNV1ceovkDzfTvuPSnepm007mDd9jZR/IedKfNeFsjkliir42ta+AlrXght3DSOFk6VEgAc5u5G9lR3VH/dS8aOGXFlCLj7PJy1chs0sNjYXVc9JmV5MymF0UhDm6+7mG9/gpxPLu5znADuPFNNRNa8gB09ysrCMreWpclrG28ZaJjdglAcFwqOlkkLnCx3t3Du8ETT676XELjrcSpmvtLVQh/JheAU21FUXn60eyefJWEqMpy1y7lta21OOIKXundPWSC4fK5wHIrjkqtXAm65H9njdxO1wtbiGlu4Gy6tCijvapxecbDbjzcQra2mjge8dviHAW29KH4L1kTmiZ3lgFibC/p34cV3zzMBcXPa4EcjutMlVGzSWNedgON11KtUSxFFc7ajKUpSjkhlNQ1eF48HmR4k1i5uPgqV0dJU1T531JL3dQ7QXOBsbbLXj9TTuwuQzDtFu1jYjcLmosXip6CNoa+R/WcWm407bLolKUktSK23oUrSco8I6I8XxLCqKGEl7pA3hr7vBP2AYnXVLOsry5rztYu1bXUYp5YKnF3vl4PcSxuqxAtzUkLjcahv6BZcdxGPkd1lTVaTqRntnGMEnhqixttRLSu6OotTmXiyG73D0KJU9RosHAkJy6zraSeNh7T2WAvuVX1KD1xa4Z03NvoTkuxw1XSC4zVFLh9K1zwHMJDnDfh3KD5HEsee6efFnuidI9um/a4NN+HxKQdHdaKPMVdTTmISOkkcGvaL22HNSvO+XH49Ra8OZ1WIwAlgDT2i6w2aOPBd+qlbt0GtpLH1PHVaFWtLxs8f2LPoTpgZ1L9TCBvw5J4o3APDBvdUX0VZwlpcQfg2OPEE7Q4DrQI72c1osDv3q28cxNuEYPPX3AEekgm1nXcBtfxXjrywq29V0+U+DLxVOOWShm47PZHoQ4NYdRNr8wmLJWNfygwQVzRdpkfHYWuNJ47J9k3Z2HtNuXEqpqwlTbpy5RyZTeBHm4AbK4sKZcal0M6uM7ninWdrSeBBbud1GsSm1yvLdgy435rqtoupJZOK8moRGXEpuqhDA46jxUYqqjqg4lxvuu/EagSSSSm4HEBRetlMsuxsAvb2VusI+edVvHlpGE8jpnFxJssom6pYgObgEjBq2AK76KNjKimc8i3WDa69Ta9Pc1rSPOKblNZ8z0XkNhZlPCmnlTRj5k+yOsWjkTZNeVSDlzDizgYGW+RZY7jWHYJRmoxeupqOGxs+eURg2G9iVsaw8H1C22pxXwOyvkZDRzPebNaxx+QFeQcoYozGfZCU9dCbxzVdOQd+70q2eljpPw2XARRZbqocTqpy0aaOVkxAJLSbA322KpTonwiowPphwygrTeohq4WuNiPmKwOhHthg7I8EJGXsPBCEEf6Rf6C49+YzfsFUn7E/zsc/O/9wq7OkX+guPfmM37BVJ+xP8AOxz87/3CgPR4QgIQGiu+1n+CirfPd4lSqtF6Z/gor5r3X23K8L6YJZgzvs+4g5oQOaF4mPvHcgQ5pHa1G4Qq06WOkOTKMZo4qWR5eCA9r2geaDwI9K6bW0d3VVOPc1VJ6I5LDNXEZNEp39Aut9xbsm47155yj0ws8qLMUp3xxvJPWPlaAOHoV74FiNJiuHRVGHTsngcLtcw3B3suvqHS6lhhNcmmhWc5YY4IvyKLbIvdtu/mqtp9jrb3wAc5vIOb6UaiTYNa1vOyQAgWuka0g31A/EiqLGHkaVyZJEqETxuBCNcfZ4hJLDBVx6auGOS3DULpC0tALOKzLbtvqF+5TLOrXF4aMJR1Hnr2QeXqGkrsPqcPjEUs4kdJpYGgG7ea20HRJRRZTnxGLEJvbLqXPYLxgXtdu/FXJm/LVFmjCH0Fc2+oAB5Js2xB4DwVey9CVDHA5tHV08UwuWvMTneG117Cx61TqUY05y3XP6yc0qTRo6Is+yMLstYyyPymlPUse0ueXBrbkk3te6uURhryw8DwVJ5a6G58KzJHidRiME7maraYHN4i3wldbx1ltR4Kp69C2lV10nlvyxg2020gtocW3JSpA1o3A3SqicZdjfkQ8FkNIYCTukWMgBadrrN6vuBnpLo3NcA5pFu0qk6Wej2orp4MVy99YrmNOrqy1molwJJPHgrZls5rAGkb7rJjXgHqzpI4G3Fdllf1LSWqnvHun+RpnHUU10cdKNTUVowfM0TY6ttmte3W8kk7bnbgrlZYxsmEhLXtu3wPBV90tZMZmLBX1NF9axGAOkDnAvubWG11H+hrOj3iXLePPHl9M8xxAkNuxjQLhoHfdWd7b076j6zaLD7x7/RZ2MYycXpZb4+ttaJNz3qrenLLeN43RUxwWpkaGyMu0Shg4Ov9IVpy3GrXuW8u5KwNa762L3FzZVNpdu1qxq4y/ibJbohXRJhGJYRlOOHFnl8wjYLl+rmbqZEgjdztSyfqkOxsRySO1Aizt+6ywuq8bmq6s9vlsTBZCRzY6Z8pGot5FU1T9MMk+c4cIfRQaHyRsvaS/a+OyuN21yQXh3EDZRg5EwSPGm4q2mLqhpa6wkd73hzXd06taQU/Hi35cGEoy8yTQSCaGOQAAPaHWHK62LFgAYA1ulo2A7vQlBubDiqzO7a4Mo7ciOYD2j4LmnieHgstY+ldVtTg0mwvxVS9Nueq/Kk8MdJBI5jg7tAtA2I7x6V02FrUup+FHkyVTQ8lmSQajZwHeuOpiDQbBc+QcWlxvL0dXUscyRziLOI7h3eKeZ4S7ldYzhKhU0PBvp1NTyRadva34c1AukHK4xwsqKZxZVQtDWEWGwJPEq1Kmk7LrNJNtgodnJlTh+CT1dLG50rXcAOCtrC6nSqJ7ZO5yhUj7T2Kzyxm6uwuuGC48GmYkNbJqc873PHhwIUzzflalx/CRIbCqYwSse0NvsCQLn0lVxlyCXpEdPDVtMVQA0Nmf2gC64vYW7k+5GxbEsPxeXA8QfrdHqMbg0NGkENG3xL1V1R0TdSm91yuxy0a2tulJeyaco57mypQyUWYIi7qQ1rHAPkJ434eIVgZS6RcNxqtZTx6mvksGudG5puSBz8V3Max07hOxz3sNrB1lDuk7Lrp6JmJ0G9XTOErnWLrNa0m30Ktcba8lhpqf3JCpTnQ43j+JdDBrcGB13ciu2B5ddz/ADuCrrolxt2MZbiEjw6qga1jhtxtc7KeMdbcG/gvK3dHwKrga8atzuIHJItUT781tK4k22aWsMEJLi6U7KHyx3EPBPeA/YJPEJkPBPeA/YH+IXpfRb/m4+BzXnujZ0nQNqMj45G6aSMGkeLtttsqW9j/AJXwjGqLFGYnRQ1Loa0hkksYcSGtaRx9KuvpOwqfGsjYzQ0jS+ealexjA25cSOCrPoGx9lN1uUZ6GWlrqd7tRfIDcxtAPZttw719MKwhfshKeKlz9lqKniZFE2ofZjBYD621emsv/wCgcO/No/2QvM/sjG//AFHy9JaxdUP2/wDTYvTGX/8AQOHfm0f7IQHcEqQJUAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP+I36Fu71po/tOn/Eb9C3d6AwPFRfEPt2f8cqUuUWxHaum9LzZeY9Klmz+9HTa++c4SpAlXzddyzlyYu4tSlw1gAI06r249ybsfxQ4Tg01WyNzzHfgQOAJ5+CzpRcpqC7ky4HFzHB5NhpQbO8zYrzw/p3rTiYjbRzmFpIv1jLHb8VWjk/pBoM0N6qGVjagDtMLw4jgOQ9KsrzodxbQVWSyvhl/wBjTSllk3BDdnblazKL2XP1rtJYBq/vDgFg5p5KqjFvfsdKW+52iUDgtjXFznPLG6u9NzA5dEDJBuTv4KZe0vZeDGcEdEZu14dx3TVWN0ttdOMrg1tyRfuTDiVQ67u5TQhl4MqEXKWEMeJOsDuo3WVHV6iAHHuK7cXrAAblRaprW6z2hdettKDjFOJ6e0pOUVlDPmempqnCqmWWFgeI3EWbfkq+y3g1JiNfM2dzmsaXAANHd6VY1ZIJHua8amOFjZRqpy7FNUOlY5rQ4nskEr0dtWlGGJMjqHSFXlGpTWMfryG2OSbK+MamkSU7iPOd3DuHirfweoiqaeCrjJbrY0WA2uQCqukyLPUuOmui093VH1qzctYe+gw+OB8rXhoHBtuAAXJ1GcNCxycdp4tOo4NbfEltBMYyLKUYbUawLlRCjGoA8k/0BLQDbZeQvYqRpvaa1ZHTGKCKvprOaCfD0ql8y4MIHuDxtbuHcr0o5QWeCjmbsGZV07nt3cAe/uXb6N9Yn0+vjOz/AF5nhev9LVxDxqfvL9eR5uxOk8ne4jgTf501zQsqoTcAG3IKwMcwveZhHba4gN57FQiaF0UpY4Fp7ivu9tXhf0FNclH026dT9lN4aGBsktFNvvHe3FPUMjJow5vFJLG2VhjkFudymoF1BPc+Yea5/wBpbSW+zLpyU90PBJk24WWFQCYSG8Vsa5sjGvYdilbYu23KssKaxHuaHsNOHQyx1GqQktuOadTxKye4O7PArAdy10oKmlFkirixCudTWa0A3t3rtsVqlgZKe3xWNdTz7JKCjnM1NqI3I/itlyxpPG+yRjRE3SOCzFy07ekLKGUtyXwcQoy+YyOJsuh0LXAtaPO2WZJdHpOxWqpeaemc9guWgnZYzpwhFyIizClgMMzhfmV0gbEprwyskmlJe0i9zunS9mlLeSlTa4JYjgXWskmYJI9PNKCRwCxdcdoC5WVSGfZl+Bi3h6hqfFUUDtV7wk9/xpwhmZV0vZALrDYrhrayZ9UIXtOkgbLUYpKKRs8Y7J3Px7Ks1eHNwgng3bNajdheIy4VX3hJLyRsSQBv6FIX5tp65ofijbzQ2jYdJdtx4n0pmqImvgFXC4CT5b2T5gdBR1tGWVdRGyd5uA6++3rVTf2tJxbktzK2hBXKnwWpk3pLwyhwNs1eHOcQf9W53AlTvC8x0+O04mpNTIyLjslvK/PxVH9F+DmHOMmEY260RMbWNcC3UTqJA+ZX5XMioomUtGwxxNAFybjbZfLOr21CjPTHl7no6OqdXZ5R00btQ0NN/SU4QO5Jnon30xX9GpOdKbHdedlLUkzdW2ludLuKVI5AWtmkVbaEXxCl3Is/+C1LbRAGup7i418e5WPRv+dTXx/saq/7tknNtJ1cxZeVekDCYD09UsMrn1MNVPJ1sEjQWbRtsLeteqZB2LNFyW2XnHME1TkHper8cxDDZ6mhq5esjmY4RtaGMsbk3v5wX1x+6inZNuknL2FYB0a1ntbQU8DpIn3cyMNO8bieHgm72KRByG/QSXaIb3/FKkvTRUeU9Gk8sbhG2WIv332MLjb51G/YpOJyI4WtpZCAe/slZdiWXehCEIBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/ykn7tyAc/Y5/1bYX+bQfugrRVXexz/AKtsL/NoP3QVoqJcAVM+P/Ym/H/BO6acfB6lp5b/AMFW9XWbKp8mbaPvoj0psw+Ci2LvH11/NpUlqriM+ChuNSERzdxI+kL510yOqaI6jLFN5Ilis1myO52KjuoOLnO706YpICC26bmtadhv3r3/AE+itkfMOoVdVRo3QQtHbAXJiNYGjS3Y8FG8dzdJhs3k/VO1Ha2od1+5cEGZm1G84LCe9w9S9502pSpLEjdR6NWnFVeV9/5DrUSEec43XFI7mSbLXLI2VurWFxveX3A4K4lhcFzaWWOUbny9o24LWZCVgBYWS2CwUpMt40o0+AuXc0WPekLdr32QG3FwdlOHk2JJ7h2m7glbWSuYLladhzWwOu3YXSE8bESpwfKOhskUw0yMab94UdxKmb7ZdUGNZEXHgndru1sLoq6KKtEbn2vbe/JcV1aqqso15lSfs8Guqw72rZHUUUz3OBDrEgDbfkpjlvGI8UpmRP2lYA11geNr81DzgjZOxFI1o79JKfcm4GzD6mR75mFznE+aRfZcMracPZayim6k6VShKUveJI+PTJYm9k5YTKetLCdrEhcNQxzZuGyIJNEzXN77LynULdRlKLR5u2q+HUUu5YOCyPdE0k7t/wCanFIdcTD4Ku8FmPlDWgdknj8qsDCHXpbn4R/gvnnVabU9Xc+ndGra6aHKQAAFjiCtNXG2pgfHVRskicCHB29wtrSNN9BI8VqnDHwvdbgDsqNVJxkpRe56GKT2PPmecr4nlbHqzHstdmnkme4xB4Y0B7rcBvwT1krPMGYKUQTt6msN2uAa74RA3Ksusfoj7J2PGMcT8apXpRy7JDUnMGDHqpIPrroyC89loHE7L19lcRvo+FcJa/Pt9WdFOlKjLXDgnGIPHXNaDtp/imXEJyXujZwTZlPMDMXwoNlePKY+w4X3uGi/DxWFdOWRHez7cFvp27pS0zPU2Eo3EcogeYMNr5sdbKyZ4jAAsHelSWmDmUUbHm7w3j8a2lxDQB2je5suauqA1o0G7uYVrKWYKPc6aVoqFSVTPItRUCNoaN3JrxGuMMJeVk8FxMnPhZJIGzRaZWkD0lbKdNLdkVpSqQcIjVhGKiveWHjtyKd3bbcVyUtFHSX0RnfYG66yCACVvrOLSwjRaKpBNVGclfRmtjMZcQDtss4KSmp4WsO5vzauizSNnDV3IjDdDiWEkX5qNb2wIUIJyq1NzikotFcyaNxAF9k9wVXWAF3HgodWYxNHiPVCN2kX5hSNjy5rXcFlXXs7muyq05OWhNbjw12rgummqDG+9+0PN8U10kotYkXXW0XPd3FV04OnsXNKpCa0y7nDmDAqh07cSwh5ZVBt3AENB3JO/FPvR/nJ+JVhoK363XXaA4Enc3PEpgzFj9VhNM3yWN5cbAkW4HY8VxxYPLjuFe29IDFXRDVZw1Ekmw9HJbnCFWl7fPCPI30XRruME8Dl0lw0NJiUVbC6SGqY5p1RM87idz6SF1TdJAr8pw4fiEbnN6sNMgY9zjZ179yeuj+qGa8JmpMXNpqYvsXG27LNGw8SnrJ1U3C8TxWLEqge11NK1jQeyLFvf4lcc6lKMdNVNuG2SpuI+ItUdjh6Nc+4ZRS1FDA+VtNHEZSDGRuTvsp5hHSNhGLVzqKlEnWNJBPUuG4F+KqfpIwenixmjxnAamN+HvljbM5oLg1rd33J7ldOQ6GhhwCjraNhfLNE1+trzY3HGyquq0LaFD1hp5lxwcUHLOkfpntvI5hJbbiVDcWm6sy25uP8VLMUe7qpHFwe625AUDxx5INuN7qq6bFSksFV1Wo4RaZFcVnLA1oPFM+7nLqxB4fOQT5vqWqABz9t19E6dRUpJHzO9rOU2zbTNDSHOXMasmspWtO3Whbq9wjjIvumGmmviFICd+uC+g29vGlSwa7Km6k0/ieu8mn/APZXCiedNH9CrP2TdNHPkQzOmkZ1DJpA1tu2dHAqy8mb5Twj81j+hV97IXAq3FcvUlVQwvqBhz5Kh8TG3Lhp4A8l5KbzOR9PprEYo5Oh3KOBT5TpMTkw+CWp6po1SQi9ywG9/FVpTXHsmGAta0+W0+zeHmq7eiLNUeY8nlkdM+F+HWopI3PDjqbG0ngNuPBUdQta32S8YYLNFZT2/wAKxSwjb3PWjeAQhvAeCEII90i/0Fx78xm/YKpP2J/nY5+d/wC4VdnSL/QXHvzGb9gqk/Yn+djn53/uFAejwhAQgNVV9gd4KJTfZXeKltV9gd4KJzfZXeK8J6Yrem/n/Y7rLlmISpAlXilz9x3iFQ/pGyLBnLDmxuLGVI1WdcN3IAG9j3KYFIC364HR30i+q622txO2nGpDlGM4KUTzZN0HY/TSGGN1C+Iuu1zqkkgcveq7ujjLlTlfLNLhlY9j5oG6XOY/WD2ieNhfipPrkIbpeXMtwSFxPm8Fa9Q67UvqapzX4mmlR0vJlGew4HvKS4IAHJIOzxS7clTv4HQwQhCgxBCEISCEiVY5TRPAIQkWTiuYDkVCQJU27EYwCEIQgEIQoayASEFu+o78rpUM067OPFFsAIHaDxdjtjtdUb0x5TqMLxinzJgDeqczSJOrOgm7yXbNG+3pV5RnVqB3AC018FPWUU1NUtBie0tsb8SLDgrSw6i7KprxlcYMKkdSGHIOZ4M1ZeiqYHNNS0EyNdsfOIHMnkn81VN1whNTCJLXs2QXVAZUin6PelaTCy0tw6smiYxuwFmtue88XLXNlvOjukJlRHHUso3uEgNoraDJfvvwVpX6JGVaeHiKWUa4z7Hogji0ed3pOFr8bpGtdeNpP1xtw5F9ZuOS8xOKp5XO50LZGSEIUNPfTwIp9zW3TqIGvjvcbLZe0oIGwShx0nUdI5KMdIGa4cn4GayRokNieNuBHoPetkKE7icaVPlshyS5JM14Ly0NPM3ITdi2E4ZijG+2lFBUaQbGSBkn7QKjXRnn6DO9FI+OIRSNe5ttRdcC2/Ad6mxB0mN3Fuy6peN06s459pEbNGqnp4KWJsVLDHDCNwGMDfmC3DcINiLh9/Qi9lw1JyqvUyUc80fZJHFcFc2I0rop4WSMfxBYHfSnVxBaQTa6454y0dp12ngs4VnHnk202uGRGmw7D8Ja92GUUMT3cS2BrOHDgFUnSNR1WB5qpcXit1L2MY/Q43F3EnYeCvmakvdsXnHhZU/05VU2E0cUUlOZY5C0XLgNzqXquj3c7i4lGq+TfUlClDMSVZaxCmxql8ro5HOe4Bzg6wte/pKjXStmmHCsLfRU7w6eUaXcxZzTzBVe5Iqcz4FhtTXYZh85o5QxzS18YFtxz35qUZd6McTzbTTYhmEPhndqsJGtcQL7eae4q2dlTta3jVX7H9zjleurDRFbks9j+2OowOqnL9Lw9lww296rWa4AWFtPI81COjzJseSqCqidIJBO9rx2bcBbvKkgfJqDGuOxvbuXlurVIV71ulx/g3W6lJe0OkZIdddbJQXAcyuKF2lg1LJsrdQI4qow1lGUobs7y3e6HLGJ+pqU7lY4jznc1JB8LwT5gI/m5+JMfwvBPmAfazviXpvRWP8AvZSx2OS8fsjrcOu3decp3e0/shYhRaz5RT1Ej9I5l5B4L0RWPcylkcx1nNF1Q/RfA7HulfHMUqj1hoqqppGk8hx5W719JKwi/sjR/wDUjL3G3lD/AN2xemMv/wCgcO/No/2QvNPsjS73Rcuguvaof+7YvS2X/wDQOHfm0f7IQHcEqQJUAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP+I36Fu71po/tOn/Eb9C3d6AQ8Corin+kHeJUqPAqK4p/pB3iV5v0pX+yfzX9TotffOcJUgSr5my1kLGdL7utbvXNXUkVZQz0k4uyVrhwB3II/iugta4aZH21bBI1tmlp3A3BRSlCSlHsY4zsUFj/QZiAxKSrwiSlMJdctmn022AFgGpx6L+irGcv487Ea2anEQtdkdSTezgeGkK7GXOm3a9CSweAT2d7WXoJekdadDwJL8f8ABqVLDyYhkcjyWagW7EWsCs+qCGgXcALWKyXnptrZdze20Y9UEoNgjdYuNgpXukLdmipN1EswVXVOcO7/AJKVTHcqB52d1LJX+n+IVh0+HiVFHBYWcY6/aINjGImQu0lNIeXhrjzF0wYbjPlk9Qxzr6Q4/PbuTxTyh8LLcgvdwo+C45XY9db1qTxGBvdcmy6qWAuI2WinbrkHipLh1IHNBstNWpGMcZOy4qeFHdC0FNYcE+UkOwFktNRgDgnCCntZU1e4TKGtcJmynj0NsE6U92s2Wimhu5d9M0GUNVRXnkq688ndSOIY0d4unB0DZmODyLW5rkjitqI96bKPdI2Yzl/CIJ2u063ub8jb9xXFTpSqVEoLcqK6jjD4IpnbC/JaqaUAWc82t3FxVY4/QlrevaNzurcxutGL5dw6pvczU8UpPiL/AMVBZYxUxGO17L696IX1SkvBqHy3rDjZXzqUuGV5ICXbrmrabr49Nt07YrT9VVOaBw3+crka7fVyXvalNVY4R6S3rRqQVSHA04XUmOV0MvDl8qdHODDqva6bMTgAe2aPbSblY1ZmqKKOSIncA7W71w0606HsI3teJwOxaLh17oPFc9JHKyJhmvx52XRzK74TUoJNbmtx07ACUjy1gLnXvbktM9QIguc1Zmi7LNQLrcVhUrRitMuSUjdS1LJnOB1behdIN27X4803Br6Utd1RGr0rY/ENJLXN02F+K10qygnqJa2O4N5pHta9pa/geKbocREkmm6cb3C2KrGoYacGtkUUfmN+YLYLFINAQbHzVsUENWBUIQs5xw9iWYCKN0pc5oLwONgtNdG6SBzWgWFvpXS11iQBvZapnyxwPdY227lqnTSi2iYjQyZ8ogpblv1zltxUmwyohoaSQzWMrXdkkA7WUOZJLLUB8TSXMN9iF1P8rrJWsLXCwseCooqNVOFRGThndMmXR5jstX0i0E1U4l75mcyeR7yvRVSJKiUPudPpK879GmEU8WZ6auq3gdS9rxcH09y9My07H4fHPTnskN4ekX5r5j6V23gXMXFbYL3pN1T/AHae5z0vZma1o3TpTbndN2HtfcOAN08Mj0tuvHPGNyyrLMsNm2+1kg4LRr7dlvWlpco06UhVuoReupxy1rSuvCww1keriHCysuhxzfU2+c/2NFx+7ZJGjYW5BU77JuFhyFPV2HXQwyFu2+5YriaA0KkvZGTS1E+CYNuYa9tS1w230iM/xX1pcIqTszjNJU9DTjUDcU+1/wAge9cXsUP6Cvv8CH9kp+6WadtN0TmOIWDYN/0DgmL2KG+RXfiQ/slZsF4IQhCAQhCAEIQgBU17KD+gUf5ST925XKqa9lB/QKP8pJ+7cgHP2Of9W2F/m0H7oK0iqt9jn/Vthf5tB+6CtFQwKE15g+1fiP8ABOia8f8AtX4j/BcHUl/s6v8A9X/Q2UvfRGKz7E/8X+ChGN/a8niPpCm9X9if+L/BQXH3aYJPi+kL530jKmzX1f3CBYgf5wfiWmmaNZJ4XWVW7VUn4lnSBt3a+F19M6RT11Y5PlFzNubwRPOmAR1VZ1jLXB7wOQ9Chz8CnEl9fZa74fcrExlw64kHb/kmCdzix2k++XtJdOpOSZ6TpnUa0aKpo4GmzLLFu10ONpLLJ+1l1HogQhCAOLbIGzbICGdpyltRw2RuZNYLelI3s7LkqKnq5gy//V11H7GHLCE4tvBksg0WJSh+k2SA3CNNzdbXlRIksnfTusLp5oJNL2HvCj8BvsnejN2g/B2WWXJYPNdVo9yUVfmhw5rkYbPb4rpiPXUlzyuuXmD3OsvGdcpNVHg81DZk1wNw1s/671YOEEmnaBzdb6FWeBy/XWD/AK5qxqCYU+D1NQf9VHJJ8jb/AMF8v6qnUnhLk+ldBf7ND4eyC1pvp2K11IDYTZQno5zaMxV2KRF+rqpWN+VpPcO5TabZjmu5hUFWhO3qKM0etgyPV5BILeNlG8QjhnpKmmqAC17C3cA8fFSDEQRKS3gLhRvEQ1+px7lZWkmmsdi8oRzBrzKVxihqcq5hMsJIpZiZLNcebiOAsOAUmmrIcQYJ4D9b3J5J0zjRx4nSGB4Blay7fAXVZYBLVQ0lThsZcZg1jRw9JXtaOLqCb7G60k+nzlT7NZ+8lzZGEO0vF7HgU26tUz9XemTB6bE46h/lIeBc8dPf6E9WuXD3yzUdMsFlRuJVt5dwIsL729CxcQ/s2d8iwkfJHEXBpcG3J8FwMxgSSuYyPtDbitqRlUuFRWKiNuI1rYamCG7u061/iXWXDS0nURsmZ0U1WyWUxEvjbqbuOK6PbJ9LSsE8ZvYDc+hbJQycFO7UMupwOb9BeCwOv4IcHHZnDmmSfH2wgPDPnTxR1InhD28xdY6cHVG9pVZ6IIwfRU7n63tBf+KFvFuA4JG6HOOrisjYG4UNk0oKGcLArDoenSM6o224po4uThSPJvbi3daavunTTl7Z1NihqndXURNcB3sB+lSXAYqemb1TGBsW1wGgbb8lHIHvZKHOabFSShIM8Qts82IXFWbUdibm3UvaZBqSsmydmeubJr8nqYZCzTc2c94I7gNgpnkHLUmMv9sK+qeKKs+uvBm9BA2O3EBVr0hYxU1mKNw8QOdUBwLO0L2uQPpTlR4rnHCsuswsU1S3WxrYu1FwDrlb61pKvQUk8SeDwlaovHlDGxv6V8VoqHEjhWD1E7qQtbs42GpwIdwNlffRbI05Awu+q7KeMD5FUmEdCs+L4dBU4lOYqoyl5DowTbYjg63NXllbCDgOB02HD64IWNZe1uAXn+uXNCVtC3Usyi/JnLSUnJ5N+Jt0wSi/FqgWNuDSfBTrGCGwkA7G6rzMElnnwK4+jRbkil6y4uLcuyIfUkGWU99ktK3S0uWqS5F10tGmmcfQfoX1Ho9BOSZ8snPUkhpxGoLpLX2TJSOc7F6IDnO0fOu2tfdzzzC48FeDjeGg86lo+de5q4VNpeRfdKoe2j2Tk1pblXCAeIpY/oXXi0MVThtXFLsx8Za7wWnLVhgOHAcOoZ9CbekSskw/JOP1sTy0w0UkjSORAXhp8s93GOEioOgapdT5qzZQRB/k3tjUu4G1wxo8FEKMafZLsAv9uU/H8VWl0A4cxuBYxikm89TWPk1c+1ExVbRBw9ktGHm7vLKe/wDhUMyR60bwHghDeA8EKCCtM+Z8y7PlPHqaHE6OSZ1HKwNZVRON9JHAOVe+xPcXx424aTG+qDgR3aDzUtzt0T5Vo8r45X02F0kMzKSWTU2Le4aT396h/sTGkNxlse0MdSGgDh5hsgPSIII2QhosLWshAa5hdqiMo/nD/j+lTF4uFEZx/OJPj+leK9L4+zTfz/sd1lyzDkEJO5KvBp+0d4hQgpVlF4iQ3hAEIQpTT2YSYIQhQ5YelGOHkEIQhIIQhCQaG9Y1wJ7J71WHSb0kVGTMVhpGwsdHI1r9TotW5J2vcdysxukkWVXdPeVW4zlxtfG0GphkHIea1rjxurPo6oyufDq8M1VpaSb5KzFFmnAaWtDmddJGHPYyw0k35XNuCfbgRl3ELyl0N56myxisdNWnVSzcAXHsgNPAAelep6eognp45oDrikA2Ita4utnW+mzsKmqPuyMaVTLNrd2hw4HcJVi1pbf4J83wWSp1wb2CEIUkAhCFDeACRKhSA4LE8dxssli437PxrDuSinfZCYfLSw4bjtK0k0PWyvc0E8mgXt61ZWS8UZjeXKOtLGamxsjJDRe4aD/Fc3SNhrcVyNjFE9oc58Glt/SQop0EYoKnL1VQ84KqRv8AhDQvROc6/S4p+9HOflnY5WsTLOO7rpHubFG6R7msa0ai5xsAPSUtloxKn8tw2qpdRb18To7gXtcWXn4Zc1ng6W8oaaPNuDVuKPw6Otpn1LSW2ZOw8Bfkbp+LSy7XFp7rLyHmeNvR30ieUMk8oe98hs8aOPZ5XXqfLGJtx7Boq1gtKb9kXI224q96t0tW1GFWg8pmmFRvkci0crlNWa8v4fmTCTSVwk0kEdlwbxI7we5OrnGNt7drgfFAGq2tg3VLCpOlJVIco3OKZHsp5Qw7KtIaXCdZjc4yOc94c7UbXFwBttwUkOw9KxYAxpAAG6Vva4rKpcTrzdSfLCWFgQFKlNhwSLU009gA4pJG6glWQOyzbTXxDWThlGk3smjFKehrmA10UchadtYaeHin6VgcoD0s10mB5dFXSMa6TrAN3afeuP8ABdNnBzrRSeG2bVJRj7Q/Uwhip2wRUkBgAtYRAhO0TQ1gbE0NaRwAsqz6Dc0VmZ6Oo9sI2hrAyx6zXxDvR6FbDer96At9/SqUarp1JcfERqRksxRyOpi4b7rHycA3tuu/wSNLL2cOKrk3GeYmMZyOF7CGg8r2UK6UMyMybSRVJbI5shdew1cAPDvVhNjBa+/DVcJlzblrDM2UMdNiMbHBt+LNXG3pHcuyzq04VU6/Biqj3Q19GubqfN+G9exrmFlxwDeAHpPepgbDdMOUcq4blaifBh7GtBcTszTxA9J7k+gWfGT5ovdY3vhVK7lR4MYZ7iu4u8E+4B9rH4voTE/i7wT7gJtSn4lfeiWXdyfw/uc92/ZHCUNewxuDiH7EjkqGzrkvMeX85HHcmvjIkD3SRSNfKHOc43Oltt7WV9tPHe5twSgAC+kAlfRitPFvSbjuMYjm3BJ8yUwppYZnF5FO6Fvmge+PdZencs54wCow/DqOHE6N1R1EY0CqjJ4AcA66o/2S0TJ894DTzm8Us72vaRcOHVs4q3cr9F2VaWnw7EafCaSOqMEbjI2LcmwPf3oCyGntG24PMLNYNBaQ1reys0AIQhAC1yO0Alu5HEDdbFg8ABxB0k++CAj+O5uwbAqlkWJVtPBK5ocGyTsZx9DiO5eZc64tR4x07YZUUE8U0ZmkN45Gvt9aHcT3L0ZmjIGX80V7KnGMPp6qRsYaHSR3OxJHP0rzZmrAcNy905YZSYVTRU8YmkBbG2w+xA/xQHr6j+06f8Rv0LctNH9p0/4jfoW7vQGPJRjFxbEAfxlJzyUdx5tqpp8fpXnvSZZsX81/U6bb3zgCVIEq+YrktJAhCFKfkM4QnDggJUilNdyU8oVIEqFrb1cEJ7AkaQSW2NkqTtaS0jS7vTjkgh+a81HAZLzUdTLFa5MUJd38/iVe5xzS/MOAyOw2grBFI2/agOobi1yPBWtjlK2oYWVbBLGR7741UeYYaqgxfybBK2YUr3ESQNAa1lraQO/iV6vo1OjWcUtmnkTrSoJTSyVa2KSgnc/qnjrBp80+K6HY66lp3RwQySTtIGzNQFuN1LsKZT5hwqtjjja2sp2vl1N3Oxt9JUxyd0eUdTlynqXNEtdVQtllLmAFriNxe+/ivUX15RtknUZ3Q6tGVPNLkrzIuOQY3iTYJgY5nkNsbN522CuPDsMBaAGuAaLC/P0rzXicNVk/ODJdAY6mkZK4B1rjjyuvTfRvmagzRg0UzQGTxBsbgATc6QSbkelVfXovQq1JeyYUur1KicarO2jw97YyNJO3cuuKjc0bt3v3KRGJkVtIFkFjX32sbLxbuG2Yu5bYwNppOsJFgFviE0bTZoJ/FThJE5rbhYB7muAISU8oyc9SIBjXSHiODYjJS1GHStjaSI5HUjg1zRzuTv4qMV+MS47mE0+Mhpp4g17Orbpbc7G97jgrex/DaLFMOIr42yuZZrNQvpF7kLz/AIbCKOWGoxnEpryP06HsBG3p8F6rpCoVMT4xycMcKM4z5wzVW41W0M2IU0ckT6ZtQ4RNaNRawEgDj3LVgeK1VY+8kemMcT1ZHzrbiWDxHHY56OofJSTtdIRosLk7c0+SYYaODTCwBpHJerp3FChNVKb/ABPmnUqFTRKU0MeOYb1rRLCCbjfn3qLTwdU8h1wVPhLaMtIFr2O6asTwlk7TIzzvBe4s+pUrnG+7+RwdO6lKh+zqcEOqIushe3vC4cId1cskDt9JsAfQE8zUssT7O4eKY/sGMOceDnOPzLZdfs5qR7Ohcwqx/ZjuDeOx5XWJa7bhZK82LgOYSNDyRcmy64yys4Iby9zRUzws7Elrn0hczBFDUARuu1zdXG60Y5Slzw9p4XWmhHWyAk+aNKqbiq3VxI6IrYdqqoa6Eg2Wukp2GEuJuXXbubrKakD4CWne3cjD4ntYQ47Amy7NDk4qRrnsIzDmRydYD866zpI8Eg1E2J2WTmADZdCpQhwYZyYWSoQsvkRpBCEKc4e5LEOxukJc4WI28Flba6xleWRktChZSbZMQiiYCbtaPAWWRDQeyPjCaIq+R1SWOG23NObqhrIgXALnhUgqeUiXlPKR10dQ6nnY+NzgQe9Xf0Q5wGMxyYW9zTIxrnb2v2dI7/SvPfl12OdEwOcBcC9rqYdGlc7L2KDFHxhrZAY3C/wi0/wXmfSy2heWeuC3SMrWl4dwpxR6egidCwkBurusismFNhtRVG/1pj328ASq0xfpbw2lroY9TA+5uLu7vBT9ldFiOG2c1ohniseezm7/AEr4rOyq27pzrLCbPQRr+NNxXKK1wfpXjxPNMuFCEgsc5t+rA4C/G6t+1rX7lX+DdHmBUWOSYpExnXPcXfYrcRbjdT9pJtdb+pug9PgG5JrkHcF14P8AbjfELkdwXXg4/nbfELHoj/31L5/2ZquP3bJLy2Ve9L2SKjOGDAYZKyLEYmvEL5HENaXFt+AvwarA3DtuFkpDhuOXJfWlwipPK2ccZz3QZYqsKxmkhlomROb1sdFL8Et88m3AFPvsa81YLg2TXw11fTU8rmxXE9RGyxAPwiFZvTlrHR/WmO99L778ureqi9j10fZfzPlE1GL4dT1MmmIkyR6rkgnvWbJPR2C4rSYxSCqw+eOWNxLbteHDY2PArvGzrb3O6Z8t5fosu4Y2iw2FkMYc49hum1zdOvaa9ovq25oYm0WI2NwhDQGiwFghACEIQHLiddT4bRvqauWOGFlrvkeGgX9J2VCeyEzfg2L5MZDhuIUk0vWSdltQx/8AqyOAcVe2OYVSY1hstDiELJqaS2pjxcGxuF546eujrL2XMnsqcKw6mil6x+7I9PvCe/vQFiex1v7nOHauPk8HD8mFaKq72O7i/o2w2w02p4OH5MK0ggBNeOj+bE9wP8E6JvxkXonnuC4eor/aVf8A6v8AobKXvoidf9id+L/BV/j57TR33U/rvtZ59B+hQLHG3MTvQV886P8AvGaes/uyAVYLaly2Ujuy7xWOIH+cORR+a7xX1Po2PFifK6m0nkYcUJsbplqD9b+NPWKjYpkqB9b+Ne6kllF90pezk5UIQtJ6cEIQgMXktbcBcgr3NmLdI3t71dhdY6bcVyVcbIwH2F1qrbRbZtjjBpET5dTyDx7ltFa6KNrC258FtiqmsaG22IutMAZPUEELklLC9kzWDS/Fi2YAtAB281OUTxKy7T8iZcapAwNe0cCP4rbhFZpYGvK1UbuVOo4VO4ccj1TG8lk7UlxcX5pog3eHBO9HuD4q8jNbM891bCRKKH7UPgsCAXb8LrOg+1D4LEi13X52svKekDalqieOfvG2vxmrwSmp56SESxi5P1ovPzeKkeG5kxnH8KFNh8MQ61ximBgdcMIAcdjtseK5cGZC6Kkiq42yQSXBDuFt104UXYLnaTyGd8NAyjE0jWCwI1EuuPAL59eNTg9C3R9F6C/2aHOLLtblitweowRgeerf5SXNLxq2Db2A5E8VoHSRiNVibaWGgklc8hj3R0rnNaOF7g7eKc8ezrS4zl/E4stVJiq2uYA6IEG978/QE7ZLwyggwZ1XRgTzv1Nke5ukgXv9Kos/s3VuV8PI9XB5aMHySTQNdMNLtPdZR+reDDpcDbfdSXEbucLbCyjNa9giDSBfda7FJPc9JbLOPgRzELXcfQQqrxiM4fmNtULhjnXPdsP+atKvF3OaO4lV/nSn6zD+tHnMa43+Rep6fLHsruWt9QVSgpd4vL+SHGrcHRxvbYXaDt4LjHm3S084noInD3rWt+QJB5i75RwzbRmqtOMu3YwlmbDFqkI087pqrhTTwOmp3NDgQDZw/gu3E6R1XRuaxxFgTt4KHNfLBJLTtPvu/uW+nHKKfqd1OElFrYmMFdGWND9Idfa1gD4riiHlOIEOLCLnb411U+HRyR9px1jnpXFDRyUteXteS259HNS3jYl6nBPS2juxHDYKh2hzSPxdv4LriYI42saLBostgdrcHEC6Q8VplLJZ06UaclOKESoQtZvT31MFvoz2ytC30nnlYVfdHfKHFt9k/wCFE9nvTA3kn/COLVwXHubHVcPFPI90+F001W2V8MLnhvFzQTx8FLMOggLoWmCJ5APnMB71TeeM112A1sDaVoIcWj7Jp439HoVmZExWTEMuUtdMwCZ0YcRqvxJHFU3UqFanRjW1J/I8lcShOo0luT2he4saGttHqtwTDnbNjcuT00RtaVhfdwB4Ot3hM+H9J+COnlpesYJI7mwDtze3cmbEKb3Qa6SQANZTExs0nVcHtc7WVTSsP2zlcJpY+RTVKicmoli4+4sj+slpBuN9+SrjHyHvc031cT8q2QdIFI3BY24toiqwXXAcXeG9kyS49R4w5/krwDvuL3+dXfTbSVOba4PKdbi3TcmQrMOYW4ZVth0OO9r6b8rp/hqm1WEtlFxf4uSasZwWmrJNU5D3s3uW+hO0kEdPhLY4mgWP8F9Q6As8nha7oeFDTzuRzEHadh75cuGbZjwv85Z9K31++j0ArRhn9I8L/OWfSvU1mtDwX/SVho9qZb/0Bh35Bv0LbjVDFiWFVdBOPrc8RjdfYEFYZb/0Bh35Bn0LssS4tf2m+leHm+T1jZ5yOA54yBi9dLgAhq8OqJXy9W6GWcjVt72wGzQoFgWNu93CDFcc00j21UL3teOptYdzjtsvZb+zE8AbaT9C8h4nhlFjvshn0ddEySCWqgaWOFxYtCgI9N4RnPAsUqDDRYlSSzBmssZUxuIFwOAdfmEJvy90ZZXwOrdV4dhVJDUPjMbnsjsSCQTz7wEISOnSJ2cj4+4cTQzD/wBhVJ+xS7ft608PKx+wVdnSL/QXHvzGb9gqk/Yn+djn53/uFCD0eOCEBCAHcFEaj7Yk8SpceCiNR9syeJXjfTD91T+b/sdtl7zNfIIRyCF4JLcsAQhCGPKBCEITkEIQmACEIQgEIQgFa06juN1x4vTOr8Lq4G21viezcbWIIXVd19Q5LIOsNTOPBIzdOamuxi4qS3PI+M5VblnM4gzAC7Dqpzi0xksLQ0cyfSQpFlnO+IZExKnpZpWT4HM8NuxoJaHG5u53oV55wyphebaR9NiVPEJ27Ml6oOc3cE2J4cFU8HQjiVTiL4MWrpn4W0amF07HkG/JvLZe8p9Us7+303O+F5N/A5XBxexdeCYpR4zh0Nbh8rZIZmh4AcHFt+Rsu9R7JWWafKuF+QUtRLPELWMgAtYW2spCvE3EacaslSeY9jrjnG4IQhaSQQhCYyAQhCAFi4bbDdZIDgNuajSnyShlzrihwjK+JVgYS+OPUzYWuCO9VV7HATS+21U8aY5aqc7jmS0q2814WMZy/XUBt22aRe3MjvVSdBM0lDR5go9TC+KWpcwOfwI0gEfIvTdMSqWNWEd5M5qjwy7nm3ZJBf6EXAFgNTv7vJee8pZnzfP0jPhqZZ5qHrHDQ+pc5gGg8uHFegXP0NMsoEdowSGcOHNVV/0+Vi4pvLkk/qbITyiPZgyVg+OyOnrIJX1IBsWvsO/gqRwigzVR9IVLHDTTChEsVz1Jta++6vqhzNh1ViZo4Zv5wCQQBbgN9079VE1uoQRifk8Df0brqo9Uq2dJ0rhak+E98fIx054MKZrvJoxKLP0gu8Vsf2rX5IFyLu480qpZSlltrk3RWOQ4hA2GyEWWOUu5lsJbe6VCFnNyxsNgSIQVDcVHd7kYQLVUxMqIDDKzVHfVuOa22QQ0OA1v7+CyjKSacHuG49zgghio43xQRaWvtewHJboYSO047dyrfpU6S2ZPxKGlEIeXF4uWOPC3d4qe5cxZmM4JDX6dAeLaQCOQ7133Vnc+Ermvun3yFUhxEcJpepaLgkHhZcMlbFBMGzyxtJ5E2KcntZI2MkXGnmFRPTBTZo/lPC/CJZmU5c24ZUFg83fZOm2Prk8J4J1NIvZrx1TZPOYQLEIJu8FpA77pjya6t/k1RtxEl0wjj1an6t9Ivun19usPYaG94XHcUmqrh5Ed8gT6QkvZhbbYo7PIoIdyA+Vak3FbE7CkBzbjbkn3BQBTEXBOyYncQGjipBhEeiAEjcgL1XolTbuJt+X9zju0sHexp0Wdx9CDctsBaxSlwAu42t6Vw+2tE6R8flUTXtdYjWBv8q+ilcea/ZHaXdJGXxY3FQ792xelMAAOA4aP/to/2QvNXsiXiTpEy65vVlpqH2cxwN/rbeK9LZf/ANBYd+bR/shAdwABJ70qEIAQhCAEc0I5lAI3iSvKXSaAPZA4ce+eT901erW8/FeU+k7+0Dh35eT90EB6no/tOn/Eb9C3d600f2nT/iN+hbggMVHsf3qWA8LH6VIQo9j320zwKovSJZsJ/d/U3W/vjelQhfKU3sW7BCELZwQwQhCDgEIQiWOCAWIA0uYOCySMH1wnkjWeQc88DZaOUOB1Wdb5FSs+RsUxLMuJVFRIyOhfICzU14JFuRt3q8m7lw5FYuZFp6uUWYOFhddlnfOzba7rHyM4yS97dFT4tkuDEMO04cx9NUN4vlcS1wAtaw9O6k/RjQV+GYPPRYmNfUuYyNzGloLQOO/FS7yWOMiwAZ6AtgvG4FrRo5elbbnqErmn4M935mucKa/drBRfT9k6rraiTHqSPVBAwSSsa0lxayMA8NuSr/CZDh0VPjGV3GKsgjEU9PKese5x3c4N4AWsF6yq6eKqpJ6WqjZNTTsMb2PGoEHjsqdzn0QVU1aKjKlQ+kL/AD44ZGQNN3G/jtsvQ9M6tSrUVbV3ntvl5+Zy1KTzqRJOifpDpM20bop3COuYGnS9zRcuLrbA9wVgDtE3aQ7v7wq1yN0WUmUq6OsjqJDJcFws3cC9uHirNcSXhw8wNsvOdWjb+sP1fZfLBtpKXc1SANbY8lyvs51zyW2d+omy1dnmuRZzg7orYas2U9VXYFPT4a9rJy5u7wXcD6E0ZI6OqPAqO9Qdc8t2v7biLXuLA8FLGg6rsPiumDW9vWPe423sTddMLydGi4ReNzROkm8laZw6N2y4g3E8Dd1UzJA1wkLn3u67rABSKtwjrIad8rbyAnURsFLQTcO1EMI3byJWEkLXwvaQNhsVsj1Oq6cY5eUcNexp1IOMkmVRiOClge57SXFxta/BR2ooJad+poNvAq3JqaOYPL2gkEtGyZa/Bw650Nt8S9LYdbnTxh7/AHnkL7ocJLVBY+hVlbTNqWOD2nVbbkq0x6GRmM9TG03YXDgrwxTB3h/1poFu6wVTZnppKPNcZl4SF543Xv7TrSuqSUnl/ecHSo1rau4y4NQYQBqIDud0Btye0Flm+iqqWqjNJYh2nYOt730LVE17II+tuHloJ8V6W0ulWbjHsXsZxcU292D4xINLiLJprad9O7+Z7Am5vunUzRRGz3Hf0LMdW7cC4O+4WdxTp18afeN0G4mjD+s8k+u21kd1ua3tJ0WPfdISAbN4IC3eHKCim8sxm15i32SAWSoWXzQSwuAQhCyTiiE23h7BYkGyIxfzkFwZseaW99wob+Bk9jHksgdrcklrIUOXZhZ5NbY42Sai06jsFtmDXgNlG3o2XPWTtp4XSOFy0EjZGE1Ar2Oc8WsbDb0XXO6lKEo00g6mEm2aHxmmqI2RlojcbG+6ldA9ow50VNNE1w+unVvuAok8ST1FzfS3fit1WJ44f5k5weW22OniFWXlvKvGShxng7bav6vV1tZWO5L8k0c2NY8yepLJZGuuSxthu0r0ZW/WqWGBoszq23+RU37HKjc11R7Yxh03ZsXdrk7mrqxW3G3AAcF8j9KbuErmNulhQ/udXSqE/EnXlLOr+xx0Ba3sWOlPUTi4AkKPxyhjwbJ9ppC6IWC8tXxHGC8qrHBvcPSuvCtqloBBuRcBcRLreaF2YRE41bXHs2IOx4qx6DHPUKWV5/0Zw3K/ZskbSAPgj0pSe0NifSEEA8QCbc1yVdfTUbohUzNiJvYahYr6vHgqCE9OpDej+tPMteP/AMb1EvYpMvkN4PNsP7JUl6aqynrMgVwglieQ15tqH3N6jXsUS52RJGns2bCAQf7pUoF4WF7oDQL25pUKQI1oa2w4JUIQAhCEAKmfZRAOyHHf7pJ+7crmVNeyg/oFH+Uk/duQDl7HMD3NcM/NoP3QVpKrvY5/1bYZ+bQfugrRCAFwYuT5DN6Au9cWLD+ZTeC4+of8Wp/9X/Qzp++iI1gvSPHPf6FA8bu2MdzRb51PpxqY9voKhGYWWimHcQPnC+bdNlpqGvq69griut5U63cFlRbtf33RXxltRc87JKU6XEd6+odIqpVInyq52nIZ8SYNbgeCYKi9nAcipPjEdnj0qO1DLSkHmCV9A2eC46VUaSQ2pVm9tlgOK1YPWwaaBCChCG9wHH0rixCOWQadtPguy9kuoHiFjKGrZ8GxM5qemY6P66DcCw3WiGGSGpLm+afQnA25IDgdrLBUEuw1YOevjdPCWt48fmTFHEY5OreQJRtfkpKSGrkrKBk7i+I2kPxLjvLVyxKK3Rsp1Enuc+G4iYalsNS5pBI4bcSpdQ6XsLm8CdlFKbBdT9Uh7fI7FS7CoDHGyM8hZbum+Is+JuUPW6sGsJEkpezRE87Fa2ODZgRxLSFsc3RTAeK0tALm/CVF1+p+0Z41bskmAHqmQtbs93M7966Mv5BkxTH/AG0xiQPiaQ1rYy5h7Lrj0c0uBwB0kBPvT61Y+BtLaWwedOo7X8F806lcOjGThs2fSOgU/wBmhvzVkjDsfw9sMbXRyU40RnWQLEgm9uPBcuRMIrsCwR9BXPZJEwvezQ0ggk8yfQpkAQ0Bji0niRstU4LIng9q45rzTvZ1Kbp1HnfO56ynT3RGcQFzdRuuGnhyUnr2qOYg3dd1m9z0FttLYjOIXbMSOJaf4qvc7VBp8ODBxkDg74rKyMSF+13CyrvPlGZqEyD3gcflsvUdO/eItqyc7Wbz2f8AQ4cBje3Ce0OL73+Jdd2hnefQm+nqpHZZvT2D2yaeNuDVyZelqpXnyu5HpdfkriplykcFreKnSpUlvlD0WlwHdfgm7EsOhc1z4439YdzunCRwjc4lxa2yxp5BLctdq8SsIyklk7bm3hUjonu/MYcumrbNI2oY7SQBfTbmpINhZIGaDcNaAe5KlSprw0Y29DwoaNTYhCVCFik2dGGCRxsBbilSW3F1OklZ4aAmzfSuuiAJJXI0anuHIFONCGmjY5vG5v8AKsJpY3MlDQ8M6WC7wOSkNAGsczY25pipmanqR4dEHFurgqyvUik0zddNKniQ8MpIpy11S0OG1rD5FKMKhbHTsDI3dWBYAJhp22jc93msaT8iitL0oMpM2nCnxExtkczzHng26qKlCvcxxDeK7Hl7qVKD1Lkm+bcuUrKSfHqN0cWIwRl8ZeSWl0bSW9nnunnKmZ4faKkfjtZSU9U6Npu60YdtuQPFNfSO6pnwSnw3B2E1tWdPEsaBI2wOrhxK5sA6OXPwymjzBUST1jYwBG9zZWt23APiuTOu1i7ibznnllBNxcsxGfM5fmTNk+E1U9N5DThj2Na3S67hY7jwXPidHFQU4pqWwijAbvuTbbj8Sr+lw7NeH58iM0k0sZdH1kjqgkuHp71ZmOsbJFFYWkMYL9vfc16JUvBdOMZPhfeeY61JOlKLZDnP1m48w8F0TOLqUg/9bLnLbHRawbwXRxgP/XJe96FUjGppZ82m0pLBE69hu42sRwXPhYJzJhY/+4Z9KccRaS4gAXWvLcXlWaMLYGi/lMf0r1NVLQz1XSavGUex8tXGA4eD9wb9CcSA0WC5MIZ1GFUsZ95G1q3TyMha+SVzWsaL3JXiJrdnsE02LK49TJseB+heUKAj6pdthYeWU/H8VepHYrRPjc1tTCXFp21ju8V5dpAW+yZAOm4rKfzTceaoJSPWTPNHghEfmt8EIQR7pF/oLj35jN+wVSfsT/Oxz87/ANwq7OkX+guPfmM37BVJ+xP87HPzv/cKA9HhCAhABURqhapf8f0qXHkolWfbT/8ArmvG+mH7mn83/Y7bL3majwAQkPvUq8EiwYIQhDFcAhCEAIQhACEIQAhCEJAbPcfenkk4ebtulQsFKUVhEcAS59xIdTO4bJHXeCx5vF8Hh86ClUxxj2kZaUI0aQGjzRs0dwSoQstuxAIQhCAQhCAEIQgBAAO3NCGN+uX9BTLXBPBhPoELi86CLXJPHdeLa7E8UwrH8UdhEhjJqJS46Gu21G/HwC9pl2poD2gg8dlF6vJWXm01ZLJSXmla8giJh3I/F71f9B6nCw1wqrnBorQbWSqugzP/AJTisWGYxpdNLsJiGsAs1xOwHgr0xODyjDa2COQR9dC5gJ34jivHWLUNRgueqlmGNqGzQSlrWhpHvfQF7EwKV1Tg1LJUN0vDG6wRY20jvXR6QUIwq07uG+UvzNVJ4TRQmTcjPo+lCaeTF4XDrJSI9LrnsL0K5xIY0DS4civMXSNmGTC+lN0lBJIwMlkaW7gbm3Ir03HVMmhjc90LTIAAQ4A8PFaevQq1aNKtUe7+BnSkZna10rth2e14LTLPTx2D6qn+OVvrXPPiuG0+zq2C/wCWZ61SwoVc4jFvKN8prGx2gkjgb9yL7enuTDX5twahI11bXuIv2JGu2+VNVb0lZdpodbnVT39zIw76CtselXf8D+hgqqRMi5o5i/clJAaDfjyVa1HS/l+GHrIqbFJJCdNvJHOHzLh92anBvHhda4ctVDJ61mujXc5LMHj5DxkTvMea8Hy+6NuI19PC57tID36bbXTnhtbT4lQx1dBKyoheAQ6M3G4uvMvSZiOJZ4rqd1JQ1MJ1gt/m8jBfTbe91K8r5izpg2Bw4XS4ZQu0Na3XLHNfYAcQQrir0anGgsT0y7pkeO1wi+3McGgtBdfuShr9FiDe/Gypptb0lyMDoqXBwD8J8o/3lkzKvSFUxmSaupma+0RHVv2v3Kt+y4LDdeI8WT7E6zXkvAsxPjkxWHXMy/aMr28bX2BHcnehZhOHUzKWGaOKBgFml5PLvKq2l6OMy1l/LscrY/yVZ6wuiHojnteozHjpdflWNI/ZXa6NKrTVGdzFpdiNUm9kWNUY9g1O/TJitIwD4TlwVmecq0hYavHcN7RsNUlv4KL0nRHQA3qsaxp/jOw/7icaXoty9BIXPqK+ovynMbgPDsrWraypvOtS+TIzUNld0qZVgIDMaw+ZvIMmA/gm+q6XsusjLoTHUye9jjqBd3oCeYej3L0MgPkrXj+/Gw/7qcxlXAo5I3RYVREtN94G+pc9SfTNe9Jv/wDsSlMgzumCmIvBl+refRO0rD3V61wvDlbEXD0PYVY7cGwscMLoR4QtWwYdQNFhQ0o8IgsvW+mr3aL/AP0zJU2VdHnrPMjDJFlTFmgk2+sxnb5E7UmPdJ1ZTtlp6GtpmkA6X0cRI+ZWGY42t0sjZp8FIsNAjoGlrWgho5eheo9Hbm2q1ZqjTa2889zmuYtIoHPOYekXDcHMmJ15pYptTA2WhiGs2vYHTxXfk7ogpscwKHGMZkdLX1gbUB4kkYBqAPmtcBx9CamUuM9JvST1NXI2PBMPdHPpjeQT711w645r0XhtNDh+H09JBfqqdjYm3twAsOC9ecJ4+6U8tVeWc+4FT1NY2phM7hGGsI09hpO548V6+y//AKCw782j/ZC80+yPeT0kZdaeAqH/ALti9LZf/wBA4d+bR/shAd4KEgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0LcFpo/tOn/Eb9C3IDFR7H/tqPwP0qQqP5g+2ovA/SqT0iX/8AHz+7+ptt/fG9CEL5SlwW4IQhZMAhCEIBCEIAS37FuaRCAS23pQBt6UqFDJQgDWjsCx71ndpbYjtd91ihO2l8jkN2gBht380cDqbs/vQlbxSUYprBC3EDtIszZvMcVz1DzwBsF0ELlqAdQRKGrJsilk55pOqabm5XA+Zz3G2y2V5IlI5LlfIGGx4rqhnOx1045OylldctJTvAA0d47kw0jtT9k+xebusa7WTTVhpMzpsXO4Dkm+rqrjTEdPp4rZiFU2Fhb37qK1da90h0Gy6La0c98FTdXUaaxkfQWHnY/SUDfztwox5TUNIcXbX7ynWkxDXZrrXXV6tOmm0V8LqE8RN9VQxzNOmwJHBefunGimo8Sp3QxP12d2u7tBejXNDWhzdzyTbjGX6HHDC6vgDnBvJgPO/MFdPS+perVf2nBv8AV1qyu55RoMw1lPiDRXP60N0kN0tbf0cFOnUsGKUkVTG3SXNBcLk2J3XV06ZPp8HnjqcNiLWbE9kDgy/IJeinDK7FMJmbJC8ASgNLmuAI0DgSF9Bs+t06NLx48PZlF1TplZpOhyQ7NeXzDLE6OoaWkngD3BaoYDHAxrD1nC7h4KYdLGGz4HRwCcC7i8XG/AN9aOjTLUuL4JJVMdG5glI+uPF72BV3b9YtILxpP8TTQjeU6ftJ7fAijmhjQCbkrHTbndWXiGVWxMf1vk4t3OaoriGD08UbnNqGB24t1jVa2/VrS7eYSWfma6XUKknonB5I8GuPmtJSbg2LSESltO9wMoI9DgVzNrYASS55I4LvVxTXLyWdP2llvB1N3vvwSAgtJvwXGcSjLXaWm/gm/wAvlOrS3bwK0zvILhGSpOT3Z34rOIns7rDf410UEzahtou36QmZz5anzoy4WtcNJsilNRQhwjBu62xvyVX6+vH0qJ0K2cqWrSSDzjsEoYSmWOauOzGMt/evddLI8QkG/VjwJVpG7lnamznqJwh72Bz8mZKCJRdvduFjaCmbphbo77klcRoqx47Uun8V60vwyYntzy/41Hi1Z4koNHHCKnNKc0ODZIWg9toJ9K20tVBFK1zqiNoBubprGFt99PNb8YepZighZb65K7xIP8EjUqYcccnXUoRqU2ky1sr51wrCZ2zCtp4+ZBeO4ju9Km1T0r5ang7NXTOcBynG5t4KkMEoKKSwmBPiArkyJh+XqqIU9Rh9OZCTY9S3nYDivm/pR0OjRk7ytByz5NrBo6NeRtqrt1sNcvSlQOkLafDZZmDbWyYWK7KbpZmkJ8jy3XSMts5sjSCppWZewujGmDDaPT3mJvqXVhVDh4A6ugpA30RBeId30+Uf3T2/+R7ecZTgpIgEvSPmarktRZXxMDl2Y3fwW+izZ0iVlQyGiwLEqR17GR9NE4fQrPhpKaN120sDfBgTnhAjFZtG1pJFrBd/SLuznd04UqTTed857MrriM9DyVhNifSkKSR5NRCW3Je6giIAtx4KG5LwfGulDNdbFmjEBU02FvYJC2LqRKJGuOxjtbzArF9kBmLEMLw6kw/C9DZKuSKMuOoGz3OYdwVIuiLJLMoYIOuklkxCoDRUOe4OuWFwFiADwdzX0OPBXFV9KPRWMv5aqqygrmspwxwMR1uJ7DidyT3KSexTuci9k2GiK/8AhKlvTt/V9WeD/wB29RP2KP8AQY/iRfslEC70IQpAIQhACEIQAqa9lB/QKP8AKSfu3K5VTXsoP6BR/lJP3bkA5+xz/q2wv82g/dBWkFVvsc/6tsL/ADaD90FaIQhirkxPejkHoXWVy4j9qSeC5b1Ztqnyf9DODxJERf5zjysQobmFms1AG1nfxCmU4sD4qKY7GQJ/S7+IXzGweKxs6nDVSK3xqweLDnxTex2kj0p4xWEuY88wCUyNFwRzC+hdMqaWpHyu/o6KrRnicWtoeDwuoxWRkzam72FrKWx/Xoi0pjroepmdcbG6+l2daNWGTGxq6J4I/MzZc1tJTnNFsuKRlitziewtbqMjSj4kHY2S6lrZYJpmPEpXWI2CCb8EKMjuY29KyIBG3FIRcJASDZTqM24pbmTQB526I47vuwafSd1mxhcQupjB5o4qd2tjjr3EYIzhZcja570+4ZCXFvoHFcFJF2dNt1JMMgEcQJ4rOTVKGTyXUbjW9jZWODWhoXM2wkYbEnglmeXyehbqGPrKgA8LL5/1Wu6k22V9vDMkiW5dvq7QuD83FT3B2AU4AB8+9/kUKwNlmk24KdYOP5nfnqP8F856vJOWD6X0SLjBDo2xvcLRMHNiIut0axlF2leaUcSPU02R/EBZt7cVHa5hL7DmpTiDdiO5MFY0ar9ytrOWJFvaz0yRFq+FxDm2PG91DM4wk4PMGbkt4DxCn9dG5rze1nC6j1fTMeHRSi7TtwXprOsoSTLmMfFpTp+aZRsNZV04cxhLIA4kgtB38VJsv1wq2BjW6nd4TxjOEUkNBK0Ru1FxdcNHcfQoVgLpqfFTHA1xbqI3B+CV6SFVTg2jzkaFbpleCzqUvwJNjFOZqORmrS4NJ38E3ZcphAX9bUMJvw4clIK6HRSyTO3Og3HxKI4VV9diskfmtBI7uS1U5NxaLK+p0qF3Fy2bwSx5BtpOyS471k7SXENc3bvIWBIHnPi+JwWrTLsXM6sdszQaglLhyN1rM8I4vb8TgtDsRp2E3IPhZZqEjnlc0lzNHVq9CAO1e/xd6b34xTd0nxNTZiGKPdLGKVkvnC92lZKlnlmirf0ILKer4JkjJcyCeVzCAHW353XJl3FoWSGmqJGtLjZpJtckpnOLTvPk72P349l3JN88MrZnTxse0w2eNTSAVsdtFrkrLnqMlVU4QeC3MPjLxqaCWncEcFIcPie+IgNIuONuCqLCa7MdVG0UsUAYLC7tY/ipTSxZtkHk7G0bQ7bUHvBHx3VPc2sHs5I7a/V51Yr9my16OGSSzSx2jTY7cVop8mYA/GTidTBplDi4gyvFyRbvsoFT5ZzfPsa1jAduxUuCdqHo2x2pb/OsbrmF3Hq6z1hVbjTo5iq0Vkq7mvOS3iXHBW0UMRDKuFlM1vmO3Itx34rmOZcCg1g4xRxSX98/goFD0STaLOzBjJaeI8rb/lXfTdEWEhn86xfGnP5/Xoz/ALiqlZWkY4lWTwU8pvshxxnPWVoi5jMbw5srRc3k3+hV5mHPmCukIgraeUk8WyDv8FNJOjPAqSlcOsq5yAe3Loc4/wDtUcxLKGEUzdTKfVY++jaf4K1svVNS0rOPiU3VI5hmaK/rM1UpncIW9b+K8bbLCPNo0ljaCZ1+YeE/VuG0LaoaKWNov9zA5LFlNSslbani5e8C9vYVtMk4PB89rTtIVGnTb+8iNXjE0soaygmBdwNwUuB12N0uO4e6goKgz9ezS0RtcTvtxUzxKkhMepkMY9LW7rmy1CXZrwqQbaamPb417KUJ1KWqUs7Fl068oOolCOPvLSjxTpPfEJI4aqNh3EZooiQPGyhed8XzxWYjQ4FieJgSYlKKV9OaSNr4w4bE2F9/QV6EzDiRwrK769jWl7GtABBtubKk+iLLeJZvx+LOmPSnS2YOijY+7QYnlnBwJ4N715Jwaye1WG8ofKLoRoPaeGcTGPEnRBzpTJKRe2/Z1W4qqMl4dPhXT5SUdVUtqZo6yDVK1ukOuL8F7BkaBCdOzQwi3xLylRAD2S0YHDyyn/ZWXYRWD1mzZo8EJW8B4IUEEd6Rf6C49+YzfsFUn7E/zsc/O/8AcKuzpF/oLj35jN+wVSfsT/Oxz87/ANwoD0eEICEAHkonWgiqdf8A63UsUWxH7aP/AFzXkPS6ObeL8mzss37Rynl6EqTmUq+fJliwQhCnuRjAIQhCAQhCAEIQgBCEIBAlQhCXuCEIRbDO2AQhClkAhCFABCEIAQhCAErANW7rJFibX56uXcoYCzxKWA3shv1zta9Nja/8FH84Zop8qUQqa2KeU2cT1LQ7hbvI71jlTOeF5ocParrWygdpkukHa1zYOPeupW1V0fGSyu5Ep9iqekh1dgvShR1mGUz6uoq5JniJj9BNmgcTfvTr7adJOJESxYfV0rAAA3Wx97emwXN05yVOD5swvGWMDoaczE9knztI8Oferlw6Xyiip52hoY+Fh2Fty0Feku7p0rWlNQUo4S333NUYJnnyo6JcyZgxSbE8TrJaapkeX9qAPNz4OClsWQM5T2MubJImx7taaFpv/wC9W9uluVwT6/WnFKpSg8fB/mSrdLuVFB0T4jUve/EcyBxJJOqhG/8A71103QvhEjicQqYai3fTEX/9ytJC5anWK8l7CUfllf3MvCRXdH0QZThlvLh1O+219Lh/FOcHRrlamm1xYXDbuBcP4qYoXNO/uKn/AJH9WZKKQy0uWMGpZNdLQNhcOYe7f505tpoDYdU5gbsO2St6Fj67c4x4kvqyNEfIXrH9kNe9rR/eJWRqJD2Tqt36lgha5V6svem397J0ryMusdaxcSsGsDSd73SoWtttYZOBbgCwCLANtx3SIUbeQB5GnZt0hAIHZsQlQpTw8okUEEWIsgGxsOHekQsZLLyMg0drd23ggtGvd+3ghIVKeFhLd8CLyZXYyFziL8eCc4cSo6XAzUyyaY2NAc4g7EhUf05ZjqWPosAw5zmVNRKxpc0kWDwW8Qb8fQsME6FMYq8CpjUY1KDOxr3sNfNx8NK996L2fhRdd8tYK+6k29I6ex4xOmq6/EKl04tUNdGyOxO4kPNXvI1pbp09niqjHQlh1NhobhlZWQVouQ4VTmMvy80XTO+g6QslS3pZqGvpOQJmnfbhzHcF7H5nGRT2Rh1dIuXHWsTUP2/9Ni9LZf8A9A4d+bR/sheP+k/M1ZmDP2BsxCimppoJ3El8PVtddjeG+/BewMv/AOgsO/No/wBkIDuCVCEAIQhACOZQjmUAjefivKfSd/aBw78vJ+6C9WN5+K8p9J39oHDvy8n7oID1PR/adP8AiN+hbu9aaP7Tp/xG/Qt3egMSmDMDT5RGbbWP0p/dxCZcw+czw/iqfr0dVjNG23/eDShCF8lUuC3BCELMAhCEIBCEIAQhCAEIQjQBIlQj3C2BJuEqEeO5PANO+6wmbfcLNCjl7EJtMZawF0pdbZMtUSZtuGylFTTiYua7bw2TFX0z4onjSSyx3HFd9vUTelosaE13NmGEF3FSKQaI1VObMYdhmXZ20xJqXOaWAbm19+d0/ZVzI2pyex1W8tq2l5IcbHjtxN1vuLCo4KcVy/wOHqVdUllndj9eISb722O/A3UOnxJxkuwbeKzxTEvKnnS4Hnb402PLnAAi3xL0NlaqEVHB8/vr7xpYix2pK95kDZeB9Kcpz1Za8bXumGgYXTAngApBTxOnIuNgs7uEY4TMrNzaJDRP62FpLrEcE9020TXPNzZNEIbBTGVwJZGNTgONgmCi6U8DdjE+E1MVVC5khY172MaNhfjqXmqttK5nKNHsettU8Zkb+mXD/Lsi4nO4aXw00r+/gxV5ljMmeJct0tLgeD1QhgYyMTtnaQ4AcbEbXCtXpApzV9H+OxwXcZaGYM3vclqinQLikdXgdbQObaelqOpIIHvY239KtLS4qUumvEU3FvOTc0nLciGaco56zh1MeLeUMY0uuXMa61wByI7guzAei7NeE0fk9BmKSkhc7U6MUbXb24+erxvqaAdnLJh0i17rkXpFXilTUItfJ/mSraOCoH9FmO1dvLs0OkB4g0I/zpX9B1E8NNRikc5vuPJSP99W/qSEB/E2WL69c7OCUfllf3MVZUedK+iKSxToWo6doNI1s3hER/vKJ4n0eNo2k+ShpHO3D516aBa0WO4XLPR004PWRg3/ALoVjY+l13bP9piS+OX/AHKu76L4r1U5tP54X9DyY7LTo5HdXFqsTw//AFXBW05oYHukgIaBe+pejsx5ajtLJAwAEk8PT6AqlzDgL6mGSJzSLi3Md3oX0bpHpFQ6isSST+X+Tz07i5s56Kq289yH4bidNR0NoYxPI+TUQH6bAgXXNilfDJiVOYgA27tQve3Cy7XYe+lJYIwbbcP+SIsBnrJQ9oaPG4/grmFjBVfFcvxRbLqMKdLTKRiHdsAbbcF1N2bchOJwGWCHU8tLh3En+CbKiJzXFp2t3q6ppR3KWV/GvLQmYPmF+wdJ5rWXk8XrWRYoWamsYRZU6CSTFcARxWI7O3FKhYrCeTa4SfuszjlczzdlOco44Kevgf1lyC0H5R6FA10YfUmnqA7kLfSuS+tIXtCVKSzlHFe27l+1p7SXl3+Z6rpJ24phrJ2HVsL/ABrOghEYs06Wjci3BQrorxoV9G6nBuQWj5j6VP2RBocTsQLj0lfnjqlm7G6nbtbI9f028de1WeVs/mdBBJaGuuXDUNuIXVhU0QrBE4ky3AHZPZUezDjEeE4FPX1d29UOrbpsL3BtxIVG9HeT8a6R6qrxr2wqqSJ1jCPKpYt2ksOzbj3qtPRiw8W48ftH+5FzNxTgyc9M2YKCvzxhGFRzt1RGnmc7fYtndcWt6FfVPMyoAfGC5lzpdY7qmMC6DKKKd8mOVlTPUEHTJFUucQOW7m343KSp6Msz4DWyVWWMWjfEDdrK6rmf6OAaRzK+jJYK4lvTt/V9WeD/AN29RL2KBH8hnb8GQ3/wlRjpCzbmgZSqqDMGHkizx1sFO4M8xw4m3pUn9im0DIjzxBbDsOPmlSC8EIQgBCEIAQhCAFTXsoP6BR/lJP3blcqpr2UH9Ao/ykn7tyAc/Y5/1bYX+bQfugrRVXexz/q2wv8ANoP3QVolCMAVx4nc0rwO5di5677Xcue7/cTXmmZRW6ZE5rO4cjuo/jjB1g7nXKkBG7/EpqxaLXDq5t9a+UUZaKzR33UNVMrnFotLntPMWCilS10MxaRYnceCnuLU+qNz7bi6iWJQF0ZlA3abL2/T6+Yo+bdYtmpuSOCncWEWWdbTtqIwffLTv4Fb4ZerPa3C9x0y+dNYPOpuEtQw1VOWjcWKbZYHAm42UzqII6oEssPFNVThpaTzXqadTxCxtb102Rd8IutToHHgLp9mowNiDdc7qTbmsnTZdU+qIZjG5vEIDSeATn5M5t7AHxWPUSX2aPkWOhnUuork4WRPJ2aStrYm+/2K7W00jzYgAehbGU5abaSfiWWjzNNbqW2xytjO2gXXZTU9xqI7fcu2CikfazLDwTtR0jYN5LFJThTjlsprm9cu5zYdRnUHPbbdd9TIIwGtPJEszTtHstDiD53Fec6j1F6XGDKqUpSeZGLrCxJ3KeMHhuNRG/AJrpoHTSjbshSjDaV0pjhjadrOJ8F4i7uMJ6i16dauc1IkWD0xEbGEdt/Ad/FTCjYI4WtHeo/RXbMXnSyOE3u7biopkDMU9Rnmtp6sStg6pwa5ws0nXYWuV5G5o1LpOoux9I6ZDTDcthgI4pCLkHkVm1ulziAS0/GtTWBou3Ud+ZuvPvZ78l1FpDdWxh0jwO8pgrIwA5nv+5SWsZYlwTLWQk3eF2W83Hdndbyw18CNVtO57b++B4W5JnrY2yFukBzxe4Unq4SZWgcC25UHzVmilwKvEUkMzgSQS1jSNgO8jvV5ZudWXslvTuY03qbOXEabroJWuOi7SBzuVWUBrqLGauKnY9745NJANrbK3aaalxmlM9E46dPMjjb0X71W82vDc8vjqG9ipke69u5npXpLGpJSdN8mF9ONZRm9l59zmeMdqYZNTJGh4LORXFS5YrWudL5QWSON7dXf+KsWaj0SHTwLQVyOic1x2WUL7b2UjrqdGo1ZeLOcm1xlp/2IeMBxDSQ+sPa2I6oetAy1MfPnv/6f/NS5zHdyTQ7uWauX5G2PTY8uTZFm5VjPnvaf/J/zW2PLNM09qNvyf81JNLu5ZdW4rXKvJm1dPpLlZ+g0wYJSRD7ECu2kpIInvc2LzW34ldTGOJtZb3UT5IiwEAHbuKwjUaeZMzVpRim1BfRESkrIPbx+loL2l406l011cJMMdHiNP5K4B2guk1aj3KR4Xl2CnqDO4F7zc778fiT9U4RT1tLKyZjdTmkM2HH5EldJbZZUXFHMHJJGrK/VPwSF1N2gNIJB9AUppIydRaC4O4FM2XcKdh8Lo3W0F1wLnuAUlpITYOGwbvZUN5X3eJMxUpRo8I7KNpsANjdPlMwGSO7rjnsuCiiF7lPFHGC4LztebbyytrPPJ2garbafnWRvwA+NA4JVyJnBhHFWMd1EjQdRsodi1zC5oPaDuCm8w1EhRjFIWtfIDxJJVr0+apSSZTdSpuaZXmLxOdG19tXFMlhxIsQpViFOLvie4AnZoJtdRuaF0MrmPHHe695ZVm4o+a9Rt3CbkbaY9YLE2W7CaXqs0YXNrOgVMd+zyuuJgLXWB4qNhlVmzNtLhVFM6HtsJdrLLXOni2/evY23UnGjonyaulUZVLhNcI9NdK+OUeF9H008hBEhh0tNxcF4F72XP0EVUEnR9RUok1TNlnc9ljsDK4hQyPoJqqlrYcWxaWanFuyK6V3Dhs5tuKe8W6G46djTlvEqqmlb5omrHtbe3c0d6q201k+lQ22ZbkhtE8WsA0gfIvKdH/aYZblWU/7KngxDP+TmPgq46OvpADZ0Eckr7WsN3Adyq7JOKPxrp7pMQlglgfNVwExys0ObYW3HJM9hDJ7IbwHghIzzR4IQkj3SL/QXHvzGb9gqk/Yn+djn53/uFXZ0i/0Fx78xm/YKpP2J/nY5+d/7hQHo8IQEIAUVxH7aP/XNSoqMYkP50fBeV9LFm2XzOu0984xzSrH3xWS+dYwWT5BCEKO7IYIQhSQCEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACxILjYDfjdZIUrHck4sUwfDcZgdDi9LDVtcLAStJ8eCr3JORKrKueKmqp4BT4fLTvDQxzbai8EbXJ4BWekcbC/Gy6qXUKsKMrftIwcCFdL+BDHcm1rGDXURBoB2vu9vf4Ju6Fs0nH8CNNVSOM1M57bG52a4NHJWOBHPGLtJMu5BXnegxBvRz0j1slVSVIo6mIMc+1mDU/UTc7DgrXp8Vd2k7Rv2k9SNTymeibhFwo9lnN+C5lZpw6tp+sH+r69rncL8AU/E2cGtY9tuLnDaypK9KpbtRqo3KRkhHx39IQtKTy0ZrcEIQiWFghghCFJAIQhACEIQAhCEAIQhACEJDwQCoQ6zmgs48CoN0w5mnyxlWSop7dZo1eaDwcBz8V0WNu7i4jBc9hnSskGxySmzB0zU7KYNm8nip5DcEWIkI52XpjDgBTRtLQHMFrdyo7ocyjHhWHy4rPqNTUaiC9xJ3IcOKu3CyXUERPnloJX0Po9aEq8qUPditiur77naNQ97t4pfOadQWSQ+d8S9Icp5a9kSxjekfL2hgb/ADh245/W2r0vl/8A0Fh35tH+yF5q9kh/WRl384f+7YvSuX/9A4d+bR/shAd6EgSoAQhCAEcyhHMoBG8/FeU+k7+0Dh35eT90F6sbz8V5T6Tv7QOHfl5P3QQHqej+06f8Rv0Ld3rTR/adP+I36Fu71DBi7iEy5h85nh/FPaZsw/Yh8X0qs6ys2czbb/vBnQkSr5E1gtwQhCyAIQhCAQhCAEIQgBCEIAQhCAEIQhIJLpUKY7oyQjtPGQ6SeG11VPSBUZtwqtEsUtQMLOnURMy1ty7s8eCtVgJl85pYuHGwGYTVSTBromxvJLh3NK7OnVlSqe1HJqnNrgoGR1VWY7QVFbUSPonxPdZ1iPRtxTZmvFpaHFpI8OqpGQODQGtFhw34hS3L9VhtLVYxUwwTV9W+oDooKd+twGnezUzY5huE1mO4ZNUl1DK6oAfBUzaH2ttsvoFhWpU55qLbH4nB1Zu5pqERoy/Li9ZUiQPlfEL3JeAp/TU81QA0tN/FTbD8qUbKCmfRtPVvja6+om9xxBXZT4E2J17fSqq767SctMF+P+DzdHoMpS1P9fiRzC8Nu2xHaupJRUAADQ3dOkNA1jRYbrsiYGDkvNXF9OpLPYvrPpyorDNEdEyOIslaHMeNJaeBBVY9KnRpS4lSjEMu0EMNexzesdGA1xJeL7uPddWs5xJCXiLHgtNh1CdnUc13LVwwsI46KnL8Gjo6tg1Blng73BCpLB6s5F6T6qjtogxB0tW0DhudA4X7lfKqHp9y/JLDRY1TQyPdTtZEdAJO8hceC7uk11UnOlU4msGFWOEmi4CY5Hlw2APctbbb6eF1XuVulXAcXZHTVkzKCe5P85mYy9yeV1YMMkc0bHxyMfG4BzXNNwQeG64LuwqWk9+DZTkZ2WLrbX2SXeJiB5pPcsmiwseN7rjw29uDY2LZtkgaSkI3St2CiTT2GMLYwnjDo9LwCCo/ieV6aqjcWMbc/wB3/mpGSlW+3uJ2zzSeDlubWlXj+1RXU/R7BIHOLRf8UetM9ZlQ0LT1Ox9AA/irbId8XgtNVTNnZZwCuqHpJeZzKX9PyKat6N2lSLSX9fzKGqI5oZDHPc+JTHi2FOnBfDtffayvDFssR1EbntHa9BKg+J5cqadziyN5aD8Ele/6L6XQeIVX+voeQuuiV7CfiU+Pl/kqKpgMD9Dr3C0qe1mGOlLmzxOFhsdNlHK/BpGvJjBt4Er3tv1GhcxUqb5Oi36rn2K3P6+AyoWU0E0Rs5rrd9lgA2wu4A+krt0yayty8g4zWYzFWEztMb3dwK1V8tQIbQaT/wCW65WTTVAihDm3fIGOZbtWOy5ateVPhYNkNOduS0+gDEHSY3LE47axz/uFX5X1kEEGqchundpsTuvLuENny7U09XRVMFM5rTrE++/DmnnG87ZixOqaOtgfFFZ7nR04ta1uIXynrnRKnU79zp+Wf1ud9Sm+mW2ZbOTz9Sf9NWOUz8kdUHB0sk9PpbY7gu8FYPQZQHDsiUNO+lZA8dZuDe95Xn+KoTo/wqpz7msTYhIDBR9ZHYXaCR2hw2XqjLjQyJzAAA0cALc1qs5xs7qlaU++c/Q2QlKtQVSY7DVqILbem6Gtc0WcS4d5WaF6s0FddOjQ7INXrJa0B/p/1b1E/YpWOR5Q3YaYbEc+yVLunb+r6s8H/u3qJexR/oMfxIf2SgLwQhCAEIQgBCEIAVNeyg/oFH+Uk/duVyqmvZQf0Cj/ACkn7tyAc/Y5/wBW2F/m0H7oK0uaq32Of9W2F/m0H7oK0kAhWit+1nLeVpq/td60XKzRl8jKPKImR5/iVyTx9aws711s89/x/StMg7S+QVZaa0vmWslmKREK2m1SPiI5fSoxXU7YZXRvHZJurDxKk6xpLRvZRyro+uBhcLXN7n0L0HT7tJLJ5nqNn4mSvq+hcw62cPQuIOBBB4hTGtoOqJGlzh6Ey1VDG8m7XA+Nl6e3vElyeKu7CUXshoikdH5pK3sqBf65uiaifGOyCfiK5y1zT22n5FdW3U5w4ZWzoOPKOp4pZBezbn0FYGiheOyB8i0gNtezlkJGt5O+VWlLrsk/a/X4GvVJe6zF2FtJ2NviWIwxoO7vmWb5NRGkkeKx1O710fb2/wCvyJ8Sfdm1mHxtG5v8S3Mgp2cWtJ8Fyh7hzRdx9PgsKnXG1+vyIbm+51mZrBZjQFzySl2xKxEbj7x5K2MpJXHdjh8RVZX6tKonl/r6EwoSk9jRoINwtsUBlcPSnGDDdQ7W3xlOtNSPsGsYdha9lQ1r1Phlpb9PnJ+2jnpqVsOlttzsurFKXGKXDzU4PJKx+1wx7W7EXPH4k+UVAGDU/c9yd6OkfUvaGi+k+Zbcgc1QXN/CEsy3PWdPsdDW2xXeVqvHcwsloajEKmCdoDXjU03vv4clL63Jk7KGGTDqqSCoikEss7A0Oc0bkG59Cac9VWHUedsKLXthnppXFzOsDSbx8x8fNdtVnPyrC62jxDDa+CkdTyNZVOb1cbnFpAAd381oqRnUmp03hcnpKUNKwNE2PZtmxsUGDVlVUMYXNcetazlccfjVs4bFUxULRXPd154gkH5wor0UvoJMtRx4e9j5YGMa67w91yDx5qZvs/cntKn6pVi5KnFYx38zrpLO5onZriTVK0G7U8nYLiqIdfAKtjN9zvpT08jBVQlj9xe/BRnM2WsLxWmf5TTRPqfelzbnl6fQpvNHquLcFwS0xBuBdWtleSovMTrShUW5WuR8v1GDUVRTTjS8yvkaLjzSduBUf6UcNMEdPi+ixgBJI/vODf4q35qV733Ng3wsmfMWFeXYRWU7G6idNha/BwP8FdUOpaa6qM3VIqdPwkRXAZY8UwuOqbYk3Z8i6H0DS4mwULyPj1Nl1s+HYxDNHGHPc1z3Bgu53eVZOFz4fi9GX0FRFICQS1socRtfku65peA3OPDOiz6hrhiXYY5aFoHBaPIx3KWyUuqR7SNIaLtvzK1+SH4K5Vd5Wxaq81LKIuaMdyybRjhZSbyQ/B+ZZCl9HzLF3LMJXTGGHDm8dIXQyiaH6nuszhaye20hPIrbHRvvw28FhK623NMrtjUymfsYIwW997LuhpG6Q95u5u9rcF3tpDzB+JdUdOG20tN1yTukc1S4zsc1PTveNTvMC74o9RAj83mt0VI8juHgu6np2tFvfKur1kzinXfBlBFpaAnSnj0sBWqnh711+YNlXzlk4Kk8mY4IQhacnPk0y9lwPemXGKUukEltrXTpiraqWhmGHuYypY0lhezUCeW3NVPLmjN0eLS4fihp6Zh1sZLLRBjSL2G571bWFsq3tN8HJWSeckfzlic/8rqOGmc4RxS/XLGwsWAp4qqdtbCx7ANYYLnwC6jk2pOGYmK2aKaqq2NbFLECG3BHD4hyUWxarxqhfHSU8tPX1DdLWspIdTmDgNQHdbdevtbinPEIPg8t1GxVbODORwpy8zbBpG5TZ0KNEuemTlgtdo1f+oE35rrcVc2mw3EdDZqprjI1sWhzS0jjzCn/AEY4BHgmMUei+t723uSeLgeauqNSMVib3Km3tXZr4tnpguuwEC5KTSHaTpDyDxKG7tbfjZbBsrJRwsI9Zyka6oNNM8SDbSdviXlDDWsZ7JVrY2hrBWU9gOXZXrGb7DJ4H6F5Pov7S0f55T/sqNsmS8j1mzzR4ISt4DwQpII70i/0Fx78xm/YKpP2J/nY5+d/7hV19IpH8h8fBcB/MZrD/wAhVKexQBHt72TfysfsFAejwhA4cLIQAVG8VFqg+CkTzYbKOYs49eNivM+lCzao6rR4mcQ5lCCCLW2BRb0hfNdSfBZN75BCQ35EIsU75DFQksUWKZAqElii3eQEyBUIt/eCLf3gmQCEW/vBFv7wTJAIWOodyNXoU7+RJkhID6EX9Cb+RGwqElx3IuO5N/ICoSXHci47k38gKhJcdyX4lKi32GUgQj4km/cp0S8iNSFQk37kb9ynw33QyhVi42tzF7Jd+5G/cihNdjJSQFxueqAGnhyTVjGAYPjMY9tKGCWV50lzow424J0c0OtccFk0lpuAtlOpWoy101v95i9LKCz7hdJkDNeH1OEzSU9PMxznMjaGi5dpHBXxTVEctLHIx7pI5hpu4bqvOnXDaKuys6aomjbUMMYjJJ2HWC+yduiWqdUZJoWmZs0glk1OaLC2rZXd7SldWMKsl7S5NS2JkLDYcEJHEm9mkG/FKPN3I1Lz8YVOcG5SSBCS9+AKN+5FCXkHJCoR8SPiTRLyI1IEIv6Elx3KGmuxKaYqElx3IuO5Rv5AVCS47kX9Cb+QFQkv6EE9wTfyJ2FRq09oi9ljq9CVrgTwUPL7DYGuseyBvuoD054M7F8j1LmbuZHa23N7VPes7ex5WPguTFWQS4dUslt1TtOrf0hdVhcO2uIVUt4mM1lEZ6KsTGLZJimB7UU74iPxQ0K1MLI8hhfz0BUH0AvDMJrmMaTGKqfTvz1BX7hrQaSIgjU5oJ8V73o1JUryolxj+5wVvdwd44BB874kA9ngkvc9xXqTkPLvskP6yMu/nD/3bF6Vy/8A6Bw782j/AGQvNHskNXui5e0gucKh97fk2L0rl8/9g4bfY+TR/shAOASpBxKVACEIQAjmUJHGwJQA3n4ryn0nf2gcO/LyfugvVdyLG1wvKfSb/aBw6zw76/JsOX1oID1RR/adP+I36Fu71po/tOn/ABG/Qtp2BRgEzZh+xfJ9KdnE3TTmH7Xvz2+lVvV/+JJG6isTTGdCS3pCPjC+RSeZacFsmmKhFjbhdF7cQUAIRe/AEIse5ACEWPcgNd3IAQl0u+CUlv7wUgEIt/eCLf3gsW8AEIt/eCNhx3RPIBCLjuRcdyyw8EAhJqHcjUO5Yxz3QyDSS4NLGtB5hcGO0EuIYVU0TJXs6yN7bgj3zSP4rvcQ4AEbBAsODVtp1Z0paoohpMjGUsnYflymE3VNqKlwBe+VguDa3ELHNuRMNxqAPDBFUsJcJ2MbrG1hue5SoOABAHFA0gOAGzhYrd6/ca9f5mOlHJgtO6hwejo3vc/yeFkQe7i7S0C59Oy6rXKDYgC2wFgiw7lpqa6k3PHJksIy80XScUHwRv3LGUKj2wTlJGW1likt6Eb9yeHLGMEJ+bFWqqghqYTTVsLKiJ51aJBcLZv3LHUBe4IN+KlKrD2oLdDZlb9I/R5gb8v1ldT00eH1cEZc000TeOw4ldPQnizsSyzPT1Mz5Zqed0TXONzpYAAp7VxRVdJPBJOwRygNeDzF1SfQ5HFh3SBjFFDURupy6qk0ge+60DivRW7qXtjJVfeT2NHEi8GPIa4EC4SNue0Vk4uZ1ziO6xSucCQGkHa9l5rw57xwdCkhEI37km/cpVOS7EbeYEJUm/cjfuUqm+6ZLlnYVrib3Q7fYI17WskuL3sVjuuwWEYGN19zssZKaGZhbIxp+JbSQTchG3csoylB5jkxkte0ksDDW5Yo6gEtaAfxQoviuSzcmLh8SsZult7BZB1uSsLfq93bv2W8ff8AmVtx0i1rbtY+WPyKGxHKj23D4wR8SjNdld4cdDbfIvTjw1wNwflXO7D4JTd7CfjK9ZaenV1QWJLP3P8AMqZejzpvNGf1f+Dy1/J+q16Q2/xhGD4NBT5jkjrOzK2BsjGtAIvfZenzRUsLriMg/jFVhNlSiwmuqK+YCavcXFj2ktsLktFvQVYv0xqdRpyp4w/lj+5sVtVtF4ldppeXJWeJxx3rhiDnNJkHVAC+3NdOVqd2JWYGhhqT1Vm8BupPilBLj8mjEYnvLdmHhYcTwUr6LciHBoGiqe0hhLmdktsdV+9di6zS6ZR8SbzOSx2fP3o5Li8rdbcacYtKL7prb8SJ9FHW5a6R6nCJnkMnNRKDf4IsOGy9K5fJc6UnhYLz/wBIcUcHSvgzqcgyCklDue+vdegMCc4xvIFxpFgvP201Wv6Fd8yz/RnotDpUdHkPKEgvbgje538F7Q4yvenb+r6s8H/u3qJ+xR/oMfxIv2SpX07H/wCn1YL72f8Au3qKexRaRkUkkWLIf2SgLvQsQ46jcWCA67rDcd6AyQkZu3jf0pUAIQhACpr2UH9Ao/ykn7tyuU7BU17KI2yHHZhcOsk4cvrbkA5+xz/q2wv82g/dBWkqs9jn/VthhDg7+bQbDl9aCtK5UZAFap94XBbVqnNo37LXX2pS+TMovcidrSv8T9KR7bi6Uk9a/bmfpSg7bmy+N3DxWl8y3jhpM5XC9wVw1WHCW5YbO7xZOj2g81rLCRbilOq4vY1TpKXYilVTdUbPYHeKb5sPhn4tDT6Ap2GuAsLrnnoIpt5GE/GrKlfOK3ZX1unRn2IBU4P1YNjfxsmyXCg42LR8ish2FU4HYe0fKtL8L+DK35CuuHVdPD/X1Kyp0anPt+voVw7BxbZvzBaTg+/m/QrOGEEsH1xt/ArW7CHcpB8hXVT6w+7/AF9Tm+wILhfr6FZ+1LW8R8wR7WM7vmVle1Uo4PB/8pSe1Uvwx/hW59ZXb9fiYy9H4t5x+voVu3CWPNtx8QXRFggFrfwVgjCpSd3gf+UrczCvhvB+IrRPrUv1/wCzKHQILlfr6EBbgzgNmj5l00+EyXGsC3ip23C4AN9z4lZMw+JvBh+Vc8+sSlt+v6nVT6HBNOP4/wDoiUWGxNHbHzJxgoG6W9W0cONlI20UfwD8q3MjLNmiwC5anUG/dyWMOmxT3GylwnSNUjj4bJwjj6thMDGtPm6xsVt6snchbGsaPOG64ZVXJ5kd8KMY8EL/AJBUdfmaXFsSqZp3l4eGPa1w83T4qS4hg+H1tCaCWnibT6SGkMBOq1uCcbNuDbcelKSDyUzva8n8vmb9MSLZNymcsVda6GV7oJntc1psAAARy8VKS0OdqQ7tEEjhwSOAJuRutNarUrvM0THEQIusLAcVnv3JC2/ELVol5MzU4mh9Ox1yOJ9C5JacjknAMANw1ZHfkslrXCMlVS7jI+JoN3DbustElL7+MDS7chSAsFraVg6BjmgFpt4rdTlPumbo3STIFiOSMFxWQtqaaNrj74RAnfxVb4B1eWukaXB4yTTPdK5ocLbNFhsNl6FNPGbFwsGdrdUV09YdRQYvh1dSzxxVhhdZziXbGTfZeg6Rc1LjVRrZ3WxodVRknDjuWdLQOLyJY2gt3BG61+QqQ08DHUkcsI1xucRdvALN1ISAWm3iFTTqVKU3HHc7I3m2zI15B6ENoN1JBSG4OoEd1ll5Nv5pWHrFXyZl638SPtorcln5EeIKkAphzYUGlZzYflUePP8A7JketLzGaKk23F1ubA1pA0i6dmQtZwaflWYYPgrS5tvhmqVxk4G0ryLjYLohp2t3duV072tZHKxGywnl9jU6me5iBbgtjRfikBA4BGr0LVh+RrckxUJNQ7kah3KMPyMRXaw24AF9gRxUD6XfIoMGglrPrM3XQgSMbdx3KnsZAeC0hpPnX7lEs55PizTPHHXSNko2PbJoAIOprrjceKsOn1VSqp1M6cGqa1EWgz1HSU0VIaWOenpr9bUPa7rGgm9wBseNk15LjpKjMdQYCZpZWuka6RtiLu2HgrfpsNpKKgFHC0imaLFuo8L34+KiVP0f0+HZrOMYO9sBfEGSag59xqJdzVnTvaEYyVPKeDllbNsrTprwd1FPR4o+7JYGS6g21nklo3KsfKVIyoqcNq2G93sFvCy0dOUUUvR9iJlIcY2gNsbbFwTr0TUcZy/RS8JROfk2VraXrrUIzlynj+5xXFllotwAABJdJvxLSSOCUDvC9vF7IcMxl+wSeB+heUKL+0vH+eU/7K9Xyj6xJ+KfoXlCh39kswg3/nlP+yp2zkyR60bwHghDeA8EKSCuc+ZxwSoyjjcDaprpnUkrAAW8dJHeq19ig8uZj7nnsmsGkt7tBUrzr0PZPocs41X0uDwsqWU0susSSkkhpPN9uKi/sTmNZFjkTW2YKsBovwGgoD0a3hz+NKj4kXPcgEdwTHiVJLLJdoHyp7dujiFw3tlSu4aKiM4TcXsRn2vqCRYNPiVl7XVPwY/l/wCSkdktyqpejVolx+H+TbK5kRv2vqfgx/L/AMkntVWf+H/i/wCSktyjdZR9HLOPvRX0/wAkesTfBGvaqs/8P/F/yR7VVn/h/wCL/kpLujdZf6esf4UR49QjXtVWf+H/AIv+S302EykO68gHlpddP26FlH0fsU86EPHqDP7Tt7z8qPadveflTyhbfsKw/loesVBm9p295+VHtO3vPyp5Qn2FYfy0PWKgzjB4vhPSjCIvhPTuksVs+xLH+UiPHl5jV7URfCej2oi+E9OyE+xLH+Uh40vMafaiL4T0e1EXwnp2Qp+xrH+Uh40vMafaiL4T0e1EXwnp2Qp+xrH+Uh40vMafaiL4T1l7URfCenRJupXSLJcUkQ60vMbPaiL4T0vtTF8J6ct0b96fZNn/ACkPGl5jb7UxfCegYRDzc9OW/ejfvU/ZNn/LRHiy8xu9qIfhPR7UQ/CenHfvRv3p9lWn8tDxZ+Y3e1EPwnoOEQ285/zJx370b96fZNp/LQ8WfmVx0t5bpq7JlUDqD2lgBaBfzgVEfY90uHxZVbHPiThMHPuyWYC3bNrXKuyvpI62nfBUs6yF3Fh2v8ipDMfQWBWS1eXcUbhosD1bITJw9Lieaz9Rt/D8LTsT40i4mYbTSx3hmLx3tcCs/aeAuDtb/mVWdAeLV2vGMIxSvNTNR1j4G6mBpIYAL7BXG11gLix7lp+yrRbaUR4svMbxhMJ4Oel9qYvhPTlvy2Rv3rJdJs8fu0T40vMbDhMXwno9qIvhPTnujdPsmz/lIeNLzGs4RF8J6T2oi+E9Ou6VQ+j2T5pIKtLzGn2oi+E9HtRF8J6dkJ9jWP8AKRPjS8xp9qIvhPR7URfCenZCh9GsX/4kPGl5jT7URfCej2oi+E9OyDdR9iWP8pDxpeY0HCIvhPWJwiIbhz7p43QRcJ9iWP8AKQVeXmM7cJjDjubkKLdJ8PtTkPFauIuD42NNx+OByU+DbP1eiyaM44GMyZbrcKdL1IqWhusi9rEHh8S0fYdjnMYIy8eRXHQPl4U+TDLMLSyVcrviOk9ytiN8FNA1rpI26Ra5cAm/AsHbgmECkjk1uBJDgLbkD1LzP0z4p0h4Rj+IgS1cWDSTuMUuiHTp1WbbYlWlK1pQrSnHyNUpOR6sp5opWF8ErJW97XB30LYW6gDexXmDol6QcSye+HDs2xvZTTO0tqZnNAu52o7NBOwXpTC8QpsVoY6qhlbLDI0Pa5oNiCLjiFvMTzN7JV7YekLAJXuLWCd5eQeA6tivLLOccFnw7DqaKqDphBG2xLe4DvVF+yYhjqc/YHTzAPilne17DzHVsVs5V6I8oUlNh2I02EQx1ZhjeZBJKTewPAvtxQFnjck8kqxY0NADdh3LJACEIQAsX3sdIBPpWSQjfY2KAYsYzJh2D1bY8QqGxuLAdOoW38SvMeecRpcT6eMNnontfG6aQ3FvuQ7l6Fzb0b5dzVWtqsXw+Kola0NBc+QcCSPNcO9ebcz5cw7LPThhdHhFK2GMTSAhrnG/1sEecT3oD2DR/adP+I36FtO11qo/tOn/ABG/QtvG4soYMDuU34zTPqIrM9HP0pztZFlqr0VXp6JGSljcjXtdU/Bj+X/kk9r6n4Mfy/8AJSYgrGyol6N2zeX/AE/yblcSRHPa6rPAR2/G/wCSPauqPER/4v8AkpJZFu5Z/wCm7Pul9P8AJHrEyNHCqvlo/wAX/JJ7V1n9z/EfUpMLpU/05Z/wr9fePWJkYGF1t9ur+Nx9S3R4VU37ZaPBykKTdbI+jtilvBP9fMj1ioNDcIFu1I+/oKT2ob3lPKFl/p6x/lr9fePHqDN7UN7yj2ob3n5U8oRej9gv/Gv1949YqDN7UN7z8qybhEfvnO+JO6Fmug2C/wDGh49TzGn2oi+E9HtRF8J6dkLNdEsF/wCJDx5+Y0+1EXwno9qIvhPTtZFll9jWP8pEeNLzGn2oi+E9HtRF8J6drIsn2NY/ykPGl5jT7URfCelGERfCenVF1h9j2P8AKQ8afmNQwiL4T0e1MXwnp2SbrNdJsf5SHjS8xrbhMN93PWXtRD8J6ciCkse9ZLpNn2poxdWfmN3tRD8J6PaiH4T042Peix70+yrP+Wh4s/MbvaiH4T1icJgde5ft6AnOx70DYFPsq0/loeLNdxrGDU4B4m9uIC854fgsGCdNk4qqqWmhmgmeAx4aCXTC3cvT4BsFXfSR0X0OcKhlXG9tJiLA0Cp0uedIudNr24kHhyWdOxoUk4xgtx4siVQ0VBNdkVYJSeQka5b2YXATpOq43vYLz3UYLmLo5zlgbJsfkqqaqdJYdQxgAaw+gniV6SpJHSUsLyblzGk7eha10m0W7poeNLzOT2oh+E9HtRD8J67w8F2kOF+6yUajx2U/ZVn/AC0PFn5jf7UQ/Cej2oh+E9OO/ejfvT7KtP5aHiz8xqOERX856PaiL4T07IWP2PY/ykZeNLzGn2oi+E9HtRF8J6dkJ9jWP8pDxpeY0+1EXwnpfaiH4T06/Elue5Psax/lIeNLzGn2oh+E9HtVEPfPTrc9yLnuT7Gsf5SHjS8xmfgkL+Lnpor8mU1U/U6SQn0kepTC57kniso9Ks4e7TRqq5qrEiJUeS6CEXeCXD0NP8E6RYRE0jQSAPAJ4LbrHT2u8rCp0azrbTgjGk3R2gjzqyhdjPTy6B93RU7axg1f3XbL0DSRMpBYua1v942UZwrJUeH5wqceFQHvlfK7RoItrN+N1Gun2TM8WXqSbKnXl8fWOnMTYz2bC19fp7lujY28JwlTgk48G11ZNYZaLayndJ1bZ4i+17B4W4HYg8l4syvj2dqWpONVNXUVUUE/Uy0/VxNsAQ5xJtyF16h6Ps/4VnGkklo5oxMzSXxNJJbq1WubD4K7TA4OnQE5ArNIHB/H8m9Vt7GvMuGYPk1zK+qDHBkQtqFvNPpVkdOjrZBrNTrMIeLd/wBbeqg9j90b5azTlKSfFsNinNoiS58gvcE8nDuQHpLB8SpsWoW1FDIZIS5wuTvsbFd2+oabWsmfLGWsPy1hbaHCIG08LXOcA0uPnG584lPLGBvjzKAyba2yENFhZCAEIQgOfEKyGhpX1FS7TE21yqF9kRmrC8ZyUyGgqQ6TXJsSPuZHIq88dwmkxvDZaHEIhNTSW1MJIBsbjgQV506d+jLLGWcox1eE4XFBOZH9pskh94T75x5hAWP7HNujo4w1vPyeC/6MK01V/sdyT0b4Wbf92g/dhWhf0KAItcwLo3AcVsKxANyVEoqcXFkJ4ZG5MPnLnFoHE81gMPqbCwafEqUG5CGggcV56Xo5bTk5S/p/k6Y3EorYjIw6p5sZ8v8AyS+1tSRYNjB8VJd0bovRqzXb8P8AId1MjXtXV/3P8X/JJ7VVf/h/4v8AkpNuk3Wxejln/D+vqY+tTI0MHqfgw/L/AMlmMJqB7yH5f+SkYQsl6PWX8tfr7x40xljwcFg1mzuYB2S+00fwnJ5+JHxLYugWS/8AGiPGmM/tOwcCUe1DU8g25Iup+wbL+Wh40/MZjgzTxJSjBY+bj8qeL+hIQO5ZLodiuaaHjT8xq9poO8/MgYPD8J/zJ00juSrL7Fse1NDxp+Y2e1MPwnpfaiH4TvmTkhPsWx/lojxqg2e1MPwnpDhEJ989Olko2U/Y1iv/ABoeNPzGn2oi+E9KMIi+E9O1/Qi/oT7Isf5SJ8aXmNXtRF8J6BhEV/OenTdBvZT9kWX8pDxpeY2+1EPwno9qIfhPTjv3o371l9lWn8tGPiz8xu9qIfhPR7UQ/CenHdG6fZVp/LQ8WfmN3tRD8J/zI9qIPhP+ZOO6LFR9lWif7tDxJ+Y2PwiE6e0619xtuqS9kzlqnfgkGIs6xhpw2LsADzpFf5sbXTVmTAKDMWGSUOK07amneQdDi4DbccCCttHp9tRnqjBDxJEbyTBhftFAG4mZQXO2fM0nj3XUoGF0+kEPcWngRYqgM29EeI5TwSvxfBswGGOjiMrYm0wPD0uurZ6IMYnxjJtJJVVBqJ4442PeWgbiNt+AHNYS6Vaybk6a3Hiz8yTDB6dhvqefkWftTB8J3zLu1E6bbjvWVz3KPsq0/lonxJ+Y3HCIfhPSe1MPNz05XPckNyofSbN800PFmu42nCIfhPSe1EXwnpz3SrH7Isf5aHjT8xs9qIvhPSHCIrec9Oe6N0+yLH+Uh48/MavaiL4T0e1EXwnp2Qp+xrH+UifGl5jT7URfCej2oi+E9OyE+xrH+Uh40vMaRhMQ5u32WLsHYPMe/f0p3cAeISEbbCywfRbB/wDiQ8efmNIwhnBxJHO5WPtRfZsjg38ZPAvax3S222Cx+w7B/wDjRPj1CjfZIUjoMmOp6dzryxPJN7cHNVl5TwSLDMGpI2AbBrydubQtPSDk9mbsPbTSVAgAa5ty0u4ken0J0xqGrjy1VQ4aXNrG05bFpAJLg2wtfZb4dNt6UNFOOFnJDqOXI4zVdPCAZZ4mjhu8BbQ9rmtdGQ5pPEG68UZxxbpDZj8mG4pU1cJ1uMYfHCbhpvyHero6KOlDq20WXs0t8kxZ0mgMlddx1uJb5ot5pB4qxwjW0XdMLxv320n6F5JdV0+HeyLM1S/TE2rgN9uTQvWZkbJTOfGdTS0kH0WXkLEcIosd9kEaHEImzU8lVA2xJAsWi/AgrCHGQj1NhebMIxCYwUtUx8jWaiA5vAWHf6QhMOXOifKOAVz63DMIhhqpIzG+RskpJBIJ2LyOLQhZED50iX/kLj9vvGb9gqk/YoE3x0Ef97H7BV19IO+SccaHXc+jma30nQV5r6A894NlCrxunxyqFPK6quG6S64DSOQ70B62tfvRbxVWN6csm2/0k39G/wBSX3csmfhJv6N/qQFpEJLeKqyTp0yW0XdiTQPyb/Ulf05ZNjAL8SaAeH1t/qWOnfILTsksqtb055McLjEm2/Jv9SPdyyb+Em/o3+pTuMFpW8UllVvu5ZN/CTf0b/Ul93LJn4Rb+jf6lO444LRsiyq73csmfhFv6N/qR7uWTPwi39G/1JuNy0bJQFVvu5ZM/CLf0b/Uj3c8mXA9sm3P/hv9SDctOwRYKqvd1yXt/wBpt3Nvsb/Us/dwyba/ti235N/qUEblpWCLBVb7uWTfwk39G/1JPdyyb+Em/o3+pBuWnYelFh6VVvu5ZM/CTf0b/Uj3csmfhJv6N/qUYJLSsPSiw9Kq33csmfhJv6N/qR7uWTPwk39G/wBSYBaVvFFlVvu5ZM/CTf0b/Uj3csmfhJv6N/qWSBaVkWVWO6dMltFziTbfk3+pL7uWTe1/2k3s8frb/UgLSsiw9KqwdOmSydsTb+jf6kvu5ZM/CTf0b/Um4LSsPSiw9Kq33csmfhJv6N/qR7uWTPwk39G/1KNwWlYelFlVvu5ZM/CTf0b/AFIPTlk38JN/Rv8AUmPMFo2RZVb7uWTfwk39G/1IPTlkwccSb+jf6k0oZLSsiyq09OOTQBfEm/o3+pKzpxya82biLT/6b/UmlDJaHI3IWueohiYHTvZGw83uDR86rB3TlkvUWtxFpdzHVv8AUoT0s9KeCY/l+OHL+PSQVJ1j63Eb7tAHEd6mO73A9Zp6H5Jq2sxfLGI1EFXUSuqHB1UQx2olxsGt8Oa4sidKlbgtZR5bzfh9aKxzurbOyle1hO7j2nnfaycModMmV8Oy7QU2JYyZ6uKCNkjnxOB1BoB4DvUD6TekfAsazRgtRhxZPTwTPdNMdQLQWWBsR3qFlvcHqWmlbPTxytvpe0OHgRdbbD0qpcP6bsmw0FNE7EWhzImtI6t+xAA7l0e7lkz8JN/Rv9SbgtKw9KLD0qrfdyyZ+Em/o3+pHu5ZM/CTf0b/AFJuC0reKLKrfdyyZ+Em/o3+pJ7umS+sDPbJuoi9urf6lKyC07IsqsHTpksu0+2Tb93Vv9SX3csm/hJv6N/qQFpWRYelVb7uWTPwk39G/wBSPdyyZ+Em/o3+pGC0rD0osPSqt93LJn4Sb+jf6ke7lkz8JN/Rv9SxwC0rD0pCB6VV3u5ZM/CTf0b/AFI93LJv4Sb+jf6lOAWiGot4qrR055N/CTf0b/UgdOWTXcMSb+jf6lIbGvpjizrT4jBW5YMEsALAYzHJIbgEnZp8FUGeOk7GcQwabL2aqKmhq9TQ17KV0Tuwbnd7ieNuSvH3cMmMFjiTWnjbq37/ADKlel6tyTmmqfi9LjZdXXcWweSm3aIJ7RPLwRvuTFjJlvO81fhgwHGKCOqpN7SUdMXVDdR3Jfc224bKXdH2YqzBc7UuHYDPLJRyROe6KucZHtPC1gRawHCyo3BsXqcHqzU0FQ+N487SbdaAdmnuVuYZ0n5aw6jo6+HLlAcfaGNln654e69tZJ0270DHz2RR1dIWW3EEPNQ+/wCjYvTGX/8AQOHfm0f7IXkHpIzlQZ5ztlyow17TKKh+uME2b2GgbkC/BevcvkHAsPA4injB8dIQg7wlSDj4JUAIQhACOZQjgd0AjefivKPSibeyBw3j9nk4fkmr1cCADfxXkrpkrYsK6a6HEqvSKRk0jnPJ4Dq2jh4oD1fSNvR0/HzG/QtoG54qqabpwycKaJrcRadLAD9bf3eC2e7pkwA3xJoP5N/qQFp2Qqr93XJf4Tb+jf6lk3pyya7hiLT/AOm/1IC0kiqz3c8mfhJv6N/qR7uWTfwk39G/1IMFppVVnu5ZN/CTf0b/AFI93PJn4Sb+jf6kG5aaFVnu55M/CTf0b/Uj3c8mfhJv6N/qQblpoVWe7nkz8JN/Rv8AUj3c8mfhJv6N/qQblpoVWe7nkz8JN/Rv9SG9OeTHODW4k0u7urf6lI3LTQqrHTpkw3tiTdtj9bf6kvu55M/CTf0b/Ug3LTQqs93LJn4Sb+jf6ke7lkz8JN/Rv9SjI3LTQqs93LJn4Sb+jf6ke7lkz8JN/Rv9SZG5adkWVWe7nk38JN/Rv9SPdzyb+Em/o3+pAWnZFlVh6c8mDjiTf0b/AFJfdyybr0+2TdXG3Vv9SAtH5UfKqtd055MDrHEmg/k3+pIenPJg44k39G/1ISWohVZ7uWTPwk39G/1I93LJn4Sb+jf6kBaaFVnu5ZN/CTf0b/Uk93LJv4Sb+jf6lGMkZLUQqr93LJv4Sb+jf6ke7lk38JN/Rv8AUmlDJaiS26qz3csm/hJv6N/qSO6dMmMF3Yk0D8m/1JpRDZaqwksW9p2lo3veyq53TnkxttWJNF+H1t/qWmu6bcnTUc8TcTDXujcGuET9jbbkpwZD30j5Iw7PlPDHJWSsnpAQx1PUhhbqIJvsTyVTy1+bOiXGtVYybE8HexrA5kctQ5tzckuuAAA1cvR30n4fg+PY7NjWOS1VJPIw07ZIyBYNseA71LM9dMmU8Qy3WU1HNHWzywyMZE4PZpcWEA3t3lQ0mY9yyOj/ADfS5ywryymiljczSHh7dNiQTwue5S07rzL0LdJuXsuYPiDMXqm0s8skbmRBrnbBpB3A71Yw6csmAD/tNpceP1t/qTCJyWnZFlVvu5ZN/CTf0b/Uj3csm/hJv6N/qTShktOyLKrR055MJsMSb+jf6kjunTJbfOxJo/8ATf6lILTsiyq53Tjk1rdRxFtu/q3+pYt6dMmOtpxJpv8A+G/1IC0reKPlVWjpzyY4XGJNt+Tf6ke7lk38JN/Rv9SkFpfKj5VVvu5ZN/CTf0b/AFI93LJv4Sb+jf6kBaXyoIt3qrfdyyb+Em/o3+pIenLJtv8ASTf0b/UobBadliSQRa1vSquHTjk38JN/Rv8AUkf045MIB9s23BuR1b/Usc4ZG7JtnOmr6vAp48IexlVcEF97bXvw3XnKHOuf8mU0r8dpaGWhju6Uz0cri5t79kucBfcK1z035MdGXtxNrW3FyIn8fkUW6Q8/5DzpgsmH1GOGJmlzbinc+97cjbuRLdslfEpTCc/1mHY7UYnhcVE9lTI7raeqh1tJee1pZqHLYJ+xfMlLHDV4/hdLieH4y0a2xFhhpnnh5gsSAPTsSq0xyCgpMXd7VVJqKZo1Ml0aCHAm23xAqaZCz1hzIZKXOtFDirDpEb6mR12cdVgBz7PyLIF6ZnxOqxvoWmqsQMZeA+/VgjhCe8nvWPsUH6sjSACwDYRv+KVXGIdL+D4hkmtwWOgp6FrzIIxHI517tLRxb3FWX7FaJ0eRiHgWcyEje9+yUBdqEIQAhCEAIQhACpn2UF/5BRW+6Sfu3K5iQBcqnPZOMe/IberAJa+Qne3+rcgHP2Ot/c2wu/3rB+6Cs+w9K85dC/SnlvA8j0VFX4gI6iCGGN7dDjYtYARsFOvdyyb+Em/o3+pQwWlbxRZVd7uWTfwk39G/1JPd0yZe3tk2/wCTf6lGAWlZFlVp6c8mCTQcSbqte3Vv4fIj3c8mXIGJN24/W3+pSkkC07JLKrfdyyb+Em/o3+pL7uWTfwk39G/1LIMtGwRZVd7uWTPwk39G/wBST3csm/hJv6N/qUEYLS0o0qrvdyyb+Em/o3+pHu5ZN/CTf0b/AFJgyLR0o0qrT06ZMHHEm/o3+pB6dMmDjiTf0b/UowMlpW8UW8VVzunHJw03xFu4uPrb/Uk93LJl7e2Tb/k3+pMGJaVvFFvFVaenLJt7e2Tf0b/Uj3ccm/hJv6N/qQFpW8UbelVb7uWTfwk39G/1I93LJn4Rb+jf6kQLS29KNvSqt93LJn4Rb+jf6ke7lkz8It/Rv9SkblpbelFh6VVvu5ZM/CLf0b/Uj3csmW/0k39G/wBSElpWRZVZ7umS+rD/AGybpPA9W/1JR05ZMIuMSbb8m/1IC0rIsqt93LJv4Sb+jf6ke7lk38JN/Rv9SAtKyLKrfdyyb+Em/o3+pHu5ZN/CTf0b/Uo0oZLSsiyq33csm/hJv6N/qR7uWTfwk39G/wBSaUMlpWRZVd7uOTbX9sm2/Jv9Sx93PJmnV7ZNt+Tf6k0oZLTNggC1zuqu93DJzgbYi3h9zf6liOnLJpb2cSabbH62/wBSnkZJ9j8FHiWG1OGV08bGVbDEW9YGuN+6/qVFZm6MsXyi1+LZUrqyWMTanU7p3yixJJsxgHIAJn6R+kfDcQzZgtdgmPS+SQVWudjYiBp0Ac/SrGo+m3J0WHRNkxMOlEQD2mN+7tO/LvUcjkTo16Vm5ixCmwiuoqqmxAO0PElOYhchzhsTfgArdAuL7ryhh/SJgPuue3MkcVJhwna/r2lziR1Okm1r8dlb3u5ZNH/7yb+jf6kwgWjbxRZVd7uWTfwk39G/1I93LJn4Sb+jf6kwC0bIsqu93LJn4Sb+jf6kh6c8mDjiTf0b/UpGS0rIsqtj6c8mSO0sxJpPH7G/1Ib055MdwxJv6N/qQZLTsiyq33csmfhJv6N/qR7uWTPwk39G/wBSAtKyLKrfdyyZ+Em/o3+pHu5ZM/CTf0b/AFIC0bIsqu93LJv4Sb+jf6knu5ZN/CTf0b/UowhuWlZFlVvu5ZN/CTf0b/Uj3csm/hJv6N/qU5wNy0XtDm2JsF516QJukDAcz+VYUyKopYw15HUTSttud7GynDunDJrhb2yb+jf6lprOmvJlTSSQ+2gaJWlhcI39kHnwUPcHnrPnSTXZmqOrxGmpKbE6R3VuLKcxDUHXde7iU5UmbW5rpWszFQSMfF5lThFP1TgeFy/tcB86YOk6DKs9dW4hgmLGvqqqYzFrqcx2u7fe/cmDKmZZcArKbtmooTIOupnO0tLb3I2B4qcYM9sHoroCzNiVZiVdhT5myYbGZer667pgGsbpuSfl2UNo7fVMMtw8sp/2UuB9LGWcBxSGownBKKmMsJ8okZK8HW7Y+932sm/KuLUeP+yEgxHC5GyUklZAWu4XAFuBTjYxPYTeA8EIZ5oPoQhBqniE8ckMovE9ukjxVZY30L5ZxbEZKqWOYPe4udpnLdyb8grPJLrFnC+/JZDTqNhv4ICox0C5T5R1X6y71JfcFyn9zqv1l3qVuNvbglQFSM6B8pNcCYqo7/fLvUqp6N+jjBMXzzidDUR1Ahhjk03mI4SAL1e/YaiSAEwYLlXDsKxOeupaaFs0wcHPEYBNzfiEBAh0D5VJdqjqSDwtUO9SX3Bcp/c6r9Zd6lbg2ACVAVF7guU/udV+su9SPcFyn9zqv1l3qVuoQFRe4LlP7nVfrLvUj3Bcp/c6r9Zd6lbqEBUXuC5T+51X6y71JHdA+VGi/V1Px1LvUreWLtyAQCDxugKl9wjKensxVVxuCah3qVW0PRrgs/TDHgEjZzRubUEgTEHscN16rO5BDiB3JkiyvhsWYxjTKaEVwDx1vVjV2uO/FAQD3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKi9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKjb0DZTB3iqv1l3qVY9J3RpgWX805apqdlR1ddPKx314mway69Uu4cSEw47lnDsar8Nq8QpoZpKF7nsMkYcQXCx4oCuqToNyvPRwSujqS57Gk2qHcx4Lf7guU/udV+su9StljGRRsYwBrGgAACwC2ICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKi9wXKf3Oq/WXepA6Bspg7x1X6y71K3UeKAp93QLlS5JjqrfnLvUod0t9E+Wsv5dFVSQVhfcjacn3hP8F6PPbabJqzDg1Jj1D5JWxMkjBJ0vYHDgRz8UBTeRuhrLGL5NweunjqRLUUzJHXqCNz8SfB0DZTLXMMdVcDb+cu9StDCcPhwzDaWipomMhgjEbWtAAAHIBdo46gNzsgKjHQJlMAfW6r9Zd6ke4JlL7lVfrLvUreQgKi9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqE9AuU7bxVf6y71KK9JfRFl7AMrSV1DHUCRsrGdqcu2J8F6IvZNmNYTS4zQPoq6NssL3B+l7Q4XHDYoCjujXofy5j2SqDEK2OpMswffTOW8Hkd3oUn9wXKf3Oq/WXepWZgWF0+C4VBQ0TGx08V7Na0NG5J4DxTigKi9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6knuC5T+51X6y71K3kICofcFymAfrdV+su9S01HQRlSOnJEdVy/7y7v8FcnIrXKzrIi080B5b6F+jbBM04fXOrmTfW6iaNoEpabNcAOHirKb0D5TZEdcdVfbfyl3qVhZby1huXIJYsNpoYOse57jHGG3Ljc8E9aQ5mk9rxQFRt6BMo23hqv1h3qS+4JlH7jVfrLvUrc37kb9yArjLvRDlzAK9lVRRTawQe3KXcPEelWJG0MDWM81osFn4hIdjsEAoFiUqS26VACEIQAkNr3KVYu0hwB4nhsgA8bhRPOOQ8EzW+N+KQyukZfSWSaeNr/AEKWWIO3BKLC3eUBUHuB5T1kujqrH/7l3qS+4NlBnabHVA95qXepW6bA77pHNvsGgg96AqV/QNlNzgeqqv1l3qVZdNPRtguVqGGSgbNZ74xYylxsZA36CvU7hqsA4tt3JmzNljDcxU7YsTpoZw0tI6yMP4OB5+kICuKfoGyo+CN5jqruaD9su7vBbR0C5T+51X6y71K3GNDGNaBYAWCyQFQ+4LlT7nVfrLvUj3BMqfc6r9Zd6lbyEBUPuCZU+51X6y71I9wTKn3Oq/WXepW8hAVD7gmVPudV+su9SPcEyp9zqv1l3qVvIQFQ+4JlT7nVfrLvUoJ0ydFeXss5OmqqGKp65kT3fZy7gR616ZTPmPAaLMGGS0eIQxzxPaW2kYHcbd/ggKlyv0LZaxDL9BPM2cvlhY8gTuHFoPd6U6e4JlT7nVfrLvUrUoKOGjpYoKaNsccbBGA1trWFl0tFgBe/pKAqL3BMqfc6r9Zd6ke4JlT7nVfrLvUreQgKh9wTKn3Oq/WXepHuCZU+51X6y71K3kICofcEyp9zqv1l3qR7gmVPudV+su9St5B4bICoHdAuUC0NMVWT6Kl3qTNnXoZy1hGUcYraZlQ2WCjnlbqqHHdsbiOXoV7NvxcAD6Fx4rQw4lQVdDVRslhnhfG5r2gghwIIsfQUB556I+ibLeYsq01bVw1XWujYXHryASQSpuegXKVx9aquP3y71KxsuYJR5fw6OjoomRRNaAGsYGgW9ATsL23QFQ+4PlNxNoqrY2+2XepL7gmVPudV+su9St0W3slQFQ+4JlT7nVfrLvUj3BMqfc6r9Zd6lbyEBUPuCZU+51X6y71I9wTKn3Oq/WXepW8hAVD7gmVPudV+su9Swm6CcqRwSOjjqg4NJ3qHHl4K4Vg9ode/m20kIDyt0SdHGCZkx/HqWujn0UkVO5tpS3z9d/2VZw6BcpG/1qrG/Opd6lPsv5Ww7Aq+uqsOgihfVtY15jjDbht7cPEp/B2QFRe4JlL7lVfrLvUl9wTKX3Kq/WXepW6hAVF7gmUvuVV+su9SPcFyn9zq/wBZd6lbqEBUXuC5T+51X6y71I9wXKf3Oq/WXepW6hAVDL0D5TOnTFVcr/zl3qWY6CMogkdVVncf95d6lbaxtpLnFAeUMl9HGA4j0p4ngz4qptNDh5mGqY8eta3j4FWl7hGU23e6OptflUu9SnmG5Ww7DcwT4vDTxCqmh6kvEYBI1B1r8eIT+7ezC0boCpfcDyiDdkVWPGpd6kvuC5T+51X6y71K3BqvuBZKgKi9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6kjugbKoALWVII76h3qVvLEt3c4kkEebyQHlTpC6OMDwrP+C4VAyd0NRSPldaYncOtxVnDoHynI0P6uquR98u9Sn2KZXwzFMapcTqqaF9RTxmJrnRAkAm/FP7QG7Dh3ICovcEylziqv1l3qSjoFyff7DVX/OXepW8k25DdAVHD0D5UpqhksEVQNJBs6ocf4KycCwimwTD4qOgjLY2NDRc32CcvNFiTcoIszcnxQGSEIQAhCEAIQhAB2Cb8awumxehfSVzdUbwRsbcRZOB4LEi4u8cEBUtX0FZVqZpJJY6gB7i7s1Dhz8EnuC5T+51X6y71K23WLRsCPSskBUXuC5T+51X6y71JszJ0J5Xw3BaqohjqesAFr1DjzHo9KvBc9ZSxVcLoqhofG7i1wuEB5s6Gui3Acx5aqqqrbOJG1s0IHXEGzXWCno6BcqWF46q/P8AnLvUrDyzgFDl6jkpaCniiY+V0xDGBu7jc8E9AWJNyb/MgKj9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKij6BsotcdcVWfQKl3qXJifQdlWmwyqniiqmvZG5w1VDjw+JXLvquWi3eioiZPC+KVocx4LSCLghAeXOifotwHMdXmRtcyoPkWIup47TFvZAVkHoFype/V1X6y71Kw8By7QYHNWPw+mhg8rmM8vVsDdTjzNuKe0BUPuC5Uvfq6r9Zd6kvuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKi9wXKf3Oq/WXepHuDZTG4jqr9/lLrfQrdWLxqFuHNAeUafo6wZ/TDVYAWTeSRTsZ9lPAwh/HxVpHoGymXfYqu9uPlLrfQp7HlbDI8yy44KeLy6V4eZOrGq4Zp48eCf27bHigKk9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKh9wTKl/sdVa33y71IHQNlIWb1dV+su9St3e/ossXdkBx5IDyn0kdGWA4FmzLdJSR1LWVmI09O8umJGlxF1ZsfQRlWWJjnx1JLhc6ah3qVg49legxnE6Csq6aGaSknZPGXsDtLm8CL8Cn1lmggDS1uwAQFRnoFyk/SRHVix51LvUs/cEyn9zq/1l3qVtDUHCzRbvWaAqH3BMpfcqr9Zd6kvuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6kDoGyoP9VVfrLvUrdWLuINyLHlzQHlvps6M8By1hVJLQsn1PqIIyOuJNnPIKn+H9BuVquhgkfHU6gXXtUOHPwVl5oy1h2YqWOKvpoZgyRkg1xh27TccU8RRsY0CIBjBuGtFggKm9wXKf3Oq/WXepHuC5T+51X6y71K3UICovcFyn9zqv1l3qR7guU/udV+su9St1CAqL3Bcp/c6r9Zd6ke4LlP7nVfrLvUrdQgKi9wXKf3Oq/WXepHuC5T+51X6y71K3UIDzn0sdEOXMt5CxTFKKOp8op2tLbzlw3cBwXZkToby7jGXo6mrZOXFx82dw7vQrvx/CKTHcJnw7EYY5qWYAPZI0OBsb8CssKw2nw2ibTUbGxRNJIDGho+ZAVj7hGUtLbxVQIHOpd6ke4JlH7jVfrLvUra2u1pGo95WW/cgKj9wTKP3Gq/WXepSfJvR1guUp5ZcLjeJHAAGR+u1iTzHpU137liRckEWvwIQA1o+PmhZAAePehAKhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACxv6VksCEIfAt0Bxv6EjvNWsOaC4m4I434Jgdss26r8ClBPNRXNOeMEy5TPkrqphc0X0RvYXcDyLh3Ku6D2Q+WZJqllRT4kBG4BhEMYBFvyinSZRjq3RdyPjVPfVAZR5RYn+ji/4iPqgMpfccTt+Si/4ijZBxl5Fw37knaVP/VA5R+44p+ii/4iX6oLKX3HFP0UX/EUZRKjLyLfDr80t1T31QOT/uOK/oov+Ij6oHKPKDFf0UX/ABE1IjTLyLiuhU79UBk+28OK3/Jxf8RH1QGUOUOK/oov+Ipyhpl5FxFJdU99UDlEf6nFf0UX/ER9UDlI8IcU/RRf8RMojRIuG/pRdU8PZAZSvvDigH5KL/iLL6oDKP3LE/0UX/EUbDDLfuUKnz0/5S+5Yn+ii/4iT6oHKH3HFf0UX/ERYGGy4kKnfqgcofccV/RRf8RL9UBlD7jiv6KL/iI2icMuFBVPfVAZQ+44r+ii/wCIj6oDKH3HFf0UX/EWLkMMuC6Qkj0qoPqgMoD/AFOK/oov+Ij6oHKA4w4r+ii/4iyyiMPBcF9kC9lT31QOUTwhxT9FF/xEo6f8ojcx4n+ji/4iiLyOEXBuk3VQfVBZQP8AqMV/RRf8RJ7v2UD/AKrFf0cX/EU6kMlwXKXdU/8AVAZQH+oxX9FF/wARJ9UHlD7hi36KL/iJqQ1IuG/pS3VPfVBZQ+4Yt+ii/wCIj6oLKH3DFf0UX/EUmOS4CfSi6p8+yBygf9Riv6KL/iJPqgMpcoMU/RRf8RMMnUi4LnuRuqfHsgMp3+w4nb8lF/xFl9UBlH7lif6OL/iKdLIbRb90mo381VB7v+UfuWJ/o4v+Ik93/KBf2osVb4xxD/8A2KdLMtmXAXbG25WDHvJOppb8apOf2QuXXYiyCCDEBGSQXPhjtw7+sVnZdzXhGYaRk1DVx7+8dI3VfwBKxMWyQ6t9t0qwBFgNvELIWGwWLZkhbpUiULIAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhAJvdKkvuglByG6TUDsDui9yEbX4JgcCEkDc3SPeQRp39C5a/EaOhjMlZVQQsHEySBv0qqcd6eMt4TiQpnR1s4uBqhjjeOF+OsLJIJai3zIdtXZWZd3FU6PZBZRDQX0+K78uqi/4iUeyAyj9xxT9FF/xFg2kTKMs4SLiSdpU8PZBZSv9hxT9FF/xFkPZBZQt9hxS/5KL/iI5JGWiS7Fv9rvRcj0qoPqgsofccV/RRf8RH1QWUOcOKfoov8AiJqIcX5Fwaj3JLnuVQfVBZQ5Q4p+ii/4iT6oLKP3HFP0UX/ETJjhlwX9KNQ71T31QOUeUOKfoov+Ij6oHKX3DFP0UX/EUjfyLiv/AHljqHwlT/1QeT/uGK/oov8AiI+qCyj9wxT9FF/xFAwy4xwQqeHsgcpcocT/AEUX/ER9UBlP7jin6KL/AIiZMtLLhRdU8PZAZS99Din6KL/iI+qAyh9xxX9FF/xEyjFplwoVPfVAZQ+44r+ii/4iPqgco/ccV/RRf8RGyVFlwpN1T/1QOUfuOK/oov8AiJPqgspfcMV/RRf8RMoaWXCSe5YhxN1UH1QeUecOKfoov+Ig+yCykP8AUYpb8lF/xEbSBcG9+KVU+PZAZRI2hxP9FF/xED2QGUhxhxP9FF/xE1GOS3y49yW6p73f8o33hxT9HF/xEp9kDlAf6nFf0UX/ABEyRqRcF0t9lT31QWUPuGK/oov+Ij6oLKH3DFf0UX/EQai4L+lF/Sqf+qByh9wxX9FF/wARH1QOUfuGK/oov+IstLJ1IuAlF1Tvu/ZT+5Yp+ii/4iUeyAykP9Vin6KL/iKMMhyWS4L24pdXpVOn2QWUfuOKH/0ov+Ik+qByj9xxT9FF/wARMPyJci4dVgTdK03F73VMVfshsqR08hjpsVc8NNh1MR3/AEif8ldLOXs0RuaKh1JJqsG1BZGeAPwz3qHlGWCxw432OoH5llutcUsb2gxPa9p4FpuFtuj52IwIb8kqQFKp7jAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQg8CgMb+lBd6VpdK1rdUr2sYOJcbKBZ46UsByvC8OmM84F9MJY/kf7w7lK5Dz2LDuSNiku5Urh3sgssS0kUlRDiTZXNu4CKMAH9Iuv6oDKP3HE/0cX/EUJEvK5RcDXHmgkqnz7IHKP3HFP0UX/ER9UDlL7jin6KL/iIIRk+xcF+9F/Sqe+qCyiOMGKW/JRf8RZfVA5PPCHFf0UX/ABFDZk4SXYt+5WV1Tp9kFlG/2DFf0UX/ABEv1QOTz/qcV/RRf8RE0yHGXkXDdJqHeqePT9lA/wCqxX9HF/xEfVAZRG3U4p+ii/4inCMcPyLhv6UXVPfVA5S5Q4p+ii/4iUeyAyj76HEx/wClF/xEx8RhvsXBdCp/6oDKP3HE/wBFF/xEfVA5RHGHFP0UX/EQnDLg370X9Kp/6oLKB/1OK/oov+Ik+qAyj9xxX9FF/wARYtkblw7oVP8A1QGUPuOK/oov+Ij6oDKP3HFf0UX/ABE1E4Lg3Rv3qn/qgco/ccV/RRf8RH1QOUfuOK/oov8AiLLKI3LguUXVPfVBZR+44p+ii/4iX6oDKR/1WJ/oov8AiKNsjJcCFT3u+5R49Viht3Rxf8RH1QOUOHU4r+ii/wCIpyhlFwg7IuqfPT/k8b9Tiv6OL/iJB7ILKH3DFf0UX/EUNpojKLhJSXKqD6oPKH3DFf0UX/ER9UHk/wC4Yr+ii/4iZ2Jyi4L96NSp/wCqBygf9Riv6KL/AIiT6oHKXKnxX9FF/wARTvjJGpFw3Ruqe+qAykf9Tin6KL/iIHT/AJSHGLFP0UX/ABFLTwTt5lwboJI9KqD6oHKP3LE/0cX/ABEh9kFlIC4hxQn0RRf8RRFN9hp+JcBcBYE2KCTcbqnh7IDKBBcIMV1W5xRf8Rc+EdP2Xq7FfJ3w1zI9RALooxyvx6xThrkjBdAcSLnsrIEnkm/C8XocUhbLRVMUodyDwSPkK7XC/E28CsW0icGwcEJGHU26VSAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAWJ4rJRnPUOMVGBzxYFNBDVFjgHTRl4vbbYJ3GMm7NWbMIyxSmbFqpsItt2HOvx+CD3Lznnvp9rsSmkpcqh0bDs2oikLSdgb2c3xVbZ9wTOlBik0uPQ1b4HPd9dFPIyM3ceBO3fZcWX5cOMYEL2MdyEjwTzWNRuK2O+ytI3FRRm9jVi5xfGBJWY7XT1Ljc6ZdJ7yOHiVzYHhdPVxyGaFhAtpvyUgxR5dhkty1w3sWj0FNmVGt8nkub8Oa55VJaGXlOwo0byFJbp5/odkGX6BzwDTRfIfWu4ZXw0WvTxf4f+a6KYN60cflTmQ0248O9V9S4ki/j063b9z8WM38l8M+94v8J9azGVsM+94v8ACfWnYNb6flWYa2/P5VrVzNndT6Tate5+L/M4ocn4S5gcaaL/AAn1rojyfg5cAaSHf+6fWnmnI6gdly3wlvWN7LuS5J3ddHLPptsu39fzOBuQ8C03dSQE/iH1rppcg5flNjRU/wDgPrUhaex3eK6cPPaO4XJPqNyu/wDQ452NuuF/Uj/ueZdAP8wpjb+4fWumDo2y49tzQU3+A+tSVxNjYhdtIXdXyXNLqV1/Hj7kcc7Shnj+pE29GuWff4dSkfkz612N6Lcp7Xw6k/Ru9akrb3F7cU6tOw2XHU6xeR4qfgvyOOpb0V2IVB0WZTfIG+1tJ+jd613nojyj+CaL9G7/ADKWUm83BOBG65Jddv8AtV/Bfkcs6FJ8EHZ0P5Qd/wDuqjH/AKbv8y2joeyhb/RNF+jd/mU7hC3W3WD671D+b+C/I0uhBFfe49lD8E0X6N3+ZKOh7KH4Jov0bv8AMrASjisft3qH838F+Rh4MCvfcfygTb2pov0bv8y5q3oiygxo/wCy6Nu/ERu/zKygO3xXJiI2Fu9bKHXL+XNX8F+RrrUoqGxW3uU5RsQMNpP0TvWmKr6NssMqNLcOpR4Ru9atgecdlG68/wA5OytLTqt3Ul7VT8F+RU3Hsx2IJP0c5cYwubR0+3/hn1pmdkrAjqIoacW/un1qx6jaJ24UdDtnbjgrmleVZPdlBdXNWEtiIVWT8HhAIpITflpPrXIcrYTx8jh/wn1qVYm4Wb2XcFwmRunzHKzpVJPkoK3VLqM8J/0/IZmZTwgtv5JD/hPrSjKWEH/ukP8AhPrTy1wLdmuSsIv5rlb26UmsnNLqt5n3/wAF+Q2R5Owfe9LDw+CfWuavyjhUceplPEP/ACn1qTsAc3g4LjxRrRBz+Verp2VJwTZrh1a8c0nU/BfkQp2W6C4PUxgd2n/muefA8OYbdRH/AISn7b03v3rkqz2vNPyLqdjQwm/7lxRv6+rEpZ+gz+0uHn/u8XyFcj8HpXv7ULHW2FxwT5y80rju4OPiuadnRxsXllcTqZyR3FqKKnc1rI273TngeI45l6WOpweuqIWtIdojLQCePMehcmN6jM2/DdOrCPJWamlze5vgqpWtKdVxZbR3jkuPo99kE1hZQ5uHVu4eUPc+Qmw42a0816EwPH8Mxyn67CakTx2vfS5v7QC8CYpJRNYAwgy/ADhq49ymXRbgeeZ8TbLgtNW00F2631NLK5hGrlyVdcU405YibInt7VYXKUb8EzZYgxCnwinZiskUk4jbq0MLd7b7H0p5aSQudrJLFQhCEAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEBi4m/ZFysS5pcGk2dxssyLOuPjWqVrzG/qrNk0nSXC4uoQ4NdbUwUNO6oqpRHEzzja/O3LxVO9IfTxgeBxyQYPKytq9NgNMrLEg23LbcVCunbBukCor5XxB1Xh5cbeR0kh0js8SPSqJwoQ0lcWYpBUw1Adv5QdPPucsakmjptKUa08SJVmjOuaM6zOM9XUw0LyT5P1jXNO9xxF9lE4aFrMUbFUASG43I9SmNPJBM5pp3MNhsWkEfMou0OOYhrO12rn8WWC9q9NoUYxw+WvMefaTD3FrnRMPo0ld0WWcNc2/k8Q/8p9az21ANBITrTMb1XP5VxVK0kelj0+2xHK/qNYyvhpH2CL/CfWlblXDbX8miPxH1p4a1tjx+VAFm7XWj1ib4Oun0u1ks6c/X8xvpcp4XKbGkh+Q+tdJydg486jg/wn1pwoPOOxXfYb3DuK0Tuq0eGaqvTLZf+P8AFjdS5FwOVmo0kH+A+tdTMh4ADvQ05/8AIfWnygsIvNcuph7WwIN+a5JdQuOz/ocE7C3/AIPxYzt6Osu2H8wpv8B9a2wdHOXHv0nD6aw/uH1qVN1bbhbaTV1p3HArmn1K6X/f+hyzsrdLj+pG/c1ysBf2vpf0bvWumDoxyq9tzh1IP/Td61KCTo4LsoydHD5lxz6xeL/v+C/I4521BcIiA6Lcp3F8OpDf/wAN3rXczomyjYE4dSH/ANJ3rUqvuNk5sJ0jZccutX/8z8F+RyytodiEs6JcouP+iqN3p6t3+Zbvceyh+CaL9G7/ADKbRbkLrtstb651Bf8Al/Bfkc8qECvvceyh+CaL9G7/ADI9x7KH4Jov0bv8ysEIUfbvUP5v4L8jX4Mc7FfHofygBf2pov0bv8ywk6IcoCPV7V0f6N3+ZWIQLbrCZjfJ+PzpHrt+3+9/BfkROhFIq93RPlEk/wDZdGP/AE3etcOJ9F+WIIrtw6lsNvsZ9asZzW3O/wA6bcZLuosLcQrG26veyklKefuX5FdcR0xbiVt7nGXNrUFML/3D601VmQ8CjmsyjpwPQw+tWMNRA4JhxPapOoE7cld0b2vKWGzztzcVYRyiHvyTgnVF3kkAt/dPrTccqYPc2o4P8J9amj7dQ7suTI8jfsu4qzo1pyTyUFz1K5hsnj6DMMqYR96Q/wCE+tZDKWEfekP+E+tOzSPguWwEfBcrOjulk4X1S8/mfgvyGoZQwgtv5JD/AIT60pyfhFr+SQ/4T60/MLdA7LlkS3q/NcvV2lpTnTyzW+rXn8z8F+RAZsvYe2V4FNFYEjgfWtEuAUGn7Xi+Q+tPtQ5onfsfOPNc85YW8D8q7/U6Hl/UtodQuMrL/oR12CUWqwhjHxLXJhFEz/UsPxJ4BA4AlaZ3f3T8iwdrQXb+pc29zUm1kZ58MpGU0r2xMa5rSQQE14dSufM+SleY5mnZ7QLj5VIKtz/JJdDTYNN9uSb8As6aTTsdRvfwVbXt6U6mjsXCm+5YGRumvMeWJWQYxJPiVOLX66UDTuSfNHpC9G5H6V8t5pijjhrWsrXAEwiKTbYX3LQOJsvH1bNTN1NnfFY8dwCm3CqDFMTxFrMvU9XLIHXBgY542I+D4hVd5bxoyWlm1SbPolqJOwBHis1UvQlhucKHDIm5llibAGj62+ndHJxdxLvTZW0Fx4wzMEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQSALlCxkuG7ED0lADn2F+XeoVnTpLy9lWnea+ua2cbCPqpDc77Xa08wmzpiw3NlfhRbleop2edqY6B0jnCwsBbne68dZgw3GMPxaUZqo8Qhf1jvrs0b4o3HUeGrvN7IFuWPnTpsx7M00tNgDpqKmdteGXlYHg5veCqzxilq3nynEZn1MzjuZLX7+Xxp9wqooTTaaZ8bZLcHOBPFc+ay8U8YcNiRuAuVVZNno/sqjStXV1ZeP13NeG4PSVFFDJJBHqc252TjTZdoJHWNPH8h9aMFDRhtON/MHNO9CG6jx+VctSpJNnorKwt50ouS7LzORuV8N500X+E+tZDK2Gfe8X+E+tPGlp7/AJUoa30/KuP1irnY7aXTLZv3Pxf5jN/JfDBxp4j/AOU+tOFPk3CHM1Glh/wn1rqcGgA7nfvTxSEdV5rljO5rJGdXpdsv/H+L/MZI8mYMXgGjgtf4J9acmZDwAi/kVP8A4D604REdY3su4p5jPZ4hccr24XD/AKHBV6fbriOPqRyHIOX3usaKn/wH1rqb0c5dPGgpj/5D61IKQ9viE4N1WPBctTqV1Hh/0OKpZUF2/qRil6OMtyGxw6l/wH1rpPRjlfi7D6W/5N3rUnoNWo8F33Nt991xVer3iW0sfT8jllaUXskRODorym5gJw6k/Ru9a6G9FWUj/wDuujd/6bvWplS/Yxsuhp3FxzXJLrN+v/L+C/I5p2lNdiIxdEGUnAH2oov0bv8AMto6Ico3t7UUX6N3+ZTun8xbBxWmXXOofzfwX5HJK3p54IF7j2UPwTRfo3f5ke49lD8E0X6N3+ZWChYrrvUP5v4L8jDwIFfe43lA/wD7qov0bv8AMsHdDuUG/wD7qov0bv8AMrFWqRZfbvUP5v4L8jB28Cu3dEWTwP8ARlG0/knetNFd0YZThmMbcNpONr9W71q1rdn41H8VNqx23Mrttus30+ZZ+n5HFc04w4K9PRplnq3OZQUrTY8Iz60yTZCy+JntFFT7G3mH1qzi/wCsvvtsVGpnXqZdx5xV3aXtxUftP+hQXtaVNeyQ2oyRgTadz2UVPqA27B9aazlLCvvOH/CfWpzWfaMm480qPG/pVrRqzknk81fdRuYTWiWNvgMpynhX3nD8h9aQZSwkH7Uh/wAJ9aeTf0pbjbsuVhRlnk4vtW8/mfgvyG2LKGEEb0kP+E+tbTk7CNBIpoR/5T608QWt5rlvs0xm4I+NeqsralKCcjV9rXmr38/cvyIRWZbw2OQtbTRbHuPrXI/L2H6XEwRiw7j61I67SJ3ceJ5rllI6t+kHgrRWlDHH9Swh1C52zL+hGfaTDi4jyeL/AAlYSYLQNYTHBGHDgQCnUX1u7J4rVMT1TrA3ssPVaHZFzSuaz05Yy+1VMT9gZcDjZNU9K1mIaYQGG53HgpM2+k+Cj8mr23N/hH6FXXlvBNRLuM2SLLeb81ZTqGSYdXVMsDSHOiEjWAi9yOHoV/8ARv08YTi+mkzG9tFVtFjtJIXWFybhtuK89VLmiMde5rhbct2ACYa8wSzNZhwfNPbhC7UfkC4b2whQjqizfGTZ9EaGtpqymbPSyB8LrgEAj6V0B3MjbvXlHoTy/wBIEVfFPE80lDqb9u0shvZxvYnZepqMTtgibVua+cMGt7BZpdbe3xqsMzpBv4ISNvbeyVACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEALWGbWduPStiEIwNeM4Fh+NUxgxKkhqIzwEjdVv+rqiM+ex8p5DLV5ZqJYp3biBrI2MbwGx4969FrB17nS4AqJLUsMzU5ReU8Hz8zNh+M5VdJRYuy4uQDr1cbgcPBcWDYtDRQDU3eTfgeS9/Y7gdFjVK6CvjdIxwts4jkRy8VA6LoWyjBNUyvonyOlcHdmd4tt4rHQsYOqlf1adRVVu15nlGlzNSmS4bw380rrOcqDVpsdQ/uOV4dNPR/l3BcDopcPopA985a4dc47ab81KsmdFuU67KWDVNRQSddLSxvd9fdxI3WiVnTlyWC9ILpeX4/meZ/5YUXcf8LkozlRDkf8AC5esfciyf+D5P07/AFo9yLJ/4Pk/Tv8AWsVY015m1ek14uMfj+Z5Ziz9QNiDS3f8Ry3R9IOHB4Jbt+I5envchyd+D5P1h/rR7kOTvwfJ+sP9axfT6T8zB+kV0+y+j/M84HpNwoAjT/8Ajct1J0o4RGe23/8AG5eifchyd+D5P07/AFo9yHJ34Pk/Tv8AWtT6TQfn+vuNT65cPsvo/wAzz87pXwgea2//AKb100/S9gzGWcN/yb1fHuQ5O/B8n6d/rR7kOTvwfJ+nf61rfRbd+f4fkYPrFd9l+vvKK92HBhwbff7m9do6a8E27P8A+N6uj3Icnfg+T9O/1o9yHJ34Pk/WH+tapej9rLnP4fkaZdSqy5SKbp+m7A43kub/APieur3d8C+5t/RSK2/chyd+D5P1h/rR7kOTvwfJ+sP9a1P0Zs35/h+Rqd7UfkVVH094A3iwfopFk7p8wADUYxb8lIrT9yHJ34Pk/WH+tYnofyf1gd7Xy2t98P8AWo/0xZ+b+q/Ixd1NlXR9PeAyOa1sbbuNheKRKenzAWPc0xtuDY/WpE8dMHRvlnCcl1tTh9DKZ44nuaBO4729KdujzoxyrieTsJqqugkM8lNE5/19w3LATwUf6XsvN/VfkY+sTIh7vmAar6B+ikXPVdO+BS2DWAf+lIrb9yHJ34Pk/WH+tHuQ5O/B8n6w/wBamPoxZx4b+q/IiVeUlhlOt6cMCvu3/wDE9M9V0v4PLOXNYNJ/8N6vr3Icnfg+T9Yf60e5Dk78HyfrD/Wt9LoFtSeYt/h+RoqLxFhnn6bpXwZ8bgBuf/DemkdJGF2ddnH/AMNy9L+5Dk78HyfrD/Wj3Icnfg+T9Yf612x6fSjxk46lhTqPMsnmGs6QcNla0NbwHwHLkOesPt5v/scvVHuQ5O/B8n6w/wBaPchyd+D5P1h/rW6NtCPBxy6HbTep5/X3HlpufMPDd2/+xyybnzDgeH/scvUfuQ5O/B8n6w/1o9yHJ34Pk/WH+tb4ew00YP0ftX5/h+R5jbn/AAwi24/9Ny567O+HTQ6WFxP4jl6lHRFk4cMPk/Tv9aX3I8n/AIPk/Tv9asftOtjGxivRy0Tzv9V+R5EGaqMcj/hK558zUr3dkn/CV7CPRFk+x/mEn6d/rWPuQZPIscPkP/rvWa6tXSxt+vvOuPSaEXlZ/X3HjxmYYHSmMX1eBXLNjlODfU7jbzSvUHSp0Z5Ywbo7xysoaKRlTFTOcy8zjc3Hejos6N8tYrldlRWUEuvUAfrzh71p5eKj7VreS/X3nTStKdL3Tyhi+IMlDHMub35FSPKuV8ezZUxwYUCI3WBPWBttwDx8V6un6GsqvrYaiCke0NvxmeeKn2EYVS4VTCGijLGDaxcSuSdxObydCiksFJZD6AMPoGx1WYJX1NXxdHLHG9oNt9wruwzDaXDoupoaeOCMcmCy7m398boa6/Ky52svLMlsJp7zdKL39CVCl7gEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIDFwJOxsk0u7ys0ItgtjTNC2ZvVytDmO4tPAqts9dD2AZlimfFAyjqiw6XwwtvextufSVZxAuCeSDxuEe/ITaeUeI84dGGZclzyy05dPQB2z3ytB42GwVdw4i0Yr1kxcLWJ2K+jc1ratDnOG1gVA8f6KMuYxXCpq6dxIIJ+uuHKyw0LGDpV3USSb4eTx9/KOlZ5hcbd7Su1mb6OKFpePO4WaV6vn6I8oRUMjmUEl2xkg9e7kPFVV0Q5IwDF83ZkgrqOTqacQ9V9dIvcb8FqlawlyWa9ILpNPC2+D/MqpucaLcWPC/mOWIzpRW2G34rl6vb0QZPsScPlNz93esh0Q5O/B8n6w/1rX6jT+JnH0ju47rH4/meVKTPFDGe0P/Y5dR6QMPF7C/ixy9Q+5Dk78HyfrD/Wj3Icnfg+T9Yf61g+n0pc5Il6RXcucfj+Z5spuknDI2WcN/xHLYek3DG7ht9/gOXo/wByHJ34Pk/WH+tHuQ5O/B8n6w/1rW+k0H3f6+40vrly/L8fzPPo6WMJ+D/+N62U/S3hDHkuby+5vV/e5Dk78Hyfp3+tHuQ5O/B8n6d/rWt9Ft3zn8PyMH1iu+y/X3lEnpiwjTbQP0b100/TRgsbbOYB/wCm9Xb7kOTvwfJ+nf60e5Dk78HyfrD/AFrU/R+1fd/h+RqfU6z7IpY9NWCXHZ//ABvXc3pywANsR/8Aierc9yHJ34Pk/WH+tHuQ5O/B8n6w/wBawfo3aPu/w/Iwd/VfkVK3p3wFhFmAj0xSLf7vuAW8wfopFafuQ5O/B8n6w/1o9yHJ34Pk/WH+tYP0Zs33f1X5Gt3U2VWen3AAPsY/RSLJ/TxgbI2vMbdJFx9berLrOibJ8VJM5tDICGOt9fd3H0qrOirIWAYlnbOFLXUEvk9LPTtiJmIBBY8nh4BR/piz839V+RCuZo2u6e8BDtJYL2v9ikRJ085fMOkMF/yUitMdEGTxv7Xym/8A9w/1rL3Icnfg+T9Yf61K9GLNd39V+Qd1NlOe7hgW942/onrjxHplwSoitGN+7qnq7/chyd+D5P1h/rR7kOTvwfJ+sP8AWt8OgWsGmm/w/I0Tk5rDKCb0t4OLXb/+N6bavpOwuaYvDdvxHL0f7kOTvwfJ+sP9aT3Icnfg+T9Yf611R6ZRi8rP6+4452VOaw8nml3SPhpic3Tuf7jk2/y6oCTdvP4Dl6o9yHJ34Pk/WH+tHuQ5O/B8n6w/1rohaQhnHc5KnRrep72f19x5ZGe8PHvf/Y5ZjPmHd3/scvUfuQ5O/B8n6d/rR7kOTvwfJ+nf61vUUlhGp+j9o/P6r8jzC3pAw0NAt/7HLI9IGGabWN/xHL057kOTvwfJ+nf60e5Dk78Hyfp3+tWFLqFWlHTHBh/pyz+P1X5HkmXNVG+RzgNiSfNK1SZmpHNsB/7SvXnuQ5P/AAfJ+nf60e5Bk/8AB8n6d/rW77Xr+S/X3nSujW68/wBfceO2Zgp3OIsQRv5pWqbHqd3C/wDhK9kSdEWUBG4jD5AQL/Z3qpMnZMwGq6Xcew2ahl8kgrZo23mPARkj0rF9VrPsv1950QsKcOMlGT4ux9NK1lxqaRwK48LknkkMVDGHzPO1yR6OK9p1fQ5lCalli8gkbqaRqM77bp5ybkXCMq0724bC67nX2e48gOfguard1KjyzqVNI895A6AsUxZ0dXmaeSnhJ82N0cgNiQePxL0RlbIWBZap42Ydh9MJmtDTN1Ya87AE7d9rqVC4O5Hgslzyk5PLZmlg1tY4AAnUOZK2IQoAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAkcARYi6VCAxIJ359yjebMl4NmemdHilDTyuPB7ow4tO+4v4qTIQHlPPnQHXYcJ6zLdRLLHHvZ5jj7hy8SqWxybEKOUUeKRDW1wF9Rd6P4FfRN5IaS0XPcoH0n5CizlhzYBKyGQm2p4cRwI4A+lRpRuVxUVPws7HjSlx6noqWOORo7LbcCV3UmaaRjyHC21/NK9TZf6FMr4fg1FSV1I6oqY4w2SZkr2tce8C+y2410N5XqcLnpaGldDM5hALpXutcd11pnbxnyWVPrlzTioxxssd/zPLxzfRBwAHHfzSkOdKBrdRBt+I5elcrdCeXqDDxDicBqpezZ0cj2WAHC108nojyfGXnyGRoNuM7lqVlTXmb4+kd3F5WPx/M8pyZyomhtm3JsR2XcE4QZ+w+NjWvbu7h2HKwuinI+A4pnLHaStopDDDVzsYOtI2Gm3DxVte4/k4SMPtbLcc/KH7fOkrGnLnJMvSW8lzj8fzPNMef8PE2nSNQGrzHcF1M6TsKDtBb2vyblc2N9BWD1mNU9RSOZDTsc0vjcXuLmg7i99lJR0QZOc4tOGyix2PlD9/nWl9Lovu/19xq+3rl8pfj+Z56pek/CdQOna/3Ny6vdWwpuoaRx+A9W5m3oRwHFRSHC2in6uUOcXve/YDxT3h/Q5lSGjgjqKJ8kzGBr3tmeA499rrW+jW75b/X3GqXWbiXKX6+8o2h6XMHEmkjf8m9dLumXBg4sDbkH7m9T7pY6NcsYNkHFquioZPKIqd7mWmcbkW71t6MejPK+L5PoKqsw+XrnwRF319w3MbSeHpK1PoFs+W/w/I1/albyX6+8g8HTVgjAxjm9p2w+tvW13TbgjHBugE8bdW9W3N0P5RdTSRwUT2OeLAmd55+KjuUOg3A8PbVe2UJnY6WRzWte9hANrc1g/Ry0fd/h+Rrl1GrLnBEIenrAGtILBcf+FIto6d8BJNo23Av9jerPj6IsnMF/a6Vtu+of61F5+grB5MztrIw1tEAzVGXPJcAdxe61v0Ys33f1X5Gp3U2Rc9PeAt4xj9FIhvT1gLmOeI26Wi5+tSK0HdD+TyHfzCQXN/s71VvS7kTL2EZlylT0NBL1VTX9XLaYmzdF+aj/S9n5v6r8h61MzPT7l8WBYNxf7FIsW9POAzEhkbdu+KRWThvRHk+TDqeR2Hy6nxtcfr7+JHimrOXQhgGJYGabDoTDM1rgC6R77k25X9Cn/TFn5v6r8iPWZkGPTxgJdp02PcIpE21fTPgs1YC1g7RJH1t6t/CuhzK0FDDHVUb5JWxta5wmeBsAOF1tn6Hsovp5I4KJ7Hv4EzvP8Vtp+j1rT4b+q/I1VJupyUnJ0v4Locx7QHb8I3lMj+k7CXTSPDeyXfc3K6cn9BmBYdDK3E4uvDnvLWte9lruuOfcpGeiLJ7Xt/mEgsPu711U+k0afut/r7jkrW0K3vHnCXpFw2Wk0taLvuB2HJqdnjDxe99tvMcrJwnI2AS9M2M4TJQSmiZFTFv1476r334q239EOUCAG0EgsR/r3+tdVO0hTTS7nDV6NbVmnLO3y/I8t/y1oDF1m+nj5jkozxQF+m24GrzHcFfuOdB2C1eacPrqWPRTRyFz2FzybaLcb96kjeiDKAYGGgk1W3PXvW1UkjV/p+0+P1X5Hmemz3hzmOIGzbX7DkHP+GOa6xOw+5uV6556DsCxTD44sMhMLmMc06nvfcki3P0KRM6IMpmOMzUMjntABIneOAVhSvalKOmJh/py053+q/I8o1OcaGWXUL2duOw5Yy5po29Yy5DgN7NK9PZs6Lsp02BVD4aGTrGgW+vuUO6Cuj3LePZHpqnEqCXyjrZwQZnCwEzgOHoAXSur10sYX6+83LoluvP9fcUGcx04Nzex/ulEuOwluk++2GxXsP3IspRuc+OhkbdhbvO/n8aiuXegzBaTHsRqK2LrKWXq9DA57TsDfe/pCw+1a3kv1951xsKUcYzseWxjkG5u7Tw808U1z1oNcJW3LHEkbHuXuFvRFlAEkYdKAP/AB3KNUPQth1D0hU+N0Za2ja+R/VXeTYxlo7V7cStNa9qVveOlUkigsk9HOY87VDCxvk9ASA58crb2uA7Z3oK9F5B6EsAy3GyWqibXVJALjPCy4NrHcK1IYhBG2OJpDR8a2gEcSuepVlU95maWDnpKWOmZohaGR8o2jshbw03vfbuWQQtZIIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACQgcfnSoQGDSL++PilNvDwWSxdbUPhckBw4vhVHisTIq2nhmY12oCSNrrHhzC6KOnhpqeKngYGRwtDGta0AADuAW0iwBeb2N7od2gC11jyKAz27kmywDnF3Cze9DgAbud2e5AbNu5G3chCAS47kXHclQgEuO5Fx3JUIBLjuRcdyVCAS47kWCVILA3HNAJYJQLcyiwBvzSG5cCDZvd3oDkxTDaTFKOSmq4I5YpGlpD2Bw+dbKCkgoqSKmpY2RxRNDA1jQ0WAtwC3jgNHDuSPBDbtG54hALYFKLBa23aB7xreIWY87YbWvdALcdyLjuSoQCXHci47kqEAm3cl27kIQBt3I27kIQBt3I+JCEAh4HZIdgCb/Esjw3WO+oW82yA5MSoIMSo6ilrIo5oJW6SyRocCPSDsjD6Knw2nFPRxRxs46WtDR3cl1gjwJWLw1x0uFwO1dAZjZvAD0BI4i4479yxDmuF29ohbBwQGB7LgSXFZAbnuSoQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAhIuARxQBZKhAI424BY2AFiS6+2+6zPDZILA2AQCOY1zCw8CLEJsw7AsPw6rqamio6eGSe2sxxNbe3DgE5kAHbisQ4h1nO3PJAZW5cNuSGtDWgbm3MpGkkEuaWkGw9KUE7X2vyQC7dyXbuWJDieybBKLjiboBdu5Jt3JUIBLjuRcdyVCAS47kXHclQgEuO5Fx3JUIBDYpLBDxq2PBI2x7BdqcOKAHMa9pD2hzSOBF024fg2H0FZV1FLTRRzVha6RzImtJLQbXIHpPFOTdrhx35eCGCz3dki/E96AUkDe+3BLcLFrQGEAW52Q1otc8OQ7kBlcdyLjuWu5OkgXBNj6FtQCXHcjY8kqEAbdySw7kqEAlh3IsO5KhAJYdyLDuSoQAj41iQOBO97oNh2nIAcN99wdrHgmujwPDqTE6itio6dtVUPMjpRC0OJIse1a6c99fG4twSkkWFrDv7kAO4gCxHO6HXb5gbZIzjYi4G4KBZxILr+hAZbEg9yVYNFrAdkdyzQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhAYFx06m7370Emw1Dj3LNCA16dJLbuJd3rI2BJtvbjZZIQGsNBcH6iNuHJZOaDYEAj0odY9k+KDcvHcEA24ZgmH4ZUzz0lJTxTTPc9z2RNa4k8dwL8k5k80E32CxAI+yOv3IBSNXDntdJHYdm5JbtcpRfV6FkgMLafNAFzbZL/dBN1ksQSXG7SLcCgOPFcPp8UoJ6OrhjkhlaWkPYHCx9BS4fRU+H0cVPSRMiijYIw1jQ0bCw2Hgus7n0INhxGyAxY3S1odx70gBcN3OFj3rPib8uSQfZNnbW81ADhraQBx70nvg25BG62IPBAY3BN+QTbiuC0OJ1NFUVlNDLJSydbGXxtcQbW5hdzm9oDTZp3d4rPg8a3ceCAxa0NaGNaGtA2AFgAshZxuLhZOOkXsg3NrbIDEixPG5CRosGtPHvC2BCAwYCB2iSR6UtuJO/ildySNuHEOdcncbIBrhwSggxqoxJtLAKqdrWmQRN1dnhva6dCQN9+5Yt1B1nb25rO41W5oDG4tfexS7X9Peh1ybFtwskBiez3m6S3G5O/es1rlAcW3ZqsbjdAYTwQzRGKaNj2kWIc0FcuCYTR4LQtpaGCKGNpcbRxhvEknYDvK7dw7U51h3JQRxc2xKAXYDe5ugi/Mi3clB7kt0BrA0CxuWnv3S6dgBs30LNCATiOaQEA23KyQgACwQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCFi5xuQ0XI5IDJaK2R8VO58TdTxwFrphzJnDDcvyMjr5mRvcQACTz+L0JzwfFqbGaEVFDIHNIBuOSAjHRfmqqzRh801VGxuiWRgswt81wHMlTWQlgLtrNBVX9A7teC1RAsBUz7f+cKz6l7Y4XOk8y26AruPM1diOGVOK0ktL1VO0yGPe5sbcAVLssYm/FsNiqpWhpsARpI3sD/FUZi+HYnRvqceyo57ssgapaNlmRyNbs5pJ3sXb8Fc2QcUpcUy3S1FJE2EBjGyRNJIa/SCRcje10BKEIQgBCEIAQhCAEIQgA8FjbdtuCyPArEHs9yA1VMzKaGWeUgMYwk3PcoNh2OYnmCsxKahMDaeimMTAWuBcDvfY2PBSTOtxlPFtG8nksuk9x0myhfQiHMy9VCTeV+gvPp0FASfJmZhj1G97urEzASWNFuDrcLkrTnXMrsKdT0VGGur59Dw1wv2C6x2BuoT0MsdHmnG+1qgELNO3A6t1tzq1/u0YMXkmI4Y4jx1usgJJNj1ZguN4dS4l1fVVshYHWO1hc7k+lTmNxeGubbQ5oIVUdOPXGqyyY22kEk1t/Q1WdhJf7W0Yc3/UMub89IQHYhCEAIQhACEIQAhCEAIQhABtY34KB9KGaqrLGGQVEMYcx9TDFfqy7z3hvIhTt4u0i178lV/T+5oyhSMJsPbCkIb/AOqEBZlO8ywteRYnkRZR/OuO+0GH08rNAdPUMgvINu1f0juT9AXdT29rDzlD+lFmHVeAxUuI6RK6dvk92k2lsQxw9N0Bi/GcQwvG8MpJXU0sddr+xguI0jxU3j3YD37qhMpyY3ljNdBS5111uovFHUzPF4wGnXYNvxuFfUDg+Jrmm4cAQgM0IQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhaKqoZS08s0zrMY0uN+4C6A3k2F1C+kbM1RlyPD3wRh3XTOYbsLuDb8iFnQdIGC1uLHDY6mM1NzZm+9uPJMnTO5r6TBiJS0eUv4Dj2EBP8ABqo1uE0NS8WfPAyQi1vOaD/FcmOVFdHCI8KZGag3DXTMJbf4lty5/oDCjxHkkW//AJAu2W9vrZ7TN7d6ArbC80Y9Q5ybg+NQ07xJCJ2up4X2Ac/SLkn0FOOfc2V2F1MVJgVRhbax2rU2tdcAi3IOB4EqJ4tNjOW+kKDEcUe+upqkMpWCVwYI9cpta172upbnbo5w/MlQaxkjaWvubTtiD3C9geJHIIB3yg7H5aYyZidQF5BI8jDgOVuJPK6krPNH8VWnRDieJGmnoMYq5KuSFzy2WSwNg4NAsPQrLYb3NtuSAVCEIAQhCAEIQgBCEICN56zI3LeECp2dI6WOINIv55twuEwVuYK7AG0NbXMvDUud5R2HfW2t4Hc9nlxTF07GYVGGktvS9bDq3991mydunGYt6PcUMfadLSuDDwsbtQE/p6qKShZUg/W3RiW9+AtdQygx2tzPjOLU2HOibT0D2Ma8gjUHgm9wbHzU64YyQdHkW9nuw3bx6pQzoB1tpMVZIdUzeoEh9NnoB3oukNhwSV9R1TcRbK+FkdrXIuB2S654LXX5ixfCsCpceq2wdTK1jnsDHdkvIaBYnbj3qkc0NqB0jYe+lJ8l8rjDxsPfG6uzpXOrokqOqFm6qbT4dcxAWFRzsqoGyxva5r2jzTddI4KK9HHWOytTGVvaLngm/EalKkAIQhACChCARCVCkjAiEqEGDTM97IXuaAXgEgWvyUJyZmmrxbNWYMNq42tFFJEwWjLfOa48z6FOCbFzb72uqvyE0u6Us/hzzfyim07cOw9QSWbI4cH3Bb2hbn6FC8yV+ZnSVM+DsomU9M/SRUxvu652tYi6m0uktZcXAco3nyixXE8DmgwaokppXaSJY7E2DgTse8AhAceT81y4xkx+L1sXUSxGYOvGY2DQ4i5ueG3emCDMWbcWxR3tTPl6Sia4gganSd++l/csuiyf24yjV4FiUDRqEzJCXatQc8jcfH3qNZxytV9HbRjmX8Tkp6V0zI5KaOJrGuc91rl1ydhYcEBecDnmMdaBrub6Rsti1ROMgDuG5HjutqAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgC290l+HpWMr9AJI7IFyVEYs/YM7GW4Y6pj8o1Nbzvc7jkgMs15s9rqmOhw/q5K59naXDVZuogmwN+Se8GFW6HrKp0Zc7k2+3FVJljCajMOecTxJ1Y9pi66nikDAdLb3A4j4SfcjY3iNBnXFsv4pXy4gI3RMifLZpZ2XE2Avx258kBaFyDd3hssljY/CWSAFieO9/iWSa8dxilwikdPWyiFgIsSgOqvfNHTk0waX2NtQuFW2acw5qwCWGsMdA6hfOyEgxPc+73Hh2rcApdlfN+F5lL/a+dkmgA7X5m3d6FC+mKlxl3klZBPIcNini1U1wGucHE6r8eAQFn0c3ldNFMQ5hcCbEW524LpHH0WTNlrEvbfB6OubGImvBdpDtQ84jj8SeefFAKgoQeCA0ykMjeSeHaPxKB0OYcRx+rrZcG8nMELQYy9pN3cDwO+91MsUdI3D6pzW2Oh21+Ox3Vb+x7YW5Mh1ttP1k2s+jrn2QEwyVmMY1HVxTafKaad0L9IsLtAvzPepM7zmqneicyPzlmLqjogFfUBzRzd2d1cRFye8cEBkEIAsEIBHdxvv3LlxCWSGmc6nDXSCwGoXXU4kWsL77+hYdWCXXNweIQFYYxmHNmA4rhzqlmGvoqqbq5A2J5fYC5t2uKsmgqBV0sMxa5pexrtxbiAVVvSrSYzBiFFi/lEj8MoJTO+E2DS0NAO/FWRl2rZiGB4fVMAayWnjeGg3tdgP8UIY473PC3JZJDxHcVkgwIsX7Djudgs1i9odtzG4PcgSI9mvMkGAUjesIdUv06W7G+9jte6yy5UYhiEHlNd1LQ/zWMBaRY23BKrrN1HLj3S5hGHSVLo6cU1RqAaHXLdweS7qirxXK2fcLpqnFJ6qixSoipY4XtDGsOm5Ite9/iQktdgs2xSrBhu25N77hKy+kX+NAZIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACwLbk6uHKyzRZAaXwxO+yRsd+M0FYVLHsgPkoY134vqXQWg8RdDhdtgSPSEBAujXLeIZeoZo55YLPlkfYNd751+YTlRUWNvzFUSVNRTHDSZAGBjg/cbb2spXpBG+6NO4IO3cgK1wfKeI4DgcmB0ssD6WUOa0uDnW1O1G5I9KlGS8AZl+glgbI18ksnWvsSRqIANr8OCkDo9QPaI7vQkZC1pBHG2570BsQhCAEIQgBCEIAQhCADwWJGtiySW7igNdQxssT4pBdj2lp+NQnD8v1+BV+JNwmWFsVdMZiJA51uVuG3Hkp0QDa/JI5oJvz70BA6HKdZgWWpabA56dmIPa/W+YOe03NxyutmO5TqMXw7Dp55YvbSnjia941Bp0m7rC1+KnOkXJ5nmk0ek3QEFmy9V4vmDDq6vcwRUUheGkOF7i3dbkp1G3S1rW20gWCUtBFuSALIBUIQgBCEIAQhCAEIQgBCEIAcLggqDdJuXsSzFg8VJRy07I2VMMtpGuJ7DweQKnKS297oBixilxJ2XaiDDp4GVhjIa6RpLQeXDdR/GsrVuYMEpIsQnh8upahk7XN1NaQwbbWvxKnoaLb7pNA1audrXQFfYpliuzPV002KyRNdR6tOkOZfVx5ehT+mZ1cEcY960N+QWWYaAO9KBYcboAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgC+4WFhu0tJB71md0IDS2mga/UIow7vDRdQ/pGy7V5hZhzKV8TWwzOedQdzbbkFNrC97bpAAOGwQDB5BiMWXaajgmgE0MLIwSDa7W2TTFFmikyzRx9fRvrmh/XEROIPaNrC1+FlNQ219+KQtJbbUfFARQ4PU4vJT1GJOiJiDDZoIOppv3IZ/KKLMFTaaldhsr7xM6t2toA4OPDipXoAbZu29zbml0i4KAjuWcAjwNkjh25pXOuWkkC5vzUhZe3aIPghrLA7796Vo0j+KAVCEIAQhCAEIQgBCEICO51y6zMOHtguGytkZI1zibdk35KP1eXMRxw0lJjEkT6OJx1dW1zSQeO9lYVt7pNPC2wHJARKbDcXbmKnZSVFK3BoqFsJjc1xfrBIO9rW02XDTYDiGB4tiVXhskJirXsfp0l1tANuVuanYYBewsDxCNI06QLD0ICvqLo+gZgssMz2OrXSPlD9RsNW45X5rCqyxieIYNT4JVzQmmhaxhcA4X0EOG9u8KxNIvfn3pQAEByUlLHR0jIIR9bYF1N80WSFl7WNh3d6yQAhCEAIQhACEIQAhCEBpmD3RPEZaHWIF1AssZZxDD84Y1iskkWmskjfYB3vWuHd6VYWnfbZKQgItidPjrsyMmo6ikbhvVtD2PY4uvffe1ljDJjjsaq2udB7X9Y4RjqzfTbbfxUq0i57iLWWPVgObpNmj3o4ICJswWvw3BJjhT4GVh6wuL2kgi5IAFuKwGFYljeHRw41JT9U0tLgGlpLhuDwUxttYrF0Yc4Em7bebyQGuBgijjYO1udwt6QNA4CyVACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQCOvbay5jTwdcJDA0PvfVoC6Xt1NsCR6Qi122O6AglTlirw3MrsZwySICSN0bozqJu5xN7Wt3LtwHLktPj1ZjFc+J09Q5ruzcWsCOBHpUuDdrcUhYDfVuDyKACQXW371kiw7kIAWqRrJGuEjWvF+FrrasSwEEDs33uEA3YhTzRUMgwkU8UwabambejYBR9lHjOK0LoMXdTkCUEaIy3YfEpkGgEkDigNsTck+KA5MNo2UNDDSR+YwEfOT/FdYAvceCNI1X5pQLIAQhCA0SMbKTc7AFp371BqTLNdg1TWtw2WJsVQwNYCHGx4nl3qfaBY7cdylcAUBGslZeGCQVbpNJqKid0znC9rkAHiPQpKNgLpC25B1G3cskAIQNkIDGQ203BO/JcWKtqzSv8AIXxtluPPBIXeRe26LDuQEOp8NxXFsL8lxiSAseCHhrC0kH4lJsPgZR0kFLGCGQxtYPBoA/guq3C2yNIvfmgMRu1ZpLcEqAEh2N+/ZKktvdARLNGXJq3GaXFKGSJk9PG5navvqO/ALmpMAqcWxijxbE3xk00okia0FpDm7d1lNXMvwJHfZDGBgs3YdwQCM3JPdsla65O1koba6UCxJQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEE2CARa6AEIQgBCEIAQgmyQuAFygFQi+6EAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIugBCRrg4AjmlQAhIXAIDgeCAVCEIAQka4EkDlsluEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIRfdBNhdACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACFrlqIYSBLLGwnYanAXSumibH1jpGBnwi4W+VAZoWEcscrQ6J7XtPNpus7i9r7oAQsQ9pNg5pPddK5zWNLnENA4kmyAVC1RVEMxIimjeRxDXAragBCEmpt7XF/FAKhCx1sLtOpuruvugMkIQgBCRz2stqc1t9hc2ulG/BACFg+WNjmte9rXO2aCbE+CyLgAbkC2+5QCoNrG/Bao6mCR2mOaJzu5rgSirnZTU0s0h7EbC93gAgMtrWPmJL7aWsu3xUVOaWtvUOY4Ud9nlu2/De9k34lm2upqhrmUkggPDVCbnvtugJ8NgOSFow+c1NDTzuBaZI2vIIta4W9ACEXF7X3QSAN0AjuBskHAA8UrjZpPcoRmzM8+DMlnbTzvYx4aLRk7E270BNgC4NJ2IKyXJh1U2uo4qhlw13fsutACFiXsDtJc3V3X3WV0AIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCLjvQAhapaiGG3WzRsubDU4BK+eJket8rGs+EXABAbELGOWOVuqN7Xt72m4WSAELFr2O81zT4FZIAQka5rvNcD4FKgBCLhanVUDZAx08Qedg0vFygNqELEyMDtJc3V3X3QGSEIQAhYue1ttTmi/eVkgBCwfLGwgPe1pOwBNrrJzmtbdxAHeSgFWGkNJcVjHUwSOLY5o3OHJrgSspHhlyeABN0Ao2JFthwSk3GyisWa45HUjgx/UTEjrdI0/LddtTmOmjr46aJ3Wl7A/wCt2dbfxQD4wbJQTqII271rif1jGu82/I7LaPSgBB4IQgEAHHvWJDWgpS4X77KH5nzh7TSvJpKp8DN3SNh1NAsOd/SgJkOAQuegqmVdDT1LTZsrGvF/SLroQAhF78FiJGF2kObq7r7oDJCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEXF7XQAhYdbHr0626u6+6yLgCASLngEAqEXF+KLjvQAhCEAIRcd6LhACEXB4FCAELVLUwRODZZomE8nPAW24te4sgBCLjvQgBCEIAQhaJqylgcGz1EMbjye8AoDehICCAQQQeCC5rRdxAHpKAVC0R1tLI7THUwud3NeCVnJUQxECSWNhO9nOAQGxCxY9r2hzHNc08CDcJJJY4heSRjB/eNkBmhI17XAFrgQeBB4pUAIQi6AEjraTq4JbjvC0V8roaSSSNup4Gwte6A2nYC3BcMeJ0pxHyJkjeuBILb73AumuHFcQfUsY+ABhIudB700U23SGd9utftf/wAMoCdoQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAkfs3jZKkf5vC6Aqnpwlq6aDBDRVD4HuqXCaVtrtbo2O/Fb5KupzJguG4RglQ9+mKJ9TWNsHa221NLXWvccwuDp/iFRhuC0s8rWCeoeyRwdp20cjyUZw6Kv6MZMNroA+owKqijMri0yObJJYA6zsAAAbIC8cEw32rw5lOH63MHG1uZK4s3Y0zBqKKQW6+eQQN43u4GycsJxOjxWkjqsOqYaiB/B8UgeONuINuSgHTM2QRYG5rXlntnAHEA24lATbAYJG0cMlaT5XI25vYkHnw2US6T8xzYfUYRhtHM5slZWMgkttdrgfQp+0t6q8NndxG/NVD02YWKrGcsyTNlbTjE4TJI0loA0m/a5IDfmavkydiWFTQVDooZYSZ2NG0jy7SCeO6tiJ/WMDxuHBUL0nZdoRU4ZFhM8889QwSsY6oMpc0P3IHdbuV4QVlI6Z1LBVQOqomNLohIC5txtdvEXQHTPLHBG6SU6QBxVYVmeeqzNE8TEYW193He2nT3WvxUl6TXVn8lz5ACZhKzUQ0u7O9+Cr2gdhtXlylEksfV6T1r+sAsL7b8kBc+HVcNbSsmppNTH2cCARxF+ajucq1+BxnEI7hoBc8jxAC4uiPykZaqBUm4FZIIjYi8e2nx25rd0uut0f4uSRfSzT3+e1ASmjqm1VNFNEdQda5XSTpPzqOZCimgy5C2oB1l5O4I2sO9SGcExOtx0lARCixcY5maemiOqnpQyQd2+x4qYgBrQ0bbKruh1hhq6+Oc/zkMu6/G2vbY7q0nC4QFY9IlRiNFnDK7IKyURzTyDSLW2aF2dJuYZ8KwzCoaKZ0dZVVEMLy3iWPBB5W4pv6VZGR50yUSHX8pm5/3Wri6YqGdzcv18bHujZWUwdYE2AJJKA688ioyXgDcboyXuom2qCLN1Fzg0X49/JPmM1eL12C1MVPTOcyai1GTrGi2pm+x8U09NVTDiGQ6ijpj1kteGuia0gl4bI0mwHH4lNssUr6TA6SGWzn9W29+7SNkBX+JxOl6NosMhcTWDqNYA3u14J9HBSbGpjU4rhdI15LY5Wl/gQFJo6CCKSSXq7l7r25fItgpoxVOmLAXEDl3IDdC0Nia0cGgALTUVEVMx0k8uljdztddB4bLixdokw6oY/YFvHhzQEemz7gDInVDaxro2S9Q93VybEHf3qznztgTI4ZjXh9JMC4OMT7AD0abqB5Apqd3R5m1z9Lyysry0kg2IabJtlDB7GzysFj6kUjDqbYkHrrIC3MZqcTElMcMpjNTvc0ucJGt7J47FM2Zsaw6eJuG4hUCCU8W6HO3afQLJ9ypb2ip7O19gG978glqsv0FVUipmY8y7nzu9AdeEMhioI46Z2uIX3tZcGIZlw2klMU1UI9LtLjocbOvw2Cd4mNiia2MWaO9U/mamxbLuPVOMYFLTV2GyTO8qpxGaiVsjnb2+CAOXJAT3M1c1mCvxehf24mueywt1hG1t+CdcExBmK4ZFOw3IsHeg2F/pTFJidNinR7NiEMboaWSJxDJbBzbOsb/IuPohZNHgFYZiSHVjy29+Fm2QE7cdO45pWiw2QBcC6VACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAeC122JY24HmrYVrcLMFtiOCAqvp2mqKPD8Jlo6p9K5+IU7JHMAPYL+1x9C7MUnlzDRQYNgdY98bWuZUVjG2MRvdvZcBe9jw7k1+yQjhly3g8UrnNdNilNESHabBzrfxUdp46zojxOStBdVYBiBMk7gDK5gj2b23WDbl58UBeGFUDMOpmwsfcNbci1rna5TZnXG/aXBHzxvImc5gY30FwB5elO+G4jS4jRx1FBPDNC8DtseHtvbhcc1XPTJHN5Rh0o+12tAfYbXLxb0ICwMChMdEx820kl7/KscwYzS4RSudUSBji06RYnvtwC7qcAxRX2AaCPkVZZ9qHU3SJh0lY4DDPa54cXbDrC92nc7fEgOvo4zc2raymxKpd5VKGtYHAkk734CysXYuAa7tnf4lReMsEkOAuoXNZiD5JQGDiTYW7I3VwYVW08kVJSvqoPL2wMc+LrBrsAATpve10BhnDFW4HlutxFxuKcNJ9N3AfxVdYW+fEMk1+YKyqf7YUnlE8RcASRG3UwX5KZ9K1HJX5DxaCnjklle1gayMEl31xh2A48FWOD4Bg1R0VYtVTz1QmjZVtaxtWW6ntYezbmb7WQFqdHmOOx7K1DVSuLql0TTKTx1EeCXN07sLZ7ZNPZZ2neACY+hGhNDkije5skccsUb2CW9wLHjdPfSExrMjYw0m7xTPLd+dkA84NWNr8Mo6uPzZ4WSnxc0H+K7Ra1zsSon0ZNnGTsN64EE08JbcEbdWFKn3JJbxFkBDMMxOTH8wTRMeRSUxcwkcNbXdx35hTXY23371WnQo58dJmCOpH184xUubcWOizLcfjVlu32aRdAVb0j1OI0eZsCbDiEzIJa6Fj2ACzgQ644Jx6VMfqMMp4MNw+Z0VZVWdGW7ENa8auItwumnpVdEMz5bEju17Ywe+tyctXTVh73YjhmJ9oQ0zSxz99ILngDfhzQHfnN02VafB8RoJHRgTh9c5thriAuQ7jt4bp4fjGN4lQQS0mGE088HWNkEzdwRxsd0y9MRFZl7DqKI3lqnGGMDcucWbAd58FNsqU76bLWFU8rSDHSsY4EbggICvRBKOjvDaKFxjqWtkGlvpIt6E25Qw6tp8Dqq+pqJBiTKl0cdwL9XxG424gK248GpY3xGNpIYeBNwsqjCKWSVshY4EbWabD5EBy5SnqqvLtDUV+p1U6O7nOIJvqPd6LJ2qZ46aB80z9LGNLnG17AC5SxxiNrGxaRG3kuXGyDhNawgkGB4JHLslAMU+esCa2V0Na15jOl/wBbkFj/AIVlUZ7wGOGnmbXNdDM8s19XJtYb+9UB6PYIZKXNrXNDwyuiAvvbsrky4Y5OgWvqHBj5msqS19gdJB4oC0MTxPEdNJPgWHCto6hjZTMJRHs70OseG64sy12GVkM2CVFQI+vb1ckehxFiAe7+K39GpLsg4A5zxI59BTkkG/GNq66/LGH1lTJPOJtZtu2S3KyA7MMjpoqKCGnIdFGxoAAIBIHFcWI5mw7D5pGVU4ikj89ulxt8gTvDDHT07YmA9W1unjvw71UOcIsWwDG8UxfLslNXQvcH1VP1ZqXsIFmC3vb3d429CAt2kqYqqnZLSu1xuPGxH0qM5tr3YDK2uFxET2z6SQ0fSnHJ+JxYrgrKinifCCS1zZBY67C/zph6aSW9HVeRbrBJTgH/ANZiAnFNK2aFkjDcOAK2JoypHLFglO2cHXa+4sndACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEBi8E7W243UZz9j4y/liuxGMXmZC97OW7fiUmlALLONh4psx3CoMawyekqAdMrCy17WugILhTMUGFxYrW4zUeU1IE0bC1p0xOAOkEDhx9KfMonE8RxGqxGtq5XUBLHUrHadNtw61txy4pixyijo3tocPkdLLDB1pIfra1rb3BHI7Jpy1X4hiuEyYr18MNDCwPpQW6dYNw7e9nWsPBAXEdLLutY23PoUcqs7ZepayejmxFraiJ2mVvVSHS4b8m2Txh8kj6CN84u5zQNhba3FVZlSipqjpTzWKga71psCeH1pAWDgOasJzBRSVOG1gkih1F5DHDZpsfOAWFTm3CqSrjhqqkMbI0uadDjte3IKoMRinwvFsxuwgOGENw8ue+xcG7EvOobD+CklFl7CcyZXwySbE6f7Cwktqg0tPGxI5oCeYzmvBsHklgr64MmjF3tMbz9AKj1V0lYXFi9LR08rZevjEjTpeLAkD4PpUbzBTU1T0u0rZNdnTRh7XO2I09y6c1xQ03SnhjHthZCKAhuwHvxZAW1EWPY10fmFc2K1YocPqal/ZEUb33/FaT/BL7YUXlDaUVMPWk2DBIL8L8FjjTQMHrdVizqJCb/ilAVfliujz1U4uZKxzJY5WNpnaNRYHAkgXA7hxUxiz3lpz4IosSa9z39U0dTIO1/hUX6GY43z5j6os0mohLbcuy5MXRVSRVdLij2tEkrGSuj99ZwegLVqsyYbC7szh727ea4W7+SV2asJbhRxHypvkjQ4uk0P2ANjta6hfRjKypqMzQV74zVR1j2BhsCBpN9juojUQT02UM+UwffDm4Y4wybkBx3d2vEnwQFoz5/y9EYzJXtDJLaXdVJzO3vV0nN+FtxOGhNSDJK4tYdDt7C55Ktc2wxs6IcFeOrbJ5RSDWQBcbc10dIAFO7J5jfG0ufVapOR8zmgLiedUZdGe0W7FVt0g4K04ZU11fXuiqAWmElmotu5oNrKxKA/9n05c5tuqab/APlCjmc8v4dmvCZ6OepIIsAY6jTazg7e3ggF6P5MRfluH22lfPUGV4Ery2+m/Z4ehcfSlmD2gwFzxM6Fzi09a0Ekb27iuLoqe+gylJDiczY4I5p/rsh0jSHfCPoUzllwuqpoo5Z6WWORupmp7Xah3jvQFY9F9PhWI1jquizHJXvgDXyRGmczSLkDcgcV2ZXrJc249jUtQ8uo6CqqKFjTuA5riGnkVoxDLMWH9IdLUYQXM8qljjqow4kNYBcHSPN35rPolDcOxfNFFUXZJJilVUNDtiWB5334j0oDvyPjVS3OGO5dq53vZhjomt1W31sD+Q/vd66el6WppcFopqSd8bnVcbHFtvNN+9MeU6V1d0u5nxGC5putgcHt3Dh1IHEbHdPXTUS3KsfVkCQzAMB+FpNtvFAOuAYxR0WE4VHiFXepniJj1MJJAO/AW5hdOI5zwLD6x1JU4gGVQaHdX1TzseG4bZV50TYw+GOno8z9XFVtaBRtkaIi9tjrsHbu5cOC6cYjik6ZZQ8NcDSwdkfjDeyAmdJnnBKhswZWtdJG6xb1b9v/AGpzy9jdFjlH19FMHi54NcLWJHMDuVXZZjiPSbj0Tg3T5RVWb/5TyXd0LOLMQxWAPBa1gIbfhd5QFm4jV09DCZKshkF93kE9rlsFwYVmDDq2q8njqutm2DRocLn5Fx9IWFw4rgYglrYqR4kY9j5ZdDS4XsPTc8lD8kY9itJmNmDZnpGmoc4Np54KbqmF1iXXJ48vBAWwbX357JobglOzGfbHS3rNRde3eLJ32tYosLWJQCoQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEBG815TpMy9Qa17gIXF7BpDrG1ua2YnlmkxDL0WE1ZMlNGGBoc0G2kWGyEIDXlLLMOWaIU1DO99PwawtDQ3cnYDxXbmTCIsaw9kMguY5BKzYGzgDY7+KEIDPABNDRtpajeWEBrnE3Lj6VljuE0uL0ZhrI2vDbuYS2+h1rXHpQhAM2F5Qo6atp6ueR1XNCwshMrB9aaRu0W5JabLphzXUYnFM8OkbGHtAFnBvIoQgJJPDHUROimY1zXA3B3CqibJ1JFm+OjhnkjoHv0upWsb1ZGm9reO6EIC08Po4KCmZT0sbY42gbNFuVkxZpwx+PEYbNdlJICHubY3tYjY+CEICQwRMgiZEwWDQABZZucACXcOCEICMR4McIzBLX0LQW1YbG+M2aGgcx3qUMcXNF9iRuhCAjmPZUp8axGlq6ieQSUri6Lsg6CQAbfInarwunraBtLVsEzGgadYvYgWB8UIQDPS5RpY6indVzvrI4ARDHMwaYwRuApKxoaBpAAAsAO5CEBkd0IQgEOy1VkAqKd8RcWhwsSEIQEdw7J9JQYZW0FPK5sFW+SSQBgAJeLOWlmRqFmWXYEJXeQuaGaNDbWBvw8UIQEhwigbhtE2mjeXtadiRZdqEIAIBFlGpssRumn6usmiZPIZXxtaNLieN0IQCYxhQlwd+CUMLIKSVpjuzbSDvsOHFPGE4fDh9DHTwMa1rQL2FrmwF/mQhAdpNko4IQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAQhCAEIQgBCEIAWLvoQhARzN2U6XM/k4rpHCOGRkrWaA4BzTcHfmtmNZWo8YwMYXX/XoNOk62A33vwQhAZZVy5Fl2kNJT1EkkFy4Mc0AAk8RZb8z4JDjmFvpZBpOppDgASNLgefghCA24MZ20ojqhuy/avckXXPmbAqPGqNzaqJhLW3bIWgkWuQEIQEJ6NctQvhhr6yZ9bPCA+LrmjsO3uQfTt8ikrcutZm8YlHK9knkxjLQBaxcDx+JCEBKXxte0h27TyUSdkWha/RFK+OiMhkdStY3q3OJ7RPjzQhASampYaSjipIGNjgjaGsa0bABM+ZaCTGDHRlxjpnG0hbY62kcCDyQhAO+G0rKKgp6SEWjgjbE08Nmiw+hdIAbtfdCEBF6bCBg2Nvq6bswzX1RCwaXuO7vHgpQ0AgOtuhCAjOO5Spcar6aqqZn9ZTyNlZ2AbObe30p2xHCaXEsMFFXxtqIjpJ6xt7kG4PyhCEA2RZVg8sp6isqJKzyV4lgZM0WjcObfSpIwANAAsEIQCgAcEIQgAAAWA2WqrhFRTSxONhIwsJHcRZCEBHsKylS4ZDXNp5XDyuRsshDALkCy0UmSKKky7LgsUrxRSh7XMDBY6uOyEIB7wPDIsFwynoqdxdDCxsbLgCzWgAD5k4/xQhABaCCORUbqcsRSVNXLDVSwCoIMzI2iz7cL99kIQD1QUMGH0whpY2sjvewFrnmUxZlwp+PyihqSW0l7uaLEO0kOBIPpCEICTRMEcbWDg0ALJCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQGLwCN9x3LEtvc3sXfMhCAZ6HLtPTyVcj5HTS1BeC97RdrXCxaPQmzCMlUuFsipm1MslAwaWUrmNEbR3AIQgJXZsUNgLNaLW7gqay/TCr6U8ztirJqZ3lrgTGB9y9KEICzaXLmHswmqonwsliqY3xTF7B22u4gju3THg/R7R4XVPfFVSupCSW0hjaI27bAeCEIBwrcpUk+YGYw6Rwna4OADBxAtxS5jylS45V01VJK+GphDQJGMBcWg3tc8ihCA3NyzC3GosRE8muN2rRpFj2bJ5q6YVVHLA5xDZGuYbDkRb+KEIBiy3lSmwE1Xkc7wZ3Nc6zQNwCB9KxyvlGky9JM+jkdpkBBboAG7rnghCAxnyjTe2stdQ1ElDNO50kvUMH1xzuJJPNdFXlShqMBqcKsGQVEbo5SGDttdxBCEIDmr8m0dbgcGEzSudTQuY9gLAbaeGyTE8m0eIRUMdTM94pNfV3YDbVa/0IQgJG2EMo2wA9kNEYPotZMNLld0GJTVHtnVOjkdq6ktbpG1rIQgO3Ecv0tVg8uHx/WIXh4Oho4uFibfGmquyYyooKKngxKppjSxCJskbW6iL3QhAPlFhcMNQ6peeuqHWvI8DVtwXBiOWKaprTU0sjqKoeCHyQtF3Am7rk96EIDswXBqXBotFMxvWP2kl02c+17XWrM2AwY/TxQVMjmNikbKLNB3HihCAa8RyPQ1suHzGR0dRRseyOVrG6u1a/wBC3yZSpn44MVdPIarQ2Mu0C5DeAuhCAKTKFHTY5UYpHI7r5nSOd2BxeLHf41sy3lelwWqqKmle7XOA13ZA4H0IQgHDGsLgxWk6moGweHA2vYjguahy9DDWsqqqZ9ZURHVHJM0XYeZFu/8AghCAfCAUWQhACEIQAhCEAIQhACEIQAhCEAIQhACEIQH/2Q==" - } - }, + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Re-creating kernels from Tape et al. 2007\n", "\n", - "The 2D checkerboard model and source-receiver configuration that runs in this example comes from the published work of [Tape et al. (2007)](https://academic.oup.com/gji/article/168/3/1105/929373). Here, Tape et al. generate event and misfit kernels for a number of individual events in [Figure 9](https://academic.oup.com/view-large/figure/31726687/168-3-1105-fig009.jpeg) (shown below). This exercise is meant to illustrate how kernel features change for a simple target model (the checkerboard) depending on the chosen source-receiver geometry. \n", - "\n", - "![tape_etal_2007_fig9.jpeg](attachment:tape_etal_2007_fig9.jpeg)\n", + "The 2D checkerboard model and source-receiver configuration that runs in this example come from the published work of [Tape et al. (2007)](https://academic.oup.com/gji/article/168/3/1105/929373). Here, Tape et al. generate event kernels for a number of individual events ([Figure 9](https://academic.oup.com/view-large/figure/31726687/168-3-1105-fig009.jpeg), shown below). This exercise illustrates how kernel features change for a simple target model (the checkerboard) depending on the chosen source-receiver geometry. \n", "\n", - "*Caption: Construction of a misfit kernel. (a)–(g) Individual event kernels, each constructed via the method shown in Fig. 8 (which shows Event 5). The colour scale for each event kernel is shown beneath (g). (h) The misfit kernel is simply the sum of the 25 event kernels. (i) The source–receiver geometry and target phase‐speed model. There are a total of N= 25 × 132 = 3300 measurements that are used in constructing the misfit kernel (see Section 5).*" + "An attentive reader will notice that the misfit kernel we generated above looks very similar to Panel (h) in the figure below." + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. image:: reference_figures/tape_etal_2007_fig9.jpeg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Caption from publication: *Construction of a misfit kernel. (a)–(g) Individual event kernels, each constructed via the method shown in Fig. 8 (which shows Event 5). The colour scale for each event kernel is shown beneath (g). (h) The misfit kernel is simply the sum of the 25 event kernels. (i) The source–receiver geometry and target phase‐speed model. There are a total of N= 25 × 132 = 3300 measurements that are used in constructing the misfit kernel (see Section 5).*" ] }, { @@ -684,11 +735,17 @@ "\n", "The Event ID that generated each kernel is specified in the title of each sub plot (e.g., Panel. (a) corresponds to Event \\#1). We can attempt to re-create these kernels by choosing specific event IDs to run Example 2 with. \n", "\n", - ">__NOTE:__ Our choice of preprocessing module, misfit function, gradient smoothing length, nonlinear optimization algorithm, etc. will affect how each event kernel is produced, and consequently how much they differ from the published kernels shown above. We do not expect to perfectly match the event kernels above, but rather to see that first order structure is the same.\n", - "\n", "To specify the specific event ID, we can use the `--event_id` flag when running Example 2. For this docs page we'll choose Event \\#7, which is represented by Panel (g) in the figure above. " ] }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + ".. note::\n", + " Our choice of preprocessing module, misfit function, gradient smoothing length, nonlinear optimization algorithm, etc. will affect how each event kernel is produced, and consequently how much they differ from the published kernels shown above. We do not expect to perfectly match the event kernels above, but rather to see that first order structure is the same." + ] + }, { "cell_type": "code", "execution_count": 13, @@ -771,7 +828,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -835,21 +892,25 @@ "\n", "SeisFlows is not just an inversion tool, it can also be used to simplify workflows to run forward simulations using external numerical solvers. In Example \\#3 we use SeisFlows to run en-masse forward simulations. \n", "\n", - "To motivate this use case, imagine a User who has a velocity model of a specific region (at any scale). This User would like to run a number of forward simulations for N events and S stations to generate N x S synthetic seismograms. These synthetics may be used directly, or compared to observed seismograms to understand how well the regional velocity model characterizes actual Earth structure. \n", + "### Motivation\n", "\n", - "Although this could be done manually, if N is large, this effort may require a large number of manual tasks, including the creation of working directories, editing submit calls, and providing book keeping for the external solver. SeisFlows is here to automate all of these tasks." + "Imagine a User who has a velocity model of a specific region (at any scale). This User would like to run a number of forward simulations for **N** events and **S** stations to generate **N** $\\times$ **S** synthetic seismograms. These synthetics may be used directly, or compared to observed seismograms to understand how well the regional velocity model characterizes actual Earth structure. \n", + "\n", + "If **N** is large this effort may require a large number of manual tasks, including the creation of working directories, editing submit calls (if working on a cluster), and book keeping for files generated by the external solver. SeisFlows is here to automate all of these tasks.\n", + "\n", + "### Running the example" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "No existing SPECFEM2D repo given, default to: /home/bchow/Work/work/seisflows_example/example_2a/specfem2d\r\n", + "No existing SPECFEM2D repo given, default to: /home/bchow/Work/work/seisflows_example/example_2/specfem2d\r\n", "\r\n", " @@@@@@@@@@ \r\n", " .@@@@. .%&( %@. \r\n", @@ -888,7 +949,7 @@ } ], "source": [ - "# Run the help dialogue to see what \n", + "# Run the help dialogue to see what occurs in Example 3\n", "! seisflows examples 3" ] }, @@ -926,7 +987,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 12, "metadata": {}, "outputs": [ { diff --git a/docs/specfem2d_example.rst b/docs/specfem2d_example.rst index ec360916..5a632346 100644 --- a/docs/specfem2d_example.rst +++ b/docs/specfem2d_example.rst @@ -1,17 +1,17 @@ -Specfem2D Workstation Example -============================= +Specfem2D Workstation Examples +============================== SeisFlows comes with some **Specfem2D synthetic examples** to showcase -the package. These examples are meant to be run on a **local machine** -(tested on a Linux workstation running CentOS 7, and an Apple Laptop -running macOS 10.14.6). +the software in action. These examples are meant to be run on a **local +machine** (tested on a Linux workstation running CentOS 7, and an Apple +Laptop running macOS 10.14.6). The numerical solver we will use is: `SPECFEM2D `__. We’ll also be working in our ``seisflows`` `Conda `__ environment, see the -installation documentation page for instructions on how to install and -activate the required Conda environment. +installation section on the home page for instructions on how to install +and activate the required Conda environment. -------------- @@ -22,19 +22,23 @@ activate the required Conda environment. from IPython.display import Image # Used to display .png files in the notebook/docs -Example #1: Simple, default inversion -------------------------------------- +Example #1: Homogenous Halfspace Inversion +------------------------------------------ Example #1 runs a 1-iteration synthetic inversion with 1 event and 1 -station, used to illustrate misfit kernels in adjoint tomography. +station, used to illustrate misfit kernels and updated models in adjoint +tomography. -The starting model (MODEL_INIT) and target model (MODEL_TRUE) are used -to generate synthetics and data, respectively. Both models are -homogeneous halfspace models with slightly varying P- and S-wave -velocity values. Only Vp and Vs are updated during the example. +The starting/initial model (*MODEL_INIT*) and target/true model +(*MODEL_TRUE*) are used to generate synthetics and (synthetic) data, +respectively. Both models are homogeneous halfspace models defined by +velocity (Vp, Vs) and density (:math:`\rho`) with slightly varying P- +and S-wave velocity values (**INIT**: :math:`V_p`\ =5.8km/s, +:math:`V_s`\ =3.5km/s; **TRUE**: :math:`V_p`\ =5.9km/s, +:math:`V_s`\ =3.55km/s). Only Vp and Vs are updated during the example. Misfit during Example #1 is defined by a ‘traveltime’ misfit using the -default preprocessing module. It also uses a gradient-descent +``Default`` preprocessing module. It also uses a ``gradient-descent`` optimization algorithm paired with a bracketing line search. No smoothing/regularization is applied to the gradient. @@ -172,18 +176,19 @@ because we set the parameter ``export_gradient`` to True. proc000000_vp.bin proc000000_vs.bin -Plotting results (only available w/ SPECFEM2D) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Plotting results +~~~~~~~~~~~~~~~~ We can plot the model and gradient files created during our workflow using the ``seisflows plot2d`` command. The ``--savefig`` flag allows us to save output .png files to disk. The following figure shows the starting/initial homogeneous halfspace model in Vs. - **NOTE:** Because this docs page was made in a Jupyter Notebook, we - need to use the IPython Image class to open the resulting .png file - from inside the notebook. Users following along will need to open the - figure using the GUI or command line tool. +.. note:: + Models and gradients can only be plotted when using `SPECFEM2D` as the chosen solver. Other solvers (e.g., SPECFEM3D and 3D_GLOBE) require external software (e.g., ParaView) to visualize volumetric quantities like models and gradients. + +.. note:: + Because this docs page was made in a Jupyter Notebook, we need to use the IPython Image class to open the resulting .png file from inside the notebook. Users following along will need to open the figure using the GUI or command line tool. .. code:: ipython3 @@ -199,7 +204,7 @@ starting/initial homogeneous halfspace model in Vs. -.. image:: images/specfem2d_example_files/specfem2d_example_14_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_15_1.png @@ -222,7 +227,7 @@ in model values. -.. image:: images/specfem2d_example_files/specfem2d_example_16_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_17_1.png @@ -246,7 +251,7 @@ almost exactly mimics the Vs kernel shown above. -.. image:: images/specfem2d_example_files/specfem2d_example_18_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_19_1.png @@ -262,21 +267,21 @@ You can also run Example \#1 with more stations (up to 131), tasks/events (up to # An example call for running Example 1 with variable number of stations, events and iterations ! seisflows examples run 1 --nsta 10 --ntask 5 --niter 2 -Example #2: Checkerboard inversion using Pyaflowa & L-BFGS ----------------------------------------------------------- +Example #2: Checkerboard Inversion (w/ Pyaflowa & L-BFGS) +--------------------------------------------------------- Building on the foundation of the previous example, Example #2 runs a 2 iteration inversion with misfit quantification taken care of by the ``Pyaflowa`` preprocessing module, which uses the misfit quantification package `Pyatoa `__ under the hood. -Model updates are performed using an ```L-BFGS`` nonlinear optimization + +Model updates are performed using an `L-BFGS nonlinear optimization algorithm `__. Example #2 also includes smoothing/regularization of the gradient. This example more closely mimics a research-grade inversion problem. - **NOTE:** This example is computationally more intense than the - default version of Example #1 as it uses multiple events and - stations, and runs multiple iterations. +.. note:: + This example is computationally more intense than the default version of Example \#1 as it uses multiple events and stations, and runs multiple iterations. .. code:: ipython3 @@ -340,15 +345,6 @@ Succesful completion of the example problem will end with a log message that loo .. code:: bash - - 2022-08-29 18:08:13 (I) | - FINALIZING LINE SEARCH - -------------------------------------------------------------------------------- - 2022-08-29 18:08:13 (I) | writing optimization stats - 2022-08-29 18:08:13 (I) | renaming current (new) optimization vectors as previous model (old) - 2022-08-29 18:08:13 (I) | setting accepted trial model (try) as current model (new) - 2022-08-29 18:08:13 (I) | misfit of accepted trial model is f=4.727E-03 - 2022-08-29 18:08:13 (I) | resetting line search step count to 0 2022-08-29 18:08:13 (I) | CLEANING WORKDIR FOR NEXT ITERATION -------------------------------------------------------------------------------- @@ -406,6 +402,30 @@ determine what model/gradient files are available for plotting. MODEL_TRUE +Similarly, running ``plot2d`` with 1 argument will help determine what +quantities are available to plot + +.. code:: ipython3 + + ! seisflows plot2d MODEL_TRUE + + +.. parsed-literal:: + + Traceback (most recent call last): + File "/home/bchow/miniconda3/envs/docs/bin/seisflows", line 33, in + sys.exit(load_entry_point('seisflows', 'console_scripts', 'seisflows')()) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 1383, in main + sf() + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 438, in __call__ + getattr(self, self._args.command)(**vars(self._args)) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 1106, in plot2d + save=savefig) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/tools/specfem.py", line 428, in plot2d + f"chosen `parameter` must be in {self._parameters}" + AssertionError: chosen `parameter` must be in ['vp', 'vs'] + + Visualizing Initial and Target models ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -432,7 +452,7 @@ representation of these perturbations, where **red==slow** and -.. image:: images/specfem2d_example_files/specfem2d_example_32_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_36_1.png @@ -451,7 +471,7 @@ model is too fast, while red colors tell us that the initial model is too slow (that is, **red==too slow** and **blue==too fast**). This makes sense if we look at the checkerboard target model above, where the perturbation is slow (red color) the corresponding kernel tells us the -initial model is too fast (blue color). +initial (homogeneous halfspace) model is too fast (blue color). .. code:: ipython3 @@ -466,7 +486,7 @@ initial model is too fast (blue color). -.. image:: images/specfem2d_example_files/specfem2d_example_34_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_38_1.png @@ -474,15 +494,15 @@ Visualizing the updated model ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ After two iterations, the updated model starts to take form. We can -clearly see tha the lack of data coverage on the outer edges of the +clearly see that the lack of data coverage on the outer edges of the model mean we do not see any appreciable update here, whereas the center of the domain shows the strongest model updates which are starting to resemble the checkerboard pattern shown in the target model. With only 4 events and 2 iterations, we do not have quite enough -constraint to recover the sharp contrats between checkers shown in the -Target model. We can see that smearing and regularization leads to more -prominent slow (red) regions. +constraint to recover the sharp contrasts between checkers shown in the +Target model. We can see that data coverage, smearing and regularization +leads to more prominent slow (red) regions. If we were to increase the number of events and iterations, will it help our recovery of the target model? This task is left up to the reader! @@ -500,7 +520,7 @@ our recovery of the target model? This task is left up to the reader! -.. image:: images/specfem2d_example_files/specfem2d_example_36_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_40_1.png @@ -508,27 +528,27 @@ Re-creating kernels from Tape et al. 2007 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The 2D checkerboard model and source-receiver configuration that runs in -this example comes from the published work of `Tape et +this example come from the published work of `Tape et al. (2007) `__. -Here, Tape et al. generate event and misfit kernels for a number of -individual events in `Figure -9 `__ -(shown below). This exercise is meant to illustrate how kernel features -change for a simple target model (the checkerboard) depending on the -chosen source-receiver geometry. - -.. figure:: attachment:tape_etal_2007_fig9.jpeg - :alt: tape_etal_2007_fig9.jpeg - - tape_etal_2007_fig9.jpeg - -*Caption: Construction of a misfit kernel. (a)–(g) Individual event -kernels, each constructed via the method shown in Fig. 8 (which shows -Event 5). The colour scale for each event kernel is shown beneath (g). -(h) The misfit kernel is simply the sum of the 25 event kernels. (i) The -source–receiver geometry and target phase‐speed model. There are a total -of N= 25 × 132 = 3300 measurements that are used in constructing the -misfit kernel (see Section 5).* +Here, Tape et al. generate event kernels for a number of individual +events (`Figure +9 `__, +shown below). This exercise illustrates how kernel features change for a +simple target model (the checkerboard) depending on the chosen +source-receiver geometry. + +An attentive reader will notice that the misfit kernel we generated +above looks very similar to Panel (h) in the figure below. + +.. image:: images/reference_figures/tape_etal_2007_fig9.jpeg + +Caption from publication: *Construction of a misfit kernel. (a)–(g) +Individual event kernels, each constructed via the method shown in Fig. +8 (which shows Event 5). The colour scale for each event kernel is shown +beneath (g). (h) The misfit kernel is simply the sum of the 25 event +kernels. (i) The source–receiver geometry and target phase‐speed model. +There are a total of N= 25 × 132 = 3300 measurements that are used in +constructing the misfit kernel (see Section 5).* Choosing an event ^^^^^^^^^^^^^^^^^ @@ -538,17 +558,13 @@ each sub plot (e.g., Panel. (a) corresponds to Event #1). We can attempt to re-create these kernels by choosing specific event IDs to run Example 2 with. - **NOTE:** Our choice of preprocessing module, misfit function, - gradient smoothing length, nonlinear optimization algorithm, etc. - will affect how each event kernel is produced, and consequently how - much they differ from the published kernels shown above. We do not - expect to perfectly match the event kernels above, but rather to see - that first order structure is the same. - To specify the specific event ID, we can use the ``--event_id`` flag when running Example 2. For this docs page we’ll choose Event #7, which is represented by Panel (g) in the figure above. +.. note:: + Our choice of preprocessing module, misfit function, gradient smoothing length, nonlinear optimization algorithm, etc. will affect how each event kernel is produced, and consequently how much they differ from the published kernels shown above. We do not expect to perfectly match the event kernels above, but rather to see that first order structure is the same. + .. code:: ipython3 # Run the help message to view the description of the optional arguemnt --event_id @@ -642,7 +658,7 @@ published in Tape et al. -.. image:: images/specfem2d_example_files/specfem2d_example_43_1.png +.. image:: images/specfem2d_example_files/specfem2d_example_50_1.png @@ -662,28 +678,33 @@ SeisFlows is not just an inversion tool, it can also be used to simplify workflows to run forward simulations using external numerical solvers. In Example #3 we use SeisFlows to run en-masse forward simulations. -To motivate this use case, imagine a User who has a velocity model of a -specific region (at any scale). This User would like to run a number of -forward simulations for N events and S stations to generate N x S +Motivation +~~~~~~~~~~ + +Imagine a User who has a velocity model of a specific region (at any +scale). This User would like to run a number of forward simulations for +**N** events and **S** stations to generate **N** :math:`\times` **S** synthetic seismograms. These synthetics may be used directly, or compared to observed seismograms to understand how well the regional velocity model characterizes actual Earth structure. -Although this could be done manually, if N is large, this effort may -require a large number of manual tasks, including the creation of -working directories, editing submit calls, and providing book keeping -for the external solver. SeisFlows is here to automate all of these -tasks. +If **N** is large this effort may require a large number of manual +tasks, including the creation of working directories, editing submit +calls (if working on a cluster), and book keeping for files generated by +the external solver. SeisFlows is here to automate all of these tasks. + +Running the example +~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 - # Run the help dialogue to see what + # Run the help dialogue to see what occurs in Example 3 ! seisflows examples 3 .. parsed-literal:: - No existing SPECFEM2D repo given, default to: /home/bchow/Work/work/seisflows_example/example_2a/specfem2d + No existing SPECFEM2D repo given, default to: /home/bchow/Work/work/seisflows_example/example_2/specfem2d @@@@@@@@@@ .@@@@. .%&( %@. @@ -814,7 +835,7 @@ SeisFlows is copying all synthetic seismograms from the Solver’s -.. image:: images/specfem2d_example_files/specfem2d_example_55_0.png +.. image:: images/specfem2d_example_files/specfem2d_example_62_0.png @@ -827,6 +848,6 @@ SeisFlows is copying all synthetic seismograms from the Solver’s -.. image:: images/specfem2d_example_files/specfem2d_example_56_0.png +.. image:: images/specfem2d_example_files/specfem2d_example_63_0.png diff --git a/seisflows/examples/ex2_hh_w_pyatoa.py b/seisflows/examples/ex2_hh_w_pyatoa.py index 9f446af4..274d6d44 100644 --- a/seisflows/examples/ex2_hh_w_pyatoa.py +++ b/seisflows/examples/ex2_hh_w_pyatoa.py @@ -76,6 +76,7 @@ def __init__(self, ntask=None, niter=None, nsta=None, nproc=None, # Adjust the existing parameter list self._parameters["smooth_h"] = 5000. self._parameters["smooth_v"] = 5000. + self._parameters["pyflex_preset"] = "null" # no windowing in Pyaflowa # Pyaflowa preprocessing parameters self._parameters["unit_output"] = "DISP" From 44e617f7b8a57672d1ad983a30f644e9278dd690 Mon Sep 17 00:00:00 2001 From: Bryant Chow Date: Fri, 9 Sep 2022 14:09:49 -0800 Subject: [PATCH 167/195] added plotst to command line tool docs page --- docs/command_line_tool.rst | 496 +++++++++++------- .../command_line_tool_39_0.png | Bin 66983 -> 0 bytes .../command_line_tool_40_1.png | Bin 0 -> 79890 bytes .../command_line_tool_44_0.png | Bin 0 -> 19420 bytes .../command_line_tool_45_0.png | Bin 0 -> 143089 bytes docs/notebooks/command_line_tool.ipynb | 158 +++++- 6 files changed, 434 insertions(+), 220 deletions(-) delete mode 100644 docs/images/command_line_tool_files/command_line_tool_39_0.png create mode 100644 docs/images/command_line_tool_files/command_line_tool_40_1.png create mode 100644 docs/images/command_line_tool_files/command_line_tool_44_0.png create mode 100644 docs/images/command_line_tool_files/command_line_tool_45_0.png diff --git a/docs/command_line_tool.rst b/docs/command_line_tool.rst index 7afc0894..98b6a2f2 100644 --- a/docs/command_line_tool.rst +++ b/docs/command_line_tool.rst @@ -19,43 +19,43 @@ help dialogue, you can type ``seisflows`` or ``seisflows -h`` .. parsed-literal:: - usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]] - {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples} - ... - - ================================================================================ - - SeisFlows: Waveform Inversion Package - - ================================================================================ - - optional arguments: - -h, --help show this help message and exit - -w [WORKDIR], --workdir [WORKDIR] - The SeisFlows working directory, default: cwd - -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE] - Parameters file, default: 'parameters.yaml' - - command: - Available SeisFlows arguments and their intended usages - - setup Setup working directory from scratch - configure Fill parameter file with defaults - swap Swap module parameters in an existing parameter file - init Initiate working environment - submit Submit initial workflow to system - resume Re-submit previous workflow to system - restart Remove current environment and submit new workflow - clean Remove files relating to an active working environment - par View and edit SeisFlows parameter file - sempar View and edit SPECFEM parameter file - check Check state of an active environment - print Print information related to an active environment - reset Reset modules within an active state - debug Start interactive debug environment - examples Look at and run pre-configured example problems - - 'seisflows [command] -h' for more detailed descriptions of each command. + usage: seisflows [-h] [-w [WORKDIR]] [-p [PARAMETER_FILE]] + {setup,configure,swap,init,submit,resume,restart,clean,par,sempar,check,print,reset,debug,examples} + ... + + ================================================================================ + + SeisFlows: Waveform Inversion Package + + ================================================================================ + + optional arguments: + -h, --help show this help message and exit + -w [WORKDIR], --workdir [WORKDIR] + The SeisFlows working directory, default: cwd + -p [PARAMETER_FILE], --parameter_file [PARAMETER_FILE] + Parameters file, default: 'parameters.yaml' + + command: + Available SeisFlows arguments and their intended usages + + setup Setup working directory from scratch + configure Fill parameter file with defaults + swap Swap module parameters in an existing parameter file + init Initiate working environment + submit Submit initial workflow to system + resume Re-submit previous workflow to system + restart Remove current environment and submit new workflow + clean Remove files relating to an active working environment + par View and edit SeisFlows parameter file + sempar View and edit SPECFEM parameter file + check Check state of an active environment + print Print information related to an active environment + reset Reset modules within an active state + debug Start interactive debug environment + examples Look at and run pre-configured example problems + + 'seisflows [command] -h' for more detailed descriptions of each command. Setting up @@ -87,17 +87,17 @@ file. .. parsed-literal:: - usage: seisflows setup [-h] [-f] - - In the specified working directory, copy template parameter file containing - only module choices, and symlink source code for both the base and super - repositories for easy edit access. If a parameter file matching the provided - name exists in the working directory, a prompt will appear asking the user if - they want to overwrite. - - optional arguments: - -h, --help show this help message and exit - -f, --force automatically overwrites existing parameter file + usage: seisflows setup [-h] [-f] + + In the specified working directory, copy template parameter file containing + only module choices, and symlink source code for both the base and super + repositories for easy edit access. If a parameter file matching the provided + name exists in the working directory, a prompt will appear asking the user if + they want to overwrite. + + optional arguments: + -h, --help show this help message and exit + -f, --force automatically overwrites existing parameter file .. code:: ipython3 @@ -108,7 +108,7 @@ file. .. parsed-literal:: - creating parameter file: parameters.yaml + creating parameter file: parameters.yaml Having a look at the template ``parameters.yaml`` file that was just @@ -135,36 +135,36 @@ set of unique parameters which make up a workflow. .. parsed-literal:: - # ////////////////////////////////////////////////////////////////////////////// - # - # SeisFlows YAML Parameter File - # - # ////////////////////////////////////////////////////////////////////////////// - # - # Modules correspond to the structure of the source code, and determine - # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. - # - # .. rubric:: - # - To determine available options for modules listed below, run: - # > seisflows print modules - # - To auto-fill with docstrings and default values (recommended), run: - # > seisflows configure - # - To set values as NoneType, use: null - # - To set values as infinity, use: inf - # - # MODULES - # /////// - # workflow (str): The types and order of functions for running SeisFlows - # system (str): Computer architecture of the system being used - # solver (str): External numerical solver to use for waveform simulations - # preprocess (str): Preprocessing schema for waveform data - # optimize (str): Optimization algorithm for the inverse problem - # ============================================================================== - workflow: forward - system: workstation - solver: specfem2d - preprocess: default - optimize: gradient + # ////////////////////////////////////////////////////////////////////////////// + # + # SeisFlows YAML Parameter File + # + # ////////////////////////////////////////////////////////////////////////////// + # + # Modules correspond to the structure of the source code, and determine + # SeisFlows' behavior at runtime. Each module requires its own sub-parameters. + # + # .. rubric:: + # - To determine available options for modules listed below, run: + # > seisflows print modules + # - To auto-fill with docstrings and default values (recommended), run: + # > seisflows configure + # - To set values as NoneType, use: null + # - To set values as infinity, use: inf + # + # MODULES + # /////// + # workflow (str): The types and order of functions for running SeisFlows + # system (str): Computer architecture of the system being used + # solver (str): External numerical solver to use for waveform simulations + # preprocess (str): Preprocessing schema for waveform data + # optimize (str): Optimization algorithm for the inverse problem + # ============================================================================== + workflow: forward + system: workstation + solver: specfem2d + preprocess: default + optimize: gradient seisflows configure @@ -181,19 +181,19 @@ file. .. parsed-literal:: - usage: seisflows configure [-h] [-a] - - SeisFlows parameter files will vary depending on chosen modules and their - respective required parameters. This function will dynamically traverse the - source code and generate a template parameter file based on module choices. - The resulting file incldues docstrings and type hints for each parameter. - Optional parameters will be set with default values and required parameters - and paths will be marked appropriately. Required parameters must be set before - a workflow can be submitted. - - optional arguments: - -h, --help show this help message and exit - -a, --absolute_paths Set default paths relative to cwd + usage: seisflows configure [-h] [-a] + + SeisFlows parameter files will vary depending on chosen modules and their + respective required parameters. This function will dynamically traverse the + source code and generate a template parameter file based on module choices. + The resulting file incldues docstrings and type hints for each parameter. + Optional parameters will be set with default values and required parameters + and paths will be marked appropriately. Required parameters must be set before + a workflow can be submitted. + + optional arguments: + -h, --help show this help message and exit + -a, --absolute_paths Set default paths relative to cwd .. code:: ipython3 @@ -328,23 +328,23 @@ script your parameter file setup for improved reproducibility. .. parsed-literal:: - usage: seisflows par [-h] [-p] [parameter] [value] - - Directly edit values in the parameter file by providing the parameter and - corresponding value. If no value is provided, will simply print out the - current value of the given parameter. Works also with path names. - - positional arguments: - parameter Parameter to edit or view, (case independent). - value Optional value to set parameter to. If not given, will - print out current parameter. If given, will replace - current parameter with new value. Set as 'null' for - NoneType and set '' for empty string - - optional arguments: - -h, --help show this help message and exit - -p, --skip_print Skip the print statement which is typically sent to stdout - after changing parameters. + usage: seisflows par [-h] [-p] [parameter] [value] + + Directly edit values in the parameter file by providing the parameter and + corresponding value. If no value is provided, will simply print out the + current value of the given parameter. Works also with path names. + + positional arguments: + parameter Parameter to edit or view, (case independent). + value Optional value to set parameter to. If not given, will + print out current parameter. If given, will replace + current parameter with new value. Set as 'null' for + NoneType and set '' for empty string + + optional arguments: + -h, --help show this help message and exit + -p, --skip_print Skip the print statement which is typically sent to stdout + after changing parameters. The call structure of the ``par`` command is provided in the help @@ -362,7 +362,7 @@ We can view parameters by providing a single ‘parameter’ argument to the .. parsed-literal:: - ntask: 1 + ntask: 1 We can change a given parameter from it’s original value by providing a @@ -375,7 +375,7 @@ second ‘value’ argument .. parsed-literal:: - ntask: 1 -> 3 + ntask: 1 -> 3 seisflows sempar @@ -401,13 +401,13 @@ having to wait on queue times or waste computational resources. .. parsed-literal:: - - ================================================================================ - PARAMETER ERRROR - //////////////// - `path_specfem_bin` must exist and must point to directory containing SPECFEM - executables - ================================================================================ + + ================================================================================ + PARAMETER ERRROR + //////////////// + `path_specfem_bin` must exist and must point to directory containing SPECFEM + executables + ================================================================================ Here we can see that a given path has not been set correctly in the @@ -429,19 +429,19 @@ cases for when this might be useful include switching from a .. parsed-literal:: - usage: seisflows swap [-h] [module] [classname] - - During workflow development, it may be necessary to swap between different - sub-modules (e.g., system.workstation -> system.cluster). However this would - typically involving re-generating and re-filling a parameter file. The 'swap' - function makes it easier to swap parameters between modules. - - positional arguments: - module Module name to swap - classname Classname to swap to - - optional arguments: - -h, --help show this help message and exit + usage: seisflows swap [-h] [module] [classname] + + During workflow development, it may be necessary to swap between different + sub-modules (e.g., system.workstation -> system.cluster). However this would + typically involving re-generating and re-filling a parameter file. The 'swap' + function makes it easier to swap parameters between modules. + + positional arguments: + module Module name to swap + classname Classname to swap to + + optional arguments: + -h, --help show this help message and exit Running workflows @@ -468,18 +468,18 @@ the task list, ensuring that no processing is run on login nodes. .. parsed-literal:: - usage: seisflows submit [-h] [-s STOP_AFTER] - - The main SeisFlows execution command. Submit a SeisFlows workflow to the - chosen system, equal to executing seisflows.workflow.main(). This function - will create and fill the working directory with required paths, perform path - and parameter error checking, and establish the active working environment - before executing the workflow. - - optional arguments: - -h, --help show this help message and exit - -s STOP_AFTER, --stop_after STOP_AFTER - Optional override of the 'STOP_AFTER' parameter + usage: seisflows submit [-h] [-s STOP_AFTER] + + The main SeisFlows execution command. Submit a SeisFlows workflow to the + chosen system, equal to executing seisflows.workflow.main(). This function + will create and fill the working directory with required paths, perform path + and parameter error checking, and establish the active working environment + before executing the workflow. + + optional arguments: + -h, --help show this help message and exit + -s STOP_AFTER, --stop_after STOP_AFTER + Optional override of the 'STOP_AFTER' parameter seisflows clean @@ -498,14 +498,14 @@ statement. .. parsed-literal:: - usage: seisflows clean [-h] [-f] - - Delete all SeisFlows related files in the working directory, except for the - parameter file. - - optional arguments: - -h, --help show this help message and exit - -f, --force Skip the warning check that precedes the clean function + usage: seisflows clean [-h] [-f] + + Delete all SeisFlows related files in the working directory, except for the + parameter file. + + optional arguments: + -h, --help show this help message and exit + -f, --force Skip the warning check that precedes the clean function seisflows restart @@ -523,19 +523,23 @@ defines. .. parsed-literal:: - usage: seisflows restart [-h] [-f] - - Akin to running seisflows clean; seisflows submit. Restarts the workflow by - removing the current state and submitting a fresh workflow. - - optional arguments: - -h, --help show this help message and exit - -f, --force Skip the clean warning check statement + usage: seisflows restart [-h] [-f] + + Akin to running seisflows clean; seisflows submit. Restarts the workflow by + removing the current state and submitting a fresh workflow. + + optional arguments: + -h, --help show this help message and exit + -f, --force Skip the clean warning check statement Plotting ~~~~~~~~ +.. code:: ipython3 + + from IPython.display import Image # Required for showing inline figures in notebook/docs + seisflows plot2d ^^^^^^^^^^^^^^^^ @@ -546,16 +550,16 @@ provided in the help message. .. code:: ipython3 - # a directory where we have run example #2 - %cd ~/Work/scratch/ + # a directory where we have run an example problem + %cd ~/sfexamples/example_2 ! ls .. parsed-literal:: - /home/bchow/Work/scratch - logs parameters.yaml sflog.txt specfem2d - output scratch sfstate.txt specfem2d_workdir + /home/bchow/Work/work/seisflows_example/example_2 + logs parameters.yaml sflog.txt specfem2d + output scratch sfstate.txt specfem2d_workdir .. code:: ipython3 @@ -565,22 +569,22 @@ provided in the help message. .. parsed-literal:: - usage: seisflows plot2d [-h] [-c [CMAP]] [-s [SAVEFIG]] [name] [parameter] - - Plots model/kernels/gradient files located in the output/ - directory. ONLY available for SPECFEM2D models. - - positional arguments: - name Name of directory in the output/ directory - parameter Name of parameter to plot from `name`. E.g., 'vs', - 'vp' etc. - - optional arguments: - -h, --help show this help message and exit - -c [CMAP], --cmap [CMAP] - colormap to be passed to PyPlot - -s [SAVEFIG], --savefig [SAVEFIG] - optional name and path to save figure + usage: seisflows plot2d [-h] [-c [CMAP]] [-s [SAVEFIG]] [name] [parameter] + + Plots model/kernels/gradient files located in the output/ + directory. ONLY available for SPECFEM2D models. + + positional arguments: + name Name of directory in the output/ directory + parameter Name of parameter to plot from `name`. E.g., 'vs', + 'vp' etc. + + optional arguments: + -h, --help show this help message and exit + -c [CMAP], --cmap [CMAP] + colormap to be passed to PyPlot + -s [SAVEFIG], --savefig [SAVEFIG] + optional name and path to save figure Running ``plot2d`` without any arguments will print out a list of @@ -593,14 +597,16 @@ available directories you can plot .. parsed-literal:: - PLOT2D - ////// - Available models/gradients/kernels - - GRADIENT_01 - MODEL_01 - MODEL_INIT - MODEL_TRUE + PLOT2D + ////// + Available models/gradients/kernels + + GRADIENT_01 + GRADIENT_02 + MODEL_01 + MODEL_02 + MODEL_INIT + MODEL_TRUE Users will also have to choose which parameter they would like to plot, @@ -615,38 +621,120 @@ parameters are available to plot. .. parsed-literal:: - Traceback (most recent call last): - File "/home/bchow/miniconda3/envs/docs/bin/seisflows", line 33, in - sys.exit(load_entry_point('seisflows', 'console_scripts', 'seisflows')()) - File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 1298, in main - sf() - File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 410, in __call__ - getattr(self, self._args.command)(**vars(self._args)) - File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 1021, in plot2d - save=savefig) - File "/home/bchow/REPOSITORIES/seisflows/seisflows/tools/specfem.py", line 428, in plot2d - f"chosen `parameter` must be in {self._parameters}" - AssertionError: chosen `parameter` must be in ['vp_kernel', 'vs_kernel'] + Traceback (most recent call last): + File "/home/bchow/miniconda3/envs/docs/bin/seisflows", line 33, in + sys.exit(load_entry_point('seisflows', 'console_scripts', 'seisflows')()) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 1383, in main + sf() + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 438, in __call__ + getattr(self, self._args.command)(**vars(self._args)) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/seisflows.py", line 1106, in plot2d + save=savefig) + File "/home/bchow/REPOSITORIES/seisflows/seisflows/tools/specfem.py", line 428, in plot2d + f"chosen `parameter` must be in {self._parameters}" + AssertionError: chosen `parameter` must be in ['vp_kernel', 'vs_kernel'] .. code:: ipython3 ! seisflows plot2d GRADIENT_01 vs_kernel --savefig gradient_01_vs_kernel.png + Image(filename='gradient_01_vs_kernel.png') .. parsed-literal:: - Figure(707.107x707.107) + Figure(707.107x707.107) + + +.. image:: images/command_line_tool_files/command_line_tool_40_1.png + + + +seisflows plotst +^^^^^^^^^^^^^^^^ + +``plotst`` (i.e., *plot st*\ ream) is a wrapper for ObsPy’s +Stream.plot() which plots waveforms generated by the external numerical +solver. In this case we have generated waveforms in the ASCII format +during one of our example problems. Using the ``export_traces`` +parameter, our workflow has saved these waveforms to the ``output/`` +directory of our SeisFlows working directory. + .. code:: ipython3 - from IPython.display import Image - Image(filename='gradient_01_vs_kernel.png') + %cd ~/sfexamples/example_3/output/solver/001/syn + ! ls + + +.. parsed-literal:: + + /home/bchow/Work/work/seisflows_example/example_3/output/solver/001/syn + AA.S000000.BXY.semd AA.S000009.BXY.semd AA.S000018.BXY.semd + AA.S000001.BXY.semd AA.S000010.BXY.semd AA.S000019.BXY.semd + AA.S000002.BXY.semd AA.S000011.BXY.semd AA.S000020.BXY.semd + AA.S000003.BXY.semd AA.S000012.BXY.semd AA.S000021.BXY.semd + AA.S000004.BXY.semd AA.S000013.BXY.semd AA.S000022.BXY.semd + AA.S000005.BXY.semd AA.S000014.BXY.semd AA.S000023.BXY.semd + AA.S000006.BXY.semd AA.S000015.BXY.semd AA.S000024.BXY.semd + AA.S000007.BXY.semd AA.S000016.BXY.semd + AA.S000008.BXY.semd AA.S000017.BXY.semd + + +.. code:: ipython3 + + # Run the help message + ! seisflows plotst -h + + +.. parsed-literal:: + + usage: seisflows plotst [-h] [--data_format [DATA_FORMAT]] [-s [SAVEFIG]] + [fids [fids ...]] + + Plots waveforms output by the solver. Uses ObsPy's + Stream.plot() function under the hood. Example call would be + `seisflows plotst scratch/solver/mainsolver/traces/syn/*` + + + positional arguments: + fids File IDs to be passed to plotting. Wildcards + acceptable + + optional arguments: + -h, --help show this help message and exit + --data_format [DATA_FORMAT] + Data format of the files. Must match file type that + SeisFlows can read. These include:['SU', 'ASCII']. + Defaults to 'ASCII'. See + SeisFlows.preprocess.default.read() for all options. + -s [SAVEFIG], --savefig [SAVEFIG] + optional name and path to save figure + + +.. code:: ipython3 + + # Plot a single synthetic seismogram + ! seisflows plotst AA.S000000.BXY.semd --savefig AA.S000000.BXY.semd.png + Image("AA.S000000.BXY.semd.png") + + + + +.. image:: images/command_line_tool_files/command_line_tool_44_0.png + + + +.. code:: ipython3 + + # Use wild cards to plot multiple stations at once + ! seisflows plotst AA.S00000?.BXY.semd --savefig AA.S00000X.BXY.semd.png + Image("AA.S00000X.BXY.semd.png") -.. image:: images/command_line_tool_files/command_line_tool_39_0.png +.. image:: images/command_line_tool_files/command_line_tool_45_0.png diff --git a/docs/images/command_line_tool_files/command_line_tool_39_0.png b/docs/images/command_line_tool_files/command_line_tool_39_0.png deleted file mode 100644 index 8e903d5175323442efd8795d79dbe635b234da61..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 66983 zcmeFZX*ibc`!0NIR478mGE3&ENT!4`WKKv5$&@iNQ$m!X457>_4Q47sC}V~~1470W zk)h1vyI=j+|NXrm*4nnUtuODF^=v)QBX0M7UFUfo$FU##z8_bZj@AjPoy=}VeV>0axiyuzU<_7+17&ns+H>%TPH_$31LxT2|;!nH#cV)5t0AAK-kIE zS|pj`c_xX(PEu1oX5g7L@y)}Ou5(#ox>YzoKjQH<_MJvF)L~tR0s})U(#gbbr9H7x z{u^N-S$kDi@JwCbo>O!MDjB@@1XO9m%_3+bRJl|w83aRbkylUtU8(8+V3qL5XwMW? z>&jerr$(#nl@Cc@t0g3?KfDVKeZy!OE>>?u&mGXi@?T$f^;9>C65nKeUMS6UiTJ|u z^xgwC|Gvm>8oHQ3d?)<0aT28j@kIgu?HF_73o%107x9*V@AphlD}?Fa8^_iC-#7ce zYxci!G$!axE4=B&6Dh|#^ENbk+}+((l$C4Gck|*H&3n{0I@5O+S!+Kr;FtCK^ROjh zdfJ(fZl|p0^gzUm@n64gO@1raXp*|zMWUsp-LidqW?CA4(9oCL+iR+P;zZ4d54-GM zFz=Ibd-GI3i@#z$n1X?tm6b9=b@SP?XJ2ouuatO9rEqKIby`mLmO5X#aw9l+>+6b& zyV22{VMkqtwpdtL42+LcNJvP$yC|OdyRXD$^QSEB6SwyYU9hyg@$1X;n*M$^TU%Qz zM|%?!W|^xK4Iq7#O%Fe6DO@v^_JrOCw&G zLsF9N!-o$#PYs+sJQ~88B<`f9iqwAp`P1@ip%wYgoq?H|T*W3reO^EJWg8W2l1ctB zI)ARxmud6%T|pHUazdG}x4(dOS?Kx22CBSa@$f56bBB_nxysx?25>`(w$520N zzg(Y9xv;SC=bW=rx?k%fSk#2$^>uWp<$UHRB3>>$UYluP+j6ZV=j=lK%d`lX_=zlA7KX~w9*q%Lm z-qqKK+?TXf3Jwm==u(T}r6DoP`%34SRopLgA6F&u@$jh7NnuySB_z1cpFeNcmPQsg zr(bfhagQE<9Npf%#78_*xxH8S)8kV+NPg=}Kcg306*iJCiZgB9y0!h|BMsZSTlA8S zz0&ukoKpB4TT|q?V;Y|vzqzZ}d(Lio;KuHg!ttNp-Q_y()n8gtawjTkw?kL{u~`}a z)e^qR^Bc?Y+?Ph0;CCZRqgjF2!TVj%~T7l_bqkJK0z9;JfRQL-rlv z(b3U1KUxwED!kpF85i+>tMFNfTb>*r*Kl-nlyn(VHYvJ9<+nQ1@bHUW=+HbeUsXyX;VR9-ZB_(=<&3}=DEbZ8h zZSBuaKezdibi^P_YoGX`L-fBtAvj}Ryf}nAXq)(2Wc%gWX*wF3W27h6ttm>qUyH2O zcw=-gTws5nd^FxL*Hq1Kd6t7D={bEtZH0-6>7tdD%KrWPV-pfi+IM89FD`oC3Jv8e z(he^;Q-k=9PfgV}$+;)vF?rc-3A;*8!hu(VeMetb%X@ix>csG#dh+DSNxlc-Ryz^5WzK_vI`iTyAG*jc zSz&{(lXP5NU4skeetpSYo*UO#*3UDOYk%7~_9+Vo{nJf0f4;CB&Hk#5b)S!8ZW->x z7n>CIA8XRYd5nDwX5F`MtUdFD(%1Wk?8!;L`>XnG6#9IoP#A4s~5>J+|u z#V{nlG9jVc@|?To=B|C5Bx0NIA9i3qa^%Qe)y#DNwPjsLM`3z8I-Sdx1;2j%deOJN56MWy-m$JMtC34US!M}CO7V?erFE2BZrJWC0J56UTou;9!EoBnm)#z+Y zX-&nZ;4c_kS66peDLoA}hLh9#&-WcTPK{+%>&pUUX;#hm!kV1Em8p=3P*wWcJaM$< zXH|aw9jv+8Glg?yZX7R6&JB7uM6n$pNjh{(rcb=Rv3<)mUd;sdu!Y%K?gIx73~q>g zS}5%5?$+zC^b6il@SY9TJavlaH^bh&(O7{ePx#dK^#^RoB_<@aiBzpxNHTqBZDsJ6 zP;Y8(<|;MSa&d7{GB!13CA-5aNnEO_aGrDOWcQ2PBovbJphBGPJ*4g;>)kXJB}!-h zT*!ThJ0VW+bg5-{h3tNb7V7=`BZr18E`KXKZIBWZb7O5~AyYe5UWY%9WEM_ANkMTV zB7zF{ccZped2wZBxPdLe_tDF$a7Z>(#ty&clYjfBqJqZhK=50oAylzyLT-uf>*wsedRa^)M3++op{k0K;X{Z zyBu~Watt$dGgYIdYyL>_2nbN{$L-{gQ|Hsr(6~`vesq4~>t<_fYv2Nd=Y~`>Gc#@D za~Z$4u#d&W#Ly-sC-eAuC;A~D^&fkrcPz90&6h9qYHDiq^CNu~KGMzuB=3buDx4a} z%dW2C*BGjpwxODlF3grc*L&)`GVg%=x?_!uzth7KhwM&#{7tM4g%wh>ii=CZL#<#X zGB!3gwPcy(U2MM7WFb^6A*i=34kw-(WZ<|ORr$+B$Hcg-ExWJ&X%-0$4ZViV&B)9Q zHVOy`ASoIc&}pU0N3cjaUI3yoDzMlJOmTKl{?NpOXg~3AH7O~n6GfNarx`v^*LzCM z%zO)Zr+xY9)2B9{pU~*(>o+^x6f=x`l^jv@DzBs@0jce&`*=r&YmIbubUc%#rDfyC zkA*Eoba5j?LrPj&S{Lo?)YsS7XJ^OsGhN2U##BZ6kw&!jCh=pE4I(1in{)@!hX^>w zcl62+O0qN_jeF!)y1KgGM@LUCO!YJ5urV{M8yXr`CysX>k(d}6;bC52K`j?g3@>vV zho>2#sz?ed$^^*BlyU!cawtXKPn~4*@u8Y(kLOp3nt0)JoJ7gpSX)pTxp(j0 zMN7-$$cuDrY}!4qoU(xD)Voupoc5EYp{i>9a_oD31Pe84NiC5IKrlmMA-?{z#ARtT*3HF`P9bvjbyfm~#Q1agz*kOb+eby*ul7&ntaj zU)jX__w^nec2MqjuklE@d0A}!m*z&X;DfbRQ8BS&Ha2|7{Grd!QPFPrQ4h;>FNNdY;$F;O}0nCYd{kdrKqI>7c z?Ba|ik@U0BEreNw?Amt=mHNWlz^#kGj{_4Emy5Nrz=6rh`*7Y29Q$|gmkq^tHB)4b z4TR&H#Vl&cTM{Lc3Sv9AYdAG#rVXvB`7BSnsL9 z;^J_W%k;ppE!(zjB5`tZdX}lwo6#Pqp?q_@Ifa5jxE7g~SdHG-UbF~##-mpSH8nMZ zN)i$nQG@7FHIKc&e~5;TE{JUNw%2+Vtkl%kuql>6wE2Lg-f9Z~;-0gkG!wsnM|8L> zOrC4s_}1IobUE+p@9t=E78Vv+-$iPCSY2spsZoXZA;Ubgb5G~ZRK|Yi7Zz?JeSUUY zLoc^;d}g$r3n}{dqhG}Z1!SajCo2~>x1h{S%SSKEWwD;|rj;*>if)93?TA%>i4mL;jdiU;~ z;>!GQfeHP_-@eK6z>eW;3j0?UrWyuoZi?Bov8%Pj37m1B=n_Ng^|*R-?)UE(6A}^z zDi-=;1Rsc5ZbO_$m0tO|bNdc738A-cRX4>6q_^8B_nb|vjGygss!B(tMw?fS1yX4? zd;CFLere0gmoJI4)b!gP*<;h@&4W`@QAE}pxqkin^z3ZyYp=gS9GVZLoK)T1B+&~6 zZ;q_=TT#mEAM6;kOWn+|i<1Mjr{V ze}UjxY8x7c-67g}iywoEtA?(-DO=HTNaN1c@RoK9l z9j;RB!W&ZhD$;?p-*U0e)$tA?+*J6!qlU9AmIFV2gmiTo0l<=@i&0`z7vSgLBgf8t z^yt}=J^C`cu6;M>JnAu7n{Qsz_R8tJ;Mtd&h5M(6ii$72XU4r~7?>^p+bz$-J9tG` z(^qCcX}c`X+GYkUsw)I*3CB}dYebxToJ|St>T-YOK45^l5|?4T+cxvBC&Nzp=v#EmxLyY6i|yiTn6o z#NG{b9xM(GO-(zIBfCmmGDp?!vmCyxXl9l&%{24pkCL6;v+pBgV_}GDE|4U^pCoqH ziDRGaZAOg@hxcu%u zBxqc?MP6P$`e2S(i29>ypf?Hy1qEeQ)oNTi@LEu6Dw}FJ<8`n!!?Rf;ZyYWow(4`VtFp?ls z=m~`K_h)OS_uMZcyST~hd#s%*eCtqew(%da%9sP%^$2#n-S*o0dQK6M-6$Q$hwCF$ ztY4sy69ZS)@<3|0ii(O2pl{{+vi-xXEQ;ZCRA^3lS>2dE$ZQO=ZIDPMB_#uE3;o-t zExMnD(H__t-#{fL!Q}Sqvzjz*_wzF%TefVufPE?n*pLUq7noPI&U_-0^)0w7Wwi|) zr8e-!TefZ`_)K)1H9!br;78jRo)oS)f*e|GP*}fy=MHsAX(`8n1KY92)hMe$ET!ra zhfm!X!y*%9ifBKR28A4O`HR1v=e1S(`PfJ@KYaAa92ti3@MT8g1-Ei8_t(_axD3_q zz`74r2UC=wo6gtFY)|u;>Z{(M-Lt3d@hO(Yr6mp-8D=S`zFLKiCF0t4EJzpti4;d( zH*czqZbqhRM>Fg@Q^(-Bx+oSH80h@-!#-kz)gSG_70_B7&`h`nNH&CCu`WT(QU^%f z_wRct;!4ri@ltw~T>Z`LJwI`fdyOE*9B#gP_3Dmv=M&w{;FjKIrTX6j^EW&BjfLob zQO&9M?&U4Bc;&z5O}S5o4!1PSGREk0+R0%*#r*lk>4CtHpAIk~eI(;rg0|~@&OP@4 zXNkj0)=s6#+XOAvUeu&0K|w*Z_Q#c$P{n#yGl_Y)FvA^=1d9w0` z*Jwz=Z@wd^nP_y8JtFqY-A8&=xpe80L8dCzPIB@zycLC5p2Q22#;h=!HEX+vss77q z2J(QsjThIgPURSSpF4h*XJN1>HYVmc!j0%d04_mIANYDHgJDfTE}6Cc_JOw`?(Txt zw70h>x)gAGYRK7{#zmLz-o8z7kZ$Ln+1ZD{rs_kKD-B)Et*zRj60f&gRj5z(Bh3@6 z(w8T?H|Tb5J>=NiWwWBJj9&Kp@G#NCeV>@nO!fT})_%g_%%%QhS+8hthR49oatA9N zV~z+xDmVdt;86EVd?1!r53F&7ut=k5okinKrP!;hi!OHkm2zLZy6!+|IAr@V2yChC zY&uum?{f2J%9bLQsdrKN>^?oFGBz^01Hg}EGMUwhEsQ<%!o=TS{(XYj4Ov;)lTQtz zfe_rM`jW-P#lz>Tz)};dh%B4Ajfz=ENh#2#toV=o6_U-b&rdUC=Dg*Ej0=O9C2bUm z^?q(Bl)2IXTW+HXe)oo^*i0u_tE6bH1DJbNBgcWnsn=Y0!pZ*4ax zC#$@#k+|ATxZy~fD`@=s(ToyJ=ss-e5<2@b4XIt{`Ir2cFIACfrV+k7np5R`Lcm~odU?G?re==V zcIv()!ED{Sb&Gp$pR_Xxg3%52M}c5tl$4Z|wSP)DySoQ#^2WRdX0vrW`sw3GqMJjH z3_Mlc*~tJfb+=Z|>(3VO1wjuUu%JC9iYrPZyMjVhi=U|PqB9|5^-nc*c%d6ZuF3!i zh0^mxKWi7k3juG$eia7Dxa8!tJ5e(P9lplB^JQ*3($mwOuU`<|rc~|h__v{VH%>`SjY>Z1!6_}x2x@;t z{}s=XBTO_jG~|?&wVme!s3<6IE4+}K|A|i=?Z{z)l5t}PEiZW#?fk+*1Js*vB<=X} zb-=!Mbc}KSKyXNK^KsA^73F9PeD~?ZSGRXZsw6tPaH=tiu0*#^jhiV6!i@)~w z*CGOX2ETeGg&@;+j4rVI!XM6hWDg*A4H*7VL^816UNDEDw{O$dX+1bhC2^@m@#INz zw7@zB20=jUgOIqCT8gY&r^oXYuT#kWw-=y_KqAC`n+i7oP>X?|VpZ^G#o^gwQ3YT% z`|Aq@(2NRLh5ZWt;SV2j7u$F4g4hClO#5OA2zq0sYJ)cJkWHK7$1I#a4u1ZfV0Wsq zWfv?g0&g>j458J?C_(G?wzYLPijp!~KY~^DS(xOIliLS8i<1#urkx@iHaFfGzw|BV zax$ppca4q5(8KBCc$=2GZbjy)lj`@qfh}h7do4-wT^`G_;{63BPLWVat*nB@EbHHN zbnI=2+*gBTn)%zRKoOO`ooHU%#yhC+`E_Wu2GO`f_Z(WB87BI8U>h=0mR7P-`PJV# zNLQN4GW2LTfGuwV&H(yf$8p{1t_7q|u~+a7dMRpJ+8c=HY?Bu|{r&wHAs?bsq9DBi zn>IZhrH}za1{{tmDi)ZpTLAb&{Tu625H-T*qr~Q!`?`y!x&ne%SA8KSelERYo!Knq z&<(u;*u|;%+s7!a|7cMUL9JHYJv{3z2d1a$Zkf7IT!Yvd6(am(1DC-KUvzLdg{GN4 zR{`WQWE%9#htel-bhcariOm!H?X_1-OG}G#RBy-l-0WoeRCH011U&--#fY)7arI9N zv{wcltrw8*Pd_(2^(S-+-I(6)3Lu8KVRZup>1%fGiYQTn@c;Wc%K4_!n z-jt?}B>=7%t*n?>vNR~TjOTuWS0@Nre2(aH*WaL^Et?bprfB0pK_!qv`&z-L-vON5 zr{Mp(_xD8i3jx%&Hjs?Lh2T14pjLoJ*l7i<_t1d^ zbcr|d!2^9yPtVex8b+T(u$M54UnD13#j96eUNl~q{HFH&%dP09*jPHd?&5>ClFZnm z?;|5nWre(-9@bbd=q`U)Gz;M zZjR^5l`AGC&Kxu}WN8R3ePk8XoM@$VcEH~5a*w=+6(B-B0?^=>%|cfuidvP$@}eo( zWZXhYZP3kZpeFzxE2H2ek(>afWB`R49m_>)>l2`05#3MH(i9CEkO#HkJzzh2^r#*m z9oC)8q|&#P@5jK~8xV>4|VU zK^XZEgg7W-Y%fn znNBbdL43egVF~=2@dxt5M1K_T|=KJ0Lxf``8a2+yNQ*ICPY~LMF57eu56@ zTDqzN6nIbF4}!=r(N(aS>qMmT#f#j)Z(`uRW`FlE05UZocPWqO!ejxX1i_`PFSQ0_ zAcKU4g}ud52ug_Dca)QtcN@yb-ufSXrB}8S0uSiDX4VsSux&(vRy?!l4bTww(p_)z5u^xO6cq?K+|9(d!^0_ckHRt&!F(vXmg!!VV2#Y9o(13= zQ(=ZL1ZW@%A&N%`uqj+1to!yAxQ*#$x+?^%vqE}l0It4s|Nbpd9yN7!TXEl;Nl@iC zU2C5Ll&J=u;L-M3MaE0hdrEju0M1al8p~jzA>1Y)s6cm9<`~{aYrr8dzu&vUERwQ)^6&S>`X!^i(9U>f)Ent$a5Tt>5LKa4sg zYI^!$WJk18EM3SMhS^5f3oILyatt?+*8jWQu8f}Az2^50jr`iBBhPk4exM@L;(w3Od{_;7Dl4zvIk5=?9|Ba|Mbfum-%@l`WSd=A5AyB2O zn;YG^d2Y^~R8-I-1qNH@#*>)lq5J=AO{EyYK_*-(sNETh03b29Z{L2>(v|oZM_nHv zLD>on$s=_4cY(+VrTvxTw|5^u>Phyd2||wHA<k)j%*@s5fkEfSZQ~fH>sWzVG}3>dUiaucZ?SX3Wsg`Y1MS z(kMQfx(RxW_O4yKGT4^EH${W-Y9HJxg18GtjwUC;7xr%SkqKu8u8HUt;TMVrI62^r z3d(%=a>5fWNVl1Dq%`m@>P+Zqd>uhiVW zi}lI0RTsm^-R2QV03x*|h>|-c;S&{u81 zeMq`~KWPV@7iCD3&axz1!S*9}Q%lQ3uv2<~qObyG_olNci^w;lli=0Y*DrG!4$*;{ zhCt)xy)}edtoGF4<8VV%SZI*TD}XBoswL^G6A9ecU&FVMn3x#0N5Qgjy7{wl_dW zF#j&z%%*qp7QFyAjY&Mne{JrJjL*CvQNgQy3|#q60ku}ZtSIR{Yts#DgV6cPBy>rq zCMPGO(^+`Vl{jBVuSLk}d478W#V)b_J17VWH4+~O$Mw)q$KH}-;)$Bk%0MXk@JEr8 zzGNH6fW})^4=Wgq8i7*6Ep;dMGb9+-RxOk#eFJMOQbfn*YyZ`2BDn=so_0IzhVLrR zdN(?cJ)ofqo3GkfbJ8sxq;zO3`V8(Z9l9Y1nP>-zs~w$pCgR+0d{52cPhzU{nA%Uq z4kB8uP#kqxy#GNota&Fh+e01G1Ox>iB42S_-%6O?h+W&Hh&E=V!?wg*Pn<&{>9lZ# z+CPb19*ra0;Cu5q_p174O*U%R`bqoShj zWV0|jlCQ4*Z4E9gj2;Ar1Rl@0v6(Xio*`Uo^}=NwmMw2a=iNrzj=8=8PP)jkbSP;g zRov><=!Lu|PeKXfQ%izahC6Nm$41k2TmJwOC1H*O*SHt*Mzam2<;2{~XFKSbE_bji zAP3%lZ;XMBbQ7nNr)LS@hrYi3pqJ|bhzMnH;#)Zb@rWNnOlDYhxqqdx%&JGD$UzTjBNIK0fir0akG@ z_R%}^k2J^AP*amUJUj%A@=0(O1S+M!L1E2z9#m>i&>pDstj7mYjQ{xglO=iAbIF>n zmZsUv*>#ck|3erPKX4$+wNr@cthXObvI!3!P!zz3wTUL|2UV`-(UBJjIAE5J;Xt%uaL&4hp)^6nn6%^vVICD>4!|d86{HLfC$^ z4Li1P-!5s>Mk1`Ez!&ul@sAMSuo$gLIlH=6<21sYs`KM2^APFe5M@C~$yDXaE{LZ! zz&*-;*%%lYhQVr=c+c?zbDG=Q8joS`U52-TtRxywkl%{v9PS06C4Bs!5?Kn*tyd@^56QHxryYB{|ID?7cN`~?lJaW^-@yWB)>e$wF=Y?tyl@zK@4Yv zw2|07i6;LIkY7IPNP8Kg`2<2MyzdI3BD;-!+=|BFq_%dzqgGMNY}fw-QB7cV^SS%z z|4~xI&?cKN&yEo~AIwd`BZzesIF7sFta8j);bnC6g^v*Y$EtphH$B0X0LSD0c+|7i z`#)QXfr&xX%i8VsR`hb$WH_N_%eu1h;MMay9~>PpnC1+=`D-b;-jL|D&qeNZxlH zf9*PQ>!AbG9#gPSfFFdtxv5u+kbkJ(-!&EQfWl02hG&VS2vMEK1uqE%2>2)va5!F4gL@emHj|j893hz% ziNE^PpxOZQFbhwk9dQ!h4SMpTSQ}bBv`qbX_9n^w`qTX8mRHUqGNwflYzHl;i7mv&n0cf*x3^ zqnz%k4`+T}#H}ckbJskX<9G=9MpS4hJE&z44so?GgPmDi7^jTk^IPf=)f@twzbB3* zM2)eYR@m%y0;vr(DmVcg2=^)y64aUfycoVwhDq6E#)AujD!(?f;%I2|c>uJGl{$EY&ebSuQdI68B4G9Pi}J{YIo-t`_gwMkLHFq^swjo64{;dJ7Te z1%D7J>ZeY{y@p{05q$|xQhsl30sRB*w+}V|a~y+j)h+XaEj%RAFR7%u3HbpEeDH(Q z2nns7!GTyPzGs=}c+ga;)KCNBst`+L;GwJxV0-{x<6B{22e0^quK!I;RS2lmxx^S^ z_~%tf=qP%5-cnOx=IYa?rkaEe3Xq|(*gw2LVf%p^&4)m5)m^WU#ntX%VIC034Bb{H zZbc9N8soEPV^EAP3V;2>s9_5J;VG=>1h0awnXc(XI3ujo_}yZpXp=IxgLU=waOB1C zHF`r3N9`w!p-Y_XFGydbC#wPNt2Tfp$o(8o8iuU5@2UaYxp2F??&Q}tB5VSc&d7>F%`aRG1SH`{)q7&XrhN+4lp zMFI{gftIgV6GDZiKN96Y1xX7`pbQP^S9|8oCm*O-4(m+yRoKGjKv?XVMK6%ZsJ}_7 z&kp_7hh`58S0>tqkKj4M=)&@fFO&nR_nZda zj*D=%@7i^*chRn^6-hXqUcj&oL9LFBeQ5Yxr9T)OKKNIsY>KBLfOh8cp74r;AjfEG z*fu~UFrEXmb`^c`p8Y3v(Md3iSp8PpMWyTi{N1JnIpoZTCzfFiy z@P82(FTb&RMOR$*zxpb(C5ctHO zfEFTxBh%UgY1kGn?~C^K8W7}&Q`SfosIWFmJ2%yzN`PW~7pwOaLpMZ!r}oF~e=52i zv|Yi4e}NG`D56~@4j5bzm{>V@i{M)i^6`Z}JCmnH=!=*)K<>OJdn|Iaj_ea0U_@&JITgIH zF7gVGl+yCjQk)O1lN#KhPp4H4>W%6yDsOB|vJ#VcYpslkhFr6XTTp;r|2}0t5y0H9 z*g*Uwii42v7~$ge{U__m%1gBLJ^2_FDs&1UxT)!vNca7!dW4$Fr!!2JR#tOats#W& zR}kOO2(3^3!;D=Eux38&e^r+(*Evy3RDlYcB8*=-?n8I5exJ$$`kc|D8POf{s!*@e zdPf2p!iFD6+Ul8C$;ruWWaOCR1zpVp68}9?7=4Dd8Xtjg_QMMpz7~L0fxflU6Jbk? z9~ym?W?Ea^#L$8Rxx#U9g$KhEG1+6z&K+$MXO zU_%y_lDY|29?F~ZWbctocZhL>;DWw=DOVE9JZlJD3d*4>GD zt8f;nU7!K+CIlwThet&%sj8}~?dC@jfQvKF{sKBGLa)??wgDP74Pi&VYgawGdYj^@ z|E03VJr4n86bpjt2&HpiWF#0cj-r`r`va>A_%?)}P5sZLx7!wQ0m9eqY6;^rPwlTc z?`+f3JwRn})H*vmE5g_2JUgnJxiaPsds0jCQ3miH#JVB!Vc+9+v2v&?FJEEl=dFLn zTzP%ciSPeRkLw=+bS3P4va+&mAj8$f_3xsRUck~4(hLwDu$1wj4Ei2|$AlCJXEndE zKNLB_eRTLRVKz8{dPw9T!jq3?^f<6h5T*?lGEmf~A@6|zbH*>M!b0)}#Dq%Y4?>+X ztMDeq@ZiU-MMr-(HZ};jj)RM9^VO?YNu*@0n}o9$34sx*kg(1{!QcY13UF47?*_|c zX(k3D6@|TAgPoHR5Q*?Z6vjVAjMD<)67(&IzUk?~`@3KREK z15*8+q$I&#pK$DmVLy;}7P%Gg`8N}>{GL#f%Qha?6oxUVr}ng*>ANUNl0uzu1B2R#L=vY_;ypr6#eka_&{}H#RJc5SfGu(ph!`|2!CD{52gV!yf zkCaid*XXl>)U;rFPS<(qK5n>4G1YHA@kugL*Ih)fm9=$zc`}j)J1I6PX|?{B@AB+H z^dKkwMF{o~{)p%X@A!H2aF`QHllNP`qm?Bf)sX;hqp-M`ZcPWzDXG(%I7M*T^eW!3ElX-<%6m+t;pFZiAtjfSA4j;4*oi(F3F)Sl# z-$4mu5u}Pu(-vC8&?*KncMuXE&j8_U5Y9FX@~FN134%B@JUj>-3-!X%&(tc{4a!|? z@|3U#G*MUX;iwJ-rh2RvQhBO)b#eU0yk7c0G^rnDxqttth@!l6oo$+jn8pR#bB0~&2N^* zP3D{Z!jcunqm-V1sr<7H0#sx!KN=je@1Mp4Fhy;{M1(*^3T9DJH*nB{3sKgF(dmXp zMut2c3lPqztF65jnh*Gt{vJR2H`&BTr(}v$LZl_a!N-T8ukEBprmD6!9XdL?3pm~* zjz6IqW6Y%;=S<2l3tkAg*`7=xTVYsd^i$SuLO;RO6#Pi>rKjNOJbCiuHMH+&_s|J9 zJA5KoBf?_54Ey(T1gL=%7cQiYHpM{3uo(-(CQ5rhhXJ z^z`(Dfb+=M)OFoGJ;#OPHRPl6{`M3iPU-0BIe2+h`C=L`G9I#{!%RsS4xCy?`eyD3)Mk8K(`7J;|!SJ!}wYzupS?J*}DJV z6f<6K?hCM$KRI6|zgN)c8cy0Eh&GH4Rq!4A`qF^~DT|o;B7Ak=e(O;&!gmFWnaboD z<}m+gP2COqof zurGwU5U`k$jEt=M4`eiwB1ARiap;_HzkW3~a+EF+n?G{qsR7~Mp1xR*Ni*2`L!&Pp zXPvf4x@-(){w8=Z!Y~NsNonc%=OxT>U>J=J@-7Rnc1k$bHEh{`ebuYC(vJlWB;q)m z-37)FrO`g+^x; zIVGI;;UgSJ`8Wu0;ci2{P%4Fq3Zq^Ha0OyNhoNyV!q-g=y&QuSn5w5J$Xn@&zI&JK zg-HbAF>j)(5v5EOy8-irk%(IIl{xo97HNS%bX4m$n&)RZ=Ks6))wC6dN}^h9W&)UI%k;00T* z;S3&lx}5~vz6=B%T!@ESP?JmwFNW#trKeXx|COPUtE`N&g)tT$(~y8T^F9BDNeSBk z;1xqtO?5TV4FdWo&){l!!6goE0DtnJDQmZaXaX1>4ddUF-md98*xeXS-c0aXJFJd} zP-3*%vYt|R;^@@ttae`44j0x9rx2&rhXcMt6zLdE(9+s5pWdRxiiMWGE5;HlYqG8WZC~wMvwO1Vl0Ew7av?tFp0Dx`l;q*z zF~y|T_G^SyyTOHZ;l~3fS5iq{<+A#ntEh^sq{;RZZ0<&tfG9UNzX4#=aPCdMf=&8k zwVRUidy3z@@pX;2xV37s0i?mV?h{>i&tkBUaF*sG6PaQ-9DLMTly=Vx`!l)VCWvfX zg8#dKejf%QSxYv6>bdXU&0%R_F|oV$U{AOfh&d={d}h`KP3S!`9?e3poJl1>$wu=> zelOt--;)i1BKR^|jwE{pL{?r}6?_oCdja&fj6IALiX`SlJXU_cl9DkyeY%cp;L?Yr zMz#k>uJA5k=)@I{wGsK%>ErA2guJrVQI@q+)Ui8KV#_hC#@6Q#&6$dIVGbHq@`5({sR*htUd6PuJ|G5RAa)WA4ZPq8H)# z1PP_m8W$ZMcyzMl#zp|_$27>KsR8RuiZz=OK?V|YFay$B&K2lDV&mh7Q8)L;ALZgY zo?op10|9G;IV6ZcH&hzwfOT26h=CYw`D1>5a?o)2-<<`ifoD(fJ)!7X&VKexNlk4B zn60gm!_3BaNEe{$1#T>ieY%;)V2wA~3|d-P!KrfTadA_7DE4FuP2;r-?XePspp7z0 zSg3%-tHE7uapX2!h)GLJQ>~)fwd+R}i~w~-t@6YZC0gzuq5#rT)zzgT?BMtBGruiO z@&0vCSy}l4J_REMbqE{6qmTDfzoQinh?fa2$#Ze==GKO9M}7{~-JVI^SS2iUDnuuw zug?{F$Na@%GnmTY`XI^}l1s2i<>DsXePc9FU@_to8rrsdBIhHkR!2k#=AJlt5aYMv zQuYe90v;2-IvDR3mv?4mRIUAXl6L<^2f#H`vs;09#06$w-auDK>WC@2a_bAh$l&U` zN6S$df~)O?ft(sx>74G0SxD0a4F<*7RLn|Mx;0USr#%}p8zBT;!-3zDwl#KxV7~cidV;O0zbm|s|-hBN_Z%VwG zcNhgZ`9SmM3LlS2wvEN@+pqOh`jwykS?mg2O=OY`!@u3#CX=`tM}tlW#?Lsh6pr#1t~OTZoUm{LT5pt7UI)17xe1M>)GkoUopNX$PIgDYs?m8Wp{q&1*{1`QayP8B{pbRs|fvxr906IP+ed_ zIxFb_;B{>q+W^=BMx+)`h=Vi?3^xHn3Hb>jVUW31BQjSY_|G5Lti9?2m`uS8MQKl` zZZw0LCmH6rxZ(csx}ET)e;KFl$}327|n2QjxdoRV{&|S0~<} z`&Svif>uk~dzP=ydtB)441~Z8MANFt&Lft$Ux*kRqvjA<12;O*EK;?l!6lHf+mNE9 zNS;D6JOWk^MO)japWKN2UYp;@BxbP%)$Im^<^9C$BlrY>yeQQ%EQT1KUP8HFmJvI; z*weor60kOYK0(4d@&ac(u^@c`8-7Hd1~5`ZuRMcVl)SMXd35p(o^x{@V#;~Lha?YT zSO$)@TV-Wss$#0f1Nb?q!G%Dg`t7cG)IpMr`%X}Dbb<-`)i3H&pqXiSlmEh_3II{* zt16EsDFhG~_CqC82*phVH2V+n`WYfI-`zh*>Qt^DPulvz1j;W-{_~ zb9dp)!NE4fW|xf?f5+ZHf1D)JKzHIl|L8gnVM3PGVY$Sv$yy1*n|C9^XrDOmPF-u8NWv`AQ&9nYE|Gr z6)tclH|^m=<>JU4fp>N-Q9fXOK0-W@2~nB{N}!>R+YoW!5$cxh1)g4UHJNMn57Rt1>t}#V7C&V6Z6r^8$_yr*|Jv47Q-QEp@aL{nRuuvT411cCtUmtn}c8Zt=CHgRMIn%aLYzmQJp(s}G<;cH6 zuAooyz^V}pSL*s~mTG6QeDS-3pU|5V^YfaC;wqonjD8&<2JncA8L<90bt#nPr4gID z!|@?9DwgYzZuczoUfE6ZveZylzlEGgr+|rAJlt+zt^9h(iVU7wfr_MpQ8W_i%a<=1 zM{i+>{y8v7zVXgu)PFdd^BZk}WB@Gc8kp&6Yg%RhQmSic%(NZfoer6RXc4AA9Gzn4 z;7Hef$96>0_Tv`tE=*{4Zxb#^PR>nHa`TMDU#(O9_JVP$Ms_7;0x`!mfWb64=IV*D zsCcF0yNJv|sNV1f5)OKhVthhEb+F=1!!0qod~1dXH0U*=P$W@v_rg91Q|>{+=nq21 z67)j?CQvbM@7%D@;{sC3;#}u>0&(FEkN9r=y#w#KNg(b35y41aWTf@EKOmc^nV5)2 zhG2O9uD1QT&$i{$KXDa9Sg6$z7Z_HGW(c|6}-BO~VK z0$yX^M=|#ZZv#Xpi6nVHW&+#5tF~9fOi;Q3186f{mQm?&q7%>onWg}|ueNU-E*iVrcp(#MYnaHU!T zK6`$@dt!@A7TI+AkPXegV<(l_&R8jFV4A9tYye0=zI_U(+cFo|X^Pt_h4M0a@2uk> z0T(B+5rw&yRhyIPZ`W13kG5T>0Jg1M{iCtIh?c(;&$JQd<_@yQf$BsFa)iRyi#0r# z5;M%ax9#g>@5Pk|kPUW5!pM1rmREBC&dpNvxxz9s_p#n=uYh^wBMwlE0_bdQ$e|d; zL#WuLCv9{)vB4!kI9Je@673dx&IZgXAIoQ-K*1jX)n1aHFG@U%q8BT$q~rS1>uRxn z+zr6zuQJR*J2pOcFgpclgfEORQ6!zB>JckcDvvt^K#Ewac*N`rdKG3p?WB_PB$)Uk=) zQd+R-ACDg0Vov_fI)R-$kX^Hy$Xald?y26wvAK|vR=B{CXFL>@6>X7CEQfHjpjZEQO)ebGqQ{7@faBUW$^82T@@jhysU7rB^Zq4(_F`N8c>h<# zOUw;R6ke`GhK135GYw&%4XVw*g<4O8D&%c_gSeuE0YFFOk>tLw?BrzJA*UZ=|47$1 zR)5N3R^4Nq^~)EjjeV@y%DKHYhuKu?D%WHAVtNmY9hbY6ezCtekBjGnLx;CVaF+W4 ztJRr{;d|^E4o&KN+|l35^Y=-o`?-;tuP+{cFU4~={8sA!{N+5Bza`9^zMxFC*oG!D zUv$Z$q>P!IqI@YJr`Fm1#k9%%k|?KzJHy@|>lcT#&L*Vq|E-&;&2N07WB$F&Tly=5rZM1a86efIljebZdHDRUa?n$kbNNE&Qp{P#ZlfF43CBILq#bj#of=KVfhwihKoSkNnm3jJW$a0<~Ynav%civ8( z>co@LTpu5C@~VERZ+D+)w%TY*qf<|bua~Mmi(iqh71Ul)k9|uymqwS}v2};JE#GPF zmlhp~?6fQ=VjTtcEs=e0SH6W4~PF%+o7tb!w7t#PPA(>6|+kf#|GjWnp9ty|DMFaQYGM5UN1Eh3Cxv z-l|GY3Q8y5+3uF(^)y_$oyhBZ;-qo0s`Sm%x|B~2Sj6!cB~?BSamN!jm^nD^l5z!n zEJ$z^O5+JlJ1hcgMKx?nIZXt8nbRpvN-h`$JXa|%kkR(^N&Ql|_Fk{k?v@1)6_t8@ zcZW#}zfdTPV09^p@J zAzO^CM3%zX8KLZyeakdtU$Ue`*-DJEL<(h>5|Le$rN~kgQla~LeZJq{xqtV$@9!V? zIls>5ILC(>Gw*r7U+>p-J)h6V_3)(m@2!W=okj}^4(LbUGo`AD-dlEwthlE4fUauE zWYIBk@cGAmZqHap^xmg(MQJVNZJfLC`imHmn3c3gFcPyX#FZp-=&@!U`&rxNUk~xR z?Y8;({=AP>Q_SbqSsTTi-Pf?@i=7IQJzJrTX1IiWvtLCUwiZ+K8BMwB{Kpz6e~N3q zjFxPrzgufI!t!`*;^cml9umL#ULz^;!=CoN6vHaFm{+FXZ772|iVmJyMwF+1<*)Q@ z^uDaUV!}B~wLWIy^<`mhRc<9Q4!Iqusy5mt7=$ zKCK0ZycF!-9p{+K6#B|M;@HCHr^&i$NBJV#fq*lFp{uC`T4`%Ux9pZ1f!foj1C zMH^c>j8+=N5zPFtk_D0J?wGuSb6;yFmfasdbS#RPxoG!hgK^q0sG7f4P_b86f=@FR z4(hI@Jr0L*v@Y;SXVa+m%JjSISfuBxILqjVxfin^D?R9a%XrT*Y~^|bSuC|zCZ88h ziTLXR0U6I}rZ@@*4!IZDE^k#-DRsqWY2!HuYO&2nSgn$nmMnOypW}07Xee=3Y>vy% z?<&0G`?GS{sx4Fuhd=T1XgA{|n{*ccn(oE4!hu%FMl09->nc0f%_WN_8UnKFgy&%J%?-2>jZ7Tc5b z?y(uoDJ?gd^c^mzxvp)!Zcd+|TDG6y3a6x+dWrmwx$du%zlLksOywBD1!`Ahd|)DT zP-6Vj$L=)hI0S`6TI=Mdb<(PhS$<7+_v`80OZ+9fL3Q>cA0Nq>m${Ww1E0MTK={cr z#A&hKywI9xT4H-7v`>uf^@NF4pra0B{i~~lV9Os}qPX(>w{FT>_-tbqHcHG_8~bmn z)ub{;dtHi{TA-8sj^NSZlV4Z{2ZgWDwy>cmt~X{15fUvOh%G!EU}zL!B;PS-+THe6zWPKsrZ}|c7*tnno=+xXK#m5^-V`8${BNnNsBl4Y222OK&;zdkv9S3k zwArBOx&YyGkn&QYSqV*5y8eu;EMi+M6K?;0y?-T?Oe`%Ao%{j)V4y+lg3NL=+{ojh ziJF@X>Zn~$P<_X@`DT}tGT{l_ikV4wOI;2ffOE6B-e*NlEQRr_zDj(yjaD8sxQ0OAo^~B>lt??1+Sgh54a|3f==Aqh|0oL)h&q^o79}JcH~d(C(Nhmw$)Pa%4#3RCw7vv^$iJO@d9z;@8nj zIk5s_3s;AxUy1KOlKeZ_H2hTj$R$=2jYko0Ovk%|?_Rey3ZZj6H0Sa_YOScC0Kf7S zVjLIHmJlhJ;1@XYd2ulTT>9`YcIO_XC{uYc&^-UO2EdA_b|O2Kt<${U|Mvbd~v?^?`#*oP$VHbx=QVa%SNrwPwnhdxr6zr>m>H{p#mu>0; z3{BN;@-Vk164_RrMKv#G`HAoP#a5F>kD)+NguvWwqjbo` zL3a)d{eu$NkwKq&1tgZ;7|=Jcm`$i@RzLjRVMkeLXg*YepD+wKzNqi?xq;Mx-CM3J zo~#(FlVzt?7ELG-m&;1OkZ6}iW3$YC|MM}=K(|ZL=PY>KIUB!nU7BcZ#*kQ5?XOCK z-}=XH#kjltB9HPJpySpKEm<<8npkUUYT#<_1Y?UVG%YuOD`ZqZf6fbjpb=02`MkuM zti2nf#qxr7!_|O4c``On=Pgeay*v3Pb-_)_i?75X<+tO0uI6nvVrxq(J-;921*bDp zx4(P-KzEez%-)0gxI{294*J2(ooO6iP#J@`Z43?vB|Gq#&(B}z`v4lEilO)R;^Cz2 z-Hp)yy8HNXhS3b1W#FIW$;`||ADlxa!RJHx&s`X=7ux|C4G6v?il`lqN&{NF(6NGZ z_T$}vhCR%!Wb1jg;Ob<{_R66PQ!kbcY)-}fkkCo(TK#bT>5Gcnic);<6GaavW!baQ z0xS?BppX&Vbb`wX{GnQYepU0{V78_HvWs6)@rDu9E}=-`>_2zz++8S@j35}B2#p#z zJy$ROLk0RB0*feZ&oY>9pq>+ykzqvKWOxdoCQD$NK#oj-_QhU&6;wNWp{PPTX%#c# z;g^Oa69RVwArEKSX%#40E8#9a+S_KwG9D?tuA-OFS7g&V>fN5oB75~MuN&XD^I%0q zMk6?Ntro*>{+AaZ8M^NKp(@fcGdln%V+IW3$$^9x{9*>WhlSu52?8Dr;>aOY1f14L z#oi@PxQrZ3)O2ij;Y5J`qZ(>^!X*zNn_U+wCe^>c6hhEFv}{^iCxCh;2m}DgnqWA$ zZlXeZ>x)q&-rxTi>VSg>9`Y+UdjFg?Qj4~*4?h4c(++610-u_>VWowRL(U~}xc($Y zIOZm)y*U$GQ8oW5q3h_^HCdx={!IEepARQhe_PhcyzN)PdawIs-Qs$@|up|K@U1JoFR15@lx&~r=v*++c^Dn3V8fwI9{YZvlGWPpU*47MriU?hkDxoBVV z47jTjLB5_e+l>JtZE8+V0tgHFplzTo2hz9T(7k-PM-J~BW7ek7<3q^)p%f#@P$GO~ zJ*rs!E-R6wnY1G!c8|hLdY5@@gr#WKs4R3KG2C>ozD^>)*L3jhsRzaZyC(cG-d#QW z9nZWxN|BSKFA$CxZ89)-sv#~a*XP|H+&1-n%xVATyAsRCp66m2TFVNeIFi&!`bDe+ z@mle&JJHIH#p;O*=_Nlq4iWu7d*ykQj}iX{ME4K*cu(?c?Vq30Iyg(FTsp&_F%gw) z7tf+7AWPZx^*6RO&W@^~{}a2!HL+oz4eRp7?hER1lCd;^0RB2uxO{wK!m?YuPcXJ4 zRa_MJLyJfdA~4BI#yb@MnEmq0Chkz9cBLmT&Nm~Zarsp4Y1%^F7JZ(9_YS15Y9twH z;h08jxkX;Rm1ghJhoa|Prz!?IE({T+Dw7x_?@QgTd17U9828CB+(rOLg6&ogx6~6k zfB){K^vrsJTko4o)Y~PeO2XfVe@so!qqM#f5WCEiul8zv9V5OdCwbyAr=uM_h_yz{ zDy!whgQWULc7q!%&RzPHKx+xxJyrvUXo;Tung)zy3HUX}V`79Xw(Kv_D$@i*$L{Om zLsUk!nprvK7hm{hVJmO`*$=e{|7}g;i156?70a7#>$(p)%uaKJwvweg`E29I~+pndBkCdu5ACfWAlS$Fk z4Dm;Hq_L8p*9g38J=a!^LsUL1Q}^m{zzv2**O1A^){r!8n}K^>+*b5xPFun?^!)Mc zr$$w?M;!wQjO|#>3aU6qs)E|nSi_gEroNU1i`X0@-+7W<}ZS2X7~`GCo* zg~nGj`re%e`Gc`JsT>=`23a;4i8_@pPbD%4dFR((v6rno>YVE946(G-@=mB6y&D|u zfL^yoc~qM@|G|qD-!GGh#gsgQy0179A%hhwt811K8Ws2}tPbnSK}B!1{(B zL|@q9Zu;j^)zLn;4ubF$!8T>@Fi; z(#+f+3k9mM{m^GL<(KVd)TbYj)Q(-bx66diajB~(K-VY7p|7f~O2*vJ`l5GK<`XBE z&QXF+c!tA4I1+bVHigS+A~@#oH}@2JbO1}WLOG0DB&m0Q(WdZbi1 zU2K|y zwxpQUI0S1b2!>b|WITIV&%#6NC}8Eifd5(PPN-L0_fRofjN)y>3271uT8~4_9Pfb#J}BC+icr^I;#v{OO^d<7XADQzzAJ!0VZ3pHS!$>5#sK0;~~*c)Ts zCpOULk^V$3V?iQh=wKYnmkUy7Y64Y!lCOIO>3$fAkvRdC=M}cARe9+`bkj|2Y72Oy zJ31}LTv$?EDwtL3Eiw*sP25oIdvRp?ov@u6`DgXL7m2lur~_%rCnXU80tHEBx+2zZK=h9bQLs!hsgI{Ek-2WXnK3 ztQs!pbx)TC(!}Oq_b6^KC|r-MP<+TSRN5^+wUBV#)4=nAv>PF}hWBU2-jsQ-$p`yc zT&|+)Mu0TP(WH9N_zjuO|E@U~bHB`4d)IuvgHoiVvJV{P_7`d-?v0|cA71s#3IJRN z$0#jghP+#YZa)Buv>?R0Xzp%>VW*rwgu(qCFIyaJU@`OW}?~cnv%F$EOz7gD;p(|lxFrSe2M}7ScP2zKnL3%c?U~I`sS|>ae zn!JLjgWv)~x;0`{z?(Oe-v<8~@?`@iej41kT44C-@9#%;c=b1646F$I4O`I!&L=%)<^84JDKOd~`#1RRqF_UY0AGk~0CD|?`(RfD z?!OKYGLWEh{``3dfQS%)X@mI)@vA!6BO+iF5|0qo3dEI_QP(>HK%>ymy59pEM)1&s zNK^rJ1_Z*9?;T7FHAM|||E->dk0s%rNoeJ5D|~ipveop}u_%W3p7xDnDaT|ft|!co z-p)~(^Z&V(XV*LEUwqrhD-Y^epTFBo;?mN3L3Nv9;xSOjs_%ZQJ*kuHcc97G^4BSS zeLMsvQ5piH0p2ChO=KaJ51{gDliy%o&o3?A3yRik%KFkM3)=X-dbPXL7r{=TE|Gzn z4Wkhpd>mdQf|#Oe6uiQ*DJh+3LJqh?FdE=v1*dE*H2nERMep_b{{>YZH7Ou6taV2{ zT>G^tlxv`SI082sL2%DS$Q33y*MX3R1{H*UYeYX>?F3+VB_vxL)`zTv=JT(mf(8za z4FoRUgrW_D`3o2pkhM+#P+46A;=wfZ99Pgj82T*QhK39nREDDnK#uqGI0&ve0xc(K zI!V1CX~B^O_+=Cyc!HD?s@*{is3-1+_4E! z0*is9Q_&yNm>EuD`SZp4`O4M@Pu7e7hYDunwP!Gqr5TF-FUB}3WUw%S?LYKf>cyW1 z-c8`h13MJ(1P4meq5jFQtu^;i1s?R1_kIa?osd@mAdF$Rz_AAZK7wQw#_7sqtbaf2 zI(sPi3X|jG_cnJP(Dg}h@T__guW_8O(d6BS46H2INl)v>uVUuo>6xJe2Pt#=jUxoO z-DjR#jr5KVKeA^xv@kU#J$t4cwSl?vf7R8M&&zA4fnE(SGQsW%G@D_K!n?TKD-@){ z*oCd?09i!7Uw<%u!37nO#--7bDmQqlwl zh!yZ_s4NWt^Dy-`dnknK$ROj4Ui`Joe@6b+MOR^w*9GSoBSnmb+F06m&Qs}mmIaP; zXm-b~JL>&1FIE3EkZ?P+J2%x`pKNkYXdtJ0Re#)9j6)-qG*`9<0}Rx?$vv?2fYsb$ zMR}|WlsN=WgUra~Y?syPc0{59zXy{CxmlA+{y-}PQBiH4mXqWDiUwp@wtHuCU;TXn z=Y3z2i%ybe+x&RPLgjkp0kv0UYi-5n?^JzGI%eX^N_Zev$WU$iqs(HyLG{b6H? zjY`YFCY8vYh9*}faq*M#woo}jT4eYFQ#fQl|KVb>@bE0lH?Dib_uyF&I+>oD+H}9t z{%#=n^P%+@Z-;CLK@ijAI{1guu-d_e0zA(*r|BRDVJ4rXSnwc68$5tux>S4*R}dH! zuDy710@1xeU`Eri;2c3dBumSi9|JdX^(dDtUtG!(g#-~?nb(#5FJFHAx?zL`7WRKS z2E0NI{XGhBA5fT+X_b+dCh|on0S|7AX1K`?qyD?<8#=Ia9}rJZ-M*1#=* z^fwTAV|Sg9u>#C%ESD4E6UF6az#m0U1GopMCspqgFFq?KD*CKDfxAs%z<9Svdt8<} zQS#T1F(Qo#rTr?C`?4->_1;F`Ow#p?)zgn~O!~I=J--@@Ul;=M4wP121+Vw9(6*a- zI+yp~YyKvPwQjCKVpAl@9HiCec^ zI}S}5_z$}p-+0h)LKr!l;GSviBMFFI@K$|HadmMaLf-;$eSxfn7Izc~fb=@%3f%Zm z>k)cT@>!CWyTQW%_E0BC4{Whaz&ehs5XhX01_^-CW(C^I=mt3RNCj@(NEro}WGBo> zxd!SuEf9*d$*&tuw&Nb%s$p%`)p#^qA^AN1a)wyrLM;E1Z)c6hgHVHnWBim!r?F&< zukADekT|9XbTULBI$)3CSV>3)5IZzACq)qIdS$)wBA~>|*uf>A2(N3V_=X)G++c|2 z6SeQw|Ff-7cin63F)es?w1JroL*f#^-01M@`zKPv;P9{$+_{m168Zf&gU=OdW~gHeE&$}_L^Nq=y)oB`qJbStfL;sBc7t!_Jc#4u{t`6 zGxXIi+lA%iV#l`Z3aj5m)ykHk5-xRf?={bykhkJ_8k+KeNp6HkHASw0OQWQ0_Grm& z8I6Dl+@*qg4h6XlV)n5Q#$$&J)pe~1C3S7wOEHmGD<=8A#@HABN#M`;w_xMw`0DoS z@#qSb;2WIv=Z;wY`SIYu(Nh-*KQ9U6Btkx%{i-_u>Oh<6>zB{p?%SFvWUcvkb;5vs zjVHXJ)hRF6&17q@oinFv6!W&W85D{mE;|-`Gk#AEwXc@8p=}||SMkUR@R>(fSmnPQ zc>jE4hf}{m=cUq+sOFy#*6OzOlV|x#ot%cFOtx}qTM|>9M=%wVkMx8qRF$LeKJ?BRpk$!++kGApKMZ+-0OJk$?pNW8Zqr+ zC&TL5BLeKq?ftTDTr6LwzJ|Z4jTOOd2*`HJ2$SC=OhVfy?dXG?#(f~U68+;P`^9M6fnT+})%q?G?&fD9# zRvc~aV)CE0e$OGdVf0{GBI`_CM0sF%slWGv?Gcg;^DIz*^Y%FilhrzL!I$@BiRz8N z4K^(>uE+>%OgkG$DQv@=8aWi(A8KsM;>QK2I%f-XOOlfm>T=d=2(~6?%1FIOKBbW2os9 z$xN-&-9vn8&DMV~nvDJYuPgRd$jESY9czhi#MD~7pbR@Zepk#X&K9vJ8c}j3Gh3G` z%sXA4vL_|aEomr>WvRPi?0`0pZ&zv#w|7b!N+=`~Kt>hH=%XLbGa5 zoMVzhvs%mi$c;Px2^B(#N6ugZutnFijLcsZvH95s&JLAZF1|6C|HZ%f%b#jzQ#|_m zoM7Uo|WdK zi8=zIXqw?_?ZE=03Yq3olN1-WcHO4={RtFeLj(`Txivp62a7~_vR0zZ$y>hH<-gDN z_G8Pk{*c$-WAl%>)sVj6H(u9P6RSNB6-a^_CHbBQ!wEip`b zWTvNac}Y=!fMMOWWgHBWr&hIbp?-#PhE|demnCHBwl&M6<0UPd<7gh+%q|`>{ZpK= zQ%nwJgkR5rbwJ5#pMmM4;<;Jk3z;(>nz?Cgy{DRAnurl@IShtWtOWd|eab~FiI#Z% zpzkYR;NshN->WY7?gfz;T`39zU+GCp3}O8;IV=7#CSv|gTjoRwO2%35kpt&`JB{nL zEu4CwUNkWDsdi2XSB)o*oG+0gCyBRp$C%iP5tvVc<09+T1BHhRDaFqmzC8EcP|)mp zX6kfb_s=C3^1-{*m+1@J9klQx*&M-9Jg2u`TBW!RIQz(0I}fsy(*2k!_k0HI!uJ8= zo=8ImMGkEx?tcM119Gf`)Qsu_p!YI|_4;yu?#WF6OEy1DFNLu%Xcz{+;l+!G5N{K9 zeZZj>gh*`WKGN5}FenH)IibD46%NUSqeyTCv!EtW*^xKx9GAbK3A8=!;%#<)OuCxK zB(tE@F|A!%EACR>5c1JW?c}eda}vkgFZ3x6aEm=&9FIC2HjCVk2p|lyK`VGj-@?dI zP=%)Npw~2#I8HAgXKX2#d-7%&y7YjX9G2%TyF=BhYxX)_Y z3nn9-Cx>b+tLN+RC`o8JJ5zssabh<}ytw^0)cLIDOg;u;zR#J6xzfBfFpoesP~cmj zA*~o=*c?O14voiyV46op#7KoBSom8Yk^0LCvf0|O4*~H9bTt5)$^e4Y;Ep;E#@Nm- z8456uk&0aqgZj5)8~Kev3gy87qVg(~-e}wb)aX;a+mNW5hExyoz(SLU1ghCiJ#;P* z(;3(#Vp#>{?pLs(m<%2eqGw&;v zuOG1Emg?9eG!&|%6aDcL(4P7(A3Jso(xrHP{k@Uh&=P^u3B|Lv4K+2R_|-7*xqkoB zd;2(5Lc8Ee7U-OSe69{Z+XW|7umC*gQ5Kh_MY1BtR>lYLKkISFT%7f zsm)0!lOR1Y_ipRM-)%mWUw{FHP5GIBAbs&qm<#6rCC~UkMFz8?^4<&YTxpZJ8pLUD zdg=mRR#dY5_6@o+L6f*7hPIUrrFLzq4T0grNp?bG%JOlj{WLUasHwkXbNxgLABt$H zg3EZ{J2cUEswJ8LL?Jj+5F?xTeYOjgJ+hGdWw`WO6zu^h`?<-!G9mUv%kHu->dk&n zc^ucCckHcQ_8xfduz%4Rgk<(G?zk!NO13~+4)UF(8TbO-DYk7xD7)UR4ZV2SKO+4W zjQKQR7ykudoTX-P$?pPb97ab9!G#YeF!HrSx&ea$YeO^GO_N;nf@xsvS2HBUTqSMl z7{M=&4-apA9dcAfIEMCGg?cR0Ls>tZLX#><0lfFNkWgO*vv5qlEVaS-EtgJ}| zrW{ml5ZnQv2d@Q$UN}Dhef0ecAU9J$ht|9W4GPFJe7^|dt%j(7JAxnT^n3`zd@k@8W-8zY@k*ONT zIwTKwe09jMcvH(U>ODbu=}C7?&`*3dl#j2s$C0kH>%}7|=;NW9EC78GA?;8f4g!Ua z;Pb#-fkN%E=Q#4m@5Z1(IN(%iM~x&v5;;Qkj%WaoJ7B=9tga#lHDb>p4HWg802hoX z=&*iakVwArQYZ!W1yPF$Oz21egeaU8TpQMj-#It&j^^aQ1JUb~{Aaic7P}ao!c9Mu{FvmGOZk+e$=M8R{f&#YP zL~x3<5G%p|zYA<7Tf6I^flNzz1RS&$v={;p39Wu;a19z9#P|S^;u;`g1H0fFtQ2S_ z2|Nr}`(PfH3Dhz}%Lu$c+4Cg7wn%}sH3*X)_Y#^$0YPLPia+;JqW;1j=ocyObF_~yoq;)c4G`S4_F!bNX4y%vwu z94u9Zd_~345#}+6^Y+AY+dYJGG1p(jiyoE4S@q7{l+9lEiDXU9E00K@RrcQ17y+9M zX~i$mtMY6p9`aR^d(3}$uBnT$7iL%-`b#9qaDvJbQ{3E^9+zJ1$N1H8R^i;~imJn+ zpFVojJ2lGs-AN}k;uJ!IX}fJ4$%Jr-7;VQTS$RFZV0Om)fWgL2qt#D|@~w~>4r$WW zF4t`1{b=`kI{oSsgDrAcH}O!`yUs5W#=MmZD{PC8t+Ik1%%z9^yaGd_oE$Z>{{pjbt)3Z3Nk+*XrV`M0Dmk| zd~NMjHPd3e%)av?qPR{ti3GTARjfA$RLNR#aWvn_&Qv~zw`JF<&q~%I4xF z%_ezAm+6+|zyU{f8_U?tCGVk2CTlb#=a)wf7!#*F1c`(3U-pG$w#KfzwyCms%)InF zz2AqxKB(@RVp&|hG`JB!h4F;H6? zk6Wu{;!0I?NJx9)H*rVk@!cRWvMQcjSY(wb^}@b=T6;6GGb4#&qSI6atXZOQoi()oYZ$N3#tiBVu- z5&-T7NJVXsM?!9&W`Bs-#e=(V3Of0n5UPgv69tYTg;(#On}_UvV20F-pw8ytOP*0` zlyfu(+9nd#9=$lCM!0M~p@$x6zI<^1G1kb1Wm-Q3OTZ=8l^v{co`F4ekx!A1EpkK+2g0Xg14s(i5#dVH`;|gSo{`C*|%N-huXc zmDy2Z(Q<@k=lJ3g@sg=RR&{lTNMM0T`=sMczY8j_fawrTUI~J(JIeQ9ngAoY0#g-d z;3>6W>*e1gkaNN9UdJQZADj3=ER$Tg_Ia$ApPP5{QX@b@) z(fl+MUAEa~>flKD`*OLlj?v@hYQ$|N=2ie$!c;$dAs(<*{zpgU<34}z_$Ht&5&-3O zftwJy1$4<4bU{E$3-;bfoq_1Hx;ik+;oBJmlzsC;G5-Mv%*W$_&|)I&h=F0ih@#`X zkz2mpDgmHP150}b+^UKYZ$m6=6dsEF_1b>(!|>psunqbT_ zbwzdU(6cw)M?S8#aeY0pa3aYhB%QVRPuf635T_w%D}Gq&Ly9SOFYKb8OkTfn2QD)r z@EtaXU+hHx+Zoyl7GE;R68tdm2|(%y&h#y?0oojBst5|!!r55i{F)6_Rp5qb0dax> z69gI%Vvqk9y$(LF6>zf7AWY#3U#1F7g@XYrLLh8|c^EA#o5PvA4Fr zMb7kPS)MBb|bF6XKX3Jk>Mx_Wq`R;-r07?<$EQcGW00`bl{R0uXuRhS5V%K=tA}v_r~w#itVK`k%?{Nr^#9JS zmIs^{8rB%`cRTQ!1m5VjQuCcwGrKkdq~Po#emOrd(`2lwU~j37Tu!0t5i`(ZyC5=g z#N*MU8&{lk!+eeWV@bl%i#NT@1sFT5?F*f`o}L;nHVZIHT`fwg=U zI37-LZozEHM?<5=(ZK$71Z{8YFU+ZZ$$rfk>xv)wdh^XE?YZs)ts5#eWZAnrvt7@` z&z;uDHW3bWT4SymPr%A*;^1lb(9jfs5|6n8*;;P!yFixk1ma~43=G_*Pz)T>YV6G} z@~t;N+xt!-Y2;NmGzDSQOH*%e@2B{;P^#YuW)cz?f4SmliL3RQv zVCF~zPX|PH;oJiWbs7{vl36AUFksRS2XGCt;sBc9mwb=8x4tFQVG(I;zCw@oEwiPp z%wxEZoY;Z_WkxnS;L*0;uloMElO{J;03sjgif5`0~*jTzR(oc|64)*(Z_`- zdB|3@z4ne!b)Hs|jSjTyBp6n-!Zr#!1vCjAq3_^Kz6$NUkA*4fEfBNsm~;ByHu9cF zxbo7{=|K0i>+D(iQC+tQ(YI>C%UK*PM-8KlO<~BZ`Rht%wv)%o+w!Iju=Q7moSolH zcbQ&hb`2{0gOxDOWpU9uE4u~x7(~v5iwX~nKD6n*l-e&#dmYS5m^J)qe8#4Kk;2=)P=X< zWCc79_@$*Kv5)L}wZ>E&UGN?T-<>L+;C{^9>cY$!l6=6WR8J$sHpI%yb=aizj9QW$ z=(C@2`^>#~%O5^$Y5*3dRyGSP158+fWE%ksQ$gN$Lp!R(EV*KcO4xpJD`eHB}Is?l9{EH&74?H zt`Pg=V}3)Qj$P7qE%dakhsUVlJ1Cqy3T9kdPKF~N6H#xNT-u)N%?vqAt z`t;#(Wg?_Z-7{S7Q*;YQdL;AoiJ}sfoNq%IN&K<~jL&A=sBn6u-UzCF8cM5+vcEzX z6a-v}=6GDF+Z%Og%;x84wTwL$+TbjhEFqf4j7H+o20AEX$W<{i15{^L)DOg>|+h!O{G z|3l3nA48$Er9&a#p4|)NTbXsl?{&M;$Hgn2JLNSo=Cz^4s2d}RJ~cl|ORZ8h$Q26D_I(zr^{|R57ck3>BdRr4pLs+ z<#+D2w}15hDQ-p!z5eFIY__ySJyKJ;&SfipGe!xfqi+I;&kw!b9rbdEA&XMgk??t` zwI%LTtJ%(a#PY*VFK=SW7kvJ`Me-9mB5B3^Boqog;!m3r*W=#b+D zAr5~C-Y)iP9hVuzaC1E8#q{{bX(tYsw6$hyl*R7!=!atc|-S%##V>=oG_dvi{j z90(ek_S-A7wn1*Ra!!$z>@DWXmocWMobQDxS&p(cw8U}wp6?FYn)LHC_6FuePo^?< zq1bT0bQwNG(SQjk0DeyZ1I)SM26V-@TqcMGjz|0PD9hLB#tH-$9D`hLL2*qsIOMXQ zdSKDC4Q9mTfSNW1vNc6TMf15LV^PWc1RedN-M8v8q8F-Vt(JZ6cbsu?`!wFIUiG+; zJD!IqlaTummRPj8i2xKBVoZHoN^{QUPfS)}laWhMuT0W=AIz}yO8+y% zkfZhEDpmcy!1bG58HY+L|t82T>PgK3!BFMsw-C}Em{7#YGT;>yILbG zj$7Yeem~c>-p%Ta-)lu)mx~`K_hBnR#Z4JH*R;Q*9iLyn zcVAqgl;2$Wg9}@d%Mq@8bqKa2IG69jz#%lt2X)^en2CmbBajLVd&-=&6u#rw^8Vz_ zmG0V_%IfbNwrfulOcu1`4~&lH>~7pj8GL?i;Jdw<@(0SV(fBE^o9jn%`uEGs%2D=% zf~X00RYcQqfVz`V?ZSYtIU%`JC(=1Y4d@oruXE2HDXO;D^uG7Zhdq?(Bjrp+z;Tm) zvz8qj;xr*8Kuq)fmB|7V!)_Y|Jda)I@-f(GeT4d!27|`BBRdjQ-H43}2B&FgmnhF& zho)gVo+^OK#aev+kgk>Lp+V`os{YE6p|S9m*dr`gem*q_;?!)ixiVOdP1)L?{+_(KJ~~dF$l74Y7)s)GrepBrpvwGR$1>&q|J{q)eR}>sn7~C+ z{zIS`w)OKLUYtO{5fBs|;atx?5vh()Q4-Q_h)j<7@)#7jejhxSi#}VJJ&Y#Tnmv-* z^Z)KnEesb01WPfhjDY1Mr0ga7kB@KcRWlE?dQe*CdJOlT zKx`qi-op0-^j+w1!awcEv&P2!&>jGeYuInly_<-YxPBn9z(~$GBly`BfIXo^Df~Jp zO~9#sc|RD?I6(p)jXjX2M8kqkze=!z-r*h~{Ix*kSm`;gfHIR9M5qC=w=~2P8Qx$m zuMlOeNu)LK-mltejjd$*5a_iy$sRWZC$-JG^PV~Js`Fq&x7UUD? zp8x#$6H(WxFShkKhB8Af=Y?~d*l@O>Bg58a+NehNJ0rq0eirnd3nAQ-}u z_a5B7@y^NovqWtsO^*GQUG~X$WeQ&&EetwWWgvO&xO_an`BgBZ(uKubC6Tn>)p(3D z!%$`v@!*y|azqz&;dyUxALrhCvLglGgM}M=5qhGV@*8w(&>f3{S(DAdZ4aIPIS%pg z9W*Oa*;{p+!E6lLJ#fBez%ku>LTDs5aF+mWwPN|Gs85Sr(Z-(f%YG3vhs&3@UAXr4 z?93$1n|OJby9dfl6F7N!k8DEo3`%hr1E38Zq)5uY1mdl-$k6})2r$Hfm&dPx>7&^n z5exyQZeVKHz;i8Y3YyZW+J%CDD-wXds_}>4{QZD^NsYh%RQRGGKfm~S$Mf{NO)mSS z^Jx|oI@#zP)TY1d)nagEYFctS+*o(dc}+Q$o>+E5CXZvr1sPJ4_`xH-qq}Gb!%?)c zxv6_p40k`B`>97Mcy@Ne_QqMW`=uXxf2?VhDElvzpEa8c`?LJBLC-`7<{rpF&+O(w zT}JH-;^#>FALHhHa4n|~H_eI~#ytCJZd7r(Adti1o4{uihw5j#c8^l1Av)0p&SKP4 z2de=uD#f(4sG!t@77<(-KJ5oA96r6u#9RSger~fbC4vlqPFfJzgWxvm1LI+3KUuENLWCU)LaM^wl2s`C2oQ#_^esl!LA%y68{pJ)0at-OzrqupO7tLe3DVG zql?rhK0Py9d$TRBG#m9-QU4Vh@*mejWFd6{{lGYucW|F)p}-7Yx!TEHp0 z3T(iCVjyraQnB4cMK&iVr;PWc>SmZa^36CqJMVf?>kZ=_0FDaA5nZ^2!bymdBEFGO z)FNywxCxMx3AlZo@Hcn+F-cU4+{#yNrJ2r9ZM~vKqgX!dea)SYI{2E_hZAy_N*2^2 zeJ+sC;a-ml43w{P>pI=YoPON&eJrSs_mHk#&ZKIqUh+VGpm)H`d^BA|B5(O5ub^t= z-#;IGmurTR@y0x-V6V;tK4oR)75l&I_M33fjnAIF3S$GWY(s1Jxj+XKxo^Z0$FkL8 zio3>a;C9DWt}#tF_*(EviSnq{(yY5stdBS|%nWVcT=tGku=aXN4J-}t^T>`J0blAH z!n%mwHzJ=OUWvf?C+xR}Jl*}6)0m#;3RxAbZ4|L&H`;W5LBvo6kHV;%+_}P&^e<3u z2Ed7El5yd(01i(rpVp%^uy59?EzM@TO_4oTxh~E%=>((l5!*O9B0|Not77V+`EzmE4yFmSVtCCwmBXe znAokqKssqbCT)lb9CyfPDl-v|`3CU3t+~h@F))Xr9Wp2gLJoi77cR#70&Yw7ZeaWI z<9O$|lPBj{D_VB*Op(2n`j}4<()eAjo_&;{NVsqA?&V^^&U6dlww==-yc^fqYP}}n z%N{-F1pfBnfNzsYu=3ND*Cz_fqR!DdbMxu@C$eS zrf#%Tj3mZ~<;xA7rhNx)N8ytlDy{9mHKfwoH9R>Q!XgO4H*- zUJ~T{3WHgRHrm{9O2C01c^<9;Xzufm)!?0&Bn)s#;-)$}&O|K**t1pVYo8VWR#P$Y zfJ7)6)<^bBRdgw#=UlY^%L!)`<_aisj$kUPTYOlLz`6yYfjWKzGDIQvU2u2NKJ|dM zQzKW!QN)jAb_P2<6cF$5=;!wrH8r^;b530W3k#WkPrny}+1qD01U7<#9tAU1O8QP8 zWBR-bJL8W)achHH0IXSTvE#N!*ip9?V4Iw9pMU(eAhjqWLw8^}IU;N&;zMfWX^)fhDi>LJ}zYBx(MmoP}?3ujKugABh* z^KLO)I;LDny9N&E%e6o!dlk0(f*?o^+l5MfZTx8`dqzn}sFf&Tc0Qed^P2J*$UkrY zvERUks@`~_$DFL+&?+4Jrumd3zpBk??psWI0xB6K7X|Uql)nm>_CeJ4hnfvQm_W&id>e)#Ku zChtecXs+1iUvs0M$?C#4aN6CGf7pxZRSj- z^nfnk1FpY#iD%RC5-SL_8)t%TX67`&-FFQbw*a@%l%H$gHg} zYqH~8#7~v>1Hr0!M=W7Gcp*db_-V#7Q8oO6njXAonA)=XMsRKImE|ci+ydJ8TUk$@ zK0Vm0{zua5*%#48dOE=(4t4*9j5rrYY-q_Np(XrE^E%#*I zh9X{kk?DFv&^5#R58{>+`Ulz`9uX7<4Q^lkUr^l?yRNUGO*5&2DW9Bb8daoga9qs> zPuqW~y1|9HO%FJw3HAOCO@g?7>euM)V0SC9-O`QJc%t5_b(b z9%!&(*W_r2-TDV-Yj<}E#5RHDb8L6QEN#xLl!}V=1|AC(Vx%~H)@34_UvLn>7Ia;5 znXUQ$y*U26ze+K<~pm3N7JV|)EmdZ3=!EmU07V?(9$EFZSwX~g8i zQ&RUvrNgKke+fv60G2a{dR*|x-&L5XLWFqTW|vU}3Er-phair`BpgdyQ!7psPX&coQ|&NNxWa3 zYP)VZEn^cvd+TlS3x*}`6CSSPv`z=Xs|T9}{MQq~-;3gg$hv*lXXweHenU<~ACLiO zP`WD^&1O0O*n>n9;QGzD5XjSa`%U2ISr)-)wy=G@> z{dVdsOH+Ts$p?c5`5>r%{0sBMk&pzI&q@$V5-1Dt(;m!7{{xV(Q;J#)xE`iZyc;SQ z?;=mQzZl54-F1<|7X^Ih_Ze`g6`!$Wq#CneoL#*ItHg;vqrK;!+{nm)!R=I{)-1Ow zWLp7GW4rSgsnIYwrw#n8D5=Kb#;qwHMU(P!<>Q;`TV(7;FfmCZDOdNtRr=NY_6LJ@ zTJF}^_xl+(tVOAQ*iVv1MrF`ntUY5+5@fj#_c$R~Fg&L(B>l7!;p0#{bD+&_k3(Yt zp=$oXdyV2god1n>4( zn+(aAlul!hSFwt)%i1@lpZv))pIT0PkMwHEl#JkGjXD=L|D3^?fI5q37d)`fX4rC>QH>zMnC5c3>c zB9xv|nJvB%+Fg10Tub+wi{yd>lfB0|W%(>#HxY7uplbAKj;G>rW&$h?5eJ1@F2N8Q z6xKU(gU;&-7qnzbQW!lxjEuy>P@A>I;r%eB;$?5I9&|l5ZUUkV7;5=o-bDO1u!r}J zjd2>g0Kyl&K}K-600tVVkh}g^JhX{}z#%V8bJGO@=xf7|GmvV;58X>n-uE7I(=od%VZ+cI2p|~yija4K3Zlu8$iKVWYOSklcT1^zp>&?dbN-9Ldj@W&e`VoA zuNL|qI*=a+Xj2SGWDb)J!Hy}G&_+aDH>B$$6daf%e1~lV>TlupMcI6Is`vHMNUCs+n z%d?%mXmn?NlN7ppX!rvkbu;^`s)|i{7(4OpzbS+NU$ngkR8;%A?O6n&idbZjoKZk> zkerip*;~pfUhz)#Ed7 zBj_Pf)Ehun#r5^fh&Lbke<8gL8AQQ68<=$kD@uu>D#%rjdZ=Zo2!)phji~uEwgE2q ztY(Bg%oHkneo0)V^_CuZEQlH=#VK$ofI%TX5@_3ngN-2<$lBVPm|2D$AX|w38N}dK zGe9bj(PBl6!}I$`K0tw}GTsb#19^!fr!TOCi8M5-@ko^iBg<}hbk1)DJg{pN`!8x3 zSm&p_XtaX)bS3q`#H)$SxnP%J)!HB91KClD!n|dIA!DAFb?NsXQYWgBuWn~1a(eC^ z{U*v6$`$<-*kT8M1~Si8n5@A7n6hG&{YM5It}my*hpt1HwjgC!p`d}LJc_(C|Nh{2 z2t;L<^aM^$PMU!%2qgA&0On$DkN_93!jw13_m_(_g6SM-AX7mjRA&(V6IUC7s$&tN zWCm>20iVP`iW4aldQ?>%q5pXz=3z_Oq<#5v3d_02bel*;?6Q%A_5SdK!~sM;h^Ss2 zfCmp$e^)#AfQ*e{?*_~Q^;kS;KzpO;`x!kGxXkG@2^8Z{7$_o7IpaQ`dBU-A(-_Ef zT6C>?#GxU9L5?ELVt31L{?T-=z4j1IppHpetVAu{swN^gWIoB8{U3?bpZ+8 zi-;PDB#EK=tU(W{YXOKeqI#CJz~|Do2l^%--~0<@FpgjVxP~8#gdb!RBQ@FDM4hN7 zJ1IZjfQn68XKG|>DgnXPD@@-^ecqUWM^;Z}vD2ifgWHygIXv~HicaF@fu~t~*wT9* zyAj*ML=oWEd}%%J--q`vgHuNkV3kBSDSG$z{EY$my_eD3YYeR-35-KE;79(WCqgnc zEG*J2Hy{Wm8VCDjxVfDd85P7HI_& z0kA)W9VTI3SP2MnWJpI>p`HP9Py_`BItQ|knN~&rDj2=r8s4!0P;B9t-zFxSq2e9I z{rd;88$((m{l#e>3)5%Hm}O?^W@hy*ic<77J^gL*zW?dyMk=)viP(gn)BN*GHY;Sq zAbtv%u0kjUvRUzdbr~6fgS|)+F{Zacr+E+LnVB-Kj*vPG4>ttZ3C?`o>wEmkD&YY3 zM$&!|@O1yTi}JvjK3{|65U_4utfP)ooZ58u6*vg-gr7%$_!EeKH8 zqFZNa3$`h{{zGB=wa-^qGk4PogJUn-F;>*A#jeEeY&TWfmx?@bjpsD^L9-n*oi~an zC9`kK&I-LYoiWBg;)(?@Awo8Q9T6QoHDOSVq+d?W!kG@o-yA&27U}_*5$~Lxm4yJ~ zK=r6QH4DljB+~)8Snz^Bf~^P%N`j?dt)&a-{E+GgFnpWf>vn=tCIH4b@U^08bZHvQ zDs{xrzXo+mV#Q%h&-?AD4+(=q@{%(1BaS_A9n&c5m7!8p7?mvKZVHU5>nwDCrN^J| zp35*iqplTD`OGHd88)rLOR8LJ@^+A(W&yu!?B4p&(V+a6qGBr9xqZ#VOW7A+;!V@f zdk@xO-_!kI-A*bA6n{__>osyXg@Q!jAh<&7YN?grrtx?a$t|-|99pX6i5+>6G`l^ZnNB9TsH%$Z$?2 zOrrG{J<_?tK}=#^q*EQqvt}e4tHbqT*xii&f%U_{>3KABr@Pl&SFzi}X@81HNydmD zaDF-X^m=b*jk&z&SH%%XFW>#Wi|`CW`yN`tzyS{fZ>RBU=Qz(;{IFC z@)$0S&*Gb((w*4LCtNB#S#GN@C1EbnmVP8rb-OBKv2Rz(lEG31JYId5CrKIe4Kt41 zGAcKOx~LdXVs>Gt0?vBYj4VTBt{#jCH8Np?1xvOV=Lch2SbyOYv9$dqsb>69y*IB^ zm7R~x-Q5kdH~RcON;!|*?CIl{GV7n`Hhf6w&RWWcnOytlJN<#x*2j?%AsanQ6SG+H zc3C;OV`UzvK9BIDXE4m27QqSS*sm6NY^BK4OP*{}R-$7jSEt(NKn{4py# zHxm<4JxjsgY>0W=rTZ(Vvc~*fVQfp}kwbf2_N{v=6~DXkXA#X!)-&qu)~z||V^lU}KL)b~?9KCyu@hA~RFoc$clX9!i98(7j4r3qH>)*FO-vGA zdpqNIUmbxo36Au4X(=Og@6sH&Ah-%1m9hDNLlSkT4X-3I!M<@RxNt9vS8X`XsW{iU zeb9`I7&(0*ETeO4xH1GO|YJnfty?6#f=v?TW%B=CZ$Re7wbxuN>adQ%)mE2F_aDpC=*>!6BAR>+jZ6bmmf+G*H;z2z`EHtbO zpY0fv1o|%PV^wroW1jP6%eSr5ww>!pD<^JP3&xaRUg~>xgVKxfB3~vCtHaei+|v&2 zJY1+RHNzLj3qll+i!vT#>j@FAj|`+&6;I4dpE39=@k?}S*&r~+$~np*Y{XxB#ZKS- zhUmv!*MMoIm-Gyo9p=L6UeT` zTj76Dkq5^tHMb8|i+O7`);YX2)WojvN^u<995Q3*6F%{7OruzqSiHWgced==tu&i~9Qu1BIFo!%CG3K7nyEM`-U7@AO z5wyK*)Kxn8hu0FFojCkEV|ZB@4KP4>#)eyIjrDp*8?cIlV8>Ei>s;)u3^_5<5-#OL z=FXi}9!-2S^4}R(1)Xp`-TR}NP0Gw9dA-oQm`%>d`0(!O>(`%cTd#AvL{6_S9~TX2 zp3mj8`Mou5&@{wr707uPX;Sl&yg?mwMLn!zdO z=kpW+&5yL5P9^B#a9jLuy|}YnExlziH~)r5`Y0y9$O%}oT|0gHaySPcDcy1SFL5Nj zn-r^@F?AF;anbZ|;(ollZ5A;FHzo?4pMm*>sah zmZ!rHBR@t*{Gu76n@5UdVnS{x)mly z8;58cZAZoTl8*NZ`;?S?o@2jsxmd8WMa+x^oMt}wbS`Y;^)~U>$Tx3hP?uR%CnDRq z?z)EINeiSl6|dTC3x!zidZXX%@4U4kZiih16< z_0`)#SwuU;AK5tPcm1QzyqpFGSdL<$NuQ`#dAe}2;JFzbym$sp%VV+gB6uZDEm1wp zyxaR94lK0!^ky6e9HF8_sPt2EMfLJTYTVu{7hE|>$WO9Nw3kjqTF+^_mvT;AkQngI zt(KK1=Hy&kDbB!YK?p!N#%$V9pD5_Yr|Of}$t=`+Eb`Se9D?z!5vtAF(QgRLtHOU~ zS0CEDY4@{idE0*u^k{IfJk1->Y7$<_k7(-9XJj!rE#+eUTYagiarPyaG!26sAN|5; z>IehRmSa1GH5Iwx-k^vy!lp?2N>R^rMGg>)nE&=?aA@bH()v5tsy?^%)y7TR(B3({ ze&K_%XQ@v?Nvv0f&W#(NrFDkj?Q)2kCi5;5wI1|7eHKmWMu+i#B`^0j(!hXj=Ey-a z=fThkd`IBzh*g@=FNMsr-j3O#VTU&14nUI#k8#}jQsDO-I}(>==;{&}oq9jvgB%s! zF3#$J1)amnLUFpV^vjvpL&LjYIxQ@Yp$z}Ps?-l0{mfZ|c0sXcF@(mEzH%NWR zLv~B;iBSI@Vjvu-F`yuWB{vKq2tk4r2%xDIXJIO^3HWhl^@DcW#<3p|OVzf#JrDK` zB*m!;9AQ8xR7K3lAqO4Y(w-+mc={`K@n>kS2sNV_MO7C4BkQ6sQ4f3x{6u-K|EBri zQgRAw;DvxaXk@O%WCk%-l$P4_!hD1_*n58@d z(Hs@05~D=R4n5MnK({vq2q{=6`?dW<1a0t1`1So(E5ZhB9IF8@OK-k9H^8>KK?#G9 zAK^0s+cxQI;vqazo_t0fylXSB#-~HLs>HNwSS*aEQSMUwxkRa= zDr2(oDZt&MX6s*Fe7p~^@!Hn?kxa6MdT=CwXv7gFgw@^for~atg41B39?am5u=|0K zEbJ<$j0+VYC_ANL>Hy;)h&6a-sb?K+s`pGAfaF-XsJ0;H@$R4wfT@fROyZytLPE?m zot*d~gR88W*OM$3$G}tJ8t}~PbCorUi?kYk+nZ!oQi7cgFcNGhQ5ex8^rVfEbp~ z5OK-t`4EaeC)a!;0FoXD#dyCNFe>np5`8fLrOEG)hE9tSS--=a(5GK@e-82MgDBpq zsOt+vot$5jKKK?%R&7#-CAg^B4{VA}(up&yh93#Nx|K2G;athM9n_uR_S+GDFmb21 z2x9Pn35KL+Cb;t27q<$YJP~pTh806!zB+AkH-B(W_oC*F8#1@m>_cw>#midd&El2= z+#y8Wm~o*;&fzkq7cO1uSn}nSlA?ogFk+1YhlTL>>mD8*KpH@>k5Jyv50#up`V<7z zcK7hqNP%GR&^E;(x~sA_>}k*v=?A z{Dp235%Y`LHZlSwt^<`PZ`#Ud`c+(^0-zEc;^F>~+nT~RW)dD}8qE}L zwSHO~gDalBB^W+<&0eu~?yHBVCn-`X?%&BE_4rSx4gUy55M?StE=30aKo>~?dV6>{ zG2&X_1_WD51?_xA1qbi0L;^ZKb`qwUu`sP(gjMz%7&Ra~c^qg8fq2>t zQ)Q~FGF(6cK5g=Ks>tfVNXm$Ga_Q&XycNx^n6(#6A*8QgQ0*^B>6ZwM&h3H?EplEX zUfnlu_`v;vL_F>{)Yc-#vLY5{6rvbR^Ky6Bg2WQLz$GT1yRdSs1o@fD;n!jW=>S2E zNcB>_K!wBCP zX5A?=`n1&ng9*lO?DjD`f(Gm|E=iF=&i>yo? z%*hN)uFDg>Kx13%S+#oO`U7lQ(ax(;zNy@(PZh~L384gm7*xQ)tG*NA$&pxpBb&Fp zDz17@Zpc)dJe|rmU=s}AV4(CVCBMoom}~HqtenfSSo==E*SoJCL*3Hr?IGIKh@RAT z9245aUN;ocu0SW%A9>>2WVKCM#lHk<8)i>j4WnK;j|s;XNMed8Eoia+y9r-y#rq6# zSZgUI#;|+Qkuk#zT!qndxB9+sU@4DstEuEQGmgdL*fk?m^6#Nt;zw9*OVd=J?hoEh zt{mAHJWy=BMXHHn6w<`Ey&scP#%QTMZR+NM~j@z?UBt>yY}iqLu9Ec2FZ zujugIs!dXtKkm*M-r_ zfW(i=klQqOonordsZ7N)(Zzhi*D!LW*$VA+I4dj2RZ)96WIjo(RFwq=4M5(oq2NIZPKsCu&qvS;IlIzAqFzVSl84kale$lJkviA#x zc+>r^Q~U9wj~`+PSK)Aok#swo{p1RE@gj-=Z(fGAY2Qf5Wp; z!wF3TUa2)yFY8>+l+=oq$@n|Iu@b^N%(GVt{`Bo-Ld}^EFA``JVJjIf2j59YPA^h- z%!)KSOj3h#ozYAEbPYPv)I2&BM|ZL?-7WZ<_~Q~xjPuu4kL#|NSa87xRLZ0)4~Cr{ zC}ilWhSoX0d3%FgB2sj}Ave!i)XT4N?xMEr2QP@>6K52f=jpZl{qDrqEp)WjStYp< z=k@SG*9!+%)w8-dfLzKhh8z1y?;x(Gc5HxIAGQt*0n{En~TT zq@+lZqioh$d_VoEf3g7D3auw|bS`gJAv{J%#F$XXI{fa3B#(QGd=0+RR+~K`$i;GW z_0c9qaI}3P$Z8nJEatRPH&jBVtP<~EnZi?sv|w&L7hdAcNL~yqOe94-=JZO_KFd*; z)|fkJLhS#m$Pi09Ynp+N@G*Lc=Wwq`e0<6B%v7aa@B8l#Pa7i-b2k%2TWB8hQkr1f z#I(597!{0l3gBIh#a*)3C;#Ub&cj77em1fDRyS^oW|*%!WOMZk5vRP0KV*#@_9`b0 z;vU!ZGSs0Ih$=>nkYwa48CYmpo+2f@sA@M~nw_g*J}fEc|?ki9CrQN%@EveRB+r-I_z}aLN0Gw})+qL13SK{H>+;O`IgziUfwQ zkw=O{SI36DqD!>wBGp)lZLSDDuq}pZ$1>JYE_G*ZM@%$qA&OJWi65qi@a`+V_g-*t z6&S2{q?0If{`gpPBBYY}jr;22w@kXVVW-roV21Cud_HHe_~Qmt`n&@?F;)SQ9T=SI zy6cjL*IwX<*A`s)Uax>oUCgOt_e>&5Z{pf+aM$DweJtJ=_7D$>ZhdqZ-`bX>`yj?! z#+(+>#Hn+k)*&6^SvIi!q9$mg?7Ig#e2(@9Rkntc)8`DiaP9y)g3e7|7P2-5F&X*F z9}CqxWar(EEt~dA;&?u@$zx{7NF&jKOB;!~LxN`gtbhpv2)* z#bttD?7oG3o3$o9>9v%M;z6sy+p=UD%@H%@aQxag=Wn50zwWktY~dwc!i1`|p zWRAd5cJuP07O4SY{pDNJeh3$QbH1Yr>bB6|h#BA5*f{+h4p-=Q1hs+B2f0xmD9I4v zPJhUr49qLPU1v?=g(|=K=0v+2n}gNwPPXrVtv@!t)sytqvP>LX`ewH+X)r0*mvxD+ zT*I{?(mx=`J|}K^Hl7(J4sE&`*@P1G6Yz*-1fCV-PO~FvL9m{VRCQ?&KXw4X@T$OV z7sMzI8`Cb^ThoF_6{rn5@>JuYH(Wq$=g>_cgmlFFUQiI~%;2MMtWSQd zk2P|3Lmz~yuMdi73=L2DDEH^yAJlw@mMW{ad$qV5Wk4Dn*pVwrpTey8@rDW|ds&-U zu)*bb#k=u2R`#gj&)PJ*e@*X__fOtaPM>+{CAU=P!ZwgyWFlTRGkzGPE-mw~g>w(n z&(ICJHv`tF_sQm_5}|)W-Gljj*2bg&Q;(=OkU1*~T)$KZ@fMaqkV`hRlmV9%%2fyW zJA__OghHTs&&-NV0gwkp+yYehZ;%K(c!_)n!`KuE;jm&xd^`|c&;ep$Gk}=@fH}qw z7F?Wa`Lr;Luij&3VR3?Rqyx~|U>W#?fg+2zrJ7 zf^SWic1?=-bNc_Az1$>crK-62S(P`dyJTn_uC-F)GF$6xGAywDPH#ZZG{60G6R`GC z&3PbfNAd&cI#kw@ZaAwgZ|1!b9_o)&ndC^goT2@asWklWHP0c1&?u$!+=-9q-k?1z zap$tn94-!>zWqj(D`#?L7F-#JTF5h;Hj~;i&9evoY?rolMW`Sifm{;hlE<-W{NF@MJ2I(3Y6k-~jn4FY? zUDmi0tUVwzoEE??BoK#z3WY5s!c+h}rDF@Ux*Q;x=#)%=GXbVsaIeKULx6a3Xd|Q< zbSXV*{&TpB#8=qa*`?nJY2}7bBXUF{>v>XP|2$38-pa0wVa>>%hpVKI=BdiacIPe= zeAjiQV(}0a!FP8Ed(7#gj^&=S$u}0vHXER=5r`d#Jsgo(1P~FMLN@~)d;C0l_VzZl zUJ}QNprF+Mxd;A77zJB!#Iz1!)5bZ9bSO#Z_l!t%1<3Ud^8fzi1_cdgPr8IY9MY^4 zTL7<{1Ez~I(wZUs^M{x0+L6`_2^JNLC!Ua#o~I^lj`TKoK`Lw>J2SU{FE? zwAjI)+PXTn>Dy_Vc{m!$iTJ{s(nhk6Tj)FWUcS4oWF()_qD< z?;VS{pq(MtjHn)a17sh2V$)W3CIAGzdCK;3v$(=ZCom8A-v^4skFdpa%r% zQ_-?_99ea)9RY8~3_MuSj6REBhuo0I8M}@LoAX3R$iNN=<6qs`?GQr&{mK4H4vV;X zhXgJjzVYInUxm%p^D8VXCPpj2n(FIImmBJtH-ku2+X+5}F8gOzsc&(*#JDw4Z~E6< z!dQ1+7kGenRCOGC|BGN0yJMnzXk+*S_f1WF^oj7L$`n{G&j{Q7pvosYQt2RRSL>I= zof9z*X9)N)ws|Gqdgu!}Eqmw7wk>m))=KTfM9)zom4r``WCGa^Uh$bK`MHegOJ8?y zpBG`!#QK_Mkm_&l)Nr1wchk+{6AutPS#s;r!T#Hn9>;@Tw!nVxzkkAZw@37v#}_Y@ zF+MglEQC1K8DqOD8&=X}`Eep;C{yI!w|7KGOlnJQT6*qF)AU#*PnexOUb)--rS~5NWr#iM}x8+j9M7VS& zsMdQ1_ta@QWrhKmuhZbB$5-Fo`8M=upZL_qU&jeW1-)dGuJ(xB@RzT-Koi(k zi3u}c_-a}3)TD{p+G5h<@z;yh`OWv|G2i(g{Y_t051{*~GNysmxdciYx_M`wfe3Hv z#6)SWx2s)q6a1`eh8o*m3J#O?ebs|wjtw@i8b&=UDs#UlUaZd&53zD4#R$h~gEPbK zAPh}CU9(vm=9N=%L*@&;wWMlxCrpdHkJcOb|CP%(1}LPqKcI_4=&mGWR2pEE^!4@K z9KK|K>;XVORa|;Ah|+tGHB2VLU}T6qk>c*}RePULXBCh<6oka{{9gv^=XGHbtc2R7)i&7a;@OM4r%2e)ICcUxIik0XB+UToVZ zKfQ4aE?*w*YNL>*=T+zkl4U4g?Mai!R4W@)ttiEA-fI&;Yhj+m&%+ZJnQ4K`wq@_o_U_7_25`&AAStfSV-vxVS-5roec08kg?kK(q|EcfyOVrfVP(5b5^}`_OAIs8% z2O`yi^zO{l=wqui7dArM-*b&nUPr4_8GI@^md~$<`P&wj>!{Fo>Bi~&iGAf?-`f@a zp38J}X3C@|V@w8^-&s7R#M!M$nxky)B+kz~^cEF)ULLW}HR7*fbG_@nz5!Dt%!QFyjB95=rU(g6 zP@oZ^U~c_?DTpjCYgK|u5L7`mB6uWMlLewxVDolII4vblUxYtLKURDoW;nuLZu^{LibR0mi*>Jr1(W;+QKL|uqG1Y28Yz3gAz<5AAr zs)K*YH&TzRF8&gDc~41T{z${IfX&A-u!QBrV5iVyd5`wzM8hj#muW2c?sa=OX+GP} z>E2h*`AR(_d~0@hC&fRT!&BG>Loo3cj9Tvl=Q`p)lB!5o(Cj5}iIO|Fhu{jBUOavS zgLdVMVkDPogp(dL8e;tE+Er*@is?x9kFuO~dzX3{>OZzQ&8hcyG+{M<{Ut>ztaebL zD=RCZ>%+st3u^yX!u|fY5>A8dmC~bS^hLc!_50%ODtlv2&q_-f)SsTqx9}c*KldTK zBU?4J`kg1SmVE5tVc)|qcwL3&nZEvg8b>OQfYZiWJ^jnpcdscNxd!DCh{JIyOySF` zGVJ9Hsu2Sd5o1ZNX*hhyiAsA%EQ22~Y^+OQ2je}^D!Y$#7q zq43BD7aeRo;++4(09p*Hd9K>p+8Afh$|5aU0bCGAwr_!WX+q$GF?wV0wO&4Tsf~QD z;ylsV*p;0*f}>XKprNRiKjxcofOOInKF5H&E<17_UY#qAR{@$J1u(&{rXnyZ_U#xB&aDHW=`3!MY1H zu(rL5Qtm?{2s#{;8(p9x1k1mD!Lw&*khbUp$_q6II#5KB0%l_*GOQU|mw=y3>4@Te zAPKQZA}g*l5-oV7f`M&SC+JvV>`RJ@^ORzr@uelX?Z4nIZAR*vd+(3>R9zLll}oI- za;!al`v~qzb`>L`-S1sXsmk72Qq9fSZ&Dpdo~wAn6yG0v>@&oX43%vqP|9UxWf3_u zRI-Sf8v%^*e0!__!7;G$f-yNiv?x$9S~mHYzf^~rZvO2b7|`1x`EBr;5OfgHtC;IA z=gB-F&;%;5ZjdjZK|;;WM9}^ zq|jAsYvr~2?_LcD1QGqr>6q^mWcgFDbJ@Z%ooKd9S28Ez{_D zQI7u}LucsijEK+)kNK^}M0|84S8s1MZ=}Aa2+wWIgN`_FjHpo0I2~7hiQDQYba<&J zy@}A&U|ZSBP`q7sg7x?F<(DYYIe2(QSe168Ynn-JLIKk3rLkT?k~fGQo^30d32cVs z`kpC0!#i*mi?@TlFkf@fxyPF;ycXvxc8+UB8e?w<1a#oKnu=tZxGSI<71jN)6-4^{ z{=pT&{n-82X{P$@p%!m;>F}snTq;Yn#nK1O$fSOlB6MwcA&2r=(r2SN0FEM-%#>)j^$>db5aEDzxKT8?bpQ zX=-!>OX)|}VU5<8k&Uq-kH3d`C6Qc4TE=#VYa@v`@3l8(bHYx1_O9iKK9*QEtWWFn z566|ThNO!^|2aY2gJXj5rj2?|#p3*RJzzn3U6mVRzt*WF#iO=%(x zEsZz(16027kgX|a8W?TL8R%*~%TIksfvKzN_O%>%EpTN$It}~8l$Swl#zW4p@+1q# z%7c5}r>|w~e*{0&0o0%5iniEoMs*G&gRimVE`DCJp$zV(qH)7$M}Eghe$I*~A@t2} z+HPdmhj}T<8kOrA6iQ-DD&t3o-{!CNuEhj?-@#~6iwzP#Pvn+g=qYFG-oztwcVXB{ z@+ZVp_(_X}%m|`|3xxb_5_xDE^1DbK1aF}5((~`5CQiAgkJyLtjXRJsN*H6mfY3rF zAk&+frabjY!qjeO zkBe5h=q#6ZsmU=oS&p!O%MpmfJZ&?t)O()n7i6F@-o#;qt+D)O7K`#P%2;Zl^^~8} z#uCG(0R>-pfxNGpVYrE^mMh>#00W-ufm)AmxT5*5O0zpDIVftHlzVArhchRvGCJb0 z=wfez92P%*kM#?y@@HOVQ>BCFiDxcQ#;-0;YinVRa3^B4*J*bfvc{%N`4r6q%Xt}s zr1JC<4Qa0b~e*Uix`yDam_art?Zj z(1Mvm2kasUuX1E$BvcwgCkU`)jfPPJlE=UJH5r!W6j%haGU}3gT5^ zo7|Cn_m>lrQw0Wzm(V6d|Mj?B(-ZEjzN%CnGJ-^>!_(pNp`h4z?An`g_g$@GdE_05 zIe8@T5q~9?Uk&r&uNwLV8U)lh!=f41^&;>zLpTwz7$t{+6J>BOqWFcKp(Feo!U{!Z zbs*F@Gc`Lh5(Q2YSp@|rST=&=Q309TK}oMAcH_rqL-5VaL+#oQnH31=6VYeDq{%T8 z{sEzIAWmTfa|jL-9${f}XuA_Fzkq+{4UlLgVIzx3!;z|g3o>Pqlfhr znPB1rmf{N*BZa}Y(qA-w&eIfjJ?|iR>cgKO@Cl~ZdE{!<7szB%rgvy#ZU3m+XfgDd zrf9QAdnxbUhD7VRpfbCJJ*sTgTZDv=($_P|y}egpfZD!fuEs^N=yp2Pj%xiXYV$AZ zf4|8DRRA1~|3{YzVzNPa@^=qE<%5YwIPG0;Zzou{<3Pc0q4ES~H31O9m{CW$anE&3 zAmQL=zHY9`zFQWjJRP-{(HP4J*Mh+e?&=+*S^m?!YukPy$Jr&W$1|?>EOuJ1u;-kE zAi1e)4M=4RZ#xiF#u~2YuSr33;&%0_COGF_dI2^Oab*HzxD)gQZ2XA%K6AJQkw2mzq1w2iPyGF)p1!g2>TZhwQ}{ceZ40e_%sM1U_H9l+a>cEE}|BAcwf9+paANO6ZDXXYZ1#n zd4e2lFGMKB8ToIlks}Dbk;poj6gxit7Bx8SPEwSDC;fe*Q;XVI%sh4L^NEj>7UrKP zJ{SaB<|I2rm}!M|-_kpga+vVw(TlCd_WstLzl2%eNqi%LQ^M4qTPZRNds52V;p zx^eMGqpV&GYikEn)n5P)LnPIKs8p8zr(VPs3~dph4S{)a+uq2C1+v)SO4i>~{O{XS z0DJ^qasphnfsY?iaLW>rkj+83ZWo*pC=|>o^`V~u&NZEBKMcw{O(}$dPsW#k?bLd` zXx#Nbv;ZxHkRnmBPRcW3Calq!`)^C^Z}(z5ef`LSXW7}qK)30u#w~eU5gcGki=@du zBIl|&d{d7_dX?!)1xEhtTJk-SrICLBK12XNh*<(h!`${yQ!A@jaIc`+AUtLO25}(Y zddrmx#U!v(9pF3#>mNA^i6aCM83+~VSMNZA9Z)Iwqi`T%12If2K@LE&Kov97n1)@6 zBd0ksA4Ak~01WB?dsdbE@JW;g)YUJ*4*}nauizKLfLeglJ0ak=e`IH6B&%S|?#PG9 zwrluzy!C>C`9)7&;jf(a(O_B#tL)b(N^1VS58k4wPG4 z!|aoyDk*slETxq|cvmG4VRdz>LYLaVxfTB^;kXfuso54aicPAGK+5Kqx_&)27zeCnp+U!E^KG&ABX(7wvz4&;G^1UW*kB zYA`nyPqTvLO~lHN80TItrP-K5W(ioavGBl?uHZcjDc@bJ;xUoZ)+-N3aB_M9%~p|T zNkOn+^AVo=fEVwdf|maM!C*eZJIwYxIxI1U;qIK38NU`w}uYjuPg z7BC&aBaMS5a0eK?NZ$epFXCxzK!!o=!H{5rP+q{)$Ag&j;cMfZp|9N>b4s2EN7L8I z1_|J-Y=PhqL036u=KuOEjEs(uUb-g#H`VCn8`OVbI`0S?LOr?6CFlf5QogX67*YI{ zNthwBHSB(}%c0_*C3Xy(JgSe6b|v!MUp`?zsrO!2Z2#6~YvEuqCeMNQp|zK|_sWAg zx$ck zmo@iOX)Rr{(1J;khJNi!cV4%R&EiSt1|PfJjGN~|9XhpzLb5QYNL1wF=X*U?Vm!ie z>-R4bPTAqY=Qu$?=6Hp}XEX3o_p=i9gMds(y_q9hV-xfsrrC}&Az|+O2glX0ELps zlsq(d+4}hFV{=BvqXhJ5GtQ;~zBauoKI{|Xb zgT87brYb&e&un}7j~|o5+A*H_D^Y$PoeZo`ftx{5k;mlSJ%~KVPzs?Bz~p)>KqWVS zR_G zGt)CO=fGRGL;1q4qLOXHM;5Lm!42d(Xgi_UlB$UGTF;>7PT3f&Sj>n$hgM+h(tFI? zH^(XO8fOW_%>k|F>A|ioO$wSxn1iB3!J1a(Toyl?PX(HUn2SE0zW$`6B|B4MeHF*V zyx}Ovd%-dhd4)k~GkQz5Cj30m^(j?~Jb$)Q){jUF_->08?M?l-5=0R@+9n75;XqQw{$uQ76)K{N(USeGNiV31{7 zFf(~u#z#`-g$$jlT}waO9I?0v%y4}nY2{5DkudRH5lYf{2WBlxaf?X&R`|?*Oq!EW z0tCKv%sKn!4sl&=abKG&;UA62%O^ziq$-Y(QC@FhlsWG<{#z9-XuU+>(E6=ziPirh z+v6OC)sYnC_0-F$oY>xsV|WqfEiVwoiIzAq_Qt!wN;o|N*yvEqQaPZ9(`OnGU zXro?Ql5I*|Hq0qy>b8gvR2>VHY-pS=r^)|#GA3-Z$nx8(h`%FE&vQa;X9Y#2iauBq z)k?ld<{^d237Qti5YA~N72H;5&9NmAckF@K1wzqu?d6)`{T}x+=FZT%8ArizR?|~) z!#N5E9M&tCH^#}8Y1>sQ3Yt1HV9Pk0YE?wdrCY@)NNgoO5Rku1nB2y7v0M}UZ75(S zhJDWU%A?wx)W*-`pGU%&V?ZWpN7LBiG37djF0PtxntfGPQI#&ER);gk$}Tt7dhbQ` zh!m2SIQv@!S1YM|1O)ZLd;^Z?&<2{bG|FRdNt!YF-uI&IPg~1Wl0N;p@NK-(n(++IIU;Sp z|0Hi2OKJZ(tO8@(O>mto>@D*mLHVM}-SIUc(U!Iffp|>#bp(nn zF(VMJo+FS{?6oPs(Bi^W{9)nM!tZ#R3O-ikBkIpH0-Wu@H8DI|9z8Ed=%yKaXEDO+ zx1N~jc|^k8|G)q2E< zc;XQbCc>tL#PPk2S#HxO#l<9|7G>ZWA-M+xI50QdhV(!sYy4dUsvE|#eq1_N!n>r- z6{RW!mvufna>BoKWFy0V>(I`fcLRv|I?b0yN$T zB=3EmD}ow(*mk36r3H{NA(w zz~1O#`on`EC>|1r>O}e55?3;sdYuzU;#7_TIXV)90LlUq6v(u209RGK@r4S2s!bf{ zAua>N`^YRFHf9Q_IoJ#$QQ|O6K>YJaZUxfUBF*_fBvKRu|B?8Qr3LESo zyRzgw2osYqVN$zu=m1)L1QqjfU?2>ZkYd14Xg%nX&^ZF52{Lkmv`^bx>|5x-C@+m# z8gsnbXO(wB>UgC!dL<&ASyh)iEsV@`F}4#O8~fz9VN-T<_|ktx)qs2x{%ij=R|AIA zkQ)O#I;6Zu&3%5C3UdjfdT6SUO!y*k6L<=~`)W9Ly_1wv`KARa?p6YQra;`V(*-mo zWzNSvfA&j=qZ`IpTQ!hFYrFgZ0+wNI1$-xXuXVRXhXik(QeB?sd@qEPvHT#J?r%|B z&8o?oobvN=BCxC;(6USJQDP|9X8s=kor5gouTSp(MR+DW#(ZjOcJ;piez8fQl)#s7 zgP{rh`H@H_`$qFN4U!>B+N2(;1foLe!R50X6c%~`3Pr!}@Sr<*%{*!J_MOXQZjaG5 zsWKpf9bKsoAj={7IIQ)(a7pI20-$APsBEdLV}koS8ZZZ{ePBQVY?xZUM4R$uTU&9i z#jSwGD|fKfXYtP!I3!*l@F5Yo2*D3bTOnA7c+-8jHHrJ=0DL*TTt&$!gySt6WUuPP zmALRG|B84Cj;E$n@P}hN}DX}Ns3`mgCCJgO}QHZb# zR2fJ@F~}uTh0bbOS!EV4#+~S|48y;dDI*onP0m`raP>D$$Q~x#CV`QA$D}l3G}5Fu zbg6FjgUl~kRNC25w8OEnWj3KTOkflzX`})cFH>3ibj(nvMnN{KA~(hao&-i(;afAj zg1f10AXVov^E~xAWtpX^lZs&vUv21}kk*&_dVm4HEh(+7CF??le)Cp-PL)Joa^Q~` zb^!Ud=)fBoLT1MNiL|`#Z>-|K)<%*9@Ud=y|6g|F{AEeuNIwcI4wpw)DAm%>OKNY9 zSA8%*GYmjIf|G90>++X|N-?Rre3I{GRx8u%Zdq zGV0J#x%jGa;^h539yA|R!Cv8m?IvfV%LIz?T)bjy#hT$fz3sgZ=fnGPyTR8U-ukq% zn#7!?Sdm<*0QGNNd>p6x;8HkY$8Ozd$Pb#jm@o z>vRw#vYv)g$V%e=;2+I1(e6W1Lr>{++{!kYl`$*!Wzaf@>4@S)kdDl(^wZUE9tn0Q z&Lwh&wg`bbg6W=!1^F&N>HKZCV@k&mpCqDVBD-ystxkpmK$sv8SUym9fV#pWn=CZBZ^DS3uSqYgfZb`0|g3boV6qHS&5deR0N^Sa z#RE=fXpdQA{TlVq_YsZt7gW9!bj?}}UkM0y3+A#&@ZZ!3%w;*1{dq)1d$f9BgNgiM zzUQh){GS4zz3Q&Q3qxL;Nu%mdI3cXPNc$7GRF4DU4N;fc-QLngwSjF75o(Aiy#{SS zhDxAxM6m1@O-=Q^X9Mgn#~4 zX9(C>|NMU8G1dlD>~BHmk8pGa1OyzQ5*TZ}+d3@dgOr5-E&1Eu)|RH^lIlNy75}JB zacok}Ykb8$B#m;M5fwCv{qqNzo@3iZZ5w)Skc`4C`KPj1|k7e9NA6svWWnVde zMN0Smk2DRvr$^ zMBN!$ZnZK%Fg<(n=#k}7#pPE;;0yqB^986khXLf2n3OaE4|Gd8kfoVMcND^8|A~c# z#R`1%mTz|G<;o8WzLA>#Ik8A5iu`m)=&MpKFge z&cgB(nwJs5GijESnW`v)w?w8SF8m4H*ZqJI+<~3VFo2@=ahG0yJCvN7nRx-^%0s{x zTTa3zO-?{SN8$QR+4JYHKs?D8^z|cesS6Zb?lt3ZIMzIWeh9iDw<}j3*)`sL_uT6B z?N>rVLe~9Y^4HB(@_T+s9h#FyhxTx;{e^y*nqSbVefiSzV#VwFxjBdFYUlWi2$qeB zZW?x!&+YE;Ghnd=$Z>rZJ`GXP(Ka=9^`4nYtWtzkh@$u~2tIF^r7atr3)*spBl-|> zx!^-mP*P$TO~qCOWVb`)WWZ&NlbBvyl8&|W{`tfC#EBCr@ZNgZXlR6j73V!jIu9#l z{(8d(8+yyFEPEXtJk<3z+mO4Sub6AXrXJFKF*PgeBoPsj?_3*E>6cjHJZ#hSwPCor zh8HhBgk{;x^H+O{oN}Dq-wY-Gl)=YEN2jQ$NJj^;G+W!)wAgJxjVvH9KjN`htd~d+ zXX`&-?BrAo8I`@yUkzLi_D$M(#Bz5CKuWN9`}2F>-lu80_ZJOBtEK~i-am`BhMb2m zDzzWi`uC3wochgwwixMrUS0kH9NB%dOMi-=Jkis6)brDCt+b>h1w1!F>$DUU_aSn% zBJ1Gbz{KO`T6{vn1L%gXC4aJ&`18D_#TF#`&anQGhV47utHYpm|0a076%(tjgTpFH zd(+RJR8@gb#riXd9H#U5RljxR!$vHAay<>0f<~5>8L;tx2d<^ZWn~GO`+Q(9Z~eWO z4Mpj*PilW&lVEwNNZ$M(?Okh3lUEo%h)!L=jH@UeDzp^?QiK4G>C~-&SS|~rDz{>1 ztD%LWg4|K#7=bZFsgo;$0h#(FEdp@_{`>}sZ z_N!^qFF8Hmd*1h)^FEh-7(b*60enr4SACubL%l6-Zl&1By#WqZ02Ek6Z0wLO$)H_a zm=2F>78IiCv=7kuc$K*(=y(;IRdDWHg+`+Z>sS#R6XS+Z%pE9S8vmxR*tpil#s#Vi zJZi-_BLt_VPesMzlBp$athz(ZTj+!4nGnb1h{#Af)Vn&AJDJQtIKR6?qL(+L>m5Dv zgfdxxTcWA&ZOSP$NGh@BAsl=W3!odgj!_VKju_j&#cM>c3LuJLZEH)12P#JGj;2`Y z<;xrK4t{nb{2PA1O{P(g#;Mby^k6{^cQ67*UJYr|;E<3qIDW{C_aCPYq|&Z#ZlAN^mV>a);qhug z%u?SK(ji@HO`|=V$&yK>qv$^IT39UB>n!gG@WqFRhrM#(LHDU)~J{=um1Y&BFD z3#(pV0W_AAnfX0V^HC)*=NQkk*C$#V5-?7(B?jg14)H48;b)g{ww z8nLiA9FDTJH8Oy`3p%7!f&#cuHlfv5eQ+tv03a~Bs*#j6phvQN79=tgA~6+c5r5Q3 zMT|_V)5*HW`a#4HAthz)a5}l2c1a?)x3#SYqg)Hzp@~9zw<)93+vkb^Sx&%ed_LF` zB$LVHK`ALMZ}Vnxaj_QnD<)tcwUcQw{p9u8^dZp%=nD5>CA`(u^;a~XQ!{1Pz`2^h zzdMQccH9GzRGm_fxB$bU0!%9treFqe!Rqqz2H%>{({M=P3XSRg%JkAtg|p;_GFlN0 z_;)8_<=tI)nDp7wkPd~`Znm=mHon8(K#hayi4d>ppQHzVYb`wyP@ z@^yg2JI8c@YuMEEFfpsB7|99ptF>8O(Xz(IXTB#_kr#G&`lD-dc__~B0`#hRddKza z1rX_MJ~8(DPuq?Xvb;W+y(hBEad833jRm~0wUyOzPHv*%CKrnC85}VoIcxb2XTsmL zuqZ>AZgF)zkD}OlzxKj~O>p~Z7HOr9i#eeBFtFqkef3*stnBOF#7qQ7|Xlsi_HQl)m9MMp@7AIPy z3>&0L-1&LIM5M|$sTv9QPH%4|$Wga(7b>8#F0nD8g zWkVi0&IueeaS3l;j#=B=Gr>|&wf=&8Q~^9*RM*_d8O3lZpQK+x_TpeR3kocpb{t%` zOtP4}giR^h*DBQQfVMlp)$`RL&`jp z24u>V>3pt!@7jB>v-kevoVEWsYn`=T>wRB6?&o>#>$<+*&-A^oA3LhXxMsr|3WdU` ze(2zF3T0&p`Jtu3Z^l9y58%J#FR18VIN@k<;gX4qIYratf|H%&1v_g~ephps^VW_I zGTV1a{6bh3G`C0KyG0B>;f+{|2Qe{op`r`N{N~L=jQ1MPT{}5=I>xUbRAf@s5&y{k-g#zjR`E7PUspLNw?aliC7ybYD6nEhNg)K#O;d}iGA0HpL-`{U0 zYlidg>lqmddw*%PExF6IEI8rfP?PG9c;6-Yz5DhxWZCPVJ9n-nSwY`rtViklh21=R z-Rcvj*hNnnqBY!#c;*Qlka(wbr3J2Vs$9nG0L)8$$D;luGeyF^9lNAqTQgV&4F z7#SJe7T0Hw_xbbu@yPPhjAHI|n=LIJoznjOl)nCc=fN5-!S^dx(L6j5um-=r5+BcZ z`0n~0_KnbGcD8Qv2EbgE$+0-ik+`99^L^ZYn&l9`p& zui4O(ae2ObIdu5K?$`n8^Me{!I*oi61GE!W6O^vfkP9D8D!ISYR%5!gF-c4N-34oW zAzVW(&7tkJb;i`th22G2-b-`eth)2}k-HxuaC5Ae|!F0{fm>LY~p9wa8qgN>6Hx(c$!l5Ezf!W{;tiyDM|VA;^fuT zREZ0_H#&6W2(KXhLODc&XdFf|6Di!g1u4@9*y{larHX zc<*fMyoQE`HDZ_Gr*Z zmG3EGQarai_J(G(=Q8u~6?jJkbWNY|k|Up#G(QxAoniOEv) z{tlDQcNfhlE%;N->DHEXGd&$0wpE1|b#dalmxh|e6Fnkt-O>$MvpyO-)N^)Bz>yml z_4xh0s43N`ZY}TL$|wn=+BF>8Yu2!fRUSWnoa(Er^(X(6&yHQ08g7leBc^vtMNREU z)(GyU-B?eN-ALOTyXB?D;rFBYX5=eVT2}LU@u$Vg+HVNCal--&V~Oo?j?ywU)V#S` z{KQiR&$+L6^$L6zTaHNNm2TK!#ow+dV^L$w%gbxml4fEz^Q+UYJKx)`;gQNP4(3<; z?FKo8#U&-J-y0HJr$^dbvAC5_HDk(ud+f9A$dRh9s_L~L?R;M`@vW}T)YP;E$D?Iw zalWFJ#QIle>USB-Ks*Lg>f~7k@?XAOG-;1BR5sn`1rWk zwr#=YmX?#&vAZvt_V)IQ?c8}s>%DV7&E)j7MSpqNx`EY&flPc38JdBcehyScz9=2T zcD)xK&NM$5<0w>?#@3u_WQnbgRXh>lGxO`Lp#H0kroA>TO{Y@MR0W&J+kAOZ7R#^lC$m;iP0a zb}L*NQRDM2rKHJN){a@D0Gs15`b`fG45Ve4S7#i)vu$hEb=>FuCanGxEiJ9zzdE^- zwBpMH=s7~0QVsJqP}8#?3}F|aef{Lf-A688KhV#Hl1geOM;jZ zkH+qt3d`<~)$W|F-r9pW<2yUQu2fyQd-DOpS_~dfXLPu=@Or1s8mwo6W<^I~bcG zBO}w0YNW`(r@(`cbvo7&_1!qsr10_zzuzmV*KoF;dU=X5E-o(T;!xB{`}OO1dAEP} zJYTJ2``)Ty)9jx=rZ@<}u1iZxV>2_m4yWp63R7say4%~iDa<@PVrh(YbSo%mb64#5 z@4x&o4;?~DNonOCKmOs>*G-DA`7HiXN@_I0d;0yZzAMpRdVSsZ&iA{}tXELb6^qkM zO6ngft+MNUx4u2gz69s~W?YuLr^d#H z4D%z8pFW+CUA>lPKdR^W_Xa^R{Vay|Y)7>_+fLR$Il^($`MyoGobx8EdJx)?@vn}z za&BY%?=B7n-q^TjlbjqUHdbklbAOua$eAy@IM;1CT8g87y-snNC*FIS%V&OM*K6xW zn!0$!(=`>G%C4?iFUpQ@H_WA_Jkw2o#Ghwer8chm$~{(%96L3JP1A$COQ3{;?ALTlnwa7re%bR==1W7#J}Acz>se zUWO3rvGJ#+`UGV+luYz+N6iyABO|X458Ev)&UBO8>oeQCI(M>m=l1Ig*a`?h45 z(|@?VbrsGv+jaxa{)%ul3yY^!3#g5&DMi!Sj@`T}A?#)7M$SJzZQkoXK^4TrSB^g1 z@Klrgw&>{_*&C%ysa_ep^~3J(A1zoeU!0$jvaIEKpy0j1F>fmB;VT92KO*Jo>!?fw z+<)E`-f`qA4Wq7`n_P8G%|K)Mjg8fmG~4D^@>L1w-ou;@Oerk1$8+J%~lz!Cx)o(;e25R(EYuj@4fia~8M|bWuDOxX1 zzT8kIiodwOUQ9Q_H`!V}n(A(nW{j-gZvZkWirqlvO~2o0NttPBl1gVTT-Y(x`953w zp16J%TZ{MNR5JtR$l=4szXn~<$?KVx zb<&QGj#1Ikm7JdGqcLkDTk<@!?Ygh4A30+7^}`)Am0&iLa6ZMTHz(E!OSz31=Z|`O zd9~cye1vU8GeDj55t}eza`nnptMsg_MD$-cTI6uP?Id#K+V%FnC}b|MTEG)F(2!#%#GFRaAQzs}= zDd~pS=P5BSHx&5#{{H!eevj+$eiZ1Nv9V!jDhY;p9wH}SusNR2w9phg^O_dNRk``q zS#5$AgM##REOB6gN>-77vu}H?gicRAg!@7ldo(C+pXZv~$eTBBJ~Mcm(O|VUAtAwS z>dWcPLn!v^M>}Z@-KLioCbcMU9sQP3`xjzn0;k^CwX*KH^s5wAlA4$I2y^(uqC3ri z%89>GuX}M<(WZ`xW#a$%bqBT!|2mJXsQ7 z9}Nq0iFM6sJe>;wy-iKWoEq`7Z93mYcaG?5b-K(iofWWj@W)(NA8lN&+)IPX= zQ&4R}fZL`DXCJ_cRHPlYO*P56qNiW^-@SXc>gHi-Y3VTl@?KP&Qh*=LUw5C9fG=AX$u0>n4u`Tf$<#6IH#WI zwacMn|4>tk_Txh=USJe{7n%4J4!(CC8N6|KW~kI)K=oX&R-REzlv<36c%vlv?@n zbgC*=I^DK;dqH^p_B6(9!u)|D_Xc$H zJa&>Vg8eNhD7b2QX+Cwo@yf!htC^0aoY`6CGWo48{QS3Ct|v)JNrEymk)zr5^~b=^ zs!Wo3_qtIEbHW!F7w2-?u-y{@x}KeVFH3q^L!#Q`)XS}r^GpMF7k6*uQ{1M88<>9n z+tCNRFCJ!2Obx^*@AqAv=gVLEW9t)L`ug<_%G>$+M73~cPEL^=0Vp9J^arcEnT$fzr^NW+!$ifMZg`0KVx|;9$@TpC^Vy~O(IQS|Y(961m-3~hr9C}GR|ze}rWnKLnj8Wj z0Qz$RJAJU%{gV|-f!CArYLV67I^!fw{LY=-q7|nj&J!B|+FR7#uK&e!n}v4AX%vJN zW1CLtF1T16KD_2vcR~1?_1i?E^wUjMNOL=+uFmrK{8#6>w^B||3|Hnk^{zyP3U!Dp z)k!tn2zrv^I&%Nv63!f_dw$u}T@me-_%0b!cg6HR4ODA~N>QTnuDOo)sQ^qo0>h_e zWK=+`m4vE9PY&_xOMR)?#z`d zS7cvm(L0&2+OVH6VeQNB+xz5W%&s8A)LkAcoPjIqe_VhZk!SiA)%Ys(3l1YMliS^O zbxe5Gx5nKUzF$VWr|+8Z1)$DfoYsGB-`@22(mX&&WmOf68}%N%0xN1<9VNc9T_S&W zrM9+qZqVoIYI>|_5hRw7ig3P3*IkZXrB_z1CS`DI6XU>|6X;r|^{_+#|eWi#mBxqS@})Z9Q}fnq{h1vm$tdJ0##xw%E>TBk<=-L0g! zj&_M3>V9L(v3KuYw-xjQOTOsNr8w=RViz6S90-)(n_93`jQ&miLtR~+Qb_-u9Q`Se zs+)GVZr$qX?M;~V5BV4U5koUkdvf@Wr0YjoSfuU(%0RPX4%@Kv0M>=9;^&vAnSg)}fG0cu{JiyZsu3T+_@Sdm%W>$nv7b=@ zKHt}5PxG2{d2Q9O5{sY=a(e99F@e2qW0cdc42tf_SdM+%)!mZ3T^v=!s%cC=ikY1~ z5N*i}D@+bs<5NxNi2-$u7+JL)e-OxPm2jTw6T z*zey5@d?u`>v+AUTPm_Uv{I$CZB!Jo^s|*F(4-sU_78ta4~5L+<>q_t?M{XgcoiTQe>DC%#r&K_!5q5sF4=0*KR+X~_ir zz=G{+f%~KdrDxw$@TWdyOVWra`%%-hv+VSg6lzO!Axc%Xwt!UKIC6KpNnh!8)!ubH zSm@o@5n<%$_%1E1WZ__A6PjJ#Zj>JiGPA03YJmW6uXZytGxv7rVTAvIGaNj4kcyNX z$NV`OBk!s8L1!0u887bp0_&BMbKMG4nk^=D>O zq9th_jgOo?$Ow018^ZZ%=_@l&&(J1;xll7uAZpz)ST5r*O2cxbqw@~-_m>bY8X9kW$LBMTX5v{uCs2AM*YFDW;P2=M+Znh^TtNX*VlLO+qa6tw?&GuwaUoX z|7KhNaD}K*ey+CrVaLy_j87yTUH>>%(Kqhmua0}`MUGu|_w>xHtUNT0CIrA9H7?r} zDm;!|P5bF|s^LdU8i3fEPgva#l(d57r5LS9Zp{M*!r32fEVi9zBjOyy1`A;CWUGcp zcG$#zH;-_7HgNR0T3T3SKoQ7zq!J>{$H#XHLTi>&?|~{0qF6SeXtT4im11jEY}n;c zb2MH-JngN^*EOEN{Ce2OjYCr!sm+;$L!dh8OI}}H0kqW$!9?%eIibn%aTCDQTRc1c z(mUujk}Hra`T6(vFH1NT{ScLCz^af4Sp28~{NsZ}> zOS8&Z3{T#bCGK>ZPyTG`_5f!r7^NjVASg&iLPCO_m9-dbuCVFVSzDcgPuI5e{lNhc zw-xP50-EEK1-55rVJXVZ%hUVu=}9a41NAzS=neKNUcZ0<7>4Q-R*4$qNKQ^onPZ1p zq68SD!m_pO^Idw7qMPoA(jOb(@1OSYA^)j2HYc;73?!O80%%puT**phvTt|!5`E|< zVyPU+gyOMDKwt$LUhU9RX8$8l+lW=QqZap{nS&!}d2!U2oyka@*?$Kh;d@h?ENLbt zrk6?fUsyw>B4zTpZoEB0ysLv~$*9$!j{0^95WVoy0=`*f4jlHZZ|C(6ttKIR} zE+`>oQ_#q^Po4UW`|dpT^Q1})^q$1)QhyzuO78#Qj|HeRtNzPPSlIFE`0wuxtGc?n z7G9TSJ=9G%MP+%T{RcE`Ex0ZE5<4oF?8~|+QjZ~PtY+e^8G33JN4nGJXWG|-gZ&Is ziD-~!-6;HJ4yt4jh%5izy*$v;h^S7aJ@t0)`Dp8;cr@kF^Ued8^uTHWq3lJ1>QJ`v4 z$r!JE+h|Y#U*+2M>+m@uc~b8wfAq0&h{tx?GGTRS*MSnEfH6??bKTMh{-}lXO2OVB zr!l5UbZ65TU}_B|&EKCY>dqbW#y@t~H=8lO7bW7UkdQw}dFV)YK|CX;BxC_p!d>@v z2?|~%!uI;@2GJ?{**8X7GlSmPHs5e}cTWeXUt`AvIUMIt7o?{J?2(XF-Gl=HL_XJr zhUZ9h`lgqsC9-V3Y$Fw$)Pn~#?PuRzxc+0xPrJUz-9tRkUHMC0=eJFE5`v0^MFuSCvb@Tw%CF&L+7?bzsQ&x?RXnGH$R_=I#A_Y0VSXqx@)1w^l;VTD6y(XiHV!5 z=YXy^&u`ni_rdyYI@gGdoz>dfN~{_&Ik{-fc!gMEzKq~P(DXd*z<&H(s&8*CG4z=; zhnAr@{ppAVSD1ZGf~(@rBrQ6>G(J=b!HmpIVs5-Vm2!XJ4+@Dig_sbT)_JBGUM{z@%_jo6sF=&CRE zGM^S^p_7Tp%ARssHw7dNwWsRVX5scW==6hMzn0N|1K42a;i-Y`CYUylwS{uy+;>pP z1Dl0xlF)-0(SQh26xB#)h7CKet&qG|00obfZcx^b1G2cmH&#SE&=nLF4LSMzct9AB z{Bf60_fbmH@Wc5vW}m0*s=^yQ^2JGvynCau52l-qe8;WHorC6O01l}x)1#)#kqlXgT1{)K%yE^Cc3_Vb^Wxq#m^5EHq#dS z9E+wh@lQ(H;xY3p45s4biMS0JPzl+@beYA^yzXg?+I}_|tX+_wp8}{aqMs!ueDr~p z_9Au%=k5z47B$gV;K*^%b8Kg0P$}mufmTF_^X%N5z>Xbk1THD=6IUwUHAT7Zlg#VZUA=snQd(BVwNHWC#b~8ndzN@{aq+|E zA#Jo6FSJ*7`xpTOt1{4`vD!VO4~cFH0UWBa6D*CrJ`0=#7Gq0;AU0$>8bND3c&xmy zEJVA&$D2*$7zHpHit8qYrCGCc=H}zF1&h<%=)CoiE0nrGLrNMO*PVE(k?x`YIpgBc zDO5YoH%}n#=lr9tJ4pN9lQu`osz^eWNPxI3=iEmH4~~(N<2^5XG;Z&8)E_tZyy%Ph zKrkXu`k=epWTZ&s{bmJyn0$hkH6Vq%{{lVo)yHJ zyw{9Uj<2cu1E`aVqV%j%OL5U33z&E;;egkDEHoj0`q>V>(A`zPhHl)$4mG_L;KaP$ z@uOrY(UguR$!sXH0J3{#RG?tf{K`Iq;my>`POXnWPW&U{AGr13i1-q$a7X;1v=hG? z1ydAtDiEY3CRFqGCiv<5Jbo7f?W7wQtt39Xsw@g^`7`ar`p4?)u-c4AqQr`DmX9SJ z-I&M;_vqa3;nsDK6)RqyeJ^R(BI(nK#Z136YDh=|!L!i9&t%zM#~tk&geUn-KYKfl zgg?-r3DDFtn1Ams{P4rAh|cpquJJ&Q1^yy&&?PVZG9X=?D2R}qSa^6saUxBzAyMvA z8W_uojt=~62GZJsngCTMCtLJNcqCb=RHv%sU@^A%ZK(yJQ`oa%!I&>s9uG3aOiE z!ANxM?46+F6m)aj+s)0*9Ata)eRChEWRWaqUcWv77(oE%&?Ao*c>Un<D6FDD|F26jx3Ksyy^gXlQ7z&38_1=%TB2Z}n<;H4gqoII zcNyT1Guu;c)uB+8|XH9XN0x`IW@(-S<~Scn#FtynP$yB7zEQ zJ~?*2DuzI~yr`YH5ZSO(GYv`ZCjU^NSW_zij_teQ# z5BINd{Z_j%a>M{~;BrCq84c|hI$N8P^<)x%Ln?-9pBS!iyk-;zFAWo~-R;_dZBD%$ z*s7KkAwF*=w1T8wDvW{qijdiwBCYJmko7=-e0Q9$_PtD>H>38O>bIq*u0 z%Pjfebyo6|;f{9A&~Ir@HO_}Ur3QMLW>&G5fJQVje5#E|Dg;4K8h6DREd}4IPto5+ zL}_RtZ`|J1@#TCEGG0j<{T_jeaiN+?R-TQidiiI8v|=ZiaRka@!f;+LMxc!dT? zmwW6%^C0di6=eZh;w%Cg#7?3VxBe!@0_UR-Z!2>8)dQ9G4+1{6aiXaJBdR}$-3ZR; zHrk1!E_Lyz&cg3TEmc7_gZHkCxWj$Ez7thj=5n7ONdozqIqC`Hj zk33*Ky>F+?q<2UzFm7I8*+};q*dZEW+WP%c_mp z#e|9z^Wr8i!&@BXGuaMd07yNMTse|G`@?pndC$8NR|ft13K%>D;$fpA&|ezuDnopR$`z3wVs9gLP>+9tZ}|{+j%ZCR ze0+|lVgbyHi5`ewCg7XFi(o75gf7AnDh2)J&>(tmPEYo&mUUWQMf-{o|JrKALCKwJ z(svt5$rh^4@m5WO_-#pFUjMnrCP6_K zE-pHXRom;WkcFji`+g5KGhq)>M{sl3ahAXWmpoU=3>lIiyqSfC1!4`~tjF6rR0~>% z92Bx^*!KOfP`%n_$NO(0V}*h~F2I61NEjl?I>0L%k0zYg7@QGB7Zpa3!jS z9fPt(&KR+{Q3sqR2Q`UsMvN#gFR$5Nw#>{-V*7$(6`>1(r1`lZnx(bF<})pd`Yhs1 zVSh56`^$+Xg0>aHy7@4LVrphKUbLFe7($ts*f@GX+PNxLulbSe%F4=~5)Bs@7bI-L z$TjQgw4?_Ph!-qO&;um}?CSPve8%(3cN?&!g#Q(T^fpw}nrNw2xT(rlR#MlzXuP%9 zp+k6}qKHLwL>Z(~(zi`bH{FViOb7b{gWZs~KsAt0nZjlj+_`f-iCuA;5oK`Hd?!hJ zkY;aUVq(>le9t(!4xtSa1>EPshQqMq3{Z-&$dRxl?X|V<_klcAy(3T#wMW+={|&(< zKYsj}#qu^}T59D^d=Mpa_%Qux4hh3jaE=h-N?|RccR9wr@W`L-qmMkHaXw@#X@$ft zDC0OUVG~@Db?1Y`)bS)a#hI;^wl8>l%8qD&fcG~pEH0+Q7U(GO<@;6_Ujej}Zt-yg z+RJ(%<=*~~Cw(gNoMtQQzN7syb939WaT_G6GEzP{f4+C`9?*(7JV%Qr1(B|&L`QMM zuI}=h)btMwoTw(y51)V^Kpgd)`Sv(?<|Cjpi249aA_h5W=gvYlRD~Zx1WYiKu<*z) zKQ0g?bGbv;yc`JsJO8s~ln1f{Ns$FQd(ow^^|r$XNOf1d<|fn!&6Yo^nO7b0w3#`v z_Ko*pW`A$~I?04X(A3irZmWsg$4!nu1n6@Ty!&72LTsZ($8SK>HF$SHy~kPm2oww_ zq%+C>f@JUxnOfdGt_+YD%Ya%nvZinw zDg5$>S8Zvd7z0P}z73IZ4jOMbzSv|I>mKFajOlJT%(&MiePHNu&r)CZ4MtA8wU_SiTm`^>*%xiHV5=Sc)|0 z-T=B+edWWX0wGP@7SS$-Q1oVgtFaF`WS-E+f{E#c4^j-D2VNZ3GR%%!>`39}1=m4m*A zak|$gIid_EPpofrZ&Q>J zzX(5g82up<`GvszMfColHYU(z$UY+GI|5P0_zSG;HpuN;p4kHHT?-FagRV>%Nyqz3 zOlYQR=sopdoLvskk#js}wnLx{heg*5@`FB9N?I03rq0V#VcDI?%OFB@6)`vRg|MKd z5Qa#>e+~I5dva{7a7((Hz%JmCccDUPMdjuum58{w8-i*#dPv|IlG|)npuhj2 z+DDLz{a`s3y#t3yK(vJzNoX(5qh0%o?0g^+4F*i2N)XCK)*dPVK~&@D0wu^0hj2&? zPI3l5<$TmUbW_pSCo$`6z8BYB2_u?_J)1s2cMrklT~*0gaxE-ueTyTCDRi}C44dbA zt}>;0&N%FF?Bapfqzt&Lu)J{ofue7h6>S-`{$3<;C@z-aW})L#usKVHiDE%r7;^Cy zBb8FiwOn_{a3^7QG2KE+8oqedl#$mswJnlv5JHV1>XXPMF$xxeZtj_-_U zDr}FnAl0of_FZ1w6+aDRl#W|UqM}5tA?{BWzPpnCsbpQ`a{!6xKg>fW(>r!7;-e+& zjxubi|IILv_Nb1RDu+q~V*_-8{?m!$$8~|Hb)n9|aY#nQ%?@Pn)es$%ErnREZ5MQ3$A9Qgse*Vi}lJz3R4RY$O1_GdfW}xAX&7TF-X~kzXSMx?R zk^7}~A`LE2l)5+e?NQJqt12B(4w9`KpNdIK-El%1>mX9sWomb(85%5y=-QP)@V%eM=A z@2mlECXghA6pamcl|7L|J{$=nZE#nj--B-H<~Su(-CZjWz1a`7b(5GF19;%yM)&Hh zsP%jJ7i35QFc%BQiGqXF@1``cOD32C!!E-uQdhjelc72Wp|TP0n*8~Rq#MRb4d8p$sGTAr#&Y!`}?)I}x2{%=im32SGTI>T)M4IZ3t>#{(J|`F98k zL69}M?`&;e#)rCN*G=*isPO{Zwynv}&nK@TASZ1OoK_N=zz(Z=3cd_(A4Hk3bMBGC zng^gEu&}e!&;q?VtoC1CkGVqbEQ%0N4*h9^v>EOub*6{{V8*{9L{bhNa-W}{SPft$=ly2~ z8WHsz;-xpXo_I>o6=5(0DkC@0kM2moh}(O-TLPLjrgKi=YIYi>u%k>mXRn;;K@lf4w@(O>_$) zqN>}%Z0+^%=kP5Al04IyM?y50-9&-F&E=$77B zT5~eKfrV=Y>8JXER&S2DweVzfivC^9YGi^_Oj<*%Plkq&jHB;$#?@6;R5y*EWKj8+ z@y)m>#JMW-_^&+!w#n`S-*_|=S*v<}C75`P_l_p5t2vPEHf~CDd2wN~&g%?H0hwz7 z%48ex#Rk0xbzr_fT#;>P*SXoT-efp~b`t|tsxq7#CQ!&uA&7!->fS1@9t1kzQ^1|0 z{j{2KLn*3l3oL^VN!Kms%)~AY7U6g_#;ObuuS*C`oA1Rs8BrhK*n+{DW9OG{|qA3ewW%6v8PxCgMN%@8H>H>VdAG?XWfMn0U#_Jy;xPC1pq`wi~YCQ<`13BlF$cWQW$kCt0ej?#fHVH$6 zbf3RyHM35kzvR|!&ONST-XKE&-qTlhO; z166qZgJ|lZ@+UB+SU~*CF_}lSK5R!N=2QG?n8`u4(%f!i>O;sF6wy!~c~<1Dix5sF zvk+v40~Jr^o-ZawauAV$Lv;g`fSYuu2lD5g{`|Hk`de-%zT*lC+5qdo%=EM>5cS;D zaRez%L25~U3pir-H!-ci35bCQ3liZaTBK7GAVH}1tDgUQI$2jc!Z6KP3CDr{X8{ zVZ{*NZF(9Z{NmqtjeN9|iL_){`#=e+xw(Aa?o|^hw6dmd=kkq9V?^xCjX5 zazIc}Ce}m2ez+x_fdbOMA)Z7N(r~h04w1<`3g=(LT0Q3RVNAjx3i z9&fQyq)elLud#bu0f2Yv9MpQRKhX3r?FH(rkV2XXs=A-rolvQ!cNc9>;l?kqyxeTU zY7hran)Z`g*oHDn8V>84PmmewVB?DYq*um4)g}H4R62AW$jLsPKo@Wj0BPtakZcP@ zqlxU@X5e$;$b}29P33tM7k{tAq-EbEQV$#6XkN$BN=M~VD8RfIHbiWp1zHj&Esh?Q z{m=~pL9$w{6K^8~O1uNpIhHm5HFAjs*g22e+X9qVOGzW6so6*!@FU-JN2~x+klz?1 zXa|W!3BCtHytl%bTh`7vG>`TKCR$C&L>p!ijN$N{L(I_>lXRPfh1X1kZ`>2LUc&If zB1%^%-Y!v2qYuXhp+-}?Vt+cX`#RC3P*AuiuJG`b{@mVrf|HUM!6pSClyI4A3Zb}EaheT7#m5vYK6&WRGk=F70at4{GmkPz808y8AU)s$=mFi| z@51)L`|rQUG;)xu<33pc{aN7D`i016=Y{4mD+Nl$hDwnkTbj#H9zPawXau8ZMTytk z4*5BxYDxa$Pd3qG4=J`lzaSx_e`iNAK}lvOJpnp32T3rKo|e`a{nZ>XYYRX*a~Kq4 z{p>&tayM=Xe3F#{I-HEgmT?inS?t%k_->KycS1&fBkTt|uBQ=Iy#>x`4H>OX!hCTA z_IcF=N;MF^ZTa#v5<1F(3{n~WrIK4d$V;tMv` zX2ROV)Quo3ury-&dELLw38$;zZ&U}E6nmAEjQ6%9!0BuDDcAjc)rfiM`1l7h!JZr@ z0No7hjLgOCYZMr1ieEmWm?RuTvHSE`{g(N2mJ%%0Fz&-JNQ51zCV8i1oRgJT&H}wP z!SG7#pFjcgi|!`ck;kvW`}51lOIzqHV~3q{jFW@LOUze2m>^*e1MmUYdW3a%!>5NL)cUT}(dT@)6XfO(&D0b!KGu`|PT*-^+;L@M>|}?B zhnteUh5-+q85O+8eOdcp93*4po=Izg!a%$a@W#n@+iTDBZwg9FAD5=l2{mEJ;eqg| zh9oa~{0GGwj`$n^tdjO^JJ9TvWqG5d0zoVj@Z)zZ9##!Mx&?O1epr^hqoZ|>LtrFk zpYP&iN&exJ^O^g~ff0{2hy*{?HrRIB0$q<~<3{n8UuXp;<)K_8!V9VC^1lz9NFY05 zspAVTlIkm&&``DSEvCxJa+zudMS~KO3+Zi+3{NWYxL{I(_SrgO}mw{^oAyR!ic0M|C0|pVL(4TG{)%fK=RPFMHyIBOgoE`8kr?`?1F`+_*_J5FjoDnHC1# zy)9N}(ME{(+lOw8l*C@Xm!7@F)TQO+6RzmBL||=z6JE9Z)GGrz3dsBAhIeq;IO+7) zPIn)S>j=>goFer;`-r-F5v*kru2M)rGV_+i8yD*bDLTo|O%?+s!l2jDVZ5UlJXrAU zM#Kin;UYPKu1c1Nmj9r3F?+0xq3NnE@g%@XahV6Ss3tKEzJi*tjRr_fB}x;>N~Qn^ z%9#JEKQ4PObFt|->_T zJ=sd=$;7cl`YH^qOh40F7@`CN0eT2M^dp6lVS6^}VU|P=_sVo*!+fu|AKQV9_^aqR zOQStX_$t>kfWs8ywbXucTes5fe?@y!5b)3=&(P&U1W*y&*D)p#bd}6ES4tP?@^n zTHs+Mp&Q?npuCy{`qAgV*~4~Ccj(-Wk*yF8Jz}wt$S@{-A3u3AZnlEV706xq9%1Ys z0&k1+jV~@U3;QY!jkhbL9W`FP9ou^o9?F3SD(r`65!S@*Fc0j{0)y*<@***3K>>+S z^z>+~jZPpdi46dbi?%!^_uDAns|C}bJ!N%p-S{_eE*qfb8yv&C_JfiiAiVT7Y%oGf zM6@4K!MHY`{Lrbvfhjza-N2HJHR(H!&o4s?c0%ZSDNy-Fa?t&JrAJI7- z4nbhnetvv2iExEVK^yC?v;Ynno19dJ9ixrHfjpHl>L2aewd@)PjJN*}TT4QD);As@ zN%i8-BcNFFRWK33RL%*AItHEI1gBKi@dTo!5|zp3DD0f_E<(6%S5Yqnaf^uiO{An9 z)}N?wo(ApTR($M8I|(U~Q`U}?P_m#M2Fe!mqs>oOs!N`kFm9HELRnFQW; zmEY(1oK8z^r5DUDJaBI)6ir9aW_F;aYf`Kapca+tG12M zhfg}ji<2S#zfZ71F`t~7vBX!X)DAI0m4qm?Lc!fBR{G6f40p-0b*;fiC*yG59n~lFwrq$8IcRYU(kb4zPXOB!*@%z z6DHm+V;21iSZpZFDk(D0gTx*L5V>h+kyTlLr&%xufLvZ0pjIZ-nlv|0=>8xZxJTWn`P%>*kmW0FyIh?r6{ys;CLiKICAAgNe!u>br*FAFn0; zc46UukMv-CNGE+xGva$8Phs%$t4;AveknUO@(QHO1}@4F3+%wUj&~QU2Q<8?daVvI zwBN+vQVQdJyAHq*Eg72Gf1_k*M-Wf&CxMBGTm=QYyyb6G(=Dsi9tiTZI-dDccc;x% z{q55%adC0Rh6a_{p-oCwbgU(={`6s}otvcWDA$cQr8X3&n}ql8r*Aj69rn(5x)9&$ z;`v%AQ1ecelE77ec7c<9kF2I19Xb%rKYWQNr*GVR^!&ZVc@5ET7EA+U^h!BS7b&W#WO+#d@o!`?Qp!2v=8&F?NSGiuI zu&L+Tvj3kBccWY}7QIkq^?@(=ooxf171=-I-Qj@c`Qb(cz&c+KOD( zahtR<-`h8Du23vsrqtOrimXD_cV7H+k+qcSy2)vN2`&FuP6D@-UvhBnyw?8f!}2;4 zE}LmOOF0_5A6IIQnEW{0XBfJ(SNtt+uO;PvVb-n9+*`NKN8G!ojtMWR;hKRj>g{)q zHq|<%XHy5Z|2VwNXJYjEm#DipkM-uyh3q+>vRc?BC|&NIw8bib^N$D0$|~+@)w_GA zH?c;!g{6!rijVAhEz!dJcDebc_sHS6lc(F*{hVkHG3*hj-Ru2KkU!mw_r`Y#@v|Lo zWe2`gAMbO`k#=WE8vf^%L*tk2R~J6=*=)GqG&-X6-qAuKpV-yn!KSw97nWu2XwiG0 zv*p?OE+A@J#@6|Xy#Q^>0n?T$r#JVa#R90(&i5bYmGGq7d)k-o6H9T+ooN~J=Jgvc zoMWLpu=Ha%&3z$0jgfbOclez$gN@1jaKOGg#aEv#U%eKmO4wW}Gkmb6|KPKWD~1nm z@jc;fUzOF?x7_&W*zv(Et=cZ_`FD9i-(1X@67u@qo_$`|vCFP_b=F4B1C}Kjw3b1o zY21llBA;ijF}9tTNnHxh^-2(v7`kX-px&W=^RCP{Yj;+9&%FvZF;td>l?0m+6rS)XPa6^|4dp_gezBFH`%3Zd*Em_2T#h>oy4>!BBy>T zt9d>?+Zpro!@yJ{{Q-J13Zi(3;XU0M))i;oKeT@C_}c&N%F<6h7arFOC=GYWxfltI zN-E_r2?cgiQVbT}xR^8?_LZamY~l>k((V*N7=>hz-_R4W4TMD_fdfdf*uH=rcI`Cd@a!jYT#lo|XRw6xR zDD7@V>l?F|dB*M0CKi8hN$rd6hmcx$(?d;jNK#Jp#!|OkUco1Zo9;n^f6Cb}I+=4S zq-2=CrBaG!au3{jL!P5KSApvmt?+~O`fkCU&c}IDdarRB*$zp1U2oJg`d(A*{E)7g zH-fWCvUZdI8z<=t<@9R=Gz}Gg?zEiVt)Cq}ZBk)Ozru!IN$lj)Pafyfl60Re-gZ(s z#9+&2$y_YtN9XzI$*#GLJ6W#FJlZ+>G;x|+|FdATV^#-^=S)!ljT3dt?D|n^%x|r} zF{qANouxftAlWNoxAFAz^#<0SuX8ruu!-Eatfn7jJGxZgr?8)SaDSXhn8_&J+GG{_ zO`H!SQ^lpG;%%O%Ze)37?D+a~{IB4Yyw)fWwT(YcUfRec1ruwxs4XpP@lSp!lZ^+A zUjA6t5!G5b;G|L~WwP(-^lHm%Pu@)Bk96>w^6e2D%tRIwPg2;Ahg)IVmQdYCi$Eac z$rW&V;I{C9qRC`Hf}lr^lROF$nHtFVC)1#yKY6C}oE6S1GaH+KPLAAgS6=(G2S^z` z1ZD+DSB0d2E*FN5I58Bz&ohukP?Zcl!hyHK1P@6yhx{q}^6+I4P5rx;dXITp^P2Sq zhre2FOrbYR$*Mlv;K$$eZe6LtgD0_3W0-U^0T+$NGi7Sy_Ju$>AU^8KBI`;Z74onq zGW`yVxeU24DS$j+_<(FY;^zQpZUh7*U?f3=W)bo(hh*R$1231%$H+nF1L6xH57mN# zS^`$-7K16;RjGJ{5_!xRpm!hIKY3IG+O?w$906iqkS9{XU>S!YP4b9{^JObL%5&^4 z=M39xzXci{9(ffS#B_oMW8k()UpP%tg85D>w6?8L)7al5W@WDEn&oqT{pW?{tR=@` zdF@;Bf^pIMfm@UBjZ2_e6(uAb(ma{Z8{GRUalfzb&yRP6*A*VlY&-GtlsNGtbl+Xr z8V?CT{xu$=1Xd@R;rlK25{b}b1}s2}TlyR=$rXaFQudSY9~C7$_8ZnJ4@NREA(3dO z4@4sAIc-NG2$Xurw8&|bnU-7A$RN1kVN=AWfviVOAznP&*5gzptBD6~=uBOCdBF19 z-clZ|*u=cEXIPm1ciVkkJgI+ICc#`wDuMAqm9iZ@4_8w1Mcf3cYKVtIBar-@Vd?C! zZ_|nBf*8L5H}94^2G2r=@c_9%&=Mp;jx?ygs)34P20`Hvrcgn0Df|e!lgKW4XeOXh z!u~5OpCNz=O}YHr9^?)H$*C@?sHkAFZcWC;x9i%vPn=~Fr(YwU%~BL(eKB1W0HD$72PBOcB9um&7AF zNq)_9dRPh4)!#?(08V-B0}jUXKTdY~T=G+mtXx&I@5k<+2ft~oRI@dU*}c;8kMHZy z#BPsEO^Z7OmGe@RbRP*4egAcL#tK)sQwUMWKI+jOk-{0!# z{O-OqMkBA12eDvR63|ZO_Q0$JWM$dq<=-xwVf`dMep^xY1CNuZrI_JN!etek2H#w%@e5%Hsy@8=%bx#bO57fmQHK-aqg>DYM zcO4|e3>+R0TaqRjz3h+G)gd!%=gH%~eBVk)OS2-p3eSo|6*)?zm2zJ-H7v@{Jw+f9eo-DclZZ?W;Ku5-uUqH>-oq$5DPN%l7>kzr9b!} z+87wC+KZ?Es7{l$fWpu_GLm8?cv^V1S!lT9G+qw9ji?e=KEmT*-nfyG^6XT~2Bi3? zFK*tlr5~tXc*te7h{gfT;2iiFx<&Rh3nx$Q1YgdX0&dfxin3Q7r)?w|Qk`VeYi>51 z=(?XRkWKfpGq$ebJ7kNj`k_OI_TybyFwqBZiGgrrglZ@h#I6e=VvR%TTUohL-V~3u zFC*W3&=zzP#T#K?tu*$b+h`w>+Re?w1BCKR=D%$Jd* zG_tD`vW^9dvP2mrhC7LEB4!E}9)v=+lHzyuDtU$$8Slg6gVc}_B+ok{BiDEsVfy1$ zXV*Z93C_GGsci70uSa8X^zh>LpcJa~J-_d;_Q{!vuQ7YG{3ege+OSzm_b4jM7{(ZS z5KvTuJ53&}h+yh?S2M)SqUaJSDXA7b9z`{rHw@x~AaYfhiaQ7j<{pCw@fqWo|CO9H z?)gE%?0K1*e*mo4ErvX@289}l0@6e9M3ji==xb0zx`?1m3~ge6f?JWi0NLnH6*OcxvlsUVZM4de~(9ZFupqjgb!L(PHKDk3$-Zw@wRcSiRY3 zQ?)02=Psf9DNb<;TZaD^XYU==RNHp@Mromk4pJm^q^lqiQ0dZ@E?^*_0->Wwvmk_C z1f@w+Ku~&6sx%2znu3&2MCmG^0)qYVT3(21a!c5$@b zt!}cxt7n+f4;sT!ddh`#65n)nu@$Q=mN(4#O`^@-@0yDz)N__U*uAkR>W5n(!lnl$ zK@xVntu;!avthJ*@1`Sc@T(}DYLhD!!_|?8;k}vQov+QE%h@e~+R14>=#cDx9`=PY zDg06c)7=ePSPoMU#-}9m!XsIW+Cuc|4LL^FuGECTdbLMBCyvbDaMZc3-NY#ov%?>r zXS$(4@{Ek+^EgMV5&o7l6DvoWh;wPS2sjtvi5;50Y&G%c+xbDUf%(rm9z0c~c#Ixi z+f^O>gq6e0MF;AxE%>kAkgU`tJLhcER~T{KJf>HL$t14b{NV7$E~C3Jv!}JVuwB%N zjgfcP&uNPgEt3K|L4K zAUP7Y@VXpLpVw%?IE!t$nIle`2#fC7qB!MzFFCGK^qruq&EnyAQtJQQ_6jHQMw5&E zdlO@Me@zMeO7j;bxg28t^hCUgu1!*HVV#g*>NG8X}kTk|a`W9&ms2suo>6QPNGmb9%L1 zu4--IDyO!ojP75-g$+0wpgtWU<BktdZf4w?&IZ7(Z(EIH(D zVxGpk*3bH;ygT+|EN>xLQd^$43yU=9 z;6!)3^4A}M^_#_f)4O4}|Jtraose+$ z)lkR&dVltlm`%-CVhHDY-M??G68UDHs?{*+&7X3m#{1K!eSDv|KNuU>z7A_JT%cYnj zJO_U3w1j;*GQfyWI3n{>rnu~A@*rVEjFfGdEav!NqH@ZT-x4xe6-~m`f9Ke z8JoEmEvqFXc!2Qze6naJXNA+uO%XhMn+O&w67sdb>AX}>1$D{m`*~tMMcH>`+4D+i z!wlC)28sY2k!h*3a^9XlQcf)3))^zd{)41MMR= z_YG;z_RK;YR-U(`bfeqVMm}ygj6_;KGT=KVCm(yDhTQA?@bYe&r1!#~s~PR0b2P}q zr&;>=@v^e6>7Vhm^qYbSZw6qb^7 z>FMUTpWogbRsWDdaHr%tNp8>ROPS%xf`f z+>T;Ykh)0mEkpZ|&#UMvbBqz~OCBJS_y?6^DkUKxifMDEjIBy`<7 z(k(_kgT8!!@$fA^tD~1Asb3nivbMNK7DtY%T9UY!U6`_zS$EkBgJAjPAex^Z5&b0J zIVtVt{$3hhX(Xm+-sO21wsM(Ojr;kWEC0tY%Z#aM`!X}=P_IJ6JJ9#ylDL@``}>{3 zYx}5UBdML!nn@#*c$Eg;ACp=70Av0ms#1yF2>s?=?(KfUQ%+kfyPvsoo1P|xk1_|$ zdf0cT-kLjW-)tLl@uK$q47xu{eP7yd9z?UhQ?%eY_i z;>ThDwO8o6+KW?l>f$Y)eR|K>u*Moa`71$>tVTX(Pg?M+*RjvDtHQwRY;3t*Kt)Ra z>gZYT&}SDFm1F+7d?DoTnwG(ZhvXBV=rmMTP0O)vOG%4k0<)kl(8EKuJHvb^B~Jf! z*v&NbB%2z0qVjLWf0o-#{;ZBIlgNabn;oqBU$|N^T}~#~zqpQ6d!zQ5E4yFV8Yw#e?Kv$GS~z3Axd7m1Jg(;T`Z1+PH^Fe`AOAr|%ip&@RnQuL`D87)`qj-jTaKIx*7llJ;FFSzHY1Vm zpm~{H%dT{(FKl=t#0tENZfCArsucck_r=7e+c>OZ?99ot7Yvo$n&sxM3^h3P^PO%L zwW$7zgnZraUyp%#DB~EMbKQm@-3x?m3V2^2d>RiMEwJ5WHwu8cAF(WggAv(q0>hdS zF|4hH9B;u?D za|#jx{&A(3A6PiI!9BGAraBtbwXGgLFbO_KT=y_@L)?U*yd#0hoTHxmQOM{Pfaj60 z(?-I=h&vJakPvNv`71LD0X!fP1vtmZz*rfS{3rxg4Fe&#LiVGO;TeprI>8PNCw~%1 z69^L&yq32h^?+=UA-Ye1C=9aMhseal^@aYsZg^%5_ZG}@(9IXxV&CZ+u9f?KzM(1` z+0&uGL5cAMVg9OGcE8+^!XmG`_*A&-dx1%sFKS;|1XFPG^Cy~54!-CTAG$TmUKe%) ziw^EtFkFWG@hISE@k4~Oc(IVoo~lE2bm=&A264jVX* z-?rr%8jkH|#-{%U;^tNhXqL{OfJj8*-)I&VJqQUSC{1KY;j#ltP3u;#Af#KBAvkje z#1r}R&#Yab_#hJCEHKqWU{?U8I}AFBH^HKbm#yui-%K4N_&PhGgd%AYd}1gR04!)f zK=S(cGZ;sG|Nb2^wAQ1gpi3C6@X4GxMW@qyh)A2;5K*en5mdlZ5VPJl*^SU9!7)g{GC|1S?(b_ZB`05xGP0 z=j)56tWP#!M#2h)G_Gxsv-?1-Ldrh~;K@Qfqi`+8!l3>gjD_#)0RYVqzLm2zc&$9G za9)Ht4&Poa+==s2U}pg1hc>KAh&lwH8e#GNYcYUKJ_$_GOORBc0v!tMyQ84f0Q`4H z4LrLBaHk_lSJ3uckjXb-x#2K6G7Go;ze8js-T;CK(o+Jj-w6hY;ZMwVT?D(oFfdyH z78&9KcwpC59@oXr?)Bw(EJRho#o`&U%r z=p9Uh0l8Vu^7+Y_LRghx5klyi@Jn>}(+naZWCVQ+!k{7YHvmFG z()Iu`Snxp>3|I*fATCUYd*Cg;g0ulR6Ye(}0m&GFX0~4owXSv&06uXq%(s6?PoJuO z4BqTx$P)tmHUzL+AtDE8i;`pk_`(o?E0Pj|yaO`h2FtGZ+jHhIUEI&XAA@8nAp^<^ z-oY>1+Z0e>$-or^ht!L(^GJzBO(JxpT)HGBa^l)!kIUeTEB*=IBEMV7O$EpU2NBO! zLGC~$wM_|u;{b+Roboa1mS_zo_mlU$WaT4i$v*w-H_~_MD>x{nlY<$>%RIbmYbRK} zd-hY$d`)=$^$eyfPzOJ!SaQub=IMRieBl6(rT?zoX=h8JK)*|8@8rIlo_^s1;^=~D z;Gu6TR&;{RhxZ|#HWZ*jdmpty5FQDYhVQlXYkCPi^V8n*_$}Pk&1rvQ}i0Oup_d^rJA+Wk&z_dm4KXe*3 zPzoS8E#}7sA`2v=AvX}&h`aGy9YDi$YLLa(18u?&K8pybW<{WKw+_RVPS;fhfk*}j z63N(BW}ln=boz62aa-p|f~}r%=&ke269kSx9jbL6xrqffpLV6_TEpyL)qD!BY4UOj z6C1CLeZ!e`BE9}2c5 zh=CkoGa&9ki1&dJk{5sk{T-=*f5jo9CCrTxhUGpK!puTQ-+%%{H3tWRl>yYO=MbXa z0!|%b&*ulD^yguyOwmBRVDQLeKvo-&pJI@I6dZijW(If2swv!^4u+1>{+_3QKjY<% z){nbc!RU2{^ZE4j*oQ!$?ZYSjT$Y_yZdZ@f>bcfL8Xq5A{Mp1IC4Vn;MA@v6#V(sl z;c4icMoK5%$yP6z>{wlFw;VVgPGy!vUHIXjfW$pRL z+NgcAOoWmMkFv0dc5>+y&AD@TD90SX=KeaGBrpkEc+3RxxS0{Af@4tXRZg~bPKG(# zfg8iMr=yP=bBKr_T*{s^<|=^;neeXRy67lMw!VkpQ^1Pr|NRRA3K_C3Zo-E}5)(-H z27*PX2)JGrz!!$>&0sGSiHt#zts$s)XJNTRoq~N*02tQg@vZiO>CC}m7Cm1Ow`2$K z$zit_177DBtE20?h&5&ld>8{WU_?TihZ2JLV4(#wt#w@)SZM(|Tj^0uClmnBFQv*T zJ+hZ8AGXpuGw-{qkR8?9QSW_g+rqB%Z!v~7fxXCACh{6Nq{6t29ABI`4H}Ipjh~e{ zX7==ZBje}>QzZYZk*oGIH|)9~00EAfE?6f#x_h?rK|5}WLlcV1#MxOLPvnr#DBbJ9S#42DmBsnPjG&i-9*fBlpy{^ z*o|PO-U(O<1ZDvKGFNbZT)XGj{zD2O3c%`G2+}JRXpIPr038L8FLgC< zY6NJ^;>yaY-y|3q7`h;i3lTshjD!Tu5fb0=;|E|@MS%>JIAPjuzgV~J(_>6FWLdN=y-dl%maQ;_;D{4(xa8X zofjqbU^z3TWhDIWx9+|@ZFSKIh4V?PK{3phZt*^V=1uTU80G&k2SYTT! z@6?0=zxT2aEca1Jk_sN3$QTX*jKGt`SUG_I*p=Ln@mPq-7einN6}T3VtxVXDJUHNY z6ouCYH}YEaGjIwcJ}(&i6~oIQM;T-ifnbXvjZ`ptACkGO&XcJb#|V<{{4)N z>78ckPWS0~mqFlQ&Gmm!zS~EVEaZrJyE2yEo~SD!f3E2_ih6T_bMf2<^$;w}@>T0o z&zV2_pN`uK?mAlAHb==AzCIA`l8w!-54=%35vp2qiKjjW6lL1j7%^4ViOO|surQq( z&6mbo(NlVY?r4hqhL(JGu{8bYK=c4_D(0%$h9arNyNdO$a_nD{r1X^@ zmCifxPKwXk%UC8WORr8Rop@zDR8ch&ufoz7Lvz9lg(qXfOY3grK{v{J>YEvTaguwegX%6n5i4wgSm#>q(v^jG5l(5Z;d-Sla$3jHiBh5iM84*yWByj`s1lr87;>R2Myd*pu21+T;=dy}>yc%Yxb z(DYJlAVzMb)ES?~d{=pD)~h6#-=AH3XyN$$BA=DaY_(=&e{?tb?z`X8hkeist(CW5 ziIg8r&k@$I`d+`hg2RR5EGnEFO+lvFwWQeik{GOHre_D1yb49>xBr>@DC1XQ+mIz% zhZg2BkB}o7%J@WS;Zvm1lFMK3jcz@VDwxXQTOFUox_f=NB|aY_d%I@LuPkVBTRvXg zwxvouOkh2#BYg}Y4Re$ccOJ`HywLELB^q2yPHcQRd6m;+!Rft+w)Y3MyYBb=^S<#GUlvQ0yc~2Y4|$ zVB%7~a(WTM8O4;aDwWz!+UQwM!(`?SF^ljw^j`lc_Z@+;cBH?wwF91r)BC9|0_$ksnNkn2RbO|UU(qwF0p(@{K1naf&BA6vmcwu%}Xyqwu?@BWD9XiZyp z%BkGh)2~&y_P`%z;7^D3R!GpXUo299AqiVYIk!}qno_*$tXtxV2@PY&=y-^QGJ|0>p{rHsGpy_R-lHZ~W8l*7rM+P~#UFWw zCVoM)S2&tnwthzzE5F97W+(S}3+1JcaSZ$uY~W;z&b2DQX*A5VoWQ-TDf?X-V{7%q z&Z<;3j@`T@YGR)*x%mmhg#WMYPY2xAKVRlj)TQsiBz>aGjrURYMI{Jzj^P74l5|PaovK*CP59gIVf^Eh8%+njq?fqU(mT1SH*%bVq zarRFd)6j?smikNOB8DMXg#9C0o{37K?V`K=MYMJ7wF383^B(nQCJkLkZj)5Ej5FDd zEv}u|n=wN>3a+}83pvJl)XVfR=MG5!~6(Fi@exUBTZXgub0e}=4x)&PD= z$7FEW3tLIDoxK$JwlNE%W+&nJ@q7bAp!n(RgoBnXT-iI@PWVsuiZXF8G)ys*5VP)V zD#ECBTepn+cF69lG+?O+5Lwx^vZ+ciQ*cYe*m}8}V7)(uIl6kvkj9Ry;t6aca+S8f zXSPrEuSd+C33+qH17PYhUpT^zqcFB zD@s3y1J3BcUi8?Y|717gAU1gO^(!kI9n#0^wq82+J{$gctx~cS8#UdII)`Blf6y6~ zgD)3HZ^DB(dUPh<&K&K?dC+^H_TtCr%L;uQEgF~J)=e*6#5pn%Oa|2Y%-Kw0t(G=Q zZa7|c@z{D0_@(m`TDy{`k3n0V3wijupXdzWLtQ4-;KZo@ZB@Dw-sdy50w&L)6^M;E z*YQjps#6-#=W%pZYafxWHV>0&e0PT_*Q#B1TFFAk(06$IEHs$jlQRaOJ$@V1uAeYf9XB(Y=u!JVtpzu)U3)% ztR^qsJi6?pBeM>5PPlh0%zNLlD>=*r~v{FoQnD&iksvOHv33$#eupY24)*jym%__tGLl48AUjoBY0^f zt^}J@IyI!03W+HGhclR`5p4cM3z}h&!ZAn!-i8$RQEw^+_OhxqTuzux8EFc!PKJbA z?yk=15lYvQTOLcVuCeqvL(Hn*lwu+83g0e{CX15|`y*kUyXX~fN98E6KaM$%_5*L< z*8kcv*A%)_`tZ;HKhqo%)qr>@a?C~!P@qeICd3U8m{v0&E<+kM5p=DAhLa#PBB2kk zcmynVGXesY6G_5rYStACZ!-zIC9MRBJ7pkyVFre!g)VErNSt#@abS;>RoOsWkn+&B zoRqx$g-738a8ou`Df0DGVXB`w?#-&H+Lv=|{QPSiPa7U5aJf4Uw>UXp$U*#={!5|p zb>ft}d&N^L#}0nDF9YB9bd|lhe(aH{qflL-r?I+vT~~oQi$duA*N8XoK*G57PIc^D z5O))s=&KloFc#6?$~{EkM-*V79Sl5zLlztI!y(%5##_k7KxCcww^D zkTga4W{~vztEZNz#^^OVqE?5o*tv4~=4a{cxek8zvE#?fb_1`jRyR)0uRacXnY+H& zIN^q>*NC*tv3xeOyE-#n?5iu^CU+Nxg3{M0<7mzi&SOJqYYd`=`v0%3ccv)7ebAxc z#9rq67ox;Sjt9AR5iC2n;6V3}042Cwu`6S=AX3a}zxi@`JadB{^F8A%uI|$I!73}x zVR)03Sx=8KRQSdX`MBU+%CCcmRyaB@%epmt;L+qP@z6uD8gk!o0_*6VZ72=Wy zc+=gwmj7qZ-Tx$-MV9-}Mj&8IR0PNl1PF>DJ|~D$C&AZ@1VXLOr&Q<^8#SSbda2^N z63g8W?a_%o`_^^Ynx0hN^E-8@qshDMt)-9hgn?DI8?(Lo!#kOD!YH7 zyz#sjuF%gs_u(1Ak_Wa^>iJnlo@=R3Z5;f};rb-{443sy z?x)`2>z7X!P@9tTzP&K9aj%azbojZ*G4h@!yZRfPK@30vI>n@8pjQ%cA8)*Au}f_S zA0K?jhKDVnD>Cg5lx>^=RxMan%=S({#ZKr~=x}zju`CV?K7zeFHlk03>9Y2N9u-YJ(`ql~S{jZgut%3<~ z32OIio0_s9;tXhUZa@QrAu0u&*$Clz9#UV&sX(chvM5MG@_)b${|=Q-XTSqJA0s$W z1*3z=J%kqk1J`{hSe>J8)6qvj)OA0m_tfnJs!WjaL*yicvJK!ugp~uSPSWtt{&R%^ zF`IF!ODwa;@zet8YN3$RG5q`~Vq5RiuH7g}MR)nrZawCPx{X+Q{!H0w-QW4YxY^SV zee*nI_Ms)`ZRuFmIflnn26>*qP;A5m73Y8+oIc$%^!ShBh!?SvVC8d`!U@U)b8u$m z)8$ilO{|QMF=#NmhQ|>U(01#60`1Jtx3_*u8q;G4i0VVq>@rWtBq_(Lr`T?Afb%C0 zTq9j`!MK_yg_zau+J)n|&+^}7SN^QD_F9U#Nyer+HIcrzEbLXV7N_pe%SBtL&n;Yn z?Jx7b$_Ak-MuKXPY-sd^=AAPG6;i`@0xM-L6cl+W?@Z?jk^Vej(7`Co_2foL5;&eS zk9x_(G=Gj+nQuxH6xn)zw%Ua!JkKoJIj%!6tf1sX2B~(uA$JVrIw~g_IZ-NGB3ONw z$Q67m<4uRRfMOx<<&RG@`s-sc4ZPtKgpVg}{`JY3Wq2_=dey?*T4$@O`5S{g5@B%| z&b-Jm!Unc6iI=VPVkMFjY_)vUGu(;MveMUBqse&o<=1Pcd$Dgj{4~>I?OEisj8r9K zSoI%M?|L^~UkyoI8Cz-XS$%l!4qJAUvaxJH_&XLcYMy2aW~kIPCgZAR{bL@=+U3DYdEmQbW3n`$hTK2m@G2$vCZ48qF};+X%%j&&z)2n8J z9G=_iWYVf=H?hDv9#eYo;tMpP>@AU`+^A=;Uqs;V{@bMT6lEezL+BWPc05-y$>Z>$&x6XXT7Vls0#$H2JY$+(a4O&=*{So zzxQOZm3t*PlYs`>TFh|8D>`YWd;ZC10GMVij8Zq`IWMv5P{&A6-0i&v!<7kKB~1*Og%;xa$}_p0Vsco+f(rQfsT` zgV)oae)eU@mZvc>etT~8GEfgMek_5+={ov?*?i>BAcsKw&9vL>QQ!Z3c;b@+V zqbyJt7NYrA>Cb%I_wMgo_iE9RfdQWW`T1t)leMVT8AbCWrgk$@;R&u~YW<8Zs*83n zOuTDF8=_s*GMp2|)Rng5)7HbcMkE^Nt)GSTsjaNk+j1YTcwBc^v=qJ(fA}pJ6IGJ9 z)J(a=S3Yo~Efh5)P0)G<%GTs18cCu2hn0|tbZ4<710dY4l;wMNhO*Zs@8GzO)J=9QnjLa1-4 zaxqU)ntwhY+3C?tw-sG`^6uqFUn)V#I~-$DNU;p_2%|8le^5Xm7S!g zPRI&c{ZPN4lx-YI9SbtfFWGH!QDDS-4Q9=7n8MwjP8g6<>M7=mvx{i$5(?9TU#42K z7e92`7=x6j5oAa(Y$_y&e?_C2Lkm-J*lSDlU#6UuPB^0%j<#YtV_emln-@4-$0TpK zW90@9=83N2N1jduot1aZIDrdqK3ewKY1+7hb^VxLvOm2k+O;cbF{pv_`rbCZhFJSl zK~O(y%_YybgPUJhV+=ib44LsvS)%AiBv9YfR`b$(3J59!0?#`HL|(1$Y$*){EO6x6 z0i*tAss@ky0em;}<%di99<*O5f-Gr(pC)hxI#6=Fat~a0tp;&`+mXxJ`z%P(bhVtT zlZ16OPi(7BQgiKb%hPlnjtAHlJUYE!bQ0OOj1f754g8Cp^Hx%qS7tRX4UHGyls$YH zpTyr8Pw)->u1wR6UkFEuh}m(w3oNg?#^P%HBRsTX>qO~IW6k1b%fXy_sI`+jP{gh4 zuxYgA<3B#x&Wfy1$3r>b&7td^+*UPc#bxg&w|rGybr=BmKFFT{vTfgj2T$l{~+o&1)%1vJK&fh^< zY}^Doyng=ehWCdL`NORFs3f{4#jV}tbhVPfdc;xVyz0!4=@cjIrDTk)qa8k8*NQTZ zr`U8wQU$iQpIjeO*7k?9GuQUwR?Zze>y2A0-JkDDQ$8!vR_CE?O?bzL^lP}EJTH`p z%h>+7yB%p?cC9{0Cf-GooeY<@HCG)2ObT3@f(vLY%qk^P z_LZzh6_O{GdcF==MrNC=(bkrsC3(+}@<l9m$T_YOpCKZr^?2~iOGA^e&-gl&zCjCj1 zv;6bLwG3FyYiUPB=t!ebFlJnZe~~21U3N}wn4WEEqs^6vTaWMeVA4~^52_MZ7A z8c7Od>+HwFSyL3lVd1izT?dZZlrM9~_sgxT<}lI!g-HiYM-{ zG0-3AWlN;1ZS1B*oB6NrTY7=33{Nv>on#_(trzEsW)8X=JtmC@Tdgl|B>7u6k%~!K z;ysCo5UJ7<%EL=|`G{floyRR?mEUGLz8{@iBylZcF{+1Inxv}}*w(9~EiakC+9l4? zMzMT49#8k=&YHb|BO_jw0Q+c;*~ON6$~l!A_HvPZlQKQ8?4z9eqh`*aYugTJT%I*t z78vJ+h^9HqXh*I&+hGLKR6n`)PgyTRvv3wiiFBlhfKoyTJQuz9zssAo5B5 z)TwGsNsdaGFV*ogEk>X|MISE{cz?}B=$JfjCrGGxp^7$x!FZ?oAL#>kINM@$+s?_w zRdKWsH+hy~SzjdjGb%8vIJ#JHR5sk8Xv%YUSAP<2xY+8C*GF;8AoDKO(t;a_F#ovA zAsx{Zne7;;)fh8RXr>an=#=;P1^ZYlwwUAyiQipRJxlSGcL$aJ@g?T-*Q<1uFU1b? zJa^c}B);&vU5icO?0hJ*p)0a!vMek$$1}6Tm@Cc)0R`EH72bfyBztZK+GWLNmF~c; z&Oqka!c+7^@jPmM;Y2xY??XeBxx*y`XXJX#GQ?wh7C4EU!jc0UvX>}yMSv(_tjfY$Uaci414EC}~ZC!IFK}x;Y%pH0`G08}0G(oq9 zOqgvO%B!2p@p>dXTE=}CYnKUlN#bnrUJJ)0$s~KguR32#KfjoiUaU`UK@->%LjRbZ z;tIf!e!Rk4P+4%pMPIF*yruVO<)Tgf@ymR$*AQ`$4Uqpz?|49jkdkdZ;Fr>r&ecuS z?6X`~;OQhP*EJFkvt9nwU^?w7VA8tW(5gbVIp6Tu!fQENwA7zbdow`e4##` zaQ?DS<%>1+E%$P^ty{&VnqEJ9G7DVX`T7_8WK+stn|gC7rqQr>iZ!N)I_;ae%h)0s z^yesdo8?~2k7W`$FIHXjluW`zNLa~6w~rN<7$JGhTDC(SPj%9+D!q1j#?3rbjWO$t zTa6k?tfotHNdHC2MPGr*af{PS9%n0WeJ5}}C&}rCs}fX*<_*RK&cFgf?UbE4ZK76> zYq%~!zFwyOHHZCnV6G*Oc&Y5}Pu~H&nV=crsXwEM&+?cPhso7TCUlLKp$&Df56$gc z)>G+e=smkg&BSs}ZmdFcA9BQp=rpi_VxVP0X6E4WD`;@)L;(gBPW*@sQ#==p7@{Da zgToD>^n%xvZXH@nlaLxK$PGdlBv6p7DlbFL9uTsCc-y`l*2@o#g@xtv!MEUo=OMPS zTZ-BLcC504fk*>Zx7s|&IP`Ve_U67`^mfs%v>%fI2XBK|7y#2{ch&^>_FeCI(D_$LVf z&;^QCY)8jQ#C--bkBQ3;ln26FfS!1M#LWVpJrHhb)gXJS2dQ<0q6Xs!@%^armIU*9+syad$~9tNfDoODUxE;{Qg9B=PlQYz+n=zuV|$^xZV-( zAw3I!1T>udOMJ3?hz6gC}weIv?gsK~Pl>{v-tPfHa7xf>#y#0d6_}g}C(*a?zXP%tBdW8ZX45m|`i?}50k{5@$|*%$ro;2A^U2au=W z_E{cC7l)`lxY0rYq=}gQjB=r&gb%!XU2w@_1Oz;7e^jS*DgN@AspI$!7RciW5gO_R zkbF7JLi&Jg^j+gVA~k|J9_fb%ws;cKQ{>dl3I1Pws7pYh;G5Hhs681{Oe{S>aAw{c?jbp)Oe+^~Ld>u0yG#Esb6vv!8g%;oL)z#8v zrh9sdgi~jj?0DxI^oaNCju@|9s#;oS?pN1PSUjna0N5fl(kq_;6A6K7z~dhTECg^t zNupZN#RoBrJ3;@QBOqf>eo&e0bT1Gfr_5l}~04U$@i%Ab+SCvR?P;=~Xb z0sMAIt_G6qO*j4=2P6S)upxYK#LIUx_{z_(o?upF^o9im+Fa@WHTuJ?--@A+K!!}} z>h>;H@aNi^WW+cg#Y*&E4`TaWTgN?U4jOKe%~or?~*(b$HhBetjHrea%3;kV-*uU)*fge=7f1%V#uaRq7kcVJvkulok|TEMsC zLGH3eupA>~IiQ*`0UQAw{tIwRc7tF3EQ~Ht&jBxiw0MY0NRS%$MZleb)K8SJ2igc7 ziuo_V1N@(n@+SoF0MVnJb%kaP&e_w`vlN4mzUD&+oHRHazGF-8mX^XRi#AIO6YI`N z(v?#c;b|l3a18%bn69{cp2(0nuRnR}EWh|{d0Q^S(?r`lZt*>*rDx#H(lI}r zJkRabIInPK>tL?V5ee@qZ6og4$Lyyu75~j^OZNd*K?JNPu>(&lf$7g+s)tecnzR4i zr)hFl2@o>**P#vTWCsEU-E4f@3!GRK3JTa-(^yg0pgPmOEv)|IGbf%{gR?)se}8b{ z#T`@xWLlPhX811~A7-zpX8aW3Hn;a;f(@ZO0OE7qKyRg+Ux0soOT!Fi9{`Q@vW7(G zUj>;y|9(!(MHYU6=Jr3n38xQz_-5 z4dsAOVY=O+6ZWn1d>TF;#oQfL*0D|bnRVwm%kp*1a=yRJaQGb8 zgb&XYSA0F8QZIhb&CC3p17&1WO;gE>r)|DLrK_M|bq#_@|GSY;Gg~dt&zE3aNsB_R zWyEETIKlnjosy80B!JHvC@td7FcbRU6CmITf#I2y5;$O zePEyqQ=G+vI4Wn=eUf)_p0rMtogEw;)o-`yNR2OBL5+RFI?v5xYgWJCD4PvfRemk2 zGg}SI&S)1DW*}!*l z6!!P`#kUa<2l5O9@G>d_qCBp!2}EEN2uKu2sQ(tLLgr`T$6Fsf{O|~12La=vlz~DE zBg-YIj-*NbwT*{Qh~eP41wYdgxa^UNB&6OAX;DH!U@GD8#esLQg+X{n2>!1STq7Z1 zbEnfK-xK?fkvZhMG7lKO6B=A^dC1+WoG^5WnU$8DivkPcR?u*qF>p%BG5j6# zxNTL&Q{GXlHj8s7FvzIN>a|Fhk@3(E>z0wc-H7fJUL*G(u2$=8`k8>DATQ~SJ<2*r zj%|9fY;bD0)7AWYe9nzP`ccK`e7}v#=1d%E?rlJ@(QvgR zK@Fs18W6Kzbof#K6~ZVsuk)F;RrX4RLi6^&|AZq9T|k#cL&Wx3@MlGSS`FA0!&TIqTh-FsGUe;<06Y-z_a>dOldLmyA7}l>5L|_H&uS zJ|1%E`_+21ZmsOZMRS>GLQZ=AT-d3jb2&|&#)488<>u|f8BeKVg%@{)h@0}B zS-AE3jnKM_k4eodIHu;isZ;~6&41X7mnM5Xu%?mz=Y>`Uu7aV{`+%>;ipcI@Xms<+ z3$CC7LVY2s!Jj%UwycxSR?toH52?$mqE|)cX?)<9CX=1hN7~bNpDC--$5>BW( z^Q56|mB~N+VVP&FgJ5`ZX~%FV?M2B+d~ka8vB|I)=bLZ#3KoWQUmP)AUc`5nALxCv z7=vrN`)Ex323s4x2~`T(!j92|Ta)?6MsXFMb}ZiAcq)D>_n9`vV#WK@qpC5~y(R4r zFVBV>x{e5wa559_pM{NEyBr-ej}V5y%{fpX%eS-n~72tJ$1jE5Otaul!-+TP^~lX1=^dnl&9TMi4J?Cd#ZEvhDy z=VsW#8GWjlU~W3q%G=TY(VQlHj6v!@lNNN_fWcZ@CHj zHafEZ*!<4dtx`MVCC&HGA>XK(qh;-Ph(JiTZGA&@y){A2b}XG!+s_mb7bxh}bZhZ5 zobk0~JIaDAH&q|u4GBI6&n4n&YXcir3%K+6%e-RS+(LwtYn0wCxwUL-&g}%6^q*>> zS+MW+9r&9HhMN@>w-V9)G1ruveRUI?YPOq~#r49y_}V*Jyviq?bbN9o3tUh26gyif zhLxS1b*O}s)6zu!BL;i3Hz}u>=cijeqGtZS)q6HpyHL%>8>!5<&BB$_1tJKeSDs#J zYt^Ld`g&E~R7O{N-?Z}i-!GDt3FW?Ct)0Yy!=x7SU|37{ys7HEnaTF!S{uidyWtXa z>aLC(A9{wF*=uv883Q|DNGNb+_C3YpC&#_W;B4KG4i7G+?O+5m3HI%>N&$E`Pse3V zisia#1|db-Ze)J$$psNHneYU&(6RB5_~8%!Rx2K!hJhEyPw>{(356GZMGw+0|Byt_ zo-*W23(n?HB*d4JtueDjzRi17N-w5f>6z?w1xH!whCFNZnSn>+mremPCfrW^qMMOS zR0)^~=pqL$gof(lqb)qJ-nvP)pT~vc9Ngn@%-a5d8cb`<-trjByK86An@F{5?%O8j zT<~ooNm{JzFj@T(ElBFJ79i?K%d_4+LyTHZ)QJ&Rm_T(|)VA@L(aTMj$@bYs4vw>3 zNIahLQ%XtsSYGFyFARJkWhr0{Om)xh57*;!uu^(m*0#Pzkxbu?TUYs=UOvlB+?WWF z8fu$#d^#^Q9ujC)a*s=jP;SbWc#zL=+kKY8<((WpFxI-q9qfQf*+UNmACcLJ^tS^E z+Jke;-z%bSX?R@Kenh-%GF)~=!1fnDy?M$~;XR{@@jL;H5tg2%trXkPxQUS1o~v_y zTQSCklU$Xn0k?|DP7mydwiCz zgJv{CqwIlDQqQ_s4@Pj(%~U#YH)h0d;)->HhT3$%;dW4rEKy+M4$c?El_MC6B@ZPX%re)(w_L5<#kU` z{Oj~r32qp&dF;I<;mmJwR+S1n4K(n+1o;t+K@&P~Z$(1YgST|e# zaUq6XQoZ(Jkhwj;M|ik|)YD~-KCXrZNHJj*?Y=~g{N&v)v=S&pg5qB84;mUKz) zEfO0N8t4kGXA>;>xYuJWY|3r*7Gr*r7&UZ&tqHs`$qDGlo2&4UMGhFmoS#G$gKt^Zi=OwemqTbe{yf+Gz+QziZ zi<+N|5{~^t7;GH>u+u8+5tLDM*jS!ul5SMLnTEaaYbyflYl_i3%q<}GP~~s@$DI^$ z8nxoC)!Nw5NsD{^MePNOaaGs4iu#pngnNfCObk0n83%{qGtR#>qqXIIG)lOqS+two zS3a>xd$v0(NbZ!{0eQiFtMxt1ktuAkr;i@O>doFgw0KNf+WL+0L;kWYIjpAP*VvCA zU)mb%qHT{DUdh*szbMvy_^j*nuxq_s<@dtdd3v$>KdOql=T6s})=`O%DpELe2Q&Yu zcUI7hRRnesH_@Z)8a5>5v}Z@v)E1ME%|C}8=>0wne=O0G-*+DkCh9m&^Vt_o8)KeM z9?4P?@7=`kqodS+(k)U2*+_L&$r?Ts%aS#itIoywz6MKjBy>KUKx)1BY@o_y%K z=N0TwI*H{8In6 zh}IX_=q_eD`gVdh5)#iG9<#{k%yrG8e){#VL+?UjZ*FP~DWvB2ofJiYS45-Ifl zyL0kyRBx|=Q_zIX_pXEgM6_T3MgOLbRwBkK_4NF+C&#y#XjLls3;gfgdpSTnV4M`B z7`*MDA22UV80RUUm3aNgmhYJD<{ge6%G=vq+TNAfSub0Y>Qfx^m|TUYgStY<$0dtq z?-0)t#Afm?kKmB51f)A`y}E@Blqtq%M#B%BSqg>vy1v=xhe(K&9^vbHqEB8OZhZMw zCFl)RN^ht9tc{xAJDSTk)xoI~a`ay7Rgt2*wHD-UwDV+V&atkir^#b_7efPHHOaoL z2!Cll%dJ-U(J)-6Za9tQ8Riy(3>p7FIQ#Bss{in!J>&hI*SSg@1^Jf9dQS$bWm2|G{~^vYD=XN^{KSv|sSrhkn)u+Bh^VN^wU zUuYipklKj?9S_4^ud@36(rxdGiauB?K~>dg7%U7bbAvkAz~FZaQX(fR{tJLo2?pi= z-v3E4umKcJavhkINk_j7&S(eK5-jt0NP8o5#$0rbw59(WU82xve_n*Ul|b^3jW$25 zLt6NxYi6!9u5aK-`34m?u^C&m(8G3w#!ukb?g+a)vu^x59}E>(gdUb!zb!8Q&t(d- zH?DXvUAV%mceUZwu|CM~{w%I7(HRwltTU@^j<<_Hv#1Ac@jkIJ1ui z+~q6Nzg^;4fKbMqfIf_$RlNdjO@HU(+$x%Ac+uDv@JIyiEP%#ydPh{*PxZcAv5(RV zli#Xt;65R-;E*zz0H<*g74>ZN7eN|DGE1a;tbLU!4b-3*ok}<@v`CR6RhA<4&|&>E zAzXU8yiC}nw$TPji(kE>#A^ZQ#go$VdQzyR2)t9?TV-`u@KExHqj(mYwiz%y_VA3i z7*m9M9^CPLOn&RCm)T5&^Yr}+o>mMwZH!^Vh=>Hq!NbyehgJScR>$0TXOSl@e@o8a z?B;ta)^ge_y57DUj%$Mg9T#Ibui!yeUHY)|y#NrJvj>dT#Q&RDMa9x}(54aNrUY>;jE>iD0!N)|1;K z6sTWELP}uhnP;#305Ffhmt$MV3oZzxLI3`SUDDRgKD;J_*^Y*;GCUkef{4EJT! ziu;6WM8I3(+AQk6+s*poCwQMbEFaB9f~3s1H8nTz^ersnf`5JP8mV{qHdM131;ves zh={b9wzC0j=<;MR%p0Ui@OnK+0SUn%)=$OXpB@ATAG}8iHr=-}qkA{w&MrW9bEYRw zENjH!OWFSR4?&YO=V@}0B>O3mfFIbp!Ozm%W<<(rh{u_SJEQ!DQGpDrd#)?PFD(ma z``iooZQ6KxJRdP+u3!#M*?T-jm%57OQ3Iml;^NUOYpjfQj}%4+3q+kdlhTWR$(dVN zJo8zyt(_i$x>`XS4gg}%$TAQ-^$FmO!oaoQcmfhAJR46|vrR!?5fW-VJO+z(?oE?N zfHW)q@ZqcM@5bbAQ6SM?URzrNNvs$nLA?8*ehakSNX~~{hWt7Lm)vCwxO`p!Lj=!t z$6o+!0tk95AUjf0H^gVH`+)%n2Z|4S2SJh2v-|a0ocDi@!Kl!s7BP2tvk7@$WD{>~ z=M||1-Kmw6^{*1(*fwX2--_*7eV#&EReGAyRZ101=qBHcB_~wEbEcf>)U&i? z5VZ~okq3N8(r&{h*=;cxC?a+&2Vvc>98Z9?Jsx1j^w+OnZ;&$$9@-SdOk$}!mK(fyBOmDOQucz5R|I33JU5uG{C~I4~p0z zsfa1_BOSE$_dMD^@$r^&E4zOzpHg6{4)nxQ=KIfXvffha+Z45{XUL9Vh>Q5_sl7$O z`Z|!Iu%jzRURiIAfe=FhH#16IqE@=3-9;Op)Mh7ea#MAp!zW?d zzq=RzEI-hIKw+*$eqJ`SXt_pYQg7)9%EJEq8`?pO#I_}qi(EO!{G%wBkvYS6xZq`x zVG$$QR!!sqw&1ULk|(iVUgsbs6? zNdrTI&tcbVw<#Ni3P{G+DLY*RzZ|}>?2X{bj_9k;59IAjBb?VLBwK0>%yNptxyEJ7 zsEuF)dnd##rZ@u*@^MYBr79Wi4jI$7YAMrN-Yy^u;d>P4^J}D}LjbvT9G)yGDRDHg z$j#43I{pL5Ha%w22KxLlTNlg8df;Swb=Gf0w@(7ZvCx6aKqWx+Lc}7Vs$XRa&f&yj zowJ@pA?Hk?$1LEV0!Z^iwq|Hb+cvZxw}=}IiRwWF3z$3@=Ob=;@mopUo9<*eel zdC)z{W@N@@zj;HqdevX4uc?|Pwxx%$tS@Lo(;WHBK1=j9sLTXt(aRi|){CLKr4qDz-K|8B~sVP?@!<}~$ zp|e5N9_cUj%h4DTUtvetXYu^43C!bLL%kwid1I^DGq#+~TzDUDC;hB*GsO8Owe*yl z!wFvHPin#A$Vttw{MS z_O1WQu>b{wj|V8tRw!7x8Q75UveXkHZW)SG5w`1m09v*(E~=3-VF4CQ1zr4WB_9+wsWjf1}tPfQEJgHhvc{!wZqLR+@4`Fg&R8 z5WvLSk2FbbxSv}GED$w<==@Kh;_Jeh0@yg)CG^>&cS!B>n8zo4aonvQcKp`}@4jWT!y;<(hrsHV6JDP5+cN1op9bE${2>vUW1!%b~$j4b9 zE2V|vuL=@nNbii8HiPtj)bj7~GCJso0B2@+A%Ao;HZE>&qWPb=@R1-M#L5Cdw!Z$bEq=bZ)bYU z|8jkKWn}?`!keJ;n1s4+Nqh$#cZ~-FvQi5XROhaSJ$IJK8rrr@?#%3Avqn^Zn@k45Y>sLj$H0ur;Our6 z#xaKvEjE@Vm(_FUoDB?4$0ut`&SP40fq#l#yXvDIy>e`j{*~wNb@JqHQOND$xw^SQ z?{UEMlNYmz%pyfGU({S0X-#pf4vIXLtPy{IdkI7&Y+xO#cEz$!kgc1n<|bku8eUbK z-zy)t49IzLCVV_7BabguM;m{%II?B#p}kIs5CO84r=WwkSMQ~1r+4U4_3H(&_oxHj z807FzIO;KiQo!%korojY_rVpS^5+)5Pr7NoYE`?H;$;;kw3TnToXS*1|H?mmiX9Rs z?{!ok$1qp*nIC3$hq^f=Ttj!kb|(_EwIHWJ}O2;k74>74CJTh`KOCN zVw^I(J3-0ktJVLmCa^;u_geo82Mtohqb2ry9lM|-9m+YpA9iv02ajPv7ATQVmRqRq zcDgi#n+gtU!3nqTLQ$oNG(c*y7eWsXrB4FBQx1gtM*{MSg(i+@vYrDx1#qP$ zK;2<$dBNpOJ1o(T0sPVUwL&7OQkwSDht)rCkm&N3wPmNV#|J6jpq5~z?8%4We5QGL z+&Qy6EZ}hxFFE5K2ys1{xa4Q5Y@5boNj;yoDS}9d5j0ky>ic|=wz-Ar@>l~p8bOIy z?CJNzV`F1me%QL7Tm#h>*D`x!TK1Nd;7ig`;vS89wJ=2l#6xB`S)1Z^l$BVl9$I_iu!2ubKtA`nJD{9^Iey%FqF3g z^&yu76%n2Vmre2~u+Hp3OHqbhq7o=@%aXtI7aV1S#-+lA7CQ+1QF85_E~OS*`CfJ* zNK-Wal1c!24a0ex8`dmzjhDA`V!sB!+}?B!Uh+X3+V+zs+5jXJMBWQ&m8t^EN;K%36*u3Xfkl;{DBk2d^);RYYOR z4uW&NjqOHs-xBn;!HFyY>yG5Fu-ofA8H?5je2ykI>mPa#k9z+%NOWJbwy);wO@i!x}Bhffbvfz+B+Rre1cRs9F z>BF*V<{rTixwv!se3$up)K8BHlSPY_uSi4mO*u`*v4!QZ`yF9rGwGgu_it)!jc*PV z1pgg>FvJ|R@!a~qH5AMP`X(mCc-{T|9e^@VR6Jjxz^}uStX3$8S%2gM`vm&?&2XHG zDPxK6ewm&H$T;6jb}9X=V8F=AW0i+s6OkE;;hgMA=d&ovB==k zNea9!QLM}DywFpZ8kZ6El9$h)Uwxl|gvlQ7*^*aNO!QRqE>Y9St2!CK7M?p7%8f5G z604vbrd!7gp0_MAl|Np6M<2on|EiwT?!d^3tZu)dI^)RR9<@nZqCBK_)_%rHd~0Py9RR8h8KR8!oiu$XV~ zs}~FCH&+J6)0+a47}UbY$n&^p`iYfaUWYwiB0v((lwCThE8W;yA}d9f993|A2N|S= z7f^4yI#Bcd_dvE8oi{l0qkn{(ru;(d#Hd$27%S3G~}l_$imCEBxKzG z+IBY1YT;E+FL&sN&psR5l2Hx3P>xhnHV#%fB3M?7`G!;~{t0k_E)Xv1v-zRuit|IN z|E9?=$H+Wz@OVJ?2u^WT0U6$!ob1%TYY4X>G3I6A3+A2EilEz}yyI)IO;eX|?)9Qi z$gN7**w}u|(`eFE((CojUdI*M{xgo~rp|JcE(&EtxQ5hpOUq4m)ZYWx+cYpM5(C8$ zAs%!-1COua;lV#2^4Buw(R?6&T{+2Z^L~|cM)T{tM_LM`b>H#4PFosx8i$EYM?@&} zV)l0#H*He~d1fBV4)J9Lb`$>H&YRdtl-*91PZsCT=HM|&5y+zDcf-i_((^S27In{h z{zT9qNTX+x3Jq+Uy=7~rs~mi4Tnc{4)jR235Bgj9b}X8MOGM`#eQ47M)D0F1l!cmb zAQ)KZSYqYqCRRxF3qH2SV^=FneYaI(n%Z3z0nA4OGpJu5c+ywZg7n8S^v-xUtbF=b zq4kqkDT~ww*<@DZoa7w{T(}{wButcTs#=RtPlT>nx0vVj#Ik43{KZOi2YB@>OGgvm zwO6gQu75i5JBUs-&(okj^)lO}jvXWa8PieV-X)9ZL~YrYEjgu_cYFmsa+-z$pMG8e z=ka)u>X|j10?y*QwK>kSe>tMz4-W5STP-Q66g0Ycr~?<@1IL5F^u2Uvs5Tx7Z`d6a1r+nEG-j2DBRon z`rBh;V^BxU{Nn@NoQFN!KvknO)K9=1O-6B32oE}zmpATft?ol3m{YDlO_TdG7{ApN z`=2U*fa`o8!Fr~~F=mbQ+O7BmZ85?Gl(#w2N=j42^Y$ayU-0N($jMlmnZ427v=8li z3u|oqJCbY>sc(Xu#e?L-!!qQj08Y>b`frlb)1$yPH*r(US^o~dETQD=E?7})L7>DZ zFe7I6($UfFfyFLp9A^}s*LR(~g7GvtfzslAWy;tTZ47o@j@@E*tJ9`ZE<2|rR zh6Ee`_S2i8`J@G```~z~^(qEr)EScHF{dF4<>Df!l=@1djMIx1m?x7M!y}4>15Vo# zVdHCMg*%1f&-{gsV|aYF>@5W&{ce&!9LLv$bKl{kX#=v2xX#YbH`&P0C%+&>^7C3= z90WkUfBznmrb6(^*;s8#gw@jxMJolJu9?^9G@|)3zbUUJ8ElZL|Aq_pF<(OjlgtzL zmL{x;z3fjj?SNi;cj~HwcO3PMQAGFZEe00Wc;n~?250VD4D+dpfzOOss_Z5$fAkD) ztKX2NPVj6mOjn-#B$q%~xk-n&eCvqfqTg2rz!H$y1qk?_y$0LJSFxUm(GR>dasMg5 z0C3_B;1eVW5s7DJ(??Z^{?X~*r~4|@O+L-h~ z9jC0>g`Ebc*@kuz()7k*`g4D^c1i;!^%yl9j4xvn7v|wgF;Wlyk~&$*3EKNc@;Q|#}@l46`rZhxZPJpUENf_6UD#mSiU)EKq~mvo+1 z9vlhM9uibT_YMGVY5WY2Z8O$>LpjMnb&?1!g4t4u_t#x$U9RJ6ZBwFd+*qEsC3=MYFf45qn;WvtS(|AiQe$sqU|sBRN=X1E_?Ax9ZfQ( zQaUzK${Xk13D*0h+*}4fQ9M}tZWL2!G{|rkO3w}21QDCIL=Ye}csos?n5O+{Q@uDI zz3aW-xA9FS+T~D{@tUcKvPR9yRGKQvDVw&k=hdYQsuwl@)?cDZi#(Av;g4?m_ms$G zLuj0ObsvT#`m`9!`)XBOw+-x*dnaqJm%g0+x>jub&E7d*;~ZuJ_z-5AI2J3*IrkwK z){=rYtJno0)hdTy`Q|KR8a$}(aP?bf_bPhMJyJPDy~Oz+MnsUHv$2o+d945T^$3zi zo9o7Xap=J(?5f;Gr5dElTbL`JvkbmUBrwHrY zdB_uCwiT^fX;sH?KExs-K~u<8yOb+zw{o&;`1k{Cp?Y^(QkSdaaaTJ(xNlwq4u%56 zKtPZyO7X()zV}xmB}s1l7#rjY%>PZqTSq@7clJ=VVJkaEJ8>D2t*nEyNCsV7npU*! z>pF!&1snGG9eNA2f^CvuPTghyP6|y2QmIcCW=f6wp2Nsj(q24r+V=2}won2dK@5^L zXlbn<3#aj!g#$1NiueR@aYqbiUNq3wMYR?x|6Ns4Hew8l(~@<7jb_=(>}_1|EQzM> zrN#CDSPjQPyWJh=~?qD z$VGC8AMQ*P8J>P7i{&}%gm8Dz=*b^ZXfgJYmo z@Q(N&KnX}oOGB7Bh+%bVu+kk70j*ytMUkwx>`RMuDVeiYcFS`-x82#Z+8C*6#P9iuMvPYd16~@d6occtMxJ!jAA-bnReXGedwP3)z_du<9D9Y9h6YOe`2+wH#EUK{ zqeSlV`~Z3r@g4wr1)@R2MkftL=e6QkuJarva+e{(~;2Eih%~V49<3#8?>?eQnxBw1sbC( zx{)?ko*&B*g&xXB%=!$r$x2o3oV07L{`Pg8%ZthS+W*5GJO!p6_V*P3SMEUM&=XuD z0EWLC`0(Mwp*pW0s(GLf`_0?8EZlnFwS%za4v%J@0maL6w#sJU+Ms_l>jR}jLwl^= zR$8QbGV{ILnMIcb!EQ`$ns|oK%Tlc_^G)@`Y8QPSdF*?;wbP z%I;1EaP;~4N%u~M1f(B5k9_#EZvBJDG z$vwi?Y?pZWeE7^ex$=SqFhK(py`L@78L_IBX7Gj&8Y$_IVCy?ol>LBb_*9-8r#Sx7 zW0p45^y|GNiM^f6sQl))UjyoNj02%~u=IC-fJ~bS$hB9?(}8wftir{-TCDVZ)h|=T zctw~sxr-m{-csa>=iYdCfCf7w?bRC=VR{iwXLCD+baNX?b56@*+7%zw%70z`L3X)$ zV;=UVV;mm@^sXk+P9^FSHBKlZmE6_+u)S8txWe3jUAS@4!n<+QQMo#o2@$R!p6=E1 zEl0IT{5Nmj;PC_Wkw&eoq{NjbX^fkP$98qFr>7Orz8rl8>D-21Kppa=aNP??mOlq> zZf$`XBKHPEc}a;f=sd{SG3g+nkYmpM3tVDuPe) z69HLSIk844lwD@P4V zm}4>BktmeEkXQAW#EA$gk<6gxqN3k2jGp~GLtNZ58{3y24icY zq6?f}o&hO2XOr_{?Tlv|cr%4Pro|wqBScL=0sblJ>Dm+7Nl8xuA_=+`i6HkJ=!hOv)+vMb8K(dY50M z5wQHTL0e@~2YsTI;7*+l{@nxyK=_yQeQl^Yx8<$RKIq|n2KH)3h)EF!)3Ey_4j-IJ zh=#;a^A=uBk;&tdLcj)l~@vL{-bpSGfVgjxw9EKMlNFD0Igmm{1wf)~~1WyLMuBf7r z_pLli1{A@B^VaAEGj->e)a*3!KiTU;Jj+|-Ew`RAu<#icmJBm&A4eOjJ()|f;}qGp ze@)jbG4V~sF?jZ0-Z@QiB9_r6ys`g_5XhB32QI~c-LJ%zA!nFBn`74?yPSar1JN7q z@2>P`b->32seU}0FEDaPlXhGJ0-az;Hi0BmF>=u60TTK5vVWXkZNAv?`ft@rHL+3x zVOH;@W+oIKdq!$=!0<|=)UX#zech{i1$Kn9|qnHp~uJGqvPYYEl=>l!i`dv zeJ}bnLA23#4du5vN&@*#zoxm z9@JH<%MZl23@U>S1bxeK;`2CT0;2#j?Dy*LP??g4`16@Q8yIZFY`x@{>PK;}#qH-^p8!kDk&hB>{1qr-tI&Fp_JiBfsdi^MW zoU>rMHUP$fcN|YYWCqBQzuEYvd}mH75Hcb2(P-C~$ee9gBjP$=#%9vwbyv3{+DU#D*%saMKMzh zxnw<$q2l~cmsercgjY<*Sy5F*2^=V{XeThayxPy$`ZhSIfx%$z<$+~HqEy2gxKHaG z{YS^f-j)Pic%-D?<)ul=lt{Qn(FTGuXIc?7n+dGx=zhEY(>|WXVn56_DX&mt5rB`>QjqjA`KlF z-xhlp=Wh_&wEivdJwM)qj%It{z_|$Ikecu4y1t3F(sAmgXoQW#BmqqT$BOWTA-KE& z25gg8Qo@7RUoas9=vQSqM!m;ie?zX5AortDswnDr(iDT%%)Id|U;=u|N4K{uZXppi zG@0NUxBrRyNW=qIqE{%7&Yvv5u0-w02lrGfo2k;=-h2Cnr8Ut@qqxxJrlcpmRoI39 zV{pUvyI<|}+4uY7v;SxBD1K>qV;%e-2<{7T`r89_4ea}%go4mj2uAJeZG6UL9MsIxG8!Tfdc>8_9;(QUL*NUV!7My0z;`2(v9f!_UBKY z_s5X|t!TedLP-*vYIp6-rji2sv(=v%of}z_9{$JOd{kp=gr!0DUU?Y@^&OsO<@xQH z%VOofU7gP(gb+lJ>2&{-cxnqaMM%yE5P(y-9>nSZW)&X~a*uDTDv0 z0r)WlF>vwmwL|pTIgpt^PI-am^ZoWA*S!FG@VH$>wD+Gt`0yoAGev=-ss(@-Br}@# z_d8R{cwTDW3sfb!^NWo=cmOA!718%lv9&;?0F|*uf!aDtd_*^=rJ8wwTP;ibrYhfb z^KN*Q&Z8>z)CXm}zOz%qqUe?0ct(~HbxBFN?M=}-gFrK*E%nlU`pe(bQ|r+&3*aoj zyw;WTf&(mG&Q2fzj$gdt5i6#ZL@bLCzom)t6yX^aC;4_{vrH6JJV zC7OhagH1j6riA-V$AO$o(|J&^+z578Xm#}l%0*@{2ZCL&9l-09fwq-5d3bmr_1|K= z=)fH?H9*`yxVcMy-ELL6f6b-|-u&zLjPc*q^Twz4hkUDOo)gFReyHTVO7G&>S^GhQ`K~@TT!1x_SVPhK5q05SPqK$tULMB zcee3JWK5OeRfG})-ZFQRYS`OfY-_?h|#jHvnD{QUVI!q%59gI0c(WkkNw zMUl1b$>T>o>d|H2=W3p&76#3uvid}tBXPGB|p`8 zRYDUr)gu?aM<=WcfzF&&B_+OCI9*X$tbeSISt#K~pn<9Zb0TewLu#)%2hSi+E;Wn9 z_yWeN)@thLVE^Fd+>es5gQ}#E_Xu0X-^ywUA!kq0_{Y*T;Kbl)`_QN{Yf8IyUg5_} z`IxB_g4!P5d&pHedKNz3=!DX&A_s5Z#KE5ZH5M6B^pzpGU$|5*@$`ZvBYpER2ZtEA zpz^Boael?UyoRW1XUF1*miUXV;nAv!o zM}vjc?s4_}gRX3+knE!V$)+*Jt60o4vv+ZrqRrys?YC_u)?$LmCN!M1cdDYAlV#@U zy-zJZ0@NVXve0iT&#N|@u)1G zSwf&X_=2@sM;))ahmypy)M52uE<83oQLS5PSO$jM4hL%jC*2FV4M`>P5 z%#W;@_Uu~M2ELM`(%4!lZtFs;4--;7;8I4 zkcI3fT(}J=mTAh(Yh=`%QoM(4Jx->cD@|&0sS9*UAW7Yz~>~bq*K*dC8A}?-fvTfjWFB1bpLFIYbrm8 zs07D+-wBF(R%?+Jbzih?hCSbsJ$!-~yCU}j7td*0bKgjl>TjGwL`^q`jZM1Hz|39Rl@;CI ztWfIDrKJP^r)-;{sjbXApF8g) zvGyq6S*kY>Lo(dvkM*<58moc%dUp#dZBu)yWu^`-zOU>-yq`jR6|o(4GlKaGCLy|Y zl(vst48xhTlq5*P;fOzGqq-N^;2QMbYNEjSBZBcA|4csyw3&MR3T{91ht^u1L#x&^ z)4-^}N5Q$Z#`f9|cCLlYH#Wy_S$ME+3EAxM%BGQwoy9)lD^X894FC8eL#6V40j#{# z&@K7R+c6lyja!K~-zGS#!}Lz|)l?^bomR1^8JOyKa#U8FwE1;G|7|}^K!;RY_rB$jURUW?K#(t>|*GW!qn_Ts!bNM6^zDs`UkLb~qep|jD z|Dngv#b5A#Cz8dGR)v1cj)LGw?h7iiO6NAOK8V^mD&cGBCUxM&=c>Od!pd5numZ;2 z6y9f`SL`#FcR1~pY(inBV}gsS=o;jA0~=X~X_B^YT&yZtny@pL@QWMm$mVLpz6pMm zqNBZ9<%mRFkNDaGiO*E_Ez~qya@Q~MceEZ=7K$Xc;k%5d#t6bV+?ETKKPl_TsVS8p4zr{o1~Vr3xdxCCpQDRXiHV3M!i| zzt0v*e1@-G?IT~#JQlfPh=ykqVLy{|9$Juu$Hcw1X5?ta}R)wFcEnPjp$ubJL&Du5v%B)sK2cFpD)~{@c7~kjJ z*fLGH?mpo3SXay~Ear%{^gg=&2Q7Wo*~k_`-H37=Lxi$q7|M^F-iIwRFWlpEQ3WNj z_)e~!C@bFVaOY{yIn=a`aXJgoPDG|7Y;G}C<_(t1EBnn@ue@cosNF6Lv&&-WCFB)x zH-5eS7JHkQBH+euPoWAtLi}C#mG&5B4g|x!Mg`C;YawNDFJ7#oj1qm~z#1wdSiaw@ zg0<`F;^9>f4D1g#rR@+2pVYchy>F@;{IutyD5&{hdbKv!Pk|XG{!$nD;NF}F;?``$ z(f0E`qmLRXFCH;jbL2W?KES%wv=!HC?G^?e1W~EEs4KZ2*4xYOq$wTh5+4LrHBdWy zX5*@V^j&Br=_rg!#!l5ybQ^K~Yx*L?iX@6zfHU((7u+C%C3~5E>v%pBJQg~^V)xU} zcHhXJ%yimC^9J#@o*oov{13jnBY+}&g=xo1X(L(r97g7D@;dlXi66aDNJW##GTHz~)0l_zoC%-Zd%RiV zojKbzZ!v)-hUe&7lKGlqD^8C;1cGIPN~xuC>+nAyG7^tjm>wAr=4umzD`XEuKpa`ueZ(D={-{00%d0u5wf zwonJ?J*1mh?4Y$a`Yve`X@u?`>OuldX^NWZ18P*V?qAj$G_A?$a}5-s@1Q%z%9BT7O(P99O159L4EOe;K`)>!2#SJIEC5FF z1PTejVs$+@(jE!=}AG@qC9wlQtltY5g~DfO`SVL8Jp*rB!27D zW~-wIzLhrE%YXlK4u`*(k!9Lk8$LGFduv&WPMjIV&b|&+cJI46vr}mc&?|^;fue)} zazTIxee?bMJqVOq2S2Fx7yJK*;AKmK0f;FDMj7GYBloutnwMW`>zkTJ1B9>BpD8lQ zyO=s0cBO$-)n9dTYdtFmT>Ji9ScV=SqR&kE(%=Pn-bYhTtTb^pAk3`KA2M(C^k@OiK37s&a`H0>RTwt| zgzW9xw_oi8GO56%!YW1%wfXPt$0byky#O$18c!2BMh$@d^3^JU+AR*4XjOiC`fB8z zqs4Z64Q|cxiXO@BPDU0UL$-`(t=eGe5*+0C8rwI+kZd}tAc)*X-UAg`EPRg^^VM~A zb-x!4tYmKhVLcUwfE8d1$_@_fj~MX4%%-Cy2>#$J#bQ-47>WIZgUG<`@e2q@1V|d7 zlAu z`OOj!{uu;S)Z}>G-QCW$UkY9N{8(34M7A;xCO-rNathMs2?zag_B>$<`GWwB&XGlV zL8P2{0r@z71CGT(6cu_%TVCpuG2dlrIiu9=np-U#Z)N0iA&)B#kB{hMe`a&lXrr01;EecyiZ z)+&g-0of7{Km<{L+Rp6fYO`gNA^d8|B7@!XWAa@vq5<{d3gw3vbV6?#ChJ0V?&+?NkrQ=%Hl(0+e zW*xyG@lT)P(Qh4ThWwtOC7~|V%yfbVyGB;#P09U{4qu|2HJ14R3#hZl+%D3Oi+?-%n=t>M6Rq=;|FzF|eW6uIH_48Wr>8~;3 z%8nt`V_*3k9ju2~P9^l>zQd4Oz^X(5*tV}A^#%vbqo9iW22^kfR6@z>zL4x2GB4oi zjz9nZ2cv5@uRZ}fbRy6W(d9p3IpI#{$07&3Vi2+l*dtYNSA?GLX;jqndv|jrU43b+ ze5Ik5sKM!B>A48cosJAW5tY&y??8&Fn8UBGRz?DXb7gSjgqhPhMupXXV)@}O4d2{!1uiZ+2qOX%B2^$`;4;GA!2xR7f&R)9d;%e-0s0!};a2n`LChBRQe}=1U+~(o=XpD%z*}p+q>6Z-d?>Lvp1~Z;w!VwhP_Y5uKCUYP0FgayJ zbJ!Unf^#g|69fenPY&x56#l z2r1B?fpMe2LwR+vtK303<(Ih95AJB0q~jl)FarBzW*7p4rSN2J$N0E*8h;R@0CFv< zCpxSAzUaf%nGMJXP)tAN-`JT**IDL-9>eUH`^KZMhU7T~4iO0t@~})_MawtJ*|7F` zXiINyj!v`PPvq2jM|0yAiZ#5JPxXq~-WG>4AL&JmkV56k@>7`xgsoa}J^!yiW_KFw zrO6QBiCU=!J1nT>m>mGEbHrrhEXrtdM=d<|u=Og5XZSA7Jq;Ii84_FWW*pTXubn@R zH&M+r#@de241q1ONZq(H#j^u@kjXI>;;DbN^xQKNXM)?NMq{oWh~#BByg%5_o><{u z>Oc72$YvbjNBORVB>e6v7c25BzI|aTSDLzdQ}n+n`?z)CzeSy9_Bvey{qq~C z%~UqEr%+nkw14M?UEai_y1khU6DCZ*X<9dNUp6{2TcpYP1%uoNS!cT@!=v9O2Y#iM za^X^%Fltf+VNi`!O1?3*CqDvXl=ws0)FH+6>n+nr-ZoUtq-P-70US#)+mxVR(h!U6 ztV*)6I|F+#YW!ms&3m(jk4Fdj=Pj(Qgh}e}aQiGdulDmzY3gc8?6Nd3cGJEUOHV~@ zYzM?R*wkeEM?GbCb>OFLd}zPAV{2u-sw86^70oqAf&nM^EdcxcSaq=*O88jrlbP!x z`Dr7rnE9evS1X(O6?2D*w*hywisY|%Bl;-}sjRW^gH}hmZ63u`E8AN)cj_oVgOh$) z*yK**ND}*Y{=HqZ)Q(ufUe&~eof|O@3bZs}H9=4$E(O5YPRv!m@uRDLVZOT<@HkI32c zgpJOSc8ft%j$U8)`;K`M6}{PYaWjWaY$-dWDp4Q)?WuAv>jjXjJtxsNQi~>_9z&_f zinx?S;6@akZZ$k(O0rcsbJ(Fo6_#bKWAaiRsaeQR8#l+^zOU$|JYE$;GX(jW+E>Cq z4)6*1GRG;We(s|AjTj}7It z;iiSU26y~C3VQ^;^6HI}Prc5Z+o^g+8$QWz10N+!@_hHQm8DTVl9{}0McMD_D`}Mj z0QiVzYo)T&@uRPE%50A+x^uqXBwi2Srl-qf$G&da*$k*P#apT#PX zl15Gw7b_XXckauIiqhnU@Z^i3tqc+Z&}Lxq4!~16j{Y2JpTo8e&1PLxCv3!Iw+cw7O=Jc=5@CWR+2?w1o z_WJ$ue;X;S97*x>k`3F0N0Tm~#ksGNEOIFSpvV{f7>^_0>=TH+(U3r6!2)j=!H}db zPA1f4q&srH$lgj|_9x-B<)vD2DC<>5!)FlPN-?PBu*IhuF?WTixKWyx-XG!w$XXdK zQ&~#d%JE++R(F%yC?daNu2*{+=UN=?Xr~O)dG^O`a51}j!Do=XatTp!3WHi}N!c^Y zP2gfVa~!iP7sLh(qXui|3Z4xdH$3Y967r<*1NSxNL7^noKh$Qbcd55jm(`lwO?$Li z_*y@_Ih3L7Yt3f@m($K-y7xoZ1$1R%PrX|A>63)s{^8Y&v*f7zOM%g5hlr!o_VLSV zYhr{_#LH;j%=Ki_d?}sq$y)1-NMI4Ab#fDY-MOz!NLTqu-1@M? z5ne3z5ZMsv6O!i9T0tkw1FO3JWlR@HqN!R7Y`@c202#HdEcmx1syNgtl+m88PpW!Q zkuY$40SzF@l6`BQ4dGIKGp&?$*ezA7+j{WqUPperkL=ihDG9xv@vtRQ!K?ztZIKritnfh*n!P>6BpcRZo*oD(+k3IA8y`FOtdN06Z*((t9MtJKVL? zGzI_{m-H{`Twfd88XYN{cK(B)n-EXa#wBgM?mic^Ffb_^7rk#?QO<|lSCz_1um5zi zM5z|u_9trH_{OYoRqG_rxr3D>ZP9{3X;naPQaABJ>Zz+sBb zbVMd7BIDy1W6P4=%}*r0%hQ6be!o~?pqfb~)+CJ4>XJLMM}Wo7?ZHZAL!LWb&LSI+ zyF>b}im*A%Hq&mn3`RbUVxhyDoHQ0NQEXSjFCGUl+Rh)cSGbo3GImrjr29m>_JLx&RBViCM%j+G2eGI98OhL~Re({->TlSOdFYaFW$g~dKa(qTkU z4b-hAMo|-AY?_4*qjHHi0jQwng4*v!(!G0R5oHWk`6jD+2P_|z%qq)7pM&(p-P1so zh$zD~V5lHel8S2g?vBZ~ROZMk`;K~RZ(&bVDQxN2JRyLzc*fNqBeOiVROIsgDKk2k z=AF>Jz%4#rc*!Dj3o%6?#mKw=7I(5p1<+pk(qkM^iMXeojQ;L@imBrxRjAv@#7nP zpNl>oaPV+?c@u@mfvpdY9Z?tY|!)&dnfKWrMh@x;RQzFRR z*!+eOqDH(mk$JqxA@Xf*)YiGOS_n_1kJh!tdYOL=(ws~|45Btq+P$-uQkjpI(sKM} zcGMrLEpRP8%&e{^E5VYZPv&@-m~Q0pG^pOdj)X2e8Z}45<3fXgsMbI!l8dHH4^0yO zK&3f8`X#Bs{Z!bQ3P-zrUb^&B5KHLJawT1-SmB3za-O~Selpd%rRxu;hAKv^U8P=} z*s1M?*@jG`?2X3s^r@|;w+(gIsZ=w7nDyn5gssB0Z_nSTCfOrA3tE*jjW2d@SQrgz zCtI%8oK&G>n0*$hYYBc2i1NNr@c6g7^RQuf!KiaX;+`K!JW>K(reBth1}BY;Olih5 zXV0_vn9XkO%&d88;*HmAKQyRMU-zHhcoY*_CHfC1+&{@z>d+`QUqj|Oo@&`O>yIK2 z^p(d<^DN1T)DC}QivQ7AWlwJBdkcGdj|ly`r#xNj;t61nI@SGG#Knqv07=(hduWU zcP9~jXf#QZ#oZeWj;U@%9tIuXj@}2ohDY#dk`=)WJ|C_W=H`)LhA+%5w_|@zn3LFY z=1*KREETT6`iz!$8#}+ooz*+~W?{YkrY~0O-hXKQ<{!g^oGQCny-zm7FPR&GOC0%f zuLIwnBLs#tep4W=9Kg_&pyihlL+hkc07o0Vp3%fv8f?~*9Rz`Jlio%io~~7ZoVyrg z&7J4F(3Dh|CImRw7=Sz!fGHbtWCEcu zRUlAbLJ=T+xw5p7k_R$K0s&C|@Xz<<6%}2Bp+}8s0*4Vo5?P9`|v!}Su|mV93-Lw5wyF&>r?1_C=HARQ0Q z!BZOH+8bF!Lw-bc@X3vue;A^9eTpf z_;^?89F%lwIC2F42mz7`U_1Tyw2Lvg4?ShTUa#SOn{q{wUJpl?D_*oW;EWX&|LxxE zN+3w~p%q*5-2{7^sh|T>PG|JL+B@@bs@t~TFHtQs%aAf;o+4yS$UKxGg-B>oh73^= zLM55UlsR+AJd=kPC#h+_V6f2mRY?q~kQZ`aU z`}&Dva^q7u;X-41nUh&#ffjtUHZf+(1_y3@B6Z@d%DrN;VB%p62ABMK95i)k4DoaH zMtc%lVcDkHn4!{Zgm)b*x-|idydg~UoPGUQbROeG_ znGYF0cF9jfpSM zXXVIMv>4hR7PsYpF*b*~^Ym|t4_;bvTPmu?zCz|uOFs2t_A97|oI524v8!O{X8`?m zBe1IzghyZAvMFmT()|xrDcv_iL&G3fsCb{Vu!sQhRpzWScmOunzF7_XJfl|lg#lXp z8z@4OrD|ytD}u`Y$LpWwa!U=wprWK+0wS^{fNg^04pOlw8W}Mrd#z}VfxD`AU2Q)o zc+c+(Asdw>JJNNa#bc^`SUUf!qz`jDz0N5HLTQxUA$`1Ilh8}XHb$oLGp)yZ3)m0L zlUw(!NApwb@vm0u@HyNmy*Ao3XO%}z%r~gx)@&}@_&t`mEp($eK|vpCYoPIL_ktTA zTqwT)ujV{pVnc)h#k{|}+Ks^_=E`pKk6=ziF~3h%pD29Gb-Y*smCcYpQhYq^mp@u~Kig#MYW41kfXt8TDd#bl zRy_RKwm+8v1|=y5W)3EZ;e>ypLeP@GMMg=td$p>U2;_9rkgIVRah)KbG!)=*DAE(- zJYUk94%Bv~w}tBogV~+5R;+wbX^?-Ad`Os4O}Z0$cIW24d3rdxOtP(% zDde?@=7|{VFKY%>-={ITcop_qGK+puV4a|)7sTMYav`^hT4KEGH*E$B zRrK+zRWIedN6r9C&NAL3?{?m`gQP3mU;CE@f+J<0#hAU{vVPrsZljwa=99bqG9`hKjU%U|fe%t9yQM7Gw|KTwkd%$%B zA8A()B)S`gU%feu6)R$4{WLMHD%yVhVvvJbEr0Pz%lFEaiyiIjaxY-;$_(qSdT>$f zF=&10e^DXDBv%6QR8U5&70(Xa$_Xg7mLi?>-g>-%^W^o8-z~wFD+OMG?uo9G?wcpi zqDur_I%K(32^UkOW~Qb~tfH=vTBiQyr)$~lTmTg!qYs(I@TT#I+9Gvc2pw1c&YOg< z72;;9#e&Lwexw8|FZoFrc2<`?zdZ-lt-8AUfnCr7^9m12P=Z=t9SjgFD=Xba7N@0`o^?7yVpK}zNA@7@)kjaXy73jMq4wcfJ;y|#x( zUm^IBLYF}AU76d$rL~38LmnO;s4uk)6PoX3o*&CR*9*umdXM-Lw>3W)Gm?oM&DEl* zxxn^Hw<3Mj zsxgySDR(rPS~+G|akUb8j%(y5?QeE>w%L>GIvhA?Sw&{9&3L7+2VPZejp$o`^G%nV z*42xl3GuK6vXgo{Gz-POH*d?qYeOuX7!iwbFo;pG$k2dqMfZyUkj#J@f|5AA07f@d zW<%{y#hM^N(FUOgC7$cog^Y_aNALyE&z8-YF*l739iN3_09PUGmejG8*wtUgj^S{aH6|>cFF9FL1uaOhvMg0;urIUO86^p5p(1Z zy^I#dH5(oE_KxAV4!S1(jsHo;Z5CR;6p{^$8GPc%%7je1iWdy3;iXJZPgjF!i%3H4 z0Xg{}h5VS;YA4M1vqL3ZV5j#$C^k&7Kp79qK0}Wb??M4j%`IWsO?oemI<|K#|QeV}Jd6GqZ3| ze`1w;=41{oX7ov-{b9~_IVM)dYd4Itw9V4J1ba_b%lG&x3AM>#rwJt zr^noPyQ5vzW6f?VL>5G#PO%+Qx$3;{C^3|j+v5)HG4VkQlA~<5-A7;CtFr5>)myJ^ zk@9fyQWL9Tc_T&V7we}^F&DRRFd@t260XC;__yJg9#)>(4Q;To0KDjaae;ori(dz} zX+LYZ8Vej8IE>Trm64V%GZ~o4W6N)UKim}5R-s>)%OAoV_2sHryw2KrdT}b^LU&72 zktmuYvnkEaE+a-S9wWFJY-B_LSud9KzX=$fI`+=8 zcd_z*QwM#a=nObn81$DuODqlKji7n>c$0`wy9FwZ*FcZ2;;!m${B&+#e%;`8mTpPuZ zG`TTQ(&xJHfqDO&U)#QktB1SCq$aM8&S#!d8VDG>j2*nC5U?`W8py^`xydwl+cKi~ zR+854WtFh+m8Sa@o{&w{$i952ykS)xa+W5Iw&_1MZ-4hiX<<)Fi~(Au5_C_aR~*Lc zSV1as_KSe9u$mlOD>&<8+RC77+B~(KDF^?8%+YinjK?nr@=&g(U@+3Rv{aQ0z`h2I zOYRk~?d4XjrUGGL?7$JJbDmBX?shm+nDz4666A9IO0g&OOqeF(s9b~I;xua0AD=Ms zR-Gd~C*bp7W*dM5?ysTPgP?m9e5(|d+{5||w*O3ULVf9WTjph1RW1*#NG0$YM99KzAI z>p!+|and)~z;b|O+i6f40GmEH2Hf3vXxLUyg`YwJVOEfof!IJUy;^(|1ac7)%)jsE z!fx>nrU95{-DNg!69wgx z6<6LS_Ah#}w)jZ0@y<+dp0KJhglhI{ub#Xlli!^I5_2?%cC^RRV@Kr#DI|i-jvc|2 zH*+W@QGV3uz`gRU5$pWL&T2pEu@IjAS&}ZxG0+kdsCi=_vyBXEcdJHzq0^DpZfIO= zeVxp7Iz49~6;t{&symQ>?dt(*Rp)NP;N0f5nlZtM?^a{Ao#`Gu6TD}pK5j~9#RpK) zd5_xVb(Cw5c2XAsxfbS;Qthipx1HkSZVaCgrxlhC7w;h(e<++);=L#lyK3^p?S_b0lbrlhfwE?U9Hm-u zT}L>1J{#-^&=YbUshk3R`JFvOSHo|`IG5J=;7m9>>}qe^O89+^-e@jXOAjKII`IJ zP9K`_2=r*rI1{F4pZLeUJ3 zs>QRdkskL-wh1#HF-M1F9Dk117XCOI(|N-o)+6DO=V{kk9!0JIs%#3~P@a zdEHd&eMSAl9rG)$ls~S%F3%{WD*nAxLvu3_cVPC!am6XU?q!F*Tdvsgs5fb6=>wW&BN(99-K# ztLRxQb03WN^k3axDosS~0pB{fE`yuKj$7tqT8=2K>nv7Rg>Zz`h^Ho=I(OM1#4sU1 zRUgZ&?|KUK%*n<)+;(U;9!e>)R7RRSV_EfjoF$U7}X2{F(q2Ft9R2z zc~ogFkLCI0+KNtaZT-yKqiI&sq&TQqqZR-{aWW}F; z-6-n7yE273k>!8bd)AtjP4aGN$F9r}3h!^dRvo9OCm zqj=rzNR%?EB@$ESQyz7D$n~v{Su9>v@c-?HC`!PdRB8Q-C1#awdgD@uAwPhU| zze~M*w;9g!%g*b_=X(lsy#aeNznI#ijIgJD`9q;#b`aJRmiz> zHUHrBT9>(cg4p@mLo>6YS9aK+ImmLfZ0~9BxvB~(MomcY=FB?Jwp@w{q6k@`OH=*r zVojBna78U>z5i-PbM1Ag$=*sh9;ilZ`>Mxs>V%kFqkXcpDPIS5uO!=cx#DWhl6lje z)!E{@XDxPoJ)X4RwpXdwoF?nMVGfu$d|T_#zH}HQ#6?_`G1Fz7O;Qvkr3-prqp#;U zmvYJAHS-S6U(Kj3O~xA?uEhf6KW@bKKXt*9FIAe=kEbWh9Gts-S5^M;qsrrciRPnY-I3s}c??cgB_S(GeA@T4Qv}wL-JNrG z4(!n+c)w<6vd>1^BMg(dZ|vjP8bmAAvh)lp<+am|r{7xiZ^$@CuPrYaEocQ>uKHM$ z>h@HWj`&RHTzJ7%JD$VG#%Isu4HF+BSFD zsPG3zIA0^R@0e=9!_dMkL8W!RMZdgD+*_`ev0-&5%`P4oClULsNk1Bf8x1mop2}-s zBkK70*u!?iC;B7?M9HTf-W1}f4T#cfWnp#lSn4bPvAgrK*XK%hx{MhIhju1({8iKq z=5gG0JA6+;kvJk{=z|HbDHWG037#!h=oB2!9X8?|lJR`R^vRe25fYIO@!i>FF0*Mh z1Kr+DCzdJ`RZGNYSrjwLAcp`ey-!k*Gl@OPa*pYuK;ZfcMcXAl_kG4)_Jj5gEOyEU zjP}VThaa0=4PTRrtLvO1O|aj#nf~?keoQOtwzd@`0hQ1Y^I%*1CNqu|AfhD)I?k2-}%1L=a!jQW|-=4Tqn^OG~dhU771a{w+ z7|kW+{bI=*xYq+FDU8pDcj8((D+Nc#j^8rr6pPqpC-7hYnQnI(zw?NB)23*mtTl4) zTu(Qb zRDE<~2Dg4BsAfSs`E)cH)dRp^sG+M%g_7T3S19v6f*+<8nyD%?f|j>ndQ<+gF)6`* zUjz+tNAaw?j>_2>A#qT*Nr$p0hh_P>IbB|V*wl_?GJgFwqy z3P$D%W!?Q>4S!ihFW?$DCi2iSO_NF7Kvevw!dxTz9HZLH#47zH>qpUhSBrMX4N{Kw zPJ2x;{G+LbB$!Bsh*|moLT%`7A*mv;3KI+drK?4XasTo1E7DP;mKI=5#6e?f-IW{$ zTW7XI=I$Jr&(PXZgci&a^uh3u*UWU{Di-RuIi(S?-m4M>AqQ2dgh&Sa>rK zq9W2{YZv$4TAP`xPTf@PCN;~YPe*ioCcH2URPU?QM=RrP$Jw+}^7FH9=u4lfP^WpJ z@<$w9Soq%XZ%a59kCFMy6J87jj2YR#3L88JD33hRZ2zmWK{uCgT(S?aW?CMAJw|0` zr|An*rBo`p&V9f-kS&S4bsc>H-!Je~u<5KyR|pLYQAy>xriG2r6wh_HFD>7(Xk zX$9rD*D57~NBrU6kMHf?0ld%T#^{Y!00M+TlcvGQME^mvv#PTokf-xRNf-Hpm0vAw zj(k&Cs;M7iW6oc1Dve-e-7@zGA}Zvcp=`>!-b^|rt4=GF?!9$Yi2`$XW7cqZtyhk!pG5mtpp-??e|8d}vXhW6SuWJ!ko~BL4QLpTi z5UMv}KqvwzpPlXa`sIu0s?J})=KIC@&_E`}Km$8LxbL6sGV^5Q=x>YU_%+<+^-k!y?NM^Qr>I^e=po!Vf0 zh=R^04FS`gp+SvlfHSog1zqFh#oI%q=5;&o^^}sRdThn8?BuaKALvf&w=*r%%_WY-hN8VER$ICYsQ2Q*3Wq$KD zzIWvZ7Ne1R>uV(`hu3^bK(nVl?W?dB$5MN)o>;Zzs>CylK{*r!1906@uq)EE17MdZ z)y}p8gbTcC26{3RB&bAp@v_T)7^mmV&BKu!A8IR2|8V9bLB_w9U7TT2f#*~GAs0c} zg-1OWIrGtai-@)2)*TIi@1|S-)??@8x|SoKm5-FR4j4y!n!=rO`|w1_gYCc_1bp>;lOKE7aqxkPX2Y0o z26(rh1Gy6FI-6dUa1Q0iI{2+O%G9Ur@m16U!9GqDuWb1x072AXY1Q(Oau~YrE|(lv z4_IInNMh>razC(3XFtA@hSe~R$%+Z{Zw2yS$}Fm#IqG&d?Y(x^2W0>y@%Ve6gs_-* zpN=#h8nHnh@<(3(MVx1dkB>(SJ8I`70V5abVo)y2DD|XT5Jl&Zir;w%AE1Gnj2Ua} z3isQ|)+R$G`G)DADjd1G`)W73wbWUa)G{wGs?<~D@m{l;7a2Hb*&@*+Ved0u$Ezo* zcl*fxQV-8Aw$!ut-}_UMS+PSB0~D%9UYW_W@G#Cqw*lu1dLj($ihd z$?}fW!IJ|r+`eI4dgU7JF)xF9ICN#wzV+o@jK&NcO`40`qKiyy_ezcA*;QMrkrGlK zBA=}fVTZei?K3hl%jvaevXt2u=FL{Vppj+Vi8a zAv;^Q5+z^jB&uYn++Ij<2$>yOPsJAIYtturbW7CUu&_RFG9#5Jf*~lxi1w&*ec1G3 zW{6Q!1<)=@Y^q=SxNlq_o1I7?QPz#PmzUG{rQS2Eff$}qE#k0_&Je@e>>{lO3$EGh z)xP+rqxavL1t@pIiB60oH>6@AeHVMdKxQ^}wELcLRBj|wIFnCEU+O&0hs-jVN+X)x zk*<(L?1~REUQpjLYds+T{P1w>8I=laFPkb3f{~*Lo;{H z!!Ub}qg-ZszrHl>dvY#bH}7U$uU6UG>^6!Xqo)~qOxY&m`6r+ab@=7GGmryC_wr>y zLPG6aB!e>g9IOn6-Z3YgF~`SGJ=?XxavlbShlCR+KG)AZZoDBo*NIgY|AON@03rEH zsLqC68iI42QC5&#M2WVzNvHT}790BJ8c2KWR}<@^!s|*qy)r$|BbdLhYE&s1PdE!B zx)R&;(Av#BW4_hBwRZiZGQn6lisp?EfN@XG+>Yjd-zhKQ5U)wU%Go$GvyxC4az2J; zAlu`p8A-^9b^b#JO5OGGgy@CUxdIOoT6%8(zEE}xgS6f(4*O$R!jVZe@2eT-0#fQM zHDoGuhD=&1+7<8|!3&l=;hmj$`N(V$E6V;BI)aIRS<+K^&Tl_?JhA$|=h#e1l)yKn z{VVvoiy&9Wvw_3@{MCn7-TVr?^_#}-m9_?n?EGkEo^R3Xc*qePR;1u&nIg*AiEFl| z?eN5Q&5}zU?-L8xPCFfGvmNfMH}u2B+I9QD@;#+JeN}omsGqN;w^XWc86sE8kIhRE zh4{9s&(EFZ-|7xxAlQ}1{k;FIPJ1bmb&=!b@Qv3L1I6}2Vjb5jT~@=CjkyC|tG5)? z(h2&92wx8K)HA(H2~i{ym87`_&qKyQsNvsYH6J)+)Mk~GUR|M- zvqU^Z)7&DFH=T~D_AoIrDrFzwYHaZ^;*R6-OLRFbyCDM#ZG90EbYc@n)Z z`v>2R=nw3qrke6!N=nZO-4JX5fP1gW2AR3StxS(`h00%&UCeKa6gscpO+UvaU>Skk zw^_uIegF*ea3ax9Qh@oeivS3G4|DwR$E(;t6vpLH7+Z&g=JHof$ywT?g7xqj4 zZ5&J6Y}6mL@@|MbuIGyWBPr6k8>0)0G7h6^DtWZ#%9b*mzfOK~tRc4)**rPxSW2uG z(uYZ&jrNEwX}^B$b;Artgog@y;(pO%I^T_{jIr6u264OMfjPjdxPmKpColCWIxZI~ zA{e+2HVrEDSabc`Lozo8*&0_VLeiT&@8SYmoXWHW$tQBQHE5B#Rs&l>O&1|>WE9DQ;N)jwH z&h_8Hd*V(TUfH=3I8SB7h-CzTu>rSn);=P91ld8cq=dnG6rBw3Ev}f`R%t$q(rNk9 zFEz0<`BQhwhZcP}qvokTl?ZeBUi(aT<<^AJu~F`MpmJfiV6&fzeQ103+NhtohQabm zI)}r~WUKv+jH_p9@vaW9T=<>0-elN{($rb$OTMV{CTWCE$`8AlIjb6)%NX@SFz~?# z+#AL3lndMs4>@kAc-;+qXEnMk^=j=v-lr;awMWl3^yu&1AW0*`H7P^}5f`dmHrDmz z4t)Ky{YZQG3hBESqTwr2TRI;&+h(LZkFPPvvm9dJn5VD0w&gM(WfQlAgXeJuhpSGg zX3;UiP0LK;Q^#)!nfa{b zU6Rk^F0P+HYh3dnNmH?mTcQ+sWYx_n7I-L~X^t0rOx1{iGd_oOqBv+?^n(VCTWUtM zv)a(E-$S{^gX=a$r&G0P++-qUZc=#%E@3AO9)t^Xl6BLbsrDyX=J4H~()&txJnaCk z?fddbJM)*lBEyg0Jh%VPZT>;iARZuq6u1ZSgHWUp1eY{|dMsjdb2IZM(z8H=4go;h zy1H7SCs_=D(@Z(gWF3F6u;l>B@r)?c5yi2B$hGEstY~zyhF}!Q90}7p9lpD#H+55F zc7gYNgu!pUVnWEm*=rp0(qS?ZwF$v`83B&0|8@H2k`g=ny3Oy$(DodK2G;$WBuA~r zU!&u@{y^5^({BN3i5R3~A=ogAR6=op<@SSANL8VtLX7zg=@yLu(DWxiUX6hxKnudt zBfdX4VxJ#;%|LYmxR<_8s=4PuhXYz!cUQ@g3j0I1Z^aG$wxZuz_FwnjkX1^?_~Nql z<-gJPa2Ou1C0q?Vx1KUz=}_gGIF}14fIdDzKN}nPeeQHb9d&9&wExW^@++7tuOPY3 zqMi+MB%6DmpX~u0Fs1?ipbr6BMRl8Gh!0#Do@Iw>h5!@(0V#bL9sSQB#y~p9f7Fx^ z6dKi(xYR>27$gfZtGV5{{d*O?XY0GWpd+>f*1<2(gJLj95%^wiRU6?r;bBCWd;oAl zRM!b~7(h}=cK`~wEL04p!+}3OUT13=mFm#Nfs-^CpU<1zd$eEHG)qjkh0IzlaBRDA zlV_+`5&%8skI8x_MPZotPdv#vO6O$!uW}auHz9|_2ZtfW5h^TVw%w_!m!Mh+Xof^% z8$_wJwbgug0R;IV26t)SpU~_BCV$*2Tmi(7Miqz6O;3bp1Yx@jE(AOZsyqB4x zKvlyog)JfAJ|Nm0sDQ1yQ3&zY9P>5tWJ>0NuYAn7)DNc_

z8>AdZK0_+b8@T>aPx~brjG=r{;yj@YN=A94{{e(9Dx88!|6=K(bdB=xOPtr1SE(h0 z(q*pmQ39Fhxs_}v^^(6gm~fT0?@75Y5#2v-R>RG9JLHXJoUE&0+3x>T@BE(%I08}T za5_Yw3pn#rA#B9n&iLLRhBwJ? zJFs>$Z~k120Jw$R?=R6>?I?rF0RoGGOsVzjfd%{xWl*AwY01IM51~X%fwWevty6e4#p z7^tn-0vZ8O0SF?BY4`^mfV*cC#zNY?y#3g0x5rdIa!&Kezva--AVZf=9B59a}x z;i&Rtg`%%olCz=lGk(hvVgB5w{A`C_8L;5G0{e|{6Ffp&d{2F--5?^|Y3=jWew0@c z$)O@@-NA%#0HCIO1I2ORj&^58aqB`M0fmJrM$4xIA>~4rb|YvJi=95oh8~e5E4Wla zfa*OF1{@10;sJqTpOs6LwJ_UsO3BG9h{4zgAVuM_Xa` zpNk%^>-dtK_kHr56Gpmu&?2g#V1ZK$642RT$M;l!_9b8HJu8ALX@EhNy;O1i5e!V! z_5exB_ftY7-7-yVxJNGju7qt3#DavFt$twK{bmc!kPc8UUL@o4TQ`flN6N^kx39t-!k}5Mmt}qFA z;O|KO4JwhJ#}=wSaL(@JOd5x!(@;HJSGyNh`lq4xo`&`z8QH^Y5it2Tg~dh z{`wwKd8RYULwhx(1QEnxQ!P?7a!secb(;yRpiFVDT9L_Z9Onp_ z{=^Jk_Xv?$a!}}7-d8O#)uf@r`}sM`Ag>7A;DwT*PxFGI8hh2o=9oxqARF`*nW{Ls z;0Z$dmR8J!Pd0cz5;0mvU$#k+*}c-#IqB%c#1Q11sjD;hfI{3b1bZ2pAE%XvQ;Q5f zDA`jdt}+_Bl<6Jps;VK{G`IHvc(i8FxF{fv*3w?JGamQ_%+lZ|-Ti5^9bHec-03 zf5DzXaH~r3Nm0#J(kS0wRJ%fkX!np#X$dMVnZ?>w=N`2~cu+GdNq0)=uNM#VudKbjwlD-6{Rl4=VK2r@>WG zxaOrvBba({mIUhFRZL<5f4s&W*=6=>`qJ9#NzzlxIUPBt< zo-qr#?V*SlA1wSN@w5a*XUn0kTMvBLGJi4Cs%uh^|AIzI4+xY&1e&=9dk=#XEpkb) z6tO`*ob@-eaM^cdQaDfqs2ZR+V9>C3cd`d^Yf_wz{3pX56DMJZ1L|j7+&FBV!ezhn z!ww|gXIlYjn_+#s0>Z)DXWwh&j6Zy^DbJKMKHVch2~uiMmb-N8K&D|N6C+f}?}IQ* zB4po1Lqo|BMq)+SKLCtB;W@BdH!~;#-4;gl#}8uG?~0zQKS;d(iiMt@lRy^#g#^Z4 z2G~k~d9L*hew*#f)>ACt#QL(sF9W40JUQZ#f=Mt5py^1D42Y;8h=s5MrLmH9765EI_NesC{v^#6Q~Ms);EVt@SbB4t-`O z9o|6-czC*X$S9#>CU*Qas8AtsgNut8Wza>(*eCeI)*u7)#4tAjwe=`$g+nssz^cV` z+D8tSw{8&GgTRggI?6il5G43teUVUA27x1Bap}SKs19o)ioiez0y%IRseyDE#Zp0P z5(|3&=^OLkK=|tdIlt-9G@6Ch8K7-%0+5_TfO`FvCu&o|g*>@z=?_!ppU{Zu4_|jh zUB4S#y?Qkje3wz`-g-177)35Q{ExAhmtY7~0JrGO7SN0;Mx9>i*nh04*Z>*efsf_q zMDOi-EkK{NALWlw-iOy&n>kG_zZQu$V6a~`?*ngOUKo>@@*EI|j4oV&xN5g~;{`y6 z4Z^Zq4lxqfceZ{GLS8PtBLw3939#saL(Owx^IBumTKAFxXjeLd<0fbtC^&=YU)C4L zElgkDd~T$#pT=b7={otjC`y?6s0 zPuD@`+6Nxa0<)WMc}Ai%*j_9Ezbh(W(@Y+60kbxsMQ9JL<8G+qr+$RZ;h(n;O&hxe zb?+Ysp#u~@P+@;@0fJZtoL((ds>-g*E72rm*>U^JPv)1s?`;WZO?(2ZUOroBrxp=k z*LN2SnSf56EvSe`Aj9d2=4jQ86vmJ@-6P}?{J?!ZE+WRDKEObuRyDO z1iClbh6V<1`Usngq##-dGA|q4UXbd!|)a%S72gb3G?7uL(5wI1hB65``|BCIktls*gg?q)?Xck4z48($e~wvM1WuoFZwg!;ohLwQ*x17QGsWh$?RBA zXRkMkpNZ-+5to1Wi5g@gD*Y zz&^#DA3W$zgQGc;c9dAPT0(?9;=ZlFY(>Ui2n=Y3doEEpqmB=xH0G`I9N>4W2A%7tlN=6(G!!20@30p|f3}+H|xMzU#FMS2I zd*HtO4tff57-&*LAiI9~^5vMYF}K1#%gEbcF+uLgNba}D8)7` z{<(t}?kGe3*y%+G77>VenGCEZ2?+`8DhS)*p@zZxAP1-w&e=gIG82r`s+`X@Kc0d! zl?#~H5EZ%sO(pLHvOkO5`%S+7G5`q);O8MtId~U=&R-0JX&aU_HTbLa_cJhad^-pe zB-&;`3^v^2k9&^^3U+7frQE;7zzWs_|Mc|q%-uZjKEtcW?OZ&6-WNtc@APn;_bCvS z#I~WFZFjkFbaafefwvEedMytmHv!Wj-wL`8pgV^bp!MZ9NNb|~l`g^l5$PJ>zFcSh zObc?Jv1%80=%6h(9z2=~v#M76i}4+mJ_+zU=%?Im10q#1_?W)Lb;$J32l<7c$50$ok6^ zCXMKB33QVuu#3%eKqhva8=T$kU}rZ1+n;16LU4CE42yHb-Sf9#MA{|{NX+-ZtyKg| zwH`agx0rPt{c(eaZn;-_^k{+YYt0%IB zQQ^RemN6%YA#dJO1h`!VRK&RbinH`nwt`G3E{xNW04*{m&2G(;`Oi)Q%PG&%C5l#g z8j`3=#3uan<^Pp+{vXeGgkHwq`vfSC|M_ZQ`J-m|rUDvp)53NNIY{S6D%uTAfCzc^ zNd~hn0tUg*Ac#@@x?qa5ntadBcb6@*WJ*X87zN)Zuc) z6dd)CFJmT`0)7f-Eqb+_PySR=r*H&G zdLT5U$M7(`T~&AV!c}cgf^ikC?}(uQ=lCY5Iy^v5Ht_bVxVcpplp;|Wyo4!~;EX1t ze?T2ufMB@{6_PZV{7}8|*YXtXH)neoY2lmWxsJ^qfU6RSb}`8EfU*)Hq*54GFoh%l z?1#UDr6pwvsia_OL#b&l(@!r>zB^W=3e^@d*f@YMO}hGfZk{s;vMeFQ{kpUtY`3sH z=o(`s;r*bbOSA(=hhMauvc~pzci)GNIVy`1VJ>^G_q*@@{t6Q^6`c1EK)Fs8_7EtB z;W7G{HR;-T;VR5}z+R|3*YKDFL`A`L;CfjXPSrSNCJfwHXx4z|@(Mtp&^yDs@Zko| zD#Ere@ElriQN0DM6C-v@F}P7|MMxIg#=lr z>WKr$afgHo%RpMN`n@vkJ{iR4>vRMSK+ZoOY5Df%V0{ae8AKt$2GaoBkf75$-}HXn z+gsd2!5xiK;cz81Nzty8_6+Q<{ZKPV9oeWCjXnhYgKGrByCel}K_PbH&_6vm=D zj75D=V*qfFXW9{JGaqYQn_yyMp`KHRPs)!j7`|Q9<1t7Qv+c{GoLsKXyNN^tN$~oD zFR7u2Q2u$yP2?$q${z-Ul1JM*Zu@-PLlqOyVkk!24F5=6gr6Je3{~~Nx5wy0|JfgB x3jfO;@_*&F`~TnczkVwF|JU^Y{WWdhJDB4%#G%pD>Vtv*wA6G}3ze_<{x@hp!|VV6 literal 0 HcmV?d00001 diff --git a/docs/images/command_line_tool_files/command_line_tool_44_0.png b/docs/images/command_line_tool_files/command_line_tool_44_0.png new file mode 100644 index 0000000000000000000000000000000000000000..1f87da7672a1e351028c52469b9423aa7d4764e4 GIT binary patch literal 19420 zcmeIacRZJG|37?6A(>HTR$Czom5h)?sie#hl~P7B$}Tfm4Wu$sDoH3SD_g0EtZYiz zBShx!dH8(yxbOSF`~Kth=(?`1@P41?aUQSN>$#5ijU!t7nHhN*DT-n~psuP-QM5w% z`!oX`{###uZ7%+2m;F9H`(rj|?VV29ouLk$vbVixV}J3ynULcdyUXWothb9xi%V@4 zI%jWhdwI8ngw?x#F|)6s39Kfa+eID-Q=- zuNvL0>rxzH?N4FaPV2u_gu#DP!1G)8H4NSkJ4#*-#&O6 zcUCsD_TcugnieUV!c|9?muxfjJ!P@;o#O1MD-VzFK5n(yT$ALhANKs(V^KL~>;2cZ zaxBn?P1)0*e7#?~^+7hRD)}1kFr|b=$k&}y|1bT;S!v(CeZo6;a)*b9H@-e|(^!A+ zUK(T9(S2zbzpWe^8k(B=9x_oO&CC2$D~geei|e_L=)s3OkBa6v4)W45^Dd3oz7ZQM z#J|%vwn^b`SXigv!W6why5+JJD^{F7d$upE>b~@f`T2QUJ3D1PJ?^fqt`}CCiFI*@ zV-##19DLrq*&cnRYq?RD?OsunZ2QgG_Pt9kT)0qDQlj4c`0-=mh>zsYoe!qw=4<6+ z6x?>Z&kV}$`O|1_>*(nF?AgY%pYC0|eS78k1uo+&G||z~M>cUXEMHzY)S8nx_&wX9 z-_*)VEL|evE4r4wWVuW^Qwxvdwz?wy?7DmB!z1Z!D@4btQK0+V$u{!z(O{;*;0CU!V0y z(ev@~1#(L&iz+(waVo2*bar%j=DW>wO;7Zz&8+0$pp})C&C1H^2$F5{WLu*2+5F|B zroP71$M##X<|&z(5z!03KT2$pkSM>9oJSX?vCPTI$#uH-nRD{rVphditL6+_d;5~- zM<0jYxpT~F;q~j++b%Y4+qrY6(56ic^sE9ewV%Cw$s{Z+e6Bs;Eq$=o-a0TSHK#S- zjqk9+-*rYtMjhY3do?!dc}+Y$9An%+Ov^59e%)U{oloW>+sx!Jm%Q^h+XGpf`YkT~ zNtq>{G_>9ZNvmb8TiEcP4v}i=Fa_T zj!R3^;ooJaid*!5`Esk5+a@uwRhr>j+276mc|ZwSx8)}2D%iB`x%BtO2>x1XsLk*Ua!cF7vWL_M5B4q#DcO z_T5xHefmjThM@b@-iz(|C(orDT$=e~#V#Nq{tsBy;ei#5>NDIgYC`ty@=ei5syA2ncj_ z6nZH$2wS&iuh$U`Ys_&<{$iPKR`cXQSENOBLPp5<@(`}CPY-eY{rlGpcTn{0+uMqJ zGvi+m?;CE*+jr#15wbV-r2kbscB-r7hS~2QAL5=rSAQtyq=j17UblXIZ{6Ry$@YC$ zu3SmVXH~7umGoqj@0k8GXt>_fzQ6v^Kx>Y!v%s1)VjHv`Zt`a9YI%FPsG&g@Re$`v z=HqGxl>Duj7zryrGy}c2c4va-o_~I@QbI!F()4&QZ?ou@EgYH=;;XE!t&dlTtX4{yxxqRZYz|B{h}ZAgTVGN8p;n zKACOKnxF1T7N3i9xpn`(!Ftbi>(=>)iy8J=;Ymj|zVq-1o4a%8j?cjj9B<#g#d7@_ zY~I+EX(JJKA>H7Vjg7>slR0NcCSsiXHnVeZtd%!;b2jM8Kx+Am+QiS?7yL7rmWAR8 z1&A4Ds8_YSO`eoIQ^6_h&Gs=ug3F7ZHN4`L(OVI8jwhyu`o_l5De38}@Dyt@Mn-H$ zCmKvNtF~|7zR!eZ{BwmdoazugfAgD&Lq zeFp|Erdc)DpUbO^k}IyPWWio8KySNRmF$vfULO1i|8Z_McK>^(vAOwsr=MUMHV!*K zKNB^DOMIlAFy1F1@63r8W?*3{``!I9BI;%Gm02DXxF*?0dd+MjKCBE6$G4x=(e|&-R-v)HLVY_iCfZV6steGk?M|CVRiq zV@K7Dp|y)hO0w(g>+9t>ilO&}3^r%dQe=+JVk)5ftP8k#Gxc1xh@PIF`Y&rVOSNQ) zgi16F+p(XARMph#zx($~pm#euI_l-S?$XfIOuagG*66KWX@_28+Ifx*hwiVFZ?H_q zG;?;~WL%bJkW|=^os*xMEq(rdhGnz$q4FGD-PV)YX(t>!FcFQi?GFsQo(K;Ojdl8b zLWO6it&qa(hzjTG)#OT>Gpz39}>>9(o|t^W_n( zFB8x8(eLGtk0+j>C>Ix(slR_u_0=Yz_zD|S&Dq)5Jlox8m@L1n<|ByC`Plk+^aQ?=2qXDo6Vcj&R-dN`zz4+lOY$1yy))c zV=3n4ELk}@x|=g!zgAwDpSv{Dv6n0zUGvD;mG|_Fuths!7G|GuDqZ*TA{`hD z7w6DlKQc1ni2}DD>NCgOzNhG+;5gjI?BX)R+fT-5&8{_4r`7XJxTuR(R;g|?ju#tK zXwW=y5A@TM!zSHVg4f9TK77c}v}U(X(}swTkE+j&_nqIt+k1T|XXc92T);nzZ1(b` zdAZ>+xv>85h=}jFkc|p61KaULTQ0}+ca2pk?gvhCb#ohSxm?xR`z$6rzhUg>=R4Mx zdsUZG^@mz%M5Gk4$2W+&e*_+(}}L?G}~lP8?e{Z@#AX_?n*|{VU@o%AJhS)ej#ozbTRLzw7ePf{Ka?Q^T_0UjyIXaLZcr zo0*&QxqWs!dXycFCDE0c!lT$EF0N*5Eb#MFq?h=~?4D(fuU|`DY|T!uuzTb_H@!Ep z&a5@t0Y6k$9dh+Cn(8i7Qm^465D=^Wx4n|5X zqij+B>o#oAn0wK9qIH2o#F^UhA%0l3_6NH4GAeI>X_Slm{9g+Krv?TG_cgpaxzEVx zVO##_=%~ontp|7R-W`A?@F!jVjG){2E!#_%*zMjLVQv|GF|Le`!&np3NimI!Rrd?>zT71OG zb-=WpJw2OH2qn2!$5gLgeXH}QkY2E-b@PYD(LFN*Z;EPaw3DmCCau(+CJTY7L|q2c z8=hR|U}qP$v$Grj)0*d!Ir8Vv>fKSVG;%f`j^+f~FRHB6^7ix7b)kRBh|XSAS9cub zjEuKDjMYGCHA7r}JOKBn$n8Gb37ojBt~-Yns<*Viu?QKNoaFlR=Z{&5Kf7~go!e+B zS1C5%Ciw*vOG&7(ig#XK9s?5-Cp`=Qwk!MqG%xJ9USb9E7F5cD%Nx0KTrQTEl?9;J zqkQQ{QK11PC8}O-E8`rU)~=2F`B~Xtp(wbfo|~r{d-I~j;&j_-p`g>lnOjKl!YWDSTT50(soq6rK1aV3B7ge8rYPqgY4o$ zk3WfzFKlkkNys_HM*ChKlzWNoFTR&YHr>yXU3`hyujh80Lys6&sNqs!=X zoyME|_9x$6CISVNnKF9I)Zbq*m-_3)?nXq&Iym)+pEz*>6sHt@wHj^w=@1K^;n6oG zl$pqd`j>@hC>?!$j2<2ydiwg(4iP=#C~$%_Q=KO)(GNRD%LQ%v#L07)mSYmyU_00( zz11*-3A2#wxpNs#>x5#TJXt!NKO_G0^8-KNVwDYd@IvIW?yt({khzwXwG&X*9B_n5 z@N8v${c7N5GJo9{<|c7D(&qj3Nh(#*^0yv7Y^gm7)GW0*pHJo*dKtJ(L4AEjLXL8J zM}PkcDhr5!W77Nn7PRQd?H1rc99M?(CjVLF4W*RX5@m);*OvXF`MSABDe3SS_vz)l zL3DUOLfnoR8R7LI*GTc?Z;_z|3ht?X>{s~uSF{TYz#JfIlB0+4($!n_DD>O+-F8#c z(_QHe#&;^-{8!Rm+pM@@108A-y{8cDkVe>B$FZ+=v$wBrQDGqs=0qu&X#8vRSUkIe z4Upt?Sn>%X69Z_41-cOY)tXnreC|YLw&1 zyn6NO(2w2tbFS{isy2@Ww}e^TvF+u{Dkn~ar&)b_edbEfBfrq-Xck>vT?`^M(XYMs zJx%Fb@~8U}4e}I@s_eAyVM8AunH{To{QNls5S-=Wvy5b-Rp*d%9N>l=L53O7>%Qcd z_z94vHT?YiBkvaGlAC0}pD$c&&S1WD=@Q85RCk2Q$QKpX1Kr8FzZr9Lb8W%kU8g$z zxE0;^pwR(%P7ak~L)mtfEC(Sy1%yXHHWizd#SMs2idJ?jDk=z%f^gnjO+f(x%8rgQ z-~y>jw2R&a^m{o@8vMbfrI>9mE#_qV^I zi|&Q3^C*Mfo$CDHCgy<9G! zYDzH4B^?L!_RLRx_YVrH+cGmhGu+wLb-lsFBTqx0kl><}Q^ij%aJjm=K8eLO5fJhz zMp2N3g@s$*dB<*tKJVdo3j!2=iY|Bd_eb<`Kj>h_9&-*CTe8?G+o_RL*mvhw|IC|g zD~3E3uOG_HCqqUzqtB8&=ZT{Cx7L!iq6$#T+fEfN_4e`Eo1oLx>eL?Aly_xRMBF&n z|Lx^pm@b4@;`WMD&CB~-=dlUCK>m6NnWZTM_j2SbDpkI9tJyvOn-BBzD4jf=$X7&jRVg?-#x%{hA+94Aaez5E%t@pj2Uuf%+#Fl4FPEeb6Fi(YENCd#fMQpLk_-qx2@%cWf8u263Z&R~`^p$b&T*U%ni{zM`RS z-?_uSa;0{n)c*bZmo8l@v}+g7u3fv{fBN)tBLC5&N9ues zV(>AI1w}l=5(-7l%K3&xs4Sf2_}Pn_j{wT87B}(-1zv$SD8^lrC!9AoHa3=O+o^0n z&{(~${CH=%pa;;yE)bazN%OLfrt}Ln1|#6S1I?MNSQpQC?-bDhPIU9$WW2NSa2Ww~ z5Ro1^4Y!SqkKcWD9yLfv<;1FgNTr?mnXr%P24XK?Vzzf2>37_c(NO#BJ|`EKO1$>o zM@NYE*z@&Sh%rUu2|+_8>4bS>$|($%nl1f}scRt#2cW)k|NeZC?tCcD_x8Pe43su? zzBxk-xW4J`VyE2vhFM5jY|V>LjoPu#V%&KT?-^ZsT8al7d>bm^;hwA7HVddFQ#AK; z)p0%tf|H6sMM#x2HZ~S~`^G~{&vN(d-VEzjMnOSA=upfQQ)Q^mY95{&#eS@7Wo5aJ z9zA*mQ2N&0yG!31u>`3-*42Gntt1{ns}#0)gWYz!?02tWWMs5#wJ!a0e_Dql@}Mu2 z%yT<VwS9a1ZeY}!T@Y@<=S2*U>ASltXlrZZQkg6)EHLb9o!h6Tu7JB2 zwzUZq78YiqqMH?bP(@GB<^ ziMXeC@82imyf^!?j8zkqmYSOTDY}?KPt7xEo@9Kqw=`hX`S$N}hDP(*%7-^t6=&IG zWMriOoUe}ChXSs746^PZzx4wE@|U=MD~xiluv=6`mqJFzm=1(K`cnT59og)+*6ts# zAo7XV8zB>qIcYo)zu8&W9{b&-rD6JF3;P&}m!osB|2Nh_QNR^?85eo9j~%-e8A-~1 zEmSk=OR|X~2-r)*OcqG9M5`z&DtdCW72ixTEnM=WySsC0^m}9a1+EPT?@`pfotH$g z#R5>WN=YZad$B5nHZe0YDjzw*W@cuFxgQv>8BtVG!H5?6V(jWCh*1#VsvoJ)Q=SG% zWf1Ot&wLDrQNXe=-S95tN1eQwYN_j&&|rxGpJa_#zt-2xRJ0X%2T%8m4h@3 zG&@!*B_o3R^)}r~*wnb^iQ^#eT}P;?&a%$I=YMj82}sG&k*l za-b*yxACI~AILDH9o8rI_x9ev>Zl9;l)d`OKZ8?zVgo5CA0JdUu z)_A4cQBllbH=piHYc@4-2dUA1z}aH<{MB$YYszln!m!x|L}-cZ_I| zt+gi~oqYls1c-2|>!!puw`u$HIRI>Emj;6;r!n&^6ElVnKe(-5<;iWhTPHF#UWrsj z)}`-ke0+&q3Z8OYF}lV}R;^y`i>f*@%_b)j=Q|Ef9O_2zXHSYW54Zqzs(EBPiD5e_ zO=$W7TTF=S$z*W$K!q!A_gDymh@tt>Q8auKl4!5krPt}{;DImgn(JN8fYDBV<3HU7 zoEsi~cCOuPNM%)KbCN4FgY8C7o&2Lq31T_hTDxXj+2_y9KxIj<-QYCb+j0K(cuQMb zev@G>HgrZkmyn=>YnJic%Nq|K@S#7!9V%+hZ=)Ag=xwddJoEHtvf0JIQ&T-wlOrP? ze(WpRt7*MFx}>jRGI9F&_~^Yk%WR?i$p}JixP%D{lps;fKmJ33Ul?2x_vT$ zVfBmSiK5M0!cCV8KdGVzH?Vxgt#t4-YKh3|Fk8GKg;aXqgDkU!;27?0rk>;9m{gfR z=uw-+#eEHud^O^w+{y`5@uw;AR#sLXS4fTW7ubp^(1Y3u8(fviTlMMFX*jrXXG0o5 zaU=axdDy6|t7A_Sa?m$V+c62Ls%`+*^fk=1F8ug0Q6mz|MRlOlJsrXvx%B~73wxwe z>As)7XO$q9V<3;fhm_r0Mc(!%DBAm_Qc_Y>K?jpRFa|dGE?NR1meR3_h;TqUqNlvJ z3sK-<6+HMCXCcBdBbBg>7cX8U-Pfy|T*7!P@tdWt1qL!*xq9{Z%wDhm_^*A|g@%vz z-CVu+Z%Y6CWB^ZS--w7kUh>F4FL`LYkkR#hcx%Rgee2{)bn7sM&zw24VPF;RrI*}` zv{cfG6+vppzDo;Hur1ABSQGlU9KRE%c4Ac6TUxAeNkPAozyI@Z+xw~8VPQU}ihVJ! zX!h>iyYtFOY@suD2kxDaU_gZw=;H}n0n%vcm^`%;RAFx=4j3931OPa%flEz%UshI| zwC}=k^mkGZ?@d0!u5@J$1K!e!XtCzTSG!l?j>)Vi(7r50Fy!uCP6(_0bvOTwLR=bZ z*#%XY6aE7m>Yv!Uu)5g^-URM4>Xs&A8~P?3GZwVeoi2Y~-Utr%7vNkKbKQEYr_QX= z$IqXo_YvNDKk!?nC&te}%Uh1IUsZk}X2hL<?wg=$N$XWCyA$I-dzy}#^x0kwo1Uc=aHJCjEHl}>C>kPC$xK; z+q4_Km4cejF70uaPf6S)p9yX1@ZrPf4bPq1bo=)0@xJaKKZLe#=YVFU*3V;yyS(D; zECNO#W{{?&uFjBQ({5}v*VSbPK$J(%e)JG_TA=X)4TT1l^5)I=eLbqGwF8k>RP{gT zv3b#wunKcV;n_kVHmC{>SZ`QaSxF>J(xhRTK|}mtI)}{!ZlMu^Drxxs-oIz>v9Eq? zCxE0L(vVuIx=8D9B%Ul)3?t^n)>ELVUwZ8~ZQ6uaWP<|%{MP~H{Mx|{Dp0Tqaf2CC zU^)kOqMUR>GbAl7&6%HvUH%+wB7gt+kZ*LMkY%6OSwaWaXar3_wMX4o$Ox;ZPn?nB;bin_^YVYbA)Q$WKeV{5KSzI~V|!~93`{~+2%C^V1dMt= zOg5baK6dtN0INiZDGw1WM++nrigH@A58^DG;qiRBA@7Gkf821bmG$*`v>xt+f5j5( zu`s_u{)C8SzBgNXHr>(=COj{BZlFi1peA1PR(Loa2zV~c=0rC25={+&mfoM1lebe-CU5e?OJ6n4UanU(CViGaB< z#V;*Klc`>?5DrY*CGvO&FEd&U@MMHJ`>nm8Wj(bC92o2Y#(B;>Ni!8&k~`p*kbuL% zS~>Jf>mk3%XK234s`l>^KR=7r{pac#$g=Yu-A5(NMyk~vP0-0@h{Dd7U##)Fw{Fqk zj^3Ys&D+0QPEO@_Yrm$Uze6#l9Vz0UV`?p<7?$tY*DcA?1BuQhr&SPOt z7Qpwy8q!XwO0=Y-V`bzG)G-riYKK%9XbPH|c(t^&7GLP)KQF{5YfVw;HM)kXb#=I#>wkAYN!I*RNkE`nlHxQU++TG=NW#e@w9*oV)+KP&5Drri`}m z@Zm#3Z-|Z5C&^yz^++LxW=YF(A$TE3Z&(E`cI#c>r~h52$t}z&Rz+k;PL2=W3=#5; zoqN|4&wvWOch6t{&Dm1`_3E0M#l)=zccqk22cUF*K>pYV9nhc&X(0m-4l0`iK*?PMFx1E%(fBnXdx|=os5ehJnCD90o z*9fHp*h?O6K=rGWa$attzz}MWt6kXGdFwAR zf}0=jgR6`wSZJD;)0{As9p?%IV+wvAGZ^b~jt!;|>_R`BrkhEF0JAAfqxWb-{3@i# zvh2DUmn>P*mn*n92b^&AKkTlC@xXCAc4n8Ck+`4MGnKu2uN68wWgZ(%2bY3ELE1E# zPcXKoAkmI~+Fqr8A#+&9X~+mYv==?8UZ`9{^>bBTrRT`kFE{+3zm;mHR&sMQq#FbQ zGo3edb=|Yuap1Xb73vcftNOu%JM<)W?#$ANjEND1RYL|U^h^@=N=Zvoy>ewI*{zWF zyxeYoI8B5IR*|?IsNJ0?pb17HC@K&v|CtRR7iYu&%=uo_2EoX>zHCKkM1&uJyE!bO zd)rPep-iFYk_HOPofa3#sxU>^A?1lqDI_U*l#!oAk_tmrRCTyuoKi=UDYNtEm-{Fe z68`Wx9IcA*-cp)dD?% z@C`DpgEHIQ`3j=+!zJ>kmVk8l0>ErI938k`Gh7Hub09dv|GuBgav|!U{vx|V*!x_c zR!j1KYRYiK=p-d2-+%aU&Bte7)Z}nY{0isEp&&5z*X+*lM?Zg?8=0?tNgBe?ej==~ zu)NZpqINF!3_j8`Xyu%S_#rjv4A1>*Q~G8`nvxQL8XVAB`DJX2UGef_SM-F60G9iS zEQAg-X>4@%czTr6P=T(=e`vL_Ajk!+t!q#*6V_hDI=H|6pP$BK9Uu5M7TtvLjv20m ztD>Cf)se zp^nty)UrgqiWLmGu&C7dq zWYacO?cKX~)z4r9_q687;undZ50hFJo&4yS6#TyyME|gTn483D{jY8o6)ge<`hsK> zItJ0yAX31&STvT+%tjDpKv&-3pnJprQ?$b|r-FOB##fiYW`b2B^Jlm{1n6TebWb28 z=ZUzuxKQZtN4hz0XB?=12m=?tm^>4-9@nPg18 zG|uBC`V;C0Izat1U;q1h7;J3_T5UDS=ihSTrDsfxiC0Flc7iQ_pU&z|-!Jgqvf6}W zgwZqc?qGm$yzgVU*wG_LJRt(iLO>@;ALys>%DzC48Skm4ZOw7o4~o$F>zCh&Bm?QG z;V`%)L>>mk_8p(XEyD^Xvgo)%M{pTq3 z%>*5QV3kKlcKqn%xW!X*ZbudpxxxIqu7_>W71_LbIdYQ1XRD%HJCda@)Nh5P!-}eR z^~!90*!}C*_lmGBNI_mhpEgK4cj@pTu}1E}GC}Imulr-f+D)6@o64hPZ*oa={rGTa z=cTTtTG4xMczZ8Jq=ANHygG-5h-m~73DL~eB+QFWhuzrG)AM{X86*{G<|r5%cm-5e zVek*cv}zs{VRGc1F-89%mK1)57>#7ZQpgXGnnn}h04`At5s=5CJ0Je#!>jc#%pUI! z-qVr%ZoY`f8+c_>2_dM@JmLl-y>Z0AfH6vo9)EE()i>(ZsQ*-W^Xc$tqs(7c@Z{8rLN>T9JNGkXXp6>WiD<8JWPeGeQ>j3>_ zZQ4rUJs{hlKa0spa5pFu)QT@}EDrPUvMYJn9&>+C{q17#EuK?>656qY6aCP60v=Z= zL`uZy@| z<`g*ZkRZd8{HSkaV#?VyugoPcK=uxlR|pprcDoPEvHBN+4yEh$94=3fpa1kgmQ`_n z>hZYS5>G-*NLUaaVE_2f=g1Estx*PXo9Jq;BZc&89+igr`Xmkx5OM{s7EOzOh65_^ z$0k7iXVp_Zo_ns@; zh@Z6|coYfDmBSV-uE@!q_-;UI|M$ z?xvfdqkSa(%^RC)ZN4haNxY)eDx|KT`bz6IW9)} z1_pS1%Ff$aV~tJP^OAl$s#IMVb2v1CE%jtxclN?LL#uv0{1Ajxc#vfK%+Af7I&&tz zA!er2UcUU#7D<4CctpdrwCJZOIW7#?nnbuZ7jkEY za?UQOc=-=WK>Q&gI8o8-QBfz4Ih7BIR6yV@t0?YD(DA{vC6A_w7c2CXB z6hmvpOWnt6i||8QEm(jJg>DUMoDM-uBMPf`F=h1j&@hyqCqpuyi2Aalaq zJwNTq@eOwl^w+t$xgi8g5ns%Nm6f%Z`6hgyD#e9B#5Bxd50mG5;-%g-ix{^P(>&Jd z$a|8li(>_xFen=VF!E=AYclc4931}q<-?tgASTzEGi|=3h-zF^>K=Y;YAR}N%|m#{ zajTeEe7u&9EcCTW*SS^FHfLSfcT<6aiUN=w^saWVxXJ_wK79Mz|; zp;3gS_az|lrOTEPL^d})Q4IMBAx}@3_;Ij-Yfh#RQ~@!I97id*FMVMI6RcrcT#u+X zyqZQv{0RKtL|mfw{PK{^b7&Fj>go{BM8KiEk%IpYfiKH_F58|x5l%ijTD%|J2Hx`+7>2;OyBCi30P9>qa3IBF z!QH;MW*MrAczu}h0Z6nU-^Y}intBcduQ+NGr0#6NHjGv#1`6S4PKYH0cYt^icNhj} zNm-f5?%f92LT>Z3fA7gy@#6YmZ4vKI<6Vl1vhoPx0;b5k;qb{+x#IjakTpZ+AS9rL zVb>$DfD<(GXx;S}pYFTSGk;u?)=a$N8mh4a6O%-mMqz3RW5YrEr-nYUWWqtZcI{dX zy%ZfCod~unV6#L1vWwU@_MMIz8jN5Zr_9a0V57#uLqVYK<>Vz)k~t3Q?6mEm$bLaF z#HFOLMeTMdLSaaruUYr_&1O|q`{7T{bR{jVtjq8C4;=;&^+Y>{eErO6qvA1k<30X`mZ1-yq(`LFu#90d@5PoEHduyg$SY?jy;Mg7UU*N`~2>!^8D^C3|E-8G{hi z0%Ao9xKEwJi0&Zp`;7%_F+DqbBom>-pLC$ShK7aJnGUYv;#!RPke~}7uOfKIL(ULJ@3G-V`S+#Y8b#>!-luG}MH#Z`gweH^Bu?VYlAfb@{A{BQ%faZHt#) zn@1P={Q0IIzkZoR5SmQ$zKL%MkMe>bZ+DQO`2n4R7>^@Jt((?+kj4A&K!H_g^(E<_5Ob&nE}YDgo{?$jQlhh4`%CQWlTUjXa4qP9Rg$i-e)p?y!%9{Q#E| zwE~!Es^Q(dPiL{83d5nGUb$2hLq{WLXDl5xi_H1(=KgTh? zxMA+E^Bib@Cx};|6C{>Cj-T8D(x|Jds@jj1j{lpOwhH1o9vwOQ*o0Fzo;XvY(H+(t z5E2qmfrCZcENeF*`dI{n0g{~*aHj5{pZkZ?Qkys#iNj|8!is_#&WczPPIR0PAaZ-% z1ASxKn*S-ag5auQyfu<2Ackxl9E3cO=?8SsQ%HLftG->z3;}x zwKqv&t2;TOBn@Q)R$ zi+dL!9>FiNvY8s+Ab#C~Ieql8T4cUC>2d%3F8Cisfw3R2!0M58h3ZsXOWNoQE}~Oz z*JW2ic|XrQ$#4xj(!BQh(Ui0wA(!zciX*bCF%K?Zx^xY|1)F6&14sUZ*RS_!@W3Uz z`Cy>*D13?6Ay0VSZAPNd0fn|NV#P7lp-ZC|068I5+3d{V@#Wm1abPK2(c) zh|4A}Q#LD6!3bFgL8l;nlS8%y@Kl!&2kr$Qkv(S$%tPeqU~-du4n+>aAuwY)(ouM* zWjlEx;-h7=g258ai41WxW*>mv@6geHEw0xvS+CZ`L)a$ne-{(T;Mc%*-xfpCFBX;I z8FF%Y8&pXgPH>%Ubpm3uT1*hvMdC>O4u_3Hx`=oop9z@H=o6Qaqk?5tWzE7<+`MRb zK|(%F#vZ=@r@y?!Vfx880sWKGyoZqNCO_7*&=zrj%1mSP`dxC-mHaU+^^3zx>)gOV@k-pY|^s3j~hA zSM8#xjCv=BA->S=+i*u1J~K|fBBFlQ|GQUU=ai87PKEc}!K`kJhAQsopzn4F&GD{Qr6N6PV+c%Vl_q@&WX{3nRJ4rsLgQyr-SiI z-7ZSp{R^#@yQ}`IYk8Zus(r4Y@vn@d^>BUY_sYh%TK^R++_-F+HNyelTTgZXX=&L_@5?p7eM$K@dQbbYFgdBoLKfQ_guh-!4w>SIY z`}!l*0#+ov+rCE#N6(KX&bNPVysD+H&Ib9O$ZaCBvby8_4Tp(>poVpg%O0~DXlY9l zET>_9lBH8f-rt6YS<`?)PR@qYHFr&IlX%K4xC+r1G3SZC^#~W1TF!iZSWZvNa0Bbt zw=5Jrh1{e@70zXqf@CodHDgSqq8atR1+j!Wm^D6&s6RVW@A-vplmBv?Yyt7B>oAFZQ#A_$AUxd-Q$Mb69>tY zoEd@y%i{UH_+g}_E3|r3tb_B%<}G{FzZYjG$SM7_0D&Wd26l%JL|3GBD^2srnR9_X z+|W8G3Mn$=^6*&~>i>EWdJd{43GT?4PXysK^pJJK=g*%_a|m2B*^V3<_2t=N!QKlh zZZBKj-Je#()68=WjIvNkK9<@FwOFg%M(c&#ew^f1s}iH|;Q_UcT2^HMZij=~zXl8j zNpDDSek!mQyPm)n9Atc?Bl@qmhNGDsz#Sz}Z$`f!RxE6qu52a`^~{UW)GMQAWNy*u0CeBx8`@I*7(tNMQDJ^wiQ=;^dW@3HR7t$OCSUszN~iu|X8 z*y%$Y)L-}c z-!Suq0dtj%GoM-q5i(i@3mOMk{yo*sEMRlU>i8?ei1`NlXy&}&n3#4q`5Bsmo_}fj z=B15qaRR0coEesqXxPSe>vWnWvYnptuf=I-QJ60&m%gj%8Jt*1ylY2|G=C%&$cNf2vKtb!wvtX9tuASZJ;FggjRdWa^k>MX#yGA4 zGif8z0410L`^blVyz_WB^85En1YewI5HfgEv8-8{VRX7b`6l9v%Y)R`lFz5XjwuC2 zVaj(ejS{JUb#e>&SP>kq8Xw{$SC60$pn$htis?1XT~4e;P(*!t=|1INix6~lPfh$y zfNbeMe&!{)_sm>h8l-DLU}3-l;GDu%PR4!dT#qih-is&`Ak?S}icZb<_J#ROoS1kG zPbi}>8!;a9`d3_BRv@KT4fPqU?^&h^))87R`Q(}8nzIO{ zz*mpMZsWw16p@jsKPL#IaWhi3-mrBL>TJjXTfvds`6T3xtDB@amAtbq&lmxulTY&i z`hUc=jeJOpik3Ho+t=`7LC|&N zT3c%t;0F1C7{~`8lsDhMSI4-}8N8Yk!%fWB>}TV2=e)mI-}k=j|6l7{p9_Ow=8666ec#u8UDv(6tg5_^ZwCJiilX>v z`**8T)I=eQn*L(i6uk1YntF`CWS#ctI%(LNI=LQoI6)mg>SSkS>ttndOvvSggQJD5 zjf9w#*p>}K=1xv_j&kDS)_=Z1%+|q7Ttr%M4-PWjZvPQSikf|t{N{;MjJ2S6D2ldw zhvvzUjz%|w0Ozss@wF@KKibW@x-Qe_%7Oc)Vkfeqtnb{ru4g)vUjL;1(BWo>$G#5T zt%o!uZrzcxFu5ap!s2?o??&yf>er)wkNJFN<~g3WlXGU(bA}5A&9+aNF|Ez6#Xi3= zB{+mVs?g1Le&iL+gjJ39H>cJl>n9!#mL94MANyQmlTq(nCf~nq%NF&IA3tV~ z_SG9&Po1@_+?i>(HnBS4#f#mZL+!EEHL7}g3Bfkmw9Y!lt?=;h$B!R3)Cqd_syTNx z965UQD2tgIE^X7G+o?P2;;yq(_|!EuZ?9ar(uq^8!+s^`?ZhYxS2SK^eCm;2x>bCZ zV_SAjS(v=OY1$Ed?bxwn#>*Yad5jo=U4t+I4YOR$a44x4d&_ofZxnxz|_S z#>R$WqLrcO|HPd`H}o3(@>nmK-uyH#%zJE*{z_J`wzf9=N72#+%aG3+LMqBP3;@@)o(ky}P zCu{V+mWC#N`)0mp?_N5qDt-&^u8OSuS1ik2%nqC>>JN7d$KhwJBmWqN}pqSx&e*T2!k*{0dynUOP{xl?HneXDwJJ;NzUA}y| z?%~m0(F)Pg(X86ESh38OGq`+a+gGb*6EiulkxZMcFAH&Y5iv34gMnhnkDDjX-mco3 zI?-p%JF0xc#v_kk=;nLnz0dddZf$gJcDD5RS-jTQGBvN}VXals{aqKYi5X@uwq&L_ zGyIlss~H&W_O|`p*0%KJ%a=ucotO|4r|@nHb7!rOjEZ_O@bj&>@9Wq5SFK$e`-cC( zfdkh9joga|`s!`@Xhn}qUNzK(dvwW~bT{SgJ#ysUqf>(pt5&Xj{;$;YKfmKv& z?9vk_PLQAd=+7T-%HWx`Fk4~w`Cr_$$)2;5! z6%@3U2`v?Q#cIsSz*MqbeBmfL+}`27PG9elR>8eTkKW(x%+fUZ-tw%v=0~^pc>SfT zS0%P=*>Wv%pCA7sqm%c4_<4^MZo1~^?I-m@7tgw=E!?{+y(>V+XtR5Nm-TTov!#k- z1Cev*%`>t3@bDRK_H}8g^z*_(Un$F)#j`FJX0~46c5V8+HJbXZnf9&MJi7Ck>(;H? zM1~AQ|DdA3!FcTFB9oSa(|eB{JH}`YvGk_@l+gHyN49m1a)|l-1q+tsxO8sO%doMI zijL0W42}(V`(i+t-`G@y#VQ}Fq~XSjT_TfjD0mJnwya6A&kK|HNVgyE%vg%sB_I9N z+Ui?TQE|Yew$r7stgH;@w@Y3sZFTpN-N)ySHEOrc`lnmh^J5V=%DxiWxKZkBS-9=) zefxCi!IBp0$rE1RTPS8=-f*(jR}1e;FPS!DMuJm|)<-Lz&#B&{iS}KCJvRSW=ux0DVG*6Ogyj~+Fgi$v50h2qL`dK(zadEPKhKoKkS%0g^=nyBMDI9YE z4{*ug;2^HHsE%RDebCiib~4v)+?dl^aC)Ma%{XR-6xK1@eUvm7Wop^gE%Sf^3okWqLYvTz#=-eSzViAXF+)b~~unnKPY+1*Q^w@3opU%x) zyx4phE|y_~r(UFQoA<>%G$7!F!O4&3ix9cW_?76{ic*6DSFc@@tf;IsOzqC;R%k6= z8}5`RCN92p%B*GPr}`URC(WUz#Qx3`=l^3o+(rF|y`El>aC=VoQ;iIp#@itwNpW%O z4BgwKaTTfb-liV=mI9tHU%w_G0+@BWzTdNGy^M^mM$Do2g5v|PdYZcKNn6)Nk&u+^ z@$LS_`M>@4;GkI6Zlg{#nbktT>3m}S}J2xphHdaTr>)xmb zho#lloi(&9F{U-F_RftP5qCD~voOW)II)J=_b&?g3wJi==x8TuJ$m%0x@O>&;+UF> z!eG?SUAsi9?Qs|FSf;Ywqw#NQy}Fv+*&7Y*o=s+9z|UGO^|4*yL&Y8c@bD;xA@Fv1 zcPzG-)&mxjpx?CEjz>2jKpv3e-e$m8&<>&q*nXt!7oUpWWf zy&Kok@_Qa0v&j1O@A3Q-J%{_W2J^m`ZtMPbeOs4Zo{P+~$GRJAJU1-7x@^|IfO@&K z@!FxVgPzy5D(%Y{`M5;p$Y76URe!y0ezl6?=;yw{?Txb)M_OD;v^|$#l^UJ=IC;Us zh4i-4P`yXT&a*A8(`qF>`m9RAq5X;fpA|%T9dHqd^xXaq1-_+EY#OsgUVW>Iza{6=5eJwPhi5v3xvHpA}X4VEp#r&R>Ea|Z!Ws0`!(2>_4uvWHcN7GCypPlGH_R4+Dr+R#a68`Y^Qjer-P=GktS;pDzZGs z7tEi(Zq=$?cnrALR812E6PK=r_8FVw;ONA-`BRKW%j0`smZAWBBIfix=NW zFeyGR*F74i?Bw)hjFak}WwdtfS~h@6ps?rIV4Ix7=SyEpg4^h+G7CB|c`P0VQIbaQ zkk>S6w9ANffMs2MkA#;ioYFmVreJZB-P7uh_2_MYpH8! zFzj3R0z@Q6L@1F6hhSUHu+*W&+Q{l@YDVGU8GdD}B_uR3-$Rj#^eq(e6z_-`id-zb zUs0j%`Tg0{p^=_4sgvJZL|*CTxFkC`I0(}a3Yo^^Lpm93xpdp+6g=4FvJSiZo4xZ9 zQKkfCdm0zFUpY3d;+6js$2MizP~}h=`<)~}iai}T zmO<$Q?0?(&lw(axL*g+X*DEMIeZ%j6>lWkpXA?S`^NlfR z?mu2G3J3}5pexq*>+ZVl{57-ZYl()k@^!DF_O*F{Mk%8L5~kOrZJUyu*){E01P5re z_rNO&BVnnTdmIlOxH4nrOa{GL1Tp2{s(sgQSJSI+uG;s+YL5H7A|rhj#|O)7I>!G_kbka|u!qn<|g>`JyE~bl^VWYUqtUf%=(=T)|FApFi5>w_v z@$oGwnV)8uAW3P}9A7Mzvvi41Oi9@$*B2CxrT&# zX<37SgN4xVvP5g8PsqiG4>!?bpB5~<`tofxejJgNR^Q1gzkil3!`MuIex)*H!@`+d z-okgU$Zfb6YmyfLFL#0m zqJlO|xODOOi4ztzNk{4)pP2bEa_-Dovud<-45QbEokRg#T>k}cla!q_XSSVOXf~k1 z@x>QnltT&3M11qe*${I7$rDXv7CjVxUZWhHJizxRvFW(1;uSt83jjMJQEkx&e|}*# zWTj=ieRhOoF$9`Q0J(Tj2kXVeO6yl+$RyVroa^F2NuzFMwc%soK3>4Niulx}xB%87 zo);4V7qh|&E}lDgZoeGIc_PMmbfu5v1mrfZhI=~FLYRkm-=$sflUw#`PMMO+)51M7J_5fV{9th-elg&?v{N{X>2Tx7Y7osyTA z*OuTCe9@UHp&&rqbcO-M=Y#sd^)Rz1&s-R1+x(Pd$_Eb~JnRi6r)Ph$YGas;E|Q`+1yUU9XKYo;g!IH^RQPXuY_&ivJVS68??450&)Ot<+HF zXr~$_BUIAloPUgbcx1u>a2DOVRVUEU<=&b@cU$2%Z{k3-oOQt zYaAQ0%o`hG>wzf|Ce=aqmpl5s7Zpc#_&arc*epNVTS-6}%E#Cx5~kmt4tHr_fP~w> z1RCE#szTz?inPXrXc?KKlxx*q5zW8NB`GDFC9=^lyDGV})lX6T`0*$KkB&zNtYg7P z1n<4J_&z2DP2IpCM0B0ZvRTOnS?YkMfyKuwu#l@G_s#Yk`SHp>YW2Z8DA)wladQin zE=_zT;Bg4aCSADws`%3zwN@@A&$kbEqz&P|4AO)S-r1mrT#8a)3h&|wwaC2|;Qsuh zT$|kXVGZi!dyO7v=yBdjlw}q*rkVNmb<{>$RL1;KDyrd*P$g=z%Zy`{LnVJNpgNoK z>KQgDQV8^|-^mB%#MevbOI z2T)M&>8Y$DKf%-=t*>-uEFqUoxT;2Xb~2e7vji0kzQ~LY_cNcLpUL@jRh*6)WmC4K z7PTf)AqYT2wmXLv{p5)xP2Jr++r6*jNMt(l-D+Xsb@K9t0OW7pyh-@sfhsc^he>?+ zP_@0i{lK9^n!o=ZkvRI`s+dDwhBVlgCz!FMSWa=qQW4MV^|#66Xj|7l-Xmf9&W?eC z&En(p^Fa!p*`#8)DCnh2@*u|r5kYn9q&ecCMnXZ$ky6t9-QCS{b}c?wp=)SwN=m9R zBc!}WP7)&2bEr4o$#>8B%k$RKn{wUs81w)v#<&k3beU3oAVv{Zlk;C5yIJ@#?(wLV zb!^7AWwQ{$atsZ;Q|v`+!V_a0?d3ve%$^hu6`hGmtus%pfwYrL3p>v7+x z7o@xhoFkACBoAJ;0O5=R+MY3vXp+)jvo}#YS<>_!VT(!`Hb@P1SPn*RUlzy@e!k@n zD!QSoV={)d8yTed$^y}<1TE3d+O&OyBt~ghd4Q0J^>>8%mdj~k;#^%Mey6g%3bCvj_>}pw3vUnFY{E_MCBa)Qs}r>N z6}@tW+rjBEe|~w(Kmf0`k}e67dMjmf?AU|f=FO8rNd=%^0v>*BY>a=??@Gyvet3+e zKoQIRzLVx(Vp_S%Z~FtJf^}eyyax&ekEhidxb^{E`2;SBlL#&`-M__3y8g&8PFa?T z@Yqme=+Vh2ax9bAiSNF>UgMgN4`qUiA)v0wd)#xCfxhkD5uULM;FR>b7gz{iUz{iCSXioSm=^u^PP1QlI`3XCP)g_z?i?F}ap z41Kxy7W9cP7)btS&z=>vJUia!^XKCkatNBo2|AaRm9=3Y6*vbdyjn2S*U9dah2ryl zvXs06XN_WEOT+DKEF17;k87<0#1a%5!^e8pg77@to!1{WHL-B;8+4Q~uOSOx0r|T6 zXiUE<-NSw=d6zXF;@@1wNM_=#Gx#UpMd}mJ>C>leG7|T+0u!vGH9S~^^vp9yX?p}9 z9w?E!USor1wt;8(2Zq?Gt3!vfu?{1=7`-k$CC@;50%PdQ1Gxvu*gwd2YG3K??QI)) zUgGwhJ0en2T2~itR39H3MZMbA>5uaTE$cetEI@Y*JdNpzd3BJaYB#s6iz2(NCr_Qq zPDo6tn5VLR#jWDcoep?E{pF&rGhfnpgx9X!hvXBhFh1hw{H=TkA)~5wj1A+B!Hjzi z*EiF@ya~8+=~6j?1K>jr`#*8(F$Fo|i8AX3=omsZ5j=(Z?gk?<@*0rPLQ2|)^&KX>lO8u7o7gG*;! z^irG59fVCoMO77jaFHhnWrB||m*R)J^No=l$aR(f?i^h5m4E6ooFgLsNAcD2<+Cno zrx?VySH`|QzQv;V+k4jg$cqXf4G(w*ZaDJb_U-vcHZ0^@yh#Z%RK?>HZ-r@C?CMzT z!lBum1mJV5^X~Vacpy~Jyzmg7f0OVsynbajb;Pa4A?wEMYR*vk{axAL9$dw;JT4u~ z!K}@x>y!&6^*hrtr_o3-2l#`MT&l2bqQh5NYh=1v7bDdb@nAEqUM}lcv}jT6$jGS^ zW@eUgq95SNzdohwHW}FTZC17pu2NORF zM0zsaDxwcIn##negm-2C?%9xOAEfC06j5?D4Wb~w!l_JTK&;Vlb!ztiR?N*60wg6o2AGtLgFIA0q@Fv3Ve{*R zJHrFk!m_PSD^p;T1@wKfsS;IC2zh|v%+>}kasYKt3MuOfBBu#aEk}*L2BV3XN($~F zNN3KV2yFu={Zf|;3JIJA||Ejw)Q;DYvnJuWzlkz9*1=z#i6*x|39!!T^Xs|dI#VbgvpMARpmC!zGi8|UD}J(kGpTZeU#|*mj{}It ztCYjQ_oKD}f1VH0>^JF&zd?;a@W!0?cq9T?dXbty2^`C)M}gKYJ#i(?y6y>vgbLy# z*YFxrsBp3Ml-;D34O&EA+P{aAb(|7~C<8S{DQyQC0ohXn4^e5}2dvBBfJMX-=DroU z1UPXcS#BKiZpWSE-NkR-ILPyiI^j(3L42$%+?1=jfTF_okRQg2`GCdN13Uq`?AfV> z5Wf)fX!~a?2_gSp@QNq1g>luTW)t^=N<+nf_!KB3R*Gse6s&Xfzs*Ii|K^SCn~>-OL|I9mmI;q z^VS^tUSY&zp1@nEs;#XZz3q3JItm_P3{8aF_u?gU5Vr$Fb?8X>L_C*we*#kbzMtY) zrg}3foOKAy2v|tVVJtZKK=Dy%aaV?gTZ!61OTyAqWkSqm!NvwTcjfHXn9COJ%r z`ZRkjceGn>@f?ThjO1$LP3x#m41^%rF!bfi7eXMzG_c(=e+DE3^?uCm#+1tT+l@A^ z`c%XkfVnj^ttmGkvY>t?mwNn)tVX8dz(UQU!c>2v!VSPIaP=C5A&U z&z%7tGNG{xRSJPz2Te^)sD2%qZRigoSu|8(!Q8p`v6MPNXViIt zysVP%Z-~@N)Q%_WU!x7GT2z4b6DX;h0Rho~RG2DSwaS=sl8bOStopsa{Lx5LMD+o9 zL=6+T_xiFU@wN^Qk4@j*y+3cQvN;G`Qo*2n6Q|WZGPy{?6pC3*gbq%x4Q0Mp#O4{h ztxe~|HcZ)agMs7J&8WeiHc>=5H8nN&jz_PaK>gpdd$&1(ViL{YFtnh>bo|v~N+z7<#J_@2JCq+=K6-EKo@@JaKxT zuV?T$`8HrS-n@AewLwBU$r;>07I8Y1y)f5*{^G?%>mzfp7_z(4#J6wW5ZSA=HuY06 z*cZtY+;f9&H_MxBJ2|oXjrB<$>hQ1oIIR54U%By0;1Yx$jeXq9sidB-*Tsp+JmQN( zaSRkprqs9}d12kQZTc0pf;)9j<2&fE{5+C{_xpG##;z~P+jCYlz0nq0LpF(d3jE7$(qh9qZ7QxGFM~nV043Ap*>9+$57HqeuTSqtvNqA3!$g)V zN!TOL;Crm7>H&E&5*lr3JjZ{2E~cZ-xGt!e0#nBh@b(%;Mn=(I>({R*Bmq$}5YyyQ z0Dzc9wN0G7!@;>z}XQ?WRO&_3Uw0ubvG z?%i|dpQ==;1KlYpDM_!)2ZO-9+#p=;FBvdP;OA-@I9^s$UXFe~7y(Fs=AgvLagZR0 z06vq_T#Y#mE+OR1WU64vsVzQtOH6(Fr4HaJ5TPzXEAfdXQ_Odn>|^z26mBJVH}6`j z98wN(kSI^Sf{I4|;FgIZXkgIMx0wn_#qA$d4^@69vThxqk;SgtlPMo2?&-fB>Hx$< zFkguvL?khY=H@Ui5MX&2AR`{*<&VsI**$eS<9oiQ_xP{P2sF%?7Gx-xgUHrQWe zJMZ6r35uZJm&M3Hw~sF7(_ZECl?^n7aDr@mJh{mX@rNcIe0c8MxqNE;2uxoHKrO#} z!qhYYfg4_f#Oh(?*+K{=d&pvj9isMOOR+vMc3z$Be zCL%&4kd;Z5x=uNV6~+BdwG8qbVy1EIk{d`e469my@}tLiqiPv|p*YPsi04O7&#jlo zKJsIw+#-wAy$`4aV`{1-9Cl$AWnTA>cVqoM)KmN;>fc5XjR+eB>xf!KBRQN${WPh8 z4==&Rv1$Pu;$FOXA(tP{jdpvSs{ABSYDC!WfB*}uL6{_) z-F!{(gf3T-d-;vrOEI|@sK4%(x?L^KvF-PGY923UToe zquK%?)|J0*{_)YmDTdC~T5a-w9YJ6jcz?z5k+c->?>z#d8#WvwXDpZG-svgSxY%M@RaudV6v^-*T#46Q66@PDFA7I0k;SvaJu1 zR27f$EO2xG5}-qzlfkx6vzm&Y=x!iukbBK`0uZWu;ZkB{EICrxgtz{p3s&vDcBA;XI%q3ts}HIt@5Jy)(> z(**s;b*IA4L+qr^BLnuffioyyql31KRCPdRYJ;RFuO=Jk82V5$N*j=KlZ`&UklTCqyD*mncFGDi1Y30eL4V^rBm~Jl>J+8^cBb zPSL+ADCe{vwFjnw4p2rF$}hx!4bW;$V)M*oU@TP_{5+5N4w}TigpBYChA6^ngy>jt zdg9diOP7k$vOirBb;4AkBXZeznwXdn<%NhR{!ysZi51PguhvWoOu?77Hd09YN0liI z9|HfI3UaEAzxrrKy`gt>QkjN092o!)#LU(kt2j!-2v#Fbq?(0$rZ;8upmJ}Agi-_A zkLB4BlM)rR`@+$6n>KyVeMKY&coC{|Ty00;=F|ky5HJeI2Ck8~iQ%(7T=&G{me;_? zsYpFEfBYPhTq@|F^&%n%0L92`fL$4W3?O{?;y&q}Idg`X3c&9I@3aG?zDNEh^(gc7 zM-mr75LRoQ#Ts;R3R*U@1G4hB#p9zh_xug;Py6cqUIz|SPxT{e@YgQ^;(JO_6q zif{y)P((z8Ok2zKNK3`H);8X`LhQXDsBb#4hBjY)xiYbuHKed@ba*42*}%Cen;)m8 zk&=4(_LHha*BTog#_fDb*eE2V#KXe_Q>An0>fZn$pL!0{;X5S0l_`AupWVIYZZF)# zi==1)4+sGrFkHzI&hf(0I9zTWxY9@k1y1pjKX5_z^NYendPKIf871)@6$FMon^O-- zL>Sb*A<1F-^|$~nU0vNT;^wiH>tie1-3{$ee}h>s-p9v>&Q7KkC8jD^`E@?ZyRZb( zuR;FE&#R<{hi_-~nl&t}lnPs~o?!lJHT{q?THBDah%7^RV-kb$0W5ZYDf(^VR)E}7 z<^GOnSg10~Nm&R{vM1?uQCXQvsGPGp@|P2YkArfYSC6~%$BmXOS&}j_7jOnyj|GRL z7Rp{^K1%}?$U;QH17$#Fdj4REEwam6Qon|7bJd1@2%$rmhQT7b=F`zWed2z1hmVKQ z=aZ*QNg%=?CVf?&hbwMF1jaIy+E8f`sYS%ab-;+SBl>!yGcz+Qvi<#k(jp!HVkRTjCLM$P2S(xlBIi<3laEup*~XET=Jr5PZjvgYvcp>?HRs8WmF7 z+-wXsKnHveh~5WB3opcjiA(8D27^IJ9;_sYuo$$uT(`8RgI|}DbyPJz+B{y2Pl7?M zM3R8*=yyDaIDiPuYBdC-&rWhE#*qHKYhJ?k1aCMek03aBm6+Y%uB7T59#6Ii&Zy%n zv>VM0&C+CkwUfCW8k&sNLhMHV^Or1%hq-PqF@;>1EtmqH=16kQ0b_R2i?tIkK_k2U zZNtKY(Z-)4fIzaq?b?hIe`BlWsSZ1t1YRN3-tV!Zj4eEkjGAPrZ+4*PwXc9R2C{}v6aVVptlh&xU`gnzg}3JGoKR=P!*&gV#34&(m=ArFIMlU zix`$Q9A=QmF?pP-mk0{BX5S*@B6V$6|--JupS;0XgFu)Tg7|m7Rk5p zwW<;k97=boT-T?USDk?v*hKV)#%wrMk?&b^bF;H5^9G^tFrEo!Wnn>EPFxXQuc&BD zTm+`>Nm5sdZYA@wvi*;LEvPO7}&&<>X z$Z(JgP0?rpxr+)?OH=c+oO64x#sd+B($Z2FPlF$}FiD^#rYhUnlE8(G28XL;j5u(j zV7vq9R_pNaQ6W_ev{pI4yAt66!_?bNyd>Tu%~TM^6gELDF32r!>5S|%d%>!cq$M4^ zw6|@hZ{VM$(jSgVe=?UF(GFlUiu2B&H!l(~E<1&XcKEOsNU+ra#k9IC$Jj*gUqY#7 zr}1lKKK_oKJ1H5%m%UkyHab8_xdtVJvZK8W@a=Cu+I=I$8*ps}9+5 z{$K#)*f944=n1+hme;H9iFlk1+k8UDQaH`c!rb=4I$VtpJJ+5FY{%@Y(NK}sYOgv{ zxTzP;w{PeL$>YjF011bOTGn9}64g87tE=A1^OJ(*v{> zO#pUPLEcSSEhnc3!}JV3J|YAXEQAVWIaE*QsbNR}7T{S4Ye_&RCL~QAo+M&70gr1A zErk(wbJnzJ<&cGAm)hp4flI844m3(Y(nWA200Q%U2z@s3Xj-WnZsVoCD=N4xZ7Mob z|9yh_I**xekQNdw)SkGEBbRZV$%Z-FC|xw6JQ7z4DwW#Ew$Brlc6~qJsu3Q_ z!{Zav(W~(=_Zglnf~q?fAj9Fy0f=1ZFJ5G0mR9Au^*9x;4va%4v2k5uH4WB)AuR{1v!dgyn?QY_8 z@KB|cdLR?{>_x}Se#p53SyNtY;sw1==4S;O=I)~sWrNwQIyZeDy7{VF>Zd|yBb9p; z7WM7GKxRZeX?_wwFPx}izoT)6#A0XLITs*aBF_2r(rlV(`KY!kfL9@Fk3bw|6t{f$)4xo>> z1R|!LJb5y-=p<4v2hBTdq%1TW?jBt@jZ#`pcn9!lQX8 zRkL41ziQR$_|ioWNIMW|L4+A6%ROlZ<I(60@!J{GjOluWqC$w`B&iNCiHX1n;~B)|aWJRM-`rl0m1rHo zf=s%U`yOP96#XAHMG*f~Pz6}v9ekQgFe2QUmjodI)|_~IZvp+9v>a z06!CD{sJXYWJgB_Kg#9dZW0#IFK5VQQvWyxIz)-L%6>ef$^9VUX!XORh5Qepp|J>| z>Z^O`&>>$l@U-P9o~7WU0l?X6cLIh5K5z{DkLup}z`L=JR4P!6muCL`gV)eJfgD*@ z>k1!9l-)2USJq{ z2`hC8WZ?b^+0==H9cg9Y?vfzvKbv=gJTI`QuxiB^<+;N^Z1MWW3ON8-h9_F^B<)(1 zp!kpk3|=uM9XQk&)wmAC6M>U0JSw+mQH%<>egKg_g-8g6pZa7}yI`|%sIv!NvZ0*SyLCI`t3tX8v znoia`NQ%UG@D9cUqLWE#TMyN|_?sdYTEyd1_wB=@NK!?jEQ^sPOj{ z^^-#^5Vp;%jggYkPx#H<@J~~i7K`+lKn09LGC}ffA5E>nGm2q{7gI4BLBlj|V}!fhFk z$iT{Gr}P|i1}pu1(RCG18<3?zk&yXyvd<5owL1xA8w#Ko2SInLdLXuZ=lR1l&`?7h zt%NK<$(yGMk%ocrLWC9dGFTA*C=}@=p_58H*8mZWK}-gMs`f$EsNB}m&@eR? z4WEw#j~rFd1~Ro^DsIKdFx!d10T72xCtLXl!w;PI)5QYe=Rl;#oE20A9i7DQ*{S&{ zq$E)s`F@rRDe*@rC2vNMS2%`{N&4x4v?Pzcm`1o$;u!bQGr|3x+6@7Sn3l<Bc?4uwPE!qB|)8$^t*8?WiPrBiYgDy6!oxwEPW@-I*(W~Jg z4iMo+`u<9vptCA1JykzLdFCQ9bOJ+g0_7YKtNfRFRZU6BN4OpKg37m*R6|_<{H6TBzxi8EI67)TYus1J_yJfs8jD=^AjZ7iMh{)M%s=@Xm%K zpXlCX^M-bTQ;a4+p%D`8@8LXq$0xbc9pmW2ZyH3*Ogm-~0Omg<&WGgaa`5z0z7$^x8~(XW9RO6x}E? zYzS8>_&%H0{umA)(=szNr8O#HNdPx2XfdR1p~!b>ER1yrG!Fkwbtcfxu8A%7auJq)D70d*JW{`{n;wn7&-cYKt>jl(!^= zP}Bv$X?T7%4RG2xT0mj9STEPP9Jy+(8(jYMLR|<0o75jmoSuY zK)%;t841uB{vE~=tXYmI8b86s8?N}=>qYF(lE@+af_BP(5L5Ni+nm0sM)sTjr(UJ! z8#D3nBfQ{*X-8s*V;^%1yvr&Y0&X>Gc6N>UFLOGfUD*6Lz|SzxPRxe~p3o(v&H&^F zt-1hQ4ZLFNU<(7%;gXDsh=|Z*vYq6dn?3uBH}M`0mD2)b^Bt-&FVTXuK$=U<->)3S zaw9TauHkP8y0^%HSxH+~#i@~2%Y)*1QRw~F{KIiB$~mm8T!SS^8i_#Y90t=CerMs3<9kZ zS!{KCRs2=V6lbELAEtrSWb+3|khF(&nBsIXwQ|XY`)CGQr=VbjHi;iUevsT|(Anlr zA8E*PB>T!BD3FI0tH^H(N}kO9Lu+nb;9c?nc7W`Y)IuQ;J8`m}Uk561h^2GK6t$G<~!zEr%V)Z~- zjz!Q#$6VF`PT`>Z%dWwPt24vC9)n#%4*OG(>W1iqsG7N5as%roTnZ%R0}vVHpd8Rn zZ8h2;8)qvFD4`rBSHv*kb~ON-Vw<0J$R{Ak58%3;8R2791Akdw!h|h=Ye_3Zx>fB1 zLcpQn9vqUt6YJC9zaolfQeEvT_l&WXiomJwJJ4gL;;+2?p~BF&NPPL-zIQL4Z0Ufc zmC~=hte5$DP}B?sqkrMY8`yLK%1$zV8?u?Hfx?{bW@Eysj(xwVxZfX7HU=F8dPt>Y z#$zS(5>Gj-U$=zwMt;5py-kLjZn)3UKP*g)mXbOSNSk+L7QA0a(MO|?W)wL66BARi z6Ds1533`t_TDfW!2Qp+RM-l)l-QvZixoB+<6b2QQHEaHVGK8DZDuCai<<2IO%N1YW zY7;+sZbwK(yoNP=c$N#lq8GUu*VYy^`N-qrm(h>|<00w2BCrVWU5_+UgHn~36LCy^nR0$lZ>`&A?)}c0AK-O^NkJl{{mp08ehw#yZ%rN*=3cr z@T!;t2$B9}LpH36M(*vaxm{tH*6<&GqyuqRg0PoDNH`oMNdv3@5a~-hRZ40Pk+-oy zKoVM^u;~#A{eRBlMTi*6uzY5J4YDN7J*3RQy1ONe>YPq^DvToeD0(9`vx^=)2Olj3 z5JgC0%rj8gN$j8ttT2A#ACdzS^<_0K?!#GOTa2qS7qH6$E88_sp3KC>5)lo0Qr6@- zG;#wF!AJ=KZZnGkySpJMBR@1UaUc`@$Yop10uH`?i6a(h?jle0GAxl*<7^jsOYz4fcs-m|9B*tNw9uSUaih zc7?Uj;bci`BffVPrf#OV}X%Pj07%{MK zRf~(6c$G3LX5`MQ`@5#nhyjvoh0X$p)RKt7drZn+IO371-eaMYEdq#Uj6Dso(~Tl& z^&`TXjWt5Jb3mF9v0ISsF+gDx?->aCJ757392@bVq27Zn%aWH;K!*YLd-_9Hj|Tao zhRV-B3dsEp=qBtcL#ldN#~7@_w(JjipVs&MvvrJU(1foiF%-$)v?S;Yzm6Q|nlFq5 zOD=ruv$rNL2q;@*3l*+Q%WwP7OA9yXM!@tr`f;}R4Vd8?YiBY7@eI-FL`W?;4pmlZ z>j+e=DmsOQfU(4%H@L*5#tZIT3DQfM;fxJql7BQfmT9rJVSlStLP7CHvpI)kZH1gxBXN1 ze2$x`?9nnTY;d(2ipXFP=$7 z6m2hbutaMRaTkO$PN2nzY{~@Q;u?zers{q`n5`H%vcFPCbAI!Uk1=l?x2k>o zl60S;(a{t;xn+8W1Ns)-k9if_^x152NU*xjKVWNe#mlo537GAP8KCb4)m>@cQ{v}uq!3fntFk914q zJ;0cit@Jsmgir%^Ee_h2MN_UDNcDafS{#`Oq}y5k$BTJQV$tuhwS)%gT&e+$Mf{^m zp=eAKhGggs{SAe+6P#5$_phpYeBvP40Ep{3idHMerw|V7v%i10gX|)%gq?(^IS~SIc=c(WtT;T}~Ce)0jTEz-)NY;e@ z(D8V<`xE#Kfn8EfPMbVOZ0A(&VDhMLG$mK(32$;-O>GJf%4gEvvM2#(czTVR5TOU@ zofxE$%<6}()c%3}ufUt5QKEVJ(t(u$=c1CQ}mTQxw=x_gz zdpF45D1@K@xkqozW}p*U_+sJ5cteUmk2L`{#hb#gO+2q$jcFkG?=8oUjgQ)#{#N__ z-EmAKoY~s&QxA|#NLs|0kPgyV*U9Ej5@w?3>j*IiQdMDGpYMOORYM)sLsg35Hk$v@ z#h7}P$n^5r;z}mkhSYRyNFi*>3#u%cv>rM?a_u&PRrqC5QFhILv>CBE2)j<${j1nC z4X~GuW$enRca{q!8avY^Cr`m;s`(R~Dd6s1T?iTZGO--3@E#M+t(g0ElK~B_W1!G4z zvM~W54YBcH+rntHW*_v&t{Rcxy|GCmX<8}U-g7M__vZmL(Uh;#+WsXsoBD0x!Xm=7 z#7Uu3#b45U>=bAWBC7ex_uVDc9ta>fVydh!n4noDWoFGQ&9|x+yaZr*;SC-uP{{6d1J@d*5xT!tx^Qr!l!N=r_Mn$E`;APiejg$9X{a|eQU7*lq1 z6dtA*5FV)rZQQv?aamcQQy;Z5G-&d#nKK1rv|37b@{7WlIFhe?OQmrZ|3KZ z9~u5NRUx@X_&dsP5bLq-0P5>Pku&sT(p7vIIMBwnVWer=wQRHl})+v&pV^+3K)e< zh+U-!)JL7wjuOt9K?+LZ>H>U$NiP+<1~qAXndqwxHW^GbcjZc6!j?D@DgS{UoBE&W zu^238Qf=~sRv>;$h@zx!Ba(7p-;D21$ZpZ=^Kpn(;m{80$MJDXG zHie*S{_Qbl#k`MywzHvXbWUdfD{b~~8`^wgVx)Oq9Nz+#NH(j|t3I9v{gD;Or~q-yWqzn@VbDs3GE5Nuie?p@NwJRbhQy09~= zFVB3BMBt15iN6Rk1NMKbrA<-_37HsEl#~i&hq-hsiLhYu{{7Ype-d4!Z;@DX2+@V2 zb~TOcb`Jh{ z7h8s~&v3AhjRlN2*m&eNmtGixbT8%JYYtC6zK|yx^m8Uj&XDq)cK-!8*2*iM9X6}E z2dNX-p~SS+X@levf}9C&0f+HOi05pmoN&yLf)?UJkCHP*wOIWb6R-Wb-hf1?t&FTG z=Lq4dWQ~xL8DGM?A8-t*j2q{q07_b7q$PxizwF*2?lR^F-m$~hJE_&Ymz-E~bGTS( zJ^l>D3W&?i%`K7;s)%QE`=zL=`8<<+4jLJS30KqqaUQaEKY#stKt0(^iCfji;7gTXn_DI};CtcJf7X9vk82eEBYiCKbk6SxdUZm$uJ}#~ zC1GxeAh9vC>g)P%3%KVXQR{E#I8Q=tc{zEJ?D|CR!CV!AR}9+=={Pw#B{ymOSca}X z{y0>Q<+pLH{r>1qMJFwxG!y%=XyKcUt*ljoFTy7VZ7oWq2WNT!d^YY=u!#N$_xuR= zH-sTe?dNu_{MfV;5q=d;lmtcgsJ}&8M%T&jhriZoGQrb%)S zrF3|(gY^H{>;Dq_L^wVD{jQB`o@D<^N1LQH+}O8BGc#pw$L*kXjINyuNCSKrPhesF zX*I1;IvuteZ0(VPZ5-2-TPa`Sg`rMf`MWdoEkg{}Dmd0$*^B;c;w3$IgrCC(LDoD$ zXV8fyC4?k%|5x)IvB85DB%KD}DlC8{`DGoBM?VEW@$WW)LFh-@0!*nNI!z+7(0{Iu zfE>CDdgwZGIaQZ{BWc8+0FnxCj3ygOfr!yT;RQ<~OS*9Lf8pT)vDeYy9EpH2%Lxe) zq<|NWc!_XU$%YehzoHbygCJX;g*KIOqucuM+?jWT_w3t8JPrXh&GxUBXJeCUgVbF+ zcRs-ml-RWuJ`SY1hx|OoYIBuXR|p26zaen1Dx4Ta2Zv@~o;r5|%HM%nfjt#e{L@mCUk`V#l8Pk^Z)Yt0#R+!o|TQ=kAC%* zQE}7BvqjxRc9YA7vx(I?G@FL>zZw_%>*2fu1cUi@GaTVecIG?sdXNxq0A}8xt+rus z?j=F7tzm!Q4$nM=rAlZ=BZMu&Kk@4zyK42JyG#>qVE6{-W0w@L@yujTP=4fp3jl2D z%4UmUCmfFlrwT-yum?4P5h$}c3evMzS~Z}6BVAr>I1?(QmhhBl!ClwH471&-T6-rM0lP6D}W$;nv+yCbqGLS7?hHs z%m7-=Wr)F2!2R2b!yz(igc8m3E92eYN;(=9M?TIbpMq3R_LagTfinCJEfvf&lV_6u zs{q~}A}kRnw&mrkSGT3I&jA*bjclzU0)UuRr_<>HJJ!MpKpZ@h*awa52t}{0FdMg= zKvnsW{{$oBYTQN$M%aIX@D5<8{G&uuGIx?DFl;~nt!69!Uk73vAL{QGrv?4mjpzaT zzO+$QYha5q5Tru1AsG8ery1EgJVotKnHm0%Xo3DYae|;Tfc`7VHof`S8kJwhE`n6P zXiIf(t|9b+eBTEXB2o80QrkK{(xynHRKnh2f8#qv*Oo;3_)r-N=rkew=|Ts60uv3{ zlV$2`f!o5saQ|o#f|ri;tw7g<`T8|*HX0+~eeoBD@decZJkpwEw|>y{Pe63g$POuF z2BHWcyHm3e_8PdbR^&;P84aD_etkVN-EZDZ|`JrV(q1MZ+>l8|a({D{#X+f0aK>!s7p zbG5ie=MjlYtbfpYh97tN|FON^zw9=oRS}=hYXlpQjWy{Ih8a9ysyV!X%CVK4I-87x z{xBP~^@Y1T-@DF9>i;|h^uR&{06zne_rG|17r379zyJRo8)o9WgHsOK#GH*v-l;JA(hz>|V` z#w}QRZgQW*Q{w<2Wnx!CyCI7LFTri>?Dv5KT^`u3J89Av{!-s9C5KHkiB683Zj$C# z21^*MC2_v)3vsWara~$$UWuH0)?=*;A?-cdJ@Gr{lkMBkwU>_?dG$UK1jJH@FQ=|m zHcq$jn%=QHKW%~9OKp2aNLt8Hg}@fh*+*dBFwKJt-gfnVu2=ARr*?I}8`5{0Js^Fa zPkvgTBR<>m{bDL&h8Few1mzbkk1=My{d)EOH2?BX%l(JVd*0pgrB{ENKKOK;13)z$ zhjY@3TnCODgXa$>c}}!#ODBH^N1ZSu7efp}wq_6a9~k`0t-szX< zl|OlO7&;Hpt7r>&`2SL$3y*tHQMU27A}VbsSeWl5UoC~&OKWCKwEW3V)^E_NEu1VV zPgTCs$Q3)lwol4Y7_JG)7vd!AoL^Du$;6g#-7UXEoUM5&%2QU|0IFi=i3M5uQNj4_ z;km!AMF%H)C21AGkQIYq5t(Env@$8}Lg;O?LRr+&G*4JP!cgjWO4l?Mza^v^t1R92 z`PEA5F)Mc2v$7sJ-&<}f=58;ino>R|jbBt$)WFjAt1~Y;ciB74-@((#=~DR~AVggX z%1g2t4O}6@fl%+Qw)oh`ad(R{K*`WILkAY|L7SLR*KthBkFL2ZVOacdrq0RYK_7ke zQPNL4y1lV0bzV$KVY$z}7flJ_PTvO`KbL7%#)NL`utna&mPoDp&5&C&uXV3)={EDW zc7)=zUj;mpNSUIY9^!Ade)t{h8F#NZRy*1l2r!9Q?sn-c-k5ljG=$+IS$Qh9q}gP| zNs}`BQ$=x1Fs)to!qk~AzOwQzPl~7~?aRA7x9NGTaq3TYf ze)+6R!yh)J4!THpD-pSYFZqQ;!rAN zgCE)k_L==k>hzM-B^(3$=>VI?OrQ>Qo!xM&;2-(zKi40LwS}wk61>IqY!!z#1eeD` zOthh!W!|*=kB4Xeba&yBxyI1P^n}G1hIdVJf$OnN3V~ci4WyaaZe_4rXsKSd|6r7T z;O+Aq*xI`qL&VAHS@it^I3*?ejP!#f1(h-e(0>K%Kn}=qt4u>44=i;ia_4I_z)p(K z+b!e@PQHLYnE^0UU-Y9e-?#3oQ$Bm|8DlPUvepJ#B2<6r&geUl7FjJEL&AVInfoAYhljf3e8~V zk{6B0m(-PN7}_O-q*OhS^hF!H&Q-JrI%-DFcu$kpGR}UI0>KGVgGH8;$t7*^)WQ}M|22zIJ0pw z?$q{#vZQOop82hB7k0?gNG!DQM1Hgpa{f?k6b9UdMY zWSNYb*6zZrP2V){9f#ajdeO22&_pjarUAigEnG;_oK^ZAX+kPC)5@!PL|>q$3Ry-E zmK(;c6bU2n*V*^3O`_*jj@U5)3QAV#S#Ih*(?yr`453T?{?OiK-)e3Hkm0@yhhN0k zNKJ~VzkU+1|Hb8`2O=?*Fl%Z(Bg}#tzXrHqiR*ogU482oi^hdNyy34U?F-LKurh+h zl2{7ROH-(dV(iG_Xx5U-U7j5ZtSjVvEW02LLWA4TY%ce(+7tRfDv=kJLFaa%B#`i= zbW;Zqv@fZvv(}YMEID}o;}f3KQ7*|G>%c&sW#|i99I?xcyHGe)M({`z6L)~Jv_#KbgWmu`OkV&sMJsm5c%&wXgkJ_ta|M$t*|e$RAc+EtSj zJo5>=Z3^5K?dIn{rdlo;Oj|Z8^`th4h{mZn@1Ay4Xb5j2Igr4oEaQ&vtJ$QV#MyjA@u#M&$}XOdTClkB9eyQluE zyLxu^1NKZjnLQEejMyt*o%yVFVkfgGVx253u;yuELLW!|AFG8NR=TY*cEEL!RjyKk zzg}4Pj;^JY&N$SJBp2ICgKcj+uXltG(EalUmx8k>jk_F)(RMk8sar3dDEgxZ*trdM z^{94~ya`9REmSKuPBgzFx8L4lz>nKTBA7aM@uEc%&O+~Uc`&%jV%xXi{e~V<)UX&z z{9ze&KHD~A3`WR)edBqBN&i6|w7T7fo=)oy*mn7keo;0PlgwLCdr?rH`9o%wG4j8w z4qCf|b{`pIZb~Hu9G~;>p_)hM5?)*H+n5Ub215zS8(J1J`5yp`k{91Nho zZCbQ|{La~ATD;CvU}q>b&YbhvwI6nyUEy4nhr8zQEkgNZ*jW5qg8c>zFzGySmrztO z%%weg3VNm|q&?s0OD6oM9w;PLePF!8LZ6T-gvy>G;B;tSfR@9t%LXXnSqUX{rdRd5jERL%SP z-r6f@?uL*pR+Q_Mlmx7z-!v}DpvT0TNb#ka_M1HS#o(bu~cCFdv`|Y9sTPps~+}3zG=@-eE@GS2| ziZ&h;ZuBhTr(8rHMLr>>o|J5cMRom2E}Q^u&g|W{NWnn`#)Q=6sxZ-Wy5;k#11TUX zjo*HXBPLG3H_GXjM40%vzQ1VPh;s+n*&cK6{Ib5IR#w%e;uFA3$JHl4iO+HcjUg8n z-g%OCjKh9kC?Zxavn^bSNi0%9hc;k;e84wDm>KBilTQU>CC`iX9bV#RubO_w&JT-Q zZ+4EKLCGqu-IiNF`;Qxdl67K|bqmQV9qysJaJnUrgzML@`&6$L?TMS!TyBNUm+0@> zSX*aK@t~2yp?F-7@5x47(*oFLx%d|qhCqAiN08CM{04oPLulWmsIRF zW}P85P9w>8JOiN7%8}IY477RKu10=O>g4?o-pvKNlDvN$&wyC8a?}h7yA#zgMx!g1 z(LxToB4e1&hd?iIwNR;gbMGdFxRakFMoCSvrh^ky5-9HYvIccB~%x=_W3IZ znEecHN);!si&dCSNvnIsa(w35oL?BtXmGt*vbaMf{=EIgLraU(p0Ahwe z^hWKBE5hSwl>{+DLQYkrn7O7&C!OzA?enDV*a2xWNuCVRVo7#RpFXXB6Tu3~Zz3}l z`Uhl+Ic1yTter2ZPzS&J;mlbmvnIzYa{t)=Npyta^?+|sFWx(E9XUxtMq!}pCP|Sc zkFQ9_dkfLpuQPKTI&@~wFUcicNFK39ivNAxci&yFZ5bxkPuq?i6NX=;DrOx`G8PNYA(*o9;D3MZXm z)J@xhQ^JO%dEgSaPRd zPZ~a)FiGcRR&7L2nr_{qs4G|%&Lhg#0o%}Uj=;yHokvI~N39kJ$=FPW>O3&0OrxUBATL;Somdd2~^Orj@V?=`skaPDwFqD^e2)G=Oe0j=;b1!%E z;!E#7>Pi=V;=sR+N1YU*Xdz6RPFdRu)GjOv8#24Rww?H{jb;61kulweOj%m1MbS9C zTEjGua?YMt`PrrU91_utr2IL5;)t)7WSr_p!x_#!yyIhvFvh-gyzT*PY0*#Fwe0(k zYFz2{=*g2oVSmjd`o-U8!q4wt=XZ@>Jti4t|lGcmy?3ZFrr35sBc&H^8I@R<#O{@S99-^sm z5;tRWEv2fF5jE|V)SACD4-L@#i+Yw_sP&l69EE7BUuL%`Us2D^*;J?sH+#G6Xv<|Oc>(|03h}$O0X-n-TYXS& zr0U1tuH#0W`?rLfvz=@J1Qc#E6WCV0TxXjCo6b3)5_~u1 zm=<@sNTmHL1eld2rs;j~+`W0pRMQ~2blOvLWS2r!F6UHPp#b&l&C`*K@OD3g?6w8+ zschpod!;JAvx9@JEu#ih*#ncD&m+H*0|W?tu>_nmmdeI})t$j9aCKVu`-I6@NFUoC zAoz+0q|g{;g=(cZVCZ2{4A=Fh6cKhK98d->?z@-;wWNsdSG-2VkO`RzcVLLzlz+#% z{KFLxXCqn32=GwUairVJ5XS{fTaZUn>qSIBU(SD0b(#c}Bw1lmFe*z| zkM=vQsiTf(z+dlEd`o;G2PAD)^8KNv?FKh$lxuvFD@GyMGQREPMeAVs$7d(+-uZxZ zY`tdbjyU%KMM`7j1zqXle$orYg5MNcz;*y!-oG+5LFOin#?h zkh!OCEmbhe-i^D;5v`V9Q!LvO=ZA)c__WdxDZz zZQCC6w*PPMF~Mc1h*0c9W=fT&Zu#l*w4>v z*6)|{Ou6ZO_15}n5$j!E<8As58FGWb4;*auCfH-~y!K zP#QvPF;$w=B3-fWvh-CUAqGd5oN%{|S}tZ4b`|7YE27$Y4H#m_B;I-CWXDgPa$_ch z$+?My0ID*M6bXqYpNQ2_18;cw_S|29GOo&4ed`?rG40_dl_u(3Yb z!S>}T3AxR}&J<{L4opRAHx8t5|569$|T6}ozSm`{E+@+1zl2+(orgHXqaveNJ zPDVVkobnXzkau?`;t}-ZZ>0m7szWLpwIUE@LD>NN8_uc;$d^MVRYB3~(bg|P#{r9L zgFs9+7ob$o3TPF~_y)hPz#+4R8quj96+Z>$1ZE!+z|dhqo;<8HcMC-na7Fs)^Y%^a zN-nHcyB1pR!zm-cYy%O0Qg8&O2f{hgBxvPz8i|$)ROnGPD2dq;vyRe>*AbwR&VLL_ zBEq4tmWEBd znt6lN)3CxRKv7S86gts5Tcy4Xvq84)pK^Nn z$KQR}dK1M``c>%M3g8%BEd}nluxEq*?{}OV;~GWZ`n=V#$7|u@PC!(czIU#`$o?c0 zgPL)$bYou6N9?-PtZqJ8F+R8a>x1l(wXLu_|Kf=wZ-2LLxF?tcPNpo&>`pn)l7!3Z zxW-N3{K#e&<2epZf?-(eb5dU?U2>1VQRF;ye3idOGDT|IJI>HpB8&gwa6Xa`-YGf$ z{d=xuKfdR88WvB+qgpNer2F9zEGDe2@AP8QZBBVd`-*wwYYv5X?@c#L_=!1P+qelT zc(e(D{NC{N^c=co;l=KOCEvnCEkh5j-X@f$vgwZO#*TGo{^S#qdVXRH$~3x7nV2HD zj2czErS>p4kakH8h5F+zG&>cYbBO(&MSDM*J;gXiXY^L^!=8#@QZ54oF~DQklrc2C zgGtwYnY%z?CaEkAK5sfI)6j@xjql~tWpmWZ{plzpcH$P5&s~7T6h2<9H%>06c`8dw z&f}qL$a0-JUtr|mjM`FjD^-GqAkSjTrxDoKQ~#VuVN#~}0Ze8f*E(ZvcRrGuyo6Qm zhB2@vn#Yie$_|A^65S)Ad5Zu5D?1;g^8cd!86EyUa5re#l{vLWsN_HXFxE@fLG+}&AK5hNEVzv>paOjboriX7)plvgEbfq z@t2dDEx(vPX{YG`%Rcs&(ddX|NtS2VU6uCuVD^{F7Xl=SV z4f$hY?zhaQV<1X^2dyuZ5`|sUG1;eIMhe)gG^HK<2f}XOLjUU3sv++f;$x!_3N)6F3Wzw@a~~Xv!S|^(^K!g z;fU4dYJfk(rmo)Z7fm<9Xqf8J#QvZl(#^9mUCS@93&S%Lt&nZV&G-!bt=^2Zh}^7C zH>PQyxo3M+#0{jUQ_R;Ex*?a|Bov|Y>r_gQQKF)ax>Yaz@e^L;(^0wb6*&rL$GmAc z4ALX%F4J9FXrQ;#MqSiTuU!kGH}U+ZQU`^_1v;>2ht|X;zKuRlG>uuu?CJyfSTY}F z*9~O=g7-V7pCQ+9jO+HI+zZ0qYsjB`r2FUWVgR=+I8h#F{4=nH5wZvz%?M{p12J?W zn_N@o^4S+GpvaBSUnJaz&u-6e9@Z`CPVqNlui+7f+z$Zdx<0bN-Dz>fZ+sDUrLgdj zW)y^Kl*%;w%-1_O5<;n^rUkrjgseX7TYUgjWs>HW%t@k*)|{ln{$RLB_1&oOnJCJT zg04losqU_$fpsPfQ0tbVp4}5a*YIAQZu8=xFt`vnTVKEMIXCs24bd;hB+BFgMHGdh zs4B45VsK9b?ONkc)Khv&Cs#@=&65)CcLD#CPJ=)JPCRmVQIFYWHgNY`YR;$|Ag_m&=sfL=^& z4>CUcv*(JW-OHW4)p;?6|>y@W^hIm5CqU(-JS%FSdl ztNFyVyjVa=9iebR+BoYop|G$}6Hop%t5n9T!VL-ufi$Ba+RQk4{G8uU?IR?8nZzWX z8h4H}k&bgmQ`G44%dnU^B&;Ml`g^8#hk$Zp-$(Os)7K1JOvtQc8kMOTt57SUA@ZL_ zLpn#lU^EZhz4#vkKfQ1*T(7+7b{E<<(_gtj+eW7UO!_GvY3#c|J558LAwyXtS3W9S z#+d3fkroI@d-vEQ7@2jb$T{(bwpl|~N=Q#}r^8ZEoLy?J?F{4s?|fE{WItC+O9v@5 zw9pSsh`d+C=U3U1hhPYsgQpwe_u5`}fiO#uKF?UB$c3iOUvEYNLx1vb+-&obk@2qD zDY#RvShj2#DdV&pe_qX@-}CQkR1KNR%)fs(J-tuS{q~|NQyA4UE``^7W2*w14Sf*9 zfeX6Sjh8ssW5efT7wVVV@Jk_5!zpKUXz%9g+Irnd*V4K;f5oESEMBAs{0e{Tz9+BG ziyrpP9IWoxOg9|%a}ANJ;%m1^iuhdW`~*i|PLVOZw)a)ySF7xV>ZXWR&WCbnzXm6B z5(4p+i<(N1XSy8sJw!}d0UtPU;6Hp@V{PDsJCXpKW*?Q)pQw6~qeqXrhazuaP=VwE zPE-GQL*D{3>=`bP`+{{-^-0#W9r^0eei*>Q2{+uk9D2JX%WMTe@JdlJPa^uwz_-b4I)#tU2`S5ZA3GZLjktA$w<4WvNWVW)6~w&z#{|-Ek%# z!5h;rcEu2bR_e9$t104;Wenl!#mzbIf}?5^7qc&PmuKF|GrHoh!jY<3-ttgDgG$@Q zY04O|ePBKy+*tC#($8u(7l+A8W^t(%5Aw^%5BBaQ>^6|s1M*=E)7;a9+7Z zhyn?j6@|iVw8>ea4)m9vpO|_z~H6kJ6Mp(UFnO1spqiG$uFLh}_ei%q(L5 z_ruFxjx2xHwWg7gN&qbe*5bGB-Rv0lEtEO9Bq>XGqK9FyCHeL#`)#{9JFAk++pdeo zW$ms0W*77NhEw0Mrr~c&&?yPzkqpG3l7Q19J~Wi}9sV&o>A{{fkq-*v>gnZ+r_!)i zXuRuXc$*75=Xu%B{8NuqR=A2Ji}of0=8cr7nhpp~z{w0y@oDk2U)T4}pZ!xgs{$pJ)C^~G)GN6T_i^kcE3NhCe5IBDANH`}RbK$Tze# z2I_ao(_Ghe3w$!{Ac~uiMWkE~?WMy`ENV;z5l2m|^|PPN6S<0c^8@x<#`tU>sXZ5D z+H--hhd9?0#wNBRhL*^)IKheAMOQPM6g_DFdcG6WnK#|_u9CxXjmmC@yil{IJQ2!> zVj->?WFBT=^WqZeT}o(>8wr|SlC^uvXy|Zz#wL1E0Y@It71x%{34lppaE$>7j{o?s z$k1g63=aj{5{-6CaB_EFD_QleT+{n#?2_vimLOL!9F|(i{$+8-_(uI(GQ!B)T(5lm zDOhUPI-7oKww&7(OSF2WeRX434aK5~;NMn``-95j9`=z0&2*C4o8s3>;sQooUSG!4 zqXVZ99ivHZySj1|I?=hZ*u@+DQ^!M~=^Es14gU@sbjJk``tfX>=wle(?<1m#!L&vf zD}TQb*N-^|!jwNt{$jYVkQ*ABDK|cV#jXvYhIGI5+ku=qA+A@LnwrT$nSZI`(W6JV zO~Kss#MnGBnr2FpWOMwPo?5x-39mq!3##gYZC&V&wC5xD(sd&SYFN73yl5htOq{R0 zr_2;IFM%nDXgVEhU)#Js9UHt{@68vCtnbMWX>9G6=_Sbo@`dr6Ze)VuvZF$Gr>*`? zgg=ac>dD(mSiPKe)nw3=BZ5ctiR#9(O(@wrj-gm*@PldkeCw65ryrbny@Q*;EMN*| zGscR>1Nljou~Ig$bz)&Q1X1{WiwRiq@Cc-hw9M)@?H-gP;dgALcxdkInw;#3yuba4hQxqg-MZHtWqcmd1Hfk=LXop%Z6| z_htVAJF_d5;8-P6GRp`OvmlcrCA69(dW#xYpcWT>g)K$v=L}(g<)F4*#mI9|z-3u; z*e{xG1nbC^hbdo0`34{_Pc4ayzfX1V0}QY66eGY`a`Ny%5If*OVYR?OSkf|NWi9M@ zc6UwM^*u%FGZ}9X%@I61b=N1Se4{_oL^o!oz@*NE@Wr6w_t-L;maudXF;#|WbmVoAljxa9GU@a5(H#MZ%EdPBtQK;3B}M{t!hG1}8rIPy>B$?fI0WC& zyW^Gwo%RP@?oUr#M?xcKw>SDNx-J&36h49p1*LMlnublS_1$)wu8(OH6QjhAm28cP z$&fRjcPmK zSY{U_P|95gBFN&yu;}_~-auFshnpZ?72din8dXm!J?Yzr8+YuG#nKrOoSjB_F!>V0nT(sz4@GwB2YO$26eF|20x#Q~A(!G#p5sS_zG28C%R z0Hu?+49siSzB}#e$z{tfFRXAyvBEK-E;~hRSQI8}17(^8(c)UyZn)yejtJFE2gm0S z-A3IW4Q#-dm+?JH&!+A>*)ecy^s-x1CiI>+ zcWRT;;zGN{+pFfHs5e4~EOz3F)spV0BS^2(t+X&ZM?!dc#({~19+)~+R6F4zQZydlqF zz`~`-!Vuz6JS%KKYl3PrCnxP9ynV$fvK%!f@J$y7z=>K!dj(Br{NQz!>n4wHv`C;x zuS!rR&e5!^r^x@*(j}&$NEvhC1k+NigDdi<@OtSLPiOSVEYDlIa>!7-UJ$NN%xAKx z^sM}<&ma~KiGrp~NHUS-3wwrA%c630U|lbFigC4~F(JY1?KoiQlUu(`m5&#XUQmyQ zG)a#~M@)SLvZ-w;ztxsC3n4j)6?m!6Cito{^43UC`Q_qOxj;67*J%)MeK6?mmf>ZO zvp(4waqnJi^sI@-V@!`#uCG~Q8Go%?=aD}i+_Mc@46W|;>Fpd9eb`G|&?;V+;*V*? z_i@)77^b`k3Im2jQHOWAL)Tya6l(WOh5!GUW@?4`w#fu88g^2=P=v=9i)#Ma@1 z@6NmULX$-sLGg#PM9`mnu)k+DQkFA3)^N-F$taiD*xmbX6~9GYbzq2*i5IstXwX2W z$Y;2yZ?VdtHJlTlt{wRC$JYU>G-Hp4t4Vf6aAm^#wvTTB;$2j8JP--VVtd3F1d(hJ zIZ4jf+t$L=k}d6ngQ_F}Cdn^nt8?Pm{Usxw08W)H?)&r|MBnpm$cK7A`F$st@AV#s zK4dpoF9m=`d7P3rJiB)ue$FEI^VtTP1V=DS!K}rz?A-a(p21-Rt%zG6WRKrIQn(*^ z2Y#E*oo-EZS^lJKgRi?=SrN;9&E{CtC7Md42k;AwL~Jn8-SHoInH1e*TdGoVSFh71 z?b%cofpXQkmN?E`y?cO2wIi>y7wdu^+L+ZmA@-L80Q)LPQz{4VUf_xtnG~7#DJs&U zXAE(x>2~CABQT&HTWHJ2tOtB=S z1m`X%;la4o_gSSVeLj;sMA^$Z=)s?D9%zW-V}lVg&7O*Fr!~*^Q_W(9|`Ea@?)f ztWM4d_PqU}{xB{)?5zeTP_nZj$m-B1J8g4f z%|dcVG6vy|V`4%?54!Uu`GmL?hv|P7e7bML{AcHIIDYmKy@vE!=H|At$KSMT*Zr-D zkIB83(m8DeynUFPQ83)gxqZiuw&X)oUZ_#Sg7oU}j)^Chvga(0_~q?7mV#W{oc2y3 z;naq6{`}|;x7$NHnMLC(6!u1wK7INuit-u6>A4hUc_Zg7A9j&Qa{`2YH~>Az^f{4p zt^3J}d$E*y@f>aGS)*IwkpK_CzcKS{bz~`x?7oeeIoZ2iPWDc4WGSi)r_^!DPWvpO zY}^+*rbX<5gRtl7ENX>Zo#()`gTL?kzGM|TzVtXdWiHs9nbvG9>_jPZfo&%V_M|;N zx@58s2Y1l5@4Z9_mzGRAZVc4p#IaMpqp467oyDRS(DZ1<{+&l}+{Cc9uqY|Md-`kW zPde;X0g-P)59>LPQLDm@g}VWoQ|z1O{3$_HVgn6lIGold6|LWFUR3@=rOMvaenTv`}th)>sg`DJUp;ieyd%t)ax zxs-jlCC7GFzkj|EvSkM@o&Cb@z(|{u`mK8px}7UluABf>IJY?YE8BB823#&J_1yJ;fp>ebbw??XCj+oDCJtL>~q9yJ(1+mu3{Q?{I5({woWb5ff& zG0?1$?dvaU3n)E|<yYE)%l*D*+G>@x)NrHop-*Z7vV zKpn*@A$IFL9xcBzcSv=^MstuH_T#nMAFZ}uy%tJTYFf^Xq^BtJRi#+>8aIYD=@PNt zky3M$CV??EH%pWipn3I;H3Mwajl->3=JGy=tq`p+8#>S3$ncqU)#FFlwhMYzAHcn0 zm5BMLy$rHSKhu?`DHlp{doI*_k73CP8bD#cVL+d0mmJVAUYxx+5yW4OTZzVDM^_A@ zKo6bmV`Rh$3oUcCJ(Uux-K#>7OAP$!#fH~mGG=nCH$r&pcHJx_%@)q3m=iKu;ZSRg z7*$Zna2^g)v3j+W;IBtdMN9ac88 zhWe{}F5E*m1Anmc{EN@FP~&Udh4+raY7V|X36Tl{)}z5RHEiB3I5qV2vxul=H~|ml ziAIj@yyKg%zB)Z&S?_DRbp;?5M%HMaF)w`f`V)x}gpP`0#iG;ThfS8%QLcUX6Xpz~ zoj?3ZVM*YEd?%@B-k3}OR&BVf(GzMeCrOfhwAP6R6VW`f$vZ$#13e?zZ0KzB0j{pA z#p2?U+Cv5S6)S--LN3v|E zTaW9<*a@p>Qy!kBKH~+8JhR6%fn)$jmRFl1r|}Tqxc*n6OPOWJb^1A zBc<(Lyx`s>!@MEmj znqwbJ+l2?hW$SMS4;`Az%XA{iBLcRuwawmh1Cmq*^$O!gBRLr_Hrrg?VTp5nnYE<% zn1M-)gwE(7pTBOW5E`hytWH_(OZ*M&;*C(;t7%_Mki|46j><}EIvc!{x&rXT{x0mr z3{vg~x{|`pNoIhS#?I;jAdU&9Lnesg_De8!S7JD_x zBAYay266}NElQY+H=Ou{cWVbnQGupIukAj67D%q9?vhLw)oG!_=bd-Vn7rlCz9`T% z6%fu=KyU#q4;h9th{pDt&?QTp*`pDqo%Y>+7b?u&u}3;l{TKLYG+ff&`nN#TG@q8w znG#FaKHy5A=3$7mxwVS(Vs0_I$=|3gv1%V|jvZ_~7Ffbqh}5UUYZ)2kHhYb(6mBvh zOZk-sH9c7OB4{tUv)-BDaX3d_%zrdp_dlp^bR0}*r?DG&_=fzh!DzliAG93U^HG9C z5P?rPLv}HJqA2$-VqttJ48UX|uM~gBxe;NKc9uvI>Lx${tA?0dU$e+oOK`*|1x!zw z2fD@*1XDNGde&rWO+Cv_z(kskfRqw;QZ~35wqR@MzW(-`AQ#OX03IbN|CXqtDL0OB zF)^wJS+7@VRX7y~KDan!;q46ty5KzsS z+K|~D@U*P^n9pO;3T~rqTB@e<$gabC)F{rM znwAZ!;jtSN5HQP<`Ok{xYjQz7ms&=`0;N%@3TThN!fne6npjlcZcSmJwz*>Vg<+UF zT`j$_EP@T_Tc-tun^Tosv0A+m0R4WZD0A=5ondP_d7yg!%qPFwOQ_&GI#P5bB(h6AM_5jNjtyDBc*yXH)AkqYXWW z1P)z#&^>d-L4z7XlJsp&dI>gfDP!1l9oWih5@eRJCOT!_Jsn{>rnqwIS$B{T05Sh77^=B?8ig;3^;5Xk*CKXdosZn zScP?johBSEZ`b7y%#BNxkDxuyO06~Zs`;|in#N4R=64z~!sg<9l`TQZ`8_+MPZ0kO zHR-eAt}m^`O~p9(X!=?N!fVchH<6piZLEIAxUl?fSXUWAYNK7*z`N}G zz#LuQ>4#358ufwYyb>hl zUowJQqq+jGo8f@7%qYYcN?p%@U-9yY!N;joIJ=Wm#;9e@I3`0vLQ=!A*fc^sC(UTK zJfLx(xhaU7R4oBHiF|~rH*SVms)m%P_ao;H`Ap;J$CH#7N!WcrtbU1U&r*443>PW6 z>1-kqHcNcD1##Ma&!?Nm&c0e7N0$%~eV}2v zj~_?)J!J^m2jop!c*xQ@N6R>Z_Ev=JQgi-U>UStVeAb~U>3mtWaS}^I__uL;EFpsb z`6&ZM5hhy4|L~WEMa9+jjpD#IO<{(w+I(9L-Xb9aF~R-$8=Tj*tTv$fQ?52Fil+Lk zlvi~fmHI~Nm9Rm*Jo<;urP%J}@kO$5a}sTEc`=cUgM~zOq6n!-XKrKhr#|o1j53=$ zZ(b|M21`UsA;4`a3GfMcE>Qb-Q38S5NuD7mi27f}!*4es*vU4GMc3P-wqZCddEf9~ z31>kP4nXf#b8RM&c>ganEvtW&~RTN9Zdl=ViF6JBZu756Glk(fw z?X4o7Q6w0V{;xQkzeM+N%+O2kgL?h#+iO1qR`Qj9l;2)5G=!xw81GphKn*0et2}E^ zg>gu!9cZ6i#OxLlQmktwHRIeFGq#dpd}7|nr3AF>jYDsT=d0AG5CI$3md23SM&VAAY(IZV=MfqbozOQat`H}@2U=QEc& zPV#3vyWBl~$PiRH(ovLpl3j6OPXfg_)#LVOcb3iXp34hl#fj#d)r=7aviIja71pQ8 z4IaDI#Gvd*rfG(k(*o<8g_!JQqM*>ZhL}NhwB8`#$zQ~7sp3TJh9zxfQj@Cfig6hU z<7kanrF?B)eE*kw2pKY3F6$+;f4Nrx`~}{$gULoxEH%#Et0&4B)<>>@1QTqnL$LYX3We&}u84_^OXdO}DTzg~tJludr^JE~&?hHnM!1AUDfc6J%^~fScY=m4?eTO}*9}CS%tx9=z&v^f zS&u79Y0B%bso%Tj%0S6;?wy5wp8Rgz`|0gN(uP_u*SIEG<`PD?ahH2nKD~#!{uPgU ze0)2kGZ_dGWp&Q~^SyiJSoXWZ&}>ma70k#NzOxcKk$YjVAWQD4$;*mMymdEx1;v#Z zf3#B51NnC@o2!*0HHFIkgxwOBia7xz1Z?)(hzQ1I(UtMU&}0PLBcK2;FG&dsW)+5( zg9t~mo3o#td@>*ODG9BfP|);1X6}({#%WHsg#0i8{QbxzDR7sFvRQ!hj|#Erh*WYP zOT!dnS?$Z3O7B?ZsXT5eh)RJ%WcY8@wr^kM)!AUtiZINajLfrb;6iP&h21j@m_+Fv zZNK7ue+bi-RteK={rcwb_MAGid(*pRWr2HAo{f2u;O;pQ+zJ7a34o%W%qpMP9-|ww zb{?ua7Rc5A*(zkf8I*MlAlL#KqD}YiXD5z^3Nu}vDb(V$bU#j529+aZQA-|%?mcT! zBL;nvd~mW$?=%2^Q24_UmcROzEPt9u?mRpvQI@~(v*Bxb@0XpKc2W|(g?5DILyK45kJAnrsq3! zXs55g|u0_lP^D-=f3yI$*iFcdTJm zLs0%Xp~Ca=3!054**>~^gs^iBTciJ>A<};nE__%eTxeN*zvdkQ?mnaGrLhb&?3UjK zMan8q!njQolzR=5)4;;o!uR-b_tXu}|6d|8-+7<)WLd0jVD@uAW<12Qn|(QsWU~j- zgAmR};ZSOHs;V-=V(!Fzbc8;?f4+|cOe#i#zYA?bNMl$u z^h)f&uqf&=4|r_q)@#NW&R9jk^)UaU_K%^p&*7>e%z^i>4_ni7X0|K+K26=ALUIg) zoY#Eb{b7=AayY9e)@I$wYx{Oe0NLwThy8S_`h|_#c`n`lCeVWovtF+35QtoV9XpodtW^mNECNs!njdG5&_0NNMIYir(8zY+mHwYwMc*Y_8pv7(MrpbzJk+ zM>_`bZHo=LHI{R9OIwQ#nKULpj_Vg%NOxEB!uiyiX4C7}sYnb}dDO>O5>TTgz2~jz zvz^9HC}#F5$DvB@{uk{mE<#LbReb-U1pA>UPG!EBg(CESQn?lCUizQP+%ER-UBlug zSeV9<@+jlkANY6Wm_`ci>OOXM!w&ytW=^_s8~fGNr3iL&v+BlpB@r zyl|bMGLfI;7P#`*mEuqN>?J=px%v6kRn3-H9bi8cS4@xox5UcA{0*Q!#p_46%)wvGZJqo#)O+ z&f}_$3&-1ce%J1~f?IZ52oxu~ zG7$d%8QRKKjq0AcgycBT*iMCXh9&VO@7noIJWi>x_wV1g{!6UD-#X3t-{9_AiS8o3 zF5Ez{dNnXa{JPmkmLrkbs6zgGY6MvF}91Jl(}UR-2hm(nvr*jHFL0i1~Y{s zn~TIp7m>o9HMeAMUUkzD9V2G3JbJ*z%MsRUI$JT}bA6|mjD6KWr$T~o0I(ECT(`hf zT%Se|7BUk?sNuwb$=eIW%~WfWYzoodedM2)OoJz~R*Y+;JwvGOKtEJGbn>h90N_=x zY%e_nW80v}SUHjfpuJk$YxL{JEZocCsLEl`F?zvbEAchB6EUXA4uK=;J7Cw{&QS__ zxxFH2oU@~Yaa-O`Mv16x;Mpq)lW!GIulb&R#mCc)gXe^|$817l6hrNop15h#rdEzB z)}jYiGZNMQiTozGi34lN%JJN}bL-pj;hFw}DpiUTh=TV@30LgKR~?MV212N^J{#9a zj2MiWkE8>m&BCK{KTnf~Y<7AJ3v zysL0WAE-X;V8GxzfBS_QGiD?eyPYX!!6MzCIg>}@^5^?ehbyPNSkTHW#0@#Ze~IzB zX9`)P3_O(H<2piLAmC;@OXJdJ3i{`Y0d@T(v4a5$*6k}@&d{NZYzb_Ahy+Qv|aGqq-?aI=UgvBO&1ZT5B<-|y^L935rN1Za~e5N z$6i6FW0-{m{3ZHI>9ue-p*8QnB>6JjmvPv^!Qs_JZ*0&&Bx}7I(Nm&=oGQf36hDz> zq}vY(lN|^wlwyv&UWNWer#2)a*DOL3kSUGqtd-Wxlp2`5lf~e zNs~!br|o%b&fr4vnl+l12Scr5U+C|3a&0T}rZI#Fi^~*>Nb;%~=4fW4s{9SoEnkoT z!hK5lx3pdHNzgF0!~UYP!mLZcIH2tM>B6l?%&~@+Yz?I6gX~ig1o@nl-W@tD&A(mk zU=JvN2-5yjzk!5q-AE;=b|Ag15E#uX4qo4DRG4OtiUy?CARDz{o`qp_UP-QrIv&rt ztd!n1HY4D`oOB_;{11x0ysxECfB8Z?HfMJ`OH!|)4KFAB*-rTGn-`6QgYpPFfBw96 zpQjI`3|8}>zI)1^u15Ehf=(rgFlKIoa&G>C;>GIp`dTy}C+Cx1Up^dX9Neq+c+BR! z=?J4D-HqZt+tFaJ2=YpOA9H19le5UZM;9fne6iHM!aBLkPg71 zV|Z!X>#w51&_po(`8wlW-Z`D&K>QHe$%))tH)4TTQ|SQy`gS~6g-_Z(_6F%?b(UjF`3CXlQU_B!cozvaWc5=$I@#EK%b$6f zf?|V`GiKw^QG_>E#0q%3&ZZob@G=}rTfS}sdzOyBHhxPT2h-{%&8{`BK3sVIw?!w2 zDbfYR3^HD-TbJ>%Q%i_#z6!?O7snaQa*hu8W;3_cbXk|0lI=;)q_G?UlhK_5mC$7@ zaB7TStL{e8@>Q!`;w3HW*&>W-m}_@f8MoaPa?>~VG5eyFX!=RjS6GSqP&5&I*@VWW zrX`tXm*1Uk#8iEbNZvA3QTgB~oP?-Fe{?-%tl(p4UI*8khR87-9UViOBi=hg(SA65wuWN13;ZnKzJ_sY*aicND~oel4O0pi zkTf5!yuI|Yll=d!@XNT+5>x^TUSN)+2-Obgkvdc}%2NY5Z#W)};wf>$J}*J~~{ zj0+NG9c*A0@;38C(@h?w z=HMx<98oC7-1FV@@*e@oA_|qtsZ)t#8*Y43UVi-Ju6lh7Q-u8q9`9CaZOu-DN!O&oUMj8-jPv981_g zRj=_VRKHG$d&eZ@bh1`#O52V;#&I|}L+So{v^4+tE?qR`#*7%a@Py&2V8WqpuUEM& z7{L=*fMBCT7d&`}M^P24+?XIC(3WvXHEt}XbDgC-a4?bidTo$ii#C-JTy^qHM2p5# z>L_MWi03)Ht4(H7Q!;`<@E~c&5>*bjdD(C`4SY(wiwSOrIl4y2;V9&A?-1;yX~Q0tI9ktJG)qAhO2g}L`m_CM$8 zVr;Dbrd00&Z>W=6Mcix$ZF4|X2mOq?ws@_X49z7rLws!g&B^1(&(Qu;A3d=Mg4QKaGPCMXZbNH z(YsO;1=`bj_gwxa5WS&hbIM<#q<){^j&N4gAZKSqGb`viH(IqgJ)of4=y8^Ywar9BI(fE5UjXX>UKdr1JxFIHA~s?h)k zFFiz!nw%iZMdPls!ejt+pZ1?@zr;FLLqwzjQkc_R-c}P+8v!Djxy9xOlxTY8ECR+> z?pP_z;cS+=rm09GL>$flZw`dC)yCf5UF<22hfPhJBrIFT*5lWXmI!Thn;#si601NWtSB=)2x79AAav_vpCo)2Z}&9jf^?0+!38+uVE!byDK z#nB7M=_Q2E;hpO@YBcMxKPa^rwDJHh<|8KLN&>S{kx;{%Fq%+vioQ_ptgR;IF9x`x z5w6+x;RNdYEDfuro<+$~`ooe=X8?{xlWI$ZC84mNeK!jG1Hs&KVUwXH%OPT;E!m;? zJw$%|wwcw@mL(+ij8s_^!BnA|Gv|x1m%5k&VPEdNPpnF>1O^YiC%{D{_IdYDe;}tI zf&0&$jy0BbOyQgqNca^rR&wzaX$i_E7P3H``c0djx4Jc95E?WIDbx=gZAEB3^7x`> z=QNL*+q%#h#I4RZXT#9_T|)>s^)xMls_)vEhkT(HF}#@cKoV5hGSlUt2WwRfXqp2h zW!Ly$YAbH(Z`3GpJj1h)tDSm%kNPSl9F%_=%^}JuWGatOCU%@!KJH}czK4NE`mgY| zq{iA%`P7TrbCcsY{&c>?VS~&;-#%>*oY*t8%c3cCHw3t^!#ft=7TpNCG12KBF|vIG z_)(9T8+v8#tdF3^+oDI4lQUN5=;Xr0p_QsK2vte?W3&C+;n#XoHA9Tffg679?zzoh z;}Z7UZ@*1P1sI3BOM0tr-5xC6(3yis`d3k!%dv=)2b0)XddQ%m**MV>l#h?!-iB_# zH z({EqW$RJ@t&fu#7_<*P}HF4tRduc#*xL$;w_^q^b^c0UNyCWve$$oeTfLe&aC?EHk zD1JqTky+IPubDpSWf)($aafo_GoQUy9iFZd(St|ase;Q zh=ajFORrs@I{(Q!PQvL@egtd<9Fy%K$I~G7=U@chaJMXyzMC$T$+j8}G=}yoSW{)J zB_Fnn8dsnot<*FS-8~k4dQj!O_t z8<&sn4R=L-TY}9Hi7;x^ZF>Fp^Wo@zVG4;L0E8Wpd13zkr{y=t>5zwvq0S;CN$E}D z`|!M1BcL1Pw0y|Sb#bfXJ{q3+>Fz0B`F@QSv5p|Tzvbz9(Ylk1g8r3Tw-VV`@IWu_ zVFFbQFPOdBGp%ybxRefQ9&YQp@TM3vCEk0O6+xNv-N|b{4a;bTVh7?=NF-s!|5oRX zwB`@W8k_Vng{B4J_)y2!gI$A z0FK86t0(p7;KK+o@w3m(A1uNTmKL&#MzyZpha^5dZ%<$isVK&chtV+(Kt(=WMpG_3nv) zBWtH0XhWelDYW6n&SZF0J8Hp~+)vfpA4vy4H()P;=cGcUw=Iut_(sIhlAc%O^@aiEg2f#L8P-~qKbol z+V&Y{TLqJyhKwn?om!|6daGKfy2+#@b3}Ef1L*spV|&K>++JPxC|n1qNvzN&Hoc3X z3h71FQRB1b7AKL#ieI3eC5KKrv_nD*2}6P0+IBz+NNPG-|6}b&0BxvjS(y_f8{f-& z^!>kazT0`|4ac2crx;HDrMwKtc*wSxt}rA_@<>TL)jF2(H8)9OqxJT!5JODZJ`!YX zU3RDy358ssdzWQ7Ys?^(r8M>0br`rPsmGgmb5QToJ#l~s?FgdtQtC3AazRvadEj@l zem(ex%zepj%MjN%b411G`Wv%WOZT?t5_9E4c8&sUk?09vAmUE>yEAdX&xR6IhPKX| z-*4BkqYm7_a}(FZ64gaig^uzqTuSLnU;qK*oZ*;_WDO*{daQtBTUMMYTfA}(zETfg z4lkX=ID{&_!W3_&-xG}^LYG;L52WNdp0_3#9ltlJw&d?KYXMNMWAxO;#a|gaIFXg4 zve+d!r{{ZLQ-bUYrmqa><}g^zGf~7eRY=YNvOg%=H)RT1CJ8a+0c#%DgFB|=1+KqX z=_PQj-B{%kbrlbtU%nDq^Q^QZR)x26X}`8moO9+gYqKaQhFv!8ziErvV5^= zeme5RmIzjKua~i_>DW09JJ8$iIdi&$gy4|X~2L3#8rwEWwLQUJ-g!>Slx zyiE4-blGj7-B6MZ??qO-HhFi9U6X~4tkr<|s4b--QJXgxhYjjX z`_E6rGb1#3f6b5_;Q$V=0g;8;zbH16X|f^n-%9v zl5R*VeqS6n4q6M8vDtX|dPq1YKKzzMRWU5-logDoI`xt1p2T#qZ=pf8pc7lL%XTF( z2ps`{Tm$&cSnJfUXA2rGxL{>aiqm^K*nevsqgT}jR8q@@lWCTel~a1P10x{z`Ca+* zy}7=2j%8~X5q`(cxnV2v7nP&$?`MpIEvqh$Mh4TLZMHIZ=v|2jF+a{bN;jiOD2w;I zF3pygzpz}U`Wlf!L0xbbPrW05{xEgOPpCEJnny9y*3xprmNw=_FB6XcTHMr{A45bJ z2M2}e+8^k7HWKnQSebzil!%@!uq?KqN+BMvi|K0IHsL;lw{AOC4b^`xTZzG|dlO!Y zuVxx~XJq`m)zz0FUo0W4d1KKUZvWfQN)UiiHOh5GR8DE1W|^9ztw~U2gPG&=I|#mf za5bE4@R+}Tjs>Cm2-^cMZo*dKoQEqsC#IOP6^vz-U0Vq&fRiaVcMl;Mgw1Zb7qG{p|k8S${M-ArJI?s{omxij3A50 z_98gPpX5Um=TPn3T>nqwV0AtSkwHgPdSX7n2T=+QdBWlCoJ11L1r#i7I5tMD^3ta#))fEg3$e+Q3!*nahY%1eXjx;gJG zZfRu4#oR3?j&4c`)I{-=RRhD67=vGemh5@j828i}+q^!Tj6D*?(xvixMo07w%UN~; zz7qG{{Tj|!8QO1Otn<=u=zu<9-TT77;qP~VK3gTET>tFh{7N_d8=YkSDf}DnYV|@b z@H&40nldGre??8WA4izvkoo?s_KX50T{t&+w@<^p)s5S}D$XhU`k*JbNM6>c%ey2? zxcYq>Fwt;-b?T$JC4mZO`@|^!rfHAig}Z^%HD*2)CRza-F~t%{*szPK-NJTouSYQP za52UjSktUzla~VRS&!_fezeROU6F5(G4+d3{w}&cn z?np5slX5s4tQOvl8 z@{(XP|1$A+;IKfriJF+qNw>;MTz2T^r*V>SnQ~F7l3Y}TXeY(}@`sPBM%;hqC6$WJ z(kcz$0D7_NQ9ezj-WMU5mFUy7NyCOkb(o(8;Nt^glzq4XLl5`|jf#hjmwEhQ=*#QG z^hVu7*V29MAHvZ&ARLqMASYqUZM>{E)1~P1c3<<|ci#oA*9Xk7xBWM&Q3%g&`EFB= z^r0*gQwt(U!p@v-f0?8YJGE0!-Tkfqw-}lgE2NNGN$Zt*u$5!qXOA{%ZdTEEVuY(+ zV8L%jfxWYNPYMX?)4(34xmjsvez#|C*4+PO{=Wo%;`IuNr}Sx7F93!2GJ2Z>tuWCTwY8hH@`dhzUuz#WBE za5M?)?%wNJ@Q4|U-)J|n@T$ZkrR?sRPkPW;G7=W%7A#8cac5C}IA2DV-IirUE{rzV ztfpY~e?>f~sQ9-xdfLk)#4cW{4B25~jeIDZA4ewb%)b%#>=uHh_l!v)G?+$(nWi1O zNyqkdgT8@_<5$rqVpdck<+oj*qpAJ-n=({mRyd3}7-#GxdIG&YhJ;=Zu?az{Yjte= zc2h*im^@J5StnzJIlm8EM?*Wz7xo!P#G?rLniUo}o zTU0a(_ClIU>1w|8$B}PSQ5k%1x1cF$= zf?qFtNe2|w8l+3^bb#FEuh>Gf$BM3ch557wbdzar zne|Xzl#1-Rcc!X7U`hvIVvbHtRq2yJ<|t>A40&JX^`-!DPL~KS5p~6n)OeDABAJ?? zM(62xm5#5j zW`qKJTHXJLt7s9noQJhc!MP&?xra!^}8OCn-n~ z`Ob*hOb0jl{Z9>2l&C$kMrVSBk-|_NVP5X}HK3J*GDTuEq{hBx?lMYs8%~R6{X` z?mFktiKk3jgCNn`UM*g#Qd{PB$o`+OvDXjXvz+^Ty{%)u`83?lu z(}zcKD7UQG?8bK=3;ahf1-?wePA5v*&8uCfaG^5#{L6t@QGe`@HvpsMwF-XSu4T*D zgRlz3?3ndreo~+qILRg2tEla-l;ni$|OtqDHti3Yfp(}lnlC}irtU?NvIR`4#J|7y_ zT3|AvnpEQMB1Qwt5QH2Ke5M4#tP1Qh0P@1Gy^bxfXY2PGmb(2UtETXy5hg7f`W6kR zCE4=)t4T3qgI@$Sr{7#a41&y^p{>H~82bw($C#q+n|td$k{^XIdB@&)@7_NdECZ$) z!#o0MRAnK<*r!>CrSn=z&P*modJ)xb5Uv^{N-Gm^;Qz*5bi@w z_f^_+JudkyzO!K;N#b7#*z>y3`O2$uL!~K0nP`$)+2bUTO8p@B%vXRGWhO?8^|w9u zGV{_Y7?lmjrq3mS*<#0@H)G)HrqL2pJ@BO{pJh3YG@GXM9=TTqhl9$Frdyu^Q>KGG z*^g23;*n97(Q(MzM%YW&-@H`6b z3gvfn`rSJbZJ~y-eI<_1?crX7Gu7s0@(RsE{KYTM{qmoxrDlkkn0!cszvIh2eU7B= z2&*r>uKljV(|H4Tm%y#oVYd4vw8TDRP}6yDrtTazhIvpl?hEt3zS;PxoQTv!Oi*bl z(9vAA9#?zh#-v)1cs*&%s0tLj)uBa!Mx*`rylZ6J%RUV{BCAi!YfN_*F8!eDQ z5^#;arKSTR&bYPA`1Zw)J)-=BbUdV3&MSKBI#I&1+mw}nY&@iW6nmB@xtpukZxu|6=A0oU4<77QkzTDL;7O=K5T05$RH|8) zevZEe;@Wv$Tb~*9+m*u;;V^%^a^>upLe42HGK#v&au%2c5pU?}{Zxy+4)>?Lk~t7z zjATrZwOil6^HZ~n?jG;?MAeg3=j8O*0tB<^F;_TKOr>l{!SoZT)Ff90dQ^(&^7@(S zk}C7bXX)we{PZmKyW#%wlMZYS5ZQ#H8>63^PSDd{_g8D5<16IW{-=#E zO3*K>tiG#XGK_owHVyxus-5Nzhqoudrh5J^kPS2cPxXY zKt}VGLvt3(Kgl0>#&E6;KI0rh0W>&RdL@2`qfchhHEPu=nKlV%wh|2GeZ84)K~6u4 z3XCCw?T>aj>tB<}!6|d8|C~c0Uq*`YfEm!at^HctlTh9BapbjifViU1vOwuGJK2vW z1}K9=KrnazD|~o0My`*|%d|kCIS8hd`dEEI>5OQYn|4v7q41D1M@X9Fi-NdK5P_(mOsW+pd>tt{4327CA9#S&y zdj%HB+QWwrQ+0=E_LW2nE-t?v_?Cs+T3-wWeG~NqVV0crg?6&Wiu*G!lKz)7GK8S9 zoYR9U#$(Y?l3|i@>2F4*Fvnha03qGG{`Duq-zq+fyJ+0(s8{XSS!X%)_>m)@Gr`E_ zL591dM*-~pB#pu`HZ|4tj)DirC3(F3ob(St5>f24)b(n(l`)r>+C|~G*~37B@;z^FvX(@t$DgkoG4N8osgG+ zz24|t!!WJo!qR)DcAC2*)q>3HO;HbL>0w&y4UZqFwA_lA(PJ#{RA|0aTFHwg(vTRJ z=of{h?;ci7k^{rt83RjNgtA$nXe9j*glPN8KNO9<5;UV}qpRQN(09e5glBoy^_R*w zgV2od7z~@}f`mo4o_|UbK!qep0GT$U`4gejEgKwmdNjaBhL9ATG zZ8C4ms}+I<4WJ5vwv5?x_p`J<+pNvs^OIFRv!g~MgyR4^+pXywXgY8OXIPVqD7xMl zUHW24w<^zl^dVzHa_c-%65Lp9PQi`o9s|piEZFVk1iG+iw)T@72p(lA|8-ztb+^h# zUZ$PxwrNpoacX@u_wXqP07e)7>l3tcUxuWLzmIG0FAg)^gTb5?qrLvGl~k9mPfN&+ z)`%zbEk6y%R1`P!b_fHzxt(BP=G{;F_X^{QE+rvsK+ z7%9sSUcD2+03ajG8m5DkP{db+VVhs6MAN7xQQ;+zZdFjte3ti6ONU49-1le~58rx; zJnS6r2Hh}Ma@Q{Jv=s*}1VPe$e$T5~_$xs^ZS^a4^ec1lFRyT{*y`H^(TL&hug{vm=u2W-J205N zpS*AOmKhSm>uWU6BjtJ$zg9SH-W4`vw4GfL_^Zi#SfcAcnB`{|{&;@F7QCC==oKrC}!wTm<1$@{Yk zJ^Gcu&1V@YX}acpzy0=`^TZ%)#;#HP;G=YLi6f8C|Bp}hy%97x_~=#l$Y8!yy7>y) z)nc?sM*!hNKkCSIt-e*F(0_#JPMY6+12`o0%%Pp{DhUsps;@lGH=z2qW9Dt#^em(AW%)~{YPAPRQ8dj6AkwlIdJHNAN8z!@=sHMKV5%bi+gI~po(9S`Kc_| zTJhiu0irXhVt%`E+hYG~js}LJOFY@-?*CcRio{ZrUocR)dSi@{Ta{;~_GY?Abg3t6 zgof&1ZPAaOo~`vi4|9d>bo%sZvZ5QmZ)$I8cgGLTBdw&_vo-!p;W<`O7(`{N3FOcPFxK_E} z1@8nkCmO@(-bS#HGz*^IDMkfuT)A?kzh3R&Ygh0w!W3iJi4K(qlL%>~bA!*`78LxC z6I`>f@2OCc+Dt61-CXH`d++~1S~a_@{VCG5-kO6EYB6`f(Jtl&szvnt_d*?Bs*?cS zr*cM$&;;K^6B$N?JRdYrhby3}j!BztGIp?+BQtuFpF9eS_y1HUXU2(_&&DoZv}oPB zbq+uEmu$Duvh$N|E8W}zt>*2~hx#;kJXeznYSn4aJ}B3^*M9cN7uHT34bTfHRj4$= z#oUOB1E12s{en3iG#WD=#8uoL{q_ZAlk`~p4|S&%R{?6c|BPv*p`ayxFr3o339-@s z$5*o}e_&SzX$S5G@wM4qx#dTNy3>{PR>Prcv)v0`w&M_UsmAmE3Bir~3}MvvrCS%7 z{G6T2ajrG#>0=jMabvabdy;vWuA|-T%zVrS4SrDlJlJYdJ!b8TxH4b{1MRdJR+-V! ze#nq9AUcKR{tPXpOue8T|EzX=Pw=0qBaKhzS~7Te7~XDSZ!zncRlSv=Jn3QOjBrW) z`!Ba+t3Qc!nCXVSburF!qiSF7a)l_$7^WQTtq1H~4Y7^n{HdK)*W~!XQL$Tb8%)Ln z&S~w-PyKL|i_0F+P1l*HTGy76331c8%ZE<9^-kX7#|vBL9_jLf&&bLSDSg-MW{SPD zhqLp8)U>XB!eV}jkH6vO*(YFT!h3htluk{E9uXZMA2N2>-kC$P>ui|X_Rc!{<-c0I zRqrh(*Kc`of8fHB5Bh)7kS#a~4YT^rVux}1O3=P@-JrL6^ZL9tfas?<-XVU`)Vm~LLc1;`#4nILv&;|@0mEz z?qD%Z7}IPG=7;7TOC2DpBIpoAib)bB{EEC@bWeiFW$OmU$PrvgS1_&bjvbTZ08n%) zaJqP7OwdU1)13AcIU*HQq^L zIOf60!`*ekt?z17cTar$D@{0Vp2-*9xl=uBnJY|cNY*TEYQ6)`7Kko2+svet zF?01DuR3$#HRHNh8Lq zaB>y9J0O#38h^HHKsg4FZ^2g@w$^pQ1Zoo(IGf_y+oDKnQ`Fe^^r=(l84{$~xKK35 zsRIz_g&UZN{NlAv3@BZ%Ax0Fc_Q41PqsT2Ik?Uz@JQoQK5vSnEan7z2sZ-cG3p1s- z;u7g?NDw8tjfkA2@%slJ;}8%-*6AcVi{5i@hN1cdSe0Kglzval@L50(aT7nW*osqf z`(3H+neyw*S1T+f9i7dPpiE7{(FCwvBSQTOPta?1+iG0~h%Z_wn^&Xc+!3h(jo&W0 zx~+b)Phi2?R?PtrHX>_UTGw8P)#x!}a0|XX%e}IBCI{L^TUp%Cp9~K)v7c;*#2qvkDNwPCXYyY3v1Yx6mHV6 zNNXqBDMS)2Ub?HKEDk@lvj-q9e7spKtqD$tVv8NFmaRNu6Mp7%uX7WeGUIo;FYF(X z=GXVkSII5BqAE=%{mw3o+!3D)pz3!33wDooPHZruX3cnj$tkQE2lEU|QkU#Rb)0S_NuSvPU~%+O??UVj@=^|@WC z?{qqk4xRPr;F(7&39eJd+5FiVKaNQER+WA#KARAj|;fld(47z(pPeC z7EY#pCiI@OjgFmXjXz+j)PW6%)Kx`ceG?XTq$u2_>=(E9)2}=fL0aAX4t8&%kis>+ z6N9GV=De2rjNT5oMg%00cu=n5NUFiCQs8OwnA-NhPT#-e4VKMWGR8CKLg&|Toft~& zAYOo=5uM`DxzqtEwjzpDG>xa(iPv3 zxfmK|6#cx{Bf|L#i)q%@o*8YAnTy=B&#kF3ck@yQc@_7Ii;0PMTXq?1;>^s*=KjB) z6uFvek?{5+j5Ri$^t&-f>M=-Xz2_&&lIRCXzJNK?mppNq^J%^$pjs*qjiF)CmpQ263)=_PMMlIiDfM))rlUd6NsOymw=UBe)-e;@ zB{K-QKol(e;BW@wB3s#?)s`Qy^x`ht?{p_X7>wu)s358$y~ediJfU_4zz&mUD^mTnf`10D6hed#9K&{SduNS~s)S7B@4jZFJb}wFqy0bLoJ0ja73*5JXmm8{p!E zAv2irLuGJYJT<(TJ$X>7%EBiuI^KGt%NN*5?`A5a3}nR@W=39{fTjcAFQg<}ZK{DV zEz$^0{UgSo*O7zW@((alobP}8p#6Yb7Gd=}{bIR>noevrP2V#a41_kB%EB<+$@yNW z`4;*!N88w>(hr7QW$+9smd9^De#P=Kaz7wp-@UX)tOeIPabbC!5Cm8$BM5yW5MaX? zrh|dRZ%)#8Jq;sSg#EZLoueUWH_dSa>oO(A5;3W#j*6NLFdz|KkL#S9m5n1CNx8%7 zlctK5GpXU3z}4mKlJermk7D^gz1WPyKI`%t7R(up0y#Ky;X*0^z<$G{9sz(eG6MMe z;?6!O#HB3I5+in%Y`*gQK!pIBfSW$xC373E-ug_CvqQhueFh9T{7%`qlP5LAbC>*5 zpVY!=v05Y82y=Y@8NGY``fcoG*iGcvysuc22F(MIlOXsW$9AIqLwG@Q<8ehM+l&xtCic+XO>DQ#;S&vG!L#O9=Dg$A+BCATXBrCFulN@QOpYD3x%=<; zs~9ey-Ea1sQSe;-`hJ%!!bz`Lv7}h3Z1(Lz#*N1o#(tk$hnpK|E&BHT{ot;5b+na1 zS5^9*>D$^cTy|4>1@&I?;fJA_)dvFt%3ner%*fZ~zQE|`py^;{b}yfuQzL^FF5v{C z{_d0L9Nf3o7rDA%=ex>|L?0J16@J;asWo}bgY=l| z!F?~S)4T#rUxQOY*%WBn#uX~epx*Z%JWy-5G`V^?(JKv_Ahu^~{``emGT1&eP%~^q zXIj;4z~#yyk-3`}Fcv2}Uh@m&r2$F9m$5j`**kaan94mC*N-+ZylvNPaY0n0Ky0Sn zdi%|MW5Gyj(t?-lbYhd{X_9eMMh_WRex79!4i}zrau;CW#nL5F+n!w&9asMHoJ-pX z5af0v*suv`>~?bw+aK=x?r-M@HA}~^zn^1&qnX2%dTYeBqn7yj>SBm#-{e({!a?9q zP{bc;uxccjO%r}?KiqY>i|ki-~R&zurjWbi=Sj%PH$vooY>N97Oh6tAp-{v z++JppJ3cZdzo&*Rc_sgTdkD^eBRHb(IAAY#Kb#3LKJgsF=?BU+l^jBVOEE(zp!@G! zvSf*e7p64(G~=OvfHR3-aCm57nf>a%w+CGEI(NI zRNw`~oYL7-`G_s`dsLcft@+`p`Dua{I22U3i-Ad=5*JV1f}A?D+qu5m`KL~3gH;1D zKFNxl<#j>yojcE&U)yj~JKqWenZ3u0fT?hZ%&jyVW*85hcBd&*Wjlz2BLO_R$AYZ> z5W5rH{10;4m%(#V)+@3c{OqxIM>g9M8#0m0)uE ziX`nL9NJF%u}fViB17>ljDc_Z)l2@Kkw#PYp7Ks`O8W6-R6PO=pv20ZCCV#_k41A6 z!|^(QTUWz)w7T<_(6UP)Pjla(Q|+;35h;j-r)0PpHMP^`10;^DOCk%j5E~x|=mG5d z3>!YkU$L(rrPCXfu9+A2j_tvI0!omScnEW3a>tu5Rdb9s-Q71!C@8NJ&>TpjH!2<_ z0BNC-qPK1@hgDD44?bwkh$kb(PKWG=-Z_a8lxp4j|`7qHZ>-)BSH z$Vosle$O0WC-miK(Ha>xprS^By!5@#m5qa8?tSpqz|5n=Ebw$w1l%e)88(F6dJphP zm3JK5xkX>Ix7z=nRmUjE$46RRM7b#vE*WMznnLKFpO)u~3TtCf^V@LeMRgU9qS#Kq zcRH$=pb-*e+8kl!A&VFw-moSd6&20o?R%}{!YjJ~N{Q*8aGI$XZm(7n&F0Aa+${dr z_sQ&={~!PQuZK=$l0rx|#~g!y2s%X{-39;*s=47@6=hPQhDZrTj$txILVCw#+*M*A ziVNX0heS{(1$B38d$y2iZ z(=TiRC{4}p8yl~R+a~b$xva;ijDXINxpA3`n+;p=(?Q%XG7)DNqY+$Oj!X|1(8taz zz8mfJ^Ec-7F^9saWUpqdAPv5G%;<-LJzkKVNf={Vw`#Th(?QRg?@;NW>ye9KKu&pg zH3AdW%Zx*vUwH*6%X!t9T|g{<6%?08oe>cbv9J`11Qwr=huzI6S-V#g-qvt)pV12O z$9u=B_X-)V;jX|YsRSH(j(Ieooe9^S$&MP|E}0m`M=t!6?mSi?t_9&K=TM1VILCo8g8%}aKeDT6hP)kKJY{jaw! z8vhCo{l#%V@hp_~?48WJ=PqiHTU5zXUKoNJ$q#uvyU?RS_ZSAx#Jh;D8Em~>e~>f~ z`3poN@lVVW9zU~p$kzV4{M7bwk)ps#;e(ES8p+S4tbv0D z6>7#G_8C_8q8bAD%8%sjU^WsD%uZ?>bww#ror`-zbJ5^mmhd~#8EtygYGK>~yF&HR z!Gi}q4u3Yi{eqd#Oh(ub<{NXfg*cpJXxxoYk}vNEA4E`Xc^5(9F7SWM^S@4m#fd}W z?13xn2AuQ{TrR$JV2s9!79Vd){$!;5T&GFTFwKg{{vhpS+seyR^Y?VW_HLXr^W8>9 zhp=!c7{(_>=8xt3VPUpjgA2%2XWf`{_1mSuTe~8oDMj8jAL)cVpPp$4X1M_?=Vb3l z`<}Nm2_HV=`3FpNBjeEAjHKS{uw=`{8+8}nUyLZisd&Y?Jn(0sIbNX0NAv-tbGx@k(pitJi@nhus>J&5Y^Rt#=&vL;RZd+r_<__gmj1nd;_b7b-6=lPwmtJRw~4F+?UOazc* z$?E#JpbXXo+V`23>i2L8zhqOp((-Bm^Z8`i>nAnzhf=9VW&HrpeKj2cZppw)aVBTn zkJG}(53d|DXCy(!x)me`9>GvdXO^sdeo~XPZ3`biQbMKiH<~&qNsymCpA!A?xyw~f zZ~P4u2OFLxb(_tgS2d*Umvb5bFbs~g19#jbdrD z8&MEBI~&)5g;t>ixn zk;roiZ?g;7q_YBIXjW+TyJRQ8#O1*2(5Fv!oHw!};qH+7;C@F?NA8c8CWw%mi66oZ z=R77_$2xNhQhc6yt}}X%weUXT@KqLB*-N9FBu}QZgN@DnxVyJhb8|wKAtv}`cJETC z_wM*Q#1zTY1(G8*RtZve4}ea2?~)P?0MyDJMB)pMdw}Cn z#pNvguv^uePl!i{r4&VL7MH-BcxeLAJxE{^<<%z@q}7HZ1f0u07=sSi*S_ImREM(3 z(3)$0jlff|%=K2CToWC{PM3c-%3oan|gyZt<7RG@|>$6gq*zs&1xSxzCVmdG_Tk*dpsR-c+9B@-W)P82}W zVT~{%f`z<(rK*xc4Cnu(G#!I)@I_~rl}uHb(3=xzBA2d2n3f-(?VTz;g2s^nqDFre zDh&eibyG*gI!VY|DP|tFv}~&w-zVYU%GA7OCrm#S4{QHPb(z3ICFDC6pSw%32CzAr zF0E${(ihWR2pO68m?X=V9DJZ~7kHrg&cNrT*bM5}$mC9G`b%baQeuskqC=VvrYVyt z&8uIPr7dguiE-^M<$vTLzB#^`Q!Cu!GkHu_bb;onUQ*{u{ZGpKg>jx8BZp%CskXCH zb@D%?2U)(u7N_PTTJiOq9_P$L_q;SAGrn6wpOE1+C6ZiS7RE>hba>?&EMq-6{6vH2 zdt8d?7cqo#S?$6&=X45cO*!zkcr#d?DS)?CFZa=$KJRQDp!07W7zCVO1~6CbU-W|F z&|zaE+Ztb^;Sq71=oakoQ}t7y<3$sL2~;HfbUMprSPn+(kk$~z zItlSO?-3z_BfVlhvp>&9$;A3rRa$I{mslutgcVj$PfSqZrL4C!fYMipA@nL*5!%Uw ztHij^kz2`Ek*NuTIHhAU29d_IvvzVzGdx4NYSFSf%bgVmD@keEf%DTH(xTRoA<&3U z6O&!|rZHZ$V)hA98MDRX{jQ&vWM6qSmSag{DIqwijf_mfX)`(#Mn#Ul(7Ek3W-66t zjU|N#{FaF|{UqMH^wBh_KtW&jp#LDLvVJ>%t?G)uHphtbXN8see{t$S0!HHOKH-WhU8kU!hL}g zQ?VW8kquO;+D&?<_6B61~;Aeb3Nhg zM2y;x`qRO?E)?G!g8{R$Zr__h8b(P&t^8`;g=?5)oO4l*028K!ou`rB;uLBs|r{PNDla$__v%%xaPp?29 z@OjvjZ0r7_vaO;1YeOe>>9OOhKdQy~aVz4^nPc~;FNGBU^i6?Je^IL$_vFG*z?**U zx&NhOuiP0k{XJ1ZD~b)bNh2ZSggs!KSQs5WTAy#79$Wh5o8ISnTqz}_QYm~rDWhp2 zk!w_wIxj>~0BzjjvUTq3UC6y)pj-!&%_QMZBLoq#<|lRBB2omZLLI;I1SXpJ zCs}Pl+Vo(B8W3Vd5Wz27lbYI8n)6NXy0s6Swu1;Q6bY}V-8`f>UixAi36Nk#p%x&d z{JI<4eKdwr)aTj;GHttzLMf>Ji3T?oy=C;OyXrw@zuqAXXKArypDY8^H|Jdry4LWx z3G8V)9w6P3W|>2KUXm3VXOoH5n-Bfwc9#|3wOsMtwW6*@=w3!iQGyOXT$Ubd@;x|7 zJW`jP{*i*s_V?o2N7|}~IPq{GW=tbVTSyZQDpPcS2CyY`4GDw*O#w+(q!i~)zhr@1 zOLJ&zw{+no6bO#mVMGTU2y$dBSa+@}81^&;Y*H@3Jml4=1Cdya z*XAD6Gw8)2>ggiww;BYg`6X#BjNQ9HN$JwQ&gs0K!bLN7$+PD{OBZpevE7t&Tcbbw ztRW10)3H``AviYCt{nTIA?rT>JVJbd&JpKgllOCPk1)23sBN z@^fC^iRq4itKSaFN3inT{EdcKDV0>#D5dRgb~MSozk{=QT(X_-63nK z*>4&JoL-|67ET8&GjfxFtHyQQ;IX}~rUX=eMBI3CAiDK2DVaj|NIIf3%FhC$Q`W`Z zY*Oh+H!LJB1@?LlD?*Aepg#YvUg60#q`vy|w8~7ZIIXgyUBNGqo{+1Kc1wDN<;iIh z<$IW(0k#%i7Ae1D(iB7MGxK3&7unex_nVr;g15*?op|K3Hbge?-}}t+Yt__J^_fvk z1cz&psMU-0^(x!546ETt~u3Xa9-o_jD!{Sg5Bq<$4NWhOKxB9Us^m{Dih6;Z^rCzPyOot>&1cBik_%-aQP zu2Sx|BYmSYKX28X%|{1;4S8oQIBD3Y;F-?*B5R&Gcd)u^Fa^|S(A|UT0@Jvk=Vn@y z2&!G~UC5M%XPa|Fn~P4$>KeirPJ~#q$B%$(X!fj3vU~c#0aioLeWy;PuhVM_!}o%VWY&vi z<-zHxt|-M#&x$-Ln!e+=K=<~%8ua6|?)Jes-uGtny>k0LC(62G=G?T|Xfky{rj$VQ ztHOKldKZA%xY>y))M>0MgGZh*>EjhYsNagOxle<}$P zG!yUkJ?zv30Wqz>);qyD+KgzmAbGBE%zmSK6c?jU?GH{I_Fd!%<7!J94hy9BTJfC- zq|tTtN8cFZTU*`Lrn;*pQPdgdqoDd7pf_^U;=J=L6)DYMCcE522BcwrDc|es4MsK^ z>=9VQ|0Vs*YymijYfg=CwKYUf5mz`-#(Y2+zC#-?rKMw)HHk42{RD^8tzMnRcR3sS zF9+df0VSWtBo@3vJQBfSM8DE?yS}gHQ>XN0i%+d~rRIOSi8ALw&6|D}t5A;r+ayhl zKz7SJkfbn!4WgE)DhO3p8$YRGw;nGL*vW|ldwGnGTV)_TE53QE9-OQQO1zPTr1dly zsSiY@p?-{a&Xyk_}u}K;#;RQ zW+ie}|DH`g@tF19pQVRe5=tJ8G)^aChv(+zI^XNVG-7I^%-~NyJ^#$0%3*Et{A(nd zB8~;0j;OkZ1DT9h%wdjWO$3Tuo#Rw6HdKeE*S;^kZ%uF&ezL1>WxJOPX4M{? z{^AgG!yW}nv{F-#vIco%8X5N<$EdOGsZXFS%xQe}GvsrHi%LOqJ%Qrr1a7oC#DD~3 zhAI@n9{Epk*1vF#v1METR?RPTKD@^CoJ>AiL7Tn*%7;f=Y(CQ_Dd+6$j$zNrmYTCf zrZ|D6Q4`ZI#&ZZHmS&6>u0D4sJQ3$E6MGIQy~wwYcB0i~rLK@&2W_rvG~{QwR&H7T zyq&ByjVq#aU$dG0j08eK#mxz8GiVPZ=#-!+s4mF2`wSu>IlwN)8O@6SKyd06S-xHS znb3mu1D%+>X$&~4Xu<94SsGAvdBwBCV9ahs>Kfx)g_2}3^S>kSjL7UX*POVQY(|}_ z*I(R&3kZG)JtUG0Ypb`n|x+e9F$cRc6N|SQNfocSG58qdtQ<7 zehu>y)>NrTf}}$_1z8wjXDPL1|=H%*0mJ{sLT0huFK0 zt(t?}o*7F4ULgzno`)vsldPws0%)XCV4AnBnQq$`Tkt|Bg>>57z4YO&G)bhEEaB>n zoAnfy%@W0${;j^y`{E7N}_pTx*+Es`VQi?*cHORNO=#mzeA56 z8})+@<`1~z-*>5{Wfv`G|B6wiFU~gq)7GAg#%Pii2GqL7xN6#CGz@=U`||z^h}Ol`wXxSLspo3#e{*_>g`|SIn_i zyKD=xKahJ8xlIvWxuXs=x9r~kUqYeTipbinC>X&=#nQ`HeQY2m*q;932Zy0Uhb|uA zWcwa8!#yb}DLdtbY11O~Ws9#WNDZEG?HiI&v+yZ=h^eyrc$(c{i=oK4?UmGFFcoaM zm7hvGkNQ3jS(F6or3MW$FUBN8aBn5jw`S_4*R2=??Po%JilzLFc2Q{Nc2tH5&2GBvGo`59XvOfIAnyazeDT9el-7H z3JS|?DUtW+$S_i2?^Tl5slMoKMl(CMSIZ`l-dS%`OY)x8 zubQDnw04R#e)W%^8L{1Jy#cnqlDq3;L4drONbx)3Z^bk;Z!s2WpmT{FsZ zkBnH5xKT9rfHCG?4$#-GxZFEfB1my>KhO>w#k?Qx`8ck*GwXIsz5^C$YBQYVoTl;tPVDGdCvu!kw(aRrYyvAc|4}m9yl;fJa}Qde}DTep47u zQf-gG{awSpU|m8ent;M&G?hmG2S2|cwFhlJS^mk<2D{V!8(2gPO0)HU%=%-xPEg?e ztJN}ZvnD9`ld|x`87s$l%@)!Lq48{En)EixZ+8pZzkghtwGsB-r|MkE{l92jYl0J~ zb;`BxR*s%=j;rMjrix!*tpsuKU$`m7<3Ll}c=65^hj`B|j?jByjb35V&*b z=UJNyVkoYEaNL`=w&(zou3-;o@%Im%Ecb8Zn44+hMS2^=zH2pr5w>iN+$S0{DCykA}t`Sk2L zTX`d5RkC?UamL9mwKU4!98jeuxXSDb_P@F&fHgpB`yXv-)w1Pmh8uWb=p{E8%3n)k<1~qcDsn8- zh|fMK?@~*YxtSpi$7*mdYhc}^hQ5LQ#-t~oedL_keMDSzemC3n!2X4sZ(C(Sw1?LD zDQ^3RHblk`3urmf)^ZI`0Fo4np`;CauMia>G@L9d9+fV68u7&W-U~R#(5hjNKwmxO z72)X$q&>Oez*P$eaJyNX;n%Lcr*fQWL69#ch|Yfe5{nX(aET-&FQ79mFN0930X@M)D|7CEZKlh1sfMuoXXS4x{ARD)!ox(4$WHVn;5kYdl#`tC%YsLN-S7I2 zDH&B-_QS074dP>fj%>J2lT*JPcL!zr#c6(?PNkt2E|xnS0ynm;x`sT9#`f08_($+8 z_4QZ9Wt1MxcNwt%;H`@r#-%=3uwm1t$9sLfYSyZirb|%_Sk~BkB$ThhJy#dJS|utF zl_ONhW||w4g>$jmZCZOQCY@6u1R>H3a4Tc0uu!?!+Ng`xf_<4Ne0Pr+p zQ1KOLR}<@G%f^upW1#n(8+&L&WS*MJmhVstE)`G3vF7tPT{U#FPDh~g^!g|dS)KbI zebTc@9oVah#{(2a`u4r#MJj#>{b~-%sW6XX2L5Ommx-fVjTmkk_({+&S|t8WLjEQa0ps-rDZ+lY81tfU%uA3`?M6g z&{0rM)8nFFspVMZ<4rVp#8BmJfbh^l_yk0kb?Y@|*x`|V=I0#9O1qnwT(qg6^gyMt zLvq(z9DDDp{R5jt@)ev~_TTG@IEp@xYm1+M@N>I2rnKz0z(}ajgX;FbA2$9WRF^_E zn7(?$<;c<{#^@d#Q$)Q&HOe_yXP>dnluy`s)IA>kT2!xIUDbj*uPQKt)zmhHBoHdp z1Y<0h`Q+rPFA|{djmMHvyivDbc#AidU8hGb!OfNdfIRxXv#0mA-Vcw(?0lhL{^Q}@|JcWcR(s-o zYr9@a+j}Bv=XGATWmd%Wq`lc2H*R!#=!``b%O~^7>TYigWPo;|FAWt|*XEMX#wT*{ z?5}j#3P{gG%vngEGzak0h+t)5!uUnjJ*tq9%(zL(F&;I>4*7MhML3;$sDJbqMd-0= zFZ85SzoU##f{_GkHFNqYny~Wbw;xS2R}!qEwfunoishgIRtJ`~wAeTFnKheU?!RE1 zfVD@MskUp~`YjzZn)(1jW$R(n9Gf}moj5E?$U+Oriqft;x+}8GV1ZiA9^I_QL-?j> z(FNi{p;(oIe&m%QH^Eeo;Y8|hg@F`6@1dV%7bT8LRBUoq_6HbR{QTDSU>h7eiNTMNVT-6SU~B6eb)l z_u9UAkSnDphgq|HGJwsJTw#^s$!9S*Eah*NtCf%jN(;|CqK&iBs`kiFwlE%_&{;b3 znTq0ys3=}A3FL)8i>oJstp1eA8vIE^1R-E1Aim3-EBW-v9$|nkPrI2tnsjfgRo#YX z-nw^>oM&B3a+!x~;DcX8>gUO9iVh^&$VW91PN&H?gKwDi^#?07#Fnf`Q%FS)nNV20 zo00pix;35t*4b)k?(4TUhXf80O?q*ljVT;7CfDeU_JNH5Y{i zC#_gf*63+Soh3hBG09F9_XK3?OjYAI1qS% zK#C$#bTjhrMR(g2VvZs`Ri;i8m3KrF_pkXT`=1j!_R6rA?MSFgw3gUQZ5L3a zJ%dfTUDWgS>t{^1m`s7`{N=lU6G;+GzPmkK6qoBl1=jDhv=AQ!N}03`O8AE{_1#zl zMjf_(YUGNPJYJ)W|6x%AZaM=Ve+&KBY9Jrlb=a$wBtg=sFgZd^1jlcPgmMmQgo-~vkZdKXuIIRd{>&K8((qHdu1%@G$m8kdjUbKoh zzrDHXr3wO_j~Z|4_Y~|$9;;~+2}pa~W%&)9Vwr%8d)Vglbt&_aso6!%1R$1uEo=M+ zMY4%a{XRg?`)y8&@Z(k1NC2VW*2VSPS4=x z<1Upj>;TpZwrpzmgx{y(LuUj5++S$k!k{1nT+`-$%aZgcr$Pesx{K4inJUA5(t6yz zt!}Hn97SZ7JI8w;*wIK0+vmB|4w{4k!r`Cr82XTG3yGZF-v{HhyM5mH+AF)elsY5| zKmeJf^PXOt5#<1wV&4%3y@~OCeqPAq?un$J3VoC9=@)ijYDe>f(43J}u5$o4i|>8Q zK}6mAqhu112G4KJ_Mvx}DhqJ#f^+s2{B>15KFL`%obrzQuVn(UG0W-)g-TxF~Fuzc~_i;K^O1)%2&pJl}Qswh8Wzgrcw zWY8`L}5(^*U2FMVj!^LU0eI1VbrqEEv8Yir{=}6rTags$*?K6u` zg98JTMG{uLgJv83)v8GiMd`qSOm5cm_rK0dKm0>$wPnSbDVT6B3>ovKfLE&U%ymOS zf*UC)4CnO01S~=pY}pG~`oZA@rTJTSiT6}V2^=7GYr(>kbmjz*FPXs|MYmL{79*Z4MWR*3thmoD~ zMhpfG{XFBMg%unF2rtSR8W8z%zcrH!NQFayx=rS@Dy87r%oydU-*)fOAC9| zpH@>DBPnd3J9F?IqHY5lJ(nmFcOZsT^iXEXB&7zultZrijeUq34dcuXh$@$B2=#ywjC+pM2 zGaCY@CKV9*g%SY1cxFrWFUSc-tVZY|eClV;2J-pl_5lMEPG#@;JQ^qJRSE8}o5;v| z^huu^DcJhbI@~2qw+zHl30UFXI}t%Z43tKJMrW92$!57M4SCe@u|at!52goV;-!BS52(^@sB`{ z>U__2?ASIR9=#gRyBNC%gw}+*wU@y_&e6zw^3v~0zAc#u-XQ6T#ZUL0ZnxtVK{dy$ zsM#D`Yb?@)Ri}|&F$+9$RbLA1cc485q$d=;zq;Q}DD2mnwlgRsPGVuPoF-46Y;(IE zkD7M~N~qZr%2r{)rALfU7sWf~9&G`Um}V3>keZ7tOSaa5vM-o;G$5ZMY)0HXn()d7 zl}ZWhn{|aIHNb9*4|Pj&YjyH|=4Y3ID;u_e455)tgo91Yso?w?XATD9yyM2mmzm;4 zsul9FOc=^m_JWrt1U~pcgkDOZdnMa+cN#R|?(h*BMx^{2)}2}4lazZtWahgK+Sts8 zV#$lJt0)fI=E2UaQT_f0xo&Xg#F~;vJ!EPA>&IE7Sk1M*esxyDRWJJmSG&9M*Zn?t zK17^b6~vzrOtXLaUsE+C_|;ecrN6#_v}?gTz#CTiEZ9zWU+c_k_hSZL$Nur0tywJ_ z_1CnzA?zFV`Nf6!>zq`67Um$4?H zJUGz)!v3hWJyL^I@ETjnkc4>3RgFVa@@9YG2?15(E`q};31B*pl#PKzxRfOsNp=2U zI1JZq4a$7L9Ut+@6F$rTh%~zvhq7dHnEnlXo7(H%c%lW0GPrfU{Pds-PP8pv1aUvA zHKWCyy)0p2J)yI#DuP)Y2cKRkd}&tkw@Ygxq;MHRfqd@HU|t$jbA?G68SPc_L|o}9 z_ev@O%WN^IP2CSJOR;|^3$l&2z=Pp`4eCSbqvN869o$(@SK=I4V^M~61#um0G2*Kn z^j#t$vAbk=f(6*;90N!%FI(R8{G++co0aCRZLn>~1(t|3cnv1ZeNCu_N&cAIV2@@6 z$m!&X4UHT_#>Y<^#by$a0Rm}%_|mBYnAD@>oQI=cP|&Q2O;bNxv4Ari6xZe9Tc_)h zo&ztX&405N9E=@TTb4}OM>}^|Xn$7-UgG|VdQSIQ1b%V%3m26@8T6ogjkItqgvUQ< zgQoLNxnoW_ph)C91!unhUh}@?74+?(nlhD=tp;f7tRz3OcC1z12H80;Dr@tD6u=14 zmQ8ZU6iGHQ2-5qFYhSSaPr9;>uX5nGd!~@9HoOumduidxNOr=x5ms>5uh;H3G+h`? zk4FEb@o^YS7ZwHcVa_jw9;}{|`Tv0Q>+~YkOH2hk1r|*1+NzkL!dAnYac*a&ya$;xmO+asM+ zMt?@jbyAKj{uK)eV~@tnSv?XL@TY=Rl5agzxM~$_Rawn&O>#>T2}~5G@QK!2Lv5x8 z<2@2cH%dx-k?EqYpoHY_*ddIe-c2L4@50-|J{XKrBjyXph(-<^xQs0<7urm>KQzzk zl#xHv)?Mnq@ErbLT$?TrOFx;zDH2*uMfIwoMkOB(_?_Ggeri8_f1JOb{E^^p!To~x z&2UY%v<_wr_rBl|ZUTl)Q;TD#MUxkvh)t9!q>LwuiV8(D-6zh=jRxChh&NG)0qsXm zo3^JzI|y|F$i(EN4y-O;AN+^hsiT6!DH;mE5u>e>@4tunZlMSk;89lPx5Ea)c(+_S z@Aj#-aX@96?M@qXW#01WoH48@Abe-PP z9I}^kDvfz#Hm;09WI;?_3WagWMFDexl!fJ)X8$YZQ87|Gs%_cVARA5Lc#me*UY7#G za&8OcJ!<_Z7Qh=33pxGu;~Gw#?Uj%(X%-%K(WD<4Kb|9d-#7Wx^OC!W$DKWEpu7(m z*C^+wL{|QRt!uxgCrZmOVL~=gWE%3yqRWTIvsftiBJa69q>ZNW1>xbxd`AVsi&pHS z&0KKh@uNA54=)Usi3d4wJ_Z1@qe+qcF>IYp_ThrY z1B)8-Bx?^cZhax~JL!gW&XNqN@k8wr91i>&P?o<-EgC(T(&8(Jvux`-@^L${U>hzC zE@pl>{uL$eMCUg)soFkMzQ1S2eAn!=mu}4N{R^dw-;DADWzo)|@b{_zL|<3R0=zrH(?;-y4`d8*30>hdFAc5tMV8i%xe{`JaE%S1{*c}E zL3jE_o7g;b2r#UO!BQq^;A?t1c%5?16N5dPwCI)k#P3VPx8Q9Zrq@Zj`3i~(63vVZ z(>7r6=(r+ZuRgPq;8L;f>B1D|OiwSP6#<*I0O)ul4kUbI&D+t?_R_Ls776co@~RIL zy~dMcNUocc^#fk_l#8Y<63jBE!d5gzDRG3N7RHUx4npO-5!R{)fQ~;_u`kk!07nye zD`1OH*Y<*Llo>B+BGjjt_QT^a0Vpe)zA%a-NJ;viCu`KOij%cd{>B$>VV~^p)xq>J z*aY!YEF~Cm{tLS^){G}0FBI0nnCKhbiVvng$No#Ds46APJ&+;Aqd*)jF7x0Zg|y5W zzy)urZ*go0b`{Z}LsOr4e8?@7uNOsQT~<=6>ZuOD_sXWo@@P_J9*ofvyavD<1_Mw# z$4~p5e!fPF5uyK*n>E~=rS#p32AYG;`ZpnC*jn}%{u1bLZIINqO&bY6FkDOn_|&xb zVV`$>D|j}y)FVC8QJanm2+>Y%K?2oe;LNa*uy<^KgOuM93*4Afnd$8eoNJvWR*iZxQUS$}}(J6ZyA&IySq2U%2x3WtQ zKx(l>)U~}{lP1$3z#YBMW#*J=E3N|eYt^yi4|73_R+7|Y#sf21awOPtoh#`%A0Iqo z#2hc0n%y;WsFjt~vFoHQUrF8&cxCQSwOh4mbNtJ39gnjcR*`~c#)CUHrV_Ft_N;^; z`4iCc9Ix@<$TJvtzyI zeXBNY64SqeTfLnt8pydh-V49kh`aq_y1skFNGNVWHraW1@q>sS4;odSHOBJvADk4Y zq;U_2E_`r$A`F@ChbY&Z?x~aaK7C|Otd?eY`o?SB0v|naJ9Ib8Q$Hg`J?L781T$QM zGZkx$gS`YODV3$D9cbLr2&5I`8I*j7tJP_8QyFI1(w0GUKZC{j-FvtE8riMIw(R+t?c9S}lC}jc?1j);L4BDUWyM=A`d0~US@FPXuJkE^p2pDrwn0+~`(VV& zl~P{W(y!9cBd-)-$R99jG^ zokS2VIe2wUWA$=#Doe`=d*#AIbgfQJZW+XWv3&3!P=!lQJA4{><&x#H7CcO#zmwZf zRJxx?hbMENIsI+SjZY%NBwlWY zk&Z?<5=@bc;iC08E%EO>ranzR+1azn5jW8*z;NjvdKYHLd7cpCefOv5J_#E4hmNAO z@!u)Kaq<6yY^~tbxg$#>J+j_U_ig4#qW)}i?)5;^AY@3~`Dz^5{&l|jyy)+;wfv3a zKfFxKhBL@H`e6v2DlXLX)X9@Q&$Y5xFy8Ux?)E|E;P13!Z7UB3$i%lJr|Iks>~FfQ zNl&@27EE*60RRhD7I!0aa#yXtPDhsRiPs=Ft=a!?HEKt25nj1B*5cW^bz^VEAUiVt z7q^n?C;ri`B%k9u5y~AXmkn{2UXMK`#@&n-7X91OBpqF9&}!og9~$*M9ipqh6Uz^} zE{Ua!67xc*o$p_L-4y3y6BJdyyNMN&y-;*Ol)E$97i4;_Jf0{}jky!i$ix*6u%er& zgfacbP~@?Yc2nGuH>K~KXn%Ox;vnI=?@QbX-5IH(TTKNs zji}n5Uf<5dR?J_pi4n|FTRmp?IM>ROt&e}6mev;y< z;-gRnyghoA#hcfrUT3LHAxNwuu6QI?ebd}Vn+Pa2Z-e%PXAQCg29rF;h}1Q$n>Fkk z=&T?jC6n3FN2)!i-$XD%)43I3$xnVbn!ur}YsR?V#H@i4{#6HW?r!_I;j^`Cx7H^0 zsNUSL+!5~<GfPN8F@GX{bM3J&*_|zI@|>v; z%4ODA*f&orhAMu-o5&;qWXQ8IPXq@PJro}`YTwP{cC3%wwGD*R;a~K9`Zlg;`|AE0 zxvAOpB2U0*yY28GXvFC=XQJS$o8{pJ!7Y*!935EgMqS@T znVN~xqqV*1$F|C{_1aV6)EM$ZfmU8xa@Ej=i@j{IM3?Ts^HiQ8;-P6(hCf+zU#;K2e89e1}T#hG+e4J_Z z^oQCvZ=O}qbdQr2BYS$TeG0nUzxCjPKQ$LObpMGZrJ{WF?79C>t*=n-RL4wh;uMUlcbDNZbDw*ur_Nc>#{4kxDN-h zVHauDxWD)x1yOPeH3HL-Mc5MNMl`FMyH;yEVnSvRd)7E|5!J`Pt?#Ao-_5}&dK_(S z{!`+eQ0Lj3&q}d*OxxA{#lKMW`h0VruB#jiRjyMtMD8sT0MBZ%ezO`LGJg-6gVJBz zL%;jxeDc+i(to`cx$|8B=+M1h5DZPx$<$dJ2}h>NYq8`_Q}(t;im=7&4I~8Sq?sV8 zQ5XOG^UrCXW$UdnyUk%I8)2xZ>=vipYq7*se}ySFRn^oN(4T_z4F>D`tQv96Yk$5- z!UDrh9GmBMzDu;YBkdNR0{l)MnvAf^wT_w|VOtvTCjJT|l#KVPFGureqDOAsaKtng zRN)g3Irgh^C|L@4qm$1Px0~s<|9F(5|3Ql_83~#vJ|oaUGvN$y|3q zCn69VO(wRF%wC!qr!E7+TG~{M%&K@v#u@@DA=(J)M)Xb_|Hjru6C?~X&LV;tIh|_T z{P;Tr*OAlPj@arzvSwM*NK35e3%XEVh02v{*u4=xt9%8%SYhpvlGm|90JEP}lQsl4 zf32hLK1PHk2GrZ->T4vU0}Pu0Zrt8})uu&Q_-`XIwH<_3`N#>q<}~~otB6spng@Tj zjOQkmM_THGl|h5~qQ=ddD8}fR{TJh_GRti0i*{J0)7+Cg4luP#wk&6{oti+?d!x(D zk9NIXZNUZJT58Ddn;Vz(GQY{%b5)<}VffSi(cEqr&Q6{iF_-|OfspNi8B!wczI{{< z_M@phRsEI2aVnktAn05#Ua)xAM02!c?pc#%oCbQj8$<}2i6_J8MdQziaUCCB^w;QG z1hw-fCf2g6Z{)vWEI7+$TJ|k}yX>%WZFcX?ngN=-_&-;i9cf@zDVr8Oohwcs7czX8 zAiH1pWTwR=1Jt$KeCAhYc)^!;2O1M+vjla&n?G0)8EA1<-LL+zRzhYcahDVfKd~5o&XxF*3nizniKjxmRTD2-_p*32K zRuvbZ*?#b|9B_`8Hv!CPX>;P@QOhX5rZK{!u%=>pVXU;1y zS~S;<&!Yu?&pZ>9$8a+gF73N^{d!brTkTEl{ydp;KyCoFv@N)!r=mcYyME zcav;&S=nX}&7S)$pStTq=-D@ zY*aHdGV6ZEiFA(+mE`yFoq`Xw%Ki^=?*iBJ-T(i8Vh(dy#x`Vqy|&-)`@6os-|fHK zZo4k(^ZC3#@5Af$d_JC!L$H3GDZHyi+Zk!|^8flkSq-3V8$I*Hn|H4%Nrm21_qUF5 z5_w2qiQQMdQjJD1=~A2-9-ksT^w40V6bHOyT?DhusD^a>Pr&+(D4i-*rukzHVn_w~ z>_J0OP%wiY0nD{vRh~#K2EnbWtc|fc&;@Y$jAKub4|C)#|6a_gQpv0`9uZDJ*yXI* zMfe~kBI>6tjcJ%EO|MDxxv*wTW#HvsWNx~CUn&UG^kcO8^V|3;&6}J6m=iLOMp80$ z8r~p30tt%e4;R1bkliyRKvzXh(`%ODqG7x-SohT9zqC%v+j zsqJP4K4Ns(2N)}sf=NZ$ArgsszbMwQI)SOLzU({$ZYp)eMN*IBVa9;=+!KSF7m%7} zuIfSLE9$A}S%ZA@v2Se5S`YajM&^gB@^j9b-D2b|MR2gx60A^KaWw(~-+a8n8nmJ13$x$;6pYL& zah4X4U_BX;-8#~ufb8!i+Cg)YWgzriYX|AGSj|He4DWvDw*fR|C<2-}6u`F?8wSzl zPh&io%`;2^4wc_&$F4`h1o<*i&t&_E1DFne{oNim&pNBl#=jiMU^t2~cNz0&7$PY} zNoq-c3Dr!0Zrw`^@5O1C(;FPJfvl11C;IRl0ga1}nF|I@ZuBwND9R4H{?Wal7J6Lh zUQ>RYk!;=~79u(j$DMsM5jGR%Bps0BD8eifY-|12z8I<8l95WgGC!9Z@(g{tax0UT z#9QlGbEq z{OUD-aqQejt&x#Qc;Nl~VNWSeHKIz7VH#MlkyPH&rC!8#I~|4HJJiXok1{s@ZA zJ=rkgwU~R=J$5qp^*YSt+=$(MG<&(a0IvncUk~ZBVWLK8E^K`f1WQ#|U zcFrYrcctgN?K*!~p9#DR6qZbg!PDi_CmJK_C%X27Yw)X0O5#7DR0j?-u|{LYtb@J} zRBs2q6?Ec`Tt9g?DwzgpRIgPlnz2FBUpZ<#mf2P%KPv+_`{0oq`Z}-3%p6hWn8GTX zQv|Ue(!lfYt~?Jsl*0q-aHJtJHQ@Jc4|h(Q?R4P!#eY;pc~qZ8%1|im_Z4OnZ~WnO z8^dfXGq3E8`TK1>eC}uda$V$6Vy|{djb#k%_ZOZ!L4(aif{$C#{=eZkvGJAi%+NdIN>~u`RYbM`H;tucS_8LYO0QCe zrqbH!uPmIB!n5utITtsYA5!Dloe@bZBkZU44}83aA&F;xO;mmYdm*)~fdvrEbUdVn z8*MtQ5)EHO!effbkCe{I>?3LlesPKf`!sw6BJp^>G=IAbZLfq;+aksedeg>YU`+1W zitd;e?CC{I81CUe>c%$2l|ahk*s*Q_Dd9qF#gL8zE}w8Q8K{y7L0hI z@Q>Rq^N4;!nm*?5+mY^1g$Wf>@-*`zz7^ct{EOyKs};5e(rq>Oh&HcMMHaW=uKblk z)!1H9yWV{g8RD^VddeFMJ`UcS^+QVRw$54S^HLtT6GwJBxbdt6=emK9vtkK}iwdn| zvTY8vRwN-PA`DtAIz57T6hdjG5{8l_o_T^y*O)bM$&eNt@LmjN%CTU5lQ3Lk0K=ijPl zFYcSxd%@k*#T8y$Y7Sumtm7;xNz2B zrA5i`Fe$b{zXPo9xpCdh(>E`%yoeA;x>vYXFu$VuHbKWX`g42?;oALlrFcU58RIG= zY(rVeyRN%!aeR%mR~)D#OXRu*PR?Um#0`A*|3WXd?+vN_FjDYHJ7NZv@m$L7c(EiB zq~v0c3dnC+R}PmV6u`?*EB8O9|#XhMV>o&rMrKyf(t_z(M=PTM)gr^thg zrqQXAoqUHZGnF~=?udelAHzu1ZK0fdHjc-$+W~Bj=P9=WPK_cKGH`f3y=hVF}>?~6AXTz=If6l1t3VhdyWu9c}H zelt6M`YA5u(?MaZ&yaHLG1mw%-a4W5t@k9pRnwrN>vCb}yb7X(@z#I*dy7jq#%fuko~AP2W>CNfl3zbc^1G+CkN#2%6##b>cY?L;#^BMCJvBzp-;|<-Fvp zxP?1<;g&53ju7p+y&e5PkT*+2C?`l8hzUB0y7%-V2FVgTfn=|e#1~~scg5W@zRTl+ zPldUo-3JZewuZYv@;B5m(Hgn?WVZz(+z`)-&SC+&zg~TE~-EzZ5;I#P z0Kb5v#>rLZ5qy0>|MZ|17Eum&i<+&(MYv=L3n!z}U&1GxW|SXO2i4PM z;k${V!{*s$9G`ro2GfYNR=6PDb+0RH_|>e25UZnh{z|uEDL~M#o%<_WTZ#8Cu|1Di zvB#LCl_rxZXPj=?4Q{4+kV8hB*QCjlmEDmE=bbAN(;kPaQ6~^GiJiw}J_?^{Q^$t% zsCYE0oKy@I=AMsW zpIIq$s7 z$wH?-W7DQh7Hcu?!+Ug4op~^?iB?P~nDTK-!S{cSOkDGOQ1Jg6HqIFWFeDwB~ZvV|Rq(yhKA$78UkMh1?MktAgR zX}*hh=2ZNc`5MFUAPLuMV0vgWpF9&8(%%x}cMwZBML}FLp>f_gPZ87FfE3k)J(j~j z$Wj~-m2&nI3;V~|_uREGyMh|lS~SXYV`^{${x>Z7s~giFvLI%{^W*e?FUf~UojfxJ zHSzEDOle&izG1L2_x$TC5%Wmg6bW6u(;%dk4_@iArE~r-AFTkBM0<9Bwmd+~FD3SZ z4L1*$`uJqLlUqqu0qmN2lop;`OoANU*}CRCQMMsuLJq71aw&Y`DrvPJrFNJsff4(2 z5ZjfC=L|=?w3!gi#TWD_garjQ93*wsLJ8vfS^1hC9Dw=(_IW5V3s=7(u(w9uzsedB zC+Ux6&AN3LoHzZF+Y|~%BVZiAWyGXF*v2_4+!Z*1!r>x3#zT^fx=erZislZsV=DX% zA#?DMA=N?TT()Vsq2&C;f69i%I&3&z+#Pcxf&J6W^s1pSJw}>px1F&`oMz*`1Q_Gv zmM&e1TgjwJlfqqDkjEA9;LF*~_Y`oV0(YfGPbrX331&pRlW9aNUKe_RlTEdJCt^BG zu2Mg(HyLm|_?rE6a2>N}5;5&`Y(&30cV`p6>{X8N(2q@g6&jo{&-HqCS_R7 z?T*@o*>W(PJ7Ywx=3eGYV-&4tqZ1Q)0CAkPLzm*GTddQ;ABMoZQH0!yV3Wz--S}uQ zP+72wc4nQ94}*~z9zJzwOHEJKF_iEfs!AE=Z8G_sJna(ADUA36mfy?H7^bVd5I03(WX3l#=CJ z;i(~3sOWV2kJJ)6zi2V2Of94*|5ekO|E-?m<|?y^G}H>yhQO=DW~o+_?T9E~sln89 z2%PiP8#dfeenRR+hJUXX0}!n<#NWra?Drk=UDK$aSbc%VCgUz%P;w>e@q-<|7M7HR zu3Tij>P+v3;~a*4(X9TjeYw|c$e#DFssYk&Nix6gyK-?cLHU-{d_hOwtS0-FBd zp55;5f`-lRt}Z+rJ1_0?3W~sDNmH0ZhY5wKs1#NWmBg?c1#k-v4*tadjkn+4?NgNL zgmHwCd@l^KQKM5MgIJDD``UTuzr7Mkw-JuTQfuwNq9i*bEo!)K&E0nn@J^|xKq%oP z6Z#7#+%s%%SNxwo4OrlZCj)H5pOgeyKH+!s{Ndam_9-{alY+dH$|@oTY%9{KXOAAi z=pgiD?{|g!+X2B8`0VcAe*3MxD|R&kn}N0h9$s#-wioJ=2|Vybmw4A?rtKVHd@F-StvL6Q1oRo{%U`7Z%uGMGK$9l|6M;G#w$$8+lQ2H5Dy+a@LUVA?DRCdq;zc% z^7ea@5Emh(y*iti;=EAjJ+8!XabmI?uxo$i%*|)o*QfsB7HLbkZ)YWDy>Jt_8hZBE zU%y+m$}uNSM+r-7q^5M-64sN!y`^})>ME&|#DS`Qk$ax^ypMzljKTJf*f6FI+Y|E8 zxdL?ZO@IYHJ2P!{6T7+H5of7k}ukTZ1-we!?jr!D9fZwpeVXBXX%kI2y?7 zkDu(+`?-FTT5ctu0I8|3LM|YliTNs&Cp$~AP(aYvLY>$El<T>lC3x>&cNtaQ91*6S@#Z9IXWBh7L zv(@TF)PRBB|Mka98I~Vi?$2sh;8T)QlFm~*ki{sRs#FV*M>6&(_iDyG{W3AsN!)P} zf{Mwd1Eb*%3I zS0x^Co54S#I~%>l)1LNF_HK;iJ?;6VGIU4mLYU(hs4hT)M0cr#udh;?BuV;wkmFUUq`In#XMy{M!4O)z6=9 z*=RGkM*Eu2!K}`|ua*PK_Yb|dd#1>`kR2$2UAxY#s}PfMPm5ejZ5Md=2ae9P{vc-G|q{rB&I zp8@*kN9N|{wqJGB)owkg1`g!|+@gT5T&R&bC6@rTnyfv$4KW2WmL#vM+`{=Ynl2u# z2Y$ufwPwee<06H?hD?eLoURmI#{w17Hw7q1Nt_^il4S5B!_wD~wJ?9?+-9;osO-@= z8aA9);di{Luia5jORtNd)lw5QW!56}6ZHYy+kNQ8aQi*osr~}U*D~{4&Y3;(WTG)Ij zkXu0)SRAcn&zf%pYuP_M>u|4l5+xG@s7CXjenlJcN&7r^x-#K32vYJE8M{VKW?;`OpwLPL~@Cvrbmy6+IQD&*1CMm36`aMAyey*VF ziq@D&stuTT;LLhL46wutl3hPVrQBUuXYOBDc&i6NUSOS`5ZuLW;GXH_e|O8~2aEQzc1%Bb`z<}q z{##XqBHOzJXb?|Xr;91%ZdC!_!a z$y0zKTGEx-ks9LA&TH1Q)v@N&aOGu9!E;cQ0f;w3kua8YK~(C$_06V34A(Vu&$4#n z9gGaDzMUFhpJo^3HBQ+FGHuKrvyxwZ&(?M@bS713@>53{;cyWyT(BfdAhq;jBGO+g z+>_J#dswrpJQW+eQx+tc7-xG(q$X4o+cA6PkxJt*$0`cl52}^z+E+Q7+WpvndV~TV z$!K8yJ=B>bYV47PBp($2YHi8ZWc>lqHMpM7^Sy@|(Rk*!25S^JuPqo{^7g|G-vW@b zxHjqB`Fb?|=2wa~oy5d}+1F1Wrf}!Vor}eLCpMY%`>&(7R|{3O3}IOeG|rlA`<0 zU8Y`M@}w-xAh{v6h`RqletVvSE=B461R6;|#wAOQZq8tmrr{Eibz0mslIhR4UO#IZ zH?+iUOElG9x6VQ_zp@6^#>S=kL=yR20AB%_Liyx$}K}B z{0-%UE)Bn1--c@d1>t&@bIR<3*`-^H-F z7k|au?Jm9xosAk2%X32p)uhR<6Gl>D=fS=n#o3pK(Y3Uj6r^d-U$>v{0tZO98n)#u z(Sic!v^>od+38OA_@r*1MWR&@4mkjQTryk$<$y8;?f!vKd_x)RhtO>doW#XG_^ z$gR!#bHO1YLpaq7^G8M%&jOa7GApMin*=M=tr=~L6{dWNx&87ow*#HX!;oQ8Yj;{u(!(3W$y?xK9qJI-blRy5^lY zTd3~Lv(5L<-5rGs#|kN*Jd&@Y#OXnu-)c(yj`k@U3$Son_UO}R#RbOh6Sz?ol*L4K zT$MU@zx^~~&*Br~Tk$MSJcJiVcD`s@wOUVFj*ws+nj#A+rA~R*Y(8S*@slSlfI3dT z>(_BSt`P_JXIz0<&M?rx($-Z_ig~oaXsb#fcLiE5{bUCujy{EFEB67JFdeH$2__YvO*0&xudR)asK&9dhvrLU0hJ!dvXgM8dmrGDHX?;C-_YU zggxA%L7H;@~{Ao2~HBQzvU99DR?eP`WvWa{|n4uL=|B`clp zMia*UzLg((n7JMWX^!94tET2d>oDu&UAItZJFWe)-j3klfjqJDw~#9e6RE>38mA>J zUIEhw8rv>97m36D1co;MibKG2NP0r4cYy>KFWD15o>^w(opmtYw)ho9erIg!yel6)Up8`>eOMfJu0YlXDd)RqGvbX^Sv zvlN}Jo+6?~SeU)y8~gly-{VBnF-E6C?QHP-6~PnuY@F$<6)RR-!+m%bOraY03m-iH zjx5{#{N}`jRJEcdKHP*pbKm>=ea_cKhKt70weqfGk5@q^eWEa6XxZb|prao$*csvW=I#j*ePkfWg&+UAFTW8w~ zYj{zE#7U8c9aVxyGV~j<3b@V+2${tmeh)NkjkSV3nNr0JhD3umX7KjyJs?Hp(|EfM zbZyxa+MUMRCZK@LeN+Cve9^+Ks>^|DAJW`K zAd*9#E$l}QPB}Z%(}Wgd^@;I}jZD>!Jb(1zA~Ek1rsUP?uo00Dqjta996SrdB^ZwP%Zx@%KBGt|K??tUG%!{f`LM_NK=vmeo+C z?>#?$Z~PB2H)geelYrb+XJ(z8%}uMM0WOOTNiKf1OsGxjVYP{4nhDEH}%G7W&*f38>L2W+>e4|*z^ZnPa_uA-OW*_db-9;o| zCq7jG+Q`jdGW)G%*^hZjS+&_Uu4Y1nNQm+A@ta+`8BzhaofX?}-j`gl>PZ1z%9Tu%~J^NZFc-P*rt&!L$&;n}^Oww5FXsTXPR z6&c4YQ1v1hIfCum7ml?e(lmdOkrRVxpJKz`nx3RL)S7R}3`#q?kSydj^ab%lgI?L! zn3Lgr-^{q?2fjeoG=KD>7^<1;zQRCjfFkxu}Ztq$? z2Ri3*B~8UE_>U>Mp&qKXDb~4YY8jmWQbCr1Yaq|3)o@J0P>7vxTv=|G6mXt251w5Ad&rtLHGc9?4vBk5Z&~yJtBg51XSRNun>qzGL+&6MZfQInoj@ixC zp9@3NH;J^0#13ZBYiKJW4%KX`bFJy2haR`M*~Z&;^Rzb(Szk7^!%%bajD3#)O{IBM zebwqW4pEzcY3{Xyi^sOA@W;;v^FUDNR6#1RX@$N)aB|Ql_c~)N5Qk6?>*)bsbz$@lk^FmwAIK(c|Fzlc{mxgaIKOJT*{hW*86vh<-ix_! zkS!?Gzyum0HWFnFyr0=Yw}1$!ul)hglSLthfbrPgt3reX1-QCW)4r(C-6M*R&7l%btC9;s*iY0oD>BBv34PaAE@=9(ZX< z>=N7BEO`w#Q{dE!Ypn5_lX7iaFYeqicML!)DSZJ5boR(O8?T2%MvmZPon7I2nPN`G=#j~x$35KJF8l8b+K>|2wY|*JAi}CR%m;~P*gY1LWPV=y--i{Q}m`+ zYa~*i6hAkmExIvUmJ)-*^wJLzjPpe^Qh{gfxO{GSVBQ2l-%hMss^$Evwi z5^cYoOPR>y#^1cDzp-iP`@XSE=n1u5QMwLPo2#X5`(87Uxt)=bkzcB0yI%Sm0cGDQ zT}e^>_ztbL_`*HQY7W1Za=3%eg`0TbTU#&#yGp=1y%Ze=&$5 zJ+#(0F=@emliH6^)^1y_*Qj0FLAQVz+S4OVEmF$9qa&&Kk=7P1*CN3CuC;04i&5qs ztutedW7Li!gWS0vLVH47Xed_ljhAX!YMu=q_{+^6o3W1O#_W7MKhNHlG|GIeT@O;r+#LB8oI5f*l+ECIr8)io&!)3dUrk6 zsBPB0Kkke2RcdX5lodZYs?^b3>6=hx)ir~Mzw1DHS3KR6a1yt`GI87A<_8z{r>*W= zu9`#c7dkfKR38VUzxH#W%T&{YdxD z?)F<9`wjH_=9}qv814GDeCldWjMc+orSr7ReU)E(4S9b1sZopN5W**TrGxjbdQx^@ z1F#Hw3YSO7X>}Wv`RZ>9y{wrv0}7IDffr^k^RoEG)sz5EYeA;0a& z&9!FMe*qsJFMyAp9l%613czSBd~`Poj5Fi+vO1s7ro%TT;U@p*Hoo+^a#`W(P_Fj} zn$lhbUoc_vdN5;XATn+NIB?`g0Cw*f+w7q>pE=Pxbusxzf)8D)_DGPdd&tI95&HN~=GCp~|! z>G|_GY<7I&2gZXdsaf;wPc{co<@dQ>!T25H8FhyV>M)RT=K4d12A3O5<+s19-bl(MIvy$>kYKH%J-*V%q- zbtISGHd|!ePtt)d+Yu6yC|(Z!mjOxMprh$pFID*LTdKy3JsJqPLuk?auh!)z(%Zgc zSWiepaeitSW8c>Dx^F2BKjv$@l!_Hz4_7nr)WJiCwsB-HII@=2Y{W-M-hhdId>mOW zbXIVMkNjz&)^C9=kR~cdb3VKq$ZeOLqWJRF8va<;RIL`TS{HEk_C>y&&BW6yA795; zeU0^<&v`7Z^s~_zmZ7b@(#&jY#EV_p%GcyFTUsUbEj*~PUQXeitc;_4pQE&q1w|9g zi|Fw0Mz>S}U9lM-evTNx1$gjB0z9t&)Q8@?bknfeCA<(4+m$jES0Q;S{pAeM3R(2Q z*tpWH5RhB(Ag}6LSL6&&5)p%WSzo+5hd-%lNZo&{#@8(K3THgbpeunnQaXh79;uVUez2_ebkU{scrK64nv29eOD)GpnAI)5L#2^~0o8&w&;X7ER* zR0B}AOAW2&Pv}!}_~Vq+HU}YmGZz^p1dmov!O`rlm}&%r2P%V6;1c0kix#~?$=JrT zL}Yl%&OEXire-GYk&cNaF{%$YhJbZIy>#a;g+CP9U4SE6`GYFQ9(cUI0%J>+P~7^A z561W_wD@%%g{bP36MCa)HC3ew|5I0|(`TOEN3l)~ZHU z7WUyrMz_t)+GUE5zF)=l`k~?Q1HR+zlbW)f^}bEvOd!2?Da$1pzmlI7E1N(j0Zkz~ zDCSFySY#RMUxBF$7(&ka{rIbNy&2eC#&J9zS3X^<@{n1~;TADRL0k7R#xO#8nADCR zKVH6}*o|Tb2?=f(jy(Ojq|zm)$6vc7Mz2_Ym>vtfBFa)HVdYB47_Sa2;XnZz>WdCc zbr(;6&;Ul4gB*y}FMyMt<-w<%gzT`|ZrbHd@E!UQ)2DfsYzRTS&p8L0`?lUi6c=>8 z!-UZ>4v)Jzl>q`~LleWU%sN`GrVB1jN|VxL5V-Gp(zZ4~i23lT`HKeQ+Kq1h|Frpj z?5}h$jHc#J>j36W5rM*Kz}=U2m%Jbd*!MgLcPhbm-!);Ot7b0d|0N%Y8I6;UK zaz4ImAHWijWiG`Fcm*(!ruxp9zCPD5k3?>m_^jZV$K907&$x&(Q8XfOc!=b@7cc5= zs|hFHV>Rzv7#!S0!VVB9SpjAh7jQG~AeEJt(Bpay3yWapLn5ThL|-HdxlgL%43JpZ z!fx9461>RwNi=*>rseZ=N#Pa>d?~o#=RIr8-TCd0y+3I5=&bC|TU9w0y`i{ZRLYbD z?@4(JI;BJ`-q-F@ggrS*%ww3=pr}!yks9b401KJ&>sps2hFhu|3@Pu$Xj~rH2HM=4 znpL;L)G1T0cF9j(kOaQ&=dnFB{A{|SN!8+IhlnW;xD_hl&vUko#hHx zC6?1iRAtEa1_q6W`Ex4Eo{Z(fE@}0$gPwRXfOFe4j1q0*{6}ZnXFA7jTyWB7TI>_Q z8IJq+I+a{?vkF)S^hiCiNfIzpWGrl_3|cm327&HP*gsA@$#ILAcI8J_9r4xVSx6T& z#4U=aTI*aScR>RON& zi^L_X?=D=-H{f5M%+~^q8}*Xn=XblH{v0Z=5hFgRUgzh#Pl+OQ~|(whDd$UE?K6QJjm3IQ**6oW-iyw zkxJ21Lh{TXiYmXj^#HHkn>Ja&&XSOfECRZ9N*gYxLOKd}bus_2YSpS9CDq?WSbOui z&(j~;OkCjN;eP}CK%UE`(8@c3g5u$UvCoi#9&B+ScGhP1?PI>% zzVBhe;q^C*g7T|x*cD`jabMkreVu4odR~T&JSF$}7I*rC0SI>k#^U6_ao;H(o>V-1 zXVoFjl?MSxxcfL2ZmieB-y*zo+qReM+D!54y}mHa#R0)%5=)juLlRI6UB<5wFlIH$ z?C_a*X3xG~h5JMN+gz)_V(0qQJT$5b@_9Pk=5|d>=gLj;_Fy$a{eSb>{5P7Pe;LMp zqh`%U>G6*%Xjgs-$(|8wMlCj{#2GGJ7y6$ADM3L&yLhtmo_K%!S;?nm(nk00+T}Kb zlSuU1ntZSVM|VH<-u|gc=NHt!Fp5X#JDlcdYfu_@V*svMn>t#I^QCLmbE0T8)jg83 zhSiPQhCbef=U>D1t&Yc1d9;7eKCu**^tnk>6Ju+*_LMZY)WFm4#$6X>$6fL@E30`% zVB&?#n^zRS?{lJM*`**hwEozR28)s4$@LBYuPiOmQJ}kszy(>s@C?`Vx9InpG5sMS zNoq>@IJasZnnjIBc5~2?TI8)g)XGww#>^RMqq?Jim=4 zo+Mojm-Fzx9I0T5noTO0o;DQ@b+-O6Q}SDMC2Up)M}-XOwD>UfibOk9SsStI2 zWXvaIRBw>JfgSiBW98lXA^n+y340KcniZycXHXpAbLL>tC7#^vyDC|6%gX-~UWi+| ze3Y3#V#Y(cU`y4dWCPs_`ugZ*=`=KDhkPMwHw2JQMUXJmu7pHpG*Oo=b37ht)rLyd zV>y?tYew`QdWhns^@rU(S}*c|ul)m9=`!UI56Lt4-i=F0qT`rLY?c@mf*swJBLiR$ z#lT@!egVPw9!`Ioxjqm+#2M$#$i*EwGVoSicsNpYAqgCRz5?!E&u!I5vK?;)l$w{avis`c|j3w2ecU4)~M>HW)m%4{mi1t%Njlrg2ns`ZOb zt~}G}>eu_3^|d_o;0x_ck_c00T_S%?Wt&Z5*$80x`Q9<}N++E5yPWOTH<-7-!Y#Uj zf|!!RE(+R~{g!0uV4Q{XE7szK$Ym_y@sn!1Wq_@UQ{Av~DpB?h<@-l}1{0@DKx*fu z)$CISq?EmQv76)&dGfrLhdZRTaAG$VOSK3R;kwu9$3}Eob;f$VU`#j888XmUj(P8a9H*ya_xm{w}Pp&q;VRy(Hj^rR1JK;C(6 z3AKF`b}HKOMe!CjsKw|=o5EJ~$R+frPrqDK(Mr=$Qk8?aSwy`b#7)26qlBq@i}G#D zKB#=Iu05AFZ&l#)kF+{K!L3-&WSaXb$Njvkdxe#31Mgv1p|~L6s`aihG}!mK2>h`8 zN~z~m3QFcL0?E0b`!Upcp9VRt=DMc7Y~%OT?&#yORtPe*VJkiaPl<^eWp>NY=lPaz zh;D&6;CpvI?_2hHPURylZF-v85&fXGjtO2rD$jFLuDDbIU5$x*+w7JEbQ5bW_AX3G zH56r=_8P}SG9Fw_ER!x4LhqJzPEp2ka=DXXGTCRdP79<+m-9dK4)5w6zI^

vtTb_i_@o(>MNcl3W{n z;iD{`zuBcLJdl-lv%qrA(dUacSPtiub`m3YRn_&|fT%$gs=BD*903fvj&~T}`7)lX z-d{swgF>V7W2B{=X4G{w?Bx&92!n$4OJ4A$;b$f#Y%YY$Ai73@hfuZzf37Kjm?T1M zO|)rxb4VQdlWHv=gGx*zXwTDTmSb5M2a^YGyFt%9!{H~YJ(VPRqKqH}NZW|t6&>5U zG3zWIrU+$Bl76}7f>Ds#6>tNK(&>C7_(P(Azi75Jz|52~0zpd447>w$b{^nHr@=pDYJyf8^9SiH%(1plKrR z8K5{Timhq0tguRthm?unU!B(pFDj1;unX< zY?GPH-6#wS={*c3*f^x{j*n$&3v(@mf5B)Dj%e{2b+ta`FF<-bbM&9x-MhFkL_dz$ ze~E%{5f(7ZOL;q@lj%kf6*bLDZ#(!a;IA-fghPB}j;51&pl z%ey~ylEa1ATl8N^v#6yj?7wDC4ea|v2a$816H>`Ob+Tffz7y!M#VLi_PJ3qx{o>Tw zv^KT5#wo8^1a`4Q5jN$#?1$`unn@6w+d<+n4Z1@z0Az7 zz%9~>1csT72y6muR93TgT`V-(h2hE>6ALb56YJ;?5H+bEyVw>S;|z;)X)J4(8SGxI zPD9$ypG~5Mj*egE_Gh6i})X4kE?g-9~>Na#23feCN1vOq3CaLBdwL%!rmHSmkf0G^*w4QyG^Fd}Ohh+0A!t_n`V6QfQ(}h0xLamB;lPjmPYFu1+-1 ztS|~*E{A-UjVP@i%MYu3nFxoM0)BDm7b4Tv+@*ZzS+QPO3<$CpTIZ2pF}p%rGK6F* z)gH5_H`(cPOyv5jG>?@dIvtyFR3G;K z#WZq)q(Y$#I^7R5eRNlcAJgLStGQ)V@@jdpIx71l!qb7P%$+QP?n=s;T;k2os@H5Z zx()JFlh0!kIx?-)!dG-|?cKW;3;kJXig+~E>{VWXKN2P!1_OGQ8+&z3jD4cF2qhtV zJyI+hL1N%`qJ~g5utrU7p-l7wLOHe_>dVaMVKW_;egyUX$~02>^O2%CcS$mAz9x10 z-lrMnfCU*fUtMfLckejQ1?kQ;Id8X~_ww7PRe8c_Ud)$JrsO(5mQUSAM#X@`>d}^S zHd{v(f5jS3l?~71uxT~in&rEkH{?>%?YiBrmPx8`zL)LE#GY*5F@6Lx?l=FG@0tpx zU_2{RPN5Z7sPjK zu%G<`^_aH6e-a?PdoAQMRRKe@RiPRabEaiFvQMQ!c4H~g`wgpBthl>v1pH24663L} z2_q$MJdDJvT70j0(HU6?y+;AE@qydyg_KlxuM^q#>u=xZlik~+YrC=e2T4OFFL@}v z{3@f5IhjXw3@oGIJ)>oUt|HO;U`}y}@%6|%&#>7PI_kz+WD)`~vtY)x!DR1ORf)l! zdle;#aHA||3yxfc7bG-DT4WdP;^r8Kj^DYrEUzkr%(s+afcW#Af)r9U!8KyA>t$Af zWiVWoe^Z7arHUsIMOZG^;e}Q%ED+hK+kM72;->kO)XJZ=^l_x+{rJrZkp>!J3KP9m z-6oj*7WvjHb}MfmtT*3wq5bu+%jGA=hEinn(`yWW@rV+B++VIqt!uc)+rL3@oZD({ zKFB9Mp?}z7`3S?lrd2lDjH=1Six8$PxXfSdur?#LHSi6a)>TOS6s-oOf5)wUKxp3k z(Rm}Ct6}Gd1u^@P|2^(SH3dDtwVSGD&Qu z)P*9l>@IB4PDmr0)X3*$1fy?YZjlxg9m?8TXL4tR+@8}z1WCf!2+Fa_!&2r{nG&H& z0seZL4PeYD@E3-htSLR547HfpI>#!1Ax&3IZdBZ6Sm3p)E^LGlldH*dW`(##{;a3l zx8?ouZ%SCl&HMy*n^Mut7ijY8jUGPrG(014$;8Ebx1Hx=zF|iPi;nr&He#w5*~ZVE zw`>bUdWtU$VgyP(wZ7wy0YT*d57j^_zg^sPP6flgID~b-Nkfr)#minY!=~;(52HY!c@-vJ`M=&pp@Os3q%xD%<7?jx#HCxV>YE5cpS#j5lZIAkk&jy7M2E*i?n9j^YYyml}-Sm$-dq z(g)S%0q_Kq>OQk7_kOX)M$ZV2ycv0_(nLb`#w9whX`7|@32Rf98?b}~t^I0MEZR?h z;w5r4(W^O)Y>KL6+$s=Vlzhyp+$ThS=6OnwGgGL5Yw4TRLFb; zM_DoOs^7<7`3Kb*27rdnU$OvM`i~t3B3fk>8m|f8F{QOgs0CqwA85?M;)u$ma#r&w zhZ2AVgJ|#ZhY$$>Z&rHE4?;a-I)NF_vj&_M4c)k`R;qp{;V#zuPrS?FR3!r##Cm(y zD*H+xM>PFnRhV|nN~niw5`Y?L!u*UPDB|oOKF1ljeOg{vB7qB~Hy?|yIDZ`pZD8BD zA0)|y{QJs7=v*)~Xjxoh+CV&#uXh&;9!mZa@jVQ!vh0o;`CRYhFx=S;YaWwa9qMsk zFelOb^npNadVmL#XmLa*BB2H1;6@N(%V|+=>DI9hv>UIS85goR<{Zv(i;f+EI~9+R zEe74hxr@uur>aZzh&{XgQ~v-H);!O%VSbS+m)ZMU~9YhHWiHM?|?l2xt)X`E`O zLWrzUAC_#c%q+wlMUN&n0er@lK?1uCnCFB~K+zKO)1?Eyl55%NUX)Rh@ zwmsS|AsPVd5XHwh_>M@!EZ1s9ET``VS_?e3#f=zsDIhhT4e7p+rJPk^cdaOui!%|- z0xdLFzAl>FeYQX=RSvxpfz6u=boxP-vfK0~{)`W&_=cj?+Yu1WN(Sh@>oSKG6rw2E z>o3na0ijuZTxj+M3r#Q83z102wg(Jss?d5o%y_2gdcHjv-J-cvXn%7timty9*pr8f zhe3k1&$J3KX}jLz?S+OsczA)7EeuyLiE0;Z=2br+)VJm%ikDY(LoMa6$psr&USh$G zm+~M00MINTPys=~Ev2WjR469|#Cm{FEC3?bhGAi-MHVc02;O1U8QT?ntL}3uPJ!dDEEs`;N`ePt)qfC;EENe39k~Jk7no!50NaWBIvR}w#0T2Ncg5>uyKcKYsR7GVdy`^cl0Hh zEgjrR_m%uk{sW6H24XP_nK>i&{11Uo*7n!($R<{e< zy}g(kU@|!#lRX@F8}QTAXge~>yP`1bd@37&sqP3@QuZ1aEV7FolJj|C>(8umrw}-( z&YeuLoDNvQ;s{oL0kEhuFEbAk&ORmV1*i#EO(im&k~^aN`w^cofEMdLL6V6=YGGzA z$1;>GfIJ;Q@QnOY#&V?dEiW@%!k2{{tCQSemd3NJ5!bUn3-Jkwet=D|9ifz5ACo0S z$t}}J;a>8g?aks09Y!dWZ|f-SzM_g?TTgm=Pv!zxUNf5yJ|h{db8@slNQZTm+On$o z?LM$H0*GefujO=ipAlG*E_X4ZRWAPk>ACPu#gpj$$xB(Z&8%&Z<%e)~lapCCys6-jJy?JpU1 zc}Lnhja;Ld1fjsU9Sm95DOYdGEesO#QAvUA`ouOWHI{6F2R@qC9;K%3+En;zXBjrmp-#|;f@EWr4pz7Gw+Hwh?-?&zDM|* z)THHFdUFCLx})j&zQf@+_PrBf;${0_%q~dM+h+%Z4V%Sn&6*w~3xKbNm366kJJd5| zF9o}Np{nhG*1DHP2Q2AqshbYs&Q~TCh$wQM!+bF-aS&TBB|hXCN3vi-7p>Fzn3+wr>$k+xHFR5I7U)p9i0? z?>U3)SLB)NrToV^yp5hE`<&6Pjv?q%HMm;>@enq&>MLzWVaBF^$K#ay!q&YY91dYS zwn$}NMz1f3v0>WV5sOA}62zc(k)kB##%St|rG%DJ2@tIttjeoIG)E56=_-P#?hzoj zn4%OeZ6i3Eq1kFs;X*fBXk(dSP>d3T$>%X9Qh;>+Bb_p2z#_1A*D|^j1aU=vqF9InRre0YD;^EvuV(~SN}duzlI7M&1U3E*xY6DuX7H656<)T0n>0HzpTXgOY18+1I~LQG~0$0b3Gv}#ZSSUYMnR}`;b?6@5(yMts~mYJUf z?!9`IS*YZq;3YU2j`W}15`u|GH!XP6m(iPP_NVm$Z*+iQps;rWWUS_0QHv}EV!DJ@ ziw9-g5KMv`XFq0O(p+>`@eB+u^%w&+Ql^O4*TViaa=sWS0*;@86a~r)V0CG_V!z6K z-(m2Z`;L+0(o~$>3YMU^W0-`X4GP4)4-xQtlc-=8Ul7*}s&5A60|aU$B&Fo>>j1E7 zAh2jBd9#uHBGa%InYzRXpnCarRa)ic(P%qvb*?I0HQEPlhh(;{+Oa7u|zcAFb z-s%Gd)Uo7%y3E`g7qwJ4g=Uxy1Cb#$k<_|_WDZUO)Ff+hRPbUpV7D@03fEG^atf!Z zPA(sqPM!Y%B*0t|gJsmC?l_zC@++z(HJkn-6z!)zBWQxDobPc&9SwdMl+P0g$LxFj z6?2e%lQOic6ATJG8Gf?O2ppW$3l?LUOB#-(QL4B&8PX#~1vN|(4AJ(KKD7MY)<9|k zHIyeFl88Ctq-yqh#8qrjb^St77JV4|#+?pR2hw9jR*ipCV&lpEOL><|F1;+fKM@6M z)@l!dC6rbdZ2C`L@hOi@3R71tT>B${;C1+yk*cUQf0?tWx54qm_J#~j@i_S^@fA~Y z+RBj`L((|a8iA5-{HLIZVz~J1SMDIbFYbcBH^5KZ^qYK|e0YD;^E6{0f&7sIg7I^l zvGre&%TckcV)J%QL~em`*u>?d?!-2jJ-KmxGOa(Q>%`~GxKi4^5OvCE!EL!*O8n@k zs_oDlgE42hYX-Sk8|AbE>dOT=As5;ivVyLN`7ZT}OjehsTt*uii3&8fnPPN@w>fum zfXQ(L>0&)2NX7LU&q@-&XMz%9s`D1$MT+=QI6z1@8W{#Bsb-qn1Y>=%m3^NiE!#5b ziJyCwQ&xSW@K5azr>EZssq<&pdRv10mXH}2j$+<-Y~v9& zppJ7N62qg?9%HeE-hgJ!6fR4Su^l_b9X&F)?%bnm(Jd{<1PM1#cNFB9gwb2Gw}KZH z2~?V>=KlbfulF!h9W4u#2GF}ESZkPbip&ZfA_H=Ifu>Bpv(GcnG0SOeD)sb+EAu^w zdeq{$_yE!nnYHC&w0I*W6{zCBNx1|Obpy~BUZlM-2;w!*nBpa|l2p=+Mz)AI=#l+B z;ifJ@=`)-k(dP=IdLTAr!}Le^j?m6(HijZoYZ!ser!24ykXA<sjZ`;Ci-45WYy zrWbswD&TPtGVE0leAHwkXi(}Spf7guC`IkPFf#V;WGKD@A-4-TDmU1Yg?-#453`t# z)^d3Cc$cDFv6!Ega~UPTI&|87eK?5+2 zb1gLlhC0Xc#aY7`h^(V}dnau;Ua%*b8c{I~KOCdlCaWlYt|bQM0*m&HItBzYjimvf+YbpfKSbj|iG zFv6H~=?%!^yqd?kqB!=ypMkm_gd&CPO5kJbmrXq+&a$Cc%_>p0HO{5PMIiBN^%l6r z$wKJ(hm2)WUui{!E)LV4r5!#jhf6!UF0%#6RLCXybs75rAv-WRs3M7w1-QQ9RsFe% zWiOZp!OcLb#5#mPM2o!lxMic6MZauD7dt#$voOeIVLF|K1WsBlDDxhq5Nstwa zsd3Bj0HvwtPyuqG3KZamHSrhZf{%yd40_yOvCHRpBnX;f%W1I9%JoCuT+xw9KyfTP z#W%!ns-yjroiHl}#Y2sk3hh9k}mng~(<0J4-uRy#-dh=SWz{zb_3 zL_lGjEgpV1S)OMBE)C$~4_Wk(ZSex@#4yu|UtZMT*gw1TeFa#USAXLjw_hBK*Hr=`op@b0OL~+O!?#yBHy_f*apRzw?1MjX09n279N_} z#Ix?yhX&hAD^RE)8$rBo25qxW1_JjmjS9zcZ4FlCaR+b%$0kp-$Ox(h`$A^*M^u1l z`ZDO5_APKmN~ybp!3u)fnY?1_N30fy4&}0lzIcL$7d%Qrx}EMNX2vE~j*XRn#7$EH ztsp)5B7|pWY#gOT2okZ};`lcd+F5H%E1Qbm<{QjU3YUKqA?AI9@dA&m{ReNIzzlgM z>`*E}s}1ZvlFgwCu*LhCQiamG+*p=cP_9F)zp)X5iG^HV;B;G_ptS@0rCX8QtTWqR zc%?(b2El2k?F8hu$Tu8(q@ZYx8~a(il$XD{y`H za3YoMfNj~@jJ2Z|)8_*?tgbYO?bin9i=NR4-e5+ig>|24Z>^3^ogEM|+u#Pm1^N`{2_5`mo)ru>lIwiyAK5qV#hbF*XPium;DhWyXa{153DDY}nC-;NT+_ch8t? zWZk3!`&_?+F3)j*L^f4CL8Pi9VZg<_^h%3d9S6LsI8luVa{9#Eg;Yl#f2mt2QSQ`! zY5~eu0_YAP#ifNS0HUR_6|gz3-1@-8Txo?^A}?7gTJn)fflN=oG@Nw#ML0-fI+vpPYg(61s`XR2)p<+23 z&A`XD6hKJRxF=k<3zgYgirB+R$NLo@LJ|<%Q<|B`R++!zBxn^n#dB~gWz=^K+%6+- z78vGszz{}&t}?5Em?-9`*Is6GSjbHfw^J05=jg&2fj-|30y~bh<%F*bafbP}Wu;~? zH^dZ66$-u-O*G(?I-uqag0-#BrhsBUhxhO|L(uqKK^qaL{vcE+plU#nRlh2#|=D zJ|Nss{{RrV$T>3yo&mcVZ-^|S*t9jNANeg*lFP?XnFDzb%yU7~$T^9Gzi@JpTTn7~ z`a~3J#joOMrssyqO(S9`@pz2V+WFT|aIKm1E&=R#;}I)%d`A#jQq;BdQkoZdXgP~Gyo_S(*n*?F7gVp zZ=U?_I7pLV8r88&GguDo!Iq(^6;Ac^my~GS_P@tZVVTN=HjbT zi*OEA{lcLK^0iu5I#gjcS_P}}GO4`vDgsuuf?s2aH&um+N_CHi`*-4S_n)Bc^SJvj zfK^|if(^|*Eae+a4x!~0^WqJdN(pdE0MO`zyu$CKA-0!FqMnafxki&Sp~eG=qJ;q) zWuJ&L`;rJ6D{~{x(y<^)$~RSg#}ZZus}mdYaTx#xW;R0ttg;t1h4U}I>ID#@C4q+2 z4cIM7zXW3gG`=E=zNvSC0Q*2_i&k?`tLaNCr=czl79ha10ig6FV9w@twWE@yM1>Sx zSUh?#7_JVbnX8KJ@S)mM3}!ux6b$0h@{SoMllzp`bPdhRc$AoQkjLrpHdRo7uUOG} zw+9bLwTrLny-Li69q5IZ2_8YUnojm*6YS=`~_`Q9ew`*5J!B} zZnc7@fi?O|huD0Xpl#g0RCnA0gjrl6Z|x|7oni48xxSkvM7STBb60LSOYgxfQn#Nl zt82``-l76k%J0l8Qu?`JVZqKNS!#ipRy!c!FiJs76M0uk;urG5eI?S~h$5RnptF9{ z1C@q4zP(}#09IIZjzIT^y0;evW>}|oY0XAEf?%r$4~VqVmaTaVGT=WDzYC{sljPO>tD=RBM7Q{mKMWU)X zftYMRO~?wm%5=gbz!*(m3*2NZ7$ucrA-ZoL%u$58lycr;CFye;q!pi$YXIYzD{|nh z$6my8%r(&>;Foy?G z4Y555{{Xz4CIbUl2dnE5V?%nbn3zvcVuRW29=&2Z5vjPd7L{y?mC*nioodFu^&fD1 zz79g|cL5m>12i(EQG^6wTC)96r_@#8dCW$+rlnTjym#I8y_VKob<8i}BvnE8Cnb_B za&H;DcFDz67^#keu^0M|=;<44+7kA_2C#>IW7{a%*(*f)BkoKGo0rftnMTSVWF9j1 z9{#e+Y+!^IS{rZ=<_RvL?+xLI!r+R$shpQqK1-yNML-`A)ehjdxE67ky$wrzFiZEX z`cGiW138D*!USA4z(95iHhV>$VEcAY1g0yySr8r?CJAcTKyBa1ly5nTSqmaR_}3 zy@}yke!e4hq8AAvlf#}H4#Owm4#N3J%}eu-t`Mmc|||ucLLck^t9dys`twmS9QT+j!LvHpjPNYM|-v_ z#LCItqz-%#%_>h8=y;E=W|olCC!%3e1XvGsZ9<3$ZLq>xC7>8}4aW`Lqi>i%w2O2^ zWkwQG-YkVI_lN-t5STFY)x|{vhD<{4tF%%*`H2=lr8k%~;2uH0%*JX;1aL0w5;aRf z4rpYD1!!FaG1)hu&HCIy>rE)wRxz?IiLrl4L>DER9--x7fovhXw?#?_8bwuHbU-!o z4rKx0lokV;mllnv_SBT}V1^J6h35I4OhjgaMBMWv# z1YRMmZUyVW&3m22FT7mYYto7HXr?7-MV9 z-8J+=3W3E+>L)R%0B|w0NW8*SSz~bkwo+7eOf{FZZR8PRxA?h(cuv|aYe5fT3oyk% zyE6*qm;x59xj=`L7GX-1haP+p zwOvw6ul1PsgE0qYI_fP7D2q^jkhpyf6{@!}!YzY*VlnW;o4iypL+q!q&G~oYGCe8;>*0iFU+ltDOmy=uvJP?+2x#Y;G`Xv&LRm^#cp0$A@a^4A_U1P zeZoGFs&`Vv8kYRL%A9K8(auxsPs9XKeF$RmY^1yVLRxXwP;Gp$EHOX`ufN6A*CT;U zhmRpRqJu1Rp7ZS)l&w;>1is7mkB)-65RgE!<|4H^Z5EJB2OKi)D~zB9#)ol(Fd*Ix zjtGCQ&afskmLs-=y-s>d;wjcBds;htez8iGg=3Gi@d}C6SzGf9Xyd^vMB5(KbgXoBOR4Hjq`<%R5GQrqav)Ga0{;NGRVo#ED>Td5XhzbRKG4J~ zCab%u_J|=UTV;AnD~MKN3It1hGT?f}vI;DDmh zerhO|jy@zHGzf};LK3fnJ3*>4?*1d{K(`gy?rr#?8X3!?%dN z6lL{^c@V>z+!Gwk@Ar<%>Lqz4!Dp%spRCO%K9BAt9(Ux)e@JlF<-H5f`a-t0dN^Yf&g6Zl0s^zr0GJBdAP}&R6vhBH2zfTtmSDXHe)-ycP{U{t#D#$c&dO4tV+8B+*aRpJm;T5;F+C{m`vAeMk+)XtEi zv=_7i9ZCj=FO)VzY?MOu7CDcFC~;XYa-qv$-!M(sV|+}=WgFs9Cxwkc*0K$g1Q;46 z@Ut6ac%82N{0t<&&+!UcRwnosd@x;h?2H!>{anXAh}m4lLm*gb z6YfB#$ZR@!zc7+kwl?D8Y>i`+>kk0tl?K@gj+wo9g!C&^ePJh^9sCS1w}=}B>9Q(1 z@YGsgF38snCTgV=%4JR%5X~Vsm(p7(iw5-EYOyHULL5uB;5@LGy|IN#(qol%#4MbR z;R!(RJBZld65cJfXFNmjt<64|NQO3HxW#z_$a+(!>jSM6D?8KT9%CHA5hApxr21T0 zd(fpjb|aT>nyQ;Q+_Ot4h7RstrCC<7W)BxH*$bv>Al)3RFl}kRCJ-DxH+s$B^_X?? zQF?*wkHi}(moca0%GPK4u=EWPrhwwULS3~+^_aEV2h8m05+;YL_Ap{w$Ln|KbZcB0CBG3 zWeDMjCmMssarnQiyp}l8Yj@-A2}h!hFi3V#Zjie7nY#W}wn3jAo`Z zJ`#bsbV`H|cuQU%WUH~9OatJt8Bv^mOe2TW{lr$pA{sZanE0kQ_qX_IIF7^d3V9Ij zc#dYZHSjYHRkhR>Gh`VI#kB9JvS32lVt^E{Mi){vc~nf$@o0=f%TMMzO2BolMQg;b3QnmZk8o=B1|R?8*^BGTTz z2M~Jnz+x*m+u()pOZ$G4Z$Bc@@C(q8X@6OXx1`K%F)kC^`Da7v4U>XXe=)D7me$NEZRc$3_{+UHS7XRTWjfWy6gmQ2RyH;9nWIAcn!o3xPT% zRTDmmcBS|y4MQTuda0L+1sK#j;SjdspGPO7eVxHVpx6pA=`s|lOaZ>-8~*^eVypIL z8-pb<9KAuzvkvRM-pO-GH(gxM!`v8cRf`bN3Z9k@&c?=p@W>H5!{>?~b0vJar_hNX zw(k$kN7+mur2P#MF`Tm3-9Qk1V4YC`C&It2veioJtF+h(b=1 z)Mgcf^eg$8VBXNnv)*SGi`!nzwGesZ@^Cp%q)c0c7b?)_JSQn%K`B)Fze!T&;X?59 z;S8Sdpy)inHUkRjr!+*AlS<}0=NV4@!>9^Nhf=lhUvvb`_P`M7QEnj=FmVWBm?GQ9 zWsG|$oER%b`8tFx(L${n--vdNF(|kuec{mB%9rC?sf+BWYO_XRo~2ov4G}_JblC`FAmfFU&X_V&AeXEV7)l0E^TF z;dUWVAjPiSY9AQ=4-gPiE@|AG%%O2nOvM~7VACMcPH`=3vlJqzg4|lRUF$DINVI)K zN{YvD&_`gkpAj9R3xl8nyN>O8nVG6qhEkoF652Yl;aDxe9D|$lEHuWgD~KVinE{3Q zLsY88v|kb7p=BDUKC-Ydi>MZcgG(rvyX1~2(XB23@h(}Fp%s{YVA_CP;jf0GJ*Z!~ z!5#buAL;Qo`84?TAFbwnguB~>`B(GsrRHMdTApH{7aiDDd_c4^_?cN)<}jg?ZF3M( z*A4M0NyFCI1h80nx#{y5YK`l|VC3Q|F2F|Lfij*LH1i?_nLu_WFr$dyn@hZnI?nbPw zO-g70m_7L*#$~%v(yZ!aTsn#uY%4N=U|UGuBE&y%r035;GA(p|;E&(SVaQ!1MHL9qRSLvEW6=_$NH;F}1 zR__sj*~E%K9-YG1(qm(Ay+v}bbHo=06k{YIj#Y`fKfWsac3(CC9H0s zX+^diJ1&MdY&dVYU8)|7*WwmOERw;HtW)NMftV@HO140@rtcm646y^irFuYh3)RJs zdG(c0OF%qx?Jb<3yCNpJGTPj(r()TC;OXW}+Oo013q@r+nUP(II}ILU+I+k|7@$K1 zPyto+B55=#{sC~={;@KT>_9q#;ef0*)wudfxVrry2g#?$sQqs}OLeJUAOWv}AiZ?z_=K+C;Slzsm2G28N7iBlIX!R&abjXujaJ3I`sMXu-9OsV(Xi zXi#LyI-!*sS%lHgyxc6=t`1?Hm~JrG-S)sl@EuM*L-b#X_#mmE%qMEELiGcCrR%JI zZ?O1H{f9(cv-Z4Ur15iKugs`!hWx-my~!~-0ewc8kCdS1ZsIpV+FxUm%1&Oy#ef4r zqBMCK%qr1K15iLzO~G|flnCFWpc}3M%iO1k$tkF@%0TKm(*tkDR?udA&L^Pr=3b$q zDOX3C4zUw3D&TVsLkpHdQDyZm^5@KBD%r~jDNw(o0pf$38+7oFyp$p+Tt0CUA_56Z zt-e^~L{wlX`#??3R0(;m7wZnc@)|ujK9Kjr2olC0F)`IVv?{9L-3&tWQG)nUaH|yu z;S2WO$NLK~39)GN6$VvRli=9d<|iW76>f#!6__f@tg`aWUWdWw?YqNMNHr#F@iruO z`us-z4ReA6A!9AAlUd>@t>9$^Ej4W0d%WMlE5kWrF=<&i9%0tugoG})FFu6XSOXlq zn3xOrp%gYXb%T0Krb&+CKd6H8d6q^LmK|qMxkr*w{L6r&m|vCL60G+~O3r4E{sT?Q z09aCZmP;MiakItc0?M#1J5Asv95KoSveg`h25s*2r#S<-){8jAIJ@Q`3_4adGB~xn zB{^igpq3Z9UZFY$%g@79K^$3d2)zC%hfM)_)C|Rb3Sy=Re$dc!khY^ zm*)k`NOG*PXwsFPN1tFeZLI|AQ4w6jHG!-#eNZIxhC7mna@aYb{$K$Bbx*}1t0mcM zC^>8JVbM85 zf2Ucf_4y?(ioJipMcvv>C>J5eZ)d36P6k z*<-_!z8{tb-YfEfVOk$a$fke@Ci-GkNCZH2%^ga(iZQdG=r`vxK)6?UE-drKk zJ2cE*4Lp$SVl^F(!aZe~X?O9?j!-T#V224zHu(rs*{rJJ35tCoQ)-UD*m7bTzQi4F z#}hO^ZwPu$RDc?oC^;zu3fbZw(#vpqPJp^KGazP;VBq#eGOtSRp{x`aYy8GjmKGYr z=tst3(eMK%oyxwxBkXHqA_MNUL;{>*>rfre0>zyR<}u(og6Z1a_HJAPK|oG{o$T=} z$4}L#h-mZt7Hqb{Xa>!$*0Gt z{ckg7X!=jSepqT<3>t`of)GN&$4sO^Vwxh@p^z>Dm6p7FL&(bK%tvWRf}-fuqY74o znwACxx@fbBM~A|f^AJE&L0<&ZP$QHU8I)7FZ0yW7hzdN`pvM55j0O_L?8}XqA@ORW zWE(V(XVMRXX%?N;c&TB477RQc+zt01`^3YwTGSgzA52XSEe6o?gT$u1akoH-D2YJLGjRgscmpX(cf?+v) zz$G1n=`t~xU=J|6<-*l5fG`|{#}QXqOI^0c7YhE5o9sRle__!yhv*-K)9W4l3R(** z=4pXCR9*vu_3-T%Q;+tx%x(5TUjSU<2xkZuKc&H#1!a>iaZaKN9z+h6Yg{H?%+Ul< zVM_(nb>grsl8nLS_*|d{AtlljanIg9y{f8P4UxuQ`j)w13%;Hus;8qwJ=wVI8dO`D zT{nr$8^NsZUWE;uGBXH+1fy{CYJzY^(niyRoR8%j5$u6paSdyCh=H{+Nd$*c-WQPF z7OL1yX3!}6OWH8Sj2D`u{a`j&Bde&&iUeG7v9FN4q9cZQ=1I%2OxomILbwWf5g7 z7eb5-wz;cmG;Z}UFksC;Tr01}sI)Xz1|+|NF;=9aV4sDHi*E!L2Of}M=D~|l0d>oI zm(;)-RXsi#j07S_N1s?AR=XcD2a1I{X2>ckNY#Sz5$n^Is1C80h`01(GeWubL>M9f zfO6gE5s2#}<(j<)=H>i?^%?`5a~0tCy0!NbzzTCcC8g1emlK5@&xzug{VVf*hr(~{ zIwx>nwfIG+Ox}BoMZ@-zuOeyhIP=C>HsEs?m==>_=vPA#Rw>)W$SW;9M*$S&fB`Y8 z_-_r|0Tg!tGsOlL3pm2eziHRRs!-fZK@Fh1vGz+AD9;Ok;Gy^rVkxVArUGf62g50H zO9i!p<#FN{Q?YL)%wGu@aA4jcC*R0mG6bN!5gJz)?mKM2w?x?@^Px1LUOgsTLFy@w z2>L@p*mX)D#IQ+q-fzrGRx-r0^zjFPR~^D=#pV;k16b2QqH`!KGiny{O9F6KzoA^O zGX@eaKqbE^OkMJ%8ws7buYrO3C*_CY?5oJKh0zL>-bJk~vi64Jc(J{sfWD7|&)au~ zqc?b*E8sN2idMod$8^Gqq%E*u`XcGKv`MiBem+W3v(*YQ!p3s_n zH#UzKZfxj36k66x7lSXt#)7}2U?iTW{LQ{iK0Qb4d7CliKK}sV6@Xi&AbPM2=A~7I zsvHG0FA|W{L{wziM<9&2ucSgCAQjqg3Jv{9rl5MRznG@HT8sE3)(};c10j4jDD6is z&kGX~)t~ z0T2*`SZf>+P?SMt%puJ~EVDKUrTED#4=I|zBO0W+^ng)aE7m3j1Svw}^<^H-e@}Un zrdNKCo9sRle__$^7C)>e?^Y1z1Empb#xd(qy$+P{X!2%Yl=2HUBbMbXZBJ9EgM#@m zH&A72A3v-WfePy)W|Sh>e4CiM?lHAqSnA^glieQI8xm`eE?Lz6pTcEAb)qG}{+w?T@FlYl52 zyT4dE_e9X3h!tM7^o(wWwekM| zvgQgAL)Kmp3BXZw#vojE9tRZYl`YUS5iBj+C^E27S~-?>dqC>E)-(8=!zeJnuZSSN zBD%Z4(G~nkU7N)Lb_F(OsJtK;r^Lh&zApHi{D=&~7NB0%XX+ofq{GGhp@sB<@XS|V z34S;5b=M158bfASO;~}tHv)~lvaeVdam6gjRW_|Nh*#UeY1!YbI8--QtF7_(mjR@K z8X#;FiCa2~n_OAx8=NrJ+%1K^kin9?O7h-SRrRWv(mBWT8gv#vMTQfP!N)(`QkA_d zKmoeoRWzs+D2Jp9JWzxLvgE-DS+Yig=iG~XR;}YnQw|?LFWF2? zL6j_tztF-BM`(VjC`SfU&SF=XF6C6|k5-|8*0OU5#iCYU zMopvX9iWa-+{MN*AEd!>TiK`q9JWFs9A9{pDQ6A9aB?zrHdwtvi^e}JOH~T*xKtj3 z6hya15iYcNMPT$G-J2@PY}G>tDV?^>*AQ&gMm6~?T73g9{u!5^A;KPdSzm7a48&&Zpbbb8@9J8fu{LWO8V68)bsxvfYZ%ba?4XFysiow zypd(~$=0iC?g6hdfVy---Cd|xvKhlYzm&3yRuPE3rr54x+NLt1w-I89J}J`SxgRO9 zgjF@mff`5!xqZVng|ewX#KY?&gFycPB*~ks9L$wC&U{6*uB6S4-?X^B2*uq_NnVg( z<-r&RF<3^)AeK>8eZXKhTjUr3^2ADQFT@H!FAkNcF1@I`uTG^qY5_3yO@zjd;kFJ= zBfS?;c&TVFQqUik5CsgWM-@sjV{lqoWkPl1KrW({cnY`!2IG8sTF%3;5Ob0TfevxfyFtwV6DqP!a$7zU} z2tQ;Dl@N1x9|#Ngch?6n;jDT^7JX&5*e(yEepsLz7CR%sid7&43t3+56o4VD>8vXm z3snab)mwTchjtB}QBhlD(VcuwZ&+~sAb-TfRahE(2)k53LuK{|6G~A!3s`cl`-^Xc z5bXg*jdvZp$8xSx2vKoRieRjj1GL`*EPi;kW<6+}jAipLz?xm5t3#@b^(!=P>rpO& z;9bI?l$vzKxed{KxSatKhbOGWS=@GREy1QN3SKc0D@W#4pazk^(ixVEat3RMdc(kb zA@zLQP))9OF)&f|VH$dFsy!et7F3bzj%nh>&xP9eN*jBD)1Rn55X%OrK=_mn*MZkQ$1ytM3wl^HyA-KB~C%C&d zxVyW1aR}}dw^H2Q-Cc_mC|2BQkpe9g>6bp|+pK+N2OtKikl{A25Yz3oCZL z`3Jz(o^X(T@`MBHEOl*H$FCi0(+)~xHo23?k<2m2Dh<{ehys0G8BJ?n&?79^6TrOb z>4L>3T|+z~x77~&EMR{9`h~>mb#}R40S07{Ra<{xP%Ah)1n+rMWP{m5BBQO3Y^C~c zVN@DaV#W0%>isVGi~8VnnZUirfYD6EerTEL4@+QNH4BeKjhRNOkRt5+8RoHitz$r3 z%i`0r<%Gj}$u}?v!))0DOij+kOP8F-RE8S>S8?5OxyEdM} z1H`W_iDbV(^1i7_>h#<<50FxNt1+4t7h&ywXqkyaFAGQ)yI|sWGXyr*Xxx)5#Cf7E z+%U6!duUxlM6T32BpY92(Ha!MN+vzoBiSUTH#wdm1z8HrU7-py zzg!&G@jm<; z%WJhhc)<$nMT5gFP?qK8$6muV6?7>C=zJ{|(A6H|qfm^^x{b-sj_*#<-DVvk=YEq< zqkxVgY1SE-Y?#V4?f`-b&~Wm+K;hDTJB>sUp#UGHqq0b*x+TvH46EHk`X0FJuCIf$ zYb-bk!O^4k=_qDXQKcXKSmOR z{YR5qfJ`kB@sCJF22mcu8;3m(&TFUdBsBeA2$KY$OYncaz6jpi3P?-^p|U}j3O z7eQNuY(vC$Ien2TFN%%9j+CIkMkQhCQ$nkhx9F z--8Mal{(etFKyp1cyV0v9j3I?OKLJmENE9xn>+>$zD{^QZDSa0yX;1d3}ev6@byy( zvMMu@Jw)QpCA5c@XSbEvjlY$42v^cYM9^CvJBd5zENvOOoEIUX`%H>hpwM=_0|7wz zK2AMLZY;dTuUAvwFQJp!uDHJF{Pr`1GV32v-{Ki*^OaJpj7gtt1|2s&ugO+gk(o0L z&3|mox+k(~2A)!m*vk&X6z7o074BRrSF(EdNu{GX=UKVS=hd9QqTv?%Yuo%|1muJl z296hCD zXKJa3lg4BtpRc;lmzcQCtAb@Ke9pHYGBtbASk3@cwLIpOeML{CIf~NKTLY2iZ>=Z6 z>adQTMxJQCz#5ThGN)0%P<rF4;(*l7TR`;;f#87 z64tq|UaeVmI(5Nlnd4JgCB4fD%Kijiag$`c0GBbLO?66YmBLq-ifXK0c_3DrAR%e0 zWO<_|e`mZyEoHsI1I?b_2Fh?y6W*Xf7^#13DpeULSO$!_n7v_oXQQ#qlZ}+>!GWH|OUcK=jMt;+7My zP)(i-=&XbDl^RF=j_M7TU7~8IrOG+~924JRF!|Oy`gb(FN6S`&hccfOyW0Gs3~tV|cS2Jl1X1zO20O)W z{pbP_*hw>~n>^w%t{Pxy8#C~|q5R$MZi<7nqi8%#=VB7 z1tCSU$19qd!>j-&qjUrE7ut;-8TozoH*)4v+EDP-s+A!1iMd3n(Y)06#X~>avF1T0 zZy4eQLp^eI>Im@U`s1wYh;sbrSp)oCw1K3zAKmfbxTMGh5I*s0iq3`{%ov5oWw5m#?WKIqDvxz(cZVa|X4FqdTxH;2M%AtacDk5%36Fb4m%=7Ad+?Fm5Rf3> zkZ7C>B!*f0nrc!Wu`B_QBRCz&f2rZ#DiC~Aot+O>PgVh~xM*-XRk^eTtgA&7e?n{; zC6>Ep+Q4G^khc}8%hgzmc}dJ>qGJg}9bt7My##pul3;l_Kv?wPMbOYn@l#Z)IzdL@ z*WzW0)JGsGm*d-1fTyd7{|+k-^$#k!?;ZK37(c6eDt;+K6KUbE&30Tf+EUd|opcmn zfku#AJchi;dTo5jJn+*DU&!${_b>2QR3Z{0#^TECugp!%o6rEvglb5PM+%!ULaIwOpN3gYa}3XN-k@rie2oq-hTi9 z<~29heI4RM_YL>m;TqI4B7`wm9^3Yfx0I0uZR5@=eT(Gzm`_uQVQgf3Tlj<(vGc_% zYQ3OzNOI(5;PJOpsePOSPj&n#E;zCX4{6)BXf!S|Jw2Lyq6g+1q=-ASGyObG12bBI z#m;Q#F7GT(eD)0jE5S=y@G-|VJY)HtLfA=BWb=Eq zF?}XGb!4q(^o9N~JQZ|vn?X~qKLC-1Mcp7p;3so;Hcsgw5 z0t+lTyBB8U5yhb(nu_0iI3oq7hFkW>e)6tWv#ckw zC~`#0?Mwm{8;IsP1L^w5$Xpbh0jW;1mZ1=Mt@IV5_lkEP>zT@VbYOqhUBT*N&^y+P z8UJ&T7qxa?;QUPaOuJQ+4z65GijT@NolL3Y(up*QXPr8@Ug#gh(zt(?**xXi9HRuk(&wkn_8f}|h8|GZRD%ZqL^C5Gb zZ<+KiBGsh_odGZXz7~H6qe94^mX;ogn)p+3dR7o8x(qo2ImJRYekU{G^+4EXqkEQf zQcu*5vvBjy2-DuZHD&okdMnOS5&>N;kI}S{gxfs z=9#~UU^l?L1wdZUULFff*tTO2_1J<8qKyxoNKVai?IbHlhK96OvAP(H=!oCQfvG_2$ScK?Su#T$;%0ZNkgjs3B2LoD6v7rcsx zVrF=IU7?-&29-oM=GP(I-<1bNk)xSpuf@imUQyMEWOqXirqG{r_E8SbIF3!rMX{DN zn>CyDSu+*sQ>QFT!|ZQdFprD7;aiz1IpW7!sMmLerw*^hR#u&9D z9!t%aw)V`|!m+RXQ}ttNe8QLq1W)h=<>i4q?CAu_F+=fv_3)QuwQpH!vIrar_?ue?xOI{z+JrP8f`lQjR42Ju~a zp+tsGG}gLhYqbozw$8AS0>c(@m_h#gWOl=eRRQbNDXV6E^b3%&_*&B*&90>~ zCCJxZ%(q>kIJ=CtJdb{D)XJ5&mt;)*Z+QP`Z&GxXT^nSA9k>O@q% zebu>{lBNGwe_d84$E;o*k~d=gOS%sNuX{hz8Lr^YBr{(FYai1)lFSSf^Hd@L{p*@z zLr98U9CPG5X?^#U&($Ox+t!9My{YHvhu+2FPpmDdShPSY^|m{??|a{oobCeI&@W{S z9ynaE;NL|5EI63IIe9qz1E2^=k`H|;XOUeWt;t%91HJe9@mlrT>=&Y?jHk;(C#WWj zUOd%Y&0=}QUD;aM&#WsWm+|&ENb@Bkpg>DZY89v67b!$0`W1SI0NLM0r(Q)4{oft% zFr|OZO?1L_cd-(sDV{HDM2=VN0IDO=PvezSpP=7Y>f&^`9g@u)YR`&{?B6u9NDkMquX3FOt z_qo|`z+OMNPf<6^UaJ2`NMpgbH%}<9#eAFh>M%Mo8L$d;NR~ksSTNr(wg&M6kAnK} zgbTDPp3>;OZLTmauJ*w@2Wih9P%c1%f{{4OPt+I%HkvhUelD1V__=6iNO8rc_ZbO) zAHZ&nR(25dG+Ul|QSzK68*a3@M0^S18ky}(XFa#ZP`QplP(Ld;Foy!s6dc+<5(!gE zGrpEWHxJ@7s@E;gbl-o!eHB7HIE7w_kzcT1@lf@OibmZZYkJReaDl~ri_<&fpJU@{ z;j85jWbRyTX@Uh3sggQWM@Dob|0ZJ~%0WKMH)mSB%NU}VED3QIpHlsy`JDa-KrcR} zBqA2`2e40Vy**Xn6{QaN1HdPPX&@j?hwc3K+0`&Brdt7LQ4=o43E6a+@l9=UyMpRv z7?OYgsZO)8OeGx&h$A>yZUpBF`ml!{ksGzfyBy<8ElaJOSpw`KNqQ3WgT&zvO_)KS z#V4S^DCB5gZ6CT`P@sKF5&i)n{Vv$G)$=DJI?ffquZW z3B%I-45AMZOIr9TnIPC>7Q-$w=eU%LVR&yo&8(W%qWuwYsenHmWDxb?eFQ=9HDh% zAEtrON~1`17(82vTbq3g32h8Q{goNwev(4|$vAo<0woS!SdBPJLS+fL#&52$6NChu zFwxz{S^&e7Andr^x=Ut#zqfCLYq=WEhmm2KJ;Uve@9e4Getr&Q z9tyC1d|LvYO^1-Ug5!$Es#hWQtUHZN>NCwd;%~p_ZC3-tnpmtHmSw6hWVHw1e$4P6 zVorLHI;X0P;j~${*=2Dl!<4BIPQSU&Z#g5^tpv{>sNSSDT>KrK)*pZ0aAAnLN%+NrVbioex!J8P-cr!;2g$fQwgoe{D(p5Bp(a$2P00rl+^3ABb;}CWuQh%b<0W> zsa0w*Q^eFqFHylHfrf}L9Hzn5Bg-Qp22JQJRssj3)}us)nTTeNYWK~&?o;ReX)xyl zv40^sjOJe5L@t^f!5gLNOX%ce~Mw7 zmNJjMQ-@G^B+NN(krh{&Y4Re!N{0m4!TCF~|25E4d3|~wDPx1BPE7p-NzNl5O~9zT zP=zb&91WY&5`~PQSlNh(aVaAmi}ga5w1td?d{|v6T`7Ou zh5YoADz$P^6yv|)A13~z`7<=&K4cO7F4@yemhZABSw%e40BL^=Xj-L@_-WD4h4>{`y-IAL`;7dww zkWwsq2YM3ffLtMx6Co)z%kG0Nx&6LWVaUv!E10Ehzo9?^!^qGim5f$67rM6fzBG^F zmwC`KP!dVu7sAs{_sq8|-ixJC zWCp|F5!~1zGC~bIJ)15(v0aQI72%A~!?y)C?<5+_k6G=sUlr#>KU$vIyhe{+L3YMN z8Xky1hDGxj%(77sL{u)IhX<+`KPb@{YNfE+d`~`wu_J_ckTiYc!s+nkI{go5@LA%KXsL7}JpmoDI89FM(>`Xb*!G zs2~K1iloeokskXufp>rDrWGru5RA%#X(RYX}n zdhET3PL-SF@JGDBGaNc-Hu;RuUNi$4!&7a!L#x~$0OSE&atOVhzQqtB1Ra+@s3Yx% z5WW9|v^|{ygTl9;x#W>wm5yqAYx{p7QHJkFqIx#m$G+F73hfihy7Wp`pC8CpE0T&7 zY5+QP#Z+xAe=N>>m!Sy@Tl9MkzP~KK#buvRttw(A<*)0I8=T~VH!6oXy|yodfsKGR zDPUnpt{MAD3^D{o^;u$1G|#PPM=gTbIj$V&vJbenK?H-H^qMTjG6zlA>6YA^>qPQt zbKGnFyTlB~;tAN~b+dCX7bB5yL`AZP<}g4O)AflSVaH7|B}dRo@eG^a=iEt9Qd;*r zW7Z+3`7}2yeH91eMjM~LZ(iiVyt*b#IYiHo&~TPnM!|lw)zn*^LCht>Pe#JxR>Nxg zb&E|S6N}F)G~LJ=C%eY>4hpY^OP%3m=rLtg>VrtEriM80uMTGVQe?`x;u`x7zR*W! z>g zCGjsH^YgY$EDoJ=;+5@b63d(60;EC*COiA%0oQD3wnDO3nR1-gnhYEyMxJt^EC!~y zF`->*rCn%tA6*WN8q~W+@P6n5J6c0kv;VRKCILukJROQtuyt84K2_3Tus^@3X{qk!&5!l@NzTLnU z$w4UXb5uR@j{_p>Ke||1@>ep0jGLOaq#!(gRK>QPh!@Ip>^CgZ)@?%-_Jg}}zHuh#v?+n)* zE-eZGK&N2XlbZe(M9;q7NHE0HFeOE>zg;e?aZYcOsm54AV}y;Tt3q6Wr=(V$X?BVJ zPC~_6boLid&nPMTLD(gyAejYSPBE4JoGCndf;0(wx5H2jD+Nvpsc?AUzHQfgYUJ@s zkMeTF51>Y4A6%=SQVo+XM2(+{SJybrD+wc}Ka9-ENo^`CJ~9j<6z7D^+0Vzc8qADs zo%x*ye1erRHX>gmO~8O1+i2~wlkz2@apK_tvcvb6yVPrLRdlI(EXaPVaGy|)BIlrE zhMQ!B8*ZJ4g0`+m_G zZB`z$c3cK87#QSaJ&GncWY}(Gx?_j4_3!YBoS@zPL+zpTI4B^3SXzGGHM+Q;`@~mJ z_khAP?;_=G?H|C%&YmgrB0MlzV8l_)oKGL1hF-if{o-6bZUD(5nr+$VR#Pgd&M%TU zMN_n)O(}NFj-w4dr~2kM3koND2$e0XL872fKJ(2oL~u9O^WP_6Ycfd@K&vE_*pp#Z zBa9b_oKe>*gKG+Vin9ZQ01azqR7(r=`Y;YTB{@muB=I$`)N&mvepHXW(@6v9RgI03 zzrs`6szV*`I+eSoi82KYVIoa$fc7hePa{{bKzYh2tS=OS4!#0V`2h6~Ad)stM_YRh z9A_WpOHqsW*+HT=15?H@5u|M-li*P0smAMOj?m8wp9N@t6YJLag(JHGZiA7caP;#4 z*LXv!a5L2|^IC&3i}eV$7a7o@N;ol863tW{H`1I+n}bto5G23W(^QPPPyq{6gR}Ma z`o*3)pDv8k3$g>gLkfvG{T`RmYU)M@aWpYINJ}ql4PcVq8wMtv)nI5<-xJyRNWu6Z z)qLC3@^NUO{L%2(^usX3EnvZr*{H#mIH+B6w;EfT5wkBKd>AFZILn}`U&N5BVV_$W zih^G3vb1IV;f7Huis#xsPbq#zD-1DLwHCknxsU_XxjQs0;2KNK0HPG{z>nFOhAK^U zFgVt?Yc)a<=B{{bY0qrsHsKall*q4m8OkjKCdGVzn2=21+-HFHD?Ya~)MH1W%cTyd zwr+QZvA*PnBHbU6j8f!mRzZD$ z*3X*PP*F=6)vN*_7?;t~68RYIS+(%)c0FQFr^+!Gvb6 z1jsQ@<;)l^p3HK~OV)gfuyM2(uQUhbjf+1YiJ93`1#WT2&o zlQl~ktC&QcBhw<#2_LbXK1abY)G`!X4Duf1PmB?))R>;k@HDW)!2aFA*^AMtf5tk} z=n|1nCsp;!5SB!S*Q8#{kj7AIB4D&{xbt{H@ zLk*A@>V%)=c1feO=%|sq+J@cl1(KpFSx;jLrkCeLr6hFWrRuioZEIYlW&M;{&D`7{fVSj-1mAF~@gOlS z7Kpsjrm;tQ{3&PTM^D>A8EHGK;>bf+52K(p!HPVvNhiMYHb<*>$jtbr7~hzpPb$UP zjC7!OsA-Od{Y3+b{wnLON6RTqPTf>elv@p9ysHKWV#emNNHS`8gYFPBsIJ3{b!z}E zwPtFUy)&|yBr;ArLvqW(W#5c1zbr+t246$gKT_1|6ADy+I1pMb8VUB;Yn<~jh<^1x zQV>hyuUi024XlMoL=$!IN{Vs%aCZuSZTch8n4ZuV@n(L^2^ONs%CYE4MqIu9%XYv^r0-H z+uxix`x+R})&P(XK$u0w4``D2NOQvWg{}0sK>}hbl zp)SbD)Q&{2lr+~cNV6Uw;;SqiSA9sxgQ?EWGWrAHN|41=oTnz>4{cq~afoE3M<;BoN&No6RP0j>j6|_hNw=Zyq)k38Csi8l(`+o~!O4rK z8oG&g8$+qm%C$7ZXf?Kbf1fgIsGPw`#we~d7Le=z9&2e7rBM33jMe# zI|l*2F$RmeTx7er2-~_QaAXXT#nM@~m!8febEo_3W6oD5XF`*2(;ZIW5-SIsAWsC{ z=z(57{rhT1OBe^r=}e8*vyEdCVV1^KG^$g#rS}+qF@=)a$|*x>EkG&Zs9NY{IYgI$ z+1ZQ|x<1s&bmvi;jl4-BAgBAF_DPLzWSr+r(Yl;nXN~h|Scx{<@MC7)RxxftukoeV z9-e>osQWJs$i_obIv)hQh^<03#YuzO0xoAZ-^B$(dOmF~gS9%0LzZsUVZTb^OtvvG z8?>p-k9|fV0_B1+e}n>H)0gSv)N8}>1FEBa^p_^xL2d9cmlvtTc;qT1vb-3QNFNH< zOdxmE*$}PzW|T2}*df_Lyb9}a-CYP{Ha2T}36Cf%>Lkogt?H%{3DB}I2HgeMbwXWn zMGylWPY0O@ImV_NdwEz!g#dCT5PBSTRX1FBn>R~kM^g%BrB%*}L;V`{jou7{1N%*j z?^sdwD%Cl>mW8bWk+$}@na<#;nOdFnLoX^HA^Fho!mu~j69|8_$9`6XmMF250e6(B zM8XnVrp=%g%}gjF5>5vHt^NpO_`X2NcPu=`jOw#}7~y7IU5Vj|2|+&C01CL(Q`b8V3xDtvK!+|<%}(SlQq3CJ)Xnq zZ&@sjut0NI*B_XlXCo}ux5^V#75=Rcu!fe?1curIK zF@K2y03E-|gJ3KV5pUZ7p|P;dFAR+tvO;WaoNu{1$lQ_W2m~ER2qB8Q!^;_FM=;iH z0yak6NQzC$b#zF|#darJ+emJX^)TgGYGHLl^n^YEcH^$T97?vA2}AH)cauBRoSI>% zE>0FL5OTy|NwAytx>R1J?T&TGjZ@@<_AGRMaL#?`kFwRWPR&8JWfBUVP{`GOZiMe* z#wn>oHrx=22BE&;p-EgVwAYqsKe)oQq(itXA-iXp4;A)nk{#dwXur>NdbPyY9K{4^ z9+HOB%P^Zle#|&pp4P+!3^5{S6o)m9ssl!0D>*l}d}fB7!w_Q%26->ZmcgEnLUQ!Ely1#f~P$^S<7cp?tdcZ(8zbvF3%2`d$ZD_e`RrhCJYUoL9nVi zb9fv1i2~uL`4V5^-FP*|#`5ytw*EG^n$4+duE&P%Qn;)5E_Lyo?%zMmh-mpH|I8ek z+HIWgrno^26adQnREU=fI=8I+q7l`>ii`Q`Oyp!gOB<3SH`t#r!}XzfdIB+I-BtfA zKj)vAU2U+1J=`>@)s$!>WdA^kRPJwE?r%{ig?L)054;{LT#NL1%+?P~jz%=C`d6g} z%!l|w_oeWaQ93kPzyEG0zwwJ?@#N`Mu0i<5vcp0fwXXX7{@=!+(NYaqPN3b&7WEO& z2IHL-eBHc~nhDITnt0xnLt4wR%j`imZB5U);dXwu)PkamxRX;2feAg>ob1g%)osg- zYdFj6(sCoMi@vfD2+b;5^rtS>{#VzLlJ)znoWH_$fF6>TXMR6FZ!yOxEc)s;-hR!Q#m{~icL~6oiCtl~!u8H83GFN}$M+44^2zFtOG8y>O!HXd9=v>GpIYFGy5Fy+A@L zG=F042M;}~u8GG!A>FVM^$sjj47ceQw`zcR9tz#c{A(6o-+ZHl;s-tyG=|{*M`;Qo zh8d_8A$77}MoFE?TWEc8v;U(ocFixbEWx&rkeDWP5YFUVoL)HPpV(UV@Nw)@Oj7+5Q-8uA>YzpPd5ICKxhXvC3rDN zFG7(IGMCO_ds{?4yImrZ@|)ttSWlGpZZbTjJrbP^OGOm~Ip;?PSBGkbEYhB?swT7L zX?U@~L@pzS390jE=}=6P!Y3v3I>>@+0{uB`$Z=4`|8JB#;<0t-1J_Y~$1GT=b=QLL z?c^kCzO%f{xBeg8xOtW)$Qn4!n$|c~4;;cipdubYg(IQe*qSfZ)9+q^DX6;pPsTY{ zE+(l$rGN+CR&8szX?)ZIp_qa2-}_n}(ohpiDnHiVKL9&WC*ptp*J35gQN|dgY!04!mObfu z)%4CZM}RBF)X|L?xz*yJsfQud=+Jq`P>1fJEkJ1xojbz9On1{(!AN=nc=ktY9sTV8 zBpX@+!Qyq`I&qh8#qy)Fb@gzv-ghcgQM^IqeqQw4Zgw>I#EW@z)>>V$FbTJTBjebQ7W)e?7ZUI`~mD#<#%2Dq*o|f3n?bq zsn`!*f0oTXvfuTo+O(14$M?D)?OmIf|IgL&@3jh1|8TdA9gP~g;`kmX%?;3|cA{egE<-50y{2 z=N0@zCgM9>{$?F@=R-y9xy^r4x5gYp9bPfu(VslANDNuy$2wD0FoiJ6WP@!;wX8*} z10Y^w^SrBr4kuB6&GiApSIoanY_>19gNjy)rZ(pgM2num1JglT`w{T5++*Hs6{fUx zM#RI63;ZUwZo#1T=Rqv0gS|PZt>F02?|(b(Gb3V}*qIfEHq&9$W2_YF>-tJ*{I}JP z;h#ytDf)>f9MLXFgIa~~2=KfYxOnd>BsBZ$GAqe`yK2Y^f0)0v`Mx`Mus60_8^Zl} z5Z-1#lbpzmKC!>z^2^E~0xmuC&DPUGH}N&J+H9^LtMwKnLr>t!SS;vobnb%!vJnA8jiF zz~}^7W_vAE#7>7@8xhkHW6bv=5Ewm+w%$9L@u<2$eHQ;2iHk7;zPEtPrgOxnFh|1J z$rcSNwmg^zKnx!iv}eAX`^+2B0;uDhn8e_c$vhS=S9a=bXfjOAK8dD91et#C#(2%r zJm(}g%R0-t2x+4KgZBd)!nrZnbgZvk8XrbaC-fpVL=`K$ZNC|O8r_BO?e_Uj3?MQ? zi%RVpw(hF-z-o^csH(fU`&03O@?qe|aUrqGhjdi*UYSx!WlS|v1fy_wIEu+skQyt( z4a^JD(Au#&`w`B#X3LSd3pF!B4@21D@Mv{^QeJ-CeH4S?<50 zE$<7;hWN7=4)Zm1r+`*C^^`g+Pr*=S>7b^eYQs#r(#v>o)@vZkFJhfncWi9DQ?QOr zsaO{npTy%_U>AjCcskcyKN5Lgf|{*9m5K;W#e^!#HvF-|6Wgq1Kcq%{vEY3E-Xi+P zh#dz!zMV8Pu9$uLn>DE2VaHS{KK^gYHl+}iBNdHl>fj$=*s%0S4lW1r(~2A|0w8cOrgn{5f)QjriF#Go*>l`>EyS>~;AMz#*hf ze52sI>d%TNO=u2O&#WQ7eWZrwG!)}ieIp2Cjovhts?UNwSr=3?i@BEJLFdqPK3=16 z5BUQKyuF=70Xb_|{;i(QfI*TsVly9fu) zO+&sfP;<*MsqFPjQQ%E4FX06V5-T59fNkV`KH;jbss1!WJ;y+e_~+7sS1I%c2$;hZ$ZJPDYFaRr z@_W-4MRC<*eASOAY+_fJzLfG$amb5M@NV}%0H3Dr|$MmF0*)A=)eEScdZj&RK3%D!7E2Q zvuD+*@OwR|d(z(W2+y(FbVNhk`vaJzgxbYY-UW{CZ~1~z*Mjy4UpZdJ_*Ik!xW%r% zWQV1FlP8nkc}jW_<#;M6Ke14W3|$F6J?a^mRhkZfZoc;BIacG$evu8lP8vUELQR)- z{&|P!`28#H==l9B{&!A@j;_y2W@YqBRx_lGiWSZp_=W2$;+9GpBVSFx znjV~A`ZB|1Mx~WOpIM(7f&S6G^#t4Lk@%g;#Q9+Bi=WAx%gpF5HEj<&tq^OMnhP$@ zan55jhP2DLKLFRihL^Bv`oG~-&>JR0KuVo;S)#bVwoK+rX&*R#AsOe-{}P`K>FkU( zC=$>4o%K{u719O$N-VVp%e0FXQ`!9bYaZjU6j5LFp$~MQ-ZJJy*(XYv%??ONQ#WMPJZZw`X)9*p6N~0v! zHs`-Xwy3gd%!M=gcGX~D^sk_m>7lT zpLu!0qK^7L8qThKm7qj!2(mH_zRi539oU(eshEgRtg44Ee&qP+bVjyV(4WNA!5cUELte3hxt;# zzZS@l75;$i_|qOWzu{!hSgL@aWk>{f3@MB=-vOa+Q=Y6d`+Qp6_6)?~?n(~Mz&U~v z(-0*%>Tt}!z(B23tf8S}o=g~)@2IgLL0?N1=CN%;?T$S%8nM`X46_)(f^+DaV6?z% zu6Hn6O!T16n6A`Dkc*fn$M-2^{sQ37p-j+By5$TROR>`ABZ_NBxC}}G=*GKIU3tB@ zZP;+-o9F%d10cN#rqx%$IkTsj*@QiP8cocO42(gj1D_Q@93HykG@VJ6Y9Ty#3{?fx zYTMZ7*0aT0#adOS*eG5@gO^0`&Kgfhoexl@2Q{`qdFmHFG>B}Qza$XT-y%bt_k9x< zxlo67Ux4&aFh<$Dp1_tX#MfU}T6eZF3ds)7nYc>ACN6&ky@0B@Y@e4qCb%M-6M^ky z^A%31q>@!962gAt(Qsov>F4E;Y$!6oSx)i~fLeKOtw$=0Wd~UMg=qnwwfOg##bA=g9{@V|9hpRH{lc8Y zr48W^hBP^{rP^jVod6|?Oit%>YXklqSBaB&{AvbkJL>>zY<;h@$I#&P*(Tj9w?yfC z1p||vM@~ss&O9!u2bIzKG#ogzvw#>M5^**o$1_Y_O5glc4(zYusK-P@q&mTTVk?vW3(N>??$==(_)R&Ihre!%*QWr;t;tj0wA#kF3 zJO2Tc^52>cpUuRk5I7lNmJO-%aBB#VEc0LCUuni^;at+y78A0xc{?AQroAFJXR#b& zob#!Zhi~!gphA3pg&$fN7Fk?o(*xOa83Bd8*RhS{jv>aQ7p64JdPTPJmGqM0G3`=~ zwmfNynB@*czd3jVFHyfh0Pfhfd4v4=ks5;cD@c!z_%^0dYR!rg870I0i=TQe=N^z$ zp$fN^`&@45P6_wY^g(NR;DL60zv>ddU|4slt_H@*V>(02ovaI+pc^mIFOxyfWg(Hq z1#0*ifT6ubpZapN6*@zLNTHXQQiiwoCCU>S*}C50DUGgk3As402gM~Z?0k)%*%#@! zF`WzfoN>RfY;h)5vl-oR)V=?$hoK(lo-hPS0 z_d9Fe9)frIaK$)+Cch#AUxI=2eNp`m5339ZOX@mDB=I4<6cQKCR(ns@Lxl$I?WfuG{+(QUFS-`#J)Oh2ZFyFL>!Fe@QsOk@jZbgeF*s0SH z6*e!@T|J=B_;E_H*YYKuNY>^yE{5vMu@KH=*!i(&Ak0WwTxTx=2HZ#`a$q4ELxMig zUm6wR>r1S$snQl9{W#am2qKALFBJ_u8i_2biOa0aQ6kdVXY_r4Z!V)!Il+$m4-}jq z&0%I7DJC9b8B2|%PjE~r8f_H6O>OTE(@FYCBMVqCRUF+<~1+FWL zbh(dw2Bm9IuxkFw<0>QUyRlj(>}_}E>S-Z{n=!+xS@>-#{+$9dY?k`OYhWVgaDo!g z)WR$lV{#YsutjU<^O?lgU`d0Ig9cO!tVF7Bm7J)Z5$=;pa$dL9xu6nfoI5Obgv4TN zK$wE9C(S8lkx}W)<3l2MJYYgIja*4!VPBZl$zaa@;6sAC2}%0b(28=)3M5j@CW-nz1`AC8G@t5LTYlp0G7G&9)L zLbAsx7>RXrc0tP7g_95hv?zb<$gFvAQ0?i!UhnF&cIsgT-pHoR2zi_C3%f22{M`e*mJ|o&jVuR;?756t*G=AW&GpRGE?#$! zHuN$b3j{_TxMy~a4Y3aH(`|@k0~*Q5vEVw1RzE%E`q_sCRslY)CcCgRL?%fJ!fNaE^SaPE%kd7#zhV@N3LNE5{6<>ktZfB7WE-*WxC2fqX)WQ z=v4U*CA(+|4d+Npip~Qj?X@8~UM5^xePJ0)tqofOmN-oLG2H6j2gpDz5~z|_EiYX_ z{Nc^nZ)GR~(m&Tf``(}i6@KjvoQbk7z-B)<%*BIAaSKpF@~hF8x7s?iEysKr>a!vF z#_~CE+E|$ol$G6z2!)5 zQu)>pp3^r9IE)Uaf3CaKtk#XOM>uYpsgl6cD*jfVoP%9&khmC{XElq@p1oHejABv4 z&RmFw61ySIbcLh#j z=(=_q<1;$*B)0!`C0WSn>fk9!9)p$sHsp-CkP&XJ*P(k+?lrJjj0}4joGO`F3QQp)2HM7PVrrF zG#-4y)`1ZUb1fj?GXA4{ED8S649E$OL}Z8SeQzr1CjL8vBX5l!ff&B8hofz3un0?O z@BJcv^@4HMumz;3bc4kRb01mu({{w^+1d1UnU+^F0P-F!ijKN;QzIoYl%%zxwGiH@ z6pujr`Jqv*^BeZX=sy69=Jie6iDYZ?NL}?ar`M~09BM~i3v#+r1xjvs0#}4HShHhU z(PsO5$)w-C^?*1;R{8QV9frgtP9%3)3?4m!m-cnNewU<>ZmU>W`jxn|?28p3jF;KI z;){#F$+rym_pwr8?5}`V@5bR;CuL4*53IV=Myf(e987qi^w?onbGH(@P_x}u%HA@*xGODI#q@bjmTQZ zAB8HbBVDo8*$kV@c%=3iE*7&gqumd)(^#=Pd({Ed9h_dDwwt8OaS%h(d&qeC9!$iT zd!MVZ4DnfSleD=wXbNA!$cji2LlxV#AnPR zmK}~tiz&5bs9`QvB%^DnqD(@{BLT(`Q@|bOp`o%baJ7@NDJMj;oI~a=2N=KhB{nv7 za4rCyl%@Kxw<)V@74WS80LM8DWd_CUhy%_B5lyAV^%M+wHu_BEK;Hcm55wj~-c73D zj9g(fSpovV*HH)FUMdPIw=65tF{6L`7gl}Xs~VRP{U+ZQSFs)M*5!2qzD+(nKk500 zFz0Cx#J)}Z)Gn@3AV0;@b!Ws#0# zHC>PK9&-S&CDnP1pIaBy;t03t+$?)tL|VAzmqG*37W+g>WxGLE-?<8|IzD49PgK#( z#Z1ao-XWEc^A?I%ak6IMS1hh43j-~4EyhK3>m$DrC3;X&D4RD01jq(52Fu%RYG&wA zG~t^qVlROQnS5Cgg|ZbW6++ERyMh;_bLlUsO4aT8zQf@+^c_9{zT5r_OLZ&)?^u`K zJ{5_Zbv5M%LYmJI1J;kpl$yM{g`^5Ol`zu+I}M`h3nYCn#tK%>YjP?0=UI+#4bu#R9L_}#e zO0dzW&za(`KJamQ$#U)z|(^u)gtP z)|p|8xYX^9D^`?mivu=1c?h8}quy@g0@y}Mh&dsXH<%dN09jJ9JWdMw%f6IHtqHy@ zi>>8eKyT>kR$`D*SLQ$RE~46BQS&jxnI>&6jMbl z@o>$`qkt1lX`81VLdIGfy5b>KZHr57fu@`hD%`YgtC*ML4$A$^C{+J9O~nivm|p>3~Wa)zwPUg$+wQ>Y#fv zz%x#~+}$+-$CQNv-vL`oEDR8?H#E~p&YhSX0?bp)uAe|+2v$hJ$lcJq6MpbL=&%%A zhf5i^ww|Ax>^=g2VbK=iDY&vb`O6jswZv#rFwAFwJiCOsaEc{|Q<{>gD)SGOJ((9; z^<~PeAT%?V#B|*nR9-X{q3JFHYmA{X`4D}jz#!KLl4xUy>wAMQiyHp`%!PjK3E1Iy z8FZE^N>p@Ha=Vwv2L@rfE5u7KUHpraflpYvC`N0vJ%Oi69fWOeg7zafny^)?ymbPV z7PGNf&Z-;;1G2rMX5m?@e+)xv#CxrWr;x0^2VVX za+lcZ2j-vNA~zG#P~Pw=5t)ZcWD2IDTsNqpm^qJt?z{eF*u}t-y+cc+Uy2HaI@eY!0XGP zQ}G%pL2NH_>PudW^D*EUY@aL*EH>kx9%ayd_4FgbT2RA{yDv?ZEb`%i3lag!)E(w^ zQjc3x8T~t;)Wi;A09d1?tRxirKZnbw$A|qtGgiw8-hYW@$8XI}fq9Pt+0o3xVFV%z zVD}#>WexT@^oawbK4H0A)NCXfVqToY@*y&{E}fqh1a99j$hJIj5G>l}c!)EQ*EcAD zrYx~ulE9|yv@Re}CkncOSQoo%;ZbT0!5~a6FNtIfs^P%bFb-#P`b(Hi_^Ej0&e3=!7$S0$z|UqcCtPv8Ag}(8B~3kV=+3TvaWy-Rtvxhr(~}x*&EUc|nz5JB3g! z2I#o)qOt>F3$ozd74lVJh@)|!njKVAk)j8dbbuVSn5Z~7msUvEaa64qOW*kbi<6Qw z;X>iW0Ib=$NSGTHQkz;!-f^jfF>7lQf@uY&;i7Ly><$!u9g#L zTC-o7lr7}oJTV6t#l2N$)@S)zAYk$_sj+HTFsKCzO{vsZF5A8Z9&>2Uw`1z|b-=a` ziN6J++6>eX23Hd5)B|>REh1cLgo&A2+rQ>zotFqGpe*@-M|&W=2p3}s^1Irx5!ShA z)vT~EIIxhr#JgPEDpFT77-mvNW;{eTCWPVX@w$lS3OM3i*z8ohz?Y&2%O#Sr!Y3z~ zNJ{1k&Nt67Te9=t^5s4mo8%gf{DQkYC?&>PJKV;agV_ zw-n!T@f`L%Tw^B=R8QtQW@^kt7)#R(MzaagUs#rk_kz3^a@T(*_Y|Na2;87k7(7CZ zrAuy57W01#--sQ$xbGUI09w)FAa_KM6?j|Z`oWDAY75WCm^4+Bo<6?u!iqHA*XCAr zE-;plS_he93DmRZziNso6}o~5E{1xDkZpsvePS1o&wh~C$m$hV_cHRr{U0+m2pl*( z>RDcEOou3glpw(QXzLQ2Ch(jznR4LvB~Y z;$&qQrG4X5fPk~VFbY|V!oR{FCZk>-4$c+QT=3FwsUJ9lrG4Q32i{hTBYSvD+N$7W>>7s$kBo>qKX_a7M2}M)CQ*@W8^fNv^@!# zm5NY{f0=Ow-flHokm?pJuB8Ala{!@tGJ?n^3PPb)7(5IhFkC8Qsb=?>mM-+np-$DV z;Q8|vhVvdTf)>r4`bV%U(}}mG&65W**oXN{W7Z}f1X9{It{5x{n@blI)S;-ZE!W3! zHHsuOTZh61r{^OPs`Nvw#V;1Le0BvF)J zft1yD0WV?9*s5}7*-VdP`j(O5qxgp$m>s^-(6*_^@hEms62AGE1sv>LbXUMF%yuCn zx#}H^T8+xD`O?M*Y!u+Yxl|f5ELG+1AjO}Pw+byEp&a~8{4?~3T{buNl>ow87YjTO zq<19@XH!~AuB-aWP%Vpj+R@AeRe%4kJk!0zRN}3#{=jND@j2$+!SfQ>g{^S-4TJ ze-)zT%q&g7F?(;TDM3N_$TIY0tGfJrOfd^vQogYzt5W!wPziFT+wF!#P-?DFOTRf+ za3_+cyv&g8FZ9EnK1&0XQj@nu!xpskof+<2#$u2K&+^Q{ETsn~IiOg6FW7gxM zla8VA+Ez5&gO2%xdnS7o9*PT}L8NJ*pCn8?x4+Uq+zHwjX%% z#34Y6%NFd!^x1Zf0kC}$uqYI>jxG18b!k-*T%egCnxm3iV$*+_h^_C+Zjm`N1Askm z=}@YeTL^*IstO$d^FxV;so*o*-c)?wOdy_7+)vNgO#s5Y5+4i;BF zEPzzkv=viFWa8q1T@Wp@4`c~lrp71-omM9xWyP-LRzSOE00Hu>mPV-e39=oUfu-fD zT*Y(>wZ`xjKK)9uH6gZ&RZ}22fOZ;?fRKv7l8AP?>bHh*+}$)Os|TN7lG2wdD{6w+ z!i&x8h-(-j6Pp>w-aCwFhUEk6`X+B@1VD!mo@R@0s0vtF69S{Um%Eg9MF64XqFpq% zg2)e&DA+b*=@VTPFsk)=hy@9esKhtg*nr%eeis0CB2H>Ks=_9=jTHX?#5}KBE6X`dQSdqh;HIy<>y#0DZL#mQ_{7<_&Hkc^IYGY8`Lw z0UnsOyhTF0>xiZo*g{Mt(7;-)?nY_el1bWZH z7Z^iY^agg8{{Rv@Plf}$*WwMuuq7;7AW3|Z=0(LSBkcmOwGp{E9%bHQn`><%q>B@A zU~S=M3t~ZLBATMO~Hg}G}^E$b0Tj=BzQIbaskfmH=suY;Mswo8Yh(1s{(e~|&0 zRtCs+Trg?PO?L=`3Q>`3!?|3wT}Q^J$q=h9bso2)6C7xr!3d3E%mh{2Ig++EazKz- zqs{*S?6DJun2Dye&Av68h9lUcK?{*&Anq85{2iY%sly9{gCpalbS8!VWj zq~XEs8E}fz`ilmvO08TFdLF8&ROiw#+ma_Oed=6o7-%>&IJl(xqOoXq0VyB_3!?EF zN>&Iy3@Y7iIU?5tsy6h2JcqgMQq-dOM34t+g3I{^;+RUSRW65hhyD~r#7qu|sq>fS zGhi9tj-w)~TpbHS+wB?ly2!4$ngUH%UnMI)d3f2aH4m*7Dry;Lyfg1Bbus9t_=eWO zL`rRjaj)iJgX|_;`S8k71Mw8rsx>3Ij!>U?;^M{&OhK)NSRY95ql)Tm?}Q56JHsj5 zt{abZJ!QYbsbDo-H+I7jWw2f`9NsNb7C0bW}AplSkw*VG8Smem`il!^Obp&!F zLBB}VTo%C1LN#QRT@g@)=jHUlDEMbxEH!p>FNc?l(!?Yt(JjngaQ+E%D@?XHW)K;j zJx?&3eoC0M=N!g~N-t-0wbzwrvI=hu8RxIZ!GNa1Y;sP>dm+U+t`=HrBDXy;@VQ~4 zDZ06GgTBQ>NwW>}3!E|?L;NV|Fx<$ZCJrHQv4y3c&@32EF?{%nIh#plj9Yes{{Rrh zMUmKYR|q5qyhb-Iy@f>Ywb2>s2Pt)40w-=ySVN#_LMR$#dIG`qfM8B>F)RCu*H4)B ziR~P!iC)k%G3zTS6%;X^fCXVr6euZ+RGC+aLEJSnZ!moinyJPmTn)i@=D&juylnbJ zJ`Ps3{{R?@vXO9_8uXL{CihD}UECC$taA18-OJF&xSZ*qqK}xR$DlHyew< z0~Pjx_DCWKU1_p$<$xP87%hS1;?sn@w)D0M&3R>kD}zFeXPAe>LJQj$zet&llXxX1 zG>B<)=`bNoipAmdE4a26sCz2O}(kSPU9 zF}SN*sTD%35H)CWSIo4!UjZ_N4_v~V9|t5MTM3V7qtPn*z$nha+#hHvR7uHxi4z6^ zu?i{9{zGdQ0;^PY2B2t{?D>>j8I4o?M4;fKQ&gxBT7%D|GU-d9gRc=~Y}P@%)JUO4 zJj;82U=}1PYCVM@R@F6_oYoVT3(4V>H9w@vu?T4voP$s>dqKbChEm?2(iav7pZuE- zy#D~nri+ew`bHIonMB1Zt817dw2c!0dxR>5NR8RQ<}w)?QH^q@a`g*9S`~PUL6z3y z%Evv&TTi1f!rQ(?l`cRnt~T^anuP6^Q1cPORjXnl&=S~zmu$k-R5yg)Aok{?g>M4t zW-9#Xc@E`y_<%%iIe-gU_wK)bXq|yc=VO{2cUA5 z+Iq)9;#-ao>;uS(!nL{i4q&#R5b`q-$vV~65gQLNK8Z17DQ$4e*J7}xWGh+7I9|y> zPgluPRdSFOqs&f?mcx{D=`R&+ogj)daIwhlP|8!XvsIr-R!jq=P4%4zhNopfbHp%7sf7Sz4qMx|k4^y5F& zt!B1bk%M}p$m`x-ka^l!NzV)vusJ%o9=lQG&GyRLwik}$n#Rv4IJw7ht+cUqa7$u~ zN>?ljK4w0b$R^zcy0-J>5`pjGvBYBc{1DJWg*TTIFEM4R(?&WX^8>ixw7hwkfCt0C z{XTP&3pY(Z$&>ern#0)^+jE=DFjNt!Su&7m0+~~cbLlXlhU*{cD$ko;%OB|*1@V?3 zD!!H_nt74O7e$@^W;tl)Cfs<;5lqqeMID^^iO(oY&Sq<$r%>Wy7Q!}Bc)Pm#LW*76 z3huM(4K>8H3P(xQx3}vrs_Te0U|RjL>_CT5+L3pu*)E3*>I@g6D7q#k^<{FZ`nSO? zWvpM*=1K;^xE#Q~lK^S>_-Z)xnffl}Tbb-yR6fu6#qw$KVgCS6%=<_WZ}>qEq=rFW zka(MFKX8mgEjO8VE7b^9?gsSVtC+BsuKFHdGOXL@AKa)IxNp0fu*+@yz=D>vwGGb! z4A!XfVFJFGVi~m4tJI*v?%AXe-JMM(F~v;e%|HmzjldxExXXW8TELFq648ypqOD5s zG0`0{>#MT#MD3FH2Q=y`PzBDf6eu|M zmQz(N^Zm?#CS+LzdmxDLNN9_@VLf$6i+CiJ9?jp~3aApgko=JUQy$3<@ zE0-WQ%s0mku%`R&Far!P2A~iym)={uWedm135N{}h*eYNDh9)|55w{2?s-hTG7$Pu zTCJlE;yRv(!Q<+W<;Mnf4865I)F5`W`xSWBSZ^RA;Y8{qJpgPojFppYer3v78h3zOzN+?Dm&TBO+Qk;sG z2NiWh)kyH!Kd6CrVS%Vtm;(twjfrJu7w_paOnfs~E#l>XQ{RNTIYFJV0HtoM5QiRv zH!2_os?vjhGaE{2?Qkr0qG4O74q^zb9?9|3?>|l4TDB@q;KR}WGjEemj|%EF#9plY zh$(=!iAClr0*F|t?2k$??j?0RKw`Wgl{kWliA%1}ta}Y3xV#RRXaeGevCoN~u&8Zx z(M(=#1g)nBapJCcxA>ZX31G$fj0iv!loh{tBIjYRc+8b_u2hto;j3oD3)vh20)XEC z02d!Z!dK!6O9Q%psgS5J%ms4I*M5*Eeh9Mo^Ad`82nLld)nRiDK(x)&BSmkrIBU4C zF)%UG>)`oZTt#i8Skz92A#K}_NthT>3e?Rb#dRZhou303`Y+-d&)jzT{1AtdAe=@0 zM@W#AcrYoL04^jviRSu;XG@ zv8Ni8Obr?gv>eY22B&lKS}zGm9aO<VuV_w6eBa`oBJo@GquLC3j+ zDk)_2mZu{I`y5NuD!ZSouuCogL84cKZVdAsT_Gi^Afg{=at5&ny%rCkb3=iD@&bie zqBgm#@O@=2qL!M;-AsjClpvP{HFw0hW6#4M@)H4j26DkGEg28j%+iC$$3xzJ%elAV zFYWqGzD+(HJc8K;ha8^rzxhgopnsAT7XX|@qFb}nbql>s#3v~%+T%?`UE~m3i&a5F z!xjGkQ!x@!%FcR@t1+lYO5)jgbS~|v^3AnE{+_ckZxNXNNx4gvvDC})bx49@)nWn} zL##HHc?U4n=^LV{9Wyx#%EcmDQsa~=8(oJ|?gK&7UJnr@sR+^u<_1Pot-)P6==~rK zIF;V8jwOu~F8*px^#(%1-bC>%JudirzkjTHyEP0`e+?(uzXap!KWX3RfNe!9VW?Lf zTj>;11^fwO><569#3ZmeNkuE&>S%NY~q=g7(zb3aL2+!ijCyH zpQLisa|0?6HlrH&@4P44QGY&?`SS`_1p_>czg8%!>oAD6QW|@J?=!D0bV3J(+A`!Q z7rK0rl_{#C^uD=-6~G0T(h4xbL7}E03(TM(X23U;cp+?@+N!LuKubUv1|7vtmXpYD za_l}B(G13mh(K_2k)T)IUu-vRS8YglW-f;+pnow)W9GGC0wB0#5mVvvhR`3rD8})W8 zjRz}~3SULVR>*0FEw5~#RWN~WH{vKoR12iY!LF;@elI89SO7l;_C&8Dsp6)LEKWOHN^3%96%igdyI%tqzK6-wbd_vY|C5`5U*|@g(D*p6DrGPc_(HVAi~gP^UOHLn|XXT z;h1K6#Q~vTJVsmv0otKeUYy7DhT6fMC>8XNI*T20oCSJn5Y;sfjy_MM#6Oj;7s=t5 zmF!?kck#@!yAimRLan|aI|m>%dc_OYU3V;*+{hNTDIwm&pbVRo++H(rLKwC!3WX6n z37Dv3B^TMKB|XiF_PE$8n8szN07pB!ikU(=&>!X&keJTpg)fL^^a_@gHuDuoVNnE1 z#&gsX!~-&t4K)S4s7QRJ1mWDijdco=n#IR>YTQ+6>F}!owp1RUgW>wl{{THL=FVU~ z&`NCSSwgo!@q>rO)V0nnJ_YcOqx&mIY^5e!BGp||k|tA45Ds&E!=L1VCia-LjNcpP zGw=-svQ3(ZMe>y2QydLJp?`_Ds$#ne+e4_%hHDLy`XZth%?{H@buK##0$1i-039&a zaurZfZ8Gwz%5=&qA#Ws?p=u~{j4X?>Cr%Q~jMS|geMr+X%}9&Gr|S_hniY{X1^8j8 zd>Z?~8`iLwfw<31)oi4%NN9nwVWoH9)QSbHo%)@GxJp_>4VrkC8v{kgYgus4EWcR5 zVaZ7C8`{Ize4b^2WfHMgOTSrz+Yr@t@&yV-?pOc~xF!wTxau%)MkRkHui1jV2=CB; zFpB7U5m@PNh7P7m5${~}3zt7wjd9pndA>a*!B+;uW-mH|Ck?H54s1n3p_b1180srU zl7w0`>opVcS!BC5m&B-`tx>i$xDCZz6|ET9y}5wTK#|W1%G!3+Je>m!tQfdxf|sYQ zGc||GHn<9!I163~DkXXmhU)P+^D+jwlz2R4AxBFwN7+US2Izt8c-asNQsZ@*s}mVY zrw(9kTf|eVTck>mtQiMgkV(~1UHxEE#751Ik4Wna=#~?v-Y5J209}*qC)_iC!e86; zn|zvlIu~Tu3bp{}Yuw7g6y2-yE+*@8t4rs^;c?7Om!AXe8g(*}z-3kwZZ7+crc7R? ztHAh^Zh0A|kf$^vg)t5q!D!H@Ag1|)7yO%9{UL6FC2fo;DBG)7qhgv^BV*#0RH&n! zpP8Vt95)G^vRZgfW$)H7p-PpgC10DwBYY6SY8GYj8v=&cNMxpUxVCyfHV6T0O1Spu z8jP0eZ-fiLg-XV0WG6r%Jd4Dv7;ccZR?H=?4@rIm*0cwYF(qTw3X2Xzl_O)!XmF#c zUaDnKyGx=6s7Ub_1r_bX?*FMriDYO!{)935(FI(& z>+c^cSe0}u&)FFjT>>QVgO25IO05XBb}X~)HpR4|;Nm~E28CJe?g>lDW)=1&w0WBZ z3gjA?XrzYhbmN#NI8$TVd7gWg0U*&>l_en)gbgfrR_}tgOgJ#v`_ySyDy4%;d5=Mk)0h;l%tm2qEmw%TpmvY-4Jo;n{>)w@ zv$Z!W-AL7(Mrwm^Q5E$mf?lmCw00^G3^_Tgm|<*`T%;5r=sDKeS3y&i#b}d+;#W`v z67Gz^TMZ2gxUXfTLIWsT0Hw5Edm}_C&b=mNE-uWg% z24+3ctd%QCjkcNViDyIBkyQ~wRo_7o(u&BhqtY+eDxBt`s$Ior4*t-lp#FhFgR&+) zkP2fM%)1pm165lp7^#N~E&^Iww>7vW2#iYY*p(KJ_YP_iI24H~{FO@w=`c7#FLlb} zw(s0m%iI4Hq}1eE@$jiL$YRzLK8cObdTAZ1BTjca>OHw8kE0``f+; z%#x>NsU?hj3g%{{Wo& z1-lThd0pnU4R*_fHq5GNn-0Bv8&@o7iL|9hK8Pyq1E^P;G}eXwA@xOSRt?{TQe?F# zbtqFXLX;rvii7` z)4y4CESabc0n|*d2lMb3L(upvR^7kfG((qy;xDYkGC>pN7Q6JB;rdJi+3y5LW0@7l zsWZ-E!3`_&#OAgC0D!%B3QArQh*?^MDzR_cA{7A(S8KA0Hg_@LYKKk1dL@;pX$Z@3 z;SCmhhAIHTAhoqr(xpdQ?q#^r7i~(*V*QmkE4}{!H64}WPyso6uR7-i5JnC#mjQuE zu6`*m?fOl=O+Fpe&*{i;hI7u>;0f+tz~PODiM+A z4LexgU%UdOR+^j1kM?B%I$kPYTrgdNEQLXA*#7`fCBs4r8y>M@ALG0}Jl+(1qsDdTj-pKYuul0x=Ljsxy!GDNkSLLt= z?j^BHWNKL_G1$NQZAeIIQdO>zB<5munt)^F+`%nAgi?`gPVSktL^h+>k( zU0uMa+-*+c`Z|DKcc50wXsr{I{#YM!TS$VE^Jb$;XsoPk=fV=Ah|=ou_JMLVj?@1D zQt=>BVZInCKI_91>^z11K%Q;#Lcc8Pp8bIXe@d zSyDA13reuTTlOh)C~C+Y)Ud{_Q&$ssV3kFW2Z+~0K4$5g0KOCXo`*Oq82+Fz>zYWk z9))V_JN1umEeKLLDy~u$GI&sLsZKnk5UFB-SD58<5_$pV%U1}HWk9el9lj>l6idxG zJj+(?K4IvLQOy_Z#!O_5Ie#RzZPXdVar{5Ogt{Jt7`0|MY!Aa-zD%DUAZomWkq3~j z%s%rZRkakyJww<5pb-at3@3cyyLFMC*9gxVeHgHrryiqoWI%09HhNjdb1){si0L0y zToK{0+|$PgyJ^F05LVCyOj+Fw$w1jjk?NWC{&>J_U(!@6`Y-cPwR6~oPQXotEp;8) zR?n#%%awcgmc2bBV)<;heGXcm8e$nB@8M3z!Fe7z`yef5}Xd1?TsbAQu`s{shH|Ag_PrPsv zUL~u*dU%X(?6F;XOokgnb6U28DR#GzA9=00QjS|4vRD2~XW?2PR9B%aBuWEANXkGQ z1tMunq4Ng~@LVu0Qiar9E`Mt41Ke6%Rrm2@{MavR*!W?CoTwEUPG9}*rc}w=IVAnL={^Kx{B=q z$`@QYl!TCOSgk6H)3|Ng_7B=5)X2qVUa+wR-F;wm$;CTJN|di?rLw#d)=re!M;8=u zf(Y{}rLPj#C-oB@8cjyP4j=^Uwsn}ceVxOmv6{n6t@A(EN7yaDWUQ`u5`U)8zAY6tBCJgVnqPEfb3ZCVW1T) zW4^2lZO_~DKPhWWdUorD1GRp@RA z9Jz(2t0E}p!dfEOCPr#1uq}cB0kIzu?lRv?8+t5JK&O&0%9qA@{;oAnc$UM1sJG%G zADLlg!AxakZ_O^g9Za#Zz-Kba$`CbF2!{(7Bfg*t}w2(x_)SVy*i@(m+Q*Q zOh8{Q9#&Szm@PW~)0pqle=@DC1DA2o^dg!=co=ErLB3--0#s19O@WM`l^_%Xh5{Jn ziZ%tPobnubn4vt=O40&mDXS%648*g&ut|RJYOb4kf=QO@#45u!_J}e{FcSWeHn~z4 zp*@m-b)6Z_4>P#Jt)@P)T#YPC$FG(;Uj;RJ%d#3(841oXUhWy~Fi|q_7y3dR&|Yy+ zTVen~t#cmJ16JN25jBEBj^o_|+C;LI1)RhILeuA|NzN&|ddz;R;umV(AXWnmJ47g? zGVk6~Rvm_j-eYCb8Pr8o5{4YCs=fqncC&~(QxHR33g^TU=0|KeNO-v{g4DQPN74#b z`Mtse&^w&s5_3mitCl>R2w1J>nOONycbMf?)#hlA@`vgC5%5=TIBtK5Z3_m68>9Q8 zDb(s&1vBgNW39npmJZ}_R|3A#XXh((*|;^_6on^Qo5}ATz#)^7QjNP1jzsiN9i3-V z+%e8+J)moNg6bK;V`?&j?jA^y=5wXnxr!H&oq!`M{U&o7z5?c|!e?^6Qm|XH%G>mS zA#>&{g6ryykEGzgSx{+Is*WN6Wn==TY)c0u{k7t^hCt_h$p9QJqwF zx*6k$PZtE5xe&2O9LA0wJ_Kh9tb0c>0kJlK-4zX(kivcmiLJB=y0V@-jKp`encjnr zBIT{7zl5;G2B=rBq;oP6Z#0ruJj+&TT=|3?hJmVo$&3SmAt}6j#G)oBpP25{^SpY( zMJc$bcuc*yAa^r}Y&1n@);}cK)E~qc1jt#Alr;^po(~YYF?L4H;4^SG8lsa|6^B~w ze<_V(Uz_;P*gp{#_b|1nTX>`5(2VifQfiDrnKaY#4oAmK&IhhyIIF?0(yMWWA zJWUviZE$wc)TJHP)Y`3Autg&|T0zrC-T?v12{|uaB~*VtM{R;P%mnXtfWM{_&k2xj z7EU3B3Pri_UK_l?*##}kDZbLFUv-cip}AM-+pP2Nutc)oR4Pc_sX5aAJe%w(^4Z-rNpqWUe3MeyL9-#NY_ z-vn7}5fT`p+8EYjun5Rd`%GI5udmCd7}AesAx8(&3L)3-=iu+sO3_DJcml1ux#09E z>9)9_0_mpk!BhaS0(&Y-UtTcr1T_E@ zfS$a2WWVqOvz8>1(Z{f*QB^sK#T^c-{^}CuRCSLu>)$I zz!i4jIIEUiF544ixknH+mKNbatU??D(5E}U5x6MDFY$<yn6 zkhgKJ79(9is2D@#DsM?arZik%M4-z8OjgbGKCx>Gq`kywR zC#+SRI6}9lrdCbW;44&KWA-%Ds-wbuH-&d23kG1@M|+m?I}Y%IDF%dENZdCxG<{`J zwl89H3Km0p4TJKEb71z{L+-H_B^0Ekv8O!q53K-Hv~oIk5ZaqUrKcUTz*!O2a}&tTAeI&xXzWHAd9{1j5qne$?Yr3vxl3x&z4@0(K%Ikm%qPHeD2Nx@%UA0j z)N$w|XujOQEr8)wKBOt_of&0_>6Jv6K)xb|7s7($@`z6KqPJRYWjpXN*>*d1s3xnV zg4-ZA`ok^~pQE8YOxrQO)qK;qqyfnVIE6|bAu|aUwr_Hk9`t?Tb?61~>fuQRkWrts z-_8XAtqceW$f{orM$9%Al{_G$vQ>O=kW|f~4PLLryYLGRny;1ys9^1I;Y2k_w+aK< zKs8T+9VH!n5g;!~nIkynDAXe-xf32_2>v9nZ377JwmT0);PBt; zX95>R^^ODcp5aM70sjEBbgIoP*Zhz=+!id(1Z1~NXNKbfF-J@u209igPM%`{_apd% zUIcdc8_QLNCSZJ^$UVism2KbiD{=Lbvs{~&S2TS_hP~oZbqw!OO*)v` z#a)1~<^05Um~LgPdqC!Dk*^Ba(L2=A6P%UY*tU=yj>mb*?#ucgG^4$ZyIb+^B8)+q#Ry5J^n|TN*4x`%w)Evb4UEhp>M1 znmq^~Ys4|!NNDq%QB97}J6V*lT*WAQ2#?4Gn;QJbk?Ena zVk*4FSd;LiU2lELtQpf`xs(yVc#@SCv%r?COpvQ}d&FxhuV6VNw3p)XIxr=F!s;44 zrT&xh!gJ{U{s!oJ9|xbj?<}w{#IdMc3?N~~p=$`fJ{|nEiE z7^vJd+W~BSqsf)PQ0zYN0_j*d9GRP4Z3t^SCnRIGsTmZpLg_-tZ*nbhuUmw8xOy19 zkX0s$L@Zp;M0`sDWS|RuVU=Lva6Xfs{XPntW?V=3Mf#i&TJ!MN_WdT`CZ7+GN(emv z0BLOIVF7DC@~Oi7n~12t@-)W`nQAwVT7vcp(0G7AbRb#84*@uMjfVV%#?qA0x_SV! z%0TNgd^(yqCCwNS8@p0M0?Fg^pJ?4c6m1^;SPGlK8m|O#23;jU9%vj9nK7y>k|Lsk zZTd<9ILjB+_R9LUu&RY9Wy~>E#jOvCOkGIi&ofTDO;pg}d`+;_mD>-jMXQoMUCbMU z)2K9mf?Ad*IyUj#8|m4H>G0ud=8*xbZ_;cORcR?cJw*6nDSS~WGxI-D+vi#K9|@w# z*YG7x6)e8yNyJ^bBC+uQ0K)6wmGG*VGiHI}*g?96)Fr6k<`oDG%GEhm96@GU_**dI z*(j%AtY9+Nl)CV&Ek;-4r~$%~*0H`~maS?KXnzE^2Fe%?5HiGsT>;0WwvkT-MxdY- zf(xu!;uc`twt#lTE|>}d%A9E24K%u!2vAnkr;e6P9SkjfJd@(#?(6SO(*bnuQdXd_mS6#Gy&!>eABt9J>u9nfsJU@gb+|Py1SSB;RV4LgvG)0 zy5aYoXMkK?t=AJgZXyR5fP)h&#e=**v*nEvUQzoBBD8#@)IGeeAUnQ+q9D15sNabC5Ja-OCkF zj?{JV27=HnsZ2umE?$*aGPoKRo4U`(uYzjyJ_qVMeCs~L;Wza?J|DN^82rD_`~-TY zD-pH$T;*0uyMSiFY6Ge*&3@3WA|VoZR0E<*NHUehB&OmU9PHy-9rqm{?rf-7uH{U zMeuG?wh^m~R%KFe*U}ii?5_}73~5DpDg_>7GDN*9q%865Bl?PmNy7H9-}1J1XAOCd z^%E}hOM>MXU|^M=QC+c&*%is|B*+truz^&|v@%8}PF-W*{2)Jscj^BA4(NIx2cNd@ z4M$7TeQJIpsK*b*1PFA|ZA*}8;twgxuhr`Bo}+si^9JRCqayzRq6k&0?3h*N3h*tq z9ugBRwRc{bg)hLSNLfnC4iZvbr73DJBOEQ(^AJI3!4=lcPcG#IcR> z3&NO~fh-PHGCVJcx+tlv>NsD~1_a97U%-=tQjUTyNGhaGd5;AYoT4E;Qezc%7kpe~ zjWj2mUB>3FQeIV zhL5krPsIhozw3es!rq2pFYgei$*0GM{Xa2xKMEVBvi?|W;!`pQDQlU8Re@0^b!f&r+N4;S-MO0*MA8yI!E5C}PRAE?cKVQQA{>jXm+ zD$nwR!L&%B1v}pmY_Kbc=LHxPLueo-$u5*Pi9IHoUWJ4Z!O8|t>r&8cC?ESM5*4Td z$R))`aO4a)04P#Y}0aSIUENTSC${6y{N zxrcD1a3zez3}UpvczGq6iy6Ai5~@dI>j-O7F02e4VT*^xn97GDy z$d|8k0R$_=W= z+#I6=D{iv{1=U=zxMzsR@Gl)_}4Yi7o?iExGQ${<)5e`a= zc?@fwrG+->_&0zI3@&tno;{qzRrG39x|Zz*)@SAjfxKK)Mb-ZRgj8FIfH~$A8-kuy zsZO5Ib+EUXphC!@{TPAZhR z3#%fifj0xODoeVG&HNd1?B9kevvxyfQxHZ7A4Y8MnzC+^nOs0g*5Dr2)+L;0CiN~2 zC|hZSIIx&zCHU-_RlY`yLsoMLV{8p9)~4FAms$wk4&iX@0%{cA?7qoKdVmFUTlI^b z7g0XU1%yS>qd1oJt63mHVG}l2(oimnx-%KJC@MtC0hgguScT1oD3E>NMgkLv1-AN) zs3ZW~a@z+GFj}vGHBsax-Jng329pUdzm()5$jn9E zh~g4*D~DyDo9sRle__!DvZdI56WmiKpPM40WR#oY2UmjV`@!sECfqbVO=e`)Hnz)% zwz@^2S{L+#^qVjhrj;v*v`c8=mWO#l2X>TA*jSLVX~|lG11v$;(m13+X9epYxtIDK zK%0tX5(IB6#Hbdkiha=$I>QgNz=pE|maOOrX8a!AY~P8t)B?(<`i+2{eIxzHzot-{ zOuZ#Q827xf)+>xzdCs7iR^ORQrBPXd4W*SdRR?J^b1W-0q1{WHh&RPkFXCg>pNRah*7cg+Pzcd;L)g9UuZYzK1zIFHjQu0v^Y-20 zsHzGU$MF$%Y50Z0#}wRCAlD5<1=*e=D{Ic)Fw57O92@b^q1P|^mE#5*Y z(Bl1a&UxPJz20yC$gi2%bMKiXbMIMuEyf8g^QB5xcBQYheSFXoXH+37gg6&c7pBn6 zGs1pcCGG~Uy`-?Yb*lG%Jis$PBaw>6`2e`?E2f-MV#;Vitvpk?YwD`9!V)3!4!tx+ za@;dhv`q_?y`y=X6;7-EmItpDq00loKs^tetx#2P#U4aTUwUXRD~{apYT2zOhekVE zN`i`5`-TWp0qE*a<)^6&n)oHU9zuG&A(WGcXzgQ=&AuiU z8Qkb82NP?%5SNy!@Ojt8C_3_DfXLnGth>~{>=U=qy>!13@sU@J$EC0t3o|-8_f?I9ocL}0YWC@x z)mK8sboeIwKoEuIsD(5@%f<{-Mo3EKgoi`kPMGYatYXO%*rG(pw-G9xJ+Wq_;6)x) zW8;J|^_y8d`#+WCpNJdb1d5%|x!{<$lp>qj@3lFSV&^tdco{6ekv7Q>qr7OaAh{H( z7wAs7_h&eex71Epkj9x{BK?4?wxl|#EOCl10fo8nbKZFqfHAX~lku^eXT%w9K)qxX zjYK3;+%la!oO@?n2YqOzlSSj-7>SulyG0lCE%iyuJ}Z4>3YPiFp!}pdAXF-lwB@^< z5AAS0yCoT!-stC-PiTq|H*02hXLMuDSydBYH*-yhcY`+YgGcmO=^*nLFO~yoKR=W2 zl*gTeEK9h)O>Jfa<*;PhKmCufBVB+!5zZo*?;@;W?qYFo&U~1cYUCr>DC!C_N5Nyy z`97keflq^QA$nIy>Rs#SRk0vl^9N7AN8YGYI0F)P0Fb$f8ZlcPbDoLi$8w;~qY0D{ zMIm(m5gsT=w;wM>9>8hBgrogs@#`gNmDa=9+raFj{o zPqhcH;?|mZvL1D~(jAAw9-R+{xx6)?MReER3UGah!yW$pfApg@+a%GvZVLwx zq&}Lw{pQr?&)I3WOzr9B!TgC*6{}t&v7JA9L(7b8Aol64#mm=NO^QVM#s!x%m^YE1 z`V57(1t=+@g!Xk&dX&mfHRQfPx5n3A+sRknm_IaJ2w9nUPzl%_4Q+=CIh`x|DHDi4~uu4GRzm6*>ei^%>jH{8g#CDgK6y9jZkP~dMP2~^ZE_uU( z<9i!b13l`O`HdM?gM`${nZcn*>SD%5w6?fHKbO{IhkQcJo7mdsfhfVy96Vw5s`OiS z@_WGUfzIvF$F>F>(Y))%0GWB`WT-1hrqPk=E`sQr39e5yy?^TpEtka(gOP6p{M}SY zZ-vfJYtWEY{*6{bwyQ160+9QjELD<%!25y6spb^;%~qnBfe_()$1bHzi#ep*ek-)R z3^C0}E<4SO{WZFRe1=&7aRH#sq6*7gelEl02W!B0MY05CePJu7X#ZScYom8+;o&P> zAs^Ioev3uROCU-95x0faIO;AXKMrf5<1J@m>`HZsR zVT{fKLx6CHk;AEa!*>~LQw|E5rC-u~3?Jol3$a7-n0SN?uegy23FvTAxUwj;_9oFj zVI@FhKAd$-n~{=dkT)+OA{r2OeFMCT&D>n7$4F&&w4)~kk-U;`|87HW6x_0J>{r!0 z><_~W!gR+XjRKvp1rYqS^JJTKvU&fsTOy?bRD^Hs`d&RRX@AIRidO@u3{w*E35U z!EltUMG!OkE6X}&Yz0jYvow1K_Sa@c?WURSgLQI z$Ms`?=VyKd>R*U%JjzF;sghq%nB?QAzu zpICh|Rb$V|mvV%>yc_>bkF&8n+=yuTrgUTAS+O{-@#!yM9?Q(&b3|_ClG(BHZM-cz z%8P$HW}u6x3Cep%{^AC;_8TgysoCOO3B<4Yjq)}&*Aodsz;?4&4gk)4Xg>l950RqU zmr-^`5P$_ijPAk7>9cJT$N4i}WbGLgAsnrujT0F=!0J;WxW7Q-fYQ^m*HYDQCW-Q_y3y0*xFyFJj{SjK@4F!Ga zT#Rvz{|Je3KEhu>%W|5RH!CyW?>sC0GMoa;T#A{>F0-Ery!7340O8jL8QNx}pQ65& z3HEe%;cqI-KJZ?dI$);+(U#EbkZO=6bhvxs&ri#?-kO;?@zZr@V9Zn>ycn(Kw$!Aw znLDU*l2d&elix4dw2?GcmMSsfz3~Az9O(x?4C;x-O6{D{U_LV2RPE4l4}6Vn9J=-8 zBc-Y3h8l`Cs zrKB@c?mh9{DrkqpX3dNK@{`GV+G{AiuMPTa6e-tfSez!3uK1-t3v6z6gXzYA%%g~I zF7qAlwUuf*RHLCx4b!I~ssPTC3fyv(rm}cLtq8QCo(rZyXSkv;XFXl4!I6^FDu#B# zU|$JBrtRfVUT&h*u&jIxX-rD=wUn=J23NG^zf%tYUZ{DrsZyg{MkIzGdhXdrCA281 zT~P}LSf756t2@pN+;YUrtHLk-@yJaU)9)KqjCf0325-aWl;7}b^=K7rkr)1=wKmaO zM7qsc-`OKZ`uQ}dBDG7LT?N0#&=*|VDs@6|djOBIqBJg8w0?Lqo#*K$j)t{2>9cip2&YKkV5)d-**E^qhQe-vYmkVv9^<1bBO@2^&PRnv5KA8f9x8-@o$pv#1k5b)FO$SFdn}FMHR7d1 zY3Juekuuq78VltppYcPx*^bJ5jgn42#x8O8ag$`B@QQtkv#IEt9en~%OueJ4DJR+j zB<$s!1xH)yJ56hoGg?K4thVkL!4fugYpS6EK|%J&GZKuQ@kt+lL`KelB#O$s&YOp&Jp#%&uLs- z=r%_|H6M&XWAt(XJMX7u=4}l{OjA&V)r2wZnX}vzFVoQpkGRVcjJS9*9hBfbDB5p}fXEdMwV0_nlNe#?e9?;ASMXIe-ZGkC5~1O zr+6ZlsW&$Nfs8}^d?<%#h3M3m@m5(dXY3|&Pudy{4T&vVg!PU1*IZ{aX|>1U)hsjD zRDBuO{n^1gW_|lhTdo&b=@6;JX{M7vdpEZ$sx5qojUJ#=_mCSo{#6ug`;XJHsYht! zy)880RI$p78YA9pP2SG-fASE%k7_A;*P*&`l zyEFYtH`Z}i7=SenaO}{6Ke+zohzj(J$=-LVZ_z&h0N!0RgP!|PEMc8DnDqrFb~G^8 zyuNWzvV55ej!fV%Hq+j)wlK=`5}-XwdK`l6?V6`q8ck8ZhD(jqOLs@q1c?@Cu$u12 zVOc{&;=4Qe(!AeAOOIn0RY2AoZVq%C`=0U^`VLS=?I(hhAH!^67W9W#dC!EXwAC`+ zx;0?c4jyq?IxonHR9WMJfLUCW2&eRxTn%6C;PH_vJ%iP4yi5i1n&QHGzQtNEQ^$hU z2>_C^dAL;ijWx)(5d`EPR=t>(4E*S7BF~X7L&&+mq<+BhCAch8nRkalj0Q=c)hV`M z3&dNFxfJW-LFi^bT5@%T6kU0k-@nD7nBOhp!Va5XDwUZM z0Lj(f2WM~VcHoRkDW{=X0c=?}fSB?Jr$e?_YVx}iLuYVNbTdg+Bn%_xJI51}{O-Si z4A$m2P5wVz3A?%W9~CiIA{)BP%)erhv*6`;>2X7}WU?22Kd6%Sh16SOmwXMpKo>4A zM0UgwJCw_eIr!U$`=rtwkK(vrKF67}Y3te_>-aqlmn)S8%55r{w9 ziV`^hYktk%bi8uQ)uFvuDSM0|h}>X%l20-^e=yNPS__lcZW02x`wfw~Mtt3|%-6pN z8ssIY5{+b-rv@cu43Z-d64he?clI->bSV$xCc|qSInq*7YE~0sxytp+zP*l?!JiG@ zafp0P`OqMYUY;6nBCmg10p7z2W(DGxgw3EO;v2t{MlWCrZa(At=t#Qn=173^VRo+# zrBVmapi9E`dsVjOnx71=lOw#klyCRxf+T6@LP*xUfi2t5Sv*W{AS$uc#22u<)Np*E zw(aK&U?s{UuxJBWkvKg_Phh0A@T_2EYRzju76+mqL9Vb-z9g|_pAnTXL}P9KaY77A z49YS{g6ynqmN+Y{zf{xi8c*EhY}UO0^ver;HV1G*E)mIzZL_`RUjgj}DWFgyf@%|9 zWuriYq#xSZti|4+BXrXi^=BM?6zY1*5Sg&Q&xtIP#nFa^65Nb%?hD7Wzj^Kqbln?{ zFe|eF$3Oi+u8^?P$q|7hT8bKQv-O-I>g98*<~1;OD@>~w49F0 z99aqjVe_cDSYz_tpUZVJ$n`($-HeytW>{+84GzGO7Pt@a->P*`;xIhbUNVS$pJ=6X zQTBZqN*NE1N&@bM57IA@iyFAtQSmRT_K1b!6`q)MNU=uR05etMbL;GUo1-&&t!z1; zvSWjrOFin|pENUHBuFHHdA-(uc+rQ+Ka>X8sB>C~G1C4Rtl`{t?AAbiPpfaq>J70g z{cU7u(J?loi@qnSfAN*JJrdXI2R_FJ@*{n{-V$C~v|;@Znxuo3cNyg}^o+hzSV{4A zzhXG+>c{OB^PIj*k-7s<=%SbM{H`9tJi&MB&+&4i1qF-LyWy~azW{laYb|l(SD@|a z9>rsywKsS=VdD$B_X+qUbJhLCS?vj)U+7cG2Kb-RjT*{NOwV!sg<#s|Uy(=oBPfNJ zWBbepm**%re4gh;jKpkGmq%-hal3&~t>dcQaoT>`7a@@Y z6M`8^CmR&ZCD*a~X^I0GEeGSnJMI@S4i^)eM%P@+(kn2UY3R0;>sTh4F_8#Hw`-A% z3I%Wo3IS@%)GgX~BJ|2P#k~+?uzl1ezA-X!bV?lzxyxKCPg&%Di1h zc6h3L!IyFLZ$@z~t1Ae*up9l`*$oYG~9aT*jgNQ&XRg zOjZUkXrgtx;OC=GeOT@MrEK6-K*EDnAww{$S#!6xSLNG}6f(WFrD8#;6^*N}pLVT( zetg79@Rc|vIk|wVSXhJ~5aDKVVSDs4>%^T!cWyBAF0<)@g>O_`ndT1Ns0o!|Ys3Og z1V1R*BdYFga6o(-yB&sHD;9(uMDCU{<^qOoq4d5ZI@+&@)>}N};|d~u%<6$c(WA_T z{#5Vu49V;}-%h?RDs~QcT1IVHIat#`BRMcw{qDG7_VrA|yiBIgE|rts9Zrh=zYH!d z>DPzIu*)OQzkoc_J~IvJtUEp59x|V2!vCt&p+Cz&&=rezl+nTZi$GBr zE#NVtT}D7o0<7O=TqqVNMX0;gH%fD6!d4llTjTEvm#Cxp@4FsGgo+q`j~#xU6+?MK zDmz3X==VN0kL8q;8hNg&*8pe#M#N-FaiQ|?JH(Z4X*S*>laZLXrCwR(Pi*2Hwv?40P+J@Eg0s}x!r2>#xejo~!Ydyu z!mitUA4VD?rt&W0BkPX@-rfYg?}#>9b(vR}aO_#yE5mFfYDBT+{#mUWMdrPHTuC{q zx9NDlcSJu>#}6L==oz-e9TRx~{{}XHir@O2F6#) zYG_h-X5Hb}6V{)Fy;l&IrP}D-hdE{Gz@r5scg~WbyT?~>tk3}X83hp)lOtS zoJLTgL+Gt!w*@QtYJhl`>xOwC!aVz1hcwGSmy{0 z(5w2a%a%PEhSU@#GY!jhs{2r|O~UFyA*?l26H7Kgx-4ref-M)15B>iB_FrrlT*m8Z zEZ+koZ0u(UcfZQO9lW9QVDa?Kd?^mVEmS~A$roA{IK}*U};F3*c%x;AW#WqZjY{A_* zmh@lzXMZkRmPUyckWFa2zp~8Yw*1g9-#AoYuJVuL>U~c&izBh54n6!fTs(>rQ^P7t z@)6?P2Tltlg-8zYocIwY`G*N+{oQqBY5Bv%v?HLwKgxY2X z&(x3<;ov9>REBe2EG?q^?oP`sw_kqZxY4tl0df5_?oZQ2e*v>IOb(XW18kac!3Es~ z|CmN4Rdxt!u)y@yHLvM;HWx7}p>aKTYD+V(m&deO6aV^gt+cIMlXkbhz`yoWo48W; zO-4Rd!&shSC2VE;^Oa^`%Avw~*d z2(lw8w6Hj+W-4}}iLMIU9GHpz?|S=+#xIO{SM$ROZPrs|Ry3@+W*PR6f#-GS$-^cb z`3w{KLGNbrWwrNQaynNiqiO&(CUd$=ge7G|+XRb6g*RUzyi|%D%nop~cib~{rw)w4 z&XKs%tf#E!2(yw~C!z`bI$54`^ACSQvOJ#qYg)AebX+qEw05Eoln$Izzd|ff?^~aY zUpW5)h$WfWR19cX^^`qRG58lJA7-~4F9e<@-dPrf#|+ILINtGvpCHaT8_6$Go7vd=I%^g3g`_ei&EIa+S|3`4ydhw~ zf+RaUmB$tJY#+-@&w0=RM_P!~*po`O+ywpwjK?H9)4uH&So4m)2gM@ap{8?GNC^=YsI3nHy8;leq{uq(+D1?tJOlG9?Fhe(Wa6^(xFMxD5B90hq zi~CAHRVo5I^ydNn0ORZm@?2C^s$t16KMy6ir~334(O|}_1IOqySxQ;OGYMo6QKS4@ zWbK2>!yW%OOJ2~RHG;iT2#sY@iY~uS@K&~$T%W$k z+;BD3hw3{mcrc6iN08NJ1{3UiOSd;Y*ApWX3>1Ok^Z3iwEm+}Le*w(eQBBGZ-zEQq zW3v1O{5yHYj!}n{fR@2sv~_MSdPWvZU1z$^h%9PW(qbLkE4-W<(%!q z?_EUA0HHizl_}bl!Mbha$%uW`@zCYE_szZ@={mAg*ZcJmt^($71b+(nRx)@T+_OM8Xqpt-hX& z*IQ`aJqMIyOh;9#LZRM>KQUxFk(@-So>ZwLLAUee2*5rb~NZbMq!%3N3em>ba|& zOzpN0(mRcOgQKk$`+Y) zHd|+`XT{E{gEvv>iKkd_E^RxICEmDLZd_jKNWh3x4#z>Q*OjzbJUbj$^h_@~w}I}l ztn#S#zG!eGUm#%%L^UeJ#p5;QUmPWiJQBM+4f7BJmR*Q`3ALmpkPO5{ze!CTdQc=A zBr+zXQZrLQce835gj&byXE&?j72}sOAgQ$@Z1&o4QW8xuSQ_XH(!aCftRaJ1O=&c6a&3WUalu9+IGvTKt>Y@_NgZ9Mj(US^b5 zHgi1V(5IXu#7Vo#^z6D+Vjr^P2GA={AYu=U(cv9>gu~^Y-6S+VJCpa(6_pxlC@=w83nB#a}&3(P`DzD6B$X|fp zGsk^#ceubGo};kCr$MdF*_Va28lQ09D&k|YOOUf5yae3tdFmc6(kXBYZ&Ud+yEFh- z?Y!pjeYCKN4Rk)NOXloME$;pQx5+Q7KM#MDR+5i?p4$;SzdYw{U|0IR)jvi?2pVIo z_7tbcbYI8fQT@Tn!=-X#IPm*_95wnz-s>JEM9%;RsW z5nO{?WzHrz&a-W$%+ph&>%RTps3eW>JDZ;06XSBc`*TX~{%-eCHQe=*TJqgvB~AOE z_zTN|$GmGvgBM3H>hLdko1HEcN7OZ~)&Ind|8n7Rc5NV^<}~zJ@igdzVW{U3uT_BM zF0dsE&9#3IgRh<95mx`a>I(_m{$JGK^LIS6giTnHJn~oV+IN2jj7V_*HTICSP4CbcM!-$3ID>imOHS+=n;i%gxjc6%vgONuLLLb zTKwOb&#M1tkqE6+Oa=<3(M?k0tY7;MwWr0jm)7CK>!${(Mq|!$3_O~2nnUTk3o+W+ zS2~Ph?#(jhyo5PsG2yIZ4j9rWCx&5UkA~M+`@T(o63uE$`^1tL=q(>Lw+0FxSFd@V zdH!AN?r=W0WY1?EaQ?}Q^<_u(+054&#qfs_tmE{He>T+rvsuU+RGM`!iM96h0JDoU zMndvj@G=PaCi;J-&P(4?|JzEZy-Kndpw)%!+h?wtYR?;2_c10@rwWXVOzxPPV4yH< zkE_W>e%u1zt^dT-lI6$N+d3}G@F1-njMYuEL4Bv=$7*=Q{%<(`-92!n+0JY7e7qL_ z*|=mOx(h3@}1!#Do}4d&N)cIrlD)(~Xc7 zJ2aQK?>G2uCts6c@>^|f{;I^x<2Ky8iRo`9Zt*IJZV@202MPw>&yaANb^9zpa_NW_ zmYU_XR)`Vq+s9ysQ+eDb{76i+3zgH`GGpAVei}d8_E5QP8@K`yR1HKyA2X#;8udO^ zL%V&hAd9wjSjRr3xwXVkH3UJx_&FLppDl6DL_8y(e#3Qpa2dNwQuAzLAqX&ImSXwqfRH ztBv~OcArw2V>AQ73xZ9*AmOWvyP|o2mT9=NY<8j_rN9LLFW#eHMlhH=0wcK((iu~_ zL#=-mv-uoOeL$)p9CG|c={$=nQ8rgMDb(3bKBr|>YcS{s3dY|I27E?Wv<@`7GpmDa zg7%Y)a=IBoxQX`Syt#I6Z7ObWysr)6Ve$Xlw<)_^MS$75-^^AF zA)c~3K`Nv~V4iHL48ZtV^iq z)#~S5OMvI5&8-SwK@b`R@skR-0q))-S3jl6datklT^MlClCiJrYw(oS@G6>Ug!X^) zP!D{_bGmb8`b4fno?|+dV1S%q%AoZ%+bk-_(nuof%K(E>x6H!iD`tgxGx>h-Pmvte z64v|kynmKj02q?7k5?sbkv9c;Q*xLd#NYd|@BR}qY#+$XkED?bM|?h8#lN2&KV!7; z*GNHDqQWg$r_hjI`%eqSsWV$%iTNj*1M)g~X8@zk+ zJX|1;9^Dq_^Dy3O>AV8xaYrO~u|rmFcqb%my2xeX>USu(U)QOdJOkv42gXk*SD84Y0-QXo>(z7e zB0EwOOmgOd{y|alsNCb`qtE{QUJD{Y1z!%`+?L*w20#g%9c}SS`}E71fYT!l;$7C( z3SHE+mTnbiTH^fB52j*D?Cq=hoW0IKxJH{V^19ZbDsh)yS+|K-3>rw!4Dk>CTwxJX zIA?pMsu6X*0DsQsK}89B0(zzOM$9aF+FB{s%t>|i&rNOo%2XW|u>p8?LnTp*nt0!Y z;;bmy4ZEE`WMOmFcqhDEAxX##(a@rs`2&PueVb4ugRjvqxd_!&2lAq{S~RFy1%n{N zA}ci!FRyxPTFvoy7`h+6MYzYY=lEMx-~sB(b1GVNu)1oSB6fPG+z&Sw`?Z&Le%G1*r`-|;H-aputU69*a;|p7ZY?OLd z>Z|+ItyD5AtLMCQuO`ueG7P*P1d`YGY;zF-#0$GCvSEL&vcL~Dh79U=O zl$Enz(g?Y6(o0f^t+U!`rY-eMp8EYK=C~`zIz?eb-ZhPkwp={v53HVA^$WRuc+?>O zO2G0DEgmLZ+ABwap&#O}6AYBx;-zaCScq1vtRX%Z(#>54StDPj{rq2H?kTI0st)#3 z)0xHm*vD5$(7F(CQ|p~-+4m;aIrc~Bv{>8hb9Kb1>kvHxs9^@C#=2Aw1BDIiv!MvJ z9s6#e`BS#jsEH&W4dg&qD=!9A3}=u@%s&3%o%^fXITUi z*ZEu^7Xl)v}DRLUi4Ro`G3JXW}k&$bN_sZNZFnO`=ZgNoY44F^U zl-=L(k}Woz(dkVkmm;jJ$zc?NiCu&^7k-{GA%9+xlG~|t=E*aiz;Hk1G*#~y_U`qP zl{$F)atSaMgnm*vmlZ{U#O9tPz;w16%Bd{OyK?pJYZNjtqt1l=q`MN-6JwX)NmZY2 zwhQ2j=SKKa2%CXi8k8g)E|L^ReO%ghBBG6 z+TD?jkEqQdqFHr2w1kK>C}Ls` z51m@BkxMuj9(82u>?GFyiD{pu_g6DzhJD8mZ)p%~ALL z9lIuF6vuapHjPEA=iY`Mhy?*LD@+$LNly^ks8|{mxTD~;OCJ>3WNN>T`;?(hTzSRc zWzwL+tPa&K>XyQOf9iNd3Z0iufB483MrVE!I{MJIBwzw-#b*NOW_htCc@aDxLR7*F;^a6stk|dGWJY#`Xh7?)XTCd3_0w-(sn`*&a*ahVkxd$we~ji& zr@}let)t|JaFItvklEI>HmHg3F{vNIJ{hv`GajBhElo`^VbsXi<*vEXT;tS!8_5U)QAm5ESH)S?_iEXSUr-H z0*3~8N>@VnoCvJ%Bl7D*)EaM_UXz26uLFBGc0YLLSulyqs)opRf2#EYR!I24#!WXx zmUYZ9TX?N+YJq*oi6 zi+m=BA*uP-H5S@Xhvf>r@A^RMW4Hj?tCm%zF^)BW1g7@h<$vBVuBW_&l7CFLcfx%; zb!Vi9&DsVu>g-nhIRdZaZemjkVAJ9l039mkm*9&2lq)Hra!)8!J>;cK;N8#J(TQ|Q ziHIdFP0R#$gV20YCQy-c2T0@cQ%f;DOC*i{UM=#9?KRkP2D4Uklf{iOR3GJjEOj$Pa;e} zuZSFH@uRI7F)GTeE96GSTDiCsT{UBzlMrPu7W0f#z%R59?m+n#->3_cBY+#9PZl@e zY`-f!SrhpCOPKz`Ln>pM?2&k8=Xz3A`Ix3>UlVj?9Y!qLmPc}@GZ5c;33pZOQ_1M6 z4qGf@EgYPDTDQzE`GLZQ9qEzAq(yvcg{SE~k8hKv-%@D`W0yaD#jFXdG_7zT<4}7X zj2M5flF}{g(+`|eVb|V#kqX@hxW3>VOVYNGuDV;H3BALuPz5@e05b2hSK|Te%_j*p=!KE4#*{~P z^9dNeh3S0x9WQl4-c~bE(W;WGgk?Fm`hJHG{fXZPpVvRzbfJ+N>6q(tnI?dAKJBwX zX2fzux zz%0`B+Ki3ht?%>J^>4QU1r=Z#l-Z+)(fE{>*|1B1d(*)J1lG9QH)0$aP*<*;u;EJ}IhwFu?D z59*DaogKY*l07e5+wbG#60iM!2dhYm+-{l!*2^lEQku`htElcxdsyW~l%VC)s^AB(qAfrTd0h9fj*$*4i+n#N3iC z&G`$;YCP{H)11^n&O|yd^r36|q$KmOzHwNl8mMoeF3U|Wl69%SjYk3`n2&PHCCL}59Pv_!K?HN3bpoHjVvlOJ8+wNr_1X$9w@2Eo z06J$OchmmES1ABMZHj1sz<4x0AphnO0??{-s%aq5oRCRWL-?GSqiu`an?s?e+-J4y zsGMp-tQwqq%XP*vfl9aMeJP;!<^cN(Ns6M5x^uaRC%w)CtU~@hic)d}oc+4@;_$G; zI2+x(NsH2s`@4(ta?WC(2$}xqw8NPl!f;@;YuPUkgUBS^t(G>PA4n)5uRbY~_wGk1 z6xx+3`AONoX+SY^LJd(z(t$4y7-P|8YSgc2@c!rvv*)cG;snJ5VuPl0lJDg7^Z1c4 zPaua|`c}K+YYJW6I?5x=$V0v+rcOHN$%TFPl=2BCMZr0RBH5$-PbqE|NYt1(d-`N~ z%~luKI`c$a=e)JHX5~bMLP(?RAZ303TL{TXB#^%+I9Aon4{ECNh=#)D9N6+Y9y^G2 z;aWK--J|3U_c1p+5%OWjS_!cN0up<1pnN-K0D&f&Iz=u{8nJoDNs6YxXw0r??$KYFMxhEx5rFN zz5{k<)FI6)Supe+G-u#KOLc4}H_oPphx|cdBhsp}w-Z@@5^$EN^6f=}dNZ$vYdFN< zEx#V|i7W)^X-vy`*AlQE&JW-e3(jrZR=8;j1m9eg3)!{c2;d*qRg@)-=<)GmTMlhe zb7Ohzc#rStdvh+mf`DeVf3WFT)YfxI+PJV>M;*PHs!#H$vR=07$}an`1PtuiJ^~aD zHMb51BotMRGjQCIv}LWf?8P(6OgD4wJBnEV{{AZV4(3;{Md=Q&nO(x z!vZR}8d?SyFALBP$~aww(;lO$ID2X)ylLLMSg>)83rX&;Nvk0ugcCb`jgPz$Nda!t z*3^mG_BMqFXliB79_-o`^U(6lNb^c65xWjSXaA`fWA^{ky@{ao;n~yJ88i{UxR;%Dk;V zPj425oa3;fgRX%miX!*-Ubl~{RUHf`?J3UZJN)YO+dcQzi>seizE)N_k|qzb`<=h7 z*c1wtw#JETuf>4>*-gi0v$FOR1`iFMHhhr+H-yg&kxCd0i(7rqr$8*~3p} z*SKF_xy{i|DqI|c$9*170!#Y`-nPBq8womhkM@)pV)a|J!&BC6La_2zAH*fQ_VhnJ z<*IqYcuFHm&LpB7< zm2D}t-cZU>ajeX;pMD?ioG6oCt!GiyrwqC)BubKR!f%a%P#BrN7SvS9Vqm+QE|$pr z`3)l4d^#RFS>oU4#+eb=^>x4Pk=pw85$qgo%NA>j zZ{3g;ieiqmd^fWHRl}IY?Nd18daHwKr(u#&@C?U3-!4gk(!=rKwS$<$<(>Pw4Uh8F zZs+Ucxh0Hk+g6M=VlAW?xL~X1j=Y1Myhjp^>JK*jWNCGY7E5B$FJg8d@a6^=MGFnW zT{ct(F|Nsf`AyVcZN9Sd!mAxSOq)GU2Bh#Up=WrP7jRICd>@H(9b;x6#BoWaZ z#te*DKXXf6lMtWKk`2qn8k?}=3T!h?nmg5Vd(Rt|lVYgqt;FJu=0RBEljgi+;v>sH z)1e1-uf7o2Q#>c85c|GpcW5<+ACkDdmxZ{HNZc3A37!AqZ&c0Gp6()U4k2KP%~35@ z_Af3yKrX#`Nw6rnc}aYPKb79UPgVb0V(~Y8`1OB>e_**{|0ebqFv%T}Hofb_R~-Jp zWZC??xGo%jcIok-P<41(o<+VQ*nPo!yE&l2JU6?U&|>rs&S><%3BpH^bozJX+2XY; zE?gCGXo=IyaP7m`6)+yPjVbEN+W}CcMR$MzQX$o9&nUVjw%grIe5d~veuLbR1F?CO zJ(%?TL*Hjv4MJ*s@RtmEVYw`Z_E^^b69Sda$0B;{fkiEBh?dKv3IbQF;R5z!u~ViM zi{za;Sf$5t2}l@@dbE3rWt0%>&%aQ&b4She;aL+8&$9UdJ;OlQAKI-XA{bhQcq?8F zk1pA>X2r9>U2#=7{vcm(_&$Zq7)pBEAEB3+=hnO8mT&@i=xNHr7#>&-fDgq=EEl0= z&9?((7+9nC=@np_?o<3{&9-NPyW+BcoBlIJv)yVCv+>n4o~r$`NQ9>LUqH58Wn;DL zj|1y>)PO!f%YCmJ)puHg4xpDSFP0q(-A*-o6U{tQCC@3eg8XprK|W!y^W$jA=*%5F ztj0}CSCVq@y;%%>zP>B&568b;dz6j-{YLG1x2g>IP?Sj+2`|y}LrJ}VBc+nnDm-Pn zRI_ld2su7^H^b6UrX$o8Z9Zj`b=cgWpzqI_$MgH}Wy>RgRe&ezmXD8*?O#JV@WjhO zkJcAkA?7~J>aHM-80u9yF99sD!zG$+VVJ@-c|E z6aIz6*%Ps1b|*?V#W8^#G^5vf_HII7u*i#QHC`|R{&V#2Cq|HLyn7*|4zw?8B&V5A zDT0e|3RZ&8tm^y!5p|YPZH4WE4Fq=!?i7lJ?lKW_kh>GmCCK*iYB9Bi34H?6IxlXvTgGjR~Dm|-u>H5 zoTgNv;zl4**Q*o3zOm{+sB*l=kS|zAL!YQ^50?DlVup;>cof#yyRv1FtL&RAoK>Jg z@V)FQOF9R9$`MU&e%#fIg1~4qYj#D%^d3RUDa$~_hRj5+CAg6xAXXj{dXu9*GRPj` zxn%4dn{9enn#FDr0{olcBfAhbG4uMwe!y-niR)RAU46^H6?+|3K*a z>^NTUVvQW-+1cCtA^iGZ^Yqg^*O_?#+ilao5WO{y0_|bZheA-~lWN^_)<(%Kw_ek| zR#g;~SinAO+CwjfE`0`rL&6&Vu;xSk?s*Cs;OX||qv^}X_5T234_^NRsQRA|sju?n zRLie&j##Zv1TDglkjk;jG|$`rKbkik1~L;@77j97$oN8<&8+PEx~miRhZ6Q6HPSV2 z`Sy0qH(efqkN#MO1>Zb=rn~=_a`Gzm_3~fgl5dFOQx-zI{=bUchs@JIHR6BZ0U`QF zueRBDUrg8hO#k=xf4?O)5Sj)|xA6|*{3DBJbCM2_u}rl~ni9vV=%Y8Wz&LKMHi8`2a$%;Hew?Ll7nA=x~&q*J<1sENsbAZ{t? zJn}65L*q)^BCjEcFm9n(N?_&mox=dd(?Gg9mSMY8c}Jk_jyx!t*Q9tKCE445Ha)FvgY9Pm-=*nRCSl#>5`J-n4)B=y`Q| zz0j?%VOe_M4V%0^)lnDN%y<>RFI=WUiEv-*Yha=X9k9-j=g2B!UfkAAQ2d%$!;`~8 zyMtj}<7D5y&y{=G=XF!@84qNpH>jTD!T}X+cw;M=rR4+g3(GkR?Mwe z@4%SkoO?S^UEC6;XpKKycZ~l=`aw^4^bOAnr;Wrj!@|-v5`Ripdm- z>-29PL8J6&BiO+u%MB}Z=&6cs|9c02eP^Qiqajj6u#1L_=u~1Z@Kkp0w(9xAGpqjY zlXA!d8|Z!RaUcpB$?g{gKeC@6Mg5lNzIfd<&rRL9h>xffzmlkw1AOs@lF^K{$}Rci z>zqtVvVT`Cqad_#D zYENx=&i2OdUeligGX$JyOVD}-Wu5jwLupkHGzlDL!-7!S=5Wv6yrwYR_IL4;^hq7- zKQC*ZP5}d^g+PA_pCVnTC=EiC1z&?!* zJ18FvdN0}%bM!PKxa+ce!<S^_I;8CiLel{% zB2kN4)5=JT5+_=BhD`)<>K!h|FMeeFj&c^5Ix6#>9-+wUqJ(#Z9&i?GbVkn9$_oQl zjX?dD+8b_Y?0g*)(UpdAGZxCkt^s1>NxA=IoZYtnM_Pt}qGjBy<&9PV8 z#HVJ7nR(#dm-lDlAJ?F}u4^Ww>^%ss`?hLu-lDRD$@$^aP`}{j^e@fKT{sLB(qY~E zCYvQ-4jji$drDs=4E!{!oUk6tFS_&QG(<9x7c#=fBMA8jZ?=mCt187dvh-}-Lol!dLb=UXuS@jB34 z;F$hAs7TEeUZv6RVpWv|02k*ies0`)9%3%-$KjOdF@k05yp?{_DZ^Bf&dHLb;3ctz zDXDIhZ-01AiL0Ht0w?Z6~+K$$VzV7bac_$4>c7p7@F6Ucp?RNf$Q zBvOpy{)cEH#z#04ZG%+SB@Qz;2Y`XxIfZZKZAvN7Z3df2vIOI`7o|NC=Gs}wb0bwE_!FwbxEa4qKnHh{(| zCw2<(aP{8V%!U&3g&C<*9=WClYna7iiSYM;%xRrp^4HcvQ}}oxeEf{XDY$v))e^j? zu2(Z)qDCJ(1HkMl__wt4lwOu}kP#A~S9*w(qp0v`!fCWNCn>jtyfLD;QfyM^xyc&> zrw0MMx*{QIH7+FgoJKjzTL!{c)XCb%K+j1th4JbG6dDaS5|K_wX#xIQIx5xi>6e81 z>%e0rY1R)Qs{waIT{D)4+H@k8Nh-V3ZH~WC5qO6GuuIv*3&tP_E2_A=Ga`xUA>tVv z#8UhxpYVLI{xK&j8RKS0XuL(T$3T;1(SGqZ9%RdFn13fynZxuOglpJ=O5%z{aGOv! zw^@lecZ})iHm*V!1XP1_Diu#S4xxP0cp#$hU9c1~Nr3tksWM5WvBK->O17J@UryIf zJ2TWTNiV5jY#e^EMiAC1Fs4G%dy3Jxy@9F3E1`;I%f}qVzx2A(P5x**H;clYDi_5T zv_xMtX3EQs?bzFMlg>I?E5uxL?%Dk^aFRIwKq*-7#r{&}b*!p=`i}0$21V}qF~U!! z`$ypHioLp)1uSNMfpbxYcK=t#kR%HUiJyyiZJhOBpIU=IuiIFB(*#{ih~+`L}d=mLpO_7Pg%vJyh*X5dJC8|>q!r~;L{>oBgQ zG0MReZUDRSy}b3zu1;BtgkA<^VhK@N4_R(0Q3|`TTDHc1!aRNSJs2VGF(W3_{vtqk zl=cYYj71;O+h(}ivZPe+%#|+$2(2-*If?(So`%mco;{F}S3@MEzb3Rk>4UbVnH-u# z<*@q!eFta+k@&cJ!`&l`6XqA@w9=V$7O!a8@=E&)18rKjsWTU$LF;nDd_-`-V!1ty zSPkQ?{IVxTE+++}(8i)Sdw0Vd8#rL?haLFV(}(_ zE!rhBb+l!TO%+V*Bj;fI4#-9&Cq}V1;whjW`LD#y3Gcfkbxu*>^~fVRk>H8rjOVOs$3}^)S$K1@S9RrZimk zlUv5Aix}T@^RWrzDF{Tyd&8C0zL?_%iEhY0Uvfqn%5aZ0G6JMJ+6Inv|3+!yGFEFM zE4mFF9;ZwB%6|5VeHo;1F8gP`tCsaIrQutub$Vh)WJ86$MoOHX1ee;Zt( z2^J~|V%>$4HzPCE{nU`|OnMWL1W8Ykk5bGh&7DjJY+}UX8ItP)IKLNFe3xdq53(j)v zIB(_5i79|N9c9!OfKMwfAdK=BV=Y&w0*EZd?H(+!P>%fxf%ar8t^}} zQZR!rwau6qrd4%M7mvp^0I1~v8;^C-J?zWR*U~YXz0bURCcJ+cL+r{$nt0O)$CBQ2 zCW}d4|8ycU9I44N;aU^2`T?6!;y-xks28d1ej3DMY$I)b>w_W4;gC%DMa$h#4r>UE zHr#J3=Oy{DIOCE=_mGA1*YyT44$x*d#bxw}+Zeu8hQ^+}axoTMl}Kz!VjU7W6nZYK z!?2fwm!gTgwudHLDrns#$~o_NcNkBAosrc;OSWD?rl_G)iJGxs?%@0qvkXo`w-9MG>eQWxqx@w1R#bI*LA_xR$H&8 z{r;vfqo}vh(Pu|mB%yz?WyBb*nlGkWbCjg``JG}6RT~o%tF}R-?w?pr4o6&-uz&~T zBg!-F6unxkYfRIt4PR^&D>>j!m1g``#~?Vk5q~F1Y+Y4_%22qY@-~WC-_h3$^(~-7 zH+GuxC5Xg4r&Izq+e=$mW7V?X@M+Nos{hf-|AzX;y9`1A;>&hit5*g8^6(J)N#HEZrxE^%m_=U2#^PeWf%i_&hWp_>u-aA8C|9%m3lKTtl*SS^I}7df-^^8jZX+~5ku zj=$))3?-g(Rt1J6<;Y(vcvS^uQ1Po-oDFy2(8>ieLZ#zgWS15=aueQ=8U8b;cF#9A zuXJ=~;95W7vYG<94CwBvVt9bJ2On^X*CkXkQ+X%4Dh{IN^nGMiGS%cY!JTFinwl?S zCtrs)J#)+`=ZECzp9dTq(%T}zDQ-9?@H+M1Ryd0aRFWm_N}Tv|4Ql#faa`DQd+u~g zjO`p&+vOx>3A$9GWWlN4y9`+|CC2fvn$=KuHy>(5_|_%OjEIRPelGK!IuXS=h8r5< zC$bA-b~OSZOH;UHUaQ1q9{6hodxt7q%%}viB5H}7Lr*H5S}xli-f$4^vAL#0n2gCB zshqPbh3<$j!2}xav}lkwQTiJPA!V3jbYRqC#l5>tzK&jKH9uOI^Ig;wzgm)Mmyp{2 z+IF>q7X{DUme1<2q`thvbj0bWZcKA?iH3@k>K*>v|XJqUZuKMBcn7bBc z`*;R?$kk#SA~rmqpMdXM?xc?2l$`%f zkrjy=e5+5ZmH&~1X=S_UamKo_Bn*SMnM~!hzLe<5H5i5)WxaSQ>zE3!w0@EXZ|?6J zIOu#S^{mBt%#wg+Mm#b$22|-Ey$qoi$p0yRP%-=z{Zy_yVYdQq=Co}4g3IG#3BztA z&1$wo%~SOxndHR)t5QT*8j57`HuTuBCF^ao;|+{xCYM`K>7}`@sxhYasEk_}Lz0zu z6}m$j0sF0LqFoY2HXYT{c4h|ray3D;-3ZLe&c2c48aInS*EHA1v+yE0S54uL#D31( zU3bT1%ud_d{Y|u;qH_&@``&2vG~0v7Pae@X#78lM8@VhWI$WS4&k&)tQQ;)bh>*)f z&N{sg2Fuxo@>_`;a=v>Q+GQ2b8<1Omrz#2|7I?Y;lQ+APnP$c;432t59XhVk{473& zbU7MkD{izX`HS7^tsKZm(XPSc>P_MqIf4SG*jxF;NI?7E-+(;3&l}-eQC~`vulrED z4a)^{Tvl*u6f>nwX~%QU34-x3-ouA{ZxT?{05QWhmN!P`A}g{U2dinU-f8X7fJHU` zK6~x{zN7W}n%y;``$+dFu;CT+147ww$EiOJLSf?{p@7kc{{Uc)|EP$tSzR3d#785~ z4y-V4C$WvR5$U3;v%YOg?`v~eb!-gt_(L6*cE|EV^>>p2)-RmVrbZtM$$e}m6hRk>SDLAt#U56a^{}$TJ?ZEZ zkVq=mqDREtj9$Pt!Tf!K-42XJk_GHe;5;%QXAG<0ZZk#r3yY*+Mt`Fh$SHQOl3OC_ z+OD4q{^kE~LN{^cGAsXo0CaX=1@c1+{tkZ*ex62dIA1bHmZ8$XSCE+5l1|5!&oomd zonidYv_`5P+azd2>X8L$SlaF$JGG21(q|@Z1_31M1b7wDiZmD_9nOOnLdlww72OS; z;yDf9!{n6*F>GVOnK_v$lwT5MlxVZVaF5nUgpd>nhTCDcK1Ev zPDejol{%SOq@vNiBGZ0-lRE5?Q1_(Wvg$hy4363I@`9qK$19wz;Ca86bQJJsZdG+J zO)FcOI<$X3UCz}Fk<*bT6zTZ_qgG#lt(l+3lw>5ErOaqb%aDFn3S~L8;WzirS`gn3 z{};+&#VcQuHX8%}z^}x6*k{0Q8q{$t9#^h+H`ajkCPi&DqAZc$p8Txh zNe-m79RSMA#NRP=#S53xuI<-j0ACE-;T&9z1PsT(bP7o6}<6B4so`A%K29bF9E^ug;02f+c7&3rh@PpLp+mp$M54}SaK zdi_(=H%X5KPLmySj>WTNKs0!Uj0>u)Hz1T>V8{HtNVdmZOAB#C=+sIRtVLXEqFPUB zafJuwIVmL4;Ll|}D1Ypo9=oAu9ne8j~G8y&_FUyd;fSp?zolEDG3M<8uWwJlA2PkLiO4e#341BaRWZJ8J9uP+I!Lx5;+p^Qi4H%+C zal|xbmnz}ilUwZV$m_+89)0dPFv~O^y*f=HJTiVkFp{^^aw*IDI-1M1l3-c9{0ez& z^$LO7^Pl9}9I(h*R@Nz&R@tfrWVf-k2^JNrNSsYQilX#XdJLe|njE`Dij)`?_57|x z11u~ktUHyDT?=tUB8@(UXfzpI6)HXu3_97bRMP2GHi@i&<9HmfJQlAJNG3=BTBfD% z;Fll%8vLX^&6k(&O_hFb=vmsK@_?mhXSh;>oPgVn(6_S2P5GA;GNZ2w$7(Qe;Q*G!9(@18v=1gEe?#S7xPJ?FwQ=(w+ zf*`+HWIR42M_ZQ*&J4Yb+GFVb8#ee-qm6UaY3)K$rO*w50$lB4c3=}kP!u7*z1XhZ zKA+q%&G5Pch}g!Y`CY`SZ84Qo$Op~Hw{vRTfaTyzYjr*CLzP~KDAu+dn-H|e^Wo4F zg6PJkU(1tE$6e-GQ_=*b*y^_e*ur0h-(*?}1nfRRHhdC3U`uhg7!`Y5hf>P6_>46jsT za_h6riNsl}%sJKYXL6Co3CaFbvAkUmcl&EA8Hnc48APuKU_D@Z>qo9?y0s$J^DbbD z@!cmb320^V+wwr;j)-}A`BsZ*Wrd9HfSB)ivcK=YQaOp9gx3CODKcN6TH$Tho3xa& z6VrwZmeq8Hq4E-|)#C-yWvwav3549kJIMcp%7EOR{E;S1AmdPeQR(L)w72S_x+iwP zWgJIbSrwUFs<#tb_6Rjoz3i^#y~IzX&6Ah3zF?9nhrkG@)f$=+gD5wWAXN38Z^IE! z*_>NOkF>Oq6$esG+Lbn<0$I10iJ@HS-^*d=ecmJkW!;#e3sn|JW`9|;nn(Hyc}_#r zA&c_xV++xp3y%k3YD=OaN6dtG;LVa;_xx^2h;46nxsuJ*H5yXaip%}A!xS-;1gtcC{s`lxS7U|Dx=Rn3k?6d>{s$} zEgOjfZ5WMOfbO207>hSzbQVw&jvk5>@m@VNVh;$Z+O1IZm}^_sx0!fks^B=qc`I@1 z$R!(y(s*MvpMUUdcQbalUlJEUI-?NVR@gBvx3$f+;)Xk+LzR?oYEDaT2OS)L2*o5r-D_Ti5pq4(iYUD>%OYOz2v1MPcgwnDqcCo5yoy z)B3UTIo!m`D>2@6yQ8I8LOz~jzH^?1<3Hy3!?(k@wy05ASvp9B*( z$Bb3~g}ubyv5itv!vn#z3Huq2{ITIS)@JS(BI~vJ6Viej7;mol5CZ-_59(>Cj)y59 ztTL+*#_2Besb1277sOeS8K-ZljS&}PK#P&AVS3+zeYRBhh0FTjjqisjAm6j8>Ww>5 zN{m9t-%0u;Q*NaDPex{Iu+N^A0IY;QF!%u8;N`96GcCU4dHQm>?@Jo|!KXGbwo1$$ z7j>EUnCeYK?sSEHbX2+a$zS?`)bK2uw^z&tnbEDXi8Q`Lt=+6tQ(rbC7-jFVB3t%e znrKiuFvPAzk1e+Pr<~#AlX7b7Q8Z&zG4Bp{G3$Z_*|^7D%vy0oy|3u7dAivJ-ib;- znO5~_ZIAMUAU|YS6>DP`JfB`}^{ww8l8XL{Z*6dCzc0RF+HNA9ACBIQ2|GoGEMYcD zjy&TqZPxl0M;iGt`!G<$DXXmJdvBTJ`2RSaw(%ZHlfObq=IGkCn>AhMdIv?5lhU## z+z;^min(#;s(OA&TR?K0P_+CvyeK|5TE_Tw%&cvmep#eUY6@<9Tt^sG4LcOxL^>7Yj9a^7)yQ39Nt4a+{al4?)(yc?XjD3WykBbcMaHMA z`Eo}nh8!QH277I_u1tqCg7(wjUX^4v%!?E#=k4qD_-k8OM0vmLu37NBu!HD*2)fT* zFgSCNj$)V!u(yYG(`|s{;Ttn;zgDU(HO*ZcRTwV0u4c*H)t?+WBA2o^GHFlB(BVQ8 z7Zh_X7rvxhG-`L!0}j@f!Ss(vyKM>+k)tc$OA=I0ax@Ls!rn9XGYj8MpcooxL%igv zSs*@DpYXxo;HRPMkH`dBEF>j6jFbo-WE3Ii*Bu*z>||-#8cPiyUzgqDfBwW1pt7<$zS|0p_-e z_Q%p_hK;Fs8}Hltnilr^q1YKg#V~JiX&jk3n<)b4B%=?$`1V1x9H#uD{6#ex=3r=9 z{`R|%#9U$>7OHXqmfknOcDw-j7=j{!A^rWF`;}qkFat!6=MbLi#$vHRYEs+CJvEMg zEX@h7J&X3qb5;V0q3OIdIX>kEvuxO!h5)*GQtyO-WLpPuL{LSGYF0GVrCrs zj1q~h7{v39+YCun8s{O6j{);v@|$-FBSdvk#Ggl7ykei{=N^s*??;t6K6Um6DDCwu6R)XHam3x-ToO~X$@WfI7xw4gA#L>(lDs&q*eIUy+ zjWyd57-Q6BQ(B9}zn^7nGe7sE)G^1wJB@g^a9fPz7OSB)z4K(2N!UOc9xzcNFphhK z;uC%O4!7tN1hSKT#eUM5Y+WFHgEsqPvpih;^;pF&A);&>O+D01oEkq^)j2tvJA&|& z<6z;wrYv6r7cjt>+7?16iG-smNgFd#l*stXo+*8euihW1Y7&X__jrWuYA^CimWnh*~=P6d5z1w8&+F~o4)Ztqr=&iiDv;BLpPeTze24()*pkmzoE42bFFK_ ze1Ev~GU}tY4Iv(ln}4aPI*nI1Z}z^IHwn|YAoAE1AjO#0_^HlzNcHTmB|RoC%|O>3 z4*yLip7N`W?vXC1G-_LwzQg25E6EOW$Ya5~P1szeenA;HwyOE_eHBT%zQ_&DnhGH> zuO?F0jMhIT*;$zu9bI*%#v$R7wv5cL%DhJf6NAmq5wE=o^Y{jq);xSjL7owo0<+`( z-2O)j&CkF3Nj5wK($B4rDFmR^d5%Plh(?te9n~`m^|T5i;o-)z*H{(V9%AP+j49#( zBvxh=KuBwl1SBfo0Ss(io0hB@j@G4ldLBvaj( z!q|dda9f-P)iYekPmnQZeIq_&>1Gw7qeO|=^dyYQ4H|}Dw899foWY{z^7k^+-?XS37i>&@@W$d; zqK^Wffi)>3yCq% zoZ{(8*}hmt@_t|t{eQTqSrlWw&HHmJd;PuO31X=Gg2kIXJB1KBT{@e!t~k~G#Y^jV!)ql9vd zbsdLUyZSwU8S>h*x1=D+yU8)0eD#=PI>!o~(rQ?i9&>_yAsyB#B(Xl%SOS5eG$YOZ z3jf~ft$%`33r0cTU^Pqz5~ZYGWo9NpbcGP8c>j!}93jKXUluvau4ui_#V=$2NYElOm{-M6j)V?E4D?D33X!;+77l#QSlI|@eQRz1R)yGbA z&Jz(WwwPB(&%AT_LRV2rgQfyWpqwwNp3N_NfPBvv!7W#NdE+~9)~r1?SF(;q%i$Zp`&;BtJzJmKH0 z0-wMWN;8N*tr;&zKR05TsEfoKP%z7b*+fO@B^n*NALj-Qo^UWHM!!{xr&EE3FkNl$AvpcOsBLbFc%3>_#e4 zJX@`75xXraAI~&?hq+kxS@ja4fF>Ua@gVh-PaVe>TBLE(LSOJe14mD6wRDZ6|CfXm{KYL4J{dqD6oHorUYtLsU+AlEP(FBW)eio zrbRXKo%WjVZvvq}y&ek@Z{lXM1SLij?;*Aj{s5}TSB%@Uz0xFFBW8_v?ZnrSjSf4r z-FVIfL3^2Ggyp#vIr5lxLU~cqAt-~+PxL}=Rvy60Go6c|jvxlbre)p8zENQwYUR#B zH;)sPmjW&Ll}^LW3Q{%->!;#xDCogT)uVAl4x-UnVB>D)}Xw$V;e+0ez_#%bi8pB!yY5ph21o zT4E`0l6j0g4L3Z|%#GnT^D5F@WW3g)UW)uxlwZ%lY<(ZK5RkzZs6IY6>>nFerRip5 z9WU9B40U##xmBC@y__wd*m@UXbK*S>`+eHA{sy`KzkJdc297sCIllV9h}foM-+1Jy z)GP*bzxOu|m!x(PLXeOM*xGg(@6)~(Hy(fUup4IwY`t>bXaG}rgoyY@dUBr`HbGdK z^sNiiyUnW(bAAr_J#i&344_s`zvBv zY;0L&&I6?ADr+6Cso6rns#P}#3I7Eiy^#Nmmoy?prMkl1N4i_x{*t_oq$hb_s72l}1q`Y=7Sds1KYm{d$Ft<%#sMsgk@A#Keu@JZHpp*yK!Lt5B)4Bz~iiZs?GpOrDh0Mk71F=;@%#}M_9 z^=SA*qDE~}bTb>%+CRo~qh^b|oc-JQVPaFgJ`{ab!@7vONJ~qZ;4Bz)y?Y_$5U3(9PoE;Ur49YO!@-ls9@_cU|Tnu&}B({jp_4l zW@S~r0J}GZh;O!xvQ}_P9@k^m9yD>s`|Bg4Mrh4B730s0rZ_t;9&l3`LCNJ4j~T}n zTf{pQJe^u@qA}m6>7tl4cgPKH#>?Pe^MwYHo%+uek7D60 zTOX7Gq|=1^ZJ+r6^{_ArMiRa}w{;21hz$=P3J z)G$W6!57E}B36+9!F%hln}{t03s2!-8=X6sP@$LLq>~mK()5}Z#x!RwGW&znIfqye zpqZh4*XnzhJvFv|hQBOlll2VI{9Q@L6uTf5^ezhT7k40=lMdZzWo@MV|u{Iwx^)rA+ZARyCeE> zq{>-2TkH~VQ>j?|rgYc~E46A-9&LCdT{e0H(UdVprOhznJo@|oH=_8S4Yf>rzcPNwhU zogy%fGha< z26y3xa<&^8%-Yf}JONK~<_BN#^H1^zntI(i6!Gkb5{;^VZkcphUuX>~q2*Fa&vJwl zK-34a#3Gduo;p9+vADvlEDh@Qe8O4{bqSf78;w)s;U2s-M~5-3Q?eh7acu$3?%aWh zTYKSO8FNyly&rP<2xd(k`)YD!@6_xI`-j!_fBmCx7)*ZB(;TNjHe`AK!{G@T*^XQ57)my=4DSE9$nFpn3=LH2G z8YO}F@03o4PXVtpQKsN+b*R0QXiFR=t4Xd^>89Yp|1d0 zlK&KJGJ21BZw6cH*N?Q;_$ntpJVP!p(6$WYBqx5J*XK|Xi$s_mlwtTwu~wn7WA*tqsC}*b~2JUtVA9jf;>hIHIY(y+`ds7TOzQb z3if7<0Yhh*%k9G$JvI?asVv3|PV5@NBOZzt3`$k3qJ^DC;gcyRL(<3{fPsM1dN}nF z@|DoReo<=)k(MkP$9Id4&I`80c5YSm z{90V@FyB9_{2ZL_n*K4S5Bnr{Gh=S+*cjkrdLdb^h~wcG5BPnw$=t8Pf z!cdN9SpZH>CqS4womXMEm%VS)^7B+AujlSVXea_}CkpM1Ixt?iGP*Xb&any>cX*#^ z2hubpq9C@%g)@N>f4E16pW`mTE<=fQiN)KY@;kd*@j_6<@9rSs@*|$9Y7g{^6f$uY z`rc~vuF)+k?4Hs7Xe}RXT$(|uAoKYr)1PG}m`2Sa@(8fZ(*a7c2)y;=2Luw?Qi&Dh z;YO(ZOw4<`i{&6*k>AN`f(xh2iwzxd_G)%ER|Mr{w$Dxcc1|OB_8q)b0_4Y@TxH@{ zeCC>x{y%aJ+nDXd+7soXaB!NYy-CBba@si(%}S z>qZ7^oOP4#L=jD*?K|@*C@$-iTW`2AlH&m&9}CRJ1sw%jY2MO9_2JZJxap?xX8R65 zzRGm(Be8!e2#AV6y4cvHylqkn@U0?)D!H#Z2+yc(1Od{L8b9$8W z$-{95CvI?iTyn?o-Vd$LshHo-B$umj*1>yzwAklcHweX{Mtnz}Fht4BRzg;AbXbBT zOa{Q(9R8i)ZiZzn8i>z~&&=u-_zxmxH#$9g8x&SuDM{Un%YqL>Va zhm@>iwtXko2LXYFGVdYUO@0O|2YYC}r^Kb9t^N*0nJdM~t|l8>T?6p%l7K<;>XU@K z-9NmkS(8{YiP)K3j2{VkYw!u6`TENLj$SdTufGWx=JJO*vyyT$A$Q#-UVC=0Hd(RoKlWWghGO{Q0TN%xW5q<#?lm7W*2ZCN$i3zi>ooX;A;k zQoN4L;AePJnpJ0Cclm~b++Ng7Ztg$-^H0Y^Tgv6f7s`#mv$VI*E-gH z7G>mF;KB+DNJyVdvUF?ih@@GSzdrbzRYeY{)ALRy+S=>)b*m3=??2T7gS9$bHN3n^ zIE9gFHJEl7>0=@8)Sh1xuBsdl>6YJ$d_#nxwPi{MduAI!I#gpURK&%#*Cd%YrJ^*B#i(QaZa8c(TPrgsU7j1+=y?FO?455Axzhxan-%3! zOt)DNOpu$@&BkzF(yrJm*L*L87wu~3TGZ5n$Pp}UJkPllXGAQa!Yq8~AKBIOv*n4l zuwvjWi1}@Omne09mMHgcx&n?j6j%dC9gX-%dBqGgYRB2ylYG#+(JY4PhMCR0()g|e zm@lUo&Ct|9QC_l#*Y?W`u4ZVqO%CN#DBW~*VH~w77(lniHOO?qU^s+*63rwptNxya z{i}tn1I^iz^a62e@dkpdFTdNttZagonfA1A5k!!Cbfxj{$JcL%%X_0>J3WplFTdOj z7A=K-DxG0&I;e?CmC?J6U%my($o{rkE>#CmvipmkM-jToCS&J?ogZu5KkLFyjI;Kr{a=HCpf*D%cLu5&auR3Pr@XUI9lSREGA_CKF9wgNCgH}2RO9>bp~ z%k`1ED{O3raT3pXTG?w;5nAL^Z1Ls@KeZ_lX>{JO>XRZPY3l~c$N@Yo$@^r8C}|t& z)M>~mQ?{&xV4=F$Q*>qoGVe4tDMmP|nw6Uhu}TU)Ih77_+t9p2B+5=B{g!Ay(%cO4 z%LdEFcRUs%A#|}3g9@XjFi%)jvp=9&RzDIvFsRVu?*x~v@!7>yVN z9_Dpg6#Z18T@RC%koy(N!s@_ou|peP?}%>8vVvPAQGSN(w{PPF4!w099ZpB#V!lMt z5=s0eCtc8uEgNUpx&CPiXSc#_iDge!^2Q&B!*n0Z%n#+_Df~3Bt!QWMO_@eYD=S|q zV&SqQM~uIEG(qJyAHs&&StEYC=+?mbm0g=sAl%GRL27 z8%Uqq_3^MJHVwtktG~5ncTJo_7u*pz;4MDO$LQD52g+w$j0Ro)bqwaMaA@@?MD8fD_KV3WT2Z(;I@nN##`x5^NIN~_p&gbb4?(QXVX zTy;>N(l^H@C&(|HFSJ-Fzg_kTi0rsId{51p$AsMS1~5K*5`0)>UNwIV1(-8*75NaN z83}Nf3c%#IvFhC^t7j<{XXT)?D~w=^vET(R=P3B2eLPmcLYG-wI|A$^tjY1oA?V=k z=_q`AI+m^y^OYm)1|25p9Hvt9vAXYCEd<@62Qc|A0C&g?q?Y5A5muHHO8DM?j40? zhx-zXAEhz$RA3ukEY{GLYt`Qql*IM}I|rJ#aq zVF=ZI^Jzu~tyD&HiS* zmT^%=UHkShFmwz#Gy_Nv-60I!!jMCEcS$HX)X*W)BGQa>m!QOeNJw`hpr9Z~h$#4S zKlk(e-{1axecRVsd!OfC$C>jrPYQ?rugY4?fN>|yy`Ep@9sv)5ni(J`kTo@krUric ziznKWHFZtoyk!ar6I(D?*6Xkj8vQ;-X($$Djs&W?rf!T>B&4H_#zXc*=Bb5I%uB0T z$+6EA?D7(*>NhBqN__EibN5RY1YSgGoVN)&`3mNAIyIGc z=U@P?Z+U5s&UL6oYAsPT372CWlb0xo?wx31j{Hp0wZVbdhHadl=}1#Q52-^KA2qwt z4@62DNJ~U!!gHW01kaaTccO$*e$l$_8C=sum&D|W^(d6q+hyJHAbKE@z-xksmkVq> zY|GNC&M+#M5|B1QPplkb8pWw#%E|lIz@lIrJv+PYI6Xj18>Wh#Qni;J)^Qq^FOVfN zJxh4I)oZ)u<-`B;cR`j2T@QIrcp|Q$#!w<;UK5dE>S{sRFPjtN&1l|p&dT5G_#uC2 zT!KcRMD)Pw{av{hk!fM7DJRPFdLns+^E5(wMO05?;Vi67x2q zxa^!!;1OA+yj5@jS?mIYkN5JLiJNTb`+fJ-fBLR*dWTj6V%XUAVMGZ)R}uaHg0->BkS7^{xY z?!pI@@_CAiC580fIo7OJS8zwG>^o~G`?!L94?b}iwyzMLkMKKix%;FL^E21O_3P~#`0HUvZ5Dxv3hn4F}Zne{^oCY)K|~u zsYa{jb&yn}bj=O}QuzH+}X@)i}De2d5KB$KYaJ9D%2vql# zsXrzUOUxE`?K5&kdW$#_F{di@AEy7|a<2b*^6vDJ6N|Y3?RxWjPdKAkxiBFRUviSS zV}V@T?jN8BQ1&fLtS6Rn!CdP_Zi$7S9AYXlZw!U?AAXT`>y8qF zo@l@+W(RtojK7d^pm<$M&WBjjeR<(RoNvSY*4nw9ABVQl$T%uG^lz4kH^tm`8xPfL@#c(E!`}dgF1$)BCo8}q|fnmm#!{jb^N?_2*;Mnf6{4qE- z`v~>ZHv?((zdko_K>JHy`aB6{p5*NZUuP1zrN5$9z?;j;-n;&1GqmnPc! zm4FRXitMvCHzs{7l?GmwTgsmk(LX-eh%~ zgFnt6M>S6+W{rWkZCSUK^5HWdf`iyL&IhRN{VU2Bjx0CrbzMm`KPV$8*3pbwj5qm} zcm&cHxwIE8rrFP)5l`EVj+T(You3iSHb}L7vx;98x=E$h89#KZy^7R{<-H)GsbXf(bxf@t&9V1py7^|oec1BgR&_KBtH_rgd&}@@4l;a&Sf0xz$43NFs(2E5U zb4;f6Jjph%1C=b+7?qK*m{;^6D}>z~$3jhH$!tll|CBBC*00=SZiqf0B8=T4Obr@q}8oc84*~^_e>w_IZILjcAJ**Sxfyishd^KaXYl$BQHI) zZ+R8?x$9uZC&7J)C%;#L>{}A%y=DO-#60@I`3$G3Fl3$0rJxDc&|vr4e%i9_2Q}9x z@t%wHh|HD^iU<0~gygz7)@r^_YrSd8FkIDkB#ze1sJCp`=|^kB{EfCvfJaLQrjQ@J zOT*#>J7#Wzo5W|3y82B!g}RSUS_if@AAhTKIlY*DCL-1UN%}4mp=_dKqTZj(sCeR{ z{Gq6AxWLyG{&6)KpI)rV0!q5Wop?f~)VHVd>2rZkmzG&gvnDquj5J!^%wwI5i`vO#snD%i7nwt ze*nV#?x(u1VD)5vKY(~9w$NeqII)jkb_#r0w}lWH$A>KA!I*8Ikz#k_u;du}@vR^q z;v(RAx?e^n?2-}q#M^wDsKLc8EoaneR52?%m)2Rw%C$COQ zY|Ji7r12FNXQP2BG}s3=b)Phk=fC#+poNsFde!XteLc^kcRm!~L-%p}+-2U*F`7hF z75hfdTO3ILBQDfhW%y;;R^ZsXfFF+!JRZVp`V>awGvDc8jp_8GMFT5|N`o3i$(xN{ zYV8XZu*c`5ue`IjZ)@`?Eg;Q#y)V>0ig9@e!TGQY27a4T(#|E89L3st<^3?En|nc@ zY9aQw%%Y6|Ut_8Q>$HZq0H)ew9;p9$mPN7d{3XyE#S z3`XX0rt584Me;{g_XQgrdthyji!%vcJN`cat_!j{-N|y}A@)c=x(7wn772}FU*h2j z%FNiB=fixW;+76Mx1R8&1+seLu`nw^^z7>0WOah-m6eksy)%MdEsMivn|Qxtru3fj&%VCp>}~O8exiLnfRu*lp;IS0MrggIiyr7Z zHA#Azv&=sT;E0!~`NZXnc*yuOayEgef>lRitCWeQKC3FYFM$&7-T2UaqLgf0z;If~ z!Nc>=&s#n4d2GDF`uJeMclhTBFzD)%1bFC9Q1(mQ2*y27XI+t|jPk@EG>%unwA5pq zRB0ae3R1PmiZYUe6U)$ooo7sm?UUVUhelmomOt0k?$hy(q#nB5zFvn8yIt-61&gNR zx5p25az8(4*v6S_kKEbIB*RnHUB1!X9NPQJ(eevB;U$QlIee{tjF*Oq19d{yX+B&s z+!-BE=3j0#E|Qh_Jjv*NSD`O1v{!tYEnsv}1){1pD)jL}r^=6zYM35-$oQ~_qOJ9<3Hj9*H)UralL7Pk$;CnhmF9O)7k|^E0%Ah-A zu;>_Lwh&{eFPTa;qW{wlp=B5yO#Lp`3@?FiPK1yXS4?-h?-$4n$4Wc1D63-~M*$T) z<|;vw-6fg?k1H_-w4vg4>J~fBLE|>9CTAgu%%ricG zuL-(KyD&q&uOFL=>u^uL;uP_?*>Uk#e{7gU&|VHFeVStUSUdG>?v+0w4MA5l{S|7J6^G5 z_B4vU$BzK7hGnV2kdLlSiifKDvB`dXh~d4&R9b&qN>?oYYzN1y5ZN<$M77tE!i)aW zN*K0w%Ii-4BnY_C`G|n7ElqD@h>!kp1Dh5+3Ff|jvn=cR$IVsUx3yl6-Y!2rd2fSo zMeAV*kST{p^vaZr=X9a)IItQlVC)wb!%=c`*7r~v@7=P6WP zsaJ|^@pQm+Zp!|sMXQ-7B?U7}(p^!L0e%_fQ5oVqdgN)dbSrxUS>%$*Db0uM#gO*{ z_(KJ2h#bp#9m%#*i>NyI!@O4$ic6B0Y=7dXn0Lq~7p$~g4$u*0=dcFN)00GdC=B60 zG#tm;@B;j3X(LJ18EMmw1k^|U##8gGbx*=8XWl<>3fG4q^P(&!#Ip11FVHE$bZzK; z?{h8lup`{B8F*!FM$sX@6NXuv6i5Jq4VUDAVR_Q?0UMJ$9qK-fUZ?j`HV;wGY;_gG zaY!D?{k4!xVf3Y&pxZ^X%Gpm6xkB|5a}hG~k~O6x4=01dLUjaR*O<6%q)VC2XI&0} zxOrkP@pa-fU_XTF6lOTGBb2UYoPJP+k9jvOxPVS!Uzu-NdCL`6y9gNbEh*!o2qrT{ z%@}^^)_O2UA*?vt+f=ihms8DPf9c`8!?w%aH#qeG&;xm;_nJod{)xyx0Ma-Y3ir3H zDcc<9?5I1ERkmUEHHj~6hX^qUj1g&*7UJX_5zg~<<}0YVrhJVJBkA^sGsU=1@d^zx z+lfST$5Y)kCPvgWVVz30r3IbzMQFQxDm>*e7+`k?PE+qGrifT5BNKfXtJ+WL1FAj@ zb6wZc4J}aV-x>|NNF7+D<5*a_q$+88IQs{N)XbL<6&uFV8X+N6xl9bQYM?dXRJgru zFquj&XQjLFpIj6OueW$ZZJcNAcLLlRdS}nvt+JAbd;|{XGR>&G9rW_iTDcP9^l5jJ zkulqxEk5;{$jz2WFRG3-q6nY`SyDo+PR^NLkSxvOLUfT&83;c zS8`VqchqC`0`d=h(~@9wSgk>Z6kpqj=_r+tf3UA)rhN@FL>RQ+3&!l0;0XV28D z>%4QR0kpXyXVkJ`}n zYt(eRmcbz>AVq|Jgp&>=RX296_(F zu@u<>kA(BTet#t4gsa$GKvw~zHHX@xAI~^;?!L-XP4aobT|#3N9xvYYSUv*Y_5I9o zjzUkj8B_H^@C)amn92#!ry9P}bBh9>T)M1yk-+xV58}*wtHf!7Uopyhk@o;1k3Nmu zALGB&EM=SB0|z~}ms2ACaAqc$qKH(yY z&Kr2`$L92xIv7H7^FQuv3Z6*RxkQS>CCg*GbNoBQiTrx{5Sf?U=ehwowTi9W}ztoaj z;NR#yMVv6?ch&=EV`BLPMjNS_U#PvhrMu@Hqad*-&QF(a{JsH8{R;2)zwV7|Jlt8I zY;dCWog*fA09tayVdo!&#PynsRy0dVyM}!~V0b$TCTz47aVHw zSOTyt3D>c@^WvD+e&zZ^hcEQ$oS>ud?YzCKzl`u}t;t3@`9^`lePgB;`yvDJREy?;N4EH6O|+pcg4qzC z)p>=qF}D{quaix168!fzwlWOQsk?|T5?g%C@eGd3gPt3j_}94nvBP$>e1ETb&frcR z`QN;BeXJq#uC4OKyxHYXF?CAF44@dXfYqMlB!Ly9t~7#+1biyvO`|KOX{L z-gCL|+$&W>CwzUuMj&zBo(yGnPe5{sZYNeF#5fU`HRYm!U$GlIqB1HW&`YrBSo)s3 zgbMZ6fykl#A*xz19qNJW(;V2%!L1%MDU9&0u;ix=9&X8|NnWf>X`}i&-ep)Cc0-=m zW!x-omR#g^%(U(wIoC=mdqw2#Br&hB@I=p4iVUm*g}#$bhHsBT5ea!L_k`V(tGlcY z8NSpcm?6wJ#>?VBIg_>nd(sXoq5Z|6XO4q>A2Y*L)r>O&xh5LOc8c$)5bAvPJNo~? z6f1dgOsd(D%f_NYc%h+vR10hQazs)yA?qw!4TIuqG9%VHqRb6YRyDAPz8LELkAlED zn+ZA!N=sT+!%LmahLqb0s3wRrjLbqY^|>fNO8B+K;KoABEoZj8Y3v!TcB+5m8Gi{v zS@Kt!|C`>jF2{wyYs)eIeRb)Z6P)Lu2B#&&1++SWqon?qMD>i|c3wyNFMN2SO1305 zy;eijUDFZj>KPcyD0s`Q$M*$ET-B4$oTo;uTIfpW`wHL<$uDc<7?PNDqKaLll{2JW z%FpinY_D6cJ@HYw4%xmnieY^ghwPn!aOMMhdA7(7$Zy%Cm!ERqy(lv);k!3gi;Qul z12!qC3yojo^Vr+s730LkUos9FD!AE(4wP2((K%dyk>TsL&IB_Tos&%#2CS`4SXNiQPM_Z-^Nya?%bTcSw5TFQ5-wLVsm)`lGXEp57T4b0@}bcYet2zbnJ{nCtGdr4PN5bRcO0T0 z+qw67a037CFUADm>RNXz(d?3F7ibtin^*QkPmhAH-DP!KZ45a4t`q)up6|f^w(QUA zak8iM&<$8X2l>H>%j-Zf2+eRlWdi&NPg?d2uwSzJvt zHwELU%MkQ7K}>{G8eF&?Yx<=NYBCsNOy1H@z%eAzPRFq^9~h$zMW-(s z+jRAkc)01f(Fq?6V<-LYr}`2G3=VtPv8`9%$jzj?EfSknL;qq2`F4(#5_OR|y^FFZ zRqEUwIAcF%!R_XNsWZ}kRNv3O@f#b`_P^u8F``b@3#>cl*)DMljdue>0!pilvVgbg z17ss-0=h!jN$BP+nL&lFw6f@fhERy?@BDcCqKhLFHjM?cMR}bweh%4*uIICVO-9+; zWhg|78qA$C

zBhdv)!Uhg-3m1+{A-tbRP@N` zRaL2XYMTugWse?})KFFnK@>g^M%&T=LeT~qbAJ!Cf9})$|5iNGhu9Ns?`mt@Tx`nF zl-9c1d0mQkhSs$McM(!Rg|T=tDltYMcl#?e%-flknTyyfrp#gtwO>TCutfMCiX^n` zk-(!DH40@M^CuAUanxyWI0Xz<8R630T1|3)1Kq9~kpNd#)-m)(h+Ws@(YXxC`|>WI z{yy7&u+JV7@ml`Ey~%xwqw%Y|dRoWX)=*Uk1@WOoY$v81SkNpB2({hByOSI(Bz1jQ zJ<4T-5(RhpB?H}qRXV_+0EjaQ+li}6&{bt2=pS=6F&H&exXOO{O^n~AmVo!aw8@S~ zw|9(4o(AEDE@H5ew@EJthE|U_ZslHv9HC*4aB1*ML)GBcUJ|GnA`~M)srUKKrqn8I zV%VF}P{74x@uSD(?MoE9J$FPv6CkYi)5@t94_uu=vKmhYI9o?eUiz{G$(KsTUc-<8 z*!GgMG78C$?Ej^Iyp%dKO5o}T^`2bwx4?YloYoy*B-r+ex4(zylzFmAKrw^5t*q#5 zmxoD>g`{(`^G!n0xxlaC(`BiX!&0fRh<2PamH@16Y%eWo(_tjx@q&h`7Epd~rVkMC!%W@?Y`)f6%>M!LS5 zno7Y2ghDiDjpWRz$~3&Pf(Jv!=8Ai_eilkid(Xs?E&%e;F+(H{eWvv-?zs7TK+1oW z7J(=xdPZg?UPZlCl8S;`x%KbDO%(nho$1>L^~2*Mr5v@fAgA1Q7Jd_WX?ZI5=|0dA zqvKYYBFTtBi44y@imar*6ILX5OpeECqUGuEPB@N^A9u+IIzu`eD3YfZ!E~1(x8Uq? zj>g?)N=kjp13dd~=@;Ztl#l_99$lxL=;Fc44(*`NT9kd_Ua)`s*DSCoc9;SjRLs84 z+x~|gE0P%HG7=w9BRm5~?<`>snmn*>-RG-mL@G(PEg;=iiTdF#r73p|s+_E%)D@m^!VsUmK}UW%oYy9esn7cReq)}DhLRCg+sSH8Yg)@=F-aue z30CX2=#rJz6ZCk{z40A-~c1k}phN)hq=Pqy|PARTN zsPgANv*8EJ4sueO|b(Cd%MQsb1zC?_|~%(YG!>%i}HT6F5Tg7aj zK*U6kumT40e>oo&DxD{mBMDJZ3UQ9`U&wfV&hEV0ktOe*;WIan;2`}JOdGn1+%OBE zDftAgwr0=;D9@0^&)#)l=!bwsiQIm&fI#(Pd14&5HhFUbVx_r@h}`|c`!T1ZTem^x zRlFJ3*XXc)7(2Y+r0B^uKn@5c=P#3rj8MHFgPn7SZyEEX;#AZFTuxNuS1(x{j(u?Z zFsMy7GdZs;m*i?V6+c^p7N;9E&ER$vWyg%Cnq4$ny-WZ{Z z7&#&ShUXO=EcTk{TlNR^q_ohUVm?Jp=l8N8xR4uPucz2mX{!pwm_mF zyI1V~3TPr#i62UEUQ3zQ@+ehY4lV*s&C1A)F@vR?Fi{VanrIn7x|M1HjMm^%XY za8a0gI)$#mI>bCw6WXVQ9=K|P)-cFkl4`vks4yOojNEdlTBt5Gu0DJU5g&DrG_=W%Eqf1hR;9LM+l?p1 zy!ks3kU;NtNw0j(hb8Rx0|y-Y-b{@*m@*WZm0IZ0&7VN%M)c|$O;V!dues-M4s9@* zVB^23o2R)}CBRldB%)3+2~U9U4x-4vN+IQw+#bM{_A4e>v0NE%8;3Ey1!DO>d-cqB z4wR=zEy0F_{ULL-#w}M(3dYf4rV9k|O&Y^-RKk=w=wWt=RPBGRSzj7Fq0}27x5a;n zoD03cl%|l@Dy+^Ni(nQ{nyDWqB8Jt(i^?(g!_V6U$5fZWrOZKt`+8x89)uhh(?Y+V zr4o$zz7gY{weG32;jC0m{Boxb+`c~`^uxE8J>OM&q*yAO=4gsuVJ_64w|yEAscLES z4>jIE1GiQs`*%Zpj&cNP!=ve!I0(cYlVLUU)>%4tP!Btv|24`N8Zz2_ynofTAl=DxGr?Y-n|1@vzmlrttEoxF=> zax-4?O^!W7Frpk6f7@#lK#?!hoUiWqz^z0Kk4>wHmJj8OsAQ;umlc2@XCWv_(0;4Y zQ`t``R9i!)UD-;ld)u8p)TVpZ68U2~x}p2fx4oF^vv)+m_D!plK&u=TTKFmV>q<9U zl9W1a5S;jlZ-t(HcHat{XYOC->BmU?ifk=slhPOPZMow%fh?PkwQ_UjWDl|pAhigm zWK#ww`ZUp@Wj?JnE2|u#@~DJ@?~&fExq$9t8Ea)O;=B!wB;Q!-_23?~f{{`=PKJN* zQqv|DHSZ z=-oNd`xM#qQC5_;K63(>p`sl3xgZ}KZJ^5V(W?Em(soDkm`S-I!dAHQ5xE(UmCeW<+d*nPo17aCe4Y$zr6Z{$(L1jX=gLTVMkV(F*JKH{21;@=YJLqRy)wu|Cx zFV#6!X)Q+kw=qxfnN4$`i)=Z~1N@w%TfU}{ir)*p=}{v5SUGrg3tAO?egSCzsP%oiTs-5HD&-lE`#P(KA} zv|hZ+z`ATgBY_9POC-NQm?FZvmJkzLBB1a@zsSX}&~SHU(w&)Fn-P*IJEGh(YR zW0M9{EYta7G*{P;cMe%)@QC0$>Y7o~HJsx`DNNjD1Qv9a9?n%AT?kC$oH}*3#!DsN zBgjnWgvX1imGSl&%z-`5Uazk1Kk9m^IJI0VNyX`90Mrm~LnTmZ;J44o;Q5B@pQr2g7mb-Qk z!?!4ADQEIs;4)M7?cwlHmD^rnskPZ6gh0(%k1Ub%vo|K=><2BCUXVrt9JBEnZ1nXw zQ+BHcvoHwKjK+2ae;LZQ-a}(%2RYebl{ZWul|Lk?v{t;7yp^=&by-%#zAdkBL}0`Y zkNX!Y=88QIQCiY)40ej{GL@CCRsm3CR@<8!6HiixVl@7#pVcY&ZT|t-K@n6IadoC-s46X$n9F73RF9 zyG|%6=_=fB$Z4MM<+Dgxg4!u*N@4?@s?>`bnL5Aw2-s^*ayyQ|;63?ixBU6C^V>3~ zpZvyeUM#i8;x0TX2zOecI4@17in_OXGixdmqTTETkL#xObZkl3pH+QDkt8n8OJTGt zR;IwMX_Vc&L0yiu+KSiGQe=s=131*qwa(Dj8fo;iep{#usf8G$A0I(1uv9epwX=!d z1oi!>r-k%20R?2>0t>euQx`hSWkm`IKIGiqoKigocU0PQV}wr>#~gaAraO7k7ZAni zbPPs&u{~p`=omb?^)vx8uA$jCC5V#A{SX5n<$7heunZinKG&Z1m23~B;VlrV z1K$cXDglctP)DyP&i#xTF$iZ-HonAn3LV~S(~%VH!Z2bRz<#0WA?&kRtRKlk$zrS} z`RvvUTZ_1dUz=J8%-Tdu%AHTtEiBCvZmoT0%XuxHviJI;jbLL79-4gonJ=?LpqTQ6 zcNNcalpd~<+h3DA)4C~lhC+uST9f8&xk`ts@_H}8WKi2?^5HX`KD@=98{mGRebO#x z4Z<}52{oreKGqvPNR#IK=bVtJttItkj0Txgb9=w!o}q72!nd{OwA#)DZ@lRUbr~3c zS1DA?kMStfNu!5=eW|$(2NX{pW>qqsT{WLAmiEXd62kR|{yv;uvGfk;0sUonrp%^k zO!b~RH?*~a+QffX_>QW@TuF>LG4$?=Lbeh=CI6&4SbyhbypOV1pCJxofNYo8+7ODY z+zr)yRSZF&5$$)N3#JV@@??tID}Jk$gd}Tr8&IS(HriQSCcuh9L z3Yb9s1x&B>VuJe8Ct-~2-MveUYrnRQfZz0sFdF6mQJsE%k#AeP5+_t&wRmgieD|^< zT4Gz-w)fup+xsoMv~hi6`(Myoj=&;sq~>DUq~lhg8v7AKG452EMm89y&&tgNa!bvu zQI6oiToBJUD?bTGo*?P{66%wrZJ$i7;OTpWUwIK6fj;t4f-_D4SJk9UVH zJCo>-Y~T!3-RI?xbi?<4H>y3}AYI(Hkk!d#&RmKP6q7%7%Y8dj+S%HCcVD;ssoo!4 zbOB_%*CL;L^;r+Xiq$FhqKkz2vdhRPcLI#^k+JA{b~0v9Nll+2927T6Irj5*K?{E1k)R^WQuVhr4%B|Hlsz&vIn~4C^hOr0rnuuY{ z>Q>`UG>Rfo-i`@+x2OF8#~Q`JReX5#ci!*!FofOpLU)~O|IH6yJ70BRN2<2eCOEx` zDcV-UTI!>YdV5|9GVwK@4AsZ7x;SREM?HJIdQuv(8uk%!wi$l)y=}M3nAMZN5EF0hdYmSY{`{vz zwC*U98S)hp_LBwSYM~c6rKbUEyGK&$dtgdi(XQc{J|1vI)6*pEN$J_ei54@mCF_+!Gqvp#zU-1R|#K%NhxEO4w$B2BS z2|K&S1+!mfW;ceJ=VmgE$5*l5xSKPqBSP+{^}^Wi5+59#%{2CSF~72yPI=xu@k_-P zR}2cmp=6Y{q7YZKvGE<9(hH|BH1pbtEe-3TBH_lLv{wiY+&P#gCO_d2n5W+A~?f3Les$6C^%4 z9M_t!`hla9hQ9n%Ot&(j$pG&DH-@@z%qQ3RuFzZf<=cM?ATmXe%wwa|5>o3I(xK>f zK2xB?=s&2^o(y*7d2#?%etnnkxQH;{FS3sueDumej6yHunXfsl87X3~Wfu4A zb9>4j_x9&HbF-ZL0vNIN<0aeA`(15PYGo5#NjVCPDc0qr!Xsh>oM`8DWhV|w`K8erH!H^~mbhL{n!CQ$ zCa7dwMav>t<*}D3kb&U0g57TS17Ml!uY*?#ANp5~|Zx z-$=8g2l6rKJati6z#j?FH>#j->O9FEkijvjZxzBZ$B+)&M(^qGlq(N&4-i1aC5hu= zX%5{s{rgV|%}kahGP)@Nlh?YWsET8-J6>&_%=^x{mJ;c(9^Kbbprsn*pi~v{IQwlQ z&YURcC@Aqsq{{5pE4)uCON4yM8KU3>+xoA|s06yp`8WrgdNX0k65Okw*;cthZm519 zr2%Ref&n1?Bu?64Og&KI?wpffQj0fD)BsCEU+Sxls!8Q+K)^~0SqBBlTFW)3ZOb=} z*j{p>?oRQ6k}S)U5?q)2cB@ZNyW5R+M`G70<${pOIMzru=Zbh@G}TF%y9G&+l5|iK zHl;Vd=d)Z9Wf=KLR^+bph-G(aV^|_r_S)nJyA@4~L9V;uyQ;FXE>RYnAJ9pmy^9K zQxB5T4Y}KsW%itqs zu9^$;0pDZk!#@{!QW3n)L^a)^P91XBvtQSe zm5N^Sf6Vr-%<|8&9>8F48)To@CVN|gplEysYT15hd~u(D~7=ZCu_;Uu%ZY+&jY4MOGN z#}8#)9RIOr1`_AT9VEz0lHTE3Jv^kOtlri34Nq!)gIyy;dit+B z`F~%4R)UZj6wndcJ=BeCUmz$A;_PGLRnl!<8F}U|M%n(`mW`p>8IiyGN|cL};*`Vu zyT+h_zWSlu%d-eB4ZP^qPQ&Z??yZBA5mCG7sTyJDc6;l%oKEG0O^PvUQ-{9*XQbuL%#QI{x$#`@I} zuzm`uHSqJ8)5qJApWB$!M(r?GI6@{{IM2&uakw=$ak67Thoo0i!^|s@2yQ~xSO&v1E@WfVx4=0ATlI`Vi6D5LMtr|G!vc) z|8*cf`*dFNjOC59iiO!QdI> zogc*@h~21Wt=!BJF_SI5aRZZC)!kN`4GT@YXyY;}snv*U8M!hbpdNK%#`gS`SFR*O zKL{c4a{-ssA_r?G#jgs88GsEXqV70$$&_x!sIC`ZyPfSl$=KTNp983}t&AUJkp_p@ zF^qGp6aMDK-wrzRdhy$P(88XrU7)NpX?xP0Dy3pPDvGx6evaYlzWT_c+fq>ZK#=uU zgwNQ!@E?TSLaXlx%l$B5orAz2?ih(p68mH%^UuxDrNR_mKSb8afq;qzF3XtLUGNf- z44Nr21N4Q4YK{6P+0Ci!&8@JO$x3F7t?-(r5*gbMcd?8{N77->&Ix<6y#2R&%m`{sw9Q-hodUcLhS<8ox9qEciTF zfUzQf11-I=DqFG;Gl(5>?2pRB&JKD)tDG}icaBdr{++`(dIuqCT9)#;AV|S}cUPjq z0@?I*{Da5Vgp5(;{g0Bu3UluDZWRt4Omp*GuMZ==C`A$k$%;F?zK~7M-Hhl03FWs| zE|@(H1>iIY-so-XE7l&aB54QMsEGIQMH z(mfs}Rk`NbW?qwM;%4H{Qn3@Mb$oY&Aj<7^I7W6jF#0IXM%T2sP@kgcSqIBM>=NVl z7@qw&M>$|g43gW%Y(*Zg-z@TmxNYa2_hR)fTIH;Omg%96nOqr~QzF5^r2^IWohry3 z0_TilE`ntbZk2@T*a=$?<$j*(t+F>YlXL}va-y>>)+r}hX%ZSc=5H(|{kqOiv=LnJ zz};-ho{0Gc+zAmhA?CtVjrLZVmo^Z(FL>3^0pN0*_RsKEP1?YCu#YRewHHyYxrH>} zA;APq6U*S1#jkRPl!i>2+3-f#F2fJ_lGt%TDkdr)j+7qvSZrmw)&T;1BSI#0Aw-Cc z|AfSYJs9s~b+RIxP?B;VC_lGXXyK|fjX^Qk&k1U8PnUiUsp70O7RXx{Rc*3jYs9`H zEKM+7(@D%JM0&f|)|-k9XKP79wfmH!=^eLM-A9XFi!D=~T?Vml!6>I2JE#<3&|}+| z`V8bXU5k(yTu1G$tCe;_rHDLnwZQj49SHgFJ?KekUY6*#we@}rW#o(RL31}x%1 z^wq|g1uk1Bdnb>q=r85fr@m_W*pCn5@<&M|ZzHfvdh4^COW4##b$8kVSf-mT@5Ll( zil@7JIyS)_-+AkadxrGrjGXTtkiLpZER$w^TR0{20v@jET4ctJ<}oST$|zMWkzh#< z`S2+&e+tm1bTo@qKO4!octnNK|BI#jGGNYhk(m-58mL@gx-fbYn4?f12`y@jt#bMd zxmxlc4jsZ>s}kQ(w4=Bdb#FipdTewO);pL&<9&S5++^xVYY& zeGonH1_HZ}NB|ID^Amgrn!ORiSkMIt>jIkXc=uQzMRLXl29Ft4g~~M5o|02745LJ> zl;|{wmO9r5qjubUBEa5VZ)QHMQf$q5cWhp^Yw2ZWXipveAg|~yBK;y(Acq+v2r7+EUx_Gkr;W%Zf5|<+f0&aho87IefFFnS$e*C({&(P*@dg3n_M- zQ*#YYx!L#%1FV{mx-il-O}yI2(EOf`+q&uKp1G2QR`=coc`dhJFW;OlscE>|W54V< zgaG$(7=Iu2@sU(Ig@3S5K4Qqwx#TynV3+s*arGTwO>AAelS*hIp@trMkrJw*C@J(J zp{Rf;p-2-I5D`!zApt@!f&vyoQ&d!%iiny(=%|3$P>~`?5d}d7M9$4Q=llM9|NCU8 zJhNx7z4w}VGBazh_kDqAAiK>E?vqnVwnlGHzpn}}YPU5-nKC}1r+ zV~)G*gM>4@?bd$_-eDQ}*%h8*YEz6z5^7*PB1GNw?!*M9(kL~dH$Os{ z>wvF_`+pt;v}aGNY?ro7FmI?vws+(B8EAh2LZY^Ruqe>=plA5p(DZW3KqBpntZ~uE zl$Ox(;Wcq&FeBVsUzi5ji7Sf{pd`YbS%;7ZBR17yvu*7vSmIq8GD!SwG)q z7RBTdQUs3)sIB9E2KD48)&_`g_LP;3S9Ni0G`}>Bhl&J#PiQb%~)b;8y z#Lmp5q#ByRJrBT6IRqBeM*bL+r%$9J3LsnD`Ux}Jo;!gkxQovyEKVAf$Ppv;?=N;1 zJWAjQZ4i>$Xbd=uUN!1^#Me;bYy(&MYkR&=SJ&CE`%`r$vR)OO7g16~a^S!++EDFQk=lpmWwKnIUH&&G{-m3=U(dpE))sx?j^URGf(Kx|zkkAl5Xj=Nb%0uLb1_wvx*}nkl$kxP6 z+pCn4f6-JPgKInf$aYX0O_7>9FeAT|)YC6V2aY0xtOyd_P8lBLmP7&=8$PHrTj3@nHiHJsMDIdD(QG z-8rkaEE41)?Rb{B)f*RzGRb5r7{m#KR~a#Rf;igw&izl&eVh4?tyh-ZgFK2S4muy4 zO#vYfjpn4QdytOCAWa|^i%7K~}E3jnf z&=TTYs=RlKNyk4SEssIzUjdtVCh3Jq0%PH|V@vOO>>z#$e74H7D^1lD+Vl~6aQ}n# z9MPkjD4cAR11H0AKR@=oc4gMA!c~B1pSv!Bn~-$fMJW>$^?3uQ&5Q}{Wy6;AzONO| zEUx_<$_R6h*tKS}!3qmDBe<{xWMxn<#e)HcyG~rOXx8g?6Lmeq)3&yjcSGg(e?8-n z!k)4|)(QW^MijFrVSWT#uF0b-44z7?U(KuOgP}qruP-atUB30gy>fu>p*hH3z$I}2 zWaW8d2cn@D==&yAuWMC_tK|y#!c0C3o*+J}Td~1cjiG+zoiB)D?ioS}nJ#Rq0XZ$1 zOGf3kuUqk!c_@X{hbw}LB$nLq^)Jux0qP$wFyPlq_HYA*&l~>ZVqH;JkFqes*(Jt+vU&FUE+Js1jaNF9Z*ZBX-)}0m`)ZARz4G>jy7JZp=2tUMmm?4Nu|~W&ksWSHGpF0# z>4sAooj#su#22isb>UvH=9PjEZziom)!cnrl?v5-=%;|W>5S_;986mu^MW*wvOX+W zlwS+nd5i2|Ve|$0{ms%(ME&|l)Q`V_XX9)|>dIwqaK8|Gqfki6^dp==NgY00X;>Eg zr#zMZ{;7Yi@2*N4y_up75(tsmf9-!z$C_e)L<K3$Vez4&mSr2c|Zad!2#|oRe$$Vq?VI`@glHbUq7Fdt4wX zO@1Y6CsOqc6RWxQoxwQ?mA1F-ka>9MamqwnDP45Z2{$C*!gY0Ji*#^Oe@krjTEqD< zzKV6{fvtBWHH$;uSO(UMmHgH6;)Fi)QAsFG<$C!CLcnjpN6pd}JT`>0asp(?yS{Y` z|D*3<8ASd1dOO-Xe7Ia?T#*4b?WMeoAA~fGnf|J#DnIxbAh$xNj-u}&Ks|bgoonOc zlXhl*8dvJ zB6|1cqqg6d{z>ZQFRt8+Y`bA&P00pa`Wkc2_E(_ZUd8;?<}{3-W;UL@JxsER4UhwV?h^6%|_ z%bmCLap<2f+Dj97)J8GVHY&5PkSk4iSGQ~;Q9&OH++LjLe`jrJi_PXpWc2vh$ zdJAXbtST0~v4&1>4qy3AkXQZY2%~oOzQb&ZhDJJv#lBp;(ziZegb{=q2lUXMTum`f z0jI!Ip1RNeGuvs`iW`8K)J0a_yh$y0aWD6hZ>Vm0<%C{+A7wUL7oGu+PHNWb+J9`G zp0~zM0Qs|I)2AwjLLzE&OdhTgev~~Pa(?Ro&BHwSWGkij%Ks$Fxg%RibPFzLT zo7^FQsLJ9KtMJLoIn-43wD6Ae?U+PVgK7TK5ua>0LTLP-N`8HsUaeIKM{dF|+v(5^ zdDC<&i%7DX0QjazH!HR8wnb`Dl3Fm<`;m~bEnOgZLddXReV?^ydxxpo)ip~ZH%nzi z$;gtgsVtzoKg~|k!%p%LY$(G7E4)Eiwx$X$8k~4zqljRR z5qa+FL=;W%pp2(r$G`UYkXQN6LpVKvapO~F*fSOC=r7tH`mOc`uHsbozfL%ftuI8* zl%Bczxz!$MFM^4BiW928H#vr!zX5+ELe0K4$H{Blnv1Z~*bDQ((-ygBjdDadNp)3o zg=^Pmvpe@-kE2r+h<6TF3iTOfN)fIKiq{rvM+j-mbuky8iGk3H>-+5wYRmN$OP+$E zFZ>X5+Gj2FuAO+v^y52>+BqnSQzme;1D{@Jl~cT==x`B@*}}#d)SGQ%9Ly*QxuisU z$tks&$nN)?YRVmoueu1KfzTxHem&2kfDoVrdEp4Pl!E{PU4%h_LGs7x{(BykC(0KT zrA7Ruq>bb7UMIJ9p_CvZ^lQ)Pb2f^irJXx)>ybt;#zVElR}5BdChXsnRH?>B$5c8& z)$W?+GP3R>7bQ`~*r*=*SXS?tn4m(}yrg&&PCdLx)i)MHCYrmjJPyDR8pDaiR}MRJ zB2TXopD3{3MJ?&hR6j*?HEh&#k|^94=3! zyh%(}yOQ|1d^QcXFlEp63xy5vfrlcg0GQXUmEMwJWek)F?`juW9Z=8uQ9KcT_o{Um zzqLVW?O_Yo4X$ne9?TXQ3r4{}f=N01ap^e4^>jQyU76Gn@l*&_q&JfyQ2Vs3?P|su zTlT&)=Y2y9D1bDm0Cg`R-AUt0oQLDWoCM=3C+HUX!5MeHW!29bK#n*>C0hwHEF>cM z5w-h}v1}G|Z>TVFlZ715(8p>{6}rX<gF2kj~-rzK16( zkE34U34wvK;Jj4S`USp63OIX$@ak8VNVMB4f4i$FoR@=4fK2wqDs~rwTiwaxUZTHA zwYu`^XF9&rq*G)VR}!_|egz5CK&B*zR4MOR(Lt$vS|!&Z(7vxS z2Av=PB;NxTVL^_NPh|YyZ9d`se!?RF3p<3vg?9wZg}vO?`rk#B9Pnf@FW3(c3LSI5 zx#j+F>+jG1uhb7+u8~FD_S|*te>c_|-d62Xn_Cg2{%&tAQ4UleSxaAd{M-3t-u`)- z#KY~fA1RstmR~8X7}Bm=4_!7_MaA4c|9@s)ZfkVTZIIG3PaVv>(Gb@%1uh9VSZfo; zCm>KjZ(@fW02n`mN2}ES907%~c)Xr!BeqCOahOL5in$v;M4O z_}hwzCUK5StXxd~za#l~Je_BMrcE5TNlL%9>*DxuhV1Y8-LF@6-}zs~`qwvBA|mi) zMT^3*Z<`Z7=fxhY=$yT~IqC8G7Y}UsUW%oMYV&>$H zCztS74ezvx>u>%ASo~j8e0HuMDXiot>#Tcb$(I5wzkRkRL2n-3rFhP$u<)KK{QudwoX|_j#?1a)wDI^b2rM7&MLYd8Muuw zmcLob*m8ZI_Svtc^K(ONI#MMeFRxi4j_M!o!#tKBZVWC04)zK>tz2o6CWuJr_i-(8Wl(N5^CiTjV7u0wZ3%)|ekYn)T`M=foE-4?77+cE^ zE52iB=*@P={!)>TePAVk>N>2TR_ZA9vU<|4OX_LLFrvcKzJk#C^0EwaiHTz3r1d(P znnG{I9qt#ya-Of89bOV1N+(+oxw&>c4s^jykQsiOq=x5d8PLWB%AdB0bnv0PL1aDB z<)2qrfwKGHu2%*2$kNC=Q6oIY=#qkOK@@is-uay#(g{kxQZQo%VGMlqu?2=KJDRa( z>57|(L(K;V;TA6mU*MI-JAZHjyayqFoMm}aOnCoRw?N05K5?ay^(xv(9tjeb;PI=J*brat zW^zpM{KFqau3~Nf=@Zbsxf89k(LYLeQTWfPULuACJ8XqS3uoJuW)1eL?z5gy>-S3) zYcahexJnabSvjG0gLmY@qOP^vexYs#@m#!YeJ24GcTHVLvkoIEkbIaQ#*Ixb__U4` zwc;Sntn;ldT%uEz46u1veeB?c;z)Y|_W3Vb$(l(hJs{(T_#1RVN3ZFbWv~b_rijnw z1Vp0YMW%_^nh$3fW2%iLD0~FkQRF%Jw)PXRp}aSCNomCMJGqU~Bod~Ts!-NLRB@21 z_=EA*z~2v#_S>^ss&tC$a(5svx@eafp$U4=s`TXzSzFL|?Ft@JfwL^6Hl?aMRT)vG zQVe=VJr|KPJZgHaDqc0meJY}Sum}KRhHFDh|La z+qBV*r2Ss&CVh-!vrgGs@8A^mjHjQ=Sg+J$@x!?;8UYAd|Q#%=p0RZad zK`eI9`Ha#;h#fb0M33s@4Y(I;-e6f3WJsV2zthbXLfnyCdXO-{70 zcQxYQj0o^W_gHVJMm@4v&h^JJ2pLi0(eHVn*ssO@`neP8q4=)$g6JGFXx^7z^#(xq zy+DD}mn;sDE2tlyiEU+!K66H73kI#6VQsK?l-XgzsWZSErTKG?%xwbbDPp!am^t;k zA9H3`uqlGrjXIS8<9t6dA6-5XCt$gRVB_qIl9k5jU|QmEY@7MS&ZNRSdGHp3LP=?@ z9qvA?I{S2iXRLm7ah&!J?sXlsHi>umy)1PnX-47rd!qQK#*#s&zP70 zgSwO@cNQ5(4jTF*YQU;3Jr*bN^SA9O-Zfff(4^#~5kZWGQj><%qh0fcO)?HUN{%1; zskoqPypC6aX3`7clm7I5(Ye}(GDFr0&DM*;NNTv)D}k0+!4P|A5?%DXqHK8$-Exdd zy8IG(*;YCg;Bo6FP|1-}Y#6p)IO)*H`^W)yqhilRkUtnxSqHKoBowfL_dt*tcE42t z)Mk_uEm)8UmDYGYO4~y`2e!xhib5!)AFm9wBZM_x^zEaq!i#_G8A6-tEY zJzI0!CzPw04;^&`t8l+yIhAcuEpE$3VdcPI5u%a^5NI0LDmjtGK6REtbVT*9v_2V{ z0=-I=yF;*z%!a#eLA*hccAo%#OiSsrY=$AcGlv2`K>?{{O0!-pvhe?XZU~P&GgU9JQSAQ3wHEZO20>7*2fr~>^Yy_ zNqN)@#SWbI6 zMOscx=B2vO2<7lUt+yZoa^iK?vZTT__(ETi%P&FD#}5D0xN?6`W|pd{rm{f|K3WY2 zgJt_Tt%{UW{K18$6OEdPI_nOl0tA=f)g*bkvr1RTPhtfkM3X15G|FGrfVxV_2V;bz zoKst(oj=ismGf?i&417*Y|!^==axp3f~VlinSS_h;=|)=QxZHZ+=V2-+gWzxBhE&f zZk7(s=T&MYd=#ZSzIz6qwG`I4$V1WVce4zidIQjl9Q7j-Ong9#aMHjT*9T0`ITsPC zWbI>B=BwcYrOKPMwDXotU}@V2}13;j@AscUif{#}JBuSOv*D*_bcn zT*mS|;w{1un*U*`0Nqj9Ztwe`V9H00<^PBZq2gnmQ3s^YkM1{~)0CA>T0{MI#*avr zm)?_09I$q!7h4ndJr9SY@3IoFUn>?FEJRmhsAh1qzcG94I9Wn_~*qXV6 zE>{n*5q?KL;}GK}^0qxkD zPge#bG$P6G=AZsHQg#Onlsxak3QfG@ZmF!McRG4(^?_}=RBC`INhRBUKasd)S-xOo zi=)7xU|mpwe__BImu!~fKL);s*vt&9uWnmE$=Cl2*yBRONEguvV!Aaclf5a=|DMlA ziW2$2ixQ}^j+W{$S$ybyk`B5uC4%28zxq?k41fG#i~L;N8-zE7V*$LvSZR*CEut(N zis|NyPY17mk61s%G**RGr6_U9-_V4Ka_V)8am!F?pg}7#_ z(ArH7C4PSd-`oEgJHLxU^3RaX($_~O1-5kfdv{$}{re#8_I;K&0$05~LUq}jwT&o) zHZfeJjg>5`3o?#$!BcuKDhGv`|3vGmi4w$ikMAC1@GxMcmCJF z^O=9Qw{IUxQ8pNUOBI{{e>WM5ZEdOlN!;I6!R=1ssVc*V;mbk|&-@S_2lvMOTpA1`Wn9m=;1uj)|JfHl$^0%pW%|Cw+_|Ojb0kd80|JY5d z=;RM?c_ny~)Bc#hhu8?APNl>CL2kd269{+2T+=QW%fBzB%^Y~AZ?Zw<6B$+v3_P~p z-j}k2-%ZE!nLzBJR|l@W14(bc-KyVK@;^FJ37mCcO(AGB$=;;TLgn!l9RtbMEvVch z5*6+?X@8Fv%xqo}}-%b3v`q*vqKe#KihMlZG{Ca*T!hhHHB)2QC#(vC( zAd}zz1?UCE5Mw#?4O+&-G8FVxR5M!bu~Et${q=^&X)`%#b3r!$X~uWp_vZCPzE6}; z$@PB$`5lxLB^XNz@MA~r-cfG21-7`8_O}Fv5c_120Nm2Qnor6~Dgr|uQj|62cBk^? zIJ&8GrxUkrl^}fic=t7(p5Yz^&HvEX|4m{~15dxY+QCVm&=NcQzOacPPdISq&TQaB zGU(;tn#ucrmsTEq*i{4>WeL!GhJHksicym2(OsiTc_yNjB8~Pc@ZQM+L0=h`Obcd5 zrCSKt*N3h?BFXMqf1D@Fmt}1Sox{h03oX48pAMnID|}4m;b$kF*UJuAXjy+|T5bo% zi#e^8_04D7&GfI9EpD6Kd$)Ann8Rq%0G$zzlxyKVE&m#765=-%&|uQg>8U1BGJgsQ z`D1cn)#9`D%oeBjH~svfK<<_P|A^+ksI+AVeF{^@Wj;r&5$b=3UHTF>BJ!JCK`{Ap zg5M~`w_&X~MP4or zBd2!%s!{EHB`ubc{G`rtfxn{bb*%f_4?$^fz@zg~nn$3jAm`}zhFkR66fg7B+m!+@ zHZR#!jH-$)jvcu0IwCpXAbU3$C+#Ikqf<{vjLGwaz%ljOWNFyNpG=;R;$MKr8|5bp z5Ol={c3>(NwEMoyo!R69o4NwxW`uIi?|BUC@o$p;oyX^hMI_CYKW+zMFZ(h8k(nQR z+`Z3iR)5;;S_{eu@wemo+s3p0R>^glL%0wGgwn%6#C|PGwHf+}S5fR9r#^{cJ7O3hmI&CxE)%&)CU(M7Fz0`E}c79r@6B8 zADsblb;pvoe&Z0qui-9eS(dq>>YONhC+5fjf8IV(+wsJ6P4N;<{4Os~ie9af1Y3NK z`SsA+NA}0>Yfbi(LP5vSc|_!Fq)ekx)}ip-R6D-THq_($(9y#kVoQQHV~Q%P_S#JN z_x4JiV}}b&#AV5uO&{3A#+t~=XdS3ZG}7m0{zE;WsmeaH*;pHv+>3?`9k?&d>zmNb zG$s{}!;mv~=hn)S1UwW}0o@T9TLW)k$$%Gs;FY1UowR)A7z)F1)=Q9Gvv9SBs7v+? zBQm^MwyG$82Av6%AFv!Bwv$wWSNdD9=Vf>MG$O4eGn=MD(DwNWK2x}^0ldoj#`PNj z7#_rtI#Td-8V5885{Nu_ui0>dMA>glV@EiVPNbk%yD2LQ z3OBl@S=t9Dc1~y@-a!ARc*GvAg(C7a{sIc!9H+OPqmEtW1c{Mp1%k3U4O9{A&L8Cu z=S|ib$Kv$!JxmqlaykO{NUT7Ao%=w5w6Z9-4kvP44rHd}FEa{IUX+I~+Lb}5Ug~%8 zWm7ti`dyCa4}G%V{)`zaD?2G5gVff|L2#|cb0^P=A8$P>Ha9n?jHtBgnZ5FMo$+Nm zkQT+nxCFGuW~hrm9dAeg3`%Bb8{q8t)O(FtPFb-tit=}MdKPIWjw-L~ydWekrbF8u zZEx91i^g-(FAUoZT4U4U?Dk4Ut&kmn8ctdS;%UNiJ3+>%v7-r^o*s{v*&xy040}|s zWL8=lFXxa>IhYz!V9miA)5dXNioF$$6c^7H4i;N5%b-&ha`amP-`P}+x6D)(#UrMO z^C{q?XSA? z(z{^L_sQ4^tuE$(L%qo{)f_Z8<9n){X*y&S+&g!-_+FA32p*M|8g3|&d}KZ7q+O@> zw{*mnq;oUiax>dxDpx*(>dqTlo?GcL9^hYz&S@IelSB5*=G+dAfoYtdcC?@hLe<={ zB?P(7n;%MS&MomK>Q9Cm}@(a$$=0-4X7<)fW8w>g5?5RlkV;`-^ z;)ETo{DM&+rs@}0TGIv(hTf_5qIeldNXxW#(hKZ69G9vzR%?vEyS~GYf)1c+2sO2z zE3-$*O{0w@iE#Qev*l^ypLKbK=L96Y!U>wIs9n`bsJl(7+WLprFM=J_PUz~vaQhys z3O(1c1!B23qPz6eKi(fS8!=zv?QKVk%@P&lq)XCRM1+=XvgEs!l zvX^;?w~H!Xs!uQG8)xPj-9aILmZZPwZlF8(=50myeYlCL5zWx(0BpkT@6W)&l3^c^ z!or`CSm9I}e9lxV=U0x@VrrboUAph%p&fP|Qb&Z3`;7kag#Z)Y4naep9aT5tA3ZEP zl3TTX5M|DoQ!y!2L^PXxoq3zYVLA)2SD6yDW~*Bor7_DoM?TqKO=XNr5UqGan-Y{G z4DC3dDg}Q&{aC1&nhiuqBc#*}U}4&CeiQzvQzOon)0xAVnhs8zOQs8~SC;R6K>q@o zoP1RrAb`mrO^J(n$LWNDkmOIG$Zn5U)U&6+rN>UPnDwn07%k->*)l>Hs`$Wgulxyw z$AzhfG#gVt?xVZ`-iP``ZO*>l2=HD>(P-OSRN9+`f?M$Y=#iX|ZhlU%(dUt}VFI?n zSt$;2((`!;p<*{Uep$gD%g#AupJW;eMs1PSyknUzIZUJ)2*~>&;Fu3f=~bsANKN;$ zjKYc9&Y3{jHFCqi=hiHSfZT1Uu}A&&b*~quLMx3Mihu0vU?YWWNlE@kI&cV?;VXf2JWW^K{jh-)is|9iujSxf zO0**|-RGa|LpXM?f~Cv$*bMBtZA2i5t0>GvvMUBNW>vf}OGOq$V`M`oKud5Ll~%K+gASJ{ z%@VV>-}&(Pfg&UV1XNRnMj3aY;P^Ute=cX zTNm-4^YooEm%L_c6)uQBqWRwHUY4fQNEZ>zNYByI%3*?U9zl8)xx!Q%{wzvMH%V+K z@8d%MCiIHfH!M$T`~vg8hLk3m<7ru-bD6H$TRU6nb7*U>Pa0pm zTIPxx+NkrPh#tX^;z;U`fH)(BvvEj;D-?LB4Q(vYe)2&nEl1#fLdG)GsV6~FX9i`` zC-gR?T&fCRhIul0mjyQWh!TL=rW6+H7YbtE63nF()k2)Z-ybM717+em)-Kf7ma4D{ z#t*qp|1Q-?fhWn9ni6>^gka+GKq5liJC~#*BL;(0Wm#s-_ksNu zD74GRHrH^8jhsp1$Zgdw1ZV+TC8E8b0x4A}ipx;NptJ>J8eL-BbDGb{gtnYt;`rvzIiU8K|FJ{1+Qm9zuV0!ni?p z4M{F!)q|{AFDyInIjyCJDnaJN$SWUi9R?p3Iu;;$KH8p-x#cV(s*jKg@k3? z<(S5$<=dA!%UHzEp{Xom5#;oO0mh z(fzIEPB4w`!CBPWwKh`;k!tKrD_M0*2$-xZ4FV>sD%S{T^Ke(Y!*!SDs!l09eK(QQ zSQ{RwQuGaMLWbvM%IMP~_w%oZLGcp*B|Ft#1kEUP0UPM+WXHQ79od7gRkWvz4NpO@ zs9-Bx?Qd$HP>Q*m_sRL?md3Nv<6mYW!IFEvMeO<9&Yo{6%PBt5gut|_aP2D2>~cIm z91~+C_esZ)X-J4?^xa()Y6Iib<7qv(P1{T6@7MZBlT--os=ceF3{R?7fq}gLIca?E z=FAnHcHi?d5!G{!KWTkT>Z8KOA;J05bx&B7Gc9L&#rSVAu;vvL2agxpxTdQGJ&A4Y zZp5?V&c1e}feYJI|CR^S(EjP0$x$5~TUp5--c@^#q0tCg;57GYx~2t18t?E-flSh% zNu)7<=uAR)9$O7by)phlo!!+UN7SPIyzYmm7Imxcilh*GP3(`OM`DKx?mRV9-0^_>Y9d2I zZ0CCEC2LKnoxP(fg;M9l1Yuoa;>Dtg%y;zyt;H(mz;n80j%N1wdzHGbgZvfxoW9;_ z%tViEj;?1@yy3Nt2v=ce{YK0P;UCYP2C?(ZG^VMbNYlZ~n!J^tc zn}4_m`Kn`ijZENn>5|+FmEc*%nMHhiFU>5B-B+L!>jnBl{ot%~*G8%Zwid zo6t0Ye%|q){NkyQ z)EegtFZ2hdL4r~5@n%kKp`*UgbgZkf+pJQMs2Y?=X&7OP`hgMZ6AdTTh(q6IAa>29 zf-$ILsWIXxqR`nF=b>L<6!ZOy^~q##>}?TOJx>LCOyS#f%S4ieCbhj&f-+s(a&ps1AoKOA zpy1sO%hOfhgKEcZ6rJ_a9?8ojbZ^>~A@8%TFF7^pA#dc!-Yur`C-XEexs)*WNZX^U zq=!D}PtTT`w?F|9xRW(ocWw!y5I8Z>9{UO!&k!es>?p}7Ga$T)pQ0#E zEMxe1={W7dP~EHrRlOr4vZ#ymK)M9td7Jc8m^H@WdFgrLY1g0HPkTYBeT<~)1c+Ef zj+`iNyVykWSvXX-i21e%U;Rj>lY(&13|TY?R6Aq)ZXA?6G~*GHXCQ$ykU^*u3Oowi z4UVPyTpc34lrh|evIdztWbBZnwpXhaJ*XV~`KRk#i^(X$V@OfDDgjsE_{mvul0i9m zjeuGY06~s1GS{sBBiE-uq;#tYfKAg>=!91d3I3?})E)%EZ3CC>>rqIphM*LQ50XNV zsxQ~+=Q)j6oEbt{+TCLD4SHTUDe2P=cA-cob>kaG?+NYqL~Yr+?AM-tJa~9wv>c$> z$lIB^J9>VyqmG37U6A;Dy1(Esj0E&$+8XwKK~l+_z89Eng5VsrH* zX-xP@*}%5*1H0hix2Xb7PYyi|?5?u2eVfXmRfz_6ponfk7>%!P`&tq#D$30Nb6gj3 zZq$X{1u^^hnlmUbzG7F6uwyB)hKBfjgCD07y0qc0Z!CCh8GmU%*h$R|Epl*|Gax^! z%5B|eD}B!T&0O2s9yQTWRLMP89G zlfeT%eon^@(j&-Mh1!TG>uqa;e*j^hm|>&;(U@||aEvr``_r%Q`Y>8LF(*Dv`j~#R zTi|V~RI9wxU=rr+xZlJfVd7X-O|*n)K8~ZC<2akNyMxMgs>vPb6w1KD=%x4{_)0j8T6XIt zKRf$6y=J$3X-6#m{vXtEl$+k&=P2mV^Po^A;UawAxV$DKGZb8K5ye&s5p^M_KCMCr zG7|JItCdB+rSa(&ypop-fBxaQ>Q^sHO}v+ylnXQ+tE{;e4Kp$BL6r~46+0vfps>O7 z+R1I%c&mRgr}ekWfa?0($O z-WZu7TR=s$r8=YJ$Lfi?Df*dv{j$7PzdW=jC78Vh_usvXOebDWO^e4v(R*?FX zeBA>k^G(!siRMH*AQ$bJJgG}!n+1|d*hF-rxX z8x+WXt2E~&*AZGR2n*Kl28UOv88^X&rAr;E$?!;w>R0g`;p2~fUGUOLBT%PY= zfj50Q)-vk9t=4_1w}XTAYfetL2L~7M5facKtY}BsIRIjW3)&9~rHZ&o;i14%h*aygHebDcvW$;;tb z44NX0rwfOsH+YcMuZVO)9h0fKdZwwLY9?g$*DkQyaX4Y;RfzQDY1cCwwJ{lYGD9j( zx1A2zWejb}i+Qzz3^SrT;$bdbh(#krc5P<|>;h@SpZp^* z`fMQ5lO|(%0wNM8q>fH>K$#aOJv&`;J`gMxK|Un@N@eh{=(9v;@2JDLk!gPpN=-si zFs(|kfUaos#oVx$=13WC*Y%%yNDd-H)k$|h5r#UxaK1CnYs)fugJ9XIQmt?@{F=|a z;f2(Oskt{p<4uxhlTPbgPW;F^x;%<=E_?$~B#umB(mjN^75AJw9iC z`r1kGaS$;!JPm5#BC)Gzf6~P9e2^ORw*K!nTr~Bk0j@hx8eHZSl^>=Ggdb14d*&yD z@;LCkhgKhQr$};dV-}J<(QHB}Pa3e7FAJ>aO_*=`n{RAHO;x(Evu-)iz%fHy+licq zsKd_krp4WQ4wInN%4kawgTzl*6@W42EAY(u#7mR03`rH=yH-6X7KJ~2L%_eEV$ss~ z0x0l)Re}P%jXZ~}6ahpbxherW*|x7(@cTDEX*5O)?%)JAB+u+(T)Rx7=2pHpDvDq= zO>lH&F0DXSJEfVYsq$PgL2nEJ{cwR3R2%Bw#VcZ33Tri z3-&Fid&5>t{sPo8&)p|OzBYFTn?;}QMqPMH6|0JV>W47cf`ep@({DaUM#^Ogg+nrb zKA7L|FhTnk8%SpI1`yKBArb3aX#E zOCmRmh`MqpiyT^$LR+Vq6G@TmE2h07iKNf)@E)v!y6oz+R)r%LLb{fo<5~dR`}zX- zn!SkjPp}najGBj4hKHG4Z{TYOY$}h&gM*`#Gi&;ggL z6c-yKu_HrU)7*JgL|w#Ed~|gDY=tA>75X z+?_I|cQ}D^$DuC@TyB`3^Bk4uEs4B8`Lq)1M))}<5ux1}c)|Qs_StpB#V6XRj;Uc( z826yr_3H&9t8z7Kx78L9G06$$OMsUa=akQb2x)=OBfOWKCfu~lhwsI_{VNk6AYQ-uByyUUQG<7{ zrANt~N-w?49c0T43yA-O4kGd7a|zW5c!Z2%PEx1c$rD5H~g4C7!>Z2}$p_<*xJfwTjxLF4rR)vw1 zJp%n1J!&&)d`vH*B=Y_WlO2hW0J(y7W^tm3F(Ym5A1_(zdNOcrZQ<($J`6CALlG1Z z@}ib;)aR0-RP?Lv2zv~{l^DB}W{^SG&<`JqmGRM<|6XVq!;mv2nI4Mw^tLA!nvo!& zSZK>WT_v+f+_)Jpg^=k&QSc(!q_3%r57hT+~|*j{osOU2r5Tiwf>vs6{;?3{mj1rMRU3+<;t*L z?xD+7)3J&hWt&(Jn(=$M7l=tf>wO-1USr&!LC$v&+f5@ruGEeSuhBU$Eg__@H~D+8 zpztR{y0atm@-b+yo$C7md56j*XVblLyvq~kKRGuwwItPay$G?EEP1>n8I?w?lND#I z3CQRz;ucp#Z8v{&!>+F7Ei)c6>n@cA`lQdMf*%voLSEoLF&rFQ1rqYSu}zyey(u$+ z7gc2Y!&&($w$ipmAdF}4#Z@UxL>(B;hSxa7ar=l7(^df3FBkGLXru24?A13`IZO1Hf% zCs+nTOr%eM(GTKpSQpI*wt%|TJSume+YdcO6sxNcA3Z9Onu9xv@L=%OEz#q_7}-2;DP5Z`IO z(DXN+YrZ|SuSUWwpQnkaTE!By-8|%jan2=AL779r@snSQ-J)-tgsDj=R8R_7dG^Nz^s^Bd}d(l~8cI&RA=^Qn00`)=>&{rq6)2pWQ z{}HF)6R^n$>^U!_7sA_<1r%}IHo>(NBD4dsS}*NGkClff;icuL#DF0lsLiaS7I*No zwpN=;;Z(bAw1UPCHOi2i<7#PO5>Pn~+{6Ni5bDCuUA0=u z-B09Sf5U%zy!AnNh+GIy)bui0MJzgo+XiIqRd-c#RmtmHoP{SahG25JxBcCXY$i-i z`?IdkE4%`5{S7!7z#XnlE)^i!m0HX0aO`jxp?dq)T@{uBs}^evKH2SM(y5rq)OqN0 z$-Bu%O@0{)cB{gEKlEq#$}7dd&5Kw64^!s?&*c06|9b~B3>(8RY;y=X%=wVR4$g;+ zPLyhnAr&2*D(!@k^QkFmj?s})(Qz0_$}ve2il_(`iS*y+d;0w!@5k=l+r4|&`M$5~ zy5HC9DX&k5EjP;krlF&yU;M6?v|$wLv8CI$AN2?co}gC6!fM#BBqgNma}O0(CLCWu zjn6e&{#aoj|M+8QGkAf1Rwcihb7oXqVoVneT{P<-+U zJqgWho~;wy;+ojGiX*g64yb$#vYTX0?`drUQD*$@oP90$QH}-vUDw0p%ekoh>glxv z6Wp)ZBr6a!ImY+2*Uga251tNwwcFZ-ftzX+fqTIvb|l|b+KhZecXXm_Zjzw>YqrC! zhyKLcAB>N%k=-QIG?UTT3JlPJg5m5_JImpLyIlTO>aU-S_f#G&DIKGcnn`wn4B(k!&kIRidn4>#xf)|3SwP(mRxX_PaI zf@R)=lKlVr4N*RR5!bAxe$(pg$l9u?W%=>)Fv<1#QFW%xdh3Uc79P}5A84ae>Y3ta zH}7=WBy^wr1S?7}S8^J+gQ>vV@2gUbzQX)c$c0;dJD5jII_Mc@KG*7GZM(A3a&L26 zK;wamig~jW^Q8uY;_-e+t5YaEBRcnNq)YpQURtq(A@Vf*z`qL5B^8U2mr{AM8j}mv zAMsWfYQ;G^%3XU*Zi=IXQ5b%3kg2zSp%lbTllb{ zO4Fc$rlqRz@g{0UYHN5{b#KZhH+|)nQ9QuKi`?Kjr$(f2=HS-PbmP`2k>1D-nVblz zW}?}Dh!8l|_#E-kH=(E7_O2~lc-qzDe*M#qB^7oApXRffBU;G_jAF}~l4^FiYc94; zLH$sYhr~}1#Qy*iHAtEcbbFgx>!M~0(!y7-hy-BL%wy=#Hg35=AbjmZZ53c~6%DFLU`CaYea3vbuFF>k)cKK)+${th+-opOR?7k^4g8=C57m`E8gt|ybLUmSdaJbI*FO~#0*_?K&^~KC?83?ToH*)g%{!v3l z!JM)FKvMlw=`!t(n5?yxw|yB#sfs{~KF=PcjC-hRn*NqN_bxk#axOHHv^0@OM;#ph zCe|)qWlHk0bf+tj^SH;hM$*jj1Xk0yPee$;bbQ9=&LX#vT+Ttc&na@yq`M+YQ&-UI zNpS~)E(CToH+`t6*>&r0&;b3m*zBTa4h?YE6soD* zDFhvHYjJCr;KM?uup9B|000JSdn=#M{CST#?Z=9D;~Wj0TXG^tYj#_BdQl!t=$C&a zcf+?LFMjg)D!IGW*i%8NONDYsgUmB{VI4CaIU=|0efmD)A7InJ1q&{EVBiRy@uF)w zyJ6TpO|?!Z3@VV9KkpYBC+P!GmB16YEb)k-FuTCL^RYG~=0m1eJd;KsRL)~4M{7Z2 zlG6J1;fdQPq#3uQTaO6m@1>+zW^v?-ixp8PUoeZ^V?u$1B3(H(+Ud?ldg7#ji$qJX zgkR*w@p3+gc{8_J<<4877FcDq_(xBN=OzU`*WcM+SRBBZb8IgnD!)kWlX3C|!-~DT za!R<0V|Pc}<{_bgYH+rjw&}jv0v`kkV_sNgPlstc+|;M9W<{a%Ef? z#DZp*W3+bZgglWxvX-S7v(ZP%Kc~vklw|d*O{(Cp@S=68G(VF@Mq7kVLqfSTi8+3; zW8d;BOYOku6p@i74;dk-V?D5<+%2x*)S*%DcTBH|2ID~Z#(@BK6TSx;|m z69?7Q69GK*a3&UXVv9Zf020S)M+0ZiVgTQmfDod=dCc&^5BSNvdq{!FH?C-M zzWly?t}WM7u1_Pni@h+Z>&Ahp!gRY4&?X*yO|Xv3uTFcG-km+tK`}YkcuVHxG*CAb zrG_^Oa#PE!HGEzZ4>CrN8$&i)kCirQGMqOzoh=cM$PFEVtCAbFTiC()T2$>trZ4Vg zeS*X65lfxuZLF(Fxy90l5W~c+S{_IFWU4|0wz>WMYt^#*rbsTGG$lbr0T9@>SLP1T ztt>GdD_0CDl)t7*3_j?s8=HS+b7-~xXv3KAaxt^7JH|<1!MV%N;dI5quVa^QgT=2i zK*)%>1ZjDp^_}NaVpERD^D{va-SS&8D40zNXbbNAroqBgX)OFJZLR!dCDGwlbtTTi z45T)}naY*yMEUM~j7#voDwak6Hm@b#$JHft#3^!9{G>>PDFMGA?Dvab4vqV_2;#>T zg^5e%%rxV$!lH6XKIX7Xg=Gy!Vs%k2H{;esyUR>Wy8iWBN(8TLC&$efcj%3?OJ6`y zBC!l`>QSyoq9>7%nj>Q_I3LMd%0u;q z@?83<`jn@QiLZ3EHAHbii6{0`$LG6& zdE@!xt2#&I#r%h)*I^2%QV7j$la6kvT`l(FL^MhI87nMvY0J|Y4$(hFMs4@F$*4kd zxWgV@)rr=F;hjuvPXmqCymLBwldS(aY~p%4oeWB=VTc0J18g{6MloJ^*|?Y zM#BVIuO*Kpy+A@K{G*W|Kb?7eYOnHy9!AyEu3A5OwwzXub)qV0a}I~`2o>EY1M-Lu z##OV1`^wL@1S@=kZXfl)-t6|-1B7T`2Rl8%`J3^Ve@R@)`U*3j9c&*cvzyH=^K&t=!DO~|h_$B2Fe zJm{MNiZ4asL?N5wiB~<3TYP~Rig8lKTUESy(0vK92A=+{Vh3CBtbMsJF8b)Yx4x9i zPCc1-Vh=fA%J7TqMCYoEWlGFgVZ1ZMC_N2M`<&RMh6Yb|L7d&Va_Pw=4_kFGsTODG z%Q2jf?P%|Exeq8YinXj8d&%{7FH&;KF0}6Z*2S$U36BjtRj<(s#f=M|W#u9}Ts0M( zv5Sdb%hok_)uv>opjv|zhUTraEIY!p<3~=l&Y^WOOeb;pTO*~TLLQtZNP z8*mK*tWTChbFIhxn6469&CPZgA_dGWYm(dfy~G(eY!YqA(WjEdNY7w>t?m1cSLX^n z@o)u|){C9T&K|({1GZEKZc+{@Gy_Q)Kg7k2rOQ^(g5!GqKdbcui{?LPy$;sjNoPFO zF8od9N@iaCrM5FD*%3H!JjgzyEYt0*L4i43+6YA&Rg>RbazA^!L`*?}3}0vo%i;OO z2n%b;{u_xAjZfeB<#aps?T*E$WVFn|bn{g8ie%2%Kc0de96?UI4$-E-@-n`Fruhzv(cNY?n}Yv!bNvY?O>) zDy{zmCg9GoN54Sio4cRF&|V+a#FkQfv9@i*&AKyQ5-uE~=D|DEQ^o!9XpBUoH)Vez z#Ods_R11?!e09~MO?ahttCWYzcrqy<%PIOA%{)^4v8`6#%Rl?LJUNBQUc@xa_1tT&LcGA*Y_r(H7#kNY38&bg0Pt@cFP93MZIb3;X(-B!wr80-gcGu`BdBx}Kt}Q+! z+lU53g1Uptw^(z)o#>E;k1cuokGI@M9(vDRhu23z2i)MML&!MdGD{4cI&r*0hX_0q zR1=6&WEGMrvDPwcGw}$g2}wlyn*j@m7q$?|R-%xq^@Rp?PCyXBmf&wF!?+eKh#_Y$ zpq`46yA)ajyu2gyobK?LDqj_;3oC7DQ>p(3_PEJ~rkdSOCu|~%H7J^2;Rrcq_-`pD z5paBZwA{zLPV#1x0Ku)PI4G-dl3)@0Ns^!n#dk6+$k#y5oeXJ)484W(B21)dRH<@#ii^ATkF!eLCk|G-WfopWBp{?kyu0eLmR}{~ zhn4)cl>0SF&OQGC<2(!q`|=4mc|K|b|IO8EUYd)5)$UEj<@OG5{XUxB`Fn@e6rko) z_*!$+wc88IN?*VS$$`{NbGt!j=g(7M;R81i4{+#IwH_1CqwTkSe5_CHZkEx0PN}IF zP;KKw!l&}C_7|JIi?>#SkvN71-;h${GX3c&A|jvWml6vO({v+M{?N97CtK>Jmc}B| zb5r^FDyd3%3<2;j?iS0K9u)ib=>wDsJ}_l|L7*c@t)7y~Kbc)%5>9X;R4QU|{!on3 zsDHeps*{8m7Sw2-knP6R_AT9N%M_nTOdFFIGLtbym2_RNYR}9VojOvWLg6bsej09AVbuoV;CYKu~+dh(Axj znMf5OA03nAy5KCeYj;~>zpJ|-`x*k+CW<5>rhAL6Bs08*6}KVMeqpfEi#)P3jU~}NMZ>x zc;hFL$*s~;7sr=Emhd8VU}UO!e_%iyL%`LZgHJAk3o|SLv%+oJiy69up7AM6lR<$p zNo_*v)^~>WPlk`!J7}Omq|rvud@0d5AiTyZQTmg4?wR+~U_Wed(0OJ?w$Mea;iwR? zTiP-A8{EtR{B%~mMq0b76Pj4vd!f?!1*@P1MA`=fgLrC19~ol?fK-aZ>LoZol1&Fl!mIJZ8uG0vp`eIEBC#ifhW#WTf>&J)X&paZ0{GsA< z>o4#_NX*TTT3a%C9Y~eAg)9w-4a|ZiYR;`4S^iL*F zU1n=wJ>UR>uY^NlX>A7Xwa#ZVda+C$uu_St2=yVCNucJ3S^!GNHcFB}Q6|?9}Z`yJL5V zImN#K9*0UsPh6=6kn5E6tyvvZSF44g=C-i9*uVp%Z^rmS3(>GJ((2N& z!nT%02p90wO4#oSevbrlLAxKc{R2_oLzu;7B5=jFA;eJbz7DB7XGAy^)i z#D%7m_yu4EZHNm8nH`yC-R3HpzazUJSk-XNnbF9YVE^+HpIlm{kH-0EeOKU~J{j>~ zf)Tix;wtYd*HyvNytqaN(#P3CssNvz=_+Rexvf#VlO1vSwb2L+$Hs;+LgKHfOAIRR zpjL*GU-w6tPrT803=TeSM}D-Ont(#K7@IU|G%89{z?p;xR%{|2oXFb7oe7+StupmB zI+XzYG*T>1rNtx~9w~C8y!ZZ|2qz;2b6dPq3nISY_hpqWD(D6pFkG)-Uz);+NO>8Z zus7beNB|a}ZGw=t&Gc6t4rlC@rjPMI&lPHjlxqf6Rm2eE-e{{UHvI0aw8PqprO;4f zX3->Zv%lXHUDP%L^svmR3yw)Mf7_}$B-Q3)*V6hD{kbuNHiKjzNH9Lh?`j-2KXMJ^@5k9{wk;~rJ^bPEF2&~}ylt7eGQ@hV?;sn$MzlZ@l#HEK`9$_AZKZDM>H zY*5I(F0Y)-cT&!Eb>dQDR)xD|+NMFEhQ4pgaYw_c zHWzcXFKggSnxnFVNj8!OK^SVkf)jYWF1IX70~L&vf(ueOSqyn1ceO8pK3cbMASGHFTI_GyA*JgQ{?B?JTHo^ zjM&M^_E?C$S3fGrk<6=0jtZp$F(%vvB{&s2#C`S_bpLxg93a8fIr8!O?S=d;8It5q zL?h|h0|X7icCEWI zKNr?emtS8_X|(En1HpZhIxZ5p36#P6(K;SM4IXI~>@Ssik~+@|Ycu(i0)aYW;ah<=i16{x8s5QHKr9Ne#GGfmp z7#O)`rl^v+-RS`PAAa{gRGPcT#iurc!eo$@Iac1hJR1BRU#vbsq@{u)Rszg?M!@_>H^Tj;Y1;-m#9RrqxFrTOh1p>M9Ig3_}j-^eB& zs#Oq+-ieDVmE6w@4ZEZ3@+PL#|EZi}I*%eePl3Brwi}xk5QpP4?}$kPOeE*rqg=zC z`8jSU=h#QfyK6GzI-qJ!%^#cANwvPULLd^HEu9*Jx;ta=6JttlmF_l_R$-6z-pYgP z&bx+4mDC;;l%%mIVZmv23V+zjl?&wNo7BRHR+seOKcTq3^N*FJXS?FP2Y0Gb&SEh; zLe1i@5jcCwQ@}3>iY^5^6tTY{S2BpF`)w?v=TO<(u>y6HM-a<_ZczEDEB1<{IB2wp zn!pLc91*_e>wZq5(hq837~4_Bc&)dZ`)2FxF|tew7U$sfDo{O=A9!WN?$!f^WI777 z$~XneR7B76kkMi|F(d?@U;km1_AfA;otUYaJ6DJ=iR&vzZF!iYIaMw3(PA|PQ-#3-W{mBj^Lbclqe$i(If{jv zpL8GAwf{d(n=dczPlz(QOS^F=)9{<=(=kgona-!EALf}MDnD@Eu2+%Q+w^Mq7rK8H zB$1(v((Bd|9%r`^6rD)N^U*!NY)OSFYzZl9xx zbef-pQ1^<0T>r#wHc1UcG}zYYa{of=@H<^eFlLbDgF!zKkC>XOesm(nJnnF4#EoEh zigWPmLv&~3c{Y9TxWv0UQO7q5K`W_`8-){DVDmAsX=irR`T13CHLY;qt!?tw= z)X(b6CJ7 z`KxR1uGM3QGVKP%nScs17|IW%sdEc(-4#ft#%?w7;dfiZh>3s zj+FDXFtCY7u*U&R-2fNz-Be{-Qm0~EX3;A{T&vtW63P0Q{SQTh?afM~slT#%jT8R& zpr-BGN_L(|KNAwG-NdbE&k2n=Ck=P5&@O>LSK}IJQ_6`>vuejCT6zVy;Q~U_S1&W6 z+C@C5(d=1?9}H0rZ)wF`EbY2;o97L8AK?E+7&?nXL)z#cDaD_e-NE#%H(55D0z4Cx zB;HfeI7lOkIo3}*6-0UFaPIiB59CGS{ya&Y?S7o%722!Q4Vs^EO*50_!lMV?2`hcY z;ww8qo4iYT;fJts2t7|QHnYlz`KM#I<^j14M5gzlDXXk$g-trQCGMP_h3oBG2-F!d zK_1~tuX&M9m+Ii5mqU1QeQuzmTgX4_>t*R1`6Cd{MdYDX-9&Jv73mKCtY|n)T z47`*?FTH_o5hXb zG%KMyTkrv1D-7ao%kf)OZ&{PR{9wlAMoVa3M?N3(M%tg^;2$#nknEHa3yQVf0Ud;r zFKFQlGtomvNqOo1#$3VkP!s$M;ni*lT({vpKu$53(M;BBm-ue31A!MW=|CUhr(7SK zNeORI_e7_MUQ2==uqTbAr^?MO2D(g``v+5KdqP>UfwGd+?ukk*Oof zi=);V)U@_ciD^6T9fCHvc&!31okImIg2q^YawN>SL-cv->70--TBX>>kN7h@h6__M8W`>2GGD$B>L*bAk+> znMC;@=uOExuM+Z`AVj&C)sDc9voz?lpCr5!%dR|J_|p3q$UYtjc2+{xKat-X|6TQk z_TZT|BukHI*D}5WB4+G$Z_%o)d2DSEKPML@e*g|f@v;=8shp7o-Smv_l0{xH3)VdO zC>E>$*E|6)&gVen55uoZ*qCYdZeOAOfxESQjG({&N|22+_1z?1V`-p3`cF1{dF|=P2tY7^_i7! zw){L$PeK|`jiek2mW9jPm^Oai9=Ck13V9*5)wlf#@@8mdeQMrESFRguOF(8PaSuOS z2EU-pVWY?0eX&`Td)}Lz)KG5ny(^5Aqk_*h+pmhVMnH6A#DRy|o&B&21Q-HZ-%Wj8 zrM5Rp9Q8>zsiyhD&3lZ7*IlOF4!xhSKg)a_)x_HRT&-i7q1u?YP0cZScX(|)MvFxdSZ){BA}6; zxyDr?T#1!QTNTvXKzRN52k(#jcuB5t>m?LU^(- zV6bg$5e9kGO4Z{)59AGKs`9;ZlA%eF#bfhSO{G&Yg5bMKoYc z(4B^>>9{+0PPsmvC;RBNCA>_FibUh$LO++=FD}&8j}`=cSYU8X097e##y*XJTKzQU&I0ESC1jp-{+}53d;zz9!FTnx>R7f zACN%=|F?9Iyk{PE!c&SgZq@WCn%(g zT196?pWJ2x;aQaHeU<0>q`m{(gonJ*uwl490d>GMtq_x|$cwrWb)En_W(ha#kayH; zp4F-eV@0a$4j6MkdoOJgy#D6NYKG>+?|W-5T>N>-MRZ9-0Q9HJ{1b|AyTF^79C;bj zH;gTAY`IsuQzJ!VxJGToR^B6Pj?1A5QfHS!3zOV1?U$vtNk)#xe`fu>(kn%|q{#Z^ zBIo9oX@$8$pD`S4Rg!5^_cL)6pX8pEe67HQhsRP$x#1bKoNsa7epftw1A$|X`i`J9 z!pX~wn{-EEd0Am=z-g0+il@jOk<| zi|VE6)&O}Q6|PR}%kth*8^`?y#sI7_$q|)jT=`fJ!ZwDYTICSZ>o0Chy<*U*?HH`CXIC?Weq4 z-R|_8O9!t<8qQ?ym4qptMWRj=bl0Zd1yuzS@36(LFr0#jRjy5hPEYa1_hm$I5I2`7k+-=(=?EAEFu zgM<>3c+jF7Et<|eAHc!bicy&E6`E-GCT!vWuycvjYX%D6q;C~Ngv#`Ot@TzWZ&}#1 zzEc*7hh|alOSYRLFAAgsb$sq)R?)wB>QXqj^BuWf4!T)k67#V?w%Gm4`@8SgOhk>V za_3***(f;cC=xaXcQWbME!O-DH*pB^_ay3GK9V6>jer!0$wr_G4DlqTK@5q>EF`h! z#KNhFd7T&zb5eERF~tBIuK2h}8lgx`B8`QQ0zP|b%#Mp-o@~9&*m9KMp4YHGfz*1^-KvX7G!`OU1`(o1g*kV1hL_924nf3?UY6f_u~NKr z@^}SWH9bR`Cj|T&Tq<#?!W=Dd;W-tkEKd_nEV8gzvqmhJsxV1$h=>&~@3~&-yfpS4{ zRp;R`2D(NovZtNoklI&<@N8eh#|^16?>_t+`h5{ps*d#>6e%%SC`u({Ub>dzRH2yyFW-XX^ORh{6BaZ ziSW2=ytf$FwAI89e-3G{6RzEDPzNYNO}*4{6Zar)J0lZJc?k}EJK_2;;eOlyG}Z2qpOd=ig00=ghhS zv^pF^S4I{7FrA52{N0Z(iyB0{?(23ylXuCTLw2O(X$*^X;Z9X{g&#Uwo%mo#QT|4z zXiX5gMRJ?$W#sjXZ5tsr**()qLIeCzEbv*0k*c{3vO_x81TrVHF%;>ac`8@bb<;R> zOP+mWQ-%DvZ9>c?&wr%l_KNQMVQlS`*aQP7=+Wo?<)}vWtO_fX|H~)3l%qdVX<{Fx zwhv622z4O?_||v|vAogw%?1Yagj=~dVT(yAYKyB$Dr{GOcr(aF( zj6r;(`7_ywQ-V0~9(~OqY4p4Dy0$7!8K-9l2AG{k}ZD+k|ZuS%axITse${RDghioUzMl*u~%(uFjqgrANK#6dZtf;;#lWOjltnw8MVus>&www}5Lb1qL zM)_^p@;hr4Ep+tOA8#-z@Xt0084 zVY^OS_~?O#buwtw7HGk+9{;RS*WgO&QvU+I=D1!{dVn!h)_hX>Xz{?legQzbHRSk) zSxUv;$)R^E)NJZ`Qb2?!vk!`%Ve<_D&0UR~P&NZy6RuJ>`lUE@QwwI!R=!8X1kKVKPXEk_IagSrkG0(5 zQU0{le9gj-1-b1P};gSga-5{0(%#>u) zoT#vrX=14Z3hNjP>K?pT=x`k~{G;WFUUmB;wY{xuBnYfujLTq=fu=3hZP{oi_jO^) zs43yFh_wWN@Z(lumYz6>cJy|dB467iwjoO(&*hpkMw!|d!8R~;&+i@FO^3-caJIhO=Wf*3084e zu4(u6f}P{%3NhpQtY*&36-tRJdmsJT!UH>MJTp8y2_4zGHTeM9q$(r?#hrr*UBkxy z394ECr3ofo&euqIT1d^+=+;{@Lz_LXo|B;N5GpGEN>kbsZ({oKIhV3o+DGrC=ZHm~ z1k(SYJ`{_`tw`i1yJ`Pc`Yd@j+uXVw#M%RQZD8el9D>J__V$(sQY(7KS-XouPL;gU z;7}edGv2e|yZ78REqgYYq_O?P37ZMckpm~|l-J+X7{?l&!sE7jcAQRsjobpiW@eSn zJ`#&rux5Zq!6qn%SN@yi0aadEK@VI7PxyGzS5ndGJWOBp_@4&pa#pE9QXB&(g8)7sigA?5XeJi(dcT{9 zWaN>!5lFbcI&nL>8>G92_>EXYIQBWT{m3v(S8LD~R)+k6A zQrZ5rV&ZKY6bj!5QMwR)zO6W&Krl?Z1_Y(`O8mpQg9^P;I=x@M-D64gMYAxap9gYxZ8|tzm9pe3I&(G zzS9%2PL=8PVx3h#HYZO{^ci>g_(upDQs%{G&U@b*cu$1r9I_VmA-6qos8kib%@EHx zP5&hS8JIVl5!q*Z)H6(&y!|E{e{}+Kxql)f{_E*A)~U`zd(`4!fKBr zMkPQSzQWFP4rMIL!s-e&h;j!?zn2~BY1?ZzMM53ZORo;y%oeFex@WmY?Dl7ld}MAR z@73fjo#<;R2K-SbHGcsdn*k@usYA?``lzSFx1N$Mge}}wK2nErR@$+l(0||Iict#M ztEHBOk)ZQ}vt9%=W^K1d(eP5#C)Z?iG4~v&KA9m@wrgi8oa&OE(n&uv7-SC(hORjD zZZ9Wnor4*pacsbbd+cbVg!8z3JN_4lhlsYB(;G?FOfO>?i6UG1`9qHILr(jr-cbzA z1qO?=_j10JFCd*k{!YD$ROvouufc7_BC!?>l!uddQtP0!1_@Liz)pd3?^$}D2@Sqw z{q_sftPe{(ZaNqBBh#W&*kF3j5wTZ9NBaw;IQMyhIoqzui7_=bFp95k7`3zI&XbS-gJ;8d(j=T$X*L0xyl#nG@y!us%b!sHCc7!o znkQ0TerXIn4`KlHZ2{pWcapT7~U;~N3k)1$M3?dMgCkK>m!o-zbjAQh=c zS(epmwQ5vezytx~7aUt5kcuOtm}W4Ibg4`#xH-J*_BGh+FWEjfY#uj#`u*Y3m+Uh) zY&M#=VxfAe*DS`!4|0zHpG2aWGbG(G9t)YM-8;EB;~P$F$3t zv^m9FvW0zgKz6&R5a{($?yW7IC&uvY4J!LYDcUHuacKJZ`@?VlNbz^*ZE7XhtQih!`*w+q|>`2I2Yr$V&FtysfmC9Z9kc@^;Aa_@io&mU>-zXF0t zLQCowuT}Su+1`DaH#9j z<^S3OUkca8{qeF<{&K|oSB^#hpXI4qQC!9+wKsE2FLnK&rJZN>f6ui!1WlY7Bo(*3 z*zy0JQY7IS7ZqgO?J^GZO!@rJD0TMay^Prrcv$BG$e=OqQs;$aj(dVv1FsB!=AqLb z*-j2iz7x3>JN&9&6j0}XE&Y@{SBfFIBRuKp(x(5IPL{Jl`V#Ze{)5IPj~()hbvK;; zYcfx(Wgg!JPL6;}PjC8f0+%j-FZT`~5yNfG${&|$0T^KF$Qk|r8qC>q+@+$kSg(p$ zAKi4R>q1)>WEe<5q8v13km7}*6LXG5P-&DR&MgvjA@Ki85zi+AhJfS=-_mhs5rHe?x^Qii@OS(_+qHX7-5l;L4n}Ug zSadkI*!QG*Jz>r0{+FzN!N%)*PJ-_RgK{m44t0wTvx^QTi^`B-!;;>m;-ARNVt@)xS8}8s)+_Ygq5UK*Li;I{NoL;hLz4_zW!1{skmfMjU6? zwzjMcv|%FeHfv%A#H@_x&mjL?ScE@B)Nsu_XB+qTE~m|Cq%Zey?M=)70@h9*L!93v zSSv!~j}uha($HBRnGKRi@BCwV$?eyrQ@_%C20xU)9k?`b`Hx7rdb8t^Y-S!cp8F*e z;~D>U`8@wGaEPCNH)l`;-T3`f7(cvx{${!G_li(^MPrE}R_=6P?*rmFrHCi;=tmvu zE*yA2AWP7+z0}E@RULd&C}N|dwSGsgTYZ*YJu>M0)v5vkM9Pb~g|BvsLrb zv3@{)C4t4i`mO2~{KozES`1-t6JzGIIsv!;wVOe(!!Wb?@hj=xxD7r(`5f~0P5hxe$@yK#?u09*_1kEM(Wca|rLQ{EuQTVpAIR$?uk4Ly2mE zU?-`?^N8CIl1MMGB1QA|q)gptBB{4-+XQL@C;scwBJJzx>dj8K`f;~W*&1&9boN}T z+GXs%9=Wb--P6D2vE{i8hrAb$Y>ld;TV|FS>gv6>)d&3S`4K0b+%2v_ZeWT8b+a;8 z-hGnl?I*3Z`kT?~#|vLWo*3}Xd?e*&HJZQ1Vto0wU$K>Sw`=^@|cQN@&CXKzY_RE2&^x3i1hy(-E5{hF7mHjazEo|XGm zF5|YZSEzWO#I!r*;@|D-A#sRE9f`It2cl0>CGU)YwrFY#cG;3(f08u=c0pB*hJxkt z3nTWX<cgj$=2$+ft)$D*sF0DIDxA~?sv5Tihy3oAkTJI7H!jLS2>J_jX?&SWy|V=;9+=&J zF)v<_eWu1jq`R;+p9wQASW&ZW{OpskIfK9P0eb!JDU1rdHz$w9Gz2*-`~^OmgdumU z)n}T9{!S*K9}Cl_<(ltqTLC1Zo-}!gkGD!Kqjn~9m5)?NSp3$U#VDrT1I;}mig4-} z$i6|1U$tP33K{^?$vyVz+3oi{@}{`XKXN(OaJje2kdK}|S3c3?EL?M&PSU(M!}$6L zX@jS9)_SAz zCz#+fBqnDn$c(uKavf4^vW!rVb;)R3v2xNSPj)g+l_L<(F>f?Lw0j?y!4lRK(j!M&=8!FUQ-AWh58C)**cA$6Ib%U~^nm4oc|wLOE9-MDhDuit6nqrevTY zLwg|vW+nTfCT8I{>zIr)xNplM0?`lhvbMVul(}yK;_uXgIM{uwH3DWgZi1nMDnEff zh5`EDj71M%UIa@g@Gl)@IPL${_eSvXp>UsncOr_I>6S~BR43|IaG$57_D+~i)oO5I z^wYacj_cm%Y~Ra&#br4UM~<0;E*GK&?E2J7+L<3KEV6~rmh=(lfsg4=y8;NNo;&G& zQHuCC8o9ayha@XhT?5N zhx4qeth=;xo%|er=_+=NXSK51D`wGJP~=!(McpkYDW0y||0C_q1EKo<|M5FxFk>A< z2r;-wmMkSD8Czy-(Pqz1Vl0&uVvId4W5}8;Nh--wgODX;4JBccE!u3QtkL&Ouh;vt z{Jy{6U%%UQ-FxoyKF;%;^StLgAJ2R4y)x)qj@Y9sGLPB`LJ}CW9pgMGtgTvPixOH4 zDrma${xbquEl+$OV|p3K;1a$rN0ngT+bB%|uX9Kh%|mgO2g#ll*m=>~g|kJ8Q(J&@ z+yfFbB&-?nNC5mK5-W!Wtp9q{dzEsFwgpN(FQfp{fzZs32yemYM zmQAr#Oijs~|*Otl-lTlU-kk(Uz#j8K{2|5X z*_0ihG|i;#p{=J8q6rKL?;pM73YTf$h2#p3=PsTWo|R9t8b=aOx+I<{-v0H}F$8!w zKLypIF3Kl{2;Sd)*}e}8UoQA)jd*v-h1cb}l^*G)ic2srx0=%9P4l18@)FAD1KV_V z9!e4Pb7iP~_QqtimC2s~(O}Bp8-86sZ8&95c418Ft@ukASDya&acGWYvd9|uPFr*J zk|^mW=0!(24+Ht)L3bs_C%uP%puv4`{%+M5c5z2bjJzfst>5g*e`KJb=rSzYa>!_# zY3vO(6Jfo^5B!2N+KPEDfoI}8OYBA`Br+X3yWip0^bK5Ki12vv;o(9G_d_D8%jhsN zu&`)vb>kI*eU|0?>kcj!*`lZUVn98gn+)X1%nLb{U$pH)g)nj=5PFE5E8Kw-)37(` zdNQ#|^|MJq2yd9#YkPB=^l3j%H}pgAsyL{aI3W7jzq;F9Jy1h}$0HRAa<6NQ-f?ie z90grdxvO4yQyzR?tYIs9ceW;KbX?hV&9S-YQE53_FeN9M7D&P8pSZE8j*rUBp0!q) zhQo5z@u?D45~>29wj=FgP*_2o$3LVKzI!R3jtifPHjWVzvAU>fvzB?K&L|Cp7GArG z#Eo;W*b%;-Wx^48YCQOgkseEH3&YrHN)Ut>V9&j!an5-h^1ESWg)Rs^p5Jxtn~}NP z!ief&llnzMHr!b&!G_VYa9;R*)RgP|0QSCkb4W&9)H@FLs*nd%a7+XE1=>ehY=+oa6~U zxTjk!jy=|qJ-Lq?AAwhM&+oqLt|Tg=F^03-tNx6CQy&wc_31uSSR%h{uT-WT4RaxFG34wbAWZ za5oKg6MWL+U2NI$f_I=(i}C#4pOPTC$%lv8HNn`o%6aj2&-lx&s<$t^_B@sp%83`2%%FC`j2zT^TUr zva=I#G|27XeDepg@?COEP_8+pg_*jY$gxIIKa-CZNV$CH*HMh$PAVTH+J7U1lg8D5 zQ&HGft!>Yfv&Z>PPBi z@_AaCOBPqQws}D*XmmNgTumO4_@J(cN?GJdI(thV&!(JY>8Z{>MRc?i;mwft_a+)~ zuub|7HJ-koz^zJ>l~m&S%+cAcab~X3P4JscM}m?E_=Yh5`{Gc2L~*PE95eZyjc-?b ziKwPhhhWIPz)ovHZUmQ}n)Yk{Eu?y;3EvqK|HZ-em}S%G5p2jcjaNTPIvcI!;di&> z#S`{$@CNFRX}l*izAtDHFwD{M!v1cYt9pVxc4ik!HU2d5B%kZiJ?b1g73+o14H-q7 zYCd^nuZ%2zyh{~xtUKZ5`A3~HXkHtrt-@kfHo|h|t1zZ9ExVsftqFVE$~Da8!|{^k zdg(+DIlz<(UkpW%xRFG$PUPDRcIYJY(*un8lkfsMpOuX)e~B1Rf?(`R8C3HKW;XM- z2>4`AS^G2ogXS5J)HGkU&9GBY10wT1tDIi3vG0%rCsZtAr*rQi&^x(%p2xV&qeZwW zXyFc?=fAHZQMQR!91Kk+c~gWI1GuE|N9t@Z zy!NITcC;LCKmK%r7mLwo--eZOV>jgxE_hBc;|eQe+sa$D9io@bAV8{C&r*-c@hWua>>I z)(G_onmjdp@$8N_PeC(`n!NL2760@>&cYS%;@NV2ysW_&6ZblaE6}0h%W4z-D5>u8 zZ*o+tTiasZ#}Z!Z8@?$mAB^HcZFs-hPiP;!+lqG87k4tj+mY){qot30M`X;I6_?!~u>bViiF~@mM;r6!+>U?E_ z38MI-2YqgL8;4HBpT;;!1!9d_u7o$NB9Y&@_DAR3z1)8G0#_`qEDpc_v7+1iPvVnc zf}`5@3w*&3ZuVhOmSQO4;bUG#EsHx^)gF}(Z%yCVdEd39Xcgivb7%=I3Kx*s4u8th zQ0MGs7gdW&fEW2Sp>5YG@9KU{HtIA=T8SBLPQ%)0RLsoDAGOIA`aIfkAB4f}`!jV3 zfxU@!`8R@%w_G8bT&8kH!@EBt5DyyyLPFqPG=!y-UpLXqX7;c z`yW_30(?~fMIquLG>jzt2N{i`BJdCik0io4kR1T|D~~1MkswC`o=$|R7(A7gh^G=! zGz6Zd9udOoLjaAAhUo-6gn(!e9*IC9A&|mC16e=>2uNbV1_G!7jH$(yFV(Blt^%x=3(o#f5=;rigvf`7T4)!HmhJac{Jf%uE7B(3WR{2vNp;AFoLBGQyDj+vVXNo=>N|-FocY zve74j}SfUxuMAkYy|^8K&k4JCnU?Cq(d!O!9g@~1m7Fr8DTtB+ISvMEGsg4B6F zf7gV=DIC=;z3t&_zv5Qf;cSnzff4xLw?Z5N? z`vy5Wj7O@;|K5K3=Oo^<+Wg}?-+wZ$wIGUesr?*+(vaQrE2TMfB5GTb-jk<_w}O5Q zo@x(KuzbhVx|L6$n};%_xJ!?frok%3_}dHH`cjMRW{MmcOwVSj0$n;Pi=@&Vnm%$g z4b&RfHPtlzhZQ8WTm1^X6B+yT$q*M04pS+(v01lJ!aP%(9`@P{4Tq7$h{$c{#v-3N z?-^Ni&Dl8Zp&u|DS!zjw5p0jMM{yszeByR~65cxJ6aEK09yLML*SNkgbNf2)R^;yB zw%FNpjr)(#9JtQ(xvBw+$PZsGbg|&^ zV*v;uf5`%16sYycbDyo-ibA@q%R-b?Xbk>0gNK!gnt4%;>)k@E6x}8 zgpIExuSs8m>CQwDBmF)$t;D4ZWh*%+anm+Q)1m$Re6oc4Z2ycRpIAu8n&sS% z#u>f8LR1R9d5Xh>bg6A*Y-YrctXcx>0-Io#W~padzEacfMwjO@Gud{sCjpP;ymHRt zr^UzPGN?>AjgC^D4G8}28f5MhO7@tE?G z9h<&^G6SzjVN0ZOU=<=m5#QpDSikbLwyzO$GU)zIpN#RK6P42>Y8~$HHzvwZ>iUT& zyft6~E~xtt^bH%6JEZ!JcU?P~@}=RsBY2@36t#chI@5k>=hIy$r=NcdmNJic_cn&E z@1oa>I_hEF$*gJHvyGUR`?xqK0i(&rP~hVK9D2qnBx-bJ?Fl{LErh`%;q!>CkGWgE zr#25g;59xMJuIGRO($Y!*ZGTE{mHRUWeC}YX=Z@(jW$y7Y(6}Rn%J#JkRGS(;klB* zrmQ>!43XoKXJ~^O>x1VXjNB@|N;=?RtEfSO1I^nxkta5GD3*TI9*AGzZ2=F_L)m+O z*KQ6aAsVwRC-3e$sRPlBVtO_lzye4id< zpoGL!1QYm9r4nt?nn6qwTpd?@{^m2+2U5?P z!D34XO!H}P+wIgDZ8se*kvxNa5aGY`vk*=ne|cf;x#qK**Pjg(C+p2NU81mt)&4Rr zx5Yvm_$fjRX(ak>WO;wYIEwDC-FyY+SS_nOC?{$u9vKn2cuW_I+I`S2>S65JscV$M zWk;?fd|P-hYU1Y;RK%T^p4=x=?PZgd6LTZ)Un)aUmG@N^XPb}QSflY3G0UXR};GS2VF@eM+~nUY?XQUsXx%x@1yj{tk=5 z1ySM%R%vj@7 zJ5X{@BDfSK@&~#ww>zY!O=oFqR;fqv;Nb%$L|_)XnU|NZUVd*k=0tv!o4Ka#KF1Fr zqAANC-gzh19dQ1cfi;j`yi-}9F&-Tn{QTXbMz-<_xpn7L$JDBZG7L;Zb3AkIs~<~0 zV`cyL*vguF&G20DN8nh1cQu=oHSo-5FE|n-9(Hfl9wR=%@_0z>RVX1Jo0*n>Qe{N7 z`S~CN3?ax6eNCAtJe1ME^jB z(X;srTpwcgJ^QfNgi(%sK=W84 zunG3i$f^&*^`FdxqIxj;2e$_{B0EWNoMr@*{7^Bii0QpY>}@;e3FO0PE?DK;8)OEP zT=l_bChEOymI<$Qbt7;qy#GMUOy7!=_eMoV>(=7$N(<}-HAF|&GFj3^%&?Y713%Hb z0^`rYg^-fVN@Q$g56t|U|MYA_o-Rr!;E!)?fyAC=aZ4)?@bKpy;ywEU3`{3n2>UC| z^v$)ub^7AiaO+hUf_`D`91CJB^tqwq@&rB-Ph z>-%1ou6DgLUtaFOc7Xg!r`B6uM*e~RKx=n%tr^G0>XwjrBne*m8IbO)mCia4_C3v? zIk(Jwbyp4MnIKznGaNRLr!i$`FHe$G%^)k7s;|0H+N$cK_4@M4RN@8Odd5=vIN(-k zCmV-~4v4v2h$NHu-&cC$ciX$KP(br(vy4R^#F6tvJtBM&LY#VGilU+Md!pn*_lDDU z=G2`d@1sCSo*_^f^qyqvm=7ulEhf``wbq{wu{Vp`VmQ_NtQ?8#{kwzA?;7uTo3ipVgmp5i_jY%g>SMXz%>8iM|229grac2br>R1Vj~p zlfVzi1Fi5#eTb%y0^=~)#bH?KR0vPQ03M10S^Sk`t!YG{2BbmU_hKf>8Sd6unWMk1W;H21+$1Ys3-!SO29*)W$JWdBC)NYK2Xr>7mJQjVP{#wb?ra6y_kxy-y z3U)f!Z4I)tE`3VE>y8@`@l;WzJ%UA7x%;I}O1O3N&yRhkilHDV7y-WbwRjx^BPFh} zOY#?6eK~NtD9dRgOnb1Xyyz$i&T5|*ShQD5x8VlntFNR4`l2zw6MigL(vJ34%lrO`2x}-ZMA-6f&7|BwKsMWsG)O^?o<=y zTly5+QZ;v?qFm*{+v6n`dK>=s%a_8;WxSY?o-d}t)8z8#h;2WdJ##l1OfT`!FN~}A zdJKH#1WvKdC)^Mwwz`S9chw@gW z#!u$vT*E1Mp2>s2GDGsn1{ zLiu4m5+PRwY9o*@A@CFiT-E#jK>qOSfZyAG$C%9uhxct7mnxnGef-m(^b_uwwfwXB zhe9m!vm$Tv8WrSrl^a(q9@p}d?|3RcSK5xx3h#kwXlQFLHgwyy*}P7{HSDfpJV~l; z7F=Pv%9(z*e(m;pr>oSo5WP_?div0lKTtpjv|IF%CC_e)O67OIZi83jju(P%>eJlM zfV5A?8h+7TY)@y;4BGIC?}zEL@*{%GHGbpdwJ=)z@2tVCsnk?n71g_>U-ALxXH6Jh z((4MC@@PsPjsQpXtZ2SGAiw>&P+xdi?$c7WR>@N+y3=TOh}ziM2a4x%r<%u5BVH_sO@PfoAdjbIp@02FDY~Z33_mG_LC`OX}>c=eL}DbArJ#>ho>zjhQ2&09uPj%tlu zIeUe7xrSeh+RLsFo<)QyZtdB*8o_&*-6{|59_G9uQ*J-S_OZ3^BPxzwIQS99mG{Vl zkRNy>9Ylxl2X|_v3Uw{6-ypI-Q?+=WbNJcKVVJ^~WO>N_fyQ9U&XnhGm6kRcm7Tk= z=(yYkiS?N=or{^@KLI})desc!2yzZG2Y92&5t01+BS(}Y8HxDh6mghlkvXndTuKa7 z98dM2ocEMwTnV`f5%;3Pw^sG}UP6=@Zx#9&BV&6bk_c&5FGv;%749q0C>d#J}<2??~98>9}syQV0rTbUqn6kT0L^cE;9@^Q&h?4tuGEH&yr!IIr zxodY#bm?oQb>Ia-+r^YM#lObidE*=pnO_&k*_|Q&8wA5nA4zGs^0Gqb>y4xiIhIzx4Y<2Si`gEKt|*X#k-G&w;zL_U5$KtK9|jk1YddO z?Y2hEqse^2)gCeNul13UtAMdf>Q7gH9om!jJ~`Yd>ZZe-Gz9tz1Q$vtuxQD@(Q8C) z#rJHe{JZ*t9vIYw<;}cPY&EOGmzT(ecLEIkXw!Xo+%~09iBq!QV)r@i(jMC8U?I1J zLD7lqTZFvtUp>K-7aXKLv2TE$t!~HjZU5Zcpvbc(Sx|~xmxlQ zo4C4?=Z2;Y^68`L??ef}hxib=%sfpsO>ATIa#dW~>?g%NSA^+r%9%cl5imS`k6al~ zB>VN?!Hx@(%d^3c@v`}&>Ni{GlTF$8Fl#ZuD)3@Q02A4UX=yYhe_D7H`7EgHhcQe) zDzQOkbod+WJb{2!)UI8o)dtT(`W97lX%0N_?0`e?Wh<*ewiOE())@W)5LwMwd5fPrEExHha>;wd#5l1+8Re`Y>|*sPqEn=B(^@@q0%J zjY#1C`RES%o#O0o=O|b;=Yc!#PQU8`W`RE+Rw7Hi5Fhl^qQl`d$#&Mc)RfYsJn@1b1*gMPi)KQx#c`aAS%MTljqI5R{M#D60KibluW!WPoNsUN{ zkcw~9qn|cI@5}bQ9zZiT#PAR>i?6(82A6NFt2vjbM^> zViuO)L^{6bwXZxbev4KJ+9Qd~c;j#-J+dw?V=Y%ba7FX221Vx(psW`rnWwr{^t|{b zJs4^Oz^jGy8h{Pv)I>1zi_@Khmf93P5tPB0UN^^JhAvG7{H__wn}|Pka+lB*eU4LK z7|ei>u*lH-{gsE}`WZg8ATKN*xcfnVGDCjOv{T8y80O0LMg6Z|Ewh8cbZ|brxs}}z z^zqH2uRl{^9N#*;%p~K@$WKGxq~?oZRZmSZq|c_xuw<%A1YR)FUX z=dQ3QIR(@3y4vfK1IhGmiZ%{~{R7P~$rW!%Rku$1wan2~YR~(ytU>@>j0`6DIEcmK zaZ7vCPhQU-1FMJMTmd;UhRJ)^KTJgF4p0b(d-oEeO#GPSCn@Br_g%*CQ0bQz%xm?* z7$P(F2V&(o;&VTq=~%JjNp6z_aQCx=PJu)wNxo_^5Lf)7eX@}|zYps;zd>fuEviyZ z*eDOfwHC5(d{}mIffcs^(iZn<-1BsR_4z4_F&L+?5`Bs`a}I2K2xpU@^hdiO`E7Fj z7 zBN0~{^`&a(==KC8d!q7&hZj#FH0BG&5ENud?ts%8@mQv2nLPP5nvGt;VjfsdGJ~W- zH$~UxpN^Puq3~t2c%a!b8+*z9DF>zU1b?53y>8ECRYV7*%@OhA2|hovwKlNaJyAz* z>!JZ5WF*MSAuL!q<#!=;tGk3!oc=qL@fyP!|1=UZf5QZ`#Zgn>akfpy8p5C%_?*1I zz7$acc`JvKw}?I zCPrb?xPk!uR%gZWV?r_n2$ed{9574@1o#-9euA`yq9gV3LR@x>Xo#*)&x7!(9Oq-2 zz+ni&fYApJAv8wN0D%+S!#4%oiU483{aO-)mZO03b&^yX$Z2Sn7{EkfAvzjlZ4@)? zQV4RV>*H}OmV%;zK?K7tAngG#fo{NYWTg-Q34)`I3P{R@018Kf=zuqY(;=9SP6e!$ zPQ)XL0Fy<$S!V%-Cs0=icpMQRKvXm!^AMet4yUjYK%pQ6M1f!=2Bx7|SpzgI8U{TC zs1|@p#jqr?1Q?59X$7J2pmZQp7P3AlAVfhxAV&zC3+hK7#X^QqNI=Ljfb&Ci!rv5- z_?M$nAruvWV;~#^9Z6=vXp^=09_vtRy>k~q7qR+0UD4eK_C%} zfgpVp9f7BTto88}f+CUtfxPG#X)OXCi#DedQFI7&6?iJllBWYbF*t|^CFqfe1I>3W zuM>kD8Dj+(s0dzAaHKw74cGt=1VKo!_!I*+&O@cFgUEe4(2>RLNXRNqVqmNPv+~~sj%k@ zt4Cd*xbWbV9jw;w%|y_IKqUud^qg129AXA+z;xNf9*u|0zI@T#S>)Sy9;#glBoJz?YsA_sJ#E*iMG>v#vUS8!DGTxNL&z5VxV3 z%TIwd<})J9VUf)nIHpsORYi3d$hkkiu`;}d{&0gavfOujn55}BYEI4wdb!6Vz%iEPB4)T`sB_I5G-+W~=izZR_{9Xs39I+iGZHT{iX zdI0!-k`{BVOLuL{?^(4RNBi%>EuP&EfK6}%9+>2u!)}d`TbF%xFrgu*FbSrcPvm#c zN?zQ;BA$d)+F!nL>#}oB;8A~Od|9dibj^1G2RE%yL+ckR)?x`sxnYsvUhxI@9_V_A7-tM^j*v>U zNq8(~bgyQqNbXCVM*H`aA5*!$xYKNO(w;~8JGhfMcGL>E)JjJc1QT^LQ+A%=^W(JS zzaHBQ6A*fVA*oG1FZA_caP=wqeKn$%pVq>dbF=qq>h5h!JxhX<){BqC5PW-n3NH=Y zzdi1rtLJ=)jcs%R?-6u>TmMVc!TQ0tS{c`MSD0e3{m{Pdr5Z{p$1$UyZEWe5uMmU^ z5-hZun^JPmjjyI-*Ki7%?eT-vBWaYV13EXlz8~=ls+HkcdMSEEH0!!>hNeSI>geSly&W<$^aAF~m6YKuhcr2luPHkom5) zxOFC@_+QQU*>+{hGftXn;rv(jd5MIZYoAqFhS2qA`l>EW$L91+F!b$Hmgb4%x-f-!UX z)M5h@wD- zf;%CX-bo#B3^`QFAp8ClHBWrud8tU5PGUn~b8Bptk5+zYuf#qWxZS0d4jD`LTiAoi zuU-%QE)^D#j74^zYe<1Gc&zzWr0(($Dc`1KX+mo1S4kP%-70Wnz{1?x(l=7`k!jw5 z>SM;qCeN*r^0Lo~M!khsk1ziU+v9^gJAcDQdmIcUJEtOZ?oQr~5^L{k(fDQr&d{AlJnC^Fd4p-M}*o3&GdgHNN=Al=2nKb8$ode*&d=rnjK0vK>H`UA4l z@sGpvq-*JM$FGEmy|7q zo*Z?mjHRGx2+r&m8HW~Z5}h&+{DHjP5?eF8zb|&ciDs$s5f?MKC$?T)Njaxyzh6Y) z72e(}VRMBt))UfMU3Z1}1E>0yr;Igz%(Q%ozxJ>Im$}Gxb;-Bx`hf|dOgPy^j+xYeV_S}mWO&mj?=$^9w1bIZcrF{Cdy#rMeFSYwUo znH7oia_Un9yDwx3t;MTekR(M|qj2WMZ`8R*_q^C9a(X$UR`i#_z}+=IjDX*X%B9oU zYsgT@VVu)s=Fos677QM)2`hdlIgY(Nde^F0U3u7@VqslOMGHri8P6QyJD+*PIcmv! zT-+%~f`;LAeElo6wYAY-Z!0(E+n%cP{=-z@hoLOz8QQkUn zhsz8u{Me3z2SX13>?7eFZ`I~pk@2d2=J=_+XIi)G{yAqbO(JJAN8pi^{ZSE@)57EJ z+;xn30duuhXkHYoz*B9+^n7l!@0+20#{_D7K$`wi;(n{eDJ#VU|w`t zaBPv0&Md=jx1VjtA85>}Zlw_gZls&Nef>N!tD0J$Kxz`dI2&!D!PWsL#~FnZz_7WR z_(E`EeW%6TA1LtcM=aL8?p2^_OO3v#<=6-Hp_eTqmQ5_HkZ~S0J8_iw;*RXc4~`h~ zw+}B1CBig*B*A~96no}C+se}kN6miqftWHXU(A+fRO()#Ue~qwdsm)(8frzON+A(nPM6rVqaP#e#+J{#6QwV5M^KLPv<4Vo}Tx64hP)Qys1D9jXDlyQq6Y+ z%_&uihOQsp6x!R%bKvv00R-~d?epT7$xO1exbC>i*>i_)y`g}f0#(l$Ia$~B^?d$( z{C1O~8V}8!6wp)1)%Q6_S|{8r;noZ#1SPA|6S8$a#HeL97vtGPo+L-Ehn==1%CN;?HA( zk&|gV%NocifxRJFn+)`Q#$aqVJNZtqo+ma6m<3Yf(oFvqM}!;Qdb)3;PB~kCk0=4A z2_6}7YS?fV_|*DlytdcMw=YB22)iqM%a?&?2N5}!cTc^KKTO@906Zgz>y%asRz0)t zM(D$dRH@UM5VjEm)7T6(Qp)SoI4k?3yG-#lQtM**>QsmW+)8h(i(vY1^=Cd6NxSOU z%`yt$cFr>|yfIko)w)!6VCVTxt)xk5Fh!%Q3mTX#S8*|a+&?wQd{<IZe`k~HZ<;+GJQBg^l@KH0u`)mlGKk!Ws@2Cr7ni*wi*!fnj&{iHyRVD#m5F%M%NJOzom^EK-}GS)OePfu)C>vT zWJN2O0dfP6_UWFP&Ohx3?*a@2=JgA1xSQ=dXw$DmuGKw!B8)9{62;vQTPt z*~Tn_d6rttvWxtxxuTH(w~-}FiHV=9s+nU=6o3$YwbrohyzOHbDQ_M{Vk>I2PHMFg zlDsy20lW>a@OJx?nDFcv7UgYaRVX_$tFG286(yVt+J zc6WG}45lV7Z)Sdiup$T+uHH4N-~PBk5rn&Mvj6n!IlC3V8K+Q zZ|OY;v=Biyd-{9?I~XO9Q*K#a|Be+TJWA6aCeg*cqYA-Xfn{byH*-cfedv~I zz)$`Q&XN4HJNCJ{7TQUl$AgOpj?mu6kFnT&z=H8uo>1)#d&W#a#7d>lJMNM9WRs;< z;5a6!h~ha8Xd;~pLO?iEk`bzEW-G!Y0U`5>2$(dzzw!s}OR)wi@(%=N!Hjq$1z?v?kN^Zml`+KM3eL z8@JbdgYLq$+Z%+Q5&jA%j^Q8otXDog^wCo>LH6f^e-KD%dqZnE`e-d;sy9FDt`7c- zKs$yEI-F9ndh}#uOKiLlNYTYgnZ({lMEwzoq6ML1}26>B7i_3z-O#kj}5VbzX)~&Bp|Jh1@SR!*PvuVRK8WYOHb7m-b$_RjnQAMy*1XqzX#miWg}yAlSGR3 z1RH1?TIPP_@S0U`s-dd#r#1zO)gzPL?2<@HWs;10UqkAa&5s+MlV7*at&O#9*(^5P z{QY=3QfbY(Iq>UmtnQIt?q9bA*N#kc8oZp2>q&WgT~Y(HW%BmDS6aq**?`VV;>!A! zckI6mPjcYq<41 zY1J$=wtUU|$IFlWUHm5{AN67muDndtp+;EVtJ{N$b_VP)H4&7dlF z)#_zob~DW?=@%MK0NEQz1BPKNOmR< z4rvB%KP38V9sZ4})%Nf}HiwIo%NliGrlYmKPlQQGBI``FEUxujds)4sO_(>MMLCf@ zW32J(_q09T|822`heY(FT0Oh>$2kU6dT%K!E9-WN zS&n8dPM7SC-g~i1+h3l~ML8jLca+;>VJ-fULtT~}zjn2?ov1zQ_aagB#NsBRibIpV zOjY&Z_Mo7kGnTDICk-5*#>Ou0uy5;}Y#BUg`b+Q#dCO|S29497)Nk9SwcmbZH*Y)@%yKke^xV=}+!Rlje7&P??}qR4ySe*4k4ieqJnD>FV`CPI zZQF#$C(RxvWvHhqSI@bAo!VQo*43x6-&IoDYlrgBxP!^P7lfJQGUg5cVSx$b+Y;M( z9z9|({i@raKlXLKCpffY{7laV;nX!v~coQ9}%m#Q>=xaB+g zeNvH$QpoJ#2)0CWMb~$oFoSa3I&cIA2vBjrXbuQ(n9#jvG(K*m|hV zye73~o+vYx;m2%uq6gv(<9@=ui9vP69pvXbO4AQ3OlPZTd~xfzqxAk%UWI$(YsvY2 z1@;!q>1>b1*ec`IC*KS1-R@9G{rc^~#<|+3Z(e*VbvfC6-C`XxaQ3zXDpS4XNPO#i zB~hIWU1prc({xQ6^}t2=Hky7SY@` z;;pgtajS*2Kbl`O{D%01@{HvE8WY;#R-fI|uNNj>&utuIX*k{+vJ`MJ<;hA{(hW+w zjGsO4@DzXaRHdSm?F=*3eCFU;!&ZQL?01-RbTmBJPY^UVF9K@en~8z`Y~D11WoS0b^Z3jgcQ#& z@dl1%&o8HC!`2RAzIDg1rAbYbWICHQ>CjS4Nn{VHLu7tYtOhLh_Yv`0Kb_*5`QBvBy}ixbMf1v7ecgZ!Rv|J)@G zwZ9)0Ze>trUpU>em%Dd0H^1Jgj`P%!sCTi8%$S?cbl3a}VMaG)nLi^2QTGQ#YUqx73Fhm`v1Q1Ae1$`{g~)h* z!24i6zI6GZI=M;Dgy)CTg&8~-MLiX=RUa`zRYeLHxhG7ym#u z_+R5^Z@s!;xF18wc61OkeLd(5v8P)}y7$pU+R*GL}gujpoXfj`kgZxGsO6v8uoW;)}4ieQl!Ur7?zpw z-n`)R-XvCQ)BTs!la99Y7EiKwqr>ZKS|?)7;_VR#O@F1(#~FIZx&n|E_;Gw?_cOm{7y7XF3;|%aopb*q-196 zlw+LWs4Xa#>=xq{v@Ofhwbeh4`}!0uWaqC>%B$y@)1fs(mEE4v0I zZm2vnOZ$E(>C*q<>OG*ETEc#BkS<8|P$V>ImJphT7C=BLf?zoZDFG>=NfJmR5Fqp} z9h4#nC@AuxbOMncdRKZ#5C~0>l7L8+bK|++{q9q#D{g8HJY({k_BC^ zS?AMxl>Dm8aw!(OU1MpS+tPEA?%OK~hbVwI+&s1-N*v=Je<(nYY~loY#UP~W9#^I( z_rFu}%8)ppvg`5pN#jxqj$8``l>rW4*F?>l-j(G*H+Xj-eGv>@x$w^;{MC#p+ijA3 z57DG7!Sa2mxH?YEvW7w`{$YMuag?79tZ;7Zt}`Kj+Ye4D?fh`7#x;q$a$X%~{e^68 zF63W}H1k>*s-7;Cl@2$N&j#xnU{uPUj)qqkwD$u?JW3N<9M596o`KTmqX?&UD^YKk z`wJ?7N`?v#&H5eH=T!TXzGMDn%1qZk&SVQ)sZQ{{7fjbadfm0xV?eyfjiNa^ky=JR z?tAgj6MhT|^Y|K;vJGnL^WO|FIm`)svRKgFnErmaxu2wvXSI)EMXJWSc*TrJodBNN zfYOr?Dt*8JIRCe1_tW;#f`#;e$c2=Uz75-R`3|)UKK{)atSd7@iN1Z@OpBmR-&HKh znQfwBD5(XDuHCK?rNgMcQ`|u{$lEojPsN_384oy2OKC*wvmX0?@Nvku^oPB{R=ygE z0UfFU;=6DC0!d3SWeiK=$C)Dhg5iTfC$|dTkF?s)>T)sLVxfYn4bPVq`||iVF)1*A>O6aYuTZIJGq+W?q;j)&xfRgt$W=t_dV_h*-PYlJ z?K;1k#@f5ICVxvhAp6GQIYu+ZI=XrqFkQ_3&sg!796mW1dcICGT)3X5u$PUc*sUJ0 z=VptnMIX9$Vbi$I~~$eyKp^RQ-f%@l#7ozJ=*jFKc!2Y&e~EQGHjM{8NhS z=YOfE#&6Xwb|Y}03?658I=}w}@wVtSc9`sNX4FVdL^YxvZw=I9hhI!z%v-$C#oCVn z9%Z`oB+xg$AKFg@{A`(9?VOAJkt(4uM<2d`M=1%G2`@*1uINUoBt5@lHoH#a0JZej zuJcSB!*&a*vDFJW>k7Lvq@X=qjZQPF%!aB&i{6N3GrW;&tiXj=ObVC!5JPCZJiSTC zR;JzI<)iaeo`Ld7`lHr>yK;ndH}Bz!L@iJY1)4UJ%}pk_+we5!5l( zk+Hh1X#U<@EjXV#_pFY1%`K?_Au-V4*OB|WC@8M)ZP1Yuh1aR4HKr8NQSSwI#onG6 zi4uxmb_7MrP1$yM$Z}CiG^?#Nt|)0!Hab?-I*5)JpzMKtN~4ztmzreHk%-sJDN&%q z6!xtXaa953`ynJr)+AA`!8cskCfd(kCMeN8(p!cZK7Q+k32Bi>4knJe3h03*URpNlyb3UN^gYRoiQ{u}G-Y!ym-d zaVyKbtavD}p6`kt^-s8AKT`!9hw-Tiu9HbF?mVON!@ikBNn5G}E(4G!m+CJP57iQ0 z=|BDql*zkXMq&rP+~|eEb{(Lh4h~0E{iTnkFE0$#xQu<>7crf>aX&a#0aF9X{%hdu za%f;RFL;MJxW$`mLftlht4ncRYvT$}L1T|Z)v?K^+(E9dSMHR{I^- zuk)FGs*pwaYA=uUD#2+zmcVL{cF}@}3CxSIlfZ*G=kj_VdqAP&`%BV!=Mv`Hg8wH5 z=({>6Bo`=4!w5wV0&6s#sp347S?sD6z!cDAHUT5c97!q(pBE?<`2}GWHj1ZZbvVV- zbV9$T3N@!Yt|e2Mhm-D`5_>LoeXaGt&AOXwT>Pofph=S;<;6J{_`gu#P8)$H`X*uy z)*Hmut}Jzc_4qOl=+*kSMsptv+Aad60~?a|C01BI>~Fm`NS5YR7?In){M(VHK{ElzaTC;MpHLkLtx!~T(LdUW8SMtQ3?P8%1=+oQGtvvjLW zt7B{)G2zFMv?!mTx6i+V*9^+Z%gAX)HWRmlY(Lf}#&o&zJ4bw2n*A=ljnl;DHNaoS zysX(!M-Db@t+9rDWlU_GW-qDVfY)_>&hISGamqIt#>brxaGkpQ#C#m%q3iLbK~$_d zW^#O~i>0p7Sf+#1+#{~t9+J7-a!L(-K~@zhirkmqAeU){4r}C1sI#^xndeKQ2c&^! z#t`;TMR#UZ)biLDeu#@Q)|Rw?!ak(;5ym!4#V$rHye*Kx7G4|V$^W{&#SPrs*r|={ zEbV>!qlUh+&0BM2>an5a$C|~md<*=!LAe~O#|pgPSmM*38gkb}^7&s2$`r^@^!4T~ z+49@U z>aQFk2wEkHGz zWlB=4r}<<0yCGhmCD}Moc@z5KBE4KmoC(Sm7A>oHmB+#b)z$nVK0j@nf3H>7fj+KY z+U+WgQ&15%24-qj)qlEr#(6Jn%z$}N-CU^fl^xM(h|@R$HdPlGoB07ou5aG3hS-a15$7VQX} zap_j>#$K1GCCWeaYU>Eyqpwc>%e3Rx-Jz0V`YMV4n1FH+X=L6a^!WEHvFH{(UZ3{Ac+d+{!tJ;yp-cB=; zPae40m7KE8lq94c)VS&6)!%@Vb`dY0jzrHakYBo;!%uz5Y*lcCCGEWR7b;rF zJ#k9^nO$CA)PQAqFW4`-0lrBoDcDru?P%r%318X`Z<0du*!%OelT!uJ;D4DW2l`1X zPv;slYtK_un_BAh*d;oYqxHn@XFDQ+aRMuuIm?6;q@>~gv%_C_Id=Y}z0b71F0K*O zQ^d%UrwY8;zXImrFO+L#o%)!TVcOj1r|3n|U_X5X9(aVxwn)ynIxDY&=LNN=vUiqS zBBoJ^-PLaWgzOu?n{mvFzOQeuuz+WY!dyjEL8{F+1XJ8Ka-Q_>74Zwq?{ah*-b_&G zA3k+|sbOjOYkS&%f6#Y;2R{}ud#Cf#dWvmBRZ~93wa3qM#4Zf=uD|L>#Q?MARorgEn=FsQeHUohWL*L} zH)1K5<<%;eHZdrRMNRM_2R}2?@7m14k`k;oKFp5QL~5oz?)R*QKII2`5^!ssNo%cr zOPbcfKAMXz)NkBqGPzHT4i4|Tr@ZGJUejgUzwu>ac=QDFkA9l|T#@0El_bKpO-rj) zk~_u1Uq$0W$*1&A*SR7>mS&Gbc$E9$=wwMkRP|DJ{EkG3+vGEB4L8@cwfx6Vqa7KF z4A|7dQ3G6jW3J*-7UZK?Fi1&QFzwr#6hCwv=?jy8{HJIzS zVtkvj!^E<7QdVYzKI1I6;|ilOi?L6*o6R}5m4!QOZ{^9pHA;P~4i~@tE?pthyplse zh0p8N%Ycd?^&l13woafB(6o6xdK(&hfGoXj)5l-K z%6;d@-%-tY9qOc|z1@+Xt9a{$VPde+vCVS)ir`as)v=%EmyEh7i+*|u_SrqmU14t7 z`LqqvUZCy1kH&3HBc+B8QTVsw2L-HykIQl0apKl;-})WC$tT<5Cv(LNMIJO(ds1lI zQv^=lrt~FE>QdrhLL+Mm?QMWtMS7{4QI2ooYjTCT|ENU5N{W4RW%PbBfa3P*jz%8*R*Azis3y3CT=aIED^K{cSK?j_(@1mYZ=0gdY z1o5uVs=F-T?mbvI_3)ma+*xI20jhDldYDr3UK|6@)_^c`4}N$xGBJ`baoJR_eWi*K9L# z^0y?4t|zD{M<;rsJW8nj6tSj7mo?z)G@GPbb-zBU9y|l9uf*?PE#YeFj;LMKE%XT! z@t#Zz>?LF;dH~;vrUMjDVJf0??=E5C`_wOpVflQzdXHGS?qFTUDpR3LhbIQqLEW@z z?$8qcpZpoekIf@;WOXV!Wo<*JP>i14DSTEe*(^XcDr@NrYPe>B8~JPX8R{~|^Y$La zl1n%P%!h?YhZ@#Z-9#U_qeAoVq2q}LRqHRcVyuMVNb4vGB5>v9Tulp{*Y;=9>QD>C z(71$OcP5BtWZK~LF|#xlQSmQRB9?R}*UNEKy&;O-*leu2HOw$A_`gyF^hWY3l+j`Zd*%6 zHIH_eK>hgFcfV(;HhSc>NsPus8yYLSQ<5;(J6tlv=A(9R_3NXzyszrL+HamIR$^^ilw<_>~DUt@=*mp6Z;jfp*d<7BDgjS|KmcwF?N8ciLl}8z$!rdt-x8a?MF>u zI9bz8q>%3k2$-$X>pR8eY2Rvfo|Sn48y<|O)sKy7-C5A!q|2V0d%z*U>rpB6F3VOR zFv;L6<*o}`62YC%a|83t!`c~tZuyYA#0Iu~Vkz!ql)FIHuMy_EPwxKyS_5=lJd^3G z&|HydPlgu4i0us@#v-jbRqouXlV1#SlZ8S`j~@Tf>yL8bxsS;tN<53UQPBWi>#^FU zWE{la+6%g$O!iGBZLfbWaG1%|K6Fbj4RCI}SXW&rv_R_|az$E+4v9@jmTJ>3?a8lv zwj=H&6>HhWuP&g_u+FZMce5$RTUqP7feK9vMul8e9+|y@qXO^k#L+5T8YMovi_^K1 zD9||0KAy1MrDO-%pm-#7ohj*3giZ+&pVrOPTa_y8ET`^`6Yn7uW(Tu2L#LbG=!wz@ zUT(fzLCh{O3EQ$sJUZG^+Y#$w>`J|7gO9bJ+E{*6!e-LhUsk;|LdStNYwzwW_)l%U z>GWLk91h>Rxr5Lg-*`mg@_iOn``#l;1o^Jb(RPSNiHjxg$93;V7rj_6e5Ulmsd)y&Bcs`=B51y;vv}_5mWH8S!x? z(yTKPR}!iQ#XuaKnEP~NN;5+2VA1`kcq$2Otl(+W#VoxJ$x+in0N=h0K5^X66q2+P zuEVzoE@;&}iuE}6&x4N+Up>w4OU(G%8LyDRNP(Ejj6%bklvKa&5BQf zNL73Wdvm{AoS@9`OtwhlkCh#LQ!MuLLtp5TW*8z?le^19bwQp%dB1i4m#IVkdveZV z{WcWQ2&?Kt96NmFl!(^s;|WgRMt)T|6jdR_wPEHaa&mTMJ4z}tE}Na=UoYDh9XQjn zIaL6cpbF+1a>rp4#!EWmnkukc7gF5D-)m;jxGs7{MsEuXP@<77Z9I}`yvy}zgc=FE zKmxzqr{R+0QNB>gwi0tOD_$jsL3W#1oDQJRBSqp4;0>=E)e=?6f$~XatOTc33nv+_ z^F-}*d|Q|3wLT3wE28%-4LzF(wG!@ZQ2T40TVPwo2~iTUtQZ@Y@B?=<1qm`i-g(V$ zkuGsjnx#ukl|}a3mgXpVd&9ya&^5vGDo!iU&;Dkfn&v(3i61Vnc7q4cwuyum7I#mL zMUV4IgXxVtwZ^(8Z#)+Y?nIwHOc*a~oRJuWcz`bblHY z%Q6t6f6GVX`ad8=TUBpq+)1kV+FRsZ*$2k6eVWdE;Nj0EsOiz5+oRu1q7vMHU9590 zOHX^|3}}#dQwY@GB=o+F?a7UB{*~=RJj( zStw8a&2`NH&}N$-%JjCL&ItjgVUNj?E^al}+N|-dVA{`rnYw|54$>8D=JL2j)hW-TB^_|pp<;627eqcU$pC-2iP7IKTsL5Ic zkbELtB_TY8VblLIUEI)GObu_3Hx(6Qt#-q26|6MXJgOA7u`wLZO42?I)iumdgVkI( zWZ$}Ek-bK;AXo(qRk>$+-Tz)AH)DUSYcwYT zG+Mun6$rGm1(IsLoWe&_Kp>zb&?X=HC+L#cL9`M$%Z4Q^&7 z-C5fPQTn1=f!d&4h$ZL=|KHm;DKgUGW`5_?0`lCkH*^&Kq4FFo>B)fP+q)&r<~H=| zR#^oe+PvOhY_i@`%>y2XUz%m;R?diZ6InWiD#KScrnl1Xl}mBZS@KDrN}4`0g`{4W zZcHLfX9}!0z!qt&wlH1kUq=yT^Xc(@>?i^%wReU|BZqr|&rGCy^g@oaVstakG#(&b z%RZC`hBG)BVW4S*`*7Z|-LIM8)LEQhmniSfI@?ZH?R=D8(M+{VcOn?J?3q;^WbC`^a>RC6SlkgKJ`wEle2UL{&tTy) zY8RQg>9eI7p#Sc-@_Lx5Rlv_S#?e-o_sNs7>8*0>HlOvUQ&Wxw%qk61*U0zrct*sZ z#M!gyUv2fjE4P%?rUG0)6jo;6hulj>cFz5&#+-4&vkb;t$l3ht*;E_CuKqs|| z2Q{nG{iptf>8(og6FlQy3p016gpPq`+uQ^Bt+tkMKCt<*{|uPlVw}Khd$Rlqz6}vN z&oJn}D)4P?i2p+9?C(D{Gtz6BbnpzJmM!gqx6~(v{#YU-{5WHuwPM_A?iREVEEGH1 z&?fFna?7%%g|4m+Z;!TtM-Oeiyu6Nl){@BFd4-3NUUHU=t+O0NQgtet(pAVjTy>FoSkCuFPjSv4;S(aO^1jwPYB3X~uoFZ)(U#Sv}p zW?83d8)O7M%XWz&2*==OoJnZ16`!QIPZF&k({pNJrF*x!I-(vqS8iRo_y^b`o(X?F z8eIw#KYY@2ra^B@E-XJ}z-51qPF?A3FN>S3DJ!QtOCB4)-2TvJ;)maUs!bGcvGcYs z^Ulo7;%Doh3QZn*>?Ucaj`p7VtmwZy_4!lX|Ec89kE8hk=82b*k<$}r;Lyso1qORo zwePh++L)l~=bBIqgp83IyYI8{zis$`>S9Ez9(D%BT7c*5jwAN3 zZk#>-V{@ex1B`Q=<%9`iS9s#`!zodEZDJpBPwsc*yI#KwYJv` z;B6`7v7#iqqdZ2W`PAp}fSN^J?~J(6kYWPNn|s%x-hgyUc_)5!_%Bmo>i_+YsVt+P zyByuzd)o};F}{4Un!eeyv9BDeu9xJW!=+7F8fY8P4`bruW4P1O-u-wg_2+E=Uj<2p z16J`OIlb}E$qB9>#upy`%f$EXyIT)GR8Qsh3{$x6pT|*>S58nW5=0Pk)CLSyaF3Nb~2(1IyVY#KjB@>WQ^I`Io6>MvY{~zC`^p z413g$!Y{6NVZv8ps0Ttn0p`hB-&K^9l%x-Nvo5^L^+q0^LR&}AEbMNHvZgmP`*bJr z%L5Z%5(4!_xRMk>`XHb_Fo&CK!8W*hvQ^w0gV8qc8FZJxNnd>`&UgTvYx~T)UKz}& z31o~yDp+Jn`TG}-`woyWK|uqzG$~$ngU3z*PxpK}$ae<7*S{n;DD2kP*T>$YjTvPK zbvM#$D1pSKjy$wxTU#}qKreVeyGLJyiEC3I4Y4z?LBzFO9|0h}C{*GA8RzU4O^^<1 z*?XdrFP*JfcM5jtwNDLD<{LP4&LSgd-JP9Hd=iK5_AHP95g5)`v|a`2CkuoM7qax2 z=hIfL%q@FMn(=e6BpAIZ#3QO!U?_bda%>x?64Vf?s6J@3_2ykv73`J8(4p{*<3VIa z-=Vhf)^H7Z!DV4iufE4#kTJm6gYcbMhwMW*UGqFkI0v|V&n6v<%f&RtXZ*7fqEuXs zXN+nbI$j($9*?lMg7@q{Z4i*pL2|jljzddOIemcYoUS=g_R4TsRKG z!4Dx>wzwy(M+d?yZ-<=@xF;4f1-lO5c-LO&oLv0h{Ts+FdX_d$^ia8&7ALsPm+i>< zoF##3(V!@-?e0^C{t=pI@dmYNhSFP}D%3N+}<+M)Om+)*)@q zGmR_Hdj%1>3-tMVxEK%<20`E{6+pG;!CsmL52)-ANwvRs{NM9bZ+A2_U>56Pk)wQn zEQDN#9Fg6z(QbP7kl=(RPsG^$Xr2@#YkfBzFS!cgrAw>}sadyMx_?v1Ar3J56Tv}>YSvZ*Oq@fporb-aWD6-y@Q0xt z9seo`3_7$LqnRfi>;=B=R2-OTv1=j(r1e}7O=LOOr^(Bg?5+U;-&7R(u#~E^OGfPS z9=JT=6jYPprq-q4bg?zq;}Cc~xuD{#KqOS%T~a>9T&zlRt)N)t=RuA6ap(xl;whNdaUm$7IpNWy|2RZIYsQeRaof%$tof98TM zx0h#y%nQFp&BqKi0&vfg-1_?^>8ulg-FWvsw?>47qto+7yyB)DN>JerWQf^A=9|PX{@Nc*nof2L15}Wy$GByX&0=L}jdS{nURo%4>%vHL?eRS|{Dhk;2hBhiG z#I$OVDF;zHk-@+-FH1ka{W?B6H~-G+eS6CUNn7ReK*ky6d zzI!(|41cZOKlkG5^Z8S`SkseCc1Qv9xP8iC7~ZQRK|HPz)jU0HC( zYHaRQ@d<=G(MvhGuTq(vUCji?QZX2{tr*nbD>yY^FRW!>(F`Lj$Yok2isUCY9Ioy_Q85NcRCknB$s;x zyKjwE^1vbjs+zi76Zmp~7ak{5hHXY{9PGJPz9DB0B~fH6AqW9y$Yhh8R%3&>l1F!k z=Uw$4EPAu{*?gfIpr%mrP748)-6b@+y^)f+z=;iPzjZR)| z(-8|5k8q*Wnd9(y^AkOzcE*b#z-(DDI~?cO^#~&)S(M*e+a~EFY0#>bf}DHdL;(=> z@5h0~yFXHu3EFt9iy?azaOTDsiT19+x9D}=9`Rc#8t*eWWv}{NZ~Y23H#vD4RZ+AX zhwd*yj1w7H3s^g9c|Z`Sl8*9-4BW8o5WVbkf0cJDUvI%lzHB0DA`AHukj33Kz=G#B z+V?>!C$Up90;tpP#;|Imtoy;AD-vjwRka&0;fMV{n6;W7y>w}$DMst>^RkEmSog$V zjUadC{&cCSe995k13a+~d(*_L!`ordo!*8{we{|PR8}L*!IrIH`@3x{aUD&bdl}Q@ z?CY?%2He%w-;lzFZZP&A;(Pc@={95N~&|yEYW@+ST{{G0$ipui# z3Hw|zz>2#3*%;mKBj?-y-299(Rhh&tqD7h3^2y^a?owFt0syLf^JVaRqj(%eq&Y6P zi;$c5vgw>qgnBLnZ!k;@v9Wij-0$nm7z$1P+?c0uD0Pm(u4PV8`&;=02D*}KWz&UK z`&4TQp^t=D`{XAE)AKwe?~8VLWT4l45%`(>5K z#SM|?Drc=a(|23*O*&DUC>rP_7pIE#w{5*np*~ndlM%dZntCezD#??Ii@5*?;!|qwYVEs?7)9eFAOWXIK z73S*Bfm)wUASEIPjbi6Lla*uu9Tz)QVunfo@WBwPMtH97iF%vEg zu7&+pe2J_q^rln|-UhBAKNlRR`#m9cc}u%`Npz-iu~z(kKMO0>#Ca}^- zNP9Ee%xim&DB(T6QOe!TI4ML;9Jsvwrg{AOHBmU*#l}j^ELiegKn$A`sY()P%p&%} zJh$LF*@y3Rm8@+?r$+&2e|nd+Ne9$ zOgrD_?nO)06dZJ3cnO^^qvI#^p5%g>?1$Y_d2m!$*4`Rze4%c@l{IRJ*EEr#+eP+? z6~oT;a!7_S(85WDLo||g>=I91w=!?q-i27Z1-S*=X3C=yj8>9mF+h~FhdnKSX3$Kz za9MTuW8V1mrKktKhOZSzWGM2X6tlatnP1RM`aj$hs#hlXjx0?M2`0| znnE!WPH4E9-w1V;Z;p$1L5Erw5z+HLkNn(oJgW$gKAv8fUhN$-zc4hK{L6|@MZ}5c ziKK>_(^}MNv{7bxR0BlzmqR4Y`144kZPn#d1MwLJwpr~e_3n9T`_xcN;E@JAvfrJ+ zF81RD4WX3sH`&5}W_B~Ld#WR&Q$12sSbocxz!QXIdcJhH$t1JN*vxEJ-(Mo;spD>? z7={Rru7}xhD-tR&t$YC7-%k>J562i6#Bxo3NcZFDTWE|e-^1LYs04KJj<2wCA|)v? zq6(1QqNzh#z2&SWl~jyoZhGUPCb`)-o1YB}&s-QW>I^DWF0ye~FkDEVb)X*PF;_<^ zwX!Yri3gNNp1C?V=(uA&XWsn2vp~9%m`tiI(C4r5Q=kOK-QV|` zBFhYRtCPqxL?SZO#QbEpo4lCb{!~SyP``WR>Oey4T^GeKH3n08l2o!)d|S%n*@`>8 z5zekXWVdWIB7JG%i-!Oxb#Lh*UtMmlR)I;XBhvzb{oKUS=H7BOhMoSOp}#8hu= z;7ViJO2(M#lViG>F|K1`bLr~ZxJ$u@K94%vPd}Hkl?`VvtrB$#Mlg%Z&8SsktZgShnY;d0KbM~sI0%Q@NVw90%Z5}2~pnf@&KP+oLg_m5L3& zsTwI4qYEpESX9kJbsc~JGbUOOMY=N7Kj*(JRX;cLG5LZDL1-%ISl3)g{oVM|S2c0h z-uU1mwPARxc#ac&Xs^MUY4sL85t8TS+~Kv_k^JS>hUL>+9N=2F)+^6BWnE^jKubqR z9(`2V*{u_?5#5Y+H~GNKjc1Ge&tuHrv~pxC#)rx1>^N`Q8cco;A)Z4`TDsgQi}{cxjsjFxpi!osD~betQ8OleEFIMXA%7vWX9L-)PxJwGb4^Z+*Msu zOnDKiPZz&NSbKenD$5q0O@g=HHUU>D+Z4MP-*x*cuH&Ifqn|DXS0`RvSH4e!>LE6^ zn*5g?q*CsyDloOf7}HE~SEHS};aW#eI-sWrtPk~Km~@S~R{iT2j?2%ez~W{(bh~=0*d#2SA#F!<$3Nzp8dbSeBqN)PtYzI%?r+a%S$Rs07y+ zf;UQYqN|JbnE(xZ%{SQud5{SI=R}1eq5nw-=qgG6G$>4!=z&`7Rz((iu#D%Oj zlXAT7CageKjbLA1}T$_Y{(&C4{RRG;-J<7$M&0ezXyRZ$8DE4L-(dyK@4A6yVU zwVC6Ns}$;)3FEJf(9^96n#=Z?N&gDS)8PP^c~c4pjp9GU1i^jT=S4J^KLu5d=nHm3 zdfFNgA2RZxQG!vGbhbxsuF7Lh2aOlCyAwDR1Kv&!MpUPRp0ErB#IH0+Kr1b>LhQ4_ z6xqjMhU)7@XHLnC`^MB;s-75MUY6E{pN6K-d8$VRef^&qRQU!aT)AsGX6B=qQzhJ~ zVDnYvO4ik9qS|SCAjsvL1!o8{woo&;#c^IT@oFkcM0`=;3jG{$(rH`c?^TR<+H<9( zU(=#%IkNgZQ;UAUY5?pOMm_)U0cPoV|Any;SQI-{iFD{sR`@>G=1m;+7a(F5ShS>a zJ^LZmv2ya$?d~3R5*c!-H6*qY?IgMoamwnvTjIEiM!4qN&x|RpCV&jL+gEfoy?|}j z;!yKAcga~z#a^qXI6^|U^tmyfpsx5&)Pu!4mS^caMX{rh7`)a^06c!YW48tDiURuF zYbtAt8M3*r{)wdljoVhb%%h!}r?yX3EH9>O-*St|C@SFbLf*4`%JHJH0u0;q1l-Ed z zV(-am&_W@|PJC!`%xYhV-97YQtZm;D)I?q+f+0v>a-yYso}Y>_Wyl$p|09KhEXwdT zMSm4&)FjJ`DctLe-6mBF=5~CY<%Ct#kCTM)hPDJYxWb`!(Dg; zQru=9J}m;dFuDj)gKAff7c#3vmKT3D;-qDgwHEHYq5rNve~}h8QONFjiKZ4>*Ys`> zifvDSQq&v@yYuEm4OA!8d`g}qG5SmfE2jrI78rrw$sWaQZE@adc-JM7&Rf-(o2qvz z*{N`D$*I^)b4JQc;IH~>q^4^MC_AtTD-p;$Q&{=-drrcnt- zy@%XX5FOef%Yx8X$Mk!WQh^ggO9%%R_=DB){u9C~dhT=Y8_u4qx zM8Y_}D>k|jzh`cKyVHEz>hh0!DV^?g?VMi53J*^uLSf}fJE^w^=sk4B!K>P%sBchFdcMrR<87WxwcBS%~JTeqY=XmUa zPW{BQojs14ewdajeo@7ib`)kS5{vkh& z+jh-~sKL0#&MtO!Djh{#+J|Rk0&Mgok5VuE=-&Q=S*^uyMK{DBsnN8NqeYmU?LMp9dkR>?~O61ZG1)xm8bR!SC-(d#4QsY!C1$?ahtkcf5=SUTtpH#K=1Od&DyOS49mN ziVopJK{P}u&32o@x|%{y%};u72*bJlUKugu8Wm?t9PWQNB)yfYFq2(kpI54`X**M@ zaHqgIr?cv3_tl2QK5@&;RF>Wrl7C3csY7v@Jv-L+!-l6p%aNpcu$RAUrSM~ctW}|A zHQ0KV`xS2;qNTz`6>`AEWxS8*DKGin-AhTk;AR^;J95Bo=?3FsrE<5jbS^x8EVh&C zRV~7ba+X78mF!mdSnPQ_6EA+{NRn98QH)e&HMUUyA^WUg3&p%nbN93Q(pa$Bx3YT9 zx5vnpX{#NtST^VOO4@AQuZcA#^$IVzXYa4?sR}~o9=UPQZ?kqY5z)e;>)eWl9gXZ^ zJT8~c?dKDhCP&7lE^MC!Lz`pd#Lbgh`dbeD&@uHJvoz>h%0hxPbU^p6svJIOUF|kq z#O!FHW8-HvKs$Hl>&}^zMS#!OmkD(jTDWwA`S~zWd;c}23}$l+s5U@iDQUX!D$N4} zu!xeN-BUUhyRN97+vUPxbmXKoN@=`Nqgl|L6mI#{M)TD=+)c1W?!Zl{q0{&Epn_Gl zIb|PWY6>=60imCVME z0y*WaOr>>4t@qCcle5u>0Zm&vdm`LdPtuW`tNn`I8z!E7k97<6_*lor6d!*Ufw4~4 z&ZOpNeSbF|HQm*7{bT(XU!y0>90{9M1bwy8%78nQRJ!|Jr6e7$)l`&r|mvx`*P(`E}iJQC90cyDYKsq_)zewv%o+zRU6_NdIZ)rwt=iZznNDaaXBEBK#xu$xuqEB{y1q;4<@N51lggn*L3mym zy}9q?#RU^Gv+$1A+^>A~GWWg^Tg@~lPU?_Zm$_Cv#$6?mlE53N<^N^q^W-b&QloHc zyg%Cncadh@i15#?9NCR0ekkg=5isgl|M~)Vau~pdOaHhXPsrz#x3?d94 zHFEwe+$zPA#ubcrmIwqh^-KySX2*c#OQQ`q`*! ze-}E$@MXx3LC1CayewHmtLe~Y`};arzkwcQ5e4PPUh0k^jz9bVJ#4B9w&X=)XL|O< zRy87Ci+{z)%;bMq5}kRq8ECV;l*yYN?CgIMGH8ecuL-ZTs+s24ugfIR`v;tHUIqN_ zy*z`$0xYX4w~;ZzVjkmNd}V6>Q=HD<@$SaAV3Aysk}w;Oxb*{&h6PF2sJl{$o-VpA zlH9b`zIL52mJe+lO#G$fQe&oMOhF`+*b0P0>g%Bzx{312)}%to+b>tweN?B1jslJ( z1%-IYs=2LF;-D;A`V9M2kWMK2*3w03X4@9)1U5jvf~XL%YBPq4{c@R-c|+A-)do7C z7*Sv}Pu~7+VS!_)ecKdC$u9dk2tVr5jz{sRO@Zzn(ck*!ESN4gI;B%`?H#C-fpN>q z0ahF{j7`uR`xi7DSA}GxC+DNuXQ*?)iYu?c#i%`sw2iwxf5A!vf~(Q38v9~ju}mvg z#J>7j%9-)6LeRVt{xV9#zpmPqGY@&#)3cv>qmQnlJJ+Lo_wfdYLdV0)*k_z&!=G0w z7FCK9Zds6J9MdNI2DSUe&Q4(ynrEG^adJX_Cn0lOpEKd3xlI7dFNYGJ-j2^I|R9`f$3gM_ceSNhHorMajzq4yxn^x{pUIOJ=9wa`V^Fx8}o*$ z+O@h|ixHC@o-*k0!Z$rc_FirmW>KcJb>@xr75Q&&IdTIIp_EmCaA0UKypVLZ$(t%h zU-a)>e!G2t5em*l%-G6Teqw|Z^!~>{6I4=>Fnd8@k$<4 zR;<_y&0c>peV<+sdRnszk;h15^PTdS(uT;7GM;sS*68_L&AD?hv>DnCON@1 zL;P$>mDa4-)&#c_?wl*gVY&t!o00UL0o0Xt{L2*WzUoHY2M2_w-%{(6zAxNzC^_iV z3r953*0U2<>ehCS!xmFnGKFmg;Fse~^qBNmdi5^ZNH|mPAq!0RW5*owDRs`DI!4oJ zx+WO?K;gj!_%PSsqWzR0P2;toJ*l{N#lCVi1SFHyT_}?5|l4sLRWx*{LVZ`|;oUFMa^pJTz zFX-@k`PM!|vObynGH)lBudHf!8BMm$fNQWz^^pI^%76whOr-2od1+Z-pMHyPX(=p# zRFcNZ%F>Y-w8vFC#ZWPtp*4U<>Jn3Re-kQ*EaLsItyVlX&d_=#dR&T(b^AdtnV)V| z;rcJT)3Tzi9@;Ntu&kTOrJ>>6(q3u#d=1m#M5Pc0KcPWS-w)F{njhWDWC-pfpR;X1 zZab!@Sn>C4J4Qmx`U%WGvu4fC(JV0&c6BLo(@slNsCL8C$)?|P8UND0-5vP+wDTi)_dkxgEj?q8Z z$-hi2dXlY*NeuR+X7tQv;gCZ(Y|oa#_P7lxfpCHe7DH%a-$T8*Ue7C8rl zgu47wj!syl>?;>>5Q=y6bpDy=I|$P_iTfVbq+?Hp;s*|7mSuLtmt+}Y>y=Xs2?pu) zD?#Kymt*ywJ7@^Q?*TG8?1QDiS>@8dOb;E~HqMmy!<3KP@_yT5I1tk;zs+f3Wn!~P zz!DfKVfF3QdUKd?%Wh?9cqH{a&Y()iLW}XhygXHA5Jg8=)3Yb%YigM(>=y7$cDEc@ zi~S)%-mzJ~vy(w{wh>h~R=S&si2Qk>yFs;m^zp?75$fq`xK(4U}!%I=M&&ig?JfQK47QlweVk&g7J5Fm;4-a$GjMVbnV98jr& zNQY2El@6gK1dtY*bkH~FJMYYIpP6JPf9yW{%(L0O@4fc==s)!Nj!EbDBnwc^NGXKJ z_OAYSm3;%QE8B`nu>{2&5h@;d<~eFFgO{vG^`$b9gFu=2%d*iPf6!)#mw5Kd%t;K2 z+8IIjfIt=L;?rdH(kPP3(_Hq_F3d`aYZ&~vNLCZ((~XyRx^oa32by9+y^AW#!@|`sJpXzyXOP~{4Uf57&q=vRIoz5u5X$7 zkhDoAXxgrLrE!p-qDpOG0Ydo8E}`$E%xBGJUDxx4{vvikJXyX_sbF}j8L|(r+U||o z@Js!MnjRnbJ>%}-sN?w%KdTk<5swb=JOQ2N`d~oc`H*}Nej`YKZ!}woAoYH-E#0+z zg%G({QU`{4!OhpcMb`0Q*9bEBy;y2B_`$AkQ?r)93=!z|qwirXhZ&@CKG`!wg+iU=8;Q5BVS_zfOa;Dfd~v*qTm<7MJZCsD6%k*;Re z4KMLhdKN-FH_N&^?W|j7Gf@rFXhI+;>+aB|gdLPhumIVpR?M88D_ZnSINh0zY@!FY zH-H%L@tep)9oD~PUT+fk5T0&V9J zlf_YE_;g=}O1oV>>>WVG7*(V1`n?O_36TQ36={mz1V2pm+@phIL|b`EjdsCv204($ z%ccdBrmlS`XwQ}*a)6_8gjfgTB7J zL>R9xV?l_8zsVPJSj{Z?DC32Jd%)-_<~3Ct`3A*O0;0wZ9D|4)D!sO3Ef0R3hD50H zHky;jH(}<0>b$*q+YOcHN+bLMs;>#l^9^;WWy?n^-l*vxd-!G-&V_14%5v|?_wXYb z5E`C0&uWprlQ+Cn@qOu8Nu}*v!vvc5U|h5fIn1Q@|j&c zY}*`LwSzu~{1WZpcdlm7u#Nsq{AMxdHnp*$Cik4$N;NE*hjA*WL2>NB3^bmrl%dHb zbCr-aJ(czH^rb)c+jjaibN zXn0omnvhy;2H&udlhMUSOzj>Z=@x(7Q~l8rF?V|cmp!yVt2uf!^GsjWJBj3zMxqJwAUf%FkB2>>_Lg?Y#{25SJ*uQ;eX^iY=WX zTHP%`-BxbS^V$0W=1!HAwGZF^LzQ+>d-R8@b~5dv?mOkA{+!lv044luFmF44N%_5| zsO{L2vYtU@rCses2SpD2_!~(q>g#efaye}-z##lh%CuO}R-5#8=?b3|n!P0MUwieQ zwZOA&#H+1;`-yCPUNV0*#^bd#Z*=(_=g);^QXBp9jH=24_o_xG_*?MNmrlW@d_d-k z)3QsdCz!`hA;Q~UtvjMSeInXdjB-jDMd7Nr1R~sXlJXiqjzcyF2MYUdVS=v<3u{)w ziYI8n?JDR#)@7nu?U;|MGaBU+>?t{#iWq87mfkQT3D^cEo6Z|{m4+)eMZfT|MfZ9p z`vq0d*`eq;XRTRaoSRU&M}9jKMyIDxU|07KOaIb0boXqM*m^*|@poUVZfLhECdFHA z^>pQUEz-UxB{4Az8nHQv)53VW*U*nEf}WJ|DChmccmgh*8UkYGm&MgE%F&GhToFbc z;A;0%sC2aW#G5r^JQtVu<7|WZ+G;IZIMuWESXFagWd%WU)Dx;3htu?+<^<)6G@jKB zRxe@KA4-2qd!tU#2WU1GS6%bftYxmMWLW5Zw56Xa*Ymd~y4UL6pGgC#U7yTlNviD? z7vj<)H5=CTzKGHI5ZXM6Q-vBFaI43h&sB95ZT&e>!`B$s0?MLcA z4;!wg++obN(@}{Ae(GXPSiC#s^2yGpet0EyJzv659*`(oaBqce;K&ojL@zm?MlG7@ z`ONBIIS+j0^^su*E#aS+(95$rtT>okGvQ^D6|97U!fJ>{B(b5M0DsI6v#T>NFU-?ssOF3HEDjGg<|FB zm+A_vJ!h&bqlfD25vqWDm>PAnczL49k9wwwXnl7RL(PYOedpu+@)7$+y>D+`rFh|@ ziop*Luh+0qm0kt9+6J?%-p&C!O8lFYb#1aMgGNP}bVJx8<=)`vAaFe`s6XWA8y0&YWzp9AJUbw6+$U2;fxwiRCdA%;;A*Q#zQ%IQA61MW#uG1op!yiPObE;P?_Q7_?gc*)&;Ke4#mjv>Fu_2FxCMhUK@ov2|npk^aJ~-4= zoTu3DN#O1llW2ea(@IqOHn*(Y&2}Jl14!CbjzvCpBPI+7_F#P*@ZZLN7}7D-1QgF@ z$wxb=bZowl1u3yke~j9Ik~QUiOqT=m8|`eck9I3SMVN=cI9btK4fVmVAgT?<_NTN& z0GT(-s!XmrTQ_|l*lDMd{8%uJHhaKR_NXLSQbD=QZ}BVdQe_Y?EI1OunCI4wRh5j< z;F`Cs%ct8EYcYEt`(abG#iirhxDai)1C z9fpEkd-V?D(-qx#EL~txGv4_)AtWieP`!p5ti8sE`D?OVLCMP_>2p^mLus3=U3TwT zx(n-z4lL8hnOeoD0p4CDF!u>7E*>&n@zQvN6SJbkQnZ}_sVz(1^NO+E8AjCdE$(Df zC0G$y><p6qErS#7;JysnxwJy)E) z=zfO$^M)4+t$A3PEq~S4z$QBE*jAnda5r#BlmY(h>yiqJhWh5SvGxm9vhp=^W0`<~ zZWME;^~B@v4T|04$xY8^sYif<4!={@%-yQ6)igJ2>A|WG;#b5!?3moH{?xO{7TeoM z3s|T~eQM#$Cm__am%( zJ5PKUl(~qfR6KV@t3J=SmUF-JZ7^Qn_p&cb&f$Zb+{3u&HdGWyzcq15f=~Etxc)N3 z&mr$`WO~O*)Zm~R_L?iN1B22Bh`P>Vn0bY12U>s8Vump3q|}du*Q5GbocTB6Kmon# zH>_qu^%os1{6$>;9n?vlcj+I_PB>)w*bq`Xz8v)3Vz6j!mu-yJ1sLrqp>)1iz~K86 zEn7}K$d~;#8_{%nplv>zYtB7NF=g6nTx4mi!SwS~ET9+mx_#|owsiqeo$r#rlfo~$ zw{Z33jWj+4(!^X61~p25^au*!=hgD$cQ^3>sRr21h__TX$iwJd;oh!~oTgZwgSmgf zx-;68TR<;VvghhECF(wj3AvZ^SrVXT6d_a%hb|EAsFM<-f-0c=1B+l@x8OBEWYP3GNT;}#stX|FN2NCte6ao%RJU>Nh=^z~f>!uxoZ6p_LN zRWI&EldnrWH*ndc6fr~ANM5&o(GI{+gBD=hqGvUP#{*P!*euENqy#0>BP9l3Q&Q4u{~^WVjFjKn*wL&!%&J;e5Q(@5!hpL-yz z3`^1bRn*mU^Olt7f#bH#f}k%37YD*`@jM!KKJY>io!>EM_Poai+VLGBLOKQ(zMEp= z(p@yk?ly*LkrR8qY4U3ul%SigiKw>UXI=GFW|g(+=QSwSqz4LFDmcByvPnykex=1>>C#KC^_Z3Y12|fLx|2bFzk&a77N3!-l2oVe{0J zs^!S?e5!rlEk_(M}wwI);yv{2x0eBV%|1%QxJndf$!hexsr@qf(i%3)JjmGN69kNe@w zUTwJoYCR#b9Etg0H)iwSc3L}m?!rRuo+O=Kq|nV#cwVE@oE&mEi}X9^v{O9^gnU{5 zh2`G4ql29lRi$c`eTRydfz7D~P88{`#8`94&f(Yip`Tr?zTi~Q&}`{M(6cVd7xS@N zWa4l2LCsOOYBtxs(`i0u6N&1S_e!bf>0_xkJF;QfqbfOXlHyG6`n}OcRN>E`ma;Q@ zq%690l@MIYcQ?Gol!o<2i`!$wH$hU{)A{g~3ZR_~_PjG|$E*70P7crq_wG{y@6T=D z9dR1z=-%(So#OY}ERPf&wRsd5o*6eAcKJyCppDsM%^wsO_XywbN!%i~Z;Ohw82b0P z5A$Yxllp+ZrmJ{vCqbo?<%EtGQFIS*y7_?%>vqQ%KWeAhOr^TkSQ^6ACtuZqWwYKU z3fM^n$EDvV9|d{+p{nONKz4l^aqr`DaBcj&4dfo)>;Pf9@)`yrc0Sbk?_|-jKe4u^ z0%<*yY$9x0-N~hhn*wOo{o7|V6+j4LkNHQjf6=;%nJ!u<_?YgLtLLsLzrJ@&U{5xRO}zIL`QoYjV37!@?zpX{yWt~3 zNCoH3L9`n1^DL%YHsCzP1;>Df;*|g^x3UoQ-R=6UZKy}QHZn+U($58@6Cpui;D4Qb zS(~7~@_m`IL|2XYLzPeELl_B{JnL7v$>d;U;_^X0QMu>PC(Zcf7gy>SX!?;^5)ZuR zMb+%~q`}v}at~cms`D>Mu8fN6a;V!+nx05?bvZJ}gy4llfqK%oGh`V>ixdEgVaTSH z-=tDkX)o0UW7ozphzj}}sT{c%+2P4E6#VFQ!>5lBLFrSDxj;c@26FmCF|eI00^}&J zQ`_gulxtGZK3fb#1+DMVqW}g$cJ$;66ZLt+CWCd|zgD=jM7->b-`cslgcwM4XIrQY zD#$&alSL&of>At_2w)*Y8WN+Lb#EbxA(t%G5Gi5_U>la`D7ddu`vPqA7sWRs2KASK z|8mX^55O-#+~ByMm2CsWRL||i&D1~eCB6C!k~uujGXywCKampv;pI*JSlSG`Hdrmw zpzMsp$|JT z1#hh87Mx2_hCnmMqmby^irc7<3RbjAIl!WSe9Ia+c>nLTYxb&CoJu3u5a z(+WELi}IWwY;j{X0cx=yUaNH{gb>4`{KnZ}Y5rX1Z|B@W8No*kikz(VwSeTZ+PjCU z7#h@$v$V+9?#c@;fiIqcZxJw98jpejWVKGf*qvIphIp+yBAwruF8?>IpR0#7&IqUH zb&bRVpsF<^oGtN6T$92$RjaMl0?*_b-u%dF$S1tCff23}9sMekq+gWjer{`L&sV#8 zoI*M7?RS|#FPm8C2^1I+qo;&CJ0$#PXTiYcjgWe4!kBYi84|cl-A`#dAZvYZ zk-FN&M7EWRY3#yx?qR3-C#W~BDm4Px4>95A@1H|g$A=hylq9T?Vz>pag?sX77$QDO8T5`4>~Sa@NJc2@r;2k}T^{5s)@T>AE}U3D1V%Gj zC{(cKiKLG5X>&A)6?Yi3826(P{8df`U6HZ+)r^^EQE~lZ3NzkB34HjxyK^|chqq72 z`*SO2%&Jpp-b=w6r;ztlxvE0Z%2O8Lyfyr zy!}wM*9WE9<^}ZdQ4iKYwa~jJO=&}|dzc;8&emndhCW&2YNCirlW}K%5z6Vv*K4Gn zUb`P-kj^HZDWWQy982KIvcEsZ=khW3U3}7W@dU=AQT3r_bt?6OXE+r}JtlKC?3!yR z#rYoh%%|!>?ANj@4uy=)e#5|O+$}W&YkMiEl4V^$SOGFykI#iu!fnKOrbE5zM=&of z(;SN6kv?`XqT{j(IVDs1p841^ zrJqUh_zO3;v#hl*<%$Ns#*#z$K7aNrE&Z!j%Erd<5s5c%%cZ#L34u&+cWGGA%FEZG zqRM?;XN8{*+MU#IdFRqXDSR4$BwT3FQg!F-Uwp7JR3y+a&?3ea2%le5nwR-!5aoGwj{(D7wES+1X1m2xXx{irl5KhBmqnJ> zr%t!jg#6qY2EPK3dc+#r!{KU1Xnu7HN&u3Ti9HyGh-ip^?~1Zd1A6w#mtgW@$BX5$ zRk0BTH8>%r?A1iyJ$f239km#z!HoyNXPf$K2EsrZJu4q8U*$oPf8L%VNj2lweQ&{I z4y)0aT@6_auCeZ9-{qYq=dkv>;A@>7y__XO1^cy%c+WUoF=ATxljK`&i%RMhk%$>O zde+A5-vI|P>PeGX61|y13J)Ul`>cX+%-P+3J`zAA&hw+eLNR-M%V5#^hL;0VKd&OQ z7>m-RXHtH!jONO(wmKgA)koiRibVZGXjW^RI9K>Fb9&j%p^W%g56>9V^G=t%K7=j= z9byn{$=X1rXSGH0NAZ}utL^nhDfUbbHBBL~F#}T2`)auD_?FII!2zGB7ZCf#tW7o} zc6nAB+yw)}!kJ02sv29rCUhVx@2y>MjdGG4AJE-S&)TJ_wL3&lH{kvTi(d`m*#~ZF zwJCEn+!e_p5!N!pgW;C<+CE}`uXf38=Xxu4^ADBc@E5aLHCp$mfJ_6f~y=(Or$r0vuW^~y^Zk*kNg?q0d!Y`d@VT{x*F%p zEsW+|jps;LyiO=C!fy6HkJxfu3mEB*h;nr28{8C2yZNuHb81Z_o+c<^r8bW5R${Vl z-%6fo|7LX1Y2k?Oat8=qBr|Nk_0KyV6IbH0g!1PB+KQ?8;clKfbrdMBAcuSCyJ^$p z_YT&)5g%s!$s>%4%iR^Iqws8lQNBWF)IP>S8a9ImF2KBS)wQ-Wukkq(e4)y$^tt77{&8t-XR2Bx4$46dM9bVR- z%7JAm7qV+)0X%JQDi_f$k1#i9tIqTnpmJ(D-8j{u)m|F2)#J^{#%QI+m6z-A5yxo7 zti%#G_f;j^ciwN!;4gMA!}NA%DkrKwm&T;E`9RcPg}4M5y}{EMztE#OHi>waxI+n* zdY1Sz3>3s-ML%aUNdLJIAe!CDe%@4;&7E#(!jKHlc9!!KVlGR#Q;m`StN3AhuePs8 zVwa|Hl-9$AF-N1B3uS(=i+SFyo#q18>~YCZc}&`QN{=q4c;74h--t@BnZ1B#LOQmu z93=8H*`yQdX}jE+;nLR=c*>=7zBqN}&`WH_G&h@xR)z4PWetkp$@}XmMc;&4O%lo5 z`_l?L*-Qe4egPJi#wFZ%MNJ4s$*#$*2v~^wtnCDDYNId&AdT8=a5tbrgBMCHCIuun z9E`t13=v%N=vh_AlQ5zTq9&fWshS!;w&l;W!iW^dDSz2q+D9uaO29PvX2n+@a|2kg z0d`4WhG(3KP*3rDZ?o0mjn!Yo*i-UgcZw~apQn-&-OB>g(&2xLj_};M^41<$y9bcH zOn%YS34bhcT6%lCHo)lcPM?sIn&?`ViL?H&Qjo=U6wS+R;(TVxXPjFh1K1{?m=~9Mto%Klmqy*?CD! zWJ8)U+9;?IO6B0a8HDa91WWapwm5Ki+rhKqcZ%PPJXbN3Bt~$eBkOvk)k6{O|B-JL(Blw850O6q~53bLCCPEzbgh{sU#pl zC&jg+ut(va_(^9(OK(cX&09VTm{N7wL<0i|v`pM`-V8$Th1P?zqI}A(8%ycSmiq}P zv13_NKldx8pe`aX-FD8y^e4*DT*sj{>$mGpowI{%(tIlw{XN>QT z`kMah?YNiqbwh$ZOtc`EZ29aIT%)Sg{ik$Ru4mG!w?~i)@(X=Gz32?vA~Ru=lSD5@ zf$Y2S;vyr-rp!VFDEJBW&_}F=5=(w2BjCv357nLW@aD9G^(MXkS%kYieu|w=JU_Fa z9r)MnQdt8Z8%X{gD}e!8RbFbz2HSwzl^so{!wd(7GNJMBBQV-38}I|j{TA@q5^=zCGVz^cCsDV#4iNbe%<@k_ivcJCzCGPwTcFhz0cVG zP~pn96!83>1yJVa%0gZb5KP#iJ(gmz2Xq%U2Kb5-&fQ)1_}l?#)F`lGpO@Lsm$BPx z3!}+2`GXhU?&ZHZsP=Ct-SRQlsIu7F!^}OGTC`28a|R9b(kznCC80Id+DtDj)j+VDd|53h^K;1x_`|5cX@7C(9CXXhN zJ)Y3pls8n-fkZimMZP^ow_YV<}AOnzevm&`G;-4`zrf+P>RBvIf_PHC3&WIF&r z(4uSJzu&3H>j%C3d1QcDS7TG0s!~U3lv&mE?=QD)Aze;U&@K_atX<1rjlhsms)U-; zY(WF-ABi=*3=%5pXOJHQhdxFlb^9qL+&e|N?Q2~v@Bd1P6Ox3R?|LYpJa<&=Bov{h zd-r;IPCt_mgIbkTw04j$q1IWZ7S8p^Hdh1LtY9N6z+-&hG?K(*bmii7YfXF`>rp#AG=44E*2+$V^9jtFp#kXS6Ryz26H1nMlnS zShq@NXLk_Pkk zc|j#p>h8g{M?{_qgMb?;)kcDAmlXX_^fFa#bLclfIi(K>q+Mxr;;Jl^jVR6|Y3@#h zq+3$?2m8!e_jmcM%7{MQ4?outOf_0wKg(Gay>WriHtwO1zRu?MU?Sgv_2kAn98|VL zvl~4-=~Z1+UcsCf`V|cS@O_wBIvYX`_oj08F^*bk)@N8q1YLW(NJcgsEau8Jjy~NN zV?ROU=CG&l$%tYLV)#6eH1nN3$pke_fnaKnIqxU#4;z&!Eg?DiN4~$n{k(GFM(aw= zMi4HMKx+#7@woQTb2d8w3a>6deoYKsYA7LU-JPOnUm7H`l7j~=7=Kl=(z~Q|+x)E# zW-(H66Iaz{nd!)fuC}d-`U_3D1+pjfJ74C8Kp;;X%97JllMF}pM-m-JzSO8!mE9{% zGyzC$FZ29N;_tYi^QSxE@EI6)JO1waX38#+oAg1yvjfZ;GlO5Kph&dlyF%@>EDqsP z;rVZ@?3EEOnG<~>=Hm3)N4Ye%cmU^Psfm0zbuy{c$iz0QSUS`mCpV4`RRv|JeqZlV z9`>Zj?7GpX^RRpnpPSn3B}ItJK9(_=&D(2PqB&W6{ZU9PN@2^9yD0|$Rn-}Cf{Yvk zNXPM!Ouje0C_zL0Av5o|JBSSUeD&VPSgOEBzj;BJO+DdfsH$Nrv;;q9Hpmt+E~2CE z6?MU!M~ZbWd4vwSzH{9Wnv^?_VtE(eG%5YC zcABUdjA^Wt@fc{rJEuQAuNPuCaCt2rtSw}HC+_zQuImgqA_FLX?l+(D#xgLu*>FRA z;;G5i{i%=YPt0%bR4jnCJ>OUUp{n5Lk-L^o5-MWK11V2<*2AN1(>08q6OZv$3ab-2 zm~qMa6H)Kmn<0Su=3oqaskkBcjEMs*TSe1C=0iY3S`J_pITYV>s-wkwGr{%5_0Z?l zS@(6@_4uy6bQed8`|vY`{^#J!y2b|FiVL@-tY}{e7l~yxhI_zHiY_3?7fNVc*g`dh zK^E;Da7qWTJN+^%MJqE3^hfawJ9dR%W!G$M3BskC$z`8x$2ChNH(F?4jLtB5G9)=J zC)Y|6<$aRQtxdAPH<3n0($SjNLq~S8Srx1$1kVIh&P*|LaIsLU4S~^1f;jn&I=hws zN~^VkfI1D6LtX`RoW2NU-d!al4SN>C7WUht3H2+V!)_lDrdPI#FQyNs4|XSuaiHJU?zSEt9xs--8sJY|!|*(~;G5v;5`q>!&#Im;YJNd0kW$--}(1@`cT{ zCxZ^fC6hftr#t8~&VlY}?*B+VpxT}QSfngix~nZmE4{3O(m*~?i5UqfhX$RkW;5OU zQt<>$vDNchMbH1Cy5{z}Nz2cUqD8Hz5Hg=o+6ZHyNQ`IQR=%aq!<&9J7CHq{(&sU= zKInPa3dTcNkRr{d=!(gMrrxSuA>-0QqMN;&}IQFdnUi)lAz#avHv`+zGE+hSHz5h@x z`(#7TwJ)mYFNbxlRT{4vbD(Ac&%Kq-0$m$TtcgTIO$fI!OhG5Ji=yk|`)zd^o}Nv| zsU2LE;e~kagm}(&=6E`@)=ykgUjen?U0VY&d*QtjT=X-L{CsLBgz9<{`#cQvtFFo9W!Yiv@xE3xY&M+n z63QYs%eK%YOl2LMg$mJ{8d;#=*9x2B)awG0`*EN@RGAJna;be6Mmxr8v6~|`wi9We zx+ZaxIes5czg0XQ>8-eye@@ZO3pSi&olu+$4XdRG27I4iE8aVU2Ee$w&vR>}ewzo| z?P`&U6k+eft2Vq|!$ljCeWz(*>R!$MjVNXgB`|Zm(u}q9*E)(^Pe_mQk@j>G&=X!! z2sIG~FtEA)9Lkq{=V8ihxSyzk8`o|qUmSn52IhFm`IO8~) zUwFnOnyhtduTT1cfXlXt`1SK*!tb(z@CnFP*V{?)Ic0uIuT=b{-EQzWy-)_L|0W4h za`lgwE@COFH=90dSVy|*Doqxdu$h1@6|bIB_HZoQiZ}f!z?8== zUQ9-946m0iWutVZih3&WYna}~uyhUaMcE+OHF2>|r)^D~dymOinOfc(w842oUQ>+n z_3zUs=XffN>2#kb+!XB)tH|jHCz79Hqigp3#k`d*I$dh+2TbKaMa2SF#q3}{>^wg+ zFCyoi$;T`m@L@=S@sdaE-x~UA#hu#fz?TuUc`{!L6nMT-r=9L9v+X#N^?#?kV}&DG zHbuVMX^0)AaroYFBWq+_!dsTI!k=GNYF@gp+(J(;1Th4&JRM+9ZU{{1?n~AN`SWQJ zX6e8uM8=A&nMxGEBvg4t=SNm!v?MsUxw`x2Z0&gu{n!RWv2VkFG zv^8DfjwzYDA5Y2byJlqsWKvF)QEk{{1JoXZFY41z<+q?*WGqOAOn@jG2 zP$gR$|9SmY?Mz$jNb(=5H$_6m%1v42!1vjdVNNj~#9*%W(U$?o)~9tx;ml9x|GQdu z2~KA);?fyLtnd;&HAVaB@xpIQ&84E#z{qQAZKbqLGUSo&Qx2i8Y`PR%&gvaF+$H=h z_P^TxP#ykvFv2YgN72Zh4*j9}KgcvSE!}^7>Hn4gAk#V=51m9Hh>Xbh)g5Dmy?yNm z@6sdw2bre%|B&fvvRzX_lma(5Hy}RWGQR5n**zWu-(Lqma+{E^kt>! zuy9>#t`C|)DLXrdOA~(bRI;qOb*e?`%UR}5E9xX=~ANw`$9vqYxEmxyb!}hQCA3MxAD*_r0dYT#MahoIAtOtuP?&^G%a?`)pD9^H0noRkO`H4ED zeSF-Yc=_(Mmwft=5Z<&Z=cMHm78#A6TxlE`@@D7c*yE7^0p-<(hZS4lj{%jP}l-Fj1hax7SMi<6LD^4ZeDVH@UTY2iStX*F#3 z%|&vPi#cUv_PhlIP*!%zPi1HNPToh~w4~9`uys334x9@L_6&>ttlhGc0Q|zvx~u*f)QRB5aPw^~I0T{*?Q$rOrsRGhxW=puuMG2&htX=iVq{ zC2b*(PVSkp*uLPDQ1ZDsw>y#$Hd7$mZZcBmSZ`veIfO^Nn8 zS~w&L9=!DCTQI3_Z=oX|;CDYTE8%f1g;rk7#Av7tbkGph`)(8_BL*jqT-(SFy{SMy zR6{e^t9+;q>XklU60TjdOOjGfueulaK}Y|rc!vVWoC{22f{69jqW1bw4Y;s}Wvp%C zM!Pd=M9PL-s#45Z*sE7##0OrwKp}xlUw2F;OB^-*UmZlJ|ath%Oo} z0{BJ^)(<9&Cj87yJizC?Iik)awe=|rWELSQZy1+Xb1{EXzw5pD^p3-E%g#l+1jZxn zl=whX^d)rUEuca{d2z~Swfvbv@nOq|0GsScLLmnqb4rCB4+Q^0?%m`HO((y!dsTe}tTixI{g?Ff*LKN#u9O<>~LS0W_t-M2N5an{&&rkX#SB%OO z9UEgLxGCAzBAkWNqL%~d1XIE=D;X`ezVJRy-!Q4IE<~G~{b5`uKLPa2K@1R)0Euc2 zwwrt^E~2qns9!`I$g>vW{%JKIZ6zjMVPre?!IF9d(#K%fTjl#O{_$X9R{ zskxFiiPq1|*7Ih5mTRiNoW4a+U9iKLVj%kKIZr>uGBqiAO7DF$EqyOSij9zTDf_}N z%xzAoRRchqlW+L=ldOQ*(nNymzZZsWa~p2bOfMsBLw&09<)~`>R5$llOWo#e;bA)fC6x_a#yn`-KR~>s7X$Y)m zxnM={YTt{6^(O23wKsT$V{KgT&VEnDQ-0A>ASDy9r`Ap)f=vI!s1KHJ)H(4IX_Y`F}Ixw@ctZIWaKrU z`$M#6lu(Bn&AQ&jV6G`EEj37IEB-96b$^F^m{~v&)$6sRoP1mrx%%S0)8OGIh9D0Z zZv5-CHuY_$dNC~f!0gMK^1vXCrExRNQC2{Q(c;s^yp2M)FaLlFd93s&ufUhDnlbYZ z*HSn9lkZoZs4@!zx0B+u_s@#%NWNX$Thx$5QFRpUvvVG&2UiU{DE=5cXW6Ig2OCnq z*4WZ`zvD9gGh}p6XAw-FE5vAYVe{4l%OPC?>E|q#b3R0DP^J1{7;)$H7aom_?{-0gU7ZTP0M%X( zc~ZR6s)26Hzu$%6-m-=ahtjDKl)71a4Si4T+DfaWQDl*<9L>EZs&p@91p~rQ z(XU(%Vc7z|YCcN=B=9-~?Scl3?cr=e#E_B6q+*j#+i_ao1!~no#ewqja|BwS#vP-) zI>1j3ELlK>XlRmDjaa>4DzCn7U(PQJ!?&E9GnP ziv3^vU&GcM1YC`(8Kg!}=Np7ILOTkZEc1ImcHbts5l~?1o+&8bsSZHI1>O@MH!uk)?5qeB*bOAnjEF?wyX?FMqKo)dq%s zR_zTp4#K(Ey<3|}o)usD!Lv2;!8qAP13d=zF%>W^(MNl_WhZ8|R_b;m^n>iBKdQiJMm zBm7|{NS3>Oo7_4aKOm`m)MG#Ch1ods0YV~W?k- zOecn#W(m?3+q@|o5Fz~%zYlDO0-~|Dn(OaE?DKKkfxj5u5Ck)d|luy4K_#lZ%T*pip|+SntQ1Xs1g^ys3-cU zR{Kl$!=m~Knb%imdwF|U=LHM9-<5`Nb?n(J*m7|9NeTUU$7b|1Yv~&UWU?WZi$M+c zV~;kNNf7w#gMVlyIS#0-sMD1TYV#*uqKOrOx+ps zLHI(w-)tI{usTOQjK_lnw9Pr5%{CiXnS)~^9Ct?_&;`mq_?24)Znv|Wckv7E&#~9D z&Pm5eGYJw;7|r7o9Ksed1$NH|ja=f18sDV1{hIo!LuOh!sA4=r>=;RY^N{U7R0hUP zZ~A1fSP*MB;z+X1SS6TpO|9o5*Sm>6(Gd#R?9xx zU_~gv7ZO8(94S6N_}+ZOvE6S+^>PG0l&JXJ2HQCZlRV|l=DoJRF^a30h;EGukVtPZ z)q0%j_Nlf(vDcch@x4d)b%F$Uzx4^%Ln6y^<4Hj7_#xN%XTxSm?~`szhq_VtBZyp5R1(I+2<&8{(!lO4cpzz#VWew_cAOixm0l zdJB^e9Upt_>IVecHJ`RHA`}Swv3_nSg()WU{S{&;jVI#r=@&`#w>gOuJTXd8VPlZ_ zPlV&}H2gKih~ZyqY_A-R&h#p*+Ikx1ulmrIfyY_ zds|yluK7JgKf3uWtzLn;wq(cOKvimy<&-%yow;66^>xnE?pY-z$-PWZIfQS5YE2L~ zvnAx+{cf>`tD+@}Rz8Mjl?K90kAOp(ypcT<7M4q5sd^sv!=pLmy_ zKlb&0^!LWxNoRPE@W!??@kT^07n8GprZvp^oy&ZQAtW0-sql7Mj(TS<1^m##%vcKt zy>Uq#JEs|pndM=mBWb3U<@?S>(G^tHxvq}9E2Y>hBtZs9oj!KD`fFR zHt*Qrn|2qkC%ZPwS}rF0I$Mb+U$kRi95o+c@b5QiI%>iTuL93fdqP39%uiNQ6vpKNO5CT1gZ!9@|LoBa8*V zjHJ<%be{1qUFYT(mk%iNDPqbB9L5R%v_)RAxz+fK@qVb>XX^I~u@k`O8qeukvB}0} zjHt7nTIT^(YrUDI*h`kUSI;tZRitH4yg85auJ@S*wv=a0Tk=Tm=>#HQ>y>179mrET z%1hyakQcr2ch=OH0rMI}>k@Yr8>c#fD%w$Bl{zYGqpCeH1Lx$~Tw#ZN8vCu#02prr zovq)jix*h-eTUP~Ro7*gX{TGox7poXkeHBTNcld}R7`|UOfbhtj$JXJoYa*gqQ|8} zbZZuEuj3xM7L_bn#g=iy3(uskYqmAIzmaW?a_t17l+1ZQrs73a#0?hdV#m{!G41P_ zJr>=0y+2s|`h*5IymQksLR2XjtqSj{@ur7n%6 zc3FE$i#ws=8}vE3-5hV;ep7hoUhaiBOZNz@T1_W<#QYtQ8~p||mO1$W^9ir= zuv~rZ0qV5DKE45$V0|J-P%f(b+y<+#Z5T6cCJ{*;rA$!e?At3k%pDz!uS<;M{eNt| z1yEaE`0k5KacGg^UV&h32(Cqn)jo>5v?WLg?j9&EMT)l2(iRWy76`$uxCRI=A-H`f z-~XI*=gys*o$MqtdnYSvCTp+tzR&M{M7X)}A?20|vemBFm;o|ftb1jXSt(pDfn6pe z#cT>_O{?&1NBYkMvVgc1aT9jb#vA3A`uD3z5c$oE!~rX{&(5@1@n1| zD+c1m6P&z#iBy!jODj}X9eqXMNe42?-W6?<=Y z;m|;Bads=Qv7bh>pzVFkVIY(t1q(F9iya}#L1mfL9RO1g6*s=;Ua5I}91ni@2rhiF zXEc;-kanD+4wmTg?46c~OW$CC3iIjqzS@&Q#SCmtU%$8$IlD3lw#PYhpr<3IQ>h4v z#l595qE}yBSfosSrh-vc=Ku?Zh1VigmBd7l6D*1vP|k5I0u(xE=F)=(DFwCw=8Q>mCJfYMOu7(8-^WSYC*9qkt%<)>yR& zTy#)N&YW3)kFW0g%cLEt$et=z9U0LO`w!j?V7f#?%Yi??@RI+zt%*QgqiPn zBLZH8G?p0|Nz+$a9UwJKs2moZ^;usR3h?fzuzJ)k`kZj0{VWCl>j=)afsV>4Sh{{q zru-Mn)6iPqnCxl?OFPu{jNJ&RD4l1sNkhW)3ja@#lbt z-Gf>$jDt>U)UZ+KMvFJ_iDn~*3$@giP4JJT$>aGC;WiPUQ3?!XJEWee(QMYe6nXEA z)Ej*w-aUx&Oq9B*E{HJ5|3NZU$4}Jztgp5npbW~($m^US_$X^jS^h27`!_?vVGO!Y zo3|9SBzolcp0|QBUh$wrk@-DX@>PN_yu+*qixC{mF4pY*NPw+u`K1^e{piV#^gkk1 z=p_y0YqZa4relG?*W?_A_{@&;WARMm6PE%nN-m^f5FH&J7Wc^~A>M~owDPH!BQuRloivvLOR{SVnfyXFt9qCj8TfIwms!ia1dorwoGIB* zm*E0^ZZjRr)1PYE_B~w|c`Dkbj%?IYqpFIyVc{Ln75n%2guZ;>1$7h*u@ePc5XOqd zS&AFMGs)B@Ym*?d;_i{-3`3~G347IUs>e{7{*-b-)wwsyF+!@U$wz8oBafC9!&Gvc zS=jnM#xWymvu3WVaoc{`slq*V>u%0UhZuhAH3@viq-==&BJ+tNZ@}_U!y4f6-|tf} zdRkwbwWE`l((ENf4u{PEirDWnGaG<=IDo047W~($@O>;AKlAwBS6HEaxP$c!ay_aL ztIh^UuKtD!6B}elQ_XEZgZE3B@n2FH$rsnJ2;?dbCAhyC%BDFGX0<-@@1`TKZA7uI zS5k@?CE=2Ql8_T!7OEOKVTR%{yv$XT_YVpNiSx_LUu=<@yj7ZZWRZ|^WIW~g&DoJzHH(fi)^Pvzl#m`bC7CY1PUP4hs|CSkQVO{= zqg_c)w-YzefkMd4545GYec4x)l*G3q!MGb>8ksptz0P*Y2PXZtg z;V0(uGs6$op3j(8dhnS6ML)V|EauomsC_?1ouL!7*;Th0g(Z$rF6I~?%wZN|^QTr+ zXu3n@85jlix{`ACUlKbo3rCxtMa(Xd4l~HJ1{oaa{JE{e14dx^&%x3png%tFSlEs3 z8IMd)!x1Xd@df%^Br^ArXznb%6alAdqr47Fg>KY*KQ9RFt$XZ}Za?G%4WrZUnFqX2 z^NrbFEF9#@U;eLyp0cdAKUc!+m6;jHXfb^bZtypzG*4oL0%Bt3=@a!}%?&2SGE4{G zsRh<~%C@9)sxb-A;H)y{`11T~_gIr5Ns-ISx+k4)5Nle4djr3m0Int$}rDj_Cd4Mbd z?e6w|1et67tEB)-AfcH80jyYwQP!WXyOLi5Rn`dp5vLwXKgZgv{Pr_6*5zYLPy&?@ z0Y;SA9p>$-gIIVp6aRS2ac0f^RQ;8KbUeKU!7M&z^SG@}7>Q4)&2{9D zXblDW48cYw6uA455XG#_BBg~6^1d~h7t?WKxsCnOz(tO*S1pP-u`orvu@qi9-2DZE z4}5HIF`w4H+P!U`n^QdFJUn-p?V6*Rn)$;yIpFW;6w{|9SEp1xQhU|sc%{yg82jX3 zf~=!9NiR1blrOz3P7TpeL_*dR+Q?)!D*=&2JN*DqMg3JIB9pPVUD&}avNKP;C|%Y3 z<~tKTVXd-uC(twKJmEVS7!lXSGi(0E*1^`jnLme$tNfi&`Qsn|5(Mt&f??!|vGT7a zhlrgCcq|OrZCx2`-7SG(5495(2ql?*R&waex%j4Qw3;n=lX-oX)Cbi+&qa%U2Ul7d`WcX#&0BqEp2XwyKAU-4i>V)pF*6SWdPN2zv{L!!iI2%A7O zjox1TdR30-*Or_jzv#I1P*5Fkp#QL6&zjhkkI4qz_#v0bN}`8cLF&AcMU;{wCTT^D zFar5Lr4xU(DeE)+ESA|~(T098;Ql4uV9O6N7 zkdML8dUq%5XpqLr^(DS+N{ta6uUpKME(Nv~22JrQp3fYeKSCRP3_7FIS2JTg=YMRL z#55* zQ#;n3e39ptiVEsw`gTiHPToC%^5y^uQR*I5aCm>LZ0?5jLT%ILbGZKR;`S#M0ND z1)~5v>p9~VEedvE0R>B*GF21hH}EWwN=FE}5fY!IGW=0x@{(t&TUtf!yXEUz*$JeH zu}JgBX<*@bz8CeM9T5=#g%xq{v2XW`IL61V*qXr&QH}!LK(o+8r~HEwb3V`Z>_T7v zF1?%5V7h_eR_AG{OJ_U{gBE`M&A5(18U)Y=l3d#lcc-to2#*mdyRb0p+dz8nRSImp z5jUH)L=PV_S!qjy0#s^fuc*TfcXNi5;CBn9_I z!pmTh^u{~m-s>}$qc*k2Gq%x1Kw-=Z_c02?dub#56hp_4#z1(GBsjK=Jbgvsw~oTL zUwl(o+1w^Hn4&+bsuMqr3`G<|qgV%2H?8Bc33?FLAHjEs(}cD%CGg7Roo(_)rDsEk zemZHQhsecVEMm5rkw4};!8UUl{aX5HW`)pk%~!i1f|?3tPtB~1SM0(t8|^-<=t5GC zjQw=Bfm7Rrd#S;S^qAJeUPhsg5V(we=eK7Ek3UBjufs5Oqyhh3LlfMi8$eEJ$3hTqg@^>I3nq;T$C zj<3~8Buxw@Xi5WOvvnXqGod$2KlST5e+qSIbuLui*N<=mL-B$N)lT8oo*C90huu%- zZps_!cL05zcbfIVz7E5wtkUvQkhyaFq->mEWumWC?lyzlmALC-dB7j&{ z3isd5E`Q3MI{MJ;e7gHiM%zpiTqeT?Hjuy_eg_?)vqZ6fDh1>Kg0eF*ZfSA72AjSj zy{IV0AyaZu8+|<=Z4i&%d)5lJ6t#)W2xqcR)-{YAjJ`cto`W8wvBy8aC;X2Agkme1 z18M(z($!VnYLOd$#bx@QK%F#l`h8$8vyMNw5HTxUJN%Nv#5VCpZ|}$+zua5oxn2wn ztRPT8L&FwS5AV|!u6d!tq_-_jq?wWc?FZ|z<0#D{-go#ZTx!Y2Ug zxME{X3Fse1__(ixjMg6PG1LgM8m2()bZygBa=cyFC`LGN@?P@63=qL_jfD3pnlMSL zZFqKSG_>xYhNZQE5NtYk{|JP%Yv`s&8twga)<^Ar`cgaC5s2b)?jKO#0O(liEY903 zJ?I0Js}(vVjBIxctJwb;-u%eNJ@|q>+&5wDab)qAP)mOw(h+|j(^EI5vFUKOhnl~h zT_h@E&NFRO)nZad1v5A=m&vbZ`L=nhrr1l$R+WnDHguw$XPf;T7PZ~JW^D>}?#8`O z>Cy<6l+g^F>2*|`;zqDYRLMp_s#{oedQOxJtrkij_H7Gm-N(X+$j3+5Noaql$a+7K z3~Ut^E={dI+yRmaoWRXs&T(BrRdp_>@HKaY=5uBV-EVnm5IpN+YMtO`UB5w>cv35= zDsLAqYY|HrGOQ;l;>9QoBpUoM%V?VtE#?c!3k`b6CH%g)d}t@&k3 zEMZE1%KCt~d7Gr~~ z1|u*%!Q6>?#_|ReC|-F{RqepsUGd{@i(-X`#(YJgXV)dlXJ{}jUdSx2aQUt}cN?+> zA~Y|bWt{J=q=c(;?UIK}a5ILER(20o$Ff%*{LU}>Iof-iUJ|47Aa6)&^?2F~+&a00kS0%;(A@{4E={6ex0JGE_*Ox8&CL6X+)SVbOfu`MlCTb`lo={Elnp|S!mHzuq+ zF!51dbD21yt>^U!B;L7CBnyG=1Z;AM#YLbqpKUf`K$>xl4lV%Ua;jG}ZJig5YZN@$ zm!ah6?&5;Ds#V*iG6{?aD0*X{EH$%HxQLJh2a&6hF%d{|A)^kbwP3uvP@R<(=713H zV~$+B>(rWDiM`a@EJBp~Q|#zp3JHjW2{w;A~dJ4P+ebw7NkU-u6lIZ@IyT ztr73B?!Ow?*y`p{#KW6DapykQ@}A%};U73cm*sb7)ES#lPFr#f8!>H}7^!H!IB`j0 zcP+nWw2O;YT>YbGdE7Bb+vS^qzpy-+NZEQCAU%0~4D)$5J!32g7)*?ZmYraPW`0T5 zbEv1ys!RHcHtHK^RiU{gJ(YSnNR7UBiLMOd9lv&?1>oy}h&k3=!=;s|?zW=WgD;|; z|H9C?^q$Bt3LlPnPqVP~*x9~VL2r*%YM@Djy)EO}3HptOwg+xmV!l-r=_h%!vp1&q%VTqgQC4-#t`0D(cEGCK)Fmuf1up-kVjO^H_OEj9=9-s6+)AlQkCBp z<4PX|?$4Yva7f7a3>+g*0>_4;o_X?{5=zBN9OD4EfH{HlOdCBT87n@w>jjWAv*8OX zO^%I3wwrSLU_{YNRWEVA!9j)C`@(67RC3f{PN8+(hy=c+nGrvBxnmr&a7r(EMgk9K znrqCsz{xP%p+}(9P-kLkeRht#5_KiF&xbXt_$GgZr$JUdmtUTFp6MIDZMv2MF>!_& z|z{}VPx+%doPp7k8(b%qDzK4q#s#I5oN_a+OC16Ga(Ikv)~XfYTM?4 zE{r~Dx`~SgiEXW;knGh=kPyJ`$ROFt56i(^_4~K5PwM8@%P#c5mlRwEWjvB-C~mv| zWvPcyBbXZOSk~1k_Q+}Qt9qvctENTB!=FwD*=#XpBr>d_{xz*rik&mP?BmWs&UiiL z;`;Z<&~!7_<2*2}maR^AstlisP1wc(edv@t(A?;ryAglgA{_#XG-awB*?9u8c%}ic;&KWn;4Wc=mb?Pt9Ge1`nDWQ)MB<3<{T=bk&Y7rqduI%@r zsff*pCy$p5Uh9+fYs|zT3K0j3+PmCpuq2s!5X!dRx+h@c!$Kf*I8!agrj?g`%cXu4%G|zWfCiXI*Ex2`2ZqY*usd&O;B$#J=#^QEK zd#kMv-Sk&_1@%Rqf#dag)b{Up+$l{NRGdCr0i*S2GDn&kZ@#tQQiQ&>)cI@p*_*0t zle4<9yyig@uf(Q~{`tj?F`>F}5rECucb`^+#rhJn=7V47GD+=w+$=PtAb&TUmd(sX zr(9%W9}OlUpYkst{mblIq;|3iXL-_Dgsd(y+m^-{53#9hfLSi#_Nuu9*pbpWItbf) z6(o9Yc6p^}2P2vQGx#^F>ev>2`&<0mmS@0~B;hx4g8qnY{%)1J>@Y z{%ZDxl4E(~YHnnaBUs{=M9i}A$CP=gyE9vUl3FcHIA3K27QUmD*Y7 z8Jh^8-y{CoRZ7O*LUbi^ciUlYqAfm7TCUp-Ic z7cKVmj4xrl?OE<(n8Bc)e7Xfrs_#nPoJluB$(Dmlnal@o)ZpYPI+nUF6_G>MSHc3{AekXxTE0>E(7I3 z2-$GJY-$Xmsy;SF%d9yrfd(eeVF3uG?fGLAn&js?e#$+yWRVIFLb4I;LaRSAkr8Jh zqf@Q>UX0LVOFx3@d)G%N6s?qEQD8D2(J4I3l$ZgSr^Uiq#`}WZ zE`*NQM}^1AN7tpnuf=z_w~$OenOotZZYXC)@%u5`?w!f9)D0X-xk>&hmUb?qVo=)R zoAG-hQ_jC@Zib2NA5>%)7TYRE+v zFfQp-x;uqm!ip6qOh0%a6tY~7LX;*$mUo^e=N<2#Drg2X@rgGFA5*oE7`Eg$1dNZJ zgst56B{BObxe=0?-lqI=EmZF&PZAaQ6M3uZ75v`PV7&oz_eSGk@N#DBt6U}fY=-Of z+cFxqYHnBCtqdinlI9Bi+x=_Q#;3)0-=J5&L^`cl68*b@4HrNk&ed?^$#mkL9@^5D z(wk+xRR2?EQ}`wr%=YKD=T3`)D_BEyGyBE>uUxl#ue5&hV2echz6mX$mhhabe4rXH z5{bQrOzhd`>jzr+KMTqOFUe7_E|$g9wu5IWoJXD}I#nvYYOTQfF7L>V>@Wp?3u6t4 zQ;57>o+rp7{Fi`|ACJs1f4$S*p*z;JrAuE$ccaLul^TAsU&4Lm_PcuAx(DktP(_p5RY0HcG)DTtw&Dgh_&5MP~$+G4I--7Yz zNXrro%gMd%c6nv28dPCr{?(XP^xC+!7pAr6o5x>+wFw1JedUJ!nDxS^nu0&c1|JI` zvovCje=DxM;Uo^kcZgE%WxNY9vY@3P2IuiF!AtfI?$|q0>4u=6M?qyxKNg{Mb7O^( zc^?(TS4b2lLc0)~D$w-uysT3-N3s!>e+kfLjowsyjTu7D2aK21k9dN!D6Fp&i-M(J z18x@Uf^4~DF5#d>zp(f_dyf=c(hPfI0eLo&Md%UW6z2F^$?kBx_Jo`PjOBI}f$#h+ zc~#BAJBNmDHyG&!tJ6|QH0-S&wLJPUDta*EGQgWb>uhYm(3at)s~ExBfpg;z+SGyX z-6)~&Ch=`wH%lEV*DreBH`>`V=fM59?9|#nxpFor=0(nx$qx`y3Ap(LxQ~$fO|?k- zxhe^G%dcB4g?L#<;nUE)7vE z0%Dh4FU?wG+&Y!Wd;`b?zRq;?KUNW+F?Ce34tmT99CD>0q zNH*_UE-9VhScBs?b&3N9?+G|!-C>!IUY%Vm_O?7ObKds*2~^I@dIP*U-Gy)OzIhD9 z$X=HMKkz`e6}8V5Naam#$;VFSoxjw^hbAQXXwurxH@zf|_#4Vbiq?(a%jb%N82Uls7;>NK-|4rehS8<}o z+``PvOsCy}{dae#p)ejD2O1Yc&7><>#kb#|%yR{_>a~=y;kR1!b}M_(lV6hgABn7k z4tNCOm-rq6(Kd+~6Wbhczxa*C>7VizP;v_5guEg@{ z&B)cOrrWpoHqKnfB2dUv)3sBB8z#YtVCsJfkdlExKf7;B@FQb8Hv9kX?>+mMK)ZcL z$opb@A*4;+2zBmjSC1`gZyBCBuODi2E+)D)J;k>O&!h}n|4T6U-^2EfEiU-Kul|>y z*YyVPXz;Fq2GkGt@DnxqJaJW-@9(7A(@)r;kzNU(l|9)waUqVmPn)r3rTn>b$t5RHAoec` z>iW|kzy%267gjvSZ}{}wRi12OR=EFlj#;H+R*CsVBXXwM)!W-U z;5(vMe<1JuF`IVI#C(`{wzht0+`IFCPFI|k=F0kyM9tR#O0Pl=`~ z*J52$Gc8w6`(WrWQ2iAJq6(;RG@4&6rA@*AOh&Kmd+`+S2=6F&acF*{KMme3Z)V zZ+y_qkjSl0efBg=-cm*2weftf1H_Np9pwEeF?+KL$3L$a;D3&KlxN4{P4P7EySdK^ zY#$|%qAk5U@j93IRa3bEC4dL^{F8O6e!;}tLi?*w!hj{>2R*&)K^<>nU(aya?bmO( zHZ6O$T@#xxKgU@<^On|Ej5u!9q!?^NYYU`k`6-JPV8d+E;=1IcGZoGQiDynpGfX4L zefy9Oog?2lRNz~c_vP}0$awT-sxMOaqa zA6$H^L^&ExB#WiBxnJsR{P%R@z1H^T25%djaH+K%QR&ig;+z-Uc#*>&dKMpN2a}6> zGv$oTu}rvOLATa1*U5hu_$d*J@H|WI-~?UN%LWyB3GZyDp1K{~rRE10A*)Xn#;zJ_ zwa;Vlvv*&VBOApMU|Osvi0a75-}3X#do;cg6+J;uvG_M{4_HQsH-yf}=ow^==}vFV z-`9PRPKs(o%ZJgWTngh8wp!;g`Z15d5zp5{9Ree}b$XLY9(V84b|TT_mgD~t{K~)& zFnF@p5e>lxz;-U_{vLCeROkQV6vPx2!UIH#YmbE2vX=h8-}`>0ofOA1LN)()JXIt} z4EqRM97Fs4{FNe@ORVQATpr)j1cOZK@l6|!h0by?apJ4h%4I>ZbgDFwBI__1n4>qw z*s9_i^>m@8rO%%Nf-b91cvqfv)OBF7T2G(mXZZHP4DJMDfwEy#;{QH40-qnSmE5L(Mvt(_7wqvD_y~6AH$phwTla3#r3}gh~HTm1p1`& zAF7<`a}n5aLc-F9zVLSI^_rz#;JMjtmoRWB8;JKq!cw3vAnF4GRC=((5CVb{&Y#mm ztffy2G5?tCe1xw39mx(PYbz^yNy{MiZCMefuYEHhUp=W|@Kkc+0F5P~xbVbj7&@ z`23QSbAYBkXj*GyV^_mm6lT`95cVvJ5Mzg%MZX*fhkNk;H+-NtNyClKzh7BjM$@rV zn;>cOez(q?MOn8d6y`v(x1TFbfoA9_P=e4*7Llw{B z@_Ygb9Ex9r4<)*sUSFaOu2QI-=jlF}9^i($;XZbqNM-|os*~C47=FIa9z1L>0-u0` zcs#(GwF`J(8Rt7&MGoa`sRKyrD2Yr|hF5f-3*Arq`Zm%aBfG1ICnFk~b#!*0u=y+1 zlT{7#;DuRU0#zjCiK$aggm=^8gB4!iD``=ojn+i5P!9e98*@{LP@o&xA$3*Nx=L8;OfL4cmkXvnrhAe$Q~ z)F&gU%I&P$KU`k(VAVFu@0fD3Mz49hLUNjtK}_6jO0ipFG%!2-GQo2jUkHH4&Q4}v zQ5n>vMQ!`L4%<_A6`;|W(@CpRqIkhLH6PA2lY3%aF4!_-N;g*QMc$LcM^P`26;iOc z6AGtpW2b~}=jCd#+yfFPzU5pp{B!A=_`7x7O{K2`)O@I!I+oc#@OqrkCsDTRbp%Zg z*4%yGg@SxshW_~gi{o1tlvN2=wE%=Fik6jhGJESp-NQf}cQ$L|!uF`TF zVm7S!xU)&1L@w+jr()LeS}gI&=NDaEUpq3QFjOo}a~8Bj`cJ9!*}Z3JAr5{liTH~; z&HU&!e=u>d+)2Kglp|+V-324{WuSrd%PpQ^G{1|H8dEcII+1*2mNFUKn5zL$Oob9V z(i;kY_s+IoZ)Emgg7z#j^*CX%ZzrE+16iD!KVGs)8y-&aoLhbV8m^LF^^-w;IPE~B zXv9Xj`ABK*=uyIfa51AG#g%4g%_j4AxXuu=VX6sUsn(dE^2zb^aZ7IBS75ZBZ>uWqMHg{tLs7}#$2b1b9n2CXhtHcK@Y_cicJbj z2yHVxr?>mvw^u9pg_z9kHFJ)oQ08>(w=MZ4vB3tPk=CTZ{O$UoGmeevQJ>740&<-< z7z+_*1u8m!5WZj(3B}20PZC1d`v(+ii|*)izS(a76N%lhI1KvpB%@3QEyO+$J*>Sc zu`p6pEd6G)(EVw&CMf^s9+!QI)8%|opgIout!&~U)+6a#nTs=3(;zcsqXGavNgBLt zvh^QKU`B5JEqw^J9UEwn9c~P_coihJkxNrw!o_C?;Z-BMFbH;)8)ZH+R}9gzI9_|3 z@AaN`O(SqjS;kNNIY%EyEmyk!UfvPW-!Z7M>O*0^=X(Vo2y+K?NQB-8 zipO2XKskaGUEMiuG(s_$;a5a2@0-QQl(gJd#UHxF?6Y<65P*%LAzs+>X)c$S=?art zeoQim41{~%3UGnvlQ*;534z>lvGa*avoC%02sG?G{(}J(;`N{ZU2{`mKC8&dk^^I=voqz4~u zze+a?C#{&+S9=4V!oKaMCrBdPCq_ANJZK5SqJdiV&EUk-G;GmLQ~1gYyeC7|;O^+j zfoS$dgVdhL$!~y$)kin8bd3fLPp&Kq`|9W6Qh<<#D&AKIqNduJ`>EiuI%33j7s#c9Ur#kh0F$ zag=m(Ec|DD3eK4(Ao-0q=3JDxyyhfN_H+@dC zVcs;Joxt~$`cE%wz(FZ?o2C#FaMW=DHhiVeJe&Ebfzd6YoR>d+3+X~3i7T}ss_@E8 z_E)0H2hQ7`MDY*eeR>v~*jObu%U^a!-?Mgc#yitGw(vUFaqVUu=o~P^ zHFjUg-57>f8tS@>c#wA_AC6$s{x=2w07zUG@? z9Mn;}hbc;?d1}|p{|bEkHsXUsmW=c0sjbVUx^^T&GZxjFZf>GOwu&6prS9_$KQ{G^(L6w%Nw;uRXT?!2Ev&P5a_^3jiEqyeOeBc9J-RbWJ<&oL{RnSt< zjtg^BvAUY*}oy3Zo+1BP3!I~z|0P(?-gJ$cZAH?dML-Rpzg&WpXzGZF6TW1kwx`n@)+{;b^8hrb9gKEeo-Wf4VSp&t7D8+1g6t5uxJ07DiY@bY?%J znd#-IEwMb59aj$e%^)m`oP$Z4ei|(czDO9xXt4n9RF+( zcsj2*bR$Lk&Fr8Srij4roLxXC4&D*JJYRRSZPxWQx7UzPxt+CGc5rTM#AoPht@9H< zRjxB(0*lkM#v&N-=z1d_w618@Co|%NK-HP4QH2RjS}+vDfTsWwifynH@3IjX{Oj+thAL~&d(m8PVa<{OeUi-T7g zmIaed_1#&CFFSKJDiW0&CfO;O1e!?yg7v2tXe&Q%94`Q<|?G!8h0-xWqUrW1uYLNJgtrO1Tbe z7E?acp%yvOnNe@V*}Z7dT!>!ev@4{NarTTNPDd*WDB{DX9d5iEP7z_FDk>una!CSb z-<(`gma-9JB(^AXL%`kN0b{-El21+{;QPoo4LguwN(5e7{<^fJd$O>jncj3seF8(9 z$UrOk(4caTy2=umLn)K_%;mL`qtx*@?}U1zW2Y-q&t!1kFx})i0<>(zNer)u~ zwT(BNCzLE{!#_liF3T6WKB@uDSiWQt{<^K4N&j7%{%@bU&gVNLQfZtkWzPgH&h}3I zeoi)1LC#v^s7OJB;WPjuf?+Zg_|dh&>6Z#Tli4N&eOVP?!y|(c8}gxwB)>q7?7Tb& zK_nI8g;Xl65??>NE!5dUbq_2^GkuiKI(gy%8gV- z%}^s28d&i;#lHl)tnfTb$7-xK>tDwgJsA{{G3ij#e@I$Wk6-Qa{E{Da`@$vVP4d92 zi*ayo;PXQ+zDB-q1@t~)*t+R(Q7WP`T%yMG1H%mCJ+2oCP=#CmFH!2oKD9Ry5_eRE ze=!_rg7uKY>R>4_U3v$1PW}@=e!IQTQcy90t}$7M9cNq~wu6VWQLa%Us>i-AgoEum z?O;Kt+`UCB@4Yq%mGm%6G81o6t&CavN^}wRx0&3WzrvvBH?d5<9dGrV?9uSGO98-swLkyyMSuI^w~~;eRz(7;)mhy zI#2lo`jC?HObF<<#DP9v@^ryvOmC<2V&~tOFLS6B*fACFjehJFXWK~r+9+{?u3Tg5 zO1HkITyjCp3T$BwmvWIf)T6M(o9J$%9moA@EQuwI_-%=|>SRVndLW;aH`!(`Pgu*q zR)S(WBmF9mHtPAiq|glrsO6URl|Git7L#({(llU=RlIH!}G3tx{t_vs{1L3*&}C#FHcID zhonDi$?Wb>B+#~c3w@IMk}Y{!lNs2v^LPFUB~9(taOD8IU6%w^WvZT9&MeZ7^{E4i z;d-Jr&`8ofaOrEz+ApzS5-uKkMwuk2R5eInuVy5320~FHtg$(|7-Qp@xmYSPRS^`+ zc@q(=O=}953(OcPpgqWD0q1n#Vt^m;E*+j@*xaxETCUe+`? z@CE3LsIlYtLZeo>s#h-U4~%1Jqncvqao%H=%)2hiiRo-+5R3$$ql>BMGV%+i{5m%yWQ;@>GV7cB#Sdj&q*>oly|kfA}j0oAMw$TN*@_o?y2qNxR}U zFP!O72kQ6c>K^qxc^Cx%pw<;Z@b9Z2X3+V;PD#qf-`@*)V1?c*dt404K2eoN(Y~jy zFH_1!Qa9Ev_LCL~5IBouZZAn{R}T%9q{xfFFnQ$2ofIY< z;04w(hovV}6*%xR$+ni%K368ObS-Rr#Y~{i%?!-fV6Ky{H$}km)-szY2%X6I4#u|a zuItufM1(l292RSU&wh1kX8$eCcxK~l134H#U+}3j8)yr^X*O1^80$^DeAX-w|CP!B z?NjG>YM*LdQ5^&g9%Nm7(Wb&33NTt=ucKq0x>rn%R(oiqZhx}$HX0-jidfy77MXW; zIEvhip^)thz0S6>Q=^6HTP^xzK0$46zoYYE2E0Kpys?+d3#V&NsGAHIO~|U?;%Ujy z2Ph4A{-NN2ug1g-zO7D3t)lJKo*Y!zv^jn9ySgK-tWm3hg<7G~C`+n~vtE;qrX!B4 zP=9|;cRNO&77#v)<5J4z3oLkEz3*Mg%pA8W_pH`UUx9;6&Q-=wj^RhA!}}6rqM-h! za^50OhVTaB@3d?#tcioMrcnxt4q~3mwW!8(=O=*}RaL8PTle{##sxKB*#T*vE4@Dh zZ~et>twV;zq?a&7Ydez1)P0egEw$;~v2h|2V(L5H0o?{g&nDllbO^jcP0B}n&kmUP z5pGmRL|I9C@bt}iKGreT>FdMwplzOmq;~O=hfvw@#VqMYiXhAq$Y}5`ida`ucgr_* zmDT|YwI{%hJU-pg&A5?ZH}RrV#6+Z zBlrBs4re%O4j7?Yy%%Px6QD8TU_g;umMm0tp8d z1l~|zmjgL01U9$tVyT1E-;%;V$S?dP5!X~un08!X2Hi)v zs=F6OJ|8pv*)thuSnZAoTou$V!F(2@lWZA^@nSXpDo){MhNtOINEGyw){MzXjv2*g z$T22L42w;$pvqa9dQo;KluV&7rH&VBa%B@IvIbeUDDOB_(hSZlRvdg~*i@|@K)< zYRsX&dY2SATN9kgl^tP#71slp%l1OFK>R<6{%JV?%gHA!R*QVx~yP>U`&XpipDjJa9a zW|{cJljf+TawQ)N5%WjVrE!?O%gB`4CAt2R?=h<%Dk2Gd2Ab|B}%Ww+u+ zd&S%=wGyI!q^I$6d;b+?I!(*V#B8qOwcmbp$tYG26!F3uM&@&xzb926DMZiF&$xXi z=7eN0NFwa+GAKh*poNc@^`@H$m$$Ze1hfe^kkDnopv_P03Ej;t^2&mv%?J+>p$)Zt ze&`23A0OD~OJ@>q0yl_x$cKjhibE@JF@7rzntTtI^lb>n)k6!dCqKp~!)Z$*c}D9gCa@*-f|E%)S8D!gmn_+@3vA!nFon;w+ajg8w_95wnlWI|fHP3yr ztFx%%X>W_Z#8Z)mN1cBR_zJ464c3qwKPJrOz9ddf1!YiKi0rY+ z%gP5&TiJ0Vnh|+td5ulKSym16spU>EJ&{WZ#-_`X`<4a^Z6j*zE-8Yuv z_32aYx(OcYPn^D4sCm4fL882KfeP=4Dnli?$L9e>Q%P2r>H@2p-#^WMSl!Z(mf=T4WQXrq9CDj7PV#r@7)XYc zJ{VngSedxY#2EJb)YX!~*+p~33wu(b;&1w$Nn%ZtZ$_MpwAg@h0I~&l1!hH>0l*Y8 zB5i-Xq&GY}WUo3RKYAX96=tfQWd^(1f7jLNu0#G3he^EZ5tTyD@Hg#l&-q_173Nko zyF{U@hlYAcF#{e+A=-r!!_I|1uwP@^^LCq6J?SbkolMrMWqzTH1b( zOL1tC2DiW=c#8+uVztxaQmm8&NpN>aafbq-lor|-T0D>q+ZW#Aa3;P|oJ z+ib=C_|W#H>6Fut`iU`E1bp$Me_Cd}mPYKT!Rwz5XBTyeKc z8B#a%(QB>N608XCEO+|l?ChqjXoayx{7bIaZUw6cH57)njKYCyBV98mK~ja~e-yol zy;hHa5B%zh>r1Jn=EH<*P|n935MlEEf(z#|lg|?`;`02}dbMWjTz|m7PvzZF`g)}7 z+nh*zBedMzFebxsP$}ib%$H^p`K6oVxgBTsAyHCK);&vJ9)lJC+j|Q)4+B+|*LvPO zHNz$=IL1HdU%h4!i;h2URvBqRomgl5Icy?l5=!(1UKu3_W0W$McEfrF4Qyu^{m?~& zJ3okSU^_@Qd2VuDruz@tysvGiYhwqW=CRGEu!oC87F}CBN>qk6Na|50`W68(@#fE$ zK8WG|!wnav?s#XNP3C}L`-rY~kQU!u{Vvr~HQzpB-rfj%thnsK1nhn}D8A{dXMXd} zTXqPua`G2#BSm2TiiU^bvddqiapB7h*wZv^cDaDbx}Q%pe`YkjBdS6x{yOKaQm zM6DV*{}sYNB^{8TqQ5Dqsb({fo61QpXM_<*a_e<94Yd%QukBj3<4p)!W*c-{y~sJe zs*qdR-lZG}X&Pn9Zxc$b^In}^&`a+F7%Lm93}!U2DcM{WRV#smdU4O&x3R_Io+AJY z)u(HN=(kVH*m26~QZ9EPOZ(Q}M%Yxmq{ZYu%O!Mr_{4G~!Rd|D4jQk!H{i)>X;0c` zV$`w2qGHF!z@g55f+8U_J?&{M5Fj0|5jeZ|vN_I<){IuRPgNfTDLP}8&Q>@*mG!i+{)jus&l)LP# z;Qkulo$?EK{K&dB@z2(73x~O$ay+ObzJnew{VRaL%R<8)&+7UR+^~|4V$zipVRWUc zrK-DQ<(*YI*n&)GZstU(q^K>@L{T%k?Sz9=XbUoU9b0!F@qW7{dM)40=dS5ILCoY`1|Jgp)TLP!ISG= z(z@l}F;tE#6!P`|b@ttS`#jHA-CkWJCVJ^iO7gysBQnA5Kh$1T?i-A(?~5&P^lHN0 zvKBwPVg?NBjF52?lje>6<;<3udjZXvj=x{ro38QHIObhJh9eLC*B34^ znTxPo`+mN&CKJL^%tN4wX!B+L5iPf!juhRPplE$KNDE`kq8zn^vNFx!eo+6Pp;=4o zb6d6K#gY=lU)AfDuT)!&z&F8s`Io`NZYA|iS`AE%9pMn!DZHxYp9T|2YE}+-zCR|( zHl-gM*i$qzpRYVVs=Uz0JcBI${w9j@&M&6HLHJshAXCn3El)+XZ=|h+awdbYlDV;AF-bs&6jmCM-#840!b9RD^*sh#ixD(?W9rtRZ zulJ8RSC^72qNJSrrU;!Dcd6j$yw@x)wxUPjO0!!@l;!EyddRIdkALlGvWe^ z`-vPKtDV~{fj7PbX7hc)EB3BcAW}~CB%$8mn)SlF7{>5$BP9%-_mOS z1qpZE?aLXJ|3a9;G^e{NrLh&wHFsGm=Xc9qeJ=zFvCX<+QV5h2#xv&jLv8fvUZ+1{ zG%#?X+o}WFI0Gp;%ZDhYJ^b0QWgsdqtm5MD#ADboY^WnEF;oU3&E*|PEmTC4f6m{T zhl>tt9;Ed0;txe+Lio8MVaD0aNw4}9rJm!S--#mp{rNn<8YohD?xqc(weRYkiH#f4 zwtKdk%QA2xy7&>2i-GAdPpfeN%RIlLoVWyfZEm?95dGRhKgG?*68ad5lQF`>u6hvN zZfP?CeUwp>s|eA?qQEB^=>g|rpD^-K8x-hSHFlQcZjzldSP)a3RmX7`o5zgO9|thb zHxj9Byqi?4SCm;X4sub9a~2%z!zQ^kl4B#kYFZW5lecsRyQgqnihHsv={8*S8&Nbl z&;sQN7ezd8nRt3D*)nf0pSbjgfc(ov9TfR_{`#sTVRvEtnIS7SjQf$4l&jdo9@vnk z>_fvEFxP{SsuJaTFr59!`-XA^sxfX-q5R#$59GrLmga?40n1=QDX37^cR?CSONp9h z;Ibuj(-@xAl)td)tQ6(OXTJ%k9}h5}nvog@1uPD|W1kO6T_5`n!Ea_zSiTmm5wEqTlKv7mG2V@yH>?A?6 z)^yJYUD~g1yxB*IYzy{F%s&esbvd_qP+j1_C-VxYxD88?d=V!&qAZzsA~y_m)s7~l zfgp1gziO#E5B%))sFm?69_0Dc-meHfz033>vrc;g)(B0NTDwofUjLb_EIeWS!O-e8 zzY@&nW$1Xyis>4Ez3{bNcmJnSud~XfY*@7{ZPZcm>LI~apBu&-f~ciXa7jX(xyUA0 zEVnS^QBVaG2r=~iY65x>yX<7kWB$IxuOvG6&G5oj&WXB(pa#Ag+wp$7c)^FILHWlE zYX6Y1g>$31brv@^`U3>?FO&>ZCk%8^KvrNk(rFIQo6E=Q?}noq6pCw862$F?Xt6!- zvsp`H9DqOmZU+31&NxxmRC+n%qwc(xu+6f}ewzKWL_WC>DU9=ZeRAxC$!L073f2x~ zQF~l1v$&)G4v6Jr$!RU$hX_vtR90$h%)IWo?O;RCHIvxO@#K-2RQE5PWth^wKfs<> zyl=Ri*)k|_qUz_>P+*zrU$xy$?Hl_!L?NA6+w4%%mB_@ZHqBSaP%$*=z-o+it$@YH zrO6_B&a)-xbnp5OF~pQm#3AaQphqxaU5@H}2M*z$<~4vVCu>$upo%S5FFpvMvqqWK zQd5leCB^sl{KZcn1vA$8`~BFpzPml1uJFYBZX*Y9{pJJB%Ix&iQHjs?^+*H@^weLe zPIaOnPm5nd1`nw?Fd0EKxu;W(4&ac}=}B#!X2JYdaKVc=!VCgwl(OZ}LiQRUu4g1-v)UQMqz$I0tl#M~@ zwapKOd>YA^cfSB?av_B`-9?KNq{BuP4@}c~et!KtvZbOL!Pdh!=^nq()6x~rsqYi+ zb@t(@2HKtcBH_!e!(nd1)&Wrt8toC3ex))yyC`ku8D6}Pdw+D7oM@l^vEfB%H|Qmv zlxf%IeXkuds3n$w+GX^3Qo|X%w6C8t+3n=W@2z>Lz0$k=70AjRk#2EpIAc z@&f49&nJ%3)w+gmKZRX?v)uB>A+{`f>j!!QWD*L=`FFelL0NH$l^jUTh(R9fjxC<6 z1Uk4Y&E7vGG4D`(`clp^xyD|Ur{SF(7g&}33O50rME{tC1q(1x-a+Y@W~u69hx0dz zhUk1ye^3mE0WM5U@wnu`7G5D}M+uJ0(7w1(iZBCc=sS-g2{FJgi zmR9r1p2NW}*&&$fp8@s*5 z*2I1Z(DQv_2ur)99`nA7on&-81zoiz?k(3vlzguxZnhR4lVmLHuD;-(apao-{bJ2e z8MCe)Wk|1EI}VjRKV~y%|FzW?VZX`zviv~pMkfac63PxshCrNL=$7A102+5fci1C9 zU+3@!p)MESP0!h9eb~5a>{^m^-h_>Ar=$#bdYeX3KhtoT7M%ixI5;jOu%@ zR_$4O+V{Qqn(M&1-^L{iH^}nhN;9P#!PsvMG2(VepaWH)C~xS@Pj*X)voooN$BVC; z*vQ;V3iShCl{wUhGbv>_Iy}5YJ$pm>~e73!Nsml9Wi$=$DPvMW^@GeK3g2Wninegu^jTn>(szg z<7MxS)p_`*dcMjupUZZ|O=3!eUV5bv%UkD*l`G-zTQ#08@Kxf&OIy<>xqhF7YWyPZ zyuOsSpY#_xQT4qsB-Y`t@yutiBkMeSSK}q4(}~K-jXmEue;xeWu+OK9pFMwkCLYsCbf2p)bmG0F@scIt>9>j# z57NtbN6a9~(<1MH1LE=f8ZSF;ESqnuqb}QlTjwRjc2y((Ej}x~%yfu&fuz5dyS6#) zrGG?JH?g3@ch)4+3T_QoyKe>mA&Kugzby^bc-*e>`G4AXzF2;4U;b~tSZ<%Nb^dQR ziPc5z|F`e|9i+#_=36v_;bo?MTlU>2k{uDOK~dMb-8VL4Yw`};8ZVis|2=IfygK1B z_u$5O|Hi!TM#he>{QovB>)^)5TjRy3hADBxACq&VQJ>WYzRe7eXc#A{)7q`Sm)~+6 z3uW0hY{}~k<>(Am_^-(9U!mE5BlxRi15x-z47Cn$r`f*7PZf=yQ2+Pae?KL`RUsCk zTFqJ|-lC0CqnWGH47`JUN%(dNeA*lG4=b}1vn#|n@xO8W-!L&t%vSJynSG6E9=ubz z|9^e|migF;l^Q0TSq{ba%4hD$FfsGX7Bj00oY$OZb^M@Hp8^v%wZLEh|0wz2FkD^W zHrtctVQl_y`hU^AuLpTZ{H@nqxqCCl6h3tTDDrEVGWs8qeSf|{qf_g%!a{bFIwj&g zF5w@Ngz&>vg|49H@Rh{5q)AUWjYUIq%q%vOAbI>3&lN7fZEjH?%LirGS29K6S|iSv zliBv9;DW!R)K31Z<+&y2&7Z!hb2OxeDLnHuJ>k5pAg;8@o(^&`#EqDMYMLe@ZZw9n znApSAdWlne+1Kh2Yw*Lyrg_-e2HD6zBsv;53r<_af|~{r_tiu+051dp%x{Ti9r9a* z-rl~w1D`*b8;j}b#S%M>E292w7iavxAv_L0^AE`m6v~?c0{kg)g8t92{7;@c1?Ix2 zg-L-`r^7FCf9g=Ro2VZK6I63g7jK7WsIoAATPfpfFfC+Kz!qN!Nqk6uNWap|1yM6~ z$K-KRHA6-^|M=c??(V^ zUeE~g5RF!e{ZY`D|GV&_p3ut_LMN(wER+6w$okxfhZb&(xu@}kuWH5-a~aQ36{ zqKVLDp)nP`-s6RVPQPz7~{7&DZ9qkVwbQRmbZ)TK66~TYIQn; zKhhW=%Bux+Zgumn5lk0Z#0RY(e~fR5nPK&bgSUOl>g`_ERa?_l)>=4rEquUBnuuS5 zh1<9M3!5Uco`^)KmT<+ZcDG%5Y(xPmU-Pq`S+YeQ_z_S2S?I|86xa30=?$*%mdN_H zvOgjE0SqR}tNVYft?u38IW5jF61q>c6-FXKTT}ZJQ3hUq+SuBQ$!F{01*>KELQ)& zqWaZYkolP}-I)mW)g_CjdbnHH51)j9i>TR~J|+9+vxqwTlI@(|XTX7*e&YNHdwIPa zvCen+(ZB6@Pc$s3RcnvNLumP`S@UKt(L*U=wDqvdX}M;9fkRj|&D6|vJ1K-oPxa)A z*qX&pS4}73donkdEEO^r=`zJywXQuoEiRFShdg9Ejhpu@Z+-S6ob#@*RZ+u=hzhoZ zrywWmqs{+xa#^yzM1_2qJ+9yTF?W?xf3HOGs`b)s!E=W77Iy339)NAPJ>1PuNQ2qz z5E{al&YxS8_ccE-Z4{{hu7R*p89Us+!earL|7TU zFwliHugmJo^t49F5y{uwLU~si6F1nSo30=W@|+oa)%At-(3Z71@cMeY(U}+W_t23& zu=H^8;o&0qzX|xhKHCQNmYXB8`)oU6u!N?{5m@38eqk6XXIs0Ik!H^&{@Pp|0!YJ?>=uf z!J0QZj-{(Dz!>VVpoF?)Gs&mv>hQId^?CFQCP7}|pn<-^7=+~GudQ})DU$Tg=2zyd zZZoD%UtD{)GaA%a?w4LRRN}40*ZB9mM2JR?U5{0@CfV;&zvqs}<%>$9x*(oXD+Oi* zds68b`N8PgR7f3GYzK+(53lo*Bx0k%v<{t8=;}TpTyp;aPMWcdF>AWF zQhX-xTHB*%hcsP5_*IpIGFmqc6VK!W^ApIw{A}J%T|SX#dRYkwO$Ws^G87yV70gG@ zOw(vsRR8`{dZ&ppu6*P90PD(tZS-E_;hMk&2g3pTVG;coESIjEtm>V)t0o(QLF@c~ zp3DhhLkiSA^%Y6L{b}=^lEfuUs%BB?*t>+EH>+xY9XdRCOLNL@BMU2$6AR)9l1ej! z&DBn*&B~cT^0O_XGGbTNV^M@Z5W8(S-^={J*s=$d>3cOJ^$!nBWA`?oAAfW^0#10S zlTrZw=-U0o{P#owjf?M>b6KbOYF!tInbY?qy?qAyCxVamWy=MMM4JRb(ilT=RVM9jcTZ@eVe;& zG2iHY9u5(i9RempdcAWlbncweJofzUIu>rRbF$xT!k*bG$6}s1jVkwo} zeyjBOf@EkK>@^>*eYN|$*-DGhAI9h=|LpF{PmmdRk5T7PaoYZjBJsgf@#rv;utG04 zyJ2~$iBzA>3X|+$r^`hOdNUEaXU5>?2mo;{RL%#coU!|SU{FWgfz(Ll*V4d|0Ewhk ztc=u4FUGwYC4TUo?W>+O4gY1z5WdrDt(7UE1DFK*lR-Ch&3DQC%L0x!#BY}O^D&#vU3Z5-C z1bgf5re5*aj)(W^g_m@71^e56Tag1#vvMU4tDH0i&X!mt^Fq_Ub@N$HZExr$xmMD% zSqo(0uu<1UPcfFT8`3PO_$u2R-I&JIfWRmF9*ak{IABB8e>CkIPQnYHXDZ^I`Z%Nr zv=4xn=zJn^SBoG^W~B>}?^zZM{^s~jukhlTGfsC#=2;4ngj(Tp*JMHqo3xocp2+{Q6PI`FqXTW)HSa$yP9?ofQnaS zA4x0Muiai82GyB5UmAcBlLEn6TpY@K;cfg%GcNNg{(jwdQ*~Z!b|3F$1Vo2VsAQ!P zq}&j+&e)Ms)1n03_rfCw$t#Qa&4{YPgIi!aALh7*mp4`*gHoVMmQ9ji=WJ#coQGB& zCcag*#ahN1ya^@&6cz^YI)wP#w^k3kRzFhT`6Fz=aoMRjmS9kRXdaMOO8}g=Nu<4J z(9X#UYUs8#B;%@aqu6A4@wD#+nhxs&B2OZUQ?*15w`S5A?6-jRCqX(VA>Aiz1D9zs zH@aJalO3CqVwyp>ABHtB(rjeLO0G|uSbHM(7RUHG8OgZCH!f>e%Ng7WX{M;%b#6aF=PI3I zbz$(Lnn_UwQJwt~#nf2LMxh{zSHfX#KH`ex^>#M(a@V%(l(Obyswj4up*}1nqmS(W z#07j!6VozwUUw%iCyi&N6YlRQY7#c9Y5}DaZ=|yIN!o(6@>O3!F_Q^NhIr-J*}`W% zdGy2Ac^aE|J1T!=rbmB-*S9$e;*n!(7uh&Rd%a!So(jWfFnLTCnnzGRm)}Q}sae8g(@QHHIFuIF7F+o`dBelG1c{<|4+<5`|^6PXZ> zBlbN@x$Hf{l9*28$rJR_ThdIwkuP@C1}7W&%|X^0&%w#7v!u7NcXd_ zs!`L<72b8GXDSMZvIYx%_K|v+2qpGvKld`ayxy;KwAazuBUhI>8`hPlPOOfN z1i2M;qyx8J|0_YtnLP+iG$$SCL``OQwsPq)IzQPei=;BZi}{ltflVG6wM4kv#>(6Kvw06EHuI(L%JZVV^MpoS;i5sXUA!LA zSXB8?MtA44{xUOnk__eGapIXS|Mr49lqQNU-A2Ooo4nS*Ogv(=z`x_t==YbtmxOKH z2TH}o(Y{1LM#^ab)G?W4rdB)liP;nfdvU+~nm4z#vw1p#bYboyK*J>7nLv9ie9+r( z?UD88P45LJ6@P}@$+wc_g(4%X-0Z%*AAT}1@klW@h{&CqUNDSexJxgz^1486b@dc2 zMeFHkbDr7WFD)V^scbA^^5L*iGny8*Q>Vc1jd*RyTYN@y5u1ikZ0>}?JrC~0?yk^C zY5%NnDmIYsWpMUIJ-DC7nkLN1X;bV+wh}%P>Z2&Sgmzd-v}fzp4l1SUqIzm(3r!YY z)&1?H&OX9Tbp2oIt^dxj(~&bOBbv1Xmr;rM_Bf1xcz4;Qo&MF_CdqsDknwQ(IuLD+6F`B!*6TC$n|8Me zTU+&d>niIWC&r5NC6lM`L*HkW68Kr?1TrrP!L0BnU) zG=Bu8S@H(uo_3ixaGlzVpyoQ8igFQx)SN-uazAIJI3(bORNdUsqKrGGuq3qLN<71e z;b<^_XQt{~Aw}oO`Wlryv7>Y@=Nx7UrihR{=P&btP2!uWZOfva$fO@%Q@@=Kxcw)j zW5Tgl$I4_4As`1S659R_q6#LRoqmfN$b(qj6Vys{Ob>7x^bMo;o+AW~R7lDTaw*5C z9E(EgMhps4s5mtw@#+)upH(<=#2O0NC&)$9J`{75xgJo+QTo%6tNDoftc^(Kj|v*R z@3bLTFK@e-Dwxs*phjdW;lz|to+Do_0aqO7c`maDry&|FNKcdV98b$PR)qkIZjcTr zb6Cpid(zz=@T9uXKq*ILi?o>Pt@3l zzhUtK>3y_CkJe#uhjAS$d82!H8VZ(VADg8fHJK&Di}(}Y=Jte$3VcVX20rN4(r}Bi zu=uQ75<;K#%n?KHEIoMLpUUMU4i60DuTaz1%I8eR&ogQDpQzt*h3V5QkM zPYm?(R>M~&B_iou%iPpvBx)#17;24Wkh#39;nD|F4pGOC=L>~?^wS=&n)%(K&j$6udCTN*y z_-H3ipy1x~cb%<-xhga?t7mpmTtI5XP_9T{KAx{AeC1cC0%Q6^da-r+0PT}l)iQx) zm1PgC1ikP2DCt8nF#dj_tGsZK6&_}ucro@WsmwBOjf^nOow2|*<)9Dk=3-R!DS!@7 zE2!WAVl}->yE@U_-p+~%uJg@%nH@jaU)4<6!MDG$yu6-;c}sEE5>P&GrkR=LVg!Kl zzaRJZHZxbozJ!74D=40N0D27t_2a{$ZDQdtAF;!qTH``Yw308xio6w&rwik2?OD;0 zv?O|&1C;RC6*T0=Y~@qtwL-;Ob5Aa=^$S|wqg%3NX}&Raqz`WCn(co6LF2 zIVa3>aHLizDAgiMm^fs&?^6#0HcjK|SR&-5%!C^XhDhI;S_3$R7qWLEC1)*dw~JK9 zO4R8zk8MO8B=g#I<@8<+*0{ZR!^L2>O@Xn?e+2w_h>9Tqi+6Q+6j-RI)v>R63b^}pz5<*OId zjocxS&zr+C*jc zH?z~G47K<$D*Dl5FNupN`fK@P#*t~u2Wf~zatacAZoAc{gkGq#p`r4nB-9zu?bF7V zty%JJr1f$#ZZ1j~g8VcQb2%)!*EC1Asa~$V3CaVL3I+_Mv zC!Pf!W5LSd>_CmYYYep^qKm~$$|#gIhI-ebcEwg8Drt;JU`m(o;qLS1H8z^CY>6}Q z*{3J(7)0BPbSO{L5oXBbJfF#T0|2m`;{fy<5=k*?91sv>F4&$AzIQXaUQ=%v%s98BYs3`J)->JpBT>A}mVvq&C zgWF&b{3mEAXQ{bYvI#9VfOYKoI6EIxG>rTfY934f+9`q1kp}VkJuRHf`IdS?O*!F% zdu(Sbzjuz}QwO7`d$RXcbQJW~CjG+SsuB!?UDwu%nVuFMt(<4t@EN~6MeNRzMRs${ zCt6e`qEURzE`<_$Li5R14DUM!+cHK?ZFTY)_b+LWwW{lRM&_G+na4DgrM zS-t*~53p|>w8y}H2MwXeaOp?z4om-?f&hE`DjbaHe0D^4e>%#eiRMr;XMXwtFWc9S zHeKbYW;9FUT$VFokbipa#RTwg9g;mr&#x=t4$pzYBkE!fKz(khn~k#4Mk7h>`z>#j zQ&E|BkQrdSp9R-dD2@{$TUMGUZ*GZ*eG}}^nb6HnqamY2dr>z7iQS%$7D79*D<{F} ze8yL^$h^s6J2hXYEQ(WbZB1Z`cVyL-vrDQNQw_j1fm4^D+_gn$knGVD{uJ5t$BPHi|nXQhJ(`J?m z`UM;4eu&M031WYz#v(aba}~G+1lEgjPc0pQUX2X!-OKa6v92jm-@ij%y0C!n@Y^*I z2sbnKyfJz9LGS3BK{8(0J3>KP^A&gc=&&2t;OL%e^FnvwDr!;*7smy%XK$6825`l4 zPv4z^=hC$;_p5eTv8Fuo$(=9Wf(pHK$b;WGt3Abq8Vf5;dpTbB@I~~L4qWFpC!II- zX>fNxi1@fJ7;meO@F(&Y#Iz@!+!Kbv?Ecu2hA87;;>ID z`Fb9?lfX8_zO5q%0)Kl*@ec_gghDTM2k=E{IUE?9Arn%92r=Ik)wzCe3t^03DhQ~` zShX_31R1g??E1$qc4J}$C2Bf{vV6O~&&KqiI0@faw~U8=7_*#5!|4SJ@_eQ9BhxPy zPqLz#EI$=c5Bx(?Z<){XER({*20EjUwBdB0bLcu*-mDRMXr9j!TuX_ z5(Sy2qdJPI2WHpre6kXC0GI#}PCrw(i6r2ZDrI=;l0j14irFGbO%>uXB$ z&fFp=RPuKYv}FyLJ#0w?Zs<#cObz(t&u$O>Z zcw|U75kOy<0^sS-rKn!NS%0B>{uum0^*NhVT_kCdev%U{w^`zu&v;6GU*8GQEloR& zg~zUBnbPOS8MGThfqp`*yG~^;*qPH?08ELD-S&Q>VLHw8Yfi*Gp1)`cm>;kW2g~=9`Y9|VOIsIoC^VqTu zogJZ)Ly(!&Pfhf;L1-OI2C?NZ%!~(`vTqq;oa)lC`c6YT;fhlqF@+uHJQ!`H*v<<}v=z?*ov^=>mm)HKInHoeISU zka_DVIgcoFgY`Xyc_%5Zt$+!G5xFn@gDp-!U(emr9Kr_644HiS53^8yhXb^?929=9 z6}8P;ZK9|Q)V;=ZMjczzuNBpg;EY*odmQ3^{74ZqZ%%T|l5>1XNS8{}rcyh9ePE+O z07>7VF!|@TyfMb!ePDmHIQ?1Uv?K#%CMT1^b}A>WR7b+KWoib!>`lLDP!=EE+WARp zA^l{a(7Lr&&ALOzCYd7aQ<^|fyv%g$_oh*IWTgD=Y$xmzr1aBf*3O>wgYh>AYeM2m z;RAhxPnc9mNZ!5sHU+Mh4GY1kiP%SyzY&3-o*<(9|I))*ZOt(plf=)pWUG<;=#E-tQrIS|S+x`I(Dv$iq@&YF!~wX3MwO?4 zNsKoF0A{ z{DL?Y72jE6UZ|x}Q7`zRSeFYKS!&1!*JsV>tYnoSo;~Jt z=`u8(ZXP`gLN-RdGcjl0>3Du$lh;LVuOWBEt6z)GQXG(X>3y1X$yO*g3F~B#d1?xS3XOgedQ{rCD%)+RJp zyyJULAEp<1qsp@E>r&-U?^{w+WF6?Xdf@$p{=oBq1Gemf)m@SIa_1nwY&TRtIw(|< z@;+k617vIudfsYXyyIG0FAR@r>%u*p)VRlZQ%!U=@TxDCXLx-ke-U)8Bq!DalcF7p z^0s8^Sy#4QDoh$`pF9DI5cDwhyz$)cf}hhMFi!A^-v#HFLFg3FwhzS;^fQhNfE;vu z5R__qYaE2h`8Wcxh-p?ZcvxCJS&nqX@W@#w6THS_ z<6C=yESqs%3UdbzA|x5^usZK+kqfn;WTYdvv~#mSi68f_eExK>S+m`XuJ3MRIZElL zipjNq@Q zvmKe6#P?pO175!$(b%I_Av``Nb-EfbOMkS_KVuv0e*G}%8xMNJc9HNeJp|qI+@_Uz$G`iX#H&9MZm7b80Fgv$c^#q zqs@+qSq@R+9qyR+XYqp6qFa^Xfx($6{l`F1@T2nuVMc=!STu)Z*K&BIj`7`SmmC-_ zESMh$yK2=<42`v+UOXde0Z6b&Z2c-wFZp3j=0sTv?qh@Ayq)x?XL#)dVblu3F^Sn# zT-FEvX73Z*i7!NKnP)Dlc_)96Ow>!CG1AR{W)83IGWm=&_w4H~%g$gl0L8tdVEES7 zdZ#^NaNX8Va3eiiHC^rn^>a&L&N2tTT+oM|V&$6ji)kqcW!v1hfWkB~&z1vm&KmS! zTeF{9btd3KdgEqd3Ttmfi84h)2^KCXR$VfUq0?GO5v6Ro>AzUg0ZrnPkER1}SN7Nj znIAD)cN!rSR99`t!k`Q;ftE{%6=8A9T$b>P9$@@I0LsY2ud3eF=gA8K02 zlVVO^6xn}{IWzk>Pj`2K1*7#0johGi+l1j4{NL>KNUi`-HjJ@&Jd=!?v5#|LhPvBp z+Oc1CplJ0KYzYTfy^qn$1=S53GPIFxZ-+k1eIm}{Sc){A4#?o(4Wm*aI<=*HP^-9R@f%gK_{I(v){=aHOgt%2xe7{Vd6 z`{ZUJpx`*Z57E!mZ}U+DAv}?y82E}^{T%d!W%=z)$q-NZrO5Uod zhl%P+S+wwLv-Sx{>aUF##JD|Ok6!Ej9X)Gin_1gOO2fCM(yVbcSk-^7VCn}?S#Y~R z3aS*XJb<<~E0^vU@d_JXv6Oz`nc?G8+Dl4TM3`CGgrxa;=gEeBgR>%j$QPMu zjIWZ`97(v1iT?avMC+KxyqDzinl$Rw0nK(ZePPDH(S3|oT*3K*;(45i)sevGbH(PO z4`j-3IDU#wC{oq}%qSFjQ&-JhIWR&Fx@JHq&ZVud@sFdyZ zZGpGq{1RtkyYxU-cv7-U_nq(H7EVoXgtgJ#ekHI3@9HXRvqh`ne1WE<_xx(+V8c7B zLsST6A_QZtXo#{d>^>LZMBw7eYzpxapLT> zREL_8DVDsa5-~cUmO;CrzsxD0O;_YR%0{mz`kS!iE-x-h+wu}XyxRPF25>Byl0w`z zzDe@{+tvZgN4v187ddyE|Y@rejk}`PkZBE*ic0;?cGJA{I@RAYm;81paWcf zj0wE2Qbz6<>h%fe*yhG&m#c01&xBh6O(gUyt$tub)M|5pgkMf##XTFPZ++GB^7tj$ zG83bpzU320Xwu3q(mR*eAu?B)oPg60w^V^s+iN<>1#ly;O@V|nnN^05D*|M$KFZ7} z7ooRi%)&0Atg;F;(+JWuB34o@*G5F(42_m84^=fGtVXWZ>YvnHCKDxFO$U6FL)C*t zhAfHxtMK__#uv*Hv5go6^UQ?DbIWwr_n^nMCGH=yvcW=d{se_Qy12RpFqj#0rA8FA~a2Pk>v!$SKUxJ~`C5+cn zVmUp~y&prOA`Q$F9z3)bAvsCKJPMzKn8cJMt<< zoOwRtk`5qGWPjzdfpa`cmJ5FsO26DD#SdH2?rI z6$ye*IKSFmJu-iS3}b%Q!uWNPgZ=(1o8}#yNr#2z*YCq}PW!R#D z^#){xyX+VIt) zjrsbqt&l8yJdH1R@fgc>Rmf;s~r>I4-IubMn5iE|?LyOta~m8Me5M-@TrH;>hmo+#JTF z${Fe7Nm&HBQhFC#%5QH!p9V6V`M6{t_08L*5rN{iH2Xg^eFa!sOV@R9cXy{qaBXqd z;_epQDaGBTxVsj2cXuchE0o|6D6Yl1f9`kR|2*>~IWjYQADPLSHEXXvm5SVg1#6O( zIr`DEhh&^2zX|Rvunug8`!4YGUc^XuH&vd0*7=ORyJ<^qLFM-LHp@9)o{ClhG%nXs z`t=TUmxAShmF4qZ?hH#w1{O!~3BPBRxc1rU|3xGk+>2Zm)8bqae@)}>NQbxE0RZLJ zgw+}`?mo1-zYH8ij;!^l9g-`x%ZUW12~xxh!#k|lb`=9WFR9g@#I`OC1%`P>dmX)n z=dTBHRRqJyQKT^D;P2(F35j?PbB9*KH<0F@)>Ih7cZIDCO&~btZe^c$+Y&WgGgHmk zrVD;4>{q@>Lq(;;-yHz-77OtFoWOfGh_0w!?U*3E;p`Ct|NbRm5K{{#`*h6=yTXgA zEr1q=!-DTy>eyt5WAm6`*L`FR`CHPb6WX9c$b9tQm=P5cv}hxKlQXQ+isgH()lr`9 zDmO7nPwJhMGG(;2X-Lh!($%Bwu89OjZs9hN`bR>Ktxz} zUpplk-=scw(vd9Cq{8A#e&}_M>%-{F_=s;psQK+IVC14t{2g~kR#6*zKci-}`Ex0gyJ%HYoLEsC&<_uo;my6nYEO5ec@)8xAkWjL?k&}w`CC!utbjh<=tvorA#JbneA5Y)!`vIvt5Fbr7HF^#)|ZIu_?fO3jxx-+-QNYt z;<fV!+{j$?VMZ z5))wj+NalD&?j~7B^LzuPFGkk$xbh84!mWw{@nOXywfEMvPUS+VwLIqkpV=*s02k7 zG2+Wd+V9bSq<6PNW^bQN-9gj_*T!IVh@FdlUw5_Lxm%?vKfTw%ep8mdCVz{pm^B~! zHeXmbg??f7k^J_lpdsSx3b<-v+sn!mEjG@nHy5{$z8S!D-B z#y_(8N>bmcb6CJCmM0322?5102I-zULxXZ7R~jNeed!iLvYevNX{jP%M;@2n^Ev~Rv2N`8QWnexjW&Or%2ckH{#G9{S*x-F3 zqw;hK_n+Soa@;Ord!FDnqF+0iXHL}_cWYdO9PO;(%*JygWVAEp7wvsebbFIhctqI@ zQuzJhkD~m~O;Fu8oaN>lCJB3x4g@zTcyD0?hll3CU*Gb|iG z14HwjC%ZQ!S|w@uEC9pd#Q7r`Z#0#iQNMraF=WXhZ3uRpjs>f)u0eZB8?lx*OZ{n_ z{MJ3$T@mXMjE#g*q&PB^0M3>b2oYR1Ag?=kLO96WA@w+*u6F}(gq<#N-^aiVt464znO`!o}3e~U6%5ivlGeNomj=a6sSi`1*pl)t|Nh3Gv=*dM>52L1ivOk}xDjTN%zsU6;+XWO1(b=y!3c}7;j`#| z0m;jS$8#kE@+5GT@GbPlX#J8u{!S7ywttay9{;X`kxdp60r~J<>bqe08GOMEk%F93 z_{51%tE`U;7kZCtM7(j=d(V67hk^+l{)w+_i(C}uL`Tsp4s*zcnUuv&P7Y4&PVpT4 zEgAA=ymt!;i1Uc@&n7qMv?qbi5}7=OO;4uj|4RlBZI^*M{u}K;L5i8IwbFKJUn)kUnE@ zjpt;6Vm>3V9M+943g(HTp% zFh>bn-p!edw{!27ni3d(Taw{U>mYDoWedq)(J)2iAHXWF4cNIIbu7aiCa_)K!C9B1 zjQEFU*=`~y=KddKe?9Z3rn`|cheEE=AaH#0pTwKe(KMV!Wwdqnk`MFJ{s(kfDgcAl ztxq{~Q~ULkKm7wbYV;sJj~CmsW}D?0mRxePy*YY4Y`vLD9D%Bxihk5x$1;#G!R$N` z7*{yiG%|?gw?mEmytD*bftWsK#OR&3#}{0eQKDhTXQ4mc#Hs*yo3}Sf%DZ_cQ>bc21u)+ULE}LrXiYG7eWINMkj>#wL z@}y-B>sb5FbuKxU@y`0~kgIp~tz*e4IMe-dwAAxC zYWq2^j%w7uxp)8I4(1M3Sr)s$6=~s8$={@rl~9JfU9>JeygxMcm?~(&^jKT}N=Y%H z!G^M?AA97F#D&*rKgpEpFQ8Bzh_9pGn0A9;2g zZ0zo)6WZ?Pf6E*`tvYHR+Pex5Sq%^s-8k-*8tM|}?i%sW>>PYBvw&NA4Iux-G0wLK zzIGXF?%xWvco2=y6w$je5Vi{5TXHFnGj+(EDALo@lW&dqoBx9zk*$!3i8X5Rp8T&- zTbund>+u`O38Gwmd!3Wn*4cWC_2R7!>S8MF>gp;XmColoP(c(Ct5@QCe)~q?$lUy~ z5wI!6alM83`LBMXvp)Ju0F5ez7RKgI^L4DP)~ri z8{*L7;$r5dp?sI-8M;Ihb|Bq{J>K?>01B?A<`{G6Vs~;2DpZYzMy7{sI2AxADK%yM zD^cjt-@9>l-oC+*XSlw6V*~!&Jd>O2biZ8z3={pa;nXrqM2ntV*fuwNYdzn`8xIII<>QtVfnf99+nuoh`qskp_|=X=CT>I3AUY|bYVcH70uSI@(ezNQl!yk zf1bqhnWSSVdd`yWBhd3dvp>u#gAFe zU)sR@KU+9`5`6<^AgPx$7`J-<+XBUjez-ur_-9ST*_0XR|BfJ{Xt^do*54bCJ)v$K zqfqMp$l`$#52iv5gSkVE+lBarK*|S+UdfA*d#?R^q}n(6elg9f_lli2)3AFCOfhv) zF^#pO6CtBFrCYSwTWi|j_|gu}HHr)Q=-TLzjo6+K{{Yh1hJPGp0zcqJZ~E%_$`>eY z6N%EBx~xQv-1}247wSJZ{(Un|ybr`$ZrQ)5`}C%a7^L<=Y&1iW%rSt6IDuc_M&8@; z?Sc)-Ljv8>TI`K@-?0lAFH0zGcZjyTWfZosJt`1)F9xL(L+Q8B#^NflbmvWO?0JCd z#4qk1ZSqb2v7^m}4l2@};gZi06N%4`-INL?%nj!l(UqZu8&fB$SCTMJK0V_CvKx~7 zhW%^qMVC2@4VGrKvPn9LUt8EBQmFbU= zpinek3C8%6(^F_2Ch&z3R zSYK|SMl6I+s)|NSWTW1NnJn21jSYXwsQ})_ZTx;rv=E8g$;MQ;!^VQ;+&i=>p`jLV zZpIJ28K!i+Z#++d5>hdrv3gm}B7RSQRRNFH3ER0~U6}TXWxE7{8~k1hR^Ja_#ky3n zE}l$#w*O^49`+7+DGzvMQEe_ZTrMYh7SVdAd>8`uWJ@PjCIN)YyI{VmMx3| zHQE2egWcBqq44F!M&H|XL6FA*(Np@(+uGLwulYA9sisSmYW<5?Ggt8Yg*?@EX@dKY zMieS+Ul)rv6W2FW=I7p(ZM`h6L+62KPQQLMkqkeM(2)T9}y=SuRo)YO;L0)~K9x zWY=@34mFiz2~*DdjqYL3WLcr`}oK{ zz)u+75A=J$#~$2q%iQMSX}~f^z<~NiR-jh zN~%6Z+)=U&4nTuhx4V)zEo%_W0I?^y@W%Nvnh-E{%x_gy7SxLDw3KFntH|{_0pH1} zDZ-M9=LeuFd2NOX4oeTyJ1;PHh*STzWRf-xmtc1%ZWA{c%ExdD`vqxW}`RcdhNG4?jomUH;Qv|)?PW}iyVgQO5d-;(DCxLlvQbWo$e5dQ&uMg z%WgW3g47?xdw9m*l=nv!Y!uslbhBN1C4VET$-vS^E~j73gcZEdbb*zLsT zU?fqjX^S0+tG~kXU2ZS`oJvqfi7x4%mS2Yn-xDr*075Tzyt1Y|O-TRA0vaK>S%EC9 zECXLgKwU3E_eKEVQK>7zhMpT5Gkd%T-(M%C+xx5o3ne{r=YdWzoEb_hwkEIrni{$` z1q(74%Gekg6KU*m{lbrAk6bCXnm~)uYm*s?dWfDV(|{!Z0LdqE54O6<4VKd>R`fU{ z7~Y|s$n3?ePWl2tU~F48o*LZ-LrhQiEeu{cZKet|D8AWwliCdxx94eRzb#?Q+*gsLB40wM? zSIfimTk}9R>rxl$hyd4jBS!!Tv%WJpHzBU~D8ZdzlQ6mO$FJ(|g8AVv-++)=pk)O^fRd=B9rK-62VeaWY9iZM(QGOhy9(V4q) zIAybzurexCyX3TjDrRFht3SS@mVQ6r?W9n5)1A3osjTKDb1Q0xjY91&(u`<6W3K2- z1lfu?SBn2;R<7WZYKRk;+^}dGz?mq=f$#3UXyF+eVc#J&Co&D>ukMkY2`#!~v&@`f zQL{7A*X{fGl~CRd{dzXei&St)KTK;gUJcY3O)HXmMPTSP?|ypQ@`d9Y4e>t!ZH<+W z{n@?`>FP-KD?;g{?SqQai?wDDoH^+@uU{szust`vE-00)|k)C+b@z zjMi#oG`=XC0R3Z<9WQYkxHmhEb*^j0W7I*4Xt7T5L*Aj{+3R{X(Wqs1$v-dRXUpgX zVTd0x5Yg49Ah7VypBOf?>N_)a^@Ejqg{f>2due)`;*!o}OtD)kn&YE-rP$Jn3y